Optimization of the Reduction of Shrinkage and Warpage for Plastic Parts in the Injection Molding Process by Extended Adaptive Weighted Summation Method

Guillermo Hiyane-Nashiro 1,2,†, Maricruz Hernández-Hernández 3,†, José Rojas-García 1,†, Juvenal Rodríguez-Resendiz 2,* and José Manuel Álvarez-Alvarado 2,†

1 CIATEQ A. C. Plásticos y Materiales Avanzados, Av. Del Retablo 150, Querétaro 76150, Mexico
2 Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
3 CONACYT, Corporación Mexicana de Investigación en Materiales, Saltillo 25290, Mexico
* Correspondence: juvenal@uaq.edu.mx; Tel.: +52-442-192-1200
† These authors contributed equally to this work.

Abstract: The consumer market has changed drastically in recent times. Consumers are becoming more demanding, and many companies are competing to be market leaders. Therefore, companies must reduce rejects and minimize their operating costs. One problem that arises in producing plastic parts is controlling deformation, mainly in the form of shrinkage due to the material and warpage associated with the geometry of the parts. This work presents a novel extended adaptive weighted sum method (EAAWSM: Extended Adaptive Weighted Summation Method) integrated into a Pareto front model. The performance of this model is evaluated against three other conventional optimization methods—Taguchi–Gray (TG), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and Model Optimization by Genetic Algorithm (MOGA)—and compared with EAAWSM. Two response variables and three input factors are considered to be analyzed: material melting temperature, mold temperature, and filling time. Subsequently, the performance is compared and its behavior observed using Moldflow® simulation. The results show that with the EAAWSM method, the shrinkage is 15.75% and the warpage is 3.847 mm, regarding the manufacturing process parameters of a plastic part. This proposed deterministic model is easy to use to optimize two or more output variables, and its results are straightforward and reliable.

Keywords: injection molding manufacturing; genetic algorithm; gray relational analysis; industrial design for injection molding; Moldflow simulation

1. Introduction

The use of injection molding has been growing since the 20th century due to its repeatability and capacity for high-quality mass production and precision castings with various designs and complex geometries. Researchers have studied the process: the raw material, injection equipment, the tooling required for molding, and their interactions [1–4].

For this, it is necessary to analyze the effect of the deformation and warping of plastic parts in reference to the mechanics of materials and their mechanical characteristics. There are some related works in the literature about the importance of studying the materials and their mechanical characteristics. In [5], the authors developed an investigation on cellulose nanocrystals and the mechanical properties of polyester resins. In [6], the authors optimized the electrophoretic deposition process parameters of polyaniline film. In [7], the authors developed research on the effect of the inclusion of cellulose nanocrystals on the mechanical properties of polyester resins.

Plastic warping is one of the defects that has the most impact economically, and the efficiency results in the production of parts. These defects include shrinkage due to the
nature of the material (measured in percentages) and casting warpage (measured in mm of displacement). Different optimization techniques have been used to reduce these defects. Uddin et al. [8] used shrinkage and warpage reduction optimization using the Taguchi method and Moldflow®. Zhao N et al. [9] applied four comparison methods (artificial neural networks, genetic algorithm (GA), response surface methodology, and Kriging model) to optimize process parameters and minimize shrinkage and warpage. They considered five process factors (melting temperature, mold temperature, cooling time, packing time, and injection pressure). In [10], the authors proposed a grey relational comprehensive evaluation model by combining the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) with grey relational analysis. This technique achieved a 43.33% reduction in surface marks caused by shrinkage deformation by reducing this deformation by 14.6%, although it did not eliminate warping deformation but maintained it.

Mehat N. et al. [11] studied the effects of processing parameters on a plastic gear and their effects on shrinkage and the mechanical properties of the gear. These models consider using at least eight process factors, which results in an excessive number of experiments, as a product of combinations between factors and levels, which could delay implementation time in a real case and lead to excessive expenditure of resources [12–14]. Many authors mention that the factors that affect the deformation of a plastic part are the melting temperature of the material, the mold temperature, and the filling time. However, depending on the complexity of the design, the dimension of the part, and the characteristics of the material, other factors are added, which make the optimization more complex, nonlinear, and unstable over time [15].

Likewise, many works demonstrate the use of more conventional optimization methods for particular cases. Due to this, a mathematical model with fewer factors can save time and resource consumption, giving a deterministic solution to obtain a more reliable and easy to implement product in the industry.

The main contribution and objective of this paper is to present the development of a novel mathematical model called Extended Adaptive Weighted Sum (EAAWSM), which is derived from the Adaptive Weighted Sum model of the conventional Pareto front, and to apply the optimization techniques of the parameters in an injection process. Three control variables selected according to the Taguchi method are considered (material melting temperature, mold temperature, and filling time), whose impact affects the response variables (material shrinkage and part warpage), resulting in the reduction of rejects, which implies a considerable reduction in time and use of resources, thus improving the quality according to the end-expectations of the user. In order to measure the performance of the model, we considered two popular stochastic methods, Taguchi–Gray and TOPSIS, and an evolutive method, multi-objective genetic algorithm (MOGA), in order to compare the performance in the analysis of a plastic part.

2. Theoretical Considerations on Injection Molding Process Optimization

This section presents the optimization method and its application given by different authors, referring to the plastic injection molding process. Likewise, the Weighted Sum Method (WSM) model is presented, and three other conventional methods are compared to evaluate their performances.

2.1. Optimization Methods in Injection Molding Processes

Optimization methods have evolved over the years. This development has moved from the trial and error method through the development of analytical calculations to the use of statistical models and the use of more advanced techniques such as second-order mathematical models and the use of artificial intelligence [16–19]. These models consider using existing plant equipment or specialized Engineering Add Computer (CAE) software such as Moldflow® [20]. Multi-objective optimization can not only be used to address these competing problems in injection molding [21,22] but can also be used in other complex applications for novel design. In the innovative hybrid process that has recently been
developed to manufacture metal–polymer composites, multi-objective optimization can help to optimize the quality of the polymer casting while still meeting the requirements of the metal part [23,24]. In the fabrication of a hybrid material structure by injection molding polypropylene (PP) with high ductility into a robust thermosetting CF/Epoxy sheet, multi-objective optimization can be used to optimize the shape and bondability of the product.

Front-Pareto Optimization Method and the EAAWSM Model

Researchers have developed many mathematical optimization models. Rajesh Kumar et al. (2015) [25] present these concepts of mathematical modeling in their basic form and in a cursory manner. The genetic algorithm is derived from the basic form, whose solution is not mathematical but based on the concept of survival. Bejarano Lilian et al. [26] mention the different algorithms derived from the genetic algorithm. Among the most important are the MOGA and NSGA algorithms.

On the other hand, we have the group whose solution is a deterministic or mathematical solution of the model. Kalyanmoy Deb et al. (2011) [27] presented a model based on the Pareto Optimal Solution (POS), Weighted Sum Method (WSM), \(\epsilon \)-Constraint Method (CM-\(\epsilon \)), and Weighted Metric Method (WMM). This group of methods is widely used in complex processes, mainly in the chemical and composite materials industry.

This paper presents a modification of the WSM presented by [28] by considering the restriction of the variables in order to obtain an optimal point and reduce the shrinkage and warpage in the plastic injection process. Regarding the plastic injection molding process, different works use Pareto optimization to optimize the parameters of the injection molding process to optimize the quality of the parts in order to reduce manufacturing costs [29–31].

2.2. Other Optimization Methods to Be Studied

Three other conventional optimization methods are compared with the EAAWSM method. The Taguchi–Gray method, the TOPSIS method, and the Optimization of Genetic Algorithm (MOGA) method are detailed in the following chapters.

2.2.1. Taguchi–Gray Method

The Taguchi method is a process optimization method that was widely used in the 20th century. It was designed to be robust and optimize operations under changing environmental conditions (noise signals). One of the objectives of the Taguchi method is to reduce the number of tests required, thus improving test efficiency. It was applied to optimize the shrinkage and warpage reduction of plastic processes and then has been compared with the application of finite elements and Moldflow® [32–36]. Gray Relation Analysis (GRA) constitutes a tool with an approach to solving multi-objective optimization problems. The characteristic of this tool is that the Taguchi method is only oriented to optimize a single output variable, while the GRA, which uses multiple factors and multiple variables and has complex interactions, allows us to optimize several variables at the same time [36,37]. Its latest applications and contributions are in the medical and aerospace areas [38].

2.2.2. TOPSIS Optimization Method

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) is a multi-variable optimization tool that is widely used today for prioritization in a complex and sophisticated environment [10]. The method enables ranking alternatives in decision-making problems with opposing and contradicting criteria and comparing the distance of each alternative [39]. The best option should have the smallest distance to the positive ideal and the most significant distance to the negative ideal. The purpose of decision-making is to find the most desirable alternatives from a discrete set of feasible options concerning a finite set of attributes. Its use is applied to various areas such as society, economics, the military,
management, to name a few. However, its use has spread in process optimization, mainly in the reduction of the shrinkage and warpage of plastic parts [40].

2.2.3. Multi-Variable Genetic Algorithm (MOGA)

Genetic algorithms (GA) are one of the multi-objective optimization methods (MOO) used today. GAs have developed and advanced intensively in recent years, but the fundamental principles remain the same. As Goldberg pointed out, the main principles that make them different from classical methods are as follows: (1) GAs work with a set of points (population) instead of a single one; (2) GAs deal with objective functions directly, and there is no need to derive the functions to find the optimal value; and (3) GA operators have a probabilistic nature, in contrast to the deterministic approaches used in all classical methods. That is why their solution closely resembles the Pareto front solution. It is applied in almost all fields: industry, commerce, education, and others. In chemical industries, it is applied to optimize processes. Zapf F. et al. (2022) [41] proposed the implementation of the multi-objective optimization of the naphtha catalytic reformer. In [42,43], the authors carried out similar multi-objective cases for a non-conventional naphtha catalytic reformer where aromatics, hydrogen, and aniline production were maximized. The authors of [44] investigated the effectiveness of a Genetic Algorithm applied in solving a Logistics Engineering problem. The next chapter applies MOGA to optimize a plastic injection process.

3. Methodology

At the beginning of these optimization methods, it is necessary to make a baseline, where the initial conditions of the process are presented and form the base reference for the changes to be executed. Subsequently, the Pareto front method is presented in detail. A flow diagram of the model is presented, and each step of the model is explained. Subsequently, the three comparative optimization methods are shown—(1) Taguchi–Gray (GRA), (2) multi-criteria decision-making techniques (TOPSIS), and (3) the Genetic Algorithm (MOGA)—and their efficiencies are compared with the presented model.

3.1. Materials and Equipment

The material used to perform the analysis was the thermoplastic polymer polypropylene (PP 1032). The mechanical features of the material were considered from Exxon Chemical (United States) for the simulation. The characteristics of the material are shown in Table 1.

Characteristics	Value	Units
Material: POLYPROPYLENE	-	-
Commercial name: PP-1032	-	-
Supplier: EXXON CHEMICAL USA	-	-
Material melting temperature	240–280	°C
Mold melting temperature	20–260	°C
Density (visco-elastic state)	0.75967	g/cm³
Density (solid state)	0.92689	g/cm³
Elastic module	1340	Mpa
Poisson ratio	0.392	-
Shear stress modulus	482.3	MPa

In terms of injection equipment, a Haitian 120 TN machine was used. The equipment characteristics are shown in Table 2. The injection mold used in this research is a commercial brand with a P-20 steel core and cavity inserts.
Table 2. Equipment specifications.

General Description	Value	Units
Closing force (mechanical)	120	TN
Injection capacity (PS reference)	200	g
Stroke diameter	40	mm
Weight per dose	195	g/PS
Maximum opening	360	mm
Minimum ejection opening	120	mm
Plate size	615 × 615	mm

3.2. Plastic Part

In order to perform the experiment, a refrigerator handle was taken as a test bench. The database was imported into the IGES version of Solidwork, which allowed it to be used in the Moldflow® simulator. The casting is shown in Figure 1.

Figure 1. Plastic part.

3.3. Experimental Development

It is necessary to define a baseline to establish the current conditions of a process or where the problem is identified.

Baseline

The initial process conditions are shown in Table 3. The significant factors are as follows: material temperature (X_1), mold temperature (X_2), and part filling time (X_3). The other factors are not significant because, statistically, they had a p-value ≥ 1 [45].

Table 3. Baseline reference parameters.

Factors	Values	Units
Input variables		
Melting temperature (X_1)	280	$^\circ$C
Mold temperature (X_2)	20	$^\circ$C
Filling time (X_3)	3	s

Output variables		
Shrinkage (Y_1)	280	$^\circ$C
Warpage (Y_2)	20	$^\circ$C
3.4. EAAWSM Experiment

Figure 2 shows the flow chart of the Extended Weighted Sum Method (EAAWSM), which describes the Extended and Modified Pareto Front Method to reduce and select the process factors that have the most significant impact on the shrinkage and warpage of the part to be studied.

![Flowchart for the EAAWSM method.](image)

The initial experiment is presented with eight factors and two output variables. The factors were as follows: material melting temperature (X_1), mold temperature (X_2), plastic part filling time (X_3), injection pressure (X_4), packing pressure (X_5), injection speed (X_6), packing time (X_7), and part cooling time (X_8). The output variables were as follows: material shrinkage (Y_1) and warpage (Y_2), measured in percentages (%) and millimeters (mm), respectively. The initial number of experiments was 38 runs, i.e., 6561 experiments. This would demand many resources in terms of time, material, equipment, and energy. The number of experimental runs through the Taguchi method consisted of an L27 Orthogonal Array, whose purpose is the reduction of factors. Subsequently, an ANOVA was performed. It was determined that only three factors were significant (with p-values ≥ 0.05). These were X_1, X_2, and X_3. Subsequently, noise signals (N/S) were calculated for each output variable Y_1 and Y_2. The results are presented in Appendix A.

- Step 1: Definition of the experimental run (Taguchi): A DOE–Taguchi is defined, with 27 experiments through an Orthogonal Array L27, where the runs, their sequence, and the levels to be combined have to be defined. The purpose is to obtain the output variables of shrinkage and warping results.
Step 2: Simulation of the runs through Moldflow® to obtain results. Through this CAE tool, the injection process of the part to be analyzed can be simulated, and the results required for each process run can be obtained. According to the method, there are 33 runs described in the design of experiments, taking as control variables the material temperature \((X_1)\), mold temperature \((X_2)\), and filling time \((X_3)\).

Step 3: Include quadratic variables and double interactions. The Taguchi method does not consider quadratic variables and double interactions. It is appended to the model in order to increase the reliability of the model. In this step, the output variables of the process are obtained independently—shrinkage and warpage—according to Equations (1) and (2):

\[
Y_1 = \beta_{01} + \beta_{11} X_1 + \beta_{21} X_2 + \beta_{31} X_3 + \beta_{111} X_1^2 + \beta_{221} X_2^2 + \beta_{331} X_3^2 + \beta_{121} X_1 X_2 + \beta_{131} X_1 X_3 + \beta_{231} X_2 X_3 \tag{1}
\]

\[
Y_2 = \beta_{02} + \beta_{12} X_1 + \beta_{22} X_2 + \beta_{32} X_3 + \beta_{112} X_1^2 + \beta_{222} X_2^2 + \beta_{332} X_3^2 + \beta_{122} X_1 X_2 + \beta_{132} X_1 X_3 + \beta_{232} X_2 X_3 \tag{2}
\]

Step 4: Define the optimal function and the scale parameters \(\lambda_1\) and \(\lambda_2\): Functions \(f_1\) and \(f_2\) are defined and associated with the scaling parameters by Equations (3) and (4):

\[
f_1 = Y_1 \lambda_1 \tag{3}
\]

\[
f_2 = Y_2 \lambda_2 \tag{4}
\]

and according to Equation 5:

\[
\lambda_1 + \lambda_2 = 1 \tag{5}
\]

We define the optimum function \(f_{op}\) given by

\[
f_{op} = f_1 + f_2 = Y_1 \lambda_1 + Y_2 \lambda_2 \tag{6}
\]

Step 5: Then, we can calculate the optimal values of variables \(X_1^*, X_2^*, \) and \(X_3^*\) of the input variables \(X_1, X_2, \) and \(X_3\), respectively. For this, the optimal function \(f_{op}\) is derived and equals 0. Having three variables will form three simultaneous linear equations:

\[
X_1^* = \frac{\partial f_{op}}{\partial X_1} \tag{7}
\]

\[
X_2^* = \frac{\partial f_{op}}{\partial X_2} \tag{8}
\]

\[
X_3^* = \frac{\partial f_{op}}{\partial X_3} \tag{9}
\]

The following simultaneous equations are formed:

\[
C_1 = a_{11} X_1^* + a_{12} X_2^* + a_{13} X_3^* \tag{10}
\]

\[
C_2 = a_{21} X_1^* + a_{22} X_2^* + a_{23} X_3^* \tag{11}
\]

\[
C_3 = a_{31} X_1^* + a_{32} X_2^* + a_{33} X_3^* \tag{12}
\]

Then, the values of \(X_1^*, X_2^*, \) and \(X_3^*\) are calculated.

Step 6: Place variables \(X_1^*, X_2^*, \) and \(X_3^*\) under constraints. These optimal values must be constrained according to the limit ranges of the restriction of variables specified in the defined levels:

\[
L_1 \leq X_1^* \leq L_1 \quad \text{if} \quad X_1^* \neq [L_1, L_1], \quad \text{therefore:} \quad X_1^* = 0 \tag{13}
\]

\[
L_2 \leq X_2^* \leq L_2 \quad \text{if} \quad X_2^* \neq [L_2, L_2], \quad \text{therefore:} \quad X_2^* = 0 \tag{14}
\]

\[
L_3 \leq X_3^* \leq L_3 \quad \text{if} \quad X_3^* \neq [L_3, L_3], \quad \text{therefore:} \quad X_3^* = 0 \tag{15}
\]
• Step 7: Define the graph: We plot the \(Y_{op} \) versus \(\lambda \) values, as shown in Figure 3, where the sets of points other than zeros are specified as feasible solutions. The optimal solution is the highest value.

![Figure 3. Getting the optimal value.](image)

• Step 8: Define the values \(X_1^*, X_2^*, \) and \(X_3^* \): In this step, the statistical equations obtained in step 3 must be defined, and the optimal values in the equations must be replaced to obtain the required minimum shrinkage and warping values.

4. Experimental Results

This section shows the results of the proposed EAAWSM method and a comparison to evaluate its performance against three other conventional methods.

4.1. Application of the EAAWSM Method

Table 4 shows the values that the quadratic effects must achieve to improve the model. Here, the Minitab 15 software was used to obtain the parameters.

Predictor	Regression Results for \(Y_1 \)	Regression Results for \(Y_2 \)							
	Coefficient	Coef of EE	T	P	Coefficient	Coef of EE	T	P	
Constant	65.81	12.54	5.25	0	-0.57	1.33	-0.43	0.673	
\(X_1 \)	-0.37292	0.09576	-3.89	0.001	\(X_1 \)	0.02286	0.01015	2.25	0.036
\(X_2 \)	0.05233	0.01488	3.52	0.002	\(X_2 \)	-0.016383	0.001578	-10.38	0
\(X_3 \)	-6.423	1.475	-4.35	0	\(X_3 \)	1.618	0.1564	10.34	0
\(X_1^2 \)	0.0008208	0.0001841	4.46	0	\(X_1^2 \)	-0.00004292	0.00001952	-2.2	0.04
\(X_2^2 \)	-0.0005167	0.0001841	-2.81	0.011	\(X_2^2 \)	0.00009583	0.00001952	4.91	0
\(X_3^2 \)	1.2733	0.2946	4.32	0	\(X_3^2 \)	-0.33067	0.03123	-10.59	0

\[S = 0.180398; \text{R-quad} = 97.3\%; \text{R-quad (adjusted)} = 96.5\% \]

Next, Equation (16) shows the shrinkage result:

\[Y_1 = 65.8 - 0.373X_1 + 0.0523X_2 - 6.42X_3 + 0.000821X_1^2 - 0.000517X_2^2 + 1.27X_3^2 \]

and Equation (17) shows the warpage result:

\[Y_2 = -0.57 + 0.0229X_1 - 0.0164X_2 + 1.62X_3 - 0.000043X_1^2 + 0.000096X_2^2 - 0.331X_3^2 \]

Equation (18) is the optimal \(Y \) optimum function, defined by
9 of 21

\[
Y_{\text{op}} = \left(65.8 - 0.373X_1 + 0.0523X_2 - 6.42X_3 + 0.000821X_1^2 - 0.000517X_2^2 + 1.27X_3^2 \right) \lambda_1 + \\
\left(Y_2 = -0.57 + 0.0229X_1 - 0.0164X_2 + 1.62X_3 - 0.000043X_1^2 + 0.000096X_2^2 - 0.331X_3^2 \right) \lambda_2
\]

(18)

The values of \(\lambda \) were simulated, where they varied from 1 to 100. Figure 4 shows the result of the EAAWSM method graph obtained in Program R. The highest value was taken. The result was \(X_1 = 227.1685 \, ^\circ\text{C}, \) \(X_2 = 50.8367 \, ^\circ\text{C}, \) and \(X_3 = 2.522186 \, \text{s}. \) The optimum values of shrinkage and warpage were \(Y_1 = 15.85\% \) and \(Y_2 = 3.15 \, \text{mm}, \) respectively.

![Figure 4. Result of the EAAWSM experiment.](image)

The CAE simulation was performed considering the values \(X_1: \) material temperature \(227.1686 \, ^\circ\text{C}, \) \(X_2: \) mold temperature \(50.8367 \, ^\circ\text{C}, \) and \(X_3: \) filling time of 2.52186 s. The results of the Moldflow® were a shrinkage of 16.02\% and a warpage of 3.146 mm, shown in Figure 5.

![Figure 5. Moldflow® results in the EAAWSM method.](image)

4.2. Results of the Comparative Methods

The analysis of variance (ANOVA) allows us to calculate the optimal factors and levels in the Taguchi–Gray and TOPSIS methods. The MOGA method considered double factors and interactions between two factors in the statistical equation.
The calculations obtained for the Taguchi–Gray method, taking the work of [46] as a reference, are detailed in Appendix B, where their calculations for each step are presented. Appendix C presents the ANOVA analysis, where the optimums are found with the melt temperature at 280 °C, mold temperature at 20 °C, and filling time at 3 s. The results for shrinkage and warpage were 18.63% and 4.04 mm, respectively.

For the calculation of the TOPSIS method, the work of [47] was taken as a reference. The calculations of each step are shown in Appendix D. An ANOVA analysis is presented in Appendix E. In that table, the optimums are found with the material melting temperature at 240 °C, the mold temperature at 60 °C, and the filling time at 3 s. Shrinkage values were 17.06%, and the warpage was 3.68 mm. For the MOGA method, the data input of the experiment considering the quadratic and double factors is presented in Appendix F. For the calculations of the MOGA development, Matlab was considered. Appendix G displays the graph obtained from the optimum results: the melting temperature of the material was 241.4106 °C, the mold temperature was 20.0008 °C, and the filling time was 2.9605 s. The shrinkage results were 15.8391%, and the warpage was 4.1409 mm.

4.3. Comparison of Results

In Table 5, the efficiencies of each method are grouped according to the results obtained. EAAWSM was observed as the most efficient among the other three methods.

Table 5. Efficiency comparisons between the EAAWSM vs Taguchi-Gray, TOPSIS and MOGA methods.

Experimental Design	Input Factors X, Y	Model Result			
X₁	X₂	X₃	Y₁	Y₂	
Baseline	280 °C	20 °C	3 s	18.90%	4.26 mm
EAAWSM	227.17 °C	50.84 °C	2.52 s	15.85%	3.15 mm
Taguchi-Gray	280 °C	20 °C	3 s	18.63%	4.04 mm
TOPSIS	280 °C	20 °C	3 s	17.06%	3.68 mm
MOGA	241.41 °C	20.008 °C	2.9605 s	15.84%	4.14 mm

Then, the results obtained in the simulation were tested through Moldflow® and are shown in Table 6. The EAAWSM method was also optimal in both outputs. It should be noted that the results obtained in Moldflow® in Taguchi–Gray and TOPSIS were the same as they took the same levels.

Table 6. Comparisons in the confirmation of the Moldflow® EAAWSM method vs. Taguchi–Gray, TOPSIS, and MOGA.

Experimental Design	Input Factors X, Y	Moldflow Result			
X₁	X₂	X₃	Y₁	Y₂	
Baseline	280 °C	20 °C	3 s	-	-
EAAWSM	227.17 °C	50.84 °C	2.52 s	16.02%	3.15 mm
Taguchi-Gray	280 °C	20 °C	3 s	18.90%	3.17 mm
TOPSIS	280 °C	20 °C	3 s	18.90%	3.17 mm
MOGA	241.41 °C	20.008 °C	2.9605 s	16.73%	4.12 mm

According with the performance of the mathematical model and Moldflow, it is shown that we obtained the same results (Tables 5 and 6). Figure 6a shows similar behavior in the Taguchi–Gray method, as well as in Figure 6b in the TOPSIS method and Figure 6c with the MOGA method. The Moldflow represents the confirmation of the physical model. It is observed that the EAAWSM model shows the best result compared to the other three conventional methods: in terms of shrinkage, it was 16.02% versus 18.90% obtained in Taguchi–Gray and TOPSIS and 16.73% compared to MOGA. Similarly, we observed values of 3.15 mm versus 3.17 mm with Taguchi–Gray and TOPSIS and 4.12 mm with MOGA for warpage.
5. Discussion

The conventional WSM method proposes the optimization in a single point, according to the scale parameters and without restrictions. However, the proposed EAAWSM method varies the values of the scale parameters by obtaining several points and making a value equal to 0 to those that are outside the range, and those that comply limit them to a range of solutions.
The proposed model benefits from easy calibration and integration compared to the reported methods in the state of the art, as it is based on the utilization of deterministic operations (mathematical) and not stochastic operations (probabilistic) used in Genetic Algorithms and their derivatives.

This method contributes (1) a method with easy application based on basic concepts of optimization models; (2) a reduction of variables, which allows for easy adjustments—at the beginning of the experiment, there were eight factors, which were then reduced to three significant factors through an ANOVA analysis; (3) the reduction of experiments, which brings a significant reduction in computational and executional time, allowing for quicker decision making with fewer resources (materials, use of equipment, indirect materials or energy)—the number of experiments was reduced from 6561 to 27 runs; (4) a model that is mathematical, not probabilistic, which means it is free of uncertainty; (5) a method that quickly identifies the expectations; and (6) a reduction of the risks associated with a real experiment or a field experiment. Table 7 shows a comparative summary of the main inputs of this work versus the conventional models in the literature. It also presents the three control variables and two input variables from this model versus the others, which show up to five variables.

Table 7. Comparisons of similar works in optimization methods for strain reduction.

Author	Optimization Model	Considered Variables	Optimization Method
Our work	Material shrinkage reduction and casting warpage	Material temperature	Weighted Sum Method
		Mold temperature	Modified (WSMM)
		Filling time	
[12]	Reduction of sink mark and casting warpage	Material temperature	Genetic Algorithm
		Mold temperature	NSGA-II
		Filling time	
		Packing pressure	
[48]	Reduction of sink mark and casting warpage	Material temperature	Use of Pareto front
		Mold temperature	through the Genetic
		Filling time	Algorithm
		Cooling temperature	
		Cooling time	
[14]	Reduction of sink mark and casting warpage	Material temperature	Taguchi conventional
		Injection pressure	technique
		Packing pressure	
		Packing time	
		Cooling time	
[49]	Two output variables: shrinkage and warpage	Material temperature	Taguchi conventional
		Mold temperature	technique for equations and
		Filling time	particle swarm
		Packing time	optimization
		Cooling time	

6. Conclusions

This article presented a mathematical model for optimization, called EAAWSM, derived from the Pareto front, that optimizes the reduction of the warpage of the two output variables—the shrinkage and warpage—based on the three input variables. It also compared the performance of the EAAWSM method versus that of the three other methods—Taguchi–Gray, TOPSIS and MOGA—which used the three control variables and the two output variables as inputs. The results obtained by EAAWSM were a shrinkage of 15.8% and warpage of 3.68 mm compared to those obtained by the other methods: 18.9% and 4.30 mm (Baseline), 16.9% and 3.9 mm (Taguchi–Gray), 16.82 and 3.68 mm (TOPSIS), and 15.8% and 4.8 mm (MOGA). However, EAAWSM model is limited by every independent variable that is constituted of a series of equations that limit their values. In order to highlight the performance of the proposed model, the main outcomes can be presented as follows
• The three factors that directly affect shrinkage and warpage of a casting are the material melting temperature (X_1), mold temperature (X_2), and filling time (X_3).
• The reduction in warpage of a plastic part is specifically particular depending on the complexity of its geometry, its size, and the type of material injected.
• This method has better performance as it is deterministic, compared to other methods, such as the Genetic Algorithm, in which the solution is based on the survival of the species.

A proposal for future work includes optimizing the reduction in deformation by changing the injection points and observing its effects in warpage. The proposal also includes using machine learning techniques or other artificial intelligence tools considering the geometry of the piece, the size, and type of material to standardize the search for factors in processes.

Author Contributions: Conceptualization, G.H.-N., M.H.-H. and J.R.-G.; Methodology, G.H.-N., M.H.-H. and J.R.-G.; Writing—original draft preparation, G.H.-N., J.R.-R. and J.M.A.-A.; Writing—review and editing, J.R.-R. and J.M.A.-A.; Supervision, J.R.-R. and J.M.A.-A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Institutional Review Board Statement: Not applicable

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest; the funders had no role in the design of the study, in the collection, analysis, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results

Abbreviations

The following abbreviations are used in this manuscript:

- FP: Front Pareto
- EAAWSM: Extended adaptive weighted sum
- TG: Taguchi–Gray
- MOGA: Multi-objectives Genetic Algorithm
- TOPSIS: Technique for Order of Preference by Similarity to Ideal Solution
- GA: Genetic Algorithm
- CAE: Computer-Aided Engineering
- PP: Polypropylene
- CF/Epoxi: Carbon fiber reinforced epoxy
- MOO: Multi-Objective Optimization
- NSGA: Non-Dominated Sorting Genetic Algorithm
- POS: Pareto Optimal Solutions
- WSM: Weighted Sum Model
- CM-ϵ: Constraint-based optimization model ϵ
- WMM: Weighted Matrix Model
- GRA: Grey Relational Analysis
- P-20: Special steel for making cores and mold cavities
- IGES: Initial Graphics Exchange Specification
- WSMM: Modified Weighted Sum Model
- p-value: the probability that determines if a particular statistical measure is important or not
- DOE: Design of Experiment
- X_1: Material Temperature material (${^\circ}$C)
- X_2: Mold Temperature(${^\circ}$C)
- X_3: Filling Time (s)
- Y_1: Shrinkage (%)
- Y_2: Warpage (mm)
- λ_1: Parameter of scale associated with Y_1
- λ_2: Parameter of scale associated with Y_2
Appendix A. Experiment Design

To extract field data, a DOE of the Taguchi method was developed, which reduced the number of experiments from 6561 to 27. An ANOVA analysis was conducted, which reduced the number of factors from 8 to 3 based off of the \(p\)-value, where significant factors had a \(p\)-value equal to or less than 0.05.

Run	Material Temperature	Mold Temperature	Filling Time	Injection Pressure	Packing Pressure	Injection Velocity	Packing Time	Cooling Time	Shrinkage (%)	Warpage (mm)	P-value ≤ 0.05	P-value ≥ 0.05
1	240	20	2	10	7.5	23	9	20	16.77	-24.4906613	4.085	-12.2238412
2	240	20	2	10	8.5	26.5	10.5	25	16.77	-24.4906613	4.085	-12.2238412
3	240	20	2	10	9.5	30	12	30	16.77	-24.4906613	4.085	-12.2238412
4	240	40	2.5	15	7.5	23	9	25	16.88	-24.5474488	3.898	-11.8168367
5	240	40	2.5	15	8.5	26.5	10.5	30	16.88	-24.5474488	3.898	-11.8168367
6	240	40	2.5	15	9.5	30	12	20	16.88	-24.5474488	3.898	-11.8168367
7	240	60	3	20	7.5	23	9	30	16.84	-24.5268417	3.689	-11.331731
8	240	60	3	20	8.5	26.5	10.5	20	16.84	-24.5268417	3.689	-11.331731
9	240	60	3	20	9.5	30	12	25	16.84	-24.5268417	3.689	-11.331731
10	260	20	2.5	20	7.5	26.5	12	20	16.84	-24.5371514	4.166	-12.3943853
11	260	20	2.5	20	8.5	30	9	25	16.84	-24.5371514	4.166	-12.3943853
12	260	20	2.5	20	9.5	30	10.5	30	16.86	-24.5371514	4.166	-12.3943853
13	260	40	3	10	7.5	26.5	12	25	17.89	-25.0522068	3.865	-11.74299
14	260	40	3	10	8.5	30	9	30	17.89	-25.0522068	3.865	-11.74299
15	260	40	3	10	9.5	23	10.5	20	17.89	-25.0522068	3.865	-11.74299
16	260	60	2	15	7.5	26.5	12	30	17.99	-25.1006233	3.725	-11.4225255
17	260	60	2	15	8.5	30	9	20	17.99	-25.1006233	3.725	-11.4225255
18	260	60	2	15	9.5	23	10.5	25	17.99	-25.1006233	3.725	-11.4225255
19	280	20	3	15	7.5	26.5	10.5	20	18.9	-25.5292361	4.032	-12.1104105
20	280	20	3	15	8.5	26.5	9	25	18.9	-25.5292361	4.032	-12.1104105
21	280	20	3	15	9.5	26.5	9	30	18.9	-25.5292361	4.032	-12.1104105
22	280	40	2	20	7.5	30	10.5	25	19.04	-25.5933897	3.882	-11.7811106
23	280	40	2	20	8.5	23	12	30	19.04	-25.5933897	3.882	-11.7811106
24	280	40	2	20	9.5	26.5	9	20	19.04	-25.5933897	3.882	-11.7811106
25	280	60	2.5	10	7.5	30	10.5	30	19.02	-25.5842103	3.823	-11.648086
26	280	60	2.5	10	8.5	23	12	20	19.02	-25.5842103	3.823	-11.648086
27	280	60	2.5	10	9.5	26.5	9	25	19.02	-25.5842103	3.823	-11.648086
Appendix B. Taguchi–Gray Method, Gj Calculation

According to Mukherjee Dipayan, 2022, equations to calculate the Taguchi–Gray method were used as reference.

Run	Data Xij	Normalized (Zij)	Variation sequence (Δij)	Relational ratio GCij	Relational grade	Ranking
1	16.77	4.085	1	0.16981132	0.830188679	1
2	16.77	4.085	1	0.16981132	0.830188679	1
3	16.77	4.085	1	0.16981132	0.830188679	1
4	16.88	3.898	0.95154185	0.56184468	0.38155136	0.16981132
5	16.88	3.898	0.95154185	0.56184468	0.38155136	0.16981132
6	16.88	3.898	0.95154185	0.56184468	0.38155136	0.16981132
7	16.84	3.689	0.96163	1	0.030837	0.830188679
8	16.84	3.689	0.96163	1	0.030837	0.830188679
9	16.84	3.689	0.96163	1	0.030837	0.830188679
10	16.86	4.166	0.96035242	0	0.03964758	0.830188679
11	16.86	4.166	0.96035242	0	0.03964758	0.830188679
12	16.86	4.166	0.96035242	0	0.03964758	0.830188679
13	17.89	3.865	0.50660793	0.63102725	0.368972746	0.56184468
14	17.89	3.865	0.50660793	0.63102725	0.368972746	0.56184468
15	17.89	3.865	0.50660793	0.63102725	0.368972746	0.56184468
16	17.99	3.725	0.46255507	0.9245283	0.53744493	0.705471698
17	17.99	3.725	0.46255507	0.9245283	0.53744493	0.705471698
18	17.99	3.725	0.46255507	0.9245283	0.53744493	0.705471698
19	18.9	4.032	0.06167401	0.28092243	0.93825999	0.719077568
20	18.9	4.032	0.06167401	0.28092243	0.93825999	0.719077568
21	18.9	4.032	0.06167401	0.28092243	0.93825999	0.719077568
22	19.04	3.882	0	0.59538784	1	0.40612159
23	19.04	3.882	0	0.59538784	1	0.40612159
24	19.04	3.882	0	0.59538784	1	0.40612159
25	19.02	3.823	0.00881057	0.71907757	0.9918943	0.28092243
26	19.02	3.823	0.00881057	0.71907757	0.9918943	0.28092243
27	19.02	3.823	0.00881057	0.71907757	0.9918943	0.28092243

Appendix C. Variance Analysis (ANOVA) of Taguchi–Gray Method

Once Gj values are calculated, they are included in the ANOVA. The graph shows the most important factors that relate the melting material temperature (X1), mold temperature (X2), and filling time (X3) with shrinkage (Y1) and warpage (Y2) output variables. Y1 and Y2 equations are also calculated.
WORKSHEET 1

TAGUCHI Method: Regression Analysis: Y1 versus Material Temperature (X1), Mold Temperature (X2), Filling Time (X3)

Regression Equation
\[Y1 = 3.48 + 0.05392 \text{Material Temperature (X1)} + 0.01100 \text{Mold Temperature (X2)} - 0.057 \text{Filling Time (X3)} \]

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	3.48	1.02	3.42	0.002	
Material Temperature (X1)	0.05392	0.00361	14.92	0.000	1.00
Mold Temperature (X2)	0.01100	0.00361	3.04	0.006	1.00
Filling Time (X3)	-0.057	0.145	-0.39	0.699	1.00

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
0.306592	90.98%	89.21%	88.37%

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Material Temperature (X1)	2	0.41063	0.205316	19.46	0.000
Mold Temperature (X2)	2	0.24337	0.121683	11.53	0.000
Filling Time (X3)	2	0.02114	0.010568	1.00	0.385
Error	20	0.21104	0.010562		
	18	0.03613	0.018564	1.66	0.185
Total	26	0.009717		0.8617	

WORKSHEET 1

TAGUCHI Method: Regression Analysis: Y2 versus Material Temperature (X1), Mold Temperature (X2), Filling Time (X3)

Regression Equation
\[Y2 = 4.203 + 0.000542 \text{Material Temperature (X1)} - 0.008717 \text{Mold Temperature (X2)} - 0.0353 \text{Filling Time (X3)} \]

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	4.203	0.168	25.00	0.000	
Material Temperature (X1)	0.000542	0.000596	0.82	0.373	1.00
Mold Temperature (X2)	-0.008717	0.000596	-14.62	0.000	1.00
Filling Time (X3)	-0.0353	0.0239	-1.48	0.152	1.00

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
0.306592	90.98%	89.21%	88.37%

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Material Temperature (X1)	2	0.002112	0.000562	0.82	0.373
Mold Temperature (X2)	2	0.547058	0.000562	82.02	0.000
Filling Time (X3)	2	0.0056618	0.0056618	213.61	0.000
Error	20	0.058902	0.0056618		
	18	0.0011780	0.0000000		
Total	26	0.613691			

WORKSHEET 1

TAGUCHI Method: General Linear Model(ANOVA): Gj versus Material Temperature (X1), Mold Temperature (X2), Filling Time (X3)

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Material Temperature (X1)	2	0.168	0.08430	72.21	0.000
Mold Temperature (X2)	2	0.002112	0.000562	82.02	0.000
Filling Time (X3)	2	0.547058	0.000562	82.02	0.000
Error	20	0.058902	0.0056618		
	18	0.0011780	0.0000000		
Total	26	0.613691			
Appendix D. TOPSIS Method Cj Calculation

The steps for the optimization calculation were presented by [47]. The Cj value is combined with the shrinkage (Y_1) and warpage (Y_2) variables. Once Cj is calculated, it is moved into an ANOVA table (see Annex 5) that shows the optimal levels for each factor.

run	Material Temp (X_1)	Mold Temp (X_2)	Filling Time (X_3)	X_1^2	X_2^2	X_3^2	Y_1	Y_2	Cj
1	240	20	2	57600	400	4	16.77	4.085	0.29618871
2	240	20	2	57600	400	4	16.77	4.085	0.29618871
3	240	20	2	57600	400	4	16.77	4.085	0.29618871
4	240	40	2.5	57600	1600	6.25	16.88	3.898	0.18674099
5	240	40	2.5	57600	1600	6.25	16.88	3.898	0.18674099
6	240	40	2.5	57600	1600	6.25	16.88	3.898	0.18674099
7	240	60	3	57600	3600	9	16.84	3.689	0.02739992
8	240	60	3	57600	3600	9	16.84	3.689	0.02739992
9	240	60	3	57600	3600	9	16.84	3.689	0.02739992
10	260	20	2.5	67600	400	6.25	16.86	4.166	0.34700943
11	260	20	2.5	67600	400	6.25	16.86	4.166	0.34700943
12	260	20	2.5	67600	400	6.25	16.86	4.166	0.34700943
13	260	40	3	67600	1600	9	17.89	3.865	0.46812968
14	260	40	3	67600	1600	9	17.89	3.865	0.46812968
15	260	40	3	67600	1600	9	17.89	3.865	0.46812968
16	260	60	2	67600	3600	4	17.99	3.725	0.44955956
17	260	60	2	67600	3600	4	17.99	3.725	0.44955956
18	260	60	2	67600	3600	4	17.99	3.725	0.44955956
19	280	20	3	78400	400	9	18.9	4.032	0.86612329
20	280	20	3	78400	400	9	18.9	4.032	0.86612329
21	280	20	3	78400	400	9	18.9	4.032	0.86612329
22	280	40	2	78400	1600	4	19.04	3.882	0.77118048
23	280	40	2	78400	1600	4	19.04	3.882	0.77118048
24	280	40	2	78400	1600	4	19.04	3.882	0.77118048
25	280	60	2.5	78400	3600	6.25	19.02	3.823	0.73236011
26	280	60	2.5	78400	3600	6.25	19.02	3.823	0.73236011
27	280	60	2.5	78400	3600	6.25	19.02	3.823	0.73236011

Appendix E. TOPSIS Variance Analysis Method

Optimal levels of the TOPSIS method are shown in the ANOVA graph. Quadratic values are used in the statistical equations. Y_1 and Y_2 are obtained by replacing these statistical equations.
WORKSHEET 1

TOPSIS Method: Regression Analysis: Y1 versus Material Temp (X1), Mold Temp (X2), Filling Time (X3), X1^2, X2^2, X3^2

Regression Equation

\[
Y1 = 65.8 - 0.3729 \text{ Material Temp (X1)} + 0.0523 \text{ Mold Temp (X2)} - 6.42 \text{ Filling Time (X3)} + 0.000821 \text{ X1}^2 - 0.000517 \text{ X2}^2 + 1.273 \text{ X3}^2
\]

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	65.8	12.5	5.25	0.000	
Material Temp	-0.3729	0.0958	-3.89	0.001	2029.00
Mold Temp	0.0523	0.0149	3.52	0.002	49.00
Filling Time	-6.42	1.48	-4.35	0.000	301.00
X1^2	-0.000821	0.000184	-4.46	0.000	2029.00
X2^2	0.000017	0.000036	-2.81	0.011	49.00
X3^2	1.273	0.295	4.32	0.000	301.00

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
0.102722	0.7619	0.6904	0.5660

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	6	23.3272	3.88787	119.47	0.000
Material Temp	1	0.4935	0.49349	15.16	0.001
Mold Temp	1	0.0149	0.0149	15.16	0.001
Filling Time	1	0.6168	0.6168	19.85	0.000
X1^2	1	0.2563	0.25627	12.37	0.002
X2^2	1	0.6080	0.60802	18.68	0.000
X3^2	1	0.0000	0.0000	*	*
Error	20	0.0000	0.000024	*	*
Total	26	23.9781			

WORKSHEET 1

TOPSIS Method: General Linear Model (ANOVA): Gj versus Material Temperature (X1), Mold Temperature (X2), Filling Time (X3)

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	6	23.3272	3.88787	119.47	0.000
Material Temp	1	0.4935	0.49349	15.16	0.001
Mold Temp	1	0.0149	0.0149	15.16	0.001
Filling Time	1	0.6168	0.6168	19.85	0.000
X1^2	1	0.2563	0.25627	12.37	0.002
X2^2	1	0.6080	0.60802	18.68	0.000
X3^2	1	0.0000	0.0000	*	*
Error	20	0.0000	0.000024	*	*
Total	26	23.9781			

WORKSHEET 1

TOPSIS Method: Regression Analysis: Y2 versus Material Temp (X1), Mold Temp (X2), Filling Time (X3), X1^2, X2^2, X3^2

Regression Equation

\[
Y2 = -0.57 + 0.0229 \text{ Material Temp (X1)} - 0.01638 \text{ Mold Temp (X2)} + 1.618 \text{ Filling Time (X3)} - 0.000043 \text{ X1}^2 + 0.000096 \text{ X2}^2 - 0.3307 \text{ X3}^2
\]

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	-0.57	1.33	-0.43	0.673	
Material Temp	0.0229	0.0102	2.25	0.036	2029.00
Mold Temp	-0.01638	0.00158	-10.38	0.000	49.00
Filling Time	1.618	0.156	10.34	0.000	301.00
X1^2	-0.000043	0.000020	-2.20	0.040	49.00
X2^2	0.000096	0.000020	4.91	0.000	49.00
X3^2	-0.3307	0.0312	-10.59	0.000	301.00

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
0.0191242	0.9811	0.9845	0.9783

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	6	6.06376	1.03063	276.33	0.000
Material Temp	1	0.01854	0.001854	5.07	0.036
Mold Temp	1	0.039440	0.039440	107.84	0.000
Filling Time	1	0.0001768	0.0001768	4.83	0.040
X1^2	1	0.008817	0.008817	24.11	0.000
X2^2	1	0.041003	0.041003	112.11	0.000
X3^2	1	0.000000	0.000000	*	*
Error	20	0.0000	0.0000	*	*
Lack-of-Fit	2	0.0000	0.0000	*	*
Pure Error	18	0.0000	0.0000	*	*
Total	26	0.613691			
Appendix F. MOGA Method—Input Data

Quadratic effects, such as double interactions, as shown in this table, were considered in the statistical equation of the MOGA method. Values Y_1 and Y_2 remain the same.

Simulation	X1	X2	X3	X1^2	X2^2	X3^2	x1*x2	x1*x3	Y1	Y2	Average
1	279.9886	57.3167	2.9925	78393.6161	3285.2041	8.95505625	16048.0226	837.865886	19.4540409	3.73056191	11.5923014
2	241.4106	20.0028	2.9605	58279.0778	400.112008	8.76450625	4828.88795	714.42738	15.893378	4.1466713	10.0670025
3	263.6531	20.0045	2.9605	69512.9571	400.18002	8.44541721	5274.28484	766.202274	17.082856	4.10792793	10.5981068
4	277.3371	20.147	2.76	76915.8670	405.901609	7.6176	5587.51055	765.450396	18.0923126	4.09046956	11.0913911
5	259.0355	20.0072	2.8949	67099.3903	400.288052	8.38044601	5182.57506	749.881869	16.7501716	4.12234814	10.4362598
6	250.2036	20.003	2.9216	62601.8415	400.120009	8.53574656	5004.82261	730.994838	16.2349563	4.13565367	10.185305
7	279.9672	25.8896	2.9799	78381.6331	670.271388	8.87980401	7248.23882	834.274259	18.9495669	3.95894204	11.4542545
8	289.9733	32.4713	2.9899	78385.0487	1054.38532	8.93950201	9091.09702	837.09217	19.2227878	3.8876415	11.5552146
9	279.9603	49.0018	2.9922	78377.7696	241.1764	8.95086724	13718.5586	837.69721	19.5059857	3.76131904	11.6336524
10	279.9737	24.744	2.9681	78385.2727	612.265536	8.80961761	6927.66923	830.989939	18.8735628	3.97541407	11.4263898
11	279.9886	57.3167	2.9925	78393.6161	3285.2041	8.95505625	16048.0226	837.865886	19.4540409	3.73056191	11.5923014

Appendix G. MOGA Method—MOGA Method, Graph of the Output Variable

When performing the optimization by MOGA, Y_o is obtained as shown in the following graph, where the optimal points are $X_1 = 241.91^\circ C$, $X_2 = 20.01^\circ C$, and $X_3 = 2.96$ s, giving as output $Y_1 = 15.85\%$ and $Y_2 = 4.14$ mm.

References

1. Šunje, E.; Džiho, E. Experimental Determination of Influence of Cooling Parameters on Injection Molded Part Dimensional Stability. *Lect. Notes Netw. Syst.* 2022, 472, 184–193. [CrossRef]
2. Öktem, H.; Shinde, D. Determination of Optimal Process Parameters for Plastic Injection Molding of Polymer Materials Using Multi-Objective Optimization. *J. Mater. Eng. Perform.* 2021, 30, 8616–8632. [CrossRef]
3. Kulkarni, S. *Robust Process Development and Scientific Molding*, 1st ed.; Carl Hanser Verlag GmbH & Co. KG: Munich, Germany, 2010; ISBN 978-3-446-42275-9.
4. Huang, X.L.; Yang, J.R.; Sun, Y.X.; Chen, Y.W.; Wang, X.M.; Du, S.M.; Hua, Z.K. Novel combined shield design for eye and face protection from COVID-19. *Adv. Manuf.* 2021, 9, 130–135. [CrossRef] [PubMed]
5. Zaghloul, M.M.Y.; Mohamed, Y.S.; El-Gamal, H. Fatigue and tensile behaviors of fiber-reinforced thermosetting composites embedded with nanoparticles. *Prog. Org. Coat.* 2019, 93, 709–718. [CrossRef]
6. Fuseini, M.; Zaghloul, M.M.Y. Investigation of Electroplating Deposition of PANI Nano fibers as a Manufacturing Technology for corrosion protection. *Prog. Org. Coat.* 2022, 171, 107015. [CrossRef]
7. Shchegolkov, A.V.; Nachtmale, M.; Stanishevskiy, Y.M.; Dodina, E.P.; Rejepov, D.T.; Vetcher, A.A. The Effect of Multi-Walled Carbon Nanotubes on the Heat-Release Properties of Elastic Nanocomposites. J. Compos. Sci. 2022, 6, 333. [CrossRef]

8. Dhiya-Uddin, F.; Dharma Bintara, R. Computational Study of Injection Molding Parameters to Minimize Shrinkage and Warpage Using the Taguchi Method. In Proceedings of the International Conference on Religion, Science and Education, Yogyakarta, Indonesia, 6–7 October 2022; Volume 1, pp. 613–618.

9. Zhao, N.Y.; Lian, J.Y.; Wang, P.F.; Xu, Z.B. Recent progress in minimizing the warpage and shrinkage deformations by the optimization of process parameters in plastic injection molding: A review. Int. J. Adv. Manuf. Technol. 2022, 120, 85–111. [CrossRef]

10. Libui, R.; Fuzhu, L.; Yun, W.; Yachun, D.; Hui, Y.; Zhenying, X. Multi-objective optimization of injection molding quality based on TOPSIS-grey relational analysis. China Plast. 2022, 36, 96.

11. Moayyedian, M. Intelligent Optimization of Mold Design and Process Parameters in Injection Molding; Springer: Berlin/Heidelberg, Germany, 2018.

12. Chang, H.; Zhang, G.; Sun, Y.; Lu, S. Non-Dominant Genetic Algorithm for Multi-Objective Optimization Design of Unmanned Aerial Vehicle Shell Process. Polymers 2022, 14, 2896. [CrossRef]

13. Mercado-Colmenero, J.M.; Muriana, J.A.M.; Rubio-Paramio, M.A.; Martín-Doñate, C. An automated manufacturing analysis of plastic parts using faceted surfaces. In Advances on Mechanics, Design Engineering and Manufacturing; Springer: Cham, Switzerland, 2017; pp. 119–128. [CrossRef]

14. Bin, M.F.; Sani, M. Optimisation of Pipe Fitting in the Injection Moulding Process Using the Taguchi Method. Advanced and Sustainable Technologies (ASET) 2022, 1, 26–33.

15. Guo, W.; Hua, L.; Mao, H.; Meng, Z. Prediction of warpage in plastic injection molding based on design of experiments. J. Mech. Sci. Technol. 2012, 26, 1133–1139. [CrossRef]

16. Fernandes, C.; Pontes, A.J.; Viana, J.C.; Gaspar-Cunha, A. Modeling and Optimization of the Injection-Molding Process: A Review. Wiley Online Libr. 2018, 37, 429–449. [CrossRef]

17. Li, K.; Yan, S.; Pan, W.; Zhao, G. Warpage optimization of fiber-reinforced composite injection molding by combining back propagation neural network and genetic algorithm. Int. J. Adv. Manuf. Technol. 2017, 90, 963–970. [CrossRef]

18. Wu, W.; He, X.; Li, B.; Shan, Z. An Effective Shrinkage Control Method for Tooth Profile Accuracy Improvement of Micro-Injection-Molded Small-Module Plastic Gears. Polymers 2022, 14, 3114. [CrossRef]

19. Azaman, M.D.; Sapuan, S.M.; Sulaiman, S.; Zainudin, E.S.; Khalina, A. Optimization and numerical simulation analysis for molded thin-walled parts fabricated using wood-filled polypropylene composites via plastic injection molding. Polym. Eng. Sci. 2015, 55, 1082–1095. [CrossRef]

20. Vishnuvarthananan, M.; Panda, R.; Ilango, S. Optimization of injection molding cycle time using moldflow analysis. Middle-East J. Sci. Res. 2013, 13, 944–946. [CrossRef]

21. Feng, Q.; Zhou, X. Automated and robust multi-objective optimal design of thin-walled product injection process based on hybrid RBF-MOGA. Int. J. Adv. Manuf. Technol. 2019, 101, 2217–2231. [CrossRef]

22. Li, H.; Liu, K.; Zhao, D.; Wang, M.; Li, Q.; Hou, J. Multi-objective optimizations for microinjection molding process parameters of biodegradable polymer stent. Materials 2018, 11, 2322. [CrossRef]

23. Farahani, S.; Arezoozdar, A.F.; Dariani, B.M.; Pilla, S. An analytical model for non-hydrostatic sheet metal bulging process by means of polymer melt pressure. J. Manuf. Sci. Eng. 2018, 140. [CrossRef]

24. Kazan, H.; Farahani, S.; Pilla, S. Influences of process parameters on penetration in a hybrid single shot manufacturing of carbon fiber/epoxy-polypropylene structure. In Proceedings of the SPE-ANTEC: Detroit, MI, USA, 18–21 March 2019.

25. Arora, R.K. Optimization: Algorithms and Applications; CRC Press: Boca Raton, FL, USA, 2015.

26. Clustering, C.; Bejarano, L.A.; Espitia, H.E.; Montenegro, C.E. Clustering Analysis for the Pareto Optimal Front in Multi-Objective Optimization. Computation 2022, 3, 37. [CrossRef]

27. Deb, K. Multi-objective optimisation using evolutionary algorithms: An introduction. In Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–34.

28. de Weck, O.L.; Kim, I.Y. Adaptive weighted sum method for multiobjective optimization: A new method for Pareto front generation. Struct. Multidiscip. Optim. 2006, 31, 105–116. [CrossRef]

29. Chang, H.; Zhang, G.; Sun, Y.; Lu, S. Using Sequence-Approximation Optimization and Radial-Basis-Function Network for Brake-Pedal Multi-Target Warping and Cooling. Polymers 2022, 14, 2578. [CrossRef] [PubMed]

30. Zhai, H.; Chang, Y.; Li, X.; Xiong, X.; Zhu, W.; Li, C.; Wang, Y. A Research Method to Improve the Quality of Box-Type Thin-Walled Parts by Combining Parameter Optimization and I Nverse-Deformation Design. Research Square 2022. [CrossRef]

31. Gaspar-Cunha, A.; Covas, J.A.; Sikora, J. Optimization of Polymer Processing: A Review (Part I- Extrusion). Materials 2022, 15, 384. [CrossRef]

32. Krishnaiah, K.; Shahabudeen, P. Applied Design of Experiments and Taguchi Methods; PHI Learning Private Limited: New Delhi, India, 2013.

33. Jayakumar, M.; Prasath, R.H.; Giridharan, S.; Prabhu, C.; Domnic, D. Deform 3D and Taguchi Techniques for Investigating Cutting Force for AISI 1030 Steel. In Recent Advances in Materials and Modern Manufacturing; Springer: Cham, Switzerland, 2022; pp. 771–788. [CrossRef]
34. Erzurumlu, T.; Ozcelik, B. Minimization of warpage and sink index in injection-molded thermoplastic parts using Taguchi optimization method. *Mater. Des.* **2006**, *27*, 853–861. [CrossRef]

35. Shen, C.; Wang, L.; Li, Q. Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. *J. Mater. Process. Technol.* **2007**, *183*, 412–418. [CrossRef]

36. Arunachalam, R.; Piya, S.; Krishnan, P.K.; Muraliraja, R.; Christy, J.V.; Mourad, A.H.I.; Al-Maharbi, M. Optimization of stir–squeeze casting parameters for production of metal matrix composites using a hybrid analytical hierarchy process–Taguchi-Grey approach. *Eng. Optim.* **2020**, *52*, 1166–1183. [CrossRef]

37. Chen, D.C.; Chen-Kun, H. Study of injection molding warpage using analytic hierarchy process and Taguchi method. *Adv. Technol. Innov.* **2016**, *1*, 46.

38. Meshram, D.B. An approach for machining curve cooling hole in plastic injection mold. *Comput. Intell. Manuf.* **2022**, *23*, 46. [CrossRef]

39. Karacan, I.; Karacan, I.; Erdogan, I.; Senvar, O.; Bulkan, S. An Integrated Intuitionistic Fuzzy MCDM Approach to Rank Alternatives of Polycarbonate Thermoplastic Resins. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Istanbul, Turkey, 7-10 March, 2022; pp. 1100-1111.

40. Tzeng, G.H.; Huang, J.J. *Multiple Attribute Decision Making: Methods and Applications*; CRC Press: Boca Raton, FL, USA, 2011.

41. Zapf, F.; Wallek, T. Case-study of a flowsheet simulation using deep-learning process models for multi-objective optimization of petrochemical production plants. *Comput. Chem. Eng.* **2022**, *162*, 107823. [CrossRef]

42. Jiang, H.; Li, Z.; Sun, Y.; Jiang, S.; Tian, J. Optimization of the Countercurrent Continuous Reforming Process Based on Equation-Oriented Modeling and the SQP Algorithm. *ACS Omega* **2022**, *7*, 1757–1771. [CrossRef] [PubMed]

43. Ivanov, S.Y.; Ray, A.K. Multiobjective Optimization of Industrial Petroleum Processing Units Using Genetic Algorithms. *Procedia Chem.* **2014**, *10*, 7–14. [CrossRef]

44. da Silva, J.C. Application of Genetic Algorithm in a logistic engineering problem. *Desafios-Rev. Interdiscip. Univ. Fed. Tocantins* **2022**, *9*, 93–112. [CrossRef]

45. Montgomery, D.C. *Design and Analysis of Experiments*; John Wiley & Sons: Hoboken, NJ, USA, 2017.

46. Mukherjee, D.; Ranjan, R.; Moi, S.C. Multi-Response Optimization of Surface Roughness and MRR in Turning using Taguchi Grey Relational Analysis (TGRA). *Int. J. Multidis. Scope (IR)MS* **2022**, *3*, 1–7. [CrossRef]

47. Shinde, D.; Öktem, H.; Kalita, K.; Chakraborty, S.; Gao, X.Z. Optimization of process parameters for friction materials using multi-criteria decision making: A comparative analysis. *Processes* **2021**, *9*, 1570. [CrossRef]

48. Zhao, J.; Cheng, G.; Ruan, S.; Li, Z. Multi-objective optimization design of injection molding process parameters based on the improved efficient global optimization algorithm and non-dominated sorting-based genetic algorithm. *Int. J. Adv. Manuf. Technol.* **2015**, *78*, 1813–1826. [CrossRef]

49. Qurrota Ayun, A.H.; Tryono, J.; Pujiyanto, E. Optimization of Injection Molding Simulation of Bioabsorbable Bone Screw Using Taguchi Method and Particle Swarm Optimization. *Jordan J. Mech. Ind. Eng.* **2022**, *16*, 319–325.