Dynamical density correlation function of 1D Mott insulators in a magnetic field

Davide Controzzi(a,b) and Fabian H.L. Essler(c)
(a) Department of Physics, Princeton University, Princeton NJ 08544, USA
(b) International School for Advanced Studies, Trieste 34014, Italy
(c) Department of Physics, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

We consider the one dimensional (1D) extended Hubbard model at half filling in the presence of a magnetic field. Using field theory techniques we calculate the dynamical density-density correlation function $\chi_{nn}(\omega, q)$ in the low-energy limit. When excitons are formed, a singularity appears in $\chi_{nn}(\omega, q)$ at a particular energy and momentum transfer.

\section{I. INTRODUCTION}

Quasi 1D Mott insulators display unusual phenomena like spin-charge separation and dynamical generation of a spectral gap and have therefore attracted much attention in recent years. At present the best realizations of 1D Mott insulators are found in anisotropic antiferromagnets like SrCuO\textsubscript{2} or Sr\textsubscript{2}CuO\textsubscript{3}. The dynamics of the latter compound has been studied both by angular-resolved photoemission (EELS) and by electron energy-loss spectroscopy (EELS). EELS measures the dynamical density-density correlation function. Theoretical descriptions of 1D interaction in recent years. At present the best realizations of Quasi 1D Mott insulators (e.g. the Bechgaard salts) fully model the EELS data for SrCuO\textsubscript{2}.

There exist other materials believed to be quasi-1D Mott insulators (e.g. the Bechgaard salts) in which the Mott gap is small compared to t. The “weak-coupling” regime $U \lesssim 2t$ in which the Mott gap becomes small is manifestly beyond the range of applicability of strong-coupling expansions. The very existence of a gap precludes the application of conformal field theory. However, this regime is accessible by an approach based on exact field theory methods.

\section{II. FIELD THEORY DESCRIPTION}

The extended Hubbard model in a magnetic field is described by the Hamiltonian

$$H = -t \sum_{l, \sigma} \left(c_{l, \sigma}^\dagger c_{l+1, \sigma} + \text{h.c.} \right) + U \sum_l n_{l, \uparrow} n_{l, \downarrow} + \frac{2}{h} \sum_{j=1} V_j \sum_l n_{l+j} - \frac{h}{2} \sum_{l} \left(n_{l, \uparrow} - n_{l, \downarrow} \right),$$

where $c_{l, \sigma}$ are fermionic annihilation operators of spin \uparrow ($\sigma = 1$) and \downarrow ($\sigma = -1$), $n_{l, \sigma} = c_{l, \sigma}^\dagger c_{l, \sigma}$ and $n_l = n_{l, \uparrow} + n_{l, \downarrow}$. For $h = 0$ the ground state has spin projection $S^z = 0$ whereas for very large fields $h > h_c$ it is fully polarized. We constrain our analysis to the case where the ground state is partially magnetized, which corresponds to fields $0 \leq h < h_c$. A description of the low-energy degrees of freedom of (6) for weak interactions $0 < 2V_2 < 2V_1 < U \ll t$ is then obtained by standard techniques. In the presence of the field h there are four Fermi points $\pm k_{F, \sigma}$ with $k_{F, \uparrow} + k_{F, \downarrow} = \pi/a_0$, where a_0 is the lattice spacing. Taking into account only modes in the vicinity of $k_{F, \sigma}$ we expand

$$c_{l, \sigma} \rightarrow \sqrt{a_0} \left[e^{ik_{F, \sigma} x} R_{\sigma}(x) + e^{-ik_{F, \sigma} x} L_{\sigma}(x) \right],$$

where $x = la_0$. The resulting fermionic field theory can be bosonized with the result

$$L_s = \frac{1}{16\pi} \left[v_s \left(\partial_x \Phi_s \right)^2 - \frac{1}{v_s} \left(\partial_y \Phi_s \right)^2 \right],$$

$$L_c = \frac{1}{16\pi} \left[v_c \left(\partial_x \Phi_c \right)^2 - \frac{1}{v_c} \left(\partial_y \Phi_c \right)^2 \right] - \lambda \cos(\beta \Phi_c).$$

The spin sector is a free bosonic theory whereas the charge sector is described by the integrable Sine-Gordon model (SGM). Fermionic operators are expressed in terms of the canonical charge and spin bose fields $\Phi_{c,s}$ and their respective dual fields

$$\Theta_{c,s}(t, x) = \frac{-1}{v_{c,s}} \int_{-\infty}^x dy \, \partial_y \Phi_{c,s}(t, y)$$
by
\[
L_\sigma = \eta_\sigma e^{\frac{i}{\beta} (\Phi_\sigma - \frac{\pi}{4} \Theta_\sigma)} e^{\frac{\pi}{\beta} (\Phi_\sigma - \frac{\pi}{4} \Theta_\sigma)},
\]
\[
R_\sigma = \eta_\sigma e^{-\frac{i}{\beta} (\Phi_\sigma + \frac{\pi}{4} \Theta_\sigma)} e^{-\frac{\pi}{\beta} (\Phi_\sigma + \frac{\pi}{4} \Theta_\sigma)}.
\]

Here \(\eta_\sigma = \eta_\sigma^* \) are Klein factors that fulfill \(\{ \eta_\sigma, \eta_\tau \} = 2\delta_{\sigma,\tau} \). The spin and charge velocities \(v_{c,s} \) and the parameters \(\beta_{c,s} \) depend on \(t, h, U \) and \(V \).

A. Hubbard model \((V_{1,2} = 0)\)

For the Hubbard model \(\beta_{c,s} \) and \(v_{c,s} \) can be calculated exactly from the Bethe Ansatz solution. The “\(\eta \)-pairing” SU(2) symmetry of the half-filled Hubbard model [12] fixes \(\beta_c = 1 \), whereas \(\beta_s(h,U) \) is obtained from the solution of a linear integral equation
\[
\beta_s = \sqrt{2} Z(\Lambda),
\]
\[
Z(\lambda) = 1 + \int_{-\Lambda}^{\Lambda} d\mu \ a_2(\lambda - \mu) Z(\mu),
\]
where \(2\pi a_2(x) = U[x^2 + U^2/4]^{-1} \). The integration boundary \(\Lambda \) is determined by the condition \(\epsilon(\Lambda) = 0 \), where
\[
\epsilon(\lambda) = -4\text{Re}\sqrt{1 - (\lambda - iU/4)^2} + U + \int_{-\Lambda}^{\Lambda} d\mu \ a_2(\lambda - \mu) \epsilon(\mu).
\]

In the limit \(U/h \to 0 \) \(\beta_s \) can be calculated analytically
\[
\beta_s \approx 1 + \frac{U}{16\pi t \cos(\pi M)}.
\]

where \(M \) is the magnetization that is calculated from the solution to an integral equation similar to (9) (see Ref. [8]). We note that \(\beta_s \) varies between 1 for \(h = 0 \) and \(\sqrt{2} \) for \(h \to h_c \). The behavior of \(\beta_s \) as a function of \(h \) for different values of \(U \) is shown in Fig. 1. We see that for small values of \(U \) \(\beta_s \) remains very close to 1 up to large fields very close to \(h_c \).

The spin and charge velocities can be calculated in a similar way. Field theory is exact in the scaling limit, which has been constructed in the absence of a magnetic field in Ref. [13] using exact results for the half-filled Hubbard model [14]. The \(h > 0 \) case can be mapped onto the attractive Hubbard model below half-filling by means of the particle-hole transformation for spin down \(c_{j,-1} \to (-1)^j c_{j-1}^\dagger \). The scaling limit for the latter model has been found by Woynarovich and Forgacs [15] and is obtained by taking \(t \to \infty \), \(U \to 0 \) while keeping
\[
\sqrt{U/t} \cos(\pi M)e^{-\pi t \cos(\pi M)/2U} = \text{fixed}.
\]

In this limit \(\beta_s = 1 \) and the low-energy effective field theory is \(SU(2) \times SU(2) \) symmetric. However, on the level of the large-distance asymptotics of correlation functions of the underlying Hubbard model this enhanced symmetry is broken down to \(SU(2) \times U(1) \) by the oscillating factors in (9). For example, the leading asymptotical behavior of the spin-spin correlation functions is
\[
\langle S^x(x)S^x(0) \rangle = \langle S^y(x)S^y(0) \rangle = \frac{B(-1)x/a_0}{x} + \ldots,
\]
\[
\langle S^z(x)S^z(0) \rangle = \frac{A \cos 2k_F x}{x} + \ldots,
\]
and the spin \(SU(2) \) symmetry is broken. Previous experience [16] suggests that field theory gives a good description of the lattice model in an extended vicinity of the scaling limit, provided the gap is small compared to \(t \). This is the case as long as \(U \lesssim 2t \). We will apply field theory in the regime defined by this criterion and therefore allow \(\beta_s \) to be different from 1.

B. Extended Hubbard model

For \(V_{1,2} \neq 0 \) no exact results for the lattice model [11] are available. However, the low-energy degrees of freedom of [11] in the regime \(0 < V_2 < V_1 < \frac{U}{2} \leq t \) are still described by (3)-(5), but now with \(\beta_c < 1 \). Recently it was shown in Ref. [14] that for sufficiently large values of \(U, V_1, V_2 \) it is possible to reach the attractive regime of the SGM \(\beta_c < 1/\sqrt{2} \), in which excitonic holon-antiholon bound states form. We will first consider the range \(1/\sqrt{2} < \beta_c \leq 1 \), where no excitons exist and field theory results for the optical conductivity [14] have been found to be in good agreement with dynamical density matrix renormalization group computations for the lattice model [14]. In section [15] we extend the analysis to the regime \(\beta_c < 1/\sqrt{2} \).
C. Density Operator

The density operator is expressed in terms of the spin and charge bosonic fields as

\[n(x,t) = n_0(x,t) + \sum_{\sigma} n_{2kF,\sigma}(x,t), \]

\[n_0(x,t) = A \partial_x \Phi_c, \]

\[n_{2kF,\sigma}(x,t) = A' e^{2ikF,\sigma} \sin(\frac{\beta \Phi_c}{2}) e^{\frac{\beta \Phi_c}{2}}. \]

(12)

Here \(A \) and \(A' \) are numerical constants. For a less than half-filled band there is an additional contribution

\[n_U(x,t) = A_U \cos(2(k_{F,\uparrow} + k_{F,\downarrow})x + \beta \Phi_c), \]

(13)

which is obtained by integrating out the high-energy degrees of freedom in the path integral representation for the density-density correlation function of the lattice model. The operator \(\mathcal{U} \) corresponds to scattering processes involving two particles and two holes with momentum transfer \(2(k_{F,\uparrow} + k_{F,\downarrow}) = 2\pi/n_0 \). As a result \(A_U \) is proportional to \(U/t \) and thus is small. At half-filling we have \(A_U = 0 \). This can be established by considering the following discrete symmetry of the lattice model

\[\epsilon_{j,\sigma} \leftrightarrow (-1)^j \epsilon_{j,-\sigma}. \]

(14)

The lattice density operator transforms as \(n_j \rightarrow 2 - n_j \). In the field theory this symmetry corresponds to inverting the signs of the charge boson and its dual field \(\Phi_c \rightarrow -\Phi_c, \Theta_c \rightarrow -\Theta_c \). (The normal ordered) density operator \(n(x,t) \) must transform to \(-n(x,t) \) under this change of sign and this implies that \(A_U = 0 \).

III. DENSITY CORRELATIONS FOR \(\frac{1}{2} < \beta^2 \leq 1 \)

The density-density correlation function is given by

\[G_{nn}(x,t) = G_{nn}^0 + \sum_{\sigma} G_{nn}^{2kF,\sigma}, \]

(15)

where

\[G_{nn}^0 = \langle 0|n_0(x,t) n_0(0,0)|0 \rangle, \]

\[G_{nn}^{2kF,\sigma} = \langle 0|n_{2kF,\sigma}(x,t) n_{2kF,-\sigma}(0,0)|0 \rangle. \]

(16)

We note that there are no “mixed terms” as can be shown by exploiting the transformation properties under charge conjugation. Due to spin-charge separation the correlation functions in (16) factorize into spin and charge pieces. In the spin sector (8) we are dealing with a simple Gaussian model and elementary wave functions in (16) we are dealing with a simple Gaussian model and elementary wave functions give

\[\langle 0|e^{i\frac{\beta \Phi_c}{2}} e^{-i\frac{\beta \Phi_c}{2}}|0 \rangle_s = \left[x^2 - (v_s t + i\epsilon)^2 \right]^{-d}, \]

(17)

where \(|0\rangle_s \) denotes the vacuum in the spin sector and

\[d = \beta^2_s/2. \]

(18)

In the Hubbard model the exponent \(d \) varies between \(\frac{1}{2} \) for zero field and \(1 \) for \(\hbar \rightarrow h_c \). In order to determine the charge part of the correlators (11) we make use of the integrability of the SGM (8) describing the charge sector. In the range of \(\beta_c \) considered here the spectrum of the SGM consists of scattering states of solitons and antisolitons, which are particles of mass \(M \), charge \(Q = \pm e \) and relativistic dispersion \(E(p) = \sqrt{p^2 + M^2} \). In the Hubbard model they correspond to holons and antiholons respectively. It is convenient to parametrize energy and momentum in terms of the rapidity variable \(\theta \)

\[p = \frac{M}{v_c} \sin \theta, \quad e = M \cosh \theta. \]

(19)

We introduce an index \(\varepsilon = \pm \) for solitons and antisolitons. Then a scattering state of \(n \) solitons/antisolitons with rapidities \(\{\theta_k\} \) and internal indices \(\{\varepsilon_k\} \) is denoted by \(|\theta_n \ldots \theta_1\rangle_{\varepsilon_n \ldots \varepsilon_1} \). In the spectral representation of this basis of (anti)soliton scattering states we may express the two-point function of an operator \(\mathcal{O} \) in the charge sector as

\[\langle c(0)|\mathcal{O}(x,t)\mathcal{O}^\dagger(0)|0 \rangle_c = \sum_{n=0}^{\infty} \prod_{j=1}^n \int d\theta_1 \ldots d\theta_n \frac{(-1)^j}{(2\pi)^n n!} \]

\[\times \exp \left[i \sum_{j=1}^n \epsilon_j t - p_j x \right] |c(0)|\mathcal{O}(0)|\theta_n \ldots \theta_1\rangle_{\varepsilon_n \ldots \varepsilon_1} |^2. \]

(20)

Here \(p_j \) and \(e_j \) are given by (19), and the form factors \(\langle c(0)|\mathcal{O}(0)|\theta_n \ldots \theta_1\rangle_{\varepsilon_n \ldots \varepsilon_1} \) can be calculated by exploiting the integrability of the SGM (8). As a consequence of the transformation properties under charge conjugation of the operators appearing in (14), only intermediate states with an even number of particles will contribute to (24). In order to obtain an accurate result for the large-distance asymptotics it is sufficient to take into account intermediate states with only a small number of particles in the spectral sum (20). For the case at hand we have

\[|c(0)|\mathcal{O}(0)|\theta_n \ldots \theta_1\rangle_{\varepsilon_n \ldots \varepsilon_1} |^2 = |f(\theta_-)| \sinh \theta_+ |^2, \]

\[|c(0)|\sin(\frac{\beta \Phi_c}{2})|\theta_n \ldots \theta_1\rangle_{\varepsilon_n \ldots \varepsilon_1} |^2 = Z_1 |f(\theta_-)| |^2, \]

(21)

(22)

where \(\theta_\pm = (\theta_1 \pm \theta_2)/2, Z_1 \) is a known constant and

\[f(\theta) = \frac{F(\theta)}{\cosh \left(\frac{\theta + i\pi}{2} \right)}, \]

\[F(\theta) = \sinh \left(\frac{\theta}{2} \right) \exp \left[\int_0^{\infty} \frac{dk}{k} \left(\sinh \left(\frac{\xi k}{2} \right) \cosh \left(\frac{\xi k}{2} \right) \sin \left(\frac{k}{2} \right) \right) \right]. \]

\[\xi = \frac{\beta^2}{1 - \beta^2}. \]

(23)

EELS measures the imaginary part of the retarded dynamical density-density correlation function

\[\chi_{nn}(\omega, k) = \text{Im} \left\{ i \int_{-\infty}^{\infty} dx \int_{0}^{\infty} dt \ e^{i\omega t - ikx} [G_{nn}(x,t)] \right\}. \]
\[-G_{nn}(-x,-t)\] \tag{24}\]

We evaluate \(\chi_{nn}(\omega, k)\) in the vicinity of the low-energy modes at \(k = 0, 2k_{F,\sigma}\) by Fourier transforming the large-distance asymptotics of the density-density correlation function. The latter is obtained by carrying out the form factor expansion [24] in the charge sector and multiplying it by the spin-piece [17] in the case of the \(2k_{F,\sigma}\) response.

A. Small \(k\) behavior

In the vicinity of \(k = 0\) the dynamical density response is dominated by the contribution from \(G_{nn}(x,t)\). This contribution does not involve the spin sector and straightforward calculations give

\[
\chi_{nn}(\omega, q) = A^2 8 M^2 \frac{(v_c q)^2 f_0(\theta_0)^2}{s^3 \sqrt{s^2 - 4M^2}} \Theta(s^2 - 4M^2), \tag{25}\]

with \(s^2(\omega, q) = \omega^2 - (v_c q)^2\) and \(\theta_0 = 2 \text{arccosh}(s/2M)\). Above the threshold at \(\omega = \sqrt{v_c^2 q^2 + 4M^2}\), the \(\chi_{nn}(\omega, q)\) increases from zero in a universal square root fashion. This is due to the momentum dependence of the form factors.

From the Heisenberg equations of motions for the lattice density operator one can derive a relation between \(\chi_{nn}\) and the optical conductivity \(\sigma(\omega)\)

\[
\text{Re} \; \sigma(\omega) = \lim_{q \to 0} \frac{\omega}{q^2} \chi_{nn}(\omega, q). \tag{26}\]

The optical conductivity has been calculated in[3] and agrees with (26) and (25). We note that a contribution of the type (13) to the density operator would violate the relation (25), which is an independent argument showing that \(A_U = (1)\).

B. Behavior around \(k = 2k_{F,\sigma}\)

In the vicinity of \(k = 2k_{F,\sigma}\) the dynamical density response is dominated by the contribution from \(G_{nn}^{2k_{F,\sigma}}(x,t)\) and involves both the spin and the charge sector. The threshold can be determined by considering the lowest intermediate state that couples to the density operator at \(k = 2k_{F,\sigma}\), which is a scattering state of one soliton, one antisoliton and one spinon. The total momentum and energy of this state are

\[
P = p + q_1 + q_2, \quad E = v_s |P| + \sum_{j=1}^{2} \sqrt{M^2 + v_j^2 q_j^2}. \tag{27}\]

The threshold is obtained by minimizing the energy at fixed total momentum with respect to \(p, q_1, q_2\)

\[
E_{\text{thres}} = \min_{q_1, q_2} \left[v_s |P - q_1 - q_2| + \sum_{j=1}^{2} \sqrt{M^2 + v_j^2 q_j^2} \right]
= \begin{cases} \sqrt{4M^2 + v_c^2 P^2} & \text{if } |P| \leq Q, \\ v_s |P| + 2M \sqrt{1 - \alpha^2} & \text{if } |P| \geq Q, \end{cases} \tag{28}\]

where

\[
\alpha = \frac{v_s}{v_c}, \quad Q = \frac{2M v_s}{v_c \sqrt{v_c^2 - v_s^2}}. \tag{29}\]

The behavior is quite similar to what is found for the spectral function [2].

1. Equal velocities \(v_s = v_c = v\)

For \(v_s = v_c = v\) one can obtain the following representation

\[
\chi_{nn}(\omega, 2k_{F,\sigma} + q) \approx \frac{\Gamma^2(1-d) Z_1 A^2}{\pi(2\nu)^{2d-1}} \int_{-\infty}^{\infty} d\theta \frac{|f_1(\theta)|^2}{c(\theta)^2 - 2d} \times \text{Im} F \left(1-d, 1-d, 1, \frac{\omega^2 - v_c^2 q^2}{c^2(\theta)} \right), \tag{30}\]

where \(c(\theta) = 2M \text{cosh}(\theta)\). The imaginary part of the hypergeometric function vanishes unless \(c(\theta) < \sqrt{\omega^2 - v_c^2 q^2}\). This implies that the response function is nonzero only if \(\omega^2 > v_c^2 q^2 + 4M^2\), in agreement with (28). Just above the threshold (0 < s/2M < 1) we may use the transformation formulas for hypergeometric functions to obtain

\[
\text{Im} F \left(1-d, 1-d, 1, \frac{s^2}{c^2(\theta)} \right) = -\frac{\Gamma(1-2d) \sin(\pi 2d)}{\Gamma(1-d)} \times F \left(d, d, 2d, 1 - \frac{s^2}{c^2(\theta)} \right) \left(\frac{s^2}{c^2(\theta)} - 1 \right)^{2d-1} \times \Theta(s^2 - c^2(\theta)), \tag{31}\]

where \(\Theta(x)\) is the Heaviside function. The remaining \(\theta\)-integral in (31) is therefore over a very small interval \([-\text{arccosh}(s/2M), \text{arccosh}(s/2M)]\) and can be taken by Taylor-expanding the integrand. The leading contribution to the behavior just above the threshold is

\[
\chi_{nn}(\omega, 2k_{F,\sigma} + q) \propto \left(\frac{s - 2M}{M} \right)^{\frac{1}{2} + 2d}, \tag{32}\]

where \(\beta_c^2 > 1/2\), in which case we have

\[
f_1(2\theta) \propto \theta, \quad \text{for } \theta \to 0. \tag{33}\]
At the Luther-Emery point $\beta_c^2 = \frac{1}{4}$ there is a different power law increase in (23) (the exponent is $2d - \frac{d}{2}$). As $\beta_c^2 \to \frac{1}{4}$ from above the region is which (23) holds shrinks to zero. The important result here is that χ_{nn} vanishes as the threshold is approached from above. There are no threshold singularities! The behavior for large frequencies $\omega \gg \sqrt{v^2 q^2 + 4M^2}$ (but necessarily $\omega \ll t$ for field theory to apply) is

$$\chi_{nn}(\omega, 2k_{F,\sigma} + q) \propto s^{2d - 2 + \beta_c^2}, \quad s \gg M. \quad (34)$$

2. Different velocities $v_s \neq v_c$

In the case of different spin and charge velocities $\frac{v_s}{v_c} \equiv \alpha < 1$ one may represent χ_{nn} as

$$\chi_{nn}(\omega, 2k_{F,\sigma} + q) \approx \frac{Z_1 A^2}{\Gamma^2[d(2v_s)]^{2d-1}} \times \int_{-\infty}^{\infty} d\theta_+ d\theta_- |f_1(2\theta_-)|^2 (\Omega^\prime)^{d-1} \Theta(\Omega) \Theta(\Omega^\prime),$$

where

$$\Omega = \omega - v_s q - 2M \cosh(\theta_-) \cosh(\theta_+) - \alpha \sinh(\theta_+),$$

$$\Omega^\prime = \omega + v_s q - 2M \cosh(\theta_-) \cosh(\theta_+) + \alpha \sinh(\theta_+). \quad (35)$$

One easily checks that (35) leads to a threshold described by (28). The remaining integrals in (35) are evaluated numerically.

![Graph showing $\chi_{nn}(\omega, 2k_{F,\sigma} + q)$ for various $\beta_c = \beta_s = 1$, $\alpha = 0.851$ and different values of $v_s q$. The dashed line is the threshold when spinons carry zero momentum $\sqrt{4M^2 + v_s^2 q^2}$.](image)

FIG. 2: $\chi_{nn}(\omega, 2k_{F,\sigma} + q)$ for $\beta_c = \beta_s = 1$, $\alpha = 0.851$ and several different values of $v_s q$. The curves have been offset. The dashed line is the threshold when spinons carry zero momentum $\sqrt{4M^2 + v_s^2 q^2}$.

A remarkable feature of the half-filled Mott insulator is the presence of two dispersing features in the spectral function, that are associated with v_s and v_c respectively. A natural question is whether an analogous feature exists in the density-density response. We have analyzed (35) for several sets of parameters β_c, β_s, α and found that in all cases $\chi_{nn}(\omega, 2k_{F,\sigma} + q)$ is rather featureless. There are no singularities or peaks that can be associated with v_c and v_s separately. We also do not find any threshold singularities as the magnetic field is increased. In Fig. 2 we plot $\chi_{nn}(\omega, 2k_{F,\sigma} + q)$ for $\beta_c = \beta_s = 1$ and $\alpha = 0.851$, which corresponds to the half-filled Hubbard model in zero magnetic field at $U = 1$ ($v_s = 2.15t_0$, $v_s = 1.83t_0$). At $\omega \sim 8M$ one can just see that the threshold is below the curve $\sqrt{4M^2 + v_c^2 q^2}$.

IV. EXCITONS: $\beta_c^2 < \frac{1}{4}$

In the regime $\beta_c^2 < \frac{1}{4}$ soliton and antisoliton can form excitonic bound states which for the SGM are known as breathers. There are different types of excitons, where $[x]$ denotes the integer part of x. We denote the different excitons by e_1, e_2, \ldots. The exciton gaps are given by

$$M_n = 2M \sin(n\pi \xi/2), \quad n = 1, \ldots, N. \quad (36)$$

It follows from the transformation properties under $\Phi_e \to -\Phi_e$ that only the “odd” excitons e_{2n+1} couple to the density operator. For simplicity we take $\beta_c > 1/2$ from now, in which case we only have to consider the first exciton e_1. In this regime of β_c the leading contributions of the spectral sum to the dynamical density-density correlator are given by

$$\chi_{nn}(\omega, k) = \chi_{nn}^{exc}(\omega, k) + \chi_{nn}^{ss}(\omega, k), \quad (37)$$

where $\chi_{nn}^{exc}(\omega, k)$ and $\chi_{nn}^{ss}(\omega, k)$ denote the contributions from intermediate states with one exciton and many spinons and one soliton, one antisoliton and may spinons respectively. We have already calculated $\chi_{nn}^{ss}(\omega, k)$ above. For small k it is given by (23) and for $k \approx k_{F,\sigma}$ by (22). The exciton contribution can be calculated by the same method and we now present the results.

A. Behavior around $k = 0$

Here the exciton is visible as a sharp δ-function peak at an energy below the soliton-antisoliton scattering continuum

$$\chi_{nn}^{exc}(\omega, q) = A^2 g_0 \frac{v_c^2 q^2}{\omega} \delta(\omega - \sqrt{v_c^2 q^2 + M_c^2}), \quad (38)$$
where
\[g_0 = \frac{\pi \lambda^2 \xi^2}{\sin^2(\pi \xi)}, \]
\[\lambda = 2 \cos\left(\frac{\pi \xi}{2}\right) \sqrt{2 \sin\left(\frac{\pi \xi}{2}\right)} \exp\left(-\int_0^{\pi \xi} \frac{dt}{2 \pi \sin t}\right). \]

The result (39) is again related by the equations of motion [29] to the corresponding contribution to the optical conductivity. The dynamical density susceptibility, (39), for \(\nu_s q = 0.2 M \), is plotted in Fig. 3. For \(\beta_c < 1/\sqrt{2} \) the breather contribution (39) appears and the spectral weight is gradually transferred from the soliton-antisoliton continuum to the coherent peak.

![FIG. 3: \(\chi_{nm}(\omega, q = 0.2 M / \nu_c) \) for different values of \(\beta_c \). We have broadened the delta function by convoluting it with a Lorentzian in order to exhibit the transfer of spectral weight from the soliton-antisoliton continuum to the coherent breather peak.](image)

B. Behavior around \(q = 2k_{F,\sigma} \)

In the vicinity of \(q = 2k_{F,\sigma} \) the exciton contributes to the dynamical density-density correlation function via an exciton-spinon scattering continuum with threshold

\[E_{\text{thres}} = \min_q \left[\nu_s |P - q| + \sqrt{M_1^2 + \nu_s^2 q^2} \right] \]

\[= \begin{cases} \sqrt{M_1^2 + \nu_s^2 P^2} & \text{if } |P| \leq Q' \ , \\ \nu_s |P| + M_1 \sqrt{1 - \alpha^2} & \text{if } |P| \geq Q' \end{cases} \]

where
\[Q' = \frac{M_1 \nu_s}{\nu_c \sqrt{\nu_s^2 - \nu_c^2}}. \]

The exciton contribution to the dynamical density-density correlation function is given by

\[\chi^{\text{exc}}_{nn}(\omega, 2k_{F,\sigma} + q) \approx \frac{2 \pi Z_1 A^2}{F^2(d)/(2v_s)^{2d-1}} \times \left[\frac{\lambda \xi}{2 \cos(\pi \xi/2)} \right]^2 \int_{-\infty}^{\infty} d\theta (\Sigma')^{\alpha-1} \Theta(\Sigma) \Theta(\Sigma'), \]

where
\[\Sigma = \omega - \nu_s q - M_1 [\cosh(\theta) - \alpha \sinh(\theta)], \]
\[\Sigma' = \omega + \nu_s q - M_1 [\cosh(\theta) + \alpha \sinh(\theta)]. \]

One readily deduces by inspection of equations (45) and (44) that for fixed \(q \) the exciton contribution to \(\chi \) exhibits a cusp at a frequency

\[\omega_{\text{cusp}} = \sqrt{M_1^2 + \nu_s^2 q^2}. \]

If we fix the momentum transfer to be \(q = Q' \), this cusp turns into a singularity. In order to exhibit these interesting features we plot \(\chi_{nm}(\omega, 2k_{F,\sigma} + q) \) for \(\xi = 0.6, \alpha = 0.8 \) and different values of \(q \) in Fig. 4.

![FIG. 4: \(\chi_{nm}(\omega, 2k_{F,\sigma} + q) \) for \(\alpha = 0.8, \beta_s = 1 \) and \(\xi = 0.6 \). For \(\omega \approx \omega_{\text{cusp}} \) one can clearly see the cusp due to the breather contribution. As \(\nu_c q \) approaches \(\nu_c Q' \approx 2.157 M \) the cusp turns into a singularity.](image)

V. SUMMARY

We have studied the dynamical density-density response of half-filled 1D Mott insulators for the case where the Mott gap is small compared to the hopping matrix element \(t \). We have allowed for the presence of a magnetic field that partially magnetizes the ground state. Unlike
the spectral function, the density-density response function does not exhibit prominent, dispersing features associated with the spin and charge degrees of freedom respectively. Due to the momentum dependence of the matrix elements in the gapped charge sector, $\chi_{nn}(\omega, k)$ tends to zero as the threshold is approached from above: irrespective of the magnitude of the applied magnetic field there are no threshold singularities.

In the parameter region of the extended Hubbard model where excitons are formed, the dynamical density-density response exhibits a cusp at some specific value of energy transfer for momentum transfers k close to $2k_{F, x}$.

This cusp turns into a singularity for one particular value of k. These features should be experimentally observable in small-gap quasi-1D Mott insulators.

\textbf{Acknowledgments}

FHLE acknowledges support by the DOE (DE-AC02-98 CH 10886) and the EPSRC (grants AF/100201 and GR/N19359). We thank M. Fabrizio, F. Gebhard and A.A. Nersesyan for discussions.

1. N. F. Mott, \textit{Metal-Insulator Transitions}, 2nd ed., Taylor and Francis, London (1990); F. Gebhard, \textit{The Mott Metal-Insulator Transition}, Springer (1997).
2. C. Kim, Z.X. Shen, N. Montoyama, H. Eisaki, S. Uchida, T. Tohyama and S. Maekawa, Phys. Rev. \textbf{B56}, 15589 (1997).
3. R. Neudert et al, Phys. Rev. Lett. \textbf{81}, 657 (1998).
4. F. Gebhard, K. Bott, M. Scheidler, P. Thomas, and S.W. Koch, Phil. Mag. B \textbf{75}, 1, 13, 47 (1997); F.B. Gallagher and S. Mazumdar, Phys. Rev. B. \textbf{56}, 15025 (1997).
5. W. Stephan and K. Penc, Phys. Rev. B \textbf{54}, 17269 (1996); K. Penc and W. Stephan, Phys. Rev. B \textbf{62}, 12707 (2000).
6. T. Ishiguro and K. Yamji, \textit{Organic Superconductors}, Springer Verlag, Berlin 1990; C. Bourbonnais and D. Jerome, in “Advances in Synthetic Metals, Twenty years of Progress in Science and Technology”, ed. by P. Bernier, S. Lefrant and G. Bidan (Elsevier, New York, 1999), p. 206-301 and references therein. See also cond-mat - 9903101.
7. A. Luther, Phys. Rev. B\textbf{14}, 2153 (1976); A.B. Zamolodchikov and A.L. Zamolodchikov, Annals of Physics \textbf{120}, 253 (1979); H. Bergknoff and H. Thacker, Phys. Rev. D\textbf{19}, 3666 (1979); V.E. Korepin, Theor. Mat. Phys. \textbf{41}, 169 (1979).
8. H. Frahm and V.E. Korepin, Phys. Rev. B\textbf{42}, 10553 (1990), \textit{ibid} B\textbf{43}, 5653 (1991).
9. F.H.L. Essler and H. Frahm, Phys.Rev. B\textbf{60}, 8540 (1999).
10. F. A. Smirnov, \textit{Form Factors in Completely Integrable Models of Quantum Field Theory}, World Scientific, Singapore (1992); M. Karowski and P. Weisz, Nucl. Phys. B\textbf{139}, 455 (1978); H. Babujian, A. Fring, M. Karowski and A. Zapletal, Nucl. Phys. B\textbf{538}, 535 (1999); A. Fring, G. Mussardo and P. Simonett, Nucl.Phys. B\textbf{393}, 413 (1993).
11. S. Lukyanov, Comm. Math. Phys. \textbf{167}, 183 (1995).
12. E. Jeckelmann, F. Gebhard and F. H. L. Essler, Phys. Rev. Lett. \textbf{85}, 3910 (2000).
13. D. Controzzi, F.H.L. Essler and A.M. Tsvelik, Phys. Rev. Lett. \textbf{86} 680 (2001).
14. F.H.L. Essler, F. Gebhard and E. Jeckelmann, Phys. Rev. B\textbf{64}, 5119 (2001).
15. F.H.L. Essler and A.M. Tsvelik, Phys. Rev. Lett. \textbf{88}, 096403 (2002); Phys. Rev. B\textbf{65}, 115117 (2002).
16. T. Fujii and N. Kawakami, J. Phys. Soc. Jpn \textbf{68}, 2331 (1999).
17. A. O. Gogolin, A. A. Nersesyan and A. M. Tsvelik, \textit{Bosonization and Strongly Correlated Systems}, Cambridge University Press (1999).
18. O. J. Heilmann and E. H. Lieb, Ann. N.Y. Acad. Sci. \textbf{172}, 583 (1971); C. N. Yang, Phys. Rev. Lett. \textbf{63}, 2144 (1989).
19. F. Woynarovich, J. Phys. A\textbf{22}, 4243 (1989).
20. E. Melzer, Nucl. Phys. \textbf{443}, 553 (1995); see also F. Woynarovich and P. Forgacs, Nucl.Phys.B \textbf{498}, 565 (1997).
21. F. H. L. Essler and V. E. Korepin, Phys. Rev. Lett. \textbf{72}, 908 (1994); Nucl. Phys. B\textbf{426}, 505 (1994).
22. F. Woynarovich, J. Phys. A \textbf{29}, L37 (1996); F. Woynarovich and P. Forgacs, Nucl.Phys.B \textbf{538}, 701 (1999).
23. V.J. Emery, in \textit{Highly Conducting One-Dimensional Solids}, eds J.T. Devreese, R.P. Evrard and V.E. van Doren (Plenum, New York, 1979); J.W. Cannon and E. Fradkin, Phys. Rev. B\textbf{41}, 9435 (1990); M. Nakamura, Phys. Rev. B\textbf{61}, 16377 (2000).
24. E. Jeckelmann, unpublished (preprints cond-mat/0204244 and cond-mat/0203500).
25. J. Cardy and G. Mussardo, Nucl. Phys. B\textbf{410}, 451 (1993).
26. The contribution of \textbf{13} to χ_{nn} is easily calculated by the formfactor method and is found to be finite for $q \to 0$ at fixed ω (this is obvious as \textbf{13} is a Lorentz scalar and the contribution to the correlation function therefore is a function of $s^2 = \omega^2 - q^2 k^2$). This would imply an infinite optical conductivity by (26), in contradiction to Ref.\textbf{13}.
27. A. Luther and V.J. Emery, Phys. Rev. Lett. \textbf{33}, 589 (1974).