Pharmocodynamic comparison of different antimicrobial regimens against Staphylococcus aureus bloodstream infections with elevated vancomycin minimum inhibitory concentration

CURRENT STATUS: ACCEPTED

BMC Infectious Diseases ■ BMC Series

Thaina Miranda da Costa
Universidade Federal do Rio de Janeiro

Gabriel Trova Cuba gabieltcuba@gmail.com
Universidade Federal de Sao Paulo
Corresponding Author
ORCiD: 0000-0001-8732-8946

Priscylla Guimarães Miguerees Morgado
Universidade Federal do Rio de Janeiro

David P. Nicolau
Center of Anti-Infective Research and Development

Simone Aranha Nouér
Universidade Federal do Rio de Janeiro

Kátia Regina Netto dos Santos
Universidade Federal do Rio de Janeiro

Carlos Roberto Veiga Kiffer
Universidade Federal de São Paulo

DOI:
10.21203/rs.2.9476/v1

SUBJECT AREAS
Infectious Diseases

KEYWORDS
Bloodstream infections, Staphylococcus aureus, pharmacodynamic targets, ceftaroline, daptomycin, vancomycin,
Abstract

Background

Staphylococcus aureus is one of the major causes of bloodstream infections (BSI) worldwide, representing a major challenge for public health due to its resistance profile. Higher vancomycin minimum inhibitory concentrations (MIC) in S. aureus are associated with treatment failure and defining optimal empiric options for BSIs in settings where these isolates are prevalent is rather challenging. In silico pharmacodynamic models based on stochastic simulations (Monte Carlo) are important tools to estimate best antimicrobial regimens in different scenarios. We aimed to compare the pharmacodynamic profiles of different antimicrobials regimens for the treatment of S. aureus BSI in an environment with high vancomycin MIC.

Methods

Steady-state drug area under the curve ratio to MIC (AUC/MIC) or the percent time above MIC (fT>MIC) were modeled using a 5000-patient Monte Carlo simulation to achieve pharmacodynamic exposures against 110 consecutive S. aureus isolates associated with BSI.

Results

Cumulative fractions of response (CFRs) against all S. aureus isolates were 98% for ceftaroline; 79% and 92% for daptomycin 6 mg/kg q24h and for the high dose of 10 mg/kg q24h, respectively; 77% for linezolid 600 mg every 12h when MIC was read according to CLSI M100-S26 instructions, and 64% when MIC was considered at the total growth inhibition; 65% and 86% for teicoplanin, three loading doses of 400 mg every 12h followed by 400 mg every 24h and for teicoplanin 400 mg every 12h, respectively; 61% and 76% for vancomycin 1000 mg every 12h and every 8h, respectively.

Conclusions
Based on this model, ceftaroline and high-dose daptomycin regimens delivered best pharmacodynamic exposures against S. aureus BSIs. Teicoplanin higher dose regimen achieves the best CFR (86%) among glycopeptides, although optimal threshold was not achieved, and vancomycin performance is critically affected by S. aureus vancomycin MIC \geq 2 mg/L. Linezolid effectiveness (CFR of 73%) is also affected by high prevalence of isolates with higher MICs. These data show the need to continually evaluate the pharmacodynamic profiles of antimicrobials for empiric treatment of these infections.

Background

Bloodstream infections (BSI) are conditions of elevated incidence in nosocomial environments, particularly in critically ill patients. They have been associated with longer hospital stays, higher costs, and higher crude mortality rates (1). *Staphylococcus aureus* is one of the main pathogens associated with BSI worldwide, and methicillin-resistant *S. aureus* (MRSA) is associated with a significant elevated mortality risk. (2). Although *S. aureus* is a challenge for public health, vancomycin has been the cornerstone of treatment of patients with MRSA infections for more than fifty years (3,4). However, increasing reports of reduced susceptibility to vancomycin are of great concern, especially since higher mortality rates in MRSA BSI have been associated with increased vancomycin MIC (MIC \geq 2 mg/L) (5,6). While several anti-MRSA agents such as ceftaroline, daptomycin and linezolid have been used as alternatives to glycopeptides (vancomycin and teicoplanin), limited clinical and pharmacodynamic comparative data are available to assess their utility in MRSA BSI (7,8).

Monte Carlo simulation is a stochastic prediction tool, which is implemented by computer mathematical methods associating different variables, such as the pharmacokinetic (PK) profile of antimicrobials and the *in vitro* susceptibility data (i.e., MIC distribution), in order to estimate the antibiotics dosing regimens’ probability of achieving targeted
pharmacodynamic exposures (9). The use of *in silico* pharmacodynamic (PD) models based on stochastic simulations is an important tool to explore optimal antimicrobial regimens in different populations or in specific settings. These models allow exploration of different dosing regimens and targets in virtual scenarios, in order to explore best strategies to overcome challenging conditions (10), such as resistance emergence. Previous evaluations of different antimicrobial pharmacodynamics against *S. aureus* have already been published (11).

The aim of the present study was to determine the probability of target attainment of different regimens of ceftaroline, daptomycin, linezolid, teicoplanin, and vancomycin using Monte Carlo simulation. The probability of microbiological success of these antimicrobials based on pharmacokinetic/pharmacodynamic simulations was assessed against *S. aureus* isolates from BSI from an university teaching hospital, where resistance to various antimicrobials and increasing MIC values have been previously observed (12).

Methods

Microbiology and ethics statement

This study was performed at the University Hospital Clementino Fraga Filho, a public tertiary teaching hospital in Rio de Janeiro, Brazil, with about 70,000 patients/day per year during the study period. It was approved by Human Research Ethics Committee of the University Hospital Clementino Fraga Filho (number 008/15).

A retrospective analysis was conducted evaluating all episodes of *S. aureus* BSI occurring in adults submitted to treatment between February 2011 and December 2013. Only the first *S. aureus* isolate associated with a confirmed BSI episode, according to hospital control policies, was included in the analysis. An episode was defined as an isolation of *S. aureus* in a blood culture with subsequent initiation of anti-staphylococcal therapy. Only single and consecutive episodes were considered for the present study (i.e. one single
patient with first \textit{S. aureus} isolate submitted to specific treatment).

All blood cultures were routinely processed using BacT/ALERT® (BioMerieux Inc., Durham, NC, USA) during the referred period. Bacterial identification was carried out by the automated VITEK® 2 system (BioMerieux, Durham, NC, USA). Identification of bacteria was confirmed using Gram staining, catalase and coagulase production, and evaluation of 0.04U bacitracin resistance by disk-diffusion (13).

All isolates selected for the current study were submitted to susceptibility to oxacillin was determined by cefoxitin disk (CECON, São Paulo, Brazil) diffusion test according to the CLSI (14). Determination of MICs was performed by broth microdilution, using fresh cation-adjusted Mueller-Hinton broth (CAMHB) for vancomycin, teicoplanin, linezolid, daptomycin (Sigma-Aldrich Chemical Company, St Louis, MO, USA) and ceftaroline (donated by AstraZeneca Pharmaceuticals, Schaumburg, IL, USA). CAMHB was supplemented with 50 µg/mL calcium for daptomycin assay. Linezolid MIC was determined considering growth inhibition of 100% (linezolid-100) and also according to CLSI M100-S26 document (designated linezolid-80). The CLSI interpretative breakpoints were used for all antimicrobials (14). The ATCC strains 25923 and 29213 were used as controls for the disk diffusion and MIC tests, respectively. The \textit{mecA} gene detection was performed as previously described (15) for isolates resistant to cefoxitin by disk diffusion.

Antibiotic regimens

Steady-state exposure was assessed for the following antibiotic regimens by the methodology described below: daptomycin 6 mg/kg q24h; daptomycin 10 mg/kg q24h; linezolid 600 mg q12h; teicoplanin three 400 mg q12h as loading dose, followed by 400 mg q24h; teicoplanin 400 mg q12h; vancomycin 1000 mg q8h; vancomycin 1000 mg q12h; ceftaroline 600 mg q12h.

Pharmacokinetic / pharmacodynamic models
Mean pharmacokinetic parameters and their distributions were extrapolated from published patient studies for each antibiotic. For studies to be considered, they had to be conducted in at least 10 actual patients (defined as a clinical study in the presence of an infection), to have described the assay used to determine drug concentrations and presented mean and standard deviation results for the total body clearance in liters per hour, volume of distribution of the central compartment and other pertinent PK parameters. Mean PK parameters and distribution were extrapolated from selected published studies for each antibiotic (16–19).

The PK/PD parameters (f_{AUC}, total AUC or $f_T > \text{MIC}$) were chosen based on pharmacodynamic exposure-response relationship for each agent (19–23). AUC_{0-24h} was calculated by dividing $\text{Dose}_{24} / \text{Clearance}$ and then this value was divided by each MIC dilution between 0.625 mg/L to 16 mg/L to provide the total AUC/MIC (for linezolid and vancomycin) or $f_{AUC/MIC}$ (for daptomycin) calculation. Teicoplanin $\text{AUC}_{0–24}$ was calculated using the trapezoidal rule and divided by each MIC dilution as previously described. Each antimicrobial and their respective PK published studies and PD targets adopted are described in specific subsections (described in more detail below). Table 1 summarizes the pharmacokinetic (PK) parameters derived from published studies, their respective references, and the pharmacodynamic (PD) targets chosen for each antimicrobial used in the Monte Carlo simulation.

Daptomycin

The PK parameters of daptomycin were derived from a study with 58 subjects treated for severe Gram-positive infections (16). Daptomycin PK model considered an 80 kg weight individual, with total body clearance of $0.8 \pm 0.14 \text{ L/h}$, protein binding of 90% to 93%, linear and dose-proportional PK over dose range studied (6 mg/kg/dose and 10 mg/kg/dose) (16,24). Daptomycin PD target of $f_{AUC/MIC} > 40$ was chosen, previously
associated with bacteriostasis in thigh murine infection model (20).

Linezolid

Linezolid PK data was obtained from a study with 318 adults with Gram-positive infections (community-acquired pneumonia and skin and soft tissue infections) treated under the compassionate-use protocol (17). The Linezolid PK model then assumed a total body clearance of 6.85 ± 3.45 L/h (17) and a one-compartment model (11,25). Linezolid PD target was total AUC/MIC > 82.9, exposure required for a bacteriostatic response in neutropenic murine thigh infection model (21).

Teicoplanin

Teicoplanin PK were derived from a population study with 30 febrile and severely neutropenic patients. Teicoplanin PK then assumed a total body clearance of 1.15 ± 0.56 L/h, volume of the central compartment (6.56 ± 4.01 L), k12 (1.29 ± 0.62 h⁻¹) and k21 (0.18 ± 0.08 h⁻¹), and a two-compartment model until steady state, to account for its long half-life (11,18). Teicoplanin PD target was a total AUC/MIC ≥ 900, exposure correlated with bacteriological response in patients with documented MRSA infection (22).

Vancomycin

Vancomycin PK data were derived from a populational study of patients receiving treatment for S. aureus lower respiratory tract infection (19). Vancomycin total body clearance was estimated as a function of creatinine clearance (CrCl, mL/min); drug clearance (L/h) = [(CrCl ∙ 0.79) + 15.4] ∙ 0.06 (19). CrCl was assumed to follow a triangular distribution, simulated as a range between 50 mL/min and 120 mL/min (11). Vancomycin PD target was total AUC/MIC ≥ 350, which was the exposure associated with clinical success for lower respiratory tract infections, approximately corresponding to a trough vancomycin concentration of 15–20 mg/mL (19).

Ceftaroline
Ceftaroline probability of target attainment (PTA) was obtained from literature (23,26). The model was derived from a three-compartment model developed from plasma concentration from Phase 1, 2, 3 studies, the two latter in patients with complicated skin infection and community-acquired pneumonia (27). Ceftaroline PD target used was 51% $fT>MIC$, which is an exposure associated with 2-log10 CFU reduction from baseline for *S. aureus* on murine thigh and lung infection models (23).

Monte Carlo simulation

A 5000-patient Monte Carlo simulation (Crystal Ball 2000; Decisioneering Inc., Denver, CO, USA) was performed to calculate a population of total AUC/MIC (free or total) or $T>MIC$ exposures for each antibiotic regimen at each MIC dilution. Clearance, volume of the central compartment, k_{12} and k_{21} were each assumed to follow log-Gaussian distributions during simulations for teicoplanin. For the vancomycin simulation, creatinine clearance was assumed to follow a triangular distribution as previously described (11). The number of simulated patients achieving the target pharmacodynamic exposure at each MIC was counted and reported as the PTA at that specific MIC (values in percentages). The cumulative fractions of response (CFR) was calculated as previously described for each drug (28), multiplying the PTA at each MIC by the percentage of isolates with that specific MIC. Final CFR results were obtained as the sum of each PTA per MIC and a CFR $\geq 90\%$ was considered optimal.

Sensitivity analysis

A sensitivity analysis was conducted to explore the robustness of the CFR against entire BSI *S. aureus* isolates. In order to perform the analysis, different PD targets were applied as a way of comparison with targets originally applied, as follows. For vancomycin sensitivity analysis, an alternative PD target of AUC/MIC > 400 was used, which was the exposure required for bacterial eradication in lower respiratory tract infections (19). For
daptomycin, PD targets of fAUC/MIC >12 (the minimum value providing static effect with MRSA) and >171 (the minimum ratio which provided 99% kill) were obtained from a thigh murine infection model (20). For linezolid, the alternative PD targets of total AUC/ MICs >51.85 (minimum breakpoint associated with clinical cure) and >128 (median AUC/MIC associated to bacterial eradication in the blood of adult patients enrolled in the compassionate use program of linezolid) were also explored (29). For ceftaroline, fT > MIC targets of 26% and 36% were also analyzed, which are targets associated to bacterial reduction endpoints of net bacterial stasis and 1-log10 CFU reductions from baseline for S. aureus based on murine infection models, respectively (23). Finally, teicoplanin trough value of > 13 mg/L and > 20 mg/L were investigated, they are currently used in clinical practice (30,31).

Results

A total of 110 single S. aureus isolates associate to one BSI episode were included in the analysis. It is relevant to note that 25 (23%) isolates presented MIC = 2 mg/L and 6 (5%) presented MIC = 4 mg/L to vancomycin, respectively. Vancomycin MIC = 2 mg/L is associated with treatment failure and the MIC = 4 is characterized as vancomycin-intermediate S. aureus (VISA). One VISA isolate was also ceftaroline-intermediate (MIC of 2 mg/L). Thirty-one (28%) isolates were resistant to cefoxitin by disk diffusion and carried the mecA gene (MRSA). Microbiological characteristics of vancomycin hetero-resistance (hVISA) and VISAs of the present collection were already described (12).

Table 2 summarizes the MIC distributions of vancomycin, teicoplanin, linezolid, daptomycin and ceftaroline. Both linezolid readings were considered as part of the exploratory model for CFR analysis. It was observed that linezolid MICs ranged from 0.25 to 4 mg/L and from 0.25 to 2 mg/L for linezolid-100 and-80, respectively. The MIC results for linezolid-80 were one doubling-dilution lower than those read at 100% inhibition for 39
(35%) isolates. Non-susceptibility to daptomycin was observed in 16 (14.5%) isolates, which represented 35.5% of the MRSA isolates.

Figure 1 summarizes the MIC distributions and PTAs for ceftaroline, daptomycin, linezolid-100, linezolid-80, teicoplanin and vancomycin. Linezolid and all daptomycin regimens achieved >90% target attainment up to MICs of 1 mg/L. It was observed > 90% PTA up to MIC of 0.125 and 0.25 mg/L for teicoplanin three 400 mg q12h followed by 400 mg q24h and for teicoplanin 400 mg q12h, respectively.

Table 3 summarizes the CFRs against the entire collection of BSI S. aureus isolates. Ceftaroline (98%) and a higher daptomycin dose regimen (10 mg/kg) (92%) both achieved the CFR threshold defined as a limit for optimal therapy against the population tested. Teicoplanin 400 mg q12h provided 86% CFR, while daptomycin 6 mg/kg, vancomycin 1000 mg q8h and 1000 mg q12h, and linezolid 600 mg q12h all provided below 80% CFRs.

Figure 2 shows the sensitivity analyses for the PD targets used against the entire BSI S. aureus isolates. A very wide range of CFRs for daptomycin minimum bacteriostatic and minimum bactericidal targets (a CFR between 2 – 99% and 15 – 100% for 6 mg/kg and 10 mg/kg regimens, respectively) were observed. Teicoplanin trough concentration values targets provided inferior CFR results when compared to the clinical derived PK target. Ceftaroline achieved the greatest CFR and remained above optimal threshold (≥ 90%) despite different targets used. Sensitivity analysis evidenced that optimal CFR for linezolid was not achieved even if the lowest PD was chosen (AUC/MIC of 51.85).

Discussion

Inappropriate antibiotic therapy is identified as an important predictor of mortality among patients with S. aureus bacteremia and higher vancomycin MIC values may be predictive of treatment failure (6,32). Given the availability of different antimicrobials for the treatment of nosocomial S. aureus infections, it could be challenging to define empirical
options for BSI, particularly in settings where high-vancomycin MIC S. aureus isolates are prevalent. The present study analyzed 110 single and consecutive S. aureus isolates associated to unique BSI episodes, obtained during 2011 to 2013, from a complex hospital environment in Brazil. Our current S. aureus sample certainly represents this difficult-to-treat scenario, since 28% of all presented vancomycin MIC ≥ 2 mg/L. In this critical environment, both vancomycin regimens (1000 mg q12h and 1000 mg q8h) were unable to achieve the optimal defined threshold CFR (62% and 76%, respectively), probably due to a high MIC prevalent environment. As confirmed by the sensitivity analysis, even higher vancomycin dose regimens would still attain suboptimal efficacy considering both PD (clinical cure and bacterial eradication) indexes.

Determining treatment strategies using other anti-staphylococcal agents should be explored in order to provide alternative empiric treatment options in settings where elevated vancomycin MIC are prevalent (19,33). Based in our model, higher daptomycin dose regimen (10 mg/kg q24h) and FDA approved ceftaroline regimen (600 mg q12h) might be interesting treatment options from a PD standpoint.

Historically, daptomycin has been used as salvage therapy in patients failing vancomycin therapy, but its use has been increasingly common as initial empiric therapy (33). Although FDA approved dose regimen for of S. aureus BSI treatment is 6 mg/kg q24h, higher dose regimens would probably need to be used (10 mg/kg q24h or more) in order to overcome daptomycin non-susceptibility. Notably, there is an apparent correlation between daptomycin non-susceptibility and vancomycin intermediate resistance (34,35). As a limitation of the data, we must consider the sensitivity analysis for daptomycin. It illustrates the difficulties of translating in vitro bacteriostatic and bactericidal concepts into clinical practice (36). In summary, bacteriostatic in vitro threshold used for daptomycin and observed in murine model studies would be only achieved with high-dose
daptomycin regimens; thus, bactericidal targets would rarely be attained against isolates with similar MIC distributions. This also shows that the level of uncertainty in the current study is higher for daptomycin and further studies are needed to define relevant PD targets.

Ceftaroline is approved by the FDA for bacterial skin infections and community-acquired bacterial pneumonia, but there is increasing evidence of its use for treatment of patients with *S. aureus* BSI (8,34,37), including treatment of serious MRSA infections and those caused by strains with reduced susceptibility to vancomycin and non-susceptibility to daptomycin (38). Although a $fT > MIC$ between 25 to 30% is reported as an appropriate target for complicated skin and skin structure infections (23), we have chosen a more aggressive pharmacokinetic target ($fT > MIC$ values of 51%) considering that BSI is a life-threatening infection and potentially higher exposures would be needed. There seems to be no doubt that further randomized clinical trials or robust observational studies are needed to confirm ceftaroline role as a viable treatment option against *S. aureus* BSI. However, from the PD standpoint, even applying higher exposures targets ceftaroline performed well against the current *S. aureus* BSI isolates.

Teicoplanin has been widely reported as comparable to vancomycin in terms of efficacy and has been commonly prescribed in many parts of the world (excluding the USA) (39,40). Despite its availability in clinical practice for many years, the optimal PD profile is still under debate. Historically, trough concentrations have been utilized to characterize the adequacy of the glycopeptide PD profile; however, trough concentration alone is not an entirely appropriate target predictive of clinical success as sensitivity analysis demonstrated that even if a most aggressive trough concentration value was chosen (i.e., > 20 mg/L), the CFR observed in trough concentration targets was inferior to the PD value associated with successful outcome (30,31,41).
As a result of this discordance with trough value, we utilized a target AUC/MIC in the current study. Although a 400 mg once-daily regimen of teicoplanin is often utilized in clinical practice, our data suggests that a 400 mg q12h regimen will provide a more optimal PD profile. In agreement with our findings, a recent clinical study showed that teicoplanin maintenance dosing of 400 mg q12h for severe infections due to MRSA provided higher clinical response rates and lower BSI-related mortality rates.

In this study the linezolid regimen (600 mg q12h) presented a CFR of 77%, far below the threshold defined as optimal response. This is partially explained by an elevated prevalence (60%) of isolates with linezolid MIC ≥ 2 mg/L. These findings were supported by the sensitivity analysis, given the large variation observed between the alternative PD targets proposed and even if less conservative PD target (reflecting the minimum PD index associated to clinical cure) were chosen, higher CFR thresholds were not achieved. Considering off-label use of linezolid for a potentially severe infection in this context, other treatment options should be considered if isolates with linezolid MIC ≥ 2 mg/L are locally prevalent.

Only antimicrobials used for treatment of MRSA infections were studied in the current study. Empirical therapy of S. aureus infections in hospital settings with elevated MRSA prevalence must consider a complex MIC distribution pattern and, consequently, complex drug exposure issues. A different scenario should be expected in environments with prevalent methicillin susceptible S. aureus.

Among the limitations of the present study, the selection of PK published studies included data derived from different patient populations, not necessarily with BSI infections. PK data were all derived from human studies, although indeed from different patient populations, given the lack of comparable pharmacokinetic trials for each of these agents in the same patient population. However, we assumed the forecasted drug concentration
at central compartment was equivalent of the amount of drug at the site of infection (bloodstream), providing a biologically feasible model to represent BSI populations. For all drugs (vancomycin, teicoplanin, daptomycin and linezolid) but ceftaroline, PK data were exclusively derived from diseased patients. Although the ceftaroline population PK model included data derived from a Phase 1 study (healthy volunteers), the final PK model was externally validated by a dataset obtained from patients in treatment of community-acquired pneumonia and skin and soft tissue infection (27).

On the other hand, we also avoided the inclusion of PK data derived exclusively from critically ill patients, since the patient population from whom we derived our microbiological data had S. aureus BSI episodes with clinical conditions ranging from mild to severe diseases and due to the vast array of pathophysiological changes which affects antibiotic dosing in the critically ill (10). For this reason, our simulations were not intended to accurately represent critically ill patient populations or patients suffering from end organ dysfunction.

Finally, a potential limitation is that the results of any simulation are dependent on the MIC distributions observed and may vary among periods, institutions, regions or countries. However, the methods presented here are replicable in different settings. Furthermore, the present study presents insights about alternative treatment strategies in setting where S. aureus vancomycin MIC is elevated (particularly ≥ 2 μg/mL). These environments, where S. aureus vancomycin MIC ≥ 2 μg/mL are prevalent, may have concerns about vancomycin lack of activity, particularly for difficult to treat infections, specially BSI. Thus, alternative methods for evaluating therapeutic efficacy should be encouraged as optimizing strategies to overcome the challenge imposed by this condition. Future comparative studies are needed to verify if this rationale is applicable in diverse clinical settings.
CONCLUSIONS

In conclusion, our model further suggests that vancomycin effectiveness is critically affected by local circulation of \textit{S. aureus} with vancomycin MIC above ≥ 2 mg/L. In this scenario, ceftaroline and high dose daptomycin (10 mg/kg q24h) regimens achieved CFRs $\geq 90\%$, whilst teicoplanin high dose (400 mg q12 hours) regimen achieved better CFR when compared to the most effective vancomycin regimen, although below the defined optimal threshold.

List Of Abbreviations:

AUC – Area under the concentration time curve
BSI – Bloodstream infections
CFR – Cumulative Fraction of Response
CFU – Colony-forming unit
CLSI – Clinical & Laboratory Standards Institute
\textit{f}AUC – Unbound drug fraction area under the concentration time curve
FDA – Food and Drug Administration
\textit{f}T > MIC – Unbound drug fraction above Minimum Inhibitory Concentrations
MIC – Minimum Inhibitory Concentrations
MRSA – Methicillin-resistant \textit{S. aureus}
PD – pharmacodynamic
PK – pharmacokinetic
PTA – Probability of target attainment
VISA – Vancomycin Intermediate \textit{S. aureus}

Declarations:

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the Human Research Ethics Committee of the University Hospital Clementino Fraga Filho (number 008/15) and no Informed Consent was required, since data were exclusively grouped and analyzed under confidential and anonymous circumstances. Only researchers had access to individual data, which are not characterized nor disclosed under any circumstances.

Consent for publication

Not applicable.

Availability of data and material

The data that support the findings of this study are available from the corresponding author, upon request.

Competing interests

The authors declare that they have no conflict of interest.

Funding

This work was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Authors’ contributions

TMC, GTC, PGMM: designed, collected, executed, performed the analysis, wrote the report; SAN, KRNS, DPN, CRVK: supervised the analysis, critically reviewed the experiment, data interpretation and discussed the results. All authors read and approved the final manuscript.

Acknowledgements

We thank to AstraZeneca for the donation of ceftaroline powder.

We also thank the Laboratory of Bacteriology of the University Hospital Clementino Fraga
Filho (Adriana Lucia Pires Ferreira) for the granting of clinical isolates, Marlei Gomes da Silva for the technical support, Diego dos Santos Gonçalves for data visualization structure and Dr. Henry F. Chambers for the critics and review.

Authors' information

TMC, PGMM, KRNS: Laboratório de Infecção Hospitalar, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; GTC, CRVK: Laboratório Especial de Microbiologia Clínica, Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil. SAN: Hospital Universitário Clementino Fraga Filho, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. DPM: Center for Anti-infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT.

References

1. Allegranzi B, Bagheri Nejad S, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011; doi:10.1016/S0140-6736(10)61458-4

2. Marra AR, Camargo LFA, Pignatari ACC, Sukiennik T, Behar PRP, Medeiros EAS, et al. Nosocomial Bloodstream Infections in Brazilian Hospitals: Analysis of 2,563 Cases from a Prospective Nationwide Surveillance Study. J Clin Microbiol. 2011; doi:10.1128/JCM.00376-11

3. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, et al. Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol. 2013;
4. Rodvold KA, McConeghy KW. Methicillin-Resistant Staphylococcus aureus Therapy: Past, Present, and Future. Clin Infect Dis. 2014; doi:10.1093/cid/cit614

5. Gomes DM, Ward KE, LaPlante KL. Clinical Implications of Vancomycin Heteroresistant and Intermediately Susceptible Staphylococcus aureus. Pharmacotherapy. 2015; doi:10.1002/phar.1577

6. Van Hal SJ, Lodise TP, Paterson DL. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: A systematic review and meta-analysis. Clinical Infectious Diseases. 2012; doi:10.1093/cid/cir935

7. Li J, Zhao Q-H, Huang K-C, Li Z-Q, Zhang L-Y, Qin D-Y, et al. Linezolid vs. vancomycin in treatment of methicillin-resistant staphylococcus aureus infections: a meta-analysis. Eur Rev Med Pharmacol Sci. 2017;21(17):3974–9.

8. Arshad S, Huang V, Hartman P, Perri MB, Moreno D, Zervos MJ. Ceftaroline fosamil monotherapy for methicillin-resistant Staphylococcus aureus bacteremia: a comparative clinical outcomes study. Int J Infect Dis. 2017; doi:10.1016/j.ijid.2017.01.019

9. Bradley JS, Dudley MN, Drusano GL. Predicting efficacy of antiinfectives with pharmacodynamics and Monte Carlo simulation. Pediatric Infectious Disease Journal. 2003; doi:10.1097/01.inf.0000094940.81959.14

10. Roberts JA, Kirkpatrick CMJ, Lipman J. Monte Carlo simulations: Maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J Antimicrob Chemother. 2011;doi:10.1093/jac/dkq449

11. Kuti JL, Kiffer CR V, Mendes CMF, Nicolau DP. Pharmacodynamic comparison of linezolid, teicoplanin and vancomycin against clinical isolates of Staphylococcus aureus and coagulase-negative staphylococci collected from hospitals in Brazil. Clin
da Costa TM, Morgado PGM, Cavalcante FS, Damasco AP, Nouér SA, dos Santos KR. Clinical and Microbiological Characteristics of Heteroresistant and Vancomycin-Intermediate Staphylococcus aureus from Bloodstream Infections in a Brazilian Teaching Hospital. de Lencastre H, editor. PLoS One. 2016; doi:10.1371/journal.pone.0160506

Bannerman TPS. Staphylococcus, Micrococcus, and other catalase-positive cocci. Murray PR, Baron EJ, Jorgensen JH, Landry MJ, Pfaller MA. Ed Man Clin Microbiol Washingt. 2007; 390 – 410.

CLSI. Performance standards for antimicrobial susceptibility testing. 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.

Milheirico C, Oliveira DC, de Lencastre H. Update to the Multiplex PCR Strategy for Assignment of mec Element Types in Staphylococcus aureus. Antimicrob Agents Chemother. 2007; doi:10.1128/AAC.00275-07

Di Paolo A, Tascini C, Polillo M, Gemignani G, Nielsen EI, Bocci G, et al. Population pharmacokinetics of daptomycin in patients affected by severe Gram-positive infections. Int J Antimicrob Agents. 2013; doi:10.1016/j.ijantimicag.2013.06.006

Meagher AK, Forrest A, Rayner CR, Birmingham MC, Schentag JJ. Population pharmacokinetics of linezolid in patients treated in a compassionate-use program. Antimicrob Agents Chemother. 2003; doi:10.1128/AAC.47.2.548-553.2003

Lortholary O, Tod M, Rizzo N, Padoin C, Biard O, Casassus P, et al. Population pharmacokinetic study of teicoplanin in severely neutropenic patients. Antimicrob
19. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43(13):925–42.

20. Dandekar PK, Tessier PR, Williams P, Nightingale CH, Nicolau DP. Pharmacodynamic profile of daptomycin against Enterococcus species and methicillin-resistant Staphylococcus aureus in a murine thigh infection model. J Antimicrob Chemother. 2003; doi:10.1093/jac/dkg337

21. Andes D, Van Ogtrop ML, Peng J, Craig WA. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother. 2002;46(11):3484–9.

22. Takeda Y, Matsumoto K, Watanabe E, Kanazawa N, Fukamizu T, Shigemi A, et al. Pharmacokinetic/pharmacodynamic analysis of teicoplanin in patients with MRSA infections. Clin Pharmacol Adv Appl. 2016; doi:10.2147/CPAA.S96143

23. Van Wart SA, Ambrose PG, Rubino CM, Khariton T, Riccobene TA, Friedland HD, et al. Pharmacokinetic-pharmacodynamic target attainment analyses to evaluate in vitro susceptibility test interpretive criteria for ceftaroline against Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother. 2014; doi:10.1128/AAC.01680-13

24. Benvenuto M, Benziger DP, Yankelev S, Vigliani G. Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother. 2006; doi:10.1128/AAC.00247-06

25. MacGowan AP. Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. J Antimicrob Chemother. 2003; doi:10.1093/jac/dkg248

26. Bhavnani SM, Hammel JP, Van Wart SA, Rubino CM, Reynolds DK, Forrest A, et al.
Pharmacokinetic-Pharmacodynamic Analysis for Efficacy of Ceftaroline Fosamil in Patients with Acute Bacterial Skin and Skin Structure Infections. Antimicrob Agents Chemother. 2015; doi:10.1128/AAC.02531-14

27. Van Wart SA, Forrest A, Khariton T, Rubino CM, Bhavnani SM, Reynolds DK, et al. Population pharmacokinetics of ceftaroline in patients with acute bacterial skin and skin structure infections or community-acquired bacterial pneumonia. J Clin Pharmacol. 2013; doi:10.1002/jcph.153

28. Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother. 2005; doi:10.1093/jac/dki079

29. Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ. Clinical Pharmacodynamics of Linezolid in Seriously Ill Patients Treated in a Compassionate Use Programme. Clin Pharmacokinet. 2003; doi:10.2165/00003088-200342150-00007

30. Byrne CJ, Egan S, Fennell JP, Byrne PO, Enright H, Deasy E, et al. Teicoplanin use in adult patients with haematological malignancy: Exploring relationships between dose, trough concentrations, efficacy and nephrotoxicity. Int J Antimicrob Agents. 2015; doi:10.1016/j.ijantimicag.2015.05.019

31. Matsumoto K, Kanazawa N, Fukamizu T, Shigemi A, Yaji K, Shimodozono Y, et al. Determination of teicoplanin trough concentration target and appropriate total dose during the first 3 days: a retrospective study in patients with MRSA infections. J Infect Chemother. 2010; doi:10.1007/s10156-010-0038-8

32. Gasch O, Camoez M, Domínguez MA, Padilla B, Pintado V, Almirante B, et al. Predictive factors for early mortality among patients with methicillin-resistant staphylococcus aureus bacteremia. J Antimicrob Chemother. 2013; doi:10.1093/jac/dkt016
33. Holmes N, Tong S, Davis J, Hal S. Treatment of Methicillin-Resistant Staphylococcus aureus: Vancomycin and Beyond. Semin Respir Crit Care Med. 2015; doi:10.1055/s-0034-1397040

34. Kullar R, Sakoulas G, Deresinski S, Van Hal SJ. When sepsis persists: A review of MRSA bacteraemia salvage therapy. Journal of Antimicrobial Chemotherapy. 2016. doi:10.1093/jac/dkv368

35. Cui L, Tominaga E, Neoh HM, Hiramatsu K. Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2006; doi:10.1128/AAC.50.3.1079-1082.2006

36. Pankey GA, Sabath LD. Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action in the Treatment of Gram-Positive Bacterial Infections. Clin Infect Dis. 2004; doi:10.1086/381972

37. Zasowski EJ, Trinh TD, Claeys KC, Casapao AM, Sabagha N, Lagnf AM, et al. A Multicenter Observational Study of Ceftaroline Fosamil for Methicillin-Resistant Staphylococcus aureus Bloodstream Infections. Antimicrob Agents Chemother. 2016; doi:10.1128/AAC.02015-16

38. Werth BJ, Barber KE, Ireland CE, Rybak MJ. Evaluation of ceftaroline, vancomycin, daptomycin, or ceftaroline plus daptomycin against daptomycin-nonsusceptible methicillin-resistant staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations. Antimicrob Agents Chemother. 2014; doi:10.1128/AAC.00088-14

39. Lee C, Tsai C-Y, Li C-C, Chien C-C, Liu J-W. Teicoplanin therapy for MRSA bacteraemia: a retrospective study emphasizing the importance of maintenance dosing in improving clinical outcomes. J Antimicrob Chemother. 2015; doi:10.1093/jac/dku335
40. Yoon YK, Park DW, Sohn JW, Kim HY, Kim YS, Lee CS, et al. Multicenter prospective observational study of the comparative efficacy and safety of vancomycin versus teicoplanin in patients with health care-Associated methicillin-resistant staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2014; doi:10.1128/AAC.00520-13

41. Pea F, Brollo L, Viale P, Pavan F, Furlanut M. Teicoplanin therapeutic drug monitoring in critically ill patients: A retrospective study emphasizing the importance of a loading dose. J Antimicrob Chemother. 2003; doi:10.1093/jac/dkg147

Tables

Table 1 - Summary of pharmacokinetic (PK) parameters derived from published studies, respective references, and pharmacodynamic (PD) targets used for antimicrobials used in the Monte Carlo simulation

Antibiotic	CLT (L/h)	Vc (L)	Fraction unbound (%)^a	Intercompartment Rate Constants (h⁻¹)	PK reference	
				K12	K21	
Teicoplanin	1.15 ± 0.56	6.57 ± 4.01	-	1.29 ± 0.62	0.18 ± 0.08	(18)
Daptomycin	CL_F (L/h)			-	-	
Linezolid	0.8 ± 0.14	---	8 ± 2	-	-	(16)
Vancomycin	b	---	-	-	-	(17)

^a Fraction unbound estimates simulated as a mean (SD) Gaussian distribution for
ceftaroline. Estimates simulated as a range for Daptomycin and Ceftaroline, where each value in the range has an equal likelihood of occurring. Total AUC/MIC was chosen for Linezolid, Teicoplanin, and Vancomycin and fraction unbound was not incorporated into the model.

Vancomycin clearance was calculated as a function of creatinine clearance.

CLT = total body clearance reported from 2-compartment model; Vc = volume of the central compartment reported from 2-compartment model; K12 = intercompartment rate constant between first and second compartments; K21 = intercompartment rate constant between second and first compartments; CL_F = clearance accounting for bioavailability reported in pharmacokinetic analyses.

Table 2. Minimum Inhibitory Concentrations distributions determined for 110 *Staphylococcus aureus* isolates from bloodstream infections

Antimicrobial	MIC value in mg/L	Nº (%) of isolates				
	0.0625	0.125	0.25	0.5	1	2
Ceftaroline	2 (2)	51 (46)	33 (30)	11 (10)	12 (11)	1 (1)
Daptomycin	0	0	3 (3)	26 (23)	65 (59)	12 (1)
Linezolid-100^a	0	0	1 (1)	0	15 (14)	83 (1)
Linezolid-80^a	0	0	1 (1)	1 (1)	42 (38)	66 (1)
Teicoplanin	0	0	71 (64)	33 (30)	5 (5)	0
Vancomycin	0	0	0	4 (4)	75 (68)	25 (2)

MIC: Minimum Inhibitory Concentrations; ^a: MIC endpoint values for linezolid were read at the first well where the trailing begins without regard for pinpoint trailing, as CLSI M100-S26 instructions, being designated as linezolid-80; and at 100% inhibition of growth, identified as linezolid-100.
Table 3. Cumulative fraction of responses (CFR) against 110 *Staphylococcus aureus*, including MRSA, from bloodstream infections.

Antimicrobial	Regimen	CFR
Ceftaroline	600 mg q12h	98%
Daptomycin	10 mg/kg q24h	92%
Teicoplanin	400 mg q12h	86%
Daptomycin	6 mg/kg q24h	79%
Linezolid-80^a	600 mg q12h	77%
Vancomycin	1000 mg q8h	76%
Teicoplanin	three 400 mg loading doses q12h followed by 400 mg q24h	65%
Linezolid-100^a	600 mg q12h	64%
Vancomycin	1000 mg q12h	62%

^a: MIC endpoint values for linezolid were read at the first well where the trailing begins without regard for pinpoint trailing, as CLSI M100-S26 instructions, being designated as linezolid-80; and at 100% inhibition of growth, being designated as linezolid-100

Figures
Figure 1

Probability of target attainment as a function of increasing minimum inhibitory concentration (MIC). Lines represent PTA of each dose regimen. The MIC distributions in the plots show the frequency of isolates susceptibility. * The MIC values for linezolid were read at the first well where the trailing begins without regard for pinpoint trailing, as CLSI M100-S26 instructions, being designated as linezolid-80; and at 100% inhibition of growth, being designated as linezolid-100.

(a) Probability of ceftaroline achieving a fT MIC > 51%; (b) Probability of
daptomycin achieving a total AUC/MIC >40; (c) and (d) Probability of linezolid 100 and linezolid 80 achieving a total AUC/MIC >82.9; (e) Probability of teicoplanin achieving a total AUC/MIC >900; (f) Probability of vancomycin achieving a total AUC/MIC >350
Figure 1

Sensitivity analysis for cumulative fraction of responses (CFR) against Staphylococcus aureus isolates. Each black line represents the range of CFR attained at the highest and lowest pharmacodynamic targets. The arrow represents the CFR at the traditional pharmacodynamic target.