Immunoglobulin G4-Related Sclerosing Disease Involving the Urethra: Case Report

Jin Woo Choi, MD1, Sang Youn Kim, MD1, Kyung Chul Moon, MD, PhD2, Jeong Yeon Cho, MD, PhD1, Seung Hyup Kim, MD, PhD1

1Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744, Korea; 2Department of Pathology, Seoul National University College of Medicine, Seoul 110-744, Korea

INTRODUCTION

Immunoglobulin G4 (IgG4)-related sclerosing disease is a systemic disease characterized by extensive IgG4-positive plasma cells and T-lymphocyte infiltration in various organs. We described the imaging findings of an IgG4-related inflammatory pseudotumor in the urethra. The urethral mass showed isoattenuation on unenhanced CT images, delayed enhancement on enhanced CT images, iso- to slight hyper-intensity on T1 and T2 weighted magnetic resonance images, diffusion restriction on diffusion weighted images, and heterogeneously low echogeneity on ultrasonography.

Index terms: Immunoglobulin G4-related sclerosing disease; Inflammatory pseudotumor; Urethra; IgG4

CASE REPORT

A 72-year-old woman presented with dysuria, which continued for a week. About 17 years before the presentation, the patient had a past medical history of an eyelid mass, which was clinically diagnosed as IPT and was relieved by steroid therapy. About 15 years later, she also underwent a computed tomography (CT) scan for the acute abdominal pain, and it revealed diffuse swelling of the pancreas. By a percutaneous cutting needle biopsy of the pancreas, the lesion was pathologically diagnosed as IgG4-related autoimmune pancreatitis, and the patient’s symptoms were dramatically relieved by the steroid therapy.

To evaluate the patient’s dysuria at this visit, a urologist performed physical examinations and laboratory studies, which yielded no positive findings suggestive of an infection or a malignancy, except for hematuria of 30 to 49
Choi et al.

red blood cells per high power field (HPF) on a random urine analysis. On a subsequent cystoscopy, the urinary bladder was free, but a firm mass was suspected in the posterior wall of the urethra. Thus, CT and magnetic resonance (MR) imaging were performed for further characterization of the urethral mass. Two phase (unenhanced, enhanced) CT images were acquired with an 8-channel multi-detector raw CT (LightSpeed Ultra; GE Medical Systems, Milwaukee, WI, USA). In addition, MR images were acquired with a 3.0 Tesla MR scanner (Magnetom Trio Tim; Siemens Medical Solutions, Erlangen, Germany). On unenhanced CT images, the urethral mass demonstrated similar attenuation compared to the adjacent muscles. On subsequent contrast enhanced images, the mass showed a mild degree of delayed rim-enhancement (Fig. 1A).

Routine pelvic MR images also revealed a well-defined mass in the urethra with isointensity to slight hyperintensity on both T1 and T2 weighted images (Fig. 1B, C). On diffusion weighted images with a b value of 1000 s/mm2, obtained by echo-planar trace sequence (Fig. 1D), the mass showed hyperintensity suggesting diffusion restriction (Fig. 1D). Concordantly, the mass showed a lower apparent diffusion coefficient value than that of the adjacent muscles (Fig. 1E). On gadolinium-enhanced fat-saturation T1-weighted images (Fig. 1F, G), the mass demonstrated rim-enhancement in the arterial phase and homogeneous enhancement in the 5-minute delayed phase.

To rule out a malignancy such as urethral carcinoma,
IgG4-Related Urethral Sclerosing Disease

The patient underwent a core needle biopsy of the urethral lesion under transvaginal ultrasonography (US) guidance. The mass was found to be encased in the urethra and showed heterogeneously low echogeneity (Fig. 1H).

The pathologic specimen showed linear spindle cell proliferation and inflammatory cell infiltration in lymphocytes and eosinophils (Fig. 1I). On immunohistochemical staining, both smooth muscle actin and IgG4 (more than 30/HPF) were positive (Fig. 1J, K, respectively). However, anaplastic lymphoma kinase was negative. All pathologic results were compatible with IgG4-related sclerosing disease, which was presented as IPT (IgG4-related IPT). Following steroid therapy for a few months, the patient's symptoms were relieved and the size of the mass was markedly decreased on follow-up MR images (Fig. 1L).

DISCUSSION

Immunoglobulin G4-related sclerosing disease is an emerging disease entity that can involve the pancreas, bile duct, gallbladder, salivary gland, retroperitoneum, kidney, prostate, and so on. It is characterized by extensive IgG4-positive plasma cells and T-lymphocyte infiltration of various organs associated with tissue fibrosis and obstructive phlebitis (1). On the other hand, IPT is a rare benign condition characterized by abundant spindle cells mixed with variable amounts of extracellular collagen,
lymphocytes, and plasma cells (6). Therefore, IPT can either be a manifestation of IgG4-related sclerosing disease or a distinct simple IPT, according to the amount of IgG4-positive plasma cells.

Pathophysiologically, the role of IgG4-positive cell is still unclear in IPT (7, 8). Nonetheless, identifying the IPT and clarifying its relationship with IgG4-related sclerosing disease may be critical, because the IPT is a well-known mimicker of malignant tumors and it may show a different pathophysiology according to the presence of IgG4-positive plasma cells (8, 9). In particular, Yamamoto et al. (8) emphasized the evaluation of IgG4-positive plasma cells and the presence of obstructive phlebitis as markers for the differential diagnosis between IgG4-related IPT and an inflammatory myofibroblastic tumor (IMT). As the IMT is regarded as a neoplastic counterpart to the IPT, the evaluation of IgG4-positive plasma cells is crucial to determining an optimal treatment plan.

Unfortunately, identifying IgG4-related IPT, non IgG4-related IPT, and IMT is still an unexplored field from a radiologic point of view. Park et al. (6) studied the imaging findings of IPTs in the genitourinary tract without evaluating the association with IgG4-related sclerosing disease. Moreover, they reported that genitourinary IPT can be seen in variable patterns on US and CT, which may be attributed to varying degrees of fibrosis and inflammation (6). They also described the disease usually demonstrates delayed homogeneous enhancement, hypointensity on T2-weighted image, and diffusion restriction on MR imaging (6). These features can be regarded as projections of fibrotic change in the developing IPT (5, 6). However, the various degrees of fibrosis and the inflammatory process can result in a broad range of MR imaging manifestations (9). In our report, we were able to obtain CT, MR and US images of the IgG4-related sclerosing disease manifested as a urethral IPT. CT and US features of our case were consistent with known imaging findings of IPT (6, 9, 10). On MR imaging of our case, delayed enhancement and diffusion restriction were compatible with previous reports of the IPT. Although the presented case revealed isointense to slightly hyperintense T2 signal intensity, which is not typical of the fibrosis, this may be possibly understood as a result of the mixed inflammatory and fibrotic stages.

Meanwhile, a core needle biopsy under transvaginal US guidance was very useful in the diagnosis of our case. As a transvaginal US-guided biopsy is known as a safe and well-established method to obtain urethral and periurethral tissues (11), we believe this method should be considered to diagnose IgG4-related sclerosing disease involving the urethra.

Although the IPT as a manifestation of the IgG4-related sclerosing disease has been reported in various organs (1, 4, 5), most of the reports have provided limited information about imaging findings of the disease. Most of all, to the best of our knowledge, no report handles urethral involvement of the IgG4-related sclerosing disease. We described the imaging features of urethral involvement of the IgG4-related IPT, which was developed metachronously after other organ involvement including the eyelid and the pancreas. In patients with a past history or suspicion of IgG4-related sclerosing disease, urethral mass should be carefully considered as a potential manifestation of the IgG4-related sclerosing disease. Furthermore, acknowledging that the IgG4-related sclerosing disease may present as a urethral mass is essential to avoid unnecessary surgery or anti-cancer treatment. In some cases, a needle biopsy under transvaginal US guidance can be helpful to diagnose urethral involvement of IgG4-related sclerosing disease.

REFERENCES

1. Kamisawa T, Okamoto A. IgG4-related sclerosing disease. World J Gastroenterol 2008;14:3948-3955
2. Kamisawa T, Nakajima H, Egawa N, Funata N, Tsuruta K, Okamoto A. IgG4-related sclerosing disease incorporating sclerosing pancreatitis, cholangitis, sialadenitis and retroperitoneal fibrosis with lymphadenopathy. Pancreatology 2006;6:132-137
3. Leporati P, Landek-Salgado MA, Lupi I, Chiovato L, Catureglio P. IgG4-related hypophysitis: a new addition to the hypophysitis spectrum. J Clin Endocrinol Metab 2011;96:1971-1980
4. Higashiyama T, Nishida Y, Ugi S, Ishida M, Nishio Y, Ohji M. A case of extraocular muscle swelling due to IgG4-related sclerosing disease. Jpn J Ophthalmol 2011;55:315-317
5. Katsura M, Morita A, Horiuchi H, Ohtomo K, Machida T. IgG4-related inflammatory pseudotumor of the trigeminal nerve: another component of IgG4-related sclerosing disease? Jpn J Ophthalmol 2011;55:315-317
6. Park SB, Cho KS, Kim JK, Lee JH, Jeong AK, Kwon WJ, et al. Inflammatory pseudotumor (myofiblastic tumor) of the genitourinary tract. AJR Am J Neuroradiol 2011;32:E150-E152
7. Zen Y, Fujii T, Sato Y, Masuda S, Nakanuma Y. Pathological classification of hepatic inflammatory pseudotumor with respect to IgG4-related disease. Mod Pathol 2007;20:884-894
8. Yamamoto H, Yamaguchi H, Aishima S, Oda Y, Kohashi K, Oshiro Y, et al. Inflammatory myofibroblastic tumor versus IgG4-related sclerosing disease and inflammatory
IgG4-Related Urethral Sclerosing Disease

pseudotumor: a comparative clinicopathologic study. Am J Surg Pathol 2009;33:1330-1340
9. Narla LD, Newman B, Spottwood SS, Narla S, Kolli R. Inflammatory pseudotumor. Radiographics 2003;23:719-729
10. Harr DL, Quencer RM, Abrams GW. Computed tomography and ultrasound in the evaluation of orbital infection and pseudotumor. Radiology 1982;142:395-401
11. Andrich DE, Rickards D, Landon DN, Fowler CJ, Mundy AR. Structural assessment of the urethral sphincter in women with urinary retention. J Urol 2005;173:1246-1251