The genus *Hygrocrates* Deeleman-Reinhold, 1988
(Araneae, Dysderidae) in Turkey

Kadir Boğaç Kunt¹,†, Ersen Aydın Yağmur²‡, Recep Sulhi Özkütük³§, Rahşen S. Kaya⁴∥

¹ Eserköy Sitesi 9/A Blok No:7 TR-06530 Ümitköy, Ankara, Turkey
² Ege University, Science Faculty, Biology Department, Zoology Section, TR-35100 İzmir, Turkey
³ Department of Biology, Faculty of Science, Anadolu University, TR-26470 Eskisehir, Turkey
⁴ Department of Biology, Faculty of Arts and Sciences, Uludağ University, TR-16059, Bursa, Turkey

† urn:lsid:zoobank.org:author:13EEAB4A-F696-41D7-A323-2333410BF5D7
‡ urn:lsid:zoobank.org:author:8DB0B243-5B2F-4428-B457-035A8274500C
§ urn:lsid:zoobank.org:author:7A21C546-989F-417F-BCC3-8D682CCF2B62
∥ urn:lsid:zoobank.org:author:C1C30791-CEB7-4273-987A-FEA2F0E1C09B

Corresponding author: Kadir Boğaç Kunt (chaetopelma@gmail.com)

Abstract
A new species, *Hygrocrates deelemanus* Kunt & Yağmur sp. n., is described on the basis of both sexes from the Mediterranean region of Turkey. Detailed morphological descriptions, diagnosis and figures of the copulatory organs of both Turkish species are presented. An identification key is presented for all the currently known species of *Hygrocrates*.

Keywords
Dysderidae, *Hygrocrates*, new species, systematic key, Turkey

Introduction
Hygrocrates Deeleman-Reinhold, 1988 is a small dysderid genus which contains only three previously described species: *Hygrocrates caucasicus* Dunin, 1992; *H. georgicus* (Mcheidze, 1972) and *H. lycaonae* (Brignoli, 1978). *H. caucasicus* and *H. georgicus* are...
endemic to Georgia, while \textit{H. lycaoniae} is known from Rhodes and Turkey. \textit{Hygrocrates lycaoniae} was originally ascribed to \textit{Harpactocrates} Simon, 1914. In their revision of Dysderinae spiders of the Mediterranean region, Deeleman-Reinhold and Deeleman (1988) transferred \textit{H. lycaoniae} to the new genus \textit{Hygrocrates}, which was differentiated from \textit{Harpactocrates} as follows: posterior median eyes closer to each other; anterior cheliceral teeth smaller in the basal region, and the presence of a subapical apophysis on the male palp. \textit{H. georgicus}, originally ascribed to \textit{Harpactocrates}, was only provisionally transferred to the genus \textit{Hygrocrates} by Deeleman-Reinhold and Deeleman (1988); see also Dunin (1992) who reported that the female holotype of this species was lost. Subsequently, the third, new species \textit{H. caucasicus} was described by Dunin (1992), based on two male specimens from the Georgia.

To date, only \textit{H. lycaoniae} has been recorded from Turkey based on only one male in a sample collected from outside Körükini Cave (Konya province, Beştepe District, Çamlık town). After the original description by Brignoli (1978), Deeleman-Reinhold and Deeleman (1988) redescribed this species based on male and female specimens collected from Greece. During our surveys of the Turkish spider fauna we collected some specimens of \textit{H. lycaoniae}, in addition to some specimens that were impossible to place in any of the known species of \textit{Hygrocrates}. In this paper, a new species of the genus, namely \textit{Hygrocrates deelemanus} sp. n., is described based on both sexes, collected from the southern region of Turkey. The characteristic features of both species, including photographs of the prosoma and of the copulatory organs, are provided for comparative purposes.

Material and methods

All specimens were collected from two different localities in Turkey (Fig. 1). The specimens were collected by sifting of leaf litter and preserved in 70% ethanol. Digital images of the pedipalp and vulva were taken with a Leica DFC295 digital camera attached to a Leica S8AP0 stereomicroscope and 5–15 photographs were taken in different focal planes and combined. Photographic images were edited using Photoshop CS2 and Corel-DRAW X3 was used to create the plates. All measurements are in mm. Terminology for the body measurements and copulatory organ structures follows Deeleman-Reinhold and Deeleman (1988) and Chatzaki and Arnedo (2006). The following terminology is used for the male palp: apical apophysis of the male palp, \textit{Embolus}; subapical apophysis of the male palp, \textit{Apophysis}_a; and posterior apophysis of the male palp, \textit{Apophysis}_b.

Material treated herein is deposited in the personal collection of Kadir Boğac Kunt (cKBK, Ankara, Turkey) and in the Senckenberg Museum (SMF, Frankfurt am Main, Germany). The following abbreviations are used in the text: \textit{AL}, abdominal length; \textit{CL}, carapace length; \textit{CWmax}, maximum carapace width; \textit{CWmin}, minimum carapace width; \textit{AME}, anterior median eyes; \textit{PLE}, posterior lateral eyes; \textit{PME}, posterior median eyes; \textit{AMEd}, diameter of anterior median eyes; \textit{PLEd}, diameter of posterior
Hygrocrates in Turkey

lateral eyes; PMEd, diameter of posterior median eyes; ChF, length of cheliceral fang; ChG, length of cheliceral groove; ChL, total length of chelicera (lateral external view); Ta, tarsus; Me, metatarsus, Ti, tibia; Pa, patella; Fe, femur; Tr, trochanter; C, coxa; D, dorsal; Pl, prolateral; Rl, retrolateral; V, ventral.

Key to the Hygrocrates species

1 Male ... 2
– Female .. 4
2 Bulbus straight, cylindrical; embolus lobe-shaped; apophysis_a and apophysis_b nearly same size.. H. caucasicus
– Bulbus pyriform; embolus hook-shaped; apophysis_a and apophysis_b smaller than embolus .. 3
3 Transition between bulbus and distal continuation is gradual (Figs 30–33, 36) .. H. lycaoniae
– Transition between bulbus and distal continuation is abrupt, clearly curved over 90° (Figs 16–19, 35) .. H. deelemanus sp. n.
4 Distalmost part of spermathecae linear .. H. georgicus
– Distalmost part of spermathecae oval .. 5
5 Proxialmost part of spermathecae oval (Fig. 20) H. deelemanus sp. n.
– Proxialmost part of spermathecae circular (Fig. 34).. H. lycaoniae
Taxonomy

Hygrocrates Deeleman-Reinhold, 1988

H. Deeleman-Reinhold, in Deeleman-Reinhold and Deeleman, 1988: 240, type *Harpactocrates lycaoniae* Brignoli, 1978.

Hygrocrates deelemanus Kunt & Yağmur sp. n.

urn:lsid:zoobank.org:act:3EBEFEC5-1A65-480F-BAB1-954463DCFC5C

Figs 2–21, 35, 37

Material Examined:

Holotype ♂ (SMF) _Antalya Province_, Alanya District, Taşatan Plateau [36°38′33.20″N; 32°4′44.40″E], 09.1.2010, leg. K.B.Kunt. Paratypes: 1 ♀ (abdomen heavily damaged during dissection) (SMF), 1 ♂ (cKBK) same data as holotype.

Diagnosis: The male palp of _Hygrocrates deelemanus_ sp. n. is most similar to that of _H. lycaoniae_. Bulbal apophyses are shorter than the embolus in both species. However, the transition between the bulbus and distal continuation is more abrupt in _H. deelemanus_ sp. n., clearly curved over 90°, whereas it is more gradual in _H. lycaoniae_. In the vulva, the proximalmost part of the spermathecae is larger and wider than in _H. lycaoniae_.

Figure 2. _Hygrocrates deelemanus_ sp. n. (Holotype ♂); scale line: 1 mm.
Derivatio nominis: The specific name is given in honour of Dr. Christa L. Deeleman-Reinhold, a prominent Netherlander arachnologist who described the genus *Hygrocrates*.

Measurements (Holotype ♂ / Paratype ♀): AL 3.84 / ?; CL 2.76 / 3.04; CWmax 2.28 / 2.40; CWmin 1.40 / 1.76; AMEd 0.16 / 0.19; PLEd 0.12 / 0.14; PMEd 0.10

Figures 3–10. *Hygrocrates deelemanus* sp. n. 3 (♂), 7 (♀) carapace, dorsal view 4 (♂), 8 (♀) ditto, anterior view 5 (♂), 9 (♀) ditto, lateral view 6 (♂), 10 (♀) ditto, ventral view. Scale lines: (3, 5, 6, 7, 9, 10) 0.5 mm; (4, 8) 0.25 mm.
Figure 11. Cheliceral teeth of *Hygrocrates deelemanus* sp. n.

Figures 12–15. Tarsal and metatarsal scopulae of *Hygrocrates deelemanus* sp. n. (**♂**), 12 leg I, 13 leg II, 14 leg III, 15 leg IV. Scale lines: 0.25 mm

/ 0.11; ChF 0.77 / 0.82; ChG 0.46 / 0.52; ChL 1.20 / 1.50. Leg measurements are given in Table 1.

Description: Carapace hexagonal-shaped, reddish brown, surface of carapace with small dark shallow depressions. Cephalic region dark brownish, narrow and clearly higher than thoracic region (Figs 2, 3, 5, 7, 9). Chilum triangular-shaped, distinct, coloured as carapace and chelicerae and broader in females (Figs 4, 8). Fovea short, straight and longitudinal (Figs 2, 3, 7). AME, PLE and PME closely grouped. Distance of AME-PLE shorter than PLE-PME. AME separated (Figs 4, 8). Labium, gnathocoxae and chelicerae brown. Labium and gnathocoxae covered with dark hairs; more densely so on gnathocoxae. Labium wider at the base. Gnathocoxae rounded laterally,
with inwardly notched tips and blackish along the margins. Sternal border of gnathocoxae pentagonal-shaped, cheliceral region arrow-shaped with blunt tip (Figs 6, 10).

Chelicerae brownish with darker tubercules; basally broader in females and laterally swollen (Figs 4, 8). Cheliceral groove with four teeth: retromargin with four teeth, including one small and one large tooth at the base of the groove (Fig. 11). Sternum and abdomen yellowish brown, with thin blackish hairs over the entire surfaces. Legs yellowish brown. Palps and legs I and II darker than legs III and IV. Leg length formula: Leg I > Leg IV > Leg II > Leg III. Tarsi with two claws and claw tufts. All tarsi with fine tarsal scopulae. Legs III and IV with metatarsal scopulae (Figs 12–15). Coxae without spines. Details of leg spination are given in Table 2.
Figures 20–21. Vulva of *Hygrocrates deelemanus* sp. n. 20 dorsal view 21 ventral view. Abbreviations: *Ad* anterior diverticulum *Pd* posterior diverticulum *Sp* spermatheca *dps* distalmost part of spermatheca *pps* proximalmost part of spermatheca *da* dorsal arch *cv* central valve *tb* transverse bar *ps* membranous sac *lms* large membranous sac *tlm* twisted lateral membranes. Scale lines: 0.1 mm.

Table 1. Leg measurements of *Hygrocrates deelemanus* sp. n.

	Fe	Pa	Ti	Me	Ta					
Leg I	2.32	2.52	1.60	1.66	2.00	2.43	2.24	2.30	0.64	0.63
Leg II	2.08	2.32	1.48	1.44	1.80	1.84	2.08	1.96	0.56	0.60
Leg III	1.76	1.92	0.88	1.12	1.20	1.40	1.60	1.88	0.56	0.60
Leg IV	2.40	2.48	1.36	1.36	1.88	2.08	2.20	2.60	0.59	0.61
Palpal organ with pyriform bulbus and hook-shaped (tapering towards the tip) embolus. Bulbal apophyses are more strongly sclerotized than the embolus (Figs 16–19). Vulva with two parts: anterior diverticulum and posterior diverticulum (Fig. 20). Anterior diverticulum consists of a dorsal arch with spermathecae which have two parts (distalmost and proximalmost parts), a large membranous sac (clearly visible in dorsal view) and widened twisted lateral membranes (Fig. 21). Posterior diverticulum consists of a central valve with a transverse bar, a wide membranous sac and a couple of small lateral membranous pockets (Fig. 20).

Table 2. Leg spination of *Hygrocrates deelemanus* sp. n.

	Leg I	Leg II	Leg III	Leg IV
♂ (Holotype)				
C	0	0	0	0
Tr	0	0	0	0
Fe	Pl 1	Pl 0–1	D 1	D 1, 1
Pa	0	0	0	0
Ti	0	0	Pl 1 Rl 1, 2 V 1, 2	Pl 2, 2 Rl 2, 1 V 1, 1
Me	0	0	Pl 1, 1 D 2, 2 Rl 1, 2, 1, 1 V 2, 2	Pl 5 Rl 5 V 2
Ta	0	0	0	0
♀ (Paratype)				
C	0	0	0	0
Tr	0	0	0	0
Fe	Pl 2	Pl 1	0	D 1, 1
Pa	0	0	0	0
Ti	0	0	Pl 1 Rl 1, 2 V 1, 2	Pl 2, 2 Rl 1, 1 V 1, 2
Me	0	0	Pl 1, 1 Rl 1, 1, 1 V 1, 2	Pl 5 Rl 5 V 2
Ta	0	0	0	0

Hygrocrates lycaoniae (Brignoli, 1978)
Figs 22–34, 36, 38

Harpactocrates l.: Brignoli, 1978: 463, f. 2, 8 (D ♂).

H. l.: Deeleman-Reinhold & Deeleman, 1988: 240, f. 13, 22, 320–325 (T ♂ from *Harpactocrates*, D ♀).

H. l.: Dunin, 1992: 41, f. 3 (♂ ♀).

Material Examined: 1 ♂, 1 ♀ (SMF) (abdomen heavily damaged during dissection) Burdur Province, Yeşilova District, side of Salda Lake [37°30’32.78”N; 29°41’56.66”E], 14.VII.2010, leg. E.A.Yağmur & M. Elverici.

Diagnosis: *H. lycaoniae* can be distinguished from *H. caucasicus* by the pyriform shape of the bulbus (bulbus smooth and cylindrical in *H. caucasicus*) (see Dunin
1992); and from *H. georgicus* by having apically oval-shaped spermathecae (see Mchedidze 1972).

Note: *H. caucasicus* was originally described on the basis of two males by Dunin (1992). The females of this species have not been collected yet, but the bulbal structures of the male palp were well illustrated by Dunin (1992). However, the information of *H. georgicus* is still insufficient. The following information was given by Dunin (1992:
p. 60) in his review of the Caucasian Dysderidae (our translation!): “H. georgicus was described on the basis of the female holotype from Georgia: the vicinity of Tbilisi, Kodzhori, Udzho. The holotype was lost. The species was tentatively placed in Hygrocrates by Deeleman-Reinhold and Deeleman (1988). To confirm their placement additional material is required. This species is absent from my collection.” During the preparation of this paper, as a result of our correspondence with the Tbilisi Janashia Museum (Georgia) which retains the spider collection of Tamara Mccheidze, it is obvious that the holotype of this species is lost (S. Otto pers. comm.). Thus, we could not examine it, but on the basis of the original illustrations of the vulva by Mccheidze (1972), H. georgicus can be distinguished from the Turkish members of the genus by the linear distalmost part of spermathecae.
Figure 34. Vulva of *Hygrocrates lycaoniae*, dorsal view. Abbreviations: \(Ad\) anterior diverticulum, \(Pd\) posterior diverticulum, \(Sp\) spermatheca, \(dps\) distalmost part of spermatheca, \(pps\) proximalmost part of spermatheca, \(da\) dorsal arch, \(cv\) central valve, \(tb\) transverse bar, \(ps\) membranous sac, \(tlm\) twisted lateral membranes. Scale line: 0.1 mm

Measurements (♂ / ♀): AL 3.36 / ?; CL 2.40 / 3.00; CWmax 2.20 / 2.44; CWmin 1.52 / 1.76; AMEd 0.14 / 0.16; PLEd 0.13 / 0.15; PMEd 0.11 / 0.12; ChF 0.77 / 0.79; ChG 0.45 / 0.50; ChL 1.30 / 1.46. Leg measurements are given in Table 3.

Description: General features of the body of *H. lycaoniae* closely resemble the new species (Figs 22–29), *H. deelemanus* sp. n., but the two are easily differentiated by their different body sizes and by structures of the male and female genitalia (Figs 30–33, 35–38). The males of the two species are easily distinguished in ventral view (90° angle) by the terminal part of the bulbus having the following characteristics:

1. Embolic base is pear-shaped in the two species, but the tip of the embolic base located at 12 o’clock in *H. deelemanus* sp. n. (Fig. 37) and at 10 o’clock in *H. lycaoniae* (Fig. 38).
2. Apophysis\(_a\) and Apophysis\(_b\) are short and blunt in *H. deelemanus* sp. n. (Fig. 37), but long in *H. lycaoniae* (Fig. 38).

Table 3. Leg measurements of *Hygrocrates lycaoniae*

(♂ / ♀)	Fe	Pa	Ti	Mt	Ta
Leg I	2.28 / 2.24	1.40 / 1.44	1.84 / 1.96	2.36 / 1.92	0.53 / 0.60
Leg II	2.08 / 2.00	1.44 / 1.40	1.85 / 1.72	1.92 / 1.80	0.50 / 0.56
Leg III	1.73 / 1.68	1.10 / 0.92	1.29 / 1.16	1.58 / 1.52	0.50 / 0.48
Leg IV	2.19 / 2.20	1.20 / 1.20	1.83 / 1.76	2.20 / 2.12	0.60 / 0.56
3. Apophysis$_b$ originates near the tip of the embolic base in _H. deelemanus_ sp. n. (Fig. 37), but originates from the central part of the tip of the embolic base in _H. lycariae_ (Fig. 38).

4. Embolus is curved between Apophysis$_a$ and Apophysis$_b$ in _H. deelemanus_ sp. n. (Fig. 37), but is raised from the embolic base and separated from Apophysis$_a$ and Apophysis$_b$ in _H. lycariae_ (Fig. 38).

The females of the two species are easily distinguished by the form of the proximal-most part of the spermathecae which is oval in _H. deelemanus_ sp. n. (Figs 20–21) and circular in _H. lycariae_ (Fig. 34). Details of leg spination are given in Table 4.

Habitat and distribution

The holotype of _H. lycariae_ was collected from outside of Körükini Cave, which is located in Çamlık Village (Beşehir District, Konya Province). The vegetation surrounding the cave is the mixed forest composed of Taurus fir, juniper, oak and maple species. Annual and perennial herbaceous plants also grow very densely around the cave (Fig. 39). Although several field trips were conducted to the type locality, we failed...
to find any specimens of *H. lycaoniae*. However, our male and female specimens of *H. lycaoniae* were collected near to Salda Lake (Burdur Province), which is approximately 170 km apart from the type locality (Figs 40, 41). The specimens were collected in the leaf-litter of shrublands surrounding the Salda Lake. Deeleman-Reinhold and Deeleman (1988) collected their samples of *H. lycaoniae* from leaf litter and under stones of wetland areas in Rhodes island. Therefore, it is safe to conclude that *H. lycaoniae* prefers wetland habitats. We collected the samples of the new species, *H. deelemanus* sp. n., from leaf litter under *Pinus nigra* trees (Fig. 42). Therefore it can be concluded that the two species are distributed in different habitat types of the Mediterranean.

Discussion

In general, the taxonomy of the subfamily Dysderinae is well defined (see Deeleman-Reinhold and Deeleman 1988; Dunin 1992). To date, 24 Dysderinae species, including the newly described species, have been recorded from Turkey in the following four genera: *Dysdera* Latreille, 1804 (20 species), *Dysderocrates* Deeleman-Reinhold & Deeleman, 1988 (1 species), *Harpactocrates* (1 species) and *Hygrocrates* (2 species) (Bayram et al. 2010; present data). The diversity of Dysderinae is not very high compared to neighbouring Greece (36 species: 34 *Dysdera* species, 2 *Dysderocrates* species) and Georgia (28 species: 3 *Cryptoparachtes* species, 21 *Dysdera* species, 1 *Harpactocrates* species and 2 *Hygrocrates* species). Nevertheless, the Turkish Dysderinae fauna includes more species than the other neighbouring countries, such as Azerbaijan (17 species), Bulgaria (14 species) and Armenia (4 species) (Otto and Dietzold 2006; Helsdingen 2010).

Table 4. Leg spination of Hygrocrates lycaoniae

	Leg I	Leg II	Leg III	Leg IV
♂				
C	0	0	0	0
Tr	0	0	0	0
Fe	Pl 2	Pl 1	D 1	D 2
Pa	0	0	0	0
Ti	0	0	Pl 1 Rl 1, 2 V 1, 2	Pl 2, 2 Rl 1, 1, 1 V 1, 2
Me	0	0	Pl 1, 1, 1 Rl 1, 1, 1 V 2, 2	Pl 1, 1, 1 Rl 5 V 2
Ta	0	0	0	0
♀				
C	0	0	0	0
Tr	0	0	0	0
Fe	Pl 1–2	Pl 1	0	D 2
Pa	0	0	0	0
Ti	0	0	Pl 1 Rl 1, 2 V 1, 2	Pl 2, 2 Rl 2, 1 V 1, 2
Me	0	0	Pl 1 Rl 1, 1, 1 V 2, 2	Pl 1, 1, 1 Rl 1, 1, 1 V 2, 2
Ta	0	0	0	0
Acknowledgements

This work was supported by the Research Foundation of Anadolu University (Project Number: 1001F31). We are very grateful to Dr. Fulvio Gasparo (Italy), Dr. Christa Deeleman-Reinhold (Netherlands) and Dr. Christo Deltshiev (Bulgaria) for their valuable comments regarding the new species. We would like to thank Dr. Yuri Marusik (Russian Federation) for translate Russian texts; Dr. Stefan Otto (Germany) and Dr. Vera Pkhakadze (Georgia) for giving information on holotype of *H. georgicus*. We also thank Mr. Savaş Kunt (Turkey) who is the lovely father of the first author and our colleague Mr. Mert Elverici (Turkey) for their important help during field trips. The English of the final draft was kindly checked by Dr. David Penney (United Kingdom).

References

Bayram A, Kunt KB, Danışman T (2010) The checklist of the spiders of Turkey, Version 10.1.0. Ankara: Turkish Arachnological Society. http://www.spidersofturkey.com [accessed 20.1.2011]
Brignoli PM (1978) Ragni di Turchia V. Specie nuove o interessanti, cavernicole ed epigee, di varie famiglie (Araneae). Revue Suisse de Zoologie 85: 461–541.
Chatzaki M, Arnedo M (2006) Taxonomic revision of the epigean representatives of the spider subfamily Harpacteinae (Araneae: Dysderidae) on the island of Crete. Zootaxa 1169: 1–32.
Deeleman-Reinhold CL, Deeleman PR (1988) Revision Des Dysderinae (Araneae, Dysderidae), Les Especes Mediterraneennes Occidentales Exceptees. Tijdschr. Ent., 131: 141–269.
Dunin PM (1992) The spider family Dysderidae of the Caucasian fauna (Arachnida Aranei Haplogygae). Arthropoda Selecta. 1 (3): 35–76.
Helsdingen PJ van (2010) Araneae, In: Fauna Europaea. Database European spiders and their distribution -Taxonomy- Version 2010.1. http://www.european-arachnology.org [accessed 20.1.2011]
Mcheidze TS (1972) New species of spiders of the genus Harpactocrates (Dysderidae) in Georgia. Soobshcheniya Akademii Nauk Gruzinskoi SSR 68: 741–744.
Otto S, Dietzold S (2006) Caucasian Spiders, A faunistic database on the spiders of the Caucasus. Version 1.3. http://caucasus-spiders.info [accessed 20.1.2011]
Platnick NI (2010) The world spider catalog, Version 11.0. New York: American Museum of Natural History. http://research.amnh.org/entomology/spiders/catalog/DYSDERIDAE. html [accessed 06.1.2011]