Determination of Sexual Dimorphism from the Area of the Triangle

Abstract
A triangular area can be formed from lines connecting the infraorbital foramina (IOFs) and the nasion to each other. Measurements on this triangle may help to determine sexual dimorphism in human skulls. The aim of this study was to determine sexual dimorphism in Brazilian skulls from measurements of the area of the triangle formed between lines joining the IOFs to the nasion. 242 human skulls belonging to the Study and Research Center for Anatomy and Forensic Anthropology of Tiradentes University. It was observed that out of the 242 skulls examined, 148 were male and 94 were female, with ages ranging from 18 to 91 years (mean: 57 years). In the male skulls, the distance between the IOFs ranged from 53 to 58.8 mm (mean: 56 mm). In the female skulls, it ranged from 50.7 to 56.0 mm (mean: 53.7 mm). In the male skulls, the mean distance from the right IOF (RIOF) to the nasion ranged from 44.1 to 49.0 mm (mean: 46.2 mm) and from the left IOF (LIOF) to the nasion, 44 to 48 mm (mean: 46.0 mm). In the female skulls, the distance from the RIOF to the nasion ranged from 42 to 47 mm (mean: 44.7 mm) and from the LIOF to the nasion, 41.8 to 46.1 mm (mean: 44 mm). The area of the triangle formed by the lines connecting the IOFs to the nasion in the male skulls ranged from 944.6 to 1105.3 mm² (mean: 1023.9 mm²). A sexual dimorphism occurred in all measures and area that formed the triangle between the infraorbital foramen and the nasion that were larger in males.

Keywords: Anthropometry; Anatomy; Sexual dimorphism; Infraorbital foramen; nasion

Abbreviations: N: Nasion; RIOF: Right Infraorbital Foramen; LIOF: Left Infraorbital Foramen; DIOF: Distance from the Right Infraorbital Foramen to the Nasion; DLIOFN: Distance from the Left Infraorbital Foramen to the Nasion; DIOFN: Distance Between the Infraorbital Foramina; PIOFN: Perimeter Formed by Lines Between the Infraorbital Foramina and the Nasion; ATIOFN: Area of the Triangle Formed by lines between the infraorbital foramina and the Nasion

Introduction
The human skull is considered to be the second most useful indicator for determining an individual’s sex, after the pelvis [1]. It is also responsible for furnishing important data for identifying the sex of living individuals and even cadavers [2,3]. For forensic experts to perform these tasks, precise methods and techniques are required [4,5].

Male skulls are generally formed by coarser or rougher structures because of the presence of stronger muscle insertions. Moreover, they are also larger than female skulls [4,5].

Two methods are used in the process of determining individuals’ sex from parts of the craniofacial skeleton: the qualitative or morphological method and the quantitative or metric method. Most studies have used the morphological method, in which characteristics such as the frontal sinuses, teeth, glabellae, bone thickness, eyebrow ridge thickness and chin shape have been studied [5]. On the other hand, the quantitative method makes use of measurements between pre-established points on the skull. This method, which is considered to possibly be more efficient, has contributed greatly towards determining individuals’ sex [2,6].

Most authors in the literature on skull measurements from quantitative or metric variables have used samples from other countries (i.e. not from Brazil) [6-8]. This places limitations on the applicability of these studies to the Brazilian population, given that without knowledge of the parameters for measurements on Brazilian skulls, researchers are obliged to use international tables. This could lead to uncertainty regarding the results [2].

Therefore, the present study had the objective of determining sexual dimorphism in Brazilian skulls from measurement of the area of the triangle formed by lines between the infraorbital foramina (IOFs) and the nasion.

Materials and Methods
In this study, 242 dry human skulls were used: 148 male skulls and 94 female skulls, ranging in age from 18 to 91 years. The skulls had been obtained in accordance with law no. 8501 of 1992, which deals with use of unclaimed cadavers for use in studies and research. These skulls belong to the Study and Research Center for Anatomy and Forensic Anthropology (CEPAAF) of Tiradentes University.
This was a morphometric study in which the following were measured: distance of the right infraorbital foramen to the nasion (DRIOFN), distance of the left infraorbital foramen to the nasion (DLIOFNN), distance between the infraorbital foramina and perimeter and area of the triangle formed by lines between the infraorbital foramina and the nasion (Figure 1). The linear measurements were made with the aid of digital calipers with accuracy to the nearest 0.01mm.

The data were analyzed both descriptively and analytically. The normality of distribution of the numerical variables was assessed by means of the Shapiro-Wilk test. Variables that met the assumption of normal distribution were presented as the mean (M) and 95% confidence interval. Spearman’s linear correlation test was applied and the values obtained were categorized as follows: 0 to 0.39 as weak correlation; 0.40 to 0.69 as moderate correlation; and 0.70 to 1.00 as strong correlation. To compare morphometric values according to sex, the Mann-Whitney test was applied and the values obtained were categorized as significant difference to the nearest 0.01mm.

In relation to sex, there were statistically significant differences in the measurements of DIOF, DRIOFN, DLIOFN and the perimeter and area of the triangle delimited by the infraorbital foramina and the nasion (Table 1) and a multivariate difference in measurements.

The results from the comparisons of measurements between the sexes showed that all of them were greater in the male skulls. It could be seen from Spearman’s linear correlation that all the correlations between age and all the measurements of distance, perimeter and area were weak or insignificant (Table 2).

Table 1: Morphometric variables in relation to sex.

Variables	Male M (IC95%)	Female M (IC95%)	p
DIOF	56.0 (53.0-58.8)	53.7 (50.7-56.0)	< 0.001*
DRIOFN	46.2 (44.1-49.0)	44.7 (42.0-47.0)	< 0.001*
DLIOFN	46.0 (44.0-48.0)	44.0 (41.8-46.1)	< 0.001*
PIOFN	147.7 (142.5-154.0)	142.5 (135.0-147.6)	< 0.001*
ATIOFN	1023.9 (944.6-1105.3)	946.5 (853.8-1025.3)	< 0.001*

DIOF: Distance Between the Infraorbital Foramina; DRIOFN: Distance from the Right Infraorbital Foramen to the Nasion; DLIOFN: Distance from the Left Infraorbital Foramen to the Nasion; PIOFN: Perimeter formed by Lines between the Infraorbital Foramina and the Nasion

Table 2: Correlation analysis between age and all the measurements of distance, perimeter and area.

Variables	Age	Rho (P-Value)
	0.049	-0.447
		-0.978
DIOF		-0.836
DRIOFN		-0.868
DLIOFN		-0.892
PIOFN		
ATIOFN		

DIOF: Distance between the Infraorbital Foramina; DRIOFN: Distance from the Right Infraorbital Foramen to the Nasion; DLIOFN: Distance from the Left Infraorbital Foramen to the Nasion; PIOFN: Perimeter formed by Lines between the Infraorbital Foramina and the Nasion

The quantitative method was used in the present study to determine sex. Some authors have considered that this method is more reliable when pre-established points are used and have accepted that qualitative method are subjective and unsafe [2-6,11].

Discussion

Determination of sex is considered to be one of the main pillars of human identification protocols. This can be achieved through analysis of cranial measurements and visual evaluation of the skull, among other means [1,4,5,7,9-14]. Because craniofacial structures are seldom destroyed, they have been widely used by several authors for determining sex [1-6,9,10,15,16]. The quantitative method was used in the present study to determine sex. Some authors have considered that this method is more reliable when pre-established points are used and have accepted that qualitative method are subjective and unsafe [2-6,11].
Almeida Junior et al. [17] using the logistic regression technique, for this type of study, obtained a score of 71.8%.

We did not find any use of the triangular area formed between the infraorbital foramina and the nasion for determining sexual dimorphism, in the literature. Almeida Junior et al. [5] conducted a similar study, but they used the distance from the infraorbital foramina to the prosthion as craniometric reference points. These authors found that the mean distance between the infraorbital foramina was 60.94 mm for male skulls and 58.25 mm for female skulls. Regarding the distance from the infraorbital foramina to the prosthion, the mean was 31.30 mm for male skulls and 29.47 mm for female skulls. Regarding the area formed by lines between the infraorbital foramina and the prosthion, the mean was 956.68 mm² for male skulls and 860.46 mm² for female skulls. In the present study, the mean DIOF was 56.0 mm for the male skulls and 53.7 mm for the female skulls. Regarding the area of the triangle, the mean obtained was 1023.9 mm² for the male skulls and 946.5 mm² for the female skulls. For all the variables studied, the means were greater in the male skulls.

Badam et al. [9] and Patil & Mody [3] analyzed linear skull measurements obtained via lateral cephalometry. In both studies, the nasion was used as a reference point in order to establish and compare results between the sexes. Like in the present study, the values obtained were greater in the male skulls. In our study, comparisons of the DIOF, DRIOFN, DLIOFN and the perimeter and area of the triangle formed by lines between the infraorbital foramina and the nasion, in relation to the sexes, all showed statistically significant differences, such that all of the measurements were greater in the male skulls. This may be explicable in terms of the anatomical differences between male and female skulls.

Studies involving visual analyses on skulls have indicated differences between the sexes. For example, prominences, bone crests and other anatomical abnormalities are more perceptible in male skulls than in female skulls [2,4,5,9,16-19]. However, according to Badam et al. [9], Patil & Mody [3], Shearer et al. [13] and Spradley & Jantz [1], metric analysis makes it possible to obtain results that are more objective, especially for researchers with little experience of determining individuals’ sex. Moreover, this facilitates the statistical analysis on the sample and comparison with other studies.

Many studies conducted around the world have used quantitative variables in their analyses [7,10,12,13,16-18,20-23]. In these analyses, the researchers only used international data because they did not have any measurements on Brazilian skulls. According to Almeida Junior et al. [4], Almeida Junior et al. [5], Bigoni et al. [17], Francesquini Junior et al. [2], Franklin et al. [18], Gapert et al. [7], Kimmerle et al. [11] and Kruger et al. [12], this may compromise the analysis because of the possibility that a variety of factors such as climate, local geography, diet, socioeconomic conditions and quality of life might interfere with defining an individual’s sex. In this regard, Almeida Junior et al. [4] accepted that difficulties in the process of determining sex might arise through variations in measurements and morphology found in different populations. However, authors such as Ferreira et al. [24], Almeida Junior et al. [25] and Lima et al. [26] believe in the possibility of using their findings, in Brazilian skulls, in services of Forensic Dentistry and in the practical field of Forensic Anthropology.

Conclusion

The area of the triangle formed by lines between the infraorbital foramina and the nasion, and also all the other variables, were greater in the male skulls, with a statistically significant difference. This means that anatomical characteristics are of fundamental importance in distinguishing between the sexes, given that factors such as climate, local geography, diet, socioeconomic condition and quality of life may interfere in defining an individual’s sex.

References

1. Spradley MK, Jantz RL (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci 56(2): 289-296.
2. Francesquini Junior L, Francesquini MA, Cruz BM, Pereira SDR, Ambrosano GMB, et al. (2007) Identification of sex using cranial base measurements. J Forensic Odontostomatol 25(1): 7-11.
3. Patil KR, Mody RN (2005) Determination of sex by discriminant function analysis and stature by regression analysis: a lateral cephalometric study. Forensic Sci Int 147(2-3): 175-180.
4. Almeida Junior E, Reis FP, Galvão LCC, Alves MC, Vasconcelos D (2013) Sexual dimorphism in the cranium: a study on the foramen infra-ocular right, left and the prosthion. Rev Cien Med Biol 12(1): 55-59.
5. Almeida Junior E, Araújo TM, Galvão LCC, Campos PSF (2010) Estudo da sexualidade através de uma área triangular facial formada pela interseção dos pontos: forão infra-ocular direito, esquerdo e o próstio. In crânios secos de adultos. Rev Cien Med Biol 9(1): 8-12.
6. Hatipoglu GH, Ozcan HN, Hatipoglu US, Yücel E (2008) Age, sex and mass index in relation to calvarial diploe thickness and craniometric data on MRI. Forensic Sci Int 182(1-3): 46-51.
7. Gapert R, Black S, Last J (2009) Sex determination from the foramen magnum: discriminant function analysis in an eighteenth and nineteenth century British sample. Int J Legal Med 123(1): 25-33.
8. Königsberg IW, Algee Hewitt BF, Steadman DW (2009) Estimation and evidence in forensic anthropology: sex and race. Am J Phys Anthropol 139(1): 77-90.
9. Badam RK, Manjunath M, Rani MS (2011) Determination of sex by discriminant function analysis of lateral radiographic cephalometry. Journal of Indian Academy of Oral Medicine and Radiology 23(3): 179-183.
10. Jiménez Arenas JM, Esquivel JA (2013) Comparing two methods of univariate discriminant analysis for sex discrimination in an Iberian population. Forensic Sci Int 228(1-3): 175.e1-4.e4.
11. Kimmerle BH, Ross A, Slice D (2008) Sexual dimorphism in America: geometric morphometric analysis of the cranium and facial region. J Forensic Sci 53(1): 54-57.
12. Kruger GC, L'Abbé EN, Stull RE, Kenhorez MW (2014) Sexual dimorphism in cranial morphology among modern South Africans. Int Legal Med 129(4): 869-875.
13. Shearer BM, Sholts SB, Garvin HM, Warmlander SKTS (2012) Sexual dimorphism in human browridge volume measured from 3D models of dry cranial A new digital morphometrics approach. Forensic Sci Int 222(1-3): 400.e1-400.e5.
Determination of Sexual Dimorphism from the Area of the Triangle

14. Vidya CS, Shamasundar NM, Manjunatha B, Raichurkar K (2013) Evaluation of size and volume of maxillary sinus to determine gender by 3D computerized tomography scan method using dry skulls of South Indian origin. Int J Res 5(3): 98.

15. Cornélio Neto WL, Bérzin F, Daruge Júnior E, Daruge E, Ruela RS, et al. (2011) Identificação antropológica: superposição de imagens pelos ossos nasais. Rev CiêncMedBiol 10(2): 105-111.

16. Green H, Curnoe D (2009) Sexual dimorphism in Southeast Asian crania: morphometric approach. Homo 60(6): 517-534.

17. Almeida Júnior E, Reis FP, Galvão LCC, Santa Rosa HR, Costa N (2015) Estimativa do sexo e idade por meio de mensurações cranianas. Rev BahianaOdonto 6(2): 81-88.

18. Bigoni L, Velemínská J, Bruzek J (2010) Three-dimensional geometric morphometric analysis of cranio-facial sexual dimorphism in a Central European sample of known sex. Homo 61(1): 16-32.

19. Franklin D, Cardini A, Flavel A, Kulukas A (2012) The application of traditional and geometric morphometric analyses for forensic quantification of sexual dimorphism: preliminary investigation in a Western Australian population. Int J Legal Med 126(4): 549-558.

20. Perri RA, Kairaitis K, Wheatley JR, Amis TC (2014) Anthropometric and craniofacial sexual dimorphism in obstructive sleep apnea patients: is there male–female phenotypical convergence? J Sleep Resp 24(1): 82-91.

21. Franklin D, Cardini A, Flavel A, Kulukas A (2013) Estimation of sex from cranial measurements in a Western Australian population. Forensic Sci Int 229(1-3): 158.e1-158.e9.

22. Marinescu M, Paunătescu V, Rosu M, Maru N, Punza A (2014) Sexual dimorphism of crania in Romanian population: discriminant function analysis approach for sex estimation. Rom J Leg Med 22: 21-26.

23. Steyn M, Iscan MY (1998) Sexual dimorphism in the crania and mandibles of South African whites. Forensic Sci Int 98(1-2): 9-16.

24. Ferreira RFA, Neves FS, Almeida Júnior E, Reis FP, Ferreira PP, et al. (2015) Avaliação do dimorfismo sexual por meio de medidas lineares entre os processos mastoides e a espinha nasal anterior em crânicos secos humanos. J Health Sci Inst 33(2): 130-134.

25. Almeida Júnior, Reis FP, Galvão LCC, Santa Rosa HR, Santos JS (2016) Investigação do sexo e idade por meio de mensurações no palato duro e base de crânios secos de adultos. Rev Ciênc Méd Biol 15(2): 172-177.

26. Lima AJC, da Silva RA, Almeida Júnior E (2016) Análise entre os pontos zigomáticos orbitais e espinha nasal anterior na investigação do sexo e idade em crânios secos de adultos. J Health Sci Inst 34(1): 11-16.

Citation: Aragão JA, Silveira MPM, Cisneiros de Oliveira LCS, Aragão FMS, Aragão ICS, et al. (2017) Determination of Sexual Dimorphism from the Area of the Triangle. MOJ Anat & Physiol 3(3): 00091. DOI: 10.15406/mojap.2017.03.00091