ERRATA: ON THE HOMOLOGY OF COMPLETION AND TORSION

MARCO PORTA, LIRAN SHAUL AND AMNON YEKUTIELI

In this note we correct two errors in our paper [PSY].

1. There is an error in the proof of Theorem 7.12 (GM Duality) of [PSY]. The statement itself is correct, and it is repeated as Theorem 9 below, with a correct proof.

2. Just before formula (3.12) in [PSY], we said that “\(\text{Mod}_{a,\text{tor}} A \) is a thick abelian subcategory of \(\text{Mod} A \)”. This is true if the ideal \(a \) is finitely generated, but might be false otherwise. There is no implication of this error on the rest of the paper, since WPR ideals are by definition finitely generated. We thank R. Vyas for mentioning this error to us.

In the rest of the note we recall the definitions and results from [PSY], that are needed to prove Theorem 9.

Let \(A \) be a commutative ring, and let \(a \) be a weakly proregular ideal in it (see [PSY, Definition 4.21]). We choose a finite sequence \(a = (a_1, \ldots, a_n) \) that generates the ideal \(a \). The telescope complex associated to this sequence is \(\text{Tel}(A; a) \). There is a canonical homomorphism of complexes

\[
u_a : \text{Tel}(A; a) \to A.
\]

See [PSY Section 5]. Let us write \(T := \text{Tel}(A; a) \) and \(u := u_a \). For any complex of \(A \)-modules \(M \), we identify \(M \) with \(A \otimes_A M \) and with \(\text{Hom}_A(A, M) \). This allows us to form the homomorphisms

\[
u \otimes \text{id} : T \otimes_A M \to M
\]

and

\[
\text{Hom}(u, \text{id}) : M \to \text{Hom}_A(T, M).
\]

The mistake in the proof of [PSY] Theorem 7.12 was as follows. We had claimed that for any \(K \)-projective complex \(P \), the homomorphism of complexes

\[
\text{Hom}(u, \text{id}) : T \otimes_A P \to \text{Hom}_A(T, T \otimes_A P)
\]

is a quasi-isomorphism. But this is false. Here is a counterexample:

Example 2. Take \(A := K[[t]] \), the ring of formal power series over a field \(K \), with \(a := (t) \). Consider the complex \(P := A \). Then there are derived category isomorphisms

\[
T \otimes_A P \cong T \cong R\Gamma_a(A) \cong H^1(R\Gamma_a(A))[-1]
\]

and

\[
\text{Hom}_A(T, T \otimes_A P) \cong \text{Hom}_A(T, T) \cong \Lambda_a(A) \cong \Lambda_a(A) \cong A.
\]

The next two results from [PSY] will be crucial for the proof of Theorem 9 so we copy them.

Date: 19 June 2015.
Proposition 3 ([PSY, Proposition 5.8]). Let A be a commutative ring, let a be a weakly proregular ideal in A, and let a be a finite sequence that generates the ideal a. For any $M \in D(\text{Mod} \ A)$ there is an isomorphism

$$v_{a, M}^R : R \Gamma_a(M) \xrightarrow{\cong} \text{Tel}(A; a) \otimes_A M$$

in $D(\text{Mod} \ A)$. The isomorphism $v_{a, M}^R$ is functorial in M, and the diagram

$$\begin{array}{ccc}
R \Gamma_a(M) & \xrightarrow{v_{a, M}^R} & \text{Tel}(A; a) \otimes_A M \\
\downarrow \sigma_M^R & & \downarrow u_a \otimes \text{id} \\
M & \xrightarrow{u_a \otimes \text{id}} & M
\end{array}$$

in $D(\text{Mod} \ A)$ is commutative.

Proposition 4 ([PSY, Corollary 5.25]). Let A be a commutative ring, let a be a weakly proregular ideal in A, and let a be a finite sequence that generates the ideal a. For any $M \in D(\text{Mod} \ A)$ there is an isomorphism

$$\text{tel}_{a, M}^L : \text{Hom}_A(\text{Tel}(A; a), M) \to \Lambda_\alpha(M)$$

in $D(\text{Mod} \ A)$. The isomorphism $\text{tel}_{a, M}^L$ is functorial in M, and the diagram

$$\begin{array}{ccc}
M & \xrightarrow{\text{tel}_{a, M}^L} & \Lambda_\alpha(M) \\
\downarrow \text{Hom}(u_a, \text{id}) & & \downarrow \text{Hom}_A(\text{Tel}(A; a), M) \\
\text{Hom}_A(\text{Tel}(A; a), M) & \xrightarrow{\text{tel}_{a, M}^L} & \Lambda_\alpha(M)
\end{array}$$

in $D(\text{Mod} \ A)$ is commutative.

Here are four lemmas that will be needed for the proof of Theorem 9. We retain the assumptions of the propositions above, and the shorthand $T := \text{Tel}(A; a)$ and $u := u_a$. The next lemma replaces the problematic [1].

Lemma 5. For any complex of A-modules M, the homomorphism of complexes

$$\text{Hom}_A(\text{id}, u \otimes \text{id}) : \text{Hom}_A(T, T \otimes_A M) \to \text{Hom}_A(T, M)$$

is a quasi-isomorphism.

Proof. We will prove that this is an isomorphism in $D(\text{Mod} \ A)$. Using Propositions 3 and 4 we may replace the given morphism with

$$\Lambda_\alpha(\sigma_M^R) : \Lambda_\alpha(R \Gamma_a(M)) \to \Lambda_\alpha(M).$$

According to [PSY, Lemma 7.2], the morphism $\Lambda_\alpha(\sigma_M^R)$ is an isomorphism.

The following lemma is actually stated correctly in the proof of [PSY, Theorem 7.12], but we repeat it for completeness.

Lemma 6. For any complex of A-modules M, the homomorphism of complexes

$$\text{id} \otimes \text{Hom}(u, \text{id}) : T \otimes_A M \to T \otimes_A \text{Hom}_A(T, M)$$

is a quasi-isomorphism.
Proof. As in the proof of Lemma [5], it suffices to prove that the morphism
\[R\Gamma_a(\tau_M^1) : R\Gamma_a(M) \to R\Gamma_a(L\Lambda_a(M)) \]
in \(D(\text{Mod} A) \) is an isomorphism. This is true by \[\text{PSY}, \text{Lemma 7.6}. \] □

Lemma 7. For any complex of \(A \)-modules \(N \), the homomorphism of complexes
\[\text{Hom}(id_T, \text{Hom}(u, id_N)) : \text{Hom}_A(T, N) \to \text{Hom}_A(T, \text{Hom}_A(T, N)) \]
is a quasi-isomorphism.
Proof. Using \(\text{Hom}\)-tensor adjunction, we can replace the given homomorphism with
the homomorphism
\[\text{Hom}(u \otimes id, id) : \text{Hom}_A(T, N) \to \text{Hom}_A(T \otimes_A N, N) \]
in \(C(\text{Mod} A) \), that is isomorphic to it. Now, by \[\text{PSY}, \text{Corollary 7.9}, \] the homomorphism
\[u \otimes id_T : T \otimes A T \to T \]
is a homotopy equivalence. Hence \(\text{Hom}(u \otimes id_T, id_N) \) is a quasi-isomorphism. □

Lemma 8. For any complex of \(A \)-modules \(N \), the homomorphism of complexes
\[u \otimes id_T \otimes id_N : T \otimes_A T \otimes_A N \to T \otimes_A N \]
is a quasi-isomorphism.
Proof. We already know that \(u \otimes id_T \) is a homotopy equivalence. □

Theorem 9 (GM Duality). Let \(A \) be a commutative ring, and let \(a \) be a weakly prregular ideal in \(A \). For any \(M, N \in D(\text{Mod} A) \) the morphisms
\[\begin{array}{c}
\text{RHom}_A(\Gamma_a(M), \Gamma_a(N)) \\
\text{RHom}(id, \sigma^N_a) \\
\text{RHom}(\Gamma_a(M), \Lambda_a(N)) \\
\text{RHom}(\sigma^N_a, id) \\
\text{RHom}(\Gamma_a(M), \Lambda_a(N)) \\
\text{RHom}(\Lambda_a(M), \Lambda_a(N))
\end{array} \]
in \(D(\text{Mod} A) \) are isomorphisms.
Proof. Choose a weakly prregular sequence \(a \) that generates \(a \), and write \(T := \text{Tel}(A; a) \) and \(u := u_a \). Next choose a K-projective resolution \(P \to M \), and a K-injective resolution \(N \to I \). The complex \(T \otimes_A P \) is K-projective, and the complex \(\text{Hom}_A(T, I) \) is K-injective.

By Propositions [3] and [4], we can replace the diagram above with the diagram
\[\text{Hom}_A(T \otimes_A P, T \otimes_A I) \]
\[\text{Hom}(id \otimes id, u \otimes id) \]
\[\text{Hom}(id \otimes id, \text{Hom}(u, id)) \]
in \(C(\text{Mod} A) \). We will prove that all these homomorphisms are quasi-isomorphisms.
First we deal with the two forward facing homomorphisms in (10). By Hom-tensor adjunction we can move the complex P to the left in all expressions, thus obtaining an isomorphic diagram

$$
\begin{align*}
\text{Hom}_A(P, \text{Hom}_A(T, T \otimes_A I)) \\
\text{Hom}(\text{id}, \text{Hom}(\text{id}, u \otimes \text{id})) & \rightarrow \text{Hom}_A(P, \text{Hom}_A(T, I)) \\
\text{Hom}(\text{id}, \text{Hom}(\text{id}, \text{Hom}(u, \text{id}))) & \rightarrow \text{Hom}_A(P, \text{Hom}_A(T, \text{Hom}_A(T, I)))
\end{align*}
$$

in $C(\text{Mod } A)$. Because P is K-projective, it suffices to prove that

$$
\begin{align*}
\text{Hom}_A(T, T \otimes_A I) \\
\text{Hom}(\text{id}, u \otimes \text{id}) & \rightarrow \text{Hom}_A(T, I) \\
\text{Hom}(\text{id}, \text{Hom}(\text{id}, u)) & \rightarrow \text{Hom}_A(T, \text{Hom}_A(T, I))
\end{align*}
$$

are quasi-isomorphisms. This is true by Lemmas \ref{lem5} and \ref{lem7}.

Now we deal with the backward facing homomorphisms in (10). Using Hom-tensor adjunction, we can move the rightmost occurrence of the complex T to the left, thus obtaining an isomorphic diagram

$$
\begin{align*}
\text{Hom}_A(T \otimes_A T \otimes_A P, I) \\
\text{Hom}(u \otimes \text{id} \otimes \text{id}, \text{id}) & \rightarrow \text{Hom}_A(T \otimes_A P, I) \\
\text{Hom}(\text{id} \otimes \text{Hom}(\text{id}, u), \text{id}) & \rightarrow \text{Hom}_A(T \otimes_A \text{Hom}_A(T, P), I)
\end{align*}
$$

in $C(\text{Mod } A)$. To prove these are quasi-isomorphisms, we can remove the K-injective complex I. Thus it suffices to show that

$$
\begin{align*}
T \otimes_A T \otimes_A P \\
u \otimes \text{id} \otimes \text{id} & \rightarrow T \otimes_A P \\
\text{id} \otimes \text{Hom}(u, \text{id}) & \rightarrow T \otimes_A \text{Hom}_A(T, P)
\end{align*}
$$

are quasi-isomorphisms. This is true by Lemmas \ref{lem6} and \ref{lem8}.

We should remark that there was a correct proof of a weaker version of Theorem \ref{thm9} in earlier versions of the paper \cite{PSY} (the assumption was that A is noetherian). This weaker statement had already been proved in \cite{AJL}.

Acknowledgments

We should like to thank the referee for pointing out the non-standard methods used in the proof of Theorem \ref{thm9}, and for suggesting a number of improvements to the presentation. We also gratefully acknowledge the support of the Israel Science Foundation (grant no. 266/13).

References

\begin{itemize}
\item [AJL] L. Alonso, A. Jeremias and J. Lipman, Local homology and cohomology on schemes, Ann. Sci. ENS \textbf{30} (1997), 1-39. Correction, available online at \url{http://www.math.purdue.edu/~lipman/papers/homologyfix.pdf}.
\item [PSY] M. Porta, L. Shaul and A. Yekutieli, On the Homology of Completion and Torsion, Algebras and Representation Theory (2014) 17:31-67.
\end{itemize}
Yekutieli: Department of Mathematics Ben Gurion University, Be’er Sheva 84105, Israel.
E-mail address: amyekut@math.bgu.ac.il