LEDGF/p75-Independent HIV-1 Replication Demonstrates a Role for HRP-2 and Remains Sensitive to Inhibition by LEDGINs

Rik Schrijvers1, Jan De Rijck1, Jonas Demeulemeester1, Noritaka Adachi2, Sofie Vets1, Keshet Ronen3, Frauke Christ1, Frederic D. Bushman3, Zeger Debyser1,*

1 Division of Molecular Medicine, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium, 2 Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan, 3 Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America

Abstract

Lens epithelium–derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase (IN) that interacts with IN through its IN binding domain (IBD) and tethers the viral pre-integration complex to the host cell chromatin. Here we report the generation of a human somatic LEDGF/p75 knockout cell line that allows the study of spreading HIV-1 infection in the absence of LEDGF/p75. By homologous recombination the exons encoding the LEDGF/p75 IBD (exons 11 to 14) were knocked out. In the absence of LEDGF/p75 replication of laboratory HIV-1 strains was severely delayed while clinical HIV-1 isolates were replication-defective. The residual replication was predominantly mediated by the Hepatoma-derived growth factor related protein 2 (HRP-2), the only cellular protein besides LEDGF/p75 that contains an IBD. Importantly, the recently described IN-LEDGF/p75 inhibitors (LEDGINs) remained active even in the absence of LEDGF/p75 by blocking the interaction with the IBD of HRP-2. These results further support the potential of LEDGINs as allosteric integrase inhibitors.

Introduction

Integration of viral DNA into the host cell genome is a critical step during HIV replication. A stably inserted provirus is essential for productive infection and archives the generic information of HIV in the host cell. The presence of a permanent viral reservoir that evades the immune system and enables HIV to rebound once antiretroviral drugs are withdrawn is one of the major remaining hurdles to surmount the HIV epidemic.

Lentiviral integration is catalyzed by the viral enzyme IN in close association with the cellular cofactor LEDGF/p75 [1–7]. LEDGF is encoded by the PSIP1 gene, which generates the splice variants LEDGF/p52 and LEDGF/p75 [8]. Both share an N-terminal region of 325 residues containing an ensemble of chromatin binding elements, such as the PWWP and AT hook domain, yet differ at the C-terminus. LEDGF/p52 contains 8 amino acids at its C-terminus [9] and fails to interact with HIV-1 IN [10,11], whereas LEDGF/p75 contains an IBD (aa 347–429) capable of interacting with lentiviral IN [3,12,13]. The cofactor tethers IN to the host cell chromatin, protects it from proteolytic degradation, stimulates its enzymatic activity in vitro and in living cells [1,10,13–16] and determines HIV-1 integration site distribution [2,11,17,18].

The role of LEDGF/p75 in HIV-1 replication was studied using RNA interference (RNAi) targeting LEDGF/p75 or using LEDGF KO murine embryonic fibroblasts (MEF) [2,5,6,11,17,19,20]. Although both strategies point to a key role for LEDGF/p75 in lentiviral replication, they resulted in somewhat conflicting conclusions. Potent RNAi-mediated knockdown (KD) of LEDGF/p75 reduced HIV-1 replication, yet residual replication was observed [5,6,20], which was attributed to imperfect RNAi-mediated KD of LEDGF/p75, with minute amounts of LEDGF/p75 being sufficient to support HIV-1 replication [5,6]. Whether LEDGF/p75 is essential for HIV-1 replication or not could not be addressed by this approach. Later, two LEDGF KO mice were generated. Since mouse cells are not permissive to spreading HIV-1 infection, HIV-based viral vectors were used. The first effort resulted in mouse LEDGF KO clones following insertion of a gene trap [21]. Data obtained from MEFs isolated from these embryos indicated a strong yet incomplete block in integration of HIV-based lentiviral vectors (LV) [17]. Next, a Cre-conditional LEDGF KO mouse was generated. Challenge of the KO MEFs with LV resulted in reduced but not annihilated reporter gene expression [11]. Although analysis was restricted to single round assays, both studies suggest LEDGF/p75 not to be essential for HIV-1 replication, with the cofactor being involved in integration site selection rather than in promoting integration. Here we present the generation of the first human somatic LEDGF/p75 KO cell line to finally answer the question whether LEDGF/p75 is required for spreading infection of various HIV strains.
Author Summary

Like other viruses, HIV has a limited genome and needs to exploit the machinery of the host cell to complete its replication cycle. The elucidation of virus-host interactions not only sheds light on pathogenesis but also provides opportunities in a limited number of cases to develop novel antiviral drugs. A prototypical example is the interaction between the cellular protein LEDGF/p75 and HIV-1 integrase (IN). Here we generated a human somatic LEDGF/p75 knockout cell line to demonstrate that HIV-1 replication is highly dependent on its cofactor. We show that the residual replication of laboratory strains is predominantly mediated by a LEDGF/p75-related protein, HRP-2. Interestingly, the recently developed HIV-1 IN inhibitors that target the LEDGF/p75-IN interaction interface, LEDGINs, remain active even in the absence of LEDGF/p75. We demonstrate that LEDGINs efficiently block the interaction between IN and HRP-2. In case HIV-1 would be able to bypass LEDGF/p75-dependent replication using HRP-2 as an alternative tether, LEDGINs would remain fully active.

Besides LEDGF/p75, a second member of the hepatoma-derived growth factor related protein family [22]. Hepatoma-derived growth factor related protein 2 (HRP-2), was shown to interact with HIV-1 IN [12]. Although HRP-2 overexpression relocated IN from the cytoplasm to the nucleus in LEDGF/p75-depleted cells [23], the IN–HRP-2 interaction was weaker than the IN–LEDGF/p75 interaction [12]. Neither transient [20,24] nor stable HRP-2 KD [6] reduced HIV-1 replication even after reduction of LEDGF/p75, suggesting that HRP-2 is not involved in HIV replication. However, it has not been excluded that in the absence of LEDGF/p75 HRP-2 can function as an alternative molecular tether of HIV integration.

Allosteric HIV-1 IN inhibitors that target the LEDGF/p75-IN interaction interface (LEDGINs) and potently block HIV-1 replication [25] are in preclinical development. The existence of alternative cellular cofactors, such as HRP-2, or alternative escape routes might hamper the clinical development of this class of compounds. To answer these questions, we have generated a human somatic LEDGF/p75 KO cell line. We demonstrate that laboratory-adapted HIV strains are capable of replicating in the absence of LEDGF/p75 but show a drastic replication defect. We show that this residual replication in the absence of LEDGF/p75 is predominantly mediated by HRP-2. Finally, we demonstrate that LEDGINs remained fully active even in the absence of LEDGF/p75 corroborating their allosteric mechanism of action.

Results

Generation of a human somatic LEDGF/p75 KO cell line

To clarify the role of LEDGF/p75 during spreading HIV-1 infection, we generated a human somatic KO in Nalm-6 cells, a human pre-B acute lymphoblastic leukemia cell line [26,27]. We eliminated the LEDGF/p75 isoform while preserving the LEDGF/p32 splice variant. Deletion of exon 11 to 14 in the NS3P1 gene fuses exon 10 to exon 15 resulting in a frame shift that yields a truncated LEDGF/p75 in which the C-terminus, including the IBD (aa 326–530) is replaced by a 9 aa tail (Figure S1A, referred to as LEDGFKO). Targeting plasmids were designed carrying the genomic flanking regions of LEDGF/p75 exon 11 and 14, interspersed with a floxed selection cassette (Figure 1A). Following transfection of wild-type Nalm-6 cells (Nalm+/+) with the first targeting plasmid and subsequent selection, three heterozygous clones (cl) (denoted as Nalm+/−; cl 31, cl 97 and cl 147, respectively) were obtained (Figure 1B). We continued with Nalm+/− cl 31. Transfection of Nalm+/− cl 31 with the second targeting plasmid resulted in the selection of a homozygous KO clone carrying both resistance cassettes (Nalm−/− cl 73). Selection cassettes were removed by Cre-mediated excision, resulting in seven LEDGF/p75 KO clones, referred to as Nalm−/− cl 1-7.

Correct homologous recombination of the genomic region was verified via genomic PCR (Figure 1C), Southern blot analysis (Figure 1D) and sequencing of the genomic and mRNA region (Figure S1A). The absence of wild-type LEDGF/p75 in the KO cells was corroborated by RT-PCR (Figure S1B and S1C), qRT-PCR (Figure S1D) and Western blot analysis (Figure 1E, arrow). A band of 52 kDa appears in the Nalm+/− and Nalm−/− cell lines; it corresponds to the truncated form, LEDGFKO (Figure 1E, arrowhead), and is absent in wild-type cells. Throughout the manuscript Nalm+/− cl 1 and cl 2 monoclonal cell lines are used. Wild-type Nalm-6 cells, referred to as Nalm−/+ , were used as controls, next to Nalm+/+ cl 31, referred to as Nalm−/+ , the closest clonal ancestor of the Nalm−/− cells.

Single round lentiviral transduction of LEDGF/p75 KO cells is hampered at the integration step

We first evaluated whether the LEDGF/p75 KO cells (Nalm−/−) support transduction by a single round HIV-based viral vector. We challenged the aforementioned engineered cell lines with a VSV-G pseudotyped HIV reporter virus encoding firefly luciferase under control of the viral long terminal repeat promoter (HIV-fLuc). Transduction efficiency (RLU/μg) was 6.7-fold lower in Nalm+/− cells (cl 1 and cl 2) compared to control Nalm−/+ and Nalm−/− cells (Figure 1F) (15±3.7% residual reporter activity; n = 10). Quantitative PCR revealed 2.4-fold lower integrated copies comparing Nalm−/− with Nalm−/+ (Figure 1G), whereas late RT products (Figure S1E) and 2-LTR circles remained unaffected (Figure S1F). Together these data indicate a block between reverse transcription and integration.

Since LEDGF/p75 determines lentiviral integration site selection, we analyzed the distribution of HIV-1 integration sites in the absence of LEDGF/p75. A total of 2,553 HIV-1 integration sites were obtained in Nalm-6 cells of which 799 in Nalm−/− (Table 1). Random control sites were generated computationally and matched to experimental sites with respect to the distance to the nearest_Msd cleavage site (matched random control, MRC) [2]. LEDGF/p75 KO significantly reduced the preference of HIV-1 to integrate in RefSeq genes (P<0.0001 for comparison of Nalm−/− cl 1 or 2 with Nalm−/+ or Nalm+/+) and instead, a preference for CpG islands (P<0.05 for comparison of Nalm−/− cl 1 or 2 with Nalm−/+ or Nalm+/+) and P=0.0001 for pooled comparison) emerged (Figure 1H and Table 1). Similar results were obtained using the Ensembl and UniGene annotation (Figure S1G and S1H). HIV-1 integration events in RefSeq genes remained nevertheless significantly favored over MRC in the KO cells (P<0.0001). The target DNA consensus proved to be LEDGF/p75 independent (compare Figure S1I with S1J). The consensus sequence for the different cell lines was similar to that determined previously [28–30].

In LEDGF/p75 KO cells residual replication is observed with laboratory strains but not with clinical isolates of HIV-1

In human LEDGF/p75 KD cells HIV-1 replication is hampered, but not completely blocked which can be attributed...
to the remaining minute amounts of LEDGF/p75 [5,6,20]. Although single round viral vector transduction was severely reduced in LEDGF KO MEFs [11,17,21], spreading HIV-1 infection in the absence of LEDGF/p75 could not be tested. To test HIV-1 replication, we introduced the CD4 receptor into the Nalm-6 cells that express CXCR4 [31].
replication. All selected transgenic cell lines (Nalm^{+/+}, Nalm^{+/c} and Nalm^{-/-} cl 1 and cl 2) showed similar growth rates (Figure S6A and S6C) and CD4 and CXCR4 expression levels (Figure S6D and S6E). We then challenged the respective cell lines with the laboratory strain HIVNL4.3 (Figure 2A). Both Nalm^{+/+} (Figure S2A) and Nalm^{-/-} cells supported viral replication to the same extent (Figure 2A). Peak viral replication was consistently observed between day 7 and 9 post infection depending on the multiplicity of infection (MOI; compare MOI 0.5 and 0.1 in Figure 2A). In Nalm^{-/-} cells infected with HIVNL4.3, low-level p24 production was observed, eventually leading to a breakthrough albeit after a lag-period of 14 to 18 days compared to control cells (Figure 2A, n = 6, a representative experiment is shown). Comparable data showing this delay were obtained with another laboratory strain, HIVIIIB (data not shown). We next characterized the virus harvested from Nalm^{-/-} at day 18 after infection with the laboratory strain HIVNL4.3 (referred to as HIV^{-/-}). Challenging Nalm^{+/+} cells with this virus demonstrated that HIV^{-/-} is replication competent (Figure S2C, right panel, HIV^{-/-} on Nalm^{+/+}). In addition, we evaluated whether HIV^{-/-} virus was phenotypically adapted to the absence of LEDGF/p75. HIV^{-/-} replication remained impaired in Nalm^{-/-} compared to Nalm^{+/+} cells (Figure S2C, right panel). The proviral IN sequence of HIV^{-/-} was unaltered compared with the consensus sequence of HIVNL4.3 (data not shown). Control HIV harvested from Nalm^{-/-} cells (denoted as HIV^{-/-}) demonstrated a phenotype that was comparable to that of HIVNL4.3 (Figure S2C, left panel). Serial passaging (N = 10) of HIV-1 on LEDGF/p75 KO cells did not result in phenotypic adaptation or changes in the proviral IN sequence (data not shown).

Table 1. Integration frequency near mapped genomic features in the human genome.

Cell line	% sites	% in RefSeq genes	%±2 kb CpG islands	
HIV sites	Nalm^{+/+}	1075	76.7±**	4.2
	Nalm^{+/c}	661	78.8±**	5.0
	Nalm^{-/-} cl 1	404	52.2±**	11.1±**
	Nalm^{-/-} cl 2	395	51.4±**	8.6±**
MRC sites	Nalm^{+/+}	3225	39.6	2.8
(HIV)	Nalm^{+/+}	1983	39.8	3.3
	Nalm^{-/-} cl 1	1212	40.8	3.6
	Nalm^{-/-} cl 2	1185	37.4	3.1

Abbreviations; MRC, matched random control.

Significant deviation from MRC using a two-tailed Fisher’s exact test (with Bonferroni correction) is denoted by **P < 0.0001. doi:10.1371/journal.ppat.1002558.t001**

HIV Replication in Human LEDGF/p75 Knockout Cells

Although residual HIV-1 replication in KO cells was only detectable after infection with laboratory strains, we performed additional experiments to understand this phenotype. Residual viral replication in the absence of LEDGF/p75 can either be explained by cofactor independent replication, or by the presence of a second cofactor that substitutes for LEDGF/p75. Like LEDGF/p75, HPR-2 also harbors a PWPP-domain and an IBD-like domain shown to interact with HIV-1 IN *in vitro* [12]. In order to determine whether HRP-2 can act as an alternative co-factor for HIV integration, we targeted the HRP-2 mRNA using miRNA-based short hairpins (miR HRP-2). As controls we employed a vector lacking the miRNA expression cassette (denoted as control) (Figure S7B). We generated stable HRP-2 KD cells, termed Nalm^{-/-} /miR HRP-2, Nalm^{-/-} /miR HRP-2 and Nalm^{-/-} /miR HRP-2 and matched controls Nalm^{-/-} /control, Nalm^{-/-} /control and Nalm^{-/-} /control-HRP-2 KD cells showed 65, 75 and 80% depletion of HRP-2, respectively, as determined by qPCR (Figure 3A). No effect on cellular growth kinetics was observed (data not shown). Upon single round transduction with HIV-1Lac no difference was observed in Nalm^{-/-} cells with or without HRP-2 KD (Figure 3B, left panel), whereas luciferase activity was reduced 5-fold in the Nalm^{-/-} /control cell line (20.0±1.5%, n = 3) due to LEDGF/p75 KO. An additional 2.4-fold reduction was observed in Nalm^{-/-} /miR HRP-2 when compared to Nalm^{-/-} /control (3.4±0.6%, n = 3) (Figure 3B, left panel) that correlated with a 2-fold reduction in integrated copies (Figure 3B, right panel).

We next challenged these cells with the laboratory strain HIVNL4.3 at different MOI (Figure 3C–E). In the control Nalm^{+/+} and Nalm^{+/c} cell lines, we observed a minor reduction in viral replication upon HRP-2 KD but only at lower MOI (compare Figure 3C and 3D, E). However, HRP-2 KD in LEDGF/p75 KO cells additionally inhibited HIV-1 replication 2- to 3-fold infection and not solely from virus release from cells infected in the first round. The observed delay in multiple round HIV-1 replication in the absence of LEDGF/p75 was further analyzed by quantification of the different HIV-1 DNA species at different time points after infection. Late RT products at 10 hrs post infection and 2-LTR circles at 24 hrs post infection were comparable in Nalm^{-/-} and Nalm^{+/+} cells (Figure S3A and S3B). Addition of the IN strand transfer inhibitor (INSTI) raltegravir (RAL) in Nalm^{-/-} and Nalm^{+/+} cell lines resulted in a comparable increase in 2-LTR circles at 24 hrs post infection. The number of integrated proviral copies (Alu-qPCR, Figure S3C) was severely reduced in the presence of RAL. In Nalm^{-/-}, a reduction in the number of integrants was detected after 24 and 48 hrs compared to Nalm^{+/+} cell lines.
compared to control cells (Figure 3C–E, compare Nalm$^{+/c}$ and Nalm$^{-/-} \text{ cl 1 and cl 2}$ cell lines were challenged with the laboratory strain HIVNL4.3 (A) and clinical isolates #1, 93TH053 (B) and #2, 96USSN20 [32] (C). Cells were infected at different MOI as indicated. Replication was monitored by measuring the p24 content of the supernatant. Experiments were repeated at least three times; representative experiments are shown. doi:10.1371/journal.ppat.1002558.g002

Figure 2. Residual HIV-1 replication in LEDGF/p75 KO cells is only observed after challenge with laboratory strains. Control Nalm$^{+/c}$ and KO Nalm$^{-/-} \text{ cl 1 and cl 2}$ cell lines were challenged with the laboratory strain HIVNL4.3 (A) and clinical isolates #1, 93TH053 (B) and #2, 96USSN20 [32] (C). Cells were infected at different MOI as indicated. Replication was monitored by measuring the p24 content of the supernatant. Experiments were repeated at least three times; representative experiments are shown. doi:10.1371/journal.ppat.1002558.g002

compared to control cells (Figure 3C–E, compare Nalm$^{-/-} \text{control}$ and Nalm$^{+/c} \text{ nmr HRP-2}$: detail panel). We generated a second LEDGF/p75 KO HRP-2 KD cell line to corroborate our results. Single round transduction with HIV-FLuc resulted in an additional 4.7-fold reduction of luciferase reporter activity when compared with LEDGF KO cells (Figure S5F), whereas HIV$_{NL4.3}$ replication was affected 10-fold at day 8 post infection when comparing LEDGF/p75 KO and LEDGF/p75 KO HRP-2 KD cells (compare Figure S5D with S5E, condition without compounds). To corroborate that additional KD of HRP-2 results in an increased block of integration in LEDGF/p75 KO cells, we analyzed the number of integrated viral copies at 24 hrs and at 5 days post infection, the latter in the presence of RIT (Figure 3F and 3G, respectively). A 2-fold drop in proviral copies upon HRP-2 KD was observed.

HRP-2 KD further hampers HIV-1 replication in LEDGF/p75 KD cells

To extend our findings in LEDGF/p75 KO cells, we tested whether HRP-2 KD resulted in additional reduction of viral replication in LEDGF/p75 KD HeLaP4 (Figure S4), PM1 (Figure 4A–C) and SupT1 (Figure 4D–F) cell lines. First, wild-
type HeLaP4 (wild-type) and LEDGF/p75 KD (miR LEDGF) cells [18] were transduced with miR HRP-2 or miR control vectors, the latter containing a miRNA-hairpin directed against nonmammic red fluorescent protein (DsRed) mRNA [33] (Figure S7C). Following zeocin selection, single HRP-2 KD (wild-type/ miR HRP-2) and double KD (miR LEDGF/miR HRP-2) cells showed 20–25% of residual HRP-2 mRNA levels compared to the control cell lines (wild-type, wild-type/miR control and miR LEDGF/miR control cells) as determined by qPCR (Figure S4A and S4C). Loss of HRP-2 protein was corroborated by Western blot analysis and immunocytochemistry (data not shown). Of note, LEDGF/p75 KD levels remained unaffected upon additional HRP-2 KD (data not shown) and growth rates of the respective cell lines were comparable (Figure S6B and S6C). KD of HRP-2 in wild-type HeLaP4 cells did not affect multiple HIV-1 replication (Figure S4B), confirming previous findings by Llano et al. [6]. LEDGF/p75 KD on the other hand reduced HIV-1 transduction 5-fold (luciferase reporter activity = 19.2 ± 3.5% of wild-type) (Figure S4D). Additional KD of HRP-2 in LEDGF/ p75-depleted cells diminished HIV-1-luc reporter activity an additional 2-fold, to 6.3 ± 2% of control cells (miR LEDGF/miR control) (Figure S4D). This reduction was accompanied with a 2-fold decrease in the number of integrated copies (Figure S4E). Transfection of the cell lines with the plasmid encoding HIV-1-luc (pHIV-1-luc) did not demonstrate any difference (Figure S4F), ruling out transcriptional effects upon HRP-2 KD. Next, we infected double KD (miR LEDGF/miR HRP-2) cells and control (miR LEDGF/miR control) cells together with wild-type and LEDGF/p75 back-complemented (LEDGF BC) cells with the laboratory strain HIVIIIb (Figure S4G). Viral replication was inhibited in miR LEDGF cells and rescued upon LEDGF/p75 back-complementation (Figure S4G, compare wild-type and LEDGF BC). Additional KD of HRP-2 in LEDGF/ p75-depleted cells diminished HIV-1-luc reporter activity an additional 4-fold, to 0.4% of control cells (miR LEDGF/miR control) (Figure S4D). This reduction was accompanied with a 4-fold decrease in the number of integrated copies (Figure S4E). Transfection of the cell lines with the plasmid encoding HIV-1-luc (pHIV-1-luc) did not demonstrate any difference (Figure S4F), ruling out transcriptional effects upon HRP-2 KD. Next, we infected double KD (miR LEDGF/miR HRP-2) cells and control (miR LEDGF/miR control) cells together with wild-type and LEDGF/p75 back-complemented (LEDGF BC) cells with the laboratory strain HIVIIIb (Figure S4G). Viral replication was inhibited in miR LEDGF cells and rescued upon LEDGF/p75 back-complementation (Figure S4G, compare wild-type and LEDGF BC). Additional KD of HRP-2 in LEDGF/p75-depleted cells (miR LEDGF/miR HRP-2) inhibited viral replication more than LEDGF/p75 KD alone (miR LEDGF/miR control). The latter demonstrated a breakthrough around day 30 post infection (Figure S4G, open diamonds), whereas cells with double KD did not demonstrate viral breakthrough (Figure S4G, open squares). Analysis was ended at 48 days post infection. Comparable data were obtained in HeLaP4 cell lines generated with other LV vectors (Figure S7B and S7D) using hygromycin B selection or eGFP sorting (data not shown). The additional block of HIV-1 replication upon HRP-2 KD in LEDGF/p75-depleted cell lines was also measured by quantifying the number of integrated proviral copies. At day 39, 45 and 48 post infection the number of integrated copies was low in double KD (miR LEDGF/miR HRP-2) cells compared to the control LEDGF/p75 KD (miR LEDGF/miR control) cells (Figure S4H) with proviruses numbering 0.032 (±0.012) and 0.033 (±0.012) per RNaseP genomic copy on day 39 and 48 respectively, compared to 1.39 (±0.18) and 0.79 (±0.23) in the control LEDGF/p75 KD cell lines. In addition, we quantified different HIV-1 DNA species at different time points post infection in wild-type, LEDGF/p75 KD (miR LEDGF/miR control) and double KD cells (miR LEDGF/miR HRP-2). We observed no difference in late RT products at 10 hrs post infection (Figure S4I). The number of 2-LTR circles in LEDGF/p75 KD (miR LEDGF/miR control) and both LEDGF/p75 and HRP-2 KD (miR LEDGF/miR HRP-2) cells was elevated compared to wild-type cells (Figure S4J). Together with the data in the LEDGF/p75 KO cells, these data indicate that HRP-2 KD blocks HIV-1 at a step between reverse transcription and integration but only after potnet depletion of LEDGF/p75.

Next, we expanded our findings to relevant T-cell lines, PM1 and SupT1. We generated cell lines with stable KD of LEDGF/p75, HRP-2 or both, together with their respective controls (constructs shown in Figure S7B). For PM1 cells KD efficiency was 85–92% for LEDGF/p75 (Figure 4A) and 79–81% for HRP-2 (Figure 4B), for SupT1 cells it amounted to 81–88% for LEDGF/p75 (Figure 4D) and 75–80% for HRP-2 (Figure 4E). In both cell lines HRP-2 KD alone did not affect HIV-1 replication, whereas a clear reduction in HIV-1 replication was observed upon LEDGF/p75 KD (Figure 4C and 4F, left panel, for PM1 and SupT1 respectively). Consistent with our findings in LEDGF/p75 KO cells and LEDGF/p75 KD HeLaP4 cells, also in PM1 and SupT1 cells, HRP-2 KD in LEDGF/p75 depleted cells further hampered HIV-1 replication (Figure 4G and 4F, detail panels, for PM1 and SupT1 respectively).

LEDGINs block residual HIV-1 replication in Nalm-6 cells

Recently, we reported a new class of antiretrovirals termed LEDGINs that bind to the LEDGF/p75 binding pocket of HIV-1 IN and block HIV-1 integration and replication in cell culture [25]. We assayed their activity in the LEDGF/p75 KO cells. We challenged Nalm-6 cells with different concentrations of LEDGIN 7 (aa 470–593) [12] in the presence of different concentrations of LEDGIN 7 (25). LEDGIN 7 blocked HIV-1 replication in all cell lines in a concentration dependent manner (Figure 5A and 5C). Similar data were obtained with the laboratory strain HIVNL4.3 (Figure S5A). The toxicity profile in Nalm-6 cells corresponded to that elaborated previously in MT4 cells [25]. No significant toxicity was observed in the concentrations used (data not shown). Of note, LEDGINs were also active against HIV harvested from LEDGF/p75 KO cells (HIV−/−, data not shown). RAL served as a positive control, demonstrating equal inhibition of HIV-1 replication in the different cell lines (Figure 5B and 5D). Dose response curves (Figure 5E and 5F) enabled determination of IC50 values, listed in Table S1.

LEDGINs also disrupt the interaction of HIV-1 IN with HRP-2

We have shown that residual replication of HIV-1 laboratory strains in LEDGF/p75 KO cells is predominantly mediated by HRP-2 and that LEDGINs block residual HIV-1 replication in KO cells. This can be explained by allosteric inhibition of LEDGINs or by the fact that binding of LEDGINs to the IN surface also impedes the interaction with HRP-2 or a combination of both. We evaluated whether LEDGINs inhibit the HRP-2-IN interaction in an AlphaScreen assay. Since IN binds HRP-2 via its IBD (aa 470–593) [12] in vitro, we measured the interaction between recombinant HIV-1 IN and the C-terminal part of HRP-2.
We generated maltose binding protein (MBP) tagged fusions containing either the C-terminal end of LEDGF/p75 (aa 325–530) or HRP-2 (aa 448–670). These recombinant proteins, MBP-LEDGF/p75325–530 and MBP-HRP-2 448–670, bound to His6-IN with apparent K_D's of 6.6 nM (\pm4.6 nM) or 89.8 nM (\pm18.1 nM), respectively (Figure 6A). In line with previous observations [25], LEDGINs inhibited the IN-LEDGF325–530 interaction (Figure 6B; IC$_{50}$ = 2.60 (\pm0.99) µM). LEDGINs also inhibited the IN-HRP-2448–670 interaction, albeit with a 10-fold lower IC$_{50}$ (Figure 6B; IC$_{50}$ = 0.23 (\pm0.14) µM). This

Figure 4. HRP-2 KD additionally hampers HIV-1 replication in LEDGF/p75 KD cell lines. Stable LEDGF/p75 and/or HRP-2 KD and control PM1 and SupT1 cells were generated. In (A) qPCR results for LEDGF/p75 and (B) HRP-2 mRNA expression levels, normalized to RNaseP for PM1 are shown. Average with standard deviations from experiments in triplicate, are shown. The constructs used, are shown below the graph. (C) Multiple round HIV-1 replication after challenge with the laboratory strain HIVNL4.3. On the right a detail panel for LEDGF/p75 KD cells is shown. In (D) LEDGF/p75 and (E) HRP-2 expression levels in SupT1 cells, analogous to (A) and (B) are shown. (F) Multiple round HIV-1 replication in the different SupT1 cells, analogous to (C), is shown.

doi:10.1371/journal.ppat.1002558.g004

2 (aa 448–670). We generated maltose binding protein (MBP) tagged fusions containing either the C-terminal end of LEDGF/p75 (aa 325–530) or HRP-2 (aa 448–670). These recombinant proteins, MBP-LEDGF/p75325–530 and MBP-HRP-2448–670, bound to His6-IN with apparent K_D's of 6.6 nM (\pm4.6 nM) or 89.8 nM (\pm18.1 nM), respectively (Figure 6A). In line with previous observations [25], LEDGINs inhibited the IN-LEDGF325–530 interaction (Figure 6B; IC$_{50}$ = 2.60 (\pm0.99) µM). LEDGINs also inhibited the IN-HRP-2448–670 interaction, albeit with a 10-fold lower IC$_{50}$ (Figure 6B; IC$_{50}$ = 0.23 (\pm0.14) µM). This
10-fold increased potency for LEDGIN 7 to block interaction of IN with MBP-HRP-2448–670 compared to MBP-LEDGF325–530 correlates well with the 13-fold lower affinity of MBP-HRP-2448–670 for IN, as shown in Figure 6A.

Next, we evaluated whether LEDGINs remain active in LEDGF/p75 KO HRP-2 KD cells. The residual HIV-1 replication was sensitive to inhibition by LEDGINs (Figure S5E).

Discussion

Since the identification of LEDGF/p75 as a binding partner of HIV-1 IN in 2003 [1], we and other groups have demonstrated its importance for HIV-1 replication [3–7,10,11,34,35]. Our current understanding of the mechanism of action proposes LEDGF/p75 to act as a molecular tether between the lentiviral preintegration
complex and the host cell chromatin; the chromatin reading capacity of LEDGF/p75 thereby determines integration site distribution [2,11,17,18]. Given the methodological restrictions associated with the RNAi and mouse KO studies of the past, we decided to investigate the role of LEDGF/p75 in HIV-1 replication by generating a human somatic LEDGF/p75 KO cell line. A second rationale for this study follows the recent development of LEDGINs, small molecules that efficiently target the interaction between HIV-1 IN and LEDGF/p75 by interaction with the LEDGF/p75 binding pocket in HIV-1 IN [25]. Since LEDGINs block HIV-1 replication, the interest in the question whether or not LEDGF/p75 is essential for viral replication was revived.

Our studies demonstrate that residual HIV-1 replication in LEDGF/p75 KO cells can be observed using laboratory-adapted HIV-1 strains (Figure 2A). These observations are reminiscent to data obtained in LEDGF/p75 KD cell lines [5,6,20], although important differences can be noticed. First, when clinical HIV-1 isolates were used, we observed sterilizing infections in LEDGF/p75 KO cells (Figure 2B and 2C). Sterilizing infection has never been reported with RNAi mediated LEDGF/p75 KD. Although the effect might be in part explained by a lower infectivity of these clinical isolates, it emphasizes the importance of LEDGF/p75 for HIV-1 replication. In addition, LEDGF/p75 KO results in a more pronounced shift of HIV-1 integration out of RefSeq genes when compared to control cells (25.7% difference when comparing LEDGF/p75 KO to control cells; Table S3, see column 8), whereas integration in LEDGF/p75 KD cells was only moderately affected (1.6–8.4% compared to control cells, Table S3, see column 8) [2].

A next application of our KO cell line was the investigation of the role of HRP-2 in HIV-1 replication. The cellular function of HRP-2 is currently unknown. Like LEDGF/p75, HRP-2 contains a PWWP domain at its N-terminus [12,22,36,37] and a basic C-
replication. Since LEDGF/p75 KD also affects viral replication in non-
LEDGF/p75, HRP-2 does not bind to mitotic chromatin [23]. Vanegas et al. demonstrated that contrary to
speckled nuclear localization pattern and binds to mitotic
13-fold lower affinity for HIV-1 IN than the corresponding part in
IBD containing C-terminal end of HRP-2 has an approximately
these observations, Vanegas et al. reported that Flag-LEDGF/p75
HRP-2 than LEDGF/p75, implying that the IN–HRP-2 interac-
tivity inhibited upon HRP-2 KD in LEDGF/p75 KO cells. HIV-1
engages HRP-2 as an alternative for LEDGF/p75, but this low
affinity IN binding partner (Figure 6A) can only substitute for
LEDGF/p75 after depletion of the latter (Figure 3, 4 and S4),
suggesting a dominant role for LEDGF/p75 over HRP-2. Several
reasons can be proposed. Cherepanov et al. [12] demonstrated that considerably less IN could be co-immunoprecipitated by
HRP-2 than LEDGF/p75, implying that the IN–HRP-2 interac-
tion is weaker than the IN-LEDGF/p75 interaction. In line with
these observations, Vanegas et al. reported that Flag-LEDGF/p75
but not Flag-HRP-2 co-immunoprecipitated IN from cell lysates
[23]. Here we demonstrate using AlphaScreen technology that the
IBD containing C-terminal end of HRP-2 has an approximately
13-fold lower affinity for HIV-1 IN than the corresponding part in
LEDGF/p75 (Figure 6A). Next, LEDGF/p75 demonstrates a
speckled nuclear localization pattern and binds to mitotic chromatin. Vanegas et al. demonstrated that contrary to
LEDGF/p75, HRP-2 does not bind to mitotic chromatin [23]
questioning its role as a chromatin-tethering molecule. However,
since LEDGF/p75 KD also affects viral replication in non-
dividing macrophages [20], the binding capacity of LEDGF/p75
to condensed mitotic chromatin might not be relevant for HIV-1
replication.

The preference of HIV-1 to integration in genes [38] is reduced
upon LEDGF/p75 KO corroborating previous observations in
LEDGF/p75 KD cells [2,11,17,18] and underscoring LEDGF/
p75 as the major targeting factor for HIV-1 integration. In line
with this tethering role for LEDGF/p75, chimeras carrying
alternative chromatin binding motifs fused to IBD could re-target
HIV-1 integration [18,39,40]. In addition, De Rijck et al. [41]
demonstrated that the LEDGF/p75 chromatin binding mirrors
HIV-1 integration site distribution. HIV-1 integration in RefSeq
genes remained significantly different from MRC throughout
(P<0.0001) and more directed towards CpG islands in LEDGF/
p75 KO cells. Both observations support the idea of an alternative
targeting mechanism for HIV-1 acting in the absence of LEDGF/
p75. Since additional HRP-2 KD resulted in an additional 2-fold
reduction in integrated copies compared to LEDGF/p75 depletion,
HRP-2 is a candidate. The integration site distribution pattern of
HIV-1 derived vectors remained unaltered after additional HRP-2 KD in LEDGF/p75 KD HEK293T cells [2],
but LEDGF/p75 depletion may have been insufficient in those
experiments.

Apart from LEDGF/p75 and HRP-2, no other human protein
contains a PWPP-domain in conjunction with an IBD. However,
other proteins or protein complexes could take over the tethering
activity in the absence of LEDGF/p75 and HRP-2 by combining
an IBD-like domain with a chromatin-binding function. The IBD
belongs to a family exemplified by the Transcription Factor IIS
(TFIIS) N-terminal domain (InterPro IPR017923 TFIIS_N) ([12]
and based on an updated search using the HHpred algorithm
[42,43]). Sequence comparison of the respective predicted IN-
binding loops of these domains, suggests it is however unlikely that
IN binds to these IBDD-like proteins as it does to the IBD of
LEDGF/p75 or HRP-2 (data not shown). Therefore the residual
HIV-1 replication observed in the LEDGF/p75 KO HRP-2 KD
cells may 1) still be HRP-2 mediated since the KD of HRP-2 is not
complete, 2) be mediated by an unknown third cellular cofactor
or complex, or 3) occur independently from cellular cofactors.

The question remains whether HRP-2 is of any importance for
HIV infection in patients? The HRP-2 phenotype only becomes evident
in vitro using laboratory strains and upon strong depletion
or KO of LEDGF/p75. Taking into account the lower affinity of
HRP-2 for HIV-1 IN, interaction likely only takes place in the
complete absence of LEDGF/p75. The LEDGF/p75KD is highly
conserved within humans and across species [12]. Only a few
SNPs have been identified [44]. Although relative LEDGF/p75
and HRP-2 expression levels still need to be verified in relevant
human cells, to date there is no evidence for LEDGF/p75
depletion in humans and a substituting role of HRP-2 in HIV-1
infection.

Previous reports demonstrated a moderate increase in 2-LTR
circles upon LEDGF/p75 KD [5,6], whereas 2-LTR circles were
not significantly different in LEDGF KO MEFs [11]. In this study,
we observed no clear difference in the number of 2-LTR circles
upon LEDGF/p75 KO. Possibly, the complete absence of
LEDGF/p75 affects other steps besides integration that might
result in reduced nuclear import and circle formation. Alterna-
tively, cellular pathways involved in 2-LTR formation may be
affected. Opposing effects on circle formation by reduced import
and reduced integration may finally result in an equal 2-LTR
circle number. Alternatively, the sensitivity of 2-LTR circle
quantification may be too low to detect a small increase.

In the last part of the manuscript we demonstrate that
LEDGINs block the residual replication observed in LEDGF/
p75 KO cell lines (Figure 5C) and block the interaction
in vitro
between HRP-2 and IN (Figure 6B). Figure 6D illustrates how
LEDGINs fit in the pocket at the IN core dimer interface.
LEDGINs block the interaction with two interhelical loops of the
IBDs of LEDGF/p75 (Figure 6E) or HRP-2 (Figure 6F). The
inhibition of the interaction with HRP-2 can explain why residual
replication of HIV-1 in LEDGF/p75 KO cells is still sensitive to
LEDGINs. Since LEDGF/p75 has been reported to act as an
allosteric modulator of the IN activity in vitro [1,12,45,46], it is
plausible that inhibition of the LEDGF/p75-IN interaction not
only interferes with its function as a molecular tether but also
results in an allosteric inhibition of IN activity. In fact, inhibition of
IN activity in the absence of LEDGF/p75 by potent
LEDGINs has been reported [25]. The allosteric mode of
inhibition by LEDGINs can as well explain inhibition of HIV-1
replication in LEDGF/p75 KO HRP-2 KD cells [25]. In vivo both
mechanisms are intrinsically coupled. LEDGINs compete with
LEDGF/p75 as a molecular tether and at the same time interfere
with integrase activities probably by affecting conformational
flexibility in the intasome. Whereas transdominant inhibition of
HIV-1 replication by IBD overexpression [4,35] presumably also
acts through this dual mechanism [46], RNAi-mediated depletion of
LEDGF/p75 likely only affects tethering and/or targeting. We
should however be cautious to translate the results in KO cells to
human patients. Since no individuals without functional LEDGF/
p75 expression have been documented, LEDGINs will always
have to compete with LEDGF/p75 for the IN binding pocket to
inhibit integration.
Somatic KO cell lines are cumbersome to generate. This is why few studies used this technology to study the role of cellular cofactors in virus replication. Previously, the role of cyclopiazonic A in HIV replication was confirmed in a human somatic KO cell line [47] as well as the roles of CBF1 [48] and TB7 [49] in Epstein-Barr virus replication. Our work supports the value of generating human KO cell lines for cofactor validation and drug discovery in general.

Materials and Methods

Cells and culture

Nalm-6 cells, SupT1 cells, obtained from the ATCC (Manassas, VA) and PM1 cells, a kind gift from Dorothee von Laer (Innsbruck Medical University, Innsbruck, Austria), were maintained in RPMI 1640 – GlutaMAX-I (Invitrogen, Merelbeke, Belgium) supplemented with 8% heat-inactivated fetal calf serum (FCS; Harlan Sera-Lab Ltd.) and 50 μg/ml gentamycin (Gibco, Invitrogen). HEK293T cells, obtained from O. Danos (Genethon, Evry, France), and HeLaP4 cells, a kind gift from Pierre Charneau, Institut Pasteur, Paris, France, were grown in DMEM (Invitrogen) supplemented with 5% FCS, 50 μg/ml gentamycin and 0.5 mg/ml geneticin (Invitrogen). All cells were grown in a humidified atmosphere with 5% CO2 at 37°C.

Growth kinetics

For growth curve analysis, Nalm-6 cells were seeded at 100,000 in 5 ml of corresponding medium and HeLaP4 cells at 200,000 per well in a 6-well plate. Cell growth was followed on consecutive days by cytometry (Coulter Z1, Beckmann Coulter). Experiments were performed in triplicate.

Plasmids

The HIV-based lentiviral transfer plasmid pCHMWS_CD4_IRES_Bsd encodes the CD4 receptor driven by a human early cytoskeletal virus (CMV) promoter followed by an EMCV internal ribosomal entry site (IRES) and a bacterialin resistance cassette (Bsd). The plasmid was generated by PCR amplification of human CD4 from a T-cell cDNA library using CD4-Fwd and CD4-Rev, followed by digestion with BamHI and XbaI, and cloning into pCHMWS_LEDGF_BC_IRES_Bsd [18], digested with BamHI and SpeI.

The lentiviral transfer plasmids for miRNA-based KD were generated based on miRNA-R30 as previously described [50,51] (Table S2). For HRP-2 KD, miR HRP-2 was adapted from the sequence validated previously [6]. As negative controls a non-functional, scrambled miRNA30-based short-hairpin sequence (miR scrambled) and a functional, short-hairpin sequence targeting the monomeric red fluorescent protein from Discosoma corallinaequaria (miR DsRed) were designed [33]. PCR fragments were introduced into the XhoI-BamHI sites from a modified pN3-eGFP plasmid (Clontech, Saint Quentin Yuelles, France) digested and cloned into the XhoI-KpnI sites at the 3′ end of the enhanced green fluorescent protein (eGFP) reporter cDNA, driven by a Spleen focus forming virus LTR (SFFV) promoter, resulting in pCSMWS_eGFP_miR_HRP2 and pCSMWS_eGFP_miR_scrambled. To generate pCSMWS_Zeo_miR_HRP2, the zeocin resistance cassette (Zeo) was amplified with primers Zeo-Fwd and Zeo-Rev from pBUD (Invitrogen), digested with NheI-PstII and inserted into the XbaI–PstII sites from a modified pN3-eGFP plasmid (Clontech, Saint Quentin Yuelles, France) digested and cloned into the XhoI-KpnI sites at the 3′ end of the enhanced green fluorescent protein (eGFP) reporter cDNA, driven by a Spleen focus forming virus LTR (SFFV) promoter, resulting in pCSMWS_eGFP_miR_HRP2 and pCSMWS_eGFP_miR_scrambled. To generate pCSMWS_Zeo_miR_HRP2, the zeocin resistance cassette (Zeo) was amplified with primers Zeo-Fwd and Zeo-Rev from pBUD (Invitrogen), digested with NheI-PstII and inserted into the XbaI–PstII sites from a modified pN3-eGFP plasmid (Clontech, Saint Quentin Yuelles, France) digested and cloned into the XhoI-KpnI sites at the 3′ end of the enhanced green fluorescent protein (eGFP) reporter cDNA, driven by a Spleen focus forming virus LTR (SFFV) promoter, resulting in pCSMWS_eGFP_miR_HRP2 and pCSMWS_eGFP_miR_scrambled. To generate pCSMWS_Zeo_miR_HRP2, the zeocin resistance cassette (Zeo) was amplified with primers Zeo-Fwd and Zeo-Rev from pBUD (Invitrogen) as a template. The resulting products were digested ClaI-XhoI and ligated into pCSMWS_Zeo_miR_HRP2.

For bacterial expression of C-terminal His6-tagged HIV-1 IN and MBP-tagged-LEDGF325–530, the plasmids pKBIN6H [10] and pMBP-A225 [4] were used, respectively. To construct pMBP-HRP-2, the sequence corresponding to aa 448 to 670 of HRP-2 was PCR amplified with primers HRP2-Fwd, and HRP2-Rev, using p3xFlagHRP-2 (a kind gift from E. Poeschla) as a template. The resulting products were digested and ligated into pMAL-c2E (New England Biolabs Inc., USA). The integrity of all plasmids was confirmed by DNA sequencing.

Retroviral vector production and transduction

LV production was performed as described earlier [18,52]. Briefly, vesicular stomatitis virus glycoprotein (VSV-G) pseudo-typed lentiviral vector particles were produced by PEI transfection in HEK293T cells using the different transfer plasmids. Single round HIV Sla3–LacZ fLuc (HIV-fLuc) virus was prepared by co-transfection of HEK293T cells with pNL4-3.LucR–E. (pHIV-fLuc, National Institutes of Health AIDS Research and Reference Reagent Program) and pMD.G, that codes for VSV-G.

For lentiviral transduction experiments, Nalm-6 cells were typically plated at 150,000 cells per well in a 96-well plate and transduced overnight. After 72 hrs, 50% of cells were reseeded for luciferase expression quantification and/or FACS analysis. The remainder was cultured for quantitative PCR and integration site analysis during at least 10 days to eliminate non-integrated DNA. HeLaP4 cells were plated at 20,000 cells per well in a 96-well plate and transduced overnight. After 72 hrs, 50% of cells were reseeded for luciferase quantification. The remainder was cultured for quantitative PCR or integration site analysis as described for Nalm-6 cells.

PSIP1 KO targeting plasmids

Targeting plasmids for generation of PSIP1 KO were designed and cloned as described previously [27,53] utilizing the MultiSite Gateway System (Invitrogen) as described [54]. Briefly, a 2.3 and a 2.0 kb fragment for the left and right arms of the targeting plasmids, respectively, were amplified by genomic PCR using primers LEDGF/p75 attB4 and LEDGF/p75 attB1 for the left arm, and primers LEDGF/p75 attB2 and LEDGF/p75 attB3 for the right arm (Table S2). The resulting fragments were cloned into pDONR/P4/P1R and pDONR/P2R-P3 via recombination, resulting in p3′-ENTR-left and p3′-ENTR-right, respectively. The fragments p5′-ENTR-left, p3′-ENTR-right, pDEST DTA-MLS, and pENTR lox-Puro or pENTR lox-Hygro, were then ligated using recombination to generate the final targeting plasmids pTARGET-LEDGF/p75-Hyg and pTARGET-LEDGF/p75-Puro, respectively.

Generation and validation of LEDGF/p75 KO cell lines

Cell lines were generated as previously described [27]. Briefly, targeting plasmid was transfected with Nucleofector I (Amamaxa, Inc., Gaithersburg, MD, USA) using 2×10^5 Nalm-6 cells and 2 μg of DNA. At 24 hrs after transfection, cells were seeded into 96-well plates at 10^3 cells per well, in culture medium supplemented with either 0.2 μg/ml puromycin (BD BioSciences, San Jose, CA, USA) or 0.33 mg/ml of hygromycin B (Clontech, Mountain View, CA, USA). After 2–3 weeks, individual drug resistant colonies were propagated and analyzed by genomic PCR using primers A and B or C (Figure 1A), generating a 3272 bp AB-fragment for Nalmα, Nalmαβ, Nalmαγ and a 3123 bp AC-fragment for Nalmαβ.
Nalm−/− (Figure 1C). Genomic PCR of the targeted region was performed with primers D and E generating a 1624 bp DE-fragment in Nalm+/+, Nalm−/+ and a 280 bp DE-fragment in Nalm−/− (Figure 1C). Targeting efficiency was calculated as the ratio of the number of cell clones where the LEDGF/p75 allele was disrupted by homologous recombination to the number of drug-resistant cell clones (Figure 1B). Sequencing of the genomic KO region was performed as follows. The PCR fragments obtained after amplification with primers gFB and gRB spanning a 1885 bp region around exon 11–14 in wild-type cells or a 571 bp region in KO cells, followed by nested PCR with primers gFA and gRA resulting in a 1694 bp in wild-type or 380 bp region in KO cells, were cloned into the pcRII-TOPO plasmid (Invitrogen, Merelbeke, Belgium) and sequenced with primers M13-Fwd and M13-Rev (Figure S1A). Total RNA extracted from KO clones (RNeasy 96 kit, Qiagen) was used for cDNA synthesis using oligo-dT primers (High capacity cDNA RT kit, Applied biosystems). Correct recombination was verified at mRNA level for LEDGF/p52, LEDGF/p75 and truncated LEDGF/p75 by PCR on cDNA using primers RNA-A and RNA-B for LEDGF/p52, LEDGF/p75 and LEDGFKO, RNA-A and RNA-C for LEDGF/p75 and LEDGFKO, RNA-A and RNA-D for LEDGF/p75, resulting in fragments of 245 bp, 1.606 kb or 1.163 kb and 1.011 kb, respectively (Figure S1C). Additionally, the cDNA of the truncated protein was sequence verified (Figure S1A) as follows: a PCR product generated by primers d243 and RNA-C, followed by nested PCR with primers d244 and LEDGF-R-exon15, was cloned into pcRII-TOPO (Invitrogen) and sequenced with M13-Fwd and M13-Rev. Primers are listed in Table S2.

Generation of stable CD4 expressing Nalm-6 cell lines

Stable CD4 expressing Nalm-6 cell lines were generated by transducing wild-type Nalm+/+ and Nalm−/− cl 1 and cl 2, with the lentiviral vector pCHMWS_CD4_IRES_Bsd and subsequent selection with blasticidin (3 μg/ml; Invitrogen, Merelbeke, Belgium). CD4 expression was verified by flow cytometry using R-Phycoerythrin-conjugated mouse anti-human CD4 monoclonal antibody (BD pharmigen) according to the manufacturer’s protocol.

Generation of LEDGF/p75 and HRP-2 KD cell lines

Stable monoclonal LEDGF/p75 KD cells were generated previously [18]. Additional HRP-2 KD was obtained by transduction of HeLaP4 wild-type cells and LEDGF/p75 KD cells with pCSMWS_Zeo_miR_HRP2, pCSMWS_Hygro_miR_HRP2 or pCSMWS_eGFP_miR_HRP2. Transduced cells were selected with zeocin (200 μg/ml) or hygromycin B (200 μg/ml) or by FACS sorting of eGFP positive cells respectively. Control cell lines were generated likewise by transduction with vectors encoding pCSMWS_Zeo_miR_DsRed, pCSMWS_eGFP_IREs_HygroR and pCSMWS_eGFP_miR_scrambled, respectively. Stable PM1 and SupT1 LEDGF/p75 KD cell lines were generated with LV, encoding a miRNA cassette targeting LEDGF/p75 under control of an SFFV promoter (unpublished data). Additional HRP-2 KD and control PM1, SupT1 and Nalm-6 cell lines were generated by transducing the cells with vectors made with pCSMWS_Hygro_miR_HRP2 and pCSMWS_eGFP_IREs_HygroR, respectively.

Integration site amplification and bioinformatic analysis

Integration sites were amplified by linker-Mediated PCR as described previously [17,18]. For integration sites to be authentic, sequences needed a best unique hit when aligned to the human genome (hg18 draft) using BLAT. The alignment began within 3 bp of the viral long terminal repeat end, and had >98% sequence identity. Reanalysis of previously obtained integration sites [2,11,17] was performed in parallel. Statistical methods are described previously [55]. Integration site counts were compared using a two-tailed Fisher’s exact test. Analysis was carried out using Prism 5.0 (GraphPad Software).

HIV-1 infection experiments

HIV-1 infection of Nalm-6 cells was typically performed with 1*10⁶ cells in 5 ml of medium with the indicated virus and MOI. After 6–12 hrs of infection, cells were washed twice with PBS and resuspended in the initial volume of culture medium. Infected HeLaP4 cells was performed as described previously [18]. HIV-1 replication was monitored by quantifying p24 antigen in the supernatant daily via ELISA (Alliance HIV-1 p24 ELISA kit; Perkin Elmer). Cells were split 1/6 every 3–6 days if experiments exceeded 10 days. PM1 and SupT1 cells were infected at 0.01 pg p24/cell.

PCR amplification and DNA sequencing of the coding regions of IN

Proviral DNA extraction of infected cells was performed using the QIAamp blood kit (Qiagen) according to the manufacturer’s protocol. PCR amplification and sequencing of IN encoding sequences were done as described previously [58].

Antiviral agents

Zidovudine (AZT) and ritonavir (RIT) were purchased and raltegravir (MK5138) was kindly provided by Tibotec (Mechelen, Belgium). LEDGIN 7 was synthesized as described [25].

Luciferase activity assay

Cells harvested from a 96-well plate were lysed with 50 μl lysis buffer (50 mmol/l Tris pH 7.5, 200 mmol/l NaCl, 0.2% NP40, 10% glycerol). The lysate was assayed according to the manufacturer’s protocol (ONE-Glow; Promega, Madison, WI). Luciferase activity was normalized for total protein (BCA; Pierce, manufacturer’s protocol). Luciferase activity was normalized for total protein (BCA; Pierce, Madison, WI).

Transfection of plasmid DNA in HeLaP4 cells

HeLaP4 cells were transfected with pHIV-fLuc using Lipofectamine 2000 (Invitrogen, Merelbeke, Belgium) according to the manufacturer’s protocol with minor modifications. Briefly, 70,000 cells were seeded in a 96 well plate and transfected after one day with a mixture of 333 ng DNA and 0.66 μl Lipofectamine 2000 for 4 hrs and washed afterwards twice with PBS. 48 hrs post
transfection cells were harvested for luciferase activity quantification.

Quantitative PCR

Quantification of LEDGF/p75 mRNA levels was performed as described previously [18]. Similar settings were used to determine HRP-2 mRNA levels. HRP-2 primer/probe set: HRP2 fwd, HRP2 as and HRP2 probe. In all cases, RNaseP was used as endogenous housekeeping control (TaqMan RNaseP Control Reagent; Applied Biosystems). All samples were run in triplicate for 3 minutes at 95°C followed by 50 cycles of 10 seconds at 95°C and 30 seconds at 55°C. Data were analyzed with iQ5 Optical System Software (BioRad, Nazareth, Belgium). To quantify the different HIV-1 DNA species qPCR for total viral DNA, 2-LTR circles and integrated copies was performed as described [59,60], with minor modifications. Nalm-6 cells were seeded one day prior to infection at 2×10^5 cells per ml. After 4 hrs of incubation with HIV, medium was replaced by RPMI containing RIT and AZT both at 25 times IC50 following infection at 2×10^5 cells per ml. After 4 hrs of incubation with HIV, medium was replaced by RPMI containing 10% FCS. To quantify the number of integrated replication cycle could take place and genomic DNA was isolated on day 39, 45 or 48, before harvesting genomic DNA. Quantitative PCR for total viral DNA, 2-LTR circles and integrated copies was performed as shown in Figure S4H, cells were cultured for 10 days in medium containing RIT and AZT both at 25 times IC50 following day 39, 45 or 48, before harvesting genomic DNA. Quantitative Alu-PCR for quantification of proviral copies was done in two steps [60]. The first phase amplifies from Alu sequences to U3 sequences absent in self-inactivating (U3-deleted) HIV-1 vectors using 400 nM AluSINFwd, 400 nM qAluRout SB704. Amplification conditions were 95°C for 30 sec, 60°C for 40 sec, 72°C for 1 min 30 sec, ×13 cycles. The second phase amplifies a nested product using 300 nM sense primer Q-Alu-F-in, 300 nM antisense Q-Alu-R-in and 200 nM Alu-probe. PCR conditions were 95°C for 10 sec, 55°C for 30 sec, ×50 cycles.

Southern blot analysis

Southern blot analysis was performed as described previously in [61,62]. Briefly, genomic DNA was digested with BamHI, separated by electrophoresis on a 0.7% agarose gel and blotted on positively charged nylon membranes (Biodyne B; Pall Corp., Pensacola, FL, USA). The probe covered a 1024 bp genomic region around exon 10 of LEDGF/p75 (NM_021144.3), LEDGF/p52 (NM_032631.2). The Genbank (http://www.ncbi.nlm.nih.gov/genbank) accession numbers for the proteins discussed in this paper are LEDGF/p75 (NM_033222.3) and HRP-2 (NM_002631.2).

Production and purification of recombinant proteins

Recombinant HIV-1 IN containing a C-terminal His6 tag was purified as described previously [10]. LEDGF325–530 and HRP-2 448–670 fragments were expressed in E. coli as maltose binding protein (MBP) fusions. The purification of pMBP-LEDGF325–530 and pMBP-HRP-2448–670 from BL21(DE3) bacterial cells was done as described previously [4]. For purification, cells were resuspended in lysis buffer (50 mM Tris-HCl, pH 7.2, 500 mM NaCl, 5 mM dithiothreitol, 1 mM EDTA, 0.2 mM phenylmethylsulfonyl fluoride, 0.1 U/ml DNase). After complete lysis by ultrasonication, the supernatant was cleared by centrifugation and recombinant proteins were bound to amylose resin (New England Biolabs Inc, United Kingdom). The resin was washed with 20 bed volumes wash buffer (50 mM Tris-HCl, pH 7.2, 500 mM NaCl, 5 mM dithiothreitol), and the MBP-tagged proteins were eluted in 1 ml fractions wash buffer supplemented with 10 mM maltose. The fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis for protein content, pooled, and concentrated by dialysis (overnight, 4°C) against storage buffer (50 mM Tris-HCl, pH 7.2, 500 mM NaCl, 50% (vol/vol) glycerol). All protein concentrations were measured using the Bradford assay (Bio-Rad).

Supporting Information

Figure S1 Characterization of LEDGF/p75 KO cells. (A) Scheme of LEDGF/p75, LEDGF/p52 and the truncated variant of LEDGF/p75 after proficient KO (LEDGF ΔExon 10). Different domains of LEDGF are shown: PWWP-domain, nuclear localization signal (NLS), AT-hook like domains (AT-hooks) and the IBD. The sequencing product of the mRNA of LEDGFKO in the KO clones reveals the predicted frame shift after joining of exon 10 and 13, leading towards a premature stop codon. (B) Scheme of mRNA transcripts of LEDGF/p52 and LEDGF/p75. The KO region is indicated with a horizontal red bar. (C) Analysis of mRNA with reverse transcriptase PCR (RT-PCR), indicated
cell lines were generated from stable LEDGF/p75 KD HeLaP4 cell lines (miR LEDGF). Constructs used to generate the cells are listed below the graph. (C) HRP-2 mRNA expression levels were determined with qPCR, normalized to RNaseP expression levels and expressed as percentage from wild-type. (D) Different cell lines were transfected with HIV-fLuc and luciferase expression was quantified (RLU per µg protein). In (E) the number of integrated copies was determined. Following transfection with HIV-fLuc, cells were grown for an additional 10 days to eliminate non-integrated viral DNA. (F) Different HeLaP4 cell lines were transfected with pHIV-fLuc and luciferase expression was quantified. In panel (G) we challenged the different cell lines with the laboratory strain HIVNL4.3. The experiment was continued for 48 days. Supernatant was harvested for p24 ELISA. Experiments were performed in duplicate; a representative experiment is shown. (H) Following multiple round HIV-1 infection as presented in (G), we determined the number of proviral copies by qPCR in miR LEDGF/miR control and miR LEDGF/miR HRP-2 cells on day 39, 45 and 48, when cells were grown for an additional 10 days in the presence of antiretroviral therapy to eliminate non-integrated viral DNA. In (I) we determined late reverse transcripts (Late RT products) at 10 hrs post infection (p.i.) with HIVNL4.3 using qPCR, normalized to RNaseP genomic copies. In (J) 2-LTR circles were determined at 24 hrs post infection with HIVNL4.3 using qPCR, normalized to RNaseP genomic copies. Average ± standard deviations are shown from experiments performed at least in triplicate.

Figure S5 Effect of LEDGINs on HIV in LEDGF/p75 KO HRP-2 KD cells. (A) Control Nalm-6 and KO Nalm-6+/− cell lines were challenged with the laboratory strain HIVNL4.3 in the absence (0 µM) or presence of LEDGIN 7 (31 µM). Experiments were performed in duplicate; average ± standard deviations is shown. (B-E) Stable HRP-2 KD (miR HRP-2) and control (control) Nalm-6+/− and Nalm-6−/− cells were challenged with HIVNL4.3 in the presence of various concentrations of LEDGIN 7 (0 µM, circles; 0.2 µM, squares; 2.5 µM, triangles or 31 µM, triangles pointing downwards). (F) Luciferase activity following HIV-fLuc transfection in the different cell lines is shown. Average ± standard deviations is shown from experiments performed in triplicate. Replication was monitored by measuring the p24 content of the supernatant.

Figure S6 Cell growth and expression levels of CD4 or CXCR4. (A) On day zero 100,000 Nalm-6 cells were seeded in triplicate in 5 ml of culture medium. Cells were counted on a daily basis. Average numbers and standard deviations are shown. (B) Different HeLaP4 cell lines were seeded at 200,000 cells in a 6 well format and counted daily. Average and standard deviations of experiments in triplicate are shown. The different vectors used to generate the additional HRP-2 KD-control cell lines are specified within brackets. In (C) the doubling time and 95% confidence interval (95% CI) was calculated after nonlinear regression (exponential growth curve fit). The representing R-square (R²) is given. (D) Stable CD4-expressing cell lines selected with blasticidin were generated through transduction with a lentiviral vector (pCHMWS_CD4_ires_Bsd). Equal expression was verified with flow cytometry using a PE-labeled CD4 antibody. Experiments were performed in triplicate, averages of percentage gated cells times MFI and standard deviation are shown. Nalm-6−/−, Nalm−/−, Nalm−/− Nalm-6+/− cl 1 and cl 2 used in this figure represent CD4-expressing descendants from Nalm-6 cell lines as described in Figure 1. (E) Nalm-6 cells express the HIV-1 coreceptor CXCR4
as demonstrated previously. Likewise equal expression was verified with flow cytometry using a PE-labeled CXCR4 antibody. (EPS)

Figure S7 Schematic overview of viral vector constructs. (A) Lentiviral vector construct for CD4 expression. (B–D) Different lentiviral vectors to generate stable HRP-2 KD and control cell lines, ordered pairwise, are shown. Abbreviations: IRES, internal ribosomal entry site; Hygro, hygromycin B; HRP-2, Hepatoma derived growth factor related protein 2; Bsd, blasticidin; Zeo, zeocin. (EPS)

Table S1 IC50 values for LEDGINs (LEDGIN 7) and INSTIs (RAL). IC50 values for LEDGIN 7 and Raltegravir were calculated based on data shown in figure 6. Data were fitted to a sigmoidal dose-response (variable slope) curve, from which IC50 values were calculated. Mean and 95% confidence interval are shown. (DOC)

Table S2 Overview of primers and probes used. Primers and probes used throughout the manuscript are shown. (DOC)

References
1. Cheripanov P, Maertens G, Poore P, Dev Reese B, Van Beersum J, et al. (2003) HIV-1 integrase forms stable tetramers and associates with LEDGIN/p75 protein in human cells. J Biol Chem 278: 372–381.
2. Ciuffi A, Llano M, Posechla E, Hoffmann C, Leipzig J, et al. (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11: 1287–1289.
3. Buschtsios K, Vercauteren J, Emiliani S, Benarous R, Engelbrothers Y, et al. (2005) The interaction of LEDGF/p75 with integrase is lentivirus-specific and promotes DNA binding. J Biol Chem 280: 17641–17657.
4. De Rijck J, Vandekerckhove L, Gijbers R, Hombrouck A, Hendrix J, et al. (2006) Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication. J Virol 80: 11496–11509.
5. Vandekerckhove L, Christ F, Van Maede B, De Rijck J, Gijbers R, et al. (2006) Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus. J Virol 80: 1806–1806.
6. Llano M, Saenz DT, Mohran A, Wonghiba P, Perez M, et al. (2006) An essential role for LEDGF/p75 in HIV infection. Science 314: 461–464.
7. Buschtsios K, Voet A, De Maeyer M, Rain JC, Emiliani S, et al. (2007) Identification of the LEDGF/p75 binding site in HIV-1 integrase. J Mol Biol 365: 1409–1492.
8. Singh DP, Kimura A, Chylack LT, Jr., Shinohara T (2000) Lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J Biol Chem 275: 35329–35339.
9. Ge H, Si Y, Roeder RG (1998) Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 17: 6723–6729.
10. Shi A, von der Most P, Yaro Z, Tacke A, Sauter M, et al. (2005) The interaction of LEDGF/p75 with integrase is lentivirus-specific and regulates integrase binding efficiency. J Virol 79: 11295–11305.
11. Sullivan PS, Do AN, Ellenberger D, Pau CP, Paul S, et al. (2000) Human immunodeficiency virus (HIV) subtype surveillance of African-born persons at HIV Replication in Human LEDGF/p75 Knockout Cells

Table S3 Effect of LEDGF/p75 KD or KO on the frequency of viral integration in genomic features. Comparison of the HIV integration site distribution pattern elaborated in current and previous publications [2,11,17]. Frequency of viral integration in genomic features (integration in RefSeq genes, ±2 kb or ±4 kb around CpG islands) is shown. (DOC)

Acknowledgments
We thank Paulien Van de Velde, Barbara Van Remoortel and Jooke Van der Veken for excellent technical assistance, Nirav Malani for assistance with the reanalysis of the integration site distributions from previous publications and Charles C. Berry for the statistical advice.

Author Contributions
Conceived and designed the experiments: RS JDR NA RG ZD. Performed the experiments: RS JD NA. Analyzed the data: RS JDR JD NA FC RG ZD. Contributed reagents/materials/analysis tools: KR FDB SV. Wrote the paper: RS JDR RG ZD.
risk for group O and group N HIV infections in the United States. J Infect Dis 181: 463–465.

33. Zaiteva L, Cherchevov P, Leyens L, Wilson SJ, Rasaiyah J, et al. (2009) HIV-1 imports importin 7 to maximize import of its DNA genome. Retrovirology 6: 11.

34. Hombrouck A, De Rijck J, Hendrix J, Vandekerckhove L, Voet A, et al. (2007) Virus evolution reveals an exclusive role for LEDGF/p75 in chromosomal tethering of HIV. PLoS Pathog 3: e47.

35. Mechen AM, Saenz DT, Morrison J, Hu C, Preuz M, et al. (2011) LEDGF dominant interference proteins demonstrate penuclear exposure of HIV-1 integrase and synergize with LEDGF depletion to destroy viral infectivity. J Virol 85: 3570–3583.

36. Izumoto Y, Kuruda T, Harada H, Kishimoto T, Nakamura H (1997) Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem Biophys Res Commun 238: 26–32.

37. Steer I, Naq SB, van Ommen GJ, den Dunnen JT (2000) The PWWP domain: a potent protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 473: 1–5.

38. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, et al. (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110: 521–529.

39. Ferris AL, Wu X, Hughes CM, Stewart C, Smith SJ, et al. (2010) Lens epithelium-derived growth factor proteins redirect HIV-1 DNA integration. Proc Natl Acad Sci U S A 107: 3135–3140.

40. Silvers RM, Smith JA, Schouten S, Litwin S, Liang Z (2010) Modification of intron DNA tethering of HIV-1 integrase by the transcriptional coactivator p75. J Mol Biol 410: 811–830.

41. Xu GL, Bestor TH, Bourc’his D, Hsieh CL, Tommerup N, et al. (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402: 187–191.

42. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, et al. (1996) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 71: 284–291.

43. Popovic M, Samagdzhargan MG, Read E, Gallo RC (1984) Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224: 497–500.

44. McNeely M, Hendrix J, Busschots K, Boons E, Deleersnijder A, et al. (2011) In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75. J Mol Biol 410: 811–830.

45. Popovic M, Sarngadharan MG, Read E, Gallo RC (1984) Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224: 497–500.

46. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, et al. (1996) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 71: 284–291.

47. Xu GL, Bestor TH, Bourc’his D, Haich CL, Tommerup N, et al. (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402: 187–191.

48. Feederle R, Delecluse HJ, Rouaix JP, Schepers A, Hammerschmidt W (2004) Efficient somatic gene targeting in the lymphoid human cell line DG75. Gene 343: 91–97.

49. Sun D, Melegari M, Seidhur S, Beiler CE, Zhu L (2006) Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multiplex gene knockdown. Biotechniques 41: 59–63.

50. Bignamini A, Van de Haute C, Aelvoet SA, Valsecchi F, Rodenburg RJ, et al. (2011) Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J Cell Sci 124: 1115–1123.

51. Ferris AL, Wu X, Hughes CM, Stewart C, Smith SJ, et al. (2010) Lens epithelium-derived growth factor proteins redirect HIV-1 DNA integration. Proc Natl Acad Sci U S A 107: 3135–3140.

52. Ferris AL, Wu X, Hughes CM, Stewart C, Smith SJ, et al. (2010) Lens epithelium-derived growth factor proteins redirect HIV-1 DNA integration. Proc Natl Acad Sci U S A 107: 3135–3140.

53. Ferris AL, Wu X, Hughes CM, Stewart C, Smith SJ, et al. (2010) Lens epithelium-derived growth factor proteins redirect HIV-1 DNA integration. Proc Natl Acad Sci U S A 107: 3135–3140.

54. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, et al. (1996) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 71: 284–291.

55. Butler SL, Hansen MS, Bushman FD (2001) A quantitative assay for HIV DNA integration in vivo. Nat Med 7: 631–634.

56. Xu GL, Bestor TH, Bourc’his D, Haich CL, Tommerup N, et al. (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402: 187–191.

57. Xu GL, Bestor TH, Bourc’his D, Haich CL, Tommerup N, et al. (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402: 187–191.

58. Xu GL, Bestor TH, Bourc’his D, Haich CL, Tommerup N, et al. (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402: 187–191.

59. Ikezumi S, Nomura Y, So S, Uegaki K, Aoki K, et al. (2006) Simple one-week method to construct gene-targeting vectors: application to production of human knockout cell lines. Biotechniques 41: 311–316.

60. Ikezumi S, Nomura Y, So S, Uegaki K, Aoki K, et al. (2006) Simple one-week method to construct gene-targeting vectors: application to production of human knockout cell lines. Biotechniques 41: 311–316.

61. Ikezumi S, Nomura Y, So S, Uegaki K, Aoki K, et al. (2006) Simple one-week method to construct gene-targeting vectors: application to production of human knockout cell lines. Biotechniques 41: 311–316.

62. Ikezumi S, Nomura Y, So S, Uegaki K, Aoki K, et al. (2006) Simple one-week method to construct gene-targeting vectors: application to production of human knockout cell lines. Biotechniques 41: 311–316.

63. Ikezumi S, Nomura Y, So S, Uegaki K, Aoki K, et al. (2006) Simple one-week method to construct gene-targeting vectors: application to production of human knockout cell lines. Biotechniques 41: 311–316.

64. Ikezumi S, Nomura Y, So S, Uegaki K, Aoki K, et al. (2006) Simple one-week method to construct gene-targeting vectors: application to production of human knockout cell lines. Biotechniques 41: 311–316.

65. Ikezumi S, Nomura Y, So S, Uegaki K, Aoki K, et al. (2006) Simple one-week method to construct gene-targeting vectors: application to production of human knockout cell lines. Biotechniques 41: 311–316.

66. Ikezumi S, Nomura Y, So S, Uegaki K, Aoki K, et al. (2006) Simple one-week method to construct gene-targeting vectors: application to production of human knockout cell lines. Biotechniques 41: 311–316.