A family of bipartite separability criteria based on Bloch representation of density matrices

Xue-Na Zhu1 · Jing Wang2 · Gui Bao1 · Ming Li2 · Shu-Qian Shen2 · Shao-Ming Fei3,4

Received: 20 January 2022 / Accepted: 5 April 2023 / Published online: 28 April 2023 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

We study the separability of bipartite quantum systems in arbitrary dimensions based on the Bloch representation of density matrices. We present two separability criteria for quantum states in terms of the matrices $T_{\alpha\beta}(\rho)$ and $W_{ab,\alpha\beta}(\rho)$ constructed from the correlation tensors in the Bloch representation. These separability criteria can be simplified and detect more entanglement than the previous separability criteria. Detailed examples are given to illustrate the advantages of results.

Keywords Separability of quantum systems · Bloch representation · Separability criteria · Quantum entanglement · Entangled states

1 Introduction

Quantum entanglement [1–5] lies at the heart of quantum information processing and quantum computation [6]. The quantification of quantum entanglement has drawn much attention in the last decade. A prior question in the study of quantum entanglement is to determine whether a given quantum state is entangled or not. Denote H_M and H_N the vector spaces with dimensions M and N, respectively. A bipartite $M \otimes N$ state $\rho \in H_M \otimes H_N$ is said to be separable if it can be written as a convex sum of
tensor products of the states of subsystems,

$$\rho = \sum_i p_i \rho_M^i \otimes \rho_N^i,$$ \hspace{1cm} (1)

where $$p_i \geq 0$$ and $$\sum_i p_i = 1$$. Otherwise, $$\rho$$ is said to be entangled.

As a consequence, much efforts have been devoted to the so-called separability problem. The most well-known one is the positive partial transpose (PPT) criterion [7, 8], which is both necessary and sufficient for low-dimensional systems $$2 \otimes 2$$ and $$2 \otimes 3$$. For high-dimensional states, the PPT criterion is only a necessary one. A variety of separability criteria have been proposed so far, for example, realignment criteria [9, 10], covariance matrix criterion (CMC) [11], and so on [12–15]. In particular, much subsequent works [16–19] have been devoted to finding necessary conditions for separability based on Bloch representation of density matrices.

In terms of the Bloch representation, any quantum state $$\rho \in H_M \otimes H_N$$ can be written as,

$$\rho = \frac{1}{MN}
\left(I_M \otimes I_N + \sum_{k=1}^{M^2-1} r_k \lambda_k^M \otimes I_N + \sum_{l=1}^{N^2-1} s_l I_M \otimes \lambda_l^N + \sum_{k=1}^{M^2-1} \sum_{l=1}^{N^2-1} t_{kl} \lambda_k^M \otimes \lambda_l^N\right),$$ \hspace{1cm} (2)

where $$I_i (i = M, N)$$ denote the $$i \times i$$ identity matrix, and $$\lambda_i^M, i = 1, 2, ..., M^2 - 1$$, are the generators of $$SU(M)$$ given by $$\{\omega_l, u_{jk}, v_{jk}\}$$ with $$\omega_l = \sqrt{\frac{2}{(l+1)(l+2)}} \left(\sum_{i=0}^{l^2} |i\rangle\langle i| - (l+1)|l+1\rangle\langle l+1|\right)$$, $$u_{jk} = |j\rangle\langle k| + |k\rangle\langle j|$$, $$v_{jk} = -i(|j\rangle\langle k| - |k\rangle\langle j|)$$, $$0 \leq l \leq M - 2$$ and $$0 \leq j < k \leq M - 1$$,

$$r_i = \frac{M}{2} Tr(\rho \lambda_i^M \otimes I_N), s_i = \frac{N}{2} Tr(\rho I_M \otimes \lambda_i^N)$$ and $$t_{ij} = \frac{MN}{4} Tr(\rho \lambda_i^M \otimes \lambda_j^N)$$.

Denote $$r = (r_1, ..., r_{M^2-1})^T$$ and $$s = (s_1, ..., s_{N^2-1})^T$$, where $$t$$ stands for transpose. Let $$T(\rho)$$ be the matrix with entries $$t_{kl}$$. If the bipartite state $$\rho \in H_M \otimes H_N$$ with Bloch representation (2) is separable, it has been shown that [16]

$$||T(\rho)||_{KF} \leq \sqrt{\frac{MN(M-1)(N-1)}{4}},$$ \hspace{1cm} (3)

where the Ky Fan matrix norm is defined as the sum of the singular value of the matrix, and $$||A||_{KF} = Tr \sqrt{A^\dagger A}$$. In [18], the authors presented a stronger separability criteria,

$$||T'(\rho)||_{KF} \leq \sqrt{(M^2 - M + 2)(N^2 - N + 2)} \frac{2}{2MN}$$ \hspace{1cm} (4)

for separable states, where $$T'(\rho) = \begin{pmatrix} 1 & s^T \\ r & T(\rho) \end{pmatrix}$$. In [17], the authors constructed the following matrix,

$$S_{ab}^m(\rho) = \begin{pmatrix} a b E_{m \times m} & a w_m(s) \\ b w_m(r) & T(\rho) \end{pmatrix}.$$
where \(a \) and \(b \) are nonnegative real numbers, \(E_{mm} \) is the \(m \times m \) matrix with all entries being 1, \(m \) is a given natural number, and \(w_m(x) \) denotes \(m \) columns of the column vector \(x \), i.e. \(w_m(x) = (x \ldots x) \). Theorem 1 of [17] showed that if the state \(\rho \in H_M \otimes H_N \) is separable, then \(\rho \) satisfies

\[
||S^{m}_{ab}(\rho)||_{KF} \leq \frac{1}{2} \sqrt{(2ma^2 + M^2 - M)(2mb^2 + N^2 - N)},
\]

which is even stronger than the previous criteria.

2 Separability conditions from the Bloch representation based on \(T_{\alpha\beta}(\rho) \)

Denote \(\alpha = (a_1, \ldots, a_n)^t \) and \(\beta = (b_1, \ldots, b_m)^t \), where \(a_i \ (i = 1, \ldots, n) \) and \(b_j \ (j = 1, \ldots, m) \) are given real numbers, and \(m \) and \(n \) are positive integers. We define the following matrix,

\[
T_{\alpha\beta}(\rho) = \begin{pmatrix}
\alpha^t & \alpha s^t \\
r \beta^t & T(\rho)
\end{pmatrix}.
\]

(6)

Using \(T_{\alpha\beta}(\rho) \), we have the following separability criterion for bipartite states.

Theorem 1 If the state \(\rho \in H_M \otimes H_N \) is separable, then

\[
||T_{\alpha\beta}(\rho)||_{KF} \leq \sqrt{||\alpha||_2^2 + \frac{M(M-1)}{2}} \sqrt{||\beta||_2^2 + \frac{N(N-1)}{2}},
\]

where \(|| \cdot ||_2 \) is the Euclidean norm on \(R^{N^2-1} \).

Proof A bipartite quantum state with Bloch representation (2) is separable if and only if there exist vectors \(\mu_i \in R^{M-1} \) and \(v_i \in R^{N-1} \) with \(||\mu_i||_2 = \sqrt{\frac{M(M-1)}{2}} \) and \(||v_i||_2 = \sqrt{\frac{N(N-1)}{2}} \), and \(0 < p_i \leq 1 \) with \(\sum_i p_i = 1 \) such that

\[
T(\rho) = \sum_i p_i \mu_i v_i^t, \quad r = \sum_i p_i \mu_i, \quad s = \sum_i p_i v_i.
\]

The matrix \(T_{\alpha\beta}(\rho) \) can then be written as,

\[
T_{\alpha\beta}(\rho) = \begin{pmatrix}
\alpha^t & \alpha s^t \\
r \beta^t & T(\rho)
\end{pmatrix} = \sum_i p_i \begin{pmatrix}
\alpha^t & \alpha v_i^t \\
\mu_i \beta^t & \mu_i v_i^t
\end{pmatrix} = \sum_i p_i \begin{pmatrix}
\alpha^t \\
\mu_i
\end{pmatrix} \begin{pmatrix}
\beta^t, v_i^t
\end{pmatrix}.
\]
Therefore,

\[||T_{\alpha\beta}(\rho)||_{KF} \leq \sum_i p_i ||(\alpha_{\mu_i})_2 \cdot |(\beta^t, v_i^t)||_2 \]

\[= \sqrt{||\alpha||_2^2 + \frac{M(M-1)}{2} \sqrt{||\beta||_2^2 + \frac{N(N-1)}{2}}} \]

It can be seen that if we chose \(a_i = a \) and \(b_j = b \) for \(i, j = 1, ..., n \) and \(m = n \), Theorem 1 reduces to the separability criterion (5) given in [17].

Define

\[R(\beta) = \left(\begin{array}{c} p\beta \beta^t \\ \beta \beta^t \end{array} \right) \]

where \(p \) is a nonzero real number, \(\beta \) is a nonzero \(n \times (m) \)-dimensional real vector, and \(W \) is an \(m \times m \) Hermitian matrix. We denote \(\lambda_i(R(\beta)) \) the singular values of \(R(\beta) \) with \(\lambda_i(R(\beta)) \leq \lambda_j(R(\beta)) \) \((i \leq j)\).

Lemma 1 For \(\beta_1 \neq \beta_2 \) but \(||\beta_1||_2 = ||\beta_2||_2 \), we have \(\lambda_i(R(\beta_1)) = \lambda_i(R(\beta_2)) \) \((i = 1, ..., m+n)\).

Proof With respect to any nonzero real vector \(\beta = (b_1, b_2, ..., b_n)^t \), there exists a unitary matrix \(U \) such that \(U\beta = (0, 0, ..., 0, ||\beta||_2)^t \). Then, we have

\[\left(\begin{array}{cc} U & 0 \\ 0 & I \end{array} \right) R(\beta) \left(\begin{array}{cc} U^\dagger & 0 \\ 0 & I \end{array} \right) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & p||\beta||_2^2 & ||\beta||_2 c^t \\ 0 & ||\beta||_2 c & W \end{array} \right) \]

Denote

\[D(\beta) = \left(\begin{array}{cc} p||\beta||_2^2 & ||\beta||_2 c^t \\ \frac{1}{2} ||\beta||_2 c & W \end{array} \right) \]

Since the singular values of an Hermitian matrix do not change under the unitary transformations, we have \(\lambda_i(R(\beta)) = \lambda_i \left(\begin{array}{cc} 0 & 0 \\ 0 & D(\beta) \end{array} \right) \) \((i = 1, ..., m+n)\). Because of \(D(\beta_1) = D(\beta_2) \), we complete the proof.

Since the Ky Fan matrix norm \(||T_{a\beta}(\rho)||_{KF} = Tr\sqrt{T_{a\beta}(\rho)^\dagger T_{a\beta}(\rho)} \), \(r \in R^{M^2-1}, s \in R^{N^2-1} \) and \(T(\rho) \in R^{(M^2-1)(N^2-1)} \), we have

\[T_{a\beta}(\rho)^\dagger T_{a\beta}(\rho) = \left(\begin{array}{cc} (||\alpha||_2^2 + ||r||_2^2)\beta \beta^t \beta (||\alpha||_2 s^t + r^t T) \\ (||\alpha||_2 s + T^t r) \beta^t \beta \beta^t ||\alpha||_2 s^t + T^t T \end{array} \right) \]

By using Lemma 1, we have the following corollary.

Corollary 1 For any quantum state \(\rho \), \(||T_{\alpha\beta}(\rho)||_{KF} = ||T_{||\alpha||_2 ||\beta||_2}(\rho)||_{KF} \).
From Corollary 1, we see that we only need to consider the norm of α and β in dealing with the norm of $T_{ab}(\rho)$. Hence, we simplify our Theorem 1 to the following corollary.

Corollary 2 If the state $\rho \in H_M \otimes H_N$ is separable, then

$$||T_{ab}(\rho)||_{KF} \leq \sqrt{a^2 + \frac{M(M - 1)}{2}} + \frac{N(N - 1)}{2}$$

for any nonnegative real numbers a and b.

Corollary 2 is equivalent to Theorem 1 with $||\alpha||_2 = a$ and $||\beta||_2 = b$.

Example 1 We consider the $2 \otimes 4$ state, $\rho_x = x|\xi\rangle\langle\xi| + (1 - x)\rho$, where $|\xi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$, and ρ is the bound entangled state considered in [17, 18],

$$\rho = \frac{1}{d+1} \begin{pmatrix}
 d & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & d & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & d & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & d & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}$$

with $d \in (0, 1)$. For simplicity, set $d = \frac{9}{10}$ and choose $\alpha = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})^t$ and $\beta = (1, 0)^t$. Then, Theorem 1 detects the entanglement of ρ_x for $x \in [0.223406, 1]$. One may also choose $\alpha = (a_1, \ldots, a_n)^t$ and $\beta = (b_1, \ldots, b_m)^t$ in general, where $\sum_{i=1}^n a_i^2 = \frac{1}{6}$ and $\sum_{i=1}^m b_i^2 = 1$. The result is the same.

Combining Theorem 1 and Corollary 2, we have the following theorem.

Theorem 2 If a state $\rho \in H_M \otimes H_N$ is separable, then

$$||T_{ab}(\rho)||_{KF} \leq \sqrt{NM(N-1)(M-1)} + |ab|, \quad (8)$$

where $a, b \in \mathbb{R}$ and $|b| = |a|\sqrt{\frac{N(N-1)}{M(M-1)}}$.

Proof For a state $\rho \in H_M \otimes H_N$, we have

$$||T_{ab}(\rho)||_{KF} = \| \begin{pmatrix} ab & a^t \\ br & T(\rho) \end{pmatrix} \|_{KF} \geq |ab| + ||T(\rho)||_{KF},$$

where the first inequality is due to $||\begin{pmatrix} A & B \\ C & D \end{pmatrix}||_{KF} \geq ||A||_{KF} + ||D||_{KF}$ for any complex matrices A, B, C and D with adequate dimensions [16]. If ρ is separable,
we have

$$||T_{ab}(\rho)||_{KF} \leq \sqrt{a^2 + \frac{M(M - 1)}{2}} \sqrt{b^2 + \frac{N(N - 1)}{2}}$$

and

$$||T(\rho)||_{KF} \leq \sqrt{\frac{MN(M - 1)(N - 1)}{4}}.$$

Setting

$$\sqrt{a^2 + \frac{M(M - 1)}{2}} \sqrt{b^2 + \frac{N(N - 1)}{2}} = |ab| + \sqrt{\frac{MN(M - 1)(N - 1)}{4}},$$

we have $|b| = |a| \sqrt{\frac{N(N - 1)}{M(M - 1)}}$.

From the proof of Theorem 2, for the separable quantum states one has

$$||T(\rho)||_{KF} \leq ||T_{ab}(\rho)||_{KF} - |ab| \leq \sqrt{\frac{MN(M - 1)(N - 1)}{4}}.$$

Theorem 2 can detect more entanglement than Theorem 1 given in [16], see the following example.

Example 2 Consider the following bipartite qubit state, $\rho = p|\psi\rangle\langle\psi| + (1 - p)|00\rangle\langle00|$, where $p \in [0, 1]$ and $|\psi\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$. Let $b = a \neq 0$.

We have $||T_{aa}(\rho)||_{KF} = 2p + \sqrt{4a^2p^2 + (2p - 1 - a^2)^2}$, which implies that $||T_{aa}(\rho)||_{KF} > 1 + a^2$ for $p \in (0, 1]$. Namely, the entanglement is detected for $p \in (0, 1]$, which is better than the result $p \in (\frac{1}{2}, 1]$ from Theorem 1 in [16].

3 Separability conditions from the Bloch representation based on $W_{ab, \alpha\beta}(\rho)$

Next we define

$$W_{ab, \alpha\beta}(\rho) = \begin{pmatrix} ab & a\alpha^t \otimes s^t \\ b\beta \otimes r & \beta\alpha^t \otimes T(\rho) \end{pmatrix},$$

where a and b are real numbers. Using $W_{ab, \alpha\beta}(\rho)$, we get the following separability criterion for bipartite states.

Theorem 3 If the state $\rho \in H_M \otimes H_N$ is separable, then

$$||W_{ab, \alpha\beta}(\rho)||_{KF} \leq \sqrt{a^2 + ||\beta||_2^2} \frac{M(M - 1)}{2} \sqrt{b^2 + ||\alpha||_2^2} \frac{N(N - 1)}{2},$$

where $|| \cdot ||_2$ is the Euclidean norm on $R^{N^2 - 1}$.

\[Springer\]
Proof A bipartite quantum state with Bloch representation (2) is separable if and only if there exist vectors $\mu_i \in R^{M^2-1}$ and $v_i \in R^{N^2-1}$ with $||\mu_i||_2 = \sqrt{\frac{M}{2}(M-1)}$ and $||v_i||_2 = \sqrt{\frac{N}{2}(N-1)}$, $0 < p_i \leq 1$ with $\sum_i p_i = 1$ such that $T(\rho) = \sum_i p_i \mu_i v_i^t$, $r = \sum_i p_i \mu_i$ and $s = \sum_i p_i v_i$. Therefore, for separable states ρ the matrix $W_{ab,\alpha\beta}(\rho)$ reduces to

$$W_{ab,\alpha\beta}(\rho) = \sum_i p_i \left(a \beta \otimes \mu_i \right) \left(b \alpha^t \otimes v_i^t \right).$$

Hence, one gets

$$||W_{ab,\alpha\beta}(\rho)||_{KF} \leq \sum_i p_i \left(\left(\frac{a}{\beta} \otimes \mu_i \right) \right)_2 \cdot \left(\left(b \alpha^t \otimes v_i^t \right) \right)_2$$

$$= \sqrt{a^2 + ||\alpha||^2_2 \frac{M(M-1)}{2}} \sqrt{b^2 + ||\beta||^2_2 \frac{N(N-1)}{2}},$$

which proves the theorem.

Example 3 For the quantum state ρ_x with $d = \frac{9}{10}$ in Example 1, if we take $a = \frac{1}{\sqrt{6}}$, $b = 1$, $\beta^t = (1, -2)$ and $\alpha^t = (1, 3)$, Theorem 3 can detect the entanglement of ρ_x for $x \in [0.22325, 1]$, which is better than the result $x \in [0.2234, 1]$ from [20].

Below we provide another example of PPT state whose entanglement is not detected by the filtered CMC [11] but detected by our Theorem 3.

Example 4 Consider a two-qubit state,

$$\rho = \frac{1}{2} \begin{pmatrix} 1 + a_1 & 0 & 0 & a_3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & a_2 - a_1 & 0 \\ t & 0 & 0 & 1 - a_2 \end{pmatrix},$$

where the real parameters $\{a_1, a_2, a_3\}$ are taken such that $\rho \geq 0$. We choose $\alpha = (1, 1)^t$, $\beta = (1, 1)^t$, $a = \sqrt{2}x$ and $b = \sqrt{2}y$ in $W_{ab,\alpha\beta}(\rho)$. From Theorem 3, we have that if ρ is separable, then

$$|a_3| + \sqrt{\lambda_+} + \sqrt{\lambda_-} \leq \sqrt{\frac{1 + x^2}{2}} \sqrt{\frac{1 + y^2}{2}}, \quad (11)$$
where

\[
\lambda_{\pm} = \frac{1}{8} \left((1 + a_1 - a_2)^2 + a_2^2 x^2 + a_1^2 y^2 + x^2 y^2 \pm \sqrt{(1 + a_1 - a_2)^2 + a_2^2 x^2 + a_1^2 y^2 + x^2 y^2 - 4(1 + a_1)^2(1 - a_2)^2 x^2 y^2} \right).
\]

The inequality (11) is the same as the one from [19], which recovers the PPT condition for \(\rho \).

Furthermore, we consider the family of \(3 \otimes 3 \) bound entangled states \(\rho_{PH}^x \) introduced by Horodecki [15, 21].

Example 5 Consider the mixtures of \(\rho_{PH}^x \) with the white noise, \(\rho(x, q) = q \rho_{PH}^x + (1-q)I/9 \), where \(0 \leq q \leq 1 \) and

\[
\rho_{PH}^x = \frac{1}{8x+1} \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & x & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & x & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & x & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & x & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & x & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

For simplicity, we let \(x = 0.9 \). From Fig 4 of [15], \(\rho(0.9, q) \) is entangled with \(q > 0.997 \). We take \(a = \frac{1}{12}, b = \frac{1}{6} \), \(\alpha = (\frac{1}{8}, \frac{1}{8})^t \) and \(\beta = \frac{1}{8} \) in \(W_{ab,\alpha\beta}(\rho(0.9, q)) \). From our Theorem 3, \(\rho(0.9, q) \) is entangled when \(q > 0.9867 \), which is better than [15]. See Fig. 1, where \(\Delta = ||W_{ab,\alpha\beta}(\rho(0.9, q))||_K F - \sqrt{a^2 + 3||\beta||_2^2 b^2 + 3||\alpha||_2^2} \).

Next, we give the relation Corollary 2 and Theorem 3.

Corollary 3 For quantum state \(\rho \in HA \otimes HB \), \(||W_{ab,\alpha\beta}(\rho)||_K F = ||W_{ab,||\alpha||_2,||\beta||_2}(\rho)||_K F \) for any nonnegative real numbers \(a \) and \(b \).

Proof For \(W_{ab,\alpha\beta}(\rho) \), we have

\[
W_{ab,\alpha\beta}^\dagger(\rho)W_{ab,\alpha\beta}(\rho) = \begin{pmatrix}
ab^2 + b||\beta||_2||r||_2 & b\alpha^t \otimes (a^2 s^t + ||\beta||_2 r^t T) \\
0 & (a^2 s^t + ||\beta||_2 T^r) \otimes (a^2 s^t + ||\beta||_2 r^t T)
\end{pmatrix}.
\]

From (12), we have \(||W_{ab,\alpha\beta}(\rho)||_K F = ||W_{ab,||\alpha||_2,||\beta||_2}(\rho)||_K F \). For a given matrix \(A \), one has \(||A||_K F = Tr \sqrt{A^\dagger A} = Tr \sqrt{AA^\dagger} \). Next, we have \(||W_{ab,\alpha\beta}(\rho)||_K F = ||W_{ab,||\alpha||_2,||\beta||_2}(\rho)||_K F \). Then, we obtain \(||W_{ab,\alpha\beta}(\rho)||_K F = ||W_{ab,||\alpha||_2,||\beta||_2}(\rho)||_K F \).
For two positive numbers k and l, we have

$$W_{ab, kl}(\rho) = \left(\begin{array}{cc} a & a k \tilde{s}^t \\ b l r & k l T \end{array}\right) = k l T_{a \beta}(\rho).$$

If the state $\rho \in H_{M} \otimes H_{N}$ is separable, from Corollary 2, we have

$$T_{\tilde{\alpha} \tilde{\beta}}(\tilde{\rho})(\rho) \leq \sqrt{\left(\frac{a}{l}\right)^2 + \frac{M(M-1)}{2}} \sqrt{\left(\frac{b}{k}\right)^2 + \frac{N(N-1)}{2}},$$

(13)

and from Theorem 3, we have

$$||W_{ab, kl}(\rho)||_{KF} \leq \sqrt{a^2 + l^2 \frac{M(M-1)}{2}} \sqrt{b^2 + k^2 \frac{N(N-1)}{2}}.$$

(14)

From (13) and (14), one has Theorem 3 which is equivalent to Corollary 2 in detecting entanglement.

Note that the family of bipartite separability criteria based on $T_{\alpha \beta}(\rho)$ and $W_{ab, \alpha \beta}(\rho)$ come down to Corollary 2, which is only depend on real parameters a and b. Proposition 1 of Ref. [17] showed that the result of [17] becomes more effective when m gets larger. From Corollary 2 and Proposition 1 of Ref. [17], we know that Corollary 2 becomes more effective when a and b are selected large enough and satisfy $b\sqrt{M(M-1)} = a\sqrt{N(N-1)}$.

Example 6 Let us consider a generalization of well-known $d_1 \otimes d_2$ isotropic states [22]

$$\rho_p = \frac{1}{d_1 d_2} I_{d_1} \otimes I_{d_2} + p |\psi_{d_1}^{+}\rangle \langle \psi_{d_1}^{+}|,$$

(15)
where $|\psi_{d_1}^+\rangle = \frac{1}{\sqrt{d_1}} \sum_{i=1}^{d_1} |e_i \otimes f_i\rangle$, $|e_i\rangle$ defines orthonormal basis in H_{d_1}, and $|f_i\rangle$ defines orthonormal set in H_{d_2}.

It is well known that this state is separable if and only if it is PPT which is equivalent to $p \leq \frac{1}{d_2+1}$. For simplicity, we take $d_1 = 2$ and $d_2 = 3$ for ρ_p in the example 6. We show that Corollary 2 detects more entangled state than de Vicente criterion [16], realignment criterion [9, 10] and criterion based on SIC POMVs(ESIC) [15] for ρ_p. And, we show that Corollary 2 becomes more effective when a and b get larger with $\frac{b}{a} = \sqrt{3}$.

We take $a = \sqrt{2}$ and $b = \sqrt{6}$ of Corollary 2 for ρ_p. Then, Corollary 2 can detect the entanglement in ρ_p for $p \geq 0.378054$, while the de Vicente criterion, realignment criterion and ESIC criterion can only detect the entanglement in ρ_p for $p \geq 0.3846$ and $p \geq 0.3819$, respectively. At last, we choose $a = \sqrt{2t}$ and $b = \sqrt{6t}$ with $t > 0$. Then, Corollary 2 can detect the entanglement in ρ_p for $p \geq 0.379712$ with $t = \frac{1}{10}$, $p \geq 0.378139$ with $t = \frac{1}{2}$, $p \geq 0.378032$ with $t = 2$, $p \geq 0.378025$ with $t = 10$, respectively.

4 Conclusions and remarks

In summary, based on the Bloch representation of a bipartite quantum state ρ, we have introduced the matrices $T_{\alpha\beta}(\rho)$ and show that $||T_{\alpha\beta}(\rho)||_{KF} = ||T_{||\alpha||_2||\beta||_2}(\rho)||_{KF}$, i.e. the value of $||T_{\alpha\beta}(\rho)||_{KF}$ only depends on the norm of α and β. Thus, Theorem 1 is equivalent to Theorem 1 of [17] and can be further simplified to Corollary 2 which has a very simpler form. Meanwhile, we have shown that Corollary 2 is more effective than the existing formula (3). In addition, we have presented a separability criteria based on $W_{ab,\alpha\beta}(\rho)$ and show that $||W_{ab,\alpha\beta}(\rho)||_{KF} = ||W_{ab,||\alpha||_2||\beta||_2}(\rho)||_{KF}$, i.e. the value of $||W_{ab,\alpha\beta}(\rho)||_{KF}$ only depends on the norm of α and β for given a and b.

At last, the three separability criteria: Theorem 1 of [17], Theorems 1 and 3, can be simplified to Corollary 2 which has a very simpler form.

Acknowledgements This work is supported by the Research Award Fund for Natural Science Foundation of Shandong Province No. ZR2021LLZ002, National Natural Science Foundation of China under grant Nos. 12075159 and 12171044, Beijing Natural Science Foundation (Z190005), Academy for Multidisciplinary Studies, Capital Normal University, Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (SIQSE202001) and the Academician Innovation Platform of Hainan Province.

Data availability All data generated or analysed during this study are included in this published article.

Declarations

Conflict of interest The authors declared that they have no conflicts of interest to this work.

References

1. Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004)
2. Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)
3. Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)
4. de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)
5. Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334 (2007)
6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
7. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)
8. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)
9. Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Entanglement detection beyond the computable cross-norm or realignment criterion. Phys. Rev. A 77, 060301(R) (2008)
10. Aniello, P., Lupo, C.: A class of inequalities inducing new separability criteria for bipartite quantum systems. J. Phys. A: Math. Theor. 41, 355303 (2008)
11. Gühne, O., Hyllus, P., Gittsovich, O., Eisert, J.: Covariance matrices and the separability problem. Phys. Rev. Lett. 99, 130504 (2007)
12. Gühne, O., Hyllus, P., Gittsovich, O., Eisert, J.: Covariance matrices and the separability problem. Phys. Rev. Lett. 99, 130504 (2007)
13. Gittsovich, O., Gühne, O., Hyllus, P., Eisert, J.: Unifying several separability conditions using the covariance matrix criterion. Phys. Rev. A 78, 052319 (2008)
14. Gittsovich, O., Hyllus, P., Guhne, O.: Multiparticle covariance matrices and the impossibility of detecting graph-state entanglement with two-particle correlations. Phys. Rev. A 82, 032306 (2010)
15. Shang, J., Ali, A., Zhu, H., et al.: Enhanced entanglement criterion via symmetric informationally complete measurements. Phys. Rev. A 98, 022309 (2018)
16. de Vicente, J.I.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624–638 (2007)
17. Shen, S.Q., Yu, J., Li, M., Fei, S.M.: Improved separability criteria based on Bloch representation of density matrices. Sci. Rep. 6, 28850 (2016)
18. Li, M., Wang, J., Fei, S.M., Li-Jost, X.: Quantum separability criteria for arbitrary-dimensional multipartite states. Phys. Rev. A 89, 022325 (2014)
19. Sarbicki, G., Scala, G., Chruściński, D.: Family of multipartite separability criteria based on a correlation tensor. Phys. Rev. A 101, 012341 (2020)
20. Chang, J., Cui, M., Zhang, T.G., Fei, S.M.: Separability criteria based on heisenberg–weyl representation of density matrices. Chin. Phys. B 27(3), 030302 (2018)
21. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)
22. Sarbicki, G., Scala, G., Chruściński, D.: Detection power of separability criteria based on a correlation tensor: a case study. Open Syst. Inf. Dyn. 28, 2150010 (2021)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.