A Halfspace Theorem for Mean Curvature $H = \frac{1}{2}$ surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Barbara Nelli - Ricardo Sa Earp

Abstract
We prove a vertical halfspace theorem for surfaces with constant mean curvature $H = \frac{1}{2}$, properly immersed in the product space $\mathbb{H}^2 \times \mathbb{R}$, where \mathbb{H}^2 is the hyperbolic plane and \mathbb{R} is the set of real numbers. The proof is a geometric application of the classical maximum principle for second order elliptic PDE, using the family of non compact rotational $H = \frac{1}{2}$ surfaces in $\mathbb{H}^2 \times \mathbb{R}$.

1 Introduction

This is a revised version of the article that we submit before. There was a problem in the construction of graphical ends. We are presently working to fix it (replace the previous boundary with a planar boundary curve and use Perron method). The main geometric constructions will be maintained. Here we present the halfspace type theorem, that correspond to Section 4 of the previous article.

D. Hofmann e W. Meeks proved a beautiful theorem on minimal surfaces, the so-called "Halfspace Theorem" in [3]: there is no non planar, complete, minimal surface properly immersed in a halfspace of \mathbb{R}^3. We focus in this paper complete surfaces with constant mean curvature $H = \frac{1}{2}$ in the product space $\mathbb{H}^2 \times \mathbb{R}$, where \mathbb{H}^2 is the hyperbolic plane and \mathbb{R} is the set of real numbers. In the context of H-surfaces in $\mathbb{H}^2 \times \mathbb{R}$, it is natural to investigate about halfspace type results.

Before stating our result we would like to emphasize that, in last years there has been work in H-surfaces in homogeneous 3-manifolds, in particular in the product space $\mathbb{H}^2 \times \mathbb{R}$: new examples were produced and many theoretical results as well.

Halfspace theorem for minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$ is false, in fact there are many vertically bounded complete minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$ [9]. On the contrary, we are able to prove the following result for $H = \frac{1}{2}$ surfaces.

Theorem 1.1 Let S be a simply connected rotational surface with constant mean curvature $H = \frac{1}{2}$. Let Σ be a complete surface with constant mean curvature $H = \frac{1}{2}$, different from a rotational simply connected one. Then, Σ can not be properly immersed in the mean convex side of S.
In [4], L. Hauswirth, H. Rosenberg and J. Spruck prove a halfspace type theorem for surfaces on one side of a horocylinder. The result in [4] is different in nature from our result because in [4], the "halfspace" is one side of a horocylinder, while for us, the "halfspace" is the mean convex side of the rotational simply connected surface. The proof of our result is a geometric application of the classical maximum principle to surfaces with constant mean curvature \(H = \frac{1}{2} \) in \(\mathbb{H}^2 \times \mathbb{R} \).

Maximum Principle. Let \(S_1 \) and \(S_2 \) be two connected surfaces of constant mean curvature \(H = \frac{1}{2} \). Let \(p \in S_1 \cap S_2 \) be a point such that \(S_1 \) and \(S_2 \) are tangent at \(p \), the mean curvature vectors of \(S_1 \) and \(S_2 \) at \(p \) point towards the same side and \(S_1 \) is on one side of \(S_2 \) in a neighborhood of \(p \). Then \(S_1 \) coincide with \(S_2 \) around \(p \). By analytic continuation, they coincide everywhere.

The proof of the Maximum Principle is based on the fact that a constant mean curvature surface in \(\mathbb{H}^2 \times \mathbb{R} \) locally satisfies a second order elliptic PDE (cf. [2], [1] where the author prove the Maximum Principle in \(\mathbb{R}^n \); the proof generalizes to space forms and to \(\mathbb{H}^2 \times \mathbb{R} \) as well).

We notice that our surfaces are not compact, while the classical maximum principle applies at a finite point. It will be clear in the proof of Theorem [11] that we that we are able to reduce the analysis to finite tangent points, because of the geometry of rotational surfaces of constant mean curvature \(H = \frac{1}{2} \).

Our halfspace Theorem leads to the following conjecture (strong halfspace theorem).

Conjecture. Let \(\Sigma_1, \Sigma_2 \) be two complete properly embedded surfaces with constant mean curvature \(H = \frac{1}{2} \), different from the rotational simply connected one. Then \(\Sigma_i \) can not lie in the mean convex side of \(\Sigma_j, i \neq j \).

For \(H > \frac{1}{\sqrt{2}} \) the conjecture is true and it is known as maximum principle at infinity (cf. [6]).

2 Vertical Halfspace Theorem

R. Sa Earp and E. Toubiana find explicit integral formulas for rotational surfaces of constant mean curvature \(H \in (0, \frac{1}{2}] \) in [8]. A careful description of the geometry of these surfaces is contained in the Appendix of [7]. Here we recall some properties of rotational surfaces of constant mean curvature \(H = \frac{1}{2} \).

For any \(\alpha \in \mathbb{R}_+ \), there exists a rotational surface \(\mathcal{H}_\alpha \) of constant mean curvature \(H = \frac{1}{2} \). For \(\alpha \neq 1 \), the surface \(\mathcal{H}_\alpha \) has two vertical ends (where a vertical end is a topological annulus, with no asymptotic point at finite height) that are graphs over the exterior of a disk \(D_\alpha \) of hyperbolic radius \(r_\alpha = |\ln \alpha| \).
By graph we mean the following: the graph of a function u defined on a subset Ω of \mathbb{H}^2 is $\{(x, y, t) \in \Omega \times \mathbb{R} \mid t = u(x, y)\}$. When the graph has constant mean curvature H, u satisfies the following second order elliptic PDE

$$\text{div}_\mathbb{H} \left(\frac{\nabla_\mathbb{H} u}{W_u} \right) = 2H \quad (1)$$

where $\text{div}_\mathbb{H}$, $\nabla_\mathbb{H}$ are the hyperbolic divergence and gradient respectively and $W_u = \sqrt{1 + |\nabla_\mathbb{H} u|^2_\mathbb{H}}$, being $|\cdot|_\mathbb{H}$ the norm in $\mathbb{H}^2 \times \{0\}$.

Furthermore, up to vertical translation, one can assume that \mathcal{H}_α is symmetric with respect to the horizontal plane $t = 0$. For $\alpha = 1$, the surface \mathcal{H}_1 has only one end and it is a graph over \mathbb{H}^2 and it is denoted by S.

When $\alpha > 1$ the surface \mathcal{H}_α is not embedded. The self intersection set is a horizontal circle on the plane $t = 0$. For $\alpha < 1$ the surface \mathcal{H}_α is embedded.

For any $\alpha \in \mathbb{R}_+$, each end of the surface \mathcal{H}_α is the vertical graph of a function u_α over the exterior of a disk D_α of radius r_α. The asymptotic behavior of u_α has the following form: $u_\alpha(\rho) \simeq \frac{1}{\sqrt{\alpha}} e^{\frac{\rho}{\sqrt{\alpha}}}, \rho \to \infty$, where ρ is the hyperbolic distance from the origin. The positive number $\frac{1}{\sqrt{\alpha}} \in \mathbb{R}_+$ is called the growth of the end.

The function u_α is vertical along the boundary of D_α. Furthermore the radius r_α is always greater or equal to zero, it is zero if and only if $\alpha = 1$ and tends to infinity as $\alpha \to 0$ or $\alpha \to \infty$. As we pointed out before, the function $u_1 = 2 \cosh (\frac{\xi}{2})$ is entire and its graph corresponds to the unique simply connected example S.

Notice that, any end of an immersed rotational surface ($\alpha > 1$) has growth smaller than the growth of S, while any end of an embedded rotational surface ($\alpha < 1$) has growth greater than the growth of S.

Figure 1: $H = \frac{1}{2}$: the profile curve in the embedded and immersed case ($R = \tanh \rho$).
Theorem 1.1 is called "vertical" because the end of the surface Σ is vertical, as it is contained in the mean convex side of S.

Proof of Theorem 1.1. One can assume that the surface S is tangent to the slice $t = 0$ at the origin and it is contained in $\{t \geq 0\}$. Suppose, by contradiction, that Σ is contained in the mean convex side of S. Lift vertically S. If there is an interior contact point between Σ and the translation of S, one has a contradiction by the maximum principle. As Σ is properly immersed, Σ is asymptotic at infinity to a vertical translation of S. One can assume that the surface Σ is asymptotic to the S tangent to the slice $t = 0$ at the origin and contained in $\{t \geq 0\}$.

Let h be the height of one lowest point of Σ. Denote by $S(h)$ the vertical lifting of S of ratio h. One has one of the following facts.

- $S(h)$ and Σ has a first finite contact point p : this means that $S(h - \varepsilon)$ does not meet Σ at a finite point, for $\varepsilon > 0$ and then $S(h)$ and Σ are tangent at p with mean curvature vector pointing in the same direction. In this case, by the maximum principle $S(h)$ and Σ should coincide. Contradiction.

- $S(h)$ and Σ meet at a point p, but p is not a first contact point. Then, for ε small enough, $S(h - \varepsilon)$ intersect Σ transversally.

Denote by W the non compact subset of $\mathbb{H}^2 \times \mathbb{R}$ above S and below $S(h - \varepsilon)$. It follows from the maximum principle that there are no compact component of Σ contained in W. Denote by Σ_1 a non compact connected component of Σ contained in W. Note that the boundary of Σ_1 is contained in $S(h - \varepsilon)$. Consider the family of rotational non embedded surfaces H_α, $\alpha > 1$. Translate each H_α vertically in order to have the waist on the plane $t = h - \varepsilon$. By abuse of notation, we continue to call the translation, H_α. The surface H_α intersects the plane $t = h - \varepsilon$ in two circles. Denote by ρ_α the radius of the larger circle. Denote by H_α^+, the part of the surface outside the cylinder of radius ρ_α. Notice that H_α^+ is embedded. By the geometry of the H_α^+, when α is great enough, say α_0, H_α^+ is outside the mean convex side of S. Then, H_α^+ does not intersect Σ. Furthermore, when $\alpha \rightarrow 1$, H_α^+ converge to $S(h - \varepsilon)$. Now, start to decrease α from α_0 to one. Before reaching $\alpha = 1$, the surface H_α^+ first meets S and then touches Σ_1 tangentially at an interior finite point, with Σ_1 above H_α^+. This depends on the following two facts.

- The boundary of Σ_1 lies on $S(h - \varepsilon)$ and the boundary of any of the H_α^+ lies on the horizontal plane $t = h - \varepsilon$.

- The growth of any of the H_α^+ is strictly smaller than the growth of S. Thus the end of H_α^+ is outside the end of S.

The existence of an such interior tangency point is a contradiction by the maximum principle.
References

[1] D. Gilbarg, N.S. Trudinger: *Elliptic Partial Differential Equations of Second Order*, Springer-Verlag (1998).

[2] H. Hopf: *Differential Geometry in the Large*, Lecture Notes in Mathematics, 1000, Springer-Verlag (1983).

[3] D. Hoffman, W. Meeks III: *The Strong Halfspace Theorem for Minimal Surfaces*, Inven. Math. 101, n.1 (1990) 373-377.

[4] L. Hauswirth, H. Rosenberg, J. Spruck: *On Complete Mean Curvature $H = \frac{1}{2}$ surfaces in $\mathbb{H}^2 \times \mathbb{R}$*, http://www.institut.math.jussieu.fr~rosen//hrs11.pdf

[5] B. Nelli, H. Rosenberg: *Minimal Surfaces in $\mathbb{H}^2 \times \mathbb{R}$*, Bull. Braz. Math. Soc. 33 (2002) 263-292; Errata Minimal Surfaces in $\mathbb{H}^2 \times \mathbb{R}$, [Bull. Braz. Math. Soc., New Series 33 (2002), 263-292] Bull. Braz. Math. Soc., New Series 38(4) (2007) 1-4.

[6] B. Nelli, H. Rosenberg: *Global Properties of Constant Mean Curvature Surfaces in $\mathbb{H}^2 \times \mathbb{R}$*, Pacific Journ. Math. 226, No 1 (2006) 137-152.

[7] B. Nelli, R. Sa Earp, W. Santos, E. Toubiana: *Existence and Uniqueness of H-surfaces with one or two parallel convex curves as boundary in $\mathbb{H}^2 \times \mathbb{R}$*, Annals of Global Analysis and Geometry, DOI 10.1007/s10455-007-9087-3, 33, N. 4 (2008) 307-321.

[8] R. Sa Earp, E. Toubiana: *Screw Motion Surfaces in $\mathbb{H}^2 \times \mathbb{R}$ and $\mathbb{S}^2 \times \mathbb{R}$*, Illinois Jour. of Math. 49 n.4 (2005) 1323-1362.

[9] R. Sa Earp, E. Toubiana: *An asymptotic theorem for minimal surfaces and existence results for minimal graphs in $\mathbb{H}^2 \times \mathbb{R}$*, published on line May 2008, Mathematische Annalen, DOI 10.1007/s00208-008-0237-0, 342, N. 2 (2008) 309-331

Barbara Nelli
Università di L’Aquila
nelli@univaq.it

Ricardo Sa Earp
PUC, Rio de Janeiro
zearp@mat.puc-rio.br