Idiomarina abyssalis KMM 227T is an aerobic flagellar gammaproteobacterium found at a depth of 4,000 to 5,000 m below sea level in the Pacific Ocean. This paper presents a draft genome sequence for *I. abyssalis* KMM 227T, with a predicted composition of 2,684,812 bp (47.15% G+C content) and 2,611 genes, of which 2,508 were predicted coding sequences.

The contigs were analyzed using QUAST version 2.3 and were found to have a total length of 2,684,812 bp and an average coverage of 13.2 (11). The largest contig was 983,913 bp, with an N50 value of 170,438 bp and a G+C content of 47.15%, just under the figure of 50% reported by Ivanova et al. (1). The National Center for Bioinformatics (NCBI) automatic annotation pipeline was used for genome annotation (12). A total of 2,611 genes, 2,508 coding sequences (CDSs), 40 pseudogenes, seven rRNAs, 55 tRNAs, and one noncoding RNA (ncRNA) were discovered using the NCBI pipeline. Comparisons of this genome with the *Idiomarina zobellii* genome and others will enable a more comprehensive metabolic and genetic study of adaptations to different saline environments.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. LGOW00000000. The version described in this paper is version LGOW01000000.

ACKNOWLEDGMENTS

This work was supported by a Manchester Undergraduate Project Support grant and Richard Freed Enrichment Award from UNH Manchester to Bruce A. Rheaume, and an Undergraduate Research Award and Research Presentation Grant from the Hamel Center for Undergraduate Research at UNH to Bruce A. Rheaume. The Biological Sciences program at UNH Manchester also provided funds for sequencing. The funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

Sequencing was undertaken at the Hubbard Center for Genome Studies at UNH with the kind assistance of Kelley Thomas, Jordan Ramsdell, and Stephen Simpson. This work was the inaugural project of the Microbiology Education through Genome Annotation-New Hampshire (MEGA-NH) program.

REFERENCES

1. Ivanova EP, Romanenko LA, Chun J, Matte MH, Matte GR, Mikhailov VV, Svetashev VI, Huq A, Maugel T, Colwell RR. 2000. *Idiomarina* gen. nov., comprising novel indigenous deep-sea bacteria from the Pacific Ocean, including descriptions of two species, *Idiomarina abyssalis* sp. nov.
and *Idiomarina zobellii* sp. nov. Int J Syst Evol Microbiol 50:901–907. http://dx.doi.org/10.1099/00207713-50-2-901.

2. Lai Q, Wang L, Wang W, Shao Z. 2012. Genome sequence of *Idiomarina xiamenensis* type strain 10-D-4. J Bacteriol 194:e6938. http://dx.doi.org/10.1128/JB.01855-12.

3. Gupta HK, Singh A, Sharma R. 2011. Genome sequence of *Idiomarina* sp. strain A28L, isolated from Pangong Lake, India. J Bacteriol 193:5875–5876. http://dx.doi.org/10.1128/JB.05648-11.

4. Kim W-J, Kim Y-O, Kim D-G, Nam B-H, Kong HJ, Jung H, Lee S-J, Kim D-W, Kim D-S, Chae S-H. 2013. Genome sequence of marine bacterium *Idiomarina* sp. strain 28-8, isolated from Korean ark shells. Genome Announc 1(5):e00772-13. http://dx.doi.org/10.1128/genomeA.00772-13.

5. Hou S, Saw JH, Lee KS, Freitas TA, Belisle C, Kawarabayasi Y, Donachie SP, Pikina A, Galperin MY, Koonin EV, Makarova KS, Omelchenko MV, Sorokin A, Wolf YI, Li QX, Keum YS, Campbell S, Denery J, Aizawa S-I, Shibata S, Malahoff A, Alam M. 2004. Genome sequence of the deep-sea gamma-proteobacterium *Idiomarina loihiensis* reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci USA 101:18036–18041. http://dx.doi.org/10.1073/pnas.0407638102.

6. Du J, Lai Q, Liu Y, Du Y, Liu X, Sun F, Shao Z. 2015. *Idiomarina atlantica* sp. nov., a marine bacterium isolated from the deep sea sediment of the north Atlantic Ocean. Antonie Van Leeuwenhoek 107:393–401. http://dx.doi.org/10.1007/s10482-014-0337-7.

7. Zobell CE, Johnson FH. 1949. The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189.

8. Oliver JD. 2005. The viable but nonculturable state in bacteria. J Microbiol 43:Spec No. 93–100.

9. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. http://dx.doi.org/10.1093/bioinformatics/btu170.

10. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyakhni N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. http://dx.doi.org/10.1089/cmb.2012.0021.

11. Gurevich A, Saveliev V, Vyakhni N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. http://dx.doi.org/10.1093/bioinformatics/btt086.

12. Tatusova T, DiCuccio M, Badetdin A, Chetvervain V, Ciufo S, Li W. 2013. Prokaryotic genome annotation pipeline. National Center for Biotechnology Information, Bethesda, MD.