SUPPLEMENTARY MATERIAL

New terpenoids and lignans from the twigs of *Tripterygium hypoglaucum*

Hui Zheng, Li Wang, Tao Yang, Dan Liu, Hong-Mei Li, Xuan-Qin Chen and Rong-Tao Li

Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650093, China

Six new compounds, including three terpenoids (1-3) and three lignans (4-6), were isolated from the 95% EtOH extract of the twigs of *Tripterygium hypoglaucum*. Their structures were determined on the basis of extensive spectroscopic analysis. 9′-O-benzoyl-lariciresinol (4) showed weak cytotoxicity against HepG2/Adr cells, with an IC$_{50}$ value of 30.1 μM *in vitro*.

Key words: *Tripterygium hypoglaucum*; terpenoid; lignan; Celastraceae; cytotoxicity

CONTACT Rong-Tao Li, email: rongtaolikm@163.com
Xuan-Qin Chen, email: chenxuanqin12@aliyun.com
List of Contents

Table S1. 1H and 13C NMR data for compounds 1-3
Table S2. 1H and 13C NMR data for compounds 4-6
Figure S1. Key 1H-1H COSY, HMBC and ROESY correlation of compound 1
Figure S2. Key 1H-1H COSY, HMBC and ROESY correlation of compound 4
Figure S3. 1H NMR spectrum of compound 1 (600 MHz, CD$_3$OD)
Figure S4. 13C NMR spectrum of compound 1 (150 MHz, CD$_3$OD)
Figure S5. HSQC spectrum of compound 1
Figure S6. HMBC spectrum of compound 1
Figure S7. COSY spectrum of compound 1
Figure S8. ROESY spectrum of compound 1
Figure S9. HRESIMS spectrum of compound 1
Figure S10. 1H NMR spectrum of compound 2 (600 MHz, CD$_3$OD)
Figure S11. 13C NMR spectrum of compound 2 (150 MHz, CD$_3$OD)
Figure S12. HSQC spectrum of compound 2
Figure S13. HMBC spectrum of compound 2
Figure S14. COSY spectrum of compound 2
Figure S15. ROESY spectrum of compound 2
Figure S16. HRESIMS spectrum of compound 2
Figure S17. 1H NMR spectrum of compound 3 (600 MHz, CDCl$_3$)
Figure S18. 13C NMR spectrum of compound 3 (150 MHz, CDCl$_3$)
Figure S19. HSQC spectrum of compound 3
Figure S20. HMBC spectrum of compound 3
Figure S21. COSY spectrum of compound 3
Figure S22. ROESY spectrum of compound 3
Figure S23. HRESIMS spectrum of compound 3
Figure S24. 1H NMR spectrum of compound 4 (600 MHz, CD$_3$OD)
Figure S25. 13C NMR spectrum of compound 4 (150 MHz, CD$_3$OD)
Figure S26. HSQC spectrum of compound 4
Figure S27. HMBC spectrum of compound 4
Figure S28. COSY spectrum of compound 4
Figure S29. ROESY spectrum of compound 4
Figure S30. HRESIMS spectrum of compound 4
Figure S31. 1H NMR spectrum of compound 5 (600 MHz, CD$_3$OD)
Figure S32. 13C NMR spectrum of compound 5 (150 MHz, CD$_3$OD)
Figure S33. HSQC spectrum of compound 5
Figure S34. HMBC spectrum of compound 5
Figure S35. COSY spectrum of compound 5
Figure S36. ROESY spectrum of compound 5
Figure S37. HRESIMS spectrum of compound 5
Figure S38. 1H NMR spectrum of compound 6 (600 MHz, CDCl$_3$)
Figure S39. 13C NMR spectrum of compound 6 (150 MHz, CDCl$_3$)
Figure S40. HSQC spectrum of compound 6
Figure S41. HMBC spectrum of compound 6
Figure S42. COSY spectrum of compound 6
Figure S43. ROESY spectrum of compound 6
Figure S44. HRESIMS spectrum of compound 6
Table S3. 1H and 13C NMR data for compounds 1-3

No.	1H NMR data	13C NMR data
	δ_C	δ_H
1	35.7	36.9
		37.3
2	42.4 (ddd, 13.3, 2.3)	45.1 (dd, 13.3, 9.1)
	1.65 (dd, 13.3, 8.5, 4.7)	2.06 (m)
3	68.9 (m)	70.5
	5.26 (m)	220.9
4	37.4 (dd, 15.1, 5.2)	43.6
	2.37 (dd, 14.9, 7.5)	1.87 (dd, 14.3, 4.1)
5	67.6	87.9
	51.3	2.14 (dd, 12.9, 1.8)
6	71.1	184.1
	19.8	1.85 (dd, 12.9, 6.2)
7	144.4 (d, 15.8)	114.1 (m)
	5.82 (s)	30.4 (d, 4.5)
8	134.1 (d, 15.8)	174.1 (m)
9	200.1 (m)	26.5
	1.41 (s)	144.3
10	27.5 (s)	30.8
	1.29 (s)	37.1
11	25.7 (s)	27.1
	1.72 (s)	107.5
12	28.9 (s)	1.23 (s)
	155.4	
13	20.1 (s)	1.19 (s)
	135.3	
14	126.4	6.85 (s)
15	26.5 (s)	3.22 (dt, 13.8, 6.8)
16	22.6	1.18 (s)
17	22.8	1.18 (s)
18	22.3	1.35 (s)
19	65.7	4.08 (dd, 11.3, 2.8)
		3.51 (m)
20		25.7
1′	173.4	173.1
2′	29.9	2.58 (m)
		30.3
3′	30.3	2.64 (m)
		29.8
4′	174.2	174.1
5′	61.7	4.13 (q, 7.1)
		61.8
6′	14.5	1.25 (s)
		14.5

aData were measured in CD$_3$OD at 600 MHz (1H NMR, J in Hz) and 150 MHz (13C NMR); bData were measured in CDCl$_3$ at 600 MHz (1H NMR, J in Hz) and 150 MHz (13C NMR); cSignals were overlapped.
Table S4. 1H and 13C NMR data for compounds 4-6

No.	1H NMR Data	13C NMR Data				
	δC	δH	δC	δH	δC	δH
1	133.1	133.1	131.9			
2	113.4	6.77 (d, 6.4)	113.4	6.80 (d, 1.4)	111.2	6.69 c (m)
3	149.1		149.1	146.7		
4	145.9		146.0	144.1		
5	116.2	6.74 (d, 8.1)	116.3	6.71 (d, 8.0)	114.4	6.86 c (m)
6	122.2	6.64 (d, 7.6)	122.1	6.67 (d, 8.0)	121.1	6.69 c (m)
7	34.3 c	2.88 c	34.3 c	2.92 (dd, 13.3, 5.2)	33.3	2.89 (dd, 13.7, 4.9)
	2.59 (m)		2.61 (dd, 13.1, 10.6)	2.57 (m)		
8	44.3 c	2.88 c	44.3 c	2.87 (m)	42.7	2.77 (m)
9	73.7 c	4.05 (d, 6.4)	73.8 c	4.08 (dd, 8.4, 6.4)	72.8	4.09 (m)
	3.74 (d, 6.1)		3.78 (dd, 8.5, 5.8)	3.77 (m)		
1'	134.9		136.3	134.2		
2'	111.1	6.09 (s)	104.7	6.63 (s)	108.5	6.86 (m)
3'	149.1		149.3	146.7		
4'	147.4		134.3	145.3		
5'	116.1	6.70 (d, 8.0)	149.3	114.2	6.83 (m)	
6'	120.3	6.82 (m)	104.7	6.63 (s)	118.9	6.86 c (m)
7'	85.4 c	4.82 (d, 6.9)	85.7 c	4.84 (s)	83.3	4.83 (d, 6.6)
8'	50.5 c	2.73 (d, 5.9)	50.5 c	2.77 (m)	49.1	2.65 (dt, 14.0, 6.8)
9'	64.6 c	4.60 (d, 20.0)	64.7 c	4.66 (dd, 11.2, 6.0)	62.8	4.50 (dd, 11.2, 6.9)
	4.41 (d, 8.0)		4.46 (dd, 11.1, 8.2)	4.32 (dd, 11.2, 7.4)		
1''	131.1		131.2	134.3		
2''	130.5	7.78 (m)	130.5	7.79 (d, 7.2)	128.1	7.50 (m)
3''	129.5	7.41 (m)	129.6	7.42 (t, 7.8)	128.9	7.40 (m)
4''	134.3	7.55 (t, 6.8)	134.3	7.57 (t, 7.4)	130.5	7.40 (m)
5''	129.5	7.41 (m)	129.6	7.42 (t, 7.8)	128.9	7.40 (m)
6''	130.5	7.78 (m)	130.5	7.79 (d, 7.2)	128.1	7.50 (m)
7''	167.8		167.8	145.3	7.58 (d, 16.1)	
8''			117.5	6.38 (d, 16.0)		
9''			166.9			
3'-OMe	56.3	3.74 (s)	56.7	3.90 (s)	55.9	3.86 c (s)
3''-OMe	56.3	3.80 (s)	56.7	3.76 c (s)	55.9	3.86 c (s)
5''-OMe	56.4	3.76 c	56.4			

aData were measured in CD$_3$OD at 600 MHz (1H NMR, J in Hz) and 150 MHz (13C NMR); bData were measured in CDCl$_3$ at 600 MHz (1H NMR, J in Hz) and 150 MHz (13C NMR); cSignals were overlapped.
Figure S1. Key 1H-1H COSY, HMBC and ROESY correlation of compound 1

Figure S2. Key 1H-1H COSY, HMBC and ROESY correlation of compound 4
Figure S3. 1H NMR spectrum of compound 1 (600 MHz, CD$_3$OD)

Figure S4. 13C NMR spectrum of compound 1 (150 MHz, CD$_3$OD)
Figure S5. HSQC spectrum of compound 1

Figure S6. HMBC spectrum of compound 1
Figure S7. COSY spectrum of compound 1

Figure S8. ROESY spectrum of compound 1
Figure S9. HRESIMS spectrum of compound 1
Figure S10. 1H NMR spectrum of compound 2 (600 MHz, CD$_3$OD)

Figure S11. 13C NMR spectrum of compound 2 (150 MHz, CD$_3$OD)
Figure S12. HSQC spectrum of compound 2

Figure S13. HMBC spectrum of compound 2
Figure S14. COSY spectrum of compound 2

Figure S15. ROESY spectrum of compound 2
Figure S16. HRESIMS spectrum of compound 2
Figure S17. 1H NMR spectrum of compound 3 (600 MHz, CDCl$_3$)

Figure S18. 13C NMR spectrum of compound 3 (150 MHz, CDCl$_3$)
Figure S19. HSQC spectrum of compound 3

Figure S20. HMBC spectrum of compound 3
Figure S21. COSY spectrum of compound 3

Figure S22. ROESY spectrum of compound 3
Figure S23. HRESIMS spectrum of compound 3.
Figure S24. 1H NMR spectrum of compound 4 (600 MHz, CD$_3$OD)

Figure S25. 13C NMR spectrum of compound 4 (150 MHz, CD$_3$OD)
Figure S26. HSQC spectrum of compound 4

Figure S27. HMBC spectrum of compound 4
Figure S28. COSY spectrum of compound 4

Figure S29. ROESY spectrum of compound 4
Figure S30. HRESIMS spectrum of compound 4
Figure S31. 1H NMR spectrum of compound 5 (600 MHz, CD$_3$OD)

Figure S32. 13C NMR spectrum of compound 5 (150 MHz, CD$_3$OD)
Figure S33. HSQC spectrum of compound 5

Figure S34. HMBC spectrum of compound 5
Figure S35. COSY spectrum of compound 5

Figure S36. ROESY spectrum of compound 5
Figure S37. HRESIMS spectrum of compound 5
Figure S38. 1H NMR spectrum of compound 6 (600 MHz, CDCl$_3$)

Figure S39. 13C NMR spectrum of compound 6 (150 MHz, CDCl$_3$)
Figure S40. HSQC spectrum of compound 6

Figure S41. HMBC spectrum of compound 6
Figure S42. COSY spectrum of compound 6

Figure S43. ROESY spectrum of compound 6
Figure S44. HRESIMS spectrum of compound 6