Review on Biomedical Applications of Marine Algae-Derived Biomaterials

Gayatree Nayak¹, Akankshya Sahu¹, Sanat Kumar Bhuyan²*, Ruchi Bhuyan³,
Ananya Kuanar¹, Dattatreya Kar³

¹Centre for Biotechnology, Siksha 'O' Anusandhan University, Odisha, India
²Institute of Dental Sciences, Siksha 'O' Anusandhan University, Odisha, India
³Department of Medical Research, Health Science, IMS & SUM Hospital, Siksha 'O' Anusandhan University, Odisha, India

Received September 24, 2021; Revised December 6, 2021; Accepted December 27, 2021

Abstract

Marine algae have gained substantial attention from various scientific and commercial fields. The reason behind its importance is due to the rich source of bioactive compounds like proteins, carbohydrates, lipids, and other pigments. Marine algae-derived carrageenans polysaccharides are used in food, medicine, cosmetic items, gelling, emulsifying, and stabilizing agents. The carrageenan has also photoprotective activity as it protects against the UVB-induced apoptosis in HaCaT cells and inhibits skin aging and cancers. Marine algae-derived macromolecules including polysaccharides and proteins have anticoagulant and photoprotective activities. The marine algae used in health sector is not limited to a food supplement only, rather, the derivatives from it are increasingly used in the biomedical application too. Different biological activities of marine algae as immunomodulatory, anti-tumor, anti-viral, anti-cancer, anti-aging, anti-oxidant, and anti-diabetic are discussed in this review. This mini-review is comprehensively based on the bioactivities materials from brown, red, green, and blue-green algae used in various biomedical fields.

Keywords
Marine Algae, Anti-Cancer, Anti-Inflammatory, Biomaterials, Biomedical, Polysaccharides, Photoprotective

1. Introduction

Marine algae are virtuous bases of nutrient food sources and bioactive secondary metabolites used in the pharmaceutical industry, biomedical field and also have valuable outcomes on human health. Commonly marine algae are grown in salty or brackish water, sunlight and rocky places rather than sand shingle shores or in a littoral zone. Among all marine flora and fauna, algae are the fastest-growing organisms on Earth and can grow in tropical, cold-temperate, and Polar Regions. In general, marine algae are divided into two categories; the 1st one is microalgae, which consist of dinoflagellates, blue-green algae, bacillariophyte, diatoms and the other is macroalgae (seaweeds), which contains green, brown, and red algae. Microalgae have potency to produced extremely high quantity of biomaterials that are used in biomedical fields. Nonetheless, red algae and their derived compounds have stronger biologically activity than other algae while seaweeds are the source of human food and gums. The Phycocolloides as like agar-agar, alginic acid and carrageenan are major components of red and brown algae cell walls which are mostly used in pharmaceutical field [1]. The algae are available in both microscopic and macroscopic forms. The green microalgae are the largest group among all marine algae, distributed under Phylum Chlorophyta. The green microalgae like Spirulina, Arthospira Platensis, Chlorella pyrenoidosa,
2. Methodology

A basic and thorough overview of the literature surveyed to identify the biomedical applications of Marine algae-derived biomaterial was conducted till 2021. Many offline and online databases were taken into consideration. The review articles and research papers published by various reputed publishers such as Elsevier, Springer, and Taylor & Francis imprints, Hindawi were considered as the data collection primary resource for this review article. Some online databases including NCBI, PubMed, Google Scholar, ProQuest, Scopus, and EBSCO were also accessed using keywords relating to the topic for data mining. The paid articles were accessed through the Centre Library facility of Siksha O Anusandhan University. The conference proceedings, magazines, WebPages, and book chapters were also reviewed and accessed as the other sources of literature to maximize the information about the current bottlenecks, the extent of research carried out, and the potential utility of the topic. In this review, we discussed about various bioactive materials of different marine algae. The current updates of marine algae-derived biomaterial are the main highlight of this review which will create a deep insight among the researchers about the updates and future research about the field of Marine Biotechnology.

3. Nutritional Activity

The Chlorella Vulgarisare (Chlorella) green algae from the phylum Chlorophyta contain protein approximately 50%-60% of its body weight. It is popular as a food supplement and widely used in the food industry due to its richness in protein and other essential amino acid. It also contains nutrients like β-1,3-glucan, β-carotene, vitamins B-complex and useful minerals like K⁺, Na⁺, Mg²⁺, Fe, and Ca²⁺. Most importantly a nucleoprotein found in Chlorella Vulgaris is used as a growth factor and tissue repairing. Similarly, various other bioactive molecules found in marine algae are alginate in Eisenia Bicycles and Macrocystis Pyrifera; Agar in Gelidiella Acrorosa; Retinol, Thiamine, Riboflavin, pyridoxine, B8, Folic Acid, Cobalamin, C, E in Spirulina Platensis; Vitamin C in Undaria Pinnatifida and Porphyra umbilicalis; Vitamin E in Nannochloropsis Oculata; Vitamin A, B1, B2, B12 and C in Scedesmus Quadriracuda; and Vitamin A, B1, B2, B6, B8 in Chlorella Pyrenoidosa [7]. Other side seen that, microalgae can produce polysaturated fatty acids with multiple double bonds (PUFAs) as Phaeodactylum, Monodus, Nitzchia, and Isochrysis have been used to produce PUFAs while Cryptococnidium, Nannochloropsis, and other algae species used in the food manufacturing industry[8].

Marine algae are commonly used in food industries to improve the quality of food products. In addition, algae are used in different meat products as pasty, steaks, frankfurters, sausages, and also used in fish foodstuffs, and oils for long-term storage. The algae are also used in cereal
or crops, as pasta, flour, and bread. Although, algae are used for the fermentation of foods as cheese, cream, milk desserts, yogurt, cottage cheese, and processed cheese. The algae such as Enteromorpha Himanthalia elongata, Undaria pinnatifida, and porphyra umbilicalis have potency to maintain the anti-oxidant activity of meat and cereal products. Meat and its derived products are rich in proteins and vitamins but sometimes seen that lack of dietary fiber and an excess amount of sodium in meat, which can cause serious health hazards for humans [9]. The addition of algae Sea Spaghetti (Halomonas elongata), Wakame (Undaria pinnatifida), and Nori (Porphyra umbilicalis) in meat can increase K, Ca, Mg, Mn and decrease salt content including fat and water binding properties. In addition, bread is a cereal-based product, to improve its quality green algae Ulva lactuca, and 2.5% of powdered Laminaria algae were added. Pasta is also a cereal-based product that has low protein and essential amino acids so high-protein additives are required to improve the quality of pasta. Studied that algae Undaria pinnatifida, rich in fucoxanthin was used 10% in pasta. In Indian brown algae, Sargassum marginatum was used in pasta for improved bio-functionality and quality. In Chinese, egg noodles were made by the addition of green algae Monostroma nitidum for better taste [10].

4. Biological Activities of Marine Alga

4.1. Anti-Microbial Activity

Marine algae have strong antibacterial, anti-fungal, and germicidal properties. The methanol extract of Sargassum Polycystum has strong antimicrobial activity. The methanol extract algae contained phenolic and alkaloid compounds which show antimicrobial activity [11]. The extract from Sargassum Polycystum has potentially inhibited the growth of bacteria like Escherichia coli, Proteus vulgaris, Erwinia caratovora, and Klebsiella pneumonia. Similarly, the extracts from Sargassum Polycystum can prohibit the growth of fungi like Aspergillus niger, Rhizopus Stolonifer. The chloroform and ethanol extract of Sargassum tenerrimum has the highest antibacterial activity against Staphylococcus aureus. The c-lactone malyngolide 14 was identified from the dichloromethane extract of the blue-green alga Lyngbya majuscula which inhibits Mycobacterium smegmatis & Streptococcus pyogenes. The Lyngaroside A 60 was identified from the green alga Codium iyengarii shows antibacterial activity. The main antimicrobial agent, which acts against the microbes of the blue-green algae is Lyngbya majuscula [12].

4.2. Anti-Oxidant and Anti-Inflammatory Activity

The carotenoids found in marine algae have antioxidant property which works as an immunity booster, wound healing, and other medical practices. The carotenoids from various marine algae have specialized health benefits as follows. The carotene isolated from Dunaliella shows both antioxidant and anti-inflammatory effects. Haematococcus pluvialis, Chlorella zofingiensis, and Chlorella vulgaris all have anti-oxidant, anti-inflammatory, and anti-tumor properties [13]. The antioxidant and anti-inflammatory activity are seen in zeaxanthin carotenoids that are produced from Dunaliella salina and Porphyridium cruentum as well as Chlorella protothecoids. Lutein has a specialized therapeutic role in age-related muscular degeneration (AMD), Atherosclerosis, retinal and neural damages. Although, Dunaliella salina, and Chlorella protothecoids derived carotenoids have anti-Oxidant and anti-Inflammatory activity. The lopophorins A 142 and B 143 were identified from the Caribbean brown alga Lobophora variegata (Dictyotales) which has anti-inflammatory activities and also potency inhibitors of tropical PMA-induced edema in the mouse ear. However, the microalgae Nannochloropsis Gaditana and Chlamydomonas debaryana produce oxylipins, which help to reduce inflammation [14].

4.3. Anti-Cancer Activity

The Violaanthin that has anti-inflammatory and anti-cancer potency is extracted from Dunaliella tertiolecta and Chlorella ellipsoidea. Fucocanthin which is found in Phaeodactylum tricornutum has antioxidant, anti-inflammatory as well as anti-cancerous properties. Curacin A 4 was identified from marine Cyanobacterium Lyngbya majuscle that is a new type of anticancer drug. The astaxanthin found in green microalgae Haematococcus Pluvialis, Chlorella zofingiensis, and Chlamydomonas nivalis has both anticancer & antioxidant properties. Most importantly the b-carotene found in Dunaliella salina has can specifically identify and destroy only neuroblastoma cells while unreflecting normal healthy cells, due to this ability, the Dunaliella has great importance in cancer therapy. The fucocanthin molecules from diatom are also very effective against inflammation, obesity, diabetes, malaria, and treatment of cancer cells by pro-apoptotic process [15].

4.4. Anti-Diabetic Activity

The Dieckol molecules isolated from a brown alga called Ecklonia cava are anti-diabetic due to their hepatoprotective role and anticoagulant activities. The report found from in vivo testing that the fucosterol was identified from the brown alga Pelvetia siliquosa shows anti-diabetic activity [16]. It was recommended to consume as a dietary supplement for the diabetic patient. Similarly, phlorotannins found in Asosophyllum nodosum can act against α-glucosidase and α-amylase that are helpful to digestion of starch and regulating blood sugar levels. The Ecklonia stolonifera species is used for anti-hypolipidemic activities due to the presence of molecules like
3.5. Anti-Ageing Activity

In contrast, marine algae exposed to solar radiation can produce anti-aging and photoprotective molecules. All the molecules have the potential to reabsorb ultraviolet rays like UVA and UVB and can prevent the production of free radicals. Some algae are the major source of phenolic compounds with photoprotective Shinorine, Porphyra-334, polythene, eckstolonol, eckol, sargachromenol, tetraprenyltoluquinol chromane meroterpenoid, setonemin, and sargaquinonic acid are examples of active compounds in this category. Edible brown algae including Ecklonia cava, Eisenia bicyclis, and Ecklonia stolonifera have another phenolic ingredient called eckstolonol that helps protect skin's HaCat cells from damage caused by sunlight. The Eckstolonol (200M) in table 1 can repair UV-B-induced damage by activating the enzymes catalase and superoxide dismutase, which aids in the removal of excessive ROS.

3.6. Anti-Viral Activity

Marine algae-derived Phenolic compounds like phlorotannin and dieckol. These molecules can help in the reduction of LDL cholesterol level and triglyceride while the increase in HDL cholesterol.

3.7. Anti-Fungal Activity

Cyanobacteria are known as blue-green algae because it contains chlorophyll a and its related compounds. The cyanobacteria can produce secondary metabolism as Biologically active nitrogenous chemicals and cyclic polyethers. An inhibitor of fungal plant diseases, Majuscuiamide C 16, was discovered in the blue-green algae Lyngby majuscula. The antifungal properties of dinoflagellates have been demonstrated by the discovery of Goniodomin A 23 from Goniodoma (Alexandrium) sp. and gambier acid from Gambierdiscus toxicus culture medium, respectively. The Capisterones A 67 and B 68 are identified from green alga Panicillus capitatus shows antifungal activity against the marine algal pathogen Lindra thallasiae. The meroditerpenoid was identified from the brown alga Cystoseira tamariscifolia and characterized as methoxybifurcarenone 138. It has antifungal activity against 3 tomato pathogenic fungi and antibacterial activity against Agrobacterium tumefaciens and Escherichia coli.

3.8. Immunosuppressive and Cytotoxicity Activity

According to several investigations found that Lyngbya majuscula, a type of blue-green algae native to Venezuela, contains immunosuppressive lipoproteins known as microcolins A 17 and B 18. Murine mixed lymphocytes and murine P388 leukemia are both suppressed in vitro by microcolins. Isorawsonol 30 is a phytochemical derived from the green alga Arrainvillia rawsonii. It has antifungal, photoprotective, and immunosuppressive properties. In addition, the marine alga provided Communesins A 34, B 35, and Penostatins A 36, B 37, C 38, D 39, and E 40 which shows Immunosuppressive and cytotoxicity activity. The aplysin-9-ene 291, epiaplysinol 292 and debromoepiaplysinol 293, were identified from red alga Laurencia tristicha. Debromo-epiaplysinol 293 shows cytotoxicity to the HeLa cell line.

3.9. Phytoprotective Activity of Marine Algae

Different species of marine algae have various chemical compositions. As red and brown algae are rich in sulfated polysaccharides such as carrageenan and fucoidan. The Carrageenans are thickening agents often used in food, medicine, cosmetic items, gelling, emulsifying, and stabilizing properties. Reported that, carrageenan bases skin products are antioxidant, detoxifying, cleansing, hydrating, and revitalizing activities. The carrageenan has also photoprotective activity as it protects against the UVB-induced apoptosis in HaCaT cells and inhibits the production of H2(ROS) because excess amounts of ROS can cause skin aging and cancers. The chemical structure of carrageenan is in Figure-1.

Brown algae have sulfated polysaccharide called fucoidan, the biological activity of fucoidan is in Table-1 and the chemical structure is in Figure-1. Fucoidan, an antioxidant found in brown algae such as Ecklonia cava, Undaria pinnatifida, Costariacrostata, and Fucus evanesce, has photoprotective properties. Fucoidan's photoprotective properties were discovered in UVB-irradiated human skin fibroblasts. As the MMP-1 activity is suppressed by fucoidan's photoprotective properties. UV-irradiated human skin has collagen degradation and photaging caused by MMP-1. Sulfated polysaccharides diminish NF-B expression by inhibiting NF-B, which in turn lowers MMP-1 levels. The photoprotective action of low-molecular-weight fucoidan is greater than that of UV filtering effects. Aside from that, carotenoids protect photosynthetic organisms like algae and cyanobacteria from the sun's ultraviolet radiation.
The carotenoid content in brown algae increased UVB exposure. The canaliculate plant *Pelvetia Canaliculata* and the fucoxanthin of brown algae have photoprotective activity against UVB-induced photoaging. Photoprotective activities on Human dermal fibroblasts and hairless mice exposed to ionizing radiation have both shown the effect *in vitro* and *in vivo*. Fucoxanthin's photoprotective activity is based on ROS scavenging as a mode of action. There's a UV-sensitive gene called Filagrin to inhibit wrinkle formation. Fucoxanthin can increase filagrin promoter activity in UV-induced sunburns [28].

Different species of red algae and their biological activities are discussed below; As Solieria chordates have the absorption of UVB light and free radical scavengers. This plant, *Porphyra umbilicalis*, can prevent UV-ray damaged skin from erythema [29]. This plant, *Porphyra yezoensis*, can modify the viability of UVB-exposed HaCaT [30]. *Solieria chordalis* can protect synthetic chlorophyll solution from UVB, while *Polysiphonia morrowii* can shield HaCaT from UVB-induced cell damage. The HACT can be protected from UVB-induced cell damage using *Chondracanthus tenellius*, and can prevent HaCaT from UVB-induced cell damage are *Bonnemaisonia hamifera*, *Lomentaria hakodatensis*, *Macrocystis pyrifera*, and *Porphyra columbina* [31]. The following section discusses various brown algae species and their biological activity. When used as a UVB irradiated human keratinocyte model, *Sargassum muticum* inhibits wrinkle formation on UVB-induced mice *in vivo* and as a human skin cell model *in vitro*. HaCaT can be protected by *Undaria crenata* against UVB-induced cell damage. Several plants can shield the developing zebrafish embryo from UVB damage, including *Lessonia vadose*, *Lessonia black*, *Ascophyllum nodosum*, *Saccharina latitissima*, *Fucus veneiculosus*, *Ecklonia maximum*, and *Durvillaea Antarctica* [32].
Figure 1. The Algae derived chemical compounds with their 3D structures.
Table 1. List of marine algae and their derived biological active compounds.

Sl.no	Algae species	Compounds	Biological activity	References
1	Ecklonia stolonifera	Phlorofucofuroeckol A & B	Anti-inflammatory	34
2	Ecklonia. cava	Dieckol	Antitumor activity.	35
3	Ishige foliacea	Octaphlorethol A	Anti-inflammatory.	36
4	Cystoseira mediterranea, Pierocladia capillacea	Flavonoids & tannin	Antimicrobial.	37
5	Cymopolia barbata	3,7-hydroxycymopolone	Antimitogenous.	38
6	Caulerpa racemosa	Racemosin A	Neuroprotective.	39
7	Caulerpa racemosa	Caulerprenylols A	Antifungal.	39
8	Ulva prolifera	pyrrolopipera-zine-2,5-dione	Antialgal.	40
9	Cymopolia barbata	7-Hydroxycymopolone (PBQ2)	Chemotherapeutic, Anticancer.	40
10	Caulerpa racemosa and Caulerpa genus	Caulerpin	Anti-microbial.	41
11	Brown algae	Alginate	Antitumour, Antifungal.	42
12	Red algae	Carrageenan	Antioxidant, drug delivery.	43
13	Green algae	Ulvan	Anti-microbial.	43
14	Adenocystis, Utricularis, Grateloupia, longifolia, Laminaria, guryanovae, Codium, atlanticum, Monostroma nitidum	Sulfated polysaccharides	Anti-HIV, Anti-tumor, Anti-coagulant.	44
15	Arthospira platensi	Spirulan	Anti-coagulant, anti-thrombic activity.	45
16	Isochrysis galbana; chaetoceros, Skeletonema; Pavlova lutheri	Brassica sterol, Stigmasterol	Anti-bacterial, Hypocholesterolemic.	46
17	Ecklonia stolonifera, Ascophyllum nodosum, Ulva lactuca, palmaria palmate, Alaria esculenta.	Phlorotannin	Anti-hypertension, Anti-cancer, Anti-radio-protective, Anti-photocarcinogenic, Anti-diabetic, Anti-allergy, Anti-proliferative, Anti-antiaging, Anti-Matrix metalloproteinase.	47
18	Myagropsis, myagroides, Brown algae	Fucoxanthins	Anti-inflammatory, Anti -diabetic, Anti-angiogenic.	44
19	Pelvetica siliquosa, Sargassum Vulgare, Undaria, Pinnatifida, Himanthalia, elongate, Chondrus, Crispus, Porphyra, Ulva, and Porphyra species.	Fecosterols	Anti-cancer, Anti-diabetic, Anti-fungicidal.	49
20	Spirulina maxima	Eugenol, Hydroxy-cinnamic acids, Hydroxy benzoic acids, kaempferol, chrysin, galangin, Pinostrobin	Antioxidant, Anti-hepatoprotective.	50

3.10. Anti-Coagulant Activity

The marine algae have anticoagulants properties because those contain sulphated glycosaminoglycans and include sulfated polysaccharides like heparin and heparan sulfate. In the algae group, the Phaeophyta (brown algae), Chlorophyta (green algae) and Rhodophyta (red algae) are the most abundant, among them anticoagulant polysaccharides have been isolated from red and brown algae are carrageenans and fucoidans, respectively. The homogenous polysaccharides of galactose or fucose are commonly found in red and brown algae. However, there was no report on green algae containing anticoagulant polysaccharides. But reported that Codium fragile ssp. tomentose, of green algae, has excellent anticoagulant polysaccharides. Recently reported that green algae are heterogeneous polysaccharides and homogenous galactan. Algal anticoagulant polysaccharides are used for antithrombin III (AT III) and heparin cofactor II (HC II) that are endogenous inhibitors, called SERPIN. In contrast, some algal anticoagulant polysaccharides are used directly to inhibit fibrin polymerization or thrombin activity without potentiating AT III and HC II. Algal anticoagulant polysaccharides can activate the fibrinolysis system and modulate endothelial cell functions. The bioactive compounds of marine algae show anti-platelet and
and tested by people. The accurate results to be known when it is sold in market so needs to long term research to achieve major compounds acts as photoprotection. From the past few decades, the healthy” with nontoxic materials. Different species of marine algae have several properties without any toxicity and a good safety profile. Marine algae are produced a wide variety of biological active compounds with significant effects. The marine algae-derived molecules are better than synthetic compounds used in various food and medicinal production. It is used in skincare products also as photoprotection. From the past few decades, the studies on the potential use of marine algae in human health benefits have been increased the importance in various sectors. Microalgae-derived compounds have high demand in pharmaceutical, nutraceutical, cosmetic, animal feed, biological waste treatment, and other multifunctional activities due to the richness in bioactive molecules. Microalgae have the potential activity to treat cancer, inflammation, Alzheimer’s, CVDs, malaria, leishmaniasis, TB, HIV etc through major sources of natural bioactive compounds like carotenoids, PUFAs, proteins, polysaccharides, glycolipids. It was also found that different biologically active compounds from marine algae-like aflatoxins, dolestatins, majusculamides, carotenes have an excellent health benefit. So that researchers should be exploring the potential use of bioactive compounds from marine algae in advanced biomedical applications and field of biotechnology. Algae-based biomaterials show a prominent future in pharmaceutical and cosmeceutic fields. But still there is no clear evidence found about bioactive compounds in algae so needs to long term research to achieve major compounds of algae and that can be used in biomedical applications, the accurate results to be known when it is sold in market and tested by people.

5. Conclusions

Marine algae have potential source of bioactive substances in the medical and cosmetic fields. Marine algae-derived compounds have unique chemical structures with excellent biological activities and are also “natural and healthy” with nontoxic materials. Different species of marine algae have several properties without any toxicity and a good safety profile. Marine algae are produced a variety of biological active compounds with significant effects. The marine algae-derived molecules are better than synthetic compounds used in various food and medicinal production. It is used in skincare products also as photoprotection. From the past few decades, the studies on the potential use of marine algae in human health benefits have been increased the importance in various sectors. Microalgae-derived compounds have high demand in pharmaceutical, nutraceutical, cosmetic, animal feed, biological waste treatment, and other multifunctional activities due to the richness in bioactive molecules. Microalgae have the potential activity to treat cancer, inflammation, Alzheimer’s, CVDs, malaria, leishmaniasis, TB, HIV etc through major sources of natural bioactive compounds like carotenoids, PUFAs, proteins, polysaccharides, glycolipids. It was also found that different biologically active compounds from marine algae-like aflatoxins, dolestatins, majusculamides, carotenes have an excellent health benefit. So that researchers should be exploring the potential use of bioactive compounds from marine algae in advanced biomedical applications and field of biotechnology. Algae-based biomaterials show a prominent future in pharmaceutical and cosmeceutic fields. But still there is no clear evidence found about bioactive compounds in algae so needs to long term research to achieve major compounds of algae and that can be used in biomedical applications, the accurate results to be known when it is sold in market and tested by people.

Acknowledgments

The authors are grateful to Prof (Dr) Sudam Chandra Si, Dean and Prof (Dr) Manoj Ranjan Nayak, President, Centre of Biotechnology, Siksha O Anusandhan University, for providing all facilities.

Financial Discloser

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript. The following authors have affiliations with organizations with a direct or indirect financial interest in the subject matter discussed in the manuscript.

REFERENCES

[1] Pujiastuti DY., Ghoyatul Amin MN., Alamsjah MA., Hsu JL, “Marine organisms as potential sources of bioactive peptides that inhibit the activity of angiotensin I-converting enzyme: a review,” International Journal of Molecular Science, vol.24, no.14, pp.2541. 2019. DOI: https://doi.org/10.3390/molecules24142541

[2] Lauritano C., Helland K., Riccio G., Andersen JH., Ianora A., Hansen EH, “Lyso(phosphatidyl)cholines and chlorophyll-derived molecules from the diatom Cylindrotheca closterium with anti-inflammatory activity,” Marine drugs, vol.18, no.3, pp.166. 2020. DOI: https://doi.org/10.3390/md18030166

[3] Fertah M., Belkira A., Taourirte M., Brouilette F, “Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed,” Arabian Journal of Chemistry, vol. 10, no.2, pp.S3707-S3714. 2017. DOI:https://doi.org/10.1016/j.arabjc.2014.05.003

[4] Ermakova S., Kusaykin M., Trincone A., Tatiana Z, “Are multifunctional marine polysaccharides a myth or reality?,” Frontiers in chemistry, vol.3, pp.39. 2015. DOI: https://doi.org/10.3389/fchem.2015.00039

[5] Haftin G T., Craigie J S., Stengel D B., Loureiro R R., Buschmann A H., Yarish C. Critchley, A. T, “Prospects and challenges for industrial production of seaweed bioactives,” Journal of Phycology, Vol.51, no.5, pp. 821-837. 2015. DOI: https://doi.org/10.1111/jpy.12326.

[6] Wang HM., Li XC., Lee DJ., Chang JS, “Potential biomedical applications of marine algae,” Biotechnology, vol.244, pp.1407-15, 2017. DOI: https://doi.org/10.1016/j.biortech.2017.05.198.

[7] Wang L., Park YJ., Jeon YJ., Ryu B, “Bioactivities of the edible brown seaweed, Undaria pinnatifida: A review,” Aquaculture, vol.495, pp.873-880, 2018. DOI: https://doi.org/10.1016/j.aquaculture.2018.06.079

[8] Ávila-Román J., Talero E, de Los Reyes C., García-Mauriño S., Motilva V, “Microalgae-derived oxylipins decrease inflammatory mediators by regulating the subcellular location of NFκB and PPAR-γ,” Pharmacological research, vol.128, pp.20-30. 2018. DOI: https://doi.org/10.1016/j.phrs.2017.10.009.

[9] Ścieszka S., and Klewicka E, “Algae in food: A general review,” Critical reviews in food science and nutrition, vol.59, no.21, pp.3538-3547. 2019. DOI: https://doi.org/10.1080/10408398.2018.1496319.

[10] Pina-Perez M C., A Rivas., A Martinez., and D Rodrigo, “Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food,” Food Chemistry, vol.235, pp.34-44. 2017. DOI: https://doi.org/10.1016/j.foodchem.2017.05.033.
[11] Singkoh MF., Katili DY., Rumondor MJ., “Phytochemical screening and antibacterial activity of brown algae (Padina australis) from Atep Oki Coast, East Lembean of Minahasa Regency,” Aquaculture, Aquarum, Conservation & Legislation, vol.14, no.1, pp.455-61. 2021.

[12] Ashmad H., Huldani H., Feby Ramadhan Y., “Antimicrobial Activity and Sulfated Polysaccharides Antibiofilms in Marine Algae Against Dental Plaque Bacteria: A Literature Review,” A multifaceted review journal in the field of pharmacy, 2020.

[13] Bule MH., Ahmed I., Maqbool F., Bilal M., Iqbal HM., “Microalgae as a source of high-value bioactive compounds,” Frontiers In Bioscience, vol.10, pp.197-216. 2018.

[14] Gong M., Bassi A., “Carotenoids from microalgae: A review of recent developments,” Biotechnology advances, vol.34, no.8, pp.1396-1412. 2016. DOI: 10.1016/j.biotechadv.2016.10.005.

[15] Li R., Wu H., Zhuo W.W., Mao Q.F., Lan H., Zhang Y., Hua S., “Astaxanthin normalizes epigenetic modifications of bovine somatic cell cloned embryos and decreases the generation of lipid peroxidation,” Reproduction in Domestic Animals, vol.50, no.5, pp.793-799. 2015. DOI: https://doi.org/10.1111/rda.12589.

[16] Rosa GP., Tavares WR., Sousa P., Seca AM., Pinto DC., “Seaweed secondary metabolites with beneficial health effects: An overview of successes in in vivo studies and clinical trials,” Marine drugs, vol.18, no.1, pp.8. 2020. DOI: https://doi.org/10.3390/md18010008.

[17] Yu Y., Wang L., Fu X., Wang L., Fu X., Yang M., Han Z., Mou H., Jeon YJ., “Anti-oxidant and anti-inflammatory activities of ultrasonic-assistant extracted polyphenol-rich compounds from Sargassum muticum,” Journal of Oceanology and Limnology, vol.37, no.3, pp.836-847. 2019. DOI: https://doi.org/10.1007/s00343-019-8138-5.

[18] Carson MA., Clarke SA., “Bioactive compounds from marine organisms: Potential for bone growth and healing,” Marine drugs, vol.16, no.9, pp.340. 2018. DOI: https://doi.org/10.3390/md16090340.

[19] Verdes A., Holford M., “Beach to Bench to Bedside: Marine Invertebrate Biochemical Adaptations and Their Applications in Biotechnology and Biomedicine,” Marine Organisms as Model Systems in Biology and Medicine, pp.359-76. 2018.

[20] Parimala S., Begum A., “A review on anti hiv agents from marine sources,” World Journal of Pharmaceutical Research, vol.8, no. 6, pp.235-241, 2019. DOI: 10.20995/wjpr2019-14716.

[21] Srivastava A., Mishra V., “Marine peptides act as novel chemotherapeutic agent,” Journal of Microbiology & Experimentation, vol.6, no.6, pp.267-70. 2018.

[22] Al-Enazi NM., Awaad AS., Alqasoumi SI., Alwethairi MF., “Biological activities of the red algae Galaxaura rugosa and Liagora hawaiiana butters,” Saudi Pharmaceutical Journal, vol.26, no.1, pp.25-32. 2018. DOI: https://doi.org/10.1016/j.jsp.2017.11.003.

[23] Gogineni V., Hamann MT., “Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology,” Biochimica et Biophysica Acta (BBA)-General Subjects, vol.1862, no.1, pp.81-196. 2018. DOI: https://doi.org/10.1016/j.bbagenn.2017.08.014.

[24] Liu S., Su M., Song SJ., Jung J H., “Marine-derived Penicillium species as producers of cytotoxic metabolites,” Marine drugs, vol.15, no.10, pp.329. 2017. DOI: https://doi.org/10.3390/md15100329.

[25] Olasehinde TA., Mabinya LV., Olaranu AO., Okoh AI., “Chemical characterization, antioxidant properties, cholinesterase inhibitory and anti-amyloidogenic activities of sulfated polysaccharides from some seaweeds,” Bioactive Carbohydrates and Dietary Fibre, vol.18, pp.100182. 2019. DOI: https://doi.org/10.1016/j.bedf.2019.100182.

[26] Karim N., Khan I., Khan W., Khan I., Khan A., Halim SA., Khan H., Hussain J., Al-Harrasi A., “Anti-nociceptive and anti-inflammatory activities of asparacosin a involve selective cyclooxygenase 2 and inflammatory cytokines inhibition: an in-vitro, in-vivo, and in-silico approach,” Frontiers in immunology, vol.10, pp.581. 2019. DOI: https://doi.org/10.3389/fimmu.2019.00581.

[27] Pangestuti R., Siahaan EA., Kim SK., “Photoprotective substances derived from marine algae,” Marine drugs, vol.16, no.11, pp.399. 2018. DOI: https://doi.org/10.3390/md16110399.

[28] Jing R., Guo K., Zhong Y., Wang L., Zhao J., Gao B., Ye Z., Chen Y., Li X., Xu N., Xuan X., “Protective effects of fucoidan purified from Undaria pinnatifida against UV-irradiated skin photoaging,” Annals of translational medicine, vol.14, 2021. DOI: https://dx.doi.org/10.21037/atm-21-3668.

[29] Kim YI., OhWS., Song PH., Yun S., KwonYS., Lee YJ., KuSK., Song CH., Oh TH., “Anti-photoaging effects of low molecular-weight fucoidan on ultraviolet B-irradiated mice,” Marine drugs, vol.16, no.8, pp.286. 2018. DOI: https://doi.org/10.3390/md16080286.

[30] Matsui M., Tanaka K., Higashiguchi N., Okawa H., Yamada Y., Tanaka K., Taira S., Aoyama T., Takamishi M., Natsume C., Takakura Y., “Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation,” Journal of pharmacological sciences, vol.132, no.1, pp.55-64. 2016. DOI: https://doi.org/10.1111/jphs.2016.08.004.

[31] Álvarez-Gómez F., Korbee N., Casas-Arrojo V., Abdala-Díaz RT., Figueroa FL., “UV photoprotection, cytotoxicity and immunology capacity of red algae extracts,” Marine drugs, vol.24, no.2, pp.341. 2019. DOI: https://doi.org/10.3390/md16110399.

[32] Liu S., Su M., Song SJ., Jung J H., “Marine-derived Penicillium species as producers of cytotoxic metabolites,” Marine drugs, vol.15, no.10, pp.329. 2017. DOI: https://doi.org/10.3390/md15100329.

[33] Mercan DG., Wagemaker TAL., Alves VM., Benevenuto CG., Gaspar LR., Campos PM., “In vivo photoprotective effects of cosmetic formulations containing UV filters, vitamins, Ginkgo biloba and red algae extracts,” Journal of Photochemistry and Photobiology B: Biology, vol.153, pp.121-126. 2015. DOI: https://doi.org/10.1016/j.jphotobiol.2015.09.016.

[34] Lee YJ., Park JH., Park SA., Joo NR., Lee BH., Lee KB., Oh SM., “Dieckol or phlorofucofuroeckol extracted from...
Ecklonia cava suppresses lipopolysaccharide-mediated human breast cancer cell migration and invasion,” Journal of Applied Phycology, vol.32, no.1, pp.631-40. 2020. DOI: https://doi.org/10.1007/s10811-019-01899-2.

[35] Shrestha S., Zhang W., and Smid SD, “Phlorotannins: A review on biosynthesis, chemistry and bioactivity,” Food Bioscience, vol.39, p.100832. 2020. DOI: https://doi.org/10.1016/j.fbio.2020.100832.

[36] Ha JW., Song H., Hong SS., Boo YC, “Marine alga Ecklonia cava extract and dieckol attenuate prostaglandin E2 production in HaCaT keratinocytes exposed to airborne particulate matter,” Antioxidants, vol.8, no.6, pp.190. 2019. DOI: https://doi.org/10.3390/antiox8060190.

[37] Kumar MS., Patravale VB, “Marine derived Potential Anti-inflammatory Agents,” Encyclopedia of Marine Biotechnology, vol.4, pp.2585-605. 2020. DOI: https://doi.org/10.1002/9781119143802.ch116.

[38] El-Din SMM., El-Ahwany AM, “Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea),” Journal of Taibah University for Science, Vol.10, no.4, pp.471-484. 2016. DOI: https://doi.org/10.1016/j.jtusci.2015.06.004.

[39] Shah SA., Bungau S., Si Y., Xu H., Rahman M., Behl T., Gitea D., Pavlova FM., Corb Aron RA., Pasca B., Nemeth S. “Chemically diverse and biologically active secondary metabolites from marine Phylum chlorophyta,” Marine Drugs, vol.18, no.10, pp.493. 2020. DOI:https://doi.org/10.3390/md18100493.

[40] Eismann AI., Reis RP., da Silva AF., Cavalcanti DN, “Ulva spp. carotenoids: Responses to environmental conditions,” Algal Research, vol.48, pp.101916. 2020. DOI: https://doi.org/10.1016/j.algal.2020.101916.

[41] Khan K., Tareen AK., Iqbal M., Mahmood A., Shi Z., Yin J., Qing D., Ma C., Zhang H. “Recent development in Graphdiyne and its derivative materials for novel biomedical applications,” Journal of Materials Chemistry B, 2021.

[42] Cantarino SJ., Coutinho R., Soares AR., Duarte HM., Martinez ST, “Microwave irradiation is a suitable method for caulerpin extraction from the green algae Caulerpa racemosa (Chlorophyta, Caulerpaceae),” Natural Product Research, vol.20, pp.1-5. 2020. DOI: https://doi.org/10.1080/14786419.2020.1844684.

[43] Manivasagan P., Oh J, “Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications” International journal of biological macromolecules, vol.82, pp.315-327. 2016. DOI: https://doi.org/10.1016/j.ijbiomac.2015.10.081.

[44] Zhong B., Robinson NA., Warner RD., Barrow CJ., Dunshea FR., Sulera HA, “Lc-esi-qtof-ms/ms characterization of seaweed phenolics and their antioxidant potential,” Marine drugs, vol.18, no.6, pp.331. 2020. DOI: https://doi.org/10.3390/md18060331.

[45] Lauritano C., Helland K., Riccio G., Andersen JH., Ianora A., Hansen EH, “Lysophosphatidylcholines and chlorophyll-derived molecules from the diatom Cylindrotheca closterium with anti-inflammatory activity,” Marine Drugs, vol.18, no.3, pp.166. 2020. DOI: https://doi.org/10.3390/md18030166.

[46] Miguel SP., Ribeiro MP., Otero A., Coutinho P, “Application of microalgae and microalgal bioactive compounds in skin regeneration,” Algal Research, vol.58, pp.102395. 2021. DOI: https://doi.org/10.1016/j.algal.2021.102395.

[47] Sanjeewa K KA., Kim EA., Son KT., Jeon YJ, “Bioactive properties and potentials cosmecutical applications of phlorotannins isolated from brown seaweeds: A review,” Journal of Photochemistry and Photobiology B: Biology, vol.162, pp.100-105. 2016. DOI: https://doi.org/10.1016/j.jphotobiol.2016.06.027.

[48] Verma ML., Chandel A eds, “Biotechnological production of bioactive compounds,” Elsevier. 2019.

[49] Sudhakar MP., Kumar BR., Mathimani T., Arunkumar K., “A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective,” Journal of Cleaner Production, vol.228, pp.1320-33. 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.04.287.

[50] Tuvikene R., “Carrageenans, In Handbook of Hydrocolloids,” Woodhead Publishing, pp.767-804. 2021. DOI: https://doi.org/10.1016/B978-0-12-820104-6.00006-1.