C-phycocyanin as a highly attractive model system in protein crystallography, unique crystallization properties and packing-diversity screening

Iosifina Sarrou, Christian G. Feiler, Sven Falke, Nolan Peard, Oleksandr Yefanov and Henry Chapman
Table S1
Crystal structures of C-phycocyanin from cyanobacteria.

PDB ID	Source	Max. resolution	Symmetry	Precipitant	Unit cell parameters
4ZIZ	T. elongatus	1.75Å	H32	PEG 3350, HEPES pH 7.0	186, 186, 60
				Ammonium sulfate, MES pH 6.1	90, 90, 120
4Z8K	T. elongatus	2.5Å	P6,		153, 153, 39
					90, 90, 120
4H0	T. elongatus	2.2Å	P1 2 1	PEG 4000	106, 113, 184
M	PCC7942				90, 90, 120
1JBO	T. elongatus	1.45Å	H32	Ammonium sulfate, MES pH 6.1	188, 188, 60
					90, 90, 120
4N6S	T. vulcanus	2.4Å	H32	1.4 M phosphate buffer	188, 188, 60
					90, 90, 120
4GX	T. vulcanus	3.0Å	P6,	Ammonium sulfate, Tris pH 8.0	153, 153, 39
E		2.5 Å			90, 90, 120
	4GY3				186, 186, 60
					90, 90, 120
3O18	T. vulcanus	1.35Å	H32	Ammonium sulfate, sucrose, Tris pH 8.0	186, 186, 60
3O2C	T. vulcanus	1.5Å	H32	1.2 M phosphate buffer	187, 187, 60
					90, 90, 120
1ON7	T. vulcanus	2.7Å	P6,	PEG4000, bis Tris pH 7.0	153, 153, 39
					90, 90, 120
5TO	Pseudanabaena sp. lw0831	2.04 Å	P2 1 2 1	PEG 4000, sodium acetate pH 5.0	67, 175, 194
					90, 90, 90
4L1E	Leptolyngbya sp. N62DM	2.61Å	C121	PEG 2000, Tris pH 9.0	183, 107, 111
					90, 98, 90
4F0T	Synechocystis sp. PCC 6803	2.61Å	P6,	PEG 4000, MgSO4 Tris pH 8.0	153, 153, 40
					90, 90, 120
1HA7	Arthrospira platensis	2.2Å	P1 2 1	PEG 6000, 10% EtOH pH 6.8	107, 115, 183
1GH0					90, 90, 90
1CPC	Microchaete diplosiphon	1.66Å	R3	10 to 12.5% PEG, 0.1 M phosphate pH 5.0	180, 180, 61
					90, 90, 120
C-Phycocyanin microcrystals appear to have an advantage as a model protein for easy visualization in serial crystallography experiments. As shown in figure S1A and B, the crystal density on a fix target chip can be easily adjust. The microcrystals shown in (A, B) were grown with the batch method and appear in few hours.

Figure S1 (a and b) Microcrystalline material loaded on a silicon chip (Lieske et al., 2019) and used in a serial crystallography setup. The natural blue color makes the crystal density on the chip easily adjusted. Microcrystals diffracted up to 2.3 Å resolution (Meents et al., 2017). The diameter of a single hole is 30 µm and crystals do not exceed 10 µm diameter. (c) Self-assembled crystalline material of larger particle size (formed in solution in acetate buffer pH4) loaded onto an XtalTool-HT (Feiler et al., 2019) and data were collected with the serial crystallography approach. (d) Application of C-PC microcrystals for serial crystallography on silicon chip directly at the beam. The mother liquid and nanocrystal are blotted before the data collection.
Figure S2 (a) Images of randomly picked crystals in UV-TEF and SONICC. The images show that the SHG signal is not enhanced by the chromophore present in the protein therefore there is not a false positive signal during imaging. (b) Examples of droplets were two crystal sizes are appearing, therefore in these cases, we included both sizes in the statistics shown in Figure 2(a).
Figure S3 Images of another three 96 well plates in visible (left) and the SHG imaging mode (right) in continuation of figure 3. The details on the plates are described in table 3 (protein buffered at pH 6.5) and the text. To examine the possibility of a false positive SHG signal due to the presence of the chromophore in C-PC or a higher symmetry space group, UV-TEF imaging was additionally utilized, which is based on intrinsic tryptophan fluorescence (see examples in figure S2).
Figure S4 Images of the 96 well plates in visible light (left) and the SHG imaging mode (right). The second harmonic generation imaging, as shown on the right side, is positive, i.e., light is emitted when chiral crystals are present in the droplet. To examine the possibility of a false positive due to the presence of the chromophore in C-PC or a higher symmetry space group UV-TPEF imaging was additionally utilized, which is based on intrinsic tryptophan fluorescence (see examples in figure S2).

![Image](image1.png)

Figure S5 The size distribution of crystals as they appear under different conditions. Naturally, within one crystallization drop, crystal sizes may vary, the results are determined by the observations of the majority of crystals. In some cases, when the crystals have two distinct size regimes, both are included, see examples in figure S2. (b) Three categories of crystal morphology in the C-PC crystallization experiments utilizing three different screens as shown in table 1, with C-PC in Tris buffer at pH 8.0. Please note that the morphologies are reported for crystals bigger than 10 µm.

![Image](image2.png)

Figure S6 A total number of 118 datasets were analysed. The data were categorized into six different resolution classes. The cumulative percentage of individual categories is reflected. The number of individual datasets populating the different maximum resolution bins in Å is provided.

![Image](image3.png)
Figure S7 Individual ΔG_{int}, and ΔG_{diss}, calculated in kcal/mol, indicate the solvation free energy gain upon formation of the individual assembly of the C-PC molecules and the individual assembly dissociation, respectively, ΔG_{int} is the difference in total solvation energies of isolated and assembled molecules without taking the effect of satisfied hydrogen bonds and salt bridges across the interfaces into account. The positive values of ΔG_{diss} indicate that external driving forces are needed to be applied to dissociate the given assembly. Values of $\Delta G_{\text{diss}}>0$ indicate thermodynamically stable complexes.
Figure S8 Calculated Surface areas are plotted for each observed space group and indicate the solvent-accessible protein surface area of individual assemblies. The buried area depicts the solvent-accessible surface area of monomeric units buried upon the assembly of hexameric or dodecameric structures. All surface areas are calculated in square Å.
Figure S9 (a) Superposition of all structural models. The average C_a rmsd calculated to 0.57 Å is slightly higher than the structural coordinate error. All models are individually coloured and the positions of the phycocyanobilin cofactor are numbered throughout all panels. (b) A magnified stick representation of the cofactor and its binding region in cartoon representation is shown for each of the three ligand molecules. (c) The ligand binding pockets were calculated and are shown for each structure is superposition with the occupying ligand in stick representation. The dotted line in the middle panel indicates a 2.8 Å difference in the ligand binding position.
Table S2 Indexing parameters on data collected from crystals larger than 70 µm.

The protein was in 20 mM TRIS pH 8.0, 100 mM NaCl. The crystallization screens used is mentioned on the first column and the number from A1 to H12 corresponds to the drops on a 96 well plate MRC2. The crystallization experiments were set up manually with the mixing of 1 µl protein and 1 µl precipitant. All the plates were stored at 20 °C unless is mentioned otherwise. The crystals were randomly picked and froze in 25% PEG400 when cryoprotectant was necessary.

No.	Screen	SPG no	a [Å]	b [Å]	c [Å]	α [deg]	β [deg]	γ [deg]	Maxres [Å]	pH	Crystallization solution
1	Morpheus3 B4	155	186.8	186.8	59.96	90	90	120	1.05	6.5	1.5% Vitamins Mix. 0.1 M Buffer System1. 50% Precipitant Mix 4
2	Morpheus3 H1	155	187.31	187.31	59.92	90	90	120	1.05	6.5	0.8% Anaesthetic alkaloids mix. 0.1 M Buffer System1. 50% Precipitant mix 1
3	Morpheus3 D1	155	187.23	187.23	59.7	90	90	120	1.07	6.5	0.35% Phytochemicals 1 mix; 0.1 M Buffer System 1; 50% Precipitant Mix 1
4	Morpheus3 E1	155	187.22	187.22	59.85	90	90	120	1.07	6.5	0.25% Phytochemicals 2 mix; 0.1 M Buffer System 1; 50% Precipitant Mix 1
5	Morpheus3 A1	155	186.98	186.98	59.74	90	90	120	1.08	6.5	1.6% Dipeptide Mix. 0.1 M Buffer System1. 50% Precipitant Mix 1
6	JCSG C11	155	187.28	187.28	59.84	90	90	120	1.10	4.6	2.0 M Ammonium sulfate; 0.1 M Sodium acetate
7	JCSG E10	155	187.38	187.38	60.11	90	90	120	1.10	9	0.1 M Bicine; 10% w/v PEG 6000
8	JCSG H2	155	187.02	187.02	59.97	90	90	120	1.10	-	1.0 M Ammonium sulfate; 0.1 M BIS-Tris; 1% w/v PEG 3350
9	JCSG A3	155	187.01	187.01	59.94	90	90	120	1.12	-	0.2 M Ammonium citrate dibasic; 20% w/v PEG 3350
10	PGA H8	155	187.64	187.64	59.87	90	90	120	1.12	7	0.1 M Ammonium sulfate; 0.3 M Sodium formate; 0.1M Tris; 3% w/v γ-PGA (Na+ form. LM); 10% w/v PEG 2000 MME
11	JCSG C4	155	186.89	186.89	59.72	90	90	120	1.13	7	0.1M HEPES; 10% w/v PEG 6000
12	MIDAS H11	155	187.08	187.08	59.69	90	90	120	1.13	-	0.2 M Ammonium formate; 10% w/v Polyvinylpyrrolidone; 20% w/v PEG 4000
13	Morpheus3 F1	155	187.19	187.19	60.12	90	90	120	1.13	6.5	0.6% Antibiotics mix; 0.1M Buffer System 1; 50% Precipitant Mix 1
14	Morpheus3 F4	155	186.63	186.63	60.13	90	90	120	1.14	6.5	0.6% Antibiotics Mix. 0.1M Buffer System1. 50% Precipitant Mix4
15	JCSG G9	155	187.27	187.27	60	90	90	120	1.15	-	0.1 M potassium thiocyanate. 30% PEG2000MME
16	PGA A1	155	186.97	186.97	59.85	90	90	120	1.16	5	0.3 M Potassium bromide; 0.1 M Sodium acetate; 8% w/v γ-PGA (Na+ form. LM)
17	PGA E10	155	187.5	187.5	60	90	90	120	1.16	6.5	0.1M Ammonium sulfate; 0.3 M Sodium formate; 0.1M Sodium cacodylate; 3% w/v γ-PGA (Na+ form. LM); 20% v/v PEG 500 MME
18	PGA A2	155	187.36	187.36	59.73	90	90	120	1.17	5	0.2 M Magnesium chloride; 0.1 M Sodium acetate; 8% w/v γ-PGA (Na+ form. LM)
19	JCSG C6	155	153.8	153.8	39.61	90	90	120	1.18	4.5	40% PEG300 100mM Phosphate/citrate
20	JCSG A9	155	187.73	187.73	60.08	90	90	120	1.19	-	0.2 M Ammonium chloride; 20% w/v PEG 3350
21	JCSG H8	155	187.03	187.03	59.63	90	90	120	1.19	5.5	0.2 M Sodium chloride; 0.1 M BIS-Tris; 25% w/v PEG 3350
22	JCSG D2	155	186.79	186.79	59.73	90	90	120	1.19	7.5	0.2 M Magnesium chloride hexahydrate; 0.1 M Sodium HEPES; 30% v/v PEG 400
23	MIDAS A5	155	187.35	187.35	60.1	90	90	120	1.19	-	0.5 M Ammonium phosphatemonobasic; 12.5% w/v Poly (acryl acid sodium salt) 2100
24	MIDAS F8	155	186.76	186.76	59.49	90	90	120	1.19	5.5	0.2 M Magnesium chloride hexahydrate; 0.1 M MES; 14% v/v Pentaerythritol propoxylate (17/8 PO/OH)
	Method	Bijvoet	Crystallographic Information	Reason for Change	Details						
---	---	---	---	---	---	---	---	---	---	---	---
25	MIDAS H7	155	187.41	187.41	60.14	90	90	120	1.22	-	0.2M Potassium citrate tribasic monohydrate; 15% w/v SOKALAN CP 42
26	MIDAS E11	155	187.29	187.29	60.28	90	90	120	1.23	6.5	0.1 M Lithium sulfate; 0.1 M HEPES; 25% w/v Poly (acrylic acid sodium salt) 2100
27	MIDAS H6	155	187.6	187.6	60.37	90	90	120	1.25	6	0.1 M MES; 30% w/v Poly (acrylic acid sodium salt) 5100. 10% Ethanol
28	JCSG C7	155	186.62	186.62	59.76	90	90	120	1.26	4.5	0.2 M Zinc acetate dihydrate; 0.1 M Sodium acetate; 10% w/v PEG 3000
29	JCSG H9	155	187.61	187.61	60.05	90	90	120	1.26	5.5	0.2 M Lithium sulfate; 0.1 M BIS-Tris; 25% w/v PEG 3350
30	JCSG B2	155	186.79	186.79	59.71	90	90	120	1.26	-	0.2 M Sodium thiocyanate; 20% w/v PEG 3350
31	PGA A12	155	187.53	187.53	60.16	90	90	120	1.26	5	0.1 M Sodium acetate; 5% w/v γ-PGA (Na+ form. LM); 20% w/v PEG 2000 MME
32	PGA G5	155	186.81	186.81	59.54	90	90	120	1.26	7.8	0.1 M Tris; 5% w/v γ-PGA (Na+ form. LM); 20% w/v PEG 3350
33	PGA B3	155	186.93	186.93	59.95	90	90	120	1.29	5	0.1M Sodium acetate; 5% w/v γ-PGA (Na+ form. LM); 12% w/v PEG 8000
34	PGA D9	155	187.31	187.31	60.03	90	90	120	1.31	6.5	0.1 M Sodium cacodylate; 5% w/v γ-PGA (Na+ form. LM); 20% w/v PEG 3350
35	Morpheus3 F7	173	154.24	154.24	39.59	90	90	120	1.33	7.5	0.6% antibiotics mix; 0.1M Buffer System 2; 50% precipitant mix 3
36	JCSG A2	155	187.25	187.25	59.83	90	90	120	1.35	5.5	0.1 M Sodium citrate; 20% w/v PEG 3000
37	MIDAS F4	155	187.5	187.5	60.18	90	90	120	1.37	9	0.2 M Sodium chloride; 0.1 M BICINE; 20% w/v Poly(acrylic acid sodium salt) 2100
38	JCSG C5	155	187.24	187.24	60.13	90	90	120	1.39	7.5	0.8 M Sodium phosphate monobasic monohydrate; 0.1 M Sodium HEPES
---	---	---	---	---	---	---	---	---			
39	JCSG E8	155	186.35	186.35	59.88	90	90	120	1.41	4.5	1.0 M Ammonium phosphate dibasic; 0.1 M Sodium acetate
40	JCSG G6	155	187.18	187.18	59.72	90	90	120	1.42	-	0.2 M Sodium malonate dibasic monohydrate; 20% w/v PEG 3350
41	JCSG A8	155	187.16	187.16	59.58	90	90	120	1.43	-	0.2 M Ammonium formate; 20% w/v PEG 3350
42	Morpheus3 H6	173	108.12	108.21	66.05	90	90	120	1.45	7.5	0.8% Anaesthetic alkaloids mix. 0.1 M Buffer System2 .50% Precipitant mix2
43	JCSG E9	155	187.42	187.42	60.69	90	90	120	1.46	6.5	1.6 M Magnesium sulfate heptahydrate; 0.1 M MES
44	JCSG G8	155	187.26	187.26	60.25	90	90	120	1.47	-	0.15 M d-l malic acid. 20% PEG3350
45	JCSG E4	155	187.19	187.19	60.44	90	90	120	1.49	8.5	1.26 M Ammonium sulfate; 0.1 M Tris
46	JCSG H1	155	187.08	187.08	59.97	90	90	120	1.54	5.5	0.3 M Magnesium formate dihydrate; 0.1M BIS-Tris
47	MIDAS A2	155	186.06	186.06	59.82	90	90	120	1.54	5.5	0.1 M MES. 12% polyvinylpyrrolidone
48	Morpheus3 C11	173	153.51	153.51	39.36	90	90	120	1.82	8.5	1% Nucleosides Mix. 0.1 M Buffer System3. 50% Precipitant Mix3
49	Morph3 G6	4	151.64	39.01	157.87	90	116.9	90	1.87	7.5	1.2% Cholic Acid derivatives mix. 0.1 M Buffer System2. 50% precipitant Mix2
50	JCSG F10	155	184.11	184.11	58.59	90	90	120	1.89	7	1.1 M Sodium malonate dibasic monohydrate; 0.1 M HEPES; 0.5% v/v Jeffamine ED-2003
51	Morpheus3 F6	173	152.85	152.85	39.28	90	90	120	1.91	7.5	0.6% Antibiotics mix; 0.1 M Buffer System 2; 50% Precipitant Mix 2
52	Morpheus3 F10	173	153.8	153.8	39.61	90	90	120	1.94	8.5	0.6% antibiotics mix; 0.1 M Buffer System 2; 50%precipitant mix 3
53	Morpheus3 H7	173	153.58	153.58	39.44	90	90	120	2.03	7.5	0.8% Anesthetic alkaloids mix. 0.1M Buffer System2. 50% Precipitant mix3
54	Morpheus3 A8	173	152.49	152.49	39.26	90	90	120	2.04	7.5	1.6% Dipeptide Mix. 0.1 M Buffer System2. 50% Precipitant Mix 4
	Morph 3	173	153.69	153.69	39.32	90	90	120	2.10	6.5	1.5% Vitamins Mix. 0.1 M Buffer System1. 50% Precipitant Mix2
---	---------	-----	--------	--------	-------	----	----	-----	-----	-----	---
55	B2	173	152.54	152.54	39.19	90	90	120	2.11	8.5	1.5% Vitamins Mix 0.1 M Buffer System3. 50% Precipitant Mix4
56	B12	173	152.65	152.65	39.22	90	90	120	2.23	6.5	1% Nucleosides mix; 0.1 M Buffer System 1; 50% Precipitant Mix3
57	C3	173	154.43	154.43	39.61	90	90	120	2.24	6.5	0.6% Antibiotics Mix. 0.1M Buffer System1. 50% Precipitant Mix2
58	F2	173	59.82	109.93	122.04	112.98	96.29	100.12	2.66	5.5	0.1 M BIS-Tris; 25% w/v PEG 3350
59	JCSG H3	1	154.17	154.17	39.25	90	90	120	2.68	6.5	0.8% Anesthetic alkaloids mix; 0.1 M Buffer System 1; 50% Precipitant Mix2
Table S3 Indexing parameters on data collected from crystals larger than 70 µm.

The protein was in 20 mM MES pH 6.5 100 mM NaCl. The crystallization screens used is mentioned on the first column and the number from A1 to H12 corresponds to the drops on a 96 well plate MRC2. The crystallization experiments were set up manually with the mixing of 1 µl protein and 1 µl precipitant. All the plates were stored at 20 °C unless is mentioned otherwise. The crystals were randomly picked and froze in 25% PEG 400 when cryoprotectant was necessary.

No	Screen	No	a [Å]	b [Å]	c [Å]	α [deg]	β [deg]	γ [deg]	Maxres [Å]	pH	Crystallization solution		
1	JCSG B1	155	187.65	187.65	60.1	90	90	120	1.07	4.0	0.8 M Ammonium Sulfate. 1 M Citrate		
2	Morph3 E1	155	187.22	187.22	59.85	90	90	120	1.07	6.5	0.25% Phytochemicals 2 mix. 0.1 M Buffer System 1. 50% precipitant Mix1		
3	JCSG C4	155	187.01	187.01	60.11	90	90	120	1.1	7.0	0.1 M HEPES; 10% w/v PEG 6000		
4	JCSG F1	155	187.36	187.36	60.08	90	90	120	1.1	6.5	0.05 M Cesium Chloride. 0.1 M MES. 30% Jeffamine 600		
5	JCSG G1	155	186.91	186.91	60.03	90	90	120	1.1	7.5	0.1 M HEPES. 30% Jeffamine ED2003		
6	MIDAS G7	155	186.95	486.95	60.14	90	90	120	1.1	6.5	0.2 M Ammonium acetate; 0.1 M MES. 30% v/v Glycerol ethoxylate		
7	Morph3 F1	155	187.41	187.41	59.94	90	90	120	1.1	6.5	0.6% antibiotics mix; 0.1 M Buffer System 1; 50% precipitant mix1		
8	Morph3 H1	155	187.21	187.21	59.74	90	90	120	1.1	6.5	0.8% anesthetic alkaloid mix; 0.1 M Buffer System 1; 50% precipitant mix1		
9	MIDAS C2	155	187.07	187.07	59.98	90	90	120	1.12	6.0	0.2 M Sodium chloride; 0.1 M MES; 30% v/v Jeffamine ED-2003		
10	Morpheus H1	155	187.17	187.17	59.93	90	90	120	1.13	6.5	0.1 M Amino acids. 0.1 M buffer system 1. 30% v/v P500MME_P20K		
11	Morpheus H5	155	187.16	187.16	59.94	90	90	120	1.15	7.5	0.1 M Amino acids. 0.1 M buffer system 2. 30% v/v P500MME_P20K		
12	Morph3 H5	155	187.28	187.28	59.98	90	90	120	1.15	7.5	0.8% anesthetic alkaloid mix; 0.1 M buffer system 2; 50% precipitant mix1		
13	PGA B2	155	186.85	186.85	59.78	90	90	120	1.16	5.0	0.1 M Sodium acetate; 5% w/v γ-PGA (Na+ form. LM); 15% w/v PEG 4000		
ID	Name	P	Q	R	S	T	U	V	W	X	Y	Z	Notes
-----	---------------	---	---	---	---	---	---	---	---	---	---	---	--
14	JCSG B7	155	187.11	187.11	59.89	90	90	120	1.16	4.6	0.1 M Sodium acetate; 8% w/v PEG 4000		
15	JCSG E1	155	187.79	187.79	60.28	90	90	120	1.19	6.5	1 M Sodium Citrate tribasic dehydrate; 0.1 M MES		
16	PACT A6	155	187.37	187.37	60.14	90	90	120	1.19	9.0	0.1 M SPG; 25% w/v PEG 1500		
17	PACT H2	155	186.81	186.81	59.88	90	90	120	1.19	8.5	0.2 M Sodium bromide; 0.1M Bis-Tris propane; 20% w/v PEG 3350		
18	Morpheus B1	155	186.9	186.9	60.08	90	90	120	1.21	6.5	0.09 M Halogens. 0.1 M buffer system1. 30% w/v P500MME_P20K		
19	Morph3 F5	155	187.28	187.28	60.24	90	90	120	1.22	7.5	0.6% antibiotics mix; 0.1M buffer system 2; 50% precipitant mix1		
20	JCSG F9	155	187.24	187.24	60.21	90	90	120	1.23	7.0	2.4 M Sodium Malonate dibasic monohydrate		
21	Morph3 F4	155	186.87	186.87	60.03	90	90	120	1.23	6.5	0.6% antibiotics mix; 0.1 M Buffer System 1; 50% precipitant mix4		
22	Morpheus C1	155	187.07	187.07	60	90	90	120	1.24	6.5	0.09 NPS. 0.1 M Buffer System1. 30% v/v P500MME_P20K		
23	Morpheus B5	155	187.53	187.53	60.14	90	90	120	1.25	7.5	0.09 M Halogens. 0.1 M buffer System2. 30% v/v P500MME_P20K		
24	PGA G5	155	186.88	186.88	59.96	90	90	120	1.25	7.8	0.1 M Tris; 5% w/v γ-PGA (Na+ form. LM); 20% w/v PEG 3350		
25	PACT C11	155	186.88	186.88	60.03	90	90	120	1.25	7.0	0.2 M Calcium chloride dihydrate; 0.1 M HEPES; 20% w/v PEG 6000		
26	Morpheus A11	155	187.07	187.07	60.19	90	90	120	1.31	8.5	0.06 M Divalent. 0.1M Buffer system 3. 30% v/v GOL_P4K		
27	MIDAS A1	155	186.8	59.88	59.95	90	90	120	1.31	6.0	0.1 M HEPES; 50% v/v Polypropylene glycol 400		
28	PACT C3	155	187.08	187.08	59.83	90	90	120	1.34	6.0	0.1 M PCTP; 25% w/v PEG 1500		
29	PGA A1	155	187.06	187.06	60.2	90	90	120	1.37	5.0	0.3 M Potassium bromide; 0.1 M Sodium acetate; 8% w/v-PGA (Na+ form. LM)		
30	MIDAS D3	155	186.93	186.93	59.92	90	90	120	1.37	-	45% v/v Polypropylene glycol 400. 10% Ethanol		
31	JCSG A8	155	187.15	187.15	59.9	90	90	120	1.39	-	0.2 M Ammonium formate; 20% w/v PEG 3350		
---	---	---	---	---	---	---	---	---	---	---	---	---	
32	JCSG F5	155	188.3	188.3	60.45	90	90	120	1.4	8.5	0.2 M Magnesium Chloride hexahydrate; 0.1M Tris, 50% Ethylene glycol		
33	MIDAS A9	155	187.01	187.01	60.04	90	90	120	1.4	6.0	0.1 M MES; 25% v/v Pentaerythritol propoxylate (5/4 PO/OH)		
34	PGA D12	155	186.47	186.47	59.72	90	90	120	1.42	6.5	0.1 M Sodium cacodylate; 5% w/v γ-PGA (Na+ form. LM); 8% w/v PEG 20000		
35	JCSG G12	155	186.93	186.93	59.98	90	90	120	1.42	5.5	3 M NaCl, 0.1M Bis Tris		
36	PACT B8	155	187.14	187.14	60.17	90	90	120	1.43	6.0	0.2 M Ammonium chloride; 0.1 M MES; 20% w/v PEG 6000		
37	Morpheus E2	155	187.21	187.21	60.12	90	90	120	1.47	6.5	0.12 M Ethylene Glycols. 0.1 M Buffer System 1. 30%w/v EDO_P8K		
38	Morpheus D5	155	186.8	186.8	60	90	90	120	1.49	7.5	0.12 M Alcohols. 0.1 M Buffer System 2. 30%w/v P500MME_P20K		
39	JCSG F10	155	186.93	186.93	60.21	90	90	120	1.51	7.0	1.1 M Sodium Malonate 0.1 M HEPES. 0.5% Jeﬀamine		
40	Morpheus A10	155	186.68	186.68	59.8	90	90	120	1.54	8.5	0.06 M Divalent. 0.1M Buffer System 3. 30%w/v EDO_P8K		
41	PGA E12	155	187.3	187.3	60.27	90	90	120	1.54	6.5	0.1 M Ammonium sulfate; 0.3 M Sodium formate; 0.1M Sodium cacodylate; 3% w/v γ-PGA (Na+ form. LM); 10% w/v PEG 2000 MME		
42	Morpheus A1	155	187.21	187.21	60.28	90	90	120	1.57	6.5	0.06 M Divalent. 0.1 M Buffer System 1. 30%w/v P500MME_P20K		
43	Morpheus A2	155	187.43	187.43	60.32	90	90	120	1.58	6.5	0.06 M Divalent. 0.1 M Buffer System 1. 30%w/v EDO_P8K		
44	PACT B3	155	187.2	187.2	60.22	90	90	120	1.58	6.0	0.1 M MIB; 25% w/v PEG 1500		
45	PGA B10	155	187.21	187.21	60.35	90	90	120	1.62	5.0	0.2 M Potassium bromide; 0.2M Potassium thiocyanate; 0.1 M Sodium acetate; 3% w/v γ-PGA (Na+ form. LM); 5% w/v PEG 4000		
No.	Name	Neut.	cell edge [Å]	Space Group									
-----	----------	-------	---------------	-------------									
46	Morpheus A3	155	187.16	187.16	60.07	90	90	120	1.67	6.5			
47	Morpheus H8	155	186.56	186.56	59.71	90	90	120	1.69	7.5			
48	Morpheus B4	155	186.41	186.41	59.67	90	90	120	1.7	6.5			
49	JCSG F7	155	189.51	189.51	60.92	90	90	120	1.73	7.0			
50	PACT H8	155	186.71	186.71	59.85	90	90	120	1.75	8.5			
51	Morph3 F6	173	153.76	153.76	39.09	90	90	120	1.85	7.5			
52	MIDAS B6	155	185.96	185.96	60.78	90	90	120	1.89	7.5			
53	JCSG E8	155	186.88	186.88	60.59	90	90	120	1.96	4.5			
54	PACT E3	173	152.91	152.91	39.28	90	90	120	2.1				
55	MIDAS B1	173	152.07	152.07	39.12	90	90	120	2.11	5.5			
56	Morph3 G1	18	118.36	98.23	104.6	90	90	90	2.16	6.5			
57	PGA B4	155	180.83	180.83	57.61	90	90	120	2.51	5.0			
58	PGA B8	5	113.79	179.79	58.86	90	122	90	3	5.0			

Supporting information, sup-18
Table S4 Structural comparison of all superposed protein models.

The RMSDs are plotted against the different models and calculated on the bases 4958 atoms.

Structural C_a-rmsd (Å)	P6$_1$-large	P6$_3$-small	R32	P2,2,2
P6$_1$-large	--	0.663	0.632	0.547
P6$_3$-small	0.663	--	1.129	1.044
R32	0.632	1.129	--	0.326
P2,2,2	0.547	1.044	0.326	--