Interpretation for practice guidelines for prevention, diagnosis, and treatment of ventilator-associated pneumonia in burn patients by american burn association

Jie Luo and Guang-hua Guo *

Abstract
“American Burn Association Practice Guidelines for Prevention, Diagnosis, and Treatment of Ventilator-Associated Pneumonia in Burn Patients” was published to provide recommendation for the prevention, diagnosis, and treatment of ventilator-associated pneumonia in burn patients. This article makes interpretations and conclusions for prevention, diagnosis and treatment from this guideline in the combination of domestic burn patients.

Keywords: Ventilator-associated pneumonia, Inhalation injury, Burn, Burn ICU

Introduction
Ventilator-Associated Pneumonia (VAP) is an infectious disease of pulmonary parenchym that occurs 48 hours or longer after mechanical ventilation by means of endotracheal tubes or tracheostomy. The purpose of “American Burn Association Practice Guidelines for Prevention, Diagnosis, and Treatment of Ventilator-Associated Pneumonia in Burn Patients” is to review the published literature on ventilator-associated pneumonia (VAP) in burn patients [1]. Evidence-based recommendations are provided for the prevention, diagnosis, and treatment of VAP in adult burn patients.

Review
The pathogenesis and predisposing factors of VAP

Aspiration from respiratory and gastrointestinal colonized bacteria
VAP is often induced by microbial invasion of the sterile lower respiratory tract and lung parenchyma as patients inhale, and less by bloodstream spread or direct extension of adjacent infection. The research has demonstrated that the oropharynx is a potential reservoir for VAP after comparing bacterial DNA samples from bronchoalveolar lavages to organisms present on patients’ tongues [2, 3]. The stomach and sinuses are potential reservoirs of bacteria as well [4]. The stomach often gets colonized with Gram-negative bacteria during critical illness, and enteric Gram-negative bacteria are one of the most frequent microorganisms isolated from cultures of patients with VAP. Indwelling gastric tubes weaken the function of the lower esophageal sphincter during mechanical ventilation, resulting in high incidence of gastric reflux and sustained aspiration which evolve the infection in the lung parenchyma.

Aspiration from secretions of upper respiratory tract
Bypassing the glottis barrier, with aspiration of contaminated secretions around the endotracheal tube cuff, intubation and mechanical ventilation weaken the normal respiratory tract defenses against infection. The patients with mechanical ventilation are unable to clear their own secretions, which has impaired mucociliary clearance, and are subjected to repeated infection inspite of suctioning. The incidence of VAP increases with the duration of mechanical ventilation. In the early period of ventilation, the risk of VAP increase fastestly, at an estimated incidence of 3 % per day during the first 5 days, decreasing to 2 % per day on days 5 to 10, and to 1 % per day after 10 days [5].
Burn and Inhalation Injury

Burn injury is a strong predisposing factor for VAP. Nearly 10 to 20% of burn patients are also sufferers of inhalation injury, and the risk increases with increasing burn size [6]. Inhalation injury is a potential signal of prolonged ventilator dependence, increased duration of hospitalization, and likelihood of fatality. In the patients with large burns, increased capillary permeability occurs not only at the injured sites, but also in remote organs. Just as the edema in the burn wound, the respiratory mucosa would develop into edema caused by an inflammatory cascade [7]. The exudation of plasma proteins from the pulmonary microvasculature into the interstitial and alveolar spaces leads to secretion formation which congeal with neutrophils and necrotic cellular debris to form fibrin casts, partially or fully obstructing the airways and causing bronchoconstriction. Induced by the acute inflammatory response, release of the proteolytic enzymes and oxidants destroys the lung parenchyma and increases the microvascular permeability, further accelerating edema formation and decreasing gas exchange [8]. Alveolar collapse and decrease in lung compliance result from diminished surfactant.

In conclusion, burn patients with inhalation injury develop pulmonary complications frequently, including re-active airway disease, acute respiratory distress syndrome (ARDS) and pneumonia. VAP is a common complication of ARDS: about 34 to 70% of patients with ARDS develop VAP [9]. Autopsy demonstrated that nearly 73% of patients with diagnosis of ARDS also have histological evidence of pneumonia [10].

Else Predisposing Factors

Host factors includes burn/trauma, severe critical illness, age>60 years, ARDS, chronic obstructive pulmonary disease, serum albumin<2.2g/dL, multiple organ dysfunction, large-volume gastric aspiration, gastric colonization, elevated pH, Upper respiratory tract colonization and sinusitis. Intervention factors includes mechanical ventilation>2 d, re-intubation, supine head position, paralytic agents, continuous intravenous sedation, positive end-expiratory pressure, frequent ventilator circuit changes, >4 units of blood products transfused, histamine 2-blockers, antacids, nasogastric tube, prior antibiotic therapy, transport out of the intensive care unit [11, 12].

Prevention Strategies of VAP

Necessity of Mechanical Ventilation

In General, unnecessary intubation and mechanical ventilation should be avoided as much as possible, because this process can increase the risk of VAP 6 to 21-fold. However, when the necessary intubation is needed, it should be performed under controlled conditions as much as possible. The research shows that intubations in emergency department lead to higher incidence of VAP than in the ICU setting [13]. Furthermore, VAP incidence can be reduced when accidental tube dislodgement and emergency reintubation are avoided. In order to limit reintubation for laryngeal edema and postextubation stridor, presence of a cuff leak over 10 to 15% has been suggested as a simple screening test whether reintubation is needed or not, and that is particularly useful in the burn patients with extensiv head and neck edema following burn resuscitation. The recent study has showed that daily interruption of sedation and weaning protocols can not only reduce the duration of mechanical ventilation in ICU patients, but also improve the extubation rates without an increase in reintubation rates [14].

Specialized Endotracheal Tubes

Because of reducing the bacterial inoculum, specialized endotracheal tubes may prove particularly beneficial in patients with prolonged mechanical ventilation. In several studies, tubes with continuous aspiration of subglottic secretions have reduced the incidence of early-onset VAP [15]. Because of the broad-spectrum antimicrobial activity of silver, silver impregnated endotracheal tubes have potential applications in theory. Silver-coated endotracheal tubes were used in a randomized trial of 9417 patients across 54 centers in North America. The results show that a 35.9% relative risk reduction in VAP which reduce the incidence of VAP from 7.5% to 4.8% in a mixed ICU population of patients expected to require intubation for over 24 hours [16].

Reducing Aspiration from Gastrointestinal Sources

As an increased risk of aspiration of gastric contents, the administration of enteral nutrition with supine position are thought to be a risk factor for the development of VAP [17]. The research has demonstrated that patients administrated with enteral nutrition in the supine position have as much as a 50% incidence of VAP compared to 5% in those kept in the semirecumbent position [18]. Therefore, burn patients with maintaining mechanical ventilation should be kept in the semirecumbent position instead of the supine position especially when administrated with enteral nutrition.

Use of Prophylactic Antibiotic

In several studies, modulation of oropharyngeal colonization has also been shown to reduce the incidence of VAP by using combinations of oral antibiotics, with or without systemic therapy, or selective decontamination of the gastrointestinal tract (SDD) [19]. In the areas where the incidence of VAP is considerably high, the idea of prophylactic antibiotics to decrease the incidence is similar to SDD. Trimethoprim-sulfamethoxazole (TMP-SMX)
could obviously reduce the incidence of VAP in large burn patients which is demonstrated by several researches [20]. However, due to the high endemic levels of antibiotic resistance, the benefits of prophylactic antibiotics for VAP have been considerably low in ICUs. In this circumstance, prophylactic antibiotics seemed to increase the selective pressure for antibiotic-resistant microorganisms resulting in strong resistance of pathogenic bacteria. Thus, routine prophylactic antibiotics should not be recommended in hospital where there are high levels of antibiotic resistance, although the use of prophylactic antibiotics can reduce early-onset VAP.

Reducing oropharyngeal bacterial colonization

Chlorhexidine oral rinse is a simple and cost-effective prevention strategy for VAP in many different patient population which has been shown in many studies. A 58 % reduction in incidences of pneumonia has been found by Houston et al. [21] in patients intubated>24 h with chlorhexidine oral rinse. In critically ill patients ventilated>48 h, there is also a 65 % reduction in VAP by the same way [22]. Recently, the use of selective oropharyngeal decontamination (SOD) has been advocated. However, a recent meta-analysis demonstrated that SOD significantly reduces the incidence of lower respiratory tract infections but does not reduce mortality [23].

Restrictive blood transfusion

As we all know, postinjury immunosuppression is considered as a complication of severe burn injury. Common therapies can add to the immune compromised state, such as blood transfusion. Transfusion, which is demonstrated by several studies, can increased the risk for VAP [24, 25]. The American Burn Association has found a 13 % increased risk of infection with each unit of blood transfused in patients with burn injuries>20 % TBSA and 42 % of those transfused developed into VAP [25]. Thus, the restrictive blood transfusion policy should be applied to burn patients in order to reduce infections.

Intensive insulin therapy

Controlling blood glucose levels (to levels 4.4-6.1mmol/L) by intensive insulin therapy can decrease mortality in surgical ICU patients which is published as a landmark trial in 2001 [26]. However, the subsequent trials did not confirm this benefit. Recently, Hemmila et al. share their experiences of intensive insulin therapy in burn patients. Their adoption of protocol (to levels<7.8mmol/L) did decrease VAP rate with no impact on mortality [27]. The potential benefit of intensive insulin therapy in burn patients needs to be confirmed in more large trials. Before that, the protocol of intensive insulin therapy is an option in burn patients with ventilation.

Control environmental infection

The environment, healthcare devices, and even staff can all serve as sources of infection. Bacterial colonization of the ventilator circuit may also lead to VAP. By institution of an infection control protocol, the U.S. military has decreased the incidence of VAP in Iraq recently, which includes hand hygiene, chlorhexidine oral care, contact barrier precautions, patient and staff cohorting, and reducing the duration and spectrum of surgical antimicrobial prophylaxis [28].

Diagnosis of VAP

As to the diagnosis, there is no clinical gold standard existing for the diagnosis of VAP. Many patients with the clinical diagnosis of pneumonia may have no infectious etiologies, while as many as 66 % of patients with the clinical diagnosis of VAP did not meet the microbiologic criteria for infection. In order to improve the ability to diagnosis VAP, the scoring systems such as the U.S. centers for disease control and prevention (CDC) Criteria and the Clinical Pulmonary Infection Score (CPIS) have been established, which combine clinical, radiographic, physiologic ($\text{PaO}_2/\text{FiO}_2$), and microbiologic data, to improve the specificity of VAP diagnosis. An initial score>6 and a persistently elevated CPIS>6 after 3 days of empiric treatment are strongly related to VAP in mediacaal and ICU patients. However, the CPIS scale is not able to differentiate inflammation from infection, a differentiation that can be definitively made by quantitative culture (Table 1).

In contrast to the CPIS, it is a recommended strategy to obtain a lower airway quantitative culture when VAP is suspected, using broncheoalvolar lavage (BAL), protected specimen brush, or a nonbronchoscopic technique

Table 1 The clinical pulmonary infection score (CPIS) [36]

Component	Value	Points
Temperature C	≥36.5 and ≤38.4	0
	≥38.5 and ≤38.9	1
	≥39.0 and ≤36.0	2
Blood leukocytes per mm3	≥4000 and ≤11,000	0
	<4000 or >11,000	1
Tracheal secretions	Few	0
	Moderate	1
	Large	2
	Purulent	+1
Oxygenation $\text{PaO}_2/\text{FiO}_2$	>240 or presence of ARDS	0
	≤240 and absence of ARDS	2
Chest radiograph	No infiltrate	0
	Pathy or diffuse infiltrate	1
	Localized infiltrate	2
Antibiotic rotation has been evaluated and adopted by many doctors, although no study has specifically examined its role in burns. Several evaluation researches have showed a decreased incidence of MDR bacteria and mortality benefit with the adoption of antibiotic rotation [32]. However, antibiotic rotation should be considered as an option for burn centers to reduce the spread of MDR bacteria until further burn unit specific data become available.

Duration of antibiotic treatment

It is suggested by recent data from many other trails that antibiotics can be stopped once clinical signs of infection have resolved. This may also decrease the incidence of secondary pneumonias with MDR organisms. Dennesen et al. have reported that most of the clinical signs of pneumonia have resolved by 6 days of therapy. Another randomized trial in France demonstrated that there is no difference in mortality or recurrent infection in patients treated with an 8 day course of antibiotics compared with those treated with a 15 day course [34]. Additionally, those treated with 8 days of antibiotics had a lower incidence of multiresistant pathogens if a recurrent infection developed. Notably, if the original infecting organism was a nonlactose fermenting Gram-negative bacilli such as Acinetobacter baumanii, those treated with an 8 day course had a higher pulmonary infection recurrence rate [35]. Similar to the strong virulence of nonlactose fermenting Gram-negative bacilli, MRSA pneumonias are often quite virulent, with demands for longer ICU and ventilator support. Thus, unless caused by MRSA or nonlactose fermenting Gram-negative rods, in which case the treatment of a 15 day course is recommended, antibiotic treatment for VAP should be limited with 8 days.

Conclusion

Although the research on VAP has made obvious progress in recent years, there is still no clinical gold standard existing for the diagnosis of VAP that requires further researched. The recommendations in these guidelines are derived from available general critical care and burn literature. Although most of the data were obtained by study of medical, surgical, and trauma patients these finding are also applicable to critically ill burn patients with mechanical ventilation.

Competing interest

The authors declare that they have no competing interests.

Authors’ contribution

LJ searched and organized the literature, and drafted the manuscript. GGH conceived of the subject and helped to revise the article. Both authors read and approved the final manuscript.

Received: 1 February 2015 Accepted: 31 May 2015
Published: 31 July 2015

References

1. Mosier MI, Pham TN. American burn association practice guidelines for prevention, diagnosis, and treatment of ventilator-associated pneumonia (VAP) in burn patients[J]. J Burn Care Res. 2009;30(6):910–28.
2. DeRiso AJ, Ladowski JS, Dillon TA, Justice JW, Peterson AC. Chlorhexidine gluconate 0.12% oral rinse reduces the incidence of total nosocomial respiratory infection and nonprophylactic systemic antibiotic use in patients undergoing heart surgery[J]. Chest. 1996;109(6):1556–61.
3. Seguin P, Tanguy M, Laviolle B, Tiel O, Malledant Y. Effect of oropharyngeal decontamination by povidone-iodine on ventilator-associated pneumonia in patients with head trauma[J]. Crit Care Med. 2006;34(5):1514–9.
4. Daniel DS, Ng YK, Chua EL, Anrumugam Y, Wong WL, Kumaran JV. Isolation and identification of gastrointestinal microbiota from the short-nosed fruit bat Cynopterus brachyotis brachyotis[J]. Microbiol Res. 2013;168(1):485–96.

5. Behesti M, Talebi M, Ardebeli A, Ardebeli A, Bahador A, Lari AR. Detection of AdeABC efflux pump genes in tetracycline-resistant Acinetobacter baumannii isolates from burn and ventilator-associated pneumonia patients[J]. J Pharm Bioallied Sci. 2014;6(4):229–32.

6. Edelman DA, Khan N, Kempf K, White MT. Pneumonia after inhalation injury[J]. J Burn Care Rehabil. 2007;28(2):241–6.

7. Cox RA, Burke AS, Soejima K, Murakami K, Katahira J, Traber LD, et al. Airway obstruction in sheep with burn and smoke inhalation injuries[J]. J Am J Respir Cell Mol Biol. 2003;29(3):295–302.

8. Virag L. Poly(ADP-ribosyl) ation in asthma and other lung disease[J]. Pharmacol Res. 2005;52(5):183–92.

9. Wunderink RG, Waterer GW. Pneumonia complicating the actual respiratory distress syndrome[J]. Semin Respir Crit Care Med. 2002;23(5):443–8.

10. Bell RC, Coalson JJ, Smith JD, Johanson WG Jr. Multiple organ system failure and infection in respiratory distress syndrome[J]. Ann Intern Med. 1983;99(3):295–8.

11. Rubenstein E, Cammarata S, Oliphant T, Wunderink R. Linezolid versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia randomized double-blind multicenter study[J]. J Clin Infect Dis. 2001;32(4):402–12.

12. Heyland DK, Dhalliwal R, Drover JW, Gramlich L, Dodek P. Canadian Critical Care Clinical Practice Guidelines Committee: Canadian critical care guidelines for nutrition support in mechanically ventilated, critically ill adult patients[J]. JPN J Perenteral Enteral Nutr. 2003;27(5):355–73.

13. Eckert M, Davis K, Reed RJ, Esposito TJ, Santaniello JM, Poulikidas S, et al. Ventilator-associated pneumonia, like real estate:location really matters[J]. J Trauma. 2006;60(1):104–10.

14. Robertson TE, Sona C, Schallorn L, Buckles M, Cacchiolo L, Schuerer D, et al. Improved exudation rates and earlier liberation from mechanical ventilation with implementation of a daily spontaneous-breathing trial protocol[J]. J Am Coll Surg. 2008;206(5):489–95.

15. Ramirez P, Ferrer M, Torres A. Prevention measures for ventilator-associated pneumonia new focus on the endotracheal tube[J].Curr Opin Infect Dis. 2007;20(2):197–200.

16. Kollef MH, Afessa B, Arzueto A, et al. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia:The NASCENT randomized trial[J]. JAMA. 2008;300(7):805–13.

17. Righi E, Aggazzotti G, Ferrari E, et al. Trends in ventilator-associated pneumonia:impact of a ventilator care bundle in an Italian tertiary care hospital intensive care unit[J]. Am J Infect Control. 2014;42(12):1312–6.

18. Corea Rde A, Luna CM, Dos Anjos JC, et al. Quantitative culture of endotracheal aspirate and BAL fluid samples in the management of patients with ventilator-associated pneumonia randomized clinical trial[J]. J Bras Pneumol. 2014;40(6):643–51.

19. Tanizaki S, Suzuki K. No influence of burn size on ventilator-associated pneumonia in burn patients with inhalation injury[J]. Burns. 2012;38(8):1109–13.

20. Kimura A, Mochizuki T, Nishizawa K, Mashiko K, Yamamoto Y, Otsuka T. Identification of gastrointestinal microbiota from the short-nosed fruit bat Cynopterus brachyotis[J]. Microbiol Res. 1988;131(2):183–8.

21. Houston S, Houglund P, Anderson JJ, LaRocco M, Kennedy V, Gentry LO. Effectiveness of 0.12% chlorhexidine gluconate oral rinse in reducing prevalence of nosocomia pneumonia in patients undergoing heart surgery[J]. J Am J Crit Care. 2002;11(6):567–70.

22. Koeman M, van der Ven AJ, Hak E, Joore HC, Kajsaiger K, de Smet AG, et al. Oral decontamination with chlorhexidine reduces the incidence of ventilator-associated pneumonia[J]. Am J Respir Crit Care Med. 2006;173(12):1348–55.

23. Silvestri L, van Saene HK, Zandstra DF, Viviani M, Gregori D. SOD, SOD or oropharyngial chlorhexidine to prevent pneumonia and to reduce mortality in ventilated patients:which manoeuvre is evidence based[J]? Intensive Care Med. 2010;36(6):814–6.

24. Shorr AF, Duh MS, Kelly KM, Kollef MH. Red blood cell transfusion and ventilator-associated pneumonia potential link[J]. Crit Care Med. 2004;32(11):666–74.

25. Palmieri TL, Caruso DM, Foster KN, Cairns BA, Peck MD, Gamelli RL, et al. Effect of blood transfusion on outcome after major burn injury multicenter study[J]. Crit Care Med. 2006;34(6):1602–7.

26. van den Bergt HC, Wouters P, Weekers F, Verwaerdt C, Bruynincck F, Schetz M, et al. Intensive insulin therapy in the critically ill patients[J]. N Engl J Med. 2001;345(19):1359–67.

27. Hemmila MR, Taddionio MA, Arbabi S, et al. Intensive insulin therapy is associated with reduced infectious complications in burn patients[J]. Surgery. 2008;144(4):629–35.

28. Landrum ML, Murray CK. Ventilator associated pneumonia in a military deployed setting:the impact of an aggressive infection control program[J]. J Trauma. 2008;64(2):123–8.

29. Boren JP, Ramzy P, Wolf SE, Herndon DN. Sensitivity and specificity of bronchial lavage and protected bronchial brush in the diagnosis of pneumonia in pediatric burn patients[J]. Arch Surg. 1999;134(11):1243–7.

30. Krzaliz A, Kosjerina A, Jahic E, Rifaibegovic Z, Krzaliz G. Influence of Remifentanil/Propofol Anesthesia on Ventilator-associated Pneumonia occurrence after major cardiac surgery[J]. J Med Arch. 2013;67(6):407–9.

31. Huzar TF, Cross JM. Ventilator –associated pneumonia in burn patients: acuse or consequence of critical illness?[J]. Expert Rev. Respir Med. 2011;5(5):663–73.

32. Delitt TH, Chan DJ, Skerreott SJ, Nathens AB. Development of a guideline for the management of ventilator associated pneumonia based on local microbiologic findings and impact of the guideline on antimicrobial use practices[J]. J Infect Control Hosp Epidemiol. 2008;29(6):525–33.

33. Rello J, Paiva JA, Barabbar J, Baroanilla F, Bodi M, Castander D, et al. International conference for the development of consensus on the diagnosis and treatment of ventilator-associated pneumonia[J]. Chest. 2001;120(3):955–70.

34. Dennesen PJ, Van der Ven AJ, Kessels AG, Ramsay G, Bonten M. Resolution of infectious parameters after microbial therapy in patients with ventilator-associated pneumonia[J]. Am J Respir Crit Care Med. 2011;183(3):679–84.

35. Palla MA, Kemple M, Peck MD, Gamelli RL, et al. Critical Illness:location really matters[J]. J Burn Car Rehabil. 2007;28(2):383–7.

36. Schutink CA, Van Nieuwenhoven CA, Jacobs JA, Rozenberg-Arka M, Joore HC, Buikens E, et al. Clinical pulmonary infection score for ventilator-associated pneumonia:accuracy and inter-observer variability[J]. Intensive Care Med. 2004;30(2):174–27.