Concurrence for infinite-dimensional quantum systems

Yu Guo · Jinchuan Hou · Yuncai Wang

Abstract Concurrence is an important entanglement measure for states in finite-dimensional quantum systems that was explored intensively in the last decade. In this paper, we extend the concept of concurrence to infinite-dimensional bipartite systems and show that it is continuous and does not increase under local operation and classical communication.

Keywords Concurrence · Entanglement measure · Infinite-dimensional quantum systems

1 Introduction

Entanglement, being viewed as one of the key features of quantum world that has no classical counterpart, is perhaps the most challenging subject of modern quantum theory. There are two distinct directions for characterizing entanglement. One is to find proper criteria of detecting entanglement, and the other is to find a “good” entanglement measure, namely, to define the best measure quantifying an amount of entan-
glement of a given state. Among a number of entanglement measures, concurrence is a subject of intense research interest [1–18], which has been shown to play a key role in analyzing the ultrabright source of entangled photon pairs [19], describing quantum phase transitions in various interacting quantum many-body systems [20,21], affecting macroscopic properties of solids significantly [22,23], exploring dynamics of entanglement for noisy qubits that make dipole-dipole interaction [24] and revealing distinct scaling behavior for different types of multipartite entanglement [25], etc.

Concurrence is originally derived from the entanglement of formation (EOF) which is used to compute the amount of entanglement for bipartite states [26,27]. Because of the EOF is a monotonically increasing function of the concurrence for the two-qubit case, thus the concurrence itself can also be regarded as an entanglement measure [1,2]. Afterward, the concept of concurrence was extended to arbitrary but finite-dimensional bipartite as well as multipartite systems [5,7].

The continuous-variable systems can also be used for quantum information processing and quantum computing [28]. Most analysis of entanglement in continuous-variable systems relies on expressing the states of the system in terms of some discrete but infinite basis. Consequently, the quantification of entanglement in infinite-dimensional quantum systems is necessary. For instance, the entanglement of formation and the relative entropy of entanglement in the infinite-dimensional setting is proposed [29], the entanglement of distillation in the infinite-dimensional regime is discussed in [30]. Then, the following problems arisen naturally: Can the concept of concurrence be extended to infinite-dimensional case? Is it also a “well-defined” entanglement measure? In the present paper, we answer these questions affirmatively.

In this paper, we consider the bipartite system consisting of two parties A and B which are associated with the state spaces H_A and H_B, respectively, with $\text{dim } H_A \otimes H_B \leq +\infty$. We denote by ρ_A and ρ_B the reduced density operators of ρ with respect to the subsystems A and B, respectively, i.e., $\rho_A = \text{Tr}_B(\rho)$ and $\rho_B = \text{Tr}_A(\rho)$. A bipartite state ρ acting on $H = H_A \otimes H_B$ is called separable if it can be written as

$$\rho = \sum_i p_i \rho_i^A \otimes \rho_i^B, \quad \sum_i p_i = 1, \quad p_i \geq 0 \quad (1)$$

or it is a limit of the states of the above form under the trace norm topology [31], where ρ_i^A and ρ_i^B are pure states on the subsystems associated to the Hilbert spaces H_A and H_B, respectively. A state that is not separable is said to be entangled. Particularly, if a state can be represented in the form as in Eq. (1), it is called countably separable [32]. It is worth mentioning that, with increasing state space dimension, quantifying entanglement becomes more and more difficult to implement in practice.

The structure of this paper is as follows. In the section below the concept of the concurrence is extended to infinite-dimensional bipartite systems (Eqs. 5–6) and it is showed that the concurrence is a continuous function under the trace-class norm topology (Proposition 2). This result is new even for finite-dimensional case, and it enables us to prove that the concurrence is also a well-defined monotonic entanglement measure for infinite-dimensional case (Theorem 1). Going further, another entanglement measure which is closely related to concurrence, tangle, is investigated (Eqs. 14, 16).
Concurrence for infinite-dimensional quantum systems

In addition, a new lower and upper bound of the tangle is proposed (Proposition 4). A brief conclusion is given in the last section.

2 Concurrence for infinite-dimensional bipartite states

We start by reviewing some results from finite-dimensional cases. For the bipartite pure state $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ with $\text{dim} \ \mathcal{H}_A \otimes \mathcal{H}_B < +\infty$, the concurrence $C(|\psi\rangle)$ of $|\psi\rangle$ is defined in [7] by

$$C(|\psi\rangle) = \sqrt{2(1 - \text{Tr}(\rho_A^2))}, \quad (2)$$

where $\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|)$. Equivalently,

$$C(|\psi\rangle) = \sqrt{\sum_{i,j,k,l} |a_{ik}a_{jl} - a_{il}a_{jk}|^2}$$

provided that $|\psi\rangle = \sum_{i,j} a_{ij} |i\rangle |j\rangle$, where $\{|i\rangle\}$ and $\{|j\rangle\}$ are given orthonormal bases of \mathcal{H}_A and \mathcal{H}_B, respectively. The concurrence is extended to mixed states by means of convex roof construction [33],

$$C(\rho) = \min_{\{p_i, |\psi_i\rangle\}} \left\{ \sum_i p_i C(|\psi_i\rangle) \right\}, \quad (3)$$

where the minimum is taken over all possible ensembles of ρ (here, $\{p_i, |\psi_i\rangle\}$ is called an ensemble of ρ whenever $\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$ with $\{p_i\}$ a probability distribution and $\{|\psi_i\rangle\}$ a family of pure states).

The tangle is another measure closely related to the concurrence. The tangle $\tau(|\psi\rangle)$ for pure state $|\psi\rangle$ is defined by $\tau(|\psi\rangle) = C^2(|\psi\rangle)$, and the tangle for mixed state ρ is defined by

$$\tau(\rho) = \min_{\{p_i, |\psi_i\rangle\}} \left\{ \sum_i p_i C^2(|\psi_i\rangle) \right\} \quad (4)$$

(Ref. [34]). Note that, although the tangle and the concurrence are equivalent to each other as entanglement measures for pure states, they are different for mixed states. In fact, it holds that $\tau(\rho) \geq C^2(\rho)$ and the equality holds in the case of two-qubit states [35]. It is evident that ρ is separable if and only if $C(\rho) = \tau(\rho) = 0$.

With the same spirit in mind, we extend the concepts of concurrence and tangle to infinite-dimensional bipartite systems.

Definition 1 Let $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ with $\text{dim} \ \mathcal{H}_A \otimes \mathcal{H}_B = +\infty$ be a pure state.

$$C(|\psi\rangle) := \sqrt{2(1 - \text{Tr}(\rho_A^2))}, \quad (5)$$
is called the concurrence of $|\psi\rangle$, where $\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|)$.

Since the eigenvalues of ρ_A coincide with that of $\rho_B = \text{Tr}_A(|\psi\rangle\langle\psi|)$, with no loss of generality, we always use the reduced density operators with respect to the subsystem A. It is clear that $C(|\psi\rangle) = 0$ if and only if $|\psi\rangle$ is separable.

For a mixed state ρ, the concurrence of ρ can be defined by means of the generalized convex roof construction, namely,

$$C(\rho) := \inf_{\{p_i, |\psi_i\rangle\}} \left\{ \sum_i p_i C(|\psi_i\rangle) \right\},$$

(6)

where the infimum is taken over all possible ensembles $\{p_i, |\psi_i\rangle\}$ of ρ.

The following proposition provides two computational formulas of the concurrence for pure states.

Proposition 1 Let $|\psi\rangle \in H_A \otimes H_B$ with $\dim H_A \otimes H_B = +\infty$ be a pure state.

1. If $|\psi\rangle = \sum_{i,j} a_{ij} |i\rangle|j\rangle'$ with respect to some given product orthonormal basis $\{|i\rangle|j\rangle'\}$ of $H_A \otimes H_B$, then

$$C(|\psi\rangle) = \sqrt{\sum_{i,j,k,l} |a_{ik}a_{jl} - a_{ij}a_{lk}|^2}.$$

(7)

2. If the Schmidt decomposition of $|\psi\rangle$ is $|\psi\rangle = \sum_k \lambda_k |k\rangle|k\rangle'$, then

$$C(|\psi\rangle) = \sqrt{2 \sum_{k \neq l} \lambda_k^2 \lambda_l^2}.$$

(8)

Proof (1) Consider the operator $D = D|\psi\rangle = (a_{ij}) : H_B \rightarrow H_A$ defined by $D|j\rangle = \sum_i a_{ij} |i\rangle$. Since $\text{Tr}(DD^\dagger) = \sum_{i,j} |a_{ij}|^2 = 1$, D is a Hilbert-Schmidt operator. With $\rho = |\psi\rangle\langle\psi|$, it is easily checked that $\rho_A = DD^\dagger$. As $\text{Tr}((DD^\dagger)^2) = \sum_{i,j,k,l} a_{ik}a_{jl}a_{ij}a_{lk}$, we have

$$1 - \text{Tr}(\rho_A^2) = \left(\sum_{i,j} a_{ij} \bar{a}_{ij} \right)^2 - \sum_{i,j,k,l} a_{ik} \bar{a}_{il}a_{jl} \bar{a}_{jk}$$

$$= \sum_{i,j,k,l} (a_{ik} \bar{a}_{ik}a_{jl} \bar{a}_{jl} - a_{ik} \bar{a}_{il}a_{jl} \bar{a}_{jk})$$

$$= \frac{1}{2} \sum_{i,j,k,l} (a_{ik}a_{jl} - a_{il}a_{jk}) (\bar{a}_{ik} \bar{a}_{jl} - \bar{a}_{il} \bar{a}_{jk})$$

$$= \frac{1}{2} \sum_{i,j,k,l} |a_{ik}a_{jl} - a_{il}a_{jk}|^2.$$

 Springer
Hence $C(|\psi\rangle) = \sqrt{2(1 - \text{Tr}(\rho_A^2))} = \sqrt{\sum_{i,j,k,l} |a_{ik}a_{jl} - a_{il}a_{jk}|^2}$, as desired. (Note that Eq. (7) can not be derived straightforward without discussion since we don’t know whether or not the series $\sum_{i,j,k,l} a_{ik}\bar{a}_{ij}a_{jl}\bar{a}_{jk}$ is convergent without the fact $\text{Tr}((DD^\dagger)^2) = \sum_{i,j,k,l} a_{ik}\bar{a}_{ij}a_{jl}\bar{a}_{jk}$, and we can’t say DD^\dagger is a well-defined operator on infinite-dimensional case without argument.)

(2) can be checked similarly and we omit its proof here.

It is known that the concurrence is an entanglement measure for finite dimensional systems since it meets the following conditions:

(i) $E(\rho) = 0$ if and only if ρ is separable;
(ii) $E(\rho) = E(U_A \otimes U_B \rho U_A^\dagger \otimes U_B^\dagger)$ holds for any local unitary operators U_A and U_B on the subsystems H_A and H_B, respectively;
(iii) E is LOCC monotonic, i.e., $E(\Lambda(\rho)) \leq E(\rho)$ holds for any local operation and classical communication (LOCC) Λ [6]. The conditions (i)–(iii) above are necessary for any entanglement measure E [36]. Generally, an entanglement measure E also satisfies

(iv) $E(\sum_i p_i \rho_i) \leq \sum_i p_i E(\rho_i)$ for mixed state $\rho = \sum_i p_i \rho_i$, where $p_i \geq 0$, $\sum_i p_i = 1$ (see in [37]). If (iii)–(iv) are satisfied by a magnitude for quantifying entanglement, then it is called an entanglement monotone [38].

In what follows we show that the concurrence C defined in Eqs. (4) and (5) for infinite-dimensional systems is also an entanglement monotone, i.e., (i)–(iv) are satisfied by C for infinite-dimensional case as well.

Checking C meets Condition (ii) is straightforward.

The condition (i) is obviously satisfied by the concurrence for finite-dimensional case. This is because that, every separable state ρ in a finite-dimensional bipartite system is countably separable, that is, there exists an ensemble $\{p_i, |\psi_i\rangle\}$ of ρ such that $|\psi_i\rangle$s are separable pure states and thus we get immediately that $0 \leq C(\rho) \leq \sum_i p_i C(|\psi_i\rangle) = 0$ as $C(|\psi_i\rangle) = 0$. However, the fact that ρ is separable implies $C(\rho) = 0$ is not obvious anymore for infinite-dimensional case since there do exist some separable states in infinite-dimensional systems that are not countably separable [32]. For such separable states that are not countably separable, there doesn’t exist any ensemble $\{p_i, |\psi_i\rangle\}$ of ρ such that $|\psi_i\rangle$s are separable and one can not get $C(\rho) = 0$ directly. It is clear that, if C is continuous, then $C(\rho) = 0$ whenever ρ is separable because it is a limit of countably separable states.

The continuity of the concurrence C is established in Proposition 2, which is not obvious even for finite-dimensional systems.

Proposition 2 The concurrence is continuous for both finite- and infinite-dimensional systems, i.e.,

$$\lim_{n \to \infty} C(\rho_n) = C(\rho) \quad \text{whenever} \quad \lim_{n \to \infty} \rho_n = \rho \quad (9)$$

in the trace-norm topology.

Proof To prove the continuity of C, let us extend the concurrence of states to that of self-adjoint trace-class operators.
Let A be a self-adjoint trace-class operators acting on $H_A \otimes H_B$. We define the concurrence of A by

$$C(A) = \text{Tr}(|A|)C\left(\frac{|A|}{\text{Tr}(|A|)}\right),$$

where $|A| = (A^\dagger A)^{\frac{1}{2}}$. It is clear that

$$C(A) = \inf_{\lambda_i, |\psi_i\rangle} \sum_i \lambda_i C(|\psi_i\rangle),$$

where the infimum is taken over all $\{\lambda_i, |\psi_i\rangle\}$ with $\lambda_i \geq 0$, $\sum_i \lambda_i = \text{Tr}(|A|)$ and $|A| = \sum_i \lambda_i |\psi_i\rangle\langle\psi_i|$. It is an immediate consequence of the definition that, if $0 \leq |A| \leq |B|$, then $C(A) \leq C(B)$. [In fact, if $0 \leq |A| \leq |B|$ (note that $|A| = (A^\dagger A)^{\frac{1}{2}}$ and $|B| = (B^\dagger B)^{\frac{1}{2}}$), then for any rank-one projection decomposition of $|A|$, $|A| = \sum_i \lambda_i |\psi_i\rangle\langle\psi_i|$, $\lambda_i > 0$, there exists a rank-one projection decomposition of $|B|$, $|B| = \sum_j \lambda_j |\phi_j\rangle\langle\phi_j|$, $\delta_j > 0$, where $\sum_j \delta_j |\phi_j\rangle\langle\phi_j| = |B| - |A|$. This leads to $C(A) \leq C(B)$ by the definition of C.]

Assume that $\rho_n, \rho \in S(H_A \otimes H_B)$ and $\lim_{n \to \infty} \rho_n = \rho$. Let $\vartheta_n = \rho - \rho_n$ and let

$$\vartheta_n = \sum_{k(n)} \lambda_{k(n)} |\eta_{k(n)}\rangle\langle\eta_{k(n)}|$$

be its spectral decomposition.

We claim that

$$C(\rho) = C(\rho_n + \vartheta_n) \leq C(\rho_n) + C(\vartheta_n). \quad (10)$$

By the definition of the concurrence, for any $\varepsilon > 0$, there exist ensembles $\{p_{k(n)}, |\psi_{k(n)}\rangle\}$ and $\{q_{l(n)}, |\phi_{l(n)}\rangle\}$ of ρ_n and $|\vartheta_n\rangle$, respectively, and $0 < \varepsilon_1, \varepsilon_2 < \varepsilon$, such that

$$C(\rho_n) = \sum_{k(n)} p_{k(n)} C(|\psi_{k(n)}\rangle) - \frac{\varepsilon_1}{2}$$

and

$$C(|\vartheta_n\rangle) = \sum_{l(n)} q_{l(n)} C(|\phi_{l(n)}\rangle) - \frac{\varepsilon_2}{2}.$$

We compute

$$C(\rho_n + \vartheta_n) \leq C(\rho_n + |\vartheta_n\rangle)$$

$$\leq \sum_{k(n)} p_{k(n)} C(|\psi_{k(n)}\rangle) + \sum_{l(n)} q_{l(n)} C(|\phi_{l(n)}\rangle)$$

$$= C(\rho_n) + C(\vartheta_n) + \frac{\varepsilon_1 + \varepsilon_2}{2}.$$

Since ε is arbitrarily given, the claim is proved.
Similarly, using $C(\rho_n) = C(\rho - \vartheta_n) \leq C(\rho + |\vartheta_n|)$, we obtain

$$C(\rho_n) \leq C(\rho) + C(|\vartheta_n|),$$

which, together with Eq. (10), implies that

$$|C(\rho_n) - C(\rho)| \leq C(|\vartheta_n|).$$

Observing that $C(\vartheta_n) \to 0$ ($n \to \infty$) since $C(\vartheta_n) \leq \sum_{k(n)} \sqrt{2} |\lambda_{k(n)}|$ and $\text{Tr}(|\vartheta_n|) = \sum_{k(n)} |\lambda_{k(n)}| \to 0$, we get $\lim_{n \to \infty} C(\rho_n) = C(\rho)$, as desired. □

Remark The continuity of concurrence is not necessary for a quantity to be an entanglement measure. As we will show, the continuity is just a tool for proving the extended concurrence is a well-defined entanglement measure, i.e., it satisfies the properties (iii)–(iv) (see below).

We now begin to check that C satisfies properties (iii)–(iv). For finite-dimensional case, Vidal [38] proposed a nice recipe for determining entanglement monotones by proving that the convex roof extension of a pure state measure E satisfying the two conditions below is an entanglement monotone (Ref. [38, Theorem 2]):

(a) For a pure state $|\psi\rangle$, $\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|)$, define a function f by $f(\rho_A) = E(|\psi\rangle)$, then

$$f(U \rho_A U^\dagger) = f(\rho_A);$$

and

(b) f is concave, namely,

$$f(\lambda \rho_1 + (1 - \lambda) \rho_2) \geq \lambda f(\rho_1) + (1 - \lambda) f(\rho_2)$$

for any density matrices ρ_1, ρ_2, and any $0 \leq \lambda \leq 1$.

For infinite-dimensional bipartite systems, every LOCC admits a form of

$$\Lambda(\rho) = \sum_{i=1}^{N} (A_i \otimes B_i) \rho (A_i^\dagger \otimes B_i^\dagger)$$

(11)

with $\sum_{i=1}^{N} A_i^\dagger A_i \otimes B_i^\dagger B_i \leq I_A \otimes I_B$, where N may be $+\infty$ and the series converges in the strong operator topology [39]. Let $S(H_A \otimes H_B)$ be the set of all quantum states acting on $H_A \otimes H_B$. According to the entanglement monotone scenario discussed in [38], in order to prove that a function $E : S(H_A \otimes H_B) \to \mathbb{R}_+$ satisfying (i)–(ii) is LOCC monotonic, we only need to consider the sequence of LOCC $\{\Lambda_{B,k}\}$ or $\{\Lambda_{A,l}\}$, of the form

$$\Lambda_{B,k}(\rho) = \sum_{i(k)} (I_A \otimes B_{i(k)}) \rho (I_A \otimes B_{i(k)}^\dagger)$$

(12)
or

\[\Lambda_{A,l}(\rho) = \sum_{j(l)} (A_{j(l)} \otimes I_B) \rho (A_{j(l)}^\dagger \otimes I_B), \]

(13)

where \(\sum_{i(k)} B_{i(k)}^\dagger B_{i(k)} \leq I_B \) and \(\sum_{j(l)} A_{j(l)}^\dagger A_{j(l)} \leq I_A \) (here, the series converges in the strong operator topology) with \(\sum_k \text{Tr}(\Lambda_{B,k}(\rho)) = \sum_l \text{Tr}(\Lambda_{A,l}(\rho)) = 1 \), \(B_{i(k)} \)'s (resp. \(A_{j(l)} \)'s) are operators from \(H_B \) (resp. \(H_A \)) into \(H_B' \) (resp. \(H_A' \)) for some Hilbert space \(H_B \) (resp. \(H_A' \)), and where \(k \) (resp. \(l \)) labels different outcomes if at some stage of local manipulations part B (resp. A) performs a measurement. With no loss of generality, hereafter we consider the LOCC \(\{\Lambda_{B,k}\} \) as in Eq. (12). Applying \(\Lambda_{B,k} \) to \(\rho \), the state becomes

\[\rho'_{k} = \frac{\Lambda_{B,k}(\rho)}{p_k} \]

with probability \(p_k = \text{Tr}(\Lambda_{B,k}(\rho)) \). Therefore, the final state is \(\rho' = \sum_k p_k \rho'_{k} \).

By [38], if \(E(\rho') \leq E(\rho) \) holds for \(\Lambda_{B,k} \), then the condition (iii) holds for \(E \). We show below that, for infinite-dimensional case, if \(E \) is continuous on quantum states under the trace norm topology, then (a)–(b) are sufficient conditions for \(E \) to be an entanglement monotone as well.

Proposition 3 Let \(E \) be a quantity satisfying properties (i) and (ii) for pure states in infinite-dimensional systems and define \(E(\rho) := \inf_{\{p_i, |\psi_i\rangle\}} (\sum_i p_i E(|\psi_i\rangle)) \) for mixed state \(\rho \). Let \(f(\rho_A) = E(|\psi\rangle\langle\psi|), \rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|) \). Assume that \(E \) is continuous and \(f \) satisfying (a)–(b). Then \(E \) is an entanglement monotone, i.e., \(E \) satisfying (iii)–(iv).

Proof We assume that \(f \) satisfies conditions (a) and (b), namely (a) \(f(U\rho_A U^\dagger) = f(\rho_A) \) for any unitary operators on \(H_A \) and (b) \(f \) is concave.

By (a), we know that \(E(\rho) \) is invariant under local unitary operations, i.e., \(E(U_A \otimes U_B \rho U_A^\dagger \otimes U_B^\dagger) = E(\rho) \) for any unitary operators \(U_A \) and \(U_B \) acting on \(H_A \) and \(H_B \) respectively (notice that condition (iii) implies that \(E(\rho) \) is invariant under local unitary operations).

In what follows, we show that (iii) holds for \(E \) and LOCC \(\{\Lambda_{B,k}\} \), from which, according to the entanglement monotone scenario proposed in [38], we can thus obtain that (iii) holds for \(E \) and any LOCC \(\Lambda \).

We assume first that \(\rho \) is a pure state, \(\rho = |\psi\rangle\langle\psi| \). If part B performs \(\Lambda_{B,k} \) on subsystem B as in Eq. (11), then the state becomes \(\rho'_{k} = \frac{\Lambda_{B,k}(\rho)}{p_k} \) with probability \(p_k = \text{Tr}(\Lambda_{B,k}(\rho)) \). Writing \(\rho'_{A,k} = \text{Tr}_B(\rho_{k}) \), we obtain \(\rho_A = \sum_k p_k \rho'_{A,k} \). For any ensemble \(\{r_{kl}, |\psi_{kl}\rangle\} \) of \(\rho'_{k} \), we have

\[E(\rho'_{k}) \leq \sum_l r_{kl} E(|\psi_{kl}\rangle). \]
It yields

\[E(\rho) = f(\rho_A) = f\left(\sum_k p_k \rho_A^k \right) \]

\[= f\left(\sum_{k,l} p_k r_{kl} \rho_A^{kl} \right) \geq \sum_{k,l} p_k r_{kl} f(\rho_A^{kl}) \]

\[= \sum_{k,l} p_k r_{kl} E(|\psi_{kl}\rangle) \geq \sum_k p_k E(\rho_k'), \]

where \(\rho_A^{kl} = \text{Tr}_B(|\psi_{kl}\rangle\langle\psi_{kl}|) \), the first inequality holds since \(f \) is concave and continuous. Therefore, (iii) is satisfied by \(E \) if \(\rho \) is pure.

Assume that \(\rho \) is mixed. Performing \(\Lambda_B, k \) on \(\rho \) and denote \(\rho_k' = \frac{\Lambda_B, k(\rho)}{p_k} \) with probability \(p_k = \text{Tr}(\Lambda_B, k(\rho)) \). Observe that, for any \(\epsilon > 0 \), there exists an ensemble \(\{t_j, |\eta_j\rangle\} \) of \(\rho \), and \(0 < \epsilon_1 < \epsilon \) such that

\[E(\rho) = \sum_j t_j E(|\eta_j\rangle) - \frac{\epsilon_1}{2}. \]

For each \(j \), let

\[\rho_j'^k = \frac{1}{t_j k}\Lambda_B, k(|\eta_j\rangle\langle\eta_j|), \]

where \(t_j k = \text{Tr}(\Lambda_B, k(|\eta_j\rangle\langle\eta_j|)) \). Then

\[\rho_k' = \frac{1}{p_k} \sum_j t_j k \rho_j'^k \]

and

\[E(|\eta_j\rangle) \geq \sum_k t_j k E(\rho_j'^k) \]

by what proved for pure states above. For each pair \((j, k) \), suppose that \(\{t_{jkl}, |\psi_{jkl}\rangle\} \) is an ensemble of \(\rho_j'^k \) such that

\[E(\rho_j'^k) = \sum_l t_{jkl} E(|\psi_{jkl}\rangle) - \frac{\epsilon_j k}{2}, \quad 0 < \epsilon_j k < \frac{\epsilon}{2k}. \]

We achieve that

\[E(\rho) = \sum_j t_j E(|\eta_j\rangle) - \frac{\epsilon_1}{2} \]

\[\geq \sum_{j,k} t_j k E(\rho_j'^k) - \frac{\epsilon_1}{2} \]
\[
E = \sum_{j,k,l} t_j t_k t_{jk} t_{jkl} E(|\psi_{jkl}\rangle) - \epsilon' \\
\geq \sum_k p_k E(\rho_k') - \epsilon'
\]

for some \(\epsilon' < \epsilon \). Since \(\epsilon \) is arbitrarily given, we see that (iii) is satisfied for mixed states as well.

Now we show that (iv) is valid. Let \(\rho = \sum_k p_k \rho_k \). For any given \(\epsilon > 0 \), there exists an ensemble of \(\rho_k, \{q_{kl}, |\phi_{kl}\rangle\} \), and \(0 < \epsilon < \epsilon' \) such that

\[
E(\rho_k) \geq \sum_l q_{kl} E(|\phi_{kl}\rangle) - \frac{\epsilon}{2^k}.
\]

As \(\{p_k q_{kl}, |\phi_{kl}\rangle\}_{k,l} \) is an ensemble of \(\rho \), this entails that

\[
E(\rho) \leq \sum_k p_k \sum_l q_{kl} E(|\phi_{kl}\rangle) \leq \sum_k p_k E(\rho_k) + \epsilon,
\]

from which we see that \(E(\rho) \leq \sum_k p_k E(\rho_k) \), finishing the proof.

Based on Proposition 3, we show below that the concurrence for infinite-dimensional systems defined in Eqs. (4) and (5) satisfies conditions (i)–(iv) and thus it is a well-defined entanglement measure (monotone).

Theorem 1 The concurrence defined in Eqs. (4) and (5) is an entanglement monotone.

Proof By Propositions 2 and 3, we only need to verify that the function \(f \) defined by \(f(\rho_A) = C(|\psi\rangle) \) with \(\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|) \) satisfies (a) and (b). Note that, for any \(\rho \in S(H_A) \), we have \(f(\rho) = \sqrt{2(1 - \text{Tr}(\rho^2))} \). Thus (a) is obvious. We check that \(f \) is concave. For any given states \(\rho_1 \) and \(\rho_2 \) on \(H_A \), let

\[
\rho = \lambda \rho_1 + (1 - \lambda) \rho_2, \quad 0 \leq \lambda \leq 1.
\]

Then

\[
f(\lambda \rho_1 + (1 - \lambda) \rho_2) \geq \lambda f(\rho_1) + (1 - \lambda) f(\rho_2)
\]

if and only if

\[
\text{Tr}(\rho_1^2) + \text{Tr}(\rho_2^2) \geq 2\text{Tr}(\rho_1 \rho_2).
\]

But the last inequality is always valid. Thus, \(f \) is concave.

With the same spirit as that for finite-dimensional case, we define the tangle of a pure state in the case of infinite-dimensional systems by

\[
\tau(|\psi\rangle) = C^2(|\psi\rangle).
\]
If $|\psi\rangle = \sum_k \lambda_k |k\rangle |k'\rangle$ is the Schmidt decomposition of $|\psi\rangle$ [40], then

$$\tau(|\psi\rangle) = 2(1 - \text{Tr}(\rho_A^2)) = 2 \sum_{k \neq l} \lambda_k^2 \lambda_l^2. \quad (15)$$

The tangle of a mixed state ρ, $\tau(\rho)$ can be naturally defined by

$$\tau(\rho) := \inf \left\{\left\{ p_i, |\psi_i\rangle\right\} \mid \rho = \sum_i p_i |\psi_i\rangle \langle \psi_i|\right\}, \quad (16)$$

where the infimum is taken over all possible ensembles $\{p_i, |\psi_i\rangle\}$ of ρ. By Proposition 2 and Theorem 1, τ is continuous and satisfies the conditions (i)--(iv) as well. Therefore, τ is an good entanglement measure, too.

For mixed state ρ, $C(\rho) \neq \sqrt{2[1 - \text{Tr}(\rho_A^2)]}$ in general. For the finite-dimensional case, it is showed in [9,41] that $C^2(\rho) \leq 2[1 - \text{Tr}(\rho_A^2)]$. In fact, we have the following result.

Proposition 4 Let $\rho \in S(H_A \otimes H_B)$ with $\dim H_A \otimes H_B \leq \infty$. Then

$$C^2(\rho) \leq \tau(\rho) \leq 2 \left[1 - \text{Tr}(\rho_A^2)\right]. \quad (17)$$

Proof For any $\epsilon > 0$, there exists $\{p_i, |\psi_i\rangle\}$ such that $\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i|$ and

$$\tau(\rho) \geq \sum_i p_i C^2(|\psi_i\rangle) - \epsilon.$$

Then we have

$$C^2(\rho) \leq \left(\sum_i p_i C(|\psi_i\rangle)\right)^2 = \left(\sum_i \sqrt{p_i} \sqrt{p_i} C(|\psi_i\rangle)\right)^2 \leq \left(\sum_i p_i\right) \left(\sum_i p_i C^2(|\psi_i\rangle)\right) \leq \tau(\rho) + \epsilon,$$

which establishes the inequality $C^2(\rho) \leq \tau(\rho)$ since $\epsilon > 0$ is arbitrary.

Let $\rho_{i,A} = \text{Tr}_B(|\psi_i\rangle \langle \psi_i|)$. One has

$$\tau(\rho) \leq \sum_i p_i C^2(|\psi_i\rangle)$$
\[= \sum_i p_i \left[2 \left(1 - \text{Tr}(\rho_{i,A}^2) \right) \right] \]
\[= 2 \left(1 - \sum_i p_i \text{Tr}(\rho_{i,A}^2) \right) \]
\[\leq 2(1 - \text{Tr}(\rho_A^2)) \]
due to the convex property of \(\text{Tr}(\rho_A^2) \) [9]. \(\square \)

3 Conclusion

Summarizing, the concepts of the concurrence and the tangle for infinite-dimensional bipartite quantum systems are introduced. These two functions are continuous under the trace norm topology. This enables us to prove that the concurrence as well as the tangle are still well-defined monotonic entanglement measures. The relationship between them are discussed and an upper bound is proposed: \(C(\rho) \leq \sqrt{\tau(\rho)} \leq \sqrt{2[1 - \text{Tr}(\rho_A^2)]} \), where the equalities hold whenever \(\rho \) is a pure state.

Acknowledgments

Yu Guo is supported by the China Postdoctoral Science Foundation funded project (Grant No. 2012M520603), the Research start-up fund for Doctors of Shanxi Datong University (Grant No. 2011-B-01) and the Natural Science Foundation of China (Grant No. 11171249, 11102150). Jinchuan Hou is supported by the Natural Science Foundation of China (Grant No. 11171249). Yuncai Wang is supported by the Natural Science Foundation of China (Grant No. 61227016).

References

1. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)
2. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
3. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001)
4. Gao, X.-H., Sergio, A., Chen, K., Fei, S.-M., Li-Jost, X.-Q.: Entanglement of formation and concurrence for mixed states. Front. Comput. Sci. China 2(2), 114–128 (2008)
5. Chen, K., Albeverio, S., Fei, S.-M.: Entanglement of formation of bipartite quantum states. Phys. Rev. Lett. 95, 210501 (2005)
6. Fan, H., Matsumoto, K., Imai, H.: Quantify entanglement by concurrence hierachy. J. Phys. A Math. Gen. 36, 4151–4158 (2003)
7. Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)
8. Albeverio, S., Fei, S.-M.: A note on invariants and entanglements. J. Opt. B Quantum Semiclass. Opt. 3, 223 (2001)
9. Zhang, C.-J., Gong, Y.-X., Zhang, Y.-S., Guo, G.-C.: Observable estimation of entanglement for arbitrary finite-dimensional mixed states. Phys. Rev. A 78, 042308 (2008)
10. Chattopadhyay, I., Sarkar, D.: Entanglement of formation is non-monotonic with concurrence: A simple proof. Quantum Inf. Process. 7, 243–249 (2008)
11. Chattopadhyay, I., Sarkar, D.: Character of locally inequivalent classes of states and entropy of entanglement. Phys. Rev. A 77, 050305 (2008)
12. Chen, K., Albeverio, S., Fei, S.-M.: Concurrence-based entanglement measure for Werner States. Rep. Math. Phys. 58, 325–334 (2006)
13. Berrada, K., Chatif, A., Eleuch, H., Hasssouni, Y.: Concurrence in the framework of coherent states. Quantum Inf. Process. 9, 13–26 (2010)
14. Huang, Y., Qiu, D.: Concurrence vectors of multipartite states based on coefficient matrices. Quantum Inf. Process. 11, 235–254 (2012)
15. Jafarpour, M., Sabour, A.: A useful strong lower bound on two-qubit concurrence. Quantum Inf. Process. doi:10.1007/s11128-011-0288-0
16. Salimi, S., Mohammadzade, A., Berrada, K.: Concurrence for a two-qubits mixed state consisting of three pure states in the framework of SU(2) coherent states. Quantum Inf. Process. 11, 501–518 (2012)
17. Augusiak, R., Lewenstein, M.: Towards measurable bounds on entanglement measures. Quantum Inf. Process. 8, 493–521 (2009)
18. Li, D.: The n-tangle of odd n qubits. Quantum Inf. Process. 11, 481–492 (2012)
19. Dousse, A., Suffczyński, J., Beveratos, A., Krebs, O., Lemaître, A., Sagnes, I., Bloch, J., Voisin, P., Senellart, P.: Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010)
20. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002)
21. Wu, L.-A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004)
22. Ghosh, S., Rosenbaum, T.F., Aeppli, G., Coppersmith, S.N.: Entangled quantum state of magnetic dipoles. Nature 425, 48 (2003)
23. Vedral, V.: Quantum physics: Entanglement hits the big time. Nature 425, 28 (2003)
24. Altintas, F., Eryigit, R.: Dynamics of entanglement and Bell-nonlocality for two stochastic qubits with dipole-dipole interaction. J. Phys. A Math. Theor. 43, 415306 (2010)
25. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)
26. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, K.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)
27. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, K.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. Lett. 54, 3824 (1996)
28. Braunstein, S.L., Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)
29. Eisert, J., Simon, C., Plenio, M.B.: On the quantification of entanglement in infinite-dimensional quantum systems. J. Phys. A Math. Gen. 35, 3911 (2002)
30. Keyl, M., Schlingemann, D., Werner, R.F.: Infinitely entangled states. Quantum Inf. Comput. 3, 281 (2003)
31. Werner, R.F.: Quantum states with Einstein-Posolsky-Rosen correlations asmitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)
32. Holevo, A.S., Shirokov, M.E., Werner, R.F.: Separability and entanglement-breaking in infinite-dimensions. Russ. Math. Surv. 60, N2 (2005)
33. Rungta, P., Caves, C.M.: Concurrence-based entanglement measures for isotropic states. Phys. Rev. A 67, 012307 (2003)
34. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)
35. Osborne, T.J.: Entanglement measure for rank-2 mixed states. Phys. Rev. A 72, 022309 (2005)
36. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)
37. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)
38. Vidal, G.: Entanglement monotone. J. Mod. Opt. 47, 355 (2000)
39. Hou, J.-C.: A characterization of positive linear maps and criteria for entangled quantum states. J. Phys. A Math. Theor. 43, 385201 (2010)
40. Guo, Y., Qi, X.-F., Hou, J.-C.: Sufficient and necessary conditions of separability for bipartite pure states in infinite-dimensional systems. Chin. Sci. Bull. 56(9), 840–846 (2011)
41. Mintert, F., Buchleitner, A.: Observable entanglement measure for mixed quantum states. Phys. Rev. Lett. 98, 140505 (2007)