Potential biocontrol of endophytic fungi against *Lasiodiplodia pseudotheobromae* causal agent of cocoa dieback on cocoa seedling

V Membalik¹, A Asman¹², N Amin¹ and A K F Bahar¹

¹ Department of Plant Pests and Diseases, Hasanuddin University, Makassar 90245 South Sulawesi, Indonesia
² Cocoa Research Group (CRG), Faculty of Agriculture, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia

E-mail: asman@agri.unhas.ac.id

Abstract. Endophytic fungi associated with cocoa are one of the effective agents to control plant pathogens on cocoa, including the fungus *Lasiodiplodia pseudotheobromae*. *L. pseudotheobromae* cause a significant disease on cocoa, cocoa dieback. The disease is considered an emerged disease on cocoa in Sulawesi, Indonesia. The research aimed to determine the effect of the endophytic fungi on *L. pseudotheobromae* on cocoa seedlings. This study used a randomized block design consisting of 6 treatments and 3 replications. Five different fungi isolates were used that belong to *Aspergillus* genera. The treatment is three isolates of endophytes fungi (isolate T2S2LT, T245LT, T645LT), *Aspergillus* isolates combination, and control (with and without pathogen). The results showed that the combination of isolates and T645LT isolate was the best treatment for suppressing necrotic symptoms (leaf spot) incidence and severity. Also, T645LT isolate performed well to inhibit leaf blight symptoms incidence severity. Meanwhile, the chlorotic symptom was reduced by isolates combination, followed by T2S2LT, T645LT, and T245LT. Endophytic fungi can potentially be an important option to control cocoa dieback disease.

1. Introduction

Endophytic fungi are promising agents of biological control to suppress the disease and the pathogen. Studies have identified fungal endophytes can effectively reduce various destructive diseases on cacao like black pod rot, frosty pod rot, witches’ broom, and vascular streak dieback [1,2,3,4,5,6,7,8,9,10].

Cocoa dieback caused by the ascomycete fungus *Lasiodiplodia* species [11,12,13,14,15,16], one of the pathogen species is *Lasiodiplodia pseudotheobromae* [15,16]. The disease is a new emerging disease in cocoa in Sulawesi, Indonesia [15]. *L. pseudotheobromae* A.J.L. Phillips, A. Alves & Crous, a member of botryosphaeriaceae, one of the species of the genus *Lasiodiplodia* which is a cosmopolitan fungus that can cause diseases on the plant such as leaf spot, dieback, and canker which can lead to plant death [17,18,19].

The present research using endophytic fungi from stems and leaves of different cocoa genotypes isolated from South Sulawesi, Indonesia [20]. The research aimed to determine the effect of the endophytic fungi on *L. pseudotheobromae* on cocoa seedlings.
2. Methods

2.1. Preparation of seedling and endophytes application
The Seedling was developed from a popular clone in Sulawesi, Masamba cocoa clone 02 (MCC-02). Cocoa seedlings were prepared inside a mini-house with polyethylene (PE) plastic as a roof and wall and placed inside a screen house with half its wall by wire mesh located in Makassar, South Sulawesi Province, Indonesia. Endophytic fungi and the fungus L. pseudotheobromae inoculation was carried out in the afternoon onto 1.5-month-old seedlings. Three isolates of endophytes fungi were isolated from cocoa stems tissue, the fungi belong to Aspergillus genera. There are six treatments, three isolates were applied separately, combination of Aspergillus, and control (with and without pathogen). The concentration of 3.96×10^6, 6.505×10^6, 5.85×10^6 spores/mL of endophytes fungi were sprayed and followed by 0.6×10^6 spores/mL of L. pseudotheobromae. Inoculation of L. pseudotheobromae was carried out 1 week after inoculation of endophytic fungi. Negative control was only inoculated with sterile aquadest without L. pseudotheobromae spores.

2.2. Evaluation
The symptom of the disease was calculated by its incidence and severity at 5 weeks after inoculation. The incidence was measured by calculating the proportion of plants with any infection symptom (the number of infected trees divided by all sampled trees). The symptoms of infected leaves that are attacked by pathogens can be seen by necrotic (leaf spot and leaf blight) and chlorotic symptoms which appear on the leaves. The incidence of the symptoms was calculated using the following equation:

$$I = \frac{n}{N} \times 100\%$$

Where,

I : Incidence of disease
n : Number of symptomatic leaves
N : Number of leaves observed

The disease severity was calculated using the equation as follows [21]:

$$I = \frac{\sum (n \times v)}{N \times Z} \times 100\%$$

Where n represents the number of infected leaves on each score, v is a score on each infestation category, Z is the highest score and N represents the total number of leaves observed. The disease severity was assessed by scoring disease severity in individual leaves as follows: 0 = No visible symptoms on leaves; 1 = < 10% of leaves infected area (leaf shows necrotic lesions and chlorosis); 2 = > 10% - ≤25% of leaves infected area; 3 = > 25% - ≤50% leaves infected area; 4 = > 50% - 100% leaves infected area.

2.3. Statistical analysis
Data analysis regarding symptoms incidence and severity at five weeks after inoculation were determined using analysis of variance (ANOVA) and standard error. When significant differences are detected, the data is further tested using Tukey’s test at the 5% probability level.

3. Results and discussion
The result of the research showed that there were three different symptoms were appeared including necrotic (leaf spot and leaf blight) and chlorotic during the study both on the treatments and on the control after inoculation of the pathogen L. pseudotheobromae.
3.1. Occurrence of necrotic symptoms (leaf spot and leaf blight)

Leaf spot and leaf blight symptoms showed variable incidence and severity among the endophyte isolates. There is an influence of the endophyte fungi isolates on the leaf spot and leaf blight incidence and severity where the influence was highly significant (table 1, 2).

Table 1. Disease incidence and severity inoculated by L. pseudotheobromae and endophytic fungi according to necrotic symptoms on leaves (Leaf spot).

Disease evaluation	Treatment	Control with pathogen	Control without pathogen	Isolate T2S2LT	Isolate T245LT	Isolate T645LT	Isolates combination
Incidence		31.98^c	0.00^a	13.07^b	14.18^b	5.08^b	4.94^{ab}
Severity		8.12^b	0.00^a	2.71^a	4.18^{ab}	1.08^a	1.21^a

Note: The numbers followed by the same letters in the same row are not significantly different in the Tukey HSD level test of 0.05.

A combination of isolates was the most effective treatment to reduce leaf spot incidence (4.94%), and followed by T645LT (5.08%), T2S2LT (13.07%), and T245LT (14.18%). However, all isolate treatments were not significantly different. Meanwhile, all isolate treatments had significantly different to control with pathogen while control without pathogen showed no symptoms (table 1).

Isolate T645LT showed the best isolates to inhibit the severity of the symptom of the leaf spot with only 1.08% of severity, followed by the combination of isolates (1.21%), T2S2LT (2.71%), and T245LT (4.18%). All endophyte fungi isolate treatments were not significantly different. However, all isolate treatments had significantly different to control with pathogen while control without pathogen showed no symptoms (table 1).

Table 2. Disease incidence and severity inoculated by L. pseudotheobromae and endophytic fungi according to necrotic symptoms on leaves (Leaf blight).

Disease evaluation	Treatment	Control with pathogen	Control without pathogen	T2s2lt	T245lt	T645lt	Isolates combination
Incidence		53.49^b	11.39^a	17.34^a	18.82^a	12.33^a	24.51^a
Severity		16.05^b	2.19^a	3.41^a	5.37^a	1.97ⁿ	4.69^a

Note: The numbers followed by the same letters in the same row are not significantly different in the Tukey HSD level test of 0.05.

T645LT Isolate was the most effective isolates decrease leaf blight incidence and severity, 12.33% and 1.97%, respectively while T2S2LT was the second most effective isolates followed by T245LT isolate and isolates combination. However, all isolate treatments were significantly different to control with pathogen while control without pathogen showed blight symptoms as well in low percentages (table 2).

3.2. Occurrence of chlorotic symptoms

Chlorotic symptoms indicated different incidence and severity among the endophyte isolates. However, there is no influence of the endophyte fungi isolates on the incidence and severity of the chlorotic symptoms (table 3).
Table 3. Disease incidence and severity inoculated by *L. pseudotheobromae* and endophytic fungi according to chlorotic symptoms on leaves.

Disease evaluation	Control with Pathogen	Control without Pathogen	T2S2LT	T245LT	T645LT	Isolates combination
Incidence	4.17	1.11	0.00	5.56	1.85	0.00
Severity	2.08	0.56	0.00	2.08	1.39	0.00

A combination of isolates and T2S2LT isolate were the most effective treatments to inhibit the appearance of chlorotic incidence and severity, no symptoms were recorded. The second most effective was T645LT isolate, followed by T2S2LT (5.56%). However, all treatments had no significant difference to control with pathogen and control without pathogen (table 3).

3.3. Discussion
The current study showed endophytic fungi from cocoa stems tissue [20] can inhibit one of the causal agents of cocoa dieback, *L. pseudotheobromae*, on the cocoa seedling. The results indicated that all the isolates of the endophytic fungi completely inhibited three different symptoms produced by *L. pseudotheobromae*, i.e. leaf spot, leaf blight and chlorosis. Although, chlorosis incidence and severity was not significantly different to control, but the endophytic fungi isolates remain lower than the control seedling.

Endophytic fungi was used belong to *Aspergillus* species. *Aspergillus* species have been reported as endophytes with antifungal activity [22, 23] and able to produce many secondary metabolites such as alkaloids, terpenoids [24]. Endophytic fungi associated with cocoa able to protect cocoa plants against phytopathogens through a number of inhibition activities, including competition, antibiosis, and mycoparasitism [4]. Moreover, the endophytic fungi from cocoa tree tissue able to colonized the cocoa plant tissue [4, 10, 25] and able to respond to abiotic and biotic stresses in the plant through induction of some genes [26].

4. Conclusion
Disease incidence and severity caused by the fungus *L. pseudotheobromae* was effectively reduced by endophytic fungi from cocoa stems and leaves tissue applied on seedling. However, a larger study area to provide more data, particularly in the field.

Acknowledgement
The authors would like to thank Hasanuddin University (Department Plant Pests and Diseases) for providing the necessary laboratory and experimental farm for carrying out the research.

References
[1] Bailey B A, Bae H, Strem M D, Crozier J, Thomas S E, Samuels G J, Vinyard B T and Holmes K A 2008 Antibiosis, mycoparasitism, and colonization success for endophytic *Trichoderma* isolates with biological control potential in *Theobroma cacao* Biol. Control 46 24–35
[2] Souza J T De, Bailey B A, Pomella A W V, Erbe E F, Murphy C A, Bae H and Hebbar P K 2008 Colonization of cacao seedlings by *Trichoderma stromaticum*, a mycoparasite of the witches’ broom pathogen, and its influence on plant growth and resistance Biol. Control 46 36–45
[3] Hanada R E, Pomella A W V, Costa H S, Bezerra J L, Loguercio L L and Pereira J O 2010 Endophytic fungal diversity in *Theobroma cacao* (cacao) and *T. grandiflorum* (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease Fungal Biol. 114 901–910
[4] Mejía L C, Rojas E I, Maynard Z, Bael S V, Arnold A E, Hebar P, Samuels G J, Robbins N and Herre E A 2008 Endophytic fungi as biocontrol agents of Theobroma cacao pathogens Biol. Control 46 4–14

[5] Amin N, Salam M, Asman, Ryan, Rahim and Muh D 2015 Investigation of endophytic fungi towards vascular streak dieback Oncobasidium theobromae on seeding of cocoa plant J. Appl. Biol. Sci. 9 86–89

[6] Junaid M and Guest D 2021 Modified culture assay to obtain a diversity of hyphal structures of Ceratobasidium theobromae-VSD pathogen on cocoa Biodiversitas 22(4) 1879-1886

[7] Rosmana A, Samuels G J, Ismaiel A, Ibrahim E S, Chaverri P, Herawati Y and Asman A 2015 Trichoderma asperellum: A dominant endophyte species in cacao grown in sulawesi with potential for controlling vascular streak dieback disease Trop. Plant Pathol. 40 19-25

[8] Rubini M R, Silva-ribeiro R T, Pomella A W V and Maki C S 2005 Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of witches' broom disease Int. J. Biol. Sci. 1 24-33

[9] Tondje P R, Roberts D P, Bon M C, Widmer T, Samuels G J, Ismaiel A, Begoude A D, Tchana T, Nyemb-Tshomb E, Ndoumbe-Nkeng M, Bateman R, Fontem D and Hebar K P 2007 Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon Biol. Control 43 202-212

[10] Asman A, Amin N, Rosmana A and Abdullah T 2018 Endophytic fungi associated with cacao branch and their potential for biocontrol vascular streak dieback disease on cacao seedling IOP Conf. Ser. : Earth and Environ. Sci. 157 012039

[11] Mbenoun M, Momo Z E H, Samuels G F, Amougou N and Nyasse S 2008 Dieback due to Lasiodiplodia theobromae, a new constraint to cocoa production in Cameroon Plant Pathol. 57 381

[12] Kannan C, Karthik M and Priya K 2010 Lasiodiplodia theobromae causes a damaging dieback of cocoa in India Plant Pathol. 59 410

[13] Adu-Acheampong R, Archer S and Leather S 2012 Resistance to dieback disease caused by Fusarium and lasiodiplodia species in cacao (Theobroma cacao L.) Genotypes Expl. Agric. 48 85-98

[14] Alvindia D G and Gallema F L M 2017 Lasiodiplodia theobromae causes vascular streak dieback (VSD)–like symptoms of cacao in Davao Region, Philippines Austral. Plant Dis. Notes 12 54

[15] Asman A, Rosmana A, Bailey B A, Shahin A S, Stream M D, Amin N, Tumoe I V J and Ariska 2020 Lasiodiplodia theobromae: an emerging threat to cocoa causes dieback and canker disease in Sulawesi, Increasing the resilience of cacao to major pest and disease threats in the 21st century ACIAR Proc. Ser. (Canberra: Australian Centre for International Agricultural Research) p 97

[16] Ali S S, Asman A, Shao J, Balidion J F, Strem M D, Puig A S, Meinhardt L W and Bailey B A 2020 Genome and transcriptome analysis of the latent pathogen Lasiodiplodia theobromae, an emerging threat to the cacao industry Genome 63 37-52

[17] Alves A, Crous P W, Correia A and Phillips A J L 2008 Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae Fungal Divers. 28 1–13

[18] Phillips A J L, Alves A, Abdollahzadeh J, Slippers B, Wingfield M J, Groenewald J Z and Crous P W 2013 The Botryosphaeriaceae: genera and species known from culture Stud. Mycol. 76 51–167

[19] Ismail A M, Cirvilleri G, Polizzi G, Crous P, Groenewald W J Z and Lombard L 2012 Lasiodiplodia species associated with dieback disease of mango (Mangifera indica) in Egypt Australasian Plant Pathol. 41 649–660

[20] Asman A, Baharuddin, Rosmana A and Ariska 2020 Diversity of fungal community associated with cacao (Theobromae cacao L.) top clones from Sulawesi, Indonesia IOP Conf. Ser. : Earth and Environ. Sci. 486 012171
[21] Mayee C D and Datar V V 1986 *Phytopathometry Tech. Bull. 1* (Parbhani: Univ. Press. Marathwada Agriculture University)

[22] Halo B A, Al-Yahyai R A and Al-Sadi A M 2018 *Aspergillus terreus* Inhibits growth and induces morphological abnormalities in *Pythium aphanidermatum* and suppresses *Pythium*-induced damping-off of cucumber *Front. Microbiol* **9** 95

[23] Aydi Ben Abdallah R, Jahnoun-Khiareddine H, Mej doub-Trabelsi B and Daami-Remadi M 2015 Soil-borne and compost-borne *aspergillus* species for biologically controlling post-harvest diseases of potatoes incited by *Fusarium sambucinum* and *Phytophthora erythroseptica J. Plant Pathol. Microbiol*. **6** 313

[24] El-hawary S S, Moawad A S, Bahr H S, Abdelmohsen U R and Mohammed R 2020 Natural product diversity from the endophytic fungi of the genus *Aspergillus RSC Adv*. **10** 22058

[25] Rosmana A, Sjam S, Asman A, Jayanti N J, Satriana S, Padang A T and Hakkar A A 2018 Systemic deployment of *Trichoderma asperellum* in *Theobroma cacao* regulates co-occurring dominant fungal endophytes colonization *J. Pure Appl. Microbiol*. **12** 1071-1084

[26] Bailey B A, Bae H, Strem M D, Roberts D P, Thomas S E, Crozier J, Samuels G J, Choi I Y and Holmes K A 2006 Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four *Trichoderma* species *Planta** 224** 1449-1464