The Role of Hypoxia-Inducible Signaling Pathway in Nickel Carcinogenesis

Konstantin Salnikow, Todd Davidson, and Max Costa

Nelson Institute of Environmental Medicine, NIEHS Center and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York, USA

The high use of nickel-containing products in modern industry leads to environmental pollution by nickel in both soluble and insoluble forms. Additionally, combustion of fossil fuel, particularly oil, contributes significantly to environmental burdens of nickel compounds. Epidemiologic studies have clearly implicated nickel compounds as human carcinogens based upon a higher incidence of lung and nasal cancer among nickel mining, smelter, and refinery workers. In various animal models, nickel compounds induce tumors at virtually any site of administration. Additionally, nickel compounds efficiently transform rodent and human cells in vitro. Based on these observations, the International Agency for Research on Cancer evaluated the carcinogenicity of nickel in 1990. All nickel compounds except metallic nickel were classified as carcinogenic to humans.

The molecular basis of nickel carcinogenesis has proved elusive because carcinogenic nickel compounds are weakly mutagenic in most assay systems even though they are able to produce oxidative DNA damage and inhibit DNA repair activity. Nickel induces rather weak oxidative stress that depletes glutathione and activates nuclear factor kappa B (NF-kB) and other oxidatively sensitive transcription factors.

Recently, new data related to the activation of hypoxia-inducible signaling pathways by nickel have emerged. It is suggested that nickel might substitute for iron in a hypothetical oxygen sensor, thus switching a cell's metabolism to a state that mimics permanent hypoxia. Using human and rodent cells in vitro, we characterized a hypoxia-inducible signaling pathway as one of the pathways affected by carcinogenic nickel compounds. Acute exposure to nickel activates hypoxia-inducible transcription factor-1 (HIF-1), which strongly induces hypoxia-inducible genes, including the recently discovered tumor marker Capp3. This gene has been cloned based on its nickel inducibility and was found to be highly inducible by hypoxia. To identify other HIF-1-dependent/independent nickel-inducible genes, we used cells obtained from HIF-1α null mouse embryos and analyzed gene expression changes using the microarray technique. We found that genes coding for glycolytic enzymes, known to be regulated by HIF-1, were also induced in nickel-exposed cells. In addition, we identified a number of new genes highly induced by nickel in an HIF-dependent manner. Elevated HIF-1 activity after acute nickel exposure might be selectively advantageous because nickel-transformed rodent and human cells possess increased HIF-1 transcriptional activity. Hypoxia plays an important role in tumor progression. It selects for cells with enhanced glycolytic activity, causing production of large amounts of lactic acid, one of the most common features of tumor cells (Warburg effect). Here, we hypothesize that exposure to nickel activates the hypoxia-inducible pathway and facilitates selection of cells with increased transcriptional activity of hypoxia-inducible genes, which may be important in the nickel-induced carcinogenic process.

Materials and Methods

Materials

Nickel chloride and cobalt chloride were obtained from Alfa Aesar (Ward Hill, MA, USA). Cell culture media, fetal calf serum, glutamine, and antibiotics were obtained from Gibco-BRL (Rockville, MD, USA). The most commonly used chemicals were purchased from Sigma (St. Louis, MO, USA). The murine Genome U74A Array and Test3 Array were obtained from Affymetrix (Santa Clara, CA).

Cell Culture

Mouse embryo fibroblasts and cells with HIF-1α knockout (HIF-1α−/−) were obtained from R. Johnson (University of California at San Diego) and were described previously. All cells were maintained at 37°C as monolayers in a humidified atmosphere containing 5% CO2. Cells used for isolation of RNA, cDNA synthesis, and Affymetrix GeneChip analysis were kept at 4°C.

Isolation of RNA, cDNA Synthesis, and GeneChip Hybridization

Total RNA was isolated from nickel-exposed and nonexposed cells using TRIzol reagent (Gibco-BRL) and used for Northern blot analysis or to prepare poly(A) mRNA. For GeneChip analysis double-stranded cDNA was synthesized with a cDNA synthesis kit (Superscript cDNA Synthesis System; Gibco-BRL) by using an oligo(dT)24 primer with a T7 RNA polymerase promoter site added to its 3' end. The isolated cDNA was used for Isolation of RNA, cDNA Synthesis, and GeneChip Hybridization

Isolation of RNA, cDNA Synthesis, and GeneChip Hybridization

Total RNA was isolated from nickel-exposed and nonexposed cells using TRIzol reagent (Gibco-BRL) and used for Northern blot analysis or to prepare poly(A) mRNA. For GeneChip analysis double-stranded cDNA was synthesized with a cDNA synthesis kit (Superscript cDNA Synthesis System; Gibco-BRL) by using an oligo(dT)24 primer with a T7 RNA polymerase promoter site added to its 3' end. The isolated cDNA was used for
in vitro transcription (Ambion T7 Megascript system; Austin, TX, USA) in the presence of biotin-11-CTP and biotin-16-UTP (Enzo Diagnostics, Farmingdale, NY, USA). A total of 25–50 μg of the cRNA product in buffer (40 mM Tris acetate, pH 8.1; 100 mM potassium acetate; 30 mM magnesium acetate) was fragmented at 94°C for 35 min. This probe was used for hybridization and mixed with herring sperm DNA (0.1 mg/mL; Sigma). The Test3 chip served for evaluation of the probe quality as directed by the manufacturer (Affymetrix).

Aliquots of the cRNA hybridization mixtures (10 μg cRNA in 200 μL hybridization mix) were hybridized to a mouse GeneChip array, washed, and scanned (GeneArray scanner G2500A; Palo Alto, CA, USA) according to procedures developed by the manufacturer (Affymetrix).

Analysis of Gene Expression Data

Scanned output files were visually inspected for hybridization artifacts and then analyzed with GENECHIP 3.1 software (Affymetrix). Arrays were scaled to an average intensity of 125 and analyzed independently. Genes showing no changes or changes less than 1.5-fold were excluded from the analysis. The intensity of the signal of the remaining 5,310 genes was normalized based on the signal of four independent actin genes. The median value of the signal of the remaining 5,310 genes was divided by the specific signal value for each chip. This average value was used as a signal normalization factor for the correction of all genes. The expression value (average difference) for each gene was determined by calculating the average of differences of intensity (perfect match intensity minus mismatch intensity) between its probe pairs.

The expression analysis files were created by GENECHIP 3.1 software, transferred to a database (Microsoft Access), and linked to Internet genome databases (e.g., GenBank database (Microsoft Access), and linked to by GENECHIP 3.1 software, transferred to a table).

Results

HIF-Dependent Induction of Glycolytic Enzymes and Genes Involved in Glucose Transport by Nickel

It was previously shown that most of the genes involved in glucose metabolism and glycolysis were inducible by hypoxia and were HIF-1 dependent (19). Previous studies using HIF-1–proficient and HIF-1–deficient fibroblasts have shown that exposure of cells to nickel induces genes involved in hypoxic stress only in HIF-1–proficient fibroblasts (16). These data suggest that nickel activates an HIF–1 dependent pathway. Here, using GeneChip analysis on HIF-1–proficient and HIF–1–deficient fibroblasts, we further investigated the induction of these genes by nickel.

Glycolytic enzyme (accession number)	Fold increase in fibroblasts	
	HIF-1α–proficient	HIF-1α–deficient
Glucose transporter I (M22998)	8.27	0.38
Hexokinase I (J06277)	1.95	1.56
Hexokinase II (Y11666)	10.42	0.46
Glucose 6-phosphate dehydrogenase	1.09	0.56
Glucose phosphate isomerase A	2.23	0.72
Phosphofructokinase kinase B (J03928)	5.80	0.33
Aldolase A (Y00516)	3.99	1.36
GAPDH (M23569)	4.53	0.75
Pyruvate kinase 3 (X97047)	2.86	1.59
Phosphoglycerate kinase I (M15668)	4.24	0.99
Lactate dehydrogenase A (M17516)	6.44	0.81
Triosephosphate isomerase (L31777)	2.48	0.64

*Cells were exposed to 1 mM NiCl₂ for 20 hr.
found that nickel significantly induced the expression of Nip3 only in HIF-1–proficient fibroblasts (Table 2). The data obtained with the GeneChip were confirmed using Northern blot analysis. Figure 2 shows that the exposure of HIF-proficient cells to nickel induced the expression of Nip3 in a dose-dependent manner.

HIF-Independent Induction of Gene Expression by Nickel

In addition to demonstrating the activation of an HIF-dependent pathway, we were able to show that nickel induces some genes in an HIF-independent manner (Table 2). HSP 70, GADD45, p21, and p53 were induced by nickel in both HIF-1–proficient and HIF-1–deficient mouse fibroblasts. Some other genes, including ATM, GADD153, Jun B, and MDR-1, were induced in both HIF-1–proficient and HIF-1–deficient mouse fibroblasts, but the induction in HIF-1–proficient cells was more pronounced, suggesting a mixed regulation. Figure 3 shows the induction of HSP 70 in both HIF-1–proficient and HIF-1–deficient mouse fibroblasts.

Discussion

Nickel is a modern environmental contaminant that is toxic and carcinogenic. One possible pathway for nickel-induced carcinogenesis may involve changes in DNA methylation (23). Epigenetic mechanisms probably play a significant role in the carcinogenicity of nickel, although alternative mechanisms involving modulation of gene expression followed by selection of favorable phenotypes are also very likely. Previously we have shown that the expression of a number of genes was altered in nickel-exposed cells (15–17). The changes in gene expression in the exposed cells resulted from the activation of a number of transcription factors, including ATF-1, p53, and HIF-1 (17–20). The accumulation of HIF-1 transcription factor, the master regulator of the hypoxic response, suggested that the hypoxia-inducible signaling pathway is affected by nickel. Indeed, we found that a set of hypoxia-inducible genes was activated by nickel in HIF-1–proficient cells but not in HIF-1–deficient cells (16).

In this study we used the GeneChip technology to further identify genes induced by nickel in HIF-1–proficient cells but not in HIF-1–deficient cells. The GeneChip technology allowed us to analyze simultaneously the expression of approximately 11,000 genes. One interesting finding was that all genes involved in glucose transport and glycolysis were induced by nickel. These genes are also known to be induced by hypoxia (25). The expression of hexokinase I and glucose 6-phosphate dehydrogenase was not changed by nickel, and these genes were also not changed by hypoxia. Therefore, the effects on the expression of genes regulating glucose transport and glycolysis in nickel-exposed or hypoxic cells were identical.

Hypoxia plays an important role in tumor progression. It selects for cells with enhanced glycolytic activity, causing production of large amounts of lactic acid, one of the most common features of tumor cells known as the Warburg effect (20). It is possible that exposure to nickel activates the hypoxia-inducible pathway and the induction of this pathway facilitates selection of cells with increased glycolytic activity. In addition to genes involved in glucose metabolism and glycolysis, a number of other hypoxia-inducible genes were elevated by nickel in an HIF-dependent manner. For example, Nip3 is a proapoptotic gene significantly induced by hypoxia (22). The microarray data showed more than 20-fold induction of this gene in nickel-exposed HIF-1–proficient cells compared with HIF-1–deficient cells. The Northern blot analysis confirmed the induction of this gene by nickel in a dose-dependent manner only in HIF-1–proficient cells. In conclusion, these data again demonstrate similarity in the pattern of gene induction by nickel and hypoxia.

Other genes induced by nickel displayed HIF-independent regulation. Among these genes were p21, p53, and GADD45. Both genes p21 and GADD45 were regulated by p53 (27, 28). It is likely, therefore, that the induction of p53 by nickel stimulated the expression of these genes. These data are in good agreement with our previous finding of stimulation of p53-dependent transcription in nickel-exposed cells (17). The induction of HSP 70 is under the control of heat-shock factor, which is activated by misfolded proteins (29). It is conceivable that nickel binds to cellular proteins, producing misfolded protein stress. ATM, GADD153, Jun B, and MDR-1 showed mixed regulation. They were induced more by nickel in HIF-1–proficient cells; however, some induction in HIF-1–deficient cells was also observed, indicating that factors other than HIF-1 transcription factors were involved in the upregulation of these genes.

Table 2. HIF-dependent and HIF-independent activation of gene expression by NiCl2

Gene regulation	Gene name (accession number)	HIF-1α proficient	HIF-1α deficient
HIF-dependent	Nip3 (AF041054)	21.3	0.98
HIF-dependent	Prolyl-4-hydroxylase (U16163)	10.0	0.96
HIF-independent	HSP 70 (M12571)	2.3	93.3
HIF-independent	GADD45 (U00937)	9.4	12.6
HIF-independent	p21 (U09507)	7.8	7.8
HIF-independent	p21 (AB021961)	2.2	2.0
Mixed	ATM (U43678)	6.0	2.6
Mixed	GADD153 (X67083)	4.3	2.8
Mixed	Jun B (U20735)	9.6	2.4
Mixed	MDR-1 (M60348)	4.0	1.2

*Cells were exposed to 1 mM NiCl2 for 20 hr.

Figure 2. Induction of Nip3 by nickel in HIF-1–proficient cells or HIF-1–deficient mouse fibroblasts. Cells were exposed to NiCl2 for 20 hr. Fifteen micrograms of total RNA were subjected to a Northern blot analysis. The blot was hybridized with the Nip3 probe (top); the ethidium bromide staining of small ribosomal subunit is shown to assure loading (bottom).

Figure 3. Induction of HSP 70 by nickel in HIF-1–proficient cells or HIF-1–deficient mouse fibroblasts. Cells were exposed to NiCl2 for 20 hr. One microgram of cDNA was subjected to a PCR amplification. The HSP 70 amplification is shown on top; the actin amplification of the same samples is shown to assure cDNA quantity (bottom). Control, PCR mix with primers, no DNA.
Conclusions

Using GeneChip technology, we analyzed changes in gene expression in nickel-exposed cells. The induction of both HIF-dependent and HIF-independent genes was observed; HIF-dependent genes included the proapoptotic Nip3 as well as genes involved in oxidative stress responses in nickel resistant mammalian cells. The induction of these genes was similar to that observed during hypoxic exposure. We hypothesize that exposure to nickel activates the hypoxia-inducible pathway and facilitates the selection of cells with increased transcriptional activity of hypoxia-inducible genes. These effects may be important in nickel-induced carcinogenic processes.

REFERENCES AND NOTES

1. Biswas P, Wu CY. Control of toxic metal emissions from combustors using sorbents: a review. J Air Waste Manag Assoc 48(2):113–127 (1998).
2. International Committee on Nickel Carcinogenesis in Man. Report of the International Committee on Nickel Carcinogenesis in Man. Scand J Work Environ Health 16:1–82 (1990).
3. International Agency for Research on Cancer. Chromium, nickel and welding. IARC Monogr Eval Carcinog Risks Hum 49:257–445 (1990).
4. Biggart NW, Costa M. Assessment of the uptake and mutagenic activity of hypoxia-inducible genes. Chem Res Toxicol 4(6):592–604 (1991).
5. Klein CB, Frenkel K, Costa M. The role of oxidative processes in metal carcinogenesis. Chem Res Toxicol 4(6):592–604 (1991).
6. Huang X, Klein CB, Costa M. Crystalline NiS2 specifically enhances the formation of oxidents in the nuclei of CHO cells as detected by dichlorofluorescein. Carcinogenesis 15(3):545–548 (1994).
7. Li W, Zhao Y, Chou IN. Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions. Toxicology 77:85–79 (1993).
8. Salnikow K, Gao M, Voitkin V, Huang X, Costa M. Altered oxidative stress responses in nickel resistant mammalian cells. Cancer Res 54:6407–6412 (1994).
9. Huang C, Li J, Costa M, Zhang Z, Leonard SS, Castranova V, Valleyathan V, Ju G, Shi X. Hydrogen peroxide mediates activation of nuclear factor of activated T cells (NFAT) by nickel subsulfide. Cancer Res 61(22):8051–8057 (2001).
10. Li W, Zhao Y, Chou IN. Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions. Toxicology 77:85–79 (1993).
11. Salnikow K, Gao M, Voitkin V, Huang X, Costa M. Altered oxidative stress responses in nickel resistant mammalian cells. Cancer Res 54:6407–6412 (1994).
12. Huang C, Li J, Costa M, Zhang Z, Leonard SS, Castranova V, Valleyathan V, Ju G, Shi X. Hydrogen peroxide mediates activation of nuclear factor of activated T cells (NFAT) by nickel subsulfide. Cancer Res 61(22):8051–8057 (2001).
13. Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242:1412–1415 (1988).
14. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim AV, Hebestreit HF, Mukherji M, Schofield CJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472 (2001).
15. Zhou D, Salnikow K, Costa M. Cap43, a novel gene specifically induced by Ni²⁺ compounds. Cancer Res 58:2182–2189 (1998).
16. Salnikow K, Blagosklonny MV, Costa M. Carcinogenic nickel induces genes involved with hypoxic stress. Cancer Res 60:38–41 (2000).
17. Salnikow K, An WG, Melillo G, Blagosklonny MV, Costa M. Nickel-induced transformation shifts the balance between HIF-1 and p53 transcription factors. Carcinogenesis 20:1819–1823 (1999).
18. Shen Y, White E. p53-Dependent apoptosis pathways. Adv Cancer Res 82:55–84 (2001).
19. Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 35(2):71–103 (2000).
20. Shanks, M, Aw TY, Smith ER, Ingelman-Sundberg M, Mannerik B, Iyanyi-TJ, Jones DP. Effect of chronic hypoxia on detoxification enzymes in rat liver. Biochem Pharmacol 43(1):2421–2426 (1992).
21. Greber TG, Peterson JF, Tsai M, Monica K, Fornace AJ Jr, Giaccia AJ. Hypoxia induces accumulation of p53 protein, but activation of a GI-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 14(9):6284–6277 (1994).
22. Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 97(16):9082–9087 (2000).
23. Lee Y-W, Klein CB, Karagacin B, Salnikow K, Kitahara J, Dowgat K, Zhitkovich A, Christie NT, Costa M. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogenesis. Mol Cell Biol 15(5):2547–2557 (1995).
24. Salnikow K, Wang S, Costa M. Induction of activating transcription factor 1 by nickel and its role as a negative regulator of thrombospondin I gene expression. Cancer Res 57:5060–5066 (1997).
25. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–579 (1998).
26. Warburg O. On respiratory impairment in cancer cells. Science 123:309–314 (1956).
27. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Marcadori W, Knudson AW, Vogelstein B, WAF1, a potent mediator of p53 tumor suppression. Cell 75:817–825 (1993).
28. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Waddell N, Plunkett BS, Vogelstein B, Fornace AJ Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597 (1992).
29. Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones and negative regulators. Genes Dev 12:2788–2796 (1998).