Charge and CP asymmetries of B_q meson in unparticle physics

Chuan-Hung Chen1,2,*, C. S. Kim3† and Run-Hui Li3‡

1Department of Physics, National Cheng-Kung University, Tainan 701, Taiwan
2National Center for Theoretical Sciences, Hsinchu 300, Taiwan
3Department of Physics & IPAP, Yonsei University, Seoul 120-479, Korea

(Dated: December 3, 2010)

Abstract

Recently the DØ Collaboration reported an observation of like-sign charge asymmetry (CA), which is about 3.2 σ deviation from the standard model (SM) prediction. Inspired by the observation we investigate the scalar unparticle effects, under the color charge of SU(3)$_c$ symmetry, in the CP violation in neutral B meson oscillations as well as the dispersive and absorptive parts of $\bar{B}_q \leftrightarrow B_q$ transition, which can be related to the CA directly. In order to illustrate the peculiar properties of unparticle, our analysis is carried out in two scenarios for the right-handed section: (I) $\lambda_R = \lambda_L$ and $U_R^D = U_L^D$, where $\lambda_{L,R}$ and $U_{L,R}^D$ are the couplings and flavor mixing matrix of left- and right-handed section, respectively; (II) $\lambda_R \gg \lambda_L$ and U_R^D is completely a free parameter. In scenario I we found that the wrong- and like-sign CA cannot be changed significantly for a SM-like CP violating source because of the strong constraint of Δm_{B_d}. Contrarily, in scenario II we can figure out the parameter space in which the CA can be enhanced to the value observed by DØ with the constraint of Δm_{B_s} due to the enhancement of Γ_{12}^s. In the parameter space we obtained, the correlation between $\Delta \Gamma^s$ and ϕ_s is consistent with the current CDF and DØ results.

* E-mail: physchen@mail.ncku.edu.tw
† E-mail: cskim@yonsei.ac.kr,
‡ E-mail:lirh@cskim.yonsei.ac.kr
DØ Collaboration of Tevatron recently observed the like-sign charge asymmetry (CA), defined as

\[A^b_{s\ell} = \frac{N_b^{++} - N_b^-}{N_b^{++} + N_b^-} \]

(1)

with \(N_b^{++} (-) \) being the number of events that \(b^- \) and \(\bar{b}^- \) hadrons semileptonically decay into two positive (negative) muons. The measured value in the dimuon events is

\[A^b_{s\ell} = [-9.57 \pm 2.51 \text{(stat)} \pm 1.46 \text{(syst)}] \times 10^{-3}. \]

(2)

Surprisingly, the observation is about 3.2 \(\sigma \) away from the SM prediction [1, 2] of

\[A^b_{s\ell}(\text{SM}) = [-2.3^{+0.5}_{-0.6}] \times 10^{-4}. \]

Since the CA is directly related to CP violation (CPV) in \(B_{d,s} \)-meson oscillations and associated with dispersive (\(M_{12}^q \)) and absorptive (\(\Gamma_{12}^q \)) parts of \(B_q \leftrightarrow \bar{B}_q \) transition, the large deviations from the SM could be ascribed to new CP phases in \(b \rightarrow d \) and \(b \rightarrow s \) transitions [3–33].

Inspired by the anomalous CA, we study the contributions of scale or conformal invariant stuff, which is known as unparticle [34, 35]. The unique character of unparticle is its peculiar phase appearing in the off-shell propagator with positive squared transfer momentum [34–37]. Due to CP invariance, the imaginary part of the phase factor leads to the absorptive effect of a process. In the case of \(B_q - \bar{B}_q \) mixing, not only can the \(M_{12}^q \) but also \(\Gamma_{12}^q \) be affected [27, 37, 38]. It is interesting to investigate whether the influence of unparticle on \(M_{12}^q \) and \(\Gamma_{12}^q \) could enhance the phase \(\phi_q = arg(-M_{12}^q/\Gamma_{12}^q) \) which is directly related to the CA. In order to make the production of scale invariant stuff be efficient at Large Hadron Collider (LHC), we investigate the unparticle that carries the color charges of \(SU(3)_c \) symmetry [39].

To understand the like-sign CA, we start with discussing the relevant phenomena. With strong interaction eigenbasis, the Hamiltonian for unstable \(\bar{B}_q \) and \(B_q \) states is written as

\[H = M^q - i \frac{\Gamma^q}{2}, \]

(3)

where \(\Gamma^q(M^q) \) denotes the absorptive (dispersive) part of the \(B_q \leftrightarrow \bar{B}_q \) transition. Accordingly, the time-dependent wrong-sign CA in semileptonic \(B_q \) decays is defined and given [40].
by

\[a^{q}_{st} = \frac{\Gamma(B_q(t) \rightarrow \ell^+X) - \Gamma(B_q(t) \rightarrow \ell^-X)}{\Gamma(B_q(t) \rightarrow \ell^+X) + \Gamma(B_q(t) \rightarrow \ell^-X)}, \]

\[\approx Im \left(\frac{\Gamma_{12}}{M_{12}^q} \right). \] (4)

Here, the assumption \(\Gamma_{12}^q \ll M_{12}^q \) in the \(B_q \) system has been used. Intriguingly, \(a^{q}_{st} \) indeed is not a time dependent quantity. The SM predictions \[2\] are

\[a^{d}_{st}(\text{SM}) = (-4.8^{+1.0}_{-1.2}) \times 10^{-4}, \quad a^{s}_{st}(\text{SM}) = (2.06 \pm 0.57) \times 10^{-5}, \]

while the current data \[41, 42\] are

\[a^{d}_{st}(\text{Exp}) = (-4.7 \pm 4.6) \times 10^{-3}, \quad a^{s}_{st}(\text{Exp}) = (-1.7 \pm 9.1) \times 10^{-3}. \]

The relation between the wrong and like-sign CAs is defined and expressed \[1, 43\] by

\[A^{b}_{st} = \frac{\Gamma(bb \rightarrow \ell^+\ell^+X) - \Gamma(bb \rightarrow \ell^-\ell^-X)}{\Gamma(bb \rightarrow \ell^+\ell^+X) + \Gamma(bb \rightarrow \ell^-\ell^-X)}, \]

\[= 0.506(43)a^{d}_{st} + 0.494(43)a^{s}_{st}. \] (5)

Clearly, the like-sign CA is associated with the wrong-sign CAs of \(B_d \) and \(B_s \) systems. Since the direct measurements of \(a^{d}_{st} \) and \(a^{s}_{st} \) are still quite uncertain, either \(b \to d \) or \(b \to s \) transition or both could be the source of unexpected large \(A^{b}_{st} \).

In order to explore the new physics effects, we write the transition matrix elements as \(M_{12}^q = M_{12}^{q,\text{SM}} + M_{12}^{q,\text{NP}} \) and \(\Gamma_{12}^q = \Gamma_{12}^{q,\text{SM}} + \Gamma_{12}^{q,\text{NP}} \) and parameterize them as

\[M_{12}^q = M_{12}^{q,\text{SM}} \Delta^M_q e^{i\phi^M_q}, \]

\[\Gamma_{12}^q = \Gamma_{12}^{q,\text{SM}} \Delta^\Gamma_q e^{i\gamma^\Gamma_q} \] (6)

with

\[M_{12}^{q,\text{SM[NP]} } = \left| M_{12}^{q,\text{SM[NP]} } \right| e^{i2\beta^q_q [\theta^\text{NP}_q]}, \quad \Gamma_{12}^{q,\text{SM[NP]} } = \left| \Gamma_{12}^{q,\text{SM[NP]} } \right| e^{i\gamma^\text{SM[NP]}_q}, \]

\[\Delta^M_q = \left| 1 + r^M_q e^{i2(\theta^\text{NP}_q - \beta_q)} \right|, \quad r^M_q = \left| \frac{M_{12}^{q,\text{NP}} }{M_{12}^{q,\text{SM}} } \right|, \]

\[\Delta^\Gamma_q = \left| 1 + r^\Gamma_q e^{i(\gamma^\text{NP}_q - \gamma^\text{SM}_q)} \right|, \quad r^\Gamma_q = \left| \frac{\Gamma_{12}^{q,\text{NP}} }{\Gamma_{12}^{q,\text{SM}} } \right|, \]

\[\tan \phi^M_q = \frac{r^M_q \sin(2(\theta^\text{NP}_q - \beta_q))}{1 + r^M_q \cos(2(\theta^\text{NP}_q - \beta_q))}, \quad \tan \gamma^\Gamma_q = \frac{r^\Gamma_q \sin(\gamma^\text{NP}_q - \gamma^\text{SM}_q)}{1 - r^\Gamma_q \cos(\gamma^\text{NP}_q - \gamma^\text{SM}_q)}. \] (7)
The phases appearing above stand for weak CP violating phases. We note that although \(\bar{\beta}_q\) is not a conventional notation for the CP phase of the SM denoted by \(\beta_q\), their relationship could be read by \(\bar{\beta}_d = \beta_d\) and \(\bar{\beta}_s = -\beta_s\). Using \(\phi_q = \text{arg}(-M_{12}^q/\Gamma_{12}^q)\), the wrong-sign CA in Eq. (4) with new physics effects on \(\Gamma_{12}^q\) and \(M_{12}^q\) could be given as

\[
\rho_{st}^q = \Delta \frac{\Gamma}{\Delta M} \frac{\sin \phi_q}{\sin \phi_{q}^{\text{SM}}} a_{st}^{\text{SM}}(\text{SM})
\]

with \(\phi_{q}^{\text{SM}} = 2\beta_q - \gamma_{q}^{\text{SM}}\) and \(\phi_q = \phi_{q}^{\text{SM}} + \phi_{q}^{\Delta} - \gamma_{q}^{\Delta}\). Furthermore, the mass and rate differences between heavy and light \(B\) mesons could be expressed by

\[
\Delta m_{B_q} = 2|M_{12}^q|,
\]
\[
\Delta \Gamma^q = \Gamma_L - \Gamma_H = 2|\Gamma_{12}^q| \cos \phi_q.
\]

Another type of the time-dependent CP asymmetry (CPA) is associated with the definite CP in the final state, defined by [40]

\[
A_{\text{FCP}}(t) \equiv \frac{\Gamma(B_q(t) \rightarrow f_{CP}) - \Gamma(B_q(t) \rightarrow f_{CP})}{\Gamma(B_q(t) \rightarrow f_{CP}) + \Gamma(B_q(t) \rightarrow f_{CP})},
\]
\[
= S_{f_{CP}} \sin \Delta m_{B_q} t - C_{f_{CP}} \cos \Delta m_{B_q} t,
\]
\[
S_{f_{CP}} = \frac{2Im \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2}, \quad C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}
\]

with

\[
\lambda_{f_{CP}} = \left(\frac{M_{12}^{B_q^{*}}}{M_{12}^{B_q}} \right)^{1/2} \frac{A(B \rightarrow f_{CP})}{A(B \rightarrow f_{CP})},
\]

where \(f_{CP}\) denotes the final CP eigenstate, \(S_{f_{CP}}\) and \(C_{f_{CP}}\) are the so-called mixing-induced and direct CPAs, respectively. Clearly, beside the phases in the \(\Delta B = 2\) processes, the mixing-induced CPA is also related to the phase in the \(\Delta B = 1\) process. Nevertheless, since the new effects on the decays \(B_d \rightarrow J/\Psi K_S\) and \(B_s \rightarrow J/\Psi \phi\) are small, the CPAs could be simplified as

\[
S_{J/\Psi K_S} \equiv \sin 2\beta_{J/\Psi K_S} \approx \sin(2\bar{\beta}_d + \phi_{d}^{\Delta}),
\]
\[
S_{J/\Psi \phi} \equiv \sin 2\beta_{J/\Psi \phi} \approx \sin(2\bar{\beta}_s + \phi_{s}^{\Delta}).
\]

After introducing the relevant physical observables, we begin studying the effects of colored scalar unparticle. Since there is no well established approach to give a full theory for unparticle interactions, we study the topic from the phenomenological viewpoint. In order
to avoid fine-tuning the parameters for flavor changing neutral currents (FCNCs) at tree level, we assume that the unparticle only couples to the third generation of quarks before electroweak symmetry breaking. Hence, the interactions obeying the SM gauge symmetry are expressed by

$$\frac{1}{\Lambda^d_U} \left[\lambda_R q_R^T \gamma^\mu T^a q_R^\mu O^a_U + \lambda_L \bar{Q}_L \gamma^\mu T^a Q_L^\mu O^a_U \right],$$

(13)

where $\lambda_{R,L}$ are dimensionless free parameters, $q_R^i = t_R, b_R, Q_T^L = (t, b)$, $\{T^a\} = \{\lambda^a/2\}$ are the SU(3)$_c$ generators (where λ^a are the Gell-Mann matrices) normalized by $tr(T^aT^b) = \delta^{ab}/2$, Λ_U is the scale below which the unparticle is formed. The power d_U is determined from the effective interaction of Eq. (13) in four-dimensional space-time when the dimension of the colored unparticle O^a_U is taken as d_U. Since we only concentrate on the phenomena of down type quarks, the associated pieces are formulated by

$$\bar{D} \gamma^\mu (X_R P_R + X_L P_L) T^a D^\mu O^a_U,$$

(14)

in which $D^T = (d, s, b)$, $X_{R(L)}$ is a 3×3 diagonal matrix and $\text{diag}(X_{R(L)}) = (0, 0, \lambda_{R(L)}/\Lambda^d_U)$. After spontaneous symmetry breaking of electroweak symmetry, we need to introduce two unitary matrices $U_{D_L}^{R,L}$ to diagonalize the mass matrix of down type quarks. In terms of physical eigenstates and using the equations of motion, the interactions for $b - q - O^a_U$ could be written as

$$\mathcal{L}_{bq} O^a_U = \frac{m_b}{\Lambda^d_U} \bar{q} \left(f_{qb}^R P_L + f_{qb}^L P_R \right) T^a b O^a_U + h.c.,$$

(15)

where $q = d, s$, the mass of light quark has been neglected and $f_{qb}^\chi = \lambda_{\chi}(U^\chi_D)_{qb}(U^\chi_D)^{*}_{bb}$ with $\chi = R, L$.

By following the scheme shown in Ref. [44], the propagator of the colored scalar unparticle is written as

$$\int d^4x e^{-ik\cdot x} \langle 0 | T O^a(x) O^b(0) | 0 \rangle = i \frac{C_S \delta^{ab}}{(-k^2 - i\epsilon)^{2-d_U}}$$

(16)

with

$$C_S = \frac{A_{d_U}}{2 \sin d_U \pi},$$

$$A_{d_U} = \frac{16\pi^{5/2}}{(2\pi)^{2d_U}} \frac{\Gamma(d_U + 1/2)}{\Gamma(d_U - 1)\Gamma(2d_U)}.$$

(17)
Combining Eqs. (15) and (16), the four fermion interaction for B_q oscillation is given by

$$H = \frac{C_S}{2m_b^2} \left(\frac{m_b^2}{\Lambda_U^2} \right)^{d_U} f_{qb}^2 e^{-i d_U \pi} (q T^a b)^2.$$ \hspace{1cm} (18)

For estimating the transition matrix elements, we employ the vacuum insertion method and the results are

$$\langle \bar{B}_q | \bar{q} P_{R(L)b} q P_{R(L)} b | B_q \rangle \approx -\frac{5}{24} m_{B_q} f_{B_q}^2,$$

$$\langle B_q | q P_{R(L)b} \bar{q} P_{R(L)} b | B_q \rangle \approx \frac{7}{24} m_{B_q} f_{B_q}^2,$$

$$\langle \bar{B}_q | \bar{q}_\alpha P_{R(L)b} \bar{q}_\beta P_{R(L)b} | B_q \rangle \approx \frac{1}{24} m_{B_q} f_{B_q}^2,$$

$$\langle B_q | \bar{q}_\alpha P_{R(L)b} \bar{q}_\beta P_{R(L)b} | B_q \rangle \approx \frac{5}{24} m_{B_q} f_{B_q}^2$$ \hspace{1cm} (19)

where the approximation $m_b \sim m_{B_q}$ is used and f_{B_q} is the decay constant of B_q meson. As a consequence, the dispersive and absorptive parts of $\bar{B}_q \leftrightarrow B_q$ in the unparticle physics are found by

$$H_U^{12} = M_{12}^{q,U} - i \frac{\Gamma_{12}^{q,U}}{2},$$

where

$$M_{12}^{q,U} = \cos(d_U \pi) h_U^q, \hspace{1cm} \Gamma_{12}^{q,U} = 2 \sin(d_U \pi) h_U^q,$$ \hspace{1cm} (20)

with

$$h_U^q = \frac{C_S}{18} (f_{Rb} + f_{Lb})^2 \left(\frac{m_{B_q}^2}{\Lambda_U^2} \right)^{d_U} \frac{f_{B_q}^2}{m_{B_q}}.$$ \hspace{1cm} (21)

For comparison, we also summarize the formulae of the SM as follows [40]:

$$M_{12}^{q,SM} = \frac{G_F^2 m_W^2}{12\pi^2} \eta_B m_{B_q} f_{B_q}^2 \hat{B}_q (V_{hq} V_{lb})^2 S_0(x_t),$$

$$\Gamma_{12}^{q,SM} \approx \frac{3\pi}{2} \left(\frac{m_b}{m_W} \right)^2 \frac{M_{12}^{q,SM}}{S_0(x_t)} \left[1 + \frac{V_{cq} V_{cb}}{V_{hq} V_{lb}} O(m_c^2/m_b^2) \right]$$ \hspace{1cm} (22)

with $S_0(x_t) = 0.784 x_t^{0.76}$, $x_t = (m_t/m_W)^2$ and $\eta_B \approx 0.55$ is the QCD correction to $S_0(x_t)$.

In the considering model, in addition to the scale dimension d_U, the couplings $\lambda_{R,L}$ and the scale Λ_U that are associated with unparticle, the flavor mixing elements ($U_D^{\chi} \phi_b(U_D^{\chi})_{bb}$ in f_{qb}^χ are also free parameters. Following the Cabibbo-Kobayashi-Maskawa (CKM) matrix defined by $V = U^L_D U^L_D$, indeed $(U_D^L)_{qb} = V_{tb}^{*}$ when we choose the convention $U^R_U = 1$. If we take the CKM matrix as inputs, then the right-handed flavor mixing element $(U^R_D)_{qb}$ is the
TABLE I: Experimental data and numerical inputs for the parameters in the SM.

Parameter	Input
V_{td}	$8.51(22) \times 10^{-3}$
$\bar{\beta}_d$	0.384 ± 0.014
V_{ts}	$-4.07(22) \times 10^{-2}$
$\bar{\beta}_s$	-0.018 ± 0.001

Parameter	Input
$f_{B_d} \sqrt{B_d}$	$(216 \pm 15) \text{ MeV}$
$f_{B_s} \sqrt{B_s}$	$(266 \pm 18) \text{ MeV}$
f_{B_d}	$190 \pm 13 \text{ MeV}$
f_{B_s}	$231 \pm 15 \text{ MeV}$

Parameter	Input
$(\Delta m_{B_d})^{\text{Exp}}$	$0.507 \pm 0.005 \text{ ps}^{-1}$
$(\Delta m_{B_s})^{\text{Exp}}$	$17.77 \pm 0.12 \text{ ps}^{-1}$
ϕ_d^{SM}	$-0.091^{+0.026}_{-0.038}$
ϕ_s^{SM}	$(4.2 \pm 1.4) \times 10^{-3}$

only free parameter. Therefore, to illustrate the peculiar properties of unparticle, we study two scenarios for $\lambda_{R,L}$ and U_D^R: (I) $\lambda_R = \lambda_L = \lambda_U$ and $U_D^R = U_D^L = V^\dagger$ (i.e. $f_{q_b} = f_{q_b}^L$); (II) $\lambda_L \ll \lambda_R$ and U_D^R is unknown (i.e. $f_{q_b}^L \ll f_{q_b}^R$). In scenario I, the couplings of unparticle to fermions are vector-like. In scenario II, since the behavior of left-handed couplings is similar to the scenario I, for illustrating the influence of right-handed couplings we set $\lambda_L \ll \lambda_R$. For simplicity, in the numerical estimates we take $\Lambda_U = 1 \text{ TeV}$.

For numerical calculations and constraints, we list the useful values in Table II where the relevant CKM matrix element $V_{tq} = \bar{V}_{tq} \exp(-i\bar{\beta}_q)$ is obtained from the UTfit Collaboration [45], the decay constant of B_q is referred to the result given by the HPQCD Collaboration [46] and the value of ϕ_q^{SM} is from Ref. [2]. The CDF and DØ average values of $\Delta \Gamma_s = [-0.163, 0.163]$ and $\phi_s = [-1.35, -0.20] \cup [-2.94, -1.77]$ with 90% confidence level (CL) are from Ref. [41]. Other inputs are quoted from the particle data group (PDG) [40].

As a result, we obtain $|M_{12}^{d,\text{SM}}| = 0.253 \text{ ps}^{-1}$, $|M_{12}^{s,\text{SM}}| = 8.90 \text{ ps}^{-1}$. In addition, according to the results in Ref. [2], we also know $\Gamma_{12}^{d,\text{SM}} \approx -1.3 \times 10^{-3} \exp[i(2\beta_d - \phi_d^{\text{SM}})] \text{ ps}^{-1}$ and $\Gamma_{12}^{s,\text{SM}} \approx -0.048 \exp[i(2\beta_s - \phi_s^{\text{SM}})] \text{ ps}^{-1}$.

We first discuss the situation in scenario I, i.e. the case with $f_{q_b}^R = f_{q_b}^L$. Due to $U_{q_b}^R = U_{q_b}^L = V_{tq}^s$, the CP phase for $b \to q$ transition in unparticle exchange is the same as that in the SM. Therefore, the influence of unparticle on CPAs of $b \to s$ transition is small and insignificant. Because λ_U and d_U are only the free parameters, it is interesting to see if the unparticle could have a large effect on the wrong-sign CA. At first, we only consider the constraint from the time-dependent CPA of B_d which is formulated in Eqs. (10) and (12) and measured with $S_{J/\psi K_S} = 0.655 \pm 0.0244$ [41]. Taking the data of $S_{J/\psi K_S}$ with 2σ errors as the constraint, we find that $A_{st}^b < -10 \times 10^{-4}$ could be archived. The allowed region
for λ_U and d_U is shown in Fig. 1(a). Unfortunately, the enhancement on the magnitude of A_{sl}^b is suppressed when we include the constraint from the measurement of Δm_{B_d}. Taking the $(\Delta m_{B_d})^{\text{Exp}}$ with 2σ errors as the constraint, we find that the resulted like-sign CA is close to the SM prediction. The allowed region of the parameters constrained by Δm_{B_d} are presented in Fig. 1(b), where the available range for like-sign CA is $-2.5 < A_{sl}^b 10^4 < -2.3$. We see clearly that if the CP violating source is SM-like, by the strong constraint of Δm_{B_d}, the wrong- and like-sign CA cannot be changed significantly.

Next, we study the phenomena in scenario II. As stated early, the effects of left-handed coupling are similar to the case of scenario I, in order to display the peculiar property of unparticle, we set $\lambda_L \ll \lambda_R$ so that $f_{qb}^L \ll f_{qb}^R$. Additionally, since Δm_{B_d} and $S_{J/\Psi K_S}$ will give a strong constraint on the parameters for $b \to d$ transition [8], here we only concentrate on the phenomena associated with $b \to s$ transition. Due to λ_R and U_R^b being unknown, we use complex f_{sb}^R as the variable. In order to simplify the analysis, we will choose some specific values for $|f_{sb}^R|$ and vary the phase $\theta_U = \arg(f_{sb}^R)$ within $[0, \pi]$. The results of $[-\pi, 0]$ are expected to be similar to those in $[0, \pi]$. Consequently, with 2σ errors of $(\Delta m_{B_s})^{\text{Exp}}$, we display the constraint on θ_U and d_U in Fig. 2 where the figure (a)-(d) respectively corresponds to $|f_{sb}^R| = (4, 8, 12, 16) \times 10^{-6}$ and the scatters represent the bound given by Δm_{B_s}. In terms of Eqs. 5 and 8, we plot $-100 \leq A_{sd}^b 10^4 \leq -10$ which is induced by the unparticle in Fig. 2. We find that with $|f_{sb}^R| = 4 \times 10^{-6}$, the enhanced like-sign CA could occur at $1 < d_U < 1.1$ with $2.2 < \theta_U < 2.4$ and a wider region around $d_U \sim 3/2$ with
θ_U ∼ 1.6. For |f_{sb}^{R}| = 8 \times 10^{-6}, only d_U ∼ 1 with θ_U ∼ 2.2 and d_U ∼ 3/2 with θ_U ∼ 1.6 can have large −A_{sℓ}^b. As to other values of |f_{sb}^{R}|, they only happen at d_U ∼ 3/2 and θ_U ∼ 1.6.

Similarly, we can use the same approach to study the influence of unparticle on the time-dependent CPA of Eq. (12). Taking the data \(\phi_s = [-1.35, -0.20] \cup [-2.94, -1.77] \), i.e. \(-1 < S_{J/\Psi} < -0.2 \), we display the contour of \(S_{J/\Psi} \) as a function of \(d_U \) and \(\theta_U \) in Fig. 3 where figure (a)-(d) corresponds to \(|f_{sb}^{R}| = (4, 8, 12, 16) \times 10^{-6} \) respectively, the scatters stand

FIG. 2: (a)-(d) bound of \(\Delta m_{B_s} \) (scatters) and \(-100 \leq A_{sℓ}^b 10^4 \leq -10 \) (solid) for \(|f_{sb}^{R}| = (4, 8, 12, 16) \times 10^{-6} \), respectively.

FIG. 3: The Legend is the same as that in Fig. 2 but for \(-1 < S_{J/\Psi} < -0.2 \) (dashed).
FIG. 4: (a) [(b)] Correlation of $\Delta \Gamma^s$ with ϕ_s for $f_{sb}^R = 4[8] \times 10^{-6}$, where the constraint of $(\Delta m_{B_s})_{\text{Exp}}$ with 2σ errors is included and $-100 < A_{s\ell}^b 10^4 < -10$ has been archived.

for the constraint of Δm_{B_s} and the dashed lines denote $-1 < S_{J/\Psi\phi} < -0.2$. By comparing Fig. 3 with Fig. 2, we find that large $-A_{s\ell}^b$ and $-S_{J/\Psi\phi}$ induced by the unparticle exchange cannot exist simultaneously. It is interesting if the peculiar results could be confirmed in the Super B factories, Tevatron and LHCb. Then, we would have more strong evidence to believe the existence of scale invariant stuff.

Beside the like-sign CA, $A_{s\ell}^b$, and time-dependent CPA, $S_{J/\Psi\phi}$, it is also important to study the correlation of $\Delta \Gamma^s$ with ϕ_s defined in Eq. (9). Thus, in terms of Eqs. (6), (9) and the definition $\phi_s = \text{arg}(-M_{12}^s/\Gamma_{12}^s)$, the correlation between $\Delta \Gamma^s$ and ϕ_s resulted by the allowed values of d_U and θ_U that satisfy $(\Delta m_{B_s})_{\text{Exp}}$ with 2σ errors and $-100 < A_{s\ell}^b 10^4 < -10$ is presented in Fig. 4 in which the bands in the figure denote the data. We see that only the cases of $|f_{sb}^R| = (4, 8) \times 10^{-6}$ can be consistent with the current data of $\Delta \Gamma^s$ and ϕ_s when the bound of Δm_{B_s} is included and large $-A_{s\ell}^b$ is archived. By the figure, we learn that the smaller $|f_{sb}^R|$ owns a wider range of ϕ_s. This behavior could be understood from Fig. 2(a) and (b) where the available d_U in the former is much wider than that in the latter.

In summary, we have studied the peculiar phase of unparticle on M_{12}^q and Γ_{12}^q. In order to produce the unparticle efficiently at the LHC, we investigated the colored unparticle on the like-sign CA and time-dependent CPA with two scenarios of the free parameters chosen. In the scenario I, in which the involved CP phase is the same as that in the SM, the like-sign CA could be enhanced largely with the constraint of $S_{J/\Psi K_s}$ only. However, the CA
becomes suppressed when the constraint of Δm_{B_d} is taken into account. In the scenario II where the new CP phase is from the right-handed flavor mixing matrix, we find that $A_{s\ell}^b$ could be enhanced to the value observed by DØ, whereas the corresponding time-dependent CP cannot be enhanced to the range of current data. Additionally, the correlation between $\Delta \Gamma_s$ and ϕ_s could be consistent with current CDF and DØ results while the constraint of Δm_{B_s} is taken into account and $-100 < A_{s\ell}^b 10^4 < -10$ is archived.

Acknowledgments

C.H.C was supported in part by the National Science Council of R.O.C. under Grant No. NSC-97-2112-M-006-001-MY3. The work of C.S.K. was supported in part by the Basic Science Research Program through the NRF of Korea funded by MOEST (2009-0088395) and in part by KOSEF through the Joint Research Program (F01-2009-000-10031-0). The work of R.H.L. was supported by Brain Korea 21 Project.
[10] Z. Ligeti, M. Papucci, G. Perez and J. Zupan, Phys. Rev. Lett. 105, 131601 (2010) [arXiv:1006.0432 [hep-ph]].
[11] C. W. Bauer and N. D. Dunn, arXiv:1006.1629 [hep-ph].
[12] N. G. Deshpande, X. G. He and G. Valencia, Phys. Rev. D 82, 056013 (2010) [arXiv:1006.1682 [hep-ph]].
[13] D. Choudhury and D. K. Ghosh, arXiv:1006.2171 [hep-ph].
[14] M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, Phys. Rev. D 79, 113006 (2009) [arXiv:0902.4883 [hep-ph]]; O. Eberhardt, A. Lenz and J. Rohrwild, arXiv:1005.3505 [hep-ph].
[15] G. Buchalla, G. Hiller and G. Isidori, Phys. Rev. D 63, 014015 (2000) [arXiv:hep-ph/0006136]; C. Bobeth, G. Hiller and G. Piranishvili, JHEP 0807, 106 (2008) [arXiv:0805.2525 [hep-ph]]; C. Bobeth, G. Hiller and D. van Dyk, JHEP 1007, 098 (2010) [arXiv:1006.5013 [hep-ph]].
[16] W. Altmannshofer, A. J. Buras, S. Gori, P. Paradisi and D. M. Straub, Nucl. Phys. B 830, 17 (2010) [arXiv:0909.1333 [hep-ph]].
[17] J. K. Parry, arXiv:1006.5331 [hep-ph].
[18] P. Ko and J. h. Park, arXiv:1006.5821 [hep-ph].
[19] S. F. King, JHEP 1009, 114 (2010) [arXiv:1006.5895 [hep-ph]].
[20] C. Delaunay, O. Gedalia, S. J. Lee, G. Perez and E. Ponton, arXiv:1007.0243 [hep-ph].
[21] Y. Bai and A. E. Nelson, arXiv:1007.0596 [hep-ph].
[22] J. Kubo and A. Lenz, Phys. Rev. D 82, 075001 (2010) [arXiv:1007.0680 [hep-ph]].
[23] K. Blum, Y. Hochberg and Y. Nir, JHEP 1009, 035 (2010) [arXiv:1007.1872 [hep-ph]].
[24] R. M. Wang, Y. G. Xu, M. L. Liu and B. Z. Li, arXiv:1007.2944 [hep-ph].
[25] B. Dutta, Y. Mimura and Y. Santoso, Phys. Rev. D 82, 055017 (2010) [arXiv:1007.3696 [hep-ph]].
[26] S. Oh and J. Tandean, arXiv:1008.2153 [hep-ph].
[27] X. G. He, B. Ren and P. C. Xie, arXiv:1009.3398 [hep-ph].
[28] S. C. Park, J. Shu, K. Wang and T. T. Yanagida, arXiv:1008.4445 [hep-ph].
[29] W. Chao and Y. c. Zhang, arXiv:1008.5277 [hep-ph].
[30] A. K. Alok, S. Baek and D. London, arXiv:1010.1333 [hep-ph].
[31] J. E. Kim, M. S. Seo and S. Shin, arXiv:1010.5123 [hep-ph].
[32] J. P. Lee and K. Y. Lee, arXiv:1010.6132 [hep-ph].
[33] A. Datta, M. Duraisamy and S. Khalil, arXiv:1011.5979 [hep-ph].
[34] H. Georgi, Phys. Rev. Lett. 98, 221601 (2007) arXiv:hep-ph/0703260.
[35] H. Georgi, Phys. Lett. B 650, 275 (2007) arXiv:0704.2457 [hep-ph].
[36] K. Cheung, W. Y. Keung and T. C. Yuan, Phys. Rev. Lett. 99, 051803 (2007) arXiv:0704.2588 [hep-ph].
[37] C. H. Chen and C. Q. Geng, Phys. Rev. D 76, 115003 (2007) arXiv:0705.0689 [hep-ph]; ibid 76, 036007 (2007) arXiv:0706.0850 [hep-ph]; Phys. Lett. B 661, 118 (2008) arXiv:0709.0235 [hep-ph]; C. H. Chen, C. S. Kim and Y. W. Yoon, Phys. Lett. B 671, 250 (2009) arXiv:0801.0895 [hep-ph]; C. H. Chen and C. S. Kim, Phys. Lett. B 687, 232 (2010) arXiv:0909.1878 [hep-ph]; C. H. Chen, G. Cvetic and C. S. Kim, arXiv:1009.4165 [hep-ph].
[38] A. Lenz, Phys. Rev. D 76, 065006 (2007) arXiv:0707.1535 [hep-ph].
[39] G. Cacciapaglia, G. Marandella and J. Terning, JHEP 0801, 070 (2008) arXiv:0708.0005 [hep-ph].
[40] C. Amsler et al. [Particle Data Group], Phys. Lett. B667, 1 (2008).
[41] The Heavy Flavor Averaging Group et al., arXiv:1010.1589 [hep-ex].
[42] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. D 82, 012003 (2010) arXiv:0904.3907 [hep-ex].
[43] Y. Grossman, Y. Nir and G. Raz, Phys. Rev. Lett. 97, 151801 (2006) arXiv:hep-ph/0605028.
[44] B. Grinstein, K. A. Intriligator and I. Z. Rothstein, Phys. Lett. B 662, 367 (2008) arXiv:0801.1140 [hep-ph].
[45] M. Bona et al., arXiv:0906.0953 [hep-ph].
[46] E. Gamiz, C. T. H. Davies, G. P. Lepage, J. Shigemitsu and M. Wingate [HPQCD Collaboration], Phys. Rev. D 80, 014503 (2009) arXiv:0902.1815 [hep-lat].