Assessment of Antioxidant and Antimicrobial Activities of Silver Nanoparticles Biosynthesized by *Haplophyllum Obtusifolium*

Mohammad Reza Rezaei¹, Ali Es-haghi²*, Parichehreh Yaghmaei¹, Maryam Ghobeh¹

¹Department of Biology, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran.
²Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Corresponding author: Ali Es-haghi, PhD, Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran. Email: ashaghi@gmail.com

Abstract

Background: Plants comprise great antioxidant sources as a result of their redox and biochemical components, which are rich in secondary metabolites such as phenolic acids, flavonoids, and other constituents. *Haplophyllum obtusifolium* from polygonaceae is widely used for preventing and managing diabetes. This study investigated the antibacterial and antioxidant activities of silver nanoparticles (AgNPs) biosynthesized by *H. obtusifolium*.

Methods: The aerial parts of *H. obtusifolium* were gathered from the north of Khorasan Razavi province, Iran and desiccated at the chamber temperature. The shoots were powdered by grinding, 5 g of the powder was mixed with 250 mL of deionized water, and the resultant blend was then filtered. Bactericidal properties and antioxidant activity of the nanoparticles were assessed using disk diffusion and DPPH (2, 2-diphenyl-1-picrylhydrazyl) tests, respectively.

Results: The results of this study showed that the biosynthesized nanoparticles exhibited antibacterial activity against a gram-negative (*Klebsiella pneumoniae*) bacterium, but they had no effects on gram-positive *Staphylococcus epidermidis*. Antioxidant test results showed that these nanoparticles were capable of eliminating DPPH radicals in a concentration-dependent manner so that a more potent antioxidant activity was seen in higher concentrations of the nanoparticles.

Conclusion: Our results suggested that *H. obtusifolium* can be used as a key source of antioxidants/antimicrobial agents in food and pharmaceutical industries.

Keyword: Haplophyllum, Antimicrobial, Antioxidant, Silver nanoparticle.
aqueous extract. Next, 10 mL of the aqueous extract was mixed with silver nitrate and stirred for 24 hours (27). A change of color into dark brown verified the synthesis of nanoparticles and the conversion of Ag⁺ to Ag⁰ (28).

Antibacterial Activity of the Plant Extract and Biosynthesized AgNPs

Bacterial samples were obtained from the Ghaem hospital of Mashhad, Iran. Antibacterial tests were performed on *Klebsiella pneumoniae* and *Staphylococcus epidermidis* by the agar diffusion manner (5). Initially, cultures were spread on agar plates to cultivate bacteria. Sterilized discs with 5 mm thickness were drenched with the extract, the biosynthesized nanoparticles, and deionized water, and kept at 37°C. Streptomycin and gentamicin were used as positive controls in this experiment (29). Antibacterial activity was clarified based on the inhibition zone nearby the disc.

Antioxidant Activity

The antioxidant activity of the AgNPs was assessed by DPPH (2, 2-diphenyl-1-picrylhydrazyl) test (30). In brief, DPPH solution (23 mg ml⁻¹) was prepared, and its absorbance was measured at 517 nm. BHA (butylhydroxyanisole) was used as a positive control. The experiment for all samples was performed in triplicate.

Results and Discussion

Antibacterial Activity

The shape of the synthesized nanoparticles was spherical, and their mean diameter was 13 nm (Figure 1) (28). Polydispersity index values for nanoparticles were 0.28. Zeta potential analysis indicated that the biosynthesized nanoparticles had a net charge of -20.67 ± 5.62 mV. The zeta-potential of NPs greater than +30 mV or less than -30 mV indicated the stability of nanoparticles (31).

The antibacterial properties of the AgNPs were studied by the agar diffusion method. The inhibition zones observed around the disks containing AgNPs indicated that the antibacterial properties of AgNPs were prominent (Figure 2). While AgNPs displayed anti-bactericidal activity against gram-negative *K. pneumoniae*, this was not observed against gram-positive *S. epidermidis*. Hamidi et al used *Tribulus* extract to synthesize AgNPs, and showed that the biosynthesized nanoparticles could kill bacterial cells via interacting with their membranes and releasing silver ions into the cytoplasm, a phenomenon which was attributed to the small size of approximately 25 nm of the nanoparticles (32). In another study by Taghavizadeh Yazdi et al, AgNPs were fabricated with an approximate size of 11 nm using *Helichrysum* extract, which were effective against various species of pathogenic bacteria (5). The capability of AgNPs in preventing bacterial cell growth can be in part related to their small size and large surface area, providing adequate contact interface with bacteria (27,32-34). It has been stated that bacteria death could be due to the great leakage of their macromolecules (35). The inhibition zones observed in this study have been shown in Table 1.

Antioxidant Activity

Because of their usages in medicine, nutrition, and as

Bacteria	Inhibition Zone (mm)			
	Extract	Nanoparticles	Streptomycin	Gentamicin
S. epidermidis	0	0	4.1	11.3
K. pneumoniae	0	3.9	9.7	13.2

Table 1. Inhibition Zones of *Haplophyllum obtusifolium* Extract and Biosynthesized AgNPs Against Pathogenic Bacteria

Figure 1. TEM Image of Biosynthesized Silver Nanoparticles (Mean Diameter: 13 nm).
cosmetics, it is essential to determine the antioxidant activity of natural molecules. Plants are predisposed to diverse types of stresses, such as salinity, extreme temperatures, and radiation during their life cycle (36,37). Depending on the extent of environmental stresses, they can limit plant growth and development and result in the creation of ROS, such as OH•, O2•, and H2O2. These radical species extensively damage cells by promoting the peroxidation of lipids, proteins, and DNA (38,39). Antioxidant particles and molecules are responsible for scavenging ROS within cells. DPPH radical dot analysis is normally used for calculating free radical scavenging potential and considered as one of routine and easy ways to assess the antioxidant activity of various compounds (40). In one study, the NPs synthesized by Coriander oleoresin extract exhibited significant dose-dependent antioxidant activity, as determined by the DPPH method (41). In another study, the AgNPs produced using Chlorella sp. and Nannochloropsis oculata extracts revealed significant antioxidant properties (42). Figure 3 compares the DPPH radical scavenging activity of AgNPs synthesized by green method via H. obtusifolium extract and that of BHA as a positive control. As indicated, these nanoparticles were able to eliminate DPPH radicals in a concentration-dependent manner, so that with growing in the concentration of the nanoparticles, their antioxidant activity became more potent.

Conclusion
We investigated the antibacterial and antioxidant properties of the AgNPs biosynthesized using the aqueous extract of H. obtusifolium. The prepared AgNPs displayed potent antibacterial activity against a pathogenic bacterium (i.e., K. pneumoniae) with an inhibition zone of 3.9 mm. As bacterial contamination can happen upon the proliferation of these organisms in the body and environment, causing many forms of infections and subsequently serious health threats and even death, AgNPs can be used as appropriate materials to manage infectious diseases and maintain humans’ health. Considering our results, the AgNPs biosynthesized in this study can be employed for removing microbial, and particularly bacterial, contamination.

Authors’ Contributions
MRR performed the experiments. Both PY and MG authors contributed to the final version of the manuscript. AE supervised the project.

Conflict of Interest Disclosures
None declared.

Ethical Issues
Not applicable.

Acknowledgements
The authors wish to thank Islamic Azad University of Mashhad, Iran for funding this research.

Funding
None.

References
1. Es-Haghi A, Javadi F, Taghavizadeh Yazdi ME, Amiri MS. The expression of antioxidant genes and cytotoxicity of biosynthesized cerium oxide nanoparticles against hepatic carcinoma cell line. Avicenna J Med Biochem. 2019;7(1):16-20. doi: 10.34172/ajmb.2019.04.
2. Javadi F, Taghavizadeh Yazdi ME, Baghani M, Es-Haghi A. Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Mater Res Express. 2019;6(6):065408. doi: 10.1088/2053-5336/ab361f.
3. Baghani M, Es-Haghi A. Characterization of silver nanoparticles biosynthesized using Amaranthus caudentus. Bioinspired Biomim Nanobiomaterials. 2020;9(3):129-36. doi: 10.1680/ jbibi.18.00051.
4. Shamasi Z, Es-Haghi A, Taghavizadeh Yazdi ME, Amiri MS, Homayouni-Tabarzi M. Role of Rubia tinctorum in the synthesis of zinc oxide nanoparticles and apoptosis induction in breast cancer cell line. Nanomed J. 2021;8(1):65-72. doi: 10.22038/ nmj.2021.08.07.
5. Taghavizadeh Yazdi ME, Amiri MS, Akbari S, Sharifalhoseini M, Nourbakhsh F, Mashreghi M, et al. Green synthesis of silver nanoparticles using Helichrysum graveolens for biomedical applications and wastewater treatment. BioNanoScience. 2020;10(4):1121-7. doi: 10.1007/s12668-020-00794-2.
6. Satriano C, Munzone A, Cucci LM, Giacomelli C, Trincavelli ML, MARTINI C, et al. Angiogenin-mimetic peptide functionalised gold nanoparticles for cancer therapy applications. Microchem J. 2018;136:157-63. doi: 10.1016/j.microc.2016.09.016.
7. Aseyd Nezhad S, Es-Haghi A, Homayouni-Tabarzi M. Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities. Appl Organomet Chem. 2020;34(2):e5314. doi: 10.1002/aoc.5314.
8. Taghavizadeh Yazdi ME, Khara J, Sadeghnia HR, Esmaeilzadeh Bahaladi S, Darroudi M. Biosynthesis, characterization, and antibacterial activity of silver nanoparticles using...
Antioxidant and Microbial Activity of Biosynthesized AgNPs

Avicenna J Med Biochem, Volume 8, Issue 2, 2020
Handbook. CRC Press; 2020.

Amiri MS, Joharchi MR, Taghavizadeh Yazdi ME. Ethnomedical plants used to cure jaundice by traditional healers of mashhad. Iran. Iran J Pharm Res. 2014;13(1):157-62.

Sajjadi SE, Batooli H, Ghanbari A. Collection, evaluation and ethnobotany of Kashan medicinal plants. Journal of Islamic and Iranian Traditional Medicine. 2011;2(1):29-36.

Taghavizadeh Yazdi ME, Darroudi M, Amiri MS, Hosseini HA, Nourbakhshe F, Mashreghi M, et al. Anticancer, antimicrobial, and dye degradation activity of biosynthesized silver nanoparticles using Artemisia kopetdaghi. Micro Nano Lett. 2020;15(4):1046-50. doi: 10.1049/mnl.2020.0387.

Rezaei MR, Es-haghi A, Yaghmaei P, Ghobeh M. Biological fabrication of Ag/Ag2O nanoparticles by Halophyllum obustulosum watery extract: characterisation and estimation of its biochemical activities. Micro Nano Lett. 2020;15(13):898-902. doi: 10.1049/mnl.2020.0269.

Taghavizadeh Yazdi ME, Modarres ME, Amiri MS, Darroudi M. Phyto-synthesis of silver nanoparticles using aerial extract of Salvia jerseylila Benth and evaluation of their antibacterial and photo-catalytic properties. Res Chem Intermed. 2019;45(5):1105-15. doi: 10.1007/s10616-018-3666-8.

Taghavizadeh Yazdi ME, Khara J, Housaindkht MR, Sadeghnia HR, Esmaeilzadeh Bahabadi S, Amiri MS, et al. Assessment of phytochemical components and antioxidant activity of Rheum turkestanicum Janisch. Studies in Medical Sciences. 2020;31(2):75-81.

Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, et al. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol. 2008;5:14. doi:10.1186/1743-8977-5-14.

Hamidi A, Taghavizadeh Yazdi ME, Amiri MS, Hosseini HA, Darroudi M. Biological synthesis of silver nanoparticles in Tribulus terrestris L. extract and evaluation of their photocatalyst, antibacterial, and cytotoxicity effects. Res Chem Intermed. 2019;45(5):2915-25. doi: 10.1007/s11164-019-03770-y.

Taghavizadeh Yazdi ME, Khara J, Housaindkht MR, Sadeghnia HR, Esmaeilzadeh Bahabadi S, Sadegh Amiri M, et al. Role of Ribes khorasanicum in the biosynthesis of AgNPs and their antibacterial properties. IET Nanobiotechnol. 2019;13(2):189-92. doi: 10.1049/iet-nbt.2018.5215.

Zarei M, Karimi E, Oskouiean E, Es-haghi A, Taghavizadeh Yazdi ME. Comparative study on the biological effects of sodium citrate-based and apigenin-based synthesized silver nanoparticles. Nutr Cancer. 2020;1-9. doi:10.1007/s11184-020-18078-0.

Taghavizadeh Yazdi ME, Amiri MS, Hosseini HA, Kazemi Oskuee R, Mosawee H, Pakravanan K, et al. Plant-based synthesis of silver nanoparticles in Handelica trichophylla and their biological activities. Bull Mater Sci. 2019;42(4):155. doi: 10.1007/s10561-019-1855-8.

Hashim AM, Alharbi BM, Abdulmajeed AM, Elkelsish A, Hozzein WN, Hassan HM. Oxidative stress responses of some endemic plants to high altitudes by intensifying antioxidants and secondary metabolites content. Plants (Basel). 2020;9(7):869. doi:10.3390/plants9070869.

Munson SM, Bradford JB, Hultine KR. An integrative ecological drought framework to span plant stress to ecosystem transformation. Ecosystems. 2020. doi: 10.1007/s00129-020-00555-y.

Lakshmi SP, Reddy AT, Kodidhela LD, Akelish A, Hozzein WN, Hasen HM. Epigallocatechin gallate diminishes cigarette smoke-induced oxidative stress, lipid peroxidation, and inflammation in human bronchial epithelial cells. Life Sci. 2020;259:118260. doi:10.1016/j.lfs.2020.118260.

Alak G, Ucar A, Parlak V, Yeltek A, Ozgeri FB, Atamanalp M, et al. Antioxidant potential of ulexite in zebratfish brain:
assessment of oxidative DNA damage, apoptosis, and response of antioxidant defense system. Biol Trace Elem Res. 2021;199(3):1092-9. doi: 10.1007/s12011-020-02231-7.

40. Taghavizadeh Yazdi ME, Khara J, Housaindokht MR, Sadeghnia HR, Esmaeilzadeh Bahabadid S, Amiri MS, et al. Biocomponents and antioxidant activity of Ribes khorasanicum. Int J Basic Sci Med. 2018;3(3):99-103. doi: 10.15171/ijbsm.2018.18.

41. George R, Roy A, Rajeshkumar S, Lakshmi T. Coriander oleoresin assisted synthesis and characterization of silver nanoparticles and its antioxidant activity. Biomedicine. 2020;40(3):309-12. doi: 10.51248/v40i3.15.

42. Hussein HA, Mohamad H, Mohd Ghazaly M, Laith AA, Abdullah MA. Anticancer and antioxidant activities of Nannochloropsis oculata and Chlorella sp. extracts in co-application with silver nanoparticle. J King Saud Univ Sci. 2020;32(8):3486-94. doi: 10.1016/j.jksus.2020.10.011.