INTRODUCTION

A new eruptive cycle started in January 2011 at Mt. Etna (Southern Italy). The activity was mainly explosive, with 44 episodes of lava fountaining occurred at the New South East Crater (NSEC) during the 2011–2013 period (e.g. Behncke et al., 2014; Giuffrida & Viccaro, 2017), culminating with the most powerful paroxysmal eruptions of the last 20 years at the Voragine crater (VOR) on December 2015 and May 2016 (Cannata et al., 2018). A frequency decrease in eruptive episodes marked the post-2016 activity, shifting to more effusive behaviours (Viccaro et al., 2019). Efforts in constraining spatial and temporal evolution of magma dynamics enlightened the complex plumbing system underneath the volcano (e.g. Cannata et al., 2015, 2018; Viccaro et al., 2016, 2019), although few data on volatile concentrations for the post-2011 magmas are currently available (Gennaro et al., 2019). Furthermore, these data suggest rather degassed magma compositions, which are in contrast with the eruptive behaviour observed at the volcano.

We provide here a new dataset of major and trace element compositions and volatile contents (i.e. H₂O, CO₂, S, Cl, F) in olivine-hosted...
melt inclusions (MIs) selected from tephra emitted during variably energetic eruptions at Mt. Etna, namely: the mostly effusive flank eruption of December 24–27, 2018; the mid-intensity paroxysmal eruption occurred at NSEC on February 19, 2013; the highly energetic paroxysm of December 3, 2015 occurred at VOR. Assessing the original magma volatile budgets and how their load changes over space and time is crucial to reconstruct the degassing dynamics and to identify causes leading to energetic versus quiet eruptions.

2 | COMPOSITIONS OF THE OLIVINE-HOSTED MIs

Olivine crystals were hand-picked from tephra smaller than 1.5 cm and prepared for in situ microanalyses on MIs including measurements of major elements, S, Cl and F by EMPA, trace element abundances by LA-ICP-MS and determination of H$_2$O and CO$_2$ concentrations by FTIR and Raman spectroscopy (see Supporting Information 1). MIs from the three eruptive episodes have similar major element compositions after correction for post-entrapment crystallization (PEC calculated through Petrolog3 software (Danyushevsky & Plechov, 2011) is <13%; Tables S1 and S2 in Supporting Information 2). Considering SiO$_2$, CaO and alkali elements, our data suggest the existence of two types of MIs (Figure 1). The type 1 MIs are entrapped in Fo$_{79-85}$ olivines; they are more basic (SiO$_2$ 42.7–45.7 wt%; Mg# 55–60), with Na$_2$O + K$_2$O in the range 5.1–6.2 wt% and CaO 9.9–12.5 wt%. The type 2 MIs are found in Fo$_{69-79}$ olivines; they are more evolved (SiO$_2$ 46.5–51.2 wt%; Mg# 40–54), with Na$_2$O + K$_2$O in the range 6.2–8.3 wt% and CaO 6.1–9.7 wt%. Some type 1 inclusions have anomalously low SiO$_2$ (~42.7 wt%), which is an odd feature for volcanic rocks erupted at Mt. Etna.

Low H$_2$O (0.4–2.4 wt%; Figure 2) and CO$_2$ (46–849 ppm; Figure 3) contents make both types of MIs peculiar if compared to products erupted in the 2001 and 2002–2003 eruptions (Métrich et al., 2004; Spilliaert et al., 2006). Maximum H$_2$O concentrations were found in type 1 MIs, which display higher average H$_2$O contents than type 2 MIs. Nonetheless, some type 1 MIs entrapped in high-Fo olivine (>Fo$_{80}$), especially from the December 2018 eruption, occasionally show very low H$_2$O contents (~0.47 wt%), sometimes correlated with the lowest SiO$_2$ contents observed in type 1 MIs. Type 1 MIs are generally characterized by higher CO$_2$ concentrations than type 2 MIs for all selected eruptive episodes; slight CO$_2$ enrichment at low H$_2$O content has also been observed for some type 1 MIs (Figure 3). Sulphur (172–3,072 ppm), Cl (870–2,884 ppm) and F (670–1,546 ppm) concentrations are comparable for MIs of the three eruptive episodes.
Sulphur shows progressive decrease from type 1 to type 2 MIs, whereas F concentrations are higher in type 2 than type 1 MIs; Cl contents are comparable in the two groups, but a few type 2 MIs show the highest values. Type 1 MIs from all products show similar concentrations of LILEs, HFSEs and REEs. Type 2 MIs generally display trace element concentrations higher than type 1 MIs (Figure 1; Table S3 in Supporting Information 2), also covering wider compositional ranges. Ratios of variably incompatible trace elements (i.e. La/Sm, Ba/Sr, Zr/Nb; Figure 1; Figure S1 in Supporting Information 2) support analogous geochemical signature for MIs coming from the three eruptions, with minor differences between the two types of MIs.

3 | DISCUSSION

Thermodynamic simulations performed by rhyolite-MELTS (Ghiorso & Gualda, 2015; Gualda et al., 2012) fix the evolutionary path for the
post-2011 Mt. Etna magmas. The most primitive known compositions at Mt. Etna were found in Melts entrapped in Fo90-91 olivines erupted during the FS eruption (3,930 BP; Kamenetsky et al., 2007), so they could be reasonably assumed as starting melt composition for the thermodynamic simulation. However, no solution at different conditions (i.e., f_{O_2} and dP/dt) provides compositions of the studied Melts. In fact, the FS products have SiO$_2$ concentrations (\sim47.3–49.0 wt%) higher than those measured in the most basic type 1 Melts, with no possibilities to reproduce differentiation paths fitting such low SiO$_2$ concentrations (Figures 1 and 2a). Furthermore, historical products show different geochemical signature if compared to volcanic rocks emitted particularly after the 1971 benchmark (e.g. Viccaro & Zuccarello, 2017). This points out that FS melts are not the parental magmas for recent products.

H$_2$O contents measured in Melts of the post-2011 activity are much lower than concentrations predicted from thermodynamic models, a feature particularly evident for some basic type 1 Melts entrapped in high-Fo olivine (80–85 mol.%), indicating entrapment pressures < 130 MPa (calculated through VOLATILECALC; Newman & Lowenstern, 2002) during crystallization of such olivine populations. A large variability in water content (ΔH$_2$O-2 wt%) characterizes Melts entrapped in olivine with similar Fo contents (Figure 2b), highlighting that water loss may be responsible for H$_2$O depletion in Melts. Water loss in Melts has been commonly observed in both natural and experimental samples (e.g., Barth et al., 2019; Gaetani et al., 2012; Lloyd et al., 2013; Portnyagin et al., 2008, 2019). Magma degassing during ascent and storage at shallower levels of the plumbing system may induce re-equilibration of Melts, which release H$_2$O to the external melt by diffusion through the olivine lattice. Two main mechanisms of H$^+$ transport have been recognized: (1) the fastest proton–polaron exchange, where redox reactions occur between H$^+$ and polaron on Fe$^{3+}$ atoms occupying the octahedral sites (Gaetani et al., 2012; Kohlstedt & Mackwell, 1998; Mackwell & Kohlstedt, 1990); (2) incorporation of H$^+$ in olivine through metal-vacancy defects (Demouchy & Mackwell, 2003, 2006; Kohlstedt & Mackwell, 1998). A recent experimental study on Ti-depleted calc-alkaline products erupted at Klyuchevskoy volcano revealed a coupled behaviour of H$_2$O and SiO$_2$ during re-equilibration of Melts with the external matrix (cf. Portnyagin et al., 2019). A concomitant increase of H$_2$O and SiO$_2$ in Melts was observed during Melts rehydration, whereas reversal experiment showed the process is reversible.

These findings provide a possible explanation for occurrence of strong SiO$_2$ depletion in Melts, although no experimental studies have been conducted on olivine crystallized from Etna alkaline melts, which means data useful for disambiguation of possible mechanisms of H$^+$ incorporation and transport in Etnean olivines are not available. Few FTIR spectra collected on olivine crystals close to inclusions display, however, the presence of a broad band located at 3,160 cm$^{-1}$ and a peak at 3,220 cm$^{-1}$. These characteristic bands are related to H$^+$ in point defects associated with metal vacancies (M1 for 3,160 cm$^{-1}$ and M2 for 3,220 cm$^{-1}$; Berry et al., 2005; Portnyagin et al., 2019), whereas other bands related to Si vacancies, Ti and Fe$^{3+}$ point defects were not recognized (Figure S2 in Supporting Information 2). The correlation between low H$_2$O and SiO$_2$ contents, together with the characteristic spectral bands of H$^+$ in metal vacancies, suggests that loss of SiO$_2$ and H$_2$O could be due to metal defect formation in olivine crystallizing on Melts walls during dehydration.

Reconstruction of the pristine H$_2$O and SiO$_2$ contents before water loss was made for Melts of the post-2011 activity. SiO$_2$ content of whole rocks was used as a pristine value to recalculate original H$_2$O-SiO$_2$ compositions in Melts, assuming that Melts were characterized initially by the same Si-saturation index as their host rocks (Portnyagin et al., 2019). Bulk rock compositions in equilibrium with olivines with variable forsteritic content were selected from the record since 2001 (Figure S3 and Table S4 in Supporting Information 2; Viccaro & Cristofolini, 2008), avoiding samples with distinctive features inherited by accumulation of specific mineral phases (e.g. amphibole; cf. Viccaro et al., 2006). PEC was performed on restored SiO$_2$-H$_2$O compositions. Recalculations suggest that, on average, 4.80 and 3.42 wt% of SiO$_2$ should be added, respectively, to the composition of type 1 and type 2 Melts from the 2013–2015 paroxysms, whereas on average 7.20 wt% (type 1 Melts) and 4.03 wt% (type 2 Melts) of SiO$_2$ is needed for Melts of the 2018 eruption, thus indicating that Melts from the 2018 eruption were affected more extensively by water loss. Recalculated MI compositions showing the highest addition of SiO$_2$ also display the highest PEC, supporting the idea that crystallization on MI walls may be also controlled by the extent of water loss. This would lead to formation of metal vacancies, which migrate away from the inclusion rim exchanging Fe and Mg (Portnyagin et al., 2019). In absence of experimental data, we used an intermediate molar proportion (ΔH$_2$O/ΔSiO$_2$ = 1), among those defined by Portnyagin et al. (2019), for restoring H$_2$O compositions as a function of the SiO$_2$ percentage added to Melts. Restored maximum concentration of H$_2$O is 4.02 wt% (Figure 3), consistent with values measured in Melts from products of the 2001 and 2002–2003 eruptions (Métrich et al., 2004; Spilliaert et al., 2006).

Low entrapment pressures are also linked to low CO$_2$ contents measured in glasses. Recent studies demonstrated that most of CO$_2$ in Melts can be lost from the melt to the shrinkage bubble (Hartley et al., 2014; Moore et al., 2018; Wallace et al., 2015). In order to evaluate this effect, we restored the bulk CO$_2$ content of Melts by adopting the approach of Wallace et al. (2015) using: (1) VOLATILECALC (Newman & Lowenstern, 2002) to determine the saturation pressure and CO$_2$ mol.% in the vapour phase in equilibrium with the entrapped liquid, knowing the H$_2$O-CO$_2$ dissolved in the melt; and (2) a modified Redlich-Kwong equation of state (Kerrick & Jacobs, 1981) to calculate the molar volume of the H$_2$O-CO$_2$ mixture in the vapour phase.

The highest entrapment pressure for the studied Melts from the post-2011 activity was constrained at 300 MPa based on the restored H$_2$O and CO$_2$ concentrations at 3.37 wt% and 1,754 ppm, respectively (Figure 3). Restored Melts compositions from the 2013 eruption can be modelled through a closed-system degassing starting from these conditions with 1% of initial gas phase, whereas most of MI compositions from the 2015–2018 eruptions can be reproduced by increasing this parameter at 10%. Such variability in H$_2$O-CO$_2$
contents may reflect the occurrence of CO₂ flushing in the upper plumbing system affecting mostly the portion below 200 MPa (cf. Collins et al., 2009). The effect of flushing leads to deviation from the expected open-system degassing as a function of the CO₂ amount fluxed from deeper levels, producing melt dehydration similar to closed-system conditions.

Improvements of thermodynamic modelling were achieved in two-step modelling, using the restored SiO₂-H₂O-CO₂ compositions of MIs (Figure 4). The most primitive inclusion (DECG22MI20, Mg# = 60.3; Table S5 in Supporting Information 2) was used as starting melt for the first step, constraining the initial conditions as follows: T = 1,140°C, P = 300 MPa, fO₂ at the QFM buffer, 4.02 wt% of H₂O and 1,754 ppm of CO₂; the first step ended at T = 1,110°C and P = 210 MPa. The initial melt composition for the second step was fixed starting from the last melt obtained in the first step, then constraining T = 1,110°C, P = 210 MPa, fO₂ at the QFM buffer and H₂O at 3.20 wt% and CO₂ at 1,072 ppm to take into account the effect of CO₂ flushing at 200 MPa. The final T was fixed at 1,064°C (Calvari et al., 1994) and pressure close to surface conditions. Olivine is the sole phase controlling the melt evolution during the first step, changing from Fo82 to Fo80. The transition from type 1 to type 2 MIs occurs during the second step, when augitic clinopyroxene in equilibrium with Fo78-79 olivine coexists on the liquidus at 120 MPa, then followed by magnetite at lower pressure. Consistently, small differences in La/Sm and Zr/Nb between the two types of MIs can be accounted for by fractionation of augitic clinopyroxene. Increasing Ba/Sr, which is only observed within the type 2 MIs, is controlled by the late crystalization of plagioclase. Although restoring of MIs compositions following Portnyagin et al. (2019) strongly improved the consistency of thermodynamic models, experiments on natural Etnane olivines are recommended to investigate the mechanism of H⁺ diffusion in olivine and quantify a reliable degree of water loss.

Our model provides important indications about the initial volatile budget of recent Mt. Etna magmas. CO₂ flushing in the upper plumbing system has been invoked in previous studies as the main cause for production of dehydrated melts erupted after the benchmark represented by the 2001 eruption (Collins et al., 2009). However, a careful evaluation of processes affecting the original compositions of MIs highlights how magmas erupted during 2013–2018 activity are characterized by a fairly high pristine volatile load, i.e. comparable to that measured in the gas-rich products emitted during the 2001 and 2002–2003 eruptions. This implies that the deep plumbing system is able to supply volatile-rich magmas potentially triggering intense eruptive phenomena at any time. The open versus closed degassing conditions experienced by magmas at shallow levels (<200 MPa) control the final volatile cargo and the eruption intensity. Although the reconstructed H₂O-CO₂ Ml compositions simulate a closed-system degassing due to continuous gas input from depth, storage dynamics and the efficient transfer across the upper plumbing system of Mt. Etna now allow loss of substantial water load from magmas without relevant accumulation. Under these conditions, the final eruptive behaviour, from effusive up to vigorous lava fountaining, could be chiefly related to kinetics of magma ascent.

FIGURE 4 Major element compositions in restored melt inclusions (MIs) after correction for SiO₂-H₂O loss. Unrestored MIs are reported for comparison (symbols as in Figure 3). Results from rhyolite-MELTS simulations on restored MIs (red line) and parameters used for each step of simulation are reported

ACKNOWLEDGEMENTS
Francesco Zuccarello acknowledges the PhD fellowship and two PhD research grants from the University of Catania. This work was supported by the funding program PIACERI 2020-22 of the University of Catania, project PAROSSIMA, code 22722132140 (Principal Investigator M. Viccaro). We are indebted to Jean-Luc Devidal (Laboratoire Magmas et Volcans) for his guidance during EMPA
and LA-ICPMS data acquisition. Thorough reviews provided by the Associate Editor, Helena Albert and an Anonymous Reviewer greatly helped in improving the early submitted version of the manuscript.

CONFLICT OF INTEREST
The authors declare no financial or other conflicts of interests for this work.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the Supporting Information of this article.

REFERENCES
Barth, A., Newcombe, M. E., Plank, T., Gonnermann, H., Hajimirza, S., Soto, G. J., Saballos, A., & Hauri, E. (2019). Magma decompression rate correlates with explosivity at basaltic volcanoes - Constraints from water diffusion in olivine. Journal of Volcanology and Geothermal Research, 387, 106664. https://doi.org/10.1016/j.jvolgeores.2019.106664

Behncke, B., Branca, S., Corsaro, R. A., De Beni, E., Miraglia, L., & Piroetti, C. (2014). The 2011-2012 summit activity of Mount Etna. Birth, growth and products of the new SE crater. Journal of Volcanology and Geothermal Research, 270, 10-21. https://doi.org/10.1016/j.jvolgeores.2013.11.012

Berry, A. J., Hermann, J., O’Neill, H. S. C., & Foran, G. J. (2005). Finger printing the water site in mantle olivine. Geology, 33, 869-872. https://doi.org/10.1130/G21759.1

Calvari, S., Coltelli, M., Neri, M., Pompilio, M., & Scribano, V. (1994). The 1991-1993 Etna eruption: Chronology and lava. Acta Vulcanologica, 4, 1-14.

Cannata, A., Di Grazia, G., Gjiffrida, M., Gresta, S., Palano, M., Sciotti, M., Viccaro, M., & Zuccarello, F. (2018). Space-time evolution of magma storage and transfer at Mt. Etna volcano (Italy). The 2015-2016 reawakening of Voragine crater. Geochemistry, Geophysics, Geosystems, 19. 471-495. https://doi.org/10.1002/2017GC007296

Cannata, A., Spedalieri, G., Behncke, B., Cannavò, F., Di Grazia, G., Gambino, S., Gresta, S., Gurrerie, S., Liuzzo, M., & Palano, M. (2015). Pressurization and depressurization phases inside the plumbing system of Mt Etna volcano: Evidence from a multiparametric approach. Journal of Geophysical Research, 120, 5965-5982. https://doi.org/10.1002/2015JB012227

Collins, S. J., Pyle, D. M., & Maclean, J. (2009). Melt inclusions track pre-eruption storage and dehydrogenation of magmas at Etna. Geology, 37, 571-574. https://doi.org/10.1130/G30040A.1

Danyushhevsky, L. V., & Plechov, P. (2011). Petrolog3: Integrated software for modeling crystallization processes. Geochemistry, Geophysics, Geosystems, 12. Q0021. https://doi.org/10.1029/2011GC003516

Demouchy, S., & Mackwell, S. J. (2003). Water diffusion in synthetic iron-free forsterite. Physics and Chemistry of Minerals, 30, 486-494. https://doi.org/10.1007/s00426-003-0342-2

Demouchy, S., & Mackwell, S. J. (2006). Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Physics and Chemistry of Minerals, 33, 347-355. https://doi.org/10.1007/s00426-006-0081-2

Gaetani, G. A., O’Leary, J. A., Shimizu, N., Bucholz, C. E., & Newville, M. (2012). Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology, 40, 915–918. https://doi.org/10.1130/G32992.1

Gennaro, E., Iacono-Marziano, G., Paonita, A., Rotolo, S. G., Martel, C., Rizzo, A. L., Pichavant, M., & Liotta, M. (2019). Melt inclusions track melt evolution and degassing of Etna volcanic magmas in the last 15 ka. Lithos, 324–325, 716–732. https://doi.org/10.1016/j.lithos.2018.11.023

Ghiorsio, M. S., & Gualda, G. A. R. (2015). An H2O–CO2 mixed fluid solubility model compatible with rhyolite-MELTS. Contributions to Mineralogy and Petrology, 169, 53. https://doi.org/10.1007/s00410-015-1141-8

Giufrida, M., & Viccaro, M. (2017). Three years (2011-2013) of eruptive activity at Mt. Etna. Working modes and timescales of the modern volcano plumbing system from micro-analytical studies of crystals. Earth-Science Reviews, 171, 289–322. https://doi.org/10.1016/j.earscirev.2017.06.003

Guala, G. A. R., Ghiorsio, M. S., Lemons, R., & Carley, T. L. (2012). Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology, 53, 875–890. https://doi.org/10.1093/petrology/egr080

Hartley, M. E., Maclean, J., Edmonds, M., & Thordarson, T. (2014). Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth and Planetary Science Letters, 393, 120–131. https://doi.org/10.1016/j.epsl.2014.02.031

Kamenetsky, V. S., Pompilio, M., Metrich, N., Sobolev, A. V., Kuzmin, D. V., & Thomas, R. (2007). Arrival of extremely volatile-rich high-Mg magmas changes explosivity of Mount Etna. Geology, 35, 255–258. https://doi.org/10.1130/G23163A.1

Kerrick, D. M., & Jacobs, G. K. (1981). A modified Redlich-Kwong equation for H2O, CO2 and H2O–CO2 mixtures at elevated pressures and temperatures. American Journal of Science, 281, 735–767. https://doi.org/10.2475/ajs.281.6.735

Kohlstedt, D. L., & Mackwell, S. J. (1998). Diffusion of hydrogen and intrinsic point defects in olivine. Zeitschrift Für Physikalische Chemie, 207, 147–162. https://doi.org/10.1524/zpch.1998.207_part.1.2.147

Lloyd, A., Plank, T., Ruprecht, P., Hauri, E., & Rose, W. (2013). Volatile loss from melt inclusions in pyroclasts of differing sizes. Contributions to Mineralogy and Petrology, 165, 129–153. https://doi.org/10.1007/s00410-012-0800-2

Mackwell, S. J., & Kohlstedt, D. L. (1990). Diffusion of hydrogen in olivine. Implications for water in the mantle. Journal of Geophysical Research, 95, 5079–5088. https://doi.org/10.1029/JB095iB04p05079

Métrich, N., Allard, P., Spillaert, N., Andronicos, D., & Burton, M. (2004). 2001 flank eruption of the alkali- and volatile-rich primitive basalt responsible for Mount Etna’s evolution in the last three decades. Earth and Planetary Science Letters, 228, 1–17. https://doi.org/10.1016/j.epsl.2004.09.036

Moore, R. L., Mirinov, N., Portnyagin, M., Gazel, E., & Bodnar, R. J. (2018). Volatile contents of primitive bubble-bearing melt inclusions from Klyucheyskovskoy volcano, Kamchatka: Comparison of volatile contents determined by mass-balance versus experimental homogenization. Journal of Volcanology and Geothermal Research, 358, 124–131. https://doi.org/10.1016/j.jvolgeores.2018.03.007

Newman, S., & Lowenstern, J. B. (2002). VolatileCalc: A silicate melt–H2O–CO2 solution model written in Visual Basic for excel. Computers & Geosciences, 28, 597–604. https://doi.org/10.1016/S0098-1375(01)00081-4

Portnyagin, M., Almeeva, R., Matveev, S., & Holtz, F. (2008). Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth and Planetary Science Letters, 272, 541–552. https://doi.org/10.1016/j.epsl.2008.05.020

Portnyagin, M., Mirinov, N., Botcharnikov, R., Gurenko, A., Almeev, R. R., Luft, C., & Holtz, F. (2019). Dehydration of melt inclusions in olivine and implications for the origin of silica-undersaturated island-arc melts. Earth and Planetary Science Letters, 517, 95–105. https://doi.org/10.1016/j.epsl.2019.04.021

Spillaert, N., Allard, P., Métrich, N., & Sobolev, A. (2006). Melt inclusion record of the conditions of ascent, degassing and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption.
of Mount Etna (Italy). *Journal of Geophysical Research*, 111, B04203. https://doi.org/10.1029/2005JB003934

Viccaro, M., & Cristofolini, R. (2008). Nature of mantle heterogeneity and its role in the short-term geochemical and volcanological evolution of Mt. Etna (Italy). *Lithos*, 105, 272–288. https://doi.org/10.1016/j.lithos.2008.05.001

Viccaro, M., Ferlito, C., Cortesogno, L., Cristofolini, R., & Gaggero, L. (2006). Magma mixing during the 2001 event at Mt. Etna (Italy): Effects on the eruptive dynamics. *Journal of Volcanology and Geothermal Research*, 149, 139–159. https://doi.org/10.1016/j.jvolgears.2005.06.004

Viccaro, M., Giuffrida, M., Zuccarello, F., Scandura, M., Palano, M., & Gresta, S. (2019). Violent paroxysmal activity drives self-feeding magma replenishment at Mt. Etna. *Scientific Reports*, 9, 6717. https://doi.org/10.1038/s41598-019-43211-9

Viccaro, M., & Zuccarello, F. (2017). Mantle ingredients for making the fingerprint of Etna alkaline magmas: Implications for shallow partial melting within the complex geodynamic framework of Eastern Sicily. *Journal of Geodynamics*, 109, 10–23. https://doi.org/10.1016/j.jog.2017.06.002

Viccaro, M., Zuccarello, F., Cannata, A., Palano, M., & Gresta, S. (2016). How a complex basaltic volcanic system works: Constraints from integrating seismic, geodetic, and petrological data at Mount Etna volcano during the July–August 2014 eruption. *Journal of Geophysical Research: Solid Earth*, 121, 5659–5678. https://doi.org/10.1002/2016JB013164

Wallace, P. J., Kamenetsky, V. S., & Cervantes, P. (2015). Melt inclusion CO₂ contents, pressures of olivine crystallization, and the problem of shrinkage bubbles. *American Mineralogist*, 100, 787–794. https://doi.org/10.2138/am-2015-5029

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Zuccarello F, Schiavi F, Viccaro M. Magma dehydration controls the energy of recent eruptions at Mt. Etna volcano. *Terra Nova*. 2021;00:1–7. https://doi.org/10.1111/ter.12527