Galactic X-ray Survey

KEN EBISAWA1,2,*, S. YAMAUCHI3, A. BAMBA4, M. UENO4 AND S. SENDA4

1 INTEGRAL Science Data Centre, Chemin d’Écogia 16, CH-1290 Versoix, Switzerland
2 Laboratory for High Energy Astrophysics, NASA/GSFC, Greenbelt, MD 20771, USA
3 Faculty of Humanities and Social Sciences, Iwate University, Ueda 3-18-34, Morioka, Iwate 020-8550, Japan
4 Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

Received date will be inserted by the editor; accepted date will be inserted by the editor

Abstract. We review highlights of the results obtained from recent Galactic X-ray survey observations, in particular ASCA Galactic center and plane survey and our Chandra deep survey on the (l, b) ≈ (28°5, 0°0) region. Strong hard X-ray diffuse components are observed from Galactic ridge, center and bulge, and they have both thermal and non-thermal spectral components. Dozens of discrete and extended sources have been discovered on the Galactic plane, which also indicate thermal and/or non-thermal X-ray energy spectra. They are often associated with radio sources and are considered to be SNR candidates. Most of the hard X-ray point sources in the outer part of the Galactic plane are considered to be background AGNs, while fraction of the Galactic hard X-ray sources (such as quiescent dwarf novae) increases toward the Galactic center. Most of the soft X-ray sources on the Galactic plane are presumably nearby active stars.

Key words: Galactic Plane; X-rays; Galactic Diffuse Emission; Supernova Remnants; X-ray sources

1. Introduction

Presence of the hard X-ray (≥ 2 keV) emission from the Galactic plane has been recognized since early 1980’s. HEAO1 reported detection of the hard X-ray emission from the Galactic “ridge”, whose integrated luminosity is ∼ 10^{38} erg s^{-1} and energy spectrum is softer than that of the cosmic X-ray background (Worrall et al. 1982). A more precise scanning observation was made with EXOSAT (Warwick et al. 1985), which manifested global distribution of the hard X-ray emission over the Milky way. The extended hard X-ray emission was observed both from the Galactic “ridge” and “bulge” regions.

The Tenma satellite performed several pointing observations on the Galactic “blank” fields, and detected omnipresent ∼6.7 keV iron K-line emission (Koyama et al. 1986). This is an evidence that the Galactic hard X-ray emission is associated with highly ionized plasmas, corresponding to kT ≈ 6 – 10 keV. The Ginga satellite also carried out Galactic scan observations to study distribution of the diffuse emission. Thanks to its large effective area, Ginga was able to map the distribution of the diffuse emission from iron K-line intensities, so that contrast of the diffuse emission relative to the bright point sources is significantly enhanced. In this manner, distribution of the diffuse emission along the Galactic plane was precisely measured (Yamauchi and Koyama 1993), and concentration of the hot plasma around the Galactic center (Koyama et al. 1989) was revealed.

2. ASCA Galactic Survey

All the hard X-ray observations before 1993 were carried out with non-imaging instruments, in which sensitivity is limited by source confusion. Consequently, it was hardly possible to resolve dim point sources from diffuse emission, and to know how much the point source contribution to the Galactic diffuse emission is. In 1993, ASCA was launched as the first imaging satellite in the hard X-ray band (Tanaka, Inoue and Holt 1994). Above 2 – 3 keV, the interstellar medium is essentially transparent, so that ASCA was for the first time able to search for those hard X-ray sources embedded deeply in the Galactic plane that had not been detected by previous soft X-ray imaging observations.

In particular, ASCA carried out systematic survey observations on the Galactic plane and Galactic center regions, and acquired unbiased Galactic hard X-ray imaging data. The ASCA Galactic plane and center region survey was made to cover the Galactic inner disk (|l| < 45°, |b| < 0°4) and the Galactic center region (|l| < 2°, |b| < 2°) with successive...
points of about 10 ksec exposure each. In addition, there are plenty of non-uniform pointing observations of the Galactic sources or blank fields.

Most of the ASCA Galactic plane and center survey observation data have been analyzed, and those results are published. In the following, some of the highlights are summarized below.

Point Source Survey: More than 200 X-ray sources have been resolved in the ASCA Galactic plane and center survey, among which ~60 % of the sources are unidentified. ASCA for the first time made a log N - log S curve of Galactic X-ray sources in the 2 – 10 keV band down to ~ 3×10^{-13} ergs s$^{-1}$ cm$^{-2}$ (Sugizaki et al. 2001). The log N - log S curve in this flux range was approximated by a power-law with a slope of ~ 0.8, which is flatter than that for the extragalactic sources (Figure 2). Locations and properties of the new X-ray sources discovered in the ASCA surveys are compiled in Sugizaki et al. (2001) and Sakano et al. (2002).

Supernova Remnants and Supernova Remnant Candidates: ASCA detected X-rays from 30 cataloged radio Supernova Remnants (SNRs) in the surveyed region, among which 17 SNRs were for the first time detected in X-rays. In Figure 1, two radio SNRs, G344.7+0.2 and G349.7–0.1 are clearly seen, whereas they were undetected in ROSAT. The crescent-like shell feature at $l \sim 347^\circ$ is the northwest shell of RX J1713.7–3946, a SNR discovered with ROSAT. The ASCA hard X-ray spectrum of RX J1713.7–3946 shows non-thermal feature without emission lines (Koyama et al. 1997). Later, RX J1713.7–3946 turned out to be a TeV gamma-ray source (Enomoto et al. 2002), just like SN1006 (Tanimori et al. 1998). These non-thermal X-ray and gamma-ray emission, accelerated by the Fermi mechanism in the expanding SNR shells, are considered to be due to synchrotron emission from extremely energetic electrons (\gtrsim TeV), which are presumably accelerated by the Fermi mechanism in the expanding SNR shells.

ASCA also discovered several unidentified extended sources, some of them show thin thermal X-ray spectra, while others indicate non-thermal spectra. These sources may be considered as X-ray SNR candidates (see Section 5).

X-ray Pulsars: Following new X-ray pulsars have been discovered in ASCA survey and other pointing observations: 1RXS J170849.0–400910 (P=11s; Sugizaki et al. 1997), AX J1740.1–2847 (P=729 sec; Sakano et al. 2000), AX J1749.2–725 (P=220 s; Torii et al. 1998b), AX J1820.5–1434 (P=152s; Kinugasa et al. 1998), AX J183220–0840 (P=1549s; Sugizaki et al. 2000), AX J1841.0–0536 (P=4.7 s; Bamba et al. 2001a) and AX J1845.0–0300 (P=7s; Torii et al. 1998a). In addition, ASCA discovered several X-ray sources with flat power-law spectra with large absorption (characteristics of binary X-ray pulsars), while could not detect coherent pulsations due to insufficient statistics. XMM Galactic plane scan survey may be able to detect coherent pulsations from these sources.

Galactic Ridge X-ray Emission: ASCA found that the Galactic Ridge energy spectra in 0.5 – 10 keV are well represented by two temperature components (Kaneda et al. 1997). The low temperature component has a temperature $kT \sim 0.8$ keV and a low ionization degree. Its surface brightness is consistent with the SNR origin. The high temperature component may be represented with a temperature of $kT \sim 7$ keV in non-ionization equilibrium state (Kaneda et al. 1997). From the fluctuation analysis of the hard X-ray ridge emission, it was found that the upper limit of the discrete sources to contribute to the ridge emission is $\sim 2 \times 10^{31}$ erg s$^{-1}$ (Sugizaki et al. 1999). With that rather benign constraint, ASCA was not able to conclude if the Galactic ridge X-ray emission is composed of numerous discrete sources or truly diffuse emission.

3. Contribution of the Point Sources

Chandra’s excellent spatial resolution ($\sim 0.5^\prime$) revolutionized our X-ray view of the Milky Way. With ~100 ksec exposure, Chandra is able to detect point sources down to a flux of ~3×10^{-15} ergs s$^{-1}$ cm$^{-2}$ in 2 – 10 keV, that is about two orders of magnitudes better than ASCA. In Figure 2, we show Chandra log N - log S curve in 2 – 10 keV for the Galactic plane ($l = 28^\circ.5$; Ebisawa et al. 2001) and Galactic center (Sgr B2 region; Senda 2002). Remarkably, the log N - log S curve on the Galactic plane does not indicate clear excess of the Galactic sources compared to the extragalactic log N - log S curve. This indicates that most of the hard X-ray sources on the Galactic plane are background AGNs at the Chandra flux limit (Ebisawa et al. 2001). The integrated point source X-ray flux above ~3×10^{-15} ergs s$^{-1}$ cm$^{-2}$ is only ~ 10 % of the total hard X-ray flux in the field of view, which indicates the Galactic ridge emission is truly diffuse (Ebisawa et al. 2001).
et al. 2001). On the other hand, in the Galactic center region, there are obviously numerous dim point hard X-ray sources (Figure 2; Senda 2002), which are presumably mostly quiescent dwarf novae and show thermal iron K-line emission (Wang, Gotthelf and Lang 2002). Still, the integrated point source flux is ∼10 % of the total flux from the Sgr B2 region, and most of the hard X-ray emission has truly diffuse origin (Senda 2002).

4. Energy Spectra of Galactic Diffuse Emission

X-ray energy spectra of the diffuse emission from Galactic center, bulge and plane are very similar in shape (Tanaka 2002). They have thermal and non-thermal continuum components, and prominent emission lines from highly ionized iron and other heavy elements. The power-law like non-thermal component extends above ∼10 keV (Yamasaki et al. 1997; Valinia and Marshall 1998), and smoothly connects to the Galactic diffuse gamma-ray emission (Gehrels and Tueller 1993; Valinia, Kinzer and Marshall 2000).

Galactic diffuse X-ray emission is very energetic. Energy density of the ridge emission, ∼10 eV cm⁻³, is one or two orders of magnitude higher than those of cosmic rays, Galactic magnetic fields or any other constituents in the interstellar space. Energy source of the diffuse emission is not elucidated yet, but several attractive theories have been proposed, such as interstellar-magnetic reconnection (Tanuma et al. 1999), or interactions of cosmic low-energy electrons (Valinia et al. 2000) or heavy iron nuclei (Tanaka 2002).

Precise X-ray line study is likely to be a key to resolve origin of the Galactic diffuse emission. Iron K-line emission feature observed with ASCA has a complex structure, and may not be explained by a single equilibrium thermal plasma. Kaneda et al. (1997) proposes a non-ionization equilibrium plasma model, which yields a single ∼6.6 keV line with a moderate width corresponding to composition of different ionization states. Valinia et al. (2000) proposes a composite model of the 6.67 keV line from thermal equilibrium plasma and the 6.4 keV line due to interaction of cosmic-ray electrons and neutral interstellar matter. On the other hand, Tanaka (2002) claims presence of the 6.97 keV line which may be attributed to electron capture by the cosmic naked iron nuclei. These different models seem to explain the observed ASCA spectra. Accumulation of more Chandra and XMM data, as well as observations by future missions, will eventually tell us the definitive answer through precise X-ray spectroscopy.

5. Discovery of Diffuse and Discrete Sources

More than a dozen of diffuse and discrete sources have been discovered with ASCA and other Galactic surveys. Most of them are associated with known diffuse radio features, but some of them are discovered in X-rays for the first time.

Search for non-thermal X-ray emitting SNRs similar to SN1006 or RX J1713.7–3946 is very important to study global energy balance of the cosmic ray. In the ASCA Galactic plane survey, four such X-ray SNR candidates have been discovered; G28.6–0.1 (Bamba et al. 2001b), G11.0+0.0, G25.5+0.0 and G26.6–0.1 (Bamba et al. 2002). All these sources have power-law slopes of 1.6 to 2.1, without emission lines. Only G28.6–0.1 is associated with a previously known radio source (Helfand et al. 1989; Figure 3).

In contrast to the non-thermal sources, several diffuse and discrete sources near the Galactic center such as G0.0–1.3 (Sakano et al. 2002) and G0.570–0.018 (Senda, Murakami and Koyama 2002) show thermal spectra with prominent emission lines. These thermal sources are likely to be young SNRs heated by blast waves.

The diffuse X-ray feature in the G28.6–0.1 region has been closely studied with ASCA (Bamba et al. 2001b) and Chandra (Ebisawa et al. 2001; Ueno et al. 2002). The diffuse feature is more clearly seen in hard X-rays (> 2 keV) than in soft X-rays (Figure 3). While the extended hard X-ray feature (named AX J1843.8–0352) shows a non-thermal spectrum with a slope of ∼2.1 (Figure 4, left), a blob-like soft X-ray feature (named CXO J18435.1–035828) is found to be embedded and associated with the radio emission (Figure 3). CXO J18435.1–035828 has a thermal spectrum with prominent emission lines (Figure 4, right).

It is extremely interesting that some discrete and diffuse X-ray sources have non-thermal spectra, while others show thermal spectra. Even there is a case like G28.6–0.1 where thermal and non-thermal components are spatially entangled. Presumably, emission mechanism of these thermal and non-thermal components from discrete sources are related to those of the global diffuse emission from Galactic center, bulge and plane (Section 4).

6. Origin of the Point Sources

Characteristics of the point X-ray sources detected with Chandra on the Galactic plane at l ≈ 28.5° has been studied,
down to the fluxes $\sim 3 \times 10^{-15}$ erg s$^{-1}$ cm$^{-2}$ (2–10 keV) or $\sim 7 \times 10^{-16}$ erg s$^{-1}$ cm$^{-2}$ (0.5–2 keV) (Ebisawa et al. 2002a). If the sources are classified with hardness ratio (HR) between 0.5–3.0 keV and 3.0–8 keV, the softest sources with $HR \approx -1$ are most numerous, and the population decreases up to $HR \approx 0.5$, then again increases toward $HR = 1$. This dichotomy indicates that there are two main populations of the point X-ray sources classified with the spectral hardness.

Hard X-ray sources are considered to be mostly background AGNs from the argument of the source number density (Section 3). In fact, average hydrogen column densities toward these sources ($\sim 8 \times 10^{22}$ cm$^{-2}$) are consistent with the value through the Galactic plane. However, some of the hard X-ray point sources show flat spectra (power-law slope ~ 1) and iron line feature. These point sources are candidates of Galactic hard X-ray sources such as quiescent dwarf novae (e.g., Mukai and Shiokawa 1993). Soft X-ray sources have low temperature ($\sim <1$ keV) thin thermal spectra, and low hydrogen column density ($\sim <10^{22}$ cm$^{-2}$), and some of which show X-ray flares. These facts suggest that most of the soft X-ray sources are nearby X-ray active stars.

We have carried out a follow-up observation of this region using the SOFI infrared camera at ESO/NTT to identify these point X-ray sources (Ebisawa et al. 2002b). There are many infrared counterparts of soft X-ray sources brighter than $K_s \approx 20$ mag, while very few hard X-ray sources were identified. This also strongly suggests that most soft X-ray sources are nearby stars and hard X-ray sources are background AGNs.

Acknowledgements. Authors are grateful to the following colleagues for supplying material presented in this paper: Kaneda, H., Kinugasa, K., Kokubun, M., Koyama, K., Maeda, Y., Matsuzaki, K., Mitsuda, K., Murakami, H., Torii, K., Sakano, M. and Sugizaki, M. (ASCA Galactic Survey), Paizis, A., Sato, G. (Chandra Galactic plane analysis).

References

Bamba, A. et al. 2001a: PASJ, 53, L21
Bamba, A. et al. 2001b: PASJ, 53, L179
Bamba, A. et al. 2002: in this volume
Ebisawa, K. et al. 2001: Science, 293, 1633
Ebisawa, K. et al. 2002a: in the proceedings of “New Visions of the X-Ray Universe in the XMM-Newton and Chandra Era”, astro 203070
Ebisawa, K. et al. 2002b: in this volume
Enomoto, R. et al. 2002: Nature, 416, 823
Gehrels, N. and Tueller, J. 1993: ApJ, 407, 597
Giacconi, R. et al. 2001, 551, 624
Helfand, D. J. et al. 1989: ApJ, 341, 151
Kaneda, H. et al. 1997: ApJ, 491, 638
Kinugasa, K. et al. 1998: ApJ, 496, 435
Koyama, K. et al. 1986: PASJ, 38, 121
Koyama, K. et al. 1989: Nature, 339, 603
Koyama, K. et al. 1995: Nature, 378, 255
Koyama, K. et al. 1997: PASJ, 49, L7
Mukai, K. and Shiokawa, K. 1993: ApJ, 418, 863
Sakano, M. et al. 2000: PASJ, 52, 1141
Sakano, M. et al. 2002: ApJS, 138, 19
Sendai, K. 2002: Master Thesis, Kyoto University
Sendai, A., Murakami, H. and Koyama, K. 2002: ApJ, 565, 1017

Fig. 3. A Chandra close-up view of the G28.6–0.1 region overlaid with radio contours (VLA 20cm; Helfand et al. 1989). Red and blue color indicates soft and hard X-rays respectively. The extended hard X-ray feature, first discovered with ASCA, is named AX J1843.8–0352 (Bamba et al. 2001b). The extended soft X-ray source CXO J184355.1–035828 is marked (Ueno et al. 2002).

Sugizaki et al. 1999: AN, 320, 38
Sugizaki, M. et al. 1997: PASJ, 49, L25
Sugizaki, M. et al. 2000: ApJ, 534, L181
Sugizaki, M. et al. 2001: ApJS, 134, 77
Tanaka, Y.: 2002, A&A, 382, 1052
Tanaka, Y., Inoue, H. and Holt, S.: 1994, PASJ, 46, L37
Tanuma, S. et al. 1999: PASJ, 51, 161
Tanimori, T. et al. 1998: ApJL, 497, L25
Torii, K. et al. 1998a: ApJ, 503, 843
Torii, K. et al. 1998b: ApJ, 508, 854
Ueda, Y. et al. 1999: ApJ, 518, 656
Ueno, M. et al. 2002: ApJ, submitted
Valinina, A. and Marshall, F. E. 1998: ApJ, 505, 134
Valinina, A., Kinzer, R. L. and Marshall, F. E. 2000: 534, 277
Valinina, A. et al. 2000: ApJ, 543, 733
Wang, Q. D., Gotthelf, E. V. and Lang, C. C. 2002: Nature, 415, 148
Warwick, R. S. et al.: 1985, Nature, 317, 218
Worrall, D. M. et al.: 1982, ApJ, 255, 111
Yamasaki, N. Y.: 1997: ApJ, 481, 821
Yamauchi, S. et al. 1996: PASJ, 48, L15
Fig. 4. Chandra X-ray energy spectra of AX J1843.8–0352 (left; CXO J184355.1–035828 region is excluded) and CXO J184355.1–035828 (right) (Ueno et al. 2002). For AX J1843.8–0352, two independent observations, one of which only partially covered the source, correspond to the two spectra with different normalizations.