Case Report

The Use of Swept Source Oct Angio in Diagnosis and Staging of Type 2 Macular Telangectasia (Mactel 2)

Al Mamoori Fawwaz*

1Department of Medical Retina, Eye Specialty Hospital Amman, Jordan.

*Corresponding author: AlMamoori Fawwaz, Department of Medical Retina, Eye Specialty Hospital, Amman, Jordan, Tel: 00962777519101; E-mail: fawazalmamoori@gmail.com

Citation: Fawwaz FA (2016) The Use Of Swept Source Oct Angio In Diagnosis And Staging Of Type 2 Macular Telangectasia (Mactel 2). Ophthalmol Res Rep 2016: J115

Received Date: 28, November, 2016; Accepted Date: 13, December 2016; Published Date: 20, December, 2016

Introduction

Macular telangiectasia type 2 has also been termed idiopathic perifoveal telangiectasia or idiopathic juxtapfoveal telangiectasia type 2 [1-3]. It is now referred to as MacTel type 2, and it is a bilateral perifoveal vasculopathy that originates in the deep retinal capillary plexus in the temporal juxtapfoveal region. As it progresses, it involves the superficial retinal capillary plexus, and continues to progress anteriorly, posteriorly, and circumferentially. This is called the non-proliferative stage of the disease [5-9]. MacTel type 2 becomes proliferative when the vasogenic process extends under the retina, forming detachment and a retinal–retinal anastomosis. This form of the disease may eventually lead to disciform scarring.

In the early stages of the disease, Fluorescein Angiography (FA) imaging shows abnormal hyper fluorescence and leakage from the temporal, juxtapfoveal capillary plexus, 7 as the disease progresses, the hyper fluorescence and leakage spreads circumferentially around the fovea. While FA provides a definitive diagnosis of MacTel2, it also involves the intravenous injection of a dye that can result in adverse effects such as nausea or vomiting, and rarely fluorescein can elicit an anaphylactic response [11,12]. Auto Fluorescence (AF) imaging is also useful in diagnosing MacTel2 [13]. Due to the depletion of luteal pigment in the temporal juxtapfoveal retina, a relative increase in AF is observed in this region [14-16]. As the disease progresses, luteal pigment is lost circumferentially around the fovea and an increase in the relative hyper fluorescence is observed. In the later stages of the disease, atrophy of the RPE is observed, resulting in decreased AF within the central macula.

Optical Coherence Tomography (OCT), a noninvasive imaging modality, has revealed structural abnormalities in the inner retina such as retinal cavitations with draping of the internal limiting membrane and abnormalities in the outer retina such as disruption of the photoreceptor inner segment/outer segment/ellipsoid (IS/OS/E) region that were not previously appreciated by FA or AF imaging [18-25]. OCT imaging has improved the early detection of MacTel2 by identifying these early subtle changes in retinal anatomy, and OCT has proven to be useful for following these alterations in macular anatomy as the disease progresses to fovea atrophy, the formation of intraretinal pigment plaques, and sub retinal neovascularization. With the development of Spectral Domain-OCT (SDOCT) instruments with increased scanning speeds and highspeedsweptsource OCT (SSOCT) instruments, OCT Micro Angiography (OMAG) imaging has emerged as a noninvasive strategy to visualize the retina and choroidal microvasculature without the use of an exogenous intravenous dye injection [26-40], OMAG is a dynamic strategy capable of providing a three dimensional reconstruction of the perfused microvasculature within the retina and choroid and identifying distinct characteristics of the capillary networks located within different layers of the retina and choroid (see “Swept Source OCT Angiography of the Retinal Vasculature Using Intensity Differentiation based Optical Microangiography.

Aim & Objectives

To evaluate the central macular micro vascular network in patients with macular telangiectasia type 2 (MacTel2) using Swept Source optical coherence tomography Angiography.

Patient & Method

We retrospectively review a 60 Y old patient with bilateral-MacTel2 evaluated using a Swept Source OCT (SSOCT). The patient underwent a comprehensive ocular examination and imaging tests as part of the evaluation of her condition. The imaging tests included color fund us imaging (Topcon, Tokyo, Japan), digital fund us AF imaging, FA & Swept Source OCT with OCT Angio (TRITON TOPCON OCT).

The patient had no any other retinal pathology such as diabetic retinopathy or pathologic myopia and not previously treated with Photo Dynamic Therapy (PDT), thermal laser, intravitreal in-
jections, or any retinal surgery. Information about previous medical conditions and ocular treatments was obtained by reviewing the medical charts. The retina was segmented into three distinct physiological layers: an inner retinal layer from the Ganglion Cell Layer, to The Inner Plexiform Layer (GCL + IPL), a middle retinal layer from the Inner Nuclear Layer to The Outer Plexiform Layer (INL + OPL), and an outer retinal layer from Outer Nuclear Layer to the External Limiting Membrane (ONL + ELM layer). The microvasculature from the superficial capillary plexus in the inner retina is colored red, the microvasculature from the deep capillary plexus is colored green, and any microvascular structures with flow in the outer retina are colored blue.

Results

(SS-OCT A) detected abnormal microvasculature in all MacTel2 eyes, predominantly in the middle retinal layer. These vessels correlated well with the FA alterations. The abnormal temporal, juxtafoveal microvasculature in MacTel2 became apparent as the disease progressed and in later stages tended to extend circumferentially, with anastomotic vessels temporally.

In our Case, the Right Eye was in Early, No proliferative MacTel2, Best corrected Visual Acuity (BCVA) in her left eye was 20/30. The horizontal Bscan with the retinal flow in different layers represented by colors shows the dilated vessels in the deep retinal capillary plexus found in the middle retinal layer, most pronounced in the region temporal to the fovea as observed in green (Figure 1A & B).

![Figure 1A: Horizontal Bscan with the retinal flow in different layers.](image1)

![Figure 1B: Horizontal Bscan with the retinal flow in different layers, fovea as observed in green.](image2)

Figure 2: Fluorescein angiography shows telangiectatic abnormalities with mild hyper fluorescence and leakage in the temporal juxtafoveal region.

![Figure 3: With intact IS-OS Junction.](image3)
Figure 4 A: The left eye was in Proliferative MacTel 2, best corrected visual acuity (BCVA) in her left eye was 20/50, and the B-scan shows cavitations in the outer retina and disruption of the IS/OS/E boundary in the temporal juxtafoveal region.

Figure 4 B: The B scan representing the micro vascular flow. Details the presence of abnormal microvasculature (green and blue corresponding to an area with retinal vascular anastomoses. Disruption of the microvasculature extends into the outer retina where the IS/OS/E is disrupted. Micro vascular abnormalities, such as a distorted juxtafoveal capillary plexus with prominent anastomoses, FA imaging demonstrates hyper fluorescence in the temporal juxtafoveal region in the earliest stage associated with late leakage (Figure 5).

Figure 5: FA imaging.

Conclusion

We used the SS-OCT Angio technique to investigate eyes with MacTel2 using a TRITON SS OCT. To extract the blood flow information and visualize the microvasculature of the central macula, the central macular microvasculature was visualized well than with FA imaging. In addition, the better visualization of the juxtafoveal microvasculature with SS-OCT Angio may also be due, in part, to the absence of leakage on OCT Angio imaging, and it is this leakage that could obscure the normal vasculature seen on routine FA imaging. By using this ability to extract and visualize these retinal layers in MacTel2 and other diseases, SS-OCT Angio imaging may help facilitate the early diagnosis of disease and provide a better understanding of disease progression and the efficacy of treatments and to differentiate MacTel2 from other diseases affecting the retinal microvasculature associated with fluorescein angiographic leakage, such as neovascularagrelated macular degeneration, diabetic macular edema, vein occlusions, and cystoids macular edema from differing conditions.

In conclusion, OMAG is a noninvasive imaging strategy that holds great promise for the evaluation of eyes with MacTel2 and other diseases affecting the retinal microvasculature associated with fluorescein angiographic leakage, such as neovascularage-related macular degeneration, diabetic macular edema, vein occlusions, and cystoids macular edema from differing conditions. In addition, OMAG should be useful in investigating the path physiology of angiographicallysilent cystoids macular edema, such as the micro vascular changes associated withthetaxane class of medications (paclitaxel and docetaxel), vitreomacular traction, epiretinal membranes, niacin maculopathy, juvenile retinoschisis, retinitis pimentos, and Goldman Favre disease. However, different patterns of retinal segmentation may be needed to highlight the underlying microangiopathy using OMAG, and all the different segmentations are derived from one three-dimensional data set, which takes about 4.5 seconds to acquire and has none of the potential adverse events associated with FA. This study demonstrated the ability of OMAG to image the perifoveal microvasculature in eyes with different stages of MacTel2, but further studies are needed to quantitative vascular caliber, density, and blood flow in the central macula and identify whether changes in these parameters predict disease progression or response to future therapeutic interventions.
References

1. Gass JD, Blodi BA (1993) Idiopathic juxtafoveal retinal telangiectasia. Update of classification and followup study. Ophthalmology 100: 1536-1546.

2. Gass JD, Oyakawa RT (1982) Idiopathic juxtafoveal retinal telangiectasis. Arch Ophthalmol 100: 769-780.

3. Yannuzzi LA, Bardal AM, Freund KB, Chen KJ, Eandi CM, et al. (2006) Idiopathic macular telangiectasia. Arch Ophthalmol 124: 450-460.

4. Yannuzzi LA (2010) the Retinal Atlas. Saunders Elsevier, Oxford, UK.

5. Aung KZ, Wickremasinghe SS, Makeyeva G, Robman L, Guymer RH (2010) the prevalence estimates of Macular telangiectasia type 2: the Melbourne Collaborative Cohort Study. Retina 30: 473-478.

6. Klein R, Blodi BA, Meuer SM, Myers CE, Chew EY, et al. (2010) the prevalence of macular telangiectasia type 2 in the Beaver Dam eye study. Am J Ophthalmol 150: 55-62.

7. Clemons TE, Gillies MC, Chew EY, Bird AC, Peto T, et al. (2010) Baseline characteristics of participants in the natural history study of macular telangiectasia (MacTel) MacTel Project ReportNo. 2. Ophthalmic Epidemiol 17: 66-73.

8. Sallo FB, Leung I, Chung M, Wolf-Schnurrbusch UE, Dubra A, et al. (2011) Retinal crystals in type 2 idiopathic macular telangiectasia. Ophthalmology 118: 2461-2467.

9. Zhu M, Krilis M, Gillies MC (2013) the relationship between inner retinal cavitation, photoreceptor disruption, and the integrity of the outer limiting membrane in macular telangiectasia type 2. Retina 33: 1547-1550.

10. Schmitz-Valckenberg S, Ona EE, Rubin GS, Peto T, Tufail A, et al. (2009) Structural and functional changes over time in MacTel patients. Retina 29: 1314-1320.

11. López-Sáez MP, Ordouci E, Tornero P, Baeza A, Sainza T, et al. (1998) Fluoresceininduced allergic reaction. Ann Allergy Asthma Immunol 81: 428-430.

12. Lira RP, Oliveira CL, Marques MV, Silva AR, Pessoa Cde C (2007) Adverse reactions of fluoresceinangiography: a prospective study. Arq Bras Oftalmol 70: 615-618.

13. Charbel Issa P, Gillies MC, Chew EY, Bird AC, Heeren TFC, et al. (2013) Macular telangiectasia type 2. Prog Retin Eye Res 34: 49-77.

14. Theelen T, Berendschot TT, Boon CJ, Hoyng CB, Klevering BJ (2008) Analysis of visual pigment by fundus autofluorescence. Exp Eye Res 86: 296-304.

15. Wong WT, Foroozan F, Majumdar Z, Bonner RF, Cunningham C, et al. (2009) Fundus autofluorescence in type 2 idiopathic macular telangiectasia: correlation with optical coherence tomography and microperimetry. Am J Ophthalmol 148: 573-583.

16. Ooto S, Hangai M, Takayama K, Arakawa N, Tsujikawa A, et al. (2011) High resolution photoreceptor imaging in idiopathic macular telangiectasia type 2 using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 52: 5541-5550.

17. Balaskas K, Leung I, Sallo FB, Clemons TE, Bird AC, et al. (2014) Associations between autofluorescence abnormalities and visual acuity in idiopathic macular telangiectasia type 2: MacTel Project report number 5. Retina 34: 1630-1636.

18. Mathew R, Sivaprasad S, Florea D, Leung I, Sallo F, et al. (2013) Agreement between timedomain and specklesdomain optical coherence tomography in the assessment of macular thickness in patients with idiopathic macular telangiectasia type 2. Ophthalmologica 230: 144-150.

19. Surguch V, Gamulescu MA, Gabel VP (2007) Optical coherence tomography findings in idiopathichjuxtafoveal retinal telangiectasis. Graefes Arch Clin Exp Ophthalmol 245: 783-788.

20. Gaudric A, Ducus de Lahitte G, Cohen SY, Massin P, Haouchine B (2006) Optical coherence tomography in group 2A idiopathic juxtafoveal retinal telangiectasis. Arch Ophthalmol 124: 1410-1419.

21. Paunescu LA, Ko TH, Duke JS, Chan A, Drexler W, et al. (2006) Idiopathic juxtafoveal retinal telangiectasis: new findings by ultrahigh-resolution optical coherence tomography. Ophthalmology 113: 48-57.

22. Koizumi H, Iida T, Maruko I (2006) Morphologic features of group 2A idiopathichjuxtafoveal retinal telangiectasis in three-dimensional optical coherence tomography. Am J Ophthalmol 142: 340-343.

23. Baumüller S, Charbel Issa P, Scholl HP, Schmitz-Valckenberg S, Holz FG (2010) Outer retinal hyperreflective spots on specklesdomain optical coherence tomography in macular telangiectasia type 2. Ophthalmology 117: 2162-2168.

24. Sallo FB, Peto T, Egan C, Wolf-Schnurrbusch UE, Clemons TE, et al. (2012) The IS/OS junction layer in the natural history of type 2 idiopathic macular telangiectasia. Invest Ophthalmol Vis Sci 53: 7889-7895.

25. Sallo FB, Peto T, Egan C, Wolf-Schnurrbusch UE, Clemons TE, et al. (2012) “En face” OCT imaging of the IS/OS junction line in type 2 idiopathic macular telangiectasia. Invest Ophthalmol Vis Sci 53: 6145-6152.

26. Wang RK, An L, Francis P, Wilson DJ (2010) Depthresolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. Opt Lett 35: 1467-1469.

27. An L, Johnstone M, Wang RK (2012) Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects. J Biomed Opt 17: 116018.

28. Wang RK (2010) Optical Microangiography: A label free 3d imaging technology to visualize and quantify blood circulations within tissue beds in vivo. IEEE J Sel Top Quantum Electron 16: 545-554.

29. WangRK, Jacques SL, Ma Z, Hurst S, Hanson SR, et al. (2007) three dimensional optical angiography. Opt Express 15: 4083-4097.

30. Choi W, Mohler KJ, Potsaid B, Lu CD, Liu JJ, et al. (2013) Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS One 8: e81499.

31. Jia Y, Bailey ST, Wilson DJ, Tan O, Klein M, et al. (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121: 1435-1444.

32. Wei E, Jia J, Tan O, Potsaid BB, Liu JJ, et al. (2013) Parafoveal retinal vascular response to pattern visual stimulation assessed with OCT angiography. PLoS One 8: e81343.

33. Braaf B, Vermeer KA, Vienola KV, de Boer JF (2012) Angiography
of the retina and the choroid with phaseresolved OCT using interval-optimized backstitched B-scans. Opt Express 20: 20516-20534.

34. Schwartz DM, Fingler J, Kim DY, Zawadzki RJ, Morse LS, et al. (2014) Phasevariance optical coherence tomography: a technique for noninvasive angiography. Ophthalmology 121: 180-187.

35. Kim DY, Finglera J, Zawadzkib DJ, Parkb SS, Morseb LS, et al. (2013) Optical imaging of the chorioretinal vasculature in the living human eye. Proc Natl AcadSci U S A 110: 14354-14359.

36. Motaghiannezam SM, Koos D, Fraser SE (2012) Differential phase-contrast, sweptsourceoptical coherence tomography at 1060 nm for in vivo human retinal and choroidal vasculature visualization. JBiomed Opt 17: 026011.

37. Kim DY, Fingler J, Zawadzki RJ, Park SS, Morse LS, et al. (2012) Noninvasive Imaging of the Foveal Avascular Zone with High-Speed, Phase-Variance Optical Coherence Tomography. Invest Ophthalmol Vis Sci 53: 85-92.