Genome-wide analysis of biosynthetic gene cluster reveals correlated gene loss with absence of usnic acid in lichen forming fungi

David Pizarro1*, Pradeep K. Divakar1*, Felix Grewe2, Ana Crespo1, Francesco Dal Grande3,4 and H. Thorsten Lumbsch2

1Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
2Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois, USA
3 Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße 14-16 D-60325 Frankfurt am Main, Germany
4 LOEWE Center for Translational Biodiversity Genomics, Georg-Voigt-Straße 14-16 D-60325 Frankfurt am Main, Germany

*Corresponding author: E-mail: dapizarr@ucm.es ; pdivakar@farm.ucm.es

Abstract
Lichen-forming fungi are known to produce a large number of secondary metabolites. Some metabolites are deposited in the cortical layer of the lichen thallus where they exert important ecological functions, such as UV filtering. The fact that closely related lineages of lichen-forming fungi can differ in cortical chemistry suggests that natural product biosynthesis in lichens can evolve independent from phylogenetic constraints. Usnic acid is one of the major cortical pigments in lichens. Here we used a comparative genomic approach on 46 lichen-forming fungal species of the Lecanoromycetes to elucidate the biosynthetic gene content and evolution of the gene cluster putatively
responsible for the biosynthesis of usnic acid. Whole genome sequences were gathered from taxa belonging to different orders and families of Lecanoromycetes, where Parmeliaceae is the most well-represented taxon, and analyzed with a variety of genomic tools. The highest number of biosynthetic gene clusters was found in *Evernia prunastri*, *Pannoparmelia angustata* and *Parmotrema austrosinense*, respectively and lowest in *Canoparmelia nairobiensis*, *Bulbothrix sensibilis* and *Hypotrachyna scytodes*. We found that all studied species producing usnic acid contain the putative usnic acid biosynthetic gene cluster, whereas the cluster was absent in all genomes of species lacking usnic acid. The absence of the gene cluster was supported by an additional unsuccessful search for ß-ketoacylsynthase, the most conserved domain of the gene cluster, in the genomes of species lacking usnic acid. The domain architecture of this PKS cluster - homologous to the already known usnic acid PKS cluster (*MPAS*) and CYT450 (*MPAO*) - varies within the studied species, whereas the gene arrangement is highly similar in closely related taxa. We hypothesize that the ancestor of these lichen-forming fungi contained the putative usnic acid producing PKS cluster and that the gene cluster was lost repeatedly during the evolution of these groups. Our study provides insight into the genomic adaptations to the evolutionary success of these lichen forming fungal species and sets a baseline for further exploration of biosynthetic gene content and its evolutionary significance.

Key words: Ascomycota, evolution, comparative-genomics, metabolic gene cluster, usnic acid, Parmeliaceae

Introduction

Lichen are fungi that form stable symbiotic relationships with algae and/or cyanobacteria (Crespo et al. 2014)(Nash 2008). Lichen-forming fungi house in vegetative structures (lichen thalli) the photosynthetically active partner. Lichens are known to produce a large number of secondary metabolites (many of them extrolites) with almost 1000 known substances, the large majority of which exclusively found in lichen-forming fungi (Calcott et al. 2018) (Elix et al. 1984) (Hawksworth 1976) (Huneck and Yoshimura 1996) (Crespo et al. 2010) (Lumbsch 1998) (Stocker-Wörgötter 2008). Extrolites are deposited extracellularly, mostly in the medullary layer...
of the lichen thallus or in the cortical layer. Only a small number of substances occur in the cortex. Among those, coupled phenolics, which originate from polyketide pathways, such as depsides, depsidones and usnic acids are found almost exclusively in lichens. In macrolichens, the most common cortical substances are the depsides atranorin or usnic acid. Usnic acids and cortical substances in general protect the photobiont from solar radiations as UV-B (reviewed in (Solhaug and Gauslaa 2011)). The occurrence of these cortical substances is usually constant within clades (e.g., genera) and has been used to circumscribe genera (Lumbsch 1998) especially in Parmeliaceae, which is the largest family of lichen-forming fungi (Crespo et al. 2010) (A. Elix 1993) (Thell et al. 2012). This said, cortical chemistry can be highly variable even among closely related genera, making the occurrence of these substances often scattered over the phylogenetic tree. This pattern suggests that natural product biosynthesis in lichens may evolve independently from phylogenetic constraints.

A previous ancestral character state reconstruction analysis suggested that the ancestor of parmelioid lichens, which is the largest group within Parmeliaceae, contained usnic acid and that this substance has been lost and replaced by atranorin several times independently (Divakar et al. 2013). However, the genetic mechanisms behind these repeated losses remained elusive.

Experimental work on lichen secondary metabolism is hampered by the fact that lichen-forming fungi are extremely slow growing. However, the recent applications of metagenomic approaches to the study of the lichen symbiosis can fortunately obviate the limitations imposed by the slow-growing nature of lichen-forming fungi and shed light on the underlying genetics of their secondary metabolism (Bertrand et al. 2018a). For example, a comparative genomic study identified a polyketide synthase gene cluster putatively encoding for the biosynthesis of usnic acid (Abdel-Hameed et al. 2016). Genomic data sets are also increasing our knowledge of the presence and domain architecture of polyketide synthases, which are key for the biosynthesis of fungal phenolics, at an unprecedented rate (Calchera et al. 2019).

The secondary metabolite biosynthetic pathways in filamentous fungi - including lichen-forming fungi - are typically organized into contiguous gene clusters in the genome, i.e. biosynthetic gene clusters (BGCs). These gene clusters contain the chemical backbone synthesis genes, such as nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), tailoring enzymes, transporters and, often, transcription factors that control the expression of the clustered genes (Keller 2019).
Polyketide synthases (PKS) catalyze repetitive condensations of an acetyl-coenzyme A (CoA) starter with malonyl-CoA units. Most of the fungal PKSs are type I PKSs, which consist of a set of β-ketoacyl synthase (KS), acyl transferase (AT), and acyl carrier protein (ACP) domains. The PKSs are classified into non-reducing (NR-), partially reducing (PR-), and highly reducing (HR-PKS) types depending on the extent of chemical reduction in their polyketide structure (Bingle et al. 1999)(Miao et al. 1998)(Nicholson et al. 2001). Based on the phylogenetic relationships and domain architecture, the PKSs are further divided into subclades (Kroken et al. 2003). Within the NR-PKS eight groups (I to VIII) with known functions have been described in fungi so far (Liu et al. 2015). The genomes of ascomycetes fungi usually contain dozens of biosynthetic gene clusters. These are either species specific or broadly taxonomically distributed and are often very different between species (Khalidi et al. 2010)(Keller 2015). The total numbers of BGCs can differ widely even between very closely related species (Lind et al. 2015)(Lind et al. 2017). While the number and functions of BGCs have been largely studied in non-lichenized fungal model organisms, they are poorly known in lichen forming-fungal taxa (Calchera et al. 2019).

Here, we used a genomic approach to elucidate the biosynthetic gene content and the evolution of the PKS gene that putatively is central for the biosynthesis of usnic acid. We tested whether the presence and absence of usnic acid in a lichen is caused by differential expression of genes or reflects the presence of a gene cluster in the genome of a lichen-forming fungus. We specifically focused on the following research questions: 1) do all usnic acid-containing lichen-forming fungi share a homologous gene cluster?, 2) is this gene cluster present in lichen-forming fungi that do not produce usnic acid?, 3) is the gene cluster architecture conserved across Parmeliaceae? and 4) how can the presence or absence of the putatively usnic acid producing gene cluster be explained?

Results and Discussion

Genome Completeness to Detect Putative Usnic acid BGC
Metagenomic methods recovered the large parts of the lichen-fungal genomes with a genome completeness varying from 70.51 to 98.4%. The lowest values of completeness
were found for *Bulbothrix sensibilis* (70.5%) and *Usnea antarctica* (70.4%), and the highest in *Alectoria sarmentosa* (96.4%) and *Evernia prunastri* (95.3%). This heterogeneity allowed us to test whether the ability to detect the presence of the putative usnic acid gene cluster was dependent on the level of genome completeness. The fact that we detected the putative usnic acid cluster in *Usnea antarctica* demonstrates that the detectability of the targeted gene cluster and the level of genome completeness were independent in our study. The statistics of genome assemblies of the studied species are depicted in supplementary table S1, Supplementary Material online.

Biosynthetic Gene Cluster Content

The species with a higher number of biosynthetic gene clusters (BGCs) were *Evernia prunastri* with 98 BGCs followed by *Pannoparmelia angustata* with 78 BGC and *Parmotrema austrosinense* with 75 BGCs. The species with lowest number were *Canoparmelia nairobiensis* with 10 BGCs, *Bulbothrix sensibilis* with 11 BGCs and *Hypotrachyna scytodes* with 13 BGCs (fig. 1). While the BGCs have been studied for individual species in lichen forming fungi (see e.g. (Armaleo et al. 2011)(Bertrand et al. 2018b)(Dal Grande et al. 2018)(Calchera et al. 2019), this has not yet been compared at large scale e.g. family level. To our knowledge, this is the first study comparing BGC contents in species belonging to different major clades of the family Parmeliaceae (fig. 1). Within Parmeliaceae, 80 BGCs have been reported in *Evernia prunastri* and 51 in *Pseudevernia furfuracea* (Calchera et al. 2019); in Cladoniaceae, *C. uncialis* contained 48 BGCs (Bertrand et al. 2018b); in Teloschistaceae, *Caloplaca flavorubescens* had 13 BGCs (Park et al. 2013); and in Umbilicariaceae, *Lasallia hispanica* contained 18 BGCs (Dal Grande et al. 2018). While the highest number of BGCs has been found in some Parmeliaceae taxa (fig. 1), no correlations between BGCs and secondary metabolism or ecology were found. For example, *E. prunastri* with a high number of BGCs (98) contained three main secondary metabolites (atranorin, usnic and evernic acids) whereas *P. furfuracea* with a relatively low number of BGCs (51) also contained a similar number of main substances (atranorin, physodic and olivetoric acids) (supplementary table S2, Supplementary Material online). Both species are found in same ecological conditions and wide spread in temperate habitats. *P. austrosinense* with a high number of BGCs (75) contained two main substances (atranorin and lecanoric acid) (supplementary table S2, Supplementary Material online) and are widely distributed in the tropical habitats. Nonetheless, a genome-wide examination of BGC
contents provides a road map to the genomic changes essential for the extensive
diversity of secondary metabolites in this group of lichen-forming fungi. Parmeliaceae
is one of the most diverse families both in species diversity and in containing a large
number of different secondary metabolites. Usnic acid and atranorin are the most
common cortical substances in the family. Usnic acid protect the photobiont from solar
radiations as UV-B and act as defense against herbivores (Solhaug and Gauslaa 2011)
and has been attributed to adaptive radiation in Parmeliaceae occupying different
climatic regions, for example *Xanthoparmelia* in semi-arid regions (Lumbsch et al.
2008; Divakar et al. 2013). This is the most diverse genus of lichen-forming with more
than 800 described species; of these over 600 species contained usnic acid.

Phylogeny of Non-Reducing PKS

A NJ phylogeny of the KS domain and full PKS sequence revealed the evolutionary
relationship of biosynthetic gene content and the origins of the putative usnic acid PKS
genes in lichen forming fungi. The KS domain and PKS full-length sequence showed
highly similar tree topology (supplementary fig. S2, Supplementary Material online)
and therefore only PKS phylogeny is discussed in detail. The data matrix of amino acid
sequences of PKS domain consists of 356 columns (residues) and 167 taxa (of these 45
were from curated reference data). All sequences included in the analysis passed the
composition chi2-test (P<5%) and the best substitution model was LG+I+G4 according
to BIC. The phylogenetic tree inferred from the PKS data matrix was rooted using
polyketide 6-methylsalicylic acid sequences. In the resulted tree, two main groups were
found among NR-PKSes (fig. 2). The well-supported topology is concordant with
previous reported KS phylogenies (Liu et al. 2015; see Supplementary fig. S1,
Supplementary Material online).

The first monophyletic cluster comprised the groups I-V of NR-PKS. The group
I included PKS sequences for the biosynthesis of aromatic compound derived from
orsellinic acid, such as grayanic acid in *Cladonia grayi* (Armaleo et al. 2011) or
mycotoxins, such as zearalenone in *Fusarium gramineanum* (Gaffoor and Trail 2006).
The PKS of this group show a domain arrangement of SAT, KS, AT, PT, one or two
ACP domains and TE. Group V comprised PKS without the TE domain and is
implicated in the production of different mycotoxin, such as desertorin (*Aspergillus
nidulans*) or atrochrysone (*Aspergillus fumigatus*) (Galagan et al. 2005)(Galagan et al.
2005; Lim et al. 2012). Groups II-III-IV formed a supported sister-relationship to group
V, comprising PKS with TE/CLC domain located on the N-terminal with a similarity in the domain arrangement. Group II contained PKS involved in melanin biosynthesis as PKS1 of *Exophiala dermatitidis* (Feng et al. 2001) and it is characterized by having two ACP domain between PT and TE; in this group many homologous genes to melanin biosynthesis of some Pezizomycotina fungi were found in lichen-forming fungi. This could indicate that the NR-PKS group II could be responsible for the biosynthesis of melanin in lichen forming fungi. Moreover, homology search using a known gene clusters have been applied for the identification of related gene clusters in other fungal genomes (Gardiner and Howlett 2005; Khaldi et al. 2010). However, an additional study will be necessary in order to confirm its function in lichens. Groups III and IV NR-PKS contain proteins that synthesize large polyketides chains as conidial yellow pigment Alb1 (group III) or aflatoxin/sterigmatocystin of *A. nidulans* (Yu and Leonard 1995) (group IV) (supplementary table S3, Supplementary Material online).

The second monophyletic cluster included the groups VI-VII-VIII and an undescribed group (named hereafter “New Group”) sister to VI and VII group, which does not contain PKS of known function. As eight NR-PKS groups with known functions have been described in fungi (Liu et al. 2015), our results suggest that this group with unknown function may belong to a new NR-PKS group. This result can serve as valuable entry point to search for functional gene clusters in fungi. However, we refrain to describe this group formally as this is not the main focus of our study and an additional study will be needed. Sequences located on the groups VI, VII and the New Group are largely characterized by having a methylation domain (CMet) between the ACP domain and the N-terminal domain. Group VII, which is responsible for the biosynthesis of citrinin in many fungal species (*Aspergillus nidulans, Coccidioides immitis*, Table S3), (Chiang et al. 2009; Gallo et al. 2013), is characterized by having a reductase (R) domain placed on the N-terminal. The domain arrangement of this probable new group is similar to group VI. While the new group included only lichen-forming fungi, the blast analysis found homologous sequences belonging to other groups of fungi with unknown functions. The PKS putatively responsible for usnic acid biosynthesis in lichens was found in NR-PKS group VI (fig. 2). We found that all producer species contained PKS sequences homologous to the putative PKS of usnic acid of *Cladonia uncialis* (MPAS) (Abdel-Hameed et al. 2016). This orthologous gene cluster was absent in all non-producer species.
Within group VI a strong phylogenetic structure was observed. Three main strongly supported (>95 bootstrap) monophyletic groups were found, in accordance with the domain arrangement of the cluster. The short phylogenetic branches of Usnic acid PKS gene cluster and the concordance in phylogenetic relationships between PKS phylogeny and species phylogeny (see, for example, Usnea, fig. 3) (Pizarro et al. 2018), indicate that the scattered occurrence of usnic acid across the phylogenetic tree of these lichen-forming fungi may not be the result of horizontal gene transfer (Kroken et al. 2003; Bushley and Turgeon 2010; Campbell et al. 2013; Lind et al. 2017).

Gene Arrangement of Putative Usnic Acid BGC

We then compared gene cluster architecture of the putative usnic acid BGC among six species of Lecanoromycetes. All genomes of producer species shared homologous genes, i.e., a core NR-PKS biosynthetic gene (corresponding to MPAS in Cladonia uncialis), a cytochrome P450 gene (CYT450) (corresponding to MPAO in Cladonia uncialis) (Abdel-Hameed et al. 2016) and one or two putative transcription factors (fig. 4). The putative transcription factors (in red in fig. 4) contain Cys6-Zn domains, as often found in regulators of the secondary metabolism in fungi (Shelest 2017). The gene arrangement of the BGC in *Usnea florida* is very similar to those of the other Parmeliaceae species, *Evernia prunastri* and *Alectoria sarmentosa*. They share homologous genes that could be likely involved in the usnic acid biosynthesis like the Lacasse (Tsai et al. 1999) and the putative oxidoreductase gene, which could be implicated in the oxidation of precursors molecules of usnic acid.

We found an O-methyl transferase gene flanking the core biosynthetic PKS genes in all species, except *Cladonia metacorallifera* and *Rhizoplaca melanophthalma*. This O-methyl transferase gene is common to many BGC and is homologous to the coactivator AflJ, implicated in the biosynthesis of aflatoxin in *Aspergillus parasiticus* (Chang 2003) and to mdpA in *A. nidulans* (Chiang et al. 2009). In the 5’ flanking upstream region of the CYT450 we found a FAD/NADP-containing protein in all species included with exception of *Lobaria pulmonaria*, which contained a serin/threonin kinase. *Evernia prunastri*, *Alectoria sarmentosa*, *Cladonia metacorallifera* and *Rhizoplaca melanophthalma* contained a gene DUF3112 with unknown function, which was in different locations depending on the species. For example, in *Evernia prunastri* it is located between the regulators, whereas in *Alectoria*
See the previous page for the continuation of the text.

Repeated Independent Usnic Acid BGC Losses in Non-Producers

The phylogenetic tree inferred from the concatenated dataset of 2556 BUSCO genes showed similar results as in our previous study (fig. 5; Pizarro et al. 2019). All nodes in the tree were maximally supported (100%). Usnic acid-producing species were widely spread across the Lecanorales. All families included in this study had representatives of usnic acid-producing species, such as *Rhizoplaca melanophthalma* (Lecanoraceae), *Cladonia metacorallifera* (Cladoniaceae), and thirteen usnic acid-producing species representing the six major-clades of the Parmeliaceae (see fig. 5). The orthologous putative usnic acid biosynthetic gene cluster was absent in all studied species lacking usnic acid whereas it was present in all studied usnic acid producer species (fig. 5). Interestingly, in some cases producer and non-producer species formed strongly supported sister-group relationship, for example *Cladonia macilenta* (non-producer) and *C. metacorallifera* (producer), *Xanthoparmelia pulla* (non-producer) and *X. chlorochroa* (producer). This strongly suggests that the entire usnic acid biosynthetic gene cluster was lost independently several times during the evolution of this fungal group. Similar results have been found in other groups of BGC and fungi, for example the bikaverin BGC was entirely lost in different *Botrytis* species (Campbell et al. 2013).

The discontinuous distribution of PKS genes among fungal groups has been often explained by gene loss and convergent evolution (Stayton 2015) rather than horizontal gene acquisition (see, e.g. (Kroken et al. 2003)(Bushley and Turgeon 2010)(Campbell et al. 2012)(Lind et al. 2017)). Corroborating this scenario of repeated gene cluster losses, the amino acid sequences of the putative usnic acid biosynthetic genes were highly similar and showed similar tree topology as the species tree (see figs. 3 and 5). Furthermore, within the putative usnic acid PKS gene phylogeny, the branches were homogenous and short, and no long branches were detected (see fig. 3). In the 2556-gene phylogeny, the species containing the usnic acid biosynthetic gene cluster (i.e. producer) do not form one monophyletic cluster. Instead, producers and non-producers were part of a large monophyletic group, suggesting an ancestral state of studied gene cluster in this fungal group (Lind et al. 2017). This is in accordance with the previous finding supporting an ancestral state of usnic acid production in the parmelioid lichens, the major clade within Parmeliaceae (Divakar et al. 2013). Due to
limited taxon sampling, a more conclusive ancestral state reconstruction analysis was not possible, and thus remains a hypothesis to test in future studies. On the other hand, the secondary acquisition or horizontal gene transfer may be possible but it is less probable in our case as. The evolutionary relationships among Lecanorales taxa were highly similar to those published previously (Pizarro et al. 2018) and therefore are not discussed in detail here.

Conclusions

Here we present a first comprehensive study investigating biosynthetic gene contents in the genomes of the largest clade of lichen forming fungi. A total of eight NR-PKS groups (I-VIII) with known functions and, in addition, one novel NR-PKS group with unknown function in fungi were identified. In this study we showed that, all species lacking usnic acid production also lacked the putative biosynthetic gene cluster for usnic acid biosynthesis. To our best knowledge this is the first study to report that the presence/absence of an entire biosynthetic gene cluster is putatively responsible for the biosynthesis of the corresponding secondary metabolite in lichen-forming fungi. The short phylogenetic branches of usnic acid PKS gene cluster, the concordance in phylogenetic relationships between PKS phylogeny and species phylogeny and high similarity in the amino acid sequences of this biosynthetic gene cluster among all usnic acid producer species, suggest that the discontinuous distribution of usnic acid across the phylogenetic tree of these lichen-forming fungi may not be explained by horizontal gene transfer. Rather, we hypothesized that the usnic acid biosynthetic gene cluster might have been entirely lost in the non-producer species during the evolution of these fungi. Our results suggest that gene loss is an evolutionary mechanism underlying secondary metabolite diversity in lichens. Furthermore, our study sets the path for future research on the molecular detection of producer species and the metabolic engineering of lichen secondary metabolite biosynthesis. Investigating gene losses has great potential to reveal the association of BCG with natural compounds and to understand the genomic basis underlying ecological and metabolic changes.

Materials and Methods

Taxon Sampling
A total of 46 lichen-forming fungal species of producers and non-producers of usnic acid were included in this study. We included genomes of species belonging to different orders of Lecanoromycetes including Teloschistales (Xanthoria parietina and Gyalolechia flavorubescens), Umbilicariales (Umbilicaria hispanica [(Dal Grande et al. 2018)], and Lecanorales (family Cladoniaceae: Cladonia grayi, C. macilenta, C. metacorallifera; Lecanoraceae: Rhizoplaca melanophthalma; Parmeliaceae: 39 species representing six of its seven major clades; see supplementary table S2, Supplementary Material online).

Genome Sequencing and Assembly
Total genomic DNA of 38 specimens of Parmeliaceae were extracted from apothecia or thalli using the Quick-DNA™ Fungal/Bacterial Miniprep Kit (Zymo Research, Irvine, CA) following the manufacturers’ instructions. Genome sequencing, assembly and taxonomic assignment were carried out as described in Pizarro et al. (2019).

Genome Completeness Assessment and Phylogenomic analysis
BUSCO analysis was used to evaluate the genome completeness (Simão et al. 2015). Here, we used the Pezizomycotina data set containing 3156 single-copy genes to assess the completeness of the 46 genomes of this study. To infer the phylogenetic relationships between producers and non-producers of usnic acid, every genome was explored following a methodology as described before (Pizarro et al. 2018). The complete BUSCO single-copy genes predicted in each genome were extracted and aligned using MAFFT L-INS-i (Standley 2013). A supermatrix was created by concatenating all alignments using FASconCAT.pl (Kück and Longo 2014). Evolutionary relationships were inferred from this subset using maximum likelihood (ML) analysis implemented in IQTree v1.5.5 (Nguyen et al. 2015)(Kalyaanamoorthy et al. 2017) with standard model selection and 1,000 bootstrap replicates. The resulting tree was visualized using FigTree 1.3.1 (Rambaut 2009).

Biosynthetic Gene Cluster Prediction and Usnic Acid Genes Cluster Identification
In order to identify the putative usnic acid PKS cluster, gene prediction and annotation were performed in every genome using AUGUSTUS (Stanke et al. 2004) and MAKER2 (Holt and Yandell 2011). In parallel, we used every genome and its respective gene prediction as input for antiSMASH 4.0 (Blin et al. 2017) for secondary metabolites gene
cluster prediction. Afterwards, MPAS of *Cladonia uncialis* (A0A0R8YWJ7) and the orthologous gene PKS4 of *Usnea longissima* (AGI60156) sequences were downloaded from Uniprot database and HMM profile was created using MAFFT and HMMER hmmbuild (Mistry et al. 2013). These profiles and hmmsearch tool were used to search the most similar sequences present in every protein data set predicted from each genome. Only non-reducing PKSes were considered for further analyses.

Full-length NR-PKS and KS Domain Phylogenetic Analysis
We used Hidden Markov Model profiles for the identification of a specific type of domain. The recovered NR-PKS proteins were scanned using HMMER against the Pfam (Mitchell et al. 2015) protein domain collection. Then using a bioinformatic approach with BEDtool (getfasta) (Quinlan and Hall 2010), the different KS domains from PKS were identified in the corresponding amino acid sequences. An identical procedure was carried out over an additional curated NR-PKS data set (see supplementary table S3) of characterized fungal NR-PKSs. Multiple alignments were performed using MAFFT L-INS-I over the amino acid sequence of full-length PKS dataset and KS domain dataset. Evolutionary relationships were inferred using ML analysis implemented in IQtree v1.5.5 with standard model selection. For each analysis, a Neighbour Joining and 1000 bootstrap replicates were calculated using fast bootstrapping option. The resulting phylogenetic trees were rooted with 6 Metylsalicylic PKS (6MS) sequences and drawn using FigTree v1.3.

Synteny Comparison of Usnic Acid Biosynthetic Gene Cluster
Genomes that contain the full putative gene clusters of usnic acid biosynthesis were selected for synteny comparison. Since some of the usnic acid producer species had low gene cluster completeness, only *Cladonia macilenta*, *Alectoria sarmentosa*, *Evernia prunastri* and *Rhizoplaca melanophthalma* were considered for the analysis. In addition, *Usnea florida* and *Lobaria pulmonaria*, downloaded from JGI were also included in the analysis. Using Orthofinder (Emms and Kelly 2015) we initially compared the homology among different genomes and subsequently drew their relationship.

Acknowledgements
We thank Daniele Armaleo for granting permission to use the draft genome of *Cladonia grayi*, via the JGI portal. We thankfully acknowledge the valuable feedback from two anonymous reviewers and the editor that greatly improved this study. This study was supported by the Spanish Ministerio de Ciencia e Innovacion (CGL2013-42498-P), the Santander-Universidad Complutense de Madrid (PR75/18-21605, PR87/19-22637 and G/6400100/3000) and The Grainger Bioinformatics Center at the Field Museum (Chicago, IL).

Data and materials availability: All figures and tables generated during the study are included in the paper and/or the Supplementary Materials; and all data used have been deposited in FigShare (https://figshare.com XXX). Additional data related to this paper may be requested from the authors.

References

417 Abdel-Hameed M, Bertrand RL, Piercey-Normore MD, Sorensen JL. 2016. Putative identification of the usnic acid biosynthetic gene cluster by de novo whole-genome sequencing of a lichen-forming fungus. *Fungal Biol*. doi:10.1016/j.funbio.2015.10.009.

418 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *J Mol Biol*. 215(3):403–410. doi:10.1016/S0022-2836(05)80360-2.

419 Armaleo D, Sun X, Culberson C. 2011. Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. *Mycologia*. doi:10.3852/10-335.

420 Bertrand RL, Abdel-Hameed M, Sorensen JL. 2018a. Lichen Biosynthetic Gene Clusters Part II: Homology Mapping Suggests a Functional Diversity. *J Nat Prod*. doi:10.1021/acs.jnatprod.7b00770.

421 Bertrand RL, Abdel-Hameed M, Sorensen JL. 2018b. Lichen Biosynthetic Gene Clusters. Part I: Genome Sequencing Reveals a Rich Biosynthetic Potential. *J Nat Prod*. doi:10.1021/acs.jnatprod.7b00769.

422 Bingle LEH, Simpson TJ, Lazarus CM. 1999. Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. *Fungal Genet Biol*. doi:10.1006/fgbi.1999.1115.

423 Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, Suarez Duran HG, De Los Santos ELC, Kim HU, Nave M, et al. 2017. *AntiSMASH* 4.0 - improvements in chemistry prediction and gene cluster boundary identification. *Nucleic Acids Res*. doi:10.1093/nar/gkx319.

424 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics*. 30(15):2114–2120. doi:10.1093/bioinformatics/btu170.

425 Buchfink B, Xie C, Huson DH. 2014. Fast and sensitive protein alignment using
Bushley KE, Turgeon BG. 2010. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol. doi:10.1186/1471-2148-10-26.

Calchera A, Dal Grande F, Bode HB, Schmitt I. 2019. Biosynthetic Gene Content of the ‘Perfume Lichens’ Evernia prunastri and Pseudevernia furfuracea. Molecules. doi:10.3390/molecules24010203.

Calcott MJ, Ackerley DF, Knight A, Keyzers RA, Owen JG. 2018. Secondary metabolism in the lichen symbiosis. Chem Soc Rev. doi:10.1039/c7cs00431a.

Campbell MA, Rokas A, Slot JC. 2012. Horizontal transfer and death of a fungal secondary metabolic gene cluster. Genome Biol Evol. doi:10.1093/gbe/evs011.

Campbell MA, Staats M, van Kan JAL, Rokas A, Slot JC. 2013. Repeated loss of an anciently horizontally transferred gene cluster in Botrytis. Mycologia. doi:10.3852/12-390.

Chang P-K. 2003. The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. Mol Genet Genomics. doi:10.1007/s00438-003-0809-3.

Chiang YM, Szewczyk E, Davidson AD, Keller N, Oakley BR, Wang CCC. 2009. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuraneone, in aspergillus nidulans. J Am Chem Soc. doi:10.1021/ja8088185.

Crespo A, Divakar PK, Lumbsch HT. 2014. Hyperdiversity closer to animals than to plants. Tree Life.

Crespo A, Kauff F, Divakar PK, del Prado R, Pérez-Ortega S, de Paz GA, Ferencova Z, Blanco O, Roca-Valiente B, Núñez-Zapata J, et al. 2010. Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon.

Dal Grande F, Meiser A, Greshake Tzovaras B, Otte J, Ebersberger I, Schmitt I. 2018. The draft genome of the lichen-forming fungus Lasallia hispanica (Frey) Sancho & A. Crespo. Lichenologist. 50(3):329–340. doi:10.1017/S002428291800021X.

Divakar PK, Kauff F, Crespo A, Leavitt SD, Lumbsch HT. 2013. Understanding phenotypical character evolution in parmelioid lichenized fungi (Parmeliaceae, ascomycota). PLoS One. doi:10.1371/journal.pone.0083115.

Elix JA. 1993. Progress in the Generic Delimitation of Parmelia Sensu Lato Lichens (Ascomycotina: Parmeliaceae) and a Synoptic Key to the Parmeliaceae. Bryologist. doi:10.2307/3243867.

Elix JA, Whitton AA, Sargent M V. 1984. Recent Progress in the Chemistry of Lichen Substances. In: Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Vienna: Springer. p. 103–234.

Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. doi:10.1186/s13059-015-0721-2.
dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala)
dermatitidis. Infect Immun. doi:10.1128/IAI.69.3.1781-1794.2001.
Gaffoor I, Trail F. 2006. Characterization of two polyketide synthase genes involved in
zearealenone biosynthesis in Gibberella zeae. Appl Environ Microbiol.
doi:10.1128/AEM.72.3.1793-1799.2006.
Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Baştürkmen M,
Spevak CC, Clutterbuck J, et al. 2005. Sequencing of Aspergillus nidulans and
comparative analysis with A. fumigatus and A. oryzae. Nature.
doi:10.1038/nature03431.
Gallo A, Ferrara M, Perrone G. 2013. Phylogenetic study of polyketide synthases and
nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Toxins
(Basel). doi:10.3390/toxins5040717.
Gardiner DM, Howlett BJ. 2005. Bioinformatic and expression analysis of the putative
gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol Lett.
doi:10.1016/j.femsle.2005.05.046.
Hawksworth DL. 1976. Lichen Chemotaxonomy. In: DH B, D.L H, R.H B, editors.
Lichenology: Progress and Problems. London: Academic Press. p. 139–184.
Holt C, Yandell M. 2011. MAKER2: An annotation pipeline and genome-database
management tool for second-generation genome projects. BMC Bioinformatics. 12(1).
doi:10.1186/1471-2105-12-491.
Huneck S, Yoshimura I. 1996. Identification of Lichen Substances. Springer, Berlin,
Heidelberg.
Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh HJ, Tappu R.
2016. MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale
Microbiome Sequencing Data. PLoS Comput Biol. 12(6).
doi:10.1371/journal.pcbi.1004957.
Jeon JR, Baldrian P, Murugesan K, Chang YS. 2012. Laccase-catalysed oxidations of
naturally occurring phenols: From in vivo biosynthetic pathways to green synthetic
applications. Microb Biotechnol. doi:10.1111/j.1751-7915.2011.00273.x.
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017.
ModellFinder: Fast model selection for accurate phylogenetic estimates. Nat Methods.
doi:10.1038/nmeth.4285.
Keller NP. 2015. Translating biosynthetic gene clusters into fungal armor and
weaponry. Nat Chem Biol. doi:10.1038/nchembio.1897.
Keller NP. 2019. Fungal secondary metabolism: regulation, function and drug
discovery. Nat Rev Microbiol. doi:10.1038/s41579-018-0121-1.
Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND. 2010.
SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol.
doi:10.1016/j.fgb.2010.06.003.
Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG. 2003. Phylogenomic analysis of
type I polyketide synthase genes in pathogenic and saprobiic ascomycetes. Proc Natl
Acad Sci. doi:10.1073/pnas.2532165100.
Kück P, Longo GC. 2014. FASconCAT-G: Extensive functions for multiple sequence
alignment preparations concerning phylogenetic studies. Front Zool. 11(1).
doi:10.1186/s12983-014-0081-x.
Lim FY, Hou Y, Chen Y, Oh J-H, Lee I, Bugni TS, Keller NP. 2012. Genome-Based Cluster
Deletion Reveals an Endocrocin Biosynthetic Pathway in Aspergillus fumigatus. Appl

Rambaut A. 2009. FigTree v1.3.1: Tree figure drawing tool. Website http://tree.bio.ed.ac.uk/software/figtree.

https://scholar.google.com/scholar?hl=en&as_sdt=0,25&q=rambaut+figtree#4.

Schmitt I, Lumbsch HT. 2009. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS One. doi:10.1371/journal.pone.0004437.

Shelest E. 2017. Transcription factors in fungi: TFome dynamics, three major families, and dual-specificity TFs. Front Genet. doi:10.3389/fgene.2017.00053.

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V., Zdobnov EM. 2015. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 31(19):3210–3212. doi:10.1093/bioinformatics/btv351.

Solhaug KA, Gauslaa Y. 2011. Secondary Lichen Compounds as Protection Against Excess Solar Radiation and Herbivores.

Standley K. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. (outlines version 7). Mol Biol Evol. 30(4):772–780. doi:10.1093/molbev/mst010 [doi].

http://scholar.google.com/scholar?start=80&q=allintitle:+software+%22user+experience%22+OR+OR+OR+%22user-experience%22+OR+OR+OR+UX+OR+OR+OR+usability&hl=en&as_sdt=0,5&as_ylo=2012&as_yhi=2015#19.

Stanke M, Steinkamp R, Waack S, Morgenstern B. 2004. AUGUSTUS: A web server for gene finding in eukaryotes. Nucleic Acids Res. doi:10.1093/nar/gkh379.

Stayton CT. 2015. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution (N Y). doi:10.1111/evo.12729.

Stocker-Wörgötter E. 2008. Metabolic diversity of lichen-forming ascomycetous fungi: Culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep. doi:10.1039/b606983p.

Thell A, Crespo A, Divakar PK, Kärnefelt I, Leavitt SD, Lumbsch HT, Seaward MRD. 2012. A review of the lichen family Parmeliaceae - history, phylogeny and current taxonomy. Nord J Bot. doi:10.1111/j.1756-1051.2012.00008.x.

Tsai HF, Wheeler MH, Chang YC, Kwon-Chung KJ (1999) A developmentally regulated gene cluster involved in conidial pigmentbiosynthesis inAspergillus fumigatus. J Bacteriol 181:6469–6477

Yu JH, Leonard TJ. 1995. Sterigmatocystin biosynthesis in Aspergillus nidulans requires a novel type I polyketide synthase. J Bacteriol. doi:10.1128/jb.177.16.4792-4800.1995.
Supplementary Materials

Supplementary Fig. S1. Gene tree of KS domain dataset inferred by ML analysis in IQtree using 6MS protein sequence as outgroup.

Supplementary Table S1. Statistics of the genome assemblies of species used in this study.

Supplementary Table S2. List of species included in the analysis with number of predicted BGC and secondary metabolites recovered from literature.

Supplementary Table S3. List of additional sequences included on the PKS gene phylogeny with their corresponding ProteinID, metabolic product when is known and the subgroup of NR-PKS.
Figure Legends

FIG. 1. Genome completeness and biosynthetic gene cluster assessment of 46 lichen-forming fungi genomes used for this study. Bars represent the number of biosynthetic gene cluster (blue), number of non-reducing PKS (orange), and percentage of Genome Completeness (grey). The Y-axis represents the values of percentage and the number of biosynthetic gene clusters.

FIG. 2. Gene tree of NR-PKS dataset inferred by ML analysis in IQtree using 6 Methylsalicylic PKS protein sequences as outgroup. The distinct colors represent the different groups corresponding to the domain arrangement. In each group the domain arrangement of NR-PKS is highlighted with distinct colors. Abbreviations: SAT = starter unit-ACP transacylase, KS = ketosynthase, AT = acyl transferase, PT = product template, ACP = acyl carrier protein, TE = thioesterase, TE/CLC = thioesterase/Claisen cyclase, CMeT = C-methyltransferase, R = reductase.

FIG. 3. Fragment of NR-PKS tree showing the relationship of putative PKS responsible for the biosynthesis of usnic acid.

FIG. 4. Putative usnic acid compound cluster (UA) conservation and synteny. The UA cluster from other lichen-forming fungi resembled to the characterized usnic acid core genes PKS (MPAS) and Cytochrome P450 (MPAO) from Cladonia uncialis (high percentage of identity in protein-by-protein comparisons of both genes in all species included).

FIG. 5. Phylogenetic tree from the IQTree analysis based on a concatenated dataset of 2556 BUSCO genes (Pizarro et al. 2018). Numbers at the nodes represent ML bootstrap support values based on 1,000 bootstrap pseudoreplicates. Species in orange and black indicate the usnic acid-producer species and non-producer species, respectively.

http://mc.manuscriptcentral.com/gbe
FIG. 1. Genome completeness and biosynthetic gene cluster assessment of 46 lichen-forming fungi genomes used for this study. Bars represent the number of biosynthetic gene cluster (blue), number of non-reducing PKS (orange), and percentage of Genome Completeness (grey). The Y-axis represents the values of percentage and the number of biosynthetic gene clusters.

188x116mm (300 x 300 DPI)
FIG. 2. Gene tree of NR-PKS dataset inferred by ML analysis in IQtree using 6 Methylsalicylic PKS protein sequences as outgroup. The distinct colors represent the different groups corresponding to the domain arrangement. In each group the domain arrangement of NR-PKS is highlighted with distinct colors. Abbreviations: SAT = starter unit-ACP transacylase, KS = ketosynthase, AT = acyl transferase, PT = product template, ACP = acyl carrier protein, TE = thioesterase, TE/CLC = thioesterase/Claisen cyclase, CMeT = C-methyltransferase, R = reductase.

700x651mm (200 x 200 DPI)
FIG. 3. Fragment of NR-PKS tree showing the relationship of putative PKS responsible for the biosynthesis of usnic acid.

115x239mm (300 x 300 DPI)
FIG. 4. Putative usnic acid compound cluster (UA) conservation and synteny. The UA cluster from other lichen-forming fungi resembled to the characterized usnic acid core genes PKS (MPAS) and Cytochrome P450 (MPAO) from Cladonia uncialis (high percentage of identity in protein-by-protein comparisons of both genes in all species included).

279x215mm (300 x 300 DPI)
FIG. 5. Phylogenetic tree from the IQTree analysis based on a concatenated dataset of 2556 BUSCO genes (Pizarro et al. 2018). Numbers at the nodes represent ML bootstrap support values based on 1,000 bootstrap pseudoreplicates. Species in orange and black indicate the usnic acid-producer species and non-producer species, respectively.

202x186mm (300 x 300 DPI)