Differences in Coformer Interactions of the 2,4-Diaminopyrimidines Pyrimethamine and Trimethoprim

Lamis Alaa Eldin Refat, Ciaran O’Malley, John M. Simmie, Patrick McArdle,* and Andrea Erxleben*

ABSTRACT: The identification and study of supramolecular synthons is a fundamental task in the design of pharmaceutical cocrystals. The malaria drug pyrimethamine (pyr) and the antibiotic trimethoprim (tmp) are both 2,4-diaminopyrimidine derivatives, providing the same C−NH2/N=NC−NH2 and C−NH2/N=NC interaction sites. In this article, we analyze and compare the synthons observed in the crystal structures of tmp and pyr cocrystals and molecular salts with sulfamethazine (smz), α-ketoglutaric acid (keto), oxalic acid (ox), sebacic acid (seb), and azellic acid (az). We show that the same coformer interacts with different binding sites of the 2,4-diaminopyrimidine ring in the respective tmp and pyr cocrystals or binds at the same site but gives H bonding patterns with different graph set notions. Pyr-smz·CH3OH is the first crystal structure in which the interaction of the sulfa drug at the C−NH2/N=NC−NH2 site with three parallel NH2−N=N−NH2 sulphonamide and NH3···O=S H bonds is observed. The main synthon in (tmp+)·(keto)−0.5H2O and (tmp+)2(ox2−)·2CH3OH is the motif of fused R2(6) and R2(5) rings instead of the R2(8) motif typically observed in tmp+ and pyr+ carboxylates. Tmp/az is a rare example of cocrystal-salt polymorphism where the two solid-state forms have the same composition, stoichiometry, and main synthon. Theoretical calculations were performed to understand the order of stability, which is tmp−az cocrystal > (tmp+)−(az−) salt. Finally, two three-component tmp/sulfa drug/carboxylate cocrystals with a unique ternary synthon are described.

INTRODUCTION

The development of cocrystals is largely based on crystal engineering principles. In crystal engineering, supramolecular synthons between functional groups are used to manipulate the intermolecular interactions. By controlling the crystal packing, cocrystals with the desired properties can be designed. The largest and most widely studied class of cocrystals are pharmaceutical cocrystals, that is, two drugs or one drug and a pharmaceutically acceptable coformer held together in the same crystal lattice by noncovalent interactions.1−4 Cocrystallization allows for the manipulation and optimization of the physicochemical properties of an active pharmaceutical ingredient (API) such as chemical and physical stability, hygroscopicity, solubility, and dissolution behavior without the need for chemically modifying the API molecule. APIs often have more than one functional group that can interact with coformers. Knowledge of the hierarchy of synthons is crucial to the rational design of new cocrystals. Furthermore, the presence of different functional groups or interaction sites can be exploited in the synthesis of higher-order cocrystals.5−17 Cocrystals containing more than two components are significantly more difficult to isolate than binary cocrystals because not only the supramolecular synthons but also the size, shape, and solubility of the three components must match and there is always the risk that a more stable binary cocrystal crystallizes instead.

We have recently studied the formation of binary and ternary cocrystals of the malaria drug pyrimethamine (pyr, Figure 1).18 The 2,4-diaminopyrimidine ring of pyr provides two distinct interaction sites for coformers, the C2−NH2/N=NC−NH2 (donor−acceptor−donor, DAD) site and the C2−NH2/N=NC−NH2 (donor−acceptor−donor, DAD) site. We have investigated combinations of various ADA and AD coformers and carried out competition experiments with di acid coformers to identify dual interaction sites and the new structural motifs. The identification of new synthons and the understanding of synthon preferences is a fundamental objective of crystal engineering. We also report a cocrystallization study of the related 2,4-diaminopyrimidine derivative trimethoprim (tmp,
The reasons for the differences in the crystallization behavior of the closely related tmp and pyr molecules are discussed.

EXPERIMENTAL SECTION

Materials. pyr, tmp, keto, az, pim, and seb were purchased from Tokyo Chemical Industry, Europe. ox and smz were obtained from Sigma-Aldrich. Sulfathiazole (stz) was obtained from Fluka Analytical. The solvents acetonitrile, methanol (Merck Millipore), ethyl acetate (Sigma-Aldrich), and acetone (Fisher Chemical) were of analytical grade and were used as received.

Solution Crystallization. 25 mg of pyr or tmp and 1 mol equiv of the respective coformer(s) were dissolved in the minimum amount of solvent, and the solvent was allowed to slowly evaporate from an open vial. Crystallization experiments were carried out in methanol, acetonitrile, acetone, and ethyl acetate. Within a few days, X-ray suitable single crystals of (pyr)\(_2\)(ox)\(_2\)-1.5H\(_2\)O, (tmp)\(_2\)(ox)\(_2\)-2CH\(_2\)OH, (tmp)\(_2\)(az)\(_2\)-tmp-6H\(_2\)O, tmp-pyr-H\(_2\)O, pyr-smz-CH\(_2\)OH, and (tmp)\(_2\)(seb)\(_2\)-2CH\(_2\)OH-2H\(_2\)O were obtained from methanol. (tmp)\(_2\)(ox)\(_2\)-0.8H\(_2\)O, (tmp)\(_2\)(ket)\(_2\)-0.3H\(_2\)O, tmp-az, pyr.0.5seb-CH\(_2\)CN, tmp-pim.0.5CH\(_3\)CN, (pyr)'(az)' form I, and (tmp)'(pim)'-stz crystallized from acetonitrile, while (tmp)'(az)' and (tmp)'(seb)\(_2\)'-2stz-2H\(_2\)O-C\(_3\)H\(_6\)O crystallized from ethyl acetate and acetone, respectively.

Ball-Milling. Equimolar mixtures of tmp or pyr and the respective coformer(s) (120–150 mg in total, Table S1) were placed in 2 mL Eppendorf tubes. 20 \(\mu\)L of solvent and one 5 mm diameter stainless steel ball were added to each sample. The Eppendorf tubes were placed in an in-house 3D-printed six-tube sample holder. An oscillatory ball mill (Mixer Mill MM400, Retsch GmbH & Co., Germany) was used to mill the samples at 25 Hz for 20 min. The milled powder samples were analyzed immediately by X-ray powder diffraction.

Crystallization by Sublimation. The salt (pyr)'(az)' form II was crystallized from the gas phase using an in-house sublimation apparatus.\(^{11}\) Equimolar ratios of pyr and az were sublimed from both ends of a standard 15 × 160 mm test tube sealed under vacuum. Two heat zones were used to sublime the components, and the temperatures at the pyr and az ends were set at 193.5 and 148.3 °C, respectively. Pyr and az formed small crystals of (pyr)'(az)' form II in the middle of the test tube after 17 h.

Slurry Experiments. Competitive slurry experiments were carried out for (tmp)'(az)'-tmp-6H\(_2\)O and tmp-az to determine the most stable polymorph. 20 mg of each sample was mixed with 1 mL of methanol in a 10 mm diameter glass vial and the mixture was stirred for 48 h at room temperature, followed by drying in a vacuum oven at 40 °C for 6 h and recording the powder X-ray pattern.

Differential Scanning Calorimetry. Differential scanning calorimetry (DSC) was carried out in open aluminum crucibles using a TA625 thermal analyzer (Rheometric Scientific, Piscataway, New Jersey). The DSC plots were recorded between 20 and 300 °C with a heating rate of 10 °C/min. Nitrogen was purged in ambient mode, and an indium standard was used for calibration.

X-ray Powder Diffraction. X-ray powder patterns were recorded on an Inel Equinox 3000 powder diffraction meter (Armeton, France). Cu \(K_\alpha\) radiation (\(\lambda = 1.54178 \) Å, 35 kV, 25 mA) was used, and data were collected between 20 S and 90 °C. Theoretical powder patterns were calculated from the single crystal X-ray data using the Otsial software package.\(^{33}\)

Single Crystal X-ray Analysis. Single crystal X-ray data were collected on an Oxford Diffraction Xcalibur system (Oxfordshire, UK). The crystal structures of tmp-pyr-H\(_2\)O, (tmp)'(ket)'-0.5H\(_2\)O, pyr-smz-CH\(_2\)OH, (pyr)'(ox)'-1.5H\(_2\)O, (tmp)'(ox)'-2CH\(_2\)OH, (tmp)'(ket)'-0.3H\(_2\)O, tmp-az, pyr.0.5seb-CH\(_2\)CN, tmp-pim-0.5CH\(_3\)CN, (pyr)'(az)' form I, and (tmp)'(pim)'-stz crystallized from acetonitrile, while (tmp)'(az)' and (tmp)'(seb)\(_2\)'-2stz-2H\(_2\)O-C\(_3\)H\(_6\)O were solved by direct methods using SHELXT and refined using SHELXL 2018/3 within the Oscail package.\(^{28–30}\) Crystallographic data and details of refinement are listed in Tables S2–S4. The cif files can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, Cambridge, UK with the REF codes 2129639–2129654.

Figure 1. Chemical structures and H bond donor (D) and acceptor (A) sites of pyrimethamine, trimethoprim, and the coformers used in this study.
Calculations. CASTEP version 20.11 was used to calculate lattice enthalpies with fixed unit cell dimensions using a PC or the ICHEC National HPC service. Kpoints were calculated with a "minidistance" of 20 Å using getKPoints software. Input files for CASTEP were generated using Oscail software, and CASTEP was run on a PC using the windows subsystem for Linux. The PBEsol functional was used in combination with the Tkatchenko and Scheffler, and dispersion correction and on-the-fly norm conserving pseudopotentials were employed. A plane-wave basis-set cutoff of 843 eV was used in all calculations. The energy per formula unit was given by E_{cell}/Z.

■ RESULTS AND DISCUSSION

Tmp-pyr Cocystal. The stable polymorphs of pyr and tmp have the same hydrogen-bonding motifs with pairwise H bonding at both amino-pyrimidine sites (Figure 2a). Pyr and tmp are therefore complementary coformers, and a cocystal was indeed obtained from methanol. The crystal structure of the cocystal of tmp and pyr is shown in Figure 2b. The asymmetric unit contains one tmp, one pyr, and one water molecule of crystallization. The $R^2_2(8)$ homosynthons with pairs of $C2\text{--NH}_2\text{--N1}$ and $C4\text{--NH}_2\text{--N3}$ H bonds in the X-ray structures of pyr and tmp are replaced by the corresponding pyr--tmp heterosynthons. The second C4-amino proton of tmp forms a bifurcated H bond with two methoxy groups of an adjacent tmp. In addition, one methoxy group of tmp acts as a H bond acceptor for the C2-amino group of pyr. Overall, pyr and tmp are linked to an infinite 2D structure. The water molecule of crystallization is disordered over three positions and interacts with the C4-amino group of pyr and with the C2-amino group of tmp.

The cocystal can also be prepared by ball-milling an equimolar mixture of tmp and pyr in the presence of a trace amount of ethanol. The match of the XRPD pattern of the milled sample and the theoretical pattern calculated from the single crystal data of tmp-pyr-H$_2$O is shown in Figure S1. The DSC plot of the cocystal (Figure S2) shows a dehydration endotherm at 124.1 °C (weight loss in the TGA 3.1%; calcd. 3.2%) and a melting endotherm at 195.9 °C. The latter temperature is lower than the melting points of tmp (200 °C) and pyr (233 °C).

Interaction of Dicarboxylic Acid Coformers with the DA Binding Site of Tmp and Pyr. A vast majority of crystal structures of cocystals of tmp and pyr with a carboxylic acid coformer described in the literature show transfer of the carboxyl proton to the N1 nitrogen of pyr or tmp and the interaction of the carboxylate group with the N1–H+/C2–NH$_2$ site via a pair of parallel H bonds creating the $R^2_2(8)$ motif (Figure 3). In the following, we compare the H bonding interactions of the 2,4-diaminopyrimidine pharmacophore and carboxylic acid coformers for four carboxylic acids for which Figure 2. (a) Synthons in pyr and tmp. (b) H bonding motif in tmp-pyr-H$_2$O. Red: tmp, blue: pyr, and purple: water molecule of crystallization. For clarity, only one component of the disordered water molecule of crystallization is shown.

Figure 3. Heterosynthons in carboxylate salts of pyr and tmp.

![Chemical structures](https://example.com/structure.png)

$R^2_2(8)$

$R^1_2(6)$

$R^2_2(9)$

$R^2_2(5)$

- Figure 2.
- Figure 3.
The protonated N1 nitrogen acts as a bifurcated H bond donor to the 2-oxoacid site (Figure 4a). The protonated N1 nitrogen forms a bifurcated H bond with two of the methoxy groups of tmp'. The water molecule of crystallization interacts with the methoxy groups and the carboxyl group of keto.

The DSC plot (Figure S3) shows a melting endotherm at 134.9 °C. A second broad endotherm at 160–190 °C is accompanied by a weight loss in the TGA and is attributed to the decomposition of keto. The melting point of the salt is in the range between the melting points of the two coformers (tmp: 199–203 °C; keto: 113.5 °C).

The asymmetric unit of (tmp'+(keto−)-0.5H2O and (tmp'+(ox2−)-2CH3OH. The asymmetric unit of (tmp'+(keto−)-0.5H2O and (tmp'+(ox2−)-2CH3OH contains two crystallographically independent N1-protonated tmp′ cations, two keto− monoanions, and a water molecule of crystallization. As expected, the carboxyl group next to the keto group is deprotonated and the proton transfer is confirmed by the C–O bond lengths that are equal within the standard deviations (C15−O4 1.235(2) Å, C15−O5 1.239(2) Å, C34−O12 1.238(2) Å, and C34−O13 1.232(2) Å) and by the increase of the angle at N1 from 114.87(9)° in neutral tmp to 119.6(2)/119.7(2)°. One of the carboxylate oxygens interacts with the N1−H′/C2−NH3+ site in an R21(6) motif (Figure 4a). The protonated N1 nitrogen acts as a bifurcated H bond donor to the 2-oxoacid site (graph set notation R21(5)). The tmp′−keto− ion pairs are connected through H bonding between the C2-amino group and the second carboxylate oxygen, giving rise to R21(12) rings. There is also H bonding between the second carboxylate oxygen and the C4-amino group of another tmp′ cation. Neighboring cations form the R21(8) homosynthon via pairs of C4−NH2−N3 H bonds. The protonated carboxyl group forms a bifurcated H bond with two of the methoxy groups of tmp′. The water molecule of crystallization interacts with the methoxy groups and the carboxyl group of keto.

The 2,4-diaminopyrimidine rings in pyr and tmp have almost the same pK values (7.16 and 7.34, respectively), indicating very similar electronic properties and H bonding propensity. The fact that the R21(5)−R21(6) H bonding pattern is only observed in tmp′ oxalates may be due to a steric hindrance effect of the ethyl substituent at C6 of pyr (Figure 4a).

Milling of tmp and ox in a 2:1 ratio in the presence of traces of methanol gave an XRPD pattern that is a good match with the theoretical pattern of (tmp′2(ox2−)-2CH3OH (Figure S4). In contrast to the C4−NH2−N3 R21(8) homosynthon in (tmp′2(ox2−)-6H2O, the tmp′ cations in (tmp′2(ox2−)-2CH3OH interact with each other through the C2−NH2−N3 site, while the amino group at C4 donates a H bond to the solvent molecule of crystallization. The latter in turn forms a H bond with an oxalate oxygen, creating an R21(10) motif.

Furthermore, we obtained single crystals of (pyr')2(ox−)·1.5H2O, which is a new stoichiomorph of the known oxalate salt of pyr. In this 2:1 salt, one oxalate of each carboxylate group is involved in a pair of H bonds (R21(9), Figures 3 and S5).

Table 1. Binding Sites and Tmp/Pyr-Coformer Synthons Observed in the Crystal Structures of Tmp and Pyr Cocrystals and Salts

coformer	Binding Sites and Synthons
tmp	pyr
Keto	1:1; salt; DA site; R21(5)
Ox	2:1; salt; DA site; R21(5)
seb	2:1; salt; DA site; R21(5)
az	1:1; cocrystal; DA and DAD site; R21(5)−R21(5) rings
smz	1:1; cocrystal; DA site; R21(5)

This work. Reference 50. Reference 51. Reference 22. Reference 23.

Figure 4. H bonding motif in (a) (tmp'+(keto−)-0.5H2O and (b) (tmp'+(ox2−)-2CH3OH.
Thermal analysis of (tmp+)_2(ox^-)·2CH_3OH (Figure S7) revealed the loss of the solvent molecules at 116.3 °C followed by two exothermic events at 161.9 and 172.6 °C and two endothermic events at 200.0 and 222.0 °C. The latter peak has a shoulder at 235.6 °C. The exotherms are assigned to the formation of new phases of the desolvated salt. The endotherm at 200.0 °C may indicate the presence of "free" tmp (melting point 199−203 °C) and may suggest that the new phases are different stoichiomorphs. Melting of these phases gives the peak/shoulder at 222.0/235.6 °C. The TGA plot shows that melting is accompanied by the sublimation of ox (theoretical weight loss: 12.3%; observed weight loss: 11.9%).

Tmp/seb and pyr/seb. Seb interacts with tmp and pyr via the typical pairwise H bonding with the C2−NH2/N1 site (R_3^2(8)). However, tmp and seb form a 2:1 salt of composition (tmp+)_2(seb^-)·2CH_3OH·2H_2O, while no proton transfer takes place between pyr and seb and a cocrystal was obtained. Except for the position of the carboxyl proton, the main H bonding motifs are the same in both structures (Figure 5). The tmp+ ions are connected through a pair of H bonds involving the amino group at C4 and the ring nitrogen N3. CH_3CN in Tmp/az and pyr/az. Differences in the interactions with tmp and pyr were also observed in the case of the coformer az. Pyr crystallized with az from acetonitrile as the 1:1 salt (pyr+)(az^-) with the common R_3^2(8) heterosynthon (Figure 6a). Two az^- monoanions self-assemble into a 24-membered ring and pairs of C4−NH2···N3 H bonds connect the pyr+ cations to centrosymmetric dimers. H bonding between the carbonyl oxygen of the COOH group and the pyr+ dimers creates an R_3^2(8) motif. Co-sublimation of pyr and az gave a second polymorph, (pyr+)(az^-) form II. Both forms have the same H bonding motifs, but differ in the dihedral angle between the pyrimidine and phenyl rings of tmp (82.9° in form I and 87.8° in form II). By contrast, in the case of tmp, a salt and a
cocrystal were obtained, both containing the $R_2^2(8)$ motif with the position of the proton differing (Figure 6b,c). The C=O bond lengths in az: C15–O4 1.214(3) Å; C15–O5 1.299(3) Å; C23–O6 1.206(3) Å; and C23–O7 1.319(3) Å confirm that no proton transfer has taken place between the carboxylic acid and the N1 nitrogen in tmp-az. Both carboxyl groups of az form a pair of H bonds with tmp in the cocrystal, one COOH of tmp isolated from acetonitrile with the theoretical powder pattern of the (tmp+)(az$^-$)(tmp+)2(az$^{2-}$) crystal of the (tmp+)(az$^-$)(tmp+)2(az$^{2-}$) motif. The Crystallization of the salt/cocrystal polymorphs follows Ostwald’s rule of stages. Furthermore, we have previously shown that proton transfer can take place in prenucleation clusters in the absence of solvent, which further corroborates the lack of a solvent effect on the ionization state of the coformers in the solid state. The intermediate formation of the (tmp+)($^\cdot$az$^-$) salt as a metastable transient form may be the reason why it was not possible to isolate bulk quantities. The pK_a values of the N1 nitrogen of pyr and for the deprotonation of the first carboxyl group of az are 7.34 and 4.15, respectively, so that salt formation for the pyr/az system is in line with the ΔpK_a rule that states that a salt is usually obtained when the difference in the pK_a of the two coformers is greater than 4, while a large ΔpK_a < 0 results in a cocrystal. In the ΔpK_a range 0 < pK_a < 4, there is a salt/cocrystal continuum and a prediction of salt or cocrystal formation is not possible. The pK_a value of tmp is 7.16 and is thus very close to that of pyr. Cruz-Cabezas has developed a model that estimates the probability for cocrystal and salt formation as:

$$P_{ocrystal} = -17\Delta pK_a + 72$$

$$P_{salt} = -17\Delta pK_a + 28$$

Using these equations, there is a 21% probability of tmp and az crystallizing as a cocrystal and a 79% probability for salt formation. The position of the proton is determined by the packing and the resulting lattice energy. While the amount of proton transfer can be affected by the crystalline environment, ΔpK_a represents a useful predictive tool outside the continuum region. Childs et al. compared the unintended application of pK_a values to predict the ionization state in the solid state with the use of van der Waals radii, which were originally intended for the calculation of molecular volume but are now routinely used to estimate intermolecular distances in adjacent molecules. Tmp-az and (tmp+)($^\cdot$az$^-$) are a rare example of cocrystal→salt polymorphism. The protonation state of the coformers in multicomponent crystals can vary for different stoichiometries or solvates. However, only a small number of systems have been reported, where a salt or a cocrystal of the same composition and stoichiometry is obtained depending on the crystallization conditions; smz/saccharine (smz/sac), four amino acids/tartaric acid of which β-alanine/tartaric acid (bal/tar), has been examined in detail, and ethionamide/salicylic acid (eth/sal), and a range of haloaniline/3,5-dinitrobenzoic acid systems. The position of the proton may also be temperature-dependent. Bal/tar and smz/sac crystallize stochastically as salts or cocrystals from the same solution. Concomitant growth of salt and cocrystal polymorphs has also been observed for haloaniline/3,5-dinitrobenzoic acid, and a metastable salt was identified as a transient form to the polymorphs of the 2:1 isonicotinamide–citric acid cocrystal. The stable form, salt or cocrystal, was deduced in each case using crystal slurries and other methods, and in the case of the haloaniline/3,5-dinitrobenzoic acid series, the energy differences per formula

The tmp-az single crystal was obtained from acetonitrile. A comparison of the XRPD pattern of the crystalline sample isolated from acetonitrile with the theoretical powder pattern of tmp-az confirmed that the single crystal structure was representative of the bulk composition (Figure S8). The single crystal of the (tmp+)($^\cdot$az$^-$) salt was isolated from ethyl acetate. However, XRPD analysis of the bulk sample showed the pattern of the cocrystal, indicating that the salt is a minor side product or a transient form. Attempts to prepare bulk quantities of the salt by rapid solvent evaporation were unsuccessful.

A third form, the ionic cocrystal (tmp+)($^\cdot$az$^{2-}$)-tmp-6H_2O, crystallized from methanol (Figure 6d). The asymmetric unit comprises two tmp$^+$ cations (denoted A and B), one neutral tmp and one az$^{2-}$ dianion and six water molecules of crystallization. In contrast to the 1:1 tmp-az cocrystal, (tmp+)($^\cdot$az$^{2-}$)-tmp-6H_2O does not contain the C=N/H$_2$N(H)···(H)OOCC $R_2^2(8)$ motif. The az$^{2-}$ dianion participates in H bonding with the C2- and C4-amino groups of tmp, the C2-amino group of tmp$^+$ A, and the C2-amino group of tmp$^+$ B and with the water molecule of crystallization.Tmp$^+$ A and tmp interact via a pair of H bonds between the N3/C4−NH$_2$ site of the cation and the C2−NH$_2$/N3 site of the neutral molecule. There is also extensive H bonding between the water of crystallization and the amino groups of tmp$^+$ A, tmp$^+$ B, and tmp, a methoxy group of tmp, and N1 of tmp.

Figure S9 shows the XRPD patterns after milling a 1:1 mixture of tmp and az in the presence of traces of ethanol, acetonitrile, and ethyl acetate. In all cases, the Bragg peaks of the cocrystal were observed. When a 3:1 mixture was milled in the presence of traces of H$_2$O, the XRPD pattern of (tmp+)($^\cdot$az$^{2-}$)-tmp-6H_2O was obtained (Figure S10). On slurrying in methanol, (tmp+)($^\cdot$az$^{2-}$)-tmp-6H_2O converted to tmp-az (Figure S11). The DSC plot of (tmp+)($^\cdot$az$^{2-}$)-tmp-6H$_2$O shows endotherms at 90.4, 155.3, and 185.8 °C (Figure S12a). The first endothermic event is accompanied by a 10.1% weight loss in the TA plot and can be assigned to the loss of the water of crystallization (calcd. 9.3%). The peak at 155.3 °C corresponds to the melting point of tmp-az (Figure S12b). When a sample of (tmp+)($^\cdot$az$^{2-}$)-tmp-6H$_2$O was heated to 90 °C under vacuum for 6 h, XRPD analysis showed the pattern of free tmp and minor peaks that may be assigned to the cocrystal (Figure S13).

Stable Form of Tmp/Az and Pyr/Az. The only form that was identified in cocrystallization experiments for pyr and az is the salt (pyr$^+$)(az$^-$). By contrast, solution crystallization of tmp/az suggests that the cocrystal is in the thermodynamically stable form, which was confirmed by slurry experiments. A slurry normally gives the thermodynamically stable product, and slurring has been used in the literature to identify the most stable polymorphs. However, no change in the XRPD pattern was observed, when the cocrystal was slurried for 48 h in methanol (Figure S14).

It has been reported for the ethionamide/salicylic acid system that proton transfer is not influenced by the nature of the solvent (polar/apolar; protic/aprotic) but that the crystallization of the salt/cocrystal polymorphs follows Ostwald’s rule of stages. Furthermore, we have previously shown that proton transfer can take place in prenucleation clusters in the absence of solvent, which further corroborates the lack of a solvent effect on the ionization state of the coformers in the solid state. The intermediate formation of the (tmp+)($^\cdot$az$^-$) salt as a metastable transient form may be the reason why it was not possible to isolate bulk quantities. The pK_a values of the N1 nitrogen of pyr and for the deprotonation of the first carboxyl group of az are 7.34 and 4.15, respectively, so that salt formation for the pyr/az system is in line with the ΔpK_a rule that states that a salt is usually obtained when the difference in the pK_a of the two coformers is greater than 4, while a large ΔpK_a < 0 results in a cocrystal. In the ΔpK_a range 0 < pK_a < 4, there is a salt/cocrystal continuum and a prediction of salt or cocrystal formation is not possible. The pK_a value of tmp is 7.16 and is thus very close to that of pyr. Cruz-Cabezas has developed a model that estimates the probability for cocrystal and salt formation as:

$$P_{ocrystal} = -17\Delta pK_a + 72$$

$$P_{salt} = -17\Delta pK_a + 28$$

Using these equations, there is a 21% probability of tmp and az crystallizing as a cocrystal and a 79% probability for salt formation. The position of the proton is determined by the packing and the resulting lattice energy. While the amount of proton transfer can be affected by the crystalline environment, ΔpK_a represents a useful predictive tool outside the continuum region. Childs et al. compared the unintended application of pK_a values to predict the ionization state in the solid state with the use of van der Waals radii, which were originally intended for the calculation of molecular volume but are now routinely used to estimate intermolecular distances in adjacent molecules. Tmp-az and (tmp+)($^\cdot$az$^-$) are a rare example of cocrystal→salt polymorphism. The protonation state of the coformers in multicomponent crystals can vary for different stoichiometries or solvates. However, only a small number of systems have been reported, where a salt or a cocrystal of the same composition and stoichiometry is obtained depending on the crystallization conditions; smz/saccharine (smz/sac), four amino acids/tartaric acid of which β-alanine/tartaric acid (bal/tar), has been examined in detail, and ethionamide/salicylic acid (eth/sal), and a range of haloaniline/3,5-dinitrobenzoic acid systems. The position of the proton may also be temperature-dependent. Bal/tar and smz/sac crystallize stochastically as salts or cocrystals from the same solution. Concomitant growth of salt and cocrystal polymorphs has also been observed for haloaniline/3,5-dinitrobenzoic acid, and a metastable salt was identified as a transient form to the polymorphs of the 2:1 isonicotinamide–citric acid cocrystal. The stable form, salt or cocrystal, was deduced in each case using crystal slurries and other methods, and in the case of the haloaniline/3,5-dinitrobenzoic acid series, the energy differences per formula

https://doi.org/10.1021/acs.cgd.2c00035

Cryst. Growth Des. 2022, 22, 3163−3173
unit between the salt and cocrystal were calculated by periodic boundary DFT methods using the program VASP. In that series of compounds, the salts were more stable than the cocrystal forms without exception. In the case of 4-bromo-2-methylaniline/3,5-dinitrobenzoic acid (brma/dnb), the salt was reported to be 8.5 kJ/mol more stable than the cocrystal.

We have calculated the energy differences between the salt and the cocrystal for tmp/az and for the other systems described in the literature (Table 2), and in every case, periodic DFT calculations predict the stable form found by the experiment. Positive $\Delta E_{(ac-c)}$ values indicate that the cocrystal is more stable than the salt.

Crystal density is an indication of the efficiency of crystal packing and can be used as an indication of crystal stability. For example, crystal density has been used to select the most likely candidates in crystal structure prediction software. In Table 2, crystal density correctly predicts the stable form in three out of the five examples, with bal/tar and brma/dnb having stable forms with lower densities than their metastable forms. Thus, at least in the examples in Table 2, crystal density is less effective than periodic DFT calculations in predicting the stability of crystal structures.

There is also one interesting difference between tmp/az and the other systems in Table 2 in that it was necessary to apply nonlinear distance restraints to the O–H groups H-bonded to nitrogen to prevent proton transfer. This of course does not imply that the crystallized salt is more stable than the cocrystal, rather this proton transfer suggests that there may be another salt form, which would crystallize in space group P-1 if suitable conditions for its isolation could be found.

Noteworthily, among the salt-cocrystal polymorph pairs listed in Table 2, tmp/az has the largest ΔpK_a difference between the two coformers. To understand the higher stability of the tmp-az cocrystal and the difference to the pyr/az system, we have examined the packing of the tmp salt, tmp cocrystal, and pyr salt. The densities of (tmp$^+$)(az$^-$), tmp-az, and (pyr$^+$)(az$^-$) are 1.223, 1.307, and 1.252 g cm$^{-3}$, respectively, that is, the density of (pyr$^+$)(az$^-$) is intermediate between those of tmp-az and (tmp$^+$)(az$^-$). (Pyr$^+$)(az$^-$) contains Cl and would be expected to have a higher density than either of the tmp/az forms. Using the Void program in the Oascal package, the packing indices for tmp-az, (tmp$^+$)(az$^-$), and (pyr$^+$)(az$^-$) were calculated as 68.5, 70.5, and 63.7%. The Void program also finds a 3.3% void, which is large enough to insert one water molecule into the (pyr$^+$)(az$^-$) structure. The program did not find any void in either of the tmp/az structures. The void locations in (pyr$^+$)(az$^-$) are shown in the packing view down the c axis (Figure S15). It is possible that the restriction imposed by the biphenyl linkage in the pyr molecule, which prevents the ring packing in a more efficient flat geometry, leads to a lower packing efficiency than is observed in the tmp/az structures, where the flexible nature of tmp may aid efficient packing.

Table 2. Energy Differences Calculated for Some Systems, Which Have Stoichiometry BHA and BH$^+$A$^-$

compound	ΔpK_a^{ab}	$\Delta E_{(ac-c)}$	stable form	density$_{salt}$	density$_{cocrystal}/g\,cm^{-3}$
bal/tar	0.52	68.6	cocystal	1.655	1.626
smz/sac	0.80	7.4	cocystal	1.450	1.569
brma/dnb	0.89	-9.3	salt	1.717	1.730
eth/sal	2.0	-6.7	salt	1.332	1.298
tmp/az	3.0	12.2	cocystal	1.223	1.307

$^a\Delta pK_a = pK_a(B) - pK_a(HA)$. b pK_a values taken from refs 67 and 68. $^c\Delta E_{(ac-c)}=(E_{(salt)}/Z-E_{(cocrystal)}/Z)/kJ\,mol^{-1}$.

The DSC plot of pyr (Figure 7) shows an endotherm at 111.5 °C followed by an exotherm at 136.2 °C that can be assigned to the loss of the hydrogen-bonded methanol of recrystallization and the structural rearrangement of the desolvated form. The evaporation of methanol is confirmed.
The 2,4-diaminopyrimidine ring in pyrazinamide (pz) cocrystals, stz and the carboxylic acid both form a bifurcated hydrogen bond between the carboxyl group to the 2,4-diaminopyrimidine nitrogen and the amino group at C2. The melting points of stz and pyr are similar, and sulfapyridine/2-chloro-4-nitrobenzoic acid all have dihydrogen bonds. Out of the 30 sulfapyridine combinations tested, only three were successful. These include the 3,5-dinitrobenzoate salt of stz, the sulfamethoxazole-3,5-dinitrobenzoate salt of stz, and the 2-chloro-4-nitrobenzoate salt of stz. The carboxylic acid and sulfonamide combinations used in the screening study are listed in Tables S6 and S7. The isolation of a ternary cocrystal was only successful in the case of stz and tmp, and instead of binding to the DAD site of tmp, stz interacts with the tmp+ carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The carboxylic acid and sulfonamide motifs contribute to a bifurcated hydrogen bond between the amino group and sulfonyl oxygen of two adjacent stz molecules. In stz-4-nitrobenzoic acid, the homodimers interact with each other via π-π contacts between the thiazole and nitrobenzene rings.

The carboxylic acid and sulfonamide combinations used in the screening study are listed in Tables S6 and S7. The isolation of a ternary cocrystal was only successful in the case of stz and tmp, and instead of binding to the DAD site of tmp, stz interacts with the tmp+ carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The H bonding patterns of the two ternary ionic cocrystals obtained, (tmp+)(pim−)stz and (tmp+)(seb2−)stz·2H2O·C3H6O, are shown in Figure 8. In both structures, stz exists in its imido tautomeric form and forms the same ternary cocrystal with tmp+ and the carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The carboxylic acid and sulfonamide motifs contribute to a bifurcated hydrogen bond between the amino group and sulfonyl oxygen of two adjacent stz molecules. In stz-4-nitrobenzoic acid, the homodimers interact with each other via π-π contacts between the thiazole and nitrobenzene rings.

The carboxylic acid and sulfonamide combinations used in the screening study are listed in Tables S6 and S7. The isolation of a ternary cocrystal was only successful in the case of stz and tmp, and instead of binding to the DAD site of tmp, stz interacts with the tmp+ carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The H bonding patterns of the two ternary ionic cocrystals obtained, (tmp+)(pim−)stz and (tmp+)(seb2−)stz·2H2O·C3H6O, are shown in Figure 8. In both structures, stz exists in its imido tautomeric form and forms the same ternary cocrystal with tmp+ and the carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The carboxylic acid and sulfonamide combinations used in the screening study are listed in Tables S6 and S7. The isolation of a ternary cocrystal was only successful in the case of stz and tmp, and instead of binding to the DAD site of tmp, stz interacts with the tmp+ carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The H bonding patterns of the two ternary ionic cocrystals obtained, (tmp+)(pim−)stz and (tmp+)(seb2−)stz·2H2O·C3H6O, are shown in Figure 8. In both structures, stz exists in its imido tautomeric form and forms the same ternary cocrystal with tmp+ and the carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The carboxylic acid and sulfonamide combinations used in the screening study are listed in Tables S6 and S7. The isolation of a ternary cocrystal was only successful in the case of stz and tmp, and instead of binding to the DAD site of tmp, stz interacts with the tmp+ carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The H bonding patterns of the two ternary ionic cocrystals obtained, (tmp+)(pim−)stz and (tmp+)(seb2−)stz·2H2O·C3H6O, are shown in Figure 8. In both structures, stz exists in its imido tautomeric form and forms the same ternary cocrystal with tmp+ and the carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The carboxylic acid and sulfonamide combinations used in the screening study are listed in Tables S6 and S7. The isolation of a ternary cocrystal was only successful in the case of stz and tmp, and instead of binding to the DAD site of tmp, stz interacts with the tmp+ carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The H bonding patterns of the two ternary ionic cocrystals obtained, (tmp+)(pim−)stz and (tmp+)(seb2−)stz·2H2O·C3H6O, are shown in Figure 8. In both structures, stz exists in its imido tautomeric form and forms the same ternary cocrystal with tmp+ and the carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The carboxylic acid and sulfonamide combinations used in the screening study are listed in Tables S6 and S7. The isolation of a ternary cocrystal was only successful in the case of stz and tmp, and instead of binding to the DAD site of tmp, stz interacts with the tmp+ carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The H bonding patterns of the two ternary ionic cocrystals obtained, (tmp+)(pim−)stz and (tmp+)(seb2−)stz·2H2O·C3H6O, are shown in Figure 8. In both structures, stz exists in its imido tautomeric form and forms the same ternary cocrystal with tmp+ and the carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The carboxylic acid and sulfonamide combinations used in the screening study are listed in Tables S6 and S7. The isolation of a ternary cocrystal was only successful in the case of stz and tmp, and instead of binding to the DAD site of tmp, stz interacts with the tmp+ carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.

The H bonding patterns of the two ternary ionic cocrystals obtained, (tmp+)(pim−)stz and (tmp+)(seb2−)stz·2H2O·C3H6O, are shown in Figure 8. In both structures, stz exists in its imido tautomeric form and forms the same ternary cocrystal with tmp+ and the carboxylate group. H bonding between a sulfonyl oxygen and the amino group at C2 and between the thiazole and nitrobenzene rings.
takes place when tmp and pim cocrystallize to give the binary cocrystal tmp-pim-0.5CH3CN (Figure S17).

Milling experiments were carried out to investigate if the two ternary cocrystals could also be prepared mechanochemically. The XRPD patterns of the milled tmp/stz/seb sample (1:1:1 molar ratio) showed a new set of peaks and unreacted stz (Figure S18). The new peaks are identical to the pattern obtained when a binary 1:1 mixture of tmp and seb is milled. In the case of the 1:1:1 tmp/stz/pim sample, the XRPD pattern matched the theoretical pattern of (tmp')(pim')·stz (Figure S19), indicating that the ternary cocrystal can also be prepared mechanochemically.

CONCLUSIONS

Despite the identical H bonding functionality and almost identical pK_a values, the 2,4-diaminopyrimidine groups in tmp and pyr do not necessarily form the same H bonding motif with a given coformer. Crystal structures have been obtained, where the same coformer binds to the N1/C2−NH_3 site of tmp (pairwise H bonding) but to the C2−NH_2/N3/C4−NH_3 site of pyr (three parallel H bonds) or where the coformer interacts at the same site but gives H bonding patterns with different graph set notations, specifically fused R_2(6) and R_2(5) rings versus the R_2(8) motif in carboxylates. These examples demonstrated the significant effect of the ethyl substituent on the C6 carbon of pyr. The tmp/az system shows salt-cocrystal polymorphism with the salt, presenting a transient metastable ternary supermolecule. Apparently, the simultaneous interaction of two different coformers at both binding sites of the 2,4-diaminopyrimidine ring is not favorable.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.cgd.2c00035.

Details on the ball-milling and crystallization experiments, crystal data, H bonding interactions, X-ray structures of (tmp')(ox_2^-)·6.5H_2O, (pyr')(ox_2^-)·1.5H_2O, and tmp-pim-0.5CH3CN, XRPD patterns, and DSC and TGA profiles (PDF)

Accession Codes

CCDC 2129639−2129654 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Patrick Mc Ardle − School of Chemistry, National University of Ireland Galway, Galway H91TK33, Ireland; orcid.org/0000-0002-3565-0527; Email: p.mcardle@nuigalway.ie

Andrea Erxleben − School of Chemistry, National University of Ireland Galway, Galway H91TK33, Ireland; Synthesis and Solid State Pharmaceutical Centre (SSPC), Limerick V94 T9PX, Ireland; orcid.org/0000-0002-7309-8972; Email: andrea.erxleben@nuigalway.ie

Authors

Lamis Alaa Eldin Refat − School of Chemistry, National University of Ireland Galway, Galway H91TK33, Ireland; Synthesis and Solid State Pharmaceutical Centre (SSPC), Limerick V94 T9PX, Ireland; orcid.org/0000-0001-5369-0007

Cieran O’Malley − School of Chemistry, National University of Ireland Galway, Galway H91TK33, Ireland

John M. Simmie − School of Chemistry, National University of Ireland Galway, Galway H91TK33, Ireland; orcid.org/0000-0003-0714-7956

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.cgd.2c00035

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under grant number 12/RC/2275. The Irish Centre for High-End Computing (ICHEC) is thanked for the provision of computational resources under projects ngche102c.

REFERENCES

(1) Shan, N.; Zaworotko, M. J. The role of cocrystals in pharmaceutical science. Drug Discov. Today 2008, 13, 440−446.

(2) Duggirala, N. K.; Perry, M. L.; Almarsson, O.; Zaworotko, M. J. Pharmaceutical cocrystals: the path to improved medicines. Chem. Commun. 2016, 52, 640−655.

(3) Kavanagh, O. N.; Croker, D. M.; Walker, G. M.; Zaworotko, M. J. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov. Today 2019, 24, 796−804.

(4) Kumar Bandaru, R.; Rout, S. R.; Kenguva, G.; Gorain, B.; Alhakamy, N. A.; Kesharwani, P.; Dandela, R. Recent advances in pharmaceutical cocrystals: From bench to market. Front. Pharmacol. 2021, 12, 780582.

(5) Aakeröy, C. B.; Beatty, A. M.; Helfrich, B. A. Total Synthesis* of supramolecular style: Design and hydrogen-bond-directed assembly of ternary supermolecules. Angew. Chem., Int. Ed. 2001, 40, 3240−3242.

(6) Tothadi, S.; Desiraju, G. R. Designing ternary cocrystals with hydrogen bonds and halogen bonds. Chem. Commun. 2013, 49, 7791−7793.

(7) Topić, F.; Rissanen, K. Systematic construction of ternary cocrystals by orthogonal and robust hydrogen and halogen bonds. J. Am. Chem. Soc. 2016, 138, 6610−6616.

(8) Gunawardana, C. A.; Aakeröy, C. B. Co-crystal synthesis: fact, fancy, and great expectations. Chem. Commun. 2018, 54, 14047−14060.

(9) Tothadi, S.; Mukherjee, A.; Desiraju, G. R. Shape and size mimicry in the design of ternary molecular solids: towards a robust
strategy for crystal engineering. Chem. Commun. 2011, 47, 12080–12082.

(10) Tothadi, S.; Sanphui, P.; Desiraju, G. R. Obtaining synthon modularity in ternary cocrystals with hydrogen bonds and halogen bonds. Cryst. Growth Des. 2014, 14, 5293–5302.

(11) Portalone, G.; Rissanen, K. Multifacial recognition in binary and ternary cocrystals from S-halouracil and aminooxy derivatives. Cryst. Growth Des. 2018, 18, 5904–5918.

(12) Seaton, C. C.; Blagden, N.; Munshi, T.; Scowen, I. J. Creation of ternary multicomponent crystals by exploitation of charge-transfer interactions. Chem. - Eur. J. 2013, 19, 10663–10671.

(13) Bhogala, B. R.; Basavoj, S.; Nangia, A. Three-component carboxylic acid–bipyridine lattice inclusion host. Supramolecular synthesis of ternary cocrystals. Cryst. Growth Des. 2005, 5, 1683–1696.

(14) Frisić, T.; Trask, A. V.; Jones, W.; Motherwell, W. D. S. Screening for inclusion compounds and systematic construction of three-component solids by liquid-assisted grinding. Angew. Chem., Int. Ed. 2006, 45, 7546–7550.

(15) Mir, N. A.; Dubey, R.; Desiraju, G. R. Four- and five-component molecular solids: crystal engineering strategies based on structural inequivalence. IUCrJ 2016, 3, 96–101.

(16) Dubey, R.; Mir, N. A.; Desiraju, G. R. Quaternary cocrystals: combinatorial synthetic strategies based on long-range synthon Aufbau modules (LSAM). IUCrJ 2016, 3, 102–107.

(17) Paul, M.; Chakraborty, S.; Desiraju, G. R. Six-component molecular solids: ABC[D1{F1}][F2][F3]. J. Am. Chem. Soc. 2018, 140, 2309–2315.

(18) O’Malley, C.; Bouchet, C.; Manyara, G.; Walsh, N.; McCrindle, P.; Erdleben, A. Salts, binary and ternary cocrystals of pyrimethamine: mechanosynthesis, solution crystallization and crystallization from the gas phase. Cryst. Growth Des. 2021, 21, 314–324.

(19) Nakai, H.; Takasuka, M.; Shiro, M. X-ray and infrared spectral studies of the ionic structure of trimethoprim-sulfamethoxazole 1:1 molecular complex. J. Chem. Soc., Perkin Trans. 2 2018, 1454–1469.

(20) Giuseppetti, G.; Tadini, C.; IUCrJ 2014, 45, 102–107.

(21) Bettinetti, G.; Caira, M. R.; Callegari, A.; Merli, M.; Sorrenti, M.; Tadini, C. Structure and solid-state chemistry of anhydrous and hydrated crystal forms of the trimethoprim-sulfamethopyridazine C50H79N6O12. Acta Crystallogr. D 2015, 71, 3–8.

(22) Bettinetti, G.; Caira, M. R.; Callegari, A.; Merli, M.; Sorrenti, M.; Tadini, C. Structure and solid-state chemistry of anhydrous and hydrated crystal forms of the trimethoprim-sulfamethopyridazine C50H79N6O12. Acta Crystallogr. D 2015, 71, 3–8.

(23) Bernasconi, D.; Bordignon, S.; Rossi, F.; Priola, E.; Nervi, C.; Gobetto, R.; Voinovich, D.; Hase, D.; Duong, N. T.; Nishiyama, Y.; Chierotti, M. R. Selective synthesis of a salt and a cocrystal of the ethionamide–salicylic acid system. Cryst. Growth Des. 2020, 20, 906–915.

(24) Fu, X.; Li, J.; Wang, L.; Wu, B.; Xu, X.; Deng, Z.; Zhang, H. Pharmaceutical crystalline complexes of sulfamethazine with saccharine salt and cocrystal polymorphs. CrystEngComm 2019, 21, 2089–2096.

(25) Jones, C. L.; Skelton, J. M.; Parker, S. C.; Raitbey, P. R.; Walsh, A.; Wilson, C. C.; Thomas, L. H. Living in the salt-cocrystal continuum: indecisive organic complexes with thermochromic behaviour. CrystEngComm 2019, 21, 1626–1634.

(26) McArdle, P. O. Oscail, a Program Package for Small-Molecule Single-Crystal X-ray Crystallography with Crystal Morphology Prediction and Molecular Modelling. J. Appl. Crystallogr. 2017, 50, 320–326.

(27) Sheldrick, G. M. SHEXL - Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, 71, 3–8.

(28) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, 71, 3–8.

(29) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Raston, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr.-Cryst. Mater. 2005, 220, 567–570.

(30) Wang, Y.; Wisesa, P.; Balasubramanian, A.; Dwaraknath, S.; Mueller, T. Rapid generation of optimal generalized Monkhorst-Pack grids. Comput. Mater. Sci. 2021, 187, 110100.

(31) McArdle, P. Pixel calculations using Orca or GAUSSIAN for electron density automated within the Oscail package. J. Appl. Crystallogr. 2021, 54, 1535–1541.

(32) Perdw, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

(33) Tkatchenko, A.; Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005.

(34) Senthuraman, V.; Thomas Muthiah, P. Hydrogen-bonded supramolecular ribbons in the antifolate drug pyrimethamine. Acta Crystallogr. 2002, 58, 1535–1541.

(35) Maddiletti, D.; Swapan, B.; Nangia, A. Tetramorphs of the antibiotic drug trimethoprim: Characterization and stability. Cryst. Growth Des. 2015, 15, 1745–1756.

(36) Swinton Darius, R.; Thomas Muthiah, P.; Perdhí, F. Supramolecular hydrogen-bonding patterns in salts of the antifolate drugs trimethoprim and pyrimethamine. Acta Crystallogr. 2018, 74, 487–503.

(37) Umadevi, B.; Prabakaran, P.; Muthiah, P. T. A pseudo-quadruple hydrogen-bonding motif consisting of six N-H–O hydrogen bonds in trimethoprim formate. Acta Crystallogr. 2002, 58, o510–o512.

(38) Panneerselvam, B.; Stanley, N.; Muthiah, P. T. N hydrogen bonds in trimethoprim salicylate methanol solvate [trimethoprim is 2,4-diamino-3(3,4,5-trimethoxybenzyl)pyrimidine]. Acta Crystallogr. 2002, 58, o180–o182.

(39) Hemamalini, M.; Muthiah, P. T.; Bocelli, G.; Cantoni, A. Hydrogen-bonded supramolecular motifs in trimethoprim-terephthalate-terephthalic acid (2:1:1). Acta Crystallogr. 2013, 59, o14–o17.

(40) Stanley, N.; Muthiah, P. T.; Geih, S. J.; Lugier, P.; Weber, M.; Messerschmidt, M. The novel hydrogen-bonding motifs and supramolecular patterns in 2,4-diaminopyrimidine-nitrobenzoate complexes. Tetrahedron 2005, 61, 7201–7210.

(41) Subashini, A.; Samuel, E.; Muthiah, P. T.; Bocelli, G.; Cantoni, A. Trimethoprimium 3,5-dinitrosalicylate. Acta Crystallogr. 2007, 63, o4094.

(42) Baskar Raj, S.; Muthiah, P. T.; Rychlewiska, U.; Warzajtis, B. Pseudo-polymorphism and crystal engineering: hydrogen-bonded supramolecular networks in trimethoprim m-chlorobenzoate and trimethoprim m-chlorobenzoate dihydrate. CrystEngComm 2003, 5, 48–53.

(43) Baskar Raj, S.; Stanley, N.; Muthiah, P. T.; Bocelli, G.; Ollá, R.; Cantoni, A. Crystal engineering of organic salts: Hydrogen-bonded supramolecular motifs in trimethoprim sorbate dihydrate and trimethoprim o-nitrobenzoate. Cryst. Growth Des. 2003, 3, 567–571.
(50) Delori, A.; Galek, P. T. A.; Pidcock, E.; Patni, M.; Jones, W. Knowledge-based hydrogen bond prediction and the synthesis of salts and cocrys- tals of the anti-malarial drug pyrimethamine with various drug and GRAS molecules. CrystEngComm 2013, 15, 2916–2928.

(51) Delori, A.; Galek, P. T. A.; Pidcock, E.; Jones, W. Quantifying homo- and heteromolecular hydrogen bonds as a guide for adduct formation. Chem.—Eur. J. 2012, 18, 6835–6846.

(52) Gu, C. H.; Young, V., Jr.; Grant, D. J. W. Polymorph screening: Influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci. 2001, 90, 1878–1890.

(53) Miller, J.; Collman, B.; Greene, L.; Grant, D.; Blackburn, A. Identifying the stable polymorph early in the drug discovery–development process. Pharm. Dev. Technol. 2005, 10, 291–297.

(54) O’Malley, C.; Erdleben, A.; McArde, P.; Simmie, J. M. Crystallization of organic salts from the gas phase: When does proton transfer take place? Cryst. Growth Des. 2021, 21, 23–27.

(55) Bhogala, B. R.; Basavoju, S.; Nangia, A. Tape and layer structures in cocrys- tals of some di- and tricarboxylic acids with 4,4'-bipyridines and isonicotinamide. From binary to ternary cocrys- tals. CrystEngComm 2005, 7, 551–562.

(56) Childs, S. L.; Stahly, G. P.; Park, A. The salt-cocrys- tals continuum: The influence of crystal structure on ionization state. Mol. Pharm. 2007, 4, 323–338.

(57) Cruz-Cabeza, A. J. Acid—base crystaline complexes and the pKₐ rule. CrystEngComm 2012, 14, 6362–6365.

(58) Haynes, D. A.; Jones, W.; Motherwell, W. D. S. Cocystalisation of succinic and fumaric acids with lutidines: a systematic study. CrystEngComm 2006, 8, 830–840.

(59) Arora, K.; PrakashReddy, J.; Pedreddi, V. R. Pyridine mediated supramolecular assemblies of 3,5-dinitro substituted benzoic acid, benzamide and benzonitrile. Tetrahedron 2005, 61, 10793–10800.

(60) Wiechert, D.; Mootz, D. Molecular beside ionic: Crystal structures of a 1/1 and a 1/4 adduct of pyridine and formic acid. Angew. Chem., Int. Ed. 1999, 28, 1974–1976.

(61) Losev, E. A.; Boldyrev, E. V. A salt or a co-crys- tal — when crystallization protocol matters. CrystEngComm 2018, 20, 2299–2305.

(62) Losev, E.; Boldyrev, E. The effect of amino acid backbone length on molecular packing: crystalline tartrates of glycine, β-alanine, γ-aminobutyric acid (GABA) and DL-α-aminobutyric acid (AABA). Acta Crystallogr. 2018, 74, 177–185.

(63) Steiner, T.; Majers, L.; Wilson, C. C. First O-H-N hydrogen bond with a centered proton obtained by thermally induced proton migration. Angew. Chem., Int. Ed. 2001, 40, 2651–2654.

(64) Grobhnly, P.; Mukherjee, A.; Desiraju, G. R. Drug-drug cocrys- tals: Temperature-dependent proton mobility in the molecular complex of isoniazid with 4-aminoacetic acid. CrystEngComm 2011, 13, 4358–4364.

(65) Stanton, P.; Grecu, T.; McCabe, J.; Munshi, T.; Nauha, E.; Scowen, I. J.; Blagden, N. First comparative study of the three polymorphs of bis(isonicotinamide) citric acid cocrys- tals and the concomitant salt 4-carboxamoylpyridinium citrate isonicotinamide. Cryst. Growth Des. 2018, 18, 4150–4159.

(66) Holden, J. R.; Du, Z.; Ammon, H. L. Prediction of possible crystal structures for Cₓ, Hₓ, Nₓ, Oₓ, and F-containing organic compounds. J. Comput. Chem. 1993, 14, 422–437.

(67) CAS Common Chemistry chemical database. https://commonchemistry.cas.org/ (accessed Feb 18, 2022).

(68) Kim, S.; Chen, J.; Cheng, T.; Gindyate, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.; Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395.

(69) McArde, P.; Cunningham, D. VOID: a PC program for the location and display of voids in crystal structures. J. Appl. Crystallogr. 2000, 33, 993.

(70) Scheepers, M. C.; Lemmerer, A. In pursuit of multicomponent crystals of the sulfa drugs sulfapyridine, sulfaethiazole, and sulframethoxazole. Cryst. Growth Des. 2022, 22, 98–122.

(71) Ghosh, S.; Bag, P. P.; Reddy, C. M. Co-crystals of sulfamethazine with some carboxylic acids and amides: Co-former assisted tautomerism in an active pharmaceutical ingredient and hydrogen bond competition study. Cryst. Growth Des. 2011, 11, 3489–3503.

(72) Arman, H. D.; Kaulgud, T.; Tiekink, E. R. T. 4-Amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide–benzoic acid (1/1). Acta Crystallogr. 2010, 66, o2430.

(73) Patel, U.; Haridas, M.; Singh, T. P. Structure of the 1:1 complex between 4-amino-N-(4,6-dimethyl-2-pyrimidinyl)benzenesulfon- amide (sulfadimidine) and 2-hydroxybenzoic acid (salicylic acid). Acta Crystallogr. 1988, 44, 1264–1267.

(74) Caira, M. R. Molecular complexes of sulfonamides. Part 1. 1:1 complexes between sulfadimidine [4-amino-N-(4,6-dimethyl-2-pyrimidinyl)benzenesulfonamide] and 2- and 4-amino benzoic acids. J. Crystallogr. Spectrosc. Res. 1991, 21, 641–648.

(75) Caira, M. R. Molecular complexes of sulfonamides. 2:1 complexes between drug molecules: sulfadimidine-acetylsalicylic acid and sulfadimidine-4-aminoacetic acid. J. Crystallogr. Spectrosc. Res. 1992, 22, 193–200.

(76) Smith, G.; Wermuth, U. D. 4-Amino-N-(4,6-dimethylpyrimi- din-2-yl)benzenesulfonamide-2-nitrobenzoic acid (1/1). Acta Crystallogr. 2013, 69, o234.

(77) Smith, G.; Wermuth, U. D. 4-Amino-N-(4,6-dimethylpyrimi- din-2-yl)benzenesulfonamide-4-nitrobenzoic acid (1/1). Acta Crystallogr. 2012, 68, o1649–o1650.

(78) Lynch, D. E.; Sandhu, P.; Parsons, S. Molecular complexes of 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfamethazine) with indole-2-carboxylic acid and 2,4-dinitrobenzoic acid. Aust. J. Chem. 2000, 53, 383–387.

(79) Lucaci, R.; Ionescu, C.; Wildervanck, A.; Caira, M. R. Effect of crystal packing on H-bond parameters: X-ray structure of the sulfadimidine-p-chlorobenzoic acid co-crystal. Anal. Sci. 2008, 24, X87–X88.

(80) Smith, G.; Wermuth, U. D. Proton-transfer compounds with 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfadimidine): the structures and hydrogen bonding in the salts with 5-nitrosalicylic acid and picric acid. Acta Crystallogr. 2013, 69, 538–543.

(81) Hu, Y.; Gniado, K.; Erdleben, A.; McArde, P. Mechanochem- ical reaction of sulfathiazole with carboxylic acids: formation of a cocystal, a salt, and coamorphous solids. Cryst. Growth Des. 2014, 14, 803–813.

(82) Oruganti, M.; Trivedi, D. R. 4-Nitrobenzoic acid–sulfathiazole (1/1). Acta Crystallogr. 2014, 70, o85–o86.