REVIEW

Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer’s disease

Soheil Madadi1, Heidi Schwarzenbach2, Massoud Saidijam3, Reza Mahjub4 and Meysam Soleimani1*

Abstract
Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer’s disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progression of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clearance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeutic targets for the treatment of AD.

Keywords: Ubiquitin–proteasome system, Autophagy, Aβ-degrading proteases, BBB transporters, Phagocytosis, Heat shock proteins, microRNAs

Introduction
Alzheimer’s disease (AD)—the most common form of dementia—is a devastating diagnosis that accounts for 93,541 deaths in the United States in 2014 [1]. Clinical manifestation of AD is often a loss of memory and cognitive skills. AD comprises two types: early-onset AD (EOAD), the familial type of AD which is inherited in an autosomal dominant pattern, and sporadic late-onset AD (LOAD), the most prevalent form of AD which develops at a later age [2]. The main pathological characteristics in the brains of AD patients are extracellular senile plaques composed of Aβ peptides [3] and intracellular neurofibrillary tangles (NFTs) formed by the accumulation of hyperphosphorylated tau [4].

Aβ is cleaved from the amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase in the amyloidogenic pathway [5], while in the non-pathological stage, APP is cleaved to non-toxic proteins by α-secretase [6]. Aβ has two major forms: Aβ40 and Aβ42, which are 40 and 42 amino acid-long fragments, respectively. Since Aβ42 is more hydrophobic than Aβ40, it is more prone to aggregate and scaffold for oligomeric and fibrillar forms [7]. The microtubule-associated protein tau regulates the assembly of microtubules and maintains its structural stability. Thus, it plays an important role in microtubule dynamics. In AD, however, tau becomes abnormally hyperphosphorylated leading to its dissociation from microtubules. Then, the unbound tau molecules aggregate as insoluble filaments, which accumulate and form neurofibrillary tangles (NFT) [8]. The accumulation of Aβ and NFTs in brain can trigger a cascade of events that may lead to AD.

According to the Aβ hypothesis, Aβ accumulation arises from a failure of clearance rather than over-production [9]. Indeed, Bateman et al. [10] demonstrated that the clearance rate of Aβ is impaired by approximately 30% in the cerebrospinal fluid of patients with LOAD. Mawuenyega et al. [11] found that the clearance rate of Aβ40 and Aβ42 is reduced by 25% and 30%, respectively.
in AD patients. The study by Cirrito et al. [12] showed the effect of age on the clearance rate of Aβ and found that the half-life of Aβ doubled within the interstitial fluid of older animal models of AD. These studies definitely established that defects in Aβ clearance have a fundamental role in AD pathology. Mechanisms that are involved in Aβ clearance include the ubiquitin–proteasome system (UPS), autophagic processes, proteolytic enzymes, transportation across the blood brain barrier (BBB), cellular uptake and heat shock protein (HSP)-mediated clearance, as illustrated in Fig. 1. The relative contributions of each of these procedures resulting in the overall clearance of Aβ are unknown.

MicroRNAs (miRNAs) have emerged as essential post-transcriptional regulators of gene expression. These small, non-coding RNAs regulate mRNA stability and transcription by binding to the 3'-UTR region of their targets [13]. The dysregulation of miRNAs leads to an altered protein expression which in turn results in a pathogenic signaling network connected with the imbalance between Aβ peptide synthesis and clearance causing AD. The involvement of miRNAs in these pathways may provide information about the molecular mechanism of AD. To survey and overcome the imbalance between synthesis and clearing, the research field on miRNAs may be promising, and is eligible for establishing a continuous monitoring of disease progression and therapeutic interventions, not only for AD but also for other diseases.

To date, miRNAs described above document their usefulness as diagnostic and predictive markers for AD. For the assessment of miRNAs, real-time PCR, microarrays or even sequencing could be applied in tissues and body fluids, such as plasma or serum. The development of miRNA-based therapies anticipates restoring normal miRNA expression levels. In clinical settings, the levels of down-regulated tumor suppressor miRNAs could be normalized by their re-expression using synthetic or viral vectors encoded for miRNA or synthetic double strand RNA molecules (mimics), whereas the up-regulated oncogenic miRNAs could be silenced by antisense-mediated inhibition, miRNA sponges and anti-miRNA peptides. As delivery vehicles of miRNAs could serve polymer-based, lipid or viral vesicles or MSCs [14]. However, to reach their destination, miRNAs (mimics or antisense) have to cross the blood–brain barrier. To overcome this limitation, strategies, such as the use of conjugated nanoparticle or intracerebroventricular infusion have been shown to improve the transport through the blood–brain barrier [15]. Further challenges for an efficient miRNA-based gene therapy are the potential degradation of miRNAs by cellular nucleases and poor cellular uptake. In particular, miRNAs elicit unspecific effects, toxicity and/or unfavorable immune response, since they only partially bind to their target mRNA. In addition, they participate in several signaling pathways and consequently, have different regulatory functions which require further research. For example, with respect to the treatment of cancer, in September 2016, the sponsoring company (Mirna Therapeutic, Inc.) stopped the enrollment and dosing of miR-34 (MRX34) in a clinical study after numerous immune-related severe adverse effects in patients dosed with MRX34 [16]. Therefore, to realize their therapeutic application, it is essential to intensely investigate the biology and functions of miRNAs. As described above, numerous efforts have already made to identify miRNAs for introducing them into the clinical practice of AD. Most notably in animal models, these miRNAs appeared to be well tolerated with promising outcomes. For example, the intracerebroventricular infusion of anti-miR-33 inhibited the brain-specifically expressed miR-33 and in turn decreased Aβ levels in the cortex of mice [17].

On the other hand, a disruption of miRNA biogenesis is to avoid since it is assumed to cause neurodegeneration. For example, the onset of a neurodegenerative disease may happen by the loss of Dicer, an enzyme which cleaves pre-miRNA into a double-stranded miRNA duplex [18]. Such investigations show that miRNAs play an important role in long-term brain integrity and highlight their clinical relevance in AD. As up to 80% of all human genes are regulated by miRNAs [19] and their potential utility as AD biomarkers have been reported, we introduce potential miRNA-regulated targets in Aβ clearance pathways that will provide insights into the role of miRNAs in AD pathology.

Ubiquitin–proteasome system

The ubiquitin–proteasome system (UPS) is the main intracellular proteolytic pathway in eukaryotic cells. The pathway degrades more than 70–80% of intracellular proteins, including damaged and misfolded proteins [20]. At first, in the tagging reaction of the UPS-mediated protein...
degradation, a polyubiquitin chain is added to target proteins through three steps: (1) in an ATP-dependent process, an ubiquitin-activating enzyme (E1) activates an ubiquitin (Ub) monomer, a 76-amino acid peptide; (2) the activated Ub binds to an ubiquitin-conjugating enzyme (E2); and (3) ubiquitin ligase (E3) then transfers Ub to the target protein. In some cases, an additional ubiquitination enzyme, the chain elongation factor E4, is required to extend a polyubiquitin chain. Finally, the polyubiquitinated proteins are recognized and degraded in the 26S proteasome, a system that is composed of a 20S catalytic core and two 19S regulatory subunits [21].

After the detection of Ub in senile plaques in 1987 [22], and the observation that Aβ can bind to proteasomes [23], it was suggested that UPS is involved in the clearance of Aβ. Later studies substantiated this hypothesis. Lopez et al. [24] demonstrated that inhibition of the proteolytic activity of the 26S proteasome in neurons and astrocytes led to a reduction in Aβ degradation. Chadwick et al. [25] showed that a mutant form of Ub capped by polyubiquitin chains inhibited 26S proteasome and interfered with Aβ clearance. Furthermore, proteolytic activities of the 26S proteasome can also be inhibited by Aβ [26].

MiRNAs and their targets in UPS

Usually, in neocortex and hippocampal regions of AD brain tissues, the E2 family member UBE2A is down-regulated. In this regard, Zhao et al. [27] showed that the over-expression of miR-7 led to UBE2A down-regulation in the brain tissues of AD patients. In addition, the E2 isoforms UBE2B, UBE2D3 and UBC10 that were down-regulated by miR-455-5p [28], miR-21-5p [29] and miR-631 [30] respectively, were identified as AD-related genes in a study conducted by Libro et al. [31]. Finally, the expression of UBC9 (UBE2I) was inversely correlated with miR-30a and miR-214 expression [32, 33] (Table 1).

There are several hundred E3 ligases in mammals, and this class shows the greatest diversity among the enzymes. E3 ligases are divided into two classes: E3 ligases with homology to the E6-AP carboxyl terminus (HECT), and the new RING ligases [34]. Singh et al. showed that the decreased levels of E3 ligase UBE3A caused by miR-375 over-expression [35], could influence the progression of AD [36]. Christie et al. showed that the levels of E3 ligase XIAP which were down-regulated by miR-497 and miR-7 [37, 38], were higher in AD patients than control cases [39]. Similarly, miR-24 over-expression decreased XIAP expression [40] (Table 1).

There are ~ 95 deubiquitinating enzymes (DUBs) in the human genome. DUBs are classified into five classes including: ubiquitin C-terminal hydrolase (UCH), ubiquitin-specific protease (USP), Machado-Joseph disease protease (MJD), otubain protease (OTU) and JAB1/MPN/Mov34 metalloenzyme (JAMM) [41]. Ubiquitin C-terminal hydrolase L1 (UCHL1) appears to be the only DUB playing a role in AD. It constitutes 1–5% of total neuronal protein, and stabilizes monoubiquitin by binding to it [42]. MiR-922 and miR-181b decreased UCHL1 expression in kidney and neuroblastoma cells, respectively [43, 44] (Table 1; Fig. 2).

Autophagy

Autophagy is a highly conserved catabolic process which has a key role in maintaining cell hemostasis through recycling nutrients and degrading aggregated proteins or damaged organelles [91]. Autophagy has distinct stages: formation of an isolation membrane (phagophore) and initiation of autophagy, vesicle nucleation, elongation and expansion of the autophagosome membrane, sequestration of aggregated proteins and cytoplasmic organelles into an autophagosome, and finally fusion of autophagosomes with endosomes or lysosomes for content degradation.

The first step in the autophagy process is the fusion of vesicles that originate from different membrane sources, such as the plasma membrane, endoplasmic reticulum (ER), Golgi apparatus and mitochondria [92]. Integration of these vesicles leads to the formation of an isolation membrane, called the phagophore. Autophagy initiation begins with the activation of a complex comprised of ULK1, ULK2, ATG13, ATG101 and the family interacting protein of 200 kD (FIP200) [93]. The mechanistic target of the rapamycin complex 1 (mTORC1) which is comprised of mTOR, RAPTOR, mLST8, and DEPTOR inhibits autophagy by phosphorylating ULK1 and ATG13 [94], while the adenosine monophosphate activated protein kinase (AMPK) activates autophagy by phosphorylating ULK1 at other sites [94].

The ULK1 complex controls vesicle nucleation through the class III phosphatidylinositol 3-kinase (PI3 K) complex. This complex is comprised of vacuolar protein sorting 34 (VPS34), VPS15, ATG14, and ultraviolet irradiation resistance-associated gene (UVRAG), all of which are scaffolded by Beclin 1 [95]. There are two ubiquitin-like conjugation steps that are involved in autophagosome elongation: (1) formation of a complex between ATG5, ATG12 and ATG16L1 that requires the catalytic activities of ATG7 (E1-like enzyme) and ATG10 (E2-like enzyme), (2) processing of microtubule-associated protein 1 light chain 3 (LC3). Initially, LC3 is cleaved by ATG4B, to form LC3-I which is then conjugated to phosphatidyethanolamine (PE) by ATG7 (E1-like enzyme) and ATG3 (E2-like enzyme), to form LC3-II [96]. After the formation of autophagosomes, the ATG5-ATG12-ATG16L1 complex separates from...
the outer membrane, while LC3-II remains attached with the completed autophagosomes, to facilitate their identification. Finally, double-membraned autophagosomes fuse with lysosomes for content degradation.

Growing evidence indicates that autophagy plays a role in AD pathology. For example, it has been reported that autophagic vacuoles are abundant in AD brains [97] and that their clearance is impaired in AD [98]. Furthermore, restoring autophagy reduced Aβ accumulation in a TgCRND8 mouse model of AD and ameliorated memory deficits [99]. In their study, Wu et al. [100] validated miRNA-binding sequences for miR-20a and miR-106b in the 3′-UTR region of ULK1 and found that these two miRNAs negatively regulated autophagy through suppressing ULK1 expression in mouse myoblast cell lines. Korkmaz et al. [101] found that miR-376b attenuated the luciferase activity of the BECN1 3′-UTR, and thus, decreased mRNA levels of BECN1 in human breast and hepatocellular carcinoma cell lines leading to autophagy inhibition. A number of miRNAs that regulate the autophagy cascade are summarized in Table 2, Fig. 3.

Table 1 MiRNAs and their downregulated mRNA targets in UPS

MiRNAs	Family	Gene	References
miR-199a-5p	Ubiquitin-conjugating (E2) enzymes	UBE2G1	[45]
miR-101		UBE2N	[46]
miR-182, miR-145, miR-19a/b	Ubiquitin E3 ligases	CUL5	[47–49]
miR-195		CBX4	[50]
miR-221		HECTD2	[51]
miR-153		HECTD3	[52]
miR-542-5p		HUWE1	[53]
miR-106b, miR-411		ITCH	[54, 55]
miR-93		NEDD4L	[56]
miR-137		PIAS2	[57]
miR-199a-5p, miR-301a-3p, miR-9718, miR-21, miR-18a		PIAS3	[58–62]
miR-194		RBX1	[63]
miR-503, miR-542-5p, miR-497, miR-15b	Ubiquitin E3 ligases	SMURF1	[64–67]
miR-486, miR-424, miR-322, miR-503, miR-15a/b, miR-16, miR-128		SMURF2	[68–71]
miR-542-3p		UBE3C	[72]
miR-584-5p, miR-21		WWP1	[73, 74]
miR-214		RNF8	[75]
miR-19b		MYLIP	[76]
miR-214		RFWD2	[77]
miR-31	Deubiquitinating enzymes	BAP1	[78]
miR-17		USP2	[79]
miR-148a		USP4	[80]
miR-205		USP7	[81]
miR-135b		USP13	[82]
miR-320a		USP14	[83]
miR-34b		USP22	[84]
miR-200c		USP25	[85]
miR-363-3p		USP28	[86]
miR-204-5p		USP47	[87]
miR-25		Ataxin-3	[88]
miR-125b-5p		A20	[89]
miR-24		CSNS	[90]

Degrading enzymes

Aβ is degraded by various types of proteases collectively known as Aβ-degrading proteases (AβDPs), e.g., by neprilysin, myelin basic protein, matrix metalloproteidase, angiotensin converting enzyme and cathepsins.
Fig. 2 The inhibitory effect of miRNAs on their target molecules in the UPS pathway. Ubiquitin is transferred to the E2 enzyme after activation by the E1 enzyme, and is then transferred to the substrate by E3 enzyme. E4 enzyme is required for the formation of the polyubiquitin chain. After the recognition process, substrates are degraded by the 26S proteasome or their polyubiquitin monomers are removed by DUB.

Table 2 MiRNAs and their downregulated mRNA targets in the autophagy cascade

MiRNA	Function	Gene	References
miR-144, miR-99b-5p, miR-199a-3p	Autophagy initiation	mTOR	[102–104]
miR-100		RAPTOR	[105]
miR-181b		mLST8	[106]
miR-375		DEPTOR	[107]
miR-25		ULK1	[108]
miR-26b		ULK2	[109]
miR-4459		ATG13	[110]
miR-224-3p		FIP200	[111]
miR-17-5p, miR-30a	Vesicle nucleation	BECN1	[112, 113]
miR-195, miR-152		ATG14	[114, 115]
miR-33a, miR-183		UVRAG	[116, 117]
miR-21		VPS34	[118]
miR-299-5p, miR-181a	Autophagosome elongation	ATG5	[119, 120]
miR-23b, miR-200b		ATG12	[121, 122]
miR-142-3p, miR-410		ATG16L1	[123, 124]
miR-188-3p, miR-17		ATG7	[125, 126]
miR-4458, miR-4667-5p, miR-4668-5p		ATG10	[127]
miR-34a		ATG4B	[128]
miR-155		ATG3	[129]
miR-204, miR-497		LC3-II	[130, 131]
Neprilysin

Neprilysin (NEP) is a zinc-dependent membrane metalloendopeptidase (MME) belonging to the M13 family of metallopeptidases. After the introduction of Neprilysin as one of the major AβDPs [132], Iwata et al. [133] showed that in Neprilysin knockout-mice the vulnerability of the hippocampus was caused by Aβ accumulation. In this regard, neprilysin was shown to degrade both monomeric and oligomeric forms of Aβ [134]. Moreover, a meta-analysis documented that mRNA and protein levels of Neprilysin, as well as the enzymatic activity of neprilysin are decreased in AD patients [135].

Myelin basic protein

Myelin basic protein (MBP), an 18.5 kD protein is the main protein component of myelin, and participates in
the formation and maintenance of the myelin sheath. MBP has serine protease activity and degrades Aβ40 and Aβ42 peptides [136]. Hoos et al. [137] found that MBP inhibited fibrillar assembly of Aβ, and Liao et al. [138] demonstrated that this was mediated by the N-terminal domain of MBP. Furthermore, Wang et al. [139] showed that miR-212 reduced the expression of MBP, and thus, promoted the assembly.

Matrix metalloproteinase
Matrix metalloproteinases (MMPs) that belong to the metzincin family have at least two domains: the pro-domain which is ~80 amino acids long and the catalytic domain which contains a zinc ion in the active site. They degrade both soluble and fibrillar Aβ peptides [140]. Zhang et al. [141] reported that miR-9 directly targeted the MMP-14 3′-UTR and decreased transcriptional and consequently, protein levels of MMP-14 in neuroblasto-oma cells reducing adhesion, migration, invasion and angiogenesis of these cells. Multiple MMPs are implicated in Aβ degradation and their repression by miRNAs is shown in Table 3.

Angiotensin converting enzyme
Angiotensin-converting enzyme (ACE) is a zinc-dependent dipeptidase that catalyzes the conversion of angiotensin I to angiotensin II. Hu et al. [155] found that ACE degraded Aβ40 by cleaving the peptide bond between Asp7 and Ser8 residues, and found that ACE prevented the accumulation of amyloid plaques by degrading Aβ in vivo. Following studies indicated that the N-terminal domain of ACE was responsible for Aβ degradation [156] and pharmacological inhibition of ACE enhanced the accumulation of Aβ in APP expressing cells [157]. Several miRNAs are implicated in inhibiting ACE expression, as listed in Table 3.

Cathepsins
Cathepsin B, a major representative of cysteine proteases, acts as either an exopeptidase or an endopeptidase. It is present in lysosomes from all cell types, and participates in lysosomal turnover of proteins. Sun et al. [158] indicated that Cathepsin B was able to induce Aβ degradation in vivo. Moreover, lysosomal Cathepsin B is essential in microglial clearance of Aβ [159] and its up-regulation promotes Aβ42 degradation in AD monocytes [160]. By using homology modeling, Dhanavade et al. [161] found that Cathepsin B cleaved Aβ peptide from the carboxylic end of Glu11. Cathepsin D, an aspartyl protease is present in lysosomes from most mammalian cells, and engages in the degradation of intracellular and endocytosed proteins. It cleaves Aβ peptide at Phe19-Phe20 and Leu34-Met35 [162], and is down-regulated in monocytes of AD patients [163]. Overexpression of miR-128 down-regulated the expression of Cathepsin B and Cathepsin D. Consequently, miR-128 inhibition enhanced Aβ42 degradation in monocytes from AD patients [164].

Blood–brain barrier clearance of Aβ
The blood–brain barrier (BBB) is a physical barrier that separates peripheral circulation from the central nervous system (CNS). The BBB, which is formed by endothelial cells connected by tight junctions, plays a significant role in controlling brain homeostasis by eliminating toxic metabolites from the brain into the blood, such as Aβ aggregates. It has two sides, the luminal side facing the blood circulation, and the abluminal side facing the brain parenchyma. Transporters and receptors which are expressed on the two sides are involved in the transport and clearance of Aβ. Aβ efflux and influx through the BBB are regulated by several miRNAs, some of which are illustrated in Fig. 4 and listed in Table 4.

Receptor-mediated Aβ influx
Receptor for advanced glycation end products
The receptor for advanced glycation end products (RAGE) belongs to the immunoglobulin family, and is expressed on the luminal surface of brain vessels. RAGE is a multi-ligand receptor that binds a range of ligands, including Aβ [165]. By using an in vitro BBB model, Mackic et al. [166] showed that RAGE is involved in the internalization of soluble monomeric forms of Aβ40. Candela et al. [167] reported that RAGE inhibitors

| Table 3 MiRNAs and their downregulated mRNA targets in the degradation cascade |
|-----------------------------|-----------------|-----------------|------------------|
| MiRNA | Family | Gene | References |
| miR-24, miR-181a-5p | Matrix metalloproteinase | MMP-14 | [142, 143] |
| miR-132, miR-34a, miR-516b | | MMP-9 | [144–146] |
| miR-148a, miR-100 | | MMP-7 | [147, 148] |
| miR-29b, miR-34a, miR-516b, miR-93 | | MMP-2 | [145, 146, 149, 150] |
| miR-22, miR-485-5p, miR-492 | Angiotensin-converting enzyme | EMMPRIN | [151–153] |
| miR-143/145 | | ACE | [154] |
mediated a significant decrease in Aβ40 and Aβ42 transport through the brain endothelium. Similarly, Takuma et al. [168] found that a genetic deletion of RAGE suppressed Aβ uptake in neurons. Mice studies confirmed these findings and showed the influx of circulating Aβ into the brain as a receptor-mediated transport depending on RAGE [169]. Furthermore, the inhibition of the RAGE/Aβ interaction repressed Aβ accumulation in the

Table 4 MiRNAs and their downregulated mRNA targets in the blood–brain barrier clearance of Aβ

MiRNA Family	Gene References
miR-185, miR-328-5p	Receptor for advanced glycation end products, RAGE [220, 221]
miR-205	Low-density lipoprotein receptors, LRP1 [222]
miR-148b	ATP-binding cassette transporters, ABCA1 [224–226]
miR-26, miR-19b, miR-302a	LDL receptor related protein 1, LRP2 [223]
miR-200c, miR-873, miR-491-3p, miR-223	LDL receptor related protein 2, LRP2, ABCG1 [227–230]
miR-328, miR-302, miR-3163, miR-181a	Multidrug resistance protein, ABCG2 [231–234]
miR-185-5p, miR-463-3p	ATP-binding cassette subfamily G member 4, ABCG4 [235, 236]
miR-29b, miR-130b	Glymphatic clearance, AQP4 [237, 238]
The Aβ uptake as reported by Tamaki et al. [184]. Clear-
ence, therefore, LRP1 suppression in the liver reduced
By expressing LRP1, the liver is able to clear plasma Aβ
produced from the cleavage of LRP1 by β-secretase [185],
[184]. Investigations showed that soluble LRP1 which is
ance of plasma Aβ by the liver is saturable and age-related
equilibrium exists between the levels of Aβ in the brain and
through the BBB. According to this hypothesis, an equi-
sion of LRP1 in peripheral tissues affects Aβ clearance
Clearance of plasma Aβ by the liver is saturable and age-related

Receptor-mediated Aβ efflux

Low-density lipoprotein receptor (LDLR) family

The LDLR family are cell surface receptors and includes
LDLR, VLDLR, LRP1, LRP1B, LRP2 (megalin), LRP3,
LRP4, LRP5, LRP6 and LRP8. The main function of this
receptor family is receptor-mediated endocytosis. In
APP/PS1/LDLR transgenic mice, LDLR over-expression
was reported to promote Aβ clearance [173].

Initial studies identified LRP1 as an abluminal recep-
tor that mediated Aβ transport across the BBB [174],
and subsequent studies proved a role for LRP1 in brain-
to-blood Aβ clearance [175]. In a mouse model of AD,
LRP1 deletion resulted in decreased Aβ levels in plasma
and enhanced soluble Aβ in brain endothelial cells [176].
Moreover, LRP1 oligodeoxynucleotide antisense impaired recognition memory in mice by reducing BBB
clearance of Aβ [177]. Several studies proved that ApoE
had suppressive effects on LRP1-mediated BBB clearance
of Aβ as preincubation with ApoE reduced Aβ40 clear-
ance [178]. Moreover, ApoE suppressed soluble Aβ (sAβ)
clearance by competing with sAβ for interaction with
LRP1 [179]. Further studies showed an isoform-specific
effect for ApoE since ApoE4-Aβ complexes were not
cleared by the rapid LRP1 receptor, and their clearance
was mediated by VLDLR which has a significant slower
rate of endocytosis compared to LRP1. However, both
LRP1 and VLDLR are involved in the clearance of ApoE2-
and ApoE3-Aβ complexes [180], Wang et al. [181] found
that miR-1908 reduced mRNA levels of ApoE by target-
ing its 3′-UTR, and thereby inhibited ApoE-mediated Aβ
clearance in astrocytoma and human macrophage cell
lines.

Based on the sink hypothesis, it is assumed that expres-
sion of LRP1 in peripheral tissues affects Aβ clearance
through the BBB. According to this hypothesis, an equi-
librium exists between the levels of Aβ in the brain and
peripheral tissues. Thus, Aβ elimination by peripheral
tissues causes brain Aβ to move into the blood through
the BBB in order to maintain this balance [175, 182].
By expressing LRP1, the liver is able to clear plasma Aβ
[183], therefore, LRP1 suppression in the liver reduced
the Aβ uptake as reported by Tamaki et al. [184].
Clearance of plasma Aβ by the liver is saturable and age-related
[184]. Investigations showed that soluble LRP1 which is
produced from the cleavage of LRP1 by β-secretase [185],
is the main peripheral Aβ-binding protein and reduced
the load of Aβ in mice brain by acting as a peripheral sink
[186].

LRP2 (megalin) is expressed on the abluminal side of
the BBB, and also involved in the BBB clearance of Aβ
[187]. Aβ does not directly bind to LRP2, and needs ApoJ
for the interaction with LRP2 [188]. Only, ApoJ-bounded
Aβ can be cleared from the brain by this receptor [189].
Interestingly, a recent study indicated that Clusterin
administration reduced Aβ accumulation in a mouse model
of AD by increasing LRP2 levels [190]. Zhang et al.
[191] identified LRP2 mRNA 3′-UTR as a direct target
of miR-146a and indicated that LRP2 protein levels were
significantly inhibited by miR-146a in human neuroblas-
toma cell line. MiR-146a also elevated the rate of apop-
tosis in human neuroblastoma cells exposed to Aβ, and
thus, may contribute to AD progression.

ATP-binding cassette transporters (ABC transporters)
The ABC transporter, one of the most common trans-
membrane proteins exists in all living organisms and is
divided into subfamilies A to G based on its sequence
homology and functional similarity. ABC transporters
use the energy generated by ATP hydrolysis to transport
substrates across cell-membranes, playing an important
role in many physiological processes. Recent evidence
showed that ABC transporters are involved in Aβ clear-
ance, especially ABCA1, ABCB1 (multidrug resistance
protein, MDR1 or P-glycoprotein), ABCG2 (breast can-
cer resistance protein, BCRP), and ABCG4.

ABCA1 is a transmembrane protein that is expressed
on the abluminal side of the BBB. It transports cholesterol
and phospholipids to ApoE in order to form high-density
lipoproteins (HDL). Analyses showed that ABCA1 indi-
cingly facilitated Aβ clearance through ApoE lipidation
in the brain as no significant differentiation was seen in
Aβ elimination between ABCA1-deficient and wild-type
mice [192]. Mouse studies indicated that ABCA1 defi-
cency reduced ApoE levels and its lipidation state in the
brain which were accompanied by Aβ accumulation
[193, 194] and co-deposition of poorly lipidated ApoE
with Aβ [195]. Thus, ABCA1-mediated ApoE lipidation
reduced Aβ accumulation [196]. Similarly, Corona et al.
[197] revealed that ABCA1-mediated ApoE lipidation is
essential in Aβ clearance. The role of ABCA1 and ApoE
in Aβ clearance is not fully elucidated as Aβ clearance
was reduced in APP/ABCA1+/- mice expressing ApoE4
but not ApoE3 [198]. While ABCA1 expression was
reduced in the brain of APP/PS1 mice [199], it was up-
regulated in 3xTg-AD mice [200]. Further studies showed
that ABCA1-mediated cholesterol efflux was reduced in
the CSF of AD patients [201]. Nordestgaard et al. [202]
found that a loss-of-function mutation in ABCA1 was
associated with a higher risk of AD. In neuroblastoma
and liver cells, miR-106b prevented Aβ clearance by suppressing ABCA1 expression [203], while inhibition of miR-33a increased lipidated ApoE levels, and reduced Aβ levels mediated by the re-expression of ABCA1 [17]. Liang et al. [204] found that miR-20a/b reduced mRNA and protein expression of ABCA1 in human and mouse macrophage-derived foam cells. MiR-20a/b over-expression decreased cholesterol efflux to ApoA-I, and thus, may interfere with Aβ clearance.

The ABCB1 transporter that is expressed on the luminal side of the BBB acts as an efflux pump of exogenous molecules, and is involved in Aβ clearance, as shown in ABCB1-knockout mice [205]. Other in vitro and in vivo studies also proved that P-glycoprotein had efflux activity since ABCB1 up-regulation enhanced the efflux of Aβ40 from cells [206] and led to a reduction in parenchymal Aβ40 and Aβ42 levels [207]. Moreover, previous studies showed that peripherally-injected Aβ accumulated in the brain of ABCB1-knockout mice [208], and ABCB1 deficiency increased Aβ burden in a mouse model of AD [209]. Consistent with these results, Aβ accumulation was inversely correlated with ABCB1 expression in AD patients [210]. Notably, Aβ42 down-regulated the expression of P-glycoprotein [211].

ABCG2 is also expressed at the luminal side of the BBB, and is also involved in Aβ efflux from brain to blood circulation [212] since Aβ levels were reported to be higher in the brain of ABCG2 knock-out mice than in the brain of wild type mice [208]. Shen et al. [213] also proved that ABCG2 had efflux activity, since ABCG2 deficiency led to Aβ accumulation in mice brain. Moreover, ABCG2 levels were age-dependently increased in a mice model of AD [200], and Xiong et al. [214] reported its up-regulation in AD brains.

The ABCG4 transporter participates in the cholesterol and desmosterol efflux. Do et al. [200] identified ABCG4 as a receptor that controls Aβ efflux through the BBB. Other in vivo studies proved its role in Aβ clearance by disclosing that ABCG4 contributes to Aβ40 elimination across the mouse BBB [212], and that Aβ efflux was decreased in ABCG4-knockout mice [215]. Finally, a mouse model showed that ABCG4 is expressed in the cerebral cortex and medulla regions of the brain [216], while a human study demonstrated that ABCG4 was up-regulated in the microglia-surrounded senile plaques in AD brains [217].

Glymphatic clearance

Aquaporin-4 (AQP4), a water-channel protein is expressed in astrocytes, and plays a key role in Aβ clearance by regulating the glymphatic pathway. AQP4 is involved in the clearance of soluble Aβ from the brain [218]. Yang et al. [219] revealed that AQP4 was up-regulated in areas of senile plaques, predominantly at later stages of plaque formation. In AQP4 knockout mice, glymphatic clearance of Aβ was reduced compared with wild-type mice [218].

Receptor-mediated Aβ phagocytosis

Phagocytosis is an evolutionarily conserved process, critical for innate immunity. It has been shown that impaired immune response in AD negatively affects Aβ elimination [239]. Similarly, macrophage-dependent phagocytosis of Aβ is impaired in AD [240]. In this section we introduce receptors that are expressed on the surface of phagocytic cells, and involved in Aβ phagocytosis. These surface receptors are regulated by several miRNAs, some of which are shown in Fig. 5 and Table 5.

Toll-like receptors

Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs), and involved in innate immune recognition. There are at least ten TLRs in mammals, and though they have a high degree of structural similarity, their functions are distinct. TLRs are involved in the clearance of diffuse and fibrillar forms of Aβ through microglial activation [241]. Song et al. [242] showed that TLR2 deletion increased Aβ levels in the brain of APP transgenic mice which was accompanied with memory deficits. Consistent with these results, TLR4 mutation caused Aβ deposition and cognitive deficits in a mouse model of AD [243]. Frank et al. [244] detected increased mRNA levels of TLR2, TLR4, and TLR9 in a transgenic mouse model. Zhang et al. [245] found that miR-181c suppressed the activity of the luciferase reporter plasmid containing TLR4 3'-UTR by reducing TLR4 mRNA and protein expression in microglial cells. Consequently, miR-181c inhibited the downstream production of pro-inflammatory mediators. Table 5 listed the miRNAs that inhibit the expression of TLR2 and TLR4.

Triggering receptor expressed on myeloid cells 2

Triggering receptor expressed on myeloid cells 2 (TREM2) is expressed on microglial cells and belongs to the immunoglobulin superfamiliy. This surface receptor has several ligands, including low density lipoproteins (LDL), ApoJ and ApoE. Yeh et al. [246] showed that microglial cells are capable of uptaking LDL-Aβ complexes in a TREM2-dependent manner. In a mouse model of AD, TREM2 enhanced Aβ42 phagocytosis in the primary microglia [247]. Thus Aβ levels were higher in TREM2-deficient mice [248]. Kober et al. [249] found that the ligand affinity of LDL-Aβ complex was reduced in the R47H and R62H variants of TREM2, leading to phagocytosis impairment and Aβ accumulation [246]. Jay et al. [250] detected that TREM2 was up-regulated on
microglial cells that were clustered around Aβ deposits in a mouse model of AD and human AD tissues. Alex-
androv et al. [251] showed that miR-34a down-regu-
lated TREM2 expression leading to Aβ accumulation by
impairing phagocytosis.

Scavenger receptors

Scavenger receptors (SRs) are cell surface receptors that participate in the uptake of various polyanionic ligands. Based on their protein sequence, SRs are classified into 10 families (A-J). It has been shown that scavenger receptor class A (SR-A) and class B type 1 (SR-B1), as well as CD36 participate in Aβ clearance [252–254]. SR-A which is expressed on microglial cells and macrophages is implicated in Aβ phagocytosis [255]. Therefore SR-A deficiency reduced phagocytic activity of microglia and macrophages [256, 257], accelerated Aβ accumulation and consequently led to increased mortality in a mouse model of AD [258]. SR-B1 is expressed on microglial cells and astrocytes, mediates the binding of Aβ to microglia [259] and is implicated in the astrocyte-mediated clearance of Aβ [260]. In vivo studies indicated that SR-B1 deficiency promoted Aβ deposition [261]. CD36 which is found in a variety of cell types mediates macrophage and microglial response to Aβ [262]. In vitro studies demonstrated that CD36 deficiency decreased Aβ phagocytosis [263], while PPARγ-induced CD36 up-regulation enhanced Aβ phagocytosis in microglia [264]. Kouadir et al. [265] reported the increases in SR-B1 and CD36 expression by Aβ42, while Giunta et al. [266] reported the downregulation of CD36 in AD patients. Li et al. [267] showed that miR-758-5p significantly reduced mRNA and protein levels of CD36, and therefore attenuated cellular uptake of cholesterol.

Heat shock proteins

Heat shock proteins (HSPs), a group of molecular chaper-
one repress molecular denaturation under stressful con-
ditions. HSPs also prevent protein aggregation by binding to newly synthesized or misfolded proteins, thereby helping maintain protein homeostasis. According to their size and function, HSPs can be divided into two different families: classic HSPs with a molecular weight of 60 kD or more that possess an ATP-binding site, e.g., HSP90 and HSP70, and small HSPs with a molecular weight of

Table 5 MiRNAs and their downregulated mRNA targets in the receptor-mediated Aβ phagocytosis

MiRNA	Family	Gene	References
miR-203, miR-27a	Toll-like receptors	TLR4	[268, 269]
miR-143, miR-19, miR-146a	Toll-like receptors	TLR2	[270–272]
miR-155	Scavenger receptors	SR-A	[273]
miR-185, miR-96, miR-223	Scavenger receptors	SR-B1	[274]
miR-590	CD36		[275]

Fig. 5 Receptor-mediated Aβ phagocytosis. The immune microglial cells and astrocytes reduce the load of Aβ in the brain by phagocytosis mediated by surface receptors. Aβ is directly phagocytosed by Toll-like receptors and scavenger receptors, while the presence of LDL is crucial for TREM2-dependent phagocytosis. TLR2 toll like receptor 2, TLR4 toll like receptor 4, TLR9 toll like receptor 9, TREM2 triggering receptor expressed on myeloid cells 2, LDL low density lipoprotein, SR-A scavenger receptor class A, SR-B1 scavenger receptor class B type 1.
40 kD or less that are ATP-independent, e.g., HSP27. Initial studies showed that HSPs regulated microglial interactions with Aβ, substantiating the role of HSP90 and HSP70 in phagocytosis-dependent Aβ clearance [276]. Subsequent in vivo studies showed similar data, and demonstrated that microglial clearance of Aβ was facilitated by HSP90 in a rat brain [277], and that HSP70 overexpression decreased Aβ levels in a mouse model of AD [278]. Furthermore, Evans et al. [279] demonstrated that HSP90 and HSP70 could induce structural changes in Aβ oligomers that suppressed self-assembly. Similarly, Rivera et al. [280] found that HSP70 prevented Aβ oligomerization and consequently reduced Aβ-induced toxicity in cultured neurons. HSP27 was also able to bind Aβ40, reducing its formation into mature fibrils [281]. Therefore, HSP27 protects neurons against Aβ [282]. On the other hand, Aβ could enhance the expression of HSP27 and HSP70 in neuronal cultures [283, 284]. Table 6 specified the miRNAs that inhibit HSPs expression.

Conclusion

Emerging evidences indicate that impaired Aβ clearance plays a crucial role in both EOAD and LOAD. Thus, understanding how Aβ is cleared from the brain might be of clinical relevance. Aβ removal from the brain occurs via various pathways: UPS, autophagy, proteolytic enzymes, transportation across the BBB and cellular uptake. Any disturbance of these pathways may lead to Aβ accumulation, resulting in the pathological process driving AD. Our present review shows that numerous miRNAs inhibit the translation of key molecules in these pathways, promoting the Aβ accumulation. This ability of miRNAs to target multiple mRNAs in the network of Aβ clearance make them to valuable therapeutic target molecules in AD. In particular, those miRNAs should be selected as target molecules that are involved in several pathways. As shown above, miR-34a and miR-29b may be attractive candidates for AD treatment because they inhibit at least three pathways leading to Aβ clearance. In the adult mammalian brain, miR-34a is highly expressed, and has been implicated in a range of neurodevelopmental and neuropathological processes. MiR-34a was reported to regulate neural stem/progenitor cell differentiation. High levels of this miRNA have been detected during epileptic seizures and ischemic stroke contributing to neuronal injury and death [290]. MiR-29b has been identified as a putative regulator of immunity. Moreover, ectopic expression of miR-29b promoted neuronal cell death, whereas its repression decreased cell death [291]. In summary, the research field on miRNAs is promising for therapeutic applications, not only for the treatment of AD but also for regenerative medicine. However, several obstacles prevent their utility in the clinic, of which the accurate determination of their expression levels might be a critical point [292]. Indeed, due to the lack of consensus on the reference controls, the appropriate normalization approach should be validated in each experimental study [293, 294].

Acknowledgements

Not applicable.

Authors’ contributions

SM and MS wrote the manuscript. HS, MS and RM revised the manuscript. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran. 2 Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. 3 Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. 4 Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.

Received: 25 June 2019 Accepted: 1 November 2019

Published online: 12 November 2019

References

1. Association As. 2017 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2017;13(4):325–73.
2. Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014;88(4):640–51.
3. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci. 1985;82(12):4245–9.
4. Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder Ll. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci. 1986;83(13):4913–7.
5. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, et al. β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999;286(5440):735–41.
6. Kojro E, Fahrenholz F. The non-amyloidogenic pathway: structure and function of α-secretases. Alzheimer’s disease. Boston: Springer; 2005. p. 105–27.

7. Jarrett JT, Berger EP, Lansbury PT Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry. 1993;32(18):4693–7.

8. Medeiros R, Bagletto-Vargas D, Laferla FM. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci Ther. 2011;17(5):514–24.

9. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.

10. Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM. Quantifying CNS protein production and clearance rates in humans using in vivo stable isotope labeling, immunoprecipitation, and tandem mass spectrometry. Nat Med. 2006;12(7):856.

11. Mawuenye KG, Sigurdson W, Ovud V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science. 2010;330(6012):1774.

12. Cirrito JR, May PC, O’Dell MA, Taylor JW, Parsadanian M, Cramer JW, et al. In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-β metabolism and half-life. J Neurosci Res. 2003;72(4):884–53.

13. Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2005;57(3–4):105–27.

14. Smith B, Agarwal P, Bhowmick NA. MicroRNA applications for prostate, lung, and cervical cancer: a review. J Exp Clin Cancer Res. 2010;29(1):76.

15. Beg MS, Brenner AJ, Sachdev J, Borad M, Kang Y-K, Stoudemire J, et al. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Neurosci. 2016;7(12):116.

16. Beg MS, Brenner AJ, Sachdev J, Borad M, Kang Y-K, Stoudemire J, et al. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Neurosci. 2016;7(12):116.

17. Smith B, Agarwal P, Bhowmick NA. MicroRNA applications for prostate, lung, and cervical cancer: a review. J Exp Clin Cancer Res. 2010;29(1):76.

18. Smith B, Agarwal P, Bhowmick NA. MicroRNA applications for prostate, lung, and cervical cancer: a review. J Exp Clin Cancer Res. 2010;29(1):76.

19. Smith B, Agarwal P, Bhowmick NA. MicroRNA applications for prostate, lung, and cervical cancer: a review. J Exp Clin Cancer Res. 2010;29(1):76.

20. Smith B, Agarwal P, Bhowmick NA. MicroRNA applications for prostate, lung, and cervical cancer: a review. J Exp Clin Cancer Res. 2010;29(1):76.

21. Smith B, Agarwal P, Bhowmick NA. MicroRNA applications for prostate, lung, and cervical cancer: a review. J Exp Clin Cancer Res. 2010;29(1):76.

22. Smith B, Agarwal P, Bhowmick NA. MicroRNA applications for prostate, lung, and cervical cancer: a review. J Exp Clin Cancer Res. 2010;29(1):76.

23. Smith B, Agarwal P, Bhowmick NA. MicroRNA applications for prostate, lung, and cervical cancer: a review. J Exp Clin Cancer Res. 2010;29(1):76.

24. Smith B, Agarwal P, Bhowmick NA. MicroRNA applications for prostate, lung, and cervical cancer: a review. J Exp Clin Cancer Res. 2010;29(1):76.

25. Smith B, Agarwal P, Bhowmick NA. MicroRNA applications for prostate, lung, and cervical cancer: a review. J Exp Clin Cancer Res. 2010;29(1):76.
50. Zheng C, Li J, Wang Q, Liu W, Zhou J, Liu R, et al. MicroRNA-195 functions as a tumor suppressor by inhibiting CXB4 in hepatocellular carcinoma. Oncol Rep. 2015;33(3):1155–22.

51. Sun T, Wang X, He H, Sweeney C, Liu S, Brown M, et al. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene. 2014;33(21):2790.

52. Wu X, Li L, Li Y, Liu Z. MiR-153 promotes breast cancer cell apoptosis by targeting HECTD2. Am J Cancer Res. 2016;6(7):1563.

53. Cheng DD, Yu T, Hu T, Yao M, Fan CY, Yang QC. MiR-542-5p is a negative prognostic factor and promotes osteosarcoma tumorigenesis by targeting HUK1. Oncotarget. 2015;6(40):42761.

54. Luo ZL, Luo HJ, Fang C, Cheng L, Huang Z, Dai R, et al. Negative correlation of ITCH E3 ubiquitin ligase and miRNA-106b dictates metastatic progression in pancreatic cancer. Oncotarget. 2016;7(12):1477.

55. Xia K, Zhang Y, Cao S, Wu Y, Guo W, Yuan W, et al. miR-411 regulated ITCH expression and promoted cell proliferation in human hepatocellular carcinoma cells. Biomed Pharmacother. 2015;70:158–63.

56. Qu M-H, Han C, Srivastava AK, Cui T, Zou N, Gao Z-Q, et al. MiR-93 promotes TGF-β-induced epithelial-to-mesenchymal transition through downregulation of NEDD4L in lung cancer cells. Tumor Biol. 2016;37(4):5645–51.

57. Pan Y, Dai J, Liao Y, Yu Q. MicroRNA-137 promotes hepatitis B virus gene expression and replication via targeting the protein inhibitor of activated STAT 2. Die Pharmazie. 2017;72(9):550–4.

58. Wang C, Ba X, Guo Y, Sun D, Jiang H, Li W, et al. MicroRNA-199a-5p promotes tumour growth by dual-targeting PIAS3 and p27 in human osteosarcoma. Sci Rep. 2017;7:41456.

59. Tang X, Yin K, Zhu H, Tian J, Shen D, Yi L, et al. Correlation between the expression of microRNA-301a-3p and the proportion of TH17 cells in patients with rheumatoid arthritis. Inflammation. 2016;39(2):759–67.

60. Liu T, Qin A-P, Bao L, Shao H-G, Liu S, Gu L-J, et al. A novel microRNA regulates osteosarcoma differentiation via targeting protein inhibitor of activated STAT3 (PIAS3). Bone. 2014;67:158–65.

61. Wang Z, Han J, Cui Y, Zhou X, Fan K. miR-212 inhibition enhances RANTES and IP-10 release in MCT-7 via PIAS3 and STAT3 signalling and causes increased lymphocyte migration. Biochem Biophys Res Commun. 2013;439(3):384–9.

62. Wu W, Takanashi M, Borjigin N, Ohno S, Fujita K, Hoshino S, et al. MicroRNA-18a modulates STAT3 activity through negative regulation of PIAS3 during gastric adenocarcinogenesis. Br J Cancer. 2013;108(3):653.

63. Chen X, Wang Y, Zang W, Du Y, Li M, Zhao G. miR-194 targets RXB1 gene to modulate proliferation and migration of gastric cancer cells. Tumor Biol. 2015;36(6):2399–401.

64. Sun Y, Xu J, Lui J, Zhang J, Chan K, Pan X, et al. MiR-503 promotes bone formation in distraction osteogenesis through suppressing Smurf1 expression. Sci Rep. 2017;7(1):409.

65. Garros RF, Paul R, Connolly M, Lewis A, Garfield BE, Natanek SA, et al. MicroRNA-497 inhibits transfection of hepatic adenoma by targeting the 3′UTR of Jab1/CSN5. Oncogene. 2016;35(47):6096.

66. Zhu L, Liu R, Zhang W, Qian S, Wang JH. MicroRNA-205 regulates ubiquitin specific peptidase 7 protein expression in hepatocellular carcinoma cells. Mol Med Rep. 2015;12(3):3465–6.

67. Xiong S, Fang J, Wang S, Deng B, Zhu L. MicroRNA-135b regulates the stability of PTEN and promotes glycolysis by targeting USP13 in human colorectal cancers. Oncol Rep. 2015;33(3):1342–8.

68. Dai J, Li J, Yan Y, Bao L, Hou J, Lin H, Zhao F, et al. MicroRNA-200C inhibits invasion and metastasis of human non-small cell lung cancer by directly targeting ubiquitin specific peptidase 25. Mol Cancer. 2014;13(31):166.

69. Han H, Sun D, Li W, Shen H, Zhu Y, Li C, et al. Ac-Myc-MicroRNA functional feedback loop affects hepatocarcinogenesis. Hepatology. 2013;57(6):2378–89.

70. Zhao B, Yin Y, Hu Y, Zhang J, Bian Z, Song M, et al. MicroRNA-204-5p inhibits gastric cancer cell proliferation by downregulating USP47 and RAB22A. Med Oncol. 2015;32(1):331.

71. Huang F, Zhang L, Long Z, Chen Z, Hou X, Wang C, et al. miR-25 alleviates polyQ-mediated cytotoxicity by silencing ATXN3. FEBS Lett. 2014;588(24):4791–8.

72. Liu N, Wang L, Sun C, Yang L, Sun W, Peng Q. MicroRNA-125b-5p suppresses Brucella abortus intracellular survival via control of A20 expression. BMC Microbiol. 2016;16(1):171.

73. Wang S, Pan Y, Zhang R, Xu T, Wu W, Wang C, et al. Hsa-miR-24-3p increases nasopharyngeal carcinoma radiosensitivity by targeting both the 3′UTR and 5′UTR of Jab1/CSN5. Oncogene. 2016;35(47):6096.

74. Yang Z, Klonowsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22(2):124–31.

75. Nascimento AC, Giordano F, Dupont N, Grassi D, Vaccaro MI, Codogno P, et al. ER–plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. 2017;36(14):2018–33.

76. Lamb CA, Yoshimoto T, Tooez SA. The autophagosome: origins, structure and function. Nat Rev Mol Cell Biol. 2013;14(12):759.

77. Kim J, Kundu M, Viellet B, Guan KL, AMPK and mTOR regulate autophagy through direct phosphorylation of ULK1. Nat Cell Biol. 2011;13(2):132.
95. Simonsen A, Tootze SA. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol. 2009;186(6):773–82.

96. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, et al. A protein conjugation system essential for autophagy. Nature. 1998;395(6700):395.

97. Nison RA, Wiegell R, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64(2):113–22.

98. Boland B, Kumar A, Lee S, Platt FM, Wiegell J, Yu WH, et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci. 2008;28(27):6926–37.

99. Yang D-S, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, et al. Reversal of autophagy dysfunction in the tgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain. 2010;134(Pt 11):2588–77.

100. Wu H, Wang F, Hu S, Yin C, Li X, Zhao S, et al. miR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts. Cell Signal. 2011;23(4):1217–98–6.

101. Korkmaz G, Le Sage C, Teigerad KA, Agami R, Gozuacik D. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy. 2012;8(2):165–76.

102. Ren YF, Zhang TH, Zhong S, Zhao YT, Lu YN. miR-144 suppresses proliferation and induces apoptosis of osteosarcoma cells via direct regulation of mTOR expression. Oncol Lett. 2018;15(1):1163–9.

103. Li W, Chang J, Wang S, Liu X, Peng J, Huang D, et al. miRNA-99b-5p suppresses liver metastasis of colorectal cancer by down-regulating mTOR. Oncotarget. 2015;6(27):24448.

104. Wu D, Huang HJ, He CN, Wang KY. MicroRNA-199a-3p regulates endometrial cancer cell proliferation by targeting mammalian target of rapamycin (mTOR). Int J Gynecol Cancer. 2013;23(7):1191–7.

105. Pankratz F, Hohlenloser C, Bentrenk X, Jaenich C, Kreuzaler S, Hoefer IE, et al. MicroRNA-100 suppresses chronic vascular inflammation by stimulation of endothelial autophagy. Circ Res. 2017. https://doi.org/10.1161/CIRCRESAHA.117.31142.

106. Lin Z, Li X, Zhan X, Sun L, Gao J, Cao Y, et al. MicroRNA-224-3p inhibits endometrial cancer cell proliferation by targeting mammalian target of rapamycin (mTOR). Cancer Biol Ther. 2013;14(7):574–86.

107. Li X, Zeng Z, Li Q, Xu Q, Xie J, Hao H, et al. Inhibition of microRNA-497 activates neuropathic pain by inhibiting autophagy following peripheral nerve injury. J Biomed Sci. 2016;23(1):26.

108. Chatterjee A, Chattopadhyay D, Chakrabarti G. miR-17-5p downregulates the expression of ATG16L1 expression and enhances chemosensitivity of pancreatic cancer cells. Gastroenterology. 2013;145(S1):e113–e114, e12–e13.

109. Kanemitsu H, Tomiyama T, Mori H. Human neprilysin is capable of degrading amyloid β peptide not only in the monomeric form but also in the pathological oligomeric form. Neurosci Lett. 2003;350(2):113–6.

110. Lu W, Han L, Su L, Zhao J, Zhang Y, Zhang S, et al. A 3′ UTR-associated RNA network reveals regulatory role of long non-coding RNA in type 2 diabetes mellitus. J Cell Mol Med. 2017;21(12):3204–13.

111. Chen S, Zheng Y, Zhang S, Jia L, Zhou Y. Promotion effects of mir-375 on the osteogenic differentiation of human adipose-derived mesenchymal stem cells. Stem Cell Res. 2017;8(3):773–86.

112. Wang Z, Wang N, Liu P, Chen Q, Sun H, Xie T, et al. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoleucitigentin. Oncotarget. 2014;5(16):7013.

113. Ciotola DZ, Zhang B, Wei H, Gao R, Zhao F, Wang Y, et al. miR-26b inhibits autophagy by targetingULK2 in prostate cancer cells. Biochem Biophys Res Commun. 2016;472(1):194–200.

114. Lu W, Han L, Su L, Zhao J, Zhang Y, Zhang S, et al. A 3′ UTR-associated RNA, FLJ11812 maintains stemness of human embryonic stem cells by targeting miR-4459. Stem Cells Dev. 2014;24(9):1133–40.

115. Guo X, Xue H, Guo X, Gao X, Xu S, Yan S, et al. MiR-224-3p inhibits hyposia-induced autophagy by targeting autophagy-related genes in human glioblastoma cells. Oncotarget. 2015;6(39):41620.

116. Wang H, Sun T, Hu J, Zhang R, Rao Y, Wang S, et al. miR-33a promotes glioma-initiating cell self-renewal via PIKA and NOTCH pathways. J Clin Invest. 2014;124(10):4489–502.
137. Hoos MD, Ahmed M, Smith SO, Van Nostrand WE. Inhibition of familial cerebral amyloid angiopathy mutant amyloid β-protein fibril assembly by myelin basic protein. J Biol Chem. 2007;282(13):9952–61.

138. Liao M-C, Hoos MD, Aucoin D, Ahmed M, Davis J, Smith SO, et al. MicroRNA-21 inhibits oligodendrocytes during maturation by downregulation of differentiation-associated gene expression. J Neurochem. 2017;143(1):112–25.

139. Pan Q, Niu H, Cheng L, Li X, Zhang Q, Ning Y. Invasion of trophoblast cell lines is inhibited by miR-93 via MMP-2. Placenta. 2017;53:48–53.

140. Kohlstedt K, Trouvain C, Boettger T, Shi L, Fisslthaler B, Fleming I. The N-terminal active centre of human angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide (1–40) and 1–42 in vitro. J Physiol. 2005;561(3):685–701.

141. Zhang H, Qi M, Li S, Qi T, Mei H, Huang K, et al. MicroRNA-9 targets the N-terminal domain of myelin basic protein inhibiting amyloid β-peptide fibril assembly. J Biol Chem. 2010;285(46):35590–8.

142. Di Gregoli K, Jenkins N, Salter R, White S, Newby AC, Johnson JL. Micro-RNA-24 regulates macrophage behavior and retards atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34(9):1990–2000.

143. Zhang H, Q M, L, S, T, Q, Mei H, Huang K, et al. MicroRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther. 2012;11(7):1454–61.

144. Di Gregori K, Jenkins N, Salter R, White S, Newby AC, Johnson JL. Micro-RNA-24 regulates macrophage behavior and retards atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34(9):1990–2000.

145. Jiang Q, He M, Guan S, Ma M, Wu H, Yu Z, et al. MicroRNA-100 suppresses tumor suppressor microRNA-24a inhibits cell migration and invasion by targeting mmp-2/mmp-9/finding3b in esophageal squamous cell carcinoma. Jpn J Oncol. 2017;57(1):117–22.

146. Zhu J, Zhang Y, Yang X, Jin L. Clinical significance and tumor-suppressive function of miR-516b in nonsmall cell lung cancer. Cancer Biother Pharmacother. 2015;72:58–65.

147. Hu J, Igashiri A, Kamata M, Nakagawa H. Angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide (Ab), retards Ab aggregation, deposition, fibril formation, and inhibits cytotoxicity. J Biol Chem. 2001;276(51):47863–8.

148. Oba R, Igashiri A, Kamata M, Nagata K, Takano S, Nakagawa H. The N-terminal active centre of human angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide. Eur J Neurosci. 2005;21(3):733–40.

149. Sun B, Zhou Y, Halabisky B, Lo I, Cho S-H, Mueller-Steiner S, et al. Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer’s disease. Neuron. 2008;60(2):247–57.

150. Yang C-N, Shiao-Y-L, Shie F-S, Guo B-S, Chen P-H, Cho C-Y, et al. Mechanism mediating oligomeric Aβ clearance by naive primary microglia. Neurobiol Dis. 2011;42(3):221–30.

151. Tiribuzi R, Crispolti L, Chiuichiu V, Casella A, Montecchiani C, Del Pino AM, et al. Trans-crocetin improves amyloid-β degradation in monocytes from Alzheimer’s disease patients. J Neurol Sci. 2017;372:408–12.

152. Jiang Q, He M, Guan S, Ma M, Wu H, Yu Z, et al. Decreased expression of cathepsin D in monocytes is related to the defective degradation of amyloid-β in Alzheimer’s disease. J Alzheimer’s Dis. 2014;42(2):511–20.

153. Tiribuzi R, Crispolti L, Porcellati S, Di Lullo M, Fiorenzano F, Piro M, et al. miR128 up-regulation correlates with impaired amyloid β (1–42) degradation in monocytes from patients with sporadic Alzheimer’s disease. Neurobiol Aging. 2014;35(2):345–56.

154. Kohlstedt K, Trouvain C, Boettger T, Shi L, Fisslthaler B, Fleming I. The N-terminal active centre of human angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide (1–40) and 1–42 in vitro. J Physiol. 2005;561(3):685–701.

155. Malherbe P, Richards JG, Gaillard H, Thompson A, Diener C, Schuler A, et al. cDNA cloning of a novel secreted isoform of the human receptor for advanced glycation end products and characterization of cells co-expressing cell-surface scavenger receptors and Swedish mutant amyloid precursor protein. Mol Brain Res. 1999;71(2):159–70.

156. Mackic JR, Stins M, McComb JG, Calero M, Ghiso J, Kim KS, et al. Human blood-brain barrier receptors for Alzheimer’s amyloid-beta 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest. 1998;102(4):734–43.

157. Candela P, Gossete F, Saint-Pol J, Sevin E, Boucou M-C, Boulander E, et al. Apical-to-basolateral transport of amyloid-β peptides through blood-brain barrier cells is mediated by the receptor for advanced glycation end-products and is restricted by P-glycoprotein. J Alzheimer’s Dis. 2010;22(3):849–59.

158. Takuma K, Fang F, Zhang W, Yan S, Fukuizaki U, Du H, et al. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-β and neuronal dysfunction. Proc Natl Acad Sci. 2009;106(47):20021–6.

159. Deane R, Singh J, Sagarre AP, Bell RD, Ross NT, LaRue B, et al. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest. 2012;122(4):1377–92.

160. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003;9(7):907.

161. Ma L-Y, Fei Y-L, Wang X-Y, Wu S-D, Du J-H, Zhu M, et al. The research on the relationship of RAGE, LRP-1, and Aβ accumulation in the hippocampus, prefrontal lobe, and amygdala of STZ-induced diabetic rats. J Mol Neurosci. 2015;62(1):1–10.

162. Choi B-R, Cho W-H, Kim J, Lee HJ, Chung C, Jeon WK, et al. Increased expression of the receptor for advanced glycation end products in neurons and astrocytes in a triple transgenic mouse model of Alzheimer’s disease. Exp Mol Med. 2015;47(2):e75.

163. Kim J, Castellano JM, Jiang H, Basak JM, Parsadanian M, Pham V, et al. Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular Aβ clearance. Neuron. 2009;64(5):632–44.

164. Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, et al. Clearance of Alzheimer’s amyloid-β(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest. 2000;106(12):1489–99.

165. Zlokovic BV, Deane R, Sagarre AP, Bell RD, Winkler EA. Low-density lipoprotein receptor-related protein-1: a novel clearance homeostatic mechanism controlling Alzheimer’s amyloid-β peptide elimination from the brain. J Neurochem. 2010;115(5):1077–89.
176. Storck SE, Meister S, Nahrath J, Meißner JN, Schubert N, Di Spiezio A, et al. Endothelial LRP1 transports amyloid-β 1–42 across the blood–brain barrier. J Clin Invest. 2016;126(1):125–36.

177. Jaeger LB, Dohgu S, Hwang MC, Fan I, Murphy MP, Fleegal-DeMotta MA, et al. Testing the neurovascular hypothesis of Alzheimer's disease: LRP1-antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-β protein, and impairs cognition. J Alzheimer's Dis. 2009;17(3):533–70.

178. Ito S, Ohtsuki S, Kamiie J, Nezu Y, Terasaki T. Cerebral clearance of human amyloid-β peptide (1–40) across the blood–brain barrier is reduced by sequestration and formation of low-density lipoprotein receptor-related protein-1 ligand complexes. J Neurochem. 2007;103(6):2482–90.

179. Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A, et al. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc Natl Acad Sci. 2013;110(19):E1807–16.

180. Deane R, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, DeMattos RB, Bales KR, Cummins DJ, Dodart J-C, Paul SM, Holtzman DM. The role of low-density receptor-related protein 1 (LRP1) as a competitive substrate of the amyloid precursor protein (APP) for BACE1. Exp Neurol. 2012;235(1):85–93.

181. Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Perdu R, et al. Clearance of amyloid-β by circulating lipoprotein receptors. Nat Med. 2007;13(9):1029.

182. Matsumoto K, Chiba Y, Fujihara R, Kubo H, Sakamoto H, Ueno M. ABCA1-mediated cholesterol efflux capacity to cerebrospinal fluid is reduced in patients with mild cognitive impairment and Alzheimer's disease. J Am Heart Assoc. 2016;5(2):e002886.

183. Wahrle SE, Jiang H, Parsadanian M, Hartman RE, Bales KR, Paul SM, et al. Deletion of Abca1 increases Aβ deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem. 2005;280(52):43243–42.

184. Wahrle SE, Jiang H, Parsadanian M, Kim J, Li A, Knoten A, et al. Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J Clin Invest. 2008;118(2):671–82.

185. Do TM, Doodack A, Alata W, Calon F, Nicolici S, Schermmann J-M, et al. Age-dependent regulation of the blood–brain barrier influx/efflux equilibrium of amyloid-β peptide in a mouse model of Alzheimer disease (TgΔ40). J Alzheimer's Dis. 2016;49(2):287–300.

186. Yassine HN, Feng Q, Chiang J, Petrossi LB, Fornell AN, Chui HC, et al. ABCA1-mediated cholesterol efflux capacity to cerebrospinal fluid is reduced in patients with mild cognitive impairment and Alzheimer's disease. J Am Heart Assoc. 2016;5(2):e002886.

187. Canepa E, Borghi R, Viña J, Traverso N, Gambini J, Domenicotti C, et al. The role of low-density lipoprotein receptor-related protein 1 (LRP1) as a competitive substrate of the amyloid precursor protein (APP) for BACE1. Exp Neurol. 2012;235(1):85–93.

188. Reibisch KH, et al. Deletion of Abca1 increases Aβ deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Neurochem. 2010;114(6):1590–604.

189. Koldamrova R, Staufenbiel M, Letervoort I. Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J Biol Chem. 2005;280(52):43224–35.
and may act as a gatekeeper at the blood–brain barrier for Aβ1–40 peptides. J Neurosci. 2009;29(17):5463–75.

215. Dodacki A, Wortman M, Saubaméa B, Chasseigneaux S, Nicolic S, Prince N, et al. Expression and function of Abcg4 in the mouse blood-brain barrier: role in restricting the brain entry of amyloid-β peptide. Sci Rep. 2017;7(1):13393.

216. Koshiba S, Ito T, Shiota A, Wakabayashi K, Ueda M, Ichinose H et al. Development of polyclonal antibodies specific to ATP-binding cassette transporters human ABCG4 and mouse Abcg4: site-specific expression of mouse Abcg4 in brain. J Exp Ther Oncol. 2007;6(4):321–33.

217. Uelhara Y, Yamada T, Baba Y, Miura SI, Abe S, Kitajima K, et al. ATP-binding cassette transporter G4 is highly expressed in microglia in Alzheimer’s disease. Brain Res. 2008;1217:239–46.

218. Iifif JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid-β. Sci Transl Med. 2012;4(147):147ra111.

219. Yang J, Zhang R, Shi C, Mao C, Yang Z, Suo Z, et al. AQP4 association with amyloid deposition and astrocyte pathology in the Tg-ArcSwe mouse model of Alzheimer’s disease. J Alzheimers Dis. 2017;57(1):157–69.

220. Jing R, Chen W, Wang H, Ju S, Cong H, Sun B, et al. Plasma miR-185 is decreased in patients with esophageal squamous cell carcinoma and might suppress tumor migration and invasion by targeting RAGE. Am J Physiol Gastrointest Liver Physiol. 2015;309(9):G719–29.

221. Luo T, Yan Y, He Q, Ma X, Wang W. miR-328-5p inhibits MDA-MB-231 breast cancer cell proliferation by targeting RAGE. Oncol Rep. 2018;39(6):2906–14.

222. Song H, Bu G. MicroRNA-205 inhibits tumor cell migration through down-regulating the expression of the LDL receptor-related protein 1. Biochem Biophys Res Commun. 2009;388(2):400–5.

223. Wen L, Andersen PK, Husum DM, Nørregaard R, Zhao Z, Liu J, et al. MicroRNA-148b regulates megalin expression and is associated with receptor downregulation in mice with unilateral ureteral obstruction. Am J Physiol Renal Physiol. 2017;313(2):F210–7.

224. Sun D, Zhang J, Xie J, Wei W, Chen M, Zhao X. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett. 2012;586(1):1472–7.

225. Lv Y-C, Tang Y-Y, Peng J, Zhao G-J, Yang J, Yao F, et al. MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1. Atherosclerosis. 2014;236(1):215–26.

226. Meiler S, Baumier Y, Toulmin E, Sen K, Boivert WA. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis. Articoli in Thromb Vasc Biol. 2015;35(2):323–31.

227. Chen J, Tian W, Cai H, He H, Deng Y. Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Med Oncol. 2012;29(9):2527–34.

228. Li XS, Meng X-N, Yan J, Zong ZH. MicroRNA-873 mediates multidrug resistance in ovarian cancer cells by targeting ABCB1. Tumor Biol. 2016;37(8):10499–506.

229. Zhao Y, Qi X, Chen J, Wei W, Yu Y, Cen H, et al. The miR-491-3p/Sp3/ ABCA1 axis attenuates multidrug resistance of hepatocellular carcinoma. Canc Lett. 2017;408:102–11.

230. Yang T, Zheng ZM, Li XN, Li ZF, Wang Y, Geng YF, et al. MiR-223 modulates multidrug resistance via downregulation of ABCB1 in hepatocellular carcinoma cells. Exp Biol Med. 2017;323(8):1024–32.

231. Pan Y-Z, Morris ME, Yu A-M. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol. 2009;75(6):1374–9.

232. Wang Y, Zhao L, Xiao Q, Jiang L, He M, Bai X, et al. MiR-302a/b/c/d cooperatively inhibits BCAR3 expression to increase drug sensitivity in breast cancer cells. Gynecol Oncol. 2016;141(3):592–601.

233. Jia M, Wei Z, Liu P, Zhao X. Silencing of ABCG2 by microRNA-3163 inhibits its multidrug resistance in retinoblastoma cancer stem cells. J Korean Med Sci. 2016;31(6):836–42.

234. Jiao X, Zhao L, Ma M, Bai X, He M, Yan Y, et al. MiR-181a enhances drug sensitivity in methotrexate-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat. 2013;139(3):717–30.

235. Deng L, Wang X, Jiang L, Yang J, Zhou X, Lu Z, et al. Modulation of miR-185-5p expression by EBV-miR-BART6 contributes to developmental differences in ABCG4 gene expression in human megakaryocytes. Int J Biochem Cell Biol. 2016;81:105–11.

236. Hou X, Wu Y, Yin B, Liu X, Ren F. Micro RNA-463-3p/ABCG4: a new axis in glucose-stimulated insulin secretion. Obesity. 2016;24(11):2368–76.

237. Wang Y, Huang J, Ma Y, Tang G, Liu Y, Chen X, et al. MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J Cereb Blood Flow Metab. 2015;35(12):1977–94.

238. Zheng Y, Wang L, Chen M, Pei A, Xie L, Zhu S. Upregulation of miR-130b protects against cerebral ischemic injury by targeting water channel protein aquaporin 4 (AQP4). Am J Transl Res. 2017;9(7):3452.

239. Treib K, Ransmayr G, Sencor R, Lassmann H, Grubeck-Loebenstein B. APP peptides stimulate lymphocyte proliferation in normal, but not in patients with Alzheimer’s disease. Neurobiol Aging. 1996;17(4):541–7.

240. Fiala M, Liu J, Ringman J, Kermani-Arabi V, Tsao G, Patel A, et al. Ineffective phagocytosis of amyloid-β by macrophages of Alzheimer’s disease patients. J Alzheimer’s Dis. 2005;7(3):221–32.

241. Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukushima KI. Role of toll-like receptor signalling in Aβ uptake and clearance. Brain. 2006;129(11):3006–19.

242. Richard KL, Filali M, Péfontaine P, Rivest S. Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid β1–42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J Neurosci. 2008;28(22):5784–93.

243. Song M, Jin J, Lim J-E, Hou J, Pattanayak A, Rehman JA, et al. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflamm. 2011;8(1):92.

244. Frank S, Copanaki E, Burbach GJ, Müller UC, Deller T. Differential regulation of toll-like receptor mRNAs in amyloid plaque-associated brain tissue of aged APP23 transgenic mice. Neurosci Lett. 2009;453(1):41–4.

245. Zhang L, Li YJ, Wu XY, Hong Z, Wei WS. Micro RNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4. J Neurochem. 2015;132(6):713–23.

246. Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron. 2016;91(2):328–40.

247. Jiang T, Tan L, Zhu X-C, Zhang Q-Q, Cao L, Tan M-S, et al. Upregulation of TREM2 ameliorates neuropathology and preserves spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropyschopharmacology. 2014;39(13):2949.

248. Yang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, et al. TREM2 lipid sensing maintains the microglial response in an Alzheimer’s disease model cell. Cell. 2015;160(6):1061–71.

249. Kober DL, Alexander-Brett JM, Karch CM, Cruchaga C, Colomba M, Holtzman DM, et al. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms. elife. 2016;5.e20391.
255. Zhang H, Su YJ, Zhou WW, Wang SW, Xu PX, Xu XL, et al. Activated scavenger receptor A promotes glial internalization of Aβ. PLoS ONE. 2014;9(6):e94197.

256. Comejo F, Vruwink M, Metz C, Muñoz R, Salgado N, Poblete J, et al. Scavenger receptor A deficiency impairs immune response of microglia and astrocytes potentiating Alzheimer’s disease pathophysiology. Brain Behav Immun. 2017;69:336–50.

257. Lifshitz V, Weiss R, Levy H, Frenkel D. Scavenger receptor A deficiency accelerates cerebrovascular amyloidosis in an animal model. Mol Neurosci. 2013;50(1):198–203.

258. Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, Puckett L, et al. Sca1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun. 2014;3:4200.

259. Husemann J, Loike J, Kodama T, Silverstein S. Scavenger receptor class B type I (SR-BI) mediates adhesion of neonatal murine microglia to fibrilar β-amyloid. J Neuroimmunol. 2001;114(1):142–50.

260. Iram T, Trudler D, Kain D, Kanner S, Galron R, Vruwink M, et al. Astrocytes from old Alzheimer’s disease mice are impaired in Aβ uptake and in neuroprotection. Neurobiol Dis. 2016;96:84–94.

261. Thanopoulos K, Fragkouli A, Stylianopoulou F, Georgopoulos S. Scavenger receptor type 1 mediates the uptake of amyloid-β by human monocytes. J Biol Chem. 2005;280(19):19995–20001.

262. Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT. miR-203. Cell Immunol. 2014;292(1–2):65–9.

263. Li B-R, Xia L-Q, Liu J, Zhang Y, Deng M, Zhong H-J, et al. miR-758-5p regulates cholesterol uptake via targeting the CD36 3′UTR. Biochem Biophys Res Commun. 2017;494(1–2):384–9.

264. Zhang B, Wang A, Xia C, Lin Q, Chen C. A single nucleotide polymorphism in primary-microRNA-146a reduces the expression of mature microRNA-146a in patients with Alzheimer’s disease and is associated with the pathogenesis of Alzheimer’s disease. Mol Med Rep. 2015;12(3):4037–42.

265. Chen T, Yan H, Li Z, Jing T, Zhu W, Ge J, et al. MicroRNA-155 regulates lipid uptake, adhesion/chemokine marker secretion and SCG2 expression in oxLDL-stimulated dendritic cells/macrophages. Int J Cardiol. 2011;147(3):466–7.

266. Wang L, Jia XJ, Jiang HJ, Du Y, Yang F, Si SY, et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol. 2013;33(10):1956–64.

267. He P-P, OuYang X-P, Li Y, Lv Y-C, Wang Z-B, Yao F, et al. MicroRNA-590 inhibits lipoprotein lipase expression and prevents atherosclerosis in apoE knockout mice. PLoS ONE. 2015;10(9):e0138788.

268. Kokunia H, Kitamura T, Takata K, Umeaki M, Suzuki S, Shibagaki K, et al. Microglial activation and amyloid-β clearance induced by exogenous heat-shock proteins. FEBS J. 2002;16(6):601–3.

269. Takata K, Kitamura Y, Tsuchiya D, Kawasaki T, Taniguchi T, Shimohama S. Heat shock protein-90-induced microglial clearance of exogenous amyloid-β1–42 in rat hippocampus in vivo. Neurosci Lett. 2003;344(2):87–90.

270. Hoshino T, Murao N, Nambo T, Takehara M, Adachi H, Katsuura M, et al. Suppression of Alzheimer’s disease-related phenotypes by expression of heat shock protein 70 in mice. J Neurosci. 2011;31(4):5225–34.

271. Evans CG, Wisen S, Gestwicki JE. Heat shock proteins 70 and 90 inhibit early stages of amyloid β-1(1–42) aggregation in vitro. J Biol Chem. 2006;281(44):33182–91.

272. Rivera I, Capeiro R, Gavri DM, Arioste N, De Maio A, Modulation of Alzheimer’s amyloid β peptide oligomerization and toxicity by extracellular Hsp70. Cell Stress Chaperones. 2017;23(2):269–79.

273. Wilhelmsen MM, Boelens WC, Otte-Höller I, Kamps B, de Waal RM, Verbeek MM. Small heat shock proteins inhibit amyloid-β aggregation and cerebrovascular amyloid-β protein toxicity. Brain Res. 2006;1089(1):67–78.

274. Ling M, Nafar F, Clarke J, Mearow K. The small heat shock protein Hsp27 protects cortical neurons against the toxic effects of β-amyloid peptide. J Neurosci Res. 2009;87(14):3161–75.

275. Yang T-T, Hsu CT, Kuo Y-M. Cell-derived soluble oligomers of human amyloid-β peptides disturb cellular homeostasis and induce apoptosis in primary hippocampal neurons. J Neurotransm. 2009;116(2):1561.

276. Magnané J, Smith RC, Walsh K, Querfurth HW. Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed β-amyloid in mice. J Neurosci. 2004;24(7):1700–6.

277. Zhu WS, Guo W, Zhun JN, Tang CM, Fu YH, Lin QX, et al. Hsp90aa1: a novel target gene of miR-1 in cardiac ischemia/reperfusion injury. Sci Rep. 2016;6:24498.

278. O’Brien K, Lowry MC, Corcoran C, Martinez VG, Daly M, Rani S, et al. miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget. 2015;6(32):32774.

279. Mackenzie TN, Mujumdar N, Banerjee S, Sangwan V, Varner A, Vickers S, et al. Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Mol Cancer Ther. 2013;12(7):266–75.

280. Chua CEL, Tang BL. miR-34a in neurophysiology and neuropathology. J Mol Neurosci. 2018;67(2):235–46.

281. Di Y, Lei Y, Yu F, Changfeng F, Song W, Xuming M. MicroRNAs expression and function in cerebral ischemia/reperfusion injury. J Mol Neurosci. 2014;53(2):242–50.

282. Shehata RH, Abdelmoneim SS, Osman OA, Hosam AF, Ossama A, Abdelmoneim SS, et al. Deregulation of miR-34a and Its chaperon Hsp70 in hepatitis C virus-induced liver cirrhosis and hepatocellular carcinoma patients. Asian Pac J Cancer Prev. 2017;18(9):2395.

283. Huan Y, He Y, Liu B, Li Y, Jia Q, Ou C, et al. Zhenbao Pill reduces the percentage of Treg cells by inducing HSP27 expression. Biomed Pharmacother. 2014;68(12):2151–8.

284. Chua CEL, Tang BL. miR-34a in neurophysiology and neuropathology. J Mol Neurosci. 2018;67(2):235–46.

285. Di Y, Lei Y, Yu F, Changfeng F, Song W, Xuming M. MicroRNAs expression and function in cerebral ischemia/reperfusion injury. J Mol Neurosci. 2014;53(2):242–50.

286. Shehata RH, Abdelmoneim SS, Osman OA, Hosam AF, Ossama A, Abdelmoneim SS, et al. Deregulation of miR-34a and Its chaperon Hsp70 in hepatitis C virus-induced liver cirrhosis and hepatocellular carcinoma patients. Asian Pac J Cancer Prev. 2017;18(9):2395.

287. Huan Y, He Y, Liu B, Li Y, Jia Q, Ou C, et al. Zhenbao Pill reduces the percentage of Treg cells by inducing HSP27 expression. Biomed Pharmacother. 2014;68(12):2151–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.