Antimatroids Induced by Matchings

Yasushi Kawase∗ Yutaro Yamaguchi†

Abstract

An antimatroid is a combinatorial structure abstracting the convexity in geometry. In this paper, we explore novel connections between antimatroids and matchings in a bipartite graph. In particular, we prove that a combinatorial structure induced by stable matchings or maximum-weight matchings is an antimatroid. Moreover, we demonstrate that every antimatroid admits such a representation by stable matchings and maximum-weight matchings.

1 Introduction

In this paper, we explore a novel connection between antimatroids and matchings in bipartite graphs. In particular, we prove that a combinatorial structure induced by stable matchings or maximum-weight matchings is an antimatroid. Moreover, we demonstrate that every antimatroid admits such a representation by stable matchings and maximum-weight matchings.

An antimatroid is a combinatorial abstraction of the convexity in geometry, which is represented by a nonempty set system \((E, F)\) satisfying (i) accessibility: every nonempty \(X \in F\) has an element \(e \in X\) such that \(X - e \in F\) and (ii) union-closedness: \(X \in F\) and \(Y \in F\) imply \(X \cup Y \in F\). An antimatroid is known to be equivalent to a convex geometry by complementation (i.e., \(\{E \setminus X \mid X \in F\}\) against an antimatroid \((E, F)\)), which is also equivalent to a path-independent choice function by a suitable construction. For more details, see [2, 8].

In a stable matching instance, we are given a bipartite graph in which each vertex has a strict order on the set of its neighbors (or, equivalently, of its incident edges). Since the seminal paper by Gale and Shapley [3], the stable matching and its generalizations have been widely studied in mathematics, economics, and computer science. In particular, Conway [7] pointed out that the set of stable matchings forms a distributive lattice under a natural dominance relation. Conversely, Blair [1] proved that every finite distributive lattice equals to the set of stable matchings in some instance. See [5, 9, 10] for more details.

In a weighted matching instance, we are given a bipartite graph with edge weights, and required to find a matching with the maximum total weight. This problem is one of the most fundamental combinatorial optimization problems on graphs. Through the researches of this problem and its generalizations, a variety of concepts and techniques in combinatorial optimization have been developed, e.g., good characterization, augmenting-path-type algorithms, and polyhedral approaches. See [12] for the details.

∗Tokyo Institute of Technology, Tokyo 152-8550, Japan. Supported by JSPS KAKENHI Grant Number 16K16005. E-mail: kawase.y_ab@titech.ac.jp
†Osaka University, Osaka 565-0871, Japan. Supported by JSPS KAKENHI Grant Number 16H06931 and JST ACT-I Grant Number JPMJPR16UR. E-mail: yutaro_yamaguchi@ist.osaka-u.ac.jp
2 Preliminaries

We consider matchings in a bipartite graph \(G = (U, V; E) \), where \(U \) and \(V \) are the disjoint vertex sets and \(E \subseteq U \times V \) is the set of edges. For a vertex \(r \in U \cup V \), we denote by \(\delta_G(r) \) the set of edges incident to \(r \), i.e., \(\delta_G(r) = \{ (u, v) \in E \mid u = r \text{ or } v = r \} \), and denote by \(N_G(r) \) the set of neighbors of \(r \), i.e., \(N_G(r) = \{ t \in U \cup V \mid (t, r) \in E \text{ or } (r, t) \in E \} \). For a vertex subset \(X \subseteq U \cup V \), define \(E[X] := \{ (u, v) \in E \mid u \in X \text{ and } v \in X \} \) and \(G[X] := (U \cap X, V \cap X; E[X]) \).

An edge subset \(M \subseteq E \) is called a matching in \(G \) if no two edges in \(M \) have a common vertex, i.e., \(|M \cap \delta_G(r)| \leq 1 \) for every \(r \in U \cup V \). We write \(M_G \) for the set of all matchings in \(G \). For a matching \(M \) and an edge \((u, v), \in M \), let \(M(u) := v \) and \(M(v) := u \).

Let \(F \) be a map from \(2^U \) to \(2^V \) that is induced by stable matchings or maximum-weight matchings as we will see below. Our purpose is to study the structure of the codomain, i.e., \(\{ F(U') \mid U' \subseteq U \} \).

2.1 Stable Matchings

Let us consider a bipartite graph \(G = (U, V; E) \) with preferences (strict orders) \(\succ \) on \(N_G(r) \) for all \(r \in U \cup V \). We denote the profile \(\{ \succ_r \}_{r \in U \cup V} \) of preferences simply by \(\succ \), and refer to a pair \((G, \succ)\) as a stable matching instance. For a vertex subset \(X \subseteq U \cup V \), we mean by \((G, \succ)_X\) the stable matching instance \((G[X], \{ \succ_r \}_{r \in X})\) obtained by restricting \((G, \succ)\) to \(X \).

Let \(M \subseteq E \) be a matching in \(G \). An edge \((u, v) \in E \) is called a blocking pair against \(M \) in \(G \) if \([\delta_G(u) \cap M = \emptyset \text{ or } v \succ_u M(u)] \) and \([\delta_G(v) \cap M = \emptyset \text{ or } u \succ_v M(v)] \). A matching \(M \in M_G \) is called a stable matching if there exists no blocking pair against \(M \) in \(G \). It is well-known that, for any stable matching instance, there exists at least one stable matching, and moreover all stable matchings consist of the same set of vertices \([4]\). Hence, for each subset \(U' \subseteq U \), the set of vertices in \(V \) who are matched in a stable matching in \((G, \succ)_{U' \cup V}\) is uniquely determined, and this fact naturally defines a map from \(2^U \) to \(2^V \). In what follows, we define this map algorithmically.

A stable matching can be obtained by a simple algorithm, so-called the deferred acceptance algorithm \([3][10]\) (see Algorithm \([1]\)). In each iteration, an unmatched left vertex \(u \) proposes to the most-preferred right vertex \(v \) in \(u \)'s preference list to whom it hasn’t yet proposed. Then \(v \) accepts the proposal if \(v \) is unmatched or prefers \(u \) to the current partner \(u' \) (in this case, \(u' \) becomes unmatched). Otherwise, i.e., if \(v \) prefers the current partner \(u' \) to \(u \), the proposal is rejected. The process is repeated until every left vertex is matched or rejected by all its neighbors.

A significant feature of this algorithm is that the output does not depend on the order of proposals. For a stable matching instance \((G = (U, V; E), \succ)\) and a subset \(U' \subseteq U \), we denote by \(\text{SM}(G, \succ; U') \) the output of the deferred acceptance algorithm for the restricted instance \((G, \succ)_{U' \cup V}\).

Definition 2.1. The map \(F : 2^U \rightarrow 2^V \) induced by a stable matching instance \((G = (U, V; E), \succ)\) is defined by

\[
F(U') := \{ v \mid (u, v) \in \text{SM}(G, \succ; U') \} \quad (U' \subseteq U).
\]

Note that, since all stable matchings consist of the same set of vertices in a stable matching instance, one can replace \(\text{SM}(G, \succ; U') \) in the above definition with an arbitrary stable matching in the restricted instance \((G, \succ)_{U' \cup V}\).

Let us mention two important properties of \(F \), which can be derived from properties of the deferred acceptance algorithm.
Algorithm 1: Deferred Acceptance Algorithm

Input: A bipartite graph $G = (U, V; E)$ and a preference profile $\succ = \{r_f\}_{f \in U \cup V}$

Output: A stable matching $\text{SM}(G, \succ) \subseteq E$

1. let $T := U$ and $M := \emptyset$;
2. foreach $u \in U$ do $R_u := N_G(u)$;
3. while $T \neq \emptyset$ do
 4. pick $u \in T$ arbitrarily;
 5. if $R_u = \emptyset$ then $T := T - u$;
 6. else take $v \in R_u$ so that $v \succ_u v'$ for all $v' \in R_u$;
 7. if $\delta_G(v) \cap M = \emptyset$ then $M := M + (u, v)$, $T := T - u$;
 8. else let $u' := M(v)$;
 9. if $u' \succ_v u$ then $R_u := R_u - v$;
10. else $M := M + (u, v) - (u', v)$, $R_{u'} := R_{u'} - v$, and $T := T + u - u'$;
11. return M;

Lemma 2.2. The map $F: 2^U \rightarrow 2^V$ induced by a stable matching instance satisfies the followings.

(a) If $U_2 \subseteq U_1 \subseteq U$, then $F(U_2) \subseteq F(U_1)$.

(b) If $U_2 \subseteq U_1 \subseteq U$ and $|F(U_1)| = |U_1|$, then $|F(U_2)| = |U_2|$.

We give an example of the map induced by a stable matching instance.

Example 2.3. Suppose that $U = \{u_1, u_2, u_3\}$, $V = \{v_1, v_2, v_3\}$, and

$$E = \{(u_1, v_1), (u_1, v_2), (u_2, v_1), (u_2, v_3), (u_3, v_1), (u_3, v_2)\}.$$

Consider an instance $(G = (U, V; E), \succ)$, where

- $u_1: v_1 \succ_{u_1} v_2$
- $u_2: v_1 \succ_{u_2} v_3$
- $u_3: v_2 \succ_{u_3} v_1$
- $v_1: u_3 \succ_{v_1} u_2 \succ_{v_1} u_1$
- $v_2: u_1 \succ_{v_2} u_3$
- $v_3: u_2$.

Then, for example, $F(U) = \{v_1, v_2, v_3\}$ because $\text{SM}(G, \succ; U) = \{(u_1, v_2), (u_2, v_3), (u_3, v_1)\}$. By similar calculations, we obtain that the codomain of F is

$$\{F(U') \mid U' \subseteq U\} = \{\emptyset, \{v_1\}, \{v_2\}, \{v_1, v_2\}, \{v_1, v_2, v_3\}\},$$

which forms an antimatroid on V.

We remark that the choice function $\text{Ch}: 2^U \rightarrow 2^U$ defined by $\text{Ch}(U') := \{u \mid (u, v) \in \text{SM}(G, \succ; U')\}$ ($U' \subseteq U$) is path-independent (and size-monotone), i.e., $\text{Ch}(\text{Ch}(U_1) \cup U_2) = \text{Ch}(U_1 \cup U_2)$ for all $U_1, U_2 \subseteq U$ (and $|\text{Ch}(U_1)| \leq |\text{Ch}(U_2)|$ for all $U_1 \subseteq U_2 \subseteq U$).
2.2 Maximum-Weight Matchings

Given a bipartite graph $G = (U, V; E)$ with weights $w: E \to \mathbb{R}$, the weight of a matching M, denoted by $w(M)$, is defined to be the sum $\sum_{e \in M} w(e)$ of the weights of the edges in M. We refer to a pair (G, w) as a weighted matching instance. A maximum-weight matching in G is a matching in \mathcal{M}_G with weight $\max_{M \in \mathcal{M}_G} w(M)$. If there exist multiple maximum-weight matchings, we pick the lexicographically smallest (with respect to a fixed order on the edges) one among them. We can obtain such a matching as the unique maximum-weight matching by applying a small perturbation to the weights. Throughout the paper, we assume that each matching in \mathcal{M}_G has a distinct weight. For a subset $U' \subseteq U$, let $\text{MM}(G, w; U')$ denote the unique maximum-weight matching in $G[U' \cup V]$.

Definition 2.4. The map $F: 2^U \to 2^V$ induced by a weighted matching instance $(G = (U, V; E), w)$ is defined by

$$F(U') := \{ v \mid (u, v) \in \text{MM}(G, w; U') \} \quad (U' \subseteq U).$$

The map F induced by a weighted matching instance has the same properties as in Lemma 2.2.

Lemma 2.5. The map $F: 2^U \to 2^V$ induced by a weighted matching instance $(G = (U, V; E), w)$ satisfies the followings.

(a) If $U_2 \subseteq U_1 \subseteq U$, then $F(U_2) \subseteq F(U_1)$.

(b) If $U_2 \subseteq U_1 \subseteq U$ and $|F(U_1)| = |U_1|$, then $|F(U_2)| = |U_2|$.

Proof. (a): To prove by contradiction, suppose that $F(U_2) \nsubseteq F(U_1)$ and let $u^* \in F(U_2) \setminus F(U_1)$. Define $M_i := \text{MM}(G, w; U_i)$ for $i = 1, 2$. Then, the symmetric difference $M_1 \triangle M_2 = (M_1 \setminus M_2) \cup (M_2 \setminus M_1)$ forms disjoint cycles and paths, because at most two edges in $M_1 \triangle M_2$ is incident to each vertex. Since $u^* \in F(U_2) \setminus F(U_1)$, the connected component of $G[M_1 \triangle M_2]$ containing u^* is a path of length at least 1, and let $P \subseteq M_1 \triangle M_2$ be the set of edges in the path. Then, $M_i \triangle P \in \mathcal{M}_{G[U_i \cup V]}$ $(i = 1, 2)$, and $w(M_1) + w(M_2) = w(M_1 \triangle P) + w(M_2 \triangle P)$. On the other hand, for $i = 1, 2$, since M_i is a unique maximum-weight matching in $G[U_i \cup V]$, we have $w(M_i) > w(M_i \triangle P)$, a contradiction.

(b): It is sufficient to prove the case when $U_1 = U_2 + q$ for some $q \in U \setminus U_2$. Define $M_i := \text{MM}(G, w; U_i)$ for $i = 1, 2$. Then, the symmetric difference $M_1 \triangle M_2$ forms a path from q (or the empty set, which can be regarded as a path of length 0), since otherwise (i.e., if it contains a cycle or a path disjoint from q that is of length at least 1) we can improve at least one of M_1 and M_2. Therefore, $|U_2| + 1 = |U_1| = |F(U_1)| = |M_1| \leq |M_2| + 1 = |F(U_2)| + 1 \leq |U_2| + 1$, in which the equalities must hold throughout.

Let us see an example of the map induced by a weighted matching instance.

Example 2.6. Suppose that $U = \{u_1, u_2, u_3\}$, $V = \{v_1, v_2\}$, and

$$E = \{(u_1, v_1), (u_1, v_2), (u_2, v_1), (u_3, v_1)\}.$$

Consider an instance $(G = (U, V; E), w)$, where

$$w((u_1, v_1)) = 20, \ w((u_1, v_2)) = 8, \ w((u_2, v_1)) = 9, \text{ and } w((u_3, v_1)) = 15.$$

Then, for example, $F(\{u_1, u_2\}) = \{v_1\}$ because $\text{MM}(G, w; \{u_1, u_2\}) = \{(u_1, v_1)\}$. By similar calculations, we obtain that the codomain of F is

$$\{ F(U') \mid U' \subseteq U \} = \{\emptyset, \{v_1\}, \{v_1, v_2\}\},$$

which forms an antimatroid on V.
3 Antimatroids Induced by Matchings

In this section, we prove that any stable matching or weighted matching instance induces an antimatroid.

3.1 Antimatroids Induced by Stable Matchings

Theorem 3.1. Let \(F : 2^U \to 2^V \) be the map induced by a stable matching instance \((G = (U, V; E), \succ)\), and \(F := \{ F(U') \mid U' \subseteq U \} \). Then the set system \((V, F)\) is an antimatroid.

Proof. We have \(\emptyset \in F \) since \(F(\emptyset) = \emptyset \). To see the accessibility, let us fix \(V' \in F \setminus \{ \emptyset \} \) and let \(U' \) be a subset of \(U \) such that \(F(U') = V' \). Define \(M := SM(G, \succ; U') \) and \(U'' = \{ u \mid (u, v) \in M \} \). Then \(M \) is also a stable matching in \(G[U'' \cup V] \) because \(U'' \subseteq U' \) and \(M \in \mathcal{M}_G[U'' \cup V] \). Thus we have \(F(U'') = V' \) and \(|U''| = |V'| \geq 1 \). Let us fix \(u' \in U'' \). Then \(F(U'' - u') \subseteq V' \) and \(F(U'' - u') = |V'| - 1 \) by Lemma 2.2. Therefore, there exists \(v \in V' \) such that \(V' - v = F(U'' - u') \in F \).

In what follows, we show that \(F \) is union-closed. Fix any two subsets \(U_1, U_2 \subseteq U \), and let \(V^* := F(U_1) \cup F(U_2) \). We shall show that there exists \(U^* \subseteq U_1 \cup U_2 \) such that \(V^* = F(U^*) \). Note that, due to (a) in Lemma 2.2 we have \(F(U_1) \subseteq F(U_1 \cup U_2) \) and \(F(U_2) \subseteq F(U_1 \cup U_2) \), and hence \(V^* \subseteq F(U_1 \cup U_2) \).

Let \(M_i := SM(G, \succ; U_i) \) for \(i = 1, 2 \), \(\hat{E} := \{ (u, v) \mid (u, v') \in M_1 \cup M_2, v \succ u \} \), and \(\hat{G} := (U, V; \hat{E}) \). Note that \(\{ v \mid (u, v) \in \hat{E} \} \subseteq V^* \), because if there exists \((u, v) \in \hat{E} \) such that \(v \notin V^* \), then it is a blocking pair against \(M_1 \) or \(M_2 \). For each \(r \in U \cup V \), let \(\succ_r \) denote the restriction of \(\succ \) to \(N_{\hat{G}}(r) \), i.e., \(\succ_r \) is a strict order on \(N_{\hat{G}}(r) \) such that, for every \(x, y \in N_{\hat{G}}(r) \), \(x \succ_r y \) if and only if \(x \succ y \). We then have

\[
SM(\hat{G}, \succ; U_i) = M_i = SM(G, \succ; U_i) \quad (i = 1, 2).
\]

Let \(\hat{F} : 2^U \to 2^V \) be the map induced by \((\hat{G}, \succ)\). Then, by (a) in Lemma 2.2,

\[
F(U_i) = \{ v \mid (u, v) \in M_i \} = \hat{F}(U_i) \subseteq \hat{F}(U_1 \cup U_2) \quad (i = 1, 2),
\]

and hence \(V^* = F(U_1) \cup F(U_2) \subseteq \hat{F}(U_1 \cup U_2) \). In addition, since \(\{ v \mid (u, v) \in \hat{E} \} \subseteq V^* \), we have \(\hat{F}(U_1 \cup U_2) \subseteq V^* \). Thus, we obtain \(\hat{F}(U_1 \cup U_2) = V^* \).

Let \(\hat{M} := SM(\hat{G}, \succ_r; U_1 \cup U_2) \) and \(U^* := \{ u \mid (u, v) \in \hat{M} \} \subseteq U_1 \cup U_2 \). We define

\[
M^* := SM(\hat{G}, \succ_r; U^*).
\]

Note that \(\hat{F}(U_1 \cup U_2) = \hat{F}(U^*) \) because \(\hat{M} \) is a stable matching in \(\hat{G}[U^* \cup V] \). In addition, every vertex in \(U^* \) is matched in \(M^* \) because \(|M^*| = |\hat{F}(U^*)| = |\hat{F}(U_1 \cup U_2)| = |\hat{M}| = |U^*| \).

The proof is completed by showing that \(M^* \) is a stable matching also in \(G[U^* \cup V] \) (with respect to \(\succ \)) because this implies \(F(U^*) = \{ v \mid (u, v) \in M^* \} = \hat{F}(U^*) = \hat{F}(U_1 \cup U_2) = V^* \). To obtain a contradiction, suppose that there exists a blocking pair \((u^*, v^*) \in E[U^* \cup V] \) against \(M^* \). Since \(M^* \) is a stable matching in \(\hat{G}[U^* \cup V] \), we can assume that \((u^*, v^*) \notin \hat{E} \). Then, by the definition of \(\hat{E} \), we have \(v \succ u^* \) \(v^* \) for every \(v \in N_{\hat{G}}(u^*) \). As \((u^*, M^*(u^*)) \in \hat{E} \) implies \(M^*(u^*) \succ u^* \) \(v^* \), we get that \((u^*, v^*) \) cannot be a blocking pair against \(M^* \) in \(G[U^* \cup V] \). This contradicts our assumption. \qed
3.2 Antimatroids Induced by Maximum-Weight Matchings

Theorem 3.2. Let $F : 2^U \to 2^V$ be the map induced by a weighted matching instance $(G = (U, V; E), w)$, and $\mathcal{F} := \{ F(U') \mid U' \subseteq U \}$. Then the set system (V, \mathcal{F}) is an antimatroid.

Proof. We have $\emptyset \in \mathcal{F}$ since $F(\emptyset) = \emptyset$. Also, we can derive the accessibility from Lemma [2,5] similarly to the proof of Theorem [5,1].

It remains to prove that \mathcal{F} is union-closed. Fix any two subsets $U_1, U_2 \subseteq U$, and let $V^* := F(U_1) \cup F(U_2)$. Let $M_i := MM(G, w; U_i)$ for $i = 1, 2$. For each vertex $v \in V \setminus V^*$, we create $\{U\}$ new vertices $h_{u,j}$ ($j = 1, \ldots, |U|$), and let H_v denote the set of those vertices. We define a new weighted matching instance $(\tilde{G} = (U, \tilde{V}; \tilde{E}), \tilde{w})$ as follows:\footnote{The weighted matching instance $(\tilde{G} = (U, \tilde{V}; \tilde{E}), \tilde{w})$ does not satisfy the condition that each matching in $\mathcal{M}_{\tilde{G}}$ has a distinct weight. Hence, we define $MM(G, \tilde{w}; U^*)$, for $U^* \subseteq U$, to be the lexicographically smallest matching in $\arg\max\{w(M) \mid M \in \mathcal{M}_{\tilde{G}[(U \setminus \tilde{V})]} \}$, with respect to a fixed order on the edges \tilde{E}. Note that this definition is not essential in the proof.}

\begin{align*}
\tilde{V} &:= V^* \cup \bigcup_{v \in V \setminus V^*} H_v, \\
\tilde{E} &:= \{ (u, v) \mid (u, v) \in E, v \in V^* \} \cup \{ (u, h_{u,j}) \mid (u, v) \in E, v \notin V^*, j \in \{1, \ldots, |U|\} \},
\end{align*}

and for each $(u, v) \in \tilde{E}$,

\[\tilde{w}((u, v)) := \begin{cases} w((u, v)) & \text{if } v \in V^*, \\
 w((u, v')) & \text{if } v \in H_v'. \end{cases} \]

Let \tilde{M} be the maximum-weight matching $MM(\tilde{G}, \tilde{w}; U)$, $M^* := \tilde{M} \cap E$, and $U^* := \{ u \mid (u, v) \in M^* \}$. In addition, let $\tilde{F} : 2^U \to 2^V$ be the map induced by (\tilde{G}, \tilde{w}).

We first claim that $\tilde{F}(U^*) = V^*$. Note that $MM(G, w; U_i) = MM(\tilde{G}, \tilde{w}; U_i) = M_i$ for $i = 1, 2$ by the definition of (\tilde{G}, \tilde{w}). As $F(U_i) = \{ v \mid (u, v) \in M_i \} = \tilde{F}(U_i) \subseteq \tilde{F}(U_1 \cup U_2)$ by Lemma [2,5] we have $V^* = F(U_1) \cup F(U_2) \subseteq \tilde{F}(U_1 \cup U_2)$. Thus we get $\tilde{F}(U^*) = \tilde{F}(U_1 \cup U_2) \cap V^* = V^*$.

Next, we observe that $M^* = MM(G, w; U^*)$. Suppose that $M^* \triangle MM(G, w; U^*) \neq \emptyset$ and let $X \subseteq M^* \triangle MM(G, w; U^*)$ be one of its connected components. Then we have $w(M^* \triangle X) > w(M^*)$ or $w(MM(G, w; U^*) \triangle X) > w(M^*)$, a contradiction.

Consequently, we obtain $V^* = \tilde{F}(U^*) = \{ v \mid (u, v) \in M^* \} = F(U^*) \in \mathcal{F}$. \blacksquare

4 Matching Representations of Antimatroids

In this section, we provide a representation of an antimatroid as a matching instance.

Let (S, \mathcal{F}) be an antimatroid. Let $d : \mathcal{F} \setminus \{\emptyset\} \to S$ be a function such that $d(X) \in X$ and $X - d(X) \in \mathcal{F}$ for every $X \in \mathcal{F} \setminus \{\emptyset\}$. There exists such a function d since \mathcal{F} satisfies accessibility.

Let $>^*$ be a total order on $\mathcal{F} \setminus \{\emptyset\}$ such that $X >^* Y$ whenever $X \subseteq Y$. Namely, $X >^* Y$ implies $Y \nsubseteq X$. Also, let $>^X$ be the order on each $X = \{a_1, \ldots, a_k\} \in \mathcal{F} \setminus \{\emptyset\}$ such that $a_1 >^X \ldots >^X a_k$, where $a_i = d(X \setminus \{a_{i+1}, \ldots, a_k\})$ ($i = 1, 2, \ldots, k$). Note that $\{a_1, \ldots, a_i\} \in \mathcal{F}$ ($i = 0, 1, \ldots, k$) by the definition of d.\footnote{The weighted matching instance $(\tilde{G} = (U, \tilde{V}; \tilde{E}), \tilde{w})$ does not satisfy the condition that each matching in $\mathcal{M}_{\tilde{G}}$ has a distinct weight. Hence, we define $MM(G, \tilde{w}; U^*)$, for $U^* \subseteq U$, to be the lexicographically smallest matching in $\arg\max\{w(M) \mid M \in \mathcal{M}_{\tilde{G}[(U \setminus \tilde{V})]} \}$, with respect to a fixed order on the edges \tilde{E}. Note that this definition is not essential in the proof.}
4.1 Representation by Stable Matchings

We construct a stable matching instance \((G = (U, V; E), \succ) \) as follows:

- \(U := \mathcal{F} \setminus \{\emptyset\} \) and \(V := \mathcal{S} \);
- \(E := \{ (u, v) \mid u \in U, v \in u \} \);
- \(\succ_u := \succ^u \) for each \(u \in U \);
- let \(\succ_v \) be the restriction of \(\succ^v \) to \(\{ u \mid v \in u \} \) for each \(v \in V \).

We prove that this stable matching instance derives the desired antimatroid.

Theorem 4.1. Let \((S, \mathcal{F}) \) be an antimatroid, and \(F : 2^{\mathcal{F} \setminus \{\emptyset\}} \to 2^S \) the map induced by the stable matching instance \((G, \succ) \) defined as above. Then the codomain of \(F \) coincides with \(\mathcal{F} \).

Proof. Let \(\mathcal{F}' = \{ F(U') \mid U' \subseteq U \} \). We claim that \(\mathcal{F}' = \mathcal{F} \).

We first see \(\mathcal{F} \subseteq \mathcal{F}' \). Let \(X = \{ u_1, \ldots, u_k \} \in \mathcal{F} \) such that \(v_1 \succ_X \cdots \succ_X v_k \), i.e., \(v_i = d(X \setminus \{ v_{i+1}, \ldots, v_k \}) \) \((i = 1, 2, \ldots, k) \). We define \(u_i := \{ v_1, \ldots, v_i \} \in \mathcal{F} \setminus \{\emptyset\} = U \) for \(i = 1, \ldots, k \). Then, \(X = F(\{ u_1, \ldots, u_k \}) \in \mathcal{F}' \) because \(SM(G, \succ; \{ u_1, \ldots, u_k \}) = \{(u_1, v_1), \ldots, (u_k, v_k)\} \) by \(u_1 \succ^* \cdots \succ^* u_k = X \) and \(v_1 \succ_{u_i} \cdots \succ_{u_i} v_i \) \((i = 1, \ldots, k) \).

Next, we prove the opposite direction, i.e., \(\mathcal{F}' \subseteq \mathcal{F} \). Let \(U' \subseteq U \) and \(M := SM(G, \succ^*; U') \). Since each \(u \in U' \) matched with someone in \(M \) proposes only to the neighbors \(v' \in N_{G[U' \cup V]}(u) = u \) such that \(v' \succeq_u M(u) \) throughout the deferred acceptance algorithm (recall Algorithm 1), we have

\[
F(U') = \{ v \mid (u, v) \in M \} = \bigcup_{(u, v) \in M} \{ v' \mid v' \in u, v' \succeq_u v \} \subseteq \mathcal{F},
\]

where the last membership follows from the facts that \(\{ v' \mid v' \in u, v' \succeq_u v \} \subseteq \mathcal{F} \) for all \((u, v) \in E \) (recall the definitions of \(\succ^* = \succ^u \) and \(d \)) and that \(\mathcal{F} \) is union-closed. Therefore, we get \(\mathcal{F}' \subseteq \mathcal{F} \). □

4.2 Representation by Maximum-Weight Matchings

We define \(b \) to be a unique bijection from \(\mathcal{F} \setminus \{\emptyset\} \) to \(\{1, 2, \ldots, |\mathcal{F} \setminus \{\emptyset\}|\} \) consistent with \(\succ^* \), i.e., for any distinct \(X, Y \in \mathcal{F} \setminus \{\emptyset\} \), we have \(b(X) > b(Y) \) if and only if \(X \succ^* Y \). We build a weighted matching instance \((G = (U, V; E), w) \) as follows:

- \(U := \mathcal{F} \setminus \{\emptyset\} \) and \(V := \mathcal{S} \);
- \(E := \{ (u, v) \mid u \in U, v \in u \} \);
- \(w((u, v_i)) := 2^{|V| - b(u) + i} \) for \(u = \{ v_1, \ldots, v_k \} \in \mathcal{F} \setminus \{\emptyset\} \) and \(v_i \in u \) such that \(v_1 \succ^u \cdots \succ^u v_k \).

We show that this weighted matching instance also derives the desired antimatroid. Note that the maximum-weight matching is lexicographically maximum (with respect to the order of edge weights) because the edge weights are distinct power-of-two values. With a similar proof to that of Theorem 4.1, we can prove the following theorem.

Theorem 4.2. Let \((S, \mathcal{F}) \) be an antimatroid, and \(F : 2^{\mathcal{F} \setminus \{\emptyset\}} \to 2^S \) the map induced by the weighted matching instance \((G, w) \) defined as above. Then the codomain of \(F \) coincides with \(\mathcal{F} \). □
References

[1] C. Blair. Every finite distributive lattice is a set of stable matchings. *Journal of Combinatorial Theory (Series A)*, 37(3):353–356, 1984.

[2] B. L. Dietrich. Matroids and antimatroids—a survey. *Discrete Mathematics*, 78(3):223–237, 1989.

[3] D. Gale and L. S. Shapley. College admissions and the stability of marriage. *American Mathematical Monthly*, 69:9–14, 1962.

[4] D. Gale and M. Sotomayor. Some remarks on the stable matching problem. *Discrete Applied Mathematics*, 11:223–232, 1985.

[5] D. Gusfield and R. W. Irving. *The Stable Marriage Problem: Structure and Algorithms*. MIT Press, Boston, 1989.

[6] Y. Kawase. The secretary problem with a choice function. In *Proceedings of ISAAC*, pages 129–139, 2015.

[7] D. E. Knuth. *Marriage Stables*. Montréal: Les Presses de l’Université de Montréal, 1976.

[8] B. Korte, L. Lovász, and R. Schrader. *Greedoids*. Algorithms and Combinatorics. Springer, 1991.

[9] D. F. Manlove. *Algorithmics of Matching under Preferences*. World Scientific, 2013.

[10] D. G. McVitie and L. B. Wilson. The stable marriage problem. *Communication ACM*, 14(7):486–490, 1971.

[11] A. E. Roth and M. Sotomayor. *Two-sided Matching: A Study in Game-Theoretic Modeling and Analysis*. Cambridge University Press, Cambridge, 1991.

[12] A. Schrijver. *Combinatorial Optimization*. Springer, 2003.