Selecting Reliable and Robust Freshwater Macroalgae for Biomass Applications

Rebecca J. Lawton*, Rocky de Nys, Nicholas A. Paul
School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia

Abstract

Intensive cultivation of freshwater macroalgae is likely to increase with the development of an algal biofuels industry and algal bioremediation. However, target freshwater macroalgae species suitable for large-scale intensive cultivation have not yet been identified. Therefore, as a first step to identifying target species, we compared the productivity, growth and biochemical composition of three species representative of key freshwater macroalgae genera across a range of cultivation conditions. We then selected a primary target species and assessed its competitive ability against other species over a range of stocking densities. Oedogonium had the highest productivity (8.0 g ash free dry weight m\(^{-2}\) day\(^{-1}\)), lowest ash content (3–8%), lowest water content (fresh weight: dry weight ratio of 3.4), highest carbon content (45%) and highest bioenergy potential (higher heating value 20 MJ/kg) compared to Cladophora and Spirogyra. The higher productivity of Oedogonium relative to Cladophora and Spirogyra was consistent when algae were cultured with and without the addition of CO\(_2\) across three aeration treatments. Therefore, Oedogonium was selected as our primary target species. The competitive ability of Oedogonium was assessed by growing it in monocultures and polycultures with Cladophora and Spirogyra over a range of stocking densities. Cultures were initially stocked with equal proportions of each species, but after three weeks of growth the proportion of Oedogonium had increased to at least 96% (±7 S.E.) in Oedogonium-Spirogyra bi-cultures, 86% (±16 S.E.) in Oedogonium-Cladophora bi-cultures and 82% (±18 S.E.) in polycultures. The high productivity, bioenergy potential and competitive dominance of Oedogonium make this species an ideal freshwater macroalgal target for large-scale production and a valuable biomass source for bioenergy applications. These results demonstrate that freshwater macroalgae are thus far an under-utilised feedstock with much potential for biomass applications.

Introduction

Macroalgae have diverse biomass applications as a source of food and hydrocolloids [1], as fertiliser and soil conditioners [2], and more recently as targets for a broad range of biofuels [3–6]. The majority of these applications utilise marine macroalgae (seaweed) and no significant production of freshwater macroalgae exists. However, this is likely to change. Demand for biofuels is increasing and there is widespread recognition that a viable biofuels industry must be based around feedstocks that use minimal amounts of freshwater and commercial fertilisers and do not directly compete with food production [7–9]. Macroalgae satisfy all three requirements when cultivated in industrial waste water and their bioenergy potential is favourable (e.g. [6]). Concurrently, as freshwater ecosystems become threatened by industrial pollution and excessive nutrient loading [10], the use of live algae to remove pollutants and excess nutrients from water – algal bioremediation – is receiving increased attention due to the low costs of implementation compared to alternative physico-chemical treatment methods [11] and the ability to directly grow algae in waste waters [12–14]. As most major industries and waste water streams are based around freshwater rather than saltwater (e.g. agriculture, mineral processing, energy production, municipal waste), increasing development of both an algal biofuels industry and algal bioremediation is likely to result in increased cultivation of freshwater macroalgae, supported by concepts derived from a mature seaweed industry.

In contrast to seaweed, target species of freshwater macroalgae for intensive mono-culture are yet to be identified. Several key characteristics are desirable in a target species, irrespective of the biomass application. As most industrial applications and potential end-product uses of macroalgae require large amounts of biomass, it is essential for target species to have high “areal” biomass productivity, expressed as grams of dry weight per unit area (m\(^2\)) per time (day) [15,16]. Additionally, species should be able to grow across a wide range of conditions with the aim of year round production in open culture systems and controlled water motion to maximise photosynthetic yields [16,17]. Target species should therefore be competitively dominant to prevent cultures becoming overgrown by nuisance species, a problem that has plagued long-term production of algal monocultures [17]. Finally, low variation in biochemical composition over a range of cultivation conditions is also desirable to ensure a consistent source of biomass for end-product applications. This is particularly the case for biofuel applications, where the productivity of the organic component of

Citation: Lawton RJ, de Nys R, Paul NA (2013) Selecting Reliable and Robust Freshwater Macroalgae for Biomass Applications. PLoS ONE 8(5): e64168. doi:10.1371/journal.pone.0064168

Copyright: © 2013 Lawton et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research is part of the MBD Energy Research and Development program for Biological Carbon Capture and Storage. The project is supported by the Advanced Manufacturing Cooperative Research Centre (AMCRC), funded through the Australian Government’s Cooperative Research Centre Scheme. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rebecca.lawton@jcu.edu.au

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e64168
the biomass is paramount to bioenergy potential which is typically expressed as the higher heating value in MJ/kg.

Therefore, as a first step to identifying target species of freshwater macroalgae for biomass applications, we compared the productivity, growth and biochemical composition of three species representative of key freshwater macroalgae genera across a range of cultivation conditions representative of intensive culture systems. We then selected a primary target species and assessed its competitive ability against other species over a range of stocking densities. Our overall objective was to identify a freshwater macroalga suitable for large scale cultivation in industrial waste water streams to provide biomass for a range of end-product applications. To do this we focus on filamentous species of freshwater macroalgae from the genera Cladophora, Spirogyra and Oedogonium. These genera were chosen as they all have broad geographic distributions, are representative of the macroalgae available in many freshwater environments, have rapid growth and can become pest species when nutrient levels are high [18,19].

Methods

Study Species

This study compared three types of freshwater macroalgae from the genera Cladophora, Spirogyra and Oedogonium (Fig. 1). Cladophora species are branching algae with reasonably large filaments (cell diameter 66–133 μm) that commonly form thick mats and turfs. Spirogyra species have intermediate sized unbranched filaments (cell diameter 65–88 μm) and typically form dense floating mats. Oedogonium species have very fine unbranched filaments (cell diameter 18–32 μm) and commonly grow attached to aquatic vegetation, but can also form floating mats. Both Cladophora and Spirogyra are late successional species that are commonly found in established macroalgal communities [20]. Species were identified using taxonomic keys [21,22] and subsequently with DNA sequencing analysis (Supporting information, Text S1). However, identification was only possible to genus level using taxonomic keys as algae lacked species-specific defining characteristics, and DNA sequencing failed to identify unique species (hereafter we refer to genera only: Cladophora, Spirogyra and Oedogonium). For Oedogonium, 3 of the 4 most closely related species from DNA sequencing analysis are located in a clade formed by the monoecious taxa (Clade B [23]), suggesting that our Oedogonium species also falls within this clade (Table S1). All new genetic sequences were deposited in GenBank (Accession numbers: KC701472, KC701473, KC701474).

Culture Methods

Stock cultures of the three species were collected from outdoor ponds at the Baramundi Fishing Farm Townsville and Good Fortune Bay Fisheries Ltd Kelso. Permission was obtained from owners to collect algae from these sites. Stock cultures were grown in a greenhouse in 60 L plastic buckets with ambient natural light at the Marine and Aquaculture Research Facility Unit, James Cook University. Cultures were provided with aeration by a continuous stream of air entering the cultures through multiple inlets around the base of the buckets. Additional dissolved inorganic carbon was provided to some cultures in the form of CO₂ intermittently pulsed directly into the culture water though an airstone between the hours of 8 am and 4 pm. Culture water was enriched (0.1 g L⁻¹) with MAF growth medium (Manutech Pty Ltd, 13.4% N, 1.4% P), which was non-limiting in nitrogen and phosphorus for our culture system (Text S2, Table S2). Stock cultures were maintained for a period of at least four weeks prior to the start of each experiment to allow acclimation to the culture system and ensure that all algae were pre-exposed to identical conditions. All experimental replicates were maintained in 20 L plastic buckets under the same conditions and ambient light. Water temperature and pH were measured daily in each culture. To simulate environments with low water flow that the algae would likely be grown in if cultured in industrial waste water (e.g. settlement ponds, ash dams), the water in each culture was partially exchanged twice a week at a rate equating to a 10% replacement of the total water volume per day. The species selection and competition experiments were run two months apart.

Species Selection Experiment

To determine which species had the highest growth and productivity under a range of different culture conditions, four replicate cultures of each species were grown with and without CO₂ under each of three aeration treatments (no aeration, low aeration and high aeration). Supplying CO₂ has been shown to significantly increase algal productivity [16,24] as it provides additional dissolved inorganic carbon (DIC), which can become limiting under intensive culture conditions [25,26]. Cultures had an average pH of 8.2 (±2.0 S.D.) for the CO₂ treatment and 10.5 (±1.5 S.D.) for the treatment without CO₂. Bottom aeration of

Figure 1. Study species. The three study species - Cladophora (A), Spirogyra (B) and Oedogonium (C). doi:10.1371/journal.pone.0064168.g001
macroalgae cultures is proposed to increase areal productivity by generating vertical movement and water turbulence within the culture, exposing stock to optimal light and increasing the flow of nutrients around the algal surface [27–29]. Air flow for the low aeration treatment was set as the minimum amount required to keep algae in constant motion (2 L min⁻¹). This flow rate was quadrupled for the high aeration treatment (8 L min⁻¹). To provide a proxy for the relative level of water movement these different aeration rates provided, dissolution rates of gypsum balls in each aeration treatment were measured. Dissolution rates in the high aeration treatment were approximately double those of the low aeration treatment (high aeration: 0.40 g hour⁻¹ (±0.03 S.E.), low aeration: 0.21 g hour⁻¹ (±0.05 S.E.)), indicating that four times as much airflow is required to double water movement in our system. We used a low and high aeration treatment to generate two levels of water movement as increasing water flow and turbulence can enhance productivity and growth [30,31].

Average water temperature was 27.7°C (±1.6 S.D.) and cultures received an average of 30.9 mol photons m⁻² day⁻¹ (±3.0 S.D.). Cultures were stocked at a rate of 0.5 g fresh weight (FW) L⁻¹ and harvested and weighed after 7 days. Biomass samples were taken from each replicate upon harvesting and dried in an oven at 65°C for at least 24 hours to determine fresh weight : dry weight (FW:DW) ratios for each individual replicate for each week of growth. The ash content of each replicate was quantified by combusting a 500 mg subsample of dried biomass at 550°C in a muffle furnace until constant weight was reached. Following harvesting, stock density was reset back to 0.5 g FW L⁻¹ by removing excess biomass in each culture. The experiment was run for a total of three weeks, providing for three harvests.

Both ash free dry weight (AFDW) productivity (g AFDW m⁻² day⁻¹) and specific growth rate (SGR) were calculated for each replicate for each week as each provide different metrics. AFDW productivity is a measure of the amount of organic biomass produced per unit area, whereas SGR provides information on the relative growth rates of individuals within the culture. AFDW was calculated using the equation

\[P = \frac{(B_f - B_i)/FW \cdot DW}{A \cdot T} \]

where \(B_f\) and \(B_i\) are the final and initial algal biomasses (g), \(FW \cdot DW\) is the fresh weight to dry weight ratio, \(ash\) is the proportional ash content of the dried biomass, \(A\) is the area (m²) of our culture tanks and \(T\) is the number of days in culture. Specific growth rate was calculated using the equation

\[SGR (\% day⁻¹) = \frac{\ln(B_f/B_i)}{T} \cdot 100 \]

where \(B_f\) and \(B_i\) are the final and initial algal biomasses (g) and \(T\) is the number of days in culture. Permutational analyses of variance (PERMANOVAs) were used to analyse the effect of week, species, \(CO_2\) and aeration on AFDW productivity, specific growth rate, FW: DW ratios and ash content (Table S3).

Biomass samples from replicates of each species cultured with and without \(CO_2\) at the high aeration level from week 3 were analysed for carbon, hydrogen, oxygen, nitrogen and sulphur (ultimate analysis) (OEA Laboratories UK). To quantify the suitability of biomass as a potential biofuel the HHV was calculated for each sample. The HHV is based on the elemental composition of the biomass and is a measure of the amount of energy stored within. The HHV was calculated using the equation

\[HHV (MJ/kg) = 0.3491C + 1.1783H + 0.1003S - 0.1054O - 0.0151N - 0.0211ash \]

where \(C, H, S, O, N\) and \(ash\) are the carbon, hydrogen, sulphur, oxygen, nitrogen and ash mass percentages of the algae on a dry basis [32].

Competition Experiment

Oedogonium was selected as our target species as it had the highest AFDW culture productivity in five of the six aeration and \(CO_2\) treatment combinations and the most favourable biochemical composition for end-product applications (see Results and Discussion). To investigate the competitive ability of this species, *Oedogonium*–*Cladophora* and *Oedogonium*–*Spirogyra* bi-cultures and a polyculture of all three species were grown at each of three different stocking densities (total densities of 0.25 g FW L⁻¹, 0.5 g FW L⁻¹, 1 g FW L⁻¹). Three replicate cultures of each treatment were established with equal quantities of FW biomass of each species summed to each stocking density. Cultures were grown under high aeration with \(CO_2\) as *Oedogonium* AFDW productivity was highest under these conditions in the first experiment (see Results and Discussion). Three replicate *Oedogonium* monocultures were also established at each of the three stocking densities as controls. Cultures had an average pH of 9.7 (±0.2 S.D.), average water temperature was 30.1°C (±1.8 S.D.), and cultures received an average of 35.5 mol photons m⁻² day⁻¹ (±3.7 S.D.). Cultures were harvested and weighed after 7 days and a biomass sample was taken from each replicate. Individual FW: DW ratios and ash contents were calculated for each replicate as described above. To estimate the proportional composition of species in all bi-culture and polyculture treatments a biomass sample of 0.4 g FW was subsampled from each replicate and suspended in 200 mL dechlorinated water prior to being fixed in Lugol’s solution (1%).

Subsequently, ten replicate sub-samples of each biomass sample were photographed under a dissecting microscope and the proportional species composition calculated by placing a 100-point grid over each photo and summing the number of grid points directly overlying each species. Following harvesting, stock density was reset back to the original treatment level by removing excess biomass. However, the proportional composition of each species in culture was not reset back to equal levels to quantify the on-going change in species competition (dominance) over time. The experiment was re-run for a further two weeks, providing for a total of three harvests.

Total AFDW productivity was calculated for each replicate for each week as described above. To evaluate competition, specific growth rates were calculated for each replicate for *Oedogonium* only, using the formula above where \(B_f\) and \(B_i\) are the final and initial biomasses of *Oedogonium* within each culture.

\[B_f = B_i \cdot e^{SGR \cdot T} \]

where \(SGR\) is the specific growth rate (% day⁻¹) and \(T\) is the number of days in culture. Productivity, as determined by AFDW, varied significantly between the three species (Fig. 2a). *Oedogonium* was the most productive species across all treatments when grown under high aeration with \(CO_2\) (8.0 g AFDW m⁻² day⁻¹) and the productivity of *Oedogonium* was at least 20% greater than that of *Cladophora* and *Spirogyra* in all treatment combinations except when grown with low aeration and no \(CO_2\) (Table S3). In contrast to productivity as measured by AFDW, specific growth rate was highest across all treatments for *Cladophora* when grown under low aeration with \(CO_2\) (17.4% day⁻¹). In all treatment combinations, *Cladophora*...
growth rates were at least 30% higher than *Oedogonium* and, with the exception of the no aeration treatment, *Spirogyra* growth rates were at least 20% higher (Fig. 2b; Table S3). Striking differences in the relative position of the three species in AFDW productivity compared to specific growth rate were driven by differences in their FW:DW ratios and ash contents. FW:DW ratios varied significantly between species (Fig. 2c; Table S3), with the ratio for *Spirogyra* (7.3±0.22 S.E.) being more than double that of *Oedogonium* (3.4±0.04 S.E.). There were also significant differences in ash content between species (Fig. 2d; Table S3). *Oedogonium* ash contents (3–8%) were less than half those of *Cladophora* (11–16%) and *Spirogyra* (12–19%) in every individual treatment combination. Consequently, despite slower growth rates, *Oedogonium* cultures produced larger amounts of dried ash-free biomass - the critical measure for the majority of end-product applications, particularly bioenergy. Rapid growth rates are often used as one of the key desirable characteristics when assessing the suitability of algae for large scale cultivation [33]. However, as has been shown for other macroalgae species [34], our results demonstrate that fast growth rates are not necessarily equivalent to high productivity, providing support to previous assertions that culture productivities should not be extrapolated from growth rates obtained in controlled experiments [17].

The key biological attributes of *Oedogonium* that contributed to its higher AFDW productivity - lower ash content and lower FW:DW - are also important considerations in the evaluation of feedstocks for biomass applications. For example, a higher water content (high FW:DW values) means higher inputs are required to obtain dried feedstock, which is necessary if the feedstock is to be transported from point of production to a centralised processing location [35]. Similarly, higher ash contents appear to be correlated with high water contents and may negatively influence bioenergy processes such as hydrothermal liquefaction (HTL) and biogas production due to the concentration of mineral salts at higher levels than traditional lignocellulosic feedstocks [3]. Species differences for bioenergy potential were also reflected in the CHONS analysis and higher heating values (Table 1). *Oedogonium* had the highest carbon content (45%) and correspondingly the best higher heating values (~20 MJ kg⁻¹). These values are comparable to those recorded for terrestrial energy crops of woody plants (16–23 MJ kg⁻¹) [36–38], confirming that *Oedogonium* biomass has high energy potential and would provide a suitable feedstock for bioenergy applications. Furthermore, the consistently high productivity recorded for *Oedogonium* across a range of conditions (e.g. high/low aeration, with/without CO₂) implies that this species can be reliably grown in a variety of cultivation systems, and is also compatible with industrial waste water streams to provide algal bioremediation (e.g. [13,14]).

Cultivation conditions are clearly important for biomass production as all treatments had variable effects on culture productivity, growth rates, FW:DW ratios and ash content over the three experimental weeks (Table S3). In general, cultures without aeration had lower growth rates and AFDW productivity, and higher ash contents relative to treatments with aeration.

Figure 2. Productivity, growth rates, FW:DW ratios and ash contents of macroalgae cultures. Mean (±S.E.) ash-free dry weight productivity (g m⁻² day⁻¹) (A), specific growth rate (SGR, % day) (B), FW:DW ratio (C) and ash content (D) of three macroalgae grown under three aeration levels. CL: *Cladophora*; SP: *Spirogyra*; OE: *Oedogonium*. Data are pooled across CO₂ treatments. Standard errors are calculated as the variation in means between the three weeks of the experiment (n = 3).

doi:10.1371/journal.pone.0064168.g002
Variation in both FW:DW ratios and ash content was much greater between species than between treatments within each species, and both Cladophora and Spirogyra cultures with high FW:DW ratios consistently had high ash contents (Figs. 2c,d; Table S3). Notably these same species had the highest growth rates and lowest AFDW productivities. In contrast to recent research showing that CO₂ can have pronounced effects on Oedogonium productivity [39], CO₂ had no effect on AFDW productivity or growth rate in the current study (Table S3), suggesting that cultures without additional CO₂ were not limited by the availability of dissolved inorganic carbon. However, as CO₂ was directly bubbled into cultures as a gas and not dissolved in the water, it is also possible that a large proportion of the CO₂ added to cultures was lost to the atmosphere through off gassing [24], resulting in minimal differences in the amount of dissolved inorganic carbon supplied to cultures. Some of the variability in the experiment for Cladophora and Spirogyra was driven by contamination of cultures with other species (predominantly Hydrodictyon species and Stigeoclonium species), resulting from the growth of dormant spores or small contaminant filaments in the biomass when it was first collected. Analysis of the biomass composition at the end of the experiment indicated that contamination was 80% in Cladophora cultures and 30% in Spirogyra cultures, inferring that it will be difficult to maintain monocultures of these species over extended periods.

Competition Experiment

In general, the AFDW productivity of mixed species cultures was at least 10% lower than Oedogonium monocultures in the first week of the competition experiment, but there were no differences between cultures in the third week (Fig. 3; Table S4). Changes in culture AFDW productivities between weeks reflect increases in the relative proportions of Oedogonium in bi-cultures and polycultures over the course of the three-week experiment (Fig. 4). Although bi-cultures and polycultures were initially stocked with equal proportions of each species, by the end of the third week the proportion of Oedogonium in mixed species cultures was not significantly different (Table S4) and had increased to at least 96% (±7 S.E.) in Oedogonium-Spirogyra bi-cultures, 86% (±16 S.E.) in Oedogonium-Cladophora bi-cultures and 82% (±18 S.E.) in polycultures. These results clearly demonstrate that Oedogonium is competitively dominant and unlikely to become contaminated by other non-target macroalgae species when cultured in “open” systems, providing opportunity for high flow and water exchanges to maximise productivities [30,31].

![Figure 3. AFDW productivity of mixed species cultures in competition experiment.](http://example.com/figure3.png)

Table 1. Ultimate analysis of macroalgae biomass.

Species	CO₂ treatment	Ash	C	H	O	N	S	HHV
Oedogonium	CO₂	2.9	45.3	6.7	38.3	3.5	0.0	19.7
	No CO₂	3.7	45.5	6.9	37.4	3.6	0.1	20.1
Cladophora	CO₂	9.5	43.1	6.2	34.5	4.6	0.2	18.6
	No CO₂	12.1	43.0	6.3	34.3	4.7	0.1	18.6
Spirogyra	CO₂	13.5	42.7	6.3	35.4	4.4	0.1	18.3
	No CO₂	8.7	43.6	6.4	36.8	4.3	0.1	18.7

Ash, ultimate analysis (weight %, on a dry basis) and higher heating value (MJ/kg, on a dry basis) of biomass from three freshwater macroalgae cultured with and without CO₂. Values are means (± S.E.), n=4, biomass was sampled at the end of the species selection experiment. Note that Cladophora and Spirogyra samples were not pure cultures (see Results and Discussion).

doi:10.1371/journal.pone.0064168.t001
When selecting algal species for cultivation, fast growth rates are expected to provide a competitive advantage [33]. Yet in contrast to this expectation, the competitively dominant *Oedogonium* had the lowest growth rate of monocultures of all three species in the species selection experiment. However, in the first week of the competition experiment, growth rates of *Oedogonium* were up to 50% higher in mixed species cultures compared to the monoculture. For example, specific growth rates of *Oedogonium* cultures were 12.2% per day (±0.2 S.E.) in the *Spirogyra-Oedogonium* mixture, but only 8.1% (±0.8 S.E.) per day in the *Oedogonium* monoculture. These results suggest that *Oedogonium* may increase growth rate as a competitive response to the presence of other species. Regardless, these results demonstrate that inferring competitive abilities based on the growth rates of species in monoculture can be misleading, and likewise inferring bioenergy potential from growth rates could lead to erroneous conclusions about feedstock quality.

The strong competitive response of *Oedogonium* was unaffected by the total stocking density of cultures, with all cultures arriving at greater than 80% *Oedogonium* at the end of the experiment regardless of stocking density treatment (Fig. 3). Similarly, by the third week of the experiment when all mixed species cultures were dominated by *Oedogonium*, stocking density had negligible effects on AFDW productivity (Fig. 2; Table S4). In contrast, *Oedogonium* growth rates were significantly higher in the low stocking density treatment (23.4% day\(^{-1}\) ± 0.8 S.E.) compared to the medium (16.2% day\(^{-1}\) ± 1.0 S.E.) and high (9.8% day\(^{-1}\) ± 0.8 S.E.) stocking density treatments across all species combinations (Table S4). Macroalgae productivity is generally higher at higher stocking densities [40,41]; although this is not always the case (e.g. [42]) and optimal densities can vary between species [43]. Our results suggest that initially stocking *Oedogonium* cultures at low densities (0.25 g L\(^{-1}\)) and harvesting over longer time periods would result in similar productivity to that achieved by stocking cultures at high densities (1 g L\(^{-1}\)) and harvesting frequently. This could minimise operational costs associated with harvesting, an important consideration of any aquaculture operation.

Conclusions

For the first time, this study compares the productivity, growth and biochemical composition of freshwater macroalgae in order to identify target species for intensive single species cultivation. *Oedogonium* had the highest AFDW productivity and a consistent biochemical composition, with a high carbon content and bioenergy potential across a range of cultivation conditions. Moreover, *Oedogonium* was competitively dominant in mixed species cultures and quickly overgrew other species within weeks. *Oedogonium* is a cosmopolitan algal genus with a broad geographical distribution. In combination, these factors make *Oedogonium* an ideal freshwater macroalgal target for large-scale production and as a biomass source for bioenergy applications. Our results show that green freshwater macroalgae have much potential for biomass applications but are thus far an under-utilised feedstock. They represent a diverse group of algae from which the greatest opportunity appears to be with small filamentous morphologies, such as *Oedogonium*, that are more cryptic than larger, end succession macroalgae that are apparent in algal blooms (e.g. *Cladophora*, *Spirogyra*).

Supporting Information

Table S1 GenBank accession numbers and results of BLAST searches for *Oedogonium* sequences at four DNA barcode markers.
(DOCX)

Table S2 Water nutrient concentrations and productivity of three macroalgae species in nutrient limitation pilot experiments.
(DOCX)

Table S3 Results of full factorial permutational analyses of variance (PERMANOVAs) testing the effects of week, species, CO\(_2\) and aeration on productivity as AFDW, specific growth rate, FW:DW ratios and ash content of cultures in the species selection experiment.
(DOCX)

Table S4 Results of full factorial multivariate permutational analyses of variance (PERMANOVAs) testing the effects of competition and density on productivity as AFDW, proportional composition of *Oedogonium* and specific growth rate of *Oedogonium* in cultures in the competition experiment.
(DOCX)

Text S1 DNA sequencing identification of algae.
(DOCX)
Acknowledgments

This research is part of the MBD Energy Research and Development program for Biological Carbon Capture and Storage. We thank Maria Martinez, Amanda Ricketts and Boer Bao for assistance with experiments; Dean Jerry for advice on DNA sequencing; and Good Fortune Bay Fisheries Ltd, Kelso, and the Barramundi Fishing Farm, Townsville, for allowing collection of algae from their ponds.

Author Contributions

Conceived and designed the experiments: RJL RdN NAP. Performed the experiments: RJL. Analyzed the data: RJL RdN NAP. Contributed reagents/materials/analysis tools: RJL RdN NAP. Wrote the paper: RJL RdN NAP. N/A.

References

1. Chopin T, Sawhney M (2009) Seaweeds and their mariculture. The Encyclopedia of Ocean Sciences Elsevier, Oxford: 4477–4478.
2. Bird MI, Wurster CM, De Paula Silva PH, Paul NA, De Nys R (2012) Algal biochar: effects and applications. GCB Bioenergy 4: 61–69.
3. Ross AB, Jones JM, Kubacki ML, Bridgeham T (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresource Technology 99: 6494–6504.
4. Gosch BJ, Magnusson M, Paul NA, Nys R (2012) Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. GCB Bioenergy 4: 919–930.
5. Vinther B, Weng E, Win MN, Reginski DJ, Santos CNS, et al. (2012) An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae. Science 335: 308–313.
6. Rowbotham J, Dyer P, Greenwell H, Theodorou M (2012) Thermochemical processing of macroalgae: a late bloomer in the development of third-generation biofuels? Biofuels 3: 441–461.
7. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science 37: 52–68.
8. Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Applied Energy 88: 3377–3388.
9. Wigmosta MS, Coleman AM, Skags RJ, Huesemann MH, Lane J (2011) National microalgae biofuel production potential and resource demand. Water Resource Res 47: W00H04.
10. Voronmaijer CJ, McIntyre PB. Gesner MO, Dudgen D, Prusvacht A, et al. (2010) Global threats to human water security and river biodiversity. Nature 467: 555–561.
11. Melha S, Gaur J (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Critical Reviews in Biotechnology 25: 113–132.
12. Mulvey W, Kondrad S, Pizarro C, Kebeek-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresource Technology 99: 8137–8142.
13. Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Physiology 24: 329–337.
14. Saunders RJ, Paul NA, Hu Y, de Nys R (2012) Sustainable sources of biomass for biofermentation of heavy metals in waste water derived from coal-fired power generation. RoE 17: 136470.
15. Goldman JC, Ryther JH (1975) Mass production of marine algae in outdoor cultures. Nature 254: 594–595.
16. Park J, Craggs R (2011) Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Water Science and Technology 63: 2405–2410.
17. Grobbelaar JU (2010) Microalgal biomass production: challenges and realities. Photosynthesis research 106: 135–144.
18. Franke JA, De Ouwe Else T (1983) Growth of Stichococcus and Oscillatoria species in artificial ammonium-N and phosphate-P gradients. Aquatic Botany 15: 375–380.
19. Simons J (1994) Field ecology of freshwater macroalgae in pools and ditches, with special attention to eutrophication. Aquatic Ecology 28: 25–33.
20. Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472: 86–89.
21. Entwistle TJ, Skinner S, Lewis SH, FOard HH (2007) Algae of Australia: Batrachospermales, Oedogoniales and Zygamaniales. Collingwood, Australia: CSIRO PUBLISHING/Australian Biological Resources Study 290 p.
22. Yee N, Entwistle TJ (2013) ALGKEY website – Interactive Identification of Australian Freshwater Algae. Available: http://203.202.1.217/algkey/ - Accessed 2012 Oct 28.
23. Mei H, Lu W, Lin Q, Hu D (2007) Phylogeny of Oedogoniales (Chlorophyceae, Chlorophyta) inferred from 18 S rDNA sequences with emphasis on the relationships in the genus Ostreococcus based on ITS-2 sequences. Plant Systematics and Evolution 265: 179–191.
24. Bidwell R, McLachlan J, Lloyd N (1985) Tank Cultivation of Irish Moss, Chondrus crispus Stackh. Botanica marina 28: 87–98.
25. Menséndez M, Martinez M, Comin FA (2001) A comparative study of the effect of pH and inorganic carbon sources on the photosynthesis of three floating macroalgal species of a Mediterranean coastal lagoon. Journal of Experimental Marine Biology and Ecology 256: 123–136.
26. Maita L, Silva J, Schuenhoff A, Santos R (2007) Is the tetrasporophyte of Asparagopsis armata (Bonnemaisoniaceae) limited by inorganic carbon in integrated aquaculture? Journal of Physiology 43: 1252–1258.
27. Gonen Y, Kimmel E, Friedlander M (1993) Effect of relative water motion on photosynthetic rate of red alga Gracilariopsis conferta. Hydrobiologia 260: 493–498.
28. Vanin J, Sebastian M, Perez-Llorens JL, Hernandez I (1998) Photoaclimatisation of Ulva rigida and U. novaediae (Chlorophyta) arranged in canopies. Marine Ecology Progress Series 165: 203–292.
29. Neori A, Chopin T, Torell M, Buschmann AH, Kraemer GP, et al. (2004) Integrated aquaculture: rationing, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231: 361–391.
30. Hurdl CL (2008) Water motion, marine macroalgae physiology, and production. Journal of Phycology 30: 453–472.
31. Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light-dark fluctuations. Journal of Applied Physiology 6: 331–335.
32. Chaminwala S, Parikh P (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81: 1051–1063.
33. Borowitza MA (1992) Algal biotechnology products and processes-matching science and economics. Journal of Applied Physiology 4: 267–279.
34. Lapointe BE, Ryther JH (1978) Some aspects of the growth and yield of Gracilaria tikvahiae in culture. Aquaculture 15: 185–193.
35. Richard TL (2010) Challenges in scaling up biofuels infrastructure. Science 329: 793–796.
36. Ebeling J, Jenkins B (1985) Physical and chemical properties of biomass fuels. Transactions of the ASAE (American Society of Agricultural Engineers) 28: 858–902.
37. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83: 37–46.
38. Cantrell KB, Bauer PJ, Ro KS (2010) Utilization of summer legumes as bioenergy feedstocks. Biomass and Bioenergy 34: 1961–1967.
39. Cole AJ, Mata L, Paul NA, De Nys R (in press) Using CO2 to enhance carbon capture and biomass applications of freshwater macroalgae. GCB Bioenergy.
40. Nagler PL, Glenn EP, Nelson SG, Napoléon S (2003) Effects of fertilization treatment and stock density on the growth and production of the economic seaweed Gracilaria parvula (Rhodophyta) in cage culture at Moikai, Hawaii. Aquaculture 219: 379–391.
41. Pereira R, Yarish C, Sousa-Pinto I (2006) The influence of stocking density, light and temperature on the growth, production and nutrient removal capacity of Phyllophora daire (Bangiales, Rhodophyta) in three floating cultivation systems on land-based pilot scale system. Aquaculture 321: 77–87.
42. Mata L, Schuenhoff A, Santos R (2010) A direct comparison of the performance of the seaweed biofilters, Asparagopsis armata and Ulva rigida. Journal of Applied Physiology 22: 639–644.
43. Saunders GW, Macera H (2010) An evaluation of rbcL, nds4, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogamic Allogologie 31: 487–528.
44. Hall JD, Facokova K, Lo C, Lewis LA, Karol KG (2010) An assessment of the performance of proposed DNA barcodes in freshwater green algae. Cryptogamie Allogologie 31: 529–555.
45. Harrison PJ, Hurdl CI (2001) Nutrient physiology of seaweeds: application of concepts to aquaculture. Cahiers de biologie marine 42: 71–82.
46. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, UK.