DO THE πN TOTAL CROSS SECTIONS INCREASE LIKE $\log \nu$ OR $(\log \nu)^2$ AT HIGH ENERGIES? \(^a\)

(Presented by Keiji Igi)
K. Igi and M. Ishida\(^*\)
Department of Information Science, Kanagawa University, Hiratsuka
Kanagawa 259-1293, Japan
\(^*\)Department of Physics, Tokyo Institute of Technology
Tokyo 152-8551, Japan

We propose to use rich informations on πp total cross sections below $N(\sim 10$ GeV) in order to investigate whether these cross sections increase like $\log \nu$ or $(\log \nu)^2$ at high energies. A finite-energy sum rule (FESR) which is derived in the spirit of the P' sum rule as well as the $n = 1$ moment FESR have been required to constrain the high-energy parameters. We then searched for the best fit of $\sigma^{(+)}_{\text{tot}}$ above 70 GeV in terms of high-energy parameters constrained by these two FESR. We can conclude that our analysis strongly favours the $(\log \nu)^2$ behaviors satisfying the Froissart unitarity bound.

As is well-known, the sum of $\pi^+ p$ and $\pi^- p$ total cross sections has a tendency to increase above 70 GeV experimentally.\(^1\) It has not been known, however, if this increase behaves like $\log \nu$ or $\log^2 \nu$ consistent with the Froissart bound.\(^2\)

We would like to propose to use rich informations of πp total cross sections at low and intermediate energy regions in order to investigate the high energy behaviours of πp total cross sections above 70 GeV using new finite-energy sum rules (FESR) as constraints.

Such a kind of attempt has been initiated in Ref.\(^4\). The s-wave πN scattering length $a^{(+)}$ of the crossing-even amplitude had been expressed as

\[
(1 + \frac{\mu}{M}) a^{(+)} = -\frac{g^2}{4\pi} \left(\frac{\mu}{2M} \right)^2 \frac{1}{M} \frac{1}{1 - \frac{\mu^2}{2M} + \left(\frac{\mu}{2M} \right)^2 + \int_0^\infty dk [\sigma^{(+)}_{\text{tot}}(k) - \sigma^{(+)}_{\text{tot}}(\infty)]
\]

with pion mass μ under the assumption that there are no singularities with the vacuum quantum numbers in the J plane except for the Pomeron (P). The evidence that this sum rule had not

\(^a\)Talk presented at Rencontres de Moriond on QCD and Hadronic Interactions, March 16-23, 2002
been satisfied led us to the prediction of the P' trajectory with $\alpha_{P'} \approx 0.5$, and soon the f meson ($f_2(1275)$) has been uncovered on this P' trajectory.

\textbf{(FESR(1))}: Taking into account the present situation of increasing total cross section data, we derive FESR in the spirit of the P' sum rule. We consider the crossing-even (spin-averaged) forward scattering amplitude for πp scattering:

$$f^{(+)}(\nu) = \frac{1}{4\pi}[A^{(+)}(\nu) + \nu B^{(+)}(\nu)].$$

We assume

$$\text{Im } f^{(+)}(\nu) \simeq \text{Im } R(\nu) + \text{Im } f_{P'}(\nu) = \frac{\nu}{\mu^2} \left(c_0 + c_1 \log \frac{\nu}{\mu} + c_2 \log^2 \frac{\nu}{\mu} \right) + \frac{\beta_{P'}}{\mu} \left(\frac{\nu}{\mu} \right)^{\alpha_{P'}}$$

at high energies ($\nu \geq N$). Taking into account the amplitude $f^{(+)}(\nu)$ to be crossing-even, we can derive (for a detail see ref.\cite{ref})

$$\text{Re } f^{(+)}(\mu) = \text{Re } R(\mu) + \text{Re } f_{P'}(\mu) - \frac{g_{P}^2}{4\pi} \left(\frac{\mu}{2M} \right)^2 \frac{1}{M} \frac{1}{\left(\frac{\mu}{2M} \right)^2}$$

$$+ \frac{1}{2\pi^2} \int_0^N \sigma_{\text{tot}}^{(+)}(k) dk - \frac{2P}{\pi} \int_0^N \frac{\nu}{k^2} \left\{ \text{Im } R(\nu) + \frac{\beta_{P'}}{\mu} \left(\frac{\nu}{\mu} \right)^{0.5} \right\} d\nu,$$

where $N \equiv \sqrt{N^2 - \mu^2} \simeq N$. Let us call Eq. \cite{ref} as the FESR(1) which we use as the first constraint. It is important to notice that Eq. \cite{ref} reduces to the P' sum rule in ref.\cite{ref} if $c_1, c_2 \to 0$.

The FESR \cite{ref,ref,ref}

$$\int_0^N d\nu \nu^n \text{Im } f(\nu) = \sum_i \beta_i \frac{N^\alpha_i + n + 1}{\alpha_i + n + 1}$$

holds for even positive integer n when $f(\nu)$ is crossing odd, and holds for odd positive integer n when $f(\nu)$ is crossing even. We can also derive negative-integer moment FESR. The only significant FESR is a one for $f^{(+)}(\nu)/\nu$ corresponding to $n = -1$. FESR(1) belongs to this case.

\textbf{(FESR(2))}: The second FESR corresponding to $n = 1$ is:

$$\pi \mu \left(\frac{g_{P}^2}{4\pi} \right) \left(\frac{\mu}{2M} \right)^3 + \frac{1}{4\pi} \int_0^N dk k^2 \sigma_{\text{tot}}^{(+)}(k)$$

$$= \int_0^N \nu \text{Im } R(\nu) d\nu + \int_0^N \nu \text{Im } f_{P'}(\nu) d\nu.$$

We call Eq. \cite{ref} as the FESR(2). It is to be noticed that the contribution from higher energy regions is enhanced.

\textbf{(Data)} The numerical value of $-\frac{g_{P}^2}{4\pi} \left(\frac{\mu}{2M} \right)^2 \frac{1}{M} \frac{1}{\left(\frac{\mu}{2M} \right)^2} = -0.0854 \text{GeV}^{-1}$, $\pi \mu \frac{g_{P}^2}{4\pi} \left(\frac{\mu}{2M} \right)^3 = 0.0026 \text{GeV}$ have been evaluated using $\frac{g_{P}^2}{4\pi} = 14.4$. Re $f^{(+)}(\mu) = (1 + \frac{\mu}{\nu}) \alpha^{(+)} = (1 + \frac{\mu}{\nu}) \frac{1}{2}(a_1 + 2a_2) = -(0.014 \pm 0.026) \text{GeV}^{-1}$ was obtained from $a_{\pm} = (0.171 \pm 0.005) \mu^{-1}$ and $a_{\mp} = -(0.088 \pm 0.004) \mu^{-1}$.

We have used rich data\cite{ref} of $\sigma^{+\pi}$ and $\sigma^{-\pi}$ to evaluate the relevant integrals of cross sections appearing in FESR(1) and (2). We have obtained $\frac{1}{2\pi^2} \int_0^N dk \sigma_{\text{tot}}^{(+)}(k) = 38.75 \pm 0.25 \text{GeV}^{-1}$,
\[\frac{1}{4\pi} \int_{0}^{\mathcal{N}} dk \, k^2 \sigma_{\text{tot}}^{(+)}(k) = 1817 \pm 31 \text{ GeV} \text{ for } \mathcal{N} = 10 \text{ GeV}. \text{ For a detail, see ref. [1].} \]

Analysis The FESR(1) and (2) are our starting points. Armed with these two, we expressed high-energy parameters \(c_0, c_1, c_2, \beta_{P'} \) in terms of the Born term and the \(\pi N \) scattering length \(a^+(+) \) as well as the total cross sections up to \(N \). We then attempt to fit the \(\sigma_{\text{tot}}^{(+)} \) above 70 GeV. We set \(N = 10 \text{ GeV}. \)

Let us first define the \(\log^2 \nu \) model and the \(\log \nu \) model. The \(\log^2 \nu \) model is a model for which the imaginary part of \(f^+(\nu) \) behaves as \(a + b \log \nu + c(\log \nu)^2 \) as \(\nu \) becomes large. The \(\log \nu \) model is a model for which the imaginary part of \(f^+(\nu) \) behaves as \(a' + b' \log \nu \) for large \(\nu \). So we generally assume that the \(\text{Im} \, f^+(\nu) \) behaves as Eq. (3) at high energies \((\nu > N) \).

1 log \nu model: This model has three parameters \(c_0, c_1 \) and \(\beta_{P'} \) with two constraints FESR (1), (2). We set \(N = 10 \text{ GeV} \) and expressed both \(c_0, \beta_{P'} \) as a function of \(c_1 \) using the FESR(1) and (2). We obtained

\[c_0(c_1) = 0.0879 - 4.94c_1, \quad \beta_{P'}(c_1) = 0.1290 - 7.06c_1. \]

We then tried to fit 12 data points of \(\sigma_{\text{tot}}^{(+)}(k) \) between 70 GeV and 340 GeV. The best fit we obtained is \(c_1 = 0.00185 \) which gives \(c_0 = 0.0787 \) and \(\beta_{P'} = 0.142 \) with the bad “reduced \(\chi^2 \);” \(\chi^2/(N_{\text{data}} - N_{\text{param}}) = 29.03/(12 - 1) \approx 2.6 \). Therefore it turned out that this model has difficulties to reproduce the experimental increase of \(\pi p \) total cross sections above 70 GeV.

2 log \(\nu \) model: This model has four parameters \(c_0, c_1, c_2 \) and \(\beta_{P'} \) with two constraints FESR(1),(2). We again set \(N = 10 \text{ GeV} \) and required both FESR(1) and (2) as constraints. Then \(c_0, \beta_{P'} \) are expressed as functions of \(c_1 \) and \(c_2 \) as

\[c_0(c_1, c_2) = 0.0879 - 4.94c_1 - 21.50c_2, \quad \beta_{P'}(c_1, c_2) = 0.1290 - 7.06c_1 - 41.46c_2. \]

We then searched for the fit to 12 data points of \(\sigma_{\text{tot}}^{(+)}(k) \) above 70 GeV. The best fit in terms of two parameters \(c_1 \) and \(c_2 \) led us to greatly improved value of “reduced \(\chi^2 \);” \(\chi^2/(N_{\text{data}} - N_{\text{param}}) = 0.746/(12 - 2) \approx 0.075 \) for \(c_1 = -0.0215 < 0 \) and \(c_2 = 0.00182 > 0 \) which give \(c_0 = 0.155 \) and \(\beta_{P'} = 0.0574 \). This is an excellent fit to the data.

It is remarkable to notice that the wide range of data \((k \geq 5 \text{ GeV}) \) have been reproduced within the error even in the region where the fit has not been made (see Fig. 1 (a) and (b)). It is also important to note that the results do not change so much for the value of \(N \). The increase of \(\sigma_{\text{tot}}^{(+)} \) above 50 GeV is explained via \(\log^2 \nu/\mu \) \((c_2 > 0)\) and the decrease between 5 \(\sim \) 50 GeV is explained by \(\log \nu/\mu \) \((c_1 < 0)\).

Therefore, we can conclude that our analysis based on the FESR(1),(2) strongly favours the \(\log^2 \nu/\mu \) behaviours satisfying the Froissart unitarity bound.

Notes added in proof—After completing the manuscript, we were informed by Dr. Jurgen Englert that the SELEX collaboration, U. Dersch et al. [Nucl. Phys. B579 (2000) 277] had a datum for \(\pi^- N \) at 610 GeV. Our \(\log^2 \nu \) model predicts 25.9mb for \(\sigma_{\text{tot}}^{(+)} \) at 610 GeV which is consistent with their value on \(\pi^- N \), \((26.6 \pm 0.9)\)mb. We were also informed by Dr. Bararab Nicolescu that COMPETE collaboration, J. R. Cudell et al. [hep-ph/0107219] also reached a similar conclusion that the Froissart bound seemed favoured by completely different approach. We also came to know from a talk at the 37th Moriond Conference (March 16-23, 2002) by Dr. F. D. Steffen that the gluon saturation leads to \(\log^2 \nu \) behaviours at high energy [A. I. Shoshi, F. D. Steffen and H. J. Pirner, hep-ph/0202012].
Figure 1: Fit to the \(\sigma^{(+)}_{\text{tot}} \) data above 70GeV by the \(\log^2 \nu \) model. The dashed line represents the contribution from \(\text{Im } R(\nu) \) with \(c_2 > 0 \).

References

1. Particle Data Group, D. E. Groom et al., Eur. Phys. J. C 15 (2000) 235.
2. J. R. Cudell et al., Phys. Rev. D 61 (2000) 034019.
3. M. Froissart, Phys. Rev. 123 (1961) 1053.
4. K. Igi, Nuovo Cimento 42 (1966) 930.
5. A. Martin, Nuovo Cimento 42 (1966) 930.
6. K. Igi, Phys. Rev. Lett. 9 (1962) 76.
7. G. F. Chew, M. L. Goldberger, F. E. Low and Y. Nambu, Phys. Rev. 106 (1957) 1337.
8. K. Igi and M. Ishida, hep-ph/0202163.
9. A. A. Logunov, L. D. Soloviev and A. N. Tavkhelidze, Phys. Lett. 24B (1967) 181.
10. R. Dolen, D. Horn and C. Schmid, Phys. Rev. Lett. 19 (1967) 402; Phys. Rev. 166 (1968) 1768.
11. K. Kang and B. Nicolescu, Phys. Rev. D 11 (1975) 2461.