A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots

Zhi-Sheng Xu, Kai Feng, Feng Que, Feng Wang & Ai-Sheng Xiong

Carrots and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-type MYB gene, designated as DcMYB6, was isolated from a purple carrot cultivar. In a phylogenetic analysis, DcMYB6 was grouped into an anthocyanin biosynthesis-related MYB clade. Sequence analyses revealed that DcMYB6 contained the conserved bHLH-interaction motif and two atypical motifs of anthocyanin regulators. The expression pattern of DcMYB6 was correlated with anthocyanin production. DcMYB6 transcripts were detected at high levels in three purple carrot cultivars but at much lower levels in six non-purple carrot cultivars. Overexpression of DcMYB6 in Arabidopsis led to enhanced anthocyanin accumulation in both vegetative and reproductive tissues and upregulated transcript levels of all seven tested anthocyanin-related structural genes. Together, these results show that DcMYB6 is involved in regulating anthocyanin biosynthesis in purple carrots. Our results provide new insights into the regulation of anthocyanin synthesis in purple carrot cultivars.

Carrots (Daucus carota L.; 2n = 2x = 18) are an economically important root crop worldwide. The taproot of cultivated carrots exhibits a range of colors including orange, yellow, red, white, and purple. Purple carrots contain anthocyanins, whereas the orange, red, and yellow pigmentation of carrot taproots is due to carotenoids. White carrots contain very low levels of carotenoids. Thus, cultivated carrots can be divided into two distinct groups: the anthocyanin or eastern group (Daucus carota ssp. sativus var. aitorubens Alef.) and the carotene or western group (Daucus carota ssp. sativus var. sativus).

Anthocyanins are a group of flavonoids that perform various important functions in plants. They provide pigmentation in vegetative and reproductive tissues, enhance cold, drought, and salt tolerance, protect against damage from ultraviolet light, insect herbivory, and pathogen attack. Purple carrots accumulate rich anthocyanins in the fleshy taproot. The role of anthocyanins in carrot taproots is unclear; however, it is conceivable that they could protect the taproot from insect and pathogen attack. Anthocyanins are beneficial to human health and are used as natural food colorants in beverages, candies, and ice cream.

The genetics of anthocyanin biosynthesis have been extensively studied in many plant species. Regulatory genes encoding transcription factors (TFs) control the transcription of structural genes encoding enzymes involved in anthocyanin biosynthesis. In our previous studies, the transcripts of numerous structural genes in the anthocyanin pathway were undetectable or barely detectable in the taproots of non-purple carrots, but were detected at high levels in those of purple carrots. It seems likely that variation in the activity of regulatory genes is the key factor determining anthocyanin production in carrots.

In many species studied to date, the R2R3-MYB TFs, basic helix-loop-helix (bHLH) TFs, and WD-repeat (WDR) proteins form ‘MBW’ complexes that bind to the promoters of target genes to directly activate the transcription of structural genes in the anthocyanin pathway. The MYB proteins in this complex are often the key component determining variation in anthocyanin production. Anthocyanin-related MYBs have been
identified in many plant species, for example, *Arabidopsis* AtMYB75 (PAP1), AtMYB90 (PAP2), AtMYB113, and AtMYB114, *Vitis vinifera* VvMYB1a, *Ipomoea batatas* IbMYB1, and *Malus domestica* MdMYB10, MdMYB1/MdMYBA.

Overexpression of genes encoding these MYB TFs in heterologous or homologous plant species leads to enhanced anthocyanin accumulation.

In this study, a gene encoding an R2R3-type MYB, designated as *DcMYB6*, was isolated from a purple carrot cultivar. The correlation between its expression with anthocyanin production in purple and non-purple carrots was analyzed. The function of *DcMYB6* was also analyzed by overexpression in *Arabidopsis* plants. These results will further our understanding of how anthocyanin synthesis is regulated in carrots.

Results

Sequence analysis of *DcMYB6*. The amplification products of the genomic DNA sequence and the open reading frame (ORF) sequence of *DcMYB6* from the carrot cultivar 'Deep purple' are shown in Supplementary Fig. S1. The genomic DNA sequence of *DcMYB6* was 1,801 bp long while the ORF sequence of *DcMYB6* was 903 bp long, encoding a polypeptide of 300 amino acids (Supplementary Fig. S1A). Alignment analysis of genomic DNA and ORF sequences revealed that the *DcMYB6* gene consisted of two introns and three exons (Supplementary Fig. S1B).

We conducted a phylogenetic analysis with the deduced amino acid sequences of *DcMYB6* and other R2R3-MYB TFs involved in the biosynthesis of different secondary metabolites. Supplementary Table S1 lists the GenBank accession numbers of the R2R3-MYBs used to build the phylogenetic tree. In the phylogenetic tree, the MYB TFs within the *DcMYB6* group were clustered together, and their sequence identity with *DcMYB6* varied from 24% to 74%.

Quantitative real-time PCR analysis of *DcMYB6* in purple and non-purple carrot taproots. At the 90-day-old stage, purple carrot cultivars had accumulated rich anthocyanins whereas anthocyanins were barely detectable in, or absent from non-purple carrot cultivars. Using specific primer pairs, qRT-PCR analyses were performed to quantify the transcriptional levels of *DcMYB6* in purple and non-purple carrots at this stage. The transcript levels of *DcMYB6* in the taproots of three purple carrot cultivars ('Deep purple', 'Purple 68', and 'Tianzi2hao') were approximately 10–229-fold higher than those in the taproots of six non-purple carrot cultivars ('Baiyu' , 'Sanhongliucun' , 'Junchuanhong' , 'Bejo1719' , 'Qitouhuang' , and 'Baiyu'). Among the three purple carrot cultivars, 'Deep purple' and 'Purple 68' had the lowest transcript levels of *DcMYB6* in the taproots, while 'Tianzi2hao' had the highest transcript level of *DcMYB6* and 'Purple 68' had the lowest. Among the six non-purple carrot cultivars, 'Baiyu' had the lowest transcript level of *DcMYB6* and 'Sanhongliucun' had the highest (Fig. 3).

Subcellular localization of *DcMYB6* protein. To investigate the subcellular localization of *DcMYB6*, the *DcMYB6* coding sequence was fused in-frame to the 5′-terminus of the gene encoding GFP, and the construct was transiently expressed in onion cells. In onion cells expressing GFP alone, fluorescence was localized in the cytoplasm and nucleus (Fig. 4 up). Onion cells expressing the *DcMYB6*-GFP fusion protein showed a strong signal in the nucleus (Fig. 4 down).

Overexpression of *DcMYB6* in transgenic *Arabidopsis* induced anthocyanin production. The *DcMYB6* gene driven by the CaMV 35 S promoter was overexpressed in *Arabidopsis* plants to test its function. *Arabidopsis* seedlings of three homozygous CaMV 35 S::*DcMYB6* transgenic lines (DcMYB6-1, DcMYB6-2, and DcMYB6-3) and one control transgenic line, which were selected on MS agar plates containing hygromycin, showed β-glucuronidase (GUS) activity (Fig. 5A). A PCR product of approximately 900 bp corresponding to the *DcMYB6* coding sequence was detected in all three CaMV 35 S::*DcMYB6* transgenic *Arabidopsis* lines analyzed, whereas no such PCR product was amplified from control transgenic plants (Fig. 5B).

Overexpression of *DcMYB6* in *Arabidopsis* induced anthocyanin accumulation. Compared with control plants, DcMYB6-1, DcMYB6-2, and DcMYB6-3 plants exhibited dark-purple pigments in the leaves, siliques, and immature and mature seed coats (Fig. 6A–D), and delayed growth. The total anthocyanin content in the whole plants of DcMYB6-1, DcMYB6-2, and DcMYB6-3 plants was approximately 66–228-fold higher than...
that in control plants (Fig. 6E). Among the three CaMV 35 S:DcMYB6 transgenic Arabidopsis lines, DcMYB6-1 showed the lowest total anthocyanin content and DcMYB6-3 showed the highest.

Up-regulation of anthocyanin biosynthetic genes in transgenic Arabidopsis overexpressing DcMYB6. Among the three CaMV 35 S:DcMYB6 transgenic Arabidopsis lines, DcMYB6-1 plants showed the lowest DcMYB6 transcript levels and DcMYB6-3 plants showed the highest (Fig. 7). As expected, DcMYB6 transcripts were undetectable in the control Arabidopsis plants. The results of the qRT-PCR analyses also determined which endogenous anthocyanin pathway structural genes were up-regulated in the transgenic Arabidopsis plants overexpressing DcMYB6. Compared with the control line, the transgenic Arabidopsis plants overexpressing DcMYB6 showed significantly increased transcript levels of AtCHS (chalcone synthase), AtCHI (chalcone isomerase), AtF3H (flavanone 3′-hydroxylase), AtF3′H (flavonoid 3′-hydroxylase), AtDFR (dihydroflavonol 4-reductase), AtLDOX (leucoanthocyanidin dioxygenase), and AtUGT78D2 (Fig. 7). Among the three transgenic Arabidopsis lines overexpressing DcMYB6, DcMYB6-1 plants showed the lowest transcript levels of these structural genes and DcMYB6-3 plants showed the highest. Transcripts of these structural genes were undetectable or barely detectable in the control Arabidopsis plants.

Discussion
Anthocyanins are water-soluble pigments responsible for purple colors in carrots. In plants, TFs such as MYB, bHLH, and WD40 upregulate the expression of structural genes in the anthocyanin biosynthesis pathway. Two previous studies showed that the expression levels of all anthocyanin pathway structural genes were significantly

Figure 1. Phylogenetic relationships among DcMYB6 and flavonoid-related R2R3-MYBs from other plant species. Phylogenetic tree was built using the neighbor-joining method using MEGA 5 software; bootstrap value was set to 1000. Red diamond indicates DcMYB6. Putative functions of all R2R3-MYBs are listed on the right.
lower in non-purple carrot cultivars than in purple carrot cultivars, which possibly resulted from the inactivation of regulator genes. In other plant species, many R2R3-MYB TFs are known to control anthocyanin biosynthesis by regulating structural genes in the anthocyanin pathway. However, little is known about the R2R3-MYB TFs involved in regulating the anthocyanin pathway in carrot. A previous study reported that DcMYB3 and DcMYB5 might upregulate the activity of the DcPAL3 promoter. In the present study, a gene encoding R2R3-MYB, namely DcMYB6, was isolated from 'Deep purple', a purple carrot cultivar.

Figure 2. Alignment of deduced amino acid sequence of DcMYB6 and R2R3-MYB proteins from other plant species. Alignment was conducted using BioEdit (Version 7.0.1). Identical amino acid residues are shaded as per color table (threshold for shading was set to 60%). R2 and R3 domains are indicated. Boxes show BHLH, ANDV and KPRPR[S/T]F motifs.

Figure 3. Transcript profiles of DcMYB6 in 90-day-old taproots of three purple and six non-purple carrot cultivars. Data represent means of three biological replicates ± SD. Cultivar abbreviations: DPP, Deep purple; PP68, Purple 68; TZ2H, Tianzi2hao; KRD, Kuroda; SHLC, Sanhongliucun; JCH, Junchuanhong; BJ, Bejo1719; QTH, Qitouhuang; BY, Baiyu.
DcMYB6 grouped into the same clade as the MYB TF family of the anthocyanin pathway, and shared high identity with anthocyanin-regulating MYB TFs from other species within the R2R3 domain. DcMYB6 was found to contain the conserved bHLH interaction motif [D/E]Lx2[R/K]x3Lx6Lx3 R in the R3 domain, and an

Figure 4. Subcellular localization of GFP fusions of DcMYB6. Onion epidermal cells transiently expressing GFP and DcMYB6-GFP under the control of the CaMV 35S promoter.

Figure 5. Identification of transgenic Arabidopsis plants with histochemical GUS activity and PCR analyses. (A) Histochemical GUS activity analysis of transgenic Arabidopsis plants overexpressing empty vector (control) and DcMYB6 (DcMYB6-1, DcMYB6-2, and DcMYB6-3). (B) PCR-amplified DcMYB6 fragments from the same transgenic Arabidopsis plants as above.

DcMYB6 grouped into the same clade as the MYB TF family of the anthocyanin pathway, and shared high identity with anthocyanin-regulating MYB TFs from other species within the R2R3 domain. DcMYB6 was found to contain the conserved bHLH interaction motif [D/E]Lx2[R/K]x3Lx6Lx3 R in the R3 domain, and an
Another conserved motif, [A/G]NDV, which distinguishes anthocyanin and non-anthocyanin MYB TFs in the Rosaceae, was also found in DcMYB6. The presence of these motifs suggested that DcMYB6 may be involved in regulating anthocyanin biosynthesis. In several other plant species, the expression of many \textit{R2R3-MYB} genes in the anthocyanin pathway is strongly correlated with anthocyanin accumulation. For example, \textit{MdMYB10} was found to be highly expressed in red-fleshed apple and in the colored skin of white-fleshed apple, but was virtually undetectable in the white cortex of white-fleshed apple\cite{ref10}. In the present study, DcMYB6 transcript levels corresponded well with anthocyanin pigmentation; there were much higher transcript levels in all three 90-day-old purple carrot taproots than in 90-day-old taproots of the six non-purple carrot cultivars. Therefore, DcMYB6 is probably involved in regulating anthocyanin biosynthesis in purple carrot taproots.

The reason why DcMYB6 transcript levels were much lower in non-purple carrots than in purple carrots is still unknown. In peach (\textit{Prunus persica}), the heterodimer of BL and PpNAC1 was shown to activate transcription of the anthocyanin-related MYB, \textit{PpMYB10}\textsubscript{10,130}. In European pear (\textit{Pyrus communis}), methylation of the \textit{PcMYB10} promoter reduced \textit{PcMYB10} expression levels and resulted in a peel color change from red to green11. Insertions and deletions in the promoter region have been shown to affect the expression levels of anthocyanin-related MYBs in some species, such as apple (\textit{Malus × domestica}) and grapevine (\textit{V. vinifera})20,22. In future work, we will attempt to establish the reason for the different transcript levels of DcMYB6 in purple and non-purple carrots.

In several studies, overexpression of anthocyanin-related MYB TFs in heterologous plant species led to enhanced anthocyanin accumulation32,33. In this study, transgenic \textit{Arabidopsis} plants overexpressing DcMYB6 exhibited a clearly darker color and accumulated higher levels of anthocyanins in both vegetative and

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure6.png}
\caption{Functional analysis of DcMYB6 in \textit{Arabidopsis}. (A and B) Ten-day-old and 40-day-old transgenic \textit{Arabidopsis} plants overexpressing empty vector (control) and DcMYB6 (DcMYB6-1, DcMYB6-2, and DcMYB6-3). (C) Immature capsules and seeds from control and three lines of transgenic \textit{Arabidopsis} plants overexpressing DcMYB6. (D) Mature seeds from control and three lines of DcMYB6-overexpressing transgenic \textit{Arabidopsis} plants. (E) Total anthocyanin contents of 40-day-old transgenic \textit{Arabidopsis} plants overexpressing empty vector (control) and DcMYB6 (DcMYB6-1, DcMYB6-2, and DcMYB6-3).}
\end{figure}
reproductive tissues, compared with those in control Arabidopsis plants. Furthermore, qRT-PCR analyses of the three transgenic Arabidopsis lines with different transcript levels of DcMYB6 and different total anthocyanin levels showed that higher transcript levels of DcMYB6 led to greater anthocyanin accumulation. Also, the transcript levels of all seven tested anthocyanin-related structural genes were much higher in transgenic Arabidopsis plants overexpressing DcMYB6 than in control Arabidopsis plants. Together, these results indicate that DcMYB6 could enhance anthocyanin accumulation in Arabidopsis by upregulating anthocyanin-related structural genes, and suggest that DcMYB6 regulates anthocyanin biosynthesis in purple carrots.

In conclusion, an R2R3-MYB TF, DcMYB6, was isolated from a purple carrot cultivar and was found to be involved in regulating the anthocyanin biosynthetic pathway. The results of this study provide important information on the pigmentation of purple carrots. Other TFs such as bHLH and WD40 that form complexes with MYB proteins and together regulate anthocyanin biosynthesis have not yet been identified in carrots. In future work, we will test whether overexpression of DcMYB6 in non-purple carrot cultivars leads to anthocyanin accumulation.

Methods

Plant materials. Three purple carrot cultivars (‘Deep purple’, ‘Purple 68’, and ‘Tianzi2hao’), three orange carrot cultivars (‘Kuroda’, ‘Sanhongliucun’, and ‘Junchuanhong’), and three yellow carrot cultivars (‘Bejo1719’, ‘Qiouhuang’, and ‘Baifu’), which are widely cultivated in China, were chosen for this work. Seeds were grown in a controlled artificial climatic chamber under the same conditions as previously described16. Arabidopsis thaliana ecotype Columbia was grown under the same conditions.

RNA and DNA extraction from carrots and cDNA preparation. Total RNA was extracted from taproots of 90-day-old carrot plants using an RNAsimple Total RNA Kit (Tiagen, Beijing, China). First-strand cDNA was synthesized using the PrimeScript™ RT reagent kit with gDNA Eraser (Perfect Real Time; Takara, Dalian, China). cDNA was diluted 20-fold for gene cloning and qRT-PCR analyses. Genomic DNA was isolated from young leaves with a DNAsecure plant kit (Tiangen).

Isolation of genomic DNA and cDNA sequence of DcMYB6. AtPAP1 (AAG42001) was BLASTed against our CarrotDB: a genomic and transcriptomic database for carrot34 and the high-quality carrot genome which spans 421.5 Mb and accounts for ~90% of the estimated genome size (473 Mb)35. Two transcript contigs showing high sequence identity with AtPAP1 and with higher FPKM values in purple carrots than in non-purple carrots were identified in the transcriptomic database of CarrotDB. After assembling these two transcript contigs, an ORF of 903 bp was identified and predicted to be a MYB TF using Pfam (http://pfam.xfam.org/). This MYB TF was designated as DcMYB6 in this study. Two genomic sequence scaffolds (scaffold 016995 and scaffold 029424) that matched the ORF sequence were identified in the genomic database of CarrotDB. However, no genomic sequence matching the ORF sequence was found in the high-quality carrot genome.

The ORF sequence of DcMYB6 was amplified from cDNA produced from 90-day-old ‘Deep purple’ carrot taproots using PrimeSTAR HS DNA polymerase (Takara, Otsu, Japan) with the forward primer (5’-CGGCCGATCCTCCAGAGATTATGCATCCAAAGGCTTTGAAGAAT-3’) and reverse primer (5’-CACGCCTGCCGTCTGACAGTATTAACTATAATCAAGAATCGG-3’). The ORF sequence was then cloned into the pMD19-T simple vector (Takara, Otsu, Japan) using the ClonExpress II One Step Cloning Kit (Vazyme Biotech Co. Ltd., Nanjing, China) before sequencing (Genscript, Nanjing, China). The same pairs of primers were also used to amplify the genomic clone of DcMYB6 from genomic DNA extracted from carrot leaves. The full-length ORF and DNA sequences of DcMYB6 have been deposited in the GenBank database under the accession numbers KY020445 and KY020446, respectively.
Subcellular localization analysis. The protein-coding region of DcMYB6 was amplified with the forward primer (5′-CACCATCACCAGCAGGCTGATGAATTAGGCTTGAAGATCC-3′) and the reverse primer (5′-ACCCATGTAACGGACAGCTTACTATAGCTCGTGGAGAAGATCCC-3′), and was subcloned into the pAT-GFP vector to create the CaMV 35 S: DcMYB-GFP fusion construct. This construct and the pAT-GFP empty vector (as control) were both bombarded into onion epidermal cells using a Biolistic PDS-1000 instrument (Bio-Rad, Hercules, CA, USA). After incubation at 25 °C for at least 16 h in the dark, samples were observed under a confocal scanning microscope.

Overexpression vector construct preparation and Arabidopsis transformation. The coding sequence of DcMYB6 was amplified with the forward primer (5′-TTTACAGTTACGCTGACCTCACTCACTCAAAGGTGAAATG-3′) and the reverse primer (5′-ACCCATGTAACGGACAGCTTACTATAGCTCGTGGAGAAGATCCC-3′), and then subcloned into the binary vector pCAMBIA-1301 under the control of the CaMV 35 S promoter and the pea rbcS E9 terminator to create the CaMV 35 S: DcMYB6-GFP construct. This construct was introduced into Agrobacterium tumefaciens strain GV3101 by electroporation and then transformed into Arabidopsis using the floral-dip method46. Transgenic Arabidopsis plants carrying the DcMYB6 gene were identified by selection on half-strength Murashige and Skoog (MS) agar plates containing 35 mg/L hygromycin, assaying for GUS activity, and detecting the presence of the transgene by reverse transcription PCR with the forward primer (5′-ATGATCCCAACAAATGGTACAAG-3′) and the reverse primer (5′-AAGCACAACAAATGGTACAAG-3′), which were designed according to the sequence of DcMYB6 and the pea rbcS E9 terminator, respectively. Three transgenic Arabidopsis lines (DcMYB6-1, DcMYB6-2, and DcMYB6-3) with black leaves were used for further experiments. Arabidopsis plants transformed with the pCAMBIA-1301 empty vector served as controls.

Determination of total anthocyanin content. Total anthocyanins were extracted from 40-day-old transgenic Arabidopsis plants (T3) as described previously47. Total anthocyanin quantities are presented in mg cyanidin 3-O-glycoside equivalents per 100 g fw (mg/100 g fw). Three biological replicates were analyzed for each sample.

Quantitative real-time PCR expression analysis. The mRNA levels of the DcMYB6 gene in 90-day-old carrot taproots and in 40-day-old transgenic Arabidopsis plants were determined by qRT-PCR with the forward primer (5′-GCCATAGGGCACAAGCAGCTCT-3′) and the reverse primer (5′-GATCCCAATTTCCGCAAACAA-3′). Total RNA was extracted from 40-day-old transgenic Arabidopsis plants and used to synthesize cDNA using the method described above. To determine the transcript levels of anthocyanin pathway structural genes in transgenic Arabidopsis, qRT-PCR assays were performed with the primers listed in Supplementary Table S2. The DcActin1 gene was used as an internal standard in carrot with the same primers as described previously16,48, while the AtActin2 gene was used as an internal standard for normalization in Arabidopsis and was amplified using the primers listed in Supplementary Table S2. Experiments were conducted using three biological replicates for each sample. The relative gene transcript level was calculated with the 2^(-ΔΔCT) method49. To compare DcMYB6 expression patterns among purple and non-purple carrots at the 90-day-old stage, the ∆∆CT was calculated by subtracting ∆CT of ‘Kuroda’ from ∆CT of all carrot cultivars. To compare the transcript levels of DcMYB6 and anthocyanin pathway structural genes among transgenic Arabidopsis plants, the ∆∆CT was calculated by subtracting ∆CT of the AtF3H (flavonone 3-hydroxylase) gene in DcMYB6-1 Arabidopsis plants from the ∆CT of all tested genes in transgenic Arabidopsis plants.

References
1. Clotault, J. et al. Expression of carotenoid biosynthesis genes during carrot root development. J. Exp Bot 59, 3563–3573 (2008).
2. Surles, R. L., Weng, N., Simon, P. W. & Tanumihardjo, S. A. Carotenoid profiles and consumer sensory evaluation of specialty carrots (Daucus carota, L.) of various colors. J. Agric Food Chem 52, 3417–3421 (2004).
3. Kammerer, D., Carle, R. & Schieber, A. Quantification of anthocyanins in black carrot extracts (Daucus carota ssp sativus var. atroviridis Alk.) and evaluation of their color properties. Eur Food Res Technol 219, 479–486 (2004).
4. Li, Y. et al. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtT8. New Phytol 210, 905–921 (2016).
5. Singh, R. et al. The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB. Nat Commun 5, 4106 (2014).
6. Chagne, D. et al. A new ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol 161, 225–239 (2013).
7. Vinholmangkang, S., Han, Y., Wei, G. & Korban, S. S. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development. BMC Plant Biol 13, 176 (2013).
8. Mano, H., Ogawara, F., Sato, K., Higo, H. & Minobe, Y. Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 143, 1252–1268 (2007).
9. Nakabayashi, R. et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidative flavonoids. Plant J 77, 367–379 (2014).
10. Ahmed, N. U., Park, J. I., Jung, H. J., Hur, Y. & Nou, I. S. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa. Funct Integr Genomics 15, 383–394 (2015).
11. Oh, J. E., Kim, Y. H., Kim, J. H., Kwon, Y. R. & Lee, H. Enhanced level of anthocyanin leads to increased salt tolerance in arabidopsis PAPI-D plants upon sucrose treatment. J Korean Soc Appl Biol Chem 54, 79–88 (2011).
12. Karageorgou, P. & Manetas, Y. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus cocifera from insect herbivory and excess light. Tree Physiol 26, 613–621 (2006).
13. Bassolino, L. et al. Accumulation of anthocyanins in tomato skin extends shelf life. New Phytol 200, 650–655 (2013).
14. Butelli, E. et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26, 1301–1308 (2008).
15. Nietzel, M. et al. Cancer cell antiproliferation activity and metabolism of black carrot anthocyanins. Innov Food Sci Emerg 8, 365–372 (2007).
16. Xu, Z. S. et al. Transcript profiling of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biol 14 (2014).
A MYB transcription factor, DcMYB6, is involved in regulating the accumulation of carotenoids in carrot. Xu, Z.-S. et al. A MYB transcription factor, DcMYB6, is involved in regulating the accumulation of carotenoids in carrot. Plant J 142, 50 (2010).

Author Contributions

Z. S. X. and A. S. X. initiated and designed the research. Z. S. X., K. F. and F. Q. performed the experiments. Z. S. X. analyzed the data. A. S. X. and W. F. contributed reagents/materials/analysis tools. Z. S. X. wrote the paper. Z. S. X. and A. S. X. revised the paper.

Acknowledgements

The research was supported by the National Natural Science Foundation of China (31501775) and the Fundamental Research Funds for the Central Universities (KJQN201657).

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing Interests: The authors declare no competing financial interests.

How to cite this article: Xu, Z.-S. et al. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Sci. Rep. 7, 45324; doi: 10.1038/srep45324 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/