Species Diversity of Lichens in Balh Valley of Himachal Pradesh, North Western Himalaya

Hem Chander*, Sapna2, Deepika2 and Sanjna3

1, 2 & 3 Division Botany, Department of Biosciences, Career Point University, Hamirpur, H.P., INDIA

* Correspondence: E-mail: hemchander78@gmail.com

DOI: http://dx.doi.org/10.33980/jbcc.2019.v05i02.005

(Received 03 Sep, 2019; Accepted 01 Dec, 2019; Published 11 Dec, 2019)

ABSTRACT: During present investigation a total of sixty specimens of lichens were collected from Balh valley. The lichens were collected during November 2018 to February 2019 from twenty eight localities of Balh Valley in Mandi district of Himachal Pradesh, North Western Himalaya. A total of nineteen species of lichens were identified on the basis of morphological and anatomical characters. Relevant literature was consulted for confirmation of species identification. Out of the identified species, one species viz. Usnea longissima is being reported for the first time from Mandi district. Phaeophyscia hispidula is most common out of the nineteen species and is found in fifteen localities. The species diversity index (α, β, γ) of all the localities was calculated. The highest alpha diversity (four) was found in Bagla and Kasarla. The lowest alpha diversity (one) was found at Bhour, Chakker, Kansa, Nagchala and Pairi. Beta diversity of all localities was 47 and gamma diversity was 19. The identified specimens have been deposited in CPUH (The Herbarium, Department of Biosciences, Career Point University Hamirpur) for preservation and future reference.

Keywords: Balh valley; Lichen; North Western Himalaya and Species diversity.

INTRODUCTION: Lichens are composite organisms, which have dual nature, and these are formed by the association of two or more different types of organism - a fungus (mycobiont) and an alga (phycobiont). Lichen thallus develop through this association is distinctive as it become visible and behaves completely different from its constituent organism. Lichens play important role in ecosystem as well as in human welfare.1 Major constituents of Lichen thallus is formed of fungus. Thus these are considered as a special group of fungi under lichenized fungi.2 About 716 species of follicolous lichen have been broadcast in the world till now out of which 116 are found in India.3 Lichens are very important eelctor of Indian flora.4 Epiphytic lichens were said to be useful bio-monitors of air pollutants from very long time Lichens absorbs raw material. Directly from air because they have no roots. Lichen do not have protective tissues or cell type which are required to maintain constant internal water content. The lichen can accumulates heavy metals also.5 Natural dyes have been prepared from lichens, but the dyeing properties of Indian Lichens are not known. Lichen can also form huge amount of metabolites because of their slow growth and critical living conditions.6 The available detailed list of lichens from the present study will be record for carrying out biodiversity studies in the area in future. In Himalyas, Himachal Pradesh is one of the most lichen rich region.7 Lichens are primary producers with important linkage to nutrient cycling and forest food webs.8 Lichens and the natural products produced from them are used for decorations, perfumes, brewing and distilling, food and natural remedies preparation. The biological activities are very less in lichens as compare to other organism lichens are important source of food for different animals and in some countries, human uses lichen as their diet and traditional medicines.9 Lichens have come to scientific attention due to difficulties in their identification.10 Many lichen species are effective in treatment or curing of various diseases like bronchitis, bleeding piles, stomach disorders, scabies and other disorders of heart and blood.11 Lichen planus pigmentosus is a disease caused by Lichens which was first described by Bhutani et al.12 Lichens are ecologically important in providing shelter and nesting material for variety of wild animals. Lichen species are identified on the basis of their morphological, anatomical and features.
Lichen litter fall studies provides information to understand lichen diversity as well as preferred substrate of each species, their physical and biological factors, growth patterns of lichen. Lichens are one of the most widely distributed group of organism in the world ranging from Arctic to Antarctic and from rocky shores of the sea. Lichens are well organized gathered of chemicals elements which are taken up from substrate solution, water vapors and rain. Lichens are the major components of Antarctic terrestrial flora, growing abundantly on rocks, boulders, decaying cushions of moss bunch in ice–free areas. The lichens are used in bio-monitoring studies because they provide cost effective tools for mapping spatial and temporal patterns of atmospheric contamination.

The term lichen was coined by Theophrastus during 300 B.C. He launched the lichen group of plant in the scientific world. A Swiss botanist named Schwender was the first who demonstrated the dual nature of lichen thallus in 1867. There are 20,000 species of Lichens reported in all over the world. Out of 20,000 species 98.9% of the lichens belongs to a separate group named Ascomycetes group and the remaining species of lichens are placed in Bacidiomycetes and Deuteriomycetes groups represented by 0.1% and 1% respectively. Two thousand forty species of lichens belonging to 305 genera and 74 families are reported in India. In Himachal Pradesh there are 503 species of lichens belonging to 107 genera and 44 species Himachal Pradesh, located in the Himalayan belt of western region, is rich in lichen and also called as hot spot of lichen diversity. Three hundred sixty eight species of lichens are found from Solan district of Himachal Pradesh, but still some places are unexplored. Sirmour district of Himachal Pradesh located in the Southern Hill range of Himalayas. This district of Himachal Pradesh have 112 species of lichens belonging to 26 family and 44 genera in five reserve forests of Sirmour district. One hundred ninety two species of Lichens belonging to 65 genera and 31 families of Lichens are present in Great Himalayan National Park, Kullu district in which Jiwanal, Sainj and Tirthan valleys were explored. Shimla district contributes few appropriate habitats for different variety of lichens to grow. There are total 192 species of lichens found in different locations of Shimla district. Seventy species of Lichens belonging to 36 genera and 23 families of lichens are found in three district of Himachal Pradesh. These are Bilaspur, Hamirpur and Una. Out of 70 species, 59 species of lichens are from Bilaspur district and 29 and 6 species are found in Hamirpur and Una respectively. Forty species of lichens have been recorded in Mandi district. The review of Literature revealed that diversity of lichens in Balh Valley of Mandi district in Himachal Pradesh is least explored. So, main objectives of the study were: to collect specimens of lichens from different localities and substrates, to study morphological and anatomy of each specimen, to identify species and preserve specimens for future reference and to document species diversity and distribution of lichens in the study.

MATERIALS AND METHODS: Present study was carried out in the Balh valley of tehsil and district Mandi, Himachal Pradesh. The area falls in sub-tropical sub-humid mid hill agro-climatic region at an elevation of about 1189 m above mean sea level. It is located South-West of Mandi at 30°31’N latitude and 76°54’E longitude on 21 National Highway. The average annual temperature of the area is 18°C. The valley receives an average annual rainfall of about 1400 mm, most of which is received during the monsoon i.e. June to September.

The specimens were collected randomly from various localities and substrates of the study area. The field data such as texture, size, colour, macroscopic features and form have been noted in the field book during excursions. Fresh specimens were observed and sun dried at the camping site. These were brought to laboratory for further taxonomic studies.

The collected lichen specimens were initially segregated according to their growth forms and further grouped according to fructification type (apothecia, perithecia, sterile). The chemicals used for the chemical spot tests of the lichens were prepared using standard method. Colour spot test is performed for the identification of lichens. It includes K test (on upper surface or on medulla), C test (on medulla) and Pd test (on medulla). The morphological and anatomical details are compiled in the form of a description which is compared with the published literature, authenticated taxonomic keys and monographs. Identity of specimens are confirmed by comparing their morphology, anatomy and chemistry with authenticated taxonomic keys.

For preservation, the specimens were dried after collecting them, placed in the collection bags along with slip containing field data. The slip includes name of species; herbarium No., locality, altitude, host, date of collection and name of collector. 1,4-dichlorobenzene crystals will be put into each packet for protection from attack of worms, insects etc. The specimens are deposited in CPUH (The herbarium, Department of
Bio-Sciences, Career Point University Hamirpur) after identification. The diversity of species was calculated as:

- **α** - Alpha diversity is defined as the number of species present in a single locality.38
- **β** - Beta diversity is defined as variation in different species among localities.38

RESULTS AND DISCUSSION: During the present study, a total of nineteen species of Lichens have been enumerated from twenty eight localities of Balh Valley for the first time (Table 1 and Table 2).

S. No.	Localities	No. of specimens	Identified species
1	Arthi	3	Lecanora chlorotera
			Parmotrema mesotropum
			Phaeophyscia hispidula
2	Baggi	2	Heteroderma speciosa
			Lecanora chlorotera
3	Bagla	4	Aspicilia calcarea
			Brianaria bauschiana
			Chrysothrix candelaris
			Lecanora chlorotera
4	Bhangrotu	2	Chrysothrix chlorina
			Phaeophyscia hispidula
5	Bhour	1	Lecanora chlorotera
6	Chakker	1	Dermatocarpon miniatum
7	Dadour	2	Physcia dubia
			Physcia jackii
8	Galma	3	Dermatocarpon vellereum
			Phaeophyscia hispidula
			Physcia sorediosa
9	Gehra	2	Phaeophyscia hispidula
			Physcia dilatata
10	Kandyah	3	Brianaria bauschiana
			Lecanora chlorotera
			Phaeophyscia hispidula
11	Kansa	1	Physcia dubia
12	Kasarla	4	Lecanora chlorotera
			Parmotrema lattissimum
			Phaeophyscia hispidula
			Physcia dubia
13	Kummi	3	Aspicilia calcarea
			Phaeophyscia hispidula
			Usnea longissima
14	Lohara	2	Chrysothrix candelaris
			Chrysothrix chlorina
15	Lunapani	2	Lecanora chlorotera
			Phaeophyscia hispidula
16	Mandal	2	Chrysothrix candelaris
			Phaeophyscia hispidula
Species Diversity of Lichens in Balh Valley of Himachal Pradesh, North Western Himalaya

S. No.	Family	Genera	Species
1	Chrysotrichaceae	Chrysothrix	Chrysothric candelaris
			Chrysothric chlorina
2	Graphidaceae	Graphis	Graphis scripta
3	Lecanoraceae	Lecanora	Lecanora chlorotera
4	Megasporaceae	Aspicilia	Aspicilia calcarea
5	Parmeliaceae	Parmotrema	Parmotrema andinum
			Parmotrema latissimum
			Parmotrema mesotropum
6	Physciaceae	Phaeophyscia	Phaeophyscia hispidula
			Physcia dubia
			Physcia dilatata
			Physcia integrata
			Physcia jackii
			Physcia sorediosa
7	Psoraceae	Brianaria	Brianaria bauschiana
8	Verrucariaceae	Dermatocarpon	Dermatocarpon miniatum
			Dermatocarpon vellereum

Table 2: Lichens of Balh Valley.
Table 3: Thallus differentiation of identified Lichens.

Saxicolous	Corticolous
Aspicilia calcaria	Chrysothrix candelaris
Brianaria bauschiana	Chrysothrix chlorina
Dermatocarpum miniatum	Graphis scripta
Dermatocarpum vellerum	Heterodermia speciosa
Physcia dubia	Lecanora chlorotera
-	Parmotrema andinum
-	Parmotrema latissimum
-	Parmotrema mesotropum
-	Phaeophyscia hispidula
-	Physcia dilatata
-	Physcia integrata
-	Physcia jackii
-	Physcia sorediosa
-	Usnea longissima

Table 4: Number of common species among various localitie.

S. No	Species	Localities	Total
1	Aspicilia calcaria	Kummi, Sainimohri, Bagla	3
2	Brianaria bauschiana	Kandyah, Bagla	2
3	Chrysothrix candelaris	Rakkar, Mandal, Lohara, Bagla	4
4	Chrysothrix chlorina	Pairi, Bhangrotu, Lohara, Ratti, Rajgarh	5
5	Dermatocarpum miniatum	Lunapani, Chakker	2
6	Lecanora chlorotera	Bhour, Gehra, Gehra, Baggi, Kasarla, Ratti, Kandyah, Arthi, Sayohali, Rajgarh, Lunapani, Sainimohri, Bagla, Mundru	13
7	Parmotrema latissimum	Mundru, Kasarla	2
8	Parmotrema mesotropum	Arthi, Taroh	2
9	Phaeophyscia hispidula	Kummi, Bhangrotu, Mandal, Nerchowk, Gehra, Nagchala, kasarla, Kandyah, Arthi, Sayohali, Galma, Sidhyan, Lunapani, Taroh, Sainimohri	15
10	Physcia dubia	Kansa, Tawan, Nerchowk, Kasarla, Dadour	5

Table 5: Number of species already documented from Mandi district.

S. No	Family	Species
1	Chrysotrichaceae	Chrysothrix candelaris
2	Chrysotrichaceae	Chrysothrix chlorina
3	Graphidaceae	Graphis scripta
4	Lecanoraceae	Lecanora chlorotera
5	Megasporaceae	Aspicilia calcaria
6	Parmeliaceae	Parmotrema andinum
7	Parmeliaceae	Parmotrema latissimum
8	Parmeliaceae	Parmotrema mesotropum
9	Physciaceae	Heterodermia speciosa
10	Physciaceae	Phaeophyscia hispidula
11	Physciaceae	Physcia dubia
12	Physciaceae	Physcia dilatata
13	Physciaceae	Physcia integrata
Table 6: Lichens and their substrate/hosts.

S. No.	Species	Substrate/Host
1	Aspicilia calcarea	Rock
2	Brianaria bauschiana	Rock
3	Chrysothrix candelaris	Rock, Bark (Salix balyonica, Pyrus communis)
4	Chrysothrix chlorina	Rock, Bark (Populus)
5	Dermatocarpon minutatum	Rock
6	Dermatocarpon vellereum	Rock
7	Graphis scripta	Bark (Melia azedarach)
8	Heterodermia speciosa	Bark (Pinus roxburghii)
9	Lecanora chlorotera	Bark (Enterolobium cyclocarpum, Neolamarckia cadamba, Leucaena leucocephala, Grewia optiva, Pyrus communis, Caratonia siliqua, Phyllanthus emblica, Ficus benghlesis, Syzygium cumini)
10	Parmotrema andinum	Bark (Salix balyonica)
11	Parmotrema latissimum	Bark (Pinus roxburghii, Mangifera indica)
12	Parmotrema mesotropum	Bark (Salix balyonica)
13	Phaeophyscia hispidula	Bark (Ficus religiosa, Dalbergia fabaceae, Enterolobium cyclocarpum, Euphorbia nerrifolia, Toona ciliata, Morus alba, Neolamarckia cadamba, Ficus carica), Rock
14	Physcia dilatata	Bark (Neolamarckia cadamba)
15	Physcia dubia	Bark (Salix balyonica, Toona ciliata, Ficus religiosa, Grewia optiva)
16	Physcia integrata	Bark (Salix balyonica)
17	Physcia jackii	Bark (Cedrus deodara)
18	Physcia sorediosa	Rock
19	Usnea longissima	Bark (Taxus cuspidata)

Table 7: Alpha Diversity.

S. No.	Localities	Alpha(α) Diversity
1	Arthi	3
2	Baggi	2
3	Bagla	4
4	Bhangrotu	2
5	Bhour	1
6	Chakker	1
7	Dadour	2
8	Galma	3
9	Gehra	2
Species Diversity of Lichens in Balh Valley of Himachal Pradesh, North Western Himalaya

Table 8: Economic importance of Lichens.

S. No.	Species	Economic Importance
1	Aspicilia calcarea	Caterpillars, mites and snakes use Aspicilia as their food and it is a source of nutrition for them.
2	Dermatocarpon vellerum	It has anti-microbial properties and these can fight against human pathogen or infectious agent viz Pseudomonas aeruginosa.
3	Lecanora chlorotera	It is found in different parts of the world. Earth bread is prepared from its flour and powder. It also covers the soil.
4	Parmotrema andinum	These have anti-microbial properties and these fight against fungal as well as human pathogenic bacteria.
5	Phaeophyscia hispidula	It is pollution tolerant and can resist emission from vehicle exhaust.
6	Usnea longissima	In China Usnea is used for the treatment of ulcers and for the preparation of cough syrups.

Beta (β) diversity = 47
Gamma (γ) diversity = 19

CONCLUSION: During present investigation a total of sixty specimens of lichens were collected from Balh valley. The lichens were collected during November 2018 to February 2019 from twenty eight localities (Arthi, Baggi, Bagla, Bhangrotu, Bhour, Chakker, Dadour, Galma, Gehra, Kandyah, Kansa, Kasarla, Kummi, Lohara, Lunapani, Mandal, Mundru, Nagchala, Nerchowk, Pairi, Ratti, Rakker, Rajgarh, Saini Mohri, Sayohali, Sidhyani, Taroh, Tawan) of Balh Valley in Mandi district of Himachal Pradesh. A total of nineteen species of lichens (Aspicilia calcearea, Brinaria bauchiana, Chrysothrix candelaris,
Chrysothrix chlorina, Dermatocarpon miniatum, Dermatocarpon vellerum, Graphis scripta, Heteroderma speciosa, Lecanora chlorotera, Parmotrema andinum, Parmotrema laitissimum, Parmotrema mesotropum, Phaeophyscia hispidula, Physcia dilatata, Physcia integrata, Physcia jackii, Physcia sorediosa, Usnea longissima) were identified on the basis of morphological and anatomical characters. Relevant literature was consulted for confirmation of species identification. Out of the identified species, one species viz. Usnea longissima is being reported for the first time from Mandi district. Phaeophyscia hispidula is most common out of the nineteen species and is found in fifteen localities. The species diversity index (α, β, γ) of all the localities was calculated. The highest alpha diversity (four) was found in Bagla and Kasarla. The lowest alpha diversity (one) was found at Bhour, Chakker, Kansa, Nagchala and Pairi. Beta diversity of all localities was 47 and gamma diversity was 19. The identified specimens have been deposited in CPUH (The herbarium, Department of Bio-Sciences, Career Point University Hamirpur) for preservation and future reference.

ACKNOWLEDGEMENT: Authors are thankful to Chancellor, Career Point University Hamirpur for providing the necessary laboratory facilities.

REFERENCES:

1. Prasher, I. B.; Chander, H. Ethnolichenological notes on lichens from Nanda Devi biosphere reserve. *Journal of Indian Botanical Society*, 2009, 8(3&4), 170-177.

2. Prasher I. B.; Chander, H. Morphochemotaxonomic notes on lichens. In: Prasher I.B. and Ahluwalia A.K. (eds.) Plant Taxonomy- An overview, 2006, 83-93. Department of Botany, P.U., Chandigarh.

3. Rashmi, S.; Rajkumar, H. G. First report of follicolous lichen biota in South Karnatakaka, India. *International Journal of Current Microbiology and Applied Sciences*, 2015, 4(6), 250-256.

4. Pandit, G. S.; Sharma, B. O. New records in the lichen family Lobariaceae from the Western ghats of India. *Mycosphere*, 2012, 3(4), 430-435.

5. Sett, R.; Kundu; Maitreyee Epiphytic lichens: Their usefulness as bioindicator of air pollution. *Dominus Journal of Research in Environmental Studies*, 2016, 3(3), 17-24.

6. Shukla, P.; Upreti, D. K.; Nayaka, S.; Tiwari P. Natural dyes from Himalyan lichen. *Indian Journal of Traditional Knowledge*, 2014, 13(1), 195-201.

7. Upreti, D. K.; Nayaka, S. An enumeration of lichens from Himachal Pradesh. In: Chauhan, D.K. (ed.) Recent Trends in Botanical Researches, 2000, 15-31. Botany department, Allahabad University, Allahabad, India.

8. Rout, J.; Das, P.; Upreti, D. K. Epiphytic lichen diversity in a reserve forest in Southern Assam, Northeast India. *Tropical Ecology*, 2010, 51(2), 281-288.

9. Verma, N.; Behera, C. B.; Sonone, A.; Makhija, U. Lipid peroxidation and tryosinase inhibition by lichen symbionts grown in-vitro. *African Journal of Biochemistry Research*, 2008, 2(12), 225-231.

10. Rana, K.; Nayaka, S.; Shukla, P.; Upreti, D. K. Notes on occurrence of fruticose lichen in Joram top, Ziro valley, Arunanchal Pradesh with ten new records to the states. *International Journal of Science and Research*, 2014, 4(12), 2319-7064.

11. Sati, S. C.; Joshi S. Antibacterial activity of himalayan lichen Parmotrema nilgherrense extracts. *British Microbiology Research Journal*, 2011, 1(2), 26-32.

12. Kanwar, A.; Dogra, S.; Handa, P.; Prasad, D.; Radotrat, B. D. A study of 124 Indian patients with lichen planus pigmentosus. *Clinical Experimental Dermatology: Clinical Dermatology*, 2003, 28(5), 481-485.

13. Rawat, S.; Upreti, D. K.; Singh, R.P. Estimation of epiphytic lichen litter fall biomass in three temperate forests of Chamoli district, Uttarakhand, India. *Tropical Ecology*, 2011, 52(2), 193-200.

14. Pandey, V.; Upreti D. K. Determination of heavy metals in lichens growing on different ecological habitats in Schirmacher Oasis, East Antarctica. *Spectroscopy Letters*, 2000, 33(3), 435-444.

15. Das, P.; Joshi, S.; Rout, J.; Upreti, D. K. Lichen diversity for environmental stress study: Application of index of atmospheric purity (IAP) and mapping around a paper mill in Barak valley, Assam, Northeast India. *Tropical Ecology*, 2013, 54(3), 355-364.

16. Nayaka, S. Methods and techniques in collection, preservation and identification of lichens. In: Rana T.S., Nair K.N. and Upreti D.K. (eds.) Plant Taxonomy-Spectroscopy Letters, 2013, 44(12), 2319-7064.

17. Singh, K. P.; Sinha, G. P. Indian Lichen: An annotated checklist. 2010, Botanical Survey of India, Kolkata.

18. Yadav, V. Lichen flora of Himachal Pradesh. Ph.D. Thesis, 2005, Lucknow University, Lucknow.
19. Nayaka, S.; Yadav, V.; Srivastava, R.; Upreti, D. K. An enumeration and new records of lichens from Solan district, Himachal Pradesh, India. *Biological Memoirs, 2002*, 28(1), 25-33.

20. Nayaka, S.; Upreti, D. K.; Yadav, V. An enumeration and new records of lichens from Sirmour district, H.P., India. *Phytotaxonomy, 2002*, 2, 49-63.

21. Upreti, D. K.; Nayaka, S. An enumeration of lichens from Himachal Pradesh. *Recent Trends in Biology, 2000*, 15-31.

22. Srivastava, R.; Yadav, V.; Upreti, D.K.; Nayaka S. An enumeration of lichens from Shimla district, Himachal Pradesh. *Geophytology, 2004a*, 33(1&2), 29-34.

23. Srivastava, R.; Yadav, V.; Upreti, D. K.; Sharma N. Lichen flora of Bilaspur, Hamirpur and Una districts of Himachal Pradesh, India. *Phytotaxonomy, 2004b*, 4, 11-18.

24. Thakur, M.; Chander, H. An enumeration of lichenized fungi from Sikandra dhar region of district Mandi, Himachal Pradesh. *Journal of Biological and Chemical Chronicles, 2018*, 4(2), 104-116.

25. Mueller, G. M.; Gerald, F. B.; Mercedes, S. F. Biodiversity of fungi-inventory and monitoring methods. Elsevier Academic Press, Burlington, USA, 2004, 128-158.

26. White, F. J.; James, P. W. A new guide to the microchemical techniques for the identification of lichen substance. *British Lichen Society, 1985*, 57, 1-41.

27. Upreti, D. K. Lichen flora of Great Himalayan National Park. A report submitted to Wildlife Institute of India, Dehradun. 2000, 43 p.

28. Awasthi, D. D. A compendium of the macrolichens from India, Nepal and Sri Lanka. Bishen Singh Mahendra Pal Singh, 2007.

29. Goward, T.; McCune, B.; Meidinger, D. The lichens of British Columbia Illustrated Keys, part 1-Foliose and Suamulose Species. Ministry of Forests, Research Program, British Columbia, 1994a.

30. Goward, T.; McCune, B.; Meidinger, D. The lichens of British Columbia Illustrated Keys, part 2-Gruticate Species. Ministry of Forests, Research Program, British Columbia, 1994b.

31. Galloway, D. J.; Moberg, R. The lichen genus *Physcia* (Schreb.) Michaux (Physciaceae: Ascomycota) in New Zealand. *Tuhinga, 2005*, 16, 59-91.

32. Torra T.; Randlaine T. The lichen genus *Usnea* (lichenized Ascomycetes, Parmeliaceae) in Estonia with a key to the species in the Baltic countries. *The Lichenologist, 2007*, 39(5), 415-438.

33. Neuwirth, G.; Aptroot, A. Recognition of four morphologically distinct species in the *Graphis scripta* complex in Europe. *Herzogia, 2011*, 24(2), 207-231.

34. Upreti, D. K.; Shukla, V. Physiological response of the lichen *Phaeophyscia hispidula* (Ach.) Essl., to the urban environment of Pauri and Srinagar (Garhwal), Himalayas, India. *Evironmental Pollution, 2007*, 150(3), 295-299.

35. Upreti, D. K.; Kumar, P.; Nayaka, S. Commercial and ethnic use of lichen in India. *Economic Botany, 2005*, 59(3), 269-273.

36. Thakur, M.; Chander, H. Ethnolichenological notes on lichens of Sikandra dhar region of North-West Himalayas. *Asian Journal of Advanced Basic Sciences, 2018*, 6(2), 38-41.

37. Devi, A.; Mohabe, S.; Reddy, A. M.; Nayaka, S. Efficacy of potential lichen *Parmotrema* (Mull.Arg.) Hale against pathogenic microorganism. *Journal on New Biological Reports, 2015*, 4(2), 149-156.

38. Cingolani, A. M.; Vaieretti, M. V., Gurvich, D. E.; Giorgis M. A.; Cabido M. Predicting alpha, beta and gamma plant diversity from physionomic and physical indicators as a tool for ecosystem monitoring. *Biological Conservation, 2010*, 143(11), 2570-2577.