Application of Lagrange inversion to wall-crossing for Quot-schemes on surfaces

Arkadij Bojko*

October 17, 2022

Abstract

Grothendieck’s quot-schemes parametrize quotient sheaves of a fixed coherent sheaf. In some cases, they carry a natural perfect obstruction theory in the sense of Behrend–Fantechi [3] and the invariants resulting from integrating against their virtual fundamental classes have been studied in [1, 10, 11] and [5]. The last reference relied on the wall-crossing method as introduced by Joyce [12] and used previously in [6] while the other references used more geometric techniques. To compare the outcomes of the two approaches and extend them further, we are required to compare two different generating series.

We dedicate this short note to give a combinatorial proof of the identity relating to the two power series relying on Lagrange inversion. A special case of this was proved by Mathoverflow users “Alex Gavrilov” and “esg” answering our enquiry.

1 Introduction

Grothendieck in his lecture [9] introduced Quot-schemes as a solution to a moduli problem which captures quotients of a fixed sheaf on a projective variety X. More explicitly: fixing an algebraic K-theory class α and a sheaf E on X, then $\text{Quot}_S(E_S, n)(E, \alpha)$ parametrizes the quotients

$$E \to F,$$

*Address: Professur für Mathematik ETH Zürich, HG J 16.2 Rämistrasse 101, Zürich 8092, Switzerland, E-mail: arkadij.bojko@math.ethz.ch
where F of class α. When X is a surface, E is a vector bundle and α has 1-dimensional support $\text{Quot}_S(E_S, n)(E, \alpha)$ admits a perfect obstruction theory as in [3] which was observed by Marian–Oprea–Pandharipande [14]. As such, one can integrate cohomology classes on $\text{Quot}_S(E_S, n)(E, \alpha)$ with respect to its virtual fundamental class $\left[\text{Quot}_S(E_S, n)(E, \alpha)\right]^{\text{vir}}$. The resulting invariants can be combined into generating series by summing over the Euler-characteristic of $\chi(\alpha)$ and were studied in [1, 16, 10] and [5].

While the previous authors used methods relying on a virtual localization formula of [8], we have instead relied on the wall-crossing framework of Joyce [12] and the methods of its application developed in [6, 5]. It therefore seemed necessary to give an alternative proof of the identity below relying purely on combinatorics.

Theorem 1. Let $R(t) \in \mathbb{K}[t]$ be a power-series over a field \mathbb{K} not involving q and $H_i(q)$ the $e > 0$ different Newton–Puiseux solutions to $H_i^e(q) = q^{R(H_i)}$. Set

$$G_e(R) = \exp \left[- \sum_{n,m,j>0} j^m \left\{ R^m(z) \right\} \frac{1}{n^e} \left\{ R^n(z) \right\} q^n + m \right]$$

then the following holds:

$$G_e(R) = \prod_{i=1}^e \left(\frac{R(H_i)}{R(0)} \right) \prod_{i=1}^e H_i^e \cdot \prod_{i_1 \neq i_2} \left(\frac{1}{H_{i_1} - H_{i_2}} \right) \prod_{i=1}^e \left(\frac{e}{H_i} - \frac{R'(H_i)}{R(H_i)} \right).$$

Remark 2. The difficulty in showing this identity came especially from the sum in j under the exponential going only over strictly positive integers which complicated relating this result to known literature: Knuth [13] studies composition polynomials $\{F_n(a)\}_{n \in \mathbb{Z} \geq 0}$ which can be always obtained from a power-series f as

$$F_n(a) = [z^n] \left\{ f^a(z) \right\}$$

for some generating series $f(z)$. These satisfy useful identities like

$$\sum_{j \in \mathbb{Z}} F_{n+j}(a) F_{m-j}(a) = F_{n+m}(a),$$

where we assume that $F_{-k}(a) = 0$ for $k > 0$.

We are grateful to the Mathoverflow authors “Alex Gavrilov” and “esg” who showed the following special case of this statement (see [15]) which restricts to a unique formal power series $H(q)$ and thus makes the expression considerably simpler.
Corollary 3. Let $R(t) \in \mathbb{K}[t]$ be a power-series over a field \mathbb{K} not involving q and $H(q)$ the unique solution to $H(q) = qR(H(q))$. Set

$$G(R) = \exp \left[- \sum_{n,m \geq 0} j \frac{1}{m} \left\{ R^m(z) \right\} \frac{1}{n} \left\{ z^{n-j} \right\} \left\{ R^n(z) \right\} q^{n+m} \right]$$

then the following holds:

$$G(R) = \left(\frac{R(H)}{R(0)} \right) \cdot \left(1 - \frac{R'(H)}{R(H)} H \right).$$

Note that this result additionally makes our work [6] completely independent of the previous results in [1].

2 Lagrange inversion for Newton–Puiseux generating series

The primary tool we will rely on is the following slightly less standard Lagrange inversion formula collecting multiple results of Gessel [7]:

Theorem 1 (Gessel [7], Thm. 2.1.1, Thm. 2.4.1, eq. (2.2.9)). Let $R(z) = \sum_{n=0}^{\infty} r_n z^n$ be a power-series not involving q, then for the unique solution $H(q)$ satisfying $H(q) = qR(H(q))$ and a Laurent series $\phi = \phi(t)$, we have

$$\phi(H(q)) = [t^0] \left\{ \phi(t) \right\} + [t^{-1}] \left\{ \phi'(t) \log(R(t)) \right\} + \sum_{n \neq 0} \frac{1}{n} z^{n-1} \left\{ \phi'(z) R(z)^n \right\} q^n,$$

$$\log(H/q) = \sum_{m>0} \frac{1}{m} [t^m] \left\{ R(t)^m \right\} q^m.$$

We however need a modification of this result to include multiple Newton–Puiseux solutions. For the definition of Newton–Puiseux solutions for implicit equations see for example [2].

Corollary 2. Using the notation from Theorem [7], let $H_i(x)$ for $i = 1, \ldots, e$ be the different Newton–Puiseux series which are solutions to

$$\left(H_i(x) \right)^e = xR(H_i(x))$$

(7)
then for any Laurent series $\phi(t)$, we have

$$\sum_{k=1}^{N} \phi(H_i(x)) = e\phi_0 + [t^{-1}]\left\{\phi'(t)\log(R(t))\right\} \tag{8}$$

$$+ \sum_{n \neq 0} \frac{1}{n} [t^{n-1}]\left\{\phi'(t)R(t)^n\right\}x^n, \tag{9}$$

$$\log\left(\prod_{i=1}^{c} H_i(q)\right)/q = \sum_{m > 0} \frac{1}{m} [t^{me}]\left\{R(t)^m\right\}q^m. \tag{10}$$

Proof. Let $g(x^{\frac{1}{e}})$ be the unique Newton–Puiseux series satisfying $g(x^{\frac{1}{e}}) = x^{\frac{1}{e}}R\left(g\left(x^{\frac{1}{e}}\right)\right)$ for a fixed e’th root of R. We note that $F(y, x) = y^e - xR(y)$ is irreducible in $\mathbb{K}[x, y]$. Then we can write it by Weierstrass preparation theorem (see e.g. [11, Chap. 3.2]) as

$$F(y, x) = \epsilon(y, x) \cdot f(y, x),$$

where $\epsilon \in \mathbb{K}[x, y]$ is a unit and $f \in \mathbb{K}[x][y]$ is an irreducible polynomial. Applying the Newton–Puiseux theorem from [11, Chap. 5.1], every solution of (7) can be expressed as $H_k(x) = g(e^{\frac{2\pi ki}{e}} x^{\frac{1}{e}})$. We obtain

$$\sum_{k=1}^{e} \phi(g_k(x)) = \sum_{k=1}^{e} \left([t^0]\{\phi(t)\} + [t^{-1}]\left\{\frac{\phi(t)}{e} \log\left(R(t)\right)\right\}\right)$$

$$+ \sum_{n \neq 0} \frac{1}{n} [z^{n-1}]\left\{\phi'(z)R_{x}^{n}(z)\right\}x^n e^{\frac{2\pi ik}{e}},$$

which gives us the required result (8). The second equation follows by a similar argument. \square

The first version of the proof will only use the above results and some clever tricks with generating series.
Combinatorial proof. Using Corollary [2] we can write

\[
\sum_{j>0} \sum_{n,m>0} j[z^{en+j}]\{R(z)^n\}z^{em-j}\{R(z)^m\} \frac{p^n q^m}{n \ m} = \sum_{j>0} \frac{1}{j} \left(\sum_{i_1=1}^{e} H_{i_1}^j(p) \right) \left(\sum_{i_2=1}^{e} H_{i_2}^j(q) \right)
\]

\[- \sum_{j>0} \sum_{-j \leq ne<0} [z^{en+j}]\{R(z)^n\} \frac{p^n}{n} \left(\sum_{i=1}^{e} H_i^j(q) \right)
\]

\[- \sum_{j>0 \ i=1} e \left\{ t^{-j} \log \left(R(t) \right) \right\} H_i^j(q)
\]

\[
= \sum_{i_1, i_2} \log \left(1 - \frac{H_{i_1}(p)}{H_{i_2}(q)} \right) + \sum_{n>0 \ j \geq ne} [z^{j-\epsilon n}]\{R^{-n}(z)\} \left(\sum_{i=1}^{e} H_i^j(q) \right) \frac{p^{-n}}{n}
\]

\[- \sum_{i=1}^{e} \log \left(R(H) \right)
\]

\[
= \sum_{i_1, i_2} \log \left(1 - \frac{H_{i_1}(p)}{H_{i_2}(q)} \right) - \sum_{i=1}^{e} \frac{1}{n} \frac{H_i^{en}(q)}{R^n(H_i(q)) p^n}
\]

\[- \sum_{i=1}^{e} \log \left(R(H_i) \right)
\]

\[
= \sum_{i_1, i_2} \log \left(1 - \frac{H_{i_1}(p)}{H_{i_2}(q)} \right) - \log \left(1 - \frac{q}{p} \right)
\]

\[- \sum_{i=1}^{e} \log \left(R(H_i) \right),
\]

where in the last step, we used [7]. Therefore we obtain after taking exponential and taking the limit \(p \to q \):

\[
\lim_{p \to q} \prod_{i \neq j} (H_i(p) - H_j(q)) \prod_{i=1}^{e} \frac{H_i(p) - H_i(q)}{p - q} \frac{1}{R(H_i(q))} \prod_{i=1}^{e} \left(\frac{p}{H_i(p)} \right)^e
\]

\[
= \prod_{i \neq j} (H_i(q) - H_j(q)) q^e \prod_{i=1}^{e} \left(\frac{dq}{dH_i} \right)^{-1} \prod_{i=1}^{e} \frac{1}{H_i^e(q)} \prod_{i=1}^{e} R^{-1}(H_i(q))
\]

\[
= \prod_{i \neq j} (H_i(q) - H_j(q)) \prod_{i=1}^{e} \frac{H_i(q)^e}{R(H_i(q))} \left(\frac{e}{H_i} - \frac{R'(H_i(q))}{R(H_i(q))} \right)^{-1}.
\]
After taking the negative power of the final expression, we obtain exactly the one from (4).

An alternative way of showing this result is to unpack the proof of the Lagrange inversion formula of Theorem 1 which follows from a residue formula and use the same approach in our more general case.

Analytic proof. Without loss of generality assume that $R(q)$ is a polynomial in q and let us set the notation $\sum_{i=1}^n H_i(q) =: H(q)$. When $\phi(z) = \sum_{n \in \mathbb{Z}}$ is a Laurent-series, we will write
\[
[q^{>0}]\{\phi(z)\} = \sum_{n > 0} \phi_n z^n.
\]
We then have the following identity:
\[
[q^{>0}]\{H^{-j}(q)\} := \sum_{n > 0} [z^n]\{H^{-j}(z)\} q^n = \frac{1}{2\pi i} \oint_{|z|=R} \sum_{n > 0} \left(\frac{q}{z} \right)^n \frac{1}{z} H^{-j}(z) dz
\]
which uses that
\[
\frac{1}{2\pi i} \oint_{|z|=R} z^j dz = \begin{cases} 1 & \text{if } j = -1, \\ 0 & \text{otherwise}. \end{cases}
\]
Using Corollary 2 we can reexpress the term under the exponential in (3) as:
\[
\sum_{j > 0} \frac{1}{j} H^j(q) [q^{>0}]\{H^{-j}(q)\}
\]
where we are using that $|H_{i_1}(z)| > |H_{i_2}(q)|$ when $R = |z| > |q|$. This is true for R sufficiently small, because $H_i(0) = 0$ and the leading coefficient of $H_i(q)$ is $q^{1/2}$. Note that
\[
\frac{1}{2\pi i} \oint_{|z|=d} \left(\frac{1}{z-q} - \frac{1}{z} \right) \sum_{i_1,i_2} \log \left(\frac{H_{i_1}(z)}{H_{i_1}(z) - H_{i_2}(q)} \right) dz,
\]
where we are using that $|H_{i_1}(z)| > |H_{i_2}(q)|$ when $R = |z| > |q|$. This is true for R sufficiently small, because $H_i(0) = 0$ and the leading coefficient of $H_i(q)$ is $q^{1/2}$. Note that
\[
\frac{1}{2\pi i} \oint_{|z|=d} \left(\frac{1}{z-q} - \frac{1}{z} \right) \log \left(\frac{z}{z-q} \right) dz
\]
\[
= - \int_0^{2\pi} \left(\frac{r e^{2\pi i (\theta - \tau)}}{1 - \frac{r^2}{d} e^{2\pi i (\theta - \tau)}} \right) \log \left(1 - \frac{r}{d} e^{2\pi i (\theta - \tau)} \right) d\tau = 0,
\]
where we used the substitution $z = de^{2\pi i \tau}, q = re^{2\pi i \theta}$ and the integral vanishes, because it is proportional to the integral of a total derivative of a 2π periodic function.

Therefore, we may work instead with

$$\frac{1}{2\pi i} \int_{|z|=d} D(z, q) dz = \frac{1}{2\pi i} \oint_{|z|=d} \left(\frac{1}{z-q} - \frac{1}{z} \right) \sum_{i_1, i_2} \log \left(\frac{H_{i_1}(z)(z-q)}{z(H_{i_1}(z) - H_{i_2}(q))} \right) dz.$$ (11)

The integral (11) can be expressed as the sum of the following residues:

$$\text{Res}_{z=0}(D(z, q)) = \lim_{z \to 0} \left\{ \left(\frac{z}{z-q} - 1 \right) \left[\sum_{i=1}^e \log \left(\frac{H_i(z)(z-q)}{z(H_i(z) - H_i(q))} \right) \right] + \sum_{i_1 \neq i_2} \log \left(\frac{H_{i_1}(z)(z-q)}{z(H_{i_1}(z) - H_{i_2}(q))} \right) \right\}$$

$$= \sum_{i=1}^e \log \left(\frac{H_i^e(q)}{q} \right)$$

$$\text{Res}_{z=q}(D(z, q)) = \lim_{z \to q} \left\{ \left(1 - \frac{z-q}{z} \right) \left[\sum_{i=1}^e \log \left(\frac{H_i(z)(z-q)}{z(H_i(z) - H_i(q))} \right) \right] + \sum_{i_1 \neq i_2} \log \left(\frac{H_{i_1}(z)(z-q)}{z(H_{i_1}(z) - H_{i_2}(q))} \right) \right\}$$

$$= \sum_{i=1}^e \log \left(\frac{H_i(q)}{q} \right) \frac{1}{H_i'(q)} + \sum_{i_1 \neq i_2} \log \left[\frac{H_{i_1}(q)}{(H_{i_1}(q) - H_{i_2}(q))} \right]$$

One can again see that this implies (4). Finally, note that as the equation is polynomial in coefficients in each degree, the statement holds for any $R(q)$.

As a conclusion, we were able to prove in two different ways the comparison of the power-series appearing in the work of the author [4] and [1] making our result independent of the latter and making the proof independent of other external approaches.

Acknowledgements

The author would like to thank A. Gavrilov, A. Mellit and S. Yurkevich.

A.B. was supported by ERC-2017-AdG-786580-MACI. This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No 786580).
References

[1] N. Arbesfeld et al. *The virtual K-theory of Quot schemes of surfaces*. 2020. arXiv: [2008.10661](https://arxiv.org/abs/2008.10661) (cit. on pp. 1–3, 7).

[2] E. R. G. Barroso, P. D. G. Pérez, and P. Popescu-Pampu. “Variations on inversion theorems for Newton–Puiseux series”. *Mathematische Annalen* 368.3-4 (2016), pp. 1359–1397 (cit. on p. 3).

[3] K. Behrend and B. Fantechi. “The intrinsic normal cone”. *Inventiones Mathematicae* 128 (1997), pp. 45–88. arXiv: [alg-geom/9601010](https://arxiv.org/abs/alg-geom/9601010) (cit. on pp. 1, 2).

[4] A. Bojko. “Orientations for DT invariants on quasi-projective Calabi–Yau 4-folds”. *Advances in Mathematics* 388 (2021), p. 107859 (cit. on p. 7).

[5] A. Bojko. “Wall-crossing for punctual Quot-schemes” (2021). arXiv: [2111.11102](https://arxiv.org/abs/2111.11102) (cit. on pp. 1, 2).

[6] A. Bojko. *Wall-crossing for zero-dimensional sheaves and Hilbert schemes of points on Calabi–Yau 4-folds*. 2021. arXiv: [2102.01056](https://arxiv.org/abs/2102.01056) (cit. on pp. 1, 3).

[7] I. M. Gessel. “Lagrange inversion”. *Journal of Combinatorial Theory, Series A* 144 (Nov. 2016), pp. 212–249. arXiv: [1609.05988](https://arxiv.org/abs/1609.05988) (cit. on p. 3).

[8] T. Graber and R. Pandharipande. “Localization of virtual classes”. *Invent. Math.* 135.2 (1999), pp. 487–518 (cit. on p. 2).

[9] A. Grothendieck. *Fondements de la géométrie algébrique. [Extrait du Séminaire Bourbaki, 1957–1962.]* Secrétariat mathématique, Paris, 1962, pp. ii+205 (cit. on p. 1).

[10] D. Johnson, D. Oprea, and R. Pandharipande. “Rationality of descendent series for Hilbert and Quot schemes of surfaces”. *Selecta Mathematica* 27.2 (2021), pp. 1–52 (cit. on pp. 1, 2).

[11] T. Jong and G. Pfister. *Local Analytic Geometry*. Jan. 2000 (cit. on p. 4).

[12] D. Joyce. *Enumerative invariants and wall-crossing formulae in abelian categories*. In preparation (cit. on pp. 1, 2).

[13] D. E. Knuth. “Convolution polynomials” (1992). arXiv: [math/9207221](https://arxiv.org/abs/math/9207221) (cit. on p. 2).

[14] A. Marian, D. Oprea, and R. Pandharipande. “Segre classes and Hilbert schemes of points” (2015). arXiv: [arXiv:1507.00688](https://arxiv.org/abs/1507.00688) (cit. on p. 2).
[15] Mathoverflow-users. *Comparing two power-series*. 2021 (cit. on p. 2).

[16] D. Oprea and R. Pandharpande. *Quot schemes of curves and surfaces: virtual classes, integrals, Euler characteristics*. 2019. arXiv:1903.08787 (cit. on pp. 1 2).