The energy recovery sub-circuit for multiple stages of the stretch meat grinder with ICCOS circuit

H Liu, X M Peng and P Y Bai
Beijing Machine and Equipment Institute, Beijing, 100854
Email:liuhui981111@163.com

Abstract. The STRETCH meat grinder and the ICCOS are two typical inductive pulsed power supply circuits for electromagnetic launch system. On the basis of combing both, a new topology-STRETCH meat grinder with ICCOS was put forward by Tsinghua University in 2013. After launching the railgun load, all of the remaining energy is stored in the energy transfer capacitor of the circuit. In this paper, the corresponding recovery circuit is designed for the circuit containing four STRETCH meat grinder with ICCOS circuits connected in a XRAM way in order to reuse the remaining energy. The prototype system has 4kA charging current, and thus 28.19kJ magnetic energy. More remaining energy can be recovered by triggering the related thyristors with more times. Simulation results show that the topology with the suggested energy recovery circuit can roughly recover 1/3 of the residual energy to the primary power and has potential prospects for high energy storage systems in the future.

1. Introduction
The previous studies on the inductive energy storage system have indicated that the energy density of inductive energy storage is one order of magnitude higher than that of the capacitive ones at the same power output level [1-5]. At present the key difficulties of inductive pulse power lie in three areas, such as the supply capacity of the primary source, the current turn-off technology, and the current magnification.

IAT (Institute of Advanced Technology) put forward an inductive pulse power topology called the STRETCH (Slow Transfer of Energy Through Capacitive Hybrid) meat grinder [6] which is on the basis of the improvement of the traditional meat grinder [7-8]. In this topology, an integrated gate-commutated thyristor (IGCT) is capable of breaking about 8kA charging currents [1], and it may encounter difficulties in extending to higher energy systems.

Based on the ICCOS (Inverse Current Commutation with Semiconductor) devices, ISL (German-French Institute of Saint Louis) proposed a topology called XRAM [9]. Until now 8 stages and 20 stages XRAM [10-11] are achieved and a prototype of XRAM with 3kA charging current, 60kA discharging current, and 4.7kJ pulse power supply has implemented by ISL. The comparison between the STRETCH meat grinder and the XRAM is explained in detail in literature [12].

The STRETCH meat grinder topology has a large current amplification factor and IGCT is selected as the main switch. IAT have done many experiments to get a better current turning-off technology and a higher level system, but the result is not ideal [13]. In the XRAM topology, the inductors are charged in series and discharged in parallel. And the main switches are thyristors. Compared with the STRETCH meat grinder, the XRAM is easy to be extended and its disadvantage is the low current...
amplification factor. Based on these two topologies, the STRETCH meat grinder with ICCOS with back commutation was proposed and the corresponding recovery circuit is given by Tsinghua University [14]. The thyristor is adopted as the main switch and ICCOS is applied to turn off the current. It overcomes the limitations of the original part and has potential prospects for high energy storage systems in the future while reducing a lot of the cost [14]. In this article, a recovery circuit is added in the 4-stage of the STRETCH Meat Grinder with ICCOS with front commutation. Simulation results show that the recovery circuit recovers 1/3 of the capacitive remaining energy back to the primary power supply.

2. 4-stage of the stretch meat grinder with iccos of front commutation added recovery circuit

2.1. STRETCH Meat Grinder with ICCOS of front commutation

The STRETCH Meat Grinder with ICCOS topology has the advantages of both the STRETCH Meat Grinder topology and the XRAM topology. Its magnification factor is the multiplier of magnification factor of STRETCH Meat Grinder and XRAM. Improving the current of the primary source or increasing the number of unit can make the load current larger. The structure has a double current waveform adjustment system. We can get almost any desired current waveform by the double adjustment system. One is each stage of the current waveform can be adjusted by controlling the trigger \(T_{1i} \). The other is the synthesized current waveform of the respective stages can be adjusted by controlling the trigger \(T_{2} \). The structure improves the efficiency of the system because of adding energy feedback mechanism. Figure 1 shows the topology of the STRETCH Meat Grinder with ICCOS with front commutation. And it is adopted as the unit circuit in this article. Literature [15] describes the difference between the back and front commutations of the STRETCH Meat Grinder with ICCOS topology, but their performances are basically the same. The STRETCH Meat Grinder with ICCOS topology improves the turning-off current capacity compared with the STRETCH Meat Grinder topology and has a higher single amplification factor to the XRAM topology. In this paper, a recovery circuit for the 4-stage STRETCH meat grinder with ICCOS with front commutation is chosen to illustrate the basic principle of the extension topology.

![Figure 1](image_url)
Figure 1. Topology of STRETCH meat grinder with ICCOS of front commutation.

2.2. The principle of 4-stage STRETCH Meat Grinder with ICCOS of front commutation added the recovery circuit

The topology of the 4-stage STRETCH meat grinder with ICCOS with front commutation and recovery circuit is drawn in figure 2. And the working procedure of this circuit can be divided into five steps.
Figure 2. Topology of N-stage STRETCH Meat Grinder with ICCOS (front commutation) with the recovery circuit (N=4).

Step 1, the groups of inductors L_{i1} and L_{i2} ($i=1\sim4$), connected in series, are charged by the primary source u_s. After the main switch T_i is triggered, the constant voltage u_s which is usually a low voltage source like batteries about 100V, begins to charge the series connected inductors L_{i1} and L_{i2} so that the current increases straight climb. When the charging current achieves the specified value, T_{i2} is triggered to switch off the main switch. Capacitor C_{i2} is pre-charged with an initial voltage about 1000V to turn off the main switch T_i.

(a) The first sub-step
Step 2, thyristor T_i is turned off by using the commutation circuit which is composed of T_{i2} and C_{i2}.

The process of commutation can be divided into two sub-steps so as to elaborate the principle more clearly. The first sub-step begins from the moment T_{i2} triggered, ends at the moment when the current through the main switch T_i ($1 \leq i \leq 4$) crosses zero. figure3(a) shows this working step. After T_{i2} is triggered, the current i_{12i} increases quickly until it equals to the current of the inductors. When the current through the main switch T_i crosses zero, the second step starts. The period of the first step is so short that the current in the inductors is almost unchanged. figure3(b) shows the second sub-step. In the second sub-step, the voltage of C_{i2} is still higher than u_i so that it exerts an inverse voltage on the main switch T_i ($1 \leq i \leq 4$). During this period, i_{12i}, i_{11i} and i_{i2i} continues to increase to a certain value because of the residual voltage across C_{i2} ($\sum (C_{i2}-T_{i2}, L_{i1}, L_{i2})-T_{i} u_{i}$ ($1 \leq i \leq 4$)). The second step ends at the moment the diodes D_{i1} and D_{i2} are turned on. As shown in figure4 the diodes D_{i1} and D_{i2} conduct almost simultaneously. The voltage across the load can be omitted because of its low impedance value.
(1.5mΩ, 1μH). On account of the voltage across C_1 remained unchanged (i.e. zero) before D_1 and D_2 conducts. The voltage across D_2 equalizes the voltage on L_1 and the voltage across D_1 equalizes the total voltages across L_1 and L_2. The diodes D_1 (L_1-D_2-T_{n+1}-Load-D_3-C_{11}-D_1) and D_2 (L_2-D_3-Load-T_{n+1}-D_2) are turned on when the currents of inductors begin to reduce. And the second sub-step ends.

Step 3, the commutation process ends after the diodes D_1 and D_2 are turned on.

The third step is beginning at the end of the second step. Figure 4 shows the equivalent circuit of step 3 after the thyristor T_2 is turned off. C_{11} is charged by L_1 through the loop (L_1-D_2-T_{n+1}-Load-D_3-C_{11}-D_1). The voltage across C_{12} decreases from zero and the voltage across C_{11} is negative [10]. To the first stage, if the voltages of D_{11}, D_{13}, D_{43} and T_0 are omitted, the voltage across T_{12} holds that: $U_{T12}=U_{C12}-U_{C11}+u_s$. To the other three stages, if the voltages of D_{11}, D_{13} and D_{43} ($2≤i≤4$) are omitted, the voltage across T_{12} holds that: $U_{T12}=U_{C12}-U_{C11}$. Because capacitance C_{11} is ten times larger than C_{12}, the voltage of $C_{12}(U_{C2})$ varies faster than the voltage of $C_{11}(U_{C1})$. The value of u_s is very smaller than U_{C11} and U_{C2}. So T_2 withstands the inverse voltage, which makes the reliable shutdown of T_{2}. After T_2 is safely turned off, the commutation process ends and the following working steps are same as the STRETCH meat grinder with main switch IGCT.

Step 4, four stages discharge in parallel.

![Figure 5](image_url)

Figure 5. The equivalent circuit of step 5 after the armature has been launched.

Step 5, the remaining energy feedback.

After the armature has been launched, the residual energy is stored in the capacitors C_{11} ($1≤i≤4$). Figure 5 is the equivalent circuit after the armature has been launched. In the circuit L_i ($i=1$–4) is the total inductance of L_1 and L_2. The current-limiting resistor R_{fi} can be placed alongside T_i in order to limit the recovering currents through u_s. Triggering the thyristors $T_{2.4}$, $T_{2.4}$ and $T_{2.4}$ simultaneously, one part of the residual energy is recovered to the primary power supply, and another part is consumed in the resistors of the circuit. After the energy conversion between the inductors and the capacitors as well as among the capacitors, the remaining energy is stored in the capacitors at last. And it can be recovered again by triggering the corresponding thyristors. More remaining energy can be recovered by triggering the recovery circuit more times.
3. Simulation results

Compared to the STRETCH meat grinder topology and the XRAM topology, the STRETCH meat grinder with ICCOS topology has many better performances [14]. In order to verify the performances of the recovery circuit with 4-stage STRETCH meat grinder with ICCOS, simulations are done by Simplorer 8.0. The simulation parameters are as follows. In the STRETCH meat grinder section, the inductances of L_{i1} and L_{i2} are 632μH and 23.56μH respectively and the coupling factor is 0.8. The capacitance of C_{i1} is 800μF and the load is the small 1.5mΩ resistor and 1μH inductor. The primary voltage source (u_0) is 210V. For the properly working of the STRETCH meat grinder with ICCOS, T_{i1} is exerted at 72.25ms. And during the recovery process, T_{2-4}, T_{i1} and T_{fi0-4} are exerted at 80ms. In order to recover more energy, we do another two example recovery by triggering T_{2-4}, T_{i1} and T_{fi0-4} at 87ms and 95ms respectively. In the ICCOS section, the capacitance of C_{i2} is 80μF with the initial voltage 1200V. In order to avoid the too large recovery current, R_{Tfi} ($R_{Tfi}=1$ Ω) is connected to the circuit and series with T_{fi}.

Figure 6 shows the recovery currents by triggering the recovery circuit three times. And the total recovery current of the whole recovery system is 6.33kA. The maximum total recovery currents of four stages are 0.51kA, 1.22kA, 1.94kA and 2.66kA respectively by triggering the recovery circuit three times.

Figure 7 shows that the total recovered energy is 282J with recovering three times. Figure 7 and Table. I show that the three recovered energy to the primary power (W_{us}) for the above three examples are 236J, 274J and 282J respectively.

![Figure 6. The recovery current waves with recovering three times.](image)

Current (A)	Max value
T_{i1}	0.208kA
T_{i2}	0.194kA
T_{i3}	1.222kA
T_{i4}	1.937kA
T_{i5}	2.667kA

![Figure 7. The recovered energy of the primary power with recovering three times.](image)

Name	X	Y
m1	84.9946	236.3952
m2	91.6901	237.6501
m3	97.6671	282.2546
Figure 8 shows that the maximum reverse voltages across C_{11-41} are 0.7293kV, 0.7268kV, 0.7268kV and 0.7269kV after lunching the railgun. And the total residual energy (W) stored in C_{11} is 847J. The percentage of the recovered energy compared the total residual energy ($W/n/W$) are 27.9%, 32.3% and 33.3% respectively. Other energy is consumed on the limiting resistors (R_{7b}). From figure6, figure7, figure8 and Table. I, we can know that triggering the recovery circuit once can produce one peak current and recover part of the rest energy. The rear stages recovery current and the recovered energy become less than those of the former ones. And more residual energy can be recovered by triggering the recovery circuit more times.

Table. I
The recovered energy compared
Triggering times	Triggering once	Triggering twice	Triggering three times
W_{us}	236J	274J	282J
W	847J		
W_{us}/W	27.9%	32.3%	33.3%

4. Conclusion
The energy recovery sub-circuit for 4-stage STRETCH meat grinder with ICCOS with front commutation is discussed in details in this paper. Improving the charging current or increasing the number of the unit can make the load current higher. From the simulation results, the recovery circuit can recover 1/3 of the residual energy which is stored in the capacitors to the primary power after the armature has been launched.

Acknowledgment
This work was supported in part by the NSFC under Project 51377087 and in part by the Tsinghua University Initiative Scientific Research Program.
References
[1] A. Sitzman, D. Surls, and J. Mallick 2007 *IEEE Trans. Magn.* 43(1) 270-4
[2] J. H. Kim, M. H. Ryu, B. D. Min et al. 2005 *Thirty-First Annual Conference of the IEEE Industrial Electronics Society* 1-3 1244-7
[3] P. Dedie, V. Brommer, and S. Scharnholz 2009 *IEEE Trans. Magn.* 45 no.1 536-9
[4] Y. Aso, and S. Yamada 2011 *IEEE Trans. Plasma Sci.* 39(1) 247-50
[5] W. H. Jiang, K. Nakahiro, K. Yatsui et al. 2007 *IEEE Trans. Dielectrics and Electrical Insul.* 14(4) 941-6
[6] A. Sitzman, D. Surls, and J. Mallick 2007 *IEEE Pulsed Power Conf.* 1-4 1793-8
[7] K. Lindner, J. Long, D. Girogi et al. 1986 *IEEE Trans. Magn.* 22(6) 1591-6
[8] D. Giorgi, J. Long, T. Navapanich et al. 1986 *IEEE Trans. Magn.* 22(6) 1485-8
[9] R. D. Ford, R. D. Hudson, and R. T. Klug 1993 *IEEE Trans. Magn.* 29(1) 949-53
[10] P. Dedie, V. Brommer, and S. Scharnholz 2009 *IEEE Trans. Magn.* 45(1) 266-71
[11] P. Dedie, V. Brommer, and S. Scharnholz 2011 *IEEE Trans. Plasma Sci.* 39(1) 263-7
[12] X. Yu and X. Chu 2013 *IEEE Trans. Plasma Sci.* 41(5) 1340–5
[13] A. Sitzman, D. Surls, J. Mallick et al. 2011 *IEEE Trans. Plasma Sci.* 39(1) 316-21
[14] X. Yu and X. Chu 2013 *IEEE Trans. Plasma Sci.* 41(5) 1346-51
[15] H. Liu, S. Bi and J. Li 2013 *Journal of Beijing Institute of Technology* 22(4) 432-9