ACCELERATION OF ENERGETIC PARTICLES BY LARGE-SCALE COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE

BENJAMIN D. G. CHANDRAN
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242; benjamin-chandran@uiowa.edu

AND

JASON L. MARON
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242; and Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171

Received 2003 January 29; accepted 2003 May 15

1. INTRODUCTION

Particle acceleration by magnetohydrodynamic (MHD) turbulence has been investigated by a number of authors (e.g., Fermi 1949; Wentzel 1968; Kulsrud & Ferrari 1971; Eichler 1979; Achterberg 1981; Schlickeiser & Miller 1998), and has been studied in a number of astrophysical settings, including the interstellar medium (Ptuskin 1988; Schlickeiser & Miller 1998), solar flares (LaRosa, Moore, & Shore 1994; Miller, LaRosa, & Moore 1996; Miller et al. 1997; Miller 1998; Schlickeiser & Miller 1998), active galactic nuclei (Blackman 1999; Gruzinov & Quataert 1999), diffuse intracluster plasma in galaxy clusters (Eilek & Weatherell 1999; Weatherell & Eilek 1999; D ogi el 1999; Brunetti et al. 1999; Ohno, Takizawa, & Shibata 2002; Fujita, Takizawa, & Sarazin 2003), and the lobes of extragalactic radio sources (Eilek & Henriksen 1984; Manolakou, Anastasiadis, & Vlahos 1999).

The way in which magnetohydrodynamic (MHD) turbulence accelerates energetic particles depends on the relative magnitudes of \(\lambda_{||} \) and \(\lambda_{\text{mfp}} \), where \(\lambda_{||} \) is the length of a turbulent eddy (or the wavelength of a weakly damped wave) measured along the magnetic field and \(\lambda_{\text{mfp}} \) is the energetic particle-scattering mean free path. In the weak-scattering limit, \(\lambda_{||} \ll \lambda_{\text{mfp}} \), a particle’s velocity \(v_{||} \) along the background magnetic field is approximately constant as the particle travels many wavelengths along the magnetic field (assuming that the amplitudes of the fluctuations are sufficiently small), and the particle interacts resonantly with a weakly damped wave when the wave frequency in the frame of reference moving along the magnetic field at speed \(v_{\perp} \) is an integer multiple of the particle’s gyrofrequency. In the strong-scattering limit, \(\lambda_{||} \gg \lambda_{\text{mfp}} \), a particle travels diffusively across an eddy of length \(\lambda_{\perp} \), and acceleration is nonresonant.

Particle acceleration in the strong-scattering limit is the focus of this paper. Ptuskin (1988) studied particle acceleration in the strong-scattering limit by a power-law spectrum of acoustic or magnetosonic waves extending from a large scale \(l \) to a smaller scale \(l_{1} \), with an rms fluctuation velocity \(u_{\text{rms}} \) dominated by the waves at scale \(l \). He assumed that particle diffusion in space is isotropic with diffusion coefficient \(D \), as opposed to primarily along field lines, and that some type of small-scale wave distinct from the acoustic/magnetosonic waves scatters the particles, with \(\lambda_{\text{mfp}} \sim D/v \ll l_{1} \), where \(v \) is the particle speed. He found that, for \(D \gg v_{\perp}l \), where \(v_{\perp} \) is the wave phase velocity, particles diffuse in momentum space according to the equation

\[
\frac{\partial f}{\partial t} = \frac{1}{p^{2}} \frac{\partial}{\partial p} \left(p^{2} D_{\parallel} \frac{\partial f}{\partial p} \right),
\]

where \(f \) is the particle distribution function averaged over the waves and the momentum diffusion coefficient \(D_{\parallel} \) is given by

\[
D_{\parallel} = \frac{2 p^{2} u_{\text{rms}}^{2}}{9 D},
\]

where \(p \) is the particle momentum. The condition \(D \gg v_{\perp}l \) implies that particles diffuse a distance \(l \) in a time much shorter than the wave period at scale \(l \). In this limit, the largest-scale waves make the dominant contribution to \(D_{\parallel} \).

This paper extends Ptuskin’s analysis to strong compressible MHD turbulence, taking into account the reversible motion of particles along magnetic field lines. It is assumed that the rms turbulent velocity \(u_{\text{rms}} \) equals or exceeds the Alfvén speed \(v_{A} \) and that there is a single dominant length scale (outer scale) denoted \(l \) for both velocity and magnetic fluctuations. Only the fluctuations at scale \(l \) are considered. As in Ptuskin’s (1988) study, it is assumed that some type of small-scale wave scatters particles and that \(\lambda_{\text{mfp}} \ll l \). In addition, it is assumed that eddies are randomized in a time \(\tau_{\text{rand}} \sim l/u_{\text{rms}} \) and that \(\lambda_{||} \gg \lambda_{\text{rand}} l \), where \(\lambda_{||} \) is the diffusion coefficient for particle motion along field lines. Thus, a particle diffuses a distance greater than \(l \) during a time \(\tau_{\text{rand}} \); a particle can therefore diffuse through an eddy and then return to that eddy multiple times before the eddy is randomized in the turbulent flow. It is shown in § 2 that this increases the coherence of stochastic particle acceleration, effectively increasing \(D_{\parallel} \) above the value in equation (2) by a factor of \(\sim N \), where \(N \sim (\lambda_{||}/l)^{1/2} \) is the typical number of times a particle diffuses through and then returns to an eddy before the eddy is randomized, assuming a particle is tied to a single field line.

Subject headings: acceleration of particles — galaxies: active — MHD — turbulence
The discussion of § 2 consists of estimates based on physical arguments; these estimates are tested and validated by Monte Carlo particle simulations in § 3. In § 4 the results of the paper are applied to particle acceleration in the interstellar medium and the lobes of radio galaxies.

It is known that small cross-field motions and the divergence of neighboring magnetic field lines in turbulent plasmas allow a particle to escape from its initial field line by traveling sufficiently far along the magnetic field. This places an upper limit on \(N \), which is explained in the Appendix. It is shown that this upper limit is not important in the astrophysical examples considered in § 4, given the assumed values of \(D_p \). However, for sufficiently large values of \(D_p \), the upper limit on \(N \) becomes important.

2. PHENOMENOLOGICAL DESCRIPTION OF MOMENTUM DIFFUSION

Since the scattering mean free path is assumed to be \(\ll l \) and only those eddies at scale \(\sim l \) are considered, a particle's momentum \(p \) evolves according to the equation

\[
\frac{dy}{dt} = -\frac{\nabla \cdot \mathbf{u}}{3},
\]

where

\[
y = \ln \left(\frac{p}{p_0} \right),
\]

where \(p_0 \) is a particle's initial momentum and \(\mathbf{u} \) is the turbulent velocity associated with the large-scale eddies (Skilling 1975; Ptskin 1988). As a particle diffuses in space, it encounters a series of eddies that cause random increments in \(y \), leading to diffusion in \(y \)-space with a diffusion coefficient

\[
D_y = \frac{(\delta y)_{\text{rms}}^2}{2\tau},
\]

where \(\delta t \) is the time during which increments to \(y \) remain correlated and \((\delta y)_{\text{rms}} \) is the rms change in \(y \) during a time \(\delta t \). It is assumed that the turbulent velocities are randomized in a time

\[
\tau_{\text{rand}} = \frac{bl}{u_{\text{rms}}},
\]

where \(b \) is a constant of order unity. The characteristic time for a particle to diffuse through an eddy is

\[
\tau_{\text{diff}} = \frac{\rho^2}{2D_p}.
\]

It is assumed that \(D_p \gg u_{\text{rms}}l \), and thus

\[
\tau_{\text{diff}} \ll \tau_{\text{rand}}.
\]

In this section, it is assumed that a particle remains tied to the same magnetic field line. Thus, given equation (8), a particle typically diffuses through an eddy and later returns to the same eddy before the eddy is randomized. During such successive encounters, the values of \(\nabla \cdot \mathbf{u} \) within the eddy are correlated, and the corresponding increments to \(y \) are also correlated. The correlation time \(\delta t \) for random steps in \(y \)-space is thus \(\tau_{\text{rand}} \) and not \(\tau_{\text{diff}} \).

The increment to \(y \) during a time \(\tau_{\text{rand}} \) is

\[
\delta y = -\frac{1}{3}p\frac{\tau_{\text{rand}}}{\int_0^{\tau_{\text{rand}}} \nabla \cdot \mathbf{u} \, dt}.
\]

It is assumed that there is no average compression or decompression in the turbulent flow, so that

\[
(\delta y) = 0,
\]

where \(\langle \ldots \rangle \) indicates an average over an arbitrarily large number of random steps. During a time \(\tau_{\text{rand}} \), a particle's position is distributed over an interval of length \(N \lambda \), where

\[
N = \sqrt{\frac{D_p}{\tau_{\text{rand}}}}.
\]

Since the values of \(\nabla \cdot \mathbf{u} \) in different eddies are uncorrelated, the value of \(\nabla \cdot \mathbf{u} \) averaged over a distance \(N \lambda \) is \(\sim N^{-1/2} (\nabla \cdot \mathbf{u})_{\text{rms}} \), where \((\nabla \cdot \mathbf{u})_{\text{rms}} \) is the rms value of \(\nabla \cdot \mathbf{u} \). Thus, the rms value of \(\delta y \) is approximately

\[
(\delta y)_{\text{rms}} \sim \frac{N^{-1/2} (\nabla \cdot \mathbf{u})_{\text{rms}} \tau_{\text{rand}}}{3}.
\]

Since only eddies of scale \(l \) are considered and \(u_{\text{rms}} \gtrsim v_A \),

\[
(\nabla \cdot \mathbf{u})_{\text{rms}} = \frac{d u_{\text{rms}}}{l},
\]

where \(a \) is a constant of order unity. Thus, if \(N \gg 1 \), then \((\delta y)_{\text{rms}} \ll 1 \) and the probability \(P(y, \delta y) \) that \(\ln (p/p_0) \in (y, y + \delta y) \) at time \(t \) satisfies the Fokker-Planck equation

\[
\frac{\partial P}{\partial t} = \frac{\partial^2}{\partial y^2} (D_y P),
\]

where \(D_y \), which is defined in equation (5), is given by

\[
D_y \sim \frac{N a^2 u_{\text{rms}}^2}{18D_p}.
\]

The log-momentum diffusion coefficient \(D_p \) is analogous to Ptskin’s (1988) momentum diffusion coefficient \(D_{p,\text{Ptuskin}} \) divided by \(p^2 \). If Ptskin’s coefficient \(D \) for isotropic spatial diffusion is set equal to \(D_y \), then, in the large-\(N \) limit,

\[
\frac{p^2 D_y}{D_{p,\text{Ptuskin}}} \sim N.
\]

This ratio can be understood as follows. Ptskin’s result is approximately recovered by taking \(\delta t \sim \tau_{\text{diff}} \). Such a relation is valid if spatial diffusion is isotropic, since there is only a small chance that a particle returns to the same eddy multiple times before the eddy is randomized when \(D \gg l u_{\text{rms}} \). However, when a particle diffuses along a single field line, the particle’s location during a time \(\tau_{\text{rand}} = N^2 \tau_{\text{diff}} \) is distributed among roughly \(N \) eddies, and thus a particle spends a time \(\sim N \tau_{\text{diff}} \) in an eddy before the eddy is randomized. The particle’s random walk in \(y \)-space can thus be thought of consisting of individual steps of duration \(N \tau_{\text{diff}} \) and magnitude \(\delta y = N \tau_{\text{diff}} (\nabla \cdot \mathbf{u})_{\text{rms}}/3 \). The resulting value of \(D_y \) is a factor of \(N \) larger than in the isotropic–spatial-diffusion case in which a particle takes individual random steps in \(y \)-space of duration \(\tau_{\text{diff}} \) and magnitude \(\delta y = \tau_{\text{diff}} (\nabla \cdot \mathbf{u})_{\text{rms}}/3 \). Thus, the reversible motion of a particle along a field line makes the particle’s random walk in \(y \)-space more coherent, and its diffusion in \(y \)-space more rapid, than in the isotropic–spatial-diffusion case.

One consequence of equation (15) is that \(D_y \rightarrow \infty \) as \(\tau_{\text{rand}} \rightarrow \infty \), because if \(\nabla \cdot \mathbf{u} \) were constant in time along a field line, increments to \(y \) would remain correlated forever if a particle were tied to that field line, and the particle would undergo superdiffusion in \(y \)-space. This phenomenon can be
described approximately as follows. During a time \(t \), a particle’s position is distributed over \(\sim M \) eddies, where

\[
M = \sqrt{\frac{D_l}{l}}.
\]

(17)

Since the values of \(\nabla \cdot \mathbf{u} \) within different eddies are uncorrelated, the typical value of \(\nabla \cdot \mathbf{u} \) averaged over \(M \) eddies is \(\sim M^{-1/2} (\nabla \cdot \mathbf{u})_{\text{rms}} \). For large \(M \), the rms value of \(y \) for a particle obeys the equation

\[
\frac{dy_{\text{rms}}}{dt} \sim \frac{M^{-1/2} (\nabla \cdot \mathbf{u})_{\text{rms}}}{3} \propto r^{-1/4}.
\]

(18)

Integrating and squaring the result, one obtains

\[
y_{\text{rms}}^2 \sim \frac{16l(\nabla \cdot \mathbf{u})^2}{81D_l^{1/2}}.
\]

(19)

3. NUMERICAL SIMULATIONS

In this section, particle acceleration by compressible turbulence is investigated with the use of Monte Carlo particle simulations. Particles are assumed to follow a single field line. Distance along the field line is denoted by the coordinate \(x \). The values of \(\nabla \cdot \mathbf{u} \) at space-time grid points \((x, t) = (mL, n\tau_{\text{rand}}) \) are set to either \(\pm \tau_{\text{rand}} \) or \(-\tau_{\text{rand}} \) with equal probability, where \(m \) and \(n \) are integers. The value of \(\nabla \cdot \mathbf{u} \) between grid points is obtained by linear interpolation in space and time, which gives \((\nabla \cdot \mathbf{u})_{\text{rand}} = 2/3 \), or, equivalently, \(ab = 2/3 \), where \(a \) and \(b \) are defined in equations (6) and (13). During each time step of duration \(\delta t \), a particle’s \(y \) value is incremented by an amount \(-\sqrt{\delta t \delta r} / \tau_{\text{rand}} \), and there is an equal probability that its \(x \) coordinate is either increased or decreased by an amount \(2\delta r \delta t / \tau_{\text{rand}} \).

In Figure 1, \(D_y \) is plotted for different values of \(D_\parallel \). To express the results in terms of \(u_{\text{rms}} \) and \(l \), it is assumed that \(a = 1 \). The values of \(D_y \) in the numerical simulations, depicted with solid triangles in Figure 1, are obtained by dividing the average of \(y_{\text{rms}}^2 \) for \(10^4 \) simulated particles by \(2l_D \). The dashed line represents the scaling \(D_y \propto D_\parallel^{1/4} \), analogous to Ptuskin’s (1998) scaling \(D_p \propto D_\parallel^{1/3} \) for isotropic spatial diffusion of particles.

The increase of \(y_{\text{rms}}^2 \) with time when \(\nabla \cdot \mathbf{u} = 0 \) is constant in time along a field line is shown in Figure 2. The solid line is the value of \(y_{\text{rms}}^2 \) in equation (19). The average of \(y_{\text{rms}}^2 \) for \(10^4 \) simulated particles is given by the solid triangles and show superdiffusive behavior in approximate agreement with equation (19).

4. APPLICATION TO GALACTIC COSMIC RAYS AND RELATIVISTIC ELECTRONS IN RADIO GALAXIES

From equations (14) and (15), the characteristic time for particle acceleration by large-scale compressible turbulence is

\[
\tau_{\text{acc}} = D_y^{-1} \sim \frac{16D_\parallel^{1/2}l^{1/2}}{u_{\text{rms}}^2},
\]

(20)

where it is assumed that \(a = 1 \) in equation (13) and \(b = 1 \) in equation (6). The values of \(D_\parallel \) for Galactic cosmic rays and relativistic electrons in the lobes of radio galaxies are not well known. There is disagreement about the correct way to model the waves that cause energetic particle scattering (see, e.g., Bieber et al. 1994; Schlickeiser & Miller 1998; Chandran 2000; Felice & Kulsrud 2001; Yan & Lazarian 2002). Some studies indicate that \(D_\parallel \) may be different in the disk and halo of the Galaxy (Berezinskii et al. 1990). In the hot coronal plasma of the ISM, \(u_{\text{rms}} \sim 10^5 \) cm s\(^{-1}\) (Shelton et al. 2001). This value is comparable to the sound speed, and thus the turbulence is compressible. It is assumed that \(l \sim 3 \times 10^{20} \) cm. If \(D_\parallel = 10^{28} \) cm\(^2\) s\(^{-1}\), then \(\tau_{\text{acc}} = 3 \times 10^7 \) yr.
\[\tau_{\text{acc}} = 10^8 \text{ yr} \]

These values of \(\tau_{\text{acc}} \) are comparable to the Galactic confinement time of 1 GeV cosmic rays and are the types of timescales required if reacceleration is to explain the peaking of secondary/primary ratios at a few GeV (Ptuskin 2001).

For relativistic electrons in radio lobes, it is simply assumed that \(D_i = v_A t_{\text{lobe}} \), where \(t_{\text{lobe}} = 100 \text{ kpc} \) is the typical size of a radio lobe. For this value of \(D_i \), the time for electrons to diffuse out of a radio lobe is of order the Alfvén crossing time of the lobe. The thermal plasma density is taken to be \(5 \times 10^{-5} \text{ cm}^{-3} \), which is an upper limit based on Faraday depolarization, and \(B \) is taken to be 20 \(\mu \text{G} \), a typical equipartition field (Spangler & Pogge 1984; Spangler & Sakurai 1985). These values yield \(v_A = 6 \times 10^8 \text{ cm s}^{-1} \), and it is assumed that \(u_{\text{rms}} = v_A \). The value of \(l \) for radio-lobe turbulence is taken to be \(l_{\text{lobe}} / 30 \) based on the standard deviation of the linear Stokes parameters in 3C 166 (Spangler 1983). For these parameters, \(\tau_{\text{acc}} \sim 5 \times 10^7 \text{ yr} \). This timescale is comparable to the ages of relativistic electron populations obtained from synchrotron aging estimates, which suggests that reacceleration may have to be taken into account in models of radio-lobe electrons.

5. SUMMARY

It is shown that the reversible motion of energetic particles along the magnetic field enhances the rate of particle acceleration by large-scale compressible turbulence relative to the isotropic–spatial-diffusion case. When this effect is taken into account, the timescale for acceleration of relativistic electrons by large-scale compressible turbulence in the lobes of radio galaxies is \(\sim 5 \times 10^7 \text{ yr} \), and the timescale for acceleration of 1 GeV protons by large-scale compressible turbulence in the coronal plasma of the ISM is \(\sim 3 - 10 \times 10^7 \text{ yr} \). The main source of uncertainty in these estimates is the uncertainty in \(D_i \); other sources include the uncertainties in \(l \), \(u_{\text{rms}} \), and the dimensionless constants \(a \) and \(b \) that relate \(\tau_{\text{rand}} \) and \((\nabla \cdot \mathbf{u})_{\text{rms}} \) to \(u_{\text{rms}} \) and \(l \).

I thank Eliot Quataert, Steve Spangler, Torsten Ensslin, and Eric Blackman for helpful comments. This work was supported by NSF grant AST-0098086 and DOE grants DE-FG02-01ER54658 and DE-FC02-01ER54651.

APPENDIX

PARTICLE ESCAPE FROM FIELD LINES THROUGH CROSS-FIELD MOTION AND FIELD-LINE DIVERGENCE

Particles with gyroradii \(\rho_p \) much less than the dominant magnetic field scale length \(l \) drift slowly across magnetic field lines, because of gradients in the magnetic field strength, curvature of field lines, and wave pitch angle scattering. Cross-field motions enhanced by the divergence of neighboring field lines allow particles to “escape” from their initial field lines, that is, to separate from their initial field lines by a distance \(l \) (Rechester & Rosenbluth 1978; Chuvilgin & Ptuskin 1993; Chandran & Cowley 1998). This can be seen with the aid of Figure 3.

Suppose a particle starts out at point \(P \) on field line \(F_1 \) and that its diffusive motion along the field initially moves it toward point \(Q \). After moving a short distance, field gradients and collisions cause the particle to take a step of length \(\sim \rho_p \) across the magnetic field, from \(F_1 \) to a new field line \(F_2 \). Although the particle continuously drifts across the field to new field lines, let us assume for the moment that it remains attached to \(F_2 \). As the particle diffuses along \(F_2 \), \(F_2 \) diverges from \(F_1 \). Let \(z_1 \) be the distance that \(F_2 \) must be followed before \(F_2 \) separates from \(F_1 \) by a distance \(l \). (Because the particle continuously drifts across the field, it typically separates from \(F_1 \) after traveling a distance somewhat less than \(z_1 \) along the field; this effect is ignored in this discussion.) After the particle moves a distance \(z_1 \) along \(F_2 \), its subsequent motion is not correlated with \(F_1 \). The particle proceeds to point \(R \) and then its diffusive motion along the magnetic field changes direction, bringing it back toward point \(Q \). Instead of following \(F_2 \) back to point \(Q \), however, the particle drifts across the field and ends up on a new field line \(F_3 \). After following \(F_3 \) for a distance \(\sim z_2 \), the particle separates from \(F_2 \) by a distance \(\sim l \) and proceeds to point \(S \). In this example, after the particle moves significantly farther than \(\sim z_2 \) along the magnetic field, it has a negligible probability of returning to within a distance \(\sim l \) of its initial location. The maximum time a particle can remain correlated with an eddy is thus of order

\[\tau_{\text{esc}} = \frac{(z_i)^2}{D_i} \quad \text{(A1)} \]

where \(\langle z_i \rangle \) is the average value of \(z_i \) over a large sample of field-line pairs.

Several studies have calculated \(\langle z_i \rangle \). Jokipii (1973) and Skilling, McVor, & Holmes (1974) found that \(\langle z_i \rangle \sim l \) for isotropic MHD turbulence with \(\delta B \approx B_0 \), where \(\delta B \) is the fluctuating magnetic field and \(B_0 \) is the strength of any background field in the
system that is coherent over distances \(\gg l \). Narayan & Medvedev (2001) found \(\langle z_i \rangle \sim l \) for locally anisotropic MHD turbulence with \(\delta B \sim B_0 \). A related quantity, the Kolmogorov entropy, which describes the exponential divergence of neighboring field lines while their separation is smaller than the dissipation scale of the turbulence, has been calculated by several authors (e.g., Rechester & Rosenbluth 1979; Zimbardo et al. 1995; Barghouty & Jokipii 1996; Casse, Lemoine, & Pelletier 2001). Another related quantity, the diffusion coefficient for the wandering of single magnetic field line, has been studied by a number of authors (e.g., Matthaeus et al. 1995; Michalek & Ostrowski 1998).

Maron, Chandran, & Blackman (2004) and Chandran & Maron (2003) calculated \(\langle z_i \rangle \) by tracking field lines in direct numerical simulations of incompressible MHD turbulence with an inertial range extending from a dominant length scale \(l \) to a much smaller dissipation scale \(l_d \). In simulations with \(B_0 = 0 \), they found that \(\langle z_i \rangle \) asymptotes to a value on the order of several \(l \) as \(\rho_B \) decreases toward the dissipation scale \(l_d \) in the large \(l/l_d \) limit. From Figures 5 and 7 of Chandran & Maron (2003), this value is \(5 \sim 7l \). We assume that \(\langle z_i \rangle \) has a similar value in turbulence with a mean magnetic field, provided \(\delta B \gg B_0 \).

The escape of particles from field lines modifies the estimate of \(D_r \) presented in \(\S \) 2 when \(\langle D_{||,\text{rand}} \rangle^{1/2} > \langle z_i \rangle \). In this case, a particle remains correlated with a magnetic field line for a time \(\tau_{\text{esc}} \) that is less than \(\tau_{\text{rand}} \). During the time \(\tau_{\text{esc}} \), the particle travels a distance \(\sim \langle z_i \rangle \), and its location is spread out over roughly

\[
N' = \frac{\langle z_i \rangle}{l} \tag{A2}
\]

eddies. The arguments leading to equations (14) and (15) can be repeated, replacing \(\tau_{\text{rand}} \) with \(\tau_{\text{esc}} \), to obtain

\[
D_r \sim \frac{N' a_{\text{rms}}^2 u_{\text{rms}}^2}{18D_{||}}. \tag{A3}
\]

To summarize, if \(\tau_{\text{esc}} < \tau_{\text{rand}} \), then equation (A3) is valid. If \(\tau_{\text{esc}} > \tau_{\text{rand}} \), then equation (15) is valid.

For the astrophysical examples considered in \(\S \) 4, \(\tau_{\text{esc}} \geq \tau_{\text{rand}} \), and thus equation (15) can be applied. However, for larger values of \(D_{||} \), \(\tau_{\text{esc}} \) can be reduced below \(\tau_{\text{rand}} \) in which case cross-field motion becomes important and equation (A3) applies.

REFERENCES

Achterberg, A. 1981, A&A, 97, 259
Barghouty, A., & Jokipii, J. 1996, ApJ, 470, 858
Berezinskii, V. S., Bulanov, S. V., Dogiel, V. A., Ginzburg, V. L., & Ptuskin, V. S. 1990, Astrophysics of Cosmic Rays (New York: North-Holland)
Bieber, J., Matthaeus, W., Smith, C., Wanner, W., Kallenrode, M., & Wibberenz, G. 1994, ApJ, 420, 294
Blackman, E. 1999, MNRAS, 302, 723
Brunetti, G., Feretti, L., Giovannini, G., & Setti, S. 1999, in Proc. Ringberg Workshop, Diffuse Thermal and Relativistic Plasma in Galaxy Clusters, ed. H. Bohringer, L. Feretti, & P. Schuecker (MPE Rep. 271; Garching: MPE), 263
Casse, F., Lemoine, M., & Pelletier, G. 2001, Phys. Rev. D, 65, 023002
Chandran, B., 2000, Phys. Rev. Lett., 85, 4656
Chandran, B., & Cowley, S. 1998, Phys. Rev. Lett., 80, 3077
Chandran, B., & Maron, J. 2003, preprint (astro-ph/0303214)
Chavilgin, L., & Ptuskin, V. 1993, A&A, 279, 278
Dogiel, V. 1999, in Proc. Ringberg Workshop, Diffuse Thermal and Relativistic Plasma in Galaxy Clusters, ed. H. Bohringer, L. Feretti, & P. Schuecker (MPE Rep. 271; Garching: MPE), 259
Eichler, D. 1979, ApJ, 229, 409
Eilek, J., & Henriksen, R. 1984, ApJ, 277, 820
Eilek, J., & Weatherall, J. 1999, in Proc. Ringberg Workshop, Diffuse Thermal and Relativistic Plasma in Galaxy Clusters, ed. H. Bohringer, L. Feretti, & P. Schuecker (MPE Rep. 271; Garching: MPE), 249
Felice, G., & Kulsrud, R. 2001, ApJ, 553, 198
Fermi, E. 1949, Phys. Rev., 75, 1169
Fujita, Y., Takizawa, M., & Sarazin, C. 2003, ApJ, 584, 190
Gruzinov, A., & Quataert, E. 1999, ApJ, 520, 849
Jokipii, J. 1973, ApJ, 183, 1029
Kulsrud, R., & Ferrari, A. 1971, Ap&SS, 12, 302
LaRosa, T., Moore, R., & Shore, S. 1994, ApJ, 425, 856
Matthaeus, W., Gray, P., Pontius, D., & Bieber, J. 1995, Phys. Rev. Lett., 75, 2136
Michalek, G., & Ostrowski, M. 1998, A&A, 337, 558
Miller, J. 1998, Space Sci. Rev., 86, 79
Miller, J., Cargill, P., Embleton, A., Homan, G., Dennis, B., LaRosa, T., Winglee, R., Benka, S., & Tsuruta, S. 1997, J. Geophys. Res., 102, 14631
Miller, J., LaRosa, T., & Moore, R. 1996, ApJ, 461, 445
Narayan, R., & Medvedev, M. 2001, ApJ, 562, L129
Ohno, H., Takizawa, M., & Shibata, S. 2002, ApJ, 577, 658
Ptuskin, V. 1988, Soviet Astron. Lett., 14, 255
———. 2001, Space Sci. Rev., 99, 281
Rechester, A., & Rosenbluth, M. 1978, Phys. Rev. Lett., 40, 38
———. 1979, Phys. Rev. Lett., 42, 1247
Schlickeiser, R., & Miller, J. 1998, ApJ, 492, 352
Shelton, R., et al. 2001, ApJ, 560, 730
Skilling, J. 1975, MNRAS, 172, 557
Skilling, J., McVor, I., & Holmes, J. 1974, MNRAS, 167, 87P
Spangler, S. 1983, ApJ, 271, L49
Spangler, S., & Poggio, J. 1984, AJ, 89, 342
Spangler, S., & Sakurai, T. 1985, ApJ, 297, 84
Weatherall, J., & Eilek, J. 1999, in Proc. Ringberg Workshop, Diffuse Thermal and Relativistic Plasma in Galaxy Clusters, ed. H. Bohringer, L. Feretti, & P. Schuecker (MPE Rep. 271; Garching: MPE), 255
Wentzel, F. 1968, ApJ, 152, 987
Yan, H., & Lazarian, A. 2002, Phys. Rev. Lett., 89, 281102
Zimbardo, G., Veltri, P., Basile, G., & Principato, S. 1995, Phys. Plasmas, 2, 2653