Emerging Status of Multidrug-Resistant Bacteria and Fungi in the Arabian Peninsula

J. Francis Borgio 1,2.*, Alia Saeed Rasdan 1,†, Bayan Sonbol 1,‡, Galyah Alhamid 1,†, Noor B. Almandil 3* and Sayed AbdulAzeez 2*

Abstract: We aimed to identify the prevalence and emerging status of multidrug-resistant bacteria and fungi and their associated mortality in nine countries in the Arabian Peninsula. Original research articles and case studies regarding multidrug-resistant bacteria and fungi in the Arabian Peninsula, published during the last 10 years, were retrieved from PubMed and Scopus. A total of 382 studies were included as per the inclusion and exclusion criteria, as well as the PRISMA guidelines, from a thorough screening of 1705 articles, in order to analyse the emerging status and mortality. The emerging nature of >120 multidrug-resistant (MDR) bacteria and fungi in the Arabian Peninsula is a serious concern that requires continuous monitoring and immediate preventive measures. More than 50% (n = 453) of multidrug-resistant, microbe-associated mortality (n = 871) in the Arabian Peninsula was due to MDR Acinetobacter baumannii, Mycobacterium tuberculosis and Staphylococcus aureus infection. Overall, a 16.51% mortality was reported among MDR-infected patients in the Arabian Peninsula from the 382 articles of this registered systematic review. MDR A. baumannii (5600 isolates) prevailed in all the nine countries of the Arabian Peninsula and was one of the fastest emerging MDR bacteria and fungi. Multidrug-resistant bacteria Acinetobacter baumannii, Mycobacterium tuberculosis, Staphylococcus aureus, and fungi Candida auris are the most prevalent and causing high deaths. To control these infections and associated deaths in the Arabian Peninsula, continuous preventive measures, accurate methods for early diagnosis of infection, active surveillance, constant monitoring, developing vaccines, eradicating multidrug resistance modulators, and data sharing among countries are required.

Simple Summary: The incidence and developing status of multidrug-resistant bacteria and fungi, as well as their related mortality, is reviewed by a systematic published literature search from nine countries in the Arabian Peninsula. In order to analyse the emerging status and mortality, a total of 382 research articles were selected from a comprehensive screening of 1705 papers. More than 850 deaths reported since 2010 in the Arabian Peninsula due to the infection of multidrug-resistant bacteria and fungi. Multidrug-resistant bacteria Acinetobacter baumannii, Mycobacterium tuberculosis, Staphylococcus aureus, and fungi Candida auris are the most prevalent and causing high deaths. To control these infections and associated deaths in the Arabian Peninsula, continuous preventive measures, accurate methods for early diagnosis of infection, active surveillance, constant monitoring, developing vaccines, eradicating multidrug resistance modulators, and data sharing among countries are required.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Keywords: multidrug-resistant bacteria; *Acinetobacter baumannii*; *Mycobacterium tuberculosis*; mortality; *Candida auris*; Arabian Peninsula

1. **Purpose and Methods**

This systematic review of the emerging status of multidrug-resistant (MDR) bacteria and fungi in the Arabian Peninsula was designed to answer the following questions:

1. Is there a common MDR organism (MDRO) reported in the Arabian Peninsula?
2. Are there any MDR bacteria and fungi that have emerged in the Arabian Peninsula in the last 10 years?
3. What are the logical relationships between sets of MDR bacteria and fungi in countries of the Arabian Peninsula?
4. How many in-depth studies have been conducted on the molecular nature of drug-resistant micro-organisms prevalent in the Arabian Peninsula?
5. What are the novel antimicrobial strategies developed in the study region?
6. Is there a high mortality reported due to MDR micro-organisms in the Arabian Peninsula?
7. To what extent have nanomaterials and nanoparticles been exploited against MDR micro-organisms in the Arabian Peninsula?

This review aims to identify the prevalence and emerging status of multidrug-resistant bacteria and fungi and their associated mortality in nine countries of the Arabian Peninsula: Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, the United Arab Emirates, Jordan, Iraq and Yemen. Published data from the past 10 years were retrieved from PubMed, Scopus and Google Scholar from 2 March 2021 to 8 March 2021. This review was registered with PROSPERO (CRD42021246777). The participants or populations selected from the Arabian Peninsula were Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, the United Arab Emirates, Jordan, Iraq, and Yemen.

Inclusion criteria:

1. Articles reporting the multidrug-resistant bacteria in the Arabian Peninsula.
2. Articles reporting multidrug-resistant fungi in the Arabian Peninsula.
3. Research articles published since 2010 regarding multidrug-resistant micro-organisms in the Arabian Peninsula.
4. Full-text articles.

Exclusion criteria:

1. Articles discussing the use of multidrug-resistant bacteria and fungi to screen the antimicrobials in the Arabian Peninsula.
2. Articles reporting the multidrug-resistant micro-organisms from other than the Arabian Peninsula.
3. Review articles reporting the multidrug-resistant micro-organisms from the Arabian Peninsula.

Original research articles and case studies of multidrug-resistant bacteria and fungi in the Arabian Peninsula and their associated mortality were considered as articles of interest. A total of 1705 articles (published after 2010) from Scopus and PubMed were thoroughly screened for eligibility, as per the inclusion and exclusion criteria. A total of 382 studies were eligible for inclusion as per PRISMA 2009 (Figure 1; Supplementary Table S1). There were three papers reporting MDR micro-organisms from multiple countries: Article 1 [1]—Bahrain, Saudi Arabia and United Arab Emirates; Article 2 [2]—Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait and Article 3 [3]—Saudi Arabia, Kuwait, Oman and United Arab Emirates.
Figure 1. PRISMA 2009 flow diagram for the selection of articles reporting multi drug-resistant micro-organisms from the Arabian Peninsula, since 2010. * There were three papers reporting MDR micro-organisms in multiple countries [1]: Bahrain, Saudi Arabia and United Arab Emirates; [2]: Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait; [3]: Saudi Arabia, Kuwait, Oman and United Arab Emirates. # Google scholar not considered. Country-wise data for the number of articles from various databases are presented in Supplementary Table S1.

The most urgent public and animal health problems are increasingly caused by multidrug-resistant (MDR) micro-organisms. This problem is widely shown in bacteria that defy ultimate antibiotics and portend an untreatable future. The Arabian Peninsula has several challenges that stimulate the emergence and spread of multidrug-resistant bacteria. Dealing with these challenges requires the of multiple sectors to successfully control...
the spread and emergence of antimicrobial resistance. The present review summarises the logical relationship between emerging multidrug resistance organisms and associated mortality in the Arabian Peninsula.

2. Logical Relation between Sets of Multidrug-Resistant (MDR) Microbes

Eighty different species of multidrug-resistant bacteria and fungi were reported in the Arabian Peninsula (Figure 2). MDR *Acinetobacter baumannii* prevailed in all the nine countries of the Arabian Peninsula and was the most prevalent MDR microbe (Table 1), and was able to survive in hot dry summers and mild wet winters. After *A. baumannii*, *Escherichia coli* was the next most prevalent MDR microbe, reported in eight countries of the Arabian Peninsula; it was not reported in Yemen.

![Figure 2](image-url)

Figure 2. List of multidrug-resistant bacteria and fungi reported in Arabian Peninsula. Numbers in the doughnut indicate the number of multidrug-resistant organisms reported in the respective countries of the Arabian Peninsula. MRSA: Methicillin-resistant *Staphylococcus aureus*.

Countries	Number of MDRO	Multidrug-Resistant Micro-Organism(s)
Bahrain, Iraq, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, United Arab Emirates, Yemen	1	*Acinetobacter baumannii*
Bahrain, Iraq, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, United Arab Emirates	1	*Escherichia coli*
Countries	Number of MDRO	Multidrug-Resistant Micro-Organism(s)
-----------	----------------	--------------------------------------
Iraq, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, United Arab Emirates, Yemen	3	Mycobacterium tuberculosis, Staphylococcus aureus, Pseudomonas aeruginosa
Iraq, Kuwait, Oman, Qatar, Saudi Arabia, United Arab Emirates	1	Klebsiella pneumoniae
Kuwait, Oman, Qatar, Saudi Arabia, United Arab Emirates	2	Enterobacter cloacae, Stenotrophomonas maltophilia
Iraq, Kuwait, Oman, Qatar, Saudi Arabia	1	Enterococcus faecium
Iraq, Jordan, Kuwait, Qatar, Saudi Arabia	1	Streptococcus pneumoniae
Iraq, Jordan, Kuwait, Saudi Arabia	1	Salmonella enterica
Iraq, Qatar, Saudi Arabia, United Arab Emirates	1	Salmonella typhi
Kuwait, Saudi Arabia, United Arab Emirates	1	Candida auris
Iraq, Kuwait, Saudi Arabia, Oman	3	Serratia marcescens, Proteus mirabilis, Klebsiella oxytoca
Iraq, Saudi Arabia, United Arab Emirates, Oman	1	Citrobacter freundii
Iraq, Jordan, United Arab Emirates, Qatar	1	Staphylococcus epidermidis
Kuwait, Saudi Arabia	1	Candida glabrata
Oman, Saudi Arabia	1	Pantoea agglomerans
Qatar, Saudi Arabia	1	Vibrio vulnificus
Iraq, Saudi Arabia	6	Klebsiella aerogenes, Morganella morganii, Citrobacter koseri, Pantoea spp., Providencia spp., Staphylococcus saprophyticus, Staphylococcus haemolyticus, Enterococcus gallinarum
Iraq, Saudi Arabia, Qatar	1	Listeria monocytogenes, Campylobacter jejuni
Kuwait	1	Staphylococcus hominis, Klebsiella spp., Salmonella spp., Streptococcus spp., Enterobacter spp.
Iraq, Jordan	2	Staphylococcus capitis, Staphylococcus caprae, Acinetobacter calcoaceticus baumannii, Pseudomonas, Bacillus subtilis, Leuconostoc mesenteroides, Candida albicans, Staphylococcus epidermidis, Proteus vulgaris, Proteus sp., Bacillus cereus, Lactobacillus plantarum, Bipolaris oryzae, Methicillin-resistant Staphylococcus aureus, Bacillus tequilensis, Staphylococcus, Enterococcus, Staphylococcus sacccharolyticus, Leclercia adecarboxylata, Shigella flexneri, Staphylococcus spp., Pantoea aeruginosa, Enterobacteriaceae, Citrobacter youngae, Staphylococcus petrassi, Lactococcus garvieae, Escherichia fergusonii, Caldimonas manganoxidans, Chryseobacterium gleum, Citrobacter sp., Providencia stuartii, Vancomycin-resistant Enterococcus, Mycobacterium leprae, Clostridium spp., Stenotrophomonas maltophilia, Enterococcus faecalis, Acinetobacter, Non-typhoidal Salmonella, Enterobacter aerogenes, Acinetobacter iwoffi, A. baumannii complex, A. baumannii/haemolyticus, Acinetobacter haemolyticus, Pseudomonas luteola, Serratia fonticola, Penicillin-resistant Streptococcus pyogenes, Bacillus spp., Serratia spp., Candida spp.
Saudi Arabia	53	Legionella pneumophila, Aeromonas hydrophila, Moraxella catarrhalis, Prevotella spp., Haemophilus influenzae
Kuwait	5	Pantoea dispersa, Burkholderia cepacia, Enterobacter asburiae, Enterobacter hormaechei Enterobacter ludwigii
Oman	5	Campylobacter spp., Nocardia crassa, Chryseobacterium indologenes, Acinetobacter spp., Bacteroid spp., Coagulase negative Staphylococci, Enterococcus spp.
Qatar	7	Propionibacterium acnes, Vibrio chOLERAE
Jordan	1	
Iraq	1	
MDR Candida auris is a globally emerging fungal pathogen, for which diagnoses and treatments are challenging. The incidence of C. auris in clinical specimens from Kuwait, Saudi Arabia, and United Arab Emirates was reported in 11 articles; 580 strains (Tables 1 and 2) responsible for 54 deaths (Figure 3, Tables 3 and 4). A total of 13087 Mycobacterium tuberculosis isolates were reported in the region (Table 5).

Figure 3. (A) Multidrug-resistant microbial associated mortality reported in the Arabian Peninsula. (B) Dark red line indicates linear trend line of annual mortality due to multidrug-resistant microbial infection. (C) Number of deaths reported due to specific MDR microbial infection in Arabian Peninsula. Map in blue color indicate the country wise mortality due to Acinetobacter baumannii. (D) Percentage mortality due to MDR microbes. Gender information were not reported on the mortality in certain articles. UAE: United Arab Emirates.
Table 2. Total number of studies that reported the MDR microbe in countries of the Arabian Peninsula.

S. No	MDR Microbe	Saudi Arabia	Bahrain	Kuwait	Oman	Qatar	United Arab Emirates	Jordan	Iraq	Yemen	Total Number of Reports *
1	Acinetobacter baumannii	59	1	8	2	2	5	6	12	1	96
2	Escherichia coli	51	2	4	5	6	6	11	10	1	94
3	Mycobacterium tuberculosis	31	11	2	1	2	1	6	4	4	58
4	Klebsiella pneumoniae	36	3	4	4	4	1	9	1	57	58
5	Pseudomonas aeruginosa	36	4	1	4	1	1	9	1	57	58
6	Staphylococcus aureus	16	4	1	1	2	5	5	5	1	35
7	Acinetobacter	14	2								16
8	Streptococcus pneumoniae	7	1	1		2					12
9	Stenotrophomonas maltophilia	7	1	1		2					11
10	Enterobacter cloacae	6	2	1	1	1					11
11	Candida auris	4	6	1							11
12	Enterobacteriaceae	6	5								11
13	MRSA	11									11
14	Stenotrophomonas maltophilia	6	1								10
15	Salmonella enterica	2	1		2	4					9
16	Proteus mirabilis	8	1								9
17	Serratia marcescens	3	3	1							8
18	Enterococcus faecalis	8	1								8
19	Citrobacter freundii	4	1	1							7
20	Enterococcus faecium	6									6
21	Klebsiella oxytoca	2	2	2							6
22	Listeria monocytogenes	2	3	1							5
23	Morganella morganii	4									5
24	Staphylococcus epidermidis	3	1	1	1	1					5
25	Salmonella spp.	4									5
26	Klebsiella spp.	4	1	1							5
27	Candida spp.	4	1								5
28	Streptococcus spp.	2	1	1							5
29	Enterobacter	4									5
30	Enterococcus	2	1								5
31	Staphylococcus spp.	5	1	1							5
32	Salmonella typhi	2	1	1							5
33	Enterobacter aerogenes	5									5
34	Staphylococcus hominis	4									4
35	Candida albicans	4									4
36	Non-typhoidal Salmonella	2	2								4
37	Citrobacter koseri	2	1	1							4
38	Klebsiella aerogenes	4									4
39	Enterococcus faecalis/faecium	1	1	1							3
40	Providencia spp.	1									3
41	Pantoea spp.	1									3
42	Providencia stuartii	3									3
43	Acinetobacter lwoffii	3									3
44	Serratia spp.	3									3
45	Campylobacter jejuni	5									5
46	Staphylococcus (MRSA)	2									2
47	Proteus sp.	1									2
48	Candida glabrata	1									2
49	Pantoea agglomerans	1	1								2
50	Bacillus subtilis	2									2
51	Staphylococcus capitis	2									2
52	Staphylococcus saprophyticus	2									2

* MDR organisms reported more than once in the countries of Arabian Peninsula are listed: # includes Acinetobacter calcoaceticus baumannii = 2, A. baumannii complex = 1 and A. baumannii/haemolyticus = 1. MRSA: methicillin-resistant Staphylococcus aureus.
Table 3. Reports of mortality caused by MDR microbial infection from Qatar, Kuwait, Iraq and Yemen.

Country	Qatar	Qatar	Qatar	Kuwait	Iraq	Yemen	Yemen							
MDR/Reference	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]	[17]
Total cases	48	10	239	452	61	71	14	15	49	11	1430	654	115	80
Median age years	48	43	49.1	45.98	58	59.5	63.9	56.6	55.6	49.8	57.5	18	45	45
Gender F	1	57	159	19	24	5	6	15	6	730	381	50	32	
Gender M	9	182	293	42	47	9	9	34	5	700	273	65	48	
No. of Discharged patients	5	174	350	34	6	46	9	1415	556	101	66			
Number of non-survivors F	15	5	65	102	4	37	9	8	3	2	15	98	14	14
Number of non-survivors M	35	2	3	3	1	98	14	14						
Multiple MDR pathogens	Acinetobacter baumannii	5	6											
Pseudomonas aeruginosa	98													
Mycobacterium tuberculosis	Escherichia coli													
Klebsiella pneumoniae	5													
Staphylococcus epidermidis	Enterobacteria	Candida auris												
Acinetobacter	Enterobacteriaceae	Proteus sp.												
Salmonella typhi	Salmonella enterica	1												
Table 4. Reports of mortality caused by MDR microbial infection from Saudi Arabia and Jordan.														

Country	Saudi Arabia	Jordan	Jordan	Jordan														
MDR/Reference	[18]	[19]	[20]	[21]	[22]	[23]	[24]	[25]	[26]	[27]	[28]	[30]	[32]	[34]				
Total cases	49	83	60	71	90	5	7	19	713	86	3	38	146	457	21	119	56	
Median age years	newborn	50	50.4	37.5	73.5	59.9	63.6	63	57	37	56	43	60.5	47.3	27	0.6	55.5	53.4
Gender F	11	50	37.5	73.5	59.9	63.6	63	57	37	56	43	60.5	47.3	27	0.6	55.5	53.4	
Gender M	18	37	48	2	58	5	6	9	419	55	24	104	395	55	34	119	56	
Table 4. Cont.

Country	No. of Discharged patients	Total number of non-survivors	Number of non-survivors F	Number of non-survivors M	Multiple MDR pathogens	Acinetobacter baumannii	Pseudomonas aeruginosa	Staphylococcus aureus	Mycobacterium tuberculosis	Escherichia coli	K. pneumoniae	Staphylococcus epidermidis	Enterobacteria	Candida auris	Acinetobacter Enterobacteriaceae	Proteus sp.	Salmonella typhi	Salmonella Enteritidis
Saudi Arabia	26	3	3	3	31	54	31	7	110	2	2	2	2	2	2	2	2	
Saudi Arabia	30	31	54	7	2	54	3	3	4	39	1	14	1	3	4	41	2	
Saudi Arabia	34	7	2	3	3	3	4	110	39	13	1	24	24	24	26	37	2	
Saudi Arabia	47	3	3	3	4	110	39	1	39	41	2	24	24	24	24	37	2	
Saudi Arabia	2	1	1	1	2	12	1	1	12	110	39	2	2	13	13	2		
Saudi Arabia	198	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	
Saudi Arabia	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	
Saudi Arabia	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	
Jordan	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	
Jordan	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	
Jordan	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	
Jordan	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	
Jordan	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	
Jordan	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	
Jordan	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Jordan	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Jordan	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	
Jordan	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Jordan	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Table 5. Number of multi drug-resistant strains reported in the Arabian Peninsula. Details of the number of strains are presented in the Supplementary Table S2.

MDRO	Total Strain	Reference
Escherichia coli	13254	[1,3,7,10,11,14,31,35–111]
Mycobacterium tuberculosis	13087	[16,17,21,27,38,50,51,56,99,112–141]
Acinetobacter baumannii	5600	[2,6,12,28,40,42,46–48,51,55,56,58,63,73,88,93,94,103,105,108,111,142–199]
Klebsiella pneumoniae	5480	[3,5,10–12,14,28,30,38–42,45–48,51,52,55,56,58,62,63,67,81–84,88,91–93,105,106,111,127,143,149,155,160,181,196,200–220]
Pseudomonas aeruginosa	3445	[11,12,14,23,26,28,31,38,41,42,45–48,50–52,55,56,58,62,63,67,81–83,88,90,91,93,94,109,111,143,149,160,162,180,181,184,190,194–196,221–241]
Staphylococcus aureus	3133	[7,11,12,15,42,46,56,58,62,65,73,90,108,143,149,242–253]
Acinetobacter	2033	[6,14,33,38,41,65,66,73,187,194,254–256]
Enterobacteriaceae	1411	[3,13,19,20,73,101,176,190,232,257–259]
Providencia spp.	1216	[19,232,260,261]
Streptococcus pneumoniae	1077	[56,262–269]
Methicillin-resistant Staphylococcus aureus (MRSA)	1000	[9,11,19,31,46,47,56,93,142,173,176,181,182,190,270–278]
Klebsiella spp.	927	[31,65,66,73,94,108,111,279]
Enterobacter	815	[11,31,41,48,50,65,66,94,280]
Proteus vulgaris	722	[40,42,232]
Candida auris	580	[9,11,22,24,25,29,281–283]
Enterococcus	553	[65,66,81,105,108,284,285]
Pseudomonas spp.	481	[46,65,66,73,83,108]
Klebsiella oxytoca	434	[12,40,42,46,50,105,143,205,232]
Salmonella enterica	413	[100,286–288]
Serratia marcescens	289	[12,40–42,46,47,51,88,111,143,149,289]
Stenotrophomonas maltophilia	257	[31,41,47,65,66,290]
Enterococcus faecalis	256	[42,47,58,93,143,181,291,292]
Vancomycin resistant Enterococcus (VRE)	255	[19,73,190,293]
Non-typhoidal Salmonella	248	[8,203,294]
Vibrio vulnificus	234	[295,296]
Salmonella typhi	231	[8,297,298]
Proteus sp.	220	[12,38,41,48,51,65,108,143]
Candida spp.	180	[65,66,299]
Stenotrophomonas maltophilia	149	[40,46,48,111,172,190,256]
Proteus mirabilis	137	[14,42,46,58,62,81,82,91,93,105,111,143,181,232]
Campylobacter jejuni	125	[250,300–302]
Arcobacter butzleri	100	[303]
Pantoa spp.	99	[143,304,305]
salmonella spp.	85	[46,98,105,232,306–309]
Listeria monocytogenes	83	[40,100,309–311]
Staphylococcus spp.	78	[46,74,108,291]
Table 5. Cont.

MDRO	Total Strain	Reference
Bacillus spp.	77	[312]
Citrobacter freundii	66	[42,81,91,105,143,232,313]
Serratia spp.	66	[65,66,232]
Staphylococcus epidermidis	59	[18,46,55,314]
Enterobacter cloacae	54	[10,42,46,58,81,83,93,105,106,110,111,143]
Morganella morganii	54	[42,46,58,83,111,143,315]
Citrobacter spp.	54	[11,38,41,83,232]
Enterobacter aerogenes	40	[42,46,83,91,111,143]
A. baumannii/haemolyticus	32	[144]
Streptococcus spp.	23	[58,108]
Vibrio vulnificus	23	[296]
Staphylococcus saprophyticus	20	[42,51,88,143]
Arcobacter cryaerophilus	20	[303]
Vibrio cholerae	20	[316]
A. baumannii complex	19	[144]
Clostridioides difficile	18	[317]
Enterococcus faecium	17	[42,46,143,149,318]
Salmonella Enteritides	15	[8]
Prevotella spp.	14	[319]
Nocardia crassostreae	13	[267,320]
Candida albicans	11	[190]
Staphylococcus hominis	11	[46,55]
Acinetobacter lwofii	11	[42,143,144]
Providencia stuartii	10	[46,48,58]
Acinetobacter calcoaceticus baumannii	10	[321]
Citrobacter koseri	9	[46,58,111,155]
Pseudomonas luteola	9	[42]
Pantoea agglomerans	9	[42]
Staphylococcus capitis	4	[46]
Acinetobacter haemolyticus	4	[144]
Serratia fonticola	4	[42]
Candida glabrata	2	[322]
methicillin-resistant Staphylococcus epidermidis (MRSE)	1	[47]
penicillin-resistant Streptococcus pyogenes	1	[47]
Leclercia adecarboxylata	1	[323]
Mycobacterium leprae	1	[324]
Chryseobacterium gleum	1	[325]
Enterococcus gallinarum	1	[149]
Klebsiella oxytoca	1	[10]
2.1. Saudi Arabia

Due to its large area and population, the Kingdom of Saudi Arabia has the most significant number of scientific studies on the subject of MDR organisms among the countries of the Arabian Peninsula. Therefore, it has several obstacles that might promote the emergence and transmission of MDR micro-organisms. Eventually, a total of 79 unique MDR microbes were reported (Figure 2). The difficulties of this were overcome due to the successful efforts of different sectors to restrict the growth and establishment of MDR micro-organisms in the country. The active monitoring of the onset and spread of MDR micro-organisms is very important. Many relevant articles were published in research and case studies from Saudi Arabia on MDR bacteria and fungi. The inclusion criteria were applied carefully to all the search results (for articles published after 2010) from Scopus and PubMed. A total of 198 studies, as per PRISMA 2009, were eligible for inclusion (Figure 1; Supplementary Table S1). Three publications reported MDR micro-organisms in more than one country of the Arabian Peninsula: the report by Sonnevend and colleagues [1] in Bahrain, Saudi Arabia and United Arab Emirates; a study by Zowawi and colleagues [2] in Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait and a report by Sonnevend and colleagues [3] in Saudi Arabia, Kuwait, Oman and United Arab Emirates. These reports were considered separately for individual counties and also considered as only three studies in general (Figure 1). One hundred and ninety-eight studies reported various MDR organisms in Saudi Arabia, (Table 2), where there were considerably more MDR organisms compared to the other countries in the Arabian Peninsula.

Saudi Arabia had the highest number of MDR strains reported compared to other countries (Supplementary Table S2): 10972 *Escherichia coli*, 9829 *Mycobacterium tuberculosis*, 4092 *Klebsiella pneumonia*, 3787 *Acinetobacter baumannii*, 2594 *Pseudomonas aeruginosa*, 2014 *Acinetobacter*, 986 *Staphylococcus aureus*, 986 *Staphylococcus* spp., 827 *Enterobacter*, 722 *Proteus vulgaris*, 715 *Enterobacteriaceae*, 695 *Methicillin-resistant Staphylococcus aureus* (MRSA) and 553 *Enterococcus*. Recently, the emergence of 18 *Clostridioides difficile* and 19 *Candida auris* were reported [24,317]. Between 2010 and 2021, the top five research papers reported MDR micro-organisms in Saudi Arabia. The first report included *A. baumannii* 59 isolates from human samples: urine, blood culture [147], respiratory specimens, skin and soft tissue specimens, blood, sterile body fluids [146,244] Biofilm-Formation in Clonally Unrelated Multidrug-Resistant Acinetobacter baumannii Isolates), wound swabs, rectal swabs, and sputum [326]. The second report included 51 *E. coli* isolates from human and animal samples, the isolates from human samples originated from tissue swabs [327] (the genomic diversity and antimicrobial resistance genes in multidrug-resistant CTX-M-positive isolates of *Escherichia coli* at a healthcare facility in Jeddah), urine, wound pus, vaginal swabs, blood culture, stools and ear swabs [87]. The isolates from animal samples originated from: chicken [60], camel [77], and minced meat samples [72]. The third report included 36 *K. pneumonia* isolates from human samples: blood, urine, wound swabs, sputum [40], rectal swabs and suction swabs [216]. The fourth report included 36 *P. aeruginosa* isolates from human samples: respiratory, urine, surgical, blood culture, genital swabs, eye swabs, ear swabs, burns [234], skin tissue, intra-abdominal fluid, bone tissue [26], wound swabs, sputum, and tracheal swabs [228]. The fifth report included 31 *M. tuberculosis* isolates from human samples: sputum, tissues and biopsies, abscesses, abdominal fluids, breast fluid, cerebrospinal fluid, urine, knee fluid and synovial fluid [117], wound swabs, ENT swabs, blood, tracheal swabs [130] (Supplementary Table S3).

Saudi Arabia had the highest mortality rate, with 365 patients who died due to MDR microbes (Figure 3A). The top three MDR organisms with the highest mortality rates were *A. baumannii*, *M. tuberculosis* and *P. aeruginosa*. Six MDR organisms were related to mortality: *S. epidermidis*, *A. baumannii*, *M. tuberculosis*, *C. auris*, *P. aeruginosa* and *Enterobacteriaceae* (Table 4). Thus, there were 365 MDR strains associated with death. *M. tuberculosis* caused the highest level of mortality [27]. The impact of the migrant workers from other countries cannot be understated; in 2017, a Filipino resident of Saudi Arabia was diagnosed with MDR *Mycobacterium leprae*. The etiologic agent was discovered using metagenomic se-
quencing a biopsy sample of the patient’s skin [324]. In one of the studies, 105 adult patients admitted to the intensive care unit (ICU) at Aseer Central Hospital in 2014 and 2015 were reviewed retrospectively. The species of *Acinetobacter* were isolated using specific phenotypes and verified by the automated system, Vitek 2. Of the 105 stains, genus *Acinetobacter* accounted for *A. baumannii* 49, *A. baumannii* complex 19, *A. baumannii/haemolyticus* 32, *A. haemolyticus* 4, *A. lwoffi* 1 [144]. There are well-established studies on electron microscopic structures, which reported both dead and alive multidrug-resistant micro-organisms in Saudi Arabia, using confocal laser scanning micrography [328].

2.2. Bahrain

The Kingdom of Bahrain had the lowest number of research articles, in contrast to the rest of the Arabian Peninsula’s countries, due to its small area and population. The papers in this review, published between 2010 and 2021 and retrieved from PubMed and Scopus, were thoroughly screened for their eligibility, as per the inclusion and exclusion criteria. Only three studies published on MDR bacteria were included in the final qualitative analysis, as per PRISMA 2009 (Figure 1; Supplementary Table S1). Two studies reported MDR micro-organisms in multiple countries: a study by Sonnevend and colleagues [1] in Bahrain, Saudi Arabia, and the United Arab Emirates; and a study by Zowawi and colleagues [2] in Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait (Figure 1). Two unique MDR microbes were reported: *Acinetobacter baumannii* and *Escherichia coli* (Figure 2). Compared to the other countries mentioned in this review, Bahrain had the lowest reported MDR strain (*n* = 11): eight *A. baumannii* and three *E. coli* (Supplementary Table S2). Three *E. coli* isolates from human specimens were obtained, including urine and tissue swabs [1], and eight *A. baumannii* isolates, from which human samples of blood, sputum, swab, and urine were collected [2] (Supplementary Table S3). Unlike the mortality rates of the other countries, Bahrain reported no MDR microbial infection-associated deaths (Figure 3A). In one of the scientific articles, researchers screened for the *mcr-1* gene of colistin resistant *Enterobacteriaceae* in Bahrain; the *mcr-1* strains were positive and their antibiotic resistance was determined. The *mcr-1* gene was found in two *E. coli* isolates [1]. In the study by Thani, on a urinary tract infection (UTI) cefotaxime resistant *E. coli* strain, a new DNA fragment was discovered. The DNA sequence was found to be linked to the pathogenicity island III_{536} locus. Researchers used the Single Genome Specific Primer-PCR (SGSP-PCR) to study the genomic state of the newly identified locus, which was discovered to obtain the antibiotic resistance gene *bla\textsubscript{CTX-m} [110]. Bahrain was included in the research on the molecular epidemiology and resistance mechanisms of carbapenem-resistant acinophilic bacteria (CRAB) for the Arabian Peninsula countries; eight *A. baumannii* isolates were identified in Bahrain hospitals, and OXA-51 was found in all of the isolates. Antibiotic resistance genes were detected using PCR, and clonality was determined using repetitive sequence-based PCR (rep-PCR). The majority (84%) of the isolates in this investigation were related to health exposure. The increased awareness of multidrug-resistant organisms in the Gulf Cooperation Council (GCC) states has significant implications for improving infection control procedures, developing antimicrobial stewardship programs and highlighting the importance of regional active monitoring systems [2].

2.3. Kuwait

The studies, published between 2010 and 2021, from selected databases were evaluated for eligibility, as per the inclusion and exclusion criteria, according to PRISMA 2009. Thirty-eight papers on multidrug-resistant (MDR) micro-organisms were included in the final qualitative analysis (Figure 1; Supplementary Table S1). A total of 22 unique MDR micro-organisms were identified from Kuwait (Figure 2), including the studies that reported MDR micro-organisms in various countries (Figure 1) [2,3]. There were seven publications that reported >100 MDR strains such as: 7138 methicillin-resistant *Staphylococcus aureus* (MRSA), 1176 *Mycobacterium tuberculosis*, 561 *Candida auris*, 410 *Acinetobacter baumannii*, 302 *Staphylococcus aureus*, 222 *Klebsiella pneumonia* and 149 *Enterobacteriaceae* (Supplemen-
arily Table S2). Notably, five studies in Kuwait from 2010 to 2021 revealed MDR microorganisms. The first study revealed 11 *M. tuberculosis* from human samples such as, sputum, pus, tissue biopsy, lymph node and endotracheal secretion, and cerebrospinal [112] samples. The second study found eight isolates of *A. baumannii* acquired from human urine [198] and swab specimens, sputum, blood [2]. The third study discovered six *C. auris* human isolates from axilla, groin, anterior nares, vascular line exit sites, the oropharynx, respiratory and urinary tract. The isolates were also taken from environmental samples: rooms, units occupied by all the infected *C. auris* colonised patients, medical devices, linen, walls, floors, furniture, doorknobs, bed railings, bedside drawers, toilet faucets, and flush handles [9]. The fourth study observed five isolates of *Enterobacteriaceae* obtained from blood, urine, wound, and tissue swabs [259]. Finally, the fifth study anlysed four *E. coli* isolates of human samples derived from blood culture, urine, wounds, and central venous pressure [10]. After Saudi Arabia, Qatar, Jordan, and Iraq, Kuwait has the fifth highest mortality rate, with a total number of 78 non-survivors associated with MDR microbial infection (Figure 3A). Seven articles reported MDR microbial infection associated with mortality. The highest mortality in Kuwait was related to the MDR organism, *C. auris*, with 37 non-survivor patients, whereas *C. auris* were the most prominent MDRO in terms of the number of deaths (Table 3).

Healthcare-related pneumonia caused by MDR pathogens poses a significant treatment challenge. The frequency of antibiotic medication leads to inefficient antimicrobial therapy. Jamal and colleagues reported unique MDR organisms: two isolates of *Haemophilus influenzae*, two isolates of *Legionella pneumophila*, and one isolate of *Moraxella catarrhalis*. Critically ill patients with clinically diagnosed respiratory tract infections, hospitalised at Mubarak Al Kabeer Hospital between January and April 2013, were selected for their study. Recently, a rapid-multiplex, PCR-based Unyvero pneumonia application (UPA) assay that aids in early decision making became accessible. The respiratory samples from patients with nosocomial pneumonia included the sputum, bronchoalveolar lavage fluid, and endotracheal secretions [12]. From January to December 2016, a study conducted by Hamza and colleagues revealed a novel pathogen of an MDR micro-organism. All adult patients who had the specified GI procedures, used to estimate surgical site infection (SSI) rates among gastrointestinal surgeries in all Kuwait governmental hospitals, were examined in this study. Eventually, a single isolate of *Aeromonas hydrophila* was obtained from small bowel (SB) surgery [329].

2.4. Oman

After removing duplications, peer reviewed articles, and non-relevant countries of interest, a total of 42 articles were screened. Thirty-three studies were excluded from further analyses and nine articles fulfilled the inclusion criteria from the published data for MDR organisms from Oman in PubMed (*n* = 43) and Scopus (*n* = 36). Seventeen different species of multi-drug resistant organisms were reported in Oman (Figure 2). *Escherichia coli* was the most recorded MDRO; this organism was identified five times in the studies (Table 2). Although several MDRO were recorded in this country, the following organisms were reported as the lowest among the collected studies: *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Stenotrophomonas maltophilia* *Citrobacter freundii*, *Enterobacter asburiae*, *Enterobacter hormaechei*, and *Enterobacter ludwigii*, *Serratia marcescens* and *Pantoea dispersa*. The total number of MDRO strains reported in Oman were as follows: 520 *Klebsiella pneumoniae*, 224 *Acinetobacter baumannii*, 78 *Escherichia coli*, 35 *Staphylococcus aureus*, 27 *Pseudomonas aeruginosa*, 25 *Stenotrophomonas maltophilia*, 8 *Enterobacter cloacae*, 2 *Enterococcus faecium*, and 1 *Citrobacter freundii*, (Supplement Table S2).

In the Oman region, *E. coli* was the most abundant MDRO, as reported by several studies. The study by Al-Kharousi focused on the microbial features of fresh fruit and vegetables at the market stage, evaluating the impact of antibiotic-resistant enterobacteria transmission. More specifically, this study focused on one of the resistance mechanisms in *Enterobacteriaceae* that could produce AmpC β-lactamase in cefoxitin-resistant isolates.
Fourteen isolates displayed a multi-drug resistance for different classes of enterobacteria. From these different classes, *E. coli* isolates gained resistance to several types of antibiotics compared to other classes; they displayed the resistance to five antibiotics such as ampicillin, chloramphenicol, kanamycin, nalidixic acid, and tetracycline. Six *E. coli* isolates were collected from lettuce samples that gained a resistance to multiple antibiotics. Some isolates were phenotypically positive for producing the ampC β-lactamase [257]. Another study focused on the epidemiology of multi-drug-resistant organisms via the site of infection and types of bacteria at Sultan Qaboos University Hospital. Although several MDRO were identified, *E. coli* was the second most abundant among the isolates. The number of isolates was 60 for *E. coli* with extended spectrum β-lactamases and 5 for *E. coli* with a carbapenem resistance, respectively, among the samples from different infection sites, such as the bloodstream, urinary tract, and surgical infection [330].

A study focused on the colistin-resistant Enterobacteriaceae in several countries of the Arabian Peninsula, more specifically, studying the presence of the mcr-1 gene in this class. Four *E. coli* isolates were MDROS had an mcr-1-positive strain. The *E. coli* strains such as ST648, ST224, ST68, and ST131 belonged to other countries; none of these strains were from Oman [1]. The focus on identifying Arabian Enterobacteriaceae in the Arabian Peninsula region revealed the presence of strains with New Delhi metallo-beta lactamase (NDM)-7. Four stains showed a multi-drug resistance to NDM-7 *E. coli*; only one (E. coli ST4107) strain was from Oman Hospital, isolated from a patient’s endotracheal secretion. The blaNDM7 was identified on IncX3-type plasmids. In this study, an association was found between identifying the IncX3 type plasmids and spreading the rare NDM-7 variant in the region [101]. This could be a major limitation of the statistical mortality data from the region; further studies are needed to discover the mortality data, which can be correlated with MDRO. Although several MDROS recorded in Oman were found in other regions in the Arabian Peninsula, few organisms were only found in the Oman region: *Pantoea dispersa, Burkholderia cepacia, Enterobacter Hormaechei*, and *Enterobacter ludwigii* (Table 1). Therefore, these MDROS were considered unique to the Oman region since they were able to survive in this region; specific studies are needed to find their prevalence and associated physiology.

2.5. Qatar

The searching process for the published data of MDRO from Qatar for the last decade resulted in a similar number of research results for both PubMed and Scopus; 54 and 52 studies were found in PubMed and Scopus, respectively. After removing duplicates, peer reviewed articles, and non-relevant countries of interest, a total of 52 articles were screened. Thirty-five were excluded from further analyses. Seventeen articles were screened for full-test article eligibility by screening the title and the abstract (Supplementary Table S1). Twenty-seven different species of multidrug-resistant organisms were reported in Qatar (Figure 2). *Escherichia coli* was the most recorded MDRO and was identified six times (Table 2). Among the collected studies, there were several MDRO recorded in Qatar; nevertheless, the following organisms were recorded as the lowest: *Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Stenotrophomonas maltophilia, Enterobacter cloaeae, Salmonella typhi, Vibrio vulnificu, Campylobacter spp., Nocardia cressostreea, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Enterococcus gallinarum, Chryseobacterium indologenes, Acinetobacter spp., Enterobacter spp., Klebsiella spp., Salmonella spp., Bacteroid spp., Coagulase negative Staphylococi, Streptococci spp., and Enterococcus spp*. These organisms were reported once as MDR (Table 2). A total of five MDRO above 100 strains were reported in Qatar: 426 *Acinetobacter baumannii*, 223 *Escherichia coli*, 223 *Mycobacterium tuberculosis*, 178 *Pseudomonas aeruginosa*, and 134 *Streptococcus pneumoniae*. Furthermore, six MDR organisms were reported: 73 *Campylobacter jejuni*, 34 *Staphylococcus aureus*, 26 *Staphylococcus epidermidis*, 24 *Klebsiella pneumoniae*, 23 *Vibrio vulnificus* and 13 *Nocardia cressostreea* (Supplementary Table S2).
Overall, *Escherichia coli* was the most abundant MDRO in Qatar. From the studies in Qatar, six research articles reported *Escherichia coli* (Table 2), which had the highest reported MDRO in Qatar. Hasan and colleagues studied the case of a patient infected with cytomegalovirus-associated, hemophagocytic lymphohistiocytosis that gained antimicrobial resistance. The patient colonised the multidrug-resistant MDR to *Enterococcus faecium, Escherichia coli*, and *Klebsiella pneumoniae*. As a result of the severe multidrug resistance, several infections such as respiratory, urine, and bloodstream infections, developed, causing a threat associated with the HLH patients and obtained MDR organisms. The study reported *E. coli* type ST410, which was isolated from blood. No specific strain numbers were declared for *E. coli* in this study. Using a whole-genome sequence, there were different sequence types between the vancomycin-resistant *Enterococcus* isolates from the urine and blood cultures of patients and the previously colonised patients. These authors found that the resistance mechanisms were acquired in the colonizing strains [333].

In another study, the bacterial infection and resistance patterns of pediatric oncology patients after chemotherapy treatment were analysed for MDRO in the bloodstream; 116 strains of Gram-positive and Gram-negative bacteria were isolated. *E. coli* was the third most common Gram-negative isolate with seven MDR isolates. Two patients died due to the infection of MDRO *Stenotrophomonas maltophilia* and *E. coli*. Unfortunately, no specific strain numbers and names were provided, hence they do not appear in the mortality table (Table 3) [55]. The study by Garcell et al. [78] focused on studying the etiology of surgical site infection in a community hospital in Qatar for a period of three years. Samples were collected and patients with contaminated wounds had the highest number of isolates. Most of the isolates in the surgical site were *E. coli* and *Klebsiella* spp.; 12 *E. coli* beta-lactamase (ESBL) isolates were collected from the infection in the surgical site [78]. The epidemiology of bacteremia at Hamad General Hospital isolated 167 g-positive, and 285 g-negative bacteria over a period of one year. The samples were collected from patients’ blood. Several MDRO were found; nevertheless, *E. coli* was the most common bloodstream isolate; 97 *E. coli* were isolated. The intravenous catheterisation blood stream infection was found to be the most common source of bacteremia. In comparison with the other types of etiologic bacteria, the MDR *E. coli* ESBL caused the highest number of deaths, and accounted for 14 out of 102 mortalities [7]. Regarding the antibiotic resistance of *E. coli* in Qatar from food-producing animals, 90 *E. coli* isolates were reported from poultry farms and tested with several antibiotics. Uncooked food or unsanitary hygiene practices can accelerate the transmission of MDR to humans [75]. Having a statistical mortality on MDR microbial infection in the Arabian Peninsula is important for identifying the mortality caused by the MDRO. Qatar had the second highest number (*n = 187*) of mortalities compared to the other countries in the Arabian Peninsula, (Figure 3A). In Qatar, four studies reported information on mortalities. Several MDRO organisms were recorded as the cause of a patient’s death. *Acinetobacter baumannii* was recorded as a pathogen associated with mortality in several studies (Table 3). The study by Al Samawi et al. recorded the highest number of deaths caused by *Acinetobacter baumannii*. The total number of non-survivors was 65 out of 239 patients, and 372 strains were isolated from adult patients samples. The respiratory tract was the most prominent site of *A. baumannii* infection [6]. (Table 3). Another study reported the same organism and its association with the deaths of 15 patients out of 48. A total of 48 MDR *A. baumannii* strains were isolated from the patients [4] (Table 3). Another study reported 102 deaths due to the MDR organisms, of which 34 were females. Multiple MDR pathogens caused the death of patients; nevertheless, ESBL and MSSA had the highest-recorded mortality [7] (Table 3). Although several MDRO recorded in Qatar were found in other parts of the Arabian Peninsula, *Campylobacter* spp., *Nocardia crassostreae, Chryseobacteriu indologenes, Acinetobacter* spp., *Bacteroid* spp., coagulase negative staphylococci, and *Enterococcus* spp. were considered unique to Qatar.
2.6. United Arab Emirates

The search terms related to multidrug resistance resulted in 71 studies from PubMed and 38 studies from Scopus. After removing duplicates, peer reviewed articles, and non-relevant countries of interest, a total of 70 articles were screened. Fifty-one studies were excluded from further analyses and 19 articles were screened for eligibility as full-text articles by screening the abstract. Four full-text articles were eliminated because patients were not from the country of interest. A total of fifteen full-text articles were included in this study (Supplementary Table S1).

Twelve different species of multidrug-resistant organisms were reported in the UAE (Figure 2). Escherichia coli was the most abundant MDRO in the UAE and was reported in six studies (Table 2). Although several MDRO were recorded in this country, the following organisms were reported as the lowest among the collected studies: Pseudomonas aeruginosa, Enterobacter cloacae, Candida auris, Citrobacter freundii, Staphylococcus epidermidis, and Salmonella typhi (Table 2). The total strain numbers of MDROs reported in the UAE were: 1116 Mycobacterium tuberculosis, 73 Enterobacteriaceae, 61 Escherichia coli, 55 Klebsiella pneumoniae, 31 Pseudomonas aeruginosa, 16 Acinetobacter baumannii, 6 methicillin-resistant Staphylococcus aureus, and 1 Stenotrophomonas maltophilia (Supplementary Table S2).

E. coli was the most abundant MDRO in UAE, and the highest reported by several articles. The study by Sonnevend et al. focused on the presence of the mcr-1 gene in colistin resistance to E. coli from several countries in the Arabian Peninsula. Four E. coli strains were isolated in this study; only one strain was from UAE, named ABC149 with the sequence type ST131. This sample was isolated from patients’ blood samples. In the Arabian Peninsula, several multi-resistance isolates contained the mcr-1 gene, which could increase mcr-1-carrying strains in these regions [1]. The impacts of ceftolozane–tazobactam and ceftazidime–avibactam against multidrug-resistant isolates such as Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa were studied, and included 60 CRE E. coli from different patient samples such as sputum, blood, urine, tissue, and body fluid samples. The study suggested that ceftolozane–tazobactam and ceftazidime–avibactam could treat most of the infections caused by MDROs [45]. Another study focused on the pattern of uropathogenic resistance to antibiotic prophylaxis in patients infected in the urinary tract. E. coli was the most grown organism with prophylaxis. The number of E. coli isolates was 26, and the majority of them were isolated from urine [97]. The activity of hymenochirin-1B against multidrug-resistant bacteria and immunomodulatory properties were studied [182] such as the E. coli strains, ABC 54 and ABC 85, collected from urine and tracheal aspirate. The study revealed a potential drug development, combined with hymenochirin-1B, against several Gram-positive and Gram-negative bacteria, with low cytotoxicity in humans. The characteristics of E. coli in several counties in the peninsula region revealed the presence of the New Delhi Metallo-beta-lactamase (NDM)-7, four stains showed a multi-drug resistance of NDM-7 E. coli, including two strains (ABC133 and ABC218) from the UAE region of patient’s sputum and wound secretion samples. The blaNDM7 was identified on IncX3 type plasmids and an association was found between IncX3 type plasmids and the transmission of the rare NDM-7 variant in the Middle East [101]. Mortality data were not declared in the studies; which is one of the limitations of such data. Further studies are needed to find the mortality data, which can be correlated with the MDRO. All twelve of the different species of multidrug-resistant organisms reported in the UAE were also reported in other countries in the Arabian Peninsula (Table 1). These organisms were able to survive in other parts of the Arabian Peninsula with hot dry summers and mild wet winters.

2.7. Jordan

The screening of multidrug-resistant micro-organisms from Jordan through the databases PubMed, Scopus, and Google Scholar revealed 136, 92 and 22,400 published articles related to multidrug resistance, respectively. After filtering out review papers and limiting the search results timeline to 2010–2021, thirty-seven articles were screened and six papers
were excluded, since their samples were reported from ATCC standard cultures rather than human samples, resulting in a total of 31 full-text articles for final consideration. Jordan reported 11 distinct, multidrug-resistant bacterial species; *Escherichia coli* was the dominant species with 886 isolates in total, and *Acinetobacter* had the lowest number of strains reported, with 19 [33]. Out of all countries in the Arabian Peninsula, Jordan is the only country that reported *Propionibacterium acnes* as a unique multidrug-resistant bacterium. Research articles reported a variety of strains that were isolated from humans, hospital environments, or other sources where meat products and green vegetables could be present [334]. Some articles reported a large number of bacterial strains isolated from the aforementioned sources. For instance: 269 *E. coli* strains were isolated from broiler chickens [85], another study reported 287 *Salmonella enterica* isolates from beef cattle [100], while 544 *Streptococcus pneumoniae* isolates were obtained from humans [268].

E. coli were the dominant MDR bacteria in 11 research studies. One study isolated 142 *E. coli* ST131 strains from infants’ faecal samples, of which the majority were ESBL producers. The antimicrobial susceptibility of these strains was tested using the disc diffusion technique [64]. Similarly, Haddadin et al. found 19 and 25 MDR *E. coli* strains from 70 strains isolated from green vegetables and 68 isolated from infants’ faeces, respectively, after testing them for antibiotic susceptibility. In addition, they found a genetic similarity between the strains isolated from plants and infants, implying the possibility of the circulation of these pathogens between both sources [80]. O1, O2, O25, and O78 avian *E. coli* serotypes were characterised in a study after their isolation from broiler chickens, in order to study their antimicrobial resistance and the associated risk factors [85]. Another study investigated the cause of urinary tract infections among patients in Jordan. They isolated 262 *E. coli* strains from urine samples, of which 150 were MDR with a high association with the ST131 clone [96]. In addition, for the purpose of studying the colonisation of *E. coli* in the intestines, 288 stool samples were collected from infants. From these isolates, 52 were MDR and ESBL producers [104].

It was crucial to include mortality data in this review to observe the number of deaths caused solely by MDR micro-organisms and the root cause of their ability to cause a high mortality in the Arabian Peninsula (Table 4). Regarding mortality data collected from Jordan, several bacterial species contributed to these numbers. Specifically, Almomani et al. reported the deaths of 50 patients (24 males and 26 females) out of 119 patients suffering from pneumoniae caused by using ventilators infected with *Acinetobacter baumannii* in ICUs. This article reported the highest number of mortalities in Jordan [34] (Table 4). MDR *Acinetobacter* sepsis cases in neonates were also studied to determine the effect of Colistin; this organism caused two deaths out of twenty-one neonates, averaging 0.6 years of age [33]. Furthermore, there were 457 wound infection cases at a Jordanian hospital that included 395 males and 62 females with a median age of 27 years. These infections were caused by several MDR micro-organisms, including *Staphylococcus aureus*, *E. coli*, *Klebsiella pneumoniae*, *Pseudomonas*, *Enterobacter*, *Acinetobacter*, and *Proteus* and 37 deaths were reported [32].

2.8. Iraq

The number of final research articles from Iraq (*n* = 75) was generally higher than those reported from other countries in the Arabian Peninsula, with the exception of Saudi Arabia (*n* = 198), in PubMed and Scopus, and Google Scholar (Supplementary Table S1) for the keywords “multidrug-resistant”, and “multidrug resistance”. After excluding irrelevant articles, review articles, and limiting the timeline to 2010–2021, 75 research articles were eventually obtained for further analysis. *A. baumannii* was the dominant species in Iraq, followed by *E. coli*, with 10 research reports among the 28 different bacterial species reported, including four *Staphylococcus* species and three *Klebsiella* species. However, the largest number of strains were from *Providencia* spp.; 1213 isolates were reported from only two studies [49,261]. Several varieties of bacterial strains were reported from Iraq; these included 1063 *S. aureus* isolated from humans [15], 142 *E. coli* isolated from
chickens [37], and 1209 Providencia spp. from various sources such as humans, soil, chickens, and wastewater [49]. Iraq is the only country in the Arabian Peninsula that reported the multidrug-resistant Vibrio cholerae, making it unique to this region [316].

A total of 12 research articles reported A. baumannii MDR strains. Metallo β-lactamases producing A. baumannii caused a nosocomial infection in clinical samples from patients’ sputum, blood, urine, and burn wound swabs, in addition to samples from the environment; 124 strains were acquired from Baghdad hospitals to study their multidrug resistance [189]. A study conducted by Muslim et al. to determine the lectin-producing ability among 51 A. baumannii isolates from a hospital environment and patient samples of the sputum, blood, wounds and urine, revealed 17 lectin producers [183]. In addition, a study isolated 96 A. baumannii from clinical samples of wound and burn infections tested against 16 antimicrobial drugs using the disc diffusion technique, and 84 were found to be MDR [174]. Another article reported carbapenem resistance in 44 A. baumannii isolates from 182 patients who suffered wound infections, samples included swabs from joints, bones, and connective tissues [162]. In addition, the virulence factors of 30 A. baumannii strains from patients with blood infections were determined, implying their ability to cause persistent infections due to harboring plcN and lasB genes [177]. Even though, in general, there were many reports from Iraq, only one article reported mortality data compared to the other countries in the Arabian Peninsula. In 2012, Babakir-Mina et al. reported that, out of 654 burn patients, 98 died due to infections caused by S. aureus, while 556 survived (Table 3). These burn patients were mainly females (381) with a median age of 18 years. The nosocomial infection-causing agent was the methicillin-resistant S. aureus (MRSA), with a total of 1063 isolates from the burn swabs [15]. This study alone does not reflect the total mortality caused by MDR micro-organisms in Iraq. More research must be conducted in order to determine the dominant micro-organisms and the root cause of mortality from such organisms.

2.9. Yemen

Yemen had much fewer search results in PubMed, Scopus, and Google Scholar when the keywords, “multidrug-resistant”, and “multidrug resistance” were used. For instance, there were 19 results from PubMed, 38 from Scopus, and 2269 from Google Scholar; articles from Google Scholar were not included. Many search results showed articles reporting parasitic infections in some regions in Yemen and their multidrug resistances, but these were also not included, in addition to irrelevant and older articles published before 2010. Eventually, only six articles were included from the databases PubMed and Scopus for a final analysis. Yemen reported only four distinct bacterial species dominated by Mycobacterium tuberculosis, with 240 strains from four research articles. The remaining three articles reported A. baumannii, Pseudomonas aeruginosa, and S. aureus. All the bacterial isolates in these articles were from human sources, including 120 strains of M. tuberculosis [115], 60 of S. aureus [270], and 65 of P. aeruginosa [237]. As mentioned, the number of reports from Yemen were generally fewer compared to the other countries studied; three research articles mentioned the isolation of M. tuberculosis from patients residing in tuberculosis (TB) centers in Yemen. For instance, MDR M. tuberculosis were isolated from 115 patients’ sputum samples to evaluate the associated risk factors [17]. In a similar study was conducted by the same author, in which MDR M. tuberculosis involving 135 patients was explored to evaluate health-related risk factors [16]. Furthermore, sputum samples were collected from 170 patients in the National TB Institute of Sana’a and 118 M. tuberculosis isolates were identified [115]. Two articles, both written by Jaber et al., reported mortality data in Yemen [16,17]. The first study reported 14 deaths out of 115 tuberculosis patients (65 males and 50 females), with a median age of 45 years, while being treated in TB centers. All of the isolated M. tuberculosis were resistant to at least two drugs. The other study also reported the isolation of M. tuberculosis from sputum samples. This micro-organism caused 14 deaths out of 80 patients (48 males and 32 females) who were also in TB centers [16]. Mortality data were limited to patients treated in TB centers,
extensively focusing on MDR *M. tuberculosis* per se. More extensive mortality studies must be conducted to investigate the prominent MDR micro-organisms causing substantial death cases in the Arabian Peninsula in general, particularly in Yemen.

3. Methods Used to Detect Multidrug-Resistant Organisms

Various detection methods are used to identify MDR organisms: the disc diffusion method [300,330], Kirby and Bauer method [335], microdilution process [161], PCR with specific primers [336], real-time PCR tests with temperature melting analysis [49], MDR-TB detection [125], E-test for antimicrobial resistance [4,148], automated identification and susceptibility system [330], Growth Indicator Tube system [337] automated Phoenix method [221], matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) [4], GeneXpert assay [338], AcrAB–TolC efflux pump system [36], multiplex PCR for confirming isolates [300,317], multilocus sequence typing [300], sequences of 18S rRNA gene and ITS region for MDR fungi [24], 16S rRNA gene sequencing [317], toxin genes multiplex PCR [317], multiplex real-time quantitative PCR [339], DNA Microarray Detection [84] and whole-genome sequencing [21].

The resistance of antibiotics was established for the *A. baumannii* isolates 506, 510 and 936 isolated in 2006, 2009 and 2012, respectively. In 2012, 12 unique XDRAB strains were extracted from critical patients with ventilator-associated pneumonia (VAP) using the microdilution process [161]. Minimum Inhibitory Concentration (MICs) were indicated by E-test. A CHROMagar Acinetobacter medium was used to diagnose susceptible and multi-drug-resistant *A. baumannii* (MDRAB) strain. The updated Hodge test (MHT) and multiplex PCR were used to examine carbapenemase-resistant *A. baumannii*. The E-test process was used to carry out a synergy test. A recent 3-year evaluation study determined a reduction in the antibiotic resistance in Gram-negative bacteria by the Saudi National Action Plan using commercially available identification cards (VITEK 2 ID-GNB cards) and MDR detection (AST-No. 12 cards) [340]. They found that the rates of antibiotic resistance, extended-spectrum beta-lactamase, and multidrug resistance were reduced over time, indicating that the Saudi National Action Plan was effective. Yassin et al., [299] reported the advent of *Candida* species resistance and suggested an antifungal sensitivity procedure performed prior to deciding on a treatment regimen. Updated techniques such as sequencing the 18S rRNA gene and ITS region in MDR fungi, 16S rRNA gene sequencing in bacteria, and toxin genes multiplex PCR were also adopted by laboratories in Saudi [24,317]. Whole-genome-sequencing-based MDR identifications were also reported [21]. Improved tools are needed for the diagnosis of MDRO [341,342].

Candida auris is an emerging fungal pathogen with multidrug resistance, causing nosocomial infections and invasive deaths [336]. A trustworthy diagnostic approach, such as using the 18S rRNA gene and ITS region against MDR fungi, is urgently needed [24]. *C. auris* is often mistaken for numerous other yeast species by phenotypic identification platforms [336]. In this work, PCR and real-time PCR tests were used for identifying *C. auris* and related species: *Candida dubosshaemulonii*, *Candida haemulonii* and *Candida lusitaniae*. Targeted rDNA nucleotide region sequences, *C. auris*-specific, primers-based PCR or real-time PCR experiments followed by electrophoresis or temperature melting analysis, respectively, were performed using a panel of 140 clinical fungus isolates [336]. The findings of the tests completely corroborated the findings of the DNA sequencing. These genetic techniques address the current phenotypical shortcomings in the identification of *C. auris* and its associated species. The present MDR-TB outbreak is the result of decades of neglecting significant infectious diseases, a lack of national prevention program services, slow case identification, and inadequate treatment in high-burden countries [113]. The clinical results were vastly enhanced by optimizing care regimes along with the quick detection of DST in first- and second-line medications. The prognosis of MDR-TB was further strengthened by the recent advancements in MDR-TB detection and an intensive empirical management of patients with multiple medications during the initial period of treatment. However, laboratory funding, which is essential for the effective diagnosis of patients with MDR-
TB, was largely insufficient. The rapid and cost-effective cultivation of DST systems of *M. tuberculosis* strains must be strengthened.

A pilot study from Hamad Medical Corporation (HMC), supported carbapenem resistance in randomly selected clinical isolates of multidrug-resistant *Acinetobacter baumannii* [4]. The research results were used to analyse carbapenemase in all of the isolated MDR *A. baumannii* through molecular techniques. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry verified the identification of MDR isolates, which was verified and validated by E-test antibiotic tolerance. Real-time PCR was used to explore the molecular nature of carbapenemases (blaOXA-23, blaOXA-24, blaOXA-58, blaNDM). The phylogenetic study on the partial sequence of CsuE and blaOXA-51 genes confirmed the epidemiological relationship between the isolates. The 48 isolates were resistant to most antibiotics, including meropenem, imipenems, ciprofloxacin, levofloxacin, amicacin, gentamicin, and most β-lactam; yet they were susceptible to colistin. The MDR *A. baumannii* production of OXA-23 carbapenemase in Qatar was described in detail by Rolain [4].

The effect of a 1 and 2 h exposure to low-frequency magnetic fields (0.3 and 0.42 mT) on *Pseudomonas aeruginosa* resulted in a reduced resistance and increased drug susceptibility [225]. This increase was often linked to the temperature of the environment and the duration of the exposure. Antibiotic resistance in Iraq was conferred on *Escherichia coli* by the AcrAB–TolC efflux pump system [36], which contributed to poor patient results.

Another study examined 177 chicken samples using the ISO 10272-2006 procedure to isolate *Campylobacter* spp. A multiplex PCR was used for the confirmation and labelling of the isolates [300]. The disc diffusion method was used to assess the isolates’ antimicrobial resistance, and multiplex sequence typing was used to genotype the isolates. There were three distinct sequence types in ten *C. coli* isolates, but seven different sequence types in ten *C. jejuni* isolates. Many of the isolates tested were resistant to ciprofloxacin but not to imipenem, and they were multidrug-resistant to five or more antimicrobials. A retrospective analysis of MDRO data from January to December 2012 used the disc diffusion method to verify antibiotic susceptibility analysis, and an automated identification and susceptibility system was used to recognise and analyse species [330]. Increasing patterns in the prevalence rates of MDRO patients and MDRO isolates were discovered during the study [330]. The study by Al Shamahy et al. examined septic-resistant organisms in the neonatal unit at Al-Thawra Hospital, Sana’a, Yemen and offered an empirical treatment approach [335]. One hundred and fifty-eight neonates, aged 0 to 28 days, were recruited in the study. Blood samples were collected from each neonate, then the samples were cultivated, and, subsequently, antimicrobial susceptibility testing was performed using the Kirby and Bauer method [335].

4. Antimicrobial Resistance Profiles Used for Treating Multidrug-Resistant Organisms

Combining low-frequency magnetic fields with a wide range of antibiotics helped to reduce *P. aeruginosa* tolerance [225]. The physical parameters of LF-MF, such as strength and exposure duration, influenced the reduction in bacterial resistance and provided a potentially noninvasive and fast treatment option for burn victims [225]. Peptide B1 had a broad-spectrum behaviour against the strains examined in the study by Tell et al. [343]. The concentrations used to destroy microbial cells ranged from 10 to 20 M. B1 had a lower toxicity against mammalian cells and a lower probability of causing hemolysis [343]. Domperidone is an important ArcB inhibitor, a well-known and secure over-the-counter antiemetic [36]. Domperidone reversed the antibiotic tolerance of levofloxacin and ciprofloxacin in MDR *E. coli* stains and was more effective than the recognised efflux pump-inhibitor reserpine. It was also able to improve every impact on the sensitive strains of antibiotics. This finding suggests that a combination of antibiotics and domperidone may be utilised to handle multi-drug-resistant *E. coli* bacteria in the clinic [36]. Multidrug-resistant pneumonia in the health sector offers an important treatment challenge [12]. A Unyvero Pneumonia Application (UPA) quick PCR multiplex test helps to make prompt decisions. UPA was assessed for its successful detection in nosocomial pneumonia of the etiologic pathogen
and for resistance indicators. This test also investigated the impact on acute nosocomial pneumonia. The appropriate specimens were treated by UPA according to the manufacturer’s methods, along with conventional cultivation techniques. The results indicated that a multiplex PCR-based test was capable of reliably diagnosing the etiological agents of NP and MDR, as well as resistance indicators. This could allow doctors to make early antibiotic modifications [12]. The analysis of *E. faecalis* genomes was performed by means of multilocus sequence typing. ST179 and ST16 were the most common STs in clonal complex 16 in Saudi patients (CC16). MDR isolates were approximately 96% ($n = 149$). There was nearly no coverage of the antibiotics quinupristin/dalfopristine, clindamycin, and erythromycin, but there were elevated levels of streptomycin, gentamycin and ciprofloxacin, which were observed to be under-optimal. Low vancomycin, linezolid andampicillin resistance were found and suggested for treating *E. faecalis* infection [292]. Alqasim [57] discovered the frequency of β-lactamases produced by *E. coli*. They analysed the transportation of these isolates by suspicious antibiotic patterns at phenotypic and genotypic levels. A total of 100 *E. coli* urine isolates were collected at a tertiary health facility in Riyadh from January 2018 to March 2018. All antimicrobial isolates were tested for susceptibility. The synthesis of ESBL was separated in phenotypic and genotypic phases by double disc synergy testing and a polymerase chain reaction. A variety of ESBL variations were identified using DNA sequencing. Of the 100 *E. coli* isolates, 67 were associated with the phenotype of MDR. All isolates were tolerant to all the antibiotics that were used, which were all vulnerable to imipenem. There were 33 phenotypic and genotypical isolates of ESBLs the in 100 isolates of *E. coli*. For all ESBL-positive *E. coli* isolates, CTX m was an ESBL (31/33 isolates; 93.94 percent). In all CTX m carriage isolates, the CTX-M-15 variant was included. The multiple ESBL carriage of 15–33 isolates (45.45%) was detected, with 11 (33.30%) ESBL isolates, compared to four isolates (12.12%) with three ESBLs. A vast range of forefront antibiotics were found by our study, which were frequently utilised for the treatment of UTI patients with a high antimicrobial tolerance of *E. coli* that generated ESBL. Among the *E. coli* urinary isolates, the most common CTX m variants also had a high incidence of ESBL channels. This is a serious concern and needs to be investigated further to find better treatment options.

M. morganii isolates were highly resistant to many antibacterial agents and classified as MDR bacteria from Bahrain [315], all of which had ESBL. The antibiotics, meropenem and imipenem, were very effective against the *M. morganii* isolates. In Jordan, 31 percent of *S. aureus* were multidrug-resistant (MDR) among the *S. aureus* isolates from wound samples [247]; however, they were vulnerable to chloramphenicol, linezolid, nitrofurantoin, rifampicin, and teicoplanin (>80%). In Qatar, a pulsed-field gel electrophoresis analysis of *P. aeruginosa* isolates from cystic fibrosis patients indicated a strong degree of resemblance, indicating a unique adaptation of these clones to cystic fibrosis-affected lungs. The noncystic fibrosis, hospitalised cluster had a distinct clonal root with localised clustering and potential hospital-acquired *P. aeruginosa* infections [221]. *A. baumannii* isolates from Al-Thawra University hospital in Yemen were immune to almost all antibiotics examined, with a high minimum inhibitory concentrations of imipenem, amikacin, and ciprofloxacin [168]. All three *A. baumannii* strains were positive for the modified Hodge test, and no inhibition was observed on the activity of β-lactamases. The naturally occurring blaOXA-51-like gene, and the carbapenemase-encoding blaOXA-23-like gene, were observed in all three isolates and detected with 16S rRNA methylase armA gene. A search for aminoglycoside enzymes (AMEs)-producing genes identified the presence of acetyltransferase aac (6-Ib) in one *A. baumannii* isolate. Fluoroquinolone resistance-associated GyrA genes with one Ser83Leu variation were observed in all of the isolates. A multilocus sequence typing demonstrated that all the isolates were sequence type 2 [168]. A case study in pediatric patients from Saudi Arabia with combined immunodeficiency syndrome, reported treating pneumonia caused by multidrug-resistant *P. aeruginosa* using ceftolozane/tazobactam, which was recommended only for adult patients (>18 years) [241]. Peptide (AamAP1-Lysine) antibiotic (chloramphenicol, levofloxacin, rifampicin, ampicillin and erythromycin)
combinations proved a strong synergistic activity, causing a 64-fold reduction in multidrug-resistant bacteria [344]. Colistin was effective and safe for treating MDR Acinetobacter neonatal sepsis in neonatal units in Amman, Jordan [33].

5. Mining Natural and Novel Antimicrobials against MDR

The antibacterial activities against the most common multidrug resistance microorganisms associated with skin infections, were assayed using aqueous and ethanol extracts from five native medicinal plants, most of which showed an antibacterial and antifungal activity, with the highest activity found in the aqueous extract of Arum discoridis [345]. The experiments that characterised and measured the effect of honey on P. aeruginosa quorum sensing networks revealed that low concentrations of honey decreased the expression of exotoxin A (ETA), las and rhl glucons, as well as the corresponding virulence factors through the interruption of the quorum sensing system [346,347]. Edible plants (Gundelie tournefortii L. and Pimpinella anisum L.) and the propolis of Apis mellifera [348] were also considered as options for inhibiting the growth of MDR in combination with antibiotics [69]. Lavender essential oil used against carbapenemase-producing K. pneumonia [349], extracts of Lasovania inermis, Portulaca oleracea used against Candida albicans [350], and Trachyspermum ammi extracts mediated the green production of metal-nanoparticles against MDR Listeria monocytogenes and Serratia marcescens [351] and were reported as suitable for the identification of novel antimicrobial agents against selective MDROs.

Ultrashort antimicrobial peptides (novel pentapeptide, UP-5) had a strong to moderate efficacy against MDRO, with a low toxicity when used in conjunction with traditional antimicrobials [352]. Alyteserin-2a, a cationic α-helical peptide recovered from the skin secretions of Alytes obstetricians, showed an efficient activity against multidrug-resistant Acinetobacter baumannii and Stenothrophomonas maltophilia [172]. Cuminaldehyde, a key antibacterial ingredient of Calligonum comosum essential oil, was reported to have an antibacterial activity against MDROs in a study from the United Arab Emirates [353]. Actinomycetes, specifically Streptomyces, Nocardiopsis sp., and MK MSt033 were discovered to have an antimicrobial activity against a variety of MDROs [354]. Many peptides were tested against MDR Acinetobacter baumannii [355–357]. Terminalia chebula, Terminalia bellirica, and Phyllanthus emblica plants, traditionally used for treating microbial infections were tested against MDR bacteria and fungi [358].

Buffalo milk lactoperoxidase against S. enterica and L. monocytogenes [359]; colistin against MDR Acinetobacter [33]; lactic acid bacteria from raw camel milk [360]; peptides, including hybrid peptides and ultrashort peptides [343,344,352]; ultrashort antimicrobial peptide nanoparticles [356]; Isatin-benzoazine molecular hybrids [361]; chemical derivatives [362–365]; extracts of Matricaria aurea [366]; extracts of Nepeta deflersiana [223]; Saudi scorion venoms [367]; artemisinin extract [368]; biocidal polymers [369]; microtubule depolymerizing agents [370]; ozonated water [250]; and marine Streptomyces sp [371] against MDRO were all tested in the study region. Nanomaterials, nanoparticles and nanoformulations [351,356,358,372,373], as well as silver nanomaterials derived from marine Streptomyces [374] were also tested against the growth of multidrug-resistant micro-organisms. Further studies are needed to understand the molecular mechanisms and future possibilities of identifying pharmaceutically active compounds with potential medicinal applications.

6. Conclusions and Future Perspectives

The active surveillance and constant preventive efforts to control MDR infections and associated diseases can improve healthcare facilities and the socio-economic status of patients [375]. Specifically, MDR E. coli is predominantly associated with urinary tract infections in pregnancy [54,61,102]. The emergence of multi drug-resistant Candida albicans is prevalent among pregnant and non-pregnant women with vaginitis [299]. Listeria monocytogenes from patients with spontaneous abortions [310] and multidrug-resistant clinical Enterococcus faecalis from pregnant women [292] highlight the need for more precautions and constant monitoring, with the appropriate identification of
MDR and susceptibility tests prior to medication. The development of a candidate vaccine and the early diagnosis of MDR infection shall be a better option for protection against MDR infection. The most prevalent multidrug-resistant Escherichia coli, Mycobacterium tuberculosis, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter, Enterobacteriaceae, Providencia spp., Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella spp., Enterobacter, Proteus vulgaris, Candida auris and Enterococcus in the Arabian Peninsula must be diagnosed accurately and rapidly using advanced molecular techniques by developing region-specific diagnostic tools. The control of infections by using specificity detecting systems is an important protection method against MDRO. One study develops a direct detecting system for Candida auris by using a novel multiplex real-time quantitative PCR that has a high degree of specificity in detecting different species-level of Candida [339]. However, in healthcare settings, more detection methods are needed to detect MDRO strains within the species in clinical samples; allowing a reduction in the evolving MDRO pathogenic species. The Arabian Peninsula is rich in religious traditions. Notably, every year, more than 10,000,000 pilgrims visit Saudi Arabia to perform the Umrah and Hajj. Multidrug-resistant Streptococcus pneumoniae [376], Acinetobacter baumannii, Escherichia coli [377], Salmonella enterica [308], and Mycobacterium tuberculosis [378] is observed among the pilgrims; however, it is relatively very low compared to the total number of pilgrims, which indicates the successful surveillance and management of these micro-organisms. International guidelines and recommendations can be implemented for the management and complete prevention of MDRO, such as guidelines for MDRO regarding mass gathering events. Networking MDRO research strategies are mandatory among the countries of the Arabian Peninsula to fight against the risk of MDRO infection and death. This research can enhance the sharing of information, overcome the limited data availability, and identify molecular and physiological mechanisms behind multidrug resistance. MDR co-infection with SARS-CoV-2 among COVID-19 patients shall also be considered to reduce the disease burden [379,380]. This review uncovered the huge requirement for developing novel, safe, and sustainable antimicrobials from natural and other resources to fight against MDRO. Food process parameters and the overuse of antimicrobials require active surveillance to reduce resistance modulators. The present cumulative observations will be informative for effective planning, designing preventive strategies, and prioritizing research goals to achieve MDRO-free zones.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/biology10111144/s1, Table S1: Country wise data for the number of articles from various database, Supplementary Table S2: Number of multi drug resistant strains reported from countries of Arabian Peninsula, Supplementary Table S3: Source of isolates and Number of MDR microbial strains reported from Arabian Peninsula.

Author Contributions: J.F.B., A.S.R., B.S., G.A., N.B.A. and S.A. conceived and designed the research; A.S.R., B.S. and G.A. performed the literature search and screening; J.F.B., N.B.A. and S.A. validated the final articles; J.F.B., A.S.R., B.S. and G.A. analysed and wrote the paper with the contributions of N.B.A. and S.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available upon reasonable request from the corresponding author.

Acknowledgments: The authors thank the Dean, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia for her continuous support and encouragement. We thank The Deanship of Library Affairs from the Imam Abdulrahman Bin Faisal University for their support.

Conflicts of Interest: The authors declare no conflict of interest.
23. Alhussein, F.A.; Yenugadhati, N.; Al Eidan, F.A.; Al Johani, S.; Badri, M. Risk Factors, Antimicrobial Susceptibility Pattern and Patient Outcomes of Pseudomonas Aeruginosa Infection: A Matched Case-Control Study. J. Infect. Public Health 2021, 14, 152–157. [CrossRef]

24. Aljindan, R.; AlEraky, D.M.; Mahmoud, N.; Abdalhamid, B.; Almustafa, M.; AbdulAzeez, S.; Borgio, J.F. Drug Resistance-Associated Mutations in ERG11 of Multidrug-Resistant Candida Auris in a Tertiary Care Hospital of Eastern Saudi Arabia. J. Fungi 2020, 7, 18. [CrossRef]

25. Almaghrabi, R.S.; Albalawi, R.; Mutabagani, M.; Atienza, E.; Aljumaah, S.; Gade, L.; Forsberg, K.; Litvinsevea, A.; Althawadi, S. Molecular Characterisation and Clinical Outcomes of Candida Auris Infection: Single-centre Experience in Saudi Arabia. Mycoses 2020, 63, 452–460. [CrossRef] [PubMed]

26. Bosaeed, M.; Ahmad, A.; Alali, A.; Mahmoud, E.; Als withheld, L.; Alsaeedy, A.; Aljuhani, S.; Alalwan, B.; Alshamrani, M.; Aloothman, A. Experience With Ceftolozane-Tazobactam for the Treatment of Serious Pseudomonas Aeruginosa Infections in Saudi Tertiary Care Center. Infect. Dis. 2020, 13, 117863372090597. [CrossRef]

27. Aljadani, R.; Ahmed, A.E.; Al-Jahdali, H. Tuberculosis Mortality and Associated Factors at King Abdulaziz Medical City Hospital. BMC Infect. Dis. 2019, 19, 427. [CrossRef] [PubMed]

28. Almangour, T.A.; Alenazi, B.; Ghonem, L.; Alhifany, A.A.; Aldakheel, B.A.; Alruwaili, A. Inhaled Colistin for the Treatment of Nosocomial Pneumonia Due to Multidrug-Resistant Enterobacteriaceae. BMC Infect. Dis. 2019, 19, 772. [CrossRef]

29. Abdulhamid, B.; Almaghrabi, R.; Althawadi, S.; Omrani, A. First Report of Candida Auris Infections from Saudi Arabia. J. Infect. Public Health 2018, 11, 598–599. [CrossRef]

30. Alraddadi, B.M.; Saiedi, M.; Qutub, M.; Alshukairi, A.; Hassanien, A.; Wali, G. Efficacy of Ceftolozane-Avibactam in the Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae. BMC Infect. Dis. 2019, 19, 772. [CrossRef]

31. Balkhy, H.; El-Saed, A.; Maghraby, R.; Khan, R.; Rishu, A.; Al-Dorzi, H.; Arabi, Y. Drug-Resistant Ventilator Associated Pneumonia in a Tertiary Care Hospital in Saudi Arabia. Ann. Thorac. Med. 2014, 9, 104. [CrossRef]

32. Algâ, A.; Wong, S.; Shoab, M.; Lundgren, K.; Giske, C.G.; von Schreeb, J.; Malmstedt, J. Infection with High Proportion of Multidrug-Resistant Bacteria in Conflict-Related Injuries is Associated with Poor Outcomes and Excess Resource Consumption: A Cohort Study of Syrian Patients Treated in Jordan. BMC Infect. Dis. 2018, 18, 233. [CrossRef] [PubMed]

33. Al-lawama, M.; Aljbour, H.; Tanash, A.; Badran, E. Intravenous Colistin in the Treatment of Multidrug-Resistant Acinetobacter Baumannii in Neonates. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 8. [CrossRef] [PubMed]

34. Almoman, B.A.; McCullough, A.; Gharabeh, R.; Samrah, S.; Mahasneh, F. Incidence and Predictors of 14-Day Mortality in Multidrug-Resistant Acinetobacter Baumannii in Ventilator-Associated Pneumonia. J. Infect. Dev. Ctries 2015, 9, 1323–1330. [CrossRef]

35. Abd El Ghany, M.; Sharaf, H.; Al-agamy, M.H.; Shibl, A.; Hill-Cawthorne, G.A.; Hong, P.-Y. Genomic Characterization of NDM-1 and 5, and OXA-181 Carbapenemases in Uropathogenic Escherichia coli isolates from Riyadh, Saudi Arabia. PLoS ONE 2018, 13, e0201613. [CrossRef] [PubMed]

36. Abdel-Halim, H.; Al Dajani, A.; Abdelhalim, A.; Abdelmalek, S. The Search of Potential Inhibitors of the AcrAB–TolC System of Multidrug-Resistant Gram-Negative Bacteria: An In Silico Approach. Appl. Microbiol. Biotechnol. 2019, 103, 6309–6318. [CrossRef]

37. Abed, A.R.; Khudhair, A.M.; Hussein, I.M. Effects of Misuse of Antibiotics on the Resistance of Escherichia coli isolated from the Intestines of Broiler Chickens. Int. J. Drug Deliv. Technol. 2020, 10, 190–194. [CrossRef]

38. Ahmad, S.; Al-Mutairi, N.M.; Mokaddas, E. Variations in the Occurrence of Specific RpoB Mutations in Rifampicin-Resistant Isolates of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. J. Fungi 2019, 5, 6309–6318. [CrossRef] [PubMed]

39. Alaa, A.R.; Solhan, M.A.; Hiwa, L.I.; Mhamad, N.R.; Niga, K.M.; Awat, J.N.; Salar, A.R.; Husain, F.; Nusair, A.; Mirza, I. Comparison of Antimicrobial Activity between Ceftolozane–Tazobactam and Ceftazidime–Avibactam against Multidrug-Resistant Isolates of Escherichia coli, Klebsiella Pneumoniae, and Pseudomonas aeruginosa. Int. J. Infect. Dis. 2017, 62, 39–43. [CrossRef]
46. Alavudeen, S.S.; Vigneshwaran, E.; Asiri, S.A.A.; Alahmari, M.H.A.; Mohammed, M.A.; Alqahtani, T.; Khan, N.A. Distribution of Multi-Resistant Bacterial Isolates from Clinical Specimens in a Hospital Environment of Kingdom of Saudi Arabia. J. Young Pharm. 2017, 9, 347–351. [CrossRef]

47. Al-Ayed, M.S.Z.; Aasaad, A.M.; Qureshi, M.A.; Attia, H.G.; AlMarrani, A.H. Antibacterial Activity of Salvadora Persica L. (Miswak) Extracts against Multidrug Resistant Bacterial Clinical Isolates. Evit.-Based Complementary Altern. Med. 2016, 2016, 7083964. [CrossRef]

48. Albukhari, T.A.M.; Nafady-Hego, H.; Elgendy, H.; Abd Elmoneim, H.M.; Nafady, A.; Alzahrani, A.M. Analysis of Bacterial and Fungal Infections after Cytoreduction Surgery and Hyperthermic Intraperitoneal Chemotherapy: An Observational Single-Centre Study. Int. J. Microbiol. 2019, 2019, 6351874. [CrossRef]

49. Al-Guranie, D.R.; Al-Mayahie, S.M. Prevalence of E. coli ST131 among Uropathogenic E. coli Isolates from Iraqi Patients in Wasit Province, Iraq. Int. J. Microbiol. 2020, 2020, 8840561. [CrossRef]

50. Ali, F.A.; Hussen, B.M.; Zaki, S.M. Molecular detection of blactx-m gene among pseudomonas aeruginosa strains isolated from different clinical samples in erbil city. Ann. Trop. Med. Public Health 2020, 23, 231. [CrossRef]

51. Aljanaby, A.A.J.; Tuwaij, N.S.S.; Al-khilkhali, H.J.B. Antibacterial Activity of an Aqueous Extracts of Alkanna Tintoria Roots against Drug Resistant Aerobic Pathogenic Bacteria Isolated from Patients with Burns Infections. Russ. Open Med. J. 2018, 7, e0104. [CrossRef]

52. Aljanaby, A.A.J.; Tuwaij, N.S.S.; Al-khilkhali, H.J.B. Antimicrobial Susceptibility Patterns of Klebsiella Pneumoniae Isolated from Older Smokers and Non-Smokers of Inpatients in Intensive Care Unit Infected with Chronic Pneumonia in AL-Najaf Hospital, Iraq. J. Pharm. Sci. 2018, 10, 6.

53. Alm’amoori, K.; Hadi, Z.; Almohana, A. Molecular Investigation of Plasmid–Mediated Quinolone Resistant Genes among Aminoglycoside-Resistant Uropathogenic Escherichia coli Isolates from Babylon Hospitals, Iraq. Indian J. Forensic Med. Toxicol. 2020, 14, 493–498.

54. Al-Mayahie, S.M. Phenotypic and Genotypic Comparison of ESBL Production by Vaginal Escherichia coli Isolates from Pregnant and Non-Pregnant Women. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 7. [CrossRef] [PubMed]

55. Al-Mulla, N.; Elshafie, S.S.; Janahi, M.; Al-Nasser, A.; Chandra, P.; Taj-Aldeen, S.J. Bacterial bloodstream infections and antimicrobial Susceptibility Pattern in Pediatric Hematology/Oncology Patients after Anticancer Chemotherapy. Infect. Drug Resist. 2014, 7, 289. [CrossRef]

56. AlOltair, H.A.; Hussein, M.A.; Elhoseny, M.A.; Alzeer, A.H.; Khan, M.F. Severe Pneumonia Requiring ICU Admission: Revisited. J. Taibah Univ. Med. Sci. 2015, 10, 293–299. [CrossRef]

57. Alqasim, A.; Abu Jaffal, A.; Alyousef, A.A. Prevalence of Multidrug Resistance and Extended-Spectrum β-Lactamase Isolates in a Tertiary Hospital in Saudi Arabia. Saudi Med. J. 2010, 31, 859–863. [CrossRef] [PubMed]

58. Alshareef, H.; Alfahad, W.; Albaadani, A.; Alyazid, H.; Talib, R.B. Impact of Antibiotic De-Escalation on Hospitalized Patients with urinary Tract Infections: A Retrospective Cohort Single Center Study. J. Infect. Public Health 2020, 13, 985–990. [CrossRef]

59. Alshaareef, H.; Alfaahad, W.; Albaadani, A.; Alyazid, H.; Talib, R.B. Impact of Antibiotic De-Escalation on Hospitalized Patients with urinary Tract Infections: A Retrospective Cohort Single Center Study. J. Infect. Public Health 2020, 13, 985–990. [CrossRef]

60. Altalhi, A.D.; Gherbawy, Y.A.; Hassan, S.A. Antibiotic Resistance in Escherichia coli Isolated from Retail Raw Chicken Meat in Taif, Saudi Arabia. Foodborne Pathog. Dis. 2010, 7, 281–285. [CrossRef]

61. Aminoglycoside-Resistant Uropathogenic Escherichia coli Isolates from Clinical Specimens in a Hospital Environment of Kingdom of Saudi Arabia. J. Young Pharm. 2017, 9, 347–351. [CrossRef]

62. Azab, K.S.M.; Abdel-Rahman, M.A.; El-Sheikh, H.H.; Azab, E.; Gobouri, A.A.; Farag, M.M.S. Distribution of Extended-Spectrum β-Lactamase (ESBL)-Encoding Genes among Multidrug-Resistant Gram-Negative Pathogens Collected from Three Different Countries. Antibiotics 2021, 10, 247. [CrossRef]

63. Azim, N.S.A.; Al-Harbi, M.A.; Al-Zaban, M.I.; Nofal, M.Y.; Somily, A.M. Prevalence and Antibiotic Susceptibility among Gram Negative Bacteria Isolated from Intensive Care Units at a Tertiary Care Hospital in Riyadh, Saudi Arabia. J. Infect. Public Health 2020, 13, 154–157. [CrossRef]

64. Badran, E.F.; Din, R.A.Q.; Shehabi, A.A. Low Intestinal Colonization of Escherichia coli Clone ST131 Producing CTX-M-15 in Jordanian Infants. J. Pure Appl. Microbiol. 2019, 2019, 6. [CrossRef] [PubMed]

65. Balbtkh, H.H.; El-Saed, A.; Alshamrani, M.M.; Alsaedi, A.; Al Nasser, W.; El Gamal, A.; Aljohany, S.M.; Almuniif, S.; Arabi, Y.; Alqhtani, S.; et al. Ten-Year Resistance Trends in Pathogens Causing Healthcare–Associated Infections; Reflection of Infection Control Interventions at a Multi-Hospital Healthcare System in Saudi Arabia, 2007–2016. Antimicrob. Resist. Infect. Control 2020, 9, 21. [CrossRef]

66. Balbtkh, H.H.; El-Saed, A.; Alshamrani, M.M.; Alsaedi, A.; Nasser, W.A.; Gammal, A.E.; Aljohany, S.M.; Arabi, Y.; Alqahtani, S.; et al. Ten-Year Resistance Trends in Pathogens Causing Healthcare–Associated Infections; Reflection of Infection Control Interventions at a Multi-Hospital Healthcare System in Saudi Arabia, 2007–2016. Antimicrob. Resist. Infect. Control 2020, 9, 21. [CrossRef]

67. Bindayna, K.M.; Khanfar, H.S.; Senok, A.C.; Botta, G.A. Predominance of CTX-M Genotype among Extended Spectrum Beta Lactamase Isolates in a Tertiary Hospital in Saudi Arabia. Saudi Med. J. 2010, 31, 859–863. [CrossRef]

68. Burjaq, S.Z.; Shehabi, A. Fresh Leafy Green Vegetables Associated with Multidrug Resistant E. coli. Int. ARABIC J. Antimicrob. Agents 2013, 3, 1–7.
117. Alateah, S.M.; Othman, M.W.; Ahmed, M.; Al Amro, M.S.; Al Sherbini, N.; Ajlun, H.H. A Retrospective Study of Tuberculosis Prevalence amongst Patients Attending a Tertiary Hospital in Riyadh, Saudi Arabia. J. Clin. Tuberc. Other Mycobact. Dis. 2020, 21, 100185. [CrossRef]

118. Al-Hajoj, S.; Varghese, B.; Shoukri, M.M.; Al-Omari, R.; Al-Herbawi, M.; AlRabiah, F.; Alrajhi, A.A.; Abuljadayel, N.; Al-Thawadi, S.; Zumla, A.; et al. Epidemiology of Antituberculosis Drug Resistance in Saudi Arabia: Findings of the First National Survey. Antimicrob. Agents Chemother. 2013, 57, 2161–2166. [CrossRef] [PubMed]

119. Al-Hajoj, S.; Shoukri, M.; Memish, Z.; AlHakeem, R.; AlRabiah, F.; Varghese, B. Exploring the Sociodemographic and Clinical Features of Extrapulmonary Tuberculosis in Saudi Arabia. PLoS ONE 2015, 10, e0101667. [CrossRef] [PubMed]

120. Ali, M.; Howady, F.; Munir, W.; Karim, H.; Al-Suwaidi, Z.; Al-Maslamani, M.; Alkhali, A.; Elmaki, N.; Ziglam, H. Drug-Resistant Tuberculosis: An Experience from Qatar. Libyan J. Med. 2020, 15, 1744351. [CrossRef]

121. Ali Chaudhry, L.; Rambhala, N.; Al-Shammri, A.S.; Al-Tawfiq, J.A. Patterns of Antituberculous Drug Resistance in Eastern Saudi Arabia: A 7-Year Surveillance Study from 1/2003 to 6/2010. J. Epidemiol. Glob. Health 2011, 2, 57. [CrossRef]

122. Al-Mutairi, N.M.; Ahmad, S.; Mokaddas, E.; Eldeen, H.S.; Joseph, S. Occurrence of Disputed RpoB Mutations among Mycobacterium Tuberculosis Isolates Phenotypically Susceptible to Rifampicin in a Country with a Low Incidence of Multidrug-Resistant Tuberculosis. BMC Infect. Dis. 2019, 19, 3. [CrossRef]

123. Al-Mutairi, N.M.; Ahmad, S.; Mokaddas, E. First Report of Molecular Detection of Fluoroquinolone Resistance-Associated GyrA Mutations in Multidrug-Resistant Clinical Mycobacterium Tuberculosis Isolates in Kuwait. BMC Res. Notes 2011, 4, 123. [CrossRef]

124. Al-Mutairi, N.M.; Ahmad, S.; Mokaddas, E. Molecular Screening Versus Phenotypic Susceptibility Testing of Multidrug-Resistant Mycobacterium Tuberculosis Resistance to Streptomycin and Ethambutol. Microb. Drug Resist. 2018, 24, 923–931. [CrossRef] [PubMed]

125. Al-Mutairi, N.M.; Ahmad, S.; Mokaddas, E.M. Correction to: Molecular Characterization of Multidrug-Resistant Mycobacterium Tuberculosis (MDR-TB) Isolates Identifies Local Transmission of Infection in Kuwait, a Country with a Low Incidence of TB and MDR-TB. Eur. J. Med. Res. 2020, 25, 14. [CrossRef]

126. Al-Rubaye, D.S.; Henihan, G.; Al-Abasly, A.K.A.; Seagar, A.-L.; Al-Attraqchi, A.A.F.; Schulze, H.; Hashim, D.S.; Kamil, J.K.; Al-Mutairi, N.M.; Ahmad, S.; Mokaddas, E.; Eldeen, H.S.; Joseph, S. Occurrence of Disputed RpoB Mutations among Mycobacterium Tuberculosis Isolates Phenotypically Susceptible to Rifampicin in a Country with a Low Incidence of Multidrug-Resistant Tuberculosis. BMC Infect. Dis. 2019, 19, 3. [CrossRef]

127. Alyamani, E.J.; Marcus, S.A.; Ramirez-Busby, S.M.; Hansen, C.; Rashid, J.; El-kholy, A.; Spalink, D.; Valafar, F.; Almehdar, H.A.; Jiman-Fatani, A.A.; et al. Genomic Analysis of the Emergence of Drug-Resistant Strains of Mycobacterium Tuberculosis in the Middle East. Sci. Rep. 2019, 9, 4474. [CrossRef] [PubMed]

128. Al-Zarouni, M.; Dash, N.; Al Ali, M.; Al-Shehhi, F.; Panigrahi, D. Tuberculosis and MDR-TB in the Northern Emirates of United Arab Emirates: A 5-Year Study. Southeast Asian J. Trop. Med. Public Health 2010, 41, 163–168. [PubMed]

129. Asaad, A.M.; Alqahtani, J.M. Primary Anti-Tuberculous Drug Resistance of Pulmonary Tuberculosis in Southwestern Saudi Arabia. J. Infect. Public Health 2012, 5, 281–285. [CrossRef] [PubMed]

130. El Mahalli, A.A.; Al-Qahtani, M.F. Predictors of Drug Resistance in Tuberculosis Patients in the Eastern Province, Saudi Arabia. J. Egypt. Public Health Assoc. 2015, 90, 24–28. [CrossRef] [PubMed]

131. El Al-Shehri, S.M.; Al-Rashed, A.R.; Al-Maslamani, M.; Alkhali, A.; Elmaki, N.; Ziglam, H. Drug-Resistant Tuberculosis: An Experience from Qatar. Libyan J. Med. 2020, 15, 1744351. [CrossRef]

132. Elhassan, M.M.; Othman, M.W.; Ahmed, M.; Al-Amro, M.S.; Al-Sherbini, N.; Ajlun, H.H. A Retrospective Study of Tuberculosis Prevalence amongst Patients Attending a Tertiary Hospital in Riyadh, Saudi Arabia. J. Clin. Tuberc. Other Mycobact. Dis. 2020, 21, 100185. [CrossRef]

133. Elhassan, M.M.; Othman, M.W.; Ahmed, M.; Al-Amro, M.S.; Al-Sherbini, N.; Ajlun, H.H. A Retrospective Study of Tuberculosis Prevalence amongst Patients Attending a Tertiary Hospital in Riyadh, Saudi Arabia. J. Clin. Tuberc. Other Mycobact. Dis. 2020, 21, 100185. [CrossRef]

134. Elhassan, M.M.; Othman, M.W.; Ahmed, M.; Al-Amro, M.S.; Al-Sherbini, N.; Ajlun, H.H. A Retrospective Study of Tuberculosis Prevalence amongst Patients Attending a Tertiary Hospital in Riyadh, Saudi Arabia. J. Clin. Tuberc. Other Mycobact. Dis. 2020, 21, 100185. [CrossRef]

135. Elhassan, M.M.; Othman, M.W.; Ahmed, M.; Al-Amro, M.S.; Al-Sherbini, N.; Ajlun, H.H. A Retrospective Study of Tuberculosis Prevalence amongst Patients Attending a Tertiary Hospital in Riyadh, Saudi Arabia. J. Clin. Tuberc. Other Mycobact. Dis. 2020, 21, 100185. [CrossRef]

136. Elhassan, M.M.; Othman, M.W.; Ahmed, M.; Al-Amro, M.S.; Al-Sherbini, N.; Ajlun, H.H. A Retrospective Study of Tuberculosis Prevalence amongst Patients Attending a Tertiary Hospital in Riyadh, Saudi Arabia. J. Clin. Tuberc. Other Mycobact. Dis. 2020, 21, 100185. [CrossRef]

137. Elhassan, M.M.; Othman, M.W.; Ahmed, M.; Al-Amro, M.S.; Al-Sherbini, N.; Ajlun, H.H. A Retrospective Study of Tuberculosis Prevalence amongst Patients Attending a Tertiary Hospital in Riyadh, Saudi Arabia. J. Clin. Tuberc. Other Mycobact. Dis. 2020, 21, 100185. [CrossRef]

138. Elhassan, M.M.; Othman, M.W.; Ahmed, M.; Al-Amro, M.S.; Al-Sherbini, N.; Ajlun, H.H. A Retrospective Study of Tuberculosis Prevalence amongst Patients Attending a Tertiary Hospital in Riyadh, Saudi Arabia. J. Clin. Tuberc. Other Mycobact. Dis. 2020, 21, 100185. [CrossRef]
186. Qasim, Z.J.; Kadhim, H.S.; Abdulamir, A.S. Identification of Antibiotic Resistance Genes in Multi-Drug Resistant Acinetobacter Baumannii Clinical Isolates of Iraqi Patients (Zq Strains), Using Whole-Genome Sequencing. *Int. J. Pharm. Qual. Assur.* 2019, 10, 670–680. [CrossRef]

187. Rabaan, A.A.; Saunar, J.V.; Bazzi, A.M.; Raslan, W.F.; Taylor, D.R.; Al-Tawfiq, J.A. Epidemiology and Detection of Acinetobacter Using Conventional Culture and In-House Developed PCR Based Methods. *J. Infect. Public Health* 2017, 10, 124–128. [CrossRef] [PubMed]

188. Radhi, S.H.; Al-Charrakh, A.H. Occurrence of MBLs and Carbapenemases among MDR and XDR *Acinetobacter Baumannii* Isolated from Hospitals in Iraq. *Ind. J. Publ. Health Res. Dev.* 2019, 10, 668. [CrossRef]

189. Ridha, D.; Ali, M.; Jassim, K. Occurrence of Metallo-β-Lactamase Genes among Acinetobacter Baumannii Isolated from Different Clinical Samples. *J. Pure Appl. Microbiol.* 2019, 13, 1111–1119. [CrossRef]

190. Salahuddin, N.; Amer, L.; Joseph, M.; El Hazmi, A.; Hawa, H.; Maghrabi, K. Determinants of Deescalation Failure in Critically Ill Patients with Sepsis: A Prospective Cohort Study. *Crit. Care Res. Pract.* 2016, 2016, 6794861. [CrossRef]

191. Samrah, S.; Bashtawi, Y.; Hayajneh, W.; Almomani, B.; Momany, S.; Khader, Y. Impact of Colistin-Initiation Delay on Mortality of Ventilator-Associated Pneumonia Caused by *A. Baumannii*. *J. Infect. Dev. Ctries* 2016, 10, 1129–1134. [CrossRef] [PubMed]

192. Senok, A.; Garaween, G.; Raji, A.; Khubnani, H.; Kim Sing, G.; Shibl, A. Genetic Relatedness of Clinical and Environmental *Acinetobacter Baumanii* Isolates from an Intensive Care Unit Outbreak. *J. Infect. Dev. Ctries* 2015, 9, 665–669. [CrossRef] [PubMed]

193. Shah, M.W.; Yasir, M.; Farman, M.; Jiman-Fatani, A.A.; Almasaudi, S.B.; Alawi, M.; El-Hossary, D.; Azhar, E.I. Antimicrobial Susceptibility and Molecular Characterization of Clinical Strains of *Acinetobacter Baumannii* in Western Saudi Arabia. *Microb. Drug Resist.* 2019, 25, 1297–1305. [CrossRef]

194. Somily, A.M. Comparison of E-Test and Disc Diffusion Methods for the in Vitro Evaluation of the Antimicrobial Activity of Colistin inMulti-Drug Resistant Gram-Negative Bacilli. *Saudi Med. J.* 2010, 5, 507–511.

195. Somily, A.M.; Absar, M.M.; Arshad, M.Z.; Al Aska, A.I.; Shakoor, Z.A.; Fatani, A.J.; Siddiqui, Y.M.; Murray, T.S. Antimicrobial Susceptibility Patterns of Multidrug-Resistant Pseudomonas Aeruginosa and Acinetobacter Baumannii against Carbapenems, Colistin, and Tigecycline. *Saudi Med. J.* 2012, 33, 750–755.

196. Vijayakumar, R.; Sandle, T.; Al-Abdoory, M.S.; AlFonaisan, M.K.; Alturaiky, W.; Mickymaray, S.; Premanathan, M.; Alsagaby, S.A. Distribution of Biocide Resistant Genes and Biocides Susceptibility in Multidrug-Resistant Klebsiella Pneumoniae, Pseudomonas Aeruginosa and Acinetobacter Baumanii—A First Report from the Kingdom of Saudi Arabia. *J. Infect. Public Health* 2018, 11, 812–816. [CrossRef]

197. Wahaab, I.T.A.; Almaroof, S.Q.M.; Yaseen, Z.T. Causative Microorganisms and Antibiotics Susceptibility in Neonatal Sepsis at Neonatal Intensive Care Unit: A Longitudinal Study from Diyala Governorate in Iraq. *Indian J. Forensic Med. Toxicol.* 2021, 15, 101–110. [CrossRef]

198. Wibberg, D.; Salto, I.P.; Eikmeyer, F.G.; Maus, I.; Winkler, A.; Nordmann, P.; Pühler, A.; Poirel, L.; Schlüter, A. Complete Genome Sequencing of Acinetobacter Baumannii Strain K50 Discloses the Large Conjugative Plasmid PK50a Encoding Carbapenemase OXA-23 and Extended-Spectrum β-Lactamase GES-11. *Antimicrob. Agents Chemother.* 2018, 62, e00212-18. [CrossRef] [PubMed]

199. Yasir, M.; Shah, M.W.; Jiman-Fatani, A.A.; Almasaudi, S.B.; Alawi, M.; El-Hossary, D.; Azhar, E.I. Draft Genome Sequence of a Clinical *Acinetobacter Baumannii* Isolate of New Sequence Type ST1688 from Saudi Arabia. *J. Glob. Antimicrob. Resist.* 2019, 18, 151–152. [CrossRef]

200. Al-Agamy, M.H.; El-Mahdy, T.S.; Radwan, H.H.; Poirel, L. Cooccurrence of NDM-1, ESBL, RmtC, AAC(6′)-Ib, and QnrB in Clonally Related *Klebsiella Pneumoniae* Isolates Together with Coexistence of CMY-4 and AAC(6′)-Ib in Enterobacter Cloacae Isolates from Saudi Arabia. *BioMed Res. Int.* 2019, 2019, 6736897. [CrossRef]

201. Alatoom, A.; Sartawi, M.; Lawlor, K.; AbdelWareth, L.; Thomsen, J.; Nusair, A.; Mirza, I. Persistent Candidemia despite Appropriate Fungal Therapy: First Case of Candida Auris from the United Arab Emirates. *Int. J. Infect. Dis.* 2018, 70, 36–37. [CrossRef]

202. Al-Baloushi, A.E.; Pål, T.; Ghazawi, A.; Sonnevend, A. Genetic Support of Carbapenemases in Double Carbapenemase Producer Klebsiella Pneumoniae Isolated in the Arab Peninsula. *Acta Microb. Immunol. Hung.* 2018, 65, 135–150. [CrossRef]

203. Alghoribi, M.F.; Binkhamis, K.; Alswaji, A.A.; Alhijji, A.; Alsharidi, A.; Balkhy, H.H.; Doumith, M.; Somily, A. Genomic Analysis of the First KPC-Producing *Klebsiella Pneumoniae* Isolated from a Patient in Riyadh: A New Public Health Concern in Saudi Arabia. *J. Infect. Public Health* 2020, 13, 647–650. [CrossRef]

204. Algowaihi, R.; Ashgar, S.; Sirag, B.; Shalam, S.; Nassir, A.; Ahmed, A. Draft Genome Sequence of a Multidrug-Resistant *Klebsiella Pneumoniae* Strain Isolated from King Abdullah Medical City, Makkah, Saudi Arabia. *Genome Announc.* 2016, 4, e00375-16. [CrossRef] [PubMed]

205. Al-Khikani, F.H.O.; Abadi, R.M.; Ayit, A.S. Emerging Carbapenemase Klebsiella Oxytocca with Multidrug Resistance Implicated in Urinary Tract Infection. *Biomed. Biotechnol. Res. J.* 2020, 2, 148–151.

206. Al-Muqdadi, B.M.J.; AL-Saadi, B.Q.H. Detection Of Arma Gene, Kpc Enzyme And Molecular Typing Of K. Pneumoniae Clinical Isolate From Public Hospitals In Baghdad City, Iraq. *Biochem. Cell. Arch.* 2020, 20, 2101–2105.

207. Al-Qahtani, A.A.; Al-Agamy, M.H.; Ali, M.S.; Al-Ahdal, M.N.; Alojhi, M.A.; Shibl, A.M. Characterization of Extended-Spectrum Beta-Lactamase-Producing *Klebsiella Pneumoniae* from Riyadh, Saudi Arabia. *J. Chemother.* 2014, 26, 139–145. [CrossRef]

208. Alsanie, W.F. Molecular Diversity and Profile Analysis of Virulence-Associated Genes in Some Klebsiella Pneumoniae Isolates. *Pract. Lab. Med.* 2020, 19, e00152. [CrossRef] [PubMed]
Biology 2021, 10, 1144

34 of 41

209. Alyousef, A.A.; Khazaal, S.S.; Ali, A.N.M.; Hussein, N.H.; Hussein, S.M.A. Detection of Prevalent Mechanism of Extended Spectrum β-Lactamases, Metallo-β-Lactamases, and AmpC β Lactamases-Producing Klebsiella Pneumoniae in the Tertiary Care Hospital. *Rev. Med. Microbiol.* 2017, 28, 133–139. [CrossRef]

210. Salman, R.A.; Ghaima, K.K. Prevalence of ESBL genes in ESBL producing Klebsiella pneumoniae isolated from patients with urinary tract infections in Baghdad, Iraq. *J. Infecto. Res.* 2018, 15, 2049–2059.

211. El Nekidy, W.S.; Moaty, M.Y.; Attallah, N.; Cardona, L.; Bonilla, M.F.; Ghazi, I.M. Successful Treatment of Multidrug Resistant Klebsiella Pneumoniae Using Dual Carbenapen Regimen in Immunocompromised Patient. *IDCases* 2017, 9, 53–55. [CrossRef]

212. Hassan, M.I.; Alkharsah, K.R.; Alzahrani, A.J.; Obeid, O.E.; Khamis, A.H.; Diab, A. Detection of Extended Spectrum Beta-Lactamases-Producing Isolates and Effect of AmpC Overlapping. *J. Infect. Dev. Ctries* 2013, 7, 618–629. [CrossRef] [PubMed]

213. Shlash, A.A.A.; Tuwaij, N.S.S. Molecular Dissemination Of Ambler Class A And C B- Lactamase Genes Among Ceftriaxone Plant Extracts on Pseudomonas aeroginosa isolated from burn patient and their surrounding environment. *Int. J. Spine Surg.* 2019, 13, 4215–4222. [CrossRef]

214. Shibl, A.A.; Al-Agamy, M.; Memish, Z.; Senok, A.; Al-Ahmed, F.; Assiri, A. The Emergence of OXA-48- and NDM-1-Positive Klebsiella Pneumoniae in Riyadh, Saudi Arabia. *Int. J. Infect. Dis.* 2017, 57, e1130–e1133. [CrossRef]

215. Shlash, A.A.A.; Tuwaij, N.S. Molecular Dissemination Of Ambler Class A And C B- Lactamase Genes Among Ceftriaxone Resistant Klebsiella Pneumoniae Infection In Najaf City, Iraq. *Biochem. Cell. Arch.* 2018, 18, 2511–2522.

216. Vaii, L.; Dashi, A.A.; Jadaon, M.M.; El-Shazly, S. The Emergence of Plasmid Mediated Quinolone Resistance QnrA2 in Extended Spectrum β-Lactamase Producing Klebsiella Pneumoniae in the Middle East. *DARU J. Pharm. Sci.* 2015, 23, 34. [CrossRef]

217. uz Zaman, T.; Alrodayyan, M.; Albladi, M.; Aldrees, M.; Siddique, M.I.; Aljohani, S.; Balkhy, H.H. Clonal Diversity and Genetic Profiling of Antibiotic Resistance in Multidrug-Resistant Klebsiella pneumoniae Isolates from a Tertiary Care Hospital in Saudi Arabia. *BMC Infect. Dis.* 2018, 18, 205. [CrossRef] [PubMed]

218. uz Zaman, T.; Aldrees, M.; Aljohani, S.M.; Alrodayyan, M.; Alabdushem, F.A.; Balkhy, H.H. Multi-Drug-Resistant Klebsiella pneumoniae Infection Carrying the OXA-48 Gene and Showing Variations in Outer Membrane Protein 36 Causing an Outbreak in a Tertiary Care Hospital in Riyadh, Saudi Arabia. *Int. J. Infect. Dis.* 2014, 28, 186–192. [CrossRef]

219. AbdulWahab, A.; Taj-Aldeen, S.J.; Ibrahim, E.B.; Hussain, S.; Muhammed, R.; Ahmed, I.; Abdeen, Y.; Sadek, O.; Abu-Madi, M. Genetic Relatedness and Host Specificity of Pseudomonas aeruginosa Isolates from Cystic Fibrosis and Non-Cystic Fibrosis Patients. *Infect. Drug Resist.* 2014, 7, 309. [CrossRef]

220. AbdulWahab, A.; Zahraldini, K.; Ahmed, M.A.; Jarir, S.A.; Muneer, M.; Mohamed, S.F.; Hamid, J.M.; Hassan, A.A.; Ibrahim, E.B. The Emergence of Multidrug-Resistant Pseudomonas aeruginosa in Cystic Fibrosis Patients on Inhaled Antibiotics. *Lung India* 2017, 34, 527. [CrossRef]

221. Ahmad, I.; Irfan, S.; Abohashr, M.; Wahab, S.; Abulaila, S.S.; Javali, M.A.; Nisar, N.; Alam, M.M.; Srivastava, S.; Saleem, M.; et al. Inhibitory Effect of Nepeta deflersiana on Climax Bacterial Community Isolated from the Oral Plaque of Patients with Periodontal Disease. *Molecules* 2021, 26, 202. [CrossRef] [PubMed]

222. Alamri, A.M.; Alfihi, S.; Aljohani, Y.; Alnimr, A. Whole Genome Sequencing of Ceftolozane-Tazobactam and Ceftazidime-Avibactam Resistant Pseudomonas aeruginosa Isolated from a Blood Stream Infection Reveals VEB and Chromosomal Metallo-Beta Lactamases-Producing Isolates and Effect of AmpC Overlapping. *J. Infect. Res.* 2020, 7, 4215–4222. [CrossRef]

223. Al-Delaimi, M.S.; Yacoob Aldosky, H.Y. Amending the Efficiency of Antimicrobials against Multidrug-Resistant Pseudomonas aeruginosa by Low-Frequency Magnetic Fields. *Bull. Exp. Biol. Med.* 2020, 170, 35–39. [CrossRef]

224. Alhamdani, R.J.M.; Al-Luabi, Y.Y.Y. Detection of exoA, nan1 genes, the biofilm production with the effect of Oyster shell and two plant extracts on Pseudomonas aeruginosa isolated from burn’ patient and their surrounding environment. *Syst. Rev. Pharm.* 2020, 11, 11.

225. Al-Zahrani, I.A.; Al-Ahmadi, B.M. Dissemination of VIM-Producing *Pseudomonas aeruginosa* Associated with High-Risk Clone ST654 in a Tertiary and Quaternary Hospital in Makkah, Saudi Arabia. *Biochem. Cell. Arch.* 2013, 28, 781–786.

226. Al-Harithi, M.R.; Keshavarzi, A.; Pirbonyeh, N.; Javanmardi, F.; Khoob, F.; Esmaili, A. Plasmid- related β-Lactamase Genes in Pseudomonas aeruginosa Isolates: A Molecular Study in Burn Patients. *J. Med. Microbiol.* 2019, 68, 1740–1746.

227. Bourghli, A.; Boissiere, L.; Obeid, I. Thoracic Kyphotic Deformity Secondary to Old Saaid Tuwaij, N.S.; Al-khilkhali, H.J.B.; Mohsen, H.M. Prevalence of SUL(1,2), GYR(A, B) and OXA Genes among Multidrug Resistance Klebsiella Pneumoniae Clinical Isolates Recovered from King Abdulaziz Specialist Hospital at Taif City, Saudi Arabia. *J. Infect. Public Health* 2021, 14, 143–151. [CrossRef]

228. Poirel, L.; Al Maskari, Z.; Al Rashdi, F.; Bernabeu, S.; Nordmann, P. NDM-1-Producing Klebsiella Pneumoniae Isolated in the Lung India 2020, 26, 35–39. [CrossRef] [PubMed]

229. Behbahani, M.R.; Keshavarzi, A.; Pirbonyeh, N.; Javanmardi, F.; Khoob, F.; Emami, A. Molecular Characterization of Multidrug Resistant Klebsiella Pneumoniae Clinical Isolates Recovered from Women Suffering Urinary Tract Infection. *J. Antimicrob. Chemother.* 2013, 68, 273–282.

230. Hassan, S.; Najati, A.; Abass, K. Isolation and Identification of Multi-Drug Resistant “Pseudomonas aeruginosa” from Burn Wound Infection in Kirkuk City, Iraq. *Eurasian J. Biosci.* 2019, 13, 1045–1050.

231. Hassan, S.A.; Shobrak, M.Y. Prevalence and Antimicrobial Resistance Characteristics of Gram-Negative Bacteria Associated with Wild Animals Presenting at Live Animal Market, Taif, Western Saudi Arabia. *Antimicrob. Resist.* 2014, 8, 273–282.
233. Jaaffar, A.I. Detection of BlaIMP Gene among Pseudomonas Aeruginosa Isolated from Different Clinical Samples. Drug Invent. Today 2019, 12, 5.

234. Khan, R.; Al-Dorzi, H.M.; Tamim, H.M.; Rishu, A.H.; Balkhy, H.; El-Saied, A.; Arabi, Y.M. The Impact of Onset Time on the Isolated Pathogens and Outcomes in Ventilator Associated Pneumonia. J. Infect. Public Health 2016, 9, 161–171. [CrossRef] [PubMed]

235. Khan, M.A.; Faiz, A. Antimicrobial Resistance Patterns of Pseudomonas Aeruginosa in Tertiary Care Hospitals of Makkah and Jeddah. Ann. Saudi Med. 2016, 36, 23–28. [CrossRef]

236. Mahdi, L.H.; Jabbar, H.S.; Auda, I.G. Antibacterial Immunomodulatory and Antibiofilm Triple Effect of Salivaricin LHM against Pseudomonas Aeruginosa Urinary Tract Infection Model. Int. J. Biol. Macromol. 2019, 134, 1132–1144. [CrossRef] [PubMed]

237. Nasser, M.; Gayen, S.; Kharat, A.S. Prevalence of β-Lactamase and Antibiotic-Resistant Pseudomonas Aeruginosa in the Arab Region. J. Glob. Antimicrob. Resist. 2020, 22, 152–160. [CrossRef]

238. Nasser, M.; Kharat, A.S. Phenotypic Demonstration of SS-Lactamase (ESβLs, MβLs, and Amp-C) among MDR Pseudomonas Aeruginosa Isolates Obtained From Burn Wound Infected in Yemen. J. Appl. Biol. Biotechnol. 2019, 7, 31–34. [CrossRef]

239. Sid Ahmed, M.A.; Khan, F.A.; Sultan, A.A.; Süderquist, B.; Ibrahim, E.B.; Jass, J.; Omrani, A.S. β-Lactamase-Mediated Resistance in MDR-Pseudomonas Aeruginosa Isolates from Qatar. Antimicrob. Resist. Infect. Control 2020, 9, 170. [CrossRef] [PubMed]

240. Tarazi, Y.H.; Abu-Basha, E.; Ismail, Z.B.; Al-Jawasreh, S.I. Antimicrobial Susceptibility of Multidrug-Resistant Pseudomonas Aeruginosa Isolated from Drinking Water and Hospitalized Patients in Jordan. Acta Trop. 2021, 217, 105859. [CrossRef]

241. Zikri, A.; El Masri, K. Use of Ceftolozane/Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas Aeruginosa Isolated from a Tertiary Care Hospital in Saud Arabia. Antibiotics 2019, 8, 67. [CrossRef] [PubMed]

242. Abulreesh, H.H.; Organji, S.R.; Osman, G.E.H.; Elbanna, K.; Almalki, M.H.K.; Ahmad, I. Prevalence of Antibiotic Resistance and Virulence Factors Encoding Genes in Clinical Staphylococcus Aureus Isolates in Saudi Arabia. Clin. Epidemiol. Glob. Health 2017, 5, 196–202. [CrossRef]

243. Abulreesh, H.H.; Organji, S.R. The Prevalence of Multidrug-Resistant Staphylococci in Food and the Environment of Makkah, Saudi Arabia. Res. J. Microb. 2011, 6, 510–523. [CrossRef]

244. Al Zebari, M.K.; Yousif, S.Y.; Assafi, M.S. The Prevalence, Molecular Characterization and Antimicrobial Susceptibility of S. Aureus Isolated from Impetigo Cases in Duhok, Iraq. Open Dermatol. J. 2017, 11, 22–29. [CrossRef]

245. AlFouzan, W.; Al-Haddad, A.; Udo, E.; Mathew, B.; Dhar, R. Frequency and Clinical Association of Panton-Valentine Leukocidin-Positive Staphylococcus Aureus Isolates: A Study from Kuwait. Med Princ. Pract. 2013, 22, 245–249. [CrossRef]

246. Alghizzi, M.J.; Alansari, M.; Shami, A. The Prevalence of Staphylococcus Aureus and Methicillin Resistant Staphylococcus Aureus Isolated from Milk Obtained from Culled Dairy Cows and from Cows with Acute Clinical Mastitis. Asian Pac. J. Trop. Biomed. 2011, 1, 196–202. [CrossRef]

247. Al-Isawi, A.; Al-Sadi, A.M.; Al-Bulushi, I.M. Antibiotic Resistance of Enterobacteriaceae Isolated from Fresh Fruits and Vegetables and Characterization of Their AmpC β-Lactamases. J. Food Prot. 2019, 82, 1857–1863. [CrossRef]
284. Hassan, M.M.; Belal, E.-S.B. Antibiotic Resistance and Virulence Genes in Enterococcus Strains Isolated from Different Hospitals in Saudi Arabia. Biotechnol. Biotechnol. Equip. 2016, 30, 726–732. [CrossRef]

285. Salem-Bekhit, M.; Moussa, I.; Muharram, M.; Alarazy, F.; Hefni, H. Prevalence and Antimicrobial Resistance Pattern of Multidrug-Resistant Enterococci Isolated from Clinical Specimens. Indian J. Med. Microbiol. 2012, 30, 44–51. [CrossRef]

286. Dibby, H.; Shlash, R. The Problem of Multidrug Resistance Bacterial Strains in Daily Clinical Practice in Dealing with Typhoid Fever in Mid-Euphrates Region of Iraq: A Cross Sectional Study. Indium J. Forensic Med. Toxicol. 2020, 14, 626–630.

287. El-Tayeb, M.A.; Ibrahim, A.S.S.; Al-Salamah, A.A.; Almaary, K.S.; Elbadawi, Y.B. Prevalence, Serotyping and Antimicrobial Resistance of Salmonella enterica Strains Isolated from Different Hospitals in the Eastern Province of Saudi Arabia. Ann. Trop. Med. Public Health. 2017, 65, 1343–1346. [CrossRef]

288. Harb, A.; O’Dea, M.; Hanan, Z.K.; Habib, I. Prevalence, Risk Factors and Antimicrobial Resistance of Salmonella enterica Serovar Typhi Carriage Among Young Children in Thi-Qar Governorate, Iraq. Epideimiol. Infect. 2017, 145, 3486–3496. [CrossRef]

289. Sahar, Z.A.; Hamed, S.L. Molecular Detection of Extended-Spectrum β-Lactamases- Producer Serratia Marcescens Causing Neonatal Sepsis in Iraq. Int. J. Res. Pharm. Sci. 2020, 11, 5803–5808. [CrossRef]

290. Abdel-Haleem, A.M.; Riad, Z.; Khan, B.K.; Abdallah, A.M.; Naeem, R.; Nikhat Sheerin, S.; Solovyev, V.; Ahmed, A.; Pain, A. Genome sequence of a Multidrug-Resistant Strain of Stenotrophomonas maltophilia with Carbapenem Resistance, Isolated from King Abdullah Medical City, Makkah, Saudi Arabia. Genome Announc. 2015, 3. [CrossRef]

291. El-Kersh, T.A.; Marie, M.A.; Al-Sheikh, Y.A.; Al-Agamy, M.H.; Al-Bloushy, A.A. Prevalence and Risk Factors of Early Fecal Carriage of Enterococcus faecalis and Staphylococcus spp. and Their Antimicrobial Resistant Patterns among Healthy Neonates Born in a Hospital Setting in Central Saudi Arabia. Saudi Med. J. 2016, 37, 280–287. [CrossRef] [PubMed]

292. Farman, M.; Yasir, M.; Al-Hindi, R.R.; Farraj, S.A.; Manaf, A.M.; Azhar, E.I. Genomic Analysis of Multidrug-Resistant Clinical Enterococcus faecalis Isolates for Antimicrobial Resistance Genes and Virulence Factors from the Western Region of Saudi Arabia. J. Pure Appl. Microbiol. 2019, 8, 3. [CrossRef]

293. George, S.K.; Suseela, M.R.; El Safi, S.; Elnagi, E.A.; Al-Naam, Y.A.; Adam, A.A.; Jacob, A.M.; Al-Maqati, T.; Ks, H.K. Molecular Analysis of Resistance to β-Lactamase Genes in Non-Typhoidal Salmonella: First Report from Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 2895–2899. [CrossRef]

294. Garaween, G.; Somily, G.; Raji, A.; Braun, S.; Al-Kattan, W.; Shibli, A.; Ehrlich, R.; Senok, A. Serogrouping and Emergence of Extended-Spectrum β-Lactamase Genes in Non-Typhoidal Salmonella: First Report from Saudi Arabia. J. Med. Microbiol. 2016, 65, 1343–1346. [CrossRef]

295. Alsaied, Z.; Elhadi, N.; Aljeldah, M.; Alzahrani, F.; Nishibuchi, M. Characterization of Vibrio Vulnificus Isolated from the Coastal Areas in the Eastern Province of Saudi Arabia. J. Pure Appl. Microbiol. 2018, 12, 1355–1364. [CrossRef]

296. M. Kurdi Al-Dulaimi, M.; Abd Mutalib, S.; Abd Ghan, M.; Mohd Zaini, N.A.; Ariffin, A.A. Multiple Antibiotic Resistance (MAR), Plasmid Profiles, and DNA Polymorphisms among Vibrio Vulnificus Isolates. Antibiotics 2019, 8, 68. [CrossRef]

297. Abro, A.H. Salmonella Typhi: Antibiotic Sensitivity Pattern in Dubai, United Arab Emirates. Pak. J. Med. Sci. 2011, 27, 6.

298. AL-Fatlawy, H.N.K.; AL-Hadrawi, H.A.N. Molecular Profiling of Class I Integron Gene in MDR Salmonella Typhi Isolates. J. Pure Appl. Microbiol. 2020, 14, 1825–1833. [CrossRef]

299. Yassin, M.T.; Mostafa, A.A.; Al-Askar, A.A.; Bdeir, R. In Vitro Antifungal Resistance Profile of Candida Strains Isolated from Saudi Women Suffering from Vulvovaginitis. Eur. J. Med. Res. 2020, 25, 1. [CrossRef]

300. Alaboudi, A.R.; Malkawi, I.M.; Osaili, T.M.; Abu-Basha, E.A.; Guitian, J. Prevalence, Antibiotic Resistance and Genotypes of Campylobacter jejuni and Campylobacter coli Isolated from Chickens in Irbid Governorate, Jordan. Int. J. Food Microbiol. 2020, 327, 108656. [CrossRef] [PubMed]

301. Ghunaim, H.; Behnke, J.M.; Aigha, I.; Sharma, A.; Doiphode, S.H.; Deshmukh, A.; Abu-Madi, M.M. Analysis of Resistance to Antimicrobials and Presence of Virulence/ Stress Response Genes in Campylobacter isolates from Patients with Severe Diarrhea. PLoS ONE 2015, 10, e0119268. [CrossRef]

302. Kanaan, M.H.G.; Mohammed, F.A. Antimicrobial Resistance of Campylobacter jejuni from Poultry Meat in Local Markets of Iraq. Plant Arch. 2020, 20, 410–415.

303. Jasim, S.A.; Al-abodi, H.R.; Ali, W.S. Resistance Rate and Novel Virulence Factor Determinants of Arcobacter spp., from Cattle Fresh Meat Products from Iraq. Microb. Pathol. 2021, 152, 104649. [CrossRef]

304. Abd Alhussen, L.S.; Darweesh, M.F. Prevalence and Antibiotic Susceptibility Patterns of Pantoea spp. Int. J. ChemTech Res. 2016, 9, 430–437.

305. Fazaaz, S.A.; Darweesh, M.F. Prevalence of Pantoea spp. among Recurrent UTI Patients with Emphasis on Risk Factors and Antimicrobial Resistance Patterns in Al-Qadisiyah Hospitals, Iraq. Ann. Trop. Med. Public Health 2020, 23, sp231202. [CrossRef]

306. Fazaa, S.A.; Darweesh, M.F. Prevalence of Pantoea spp. among Recurrent UTI Patients with Emphasis on Risk Factors and Antimicrobial Resistance Patterns in Al-Qadisiyah Hospitals, Iraq. Ann. Trop. Med. Public Health 2020, 23, 2021. [CrossRef]

307. Burjaq, S.Z.; Abu-Romman, S.M. Prevalence and Antimicrobial Resistance of Salmonella spp. From Irrigation Water in Two Major Sources in Jordan. Curr. Microbiol. 2020, 77, 3760–3766. [CrossRef] [PubMed]

308. Jassim, A.A.; Al-Gburi, N.M. Virulence Genes And Antimicrobial Resistance Of Salmonella Isolated From Milk In Wasit Province, Iraq. Plant Arch. 2020, 20, 2033–2039.

309. Olaitan, A.O.; Dia, N.M.; Gauthet, P.; Benkouiten, S.; Belhouchat, K.; Drali, T.; Parola, P.; Brouqui, P.; Memish, Z.; Raoul, D.; et al. Acquisition of Extended-Spectrum Cephalosporin- and Colistin-Resistant Salmonella Enterica Subsp. Enterica Serotype Newport by Pilgrims during Hajj. Int. J. Antimicrob. Agents 2015, 45, 600–604. [CrossRef]
309. Osaili, T.M.; Al-Nabulsi, A.A.; Shaker, R.R.; Jaradat, Z.W.; Taha, M.; Al-Kherasha, M.; Meherat, M.; Holley, R. Prevalence of Salmonella Serovars, Listeria Monocytogenes, and Escherichia coli O157:H7 in Mediterranean Ready-to-Eat Meat Products in Jordan. J. Food Prot. 2014, 77, 106–111. [CrossRef]

310. Abd-Al-Mayahi, F.S.; Jaber, S.M. Multiple Drug Resistance of Listeria Monocytogenes Isolated from Aborted Women by Using Serological and Molecular Techniques in Diwaniyah City/Iraq. Iran. J. Microbiol. 2020, 12, 305. [CrossRef] [PubMed]

311. Ahmed, M.S.; Taha, Z.M.A.; Omer, L.T. Isolation and Molecular Identification with Resistant Profile Determination of Listeria Monocytogenes from Imported Chicken Carcasses in Duhok, Kurdistan Region, Iraq. J. Pure Appl. Microbiol. 2015, 9, 97–103.

312. Alanber, M.N.; Alharbi, N.S.; Khaled, J.M. Evaluation of Multidrug-Resistant Bacillus Strains Causing Public Health Risks in Powdered Infant Milk Formulas. J. Infect. Public Health 2020, 13, 1462–1468. [CrossRef]

313. Hayder, T.; Aljubbeh, A.J.J. Antibiotics Susceptibility Patterns of Citrobacter freundii Isolated from Pa-Tients with Urinary Tract Infection in Al-Najaf Governorate—Iraq. Int. J. Res. Pharm. Sci. 2019, 10, 1481–1488. [CrossRef]

314. Talat, A.; Khalid, S.; Al-Abi, N.S.R.; Khan, A.U. Whole-Genome Sequence Analysis of Multidrug-Resistant Staphylococcus aureus Strain Isolated from an Iranian Patient. J. Glob. Antimicrob. Resist. 2020, 21, 318–320. [CrossRef]

315. Al-Muhanna, A.S.; Al-Muhanna, S.; Alzuhairi, M.A. Molecular Investigation of Extended-Spectrum Beta-Lactamase Genes and Potential Drug Resistance in Clinical Isolates of Morganella morgani. Ann. Saudi Med. 2016, 36, 223–228. [CrossRef] [PubMed]

316. Hanan, Z.K. Molecular Detection of Cholera Infection during the Outbreak in Thi-Qar Province/Iraq in 2015–2016. J. Phys. Conf. Ser. 2019, 1279, 012510. [CrossRef]

317. Aljindan, R.; AlEraky, D.M.; Borgio, J.F.; AbdulAzeez, S.; Abdalhamid, B.; Mahmoud, N.; Farhat, M. Diagnostic Deficiencies of C. difficile Infection among Patients in a Tertiary Hospital in Saudi Arabia: A Laboratory-Based Case Series. Saudi J. Biol. Sci. 2021, 28, 4472–4477. [CrossRef]

318. Al-Sa‘ady, A.T. Detection of Vancomycin Resistance in Multidrug-Resistant Enterococcus faecalis Isolated from Burn Infections. Drug Invent. Today 2019, 11, 7.

319. Ulger Toprak, N.; Veloo, A.C.M.; Urban, E.; Wybo, I.; Justesen, U.S.; Wybo, I.; Hanssen, C.H.; Meis, J.F. Molecular Identification and Susceptibility Pattern of Clinical Nocardia Species: Emergence of Nocardia crosstaceae as an Agent of Invasive Nocardiosis. Can. J. Infect. Dis. Med. Microbiol. 2013, 24, e33–e38. [CrossRef]

320. El-Mahdy, T.S.; Al-Agamy, M.H.; Al-Qahtani, A.A.; Shibl, A.M. Detection of blaOXA-23-like and blaNDM-1 in Acinetobacter Baumannii from the Eastern Region, Saudi Arabia. Microb. Drug Resist. 2017, 23, 115–121. [CrossRef]

321. Khan, Z.; Ahmad, S.; Joseph, L.; Al-Obaid, K. Isolation of Cholesterol-Dependent, Multidrug-Resistant Candida glabratastrains from Blood Cultures of a Candidemia Patient in Kuwait. BMC Infect. Dis. 2014, 14, 188. [CrossRef] [PubMed]

322. Alosaimi, R.S.; Kaaki, M.M. Catheter-Related ESBL-Producing Leccleria adecarboxylata Septicemia in Hemodialysis Patient: An Emerging Pathogen? Case Rep. Infect. Dis. 2020, 2020, 7403152. [CrossRef] [PubMed]

323. Yuan, Q.; Almutairi, T.S.; Alhalouli, T.; Pain, A.; Almazk, C.H.; Meis, J.F. Molecular Identification and Susceptibility Pattern of Clinical Nocardia Species: Emergence of Nocardia crosstaceae as an Agent of Invasive Ncardiosis. Can. J. Infect. Dis. Med. Microbiol. 2013, 24, e33–e38. [CrossRef] [PubMed]

324. Guan, Q.; Almutairi, T.S.; Alhalouli, T.; Pain, A.; Almazk, C.H.; Meis, J.F. Molecular Identification and Susceptibility Pattern of Clinical Nocardia Species: Emergence of Nocardia crosstaceae as an Agent of Invasive Ncardiosis. Can. J. Infect. Dis. Med. Microbiol. 2013, 24, e33–e38. [CrossRef] [PubMed]

325. Abdalhamid, B.; Elhadi, N.; Alsamman, K.; Aljindan, R. Chryseobacterium gleum pneumonia in an infant with nephrotic syndrome. IDCases 2016, 5, 34–36. [CrossRef] [PubMed]

326. Aljindan, R.; AlHadi, N. Genetic Relationship of Multi-Resistant Acinetobacter Baumannii Isolates in Kingdom of Saudi Arabia. J. Pure Appl. Microbiol. 2018, 12, 1951–1958. [CrossRef]

327. Yasir, M.; Farman, M.; Shah, M.W.; Jiman-Fatani, A.A.; Othman, N.A.; Almasaudi, S.B.; Alawi, M.; Abdulllah, N.; Ismaeel, N.A.; et al. Genomic and Antimicrobial Resistance Genes Diversity in Multidrug-Resistant CTX-M-Positive Isolates of Escherichia coli at a Health Care Facility in Jeddah. J. Infect. Public Health 2020, 13, 94–100. [CrossRef]

328. Johani, K.; Abualsaad, D.; Costa, D.M.; Hu, H.; Whiteley, G.; Deva, A.; Vickery, K. Characterization of Microbial Community Composition, Antimicrobial Resistance and Biofilm on Intensive Care Surfaces. J. Infect. Public Health 2018, 11, 418–424. [CrossRef]

329. Hamza, W.; Salama, M.; Morsi, S.; Abdo, N.; Al-Fadhli, M. Benchmarking for Surgical Site Infections among Gastrointestinal Surgeries and Related Risk Factors: Multicenter Study in Kuwait. Infect. Drug Resist. 2018, 11, 1373–1381. [CrossRef]

330. Balkhair, A.; Al-Farsi, Y.M.; Al-Muhammer, Z.; Al-Rashidi, R.; Al-Jabri, M.; Neilson, F.; Al-Adawi, S.S.; El-Beeli, M.; Al-Adawi, S. Epidemiology of Multi-Drug Resistant Organisms in a Teaching Hospital in Oman: A One-Year Hospital-Based Study. Sci. World J. 2014, 2014, 157102. [CrossRef]

331. Al Awaidy, S.T. Tuberculosis Elimination in Oman: Winning the War on the Disease. ERJ Open Res. 2018, 4, 00121–00218. [CrossRef]

332. Metry, A.M.; Al-Salmi, I.; Al-Abri, S.; Al Ismaili, F.; Al Mahrouqi, Y.; Hola, A.; Shaheen, F.A.M. Epidemiology and Outcome of Tuberculosis in Immunocompromised Patients. Saudi J. Kidney Dis. Transpl. 2017, 28, 806–817. [PubMed]

333. Hasan, M.R.; Sundaram, M.S.; Sundararaju, S.; Tsui, K.-M.; Karim, M.Y.; Roscoe, D.; Imam, O.; Janahi, M.A.; Thomas, E.; Dobson, S.; et al. Unusual Accumulation of a Wide Array of Antimicrobial Resistance Mechanisms in a Patient with Cytomegalovirus-Associated Hemophagocytic Lymphohistiocytosis: A Case Report. BMC Infect. Dis. 2020, 20, 237. [CrossRef] [PubMed]
334. Alkhawaja, E.; Hammadi, S.; Abdelmalek, M.; Mahasneh, N.; Alkhawaja, B.; Abdelmalek, S.M. Antibiotic Resistant Cutibacterium Acnes among Acne Patients in Jordan: A Cross Sectional Study. BMC Dermatol. 2020, 20, 17. [CrossRef]

335. Al-Shamahy, H.A.; Sabrah, A.A.; Al-Robasi, A.B.; Naser, S.M. Types of Bacteria Associated with Neonatal Sepsis in Al-Thawra University Hospital, Sana’a, Yemen, and Their Antimicrobial Profile. Sultan Qaboos Univ. Med. J. 2012, 12, 48–54. [CrossRef]

336. Kordalewska, M.; Guerrero, K.D.; Garcia-Rubio, R.; Jiménez-Ortízosa, C.; Mediavilla, J.R.; Cunningham, M.H.; Hollis, F.; Hong, T.; Chow, K.F.; Kriewisch, B.N.; et al. Antifungal Drug Susceptibility and Genetic Characterization of Fungi Recovered from COVID-19 Patients. J. Fungi 2021, 7, 552. [CrossRef]

337. Al-Mutairi, N.M.; Ahmad, S.; Mokaddas, E. Performance Comparison of Four Methods for Detecting Multidrug-Resistant Mycobacterium Tuberculosis Strains. Int. J. Tuberc. Lung Dis. 2011, 15, 110–115.

338. Ali, R.M.; Alsudani, A.A. Discordance between GeneXpert Assay and Conventional Drug-Susceptibility Testing in Detecting M. tuberculosis. Int. J. Mycobacteriol. 2019, 5, S193–S194. [CrossRef] [PubMed]

339. Arastehfar, A.; Fang, W.; Daneshnia, F.; Al-Hatmi, A.M.; Liao, W.; Pan, W.; Khan, Z.; Ahmad, S.; Rosam, K.; Lackner, M.; et al. Novel Multiplex Real-Time Quantitative PCR Detecting System Approach for Direct Detection of Candida Auris and Its Relatives in Spiked Serum Samples. Future Microbiol. 2019, 14, 33–45. [CrossRef] [PubMed]

340. Alabdullatif, M.; Alrehaili, J. Three Years of Evaluation to Determine Reduction of Antibiotic Resistance in Gram-Negative Pathogenic Human Pathogenic Bacteria by the Saudi National Action Plan. Infect. Drug Resist. 2020, 13, 3657–3667. [CrossRef]

341. Amoudy, H.A.; Safar, H.A.; Mustafa, A.S. Development of Escherichia coli and Mycobacterium Smegmatis Recombinants Expressing Major Mycobacterium Tuberculosis-Specific Antigenic Proteins. Int. J. Mycobacteriol. 2016, 5, S84–S85. [CrossRef] [PubMed]

342. Lesho, E.; Lin, X.; Clifford, R.; Snersud, E.; Omus-Leone, F.; Appella, L.; Ong, A.; Maybank, R.; Nielsen, L.; Kwak, Y.; et al. From the Battlefield to the Bedside: Supporting Warfighter and Civilian Health With the “ART” of Whole Genome Sequencing for Antibiotic Resistance and Outbreak Investigations. Mil. Med. 2016, 181, 621–624. [CrossRef] [PubMed]

343. Al Tal, Y.; Abualhajaa, A.; Alsaqgar, M.; Almaatyah, A.; Masadeh, M.; Alzoubi, K.H. Design and Characterization of a New Hybrid Peptide from LL-37 and BMAP-27. Infect. Drug Resist. 2019, 12, 1035–1045. [CrossRef] [PubMed]

344. Almaaytah, A.; Abualhajaa, A.; Alqudah, O. The Evaluation of the Synergistic Antimicrobial and Antibiofilm Activity of AamAP1-Lysine with Conventional Antibiotics against Representative Resistant Strains of Both Gram-Positive and Gram-Negative Bacteria. Infect. Drug Resist. 2019, 12, 1371–1380. [CrossRef]

345. Obiedat, M.; Shatnawi, M.; Al-alawi, M.; Al-Zubi, E.; Al-Dmooor, H.; Al-Qudah, M.; El-Qudah, J.; Otri, I. Antimicrobial Activity of Crude Extracts of Some Plant Leaves. Res. J. Microbiol. 2012, 7, 59–67. [CrossRef]

346. Ahmed, A.A.; Salih, F.A. Low Concentrations of Local Honey Modulate ETA Expression, and Quorum Sensing Related Virulence in Drug-Resistant Pseudomonas Aeruginosa Recovered from Infected Burn Wounds. Iran. J. Basic Med. Sci. 2019, 22, 568. [CrossRef]

347. Al-Somat, M.; Al-Adhal, A.; Al-Arwalli, A.; Al, K.; Al-Moyed, K.; Shopit, A.; Karbane, M.E.; Al-Kamarany, M.A. Sensitivity of Clinical Bacterial Isolates to Honey Marketed in Yemen, and Their Antimicrobial Profile. Iran. J. Basic Med. Sci. 2014, 7, 9. [CrossRef]

348. Darwish, R.M.; Fares, R.J.A.; Zarga, M.H.A.; Nazer, I.K. Antibacterial Effect of Jordanian Propolis and Isolated Flavonoids against Human Pathogenic Bacteria. Afr. J. Biotechnol. 2010, 9, 9.

349. Yang, S.-K.; Yusoff, K.; Thomas, W.; Akseer, R.; Alhosani, M.S.; Abushelaibi, A.; Lim, S.-H.-E.; Lai, K.-S.; Lavendar Essential Oil Induces Oxidative Stress Which Modifies the Bacterial Membrane Permeability of Carbapenemase Producing Klebsiella Pneumoniae. Sci. Rep. 2020, 10, 819. [CrossRef]

350. Soliman, S.M.; Semreen, M.H.; El-Keblawy, A.A.; Abdullah, A.; Uppuluri, P.; Ibrahim, A.S. Assessment of Herbal Drugs for Promising Anti-Candida Activity. BMC Complement Altern Med. 2017, 17, 257. [CrossRef]

351. Perveen, K.; Husain, F.M.; Qais, F.A.; Khan, A.; Razak, S.; Afsar, T.; Alam, P.; Almajwali, A.M.; Abulmeaty, M.M.A. Microwave-Assisted Rapid Green Synthesis of Gold Nanoparticles Using Seed Extract of Trachyspermum Ammi: ROS Mediated Biofilm Antibiotic Resistance and Outbreak Investigations. J. Fungi 2021, 7, 552. [CrossRef] [PubMed]

352. El-Balas, Q. Development of Novel Ultrashort Antimicrobial Peptide Nanoparticles with Potent Antimicrobial and Antibiofilm Activities against Multidrug-Resistant Bacteria. Drug Des. Dev. Ther. 2017, 11, 3159–3170. [CrossRef] [PubMed]
357. Mechkarska, M.; Ahmed, E.; Coquet, L.; Leprince, J.; Jouenne, T.; Vaudry, H.; King, J.D.; Conlon, J.M. Antimicrobial Peptides with Therapeutic Potential from Skin Secretions of the Marsabit Clawed Frog Xenopus Borealis (Pipidae). *Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.* 2010, 152, 467–472. [CrossRef] [PubMed]

358. Omran, Z.; Bader, A.; Porta, A.; Vandamme, T.; Anton, N.; Alehaideb, Z.; El-Said, H.; Faidah, H.; Essa, A.; Vassallo, A.; et al. Evaluation of Antimicrobial Activity of Triphala Constituents and Nanoformulation. *Evid.-Based Complementary Altern. Med.* 2020, 2020, 6976973. [CrossRef]

359. Mahdi, L.; Musafer, H.; Zwain, L.; Salman, I.; Al-Joofy, I.; Rasool, K.; Mussa, A.; Al-kakei, S.; Al-Oqaili, R.; Al-Alak, S.; et al. Two New Novel Roles of Buffalo Milk Lactoperoxidase, Antibiofilm Agent and Immunomodulator against Multidrug Resistant Salmonella Enterica Serovar Typhi and Listeria Monocytogenes. *Microb. Pathog.* 2017, 109, 221–227. [CrossRef]

360. Rahmeh, R.; Akbar, A.; Kishk, M.; Al-Onaiz, T.; Al-Azmi, A.; Al-Shatti, A.; Al-Mutairi, S.; Akbar, B. Distribution and Antimicrobial Activity of Lactic Acid Bacteria from Raw Camel Milk. *New Microbes New Infect.* 2019, 30, 100560. [CrossRef]

361. Abdel-Aziz, H.; Eldehna, W.; Keeton, A.; Piazza, G.; Kadi, A.; Attwa, M.; Abdelhameed, A.; Attia, M. Isatin-Benzoxazine Molecular Hybrids as Potential Antiinflammatory Agents: Synthesis and in Vitro Pharmacological Profiling. *Drug Des. Dev. Ther.* 2017, 11, 2333–2346. [CrossRef]

362. Aboul-Fadl, T.; Bin-Jubair, F.A.S.; Aboul-Wafa, O. Schiff Bases of Indoline-2,3-Dione (Isatin) Derivatives and Nalidixic Acid Carboxyhydrate, Synthesis, Antibacterial Activity and Pharmacophoric Model Building. *Eur. J. Med. Chem.* 2010, 45, 4578–4586. [CrossRef]

363. Ahamed, A.; Arif, I.A.; Mateen, M.; Surendra Kumar, R.; Idhayadhulla, A. Antimicrobial, Anticoagulant, and Cytotoxic Evaluation of Multidrug Resistance of New 1,4-Dihydropyrimidine Derivatives. *Saudi J. Biol. Sci.* 2018, 25, 1227–1235. [CrossRef] [PubMed]

364. Bogue, A.L.; Panmanee, W.; McDaniel, C.T.; Mortensen, J.E.; Kamau, E.; Actis, L.A.; Johannigman, J.A.; Schurr, M.J.; Satish, L.; et al. Antimicrobial Activity of Lactic Acid Bacteria from Raw Camel Milk. *New Microbes New Infect.* 2019, 30, 100560. [CrossRef]

365. Al-Dhabi, N.; Ghilan, A.-K.M.; Arasu, M. Characterization of Silver Nanomaterials Derived from Marine Streptomyces Sp. Al-Dhabi-87 and Its In Vitro Application against Multidrug Resistant and Extended-Spectrum Beta-Lactamase Clinical Pathogens. *New Microbes New Infect.* 2018, 8, 279. [CrossRef] [PubMed]

366. Al-Dhabi, N.A.; Ghilan, A.-K.M.; Esmail, G.A.; Valan Arasu, P.; Ponmurugan, K. Bioactivity Assessment of the Saudi Arabian Marine Streptomycetes Sp. Al-Dhabi-90, Metabolic Profiling and Its in Vitro Inhibitory Property against Multidrug Resistant and Extended-Spectrum Beta-Lactamase Clinical Bacterial Pathogens. *J. Infect. Public Health* 2019, 12, 549–556. [CrossRef] [PubMed]

367. Al-Asmari, A.K.; Alamri, M.A.; Almasoudi, A.S.; Abbasmanthiri, R.; Mahfoud, M. Evaluation of the in Vitro Antimicrobial Activity of Selected Saudi Scorpion Venoms Tested against Multidrug-Resistant Micro-Organisms. *J. Glob. Antimicrob. Resist.* 2017, 10, 14–18. [CrossRef]

368. Alkhedaida, A.Q.; Ismail, T.A.; Alotaibi, S.H.; Nassan, M.A.; Shehri, Z.S.A. Preventive Effect of Artemisinin Extract against Cholestasis Induced via Lithocholic Acid Exposure. *Biosci. Rep.* 2018, 38, BSR20181011. [CrossRef]

369. El-Newehy, M.H.; Moydeen A., M.; Aldhaheri, W.; Keeton, A.; Piazza, G.; Kadi, A.; Attwa, M.; Abdelhameed, A.; Attia, M. Isatin-Benzoazine Molecular Hybrids as Potential Antiinflammatory Agents: Synthesis and in Vitro Pharmacological Profiling. *Drug Des. Dev. Ther.* 2017, 11, 2333–2346. [CrossRef]

370. Al-Dhabi, N.; Ghilan, A.-K.M.; Arasu, M. Characterization of Silver Nanomaterials Derived from Marine Streptomyces Sp. Al-Dhabi-87 and Its In Vitro Application against Multidrug Resistant and Extended-Spectrum Beta-Lactamase Clinical Pathogens. *New Microbes New Infect.* 2018, 8, 279. [CrossRef] [PubMed]

371. Al-Dhabi, N.A.; Ghilan, A.-K.M.; Esmail, G.A.; Valan Arasu, P.; Ponmurugan, K. Bioactivity Assessment of the Saudi Arabian Marine Streptomycetes Sp. Al-Dhabi-90, Metabolic Profiling and Its in Vitro Inhibitory Property against Multidrug Resistant and Extended-Spectrum Beta-Lactamase Clinical Bacterial Pathogens. *J. Infect. Public Health* 2019, 12, 549–556. [CrossRef] [PubMed]

372. Al-Dhabi, N.A.; Ghilan, A.-K.M.; Esmail, G.A.; Valan Arasu, P.; Ponmurugan, K. Bioactivity Assessment of the Saudi Arabian Marine Streptomycetes Sp. Al-Dhabi-90, Metabolic Profiling and Its in Vitro Inhibitory Property against Multidrug Resistant and Extended-Spectrum Beta-Lactamase Clinical Bacterial Pathogens. *J. Infect. Public Health* 2019, 12, 549–556. [CrossRef] [PubMed]

373. Al-Dhabi, N.; Ghilan, A.-K.M.; Arasu, M. Characterization of Silver Nanomaterials Derived from Marine Streptomyces Sp. Al-Dhabi-87 and Its In Vitro Application against Multidrug Resistant and Extended-Spectrum Beta-Lactamase Clinical Pathogens. *New Microbes New Infect.* 2018, 8, 279. [CrossRef] [PubMed]

374. Al-Dhabi, N.; Ghilan, A.-K.M.; Arasu, M. Characterization of Silver Nanomaterials Derived from Marine Streptomyces Sp. Al-Dhabi-87 and Its In Vitro Application against Multidrug Resistant and Extended-Spectrum Beta-Lactamase Clinical Pathogens. *New Microbes New Infect.* 2018, 8, 279. [CrossRef] [PubMed]

375. Al-Dhabi, N.A.; Ghilan, A.-K.M.; Esmail, G.A.; Valan Arasu, P.; Ponmurugan, K. Bioactivity Assessment of the Saudi Arabian Marine Streptomycetes Sp. Al-Dhabi-90, Metabolic Profiling and Its in Vitro Inhibitory Property against Multidrug Resistant and Extended-Spectrum Beta-Lactamase Clinical Bacterial Pathogens. *J. Infect. Public Health* 2019, 12, 549–556. [CrossRef] [PubMed]

376. Al-Dhabi, N.A.; Ghilan, A.-K.M.; Esmail, G.A.; Valan Arasu, P.; Ponmurugan, K. Bioactivity Assessment of the Saudi Arabian Marine Streptomycetes Sp. Al-Dhabi-90, Metabolic Profiling and Its in Vitro Inhibitory Property against Multidrug Resistant and Extended-Spectrum Beta-Lactamase Clinical Bacterial Pathogens. *J. Infect. Public Health* 2019, 12, 549–556. [CrossRef] [PubMed]

377. Al-Dhabi, N.A.; Ghilan, A.-K.M.; Esmail, G.A.; Valan Arasu, P.; Ponmurugan, K. Bioactivity Assessment of the Saudi Arabian Marine Streptomycetes Sp. Al-Dhabi-90, Metabolic Profiling and Its in Vitro Inhibitory Property against Multidrug Resistant and Extended-Spectrum Beta-Lactamase Clinical Bacterial Pathogens. *J. Infect. Public Health* 2019, 12, 549–556. [CrossRef] [PubMed]

378. Al-Dhabi, N.A.; Ghilan, A.-K.M.; Esmail, G.A.; Valan Arasu, P.; Ponmurugan, K. Bioactivity Assessment of the Saudi Arabian Marine Streptomycetes Sp. Al-Dhabi-90, Metabolic Profiling and Its in Vitro Inhibitory Property against Multidrug Resistant and Extended-Spectrum Beta-Lactamase Clinical Bacterial Pathogens. *J. Infect. Public Health* 2019, 12, 549–556. [CrossRef] [PubMed]
377. Leangapichart, T.; Gautret, P.; Griffiths, K.; Belhouchat, K.; Memish, Z.; Raoult, D.; Rolain, J.-M. Acquisition of a High Diversity of Bacteria during the Hajj Pilgrimage, Including Acinetobacter Baumannii with Bla\textsubscript{OXA-72} and Escherichia coli with Bla\textsubscript{NDM-5} Carbapenemase Genes. Antimicrob. Agents Chemother. 2016, 60, 5942–5948. [CrossRef]

378. Zumla, A.; Saeed, A.B.; Alotaibi, B.; Yezli, S.; Dar, O.; Bieh, K.; Bates, M.; Tayeb, T.; Mwaba, P.; Shafi, S.; et al. Tuberculosis and Mass Gatherings—Opportunities for Defining Burden, Transmission Risk, and the Optimal Surveillance, Prevention, and Control Measures at the Annual Hajj Pilgrimage. Int. J. Infect. Dis. 2016, 47, 86–91. [CrossRef]

379. Aurilio, C.; Sansone, P.; Paladini, A.; Barbarisi, M.; Coppolino, F.; Pota, V.; Pace, M.C. Multidrug Resistance Prevalence in COVID Area. Life 2021, 11, 601. [CrossRef]

380. Vaillancourt, M.; Jorth, P. The Unrecognized Threat of Secondary Bacterial Infections with COVID-19. mBio 2020, 11, e01806-20. [CrossRef]