K$^+ \to \pi^+\pi^0\gamma$ in the Standard Model and Beyond

P. MERTENS
Centre for Cosmology, Particle Physics and Phenomenology (CP3)
Université catholique de Louvain, Chemin du Cyclotron, 2
B-1348 Louvain-la-Neuve, Belgium

In this note we show how improved theoretical analysis combined with recent experimental data coming from NA48/2 concerning $K^+ \to \pi^+\pi^0\gamma$ decay shed light on the dynamics of the $s \to d\gamma$ transition. Consequences on NP analysis are also presented.

1 Introduction

In the search for New Physics (NP) the $s \to d\gamma$ process is complementary to $b \to s\gamma$ and $\mu \to e\gamma$, as the relative strength of these transitions is a powerful tool to investigate the NP dynamics. However, since $s \to d\gamma$ takes place deep within the non-perturbative regime of QCD we have to control hadronic effects and find observables sensitive to the short-distance dynamics, and thereby to possible NP contributions. The purpose of this note is to show how this can be achieved using the $K^+ \to \pi^+\pi^0\gamma$ observable [1].

In section 2, the anatomy of the $s \to d\gamma$ process in the Standard Model (SM) is shortly detailed. In section 3, we analyse the $K^+ \to \pi^+\pi^0\gamma$ decay in the SM whereas section 4 is devoted to show how, in the MSSM, rare and $K^+ \to \pi^+\pi^0\gamma$ decays, as well as $\text{Re}(\varepsilon'_K/\varepsilon_K)$ can be exploited to constrain NP.

2 The $s \to d\gamma$ anatomy

In the SM, the flavour changing electromagnetic process $s \to d\gamma$ is a loop effects which at low energy scale is described by the effective $\Delta S = 1$ Hamiltonian [2]

$$H_{\text{eff}}(\mu \approx 1 \text{ GeV}) = \sum_{i=1}^{10} C_i(\mu) Q_i(\mu) + C_{\gamma\gamma'} Q_{\gamma\gamma'} + C_\gamma Q_\gamma + h.c.,$$

(1)

where the Q_i are effective four-quarks operators whereas the quark-bilinear electric $Q_{\gamma\gamma'}^\pm$ and magnetic Q_{γ}^\pm operators are respectively given by $\sum Q_{\gamma}^\pm = (\bar{s}_L \gamma^\nu d_L \pm \bar{s}_R \gamma^\nu d_R) \partial^\mu F_{\mu\nu}$ and $Q_{\gamma}^\pm = (\bar{s}_L \sigma^{\mu\nu} d_R \pm \bar{s}_R \sigma^{\mu\nu} d_L) F_{\mu\nu}$. In the non perturbative regime of QCD this Hamiltonian is hadronized into an effective weak Lagrangian that shares the chiral properties of the operators contained in H_{eff}. The chiral structures of Q_i and Q_{γ}^\pm allow the usual $O(p^2)$ weak Lagrangian $L_W = G_S O_8 + G_{27} O_{27} + G_{cw} O_{cw}$ (detailed in [10]) whereas the chirality flipping Q_{γ}^\pm operators induce more involved $O(p^4)$ local interactions (detailed in [1,10]). The non-trivial dynamics corresponding to

*By definition : $2\sigma^{\mu\nu} = i[\gamma^\mu, \gamma^\nu]$.
the low-energy tails of the photon penguins arise at $\mathcal{O}(p^4)$ (the $\mathcal{O}(p^2)$ dynamics being completely predicted by Low’s theorem [3]) where they are represented in terms of non-local meson loops, as well as additional $\mathcal{O}(p^4)$ local effective interactions, in particular the $\Delta I = 1/2$ enhanced $N_{14}, ..., N_{18}$ octet counterterms [4,5].

3 $K^+ \to \pi^+\pi^0\gamma$ in the SM

For the $K^+ \to \pi^+\pi^0\gamma$ decay, the standard phase-space variables are chosen as the π^+ kinetic energy T^*_c and $W^2 \equiv (q_\gamma \cdot P_K)(q_\gamma \cdot P_{\pi^+})/m^2_{\pi^+}m^2_K$ [6]. Indeed, pulling out the dominant bremsstrahlung contribution, the differential rate can be written

$$\frac{\partial^2 \Gamma}{\partial T^*_c \partial W^2} = \frac{\partial^2 \Gamma_{IB}}{\partial T^*_c \partial W^2} \left(1 - 2 \frac{m^2_{\pi^+}}{m_K} \text{Re} \left(\frac{E_{DE}}{eA_{IB}} \right) W^2 + \frac{m^4_{\pi^+}}{m^2_K} \left(\frac{|E_{DE}|^2}{e^2 A_{IB}} + \frac{|M_{DE}|^2}{e^2 A_{IB}} \right) W^4 \right). \quad (2)$$

In this expression both electric E_{DE} and magnetic M_{DE} direct emission amplitudes are functions of W^2 and T^*_c and appear at $\mathcal{O}(p^4)$. To a very good approximation we can identify these direct emission amplitudes with their first multipole for which the $\pi^+\pi^0$ state is in a P wave. The main interest of $K^+ \to \pi^+\pi^0\gamma$ is that its bremsstrahlung component $A_{5B} = A(K^+ \to \pi^+\pi^0)\gamma$ is pure $\Delta I = 3/2$ hence suppressed, making the direct emission amplitudes easier to access. The magnetic amplitude M_{DE} is dominated by the QED anomaly and will not concern us here.

3.1 Differential rate

Given its smallness, we can assume the absence of CP-violation when discussing this observable. Experimentally, the electric and magnetic amplitudes (taken as constant) have been fitted in the range $T^*_c \leq 80$ MeV and $0.2 < W < 0.9$ by NA48/2 [7]. For the electric amplitude, using their parametrization, we obtain at $\mathcal{O}(p^4)$:

$$X_E = -\text{Re} \left(\frac{E_{DE}/eA_{IB}}{m^2_K \cos(\delta_1 - \delta^2_0)} \right) = \frac{3G_8/G_{27}}{40\pi^2 F^2_{\pi^+}m^2_K} \left[E^l(W^2, T^*_c) - \frac{m^2_K \text{Re} \bar{N}}{m^2_K - m^2_\pi} \right] \equiv X^l_E - X^{CT}_E , \quad (3)$$

where $\delta^1_1 (\delta^2_0)$ is the strong phase of $E_{DE} (A_{IB})$. The E^l represents O_8 and O_{27} induced loop contributions (loop contributions from O_{ew} are sub-leading) and \bar{N} corresponds to local counterterms and Q^-_c contributions. Naively we would expect the O_{27} contributions to be sub-dominant, however, they are dynamically enhanced by $\pi\pi$ loops. Since experimentally, no slope were included in X_E, we average E^l over the experimental range and find $X^l_E = -17.6$ GeV$^{-4}$. Knowing X^l_E and using the experimental measurement of $X_E = (24 \pm 4 \pm 4)$ GeV$^{-4}$ we can extract the local contributions

$$X^{CT}_E/X^l_E = 0.37 \pm 0.32 \rightarrow \text{Re} \bar{N} = 0.095 \pm 0.083 . \quad (4)$$

To our knowledge it is the first time that $K^+ \to \pi^+\pi^0\gamma$ counterterms contributions are extracted from experiment. The value we found is much smaller than the $\mathcal{O}(1)$ expected for the N_i on dimensional grounds or from factorization [8]. Note that the required amount of counterterm contribution would have been bigger if O_{27} loops were neglected since then $X^l_E = -10.2$ GeV$^{-4}$. This result is important since it implies that the counterterms combination \bar{N}, which appears in other radiative K decays, is now under control and further reliable theoretical investigations can be carried on, in particular concerning the CP violating observables.
3.2 Direct CP-violating asymmetry

Since the bremsstrahlung and direct emission amplitudes interfere and carry different strong and weak phases, a non vanishing CP violating asymmetry can be generated. The asymmetry measures direct CP violation since K^\pm do not mix. Besides and because the long-distance bremsstrahlung amplitude dominates the branching, this CP asymmetry is the simplest window on short-distance physics and a fortiori on possible NP effects. CP-violation in $K^+ \rightarrow \pi^+\pi^0\gamma$ is quantified by the parameter $\varepsilon'_{+0\gamma}$, defined from

$$\text{Re} \left(\frac{E_{DE}}{\epsilon A_{IB}} \right) \left(K^\pm \rightarrow \pi^\mp \pi^0\gamma \right) \approx \frac{\text{Re} E_{DE}}{\text{Re} A_{IB}} \left[\cos(\delta_1 - \delta_0) - \sin(\delta_1 - \delta_0)\varepsilon'_{+0\gamma} \right],$$

as $\varepsilon'_{+0\gamma} \equiv \text{Arg}E_{DE} - \text{Arg}A_{IB}$ (see [11]). Both Q^-_γ and Q_i (through loops and counterterms) contribute to this parameter and we find

$$\varepsilon'_{+0\gamma}(Q_i) = -0.55(25)\frac{\sqrt{3}\varepsilon'_K}{\omega} \quad \text{and} \quad \varepsilon'_{+0\gamma}(Q^-_\gamma) = +2.8(7)\frac{\text{Im}C^{-}_{\gamma}}{G_{F}m_{K}},$$

respectively[6]. Sadly, these contributions interfere destructively implying that $\varepsilon'_{+0\gamma}|_{SM} = 0.5(5) \times 10^{-4}$. This large uncertainty is driven by a large uncertainty on counterterms and on estimated $O(p^6)$ effects. However, contrary to what happens in ε'_K, $\varepsilon'_{+0\gamma}$ is rather insensitive to isospin breaking effects, conservatively taken into account in [11]. Expressing $\varepsilon'_{+0\gamma}(Q_i)$ in term of the experimental ε'_K allows us to keep possible NP effects in Q_i under control. As a consequence, the only way for NP to affect $\varepsilon'_{+0\gamma}$ is via its $\text{Im}C^{-}_{\gamma}$ component. The current bound obtained by NA48/2 [12] is rather weak and allows very large NP effects in $\varepsilon'_{+0\gamma}$:

$$\text{Im}C^{-}_{\gamma}|_{NP}/G_{F}m_{K} = -0.08 \pm 0.13.$$ (7)

4 $K^+ \rightarrow \pi^+\pi^0\gamma$ beyond the SM

Once combined with other short-distance sensitive observables, any experimental improved measurement of $\varepsilon'_{+0\gamma}$ will be greatly rewarding. The main problem when probing NP is the issue of disentangling correlations between various NP sources in a fully model-independent way. In [10], we analysed broad classes of NP scenarios defined as model-independently as possible and identified corresponding strategies to constrain and disentangle NP sources using experimental informations on $K_L \rightarrow \pi\ell^+\ell^-$, $K \rightarrow \pi\nu\bar{\nu}$ decays and $\text{Re}(\varepsilon'_K/\varepsilon_K)$. Doing so we highlighted the complementary informations that could be obtained from radiative decays.

In the MSSM [11][10], NP can affect all the operators in [11] as well as gluon-penguin (denoted by Q_g^\pm) and semi-leptonic operators, in particular $Q_{V,I} = s_i\gamma_\mu d\otimes \bar{\ell}\gamma^\mu\ell$. In this particular model the irreducible correlations are two fold. First $Q_{V,I}^+$ and $Q_{V,I}^\pm$ always interfere in $K_L \rightarrow \pi\ell^+\ell^-$ in and beyond the SM and second, $\text{Re}(\varepsilon'_K/\varepsilon_K)$ receives NP contributions from many different sources. The corresponding bounds are displayed in Figure 1 where we see that a large but not impossible cancellation between NP in gluon-penguin and electroweak operators in $\text{Re}(\varepsilon'_K/\varepsilon_K)$ allows for $\text{Im}C^{-}_{\gamma}$ to reach the percent level if we impose $\text{Im}C^{-}_{\gamma} = \pm 1.5 \text{Im}C^{+}_{\gamma}$. This value will correspond to a saturation of the current $K_L \rightarrow \pi^0e^+e^-$ upper bound and since in the MSSM Q_g^\pm and $Q_{V,I}^\pm$ mix under renormalization this $\text{Im}C^{-}_{\gamma}$ upper bound provides also an lower bound for $\text{Im}C^{-}_{\gamma}$. From (10) this implies that NP can push $\varepsilon'_{+0\gamma}$ up to roughly two orders of magnitude above its SM prediction. The parameter $\varepsilon'_{+0\gamma}$ provides therefore a very good probe for NP γ-penguin effects and furthermore reveals NP cancellations occurring inside $\text{Re}(\varepsilon'_K/\varepsilon_K)$.

[6] Numerically, in the SM, the Wilson coefficient of the magnetic operator in $b \rightarrow s\gamma$ can be used for $\text{Im}C^{+}_{\gamma}$, since the CKM elements for the u, c, and t contributions scale similarly and we find $\text{Im}C^{+}_{\gamma}(2\text{ GeV})_{SM}/G_{F}m_{K} = \mp 0.31(8) \times \text{Im}\lambda_t$.

Figure 1: Loop-level FCNC scenario, with all the electroweak operators as well as Q_1^\pm simultaneously turned on, but imposing $\text{Im } C_1^\pm = \pm 1.5 \text{ Im } C_5^\gamma$ and $|\text{Re}(\varepsilon_K^\prime/\varepsilon_K)| < 2 \text{ Re}(\varepsilon_K^\prime/\varepsilon_K)^\text{exp}$. (a) The $\text{Im } C_1^\pm$ range as a function of the fine-tuning between $\text{Re}(\varepsilon_K^\prime/\varepsilon_K)_{\text{EW}}$ and $\text{Re}(\varepsilon_K^\prime/\varepsilon_K)_{\gamma}$. (c) The corresponding contours in the $\text{Im } C_{\nu,L} - \text{Im } C_{\nu,\gamma}$ plane. In (b), the lighter (darker) colors denote destructive (constructive) interference between NP γ^*-penguin and Q_1^\pm in $K_L \to \pi^0\ell^+\ell^-$.

5 Conclusion

We exemplify in $K^+ \to \pi^+\pi^0\gamma$ that the stage is now set theoretically to fully exploit the $s \to d\gamma$ transition. The SM predictions are under good control, the sensitivity to NP is excellent, and signals in rare and radiative K decays not far from the current experimental sensitivity are possible. Thus, with the advent of the next generation of K physics experiments (NA62 at CERN, K0TO at J-Parc, ORKA at Fermilab and KLOE-II at the LNF), the complete set of flavor changing electromagnetic processes, $s \to d\gamma$, $b \to (s,d)\gamma$, and $\ell \to \ell'\gamma$, could become one of our main windows into the flavor sector of the NP which will hopefully show up at the LHC.

Acknowledgments

I thank the organizers of the Rencontres de Moriond EW 2012 for the pleasant and stimulating stay and for their financial support. I warmly thank Christopher Smith for the fruitful collaboration at the origin of this work. I’m also grateful to him and Jean-Marc Gérard for their valuable suggestions and comments about the present note.

References

1. G. Colangelo, G. Isidori and J. Portoles, Phys. Lett. B 470 (1999) 134.
2. G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125.
3. F. E. Low, Phys. Rev. 110 (1958) 974.
4. J. Kambor, J. H. Missimer and D. Wyler, Nucl. Phys. B 346 (1990) 17.
5. G. Ecker, J. Kambor and D. Wyler, Nucl. Phys. B 394 (1993) 101.
6. N. Christ, Phys. Rev. 159 (1967) 1292.
7. J. R. Batley et al. [NA48/2 Collaboration], Eur. Phys. J. C 68 (2010) 75.
8. G. Ecker, H. Neufeld and A. Pich, Nucl. Phys. B 413 (1994) 321.
9. G. D’Ambrosio and G. Isidori, Int. J. Mod. Phys. A 13 (1998) 1.
10. P. Mertens and C. Smith, JHEP 1108 (2011) 069.
11. A. J. Buras and L. Silvestrini, Nucl. Phys. B 546 (1999) 299.
12. A. J. Buras et al., Nucl. Phys. B 566 (2000) 3.
13. F. Mescia, C. Smith and S. Trine, JHEP 0608 (2006) 088.
14. G. Colangelo and G. Isidori, JHEP 9809 (1998) 009.
15. G. Isidori, F. Mescia, P. Paradisi, C. Smith and S. Trine, JHEP 0608 (2006) 064.
16. A. J. Buras, T. Ewerth, S. Jager and J. Rosiek, Nucl. Phys. B 714 (2005) 103.