Utilizing the Tumor-Node-Metastasis Staging for Prostate Cancer: The Sixth Edition, 2002

Sam S. Chang, MD; Mahul B. Amin, MD

ABSTRACT The Sixth Edition of the tumor-node-metastasis staging system for prostate cancer attempts to provide a helpful staging paradigm for clinicians. Accurate staging is critical not only for managing individual patients, but also for ascertaining trends in disease pattern in a large population of patients with prostate cancer. Several modifications have been made in an attempt to improve the cohesiveness and uniformity of patient evaluation and to aid in future meaningful clinical research. As data are accumulated and analysis continues, ongoing critical evaluation of this staging system will undoubtedly incorporate new evidence-based factors and bring about future refinements to prostate cancer staging. (CA Cancer J Clin 2008;58:54–59.) © American Cancer Society, Inc., 2008.

INTRODUCTION

Since the 1940s, the tumor-node-metastasis anatomic-based system of staging has been utilized, with the American Joint Committee on Cancer (AJCC) providing important leadership in its formulation. Revisions have occurred periodically throughout this time period, resulting in the current version published in 2002. Each iteration of the classification scheme attempts to further improve the clinician’s ability to assess malignancies (see Table 1).

Among men, prostate cancer continues to be the most common (excluding skin cancer) cancer and is the second leading malignant cause of death. With its widespread impact, prostate cancer continues to receive much scrutiny and research. The Sixth Edition guidelines attempt to present a practical, reproducible, and population-based staging scheme in this continually evolving field.

DIFFERENCES BETWEEN THE FIFTH (1997) AND SIXTH (2002) EDITIONS OF THE AJCC STAGING SYSTEM

There are 2 primary alterations between the Fifth Edition (1997) and the Sixth Edition (2002). First, once again, primary T2 lesions have been divided to include T2a, T2b, and T2c as opposed to T2a and T2b. In continually evaluating data, deficiencies in the system are not always resolved with new criteria. Data published in clinical series since publication of the Fifth Edition have demonstrated that recurrence-free survival following treatment was different if the primary clinical tumor stage (T stage) utilized in the Fourth Edition (1992) system was employed.

A large series of more than 2,000 patients who underwent radical prostatectomy for organ-confined disease revealed significant differences in outcomes for patients with a differentiation of disease within a single lobe. The single classification of single lobe disease of T2a in the 1997 classification combined the 1992 classification of T2a and T2b. When examining outcomes, this combining did obscure differences in the cancer recurrence rates elicited by the former 1992 classification of T2a and T2b ($P < .0001$).

Thus, the attempt to simplify the classification scheme to clinical T2a and T2b tumors did not stratify as well as the T2a, T2b, and T2c classification. As a result, the staging with T2a, tumor involving one-half of a lobe or less; T2b, tumor involving more than one-half of a lobe but not both lobes; and T2c, tumor involving both lobes, was readopted in the Sixth Edition. These are the same subcategories found previously in 1992. There is continuing accumulation of data...
TABLE 1 Definition of TNM

Primary Tumor (T)
Clinical
TX
T0
T1
T1a
T1b
T1c
T2
T2a
T2b
T2c
T3
T3a
T3b
T4

*Note: Tumor found in one or both lobes by needle biopsy, but not palpable or reliably visible by imaging, is classified as T1c.**

Pathologic (pT)
pT2*
pT2a
pT2b
pT2c
pT3
pT3a
pT3b
pT4

*Note: There is no pathologic T1 classification.**

Regional Lymph Nodes (N)
Clinical
NX
N0
N1
Pathologic
pNX
pN0
pN1

Distant Metastasis (M)*
MX
M0
M1
M1a
M1b
M1c

*Note: When more than one site of metastasis is present, the most advanced category is used. pM1c is most advanced.

Abbreviations: TNM, tumor-node-metastasis; PSA, prostate-specific antigen. Reprinted from Greene FL, Page DL, Fleming ID, et al1 with permission from Springer-Verlag.
arteries. They include the following groups: pelvic, not otherwise specified (NOS); hypogastric; obturator; iliac (internal, external, or NOS); and sacral (lateral, presacral, promontory, or NOS). The side or bilateral nature of disease does not affect the node classification. The significance of regional lymph node metastasis (pN) in staging prostate cancer lies in the presence of metastatic foci present within the lymph nodes.

Distant lymph nodes lie outside the confines of the true pelvis. They can be imaged using ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine-based studies, or lymphangiography. The most common form of evaluation for soft tissue evaluation remains the CT scan; however, its yield remains low (approximately 5% to 10%) for men with PSA <20 ng/ml and Gleason score <8.\footnote{In a prospective evaluation of more than 3,600 patients, CT evaluation with positive results occurred 20% of the time for men with PSA >50 ng/ml or for men with PSA >20 ng/ml and whose tumor was Gleason score 8 to 10.\footnote{Even with values of PSA >25 ng/ml, the sensitivity of CT scan is approximately 35%.\footnote{Involvement of distant lymph nodes, although lymphatic in nature, is classified as M1a. The distant lymph nodes include aortic (para-aortic lumbar); common iliac; inguinal, deep; superficial inguinal (femoral); supraclavicular; cervical; scalene; and retroperitoneal, NOS.}

Metastatic Sites

Osteoblastic metastases are the most common nonnodal site of prostate cancer metastasis and are designated as M1b. Although not common, metastatic prostate cancer can involve nonbony anatomic locations. Sites would include lung, liver, adrenal gland, and other soft tissue, including peritoneum or visceral sites; these would be examples of the M1c category.

CLASSIFICATION

Clinical

Clinical staging parameters are determined prior to therapy and remain unchanged even if pathological findings differ. It is these important pretreatment parameters that help determine therapy. Initial assessment involves DRE of the prostate and histological confirmation of prostate carcinoma, usually by transrectal ultrasound and biopsy. Although its usefulness is somewhat limited with nonpalpable tumors, for more advanced disease, DRE remains an important staging component. In the majority of patients, radiographic imaging studies, including ultrasound, CT scans, and MRI scans, are not yet accurate enough to be helpful in staging.\footnote{This is especially true in patients with Gleason scores less than 7 and PSA values <20 ng/ml. In fact, today the majority of patients are at a relatively low risk of positive nodes or metastases, and the risk of false-positive imaging studies in asymptomatic patients has exceeded the frequency of true-positive or true-negative studies in several reports.\footnote{In general, surgical removal of the prostate, including regional node specimen, and histological confirmation are required for pathological T-stage classification. A biopsy, however, under certain, less common circumstances can provide pathological T-stage classification. An example would include locally advanced disease where biopsy of the rectum reveals prostate cancer resulting in pT4 classification without removal of the prostate. Similarly, histological identification of prostatic adenocarcinoma in the bladder would indicate pT4 disease. Another example would be a biopsy revealing carcinoma involving extraprostatic soft tissue, which would result in a pT3 classification. Similarly, a biopsy of the seminal vesicle that revealed adenocarcinoma infiltrating the seminal vesicles would also indicate a pT3 classification. Macroscopic bladder involvement warrants a pT4 stage. There is controversy in assigning advanced stage (pT4) disease when there is microscopic involvement of the bladder neck, as data suggest that this does not portend an adverse prognosis.\footnote{It has been suggested that extraprostatic extension may be further classified as focal (few neoplastic glands outside the confines of the prostate) versus established or nonfocal\footnote{Firm criteria for designation of focal pT3 classification.}}}}
versus established extraprostatic disease are not established.

Margin positivity, potentially influenced by surgical technique as well as anatomic extent of disease, should be specified along with pathological stage. Positive surgical margin status is not classified specifically in the T stage because at the time of formulation, the data were inconclusive regarding impact on disease outcomes based on a consequence of surgical technique and/or anatomic extent of disease. However, the R1 descriptor (residual microscopic disease) within the staging criteria evaluation form does take into account residual microscopic disease. It is important that the staging clinician note this information when available for each patient. Pathologists, on the other hand, have adopted the terms pT2x or pT2+ to incorporate the margin positivity status into the pathological stage designation.

The Gleason grading system is recommended for use in determining tumor grade as its prognostic importance has been verified in many large clinical cohorts of prostate cancer patients. A primary and a secondary grade or pattern (range 1 to 5 each) are assigned and then summed to yield a total score. Scores of 2 to 10 are thus possible. If a single focus of disease is seen, it should be reported as both grades and doubled. For example, if a single focus of Gleason Grade 3 disease is seen, it is reported as 3+3. Recent refinements by pathologists in the application of Gleason grade to pathological specimens have been made. In addition to Gleason score, other prognostic factors for survival have been identified for prostate cancer. These include age of patient, comorbid diseases, histological type, PSA and percent free-PSA level, surgical margin status, and ploidy. These parameters are all captured in the staging evaluation forms. The currently useful and validated prognostic factors in prostate cancer need to be consistently reported by pathologists using elements included in the College of American Pathologists prostate protocols.

The vast majority of prostate carcinomas are adenocarcinomas referred to as conventional, usual, or microacinar. Certain special subtypes, including mucinous, small cell, ductal, signet ring cell, and sarcomatoid, exist. Adenosquamous and squamous cell carcinomas also are classified within this scheme. This classification, however, does not apply to sarcoma or transitional cell carcinoma of the prostate, the latter being classified as a urethral tumor.

As with other staging systems, the AJCC has received questions from staging clinicians regarding correct implementation of the guidelines. In reviewing the submitted questions, several themes were recurrent. A common question involved pathological staging for patients who do not undergo radical prostatectomy, but instead undergo some other localized therapy or who are incidentally found to have cancer during another procedure. A clinical stage can be determined by the biopsy that has diagnosed the cancer, but in many cases there is insufficient tissue to assess the highest pathological stage, and thus these patients have a pTx designation. For instance, a patient with a Gleason 6 prostate cancer diagnosed at biopsy performed due to a PSA elevation with a normal exam would be a cT1c. If he undergoes radiation therapy, his primary tumor pathological staging would have a pTx designation.

Another common question involves clinical staging of a tumor that is found in one or both lobes by needle biopsy, but is not palpable or visible by imaging. There is no laterality specification for T1 tumors, and regardless of side or bilateral involvement, this situation is classified as cT1c. If the patient undergoes prostatectomy and pathological data is gained, the pathological stage will take into account more factors. For instance, if a cT1c primary tumor is found to have extraprostatic extension to seminal vesicles in a pathological specimen, it would have a pT3b stage; the clinical stage would not change. Importantly, to continue to gain further insight into this disease process, investigators should specify whether clinical staging into the T1c category is based on DRE only or on DRE plus transrectal ultrasound. This collected information continues to be reviewed to help in adapting further possible modifications to the staging scheme.

Another common question involves the extension of disease beyond the apex of the prostate as implied by a positive surgical margin. If fat is not present in the apical section, but tumor is present...
at the surgical margins, the appropriate staging would be pT2x or pT2+. Some uropathology experts designate such cases as pT3, the rationale being that if the urologist has gone as far wide and distal as possible and only malignant glands are seen at the margins, then the tumor should be considered extraprostatic. Rarely, fat may be present at the apex of the prostatectomy specimen, and the presence of tumor in adipose tissue at this site indicates pT3 disease.

FUTURE REVISIONS TO PROSTATE CANCER STAGING

As with other malignancies, the staging of prostate cancer will continue to evolve, and controversial issues will continue to arise. Even a simple and innocent-enough appearing question such as the primary outcome endpoint is problematic in prostate cancer; the multitude of opinions and reported outcomes makes unanimity of opinion difficult. Nevertheless, it is difficult issues like this that are addressed and continually evaluated.

Recent data may prompt changes in certain anatomic categories that may need further stratification. One potential change utilizes data involving the impact of seminal vesicle involvement on cancer recurrence and expands again the T3 category to T3a, T3b, and T3c. In addition, currently the majority of patients are clinically diagnosed with a cT1c primary tumor based on a normal DRE, but a biopsy based on an elevated PSA. With the diversity of possible pathological stages and outcomes for these patients, the clinical T1c staging may need to be further enumerated. The staging for these patients and others may be influenced by newer and more accurate radiographic imaging techniques such as MRI-spect imaging.

Another critical clinical data point for evaluation involves biopsy core results, specifically the amount of cancer within the biopsy specimens as determined by length or percentage of cancer in the cores. These biopsy results may be influential enough to alter clinical staging. Similarly, recent data suggest that the regional site evaluation of lymph node involvement should include a thorough inspection of pelvic sites with a complete resection as opposed to a node sampling that may underestimate pathological stage and adversely affect survival. However, more research is needed to demonstrate a definitive impact on staging requirements and outcomes.

With evolving treatment algorithms, the impact of certain factors and previous treatments have affected not only future therapeutic choices, but also outcomes for patients. Recent data on adjuvant and salvage therapies such as radiation therapy following radical prostatectomy have demonstrated again the heterogeneous nature of this disease process. Advanced cancer in the form of hormone-refractory prostate cancer is not currently formally staged, but may deserve more attention and a separate focus in the future.

The utilization of clinical and pathological predictive assessment tools should not replace but, instead, should enhance the current system. A number of algorithms have been published that utilize the impact of many factors to predict local stage, risk of positive nodes, or risk of treatment failure. While predictive nomograms are useful to assign individual risk, the AJCC staging system, in addition to its role in guiding treatment and determining prognosis, is used for grouping patients for comparison of the end results for cancer management. Nonanatomic prognostic factors will likely be further incorporated as a continued evolution of collaborative staging takes place. Examples include the incorporation of Gleason score and PSA as a serum marker. It is important for the clinician to realize the impact of the acquisition of data such as PSA, margin status, tumor ploidy, and others that are captured with the AJCC staging forms. The impact of these factors is being assessed continuously by the staging committee, and their true impact may be learned by the data collection that comes with careful staging.

CONCLUSION

Clinical and pathological staging based on the tumor-node-metastasis system remains critical in the evaluation and treatment of prostate cancer patients. This field, however, is constantly changing, and as new findings influence practice patterns, these discoveries must be critically analyzed and considered for inclusion in this staging scheme.
REFERENCES

1. Greene FL, Page DL, Fleming ID, et al. AJCC Cancer Staging Manual. 6th ed. New York, NY: Springer-VeXoran, 2002.

2. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007. CA Cancer J Clin 2007;57:43–66.

3. Han M, Walsh PC, Partin AW, Rodriguez R. Ability of the 1992 and 1997 American Joint Committee on Cancer staging systems for prostate cancer to predict progression-free survival after radical prostatectomy for stage T2 disease. J Urol 2000;164:89–92.

4. Ramos CG, Carvalhal G, Smith DS, et al. Clinical and pathological characteristics, and recurrence rates of stage T1c versus T2a or T2b prostate cancer. J Urol 1999;161:1525–1529.

5. Epstein JI, Pizov G, Walsh PC. Correlation of pathologic findings with progression after radical retropubic prostatectomy. Cancer 1993;71:3582–3593.

6. Epstein JI. Pathology of prostatic intraepithelial neoplasia and adenocarcinoma of the prostate: prognostic influences of stage, tumor volume, grade, and margins of resection. Semin Oncol 1994;21:527–541.

7. Miller GJ. New developments in grading prostate cancer. Semin Urol 1999;8:9–18.

8. Aihara M, Wheeler TM, Ohori M, Scardino PT. Heterogeneity of prostate cancer in radical prostatectomy specimens. Urol 1994;43:60–66.

9. Freedland SJ, Terris MK, Catsby GS, et al. Preoperative model for predicting prostate specific antigen recurrence after radical prostatectomy using percent of biopsy tissue with cancer, biopsy Gleason grade and serum prostate specific antigen. J Urol 2004;171:2215–2220.

10. McNeal JE, Villers A, Redwine EA, et al. Histologic differentiation, cancer volume, and pelvic lymph node metastasis in adenocarcinoma of the prostate. Cancer 1990;66:1225–1233.

11. Veltri RW, Miller MC, Mangold LA, et al. Prediction of pathological stage in patients with clinical stage T1c prostate cancer: the new challenge. J Urol 2002;168:100–104.

12. Smith JA Jr. Stage T1c prostate cancer: perspectives on clinical management. Semin Urol Oncol 1995;13:238–244.

13. Carvalhal GF, Smith DS, Mager DE, et al. Digital rectal examination for detecting prostate cancer at prostate specific antigen levels of 4 ng/ml or less. J Urol 1999;161:835–839.

14. Albertsen PC, Hanley JA, Harlan LC, et al. The positive yield of imaging studies in the evaluation of men with newly diagnosed prostate cancer: a population based analysis. J Urol 2000;163:1138–1143.

15. Flanagan RC, McKay TC, Olson M, et al. Limited efficacy of preoperative computed tomographic scanning for the evaluation of lymph node metastasis in patients before radical prostatectomy. Urol 1996;48:428–432.

16. Ferguson JK, Bostwick DG, Suman V, et al. Prostate-specific antigen detected prostate cancer: pathological characteristics of ultrasone visible versus ultrasound invisible tumors. Eur Urol 1995;27:8–12.

17. Carroll P, Coley C, McLeod D, et al. Prostate-specific antigen best practice policy—part II: prostate cancer staging and post-treatment follow-up. Urology 2001;57:225–229.

18. Scardino P. Update: NCCN prostate cancer Clinical Practice Guidelines. J Natl Comp Cancer Netw 2005;3(suppl):S29–S33.

19. Yossepowitch O, Sircar K, Scardino PT, et al. Bladder neck involvement in pathological stage pT4 prostate cancer is not an independent prognostic factor. J Urol 2002;168:2018–2015.

20. Dash A, Sanda MG, Yu M, et al. Prostate cancer involving the bladder neck: recurrence-free survival and implications for AJCC staging modification. American Joint Committee on Cancer. Urology 2002;60:276–280.

21. Epstein JI, Amin M, Boccon-Gibod L, et al. Prognostic factors and reporting of prostate carcinoma in radical prostatectomy and pelvic lymphadenectomy specimens. Scand J Urol Nephrol Suppl 2005;216:34–63.

22. Srigley JR, Amin MB, Epstein JI, et al. Updated protocol for the examination of specimens from patients with carcinomas of the prostate. Arch Pathol Lab Med 2006;130:936–946.

23. Ohori M, Wheeler TM, Kattan MW, et al. Prognostic significance of positive surgical margins in radical prostatectomy specimens. J Urol 1998;154:1818–1824.

24. Roehl KA, Han M, Ramos CG, et al. Cancer progression and survival rates following anatomic radical retropubic prostatectomy in 3,478 consecutive patients: long-term results. J Urol 2004;170:910–914.

25. Blute ML, Bergstralh EJ, Iocca A, et al. Use of Gleason score, prostate specific antigen, seminal vesicle and margin status to predict biochemical failure after radical prostatectomy. J Urol 2001;165:119–125.

26. D’Amico AV, Chen MH, Roehl KA, Catalona WJ. Identifying patients at risk for significant versus clinically insignificant postoperative prostate specific antigen failure. J Clin Oncol 2005;23:4975–4979.

27. Epstein JI, Allbrook WC, Jr, Amin MB, Egevad LL. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am J Surg Pathol 2008;32:1218–1242.

28. Randolph TL, Amin MB, Ro JY, Ayala AG. Histologic variants of adenocarcinoma and other carcinomas of prostate: pathologic criteria and clinical significance. Mod Pathol 1997;10:612–629.

29. Srintrapan SJ, Tomaszewski J, Narula N, et al. Histologic landmarks that define extraprostatic extension (EPE) at the prostatic apex: characteristics of extraprostatic tissue at the apex as dissected by robotic radical prostatectomy (RP). Mod Pathol 2007;20(suppl):177A.

30. Ravery V, Boccon-Gibod L, T3 prostate cancer: how reliable is clinical staging? Semin Urol Oncol 1997;15:202–206.

31. Secin FP, Bianco FJ Jr, Vickers AJ, et al. Cancer-specific survival and predictors of prostate-specific antigen recurrence and survival in patients with seminal vesicle invasion after radical prostatectomy. Cancer 2006;106:2369–2375.

32. Masterson TA, Pettus JA, Middleton RG, Stephenson RA. Isolated seminal vesicle invasion impacts better outcomes after radical retropubic prostatectomy for clinically localized prostate cancer: prognostic stratification of pT3b disease by nodal and margin status. Urology 2005;66:152–155.

33. Tefilli MV, Geiher EL, Tigges R, et al. Prognostic indicators in patients with seminal vesicle involvement following radical prostatectomy for clinically localized prostate cancer. J Urol 1998;160:802–806.

34. Greter MB, Epstein JI, Pound CR, et al. Subclassification of stage T1C prostate cancer based on the probability of biochemical recurrence. Urology 2002;60:1034–1039.

35. Hung AY, Levy L, Kuban DA. Stage T1c prostate cancer: a heterogeneous category with widely varying prognosis. Cancer 2002;8:441–444.

36. Wang L, Hricak H, Kattan MW, et al. Prediction of organ-confined prostate cancer: incremental value of MR imaging and MR spectroscopic imaging to staging nomograms. Radiology 2006;238:597–603.

37. Samwick JM, Dalkin BL, Nagele RB. Accuracy of prostate needle biopsy in predicting extracapsular tumor extension at radical retropubic prostatectomy: application in selecting patients for nerve-sparing surgery. Urology 1998;52:818–814.

38. Bader P, Burkhard FC, Markwalder R, Studer UE. Is a limited lymph node dissection an adequate staging procedure for prostate cancer? J Urol 2002;168:514–518.

39. Clark T, Perekh D, Cookson MS, et al. Randomized prospective evaluation of extended versus limited lymph node dissection in patients with clinically localized prostate cancer. J Urol 2003;169:145–147.

40. Stephenson AJ, Scardino PT, Eastham JA, et al. Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Clin Oncol 2005;23:7005–7012.

41. D’Amico AV, Whittington R, Malkowicz SB, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998;280:969–974.

42. Stephenson AJ, Shariat SF, Zelefsky MJ, et al. Salvage radiotherapy for recurrent prostate cancer after radical prostatectomy. JAMA 2004;291:1325–1332.

43. Chang SS, Benson MC, Campbell SC, et al. Society of Urologic Oncology position statement: refining the management of hormone-refractory prostate cancer. Cancer 2005;103:11–21.

44. Freedland SJ, Humphreys EB, Mangold LA, et al. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA 2005;294:433–439.

45. Lee AK, Levy LB, Cheung R, Kuban DA. Prostate-specific antigen doubling time predicts clinical outcome and survival in prostate cancer patients treated with combined radiation and hormone therapy. Int J Radiat Oncol Biol Phys 2005;63:456–462.

46. Zhou P, Chen MH, McLeod D, et al. Predictors of prostate cancer-specific mortality after radical prostatectomy or radiation therapy. J Clin Oncol 2005;23:6992–6998.

47. R oach M 3rd, Weinberg V, Sandler H, Thompson I. Staging for prostate cancer: time to incorporate pretreatment prostate-specific antigen and Gleason score? Cancer 2007;109:213–220.