Dense Eulerian Graphs are (1, 3)-Choosable

Huajing Lu
Department of Mathematics
Zhejiang Normal University
Jinhua, China
College of Basic Science
Ningbo University of Finance and Economics
Ningbo, China
huajinglu@zjnu.edu.cn

Xuding Zhu*
Department of Mathematics
Zhejiang Normal University
Jinhua, China
xdzhu@zjnu.edu.cn

Submitted: Jul 11, 2021; Accepted: May 25, 2022; Published: Jun 17, 2022
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract
A graph \(G \) is total weight \((k, k')\)-choosable if for any total list assignment \(L \) which assigns to each vertex \(v \) a set \(L(v) \) of \(k \) real numbers, and each edge \(e \) a set \(L(e) \) of \(k' \) real numbers, there is a proper total \(L \)-weighting, i.e., a mapping \(f: V(G) \cup E(G) \to \mathbb{R} \) such that for each \(z \in V(G) \cup E(G) \), \(f(z) \in L(z) \), and for each edge \(uv \) of \(G \), \(\sum_{e \in E(u)} f(e) + f(u) \neq \sum_{e \in E(v)} f(e) + f(v) \). This paper proves that if \(G \) decomposes into complete graphs of odd order, then \(G \) is total weight \((1, 3)\)-choosable. As a consequence, every Eulerian graph \(G \) of large order and with minimum degree at least \(0.91|V(G)| \) is total weight \((1, 3)\)-choosable. We also prove that any graph \(G \) with minimum degree at least \(0.999|V(G)| \) and sufficiently large order is total weight \((1, 4)\)-choosable.

Mathematics Subject Classifications: 05C15, 05C72

1 Introduction
Assume \(G = (V, E) \) is a graph with vertex set \(V = \{1, 2, \ldots, n\} \). Each edge \(e \in E \) of \(G \) is a 2-subset \(e = \{i, j\} \) of \(V \). For \(i \in V \), we denote by \(E(i) \) the set of edges incident to \(i \). A total weighting of \(G \) is a mapping \(\phi: V \cup E \to \mathbb{R} \). A total weighting \(\phi \) is proper if for any edge \(\{i, j\} \in E \),

\[
\sum_{e \in E(i)} \phi(e) + \phi(i) \neq \sum_{e \in E(j)} \phi(e) + \phi(j).
\]

*Supported by NSFC grand 11971438,12026248, U20A2068.

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.54 https://doi.org/10.37236/10563
A proper total weighting ϕ with $\phi(i) = 0$ for all vertices i is also called a vertex coloring edge weighting. A vertex coloring edge weighting of G using weights $\{1, 2, \ldots, k\}$ is called a vertex coloring k-edge weighting. Note that if G has an isolated edge, then G does not admit a vertex coloring edge weighting. We say a graph is nice if it does not contain any isolated edge.

Karoński, Łuczak and Thomason [11] conjectured that every nice graph has a vertex coloring 3-edge weighting. This conjecture received considerable attention [1, 2, 9, 10, 14, 15, 19], and it is known as the 1-2-3 conjecture. The best result on 1-2-3 conjecture so far was obtained by Kalkowski, Karoński and Pfender [10], who proved that every nice graph has a vertex coloring 5-edge weighting.

The list version of edge weighting of graphs was introduced by Bartnicki, Grytczuk and Niwczyk [5]. The list version of total weighting of graphs was introduced independently by Przybyło and Woźniak in [12] and by Wong and Zhu in [17]. Let $\psi : V \cup E \to \mathbb{N}^+$. A ψ-list assignment of G is a mapping L which assigns to $z \in V \cup E$ a set $L(z)$ of $\psi(z)$ real numbers. Given a total list assignment L, a proper L-total weighting is a proper total weighting ϕ such that $\phi(z) \in L(z)$ for all $z \in V \cup E$. We say G is total weight ψ-choosable (ψ-choosable for short) if for any ψ-list assignment L, there is a proper L-total weighting of G. We say G is total weight (k, k')-choosable ((k, k')-choosable for short) if G is ψ-total weight choosable, where $\psi(i) = k$ for $i \in V(G)$ and $\psi(e) = k'$ for $e \in E(G)$.

The list version of edge weighting also received a lot of attention [5, 6, 7, 8, 13, 14, 16, 17, 18, 20]. As strengthenings of the 1-2-3 conjecture, it was conjectured in [17] that every nice graph is $(1, 3)$-choosable. A weaker conjecture was also proposed in [17], which asserts that there is a constant k such that every nice graph is $(1, k)$-choosable. This weaker conjecture was recently confirmed by Cao [6], who proved that every nice graph is $(1, 17)$-choosable. This result was improved in [20], where it was shown that every nice graph is $(1, 5)$-choosable.

Given a graph G and a family of graphs H, we say that G has an H-decomposition, if the edges of G can be partitioned into the edge sets of copies of graphs from H. In particular, a triangle decomposition of G is a partition of $E(G)$ into triangles, and for a given graph H, an H-decomposition of G partitions $E(G)$ into subsets, each inducing a copy of H. The following is the main result of this paper.

Theorem 1. If $E(G)$ can be decomposed into cliques of odd order, then G is $(1, 3)$-choosable.

As a consequence of Theorem 1, we prove the following result.

Theorem 2. If G is an n-vertex Eulerian graph with minimum degree at least $0.91n$ and n is sufficiently large, then G is $(1, 3)$-choosable.

In [19], Zhong confirmed the 1-2-3 conjecture for graphs that can be edge-decomposed into cliques of order at least 3. As a consequence of this result, it was proved in [19] that the 1-2-3 conjecture holds for every n-vertex graph with minimum degree at least $0.99985n$, where n is sufficiently large.
Our result is the list version of Zhong’s result, but with one degree restriction: \(E(G) \) needs to be decomposed into complete graphs of odd order. Hence we can only show that dense Eulerian graphs are \((1,3)\)-choosable. For general dense graphs, we prove the following result:

Theorem 3. If \(G \) is an \(n \)-vertex graph with minimum degree at least \(0.999n \) and \(n \) is sufficiently large, then \(G \) is \((1,4)\)-choosable.

2 Some preliminaries

The proofs of Theorems 1, 2 and 3 use tools that were introduced in [6] and were further developed in [20]. In this section, we introduce some definitions and present a result from [6] that will be used in this paper.

Given a graph \(G = (V, E) \), let

\[
\hat{P}_G(\{x_z : z \in V \cup E\}) = \prod_{(i,j) \in E, i < j} \left(\left(\sum_{e \in E(i)} x_e + x_i \right) - \left(\sum_{e \in E(j)} x_e + x_j \right) \right).
\]

Assign a real number \(\phi(z) \) to each variable \(x_z \), and view \(\phi(z) \) as the weight of \(z \). Let \(\hat{P}_G(\phi) \) be the evaluation of the polynomial at \(x_z = \phi(z) \), \(z \in V \cup E \). Then \(\phi \) is a proper total weighting of \(G \) if and only if \(\hat{P}_G(\phi) \neq 0 \). Thus the problem of finding a proper \(L \)-total weighting of \(G \) (for a given total list assignment \(L \)) is equivalent to finding a non-zero point of the polynomial \(\hat{P}_G(\{x_z : z \in V \cup E\}) \) in the grid \(\prod_{z \in V \cup E} L(z) \).

Combinatorial Nullstellensatz [3] gives a sufficient condition for the polynomial \(\hat{P}_G(\{x_z : z \in V \cup E\}) \) has a non-zero point in the grid \(\prod_{z \in V \cup E} L(z) \): If some non-vanishing (i.e., with non-zero coefficient) highest degree monomial \(\prod_{z \in V \cup E} x_z^{K(z)} \) in the expansion of \(\hat{P}_G(\{x_z : z \in V \cup E\}) \) satisfies \(K(z) \leq |L(z)| - 1 \) for \(z \in V \cup E \), then \(\hat{P}_G(\{x_z : z \in V \cup E\}) \) has a non-zero point in the grid \(\prod_{z \in V \cup E} L(z) \).

We denote by \(\mathbb{N} \) the set of non-negative integers. To prove a graph \(G = (V, E) \) is \((1,k)\)-choosable, it suffices to show that for some \(K : V \cup E \to \mathbb{N} \) such that \(K(v) = 0 \) and \(K(e) \leq k - 1 \), and the monomial \(\prod_{z \in V \cup E} x_z^{K(z)} \) has non-zero coefficient in the expansion of \(\hat{P}_G(\{x_z : z \in V \cup E\}) \).

As \(K(v) = 0 \) for all \(v \in V \), the monomials in concern are of the form \(\prod_{e \in E} x_e^{K(e)} \). Such monomials have the same coefficient in the expansions of \(\hat{P}_G(\{x_z : z \in V \cup E\}) \) and

\[
P_G(\{x_e : e \in E\}) = \prod_{(i,j) \in E, i < j} \left(\sum_{e \in E(i)} x_e - \sum_{e \in E(j)} x_e \right).
\]

We denote by \(\mathbb{N}^E \) the set of mappings \(K : E \to \mathbb{N} \). Let

\[
\mathbb{N}^E_m = \{ K \in \mathbb{N}^E : \sum_{e \in E} K(e) = m \}, \quad \mathbb{N}^E_{(b^-)} = \{ K \in \mathbb{N}^E : K(e) \leq b, \forall e \in E \}.
\]
For $K \in \mathbb{N}^E$, let
\[x^K = \prod_{e \in E} x^K_e, \quad K! = \prod_{e \in E} K(e)!. \]
Denote the coefficient of the monomial x^K in the expansion of P_G by $\text{co}(x^K, P_G)$.

For a positive integer b, to prove that $G = (V, E)$ is $(1, b + 1)$-choosable, it suffices to show that $\text{co}(x^K, P_G) \neq 0$ for some $K \in \mathbb{N}^E_{(b-)}$. For this purpose, we use a formula given in [6] for the calculation of $\text{co}(x^K, P_G)$.

For $m, n \in \mathbb{N}$, let $C[x_1, x_2, \ldots, x_n]_m$ be the vector space of homogeneous polynomials of degree m in variables x_1, \ldots, x_n over the field \mathbb{C} of complex numbers.

Assume $|E| = m$. Consider the vector space of homogeneous polynomials of degree m in $\mathbb{C}[x_e : e \in E]$. For $f, g \in \mathbb{C}[x_e : e \in E]$, we define the inner product of f and g as
\[\langle f, g \rangle = \sum_{K \in \mathbb{N}^E_m} K! \text{co}(x^K, f) \overline{\text{co}(x^K, g)}. \]

The following lemma was proved in [6].

Lemma 4. Assume $G = (V, E)$, $|E| = m$ and $K \in \mathbb{N}^E_m$. Let
\[Q_E = \prod_{\{i, j\} \in E, i < j} (x_i - x_j), \quad H^K_E = \prod_{\{i, j\} \in E, i < j} (x_i + x_j)^{K(e)}. \]
Then
\[\text{co}(x^K, P_G) = \frac{1}{K!} \langle Q_E, H^K_E \rangle. \]

Definition 5. For $K \in \mathbb{N}^E$, let $W^K_{E, m}$ be the complex linear space spanned by
\[\{ H^K'_{E, m} : K' \leq K, K' \in \mathbb{N}^E_m \}. \]

It is obvious that there exists $K' \in \mathbb{N}^E_m$ such that $K' \leq K$ and $\langle Q_E, H^K'_E \rangle \neq 0$ if and only if there exists $F \in W^K_{E, m}$ such that $\langle Q_E, F \rangle \neq 0$. Thus we have the following corollary.

Corollary 6. If $K \in \mathbb{N}^E_{(b-)}$ and there exists $F \in W^K_{E, m}$ such that $\langle Q_E, F \rangle \neq 0$, then G is $(1, b + 1)$-choosable.

3 Proofs of Theorems 1, 2, 3

The following lemma is an easy observation, but it is the key tool for proving the main results of this paper.

Lemma 7. If $Q_E \in W^K_{E, m}$ for some $K \in \mathbb{N}^E_{(b-)}$, then G is $(1, b + 1)$-choosable.

Proof. Assume $Q_E \in W^K_{E, m}$. As $Q_E \neq 0$, we have $\langle Q_E, Q_E \rangle > 0$. By Corollary 6, G is $(1, b + 1)$-choosable. \qed
As an example, consider a triangle T with vertex set $\{i, j, k\}$. By definition, $Q_E = (x_i - x_j)(x_j - x_k)(x_i - x_k)$. To prove that $Q_E \in W_{E,3}^K$, it suffices to express each of the three factors of Q_E, $(x_i - x_j)$, $(x_j - x_k)$ and $(x_i - x_k)$, as a linear combination of $(x_i + x_j), (x_j + x_k), (x_i + x_k)$, and for each edge e, say for $e = \{i, j\}$, the term $(x_i + x_j)$ occurs in at most $K(e)$ of such linear combinations. We can write Q_E as

$$Q_E = ((x_i + x_k) - (x_j + x_k))((x_i + x_j) - (x_i + x_k))((x_i + x_j) - (x_j + x_k)).$$

It is easy to check that for each edge, say for $e = \{i, j\}$, the term $(x_i + x_j)$ occurs in two of the linear combinations. Thus $Q_E \in W_{E,3}^K$, where $K(e) = 2$ for each edge e of T.

A path of length k in G connecting i and j is a sequence of distinct vertices $P = (i_0, i_1, \ldots, i_k)$ such that $i_0 = i$, $i_k = j$ and $\{i_l, i_{l+1}\} \in E$ for $l = 0, 1, \ldots, k - 1$.

Definition 8. Assume $G = (V, E)$ is a graph. A **path covering family** of G is a family of paths $\mathcal{P} = \{P_e : e \in E\}$, where for each edge $e = \{i, j\} \in E$, P_e is an even length path connecting i and j.

For a subgraph H of G, $K_H \in \mathbb{N}^E$ is the characteristic function of $E(H)$, i.e., $K_H(e) = 1$ if $e \in E(H)$ and $K_H(e) = 0$ otherwise. For a family \mathcal{F} of subgraphs of G,

$$K_\mathcal{F} = \sum_{H \in \mathcal{F}} K_H.$$

Observe that if $F_i \in W_{E,m_i}^{K_i}$ for $i = 1, 2, \ldots, t$, then $\prod_{i=1}^t F_i \in W_{E,\sum_{i=1}^t m_i}^{\sum_{i=1}^t K_i}$.

Lemma 9. If G has a path covering family \mathcal{P} with $K_\mathcal{P}(e) \leq b$ for each edge e, then G is $(1, b + 1)$-choosable.

Proof. Assume \mathcal{P} is a path covering family with $K_\mathcal{P}(e) \leq b$ for each edge e. For each edge $e = \{i, j\}$ of G, let $P_e = (i_0, i_1, \ldots, i_{2k_e})$ be the even length path in \mathcal{P} connecting i and j, i.e., $i_0 = i$ and $i_{2k_e} = j$. Then

$$x_i - x_j = \sum_{l=0}^{2k_e-1} (-1)^l (x_{i_l} + x_{i_{l+1}}) \in W_{E,1}^{K_P}.$$

Hence

$$Q_E = \prod_{\{i,j\} \in E} (x_i - x_j) \in W_{E,m}^{K_\mathcal{P}}.$$

Since $K_\mathcal{P}(e) \leq b$ for each edge e, we have $Q_E \in W_{E,m}^K$ for some $K \in \mathbb{N}^E_{(b^-)}$. By Lemma 7, G is $(1, b + 1)$-choosable. \square

The following lemma follows easily from the definitions and its proof is omitted.
Lemma 10. If G decomposes into graphs H_1, H_2, \ldots, H_n, and each H_i has a path covering family \mathcal{P}_i with $F_{E(H_i)} \in W_{\mathbb{N}(b-)}^E$ and $K_i \in \mathbb{N}(b-)$, then $\mathcal{P} = \bigcup_{i=1}^n \mathcal{P}_i$ is a path covering family of G and $K_\mathcal{P} \in W_{\mathbb{N}(b-)}^E$ for $K = \sum_{i=1}^n K_i \in \mathbb{N}(b-)$.

Proof of Theorem 1. By Lemmas 9 and 10, it suffices to show that each complete graph K_n of odd order has a path covering family \mathcal{P} with $K_\mathcal{P} \in \mathbb{N}(b-)$. Assume K_n has vertex set $\{1, 2, \ldots, n\}$.

Put the n vertices $\{1, 2, \ldots, n\}$ of K_n equally spaced along the perimeter of a circle C. For an edge $e = \{i, j\}$ of K_n, denote by $[i, j]$ the interval of C from i to j along the clockwise direction (containing both i and j). Since n is odd, exactly one of $[i, j]$ and $[j, i]$ contains an odd number of vertices of K_n. Let $t_{i,j}$ be the vertex that is in the center of the interval $[i, j]$ or $[j, i]$ that contains an odd number of vertices, and let $P_e = (i, t_{i,j}, j)$. Then $\mathcal{P} = \{P_e : e \in E(K_n)\}$ is a path covering family of K_n. For each edge $e = \{i, j\}$ of K_n, let $a_e = \{i, 2j - i\}$ and $b_e = \{j, 2i - j\}$ (where calculations are modulo n). It is easy to verify that e is contained in P_e if and only if $e' \in \{a_e, b_e\}$. So each edge of K_n is contained in two paths in \mathcal{P}, i.e., $K_\mathcal{P}(e) = 2$ for each edge e of K_n. This completes the proof of Theorem 1.

For a graph G, let $\gcd(G)$ be the largest integer dividing the degree of every vertex of G. We say that G is F-divisible if $|E(G)|$ is divisible by $|E(F)|$ and $\gcd(G)$ is divisible by $\gcd(F)$.

The following result was proved in [4]:

Theorem 11. For every $\epsilon > 0$, there is an integer n_0 such that if G is a triangle-divisible graph of order $n \geq n_0$ and minimum degree at least $(0.9 + \epsilon)n$, then G has a triangle decomposition.

Proof of Theorem 2. Assume G is an n-vertex Eulerian graph of minimum degree $\delta(G) > (0.9 + \epsilon)n$ with large enough n. By Theorem 1, it suffices to show that G decomposes into complete graphs of odd order.

Assume $|E(G)| \equiv i \pmod{3}$, where $i \in \{0, 1, 2\}$. Let H_1, \ldots, H_i be vertex disjoint 5-cliques in G. Then $G' = G - \bigcup_{j=1}^i E(H_j)$ is triangle divisible and $\delta(G') \geq \delta(G) - 4 \geq (0.9 + \epsilon)n$. By Theorem 11, G' is triangle decomposible. Hence G decomposes into complete graphs of odd order. This completes the proof of Theorem 2.

Lemma 12. Let $H = (V, E)$ be the graph shown in Figure 1. Then H has a path covering family \mathcal{P} with $K_\mathcal{P} \in \mathbb{N}(b-)$.
Proof. We denote by $T_1 = (1, 2, 4)$, $T_2 = (2, 3, 5)$ the two edge disjoint triangles in H. For each triangle T_i, let P_i be the path covering family with $K_{P_i} \in \mathbb{N}_{E(T_i)}^{E}$. For the edge $e = \{1, 3\}$ which is not contained in the two triangles, let $P_e = (1, 2, 3)$. Then

$$P = \bigcup_{i=1}^{2} P_i \cup \{P_e\}$$

is a path covering family of H with $K_P \in \mathbb{N}_{(3-)}^{E}$. This completes the proof of Lemma 12.

The following theorem was proved in [4]:

Theorem 13. For every $\epsilon > 0$, there is an integer n_0 such that if G is an H-divisible graph of order $n \geq n_0$ and minimum degree at least $(1 - 1/t + \epsilon)n$, where $t = \max\{16\chi(H)^2(\chi(H) - 1)^2, |E(H)|\}$, then G has an H-decomposition.

Proof of Theorem 3. Assume G is a graph of sufficiently large order and with minimum degree $\delta(G) \geq 0.999|V(G)|$. If $|E(H)|$ divides $|E(G)|$, then G decomposes into copies of H and Theorem 3 follows from Lemma 9. Otherwise, the same argument as in the proof of Theorem 2 shows that G can be decomposed into at most 12 copies of triangles and copies of H, and hence again Theorem 3 follows from Lemma 9.

References

[1] L. Addario-Berry, R. E. L. Aldred, K. Dalal and B. A. Reed, *Vertex colouring edge partitions*, J. Combin. Theory Ser. B 94 (2005), 237-244.

[2] L. Addario-Berry, K. Dalal, C. McDiarmid, B. A. Reed and A. Thomason, *Vertex-colouring edge-weightings*, Combinatorica 27 (2007), 1-12.

[3] N. Alon and M. Tarsi, *A nowhere zero point in linear mappings*, Combinatorica 9 (1989), 393-395.

[4] B. Barber, D. Kühn, A. Lo and D. Osthus, *Edge-decompositions of graphs with high minimum degree*, Adv. Math. 288 (2016), 337-385.

[5] T. Bartnicki, J. Grytczuk and S. Niwczyk, *Weight choosability of graphs*, J. Graph Theory 60 (2009), 242-256.
[6] L. Cao, *Total weight choosability of graphs: Towards the 1-2-3 conjecture*, J. Combin. Theory Ser. B 149 (2021), 109-146.

[7] G. Chang, G. Duh, T. Wong and X. Zhu, *Total weight choosability of trees*, SIAM J. Discrete Math. 31 (2017), no. 2, 669-686.

[8] L. Ding, G. Duh, G. Wang, T. Wong, J. Wu, X. Yu and X. Zhu, *Graphs are (1, Δ + 1)-choosable*, Discrete Math. 342 (2019), no. 1, 279-284.

[9] J. Grytczuk, *From the 1-2-3 conjecture to the Riemann hypothesis*, European J. Combin. 91 (2021), 103213.

[10] M. Kalkowski, M. Karoński and F. Pfender, *Vertex-coloring edge-weightings: towards the 1-2-3 Conjecture*, J. Combin. Theory Ser. B 100 (2010), 347-349.

[11] M. Karoński, T. Łuczak and A. Thomason, *Edge weights and vertex colours*, J. Combin. Theory Ser. B 91 (2004), 151-157.

[12] J. Przybyło and M. Woźniak, *On a 1-2 conjecture*, Discrete Math. Theor. Comput. Sci. 12 (2010), 101-108.

[13] J. Przybyło and M. Woźniak, *Total weight choosability of graphs*, Electronic J. Combinatorics 18 (2011), no. 1, #P112.

[14] Y. Tang, T. Wong and X. Zhu, *Total weight choosability of cone graphs*, Graphs Combin. 32 (2016), no. 3, 1203-1216.

[15] T. Wang and Q. L. Yu, *A note on vertex-coloring 13-edge-weighting*, Frontier Math. in China, 3 (2008), 581-587.

[16] T. Wong, *2-connected chordal graphs and line graphs are (1, 5)-choosable*, European J. Combin. 91 (2021), 103227, 8 pp.

[17] T. Wong and X. Zhu, *Total weight choosability of graphs*, J. Graph Theory 66 (2011), 198-212.

[18] T. Wong and X. Zhu, *Every graph is (2, 3)-choosable*, Combinatorica 36 (2016), no. 1, 121–127.

[19] L. Zhong, *The 1-2-3-conjecture holds for dense graphs*, J. Graph Theory 90 (2019), 561-564.

[20] X. Zhu, *Every nice graph is (1, 5)-choosable*, arXiv:2104.05410.