Abstract: Carbon capture and storage is considered of fundamental importance to achieve a remarkable decarbonisation of steel, cement and refining sectors. To operate carbon capture and storage at scale and address its inherent complexity, mathematical programming techniques can be exploited to optimise such systems. This contribution proposes a Europe-wide, spatially-explicit, time-dependent, carbon capture and storage chains optimisation, based on mixed integer linear programming architecture. Capture plants can be installed in all significant industrial CO\textsubscript{2} emitters, which comprise 25 steel mills, 111 cement plants and 59 refineries. A techno-economic description of capture plants is provided, based on scale effects and different options. Transport can be operated through pipelines and offshore storage is taken into account in the North Sea and Adriatic area. The analysis allows identifying the most promising sectors and optimal specific plants where capture should be operated, and the evolution of the system throughout the time horizon. Considering a time-varying carbon reduction target, the avoidance cost is 75.6 €/t of CO\textsubscript{2} for a North Sea targeted network, and decreases by 1.9% when sequestration in the Adriatic Sea is also taken into account.

Keywords: Carbon capture and storage, Mixed integer linear programming, European supply chain optimisation, Steel cement refinery sectors.
wide scale (Tapia et al., 2018). Examples can be found in d’Amore and Bezzo (2017) and d’Amore et al. (2021) for the context of Europe, in Wang et al. (2020) for decarbonising Chinese coal-based power plants, and in Hasan et al. (2015) for the case of the United States. This work builds on d’Amore et al. (2021) by optimising a spatially-explicit, time-dependent, Europe-wide, CCS SC focussed on industry. The MILP modelling framework will steer relevant research and policies into correctly understanding the technological choices and costs of such system, hence the optimal capture technologies selection, transportation trajectories and sequestration locations.

2. MODELLING FRAMEWORK

2.1 Model features and assumptions

The model optimises the CCS SC over a 10-years’ time horizon discretised into 5 time periods t_{1-5} of two years’ each, to reduce the computational burden. Spatial characteristics are given by $n = \{s, c, r, z, o\}$ of nodes, comprising 25 steel mills s_{1-25}, 111 cement plants c_{1-111}, 59 refineries r_{1-59}, 6 offshore sequestration areas z_{1-6} (Fig. 1), and 34 offshore zones o_{1-34} needed to assess marine transportation arcs (covering the surface of European offshore zones). The geographic location and characterisation of CO₂ emissions are taken from EEA (2020). The location and size of storage basins s_{1-5} are given in the EU Geo-Capacity Project (2009), while the Adriatic Sea basin z_6 is described with data from Donda et al. (2011). Linear distances $LD_{n,n'}$ [km] between n and n' are calculated as in d’Amore and Bezzo (2017). A complete summary of symbols is given in Table 1.

Set k describes the techno-economic characteristics of CO₂ capture plants associated to different industrial fields:

- Steel mills: $k = \{ks_{1,2,3}\}$. To consider the multiplicity of process units characterising such industries, capture is here operated in three possible and progressive steps: ks_1—absorption from power plant, ks_2—ks_1+blast furnace stoves and coke oven flue gas, ks_3—ks_1+ks_2+sinter plant (Ho et al., 2013).
- Cement plants: $k = \{kc\}$. It is here assumed to employ uniquely oxy-fuel-based capture (Gardarsdottir et al., 2019; Voldus et al., 2019).
- Refineries: $k = \{kr_{1,2,3}\}$. Also at refineries capture is modelled to be operated in three possible and progressive steps: kr_1—pre-combustion capture from methane reformer, kr_2—kr_1+post-combustion capture on power unit, kr_3—kr_1+kr_2+further emissions from other sources (IEAGHG, 2017; NETL, 2015; Van Straalen et al., 2010).

A complete description of capture plants can be found in d’Amore et al. (2021), and the parameters determined in that previous study allow evaluating the cost $CCA_{k,n}$ [€/t] of CO₂ avoidance comprising scale effects on capture plant size (Figure 2).

This study considers pipelines as the unique transport option (e.g., ships are not comprised). As shown in d’Amore and Bezzo (2017), the cost of pipeline CO₂ transport is strongly dependent on the overall transported flowrate, which is here discretised over $q = \{q_{1-4}\}$ and unitary transport costs UTC_q [€/km/t of CO₂] are calculated accordingly (Rubin et al., 2015). Offshore transport cost is increased by a factor $\Omega_{n,n'} = [1.71]$ if $n - n'$ is an offshore arc within subset o_{1-34} (d’Amore et al., 2021).

Unitary sequestration cost USC is set equal to 7.2 €/t (Rubin et al., 2015). This expenditure is increased by $\Theta = [-2.5]$ to account offshore storage (ZEP, 2011).

![Fig. 2. Cost $CCA_{k,n}$ [€/t] of CO₂ avoidance over CO₂ emissions w/o capture $IN_{k,n}^{\max}$ [Mt/year] for the investigated industrial sectors.](image-url)

Element	Symbol	Description (Source)
Set	n	Emission node
Subset	$c \in n$	Cement plant (EEA, 2020)
Subset	$o \in n$	Offshore (d’Amore et al., 2021)
Subset	$r \in n$	Refinery (EEA, 2020)
Subset	$s \in n$	Steel mill (EEA, 2020)
Subset	z	Storage (EU Geo-Capacity Project, 2009)
Set	k	Capture plant
Subset	$kc \in k$	Capture cement (d’Amore et al., 2021)
Subset	$kr \in k$	Capture refinery (d’Amore et al., 2021)
Subset	$ks \in k$	Capture steel (d’Amore et al., 2021)
Set	q	Flowrate
Set	t	Time period

- Parameter $CCA_{k,n}$ Avoidance cost (d’Amore et al., 2021)
- Parameter η_k Capture efficiency (d’Amore et al., 2021)
- Parameter $IN_{k,n}^{\max}$ Node emission (d’Amore et al., 2021)
- Parameter $LD_{n,n'}$ Distance (d’Amore and Bezzo, 2017)
- Parameter $\Omega_{n,n'}$ Offshore pipe (d’Amore et al., 2021)
- Parameter $OUT_{k,n}^{\max}$ Storage capacity (d’Amore et al., 2021)
- Parameter ρ_k Capture emission (d’Amore et al., 2021)
- Parameter USC Unit. storage cost (Rubin et al., 2015)
- Parameter UTC_q Unit. transport cost (Rubin et al., 2015)
- Parameter Θ Offshore storage (ZEP, 2011)

Binary	$\gamma_{k,n,t}$	Capture through k in n at t
Variable	$IN_{k,n,t}$	Captured CO₂ through k in n at t
Variable	$OUT_{n,t}$	Stored CO₂ in n at t
Variable	$Q_{n,n',t}$	Transported from n to n' at t
Variable	TC	Total cost
Variable	TCC	Capture cost
Variable	TSC	Sequestration cost
Variable	TTC	Transport cost
Table 2. Scenario A–B: resulting total cost TC [€/t], capture cost TCC [€/t], transport cost TTC [€/t], sequestration cost TSC [€/t], and avoidance marginal costs $TC'_{\Delta e/\Delta t}$ in Scenario A and Scenario B are reported in Fig. 3. As long as α increases

Economic results	Comput. results					
Scen.	TC [€/t]	TCC [€/t]	TTC [€/t]	TSC [€/t]	Opt. gap [%]	Sol. t. [h]
A	75.6	45.5	12.3	18.0	1.0	11
B	74.2	45.0	11.2	18.0	2.2	11

2.2 Mathematical formulation

The objective of this MILP formulation is to minimise total cost TC [€/t], given by capture cost TCC [€/t], transport cost TTC [€/t], and storage cost TSC [€/t]:

$$TC = TCC + TTC + TSC$$

TCC of (1) depends on the CO$_2$ captured $IN_{k,n,t}$ [t/year] at plant k in n at time t (i.e., inlet to the transport system) and on the cost $CCA_{k,n}$ of CO$_2$ avoidance:

$$TCC = \sum_{k,n,t} (IN_{k,n,t} \cdot CCA_{k,n})$$

The captured amount $IN_{k,n,t}$ is given by the initial emission w/o capture IN_n^{max}, capture efficiency η_k and rate of additional emissions ρ_k of capture plant k:

$$IN_{k,n,t} = IN_n^{max} \cdot \rho_k \cdot \eta_k \cdot \gamma_{k,n,t} \quad \forall k, n, t$$

with $\gamma_{k,n,t}$ being a binary variable defining if capture plant k is installed in n at time t. The overall net captured amount must increase along the years up to the assumed European carbon reduction target, defined as a fraction α [%] of the total CO$_2$ European emissions w/o capture.

The mass balance between capture and sequestration nodes is given by:

$$\sum_k IN_{k,n,t} + \sum_{q,n',t} Q_{q,n',n,t} = OUT_{n,t} + \sum_{q,n',t} Q_{q,n,n',t} \quad \forall n, t$$

for each time t, being $Q_{q,n,n',t}$ [t/year] the flowrate q from n to n' at time t and $OUT_{n,t}$ [t/year] the CO$_2$ stored in n at time t. Transported flowrates allow calculating the transport cost TTC of (1):

$$TTC = \sum_{q,n',n,t} (Q_{q,n',n,t} \cdot LD_{n,n'} \cdot UTC_q \cdot \Omega_{n,n'})$$

whereas sequestered amounts $OUT_{n,t}$ of (4), which must be lower than capacity of the basin OUT_n^{max} [t], permit the evaluation of sequestration cost TSC of (1):

$$\sum_t OUT_{n,t} \leq OUT_n^{max} \quad \forall n$$

$$TSC = \sum_{n,t} (OUT_{n,t} \cdot USC \cdot \Theta)$$

3. RESULTS AND DISCUSSION

The MILP model was optimised through GAMS (CPLEX solver) on a 2.60 GHz (32 GB RAM) computer, under a dynamic linearly increasing decarbonisation target $0 \% \leq \alpha \leq 50 \%$ (with the upper bound of α compatible with Shogenova et al., 2014). Each scenario entailed 2226671 continuous and 175555 discrete variables. Since limited information are available in the open literature on the characteristics of offshore sequestration in the Adriatic Sea compared to CO$_2$ storage in the North Sea, Scenario A limits the possibility of storage to the latter, while Scenario B considers also the Adriatic Sea basin (Table 2).

Scenario A entails a total cost TC of 75.6 €/t, majorly constituted by capture cost TCC (45.5 €/t, i.e. 60.2% of TC), and with transport TTC (12.3 €/t, i.e. 16.3% of TC) and storage TSC (18.0 €/t, i.e. 23.5% of TC) exhibiting similar shares (Fig. 3a). A slight cost reduction is achieved through the introduction of the Adriatic Sea storage in Scenario B, in which TC decreases to 74.2 €/t (-1.9% with respect to Scenario A), determined by small drops in TCC (45.0 €/t, i.e. -1.1% with respect to Scenario A) and in TTC (11.2 €/t, i.e. -8.9% with respect to Scenario A) (Fig. 3b).

The evolution in time of avoidance cost components and avoidance marginal costs $TC'_{\Delta e/\Delta t}$ in Scenario A and Scenario B are reported in Fig. 3. As long as α increases
more moderate installation of capture plants k_{s3} and only from t_4 (i.e., after 8 years for $\alpha = 40\%$).

The resulting CCS SC designs show differences between Scenario A (Fig. 5) and Scenario B (Fig. 6). On the one hand, Scenario A (Fig. 5) is characterised by a North Sea-targeted network with local pipelines clusterings to exploit the beneficial effects of scale over transport costs. On the other hand, from Scenario B (Fig. 6), which includes the possibility of storage in the Adriatic area, it emerges the installation of two main SC clusters: a Northern capture system in which the CO$_2$ is directed towards the North Sea and the United Kingdom, and a Southern capture network which exploits the presence of storage in the Mediterranean. Consequently, Scenario B shows a much larger exploitation of Southern European facilities for sourcing the CO$_2$, compared to the SCs obtained from the optimisation of Scenario A, also in case of lower carbon reduction targets, e.g. for $\alpha = 30\%$ (Fig. 5a, Fig. 6a). However, it is to be highlighted that the design configuration resulting from Scenario B involves a noticeable exploitation of the Mediterranean basin, which is filled up to 56% of its capacity at t_3, while the North Sea storage is just marginally exploited in both Scenario A and Scenario B (since it is characterised by much larger capacities).

In general, this work proposed a model to assess and design the optimal installment of capture capacity at industrial sites owned and operated by many different entities. It also provided insights into pipeline trajectories and capacities which will eventually constitute major trans-national infrastructure projects to be built. The outcomes from this study target at a high-level understanding of the total minimum costs of a European CCS SC and constitute a preliminary analysis to foster a large-scale installation of such networks. However, the implementation of the resulting SC would not rely on a single authority, but rather on a wide range of stakeholders and decision makers. On the one side, this work demonstrates how mathematical programming can support investors and decision makers with tools for analysing and assessing in a quantitative way different scenarios and options. On the other side, we need to recognise that it represents an ideal representation of an optimal SC that can be achieved by a single player. Reality is more complex, and in an international system several factors should be taken into account; for instance, the implementation of cooperation schemes among the different entities, stakeholders and countries could be necessary for setting a trans-national infrastructure at a European level (d’Amore and Bezzo, 2020).

4. CONCLUSION

In this study it was proposed a mixed integer linear programming-based model for optimising a European chain for carbon capture and storage. Major industrial CO$_2$ sources were considered and different capture options taken into account. Pipelines were designed to transport the CO$_2$ towards offshore sequestration basins, located in the North Sea and Adriatic Sea.

Results show that the overall avoidance cost of a European carbon capture and storage network ranges between 74.2 and 75.6 €/t of CO$_2$, and is mainly constituted by capture cost (60%), followed by the contributions of offshore storage cost (23%) and transport cost (17%). A maximum value of marginal avoidance cost of 84-91 [Δ€/Δt] was
found, which would correspond to a carbon tax to avoid 50% of CO\textsubscript{2} emissions from European large-scale industry. The inclusion of the Adriatic sequestration basin allows some costs reduction (about -2%), thanks to the creation of a Mediterranean carbon network opposed to the North Sea-targeted one.

Future work should investigate the inclusion of ships as additional offshore transport means, or consider the technological learning rates that would characterise different capture plants installations. Additionally, the model relies on a large number of techno-economic parameters, the deterministic nature of which should be further investigated (e.g., through sensitivity analyses) for a better comprehension of the robustness of the results.
REFERENCES

d’Amore, F., and Bezzo, F. (2017). Economic optimisation of European supply chains for CO₂ capture, transport and sequestration. *Int. J. Greenh. Gas Control*, 65, 99-116.

d’Amore, F., and Bezzo, F. (2020). Optimal European co-operative supply chains for carbon capture, transport, and sequestration with costs share policies. *AICHE J.*, 66, 16872.

d’Amore, F., Romano, M. C., and Bezzo, F. (2021). Carbon capture and storage from energy and industrial emission sources: a Europe-wide supply chain optimisation. *J. Clean. Prod.*, 290, 125202.

Donda, F., Volpi, V., Persoglia, S., and Parushev, D. (2011). CO₂ storage potential of deep saline aquifers: The case of Italy. *Int. J. Greenh. Gas Control*, 5, 327-335.

EEA (2020). European Pollutant Release and Transfer Register. Available at: https://prtr.eea.europa.eu/#/pollutantreleases.

EU GeoCapacity Project (2009). Assessing European Capacity for Geological Storage of Carbon Dioxide. Available at: www.geology.cz/geocapacity/publications.

Gardarsdottir, S. O., De Lena, E., Romano, M. C., Roussanale, S., Voldsund, M., Pérez-Calvo, J. F., et al. (2019). Comparison of technologies for CO₂ capture from cement production-Part 2: Cost analysis. *Energies*, 12, 542.

Hasan, M. M. F., First, E. L., Boukouvala, F., and Floudas, C. A. (2015). A multi-scale framework for CO₂ capture, utilization, and sequestration: CCUS and CCU. *Comput. Chem. Eng.*, 81, 2-21.

Ho, M. T., Bustamante, A., and Wiley, D. E. (2013). Comparison of CO₂ capture economics for iron and steel mills. *Int. J. Greenh. Gas Control*, 19, 145-159.

IEAGHG (2017). Understanding the Cost of Retrofitting CO₂ capture in an Integrated Oil Refinery. Available at: https://ieaghg.org/publications/technical-reports/reports-list/10-technical-reviews/819-2017-tr8-understanding-the-cost-of-retrofitting-co2-capture-in-an-integrated-oil-refinery.

IPCC (2005). IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press. Available at: https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/.

IPCC (2018). Global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate chang. Available at: http://report.ipcc.ch/sr15/pdf/sr15spm_final.pdf.

Leeson, D., Mac Dowell, N., Shah, N., Petit, C., and Fennell, P. S. (2017). A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. *Int. J. Greenh. Gas Control*, 61, 71-84.

NETL (2015). Cost and performance baseline for fossil energy plants Volume 1a: Bituminous coal (PC) and natural gas to electricity, Revision 3. Available at: https://www.netl.doe.gov/projects/files/CostandPerformanceBaselineforFossilEnergyPlantsVolume1aBitCoalPCandNaturalGastoElectRev3.pdf.

Rubin, E. S., Davison, J. E., and Herzog, H. J. (2015). The cost of CO₂ capture and storage. *Int. J. Greenh. Gas Control*, 40, 378-400.

Shogenova, A., Piessens, K., Holloway, S., Bentham, M., Martinez, R., Florines, K. M., et al. (2014). Implementation of the EU CCS directive in Europe: Results and development in 2013. *Energy Procedia*, 63, 6662-6670.

Tapia, J. F. D., Lee, J. Y., Ooi, R. E. H., Foo, D. C. Y., and Tan, R. R. (2018). A review of optimization and decision-making models for the planning of CO₂ capture, utilization and storage (CCUS) systems. *Sustain. Prod. Consum.*, 13, 1-15.

Van Straalen, J., Geuzebroek, F., Goodchild, N., Topapas, G., and Mahony, L. (2010). CO₂ capture for refineries, a practical approach. *Int. J. Greenh. Gas Control*, 4, 316-320.

Voldsund, M., Gardarsdottir, S. O., De Lena, E., Pérez-Calvo, J. F., Jamali, A., Berstad, D., et al. (2019). Comparison of technologies for CO₂ capture from cement production-Part 1: Technical evaluation. *Energies*, 12, 559.

Wang, P. T., Wei, Y. M., Yang, B., Li, J. Q., Kang, J. N., Liu, L. C., et al. (2020). Carbon capture and storage in China’s power sector: Optimal planning under the 2°C constraint. *Appl. Energy*, 263, 114694.

ZEP (2011). The cost of CO₂ storage: Post-demonstration CCS in the EU. Available at: https://www.globalccsinstitute.com/archive/hub/publications/119816/costs-co2-storage-post-demonstration-ccs-eu.pdf.