Delayed Presentation and Outcome of Febrile Children Admitted in a Tertiary Facility in Sokoto, North-Western Nigeria: A Case-Control Study

Khadijat Omeneke Isezuo1*, Ben Oloche Onankpa1, Asmau Adamu1, Fatima Bello Jiya1, Maryam Amodu-Sanni1, Bilquis Ilah Garba1, Olubusola Busayo Okwuolise1 and Edzu Usman Yunusa2

1Department of Paediatrics, Usman Danfodiyo University Teaching Hospital, Sokoto, Nigeria
2Department of Community Health, Usman Danfodiyo University Teaching Hospital, Sokoto, Nigeria

*Corresponding author: Khadijat OmenekeIsezuo, Department of Paediatrics, Usman Danfodiyo University, Sokoto, Nigeria, Tel: +2348036785003

Abstract

Objective: Delay in seeking appropriate health care by caregivers is an important modifiable factor which contributes to childhood morbidity and mortality in developing countries. This study was carried out to assess the socio-demographic factors associated with late hospital presentation and outcome of acute febrile illnesses among children aged < 15 years in an emergency unit.

Design: Prospective case control study.

Setting: Hospital based study in the Emergency Paediatric Unit of Usman Danfodiyo University Teaching Hospital (UDUTH), Sokoto.

Subjects: Children admitted with acute febrile illnesses from October 2017 to March 2018. Cases were children with fever ≥ 3 days to 7 days, controls were those with fever < 3 days before presentation. Socio-demographic and outcome data were obtained. Analysis was with SPSS version 23 and p < 0.05 was significant.

Main outcome measures: Outcome (alive or dead) and duration of admission in days.

Results: 124 of 494 admissions were sampled. Cases were more likely to have 3 or more siblings (OR 2.3; CI: 0.97-5.5), fathers and mothers who lacked formal education (OR 1.9; CI: 1.4-2.6, OR 2.2; CI: 1.6-3.0), and more likely visited patent medicine vendors (OR 1.3; CI: 0.95-1.9). They also had longer duration of admission (OR 8.3; CI: 3.7-18.5) and were more likely to die (OR 3.1; CI: 0.3-30.7). Three of the 4 mortalities had presented late and all were of low social class families.

Conclusion: Late presentation was more with the uneducated parents with attendant longer duration of illness and higher mortality probably due to illness severity and lack of amelioration with prior treatment.

Keywords
Late presentation, Children, Fever, Emergency, Socio-demographic, Outcome

Introduction

According to the World Health Organization [1], seeking early care and treatment for acutely ill children after onset of symptoms have been found to be associated with faster resolution, less progression to severe illness and better outcome. Fever is the commonest complaint seen in the emergency unit [2]. It is a symptom of potentially life-threatening infections in children of which malaria and bacterial infections predominate in the Tropics. However, children who by virtue of their age and developmental status are totally dependent on their parents and caregivers and most often than not are presented late to health facilities leading to complications associated with increased morbidity and mortality [3].

Most of the yearly childhood deaths occur in developing countries, Nigeria inclusive. In Africa, childhood mortality is 92 per 1000, about 16 times that of resource
Controls: Controls were children who were presented to the emergency with fever and other acute symptom duration of less than 3 days.

Exclusion criteria

Those who had been referred from another centre or had been previously admitted for the present illness at another facility.

Sample size determination

Prevalence of children presenting to the emergency unit after 3 days of 50.6% in a study in Abakaliki [12] was used for the cases while for controls; prevalence of 33% of those accessing treatment for malaria in less than 3 days was used from a study in Ghana [13].

\[
n = \left(\frac{Z_{1-\alpha/2} + Z_{\beta}}{\sqrt{p_1q_1 + p_2q_2}} \right)^2 / (p_1 - p_2)^2
\]

- \(Z_{1-\alpha/2} \) = percentage point of the normal distribution corresponding to the required (two-sided) significance level (\(\alpha \)) of 0.05 = 1.96.
- \(Z_{\beta} \) = one sided percentage point of the normal distribution corresponding to 100% - the power, power = 80% (100% - power) = 20% (i.e. p value of 0.2) = 0.84
- \(p_1 \) = prevalence of cases from a previous study = 50.6% = 0.506
- \(q_1 \) = complimentary probability of \(p_1 \) = 1 - \(p_1 \) = 1 - 0.506 = 0.494
- \(p_2 \) = prevalence of controls from a previous study = 33.0% = 0.33
- \(q_2 \) = complimentary probability of \(p_2 \) = 1 - \(p_2 \) = 1 - 0.33 = 0.67

\[
\left(1.96 + 0.84\right)^2 \times \left(0.506 \times 0.494 + 0.33 \times 0.67\right) / (0.506 - 0.33)^2
\]

\[
= 7.84 \times \left[0.249 + 0.221\right] / 0.176^2
\]

\[
= 3.7/0.03
\]

\[
= 123.3 \sim 124
\]

Therefore, 62 subjects were recruited into each group.

Procedure of subject recruitment

Children with fever and other acute symptomssuch as cough, coryza, convulsions and diarrhoea, vomitingof ≤ 7 days duration were recruited daily by systematic random sampling from their case notes after they had been attended to and documentation made in the emergency unit. Cases and controls were sampled separately. They were age and gender matched but not matched by diagnosis. Temperature was recorded with a battery powered electronic digital thermometer from inserted into the child’s axillary region. All subjects recruited had informed consent requested from their caregivers and further interview was carried out.

Studies in different locations have revealed that many parents do buy time to assess the situation before taking a decision to seek appropriate care. Reasons include poor knowledge, high cost of health care coupled with lack of health insurance leading to high patronage of patent vendors and unauthorized health care providers [6-9]. In Nigeria, as well as other African countries seeking appropriate health care for acutely ill children by their caregivers is an important modifiable factor which contributes to childhood morbidity and mortality in developing countries.

Sokoto in North-western region of Nigeria has one of the highest rates of childhood mortality in the country [10]. This study was therefore carried out to assess the socio-demographic factors associated with late hospital presentation and outcome of acute illnesses among children aged < 15 years admitted into the Emergency Paediatric Unit (EPU) of Usmanu Danfodiyo University Teaching Hospital (UDUTH), Sokoto.

Methods

The study was carried out at the EPU of UDUTH, Sokoto, a tertiary health facility located in the Sokoto State capital. The hospital is the apex referral centre for residents of Sokoto, Zamfara and Kebbi States; and the neighbouring Niger and Benin Republics in the West African sub-region [11].

Study design

This was a case control study conducted over a 6 month period (1st October 2017 to 31st March 2018).

Study population

Comprised children aged 2 months to 15 years admitted into the EPU with acute febrile illness were recruited.

Inclusion criteria

Those with febrile illness of < 7 days.

Cases: Cases were children who were presented to the emergency with fever and other acute symptoms of duration of 3 days up to 7 days.
The outcome after admission was categorized as ‘alive’, if the patient recovered and was discharged. The second category was ‘dead’, if mortality was recorded. Duration of admission as an outcome was categorized into duration either less than or more than 1 week.

Data entry and analysis

Data was analysed using Statistical Package for Social Science (SPSS) statistical software (version 23.0). The prevalence rates were presented as percentages while the age distribution of the studied subjects was analysed and expressed as mean and standard deviation. Frequency distribution tables were used to illustrate results. Chi square test was used to determine associations between categorical variables, while Odd’s ratio was used to measure association between an exposure or characteristic and outcome. Student t-test was used to assess the mean differences between the 2 groups. Data was checked for normality with the Kurtosis and skewness option and was found to be normally distributed.

Binary logistic regression analysis was additionally used to assess the effect of variables that were signif-

Characteristic	Cases (Presented after 3 days)	Controls (Presented before 3 days)	OR	95% CI	P
	(n = 62) (%)	(n = 62) (%)			
Socioeconomic class					
Upper	1 (1.6)	1 (1.6)	χ² = 6.4	0.04	
Middle	13 (29.0)	26 (41.9)			
Lower	48 (77.4)	35 (56.5)			
Primary caregiver					
Mother	51 (82.3)	58 (93.5)	3.12	0.93-10.43	0.05
Others	11 (17.7)	4 (6.5)			
Mother’s age (years)	29.2 ± 5.8	28.8 ± 4.8	t-test	0.91	
Mother’s educational status					
Non formal	31 (50.0)	8 (12.9)	2.17	1.57-3.01	0.00
Formal	31 (50.0)	54 (87.1)			
Mother’s employment status					
Unemployed	35 (56.5)	34 (54.8)	0.94	0.46-1.9	0.86
Employed	27 (43.5)	28 (45.2)			
Father’s age (years)	41.5 ± 7.4	41.7 ± 8.9	t-test	0.76	
Father’s educational status					
Non formal	25 (40.3)	7 (11.3)	1.94	1.4-2.6	0.00
Formal	37 (59.7)	55 (88.7)			
Father’s employment status					
Unemployed	18 (29.0)	8 (12.9)	1.54	1.1-2.2	0.03
Employed	44 (71.0)	54 (71.0)			
Number of siblings					
1-2	10 (16.1)	19 (30.6)	2.30	0.97-5.5	0.04
≥ 3	52 (83.9)	43 (69.4)			

*: Fisher’s exact test.
icant on bivariate analysis. The independent variables entered into the model as covariates included parental characteristics (occupational and educational status) and dependent variable was time of presentation (early or delayed). Father’s educational status was used as the reference category. The β- coefficients, odd’s ratio and 95% Confidence intervals of the odd’s ratios were determined.

The level of statistical significance was set at p-value < 0.05.

Results

There were 494 children admitted into the Emergency Paediatric Unit (EPU) of the hospital during the study period from October 1st 2017 to 31st March 2018. Out of this, 124 (25.1%) were selected for the study comprising 62 cases who presented at 3 days to 7 days after illness onset and 62 controls who had presented at less than 3 days after illness onset.

Age distribution was as follows: 78 (62.9%) were aged 1 to 5 years, 24 (19.4%) were under 1 year of age while 22 (17.7%) were aged above 5 years (χ = 2.35, p = 0.3). There were 73 males (58.1%) and 51 females (41.1%) with no significant difference between the 2 groups by sex (χ = 0.03, p = 0.85).

The caregiver at presentation was the mother only in 53.2%, both parents in 34.7% and only father in 2.4%.

The sociodemographic characteristics of the cases and controls are shown in Table 1.

In Table 1, it is shown that most of the subjects were of low socioeconomic status and predominantly presented after 3 days of illness onset (χ² = 6.4; P = 0.04). Also, a larger proportion of those who were not primarily under the care of their mothers presented after 3 days. There was no significant difference between the ages of the parents of the cases and controls; however, there was significant relationship with their educational status. More of the parents who had formal education presented earlier before 3 days for both fathers and mothers as seen in Table 1. However, only the occupational status of the father was related to the time of presentation. Also, those with less siblings were likely to be present before 3 days (OR = 1.6).

In Table 2, it is seen that there is no significant difference with regards to the gender, mean age and age category of the cases and controls. Also, the diagnosis in both groups show similar distribution (χ² = 11.1, p = 0.09).

In Table 3, it is seen that cases had a significantly longer mean duration of symptoms before presentation. A larger proportion of the cases were taken to the patent vendors amongst the cases while more of the controls presenting before 3 days had been taken to general hospital and private hospital prior to the pres-

Characteristic	Cases (Presented after 3 days) (n = 62) (%)	Controls (Presented before 3 days) (n = 62) (%)	OR 95% CI	P
Gender				
Male	36 (58.1)	37 (59.7)	0.96 0.68-1.40	0.85
Female	26 (41.9)	25 (40.3)		
Age category				
2 months - < 1 year	10 (16.1)	14 (22.6)	0.3	
1 year to 5 years	38 (61.3)	40 (64.5)		
> 5 years	14 (22.6)	8 (12.9)		
Mean Age				
Age of child (months)	50.6	38.0	t-test	0.10
Diagnosis				
Severe malaria	30	26		
Pneumonia	7	12		
Febrile convulsion	10	7		
Diarrhea disease	7	8		
Sepsis	6	4		
Measles	5	4		
Malnutrition	2	2		
Sickle cell anaemia	1	3		
Acute kidney injury	1	0		
Meningitis	1	1		
Retroviral disease	1	0		
More cases than controls were likely to die and also had a mean longer duration of admission.

Table 3: Route taken before presentation to UDUTH.

Characteristic	Cases (Presented after 3 days)	Controls (Presented before 3 days)	OR 95% CI	P
Mean duration before presenting (days)	7.05 (62) (%)	2.81 (62) (%)	t-test 0.00	
Route taken				
Treated at home by parents - UDUTH	29 (46.8) (%)	28 (45.2) (%)	$\chi^2 = 6.8$ 0.33	
Treated at home by health workers - UDUTH	1 (1.6) (%)	1 (1.6) (%)		
Home - Patent vendor - UDUTH	17 (27.4) (%)	8 (12.9) (%)		
Home - Patent vendor - PHC - UDUTH	5 (8.1) (%)	6 (9.7) (%)		
Home - GH - UDUTH	8 (12.9) (%)	13 (21.0) (%)		
Home - PH - UDUTH	2 (3.2) (%)	5 (8.1) (%)		
Others	0 (0.1) (%)	1 (1.6) (%)		
Visited patent vendors				
Yes	22 (35.5) (%)	14 (22.6) (%)	1.34 0.95-1.90 0.08	
No	40 (64.5) (%)	48 (77.4) (%)		

Table 4: Outcome of admission and duration.

Characteristic	Cases (Presented after 3 days)	Controls (Presented before 3 days)	OR 95% CI	P
Outcome of admission				
Alive	59 (95.2) (%)	61 (98.4) (%)	3.10 0.31-30.67 0.33	
Dead	3 (4.8) (%)	1 (1.6) (%)		
Duration of admission				
< 1 week	16 (25.8) (%)	46 (74.2) (%)	8.2 3.69-18.47 0.000	
> 1 week	46 (74.2) (%)	16 (25.8) (%)		
Mean duration of admission (days)	10.2 ± 4.6 (%)	7.1 ± 6.4 (%)	t-test 0.005	

Table 5: Logistic regression of factors associated with early or late presentation.

Characteristic	p-value	Odds ratio	95% C.I. for Odds ratio
Socioeconomic status	0.992	0.943	0.368 2.412
Mother's educational status	0.016	3.794	1.284 11.208
Father's educational status	0.185	2.131	0.694 6.670
Father's occupational status	0.326	1.714	0.584 5.026
Number of siblings > 3	0.398	0.665	0.258 1.713

Table 6: Relationship between mortality to sociodemographic characteristics on bivariate analysis.

Characteristic	OR	95% C.I.	p-value*
Number of siblings ≥ 5	4.5	0.5-44.5	0.20
Gender	0.8	0.3-2.2	0.5
Mother's occupational status	1.8	0.3-9.9	0.40
Mother's educational status	-	-	0.009
Father's occupational status	3.2	0.6-17.7	0.03
Father's educational status	3.0	0.5-16.6	0.05

*: Fisher exact test.

tation. Among the controls, only 15 (24.6%) presented within 24 hours of onset of symptoms.

Table 4 shows the outcome characteristics of the subjects with respect to duration of admission and mortality. More cases than controls were likely to die and also had a mean longer duration of admission.

Table 5 shows the logistic regression analysis of the factors found to be significant on bivariate analysis.
Controlling for other factors, it was seen that mother’s educational status remained a significant predictor of early presentation to the hospital.

When association between sociodemographic parameters and outcome of mortality was analysed with Chi-square, it was seen that mortality was higher amongst those who had more > 5 siblings, uneducated mothers, uneducated fathers and those of low socioeconomic status. The levels of significance are shown in Table 6.

Discussion

Most of the families of the children presenting to the emergency unit were of low socioeconomic status similar to studies done in other areas in and outside the country [3,9,16] which was not surprising given the effect on prevailing poverty on child health indices in the Tropics which leads to increases rates of preventable diseases and demand for emergency health care services [17]. Additionally, it was seen that those from lower social class accounted for a larger proportion of those that presented after 3 days as compared to the controls. Similar findings were reported by Gitau [6] in Kenya and Kassile [16] in Tanzania as more children from lower social class group presented late. This could also be accounted for by lack of health insurance and outrageous out-of-pocket expenditure fostered on the poorest who are also at the receiving end of high disease burden as shown in a report from the study area, Sokoto [18].

Mean ages of parents were no different between the cases and controls similar to the studies by Gitau and Abdulkadir [6,9] on time to presentation to health facilities of febrile children. Also, among the cases and controls, there was no effect of age, gender on time of presentation. A previous study by Oladigbolu [19] in the study area on socioeconomic factors influencing utilization of healthcare services revealed that age, gender and religion and tribe were not associated with ability to pay for health services. This was attributed to a similar pattern of health seeking behaviour irrespective of these variables [19].

In this study, those from larger size families as typified by number of siblings of 3 or more were more likely to present late similar to findings in the previous studies [6,9]. This could also be due to relatively less funds and time being available to present the child earlier to the hospital on account of more competing demands from other children in the family. In line with this, it was also seen in this study that children whom their mothers were not their primary caregiver were more likely to present late. Similarly, Kassile [16] in a Tanzanian study also found that presence of one of biological parents and number of under-five children in the household predict delayed treatment-seeking decision for fever.

The other findings from this study were that the educational status of the parents especially that of the mother played a significant role in determining time lapse before presentation of febrile children to the study hospital. Educational status of parents also imparted significantly on the survival outcome with more of the mortalities occurring amongst the children of uneducated parents. Late presentation and prior treatment were more with the uneducated parents with attendant higher morbidity and mortality probably due to illness severity and lack of amelioration with prior treatment. It is well recognized that female education has wide reaching implications on child health and is the major child survival strategy that ensures others are attained [20]. However, in the study in Ilorin by Abdulkadir [9], a surprising finding was that mothers with secondary education had a higher likely rate of late presentation. This was however attributed to increased advocacy for the home management of malaria by caregivers. In a study by Rees in Gambia [21], being resident in a core village and increased distance from the hospital were more associated with delayed presentation; however, these parameters were not accessed in this study.

The routes taken before arriving the study hospital among the cases and controls were somewhat comparable. Although most cases and controls came to the hospital after home therapies failed, a large proportion of the cases had visited patent medicine dealers before presenting to the hospital, while larger proportion of the controls had visited general hospitals and private clinics. This is a quite different pattern from the report by Gitau [6] from Kenya where it was seen that most (both cases and controls) had visited private and other public hospitals. Only few had gone to patent pharmacy store. This could be attributed perhaps to the more cosmopolitan nature of Nairobi compared to Sokoto and relatively higher socioeconomic status of population there. In a study by Mpimbiza [22] in Uganda, it was also found that patronizing drug shops was significantly associated with late presentation.

The cases had a poorer survival outcome as a well as a longer duration of admission compared to the controls. Cases were 3 times more likely to die than the controls, while they were 4 times more likely to die in the study by Gitau [6], however, their sample size was much larger. Malaria, diarrhoeal disease and pneumonia were the most frequent diagnosis both amongst the cases and controls. This in turn reflects the pattern of disease presentation in other paediatric emergency units in the country [8,12,23], still buttressing the fact that more needs to be done on prevention especially health education.

This study is limited by the lack of case to case matching of the different diagnosis in the comparison groups.

Conclusion

Late presentation was more with the uneducated and low socioeconomic class parents with attendant.
higher morbidity and mortality probably due to illness severity and lack of amelioration with prior treatment. We recommend improvement in primary prevention especially health education of the community on common diseases. Advocacy on child survival strategy especially female education will go a long way in reducing late presentation, hence subsequent reduction in morbidity and mortality from acute disease conditions.

What is Already Know on this Topic

- Late presentation to the hospital is associated with increased likelihood of mortality and longer duration of admission in comparison to early presentation.
- A large number of those brought late may have sought care from unauthorized care givers.

What this Study Adds

- This study affirmed the finding that late presentation to the hospital beyond 3 days of onset of acute illness is associated with increased likelihood of mortality.
- Uneducated parents have a higher rate of late presentation of their wards to the hospital with attendant higher mortality.

Sources of Support

Nil.

Acknowledgements

We are grateful to all the staff that were involved in the care of these patients.

Competing Interests

The authors declare no competing interest.

Authors’ Contributions

KOI and BOO conceptualized the study and wrote the initial draft. AA, FBJ, MAS, BGI, OBO, EUY all contributed to the data collection, statistical analysis and manuscript development. All the authors have contributed to the final version of this manuscript and have equally contributed to the management of the subjects.

References

1. WHO (2000) The African Summit on Roll Back Malaria, Abuja, Nigeria. WHO/CDS, Geneva.
2. Walsh A, Edwards H (2006) Management of childhood fever by parents: Literature review. J Adv Nurs 54: 217-227.
3. Rutebemberwa E, Kallander K, Tomson G, Peterson S, Pariyo G (2009) Determinants of delay in care-seeking for febrile children in eastern Uganda. Tropical Medicine & International Health 14: 472-479.
4. Michalski T (2016) The differentiation of the health situation in European post-Communist countries after 1990. Geographica Helvetica 74: 167-182.
5. Hill Z, Kendall C, Arthur P, Kirkwood B, Adjei E (2003) Recognizing childhood illnesses and their traditional explanations: exploring options for care-seeking interventions in the context of the IMCI strategy in rural Ghana. Trop Medicine and Int Health 8: 668-676.
6. Gitau J, Irimu G, Wamalwa D, Njai D (2016) Factors associated with late presentation to Kenyatta national hospital for acute severe illness in children aged 2-59 months. Pinnacle Medicine & Medical Sciences 3: 1-8.
7. Jofro G, Jemal K, Beza L, Bacha Heye T (2018) Prevalence and associated factors of pediatric emergency mortality at Tikur Anbessa specialized tertiary hospital: A 5 year retrospective case review study. BMC Pediatrics 18: 316.
8. Okoro C, Emechebe G, Onyenwe N (2019) Sociodemographic determinants of outcomes of children presenting to the Children’s Emergency Room of a tertiary health institution in South Western Sahara. Sri Lanka Journal of Child Health 48: 233-239.
9. Abdulkadir M, Ibraheem R, Johnson W (2015) Sociodemographic and Clinical Determinants of Time to Care-Seeking Among Febrile Children Under-Five in North-Central Nigeria. Oman Medical Journal 30: 331-335.
10. National Population Commission (NPC), ICF International (2014) Nigeria Demographic and Health Survey 2013. NPC and ICF International, Abuja, Nigeria, and Rockville, Maryland, USA.
11. National Population Commission (2007) 2006 National Census: Federal Republic of Nigeria Official Gazette.
12. Anyanwu O, Ezeanosike O, Ezeonu C (2014) Pattern and outcome of admissions at the children emergency room at the Federal Teaching Hospital Abakaliki. Afr J Med Health Sci 13: 6-10.
13. Ahorlu CK, Koram KA, Ahorlu C, de Savigny D, Weiss MG (2006) Socio-cultural determinants of treatment delay for childhood malaria in southern Ghana. Trop Med Int Health 11: 1022-1031.
14. Oyedeji GA (1985) Socioeconomic and Cultural Background of Hospitalized Children in Ilesha. Nig J Paediatr 12: 111-117.
15. U.S. Bureau of Labor Statistics (2019) Labor Force Statistics from the Current Population Survey.
16. Kassile T, Lokina R, Mujinja P, Mmbando BP (2014) Determinants of delay in care seeking among children under five with fever in Dodoma region, central Tanzania: A cross-sectional study. Malaria Journal 13: 348.
17. Ahmed H (2007) Effects of poverty on child health and paediatric practice in Nigeria: An overview. Annals of African Medicine 6: 142-156.
18. Oladigbolu R, Oche M, Kaoje A, Gana G, Makusidi M (2018) Out-of-Pocket Spending and Access to Healthcare Services in Sokoto, Nigeria. International Journal of Tropical Disease & Health 31: 1-13.
19. Oladigbolu R, Oche M, Kaoje A, Gana G (2017) Socio-economic Factors Influencing Utilization of Healthcare Services in Sokoto, North-Western Nigeria. International Journal of Tropical Disease & Health 27: 1-13.
20. Bado AR, Sathiya Susuman A (2016) Women’s Education and Health Inequalities in Under-Five Mortality in Selected Sub-Saharan African Countries, 1990-2015. PLoS One 11: e0159186.
21. Rees C, Hawksworth S, Moore L, Dondeh B, Unger S (2016) Factors Affecting Access to Healthcare: An Observational Study of Children under 5 Years of Age Presenting to a Rural Gambian Primary Healthcare Centre. PLoS One 11: e0157790.
22. Mpimbaza A, Ndeezi G, Katahoire A, Rosenthal PJ, Karamagi C (2017) Demographic, Socioeconomic, and Geographic Factors Leading to Severe Malaria and Delayed Care Seeking in Ugandan Children: A Case-Control Study. Am J Trop Med Hyg 97: 1513-1523.

23. Ndukwu CI, Onah SK (2015) Pattern and outcome of post-neonatal pediatric emergencies in Nnamdi Azikiwe University Teaching Hospital, Nnewi, South East Nigeria. Niger J Clin Pract 18: 348-353.