WHEN POWERS OF A MATRIX COINCIDE WITH ITS HADAMARD POWERS

ROMAN DRNOVŠEK

Abstract. We characterize matrices whose powers coincide with their Hadamard powers.

Key words: Hadamard product, canonical forms, (0, 1)-matrices, idempotents

Math. Subj. Classification (2010): 15A21

Let $M_n(F)$ be the algebra of all $n \times n$ matrices over the field F. The Hadamard product of matrices $A = [a_{ij}]_{i,j=1}^n \in M_n(F)$ and $B = [b_{ij}]_{i,j=1}^n \in M_n(F)$ is the matrix $A \circ B = [a_{ij}b_{ij}]_{i,j=1}^n$. The usual product of A and B is denoted by AB. Given a positive integer r, the r-th Hadamard power of a matrix $A = [a_{ij}]_{i,j=1}^n \in M_n(F)$ is the matrix $A^{(r)} = [a_{ij}^r]_{i,j=1}^n$, while the usual r-th power of A is denoted by A^r.

Let $p(\lambda) = c_m\lambda^m + c_{m-1}\lambda^{m-1} + \cdots + c_1\lambda$ be a polynomial with given coefficients $c_m, c_{m-1}, \ldots, c_1 \in F$ and without constant term. For any $A \in M_n(F)$, we can first define the usual matrix function by

$$p(A) = c_mA^m + c_{m-1}A^{m-1} + \cdots + c_1A,$$

and then also the Hadamard matrix function by

$$p^H(A) = c_mA^{(m)} + c_{m-1}A^{(m-1)} + \cdots + c_1A.$$

The Hadamard product and Hadamard matrix functions arise naturally in a variety of ways (see e.g. [3, Section 6.3]). So, it is perhaps useful to know for which matrices A we have $p(A) = p^H(A)$ for all such polynomials p, or equivalently, $A^r = A^{(r)}$ for every $r \in \mathbb{N}$. The latter question has been recently posed in [5] for the case of real matrices, and two characterizations of such matrices have been given in [2] and [4]. In this note we give another description of such matrices.

Theorem 1. Let $A \in M_n(F)$ be a nonzero matrix. Then the following assertions are equivalent:

(a) $A^r = A^{(r)}$ for every positive integer r;

(b) $A^r = A^{(r)}$ for every integer $r \in \{2, 3, \ldots, n + 1\}$.
(c) There exist \(k \in \mathbb{N} \), distinct non-zero elements \(\lambda_1, \ldots, \lambda_k \in \mathbb{F} \), and idempotent \((0,1)\)-matrices \(E_1, \ldots, E_k \) such that

\[
A = \sum_{i=1}^{k} \lambda_i E_i \quad \text{and} \quad E_i \circ E_j = E_i E_j = 0 \quad \text{for all} \ i \neq j.
\]

Proof. The implication \((a) \Rightarrow (b)\) is trivial. We begin the proof of the implication \((b) \Rightarrow (c)\) by letting \(p(\lambda) = c_m \lambda^m + c_{m-1} \lambda^{m-1} + \cdots + c_1 \lambda \) be a polynomial of degree \(m \leq n + 1 \). If \(A = (a_{ij})_{i,j=1}^n \), then our assumptions give that

\[
p(A) = c_m A^m + c_{m-1} A^{m-1} + \cdots + c_1 A = [p(a_{ij})]_{i,j=1}^n.
\]

This implies that

\[
p(A) = 0 \iff p(a_{ij}) = 0 \quad \text{for all} \ i, j.
\]

Let \(m(\lambda) \) be the minimal polynomial of \(A \). If \(A \) is invertible, put \(p(\lambda) = \lambda m(\lambda) \), otherwise let \(p(\lambda) = m(\lambda) \). Then the degree of \(p(\lambda) \) is at most \(n + 1 \) and \(p(0) = 0 \), so that the equivalence (2) implies that \(p(a_{ij}) = 0 \) for all \(i, j \). Let \(q(\lambda) \) be the minimal polynomial annihilating the element 0 and all entries of \(A \). Then the polynomial \(q(\lambda) \) divides the polynomial \(p(\lambda) \), so that its degree is at most \(n + 1 \). Therefore, the equivalence (2) gives that \(q(A) = 0 \), and so \(m(\lambda) \) divides \(q(\lambda) \), as \(m(\lambda) \) is the minimal polynomial of \(A \). This means that \(m(\lambda) \) factors into distinct linear factors, so that the matrix \(A \) is diagonalizable over \(\mathbb{F} \) and the set \(\{\lambda_1, \ldots, \lambda_k\} \) of all non-zero eigenvalues of \(A \) coincides with the set of all non-zero entries of \(A \).

Now, for each \(i = 1, \ldots, k \), let \(p_i(\lambda) \) be the Lagrange interpolation polynomial such that \(p_i(\lambda_i) = 1 \), \(p_i(0) = 0 \), and \(p_i(\lambda_j) = 0 \) for all \(j \neq i \), that is,

\[
p_i(\lambda) = \frac{\lambda(\lambda - \lambda_1) \cdots (\lambda - \lambda_{i-1})(\lambda - \lambda_{i+1}) \cdots (\lambda - \lambda_k)}{\lambda_i(\lambda_i - \lambda_1) \cdots (\lambda_i - \lambda_{i-1})(\lambda_i - \lambda_{i+1}) \cdots (\lambda_i - \lambda_k)}.
\]

Then \(E_i = p_i(A) \) is an idempotent. Furthermore, \(E_i E_j = 0 \) for all \(i \neq j \), as \(p_i(\lambda) p_j(\lambda) = 0 \) on the spectrum of the diagonalizable matrix \(A \). Since each entry of \(A \) belongs to the set \(\{0, \lambda_1, \ldots, \lambda_k\} \), it follows from (1) that \(E_1, \ldots, E_k \) are \((0,1)\)-matrices satisfying \(E_i \circ E_j = 0 \) for all \(i \neq j \). Finally, since \(\lambda = \sum_{i=1}^{k} \lambda_i p_i(\lambda) \) on the spectrum of the diagonalizable matrix \(A \), we conclude that \(A = \sum_{i=1}^{k} \lambda_i \sum_{i=1}^{k} \lambda_i E_i \). This proves the implication \((b) \Rightarrow (c)\).
For the proof of the implication \((c) \Rightarrow (a)\), we just compute the powers:

\[
A^r = \sum_{i=1}^{k} \lambda_i^r E_i = A^{(r)}.
\]

\[\square\]

We now give the canonical form of an idempotent \((0, 1)\)-matrix. When the field \(\mathbb{F}\) is the field \(\mathbb{R}\) of all real numbers, this can be obtained easily from the canonical form of a nonnegative idempotent matrix (see e.g. \[\square\] Theorem 3.1 on page 65).

Theorem 2. Let \(E \in M_n(\mathbb{F})\) be an idempotent \((0, 1)\)-matrix of rank \(m \in \mathbb{N}\). Suppose that the characteristic of the field \(\mathbb{F}\) is either zero or larger than \(n\). Then there exists a permutation matrix \(P\) such that

\[
P EP^T = \begin{bmatrix} I & U & 0 & 0 \\ 0 & 0 & 0 & 0 \\ V & VU & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} I \\ 0 \\ V \\ 0 \end{bmatrix} \cdot \begin{bmatrix} I & U & 0 & 0 \end{bmatrix},
\]

where \(I\) is the identity matrix of size \(m\), and \(U, V\) are \((0, 1)\)-matrices such that \(U\) has no zero columns, \(V\) has no zero rows, and \(VU\) is also a \((0, 1)\)-matrix. (It is possible that \(U\) or \(V\) act on zero-dimensional spaces.)

Proof. Suppose first that \(E\) has no zero rows and no zero columns. We must show that \(m = n\) and \(E = I\). Assume on the contrary that \(m < n\). Since \(\text{tr} (E) = m\) and \(E\) is a \((0, 1)\)-matrix, there exists a permutation matrix \(P\) such that

\[
P EP^T = \begin{bmatrix} A & B \\ C & D \end{bmatrix},
\]

where the diagonal entries of \(A \in M_m(\mathbb{F})\) are equal to 1, while the diagonal entries of \(D \in M_{n-m}(\mathbb{F})\) are equal to 0. Since \(E\) is an idempotent, we have \(A^2 + BC = A\), so that, in view of our characteristic assumption, \(A^2\) is also a \((0, 1)\)-matrix. It follows that \(A\) must be the identity matrix. As \(P EP^T\) is an idempotent, we obtain that \(BC = 0, BD = 0, DC = 0\) and \(CB + D^2 = D\). Since \(E\) has no zero rows, the equalities \(BC = 0\) and \(BD = 0\) imply that \(B = 0\). Since \(D^2 = D\) and \(\text{tr} (D) = 0\), we conclude that \(D = 0\). This contradicts the fact that \(E\) has no zero columns. So, we must have that \(m = n\) and \(E = I\).

To prove the general case, let us group the indices \(i = 1, 2, \ldots, n\) into four sets according to whether the \(i\)-th row and the \(i\)-th column of \(E\) are both non-zero, or the \(i\)-th row is
zero but the i-th column is not, and so on. So, there exists a permutation matrix P such that

$$PEP^T = \begin{bmatrix} T & U & 0 & 0 \\ 0 & 0 & 0 & 0 \\ V & W & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

where T, U, V, W are $(0, 1)$-matrices such that T and U have no zero rows in common, and T and V have no zero columns in common. Since $E^2 = E$, we have $T^2 = T$, $TU = U$, $VT = V$ and $VU = W$. It follows from $W = VU$ that U has no zero columns and V has no zero rows. Indeed, if U had a zero column, then the whole column in PEP^T would be zero, contradicting the definition of the second group of indices. As T and $U = TU$ have no zero rows in common, T has no zero rows. Similarly, T cannot have a zero column. By the first part of the proof, we obtain that $T = I$ which gives the desired form. \square

In Theorem 2 we cannot omit the assumption on the characteristic of the field \mathbb{F}. Namely, if the field \mathbb{F} has prime characteristic $p < n$, then, for example, take the $(p+1) \times (p+1)$ matrix of all ones and enlarge it by adding zeros to get an idempotent $(0, 1)$-matrix in $M_n(\mathbb{F})$ which is not of the above form.

If we apply Theorem 2 for idempotent $(0, 1)$-matrices in the assertion (c) of Theorem 1, we obtain the following description of a matrix whose powers coincide with its Hadamard powers.

Theorem 3. Let $A \in M_n(\mathbb{F})$ be a non-zero matrix of rank m, where the characteristic of the field \mathbb{F} is either zero or larger than n. Then the assertions (a), (b) and (c) of Theorem 1 are further equivalent to the following:

(d) There exist a permutation matrix P, non-zero elements $\mu_1, \ldots, \mu_m \in \mathbb{F}$, and $(0, 1)$-matrices U, V such that U has no zero columns, V has no zero rows, VU is also a $(0, 1)$-matrix, and

$$PAP^T = \sum_{i=1}^{m} \mu_i v_i u_i^T,$$

where u_1^T, \ldots, u_m^T are the rows of the $m \times n$ matrix $[I \ U \ 0 \ 0]$, and v_1, \ldots, v_m are the columns of the $n \times m$ matrix $[I \ 0 \ V \ 0]^T$.
Proof. We must explain only how to obtain the assertion (d) from the assertion (c) of Theorem 1. We first observe that the matrix $E = E_1 + \cdots + E_k$ is an idempotent $(0,1)$-matrix of rank m. By Theorem 2, there is a permutation matrix P such that

$$PEP^T = \begin{bmatrix} I & U & 0 & 0 \\ 0 & 0 & 0 & 0 \\ V & VU & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} I \\ 0 \\ V \\ 0 \end{bmatrix} \cdot \begin{bmatrix} I & U & 0 & 0 \end{bmatrix},$$

where I is the identity matrix of size m, and U, V are $(0,1)$-matrices such that U has no zero columns, V has no zero rows, and VU is also a $(0,1)$-matrix. Let u_1^T, \ldots, u_m^T be the rows of the matrix $[I \ U \ 0 \ 0]^T$, and let v_1, \ldots, v_m be the columns of the matrix $[I \ 0 \ V \ 0]^T$. Then $u_i^T v_i = 1$ for all i, $u_i^T v_j = 0$ for all $i \neq j$, and $PEP^T = \sum_{i=1}^m v_i u_i^T$. Since E_1, \ldots, E_k and $E = E_1 + \cdots + E_k$ are $(0,1)$-matrices, all the ones of a matrix E_j $(j = 1, \ldots, k)$ are at positions where also E has ones. Thus, we have

$$PE_j P^T = \begin{bmatrix} I_j & U_j & 0 & 0 \\ 0 & 0 & 0 & 0 \\ V_j & (VU)_j & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

where U_j is a matrix obtained from U by replacing some ones with zeros, and likewise for I_j, V_j, and $(VU)_j$. Now, it follows from $E_j = E_j E = EE_j$ that $U_j = I_j U$ and $V_j = V I_j$, so that each of the first m rows (resp. columns) of $PE_j P^T$ is either equal to 0 or to a corresponding row (resp. column) of PEP^T. Thus, the matrix $PE_j P^T$ is a sum of some of rank-one matrices $v_i u_i^T$; for these indices i, put $\mu_i = \lambda_j$. Then we have

$$PAP^T = \sum_{j=1}^k \lambda_j PE_j P^T = \sum_{i=1}^m \mu_i v_i u_i^T.$$

It is worth mentioning that we can eliminate the permutation matrix P in the assertion (d) of Theorem 3 by setting

$$\tilde{u}_i = P^T u_i , \quad \tilde{v}_i = P^T v_i \quad \text{for} \quad i = 1, 2, \ldots, m,$$

that gives the form

$$A = \sum_{i=1}^m \mu_i \tilde{u}_i \tilde{v}_i^T.$$
by μE, where E is an idempotent $(0,1)$-matrix of the form vu^T and u, v are $(0,1)$-vectors associated with the indices in I, J, respectively.

Finally, we give a simple example showing that the assertion (c) of Theorem 1 does not imply that, up to a permutation similarity, A has a block diagonal form with k blocks. Given any non-zero real numbers α and β, define the matrix $A \in M_4(\mathbb{R})$ by
\[
A = \begin{bmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & \beta \\ \alpha & \beta & 0 & \beta \\ 0 & 0 & 0 & 0 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}.
\]

Acknowledgments

The author was supported in part by the Slovenian Research Agency. He also thanks Bojan Kuzma and the referees for suggestions that improved this paper.

References

[1] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, revised reprint of the 1979 original, Classics in Applied Mathematics 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.
[2] E. A. Herman, Solution 50-4.1: Matrix Power Coefficients, IMAGE, The Bulletin of ILAS, issue 51, pages 38-40, Fall 2013.
[3] R. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1994.
[4] B. Kuzma, Solution 50-4.2: Matrix Power Coefficients, IMAGE, The Bulletin of ILAS, issue 51, pages 40-41, Fall 2013.
[5] M. Omarjee, Problem 50-4: Matrix Power Coefficients, IMAGE, The Bulletin of ILAS, issue 50, page 44, Spring 2013.

Roman Drnovšek
Department of Mathematics
Faculty of Mathematics and Physics
University of Ljubljana
Jadranska 19
SI-1000 Ljubljana, Slovenia
e-mail : roman.drnovsek@fmf.uni-lj.si