An update on redox signals in plant responses to biotic and abiotic stress crosstalk: insights from cadmium and fungal pathogen interactions

Maria C. Romero-Puertas1,* Laura C. Terrón-Camero1,2, M. Ángeles Peláez-Vico1, Eliana Molina-Moya1, and Luisa M. Sandalio1

1 Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), Apartado 419, 18080 Granada, Spain
2 Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN-CSIC), 18016 Granada, Spain

* Correspondence: maria.romero@eez.csic.es

Received 13 March 2021; Editorial decision 4 June 2021; Accepted 7 June 2021

Editor: Francisco Javier Cejudo Fernández, Centro de Investigaciones Científicas, Spain

Abstract

Complex signalling pathways are involved in plant protection against single and combined stresses. Plants are able to coordinate genome-wide transcriptional reprogramming and display a unique programme of transcriptional responses to a combination of stresses that differs from the response to single stresses. However, a significant overlap between pathways and some defence genes in the form of shared and general stress-responsive genes appears to be commonly involved in responses to multiple biotic and abiotic stresses. Reactive oxygen and nitrogen species, as well as redox signals, are key molecules involved at the crossroads of the perception of different stress factors and the regulation of both specific and general plant responses to biotic and abiotic stresses. In this review, we focus on crosstalk between plant responses to biotic and abiotic stresses, in addition to possible plant protection against pathogens caused by previous abiotic stress. Bioinformatic analyses of transcriptome data from cadmium- and fungal pathogen-treated plants focusing on redox gene ontology categories were carried out to gain a better understanding of common plant responses to abiotic and biotic stresses. The role of reactive oxygen and nitrogen species in the complex network involved in plant responses to changes in their environment is also discussed.

Keywords: Abiotic stress, biotic stress, cadmium, fungal pathogens, nitric oxide, reactive nitrogen species, reactive oxygen species, redox signalling.

Introduction

Plants are routinely confronted with more than one stress either simultaneously or sequentially in the field, where a changeable environment exists, especially in the context of global warming, and where pathogens and herbivores are present (Suzuki et al., 2014). In fact, a study of transcriptome responses to different combinations of stresses in Arabidopsis has shown that plants have evolved to cope with combinations of stresses (Rasmussen et al., 2013). An understanding of specific and common biological and molecular responses of plants to different stresses is crucial for crop resistance in...
the current environmental context. For this reason, in recent years, large-scale transcriptomic analysis involving microarray, RNA-seq, and metabolomic techniques has been used to study crosstalk between different signalling networks (Cheong et al., 2002; Mhamdi and Noctor, 2016; Cohen and Leach, 2019; Zandalinas et al., 2021). Furthermore, large-scale analysis involving 350 Arabidopsis accessions and various combinations of stresses has highlighted genome-wide associations with plant resistance and has identified target genes related to plant responses to multiple stresses (Thoen et al., 2017). Plant responses to more than one simultaneous stress are complex, with a balance between different pathways being required to enable plant survival (Makumbarage et al., 2013; Suzuki et al., 2014; Thoen et al., 2017; Zandalinas et al., 2021). The many recent studies, comprehensive reviews, and special issues of scientific journals on different combinations of abiotic stresses highlight the importance of this topic (Loudet and Hasegawa, 2017; Lawas et al., 2018; Sehgal et al., 2018; Balfagón et al., 2019; Zhou et al., 2019; Peck and Mittler, 2020; Zandalinas et al., 2020, 2021). Interestingly, unique plant responses to combinations of abiotic stresses including heat stress induce specific transcription factor (TF) group patterns, which are not shared with other stress combinations (Zandalinas et al., 2020). A recent exhaustive analysis of up to six combined stresses showed that an increase in the number of stresses negatively correlates with plant growth and survival (Zandalinas et al., 2021).

Combinations of abiotic and biotic stresses, and the ways in which adverse growth conditions affect plant responses to pathogens, have attracted less interest from researchers than combinations of different abiotic stresses. In fact, the variable behaviour and the diverse nature of plant infection mechanisms make it difficult to reach general conclusions. In this review, we evaluate the latest data on crosstalk between plant responses to biotic and abiotic stresses, with particular attention paid to the key regulatory role of reactive oxygen species (ROS), reactive nitrogen species (RNS), and redox signals. Analyses of transcriptomes related to plant responses to single and combined stresses will help to decipher plant responses to biotic and abiotic stresses commonly encountered in the field. The results obtained could be used to improve crop stress tolerance in the future. The relationship between plant hyperaccumulation of metals and pathogen defences, the availability of transcriptomes involving the heavy metal cadmium (Cd), and the presence in these transcriptomes of plant responses to biotic stresses, particularly fungal pathogens, enabled us to gain insights into the possible role of ROS/RNS and redox signals at the crossroads of plant responses to Cd and fungi.

Crosstalk between plant responses to abiotic and biotic stress

Protection of plants against disease using abiotic stress treatments previously appeared to be specific to the type of stress encountered and to the behaviour of the pathogen (Rasmussen et al., 2013; Bostock et al., 2014; Zhang and Sonnewald, 2017). Co-expression analysis has revealed a set of gene transcripts with similar profiles of responses to biotic and temperature stresses, mainly associated with the hormones ethylene (ET), jasmonic acid (JA), and/or salicylic acid (SA) (Rasmussen et al., 2013). In a recent genome-wide association mapping study of plant resistance to different biotic and abiotic stresses, genetic correlation analysis showed a strong relationship between plant responses to osmotic stress and root-feeding nematodes (Thoen et al., 2017). Nematodes alter cellular osmotic pressure and plant water potential (Baldacci-Cresp et al., 2015), which link the specific abiotic stress to the plant response to the infection mechanism of these parasites (Atkinson and Urwin, 2012). Heat stress undermines the resistance of tomato to nematodes, although little is known about the underlying mechanism involved (Marques de Carvalho et al., 2015). Insect damage is frequently associated with osmotic stress and drought stress, which appear to strongly overlap in phytohormone-dependent signalling (Ma et al., 2006; Pieterse et al., 2012; Thoen et al., 2017). Following sequential double-stress treatment in Arabidopsis involving a combination of Botrytis cinerea infection, Pieris rapae herbivory, and drought, changes in the transcriptome profile were very similar to those observed after the application of the second stress, although significant signatures, mainly related to hormones, from the first stress were also identified (Cooken et al., 2016; Fig. 1). The first stress also affected the timing of the regulation of specific biological processes (Cooken et al., 2016). In this case, prior treatment of Arabidopsis with herbivory, but not with drought stress, protected against B. cinerea lesion spread, again suggesting that protection is probably treatment-specific (Cooken et al., 2016). Some studies of simultaneous drought/heat and biotic stresses suggest that abiotic stress plays a predominant role, leading to increased plant susceptibility, although the precise mechanisms involved are not fully understood (Luo et al., 2005; Prach and Sonnewald, 2013; Pandey et al., 2015; Gupta et al., 2020). Other studies suggest that abscisic acid (ABA) reduces plant tolerance to hemibiotrophic and biotrophic pathogens across species (reviewed in Zhang and Sonnewald, 2017). Plant protection against biotic stresses under salt-stress conditions depends on the specific pathogen, with salt-stressed tomato plants being more susceptible to Oidium neolycopersici (Kissoudis et al., 2014) and more resistant to B. cinerea (Achou et al., 2006), while salt-stressed barley plants are more resistant to powdery mildew (Wiese et al., 2004). Salt stress has been shown to decrease SA-dependent responses to Pseudomonas syringae in tomato plants and to alter negative JA–SA interactions in response to the herbivore Triophisius ni without affecting resistance to either of these pathogens (Thaler and Bostock, 2004). Temperature changes also affect plant resistance, with low temperatures appearing to prevent gene silencing against viruses (Szittya et al., 2003) and high temperatures contributing to the spread of pathogens such as Fusarium (Madgwick et al., 2004).
Furthermore, high temperatures induce conformational changes in tobacco mosaic virus R genes, leading to increased susceptibility of tobacco plants (Zhu et al., 2010). On the other hand, high temperatures have been found to contribute to increased resistance of wheat to *Puccinia striiformis* (Carter et al., 2009). This variability in reported results highlights the complexity of biotic and abiotic stress responses, as well as the specific nature of each interaction and situation (Zhu et al., 2010; Prasch and Sonnewald, 2013; Huot et al., 2017). Apart from temperature, other climate-change-related factors, such as increasing CO2 emissions, may affect the resistance of crop species (Luck et al., 2011).

ROS, nitric oxide, and redox signals in plant responses to stress

Data collected over time strongly demonstrate that stress signalling in plants is organized in a complex network mediated by signals, some of which are commonly found in plant responses to abiotic and biotic stresses. Recent research on signalling components, which include calcium (Ca2+) and other ions, mitogen-activated protein kinase (MAPK) cascades, hormones, and TFs, and function in biotic/abiotic crosstalk, have been widely reviewed (Fig. 1; Gilroy et al., 2014; Choudhury et al., 2017; Zhang and Sonnewald, 2017; Bai et al., 2018; Zandalinas et al., 2020, 2021). Some of these signalling molecules are ROS/RNS, key molecules that orchestrate crosstalk between plant responses to abiotic and biotic stress. In addition, the two key thiol/disulfide couples, reduced/oxidized glutathione (GSH/GSSG) and cysteine (Cys/CySS), and the ascorbic/dehydroascorbic acid couple (ASC/DHA), as well as a broad range of redox-dependent proteins, lie at the core of the cellular redox state (Bowler and Fluhr, 2000; Baxter et al., 2014; Sandalo et al., 2019; Fichman and Mittler, 2020).

ROS, which are by-products of the plant aerobic metabolism (Inupakutika et al., 2016), have different properties and reactive capacities. They include superoxide (O2−) and hydroxyl (·OH) radicals, hydrogen peroxide (H2O2), and excited singlet oxygen (1O2). ·OH, which is capable of reacting with virtually all molecules, has a shorter lifetime, while H2O2 is the most stable and least reactive ROS. The lifetime of O2−, which rapidly dismutates to H2O2, is shorter than that of H2O2 and 1O2, but longer than that of ·OH (Halliwell and Gutteridge, 2007). Plants contain numerous ROS-generating pathways associated with different organelles, which are intimately linked to metabolic pathways and to plant function and development. ROS production in chloroplasts and mitochondria is mainly dependent on photosynthetic electron transport and the mitochondrial electron transport chain (Smirnoff and Arnaud,
ROS/RNS and redox signals at the crossroads of plant responses to abiotic and biotic stresses

Virtually all abiotic and biotic stresses induce ROS/RNS production and redox changes, which in turn are connected with MAPK signalling, as well as hormone metabolism and signalling. Signalling mechanisms such as phosphorylation and ubiquitination are regulated by ROS/RNS, as are various TFs, leading to changes in gene expression (Vahtera et al., 2014; Imran et al., 2018; Sandalio et al., 2019; Siauciute et al., 2019). A crucial challenge in redox biology is the identification of sensors that trigger different signalling mechanisms. Interestingly, stomatal movements, which are regulated under various abiotic stresses such as drought, light, ozone, and CO₂ (Devreddy et al., 2018, 2020; Zhang et al., 2018; Gupta et al., 2020), and are also the entrance point for numerous pathogens (Melotto et al., 2006; Qi et al., 2018), may be involved in crosstalk between abiotic and biotic stresses. Stomatal movements are regulated by a complex signalling network involving ROS/RNS, Ca²⁺ and other ions, channels, and transporters, as well as ABA. One of the first signs of stomatal closure is an
increase in ROS in the apoplast and chloroplast (reviewed by Song et al., 2014; Sierla et al., 2016), and NO is also involved in stomatal movements (Van Meeteren et al., 2020). Systemic signalling in plant responses to abiotic stress, which is mediated by ROS mainly derived from NADPH oxidase D [respiratory burst oxidase protein D (RBOHD); Fichman et al., 2019; Fichman and Mittler, 2020; Zandalinas et al., 2020], constitutes another point of crosstalk between abiotic and biotic stresses. MYB30, one of the RBOHD-dependent transcripts regulated during systemic signalling, is involved in plant responses to abiotic and biotic stresses (Mabuchi et al., 2018; Fichman et al., 2020). Cell wall lignification, which is also ROS dependent (Barceló et al., 2004; Pan et al., 2021), may be another point of crosstalk between abiotic and biotic stresses, as various abiotic stresses induce lignin accumulation (Díaz et al., 2001), which is a physical barrier against specific pathogens such as Verticillium (Pomar et al., 2004).

Furthermore, a number of studies have analysed ROS/RNS and redox signals at the crossroads of combined abiotic and biotic stresses. Narusaka et al. (2004) have reported that treatment of Arabidopsis thaliana with copper (Cu) and infection with the necrotrophic pathogens Alternaria alternata and Alternaria brassicicola cause a significant overlapping of regulation of cytochrome P450 genes, suggesting that common ROS signals trigger similar responses. Down-regulation of O_2^- and induction of antioxidants are associated with an increase in the sensitivity of tobacco plants to the tobacco mosaic virus at high temperatures, although the mechanisms involved are not well understood (Király et al., 2008). While redox signals are key elements in networks of cross-tolerance to stresses, the role of NO in these networks remains unclear, although its role in plant responses to a single stress has been well documented (Umbreen et al., 2018; Martínez-Medina et al., 2019; León and Costa-Broseta, 2020).

Crosstalk in plant responses to heavy metals and biotic stress

While some heavy metals (those with density ≥5.0 g cm$^{-3}$), such as iron (Fe), manganese (Mn), and Cu, are essential elements needed for plants to achieve normal metabolism and to carry out physiological processes, other heavy metals, such as Cd, mercury (Hg), chromium (Cr), and the metalloid arsenic (As), are toxic even at low doses (Clemens and Ma, 2016; Terrón-Camero et al., 2019). Nevertheless, essential heavy metals may be toxic to plants at high concentrations, and excessive availability may result from global warming effects such as drought, high temperatures, and flooding. Currently, soil contamination with heavy metals poses a potential threat to the environment and to agriculture, and therefore to human health. The main sources of heavy metals in agricultural soils are anthropogenic activities such as wastewater irrigation from sewage sludge, limestone amendments, and application of inorganic fertilizers (Cao et al., 2016; Clemens and Ma, 2016). Heavy metals/metalloids also occur naturally in sediment deposits in, for example, soil and water (Peralta et al., 2020).

Apart from the risk of sudden pollution spills, plants growing in contaminated soils are already under threat and are likely to face other types of stress, particularly biotic stresses. Heavy metals therefore make for an interesting in–depth case study of crosstalk between abiotic and biotic stresses. It has been suggested that several plant species even capture high concentrations of metals from the soil as a defence mechanism against herbivores and pathogens (Poschenrieder et al., 2006; Llugany et al., 2019). These authors have identified at least five different modes of action induced by metals to counter biotic stress: (i) phytosanitary actions, as various metals are widely used as fungicides, which are detrimental to pathogen and herbivore growth (reviewed in Morkunas et al., 2018); (ii) metal therapy, as metals can activate defence signals to protect the plant against pathogens; (iii) possible trade-offs, whereby a metal defence strategy could save energy for organic defences; (iv) metal fortifications, induced either directly or indirectly through ROS/RNS, with cell wall lignification providing a mechanical barrier against pathogens, as well as the induction of antioxidants and defence genes (Choudhury et al., 2017; Terrón-Camero et al., 2019), and (v) possible elemental defences, which enable metals to directly protect the plant against pathogens (Michaud and Grant, 2003; Coleman et al., 2005; Matyssek et al., 2005).

As explained earlier in the section “Crosstalk between plant responses to abiotic and biotic stress”, signal transduction routes in plant responses to biotic and abiotic stresses, particularly those caused by heavy metals (Romero-Puertas et al., 2019), show several interaction points, mainly for short–term responses. MAPK signalling mechanisms, which are involved very early on in plant responses to various heavy metals such as Cu and Cd, differentially activate signalling routes (Suzuki et al., 2001; Jonak et al., 2004; Opdenakker et al., 2012; Cuypers et al., 2016). Extensive data are available on plant hormone responses to heavy metal stress (reviewed in Cuypers et al., 2016; Anwar et al., 2018; Demecsová and Tamás, 2019; Sharma et al., 2020; Betti et al., 2021). For example, ET signalling and biosynthesis are induced in both early and late responses to Cd in Arabidopsis (Herbette et al., 2006; Weber et al., 2006; Rodríguez-Serrano et al., 2009). The phytohormone JA is induced by Cd and Cu stress in various plant species, such as rice, Arabidopsis, pea, and Phaseolus cicinicus (Maksymiec et al., 2005; Rodríguez–Serrano et al., 2006; Ogawa et al., 2009). Despite being associated with GSH and phytochelatins (Xiang and Oliver, 1998), JA is involved in the activation by metal toxicity of H_2O_2 production via lipoxygenase (Maksymiec et al., 2005). SA, another phytohormone associated with plant responses to heavy metals, displays variable dynamics depending on the tissue and the experimental conditions (Rodríguez–Serrano et al., 2009), and also affects H_2O_2 levels (Tao et al., 2013).

Tolerance to both heavy metals and biotic stress has long been a topic of research. Several studies show that ROS
metabolism and/or the induction of defence signalling pathways are involved in heavy metal protection, although the mechanisms underlying these cross-tolerance processes are sometimes unclear. Changes in the expression of cytochrome P450 genes are commonly found in the responses of Arabidopsis to Cu, as well as to A. alternata and A. brassicicola, suggesting that heavy metals induce ROS signals that serve to enhance plant resistance to fungi (Narusaka et al., 2004). Pepper plants pre-treated with Cu show a phenotype that is more resistant to Verticillium dahliae Kleb, than plants grown under normal conditions (Chmielowska et al., 2010). This resistance could be partly due to the induction of peroxidase and defence genes such as PR1 and β-1,3-glucanase by treatment with Cu (Chmielowska et al., 2010). Interestingly, a positive feedback loop between H2O2, Ca2+, and the TF WRKY41 coordinates pepper responses to Ralstonia solanacearum and Cd exposure (Dang et al., 2019). Cu, which decreases pathogenic disease symptoms and is even used as a fungicide (Molina et al., 1998), induces an increase in sensitivity in a small number of interactions (Evans et al., 2007). Aluminium (Al) stress induces H2O2 accumulation and activates SA- and NO-dependent signalling pathways, which correlates with a reduction in disease symptoms in susceptible potato plants infected with Phytophthora infestans (Arasimowicz-Jelonek et al., 2014). Interestingly, Arasimowicz-Jelonek et al. (2014) found that treatment with Al induces signalling mechanisms in distal tissue that are effective in combating biotic stress. Furthermore, Vitis vinifera pre-treated with Mn shows resistance to Uncinula necator due to the induction of SA, ABA, peroxidases, and defence proteins such as phenylalanine ammonia lyase, PR proteins, and an NBS-LRR analogue (Yao et al., 2012).

Metal hyperaccumulation and defence responses

Metal hyperaccumulation, defined as the capacity of some plants to accumulate abnormally high levels of a metal in the aerial parts without causing phytotoxic damage, is not very common (Poschenrieder et al., 2006; Krämer, 2010; van der Ent et al., 2013). Only approximately 700 taxa from distantly related families have been described as hyperaccumulators (Calabrese and Agathokleous, 2021). One hypothesis used to explain metal hyperaccumulation by plants is that metals can efficiently provide elemental defence against herbivores and pathogens (Poschenrieder et al., 2006; Rascio and Navari-Izzo, 2011; Fones et al., 2019). A well-documented example of this is the hyperaccumulation by Noccaea (formerly Thlaspi) caerulescens of zinc (Zn), whose toxicity is capable of reducing P. syringae pv. maculicola (Psm) growth (Fones et al., 2010). In addition, while N. caerulescens lacks a ROS- and SA-dependent signalling capacity in response to Psm, Zn can induce an increase in O2− production in non-threatened plants (Fones et al., 2013). The typical oxidative burst defence responses are shut down in N. caerulescens in response to Psm, probably due to its ability to use Zn for defensive purposes (Fones et al., 2013). In fact, trade-offs between Zn tolerance and defence gene expression have also been described in relation to two N. caerulescens ecotypes (Plessl et al., 2010). Hyperaccumulation of Zn also replaces SA- and JA-dependent defence responses in N. caerulescens plants threatened by A. brassicicola (Gallego et al., 2017). Noccaea praecox, a Cd hyperaccumulator, is more sensitive to the powdery mildew pathogen Erysiphe cruciferarum at lower Cd concentrations, and low Cd supply also appears to prevent a pathogen-dependent increase in SA (Llugany et al., 2013). In a similar study, the nickel (Ni) hyperaccumulator Noccaea goessingense, which has higher SA content than the non-accumulators Arabidopsis and Noccaea arvense, showed greater sensitivity to E. cruciferarum infection and was unable to induce SA production following infection; this sensitivity to the pathogen is reduced by Ni hyperaccumulation (Freeman et al., 2005). Recent analyses of four N. caerulescens populations with different Zn accumulation capacities have shown that this species has different modes of action, such as metal toxicity, glucosinolate production, and cell death, in response to Psm, leading to trade-offs and synergistic interactions that protect the plant. Metal availability appears to be one of the factors that triggers defence responses in this case (Fones et al., 2019). Trade-offs between glucosinolates and metal accumulation have also been described in relation to Streptanthus polygaloides and N. caerulescens when Ni and Cd are hyperaccumulated (Davis and Boyd, 2000; Asad et al., 2013). However, the complex relationship between metal accumulation and glucosinolates may depend on the hyperaccumulator species and may even vary between specific populations (Fones et al., 2019). Other factors, such as hormones and ROS, are also involved in the relationship between glucosinolates and metal accumulation, enabling hyperaccumulator plant defences to be fine-tuned, with an additional stage of regulation leading to possible joint effects that could explain hyperaccumulation (Rascio and Navari-Izzo, 2011; Kusznierewicz et al., 2012; Hörger et al., 2013; Gallego et al., 2017). Therefore, some evidence shows that hyperaccumulated metals contribute to plant defences in the case of at least some kinds of pathogens and herbivores (Cabot et al., 2019). However, the trade-offs and synergistic interactions between other signalling molecules, and how selection for resistance to disease relates to the environment during their evolution, are little understood (Hörger et al., 2013).

Cadmium and fungi: a case study

The heavy metal Cd is a non-essential element for life (Ismael et al., 2019; Zhang and Reynolds, 2019) and, at even low concentrations, is toxic to living organisms (Li et al., 2019; Zhang and Reynolds, 2019). Although Cd is not abundant in the earth’s crust (0.08–0.1 ppm), Cd concentrations in soils have been increasing over the past 100 years due to human activity (Rudnick and Gao, 2003; Gupta and Sandalio, 2012; Cullen and Maldonado, 2013). However, a report by the European Environment Agency (2018) shows a decrease in Cd emissions of ~64% between 1990 and 2016, mainly due to a decrease
in Cd concentrations in agricultural processes and waste. Nevertheless, in 2017, the Agency for Toxic Substances and Disease Registry (http://www.atsdr.cdc.gov/) considered Cd to be the seventh most toxic heavy metal due to its toxicity and potential exposure of humans. The principal sources of Cd emissions are industrial energy consumption (29%), industrial processes and product use (28%), and the commercial, institutional and household sector (21%; European Environment Agency 2018).

Cd, which affects different ecosystems, causes atmospheric, terrestrial, and marine damage (Pinto et al., 2004; Gupta and Sandalio, 2012; Li et al., 2019). Following uptake by plant roots, Cd moves through the vascular bundles to other organs, including edible parts of the plant. Thus, by entering the food chain, Cd constitutes a human health hazard (Nawrot et al., 2006; Liu et al., 2010; Clemens et al., 2013). The type II oxidation capacity and electronegativity of Cd mainly explain its toxic nature; it can form complexes with a wide variety of ligands, mainly with weak donors such as sulfide, nitrogen, and selenium (Salt and Wagner, 1993; Ismael et al., 2019). One major toxic effect of Cd is redox imbalance due to disturbances of the antioxidant system, damage to the respiratory chain, and the induction of Fenton-type reactions (Cuypers et al., 2016; Romero-Puertas et al., 2019). Interestingly, one of the gene categories found in transcriptomic analyses of plant responses to Cd includes biotic stress responses, particularly to fungi, although little is known about crosstalk in the plant responses to Cd and fungal infections.

Pathogenic fungal microorganisms, which have been classified according to their mode of action, use a diverse range of mechanisms to infect plants. Necrotrophic pathogens use ROS/RNS, toxins, and cell-wall-degrading enzymes, among other mechanisms, to obtain nutrients from dead tissues (Wolpert et al., 2002; Martínez-Medina et al., 2019). Some necrotrophic pathogens even induce the overproduction of NO to accelerate infection (van Baarlen et al., 2004; Sarkar et al., 2014; Floryszak-Wieczorek and Arasimowicz-Jelonek, 2016), which, depending on the intensity and timing of NO production, can activate plant defences (Asai and Yoshioka, 2009). Plants also activate other signalling pathways, such as JA- and ET-dependent signalling, to activate the expression of defence-related genes (Thomma et al., 2001; Kunkel and Brooks, 2002; Broekaert et al., 2006). Other phytohormones, such as gibberellins, play a key role in resistance to necrotrophic pathogens due to a degraded DELLA repressor, which activates plant growth (Achard et al., 2008) and interacts with a JA signalling repressor (Zhang et al., 2017). Biotrophic fungal pathogens, which usually have a specific host, can induce effectors capable of suppressing plant immunity (Perfect and Green, 2001). In addition, fungi get their nutrients from living cells by maintaining host viability through specialized structural and biochemical relations (Gebrie, 2016). In some cases, fungi synthesise plant cytokinins to attract nutrients from the plant to infected tissues and to decrease the plant production of SA, thus activating plant defence biotrophic fungal genes (Choi et al., 2011; Zhang et al., 2017).

Conversely, plants develop mechanisms to resist biotrophic fungal infections. These include a penetration resistance mechanism, which strengthens the cell wall and membrane to halt spore germination and to prevent the formation of haustoria. Plants can also activate programmed cell death accompanied by a ROS and NO burst, leading to a hypersensitive response in penetrated epidermal cells, to shut down the supply of nutrients to the fungus (Koeck et al., 2011). All of these plant defence signalling mechanisms could be points of crosstalk in plant responses to Cd and fungal pathogens; in fact, various studies have found that Cd treatments protect against fungal infections. For example, the induction of resistance to Fusarium oxysporum in Triticum aestivum by pre-treatment with Cd is related to GSH-induced glutathionylation, which protects proteins against oxidative damage (Mitra et al., 2004; Mohapatra and Mittra, 2017). In addition, ROS production and cell death decrease in Cd-treated Cajanus cajan which was further infected with Fusarium incarnatum, although this was not always associated with an increase in the antioxidant system (Satapathy et al., 2012). In Arabidopsis plants, increased resistance to B. cinerea following pre-treatment with Cd or Cu has been reported to be exclusively caused by the induction of defence genes such as PDF1.2 (Cabot et al., 2013).

Bioinformatic analysis of the redox footprint in plant responses to Cd and fungi

The large variability in treatments, tissues analysed, culture media, plant age, and other parameters in studies conducted so far makes it difficult to reach general conclusions concerning plant responses to Cd stress. However, bioinformatic analysis provides a straightforward way to identify and analyse a common set of transcripts in plant responses to different stresses, and to identify their specificity or otherwise to different parameters, which can be very useful for future research and to better understand the mechanisms and role of these transcripts in plant responses to stress. To obtain a deeper insight into the role of ROS/RNS and redox signalling in crosstalk between plant responses to Cd and fungal pathogens, we carried out a web search of the available transcriptome analyses relating to both stresses with the aid of the PubMed (https://www.ncbi.nlm.nih.gov/pubmed/), Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/), Recursos Científicos (https://www.recursoscientificos.fecyt.es/) and Scopus (https://www.scopus.com/home.url) databases. When probe information for a dataset was available, no additional filters were applied, thus ensuring that data originally filtered by the authors were used. In five studies, the differentially expressed probe lists were acquired by reanalysing the data stored in GEO. We used the GEO2R web tool (http://www.ncbi.nlm.nih.gov/geo/info/geo2r.html) with default options for differential analysis and gene list acquisition [false discovery rate (FDR) <0.05; fold change (FC) >2.0]. The search was narrowed to A. thaliana, which is a model plant.
with a larger number of available analyses, in response to Cd and a diverse range of fungi, such as *F. oxysporum*, *Fusarium graminearum*, and *B. cinerea*; these pathogens, which can infect over 150 economically important crops, are responsible for one of the highest reductions in crop productivity (Dean et al., 2012). We analysed 19 microarray/RNA-seq datasets from eight different studies related to *A. thaliana* responses to Cd (Table 1), and 12 datasets from five studies of responses to fungi (Table 2).

The shortage of crop species data in some cases and barely identified transcripts in others, as well as the variability in the nomenclature used to define genes, are major barriers to carrying out bioinformatic meta-analysis. We used rice (*Oryza sativa* L.), one of the most important cereal crops, as a model monocotyledonous plant, although only 25% of the data published could be analysed in our meta-analysis. Rice, which is the principal food for almost half of the world’s population, is usually grown in paddy fields under flood conditions, and is therefore more susceptible to heavy metals contamination (Sun et al., 2019). We identified four different profile analyses in three studies of rice responses to Cd and 15 profile analyses in five studies of rice responses to *Magnaporthe oryzae*, which causes blast disease and seriously affects rice yields (Sánchez-Sanuy et al., 2019) (Table 1 and Table 2).

Expression profiles of genes involved in ROS/RNS and redox-related categories according to the Gene Ontology

Table 1. Summary of transcriptomes related to plant responses to Cd, where expression profiles of genes involved in ROS/RNS and redox-related categories were analysed using bioinformatics

Abiotic stress	Heavy metal	Plant	Expression gene analysis	Reference				
Cd	Concentration	Timing	Species	Tissue	Culture condition	Type	Threshold	
Cd S L 1 (a, b, d, e)	5, 50 μM CdSO₄	2, 6, 30 h	A. thaliana	Roots and leaves	Sand + Hydroponic, specific NS (3–4 w)	CATMA array	Bonferroni P value of 5%	Herbetter et al., 2006
Cd S L 1 (c, f)	50 μM Cd²⁺	2 h	A. thaliana	Roots	Hydroponic, Hoag. (5 w)	Affymetrix chip	P adj ≤0.05	Weber et al., 2006
Cd S R 1 (g, h, j, k)	15 μM CdSO₄	7 d	A. thaliana	Roots	Hydroponic, mod. Hoag. (3 w)	Microarray (Agilent)	FDR <0.05, FC ≥2	van de Mortel et al., 2008
Cd L R 1(i, l)	15, 30 μM + 30 μM CdSO₄	24 h	A. thaliana	Roots	Hydroponic, specific NS (5 w)	CATMA array	Bonferroni P value of 5%	Besson-Barrier et al., 2009
Cd L R 5	15 μM CdCl₂	24 h	A. thaliana	Roots	MGRL medium (10 d)	Microarray (Agilent)	FC >2.5 %	Zhao et al., 2009
Cd L C 6	10 mM CdCl₂	12–24 h	A. thaliana	Cell culture	MS plates + supplements (subculture + 5 d)	CATMA array	Bonferroni P value <0.05	Sorbani et al., 2011
Cd L P 7	2 μM CdCl₂	7 d	A. thaliana	Plant	Hydroponic, Hoag. (5 w)	Affymetrix chip	P adj ≤0.05	Fischer et al., 2017
Cd L P 8	50 μM CdCl₂	12 d	A. thaliana	Plant	MS plates + sucrose 1.5% (6 d)	RNA-seq	FDR <0.05	Zhou et al., 2017
Cd L R 9	50 μM CdCl₂	3 d	O. sativa cv. Huanghuazhan	Roots	Hydroponic, Kimura BNS (30 d)	RNA-seq	FDR <0.01, FC ≥2.0	Huang et al., 2019
Cd L R 10	75 μM CdCl₂	7 d	O. sativa cv. NO. 39 Zhangzao	Leaves	Hydroponic (3 w)	RNA-seq	P value <0.05	Sun et al., 2019
Cd L P 11	20, 100 μM CdCl₂	24 h	O. sativa ssp. japonica cv. Nipponbare	Plant	Hydroponic, Kimura B NS (15 d)	RNA-seq	PD ≥0.2, FDR <0.05	Ye et al., 2019

The code of each paper appears in the first column and in the abscissa axis of Figs 2, 4 and 5. The main conditions used in each paper have been summarized as metal used (Cd): time of treatment (S, short, <6 h; L, long, >6 h); tissue used (L, leaves; P, plant; R, root; S, sheath; C, cell culture); number of the paper in chronological order. For Herbetter et al.: Cd S L 1a (5 μM, 2 h); Cd S L 1b (5 μM, 6 h); Cd L L 1c (5 μM, 30 h); Cd S L 1d (50 μM, 2 h); Cd S L 1e (50 μM, 6 h); Cd L L 1f (50 μM, 30 h); Cd S R 1g (5 μM, 2 h); Cd S R 1h (5 μM, 6 h); Cd L R 1i (5 μM, 30 h); Cd S R 1j (50 μM, 2 h); Cd S R 1k (50 μM, 6 h); Cd L R 1l (50 μM, 30 h). For Ye et al.: Cd L P 12a (10 μM), Cd L P 12b (100 μM), adj, adjusted; d, days; h, hours; Hoag., Hoagland solution; NS, nutrient solution; PD, percentage difference; w, weeks.
The code of each paper appears in the first column and in the abscissa axis of Figs 2, 4 and 5. The main conditions used in each paper have been summarized as fungi (Fo: Fusarium oxysporum; Fg: Fusarium graminearum; Mo: Magnaporthe oryzae); time of the treatment (S, short, <6 h; L, long, >6 h); tissue used (L, leaves; P, plant; R, root; S, sheath; C, cell culture); number of the paper by chronological order. For Zhu et al.: Fo_L_L_1 (1×10⁵ spores ml⁻¹), Fo_L_L_2 (1×10⁵ spores ml⁻¹), Fo_L_L_3 (1×10⁵ spores ml⁻¹) and Fo_L_L_4 (5×10⁴ spores ml⁻¹). For Ingle et al.: Bc_S_L_1 (18, 22 hpi); Bc_S_L_2 (12, 18 hpi); Bc_S_L_3 (6, 48 hpi). For Coolen et al.: Mo_L_L_1 (a–d) (1×10⁵ spores ml⁻¹), Mo_L_L_2 (a–d) (1×10⁵ spores ml⁻¹), Mo_L_L_3 (a–b) (1×10⁵ spores ml⁻¹), Mo_L_L_4 (a–h) (1×10⁵ spores ml⁻¹), Mo_L_L_5 (a–b) (1×10⁵ spores ml⁻¹). For Zhu et al.: Bc_L_L_1 (a–d) (1×10⁵ spores ml⁻¹), Bc_L_L_2 (a–d) (1×10⁵ spores ml⁻¹), Bc_L_L_3 (a–b) (1×10⁵ spores ml⁻¹), Mo_L_L_2 (a–d) (1×10⁵ spores ml⁻¹), Mo_L_L_3 (a–b) (1×10⁵ spores ml⁻¹), Mo_L_L_4 (a–h) (1×10⁵ spores ml⁻¹), Mo_L_L_5 (a–b) (1×10⁵ spores ml⁻¹). For Kato et al.: Mo_L_L_5 (a–d) (1×10⁵ spores ml⁻¹), Mo_L_L_6 (a–b) (1×10⁵ spores ml⁻¹), Mo_L_L_7 (a–d) (1×10⁵ spores ml⁻¹), Mo_L_L_8 (a–b) (1×10⁵ spores ml⁻¹), Mo_L_L_9 (a–d) (1×10⁵ spores ml⁻¹), Mo_L_L_10 (a–b) (1×10⁵ spores ml⁻¹). For Sanuy et al.: Mo_L_L_1 (1, 2, 3, 5 dpi), Mo_L_L_2 (1, 2, 3, 5 dpi), Mo_L_L_3 (1, 2, 3, 5 dpi), Mo_L_L_4 (1, 2, 3, 5 dpi), Mo_L_L_5 (1, 2, 3, 5 dpi), Mo_L_L_6 (1, 2, 3, 5 dpi), Mo_L_L_7 (1, 2, 3, 5 dpi), Mo_L_L_8 (1, 2, 3, 5 dpi), Mo_L_L_9 (1, 2, 3, 5 dpi), Mo_L_L_10 (1, 2, 3, 5 dpi). For Chen et al.: Mo_L_L_11 (1–5×10⁵ spores ml⁻¹), Mo_L_L_12 (1–5×10⁵ spores ml⁻¹), Mo_L_L_13 (1–5×10⁵ spores ml⁻¹), Mo_L_L_14 (1–5×10⁵ spores ml⁻¹), Mo_L_L_15 (1–5×10⁵ spores ml⁻¹), Mo_L_L_16 (1–5×10⁵ spores ml⁻¹), Mo_L_L_17 (1–5×10⁵ spores ml⁻¹), Mo_L_L_18 (1–5×10⁵ spores ml⁻¹), Mo_L_L_19 (1–5×10⁵ spores ml⁻¹), Mo_L_L_20 (1–5×10⁵ spores ml⁻¹). For Zhu et al.: Mo_L_L_21 (1–5×10⁵ spores ml⁻¹), Mo_L_L_22 (1–5×10⁵ spores ml⁻¹), Mo_L_L_23 (1–5×10⁵ spores ml⁻¹), Mo_L_L_24 (1–5×10⁵ spores ml⁻¹), Mo_L_L_25 (1–5×10⁵ spores ml⁻¹), Mo_L_L_26 (1–5×10⁵ spores ml⁻¹), Mo_L_L_27 (1–5×10⁵ spores ml⁻¹), Mo_L_L_28 (1–5×10⁵ spores ml⁻¹), Mo_L_L_29 (1–5×10⁵ spores ml⁻¹), Mo_L_L_30 (1–5×10⁵ spores ml⁻¹). For Kato et al.: Mo_L_L_31 (1–5×10⁵ spores ml⁻¹), Mo_L_L_32 (1–5×10⁵ spores ml⁻¹), Mo_L_L_33 (1–5×10⁵ spores ml⁻¹), Mo_L_L_34 (1–5×10⁵ spores ml⁻¹), Mo_L_L_35 (1–5×10⁵ spores ml⁻¹), Mo_L_L_36 (1–5×10⁵ spores ml⁻¹), Mo_L_L_37 (1–5×10⁵ spores ml⁻¹), Mo_L_L_38 (1–5×10⁵ spores ml⁻¹), Mo_L_L_39 (1–5×10⁵ spores ml⁻¹), Mo_L_L_40 (1–5×10⁵ spores ml⁻¹). For Zhu et al.: Mo_L_L_41 (1–5×10⁵ spores ml⁻¹), Mo_L_L_42 (1–5×10⁵ spores ml⁻¹), Mo_L_L_43 (1–5×10⁵ spores ml⁻¹), Mo_L_L_44 (1–5×10⁵ spores ml⁻¹), Mo_L_L_45 (1–5×10⁵ spores ml⁻¹), Mo_L_L_46 (1–5×10⁵ spores ml⁻¹), Mo_L_L_47 (1–5×10⁵ spores ml⁻¹), Mo_L_L_48 (1–5×10⁵ spores ml⁻¹), Mo_L_L_49 (1–5×10⁵ spores ml⁻¹), Mo_L_L_50 (1–5×10⁵ spores ml⁻¹). For Kato et al.: Mo_L_L_51 (1–5×10⁵ spores ml⁻¹), Mo_L_L_52 (1–5×10⁵ spores ml⁻¹), Mo_L_L_53 (1–5×10⁵ spores ml⁻¹), Mo_L_L_54 (1–5×10⁵ spores ml⁻¹), Mo_L_L_55 (1–5×10⁵ spores ml⁻¹), Mo_L_L_56 (1–5×10⁵ spores ml⁻¹), Mo_L_L_57 (1–5×10⁵ spores ml⁻¹), Mo_L_L_58 (1–5×10⁵ spores ml⁻¹), Mo_L_L_59 (1–5×10⁵ spores ml⁻¹), Mo_L_L_60 (1–5×10⁵ spores ml⁻¹). For Zhu et al.: Mo_L_L_61 (1–5×10⁵ spores ml⁻¹), Mo_L_L_62 (1–5×10⁵ spores ml⁻¹), Mo_L_L_63 (1–5×10⁵ spores ml⁻¹), Mo_L_L_64 (1–5×10⁵ spores ml⁻¹), Mo_L_L_65 (1–5×10⁵ spores ml⁻¹), Mo_L_L_66 (1–5×10⁵ spores ml⁻¹), Mo_L_L_67 (1–5×10⁵ spores ml⁻¹), Mo_L_L_68 (1–5×10⁵ spores ml⁻¹), Mo_L_L_69 (1–5×10⁵ spores ml⁻¹), Mo_L_L_70 (1–5×10⁵ spores ml⁻¹). For Kato et al.: Mo_L_L_71 (1–5×10⁵ spores ml⁻¹), Mo_L_L_72 (1–5×10⁵ spores ml⁻¹), Mo_L_L_73 (1–5×10⁵ spores ml⁻¹), Mo_L_L_74 (1–5×10⁵ spores ml⁻¹), Mo_L_L_75 (1–5×10⁵ spores ml⁻¹), Mo_L_L_76 (1–5×10⁵ spores ml⁻¹), Mo_L_L_77 (1–5×10⁵ spores ml⁻¹), Mo_L_L_78 (1–5×10⁵ spores ml⁻¹), Mo_L_L_79 (1–5×10⁵ spores ml⁻¹), Mo_L_L_80 (1–5×10⁵ spores ml⁻¹). For Zhu et al.: Mo_L_L_81 (1–5×10⁵ spores ml⁻¹), Mo_L_L_82 (1–5×10⁵ spores ml⁻¹), Mo_L_L_83 (1–5×10⁵ spores ml⁻¹), Mo_L_L_84 (1–5×10⁵ spores ml⁻¹), Mo_L_L_85 (1–5×10⁵ spores ml⁻¹), Mo_L_L_86 (1–5×10⁵ spores ml⁻¹), Mo_L_L_87 (1–5×10⁵ spores ml⁻¹), Mo_L_L_88 (1–5×10⁵ spores ml⁻¹), Mo_L_L_89 (1–5×10⁵ spores ml⁻¹), Mo_L_L_90 (1–5×10⁵ spores ml⁻¹).
Table 3. Summary of ROS/RNS and redox-related categories analysed using bioinformatics in Figs 2, 4, and 5.

Category	GO code
S-nitrosothioglutathione reductase activity	GO:0080007
Response to redox state	GO:0051775
l-methionine/thioredoxin-disulfide S-oxidoreductase activity	GO:0033744
Peroxiredoxin activity	GO:0051920
Thioredoxin-disulfide reductase activity	GO:0004791
Thioredoxin peroxidase activity	GO:0008379
Cell redox homeostasis	GO:0045454
Cellular response to redox state	GO:0051776
Detection of redox state	GO:0051776
Antioxidant activity	GO:0016609
Glutathione peroxidase activity	GO:0004602
Glutathione transferase activity	GO:0004364
Glutathione metabolic process	GO:0006749
l-ascorbate peroxidase activity	GO:0016656
Monodehydroascorbate reductase (NADH) activity	GO:0016656
Hydrogen peroxide mediated signalling pathway	GO:0071588
Response to hydrogen peroxide	GO:0042542
Response to superoxide	GO:0000303
multi-functional proteins essential for protecting plants against oxidative damage, in what has been classified as a phase II detoxification system (reviewed in Gullner et al., 2018). GSTs catalyse the conjugation of GSH to a variety of electrophilic and hydrophobic substrates, including xenobiotic compounds, which are then sequestered in vacuoles to prevent substrate toxicity. GSTs are also involved in removing excess lipid hydroperoxides produced in response to stress (Gullner et al., 2018). Plant GSTs have been categorized into four classes: phi, tau, lambda, and dehydroascorbate reductase GSTs (Edwards and Dixon, 2005). Although the precise metabolic functions of GST isoenzymes in plant infection and abiotic stress have not been determined, their most important role, acting as glutathione peroxidases, could be to affect lipid hydroperoxides. GST transcripts have been reported to be up-regulated in response to stress conditions, such as fungal or bacterial infection (reviewed in Gullner et al., 2018), heavy metals, cold, salt, H$_2$O$_2$, UV, and light (reviewed in Kumar and Trivedi, 2018). However, their single-/multiple-stress responsiveness or possible redundant functions depend on the class of GSTs to which they belong (Sappl et al., 2009). We have identified a group of genes that are regulated under Cd treatment and fungal infection regardless of a wide range of experimental conditions. The induction of a group of GST-encoding genes suggests that the induction of Cd-stress-related genes could provide protection against fungal infection.

Following string analysis, a smaller number of genes from group A were also grouped together on the basis of protein processing in the endoplasmic reticulum (ER) (Fig. 3A; Table S2 at Zenodo Repository, https://zenodo.org/record/5040382#.YNrth5j7S71) and, in particular, of ER-associated degradation (ERAD); this subgroup of genes encoded heat shock proteins. ERAD is involved in the degradation of terminally misfolded proteins. In fact, in Arabidopsis plants, low concentrations of ROS, acting as signalling molecules, have been shown to induce ER-stress-related genes, whose regulation is dependent on the compartment from which the ROS originated, such as the chloroplasts, mitochondria, and peroxisomes (Ozgur et al., 2015). In our study, ERAD cluster I genes were repressed mainly by B. cinerea and long-term Cd treatment, while cluster II genes were induced. Repression of ERAD may induce ER stress, which activates signalling pathways or unfolded protein responses involved in ER protection, which, when insufficient to restore ER function, can lead to cell death by apoptosis.

Group B, containing 23 probes (Table S2 at Zenodo Repository, https://zenodo.org/record/5040382#.

Fig. 3. Enrichment analysis of genes from groups A and C. (A) String analysis (https://string-db.org/) of genes from group A (see Fig. 2) related to ROS/RNS and redox metabolism and differentially regulated in clusters I and II. These genes showed one main group related to glutathione metabolism (in red), the strongest KEGG pathway, and a smaller group related to protein processing in the endoplasmic reticulum (in blue), as described in Table S2 at Zenodo. (B) String analysis of genes from group C (see Fig. 4) related to systemic RBOHD- and H$_2$O$_2$-dependent transcripts from Arabidopsis and differentially regulated in clusters I and II. These genes showed one main group related to responses to chitin (in red) and responses to chitin, as well as the cysteine-rich transmembrane (CYSTM) domain (in blue), the strongest KEGG pathway, as described in Table S2 at Zenodo.
YNCtr5j7S71), was induced in cluster I, but, unlike group A, no changes or distinct types of induction were observed in cluster II (Fig. 2). String analysis of group B did not show any clear interacting groups, although the genes involved appear to be mainly related to the glutathione metabolism by GSTs and to antioxidant-detoxification processes (Table S2 at Zenodo Repository, https://zenodo.org/record/5040382#.YNCtr5j7S71). Our results show that both groups A and B were mainly related to genes encoding GSTs, with specific footprints being observed in both clusters. As described above, our experimental results indicate the important role played by these genes in plant protection against Cd and fungal stresses, as has previously been described with respect to wheat and *F. oxysporum* (Mitra et al., 2004; Mohapatra and Mittra, 2017). Therefore, glutathione metabolism, and particularly the GST-related metabolism, may be key players in the crosstalk between heavy metal and fungal pathogen stress responses. In fact, Arabidopsis mutants overexpressing GSTs show higher tolerance to fungal infection (Gullner et al., 2018) and to various abiotic stresses such as heavy metals, cold, and salt (Kumar and Trivedi, 2018).

When analysing systemic RBOHD- and H$_2$O$_2$-dependent transcripts, we also found two clusters (I and II) corresponding to a group of 30 genes (group C) that were induced or repressed, respectively, under the stresses applied (Fig. 4; Fig. S3, Table S2 at Zenodo Repository, https://zenodo.org/record/5040382#.YNCtr5j7S71). Clusters in this analysis were similar to those previously analysed except for the Cd_L_P_8 treatment, which is now included in cluster II with all the other Cd treatments. String analysis of the 30 group C genes found a main group based on the biological process: response to chitin (Fig. 3B, Table S2 at Zenodo Repository, https://zenodo.org/record/5040382#.YNCtr5j7S71). Perception of fungal pathogens by the plant occurs through the recognition of chitin, a polymer component of the fungal cell wall, followed by the activation of the plant immune response (Siquegla et al., 2017). Our bioinformatic analysis showed that gene group C is down-regulated in cluster II, which is mostly composed of *B. cinerea*
The process of infection by *B. cinerea* includes an initial production of local necrotic lesions followed by lesion spreading at a later stage (Bi et al., 2021), suggesting that the plant response to the pathogen is repressed. Cd-induced genes related to responses to chitin may help to protect plants against fungal infection following Cd treatment, a process that requires further exploration. Interestingly, different plant culture conditions may affect the expression of the group C genes, as *B. cinerea* with plants cultured in river sand supplemented with Hoagland solution, as well as *F. oxysporum* with plants cultured in Murashige and Skoog medium supplemented with sucrose, showed an opposite trend in gene expression to that for fungi such as *B. cinerea* and *F. gramineum* with plants cultured in soil.

Oryza sativa

The clustering of data from *O. sativa* has been complicated, probably due to lower availability of data and the diversity of cultivars used; each transcriptomic analysis of Cd treatment was carried out with a different cultivar, and the behaviour of these different cultivars may differ under similar environmental conditions. In addition, different lines, which were either compatible or incompatible with the fungal pathogen *M. oryzae*, were analysed in the same cultivar. Despite these problems, clustering analysis of transcriptome changes in genes involved in ROS/RNS and redox categories (Table 3) in rice responses to Cd and *M. oryzae* enabled us to find two clusters (I and II) for the stresses applied, based on the induction or repression, respectively, of a number of genes (group D; Fig. 5; Fig. S4, Table S2 at Zenodo Repository, https://zenodo.org/record/5040382#.YNrth5j7S71). Cluster I involves both compatible and incompatible rice interactions *M. oryzae*, with different timings; this suggests that different induction/repression waves of redox-related genes take place during the treatment, which are associated with a type of interaction. Cluster II involves all the other treatments analysed, in most of which only a few genes underwent changes (Fig. 5). Cluster I and
Cd$_L$-R$_{c-9}$ behaved similarly to a group of 32 induced genes, which were repressed in cluster II. String analysis of these genes showed no gene pooling; most of the genes were related to glutathione metabolism, the strongest KEGG pathway, mainly encoding GSTs (Table S2, Fig. S5 at Zenodo Repository, https://zenodo.org/record/5040382#.YNrth5j7S71). These results suggest that rice plants growing in Cd for short to medium periods of time may also show induction of GST activity and therefore be more resistant to fungal pathogens, similar to the findings with Arabidopsis plants and in previous studies of wheat (Mittra et al., 2004; Mohapatra and Mittra, 2017).

Conclusions and perspectives

Plant responses to certain stresses have been well characterized when applied individually, which has provided the basis for establishing models with key components involved in plant responses to stress. However, as plants are usually confronted with more than one stress in the field, we need to build similar models for serial and combined stresses, which would be unique for each combination. Combinations of abiotic and biotic stresses are of particular importance given the singular nature of each interaction between two or more organisms. Recent advances in the study of plant responses to combinations of stresses point to a role for key signalling molecules, including hormones, TFs, and, in particular, to ROS/RNS and redox homeostasis, for selecting different pathways to achieve a trade-off between acclimation/survival and yield. Bioinformatic analyses of transcriptome changes in plant responses to Cd and fungal pathogens point to redox signalling at the crossroads of both these stresses, which is mainly related to the glutathione metabolism, particularly with respect to GST genes. We identified different groups of GST genes that are up- or down-regulated depending on the treatment (Cd/fungi). The results obtained indicate that genes encoding GSTs are a key gene family in relation to a broad range of species at the crossroads of plant responses to biotic and abiotic stresses. We identified other groups of genes, such as ERAD genes associated with heat shock proteins, as well as those involved in responses to chitin, which may also be involved in crosstalk between abiotic and biotic stresses, particularly Cd and fungal infections. Our bioinformatic findings should pave the way for more comprehensive future research into crosstalk between different stresses. The characterization of the key molecules identified in different stress combinations could lead to the development of new strategies to alleviate the effects of multifactorial stress conditions, especially in the current context of global climate change.

Acknowledgements

We apologize to any colleagues whose studies have not been cited due to space limitations. This study was funded by the Spanish Ministry of Science, Innovation and Universities (MCIU), the State Research Agency (AEI), and the European Regional Development Fund (ERDF; PGC2018–098372–B–100). LCTC, EMM, and MAPV were supported by University Staff Training (FPU) grants 14/0062 and 17/04303 from the Spanish Ministry of Education, Culture and Sports, and Research Personnel Training (FPI) grant BES-2016–076518 from the Ministry of Economy, Industry and Competitiveness. We also wish to thank Michael O’Shea for proofreading the English manuscript.

Conflict of interest

None of the authors has any conflict of interest to declare.

Author contributions

MCRP conceived the original review focus and wrote the manuscript with input and critical discussion from LCTC, MAPV, EMM, and LMS; MAPV, EMM, and LCTC collected information under the supervision of MCRP; LCTC carried out database mining and bioinformatic analyses. All authors read and approved the content of the manuscript.

Data availability

The following data are available at Zenodo Repository, https://zenodo.org/record/5040382#.YNrth5j7S71; Romero-Puertas et al. (2021). Complete expression profile of genes involved in ROS/RNS and redox categories from Arabidopsis; bioinformatic analysis of the expression profile of genes involved in ROS/RNS and redox categories from Arabidopsis; bioinformatic analysis of the expression profile of RBODH- and H$_2$O$_2$-dependent systemic transcripts from Arabidopsis; bioinformatic analysis of the expression profile of genes involved in ROS/RNS and redox categories from rice; enrichment analysis of genes in group D; genes and GO categories used for analysis; genes from groups A to D and KEGG pathways obtained after enrichment analysis.

References

Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P. 2008. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism, The Plant Cell 20, 2117–2129.

Achuo EA, Prinsen E, Höfte M. 2006. Influence of drought, salt stress and asbiscic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici, Plant Pathology 55, 178–186.

Anwar A, Liu Y, Dong R, Bai L, Yu X, Li Y. 2018. The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biological Research 51, 46.

Arasimowicz-Jelonek M, Floryszak-Wieczorek J. 2019. A physiological perspective on targets of nitration in NO-based signaling networks in plants. Journal of Experimental Botany 70. 4379–4389.

Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Drzewiecka K, Chmielowska-Bńk J, Abramowski D, Izbiaska K. 2014. Aluminium induces cross-resistance of potato to Phytophthora infestans. Planta 239, 679–694.

Arnaiz A, Rosa-Díaz I, Romero-Puertas MC, Sandalio LM, Diaz I. 2021. Nitric oxide, an essential intermediate in the plant-herbivore interaction. Frontiers in Plant Science 11, 620086.
Redox crosstalk in plant responses to biotic/abiotic stress

Asad SA, Young S, West H. 2013. Effect of nickel and cadmium on glucosinolate production in *Thlaspi caerulescens*. Pakistan Journal of Botany 45, 495–500.

Asal S, Yoshioka H. 2009. Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen *Botrytis cinerea* in *Nicotiana benthamiana*. Molecular Plant-Microbe Interactions 22, 619–629.

Astier J, Gross I, Durner J. 2018. Nitric oxide production in plants: an update. Journal of Experimental Botany 69, 3401–3411.

Atkinson NJ, Urwin PE. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany 63, 3523–3543.

Bai Y, Sunarti S, Kissoudis C, Visser RGF, van der Linden CG. 2018. The role of tomato *WRKY* genes in plant responses to combined abiotic and biotic stresses. Frontiers in Plant Science 9, 801.

Baldacci-Cresp F, Maucourt M, Deborde C, Pierre O, Moing A, Brouquisse R, Favery B, Frondo P. 2015. Maturation of nematode-induced galls in *Medicago truncatula* is related to water status and primary and biotic modifications. Plant Science 232, 77–85.

Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi BF, Azad RK, Mittler R, Zandalinas SI. 2019. Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiology 181, 1668–1682.

Barceló AR, Gómez Ros L, Galbadón C, et al. 2004. Basic peroxidases: the gateway for lignin evolution? Phytochemistry Reviews 3, 61–78.

Baxter A, Mittler R, Suzuki N. 2014. ROS as key players in plant stress signalling. Journal of Experimental Botany 65, 1229–1240.

Becana M, Yruela I, Sarath G, Catalán P, Hargrove MS. 2020. Plant hemoglobin: a journey from unicellular green algae to vascular plants. New Phytologist 227, 1618–1635.

Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, et al. 2020. Plant glutathione redox network: central player in plant responses to biotic stress and abiotic stress management. Phytochemistry 176–182.

Bettencourt D, Pires S, Mendes P, Palmeiro J, et al. 2015. Wounding and salt stress synergistically induce activation of KEAK1 in Arabidopsis seedlings. Frontiers in Plant Science 6, 1–12.

Bhattacharyya S, Choudhury FK, Debnath D, Chakraborty S, et al. 2021. Two novel *WRKY* genes, *WRKY68* and *WRKY69*, participate in disease resistance to *Botrytis cinerea*. Journal of Plant Pathology 103, 67–77.

Bhattacharyya S, Choudhury FK, Debnath D, Chakraborty S, et al. 2021. Two novel *WRKY* genes, *WRKY68* and *WRKY69*, participate in disease resistance to *Botrytis cinerea*. Journal of Plant Pathology 103, 67–77.

Bhushan S, Garg S, Bhandari R, et al. 2013. Modulation of oxidative stress and defense responses in young seedlings of *Lavatera thuringiaca* L. grown in different soil amendments. Journal of Plant Physiology 170, 470–479.

Björkman O, Warren BJ. 1989. Plants respond to the physical environment. Annual Review of Plant Biology 40, 379–417.

Boccardo F, Vitturi F, et al. 2012. The role of nitric oxide in plants. Trends in Plant Science 17, 59–65.

Bohmer R, Kutchan TM. 2012. Changes in chlorophyll content and photosynthesis in Arabidopsis thaliana during induced and non-induced oxidative stress from copper. Journal of Plant Physiology 169, 133–141.

Boothe M, Funk B. 2019. The role of nitric oxide in plants. Trends in Plant Science 24, 314–324.

Bolton WJ, Kulkarni R, Takahashi Y, et al. 2015. Nitric oxide is required for plant disease resistance. Proceedings of the National Academy of Sciences 112, 12633–12638.

Bouchez T, Coisson J, Bahloul R, et al. 2000. Nitric oxide is required for plant disease resistance. Proceedings of the National Academy of Sciences 112, 12633–12638.

Bodin A, Rolland C, Ferras F, et al. 2014. Nitric oxide is required for plant disease resistance. Proceedings of the National Academy of Sciences 112, 12633–12638.

Boulares MA, Zabek MA, et al. 2019. Nitric oxide is required for plant disease resistance. Proceedings of the National Academy of Sciences 112, 12633–12638.

Boulares MA, Zabek MA, et al. 2019. Nitric oxide is required for plant disease resistance. Proceedings of the National Academy of Sciences 112, 12633–12638.

Boulares MA, Zabek MA, et al. 2019. Nitric oxide is required for plant disease resistance. Proceedings of the National Academy of Sciences 112, 12633–12638.

Boulares MA, Zabek MA, et al. 2019. Nitric oxide is required for plant disease resistance. Proceedings of the National Academy of Sciences 112, 12633–12638.

Boulares MA, Zabek MA, et al. 2019. Nitric oxide is required for plant disease resistance. Proceedings of the National Academy of Sciences 112, 12633–12638.

Boulares MA, Zabek MA, et al. 2019. Nitric oxide is required for plant disease resistance. Proceedings of the National Academy of Sciences 112, 12633–12638.
Devireddy AR, Arbogast J, Mittler R. 2020. Coordinated and rapid whole-plant systemic stomatal responses. New Phytologist 225, 21–25.

Devireddy AR, Zandalinas SI, Gómez-Cadenas A, Blumwald E, Mittler R. 2018. Coordinating the overall stomatal response of plants: rapid leaf-to-leaf communication during light stress. Science Signaling 11, 1–9.

Diaz J, Bernal A, Pomar F, Merino F. 2001. Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Science 161, 179–188.

Edwards R, Dixon DP. 2005. Plant glutathione transferases. Methods in Enzymology 401, 169–196.

European Environment Agency. 2018. Environmental indicator report 2018. Luxembourg: Publications Office of the European Union. https://www.eea.europa.eu/airs/2018/environmental-indicator-report-2018

Evans I, Soler E, Huber DM. 2007. Copper and plant disease. In: Datnoff LE, Elmer WH, Huber DM, eds. Mineral nutrition and plant disease. St. Paul: APS Press, 177–188.

Feng J, Chen L, Zuo J. 2019. Protein S-nitrosylation in plants: current progresses and challenges. Journal of Integrative Plant Biology 61, 1206–1223.

Fichman Y, Miller G, Mittler R. 2019. Whole-plant live imaging of reactive oxygen species. Molecular Plant 12, 1203–1210.

Fichman Y, Mittler R. 2020. Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? The Plant Journal 102, 887–896.

Fichman Y, Zandalinas SI, Sengupta S, Burks D, Myers RJ Jr, Azad RK, Mittler R. 2020. MYB30 orchestrates systemic reactive oxygen signaling and plant acclimation. Plant Physiology 184, 666–675.

Fischer S, Spielau T, Clemens S. 2017. Natural variation in Arabidopsis thaliana Cd responses and the detection of quantitative trait loci affecting Cd tolerance. Scientific Reports 7, 16393.

Floryszak-Wieczorek J, Arasimowicz-Jelonek M. 2016. Contrasting regulation of NO and ROS in potato defense-associated metabolism in response to pathogens of different lifestyles. PLoS One 11, e0163546.

Fones H, Davis CA, Rico A, Fang F, Smith JA, Preston GM. 2010. Metal hyperaccumulation armors plants against disease. PLoS Pathogens 6, e1001093.

Fones HN, Eyles CJ, Bennett MH, Smith JAC, Preston GM. 2013. Uncoupling of reactive oxygen species accumulation and defence signalling in the metal hyperaccumulator plant Noccaea caerulescens. New Phytologist 199, 916–924.

Fones HN, Preston GM, Smith JAC. 2019. Variation in defence strategies in the metal hyperaccumulator plant Noccaea caerulescens is indicative of synergies and trade-offs between forms of defence. Royal Society Open Science 6, 172418.

Freeman JL, Garcia D, Kim D, Hopf A, Salt DE. 2005. Constitutively elevated esterase activity signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiology 137, 1082–1091.

Gallego B, Martos S, Cabot C, Barceló C, Poschenrieder C. 2017. Zinc hyperaccumulation substitutes for defense failures beyond salicylate and jasmonate signaling pathways of Alternaria brassicicola attack in Noccaea caerulescens. Physiologia Plantarum 159, 401–415.

Gebrsie SA. 2016. Biotrophic fungi infection and plant defense mechanism. Journal of Plant Pathology and Microbiology 7, 378.

Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N. 2015. Superoxide dismutase-mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research 22, 10375–10394.

Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R. 2014. A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant Science 19, 623–630.

Gullner G, Komives T, Király L, Schröder P. 2018. Glutathione S-transferase enzymes in plant-pathogen interactions. Frontiers in Plant Science 9, 1836.

Gupta D, Sandalio L. 2012. Metal toxicity in plants: perception, signaling and remediation. Heidelberg: Springer.

Gupta S, Schillaci M, Walker R, Smith PMC, Watt M, Roessner U. 2020. Alliteration of salinity stress in plants by endophytic plant-fungal symbioses: current knowledge, perspectives and future directions. Plant and Soil 461, 219–244.

Halliwell B, Gutteridge J. 2007. Free radicals in biology and medicine, 4th edn. New York: Oxford University Press.

Herberts S, Taconnat L, Hugouvieux V, et al. 2006. Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88, 1761–1765.

Höger AC, Fones HN, Preston GM. 2013. The current status of the elemental defense hypothesis in relation to pathogens. Frontiers in Plant Science 4, 395.

Huang Y, Chen H, Reinfelder JR, Liang X, Sun C, Liu C, Li F, Yi J. 2019. A transcriptomic (RNA-seq) analysis of genes responsive to both cadmium and arsenic stress in rice root. Science of the Total Environment 666, 445–460.

Huot B, Gastroverde CDM, Velásquez AC, Hubbard E, Pulman JA, Yao J, Childs KL, Tsuda K, Montgomery BL, He SY. 2017. Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nature Communications 8, 1908.

Imran GM, Hussain A, Lee SU, Mun BG, Falak N, Loake GJ, Yun BW. 2018. Transcriptome profile of NO-induced Arabidopsis transcription factor genes suggests their putative regulatory role in multiple biological processes. Scientific Reports 8, 771.

Ingle RA, Stoker C, Stone W, Adams N, Smith R, Grant M, Carré I, Roden LC, Denby KJ. 2015. Jasmonate signalling drives time-of-day differences in susceptibility of Arabidopsis to the fungal pathogen Botrytis cinerea. The Plant Journal 84, 937–948.

Inupakutika MA, Sengupta S, Devireddy AR, Azad RK, Mittler R. 2016. The evolution of reactive oxygen species metabolism. Journal of Experimental Botany 67, 5933–5943.

Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C. 2019. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metalloids 11, 255–277.

Jones C, Nakagami H, Hirt H. 2004. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiology 136, 3276–3283.

Kato T, Tanabe S, Nishimura M, et al. 2009. Differential responses of rice to inoculation with wild-type and non-pathogenic mutants of Magnapnora oryzae. Plant Molecular Biology 70, 617–625.

Király L, Hafez YM, Fodor J, Király Z. 2008. Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. Journal of General Virology 89, 799–808.

Kissoudis C, van de Wiel C, Visser RG, van der Linden G. 2014. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Frontiers in Plant Science 5, 207.

Koeck M, Hardham AR, Dodds PN. 2011. The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cellular Microbiology 13, 1849–1857.

Krämer U. 2010. Metal hyperaccumulation in plants. Annual Review of Plant Biology 61, 517–534.

Kumar S, Trivedi PK. 2018. Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Frontiers in Plant Science 9, 751.

Kunkel BN, Brooks DM. 2002. Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology 5, 325–331.

Kusznierekwicz B, Bczek-Kwinta R, Bartoszek A, Piekarska A, Huk A, Maniowska A, Antonkiewicz J, Nieszynska J, Konieczka P. 2012. The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba). Environmental Toxicology and Chemistry 31, 2482–2489.
Lawas LM, Zuther E, Jagadish SK, Hincha DK. 2018. Molecular mechanisms of combined heat and drought stress resilience in cereals. Current Opinion in Plant Biology 45, 212–217.

León J, Costa-Broseta A. 2020. Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. Plant Cell of Environmental 43, 1–15.

Li C, Zhou K, Qin W, Tian C, Qi M, Yan X, Han W. 2019. A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination 28, 380–394.

Liu HY, Dai JR, Feng DR, Liu B, Wang HB, Wang JF. 2010. Characterization of a novel plantain Aox gene, MpAox, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses. Journal of Integrative Plant Biology 52, 315–323.

Lugany M, Martin SR, Barceló J, Poschenrieder C. 2013. Endogenous jasmonic and salicylic acids levels in the Cd-hyperaccumulator Noccaea (Thlaspi) praecox exposed to fungal infection and/or mechanical stress. Plant Cell Reports 32, 1243–1249.

Lugany M, Tolrà R, Barceló J, Poschenrieder C. 2019. Snails prefer it sweet: a multifactorial test of the metal defence hypothesis. Physiologia Plantarum 165, 209–218.

Loudet O, Hasegawa PM. 2017. Abiotic stress, stress combinations and crop improvement potential. The Plant Journal 90, 837–838.

Luck J, Spackman M, Freeman A, TreBicki P, Griffiths W, Finlay K, Chakraborty S. 2011. Climate change and diseases of food crops. Plant Pathology 60, 113–121.

Luo M, Liang XQ, Deng P, Holbrook CC, Bausher MG, Lee RD, Quo BZ. 2005. Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Science 169, 695–703.

Ma S, Gong O, Bohnert HJ. 2006. Dissecting salt stress pathways. Journal of Experimental Botany 57, 1097–1107.

Mabuchi K, Maki H, Itaya T, et al. 2018. MYB30 links ROS signaling, root cell elongation, and plant immune responses. Proceedings of the National Academy of Sciences, USA 115, E4710–E4719.

Madgwick JW, West JS, White RP, Semenov MA, Townsend JA, Vangronsveld J, Van Hecke E, Staessen JA. 2006. Environmental exposure to cadmium and risk of cancer: a prospective population-based study. The Lancet. Oncology 7, 119–126.

Makiyvich W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z. 2005. The level of jasmonic acid in Arabidopsis thaliana and Phaseolus vulgaris plants under heavy metal stress. Journal of Plant Physiology 162, 1338–1346.

Makumburage GB, Richbourg HL, LaTorre KD, Capps A, Chen C, Stapleton AE. 2013. Genotype to phenotype maps: multiple input abiotic signals combine to produce growth effects via attenuating signaling interactions in maize. G3 3, 2195–2204.

Marques de Carvalho L, Benda ND, Vaughan MM, et al. 2015. Mi-1-mediated nematode resistance in tomatoes is broken by short-term heat stress but recovers over time. Journal of Nematology 47, 133–140.

Martínez-Medina A, Pescador L, Terrón-Camero LC, Pozo MJ, Romero-Puertas MC. 2019. Nitric oxide in plant–fungal interactions. Journal of Experimental Botany 70, 4489–4503.

Mata-Pérez C, Sánchez-Calvo B, Padilla MN, Begara-Moraules JC, Valderrama R, Corpas FJ, Barroso JB. 2017. Nitro-fatty acids in plant signaling: new key mediators of nitric oxide metabolism. Redox Biology 7, 504–561.

Mata-Pérez C, Spoel SH. 2019. Thioredoxin-mediated redox signaling in plant immunity. Plant Science 279, 27–33.

Matyssek R, Agerer R, Ernst D, Munch JC, Osswald W, Pretzsch H, Priesack E, Schnyder H, Treutter D. 2005. The plant’s capacity in regulating resource demand. Plant Biology 7, 560–580.

Melotto M, Underwood W, Koczan J, Nomura K, He SY. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969–980.

Mhamdi A, Noctor G. 2016. High CO₂ primes plant biotic stress defences through redox-linked pathways. Plant Physiology 172, 929–942.

Michaud JP, Grant AK. 2003. Sub-lethal effects of a copper sulfate fungicide on development and reproduction in three coccinellid species. Journal of Insect Science 3, 16.

Mitra B, Ghosh P, Henry SL, Mishra J, Das TK, Ghosh S, Babu CR, Mohanty P. 2004. Novel mode of resistance to Fusarium infection by a mild dose pre-exposure of cadmium in wheat. Plant Physiology and Biochemistry 42, 781–787.

Miwa A, Sawada Y, Tamaoki D, Yokota Hirai M, Kimura M, Sato K, Nishiuichi T. 2017. Nicotinamide mononucleotide and related metabolites induce disease resistance against fungal phytopathogens in Arabidopsis and barley. Scientific Reports 7, 6389.

Mohapatra S, Mittra B. 2017. Alleviation of Fusarium oxysporum induced oxidative stress in wheat by Tri chol derma viride. Archives of Phytopathology and Plant Protection 50, 84–96.

Molina A, Hunt MD, Ryals JA. 1998. Impaired fungicidal activity in plants blocked in disease resistance signal transduction. The Plant Cell 10, 1903–1914.

Morkunas I, Wozniak A, Mai VC, Rucinska-Sobkowiak R, Jeandet P. 2018. The role of heavy metals in plant response to biotic stress. Molecules 23, 1–30.

Moseera G, Giraldo MC, Khang CH, Coughlan S, Valen B. 2009. Interaction transcriptome analysis identifies Magnaporthe oryzae BAS-1 as biotomy-associated secreted proteins in rice blast disease. The Plant Cell 21, 1273–1290.

Narasaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, Enju A, Shinozaki K. 2004. Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cyt orange P450 gene superfamily by cDNA microarray. Plant Molecular Biology 55, 327–342.

Nawrot T, Plusquin M, Hogervorst J, Roels HA, Celis H, Thijs L, Vangronsveld J, Van Hecke E, Staessen JA. 2006. Environmental exposure to cadmium and risk of cancer: a prospective population-based study. The Lancet. Oncology 7, 119–126.

Noctor G, Reichheld JP, Foyer CH. 2018. ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology 80, 3–12.

Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH. 2012. Glutathione in plants: an integrated overview. Plant, Cell & Environment 35, 454–484.

Ogawa I, Nakanishi H, Mori S, Nishizawa NK. 2009. Time course analysis of gene regulation under cadmium stress in rice. Plant and Soil 325, 97–108.

Opedenacker K, Remans T, Vangronsveld J, Cuypers A. 2012. Mitogen-Activated Protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. International Journal of Molecular Sciences 13, 7828–7853.

Ozgur R, Uzilday B, Sekmen AH, Turkan I. 2015. The effects of induced production of reactive oxygen species in organelles on endoplasmic reticulum stress and on the unfolded protein response in Arabidopsis. Archives of Botany 116, 541–553.

Pan C, Lu H, Yang C, Wang L, Chen J, Yan C. 2021. Comparative transcriptome analysis reveals different functions of Kandelia obovata superoxide dismutases in regulation of cadmium tolerance. Science of the Total Environment 771, 144922.

Pandey P, Ramgovinda V, Senthil-Kumar M. 2015. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Frontiers in Plant Science 6, 723.

Peck S, Mittler R. 2020. Plant signaling in biotic and abiotic stress. Journal of Experimental Botany 71, 1649–1651.

Peralta E, Pérez G, Ojeda G, Alcañiz JM, Valiente M, López-Mesas M, Sánchez-Martin MJ. 2020. Heavy metal availability assessment using portable X-ray fluorescence and single extraction procedures on former vineyard polluted soils. Science of the Total Environment 726, 138670.
Perazzolli M, Romero-Puertas MC, Delledonne M. 2006. Modulation of nitric oxide bioactivity by plant haemoglobins. Journal of Experimental Botany 57, 479–488.

Perfect SE, Green JR. 2001. Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Molecular Plant Pathology 2, 101–108.

Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28, 489–521.

Pinto AP, Mota AM, de Varennes A, Pinto FC. 2004. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Science of the Total Environment 326, 239–247.

Plessl M, Rigola D, Hassinen VH, Tervahauta A, Kärenlampi S, Schat H, Aarts MG, Ernst D. 2010. Comparison of two ecotypes of the metal hyperaccumulator Thlaspi caerulescens (J. & C. PRESL) at the transcriptional level. Protoplasma 239, 81–93.

Pomar F, Novo M, Bernal MA, Merino F, Barceló AR. 2004. Changes in stem lignins (monomer composition and crosslinking) and peroxidases are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phytologist 163, 111–123.

Poschenrieder C, Tolir R, Barceló J. 2006. Can metals defend plants against biotic stress? Trends in Plant Science 11, 288–295.

Prasch CM, Sonnewald U. 2013. Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiology 162, 1849–1866.

Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, Zhu JK, Gong Z. 2018. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology 60, 805–826.

Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science 180, 169–181.

Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J. 2013. Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiology 161, 1783–1794.

Rodríguez-Serrano M, Romero-Puertas MC, Sparkske I, Hawes C, del Río LA, Sandalio LM. 2009. Peroxidase dynamics in Arabidopsis plants and fungal oxidative stress induced by cadmium. Free Radical Biology & Medicine 47, 1632–1639.

Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA, Sandalio LM. 2006. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species-related events during. Plant Physiology 141, 1532–1544.

Romero-Puertas MC, Rodríguez-Serrano M, Sandalio LM. 2013. Protein S-nitrosylation in plants under abiotic stress: an overview. Frontiers in Plant Science 4, 373.

Romero-Puertas MC, Terrón-Camero LC, Peláez-Vico MÁ, Molina-Moya E, Sandalio LM. 2021. Data from: An update on redox signals in plant immune responses to combinations of stresses in Arabidopsis. Zenodo Repository, https://zenodo.org/record/5040382#.YNrth5jS751

Romero-Puertas MC, Terrón-Camero LC, Peláez-Vico MÁ, Olmedilla A, Sandalio LM. 2019. Reactive oxygen and nitrogen species as key indicators of plant responses to Cd stress. Environmental and Experimental Botany 161, 107–119.

Rosenwasser S, Rot I, Sollner E, Meyer AJ, Smith Y, Levitan N, Fluhr R, Friedman H. 2011. Organelles contribute differentially to reactive oxygen species-related events during. Plant Physiology 156, 185–201.

Rudnick RL, Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry 10, 103–109.

Salt DE, Wagner GJ. 1993. Cadmium transport across tonoplastic vesicles from oat roots. Evidence for a Cd3+/H+ antiport activity. Journal of Biological Chemistry 268, 12297–12302.

Sánchez-Sanuy F, Peris-Peris C, Tomiyama S, Okada K, Hsing YI, San Segundo B, Campo S. 2019. Osa-miR7695 enhances transcriptional priming in defense responses against the rice blast fungus. BMC Plant Biology 19, 1–16.

Sánchez-Vicente I, Fernández-Espinoza MG, Lorenzo O. 2019. Nitric oxide molecular targets: reprogramming plant development upon stress. Journal of Experimental Botany 70, 4441–4460.

Sandalio LM, Gotor C, Romero LC. 2019. Multilevel regulation of peroxisomal proteome by post-translational modifications. International Journal of Molecular Sciences 20, 4881.

Sandalio LM, Peláez-Vico MA, Molina-Moya E, Romero-Puertas M. 2021. Peroxides as redox-signaling nodes in intracellular communication and stress responses. Plant Physiology 186, 22–35.

Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh KB. 2009. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. The Plant Journal 58, 53–68.

Sarkar TS, Biswas P, Ghosh SK, Ghosh S. 2014. Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph–host plant interactions. PLoS One 9, e107348.

Satapathy P, Achary VMM, Panda BB. 2012. Aluminum-induced abiotic stress counteracts Fusarium infection in Cajanus cajan (L.) Millsp. Journal of Plant Interactions 7, 121–128.

Sehgal A, Sita K, Siddiqué KHM, Kumar R, Bhogireddy S, Varshney RK, Hanumantha Rao B, Nair RM, Prasad PV, Nayyar H. 2018. Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science 9, 1705.

Sewelam N, Jaspert N, Van Der Kelen K, Tognetti VB, Schmitz J, Frerigmann H, Stahl E, Zeier J, Van Breusegem F, Maurino VG. 2014. Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially. Molecular Plant 7, 1191–1210.

Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M. 2020. The role of salicylic acid in plants exposed to heavy metals. Molecules 25, 540.

SiauJean waits R, Foulkes NS, Calabrò V, Vallone D. 2019. Evolution shapes the gene expression response to oxidative stress. International Journal of Molecular Sciences 20, 3040.

Sieria M, Waszczak C, Vaisiatu L, Kangasjärvi J. 2016. Reactive oxygen species in the regulation of stomatal movements. Plant Physiology 171, 1569–1580.

Smirnoff N, Arnaud D. 2019. Hydrogen peroxide mechanism and functions in plants. New Phytologist 211, 1197–1214.

Song Y, Miao Y, Song CP. 2014. Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytologist 201, 1121–1140.

Sormani R, Delannoy E, Lageix S, Bitton F, Lanet E, Saez-Vasquez J, Deragon JM, Renou JP, Robaglia C. 2011. Sublethal cadmium intoxication in Arabidopsis thaliana impacts translation at multiple levels. Plant & Cell Physiology 52, 436–447.

Squeglia F, Berisio R, Shibuya N, Kaku H. 2017. Defense against pathogens: structural insights into the mechanism of chitin induced activation of innate immunity. Current Medicinal Chemistry 24, 3980–3986.

Stöhr C, Strube F, Marx G, Ulrich WR, Rockel P. 2001. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212, 835–841.

Sun L, Wang J, Song K, Sun Y, Qin O, Xue Y. 2019. Transcriptome analysis of rice (Oryza sativa L.) shoots responsive to cadmium stress. Scientific Reports 9, 1–10.

Suzuki N, Koizumi N, Sano H. 2001. Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant, Cell & Environment 24, 1177–1188.

Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R. 2011. Respiratory burst oxidases: the engines of ROS signaling. Current Opinion in Plant Biology 14, 691–699.
Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. 2014. Abiotic and biotic stress combinations. New Phytologist 203, 32–43.

Szitlya G, Silhavy D, Molnár A, Havelda Z, Lovas A, Lakatos L, Bánfalvi Z, Burgýán J. 2003. Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. The EMBO Journal 22, 633–640.

Tanabe S, Yokotani N, Nagata T, et al. 2014. Spatial regulation of defense-delated genes revealed by expression analysis using dissected tissues of rice leaves inoculated with Magnaporthe oryzae. Journal of Plant Physiology and Pathology 2, 4.

Tao S, Sun M, Li C, Li G, Hao L. 2013. Reducing basal salicylic acid enhances Arabidopsis tolerance to lead or cadmium. Plant and Soil 372, 309–318.

Terrón-Camero LC, Peláez-Vico MÁ, Del-Val C, Sandalio LM, Romero-Puertas MC. 2019. Role of nitric oxide in plant responses to heavy metal stress: exogenous application versus endogenous production. Journal of Experimental Botany 70, 4477–4488.

Thaler JS, Bostock RM. 2004. Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85, 48–58.

Thoen MP, Davilla Olivias NH, Kloth KJ, et al. 2017. Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. New Phytologist 213, 1346–1362.

Thomma BP, Penninckx IA, Broekaert WF, Cammue BP. 2001. The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology 13, 63–68.

Umbreen S, Lubega J, Cui B, Pan Q, Jiang J, Loake GJ. 2018. Specificity in nitric oxide signalling. Journal of Experimental Botany 69, 3439–3448.

Vaahtera L, Brosché M, Wrzaczek M, Kangasjärvi J. 2014. Specificity in ROS signaling and transcript signatures. Antioxidants & Redox Signaling 21, 1422–1441.

van Baarlen P, Staats M, van Kan JA. 2004. Induction of programmed cell death in lily by the fungal pathogen Botrytis cinerea. Molecular Plant Pathology 5, 559–574.

van de Mortel JE, Schat H, Moerland PD, Van Themtaet EVL, van der Ent S, Blankestijn H, Ghandilyan A, Tsatsiani S, Aarts MGM. 2008. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment 31, 301–324.

van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H. 2013. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil 362, 319–334.

van Meeteren U, Kaiser E, Malcolm Matamoros P, Verdonk JC, Aliniaieifard S. 2020. Is nitric oxide a critical key factor in ABA-induced stomatal closure? Journal of Experimental Botany 71, 399–410.

Wang C, Zhang X, Li JL, Zhang Y, Mou Z. 2018. The Elongator complex-associated protein DRL1 plays a positive role in immune responses against necrotrophic fungal pathogens in Arabidopsis. Molecular Plant Pathology 19, 286–299.

Weber M, Trampczynska A, Clemens S. 2006. Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd²⁺-hypertolerant facultative metallophyte Arabidopsis halleri. Plant, Cell & Environment 29, 950–963.

Wiese J, Kranz T, Schubert S. 2004. Induction of pathogen resistance in barley by abiotic stress. Plant Biology 6, 529–536.

Wolpert TJ, Dunkle LD, Ciuffetti LM. 2002. Host-selective toxins and avirulence determinants: what’s in a name? Annual Review of Phytopathology 40, 251–285.

Xiang C, Oliver DJ. 1998. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. The Plant Cell 10, 1539–1550.

Yao YA, Wang J, Ma X, Lutts S, Sun C, Ma J, Yang Y, Achal V, Xu G. 2012. Proteomic analysis of Mn-induced resistance to powdery mildew in grapevine. Journal of Plant Physiology 63, 5155–5170.

Ye C, Zhou Q, Wu X, Ji G, Li QQ. 2019. Genome-wide alternative polyadenylation dynamics in response to biotic and abiotic stresses in rice. Ecotoxicology and Environmental Safety 183, 109485.

Young D, Pedre B, Ezeri B, et al. 2019. Protein promiscuity in H₂O₂ signaling. Antioxidants & Redox Signaling 30, 1285–1324.

Zandalinas SI, Fichman Y, Devireddy AR, Sengupta A, Azad RK, Mittler R. 2020. Systemic signaling during abiotic stress combination in plants. Proceedings of the National Academy of Sciences, USA 117, 13810–13820.

Zandalinas SI, Sengupta S, Burks D, Azad RK, Mittler R. 2019. Identification and characterization of a core set of ROS wave-associated transcripts involved in the systemic acquired transcription of Arabidopsis to excess light. The Plant Journal 98, 126–141.

Zandalinas SI, Sengupta S, Fritschy FB, Azad RK, Nechushrai R, Mittler R. 2021. The impact of multifactorial stress combination on plant growth and survival. New Phytologist 230, 1034–1048.

Zhang J, De-Oliveira-Ceciliato P, Takahashi Y, et al. 2018. Insights into the molecular mechanisms of CO₂-mediated regulation of stomatal movements. Current Biology 28, 1356–1363.

Zhang H, Reynolds M. 2019. Cadmium exposure in living organisms: a short review. The Science of the Total Environment 678, 761–767.

Zhang H, Sonnewald U. 2017. Differences and commonalities of plant responses to single and combined stresses. The Plant Journal 90, 839–855.

Zhang L, Zhang F, Meliotto M, Yao J, He SY. 2017. Jasmonate signaling and manipulation by pathogens and insects. Journal of Experimental Botany 68, 1371–1385.

Zhao CR, Ikka T, Sawaki Y, Kobayashi Y, Suzuki Y, Hibino T, Sato S, Sakurai N, Shibata D, Koyama H. 2009. Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana. BMC Plant Biology 9, 32.

Zhou R, Kong L, Wu Z, Rosenqvist E, Wang Y, Zhao L, Zhao T, Ottosen CO. 2019. Physiological response of tomatoes at drought, heat and their combination followed by recovery. Physiologia Plantarum 165, 144–154.

Zhou C, Zhu L, Ma Z, Wang J. 2017. Bacillus amyloliquefaciens SAY09 increases cadmium resistance in plants by activation of auxin-mediated signaling pathways. BioMed Research International 2017, 8 pages.

Zhou Y, Liu M, Ju Y, Tian Y, Zhou L, Wang J, Tan J, Qin J, Han S, et al. 2020. Identification of pathogen resistance in barley by abiotic stress. Plant Biology 6, 529–536.

Zhou L, Zhang F, Meliotto M, Yao J, He SY. 2017. Jasmonate signaling and manipulation by pathogens and insects. Journal of Experimental Botany 68, 1371–1385.

Zuo Q, Kong L, Wu Z, Rosenqvist E, Wang Y, Zhao L, Zhao T, Ottosen CO. 2019. Physiological response of tomatoes at drought, heat and their combination followed by recovery. Physiologia Plantarum 165, 144–154.

Zhou C, Zhu L, Ma Z, Wang J. 2017. Bacillus amyloliquefaciens SAY09 increases cadmium resistance in plants by activation of auxin-mediated signaling pathways. BioMed Research International 2017, 8 pages.

Zhou Y, Qian W, Hua J. 2010. Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathogens 6, e1000844.

Zhu Y, Qian W, Hua J. 2017. Jasmonate signaling and manipulation by pathogens and insects. Journal of Experimental Botany 68, 1371–1385.

Ziober JS, Hinz K, Bae S, et al. 2019. Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85, 48–58.

Zaalaker PN, Blomberg J, Dijkman R, et al. 2019. Identification of pathogen-resistant tomato genotypes for tomato spotted wilt potato virus. Phytopathology 109, 1559–1569.

Zandalinas SI, Sengupta S, Burks D, Azad RK, Mittler R. 2019. Identification and characterization of a core set of ROS wave-associated transcripts involved in the systemic acquired transcription of Arabidopsis to excess light. The Plant Journal 98, 126–141.