PLANT METALLOTHIONEINS: PUTATIVE FUNCTIONS IDENTIFIED BY PROMOTER ANALYSIS IN SILICO

GRAŻYNA DĄBROWSKA*, AGNIESZKA MIEREK-ADAMSKA, AND ANNA GOC

Department of Genetics, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland

Received August 29, 2012; revision accepted November 29, 2012

Metallothioneins are low-molecular-weight proteins capable of covalently binding heavy metal ions due to the presence of many cysteine residues in their sequences. We analyzed the predicted amino acid sequences of 19 metallothionein (7 from Arabidopsis thaliana and 12 from Oryza sativa) and their promoter sequences in silico in order to determine the potential regulatory cis-elements present in the promoters of metallothionein genes, from which it is possible to determine the putative functions of these genes. The PlantCARE and PLACE databases provided information about the putative regulatory elements in the metallothionein promoters. Metal response element sequences were found in the promoters of eleven O. sativa and two Arabidopsis metallothionein genes. Copper response elements were identified in both model plants, usually in many copies, particularly in O. sativa. Both the high cysteine content and the presence of metal response motifs in the promoters support the suggestion that metallothioneins play a key role in metal detoxification. The most common putative element in the analyzed promoters was CIRCADIAN, which was present in five A. thaliana and eight O. sativa sequences. The methyl jasmonate response sequence, root-specific expression element and drought response element were found only in O. sativa metallothioneins. Light and low temperature response elements, biotic and abiotic stress elements, an abscisic acid-responsive element and an ethylene-responsive element occur in selected metallothionein promoters of both species. A few promoters have putative organ- and cell-specific regulatory elements. The presence of many different motifs in the promoters of the Arabidopsis and O. sativa genes implies that metallothioneins are general stress response proteins with many important functions in plants, including regulation of their normal development and adaptation to changing environmental conditions.

Key words: Plant metallothioneins, promoter, Oryza sativa, Arabidopsis thaliana.

INTRODUCTION

The promoters of genes transcribed by RNA polymerase II are located upstream of transcription start sites. Promoters are responsible for controlling the timing, location and efficiency of gene expression. The specificity and strength of a promoter is determined mainly by the regulatory motifs present in its sequence. Some promoters ensure constitutive expression of the genes they control, while others respond to environmental or endogenous factors.

Metallothioneins (MTs) are small proteins; their molecular weight is relatively low, ranging from 4 to 8 kDa (Cobbett and Goldsborough, 2002; Koszucka and Dąbrowska, 2006). They are also characterized by high cysteine residue (Cys) content; these cysteines are arranged in characteristic motifs. Depending on the number and arrangement of cysteine residues, four types of plant MTs are distingushed (Freisinger, 2008). The presence of a large number of sulfhydryl groups enables MTs to participate in coordinated binding of heavy metal ions. MTs are essential in heavy metal detoxification processes; they maintain tolerance to stress generated by increased concentrations of metals (Hassinen et al., 2009; Hrynkiewicz et al., 2012; Mierek-Adamska et al., 2009). The amount of Nicotiana tabacum MT2 mRNA doubles in the presence of copper ions (Choi et al., 1996). Expression of plant MT genes rescued Cu^{2+} tolerance in a yeast mutant lacking endogenous MT (Zhou and Goldsbrough, 1994; Ma et al., 2003).

Other stresses influencing plant MT expression are light (Dunaeva and Adamska, 2001), drought (Kohler et al., 2004; Yang et al., 2009), low temperature (Xue et al., 2009) and oxidative stress (Navabpour et al., 2003; Lü et al., 2007). Light- and darkness-induced expression of MTs was observed...
in Arabidopsis and Ipomoea batatas respectively (Dunaeva and Adamska, 2001; Chen et al., 2003). An analysis of a root EST database showed that the PtdMT1a and PtdMT1b genes of Populus hybrids were repressed 2–3-fold under drought stress which slightly elevated the transcript level of PtdMT2b (Kohler et al., 2004). Studies on yeast suggest that MTs not only bind heavy metals but may also be involved in protection against oxidative stress (Xue et al., 2009). Both pathogen attack and wounding induce suberization, during which reactive oxygen species (ROS) are generated (Lamb and Dixon, 1997; Razem and Bernards, 2002) and both can also induce MT gene expression in Nicotiana glutinosa (Choi et al., 1996) and Arabidopsis (Butt et al., 1998; Reymond et al., 2000). The presence of microorganisms in substrate can alter the expression level of metallothionein (Dąbrowska et al., 2011, 2012; Hrynkiewicz et al., 2012).

The level of MT expression is also influenced by phytohormones. In Gossypium hirsutum the GhMT3 transcript is up-regulated by abscisic acid and ethylene (Xue et al., 2009). The level of Musa acuminata MT3 increases during fruit ripening, peaking at the moment of ethylene biosynthesis (Clendennen and May, 1997). Steffens and Sauter (2009) showed that the O. sativa metallothionein gene (OsMT2) was down-regulated by ethylene (and H2O2) in epidermal cells undergoing cell death. The expression of type 1 and type 2 MT genes decreased in Populus trichocarpa × deltoides roots treated with auxin (Kohler et al., 2004).

Plant MTs are organ-specific (Ahmadi et al., 2003; Fukuzawa et al., 2004; Dąbrowska et al., 2012a). MT1 transcripts have been identified in Mimulus guttatus, Pismum sativum and Zea mays roots (de Miranda et al., 1990; Evans et al., 1990; de Framond, 1991). In Arabidopsis, MT2 transcripts are found mainly in aboveground organs (Zhou and Ross, 1991; Garcia-Hernández et al., 1998). High levels of MT3 transcripts occur in ripening fruits of Malus domestica, Elaeis guineensis, Actinidia delicosa and Vitis vinifera (Ledger and Gardner, 1994; Reid and Ross, 1997; Davies and Robinson, 2000; Abdullah et al., 2002). MT type 4 presents the most specific expression pattern: it is limited to seeds and germinating pollen (Kawashima et al., 1992; White and Rivin, 1995; Guo et al., 2003; Mierek-Adamska et al., 2012). MTs play an important role in seed and root development (Yuan et al., 2008), suberization (Guo et al., 2003), pollen germination (Guyon et al., 2000) and embryogenesis (Reynolds and Crawford, 1996; Chattai et al., 1997). Yuan et al. (2008) showed that OsMT2b is expressed in the developing root and embryo and that silencing OsMT2b by RNAi causes serious defects in plant growth. During Triticum aestivum embryogenesis, an abundant level of MT4 mRNA gradually decreased (Kawashima et al., 1992).

Plant MTs are not as well studied as animal MTs. Genomic sequencing and Southern blot analysis revealed that plant metallothionein genes form multimember families (Giritch et al., 1998; Liu et al., 2002). Few plant MT gene promoters have been described to date. Previously studied plant MTs include those from Lycopersicon esculentum (Whitelaw et al., 1997), Pismum sativum (Fordham-Skelton et al., 1997), Pseudotsuga menziesii (Chattai et al., 2004), Citrus unshiu (Endo et al., 2007), Phaseolus vulgaris (Qi et al., 2007), Elaeis guineensis (Omidvar et al., 2010) and O. sativa (Dong et al., 2010).

The objective of this study was to identify the potential regulatory elements in the metallothionein promoter sequences of A. thaliana and O. sativa genes through in silico analysis, to enable prediction of the functions of the encoded proteins.

MATERIAL AND METHODS

IDENTIFICATION OF GENE SEQUENCES

Gene sequences encoding metallothioneins in A. thaliana (AtMT) and O. sativa (OsMT) were found by searches of the NCBI/Gene database (www.ncbi.nlm.nih.gov/gene) using the keyword phrases "Arabidopsis thaliana metallothionein" and "Oryza sativa metallothionein". Promoter sequences of the analyzed genes at least 1000 bp long were also derived from this database. The one exception is the O. sativa OsMT 2B promoter sequence; due to the nearby location of another gene in the same orientation, only 860 bp of this promoter sequence was used for analysis. The cDNA sequences of the analyzed metallothioneins came from the NCBI database of nucleotide sequences (www.ncbi.nlm.nih.gov/nuccore). Putative amino acid sequences were obtained by translating the cDNA sequences using Translate software from the Expasy server (www.expasy.org).

IDENTIFICATION OF REGULATORY MOTIFS

Regulatory motifs in promoter sequences were identified using the PLACE (http://www.dna.affrc.go.jp/PLACE/) (Higo et al., 1999) and PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (Leschet al., 2002) databases.

To identify metal response elements (MREs) in MT promoter sequences of Arabidopsis and O. sativa, we used the following sequences as well as their reverse and complementary sequences: 5'-TCGA/GCNC-3' (Dixon et al., 1996), 5'-TGCAGGC-3' and 5'-ATTCCAA(N)nAACTTA-3' (Qi et al., 2007;
Ren and Zhao, 2009), 5'-GAGAGCA-3' and 5'-TGCAACC3'- (Dong et al., 2010).

The 5'GTAC3' sequence was used to identify the copper response element (CuRE) (Quinn and Merchant, 1995; Quinn et al., 2000).

RESULTS AND DISCUSSION

GENERAL DESCRIPTION OF METALLOTHIONEINS IN A. THALIANA AND O. SATIVA

Seven sequences encoding proper MTs from A. thaliana (AtMT 1A, 1B, 1C, 2A, 2B, 3, EC) and twelve from O. sativa (OsMT 1A, 1B, 1C, 1D, 1E, 1F, 2A, 2B, 2C, 3A, 3B, 4A) were found in the NCBI/Gene database. The database search gave us even more O. sativa sequences, but we did not use them for further analyses as their predicted amino acid sequences lacked the characteristic cysteine-rich motifs.

The length of the predicted MT amino acid sequences ranged from 45 to 85 aa in Arabidopsis and from 63 to 88 aa O. sativa. The sequences included different quantities of conserved cysteine residues; for example, 10 in AtMT 3, OsMT 3A and OsMT 3B; 16 found in AtMT EC and 17 in OsMT 4A (Tab. 1). Other plant MTs have sequences 45–87 aa long and 10–17 Cys residues (Freisinger, 2008).

Both the arrangement and number of cysteine residues in the analyzed MTs are characteristic of plants and allow the MTs to be classified into four types (Cobbett and Goldsbrough, 2002; Hassinen et al., 2011; Freisinger, 2011). The MTs contain 2 (type 1–3) or 3 (type 4/EC) domains (Tab. 1) separated by variable spacers. Each domain includes 4–8 Cys residues (Tab. 1) in characteristic clusters: Cys-X-Cys in type 1; Cys-Cys, Cys-X-Cys and Cys-X-X-Cys in type 2; Cys-X-Cys in type 3; and in type 4 only some Cys are clustered in Cys-X-Cys motifs.

Current knowledge of the metal-binding properties of plant MTs was reviewed by Hassinen et al. (2011) and Freisinger (2011).

IDENTIFICATION OF PUTATIVE CIS ELEMENTS CONNECTED WITH THE PLANT RESPONSE TO HEAVY METALS

Metal response elements with the core sequence 5'-TGCRNCNG-3' (where R = purine and N = any base) were initially found in promoters of animal genes regulated by metals (Stuart et al., 1985). Other MRE motifs have been described in plants: TGAGTG and ATTCAAG(AG)AGTC (Qi et al., 2007), GAGCGA and TGCAACC (Dong et al., 2010). Our analyses identified MRE-like sequences in the promoter regions of all O. sativa MT genes and five of the seven A. thaliana MT genes (Tab. 2, 3).
MRE-like motifs (5'-TGCACACC-3' and 5'-TACGCSCG-3') in plant MT genes were first found in the PsMT_A promoter from *Pisum sativum* (Evans et al., 1990) and the LeMT_B gene from *Lycopersicon esculentum* (Whitelaw et al., 1997). Experimental studies confirmed a Cu-induced increase in the expression of a GUS reporter gene directed by the PsMT_A promoter in roots of transgenic *Arabidopsis* plants (Fordham-Skelton et al., 1997), but the functionality of its MRE was not studied. Giritch et al. (1998) showed that the LeMT_B gene is induced by heavy metal treatments, especially treatment with zinc ions. In a study of the promoter sequence of the *Fagopyrum esculentum* FeMT3 gene, Nikolić et al. (2010) showed the presence of four MRE elements. Analyses of type 3 metallothionein gene promoters in *Populus alba* (*MT3b*) (Bereta et al., 2009), *Elaeis guineensis* (*MT3-B*) (Siti Nor Akumar et al., 2002) and *Porteresia coarctata* (*PcMT3*) (Usha et al., 2011) revealed the presence of MREs. Usha et al. (2009) described the sequences of three *Prosopis juliflora* MTs that do not contain the MRE motif within the promoter region. In the *MT3* gene of *Citrus unshiu* the MRE sequence does not occur either, and the expression of this gene does not change under the influence of heavy metal ions (Endo et al., 2007). Our analysis also showed that MRE-like sequences are not always present in MT promoters (Tab. 2). Zhou et al. (2006), who searched only for the canonical MRE sequence, reported its presence in six of eleven analyzed *O. sativa* MT promoters. The latest study by Dong et al. (2010) identified MRE motifs in the promoter of an additional *O. sativa* gene, OsMT-1-4b, the cDNA of which is identical to our OsMT 1D, but our search of the NCBI database sequences yielded a different promoter sequence of the gene than the one they amplified and analyzed. A version of the bipartite MRE motif was previously found in the promoter of the OsMT2b gene of *O. sativa* var. indica (Ren and Zhao, 2009). The OsMT2b cDNA and promoter sequence is nearly identical to our OsMT 2C sequences.

Another motif related to the plant response to copper is the CuRE cis-element, which has the conserved sequence 5'-GTAC-3', originally identified in the green alga *Chlamydomonas reinhardtii* (Quinn and Merchant, 1995; Quinn et al., 2000) and monocotyledonous plants (Dong et al., 2010). Research by Quinn et al. (2003) revealed that this element is also connected to the plant response to nickel. The CuRE cis-element is present in all analyzed promoters of *A. thaliana* MTs (Tab. 2). The AtMT 3 promoter contains the largest number of copies (6) of the 5'-GTAC-3' motif; one copy of CuRE was identified in the promoters of AtMT 2B and AtMT EC. The promoter sequences of most *O. sativa* MT genes contain the CuRE motif in many copies (Tab. 3), with up to 13 copies in the case of OsMT 4A. Only the OsMT 3A promoter does not contain the regulatory element. Bratiè et al. (2009) described the presence of two CuRE elements at the -485/-482 and -451/-448 positions of the *F. esculentum* FeMT3 promoter. Deletion of the region containing both CuREs and other putative elements diminished the reporter gene activity in transgenic plants subjected to simultaneous hypoxia, different metal ions and osmotic stresses. Expression of FeMT3 was previously recorded in leaves, induced by copper ions (Brkljaèić et al., 2004). Nikolić et al. (2010) demonstrated the protective role of the FeMT3 protein during the exposure of transgenic yeast and plants to heavy metals. Work by Omidvar et al. (2010) demonstrated the presence of the CuRE motif in the

TABLE 2. Putative MRE and CuRE sequences in MT promoters of *Arabidopsis thaliana*

Gene	MRE motif sequence	MRE localization	CuRE motifs	CuRE localization
AtMT1A	AAACCTTA	-1514/-1508, -136/-130	2	-1793/-1789, -1600/-1596
AtMT 1B	GCCGTGCA	-639/-633	2	-980/-976, -409/-405
	TGCACC	-102/-96		
	ATCTAAA...AAATCTTA	-428/-422...-369/-362		
AtMT 1C	AAACCTTA	-1513/-1507, -135/-129	2	-1792/-1788, -1599/-1595
AtMT 2A	-		3	-225/-221, -211/-207, -145/-141
AtMT 2B	TGCTTCTC	-269/-263	1	-808/-804
	ATCTAAA	-899/-893		
	TAAGTTT	-8/-2		
AtMT 3	TAAGTTT...TGGAAT	-1636/-1630...-1575/-1570	6	-2098/-2094, -2089/-2085, -1828/-1824, -1354/-1350, -887/-883, -393/-389
	ATCTAAA...AAAGTTA	-536/-530...-489/-483		
AtMT EC	-		1	-1295/1291
TABLE 3. Putative MRE and CuRE sequences in MT promoters of *Oryza sativa*

Gene	MRE motif sequence	MRE localization	CuRE motifs	CuRE localization
OsMT 1A	TGCAGGC	-1890/-1884	12	-1914/-1910, -1584/-1580, -1367/ -1363, 1341/-1337, -1249/-1245, -1182/ -1178, -1174/-1170, -734/-730, -707/ -703, -634/-630, -357/-353, -319/-315
OsMT 1A	TGGGCC	-1017/-1011		
OsMT 1A	GCCTGCA	-774/-768		
OsMT 1B	TGGGCTC	-36/-30	8	-1824/-1820, -1622/-1618, -1196/ -1192, -1138/-1134, -822/-818, -776/ -772, -725/-721, -625/-621
OsMT 1B	AAACCTA	-664/-658		
OsMT 1C	TGAGACC	-2966/-2960		
OsMT 1C	GAGCGCA	-2586/-2580, -1853/-1847		
OsMT 1C	TGACACC	-271/-265		
OsMT 1C	TGACC	-175/169		
OsMT 1C	ATCTCAAA	-808/-802, -495/-489		
OsMT 1C	TTGGAAT	-876/-870, -792/-786, -595/-589, -341/-335		
OsMT 1D	TGCAACC	-1489/-1483, -502/-496	8	-1579/-1575, -1226/-1222, -1121/ -1117, -1037/-1033, -827/-823, -809/ -805, -260/-256, -223/-219
OsMT 1D	TGCAGCC	-493/-487		
OsMT 1D	ATCTCAAA...AAACCT TG	-993/-987,...-905/-899		
OsMT 1D	ATCTCAAA...ATTCTA A	-993/-987,...-770/-764		
OsMT 1D	ATCTCAAA...TTTGAAT	-770/-764,...-568/-562		
OsMT 1D	TTGGAAT	-1423/-1417, -1065/-1059		
OsMT 1E	TGAGGCC	-1661/-1655, -1454/-1448	10	-1594/-1590, -1495/-1491, -1386/ -1382, -1353/-1349, -1116/-1112, -749/ -745, 428/-424, -309/-305, -276/-272, -247/-243
OsMT 1E	GAGAGCA	-1087/-1081		
OsMT 1E	TTGGAAT...TTTGAAT	-1174/-1167,...-1136/-1130		
OsMT 1E	TTGGAAT	-929/-923		
OsMT 1E	AAACCTA...TTTGAAT	-552/-546,...-488/-482		
OsMT 1F	TGCAACC	-440/-434		
OsMT 1F	TGCAACC	-198/-192		
OsMT 1F	TTGGAAT...AAACCTA A	-763/-757,...-594/-588		
OsMT 2A	ATCTCAAA	-498/-492	6	-2242/-2238, -2121/-2117, -705/-701, -639/-635, -411/-407, -158/-154
OsMT 2B	GTGTGCA	-388/-382		
OsMT 2B	TGCGGCA	-231/-225		
OsMT 2C	TGAGGCC	-1643/-1637	5	-1665/-1661, -1403/-1399, -805/-801, -180/-176, -56/-52
OsMT 2C	TGCTCTC	-45/-39		
OsMT 2C	ATCTCAAA...TTTGAAT	-1094/-1088,...-882/-876		
OsMT 3A	TGCTCTC	-1184/-1178		
OsMT 3A	TTGGAAT...TAAGTTT	-1599/-1593,...-1155/-1149		
OsMT 3B	TGCTCTC	-1926/-1920, -1281/-1275		
OsMT 3B	GAGAGCA	-1453/-1447		
OsMT 3B	TGCAACC	-282/-276		
OsMT 3B	TGACC	-186/-180		
OsMT 3B	TAATCTT...AAACCTA A	-917/-911,...-820/-814		
OsMT 3B	TAATCTT...TTTGAAT	-917/-911,...-841/-835, -648/-642,...-595/-589		
OsMT 3B	ATCTCAAA	-702/-696		
OsMT 4A	GCGCGCA	-1565/-1557		
OsMT 4A	GAGAGCA	-355/-349	13	-2528/-2524, -1959/-1955, -1920/ -1916, -1790/-1786, -1780/-1776, -1770/-1766, -1764/-1760, -1755/-1751, -1542/-1538, -675/-671, -394/-390, -121/-117, -88/-84
E. guineensis MT promoter sequence and strong induction of this gene in response to Cu$^{2+}$ and ABA treatment. Usha et al. (2009) found CuRE within the promoter region of Prosopis juliflora MT1.

Numerous reports confirm the involvement of plant MTs in the homeostasis and detoxification of heavy metal ions (Cobbett and Goldsborough, 2002; Hassinen et al., 2011). However, the absence of MRE and CuRE motifs in some MT promoters and the metal-independent expression of some plant MTs suggest that they might be involved in other processes.

IDENTIFICATION OF ADDITIONAL PUTATIVE REGULATORY ELEMENTS

Using the PlantCARE and PLACE databases we found many other regulatory elements in each of the analyzed promoter sequences, many more in the PLACE database than in the PlantCARE database (data not presented). Table 4 gives the elements in common to both databases.

Eight types of putative regulatory elements were found in the MT promoter sequences of Arabidopsis. The largest number of regulatory motif sequences (4) were identified in the promoters of AtMT 1A, AtMT 1B and AtMTE$_C$. Only one was found in AtMT 3. CIRCADIAN motifs are most frequent in the promoters of Arabidopsis MT genes, with the exception of AtMT 1B and AtMT 2B. In O. sativa metallothionein gene promoters we found 13 different regulatory elements. The largest number of motifs common to both databases (6 elements – ERE, TGACG, CCGTCC-box, as1, G-box and CIRCADIAN) were in OsMT 1F, and the fewest in the OsMT 1D and OsMT 2C promoters (2 elements). Both the CIRCADIAN and 5'-TGACG-3' motifs were present in eight of the twelve O. sativa sequences (Tab. 4).

In both A. thaliana and O. sativa MT promoters the following motifs occur: W-box, CIRCADIAN, ERE, LTRE, CCGTCC-box, ABRE and G-box. O. sativa MT gene promoters contained other regulatory elements not recorded in Arabidopsis: GT1, TCT, MBS, O$_2$ site, as1, and the methyl jasmonate response element. The RY motif associated with regulation of seed development was found only in Arabidopsis AtMT 1A (Tab. 4).

AtMT and OsMT promoters – hypothetical elements of response to other abiotic stresses

Light

The G-box motif was present in the promoter of two Arabidopsis (AtMT 1B and 1C) and three O. sativa (OsMT 1F, 2A and 2B) MT genes (Tab. 4). The G-box element plays a key role in the plant response to light. The G-box element was already identified in the promoter of the gene encoding type 2 metallothionein in L. esculentum (Whitelaw et al., 1997). The G-box motif was also found in the promoters of the oil palm genes MT3-A and MT3-B (Omidvar et al., 2010). Our analyses revealed the presence of the GT1 (OsMT 1E, 3A) and TCT (OsMT 4A) elements in some promoters; these elements are also associated with the response to light (Tab. 4). In other work we assessed the influence of light on plant metallothionein expression by assaying the transcript levels of Pharbitis nil MT1 under different light conditions: MT1 transcript levels were high in plants growing under continuous light but even higher in plants induced to flower by 16 h darkness (Dąbrowska et al., 2010). Increased expression of MTs has been induced in Arabidopsis by intense light (Dunaeva and Adamska, 2001) and in Ipomoea batatas by darkness (Chen et al., 2003), suggesting that light-response elements in MT gene promoters may be functional.

Low temperature

The LTRE motif, which is involved in the response to cooling, is contained in the promoters of AtMT 1A-C and OsMT 1B, 1E, 2C and 3B genes (Tab. 4). Xue et al. (2009) used low temperature to induce expression of metallothionein GhMT3a in Gossypium hirsutum seedlings. Zhu et al. (2009) showed that MT 2a in Arabidopsis participates in maintaining the balance of ROS during oxidative stress, which is triggered by many factors and especially low temperature.

Drought

Our search demonstrated that the OsMT 1A, 2B and C promoters contain the MBS motif with the 5'TAAGC3' sequence; this motif is involved in the response to drought (Tab. 4). Increased tolerance to drought was observed in transgenic O. sativa overexpressing OsMT 1A (Yang et al., 2009). Xue et al. (2009) demonstrated induction of type 3 metallothionein in G. hirsutum in response to drought; overexpression of this MT increased tolerance to drought through reduction of the hydrogen peroxide level. Brosche et al. (2005) observed a high level of MT expression in trees growing in dry areas. Berta et al. (2009) found that transcription of MT3 in leaves and the cambial zone of Populus alba depended on changes in water status, and suggested the involvement of MT in protection of plant cells during dry seasons.

Cis elements governing cell- and organ-specific expression are also present in the MT promoters

We identified the CCGTCC-box, which is associated with regulation of meristematic cell activity, in the promoters of the AtMTE$_C$, OsMT 1F, OsMT 2A and
OsMT 2B. We also identified the O₂ site, known to control metabolism level, in OsMT 1A. The RY element, responsible for regulation of seed and development, was identified in AtMT 1A, and the as1 motif specifying root expression was found in OsMT 1A, 1C, 1D, 1F and 3B (Tab. 4). Using polyclonal antibodies, Hassinen et al. (2009) detected a high level of MT2 protein in the epidermis of Thlaspi caerulescens roots and root hairs. Van de Mortel et al. (2006) showed that root expression of MT2A and MT2B in T. caerulescens, a metallophyte, is much higher than in A. thaliana. Expression of the rice OsMT 2B gene in the developing root and embryo of germinating seeds (Yuan et al., 2008) suggests that the as1 motif may be functional. Accumulation of MT mRNAs in intensively dividing tissues suggests a role for MTs in cell division (Mir et al., 2004).

The most frequent regulatory elements of MT genes are responsive to general stress signaling.

The signaling pathways induced by many different types of stress are interrelated in plants (reviewed in Yanhui et al., 2006; Maksymiec et al., 2007; Hirayama and Shinozaki, 2010). Phytohormones and ROS are common signaling molecules in the stress response. Analysis of genes induced by abscisic acid (ABA) enabled us to identify the conserved promoter motif ABRE. The biological functions of ABA include control of seed development and germination (Brkljačić et al., 2004). In vegetative tissues, ABA controls the response of plants to drought, salinity and low temperature. The ABRE motif is an 8–10-nucleotide sequence with the 5'-ACGT-3' core sequence. The requirement of the

TABLE 4. Selected putative regulatory elements identified in MT gene promoter sequences in Arabidopsis thaliana and Oryza sativa

Motif	Consensus sequence (source)	Function	Occurrence
ABRE	TACGGTC, ACGTGGC, CACGTC	response to abscisic acid	AtMT 1B, AtMT 2B, AtMT EC
	(Ezcurra et al., 1999)		OsMT 1B, OsMT 2A, OsMT 4A
ERE	ATTTCAA (Yang et al., 1998)	response to ethylene	AtMT 1A, OsMT1F
TGACG	TGACG (Penninckx et al., 1998)	response to methyl jasmonate	OsMT 1A, OsMT 1B, OsMT 1C, OsMT 1F, OsMT 2B, OsMT 3A, OsMT 3B, OsMT 4A,
W-box	TTGACC (Ulker and Somssich, 2004)	response to fungi elicitors	AtMT 1B, AtMT 2A, AtMT 2B, AtMT EC OsMT 2B
CCGTCC-box	CCGTCC (Moshi et al., 2000, Silvente et al., 2008)	regulation of meristematic cell activity	OsMT 1F, OsMT 2A, OsMT 2B
RY element	CATGCATG (Reidt et al., 2000)	regulation of seed development	AtMT 1A
as1	TGACGTCA (Lam et al., 1989)	root-specific expression	OsMT 1A, OsMT 1C, OsMT 1D, OsMT 1F OsMT 3B
O₂ site	GATGACATGG (Vincentz et al., 1997)	regulation of metabolism level	OsMT 1A
LTRE	CCGAAA (Fenga et al., 2009)	response to low temperature	AtMT 1A, AtMT 1B, AtMT 1, OsMT 1B OsMT 1E, OsMT 2C, OsMT 3B
MBS	TAACTG (Urao et al., 1993)	response to drought	OsMT 1A, OsMT 2B, OsMT 2C
G-box	TACGTTGG, CACGTG, CACGTTG, TGACGTTGG (WhiteIaw et al., 1997)	response to light	AtMT 1B, AtMT 1C OsMT 1F, OsMT 2A, OsMT 2B
GT1	GGTTAA, GGTTAT (Argüello-Astroja and Herrere-Estrella, 1996)	response to light	OsMT 1E, OsMT 3A
TCT	TCTTAC (Hiratsuka and Chua, 1997)	response to light	OsMT 4A
CIRCADIAN	CAANNNNNATC (Pieculla et al., 1998)	regulation by circadian clock	AtMT 1A, AtMT 1C, AtMT 2A, AtMT 3, AtMT EC OsMT 1A, OsMT 1C, OsMT 1D, OsMT 1E, OsMT 1F, OsMT 2B, OsMT 2C, OsMT 3A

Putative functions of metallothioneins
presence of this element for induction of gene expression by ABA has been confirmed experimentally (Giraudat et al., 1994). The ABRE motif is recognized by proteins from the bZIP family with the leucine zipper motif (Busk and Pages, 1998). The core of the ABRE motif is also present in many different regulatory motifs connected with the response to other factors such as white light, UV, auxins and jasmonates. We found the ABRE element in the promoters of three O. sativa MTs (OsMT 1B, OsMT 2A, OsMT 4A) and three Arabidopsis MTs (AtMT 1B, AtMT 2B, AtMT E) genes (Tab. 4). Previously it has been found in MT gene promoters in T. aestivum (Giritch et al., 1998), Hordeum vulgare (Ozturk et al., 2002), P. juliflora (Usaha et al., 2009), E. guineensis (Omidvar et al., 2010) and P. coarctata (Usaha et al., 2011). It has also been shown that exposing plants to ABA induces MT expression in G. hirsutum (Xue et al., 2009) and Thellungiella halophila (Hobo et al., 1999) and that it induces rice OsMT 2A and OsMT 4A genes (Zhou et al., 2006).

The ERE ethylene response element (Quan et al., 2008) occurs in the promoters of genes associated with organ senescence and biotic stress defense. In our study this element was identified in the promoters of OsMT 1 F and AtMT 1 A (Tab. 4). The ERE motif has been found in the promoters of P. juliflora PjMT 1 and PjMT 2 (Usaha et al., 2009), P. coarctata PcMT 3 (Usaha et al., 2011), E. guineensis metallothionein (Omidvar et al., 2010) and L. esculentum LeMT b (Whitelaw et al., 1997). Expression of the latter gene is higher in mature leaves than in young leaves (Giritch et al., 1998). Coupe et al. (1995) observed MT transcript accumulation in Sambucus nigra L. during ethylene-promoted abscission. Steffens and Sauter (2009), however, showed that the gene encoding type 2 metallothionein in O. sativa is down-regulated by hydroperoxide and ethylene in epidermal cells directed to apoptosis.

Motifs with the consensus sequence 5'-TGAGC-3' and 5'-CCACGTCACCG-3' present in the eight O. sativa MT promoters (Tab. 4) are known to determine the response to jasmonates. Jasmonic acid (JA) and its methyl ester (MeJA) induce plant defense reactions to fungi and bacteria (Wang and Wu, 2005). In silico analysis of the 1.15 kb promoter region of the Casuarina glauca MT 1 gene revealed the presence of three 5'-TGACG-3' motifs (Oberlello et al., 2007). Omidvar et al. (2010) showed the presence of the MeJa-responsive element in the E. guineensis MT promoter sequence.

The W-box regulatory sequence associated with the response of plants to fungal elicitors contains the conserved sequence 5'-TGAGC-3'. In N. tabacum, Chen and Chen (2000) described the ability of the WRKY transcription factor to bind the W-box and examined its relation to the plant response to pathogen attack. The immediate consequences of recognition of an elicitor by a plant cell are sudden reactions starting with the production of reactive forms of oxygen and followed by activation of many defense pathways induced by jasmonic acid, salicylic acid and ethylene (Berrocal-Lobo and Molina, 2008). Our search revealed the presence of a W-box motif in five metallothionein promoters, including four in Arabidopsis (AtMT 1 B, 2 A, 2 B and E), and O. sativa OsMT 2 B (Tab. 4). Metallothionein expression is induced in Nicotiana glutinosa L. by tobacco mosaic virus infection (Choi et al., 1996) and in Arabidopsis by mechanical injury and insect attack (Reymond et al., 2000). It seems that the presence of the W-box in promoters enables plant MTs to be involved not only in the response to pathogen attack. The WRKY proteins are a very large family (e.g., 55 differentially regulated genes in Cucumis sativus) and are involved not only in biotic stress responses but also in abiotic stress responses, developmental processes, and phytohormone-mediated signal transduction (Ling et al., 2011).

The CIRCADIAN regulatory element with the consensus sequence 5'-CAANNNNATC-3' was first described in the regulatory region of L. esculentum Lhc (light-harvesting complex) genes. The presence of the motif was shown to be necessary for rhythmic changes in gene expression (Piechulla et al., 1998). Many processes in plants are subject to cyclic regulation. Elongation of the hypocotyl in Arabidopsis is controlled by the circadian clock immediately after germination (Dawson-Day and Millar, 1999). We found the CIRCADIAN element in the promoters of many O. sativa and Arabidopsis MTs, with the exception of AtMT 1 B and 2 B, and OsMT 1 B, 2 A, 3 B and 4 A (Tab. 4). To date there are no reports suggesting that plant MTs are regulated by the circadian clock. The metallothionein of Pharbitis nil did not reveal any regulation by the endogenous rhythm (Dałbrowska et al., 2010), but MT expression in the fungus Neurospora crassa was shown to be subject to rhythmic changes (Bell-Pedersen et al., 1996). Transcriptome analysis revealed that nearly 70% of Arabidopsis genes controlled by the circadian clock are also regulated by abiotic stresses (Kreps et al., 2002) and that the plant circadian clock is interconnected in both ABA and non-ABA stress responses (Sánchez et al., 2011). This suggests a role for the putative CIRCADIAN elements in MT gene regulation.

The MBS motif, described above as a potential drought response element, binds MYB factors encoded by a gene superfamily with nearly 200 members in the O. sativa and Arabidopsis genomes. Plant MYBs are involved in a long list of processes and stress responses (reviewed by Yanhui et al., 2006).
Our analyses of promoter sequences indicate that plant MTs may have many important functions. The metallothionein genes respond not only to heavy metals but to many biotic and abiotic stress factors, so their gene products should be considered general stress proteins. Hassinen et al. (2011) discussed the role of MTs in ROS scavenging. The ABRE, ERE, LTRE and MRE-like motifs found in Arabidopsis and MT promoters have also been reported in the promoters of Cd-regulated rice miR genes with target genes that encode transcription factors and metabolic proteins controlling plant development and the stress response (Ding et al., 2011). Our results are in accord with the literature and add to the current understanding of plant MT function. The presence, in the promoters of many of the MT genes, of regulatory sequences associated with the response of plants to jasmonates, abscisic acid and fungal elicitors, and with activation of meristematic cells, indicates potential involvement of MTs in many processes enabling the proper growth and development of plants and adaptation to changing environmental conditions.

In silico analyses of the promoter sequences of genes encoding metallothioneins provide a platform for learning more about the functions of MTs in higher plants and represent a direction for future research.

ACKNOWLEDGEMENTS

This work was financially supported by the Polish Ministry of Science and Higher Education (NN310285337).

REFERENCES

ABDULLAH SNA, CHEAH SC, and MURPHY DJ. 2002. Isolation and characterisation of two divergent type 3 metallothioneins from oil palm, Elaeis guineensis. Plant Physiology and Biochemistry 40: 255–263.

AHMADI N, DELLERME S, LAPLAZE L, GUERMACHE F, AUGUY F, DUHOUX E, BOGUSZ D, GUIDERDONI E, and FRANCHE C. 2003. The promoter of a metallothionein-like gene from the tropical tree Casuarina glauca is active in both annual dicotyledonous and monocotyledonous plants. Transgenic Research 12: 271–281.

BELL-PEDERSEN D, SHINOHARA ML, LOROS JJ, and DUNLAP JC. 1996. Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proceedings of the National Academy of Sciences USA 93: 13096–13101.

BERROCAL-LOBO M, and MOLINA A. 2008. Arabidopsis defense response against Fusarium oxysporum. Trends in Plant Science 13: 145–150.

BERTA M, GIOVANNELLI A, POTENZA E, TRAVERSI ML, and RACCHI ML. 2009. Type 3 metallothioneins respond to water deficit in leaf and in the cambial zone of white poplar (Populus alba). Journal of Plant Physiology 166: 521–530.

BRATIE AM, MAJIE DB, SAMARDI ET, and MAKSIMOVIC VR. 2009. Functional analysis of the buckwheat metallothionein promoter: tissue specificity pattern and up-regulation under complex stress stimuli. Journal of Plant Physiology 166: 996–1000.

BRSKAJEJC JM, SAMARDI ET, TIMOTJEVIC GS, and MAKSIMOVIC VR. 2004. Expression analysis of buckwheat (Fagopyrum esculentum Moench) metallothionein-like gene (MT3) under different stress and physiological conditions. Journal of Plant Physiology 161: 741–746.

BROSCH M, VINCOUR B, ALATALO ER, LAMMINMAKI A, TEICHMANN T, OTOOW EA, DJILIANOV D, AFF D, BOGEAT-TRIBOLOT MB, ALTMAN A, POLLE A, DREYER E, RUDD S, PAULIN L, AUVINEN P, and KANGASJARVI J. 2005. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biology 6: R101.

BUSK PK, and PAGES M. 1998. Regulation of abscisic acid-induced transcription. Plant Molecular Biology 37: 425–435.

BUTT A, MOUSLEY C, MORRIS K, BEYNON J, CAN C, HOLUB E, GREENBERG JT, and BUCHANAN-WOLLASTON V. 1998. Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Pseudomonas parasitica and Pseudomonas siringae. The Plant Journal 16: 209–221.

CHATTAI M, KAUKINEN KH, TRANBARGER TJ, GUPTA PK, and MISRA S. 1997. The isolation of a novel metallothionein-related cDNA expressed in somatic and zygotic embryos of Douglas-fir: regulation by ABA, osmoticum, and metal ions. Plant Molecular Biology 34: 243–254.

CHATTAI M, OSUSKY M, OSUSKA L, YEVUSHENKO D, and MISRA S. 2004. Functional analysis of a Douglas-fir metallothionein-like gene promoter: transient assays in zygotic and somatic embryos and stable transformation in transgenic tobacco. Planta 220: 118–128.

CHEN C, and CHEN Z. 2000. Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Molecular Biology 42: 387–396.

CHEN HJ, HOU WC, YANG CY, HUANG DJ, LIU JS, and LIN YH. 2003. Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves. Journal of Plant Physiology 160: 547–555.

CHOI D, KIM HM, YUN HK, PARK JA, KIM WT, and BOK SH. 1996. Molecular cloning of a metallothionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection. Plant Physiology 112: 353–359.

CLENDENNEN SK, and MAY GD. 1997. Differential gene expression in ripening banana fruit. Plant Physiology 115: 463–469.

CUBBETT C, and GOLDSBROUGH P. 2002. Phytochelatins and metallothioneins: role in heavy metal detoxification and homeostasis. Annual Review of Plant Biology 53: 159–182.

COUPE SA, TAYLOR JE, and ROBERTS JA. 1995. Characterization of a mRNA encoding a metallothionein-like-protein that accumulates during ethylene-promoted
DĄBROWSKA G, ROBSON SP. 2000. Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response proteins. *Plant Physiology* 122: 803–812.

DĄBROWSKA G, HRYNKIEWICZ K, and TREJGELL A. 2011. The influence of PGPR (Plant Growth Promoting Rhizobacteria) on expression of metallothionein *BnMT2* in *Brassica napus* L. growing at the presence of heavy metals. *Advances of Agricultural Sciences Problem Issues* 567: 83–92.

DĄBROWSKA G, MIEREK-ADAMSKA A, and GOCA. 2012a. Does arbuscular mycorrhizal fungi affect the growth and metallothionein *MT2* expression in the roots of *Brassica napus* L.? *Acta Biologica Cracoviensia Series Botanica* 54(1): 7–12.

DĄBROWSKA G, HRYNKIEWICZ K, and TREJGELL A. 2012b. Does arbuscular mycorrhizal fungi affect the growth and metallothionein *MT2* expression in the roots of *Brassica napus* L.? *Acta Biologica Cracoviensia Series Botanica* 54 (suppl.1): 55.

DE FRAJMONA A. 1991. A metallothionein-like gene from maize (*Zea mays*). Cloning and characterisation. *FEBS Letters* 290: 103–106.

DE MIRANDA JR, THOMAS MA, THURMAN DA, and TOMSETT AB. 1991. A metallothionein-like gene from maize (*Zea mays*). *Journal of Experimental Botany* 52: 914–924.

DING Y, CHEN Z, and ZHU C. 2011. Microarray-based analysis of cadmium-responsive microRNAs in rice (*Oryza sativa*). *Journal of Experimental Botany* 62: 3563–3573.

DIXON WJ, INOUE C, KÄRIN M, and TULLIUS TD. 1996. CUP2 binds in a bipartite manner to upstream activation sequence c in the promoter of the yeast copper metallothionein gene. *Journal of Biological and Inorganic Chemistry* 1: 451–459.

DONG CJ, WANG Y, YU SS, and LIU JY. 2010. Characterization of a novel rice metallothionein gene promoter: its tissue specificity and heavy metal responsiveness. *Journal of Integrative Plant Biology* 52: 914–924.

DOWSON-DAY MJ, and MILLAR AJ. 1999. Circadian dysfunction causes aberrant hypocotyl elongation patterns in *Arabidopsis*. *The Plant Journal* 17: 63–71.

DUNAEVA M, and ADAMSKA I. 2001. Identification of genes expressed in response to light stress in leaves of *Arabidopsis thaliana* using RNA differential display. *European Journal of Biochemistry* 268: 5521–5529.

ENDO T, SHIMADA T, FUJII H, MORIGUCHI T, and OMURA M. 2007. Promoter analysis of a type 3 metallothionein-like gene abundant in Satsuma mandarin (*Citrus unshiu* Marc.) fruit. *Scientia Horticulturae* 112: 207–214.

EVANS IM, GATEHOUSE LN, GATEHOUSE JA, ROBINSON NJ, and CROY RRD. 1990. A gene from pea (*Pisum sativum* L.) with homology to metallothionein genes. *FEBS Letters* 262: 29–32.

FORDHAM-SKELTON AP, LILLEY C, URWIN PE, and ROBINSON NJ. 1997. GUS expression in *Arabidopsis* directed by 5′ regions of the pea metallothionein-like gene *PsMTA*. *Plant Molecular Biology* 34: 659–668.

FREISINGER E. 2008. Plant MTs-long neglected members of the metallothionein superfamily. *Dalton Transactions* 21: 6663–6675.

FREISINGER E. 2011. Structural features specific to plant metallothioneins. *Journal of Biology and Inorganic Chemistry* 16: 1035–1045.

FUKUZAWA H, YU LH, UMEDA-HARA C, TAGAWA M, and UCHIYAMA H. 2004. The rice metallothionein gene promoter does not direct foreign gene expression in seed endosperm. *Plant Cell Reports* 23: 231–235.

GARCIA-HERNANDEZ M, MURPHY A, and TAIZ L. 1998. Metallothioneins 1 and 2 have distinct but overlapping expression patterns in *Arabidopsis*. *Plant Physiology* 118: 387–397.

GIRAUDAT J, PARCY F, BERTAUCHE N, GOSTI F, LEUNG J, MORRIS PC, BOUVIER-DURAND M, and VARTANIAN N. 1994. Current advances in abscisic acid action and signaling. *Plant Molecular Biology* 26: 1557–1577.

GIRITCH A, ANAL M, STEPHAN UW, and BAUMLEIN H. 1998. Structure expression and chromosomal localization of the metallothionein-like gene family of tomato. *Plant Molecular Biology* 37: 701–714.

GUO WJ, BUNDITHYA W, and GOLDSBOROUGH PB. 2003. Characterization of the *Arabidopsis* metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. *New Phytologist* 59: 369–381.

GUYN VN, ASTWOOD JD, GARNER EC, DUNKER AK, and TAYLOR LP. 2000. Isolation and characterization of cDNAs expressed in the early stages of flavonol-induced pollen germination in petunia. *Plant Physiology* 123: 699–710.

HASSINEN VH, TERVERAHTA AI, SCHAT H, and KARENŁAMPI SO. 2011. Plant metallothioneins—metal chelators with ROS scavenging activity? *Plant Biology* 13: 225–232.

HASSINEN VH, TUOMAINEN M, PERAINE S, SCHAT H, KARENĽAMPI SO, and TERVERAHTA AI. 2009. Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator *Thlaspi caerulescens*. *Journal of Experimental Botany* 60: 187–196.

HEGO K, UGAWA Y, IWAMOTO M, and NOZAKA T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. *Nucleic Acids Research* 27(1): 297–300.

HIRAYAMA T, and SHINOZAKI K. 2010. Research on plant abiotic stress responses in the post-genome era: past, present and future. *The Plant Journal* 61: 1041–1052.

HOBO T, KOWAYAMA Y, and HATTORI T. 1999. A bZIP factor TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. *Proceedings of the National Academy of Sciences USA* 96: 15348–15353.

HRYNKIEWICZ K, DĄBROWSKA G, BAUM C, NIEDOJADŁO K, and LEINWEBER P. 2012. Interactive and single effects of ecto-phytase and *Bacillus cereus* on metallothionein *MT1* expression and phytoextraction of Cd and Zn by willows. *Water, Air, & Soil Pollution* 223(3): 957–968.

KAWASHIMA I, KENNEDY TD, CHINO M, and LANE BG. 1992. Wheat Ec metallothionein genes. Like mammalian Zn2+ metallothionein genes, wheat Zn2+ metallothionein genes are conspicuously expressed during embryogenesis. *FEBS Journal* 209: 971–976.
KOHLER A, BLAUDEZ D, CHALOT M, and MARTIN F. 2004. Cloning
and expression of multiple metallothionein from hybrid
poplar. New Phytologist 164: 83–93.

KOSZUCKA AM, and DĄBROWSKA G. 2006. Plant metalloth-
ioneins. Advances in Cell Biology 33(2): 285–302.

KREPS JA, WU Y, CHANG HS, ZHU T, WANG X, and HARPER JF.
2002. Transcriptome changes for Arabidopsis
in response to salt, osmotic, and cold stress. Plant
Physiology 130: 2129–2141.

LAMB C, and DIXON RA. 1997. The oxidative burst in plant dis-
ease resistance. Annual Review of Plant Physiology and
Plant Molecular Biology 48: 251–275.

LEDGER SE, and GARDNER RC. 1994. Cloning and characteri-
zation of five cDNAs for genes differentially expressed
during fruit development of kiwifruit (Actinidia delicosa
var. delicosa). Plant Molecular Biology 25: 877–886.

LESCOT V, DEHAIS P, THILIS G, MARCHAL K, MOREAU Y, VAN DE
PEER Y, ROUZE P, and ROMBAUTS S. 2002. PlantCARE, a
database of plant cis-acting regulatory elements and a
portal to tools for in silico analysis of promoter
sequences. Nucleic Acids Research 30: 325–327.

LING J, JIANG W, ZHANG Y, YU H, MAO Z, GU X, HUANG S, and
XIE B. 2011. Genome-wide analysis of WRKY gene family
in Cucumis sativus. BMC Genomics 12: 471–490.

LIU P, GOH CJ, LOH CS, and PUA EC. 2002. Differential expres-
sion and characterization of three metallothionein-like
genes in Cavendish banana (Musa acuminata).
Physiologia Plantarum 114: 241–250.

LIU S, GU H, YUAN X, WANG X, WU AM, QU L, and LIU JY. 2007.
The GUS reporter-aided analysis of the promoter activi-
ties of a rice metallothionein gene reveals different regu-
lation regions for tissue-specific and inducible expression
in transgenic Arabidopsis. Transgenic Research 16: 177–191.

MA M, LAU P-S, JIA Y-T, TSANG W-K, LAM SKS, TAM NPY, and
WONG Y-S. 2003. The isolation and characterization of type 1 metallothionein (MT) cDNA from a heavy-metal-
tolerant plant, Festuca rubra cv. Merlin. Plant Science
164: 51–60.

MAKSYMIEC W, WOJCICK M, and KRUPA Z. 2007. Variation in
oxidative stress and photochemical activity in
Arabidopsis thaliana leaves subjected to cadmium and
excess copper in the presence or absence of jasmonate and
ascorbate. Chemosphere 66: 421–427.

MIEREK-ADAMSKA A, DĄBROWSKA G, and GOC A. 2009.
Genetically modified plants and strategies of soil reme-
diation from heavy metals. Advances in Cell Biology
36: 649–662.

MIEREK-ADAMSKA A, DĄBROWSKA G, and GOC A. 2012.
Characterization and expression of a cDNA encoding a
seed-specific metallothionein in winter rape. Acta Biologica
Cracoviensia Series Botanica 54 (suppl. I): 68.

MIR G, DOMÉNECH J, HUGUET G, GUO W-J, GOLDSBROUGH P,
ATRIAN S, and MOLINAS M. 2004. A plant type 2 meta-
lothionein (MT) from cork tissue responds to oxidative
stress. Journal of Experimental Botany 55: 2483–2493.

NAVABPOUR S, MORRIS K, ALLEN R, HARRISON E, A-H-MACKERNES
S, and BUCHANAN-WOLLASTON V. 2003. Expression of senescence-enhanced genes in response to
oxidative stress. Journal of Experimental Botany 54:
2285–2292.

NIKOLIC DB, SAMARZIC JT, BRATIC AM, RADIN IP, GAVRIVOVIĆ SP,
RAUSCH T, and MARSIMOVIC VR. 2010. Buckwheat
(Fagopyrum esculentum Moench) FeMT3 gene in heavy
metal stress: protective role of the protein and inducibil-
ity of the promoter region under Cu(2+) and Cd(2+)
treatments. Journal of Agricultural and Food Chemistry
58: 3484–3494.

OBERTETTO M, WALL L, LAPLAZE L, NICOLE M, AUGUY F, GHEBB H,
BOGUSZ D, and FRANCHE C. 2007. Functional analysis of
the metallothionein gene cgMT1 isolated from the acti-
norhizal tree Casuarina glauca. Molecular Plant-Microbe
Interactions 20: 1231–1240.

OMIDVAR V, ABDULLAH SNA, IZAFARD A, HO CL, and MAHMOOD
M. 2010. The oil palm metallothionein promoter contains a
novel AGTTAGG motif conferring its fruit-specific
expression and is inducible by abiotic factors. Planta
232: 925–936.

ÖZTÜRK ZN, TALAME V, DEYHOLOS M, MICHALOWSKI CB,
GALBRATH DW, GOZUKIRMINI N, TUBEROSA R, and
BOHNERT HJ. 2002. Monitoring large-scale changes in
transcript abundance in drought- and salt-stressed bar-
ley. Plant Molecular Biology 48: 551–573.

PENNINCKX IA, THOMMA BP, BUCHALA A, METRAUX JP, and
BROEKERT WF. 1998. Concomitant activation of jas-
monate and ethylene response pathways is required for
induction of a plant defensin gene in Arabidopsis. The
Plant Cell 10: 2103–2114.

PIECHULLA B, MERRIRTH N, and RUDOLPH B. 1998.
Identification of tomato Lhcb promoter regions necessary
for circadian expression. Plant Molecular Biology 38:
655–662.

QI X, ZHANG Y, and CHAI T. 2007. Characterization of novel
plant promoter specifically induced by heavy metal and
identification of the promoter regions conferring heavy
metal responsiveness. Plant Physiology 143: 50–59.

QUAN XQ, WANG ZL, ZHANG H, and BI YP. 2008. Cloning and
characterization of TsMT3, a type 3 metallothionein gene
from salt cress (Thellungiella salsuginea). DNA
Sequences 19: 340–346.

QUINN JM, BARRACO P, ERICSSON M, and MERCHANT S. 2000.
Coordinate copper- and oxygen-responsive Ccy6 and
Cpx1 expression in Arabidopsis thaliana is mediated by the
same element. Journal of Biology and Chemistry
275: 6080–6089.

REID S, and ROSS GS. 1997. Up-regulation of two cDNA clones
encoding metallothionein-like proteins in apple fruit dur-
ing cool storage. Physiologia Plantarum 100: 183–189.
REN Y, and ZHAO J. 2009. Functional analysis of the rice metallothionein gene OsMT2b promoter in transgenic Arabidopsis plants and rice germinated embryos. Plant Science 176: 528–538.

REYMOND P, WEBER H, DAMOND M, and FARMER EE. 2000. Differential gene expression to mechanical insect feeding in Arabidopsis. The Plant Cell 12: 707–719.

REYNOLDS TL, and CRAWFORD RL. 1996. Changes in abundance and localization from an abscisic acid-responsive early cysteine-labeled metallothionein transcript during pollen embryo differentiation in wheat bread (Triticum aestivum). Plant Molecular Biology 32: 823–829.

SANCHEZ A, SHIN J, and DAVIS SJ. 2011. Abiotic stress and the plant circadian clock. Plant Signaling and Behavior 6: 223–231.

SITI NOR AKMAR A, CHEAH SC, and MURPHY DJ. 2002. Isolation and characterization of two divergent type 3 metallothioneins from oil palm (Elaeis guineensis). Plant Physiology and Biochemistry 40: 255–263.

STEFFENS B, and SAUTER M. 2009. Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. The Plant Cell 21: 184–196.

STUART GW, SEARLE PF, and PALMITER RD. 1985. Identification of multiple metal regulatory elements in mouse metallothionein-I promoter by assaying synthetic sequences. Nature 317: 828–831.

USHA B, KEERAN N, HARIKRISHNAN M, KAVITHA K, and PARIDA A. 2011. Characterization of a type 3 metallothionein isolated from Porteresia coarctata. Biologia Plantarum 55: 119–124.

USHA B, VENKATARAMAN G, and PARIDA A. 2009. Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro. Molecular Genetics and Genomics 28: 99–108.

VAN DE MORTEL JE, ALMAR VILLANUEVA L, SCHAT H, KWEEKBEBOOM J, COUGHLAN J, MOERLAND PD, VER LOREN VAN THEMAAT E, KOOKEEN M, and AARTS MG. 2006. Large expression differences in genes for iron and zinc homeostasis stress response and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiology 142: 1127–1147.

WANG JW, and WU JY. 2005. Nitric oxide is involved in methyl jasmonate-induced defense responses and secondary metabolism activities of Taxus cells. Plant & Cell Physiology 46: 923–930.

WHITE CN, and RIVIN CJ. 1995. Characterization and expression of a cDNA encoding a seed-specific metallothionein from tomato (Lycopersicon esculentum L.). Plant Molecular Biology 33: 503–511.

XUE T, LI X, ZHU W, WU C, YANG G, and ZHENG C. 2009. Cotton metallothionein GhMT3a a reactive oxygen species scavenger increased tolerance against abiotic stress in transgenic tobacco and yeast. Journal Experimental of Botany 60: 339–349.

YANG KY, KIM EY, KIM CS, GUH JO, KIM KC, and CHO BH. 1998. Characterization of a glutathione S-transferase gene ATGST 1 in Arabidopsis thaliana. Plant Cell Reports 17: 700–704.

YANG Z, WU Y, LI Y, LING HQ, and CHU C. 2009. OsMT1a a type 1 metallothionein plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Molecular Biology 70: 219–229.

YANHUI C, XIAOYUAN Y, KUN H, MEIHUA L, JIGANG L, ZHAOFENG G, ZHIBIANG L, YUNFEI Z, XIAOXIAO W, XIAOMING Q, YUNPING S, LI Z, XIAOHUI D, JINGCHU L, XING-WANG D, ZHANGLIANG C, HONGYA G, and LI-JIA Q. 2006. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology 60: 107–124.

YUAN J, CHEN D, REN Y, ZHANG X, and ZHAO J. 2008. Characteristic and expression analysis of a metallothionein gene OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiology 146: 1637–1650.

ZHU G, XU Y, LI J, YANG L, and LIU JY. 2006. Molecular analyses of the metallothionein gene family in rice (Oryza sativa L). Journal of Biochemistry and Molecular Biology 39: 595–606.

ZHOU J, and GOLDSBROUGH PB. 1994. Functional homologs of fungal metallothionein genes from Arabidopsis. The Plant Cell 6: 875–884.

ZHU W, ZHAO DY, MIAO Q, XUE TT, LI XZ, and ZHENG CC. 2009. Arabidopsis thaliana metallothionein AtMT2a mediates ROS balance during oxidative stress. Journal of Plant Biology 52: 585–592.