Moist-condition Training for Cerebrovascular Anastomosis: A Practical Step after Mastering Basic Manipulations

Satoru SHIMIZU,1† Tomoko SEKIGUCHI,1† Takahiro MOCHIZUKI,1† Kimitoshi SATO,2 Hiroyuki KOIZUMI,2 Kenji NAKAYAMA,1† Isao YAMAMOTO,1† and Toshihiro KUMABE2

1Department of Neurosurgery, Yokohama Stroke and Brain Center, Yokohama, Kanagawa; 2Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa; †Department of Neurosurgery, Yokohama Brain and Spine Center (current affiliation)

Abstract

As cerebrovascular anastomosis is performed in moist conditions that may impede precise manipulations, surgeons must undergo extensive preoperative training. We developed a simple moist-condition training method. It involves placing a free-floating inner platform hosting an artery from a chicken wing in an outer container filled with tap water to just below the specimen. Trainees performed anastomosis under magnification. Training sessions mimicked difficulties encountered during operations such as poor visibility of the lumen and problems handling the sutures. A retrospective comparison of 100 wet- and 100 dry-condition training sessions for end-to-side anastomoses with 8 stitches showed that under moist condition the time required for the entire procedure was significantly longer (17.8 ± 2.1 vs. 15.3 ± 2.1 min, p < 0.01) and the incidence of wrong stitching was greater (0.38 vs. 0%, p = 0.04). In 8 cases after introducing moist-condition training, the time required in superficial temporal artery to middle cerebral artery bypass surgery was significantly shorter than 8 cases before introducing the training (32.3 ± 5.6 min vs. 48.3 ± 15.9 min, p = 0.01). Incidence of wrong stitches was less in cases after introducing moist-condition training (2.7 vs. 7.4%, p = 0.10). Those indicate that moist-condition training is a useful and practical step and a bridge between training for basic manipulations under dry conditions and actual surgery.

Key words: cerebrovascular anastomosis, chicken wing artery, training, moist operating condition

Introduction

Cerebrovascular anastomosis is one of the most precise manipulations in neurosurgery. As patency of the anastomosis depends greatly on the surgeons’ skills, they are required to undergo preoperative laboratory training. Conventional training ranges from knotting fine threads and gauze fibers to suturing gloves, handling anastomosing materials such as silastic tubes and chicken wing arteries, live animals (mainly anesthetized rats), to manipulating raw superficial temporal arteries harvested at surgery and from human cadavers.1–10 However, frustrating technical difficulties during actual operations are encountered even by surgeons who are well trained in the laboratory. These are mainly due to the presence of fluid from the cistern below and occasional contamination by blood, despite efforts to keep the field dry by, for example, elevation of the recipient vessel with gelatin sheets, continuous tube suction of the cistern or epidural region, and suction performed by an assistant.11–13

To close the gap between training and clinical application we modified preoperative training to include moist-condition practice.

Materials and Methods

A 5 × 3 × 1-cm cuboid platform made of thin plastic sheets was prepared to hold a chicken wing artery (approximate length and diameter 3–6 cm and 1 mm, respectively).5) Openings on two sides of the platform were used to fix the artery with aneurysm clips; the top of the platform descended upon a light touch with instruments (Fig. 1A). Then the platform hosting the artery was placed in an outer plastic container which was filled with tap water to just below the top of the platform so that it resembled a floating island (Fig. 1B). A box with a window simulating a craniotomy was then placed...
over the outer container. This made it possible to
train for end-to-side-, end-to-end-, and side-to-side
anastomoses. The trainees used desk-type and
surgical microscopes. After each training session,
the water was removed; and the platform, the artery,
and the container were placed in a freezer for later
use. At that time the outer container was again filled
with tap water and left to sit at room temperature
until the specimen was completely thawed.

Four surgeons who had performed or would perform
superficial temporal artery to middle cerebral artery
bypass surgery participated several times in these
moist-condition training sessions. They compared
their impressions acquired in moist- and dry-condition
training sessions with those during actual surgery.
We made video recordings of some trials.

One surgeon assessed the effect of the moist-training
condition on the manipulation of the chicken wing
artery by performing end-to-side anastomosis with
8 interrupted stitches (3 knots in each stitch) using
a nonsterile 10-0 nylon thread (Kono Seisakusho
Co. Ltd., Ichikawa, Chiba). The ostium was visu-
alized with the aid of methylrosanine chloride
(pyocyanin blue, crystal violet; Sigma-Aldrich
Co. LLC., St. Louis, Missouri, USA). The same
surgeon introduced moist-condition training after
performing 150–200 dry-condition training sessions
per year for 3 years, and maintained the pace of the
training. He reviewed and compared the records of
the last 100 dry- and the first 100 moist-condition
sessions, the time required from arteriotomy of the
recipient artery to complete suturing, and technical
difficulties encountered in the 200 training session.

In addition, the time required, technical difficulties,
and patency in superficial temporal artery to middle
cerebral artery bypass surgery (8–10 interrupted
stitches and 3 knots in each stitch) by the same
surgeon was compared between 8 cases before- and
8 cases after introducing moist-condition training.

Results

The surface of the platform hosting the specimen
was always moist because water in the outside
container infiltrated through openings in the cuboid
platform. The participants found that manipulations
under moist conditions were more difficult than
under dry conditions. They also reported poor depth
perception due to poor focusing, poor visibility of
the vessel lumen, and difficulty handling the thread
due to loop formation and adhesion of the thread
to the vessel or between adjacent threads (Fig. 2).
These impressions obtained by the presence of water
in the container mimicked situations encountered
during surgery although the degree of adhesiveness
was lower than in fluids contaminated by blood.

The time required in moist conditions was signifi-
cantly longer than in dry conditions (17.8 ± 2.1 min
vs. 15.3 ± 2.1 min, p < 0.01, unpaired t-test). Of
800 stitches 3 (0.38%) occluding the anastomosis
needed correction in moist-condition sessions, no
stitches had to be corrected when placed under dry-
training conditions (p = 0.04, Chi-square test). At
the final inspection after amputation of the donor
artery, all anastomoses performed under moist- and
dry conditions were patent. The time required in
Anastomosis Training under Moist Conditions

The difficulties were shown as significantly longer time required and lower accuracy of the manipulation than in dry-condition training. Introduction of the moist-condition training succeeded to shorten operating time and to improve accuracy.

As well as the environment, the choice of anastomosing materials is also important in the training. Chicken wing arteries offer several advantages over artificial vessels. Their shrinkage resembles that of the human cortical artery, they present the risk of dissection of the intima, their diameter varies, and they harbor fine branches. In addition, their surrounding fat and connective tissue requiring removal resemble those of donor arteries in the scalp. As moist conditions increase the difficulty of visualizing the lumen of shrunk vessels and the dissected intima, moist-condition training mimics situations encountered in human operations.

In conclusion, moist-condition training is a useful and practical step and a bridge between training for basic manipulations under dry conditions and actual surgery. Besides enhancing surgical skills, this training method forces surgeons to concentrate on completing the anastomosis procedure under difficult situations.

Conflicts of Interest Disclosure

The authors have no personal, financial, or institutional interest in any of the drugs, materials, or devices in the article. All authors who are members of The Japan Neurosurgical Society (JNS) have

Fig. 2 Difficulties encountered at surgery are simulated during moist-condition training. A: The top of the inner cuboid platform descends upon a light touch. B: Unexpected dye diffusion. C: Inadvertent stitching to the side wall of the recipient artery upon penetration of the donor artery (arrow). D: Looping of the thread due to the adhesive force of the water film (arrow).

Fig. 3 Fluid infiltration into the surgical field derives from the cistern below (a), from the surface of the brain (b), the surface or the lumen of the donor artery (c), and from the epidural region via instruments (d).
registered online Self-reported COI Disclosure Statement Forms through the website for JNS members.

References

1) Aboud E, Al-Mefty O, Yaşargil MG: New laboratory model for neurosurgical training that simulates live surgery. J Neurosurg 97: 1367–1372, 2002

2) Cooley BC, Lan M, Gould JS: Rat femoral vein-to-vein grafts as a microvascular practice model: factors that influence patency. Microsurgery 12: 43–45, 1991

3) Guity A, Young PH, Fischer VW: In search of the “perfect” anastomosis. Microsurgery 11: 5–11, 1990

4) Habal SM, Fitzpatrick HF, Green GE: Training in microvascular surgery. Surgery 81: 596–598, 1977

5) Hino A: Training in microvascular surgery using a chicken wing artery. Neurosurgery 52: 1495–1497; discussion 1497–1498, 2003

6) Ibayashi K, Yoshikawa G, Tsutsumi K, Koizumi S, Ochiai Y, Kawashima M, Shimada S, Uno T: [Microsurgical training of STA-MCA anastomosis using a raw STA graft]. Surg Cereb Stroke 41: 197–200, 2013 (Japanese)

7) Inoue T, Tsutsumi K, Adachi S, Tanaka S, Saito K, Kunii N: Effectiveness of suturing training with 10-0 nylon under fixed and maximum magnification (x 20) using desk type microscope. Surg Neurol 66: 183–187, 2006

8) Peled IJ, Kaplan HY, Wexler MR: Microsilicone anastomoses. Ann Plast Surg 10: 331–332, 1983

9) Razaboni RM, Ballantyne DL, Harper AD, Shaw WW: The microvascular technique of vein grafting in rats as a training and experimental model. J Microsurg 2: 148–150, 1980

10) Rosenbaum TJ, Sundt TM Jr: Neurovascular microsurgery: a model for laboratory investigation and the development of technical skills. Mayo Clin Proc 51: 301–306, 1976

11) Houkin K: [The basics of vascular anastomosis]. in Kamiyama H (ed): [Cerebrovascular Reconstruction] (author’s translation). Tokyo, Chugailgakusha, 2000, pp 1–30 (Japanese)

12) Koyama J, Tanaka Y, Iwashita T, Kitazawa K, Hongo K: Continuous suction method in superficial temporal artery-middle cerebral artery anastomosis surgery. Technical note. Neurol Med Chir (Tokyo) 46: 262–264; discussion 264, 2006

13) Spetzler RF, Iversen AA: Malleable microsurgical suction device. Technical note. J Neurosurg 54: 704–705, 1981

14) Kamiyama H, Takahashi A, Houkin K, Mabuchi S, Abe H: Visualization of the ostium of an arteriotomy in bypass surgery. Neurosurgery 33: 1109–1110, 1993

Address reprint requests to: Satoru Shimizu, MD, Department of Neurosurgery, Yokohama Brain and Spine Center, 1-2-1 Takigashira, Isogo-ku, Yokohama, Kanagawa 235-0012, Japan.
e-mail: Satoru4756@aol.com