Thin WS$_2$ nanotubes from W$_{18}$O$_{49}$ nanowires

Youhu Chena,b, Yunpeng Lia, Yuanfei Wanga,b, Tian Tiana and Lu-Chang Qinc

aNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, People’s Republic of China; bUniversity of Chinese Academy of Sciences, Beijing, People’s Republic of China; cDepartment of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

ABSTRACT

Single- and double-walled WS$_2$ nanotubes of small diameter ($<$ 10 nm) and few layers ($<$ 4) have been synthesized by heating ultrathin W$_{18}$O$_{49}$ nanowires and S powders in an H$_2$/Ar atmosphere at 840°C. In the process of formation and growth of a WS$_2$ nanotube, the W$_{18}$O$_{49}$ phase transformed first into an amorphous WS$_3$ structure via the absorption and diffusion of the sulfur atoms to substitute the oxygen atoms, and followed by a phase transition from amorphous WS$_3$ to 2H-WS$_2$ by losing sulfur atoms to form the shell of the WS$_2$ nanotube.

IMPACT STATEMENT

Synthesis of thin WS$_2$ nanotubes with single- and double-walled structure from ultrathin W$_{18}$O$_{49}$ nanowires is developed and their structure and growth are studied using electron diffraction and microscopy.

1. Introduction

Following the discovery of fullerenes [1] and carbon nanotubes [2], it was soon realized that other inorganic compounds, having layered structures similar to that of graphite, could also form fullerene-like and nanotube structures. Metal dichalcogenides (MX$_2$, M = Mo, W, Nb, Hf; X = S, Se) are the typical example materials. Fullerene-like WS$_2$ nanoparticles and WS$_2$ nanotubes were first reported by Tenne et al. in 1992 [3]. Attention has also been drawn to other inorganic nanotubes since then owing to their interesting properties. Substantial progress has been made and demonstrated that MoS$_2$ and WS$_2$ nanotubes have great potential for applications in scanning probe microscopy [4,5], lubrication [6], catalysis [7,8], field-effect transistors [9], nanocomposites [10], and energy storage [11,12].

Several experimental methods have been explored to synthesize WS$_2$ nanotubes, including gas–solid reactions [3,13–20], chemical transport [21,22], irradiation activation [23–25], sulphurization of tungsten film [26], and the solution route [27]. Most of the synthetic methods are based on high-temperature gas–solid reactions, where hydrogen and hydrogen sulfide or sulfur and metal oxide precursors were used as the reactants [20]. However, a common feature of these WS$_2$ nanotubes is that they all have relatively large diameters and always have more than five layers, resulting in a low-specific surface area.

Theoretical calculations using the density functional tight-binding theory have shown that MoS$_2$ nanotubes with an outer diameter larger than about 6 nm are more stable than nanostrips of comparable width [28]. Therefore, the threshold for the outer diameter of single- to four-walled nanotubes is 6.45, 7.13, 7.61, and 8.59 nm, respectively. WS$_2$ nanotubes are structurally analogous to MoS$_2$ nanotubes. Hence, the synthesis of WS$_2$ nanotubes of small diameter ($<$ 10 nm) and few shells ($<$ 4) has been...
W18O49 phase is non-volatile, the produced WS2 nanotubes were collected. In the second step, 2 mg of W18O49 nanowires were reduced by sulfur powders in the reducing H2/Ar atmosphere at about 840°C. It is therefore demonstrated that thin WS2 nanotubes are obtainable by the conventional thermally driven process of synthesis. The structure of and growth mechanism for the thin WS2 nanotubes are also studied.

2. Experimental

We obtained WS2 nanotubes in a two-step process. In the first step, ultrathin W18O49 nanowires were prepared. In a typical procedure [30], 25 mg of WCl6 was dissolved in 20 ml of ethanol and subsequently transferred to a Teflon-lined stainless steel autoclave heated to 180°C for 24 h. The obtained solution was then centrifuged and purified with ethanol for five times before the precipitates were collected. In the second step, 2 mg of W18O49 nanowires were first dispersed in 10 ml of ethanol. A quartz burette was then dipped into the ethanol solution to collect the W18O49 nanowires for reactions with sulfur powders at 840°C in a furnace for 3 h to allow the formation and growth of WS2 nanotubes.

Transmission electron microscopy (TEM) images and electron diffraction patterns (EDPs) were obtained with Tecnai F20 operated at an accelerating voltage of 200 kV. Nano-beam electron diffraction (NBED) patterns were obtained by using a nearly-parallel nano-probe, which was generated under the microprobe mode with the usage of a smallest 30 μm condenser aperture. The diameter of a typical nano-beam electron probe is ∼50 nm.

3. Results and discussion

Figure 1(a) shows a powder X-ray diffraction (XRD) pattern of the tungsten oxide nanowires which are in the monoclinic W18O49 structure (PDF#05-0392). The broadened reflections are attributed to the small crystallites. The low-magnification TEM image (Figure 1(b)) revealed that the nanowires had large aspect ratios and lengths of up to several microns. A low precursor concentration (C_{WCl6} ≤ 5 mg/ml) resulted in ultrathin and well-dispersed nanowires [30]. Selected-area electron diffraction (SAED) patterns showed the (010) and (020) reflections of W18O49 in agreement with the XRD analysis. The high-resolution transmission electron microscopy (HRTEM) images of individual nanowires demonstrated that the nanowires were single-crystalline and always grown in the [010] direction (Figure 1(c)). The d-spacing of the (010) lattice planes is 0.38 nm. Figure 1(d) shows the crystal structure of W18O49 and its [100] projection.

Figure 2(a) shows a HRTEM image of a single-walled WS2 nanotube with a diameter of about 12 nm, which is larger than the threshold diameter of 6.45 nm. The additional wall (indicated with black arrow) is due to the folded edge of a nano-platelet, which was confirmed by comparing the power spectra of the two different regions (I and II). Careful examinations of the power spectra of the image reveal that this single-walled nanotube has a structure close to the zigzag configuration, which renders smaller folding energy in comparison with chiral nanotubes. Double-walled WS2 nanotubes were also often observed in the samples. Figure 2(b) shows an HRTEM image of two double-walled WS2 nanotubes. The outer and inner diameters of the smaller nanotube are 7.29 and 5.89 nm, respectively. The outer diameter is also beyond the threshold value of 7.13 nm for double-walled nanotube. It should be noted that the interlayer separation of this nanotube is different at the two sides with one side being 0.64 nm and the other 0.76 nm, suggesting that this nanotube has two nonconcentric shells. The interlayer separation of bulk 2H-WS2 crystals is 0.62 nm and the interlayer separation multi-walled WS2 nanotubes varied between 0.63 and 0.65 nm [25]. Since the outer diameter is 1.4 nm larger than the inner diameter, the closer contact of one side would lead to a larger separation of the other side. The NBED pattern (Figure 2(c)) and the power spectrum (inset of Figure 2(b)) obtained from this small nanotube reveal that both shells exhibited an armchair structure. The thicker double-walled nanotube has outer and inner diameter of 11.04 and 9.67 nm, respectively. The interlayer distance of one side is 0.64 nm, while the other is 0.73 nm.

Figure 3(a) shows an HRTEM image of a triple-walled WS2 nanotube and the inset is an EDP revealing three...
Figure 1. (a) XRD pattern of prepared W₁₈O₄₉ nanowires (blue line) is plotted against the crystal data (PDF#05-0392), which showed an excellent agreement. (b) Low-magnification TEM image of the W₁₈O₄₉ nanowires. Inset: SAED pattern of W₁₈O₄₉ nanowires. (c) High-resolution TEM image of individual nanowires displaying the (010) lattice spacing of 0.38 nm. Inset: Corresponding power spectrum of the selected area. (d) Structural model of the W₁₈O₄₉ phase: viewed in the [100] direction (top) and a unit cell (bottom).

Figure 2. (a) HRTEM image of a single-walled WS₂ nanotube. Insets: Power spectra of selected area marked with I and II in the image, respectively. (b) HRTEM image of two double-walled WS₂ nanotubes. Inset: Power spectrum of the selected area. (c) NBED pattern of the smaller nanotube in (b) revealing that the nanotube has an armchair structure.

different helical angles. It is noticed that the diameter of each shell varied at different locations. The diameter of the inner, middle, and outer shell was measured between 10.3–12.0, 12.5–13.8, and 14.8–16.6 nm, respectively. The interlayer separation varied between 0.64 and 1.6 nm. The morphology of this nanotube deviated from the ideal cylindrical structure of multi-walled WS₂ nanotube, which would consist of concentric shells with a single interlayer distance of 0.62 nm. An extra dark line (indicated by arrow) is attributed to an incomplete shell, which did not grow fully to completion. The helical angles of this nanotube were determined accurately from...
the NBED pattern [31–34]. Figure 3(b) displays a magnified portion of the diffraction layer lines where three groups of layer-lines are classified, from which the helical angles for these three shells are 19.9° (inner shell), 13.2° (middle shell), and 7.4° (outer shell), respectively, indicating that this nanotube consisted of three shells of different helicity. Since the electron scattering intensities due to each shell are proportional to the diameter of nanotube, the integrated intensities of each layer line can also be used for the identification of the contributing shell. As displayed in Figure 3(b), the layer lines in Group A have the highest reflection intensities and group C has the lowest. Hence, the final assignment of helical angle for outer, middle, and inner shell is 7.4°, 13.2°, and 19.9°, respectively. It is also noted that the helical angles have a wide distribution, indicating that there was no strong correlation in the growth of respective shells.

The sulphurization of thicker W18O49 nanowires would usually result in multi-walled WS2 nanotubes of more than five shells. Figure 3(c) shows an HRTEM image and NBED pattern (inset) of a quintuple-walled WS2 nanotube. The outermost and innermost diameter is 13.72 and 8.34 nm, respectively. The helical angle of this nanotube is in 4.1°–5.5°. Figure 3(d) shows an HRTEM image and NBED pattern of another thick WS2 nanotube (>10 shells), which has the outermost and innermost diameter of 20.39 and 7.93 nm, respectively, with an average inter-shell spacing of 0.62 nm. The helical angle is in a range of 15.9° and 20.5°. Similar features have also been observed in other multi-walled WS2 nanotubes in this study. The inter-shell spacing varied between 0.62 and 0.65 nm and the smallest innermost diameter was even below 5 nm. Since the inter-shell spacing is close to the corresponding lattice spacing of the bulk 2H-WS2 phase and the chiral angle has a relatively narrow range, it seems natural that the synthesized shell formed earlier would serve as a template for the formation and growth of fresh shells [35].
To gain insight into the growth mechanism for the WS$_2$ nanotubes, the morphology and structure of one incipient nanotube was studied. Figure 4 shows the TEM images of a nanotube with diameter of 40 nm, where the oxide was encapsulated by sulfide shells. The TEM images (Figure 4(a,c)) revealed that this nanotube had one end open and the other closed and it was covered with two to three layers of WS$_2$ with d-spacing of 0.62 nm, in conformation with the (002) spacing of the 2H-WS$_2$ structure. The sulphurization should have started from outside and from the ends to the middle of the nanowhisker, which is different from the observations.

Figure 4. Characterization of a single WS$_2$ nanotube with crystalline oxide in the core. (a) Low-magnification TEM image. (b) SAED pattern of area II in (a). (c) HRTEM image of area I. (d) NBED pattern of thin area in (c). (e) Power spectrum of squared region in (c). (f) Fourier-filtered image.
of a previous report [20]. The space between the grown WS2 shells provided a diffusion channel for S atoms for further sulphurization. The SAED pattern (Figure 4(b)) is a superposition of the Bragg reflections from both the sulfide shells and the oxide core. The (010) and (004) reflections (indexed yellow) are due to the W18O49 phase, while the (100) and (010) reflections (indexed white) pertain to the WS2 phase. The diffraction pattern indicates that the oxide was single-crystalline. It should also be noted that electron diffraction analysis indicated that all shells have the same helical angle and are of an armchair structure. Figure 4(c) shows an HRTEM image of region I. The thin area shows only the WS2 shells as indicated by the NBED pattern (Figure 4(d)). This result is also supported by an analysis of the Fourier-filtered images (Figure 4(e,f)). The Fourier-filtered image in Figure 4(f) reveals that the nanotube exhibited an armchair structure. The axial direction of the nanotube is also indicated in Figure 4(b,d–f).

The ultrathin W18O49 nanowires usually contained many oxygen vacancies—they provided reductive sites for the conversion of carbon dioxide into methane and isopropyl alcohol into propylene and also exhibited a ‘trapping’ effect to enhance the capture and adsorption of the substrate material [30,36]. In our study, the oxygen vacancies contained in the W18O49 nanowires also served as reductive sites and traps for catching S atoms from the atmosphere. Likewise, oxygen vacancies were not rich in the one-dimensional W18O49 nanostructures with relatively larger diameters [30]. These phenomena give the explanations for why the reaction temperature required in our experiments was even below 840°C, while the needed temperature was above 1000°C in [15]. The energy for breaking the W–O bonds was also likely greater in the case when long and crystalline whiskers were used compared to the use of short semi-crystalline needle-like particles [16]. Based on these earlier studies, we believe that the reactions started from the oxygen vacancy sites and expanded into the remaining parts via the diffusion of S atoms. Since hydrogen does not reduce W18O49 further [20], its role is to prevent the further oxidation of W18O49 nanowires at the beginning and enhance the subsequent sulphurization.

In addition, the densities of W18O49 and 2H-WS2 are 7.71 and 7.73 g/cm³, respectively, and the corresponding densities of W atoms in W18O49 and 2H-WS2 are 6.23 and 5.73 g/cm³, respectively. If the mass of tungsten were to suffer no loss in the process of sulphurization, it cannot result in the formation of a hollow tubule with W18O49 converted directly into the 2H-WS2 structure. Since the WS2 nanotube always contained a hollow core, it suggests that a volume expansion must have occurred in the reactions. Furthermore, two-dimensional 2H-WS2 platelets were also observed when the W18O49 nanowires were placed side by side on the substrate. Hence, we suggest that conversion of the W–O bonds into the W–S bonds would undergo initially the formation of amorphous WS3 with inflated volume and followed by a phase transition to 2H-WS2 with a loss of S atoms at a temperature close to 850°C according to the W–S phase diagram [37].

Figure 5. Illustration of the formation and growth of WS2 nanotubes. (a) W18O49 nanowire precursor traps S atoms at oxygen vacancies. Inset shows O sites as traps for the absorption of S atoms, where the W, O, S atoms are indicated by color of blue, red, and yellow, respectively. (b) Formation of amorphous WS3 leads to volume expansion. (c) W18O49 converts continuously to amorphous WS3, accompanied simultaneously by phase transition to 2H-WS2. (d) Complete conversion of a W18O49 nanowire to a WS2 nanotube with an empty core.
For ultrathin W$_{18}$O$_{49}$ nanowires, phase transition took place after the complete sulphurization. But for thicker W$_{18}$O$_{49}$ nanowires, sulphurization and phase transition could take place simultaneously. These are the reasons why the inner diameter of thinner nanotubes was always larger than that of thicker nanotubes. Figure 5 shows a schematic diagram illustrating the formation and growth of WS$_2$ nanotubes from W$_{18}$O$_{49}$ nanowires. It is remarkable that a good dispersion of W$_{18}$O$_{49}$ nanowires was essential to avoid tangling with each other in order to produce thin WS$_2$ nanotubes. Since the formation of thin WS$_2$ structure occurred locally, nanotubes consisting of single- to triple-walled would require ultrathin W$_{18}$O$_{49}$ nanowires as precursors. On the other hand, a precursor subject to starting temperature above 850°C would result in the formation of fullerene-like structures.

4. Conclusions

A route for synthesis of few-layer WS$_2$ nanotubes has been developed by heating ultrathin W$_{18}$O$_{49}$ nanowires together with S powders in an H$_2$/Ar atmosphere at 840°C to demonstrate that WS$_2$ nanotubes with fewer than three shells could be formed by conventional thermally driven synthesis below 1000°C. Single- and double-walled WS$_2$ nanotubes exhibited close to either zigzag or armchair structure, while multiple-walled WS$_2$ nanotubes showed a chiral structure with dispersed helical angles. The study of one incipient nanotube indicates that the conversion of a W$_{18}$O$_{49}$ nanowire into a WS$_2$ nanotube undergoes the following major steps: (i) S atoms are attracted preferentially to the O vacancies at the surface of the W$_{18}$O$_{49}$ nanowire, and subsequently diffuse to other sites to substitute O atoms; (ii) The W$_{18}$O$_{49}$ phase transforms gradually to amorphous WS$_3$, accompanied by a volume expansion; and (iii) Phase transition from amorphous WS$_3$ to crystalline 2H-WS$_2$ by losing S atoms, which forms the shells of the WS$_2$ nanotube.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This study was partially supported by National Natural Science Foundation of China [grant number 11474294], Zhejiang Provincial National Science Foundation [grant number LY14E020010], and Ningbo Innovative Team [grant number 2014B82004].

References

[1] Kroto HW, Heath JR, O’Brien SC, et al. C$_{60}$: buckminsterfullerene. Nature. 1985;318:162–163.
[2] Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.
[3] Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures of tungsten disulphide. Nature. 1992;360:444–446.
[4] Homyonfer M, Alperson B, Rosenberg Y, et al. Intercalation of inorganic fullerene-like structures yields photosensitive films and new tips for scanning probe microscopy. J Am Chem Soc. 1997;119:2693–2698.
[5] Rothschild A, Cohen SR, Tenne R. WS$_2$ nanotubes as tips in scanning probe microscopy. Appl Phys Lett. 1999;75:4025–4027.
[6] Rapoport L, Bilik Y, Feldman Y, et al. Hollow nanoparticles of WS$_2$ as potential solid-state lubricants. Nature. 1997;387:791–793.
[7] Komarneni MR, Yu ZQ, Burghaus U, et al. Characterization of Ni-coated WS$_2$ nanotubes for hydrodesulphurization catalysis. Icr J Chem. 2012;52:1053–1062.
[8] Tsverin Y, Popovitz-Biro R, Feldman Y, et al. Synthesis and characterization of WS$_2$ nanotube supported cobalt catalyst for hydrodesulfurization. Mater Res Bull. 2012;47:1653–1660.
[9] Levi R, Bitton O, Leitus G, et al. Field-Effect transistors based on WS$_2$ nanotubes with high current-carrying capacity. Nano Lett. 2013;13:3736–3741.
[10] Di Lucchio T, Borriello C, Bruno A, et al. Preparation and characterization of novel nanocomposites of WS$_2$ nanotubes and polyfluorene conductive polymer. Phys Status Solidi A. 2013;210:2278–2283.
[11] Chen J, Kuriyama N, Yuan H, et al. Electrochemical hydrogen storage in MoS$_2$ nanotubes. J Am Chem Soc. 2001;123:11813–11814.
[12] Dominko R, Arcon D, Mrzel A, et al. Dichalcogenide nanotube electrodes for Li-ion batteries. Adv Mater. 2002;14:1531–1534.
[13] Tenne R, Margulis L, Hodes G. Fullerene-like nanocrystals of tungsten disulfide. Adv Mater. 1993;5:386–388.
[14] Feldman Y, Frey GL, Homyonfer M, et al. Bulk synthesis of inorganic fullerene-like MS$_2$ (M = Mo, W) from the respective trioxides and the reaction mechanism. J Am Chem Soc. 1996;118:5362–5367.
[15] Zhou YQ, Hsu WK, Grobert N, et al. Production of WS$_2$ nanotubes. Chem Mater. 2000;12:1190–1194.
[16] Rothschild A, Sloan J, Tenne R. Growth of WS$_2$ nanotubes phases. J Am Chem Soc. 2000;122:5169–5179.
[17] Chen J, Li SL, Gao F, et al. Synthesis and characterization of WS$_2$ nanotubes. Chem Mater. 2003;15:1012–1019.
[18] Margolin A, Rosentsveig R, Albu-Yaron A, et al. Study of the growth mechanism of WS$_2$ nanotubes produced by a fluidized bed reactor. J Mater Chem. 2004;14:617–624.
[19] Zak A, Sallaca-Becker L, Margolin A, et al. Insight into the growth mechanism of WS$_2$ nanotubes in the scaled-up fluidized-bed reactor. Nano. 2009;4:91–98.
[20] Zak A, Sallaca-Becker L, Margolin A, et al. Scaling up of the WS$_2$ nanotubes synthesis. Fullerene Nanotube Carbon Nanostruct. 2010;19:18–26.
[21] Remskar M, Skraba Z, Regula M, et al. New crystal structures of WS$_2$: microtubes, ribbons, and ropes. Adv Mater. 1998;10:246–249.
[22] Remskar M, Skraba Z, Sanjínéres R, et al. Syntactic coalescence of WS$_2$ nanotubes. Appl Phys Lett. 1999;74:3633–3635.
[23] Galván DH, Rangel R, Alonso G. Experimental and theoretical studies of microstructural instabilities in WS₂ undergoing electron irradiation. Fullerene Sci Technol. 1998;6:1025–1035.

[24] Mackie EB, Galvan DH, Adem E, et al. Production of WS₂ nanotubes by an activation method. Adv Mater. 2000;12:495–498.

[25] Brüser V, Popovitz-Biro R, Albu-Yaron A, et al. Single-to triple-wall WS₂ nanotubes obtained by high-power plasma ablation of WS₂ multiwall nanotubes. Inorganics. 2014;2:177–190.

[26] Ng SM, Wong HF, Wong WC, et al. WS₂ nanotube formation by sulphurization: effect of precursor tungsten film thickness and stress. Mater Chem Phys. 2016;181:352–358.

[27] Li Y, Li X, He R, et al. Artificial lamellar mesostructures to WS₂ nanotubes. J Am Chem Soc. 2002;124:1411–1416.

[28] Seifert G, Köhler T, Tenne R. Stability of metal chalcogenide nanotubes. J Phys Chem B. 2002;106:2497–2501.

[29] Whitby RLD, Hsu WK, Watts PCP, et al. WS₂ nanotubes containing single-walled carbon nanotube bundles. Appl Phys Lett. 2001;79:4574–4576.

[30] Xi GC, Ouyang SX, Li P, et al. Ultrathin W₁₈O₄₉ nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew Chem Int Ed. 2012;51:2395–2399.

[31] Gao M, Zuo JM, Twesten RD, et al. Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction. Appl Phys Lett. 2003;82:2703–2705.

[32] Liu Z, Zhang Q, Qin LC. Determination and mapping of diameter and helicity for single-walled carbon nanotubes using nanobeam electron diffraction. Phys Rev B. 2005;71:245413.

[33] Liu Z, Zhang Q, Qin LC. Accurate determination of atomic structure of multiwalled carbon nanotubes by nondestructive nanobeam electron diffraction. Appl Phys Lett. 2005;86:191903.

[34] Deniz H, Qin LC. Determination of the chiral indices of tungsten disulfide (WS₂) nanotubes by electron diffraction. Chem Phys Lett. 2012;552:92–96.

[35] Sadan MB, Houben L, Enyashin AN, et al. Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures. Proc Natl Acad Sci USA. 2008;105:15643–15648.

[36] Bai H, Su N, Li W, et al. W₁₈O₄₉ nanowire networks for catalyzed dehydration of isopropyl alcohol to propylene under visible light. J Mater Chem A. 2013;1:6125–6129.

[37] Feldman Y, Wasserman E, Srolovitz DJ, et al. High-rate, gas-phase growth of MoS₂ nested inorganic fullerenes and nanotubes. Science. 1995;267:222–225.