Original Research Article

Status of Chickpea Wilt caused by *Fusarium oxysporum* f. sp. *ciceri* in Marathwada Region of Maharashtra State

P. L. Sontakke\(^1*\), D. N. Dhutraj\(^2\), C. V. Ambadkar\(^3\) and S. L. Badgujar\(^4\)

\(^1\)Badnapur 431202, India
\(^2\)VNMKV, \(^3\)Department of Plant Pathology, College of Agriculture, \(^4\)College of Horticulture, Parbhani 431402, India

*Corresponding author

A B S T R A C T

Chickpea (*Cicer arietinum* L.) is one of the important *rabi* pulse crop grown in Marathwada region of Maharashtra state. Among various diseases, wilt caused by *Fusarium oxysporum* f. sp. *ciceri* is major devastated disease of chickpea causing losses to the tune of 100 per cent in severe condition. Survey was conducted and chickpea wilt disease incidence were recorded during the *rabi* seasons of 2018-19 and 2019-20, covering 150 and 162 chickpea fields, respectively from 51 tahsils under 08 districts, which are distributed under three agro-climatic zones viz., scarcity zone, assured Rainfall Zone and moderately high rainfall zone of the Marathwada region of Maharashtra state. In the two cropping season the mean incidence of chickpea wilt was recorded in each district and it was found maximum in Hingoli district (33.06%), followed by Nanded (29.24%), Beed (27.90%), Latur (25.12%), Aurangabad (24.41%), Parbhani (23.17%) and Jalna (22.20%) districts of Marathwada region, whereas, the minimum disease incidence was recorded in the Osmanabad (21.50%) district. Present study showed that chickpea wilt is highly distributed in all the surveyed areas of Marathwada region of Maharashtra state. Variety wise incidence were recorded in Marathwada region where the average mean incidence was more on local cultivar (46.50%) followed by BDN 9-3 (35.34%). However, the minimum incidence of chickpea wilt was recorded on variety Rajvijay 202 and Rajvijay 203.

Keywords
- Chickpea, Survey, Wilt, Incidence, Marathwada

Accepted:
20 June 2020

Available Online:
10 July 2020

Introduction

Chickpea (*Cicer arietinum* L.) is the world’s third most important pulse widely grown in many subtropical and warm-temperate regions. In India, Chickpea was cultivated on an area of 106 lakh hectares with a production of 111 lakh tonnes and productivity of 1056 kg/ha. Total area of 20.38 lakh ha was under chickpea cultivation in Maharashtra with production of 17.29 lakh tones and productivity 848.55 kg/ha during 2019-20. In Marathwada, Chickpea was cultivated on an area of 10.59 lakh hectares with a production of 7.96 lakh tones and productivity of 707.56 kg/ha.

Amongst the several biotic and abiotic constraints responsible for low productivity of chickpea, diseases are the most serious...
constraints causing up to 100 per cent losses of crop. The crop is infected by 172 causal agents of biotic stresses, about 67 fungi, 3 bacteria, 22 viruses and 80 nematodes reported from 55 countries of the world (Nene et al., 1996).

Fusarium wilt results in major economic losses ranging from 10-40% worldwide (Nene et al., 1984). It causes 100% loss under specific conditions (Jalali and Chand, 1992) and at particular growth stages of crop like vegetative and reproductive (Halila and Strange, 1996). The wilt caused by Fusarium oxysporum f. sp. ciceri is most devastated, widespread and important throughout the world (Gupta et al., 1997).

It infects chickpea crop with more incidence at flowering and pod forming stage, if the crop is subjected to sudden temperature rise and water stress (Chaudhry et al., 2007). In India, it is estimated that 10% yield losses were caused annually under certain conditions it may go up to 60% (Singh et al., 2007).

The incidence was varied from 14 to 32 per cent in different states as reported by Dubey et al., (2010) and 72.16 per cent as recorded by Kumar and Bourai (2012). Chickpea wilt caused by Fusarium oxysporum f. sp. ciceris is one of the important disease and causes up to 90% losses depending on weather conditions (Venkataramanamma et al., 2018). In early stage of crop wilt incidence is 77–94% whereas, late wilting 24–65% was observed (Sunkad et al., 2019). Considering the losses caused by wilt disease of chickpea, the present study was undertaken to study the present status of chickpea wilt in Marathwada region of Maharashtra state.

Materials and Methods

A roving survey of farmers chickpea fields was conducted in the agro-climatic zones of Marathwada region of Maharashtra state during Rabi 2018-19 and 2019-20, to estimate disease incidence and collection of chickpea plants infected with wilt caused by Fusarium oxysporum f. sp. ciceri. Chickpea growing areas were identified from the records available at the office of Sub-Divisional Agriculture Officers of the respective districts. Roving survey was undertaken during the months of December to January when the chickpea crop was at various stages of growth such as flowering and pod formation and pod development stage.

For this purpose, chickpea growing areas of all the eight districts of Marathwada were surveyed. From the chickpea cropped fields surveyed, total number of chickpea plants / two rows was counted, of which wilt suspected plants were counted separately to calculate per cent wilt incidence. About five wilted chickpea plants / field were carefully uprooted, collected in paper bags, labelled with details and brought to the laboratory for further studies. During survey, various kinds of symptoms expressed by wilted chickpea crop plants were recorded. Based on numerical data obtained in respect of total number of chickpea plants and wilted plants per field surveyed, per cent wilt incidence was calculated by applying following formula as suggested by Mayee and Datar(1986).

\[
\text{Wilt incidence (\%)} = \frac{\text{Total number of wilted plants}}{\text{Total number of plants observed}} \times 100
\]

Results and Discussion

The survey on incidence of chickpea wilt was carried out from eight districts of Marathwada region of Maharashtra state with geographical area covered three agro-climatic zones, 150 and 160 chickpea crop fields, during Rabi 2018-19 and 2019-20 seasons.
District wise Chickpea wilt incidence in Agro climatic zones of Marathwada region of Maharashtra

Results presented in Table 1 revealed that maximum average chickpea wilt incidence during Rabi 2018-19 and 2019-20 were found in Hingoli (34.12 and 32.00 %) followed by Beed (29.12 and 26.67 %), Nanded (29.03 and 29.44 %), Latur (23.92 and 26.31 %), Aurangabad (22.32 and 26.49 %), Parbhani (20.77 and 25.56 %), Osmanabad (20.71 and 22.28 %) and Jalna (20.48 and 23.92 %), respectively. The overall average of both the years indicated that the highest disease incidence was recorded in Hingoli district (33.06%), whereas, minimum disease incidence was recorded in Osmanabad district (21.50 %).

The pooled mean (Rabi, 2018-19 and 2019-20) results (Fig. 1) revealed that maximum mean per cent incidence of chickpea wilt was recorded in Hingoli district (33.06%), followed by Nanded (29.24 %), Beed (27.90 %), Latur (25.12 %), Aurangabad (24.41 %), Parbhani (23.17 %) and Jalna (22.20 %) districts of Marathwada region, whereas, the minimum disease incidence was recorded in the Osmanabad (21.50 %) district.

Table 1 District wise survey of Chickpea wilt incidence in Agro climatic zones of Marathwada region during Rabi 2018-2019 and Rabi 2019-2020

Sr. No.	District	No. of Location	Avg. Disease Incidence (per cent)	Mean Per cent disease Incidence
1	Aurangabad	24 31	22.32 26.49	24.41
2	Jalna	23 24	20.48 23.92	22.20
3	Parbhani	26 26	20.77 25.56	23.17
4	Hingoli	18 19	34.12 32.00	33.06
5	Nanded	14 13	29.03 29.44	29.24
6	Latur	10 11	23.92 26.31	25.12
7	Osmanabad	16 15	20.71 22.28	21.50
8	Beed	19 21	29.12 26.67	27.90
Grand Mean	150 160	25.06 26.58		25.83

Table 2 Agro-climatic zone wise disease incidence of chickpea wilt in Marathwada region of Maharashtra state during Rabi 2018-19 and Rabi 2019-2020

Sr. No.	Agro-climatic Zone	Rabi2018-19	Rabi 2019-20	Mean Per cent disease Incidence	
	No. of Location	Per cent disease Incidence	No. of Location	Per cent disease Incidence	
1	Scarcity zone	18 19.36	20 22.11	20.74	
2	Assured rainfall Zone	110 25.12	118 26.18	25.65	
3	Moderate rainfall Zone	22 29.28	22 30.60	29.94	
Over all mean of region	150 24.59	162 26.30	25.44		
Table 3: Variety wise incidence of Chickpea wilt in agro climatic zones of Marathwada region during Rabi 2018-19 and Rabi 2019-20

Sr. No.	Chickpea Varieties	No. of Location	Avg. disease Incidence (per cent)	Mean Per cent Incidence		
		2018-19	2019-20	2018-19	2019-20	
1	BDNG 797	20	12	17.90	18.58	18.24
2	BDN 9-3	5	6	34.00	36.67	35.34
3	Vijay	18	10	20.56	19.30	19.93
4	Vishal	11	11	21.55	20.09	20.82
5	Digvijay	15	11	22.73	19.27	21.00
6	Phule G 12	8	5	26.88	19.00	22.94
7	JAKI 9218	20	20	32.00	21.25	26.63
8	Rajvijay 202	8	6	11.88	09.33	10.61
9	Rajvijay 203	6	6	11.33	11.67	11.50
10	Vishwas	6	4	36.25	18.75	27.50
11	SAKI 9516	4	6	32.50	20.83	26.67
12	Phule Vikram	8	4	17.75	19.00	18.38
13	Local	4	5	49.00	44.00	46.50
14	BDNGK 798	5	5	23.10	14.00	18.55
15	Virat	10	5	22.60	22.60	22.60
16	PKV Kabuli 2	5	4	25.75	17.50	21.63
17	Krupa	4	6	23.67	16.33	20.00
18	Dolar	6	8	24.30	16.25	20.28
Grand Mean		167	134	24.65	19.42	22.31

Fig. 1 District wise survey of Chickpea wilt incidence in Agro climatic zones of Marathwada region during Rabi 2018-2019 and Rabi 2019-2020
Fig. 2 Agro-climatic zone wise disease incidence of chickpea wilt in Marathwada region

![Graph showing disease incidence in agro-climatic zones]

Fig. 3 Variety wise incidence of Chickpea wilt in agro climatic zones of Marathwada

![Graph showing variety wise disease incidence]

Agro-climatic zone wise disease incidence of chickpea wilt in Marathwada region of Maharashtra

The data presented in Table 2 revealed that chickpea wilt disease incidence was found maximum in Moderate rainfall zone (29.28 and 30.60 %) followed by Assured rainfall zone (25.12 and 26.18 %) respectively, during Rabi 2018-19 and 2019-20. However, minimum disease incidence was recorded in Scarcity zone (19.36 and 22.11 %) during Rabi 2018-19 and 2019-20.

Variety wise incidence of Chickpea wilt in agro climatic zones of Marathwada region

Result (Table 3 and Fig. 3) revealed that maximum chickpea wilt disease incidence was found on Local variety (49.00 and 44.00 %) during Rabi, 2018-19 and 2019-20 respectively, followed by Phule G-5 (36.25%), BDN 9-3 (34.00 %), SAKI 9516 (32.50 %), JAKI 9218(32.00 %) and minimum wilt disease incidence was found in variety Rajvijay 203 (11.33 %) during Rabi 2018-19. While during Rabi 2019-20,
maximum chickpea wilt disease incidence was found in BDN 9-3 (36.67 %) followed by Phule G 95418 (22.60 %), JAKI 9218(21.25 %), SAKI 9516 (20.83 %) and minimum wilt disease incidence was found in variety Rajvijay 202 (9.33 %) during Rabi 2019-20.

The results (Fig. 3) revealed that pooled percent mean incidence of chickpea wilt during Rabi, 2018-19 and 2019-20 was recorded maximum on Local variety (46.50 %) followed by BDN 9-3 (35.34 %) and Vishwas (27.50%), whereas, it was minimum on Rajvijay 202 (10.61 %) and Rajvijay 203 (11.50 %).

These results obtained in the present studies on occurrence, distribution, yield loss and survey of chickpea wilt caused by *Fusarium oxysporum* f.sp. *ciceri* are similar to those reported earlier by several workers on chickpea and other crops.

Studies carried by Ghosh *et al.*, (2013) on survey during Rabi 2010-2011 to find information on the occurrence and distribution chickpea diseases in respect to soil type, cultivar, seed treatment in central and Southern parts of India. It was revealed that local cultivars transcendent in most farmer’s fields (25 to 48%), whereas, 63 % of the farmers were practices seed treatment with fungicide and reported the incidence of chickpea wilt disease ranged from 9.7 to 13.8 %.Nikam *et al.*, (2011) conducted survey on chickpea wilt in Tashils of Latur district and described the average wilt incidence to the tune of 12.26 % with maximum wilt incidence was found in Ausa (15.4 %).

Aforesaid variation in wilt incidence and wide spread nature of disease have been reported by earlier worker like Nema and Khare (1973), Trapero-Casas and Jimenez-diaz (1985), Jalali and Chand (1992),Navas-Cortes *et al.*, (2000), Reddy (2002), Jadhav *et al.*, (2006), Pitambar *et al.*, (2010), Abera *et al.*, (2011), Jendoubi *et al.*(2017), Singh *et al.*(2017), Mulekar *et al.*, (2017), V. Govardhan Rao *et al.*, (2019) and Yimer *et al.*, (2018).

References

Abera, M., Sakhua, P. K., Fininsa and Seid A. (2011) Status of chickpea *Fusarium* wilt (*Fusarium oxysporum* f.sp. *ciceri*) in northwestern Ethiopia. Archives of Phytopathology and Plant Protection Vol. 44, No. 13, August 2011, 1261–1272.

Chaudhry, M. A., Ilyas, M. B., Muhammad, F. and Ghazanfar. M. U. (2007). Sources of resistance in Chickpea germplasm against *Fusarium* wilt. Mycopath. 5(1): 17-21.

Chaudhry, M.A., Ilyas, M.B., Muhammad, F. and Ghazanfar, M.U. 2007. Sources of resistance in chickpea germplasm against Fusarium wilt. Mycopath, 5(1): 17-21.

Dubey, S. C., Singh S. R. and Singh B. (2010). Morphological and pathogenic variability of Indian isolates of *Fusarium oxysporum* f. sp. *cicerica* using chickpea wilt. Archives of Phytopathology and Plant Protection Vol. 43 (2): 174-190.

Ghosh R., Sharma, M., Telangre, R. and Pande, S. (2013).Occurrence and Distribution of Chickpea Diseases in Central and Southern Parts of India. American J. Pl. Sci. Vol. 04 : 940-944.

Gupta, S.K., Upadhyay, J.P. and Ojha, K.H. (1997). Effect of fungidal seed treatment on the incidence of chickpea wilt complex. *Ann. Pl. Prot. Sci.* 5: 184-187.

Halila, M. H. and Strange, R. N. (1996). Identification of the causal agent of wilt of chickpea in Tunisia as *F. oxysporum* f. sp. *ciceris* race 0. *Phytopathologia*
Mediterranean. 35: 67–74.

Jadhav V.T., C.V. Ambadkar and N.H. Kadam (2006) Biological management of wilt of Chick pea. P.K.V. Res. J., 30 (2) : 253-254.

Jalali, B. L and Chand, H. (1992). Chickpea wilt. *Pl. Dise. Of InterlImp. Diseases of Cereals and Pulses.* Prentice Hall, Englewood Cliffs, New Jersey. 1: 429-444.

Jendoubi, W., Bouhadida, M., Boukteb, A., Beji M. and Kharrat, M. (2017). *Fusarium Wilt Affecting Chickpea Crop.* Agriculture, 7, 23: 2–16.

Kumar, S. and Bourai, V. A. (2012). Economic analysis of pulses production their benefits and constraints (a case study of sample villages of Assan valley of Uttarakhand, India). *J. Hu. Social Sci.* 4(1): 41-53.

Mayee, C.D. and Datar, V.V.(1986). Phytopathometry, Marathwada Agricultural University, Parbhani, pp.146.

V. G. Mulekar, A. G. Desai and C. V. Ambadkar (2017). Influence of hydrogen-ion concentration on variability in *Fusarium oxysporum* f. sp. *ricini* causing wilt of castor. Multilogic in Science, 7 (23): 67-70.

Navas-Cortés, J.A., Hau.B.and Jiménez-Díaz, R.M. (2000). Yield loss in chickpeas in relation to development of *Fusarium* wilt epidemics. Phytopathology 90: 1269-1278.

Nema K.G. and Khare M.N. (1973). A conspectus of wilt of Bengal gram in Madhya Pradesh. Symposium on wilt problem and breeding for wilt resistance in Bengal gram sept.1973, at IARI, New Delhi, India. p 4

Nene, Y. L., Shelia, V. K and Sharma, S. B. (1984). A world list of chickpea (*Cicerarietinum* L.) and pigeonpea (*Cajanuscajan* (L.) Millsp.) pathogens. ICRISAT Pulse Pathology Progress Report 32, pp. 19.

Nene, Y. L., Shelia, V. K and Sharma, S. B. (1996). A world list of chickpea and Pigeon pea pathogens 5th Edn. Patancheru, Andhra Pradesh, India. ICRISAT.pp, 1-28.

Nikam, P. S., Jagtap, G. P. and Sontakke, P. L. (2011). Survey, surveillance and cultural characteristics of chickpea wilt caused by *Fusarium oxysporium* f. sp. *ciceri*. *Afr. J. Agric. Res.* 6(7): 1913-1917.

Pitambar, N., Jibhakate, M. K., Mondhe and Mate, G. D. (2010). Assessment of wilt complex in chickpea crop at Nagpur district. J.Pl.Dis.Sci. Vol. 5(1): 251-253.

Reddy, Y. S. (2002). Studies on wilt complex of chickpea (*Cicer arientinum* L.). M. Sc. (Agri.) thesis, I.G.N.U., Raipur (CG), India.

Govardhan Rao, V., D.N. Dhutraj, S.R. Bhalerao, K.T. Apet, C.V. Ambadkar, B. Prasanna Kumar, A. T. Daunde, P.L. Sontakke and A.G. Patil (2019) Investigation of Genetic Diversity in *Fusarium Wilt of Egg Plant Caused by Fusarium oxysporum f. Sp. melanogene* (Schlecht) Mutuo and Ishigami in Marathwada Region of Maharashtra, India. Int.J.Curr.Microbiol.App.Sci, 8(7): 1079-1093

Singh, D. and Simon, S. (2017). Bio control potential of *Pseudomonas fluorescens* against *Fusarium* wilt of chickpea. Prog. Agric. Vol. 17(1):47-51.

Singh, G., Chen, W., Rubiales, D., Moore, K., Sharma, Y. R. and Gan, Y. (2007). Diseases and their management. *In Chickpea Breeding and Management.* (Eds. Yadav, Redden, Chen and Sharma) *CAB International.* pp. 497-519.

Sunkad, G., Deepa, H., Shruthi, T.H. and Dinesh Singh. (2019). Chickpea wilt: status, diagnostics and
management. *Indian Phytopathology* 72, 619–627.

Trapero-casas, A. and Jimenez-Diaz, R.M. (1985). Fungal wilt and root rot disease of chickpea in southern Spain. *Phytopathology*, 75: 1146-1151.

Venkataramanamma, K., Reddy, B.V. Jayalakshmi, R. B., Jayalakshmi, V. S., Hari Prasad K.V., and Naidu, M. G. (2018): Screening of chickpea germplasm / genotypes against Fusarium wilt of chickpea under field and artificial condition. *Int.J.Curr. Microbiol.App.Sci.* 7 (9): 1041-1050.

Yimer, S.M., Ahmed, S., Fininsac, C., Tadessed, N., Hamwiehe, A. and Douglas R. Cookf. (2018). Distribution and factors influencing chickpea wilt and root rot epidemics in Ethiopia *Crop Protection* 106 :150–155.

How to cite this article:

Sontakke, P. L., D. N. Dhutra, C. V. Ambadkar and Badgujar, S. L. 2020. Status of Chickpea Wilt caused by *Fusarium oxysporum f. sp. ciceri* in Marathwada Region of Maharashtra State. *Int.J.Curr.Microbiol.App.Sci.* 9(07): 2553-2560. doi: https://doi.org/10.20546/ijcmas.2020.907.300