Research of mode pulses propagation in a waveguide with a one-dimensional diffraction grating

S V Krasnov and S I Kharitonov

1Samara National Research University, Moskovskoe Shosse 34, Samara, Russia, 443086
2Image Processing Systems Institute - Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Molodogvardeyskaya str. 151, Samara, Russia, 443001

e-mail: ctac-red@mail.ru, prognoz2007@gmail.com

Abstract. In this paper, we simulate the propagation of mode pulses in a waveguide with a one-dimensional grating. The diffraction of continuous radiation and a short pulse on a grating with subwavelength period in a waveguide with reflecting walls is investigated using the FDTD method. The possibility of differentiating the reflected short Gaussian pulse is reported.

1. Introduction

Recently, the problem of realizing the basic operations of converting optical signals using the optical element base is actual. Despite the large possibilities of digital technology, completely optical signal processing provides high speed and efficiency [1, 2]. The paper [1] examines the role of optical and electronic technologies in future high-capacity routers. In particular, optical and electronic technologies for use in the key router functions of buffering and switching are compared. Various operations, including addition, differentiation, integration, amplification, deceleration, filtering, switching, detection, etc. [3-9] we can perform using photonic crystals [10-23], gratings [24-30], layered films [31-34] and waveguides [35-45]. Paper [5] reports on the first realization of optical microring resonators in submicrometre thin films of lithium niobate. In paper [8], a spectroscopic sensor formed by a silicon-on-insulator waveguiding Bragg grating ring resonator working in linear and non-linear regime is proposed. Paper [13] presents a theoretical and numerical study of this radiation problem for several three-dimensional mirror geometries which are important for light confinement in micropillars, air-bridge microcavities and two-dimensional PC microcavities. A highly sensitive refractive index sensor based on an integrated hybrid plasmonic waveguide and a Metal–Insulator–Metal micro-ring resonator is presented in paper [23]. Propagation of an optical pulse through a diffraction grating that has a resonance near the pulse central wavelength is discussed in paper [27]. The articles [33-34] are devoted to hyperspectrometer modeling based on the use of filters with linearly varying parameters. The paper [36] proposes a method to excite and detect the mechanical modes of dielectric microspheres. In work [43] proposes a silicon strip waveguide at 3.39 μm for CH4 gas sensing based on the evanescent field absorption.
In this work, we simulate the passage of the cosine signal in the form of continuous radiation and a short pulse in a waveguide with a one-dimensional subwavelength grating using the FDTD method. The possibility of differentiating a short Gaussian pulse is investigated.

2. Simulation
Simulation of the passage of the cosine signal in a waveguide with reflecting walls c and diffraction on a grating with a period on the order of the wavelength is performed using the FDTD method in the MEEP software. The free software MEEP uses a system of units in which the speed of light, the electric and magnetic constant are taken as one. This means that for a unit of time, light travels in vacuum a unit of distance. The choice of units is determined by how we interpret one of the parameters. For example, if we assign a linear dimension of 1 μm to a unit of distance, then the unit of time in standard values is approximately $3.3 \times 10^{-15} \text{s} = 3.3 \text{ fs}$.

2.1. Propagation of the cosine signal in a waveguide
Consider a waveguide with a large refractive index at the walls, which in this case will act as reflectors. We will use a wavelength equal to 0.8 μm. The resonator width is $h = 10$ wavelengths, i.e. $h = 8 \mu$m. Pulse length: 3.3 fs.

The signal has a cosine form: $\cos(2\pi nx/h)$.

Figures 1-3 show the results of modeling the propagation of the cosine signal in a waveguide for various parameters n at different instants of time.

As can be seen from the results shown in Figures 1-3, the short pulse propagates in the waveguide not only broadens but also is transformed. Moreover, the modes of higher order undergo much larger changes than the modes of smaller order (see for comparison Figures 1 and 2). Note that not a mode pulse ($n = 1.4$ - not an integer, Fig.3) for small n is also quite stable.

![Figure 1](image_url)

Figure 1. Pulse propagation in the waveguide at $n = 1$: a) $t = 50 \text{ fs}$, b) $t = 200 \text{ fs}$, c) longitudinal section: $t = 50 \text{ fs}$ (red color), $t = 200 \text{ fs}$ (blue). The resonator width is 8 μm.
2.2. *Signal propagation through various gratings in a waveguide*

Let us consider the pass cosine signal $\cos(2\pi nx/h)$, $n=1$ of different duration in the waveguide through diffraction gratings with different period.

![Figure 2. Propagation of a pulse in a waveguide with $n = 3$: a) $t = 50$ fs b) $t = 200$ fs.](image)

![Figure 3. Propagation of a pulse in a waveguide with $n = 1.4$: a) $t = 50$ fs b) $t = 200$ fs.](image)

Figures 4-6 show the results of modeling the signal through the gratings with a period of $T=2\lambda$, λ, $\lambda/2$.

As can be seen from the obtained results, at $T=2\lambda$ (Figure 4) the signal is divided equally into the reflected and the past. At smaller (subwavelength) periods (Figures 5, 6) more complex transformations occur. The continuous signal is mainly reflected, and the energy of the short pulse passes through the subwavelength grating to a greater extent, since the short pulse also contains high-frequency components.

Figure 7 shows the longitudinal cross section of the pulse amplitude of diffraction gratings passing through 3 with different periods at time $t = 200$ fs. It can be concluded from Fig. 7 that a grating with a period of half a wavelength dissipates the incident radiation.
4

Figure 4. Propagation of a pulse through the grating at $T = 2\lambda$: a) $t=50\ fs$ b) $t=200\ fs$.

Figure 5. Propagation of a pulse through a grating with $T = 2\lambda$: a) $t=50\ fs$ b) $t=200\ fs$. c) continuous radiation.

2.3. Differentiation of the optical signal

In [25-30], the construction of a diffraction grating for performing the operation of differentiating an optical signal, both in transmission and in reflection, is considered.

We carry out a simulation of the propagation of single-pulse pulses in a wave-like one-dimensional grating using the grating parameters obtained in [25-30].

Figure 8 (a) shows the geometry of differentiating grating with parameters: $d=1010\ nm$, $h_1=620\ nm$, $r=530\ nm$, $h_2=0$, $\varepsilon_{gr}=5.5$, $\varepsilon_{sub}=2.1$, and Figure 8 (b) the form of the differentiating grating obtained in MEEP is shown.
Figure 6. Propagation of a pulse through a grating with $T = \frac{\lambda}{2}$: a) $t=50$ fs b) $t=200$ fs c) continuous radiation.

Figure 7. Propagation of a pulse through a grating: red - $T = 2\lambda$; the black - $T = \lambda$; blue - $T = \frac{\lambda}{2}$.

Figure 8. The geometry of the differentiating grating.
Figure 9. Pulse propagation in the waveguide: a) $t = 50$ fs b) $t = 150$ fs c) $t = 165$ fs.

Figure 9 (a-c) shows the propagation of a pulse in a waveguide of width $h = 8$ μm with a given grating at the center at different instants of time. In Fig. 9 (a) and 9 (b), the diffraction grating is in the center of the waveguide. In Figure 9 (c), the grating is located on the left side of the waveguide.

Figure 10 shows the longitudinal cross section of the pulse amplitude at different instants of time. Figure 10 (a) corresponds to Figure 9 (b) at $t = 150$ fs. Figure 10 (b) corresponds to Figure 9 (c) at $t = 165$ fs.

As follows from the resulted results of modeling, clear differentiation occurs only in the reflected signal. The last part of the signal is distorted and mixed with high-frequency components.
3. Conclusion
In this paper, we simulate the propagation of mode pulses in a waveguide with a one-dimensional grating using the FDTD method implemented in freely distributed MEEP software. It is shown that high-order modes undergo large changes than those of a smaller order. It is shown that the nature of the passage of a pulse through the grating becomes more complicated with a decrease in the lattice period. The investigation of the application of the differentiating grating in the waveguide has shown that explicit differentiation occurs only in the reflected signal, while the transmitted part of the signal is distorted and mixed with high-frequency components.

4. References
[1] Tucker R S 2006 J. Lightwave Technol. 24 4655
[2] Gavrilov A V and Soifer V A 2012 Prospects of optical analog computers development Computer Optics 36(2) 140-150
[3] Little B E, Chu S T, Haus H A, Foresi J and Laine J P 1997 Journal of Lightwave Technology 15 998
[4] Rabiei P, Steier W H, Zhang C and Dalton L R 2002 Polymer Micro-Ring Filters and Modulators Journal of Lightwave Technology 20(11) 1968
[5] Guarino A, Poberaj G, Rezzonico D and Degl'Innocenti R 2007 Electro–optically tunable microring resonators in lithium niobate Nature Photonics 1 407-410
[6] De Vos K, Bartolozzi I, Schacht E, Bienstman P and Baets R 2007 Silicon-on-Insulator microring resonator for sensitive and label-free biosensing Optics Express 15(12) 7610-7615
[7] Liu F, Wang T, Qiang L, Ye T, Zhang Z, Qiu M and Su Y 2008 Compact optical temporal differentiator based on silicon microring resonator Optics Express 16(20) 15880-15886
[8] De Leonardis F, Campanella C E, Troia B, Perri A G and Passaro V 2014 Performance of SOI Bragg Grating Ring Resonator for Nonlinear Sensing Applications Sensors 14(9) 16017- 16034 DOI:10.3390/s140916017
[9] Degtyarev S A, Podlipnov V V, Verma P and Khonina S N 2016 3D simulation of silicon micro-ring resonator with Comsol Proc. SPIE 10224 102241L DOI: 10.1117/12.2266783
[10] Yanik M F, Fan S, Soljacic M and Joannopoulos J D 2003 All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry Optics Letters 28(24) 2506-2508
[11] Lalanne P, Sauvan C and Hugonin J P 2008 Photon confinement in photonic crystal nanocavities Laser and Photonics Reviews 2(6) 514-526 DOI: 10.1002/lpor.200810018
[12] Joannopoulos J, Johnson S, Winn J and Meade R 2008 Photonic Crystals – Molding the Flow of Light (Princeton) p 305
[13] Sauvan C, Lecamp G, Lalanne P and Hugonin J 2005 Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities Opt. Express 13(1) 245-255
[14] Melloni A, Canciamilla A and Ferrari C 2010 IEEE Photonics Journal 2 181
[15] Kazanskiy N L, Serafimovich P G and Khonina S N 2012 Use of photonic crystal resonators for differentiation of optical impulses in time Computer Optics 36(4) 474-478
[16] Kazanskiy N L, Serafimovich P G, Khonina S N 2013 Use of photonic crystal cavities for temporal differentiation of optical signals Optics Letters 38(7) 1149-1151 DOI: 10.1364/OL.38.001149
[17] Kazanskiy N L and Serafimovich P G 2014 Coupled-resonator optical waveguides for temporal integration of optical signals Optics Express 22(11) 14004-14013 DOI: 10.1364/OE.22.014004
[18] Egorov A V, Kazanskiy N L, Serafimovich P G 2015 Using coupled photonic crystal cavities for increasing of sensor sensitivity Computer Optics 39(2) 158-162 DOI: 10.18287/0134-2452-2015-39-2-158-162
[19] Serafimovich P G and Kazanskiy N L 2016 Optical modulator based on coupled photonic crystal cavities Journal of Modern Optics 63(13) 1233-1238 DOI:10.1080/09500340.2015.1135258
[20] Kazanskiy N L 2018 Modeling diffractive optics elements and devices Proceedings of SPIE 10774 107740O DOI: 10.1117/12.2319264
[21] Kadomina E A, Bezus E A, Doskolovich L L 2017 Generation of high-frequency interference patterns of evanescent electromagnetic waves at Fabry-Perot resonances in dielectric photonic crystals Computer Optics 41(3) 322-329 DOI: 10.18287/2412-6179-2017-41-3-322-329

[22] Butt M A, Khonina S N and Kazanskiy N L 2018 Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing Journal of Modern Optics 65(9) 1135-1140 DOI: 10.1080/09500340.2018.1427290

[23] Butt M A, Khonina S N and Kazanskiy N L 2018 Modelling of Rib channel waveguides based on silicon-on-sapphire at 4.67 µm wavelength for evanescent field gas absorption sensor Optik 168 692-697 DOI: 10.1016/j.ijleo.2018.04.134

[24] Yoon Y T, Lee H S, Lee S S, Kim S H, and Lee K D 2008 Color filter incorporating a subwavelength patterned grating in poly silicon Optics Express 16(4) 2374-2380

[25] Bykov D, Doskolovich L and Soifer V 2011 Temporal differentiation of optical signals using resonant gratings Optics Letters 36(17) 3509-3511

[26] Golovastikov N V, Bykov D A, Doskolovich L L and Soifer V A 2012 Temporal differentiation of optical signals in reflection using resonant gratings Computer Optics 36 151-157

[27] Bykov D A, Doskolovich L L, Golovastikov N V and Soifer V A 2013 Time-domain differentiation of optical pulse in reflection and transmission using the same resonant grating Journal of Optics 15(10) 105703 DOI: 10.1088/2040-8978/15/10/105703

[28] Golovastikov N V, Bykov D A, Doskolovich L L and Bezus E A 2015 Spatial optical integrator based on phase-shifted Bragg gratings Optics Communications 338 457-460 DOI: 10.1016/j.optcom.2014.11.007

[29] Golovastikov N V, Bykov D A, Doskolovich L L 2017 Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings Computer Optics 41(1) 13-21 DOI: 10.18287/2412-6179-2017-41-1-13-21

[30] Soifer V A, Kotlyar V V and Doskolovich L L 2009 Diffractive optical elements in nanophotonics devices Computer Optics 33(4) 352-368

[31] Flory F R 1995 Thin films for optical systems (Marcel Dekker Inc, New York) p 215

[32] Macleod H A 2001 Thin-Film Optical Filters (Institute of Physics Publishing, Bristol and Philadelphia) p 667

[33] Kazanskiy N L, Kharitonov S I, Khonina S N, Volotovskiy S G and Strelkov Yu S 2014 Simulation of hyperspectrometer on spectral linear variable filters Computer Optics 38(2) 256-270

[34] Kazanskiy N L, Kharitonov S I, Khonina S N and Volotovskiy S G 2014 Simulation of spectral filters used in hyperspectrometer by decomposition on vector Bessel modes Proceedings of SPIE 9533 95330L DOI:10.1117/12.2183429

[35] Rivas L M, Boudreau S, Park Y, Slavik R, LaRochelle S, Carballar A and Rivas J A 2009 Experimental demonstration of ultrafast all-fiber high-order photonic temporal differentiators Optics Letters 34(12) 1792-1794

[36] Laine J P, Tapalian C, Little B and Haus H 2001 Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler Sensors and Actuators A: Physical 93 1-7

[37] Baehr-Jones T, Hochberg M, Wang G, Lawson R, Liao Y, Sullivan P A, Dalton L, Jen A K-Y, and Scherer A 2005 Optical modulation and detection in slotted silicon waveguides Optics Express 13(14) 5216-5226

[38] Kazanskiy N L, Serafimovich P G, Popov S B and Khonina S N 2010 Using guided-mode resonance to design nano-optical spectral transmission filters Computer Optics 34(2) 162-168

[39] Kazanskiy N L, Serafimovich P G and Khonina S N 2010 Harnessing the guided-mode resonance to design nano-optical transmission spectral filters Optical Memory and Neural Networks (Information Optics) 19(4) 318-324 DOI: 10.3103/S1060992X10040090

[40] Degtyarev S A, Butt M A, Khonina S N and Skidanov R V 2016 Modelling of TiO2-based slot waveguides with high optical confinement in sharp bends 2016 International Conference on Computing, Electronic and Electrical Engineering, ICE Cube 2016 - Proceedings 7495222 10-13 DOI: 10.1109/ICECUBE.2016.7495222

8
[41] Lukosz W 1991 Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing *Biosensors and Bioelectronics* **6**(3) 215-225

[42] Jin W, Ho H L, Cao Y C, Ju J and Qi L F 2013 Gas detection with micro- and nano-engineered optical fibers *Optical Fiber Technology* **19**(6) 741-759

[43] Butt M A, Degtyarev S A, Khonina S N and Kazanskiy N L 2017 An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength *Journal of Modern Optics* **64**(18) 1892-1897 DOI: 10.1080/09500340.2017.1325947

[44] Butt M A, Khonina S N and Kazanskiy N L 2018 Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor *Journal of Modern Optics* **65**(2) 174-178 DOI: 10.1080/09500340.2017.1382596

[45] Butt M A, Kozlova E S and Khonina S N 2017 Conditions of a single-mode rib channel waveguide based on dielectric TiO$_2$/SiO$_2$ *Computer Optics* **41**(4) 494-498 DOI: 10.18287/2412-6179-2016-40-4-494-498

Acknowledgment

This work was supported by the Russian Foundation for the Basic Research (Grant No. 16-29-11744) and by the Federal Agency of Scientific Organizations (agreement No. 007-GZ/C3363/26).