SSEA-3 and 4 are not essential for the induction or properties of mouse iPS cells

Kazunori Hamamura1, Hiroshi Hotta2, Yoshiki Murakumo3, Hidenobu Shibuya3, Yuji Kondo2, and Koichi Furukawa2,4

1) Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
2) Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
3) Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
4) Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan

Abstract: Stage-specific embryonic antigens (SSEA-1, 3, and 4) are carbohydrate antigens that have been used as markers of embryonic stem (ES) cells. However, the roles of these antigens in the establishment and maintenance of stemness of ES and induced pluripotent stem (iPS) cells are still poorly understood. This study investigated the biological and functional significance of globo-series glycolipids such as SSEA-3 and 4 in mouse iPS cells derived from tail-tip fibroblasts (TTFs) of α1,4Gal-T-knockout mice (lacking SSEA-3 and 4). These iPS cells were induced by retroviral transduction of four factors (Oct3/4, Sox2, Klf4, and c-Myc) into TTFs, and colonies were picked up. Morphologically, the colonies resembled ES cells and were positive for alkaline phosphatase and ES cell markers. Furthermore, in vitro-differentiated induction experiments after embryoid body formation revealed that some colonies derived from α1, 4Gal-T-knockout mice were able to differentiate into three germ layers. Three germ layers were also observed in teratomas from iPS cells derived from α1,4Gal-T-knockout mice. These results suggest that SSEA-3 and 4 are not essential, at least for the establishment and maintenance of stemness of mouse iPS cells.

Keywords: α1,4Gal-T, iPS cells, SSEA-3, SSEA-4

Introduction

Carbohydrate chains play essential roles in disease onset such as inflammation, infection, and degeneration, as well as in the maintenance of homeostasis of organ systems [1-3]. They are also cancer antigens known to be involved in the malignant properties of various cancer cells [4,5]. For example, the disialyl gangliosides GD3 and GD2 promote cell proliferation and invasion by enhancing the phosphorylation of p130Cas, focal adhesion kinase (FAK), and paxillin via activation of Src family kinases in human melanoma and osteosarcoma cells [6-8]. Furthermore, carbohydrate chains are considered to be markers of embryonic stem (ES) cells and mesenchymal stem cells [9-13]. The stage-specific embryonic antigens (SSEA) 1, 3, and 4 are known to be expressed on ES cells, mesenchymal stem cells, and teratocarcinomas [9-12]. However, their functional significance is not well understood.

Induced pluripotent stem (iPS) cells, first developed by Yamanaka et al. [14], resemble ES cells in terms of morphology and properties such as self-renewal and pluripotency to differentiate into multiple cell lineages. The use of iPS cells has provided opportunities for exploring the pathogenesis of various diseases and the development of new therapeutic drugs [15-17].

In the present study, iPS cells were generated from tail-tip fibroblasts (TTFs) of α1,4Gal-T-knockout mice, which lack SSEA-3 and 4 [18], and the mRNA levels of ES cell marker genes were examined in the resulting colonies to confirm that they were iPS cells. To determine the pluripotency of these iPS cells in vitro, floating cultivation was performed to derive embryoid bodies, which were then transferred to gelatin-coated tissue culture dishes and examined for expression of ectoderm, endoderm, and mesoderm, and endoderm differentiation markers. Furthermore, to evaluate the pluripotency of the iPS cells in vivo, teratoma formation experiments were conducted.

Materials and Methods

Retroviral vectors, cells and mice

pMXs retroviral vectors containing cDNA of Oct3/4, Sox2, Klf4, or c-Myc [14] were provided by Addgene. SNL feeder cells were provided by Dr. Allan Bradley of the Sanger Institute. iPS-MEF-Ng-20D-17 [19] was obtained from RIKEN (Japan). α1,4Gal-T− mice were generated as described previously [18]. All protocols for animal experiments were approved by the animal experimental Committee of the Graduate School of Medicine in Nagoya University (approval number 21283 and 21363).

Cell culture

iPS cells were maintained in ES medium (DMEM containing 15% FBS (vol/vol), 1 × 10^4 M non-essential amino acids, 1 × 10^4 M 2-mercaptoethanol, 50 U/mL penicillin and 50 μg/mL streptomycin) on feeder layers of mitomycin C-treated SNL cells. Plat-E packaging cells, which were also used to produce retroviruses, were maintained in DMEM containing 10% FBS, 50 U/mL penicillin and 50 μg/mL streptomycin. SNL cells were maintained in DMEM containing 7% FBS, 50 U/mL penicillin and 50 μg/mL streptomycin. Fibroblasts from mouse tail-tip (TTFs) were established as described previously [20] with some modifications. Briefly, the tail from a 7-week-old male α1,4Gal-T− mouse was peeled, minced into 1-cm pieces with scissors, placed on gelatin-coated 6-well plates, and incubated in MF-start medium (Toyobo, Osaka, Japan) for 5 days. Cells that migrated from the tail fragments were transferred to new dishes (passage 2) and maintained in DMEM containing 10% FBS. TTFs at passage 3 were used for iPS cell induction.

iPS cell induction

iPS cell induction was performed as described previously [20] with some modifications. Briefly, TTFs were isolated from 7-week-old male α1,4Gal-T− mice. On the day before transduction, Plat-E cells were seeded at 8 × 10^6 cells per 100-mm dish. Then, on the following day, pMXs-based retroviral vectors for Oct3/4, Sox2, Klf4, c-Myc, or GFP were introduced into Plat-E cells using FuGENE 6 transfection reagent (Roche, Mannheim, Germany) in accordance with the manufacturer’s protocol. Twenty-seven microliters of FuGENE 6 transfection reagent was diluted in 300 μL OptiMEM I medium (Invitrogen, Carlsbad, CA, USA) and incubated for 5 min at room temperature. Nine microliters of plasmid DNA was added to the mixture, which was then incubated for another 15 min at room temperature. After incubation, the DNA/FuGENE 6 mixture was added drop by drop onto Plat-E cells, which were incubated at 37°C in a humidified atmosphere containing 5% CO2. Twenty-four hours after transduction, the medium was replaced. TTFs were seeded at 8 × 10^6 cells per 100-mm dish on mitomycin C-treated SNL cells. After 24 h, virus-superseding supernatants derived from these Plat-E cultures were filtered through a 0.45-μm pore size cellulose acetate filter (Schleicher & Schuell, Keene, NH, USA) and supplemented with 4 μg/mL polybrene. Target cells were incubated overnight in the virus/polybrene-superseding supernatants. After infection, the medium for the cells was replaced with fresh medium. Four days after infection, the cells were reseeded at 5 × 10^4-10^5 cells per 100-mm dish on mitomycin C-treated SNL feeder in ES medium, and the medium was changed
every other day. Two to three weeks after retroviral infection, colonies were selectively picked up.

Alkaline phosphatase staining

Alkaline phosphatase staining was performed using an Alkaline Phosphatase Detection Kit (Millipore, Bedford, MA, USA) in accordance with the manufacturer’s protocol. Cells were fixed with 4% paraformaldehyde in phosphate-buffered saline (PBS) for 1.5 min at room temperature. The fixative was then aspirated and the cells were rinsed with 1× rinse buffer (20 mM Tris-HCl, pH 7.4, 0.15 M NaCl, 0.05% Tween-20). Reagents for alkaline phosphatase staining were then added, and the cells were incubated in dark at room temperature for 15 min. The staining solution was then aspirated and the dishes were rinsed with 1× rinse buffer before being covered with PBS to prevent drying.

RT-PCR for ES cell marker genes

After extraction of total RNA, cDNA was synthesized by reverse transcription using the random primer and M-MLV reverse transcriptase (Invitrogen). PCR was conducted with Taq polymerase (Takara, Kusatsu, Japan). Primer sequences are listed in Table 1 [20].

In vitro differentiation of iPS cells

For embryoid body (EB) formation, iPS cells were harvested by trypsinization and transferred to 60-mm low-cell-binding dishes (Nunc, Roskilde, Denmark) in ES medium without LIF. After 3 or 5 days of floating culture, EBs were transferred to gelatin-coated tissue culture dishes and cultured for another 5 days. Total RNA derived from these differentiated cells was used for RT-PCR analysis.

Tereatoma formation and histological analysis

iPS cells were resuspended at 5 × 10^6 cells/mL in DMEM, and 1 × 10^6 cells were injected subcutaneously into the dorsal flank of nude mice. After 4-6 weeks, tumors were surgically dissected from the mice, fixed with 10% formaldehyde in PBS, and embedded in paraffin. Sections were then cut and stained with hematoxylin and eosin.

Results

Generation of iPS cells from TTFs derived from α1,4Gal-T^-/- mice

TTFs derived from α1,4Gal-T^-/- mice were transduced with retroviruses containing Oct3/4, Sox2, Klf4, c-Myc, and GFP (Fig. 1A). Four days after infection, the cells were harvested by trypsinization and plated onto mitomycin C-treated SNL feeder at 5 × 10^5-10^6 per 100-mm dish in ES medium. Two to three weeks after retroviral infection, colonies were selectively picked up (Fig. 1B). It was observed ~10 ES cell-like colonies on the basis of morphology, and some clones (D10, D17, D22, D24, E1, E2, G3, G4, N1, N2, and N6). Of note, iPS-Ng-20D-17 generated by Yamanaka S. et al. [19] was used as a positive control for iPS cells.
Expression of mouse ES markers in iPS cells derived from α1,4Gal-T-/- mice

RT-PCR was performed to examine whether ES cell marker genes were expressed in iPS cells derived from α1,4Gal-T-/- mouse TTFs. This revealed that many iPS clones generated in this study as well as iPS-MEF-Ng-20D-17 used as a positive control expressed undifferentiated ES cell-marker genes such as Nanog, Oct3/4, Gdf3, and Cripto. Furthermore, α1,4Gal-T knockout mice such as those used in the present study might be useful to generate some colonies that resembled ES cells using TTFs from -/- mice.

Embryoid body-mediated differentiation of iPS cells derived from α1,4Gal-T-/- mice

To determine the differentiation ability of iPS cells derived from α1,4Gal-T-/- mice, floating cultivation was performed to obtain embryoid bodies (EBs). After 3 or 5 days of floating culture, EBs were transferred to gelatin-coated tissue culture dishes and cultured for another 5 days (Fig. 3A). RT-PCR was performed using RNA isolated from these differentiated cells. Map2 (a marker of ectoderm), αCardiac actin (mesoderm), mesp1 (mesoderm), gata6 (endoderm) were used as individual differentiation markers.

Teratoma formation from iPS cells derived from α1,4Gal-T-/- mice

To determine the pluripotency of iPS cells derived from α1,4Gal-T-/- mice, floating cultivation was performed to obtain embryoid bodies (EBs). After 3 or 5 days of floating culture, EBs were transferred to gelatin-coated tissue culture dishes and cultured for another 5 days (Fig. 3A). RT-PCR was performed using RNA isolated from these differentiated cells. Map2 (a marker of ectoderm), αCardiac actin (mesoderm), mesp1 (mesoderm), gata6 (endoderm) were used as differentiation markers. RT-PCR revealed that differentiated cells from three clones (G4, D17, and N2) expressed map2, αCardiac actin, mesp1, and gata6 (Fig. 3B). These data demonstrated that the three clones were able to differentiate into three germ layers in vitro.

Discussion

This study confirmed that lack of SSEA-3 and 4 does not affect the establishment or maintenance of stemness of mouse iPS cells. It was possible to generate some colonies that resembled ES cells using TTFs from α1,4Gal-T knockout mice. These colonies showed strong expression of alkaline phosphatase and ES cell marker genes such as Nanog, Oct3/4, Gld3, and Cripto. Furthermore, in vitro differentiation experiments after embryoid body formation using the iPS cells obtained demonstrated that marker genes of ectoderm, mesoderm, and endoderm were expressed in the differentiated iPS cells. Histological analysis of teratoma formation also revealed that these iPS cells were able to differentiate into all three germ layers. Collectively, these results supported the pluripotency of iPS cells obtained from α1,4Gal-T-knockout mice.

It has been reported that blocking of SSEA-3 and 4 using a glycosphingolipid biosynthesis inhibitor did not affect pluripotency maintenance in human ES cells [21]. To clarify the importance of SSEA-3 and 4 for establishment and maintenance of stemness of mouse iPS cells, iPS cells were generated from α1,4Gal-T-knockout mice. The results revealed that teratoma formed from iPS cells defective in SSEA-3 and 4 contained derivatives of all three germ layers, such as neural tissue, epidermis, cartilage, bone, and trachea-like epithelium. SSEA-3 and 4 are known to be expressed in a variety of cancer cells [22]. A recent report has indicated that SSEA4 is not only a cancer marker antigen but also plays important roles in the malignant properties of cancer cells [22,23]. For example, administration of anti-SSEA-4 mAb to mice attenuated the tumor volume of gliomas [22]. Furthermore, SSEA-4 directly binds to FK-506 binding protein 4 (FKBP4), which activates PDK1/Akt-dependent cell proliferation signaling in breast cancer cells [23,24]. Expression of SSEA profiles and stages differs between mouse and human embryonic cells. For instance, SSEA-1 is observed in the inner cell mass of mouse but not that of human [10,11], the latter expressing SSEA-3 and 4 instead. During mouse embryogenesis, SSEA-3 and 4 are expressed earlier than SSEA-1 [9,11]. In this study, knockout of SSEA-3 and 4 in mouse iPS cells did not affect the maintenance of stemness. Therefore, SSEA-1 rather than SSEA-3 and 4 may play essential roles in the maintenance of stemness in mouse ES cells.

iPS cells established from α1,4Gal-T-knockout mice were able to differentiate into three germ layers and were capable of forming teratoma. However, the issue of whether or not iPS cells can differentiate into various specific cells remained unresolved, and therefore further analysis will be necessary. In summary, the present study has demonstrated that SSEA-3 and 4 do not play critical roles, at least in the establishment and maintenance of mouse iPS cells. Analyses of iPS cells derived from gene knockout mice such as those used in the present study might be useful for exploring the pathogenesis of oral diseases and the development of therapeutic drugs.
Acknowledgments
The authors thank Dr. K. Yamamori, Ms. T. Mizuno and Y. Nakayasu for technical assistance. This study was supported by Nagoya University Academic Promotion Fund (K.H.).

Conflict of interest
The authors have no conflict of interest to declare.

References
1. Furukawa K, Ohmi Y, Kondo Y, Ohkawa Y, Tajima O, Furukawa K (2015) Regulatory function of glycosphingolipids in the inflammation and degeneration. Arch Biochem Biophys 571, 58-65.
2. Endo T (2015) Glycobiology of α-dystroglycan and muscular dystrophy. J Biochem 157, 1-12.
3. Furukawa K, Ohmi Y, Kondo Y, Bhuiyan RH, Tajima O, Zhang P et al. (2019) Elucidation of the enigma of glycosphingolipids in the regulation of inflammation and degradation. Proc Jpn Acad Ser B Phys Biol Sci 95, 136-149.
4. Hakomori S (2002) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A 99, 10231-10233.
5. Furukawa K, Ohmi Y, Ohkawa Y, Bhuiyan RH, Zhang P, Tajima O et al. (2019) New era of research on cancer-associated glycosphingolipids. Cancer Sci 110, 1544-1551.
6. Hamamura K, Furukawa K, Hayashi T, Hattori T, Nakano J, Nakashima H et al. (2005) Ganglioside GD3 promotes cell growth and invasion through p130Cas and paxillin in malignant melanoma cells. Proc Natl Acad Sci U S A 102, 11041-11046.
7. Hamamura K, Tsuji M, Hotta H, Ohkawa Y, Takahashi M, Shibuya H et al. (2011) Functional activation of Src family kinase Yes protein is essential for the enhanced malignant properties of human melanoma cells expressing ganglioside GD3. J Biol Chem 286, 18526-18537.
8. Shibuya H, Hamamura K, Hotta H, Matsumoto Y, Nishida Y, Hattori H et al. (2012) Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3. Cancer Sci 103, 1656-1664.
9. Kannagi R, Cochran NA, Ishigami F, Hakomori S, Andrews PW, Knowles BB et al. (1983) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2, 2355-2361.
10. Carpenter MK, Rosler E, Rao MS (2003) Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells 5, 79-88.
11. Muramatsu T, Muramatsu H (2004) Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J 21, 41-45.
12. Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RCR (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109, 1743-1751.
13. Xu J, Liao WB, Go D, Liang L, Liu M, Du WT et al. (2009) Neural ganglioside GD2 identifies a subpopulation of mesenchymal stem cells in umbilical cord. Cell Physiol Biochem 23, 415-424.
14. Takahashi K, Yamana S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
15. Inoue H, Nagata N, Kurokawa H, Yamana S (2014) iPSCs: a game changer for future medicine. EMBO J 33, 409-417.
16. Okano H, Yamana S (2014) iPSC technology: significance and applications to CNS regeneration and disease. Mol Brain 7, 22.
17. Heilker R, Traub S, Reinhardt P, Schölker HR, Sternebeck J (2014) iPSC cell derived neuronal cells for drug discovery. Trends Pharmacol Sci 35, 510-519.
18. Okada T, Tokuda N, Numata S, Ito M, Ohtta M, Kawamura K et al. (2006) Targeted disruption of Gb3/CD77 synthase gene results in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem 281, 10230-10235.
19. Okita K, Ichisaka T, Yamana S (2007) Generation of germine-competent induced pluripotent stem cells. Nature 448, 313-317.
20. Takahashi K, Okita K, Nakagawa M, Yamana S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2, 3081-3089.
21. Brimble SN, Sherrer ES, Uhl EW, Wang E, Kelly S, Merrill AH Jr et al. (2007) The cell surface glycosphingolipids SSEA-3 and SSEA-4 are not essential for human ESC pluripotency. Stem Cells 25, 54-62.
22. Lou YW, Wang PY, Yeh SC, Chuang PK, Li ST, Wu CY et al. (2014) Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. Proc Natl Acad Sci USA 111, 2482-2487.
23. Hung TC, Lin CW, Hsu TL, Wu CY, Wong CH (2013) Investigation of SSEA-4 binding protein in breast cancer cells. J Am Chem Soc 135, 5934-5937.
24. Mangé A, Coyaud E, Desmetz C, Laurent E, Bégirotton B, Coopman P et al. (2019) FKBP4 connects mTORC2 and PDK to activate the PKD1/Akt-dependent cell proliferation signaling in breast cancer. Theranostics 9, 7003-7015.