Xiao, Guanli; Wang, JinRong

Stability of solutions of Caputo fractional stochastic differential equations. (English)

Zbl 1470.60168

Nonlinear Anal., Model. Control 26, No. 4, 581-596 (2021).

Summary: In this paper, we study the stability of Caputo-type fractional stochastic differential equations. Stochastic stability and stochastic asymptotical stability are shown by stopping time technique. Almost surely exponential stability and pth moment exponentially stability are derived by a new established Itô's formula of Caputo version. Numerical examples are given to illustrate the main results.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34A08 Fractional ordinary differential equations

Keywords:
Caputo fractional derivative; stochastic differential equations; stability

Full Text: DOI

References:
[1] M.A. Abdullin, S.V. Meleshko, F.S. Nasyrov, A new approach to the group analysis of one-dimensional stochastic differential equations, J. Appl. Mech. Tech. Phys., 55(2):191-198, 2014, https://doi.org/10.1134/S0021894414020011. · Zbl 1398.60075
[2] B. Bayour, D.F.M. Torres, Existence of solution to a local fractional nonlinear differential equation, J. Comput. Appl. Math., 312:127-133, 2017, https://doi.org/10.1016/j.cam.2016.01.014. · Zbl 1354.34012
[3] T. Burton, T. Furumochi, Asymptotic behavior of solutions of functional differential equations by fixed point theorems, Dyn. Syst. Appl., 11(4):499-519, 2002. · Zbl 1044.34033
[4] T. Burton, T. Furumochi, Krasnoselskii's fixed point theorem and stability, Nonlinear Anal., Theory Methods Appl., 49:445-454, 2002, https://doi.org/10.1016/S0362546X(01)00111-0. · Zbl 1015.34046
[5] T. Burton, B. Zhang, Fixed points and fractional differential equations: Examples, Fixed Point Theory, 14:313-325, 2013. · Zbl 1281.34008
[6] A. Chadha, S.N. Bora, Existence and exponential stability for neutral stochastic fractional differential equations with impulses driven by Poisson jumps, Stochastics, 90(5):663-681, 2018, https://doi.org/10.1080/17442508.2017.1402899.
[7] N.D. Cong, T.S. Doan, S. Siegmund, H.T. Tuan, On stable manifolds for planar fractional differential equations, Appl. Math. Comput., 226:157-168, 2014, https://doi.org/10.1016/j.amc.2013.10.010. · Zbl 1354.34015
[8] D.T. Do, Son, P.T. Huong, P.E. Kloeden, H.T. Tuan, Asymptotic separation between solutions of Caputo fractional stochastic differential equations, Stochastic Anal. Appl., 36(4):654-664, 2018, https://doi.org/10.1080/07362994.2018.1440243. · Zbl 1401.26009
[9] M. Hu, S. Ji, S. Peng, Y. Song, Backward stochastic differential equations driven by G-Brownian motion, Stochastic Processes Appl., 124(1):759-784, 2014, https://doi.org/10.1016/j.spa.2013.09.010. · Zbl 1300.60074
[10] L.-L. Huang, J.H. Park, G.-C. Wu, Z.-W. Mo, Variable-order fractional discrete-time recurrent neural networks, J. Comput. Appl. Math., 370:112633, 2020, https://doi.org/10.1016/j.cam.2019.112633.
[11] S. Jin, K. Kobayashi, Strong approximation of stochastic differential equations driven by time-changed Brownian motion with time-space-dependent coefficients, J. Math. Anal. Appl., 476(2):619-636, 2019, https://doi.org/10.1016/j.jmaa.2019.04.001. · Zbl 1433.60035
[12] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. · Zbl 1092.45003
[13] R. Kleiner, V. Manojlović, S. Simić, M. Vourenen, Bernoulli inequality and hypergeometric functions, Proc. Am. Math. Soc., 142(2):559-573, 2014, https://doi.org/10.1090/S0002-9939-2013-11781-8.
[14] E. Malkowski, V. Rakocević, Advanced Functional Analysis, CRS Press, Boca Raton, FL, 2019, https://doi.org/10.1201/9781498773669.
[15] X.D. Mao, Stochastic Differential Equations and Applications, 2nd ed., Horwood Publishing, Philadelphia, 2007. · Zbl 1138.60005
[16] D. Nguye, Asymptotic behavior of linear fractional stochastic differential equations with time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 20(1):47-56, 2014, https://doi.org/10.1016/j.cnsns.2013.06.004.
[17] B. Øksendal, Stochastic Differential Equations an Introduction with Application, 5th ed., Springer, Berlin, 2000, https://doi.org/10.1007/978-3-662-03185-8.
[18] B. Pei, Y. Xu, J. L. Wu, Stochastic averaging for stochastic differential equations driven by fractional Brownian motion and standard Brownian motion, Appl. Math. Lett., 100:106-109, 2020, https://doi.org/10.1016/j.aml.2019.106006 · Zbl 1433.60040

[19] S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochastic Processes Appl., 118(12):2223-2253, 2008, https://doi.org/10.1016/j.spa.2007.10.015 · Zbl 1158.60023

[20] R. Sakthivel, P. Revathi, Y. Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal., Theory Methods Appl., 81:70-86, 2013, https://doi.org/10.1016/j.na.2012.10.009 · Zbl 1261.34063

[21] Y. Song, Properties of G-martingales with finite variation and the application to G-Sobolev spaces, Stochastic Processes Appl., 129(6):2066-2085, 2019, https://doi.org/10.1016/j.spa.2018.07.002 · Zbl 07074601

[22] V. Todorˇcevi´c, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-22591-9.

[23] G.-C. Wu, T. Abdeljawad, J. Liu, D. Baleanu, K.-T. Wu, Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique, Nonlinear Anal. Model. Control, 24(6):919-936, 2019, https://doi.org/10.15388/NA.2019.6.5 · Zbl 1434.39006

[24] X. Zhang, H. Yi, H. Shu, Nonparametric estimation of the trend for stochastic differential equations driven by small α-stable noises, Stat. Probab. Lett., 151:8-16, 2019, https://doi.org/10.1016/j.spl.2019.03.012 · Zbl 1459.62160

[25] Y. Zhou, J. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2016

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.