REVIEW ARTICLE

The role of IL-23 and the IL-23/T_{H}17 immune axis in the pathogenesis and treatment of psoriasis

G. Girolomoni,1,† R. Strohal,2,*† L. Puig,3,† H. Bachelez,4,5,6 J. Barker,7 W.H. Boehncke,8 J.C. Prinz9

1Section of Dermatology, Department of Medicine, University of Verona, Verona, Italy
2Department of Dermatology and Venerology, Federal Academic Teaching Hospital of Feldkirch, Feldkirch, Austria
3Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
4Sorbonne Paris Cité, Université Paris Diderot, Paris, France
5Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
6UMR INSERM U1163, Institut Imagine, Paris, France
7St John’s Institute of Dermatology, King’s College London, London, UK
8Division of Dermatology, Geneva University Hospitals, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
9Department of Dermatology, University of Munich, Munich, Germany

*Correspondence: R. Strohal. E-mail: robert.strohal@lkhf.at

Abstract

Psoriasis is a chronic, immune-mediated disease affecting more than 100 million people worldwide and up to 2.2% of the UK population. The aetiology of psoriasis is thought to originate from an interplay of genetic, environmental, infectious and lifestyle factors. The manner in which genetic and environmental factors interact to contribute to the molecular disease mechanisms has remained elusive. However, the interleukin 23 (IL-23)/T-helper 17 (T_{H}17) immune axis has been identified as a major immune pathway in psoriasis disease pathogenesis. Central to this pathway is the cytokine IL-23, a heterodimer composed of a p40 subunit also found in IL-12 and a p19 subunit exclusive to IL-23. IL-23 is important for maintaining T_{H}17 responses, and levels of IL-23 are elevated in psoriatic skin compared with non-lesional skin. A number of agents that specifically inhibit IL-23p19 are currently in development for the treatment of moderate-to-severe plaque psoriasis, with recent clinical trials demonstrating efficacy with a good safety and tolerability profile. These data support the role of this cytokine in the pathogenesis of psoriasis. A better understanding of the IL-23/T_{H}17 immune axis is vital and will promote the development of additional targets for psoriasis and other inflammatory diseases that share similar genetic aetiology and pathogenetic pathways.

Received: 16 May 2017; Accepted: 13 June 2017

Conflicts of interest

GG: Principal investigator in clinical trials sponsored by and/or personal fees (AbbVie, Abiogen, Almirall, Amgen, Bayer, Biogen, Boehringer-Ingeheim, Celgene, Eli-Lilly, Galderma, Genzyme, Hospira, Janssen, Leo-Pharma, MSD, Mundipharma, Novartis, Pfizer, Pierre Fabre, Regeneron, Sandoz, Sanofi, Serono, SUN Pharmaceutical Industries).
RS: Speakers bureaus (Lohmann und Rauscher, Meda Pharmaceuticals, Menarini Pharmaceuticals, Pfizer, Schülke and Mayr, Smith & Nephew, Stockhausen); consulting fees (APR Pharmaceuticals, Celgene, Chemomedica, Flen Pharma, Lilly, Lohmann und Rauscher, Novartis, Pantec Biotechnologies, Pfizer, SastoMed, Schülke and Mayr, Stratamed, SUN Pharmaceutical Industries, Urgo, Woulgan); research and educational grants (APR Pharmaceuticals, Chemomedica, Enjo Commercial, Flen Pharma, Lohmann und Rauscher, Montavit, Schülke and Mayr, Smith & Nephew, Stockhausen, Stratamed, Urgo, 3M Wound Care).
LP: Consultant, investigator, speaker or advisory board member (AbbVie, Almirall, Amgen, Baxalta, Biogen, Boehringer-Ingeheim, Celgene, Gebro, Janssen, Leo-Pharma, Lilly, Merck-Serono, MSD, Novartis, Pfizer, Regeneron, Roche, Sandoz, SUN Pharmaceutical Industries).
HB: Investigator, consultant, speaker or advisory boards (AbbVie, Actelion, Amgen, AnaptysBio, Baxalta, Bayer, Boehringer-Ingeheim, Celgene, Janssen, Leo-Pharma, Lilly, MSD, Novartis, Pfizer, SUN Pharmaceuticals, Takeda, UCB); grant support from Pfizer.

†Authors contributed equally.
Introduction
Psoriasis is a chronic, immune-mediated disease affecting approximately 100 million people worldwide and 2.2% of the UK population. Psoriasis affects men and women of all ages and can manifest in many different forms, the most common being psoriasis vulgaris (or plaque psoriasis). Plaque psoriasis is characterized by patches of erythema covered in a silvery-white scale, the result of rapid hyperproliferation and dysregulated differentiation of epidermal keratinocytes.

The aetiology of psoriasis is multifactorial and includes a complex interplay of genetic, environmental, infectious and lifestyle factors. Genome-wide association studies have identified numerous psoriasis-associated gene loci, including the HLA-Cw6 gene, specifically the HLA-class I allele, HLA-C*06:02, located within Psoriasis Susceptibility Locus 1 (PSORS1 on 6p21.3). Polymorphisms located within this gene locus confer the highest risk of psoriasis (odds ratio [OR] 4.02–16.82). Gene loci outside the HLA region mostly represent common genetic variants with low effect sizes, including polymorphisms in the IL-23/TH17 immune axis such as IL12B (OR 0.78–1.15) and IL23R (OR 0.87–1.10). Other variants, independent of HLA-C*06:02, are related to innate immune pathways, antigen presentation, and T-cell activation and differentiation. When combined with HLA-C*06:02, single-nucleotide polymorphisms in IL23A, IL23R, IL12B, NFKB1 and TNIP1 are associated with severe disease.

Overall, most of the psoriasis-associated gene loci are related to the innate and/or adaptive immune system. However, as the majority of putative causal variants are located in noncoding regions, and coupled with a complex genetic environment, it remains difficult to assign individual gene variants precise roles in the pathogenesis of, and susceptibility to, psoriasis.

Multiple inflammatory cell types are present in plaques, including dendritic cells (DCs), T cells and macrophages, which contribute to disease pathogenesis and drive keratinocyte proliferation. T cells are known to be central to the pathogenesis of psoriasis; interfering with T-cell trafficking and cutaneous T-cell recruitment improves psoriasis. Inhibition of CD8+ T-cell infiltration and activation into the epidermis prevented the development of psoriasis in a mouse model using human skin transplants. More specifically, CD4+ and CD8+ T cells with an interleukin-17 (IL-17) secretory phenotype (T-17 cells) are important contributors owing to their production of the pro-inflammatory cytokines IL-17, IL-22 and tumour necrosis factor (TNF).

Also, a shift in the T-cell pool during psoriasis in which regulatory T cells (Tregs) begin expressing IL-17A has recently been identified. Expression of the Treg master transcription factor Foxp3 is progressively lost, whereas expression of the Th17 transcription factor retinoic acid receptor-related orphan receptor γt (RORγt), is increased by Tregs. This process appears to be augmented by IL-23 and may be a contributing factor to the chronic inflammation seen in psoriasis. DCs are also important in the pathogenesis of psoriasis owing to their influence on T-cell activation and cytokine production. Myeloid DCs (CD11c+) are major producers of IL-23 in the skin, Tip-DCs (a subset of CD11c+ DCs that express inducible nitric oxide synthase) are a source of TNF, and plasmacytoid DCs produce high levels of type 1 interferon (IFN).

CD163+–activated macrophages are also more abundant in psoriasis compared with normal skin and express products typical of classically activated macrophages, including IL-23p19 and IL-12/23p40. Although their exact role in the pathogenesis of psoriasis remains unclear, IL-17A–expressing neutrophils are known to aggregate in the epidermis, forming Munro’s microabscesses in psoriatic lesions. Keratinocytes are a skin-specific source of IL-23 and, in health, maintain cutaneous immunity through activation of T-17 pathways.

It has been suggested that the localized activation and recruitment of inflammatory cells to plaques are the result of an autoimmune response in the skin. The human leucocyte antigen (HLA) class I allele, HLA-C*06:02, is the main risk allele in psoriasis. As HLA-class I molecules present peptide antigens from intracellular antigens to CD8+ T cells, a HLA-class I restricted autoimmune response must be directed against a particular target cell. An unbiased analysis of epidermal CD8+ T-cell reactivity...
unveiled an autoimmune response against melanocytes mediated by HLA-C*06:02 and identified ADAMTS-like protein 5 (ADAMTSL5) as a melanocyte autoantigen. ADAMTSL5, expressed by epidermal melanocytes, activates CD8+ T cells in the epidermis and has been proposed as an explanation of why psoriasis manifests in the skin. Cathelicidin (LL-37) is another likely autoantigen. LL-37 is a cationic peptide involved in antimicrobial defence and is known to stimulate T cells. Complexed with nucleic material, LL-37 has been shown to activate the production of IFN by DCs through ligation of endosomal Toll-like receptors (TLRs). Circulating T cells specific to LL-37 were present in 46% of tested patients with psoriasis. More recently, psoriatic T cells have been shown to recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a.

The IL-23/TH17 immune axis

When the immune system was initially considered dichotomous, being composed primarily of TH1 and TH2 cells, psoriasis was thought to involve a TH1 response, driven by the cytokines IFNγ and IL-12. However, clinical trials evaluating the efficacy of anti-IFNγ therapies for the treatment of psoriasis were not successful, indicating that IFNγ does not hold a bottleneck position in the pathophysiology of psoriasis. IL-12 is composed of two subunits, p35 and p40. When increased expression of p40 was discovered in psoriatic lesions, this led to the initial conclusion that IL-12 expression was elevated in psoriasis. However, when it was later shown that the p40 subunit of IL-12 is also found in IL-23, Lee and colleagues were able to attribute the increased expression of p40 in psoriatic skin to IL-23, while not IL-12, as previously suggested. As IL-23 is involved in the TH17 axis, while IL-12 drives TH1 cell development, the IL-23/TH17 immune axis is now thought to be central to the pathogenesis of psoriasis. The main cytokines involved in psoriasis pathogenesis, IL-23, TNF and IL-17, can be subdivided into regulatory and effector cytokines based on their mode of action. IL-23 exerts regulatory effects on the maintenance of TH17 cells, whereas IL-17 and TNF mediate effector functions of innate (TNF) and adaptive (TNF, IL-17) immune cells.

IL-23: a critical upstream cytokine in the pathogenesis of psoriasis

IL-23 is a key cytokine involved in protective immune responses to bacterial and fungal infections; however, dysregulated IL-23 production also promotes autoimmune inflammation. IL-23 was identified in 2000 as a heterodimer composed of the IL-12/23p40 subunit and a newly discovered p19 subunit that is exclusive to IL-23. IL-23 signals through a heterodimeric receptor complex composed of two subunits, IL-23R and IL-12Rβ1. This complex predominantly activates signal transducer and

![Figure 1](image-url)
activator of transcription 3 (STAT3), leading to IL-23–dependent gene expression. IL-23 is an upstream regulatory cytokine that acts early in the inflammatory cascade in psoriasis (Fig. 1) to maintain the T\textsubscript{H}17 cell phenotype and is critical in the production of downstream effector cytokines, such as IL-17A, IL-17F and TNF (Table 1). It is important to note that IL-23 cannot directly promote T\textsubscript{H}17 cell differentiation as the IL-23 receptor is not expressed on naïve T cells. IL-6 and transforming growth factor β (TGF-β) released by dermal DCs elicit RORγt-dependent differentiation of naïve T cells into T\textsubscript{H}17 cells, and the phenotype is then maintained by IL-23.

Human studies and animal models of psoriasis have confirmed the critical role of IL-23 signalling in the pathogenesis of psoriasis. For example, IL-17A and IL-17F inductions were completely abolished in IL-23p19 knock-out mice, and intradermal injection of IL-23–induced skin changes was consistent with human psoriasis in wild-type mice. In humans, expression of IL-23p19 messenger RNA is increased in psoriatic lesions compared with normal skin. In patients with psoriasis, the IL-23 receptor is over-expressed on dermal DCs and epidermal Langerhans cells; whereas, in psoriatic lesions, IL-23 itself is overproduced by dermal DCs and keratinocytes. In mice, nociceptors interact with dermal DCs and induce the production of IL-23, which drives skin inflammation associated with psoriasis.

IL-17: a downstream effector cytokine

The IL-17 cytokine family consists of six isoforms termed IL-17 A–F. Increased expression of IL-17A, E and F in psoriatic lesions has been described. T\textsubscript{H}17 (CD4+) cells are a major source of IL-17A, although this cytokine can also be produced by CD8+ T cells and γδ T cells, natural killer T cells, mast cells and neutrophils. IL-17 is an effector cytokine downstream of IL-23 that mediates psoriatic inflammation (Fig. 1). In health, T\textsubscript{H}17 cells act to regulate protective immune responses, promote microbial killing (via IL-26), and clear bacterial and fungal pathogens by inducing tissue inflammation. The IL-17 receptor is expressed on many cell types, including T cells, epithelial cells and fibroblasts. IL-17 induces IL-17 receptor–dependent proliferation of keratinocytes and production of pro-inflammatory cytokines, including IL-1β, IL-6 and TNF, and antimicrobial peptides, including β-defensin and matrix metalloproteinase 9. Blockade of either IL-17A or the IL-17 receptor has been shown to be an effective therapy in plaque psoriasis.

Therapeutic targeting in psoriasis

The evolution of biologics for the treatment of psoriasis has mirrored the evolving understanding of the immunopathogenesis of the disease (Fig. 1). Early treatment options centred on broad immunosuppression; however, as our understanding of the pathogenesis has improved, more-targeted therapies have become available.

TNF inhibitors

Efficacy of TNF blockade in psoriasis was identified in patients with inflammatory bowel disease (IBD) and psoriasis who were prescribed TNF inhibitors for the treatment of IBD. This observation initiated the clinical development of TNF inhibitors for psoriasis. TNF inhibitors currently approved for the treatment of psoriasis are etanercept, adalimumab and infliximab. These agents have proven efficacy, but their broad mechanism of action is associated with safety issues, including an increase in the risk for severe bacterial and viral infections and potentially cancer. Concerns regarding the safety of TNF inhibition have driven a need for new, more-targeted biologics.

IL-17A inhibitors

The first IL-17A inhibitor for the treatment of moderate-to-severe plaque psoriasis, secukinumab, was approved for the

Table 1 Effects of IL-23 vs IL-17A in psoriasis
IL-23
Cytokine type
Primary source
Primary target
Role
Effect
Potential consequences of blockade

AEs, adverse events; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; IL, interleukin; LL-37, cathelicidin; T\textsubscript{H}17, T-helper 17; TNF, tumour necrosis factor.
treatment of moderate-to-severe plaque psoriasis in 2015, followed by ixekizumab in 2016. Both compounds have demonstrated strong efficacy with a fast onset of action. However, they require significant loading doses and frequent dosing to maintain responses. In addition, candidiasis occurred more frequently in patients with psoriasis receiving secukinumab compared with those taking etanercept, although the overall incidence was low. Increased susceptibility to infections has been identified in mice lacking IL-17 and the IL-17 receptor, but this effect has not been reported in humans who have mutations in the IL-23/TH17 immune axis. Targeting IL-17 and the IL-17 receptor has also been associated with exacerbated IBD in mice and was ineffective in treating patients with moderate-to-severe Crohn’s disease (CD).

Brodalumab, which targets the IL-17 receptor, has recently been approved for the treatment of moderate-to-severe plaque psoriasis. In three phase 3 studies of brodalumab in moderate-to-severe plaque psoriasis (AMAGINE-1 [NCT01708590], AMAGINE-2 [NCT01708603], AMAGINE-3 [NCT01708629]), a ≥ 75% improvement in the Psoriasis Area and Severity Index (PASI 75) was observed at Week 12 compared with baseline. An additional biologic, bimekizumab, an antibody targeting IL-17A, IL-17F, and the heterodimer IL-17A/F, is currently in development. A phase 1, first-in-human study of bimekizumab in patients with mild-to-moderate plaque psoriasis, showed dose-dependent improvements in clinical features of plaque psoriasis, including PASI and Physician’s Global Assessment scores, compared with placebo.

IL-12/23 inhibitors

Ustekinumab is currently the only approved drug that inhibits the IL-12/23p40 subunit, thus antagonizing both IL-12 and IL-23. Ustekinumab is generally considered safe and well-tolerated based on both clinical and longitudinal, real-world studies and long-term follow-up. Development of a second IL-12/23p40 antibody, briakinumab, was discontinued before all safety data were made available, some speculate that this decision was associated with cardiovascular safety concerns. However, meta-analyses and long-term follow-up of therapies targeting IL-12/23p40 show an overall reduced risk of cardiovascular events, so further data are needed to fully exclude a possible association between major cardiovascular events and the use of anti-IL-12/23 agents.

Development of biologics that specifically target IL-23 via IL-23p19, as opposed to the shared IL-12/23p40 subunit, may be of clinical benefit as IL-12 signalling is spared. A protective role for IL-12 in tumorigenesis has been suggested. In humans, IL-12 levels are significantly reduced in patients with breast cancer compared with healthy controls, and mutations in the IL-12(p40) gene lead to a higher risk of prostate cancer. IL-12 has also been shown to have a protective role, limiting skin inflammation by restricting the infiltration of IL-17-expressing CD4 T cells in the imiquimod mouse model of psoriasis.

Table 2 Comparison of efficacy for biologics targeting IL-23p19

Characteristic	Tildrakizumab[†] 100 mg¹²⁵	Tildrakizumab[†] 200 mg¹²⁵	Guselkumab[‡] 100 mg^{126,127}	Risankizumab 180 mg¹³⁰
Phase	Phase 3	Phase 3	Phase 3	Phase 2
Dosing schedule				
Initial	Weeks 0, 4	Weeks 0, 4	Weeks 0, 4	Week 0
Maintenance	q12w	q12w	q8w	q12w
Efficacy, %	Week 12	Week 12	Week 16	Week 12
PASI 75	61–64	62–66	86–91	88
PASI 90	35–39	35–37	70–73	79
PASI 100	12–14	12–14	34–37	48
PGA 0 or 1	55–58	59	84–85‡	NR
Long-term efficacy, %	Week 28‡	Week 28‡	Week 24	Week 36
PASI 75	73–80	73–82	89–91	88
PGA 0 or 1	65–66	69	84‡	NR

^{*Data are not from head-to-head comparisons.}
^{†Data from reSURFACE1 and reSURFACE2 trials.}
^{‡Data from VOYAGE 1 and VOYAGE 2 trials.}
^{§IgA 0 or 1 reported.}
^{¶Responder analysis includes only PASI 75 responders at Week 16.}

IGA, investigator global assessment; IL, interleukin; NR, not reported; PASI, Psoriasis Area Severity Index; PGA, Physician’s Global Assessment; q8w, every 8 weeks; q12w, every 12 weeks.
psoriasis (Table 2): tildrakizumab, guselkumab and risankizu-
mab. A further antibody, LY3074828 (mirikizumab), is now
entering phase 2 development.124

Two phase 3 studies of tildrakizumab have been completed: reSURFACE 1 (NCT01722331) and reSURFACE 2 (NCT01729754). These studies demonstrated the efficacy of til-
drakizumab at Week 12 compared with placebo (reSURFACE 1
and 2) or etanercept (reSURFACE 2 only) (PASI 75: reSURFACE
1: 200 mg 62%, 100 mg 64%, placebo 6%; reSURFACE 2: 200 mg
66%, 100 mg 61%, placebo 6%, etanercept 48%; P ≤ 0.001 in all comparisons).125 Of the patients who responded
to tildrakizumab 200 mg at Week 28 (achieved PASI 75 response:
reSURFACE 1: 200 mg 82%; reSURFACE 2: 200 mg 73%),
94% and 97% of patients maintained the response at Week 64
(reSURFACE 1) and Week 52 (reSURFACE 2), respectively.125

The results from the guselkumab phase 3 trials, VOYAGE 1
(NCT02207231) and VOYAGE 2 (NCT02207244), showed effi-
cacy in treating moderate-to-severe psoriasis compared with pla-
cebo and adalimumab at Week 16 (PASI 90 [co-primary
endpoint]: VOYAGE 1: guselkumab 73%, adalimumab 50%, pla-
cebo 3%; VOYAGE 2: guselkumab 70%, adalimumab 47%, pla-
cebo, 2%), Week 24 (VOYAGE 1: guselkumab 80%, adalimumab

Characteristic	Tildrakizumab†	Tildrakizumab†	Guselkumab‡	Risankizumab
Phase	Phase 3	Phase 3	Phase 3	Phase 2
Dosing schedule				
Initial	Weeks 0, 4	Weeks 0, 4	Weeks 0, 4	Week 0
Maintenance	q12w	q12w	q8w/q12w	q12w
Safety, %	Weeks 0–12	Weeks 0–12	Weeks 0–16	Weeks 0–24
AE	44–47	42–49	48–52	57
SAE	1–2	2–3	2	2
Severe infections	<1	<1	<1§	NR
Malignancies	<1	<1	0	NR
MACE	<1§	0‡	<1**	NR
Drug-related hypersensitivity reactions	<1	<1	NR	NR
Long-term safety, %	Weeks 12–28	Weeks 12–28	Weeks 16–48††	NR
AE	44–46	40–45	65	NR
SAE	2–3	2	3	NR
Severe infections	≤1	≤1	1§	NR
Malignancies	≤1	≤1	0	NR
MACE	0	0	0	NR

*Data are not from head-to-head comparisons.
†Data from reSURFACE1 and reSURFACE2 trials.
‡Data from VOYAGE 1 and VOYAGE 2 trials.
§Serious infections.
¶Includes non-fatal myocardial infarction, non-fatal stroke and CV deaths that are confirmed as ‘cardiovascular’ or ‘sudden’.
**Includes sudden cardiac death, myocardial infarction and stroke.
††VOYAGE 1 trial only.
AE, adverse event; IL, interleukin; MACE, major adverse cardiac event; NA, not available; NR, not reported; Q8w, every 8 weeks; q12w, every 12 weeks;
SAE, serious adverse event.

To fully understand the mechanism of action of IL-23 and IL-17 blockade in psoriasis and other chronic inflammatory diseases, there is a need
for research that explores:

- Cellular sources of IL-23 and IL-17 in psoriasis and conditions for the expression of the IL-23R and the IL-17R
- The effect of IL-23 inhibition on T\textsubscript{h}17 cells in the skin and/or lymph nodes, and the downstream effects on cytokine profile in psoriatic lesions
- The role of IL-23 inhibition in modulating the immune response and the effect on cytokines other than IL-17
- Contribution of innate immunity (e.g. recruitment of neutrophils to lesions)
- Genetic differences between responders and non-responders to IL-17 or IL-23 inhibition
- Autoantigens and triggers in psoriasis, including environmental triggers

IL, interleukin; T\textsubscript{h}17, T-helper 17.
53%; VOYAGE 2: guselkumab 75%, adalimumab 55%), and over a 1-year period (VOYAGE 1 only: Week 48, guselkumab 76%, adalimumab 48%; P < 0.001 in all comparisons).

Phase 1 data on risankizumab in moderate-to-severe chronic plaque psoriasis (NCT01577550) reveal significant improvements in the proportion of patients achieving PASI 75 at Week 12 (PASI 75: risankizumab 87%, placebo 0%; P < 0.001) and Week 24 (risankizumab 71%, placebo 13%; P = 0.009) compared with baseline. In addition, a phase 2 study (NCT02054481) demonstrated superior clinical responses compared with ustekinumab at Week 12 (PASI 75: risankizumab 80% mg 88%, ustekinumab 45/90 mg 73%) and at Week 36 (risankizumab 80 mg 88%, ustekinumab 45/90 mg 55%).

Overall, preliminary data suggest that anti–IL-23p19 agents have a favourable safety profile (Table 3). As the p19 subunit is exclusive to IL-23, whereas the p40 subunit is common to both IL-12 and IL-23, therapies that selectively target IL-23p19 should avoid unnecessary effects associated with IL-12/23p40 inhibition by sparing the function of IL-12. This is supported by animal data in which IL-12–deficient mice are susceptible to chemical carcinogenesis, whereas IL-23–deficient mice are resistant. In patients with solid tumours, 1-year survival was significantly greater in patients with elevated serum levels of IL-12. However, when targeting IL-12/23p40, it is not possible to attribute individual adverse events to specific inhibition of either IL-12 or IL-23. The relative contributions of each subunit to the safety profile will become apparent as more data from selective IL-23 inhibitors become available. To date, IL-23p19 inhibitors currently in development have not encountered signals for opportunistic infections, malignancy or worsening of IBD or CD.

Dosing regimens
Comparison of treatment regimens across clinical trials suggests that biologics blocking effector cytokines may require more frequent dosing compared with biologics that block upstream cytokines. Approved agents that block IL-17 require large loading doses with frequent administration within the first 4–12 weeks (secukinumab loading dose of 300 mg administered weekly for 4 weeks; ixekizumab loading dose of 160 mg administered once and 80 mg administered every 2 weeks for 12 weeks), with a reduction to one dose every 4 weeks for response maintenance.100,101 These dosing intervals correspond to one to two serum half-lives.100,101 In comparison, biologics that target IL-23 require less loading and allow a greater dosing interval for response maintenance (Table 2), corresponding to approximately four serum half-lives. This is probably due to differing pharmacokinetic properties and antibody affinity for IL-23p19 but might also suggest that blocking regulatory upstream cytokines may have a longer lasting effect on the pathogenic immune response in psoriasis compared with blocking effector cytokines. We propose that neutralizing IL-23 prevents the maintenance of the ongoing pathogenic T_{H}17 response without affecting the induction of T_{H}1 differentiation, which depends on IL-6 and TGF-β.

IL-23 inhibition in other inflammatory diseases
The aetiologies of psoriasis, psoriatic arthritis and CD share several candidate genes and common pathogenetic pathways, which is not surprising considering the clinical overlap of the disorders. Mutations in genes upregulated in these conditions, including IL23R, affect the IL-23/T_{H}17 immune axis, suggesting anti–IL-23 agents may have potential as treatments for CD, psoriatic arthritis and other genetically related disorders. For example, the TNF inhibitors adalimumab and infliximab are approved for the treatment of psoriasis and CD, and ustekinumab was recently approved for the treatment of CD. In addition, several anti–IL-23 agents are undergoing clinical development in psoriatic arthritis and CD.

Conclusions
There is robust evidence that the IL-23/T_{H}17 immune axis is a key driver of psoriatic inflammation, which has led to the development of biologics that specifically target key elements of this pathway. Although there are still gaps in our understanding (Table 4), IL-23 is now acknowledged to have a critical role in this pathway and is required for the maintenance of inflammatory T_{H}17 cells. Early indications from clinical trials support the use of IL-23p19–specific inhibitors as a viable treatment option that may bring additional benefits to patients with plaque psoriasis.

References
1 Bachelez H. Immunopathogenesis of psoriasis: recent insights on the role of adaptive and innate immunity. J Autoimmun 2005; 25(Suppl): 69–73.
2 Boehncke WH, Schon MP. Psoriasis. Lancet 2015; 386: 983–994.
3 Harden JL, Krueger JG, Bowcock AM. The immunogenetics of Psoriasis: a comprehensive review. J Autoimmun 2015; 64: 66–73.
4 World Health Organization. Global Report in Psoriasis. 2016.
5 Seminara NM, Abuabara K, Shin DB, et al. Validity of the Health Improvement Network (THIN) for the study of psoriasis. Br J Dermatol 2011; 164: 602–609.
6 Hay RJ, Johns NE, Williams HC, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J Invest Dermatol 2014; 134: 1527–1534.
7 National Psoriasis Foundation. Plaque Psoriasis. 2016. Available at: https://www.psoriasis.org/about-psoriasis/types/plaque (last accessed December 13, 2016).
8 Menter A, Korman NJ, Elmett CA, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 6. Guidelines of care for the treatment of psoriasis and psoriatic arthritis: case-based presentations and evidence-based conclusions. J Am Acad Dermatol 2011; 65: 137–174.
9 Huerta C, Rivero E, Rodriguez LA. Incidence and risk factors for psoriasis in the general population. Cold Spring Harb Perspect Med 2014; 4: a015354.
10 Di Meglio P, Villanova F, Nestle FO. Psoriasis. Cold Spring Harb Perspect Med 2014; 4: a015354.
11 Nair RP, Duffin KC, Helms C, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 2009; 41: 199–204.
The IL-23/T\(_{H17}\) immune axis in psoriasis

12 Capon F, Bijnakers MJ, Wolf N, et al. Identification of ZNF313/RNF114 as a novel psoriasis susceptibility gene. *Hum Mol Genet* 2008; 17: 1938–1945.

13 Cargill M, Schrodi SJ, Chang M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. *Am J Hum Genet* 2007; 80: 273–290.

14 Tilikainen A, Lassus A, Karvonen J, Varttainen P, Julin M. Psoriasis and HLA-Cw6. *Br J Dermatol* 1980; 102: 179–184.

15 Nair RP, Stuart PE, Nistor I, et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. *Am J Hum Genet* 2006; 78: 827–851.

16 Online Mendelian Inheritance in Man. Susceptibility to Psoriasis 1, PSORS1. 2017. Available at: http://www.omim.org/entry/177900 (last accessed March 01, 2017).

17 Nikamo P, Lysell J, Stahle M. Association with Genetic Variants in the IL-23 and NF-kappaB Pathways Discriminates between Mild and Severe Psoriasis Skin Disease. *J Invest Dermatol* 2015; 135: 1969–1976.

18 Zhou F, Cao H, Zuo X, et al. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease. *Nat Genet* 2016; 48: 749–746.

19 Di Meglio P, Di Cesare A, Di Cesare A, Laggner U, Nair RP, Ruether A, Stuart PE, Di Meglio P, Villanova F, Navarini AA, et al. Targeting CD80(+) T cells prevents psoriasis development. *J Allergy Clin Immunol* 2016; 138: 274–276.e276.

20 Jullien D, Prinz JC, Langley RG, Huffmeier U, Uebe S, Ekici AB, Di Meglio P, Di Cesare A, Laggner U, Nair RP, Ruether A, Stuart PE, Di Meglio P, Villanova F, Navarini AA, et al. Targeting CD80(+) T cells prevents psoriasis development. *J Allergy Clin Immunol* 2016; 138: 274–276.e276.

21 Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. *J Exp Med* 2006; 203: 2271–2279.

22 Bovenhuis HJ, van de Kerkhof PC, van Erp PE, Wostenrenk R, Roosten I, Koenen HJ. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. *J Invest Dermatol* 2011; 131: 1853–1860.

23 Lee E, Treplicchio WL, Oesterich JL, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. *J Exp Med* 2004; 199: 125–130.

24 Lowes MA, Chamian F, Abello MV, et al. Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). *Proc Natl Acad Sci U S A* 2005; 102: 19057–19062.

25 Cella M, Jarrossay D, Facchetti F, et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. *Nat Med* 1999; 5: 919–923.

26 Nestle FO, Conrad C, Tun-Kyi A, et al. Plasmacytoid dendritic cells initiate psoriasis through interferon-alpha production. *J Exp Med* 2005; 202: 143–153.

27 Fuentes-Duculan J, Suarez-Farinaz M, Zaba LC, et al. A subpopulation of CD163-positive macrophages is classically activated in psoriasis. *J Invest Dermatol* 2010; 130: 2412–2422.

28 Brembilla NC, Stalder R, Senza L, Bobenecette WH. IL-17A localizes in the exocytic compartment of mast cells in psoriatic skin. *Br J Dermatol* 2017; DOI: 10.1111/bjd.15358. [Epub ahead of print].

29 Piskin G, Sylva-Steenland RM, Bos JD, Teunissen MB. In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. *J Invest Dermatol* 2006; 127: 1908–1915.

30 Arakawa A, Siewert K, Stohr J, et al. Melanocyte antigen triggers autoimmunity in human psoriasis. *J Exp Med* 2015; 212: 2203–2212.

31 Krueger JG. An autoimmune “attack” on melanocytes triggers psoriasis and cellular hyperplasia. *J Exp Med* 2015; 212: 2186.

32 Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. *Nat Rev Immunol* 2008; 8: 607–618.

33 Lande R, Berti E, Jandus C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. *Nat Commun* 2014; 5: 5621.

34 Lande R, Gregorio J, Facchetti F, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. *Nature* 2007; 449: 564–569.

35 Ganguly D, Chamilos G, Lande R, et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. *J Exp Med* 2009; 206: 1983–1994.

36 Meller S, Di Domizio J, Voo KS, et al. T(H)17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. *Nat Immunol* 2015; 16: 970–979.

37 Cheung KL, Jarrett R, Subramanian S, et al. Psoriatic T cells recognize neoplastic antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. *J Exp Med* 2016; 213: 2399–2412.

38 Schlaar J, Buslau M, Jochum W, et al. T cells involved in psoriasis vulgaris belong to the Th1 subset. *J Invest Dermatol* 1994; 102: 145–149.

39 Harden JL, Johnson-Huang LM, Chamian MF, et al. Humanized anti-IFN-gamma (HuZAF) in the treatment of psoriasis. *J Allergy Clin Immunol* 2015; 135: 553–556.

40 Kobayashi M, Fitz L, Ryan M, et al. Identification and purification of a natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. *J Exp Med* 1989; 170: 827–845.
56 Yawalkar N, Karlen S, Hunger R, Brand CU, Braathen LR. Expression of interleukin-12 is increased in psoriatic skin. J Invest Dermatol 1998; 111: 1053–1057.
57 Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000; 13: 715–725.
58 Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-17 family members and inflammation. J Biol Chem 2003; 278: 1910–1914.
59 van der Fits L, Mourits S, Voerman JS, et al. TGFbeta hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Invest Dermatol 2006; 126: 957–967.
60 Di Cesare A, Di Meiglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 2009; 129: 1339–1350.
61 Volpe E, Servant N, Zöllinger R, et al. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)17 responses. Nat Immunol 2008; 9: 650–657.
62 Chan JR, Blumenschein W, Murphy E, et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 2006; 203: 2577–2587.
63 Brembilla NC. Keratinocyte-Derived IL-17E Contributes to Inflammation in Psoriasis. J Invest Dermatol 2016; 136: 1945–1952.
64 van de Kerkhof PC, Griffiths CE, Reich K, et al. Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol 2010; 135: 129–138.
65 Stritesky GL, Yeh N, Kaplan MH. IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol 2008; 181: 5948–5955.
66 van der Fits L, Mourits S, Voerman JS, et al. Phase 3 Trials of Ixekizumab in Moderate-to-Severe Plaque Psoriasis. N Engl J Med 2016; 375: 345–356.
67 Michel ML, Keller AC, Paget C, et al. Identification of an IL-17-producing NK1.1(+) NKT cell population involved in airway neutrophilia. J Exp Med 2007; 204: 995–1001.
68 Doiney JM, Becourt C, Amniai L, et al. Skin and peripheral lymph node invariant NKT cells are mainly retinoic acid receptor-related orphan receptor (gamma)t+ and respond preferentially under inflammatory conditions. J Immunol 2009; 183: 2142–2149.
69 Lin AM, Rubin CJ, Khandpur R, et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol 2011; 187: 490–500.
70 Doi H, Hatanaka Y, Kitajima A, et al. IL-17 drives psoriatic inflammation via distinct, target cell-specific mechanisms. Proc Natl Acad Sci U S A 2014; 111: E3422–E3431.
71 Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from genetics to pathogenesis. J Invest Dermatol 2017; 137: 1900–1908.
72 Brembilla NC. Keratinocyte-Derived IL-17E Contributes to Inflammation in Psoriasis. J Invest Dermatol 2016; 136: 1945–1952.
73 Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23–17 pathway in psoriasis. Nat Rev Immunol 2014; 14: 585–600.
104 O'Connor W Jr, Kamanaka M, Booth CJ, et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol 2009; 10: 603–609.

105 Hueber W, Sands BE, Lewitzky S, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 2012; 61: 1693–1700.

106 Valeant Receives FDA Approval Of SILIQ™ (Brodalumab) For Moderate–To-Severe Plaque Psoriasis [press release]. 2017.

107 Lebwohl M, Strober B, Menter A, et al. Phase 3 Studies Comparing Brodalumab with Ustekinumab in Psoriasis. N Engl J Med 2015; 373: 1318–1328.

108 Papp KA, Reich K, Paul C, et al. A prospective phase III, randomized, double-blind, placebo-controlled study of brodalumab in patients with moderate-to-severe plaque psoriasis. Br J Dermatol 2016; 175: 273–286.

109 Glatt S, Helmer E, Haier B, et al. First-in-human randomized study of bimekizumab, a humanized monoclonal antibody and selective dual inhibitor of IL-17A and IL-17F, in mild psoriasis. Br J Clin Pharmacol 2017; 83: 991–1001.

110 Janssen Biotech. STELARA® (ustekinumab) PI. September 2016.

111 Papp KA, Langley RG, Lebwohl M, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 2008; 371: 1675–1684.

112 Leonardi CL, Kimball AB, Papp KA, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 78-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 2008; 371: 1665–1674.

113 Kalb RE, Fiorentino DF, Lebwohl MG, et al. Risk of serious infection with biologic and systemic treatment of psoriatic results from the Psoriasis Longitudinal Assessment and Registry (PSOLAR). JAMA Dermatol 2015; 151: 961–969.

114 Papp KA, Griffiths CE, Gordon K, et al. Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: final results from 5 years of follow-up. Br J Dermatol 2013; 168: 844–854.

115 Gordon KB, Langley RG, Gottlieb AB, et al. Phase III, randomized, controlled trial of the fully human IL-12/23 mAb briakinumab in moderate-to-severe psoriasis. J Invest Dermatol 2012; 132: 304–314.

116 Abbott Laboratories, United States Securities and Exchange Commission Form 8-K, January 14, 2011.

117 Schaarsschmidt ML, Kromer C, Herr R, et al. Patient preferences for biologics in psoriasis: top priority of safety for cardiovascular patients. PLoS ONE 2015; 10: e0144335.

118 Puig L. Cardiovascular risk and psoriasis: the role of biologic therapy. Actas Dermosifiliogr 2012; 103: 833–862.

119 Ryan C, Leonardi CL, Krueger JG, et al. Association between biologic therapies for chronic plaque psoriasis and cardiovascular events: a meta-analysis of randomized controlled trials. JAMA 2011; 306: 864–871.

120 Tselos T, Kyrgidis A, Trigoni A, Zouboulis CC. Association of ustekinumab and biakinumab with major adverse cardiovascular events: an appraisal of meta-analyses and industry sponsored pooled analyses to date. Dermatoendocrinol 2012; 4: 320–323.

121 Youssf SS, Mohammad MM, Ezz-El-Arab LR. Clinical significance of serum IL-12 level in patients with early breast carcinoma and its correlation with other tumor markers. Open Access Maced J Med Sci 2015; 3: 640–644.

122 Winchester DA, Till C, Goodman PJ, et al. Variation in genes involved in the immune response and prostate cancer risk in the placebo arm of the Prostate Cancer Prevention Trial. Prostate 2015; 75: 1403–1418.

123 Kulig P, Musiol S, Freiberger SN, et al. IL-12 protects from psoriasisform skin inflammation. Nat Commun 2016; 7: 13466.

124 Clinicaltrials.gov. A Study of LY3074828 in Participants With Moderate to Severe Plaque Psoriasis. Available at: https://clinicaltrials.gov/ct2/show/NCT02899988 (last accessed January 2017).

125 Reich K, Papp K, Bluvelt A, et al. Tildrakizumab, a selective IL-23p19 antibody, in the treatment of chronic plaque psoriasis: results from two randomised, controlled, Phase 3 trials (reSURFACE 1 and reSURFACE 2). Lancet 2017. DOI: 10.1016/S0140-6736(17)31279-5. [Epub ahead of print].

126 Bluvelt A, Papp KA, Griffiths CE, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: Results from the phase III, double-blinded, placebo- and active comparator-controlled VOYAGE 1 trial. J Am Acad Dermatol 2017; 76: 405–417.

127 Reich K, Armstrong AW, Foley P, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: results from the phase III, double-blind, placebo- and active comparator-controlled VOYAGE 2 trial. J Am Acad Dermatol 2017; 76: 418–431.

128 Gordon KB, Duffin KC, Bissonnette R, et al. A phase 2 trial of guselkumab versus adalimumab for plaque psoriasis. N Engl J Med 2015; 373: 136–144.

129 Krueger JG, Ferris LK, Menter A, et al. Anti-IL-23A mAb Bl 655066 for treatment of moderate-to-severe psoriasis: safety, efficacy, pharmacokinetics, and biomarker results of a single-rising-dose, randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol 2015; 136: 116–124.e117.

130 Papp K, Menter A, Sofen H et al. Onset and duration of clinical response following treatment with a selective IL-23p19 inhibitor (Bl 655066) compared with ustekinumab in patients with moderate-to-severe plaque psoriasis. Presentation presented at: European Academy of Dermatology and Venerology 2015; Copenhagen, Denmark.

131 Langowski JL, Zhang X, Wu L, et al. IL-23 promotes tumour incidence and growth. Nature 2006; 442: 461–465.

132 Liesson P, Mendo S, Mandala M, et al. Physiopathology of IL-12 in human solid neoplasms: blood levels of IL-12 in early or advanced cancer patients, and their variations with surgery and immunotherapy. J Biol Regul Homeost Agents 1998; 12: 38–41.

133 Papp K, Thaci D, Reich K, et al. Tildrakizumab (MK-3222), an anti-interleukin-23p19 monoclonal antibody, improves psoriasis in a phase IIIB randomized placebo-controlled trial. Br J Dermatol 2015; 173: 930–939.

134 Sofen H, Smith S, Matheson RT, et al. Gusekumab (an IL-23–specific mAb) demonstrates clinical and molecular response in patients with moderate-to-severe psoriasis. J Allergy Clin Immunol 2014; 133: 1032–1040.

135 Kopp T, Riedl E, Bangert C, et al. Clinical improvement in psoriasis with specific targeting of interleukin-23. Nature 2015; 521: 222–226.

136 Zhuang Y, Calderon C, Marciñak SJ Jr, et al. First-in-human study to assess guselkumab (anti-IL-23 mAb) pharmacokinetics/safety in healthy subjects and patients with moderate-to-severe psoriasis. Eur J Clin Pharmacol 2016; 72: 1303–1310.

137 Capon F, Burden AD, Trembath RC, Barker JN. Psoriasis and other complex trait dermatoses: from Loci to functional pathways. J Invest Dermatol 2012; 132: 915–922.

138 Stuart PE, Nair RP, Tsei LC, et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am J Hum Genet 2015; 97: 816–836.

139 Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. Gut 2011; 60: 1739–1753.

140 Boehncke WH. Psoriasis and psoriatic arthritis: flip sides of the coin? Acta Derm Venereol 2016; 96: 436–441.

141 Filer C, Ho P, Smith RL, et al. Investigation of association of the IL12B and IL23R genes with psoriatic arthritis. Arthritis Rheum 2008; 58: 3705–3709.

142 Clinicaltrials.gov. Efficacy and Safety Study of Gusekumab in the Treatment of Participants With Active Psoriatic Arthritis. 2017. Available at: https://clinicaltrials.gov/ct2/show/NCT02319759?term=NCT02319759&rank=1 (last accessed March 01 2017).
Clinicaltrials.gov. BI 655066/ABBV066/Risankizumab Compared to Placebo in Patients With Active Psoriatic Arthritis. 2017. Available at: https://clinicaltrials.gov/ct2/show/NCT02719171?term=NCT02719171&rank=1 (last accessed March 01, 2017).

Clinicaltrials.gov. Efficacy, Safety and Pharmacokinetics of BI 655066/ABBV-066 (Risankizumab) in Patients With Active, Moderate-to-severe Crohn’s Disease. 2016. Available at: https://clinicaltrials.gov/ct2/show/NCT02031276?term=NCT02031276&rank=1 (last accessed March 01 2017).

Gaspari AA, Tyring S. New and emerging biologic therapies for moderate-to-severe plaque psoriasis: mechanistic rationales and recent clinical data for IL-17 and IL-23 inhibitors. Dermatol Ther 2015; 28: 179–193.

Lynde CW, Poulin Y, Vender R, Bourcier M, Khalil S. Interleukin 17A: toward a new understanding of psoriasis pathogenesis. J Am Acad Dermatol 2014; 71: 141–150.

Mease PJ. Inhibition of interleukin-17, interleukin-23 and the TH17 cell pathway in the treatment of psoriatic arthritis and psoriasis. Curr Opin Rheumatol 2015; 27: 127–133.

Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood 2008; 112: 1557–1569.

Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med 2009; 361: 496–509.

Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6: 1123–1132.

Yoon J, Leyva-Castillo JM, Wang G, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med 2016; 213: 2147–2166.