New physics contributions in $B \to \pi \tau \bar{\nu}$ and $B \to \tau \bar{\nu}$

Minoru TANAKA1 and Ryoutaro WATANABE†2

1Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*E-mail: tanaka@phys.sci.osaka-u.ac.jp

2Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon, 34051, Republic of Korea
*E-mail: wryou1985@ibs.re.kr

We study possible new physics contributions in $B \to \pi \tau \bar{\nu}$ and $B \to \tau \bar{\nu}$ employing the model-independent effective Lagrangian that describes the quark-level transition $b \to u \tau \bar{\nu}$ at low energies. The decay rate of $B \to \pi \tau \bar{\nu}$ and its theoretical uncertainty are evaluated using the $B \to \pi$ form factors given by recent lattice QCD studies. Comparing theoretical results with the current experimental data, $\mathcal{B}(B \to \pi \tau \bar{\nu}) < 2.5 \times 10^{-4}$ and $\mathcal{B}(B \to \tau \bar{\nu}) = (1.14 \pm 0.22) \times 10^{-4}$, we obtain constraints on the Wilson coefficients that quantify potential new physics. We also present the expected sensitivity of the SuperKEKB/Belle II experiment.

†These authors contributed equally to this work
1 Introduction

Discrepancy of $\sim 4\sigma$ between experimental results and the standard model (SM) exists in the semitauonic B meson decays, $B \to D^{(*)}\tau\bar{\nu}_\tau$ [1–5]. This anomaly is interesting apart from its statistical significance in the sense that it suggests a manifestation of new physics beyond the SM in the tree-level charged current SM processes involving the third-generation quark and lepton.

Since the interaction of quarks and leptons in the third generation might be a clue to new physics, it is natural to search for a similar effect in the $b \to u\tau\bar{\nu}$ transition\(^1\). The evidence of the purely tauonic decay, $B^- \to \tau^-\bar{\nu}$, has been found by both the BaBar and Belle collaborations and the combined value of their results of the branching fraction is $\mathcal{B}(B^- \to \tau^-\bar{\nu}) = (1.14 \pm 0.22) \times 10^{-4}$ [6], which is consistent with the SM prediction. Recently, the Belle collaboration reported on the semitauonic decay, $\bar{B}^0 \to \pi^+\tau^-\bar{\nu}$ [7]. They observed no significant signal and obtained an upper limit of the branching fraction as $\mathcal{B}(\bar{B}^0 \to \pi^+\tau^-\bar{\nu}) < 2.5 \times 10^{-4}$ at the 90% confidence level (CL). As given in Ref. [7], the observed signal strength is $\mu = 1.52 \pm 0.72$, where $\mu = 1$ corresponds to the branching fraction in units of 10^{-4}, and thus one obtains

$$\mathcal{B}(\bar{B}^0 \to \pi^+\tau^-\bar{\nu}) = (1.52 \pm 0.72 \pm 0.13) \times 10^{-4},$$

where the second error comes from the systematic uncertainty (8%). Since the SM predicts $\sim 0.7 \times 10^{-4}$, a new physics contribution of similar magnitude to the SM is allowed. We expect that the SuperKEKB/Belle II experiment will provide important information on possible new physics in $\bar{B}^0 \to \pi^+\tau^-\bar{\nu}$ as well as $B^- \to \tau^-\bar{\nu}$.

Sensitivity to new physics effects depends on the precision of theoretical predictions as well as experimental errors. The major uncertainty in the SM prediction of $\mathcal{B}(\bar{B}^0 \to \pi^+\tau^-\bar{\nu})$ is ascribed to the Cabibbo-Kobayashi-Maskawa matrix element $|V_{ub}|$ and the $B \to \pi$ hadronic form factors. In order to reduce these uncertainties, it is useful to introduce the ratio of branching fractions [8–10],

$$R_\pi = \frac{\mathcal{B}(\bar{B}^0 \to \pi^+\tau^-\bar{\nu})}{\mathcal{B}(\bar{B}^0 \to \pi^+\ell^-\bar{\nu})},$$

as in the study of $\bar{B} \to D^{(*)}\tau\bar{\nu}_\tau$. Although $|V_{ub}|$ cancels out in this ratio, there remains the uncertainty due to the form factors. Using the result of the recent lattice QCD study [11], in which the relevant form factors are obtained by fitting both the lattice amplitude and the experimental data of $B \to \pi\ell\bar{\nu}$ [12–15], the SM prediction is obtained as

\(^1\)The charge-conjugated mode is implicit in the present work.
\[R_{\pi}^{\text{SM}} = 0.641 \pm 0.016 \ [10, 16]^2. \] The experimental value is estimated as \(R_{\pi}^{\text{exp}} \approx 1.05 \pm 0.51 \), where \(B(B \to \pi \ell \bar{\nu}) = (1.45 \pm 0.02 \pm 0.04) \times 10^{-4} \ [6] \) is used\(^3\). New physics effects in \(R_{\pi} \) and related quantities are studied in the literature. The effect of charged Higgs boson, which appears in the supersymmetric extension of the SM, is studied in Refs. [8–10]. The supersymmetric SM without \(R \) parity is also studied in \(b \to u \) (semi)leptonic processes \([18]\).

In the present work, we study new physics effects in \(B \to \pi \tau \bar{\nu} \) and \(B \to \tau \bar{\nu} \) using the model-independent effective Lagrangian that describes the \(b \to u \tau \bar{\nu} \) transition at low energies. Comparing with the current experimental data, we obtain constraints on the Wilson coefficients that quantify potential new physics. The theoretical uncertainties of \(R_{\pi} \) in both the SM and new physics contributions are examined with the lattice QCD results. We also discuss prospects of new physics search in \(B \to \pi \tau \bar{\nu} \) and \(B \to \tau \bar{\nu} \) at SuperKEKB/Belle II.

This paper is organized as follows. In Sec. 2, we will introduce the \(b \to u \tau \bar{\nu} \) effective Lagrangian that describes possible new physics contributions to \(B \to (\pi) \tau \bar{\nu} \). We will also provide the relevant rate formulae and theoretical uncertainties derived from errors of form factor parameters given by lattice studies. In Sec. 3, we will present current constraints on new physics from \(B \to \pi \tau \bar{\nu} \) and \(B \to \tau \bar{\nu} \), and discuss future prospects at SuperKEKB/Belle II. A summary will be given in Sec. 4.

2 Formulae of new physics effects

2.1 Effective Lagrangian

In order to represent possible new physics effects at low energies, we adopt the model-independent approach with use of an effective Lagrangian \([19, 20]\). As in our previous work \([19]\), we assume that \(b \to u \tau \bar{\nu} \) is affected by new physics while \(b \to u \ell \bar{\nu} \ (\ell = e, \mu) \) is practically described by the SM. The effective Lagrangian used in this work is given by

\[
- \mathcal{L}_{\text{eff}} = 2\sqrt{2} G_F V_{ub} \left[(1 + C_{V1}) O_{V1} + C_{V2} O_{V2} + C_{S1} O_{S1} + C_{S2} O_{S2} + C_T O_T \right].
\]

\(\text{Ref. \ [17]} \) gives a different SM prediction. Our evaluation below agrees with Refs. \([10, 16]\). \(^3\) This is not the same way to obtain the experimental result of \(R_{D^{(*)}} = B(B \to D^{(*)} \tau \bar{\nu})/B(B \to D^{(*)} \ell \bar{\nu}) \ [1–5]. \) The ratios \(R_{D^{(*)}} \) are directly extracted with the signal events in the numerator and the normalization ones in the denominator both involved in the same event sample.
where the four-fermion operators are defined as

\begin{align}
O_{V_1} &= (\bar{u} \gamma^\mu P_L b)(\bar{\tau} \gamma_\mu P_L \nu_\tau), \\
O_{V_2} &= (\bar{u} \gamma_\mu P_R b)(\bar{\tau} \gamma_\mu P_L \nu_\tau), \\
O_{S_1} &= (\bar{u} P_R b)(\bar{\tau} P_L \nu_\tau), \\
O_{S_2} &= (\bar{u} P_L b)(\bar{\tau} P_L \nu_\tau), \\
O_T &= (\bar{u} \sigma^{\mu\nu} P_L b)(\bar{\tau} \sigma_{\mu\nu} P_L \nu_\tau),
\end{align}

and \(C_X (X = V_{1,2}, S_{1,2}, T) \) denotes the Wilson coefficient of \(O_X \) normalized by \(2\sqrt{2}G_F V_{ub} \).

We only consider \(\tau-\nu_\tau \) currents for simplicity though the neutrino flavor could be the first or second generation in some new physics models. One may translate the following result of where the four-fermion operators are defined as

\[\langle \bar{u} \gamma^\mu \gamma^\nu \gamma^\alpha \gamma^\beta b \bar{\tau} \gamma_\alpha \gamma_\beta \gamma_\gamma \gamma_\delta \nu_\tau \rangle = \langle \bar{u} \gamma^\mu \gamma^\nu P_L b \bar{\tau} \gamma_\mu \gamma_\nu P_L \nu_\tau \rangle. \]

In this paper, we focus on new physics effects in \(B \to \pi \tau \bar{\nu}_\tau \) and \(B \to \tau \bar{\nu}_\tau \). Other processes such as \(B \to V \tau \bar{\nu}_\tau \) for \(V = \rho, \omega \) might become useful in future, but for now no experimental data are available.

2.2 \(B^0 \to \pi^+ \tau^- \bar{\nu}_\tau \)

The \(B \to \pi \) transition caused by the effective Lagrangian in Eq. (3) is described by the hadronic matrix elements of the quark currents involved in the four-fermion operators:

\[\langle \pi(p_\pi)|\bar{u} \gamma^\mu b|B(p_B)\rangle = f_+(q^2) \left[(p_B + p_\pi)\gamma^\mu - \frac{m_B^2 - m_\pi^2}{q^2} q^\mu \right] + f_0(q^2) \frac{m_B^2 - m_\pi^2}{q^2} q^\mu, \]

\[\langle \pi(p_\pi)|\bar{u} \gamma^\mu b|B(p_B)\rangle = (m_B + m_\pi) f_S(q^2), \]

\[\langle \pi(p_\pi)|\bar{u} i \sigma^{\mu\nu} b|B(p_B)\rangle = \frac{2}{m_B + m_\pi} f_T(q^2) \left[p_B^\mu p_\pi^\nu - p_B^\nu p_\pi^\mu \right] \]

where \(q^\mu = (p_B - p_\pi)^\mu = (p_\tau + p_\nu)^\mu \), and \(f_{+,0,S,T}(q^2) \) are form factors. We note that the axial-vector (pseudoscalar) part of \(V_{1,2} (S_{1,2}) \), \(\bar{u} \gamma^\mu \gamma^\nu b \) \((\bar{\tau} \gamma^\mu \gamma^\nu b)\), does not contribute to the transition, and \(\langle \pi(p_\pi)|\bar{u} \sigma^{\mu\nu} \gamma^5 b|B(p_B)\rangle \) is expressed by \(f_T(q^2) \) with \(\sigma^{\mu\nu} \gamma^5 = -i \varepsilon^{\mu\nu\alpha\beta} \sigma_{\alpha\beta} \). We employ the vector and tensor form factors \(f_{+,0,T} \) given by recent lattice QCD studies.\(^4\)

\(^4 \) We take \(\varepsilon^{0123} = -1. \)
As for the scalar form factor f_S, since no lattice evaluation is available at present, we utilize the quark equation of motion to relate f_S to f_0, namely $f_S(q^2) = f_0(q^2)(m_B - m_\pi)/(m_b - m_u)$.

The differential branching fractions of $B \to \pi\tau\bar{\nu}_\tau$ for given τ helicities, defined in the rest frame of the lepton pair, are written as

$$\frac{dB^-}{dq^2} = N_B \left| (1 + CV_1 + CV_2) \sqrt{q^2} H_{V+} + 4 C_T m_\tau H_T \right|^2,$$

(12)

for $\lambda_\tau = -1/2$, and

$$\frac{dB^+}{dq^2} = \frac{N_B}{2} \left[\left| (1 + CV_1 + CV_2) m_\tau H_{V+} + 4 C_T \sqrt{q^2} H_T \right|^2 + 3 \left| (1 + CV_1 + CV_2) m_\tau H_{V0} + (CS_1 + CS_2) \sqrt{q^2} H_S \right|^2 \right],$$

(13)

for $\lambda_\tau = +1/2$, with

$$N_B = \frac{\tau_{B^0} |V_{ub}|^2}{192\pi^3 m_B^3} \sqrt{Q_+ Q_-} \left(1 - \frac{m_\tau^2}{q^2} \right)^2,$$

(14)

where τ_{B^0} is the neutral B meson lifetime and $Q_\pm = (m_B \pm m_\pi)^2 - q^2$. The hadronic amplitudes H’s are given by

$$H_{V+} = \frac{\sqrt{Q_+ Q_-}}{\sqrt{q^2}} f_+(q^2),$$

(15)

$$H_{V0} = \frac{m_B^2 - m_\pi^2}{\sqrt{q^2}} f_0(q^2),$$

(16)

$$H_S = (m_B + m_\pi) f_S(q^2) = \frac{m_B^2 - m_\pi^2}{m_b - m_u} f_0(q^2),$$

(17)

$$H_T = \frac{\sqrt{Q_+ Q_-}}{m_B + m_\pi} f_T(q^2),$$

(18)

where the bottom and up quark masses are taken as $m_b = 4.2$ GeV and $m_u = 0$ in the following numerical calculation. The differential branching fractions of $B \to \pi\ell\bar{\nu}_\ell$ (for $m_\ell = 0$) are obtained as

$$\frac{dB^-_\ell}{dq^2} = \frac{dB^-}{dq^2} \bigg|_{m_\tau \to 0, C_X=0},$$

(19)

$$\frac{dB^+_\ell}{dq^2} = 0.$$

(20)
In the following, the ratio of the branching fractions, R_π in Eq. (2), is numerically calculated by

$$R_\pi = \frac{\int \frac{(m_B + m_\pi)^2}{m_\pi^2} dq^2 \frac{dB^+}{dq^2} + dB^-}{\int_0 \frac{(m_B + m_\pi)^2}{dq^2} dB^-}.$$ \hspace{1cm} (21)

As mentioned above, $|V_{ub}|$ cancels out in this ratio, but errors in the form factors cause the theoretical uncertainty in R_π.

The form factors f_+, f_0 and f_T are parametrized with the use of the Bourrely-Caprini-Lellouch expansion as $[11, 21, 22]$

$$f_j(q^2) = \frac{1}{1 - q^2/m_\pi^2} \sum_{n=0}^{N_z-1} b^j_n \left[z^n - (-1)^n - \frac{n}{N_z} z^n \right],$$

$$f_0(q^2) = \sum_{n=0}^{N_z-1} b^0_n z^n,$$ \hspace{1cm} (22) (23)

where $j = +, T$, $m_\pi = 5.325$ GeV is the B^* meson mass, $b^{+,0,T}_n$ are expansion coefficients, and $N_z = 4$ is the expansion order. The expansion parameter z is defined as

$$z \equiv z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}},$$ \hspace{1cm} (24)

where $t_+ = (m_B + m_\pi)^2$ and $t_0 = (m_B + m_\pi)(\sqrt{m_B} - \sqrt{m_\pi})^2$. The combined fit to the experimental data of the q^2 distribution of $B \to \pi \ell \bar{\nu}_\ell$ and the lattice computation for the relevant amplitudes provides the “lattice+experiments” fitted values of $b^{+,0,T}_n$ with errors and their correlations. According to Refs. [11, 21], the result of the expansion coefficients $\vec{b} = (b^+_0, b^+_1, b^+_2, b^+_3, b^0_0, b^0_1, b^0_2, b^0_3, b^T_0, b^T_1, b^T_2, b^T_3)^T$ is summarized as

$$\vec{b}_{\text{lat.+exp.}} \equiv \vec{b}_0 \pm \delta \vec{b},$$ \hspace{1cm} (25)

where

$$\vec{b}_0 = (0.419, -0.495, -0.43, 0.22, 0.510, -1.700, 1.53, 4.52, 0.393, -0.65, -0.6, 0.1)^T,$$ \hspace{1cm} (26)

$$\delta \vec{b} = (0.013, 0.054, 0.13, 0.31, 0.019, 0.082, 0.19, 0.83, 0.017, 0.23, 1.5, 2.8)^T.$$ \hspace{1cm} (27)

We note that only b^+_n’s are directly constrained by the experimental data because only $f_+(q^2)$ contributes to $B \to \pi \ell \bar{\nu}_\ell$ as seen in Eqs. (12), (15), (19) and (20). In addition, b^0_n’s
are indirectly constrained through the relation $f_0(0) = f_+(0)$. The tensor form factor $f_T(q^2)$ is determined thoroughly by the lattice simulation and this explains the relatively large errors of b_T^n's.

The covariance matrix is given by $V_{ij} = \rho_{ij} \delta b_i \delta b_j$ with

$$
\rho_{\text{lat.}+\text{exp.}} = \begin{pmatrix}
\rho_{+,0} & \mathbf{0}_{8 \times 4} \\
\mathbf{0}_{4 \times 8} & \rho_T
\end{pmatrix},
$$

(28)

$$
\rho_{+,0} = \\
\begin{pmatrix}
1 & 0.14 & -0.455 & -0.342 & 0.224 & 0.174 & 0.047 & -0.033 \\
1 & -0.789 & -0.874 & -0.068 & 0.142 & 0.025 & 0.007 \\
1 & 0.879 & -0.051 & -0.253 & 0.098 & 0.234 \\
1 & 0.076 & 0.038 & 0.018 & -0.2 \\
1 & -0.043 & -0.604 & -0.388 \\
1 & -0.408 & -0.758 \\
1 & 0.457 \\
1
\end{pmatrix},
$$

(29)

$$
\rho_T = \\
\begin{pmatrix}
1 & 0.4 & 0.204 & 0.166 \\
1 & 0.862 & 0.806 \\
1 & 0.989 \\
1
\end{pmatrix},
$$

(30)

where ρ's are symmetric correlation matrices. Here, we have omitted the correlations between the $+,0$ sector and the T sector, because the covariance matrix turns out not to be positive semidefinite if all the correlations reported in Refs. [11, 21] are taken. Negative eigenvalues of a covariance matrix may arise due to the fluctuation of eigenvalues. In such a case, the correlation is less significant and could be neglected.

The error of \vec{b} induces the uncertainty in both the SM and new physics contributions in the observable R_π. To estimate the uncertainty of R_π, we calculate its variance $V(R_\pi)$ assuming the Gaussian distribution:

$$
V(R_\pi) = \int d\vec{b} \left(R_\pi(\vec{b}) - R_\pi(\vec{b}_0)\right)^2 \exp \left[-\frac{1}{2} \chi^2(\vec{b})\right],
$$

(31)

$$
\chi^2(\vec{b}) = (\vec{b} - \vec{b}_0)^T V(\vec{b})^{-1} (\vec{b} - \vec{b}_0).
$$

(32)

The theoretical uncertainty of R_π is thus given by $\delta R_\pi = \sqrt{V(R_\pi)}$.
2.3 $B^- \rightarrow \tau^- \bar{\nu}_\tau$

The branching fraction of $B^- \rightarrow \tau^- \bar{\nu}_\tau$ in the effective Lagrangian in Eq. (3) is expressed as

$$B(B \rightarrow \tau \bar{\nu}_\tau) = \frac{\tau_{B^-} G_F^2 |V_{ub}|^2 f_B^2 m_B m_\tau^2}{8 \pi} \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \left[1 + r_{NP}\right]^2,$$

(33)

where τ_{B^-} is the charged B meson lifetime, f_B is the B meson decay constant, and r_{NP} represents the new physics effect,

$$r_{NP} = C_{V_1} - C_{V_2} + \frac{m_B^2}{m_B m_\tau} (C_{S_1} - C_{S_2}).$$

(34)

We note that the tensor operator O_T does not contribute to this decay mode.

The dominant sources of theoretical uncertainty in $B(B \rightarrow \tau \bar{\nu}_\tau)$ are f_B and $|V_{ub}|$. The FLAG working group gives an average of lattice QCD results [23–27] as $f_B = (192.0 \pm 4.3)$ MeV [28], which is consistent with another average [29]. As for $|V_{ub}|$, the tension among the values determined from $B \rightarrow \pi \ell \bar{\nu}_\ell$ (exclusive), $B \rightarrow X_u \ell \bar{\nu}_\ell$ (inclusive) and the fit of the unitarity triangle is still unsolved. To avoid the uncertainty due to $|V_{ub}|$, the following ratio of pure- and semi-leptonic decay rates is defined as [30]

$$R_{ps} = \frac{\Gamma(B^- \rightarrow \tau^- \bar{\nu}_\tau)}{\Gamma(B^0 \rightarrow \pi^+ \ell^- \bar{\nu}_\ell)} = \frac{\tau_{B^0}}{\tau_{B^-}} \frac{B(B^- \rightarrow \tau^- \bar{\nu}_\tau)}{B(B^0 \rightarrow \pi^+ \ell^- \bar{\nu}_\ell)}.$$

(35)

The remaining sources of theoretical uncertainty in R_{ps} are f_B and the form factor $f_+(q^2)$ involved in the denominator. For the latter, we use the lattice result described above.

3 Numerical results

3.1 New physics scenarios

We consider new physics scenarios such that only one of the operators O_X ($X = V_1, V_2, S_1, S_2, T$) is dominant in the new physics sector. These scenarios are constrained by both $B \rightarrow \pi \tau \bar{\nu}_\tau$ and $B \rightarrow \tau \bar{\nu}_\tau$ except the tensor operator scenario, in which $B \rightarrow \tau \bar{\nu}_\tau$ is not altered.
Fig. 1 New physics effects on R_π in the V_i, S_i, and T scenarios. Three values of the complex phase, $\delta_X = 0$, $\pi/2$ and π, are chosen. The blue regions represent the theoretical predictions on R_π taking the theoretical uncertainty ($\pm 1\sigma$) into account. The gray regions show the current experimental bound, $R_\pi^{\text{exp.}} \simeq 1.05 \pm 0.51$.

First, we present numerical formulae of the theoretical uncertainties δR_π obtained by computing the variance in Eq. (31) for each scenario:

\begin{align}
\delta R_\pi(C_{Vi}, C_{X \neq V_i} = 0) &\simeq \delta R_{\pi}^{\text{SM}} \left| 1 + C_{V_i} \right|^2, \\
\delta R_\pi(C_{Si}, C_{X \neq S_i} = 0) &\simeq \delta R_{\pi}^{\text{SM}} \left(1 + 7 \left(\text{Re} C_{S_i} \right) + 15 \left(\text{Re} C_{S_i} \right)^2 + 9 \left| C_{S_i} \right|^2 \\
&\quad + 35 \left(\text{Re} C_{S_i} \right) \left| C_{S_i} \right|^2 + 21 \left| C_{S_i} \right|^4 \right)^{1/2}, \\
\delta R_\pi(C_{Ti}, C_{X \neq T} = 0) &\simeq \delta R_{\pi}^{\text{SM}} \left(1 + 4 \left(\text{Re} C_{T} \right) + 350 \left(\text{Re} C_{T} \right)^2 + 11 \left| C_{T} \right|^2 \\
&\quad + 1372 \left(\text{Re} C_{T} \right) \left| C_{T} \right|^2 + 1484 \left| C_{T} \right|^4 \right)^{1/2},
\end{align}

where $\delta R_{\pi}^{\text{SM}} \simeq 0.016$ represents the uncertainty in the SM, which is consistent with the value in Refs. [10, 16]. We observe that the contribution of the tensor operator is rather uncertain because of the less-determined form factor $f_T(q^2)$ as mentioned above.

In Fig. 1, we show R_π in our new physics scenarios as functions of $\left| C_X \right|$ for three representative values of the complex phase (defined by $C_X = \left| C_X \right| e^{i\delta_X}$) as indicated. The light blue regions are the theoretical predictions with the $\pm 1\sigma$ uncertainties evaluated with Eqs. (36)-(38). The gray region expresses the present experimental bound at the 1σ level as is estimated.
in Sec. 1. One finds that the theoretical uncertainty in the vector scenarios is fairly small compared with the experimental error, whereas that in the tensor scenario is significant5.

One may observe in Eqs. (12), (13) and (34) that O_{V_1} and O_{V_2} have the same contribution to $B \rightarrow \pi \tau \bar{\nu}_\tau$ whereas their contributions to $B \rightarrow \tau \bar{\nu}_\tau$ possess opposite sign with each other. This is simply because the (axial-)vector current $\bar{u} \gamma^\mu b$ ($\bar{u} \gamma^\mu \gamma^5 b$) contributes only to $B \rightarrow \pi$ transition (B annihilation). Thus, the vector and the axial vector parts of new physics, namely $C_V = (C_{V_1} + C_{V_2})/2$ and $C_A = (C_{V_2} - C_{V_1})/2$ are separately constrained by $B \rightarrow \pi \tau \bar{\nu}_\tau$ and $B \rightarrow \tau \bar{\nu}_\tau$ respectively. The same argument applies to O_{S_1} and O_{S_2}. The (pseudo)scalar part, $C_S = (C_{S_1} + C_{S_2})/2$ ($C_P = (C_{S_1} - C_{S_2})/2$) is constrained by $B \rightarrow \pi \tau \bar{\nu}_\tau$ ($B \rightarrow \tau \bar{\nu}_\tau$). As stressed above, the tensor operator O_T contributes only to $B \rightarrow \pi \tau \bar{\nu}_\tau$.

3.2 Present constraints

The current experimental result for R_π is given in Sec. 1, $R_{\pi}^{\text{exp.}} \simeq 1.05 \pm 0.51$. As for R_{ps}, we obtain $R_{ps}^{\text{exp.}} = 0.73 \pm 0.14$, while the SM prediction is $R_{ps}^{\SM} = 0.574 \pm 0.046$ including the uncertainties of f_B and $f_+ (q^2)$. Given these experimental data, we present constraints on the Wilson coefficients C_X's for $V_1, V_2, S_1,$ and S_2 scenarios in Fig. 2, in which the 95\% CL allowed regions by R_π and R_{ps} for each scenario are shown. The light blue and red regions are allowed by R_π and R_{ps}, respectively, taking both the theoretical and experimental uncertainties into account.

The current data of R_π excludes part of the region of $|C_X| \sim O(1)$, which is roughly the same order of magnitude as the SM contribution. The excluded region by R_π does not exceed the one by R_{ps} in the V_1 scenario, but their difference is not so significant. As for the V_2 scenario, R_π and R_{ps} are complementary because the signs of the new physics contributions relative to the SM ones are opposite in these observables as seen in Eqs. (12), (13) and (34). The S_1 and S_2 scenarios are constrained more tightly by R_{ps} because of the chiral enhancement of the pseudoscalar contribution in the purely leptonic decay.

In Fig. 3, we show the R_π constraint on C_T. The light blue region represents the 95\% CL allowed region. (The darker blue regions will be explained below.) We see that the present constraint is nontrivial and comparable to the other scenarios even though the theoretical uncertainty are considerably larger. This is because the tensor operator (as normalized in Eq. (3)) tends to give a larger contribution to R_π. The tensor contribution is expected to be more significant in the $B \rightarrow V$ transitions, such as $B \rightarrow \rho$ as in the case of $B \rightarrow D^* \tau \bar{\nu}_\tau$.

5 The uncertainty in the bottom quark mass, which is fixed in the present work, increases the theoretical uncertainties in the scalar scenarios. Varying m_b by ± 200 MeV changes at most $\mathcal{B}(B \rightarrow \pi \tau \bar{\nu}_\tau)$ and $\mathcal{B}(B \rightarrow \tau \bar{\nu}_\tau)$ by $\pm 6\%$ and $\pm 7\%$ respectively for $|C_{S_1}| < 1$.

10
Fig. 2 Allowed regions from R_π and R_{ps} for V_1, V_2, S_1, and S_2 scenarios. The light blue region is allowed from the value of R_π derived from the Belle experiment at 95% CL, where the theoretical uncertainty is also taken for the evaluation. The light red region is consistent with the experimental value of R_{ps} taking into account the theoretical uncertainty described in the main text.

3.3 Future prospect

From now on, we discuss expected data of the relevant observables at SuperKEKB/Belle II and estimate the possible sensitivity to the new physics scenarios. The current experimental value of R_π given in Eq. (1) is obtained with $\sim 1 \text{ ab}^{-1}$ data. We expect $\sim 50 \text{ ab}^{-1}$ at the SuperKEKB/Belle II experiment. To evaluate the expected sensitivity of R_π to the new physics scenarios at SuperKEKB/Belle II, we assume that both the statistical and systematic errors in the experiment are reduced with increasing luminosity as $1/\sqrt{L}$ and that the
Fig. 3 Allowed regions of the tensor scenario for the recent experimental data of R_π and expected improvements in future. The present allowed region at the 95% CL is depicted in light blue. The (dark) blue region enclosed by the dashed (dotted) curves shows the allowed region expected at SuperKEKB/Belle II with 50 ab^{-1} data (and a theoretical uncertainty reduced by a factor of 2).

central value coincides with the SM prediction. Namely, we employ $R_\pi^{\text{Belle II}} = 0.641 \pm 0.071$. Applying a similar argument to $B \rightarrow \tau \nu$ and $B \rightarrow \pi \ell \nu$ gives $R_\pi^{\text{Belle II}} = 0.574 \pm 0.020^6$.

The 95% CL expected constraints on the Wilson coefficients with these “future” experimental data are shown in Fig. 4 for the V_1, V_2, S_1, and S_2 scenarios. A new physics contribution beyond the blue and red regions can be probed by measuring R_π and R_{ps}, respectively at Belle II. Each allowed region is annulus-like in the complex plane of C_X. For the V_1 scenario, the new physics sensitivities of R_π and R_{ps} are almost degenerate and the region around $C_{V_1} \sim -2$ of large negative interference with the SM contribution is allowed by both of them. On the other hand, in the V_2 scenario, such regions of $C_{V_2} \sim -2$ for R_π and $C_{V_2} \sim +2$ for R_{ps} are incompatible with each other, as is already seen in the current constraint shown in Fig. 2. For the scalar scenarios, the regions of $C_{S_1} = C_{S_2} \sim -0.8$ in R_π and $C_{S_1} = -C_{S_2} \sim -0.5$ in R_{ps} are of large negative interference. As is seen in the figures,

\[^6\] The expected Belle II sensitivity for $B(B^- \rightarrow \tau^\nu)$ has been recently studied in Ref. [31] with Monte-Carlo simulation assuming 0.5 ab^{-1}. Our estimation and their result of the experimental uncertainty scaled to at 50 ab^{-1} are consistent.
Fig. 4 Sensitivity to the new physics scenarios in terms of the 95% CL allowed range of C_X expected at the SuperKEKB/Belle II with 50 ab^{-1} of accumulated data. The “future” experimental data are given as explained in the main text. A new physics contribution for the outside regions of the blue and red colors can be probed by R_π and R_{ps}, respectively, at 50 ab^{-1} of Belle II.

we can test such a region for the S_2 scenario by combining R_π and R_{ps} while the sensitivity is relatively weak in the S_1 scenario. Therefore, the constraints from R_π and R_{ps} are complementary and measuring both of them at SuperKEKB/Belle II is meaningful to reduce allowed parameter regions, in particular for the V_2 and S_2 scenarios.

As for the tensor scenario, we also show the expected allowed region for C_T in Fig. 3. The blue region with the dashed boundary indicates the one that can be tested with 50 ab^{-1}, and the darker blue region with the dotted curve corresponds to the result for the case that the theoretical uncertainty in Eq. (38) is reduced by a factor of 2. As is explained in Sec. 3.1,
Table 1 Sensitivity to the new physics scenarios in terms of the 95\% CL allowed range of C_X expected at the SuperKEKB/Belle II with 50 ab$^{-1}$ of accumulated data. The “future” experimental data are given as explained in the main text. The coefficient C_X is assumed to be real.

NP scenario	$R_{\text{Belle II}}^\tau = 0.641 \pm 0.071$ and $R_{\text{Belle II}}^{pl} = 0.574 \pm 0.020$	$R_{\text{Belle II}}^{pl} = 222 \pm 47$
C_{V_1}	$[-0.08, 0.09]; [-2.09, -1.92]$	$[-0.23, 0.19]; [-2.19, -1.77]$
C_{V_2}	$[-0.09, 0.08]$	$[-0.19, 0.23]; [1.77, 2.19]$
C_{S_1}	$[-0.03, 0.03]; [-0.55, -0.52]$	$[-0.06, 0.05]; [-0.58, -0.47]$
C_{S_2}	$[-0.03, 0.03]$	$[-0.05, 0.06]; [0.47, 0.58]$
C_T	$[-0.13, 0.10]; [-1.23, -0.56]$	-

the tensor scenario suffers from the larger theoretical uncertainty in R_π so that we can see the significant effect of the reduction of the theoretical uncertainty. We also find that the present theoretical uncertainties for the vector and scalar scenarios are sufficiently smaller than the future (expected) experimental uncertainties7. We note that another observable such as $\mathcal{B}(B \to \rho \tau\bar{\nu})$ is necessary to exclude the region of large negative interference of $C_T \sim -0.7$.

In Table 1, we present the combined limits of the allowed ranges for C_X (taken real) in order to quantify the expected sensitivities at SuperKEKB/Belle II. It turns out that, focusing on the vicinity of the origin, the region of $|C_X| \gtrsim 0.03$ can be probed in the scalar scenarios. As for the vector and tensor scenarios, the Belle II sensitivity is $|C_X| \sim 0.1$.

The muonic mode $B \to \mu \nu_\mu$ may also play an important role at SuperKEKB/Belle II. At present, this process has not yet been observed and the current upper limit on the branching ratio is reported as $\mathcal{B}(B \to \mu \nu_\mu)^{\exp.} < 1 \times 10^{-6}$ at 90\% CL [32–34]. This result may be compared with the SM prediction $\mathcal{B}(B \to \mu \nu_\mu)^{\text{SM}} = (0.41 \pm 0.05) \times 10^{-6}$ and thus, we expect that $B \to \mu \nu_\mu$ will be observed with a meaningful statistical significance at SuperKEKB/Belle II. Accordingly, we introduce the pure-leptonic ratio

$$ R_{pl} = \frac{\mathcal{B}(B \to \tau \bar{\nu}_\tau)}{\mathcal{B}(B \to \mu \nu_\mu)}, \tag{39} $$

as we defined R_π. In this paper, we assume contributions other than the SM do not exist in $B \to \mu \nu_\mu$ as well as $B \to \pi \ell \bar{\nu}$. From the theory side, R_{pl} is precisely evaluated as

$$ R_{pl} = \frac{m^2_\tau (1 - m^2_\tau/m^2_B)^2}{m^2_\mu (1 - m^2_\mu/m^2_B)^2} |1 + r_{\text{NP}}|^2 \approx 222 |1 + r_{\text{NP}}|^2. \tag{40} $$

7The reduction of the theoretical error by factor 2, for example, gives only 0.1\% and 1\% differences in the expected allowed regions for the vector and scalar scenarios, respectively.
The dominant source of uncertainty $f_B|V_{ub}|$ in the leptonic decay rates cancels out and hence it is free from the $|V_{ub}|$ determinations, in which some discrepancies might still remain in the Belle II era.

Following Ref. [33], the 1σ range of the error in $\mathcal{B}(B \to \mu \bar{\nu}_\mu)$ $^{\text{exp.}}$ is obtained as $\pm 0.6 \times 10^{-6}$ at present. This is expected to be reduced as $\pm 0.08 \times 10^{-6}$ with 50 ab$^{-1}$ at SuperKEKB/Belle II. Applying the same procedure with R_π, namely with the expected "future" data being given as $R_{\text{Belle II}}^{\text{pl}} = 222 \pm 47$, we have evaluated the future sensitivity of the ratio R_{pl} to the new physics scenarios as shown in Table 1. One finds that the sensitivity of R_{pl} is rather (\sim factor 2) weaker than that of R_{ps}. Although R_{ps} has better performance, the ratio R_{pl} is still a good observable in the sense that it has the very accurate theoretical prediction and could be used as a consistency check.

4 Summary

We have studied possible new physics in the semi- and pure- tauonic B decays, $B \to \pi \tau \bar{\nu}_\tau$ and $B \to \tau \bar{\nu}_\tau$, using the model-independent effective Lagrangian including the vector $(V_{1,2})$, scalar $(S_{1,2})$, and tensor (T) types of interaction. The formulae of the differential branching fractions in the presence of new physics described by the effective Lagrangian are presented with a brief summary of the hadronic form factors in the $B \to \pi$ transition.

We have examined the ratio of the branching fraction of $B \to \pi \tau \bar{\nu}_\tau$ to that of $B \to \pi \ell \bar{\nu}_\ell$, R_π defined in Eq. (2), in order to reduce uncertainties in theoretical calculations in analogy with $B \to D^{(*)} \tau \bar{\nu}_\tau$. Using the recent results of lattice QCD studies on the relevant form factors, we have evaluated the effects of new physics in R_π along with its theoretical uncertainty. The theoretical uncertainties in the $V_{1,2}$ scenarios are negligible compared to the present experimental error, and those in the $S_{1,2}$ scenarios are sizable, but sufficiently small. In contrast, the new physics contribution in the T scenario is rather uncertain as shown in Fig. 1.

We have obtained the present constraints on the Wilson coefficients that describe possible new physics contributions, $C_X (X = V_{1,2}, S_{1,2}, T)$, comparing the theoretical predictions (with uncertainties mentioned above) of R_π and R_{ps} with the experimental data. As shown in Fig. 2, some of regions of $|C_X| \gtrsim O(1)$ are disfavored by the current data. The sensitivity of R_π in the V_1 scenario is less than that of R_{ps}, but their difference is not so significant. In the V_2 scenario, these two observables probe different regions of C_{V_2} and are complementary. As for the $S_{1,2}$ scenarios, R_{ps} is more sensitive owing to the chiral enhancement. Since the tensor operator does not contribute to $B \to \tau \bar{\nu}_\tau$, the T scenario is constrained solely by R_π.

15
Furthermore, we have discussed the future prospect at the SuperKEKB/Belle II experiment and shown its sensitivity to new physics in terms of expected constraints on C_X. Assuming that both the statistical and systematic uncertainties in the experiment are reduced as the integrated luminosity is increased to 50 ab$^{-1}$ and the central values are given by the SM, we have estimated the expected allowed ranges of C_X from R_π and R_{ps}.

It turns out that the allowed regions of C_X are significantly reduced in all the scenarios and the region of large negative interference with the SM can be excluded by combining R_π and R_{ps} in the V_2 and S_2 scenarios as shown in Figs. 3 and 4. The SuperKEKB/Belle II experiment can probe the new physics contribution of $|C_X|$ as small as 0.03 in the scalar scenarios and ~ 0.1 in the vector and tensor scenarios as seen in Table 1.

Further improvement of sensitivity may be achieved if R_π and R_{pl} are measured by a similar method adopted to measure $R_{D(\ast)}$, namely not separate measurements of the numerator and denominator but direct measurements of the ratios. It is also desired to improve the precision of the tensor form factor as well as to evaluate the scalar form factor by lattice simulation. The latter is useful to eliminate the potential uncertainty in the bottom quark mass arising from the equation of motion. Supplemental observables such as $B(B \to \rho \tau \bar{\nu})$ and the q^2 distribution of $B \to \pi \tau \bar{\nu}$ are also helpful to further squeeze C_X as well as to probe or exclude the region of negative interference in the S_1 and T scenarios.

Acknowledgment

We are grateful to Florian Bernlochner for his useful comments on the $B \to \pi \tau \bar{\nu}_\tau$ data and Hidenori Fukaya for his suggestion on the lattice QCD result. We also thank Tetsuya Enomoto for discussions in the early stage of this study. This work is supported in part by JSPS KAKENHI Grant Numbers JP25400257 and JP16H03993 (MT), and IBS-R018-D1 (RW).

References

[1] J. P. Lees et al., Phys. Rev. Lett., 109, 101802 (2012), arXiv:1205.5442.
[2] J. P. Lees et al., Phys. Rev., D88(7), 072012 (2013), arXiv:1303.0571.
[3] R. Aaij et al., Phys. Rev. Lett., 115(11), 111803, [Addendum: Phys. Rev. Lett.115,no.15,159901(2015)] (2015), arXiv:1506.08614.
[4] M. Huschle et al., Phys. Rev., D92(7), 072014 (2015), arXiv:1507.03233.
[5] A. Abdesselam et al. (2016), arXiv:1603.06711.
[6] Y. Amhis et al. (2014), arXiv:1412.7515.
[7] P. Hamer et al., Phys. Rev., D93(3), 032007 (2016), arXiv:1509.06521.
[8] C.-H. Chen and C.-Q. Geng, JHEP, 10, 053 (2006), arXiv:hep-ph/0608166.
[9] A. Khodjamirian, Th. Mannel, N. Offen, and Y. M. Wang, Phys. Rev., D83, 094031 (2011), arXiv:1103.2655.
[10] F. U. Bernlochner, Phys. Rev., D92(11), 115010 (2015), arXiv:1509.06938.
[11] J. A. Bailey et al., Phys. Rev., D92(1), 014024 (2015), arXiv:1503.07839.
[12] P. del Amo Sanchez et al., Phys. Rev., D83, 032007 (2011), arXiv:1005.3288.
[13] H. Ha et al., Phys. Rev., D83, 071101 (2011), arXiv:1012.0090.
[14] J. P. Lees et al., Phys. Rev., **D86**, 092004 (2012), arXiv:1208.1253.
[15] A. Sibidanov et al., Phys. Rev., **D88**(3), 032005 (2013), arXiv:1306.2781.
[16] D. Du et al., Phys. Rev., **D93**(3), 034005 (2016), arXiv:1510.02349.
[17] S. Nandi, S. K. Patra, and A. Soni (2016), arXiv:1605.07191.
[18] C. S. Kim and Ru-Min Wang, Phys. Rev., **D77**, 094006 (2008), arXiv:0712.2954.
[19] M. Tanaka and R. Watanabe, Phys. Rev., **D87**(3), 034028 (2013), arXiv:1212.1878.
[20] R. Dutta, A. Bhol, and A. K. Giri, Phys. Rev., **D88**(11), 114023 (2013), arXiv:1307.6653.
[21] J. A. Bailey et al., Phys. Rev. Lett., **115**(15), 152002 (2015), arXiv:1507.01618.
[22] C. Bourrely, I. Caprini, and L. Lellouch, Phys. Rev., **D79**, 013008, [Erratum: Phys. Rev.D82,099902(2010)] (2009), arXiv:0807.2722.
[23] C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel, and G. P. Lepage, Phys. Rev., **D85**, 031503 (2012), arXiv:1110.4510.
[24] A. Bazavov et al., Phys. Rev., **D85**, 114506 (2012), arXiv:1112.3051.
[25] H. Na et al., Phys. Rev., **D86**, 034506 (2012), arXiv:1202.4914.
[26] N. H. Christ et al., Phys. Rev., **D91**(5), 054502 (2015), arXiv:1404.4670.
[27] Y. Aoki et al., Phys. Rev., **D91**(11), 114505 (2015), arXiv:1406.6192.
[28] S. Aoki et al. (2016), arXiv:1607.00299.
[29] J. L. Rosner, S. Stone, and R. S. Van de Water, Submitted to: Particle Data Book (2015), arXiv:1509.02220.
[30] S. Fajfer, J. F. Kamenik, I. Nisandzic, and J. Zupan, Phys. Rev. Lett., **109**, 161801 (2012), arXiv:1206.1872.
[31] M. Merola, E. Manoni, and G. De Nardo, Talk at the 4th Belle II Theory Interface Platform (B2TiP) Workshop, Pittsburgh, USA, 23-25 May, https://kds.kek.jp/indico/event/19723/session/40/contribution/75 (2016).
[32] K. A. Olive et al., Chin. Phys., **C38**, 090001 (2014).
[33] N. Satoyama et al., Phys. Lett., **B647**, 67–73 (2007), arXiv:hep-ex/0611045.
[34] B. Aubert et al., Phys. Rev., **D79**, 091101 (2009), arXiv:0903.1220.