Diabetes and Obesity-Related Risks for Pelvic Reconstructive Surgery in a Cohort of Swedish Twins

Mats Forsman, MSC1
Anastasia Iliadou, PhD1
Patrick Magnusson, PhD1
Christian Falconer, MD, PhD2
Daniel Altman, MD, PhD1,2

OBJECTIVE — To determine the diabetes- and obesity-related risks for surgically managed stress urinary incontinence and pelvic organ prolapse.

RESEARCH DESIGN AND METHODS — This twin cohort study used the Swedish Twin Register to identify 8,443 female twin pairs born from 1926 through 1958. The association between diabetes and pelvic floor surgery was estimated while taking into account the correlated (twin) structure of the data.

RESULTS — For type 1 and type 2 diabetes, no significant associations were observed for stress urinary incontinence (odds ratio [OR] 1.0 [95% CI 0.1–9.2] and 2.0 [1.0–4.0], respectively). There were no cases of prolapse surgery in type 1 diabetic subjects, and for type 2 diabetes the risk estimate was nonsignificant (1.6 [1.0–2.7]). BMI >25 kg/m², age ≥60 years, and childbirth were the strongest risk factors for having incontinence surgery.

CONCLUSIONS — Our data suggest that diabetes is not associated with stress urinary incontinence or pelvic organ prolapse surgery.

Classification of surgical procedures

Using the Swedish Classification of Operations and Major Procedures, stress urinary incontinence surgery was classified as any one of the following: Kelly/Kennedy plication, Burch colposuspensions, Stamey procedures, Marshal-Marchetti-Krantz procedures, Ingelum-Sundberg plasty, intravaginal slingplasty, bladder-neck and suburethral slings, and tension-free vaginal tapes (operation codes 6355, 6356, 6358, 7470, and 7471 for 1973–1996 and LEG00, LEG10, LEG20, and KDG10-40 for 1997–2005). Pelvic organ prolapse surgery was categorized as any one of the following: anterior or posterior repair, Manchester procedures, abdominal sacrocolpopexy, sacrospinous fixations, and enterocoele obliteration and colpocleisis (operation codes 7120, 7121, 74607-464, 7466, 7469, and 7541 for 1973–1996 and LEF00, LEF03, LEF10-50, LEF53, and LEF96 for 1997–2005).

Statistical analyses

Logistic regression was used based on generalized estimating equations, which take into account the correlated (twin) structure of the data. Provided that there is a significant association between the ex-
Pelvic reconstructive surgery and diabetes

Table 1—Risk for stress urinary incontinence and pelvic organ prolapse surgery in an adjusted multivariable analysis

	Stress urinary incontinence	Pelvic organ prolapse		
	Unadjusted	Adjusted	Unadjusted	Adjusted
	OR 95% CI	OR 95% CI	OR 95% CI	OR 95% CI
Diabetes status				
No diabetes	1.0 Reference	1.0 Reference	1.0 Reference	1.0 Reference
Diabetes	1.9 1.1–3.4	1.6 0.9–2.9	1.3 0.8–2.1	0.9 0.5–1.4
BMI (kg/m²)				
BMI <25	1.0 Reference	1.0 Reference	1.0 Reference	1.0 Reference
BMI 25–30	2.0 1.3–2.9	1.7 1.1–2.6	1.5 1.1–2.1	1.1 0.8–1.5
BMI >30	0.5 0.1–2.7	0.4 0.1–2.4	2.1 1.1–4.0	1.4 0.7–2.8
Age (years)				
48–59	1.0 Reference	1.0 Reference	1.0 Reference	1.0 Reference
60–70	2.0 1.3–2.9	1.8 1.2–2.7	2.4 1.7–3.4	2.4 1.7–3.3
71–81	2.1 1.4–3.2	1.8 1.2–2.8	4.5 3.3–6.2	4.6 3.3–6.5
Childbirth				
No children	1.0 Reference	1.0 Reference	1.0 Reference	1.0 Reference
At least one child	2.8 1.4–5.4	3.8 1.8–7.9	6.0 3.2–11.3	6.1 3.3–11.4

Analysis based on 3,376 complete monozygotic and 5,067 dizygotic female twin pairs.

posure and outcome, using a twin-based study design allows further in-depth assessments of a genetic interaction. Multivariable analyses were adjusted for age, BMI, and childbirth (ever/never). Odds ratios (ORs) were estimated with 95% CIs. All statistical analyses were performed using SAS software (Cary, NC).

RESULTS — A total of 29,881 women were included in the study cohort, including 8,443 same-sex female twin pairs with known zygosity. Mean ± SD parity was 2.3 ± 0.97, BMI 21.2 ± 2.9 kg/m², and age 64.1 ± 9.2 years. The accumulated prevalence of pelvic floor surgery in the cohort was 5.6%: stress urinary incontinence surgery was performed in 555 women (1.9%), and pelvic organ prolapse surgery was performed in 1,099 women (3.7%).

We identified 3,376 complete monozygotic and 5,067 dizygotic same-sex female twin pairs from the cohort for correlated generalized estimating equations analysis (Table 1). For type 1 and 2 diabetes, no significant association was observed for stress urinary incontinence (OR 1.0 [95% CI 0.1–9.2] and 2.0 [1.0–4.0]). There were no cases of pelvic organ prolapse surgery in women with type 1 diabetes, and for type 2 diabetes, the risk estimate was nonsignificant (1.6 [1.0–2.7]). We therefore combined type 1 and 2 diabetes into a single variable for the regression analysis.

In the univariate (unadjusted) analysis, diabetes was associated with an increased risk of stress urinary incontinence (OR 1.9 [95% CI 1.1–3.4]). However, after adjustment, the association diminished to a nonsignificant level (1.6 [0.9–2.9]). For stress urinary incontinence, BMI >25 kg/m², age ≥60 years, and childbirth were independently associated with an increased risk for having incontinence surgery. Diabetes and BMI were not independent risk factors for pelvic organ prolapse surgery.

CONCLUSIONS — Women undergoing pelvic floor surgery are the ones most likely to have experienced severe symptoms (12), and a presumed causal association would be evident. Nonetheless, we found no independent association between type 1 or type 2 diabetes and surgically managed stress urinary incontinence. When considering both diabetes types as a single exposure, any diabetes was associated with an increased risk for stress urinary incontinence in a univariate setting, but the statistical significance of the association was lost when adjusting for established confounders. Similar to the results for stress urinary incontinence, we found no significant association between diabetes and pelvic organ prolapse surgery after adjusting for potential confounders. Thus, the often-promoted association between diabetes and pelvic floor disorders is confounded by environmental factors.

There were no consistent indications of a common genetic basis for diabetes and stress urinary incontinence or pelvic organ prolapse. Further exhaustive analyses on mono- or dizygotic twin similarity would therefore be futile.

Being overweight, but not obese, was a risk factor for stress urinary incontinence surgery. This paradoxical result is probably explained by a negative selection for surgery due to apprehension for increased complication rates and poor outcomes in obese subjects. Consistent evidence from observational studies suggests that obese women experience more severe stress urinary incontinence than women of normal weight (13,14). Thus, despite having more severe symptoms and comparable success rates after surgical treatment (15), obese women are less likely to undergo surgical treatment than women of normal weight.

Acknowledgments — The study was supported by a grant from the Nordic Urogynaecological Association and a grant from The Regional Agreement on Medical Training and Clinical Research (ALF) between Stockholm County Council and Karolinska Institutet.

References
1. Olsen AL, Smith VJ, Bergstrom JO, Colling JC, Clark AL: Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol 89: 501–506, 1997
2. Miner P: Economic and personal impact of fecal and urinary incontinence. Gastroenterology 126 (Suppl. 1):S8–S13, 2004
3. Brown JS, Seeley DG, Fong J, Black DM, Ensrud KE, Grady D, the Study of Osteoporotic Fractures Research Group: Urinary incontinence in older women: who is at risk? Obstet Gynecol 87:715–721, 1996
4. Lifford KL, Curhan GC, Hu FB, Barbieri RL, Grodstein F: Type 2 diabetes mellitus and risk of developing urinary incontinence. J Am Geriatr Soc 53:1851–1857, 2005
5. Jackson SL, Scholes D, Boyko EJ, Abraham L, Fihn SD: Urinary incontinence and diabetes in postmenopausal women. Diabetes Care 28:1730–1738, 2005
6. Lawrence JM, Lukacz ES, Liu IL, Nager CW, Luber KM: Pelvic floor disorders, diabetes, and obesity in women: findings from the Kaiser Permanente Continence Associated Risk Epidemiology Study. Diabetes Care 30:2536–2541, 2007
7. Hall SA, Cinar A, Link CL, Kopp ZS, Roberhborn CG, Kaplan SA, Rosen RC: Urological symptoms cluster among women? Results from the Boston Area Community Health Survey. BJU Int 101:1257–1266, 2008
8. Watanabe RM, Black MH, Xiang AH, Alleye H, Lawrence JM, Buchanan TA: Genetics of gestational diabetes mellitus and type 2 diabetes. Diabetes Care 30 (Suppl. 2):S134–S140, 2007
9. Altman D, Forsman M, Falconer C, Lichtenstein P: Genetic influence on stress urinary incontinence and pelvic organ prolapse. Eur Urol. 17 December 2007 [Epub ahead of print]
10. Lichtenstein P, De Faire U, Floderus B, Svartengren M, Svedberg P, Pedersen NL: The Swedish Twin Registry: a unique resource for clinical, epidemiological and genetic studies. J Intern Med 252:184–205, 2002
11. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370:1453–1457, 2007
12. Gasquet I, Tcherny-Lessenot S, Gaudeloup P, Bosio Le Goux B, Klein P, Haab F: Influence of the severity of stress urinary incontinence on quality of life, health care seeking, and treatment: a national cross-sectional survey. Eur Urol 50:818–825, 2006
13. Hannestad YS, Rortveit G, Dalteit AK, Hunnskaa S: Are smoking and other lifestyle factors associated with female urinary incontinence? The Norwegian EPINCONT Study. BJOG 110:247–254, 2003
14. Mommsen S, Foldspang A: Body mass index and adult female urinary incontinence. World J Urol 12:319–22, 1994
15. Lovatsis D, Gupta C, Dean E, Lee F: Tension-free vaginal tape procedure is an ideal treatment for obese patients. Am J Obstet Gynecol 189:1601–1605, 2003