Sustainability assessment in crude palm oil production: A review

Muhammad Haikal Sitepu*, Abdul Rahim Matondang, Meilita Tryana Sembiring

Industrial Engineering Department, Faculty of Engineering, University of Sumatera Utara, Medan 20155

*mhd_haikalkarana@usu.ac.id

Abstract. Palm oil is an important commodity for the world since it is a raw material for various important products such as cooking oils, cosmetics, and foods. Moreover, palm oil is found as a source for renewable energy such as biodiesel and biogas. As the result, the demand of palm oil is projected to jump in the future. To fulfil this demand, the increasing of palm oil production is unavoidable. Crude palm oil process is one substantial process to produce palm oil. This process becomes source of income for countries and citizen of those countries where crude palm oil are produced such as Indonesia, Malaysia and Thailand. Despite of these positive impacts, the environmental impacts of crude palm oil process such as greenhouse gas emission, waste, high water and energy consumption are identified. Thus, to maintain sustainability in palm oil production, several standards such as Indonesia Sustainable Palm Oil (ISPO) and Roundtable Sustainable Palm Oil (RSPO) are introduced. One main requirement from these standards is to monitor sustainability impacts of crude palm oil production. Sustainability assessment is a procedure to evaluate sustainability impacts of products, process and policies. This paper aims to review sustainability assessment process applied in crude palm oil production.

1. Introduction

The increasing of palm oil demand is projected to occur in the future. This is caused by the increasing demand for palm oil based products such as cooking oils, cosmetics and foods. Furthermore, Palm oil is announced as one alternative to replace non-renewable fossil fuel. This trend must be followed by the enhancement of palm oil production. Palm oil is produced through several processes. It is started by cultivating palm oil trees in plantation. From the plantation, fresh fruit bunch are harvested and delivered to crude palm oil processor. At this stage, fresh fruit bunch are transformed into crude and kernel palm oil. These oils are then later used to make various final products. These processes are run by different organizations and companies that configure palm oil industry supply network. Figure 1 displays palm oil industry supply network.

One critical process in producing palm oil is crude palm oil process. In this process, fresh fruit bunch are transformed into crude and kernel palm oil. Indonesia, Malaysia and Thailand produce more than 80% of palm oil in the world. These countries are dominated by organizations and companies that operate crude palm oil production. This activity becomes source of income for citizen and local governments in these countries. However, this activity also brings environmental impacts such as greenhouse gas emission, waste, water and energy consumption. With increasing the environmental awareness in these countries, several standards such as Indonesia Sustainable Palm Oil, Malaysia Sustainable Palm Oil and
Roundtable Sustainable Palm Oil are introduced. These standards have the main objective to maintain sustainability in palm oil industry.

One main requirement to maintain sustainability is to monitor sustainability impacts of crude palm oil production. Sustainability assessment is a process to evaluate integrated nature-society system in short or long term perspective in order to define which activities should or should not be taken to make society to be more sustainable [1,2]. This process can be used to evaluate sustainability impacts of products, processes and policies. This paper aims to review sustainability assessment processes that have been applied by academics and practitioners for assessing crude palm oil production.

Figure 1. Palm Oil Industry Supply Networks

2. Research Methods

The purpose of our research is to review and to analyze sustainable assessment research in palm oil industry supply network and to highlight potential gaps in literature that require further investigation. To achieve these objectives, a review of literature is used as research method. Papers with focus on sustainability assessment in construction industry from different Journals and Sources were reviewed.

2.1. Research Process

To achieve the aim of the research, the research process is divided into two steps. First step focuses on searching and selecting journal papers. The keywords used for searching and selecting the papers were sustainability assessment and palm oil industry. The searching was implemented on Scopus database. Further restriction related to publish year of paper between 2009 to 2019 was applied in the searching process.

This is followed by analysing those papers using thematic analysis. Four themes were applied including: objects of assessment, tools for assessment, indicators used in the assessment and presentation of assessment results. First theme is object of assessment that presents activities, processes or policies assessed in the literature. Second theme is tools for assessment that displays methods, models or tools used in assessment process. Third theme is indicators for assessment, which refers to criteria used in assessment process. Fourth theme is presentation of assessment result, which refers to how the assessment results are presented and which decisions are supported by the results. Figure 2 presents the research process.
Searching and selecting papers from Various Journals

Analyzing the papers using thematic analysis

Figure 2. Research Process

3. Result and Discussion

3.1. Statistic of Reviewed Papers

In the first step of research process, 35 papers from various journals have been selected. These papers were published between 2009 until 2019. From the literature, it has been found the articles focused to review sustainability in palm oil industry including [3] that focused to identify sustainable practices, [4] that focused to identify future sustainable implications in Indonesia, Malaysia and Thailand palm oil industries, [5] that focused to review the potential use of residual palm oil biomass and effluent and [6] that focused to review trend of sustainability research in palm oil industry. However, none of these papers focused on sustainability assessment. This paper focuses to review current sustainability assessment processes for crude palm oil production. Figure 3 displays more than 80% of reviewed papers were published by four journals including: Journal Cleaner Production, energy, Biomass and Energy, and Renewable and Sustainable Energy Reviews.

Figure 3. Distributed Reviewed Papers Based on Journal

3.2. Objects of Sustainability Assessment
The central issue in crude palm oil production is the environmental impacts caused by the production processes. There are several processes to transform fresh fruit bunch into crude palm oil and kernel palm oil including sterilisation, stripping, digestion, clarification, oil drying (for making crude palm oil) and depericarping, nut cracking, winnowing and kernel drying (for making kernel palm oil) [7]. Furthermore, there are additional processes to treat palm oil effluent, fibre and shell. Those are wastes produced by crude and kernel palm oil process. These processes consume water and energy as well as produce greenhouse gas emission. All of these processes become the main objects of sustainability assessment.

Table 1. Classification of Papers Based on the Object of Sustainability Assessment

Object of Sustainability Assessment	Reviewed Papers
Crude and Kernel Palm Oil Process	[8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26]
Palm oil effluent treatment process	[27] [28] [29] [30] [31] [32] [33] [34] [35] [36]
Fibre and Shell Treatment Process	[37] [38] [39] [39] [39] [39] [39] [39] [39] [39] [39] [39]
Crude and Kernel Palm oil Technology	[40] [41]

From the crude and kernel palm oil process, [42] identified greenhouse gas emission are emitted from the use of chemical, the use of energy and waste water management. Furthermore, [25] calculated the consumption of water by palm oil mills. They found that in Thailand, to produce one-ton crude palm oil, 5083 m3 water were required. The water can be classified into two types: direct and indirect water. Indirect water is found in fresh fruit bunch production while direct water is sourced from boiler that produces hot and steam. Other environmental impacts are identified by [24,30]. [24] found that the process emit heavy metals and nitrogen oxides which are categorized as human toxic potential while [30] identified liquid and solid waste resulted from this process. Palm oil mills also identified to produce emissions that cause eutrophication [23]. Moreover, [11,12,29] investigated economic impacts of palm oil mills. They found that profit of palm oil mills depends on oil extraction rate.

Although palm oil mill produce significant liquid and solid wastes, these wastes are biomass that can be transformed into variety of products [5]. Hence, palm oil effluent, fibre and shell treatment processes become the other popular objects of sustainability assessment in reviewed papers. These processes could produce electricity and mineral fertilizer as well as reduce greenhouse gas emission [30]. [28] Evaluated the economic and environmental impacts of alternative processes such as composting of empty fruit bunches (EFB) and fibre, Biomass combustion for high pressure steam combined heat and power and production of biogas from Palm oil mills effluents.

3.3. Tools and Indicators for Sustainability Assessment

Life cycle assessment, multi criteria, mathematical model and simulation are tools used for assessing sustainability in reviewed papers. Life cycle assessment appears to be used in majority of reviewed papers. [24,25,43,44] are example of reviewed papers that used life cycle assessment. Some authors combined life cycle assessment with other tools such as life cycle costing to expand the scope of assessment. For example, [28,29,34] combined life cycle assessment with economic assessment. Multi criteria indicators become second popular tool used in reviewed papers. This tool opens opportunities for researchers to assess three
dimension of sustainability (economic, social and environmental) simultaneously. [12,27,40] are example of reviewed papers used multi criteria indicators. Furthermore, [45] demonstrated the use of simulation model to assess environmental impacts of palm oil mills and bio refinery. In term of indicators, several indicators have been identified in reviewed papers to present the sustainability impacts of crude palm oil process. Table 2 shows those indicators.

Sustainability Dimensions	Indicators Used in Reviewed Papers
Environmental	Net energy ratio
	Global warming potential
	Mass balance
	GHG emission
	Eutrophication potential
	Acidification potential
	Human toxicity potential
	Photochemical oxidant
	Energy consumption
	Water consumption
Economic	Production Cost
	Maintenance cost
	Revenue
	Interest Rate Ratio
	Net Present Value
	Payback Period
	Total capital investment
	Oil Yield
	Extraction efficiency
Social	Risk factor
	poisoning disease
	Accident case
	Health and safety
	Education
	public acceptance

3.3.1 Presentation of Sustainability Assessment Result

The result of assessment is presented in different formats that depend on tools used for assessing. [23,24] presented their result in different units based on indicators used. For example for indicator CO₂ emission, they present the result using Kilogram unit. On other hand, [12,27,40] presented the result of assessment in form of scoring and ranking. These scores were calculated using several equations that consider reference value and weight for each criterion. Some reviewed papers demonstrated the use of assessment result to support decision-making. For example, [12,29,30] used the assessment result to support decision related selection of alternatives process for treating liquid and solid wastes from crude palm oil production.
4. Possibility for Future Research
Based on the analysis of reviewed papers several possibilities for future research are identified:

- Further research is required to assess social impacts from the crude palm oil in developing countries.
- The opportunities are widely open to use different sustainability assessment tools such as simulation and composite indicators.
- The use of assessment result to support decisions making are limited, hence there are opportunities for demonstrating the development of policies based on the sustainability assessment result.

5. Conclusion
Based on the results, some conclusions are obtained as follows.

- The review of sustainability assessment process for crude palm oil production indicates that different indicators are required to support the assessment process.
- The review indicates that majority of reviewed papers are focused to assess economic and environmental impacts of crude palm oil production. The evaluations of social impacts are rare in reviewed papers.
- The review indicates that life cycle assessment and multi criteria indicators are dominant tools used in review papers to assess sustainability.

References
[1] Ness B, Urbel-Piirsalu E, Anderberg S and Olsson L 2006 Categorising tools for sustainability assessment
[2] Sala S, Ciuffo B and Nijkamp P 2015 A systemic framework for sustainability assessment Ecol. Econ. 119 314–25
[3] Khatun R, Reza M I H, Moniruzzaman M and Yaakob Z 2017 Sustainable oil palm industry: The possibilities Renew. Sustain. Energy Rev. 76 608–19
[4] Mukherjee I and Sovacool B K 2014 Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malaysia, and Thailand Renew. Sustain. Energy Rev. 37 1–12
[5] Garcia-Nunez J A, Ramirez-Contreras N E, Rodriguez D T, Silva-Lora E, Frear C S, Stockle C and Garcia-Perez M 2016 Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents Resour. Conserv. Recycl. 110 99–114
[6] Hansen S B, Padfield R, Syayuti K, Evers S, Zakariah Z and Mastura S 2015 Trends in global palm oil sustainability research J. Clean. Prod. 100 140–9
[7] Hashim K, Tahiruddin S and Asis A J 2012 Palm and Palm Kernel Oil Production and Processing in Malaysia and Indonesia Palm Oil 235–50
[8] Ngan S L, How B S, Teng S Y, Promentilla M A B, Yatim P, Er A C and Lam H L 2019 Prioritization of sustainability indicators for promoting the circular economy: The case of developing countries Renew. Sustain. Energy Rev. 111 314–31
[9] Bessou C, Chase L D C, Henson I E, Abdul-Manan A F N, Milà i Canals L, Agus F, Sharma M and Chin M 2014 Pilot application of PalmGHG, the Roundtable on Sustainable Palm Oil greenhouse gas calculator for oil palm products J. Clean. Prod.
[10] Choong C G and McKay A 2014 Sustainability in the Malaysian palm oil industry J. Clean. Prod. 85 258–64
[11] Harahap F, Silveira S and Khatiwada D 2019 Cost competitiveness of palm oil biodiesel production in Indonesia Energy 170 62–72
[12] Jamaludin N F, Hashim H, Muis Z A, Zakaria Z Y, Jusoh M, Yunus A and Abdul Murad S M 2018 A sustainability performance assessment framework for palm oil mills J. Clean. Prod. 174 1679–93
[13] Kaewmai R, H-Kittikun A and Musikavong C 2012 Greenhouse gas emissions of palm oil mills in Thailand Int. J. Greenh. Gas Control 11 141–51
[14] Mohammad Sabli N S, Zainon Noor Z, Kanniah K A, Kamaruddin S N and Mohamed Rusli N 2017 Developing a methodology for water footprint of palm oil based on a methodological review J. Clean. Prod. 146 173–80
[15] Munasinghe M, Jayasinghe P, Deraniyagala Y, Matlaba V J, Santos J F dos, Maneschchy M C and Mota J A 2019 Value–Supply Chain Analysis (VSCA) of crude palm oil production in Brazil, focusing on economic, environmental and social sustainability Sustain. Prod. Consum. 17 161–75
[16] Musikavong C and Gheewala S H 2017 Assessing ecological footprints of products from the rubber industry and palm oil mills in Thailand J. Clean. Prod. 142 1148–57
[17] Patthanaissaranukool W, Polprasert C and Englende A J 2013 Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances Appl. Energy 102 710–7
[18] Prapaspongsa T, Musikavong C and Gheewala S H 2017 Life cycle assessment of palm biodiesel production in Thailand: Impacts from modelling choices, co-product utilisation, improvement technologies, and land use change J. Clean. Prod. 153 435–47
[19] Queiroz A G, França L and Ponte M X 2012 The life cycle assessment of biodiesel from palm oil (“dendê”) in the Amazon Biomass and Bioenergy 36 50–9
[20] Rafiaani P, Kuppens T, Dael M Van, Azadi H, Lebaillly P and Passe S Van 2018 Social sustainability assessments in the biobased economy: Towards a systemic approach Renew. Sustain. Energy Rev. 82 1839–53
[21] Saswattecha K, Kroeze C, Jawjit W and Hein L 2015 Assessing the environmental impact of palm oil produced in Thailand J. Clean. Prod. 100 150–69
[22] Saswattecha K, Kroeze C, Jawjit W and Hein L 2017 Improving environmental sustainability of Thai palm oil production in 2050 J. Clean. Prod. 147 572–88
[23] Silalertruksa T and Gheewala S H 2012 Environmental sustainability assessment of palm biodiesel production in Thailand Energy 43 306–14
[24] Stichnothe H and Schuchardt F 2011 Life cycle assessment of two palm oil production systems Biomass and Bioenergy 35 3976–84
[25] Suttayakul P, H-Kittikun A, Saksaroch J, Mungkalasiri J, Wisansuwannakorn R and Musikavong C 2016 Water footprints of products of oil palm plantations and palm oil mills in Thailand Sci. Total Environ. 542 521–9
[26] Yee K F, Tan K T, Abdullah A Z and Lee K T 2009 Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability Appl. Energy 86 S189–96
[27] Abdul Hamid N N and Lim J S 2019 Evaluation of processing route alternatives for accessing the integration of algae-based biorefinery with palm oil mill J. Clean. Prod. 212 1282–99
[28] Garcia-Nunez J A, Rodriguez D T, Fontanilla C A, Ramirez N E, Silva Lora E E,
Frear C S, Stockle C, Amonette J and Garcia-Perez M 2016 Evaluation of alternatives for the evolution of palm oil mills into biorefineries Biomass and Bioenergy 95 310–29

Kermani M, Celebi A D, Wallerand A S, Ensinas A V., Kantor I D and Maréchal F 2017 Techno-Economic and Environmental Optimization of Palm-based Biorefineries in the Brazilian Context Comput. Aided Chem. Eng. 40 2611–6

Nasution M A, Wibawa D S, Ahamed T and Noguchi R 2018 Comparative environmental impact evaluation of palm oil mill effluent treatment using a life cycle assessment approach: A case study based on composting and a combination for biogas technologies in North Sumatera of Indonesia J. Clean. Prod. 184 1028–40

Ofori-Boateng C and Lee K T 2014 An oil palm-based biorefinery concept for cellulose ethanol and phytochemicals production: Sustainability evaluation using exergetic life cycle assessment Appl. Therm. Eng. 62 90–104

Sasongko N A, Noguchi R and Ahamed T 2018 Environmental load assessment for an integrated design of microalgae system of palm oil mill in Indonesia Energy 159 1148–60

Theo W L, Lim J S, Ho W S, Hashim H, Lee C T and Muis Z A 2017 Optimisation of oil palm biomass and palm oil mill effluent (POME) utilisation pathway for palm oil mill cluster with consideration of BioCNG distribution network Energy 121 865–83

Vaskan P, Pachón E R and Gnansounou E 2018 Techno-economic and life-cycle assessments of biorefineries based on palm empty fruit bunches in Brazil J. Clean. Prod. 172 3655–68

Wu Q, Qiang T C, Zeng G, Zhang H, Huang Y and Wang Y 2017 Sustainable and renewable energy from biomass wastes in palm oil industry: A case study in Malaysia Int. J. Hydrogen Energy 42 23871–7

Yoshizaki T, Shirai Y, Hassan M A, Baharuddin A S, Raja Abdullah N M, Sulaiman A and Busu Z 2013 Improved economic viability of integrated biogas energy and compost production for sustainable palm oil mill management J. Clean. Prod. 44 1–7

Salomón M, Gomez M F and Martin A 2013 Technical polygeneration potential in palm oil mills in Colombia: A case study Sustain. Energy Technol. Assessments 3 40–52

Hansen S B, Olsen S I and Ujang Z 2012 Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel Bioresour. Technol. 104 358–66

Kanadasan J and Abdul Razak H 2015 Engineering and sustainability performance of self-compacting palm oil mill incinerated waste concrete J. Clean. Prod. 89 78–86

Azwan M B, Norasikin A L, Sopian K, Abd Rahim S, Norman K, Ramdhan K and Solah D 2017 Assessment of electric vehicle and photovoltaic integration for oil palm mechanisation practise J. Clean. Prod. 140 1365–75

Owolarafe O K and Oni O A 2011 Modern mill technology and centralised processing system, an alternative for improving performance of palm oil mills in Abia State, Nigeria Technol. Soc. 33 12–22

Kaewmai R, H-Kittikun A and Musikavong C 2012 Greenhouse gas emissions of palm oil mills in Thailand Int. J. Greenh. Gas Control 11 141–51

Prapasponsa T, Musikavong C and Gheewala S H 2017 Life cycle assessment of palm biodiesel production in Thailand: Impacts from modelling choices, co-product

[39] Prapasponsa T, Musikavong C and Gheewala S H 2017 Life cycle assessment of palm biodiesel production in Thailand: Impacts from modelling choices, co-product
utilisation, improvement technologies, and land use change J. Clean. Prod. 153 435–47
[44] Silalertruksa T and Gheewala S H 2012 Environmental sustainability assessment of palm biodiesel production in Thailand Energy 43 306–14
[45] Choong C G and McKay A 2014 Sustainability in the Malaysian palm oil industry J. Clean. Prod. 85 258–64