Metabarcoding Reveals High Diversity of Benthic Foraminifera Driven by Atlantification of Coastal Svalbard

Ngoc-Loi Nguyen (loinguyen@iopan.pl)
Institute of Oceanology Polish Academy of Sciences

Joanna Pawłowska
Institute of Oceanology Polish Academy of Sciences

Inès Barrenechea Angeles
Department of Earth Sciences, University of Geneva

Marek Zajaczkowski
Institute of Oceanology Polish Academy of Sciences

Jan Pawłowski
Department of Earth Sciences, University of Geneva

Research Article

Keywords: Benthic foraminifera, sedimentary DNA, metabarcoding, Svalbard, atlantification

Posted Date: December 2nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1009107/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Metabarcoding reveals high diversity of benthic foraminifera driven by atlantification of coastal Svalbard

Ngoc-Loi Nguyen1*, Joanna Pawłowska1, Inès Barrenechea Angeles2,3, Marek Zajaczkowski1, Jan Pawłowski1,3

1 Institute of Oceanology Polish Academy of Sciences, Powstancow Warszawy 55 81-712 Sopot, Poland
2 Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland
3 Department of Genetics and Evolution, University of Geneva, Boulevard d’Yvoy 4, 1205 Geneva, Switzerland

* Correspondence to: loinguyen@iopan.pl, Tel.: +48 (58) 7311 661

Abstract (300 words)

Arctic marine biodiversity is undergoing rapid changes due to global warming and modifications of oceanic water masses circulation. These changes have been demonstrated in the case of mega- and macrofauna, but much less is known about their impact on the biodiversity of smaller size organisms, such as foraminifera that represents a main component of meiofauna in the Arctic. Several studies analysed the distribution and diversity of Arctic foraminifera. However, all these studies are based exclusively on the morphological identification of specimens sorted from sediment samples. Here, we present the first assessment of Arctic foraminifera diversity based on metabarcoding of sediment DNA samples collected in fjords and open sea areas in Svalbard Archipelago. We obtained a total of 5,968,786 reads that represented 1,384 ASVs. More than half of the ASVs (51.7%) could not be assigned to any group in the reference database suggesting a high genetic novelty of Svalbard foraminifera.
The sieved and unsieved samples resolved comparable communities, sharing 1023 ASVs, comprising over 97% of reads. Our analyses show that the foraminiferal assemblage differs between the localities, with communities distinctly separated between fjord and open sea stations. Each locality was characterized by a specific assemblage, with only a small overlap in the case of open sea areas. Our study demonstrates a clear pattern of the influence of water masses on the structure of foraminiferal communities. The stations situated on the western coast of Svalbard that is strongly influenced by warm and salty Atlantic Water (AW) are characterized by much higher diversity than stations in the northern and eastern part, where the impact of AW is less pronounced. This high diversity and specificity of Svalbard foraminifera associated with water mass distribution indicate that the foraminiferal metabarcoding data can be a very useful tool for inferring present and past environmental conditions in the Arctic.

Keywords (4 to 6 keywords)

Benthic foraminifera, sedimentary DNA, metabarcoding, Svalbard, atlantification
1. Introduction

The Arctic Ocean is strongly impacted by the increased influence of warm and saline Atlantic Water, so-called “atlantification”, which causes sea-ice retreat and sea surface temperature increases\(^1\)\(^-\)\(^3\), directly affecting the entire ecosystem. Such changes in physical drivers lead to shifts of Atlantic species ranges towards the Arctic\(^4\), increase in productivity\(^5\), and changes in the timing of spring phytoplankton bloom\(^6\). These changes may create shifts in food webs, affecting planktonic and bottom communities\(^6\),\(^7\). Particularly, Svalbard ecosystems are currently affected by increased heat transport from northward-flowing currents\(^3\),\(^8\)\(^-\)\(^10\). The changing environmental conditions in this region introduces a significant impact on shaping biodiversity and the biogeography of many taxonomic groups, such as birds and mammals\(^11\),\(^12\), fish\(^13\),\(^14\), zooplankton\(^15\)\(^-\)\(^17\), phytoplankton\(^18\),\(^19\), and planktonic foraminifera\(^20\),\(^21\).

Foraminifera are a major component of benthic communities, from transitional and marine coastal areas to the deep-sea zones, where they have been demonstrated to be of significant importance in terms of both high abundance and diversity\(^22\)\(^-\)\(^24\). Benthic foraminifera are recognized as important ecological indicators of environmental stress because they are particularly sensitive to abrupt climate change\(^25\)\(^-\)\(^27\).

Traditionally, the morphological observations of foraminiferal mineral shells (so called tests), which belong to either the class Tumbothalamea or Globothalamea, are the basic feature used to assess foraminiferal diversity. However, morphological identification is time-consuming and expertise-demanding, making it costly and unpractical, particularly for large-scale surveys. Recently, the metabarcoding of environmental DNA (eDNA) samples have provided new insights into biodiversity and ecological distribution of numerous taxonomic groups and offer an alternative to the traditional morphology-based approach\(^28\)\(^-\)\(^30\). Metabarcoding consists in high-throughput sequencing of short DNA barcodes that include enough information for species identification to get a comprehensive inventory of all organisms.
present in a given sample, e.g., foraminiferal sequences derived from the 37f hypervariable region of the 18S small subunit (SSU) rRNA gene. To better understand large-scale patterns of biodiversity and distribution in various groups, this method is increasingly being employed, particularly in marine environments. While numerous foraminiferal metabarcoding studies were conducted in various coastal areas and the deep-sea, the application of eDNA metabarcoding to monitor foraminiferal diversity in the Arctic was limited to a few paleogenomic studies using foraminifera as proxies in palaeoceanographic reconstructions.

In the conventional morphology-based foraminiferal studies the sediment samples are sieved before the specimens are sorted. In metabarcoding approaches, the DNA is also extracted from sieved sediment samples, which has several benefits: potentially reducing sample heterogeneity, detecting completely small and low abundant taxa, achieving a higher number of reads, or decreasing primer bias due to the reduction in the amount of DNA template produced by the large specimens. Some DNA metabarcoding studies have shown that the preprocessing of samples does not significantly alter metazoan diversity patterns. However, the effectiveness of sieving versus non-sieving in the case of foraminiferal metabarcoding has not been examined yet.

The two main goals of this study are to investigate whether metabarcoding of sieved sediment is effective for the assessment of foraminiferal biodiversity and how the foraminiferal communities respond to rapid environmental shifts of Arctic marine ecosystems. Taxonomic composition, diversity, and distribution of benthic foraminifera were analyzed in fjords and open water areas in Svalbard in order to 1) compare species composition and diversity patterns inferred from sieved and unsieved sediment samples, 2) describe the spatial diversity of Svalbard foraminiferal communities, and 3) identify new potential bioindicators of atlantification.
2. Study area

The oceanography of Svalbard region is shaped mainly by the interplay between warm and saline Atlantic Water (AW) and cold Arctic Water (ArW), as well as locally formed water masses. AW is transported northward along the Spitsbergen shelf edge as the West Spitsbergen Current (WSC, Fig. 1). WSC is one of the major heat contributors to the Arctic Ocean, transporting heat from low latitudes into the Arctic and transferring it to the atmosphere and adjacent water masses. Between 78°N and 80°N, the WSC bifurcates into an eastern (Svalbard) branch and a western (Yermak) branch. The Svalbard Branch flows northeasterly, staying close to the continental margin of Svalbard. The Yermak Branch streams northwards and further recirculates southward as the Return Atlantic Current. The Svalbard area is also under the influence of cold Arctic Water (ArW) that is transported from the north-eastern Barents Sea by the East Spitsbergen Current (ESC), also called Sørkapp Current or the Coastal Current. Mixing of ArW and AW results in the formation of Transformed Atlantic Water (TAW) which expanded across the shelf and penetrated the fjords.

Isfjorden (IS) and Wijdefjorden (WIJ) are located on the west coast Spitsbergen, along the main pathway of AW inflow. Both fjords are linked directly to shelf and slope area and therefore, their oceanographic conditions are shaped mainly by the inflow of AW and TAW. Isfjorden is considered to be the most AW-impacted fjord of Spitsbergen. Rijpfjorden (RIJ) is a north-facing fjord, located on the northern coast of Nordaustlandet. The oceanography of Rijpfjorden is dominated by cold ArW, with a less pronounced impact of AW. However, episodic inflows of AW may occur in ice-free periods. As such, it is considered to be a typical Arctic fjord. In most of the year, Rijpfjorden is covered by sea ice and/or drifting ice packs.
The southeastern Nordaustlandet (NAL) and the eastern Edgeøya (EDG) are strongly impacted by the presence of large ice caps, making them one of the largest glacierized areas of Svalbard. The tidewater cliffs supply the surrounding areas with large amounts of turbid meltwater. Water masses around Nordaustlandet and Edgeøya are dominated by ArW, carried by the ESC. However, in periods of strong WSC activity, the presence of AW is also pronounced.

Figure 1. Map showing the location of sampling stations. Abbreviations: WSC - West Spitsbergen Current; ESC - East Spitsbergen Current.

3. Material and Methods

3.1. Sampling

The samples were collected at 15 sampling stations from five localities at Western, Northern and Eastern sides of the Svalbard Archipelago (Fig. 1), including three fjord sites (Isfjorden, Wijdefjorden, Rijpfjorden) and two open marine areas in front of tidewater glaciers (Edgeøya, Nordaustlandet). Sampling stations coordinates and sampling depths can be found in Table S1. Surface sediment samples were collected with the use of a box corer during the
cruise of R/V Oceania in August 2016. The upper 2 cm of sediment has been sampled from the surface of approximately 50 cm². Samples for sedimentary eDNA analysis were split into two: one half remained unsieved and the other half has been wet sieved on 500 μm, 100 μm, and 63 μm sieves. A fraction smaller than 63 μm was retained. Samples were transferred to sterile containers and frozen at −20°C. In each sampling station, physical properties of the water column from a vertical conductivity-temperature-depth (CTD) profiler were obtained using a Mini CTD Sensordata SD202 at intervals of 1 second. Water temperature was reported in degrees Celsius (°C), turbidity was presented in Formazine Turbidity Units (FTU). Water masses were classified according to Cottier, et al. Supplementary Table S2 contains detailed information.

3.2. Metabarcoding analyses

For the sieved samples, the genomic DNA from size fractions >500 μm, 500-100 μm, and 100-63 μm were extracted from 0.25 g of sediment sample with DNeasy PowerSoil Kit (Qiagen, Hilden, Germany). The sediment fraction < 63 μm and the unsieved part were extracted using DNeasy PowerMax Soil Kit (Qiagen, Hilden, Germany), which allows for the process of up to 10 g of sediment. In total, five amplicon libraries per station were prepared, corresponding to the fractions > 500 μm, 500-100 μm, 100-63 μm and < 63 μm, as well as unsieved sample.

The foraminifera-specific 37f hypervariable region of 18S rRNA gene was PCR amplified with the primers s14F1/s15, tagged with unique sequences of 5 nucleotides appended at 5' ends. Primer sequences and PCR conditions are detailed in Table S3. For each sample, 3 PCR replicates were obtained. PCR products were visualized by 1.5% agarose gel electrophoresis, quantified with Qubit 3.0 fluorometer (Thermo-Fisher Scientific Inc., Waltham, MA, USA), and the pool was purified with High Pure PCR Cleanup Micro Kit.
Library preparation was performed with TruSeq® DNA PCR-Free LT Library Prep Kit (Illumina Inc., San Diego, CA, USA) and was loaded onto a MiSeq instrument for a paired-end HTS run of 2 × 150 cycles using a v2 kit.

3.3. Data quality control and processing

Bioinformatics analyses were performed using the web application SLIM. The reads were first demultiplexed using the double tag demultiplexing algorithm based on their unique barcode sequences. DADA2 was used for quality trimming and filtering sequences, de-replicating sequences, inferring amplicon sequence variants (ASVs), merging of forward and reverse sequences, and detection and removal of chimeras. A raw number of sequence reads were published by Pawłowska, et al. Subsequently, all the resulting ASVs tables were curated with the LULU algorithm to remove erroneous ASVs following the online tutorial (https://github.com/tobiasgf/lulu) with default parameters. Final quality filtering of ASVs involved the removal of unique (occurring in only one sample) and rare ASVs (having less than 10 reads).

The remaining ASVs were compared to the curated database of foraminiferal 18S rDNA sequences and the PR2 database v4.11.1 using VSEARCH, implemented in SLIM, and BLASTN based on minimum similarity (-perc_identity 80%) and minimum coverage (--qcov_hsp 80%) for the taxonomic assignment to six taxonomic levels (phylum; class; order; family; genus; species). The representative sequences of ASVs that remained unclassified with the foraminiferal database, were aligned in a stand-alone BLAST using BLAST (v2.7.1) search against the NCBI’s non-redundant nucleotide database. The sequences diverging by less than 1% were considered as belonging to the same species/genus. ASVs below 99% identity were classified at the family, order, or class or as unassigned foraminifera.
Finally, taxonomic compositions in terms of cluster abundance were compared among processing methods only using clusters reliably assigned at the species/genus level.

3.4. Statistical analysis

Before statistical analyses, the sample matrix was filtered to remove ASVs that were classified as planktic, or non-foraminifera. For each sample, datasets of 4 size fractions were combined as a sieved dataset and compared to an unsieved dataset in further analysis. All statistical analyses were performed in R, version 4.1.0. All formal hypothesis tests were conducted on the 5% significance level ($\alpha = 0.05$).

To compare the community composition among methods and size fractions, Venn diagrams were constructed using **venn** package. The ASVs rarefaction curves were calculated to visualize whether or when a plateau was reached based on the number of eventually retained ASVs and reads using the iNEXT package. We analyzed differences in the beta-diversity of the community composition by calculating a Non-Metric Multi-Dimensional Scaling (nMDS) on Bray-Curtis similarity coefficient using **vegan** package and a heatmap based on the Spearman’s correlation with **pheatmap** package. The influences of environmental factors were calculated with the **envfit** function. A global one-way analysis of similarities (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) were computed using the function **anosim**, **adonis** and **envfit** with 999 permutations and the Bray-Curtis distance matrix to test whether there were significant differences in community composition among methods and locations of sampling units using log10(1+x) transformed read abundance data.

Finally, Sparse Partial Least Squares (PLS) regression, available in the **mixOmics** package, was used for the multivariate analysis of the combined foraminiferal datasets at ASVs level to identify ASVs that were more predictive of the observed environmental
response. Pairwise similarity matrices of an sPLS model with 2 components were computed and displayed by cim function. This approach enabled us to identify high correlations between certain ASVs and environmental parameters but without considering the structure of the foraminiferal community.

3.5. Data availability

All raw sequencing reads have been deposited in the NCBI Short Read Archive (SRA) database under Bioproject accession number PRJNA768352.

4. Results

4.1. CTD data

Figure 2. Temperature (°C) and salinity in Svalbard stations: (a) IS - Isfjorden, (b) WIJ - Wijdefjorden (c) RIJ - Rijpfjorden, (d) NAL-Nordaustlandet and (e) EDG - Edgeøya. Abbreviations: AW- Atlantic Water; TAW- Transformed Atlantic Water; ArW- Arctic Water;
Water masses are classified after Cottier et al. 49. Temperature, salinity, and turbidity for all sampling stations are presented in Figs. 2 and S1, respectively. AW and TAW dominated the water masses in Isfjorden (Fig. 2a) and Wijdefjorden (Fig. 2b), which have the highest temperatures and salinities of the investigated stations. Additionally, Surface Water (SW) and Intermediate Water (IW) were recorded at all stations in Isfjorden and station WIJ1. In Isfjorden, the highest temperature of 7.7°C was observed at the surface and progressively decreased towards the bottom to 1.4°C. Similarly, the temperature fluctuated from 5.8°C at the surface to -0.4°C near the bottom of Wijdefjorden. Water temperatures above 0°C were noted up to 111 m depth at the station WIJ1 and in the whole water column at other stations. Salinity was the lowest at the surface, reaching 28.1 in Isfjorden and 32.5 in Wijdefjorden, respectively. The lowest salinity was recorded at inner Isfjorden and Wijdefjorden (IS1 and WIJ1) and the highest values near the mouth of these fjords (IS3 and WIJ3). The turbidity increased from the inner fjord (0.1 FTU) towards the fjord’s mouth (particularly up to 12.5 FTU) in Isfjorden, reaching its maximum in the surface water at the station IS3. In contrast, turbidity was the highest in the surface layer and decreased from the inner fjord towards the fjord mouth, ranging from 5.2 to 0.1 FTU.

Rijpfjorden was characterized by the lowest near-bottom temperatures (as low as -1.7 °C) among the studied fjords. Three sites (RIJ1, RIJ2, and RIJ3) reported cold and saline Winter Cooled Water (WCW) in addition to other water masses (AW, TAW, SW, and IW). The temperature ranged from 5.2°C at the top to -1.7°C near the bottom, with the salinity varying from 33.4 to 35.4 throughout the water mass. The lowest near-bottom temperature was noted at the station RIJ1. The water temperature of the whole water column was observed to
be above 0°C at station RIJ4. Turbidity reached over 12.5 FTU at the station RIJ 3 in the near-bottom water layer and decreased to 0.1 FTU towards the mouth of the fjord.

In the region of eastern Svalbard, the Nordaustlandet stations were generally under influence of TAW, whereas AW was noted only at the glacier-distant station NAL7. NAL4 was the sole station where neither TAW nor AW was detected. SW and IW were other water masses recorded near the Nordaustlandet. Water temperature oscillated between 4.4°C at the surface to 0.2 °C near the bottom. Salinity at the surface ranged from 33.6 to 35.3 and increased towards the glacier-distant stations. The water column had relatively low turbidity (<1 FTU). The only exception was glacier-proximal station NAL 4, where turbidity reached 54.8 FTU, which was the highest value of all studied sites.

Edgeøya stations were the most distinct locations, with the absence of Atlantic-origin waters. The IW was detected at all stations, while Local Water (LW) occurred only at station EGD3. Towards the bottom of the stations, the temperature in the water column varied between 4.2 °C and -0.5°C and salinity ranged from 33.2 to 34.9. The highest turbidity was recorded at EGD1, it increased with depth to reach 48.8 FTU near the bottom. At the other stations, turbidity values oscillated from 0.3 to 4.3 FTU.

4.2. Metabarcoding data

We obtained a total of 5,968,786 raw paired-end reads. After bioinformatic processing, the numbers of the raw reads were reduced to 5,579,202 with 4,836,419 in a sieved dataset, and 742,783 in an unsieved dataset. The number of reads per sample is indicated in Table S4. One sample, unsieved IS2, produced a low number of reads and was not included in the analysis of foraminiferal diversity. After LULU curation step and strict filtering of ASVs, 1384 ASVs (1354 ASVs of sieved and 1053 ASVs of unsieved samples) representing 5,483,500 reads
(98.28% of the total reads count) were retained for downstream analysis. The average number of sequences per station were 317,306 for the sieved and 51,976 for the unsieved datasets.

The rarefaction curves were plotted at the sample level based on the number of retained ASVs and reads (Fig. 3). The rarefaction curves showed that the filtered ASV datasets reach saturation levels, indicating that most of the diversity had been captured and allowing for richness comparison among samples for all individual stations of each location and both methods. Considering the accumulation of ASVs richness across two datasets, sieved datasets exhibited the higher saturation degree of samples, respectively, and the diversity of NAL, IS, RIJ stations are higher than the individual station of EDG and WIJ.

4.3. Taxonomic composition of foraminiferal metabarcodes

Overall, the retained sequences were assigned to 1,384 foraminiferal ASVs. Among them, 758 ASVs were assigned to the class Monothalamea, 252 ASVs were assigned to the class Globothalamea and only 14 ASVs were assigned to the class Tubothalamea (Table S5). The 360 ASVs, classified as Foraminifera_X, had low similarity levels or were mainly assigned
to environmental sequences, that possibly represent non-described taxa. More than half of the
ASVs (51.73%) were assigned with low similarity (< 0.9).

![Figure 4. Proportions of reads (a) and ASVs (b) assigned to different foraminiferal classes detected in sieved and unsieved samples at different sites.](image)

The sieved and unsieved sediment DNA samples resolved comparable communities at the class level (Fig. 4). Pairwise comparisons indicated no overall significant differences in community composition between sieved and unsieved datasets (ANOSIM statistic R <0, p > 0.05 and PERMANOVA, Table S6). In Fig. 5a, the Venn diagram showed that 1023 ASVs (corresponding to 97.23% of the reads) were shared among sieved and unsieved samples. The sieved dataset had 331 unique ASVs, while unsieved dataset comprised only 30 unique ASVs (corresponding to 0.1 and 2.67 % of the reads, respectively).
Taxonomic composition in sieved samples noticeably changed between size fractions (Figs. 5b,c). The < 63 µm fraction comprises 1151 ASVs, corresponding to 83% of ASVs (Fig. 5b). It also recovered more unique ASVs (177, corresponding to 13.07% of ASVs) than any other fractions. Shared foraminiferal ASVs among fractions including 424 ASVs (corresponding to 82.39% of the reads), mostly belonged to Monothalamea (59.72%), and Globothalamea (Rotaliida 25.17%, Textulariida 10.60%) as shown in Fig. S2. In all fractions (Fig. 5c), the monothalamous taxa made up from 58% to 80% of reads. Non-described monothalamids dominated in the 500-100 µm and < 63 µm fractions (30.48% and 33.85% of reads, respectively). For multichambered globothalamids, order Textulariida accounted for 15% to 20% of the reads in 500-63 µm fractions, while Rotaliida represented more than 20% of reads in > 63 µm fractions. Interestingly, most reads of unique ASVs were assigned to specific foraminiferal groups in each fraction, e.g., Foraminifera_XX (70.69%) in > 500 µm fraction, Rotaliida (66.21%) in 500 - 100 µm fraction, Textulariida (39.28%) in < 63 um fraction, and Clade Y of Monothalamea (70.24%) in 100 - 63 um fraction, see Fig. S2.
Figure 5. Venn diagrams showing the shared and unique numbers ASVs and proportion of reads for the sieved (combined fractions) and unsieved samples (a), and between different size fractions (b). Bar plots represent the proportion of reads assigned to the taxonomic composition of each fraction by order/clade (c).

The taxonomic composition of benthic foraminifera also changed between the locations. At the class level (Fig. 4), the monothalamous taxa were the dominant group which accounted for an average of 56.06% and 61.77% of total ASVs and reads in both datasets, respectively. The highest proportion of monothalamiids (95.80%) was observed at the station EDG1 in the sieved dataset. The contribution of monothalamiids decreased in the deeper EDG stations in favour of the class Globothalamea. Comparatively, the average proportions of ASVs and reads assigned to Globothalamea were 22.60% of the ASVs and 30.75% of reads, respectively. The highest relative abundance of Globothalamea (80.80%) occurred in the WIJ3_Sieved sample. The Tubothalamea represented only a minor part of the total community (0.06% of ASVs and 7.42% of reads on average).
Figure 6. Patterns of relative abundance of dominant genera and species in the sieved (combined fractions) and unsieved sediment samples for each location.

The variations of foraminiferal assemblage between different sampling localities were also reflected in the taxonomic composition of foraminiferal assemblages at the lower taxonomic level. To compare species composition in each station, all ASVs which had an identity percentage with the reference database of more than 99% and no less than 10 reads were picked and those attributed to the same taxa were merged (Fig. 6).

In the stations located at the western coast of Spitsbergen (IS, WIJ), foraminiferal communities were dominated by genera *Psammophaga* and *Micrometula*, which together made up to 57.35% of reads. The WIJ1 was the only station where the majority of sequences belonged to a textularid *Reophax* sp. and a rotalid *Stainforthia* sp. Another rotalid species *Nonionellina labradorica* was present at all IS and WIJ stations, mainly distributed in WIJ1 (sieved: 59.99%, unsieved: 39.46%), WIJ3_Sieved (11%) and IS2_Sieved (6.5%). The northern stations (RIJ) were dominated by monothalamiids assigned to Clade Y and *Monothalamea_XXX*. At the outermost station RIJ4, also higher percentages of *Psammophaga* sp. and *Psammosphaera* sp. sequences occurred. At the stations located at eastern Svalbard (NAL), the number of Clade Y sequences decreased towards the glacier-distant stations, while the percentage of *Monothalamea_XXX* increased. Also, glacier-distal stations were characterized by a higher proportion of Globothalamea, mainly *Reophax* sp. and *Stainforthia* sp. The foraminiferal community in EDG1 was dominated by a monothalamid *Psammosphaera* sp. (up to 90%), while *Hippocrepinella* sp. dominated in EDG2 and EDG3 (from 11% to 84%). Also, the percentage of *Reophax* sp. sequences increased towards the glacier-distal stations, reaching up to 34.68% at the station EDG3_Sieved.
4.4. Alpha and beta diversity patterns

4.4.1. Alpha diversity

The four alpha-diversity indices (Observed ASVs, Chao1, Simpson and Shannon) were measured separately for sieved and unsieved datasets (Fig. 7) and showed clear variation between different locations. On the one hand, the number of ASVs collected varied substantially depending on sample treatments and locations. In terms of sample treatment, sieved samples recovered higher Observed ASVs and Chao1 indices (Figs. 7a,b), but not Simpson or Shannon (Figs. 7c,d). On the other hand, the measured alpha-diversity indices tended to increase with increasing distance from the glacier (except station RIJ2). In general, the alpha-diversity indices of the fjords (IS, WIJ, RIJ) were higher than those of open sea areas (NAL, EDG), indicating higher foraminiferal diversity in fjords.
Figure 7. Bar plots of alpha diversity indices, including community richness (a: Observed ASVs, b: Chao1) and diversity (c: Shannon, d: Simpson) for the 15 sieved samples and 14 unsieved samples using retained ASV read abundances.

4.4.2. Beta diversity

The non-metric multidimensional scaling plots (nMDS) and heatmap of all stations (Fig. 8) supported the findings of the ordinances, showing that foraminiferal communities detected in the sieved samples differed from those detected in the unsieved samples, but not significantly (Table S7). The nMDS and heatmap patterns also revealed spatial distribution of the foraminiferal communities among the different localities. In Fig. 8a, the nMDS analyses produced a similar pattern with sieved and unsieved datasets, although community segregation was observed in ordinations of EDG and NAL sites. The communities were distinctly separated between fjord stations and opened sea stations, as shown by low-stress values. Although the fjord samples formed tight clusters, the samples from each fjord were not overlapping with the samples from other fjord locations. On the contrary, the communities obtained from EDG and NAL sites formed clusters with much larger internal compositional differences and has an overlap between the two sites. Heatmap further clarified the community structuration with the stations and datasets (Fig. 8b), which were not visible on the nMDS (except for NAL5). The sampling sites were grouped in two main clusters: cluster 1 aggregating 3 stations (EDG1, EDG2, NAL4) and cluster 2 comprising the 12 remaining stations that were grouped into three subclusters. The stations of two fjords (IS and WIJ) had homogeneous communities and formed one separate subcluster. Two other subclusters are formed by i) NAL6, NAL5, EDG3, and ii) all RIJ stations and NAL7.
Figure 8. Community structuring of benthic foraminifera using nonlinear multidimensional scaling based on Bray-Curtis distance similarity coefficient (a) and heatmap based on Spearman’s correlation coefficient for fractions and unsieved samples (b). Stress value is displayed on the plot.

4.4. sPLS Prediction Analysis

In the results of the sPLS regression, we detected several foraminiferal ASVs lineages for which relative sequence abundance correlated with environmental parameters (Fig. 9 and Table S8). The sPLS regression and subsequent hierarchical clustering suggested that the data was separated into three clusters (Fig. 9). These include lineages identified as potential indicators of water mass characteristics.

In cluster I.A, the ASVs exhibited a positive correlation with turbidity and negative correlation with factors such as depth, the salinity of bottom water and temperature of the surface water, with the ASVs predominantly affiliated as members of monothalamiids: *Hippocrepinella* sp. (ASV3, ASV10, ASV21), *Psammosphaera* sp. (ASV6), *Saccamminidae* sp. (ASV12), CladeY_spallogJAP (ASV22), STICKY_ICE (ASV39), *Pelosinella fusiformis* (ASV82), and globothalamids: *Buliminella* sp. (ASV14), *Nonionellina labradorica* (ASV20), *Cibicides* sp. (ASV91). The ASVs within cluster II revealed a strong and positive correlation
with temperature as well as a negative correlation with salinity in the surface water masses.

This cluster included globothalamids: *Stainforthia* sp. (ASV1), *Virgulinella fragilis* (ASV79), *Reophax* sp. (ASV92), *Cibicidoides fletcheri* (ASV23), and monothalamiids: *Psammophaga* sp. (ASV25, ASV34, ASV42, ASV53, ASV64), *Micrometula* sp. (ASV4), ENFOR2_ENVHABIC19 (ASV45), CladeA (ASV85, ASV32). Some ASVs belonging to cluster II also had a strong positive correlation with the depth and bottom water salinity (Table S8).

Figure 9. Clustered image map (CIM) of the first two sPLS dimensions, displaying pairwise correlations between foraminiferal ASVs of combined unsieved and sieved samples associated with environmental parameters. Correlations between ASVs and environmental parameters are depicted as a clustered heat map (detailed results in Table S8). Red and blue indicate positive and negative correlations, respectively.
Additionally, we observed positive correlations with depth and salinity in clusters III.A and III.B. Most of ASVs belonging to these clusters were classified as undetermined Monothalamia: Monothalamia_XX (39 ASVs), ENFOR XX (20 ASVs), CladeG (19 ASVs), CladeTIN (16 ASVs). In terms of ASV abundance, the dominant ASVs included environmental monothalamids (ASV11, ASV44, ASV81, ASV66, ASV93, ASV88, ASV69, ASV78), CladeC_spsacccam (ASV59), Gloiogullmia sp. (ASV63), Cibicides sp. (ASV38), Nonionella auris (ASV31), rotalid (ASV96), Reophax sp. (ASV41, ASV13, ASV18), Stainforthia sp. (ASV77). Cluster III.C had positive associations with the depth, the bottom water salinity, and the surface temperature. ENFOR2_XXX (ASV408, ASV136, ASV125) exhibited their highest abundances of this cluster.

5. Discussion

5.1. Is pre-sieving useful for foraminiferal metabarcoding?

The methodological aim of this study was to compare the results of metabarcoding analyses based on sieved and unsieved sediment samples. Sieving is a common procedure in the conventional microscopic study of foraminiferal assemblage analyzing mainly hard-shelled, multi-chambered taxa preserved in fixed and dried sediment samples. In contrast, metabarcoding studies of unsieved sediment samples usually provide a foraminiferal assemblage dominated by poorly known, soft-shelled or naked monothalamous taxa. Because of this, it is difficult to compare the results of traditional morphology-based studies with those of metabarcoding analysis, which provide very different types of data.

As shown by our study, the taxonomic composition of different size fractions is not the same. For example, the order Rotaliida was the most abundant in 500-100 µm and 100-63 µm size fractions. Also, another hard-shelled order Textulariida, which is microscopically studied in the 500-100 µm fraction, in metabarcoding data is present mainly in fractions 500-100 µm...
and 100-63 µm (Fig. 5c) This is congruent with the rotaliids and textulariids dominating microscopic assemblage found in >63 µm sieved fraction. On the other hand, the smallest fraction (<63 µm) was dominated by monothalamiiids and undetermined Foraminifera (Fig. 5C), which may suggest the presence of some genetically unknown, tiny monothalamous species.

We also observed some differences between sieved and unsieved samples regarding the alpha diversity. The total number of recovered ASVs was clearly higher in sieved than in unsieved samples (approximately 30% ASVs). However, this could be explained by the difference in the number of DNA extractions, PCR amplifications, and sequencing depth. In the case of sieved samples, the datasets included four DNA extractions, one for each size fraction, while only one DNA extraction was performed for non-sieved sediment samples. In total, the number of sequences obtained for sieved fractions was several times higher, allowing to detection of more diversity in sieved compared to unsieved samples. However, no significant difference between the sieved/unsieved samples was observed in alpha-diversity measures such as Shannon’s and Simpson’s that take abundance and evenness of the sample into consideration as shown in Fig. 7. Although sieving might have been predicted to lead to a reduction in alpha diversity due to the loss of microfauna and extracellular debris, this has not been observed in previous studies. In addition, NMDS of the beta-diversity matrices and correlation test showed sieved and unsieved samples clustered together (Fig. 8, Table S7), indicating that there is no significant difference in community composition inferred by the two methods. To conclude, the decision of whether the sediment samples should be sieved or not shall be based on the type of questions one wants to answer with metabarcoding data as well as the composition and characteristics of initial samples. Sieving procedure combined with metabarcoding analysis might be useful if targeted at particular groups of foraminifera (e.g., Rotaliida, Textulariida), for example, to compare with microscopic studies or to identify some
tiny species present in fine size fractions. In general, the unsieved samples provide a more complete overview of the taxonomic composition of the foraminiferal community. However, as shown by our study, both metabarcoding datasets reveal similar trends in foraminiferal diversity. Size-sieving might have some advantages, however, it also has some drawbacks, as (i) it is time-consuming, (ii) requires higher volume samples, and (iii) there is a possibility of cross-contamination between samples. Therefore, either extracting DNA directly from sediment or after sieving should be carefully considered when evaluating foraminiferal communities across metabarcoding studies.

5.2. Distribution patterns of foraminifera in Svalbard

The most striking result of this study is the variations of foraminiferal assemblage between different sampling localities. Although, there are some similar trends documented by diversity indices at different locations, such as the proportion of monothalamiids in near-glacier settings (Fig. 6), or the increase of alpha diversity from glacier proximal/inner to glacier-distant/outer stations (Fig. 7), which are in agreement with the previous morphology-based studies 81-83, the composition of foraminiferal communities is generally specific to each location. Each fjord forms a separate cluster and only some stations at open-water areas overlap with each other (Fig. 8a).

The high-Arctic settings are usually considered as a cold system influenced at different levels by ArW during summer to late autumn 84, and covered by sea ice in winter 9,59,85. However, the increased influence of AW and winter sea-ice loss is observed in recent years 10,86,87. We speculate that hydrographic conditions would lead to isolating populations from different settings and creating unique structures of the foraminiferal community.

It is well known that the unique habitats of fjords can support a high diversity and distinct biological communities 81-83,88-90. Fjords create a variety of habitats suitable for specific
species, where many species can converge and reach high population densities. Western
Spitsbergen fjords are among the most AW-impacted areas. Both Isfjorden and Wijdefjorden
are directly connected to the slope and shelf areas, which enables AW penetration into the
 fjords. Moreover, Isfjorden stations are located in the central basin of the fjord, which resulted
in limited glacial influence. This led to the formation of foraminifera communities
characterized by a relatively high proportion of globothalamids and the presence of
monothalamids community dominated by the genera *Psammophaga* and *Micrometula* (Fig.
6). Similar distribution patterns were previously observed in west Spitsbergen fjords. Only
station WIJ1 displayed a unique structure with a clear dominance of Rotaliida (Figs. 4 and 6).
Station WIJ1 is located in the inner fjord, close to the glacier termini and is influenced by turbid
meltwater runoffs. The dominance of Rotaliida contradicts previous studies, indicating that
glacier proximal settings are dominated by monothalamous foraminifera. However, this
distribution pattern could be also explained by the natural patchiness of foraminiferal
distribution.

In the northern site (RIJ), the dominant component of foraminiferal assemblages were
undetermined monothalamids (Figs 4 and 6). The dominance of these undetermined, small,
soft-walled species was previously observed in areas characterized by a high level of
environmental disturbance. Northern Svalbard in general and Rijpfjorden in particular, are
considered to be a typical Arctic setting, where sea ice forms in autumn and lasts until summer.
Also, the drifting ice pack is often transported to the fjord during the summer. Forming of
sea ice is associated with brine rejection. Cold and dense brines sink to the bottom, which leads
to the formation of cold and saline WCW. This process may create a more severe environment
where monothalamids thrive.

Foraminiferal communities of open water areas (eastern Svalbard) have generally lower
diversity and form different groups compared to those from western Svalbard fjords. Stations
from the regions of Nordaustlandet and Edgeøya are located in front of large tidewater glaciers, releasing large amounts of turbid meltwater (Fig. S1). However, only Nordaustlandet was influenced by AW and TAW, while the Edgeøya oceanographic conditions were shaped mainly by local water masses. These led to the creation of distinctly different foraminiferal communities. NAL stations were characterized by a wide range of undetermined monothalamiids, while the EDG stations were dominated by a few monothalamous species representing genera *Hipocrepinella* and *Psammosphaera* (Fig. 6). In particular, station EDG1 exhibited a unique foraminiferal community, composed almost exclusively of *Psammosphaera* sp. Psammosphaerids were previously recorded in Spitsbergen fjords and also in deep-sea areas affected by bottom currents. Environmental conditions at station EDG1 are probably the most dynamic and severe among the studied stations, as the large sub-bottom meltwater outflow was recorded (Fig. S1).

5.3. **Influence of atlantification on foraminifera community**

The response of benthic foraminifera to alterations in temperature and salinity in the water column are common and include expansions or retractions of distribution ranges or changes in assemblage compositions. We hypothesize that the composition of foraminiferal communities in our data resulted from water mass conditions. This hypothesis is strengthened by the clear clustering of the community in groups corresponding to different oceanographic regimes, in which stations from regions impacted by AW and/or sea-ice clustered separately.

As shown by the nMDS plot and heatmap (Fig. 8), the separation between two main clusters has a strong relationship with characteristics of water masses. Cluster 1 comprises exclusively the stations of the eastern part of the archipelago (EDG1, EGD2, NAL4, NAL5), characterized by colder, and less salty water, associated with turbid glacial meltwater. On
the contrary, Cluster 2 includes mainly stations from the western and northern part of Svalbard
where the impact of warmer and more saline Atlantic Water (AW) was much pronounced,
confirmed by our CTD profile (Fig. 2). Also, sub-clusters that formed within cluster 2 reflected
different impacts of AW. The first sub-cluster comprises stations located in the glacial-distant
regions of Nordaustlandet and Edgeøya, influenced mainly by TAW. The second sub-cluster
includes the most AW-impacted stations located on the western coast of the archipelago, while
the third sub-cluster is composed of stations located in north-eastern Svalbard, influenced both
by the inflow of AW and sea-ice.

The increased AW inflow, higher light availability, and the decline of sea-ice around
Svalbard affect the primary productivity, changing both the timing of phytoplankton bloom
and phytoplankton community structure. This may have significant effects on food web
dynamics, affecting higher trophic levels, including benthic communities. On the other hand,
recent model projections indicated low mean habitat loss of benthic macrofauna under recent
climate changes, which questions the vulnerability of Arctic benthos to atlantification. This
stands in clear opposition to the morphological observations that testate foraminifera
communities from Svalbard fjords revealed significant changes, both in terms of abundance
and species composition, related to atlantification. Our study confirms the impact of AW on
foraminiferal communities, suggesting that AW is one of the primary factors shaping the
benthic foraminifera assemblages and thus foraminifera may be potential indicators of
atlantification.

Through sPLS analysis of combining datasets, we identified foraminiferal taxa that
could become potential bioindicators of "atlantification". This group of species includes some
monothalamiids belonging to genera *Psammophaga* and *Micrometula* as well as some
undetermined monothalamous species belonging to environmental lineage ENFOR2 and Clade
A. The genera *Psammophaga* and *Micrometula* are widespread in many coastal areas including
polar regions and are considered as bioindicator candidates in several studies. However, the limited knowledge about the ecology of those taxa, as well as lack of reference database of their distribution in the North Atlantic region precludes making any general conclusions. Among potential bioindicators, there are also some globothalamids, such as *Stainforthia* sp., *Virgulinella fragilis*, *Reophax* sp., and *Cibicidoides fletcheri*. *Cibicidoides* species is common in the North Atlantic, but to the best of our knowledge, it was not recorded in Svalbard before. One of the major signs of atlantification is the northward shift of boreal species, the trend observed in the case of zooplankton, fish, and benthic organisms. A recent morphological study of Svalbard foraminifera revealed the presence of boreal species *Melonis affinis* in the northern part of the archipelago. *Reophax* sp. and *Stainforthia* sp. are commonly found in Svalbard. Also, species belonging to the genus *Reophax* are considered as indicators of AW. The agreement of our results with previous morphology-based studies further proves the potential of foraminifera in biomonitoring studies.

Apart from indicators of atlantification, we identified monothalamiids that show a strong correlation with turbidity, but not with depth or salinity. These species included *Hippocrepinella* sp., *Psammosphaera* sp., *Saccamminidae* sp., CladeY_spallogJAP, and several unassigned STICKY_ICE ASVs. This correlation is particularly strong in stations closer to the coast, which is probably caused by enhanced turbidity due to sediment-laden meltwater plumes. *Hippocrepinella* sp., *Psammosphaera* sp., *Saccamminidae* sp., as well as monothalamiiids belonging to Clade Y were previously recorded in Svalbard. Clade Y comprises mainly undetermined monothalamiiids, known from environmental sequencing. They were abundantly sequenced in the settings characterized by a high level of environmental disturbance, suggesting that they are highly resistant to environmental disturbance. Moreover, morphological studies reported *Hippocrepinella* sp., *Psammosphaera* sp., *Saccamminidae* sp., in the shallow-water parts of the fjords, located close to meltwater.
outflows 81,82,90. These findings underline how important can be to include soft-shelled monothalamous foraminifera in metabarcoding studies to enhance limited knowledge about their ecology for potential use in biomonitoring.

6. Conclusions

This study is the first to use high-throughput sequencing to comprehensively analyze the foraminiferal communities within marine sediments from Svalbard, which helps to provide more knowledge of foraminiferal diversity and distribution patterns in the Arctic’s fjords. The DNA sequencing results from sieved and unsieved sediment revealed a high diversity of the Svalbard foraminifera compared to traditional morphology-based studies and variation in the taxonomic composition of foraminiferal communities from five sampling areas. Foraminiferal diversity and species richness increased from glacier proximal/inner to glacier-distant/outer stations and were higher in the fjords than in the open water. Moreover, the structure of foraminiferal community is clearly influenced by different water masses, with a particular impact of Atlantic Water in the Svalbard region. Numerous potential molecular foraminiferal bioindicators for atlantification were identified. This should be confirmed by analysing many more samples from reference areas in North Atlantic. With the increasing numbers of metabarcoding studies, the impact of atlantification on Arctic benthic communities identified in this study could be better assessed and expanded to those organisms that are not covered by the conventional morphological approach.

Acknowledgements

The research leading to these results has been funded by Norwegian Financial Mechanism for 2014-2021, project no 2019/34/H/ST10/00682. Jan P and IBA were supported by the Swiss
National Science Foundation grant 31003A_179125. Joanna P was also supported by the grant no. 2018/31/B/ST10/01616 funded by the National Science Centre in Poland. We express our thanks to the captain and crew of the R/V Oceania.

Authors contributions

N-LN, Joanna P, Jan P and MZ conceived the idea for the study and developed the research methodology; Joanna P and MZ collected the samples and performed laboratory analysis; N-LN produced the dataset; N-LN and Joanna. P performed the bioinformatic analyses and wrote the manuscript with contributions and comments from all co-authors. All authors reviewed and approved the final manuscript.

Declaration of Competing Interest

The authors declare no competing interests.

References

1. Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. *ICES Journal of Marine Science* **69**, 852-863, doi:10.1093/icesjms/fss056 (2012).

2. Polyakov, I. V. *et al.* Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. *Science* **356**, 285-291, doi:10.1126/science.aai8204 (2017).
Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B. & Nilsen, F. Loss of sea ice during winter north of Svalbard. *Tellus A: Dynamic Meteorology and Oceanography* **66**, 23933, doi:10.3402/tellusa.v66.23933 (2014).

Berge, J., Johnsen, G., Nilsen, F., Gulliksen, B. & Slagstad, D. Ocean temperature oscillations enable reappearance of blue mussels *Mytilus edulis* in Svalbard after a 1000 year absence. *Marine Ecology Progress Series* **303**, 167-175 (2005).

Slagstad, D., Ellingsen, I. H. & Wassmann, P. Evaluating primary and secondary production in an Arctic Ocean void of summer sea ice: An experimental simulation approach. *Prog Oceanogr* **90**, 117-131, doi:https://doi.org/10.1016/j.pocean.2011.02.009 (2011).

Zajączkowski, M., Nygård, H., Hegseth, E. N. & Berge, J. Vertical flux of particulate matter in an Arctic fjord: the case of lack of the sea-ice cover in Adventfjorden 2006–2007. *Polar Biology* **33**, 223-239, doi:10.1007/s00300-009-0699-x (2010).

Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. *Proceedings of the Royal Society B: Biological Sciences* **282**, 20151546, doi:10.1098/rspb.2015.1546 (2015).

Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: A research synthesis. *Global and Planetary Change* **77**, 85-96, doi:https://doi.org/10.1016/j.gloplacha.2011.03.004 (2011).

Dai, A., Luo, D., Song, M. & Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. *Nat Commun* **10**, 121, doi:10.1038/s41467-018-07954-9 (2019).

Nilsen, F., Cottier, F., Skogseth, R. & Mattsson, S. Fjord–shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden,
Svalbard. *Continental Shelf Research* **28**, 1838-1853, doi:https://doi.org/10.1016/j.csr.2008.04.015 (2008).

11 Vihtakari, M. et al. Black-legged kittiwakes as messengers of Atlantification in the Arctic. *Sci Rep* **8**, 1178, doi:10.1038/s41598-017-19118-8 (2018).

12 Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago - Svalbard, Norway. *Glob Chang Biol* **23**, 490-502, doi:10.1111/gcb.13381 (2017).

13 Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. *Proc Natl Acad Sci U S A* **114**, 12202-12207, doi:10.1073/pnas.1706080114 (2017).

14 Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. *Nature Climate Change* **5**, 673-- (2015).

15 Weydmann-Zwolicka, A. et al. Zooplankton and sediment fluxes in two contrasting fjords reveal Atlantification of the Arctic. *Sci Total Environ* **773**, 145599, doi:10.1016/j.scitotenv.2021.145599 (2021).

16 Hop, H. et al. Pelagic Ecosystem Characteristics Across the Atlantic Water Boundary Current From Rijpfjorden, Svalbard, to the Arctic Ocean During Summer (2010–2014). *Frontiers in Marine Science* **6**, doi:10.3389/fmars.2019.00181 (2019).

17 Grabowski, M. et al. Contrasting molecular diversity and demography patterns in two intertidal amphipod crustaceans reflect Atlantification of High Arctic. *Marine Biology* **166**, 155, doi:10.1007/s00227-019-3603-4 (2019).

18 Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. *Proc Natl Acad Sci U S A* **113**, 2964-2969, doi:10.1073/pnas.1519080113 (2016).
Neukermans, G., Oziel, L. & Babin, M. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. *Glob Chang Biol* **24**, 2545-2553, doi:10.1111/gcb.14075 (2018).

Meilland, J. *et al.* Population dynamics of modern planktonic foraminifera in the western Barents Sea. *Biogeosciences* **17**, 1437-1450, doi:10.5194/bg-17-1437-2020 (2020).

Ofstad, S. *et al.* Shell density of planktonic foraminifera and pteropod species Limacina helicina in the Barents Sea: Relation to ontogeny and water chemistry. *PLoS One* **16**, e0249178, doi:10.1371/journal.pone.0249178 (2021).

Schoenle, A. *et al.* High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. *Commun Biol* **4**, 501, doi:10.1038/s42003-021-02012-5 (2021).

Gooday, A. J. & Jorissen, F. J. Benthic foraminiferal biogeography: controls on global distribution patterns in deep-water settings. *Ann Rev Mar Sci* **4**, 237-262, doi:10.1146/annurev-marine-120709-142737 (2012).

Murray, J. W. *Ecology and Applications of Benthic Foraminifera*. (Cambridge University Press, 2006).

Kawahata, H. *et al.* Perspective on the response of marine calcifiers to global warming and ocean acidification—Behavior of corals and foraminifera in a high CO2 world “hot house”. *Progress in Earth and Planetary Science* **6**, 5, doi:10.1186/s40645-018-0239-9 (2019).

Wittmann, A. C. & Pörtner, H.-O. Sensitivities of extant animal taxa to ocean acidification. *Nature Climate Change* **3**, 995-1001, doi:10.1038/nclimate1982 (2013).
Prazeres, M., Roberts, T. E. & Pandolfi, J. M. Variation in sensitivity of large benthic Foraminifera to the combined effects of ocean warming and local impacts. *Scientific Reports* **7**, 45227, doi:10.1038/srep45227 (2017).

Bohmann, K. *et al.* Environmental DNA for wildlife biology and biodiversity monitoring. *Trends Ecol Evol* **29**, 358-367, doi:10.1016/j.tree.2014.04.003 (2014).

Holman, L. E. *et al.* Animals, protists and bacteria share marine biogeographic patterns. *Nature Ecology & Evolution* **5**, 738-746, doi:10.1038/s41559-021-01439-7 (2021).

Pawlowski, J., Bonin, A., Boyer, F., Cordier, T. & Taberlet, P. Environmental DNA for biomonitoring. *Molecular Ecology* **30**, 2931-2936, doi:https://doi.org/10.1111/mec.16023 (2021).

Lejzerowicz, F., Esling, P. & Pawlowski, J. Patchiness of deep-sea benthic Foraminifera across the Southern Ocean: Insights from high-throughput DNA sequencing. *Deep Sea Research Part II: Topical Studies in Oceanography* **108**, 17-26, doi:https://doi.org/10.1016/j.dsr2.2014.07.018 (2014).

Pawlowski, J. & Lecroq, B. Short rDNA barcodes for species identification in foraminifera. *J Eukaryot Microbiol* **57**, 197-205, doi:10.1111/j.1550-7408.2009.00468.x (2010).

Armbrecht, L. H. *et al.* Ancient DNA from marine sediments: Precautions and considerations for seafloor coring, sample handling and data generation. *Earth-Science Reviews* **196**, 102887, doi:https://doi.org/10.1016/j.earscirev.2019.102887 (2019).

Vargas, C. d. *et al.* Eukaryotic plankton diversity in the sunlit ocean. *Science* **348**, 1261605, doi:10.1126/science.1261605 (2015).
35 Frontalini, F. et al. Benthic foraminiferal metabarcoding and morphology-based assessment around three offshore gas platforms: Congruence and complementarity. *Environ Int* **144**, 106049, doi:10.1016/j.envint.2020.106049 (2020).

36 Pawlowski, J. et al. Benthic monitoring of salmon farms in Norway using foraminiferal metabarcoding. *Aquacult Env Interac* **8**, 371-386 (2016).

37 Pawlowski, J., Esling, P., Lejzerowicz, F., Cedhagen, T. & Wilding, T. A. Environmental monitoring through protist next-generation sequencing metabarcoding: assessing the impact of fish farming on benthic foraminifera communities. *Molecular Ecology Resources* **14**, 1129-1140 (2014).

38 Chronopoulou, P. M., Salonen, I., Bird, C., Reichart, G. J. & Koho, K. A. Metabarcoding Insights Into the Trophic Behavior and Identity of Intertidal Benthic Foraminifera. *Frontiers in microbiology* **10**, 1169, doi:10.3389/fmicb.2019.01169 (2019).

39 Cordier, T., Barrenechea, I., Lejzerowicz, F., Reo, E. & Pawlowski, J. Benthic foraminiferal DNA metabarcodes significantly vary along a gradient from abyssal to hadal depths and between each side of the Kuril-Kamchatka trench. *Prog Oceanogr* **178** (2019).

40 Lejzerowicz, F. et al. Eukaryotic Biodiversity and Spatial Patterns in the Clarion-Clipperton Zone and Other Abyssal Regions: Insights From Sediment DNA and RNA Metabarcoding. *Frontiers in Marine Science* **8**, doi:10.3389/fmars.2021.671033 (2021).

41 Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. *Proc Natl Acad Sci USA* **108**, 13177-13182, doi:10.1073/pnas.1018426108 (2011).
Pawlowska, J. et al. Ancient DNA sheds new light on the Svalbard foraminiferal fossil record of the last millennium. *Geobiology* **12**, 277-288, doi:10.1111/gbi.12087 (2014).

Pawlowska, J., Wollenburg, J. E., Zajaczkowski, M. & Pawlowski, J. Planktonic foraminifera genomic variations reflect paleoceanographic changes in the Arctic: evidence from sedimentary ancient DNA. *Sci Rep* **10**, 15102, doi:10.1038/s41598-020-72146-9 (2020).

Barrenechea Angeles, I. et al. Planktonic foraminifera eDNA signature deposited on the seafloor remains preserved after burial in marine sediments. *Sci Rep* **10**, 20351, doi:10.1038/s41598-020-77179-8 (2020).

Elbrecht, V., Peinert, B. & Leese, F. Sorting things out: Assessing effects of unequal specimen biomass on DNA metabarcoding. *Ecol Evol* **7**, 6918-6926, doi:10.1002/ece3.3192 (2017).

Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. *P Natl Acad Sci USA* **112**, 2076-2081 (2015).

Brandt, M. I. et al. Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA. *Sci Rep* **11**, 7856, doi:10.1038/s41598-021-86396-8 (2021).

Sinniger, F. et al. Worldwide Analysis of Sedimentary DNA Reveals Major Gaps in Taxonomic Knowledge of Deep-Sea Benthos. *Frontiers in Marine Science* **3**, doi:10.3389/fmars.2016.00092 (2016).

Cottier, F. et al. Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard. *Journal of*
Blindheim, J. & Østerhus, S. in *The Nordic Seas: An Integrated Perspective* 11-37 (2005).

Loeng, H. Features of the physical oceanographic conditions of the Barents Sea. *Polar Research* 10, 5-18, doi:https://doi.org/10.1111/j.1751-8369.1991.tb00630.x (1991).

Spielhagen, R. F. *et al.* Enhanced Modern Heat Transfer to the Arctic by Warm Atlantic Water. *Science* 331, 450-453, doi:10.1126/science.1197397 (2011).

Saloranta, T. M. & Haugan, P. M. Northward cooling and freshening of the warm core of the West Spitsbergen Current. *Polar Research* 23, 79-88, doi:10.3402/polar.v23i1.6268 (2004).

Aagaard, K., Foldvik, A. & Hillman, S. R. The West Spitsbergen Current: Disposition and water mass transformation. *Journal of Geophysical Research: Oceans* 92, 3778-3784, doi:https://doi.org/10.1029/JC092iC04p03778 (1987).

Bourke, R. H., Weigel, A. M. & Paquette, R. G. The westward turning branch of the West Spitsbergen Current. *Journal of Geophysical Research: Oceans* 93, 14065-14077, doi:https://doi.org/10.1029/JC093iC11p14065 (1988).

Sternal, B. *et al.* Postglacial variability in near-bottom current speed on the continental shelf off south-west Spitsbergen. *Journal of Quaternary Science* 29, 767–777, doi:10.1002/jqs.2748 (2014).

Nilsen, F., Skogseth, R., Vaardal-Lunde, J. & Inall, M. A Simple Shelf Circulation Model: Intrusion of Atlantic Water on the West Spitsbergen Shelf. *Journal of Physical Oceanography* 46, 1209-1230, doi:10.1175/jpo-d-15-0058.1 (2016).
Kowalewski, W., Rudowski, S. & Zalewski, S. M. Seismoacoustic studies within Wijdefjorden, Spitsbergen. *Polish Polar Research* **vol. 11**, 287-300-287-300 (1990).

Ambrose Jr., W. G., Carroll, M. L., Greenacre, M., Thorrold, S. R. & McMahon, K. W. Variation in Serripes groenlandicus (Bivalvia) growth in a Norwegian high-Arctic fjord: evidence for local- and large-scale climatic forcing. *Global Change Biology* **12**, 1595-1607, doi:https://doi.org/10.1111/j.1365-2486.2006.01181.x (2006).

Dowdeswell, J. A. *et al.* Digital Mapping of the Nordaustlandet Ice Caps from Airborne Geophysical Investigations. *Annals of Glaciology* **8**, 51-58, doi:10.3189/S0260305500001130 (1986).

Dowdeswell, J. A. & Bamber, J. L. On the glaciology of Edgeøya and Barentsøya, Svalbard. *Polar Research* **14**, 105-122, doi:10.3402/polar.v14i2.6658 (1995).

Knies, J., Brookes, S. & Schubert, C. J. Re-assessing the nitrogen signal in continental margin sediments: New insights from the high northern latitudes. *Earth Planet Sc Lett* **253**, 471-484 (2007).

Dufresne, Y., Lejzerowicz, F., Perret-Gentil, L. A., Pawlowski, J. & Cordier, T. SLIM: a flexible web application for the reproducible processing of environmental DNA metabarcoding data. *BMC Bioinformatics* **20**, 88, doi:10.1186/s12859-019-2663-2 (2019).

Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon data. *Nat Methods* **13**, 581-583, doi:10.1038/nmeth.3869 (2016).

Pawlowska, J., Pawlowski, J. & Zajączkowski, M. Dataset of foraminiferal sedimentary DNA (sedDNA) sequences from Svalbard. *Data in Brief* **30**, 105553, doi:https://doi.org/10.1016/j.dib.2020.105553 (2020).
Froslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. *Nat Commun* **8**, 1188, doi:10.1038/s41467-017-01312-x (2017).

Holzmann, M. & Pawlowski, J. An updated classification of rotaliid foraminifera based on ribosomal DNA phylogeny. *Marine Micropaleontology* **132**, 18-34, doi:https://doi.org/10.1016/j.marmicro.2017.04.002 (2017).

Pawlowski, J., Holzmann, M. & Tyszka, J. New supraordinal classification of Foraminifera: Molecules meet morphology. *Marine Micropaleontology* **100**, 1-10, doi:https://doi.org/10.1016/j.marmicro.2013.04.002 (2013).

Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. *Nucleic Acids Res* **41**, D597-604, doi:10.1093/nar/gks1160 (2013).

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *Journal of Molecular Biology* **215**, 403-410, doi:https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).

R Core Team. *R: A language and environment for statistical computing. R Foundation for Statistical Computing*, Vienna, Austria, Available online at https://www.R-project.org/, 2018.

Dusa, A. *venn: Draw Venn Diagrams*, <https://cran.r-project.org/web/packages/venn/venn.pdf> (2018).

Hsieh, T. C., Ma, K. H. & Chao, A. *iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution* **7**, 1451-1456, doi:https://doi.org/10.1111/2041-210X.12613 (2016).

Kolde, R. *Pretty Heatmaps*. (2019).
Rohart, F., Gautier, B., Singh, A. & Le Cao, K. A. mixOmics: An R package for 'omics feature selection and multiple data integration. PLoS Comput Biol 13, e1005752, doi:10.1371/journal.pcbi.1005752 (2017).

Le Cao, K. A., Rossouw, D., Robert-Granie, C. & Besse, P. A sparse PLS for variable selection when integrating omics data. Stat Appl Genet Mol Biol 7, Article 35, doi:10.2202/1544-6115.1390 (2008).

Schönfeld, J. et al. The FOBIMO (FOraminiferal Blo-MOnitoring) initiative - Towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies. Marine Micropaleontology 94-95, 1-13, doi:https://doi.org/10.1016/j.marmicro.2012.06.001 (2012).

Brannock, P. M. & Halanych, K. M. Meiofaunal community analysis by high-throughput sequencing: Comparison of extraction, quality filtering, and clustering methods. Marine Genomics 23, 67-75, doi:https://doi.org/10.1016/j.margen.2015.05.007 (2015).

He, X., Sutherland, T. F. & Abbott, C. L. Improved efficiency in eDNA metabarcoding of benthic metazoans by sieving sediments prior to DNA extraction. Environmental DNA n/a, doi:https://doi.org/10.1002/edn3.172 (2020).

Sabbatini, A., Morigi, C., Negri, A. & Gooday, A. Distribution and biodiversity of stained monothalamous foraminifera from Tempelfjord, Svalbard. Journal of Foraminiferal Research 37, 93-106, doi:10.2113/gsjfr.37.2.93 (2007).

Majewski, W., Pawłowski, J. & Zajączkowski, M. Monothalamous foraminifera from West Spitsbergen fjords, Svalbard: a brief overview. Polish Polar Research vol. 26, 269-285-269-285 (2005).
Hald, M. & Korsun, S. Distribution of modern benthic foraminifera from fjords of
Svalbard, European Arctic. *Journal of Foraminiferal Research - J FORAMIN RES 27,* 101-122, doi:10.2113/gsjfr.27.2.101 (1997).

Wallace, M. I. *et al.* Comparison of zooplankton vertical migration in an ice-free and
a seasonally ice-covered Arctic fjord: An insight into the influence of sea ice cover on
zooplankton behavior. *Limnology and Oceanography 55,* 831-845,
doi:https://doi.org/10.4319/lo.2010.55.2.0831 (2010).

Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S. & Berge, J. Consequences of
changing sea-ice cover for primary and secondary producers in the European Arctic
shelf seas: Timing, quantity, and quality. *Prog Oceanogr 90,* 18-32,
doi:https://doi.org/10.1016/j.pocean.2011.02.004 (2011).

Dahlke, S. *et al.* The observed recent surface air temperature development across
Svalbard and concurring footprints in local sea ice cover. *International Journal of
Climatology 40,* 5246-5265, doi:https://doi.org/10.1002/joc.6517 (2020).

Pavlova, O., Gerland, S. & Hop, H. in *The Ecosystem of Kongsfjorden, Svalbard*
(eds Haakon Hop & Christian Wiencke) 105-136 (Springer International Publishing,
2019).

Walseng, B. *et al.* Freshwater diversity in Svalbard: providing baseline data for
ecosystems in change. *Polar Biology 41,* 1995-2005, doi:10.1007/s00300-018-2340-3
(2018).

Włodarska-Kowalczuk, M., Pawłowska, J. & Zajączkowski, M. Do foraminifera
mirror diversity and distribution patterns of macrobenthic fauna in an Arctic glacial
fjord? *Marine Micropaleontology 103,* 30-39,
doi:https://doi.org/10.1016/j.marmicro.2013.07.002 (2013).
Gooday, A. J. et al. Monothalamous foraminiferans and gromiids (Protista) from western Svalbard: A preliminary survey. Published in collaboration with the University of Bergen and the Institute of Marine Research, Norway, and the Marine Biological Laboratory, University of Copenhagen, Denmark. *Marine Biology Research* 1, 290-312, doi:10.1080/17451000510019150 (2005).

Pawłowska, J. et al. Palaeoceanographic changes in Hornsund Fjord (Spitsbergen, Svalbard) over the last millennium: new insights from ancient DNA. *Clim. Past* 12, 1459-1472, doi:10.5194/cp-12-1459-2016 (2016).

Kaminski, M. et al. Modern agglutinated Foraminifera from the Hovgård Ridge, Fram Strait, west of Spitsbergen: evidence for a deep bottom current. *Annales Societatis Geologorum Poloniae* 85, 309-320, doi:10.14241/asgp.2015.006 (2015).

Langer, M. R., Weinmann, A. E., Lotters, S., Bernhard, J. M. & Rodder, D. Climate-Driven Range Extension of Amphistegina (Protista, Foraminiferida): Models of Current and Predicted Future Ranges. *Plos One* 8 (2013).

Dong, S. S., Lei, Y. L., Li, T. G. & Jian, Z. M. Responses of benthic foraminifera to changes of temperature and salinity: Results from a laboratory culture experiment. *Sci China Earth Sci* 62, 459-472 (2019).

Weinmann, A. E. & Goldstein, S. T. Changing structure of benthic foraminiferal communities: implications from experimentally grown assemblages from coastal Georgia and Florida, USA. *Mar Ecol-Evol Persp* 37, 891-906 (2016).

Meslard, F., Bourrin, F., Many, G. & Kerhervé, P. Suspended particle dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard). *Estuarine, Coastal and Shelf Science* 204, 212-224, doi:https://doi.org/10.1016/j.ecss.2018.02.020 (2018).
Csapó, H. K., Grabowski, M. & Węsławski, J. M. Coming home - Boreal ecosystem claims Atlantic sector of the Arctic. *Science of The Total Environment* **771**, 144817, doi:https://doi.org/10.1016/j.scitotenv.2020.144817 (2021).

Renaud, P. E. *et al.* Arctic Sensitivity? Suitable Habitat for Benthic Taxa Is Surprisingly Robust to Climate Change. *Frontiers in Marine Science* **6**, doi:10.3389/fmars.2019.00538 (2019).

Kujawa, A., Łącka, M., Szymańska, N., Telesiński, M. & Zajączkowski, M. Could Norwegian fjords serve as an analogue for the future of the Svalbard fjords? State and fate of high latitude fjords in the face of progressive “atlantification”. *Polar Biology*, doi:10.1007/s00300-021-02951-z (2021).

Gooday, A. J., Anikeeva, O. V. & Pawłowski, J. New genera and species of monothalamous Foraminifera from Balaclava and Kazach’ya Bays (Crimean Peninsula, Black Sea). *Marine Biodiversity* **41**, 481-494, doi:10.1007/s12526-010-0075-7 (2011).

Altin-Ballero, D. Z., Habura, A. & Goldstein, S. T. *Psammophaga sapela* n. sp., a new monothalamous foraminiferan from coastal Georgia, U.S.A.: Fine structure, gametogenesis, and phylogenetic placement. *Journal of Foraminiferal Research* **43**, 113-126, doi:10.2113/gsjfr.43.2.113 (2013).

Smith, C. W. & Goldstein, S. T. The Effects of Selected Heavy Metal Elements (arsenic, Cadmium, Nickel, Zinc) On Experimentally Grown Foraminiferal Assemblages from Sapelo Island, Georgia and Little Duck Key, Florida, U.S.A. *Journal of Foraminiferal Research* **49**, 303-317, doi:10.2113/gsjfr.49.3.303 (2019).

Dorst, S. & Schönfeld, J. Diversity Of Benthic Foraminifera on The Shelf and Slope of The NE Atlantic: Analysis of Datasets. *Journal of Foraminiferal Research* **43**, 238-254, doi:10.2113/gsjfr.43.3.238 (2013).
Majewski, W., Slezukiński, W. & Zajączkowski, M. Interactions of Arctic and Atlantic water-masses and associated environmental changes during the last millennium, Hornsund (SW Svalbard). *Boreas* **38**, 529-544, doi:https://doi.org/10.1111/j.1502-3885.2009.00091.x (2009).
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [Nguyenetalsupplementaryinformation21102021.docx](#)
- [NguyenetalsupplementarytableS5S821102021.xlsx](#)