A note on subgroup commutativity degrees of finite groups

Marius Tărnăuceanu

2016/2017

Abstract

In this note we give some new results concerning the subgroup commutativity degree of a finite group G. These are obtained by considering the minimum of subgroup commutativity degrees of all sections of G.

MSC (2010): Primary 20D60, 20P05; Secondary 20D30, 20F16, 20F18.

Key words: subgroup commutativity degree, Iwasawa groups, Schmidt groups.

1 Introduction

In the last years there has been a growing interest in the use of probability in finite group theory. One of the most important aspects which have been studied is the probability that two elements of a finite group G commute. It is called the commutativity degree of G and is denoted by $d(G)$. Inspired by this concept, in [8] (see also [9]) we introduced a similar notion for the subgroups of G, called the subgroup commutativity degree (or the subgroup permutability degree) of G. This quantity is defined by

$$
sd(G) = \frac{1}{|L(G)|^2} |\{(H, K) \in L(G)^2 \mid HK = KH\}| = \frac{1}{|L(G)|^2} |\{(H, K) \in L(G)^2 \mid HK \in L(G)\}| \tag{1}
$$
(where \(L(G) \) denotes the subgroup lattice of \(G \)) and it measures the probability that two subgroups of \(G \) commute, or equivalently the probability that the product of two subgroups of \(G \) be a subgroup of \(G \).

We recall that for a finite group \(G \) we have \(sd(G) = 1 \) if and only if \(G \) is an Iwasawa group, i.e. a nilpotent modular group (see [6, Exercise 3, p. 87]). A complete description of these groups is given by a well-known Iwasawa’s result (see Theorem 2.4.13 of [6]). In particular, we infer that \(sd(G) = 1 \) for all Dedekind groups \(G \).

A well-known result by Gustafson [3] concerning the commutativity degree states that if \(d(G) > 5/8 \) then \(G \) is abelian, and we have \(d(G) = 5/8 \) if and only if \(G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \). Note that the similar problem for the subgroup commutativity degree does not have a solution, i.e. there is no constant \(c \in (0, 1) \) such that if \(sd(G) > c \) then \(G \) is Iwasawa, as shows Theorem 2.15 of [1].

In the following we will study this problem by replacing the condition "\(sd(G) > c \)" with the stronger condition "\(sd^*(G) > c \)". where
\[
.sd^*(G) = \min\{sd(S) \mid S \text{ section of } G\}.
\]
It was suggested by the fact that a \(p \)-group is modular if and only if each of its sections of order \(p^3 \) is. Moreover, if a \(p \)-group is not modular then it contains a section isomorphic to \(D_8 \), the dihedral group of order 8, or to \(E(p^3) \), the non-abelian group of order \(p^3 \) and exponent \(p \) for \(p > 2 \) (see Lemma 2.3.3 of [6]). Note that a similar condition for the cyclic subgroup commutativity degree led in [11] to a criterion for a finite group to be an Iwasawa group. We will prove that the condition \(sd^*(G) > 23/25 \) implies the modularity for finite nilpotent groups \(G \), and also that it implies the solvability for arbitrary finite groups \(G \). Then we will show the non-existence of a constant \(c \in (0, 1) \) such that if \(sd^*(G) > c \) then \(G \) is Iwasawa, extending the above mentioned result of Aivazidis.

Most of our notation is standard and will usually not be repeated here. Elementary notions and results on groups can be found in [7]. For subgroup lattice concepts we refer the reader to [6].

2 Main results

Theorem 1. Let \(G \) be a finite nilpotent group such that \(sd^*(G) > 23/25 \). Then \(G \) is modular, and consequently an Iwasawa group.
Proof. Being nilpotent, G can be written as a direct product of its Sylow subgroups G_i, $i = 1, 2, ..., k$. Clearly, for each i we have

$$sd^*(G_i) \geq sd^*(G) \geq \frac{23}{25}.$$

Assume that G_i is not modular. Then there is a section S of G_i such that $S \cong D_8$ or $S \cong E(p^3)$ for $p > 2$. We can easily check that

$$sd(E(p^3)) = \frac{3p^3 + 12p^2 + 16p + 16}{(p^2 + 2p + 4)^2} < \frac{23}{25} = sd(D_8)$$

and therefore $sd(S) \leq 23/25$, a contradiction. Thus G_i is modular, for all $i = 1, 2, ..., k$, which implies that G is itself a modular group.

Remark. The constant $23/25$ in Theorem 1 can be decreased for p-groups with $p > 2$ by observing that such a group cannot have sections isomorphic to D_8. Thus, a finite p-group G of odd order which satisfies

(1) $$sd^*(G) > \frac{3p^3 + 12p^2 + 16p + 16}{(p^2 + 2p + 4)^2}$$

is always an Iwasawa group. We also observe that

$$\frac{3p^3 + 12p^2 + 16p + 16}{(p^2 + 2p + 4)^2} < \frac{3}{p}, \text{ for all } p$$

and therefore the above statement remains true by replacing the condition (1) with the more elegant condition

$$sd^*(G) \geq \frac{3}{p}.$$

In what follows we will study what can be said about an arbitrary finite group G satisfying $sd^*(G) > 23/25$. A first answer is given by the following theorem.

Theorem 2. Let G be a finite group such that $sd^*(G) > 23/25$. Then G is solvable.

Proof. Assume that G is not solvable. Then it contains a section isomorphic to one of the following groups:
- PSL(2, p), where \(p > 3 \) is a prime such that \(5 \mid p^2 + 1 \);

- PSL(2, 3^p), where \(p \geq 3 \) is a prime;

- PSL(2, 2^p), where \(p \) is a prime;

- Sz(2^p), where \(p \geq 3 \) is a prime;

- PSL(3, 3).

It is well-known that PSL(2, q) has a subgroup isomorphic to \(D_{q+1} \) for \(q \) odd and a subgroup isomorphic to \(D_{2(q+1)} \) for \(q = 2^p \) (see e.g. [2]). Then the first three groups above have a section isomorphic to \(D_8 \) or to \(D_{2r} \) with \(r \geq 3 \) a prime. But

\[
\text{sd}(D_{2r}) = \frac{7r + 9}{(r + 3)^2} < \frac{23}{25},
\]

a contradiction. A similar contradiction is obtained for Sz(2^p) since it contains a subgroup of type \(D_{2(2^p-1)} \). Finally, PSL(3, 3) has a subgroup isomorphic to \(A_4 \) and

\[
\text{sd}(A_4) = \frac{16}{25} < \frac{23}{25},
\]

contradicting again our hypothesis. This completes the proof.

Next we try to see whether the condition \(\text{sd}^*(G) > 23/25 \) (or the more general condition \(\text{sd}^*(G) > c \)) implies that \(G \) is nilpotent. We start by providing an example of a Schmidt group \(S_1 \) of order \(p^r q \) for which we are able to compute explicitly \(\text{sd}^*(S_1) \). It also has the property that if \(p \) and \(q \) are suitably chosen, then \(\text{sd}^*(S_1) \) tends to 1 when \(p \) tends to infinity. This will be the main ingredient of the proof of Theorem 3.

Example. Let \(S \) be a Schmidt group, i.e. a finite non-nilpotent group all of whose proper subgroups are nilpotent. By [5] (see also [1]) it follows that \(S \) is a solvable group of order \(p^m q^n \) (where \(p \) and \(q \) are different primes) with a unique Sylow \(p \)-subgroup \(P \) and a cyclic Sylow \(q \)-subgroup \(Q \), and hence \(S \) is a semidirect product of \(P \) by \(Q \). Moreover, we have:

- if \(Q = \langle y \rangle \) then \(y^a \in Z(S) \);

- \(Z(S) = \Phi(S) = \Phi(P) \times \langle y^a \rangle, S' = P, P' = (S')' = \Phi(P) \);

- \(|P/P'| = p^r \), where \(r \) is the order of \(p \) modulo \(q \);
- if P is abelian, then P is an elementary abelian p-group of order p^r and P is a minimal normal subgroup of S;

- if P is non-abelian, then $Z(P) = P' = \Phi(P)$ and $|P/Z(P)| = p^r$.

We infer that $S_1 = S/Z(S)$ is also a Schmidt group of order $p^r q$ which can be written as semidirect product of an elementary abelian p-group P_1 of order p^r by a cyclic group Q_1 of order q (note that S_3 and A_4 are examples of such groups). It is easy to see that S_1 does not contain subgroups of order $p^i q$ for $i = 1, 2, ..., r - 1$. Then

$$L(S_1) = L(P_1) \cup \{Q_1^x \mid x \in S_1\} \cup \{S_1\}$$

and so

$$|L(S_1)| = a_{r,p} + p^r + 1,$$

where $a_{r,p}$ denotes the total number of subgroups of P_1. By [10] the numbers $a_{r,p}$ can be written as

$$a_{r,p} = f_r(p), \text{ where } f_r \in \mathbb{Z}[X] \text{ and } \deg(f_r) = \lfloor r^2/4 \rfloor.$$

Since $S_1/1$ is the unique non-abelian section of S_1, one obtains

$$sd^*(S_1) = sd(S_1).$$

Let $Q_1^1, Q_1^2, ..., Q_1^{p^r}$ be the conjugates of Q_1. Then the pairs of commuting subgroups of S_1 are:

- (X, Y) with $X, Y \leq P_1$,
- (X, S_1) and (S_1, X) with $X \leq P_1$,
- $(Q_i^1, 1)$ and $(1, Q_i^1)$, $i = 1, 2, ..., p^r$,
- (Q_i^1, P_1) and (P_1, Q_i^1), $i = 1, 2, ..., p^r$,
- (Q_i^1, S_1) and (S_1, Q_i^1), $i = 1, 2, ..., p^r$,
- (Q_i^1, Q_j^1), $i = 1, 2, ..., p^r$,
- (S_1, S_1).

It follows that
\[
\text{sd}^*(S_1) = \frac{a_{r,p}^2 + 2a_{r,p} + 7p^r + 1}{(a_{r,p} + p^r + 1)^2} = \frac{1 + \frac{2}{a_{r,p}} + \frac{7p^r}{a_{r,p}^2} + \frac{1}{a_{r,p}^2}}{1 + \frac{p^{2r}}{a_{r,p}^2} + \frac{1}{a_{r,p}^2} + \frac{2p^r}{a_{r,p}^2} + \frac{2}{a_{r,p}^2}}.
\]

Theorem 3. There is no constant \(c \in (0, 1) \) such that if \(\text{sd}^*(G) > c \) then \(G \) is Iwasawa.

Proof. Let \((p_n)_{n \geq 1}\) and \((q_n)_{n \geq 1}\) be two strictly increasing sequences of primes such that the order \(r_n \) of \(p_n \) modulo \(q_n \) is greater than 4. It follows that

\[
[r_n^2/4] > r_n, \quad \forall \ n \geq 1.
\]

For every \(n \geq 1 \), let \(G_n \) be a semidirect product of an elementary abelian \(p_n \)-group \(P_n \) of order \(p_n^{r_n} \) by a cyclic group of order \(q_n \) generated by an element \(x_n \) which permutes the elements of a basis of \(P_n \) cyclically. Then \((G_n)_{n \geq 1}\) are Schmidt groups of order \(p_n^{r_n}q_n \) such as \(S_1 \) in our example, and so (2) and (3) lead to

\[
\lim_{n \to \infty} \text{sd}^*(G_n) = 1,
\]

completing the proof.

Inspired by the above results, we came up with the following conjecture.

Conjecture 4. Let \(G \) be a finite group such that \(\text{sd}^*(G) > 23/25 \). Then \(G \) is either an Iwasawa group or a Schmidt group.

Remark. The above example also leads to two new classes of finite groups whose subgroup commutativity degree vanishes asymptotically. For \(i = 1, 2 \), let \((p_n^i)_{n \geq 1}\) and \((q_n^i)_{n \geq 1}\) be two strictly increasing sequences of primes such that the order \(r_n^i \) of \(p_n^i \) modulo \(q_n^i \) is 2 and 3, respectively. Let \((G_n^i)_{n \geq 1}\) be the Schmidt groups of order \((p_n^i)^{r_n^i}q_n^i\) constructed as in the proof of Theorem 3. Then (2) implies that

\[
\lim_{n \to \infty} \text{sd}^*(G_n^i) = \lim_{n \to \infty} sd(G_n^i) = 0, \quad i = 1, 2,
\]
as desired.
Finally, we formulate another natural problem concerning our study.

Open problem. Describe the structure of finite groups G satisfying $sd^*(G) = 23/25$.

Acknowledgements. The author wish to thank Stefanos Aivazidis for fruitful discussions on this subject. He is also grateful to the reviewers for their useful suggestions to improve this paper.

References

[1] S. Aivazidis, *On the subgroup permutability degree of some finite simple groups*, Ph.D. Thesis, Queen Mary University, London, UK, 2015.

[2] L.E. Dickson, *Linear groups with an exposition of galois field theory*, Dover Publications, New York, 2003.

[3] W.H. Gustafson, *What is the probability that two group elements commute?*, Amer. Math. Monthly 80 (1973), 1031-1034.

[4] V.S. Monakhov, *The Schmidt subgroups, its existence, and some of their applications*, Tr. Ukraini. Mat. Congr. 2001, Kiev, 2002, Section 1, 81-90.

[5] O.Yu. Schmidt, *Groups whose all subgroups are special*, Mat. Sb. 31 (1924), 366-372.

[6] R. Schmidt, *Subgroup lattices of groups*, de Gruyter Expositions in Mathematics 14, de Gruyter, Berlin, 1994.

[7] M. Suzuki, *Group theory*, I, II, Springer Verlag, Berlin, 1982, 1986.

[8] M. Tǎrnăuceanu, *Subgroup commutativity degrees of finite groups*, J. Algebra 321 (2009), 2508-2520.

[9] M. Tǎrnăuceanu, *Addendum to ”Subgroup commutativity degrees of finite groups”*, J. Algebra 337 (2011), 363-368.

[10] M. Tǎrnăuceanu, *The subgroup commutativity degree of finite P-groups*, Bull. Aust. Math. Soc. 93 (2016), 37-41.
[11] M. Tărnăuceanu, M.S. Lazorec, *Cyclic subgroup commutativity degrees of finite groups*, accepted for publication in Rend. Semin. Mat. Univ. Padova.

Marius Tărnăuceanu
Faculty of Mathematics
“Al.I. Cuza” University
Iași, Romania
e-mail: tarnauc@uaic.ro