Exploring association between MBL2 gene polymorphisms and the occurrence of clinical blackwater fever through a case–control study in Congolese children

Joseph M. Bodi1*, Célestin N. Nsibu1, Roland L. Longenge1, Michel N. Aloni2, Pierre Z. Akilimal3, Patrick K. Kayembe3, Ahemedin H. Omar4, Jan Verhaegen5, Pierre M. Tshibassu6, Prosper T. Lukusa8, Aimé Lumaka7,8 and Kenji Hirayama9

Abstract

Background: Blackwater fever (BWF), one of the most severe and life-threatening forms of falciparum malaria, is characterized by acute massive intravascular haemolysis, often leading to acute renal failure. Thus far, the genetics of the underlying susceptibility to develop BWF is not fully elucidated. Deficiency in the MBL protein, an important component of the innate immune system, has previously been suggested to be a susceptibility factor for the development of severe malaria. This study aimed to evaluate the association between MBL2 gene polymorphisms, known to affect the MBL protein level/activity, and the occurrence of BWF among Congolese children.

Methods: This is a case–control study. Cases were patients with BWF, whereas controls, matched for gender and age, had uncomplicated malaria (UM). Dried blood spot was collected for genotyping.

Results: A total of 129 children were screened, including 43 BWF and 86 UM. The common allele in BWF and UM was A, with a frequency of 76.7 and 61.0%, respectively (OR: 2.67 (0.87–8.29) and p = 0.079). The frequency of the C allele was 18.6 and 29.1% in BWF and UM groups, respectively, with p = 0.858. Not a single D allele was encountered. Genotype AA was at higher risk for BWF whereas genotypes A0 (AB and AC) were over-represented in UM group (OR: 0.21 (0.06–0.78)) with p = 0.019. Nine haplotypes were observed in this study: 3 high MBL expression haplotypes and 6 low MBL expression haplotype. One new haplotype HYPC was observed in this study. None of these haplotypes was significantly associated with BWF.

Conclusion: This pilot study is a preliminary research on MBL2 gene and infectious diseases in DRC. The study results show a higher risk for BWF in AA. This suggests that future studies on BWF should further investigate the contribution of a strong immune response to the occurrence of BWF.

Keywords: Mannose-Binding Lectin 2, MBL2, Blackwater fever, Severe malaria, Democratic Republic of Congo

Background

Mannose-Binding Lectin protein (MBL), encoded by MBL2 gene (Mannose-Binding Lectin soluble 2; OMIM: 154545), is an important component of the innate immune system with 4 main functions, including activation of complement, direct promotion of

*Correspondence: josephbodi9@gmail.com
1 Department of Pediatrics, Emergency and Intensive Care Unit, University Hospital of Kinshasa, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
Full list of author information is available at the end of the article

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
opsono-phagocytosis, modulation of the inflammatory response, and promotion of apoptosis [1]. There are also other promoter variants that may affect gene expression [2–5]. The MBL deficiency, also known as ‘dysfunctional MBL’, is one of the most common immune deficiencies in the world [2]. Three non-synonymous single nucleotide substitutions in the exon 1 of MBL2 gene cause dramatic decrease of MBL in heterozygous state or almost complete absence of MBL in homozygous or compound heterozygous state. These include substitutions at codon 52 (CGT → TGT; p.Arg52Cys, rs5030737), codon 54 (GGC ≥ GAC; p.Gly54Asp, rs1800450) and codon 57 (GCA ≥ GAA, p.Gly57Glu, rs1800451) [6–9]. Based on the classic MBL2 polymorphisms codification, substitutions at codons 52, 54 and 57 are referred to as D, B and C derived alleles, respectively, whereas the ancestral allele is known as allele A [10]. Because these three variant alleles cause similar MBL deficiency, the concept of ‘O’ allele is used to describe either of these variants [8].

In addition, 3 substitutions including 2 in the promoter region of MBL2 (~550C/G or rs11003125 and -221G/C or rs7096206) and one in the UTR within the exon 1 (c.4T/C or rs7095891) have been shown to affect the level of MBL protein and influence the outcome of infectious diseases [9, 10]. The derived alleles in the promoter region, the upstream region and the exon 1 have been previously combined into haplotypes [10]. The MBL2 haplotypes HYP_A, LYQA, LYP_A, and HYQA have been associated with high MBL2 expression. Conversely, haplotypes LXPA, LYPB, LYQC, HYPD, LYPD, HYQC, LXPB, and LYQB showed low MBL2 expression [10]. However, a recent haplotype, termed HYPC, was identified in similar sub-Saharan individuals in a study from Zimbabwe [11].

In the Democratic Republic of Congo (DRC), Plasmodium falciparum is the most severe and lethal species of malaria parasite among children below 5 years of age [12–15]. The clinical expression of falciparum malaria consists of a wide spectrum, spanning from asymptomatic to severe forms of infections including malaria [23, 24, 26–33]. On the other hand, MBL deficiency is also thought to be protective against certain complications by preventing excessive activation of the immune response, avoiding thereby deleterious immune-related complications during infections [7, 34, 35]. It has been recently reported that malaria IgG are significantly elevated in BWF [36], which also suggests that unlike other severe forms of malaria, BWF would more likely occur in normal or hyper immune individuals. A straight connection between IgG antibodies and MBL2 alleles have been established in a study on Chlamydia pneumoniae where the mean antibody titre increases with the number of copies of ancestral MBL2 alleles [37]. Although it remains unclear how ancestral MBL2 variants increase antibody titres and whether this matches with known mechanisms of MBL in the immune response, it could be hypothesized that unlike in other severe forms of malaria, people with ancestral MBL2 alleles would be at higher risk to exhibit BWF.

To date, the distribution of MBL2 alleles and their possible association to BWF in the DRC have not been investigated.

Methods

Study aims, design and setting
This study aimed to test the association between MBL2 polymorphisms and Blackwater fever, one of the most severe complications of malaria, and provide the first distribution data for MBL2 haplotypes in Congolese individuals. This is a case–control study conducted over 2 years in 4 medical institutions across Kinshasa, namely University Hospitals of Kinshasa, Kimbaske Hospital, Bondeko Hospital and General Provincial Hospital of Kinshasa. Sampling methods and case definition are published elsewhere [12]. Altogether, 43 cases and 86 controls were enrolled. Ages for cases and controls ranged from 2 to 15 years.

Clinical evaluation
The medical history was obtained from parents, with particular attention to demographic data, including disease history and medications taken before BWF episode. Clinical data were recorded in a customized pre-tested clinical form. Malaria was confirmed by the presence of parasites on blood thick and film.

Laboratory measurements
Twenty mL of fresh urine were collected from each participant. The presence of haemoglobin in urine was first detected by urinary dip strip (Medi test Combi 9, MacheryEur, Paris, France) and then confirmed by spectrometer (Thermo Genesis 10BIO, New York, USA) using protocol of 3,3’ dimethyl benzidine reagent [38]. The
results of urine dip stick were read as either negative (yellow colour) or positive (change in blue colour) 1+, 2+, 3+, which corresponded approximately to haemoglobin concentrations of respectively 0.061 ± 0.0166 mg/L, 0.3986 ± 0.2612 mg/dL and 0.5679 ± 0.27688 mg/L as quantified using the spectrometer.

DNA extraction and MBL2 genotyping

Human MBL2 gene was assessed from genomic DNA. Eight drops of blood were collected on FTA card® WB 120067 (GE Healthcare, Amersham, UK) and stored in a fridge until the transfer to the Institute of Tropical Medicine of Nagasaki University in Japan for DNA testing in the Department of Immunogenetics according to a previously described protocol [39].

DNA samples from 43 cases and 86 controls were examined. The promoter region and exon 1 of MBL2 gene were PCR-amplified and Sanger sequenced. Prior to Sanger sequencing, PCR products were verified by gel electrophoresis to confirm the presence of expected band and exclude unexpected inserts. The PCR mixture contained 17.5 μL of ultra-pure water, 2.5 μL PCR 10 × buffer, 4 μL of dNTPs (2 μmol), 0.4 μL (2 units) of Taq polymerase and 0.8 μL of each primer (2.5 μmol). A disc containing between 5 and 20 ng of DNA was punched from the FTA card and added into the PCR reaction tube. In order to identify technical contaminations, a tube a No DNA template was also included in each run. This consisted of a punch from an unsotted FTA card. After an initial denaturation step of 5 min at 95 °C, 35 amplification cycles were applied including rapid denaturation at 95 °C for 1 min, annealing at 65 °C for 1 min and elongation at 72 °C for 1 min. The reaction ended with a final elongation step at 72 °C for 5 min. PCR product was sequenced by dideoxy termination sequencing using Big-Dye® Terminator version 1.1. Sequencing product was analysed on a 3730 DNA ANALYSER, version 3.0, from HITACHI. Haplotypes were double- and triple-checked using visual inspection of sequencing traces.

Alleles were designated as suggested by Antonarakis et al. [7] for the 3 variants in the Exon 1. The MBL2*B, MBL2*C and other variants alleles were identified as described by Sumiya et al., Lipscombe et al. and Madsen et al. [3–5, 9].

Data management and analysis

Alleles and genotypes frequencies were obtained by direct scoring of electropherogram. Data were recorded using the software Epi Info 7. All analyses were carried out using SPSS 18.0. All records were crosschecked with the original data sheets before the analysis. A non-conditional model was used. This was a binary logistic regression including covariates, anti-malaria drugs, MBL2 gene polymorphism, G6PD and parasitaemia. Multivariate logistic regression analysis was used to evaluate associations between MBL2 haplotypes/genotypes/alleles and the BWF. Odds ratio and confidence intervals were calculated. All tests were two-sided, and the level of significance was set at $p < 0.05$.

Results

A total of 129 Congolese children were investigated, including 43 cases and 86 controls. Sixty-eight were girls (52.7%) and 61 boys (47.3%). The mean age was 8.75 ± 3.73 years for all the study population, 8.62 ± 3.84 years and 8.55 ± 3.77 years, respectively, for cases and controls (uncomplicated malaria, UM), only 8 cases (18.6%) were below 5 years, which is the most vulnerable period for severe malaria, versus 20 patients (23.26%) in the control group. The majority of BWF cases (38 cases) occurred during the rainy season (88.4%) and 5 (11.6%) occurred during the dry season. Low parasitaemia was associated to BWF OR: 3.31 (1.41–7.79) with p = 0.005 (Table 1).

Using a non-conditional model, a binary logistic regression, including covariant, anti-malaria drugs, MBL2 gene polymorphism, G6PD and parasitaemia, it was observed that MBL2*AB or AC is protective factor in the development of BWF. OR: 0.09 (0.01–0.63), with p = 0.015. The association with quinine intake and low parasitaemia, observed in this study (Table 2), was already published [12].

The association between alleles and genotypes, and each of the 2 clinical groups was also assessed. The A allele was the most common in BWF group as well as in the UM group with allele frequency of 76.7 and 61.0%, respectively, and the difference was not statistically significant, OR: 2.67 (0.87–8.29 and $p = 0.079$ (Table 3)). Conversely, the C allele frequency was 0.186 and 0.291 in BWF and UM groups, respectively, and the difference was not statistically significant ($p = 0.853$). Not a single D allele was encountered in the present study population (Table 3). Regarding the genotypes; the proportion of homozygote’s AA was higher in the BWF group (72.0%) compared to the UM (50.0%). Conversely, the 00 genotype was proportionately more frequent in the UM (27.9%) than in BWF (18.6%) (Table 3). A0 genotype is significantly over-represented in UM population compared to BWF patients, OR: 0.21 (0.06–0.78) with p = 0.019 (Table 3).

Nine haplotypes were encountered in this study cohort, including 3 high MBL expression haplotypes and 6 low MBL expression haplotypes (Table 4). The high expression MBL2*LYQA haplotype was the most prevalent haplotype in BWF as well as in UM, with 46.3 and 39.5%, respectively. Low MBL expression haplotypes were;
MBL2*HYPB; MBL2*HYPC; MBL2*LYQC (Y16578); MBL2*LYPC, MBL2*LYPB (Y16579); MBL2*LXPA and were not significant. Only MBL2*LYQA haplotype was consistently over-represented in UM group, but not significantly (Table 4). None of the groups deviated from the Hardy–Weinberg expectations [40] as showed in Table 3.

Discussion

The present study investigated whether some alleles, genotypes or haplotypes were significantly over-represented or under-represented in patients with BWF compared to those with UM. A cohort of 129 patients was recruited from 4 hospitals across Kinshasa. Only a few of them were within higher risk group to develop severe malaria, meaning below 5 years of age, as described in many studies. However, the majority of recruited patients was at risk for BWF as this form of malaria is mostly observed in older children and adults [12, 13, 17, 21, 40–45].

Allele frequency

MBL2*A allele was the most common allele within the 2 groups compared to each of the derived alleles individually. However, when considered together, null alleles (allele 0) were more frequent among patients with UM compared to those with BWF, with allele frequencies of 0.39 and 0.233, respectively. 0 includes B, C and D alleles (Table 3). MBL2*C was the most frequent in both groups. Bellamy et al. [46] reported also a higher frequency of the MBL2*C in in the population of The Gambia. Compared to the other null alleles, the MBL2*C has been

Table 1 Socio-demographic features of patients in the study population
Case (n = 43)
Distribution for age
≤ 5 years
> 5 years
Sex (%)
Male
Female
Season
Rainy
Dry
Plasmodium
Falciparum
Falciparum-malariae
Parasitaemia (parasites/µl)
Low (< 1000 tropho/µl)
High (≥ 1000 tropho/µl)

Table 2 Determinant factors of Blackwater fever occurrence
Crude OR (95% CI)
Antimalaria drugs
ACT
Quinine
Genotypes
MBL2*A/A
MBL2*A/B or A/C
MBL2*BC or C/C
Status G6PD
Normal
Deficient
Parasitaemia
< 1000 trophozoites/µl
> 1000 trophozoites/µl
demonstrated to be extremely common in sub-Saharan Africans with a population frequency of 0.30, whereas the MBL2*B was predominant in Europeans, in Asians and in indigenous people of South America with population frequencies of 0.13, 0.20 and 0.50, respectively [3, 5, 46]. None of the alleles observed in the study population presented a significant preferential distribution between the 2 groups.

It has been hypothesized that *B, *C and *D alleles are positively selected in order to reduce susceptibility or mortality due to certain infectious diseases [5, 24, 34]. This study did not identify the MBL2*D allele within the 2 groups. This allele has been detected with frequencies up to 0.05 in the northeast of Africa, in Europe and India [3, 10]. Hence, the absence of the MBL2*D may simply indicate a low admixture with European and Indian in the Congolese population examined in this study [47–49].

Table 3 Alleles and genotypes Frequencies for the 3 polymorphisms in the Exon 1

Alleles	Blackwater fever	Uncomplicated malaria	Total	Crude OR 95% CI	p values
A	n (freq)	n (freq)	n (freq)		
B	1	7	8		
C	3	12	15		
D	0	0	0		
Total allele freq	86 (1.00)	172 (1.00)	258 (1.00)		

Genotypes	n (freq)	n (freq)	n (freq)		
AA	31 (0.721)	43 (0.500)	74 (0.574)	1	
A0	4 (0.093)	19 (0.221)	23 (0.178)	0.21 (0.06–0.78)	0.019

| Total genotype freq | 43 (1.00) | 86 (1.00) | 129 (1.00) | |

Alleles	n (freq)	n (freq)	n (freq)		
A	66 (0.767)	105 (0.610)	171 (0.663)	2.67 (0.86–8.29)	0.079
B	4 (0.046)	17 (0.098)	21 (0.081)	1	
C	16 (0.168)	50 (0.291)	66 (0.256)	1.35 (0.41–5.30)	0.858
D	0 (0.00)	0 (0.00)	0 (0.00)	–	

| Total allele freq | 86 (1.00) | 172 (1.00) | 258 (1.00) | – |

Genotypes	n (freq)	n (freq)	n (freq)		
AA	31 (0.721)	43 (0.500)	74 (0.574)	1	
A0	4 (0.093)	19 (0.221)	23 (0.178)	0.21 (0.06–0.78)	0.019

| Total genotype freq | 43 (1.00) | 86 (1.00) | 129 (1.00) | |

Table 4 MBL2 haplotypes (promoter region and exon1) and risk assessment

Haplotypes	BWF, n (%)	UM, n (%)	Total n (%)	p
High MBL expression				
MBL2*LYQA (Y16576)	20 (46.1)	24 (39.5)	54 (41.9)	-NS
MBL2*HYPA (Y16581)	6 (14)	11 (12.8)	17 (13.2)	NS
MBL2*LYPA (Y16577)	3 (7.0)	2 (2.3)	5 (3.9)	NS
Low MBL expression				
MBL2*HYPB	0 (0.0)	1 (1.2)	1 (0.8)	NS
MBL2*HYPC	1 (2.3)	1 (1.2)	2 (1.5)	NS
MBL2*LYQ (Y16578)	5 (11.6)	20 (23.3)	25 (19.4)	NS
MBL2*LYPC	0 (0.0)	1 (1.2)	1 (0.8)	NS
MBL2*LYPB (Y16579)	1 (2.3)	3 (3.5)	4 (3.1)	NS
MBL2*LXPA	7 (16.3)	13 (15.1)	20 (15.5)	NS
Total	43 (100)	86 (100)	129 (100)	

MBL2 genotypes and BWF

MBL might protect against severe disease forms but not against BWF

Multiple genetic epidemiological studies reported that the presence MBL2 derived alleles and genotypes are associated with an increased risk to infections [4, 28, 29, 32, 50] and might be considered as a prognostic marker in various infectious conditions [29, 32, 51, 52]. Functional studies showed that heterozygotes for a MBL2 variant produces low concentration of MBL protein and this may hamper the phagocytosis of bacteria or parasites, thereby allowing the replication of the pathogen [24, 28, 48, 53, 54]. Based on this group of studies, one would expect individuals with ancestral MBL2 AA alleles to be protected against BWF, a severe phenotype. Unlike in other severe forms of malaria, such association was not observed in this study.

Homozygotes for ancestral MBL2 alleles are at higher risk for BWF

The other wildly supported theory is that low levels of functional MBL may decrease excessive activation of the
Haplotypes
The present study revealed 9 haplotypes, including 3 high MBL expression haplotypes (Table 4) and 6 low expression haplotypes. The LYQA haplotype was the most prevalent haplotype both in BWF and UM group with, respectively, 45.5 and 39.5%, followed by MBL2*LYQC in UM population with 23.3%. In Gabon, Boldt et al. defined 14 new haplotypes and reported that MBL2*LYQC, MBL2*LYQA and MBL2*LYPA were the most prevalent haplotypes in the children population [55]. A new haplotype HYPC only described in Zimbabwe individuals was observed in 2 patients: one BWF and one UM. A study in India reported that the MBL2*LYPA haplotypes confers protection, whereas MBL2*LYPA increases the malaria risk. These findings in Indian populations demonstrate that MBL2 functional variants are strongly associated with malaria and infection severity [10]. However, no significant association was find between BWF and a particular haplotype.

Parasitaemia and BWF
Lower parasitaemia was observed in BWF patients. Considering that quinine intake offers a strong clearance of parasite, low parasitaemia observed in BWF may be secondary to the quinine intake that triggers BWF occurrence. In that prospect, the time between quinine intake and the occurrence of BWF may influence parasitaemia. However, this timing remains unclear since reported time-lapses range from 12 h to multiple days after treatment [56–58]. Another reason for low parasitaemia in BWF could be the activity of the immune system in AA individuals. The active immune response would provide a good clearance of parasite and accessoryry cause BWF. Further studies may be needed to investigate this hypothesis.

Limitations of the study
The major limitation of this study is the small sample size. Although BWF is rare in the study setting, the small sample size may have influenced the statistical calculations. Another limitation was that the investigation of G6PD polymorphisms, and the complement activation and MBL protein were not measured. In addition, no data exist in the community about the frequency of MBL2 polymorphism in the country. Despite these limitations, these data provide insights into the relationship between MBL protein level/activity and BWF, and could form a basis for further studies in a large Congolese population.

Conclusion
This pilot study is a preliminary research on MBL2 gene and infectious diseases in DRC. The result shows a higher risk for BWF in AA. This suggests that future studies on BWF should further investigate the contribution of a strong immune response to the occurrence of BWF.

Acknowledgements
The authors are thankful to all children and parents who participated to this study, and to Nasir Nshuaib for the quantification of malaria IgG1 antibodies (Department of Immunogenetics, Nagasaki University, Japan). The authors thank all colleagues, nurses and lab technicians involved in sample and data collection. The authors are grateful to Prof Fons Verdonck of the KU Leuven Alumni for his support.

Data distribution
Anonymized genomic data can be obtained upon request to the corresponding author.

Funding
This research was supported by the University of Nagasaki through the Grant-in-Aid for Scientific Research (B) 17H04072 (2017–2021) of KAKENHI; and the Katholieke Universiteit Leuven (Belgium) through the scholarship program for young Congolese researchers (Bourses chaires scientifiques pour jeunes Congolais).

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author.

Ethics approval and consent to participate
All information about this study was provided to parents in local languages. Written informed consent from parents for each patient in this study has been obtained. The Ethics Committee of Public Health School of University of Kinshasa approved the protocol under the number ESP/CE/027B/2011.

Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.

Author details
1. Department of Pediatrics, Emergency and Intensive Care Unit, University Hospital of Kinshasa, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo. 2. Department of Pediatrics, Haematology-Oncology and Nephrology Unit, University Hospital of Kinshasa, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo. 3. Division of Biostatistics and Epidemiology, School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo. 4. Division of Malaria Control (DOMC), Ministry of Health, Nairobi, Kenya. 5. Department of Microbiology, Katholieke Universiteit Leuven, Brussels, Belgium. 6. Department of Pediatrics, Gastroenterology and Neurology Unit, University Hospital of Kinshasa, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo. 7. Département des Sciences Biomédicales et Précliniques, GIGA-R, Laboratoire de Génétique Humaine, University of Liège, Liège, Belgium. 8. Center for Human Genetics, Department of Pediatrics, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo. 9. Department of Immunogenetics, Institute of Tropical Medicine (Nekken), University of Nagasaki, Nagasaki, Japan.

Received: 5 July 2019 Accepted: 7 January 2020

Published online: 15 January 2020

References
1. Naito H, Ikeda A, Hasegawa K, Oka S, Uemura K, Kawasuki N, et al. Characterization of human serum mannan-binding protein promoter. J Biochem. 1999;126:1004–12.
2. Guiberga V, Salmi M, Fraga J, Castiglioni N, Sen L, Castanos C, et al. Post-infectious bronchiolitis obliterans and mannos-binding lectin lecin sufficiency in Argentinean children. Respir Res. 2015;20:982–6.
3. Madsen HO, Garred P, Kurtzhals JA, Lamm LU, Ryder LP, Thiel S, et al. A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics. 1994;40:37–44.
4. Sumiya M, Super M, Tabona P, Levinsky RJ, Arai T, Turner MW, et al. High frequencies in African and non-African populations of independent mutations in the mannan binding protein gene. Hum Mol Genet. 1992;1:709–15.
5. Lipscombo RJ, Sumiya M, Hill AV, Lau YL, Levinsky RJ, Summerfield JA, et al. High frequencies in African and non-African populations of independent mutations in the mannan-binding protein gene. Hum Mol Genet. 1992;1:709–15.
6. Garred P, Larsen F, Seyfart J, Fujita R, Madsen HO. Mannose-binding lectin and its genetic variants. Genes Immun. 2006;7:85.
7. Antonarakis SE. Recommendations for a nomenclature system for human gene mutations. Nomenclature Working Group. Hum Mutat. 1998;11:1–3.
8. Eisen DP, Minchinton RM. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin Infect Dis. 2003;37:1496–505.
9. Summerfield JA, Sumiya M, Levin M, Turner MW. Association of mutations in mannan binding protein gene with childhood infection in consecutive hospital series. BMJ. 1997;314:1229–32.
10. Garred P, Thiel S, Kurtzhals JA, Lamm LU, Ryder LP, et al. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol. 1995;155:3013–20.
11. Jha AN, Sundaravadivel P, Singh VK, Pati SS, Patra PK, Kremsner PG, et al. MBL2 variations and malaria susceptibility in Indian populations. Infect Immun. 2014;82:52–61.
12. Mihandere K, Phargo G, Kandavasikia GG, Duri K, Swart M, Stray-Pedersen B, et al. How does mother-to-child transmission of HIV differ among African populations? Lessons from MBL2 genetic variation in Zimbabweans. OMICS. 2014;18:454–60.
13. Bodi JM, Nsibu CN, Longenge RL, Aloni MN, Akilmali PZ, Tshibassu PM, et al. Blackwater fever in Congolese children: a report of clinical, laboratory features and risk factors. Malar J. 2013;12:105.
14. Delacollette C, Taelman H, Wery M. An etiologic study of hemoglobinuria and blackwater fever in the Kivu Mountains, Zaire. Ann Soc Belg Med Trop. 1995;75:51–63.
15. Ministère du Plan et Suivi de la Mise en Oeuvre de la Révolution et de la Modernité Moderne, Ministère de la Santé Publique. Enquête Démographique et de la Santé. République Démocratique du Congo. 2013.
38. Assoumanou MG, Akpona SA. Dosage de l’hémoglobine urinaire par un réactif 3,3’ diméthylbenzidine: mise au point technique. Int J Biol Chem Sci. 2011;5:11.

39. Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 2001;11:1095–9.

40. Gobbi F, Audagnotto S, Trentini L, Nkurunziza I, Corachan M, Di Perri G. Blackwater fever in children, Burundi. Emerg Infect Dis. 2005;11:1118–20.

41. Bouldouyre MA, Dia D, Carmoi T, Fall KB, Chevalier B, Debonne JM. A mild blackwater fever. Med Mal Infect. 2006;36:343–5 (in French).

42. Khandelval V, Udadwat H, Kumhar MR, Goyal RK. Blackwater fever treated with artemether. J Assoc Physicians India. 2001;49:1191–2.

43. Rogier C, Imbert P, Tall A, Sokhna C, Spiegel A, Trape JF. Epidemiological and clinical aspects of blackwater fever among African children suffering frequent malaria attacks. Trans R Soc Trop Med Hyg. 2003;97:193–7.

44. Tran TH, Day NP, Ly VC, Nguyen TH, Pham PL, Nguyen HP, et al. Blackwater fever in southern Vietnam: a prospective descriptive study of 50 cases. Clin Infect Dis. 1996;23:1274–81.

45. WHO. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of September 2012 meeting. Malar J. 2012;2012(11):424.

46. Bellamy R, Ruwende C, McAdam KP, Thursz M, Sumiya M, Summerfield J, et al. Mannose binding protein deficiency is not associated with malaria, hepatitis B carriage nor tuberculosis in Africans. QJM. 1998;91:13–8.

47. Bernig T, Taylor JG, Foster CB, Staats B, Yeager M, Chanock SJ. Sequence analysis of the mannose-binding lectin (MBL2) gene reveals a high degree of heterozygosity with evidence of selection. Genes Immun. 2004;5:461–76.

48. Boldt AB, Messias-Reason IJ, Meyer D, Schrago CG, Lang F, Lell B, et al. Phylogenetic nomenclature and evolution of mannose-binding lectin (MBL2) haplotypes. BMC Genet. 2010;11:38.

49. Verdu P, Barreiro LB, Patin E, Gessain A, Cassar O, Kidd JR, et al. Evolutionary insights into the high worldwide prevalence of MBL2 deficiency alleles. Hum Mol Genet. 2006;15:2650–8.

50. Guo SW, Thompson EA. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics. 1992;48:361–72.

51. Garred P, Harboe M, Gettinger T, Koch C, Sveigaard A. Dual role of mannann-binding protein in infections: another case of heterosis? Eur J Immunogenet. 1994;21:125–31.

52. Garred P, Madsen HO, Halberg B, Petersen J, Kronborg G, Sveigaard A, et al. Mannose-binding lectin polymorphisms and susceptibility to infection in systemic lupus erythematosus. Arthritis Rheum. 1999;42:2145–52.

53. Hoal-Van Helden EG, Epstein J, Victor TC, Hon D, Lewis LA, Beyers N, et al. Mannose-binding protein B allele confers protection against tuberculosis meningitis. Pediatr Res. 1999;45(4 Pt 1):459–64.

54. Santos IK, Costa CH, Krieger H, Feitosa MF, Zurakowski D, Fardin B, et al. Mannan-binding lectin enhances susceptibility to visceral leishmaniasis. Infect Immun. 2001;69:5212–5.

55. Boldt AB, Petzl-Erler ML. A new strategy for mannos-binding lectin gene haplotyping. Hum Mutat. 2002;19:296–306.

56. Sher A, Ed. Hemoglobinuria (Black Water Fever) in severe falciparum malaria—a case report. In: 17th International Congress on Infectious Diseases; 2016.

57. Lon C, Spring M, Sok S, Chann S, Bun R, Iitiverakul M, et al. Blackwater fever in an uncomplicated Plasmodium falciparum patient treated with dihydroartemisinin–piperaquine. Malar J. 2014;13:96.

58. Rodriguez-Valero N, Castro F, Martinez G, Marco Fernandez J, Fernandez S, Gascon J, et al. Blackwater fever in a non-immune patient with Plasmodium falciparum malaria after intravenous artesunate. J Travel Med. 2018;25:e101093.