Implementation of Quantum-Dot Cellular Automata Based Efficient N-Bit BCD Adders Using Verilog

Vaseem Ahmed Qureshi*, L Lavanya, and Anuj Kumar Goel
Department of Electronics and Communication Engineering, CMR Engineering College, Hyderabad, Telangana, India
Email: *qureshi.vaseem@gmail.com

Abstract. Quantum Dot Handheld Automatics is one of the best technologies in recent days for introducing a high speed and ultra-low powered digital circuit. Few binary and decimal arithmetic circuits were designed using an efficacious QCA-based algorithm. However, there is a substantial enhancement required yet if there is inbuilt availability of logic gates inside the QCA. Therefore, this article introduced innovative binary coded decimal (BCD) adders using QCA methodology. Simulation analysis discloses that proposed BCD adders obtained higher computational speed with lower delays and lesser area than conventional CMOS approaches.

Keywords: QCA, CMOS, BCD.

1. Introduction
Optimizations in VLSI have been done on three elements: Area, Power and Timing (Speed). Area advancement implies decreasing the space of rationale which involve on the bite the dust. In this paper is done in both front-end and back-end of structure. An appropriate depiction of improved Boolean articulation and evacuating unused states will prompt limit the gate/transistor usage in front-end plan. The parcel, Floor arranging, Placement, and directing are performed in the back end of the plan finished by CAD device. The CAD apparatus have a particular calculation for each procedure to create an effective territory structure like Power advancement. Power streamlining reduces the plan's power dispersal, which endures by working voltage, working recurrence, and exchanging movement [1-2]. The initial two elements are only determined in plan imperatives, yet exchanging movement is a parameter that shifts powerfully because structures the rationale and info vectors. Timing streamlining alludes to meeting the client requirements in a productive way with no infringement generally, enhancing the plan's execution. Quantum-speck cell automata. Quantum cell automated speck (QCA) uses a view of cumulative classical dabs to perform boolean reasoning [3-5]. QCA is on the upside, because of its limited spindle dimension, the rearranged relationship and the exceedingly low power deferment factor, the pressure densities are exceptionally high. The highly pressurized density. An important QCA cell consists of four quant dabs and crossing obstacles, in a square cluster. Electrons can also not leave the cell so that they can dig down through the dabs. The hatred of Photon continues to force the electrons to dab on their reverse edges if two electrons are positioned in the cell [6-8]. Therefore, the explanation '0' and '1' can be marked as two eagerly proportioned terrestrial polarizations, the simple QCA technology spaces are AND, OR and NOT. By using the Plurality Tor, the delay can be minimized, i.e., by finding out generational transports.
2. **Existing System**

This paper aims to perform both BCD expansion and BCD subtraction in a solitary circuit with the least number of gates check and steady info. Which accomplish the activity of reversible BCD expansion and subtraction in a solitary circuit, two new gates are proposed which are advanced to such an extent that it does not have any limitations of reversible gates has referred to above. It has been demonstrated that the proposed reversible BCD math circuit is superior to anything the current rationale such in writing, as far as several trash yields, constants inputs and the gate tally.

![Fig 1: BCD standard block diagram.](image)

The BCD or Binary Coded Decimal shall be the decimal structure or number code of binary colours. A decimal sum has ten numbers (0-9) and identifies these 10 decimal systems' progress. If a BCD exists, it would be the same code for the given decimal numbers in the form of a four-digit-pair sequence shown in fig 1. In BCD it is possible only to use the double number of 0000-1001 that corresponds to the decimal value of 0-9. Assume that where a number has a single metric, the Binary Codified Decal numbers will be the four double numeric numbers and, if the number includes a decimal point, the identical BCD will be the eight different paired of the given decimal number, if the number does not include two decimal numbers [9-15]. For the primary numerical digit four and the second decimal digit four. A reference should explain it.

3. **Proposed System**

QCA Majority Gate: The QCA main gate carries out a three-part rational work. The origins of knowledge A, B, and C embrace, the rationale of $M = AB+BC+CA$ is the door for the most part.

QCA BCD Adder: A BCD adder is a circuit that comprises two parallel BCD numbers of 4 bits and produces a BCD result of 4 bits. Fig 2 demonstrates the square outline of ordinary BCD adder. The circuit must incorporate the remedy rationale to create substantial BCD yield. The uses of an ordinary four-bit parallel adder, two 4-bit BCD numbers X and Y, and conveyor input takes a 4-bit whole and a do. If the transition yield is determined or if the result is more significant than 9. A second stage parallel adder circuit is supported by double 0110 to add a complete transition output.

![Fig 2: BCD adders using QCA.](image)
A novel QCA adder configuration is exhibited that lessens QCA cells' quantity when contrasted with recently revealed structures. We show that it is conceivable to plan a CLA QCA one-piece adder, with indistinguishable diminished equipment from the bit-sequential adder, while holding the less difficult timing plan and parallel structure of the first CLA approach. The proposed structure depends on another calculation that requires just three larger part doors and two inverters for the QCA expansion. It is noticed bit sequential adder utilizes a variation of the proposed QCA added. By interfacing n proposed one-piece QCA adders, we can get an effective n-bit QCA adder with CLA. Fig. 3 demonstrates the QCA circuit motive intended to misuse the above-stated reasoning for the ADD1 module. The former is exploited, as the specific cancellation of ADD1 will not be decreased by proliferatingC1 instead of C2. There is no doubt of using (3) will promptly lead to pointless additional MGs. A basic five-mG calculation and one alternator are also given for the revolutionary circuit, shorter than the regular Ripple-Carry Adder (RCA). Equation, for example, 1. In comparison, only 16 MGs and four inverters used in the new ADD1 module are derogative from the standard 4-b CLA of 43 MGs and 4 inverters. After the novel methods shown in the following equation, the numeric counter service dcout are then determined.

\[Ci+1 = M(dA_i, dB_i, Ci) \]
\[Ci+2= M(C_i, M(dAi+1, dBi+1, gi)), M(dAi+1, dBi+1, pi) \]
Therefore, the carrying of C_{i+2} to spread to useless sites would entail two dropping MG. Besides, the C_{i+2}, as seen in (2b) and in [22], can be derived by extending the CI by only one mg by abusing the support $g_i = dA_i \cdot dB_i$ and $p_i = dA_i \cdot dB_i$ for producing signals. Condition 1 demonstrates a new solution to the distribution of C_i over two continuous locations. By way of means, just one MG between C_i and C_{i+2} but is further from g_i and p_i calculations. As a result of Equation 1, adder can be recognized by registering transports as illustrated in

$$C_1 = M(dA_0, dB_0, cin)$$
$$C_2 = G_1 + P_1 \cdot G_0 + P_1 \cdot P_0 \cdot C_1$$
$$C_{in} = M(C_{in}, M(dA_1, dB_1, dA_0), M(dA_1, dB_1, dB_0))$$

The BCD adder here introduced pursues the customary best dimension structure showed in Fig.5. As the primary outcome, the proposed methodology prompts the best exchange between the in general possessed zone and the speed exhibitions. To comprehend the new structure technique, how about we look at first the 4-bit double adder $ADD1$. It gets the digits $A(3:0)$ & $B(3:0)$ and the convey cin as sources of info and registers the double outcomes bcout and bS (3:0). Shows that, for QCA-based undulating adders, the ideal rationale structure for spreading a help C_i through a solitary piece position is spoken to by that presents just a single MG among C_i and C_{i+1}.

![Fig 5: The Proposed n-digit BCD adder.](image)

4. **Simulation Results**

This paper's main objective is to conduct both BCD expanding and BCD subtraction in a solitary circuit with a minimum number of gates and steady information. Two additional gates are suggested to execute the operation of flexible BCD expansion and decimals in a solitary circuit, which are advanced to the degree that they have no reversible gate limits as referred to above. This paper suggested BCD math circuit be superior to everything in the existing rationales in writing; as far as the sum of trash yields, constant inputs and the gate tally are concerned. The suggested approach's modelling effects are as seen in fig 6, and the logic utilization is shownin Table 1.

Logic Utilization	Device Utilization Summary (estimated values)		
Number of Slices	8	900	0%
Number of 4-input LUTs	14	2900	0%
Number of bonded IOBs	22	66	33%
Conclusion
The research had a practical benefit to the outline of QCA justification capability where the basic reasoning is a three-and-six larger component doors. Similarly, a few samples indicate that certain methodology has an amazing effect on enhancing loops as certain suggested stuff decreases the level counts and the larger amount and inverter amount. The current proposal for QCA cells and the new form of the greater component entranceway and the reduction technique reported in this section create notable improvements in most door based Nanoelectronics structures and reduces the chip area and improves the pace for some potential QCA structures. In this paper, the incredible favourable position in the decrease of territory and the aggregate deferral. In this manner, the QCA engineering is a low area, low delay, basic and productive for VLSI equipment usage. It is fascinating to test the structure of the adjusted 128-bit novel adders.

References
[1]. Leent, C.S., Touugaw, P.D., Porood, W. and Beernsteein, G.H., 1993. Quantum cellular automata. Nanotechnology, 4(1), p.49.
[2]. Niemier, M.T. and Kogge, P.M., 2001. Problems in designing with QCAs: Layout-timing. International Journal of Circuit Theory and Applications, 29(1), pp.49-62.
[3]. Loombard, F. and Huuang, J., 2007. Digital circuit design and testing by quantum-dot cellular automats. Artech House, Inc...
[4]. Liu, W., Lu, L., O'Neill, M. and Swartzlander, E.E., 2011, May. Design rules for quantum-dot cellular automata. In 2011 IEEE International Symposium of Circuits and Systems (ISCAS) (pp. 2361-2364). IEEE.
[5]. Kong, K., Shang, Y. and Lu, R., 2009. An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 9(2), pp.170-183.
[6]. Kumar, J.V. and Paul, C.K.C., Design Of Enhanced Sqrt Carry Select Adder For Vlsi Implementation Of 2d-Discrete Wavelet Transform. International Journal Of MC square scientific research.
[7]. N. Gokulraj, K. Umaphathy, “ 5G Wireless Mesh Network 802.11s Load Balancing Architecture for 802.11 BGN Radio-PCI Interface”, Procedia Computer Science, Science Direct (Elsevier), ISSN: 1877 – 0509, May 2016, pp. 252-257. (No of Citations: 01).
[8]. Madhusudhanan, R., Rajmohan, M., & SivaKumar, S. (2009). BIST for system-on-a-chip using an embedded FPGA core. International journal of mc square scientific research, 1(1).
[9]. Kim, K., Wu, K. and Karri, R., 2005, March. Towards designing robust QCA architectures in the presence of sneak noise paths. In Design, Automation and Test in Europe (pp. 1214-1219). IEEE.
[10]. Kumar, N S., (2009, Dec). BIST-BASED Group Testing For Diagnosis Of Embedded FPGA Cores. International Journal of MC Square Scientific Research, 20:1(1), 20-5.
[11]. R. Krishnamoorthy, K. Umapathy, "Design and Implementation of Microstrip Antenna for Energy Harvesting using Low Power Devices", IEEE International Conference on Electrical, Electronics, Information, Communication and Bio-informatics (AEEICB 2018), February 2018.

[12]. Xu, Lan. "The Impact of Foreign Direct Investment (FDI) on Technological Progress and Productivity Growth—A Case Study of Chinese Industries."

[13]. Anitha, S., A. Keerthana, S. Kaviya, and R. JayaRajan. "QUADRIPLEGIC AMBULATING ADDENDUM." International Journal of MC Square Scientific Research, Vol. 9, no. 2, pp. 15-23 (2017).

[14]. Mustapha, Mubashir Baba, Hananu Baba, and Sadick Mohammed. "Mobile Phone SMS Alert Banking Services: Perception of Customers that Determine Subscription in Northern Ghana."

[15]. Walus, K., Jullien, GA and Dimitrov, V.S., 2003, November. Computer arithmetic structures for quantum cellular automata. In The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, 2003 (Vol. 2, pp. 1435-1439). IEEE.