FINANCIAL ECONOMICS | RESEARCH ARTICLE

An analysis of seasonality fluctuations in the oil and gas stock returns

Muhammad Surajo Sanusi1* and Farooq Ahmad2

Abstract: This paper investigates the existence of seasonality anomalies in the stock returns of the oil and gas companies on the London Stock Exchange. It employs F-test, Kruskal–Wallis and Tukey tests to examine days-of-the-week effect. Generalised autoregressive conditional heteroscedasticity specification was also employed to investigate both the days-of-the-week and months-of-the-year effects. The analysis had been extended to some key FTSE indices. Our results showed no evidence of any regularity or seasonal fluctuation in the oil and gas stock returns despite the seasonal changes of demand in the companies' products. However, January effect has been observed in FTSE All Share and FTSE 100 indices.

Subjects: Economics; Finance; Business & Industry; Finance; Quantitative Finance

Keywords: seasonality; oil and gas stock returns; days-of-the-week effect; months-of-the-year effect; January effect and London Stock Exchange

JEL Classification code: G1

1. Introduction
The analysis of seasonality in stock returns has been performed by many scholars over the years in order to establish whether there are calendar-related anomalies in stock returns. If the proposition that calendar anomalies such as day-of-the-week, intraday, weekend and January effects exist in stock returns, then the random walk hypothesis would be rejected. This also contradicts the efficient market hypothesis (EMH) because at that point future stock returns can be predicted. The interest of researchers in

ABOUT THE AUTHORS
Muhammad Surajo Sanusi is a lecturer in Finance at Birmingham City University (UK). He got his PhD in Finance from Robert Gordon University (UK) on market efficiency, volatility behaviour and asset pricing analysis. He is a qualified professional accountant under the full membership of the Association of Chartered Certified Accountants (ACCA). His research interest covers the areas of financial markets operations, stock market volatility, security analysis and financial econometrics.

Farooq Ahmad is lecturer in Finance at Robert Gordon University (UK). He graduated with a PhD in Finance from University of Stirling (UK). His research interest areas are financial markets efficiency analysis, regulations of financial markets, evaluations of the impact of innovations and reforms in financial markets, yield curve analysis, Gilt-edged market analysis and management of public debt.

PUBLIC INTEREST STATEMENT
Oil and gas sector remains one of the most important sectors in the world, and hence, we try to investigate the behaviour of stock returns of the oil and gas companies quoted on the London Stock Exchange. The study employed both parametric and non-parametric tests to examine the days-of-the-week and months-of-the-year effects. We have not found evidence in recent times that the behaviour of stock returns is abnormal in certain days of the week or months of the year except in January.
seasonality analysis was promoted by the fact that evidence gathered could be used to accept or reject the EMH. Although majority of the inferences made suggest the existence of seasonality, market inefficiency could not be confirmed especially due to the existence of transaction costs. Documented evidence in support of the seasonality presence in stock returns have also been criticised by some scholars who attributed the empirical evidence as the product of statistical misspecification. It was observed that existing studies have not provided sufficient and most reliable conclusions about the existence of seasonality in stock returns and any relating consequences to the proposition of the market efficiency.

In this paper, we employ seasonality tests as a tool to provide further evidence on the predictability of stock returns of London-quoted oil and gas stocks and some market indices.

2. Literature review

Yadav and Pope (1992) have been among the scholars that tested for the existence of calendar anomalies in stock markets. They investigated the existence of either intraweek or intraday seasonality in the pricing or returns of UK stock index future contracts using the distinctive settlement methods of the London stock exchange. The existence of seasonality was found in the UK stock market because of abnormal Monday returns discovered which could be due to the non-trading weekends. However, there was no evidence that the abnormal Monday returns could be attributed to the delay in the release of bad news until Friday as speculated by some scholars. In contrast to the findings of Yadav and Pope (1992), Mookerjee and Yu (1999) discovered abnormal returns on Thursdays from an investigation on the Shanghai and Shenzhen stock exchanges of China, although these researchers have agreed that their findings are odd when compared to that of many scholars. Mookerjee and Yu (1999) found high mean returns on Thursdays instead of Fridays (negative returns are usually found on Mondays) as reported by most of the earlier studies and barriers to the changes in daily prices (limits on daily returns). The daily returns were also found to be positively correlated with risk (standard deviation figures). Most of the studies on the day-of-the-week effect were conducted in developed markets and, according to the majority of the inferences, the effect of seasonality was evidenced in such markets. In similar developments, Chang, Pinegar, and Ravichandran (1993) investigated the day-of-the-week effect in some European markets and the United States using classical or traditional methods adopted by various scholars and an approach with sample size and error term adjustments. Results showed the existence of day-of-the-week effect in the majority of the markets similar to most of the findings in the literature. Dicle and Levendis (2014) tested whether the day-of-the-week effect still exists by investigating up to 51 international markets from thirty three countries over the period between 2000 and 2007. Similar to the findings of Yadav and Pope (1992), Mookerjee and Yu (1999), and Chang et al. (1993), they also found the existence of day-of-the-week effect in almost all the exchanges in these countries. Qadan (2013) also tested the existence of day-of-the-week effect on the recent United States data of the S&P 500 index using a threshold-ARCH model. The results of the test showed both stock returns and volumes on Monday to be lower than those of other days. In addition, they also reported that the investor’s fear gauge as measured by volatility was higher on Mondays and lower on Fridays.

Further evidence on the day-of-the-week effect in the developed markets has also been recorded by the studies of Clare, Psaradakis, and Thomas (1995), Dubois and Louvet (1996), and Steeley (2001). Steeley (2001) attributed the presence of seasonality in the UK equity market to the pattern of flow of market-wide news. Dubois and Louvet (1996) examined the day-of-the-week effect in 11 indices across 9 countries over the period between 1969 and 1992. Lower returns were found at the beginning of the week and tend to increase towards the end of the week. Dubois and Louvet (1996) concluded that there is a strong evidence of day-of-the-week in European countries. The UK equity market was also investigated by Clare et al. (1995) and found results similar to that of Dubois and Louvet (1996). Clare et al. (1995) used a deterministic seasonal model (a method adopted by Franses (1993)) on the FTSE All Share index and discovered a significant seasonality effect in the market. In a slightly contrary view, Steeley (2001) has reported that weekend effects have vanished from UK markets in the 1990s. However, day-of-the-week effect can still be traced in the market if the stock return series data is divided according to the directions ((+) or (−) of the returns) of the market. In
that case, Steeley (2001) concluded that the cause of the day-of-the-week effect was due to the pattern and nature of market-wide information classified as “bad” or “good” news.

The research on the day-of-the-week effect has also been extended to emerging markets. Al Ashikh (2012) investigated the day-of-the-week effect on the Saudi Arabian stock exchange and found evidence from both the analysis of mean returns and its variance that the market efficiency hypothesis can be rejected due to the existence of day-of-the-week effect. Haroon and Shah (2013) have also examined the Karachi stock exchange in Pakistan for the existence of day-of-the-week effect. In contrast to the results reported by Al Ashikh (2012), Haroon and Shah (2013) discovered mixed results from the two partitions of the period of study that is, sub-period I and II. Sub-period I negates the existence of day-of-the-week effect, while sub-period II found evidence of the existence of day-of-the-week effect. Ogieva, Osamwonyi, and Idolor (2013) have also conducted an investigation on the Nigerian stock exchange for the existence of day-of-the-week effect and found evidence to reject the market efficiency hypothesis.

Other calendar anomalies such as a January effect have also been investigated extensively in the field of finance. Findings reported by scholars are similar to that of day-of-the-week effect where the majority of the studies found evidence for the seasonality effect in stock returns, although scholars such as Chien, Lee, and Wang (2002) observed that the empirical evidence supporting a January effect could be due to the misapplication of statistical tools. He opined that, with high volatility in stock returns, the dummy variables in the regression model testing the existence of seasonality could generate significant coefficients. Studies like that of Haugen and Lakonishok (1988), Jaffe and Westerfield (1985), and Solnik and Bousquet (1990) have all documented evidence of a “January effect” in the stock returns of various stock exchanges which may create doubt on the work of Fama (1970) on the EMH.

3. Methodology and results

In this section, we aim to investigate the existence of the day-of-the-week and monthly effects in the stock returns of London-quoted oil and gas stocks and some related FTSE measures such as the FTSE All Share, the FTSE 100, the FTSE UK Oil and Gas, the FTSE UK Oil and Gas Producers and the FTSE AIM SS indices. Our data for this analysis covers the periods from 4 January 2010 to 31 December 2012 for the day-of-the-week effect and January 2005 to December 2014 for the monthly effect.

Firstly, daily stock returns (Monday to Friday) of individual series were calculated using \(\log \left(\frac{P_t}{P_{t-1}} \right) \) formula and mean returns compared in order to test the null hypothesis of equality. The null hypotheses of equality between the discrete week’s days’ mean returns are tested using both parametric and non-parametric statistical tools. The \(F \)-test is employed as a parametric tool to test whether there is any significant difference between the week’s days’ mean-returns. If the \(F \)-statistic value is found to be higher than the critical value (critical values for \(F \)-distribution) at a selected significance level, then the null hypothesis that \(\mu_M = \mu_T = \mu_W = \mu_{Th} = \mu_F \) is rejected for the alternative hypothesis that \(\mu_M \neq \mu_T \neq \mu_W \neq \mu_{Th} \neq \mu_F \). Kruskal–Wallis is a non-parametric test that is not based on any assumption about the underlying distribution. It performs the same function as the \(F \)-test but without consideration for the distribution of samples tested. It rather tests whether the samples are from the same distribution. If the K–W Statistic value is found to be greater than its critical value, the null hypothesis of equality is rejected and accepted if vice versa. Pairwise test of the week’s days’ mean returns were also conducted using the Tukey test to make comparison between the pair means. If the Tukey test statistical values result in the rejection of the null hypothesis of equality, then the pair of mean returns of two weekdays are regarded as not equal which signifies the existence of a day-of-the-week effect.

The results of \(F \)-test, Kruskal–Wallis test and Tukey test on the day-of-the-week return series are presented in Table 1. From the results, the null hypothesis of equality cannot be rejected in all the series except the FTSE AIM SS Oil and Gas index. The statistical values derived from the tests employed are not greater than their respective critical values at 5% significance level and that suggests
Table 1. F-test, Kruskal–Wallis test and Tukey test on the day-of-the-week (DOTW) return series under study

	Monday	Tuesday	Wednesday	Thursday	Friday
FTSE All Sh.					
Mean return	−0.00022	0.000955	−0.000349	0.000503	−0.000170
Observation	144	153	155	156	152
F-statistic	0.399011027				
K-W statistic	2.935440532				
Tukey statistic					
Monday	0	1.315683	−0.14976	0.808005	0.050776
Tuesday	0	−1.46544	−0.507678	−0.507678	−1.264907
Wednesday	0	0.9577646	0.200536		
Thursday	0	−0.757229			
FTSE100					
Mean return	−0.0002	0.001121	−0.000461	0.000429	−0.000346
Observation	144	153	155	156	152
F-statistic	0.53241147				
K-W statistic	3.554102754				
Tukey statistic					
Monday	0	1.449682	−0.28884	0.6895659	−0.162001
Tuesday	0	−1.73852	−0.760116	−1.611683	
Wednesday	0	0.9784018	0.126835		
Thursday	0	−0.851567			
FTSE UK O&G					
Mean return	2.71E-05	0.001402	−0.000862	−0.000437	−0.000512
Observation	144	153	155	156	152
F-statistic	0.679264795				
K-W statistic	4.797923822				
Tukey statistic					
Monday	0	1.2744	−0.82434	−0.429674	−0.49952
Tuesday	0	−2.09874	−1.704074	−1.77392	
Wednesday	0	0.3946653	0.324819		
Thursday	0	−0.609846			
FTSE UK OGP					
Mean return	2.58E-05	0.001401	−0.000870	−0.000481	−0.000539
Observation	144	153	155	156	152
F-statistic	0.693737153				
K-W statistic	4.929917434				
Tukey statistic					
Monday	0	1.27478	−0.83036	−0.469856	−0.52385
Tuesday	0	−2.10514	−1.744636	−1.79863	
Wednesday	0	0.3605003	0.306507		
Thursday	0	−0.053994			
FTSE AIM OG					
Mean return	−0.00208	−0.002526	−0.000564	0.000448	0.0004435
Observation	144	153	155	156	152
F-statistic	4.010797958				
K-W statistic	21.88855327				
Tukey statistic					
Monday	0	−0.32516	1.092983	1.8245219	4.707024
Tuesday	0	1.418146	2.1496856	5.032188	
	Monday	Tuesday	Wednesday	Thursday	Friday
----------------	--------	---------	-----------	----------	--------
AMEC Mean return	2.03E-05	0.001658	-0.000452	0.000266	0.000054
Observation	144	153	155	156	152
BG GROUP Mean return	-0.00046	0.002049	-0.001622	-0.000833	0.000207
Observation	144	153	155	156	152
BP Mean return	0.000312	-0.000301	-0.000476	-0.000267	-0.001502
Observation	144	153	155	156	152
CAIRN Mean return	-0.00187	0.000373	-0.000946	0.000046	-0.000003
Observation	144	153	155	156	152
DRAGON Mean return	-0.00018	0.000727	0.001819	0.000822	-0.000909
Observation	144	153	155	156	152
	Monday	Tuesday	Wednesday	Thursday	Friday
--------------------	--------	---------	-----------	----------	--------
Fortune					
Mean return	−0.00477	0.001849	0.001681	−0.000523	0.002951
Observation	144	153	155	156	152
F-statistic	0.49235208				
K-W statistic	1.628715356				
Tukey statistic					
Monday	0	1.538968	1.499977	0.9878145	1.795065
Tuesday	0	−0.03899	−0.551153	0.256097	
Wednesday	0	−0.512162	0.295088		
Thursday	0	0	0.80725		
Hunting					
Mean return	−0.0004	0.001374	−0.002310	0.001241	0.002091
Observation	144	153	155	156	152
F-statistic	0.939621194				
K-W statistic	3.59337799				
Tukey statistic					
Monday	0	0.968823	−1.03973	0.8966124	1.360206
Tuesday	0	−2.00856	−0.072211	0.391383	
Wednesday	0	1.9363452	2.399383		
Thursday	0	0	0.463593		
Premier					
Mean return	0.000532	−0.001777	0.000465	0.001146	0.000928
Observation	144	153	155	156	152
F-statistic	0.520226882				
K-W statistic	2.792678369				
Tukey statistic					
Monday	0	−1.415	−0.04113	0.3760816	0.242734
Tuesday	0	1.373873	1.7910812	1.657734	
Wednesday	0	0.4172082	0.283861		
Thursday	0	0	−0.133348		
RDSB					
Mean return	0.000286	0.002686	−0.000721	−0.000694	−0.000322
Observation	144	153	155	156	152
F-statistic	1.753720054				
K-W statistic	7.569918787				
Tukey statistic					
Monday	0	2.222766	−0.9326	−0.907989	−0.56335
Tuesday	0	−3.15537	−3.130755	−2.786116	
Wednesday	0	0.0246099	0.369249		
Thursday	0	0	0.346464		
Tullow					
Mean return	−0.00059	0.000128	−0.001841	−0.000343	0.002437
Observation	144	153	155	156	152
F-statistic	0.763607697				
K-W statistic	4.540064018				
Sanusi & Ahmad, Cogent Economics & Finance (2016), 4: 1128133
http://dx.doi.org/10.1080/23322039.2015.1128133

	Monday	Tuesday	Wednesday	Thursday	Friday
Tukey statistic					
Monday	0	0.401267	−0.69443	0.1390366	1.687078
Tuesday	0	−1.09569	−0.262231	−0.262231	1.28581
Wednesday	0	0.8334623	2.381503	0	
Thursday	0	1.548041	0	0	
AMINEX					
Mean return	0.002376	−0.002853	0.006753	−0.008139	−0.003247
Observation	144	153	155	156	152
F-statistic	1.112091933				
K-W statistic	2.539464198				
Tukey statistic					
Monday	0	−0.9568	0.800705	−1.923947	−1.028971
Tuesday	0	1.757506	−0.967147	−0.072171	
Wednesday	0	−2.724653	−1.829677		
Thursday	0	0.894976			
JKX O&G					
Mean return	0.001148	−0.001855	−0.002311	−0.000286	−0.005110
Observation	144	153	155	156	152
F-statistic	1.202895668				
K-W statistic	5.225484511				
Tukey statistic					
Monday	0	−1.41191	−1.62629	−0.674319	−2.94217
Tuesday	0	−0.21438	0.737594	−1.530257	
Wednesday	0	0.9519699	−1.315882		
Thursday	0	2.267852			
SOCO INTL.					
Mean return	0.000307	−0.000432	−0.001115	0.000909	0.000786
Observation	144	153	155	156	152
F-statistic	0.215608431				
K-W statistic	1.10832227				
Tukey statistic					
Monday	0	−0.3982	−0.76594	0.3241272	0.258133
Tuesday	0	−0.36774	0.7223266	0.656333	
Wednesday	0	1.0900714	1.024077		
Thursday	0	0	−0.065994		
WOOD GRP					
Mean return	0.000259	0.002383	−0.000664	0.001247	0.000278
Observation	144	153	155	156	152
F-statistic	0.510816937				
K-W statistic	6.860733061				
Tukey statistic					
Monday	0	1.153157	−0.50062	0.5369051	1.101957
Tuesday	0	−1.65378	−0.616251	−0.0512	
Wednesday	0	1.0375238	1.602575		
Thursday	0	0.565052			
AFREN					
Mean return	−0.00047	0.002852	−0.000681	0.000786	0.000311
Observation	144	153	155	156	152

Table 1. (Continued)
Monday	Tuesday	Wednesday	Thursday	Friday	
F-statistic	0.287916093				
K-W statistic	1.345452187				
Tukey statistic					
Monday	0	1.262706	−0.07933	0.4778316	0.29748
Tuesday	0	−1.34204	−0.784875	−0.965226	
Wednesday	0	0.5571661	0.376814		
Thursday	0		−0.180352		
HARDY O&G					
Mean return	−0.00463	−0.003579	0.001358	0.000717	−0.000903
Observation	144	153	155	156	152
F-statistic	1.051237673				
K-W statistic	6.036124707				
Tukey statistic					
Monday	0	0.413558	2.352295	2.1004191	1.464555
Tuesday	0	1.938736	1.6868607	1.050997	
Wednesday	0	−0.251876	−0.88774		
Thursday	0		−0.635864		
RDSA					
Mean return	−2.4E-05	0.002371	−0.000904	−0.000288	−0.000538
Observation	144	153	155	156	152
F-statistic	1.682564012				
K-W statistic	8.202197593				
Tukey statistic					
Monday	0	2.383797	−0.87633	−0.263021	−0.511184
Tuesday	0	−3.26013	−2.646819	−2.894981	
Wednesday	0	0.6133119	0.365149		
Thursday	0		−0.248163		
PETROFAC					
Mean return	0.000824	0.001232	−0.001067	0.002203	0.000233
Observation	144	153	155	156	152
F-statistic	0.484073992				
K-W statistic	2.69118205				
Tukey statistic					
Monday	0	0.231353	−1.07277	0.7819499	−0.335171
Tuesday	0	−1.30412	0.5505969	−0.566524	
Wednesday	0	1.8547179	0.737597		
Thursday	0		−1.117121		
SALAMANDER					
Mean return	0.000297	−0.002800	0.000733	−0.000046	0.000272
Observation	144	153	155	156	152
F-statistic	0.556664052				
K-W statistic	1.9574156				
Tukey statistic					
Monday	0	−1.62301	0.228108	−0.179823	−0.01321
Tuesday	0	1.851119	1.4431875	1.609801	
Wednesday	0	−0.407931	−0.241318		
Thursday	0		0.166614		

(Continued)
	Monday	Tuesday	Wednesday	Thursday	Friday
LAMPRELL					
Mean return	0.001513	0.000273	−0.007814	−0.000394	0.002843
Observation	144	153	155	156	152
F-statistic	1.003828883				
K-W statistic	1.004767414				
Tukey statistic					
Monday	0	−0.29729	−2.23656	−0.457288	0.318952
Tuesday	0	1.93927	1.159997	0.616242	
Wednesday	0	1.7792744	2.555514		
Thursday	0	0	0.776239		
ENDEAVOR					
Mean return	0.001918	−0.002845	−0.005402	0.002057	−0.002488
Observation	144	153	155	156	152
F-statistic	0.548515069				
K-W statistic	0.274690258				
Tukey statistic					
Monday	0	−1.08459	−1.667	0.0314785	−1.003476
Tuesday	0	0.5824	1.1160723	0.081118	
Wednesday	0	1.6984749	0.66352		
Thursday	0	0	0.1034955		
CADOGAN					
Mean return	−0.00245	−0.002814	0.002441	−0.000277	0.001666
Observation	144	153	155	156	152
F-statistic	0.452860858				
K-W statistic	2.068736118				
Tukey statistic					
Monday	0	−0.10538	1.394441	0.6187843	1.173314
Tuesday	0	1.499822	0.7241653	1.278695	
Wednesday	0	0.775656	−0.221127		
Thursday	0	0	0.554529		
HERITAGE					
Mean return	−0.00352	0.0003045	−0.000644	−0.003062	0.000260
Observation	144	153	155	156	152
F-statistic	1.009395797				
K-W statistic	4.067021843				
Tukey statistic					
Monday	0	2.480671	1.086682	0.1734628	1.42843
Tuesday	0	1.39399	−2.307209	−1.052241	
Wednesday	0	−0.91322	0.341748		
Thursday	0	0	1.254967		
KENTZ					
Mean return	−0.00064	0.001641	−0.001234	0.002753	0.001784
Observation	144	153	155	156	152
F-statistic	1.069964819				
K-W statistic	11.79090978				
Tukey statistic					
Monday	0	1.378884	−0.35562	2.049722	1.464866
Tuesday	0	1.7345	0.6708383	0.085983	
Wednesday	0	2.4053401	1.820484		
the non-existence of the day-of-the-week effect in the series under investigation. In the FTSE AIM SS Oil and Gas index, the \(F \)-statistic is recorded at 4.0107 which is significantly higher than the critical value of 2.38 at 5% significance level. The non-parametric test of the Kruskal–Wallis statistic has a value of 21.88 which is also higher than the critical value of 9.48 at 5% significance level. The Tukey pairwise test suggests a significant difference between the mean returns of Fridays and Mondays at 4.7070 and Fridays and Tuesdays at 5.0321 (both higher than a critical value of 3.86 at 5% significance level) which indicate the rejection of the null hypothesis of equality and at the same time confirming the existence of the day-of-the-week effect in the FTSE AIM SS Oil and Gas index.

The next step undertaken in our investigation of the day-of-the-week effect is to create binary dummy variables for the week’s days of Mondays through Fridays as independent variables while the return series of every weekday remains as dependent variables. The variables are subjected to a regression model based on the assumption of Autoregressive Conditional Heteroscedasticity (ARCH) developed by Engle (1982) in order to explore the relationship (deviations) between variables using coefficients generated from the regression model. The ARCH model was employed because the standard ordinary least square regression model’s assumption of homoscedasticity cannot be attained by the series of stock returns. In other words, the variances and covariances of stock returns are found to be changing over time and not homoscedastic (constant). Fama (1965) and Mandelbrot (1966) reported the existence of volatility clustering (large changes in returns followed by similar changes and small changes also followed by small changes) which give rise to changing conditional variance (heteroscedasticity). Lagged returns are also included in the model in order to overcome the problem of auto-correlation. In our effort to improve the model, we have employed the generalised version of ARCH model as suggested by Bollerslev (1986). The specifications of the models employed are given as:

\[
R_t = \alpha_0 D_{Mt} + \alpha_7 D_{Tt} + \alpha_5 D_{Wt} + \alpha_3 D_{Dt} + \alpha_1 R_{t-1} + \epsilon_t
\]

(1)

\[
\sigma_t^2 = \alpha_0 D_{Mt} + \alpha_7 D_{Tt} + \alpha_5 D_{Wt} + \alpha_3 D_{Dt} + \alpha_1 D_{Rt} + \alpha_4 \sigma_{t-1}^2 + \beta_1 \epsilon_t + \beta_2 \sigma_{t-1}^2
\]

(2)

where \(R_t \) is the stock return series under investigation, \(D_{Mt}, D_{Tt}, D_{Wt}, D_{Dt}, D_{Rt} \) represent the binary dummy variables for Monday through Friday; for Monday returns the dummy variable is equal to 1 and all others are equal to zero. The coefficients attached to the dummy variables measure the average deviation of the week’s days’ mean return from other days’ mean returns. If any coefficient is
found to be significant, then the days’ mean return attached to the coefficient has deviated from that of the others and thus, there is the existence of the day-of-the-week effect. A constant is not included in the regression model in order to avoid the dummy variable trap. The second equation is the generalised ARCH employed where σ_t^2 is the conditional variance, $\alpha_i u_{t-1}^2$ is the ARCH term and $\beta_i \sigma_{t-1}^2$ is the generalised ARCH term. The coefficients of the ARCH and generalised autoregressive conditional heteroscedasticity (GARCH) terms are referred to as alpha and beta, respectively.

The regression results are presented in Table 2 and most of the week’s days’ coefficients are not significant at both 1% and 5% levels of significance. This indicates the absence of a day-of-the-week effect in the stock returns. However, the FTSE AIM Oil and Gas index return series has significant Monday and Friday coefficients which are signs of a day-of-the-week effect as shown by the results of the F-test, the Kruskal–Wallis test, and the Tukey tests depicted in Table 1. Similarly, JXX Oil and Gas has recorded a significant coefficient on Friday at 5% level of significance. Lamprell Plc stock returns also have significant coefficients on Tuesday, Wednesday and Friday at 1% level of significance. In summary, only coefficients in three stocks (FTSE AIM Oil and Gas index, JXX Oil and Gas, Lamprell) were found to be significant which is indicative of the existence of a day-of-the-week effect. The results from JXX Oil and Gas index and Lamprell Plc contradict that of the F-test, the Kruskal–Wallis test, and the Tukey tests which showed no evidence of day-of-the-week anomalies. The coefficients of both the ARCH and GARCH terms represented in the results as “α_i” and “β_i” were found to be strongly significant at 1% level which is an additional sign of model appropriateness.

In testing for the monthly effect, binary dummy variables were also created for the monthly (January through December) stock returns as 12 independent variables (constant parameter would not be included in order to avoid dummy variable trap). Both the dummy variables (independent variables) and the monthly return series (dependent variables) are subjected to a regression model using GARCH specifications. The specifications of the models employed are given as:

$$R_t = \alpha_1 D_{Jt} + \alpha_2 D_{At} + \alpha_3 D_{Mt} + \alpha_4 D_{Myt} + \alpha_5 D_{MytJnt} + \alpha_6 D_{MytJyt} + \alpha_7 D_{MytJyt} + \alpha_8 D_{Myt} + \alpha_9 D_{Myt} + \alpha_{10} D_{Myt} + \alpha_{11} R_{t-1} + \epsilon_t$$

$$\sigma_t^2 = \alpha_1 D_{Jt} + \alpha_2 D_{At} + \alpha_3 D_{Mt} + \alpha_4 D_{Myt} + \alpha_5 D_{MytJnt} + \alpha_6 D_{MytJyt} + \alpha_7 D_{MytJyt} + \alpha_8 D_{Myt} + \alpha_9 D_{Myt} + \alpha_{10} D_{Myt} + \alpha_{11} u_{t-1}^2 + \beta_2 \sigma_{t-1}^2$$

where R_t is the monthly stock return series under investigation, D_{Jt}, D_{At}, D_{Mt}, D_{Myt}, D_{MytJnt}, D_{MytJyt}, D_{MytJyt}, D_{Myt}, D_{Myt}, D_{Myt}, D_{Myt}, R_{t-1}, ϵ_t is the ARCH term and $\beta_2 \sigma_{t-1}^2$ is the generalised ARCH term. The coefficients of the ARCH and GARCH terms are referred to as alpha and beta, respectively.

The results in Table 3 show the monthly effect of January through December on the stock returns of the UK oil and gas companies and some related FTSE indices. Most of the monthly coefficients in the oil and gas companies were found to be insignificant at both 1 and 5% significance level except in oil companies that were listed on the Exchange recently (2010 to date). The results from the FTSE indices differ. January, May and November coefficients were found to be highly significant at 1% level in FTSE All Share and FTSE 100 indices. It shows the presence of January effect; a finding which has been famous in the literature. End-of-the-year activities such as Christmas and New Year holidays are part of the reasons for January effects. May effects were also not a surprise. In the UK, tax year begins from 6 April and ends 5 April in the following year. For that reason, most of the
Table 2. Generalised ARCH (1,1) regression results for the test of day-of-the-week (DOTW) effect on the return series under study

FTSE All Sh.	Monday	Tuesday	Wednesday	Thursday	Friday	r (−1)	\(\alpha_1 \)	\(\beta_1 \)
Coefficient	0.0001	0.0012	0.0002	0.0004	0.0004	0.0282	0.1262	0.8396
Standard error	0.0008	0.0006	0.0006	0.0007	0.0008	0.0404	0.0258	0.0306
z-Statistic	0.1455	1.9132	0.3663	0.5782	0.5114	0.6977	4.8895	27.352
Probability	0.8842	0.0557	0.7141	0.5631	0.609	0.4853	0.0000*	0.0000*

FTSE100								
Coefficient	0.0001	0.0013	0.0002	0.0004	0.0002	0.0105	0.1277	0.8375
Standard error	0.0009	0.0007	0.0007	0.0008	0.0008	0.0405	0.0266	0.0317
z-Statistic	0.1345	1.9170	0.3157	0.4732	0.2111	0.2600	4.8031	26.404
Probability	0.8930	0.0552	0.7522	0.6361	0.8328	0.7949	0.0000*	0.0000*

FTSE UK O&G								
Coefficient	0.0005	0.0014	−0.0003	−0.0002	0.0002	0.0063	0.0987	0.8660
Standard error	0.0011	0.0008	0.0009	0.0009	0.0011	0.0407	0.0241	0.0359
z-Statistic	0.4081	1.7698	−0.3415	−0.1876	−0.178	0.1551	4.0917	24.124
Probability	0.6832	0.0768	0.7328	0.8512	0.8584	0.8768	0.0000*	0.0000*

FTSE AIM O&G								
Coefficient	−0.0032	−0.0004	0.0013	0.0002	0.0036	0.1573	0.1937	0.7650
Standard error	0.0011	0.0010	0.0012	0.0010	0.0012	0.0415	0.0269	0.0277
z-Statistic	−3.0299	−0.4022	1.1395	0.1678	2.9516	3.7945	7.2036	27.583
Probability	0.0024*	0.6875	0.2545	0.8667	0.003*	0.001*	0.0000*	0.0000*

AMEC								
Coefficient	−0.0001	0.0020	0.0008	−0.0003	0.0011	0.0064	0.1235	0.7835
Standard error	0.0015	0.0012	0.0013	0.0012	0.0014	0.0417	0.0284	0.0482
z-Statistic	−0.0564	1.5673	0.6311	−0.2409	0.8064	0.1544	4.3475	16.250
Probability	0.9551	0.1170	0.5279	0.8097	0.4200	0.8773	0.0000*	0.0000*

BG GROUP								
Coefficient	0.0006	0.0017	−0.0019	−0.0006	0.0001	0.0105	0.0627	0.7959
Standard error	0.0018	0.0015	0.0015	0.0015	0.0017	0.0412	0.0277	0.0849
z-Statistic	0.3371	1.1818	−1.2380	−0.3881	0.0811	0.2569	2.2622	9.3789
Probability	0.7361	0.2373	0.2157	0.6979	0.9353	0.7988	0.023**	0.0000*

BP								
Coefficient	0.0002	0.0012	0.0001	−0.0008	0.0003	0.0059	0.1089	0.8570
Standard error	0.0014	0.0010	0.0011	0.0012	0.0014	0.0367	0.0150	0.0234
z-Statistic	0.1760	1.2578	0.0750	−0.6432	−0.235	0.1619	7.2360	36.660
Probability	0.8603	0.2085	0.9402	0.5201	0.8142	0.8714	0.0000*	0.0000*

CAIRN								
Coefficient	−0.0007	0.0007	−0.0011	−0.0007	0.0002	0.0008	0.0508	0.9306
Standard error	0.0018	0.0015	0.0016	0.0014	0.0018	0.0376	0.0144	0.0241
T-statistic	−0.3765	0.4543	−0.6764	−0.4705	0.0880	−0.022	3.5244	38.599
Probability	0.7065	0.6496	0.4988	0.6380	0.9298	0.9820	0.0004*	0.0000*

(Continued)
Company	Monday	Tuesday	Wednesday	Thursday	Friday	\(r(-1) \)	\(\alpha_1 \)	\(\beta_1 \)
DRAGON	0.0006	0.0002	0.0015	0.0016	0.0003	0.0725	0.0643	0.8905
	0.0014	0.0017	0.0016	0.0017	0.0016	0.0411	0.0156	0.0304
z-Statistic	0.4579	0.1119	0.9771	0.9369	-0.173	1.7633	4.1155	29.302
Probability	0.6470	0.9109	0.3285	0.3488	0.8623	0.0778	0.0000*	0.0000*
FORTUNE	-0.0008	-0.0004	-0.0007	-0.0005	-0.008	-0.362	0.1059	0.7745
	0.0030	0.0042	0.0046	0.0032	0.004	0.0429	0.0189	0.0305
z-Statistic	-0.2501	-0.0970	-0.1535	-0.1639	-0.161	-8.444	5.5978	25.369
Probability	0.8025	0.9227	0.8780	0.8698	0.8717	0.0000*	0.0000*	0.0000*
HUNTING	-0.0004	0.0014	0.0000	0.0012	0.0021	0.0197	0.1820	0.4291
	0.0016	0.0017	0.0020	0.0017	0.0016	0.0398	0.0382	0.1392
z-Statistic	-0.2511	0.8065	0.0230	0.7141	1.3235	0.4950	4.7623	3.0830
Probability	0.8018	0.4199	0.9817	0.4752	0.1857	0.6206	0.0000*	0.0020*
PREMIER	0.0007	-0.0013	0.0003	0.0019	0.0013	-0.033	0.0760	0.8881
	0.0016	0.0014	0.0016	0.0014	0.0016	0.0385	0.0196	0.0253
z-Statistic	0.4137	-0.9750	0.1626	1.3710	0.7896	-0.875	3.8770	35.032
Probability	0.6791	0.3296	0.8708	0.1704	0.4298	0.3811	0.0001*	0.0000*
RDSB	0.0004	0.0016	0.0004	-0.0001	-0.001	-0.001	0.1004	0.8618
	0.0011	0.0009	0.0009	0.0009	0.011	0.0414	0.0250	0.0364
z-Statistic	0.3888	1.8724	0.4015	-0.1147	-0.070	-0.035	4.0154	23.647
Probability	0.6974	0.0612	0.6881	0.9087	0.9436	0.9716	0.0001*	0.0000*
TULLOW	0.0002	0.0006	-0.0015	-0.0013	0.0023	-0.007	0.0935	0.8460
	0.0020	0.0015	0.0015	0.0016	0.0017	0.0410	0.0211	0.0371
z-Statistic	0.1086	0.3896	-0.9966	-0.7654	1.3769	-0.183	4.4249	22.797
Probability	0.9135	0.6968	0.3190	0.4441	0.1685	0.8542	0.0000*	0.0000*
AMINEX	-0.0005	0.0004	0.0036	-0.0081	-0.004	-0.218	0.1025	0.8201
	0.0044	0.0056	0.0044	0.0049	0.0061	0.0427	0.0143	0.0161
z-Statistic	-0.1062	0.0731	0.8267	-1.6661	-0.681	-5.110	7.1804	51.056
Probability	0.9154	0.9417	0.4084	0.0997	0.4958	0.000*	0.000*	0.000*
JXX O&G	0.0028	-0.0027	-0.0016	-0.0002	-0.004	0.0815	0.0474	0.9396
	0.0022	0.0017	0.0019	0.0018	0.0020	0.0364	0.0111	0.0109
z-Statistic	1.3079	-1.5837	-0.8504	-0.1201	-2.033	2.2397	4.2677	86.453
Probability	0.1909	0.1133	0.3951	0.9044	0.04**	0.02**	0.0000*	0.0000*
SOCO INTL.	-0.0028	-0.0009	-0.0002	0.0015	0.0011	-0.031	0.2076	0.3555
	0.0016	0.0017	0.0018	0.0019	0.0020	0.0500	0.0440	0.1036
z-Statistic	-1.7033	-0.4969	-0.1134	0.7904	0.5278	-0.634	4.7163	3.4316
Probability	0.0885	0.6193	0.9097	0.4293	0.5977	0.5261	0.0000*	0.0006*
	Monday	Tuesday	Wednesday	Thursday	Friday	$r (-1)$	α_1	β_1
-------	--------	---------	-----------	----------	--------	----------	-----------	-----------
WOOD GRP								
Coefficient	0.0002	0.0026	−0.0006	0.0006	0.0036	0.0445	0.0604	0.8889
Standard error	0.0018	0.0016	0.0020	0.0016	0.0018	0.0361	0.0138	0.0285
z-Statistic	0.1189	1.6251	−0.2886	0.3957	2.0092	1.2348	4.3799	31.244
Probability	0.9054	0.1041	0.7729	0.6923	0.0445	0.2169	0.0000*	0.0000*
AFREN								
Coefficient	0.0005	0.0038	−0.0020	0.0027	0.0014	0.0416	0.0638	0.9214
Standard error	0.0026	0.0024	0.0023	0.0018	0.0025	0.0394	0.0111	0.0114
z-Statistic	0.1964	1.6102	−0.8588	1.4797	0.5623	1.0551	5.7527	80.893
Probability	0.8443	0.1073	0.3905	0.1389	0.5739	0.2914	0.0000*	0.0000*
HARDY O&G								
Coefficient	0.0021	0.0014	−0.0005	0.0014	0.0003	−0.066	0.0713	0.9066
Standard error	0.0015	0.0015	0.0015	0.0015	0.0015	0.0363	0.0158	0.0201
z-Statistic	1.3828	0.9510	−0.3302	0.8775	0.1455	−1.267	4.5070	45.165
Probability	0.1667	0.3416	0.7412	0.3802	0.8843	0.2049	0.0000*	0.0000*
RDSA								
Coefficient	0.0001	0.0014	−0.0001	0.0001	−0.003	0.0355	0.0939	0.8487
Standard error	0.0011	0.0008	0.0009	0.0008	0.0010	0.0402	0.0245	0.0438
z-Statistic	0.0604	1.6520	−0.1199	0.1349	−0.298	0.8833	3.8387	19.373
Probability	0.9518	0.0985	0.9046	0.8927	0.7657	0.3771	0.0000*	0.0000*
PETROFAC								
Coefficient	0.0021	0.0014	−0.0005	0.0014	0.0003	−0.066	0.0713	0.9066
Standard error	0.0015	0.0015	0.0015	0.0015	0.0018	0.0363	0.0158	0.0201
z-Statistic	1.3828	0.9510	−0.3302	0.8775	0.1455	−1.267	4.5070	45.165
Probability	0.1667	0.3416	0.7412	0.3802	0.8843	0.2049	0.0000*	0.0000*
SALAMANDER								
Coefficient	0.0002	0.0004	0.0027	0.0002	−0.005	0.0794	0.2946	0.0581
Standard error	0.0020	0.0018	0.0016	0.0017	0.0017	0.0404	0.0565	0.0826
z-Statistic	0.0746	0.5547	2.2047	0.719	−0.290	1.9622	5.2128	0.7032
Probability	0.9389	0.8147	0.9046	0.8927	0.7657	0.3771	0.0000*	0.0000*
LAMPRELL								
Coefficient	−0.0025	−0.0065	0.0028	−0.0025	0.0058	−0.084	−0.0062	1.0125
Standard error	0.0026	0.0012	0.0011	0.0012	0.0033	0.0043	0.0002	0.0008
z-Statistic	−0.9603	−5.2635	50.0250	−1.0775	2.592	−19.39	−28.715	1226.1
Probability	0.3369	0.0000*	0.0000*	0.2813	0.009*	0.000*	0.000*	0.000*
ENDEAVOR								
Coefficient	−0.0008	−0.0019	−0.0028	0.0022	−0.004	−0.005	0.0204	0.6597
Standard error	0.0049	0.0049	0.0058	0.0121	0.0033	0.0015	0.017	0.1868
z-Statistic	−0.1600	−0.3938	−0.4909	0.1815	−0.878	−0.025	1.7441	3.5326
Probability	0.8729	0.6938	0.6235	0.8560	0.3799	0.9798	0.0811	0.004*
CADOGAN								
Coefficient	0.0003	−0.0038	−0.0033	−0.0013	0.0043	−0.176	0.1431	0.5097
Standard error	0.0032	0.0034	0.0033	0.0031	0.0035	0.0453	0.0307	0.1161
z-Statistic	0.1079	−1.1277	−0.9885	−0.4184	1.2397	−3.899	4.6588	4.3897
Probability	0.9141	0.2595	0.3229	0.6756	0.2151	0.001*	0.000*	0.000*
HERITAGE								
Coefficient	−0.0036	0.0038	−0.0028	−0.0023	0.0002	0.0651	0.0737	0.7030

(Continued)
Table 2. (Continued)

	Monday	Tuesday	Wednesday	Thursday	Friday	r (−1)	α₁	β₁
Standard	0.0032	0.0025	0.0026	0.0027	0.0035	0.0419	0.0202	0.0401
error								
z-Statistic	−1.1405	1.4807	−1.0784	−0.8314	0.0562	1.5521	3.6587	17.538
Probability	0.2541	0.1387	0.2808	0.4057	0.9481	0.1266	0.0003*	0.0000*

KENTZ

Standard	0.0009	0.0013	−0.0009	0.0028	0.0023	0.1139	0.0812	0.8718
error								
z-Statistic	0.4795	0.8965	−0.6315	2.2086	1.5204	3.1678	6.4743	40.604
Probability	0.6316	0.3700	0.5277	0.027**	0.1284	0.001*	0.0000*	0.0000*

EXILLON

Standard	0.0025	0.0024	0.0022	0.0021	0.0022	0.0416	0.0437	0.0527
error								
z-Statistic	−0.9213	−0.0918	1.1319	0.0290	2.1434	1.8657	5.9150	11.747
Probability	0.3569	0.9268	0.2577	0.9768	0.03**	0.0621	0.0000*	0.0000*

Notes: The coefficients are deemed to be significant if their z-statistic’s value is greater than its critical value or if probability value is less than 0.01 and 0.05. Probability values are used for interpretation in this case.
*Significance at 1%.
**Significance at 5%.

Table 3. Generalised ARCH (1,1) regression results for the test of monthly effect on the return series under study

FTSE All Sh.

	January	February	March	April	May	June	July
Coefficient	0.0408	0.0070	−0.0039	0.0146	0.0232	0.0100	−0.0043
Standard error	0.0060	0.0083	0.0080	0.0114	0.0051	0.0037	0.0047
z-Statistic	6.8522	0.8371	−0.4810	1.2885	4.5330	2.6641	−0.9084
Probability	0.0000*	0.4025	0.6305	0.1976	0.0000*	0.0077*	0.3637

August	September	October	November	December	α₁	β₁	
Coefficient	−0.0017	0.0039	0.0086	0.0267	−0.012	1.5777	0.0133
Standard error	0.0062	0.0065	0.0066	0.0063	0.0085	0.3758	0.0552
z-Statistic	−0.2701	0.5985	1.3008	4.2321	−1.418	4.1981	0.2419
Probability	0.7871	0.5495	0.1933	0.0000*	0.1560	0.0000*	0.8089

FTSE100

	January	February	March	April	May	June	July
Coefficient	0.0388	0.0047	−0.0028	0.0141	0.0254	0.0133	−0.0004
Standard error	0.0070	0.0085	0.0103	0.0125	0.0067	0.0056	0.0055
z-Statistic	5.5502	0.5515	−0.2753	1.1250	3.7766	2.3817	−0.0764
Probability	0.0000*	0.5813	0.7831	0.2606	0.0002*	0.017**	0.9391

August	September	October	November	December	α₁	β₁	
Coefficient	−0.0016	−0.0008	0.0081	0.0240	−0.009	1.2737	0.0222
Standard error	0.0073	0.0084	0.0081	0.0079	0.0092	0.3665	0.0963
z-Statistic	−0.2209	−0.0894	1.0022	3.0453	−1.048	3.4748	0.2307
Probability	0.8251	0.9288	0.3162	0.0023*	0.2945	0.0005*	0.8175

FTSEUK O&G

	January	February	March	April	May	June	July
Coefficient	0.0230	−0.0001	−0.0114	0.0175	0.0341	−0.017	0.0121
Standard error	0.0154	0.0118	0.0181	0.0199	0.0134	0.0125	0.0217
z-Statistic	1.4933	−0.0052	−0.6133	0.8779	2.5459	−1.383	0.5561
Probability	0.1354	0.9959	0.5279	0.3800	0.0109	0.1666	0.5781

(Continued)
	August	September	October	November	December	a_1	β_1
Coefficient	-0.0076	-0.0267	-0.0099	0.0278	-0.013	0.4201	0.3737
Standard error	0.0224	0.0150	0.0157	0.0164	0.0309	0.2717	0.2961
z-Statistic	-0.3411	-1.7777	-0.6302	1.6973	-0.425	1.5465	1.2621
Probability	0.7331	0.0755	0.5285	0.0896	0.6705	0.1220	0.2069
FTSE UK OGP							
Coefficient	0.0222	-0.0009	-0.0112	0.0157	0.0365	-0.016	0.0165
Standard error	0.0147	0.0118	0.0185	0.0194	0.0130	0.0125	0.0206
z-Statistic	1.5065	-0.0787	-0.6034	0.8058	2.8088	-1.285	0.7034
Probability	0.1319	0.9373	0.5462	0.4204	0.0050*	0.1985	0.4818
FTSE AIM OGP							
Coefficient	0.0158	0.0145	-0.0040	-0.0113	-0.0038	-0.032	-0.0191
Standard error	0.0684	0.0191	0.0316	0.0229	0.0217	0.0196	0.0377
z-Statistic	0.2304	0.7571	-0.1260	-0.4948	-0.1771	-1.634	-0.5053
Probability	0.8178	0.4490	0.8997	0.6208	0.8595	0.1021	0.6133
AMEC							
Coefficient	-0.0101	0.0493	0.0001	0.0286	0.0237	0.0023	-0.0179
Standard error	0.0444	0.0217	0.0253	0.0448	0.0433	0.0191	0.0290
z-Statistic	-0.2274	2.2714	0.0031	0.6378	0.5470	0.1194	-0.6162
Probability	0.8201	0.0231**	0.9975	0.5236	0.5844	0.9050	0.5378
BG GROUP							
Coefficient	0.0387	0.0116	0.0496	0.0314	0.0041	-0.009	0.0147
Standard error	0.0206	0.0171	0.0196	0.0273	0.0289	0.0177	0.0201
z-Statistic	1.8723	0.6778	2.5246	1.1497	0.1435	-0.540	0.7333
Probability	0.0612	0.4979	0.0116	0.2503	0.8859	0.5887	0.4634

(Continued)
	January	February	March	April	May	June	July
BP	0.0118	0.0045	−0.0088	0.0106	0.0189	−0.006	0.0065
	0.0186	0.0132	0.0249	0.0151	0.0166	0.0201	0.0212
	0.6345	0.3425	−0.3540	0.7054	1.1370	−0.333	0.3081
	0.5257	0.7320	0.7233	0.4806	0.2555	0.7385	0.7580

	August	September	October	November	December	α₁	β₁
BP	−0.0243	−0.0421	−0.0127	0.0510	−0.017	0.5463	0.1848
	0.0198	0.0158	0.0189	0.0152	0.0401	0.2157	0.2707
	−1.2270	−2.6575	−0.6741	3.3676	−0.429	2.5328	0.6830
	0.2198	0.0079*	0.5003	0.0008*	0.6674	0.011**	0.4946

	CAIRN	January	February	March	April	May	June	July
	0.0442	−0.0382	−0.0018	0.0450	0.0321	0.0088	−0.0231	
	0.0303	0.0287	0.0568	0.0297	0.0589	0.0268	0.0593	
	1.4584	−1.3311	−0.0312	1.5152	0.5458	0.3283	−0.3895	
	0.1447	0.1832	0.9751	0.1297	0.5852	0.7427	0.6969	

	August	September	October	November	December	α₁	β₁
CAIRN	0.0006	0.0096	−0.0415	−0.0475	0.0320	0.0341	0.5523
	0.0263	0.0566	0.0220	0.0285	0.0373	0.3084	0.4568
	0.0232	0.1695	−1.8875	−1.6676	0.8584	0.3145	1.2090
	0.9815	0.8654	0.0591	0.0954	0.3907	0.7532	0.2267

	DRAGON	January	February	March	April	May	June	July
	0.0279	0.0746	0.0491	0.0396	−0.0092	−0.077	0.0319	
	0.0339	0.0513	0.0337	0.0372	0.0332	0.0203	0.0178	
	0.8228	1.4566	1.4563	1.0662	−0.2785	−3.793	1.7914	
	0.4106	0.1458	0.1453	0.2863	0.7807	0.001**	0.0732	

	August	September	October	November	December	α₁	β₁
DRAGON	−0.0096	0.0232	−0.0520	0.0336	−0.019	0.5872	0.4351
	0.0313	0.0477	0.0257	0.0224	0.0399	0.2921	0.2201
	−0.3057	0.6870	−2.0259	1.4968	−0.495	2.0102	1.9765
	0.7599	0.6263	0.0428	0.1344	0.6206	0.044**	0.048**

	FORTUNE	January	February	March	April	May	June	July
	0.0960	−0.1030	0.0505	−0.0361	0.0667	−0.027	−0.0145	
	0.0254	0.0362	0.0370	0.0326	0.0418	0.0399	0.0502	
	3.7838	−2.8421	1.3666	−1.1074	1.5981	−0.681	−0.2896	
	0.0002*	0.0045*	0.1718	0.2681	0.1100	0.4956	0.7721	

	August	September	October	November	December	α₁	β₁
FORTUNE	−0.0391	0.0672	−0.0211	0.0045	−0.045	−0.0731	0.5185
	0.0503	0.0531	0.0406	0.0276	0.0583	0.0172	0.7418
	−0.7775	1.2650	−0.5199	0.1643	−0.779	−4.2597	0.6989
	0.4368	0.2059	0.6031	0.8695	0.4355	0.0000*	0.4846

	HUNTING	January	February	March	April	May	June	July
	0.0689	0.0354	0.0272	0.0781	−0.0298	−0.047	−0.0118	
	0.0134	0.0178	0.0177	0.0164	0.0148	0.0112	0.0108	
	5.1504	1.9915	1.5386	4.7462	−2.0092	−4.206	−1.0943	
	0.0000*	0.0462**	0.1239	0.0000*	0.044**	0.000*	0.2738	

(Continued)
Company	Month	Coefficient	Standard error	z-Statistic	Probability
PREMIER	August	0.0463	0.0233	1.9910	0.0465
	September	−0.0219	−0.0312	−0.2471	0.0000
	October	0.0358	0.0219	0.8486	0.0674
	November	0.0000	0.0210	−0.0007	0.0281
	December	−0.0467	0.0252	0.1035	0.0635
RDSB	August	0.0480	0.0108	4.4349	0.0000*
	September	0.0422	0.0134	3.1587	0.0016*
	October	−0.0133	0.0117	−1.1420	0.2534
	November	0.0234	0.0133	1.7586	0.0786
	December	−0.0101	0.0186	−0.545	0.5851
TULLOW	August	0.0463	0.0233	1.9910	0.0465
	September	−0.0219	−0.0312	−0.2471	0.0000
	October	0.0358	0.0219	0.8486	0.0674
	November	0.0000	0.0210	−0.0007	0.0281
	December	−0.0467	0.0252	0.1035	0.0635
AMINEX	August	0.0480	0.0108	4.4349	0.0000*
	September	0.0422	0.0134	3.1587	0.0016*
	October	−0.0133	0.0117	−1.1420	0.2534
	November	0.0234	0.0133	1.7586	0.0786
	December	−0.0101	0.0186	−0.545	0.5851

(Continued)
	January	February	March	April	May	June	July
JXX O&G	0.0070	−0.0198	0.0199	0.0415	0.0010	−0.054	−0.0309
	0.0482	0.0401	0.0377	0.0795	0.0451	0.0400	0.0520
	0.1442	−0.4934	0.5266	0.5222	0.0214	−1.350	−0.5941
	0.8853	0.6217	0.5985	0.6015	0.9829	0.1768	0.5524
August	0.0077	−0.0598	−0.0103	0.0104	−0.028	0.4527	0.2376
	0.1384	−0.0138	0.0138	0.0238	−0.028	0.4527	0.2376
SOCO INTL	0.0011	0.0228	0.0591	0.0006	0.0101	−0.010	−0.0177
	0.0039	0.0389	0.0249	0.0156	0.0403	0.0440	0.0552
	0.2087	0.5848	2.3741	0.0352	0.2459	−0.010	−0.0177
	0.2087	0.5848	2.3741	0.0352	0.2459	−0.010	−0.0177
	0.2087	0.5848	2.3741	0.0352	0.2459	−0.010	−0.0177
	0.2087	0.5848	2.3741	0.0352	0.2459	−0.010	−0.0177
WOOD GRP	0.0043	0.0281	0.0787	0.0006	0.0101	−0.010	−0.0177
	0.0039	0.0389	0.0249	0.0156	0.0403	0.0440	0.0552
	0.2087	0.5848	2.3741	0.0352	0.2459	−0.010	−0.0177
	0.2087	0.5848	2.3741	0.0352	0.2459	−0.010	−0.0177
	0.2087	0.5848	2.3741	0.0352	0.2459	−0.010	−0.0177
AFREN	0.0043	0.0281	0.0787	0.0006	0.0101	−0.010	−0.0177
	0.0039	0.0389	0.0249	0.0156	0.0403	0.0440	0.0552
	0.2087	0.5848	2.3741	0.0352	0.2459	−0.010	−0.0177
	0.2087	0.5848	2.3741	0.0352	0.2459	−0.010	−0.0177
	0.2087	0.5848	2.3741	0.0352	0.2459	−0.010	−0.0177
HARDY O&G	0.0043	0.0281	0.0787	0.0006	0.0101	−0.010	−0.0177
	0.0039	0.0389	0.0249	0.0156	0.0403	0.0440	0.0552
	0.2087	0.5848	2.3741	0.0352	0.2459	−0.010	−0.0177
	0.2087	0.5848	2.3741	0.0352	0.2459	−0.010	−0.0177
	0.2087	0.5848	2.3741	0.0352	0.2459	−0.010	−0.0177

(Continued)
	August	September	October	November	December	α_1	β_1
RDSA							
Coefficient	0.0067	0.0321	−0.0200	−0.0882	−0.036	−0.0785	1.0626
Standard error	0.0438	0.0012	0.0362	0.0450	0.0476	0.0160	0.0366
z-Statistic	0.1528	27.7045	−0.5536	−1.9588	−0.772	−4.9060	29.013
Probability	0.8785	0.0000*	0.5799	0.0501	0.4398	0.0000*	0.0000*
PETROFAC							
Coefficient	0.0309	−0.0127	−0.0172	0.0045	0.0414	−0.008	0.0094
Standard error	0.0208	0.0164	0.0151	0.0245	0.0199	0.0107	0.0121
z-Statistic	1.4854	−0.7745	−1.1418	0.1853	2.0811	−0.772	0.7782
Probability	0.1375	0.4366	0.2535	0.8530	0.0374	0.4398	0.4365
SALAMANDER							
Coefficient	0.0366	0.0521	0.0006	0.0163	−0.040	0.1448	0.7031
Standard error	0.0245	0.0554	0.0352	0.0387	0.0695	0.0218	0.0374
z-Statistic	1.4944	0.9410	0.0169	0.4578	−1.646	1.1216	2.2964
Probability	0.1351	0.3467	0.9865	0.6471	0.0998	0.2620	0.021**
LAMPRELL							
Coefficient	−0.0181	−0.0383	−0.0381	−0.0327	−0.045	0.0623	0.8178
Standard error	0.0372	0.0536	0.0319	0.0644	0.0380	0.0747	0.2441
z-Statistic	−0.4863	−0.7149	−1.1929	−0.5080	−1.205	0.8334	3.3496
Probability	0.6267	0.4747	0.2329	0.6114	0.2282	0.4046	0.0008**

(Continued)
ENDEAVOR	January	February	March	April	May	June	July
Coefficient	0.0968	0.1430	−0.0321	0.0327	0.0531	0.1160	0.1224
Standard error	0.0397	0.0342	0.0632	0.0676	0.0295	0.0316	0.0643
z-Statistic	2.4372	4.1838	−0.5081	0.4834	1.7979	3.6670	1.9045
Probability	0.0148	0.0000*	0.6114	0.6288	0.0722	0.0002*	0.0568

CADOGAN	January	February	March	April	May	June	July
Coefficient	−0.0896	−0.0710	−0.0152	−0.0173	−0.0451	1.8223	0.4171
Standard error	0.0397	0.0342	0.0632	0.0676	0.0295	0.0316	0.0643
z-Statistic	−2.0513	1.0514	−1.6901	−0.4944	0.2804	0.1186	0.1877
Probability	0.040**	0.2931	0.0910	0.6210	0.7992	0.9056	0.8511

HERITAGE	January	February	March	April	May	June	July
Coefficient	0.0656	0.0304	−0.0017	0.0247	−0.0041	−0.033	0.0076
Standard error	0.0397	0.0342	0.0632	0.0676	0.0295	0.0316	0.0643
z-Statistic	0.3394	0.5940	0.9681	0.5518	0.9146	0.5063	0.2938
Probability	0.7395	0.0017	0.0428	0.0788	0.5678	0.9989	0.5514

KENTZ	January	February	March	April	May	June	July
Coefficient	0.0206	0.0599	−0.0206	0.0813	0.0356	−0.0144	0.0050
Standard error	0.0397	0.0342	0.0632	0.0676	0.0295	0.0316	0.0643
z-Statistic	0.4315	1.0602	−0.3777	1.3057	1.2116	−0.381	0.1390
Probability	0.6661	0.2890	0.7057	0.1321	0.2257	0.7032	0.8895

EXILLON	January	February	March	April	May	June	July
Coefficient	−0.0268	0.0017	0.0429	−0.0890	0.0371	−0.038	0.0347
Standard error	0.0397	0.0342	0.0632	0.0676	0.0295	0.0316	0.0643
z-Statistic	−0.3325	0.0271	0.4042	−2.9158	0.9464	−0.560	0.5660
Probability	0.7395	0.9784	0.6861	0.0035*	0.3439	0.5749	0.5714
	August	September	October	November	December	α_1	β_1
-------------------	--------	-----------	---------	----------	----------	------------	-----------
Coefficient	-0.0080	0.0062	0.0316	0.1347	0.0109	-0.1521	1.1208
Standard error	0.1441	0.0981	0.0611	0.0643	0.1198	0.0516	0.0523
z-Statistic	-0.0556	0.0634	0.5175	2.0947	0.0907	-2.9461	21.430
Probability	0.9556	0.9494	0.6048	0.036**	0.9278	0.003*	0.000**
ENQUEST							
Coefficient	0.0114	0.0291	-0.0084	-0.0345	0.0132	-0.037	-0.0883
Standard error	0.0141	0.0242	0.0108	0.0091	0.0024	0.0023	0.0045
z-Statistic	4.6996	0.1865	15.9163	9.0220	1.9049	3.8353	0.9832
Probability	0.0000*	0.8521	0.0000*	0.0000*	0.0568	0.0001*	0.3255
ESSAR							
Coefficient	-0.1503	-0.1401	0.0221	0.0012	0.0144	0.0002	-0.0428
Standard error	0.0396	0.0505	0.0388	0.0501	0.0403	0.0177	0.0141
z-Statistic	-2.9768	-2.8532	2.8174	2.2900	3.068	2.6337	-0.3095
Probability	0.0001*	0.0055*	0.0048*	0.022**	0.0022*	0.0084*	0.7569
GENEL							
Coefficient	-0.0490	-0.0565	0.0751	0.0851	-0.079	2.1236	-0.0139
Standard error	0.0164	0.0147	0.0267	0.0371	0.0259	0.8063	0.0450
z-Statistic	-2.9768	-3.8532	2.8174	2.2900	3.068	2.6337	-0.3095
Probability	0.0029*	0.0011*	0.0048*	0.022**	0.0022*	0.0084*	0.7569
OPHIR							
Coefficient	0.0230	-0.0415	0.1458	0.0652	0.0540	-0.007	-0.1005
Standard error	0.1567	0.0945	0.0460	0.0466	0.0212	0.0091	0.0054
z-Statistic	1.1067	-0.8589	3.1692	1.3980	2.5498	-0.073	-1.8364
Probability	0.8833	0.6607	0.0015*	0.1621	0.010**	0.9413	0.0663

(Continued)
companies that are operating in the UK prefer to use a financial year that corresponds with tax year for easy tax assessment. November effect could be due to the actions or inactions of investors to gain from the December anomaly. The stock returns of oil and gas companies were found to be insensitive to January effects except in Fortune Oil, Hunting and Aminex. May coefficient was also significant in FTSE UK Oil and Gas index returns. Seasonal effects as a result of winter and summer periods due to changes in energy usage have not been found in any of the key FTSE Oil and Gas indices. The significance of coefficients in Enquest, Essar Energy, Ophir Energy and Ruspetro were suspected to be due to short time series of stock returns as companies were listed on the Exchange in recent times.

4. Findings
The results generated from our seasonality analysis of the day-of-the-week and monthly effects have not shown any evidence of these calendar anomalies in London-quoted oil and gas stocks and in a few FTSE share indices investigated. Based on these findings, and with all other factors held constant, we cannot ascertain the predictability of oil and gas stock returns due to seasonal fluctuation. This outcome is in line with the findings of other studies like Steeley (2001) who noted the disappearance of the weekend effect in the UK market except if the data is partitioned along the direction of the market. Chang et al. (1993) have also discovered the disappearance of a day-of-the-week-effect in the most recent data of the United States investigated. However, January effect has been observed in FTSE All Share and FTSE 100 indices. Our methodology is also similar to that of Guidi (2010) who examined for the existence of a day-of-the-week effect in the Italian stock market using the GARCH model in the regression and found no evidence of the DOTW effect in the market’s stock returns.

Table 3. (Continued)

RUSPETRO	January	February	March	April	May	June	July
Coefficient	-0.1070	-0.2810	-0.2630	0.1984	-0.0823	-0.0166	-0.2666
Standard error	0.7381	0.2822	0.0910	0.0763	0.0228	0.0763	0.1252
z-Statistic	-0.1450	-0.9958	-2.8899	2.6021	-3.6067	-0.214	-2.1299
Probability	0.8847	0.3193	0.0039**	0.0093*	0.0003**	0.8302	0.033**

August	September	October	November	December			
Coefficient	0.1169	-0.1531	0.1573	-0.0742	-0.090	-0.2006	0.7203
Standard error	1.3228	0.1807	0.0906	0.1203	0.2388	0.0913	0.3857
z-Statistic	0.0884	-0.8474	1.7373	-0.6165	-0.379	-2.1972	1.8675
Probability	0.9296	0.3968	0.0823	0.5376	0.7040	0.028**	0.0618

5. Conclusion
We have attempted to contribute to the existing studies on whether calendar anomalies have any effect on the pricing of stocks. The seasonality analysis is considered as another tool that can provide further evidence to the predictability and the market efficiency of the oil and gas sector and some FTSE share indices. Our investigation on London-quoted oil and gas stocks and some FTSE share indices which employed various statistical tools could not provide any statistical evidence to suggest the existence of seasonal effects in the UK oil and gas stock returns of the London Stock Exchange. The investigation of the monthly effect has shown the existence of January effect in the FTSE All Share and FTSE 100 indices. It was, therefore, established that end-of-the-year activities such as Christmas and New Year holidays have significant impact on the stock returns of the entire market except the oil and gas sector.
Funding
The authors received no direct funding for this research.

Author details
Muhammad Surajo Sanusi1
E-mail: mssanusi2003@yahoo.co.uk
Farooq Ahmad2
E-mail: fahammad@rgu.ac.uk
1 Accounting and Finance, Business School, Birmingham City University, City North Campus, Perry Barr, Birmingham B42 2SU, UK.
2 Accounting and Finance, Aberdeen Business School, Robert Gordon University, Garthdee Road, Aberdeen AB21 9QF, UK.

Citation information
Cite this article as: An analysis of seasonality fluctuations in the oil and gas stock returns, Muhammad Surajo Sanusi & Farooq Ahmad, Cogent Economics & Finance (2016), 4: 1128133.

References
Al Ashikh, A. I. (2012). Testing the weak-form of efficient market hypothesis and the day-of-the-week effect in Saudi stock exchange: Linear approach. International Review of Business Research Papers, 8, 27–54.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–127.
Chang, E. C., Pinegar, J. M., & Ravichandran, R. (1993). International evidence on the robustness of the day-of-the-week effect. Journal of Financial & Quantitative Analysis, 28, 497–513.
Chien, C., Lee, C., & Wang, A. M. L. (2002). A note on stock market seasonality: The impact of stock price volatility on the application of dummy variable regression model. The Quarterly Review of Economics and Finance, 42, 155–162. http://dx.doi.org/10.1016/S1062-9769(00)00081-8
Clare, A. D., Psaradakis, Z., & Thomas, S. H. (1995). An analysis of seasonality in the UK equity market. The Economic Journal, 398–409. http://dx.doi.org/10.2307/2235499
Dicle, M., & Levendis, J. (2014). The day-of-the-week effect revisited: International evidence. Journal of Economics & Finance, 38, 407–437.
Dubois, M., & Louvet, P. (1996). The day-of-the-week effect: The international evidence. Journal of Banking & Finance, 20, 1463–1489.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 50, 987–1007.
Fama, E. F. (1965). The behavior of stock-market prices. The Journal of Business, 38, 34–105. http://dx.doi.org/10.1086/jb.1965.38.issue-1
Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25, 383–417.
Franses, P. H. (1993). A model selection procedure for time series with seasonality. Statistics & Probability Letters, 16, 253–258.
Guldi, F. (2010). Day-of-the-week effect and market efficiency in the Italian stock market: An empirical analysis. IUP Journal of Applied Finance, 16, 5–32.
Haroon, M. A., & Shah, N. (2013). Investigating day-of-the-week effect in stock returns: Evidence from Karachi stock exchange—Pakistan. Pakistan Journal of Commerce & Social Sciences, 7, 381–393.
Haugen, R. A., & Lakonishok, J. (1988). The incredible January effect: The stock market’s unsolved mystery. Homewood, IL: Dow Jones-Irwin.
Jaffe, J., & Westerfield, R. (1985). The week-end effect in common stock returns: The international evidence. The Journal of Finance, 40, 433–454. http://dx.doi.org/10.1111/j.1540-6261.1985.tb04966.x
Mandelbrot, B. (1966). Forecasts of future prices, unbiased markets, and “Martingale” models. The Journal of Business, 39, 242–255. http://dx.doi.org/10.1086/jb.1966.39.issue-5
Mookerjee, R., & Yu, Q. (1999). Seasonality in returns on the Chinese stock markets. Global Finance Journal, 10, 93–105. http://dx.doi.org/10.1016/S1044-0283(99)00008-3
Ogieva, O. F., Osamwonyi, I. O., & Idolor, E. J. (2013). Testing calendar effect on Nigerian stock market returns: Methodological approach. Journal of Financial Management & Analysis, 26, 39–64.
Qadan, M. (2013). The impact of the day-of-the-week on the VIX fear gauge. International Journal of Economic Perspectives, 7, 24–31.
Solnik, B., & Bousquet, L. (1990). Day-of-the-week effect on the Paris bourse. Journal of Banking & Finance, 14, 461–468.
Steeley, J. M. (2001). A note on information seasonality and the disappearance of the weekend effect in the UK stock market. Journal of Banking & Finance, 25, 1941–1956.
Yadav, P. K., & Pope, P. F. (1992). Intraday and intraday seasonalities in stock market risk premia: Cash and futures. Journal of Banking & Finance, 16, 233–270.