Exactness and Uniform Embeddability
of Discrete Groups

Erik Guentner
Jerome Kaminker

Vienna, Preprint ESI 1223 (2002) October 15, 2002

Supported by the Austrian Federal Ministry of Education, Science and Culture
Available via anonymous ftp from FTP.ESI.AC.AT
or via WWW, URL: http://www.esi.ac.at
EXACTNESS AND UNIFORM EMBEDDABILITY OF DISCRETE GROUPS

ERIK GUENTNER AND JEROME KAMINKER

ABSTRACT. We will describe a numerical invariant of discrete groups whose values interpolate between uniform embeddability in a Hilbert space and exactness.

1. INTRODUCTION

Gromov introduced the notion of uniform embeddability of metric spaces [4]. Recall that a uniform embedding of one metric space \((X, d_X)\) into another \((Y, d_Y)\) is a function \(f : X \to Y\) for which there exist non-decreasing functions \(\rho_\pm : [0, \infty) \to \mathbb{R}\) such that \(\lim_{r \to \infty} \rho_\pm(r) = \infty\) (in other words, \(\rho_\pm\) are proper) and such that for all \(x, y \in X\)
\[
\rho_-(d_X(x, y)) \leq d_Y(f(x), f(y)) \leq \rho_+(d_X(x, y)).
\]

In an appendix we collect the known facts about the relation between uniform embeddings and coarse geometry notions along with their elementary proofs.

Gromov raised the question of whether a finitely presented group that is uniformly embeddable in a Hilbert space satisfies the Novikov Conjecture [3]. This was answered affirmatively by Yu:

Theorem ([16, 15]). Let \(\Gamma\) be a finitely presented group which is uniformly embeddable in Hilbert space. Then \(\Gamma\) satisfies both the Novikov Conjecture and the Coarse Baum-Connes Conjecture.

Gromov has constructed a countable discrete group \(\Gamma\) which is not uniformly embeddable embeddable in a Hilbert space, [5]. However, Higson has observed that the groups constructed by Gromov satisfy the Novikov Conjecture, although whether they satisfy the Coarse Baum-Connes Conjecture is not known, [9].

1991 Mathematics Subject Classification. 20F65, 46L85.

Key words and phrases. exact groups, Novikov conjecture.

The first author was supported in part by an MSRI Postdoctoral Fellowship and NSF Grant DMS-0071402.

The second author was supported in part by NSF Grant DMS-0071435.
Kirchberg and Wassermann extensively studied the notion of exactness of a countable discrete group Γ [10, 11]. Recall that a countable discrete group is \emph{exact} if $C^*_r(\Gamma)$ is an exact C^*-algebra, i.e. if taking minimal tensor product with $C^*_r(\Gamma)$ on each of the terms in a short exact sequence of C^*-algebras preserves the exactness of the sequence.

Uniform embeddability is a geometric property of a group and exactness is more closely related to the harmonic analysis of Γ. The connection between these types of properties is related to the Baum-Connes Conjecture. Recently, it was shown that exactness of a countable discrete group Γ implies its uniform embeddability in a Hilbert space.

\textbf{Theorem} ([8, 12]). \textit{If $C^*_r(\Gamma)$ is an exact C^*-algebra, then Γ is uniformly embeddable in a Hilbert space.}

One may ask to what extent the converse of this result holds. The question of whether a uniformly embeddable group is exact has been studied from various perspectives, (c.f. [6, 7]). In the present paper we introduce a numerical invariant $R(\Gamma)$ of a finitely generated discrete group Γ which can be viewed as parametrizing the difference between the group being exact and being uniformly embeddable in a Hilbert space.

\section{The definition of $R(\Gamma)$}

In this section we will give the definition of $R(\Gamma)$ and verify some of its basic properties. We start by introducing large scale Lipschitz maps, [4].

\textit{Definition.} A function $f : X \to Y$ is \textit{large scale Lipschitz} if there exists $C > 0$ and $D \geq 0$ such that
\[d_Y(f(x), f(y)) < C d_X(x, y) + D \]

This is the same as the function ρ_+ in the definition of uniform embeddability being linear. In general, this is properly weaker than being Lipschitz as the following example shows.

Let $X = \{ (n, 1/n), (n, 0) \} \subset \mathbb{R}^2$ with the induced metric; X is a quasi-geodesic metric space. Define $f : X \to \mathbb{R}^2$ by $f(n, 1/n) = (n, 1)$, $f(n, 0) = (n, 0)$. Then f is a both a uniform embedding and a large-scale Lipschitz map; it is, however, not a Lipschitz map.

In the case of countable groups with a word length metric one has that a uniform embedding is in fact Lipschitz. This is easy to verify, but we present a generalization of this fact which will be of use later.

\textit{Definition.} A discrete metric space X is a \textit{quasi-geodesic space} if there exist $\delta > 0$ and $\lambda \geq 1$ such that for all x and $y \in X$ there exists a sequence $x = x_0, x_1, \ldots, x_n = y$ of elements of
such that
\[d_X(x, y) \leq \lambda \sum_{i=1}^{n} d_X(x_{i-1}, x_i) \]
\[d_X(x_{i-1}, x_i) \leq \delta, \quad \text{for all } 1 \leq i \leq n. \]

Note that a discrete group with a word length metric is quasi-geodesic. We have the following result.

Proposition 2.1. Let \(X \) and \(Y \) be discrete metric spaces, and assume that \(X \) is a quasi-geodesic metric space. Let \(f : X \to Y \) be a function for which there exists a \(\rho_+ \) so that
\[d_Y(f(x), f(y)) \leq \rho_+(d_X(x, y)). \]
Then \(f \) is a large-scale Lipschitz map.

Proof. Let \(\lambda \geq 1 \) and \(\delta > 0 \) be the constants supplied by the fact that \(X \) is a quasi-geodesic space. We must show that there exist constants \(C > 0, D \geq 0 \) such that
\[d_Y(f(x), f(y)) \leq Cd_X(x, y) + D, \quad \text{for all } x, y \in X. \]

Let \(x, y \in X \) and let \(x_0, \ldots, x_n \) be a sequence of elements of \(X \) guaranteed by the fact that \(X \) is a quasi-geodesic space. Extract a subsequence \(x_{i_1}, \ldots, x_{i_m} \) as follows: \(i_0 = 0 \) and, assuming \(i_0, \ldots, i_j \) are already defined,
\[i_{j+1} = \begin{cases} \text{the smallest integer } k \text{ such that } d_X(x_{i_j}, x_k) \geq \delta/2, \\ \text{if such exists; if no such } k \text{ exists put } m = j. \end{cases} \]

The subsequence has the following properties:

(i) \(x_{i_0} = x, \)
(ii) \(d_X(x_{i_j}, x_{i_{j+1}}) \leq 3\delta/2, \)
(iii) \(d_X(x_{i_j}, x_{i_{j+1}}) \geq \delta/2, \) and
(iv) \(d_X(x_{i_m}, y) \leq \delta/2. \)

We have the following simple estimates:
\[d_Y(f(x), f(y)) \leq \sum_{j=1}^{m} d_Y(f(x_{i_j-1}), f(x_{i_j})) + d_Y(f(x_{i_m}, y) \leq m\rho_+(3\delta/2) + \rho_+(\delta/2), \]
\[m(\delta/2) \leq \sum_{j=1}^{m} d_X(x_{i_j-1}, x_{i_j}) \leq \sum_{i=1}^{n} d_X(x_{i-1}, x_i) \leq \lambda d_X(x, y). \]

From the second we conclude that \(m \leq 2\delta^{-1}\lambda d_X(x, y) \) which, combined with the first yields
\[d_Y(f(x), f(y)) \leq 2\delta^{-1}\lambda \rho_+(3\delta/2) d_X(x, y) + \rho_+(\delta/2). \]
According to the proposition, when studying uniform embeddings of quasi-geodesic metric spaces there is no loss of generality in assuming all maps are large-scale Lipschitz. Moreover, to simplify notation in the rest of the paper, and since we will mainly be considering only maps, \(f : \Gamma \to \mathcal{H} \), from a discrete group to a Hilbert space, we will denote the metric in the domain by \(d(x, y) \). Following Gromov [4], we define the \textit{compression} \(\rho_f \) of a large scale Lipschitz map \(f : \Gamma \to \mathcal{H} \) to be

\[
\rho_f(r) = \inf_{d(x, y) \geq r} ||f(x) - f(y)||.
\]

The compression function \(\rho_f \) is a non-decreasing, non-negative real-valued function with the property that if \(\rho_- \) is a function satisfying the inequality in (1) then \(\rho_- \leq \rho_f \). Consequently, \(f \) is a uniform embedding if and only if \(\rho_f(r) \) is proper.

Let \(\text{Lip}^b(X, \mathcal{H}) \) denote the set of large-scale Lipschitz maps from \(X \) into \(Y \).

We define a real valued invariant for a quasi-geodesic metric space \(X \) as follows.

\textbf{Definition.} The \textit{asymptotic compression} \(R_f \) of a large scale Lipschitz embedding \(f \in \text{Lip}^b(X, \mathcal{H}) \) is

\[
R_f = \liminf_{n \to \infty} \frac{\log \rho_f(n)}{\log n}.
\]

The \textit{Hilbert space distortion} of \(X \) is

\[
R(X) = \sup \{ R_f : f \in \text{Lip}^b(X, \mathcal{H}) \}.
\]

Our primary interest is the case when \(X \) is a finitely generated discrete group \(\Gamma \) equipped with the left invariant metric associated to a proper length function. The word length function associated to a symmetric generating set is one such choice, although it will turn out that the value \(R(\Gamma) \) is independent of the choice of proper length function.

\textbf{Proposition 2.2.} The Hilbert space distortion, \(R(\Gamma) \), of a finitely generated discrete group \(\Gamma \) is at most 1. That is, \(R(\Gamma) \leq 1 \).

\textit{Proof.} This follows from the observation that the asymptotic compression of a large-scale Lipschitz embedding is at most 1. Indeed, let \(C > 0 \) and \(D \geq 0 \) be the constants provided by definition of large-scale Lipschitz. Then we have \(\rho_f(n) = \inf_{d(x, y) \geq n} ||f(x) - f(y)|| \leq Cn + D \) and, thus,

\[
\liminf_{n \to \infty} \frac{\log \rho_f(n)}{\log n} \leq \liminf_{n \to \infty} \frac{\log(Cn + D)}{\log(n)} = 1.
\]

\(\square \)
Example 2.3. If a finitely generated discrete group Γ admits an isometric embedding into a Hilbert space then its Hilbert space distortion is 1. In particular, $R(\mathbb{Z}^n) = 1$.

This follows since the asymptotic distortion of an isometric embedding into Hilbert space is 1. Thus, if Γ admits an isometric embedding into a Hilbert space $R(\Gamma) \geq 1$. But, by the previous example we know that $R(\Gamma) = 1$. In fact, we shall see later that the same conclusion follows from the existence of a quasi-isometric embedding of Γ into a Hilbert space, (see Thm. 2 below).

Example 2.4. The Hilbert space distortion of any of the groups constructed by Gromov which are not uniformly embeddable in a Hilbert space is zero.

This will follow from results in later sections.

Thus, the extreme values of 0 and 1 of the invariant $R(\Gamma)$ can be realized.

We next establish the quasi-isometry invariance of $R(\Gamma)$. Recall that a map $\varphi: X \to Y$ is a quasi-isometry if there exists $C > 0$ and $D \geq 0$ such that

$$C^{-1}d(x, y) - D \leq d(\varphi(x), \varphi(y)) \leq C d(x, y) + D, \quad \text{for all } x, y \in X.$$

If, further, the range of φ is K-dense, for some K, in the sense that

$$\forall x' \in Y \exists x \in X \text{ such that } d(\varphi(x), x') \leq K.$$

then we say that X and Y are quasi-isometric. Note that a quasi-isometry φ establishes X is quasi-isometric to Y if and only if there exists a quasi-isometry $\psi: Y \to X$ with the property that

$$d(\varphi \psi(x), x) \leq K, \quad \text{for all } x \in X$$

$$d(\psi \varphi(y), y) \leq K, \quad \text{for all } y \in Y.$$

Theorem. Let X and Y be quasi-geodesic metric spaces. If there exists a quasi-isometry $\varphi: X \to Y$, then $R(X) \geq R(Y)$.

Proof. Let $\varphi: X \to Y$ be a quasi-isometry. In particular, φ is large-scale Lipschitz and hence composition with φ provides a map $\text{Lip}^\text{ls}(Y, \mathcal{H}) \to \text{Lip}^\text{ls}(X, \mathcal{H})$:

$$f \mapsto f \circ \varphi: \text{Lip}^\text{ls}(Y, \mathcal{H}) \to \text{Lip}^\text{ls}(X, \mathcal{H}).$$

It suffices to show that

$$R_f \leq R_{f \circ \varphi}, \quad \text{for all } f \in \text{Lip}^\text{ls}(Y, \mathcal{H}).$$
This inequality will follow from the fact that the compression function of a quasi-isometry is linear.

Let C and D be constants given by the fact that φ is a quasi-isometry, so that,

$$d(\varphi(x), \varphi(y)) \geq C^{-1}d(x, y) - D, \quad \text{for all } x, y \in X.$$

Let $f \in \text{Lip}^{ls}(Y, \mathcal{H})$ and note that

$$\rho_{f \circ \varphi}(n) = \inf \left\{ \|f \circ \varphi(x) - f \circ \varphi(y)\| : d(x, y) \geq n \right\}$$

$$\geq \inf \left\{ \|f(x') - f(y')\| : d(x', y') \geq nC^{-1} - D \right\}$$

$$= \rho_f(nC^{-1} - D).$$

Further,

$$R_{f \circ \varphi} = \liminf_{n \to \infty} \left\{ \frac{\log \rho_{f \circ \varphi}(n)}{\log n} \right\}$$

$$\geq \liminf_{n \to \infty} \left\{ \frac{\log \rho_f(nC^{-1} - D)}{\log(nC^{-1} - D)} \right\} \left\{ \frac{\log(nC^{-1} - D)}{\log n} \right\}$$

$$= \liminf_{n \to \infty} \left\{ \frac{\log \rho_f(nC^{-1} - D)}{\log(nC^{-1} - D)} \right\}$$

$$= R_f$$

The behavior of $R(X)$ under quasi-isometries is a special case of its behavior under large-scale Lipschitz embeddings. Indeed, let $\varphi : X \to Y$ be a large scale Lipschitz map and consider the asymptotic compression R_φ of φ. As in the proposition, composition with φ maps $\text{Lip}^{ls}(Y, \mathcal{H}) \to \text{Lip}^{ls}(X, \mathcal{H})$ and we have

$$\rho_{f \circ \varphi} \geq \rho_f \circ \rho_\varphi$$

$$R_{f \circ \varphi} \geq R_f \cdot R_\varphi, \quad \text{for all } f \in \text{Lip}^{ls}(Y).$$

Consequently, $R(X) \geq R(Y) \cdot R_\varphi$.

The behavior of $R(X)$ under quasi-isometries has a few immediate corollaries.

Corollary 2.5. If X and Y are quasi-isometric then $R(X) = R(Y)$.

Corollary 2.6. Let Γ be a finitely generated discrete group. Then the invariant $R(\Gamma)$ is independent of the proper length function used to define the metric on Γ. If two finitely generated discrete groups, Γ and Γ', are quasi-isometric then $R(\Gamma) = R(\Gamma')$.
Proof. If d and d' the left invariant metrics associated to two proper length functions on Γ then it is straightforward to verify that the identity map is a quasi-isometry $(\Gamma, d) \rightarrow (\Gamma, d')$.

3. Uniform embeddings and exactness

In this section we will relate the Hilbert space compression of a metric space X to uniform embeddability, and, in the case of a finitely generated discrete group, to exactness.

Proposition 3.1. Let X be a metric space. If the Hilbert space compression of X is nonzero then X is uniformly embeddable in Hilbert space.

Proof. Let X be given with $R(X) > 0$. Then, from the definition (4) of $R(\Gamma)$ we see that there exists $\varepsilon > 0$ and a large scale Lipschitz map $f \in \text{Lip}^s(X, \mathcal{H})$ with asymptotic compression greater than ε:

$$R_f = \liminf_{r \rightarrow \infty} \frac{\log \rho_f(r)}{\log r} > \varepsilon.$$

In particular, for all sufficiently large r, we have $\log \rho_f(r) \geq \frac{\varepsilon}{2} \log r$, hence $\rho_f(r) \geq r^{\varepsilon/2}$. Consequently ρ_f is proper and f is a uniform embedding.

Theorem 3.2. Let Γ be a finitely generated discrete group. If the Hilbert space compression of Γ is greater than $1/2$ then Γ is exact.

We pause briefly to give an outline of the proof of the theorem, which rests on the following characterization of exactness inspired by [8]:

Proposition 3.3 ([12]). Let Γ be a finitely generated discrete group, equipped with word length and metric associated to a finite, symmetric set of generators. Then Γ is exact if and only if there exists a sequence u_n of normalized positive definite functions $\Gamma \times \Gamma \rightarrow \mathbb{R}$ satisfying the convergence condition

$$\forall C > 0, \ u_n \rightarrow 1 \text{ uniformly on the strip } \{(s, t) : d(s, t) \leq C\}$$

and the support condition

$$\forall n, \exists R > 0 \text{ such that } u_n(s, t) = 0 \text{ if } d(s, t) \geq R.$$

A kernel $\Gamma \times \Gamma \rightarrow \mathbb{R}$ satisfying the support condition will be called of finite width.

Under the assumption on $R(\Gamma)$ we will construct a sequence of positive definite kernels on $\Gamma \times \Gamma$ satisfying the convergence and support conditions in the proposition. If $f : \Gamma \rightarrow \mathcal{H}$ is
a uniform embedding, then
\[u_\kappa(s, t) = e^{-\kappa \|f(s) - f(t)\|^2}, \quad \kappa > 0, \ s, t \in \Gamma; \]
are normalized, (in the sense that \(u_\kappa(s, s) = 1 \)), positive definite kernels. It is easy to see that the \(u_\kappa \) satisfy the convergence condition, but they may not satisfy the support condition. However, if the uniform embedding \(f \) satisfies that its asymptotic compression is sufficiently large, then each \(u_\kappa \) may be approximated uniformly as a function on \(\Gamma \times \Gamma \), by a positive definite kernel \(\hat{u}_\kappa \) that is of finite width. This approximation is achieved in two steps: first, the condition that \(R_f > 1/2 \) implies that the kernels \(u_\kappa \) define operators in \(UC^*(\Gamma) \), the uniform Roe algebra of \(\Gamma \). Recall that the uniform Roe algebra is the \(C^* \)-subalgebra of bounded operators on \(l^2(\Gamma) \) generated by the operators \(\text{Op}(k) \), where \(k \) is a bounded finite width kernel. Second, these operators are then approximated by finite width positive operators which are represented by required kernels \(\hat{u}_\kappa \).

Before proving the theorem we require a few preliminaries. Given a complex-valued kernel \(k : \Gamma \times \Gamma \to \mathbb{C} \), define an operator \(\text{Op}(k) \) by the convolution formula:
\[\text{Op}(k)\xi(x) = \sum_{y \in \Gamma} k(x, y)\xi(y), \quad \xi \in l^2(\Gamma). \] (5)

Despite the notation \(\text{Op}(k) \) does not always define an operator on the Hilbert space \(l^2(\Gamma) \). There are two criteria we will make use of in the proof.

The first is that if the kernel \(k \) is bounded and has finite width then \(\text{Op}(k) \) defines a bounded operator on \(l^2(\Gamma) \). The second is a special case of the Schur test, (c.f. [13]). Let \(k \) be a non-negative real-valued kernel with the following property: there exists \(C > 0 \) such that
\[\sum_{s \in \Gamma} k(s, t) \leq C, \quad \text{for all } t \in \Gamma \]
\[\sum_{t \in \Gamma} k(s, t) \leq C, \quad \text{for all } s \in \Gamma. \] (6)

Then (5) defines a bounded operator \(\text{Op}(k) \) on \(l^2(\Gamma) \) and \(\| \text{Op}(k) \| \leq C \).

Proof of Thm. 3.2. Let \(\Gamma \) be a finitely generated discrete group provided with word length metric associated to a finite symmetric generating set. Assuming that \(R(\Gamma) > 1/2 \) and arguing as in Proposition 3.1 one concludes that there exists a large scale Lipschitz map \(f \in \text{Lip}_b(\Gamma, \mathcal{H}) \), an \(\varepsilon > 0 \) and an \(r_0 > 0 \) such that
\[\rho_f(r) \geq r^{(1+\varepsilon)/2}, \quad \text{for all } r \geq r_0. \] (7)
Define, for \(k \geq 1 \), a function \(u_k : \Gamma \times \Gamma \to \mathbb{R} \) by
\[
 u_k(s, t) = e^{-\|f(s) - f(t)\|^2 k^{-1}}, \quad \text{for all } s, t \in \Gamma.
\]
Since the function \(\|f(s) - f(t)\|^2 \) is of negative type [2], each \(u_k \) is positive definite by Schoenberg's theorem [1], and is also normalized. Further, since \(f \) is large scale Lipschitz, the sequence \(u_k \) satisfies the convergence condition. Instead of the support condition holding, they possess a weaker decay property. The remainder of the proof will be devoted to approximating the \(u_k \) uniformly by finite width positive definite kernels.

Lemma 3.4. The operators \(\text{Op}(u_k) \in UC^*(\Gamma) \), for all \(k \geq 1 \).

Proof. We show that for every \(\kappa > 0 \) the kernel \(u : \Gamma \times \Gamma \to \mathbb{C} \) defined by
\[
 u(s, t) = e^{-\|f(s) - f(t)\|^2 \kappa}, \quad s, t \in \Gamma
\]
defines an element \(\text{Op}(u) \in UC^*(\Gamma) \). To do so truncate \(u \) by defining for \(n \in \mathbb{N} \)
\[
k_n(s, t) = \begin{cases} u(s, t), & \text{if } d(s, t) > n \\ 0, & \text{otherwise.} \end{cases}
\]
Note that \(u - k_n \) is a bounded finite width kernel so that \(\text{Op}(u - k_n) \in UC^*(\Gamma) \). Since \(\text{Op}(u) = \text{Op}(u - k_n) + \text{Op}(k_n) \) as operators on compactly supported elements of \(l^2(\Gamma) \), it suffices to show that \(\|\text{Op}(k_n)\| \to 0 \) as \(n \to \infty \).

We proceed using the Schur test. Since the \(k_n \) are non-negative real-valued and symmetric, it is sufficient to check either one of the inequalities in (6). For this, we will show that there exists a sequence \(C_n \to 0 \) such that
\[
 \sum_{t \in \Gamma} k_n(s, t) = \sum_{m > n} \sum_{d(s, t) = m} u(s, t) \leq C_n, \quad \text{for all } s \in \Gamma.
\]
This, in turn, follows from the assertion that there exists \(C \) such that
\[
 \sum_{n \geq 0} \sum_{d(s, t) = n} u(s, t) \leq C, \quad \text{for all } s \in \Gamma.
\]
To obtain \(C \), let \(\sigma \) be the spherical growth function of \(\Gamma \) defined by \(\sigma(n) = \text{card}\{ t \in \Gamma : d(t, e) = n \} \). Observe that \(\sigma(n) \leq (\text{card } S)^n \). Combining (7) and (8) see that if \(d(s, t) = n \geq r_0 \) then \(n^{(1+\epsilon)/2} \leq \rho_f(n) \leq \|f(s) - f(t)\| \), and also \(u(s, t) \leq e^{-\kappa n^{1+\epsilon}} \). Let \(m \geq r_0 \) be
sufficiently large such that \(\text{card}(S) < e^{\kappa n^x} \). We calculate:

\[
\sum_{n \geq 0} \sum_{d(s,t)=n} u(s,t) = \sum_{n \leq m} \sum_{d(s,t)=n} u(s,t) + \sum_{n > m} \sum_{d(s,t)=n} u(s,t)
\]

\[
\leq \sum_{n \leq m} \sigma(n) + \sum_{n > m} \sum_{d(s,t)=n} e^{-\kappa n^{1+e}}
\]

\[
\leq \sum_{n \leq m} \sigma(n) + \sum_{n > m} \sigma(n) e^{-\kappa n^{1+e}}
\]

\[
\leq \sum_{n \leq m} \sigma(n) + \sum_{n > m} \left\{ \frac{\text{card}(S)}{e^{\kappa n^x}} \right\}
\]

\[
\leq \sum_{n \leq m} \sigma(n) + \sum_{n > m} \left\{ \frac{\text{card}(S)}{e^{\kappa n^x}} \right\},
\]

which is both finite and independent of \(s \in \Gamma \). We set \(C \) equal to the right hand side of the inequality. \(\square \)

We now complete the proof of the theorem. Since \(u_k \) is normalized we have \(\| \text{Op}(u_k) \| \geq 1 \).

A simple calculation shows that since the \(u_k \) are positive definite kernels the \(\text{Op}(u_k) \) are positive operators. Let \(V_k \in UC^*(\Gamma) \) be the positive square root of \(\text{Op}(u_k) \) and let \(W_k \in UC^*(\Gamma) \) be operators represented by finite width kernels and such that \(\| V_k - W_k \| \rightarrow 0 \).

Define kernels \(\hat{u}_k \) by

\[
\hat{u}_k(s,t) = \langle W_k \delta_t, W_k \delta_s \rangle, \quad s, t \in \Gamma.
\]

The \(\hat{u}_k \) are positive definite kernels and, since the \(W_k \) are represented by finite width kernels, the \(\hat{u}_k \) are themselves finite width kernels. Finally,

\[
|u_k(s,t) - \hat{u}_k(s,t)| = |\langle (\text{Op}(u_k) - W_k^* W_k) \delta_t, \delta_s \rangle|
\]

\[
\leq \| V_k^* V_k - W_k^* W_k \|
\]

\[
\leq \| V_k - W_k \| (\| V_k \| + \| W_k \|)
\]

\[
\leq \| V_k - W_k \| (2\| V_k \| + \| V_k - W_k \|),
\]

which tends to zero as \(k \rightarrow \infty \). Consequently \(u_k - \hat{u}_k \rightarrow 0 \) uniformly on \(\Gamma \times \Gamma \) and since the \(u_k \) satisfy the convergence condition so do the \(\hat{u}_k \). \(\square \)

There is an interesting consequence of this result.

Theorem 3.5. Let \(f : \Gamma \rightarrow H \) be a uniform embedding of a finitely generated group into a Hilbert space. Suppose that \(f(\Gamma) \subseteq H \) is a quasi-geodesic space with the induced metric. Then \(C^*_r(\Gamma) \) is an exact \(C^* \)-algebra.
Proof. Since f is a uniform embedding one has that Γ is coarsely equivalent to $f(\Gamma)$. Since both are quasi-geodesic spaces, it follows that Γ is quasi-isometric to $f(\Gamma)$. But the latter is isometrically embedded in a Hilbert space, so $R(f(\Gamma)) = 1$. By quasi-isometry invariance of the invariant, we get $R(\Gamma) = 1$, and hence, by Theorem 3.3, $C^*_e(\Gamma)$ is exact. \hfill \qed

Remark. The above proof uses the fact that it is always the case that $R(f(\Gamma)) = 1$. Unfortunately, the argument in Theorem 3.3 does not apply to $f(\Gamma)$ because the spherical growth of $f(\Gamma)$ with its induced metric may be too great for the computations in (9) to carry over.

4. Behavior of $R(\Gamma)$ under direct sums and free products

Let X and Y be metric spaces. Let $X \times Y$ be the cartesian product with the metric

$$d_{X \times Y}((x,y), (x', y')) = d_X(x, x') + d_Y(y, y').$$

We will obtain a formula for the Hilbert space distortion $R(X \times Y)$ in terms of $R(X)$ and $R(Y)$. The general case of $R(X \times Y; Z)$ will be discussed afterward.

Proposition 4.1. For metric spaces X and Y we have

$$R(X \times Y) = \min \{ R(X), R(Y) \}.$$

Proof. First note that, for fixed $y_0 \in Y$, the map $x \mapsto (x, y_0)$ provides an isometry $X \to X \times Y$. Applying Thm. 2 we conclude that $R(X) \geq R(X \times Y)$. Similarly $R(Y) \geq R(X \times Y)$ so one obtains $\min \{ R(X), R(Y) \} \geq R(X \times Y)$.

We must prove the reverse inequality. Assume that $R(X) \leq R(Y)$. Let $\varepsilon > 0$ be given. We will show that there exists a large scale Lipschitz map $h: X \times Y \to \mathcal{H}$ such that $R_h \geq R(X) - \varepsilon$. From this one obtains

$$R(X \times Y) \geq R_h \geq R(X) - \varepsilon = \min \{ R(X), R(Y) \} - \varepsilon,$$

and the desired inequality will follow.

According to the definition of $R(X)$ and $R(Y)$ there exists $f \in \text{Lip}^b(X, \mathcal{H}_X)$ and $g \in \text{Lip}^b(Y, \mathcal{H}_Y)$ such that

$$R_f \geq R(X) - \varepsilon$$

$$R_g \geq R(Y) - \varepsilon \geq R(X) - \varepsilon.$$

Define $h: X \times Y \to \mathcal{H} = \mathcal{H}_X \oplus \mathcal{H}_Y$ by $h(x, y) = f(x) \oplus g(y)$. From the inequality

$$\frac{\alpha + \beta}{\sqrt{2}} \leq (\alpha^2 + \beta^2)^{1/2} \leq \alpha + \beta, \quad \text{for all } \alpha, \beta \geq 0.$$ \hfill (10)
one obtains that \(h \in \text{Lip}^h(X \times Y, \mathcal{H}) \). It remains to estimate the compression of \(h \), again using (10). We have,

\[
\|h(x, y) - h(x', y')\| = \|f(x) - f(x') \oplus g(y) - g(y')\| \\
\geq \frac{1}{\sqrt{2}} \{\|f(x) - f(x')\| + \|g(y) - g(y')\|\}
\]

If \(d_{X \times Y}((x, y), (x', y')) \geq r \) then at least one of \(d_X(x, x') \) or \(d_Y(y, y') \geq r/2 \). Consequently,

\[
\rho_h(r) = \inf \{\|h(x, y) - h(x', y')\| : d_{X \times Y}((x, y), (x', y')) \geq r\} \\
\geq \frac{1}{\sqrt{2}} \inf \{\|f(x) - f(x')\| + \|g(y) - g(y')\| : d_{X \times Y}((x, y), (x', y')) \geq r\} \\
\geq \frac{1}{\sqrt{2}} \min \left\{ \rho_f \left(\frac{r}{2} \right), \rho_g \left(\frac{r}{2} \right) \right\}
\]

It follows that,

\[
R_h = \liminf_{r \to \infty} \log \frac{\rho_h(r)}{\log r} \\
\geq \liminf_{r \to \infty} \min \left\{ \frac{\log \rho_f \left(\frac{r}{2} \right)}{\log r}, \frac{\log \rho_g \left(\frac{r}{2} \right)}{\log r} \right\} \\
= \min \{R_f, R_g\} \geq R(X) - \varepsilon. \quad \square
\]

Remark. The above methods will also yield the inequality,

\[
R(X \times Y, Z \times Z) \geq \min \{ R(X, Z), R(Y, Z) \} \geq R(X \times Y, Z),
\]

but the analogous formula to that in Proposition 4.1 would require that \(Z \times Z \) be isometric to \(Z \).

Next, we will consider free products of groups. This requires a new technique for scaling uniform embeddings.

Proposition 4.2. Let \(\mathbb{F}_2 \) be the free group on two generators. We have \(R(\mathbb{F}_2) = 1 \).

Proof. Let \(X = (V, E) \) be the Cayley graph of \(\mathbb{F}_2 \), \(V \cong \mathbb{F}_2 \) being the set of vertices and \(E \) the set of edges. Define

\[
f : \mathbb{F}_2 \to \mathcal{H}, \quad f(s) = \delta_{e_1(s)} + \cdots + \delta_{e_k(s)},
\]

where \(\delta_e \) is the Dirac function of the edge \(e \) and \(e_1(s), \ldots, e_k(s) \) are the edges on the unique path in the Cayley graph from \(s \in \mathbb{F}_2 \) to the identity \(1 \in \mathbb{F}_2 \). In particular \(k = d(s, 1) \) so
that \(\|f(s)\| = \sqrt{d(s, 1)} \). Indeed, it is not difficult to see that the asymptotic compression of \(f \) is 1/2.

Our strategy for proving the proposition is to produce, by placing appropriate weights into the above formula for \(f \), a family of (large scale) Lipschitz embeddings \(f_\varepsilon \in \text{Lip}^s(\mathbb{F}_2, \mathcal{H}) \), for \(0 < \varepsilon < 1/2 \), such that \(R_{f_\varepsilon} \to 1 \) as \(\varepsilon \to 1/2 \). Denote \(\xi_\varepsilon(x) = x^\varepsilon \) and define weights by \(c_{\varepsilon,n} = \xi_\varepsilon(n) = n^\varepsilon \), for \(n \in \mathbb{N} \). Define \(f_\varepsilon: \mathbb{F}_2 \to l^2(E) \) by

\[
f_\varepsilon(s) = c_{\varepsilon,1} \delta_{e_1(s)} + \cdots + c_{\varepsilon,k} \delta_{e_k(s)},
\]

where \(k \) and \(e_1(s), \ldots, e_k(s) \) are as above.

In order to show that \(f_\varepsilon \) is a (large scale) Lipschitz map it suffices to show that there exists \(C > 0 \) such that

\[
d(s, t) = 1 \implies \|f_\varepsilon(s) - f_\varepsilon(t)\|^2 \leq C, \quad \text{for all } s, t \in \mathbb{F}_2.
\]

Let \(s, t \in \mathbb{F}_2 \) be such that \(d(s, t) = 1 \). Denote by \(k \) the length of \(s \) and, without loss of generality, \(k + 1 \) the length of \(t \). We have

\[
\|f_\varepsilon(s) - f_\varepsilon(t)\|^2 = c_{\varepsilon,1}^2 + (c_{\varepsilon,2} - c_{\varepsilon,1})^2 + \cdots + (c_{\varepsilon,k+1} - c_{\varepsilon,k})^2
\]

so that the desired inequality follows from the elementary fact that \(\sum_{j=2}^\infty (c_{\varepsilon,j} - c_{\varepsilon,j-1})^2 \) is finite. Indeed,

\[
\sum_{j=2}^\infty (c_{\varepsilon,j} - c_{\varepsilon,j-1})^2 = \sum_{j=2}^\infty \left(\int_{j-1}^j \xi_\varepsilon(x) \, dx \right)^2 \leq \sum_{j=2}^\infty \int_{j-1}^j (\xi_\varepsilon'(x))^2 \, dx \\
= \int_1^\infty \varepsilon^2 x^{2\varepsilon-2} \, dx = \frac{\varepsilon^2}{1-2\varepsilon}.
\]

We conclude the proof by showing that \(R_{f_\varepsilon} \geq 1/2 + \varepsilon \). In view of the definition (3) of the asymptotic compression it suffices to show that there exists a constant \(C_\varepsilon > 0 \), depending only on \(\varepsilon \), such that

\[
\|f_\varepsilon(s) - f_\varepsilon(t)\|^2 \geq C_\varepsilon r^{1+2\varepsilon}, \quad \text{for all } s, t \in \mathbb{F}_2 \text{ with } d(s, t) \geq r.
\]

Indeed, it follows from this that \(\rho_{f_\varepsilon}(r) \geq \sqrt{C_\varepsilon} r^{1/2 + \varepsilon} \) for all \(r \geq 1 \) and hence that \(R_{f_\varepsilon} = \lim \inf_{r \to \infty} \frac{\log \rho_{f_\varepsilon}(r)}{\log r} \geq 1/2 + \varepsilon \). To prove the inequality let \(s, t \in \mathbb{F}_2 \) be such that \(d(s, t) \geq r \) and assume, without loss of generality, that \(d(1, s) \leq d(1, t) \). We distinguish two cases: first \(s \) lies on the unique path from \(t \) to 1 and second it does not. In either case, denoting the smallest integer greater than \(r/2 \) by \(\#(r/2) \), one checks easily that the edges \(e_1(t), \ldots, e_{\#(r/2)}(t) \)
appear in the expression for $f_\varepsilon(t)$, but do not appear in that of $f_\varepsilon(s)$. In particular,
\[\|f_\varepsilon(s) - f_\varepsilon(t)\|^2 \geq c_{\varepsilon,1}^2 + \cdots + c_{\varepsilon,\#(r/2)}^2 \geq \int_0^{r/2} \xi^2(x) \, dx = \frac{r^{2\varepsilon+1}}{(2\varepsilon+1)(2\varepsilon+1)}. \]

The following result can be obtained by similar, but more complicated, methods.

Theorem 4.3. Let $\Gamma = \Gamma_1 \ast \Gamma_2$ be the free product of the finitely generated discrete groups Γ_1 and Γ_2. Suppose that both admit an isometric embedding into a Hilbert space. Then $R(\Gamma) = 1$.

Note that this would be a consequence of the expected formula $R(\Gamma_1 \ast \Gamma_2) = \min\{ R(\Gamma_1), R(\Gamma_2) \}$.

5. The equivariant case

We adapt the previous definitions and results to the equivariant case. Let Γ be a countable discrete group and let X be a metric space on which Γ acts by isometries. We define the equivariant Hilbert space compression of X by restricting our attention to Γ-equivariant large scale Lipschitz embeddings of X into Hilbert spaces equipped with actions of Γ by affine isometries. Precisely, define

\[\text{Lip}_{ls}^\Gamma(X, \mathcal{H}) = \left\{ \text{Γ-equivariant large scale Lipschitz maps } f : X \to \mathcal{H}, \mathcal{H} \text{ a } \Gamma \text{-Hilbert space} \right\} \quad (11) \]

The definition of the compression and asymptotic compression of $f \in \text{Lip}_{ls}^\Gamma(X, \mathcal{H})$ are the same as in the non-equivariant case (see (2) and (3), respectively); the Γ-equivariant Hilbert space compression of X is defined by (compare (4))

\[R_\Gamma(X) = \sup \{ R_f : f \in \text{Lip}_{ls}^\Gamma(X, \mathcal{H}) \}. \]

With these definitions in place the following analogs of Thm. 2 and its corollaries are proved in the same manner.

Theorem 5.1. Let X and Y be metric spaces on which the countable discrete group Γ acts by isometries. If there exists an equivariant quasi-isometry $X \to Y$ then $R_\Gamma(X) \geq R_\Gamma(Y)$.

Corollary 5.2. Let Γ be a finitely generated discrete group. The invariant $R_\Gamma(\Gamma)$ is independent of the finite symmetric generating set used to define the length function and metric on Γ.

Let Γ be a countable discrete group. Recall that an affine isometric action of Γ on a Hilbert space \mathcal{H} consists of an orthogonal representation $t \mapsto \pi_t$ of Γ on \mathcal{H} and a function $b : \Gamma \to \mathcal{H}$ satisfying the \textit{cocycle identity}

$$ b(st) = \pi_s(b(t)) + b(s). $$

The cocycle identity insures that $t \mapsto \pi_t + b(t)$ defines a homomorphism from Γ into the group of affine isometries of \mathcal{H}. An affine isometric action of Γ on a Hilbert space \mathcal{H} is \textit{metrically proper} if for every bounded set $B \subseteq \mathcal{H}$

$$ \{ s \in \Gamma : s \cdot B \cap B \neq \emptyset \} $$

or equivalently if the cocycle b is \textit{proper} in the sense that for every $C > 0$ the set $\{ s \in \Gamma : \|b(s)\| \leq C \}$ is finite. A countable discrete group Γ has the \textit{Haagerup property} if it admits a metrically proper affine isometric action on a Hilbert space. The first part of the next theorem is analogous to Prop. 3.1; the second part is analogous to Thm. 3.2.

Theorem 5.3. Let Γ be a finitely generated discrete group. If $R_\Gamma(\Gamma) > 0$ then Γ has the Haagerup property. If $R_\Gamma(\Gamma) > \frac{1}{2}$, then Γ is amenable. \hfill \Box

Put in other terms the theorem states that if a finitely generated discrete group Γ has an orthogonal representation on a Hilbert space that admits a cocycle b of sufficiently rapid growth then Γ is amenable. Indeed, suppose that π is an orthogonal action of Γ on \mathcal{H}. A cocycle b for π is an element of $\text{Lip}^b(\Gamma, \mathcal{H})$ where we view Γ as acting on \mathcal{H} by the affine isometric action $\alpha_t = \pi_t + b(t)$ and on itself by multiplication on the left; the required equivariance follows from the cocycle identity and it is easy to verify that b is large-scale Lipschitz. Similarly, one has

$$ \|b(s) - b(t)\| = \|\pi_t(b(t^{-1}s))\| = \|b(t^{-1}s)\| $$

from which follows that

$$ \rho_b(r) = \inf \{ \|b(s) - b(t)\| : d(s, t) \geq r \} = \inf \{ \|b(s)\| : d(s, e) \geq r \}. $$

According to Theorem 5.3 if an orthogonal action of Γ on a Hilbert space \mathcal{H} admits a cocycle b for which

$$ R_b = \liminf_{r \to \infty} \frac{\log \inf \{ \|b(s)\| : d(s, e) \geq r \}}{\log r} \geq \frac{1}{2} $$

then Γ is amenable. In particular, this is the case if the cocycle b satisfies $\|b(s)\| \geq (d(s, e))^{1/2 + \varepsilon}$ for some $\varepsilon > 0$.

As an illustration consider once again $\Gamma = \mathbb{F}_2$, the free group on two generators. As in the proof of Prop. 4.2, let $X = (V, E)$ be the Cayley graph of \mathbb{F}_2, $V \cong \mathbb{F}_2$ being the set of vertices and E the set of edges. The Hilbert space $H = l^2(E)$ is equipped with an orthogonal action λ of \mathbb{F}_2, and the function

$$b : \mathbb{F}_2 \to l^2(E), \quad b(s) = \begin{cases} \text{characteristic function of the set of} \\ \text{edges on the unique path from } s \text{ to} \\ \text{the identity} \end{cases}$$

satisfies the cocycle identity $b(st) = \lambda_s(b(t)) + b(s)$. Consequently,

$$\alpha : \mathbb{F}_2 \to \text{Isom}(l^2(E)), \quad \alpha_s = \lambda_s + b(s)$$

defines an affine isometric action of \mathbb{F}_2 on $l^2(E)$. Equivalently, $b : \mathbb{F}_2 \to l^2(E)$ is an equivariant map, where \mathbb{F}_2 acts on itself by left multiplication and on $l^2(E)$ affine isometrically via α. Further,

$$\|b(s) - b(t)\| = \sqrt{d(s, t)}, \quad \text{for all } s, t \in \mathbb{F}_2.$$

Consequently the asymptotic compression of b is $R_b = \liminf_{r \to \infty} \frac{\log \rho_b(r)}{\log r} = 1/2$, and the equivariant Hilbert space compression of \mathbb{F}_2 satisfies $R_{l^2}(\mathbb{F}_2) \geq 1/2$. On the other hand, since \mathbb{F}_2 is not amenable we have $R_{l^2}(\mathbb{F}_2) \leq 1/2$. Hence $R_{l^2}(\mathbb{F}_2) = 1/2$. This should be compared to Proposition 4.2 which states that $R(\mathbb{F}_2) = 1$.

6. Appendix

In this appendix we will review the known relations between uniform embeddings and the notions of coarse geometry, [14]. We will include the elementary proofs for the convenience of the reader.

Definition. Let X and Y be metric spaces. A coarse map is a function $f : X \to Y$ satisfying

i) for all $R > 0$ there exists an $S > 0$ such that $d_X(x, x') \leq R$ implies that $d_Y(f(x), f(x')) \leq S$,

ii) if $B \subseteq Y$ is bounded, then $f^{-1}(B)$ is bounded.

Definition. A coarse map $f : X \to Y$ is a coarse equivalence if there is a coarse map $g : Y \to X$ satisfying that there exists a $K > 0$ such that $d_X(g \circ f(x), x) \leq K$ for all $x \in X$, and $d_Y(f \circ g(y), y) \leq K$ for all $y \in Y$.

Proposition 6.1. Let X and Y be metric spaces. A function $f : X \to Y$ is a uniform embedding if and only if it satisfies
i) for all $R > 0$ there exists an $S > 0$ such that $d_X(x, x') \leq R$ implies that $d_Y(f(x), f(x')) \leq S$,

ii) for all $S > 0$ there exists an $R > 0$ such that $d_X(x, x') \geq R$ implies that $d_Y(f(x), f(x')) \geq S$.

Condition (ii) in Proposition 6.1 implies condition (ii) in the preceding definition. However, a coarse map need not be a uniform embedding as is shown by the existence of a proper Lipschitz map of a Gromov group into a Hilbert space.

Proposition 6.2. Let X and Y be metric spaces. A function $f : X \to Y$ is a uniform embedding if and only if it is a coarse equivalence of X with $f(X) \subseteq Y$ with the induced metric.

Proposition 6.3. Let X and Y be quasi-geodesic metric spaces. Then a function $f : X \to Y$ is a uniform embedding if and only if it is a quasi-isometric equivalence.

Proposition 6.4. Let X be a quasi-geodesic metric space. Then a uniform embedding $f : X \to Y$ is a quasi-isometry if and only if $f(X)$ is a quasi-geodesic subspace of Y with the induced metric.

The inclusion of a finitely generated group as a subgroup in another finitely generated group is a uniform embedding, but its range need not be a quasi-geodesic metric space with the induced metric. For example the inclusion of \mathbb{Z} in the discrete 3-dimensional Heisenberg group is such.

References

[1] C. Berg and G. Forst, Potential theory on locally compact Abelian groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 87, Springer, New York, 1975.
[2] Pierre de la Harpe and Alain Valette, La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque (1989), no. 175, 158, With an appendix by M. Burger. MR 90m:22001
[3] S. Ferry, A. Ranicki, and J. Rosenberg (eds.), Novikov conjectures, index theorems and rigidity, London Mathematical Society Lecture Notes, no. 226, 227, Cambridge University Press, 1995.
[4] M. Gromov, Asymptotic invariants of infinite groups, pp. 1–295, 1993.
[5] M. Gromov, Random walk in random groups, IHES preprint, 2002.
[6] E. Guentner and M. Dadarlat, Uniform embeddability of free products and extensions of discrete groups, preprint, 2002.
[7] E. Guentner and J. Kaminker, Uniform embeddings and completely bounded growth, Preprint, 2002.
[8] Erik Guentner and Jerome Kaminker, *Exactness and the Novikov conjecture*, Topology **41** (2002), no. 2, 411–418. MR 1 876 896

[9] N. Higson, V. Lafforgue, and G. Skandalis, *Counterexamples to the Baum-Connes conjecture*, Geom. Funct. Anal. **12** (2002), no. 2, 330–354. MR 1 911 663

[10] E. Kirchberg, *On non-semisplit extensions, tensor products and exactness of group C*-algebras*, Invent. Math. **112** (1993), 449–489.

[11] Eberhard Kirchberg and Simon Wassermann, *Permanence properties of C*-exact groups*, Doc. Math. **4** (1999), 513–558 (electronic). MR 2001i:46089

[12] N. Ozawa, *Amenable actions and exactness for discrete groups*, C. R. Acad. Sci. Paris Sér. I Math. **330** (2000), no. 8, 691–695.

[13] Gert K. Pedersen, *Analysis now*, Springer-Verlag, New York, 1989. MR 90f:46001

[14] John Roe, *Index theory, coarse geometry, and topology of manifolds*, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996. MR 97h:58155

[15] G. Skandalis, J. L. Tu, and G. Yu, *The coarse Baum-Connes conjecture and groupoids*, Topology **41** (2002), no. 4, 807–834. MR 1 905 840

[16] G. Yu, *The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space*, Invent. Math. **139** (2000), no. 1, 201–240.

Mathematics Department, University of Hawaii, Manoa, 2565 The Mall, Honolulu, HI 86802

E-mail address: erik@math.hawaii.edu

Department of Mathematical Sciences, IUPUI, Indianapolis, IN 46202-3216

E-mail address: kaminker@math.iupui.edu