Exploring extra dimensions with scalar fields

Katherine Brown\(^{(1)}\), Harsh Mathur\(^{(2)}\) and Mike Verostek\(^{(1)}\)

\(^{(1)}\)Department of Physics, Hamilton College, Clinton, NY 13323 and
\(^{(2)}\)Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079

Abstract

This paper provides a pedagogical introduction to the physics of extra dimensions by examining the behavior of scalar fields in three landmark models: the ADD, Randall-Sundrum and DGP spacetimes. Results of this analysis provide qualitative insights into the corresponding behavior of gravitational fields and elementary particles in each of these models. In these “brane world” models the familiar four dimensional spacetime of everyday experience is called the brane and is a slice through a higher dimensional spacetime called the bulk. The particles and fields of the standard model are assumed to be confined to the brane while gravitational fields are assumed to propagate in the bulk. For all three spacetimes we calculate the spectrum of propagating scalar wave modes and the scalar field produced by a static point source located on the brane. For the ADD and Randall-Sundrum models, at large distances the field looks like that of a point source in four spacetime dimensions, but at short distances it crosses over to a form appropriate to the higher dimensional spacetime. For the DGP model the field has the higher dimensional form at long distances rather than short. The behavior of these scalar fields, derived using only undergraduate level mathematics, closely mirror the results that one would obtain by performing the far more difficult task of analyzing the behavior of gravitational fields in these spacetimes.
I. INTRODUCTION

On the basis of everyday experience and on all scales that have been probed experimentally, it seems the space we inhabit is three dimensional. Nonetheless it remains a possibility that additional spatial dimensions exist. A fourth spatial dimension was invoked by Kaluza and Klein in the 1920s in order to develop a unified theory of electromagnetism and gravity. Klein [1] introduced the hypothesis that the extra dimension was rolled up, with an estimated circumference of order 10^{-32} m, too small to be directly observed by experiments then and now. The idea of extra dimensions was revived in the 1980s by the discovery that superstring theory is only consistent in ten spacetime dimensions [2]. At first string theorists presumed that the extra dimensions were rolled up with a circumference on the Planck scale ($\ell_P = 1.6 \times 10^{-35}$ m), and hence unobservable. However, several subsequent models challenged this notion.

In 1998 Arkani-Hamed, Dimopoulos, Dvali (ADD) and Antoniadis showed extra dimensions could be much larger and yet remain hidden [3, 4]. Moreover ADD found that sufficiently large extra dimensions could explain the hierarchy problem, namely, the weakness of gravity compared to other forces of nature, or, equivalently, the lightness of elementary particles compared to the Planck mass scale (which is inversely proportional to the strength of gravity). ADD showed that large extra dimensions allow gravity to be comparable in strength to other forces on short distance scales but to appear much weaker on scales that are large compared to the extra dimension. Randall and Sundrum (RS) then showed that a warped extra dimension provided a different explanation of the hierarchy problem [5]; remarkably since their extra dimension was warped it could be small and yet explain the hierarchy problem [5], or infinite and yet remain hidden [6]. Somewhat later Dvali, Gabadadze and Porrati (DGP) invented another model with an infinite extra dimension; however unlike ADD and RS, the DGP model sought to explain the observed accelerated expansion of the Universe [7]. In all of these models the familiar four dimensional spacetime inhabited by particles and fields of the standard model is a brane: a slice through a higher dimensional universe called the bulk.

Brane worlds with extra dimensions have engendered tremendous public interest. Randall’s *Warped Passages* [8] was a bestseller and a version of the Randall Sundrum model was the scientific basis of the five dimensional world depicted in Christopher Nolan’s 2014 movie
Interstellar. Yet there remains a gap between popular accounts like [8,10], and review articles, such as [11–14], that require advanced graduate coursework in general relativity, field theory and standard model physics. The purpose of this article is to provide a pedagogical introduction to this subject at a level accessible to undergraduate physics majors. The target audience for our paper includes physicists in other fields as well as undergraduate and graduate students. No specialized background is required beyond one semester courses in electromagnetism and quantum mechanics. Indeed the material in this paper could be incorporated into such courses as well as introductory courses on particle physics or general relativity.

We show that a simple scalar field serves as a proxy for gravitational fields and elementary particles in the ADD, RS, and DGP models. For each of the three models we calculate the solutions to the scalar wave equation in the absence of sources, and the scalar field for a point source located on the brane. For the ADD and RS models we find that on long distance scales the field of a point source has the form appropriate to three spatial dimensions; the form appropriate for higher dimensions becomes manifest only on short distance scales. For the DGP model by contrast the field of a point source has the form appropriate to three dimensions on short distance scales and the higher dimensional form becomes manifest on long distance scales. The behavior of the field due to a point source reveals some of the most compelling features of these models, in particular, their solutions to the hierarchy and dark energy problems. We show that these features can be understood without invoking the machinery of tensor calculus or differential geometry required to fully analyze the gravitational field. It is not surprising that scalar fields serve as a useful caricature for more complicated fields, for example in electromagnetism courses it is common practice to introduce scalar waves as a prelude to studying electromagnetic waves [15,16]. It is also not surprising that the spatial dependence of the field of a point source changes when the number of spatial dimensions changes: Gauss’ law for the gravitational or electrostatic field implies that in d spatial dimensions the field must fall off like $1/r^{d-1}$, so in three spatial dimensions we get the famous $1/r$ behavior but in four spatial dimensions the fall off goes like $1/r^2$.

We begin in Section II with the familiar four dimensional Minkowski spacetime; we solve the scalar wave equation and calculate the field of a static point source therein. These results lay the groundwork and provide insights into the physics of gravitational fields and elementary particles. In Sections III, IV and V we then carry out a parallel analysis in
the higher dimensional spacetimes of the ADD, RS and DGP models. Within each section, we identify the same constructs for each model in turn, labeled with italicized paragraph headings. The geometry of each spacetime is described; the necessary differential geometry background is presented in an appendix [17]. The hierarchy problem and its resolution within the ADD and RS models are explained, as are the cosmological implications of the DGP model. In Section VI we conclude by briefly discussing the experimental implications and tests of the three models. It is worth noting here that the simplest versions of the ADD and DGP models discussed in this paper are ruled out by data; however descendants of these models as well as the RS model itself remain viable. Key results presented in the paper are summarized in Table 1. In order to make our article more useful for students and instructors we provide a primer on differential geometry in Appendix A, on one dimensional quantum mechanics in Appendix B, and a number of problems in Appendix C; the appendices are available as supplementary online material [17].

II. MASSLESS SCALAR FIELD THEORY IN MINKOWSKI SPACETIME

A. The spacetime interval. Minkowski spacetime is the familiar spacetime from special relativity. The interval between two neighboring events, with coordinates \((t, x, y, z)\) and \((t + dt, x + dx, y + dy, z + dz,)\), is given by

\[ds^2 = dt^2 - dx^2 - dy^2 - dz^2 \]

(1)

where \(-\infty < t, x, y, z < \infty\) and we choose a system of units wherein the speed of light \(c = 1\).

B. The wave equation. A scalar wave propagating in Minkowski spacetime obeys the familiar wave equation

\[\Box^2 \phi = \left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2} \right) \phi = s(r, t). \]

(2)

where \(\phi\) is the scalar field and \(s\) is its source.

C. Source-free solution. If \(s = 0\), the wave equation (2) has plane wave solutions \(\phi = f(r; k) \exp(-i\omega t)\) where

\[f(r; k) = \frac{1}{(2\pi)^{3/2}} \exp(i k \cdot r) \]

(3)
and the frequency ω and wave-vector k obey the dispersion relation $\omega = k$. We refer to the function $f(r; k)$ as the mode function.

D. Static point source solution. Consider a static point source $s(r) = \lambda \delta(r)$; more general static sources can be analyzed by superposition. For a static source the field ϕ will also be independent of time. Thus we are just solving Poisson’s equation with a delta function source and so the answer can immediately be written down from the known electrostatic potential of a point charge. However for later use it is helpful to describe another approach. Taking the Fourier transform of eq (2) yields $k^2 \tilde{\phi}(k) = \lambda$ where $\tilde{\phi}(k)$ is the spatial Fourier transform of $\phi(r)$. Inverting the Fourier transform yields

$$\phi(r) = \lambda \int \frac{dk}{(2\pi)^3} \frac{1}{k^2} \exp(ik \cdot r) = \frac{\lambda}{4\pi r}.$$

Equations (3) and (4) are analogous to familiar results from electrostatics and gravity: in the absence of sources Maxwell’s equations and Einstein’s equations also have plane wave solutions with the same dispersion $\omega = k$, and a static point charge or point mass produces a $1/r$ potential. Thus we see that solutions to the scalar field equations provides insights into the solutions to Maxwell’s equations and Einstein’s equations as well.

It is useful here to briefly discuss a variant on the scalar wave equation in Minkowski spacetime, called the Klein-Gordon model or massive scalar field theory. In this model the scalar field obeys

$$\Box^2 \phi + \mu^2 \phi = s.$$

where the mass parameter μ has units of inverse length. We may regard the conventional wave eq (2) as the massless limit ($\mu \to 0$) of the Klein-Gordon model. In the absence of sources, plane waves are still solutions, with f given by eq (2), but the frequency and wave-vector are related by the dispersion relation $\omega = \sqrt{k^2 + \mu^2}$.

A key insight is that in quantum field theory the Klein-Gordon model describes massive particles. This can be motivated by multiplying both sides of the dispersion relation by \hbar and recalling that $\hbar \omega$ is the energy and $\hbar k$ the momentum by Planck’s formula and the de Broglie relation respectively. Then comparing the dispersion relation to the energy-momentum relation of a particle of mass m in special relativity reveals that the Klein-Gordon model describes a particle of mass $m = \mu \hbar / c$, where we have momentarily restored the factors of c. The wave equation corresponds to $\mu = 0$ and describes a massless particle in quantum field theory, the scalar field analog of the photon and the graviton.
In the Klein-Gordon model also ϕ will be time independent for a static source. And again it is sufficient to analyze a point source $s = \lambda \delta(r)$ and obtain more general static solutions by superposition. Taking the Fourier transform with respect to the spatial dependence in eq (5) yields $(k^2 + \mu^2)\tilde{\phi} = \lambda$. Inverting the Fourier transform yields the Yukawa potential

$$\phi(r) = \lambda \int \frac{dk}{(2\pi)^3} \frac{1}{k^2 + \mu^2} \exp(i k \cdot r) = \frac{\lambda}{4\pi r} \exp(-\mu r).$$ \hspace{1cm} (6)

At short distances, $r \ll \mu^{-1}$, the Yukawa potential reproduces the massless $1/r$ behavior but at long distances, $r \gg \mu^{-1}$, the Yukawa potential vanishes exponentially. We will see later that the exponential disappearance of the field is the key to hiding the extra dimensions in the ADD model and in one version of the RS model as well.

It is a good exercise to verify eq (6). The Fourier integral is most easily evaluated by working in spherical coordinates and integrating over the angular variables first. The radial integral can be performed by making use of the definite integral

$$\int_0^\infty dk \frac{k \sin kr}{k^2 + \mu^2} = \frac{\pi}{2} \exp(-\mu r).$$ \hspace{1cm} (7)

Eq (7) can be obtained by contour integration or by more elementary means [28].

III. THE ADD MODEL

A major motivation for considering models with extra dimensions is that they offer an elegant solution to the ‘hierarchy problem’. The hierarchy problem can be simply understood in terms of dimensional analysis. From the three fundamental constants c, G and \hbar one can form only one expression with units of energy, the Planck energy, given by $E_P = \sqrt{\hbar c^5/G} = 10^{28}$eV [29]. Assuming that these are the only parameters that should appear in a fundamental theory of nature it follows that E_P should be the characteristic energy scale of that fundamental theory. In the standard model of particle physics an important energy scale is the electroweak scale E_{EW} at which the electromagnetic and weak nuclear forces are unified. In a fundamental theory that subsumes the standard model, the dimensional argument suggests that the electroweak scale E_{EW} should be of the same order as the Planck scale E_P. But in fact the electroweak scale $E_{EW} \approx 10^{13}$eV $\ll E_P$. The vast discrepancy between these scales is the hierarchy problem. The problem grows more acute in context of quantum field theory wherein such a large discrepancy in these scales is unstable. (For an
authoritative non-technical discussion placing the hierarchy problem in context of quantum
field theory see ref [8].) Also note that as $G \to 0$, $E_P \to \infty$. The weaker gravity is, the worse
the hierarchy problem becomes. Thus we may regard the hierarchy problem as a measure
of the weakness of gravity compared to other forces. Any theory that seeks to explain the
hierarchy problem must explain the vast gulf in the Planck and electroweak scales; the ADD
and RS models do this in different ways by incorporating extra dimensions.

A. The spacetime interval. The ADD model can include any number of extra spatial
dimensions; here we consider the simplest version in which there are four spatial dimen-
sions and one temporal dimension. The four spatial dimensions are specified by Carte-
sian coordinates (x, y, z, w) where the extra dimension w is rolled up with a circumfer-
ence L. More precisely, (x, y, z, w) and $(x, y, z, w + L)$ correspond to the same spatial
point. The spacetime interval between two nearby events located at (t, x, y, z, w) and
$(t + dt, x + dx, y + dy, z + dz, w + dw)$ is given by
\[ds^2 = dt^2 - dx^2 - dy^2 - dz^2 - dw^2. \]

The four dimensional cross-section of ADD spacetime corresponding to $w = 0$ is called the
brane. More generally branes are lower dimensional hyper-surfaces in a higher dimensional
spacetime. Branes are assumed to trap standard model particles and fields so that they
effectively only propagate on the brane. (A useful analogy to a particle trapped on the brane
is a water droplet on a shower curtain [8]. Although the droplet lives in a three dimensional
world, it is confined to travel in only two dimensions.) In contrast, the gravitational field
propagates throughout the five dimensional spacetime, called the bulk.

B. The Wave Equation. By analogy to eq (2) the scalar wave equation in ADD spacetime
has the form
\[\Box^2 \phi = \left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2} - \frac{\partial^2}{\partial w^2} \right) \phi = s(r, t). \]

where ϕ is the scalar field and s is its source.

C. Source-free solution: zero mode and Kaluza-Klein modes. In the absence of sources
the wave equation has plane wave solutions $\phi = f(r, w; k, \kappa_n) \exp(-i\omega t)$ where the mode function
\[f(r, w; k, \kappa_n) = \frac{1}{(2\pi)^{3/2}} \frac{1}{\sqrt{L}} \exp(i k \cdot r) \exp(i \kappa_n w) \]

and the frequency ω obeys the dispersion relation
\[\omega = \sqrt{k^2 + \kappa_n^2}. \]

In order to ensure the periodicity $f(r, w + L; k, \kappa_n) = f(r, w; k, \kappa_n)$ the
extra dimensional component of the wave-vector κ_n obeys the quantization

$$\kappa_n = \frac{2\pi n}{L}$$

where $n = \ldots, -1, 0, 1, 2, \ldots$ is an integer. Waves with $n = 0$ are called zero modes. Zero modes behave essentially like waves in four dimensional spacetime. They are labelled by a wave vector k that only has components along the brane and they have the massless dispersion $\omega = k$. Modes with non-zero n are called Kaluza-Klein modes. Kaluza-Klein modes have an $\omega \cdot k$ dispersion corresponding to the massive wave equation with a mass parameter $\mu \rightarrow \kappa_n$.

D. Static point source solution. Next let us examine the solution to the wave equation (10) for a static source that is confined to the brane. As in Section II we consider a point source $s = \lambda \delta(r)\delta(w)$; more complicated distributions can be treated by superposition. The resulting field ϕ will be time independent and has the Fourier expansion

$$\phi(r, w) = \sum_{n=-\infty}^{\infty} \int dk \tilde{\phi}(k, \kappa_n) f(r, w; k, \kappa_n)$$

where the Fourier amplitudes $\tilde{\phi}(k, \kappa_n)$ are given by

$$\tilde{\phi}(k, \kappa_n) = \int dr \int_{0}^{L} dw \phi(r, w) f^*(r, w; k, \kappa_n).$$

In Fourier space the wave eq (10) takes the form

$$(k^2 + \kappa_n^2) \tilde{\phi} = \lambda/\sqrt{L(2\pi)^{3/2}}$$

and hence

$$\phi(r, w) = \frac{1}{L} \sum_{n=-\infty}^{\infty} \int \frac{dk}{(2\pi)^3} \frac{\lambda}{k^2 + \kappa_n^2} \exp(i k \cdot r) \exp(i \kappa_n w).$$

The k integral can be performed by comparison to eq (6). Hereafter let us consider only the value of the field on the brane by setting $w = 0$. We obtain

$$\phi(r, 0) = \frac{1}{L} \sum_{n=-\infty}^{\infty} \frac{\lambda}{4\pi r} \exp \left(-\frac{2\pi |n|r}{L} \right)$$

Eq (15) is the field of a point source that is located on the brane at the origin at a distance r from the source. The sum over modes, n, can be performed exactly but it is more illuminating to consider limiting cases. For $r \gg L$ only the zero mode ($n = 0$) contributes to the field—the contribution of the Kaluza-Klein modes is exponentially suppressed. We obtain

$$\phi(r, 0) \approx \frac{\lambda \cdot 1}{L \cdot 4\pi r}$$

8
At distances that are long compared to the size of the extra dimension we obtain the $1/r$ behavior characteristic of four spacetime dimensions; the extra dimension is essentially invisible. On the other hand for $r \ll L$ all modes contribute and we obtain

$$\phi(r, 0) \approx \frac{\lambda}{4\pi^2} \frac{1}{r^2}. \quad (17)$$

At distances that are short compared to the extra dimension we obtain the $1/r^2$ behavior characteristic of five spacetime dimensions. An intuitive explanation of these limiting cases is provided by examining the field lines of a point source in ADD spacetime (see chapter 4 of ref [9]).

Hierarchy revisited. Standard model fields are confined to the brane in the ADD model. Only gravity propagates through the bulk. Above we have analyzed a scalar field that propagates in the bulk as a proxy for the gravitational field. Now we demonstrate the essence of the solution to the hierarchy problem within the ADD model.

Suppose we were interested in the gravitational field of a point mass m that lives on the brane. Based on the above analysis, at short distances we expect that the Newtonian potential will have the five dimensional form $G_5 m/r^2$ where G_5 characterizes the gravitational interaction, the five dimensional version of the Newtonian constant G. On the other hand at long distances we expect the Newtonian potential would have the familiar four dimensional form Gm/r. Comparing these forms to eqs (16) and (17) we infer that

$$\lambda = 4\pi^2 G_5 m = 4\pi G L m.$$

Hence we arrive at the important result

$$G_5 = \frac{GL}{\pi}. \quad (18)$$

Note that except for the factor of π the form of eq (18) follows simply because the dimensions of G_5 have an extra factor of length compared to the dimensions of G. Eq (18) lies at the heart of the ADD solution to the hierarchy problem. The idea is that the fundamental Planck scale should be determined by c, \hbar and G_5. Simple dimensional analysis shows that the Planck scale should be given by $E_{P5} = (\hbar^2 c^6 / G_5)^{1/3}$. In this expression we replace $G_5 \rightarrow GL$, in accordance with eq (18), and impose the requirement that $E_{P5} \sim 1$TeV (the electroweak scale) to obtain $L \sim 10^{13}$m. Thus the hierarchy problem is solved if we posit the existence of an extra dimension of this enormous size. Physically the idea is that gravity is not weaker than other forces; it merely appears weaker on long length scales because gravitational fields spread out into the higher dimensional bulk while other force fields remain concentrated on the brane.
Similarly if there were two large extra dimensions we would have \(G_6 \sim GL^2 \). On dimensional grounds, the Planck scale would be given by \((\hbar^3 c^7 / G_6)^{1/4}\). Replacing \(G_6 \rightarrow GL^2 \) and imposing the requirement that \(E_P \sim 1 \text{TeV} \) yields \(L \sim 1 \text{ mm} \). Thus the six dimensional ADD model solves the hierarchy problem if we posit the existence of two extra dimensions on the millimeter scale (which is still enormous compared to the Planck length scale \(\ell_P \)). See section \(\text{VI} \) for further discussion of the experimental implications of the ADD model and the current experimental constraints on it.

IV. THE RS MODEL

There are two versions of the RS model known as RS1 \([5]\) and RS2 \([6]\). Here for simplicity we will focus primarily on the RS2 model and relegate the analysis of RS1 to a problem (see Appendix C \([17]\)). It is worth noting at the outset that in both RS models there is exactly one extra spatial dimension whereas in the ADD model the number of extra dimensions is arbitrary. Another key difference between the two models is that the RS1 and RS2 spacetimes are curved whereas the ADD spacetime is flat. Readers who do not have a background in general relativity and curved spacetime may find it useful to read Appendix A \([17]\) before proceeding with the remainder of this section.

A. The spacetime interval. An event in the RS2 spacetime is specified by \((t, x, y, z, w)\). where \(0 \leq w < \infty\) and \(-\infty < t, x, y, z < \infty\). The brane is the four dimensional cross section of this spacetime corresponding to \(w = 0\). The spacetime interval between neighboring events located at \((t, x, y, z, w)\) and \((t + dt, x + dx, y + dy, z + dz, w + dw)\) is given by \([30]\)

\[
ds^2 = e^{-2\gamma w}(dt^2 - dx^2 - dy^2 - dz^2) - dw^2.
\] (19)

\(\gamma\) is a parameter with units of inverse length. For fixed \(w\) the spacetime is essentially flat Minkowski spacetime but with an overall \(w\) dependent “warp factor” \(e^{-2\gamma w}\). There is no system of coordinates in which the spacetime interval has the flat form eq \([8]\) globally.

Although in principle we could continue to work with the coordinates \((t, x, y, z, w)\), it is more convenient to exchange the coordinate \(w\) with \(\zeta\), where \(\zeta = e^{\gamma w}/\gamma\). This gives \(\gamma^{-1} \leq \zeta < \infty\) and now the brane is the four dimensional cross section with \(\zeta = \gamma^{-1}\). In terms of these coordinates the spacetime interval in \((19)\) is given by

\[
ds^2 = \frac{1}{\gamma^2 \zeta^2} (dt^2 - dx^2 - dy^2 - dz^2 - d\zeta^2)
\] (20)
as the diligent reader should verify. Eq (20) reveals that the RS2 spacetime has the same interval as the ADD spacetime eq (8) up to an overall factor. Since the two spacetime intervals are related by an overall multiplicative factor, they are said to be conformally equivalent. The coordinates \((t, x, y, z, \zeta)\) are called conformal coordinates.

B. The wave equation. In conformal coordinates the scalar wave equation has the form

\[
-\frac{\partial^2}{\partial \zeta^2} \phi + \frac{3}{\zeta} \frac{\partial}{\partial \zeta} \phi - \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \phi + \frac{\partial^2}{\partial t^2} \phi = \gamma^2 \zeta^2 s. \tag{21}
\]

Here \(\phi\) is the scalar field and \(s\) is the source. The reader should verify that eq (21) follows from the spacetime interval eq (20) following the methods of appendix A \[17\].

C. Source-free solution: zero mode and Kaluza-Klein modes. The form of eq (21) suggests that the solutions in the absence of sources will have the form of plane waves modulated by a \(\zeta\) dependent factor \(\upsilon(\zeta)\), namely, \(\phi = \upsilon(\zeta) \exp(ik \cdot r) \exp(-i\omega t)\). Substitution of this ansatz in eq (21) reveals that the modulation factor obeys

\[
\frac{d^2 \upsilon}{d\zeta^2} - \frac{3}{\zeta} \frac{d\upsilon}{d\zeta} + (\omega^2 - k^2) \upsilon = 0. \tag{22}
\]

We will see below that \(\omega^2 \geq k^2\); hence it is convenient to write \(\omega^2 - k^2\) as \(\mu^2\) in eq (22). One solution to eq (22) that is immediately apparent is to take \(\upsilon\) to be a constant independent of \(\zeta\) if we also choose the massless dispersion \(\omega = k\). This solution is the zero-mode. It is an acceptable solution provided we impose Neumann boundary conditions \(d\upsilon/d\zeta = 0\) on the brane.

Schrödinger analogy. Now we systematically construct all solutions to eq (22). To this end, following [6] we first transform to the independent variable \(\psi\) defined by \(\upsilon = \zeta^{3/2} \psi\). Eq (22) then has the form

\[
- \frac{1}{2} \frac{d^2}{d\zeta^2} \psi + \frac{15}{8} \frac{1}{\zeta^2} \psi = \frac{\mu^2}{2} \psi. \tag{23}
\]

Eq (23) coincides with the time-independent Schrödinger equation for a particle that is confined to the half line \(\zeta > \gamma^{-1}\) and that experiences a potential barrier \(15/8\zeta^2\). In this analogy the “energy” of the particle is \(\mu^2/2\). Thus we can draw upon our intuition from non-relativistic quantum mechanics in order to deduce the solutions to eq (23). The form of the potential suggests that there should be a continuum of states with \(\mu^2 > 0\). These states constitute the Kaluza-Klein modes of the RS2 model. In addition there is a single bound state which corresponds to the zero-mode of the RS2 model.
Zero mode. It may seem surprising that eq (23) has a bound state solution since the potential is purely repulsive. However we still have the freedom to choose the boundary condition we apply to the “wave-function” ψ at the location of the brane $\zeta = \gamma^{-1}$. The boundary condition will have the form $\psi(\gamma^{-1}) = \lambda \psi'(\gamma^{-1})$ where λ is a parameter that we have freedom to specify. The boundary condition effectively functions like a contact interaction which can be repulsive or attractive \([31]\). By choosing the right boundary condition we can ensure that there will be a bound state with $\mu = 0$. Indeed if we set $\mu = 0$ it is easy to see that eq (23) has power law solutions of the form $\psi = \zeta^\beta$ with $\beta = -\frac{3}{2}$ or $\beta = \frac{5}{2}$. We discard the latter on the grounds that it is not normalizable. Normalizing the former we conclude that eq (23) has the bound state solution with $\mu = 0$ given by

$$\psi_0 = \frac{\sqrt{2}}{\gamma} \zeta^{-3/2}$$

that satisfies the normalization condition $\int_{\gamma^{-1}}^\infty d\zeta |\psi_0|^2 = 1$. The solution (24) satisfies the boundary condition $\psi(\gamma^{-1}) = \lambda \psi'(\gamma^{-1})$ with $\lambda = -\frac{2}{3} \gamma^{-1}$ and hence this is the boundary condition we will impose on the scalar field at the brane hereafter \([32]\). Undoing the transformation $v = \zeta^{3/2} \psi$ we see that $v_0 = \sqrt{2}/\gamma$, which matches the form for the zero mode we had already deduced following eq (22).

Kaluza-Klein modes. Determination of the positive energy continuum of solutions to eq (23) is a straightforward exercise in one dimensional quantum mechanics. We relegate the details to appendix B \([17]\) and only quote the results here. The solutions have the form

$$\psi(\zeta; \mu) = \sqrt{\zeta} \left[\alpha(\mu) J_2(\mu \zeta) + \beta(\mu) Y_2(\mu \zeta) \right].$$

Here J_2 and Y_2 denote the Bessel and Neumann functions of second order. Eq (25) is a solution to eq (23) for arbitrary coefficients α and β. The boundary condition on the brane at $\zeta = \gamma^{-1}$ fixes the ratio of α to β. We find

$$\alpha(\mu) = AY_1 \left(\frac{\mu}{\gamma} \right) \quad \text{and} \quad \beta(\mu) = -AJ_1 \left(\frac{\mu}{\gamma} \right).$$

We choose the overall constant A by imposing the condition that $\alpha^2 + \beta^2 = \mu$. As shown in appendix B \([17]\) this choice ensures that the continuum solutions satisfy the normalization condition

$$\int_{\gamma^{-1}}^{\infty} d\zeta \psi^*(\zeta; \mu) \psi(\zeta; \mu') = \delta(\mu - \mu').$$

12
Recall that solutions to the Schrödinger equation constitute a complete set. For later use it is worth noting that the continuum solutions derived here together with the zero mode eq (24) satisfy the completeness relation

$$
\psi^*_0(\zeta)\psi_0(\zeta') + \int_0^\infty d\mu \, \psi^*_0(\zeta;\mu)\psi_0(\zeta';\mu) = \delta(\zeta - \zeta').
$$

(28)

Summary of source-free modes in RS2. In summary the scalar wave equation in RS2 spacetime has two kinds of solutions in the absence of sources. The zero-mode solutions are labelled by their three dimensional wave-vector k and have the form $g(\zeta, r; k) \exp(-i\omega t)$. The mode function g is given by

$$
g(\zeta, r; k) = \frac{1}{(2\pi)^{3/2}} \frac{\sqrt{2}}{\gamma} \exp(i k \cdot r).
$$

(29)

Zero modes have the dispersion relation $\omega = k$ characteristic of waves in four spacetime dimensions. The second class of solutions are the Kaluza-Klein modes labelled by their three dimensional wave-vector k and their mass parameter μ. The Kaluza-Klein modes have the form $f(\zeta, r; k, \mu) \exp(-i\omega t)$. The mode function f is given by

$$
f(\zeta, r; k, \mu) = \frac{1}{(2\pi)^{3/2}} \frac{\sqrt{2}}{\gamma} \psi(\zeta; \mu) \exp(i k \cdot r).
$$

(30)

$\psi(\zeta; \mu)$ is given by eq (25). The Kaluza-Klein modes have the $\omega-k$ dispersion relation $\omega = \sqrt{k^2 + \mu^2}$ corresponding to the massive wave equation with mass parameter μ. In contrast to the ADD model, which had a discrete set of Kaluza-Klein modes with quantized mass parameters, the RS2 model has a continuum of Kaluza-Klein modes and the mass parameter can take on any positive real value.

D. **Static point source solution.** Finally let us consider the solution to a static point source confined to the brane. The resulting field ϕ will also be time independent. We wish to show, following [6], that the field produced by such a source falls off inversely with distance at distances that are long compared with γ^{-1}. Hence in the RS2 model too the extra dimension is hidden on long length scales.

For a point source localized on the brane, $s = \lambda \delta(r) \delta(\zeta - \gamma^{-1})$. Taking into account that the solution ϕ will be time-independent, eq (21) has the form

$$
- \nabla^2_{\text{RS}} \phi = \lambda \delta(r) \delta(\zeta - \gamma^{-1})
$$

(31)

where

$$
\nabla^2_{\text{RS}} = \left(\frac{\partial^2}{\partial \zeta^2} - \frac{3}{\gamma} \frac{\partial}{\partial \zeta} + \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right).
$$

(32)
In order to solve eq (31) we write the solution $\phi(r, \zeta)$ as a superposition of zero-mode and Kaluza-Klein mode functions. Thus

$$
\phi(\zeta, r) = \int dk \tilde{\phi}_0(k)g(\zeta, r; k) + \int dk \int_0^\infty d\mu \tilde{\phi}(k, \mu)f(\zeta, r; k, \mu).
$$

The amplitudes $\tilde{\phi}_0(k)$ and $\tilde{\phi}(k, \mu)$ are to be determined.

It is now helpful to note that

$$
-\nabla^2_{\text{RS}} g(\zeta, r; k) = k^2 g,
$$

$$
-\nabla^2_{\text{RS}} f(\zeta, r; k, \mu) = (k^2 + \mu^2) f.
$$

Eq (34) follows because $g \exp(-i\omega t)$ and $f \exp(-i\omega t)$ obey the scalar wave eq (21), and from the dispersion relations for the zero and Kaluza-Klein modes respectively. Using eqs (33) and (34) we can write the left hand side of eq (31) as

$$
-\nabla^2_{\text{RS}} \phi(\zeta, r) = \int dk k^2 \tilde{\phi}_0(k)g(\zeta, r; k) + \int dk \int_0^\infty d\mu (k^2 + \mu^2) \tilde{\phi}(k, \mu)f(\zeta, r; k, \mu).
$$

On the other hand we can obtain the right hand side of eq (31) by substituting $\zeta' \to \gamma^{-1}$ and $r' \to 0$ in the identity [33]

$$
\zeta'^3 \delta(\zeta - \zeta') \delta(r - r') = \int dk \ g^*(\zeta', r'; k)g(\zeta, r; k) + \int dk \int_0^\infty d\mu \ f^*(\zeta', r'; k, \mu)f(\zeta, r; k, \mu).
$$

Making these substitutions in eq (36) and equating to eq (35) yields

$$
\tilde{\phi}_0(k) = \lambda \frac{\gamma^3}{k^2} g^*\left(\frac{1}{\gamma}, 0; k\right),
$$

$$
\tilde{\phi}(k, \mu) = \lambda \frac{\gamma^3}{k^2 + \mu^2} f^*\left(\frac{1}{\gamma}, 0; k, \mu\right).
$$

Substituting eq (37) in eq (33) and making use of the explicit forms of g and f given in
eqs (29) and (30) we obtain

\[\phi(\zeta, r) = 2 \lambda \gamma \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{1}{k^2} \exp(i\mathbf{k} \cdot \mathbf{r}) \]

\[+ \lambda \gamma \zeta^2 \int \frac{d\mathbf{k}}{(2\pi)^3} \int_0^\infty d\mu \frac{1}{k^2 + \mu^2} \exp(i\mathbf{k} \cdot \mathbf{r}) \]

\[\times \left[\alpha(\mu) J_2 \left(\frac{\mu}{\gamma} \right) + \beta(\mu) Y_2 \left(\frac{\mu}{\gamma} \right) \right]^2. \] (38)

The first term corresponds to the zero-mode contribution the field; the second to the Kaluza-Klein modes. Performing the integrals over \(k \), which are the same as in eqs (4) and (6), yields

\[\phi(\zeta, r) = \frac{\lambda \gamma}{2\pi r} + \frac{\lambda \gamma \zeta^2}{4\pi r} \int_0^\infty d\mu \exp(-\mu r) \]

\[\times \left[\alpha(\mu) J_2 \left(\frac{\mu}{\gamma} \right) + \beta(\mu) Y_2 \left(\frac{\mu}{\gamma} \right) \right]^2. \] (39)

Eq (39) is the exact expression for the field due to a point source located at the brane. It is instructive to simplify it in the limit of long distance \(r \gg \gamma^{-1} \). In this limit, due to the decaying exponential it is acceptable to approximate the remaining terms in the integrand by their small \(\mu \) limit. The expansion is tedious by hand but Mathematica readily finds that the square of the term in square brackets in eq (39) is approximately equal to \(\mu \) in the small \(\mu \) limit. Making this approximation and evaluating the integral over \(\mu \) we finally obtain

\[\phi(\gamma^{-1}, r) \approx \frac{\lambda \gamma}{2\pi r} \left(1 + \frac{1}{2\gamma^2 r^2} + \ldots \right) \] (40)

for \(r \gg \gamma^{-1} \). We have also set \(\zeta \to \gamma^{-1} \) since we are primarily interested in the field on the brane. Thus as advertised at long distances a point source couples primarily to the zero mode and produces a field that varies as 1/r. Thus the extra dimension is hidden. The leading correction due to coupling to the Kaluza Klein modes varies as 1/r^3 rather than exponentially as in the ADD model.

In principle we can work out the small \(r \) behavior also from eq (39). In practice it is simpler to make the following physical argument. Locally any space or spacetime looks flat. The expression for the field of a point source in a flat four dimensional space can be obtained by taking the \(L \to \infty \) limit of eq (13) which is the same as the \(r \ll L \) result, eq (17). Thus we conclude that

\[\phi(\gamma^{-1}, r) \approx \frac{\lambda}{4\pi^2 r^2} \] (41)
for $r \ll \gamma^{-1}$ in the RS model.

Randall and Sundrum assumed that standard model particles and fields were confined to the brane. Only gravity was assumed to propagate through the bulk. Here we have analyzed a bulk scalar field as a proxy for the gravitational field. Scalar fields are simpler to analyze but have useful parallels to gravitational fields. For example gravitational waves also have a discrete zero mode and a continuum of Kaluza-Klein modes; indeed the same Schrödinger analogy and the same Bessel functions arise in both cases.

Suppose now that we are interested in the gravitational field of a point mass m located on the brane. At short distances we expect its Newtonian gravitational potential will have the five dimensional form $G_5 m/r^2$ where G_5 is the gravitational coupling constant. On the other hand at long distances we expect the Newtonian potential to have the four dimensional form $G m/r$ where G is the familiar Newtonian constant of gravity (see fig. 89 of ref [8] for a diagram of the field lines of a point source in RS2 spacetime). Comparing these forms to eqs (40) and (41) we infer that

$$\lambda = \frac{4\pi^2 G_5 m}{2\pi Gm/\gamma}$$

which implies

$$G_5 = \frac{G}{2\pi \gamma}. \quad (42)$$

Eq (42) agrees with eq (7) of ref [6] and is analogous to eq (18) for the ADD model and is the key to resolving the hierarchy problem within this model.

RS1 and the Hierarchy Problem. The model we have analyzed thus far was introduced in [6] and is sometimes called the RS2 model. In their earlier paper [5] Randall and Sundrum introduced a slightly different model called RS1 which provides an especially elegant resolution of the hierarchy problem. In this model the geometry of spacetime is still given by eq (19) but the coordinate w only extends over the range $0 \leq w \leq \ell$. In addition to the brane at $w = 0$, a second brane is located at $w = \ell$. We shall refer to these branes as the left brane and the right brane respectively. In conformal co-ordinates the left brane is located at $\zeta = \gamma^{-1}$ and the right brane at $\zeta = \gamma^{-1}\exp(\gamma \ell)$. In RS1 the zero mode (29) remains a solution that satisfies the boundary condition at both branes. The Kaluza-Klein modes become quantized: it is only for particular values of μ that the solutions (30) obey the boundary conditions at both branes. The lowest allowed value of μ is of order $\gamma \exp(-\gamma \ell)$ and the spacing between successive allowed values of μ is also of this order (see problem 5 in appendix C for a derivation [17]). In RS1 we choose γ^{-1} and ℓ to both be of order the Planck length, but if we choose the product $\gamma \ell \approx 35-40$, then the lowest allowed μ is sixteen
orders of magnitude smaller, and is of the weak scale. Thus a large hierarchy can emerge in RS1 due to the exponential warp factor even though the basic parameters of the model are all of Planck scale. Problem 6 in Appendix C \[17\] provides further insight into the resolution of the hierarchy problem in RS1. It is shown there that the natural mass for a standard model particle confined to the right brane is of the electroweak scale even though all the parameters in the RS1 model are of Planck scale. See section \[VI\] for further discussion of the experimental implications and tests of the RS models.

V. DGP MODEL

According to the current cosmological paradigm about 70% of the total energy density of the universe is in the form of a mysterious component called “dark energy”. The first observational evidence for dark energy came from supernovae \[18\]; distant supernovae appeared dimmer than expected and this could be explained by accelerated cosmic expansion. The DGP model was introduced as a alternative to the idea that dark energy is an actual component of the Universe. In the DGP model gravity becomes modified on distance scales that are long compared to ℓ, a parameter of the DGP model. On distance scales short compared to ℓ spacetime appears four-dimensional and gravity obeys Newton’s inverse square law. On distance scales long compared to ℓ the five dimensionality of spacetime is revealed; the gravitational force now falls off much more rapidly, as the inverse cube of the distance, making gravity less effective on cosmological scales. This could help explain the supernova observations but provides no explanation for why the parameter ℓ has the value that is implied by observations. Note that in contrast to the ADD and RS models in the DGP model the higher dimensional behavior is manifested on long length scales rather than short.

A. The spacetime interval. In the DGP model, like in ADD and RS, there is a fourth spatial dimension, w. The spacetime interval between nearby events at in DGP is given by

$$ds^2 = dt^2 - dx^2 - dy^2 - dz^2 - dw^2. \quad (43)$$

All coordinates have the same infinite range $-\infty < t, x, y, z, w < \infty$. Thus DGP spacetime is both flat and possesses an infinite extra dimension. As in ADD and RS, the four dimensional section $w = 0$ is the brane; standard model particles and fields are confined to it, while gravity propagates throughout the bulk. Although for simplicity we do not consider this
case here, it is consistent to restrict \(w \) to the range \(w > 0 \) as in the Randall-Sundrum model. Indeed in the original DGP paper this restriction was effectively imposed in the form of a boundary condition that the solutions had to be symmetric functions of \(w \).

B. The wave equation. In the DGP model a scalar field that propagates in the bulk is taken to satisfy the wave equation

\[
\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2} - \frac{\partial^2}{\partial w^2} \right) \phi + \ell \delta(w) \left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2} \right) \phi = s(r, w, t). \tag{44}
\]

Eq. (44) has the form of the wave equation one would expect from the spacetime interval in Eq. (43) only if we set \(\ell = 0 \). The term in Eq. (44) that is proportional to \(\ell \) is responsible for the remarkable behavior of the DGP model described above. At the end of this section we give a physical motivation for the form of this term by an analogy to the electrostatics of a dielectric sheet. The analogy shows that much as a dielectric sheet will screen a point charge, so also in the DGP model gravity is screened by the brane at short distances. The screening leads to behavior at short distances appropriate to three spatial dimensions, but at long distances gravity is unscreened, yielding behavior appropriate to four spatial dimensions.

C. Source free solution. We seek solutions to eq (43) of the form \(\upsilon(w) \exp(i k \cdot r) \exp(-i \omega t) \). Substituting this ansatz into eq (44) we obtain

\[
- \frac{1}{2} \frac{d^2}{dw^2} \upsilon - \frac{\ell \mu^2}{2} \delta(w) \upsilon = \frac{\mu^2}{2} \upsilon. \tag{45}
\]

Here as usual we have written \(\omega^2 = k^2 + \mu^2 \). Superficially this resembles the Schrödinger equation for a non-relativistic particle moving in one dimension under the influence of an attractive delta function potential. The analogy is not perfect because the strength of the delta potential depends on \(\frac{1}{2} \mu^2 \) which is analogous to the “energy”. Nonetheless we can draw upon experience with delta potentials in quantum mechanics in solving eq (45). We expect a solution of the scattering form

\[
\upsilon_+(w; \mu) = \frac{1}{\sqrt{2\pi}} \exp(i \mu w) + \frac{r(\mu)}{\sqrt{2\pi}} \exp(-i \mu w) \quad \text{for } w < 0
\]

\[
= \frac{t(\mu)}{\sqrt{2\pi}} \exp(i \mu w) \quad \text{for } w > 0. \tag{46}
\]
There should be a second solution, \(v_-(w; \mu) \), corresponding to a plane wave incident along the negative \(w \) axis. The detailed analysis of these solutions is relegated to the problems. Here we note that the “transmission” coefficient is found to be

\[
|t(\mu)|^2 = \frac{1}{1 + (\mu \ell / 2)^2}. \tag{47}
\]

There is a peak in the transmission at \(\mu = 0 \). The peak has a Lorentzian form and a width of \(1/\ell \). Remarkably, in the DGP model when there is no source, there is no zero mode. But there is a continuum of massive Kaluza-Klein modes and the mass parameter \(\mu \) can take any positive real value. Although there is no discrete zero-mode bound to the brane, there is a resonance in the Kaluza-Klein modes at \(\mu = 0 \) \cite{34}.

D Static point source solution. We now consider the field produced by a static point source localized on the brane. Thus the source is \(s \rightarrow \lambda \delta(r) \delta(w) \). The resulting field will also be static and we are primarily interested in the field on the brane, \(\phi(r, w \to 0) \).

We obtain the exact expression for the point source profile from straightforward Fourier analysis of Eq. (44); see Appendix C, Problem 4 \cite{17}. The result is

\[
\phi(r, 0) = \frac{\lambda}{4\pi^2 r} \int_0^\infty dk \frac{\sin(kr)}{(1 + \frac{1}{2} k^2)}. \tag{48}
\]

At short distances \((r \ll \ell) \)

\[
\phi(r, 0) \approx \frac{1}{4\pi} \frac{\lambda}{\ell} \frac{1}{r}. \tag{49}
\]

whereas at long distances \((r \gg \ell) \)

\[
\phi(r, 0) \approx \frac{\lambda}{4\pi^2} \frac{1}{r^2}. \tag{50}
\]

Intuitively we can understand these results as follows. Evidently \(\phi(r, 0) \) must depend on \(r, \ell \) and \(\lambda \). On dimensional grounds we expect \(\phi(r, 0) = (\lambda/r^2) f(\ell/r) \) where \(f \) is an unknown function. This form suggests that to obtain the \(\ell \ll r \) limit it is sufficient to consider the \(\ell \to 0 \) limit of Eq (44). In that limit eq (44) reduces to the electrostatics of a point source in four space dimensions. Hence \(\phi \) has the same form as in the small \(r \) limits of the ADD and RS models; compare eqs (17), (41) and (50). Conversely it is plausible that the \(\ell \gg r \) limit can be derived by neglecting the first term on the left hand side of Eq (44). In that case we are simply solving Poisson’s equation in ordinary three dimensional space for the potential of a point charge \(\lambda/\ell \) thereby justifying Eq (49). Remarkably we obtain behavior appropriate to four spacetime dimensions at short distances and to five spacetime dimensions at long
distances. In contrast to the ADD and RS models, here the extra dimension reveals itself at long distances and remains hidden at short.

Dielectric sheet analogy. Finally we motivate the form of the wave Eq. (44). To this end we proceed by analogy to the electrostatics of a two dimensional dielectric sheet with a point charge q placed at the origin. As a result the bound charges in the dielectric sheet are polarized. The polarization vector lies in the plane of the sheet and is given by

$$P_x = -\ell \frac{\partial}{\partial x} \phi \delta(z) \quad \text{and} \quad P_y = -\ell \frac{\partial}{\partial y} \phi \delta(z).$$

Here ℓ denotes the polarizability of the sheet, which is assumed to lie in the x-y plane, and ϕ is the electrostatic scalar potential. The resulting bound charge density is then given by the negative divergence of the polarization. Thus

$$\rho_{\text{pol}} = \ell \left(\frac{\partial^2}{\partial x^2} \phi + \frac{\partial^2}{\partial y^2} \phi \right) \delta(z).$$

By Gauss’s law $\nabla \cdot \mathbf{E} = q\delta(\mathbf{r}) + \rho_{\text{pol}}$. Thus Poisson’s equation takes the form

$$- \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] \phi - \ell \delta(z) \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right] \phi = q\delta(\mathbf{r}).$$

Eq (53) is easily solved using Fourier analysis. The result is that at short distances from the source the field is screened and appears to be that of a line of charge but at long distances it is unscreened and reduces to the field of a point charge. Note that Eq. (44) is a natural generalization of Eq. (53) that incorporates dynamics by including time derivatives and that also incorporates an extra dimension of space.

VI. DISCUSSION

Table 1 summarizes the main properties of the ADD, RS and DGP models discussed here. Having demonstrated the utility of scalar fields for providing insights into the physics of these models we now briefly discuss the motivation for these models and their experimental tests. A valuable resource on experiments is ref. [12] which provides a lucid and authoritative review that is regularly updated.

The standard model of particle physics is believed to be a low energy approximation to a more fundamental theory that remains to be discovered. Grand unification is a longstanding and ambitious program to develop a unified theory of the strong and electroweak forces.
Within this paradigm the strong and electroweak forces are unified at an energy scale $E_{\text{GUT}} \sim 10^{25}\text{eV} \sim 10^{-3}E_P$. This energy scale is beyond the reach of any collider of the near future. Physics on the grand unification scale is only accessible to precision experiments such as proton decay or via cosmology. Crucially with the grand unification paradigm E_{GUT} and E_P are well separated and gravity is a separate problem not addressed by grand unification.

Extra dimensional models emerged more recently as an alternative to grand unification and represent a very different view of the world. As discussed above, according to the ADD model, the fundamental scale for the unification of all forces, including gravity, is the weak scale, not E_{GUT} or E_P. According to the RS model too, although the fundamental scale for gravity is the Planck scale, quantum gravity effects should be accessible to colliders in the form of TeV scale Kaluza-Klein particles as we discuss below.

Precision tests of Newton’s inverse square law with torsion pendulums represent an important class of experimental tests of the ADD model. Both RS and ADD predict that the gravitational force will depart from Newton’s inverse square law at small distances; however for the RS models this happens at distances that are too small to be observable. For the ADD model such experiments easily preclude the existence of a single extra dimension of order 10^{13}m. For the case of two extra dimensions the best upper bound is $L < 60\mu\text{m}$.

Another important class of experiments aim to detect the Kaluza-Klein modes either directly or indirectly. Taking into account quantum mechanics, in both ADD and RS models the zero mode corresponds to a massless particle—the graviton. Each Kaluza-Klein mode can be thought of as a separate particle with a mass equal to $\mu \hbar/c$ where μ is the mass parameter of the mode. Thus both models predict an infinite tower of new particles. The mass of the lightest Kaluza-Klein particle in the ADD model would be as low as 10^{-4}eV assuming two extra dimensions of millimeter scale (since $\mu \sim 1/L$ for the ADD model). This is also the scale of the separation between in mass between successive Kaluza-Klein particles. In RS1 the lightest Kaluza-Klein particle has a much larger mass of order 1 TeV (since $\mu \sim \gamma e^{-\gamma L}$) and that is also the order of the spacing between successive Kaluza-Klein particle masses. Furthermore, though this is not evident from our presentation, the Kaluza-Klein particles in RS1 interact strongly with standard model particles on the TeV scale, whereas the interaction with the corresponding ADD particles is only of gravitational strength. Thus the Kaluza-Klein modes in RS1 would be manifested in collider experiments.
as well-defined particles with masses on the TeV scale. The Kaluza-Klein modes of the ADD model would not be individually observable, but because they are so numerous their production would be manifested as missing energy in collisions [12]. Experiments at LHC have put an upper bound of 50-100 fm for ADD models with between four to six extra dimensions [22].

Astrophysical observations are also sensitive to the production of Kaluza-Klein particles in the ADD model. For example, if the production becomes too copious it would put supernovae models in conflict with data [12, 23]. Observations of neutron stars by the Fermi gamma ray observatory provide another astrophysical constraint [24]. For the case of two extra dimensions the best current astrophysical constraints are of order nanometers. Thus although indirect these constraints can be quite stringent.

In contrast to the ADD and RS models the DGP model is concerned with gravity on the cosmological scale. The DGP model predicts modifications of gravity on length scales that are long compared to the Hubble scale, \(\ell \sim 10^9 \) light years. The natural tests of the DGP model therefore come from cosmology. The DGP model is now disfavored by observations of the accelerated expansion of the Universe [25] but it has many descendants that remain viable [13].

Finally we note that the beyond the immediate application to particle physics the RS model has deep connections to string theory. An important development in string theory is the AdS-CFT correspondence that demonstrates a deep relationship between theories defined in the bulk of AdS spacetime and on its boundary [2]. This correspondence further illuminates the RS model. Many interesting applications of the AdS-CFT correspondence are in condensed matter physics [26]. Thus extra dimensional models sit at a vibrant intersection of theory and experiment and different subfields of physics.

Acknowledgements. We acknowledge discussions with Walter Lambrecht, Raman Sundrum and Andrew Tolley. We also are very grateful to the referees for many insightful comments and suggestions.
Model	Source-Free Solutions:	Point Source Profile	Comments
Massless Scalar Field (3+1)	Mode Types: Plane waves Particle Interpretation & Dispersion Relation Massless with $\omega = k$	$\phi \propto 1/r$ (Eq.4)	Ordinary spacetime of special relativity.
Massive Scalar Field (3+1)	Plane waves Massive with $\omega = \sqrt{k^2 + \mu^2}$	$\phi \propto e^{-\mu r}/r$ (Eq.6)	Reduces to massless for $\mu \to 0$.
ADD (d+1)	Zero mode Massive with $\omega = k$	$\phi \propto \begin{cases} 1/r & \text{for } r \gg L \\ 1/r^2 & \text{for } r \ll L \end{cases}$ (Eq. 16,17)	Solves hierarchy problem via $G_5 = GL/\pi$ and $E_{EW} = E_{P5}$ for single extra dimension of size L.
RS (4+1)	Zero mode Massive with $\omega = k$	$\phi \propto \begin{cases} 1/r & \text{for } r \gg \gamma^{-1} \\ 1/r^2 & \text{for } r \ll \gamma^{-1} \end{cases}$ (Eq. 40,41)	RS1 solves hierarchy problem via $E_{EW} = E_P e^{-\gamma \ell}$ for extra dimension of size ℓ and curvature γ.
DGP (4+1)	No zero modes but a resonance at $\mu = 0$ width of peak $\sim 1/\ell$	$\phi \propto \begin{cases} 1/r & \text{for } r \ll \ell \\ 1/r^2 & \text{for } r \gg \ell \end{cases}$ (Eq. 49,50)	Solves dark energy problem for screening length $\ell \sim$ Hubble length.

TABLE I: Comparison and summary of all the models studied in this paper. For the ADD model the space dimensionality $d = 4, 5, 6, \ldots$. In the table, for illustrative purposes, we take $d = 4$.

23
[1] O. Klein, *The atomicity of electricity as a quantum theory law*, Nature **118**, 516 (1926).
[2] B. Zwiebach, *A first course in string theory*, (Cambridge University Press, 2nd edition, 2009).
[3] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, *The Hierarchy problem and new dimensions at a millimeter*, Physics Letters **B429**, 263 (1998).
[4] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, *New Dimensions at a Millimeter to a Fermi and Superstrings at a TeV*, Physics Letters **B436**, 257 (1998).
[5] L. Randall and R. Sundrum, *Large Mass Hierarchy from a Small Extra Dimension*, Physical Review Letters **83**, 3370 (1999).
[6] L. Randall and R. Sundrum, *An Alternative to Compactification*, Physical Review Letters **83**, 4690 (1999).
[7] G. Dvali, G. Gabadadze and M. Porrati, *4D gravity on a brane in 5D Minkowski space*, Physics Letters **B485**, 208 (2000).
[8] L. Randall, *Warped Passages* (Harper Perennial, 2006).
[9] K. Thorne, *The Science of Interstellar* (W.W. Norton, 2014).
[10] L.M. Krauss, *Hiding in the Mirror* (Penguin, 2006).
[11] J. Hewett and M. Spiropulu, Annual Review of Nuclear and Particle Science, **52**, 397 (2002).
[12] K.A. Olive *et al.*, *The Review of Particle Physics*, Chin. Phys C, **38**, 090001 (2014); see *Extra dimensions* by Parsons and Pomarol.
[13] Claudia de Rham, *Massive Gravity*, Living Reviews in Relativity, **17**, 7 (2014); http://www.livingreview.org/irr-2014-7
[14] R. Sundrum, *To the Fifth Dimension and Back*, TASI 2004 Lectures, [arXiv:hep-th/0508134](http://arxiv.org/abs/hep-th/0508134)
[15] R.P. Feynman, R.B. Leighton and M. Sands, *Feynman Lectures on Physics*, (Basic Books, 2011).
[16] D. Griffiths, *Introduction to Electrodynamics* 3rd edition (Prentice Hall, NJ).
[17] Appendix A, B and C are available as Supplementary Online Material at xxx.AIP.
[18] S. Perlmutter, *Measuring the acceleration of the cosmic expansion using supernovae*, Rev. Mod. Phys. **84**, 1127 (2012); A.G. Riess, *My path to the accelerating Universe*, Rev. Mod. Phys. **84**, 1165 (2012); B.P. Schmidt, *Accelerating expansion of the Universe through observations of distant supernovae*, Rev. Mod. Phys. **84**, 1151 (2012).
[19] S. Dimopoulos, S. A. Raby, and F. Wilczek, *Unification of Couplings*, Physics Today, October 1991, p 25; F. Wilczek, *Theory Vision, LHCP 2016*, arXiv:1609.06941

[20] E.G. Adelberger et al., *Torsion balance experiments: A low-energy frontier of particle physics*, Progress in Particle and Nuclear Physics 62, 102 (2009).

[21] W.-H. Tan et al., *New Test of the Gravitational Inverse-Square Law at the Submillimeter Range with Dual Modulation and Compensation*, PRL 116, 131101 (2016); D. J. Kapner et al., *Tests of the Gravitational Inverse-Square Law below the Dark Energy Length Scale*, PRL 98, 021101 (2007)

[22] ATLAS collaboration, *Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector*, Phys. Rev. D94, 032005 (2016); J. Kretzschmar, *Searches for extra dimensions with the ATLAS and CMS detectors*, Nucl. Part. Phys. Proc. 273-275, 541 (2016).

[23] S. Hannestad and G. Raffelt, *Supernova and neutron-star limits on large extra dimensions reexamed*, Phys. Rev. D67, 125008 (2003); D69, 029901 (2004)

[24] M. Ajello et al., [Fermi LAT Collaboration] *Limits on large extra dimensions based on observations of neutron stars with the Fermi-LAT*, JCAP 02, 012 (2012)

[25] L. Lombriser, W. Hu, W. Fang and Uros Seljak, *Cosmological Constraints on DGP Braneworld Gravity with Brane Tension*, Physical Review D80, 063536 (2009).

[26] S. Sachdev, *What can gauge-gravity duality teach us about condensed matter physics?*, Annual Review of Condensed Matter Physics, Vol 3, pages 9-33 (2012); arXiv.org/abs/1108.1197

[27] The Fourier integral is most easily evaluated by working in spherical coordinates and integrating over the angular variables first. The radial integral can be performed making use of $\int_0^\infty dx (\sin x)/x = \pi/2$.

[28] Evaluate the Fourier transform of $f(x)$ defined as $f(x) = \exp(-\mu x)$ for $x > 0$ and $f(x) = -\exp(-\mu x)$ for $x < 0$. This is readily found to be $-2ik/(k^2 + \mu^2)$. Now write f in terms of its Fourier transform, take the real part of both sides, and note that the Fourier integral over k is even.

[29] This is a stupendous energy scale. For comparison the energy at which protons are collided by the Large Hadron collider is $\sim 10^{13}$eV. The highest energy subatomic particles detected are ultra high energy cosmic rays which have an energy of order 10^{21}eV.

[30] Randall and Sundrum did not merely assume this form but rather showed that it was com-
compatible with general relativity if they made particular assumptions about the brane. However that analysis is beyond the scope of this article.

[31] To understand how a boundary condition is essentially a contact interaction consider a particle moving in one dimension free except for a delta function potential at the origin $\lambda^{-1}\delta(x)$. If we look for solutions that are symmetric about the origin we need to impose the boundary condition $\psi'(0) = \lambda^{-1}\psi(0)$. (This can be derived by integrating the Schrödinger equation across the origin as discussed in textbook treatments of the delta function model).

[32] Recall that $\upsilon = \zeta^{3/2}\psi$ and $\phi = \upsilon(\zeta) \exp(ik \cdot r) \exp(-i\omega t)$. Transforming the boundary condition on ψ into a boundary condition on υ we see that ϕ simply satisfies Neumann boundary conditions on the brane, $\partial\phi/\partial \zeta |_{\zeta \rightarrow \gamma^{-1}} = 0$.

[33] The identity is merely a precise statement that the modes g and f are a complete basis. It is easily proved by making use of the explicit forms of g and f in eqs (29), (30), as well as the completeness relation (28) and the standard Fourier integral $\int d k \exp[i k \cdot (r - r')] = (2\pi)^3 \delta(r - r')$.

[34] As discussed in introductory textbooks, a resonance is an almost-bound state in quantum mechanics. As a concrete example consider a non-relativistic particle moving in one dimension in a double barrier potential. If the barrier walls were infinitely high there would be bound states between the barriers. For finite barriers these states are no longer bound and become resonances. They acquire a finite lifetime as the particle can escape by tunneling. If we consider scattering states in which a particle is incident on the double barrier potential from outside we find sharp Lorentzian peaks in the transmission coefficient as a function of the energy. The energy of the peaks corresponds roughly to the energy of the resonance and the width of the peak to the lifetime.
Appendix A: Differential Geometry

Curved space. Let us start with ordinary three dimensional Euclidean space. Adopting cartesian co-ordinates the distance between neighboring points is given by the Pythagorean formula $ds^2 = dx^2 + dy^2 + dz^2$. Suppose however we use spherical polar co-ordinates (r, θ, φ) to label points in the same space. The distance between neighboring points in spherical polar co-ordinates is given by

$$ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2.$$ \hfill (A1)

Eq (A1) follows readily from the transformation that given Cartesian co-ordinates in terms of polar; namely, $z = r \cos \theta$, $x = r \sin \theta \cos \varphi$ and $y = r \sin \theta \sin \varphi$. Regardless of the co-ordinates we use, the geometry of the space is fully specified by the formula for distance between neighboring points.

Thus far we are only describing the same flat space in different co-ordinates. Now let us discussed curved spaces. The simplest example is the surface of a sphere of radius R that is located at the origin of the Cartesian co-ordinate system. Points on the surface of the sphere can be labelled by the co-latitude θ and the longitude φ. The distance between neighboring points on the surface of a sphere is given by

$$ds^2 = R^2 d\theta^2 + R^2 \sin^2 \theta d\varphi^2.$$ \hfill (A2)

The co-ordinates are restricted to lie in the range $0 \leq \theta \leq \pi$ and $0 \leq \varphi < 2\pi$. Although it is helpful to picture the sphere as a surface in three dimensional Euclidean space mathematically the space is fully defined by eq (A2) together with a statement about the allowed range of the co-ordinates.

Another example of a curved space is the two dimensional hyperbolic space. Points in this space are labelled by the co-ordinates (θ, φ) which have the ranges $0 \leq \theta < \infty$ and $0 \leq \varphi < 2\pi$. The distance between neighboring points on the surface of hyperbolic space is given by

$$ds^2 = R^2 d\theta^2 + R^2 \sinh^2 \theta d\varphi^2.$$ \hfill (A3)

Hyperbolic space cannot be regarded as a surface in ordinary three dimensional space but it can be embedded in a different flat three dimensional space in which the co-ordinates (x, y, z) have the usual range $-\infty < x, y, z < \infty$ but the distance between neighboring
points is given by

\[ds^2 = -dz^2 + dx^2 + dy^2 \]
(A4)

This space is flat but it has the peculiar feature that the square of the distance between nearby points can be positive, negative or zero. Mathematically this space is said to have an indefinite metric. The hyperbolic space is the two dimensional surface that satisfies the equation

\[z^2 - x^2 - y^2 = R^2 \]
(A5)

together with the condition \(z > 0 \). It is easy to see that the constraint eq (A5) is automatically satisfied if we write

\[z = R \cosh \theta, x = R \sinh \theta \cos \varphi, y = R \sinh \theta \sin \varphi. \]
(A6)

Furthermore the entire hyperboloid will be covered by this parametrization if \((\theta, \varphi)\) are allowed the range noted above. It is now a simple exercise to see that the distance formula eq (A3) follows when eq (A6) is substituted into eq (A4).

The Laplacian. Let us now return to ordinary three dimensional space inhabited by a scalar field such as the scalar potential, \(\phi(x, y, z) \). It is a familiar result of elementary calculus that the gradient of a scalar field is a vector; and that the divergence of the gradient, which is the Laplacian, is a scalar. In symbols, \(\nabla \cdot \nabla \phi = \nabla^2 \phi \) is a scalar. In Cartesian co-ordinates the Laplacian may be written as

\[\nabla^2 \phi = \frac{\partial^2}{\partial x^2} \phi + \frac{\partial^2}{\partial y^2} \phi + \frac{\partial^2}{\partial z^2} \phi. \]
(A7)

It is helpful sometimes to work in a different co-ordinate system such as polar or cylindrical co-ordinates and therefore it is useful to be able to express the Laplacian directly in other co-ordinate systems. Suppose we transform to a system of co-ordinates \((\xi, \eta, \zeta)\) in which the distance between neighboring points is given by

\[ds^2 = h_\xi^2 d\xi^2 + h_\eta^2 d\eta^2 + h_\zeta^2 d\zeta^2. \]
(A8)

The distance formula eq (A8) can easily be derived from the Pythagorean formula \(ds^2 = dx^2 + dy^2 + dz^2 \) given \((\xi, \eta, \zeta)\) as functions of \((x, y, z)\). In general the formula might involved cross terms like \(d\xi d\eta, d\eta d\zeta \) and \(d\zeta d\xi \) but here we will focus only on orthogonal co-ordinates in which such terms are absent. Most co-ordinate systems of interest in mathematical
physics are orthogonal. The factors h_ξ, h_η and h_ζ are called scale factors and their product $h = h_\xi h_\eta h_\zeta$ is called the invariant measure. (For readers who have studied general relativity we note, parenthetically, that h is commonly denoted $\sqrt{|g|}$ where g is the determinant of the metric tensor). For example for spherical polar co-ordinates the scale factors are $h_r = 1, h_\theta = r, h_\phi = r \sin \theta$ and the invariant measure $h = r^2 \sin \theta$. Now it is proved in books on electromagnetism and mathematical physics that the Laplacian in the co-ordinates (ξ, η, ζ) is given by

$$\frac{1}{h} \frac{\partial}{\partial \xi} \left(\frac{h}{h_\xi^2} \frac{\partial \phi}{\partial \xi} \right) + \frac{1}{h} \frac{\partial}{\partial \eta} \left(\frac{h}{h_\eta^2} \frac{\partial \phi}{\partial \eta} \right) + \frac{1}{h} \frac{\partial}{\partial \zeta} \left(\frac{h}{h_\zeta^2} \frac{\partial \phi}{\partial \zeta} \right)$$

(A9)

The generalization of this result to more or fewer dimensions should be obvious. It is a good exercise for the reader to use eq (A9) construct the Laplacian in familiar cases like spherical polar and cylindrical co-ordinates.

Thus far we have been discussing the mundane subject of writing the Laplacian in different co-ordinate systems in ordinary flat three dimensional space. Remarkably it turns out that in a curved space in which the distance formula has the form eq (A8) it is still true that the Laplacian is given by eq (A9). This is intuitively plausible and gives us a simple method to construct the Laplacian in curved space without going through the full machinery of differential geometry [?]. It is a good exercise for the reader to use eq (A9) to write an expression for the Laplacian on the surface of a sphere and in hyperbolic space.

Curved space-time. The central dogma of special relativity is that an inertial observer using Cartesian co-ordinates can label events by the co-ordinates (t, x, y, z) which lie in the range $-\infty < t, x, y, z < \infty$ and that the interval between two nearby events is given by eq (1) Suppose we transform to a system of co-ordinates (τ, ξ, η, ζ) in which the space-time interval between neighboring events is given by

$$ds^2 = h_\tau^2 d\tau^2 - h_\xi^2 d\xi^2 - h_\eta^2 d\eta^2 - h_\zeta^2 d\zeta^2.$$

(A10)

The interval eq (A10) can easily be derived from eq (1) given (τ, ξ, η, ζ) as a function of (t, x, y, z). In general the formula might involve cross terms like $d\tau d\xi$ or $d\xi d\eta$ but here we will focus only on orthogonal co-ordinates in which such terms are absent. The factors h_τ, h_ξ, h_η and h_ζ are called scale factors and their product $h = h_\tau h_\xi h_\eta h_\zeta$ is called the invariant measure. Thus far we are dealing with the Minkowski space-time of special relativity. Although eq (A10) looks complicated we know that the underlying space-time is flat and that we can
always transform back to Cartesian co-ordinate \((t, x, y, z)\) in which the interval has the simple form eq (1). By contrast a curved space-time is one in which the space-time interval might have a form like eq (A10) but where it is impossible to find an alternative set of co-ordinates in which the interval globally has the simple flat form given in eq (1).

A concrete example of a curved space-time is the Friedman-Walker-Robertson space-time that is believed to describe our expanding universe. It has the space-time interval

\[
d s^2 = dt^2 - a^2(t) (dx^2 + dy^2 + dz^2).
\]

(A11)

Here \(a(t)\) is called the scale factor and it grows with time reflecting the expansion of the Universe. This space-time is called flat FRW. Notwithstanding that name it is undeniably a curved space-time. There is no change of co-ordinates which will bring the space-time interval (A11) to the form eq (1).

A second example of a curved space-time is the celebrated Anti-de-Sitter (AdS) space-time. Like the hyperbolic space discussed above, AdS space-time is best understood by embedding it in a space of higher dimensionality. We start with a six dimensional flat space with the interval

\[
d s^2 = du^2 + dv^2 - d\alpha^2 - d\beta^2 - d\eta^2 - d\xi^2.
\]

(A12)

The co-ordinates have the usual range \(-\infty < u, v, \alpha, \beta, \eta, \xi < \infty\). AdS is the five dimensional surface defined by the constraint

\[
u^2 + v^2 - \alpha^2 - \beta^2 - \eta^2 - \xi^2 = \frac{1}{\gamma^2}.
\]

(A13)

We now put down new co-ordinates \((\zeta, t, x, y, z)\) on the half of AdS space-time that satisfies \(v + \xi > 0\). The new co-ordinates are related to the old via

\[
v + \xi = \frac{1}{\gamma \zeta}, \quad u = \frac{t}{\gamma \zeta}, \quad \alpha = \frac{x}{\gamma \zeta}, \quad \beta = \frac{y}{\gamma \zeta}, \quad \eta = \frac{z}{\gamma \zeta}.
\]

(A14)

The constraint eq (A13) is automatically satisfied provided we take

\[
v - \xi = \frac{1}{\gamma \zeta} \left(\zeta^2 + x^2 + y^2 + z^2 - t^2 \right).
\]

(A15)

The new co-ordinates have the range \(\zeta \geq 0\) and \(-\infty < t, x, y, z, < \infty\). Making use of eq (A14) and eq (A12) it follows after some algebra that the interval on AdS space-time in terms of the new co-ordinate is given by

\[
d s^2 = \frac{1}{\gamma^2 \zeta^2} \left(dt^2 - d\zeta^2 - dx^2 - dy^2 - dz^2 \right).
\]

(A16)
exactly the form for Randall-Sundrum space-time in conformal co-ordinates.

Scalar waves in curved space-time. A scalar wave in Minkowski space-time obeys the wave eq (2). The operator \Box^2 defined in eq (2) is called the d’Alembertian and is the space-time analog of a Laplacian. If ϕ is a scalar then so is $\Box^2 \phi$ (see for example, ref [15], vol II, chapter 25, section 3). Suppose we now transform to a system of co-ordinates (τ, ξ, η, ζ) in which the space-time interval between neighboring events is given by eq (A10). Evidently in this co-ordinate system the d’Alembertian operator will have the form

$$\Box^2 \phi = \frac{1}{h} \frac{\partial}{\partial \tau} \left(\frac{h}{h^2} \frac{\partial \phi}{\partial \tau} \right) - \frac{1}{h} \frac{\partial}{\partial \xi} \left(\frac{h}{h^2} \frac{\partial \phi}{\partial \xi} \right) - \frac{1}{h} \frac{\partial}{\partial \eta} \left(\frac{h}{h^2} \frac{\partial \phi}{\partial \eta} \right) - \frac{1}{h} \frac{\partial}{\partial \zeta} \left(\frac{h}{h^2} \frac{\partial \phi}{\partial \zeta} \right)$$

(A17)

Thus far we are discussing the mundane subject of writing the d’Alembertian in different co-ordinate systems in ordinary flat Minkowski space-time. Remarkably it turns out that in a curved space-time in which the space-time interval has the form eq (A10), it is still true that the d’Alembertian is given by eq (A17). This is intuitively plausible and it gives us a simple method to write down the wave equation in curved space-times without going through the full machinery of differential geometry. Although we have written our results specifically for a four dimensional space-time the generalization to higher or lower dimensions is self-evident.

Appendix B: One dimensional quantum mechanics

Normalization. We begin by recalling some useful results from undergraduate quantum mechanics. For derivations readers should consult their favorite textbook. Consider a free particle in one dimension. In a state of definite momentum the state of the particle is described by the wave function

$$\psi(x; k) = \frac{1}{\sqrt{2\pi}} \exp(ikx).$$

(B1)

The pre-factor has been chosen to ensure the normalization

$$\int_{-\infty}^{\infty} dx \psi^*(x; p)\psi(x; k) = \delta(p - k).$$

(B2)
Now suppose that there is a potential barrier $V(x)$ that is localized near the origin. Sufficiently far from the origin the particle is free and we expect to find scattering solutions of the form

$$\psi(x; k) = \frac{1}{\sqrt{2\pi}} \exp(ikx) + \frac{r}{\sqrt{2\pi}} \exp(-ikx)$$

for $x \to -\infty$

$$= \frac{t}{\sqrt{2\pi}} \exp(ikx) \text{ for } x \to \infty$$

(B3)

Here the reflection coefficient r and the transmission coefficient t might depend on the wave-vector k and satisfy the unitarity condition $|r|^2 + |t|^2 = 1$. The scattering wave functions still satisfy the normalization condition eq (B2). The solution above corresponds to the scattering of a particle that is incident on the barrier from the left. An analogous solution may be written down for particles incident from the right but will not be needed here.

Now suppose that the potential $V \to \infty$ as $x \to \infty$ or else that the particle encounters an impenetrable barrier such as a hard wall at the origin. In that case the transmission coefficient $t \to 0$ and the reflection coefficient has magnitude unity and may be written as $r = \exp(i2\delta)$. This defines the scattering phase shift δ which may depend on k. For this circumstance the scattering solution has the form

$$\psi(x; k) = \sqrt{\frac{2}{\pi}} \cos(kx - \delta) \text{ for } x \to -\infty.$$

(B4)

This form is obtained by substituting $r \to \exp(i2\delta)$ in eq (B3) and multiplying the solution by a factor of $\exp(-i\delta)$. The scattering solutions eq (B4) still satisfy the normalization condition eq (B2).

Bessel solution. We turn now to the solution to eq (23) for $\mu > 0$. It is convenient to transform to the dependent variable φ defined by $\psi = \zeta^{1/2} \varphi$ and to change to the independent variable $\xi = \mu \zeta$. In terms of these variables eq (23) is revealed to be Bessel’s equation of the second order

$$\frac{d^2 \varphi}{d\xi^2} + \frac{1}{\xi} \frac{d \varphi}{d \xi} + \left(1 - \frac{4}{\xi^2}\right) \varphi = 0$$

(B5)

with independent solutions $J_2(\xi)$ and $Y_2(\xi)$. Hence the general solution to eq (23) has the form given in eq (25) with the coefficients α and β at this stage arbitrary. Imposing the boundary condition $\psi = -\frac{2\alpha}{3}\gamma^{-1}\varphi'$ on ψ at $\zeta = \gamma^{-1}$ determines the ratio α/β,

$$\frac{\alpha}{\beta} = -Y_1\left(\frac{\mu}{\gamma}\right) / J_1\left(\frac{\mu}{\gamma}\right),$$

(B6)
and leads to eq (26). Here we have used the Bessel function recursion \(xZ_1(x) = 2Z_2(x) + xZ_2'(x) \) where \(Z \) denotes either \(J \) or \(Y \). Finally let us write

\[
\alpha = \sqrt{\alpha^2 + \beta^2} \cos \Delta \quad \text{and} \quad \beta = \sqrt{\alpha^2 + \beta^2} \sin \Delta
\]

(B7)

which defines \(\Delta \). Inserting this form into the solution eq (25) and making use of the large argument asymptotics of the Bessel and Neumann functions,

\[
J_2(x) \approx \sqrt{\frac{2}{\pi x}} \cos \left(x - \frac{5\pi}{4} \right), \quad Y_2(x) \approx \sqrt{\frac{2}{\pi x}} \sin \left(x - \frac{5\pi}{4} \right)
\]

(B8)

we obtain

\[
\psi(\zeta) \approx \sqrt{\frac{2(\alpha^2 + \beta^2)}{\pi \mu}} \cos \left(\mu \zeta - \frac{5\pi}{4} - \Delta \right)
\]

(B9)

for \(\mu \zeta \gg 1 \). Comparing eq (C8) to eq (B4) we see that our solutions will have the desired normalization, eq (27), if we choose \(\alpha^2 + \beta^2 = \mu \). This completes the derivation of the continuum solutions to eq (23).

For reference we note that \(A \) defined in eq (26) of the paper is given by

\[
A = \sqrt{\mu} / \sqrt{[Y_1(\mu/\gamma)]^2 + [J_1(\mu/\gamma)]^2}
\]

(B10)

and therefore has the small \(\mu \) asymptotic behavior \(A \approx (\pi/2\gamma)^{3/2} \). Making use of eq (26) and eq (B10) we can also deduce that \(\alpha(\mu) \approx -\sqrt{\mu} \) and \(\beta(\mu) \approx -(\pi/4\gamma^2)^{5/2} \) for small \(\mu \).

Appendix C: Problems.

Problem 1. What data would you invoke in order to rule out the ADD model with a single extra dimension? (Answer: \(10^{13} \) m is comparable to the size of Pluto’s orbit. An extra dimension of this size would lead to violations of Newton’s inverse square law of gravity throughout the solar system. Tycho Brahe’s data, and very likely even Sumerian tablets, would be sufficient to rule out such violations.)

Problem 2. The ADD hierarchy problem. (a) An alternative way to describe the hierarchy problem is in terms of length scales. (i) Construct a length scale out of the three fundamental constants \(c, G \) and \(h \). This is the Planck length, \(\ell_p \). (ii) Denote the electroweak scale \(\eta = 1 \) TeV. From \(\eta, h \) and \(c \) construct the length scale \(\ell_{ew} \) that corresponds to electroweak physics. The conventional hierarchy problem is then the observation that \(\ell_p \ll \ell_{ew} \). (b) The ADD
model solves this hierarchy problem by introducing extra dimensions of characteristic scale \(L \). Compare \(L \) to \(\ell_{\text{ew}} \) and comment.

Answer 2. (a) \(\ell_P = \sqrt{\hbar G/c^3} \sim 10^{-35} \text{ m} \). \(\ell_{\text{ew}} = \hbar c/\eta \sim 10^{-19} \text{ m} \). (b) In section III we found that \(L \sim 1 \text{ mm} \) if there are two extra dimensions. Thus the ADD model resolves the hierarchy \(\ell_P \ll \ell_{\text{ew}} \) by introducing extra dimensions of length scale \(L \); however it suffers from a hierarchy problem of its own, namely, \(\ell_{\text{ew}} \ll L \).

Problem 3. Three dimensional hyperbolic space. Points in a flat four dimensional space can be labelled by the four Cartesian co-ordinates \((x, y, z, w)\) that have the range \(-\infty < x, y, z, w < \infty\). The space has an indefinite metric. The distance between neighboring points is given by \(ds^2 = dx^2 + dy^2 + dz^2 - dw^2 \). The three dimensional hyperbolic space is defined as the set of points that satisfy the constraints \(w^2 - z^2 - x^2 - y^2 = R^2 \) and \(w > 0 \). Points on three dimensional hyperbolic space can be labelled by the co-ordinates \((\psi, \theta, \varphi)\) that are related to the Cartesian co-ordinates via

\[
\begin{align*}
 w &= R \cosh \psi; \\
 z &= R \sinh \psi \cos \theta; \\
 x &= R \sinh \psi \sin \theta \cos \varphi; \\
 y &= R \sinh \psi \sin \theta \sin \varphi. \\
\end{align*}
\]

(C1)

Here the co-ordinates have the ranges \(0 \leq \psi < \infty, 0 \leq \theta \leq \pi \) and \(0 \leq \varphi < 2\pi \). (a) Justify the parametrization (C1) and explain the ranges on the coordinates \((\psi, \theta, \varphi)\). (b) Determine the distance between two nearby points with co-ordinates \((\psi, \theta, \varphi)\) and \((\psi + d\psi, \theta + d\theta, \varphi + d\varphi)\).

Answer 3. (a) The constraints that \(w^2 - x^2 - y^2 - z^2 = R^2 \) and \(w > 0 \) together imply that \(w > R \). Hence we may write \(w = R \cosh \psi \) with \(0 \leq \psi < \infty \). Adopting this form the constraint then becomes \(x^2 + y^2 + z^2 = R^2 \sinh^2 \psi \). From here we simply put down spherical polar co-ordinates on a sphere of radius \(R \sinh \psi \).

(b) \(ds^2 = R^2 d\psi^2 + R^2 \sinh^2 \psi d\theta^2 + R^2 \sinh^2 \psi \sin^2 \theta d\varphi^2 \).

Problem 4. DGP Analysis. Here we fill in the steps that lead from eq (44) to eqs (48), (49) and (50). (a) Let \(\tilde{g}(p) \) be the Fourier transform of \(g(w) \). Show that the Fourier transform of \(g(w)\delta(w) \) is a constant given by

\[
\int_{-\infty}^{\infty} \frac{dp}{2\pi} \tilde{g}(p).
\]

(C2)
Thus it follows that the Fourier transform of $-\delta(w)\nabla^2 \phi(x, y, z, w)$ is $k^2 \tilde{f}(k)$ where

$$\tilde{f}(k) = \int_{-\infty}^{\infty} \frac{dp}{2\pi} \tilde{\phi}(k, p)$$

(C3)

and $\nabla^2 = \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2$. (b) Use the result of part (a) to rewrite eq (44) in Fourier space. You should obtain

$$\tilde{\phi}(k, p) + \ell k^2 k^2 + p^2 \tilde{f}(k) = \frac{\lambda}{k^2 + p^2}.$$

(C4)

(c) Use eqs (C3) and (C4) to determine \tilde{f}. You should obtain

$$\tilde{f}(k) = \frac{\lambda}{2k (1 + \frac{1}{2}\ell k)}.$$

(C5)

(d) Show that it is sufficient to know \tilde{f} to determine $\phi(r, 0)$. One does not need $\tilde{\phi}$. You should find

$$\phi(r, 0) = \int \frac{dk}{(2\pi)^3} \tilde{f}(k) \exp(i k \cdot r).$$

(C6)

(e) The angular integrals in eq (C6) can be exactly evaluated. Perform the angular integration. You should obtain

$$\phi(r, 0) = \frac{\lambda}{4\pi^2 r} \int_0^\infty dk \frac{\sin(kr)}{(1 + \frac{1}{2}\ell k)}. $$

(C7)

This is the exact expression for the potential of a point source in the DGP model. It can be rewritten in terms of rather obscure special functions (the cosine-integral and sine-integral functions) but those expressions are not especially edifying. (f) Verify that eq (C7) matches eqs (49) and (50) in the appropriate limits. Useful asymptotic formulae:

$$\mathcal{I}(\alpha) = \int_0^\infty dx \frac{\sin(x)}{1 + \alpha x}$$

(C8)

has the asymptotic behavior $\mathcal{I}(\alpha) \approx 1 - 2!\alpha^2 + 4!\alpha^4 - 6!\alpha^6 + \ldots$ for small α and $\mathcal{I}(\alpha) \approx \pi/2\alpha + [\gamma_E - 1 + \ln(1/\alpha)](1/\alpha^2) + \ldots$ for large α. Here $\gamma_E = 0.577216\ldots$ is Euler’s constant.

Problem 5. RS1 Kaluza-Klein mode analysis. (a) Verify that the zero-mode solution $\phi = g(\zeta, r; k) \exp(i\omega t)$ satisfies the wave equation (21) as well as the boundary condition $\partial \phi / \partial \zeta = 0$ at both $\zeta_l = \gamma^{-1}$ (left brane) and $\zeta_r = \gamma^{-1}\exp(\gamma \ell)$ (right brane). Here g is given by eq (29). (b) The Kaluza-Klein mode $\phi = f(\zeta, r; k) \exp(i\omega t)$, with f given by eq (30) already satisfies the wave equation (21) as well as the boundary condition on the left brane. Impose the boundary condition $\partial \phi / \partial \zeta = 0$ on the right brane, $\zeta = \gamma^{-1}\exp(\gamma \ell)$ to obtain
the quantization condition that must be satisfied by the allowed values of μ. You should find
\[Y_1 \left(\frac{\mu}{\gamma} \right) J_1 \left(\frac{\mu e^{\gamma \ell}}{\gamma} \right) = J_1 \left(\frac{\mu}{\gamma} \right) Y_1 \left(\frac{\mu e^{\gamma \ell}}{\gamma} \right). \] (C9)
(c) Simplify eq (C9) assuming that $(\mu/\gamma)e^{\gamma \ell} \gg 1$ and $\mu/\gamma \ll 1$. Use the resulting expression to determine approximate quantized values of μ. You should obtain
\[\cot \left(\frac{\mu e^{\gamma \ell}}{\gamma} - \frac{3}{4} \pi \right) \approx 0. \] (C10)
for the approximate quantization condition and $\mu_n = \gamma \exp(-\gamma \ell)(n\pi + \frac{\pi}{4})$ with $n = 0, 1, 2, \ldots$ for the quantized μ values. Rigorously the approximations made in this part are valid only for large n but in fact these μ values are surprisingly accurate for all values of n.

Problem 6. Klein-Gordon field on RS1 right brane. (a) Let us work with the original co-ordinates (t, x, y, z, w) on Randall-Sundrum space-time. In these co-ordinates the space-time interval is given by eq (19). As a prelude write the Klein-Gordon equation $\Box^2 \phi + \mu^2 \phi = 0$ for a scalar field ϕ that lives in the bulk. (b) Now let us consider scalar field that is confined to the right brane. This scalar field is meant to represent a standard model particle. The space-time interval between neighboring points on the right brane is given by
\[ds^2 = e^{-2\gamma \ell}(dt^2 - dx^2 - dy^2 - dz^2). \] (C11)
Use eq (C11) to write the Klein-Gordon equation $\Box^2_R \xi + m^2 \xi = 0$ for a field ξ confined to the right brane. You should obtain
\[e^{2\gamma \ell} \left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2} \right) \xi + m^2 \xi = 0. \] (C12)
If we introduce the rescaled field $\bar{\xi} = \xi \exp(2\gamma \ell)$ we can bring the derivative terms in eq (C12) to the canonical form of a Klein-Gordon equation with mass parameter $me^{-\gamma \ell}$. Choosing $m\hbar/c$ to be of order a Planck mass and choosing $\gamma \ell \approx 35-40$ we can arrange for standard model particles to have a mass of order 1 TeV, the electroweak scale, even though the fundamental scale in the RS1 model is the Planck scale.