SCOTT RANKS OF CLASSIFICATIONS OF THE ADMISSIBILITY EQUIVALENCE RELATION

WILLIAM CHAN, MATTHEW HARRISON-TRAINOR, AND ANDREW MARKS

ABSTRACT. Let \mathcal{L} be a recursive language. Let $S(\mathcal{L})$ be the set of \mathcal{L}-structures with domain ω. Let $\Phi : \omega^2 \to S(\mathcal{L})$ be a Δ^1_1 function with the property that for all $x, y \in \omega^2$, $\omega^x_1 = \omega^y_1$ if and only if $\Phi(x) \preceq_{\mathcal{L}} \Phi(y)$. Then there is some $x \in \omega^2$ so that $\text{SR}(\Phi(x)) = \omega^x_1 + 1$.

1. Introduction

The main equivalence relation of interest here is the countable admissible ordinal equivalence relation, denoted F_{ω_1}. It is an equivalence relation defined on ω^2 by $x F_{\omega_1} y$ if and only if $\omega^x_1 = \omega^y_1$. Recall that if $z \in \omega^2$, then ω^z_1 is the supremum of the collection of ordinals which are isomorphic to z-recursive well-orderings on ω. Equivalently, ω^z_1 is also the smallest z-admissible ordinal, i.e. the smallest ordinal height of a transitive model of KP containing z. The latter will be the more useful characterization here.

The equivalence relation F_{ω_1} is important and can be meaningfully studied due to its connection with admissibility. A theorem of Sacks [17] states that for any countable admissible ordinal α, there is some $x \in \omega^2$ so that $\omega^x_1 = \alpha$. Therefore each equivalence class of F_{ω_1} is associated with a countable admissible ordinal. F_{ω_1} is a thin Σ^1_1 equivalence relation with all equivalence classes Δ^1_1. (An equivalence relation E is thin if and only if there is no perfect set of E-inequivalent elements.)

The topological Vaught’s conjecture asserts that if the orbit equivalence relation of a Polish group acting continuously on a Polish space is thin, then it has countably many classes. Marker [14] established a particular instance of this conjecture by showing that F_{ω_1} is not an orbit equivalence relation of a continuous action of a Polish group on ω^2. This answered a question of Kechris. Becker [2] strengthened this by showing that F_{ω_1} is not an orbit equivalence relation of a Δ^1_1 group action on ω^2.

Suppose E and F are equivalence relations on Polish spaces X and Y, respectively. E is Δ^1_1 reducible to F, denoted $E \leq_{\Delta^1_1} F$, if and only if there is a Δ^1_1 function $\Phi : X \to Y$ so that for all $a, b \in X$, $a E b \iff \Phi(a) F \Phi(b)$. Δ^1_1 reducibility is a common way of comparing the complexity of equivalence relations.

Despite not being induced by a Δ^1_1 action of a Polish group, F_{ω_1} is however Δ^1_1 reducible to an orbit equivalence relation of a continuous action of the Polish group S_∞. Equivalence relations that are Δ^1_1 reducible to a continuous action of S_∞ have a more model theoretic characterization:

Let \mathcal{L} be a countable language. Let $S(\mathcal{L})$ be the collection of \mathcal{L}-structures with domain ω. An equivalence relation E on a Polish space X is classifiable by countable structures if and only if there is a countable language \mathcal{L} so that $E \leq_{\Delta^1_1} \approx_{\mathcal{L}}$, where $\approx_{\mathcal{L}}$ is the \mathcal{L}-isomorphism relation defined on $S(\mathcal{L})$. A Δ^1_1 function Φ which witnesses this Δ^1_1 reducibility is called a classification of E by \mathcal{L}-structures. F_{ω_1} is classifiable by countable structures by using the isomorphism relation of structures in the language of linear orderings. The following is an example of a classification function witnessing this.

Suppose $x \in \omega^2$. An x-recursive pseudo-wellordering is an x-recursive linear ordering which is not a wellordering but has no x-hyperarithmetic descending sequences. Let η be the order type of \mathbb{Q}. It is shown in [5] that x-recursive pseudo-wellorderings have ordertype $\omega^x_1(1 + \eta) + \rho$, for some $\rho < \omega^x_1$. (Also see [6], Lemma III.2.2 (ii).) An x-Harrison linear ordering is an x-recursive linear ordering on ω of ordertype $\omega^x_1(1 + \eta)$. Note that the isomorphism type of an x-Harrison linear ordering is completely determined by ω^x_1. The desired classification of F_{ω_1} by linear orderings will be a map Φ sending x to an x-Harrison linear...
ordering. Such a classification function exists which is Δ^1_1 follows from existence of a natural and uniform construction of Harrison linear orderings.

Although a recursive pseudo-wellordering can be constructed by a Barwise compactness argument, there is a more concrete natural construction found in [11] which is exposited in [19] Lemma III.2.1: The relation $R(x, y)$ if and only if x is not y-hyperarithmetic is Σ^1_1. As Σ^1_1 sets are projections of recursive trees, one can use the relation R to obtain a recursive tree U in $2 \times \omega$ with the property that for all $y \in \omega^2$, the tree U^y is illfounded but has no y-hyperarithmetic path. It can be shown that the Kleene-Brouwer ordering of U^y is a y-recursive pseudo-wellordering which can be modified to obtain a y-Harrison linear ordering. This procedure is Δ^1_1 and gives the desired Δ^1_1 classification Φ. (See [6] Section 3 for more details.)

Note that the Scott rank of x-Harrison linear orderings is $\omega^2_1 + 1$. Therefore, in the example above, for all $x \in \omega^2$, $\text{SR}(\Phi(x)) = \omega^2_1 + 1$. It is shown in [6] Theorem 4.2 that any Δ^1_1 classification Φ of F_{ω_1} must send any real x to an x-hyperarithmetic \mathcal{L}-structure $\Phi(x)$ with $\text{SR}(\Phi(x)) \geq \omega^2_1$. Recall that any x-hyperarithmetic \mathcal{L}-structure M on ω has Scott rank less than or equal to $\omega^2_1 + 1$. If an x-hyperarithmetic structure M has $\text{SR}(M) \geq \omega^2_1$, then M is said to have high Scott rank.

[6] Remark 4.3 raised the question of whether every Δ^1_1 classification Φ has the property that for all x, $\text{SR}(\Phi(x)) = \omega^2_1 + 1$. An attempt to compel the Scott rank to take the highest possible value in [6] Remark 4.3 fails due to the existence of x-recursive structures of Scott rank ω^2_1. This suggests the following which is the main question of the paper:

Question 1.1. Is there a recursive language \mathcal{L} and Δ^1_1 function $\Phi : \omega^2 \to S(\mathcal{L})$ so that for all $x, y \in \omega^2$, $x F_{\omega_1}, y \Leftrightarrow \Phi(x) \equiv_{\mathcal{L}} \Phi(y)$ with the property that for all $x \in \omega^2$, $\text{SR}(\Phi(x)) = \omega^2_1$?

Hyperarithmetic structures of Scott rank ω^0_1 are more difficult to produce than computable structures of Scott rank $\omega^0_1 + 1$. Makki [13] constructed the first such hyperarithmetic example. Knight and Millar [4] produced recursive structures of Scott rank ω^0_1. (Other examples can be found in [8].) These constructions are much more intricate and have some nonuniform aspects due to the use of Barwise or Barwise-Kreisel compactness.

The main result of the paper is the following negative answer to Question [11]

Theorem 3.7 Let \mathcal{L} be a recursive language and let $\Phi : \omega^2 \to S(\mathcal{L})$ be a Δ^1_1 function so that $x F_{\omega_1}, y \Leftrightarrow \Phi(x) \equiv_{\mathcal{L}} \Phi(y)$. Then there is some $x \in \omega^2$ so that $\text{SR}(\Phi(x)) = \omega^2_1 + 1$.

(Becker has informed the authors that this theorem follows from a more general result in [3] which is however proved by different methods in ZFC augmented by Σ^1_1-determinacy. All results in this paper are implicitly proved from ZFC.)

Theorem 3.7 can be interpreted to say that there is no construction of a recursive structure of Scott rank ω^0_1 which is natural enough in the sense that the construction can be relativized to any real x to produce an x-recursive structure of Scott rank ω^2_1 whose isomorphism type depends solely on the x-recursive ordinals. The notion of a Δ^1_1 classification function for F_{ω_1} is used to formalize this idea of naturality. This approach is similar to a questin of Martin concerning the unnaturalness of intermediate degrees: A well known result in recursion theory states that there is a degree strictly between $[0]_T$ and $[\emptyset]_T$. Martin asked whether there are any definable procedures that take an $X \in \mathcal{D}$, the set of Turing degrees, and return a Turing degree between X and its jump. This is formalized by asking in ZF + AD whether there is any function $\Phi : \mathcal{D} \to \mathcal{D}$ with the property that for all $X \in \mathcal{D}$, $X <_T \Phi(X) <_T X'$. See [22] and [15] for more on various forms of Martin’s conjecture.

The proof of Theorem 3.7 is similar to how [18] Theorem 4.2 (or [20] Corollary 6.2) shows that every counterexample to Vaught’s conjecture τ has a model M so that $\text{SR}(M) = \omega^2_1 + 1$. This is done by producing an illfounded end-extension of a Σ_2-admissible set which has an appropriate model of τ and has enough Σ_1-absoluteness to conclude that isolating formulas of the original Σ_2-admissible set are still isolating formulas in the illfounded end-extension.

An important feature of the proof of the above result for counterexamples to Vaught’s conjecture is access to the complete theory and types of the desired model in small admissible sets even when the model does not exist in that admissible set. In the setting of this paper, access to the fragment, complete theory, and types of the desired model as well as the sufficient definability of these objects within the appropriate admissible
set are obtained using the Δ^1_1 classification function and the Solovay product forcing lemma for a suitable class forcing. This seems to be similar to ideas used in [12].

Becker [3] has also considered the unnaturalness of x-recursive structures of Scott rank ω_1^x. [3] shows that under $ZF + DC + AD$, if \mathcal{L} is a countable language and \mathcal{F} is a family of \aleph_1 many isomorphism types of \mathcal{L}-structures, then there is a $z \in {}^\omega \omega$ so that for all $x \geq_T z$, if an x-recursive \mathcal{L}-structure M has an isomorphism type in \mathcal{F}, then $SR(M) \neq \omega_1^x$. Given any Δ^1_1 classification Φ of F_{ω_1}, Theorem [3.7] follows by applying Becker’s result to the Σ^1_1 family determined by the range of Φ. [3] mentions that it is not known whether the Σ^1_1 version of Becker’s result holds in ZFC and that the methods of [3] to prove the Σ^1_1 version require a determinacy assumption stronger than Π^1_1-determinacy but weaker than Π^1_2-determinacy.

2. Basics

The results of the paper are proved in ZFC. As customary in set theory, the real universe is denoted by V, which can be understood as some fixed model of ZFC where the results of the paper are being derived. Frequently concepts will be viewed from various different models of set theory. If M is a model of set theory and A is some notion given by a formula, A^M will indicate the relativization of the definition of A within the model M.

Let KP denote Kripke-Platek set theory with the infinity axiom, which can be formulated in any language \mathcal{J} consisting of a distinguished binary relation symbol \in and possibly other symbols. KP is a weak axiom system for set theory. Its distinguishing axiom schemes are Δ^1_1-separation and Σ^1_1-collection. Let Σ^1_2-KP be the axiom system extending KP by the axiom schemes of Δ^1_2-separation and Σ^1_2-collection.

An admissible set is a transitive model of KP. A Σ^1_2-admissible set is a transitive model of Σ^1_2-KP. See [1] and [4] for more information about KP and admissibility.

Let ON denote the class of ordinals. If A is some \mathcal{J}-structure satisfying KP where \mathcal{J} is a language consisting of a distinguished binary relation symbol \in, then $WF(A)$ is the substructure of elements of A which are \in^A-well-founded in the real world V. Via the Mostowski collapse, one can always assume $(WF(A), \in^A)$ is a transitive set. The ordinal height of A is $ON \cap WF(A) = ON \cap A$, where it is assumed that $WF(A)$ is a transitive set.

For the rest of the paper, assume that ω belongs to the transitive closure of the well-founded part of any model of KP.

Definition 2.1. Let $x \in {}^\omega \omega$. $\alpha \in ON$ is an x-admissible ordinal if and only if there is an admissible set A so that $x \in A$ and $\alpha = ON \cap A$. That is, α is the ordinal height of some admissible set containing x.

The least x-admissible ordinal is denoted ω_1^x.

Fact 2.2. Let $A \models KP$. There is a Δ^1_1 function taking elements of $\alpha \in ON^A$ to L_α, the segment of Gödel constructible hierarchy. L^A is a Δ^1_1 class in A and $L^A \models KP$.

These results hold for the relativized Gödel hierarchy.

Definition 2.3. Let $x \in {}^\omega \omega$. $y \in {}^\omega \omega$ is an x-hyperarithmetic real if and only if y belongs to every admissible set containing x.

A basic fact of descriptive set theory is that y is x-hyperarithmetic if and only if y is $\Delta^1_1(x)$.

Fact 2.4. Let $x \in {}^\omega \omega$. $L_{\omega_1^x}[x]$ is the smallest x-admissible set under \subseteq. Hence the x-hyperarithmetic reals are exactly $\omega_2 \cap L_{\omega_1^x}[x]$.

Fact 2.5. (Truncation lemma) If $A \models KP$, then $WF(A) \models KP$. Therefore assuming that the well-founded part is transitive, $WF(A)$ is an admissible set.

Proof. See [1] Lemma II.8.4. \hfill \square

The following result of Sacks gives an important characterization of countable admissible ordinals.

Fact 2.6. (17) If α is a countable admissible ordinal, then there is an $x \in {}^\omega \omega$ so that $\omega_1^x = \alpha$.

This result can be proved using infinitary logic in countable admissible fragments as shown in [9]. These methods were used to study F_{ω_1} in [3] and will again be used in the arguments of this paper. The main tool for this approach is the Jensen’s model existence theorem.
Lemma 2.7. (Jensen’s model existence theorem) Let \mathcal{A} be an admissible set. Let \mathcal{F} be a language which is Δ_1 definable in \mathcal{A} and contains a distinguished binary relation symbol \in and constant symbols \bar{a} for each $a \in \mathcal{A}$. Let H be a consistent theory in the countable admissible fragment $(\mathcal{F}_\infty)^\mathcal{A}$ associated with \mathcal{A} which is Σ_1 definable in \mathcal{A} and contains the following sentences:

(I) Extensionality.

(II) For each $a \in \mathcal{A}$, “$(\forall v)(v \in \bar{a} \iff \bigvee_{z \in a} v = z)$”.

Then there is a \mathcal{F}-structure $\mathcal{B} \models H$ so that $WF(\mathcal{B})$ is transitive, \mathcal{B} end extends \mathcal{A}, and $\text{ON} \cap \mathcal{A} = \text{ON} \cap \mathcal{B}$.

If \mathcal{A} is a Σ_2-admissible set and the theory H is Σ_2 definable in \mathcal{A}, then the same conclusion holds.

Proof. See [9] Section 4, Lemma 11 or [5]. Recall that \mathcal{B} is an end extension of \mathcal{A} if and only if $\mathcal{A} \subseteq \mathcal{B}$ and for all $x \in \mathcal{A}$, \(\{ y \in A : y \in^A x \} = \{ y \in B : y \in B^x \} \).

Fact 2.6 was originally proved by Sacks using a class forcing over countable admissible sets. For some properties concerning constructibility, the approach by forcing will be useful. A simple class forcing of Steel will be used. The following presents the definitions and basic properties. See [21] for more details.

Definition 2.8. (Steel’s forcing with tagged trees; see [21]) Let \mathcal{A} be a countable model of KP. Let ∞ be some symbol formally defined to be larger than all ordinals of \mathcal{A}. Let \mathcal{S} be the forcing consisting of (T,h) where T is a finite tree on ω and $h : T \to \text{ON}^A \cup \{ \infty \}$, with the property that for all $s, t \in T$ with $s \subseteq t$, $h(t) < h(s)$ or $h(s) = h(t) = \infty$. If $p, q \in \mathcal{S}$ and $p = (T_p, h_p)$ and $q = (T_q, h_q)$, then $p \leq q$ if and only if $T_p \supseteq T_q$ and $h_p \supseteq h_q$. Let $I_1 = (\emptyset, \emptyset)$. The forcing relation $p \vdash \varphi$, as a relation ranging over $p \in \mathcal{S}$ and ranked sentences φ (see [21]), is a Δ_1 relation in \mathcal{A}.

There are \mathcal{S}-names $\bar{T}, \bar{h} \in \mathcal{A}$ so that for any $G \subseteq \mathcal{S}$ which is \mathcal{S}-generic over \mathcal{A}, $\bar{T}[G] = \bigcup_{p \in G} T_p$ and $\bar{h}[G] = \bigcup_{p \in G} h_p$. Note that $\bar{T}[G]$ is a tree on ω. When $G \subseteq \mathcal{S}$ is \mathcal{S}-generic over \mathcal{A}, $\mathcal{A}[\bar{T}[G]] \models \text{KP}$. (However $\mathcal{A}[G]$ is not a model of KP.) Therefore, $\omega_1^{\bar{T}[G]} = \mathcal{A} \cap \text{ON}^V$.

Definition 2.9. If \mathcal{L} is a language, then let \mathcal{L}_∞ denote the set of first order \mathcal{L}-formulas and \mathcal{L}_∞ denote the class of infinitary formulas in the language \mathcal{L}. In KP, \mathcal{L}_∞ is a Δ_1 class. The satisfaction relation between \mathcal{L}-structures and formulas of \mathcal{L}_∞ is also Δ_1 in KP. A subset $F \subseteq \mathcal{L}_\infty$ is an fragment if it has the closure properties of [1] Definition III.2.1. (See [1] Chapter III for more information about the syntax and semantics of \mathcal{L}_∞.)

Definition 2.10. Let \mathcal{L} be a recursive language, $F \subseteq \mathcal{L}_\infty$ be a fragment, $T \subseteq F$ be a theory, and M be an \mathcal{L}-structure. Then $S_n^F(T)$ is the collection of all complete n-types of T in the fragment F.

For each $\varphi \in F$ with n many free variables, let $[\varphi]_F^T = \{ p \in S_n^F(T) : \varphi \in p \}$. The topology on $S_n^F(T)$ is generated by $[\varphi]_F^T$ as basic open sets, where φ ranges over formulas in F with n free variables. A type $p \in S_n^F(T)$ is an isolated type if $\{ p \}$ is an open set. A type which is not isolated is sometimes called a nonprincipal type. A formula φ is an isolating formula if and only if $[\varphi]_F^T$ is a singleton. That is, for all $\psi \in F$ with n free variables, $T \vdash (\forall \varphi)(\varphi \Rightarrow \psi)$ or $T \vdash (\forall \varphi)(\varphi \Rightarrow \neg \psi)$.

If \bar{a} is a tuple from M of length n, then $tp^M_\mathcal{F}(\bar{a})$ is the complete n-type consisting of the formulas of \mathcal{F} satisfied by \bar{a}.

Definition 2.11. The following definition and properties can be formalized and proved in KP.

Let \mathcal{L} be some language and let $M \in S(\mathcal{L})$. By Σ_1-recursion, the functions \mathcal{L}_α^M and T_α^M are defined as follows:

- Let $\mathcal{L}_0^M = \mathcal{L}_\omega$.
- If α is a limit ordinals, then let $\mathcal{L}_\alpha^M = \bigcup_{\beta < \alpha} \mathcal{L}_\beta^M$.
- For any α, let T_α^M be the complete theory of M in the fragment \mathcal{L}_α^M.
- Let \mathcal{L}_α^{M+1} be the least fragment \mathcal{F} extending \mathcal{L}_α^M containing $\bigwedge p$ for each nonprincipal $p \in S_n^{\mathcal{L}_\alpha^M}(T_\alpha^M)$ realized by some tuple in M.

The functions $\alpha \mapsto T_\alpha^M$ and $\alpha \mapsto \mathcal{L}_\alpha^M$ are Σ_1-functions on the Δ_1 class of ordinals. Hence these two functions are Δ_1. Note that if $M, N \in S(\mathcal{L})$ and $M \cong N$, then $\mathcal{L}_\alpha^M = \mathcal{L}_\alpha^N$ and $T_\alpha^M = T_\alpha^N$ for all ordinals α.

Let $\mathcal{L}_\infty^M = \bigcup_{\alpha \in \text{ON}} \mathcal{L}_\alpha^M$ and $T_\infty^M = \bigcup_{\beta \in \text{ON}} T_\beta^M$. For any β, a formula of quantifier rank $\alpha < \beta$ belongs to \mathcal{L}_α^M or T_α^M if it already belonged to \mathcal{L}_β^M or T_β^M. This can be used to show that \mathcal{L}_∞^M and T_∞^M are Δ_1.

4
The Scott rank of M, denoted $\text{SR}(M)$, is the smallest ordinal α so that M is the atomic model of T_α^M.

Fact 2.12. Let \mathcal{L} be a recursive language. Let $M \in S(\mathcal{L})$. $\text{SR}(M) \leq \omega_1^M + 1$.

Proof. See [16].

3. SCOTT RANKS OF CLASSIFICATIONS

Definition 2.11 shows that T_α^M and \mathcal{L}_α^M can be defined for any structure M within any model $A \models \text{KP}$ containing M. Suppose σ is a countable admissible ordinal and $x \in \omega^2$ is such that $\omega_1^x = \sigma$. Let Φ be a Δ_1^1 classification of $F_{\omega_1^x}$ by \mathcal{L}-structures. Generally, $\Phi(x) \notin L_\sigma$, where L_σ is the σ^{th}-level of Godel constructible hierarchy and the smallest admissible set of height σ. Later, it will desirable to have $\mathcal{L}_\alpha^{\Phi(x)}$ and $T_\alpha^{\Phi(x)}$ for $\alpha \leq \sigma$ either belong to L_σ or are Δ_1-definable in L_σ, even though the structure $\Phi(x)$ does not belong to L_σ.

The Solovay product forcing lemma for class forcing will be very useful for showing that the relevant theory of a model that does not exist in L_σ is actually definable in L_σ under certain circumstances. The Solovay product lemma states that elements that belong to two mutually generic extensions actually already belong to the ground model.

Lemma 3.1. (Solovay product lemma) Let $A \models \text{KP}$. Let P be a Δ_1^1-definable forcing in A. (This means that P and \leq_P are Δ_1^1 definable.) Assume that $p \not\vDash \varphi$ is a Δ_1^1 relation in arguments $p \in P$ and ranked sentences φ. Let $P \times P$ denote the product forcing. Let $G, H \subseteq P$ be \mathbb{P}-generic filters over A such that $G \times H$ is a $\mathbb{P} \times \mathbb{P}$-generic filter over A. Then $A[G] \cap A[H] = A$.

Proof. Suppose $A[G] \cap A[H] \neq \emptyset$. Let $z \in (A[G] \cap A[H]) \setminus A$ be of minimal rank. Hence $z \subseteq A$. There are \mathbb{P}-names σ and τ so that $z = \tau[G] = \sigma[H]$. By the forcing theorem, there is some $(p, q) \in P \times P$ so that $(p, q) \vDash_{P \times P} \tau = \sigma$, where here σ and τ are considered as $\mathbb{P} \times \mathbb{P}$-names which yield the result of the original \mathbb{P}-names τ and σ, respectively, evaluated using the left and right \mathbb{P}-generic filters, respectively, derived from $\mathbb{P} \times \mathbb{P}$-generic filters.

The claim is that for all $x \in A$, $p \vDash_p \bar{x} \in \tau$ or $p \vDash_P \bar{x} \notin \tau$: To see this, assume not. There is some $x \in A$ and some $p_0, p_1 \leq_P p$ so that $p_0 \vDash_p \bar{x} \in \tau$ and $p_1 \vDash_P \bar{x} \notin \tau$. Without loss of generality, suppose that $A[H] \models x \notin \tau[H]$. Then find some $q' \leq_P q$ so that $q' \vDash_{P \times P} \bar{x} \notin \tau$. Let $G', H' \subseteq P$ be \mathbb{P}-generic filters over A so that $G' \times H' = P$ and $G \subseteq G'$ and $H \subseteq H'$. By the forcing theorem, $x \notin \tau[H']$. Hence $A[G' \times H'] \models \tau[G'] \neq \tau[H']$. But $(p_0, q') \leq_{P \times P} (p, q)$ and $(p, q) \vDash_{P \times P} \tau = \sigma$. Contradiction.

Let α be the rank of z. Let A_α denote the elements of A of rank less than α. Then $z = \{x \in A_\alpha : p \vDash_P \bar{x} \in \tau\}, z \subseteq A$ by Δ_1-separation. This contradicts the earlier assumption that $z \notin A$.

Corollary 3.2. Let σ be a countable admissible ordinal. $\bigcap_{\omega_1^x = \sigma} L_\sigma[x] = L_\sigma$.

Proof. Let S be the Steel’s tagged tree forcing. Let G, H be S-generic filters over L_σ so that $G \times H$ is $S \times S$-generic over L_σ. Let $\alpha = \tau[G]$ and $b = \tau[H]$. $\omega_1^y = \omega_1^y$. Then $\bigcap_{\omega_1^x = \sigma} L_\sigma[x] = L_\sigma[a] \cap L_\sigma[b] \subseteq L_\sigma[G] \cap L_\sigma[H] = L_\sigma$ using Lemma 3.1.

In the following, let σ be an admissible ordinal. Let \mathcal{L} be a recursive language. Let $\Phi : \omega^2 \rightarrow S(\mathcal{L})$ be a Δ_1^1 classification of $F_{\omega_1^x}$ by \mathcal{L}-structures, i.e. $\omega_1^x = \omega_1^y$ if and only if $\Phi(x) \approx \Phi(y)$.

As mentioned above, since $\Phi(x) \approx \Phi(y)$ if and only if $\omega_1^x = \omega_1^y$, $\mathcal{L}_\sigma^{\Phi(x)} = \mathcal{L}_\sigma^{\Phi(y)}$ and $T_\alpha^{\Phi(x)} = T_\alpha^{\Phi(y)}$ for all ordinals α whenever $\omega_1^x = \omega_1^y$. Therefore, one may define $\mathcal{L}_\alpha^\sigma$ and T_α^σ to be $\mathcal{L}_\alpha^{\Phi(x)}$ and $T_\alpha^{\Phi(x)}$, respectively, where x can be any real so that $\omega_1^x = \sigma$. In general, $\mathcal{L}_\alpha^{\Phi(x)}$ and $T_\alpha^{\Phi(x)}$ are elements of $L_\sigma[\Phi(x)]$ when $\alpha < \sigma$ and is Δ_1 definable in $L_\sigma[\Phi(x)]$ when $\alpha = \sigma$. The Solovay product lemma will indicate that each set belongs to L_σ when $\alpha < \sigma$ and is Δ_1 in L_σ when $\alpha = \sigma$.

The following will give a formal definition of $L_\sigma^\mathcal{L}$ and $T_\sigma^\mathcal{L}$ inside any model of KP and their basic properties.

Definition 3.3. Let $z \in \omega^2$. Let \mathcal{L} be a recursive language. Let Φ be a $\Delta_1^1(z)$ classification of $F_{\omega_1^x}$ by \mathcal{L}-structures. Let σ be a countable z-admissible ordinal. Let A be a countable model of KP containing z such that $\text{ON} \cap A = \sigma$.

Now work in $(L[z])^A$: Let S denote Steel’s tagged tree forcing defined in $(L[z])^A$. Next, by Σ_1-recursion in $(L[z])^A$ (which is a model of KP), define the function taking an ordinal α of $(L[z])^A$ to $\mathcal{L}_\sigma^\mathcal{L}$ and $T_\sigma^\mathcal{L}$ as follows:
• Let $\mathcal{L}_0^\sigma = \mathcal{L}_{\omega\omega}$.

• If α is limit ordinal, then let $\mathcal{L}_\alpha^\sigma = \bigcup_{\beta<\alpha} \mathcal{L}_\beta^\sigma$.

• For any α, let T_α^σ be the set that such that $1_\mathbb{S} \models_\mathbb{S} "T_\alpha^\sigma"$ is the complete theory of $\Phi(T)$ in the fragment $\mathcal{L}_\alpha^\sigma$.

Here T refers to the canonical tree (construed as a real) produced by S as in Definition 2.8. Such a set exists using (I) of the next lemma to show $T_\alpha^\Phi(x) \in (L[z])^\mathbb{A}$ for any $x \in (\omega^2)^V$ such that $\omega_1^x = \sigma$. (Alternatively, T_α^σ is also the set of sentences $\varphi \in \mathcal{L}_\alpha^\sigma$ so that $1_\mathbb{S} \models_\mathbb{S} \Phi(T) \models_\mathbb{S} \varphi$.)

• Let $\mathcal{L}_{\omega+1}^\sigma$ be the smallest fragment \mathcal{F} of $\mathcal{L}_{\omega\omega}$ so that $1_\mathbb{S} \models_\mathbb{S} "\mathcal{F}"$ is the smallest fragment of $\mathcal{L}_{\omega\omega}$ so that for all $n \in \omega$, $\bigwedge p \in \mathcal{F}$ for any nonprincipal $p \in S_{\omega^\omega}^{\omega\omega}(T_\alpha^\sigma)$ realized by some n-tuple in $\Phi(T)$.

Lemma 3.4. Assume the setting of Definition 3.3

(I) For any $x \in \omega^2 \cap A$ such that $\omega_1^x = \sigma$ (in the real world) and any $\alpha \in \text{ON}^A$, $\mathcal{L}_\alpha^\Phi(x), T_\alpha^\Phi(x) \in (L[z])^\mathbb{A}$.

Any $p \in S_\omega^{\omega\omega}(x) (T^\Phi(x)_\alpha)$ realized by some tuple in $\Phi(x)$ belongs to $(L[z])^\mathbb{A}$.

(II) The functions $\alpha \mapsto \mathcal{L}_\alpha^\sigma$ and $\alpha \mapsto T_\alpha^\sigma$ are Δ_1 in $(L[z])^\mathbb{A}$.

(III) Let $T_\sigma^\omega = \bigcup_{\alpha \in \text{ON}} T_\alpha^\sigma$ and $\mathcal{L}_\sigma^\omega = \bigcup_{\alpha \in \text{ON}} \mathcal{L}_\alpha^\sigma$. Both are Δ_1 classes in $(L[z])^\mathbb{A}$.

(IV) For any $x \in (\omega^2)^V$ with $\omega_1^x = \sigma$ and $1 \leq \alpha$, $L_\alpha^\Phi(x) = L_\alpha^\sigma$ and $T_\alpha^\Phi(x) = T_\alpha^\sigma$.

Proof. (I) is proved using Lemma 3.1

(II) and (III) are proved much like the corresponding facts for $\mathcal{L}_\alpha^\Phi(x)$ and $T_\alpha^\Phi(x)$ mentioned in Definition 2.11 and using the definability of the forcing relation $\models_\mathbb{S}$.

(IV) is proved by induction. \square

Fact 3.5. Assume the setting of Lemma 3.3. The relation "φ is an isolating formula of $S_{\omega^\omega}^{\omega\omega}(T_\alpha^\omega)$" with free variable φ ranging over $\mathcal{L}_\infty^\omega$ is a Π_1 relation.

Proof. Recall that T_σ^∞ and $\mathcal{L}_\sigma^\infty$ are Δ_1 and that $T_\sigma^\infty = \bigcup_{\alpha \in \text{ON}} T_\alpha^\sigma$, where each T_α^σ is a complete theory in $\mathcal{L}_\alpha^\sigma$.

That φ is an isolating formula can be expressed by saying for all $\psi \in \mathcal{L}_\sigma^\infty$, for all $\beta \in \text{ON}$, if $\varphi, \psi \in \mathcal{L}_\beta^\sigma$, then either $(\forall x)(\varphi \Rightarrow \psi) \in T_\beta^\sigma$ or $(\forall x)(\varphi \Rightarrow \neg \psi) \in T_\beta^\sigma$. This can be formalized as a Π_1 statement. \square

Fact 3.6. (6) Theorem 4.2) Let $z \in \omega^2$. Let \mathcal{L} be a recursive language. Suppose $\Phi : \omega^2 \rightarrow S(\mathcal{L})$ is a $\Delta_1^1(z)$ classification of F_{ω_1} be \mathcal{L}-structures. Then for all x such that ω_1^x is ω-admissible, $\text{SR}(\Phi(x)) \geq \omega_1^x$.

Theorem 3.7. Let \mathcal{L} be a recursive language. Let $\Phi : \omega^2 \rightarrow S(\mathcal{L})$ be a $\Delta_1^1(z)$ classification of F_{ω_1}, by \mathcal{L}-structures. Let σ be an ordinal so that $L_\sigma[z] \models \Sigma_2$-KP and $L_\sigma[z] \models_1 L_{\omega_1^\omega}[z]$. Let $x \in \omega^2$ be such that $\omega_1^x = \sigma$. Then $\text{SR}(\Phi(x)) = \sigma + 1$.

Such a countable ordinal σ can be found as follows: By the Löwenheim-Skolem theorem, let $M \models \omega \models \omega_1^{L_{\omega_1^\omega}[z]}$ be a countable elementary substructure containing z. Since $L_{\omega_1^{L_{\omega_1^\omega}[z]}}$ thinks the transitive closure of all sets are countable, M has this property too. For all $x \in M$, there is some bijection $f : \omega \rightarrow \text{tc}(x)^M$, where tc denotes the transitive closure. Since M is elementary, this f really is a bijection of ω with $\text{tc}(x)$. For all $n \in \omega$, $f(n) \in M$ so $\text{tc}(x) \subseteq M$. This shows that M is transitive. Since M is a countable transitive elementary substructure of $L_{\omega_1^{L_{\omega_1^\omega}[z]}}$, there is some countable σ so that $M = L_\sigma[z]$ by condensation. Finally, $L_\sigma[z] \models \text{ZF} - \text{P}$ (and in particular Σ_2-KP) because $L_{\omega_1^{L_{\omega_1^\omega}[z]}} \models \text{ZF} - \text{P}$.

Proof. Before beginning the proof, an outline will be given: For simplicity throughout the proof, suppose Φ is Δ_1^1. By Lemma 3.4, $\langle \mathcal{L}_\alpha^\sigma : \alpha \in \text{ON} \rangle$ and $\langle T_\alpha^\sigma : \alpha \in \text{ON} \rangle$ are Δ_1-classes in the constructible universe of any model of KP whose collection of standard ordinals has ordertype σ. In particular, these two sequences are Δ_1-definable in L_σ. First, one will find an illfounded model of KP, B, so that $B \cap \text{ON} = \sigma$ and B contains some real c so that $\omega_1^c = \sigma$. Lemma 3.4 asserts that each $T_\alpha^\Phi(c) = T_\alpha^\sigma$ and $\mathcal{L}_\alpha^\Phi(c) = \mathcal{L}_\alpha^\sigma$, and hence they belong to L_σ. Furthermore, B has the crucial property that any isolating formula for $\mathcal{L}_\infty^\sigma$ in L_σ is an isolating formula for $\langle \mathcal{L}_\infty^\sigma \rangle^B$ in B. This fact will be accomplished by simply arranging that $L_\sigma \models_1 B$. This B is found using Jensen’s model existence theorem with an appropriate theory in a countable admissible fragment of L_σ that attempts to express Σ_1-elementarity. The choice of the ordinal σ will show that the theory to which the Jensen’s model existence theorem is applied is consistent since it will be modeled by
Let \mathcal{J} be the language consisting of the following objects:

(i) A binary relation symbol $\bar{\varepsilon}$.
(ii) New constant symbol \bar{a} for each element of $a \in L_\sigma$.
(iii) Two new constant symbols \bar{c} and \bar{d}.

\mathcal{J} can be considered a Δ_1 definable language in the countable admissible set L_σ.

Let H be the theory in the countable admissible fragment $(\mathcal{J}_{\omega_1})^{L_\sigma}$ with the following sentences:

(I) All the axioms of $ZF - P$.
(II) For each $a \in L_\sigma$, $(\forall v)(v \varepsilon \bar{a} \iff \bigwedge_{z \varepsilon a} \bar{z} = v)$.
(III) Add the sentence "$\bar{c} \in 2^{\omega_1}$". For each ordinal $\beta < \sigma$, add "$L_\beta[\bar{c}] \not\models KP$".
(IV) For each Π_1 formula $\varphi(x_0, ..., x_{k-1})$ of $\langle \bar{\varepsilon} \rangle$ and elements $a_0, ..., a_{k-1} \in L_\sigma$ such that $L_\sigma \models \varphi(a_0, ..., a_{k-1})$, add the sentence "$\varphi(a_0, ..., a_{k-1})$".
(V) Add the sentence "d is an ordinal". For each $\beta < \sigma$, add "$\bar{d} > \bar{\beta}$".

The Σ_1-satisfaction relation of L_σ is a Σ_1 relation in L_σ. (See [10] Corollary 1.13.) Therefore, the Π_1-satisfaction relation of L_σ is Π_1 definable in L_σ. So H is a Π_1 and hence a Σ_2-definable subset of L_σ. Note that (III) states that each $\beta < \sigma$ is a not a \bar{c}-admissible ordinal. (IV) states that L_σ will be a Σ_1 elementary substructure of any model of H. (V) states that \bar{d} is an ordinal larger than each $\beta < \sigma$.

It will be seen below that one will only use the fact that isolating sentences in L_σ remain isolating sentences in models of H. One can rewrite (IV) to express this rather than attempt to obtain full Σ_1-elementarity. Also (I), (II), (III) and an argument similar to the one below constitute Sack's proof (see [9]) of Sack's theorem.

H is consistent: Let B be the \mathcal{J}-structure with underlying domain L_{ω_1}. Let $\bar{\varepsilon} \varepsilon B = \varepsilon \big| L_{\omega_1}$. Let c be any real in L_{ω_1} such that $\omega_1^c > \sigma$. Let $\bar{c}^B = c$. Let $\bar{d} = \sigma + 1$. For each $a \in L_\sigma$, let $\bar{d}^B = a$. (I), (II), (III), and (V) are clearly satisfied in B. Note that (IV) is satisfied since $L_\sigma \models \bigwedge_{\beta < 1} L_{\omega_1}\bar{\beta}$. By the Σ_2 version of Sack's model existence theorem (Fact 2.7), there is a \mathcal{L}-structure B so that $B \models H$, B end extends L_σ, $WF(B)$ is transitive, and $ON \cap B = \sigma$. Let $c = \bar{c}^B$ and $d = \bar{d}^B$. By (V), d is a nonstandard ordinal. So B is an illfounded model. Note that $c \in WF(B)$ since c is a real.

First, to show that $\omega_1^c = \sigma$: For each $\beta < \sigma$, $B \models L_\beta[\bar{c}] \not\models KP$. Satisfaction is Δ_1 so by absoluteness, $WF(B) \models L_\beta[\bar{c}] \not\models KP$. Again by absoluteness, $V \models L_\beta[\bar{c}] \not\models KP$. Hence β is not a \bar{c}-admissible ordinal. This shows that $\omega_1^c \geq \sigma$. Also by (I), $B \models ZF - P$. In particular, $B \models KP$. By the truncation lemma (Fact 2.5), $WF(B) \models KP$. Hence $WF(B)$ is an admissible set containing c. So $ON \cap WF(B) = \sigma$ is a c-admissible ordinal. This shows σ is the smallest c-admissible ordinal. By definition, $\omega_1^c = \sigma$.

Since Φ is Δ_1^1, $\Phi(c)$ is $\Delta_1^1(c)$. $\Phi(c)$ belong to any admissible set containing c. Thus $\Phi(c) \in WF(B) \subset B$.

By Fact 3.4, $SR(\Phi(c)) \geq \sigma$. Suppose toward a contradiction that $SR(\Phi(c)) = \sigma$. Then $\Phi(c)$ is an atomic model of $T_{\omega_1}^{\omega_1 \omega_1}(\mathcal{L})_{\omega_1}$.

Since $\Phi(c) \in S(\mathcal{L})$, $\Phi(c)$ is an \mathcal{L}-structure with underlying domain ω. In $L_\sigma[\Phi(c)]$, define the function $\Psi : \lt \omega_1 \omega \to ON$ by letting $\Psi(\bar{a})$ be the least ordinal α so that there is some $\varphi \in \mathcal{L}_\omega$ with φ an isolating formula for $T_{\omega_1}^{\omega_1}$ in the fragment \mathcal{L}_ω realized by the tuple \bar{a}.

Note that this is a well-defined function since $\Phi(c)$ is an atomic model of $\langle T_{\omega_1}^{\omega_1} \rangle_{L_\sigma[\Phi(c)]}$. (Also note that since L_σ and $L_\sigma[\Phi(c)]$ have the same ordinals and hence the same constructible universe, T^ω and \mathcal{L}^σ are the same class whether relativized in L_σ or relativized in $L_\sigma[\Phi(c)]$.)
Now let $\hat{\Psi}$ be the function defined in \mathcal{B} by the same formula used to defined Ψ in $L_\sigma[\Phi(c)]$.

(Note that it is not immediately seen that $\hat{\Psi}$ is the same function as Ψ since ON$^\mathcal{B} \neq \sigma = ON^{L_\sigma[\Phi(c)]}$. Hence $(T_{\omega}^\mathcal{B})^\mathcal{B} \neq (T_{\omega}^{\mathcal{B}})^{L_\sigma[\Phi(c)]}$ and $(L_{\omega}^\mathcal{B})^\mathcal{B} \neq (L_{\omega}^{\mathcal{B}})^{L_\sigma[\Phi(c)]}$. In particular, it is not immediate that a formula in $(L_{\omega}^\mathcal{B})^\mathcal{B}[\Phi(c)] = (L_{\omega}^{\mathcal{B}})^{L_\sigma}$ which isolates a type in L_σ would still isolate a type in the larger fragment $(L_{\omega}^\mathcal{B})^\mathcal{B}$. Σ_1-elementarity will be used to resolve this.)

The claim is that $\Psi = \hat{\Psi}$. To see this, let \bar{a} be a finite tuple of natural number understood to be a tuple from $\Phi(c)$. Since $\Phi(c)$ is an atomic model of $(T_\omega^{\mathcal{B}})^{L_\sigma[\Phi(c)]} = (T_\omega^{\mathcal{B}})^{L_\sigma}$, there is some $\varphi \in (L_{\omega}^{\mathcal{B}})^{L_\sigma}$ so that $[\varphi]_{(T_\omega^{\mathcal{B}})^{L_\sigma}} = \{tp_{L_\sigma}[\Phi(c)](\bar{a})\}$. $L_\sigma \models \"\varphi is a isolating formula for $S_{\omega}^{\mathcal{B}} \setminus (T_\omega^{\mathcal{B}})\"$. By Fact 3.5 this statement is Π_1. Since $L_\sigma \prec B$. $B \models \"\varphi is an isolating formula of $S_{\omega}^{\mathcal{B}} \setminus (T_\omega^{\mathcal{B}})\"$.

This shows that in B, $[\varphi]_{(T_\omega^{\mathcal{B}})} = \{tp_{L_\sigma}[\Phi(c)](\bar{a})\}$. Hence $B \models \hat{\Psi}(\bar{a}) \leq \Psi(\bar{a})$. Suppose $\hat{\Psi}(\bar{a}) < \Psi(\bar{a})$. There is some $\alpha < \Psi(\bar{a})$ and some formula $\varphi \in (L_{\omega}^{\mathcal{B}})^{\mathcal{B}}$ so that $B \models \"\varphi is an isolating formula which isolates $tp_{L_\sigma}[\Phi(c)](\bar{a})\$\"$. Since $\Psi(\bar{a}) < \sigma$, $(L_{\omega}^{\mathcal{B}})^{\mathcal{B}} = (L_{\omega}^{\mathcal{B}})^{L_\sigma}$. Hence $\varphi \in L_\sigma$. Then by downward absoluteness of Π_1 statements from \mathcal{B} to $L_\sigma[\Phi(c)]$, $L_\sigma[\Phi(c)] \models \"\varphi is an isolating formula for $tp_{L_\sigma}[\Phi(c)](\bar{a})\$\"$. This contradicts the definition of Ψ in $L_\sigma[\Phi(c)]$.

This shows that $\Psi = \hat{\Psi}$. Now suppose that $\Psi[\omega] = \sigma$. Since $B \models ZF - P$ (in particular the full replacement axiom), $\hat{\Psi}[\omega] = \sigma$ is a set in \mathcal{B}. Therefore, sup $\hat{\Psi}[\omega] \in ON^\mathcal{B}$. Since $\Psi = \hat{\Psi}$ and $\Psi[\omega] = \sigma$, one must have that sup $\hat{\Psi}[\omega]$ is a nonstandard ordinal greater than each $\beta < \sigma$. Hence there is some $b < sup \hat{\Psi}[\omega]$ so that $B \models \beta < b$ for all standard $\beta < \sigma$ with $b \in \hat{\Psi}[\omega]$. Thus there is some \bar{a} so that $\Psi(\bar{a}) < \psi = \hat{\Psi}(\bar{a})$. This contradicts $\Psi = \hat{\Psi}$.

This shows that $\Psi[\omega] < \sigma$ which implies $SR(\Phi(c)) < \sigma$. However, it was already noted that $SR(\Phi(c)) \geq \sigma$. Contradiction. This shows that $SR(\Phi(c)) = \sigma + 1$. Since Φ is a classification, for any x with $\omega^x_1 = \omega^\mathcal{B}_1 = \sigma$, $\Phi(x) \approx_{L_\sigma} \Phi(c)$. Hence $SR(\Phi(x)) = \sigma + 1$. This completes the proof of the theorem.

The following is still open.

Question 3.8. If \mathcal{L} is a recursive language and $\Phi : \omega^2 \rightarrow S(\mathcal{L})$ is a Δ^1_1 classification of F_{ω_1} by \mathcal{L}-structures, then for all $x \in \omega^2$, is $SR(\Phi(x)) = \omega^x_1 + 1$?

Note that the lightface Δ^1_1 is important in the phrasing of the question. The F_{ω_1}-class $\{x : \omega^x_1 = \omega^\mathcal{B}_1\}$ is $\Delta^1_1(z)$ for any z such that $\omega^z_1 > \omega^\mathcal{B}_1$. Therefore, with access to such a parameter z, one can easily modify a known Δ^1_1 classification of F_{ω_1} to obtain a $\Delta^1_1(z)$ classification that sends all elements of $\{x : \omega^x_1 = \omega^\mathcal{B}_1\}$ to some fixed recursive structure of Scott rank $\omega^\mathcal{B}_1$ and leaves the other classes alone.

It seems that if a classification Φ is $\Delta^1_1(z)$, then the relativization of the above question should be to ask the same question but only for those $x \in \omega^2$ such that ω^x_1 is z-admissible.

References

1. Jon Barwise, *Admissible sets and structures*, Springer-Verlag, Berlin-New York, 1975, An approach to definability theory, Perspectives in Mathematical Logic. MR 0424560 (54 #12519)
2. Howard Becker, *The topological Vaught’s conjecture and minimal counterexamples*, J. Symbolic Logic 59 (1994), no. 3, 757–784. MR 1295968 (95k:03077)
3. , *Strange structures from computable model theory*, Notre Dame J. Form. Log. 58 (2017), no. 1, 97–105. MR 3595343
4. Wesley Calvert, Julia F. Knight, and Jessica Millar, *Computable trees of Scott rank ω^CK, and computable approximation*, J. Symbolic Logic 71 (2006), no. 1, 283–298. MR 2210068 (2006j:03057)
5. William Chan, *Jensen’s model existence theorem*, Notes.
6. William Chan, *The countable admissible ordinal equivalence relation*, Ann. Pure Appl. Logic 168 (2017), no. 6, 1224–1246. MR 3628272
7. Joseph Harrison, *Recursive pseudo-well-orderings*, Trans. Amer. Math. Soc. 131 (1968), 526–543. MR 0244049 (39 #5366)
8. M. Harrison-Trainor, G. Igusa, and J. F. Knight, *Some new computable structures of high rank*, Proceedings of the American Mathematical Society (2017).
9. R. Bjørn Jensen, *Admissible sets*, http://www.mathematik.hu-berlin.de/~raesch/org/jensen.html
10. , *The fine structure of the constructible hierarchy*, Ann. Math. Logic 4 (1972), 229–308; erratum, ibid. 4 (1972), 443, With a section by Jack Silver. MR 0309729 (46 #8343)
11. S. C. Kleene, *On the forms of the predicates in the theory of constructive ordinals. II*, Amer. J. Math. 77 (1955), 405–428. MR 0070595 (17,5a)
12. Julia Knight, Antonio Montalbán, and Noah Schweber, *Computable structures in generic extensions*, J. Symb. Log. 81 (2016), no. 3, 814–832. MR 3569106
13. M. Makkai, *An example concerning Scott heights*, J. Symbolic Logic **46** (1981), no. 2, 301–318. MR 613284 (82m:03049)

14. David Marker, *An analytic equivalence relation not arising from a Polish group action*, Fund. Math. **130** (1988), no. 3, 225–228. MR 970906 (89k:03056)

15. Andrew Marks, Theodore A. Slaman, and John R. Steel, *Martin’s conjecture, arithmetic equivalence, and countable Borel equivalence relations*, Ordinal definability and recursion theory: The Cabal Seminar. Vol. III, Lect. Notes Log., vol. 43, Assoc. Symbol. Logic, Ithaca, NY, 2016, pp. 493–519. MR 3469180

16. Mark Nadel, *Scott sentences and admissible sets*, Ann. Math. Logic **7** (1974), 267–294. MR 0384471 (52 #5348)

17. Gerald E. Sacks, *Countable admissible ordinals and hyperdegrees*, Advances in Math. **20** (1976), no. 2, 213–262. MR 0429523 (55 #2536)

18. Gerald E. Sacks, *On the number of countable models*, Southeast Asian conference on logic (Singapore, 1981), Stud. Logic Found. Math., vol. 111, North-Holland, Amsterdam, 1983, pp. 185–195. MR 723338 (85i:03095)

19. Gerald E. Sacks, *Higher recursion theory*, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990. MR 1080970 (92a:03062)

20. Gerald E. Sacks, *Bounds on weak scattering*, Notre Dame J. Formal Logic **48** (2007), no. 1, 5–31. MR 2289894

21. John R. Steel, *Forcing with tagged trees*, Ann. Math. Logic **15** (1978), no. 1, 55–74. MR 511943 (81c:03044)

22. John R. Steel, *A classification of jump operators*, J. Symbolic Logic **47** (1982), no. 2, 347–358. MR 654792

Department of Mathematics, University of North Texas, Denton, TX 76203

E-mail address: William.Chan@unt.edu

Department of Pure Mathematics, University of Waterloo, ON, Canada N2L 3G1

E-mail address: maharris@uwaterloo.ca

Department of Mathematics, UCLA, Los Angeles, CA 90095

E-mail address: marks@math.ucla.edu