Pre-metastatic niches: organ-specific homes for metastases

Héctor Peinado1,2,*, Haiying Zhang1,*, Irina R. Matejí,*, Bruno Costa-Silva1,3, Ayuko Hoshino1, Goncalo Rodrigues1,4, Bethan Psaila6, Rosandra N. Kaplan6, Jacqueline F. Bromberg7, Yibin Kang8,9, Mina J. Bissell10, Thomas R. Cox11, Amato J. Giaccia12, Janine T. Erler13, Sachie Hiratsuka14, Cyrus M. Ghajari15 and David Lyden1,16

Abstract | It is well established that organs of future metastasis are not passive receivers of circulating tumour cells, but are instead selectively and actively modified by the primary tumour before metastatic spread has even occurred. Sowing the ‘seeds’ of metastasis requires the action of tumour-secreted factors and tumour-shed extracellular vesicles that enable the ‘soil’ at distant metastatic sites to encourage the outgrowth of incoming cancer cells. In this Review, we summarize the main processes and new mechanisms involved in the formation of the pre-metastatic niche.

A pivotal discovery by Stephen Paget in 1889 (REF. 1) postulated that metastasis is dependent on the interactions between ‘seeds’ (or the cancer cells) and the ‘soil’ (or the host microenvironment). Paget’s theory was challenged in the 1930s by James Ewing, who advocated that metastatic dissemination could be explained solely by the dynamics of haematogenous flow (FIG. 1). Ewing’s perspective became the prevalent viewpoint until Isaiah Fidler’s research in the 1970s demonstrated that, although the mechanical properties of blood flow were important, successful metastatic colonization could occur only at certain organ sites (FIG. 1). In addition to strengthening Paget’s theory, Fidler’s findings reignited interest in the question of organ specificity observed in metastatic tumours (FIG. 2). Fidler proposed that the pre-metastatic niche is the earliest event in this sequence, followed by the alteration of local resident cells, such as fibroblasts, and the recruitment of non-resident cells, such as bone marrow-derived cells (BMDCs), to these organs. This organ specificity observed in metastasis is thought to be determined by the presence of a pro-tumorigenic, organ-specific microenvironment (FIG. 3).

In addition to the contribution of tumour-secreted factors to PMN formation, there are other tumour-independent pathological and physiological processes that contribute to the survival and outgrowth of tumour cells before their arrival at these sites. These processes include the shedding of extracellular vesicles (EVs) and the release of extracellular matrix components, as well as the recruitment of non-resident cells, such as fibroblasts, and the recruitment of non-resident cells, such as bone marrow-derived cells (BMDCs), to these organs. This organ specificity observed in metastasis is thought to be determined by the presence of a pro-tumorigenic, organ-specific microenvironment (FIG. 3).

In this Review, we summarize the main processes and new mechanisms involved in the formation of the pre-metastatic niche.

Correspondence to D.L.

Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Druker Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.
dc12001@med.cornell.edu

doi:10.1038/nrc.2017.6

Published online 17 Mar 2017

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
Microenvironment and Metastasis Group, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain.

14 Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrocços, 1400-038 Lisbon, Portugal.

15 Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4009-001 Porto, Portugal.

16 Centre for Haematology, Department of Medicine, Hammersmith Hospital, Imperial College London, London W12 0HS, UK.

17 Center for Cancer Research, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10-Hatfield CRC, Room 1-3940, Bethesda, Maryland 20892, USA.

18 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.

19 Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.

20 Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA.

21 Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

22 The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney NSW 2010, Australia.

23 Department of Radiation Oncology, Stanford University, Stanford, California 94305, USA.

24 Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen 2200, Denmark.

25 Department of Pharmacology, Tokyo Women’s Medical University School of Medicine, 8-1 Kawada-cho, Tokyo 162-8666, Japan.

26 Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.

27 Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.

*These authors contributed equally to this work

Organ-specific PMNs

Increasing clinical evidence reveals the existence of PMNs in tissue samples derived from cancer patients, as observed in sentinel lymph nodes (LNs) resected from patients with colorectal, prostate, breast, thyroid, bladder, gastric and renal cell carcinomas. LN PMNs were identified in mouse models of experimental metastasis and in patients with breast cancer, showing that pro-vasculogenic vascular endothelial growth factor receptor 1 (VEGFR1) myeloid progenitor cells colonize LNs primed by tumour-secreted factors before the arrival of CTCs. Subsequently, it was demonstrated that lymphangiogenesis precedes CTC arrival at future sites of LN metastasis. Tumour cells encounter immune cells within LNs and the lung and interact with them directly or indirectly through tumour-secreted factors or EVs. These interactions likely modulate immune responses against CTCs.

Liver PMN formation, which occurs during the initial phases of visceral metastasis (that is, metastasis of gastrointestinal tract cancers, breast cancer and melanoma), also relies on BMDC recruitment. Enzymes involved in ECM remodelling, such as tissue inhibitor of metalloproteinase 1 (TIMP1), generate liver PMNs through stromal cell-derived factor 1 (SDF1; also known as CXCL12)–C–X–C chemokine receptor type 4 (CXCR4)–dependent recruitment of neutrophils. More recently, exosomes were demonstrated to be biomarkers and functional contributors to liver PMNs. Specifically, exosomes derived from human pancreatic cancer cell lines expressing macrophage migration inhibitory factor (MIF) ‘educated’ Kupffer cells to produce transforming growth factor-β (TGFβ), which promoted ECM remodelling by hepatic stellate cells, enabling recruitment of bone marrow–derived macrophages. Thus, exosomal MIF levels may serve as an early biomarker for liver PMN.

In this Review, we summarize the progression of PMN formation. We discuss the main mechanisms involved in PMN generation and their impact on host cells in pre-metastatic organs. We also discuss a novel concept: the generation of specialized micro-environments, named ‘sleepy niches’, where tumour cells could survive in a dormant state.

Setting the clinical stage

Most of the work exploring tumour-directed PMN formation has used orthotopic and transgenic mouse models of metastasis, and most of our understanding of PMN biology is based on studies of lung metastasis, one of the most frequent sites of metastasis in both preclinical models and patients. Preclinical models of metastasis enable researchers to test therapies in laboratory conditions that mimic disease present in patients. Nonetheless, there are several challenges associated with setting up transgenic systems that mimic disease present in patients. Therefore, it is necessary to explore the possibility of persisting PMNs that coexist once metastatic niches are created in a specific organ and to determine whether established metastatic niches (or metastases on their own) can modulate secondary PMNs at additional organ sites of future metastasis.

Inflammation and tumour-directed PMNs

Inflammatory milieu induced by tumour-secreted factors, which creates immunosuppression and coagulation disorders, sets the stage for organ-specific PMNs (Fig. 1). There are several other malignant cells surrounding normal tissues, which can stimulate integrin expression and stromal cell migration that is required for the development of imaging probes to differentiate PMNs from other malignant cells. Thus, researchers are developing new technologies for better imaging techniques, such as the development of imaging probes to differentiate PMNs from other malignant cells. This enables researchers to test therapies in laboratory conditions that mimic disease present in patients. As a result of these efforts, researchers have developed new techniques for imaging PMNs, which is an important step towards improving our understanding of PMN biology and developing new therapies for cancer.
Extracellular matrix (ECM): Comprising molecules, specifically proteoglycans and fibrous proteins (fibronectin, collagen, elastin and laminin) secreted by stromal cells into the microenvironment, that generate an intricate network of macromolecules that fill the intercellular space.

Orthotopic
Derived from the Greek orthos, meaning right and topos, meaning place, this terminology refers to grafting a tumour into the place in the body where it would normally arise and grow.

Transgenic
Relating to or denoting an organism that contains genetic material into which DNA from an unrelated organism has been artificially introduced.

Omental tissues
A double fold of peritoneum attached to the stomach and connecting it with certain organs of the abdominal viscera, composed of the greater and the lesser omentum, which are the membranes of the bowels.

Neutrophils
Also known as polymorphonuclear leukocytes. Mature granular white blood cells with a multilobular nucleus and cytoplasm containing very fine granules. They are typically the first responders to acute inflammation, such as bacterial infection, injury or certain cancers.

Exosomes
Extracellular vesicles (typically 50–150 nm in diameter) of endocytic origin, released into the extracellular space by all cell types through the fusion of multivesicular bodies with the plasma membrane.

Kupffer cells
Specialized liver-resident phagocytic macrophages that line the walls of the liver sinusoid blood vessels.

Stellate cells
Pericytes that reside in the area between liver sinusoid blood vessels and hepatocytes. They play a prominent role in liver fibrosis and may function as liver-resident antigen-presenting cells.

formation. Another exosomal biomarker, glypican 1, may also function in liver PMN formation, as well as being an indicator of early pancreatic cancer. Thus, the mechanisms of PMN formation at sites of visceral metastasis share common features, such as BMDC influx and the horizontal transfer of information via tumour-secreted factors and exosomes.

Bone is a common site of metastasis for many types of solid tumour. Primary tumours and the circulating factors derived from them can condition target cells residing in the bone to support PMNs and metastatic cell colonization. The reciprocal crosstalk between tumour cells and bone cells creates an environment ripe for osteoblastic (that is, bone-forming) or osteolytic (that is, bone-degrading) metastases. In osteolytic metastases (for example, from breast cancers), hypoxic tumour-secreted factors, such as the ECM-modifying enzyme lysyl oxidase (LOX), are essential for the formation of PMN osteolytic lesions (discussed further below). Other secreted factors such as parathyroid hormone-related protein (PTHrP)44, interleukin-6 (IL-6)38–40 and matrix metalloproteinases (MMPs)38–41 are known to activate osteoblasts, releasing high levels of receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL), which in turn induces osteoclast differentiation. These factors in turn promote the survival, growth and continued pro-osteolytic signalling of cancer cells. In osteolytic metastases (for example, from prostate cancers) there is still scarce information regarding PMN formation. Primary tumour-secreted factors such as WNT,
bone morphogenetic proteins (BMPs), fibroblast growth factor (FGF), insulin-like growth factor I (IGF1) and IGF2, endothelin 1, prostate-specific antigen (PSA; also known as KLK3) and vascular endothelial growth factor A (VEGFA) influence osteoblast activity directly or indirectly^42-45 and therefore may be candidates for driving osteoblastic PMNs. Whether these factors could execute these changes distally is still a matter of study.

Last but not least, the brain, as an immunoprivileged site protected by the unique properties of the blood–brain barrier (BBB), remains a challenge, as brain metastasis is one of the deadliest complications of treatment failure^46. Several recent studies have provided considerable insight into the evolution of BBB vascular permeability during cancer metastasis and its consequences for therapeutic efficacys^66-49. For example, reduction in expression of the astrocytic basement membrane component laminin-α2 and the CD133+ pericyte subpopulation are observed when BBB permeability is compromised^50. Although the brain PMN remains mostly uncharted territory, glucose metabolism is one of the most relevant mechanisms involved in breast cancer metastasis to the brain^46 as will be discussed further below.

Secreted factors in PMN formation

The establishment of PMNs facilitates organotropic metastasis by promoting CTC survival and outgrowth. This was shown first by injecting a Lewis lung carcinoma (LLC) cell line, which metastasizes only within the lung, into the flank of syngeneic mice pretreated with melanoma-conditioned medium (MCM). In MCM-treated mice, LLC cells now metastasized to the spleen, kidney, oviduct and intestine, which are organs associated with melanoma metastasis^51. This demonstrated that tumour-derived factors were a crucial component of MCM, and it was later shown that tumour-secreted exosomes exert crucial effects on PMN establishment (FIGS 1, 2). Indeed, tumour-derived exosomes dictate organotropic behaviour^51, raising the question of what characteristics distinguish PMNs established in each of these organs. These studies reinforce the importance of the PMN in metastasis development by showing that tumour cell-intrinsic metastatic propensities are not sufficient for metastatic seeding and outgrowth and that a preconditioned microenvironment is the key determinant of organ-specific metastasis (TABLE 1).

The pro-metastatic secretome

Pro-angiostatic factors, such as VEGFA and placenta growth factor (PLGF)^52, as well as inflammatory cytokines and chemokines, such as TGFβ and tumour necrosis factor (TNF), released by melanoma (B16 cells) and lung cancer (LLC cells) primary tumour cells were the first molecules shown to support PMN formation in the lung^52,53, (TABLE 1). Furthermore, of the factors supporting BMDC recruitment to future PMNs, tumour-secreted granulocyte colony-stimulating factor (G-CSF) is sufficient to mimic the pre-metastatic lung microenvironment initiated by primary tumours and to enhance metastatic properties in both metastatic and non-metastatic mouse syngeneic tumours^54.

Another tumour-derived chemokine with a crucial role in PMN lung formation is chemokine C-C motif ligand 2 (CCL2). CCL2 is a potent chemoattractant for monocytes, macrophages, memory T lymphocytes and natural killer (NK) cells^55. The important functions of CCL2 in cancer progression are reflected by the correlation between its overexpression and poor prognosis in many types of primary tumour^56-60. Primary breast tumour cell-derived and stromal cell-derived CCL2 can also modulate the earliest steps of metastatic colonization following PMN formation by recruiting inflammatory monocytes that facilitate CTC extravasation in a VEGFA-dependent manner, thus effectively promoting lung micrometastasis^61. CCL2 also inhibits NK cell maturation in the lung PMN in experimental models of both breast cancer and melanoma, probably decreasing the ability of NK cells to eliminate incoming CTCs^62. Moreover, in MDA-MB-231 breast cancer cell xenograft models, CCL2 promoted breast cancer metastasis to lung by recruitment of mature macrophages to promote invasion and early establishment of tumour cell clusters, and to bone by enhancing osteoclast differentiation and enhancing the ‘vicious’ cycle of bone metastasis^63,64. By contrast, in the 4T1 syngeneic model of breast cancer, CCL2 induced neutrophil-mediated cytotoxicity in the pre-metastatic lung via elevated G-CSF levels, therefore inhibiting tumour cell seeding in PMNs, as evidenced by the reduction in number, but not size, of metastatic foci^65. Collectively, these findings suggest multifaceted roles of CCL2 in PMN evolution and the establishment of early metastatic niches.

A common denominator of inflammatory responses within PMNs is the S100 family of proteins^66. S100 proteins are inflammatory mediators that are crucial in intercellular crosstalk between tumour cells and stromal cells during PMN formation^67. One important characteristic of these proteins is that they act both intracellularly and extracellularly. Within cells, S100 proteins regulate proliferation, differentiation, apoptosis, Ca2+ homeostasis, migration and invasion through interactions with cytokkeletal proteins, enzymes, transcription factors and nucleic acids^68. Extracellular S100 proteins have both autocrine and paracrine effects via activation of cell surface receptors, G-protein-coupled receptors, scavenger receptors, heparan sulfate proteoglycans and N-glycans^69,70. They are involved in processes such as enhancement of Ca2+ influx in cells, cytokine production, immune cell recruitment and infiltration as well as inflammation^71. Tumour-secreted factors, such as TNF, TGFβ and VEGFA, induce S100A8 and S100A9 expression by endothelial cells and by CD11b+ myeloid cells in the pre-metastatic lungs^72,73. During this process, in mouse models, S100 proteins promote the expression and secretion of serum amyloid A3 (SAA3), which in turn recruits myeloid cells and tumour cells to PMNs^74. This process requires SAA3-mediated activation of Toll-like receptor 4 (TLR4) and NF-κB signalling^75. Interestingly, as demonstrated in preclinical models of breast cancer, activation of hypoxia-inducible factor 1 (HIF1) is crucial even in PMN formation^76,77. Indeed,
the HIF1 target LOX is one of the main proteins induced at PMNs. HIF1α-mediated hypoxia responses within the primary tumour may reinforce the secretion of both protein factors and EVs that are important in PMN formation and metastatic potential. For example, in breast cancer cell lines, EV shedding is increased by the HIF-dependent expression of the small GTPase RAB22A. It remains to be determined whether hypoxia or HIF signalling alters tumour-derived vesicle cargo and subsequently the education of stromal cells in distant PMNs.

Tumour-derived messengers: EVs

EVs are classified on the basis of their size and origin as microvesicles (>150 nm), which are formed at the cell surface through a budding mechanism, and exosomes (30–150 nm), which are produced in the endolysosomal and multivesicular body compartments for release outside the cell. The machineries involved in the release of EVs, their docking and fusion during both physiological and pathological processes are still being deciphered. EV movement within the cell requires the cytoskeleton (actin and microtubules), associated molecular motors
In the context of metastatic cancer development, cancer stem cells (CSCs) play a crucial role. They are a subset of cancer cells that share features of normal stem cells, such as self-renewal and differentiation, and are believed to regenerate the tumour

(kinesins and myosins), molecular switches (small GTPases) and the fusion machinery (SNAREs and tethering factors)\(^\text{[7,29]}\). Metastatic tumour cells demonstrate increased ability to package and secrete cargo (that is, proteins and microRNAs (miRNAs)) in exosomes\(^\text{[29,79,80]}\). Similarly, some stimuli that act during PMN formation, such as hypoxia, promote the release of exosomes\(^\text{[34]}\). Technical limitations in analysing PMNs (that is, requirement for in vivo microscopy) have hindered the analysis of EV dynamics within PMNs. Tumour-derived EVs can be isolated from bodily fluids such as plasma and carry tumour cell-derived proteins and genetic material that promote disease progression\(^\text{[7,29,81]}\).

Tumour cell-derived EVs fuse with resident cells in both PMNs and tumours, transferring their cargo, including genetic material (DNA, mRNA and miRNA), metabolites (lipids and small metabolites) and proteins\(^\text{[79,82]}\). Pioneering studies demonstrated that platelet-derived EVs (particularly microparticles) induced angiogenesis and metastasis in lung and breast cancers\(^\text{[81,83,84]}\); however, the relevance of EVs in PMN formation was not evaluated in these studies. Since then, EVs have been shown to contribute to the recruitment and transfer of material to other stromal cell types, including those populating PMNs\(^\text{[81,82,83]}\).

Tumour-derived exosomal miRNA and proteins reprogramme or educate target cells that take up exosomes towards a pro-metastatic and pro-inflammatory phenotype, creating the PMX\(^\text{[29,79]}\). Education of stromal cells depends on the cancer type and pre-metastatic organ analysed. In melanoma, the hepatocyte growth factor receptor, MET, which is secreted in B16-F10 melanoma-derived exosomes, reinforces the expression of tyrosine kinase with immunoglobulin (1g) and epidermal growth factor (EGF) homology domains 2 (TIE2) and MET in blood-circulating BMDCs, and promotes pro-vasculogenic and pro-migratory properties in these cells. These educated BMDCs then exit the bone marrow and contribute to the formation of PMNs in lungs\(^\text{[79]}\). Importantly, exosomes secreted by B16-F10 melanoma cells promote vascular leakiness in lung PMNs, inducing a pro-inflammatory response by increasing the expression of cytokines and chemokines such as TNF, S100A8 and S100A9, which, in turn, recruit BMDCs to these PMNs\(^\text{[83]}\).

However, the source of S100 proteins was not defined in this study. Breast and pancreatic cancer cell-secreted exosomes express integrins on their surface, which promotes their homing to PMNs\(^\text{[81]}\). Expression of the integrin αvβ3 heterodimer on the surface of tumour-derived exosomes promotes their homing to lung PMNs, whereas αvβ3 targets them to liver PMNs. The homing of exosomes to these organs caused an increase in pro-inflammatory S100 family proteins in the PMN, generating a supportive microenvironment for subsequent metastasis\(^\text{[81]}\). Interestingly, human renal cancer stem cells promote angiogenesis and the formation of PMNs in the lungs, which involves CD105+ microvesicles inducing the expression of pro-angiogenic miRNAs and miRNAs in the whole organ\(^\text{[82]}\).

LN PMNs can be induced by intra-footpad injection of B16-F10 melanoma-derived exosomes\(^\text{[81]}\). In this study, genes associated with angiogenesis and ECM modification were highly upregulated in LNs; however, the cell types involved in the secretion of these factors were not identified. CD44 variant isomorph (CD44v) secreted by pancreatic cancer cells enables the formation of specific microenvironments that favour the homing of tumour-secreted exosomes, inducing PMN formation in lung and LN\(^\text{[21]}\). Regarding liver PMNs, pancreatic tumour-derived exosomes expressing MIF promote TGβ secretion in Kupffer cells, stimulating hepatic stellate cells to secrete fibronectin and promoting the recruitment of BMDCs\(^\text{[22]}\).

Interestingly, genomic content (that is, miRNAs) is also packaged selectively within EVs and is involved in PMN formation\(^\text{[81,82,83,84]}\). Tumour-derived microvesicles can suppress glucose uptake by stromal cells in brain PMNs through the transfer of miR-122 and inhibition of pyruvate kinase. This increases glucose availability in PMNs, attracting tumour cells, thus favouring brain metastasis\(^\text{[80]}\).
Recently, RNAs packaged within primary tumour-derived exosomes were found to be involved in the activation of TLR3-dependent signalling in lung epithelial cells, inducing chemokine secretion in the lung and promoting PMN formation by recruiting neutrophils.

These findings are only the beginning of our understanding of how tumour-derived EVs are involved in metastasis. There are many outstanding issues awaiting further research. First, it is imperative to determine which subpopulation of tumour cells gives rise to EVs that induce PMN formation. Second, a full characterization of secreted vesicles and their associated cargo is needed to understand how metabolic alterations affect PMN formation. Third, how long does EV-mediated education of recipient cells last? Can EV-mediated education be reverted? Can educated cells be further re-educated by exposure to new EV content? And, are these cells more or less sensitive to repeated EV exposure? Lastly, much emphasis is now placed on understanding how EVs form, adhere, fuse and educate recipient cells within PMNs, which is crucial to dissecting EV involvement at all stages of PMN formation.

The establishment of PMNs
The stepwise progression of PMN formation is initiated with local changes such as the induction of vascular leakiness, remodelling of stroma and ECM, followed by dramatic systemic effects on the immune system (Fig. 2).

Local changes in the PMN
Vessel barrier breakdown: sites of vascular leakiness and beyond. The vasculature at PMNs is remodelled by primary tumour-secreted factors through various mechanisms. Animal tumour models show increased vascular permeability at PMNs, which is associated with enhanced metastatic burden. Altered vascular integrity is manifested through hyperpermeability, aberrant morphology of vascular endothelium and breakdown of the vascular basement membrane in the pre-metastatic lungs of mouse models of melanoma and breast cancer. Secreted factors, such as the EGF receptor (EGFR) ligand epiregulin, cyclooxygenase 2 (COX2; also known as PTGS2), MMP1 and MMP2, can induce vascular permeability in primary breast tumours and distant organs, enabling CTCs to extravasate. Genetic ablation of these secreted factors in breast cancer cells impaired their ability to metastasize when injected through the tail vein. These data suggest that secretion of these factors from primary tumours may also be involved in the disruption of vascular permeability at PMNs. Furthermore, TGFβ induces the expression of angiopoietin-like 4 (ANGPTL4) in breast tumour cells, including CTCs, enhancing the permeability of microvessels in the lung. Lastly, much emphasis is now placed on understanding how EVs form, adhere, fuse and educate recipient cells within PMNs, which is crucial to dissecting EV involvement at all stages of PMN formation.

An active role for altered endothelial cells within the hyperpermeable area of PMNs has also been proposed. Syngeneic breast and lung primary tumours

Box 1 | The ‘sleepy niche’: tumour cell dormancy

The biology of certain tumours demonstrates that, instead of forming pre-metastatic niches (PMNs) that increase the efficiency of metastasis, specialized microenvironments in which tumour cells could survive in a dormant state may occur. One could consider these niches as silent PMNs, which could result in extensive delay to the development of metastasis, as occurs in some patients. Defining the biology of both active and silent PMNs could help in understanding the different processes of metastasis. The enduring message of Paget’s 1889 publication in the Lancet is his now famous ‘seed and soil’ hypothesis, which explains why breast cancer cells exhibit a proclivity for metastasizing to certain organ sites. Largely ignored was the contemporary view of Julius Cohnheim, of whom Paget said: “…[he was] of [the] opinion that a healthy organ has a certain ability to resist the growth of such an embolus; and he speaks of ‘diminished resistance’ as Fuchs speaks of ‘predisposition’.” (Ref. 5). How do healthy tissues resist the outgrowth of disseminated tumour cells (DTCs)?

DTCs persist long term essentially in a single-cell state within organs that succumb to metastasis as well as in other organs that rarely do. The cellular and molecular constituents of the niches that promote DTC dormancy are now being elucidated. Two themes have emerged. The first is that niche-based cues function only in the context of specific tissues. Factors that induce and sustain dormancy of DTCs from breast cancer, prostate cancer and head and neck squamous cell carcinoma act exclusively in lung (for example, bone morphogenetic protein 4 (BMP4) or in bone marrow (BMP7 and transforming growth factor-β2 (TGFβ2)), despite their presence in other tissues, suggesting that they act in concert with additional factors. Whereas thrombospondin 1 (TSP1; also known as THBS1) suppresses DTC outgrowth in both lung and bone marrow, neither TSP1, BMP4, BMP7 nor TGFβ2 affect DTC dormancy in brain. Indeed, a mediator of DTC dormancy specific to brain — or one that induces quiescence systemically — has yet to be uncovered.

The second major theme is that maintenance of tissue homeostasis is crucial. Most dormant breast cancer DTCs associate with the abluminal surface of the microvasculature of distant organ sites. Using organotypic models of microvasculature, stable endothelium was shown to drive DTC quiescence, and perivascular TSP1 was a major endothelium-derived suppressor of DTC outgrowth. But, how are these suppressive cues overcome? When microvascular homeostasis is disrupted, not only do sprouting vessels fail to express acceptable levels of TSP1, but endothelial tip cells deposit many of the factors found in PMNs — fibronectin, TGFβ1, perisentin, tenasin C, versican and S100 proteins. Whereas endothelial quiescence can be disrupted by any number of processes (for example, inflammation, wounding and ageing), it is also likely that primary tumour-derived factors released into the circulation affect the perivascular niche. Although the primary tumour can be removed by surgical resection and patients can typically experience metastatic relapse after decades, it is important to realize that tumour cells can disseminate very early during tumour progression. Therefore, dissemination, induction of DTC quiescence and disruption of these controls may have already occurred by the time the primary tumour is detected; a nuance that is not considered in the clinical definition of dormancy, which is a clinically asymptomatic state in which residual DTCs remain at undetectable levels for 5–7 years after seemingly successful treatment of the primary tumour. Primary tumour-derived factors may be the source of this dormancy disruption, destroying the dormant niche and inducing a PMN by altering microvascular homeostasis of specific tissues. If true, this would essentially marry and validate both Paget’s and Cohnheim’s theories.
Table 1 | Primary tumour determinants of organ-specific metastasis

Source	Molecule	Target organ	Target	Tumour type with marked expression	Refs
Exosomes	Integrin α5	Lung	Laminin-expressing epithelial cells and fibroblasts	Lung-metastatic breast cancer, osteosarcoma and rhabdomyosarcoma	51
	Integrin αv	Liver	Fibronectin-expressing Kupffer cells	Colorectal cancer, pancreatic cancer, gastric cancer and uveal melanoma	
	Integrin β5	Brain	Endothelial cell	Brain-metastatic breast cancer and brain-metastatic melanoma	
	Integrin β5	Lung	Laminin-expressing epithelial cells and fibroblasts	Lung-metastatic breast cancer, osteosarcoma and rhabdomyosarcoma	
	Integrin β3	Liver	Fibronectin-expressing Kupffer cells	Colorectal cancer, pancreatic cancer, gastric cancer and uveal melanoma	
	MIF	Liver	Kupffer cells	Pancreatic cancer	29
miR-105	Brain	Endothelial cell	Breast cancer	66	
Tumour cells	Integrin αv	BM	Endothelial cell and collagen I-expressing cells	Prostate cancer	202
	Integrin αv	Lung	Laminin-expressing cells	Breast cancer	203
	Integrin αv	BM	Endothelial cell and VCAM1-expressing cells	Myeloma	204
	Integrin αv	BM	Endothelial cell and OPN-, fibronectin- and VN-expressing cells	Breast cancer and prostate cancer	205, 206
	Integrin β5	BM	Endothelial cell and collagen I- and VCAM1-expressing cells	Prostate cancer	202
	Integrin β5	BM	Endothelial cell and OPN-, FN- and VN-expressing cells	Breast cancer and prostate cancer	205, 206
	Integrin αv, β5	Lung	Unknown	Osteosarcoma	207
	CDH11	Bone	Osteoblast	Ewing sarcoma	208
	CXCR4	LN, BM, lung and liver	SDF1-expressing cells	Breast cancer	38, 209
	FN	Lung	DPP4-expressing endothelial cells	Breast cancer	210
	FUT3	Liver	Unknown	Colorectal cancer	211
	FUT4 (also known as CD15)	Brain	Endothelial cell	Non-small-cell lung cancer	211
	GLG1 (also known as ESL1)	BM	Endothelial cell	Prostate cancer	212
	SELPLG	BM	Endothelial cell	Prostate cancer	213
Secreted factors and proteins	CTGF, FGF5, IL-11, MMP1 and ADAMTS1	Bone	Osteoblasts, osteoclasts and endothelial cells	Breast cancer	38, 214
	SPARC, MMP1 and IL13Ra2	Lung	Lungs (unknown target cell type)	Breast cancer	215
	IL-1β and TNF	Liver*	Endothelial cell	Colorectal cancer and hepatic cancer	216

ADAMTS1, a disintegrin and metalloprotease with thrombospondin motifs 1; BM, bone marrow; CDH11, cadherin 11; CTGF, connective tissue growth factor; CXCR4, C-X-C motif chemokine receptor 4; DPP4, dipeptidyl peptidase 4; FGF5, fibroblast growth factor 5; FN, fibronectin; FUT, fucosyltransferase; GLG1, Golgi apparatus protein 1; IL, interleukin; IL13Ra2, interleukin-13 receptor-a2; LN, lymph node; MIF, macrophage migration inhibitory factor; miR, microRNA; MMP1, matrix metalloprotease 1; OPN, osteopontin; SDF1, stromal cell-derived factor 1; SELPLG, P-selectin glycoprotein ligand 1; SPARC, secreted acidic and rich in cysteine; TNF, tumour necrosis factor; VCAM1, vascular cell adhesion molecule 1; VN, vitronectin. *Not tested in vivo.

Induce the formation of discrete foci within hyper-permeable vessels in the pre-metastatic lung. These foci were defined by E-selectin enrichment on the luminal surface of endothelium, which in turn facilitated CTC adhesion and outgrowth. E-selectin upregulation is mediated by VEGFA-dependent induction of endothelial focal adhesion kinase (FAK) secreted by tumour cells or by injection of recombinant VEGFA, and inhibition of endothelial cell FAK hinders lung metastasis.

In breast cancer models, CCL2 secretion by tumour cells and the stroma leads to the recruitment of monocytes expressing C-C chemokine receptor type 2 (CCR2), that, in turn, secrete VEGFA. Monocyte-specific depletion of VEGFA significantly inhibited breast cancer experimental metastasis potential and seeding efficiency. Therefore, secreted factors could act synchronously by increasing both endothelial leakiness and the recruitment of BMDCs, which then promote PMN formation and hence metastatic colonization and outgrowth.
VENOUS THROMBOEMBOLISM (VTE). Refers to either of two blood clot-related conditions: deep vein thrombosis (DVT) or pulmonary embolism (PE). DVT occurs when a blood clot forms in a deep vein whereas a PE occurs when a blood clot breaks off and circulates to the lungs.

Disseminated intravascular coagulation (DIC) Systemic activation of blood coagulation, leading to fibrin accumulation, which in turn results in the formation of microvascular thrombi in vital organs.

T-helper 1 (Th1) cell Member of a subset of CD4+ T cells that can activate macrophages and mediate cellular immunity through secretion of interferon-γ (IFNγ), interleukin-2 (IL-2) and tumour necrosis factor-α (TNFα).

Fenestrated vasculature A permeable type of vasculature that contains ultramicroscopic pores of variable sizes, usually found in kidneys and glands as well as in the circumventricular organs of the brain.

REVIEWS

It is likely that metastatic organotropism requires specific interactions of tumour cells with endothelial cells in those organs. Although these observations were not made in the context of PMN biology, transmigration of the BBB by cancer cells requires proteolytic processing of the junctional adhesion molecule B (JAMB; also known as JAM2) by cysteine cathepsin S107. By contrast, metastasis to organs with more fenestrated vasculature, such as the lung, liver or bone marrow, could depend almost exclusively on adaptation of tumour cells to specific microenvironments, as the microvasculature at these organ sites is comparatively permissive for tumour cell extravasation31,38.

A notable PMN-associated change at the vascular level is the formation of blood clots. Even though aberrant haemostasis has been associated with cancer progression and metastasis for more than a century and venous thromboembolism (VTE) is one of the leading causes of mortality in cancer patients, the biological relevance of clots for cancer progression and the underlying mechanisms that regulate it are still largely unexplored. Intravascular fibrin clots that are rich in platelets surround metastatic tumour cells arrested in the vasculature, thus promoting tumour cell dissemination109. Tissue factor (TF)-mediated clot formation in lungs recruits populations of macrophages expressing CD11b, CD68, F4/80 and CX3C chemokine receptor 1 (CX3CR1) during PMN formation, thus enhancing CTC homing and survival110. Interestingly, platelets are required for the rapid recruitment of CD11b-MMP9 Ly6G+ granulocytes to tumour cells to form lung ‘early metastatic niches’. This mechanism involves C-X-C motif chemokine ligand 5 (CXCL5) and CXCL7 secretion by platelets upon contact with different types of tumour cell (that is, breast cancer cells in a spontaneous mouse model of breast cancer), promoting tumour cell seeding and metastatic progression in the lungs2,12. Cancer complications such as disseminated intravascular coagulation, in which thrombosis and haemorrhage occur simultaneously, could then reinforce the secretion of factors that promote tumour metastasis. Further characterization of both processes in the context of PMN biology, as well as determining whether tumour-secreted and platelet-secreted EVs have a role in cancer-associated coagulopathies, may lead to the development of therapies that can reduce patient mortality.

Awakening the stromal residents. Perturbation of endothelial cell function is just one of the first alterations during PMN development, as other stromal cell types are activated by secreted factors from primary tumours and contribute to PMN establishment. Fibroblasts remodel ECM at PMNs either by depositing new ECM components or by secreting enzymes that alter the existing ECM structure (discussed further below). S100A4+ pulmonary fibroblasts are the main cell type incorporating exosomes derived from MDA-MB-4175 lung-tropic breast cancer cells. Importantly, exosomal cargo induces the upregulation of specific S100 family members in stromal cells, depending on the tumour type. Specifically, in vitro treatment of lung fibroblasts with exosomes derived from breast cancer cell lines upregulates S100A4, S100A6, S100A10, S100A11, S100A13 and S100A16, whereas the analogous treatment of Kupffer cells with exosomes derived from pancreatic cancer cell lines resulted in upregulation of S100P and S100A8. Moreover, S100A8 and S100A9 are strongly induced in the lungs 24 hours after intravenous injection of exosomes derived from the highly malignant B16-F10 melanoma cell line. Mice injected subcutaneously with LLC and 3LL lung cancer cell lines, then treated with monoclonal antibodies against S100A8 and S100A9, displayed fewer CD11b+ myeloid cells in pre-metastatic lungs and dramatically reduced lung metastasis. The induction of SAA1 and SAA3 by breast cancer-derived S100A4 or by intravenous injection of S100A4 resulted in the expression of pro-inflammatory molecules such as S100A8, S100A9, G-CSF and MMPs in an organ-specific manner. In addition, SAA1 and SAA3 upregulation by S100A4 increased tumour cell adhesion to fibronectin (discussed further below) and BMDC recruitment to metastatic organs. These observations suggest that S100A4 acts through mechanisms similar to S100A8 and S100A9 to regulate the formation of PMNs by promoting pro-inflammatory microenvironments both in the primary tumour and in PMNs.

Additional stromal cells activated during PMN formation are tissue-resident macrophages. Indeed, liver Kupffer cells, upon stimulation by exosomes derived from pancreatic cancer cell lines carrying MIF, can induce fibronectin production by hepatic stellate cells and generate a fibrotic liver environment, which facilitates the recruitment of BMDCs to PMNs and thus PMN formation. Pulmonary alveolar macrophages also participate in the lung PMN in a mouse model of breast cancer. Tumour-preconditioned alveolar macrophages contribute to immunosuppression by inhibiting tumoricidal T-helper 1 (Th1) cell function as well as reducing the number and hindering the maturation of tumour antigen-presenting dendritic cells in the pre-metastatic lung, thus supporting metastasis.

Remodelling the ECM. The ECM at pre-metastatic organ sites undergoes remarkable changes in response to systemic factors released from the primary tumour, activated stromal cells or recruited BMDCs (Fig. 2). Such changes can be achieved by two mechanisms, deposition of new ECM components and changing the physical properties of pre-existing ECM at PMNs. Fibronectin deposition by activated stromal fibroblasts in the pre-metastatic lung or liver has been observed in mouse models of melanoma and pancreatic cancer, respectively. Accumulation of fibronectin provides a permissive niche for the adhesion of BMDCs, which are crucial components of PMNs. In addition, tumour-derived factors, such as TGFβ3, induce the expression and secretion of peristin from stromal fibroblasts expressing α-smooth muscle actin (aSMA; also known as ACTA2) and vimentin (VIM) in the pre-metastatic lung of the MMTV-PyMT mouse model of breast cancer. Secretion and incorporation of peristin into ECM thus establishes a PMN that
Metastasis-initiating cells

Rare tumour cells that have the capacity to survive and proliferate in distant metastatic sites.

Myeloid-derived suppressor cells (MDSCs)

A heterogeneous population of myeloid-derived immunosuppressive and pro-tumorigenic cells that suppress T cell function. They expand in number in pathological conditions and interact with other innate and adaptive immune cells to modulate their function. They universally express CD11b, but can be further categorized in both mice and humans on the basis of expression of additional markers into granulocytic and monocytic lineages.

Macrometastases

The outgrowth of micrometastases that are histologically or radiologically detectable.

sustains infiltrating metastasis-initiating cells by augmenting WNT signalling. First, perioserin interacts with ECM molecules intracellularly and then it is deposited outside the cell. So far, perioserin has been described to interact with type I collagen, fibronectin, NOTCH1, tenascin C and BMP1. Through these interactions perioserin engages integrins such as α5β1 and αβ5, and promotes cell motility by acting outside the cell. In a mouse wound-healing model, perioserin was upregulated in damaged tissue, forming a PMN-like microenvironment and promoting melanoma cell metastasis to wound sites. More recently, perioserin was found to be essential for the immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in the pre-metastatic lung during breast cancer metastasis.

Versican is an ECM proteoglycan with multifaceted roles in the PMN. In mouse models of LLC lung cancer injected via the tail vein, tumour-derived versican activated macrophages through TLR2 to generate an inflammatory microenvironment in the pre-metastatic lung. By contrast, in MMTV-PyMT mice, the sources of versican are CD11b+Ly6C+ myeloid cells recruited to the pre-metastatic lung. Knock-down of versican in BMDCs impaired lung metastasis in the MMTV-PyMT model, underscoring the functional requirement for stroma-derived versican in PMN development.

Enzymatic modulation of ECM structure at the PMN can affect vascular integrity (as discussed above) and generate biologically active ECM fragments. Indeed, chemoattractant collagen IV peptides released by MMP2 activity in the pre-metastatic lung guide the homing of BMDCs and CTCs to PMNs and promote metastasis.

The major sources of these MMPs are BMDCs (for example, macrophages, CD11b+ myeloid cells and VEGFR1 haematopoietic progenitor cells (HPCs)), stromal fibroblasts and endothelial cells.

Another important class of ECM-shaping enzymes is the LOX family, which catalyses the crosslinking of ECM molecules. Collagen is their primary substrate. Several studies have shown that collagen type I and type IV can impose immunosuppression at PMNs and promote metastasis. The major sources of these MMPs are BMDCs (for example, macrophages, CD11b+ myeloid cells and VEGFR1 haematopoietic progenitor cells (HPCs)), stromal fibroblasts and endothelial cells.

A hallmark of PMN initiation and evolution is the recruitment of BMDCs (Fig. 2). Indeed, the recruitment of HPCs expressing VEGFR1 and VLA4 (integrin α5β1) to pre-metastatic organs fosters a supportive microenvironment for incoming CTCs. Abrogation of these HPC clusters within pre-metastatic organs by either VEGFR1 antibody-mediated blockade or depletion of VEGFR1 BMDCs reduced metastasis, indicating the essential role of these HPCs during PMN initiation.

However, even though upregulation of inhibitor of differentiation 1 (ID1) gene expression is crucial for VEGFR1 BMDCs mobilization during PMN formation, the identities of the tumour-derived factors that induce ID1 expression and drive HPC mobilization have yet to be determined.

In addition to recruiting HPCs from the bone marrow, primary tumours also ‘hijack’ different types of immune cell, causing their abnormal differentiation and accumulation at PMNs. Notably, MDSCs impose immunosuppression at PMNs and promote metastasis. MDSCs can either be recruited to PMNs or they may develop from tissue-resident myeloid populations. An ingenious intravital twophoton live imaging approach revealed that upon arrival in the lung, CTCs interact with distinct populations of resident phagocytes, and tumour cell cytoplasts are generated within the lung vasculature that are taken up by recruited BMDCs. Next, tumour-ingesting myeloid cells collectively accumulate in the lung interstitium and promote the development of metastases. MDSCs repress interferon-γ (IFNγ)-mediated immune responses while inducing the expression of pro-inflammatory cytokines, interleukins and SDF1 (Ref. 101), further supporting the idea that generation of a pro-inflammatory, immunosuppressive PMN through recruitment of BMDCs is crucial for successful metastatic progression. Importantly, PMN-associated MDSCs also produce MMP9, a crucial regulator of ECM remodelling and the angiogenic switch that will later support the formation of micrometastases and macrometastases.
The roles of neutrophils at PMNs are particularly intriguing. Neutrophils can be expanded, mobilized and recruited to PMNs via tumour cell-derived G-CSF, exosomes or via stromal cell-derived SDF1 in metastatic organs. To date, the markers used to define neutrophils are oversimplified and thus identify a heterogeneous population marked by profound functional complexity. Further immunophenotyping is required to sort PMN-infiltrating immune cells for functional assessment. Nevertheless, recent data demonstrate that neutrophil recruitment to PMNs and their diminished cytotoxic activity both occur only in the absence of type I interferon, suggesting that interferon-based therapies could be beneficial in hindering PMN progression. However, owing to the multifaceted role of IFN, the tumour-suppressive and tumour-promoting activities of which are normally dependent on the cellular, microenvironmental and/or molecular context, targeting it could be a double-edged sword and should be considered carefully.

Neutrophils were shown to support the establishment of lung PMNs in mouse models of breast cancer. Isolation of neutrophils derived from PMNs demonstrated that they secrete leukotrienes, converting heterogeneous cancer cell populations into metastasis-initiating cells and enhancing metastatic competence. Recently, lung epithelial cells have been described to initiate neutrophil recruitment and lung PMNs by sensing tumour exosomal RNAs through TLR3 (REF. 95). LLC-derived exosomal RNAs activate TLR3 in lung epithelial cells, inducing secretion of chemokines (CXCL1, CXCL2, CXCL5 and CXCL12) and promoting neutrophil recruitment. An interesting question stemming from these observations is: how do innate immune cells support PMN formation? Recent evidence supports the idea that, besides neutrophils, there could be active, EV-mediated communication between tumour cells and other innate immune cells during PMN formation.

Clinical implications of PMN

Metastasis is the leading cause of cancer-associated death, yet its treatment has limited lasting success. Thus, developing strategies to prevent metastasis, or to detect it at its earliest stages, is a priority for improving patient outcomes. Intriguing questions to consider are: can the PMN be manipulated to prevent seeding or outgrowth of incoming CTCs? Can non-metastatic tumours, their EVs or secreted factors exert systemic inhibitory effects on tissues to block metastasis?

PMN detection

Currently, patients with a newly diagnosed malignancy are routinely assessed for metastases by radiological imaging (for example, computerized tomography (CT) and positron emission tomography (PET)), by histology and cytology (for example, sentinel LN biopsies and bone marrow examination). Both PET and CT imaging are unreliable in detecting tumours less than 1 cm in size, by which time the tumour cell burden is estimated at 10⁷ cells. Furthermore, PET–CT is frequently unable to differentiate between benign inflammatory and malignant lesions. And for practical reasons, neither routine use of biopsies nor assessment of all potential sites of metastasis is feasible.

So how can the reliability of metastasis detection be improved? Much effort is now being invested in developing higher resolution imaging techniques and uncovering genetic and biochemical biomarkers of early metastasis. As such, imaging approaches that can enable detection of structural changes in the PMN, such as tissue density, hold promise. Moreover, biochemical and cellular biomarkers of early metastasis in circulation, such as VEGFRI expression by circulating MDSCs or CD68+ myeloid cells that have activated signal transducer and activator of transcription 3 (STAT3) have great potential as molecular tools for PMN detection and monitoring. Importantly, sphingosine 1-phosphate receptor 1 (SIPR1)–STAT3 signalling activation in CD68+ myeloid cells is crucial for their recruitment to PMNs and future metastatic outgrowth.

Selective blocking of VEGFRI using a novel peptide antagonist named iVR1 completely ablated liver PMN formation and liver metastasis of colorectal cancer cells in mice. In addition to VEGFRI, other molecules, such as dickkopf 1 (DKK1), VEGFA, VEGFD and HIF1α could serve as PMN biomarkers in human LNs, predicting future metastasis in cancer patients. Importantly, morphological and structural changes, such as fibroblast deposition and changes in collagen metabolism, occur in LN PMNs, resulting in changes in capsule thickness that could be used as a measurement of PMN development. A fibrosis-like environment may precede tumour seeding and metastasis at PMNs in the liver, supporting the need to image structural changes in tissue density possibly by biopsy of the liver PMN. Most importantly, clinical trials are ongoing to measure PMN formation, its diagnostic and prognostic power and whether blockade of PMN formation could be obtained by using, for example, pazopanib, a multitargeted tyrosine kinase inhibitor against VEGFRI–3, platelet-derived growth factor receptor-α (PDGFRα), PDGFRB and KIT.

EVs may be the most promising biomarkers for assessing risk of tumour progression and metastasis. Their accessibility, abundance and stability in the circulation make them ideal biomarker candidates. Developing techniques to enrich for tumour-derived EVs to define their selective cargo can improve the sensitivity of detection of tumour EV-associated biomarkers in blood from cancer patients. Alternatively, owing to the technological limitations (including obtaining fresh specimens and limited viability of tumour-derived explants) of detecting tumour-secreted factors that are involved in PMN formation, tumour organoids could be used to identify tumour-specific biomarkers that can be verified in patient plasma. Exosomal miR-105 derived from primary tumours from patients with breast cancer (the tumour cells of which expressed high levels of miR-105) could be detected in patient serum at an early stage before the clinical detection of metastasis. Furthermore, exosomal levels of a melanoma-specific protein, tyrosinase-related protein 2 (TYRP2; also known as DCT), correlated with metastatic progression in a retrospective cohort of patients.
with stage III melanoma (patients with LN metastasis) at the time the samples were taken, demonstrating that plasma exosomes can predict metastasis in melanoma.

Proof-of-principle studies have demonstrated that loading of exosomes with superparamagnetic iron oxide nanoparticles or iodine isotopes enables sensitive magnetic resonance or radiographic tracking168. Ingenious approaches to noninvasive imaging of PMN formation in vivo, based on the role of VLA4 in PMN biology, combined the use of PET–CT with [111mCu]CBTE2A-LLP2A (a VLA4-targeted PET radiopharmaceutical)167,168 or relied on label-free quantitative detection methods of tumour-derived exosomes through surface plasmon resonance imaging169.

If exosome-mediated reprogramming of systemic energy metabolism can facilitate disease progression, similar exosome-based strategies could be devised to hinder PMN formation. For example, exosomes can be engineered to deliver molecules that inhibit the repression of glucose uptake by stromal cells in brain PMNs. Therefore, there is hope for translating these advances to the clinic to exploit tumour exosomes as predictors of metastatic potential and organotropism, as well as therapeutic targets to block PMN formation and metastatic colonization.

Preventing PMN formation and progression

Targeted therapies directed against the establishment of PMNs could potentially stop metastasis in its tracks. For example, ATP release by breast cancer activates the P2Y purinoceptor 2 (P2RY2) and subsequently the HIF1–LOX axis, which induces collagen crosslinking and the recruitment of CD11b+ BMDCs; inhibition of P2RY2 signalling proved an efficient strategy to prevent PMN formation in preclinical breast cancer models170. Similarly, downstream targeting of LOX by treatment with β-amino-propionitrile (βAPN), function-blocking antibodies or LOX-specific RNA interference showed promise in abolishing PMN formation in preclinical models of breast cancer13,2. In another approach, expression of protein tyrosine phosphatase receptor-type O (PTPRO, a multi-target negative regulator of VEGFA, PDGF and FGF receptor 1 (FGFR1)) in the mouse breast cancer cell line Py81119 prevented PMN formation in preclinical models of breast cancer, thus thwarting lung metastasis171. The CXCR4 inhibitor AMD3465 also obstructed myeloid cell recruitment to liver and lung PMNs, preventing metastatic progression in immunocompetent mouse models of breast cancer172. MET inhibition (either through small-molecule inhibitors or through humanized antibody blockade, both of which are approved by the US Food and Drug Administration (FDA)), could represent a two-pronged approach that would prevent the function of pro-metastatic melanoma exosomes as well as the recruitment of exosome-educated BMDCs to PMNs89. Importantly, substantial breakthroughs in understanding the biology of PMN formation, combined with advances in imaging and serum biomarker detection, could offer opportunities for timely targeting of PMNs and early metastasis as well as identifying patients who are likely to have aggressive disease.

Future directions

We have achieved tremendous progress in our understanding of the complex molecular mechanisms that govern PMN formation, but key questions remain unanswered.

Can PMN progression be hindered?

The redirection of experimental metastasis suggests that preconditioning of the microenvironment in specific organs, especially via exosomes, can increase their susceptibility to metastasis24. Therefore, an understanding of tumour exosome biogenesis, with the aim of selectively controlling tumour exosome production may prove a viable approach to reducing metastasis. Conversely, a better grasp on the biology of certain tumour-secreted factors with anti-metastatic functions may offer unique therapeutic opportunities. Can inhibitors of angiogenesis, such as angiostatin and endostatin173, be used to condition PMNs and thereby inhibit metastasis by normalizing the vasculature? Furthermore, are there microenvironments at sites of future metastasis that either do not require preconditioning by tumour-derived factors to support metastasis or are intrinsically inhibitory to metastatic outgrowth and thus capable of inducing dormancy of DTCs51,179.

Are all PMNs created equal?

Is PMN composition in different organs alike? Are PMNs in distinct organs induced by the same mechanisms? Moreover, what are the dynamics of PMN formation? Are PMNs in different organs created simultaneously or sequentially? Our observations suggest that the systemic conditioning of PMNs by various cancer types may differ29,51,79. Certain mechanisms, such as increased vascular permeability and recruitment of BMDCs, seem to be common for all tissues examined thus far, but specific molecules expressed and/or shed by the tumour (for example, chemokine receptors and integrins) could contribute to organotrophic behaviour.

Are there other components of the PMN?

The PMN is a complex microenvironment, and less-explored resident and recruited cell types may fulfil crucial roles in PMN initiation and progression. For example, adipocytes contribute to metastasis by secreting adipokines and other cytokines (for example, leptin, adiponectin, osteopontin, TNF, IL-6, CCL5 and CCL2 (REFS 176–178)) and fatty acids to fuel rapid tumour growth at metastatic sites179, but their contribution to PMN formation remains unknown. Accumulating evidence indicates that activated sympathetic neurons can also induce a metastatic switch in mouse breast and ovarian cancer models by increasing tumour vascularization and invasion in the metastatic microenvironment via neuroendocrine signalling180. Sympathetic neuron signalling can also alter the cytokine profile of the bone microenvironment, which can induce osteolysis and promote the colonization of metastatic breast cancer cells in bones180, adding neurons to the tumour–stroma crosstalk within the PMN.
Can PMNs be biomarkers of metastasis?

Early detection of PMNs before radiographic evidence of metastasis remains a challenge. New technologies that attempt to detect hyperpermeable regions, hypoxic and inflammatory areas, ECM alterations or BMDC recruitment at pre-metastatic stages are being developed. More sensitive and translational technical approaches, such as labelling specific PMN probes (that is, by the use of inhibitors, antibodies or peptides recognizing the main proteins that are upregulated at PMNs) with radiotracers, are needed to translate these findings to the clinical setting. Moreover, determining which PMN will transition to metastatic disease offers additional opportunities to improve diagnostic, biomarker and prevention potential associated with PMN detection.

Why do secondary tumours develop?

Secondary tumours (also known as metastasis) that arise after surgery are derived from the primary tumour cells. Given the evidence that primary tumours can precondition distant sites for metastasis, it is likely that such education by tumour-derived factors has already occurred and PMNs have already been formed before surgical removal of the primary tumour. Nevertheless, it is clear that surgery is followed not only by tumour cell shedding into the circulation, but also by a surge of inflammatory cells in the blood, thus favouring PMN formation. Moreover, surgical intervention has been shown to induce local hypoxia and injury, which in themselves promote metastasis, but the systemic implications for PMN formation have yet to be explored. Further studies will need to address whether tumour-secreted factors, such as EVs, are also increased after surgery and contribute to PMN development and thus support future metastasis, and whether non-steroidal anti-inflammatory drugs (NSAIDs), which reduce the most immediate and abundant peak of breast cancer recurrence (9–18 months after surgery) fivefold could function as a prophylactic that acts (at least partially) by reversing PMN formation in patients with breast cancer.

Can the PMN be targeted?

Does chemotherapy or radiotherapy promote PMN development? Specific targeting of PMN components (for example, inhibitors of VLA4, TNF, LOX or HIF) reduces metastasis in preclinical models, but owing to current technical limitations in detecting PMNs and the lack of clinical trials to test these molecules in the pre-metastatic setting in patients, the efficacy of this approach in preventing metastasis in cancer patients has yet to be determined. One possible explanation for the inadequate control of cancer metastasis with current pharmacological approaches is the failure of drugs to reach the PMN owing to the increased permeability of the vasculature at PMNs (as discussed above). Vascular leakiness leads to an abnormal tumour microenvironment characterized by interstitial hypertension (elevated hydrostatic pressure outside the blood vessels), hypoxia and acidosis. Stabilization of vasculature at PMNs could then help to improve specific strategies against PMN formation. Furthermore, the systemic consequences of any current or novel therapy on PMN formation are difficult to predict. For example, mobilization of haematopoietic stem and progenitor cells from their niches may alter the bone marrow microenvironment for malignant cells to engraft. It is also possible that certain treatments may alter organotropism; for example, agents activating specific cell types such as osteoclasts may promote bone metastasis.

Summary

In conclusion, remarkable progress in our knowledge regarding PMN formation and evolution has been made in the past decade since the PMN was first described. We envisage the PMN as a new paradigm for the initiation of metastasis and recognize that the pathological processes occurring before the development of macrometastases require better understanding. This is crucial, especially as in patients PMNs may not only be established in distant organs but may also develop in the vicinity of macrometastatic lesions in the same organ. Moreover, treatment of macrometastasis (for example, by targeting angiogenesis), can promote micrometastasis and could also promote PMN formation, warranting the identification of therapies that could thwart all processes simultaneously. The primary tumour-directed induction of the PMN enforced by tumour-secreted factors can dictate metastatic burden and distribution, and the cellular make-up of future PMNs is an area ripe for exploration. The study of PMNs could benefit from 3D modelling of organ-specific niches, to enable a systematic dissection of the cellular and ECM components of the PMN. The challenge that lies ahead, to bring the advances in our understanding of PMN biology to the bench, is translation of this complex biology to diagnostic and treatment approaches. This will require innovative, well-designed clinical trials with (potentially) alternative end points and means to detect PMNs and assess their viability after treatment. Given that treatments for metastasis need to be improved and further developed, the field may indeed be ready to take this step.

1. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 135, 571–575 (1889).
2. Ewing, J. Neoplastic Diseases: A Treatise on Tumours (W. B. Saunders Company, 1928).
3. Fidler, I. J. & Nicolson, G. L. Organ selectivity for metastasis. J. Natl Cancer Inst. 57, 1199–1202 (1976).
4. Hart, I. R. & Fidler, I. J. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 40, 2281–2287 (1980).
5. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).
6. Paaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer 9, 285–293 (2009).
7. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).
8. Steenman, J. P. The lymph node pre-metastatic niche. J. Mol. Med. (Berl.) 93, 1175–1186 (2015).
9. Chin, A. R. & Wang, S. E. Cancer tills the premetastatic field: mechanistic basis and clinical implications. Clin. Cancer Res. 22, 3725–3733 (2016).
10. Ordonez-Moran, P. & Huesken, J. Complex metastatic niches: already a target for therapy? Curr. Opin. Cell Biol. 31, 29–38 (2014).
11. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1425–1437 (2013).
12. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 259–252 (2009).
This landmark study defined the breast cancer cell environment and organotropic metastasis. Proc. Natl Acad. Sci. USA 106, 2524–2529 (2009).

Lyle, T. L. et al. Alterations in pericellular subpopulations are associated with elevated blood–tumor barrier permeability via experimental brain metastasis of breast cancer. Clin. Cancer Res. 22, 5278–5299 (2016).

Fong, M. Y. et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol. 17, 138–145 (2015).

This study was the first to provide evidence of metabolic reprogramming of stromal cells in PMNs through miRNA cargo shuttled by tumour-derived microvesicles.

Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

This landmark study demonstrated that organotropic metastasis can be orchestrated in a tumour cell–tissue microenvironment through exosome-expressed integrins.

Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 22, 289–300 (2012).

This study demonstrated that chemokines induced in PMNs facilitate metastasis in a TLR4-dependent manner, through effects on local innate immune cells.

Shaofei, J. et al. GCSC-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc. Natl Acad. Sci. USA 106, 6742–6747 (2009).

Melgaríeiro, E., Medina, M. A., Sánchez-Jiménez, F. & Urdiales, J. L. Monocyte chemotactic protein-1: a key mediator in inflammatory processes. Int. J. Biochem. Cell Biol. 41, 988–1001 (2009).

Li, Y. et al. Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine factor for breast cancer growth and invasion. Prostate 66, 1511–1518 (2006).

Cain, Z. et al. Monocyte chemotactic protein 1 promotes lung cancer-induced bone resorptive lesions in vivo. Neoplasia 11, 228–236 (2009).

Lobego, R. D. et al. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res. 67, 9417–9424 (2007).

Saji, H. et al. Significant correlation of monocyte chemotactic protein-1 expression with neovascularization and progression of breast cancer. Cancer Res. 62, 161–165 (2001).

Lebrecht, A. et al. Monocyte chemotactant protein-1 serum levels in patients with breast cancer. Eur. J. Cancer B. 35, 243–248 (1999).

Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 440, 1089–1093 (2009).

Sceney, J. et al. Primary tumor hypoxia recruits CD11b+Ly6Cmed/Ly6G+ immune suppressor cells and compromises NFκB cell cytotoxicity in the premetastatic niche. Cancer Res. 72, 3906–3911 (2012).

Lu, X. et al. The hypoxic cancer secretome induces osteolysis. Oncogene 32, 3703–3712 (2013).

Hiratsuka, S., Watanabe, A., Aburatani, H. & Maruyama, T. Tumour-mediated upregulation of chemokreceptors and recruitment of myeloid cells precedes lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).

Wong, C. C. et al. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc. Natl Acad. Sci. USA 108, 16359–16374 (2011).

Lin, Z. et al. Hypoxia-inducible factor 2β mediates hypoxia-induced differentiation of macrophages in the lungs of glioma-bearing mice. J. Immunother. Cancer 4, 9 (2016).

Ejeckam, G. C. et al. The hypoxic cancer secretome induces osteolysis. J. Clin. Invest. 123, 175–184 (2013).

Hiratsuka, S. et al. Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine factor for breast cancer growth and invasion. Prostate 66, 1511–1518 (2006).

Cain, Z. et al. Monocyte chemotactic protein 1 promotes lung cancer-induced bone resorptive lesions in vivo. Neoplasia 11, 228–236 (2009).

Lobego, R. D. et al. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res. 67, 9417–9424 (2007).

Saji, H. et al. Significant correlation of monocyte chemotactic protein-1 expression with neovascularization and progression of breast cancer. Cancer Res. 62, 161–165 (2001).
REVIEWS

84. Skog, J. et al. Glioblastoma microvesicles transport RNA and miRNA that promote tumour growth and provide diagnostic biomarkers. Nat. Cell. Biol. 10, 1470–1476 (2008).

85. Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGF-R81 from microvesicles derived from tumour cells. Nat. Cell. Biol. 10, 619–624 (2008).

86. Ratajczak, J. Z. & Ratajczak, M. Z. Membrane-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein cargo. Exp. Cell Res. 312, 167–175 (2006).

87. Revolutions. Janowska-Wieczorek, A., Marquez-Curtis, L. A., Giles, A. J., Huang, Y., Jean, C. & Gupta, G. P. Function.

88. Pre-metastatic lung. The premetastatic lung facilitates lung metastasis. Cancer Res. 64, 5613–5619 (2004).

89. Diers, N. L. & Francis, C. W. Impact of venous thromboembolism and anticoagulation on cancer and cancer survival. J. Clin. Oncol. 27, 4902–4911 (2009).

90. Jeater, A., Vortel, T. L. S. & Bischof, H. P. Effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Trans.fusion 66, 1199–1209 (2006).

91. Coucic, E., Racchetti, G. & Meldolfo, J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 19, 43–51 (2009).

92. Iero, M. et al. Tumour-released exosomes and their implications in cancer immunity. Cell Death Diff. 15, 80–88 (2008).

93. Rattner, S. B., Wysocky, M., Hayek, F., Janowska-Wieczorek, A. & Ratajczak, M. Z. Membrane-derived microvesicles: important and underappreciated messengers of cell-cell communication. Leukemia 20, 1487–1495 (2006).

94. Grange, C. et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung metastatic niches. Cancer Res. 71, 5346–5356 (2011).

95. Hood, J. L., San, K. S. & Wickline, S. A. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 71, 3792–3801 (2011).

96. Villalta-Belini, C., Baxaui, F., Gutierrez-Vazquez, C., Sanchez-Madrid, F. & Mittelbrunn, M. Sorting it out: regulation of exosome loading. Semin. Cancer Biol. 22, 635–652 (2012).

97. Liu, Y. et al. Tumoral exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial type 1-LR5 to recruit neutrophils. Cancer Cell 30, 243–256 (2016).

98. Giles, A. J. et al. Activation of hematopoietic stem/progenitor cells promotes immunosuppression within the premetastatic niche. Cancer Res. 76, 1335–1347 (2016).

99. Jain, J. et al. Platelet factor 4 is produced by subsets of myofibroblasts in the premetastatic lung and inhibits tumor metastasis. Oncotarget, http://dx.doi.org/10.18632/oncotarget.9486 (2016).

100. Huijts, Y. et al. Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res. 69, 7529–7537 (2009).

This landmark study demonstrated that a subpopulation of cancer cells is responsible for metastatic colonization and that this process depends on signals provided by the stromal niche.

101. Nudo, A. Periostin in fibrillogenesis for tissue regeneration and fibrosis. Am. J. Pathol. 182, 2794–2807 (2011).

102. Ahn, G. O. & Brown, J. M. Matrix metalloproteinase-9 is required for tumor vascularization: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13, 193–205 (2008).

103. Wu, C. F. et al. The lack of type I interferon induces neutrophil-mediated pre-metastatic niche formation in the mouse lung. Int. J. Cancer 137, 857–847 (2010).

104. Zaidi, M. R. & Merlino, G. The two faces of interferon-γ in cancer. Clin. Cancer Res. 17, 6118–6124 (2011).

105. Wysolmerski, S. & Malangon, J. I. Tumor-induced lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015).

106. Benito-Martín, A., Di Giannitelli, A., Ceder, S. & Ponsioen, H. The new deal: a potential role for interleukin-10 in innate immune and tumor progression. Front. Immunol. 6, 68 (2015).

107. Moses, W. J. Fundamental limits of spatial resolution in PET. Nucl. Instrum. Methods Phys. Res. A 668 (Suppl. 1), S236–S240 (2011).

108. Marom, M., Saris, P., Mondon, J. E. J. & Patz, E. F. Jr. T1 lung cancers: sensitivity of diagnosis with fluorodeoxyglucose PET Radiology 225, 453–459 (2002).

109. James, K. M. Measuring response in solid tumors: unidimensional versus bidimensional measurement. J. Natl Cancer Inst. 91, 523–528 (1999).

110. Diaz, C. et al. Tumor cell-derived chemokine and basins for a reliable application of molecular marker design. Int. J. Mol. Sci. 13, 1951–2012 (2012).

111. Ieni, A., Giuffré, G., Adamo, V. & Tuccarri, G. Prognostic impact of CD133 immunoreactivity in node-negative invasive breast carcinomas. Anticancer Res. 31, 1315–1320 (2011).

112. Jain, S. et al. Incremental increase in VEGFR1–hematopoietic progenitor cell and VEGFR2–endothelial progenitor cell predicts release and lack of tumor suppression in breast cancer patients. Breast Cancer Res. Treat. 132, 235–242 (2012).

113. Kosaka, Y. et al. Identification of the high-risk group for metastasis of gastric cancer cases by vascular endothelial growth factor receptor 1-overexpression in peripheral blood. Br. J. Cancer 122, 1723–1728 (2010).

114. Xu, W. et al. Targeting VEGFR1 and VEGFR2-expressing non-tumor cells is essential for esophageal cancer therapy. Oncotarget 6, 1790–1805 (2015).

115. Zhang, W. et al. Myeloid clusters are associated with a pro-metastatic environment and poor prognosis in smoking-related early stage non-small cell lung cancer. PLoS ONE 8, e65121 (2013).

116. Zhang, W. et al. CD8+ T-cell immunosurveillance constrains lymphoid myeloid cell accumulation. Eur. J. Immunol. 45, 71–81 (2015).

117. Deng, J. et al. SR1–STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 21, 642–654 (2012).
The study demonstrated that myeloid cells depend on S1PR1-STAT signalling to participate in PMN formation.

155. Pala, S. et al. Prognostic significance of neutrophil infiltration into breast tumours with nodal metastasis in patients with muscle-invasive bladder cancer. Eur. Urol. http://dx.doi.org/10.1016/j.eururo.2016.05.003 (2016).

156. Barros, A. et al. Angiogenesis and prostate cancer: a role for adipokines. PLoS ONE 9, e102552 (2014).

157. Fraga, C. et al. Recombinant angiopoietin-1 peptide in colorectal cancer xenografts. Oncotarget 6, 10563–10576 (2015).

158. Fraga, C. et al. High HIF-1α expression genotype is associated with poor prognosis of upper aerodigestive tract carcinoma patients. Oral Oncol. 50, 130–135 (2014).

159. Otto, B. et al. Molecular changes in pre-metastatic lymph nodes of esophageal cancer patients. PLoS ONE 9, e105254 (2014).

160. Vered, M. et al. Factors associated with collagen metabolism in the lymph node pre-metastatic niche in oral squamous cell carcinoma. PLoS ONE 10, e0140656 (2015).

161. Van der Zee, A. et al. The role of natural killer cells in prostate cancer: a role for adipokines. Cancer Metastasis Rev. 35, 131–144 (2016).

162. Us National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01832599 (2016).

163. Torrano, V. et al. Vescie-MaNA: extracellular vesicles in liquid biopsy and cancer. Curr. Opin. Pharmacol. 29, 47–53 (2016).

164. Gold, B., Cankovic, M., Furtado, L. V., Meier, F. & Gocke, C. D. Do circulating tumour cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology. J. Mol. Diagn. 17, 209–224 (2015).

165. Zhou, W. et al. Cancer-secreted miR-105 destroys Spred1 and prevents breast cancer growth and metastasis by regulating oncogenic signaling and invasiveness. Cancer Res. 76, 188–1897 (2015).

166. Soodgupta, D. et al. HIF-α promotes perivascular angiogenesis and invasiveness and reduces metastatic dormancy. J. Biol. Chem. 289, 779–786 (2014).

167. Pan, Z. et al. HIF-1α, von Hippel-Lindau and anti-angiogenic activity of a new anti-vascular endothelial growth factor receptor 1 peptide in colorectal cancer model. Onco Targets Ther. 8, 1053–1067 (2015).

168. Kirsch, M., Schackert, G. & Black, P. M. Angiogenesis, tumour cell dormancy and angiogenesis in a mouse model of ovarian cancer. Nat. Med. 12, 939–944 (2006).

169. Cox, T. R. & Eter, J. T. Remodeling and homeostasis of the extracellular matrix for fibrotic diseases and cancer. Dis. Model. Mech. 4, 165–178 (2011).

170. Lim, C. D. et al. Heparin: a novel target for cancer therapy. Cancer Metastasis Rev. 29, 323–337 (2010).