Dendritic spines are tiny membranous protrusions from neuronal dendrites that receive inputs from other neurons’ nerve terminals and are believed to provide an anatomical substrate for memory storage and synaptic transmission. A new study in this issue suggests that a diacylglycerol (DAG) kinase isoform interacts with a major scaffolding protein of the spines, PSD-95, and regulates the dynamics of these structures as well as synaptic transmission.

Intracellular signalling lipids are key regulators of cell physiology. At neuronal synapses, mounting evidence implicates lipids, such as phosphoinositides, as critical regulators of synaptic transmission (Di Paolo and De Camilli, 2006). One of the best characterized reactions in phosphoinositide-based signalling is the hydrolysis of PIP2 to DAG and IP3 by PLC (Di Paolo and De Camilli, 2006) (Figure 1). Whereas soluble IP3 mediates the release of Ca2+ from intracellular stores, membrane-bound DAG stimulates PKC (Di Paolo and De Camilli, 2006). In addition, DAG regulates a variety of proteins harbouring PKC domain 1 (i.e. C1 domains), such as members of the Munc13 (i.e. factors involved in vesicle ‘priming’), chimaerin (i.e. RacGAP) and DAG kinase (DGK) families (Brose and Rosenmund, 2002; Buttery et al, 2006; Topham, 2006). On the basis of new evidence implicating lipids, such as phosphoinositides, as critical regulators of synaptic transmission, and of recent findings that link the DAG kinase family of enzymes to synaptic plasticity, we propose the following model (Figure 2). The DAG kinase family of enzymes, through its lipid kinase domain, can regulate the dynamics of DAG as well as the levels of diacylglycerol analogues such as 1,2-diacylglycerol (1,2-DAG) and phosphatidylcholine (PC), which are known to have similar effects on PKC. In addition, the DAG kinase domain of DGKζ can be recruited to DAG-rich membranes through its C1 domain, providing a mechanism for the spatial and temporal regulation of DAG kinase activity. This model provides a new framework for understanding the regulation of synaptic plasticity and learning by the DAG kinases, and suggests potential avenues for therapeutic intervention.
of its pivotal signalling role and, particularly, its capacity to amplify signals, DAG must be tightly regulated. One of the mechanisms involved in the control of DAG levels is the DGK pathway, which converts DAG to phosphatidic acid (PA), another bioactive signalling lipid (Topham, 2006). This conversion has two functional implications—the termination of DAG signalling and the initiation of PA signalling. Consistent with the daunting complexity of DAG/PA actions, multiple DGK-encoding genes are present in the genome of higher eukaryotes (Topham, 2006). In the fly phototransduction cascade, a DGK member (RdgA) mediates light response inactivation (Hardie, 2007). In the worm, mutations in DGK-1 modulate presynaptic release of acetylcholine, likely reflecting the effects of DAG accumulation on vesicle priming factor, UNC13 (Nurrish et al, 1999). However, evidence for synaptic roles for mammalian DGKs has been scant before the study by Kim et al published in this issue of EMBO J.

Kim et al report the identification of DGKε as an interactor of the postsynaptic density-associated protein PSD95, which is a major scaffolding protein concentrated in dendritic spines. These structures are dynamic actin-rich protrusions of neuronal dendrites that are characteristic of excitatory neurons and receive inputs from other neurons’ presynaptic terminals (Newpher and Ehlers, 2008). Spines are, thus, primary sites of signal integration, in which a variety of receptors and receptor-channels modulate synaptic strength and plasticity, with intracellular Ca2+ as a major player. PSD-95 family members regulate the function, traffic and signalling downstream of glutamate receptors, such as AMPA, NMDA and PLC-coupled metabotropic glutamate receptors 1 and 5 (AMPAR, NMDAR, mGlur1 and mGlur5, respectively). After demonstrating the dependency of DGKε on PSD-95 for its proper targeting at dendritic spines, Kim et al examined the relevance of this interaction for synaptic physiology. They show that overexpression of DGKε in primary hippocampal neurons increases dendritic spine density and that this phenotype requires its catalytic activity. Conversely, silencing DGKε and genetic ablation of this enzyme lead to a decrease in the spine density in mouse hippocampal cultures and slices, respectively (Figure 1). Importantly, lack of DGKε significantly impaired PA formation in knock out slices upon stimulation of PLC-coupled group 1 mGlur. By monitoring the dynamics of dendritic spines of hippocampal neurons expressing an shRNA vector directed to DGKε, the authors found that DGKε is required for the maintenance of spines, but not their formation. The decreased spine density in pyramidal neurons from DGKε knock out hippocampi correlated with functional deficits in AMPAR-mediated synaptic transmission. Altogether, this study by Kim et al identifies DGKε as a key regulator of synaptic morphology and excitatory neurotransmission through its ability to modulate DAG/PA signalling at synapses as part of the PSD-95 protein network (Figure 1).

What are the physiologically relevant signalling pathways that involve PLC and are regulated by DGKε in spines? A partial answer may be provided by earlier studies showing a role for PLC in the induction of long-term depression (LTD) [see Horne and Dell’Acqua (2007) and references therein], which is a form of plasticity correlating with the loss of dendritic spines (Newpher and Ehlers, 2008), a feature also observed in DGKε-deficient neurons. PLC activation, achieved either through group 1 mGlur stimulation or Ca2+ elevation after NMDAR activation, seems to be critical for LTD (Figure 1). The latter pathway was shown to lead to the disassembly of F-actin and the internalization of the AMPAR by the loss of AKAP79/150, a protein that stabilizes AMPAR phosphorylation and is targeted to spine membranes by PIP2 (Horne and Dell’Acqua, 2007). Although PIP2 loss, per se, may be a primary signal for the initiation of this LTD pathway, DAG production may significantly contribute to this phenomenon. Exacerbation of this pathway through a failure to eliminate DAG in the DGKε mutant mouse (Figure 1) may thus predispose synapses for an LTD mode. In addition, as PA stimulates PIP kinases and is an important precursor for the synthesis of inositol lipids, failure to convert DAG to PA may hamper the reassembly of PIP2 following its consumption by the PLC pathway (Rodriguez de Turco et al, 2001; Hardie, 2007).

This study by Kim et al also raises the need for the identification of the molecular effectors of DAG (and potentially PA) that are involved in the regulation of dendritic spine maintenance. Surprisingly, the PKC pathway does not appear to be implicated. Members of the chimaerin family are likely DAG effectors at spines, based on the ability of these C1 domain-containing proteins to regulate actin dynamics through their RacGAP domain (Brose and Rosenmund, 2002; Buttery et al, 2006). Accordingly, z1-chimaerin loss of function leads to an overgrowth of dendritic spines, a phenotype reminiscent of that observed upon DGKε overexpression (Buttery et al, 2006). Other potential effectors of DAG and PA are discussed in Kim et al.

Finally, the findings reported by the authors may be relevant for brain disorders that are associated with synaptic dysfunction and cognitive deficits. For instance, amyloid beta, a major synaptotoxic agent in Alzheimer’s disease, has been shown to decrease spine density in various instances, which, along with recent studies indicating that this cytotoxic peptide activates the PLC pathway and DAG production (Berman et al, 2008), may be related to the phenomena occurring in DGKε-deficient synapses.

References

Berman DE, Dall’Armi C, Voronov SV, McIntire LB, Zhang H, Moore AZ, Staniszewski A, Arancio O, Kim TW, Di Paolo G (2008) Oligomeric amyloid-beta peptide disrupts phosphatidyliholinositol-4,5-bisphosphate metabolism. Nat Neurosci 11: 547–554

Brose N, Rosenmund C (2002) Move over protein kinase C, you’ve got company: alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Sci 115(Pt 23): 4399–4411

Buttery P, Beg AA, Chih B, Broder A, Mason CA, Scheiffele P (2006) The diacylglycerol-binding protein alpha1-chimaerin regulates dendritic morphogenesis. Proc Natl Acad Sci USA 103: 1924–1929

Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443: 651–657

Hardie RC (2007) TRP channels and lipids: from Drosophila to mammalian physiology. J Physiol 578 (Pt 1): 9–24

Horne EA, Dell’Acqua ML (2007) Phospholipase C is required for changes in postsynaptic structure and function associated with NMDA receptor-dependent long-term depression. J Neurosci 27: 3523–3534

Newpher TM, Ehlers MD (2008) Glutamate receptor dynamics in dendritic microdomains. Neuron 58: 472–497

Nurrish S, Segalat L, Kaplan JM (1999) Serotonin inhibition of synaptic transmission: Galphai(0) decreases the abundance of UNC-13 at release sites. Neuron 24: 231–242

Rodriguez de Turco EB, Tang W, Topham MK, Sakane F, Marcheselli VL, Chen C, Taketomi A, Prescott SM, Bazan NG (2001) Diacylglycerol kinase epsilon epsilon regulates seizure susceptibility and long-term potentiation through arachidonyl-inositol lipid signaling. Proc Natl Acad Sci USA 98: 4740–4744

Topham MK (2006) Signaling roles of diacylglycerol kinases. J Cell Biochem 97: 474–484

©2009 European Molecular Biology Organization.