Ethnopharmacological study of medicinal plants and their possible drug interactions in two cities of the South of Brazil

Estudo etnofarmacológico de plantas medicinais e suas possíveis interações medicamentosas em duas cidades do Sul do Brasil

DOI:10.34119/bjhrv2n5-022

Recebimento dos originais: 18/08/2019
Aceitação para publicação: 26/09/2019

Vitor Corteline Roos
Pharmaceutical Sciences Post-graduation Program, Federal University of Santa Maria (UFSM), Avenue Roraima, ZIP Code 97.105-900, Santa Maria-RS, Brazil.
E-mail: vitorroos@hotmail.com

Caroline Fontoura Carvalho
Integrated Regional University of Upper Uruguay and Missions (URI), Santiago Campus, Faculty of Pharmacy, Batista Bonoto Sobrinho Avenue, n°733, ZIP Code 97.700-000, Santiago-RS, Brazil.
E-mail: carolinefontouracarvalho@gmail.com

Cadidja Coutinho
Biology College, Department of Education, Federal University of Pampa, Street April 21, ZIP Code 96450-000, Dom Pedroto-RS, Brazil.
E-mail: cadijdabio@gmail.com

Lenise de Lima Silva
Pharmacology Post-graduation Program, Federal University of Santa Maria, Avenue Roraima, ZIP Code 97.105-900, Santa Maria-RS, Brazil.
E-mail: ls.lenise@gmail.com

Amanda Leitão Gindri
Integrated Regional University of Upper Uruguay and Missions (URI), Santiago Campus, Faculty of Pharmacy, Batista Bonoto Sobrinho Avenue, n°733, ZIP Code 97.700-000, Santiago-RS, Brazil.
E-mail: amandagindri@gmail.com

ABSTRACT

Medicinal plants have been used by the population for several years for treatment and prevention of diseases. Folk knowledge of plants can serve as information on efficacy and toxicity of these vegetables. Many people think that because they are natural, plants are free of side effects and interactions with the medicines that they used. The present study had as objective to conduct an ethnopharmacological survey of medicinal plants in the Brazilian cities of Manoel Viana, RS, and São Francisco de Assis, RS, and to evaluate their possible drug interactions. The present work was carried out through interviews, where individuals were questioned about the use of plants and medicines. Of the 205 participants interviewed, most were women (79%), approximately 98% used medicinal plants, and approximately 82% reported the presence of chronic diseases in their communities and the use of pharmaceuticals to treat them. The medicinal plants cited most often were Achyrocline satureioides, Peumus boldus Molina, Chamomilla recutita, Cymbopogon

Brazilian Journal of health Review
citratus (DC), and Melissa officinalis L, while the most frequent chronic diseases mentioned were arterial hypertension, depression, dyslipidemia, and diabetes mellitus. The drugs cited most often were hydrochlorothiazide, losartan, simvastatin, and metformin, and the results of the study revealed numerous plant–drug interactions. Results of the study indicate a profile of the use of medicinal plants and synthetic drugs used by the population of Manoel Viana, RS, and São Francisco de Assis, RS, Brazil.

Keywords: Drug interactions; Ethnopharmacology; Medicinal herbs; Phytotherapy.

1 INTRODUCTION

Medicinal plants have been used for therapeutic purposes since antiquity and continue to be used today to prevent, cure, and treat diseases (Wachtel–Galor and Benzie, 2011). Even with the evolution of the pharmaceutical industry, the culture of the use of plants and knowledge about their benefits have been retained, which demonstrates their importance and effectiveness (Niehues, 2011).

Because medicinal plants originate in nature, many people believe that they are free of chemical components as well as side effects and can thus be used without restriction or attention to dosage (Mengue, 2001). However, medicinal plants are not free of toxins, and their toxic effects can directly influence the pharmacotherapy of patients by intensifying or reducing the effects of drugs (Capasso et al., 2000). Moreover, medicinal plants are not free of side effects (Oliveira, 2007), for the compounds present in plants produce reactions in the body that can be positive or negative for patients (Zancanaro, 2007). Importantly, when medicinal plants are combined with
pharmaceuticals to treat chronic diseases, the risk of sometimes dangerous side effects increases (Futuro et al., 2004; Veiga Júnior et al., 2005; Londrina, 2006).

Ethnopharmacology is a science that helps to identify and describe medicinal plants and their therapeutic uses. Ethnopharmacology should be used not only to understand the therapeutic effects of plants, however, but also to promote knowledge of plant–drug interactions to ensure that they do not harm the health of users (Simões et al., 2010). Consequently, ethnopharmacological studies involve not only recording the use of medicinal plants but also identifying how they are administered, as well as collecting information about the people who use them and the possible influences of such usage on the realities of communities (Coelho et al., 2005, Simões et al., 2010).

Although several ethnopharmacological studies have been conducted in the Brazilian state of Rio Grande do Sul (Ritter, 2002; Barros, 2007; Battisti, 2013), none have been performed in the cities of Manoel Viana or São Francisco de Assis. Given the high use of medicinal plants in those cities and to deepen knowledge about such use, the aim of the study reported here was to collect data about species used for therapeutic purposes, the purposes for which they are used, which parts of the plants are used, and how often they are used. Another aim was to disseminate accurate information about the correct and safe use of plant species to individuals of the communities where the study was conducted.

2 METHODS

The study was conducted in the Brazilian cities of Manoel Viana and São Francisco de Assis, both in the Valley of Jaguari region. On the western border of the state of Rio Grande do Sul, Manoel Viana and São Francisco de Assis have areas of 1,391 km² and 2,504 km² and populations of 7,074 and 19,382 inhabitants, respectively (IBGE, 2010).

The study involved interviews with 205 inhabitants of the two cities. Before interviews were conducted, each interviewee received an informed consent form, and during interviews, he or she responded to open and closed questions presented performed by the interviewer, where responses were recorded in a spreadsheet. The questionnaire items collected the interviewee’s personal demographic information (i.e., name, age, gender, level of education achieved, city of residence, and number of people living in his or her residence) and, in the following series of 10 questions, his or her knowledge and use of local medicinal plants:
a) Do you have any chronic illnesses? If so, then which ones?
b) What medicines do you use?
c) Do you know any medicinal plants? If yes, then please name them.
d) Do you use teas or herbs?
e) What do you call the medicinal plant(s) that you use?
f) Which parts of the plant are used: the leaves, stems, roots, fruit, flowers, or something else?
g) What is the purpose of using them?
h) How often do you use them?
i) How do you prepare the plants for use as medicine?
j) Where do you acquire the plants?

After interviews were conducted, the responses were evaluated to identify possible drug interactions between the described plants and the pharmaceuticals that interviewees mentioned administering. Data regarding drug interactions was collected from scientific literature gathered from the electronic databases (Google Acadêmico, LILACS, Scielo e Science Direct). Data analysis was performed with Excel (Microsoft, Redmond, WA, U.S.A.).

The study was approved by the Research Ethics Committee of the Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Santiago Campus (no. 1.769.151).

3. RESULTS

From January to June 2017, 205 interviews were conducted in Manoel Viana, RS, and São Francisco de Assis, RS. Of the respondents, most were women 79.02% (n = 162), and by age, 56–65-year-olds (27.31%) were the most common, followed by 66–75-year-olds (19.51%). By level of education attained, most interviewees had attended primary school (complete: n = 35, 17.07%; incomplete: n = 99, 48.29%). More than a third of interviewees (n = 74 36.09%) lived with only one other person; all other proportions of interviewees who lived alone or with two or more other people were less. The demographic data of the interviewees appear in Table I.
Table I. Demographic data of interviewees

Gender	n	%
Woman	162	79.02
Man	43	20.97

Age (in years)	n	%
18-25	7	3.41
26-35	17	8.29
36-45	29	14.14
46-55	33	16.09
56-65	56	27.31
66-75	40	19.51
76-85	24	11.70

Level of education attained	n	%
Primary school (complete)	35	17.07
Primary school (incomplete)	99	48.29
High school (complete)	33	16.09
High school (incomplete)	12	5.85
University (complete)	18	8.78
University (incomplete)	8	3.90

Number of people in the residence	n	%
1 person	33	16.09
2 person	74	36.09
3 person	59	28.78
4 person	20	9.75
5 person	17	8.29
6 person or more	2	0.97

The majority of interviewees ($n = 170$, 82.93%) had at least one chronic disease. The most common pathologies were arterial hypertension, depression, and dyslipidemia (Table II), and some interviewees had more than one pathology concurrently.

Table II. Chronic diseases reported by interviewees

Disease	n	%
Arterial hypertension	76	33.04
Depression	37	16.08
Dyslipidemia	31	14.47
Diabetes mellitus	21	9.13
Vascular disease	17	7.40
Nearly all interviewees \((n = 201, 98.04\%)\) reported using medicinal plants in teas. They named 60 species (Table III) that they used in teas, either alone or with up to four other species. The total number of plant citations by the sample was 396, or approximately 1.93 plants per interviewee.

Table 3. Medicinal plants used by interviewees

Brazilian name	Scientific name	Plant part	\(n\)	\(\%\)
Marcela	*Achyrocline satureioides*	Flowers	54	26.86
Boldo	*Peumus boldus* Molina	Leaves	53	26.36
Camomila	*Chamomilla recutita*	Flowers	29	14.42
Capim-limão	*Cymbopogon citratus* (DC)	Leaves	23	11.44
Melissa	*Melissa officinalis* L.	Leaves	19	9.45
Alcachofra	*Cynara scolymus* L.	Leaves	13	6.46
Erva doce	*Pimpinella anisum* L.	Seeds	13	6.46
Chá verde	*Camellia sinensis*	Leaves	11	5.47
Herb	Scientific Name	Part	Count	Strength
--------------	-------------------------------	---------------	-------	----------
Funcho	*Foeniculum vulgare*	Leaves and seeds	11	5.47
Carqueja	*Baccharis trimera*	Leaves	10	4.97
Gengibre	*Zingiber officinale*	Roots	9	4.47
Alecrim	*Rosmarinus officinalis*	Leaves	8	3.98
Hortelã	*Mentha* spp.	Leaves	7	3.48
Guabiroba	*Campomanesia*	Leaves	7	3.48
Espinheira santa	*Maytenus aquifolium*	Leaves	7	3.48
Pata de vaca	*Bauhinia* spp.	Leaves	7	3.48
Cavalinha	*Equisetum arvense* L.	Stalks	7	3.48
Laranjeira	*Citrus sinensis*	Leaves	6	2.98
Cidrozinho	*Aloysia triphylla*	Leaves	6	2.98
Limeira	*Citrus aurantiifolia*	Leaves	6	2.98
Jurubeba	*Solanum paniculatum*	Leaves	6	2.98
Cambará	*Lantana camara* L.	Leaves	5	2.48
Hibisco	*Hibiscus sabdariffa* L.	Flowers	5	2.48
Insulina	*Sphagneticola trilobata*	Leaves	5	2.48
Anis	*Apium leptophyllum*	Flowers	4	1.99
Ipê roxo	*Tabebuia heptaphylla*	Stalks	4	1.99
Luceira	*Pluchea sagittalis*	Leaves	4	1.99
Picão	*Acanthospermum* austral eau*	Roots	4	1.99
Pronto-alívio	*Achillea millefolium*	Leaves	4	1.99
Malva	*Malva sylvestris*	Leaves	4	1.99
Sálvia	*Salvia officinalis*	Leaves	4	1.99
Amoreira	*Morus celtidifolia*	Leaves	3	1.49
Guaco	*Mikania glomerata*	Leaves	3	1.49
Chá preto	*Camellia sinensis*	Leaves	3	1.49
Gervão	*Stachytarpheta* cayennensis*	Leaves	2	0.99
Sene	*Senna alexandrina*	Leaves	2	0.99
Tanchagem	*Plantago major* L.	Leaves	2	0.99
The plants most cited by interviewees were *A. satureioides* (26.86%) and *P. boldus* Molina (26.36%), followed by *C. recutita* (14.42%) and *C. citratus* (11.44%), as shown in Table III. Regarding parts of the plants used for the preparation of teas, most participants reported using leaves (57.80%), followed by flowers (28.27%), seeds (4.51%), stalks (4.51%), roots (4.10%), and peel (0.81%).

Most interviewees used medicinal plants for digestive and calming purposes (26.40% and 19.60%, respectively). Additionally, as results in Table IV show, several interviewees (5.17%) mentioned using medicinal plants to aromatize their *chimarrão*, a traditional drink made with yerba mate (*I. paraguariensis*) by using water of a
temperature of approximately 80 °C and ingested from a pot made of porongo (Da Croce and Floss, 1999; Maccari Junior, 2005).

Table IV: Final use of plants mentioned by participants

Final use	n	%	Most used plants
Digestive	97	26.4%	*P. boldus*, *A. satureioides*, *C. scolymus*, *B. trimera*
Soothing agent	72	19.6%	*C. citratus*, *M. offinallis*, *P. anisum*, *C. recutita*
Stomach pain	38	10.3%	*P. boldus*, *A. satureioides*, *C. citratus*, *M. aquifolium*
Flu or cold	30	8.17%	*C. sinensis*, *C. aurantiifolia*, *C. deliciosa* Ten.
Preparation of			*P. boldus*, *A. satureioides*
chimarrão			*F. vulgare*, *P. anisum*
Antiflatulent	13	3.54%	*T. heptaphylla*, *A. australis*, *M. sylvestris*, *E. arvense*
Anti-infective	11	2.99%	*A. triphylla*, *C. Sinensis*
No final use			
Diuretic	10	2.72%	*C. sinensis*, *M. celtidifolia*, *Bauhinia sp*
Weight loss	10	2.72%	*M. aquifolium*, *B. trimera*, *Z. officinalae*
Antidiabetic	7	1.90%	*Bauhinia spp.*, *M. pulegium*
Urinary infection	7	1.90%	*E. arvense*
Hypcholesterolemic	7	1.90%	*C. xanthocarpa*
Cough	5	1.36%	*M. glomerata*
Liver problems	4	1.09%	*B. trimera*
Prostate disease	4	1.09%	*U. baccifera*
Sore throat	4	1.09%	*S. officinalis*
Anti-inflammatory	3	0.81%	*P. emarginatus*, *M. celtidifolia*
Headache	3	0.81%	*R. officinalis*, *C. sinensis*, *A. millefolium*
Depurative blood	2	0.54%	*M. celtidifolia*, *S. flexicauhls*
Antioxidant	2	0.54%	*Mentha spp.*, *I. paraguariensis*
Laxative	2	0.54%	*S. alexandrina*
Kidney stones	1	0.27%	*U. hieronymi*
Fever	1	0.27%	*Sambucus nigra*
Rhinitis	1	0.27%	*P. major*
Labyrinthitis	1	0.27%	*R. officinalis*
Vermifuge	1	0.27%	*Mentha spp.*
Sinusitis 1 0.27% *Eucalyptus globules*

\[n = \text{number of interviewees who reported} \]

The frequency of the use of medicinal plants among the interviewees was moderate (Table V), for the vast majority used medicinal plant species only when necessary or about 3 times a week (48.74% and 18.86%, respectively).

Table V: Frequency of use of medicinal plants among interviewees

Frequency of use	%
Daily	9.43%
1 time per week	14.77%
2 times per week	5.08%
3 times a week or more	18.86%
When necessary	48.74%

For the preparation of the teas, roughly 72% of the interviewees used infusion, whereas roughly 28% used decoction. Some interviews required explaining the difference between the types of extraction for teas to prevent confusion among interviewees. Most medicinal plant species used were obtained from home gardens (67.90%), markets (30.23%), pharmacies (1.40%), and fairs (0.47%).

Most interviewees reported continually using some type of pharmaceutical agent (87.3%); the most commonly mentioned were diuretics, antihypertensives, hypocholesteroleemics, hypoglycemics, nutritional supplements, and hormones. All pharmaceuticals cited appear in Table VI.

Table VI. Pharmaceuticals continually used by interviewees

Drug	\(n \)	%
Hydrochlorothiazide	51	12.97%
Losartan	32	8.14%
Simvastatin	30	7.63%
Metformin	21	5.34%
Atenolol	19	4.83%
Calcium carbonate + vitamin D	19	4.83%
Enalapril	16	4.07%
Drug	Quantity	Concentration
---	----------	---------------
Levothyroxine sodium	14	3.56%
Omeprazole	13	3.3%
Clonazepam	10	2.54%
Glibenclamide	9	2.29%
Sodium alendronate	6	1.52%
Captopril	6	1.52%
Fluoxetine	6	1.52%
Acetylsalicylic acid	6	1.52%
Sertraline	6	1.52%
Amlodipine	5	1.27%
Oral contraceptive	5	1.27%
Diazepam	5	1.27%
Escitalopram	5	1.27%
Rosuvastatin	5	1.27%
Amitriptyline	4	1.01%
Clopidogrel	4	1.01%
Omega-3	3	0.76%
Pantoprazole	3	0.76%
Propranolol	3	0.76%
Venlafaxine	3	0.76%
Indian chestnut	2	0.5%
Alprazolam	2	0.5%
Amiodarone	2	0.5%
Betahistine	2	0.5%
Bromazepam	2	0.5%
Caverdilol	2	0.5%
Cilostazol	2	0.5%
Ergoloid	2	0.5%
Diosmin + hesperid	2	0.5%
Duloxetine	2	0.5%
Flunarizine	2	0.5%
Budesonide + formoterol	2	0.5%
Glimepiride	2	0.5%
Glucosamine + chondroitin	2	0.5%
Leflunomide	2	0.5%
Memantine	2	0.5%
Ramipril	2	0.5%
Valproic acid	1	0.25%
Budesonide	1	0.25%
Carbamazepine	1	0.25%
Lithium carbonate	1	0.25%
Cyclobenzaprine	1	0.25%
Amiloride + chlorthalidone	1	0.25%
Cloxazolam	1	0.25%
Coumarin + troxerutin	1	0.25%
Diclofenac sodium	1	0.25%
Domperidone	1	0.25%
Donepezil	1	0.25%
Doxazosin + finasteride	1	0.25%
Dutasteride + tamsulosin	1	0.25%
Spironolactone 1 0.25%
Spironolactone + HCTZ 1 0.25%
Estradiol 1 0.25%
Conjugated estrogens 1 0.25%
Fenofibrate 1 0.25%
Flunitrazepam 1 0.25%
Furosemide 1 0.25%
Ginkgo biloba 1 0.25%
Amiloride + HCTZ 1 0.25%
Insulin 1 0.25%
Isosorbide 1 0.25%
Levomepromazine 1 0.25%
Losartan + amlodipine 1 0.25%
Methyldopa 1 0.25%
Metoprolol 1 0.25%
Beclomethasone 1 0.25%
Mirtazapine 1 0.25%
Olmesartan 1 0.25%
Acetaminophen + codeine 1 0.25%
Piracetam 1 0.25%
Prednisone 1 0.25%
Promethazine 1 0.25%
Propatynitrate 1 0.25%
Fluticasone propionate 1 0.25%
Propranolol + HCTZ 1 0.25%
Risperidone 1 0.25%
piracetam + cinnarizine 1 0.25%
Sitagliptin + metformin 1 0.25%
Sulfasalazine 1 0.25%
Sulpiride 1 0.25%
Tamoxifen 1 0.25%
Tibolone 1 0.25%
Topiramate 1 0.25%
Tramadol + acetaminophen 1 0.25%
Warfarin 1 0.25%
Verapamil 1 0.25%
Zolpidem 1 0.25%

4. DISCUSSION

According to Brunello et al. (1998), the most common chronic diseases in elderly individuals are respiratory disease, cardiovascular disease, renal impairment, arthritis, psychological disorders (e.g., anxiety and depression), and endocrine disease (e.g., type 2 diabetes). By little contrast, the most prevalent chronic diseases experienced by interviewees in the study reported here, slightly less than half of whom were aged either 56–65 years (27.31%) or 66–75 years (19.51%, Table I), were hypertension (33.04%), depression (16.08%), and dyslipidemia (14.47%), as detailed in Table II. The age
distribution of interviewees (Table I) was similar to that of samples in the ethnopharmacological studies of Battisti et al. (2013), in which 67% of respondents were older than 55 years, and Vendrúsculo and Mentz (2006), in which the representative age group was 40–70 years old. Generally, older individuals tend to use medicinal plants more often than younger ones because they retain traditional knowledge about plants for treating health conditions (Battisti et al., 2013).

The prevalence of women in the study (79.02%, Table I) was also evidenced in ethnopharmacological studies in the cities of Palmeira das Missões and Porto Alegre (Battisti et al., 2013; Vendrúsculo and Mentz, 2006).

In Brazil, about 82% of the population uses medicinal herbal products in their healthcare (Rodrigues and De Simoni, 2010). Likewise, an extremely high plant use index was observed in the cities of Manoel Viana and São Francisco de Assis, where 98.04% of the 205 interviewees reported using medicinal plants.

The plants that interviewees indicated using most often were *Achyrocline satureioides* (26.86%) and *Peulmus boldus* Molina (26.36%), followed by *Chamomilla recutita* (14.42%), *Cymbopogon citratus* (DC) (11.44%), and *Melissa officinalis* L (9.45%). Those same plants were also cited in ethnopharmacological studies conducted in other cities in southern Brazil, including Palmeira das Missões (Battisti et al., 2013), Porto Alegre (Vendrúsculo and Mentz, 2006), São Luiz Gonzaga (Barros et al., 2002), and Uruguaiana (Galvani and Barreneche, 1994).

In the preparation of teas, interviewees cited using medicinal plant leaves more than any other part of the plants. The same tendency characterized a sample of the population in Palmeira das Missões (Battisti et al., 2013). The relative ease of acquiring leaves could explain their common use in teas, as could their availability throughout the year compared to other parts of plants, including fruits, seeds, and flowers, that are not available year-round (Castellucci et al., 2000, Vásques et al., 2014). The use of aerial parts of plants also preserves individual plants and the species (Coan and Matias, 2013), for the use of roots and stalks requires removing plants from their habitat and, inevitably, plant death.

Interviewees most often reported using medicinal plants to treat digestive conditions (26.4%), which corresponds to results obtained in Palmeira das Missões, Porto Alegre, and Uruguaiana (Battisti et al., 2013; Vendrúsculo and Mentz, 2006; Galvani and Barreneche, 1994). Other oft-mentioned uses were as soothing agents (19.6%) and as flavoring agents for *chimarrão* (5.17%, Table IV), as also found in the city of Uruguaiana (Galvani and Barreneche, 1994).
The vast majority of interviewees (72%) reported preparing teas by infusion, whereas only slightly more than a fourth (28%) reported using decoction. In infusing teas, the extraction of medicinal properties occurs via the direct contact of the plant material with boiling water in a covered container, whereas in decoction the plant material has to stay in contact with the liquid extractor in boiling water for a certain amount of time. Infusing teas is recommended for plant parts with soft structure such as leaves, flowers, and inflorescences. Since interviewees reported using leaves most often in preparing teas, their reliance on extraction via infusion is appropriate. By contrast, decoction should be used for hard materials such as rhizomes and roots (Simões et al., 2010). Tea preparation by infusion and decoction also dominated in the results of ethnopharmacological studies conducted in Palmeira das Missões (Battisti et al., 2013) and Porto Alegre (Vendrúsculo and Mentz, 2006).

The cultivation and acquisition of medicinal plants in home gardens was often reported by interviewees (67.8%), as was also the case in a study conducted in the city of São Luiz Gonzaga (Barros et al., 2007). That tendency is somewhat worrisome, since the risk of toxicity by using misidentified plants is significant when populations are not trained in plant identification and thus liable to confuse one plant with another. Also troubling is the possibility of having two plant species with the same popular name in the same ecosystem (Simões et al., 2010), which involves the risk of using medicinal plants for unintended purposes. The toxicity of plants whose use lacks pharmacological evidence can negatively affect users without knowledge of the effects of plant–drug interactions, as in the case of allopathic medications (Veiga Junior, 2008).

The pharmaceuticals most cited by interviewees (Table VI) were hydrochlorothiazide (i.e., a thiazide diuretic), losartan (i.e., an angiotensin receptor antagonist), simvastatin (i.e., a coenzyme A inhibitor), metformin (i.e., sulfonylurea), and atenolol (i.e., a beta blocker; Korolkovas, 2009), which is consistent with the chronic diseases most cited by interviewees: hypertension, dyslipidemia, and diabetes (Table II). Participants in a study conducted in São Luiz Gonzaga, most of them elderly and who tended to use pharmaceuticals to treat specific pathologies, also reported using medicinal plants in complementary therapy (Barros et al., 2007). That tendency is problematic, since the interaction of medicinal plant constituents with pharmaceutical products may cause intoxication instead of the expected benefits (Barros et al., 2007).

Several interactions can occur when using medicinal plants concomitantly with pharmaceutical products that can cause serious harm to users, including impaired
recovery (Nicoletti et al., 2010). Such interactions can prompt pharmacological changes and alter the toxicity of drugs in three ways; one could potentiate the action of another, conflicting actions could render them ineffective, and a drug’s action could alter the absorption, excretion, or intra-organism transformation of another drug (Futuro et al., 2004; Oliveira and Dalla Costa, 2004).

The medicinal plants most cited by interviewees were evaluated against their main drug interactions. First, *A. satureioides*, used to aid digestion, to treat intestinal colic, and as a mild sedative (Brasil, 2010), has hypotensive effects (Souza and Felfilli, 2006) and should thus be used with caution by patients who are concurrently using antihypertensives. That interaction may benefit sufferers of hypertension; however, the plant should be used with caution to avoid serious hypotension. High blood pressure was the most-cited disease (33.04%) among interviewees (Table 2), and several of them reported using antihypertensives such as losartan, atenolol, enalapril, and captopril (Table VI).

Second, *P. boldus* Molina can interact with anticoagulants and antiplatelets such as acetylsalicylic acid, clopidogrel, and warfarin. The species can intensify the action of those drugs since its secondary metabolite, boldine, blocks platelet aggregation (Nicoletti, 2012). Interviewees sometimes reported using such anticoagulants and antiplatelets, especially acetylsalicylic acid (1.52%), clopidogrel (1.01%), and warfarin (0.25%), as shown in Table VI.

Third, *M. recutita* can also interact with anticoagulants and antiplatelets (e.g., warfarin and clopidogrel) and thereby raise the risk of bleeding. The plant can additionally interact with barbiturates and other central nervous system (CNS) depressants (e.g., phenobarbital), with the effect of increasing or prolonging the depressant action of the CNS (Nicoletti, 2012). Moreover, the plant can interact with nonsteroidal anti-inflammatory drugs and thereby increase the risk of bleeding. Its interactions with statins and oral contraceptives have also been described (Nicoletti, 2012; Smeriglio et al., 2014; Szafrański, 2014). Interviewees sometimes reported suffering from dyslipidemia (14.47%, Table II), as well as using simvastatin to treat it (7.63%, Table VI).

Fourth, *C. citratus*, due to its sedative action and spasmolytic activity, should be used cautiously with sedative drugs, the effects of which it can potentiate (Matos, 2002; Brasil, 2011). At the same time, using antihypertensive agents in conjunction with the
plant can increase the risk of hypertension. Notably, certain interviewees reported using sedative drugs as well as antihypertensive ones (Table VI).

Fifth, M. officinalis L. can interact with other medicines containing medicinal plants, specifically those with kava kava (Piper methysticum). Thus, the plant also interacts with CNS depressants (e.g., diazepam) and thyroid hormones (e.g., levothyroxine sodium), as Cardoso et al. (2009) have described. Some interviewees cited using those drugs to treat their illnesses (Table VI).

Sixth, users of C. scolymus should not use loop diuretics (e.g., furosemide) or thiazide (e.g., hydrochlorothiazide) in teas made with the plant. The plant can drastically reduce blood volume and thus blood pressure via hypovolemia, which entails the massive excretion of potassium (Cardoso et al., 2009). One interviewee mentioned using furosemide (0.58%), whereas hydrochlorothiazide was the drug most cited by the sample ($n = 51$, 12.97%), as shown in Table VI.

Seventh, P. anisum can prolong the action of hypnotic and sedative medications and, due to mild estrogenic effects, also interfere with the effect of oral contraceptives (Nicoletti, 2012; Williamson et al., 2012). Clonazepam was the most-cited sedative and hypnotic medication by interviewees (2.54%), while others reported the use of contraceptives (1.27%), as shown in Table VI.

Eighth, using C. sinensis can decrease lithium levels and increase blood pressure when used simultaneously with metoprolol or propranolol (Cardoso et al., 2009). Because the plant has significant amounts of caffeine, it can moderately increase blood pressure and thereby impair treatments performed to control hypertension (Williamson et al., 2012). Notably, hypertension was the most-cited pathology among interviewees (33.04%, Table II), and propranolol was cited among the drugs used continually (0.76%, Table VI).

Ninth, F. vulgare has carminative, antispasmodic, expectorant, and antiflatulent actions (Alexandrovich et al., 2003; Simões et al., 2010). If used together with barbiturates, then the plant can potentiate the effects of those drugs (Londrina, 2006). Studies have shown a possible interaction between ciprofloxacin (antibiotic) and F. vulgare that decreases plasma concentrations of the drug (Zhu et al., 1999).

Tenth and last, B. trimera, when used with antihypertensives, can increase the action of those drugs and cause hypotension (Alonso and Desmarchelier, 2006). Moreover, because the plant has hypoglycemic activity (Oliveira et al., 2005), it should be used with caution among patients who take antidiabetic medication. Diabetes ranked
among the diseases most reported by interviewees (9.13%, Table II), and metformin was the most-cited drug for the treatment of that pathology (5.34%, Table VI).

5. CONCLUSION

The results indicate that communities in São Francisco de Assis, RS, and Manoel Viana, RS, frequently use medicinal plants, mainly in the form of teas, as well as various types of medications. The plants most cited by residents of those cities were *A. satureioides*, *P. boldus* Molina, *C. recutita*, *C. citratus*, *C. scolymus* L., *P. anisum* L., *F. vulgare*, and *B. trimera*.

Among the medicinal plants that interviewees reported using most often, the great majority present the potential to interact with pharmaceuticals also taken by the interviewees. That those medicinal plants are considered to be natural products does not mean that they are exempt from interacting with medications and can cause innumerable harm to users.

Knowledge about plants is transferred from generation to generation, as well as spreads among people in communities and throughout societies. The popular knowledge demonstrated in this ethnopharmacological study strengthens the merit that medicinal plants have in the palliative or curative therapy of diseases.

REFERENCES

ALEXANDROVICH, I; RAKOVITSKAYA, O; KOLMO, E; SIDOROVA, T; SHUSHUNOV, S. The effect of fennel (*Foeniculum vulgare*) seed oil emulsion in infatile colic: a randomized, placebo-controlled study. *Altern. Ther. Health Med*, v. 9, p. 58-61, 2003.

ALONSO, J; DESMARCHELIER, C. *Plantas medicinales autóctonas de la Argentina. Bases científicas para su aplicación en atención primaria de la salud*. Buenos Aires: LOLA, 2006, 663p.

BARBOSA, S.N.C. Uso de plantas medicinais na comunidade quilombola da Barra II-Bahia, Brasil. *Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas*, v. 11, n. 5, p. 435-453, 2012.
BARROS, F.M.C; PEREIRA, K.N; ZANETTI, G.D; HEINZMANN, B.M. Plantas de uso medicinal no município de São Luiz Gonzaga. *Latin American Journal of Pharmacy*, v. 26, n. 10, p. 652-662, 2007.

BATTISTI, C; GARLET, T.M.B; ESSI, L; HORBACH, R.K; ANDRADE, A; BADKE, M.R. Plantas medicinais utilizadas no município de Palmeira das Missões, RS, Brasil. *Revista Brasileira de Biociências*, v. 11, n. 3, p. 338-348, 2013.

BRASIL. Agência Nacional de Vigilância Sanitária (ANVISA). *Resolução - RDC nº 10, de 9 de março de 2010*. Dispõe sobre a notificação de drogas vegetais junto à Agência Nacional de Vigilância Sanitária (ANVISA) e dá outras providências. Diário Oficial da República Federativa do Brasil, Poder Executivo, Brasília, DF, 10 mar. 2010. Seção 1, p. 52-59.

BRASIL. Agência Nacional de Vigilância Sanitária. *Formulário de Fitoterápicos da Farmacopéia Brasileira/Agência Nacional de Vigilância Sanitária*. Brasília: Anvisa, 2011.

BRUNELLO D.L; MANDIKOS M.N. Construction faults, age, gender and relative medical health: factors associated with complaints in complete denture patients. *J Prosthet Dent.*, v. 79, n.10, p. 545-554, 1998.

CAPASSO, R; IZZO, A.A; PINTO, L; BIFULCO, T; VITOBELLO, C; MASCOLO, N. Phytotherapy and quality of herbal medicines. *Fitoterapia*, v. 71, n. 3, p. 58-65, 2000.

CARDOSO, C. M. Z. et al. Elaboração de uma cartilha direcionada aos profissionais da Área da Saúde, Contendo Informações sobre Interações Medicamentosas envolvendo Fitoterápicos e Alopáticos. *Revista Fitos*, v. 4, n. 13, p. 56-69, 2009.

CASTELLUCCI, S. et. al. Plantas medicinais relatadas pela comunidade residente na Estação Ecológica de Jataí, município de Luís Antonio – SP: uma abordagem etnobotânica. *Revista Brasileira de Plantas Medicinais*, v. 3, p. 51-60, 2000.
COAN, C. M; MATIAS, T. A utilização das plantas medicinais pela comunidade indígena de Ventarrá Alta- RS. Revista de educação do IDEAU, v. 8, n. 18, p. 11-19, 2013.

COELHO, F.B.R; DAL BELO, C.A; LOLIS, S.F; SANTOS, M.G. Levantamento etnofarmacológico realizado na comunidade mumbuca localizada no Jalapão- TO. Revista Eletrônica de Farmácia Suplemento, v. 2, n. 2, p. 52-55, 2005.

DA CROCE, D.M; FLOSS, P.A. Cultura da erva-mate no Estado de Santa Catarina. Florianópolis, SC: EPAGRI - Empresa de Pesquisa Agropecuária e Difusão de Tecnologia de SC. 81p. EPAGRI, Boletim Técnico:100, 1999.

FUTURO, D. O; FIORINI, F. S; CASTILHO, S. R. Interações entre Plantas e Medicamentos. Informativo CEATRIM, n. 3, 2004. Disponível em http://www.crf-rj.org.br/crf/infor/ceatrim/arquivos/200412_CEATRIM.pdf. Acesso em 15/05/2018.

IBGE – Instituto Brasileiro de Geografia e estatística. Dados sobre as cidades Brasileiras. Disponível em: <http://www.cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=431175&search=||informações:informativos:E7%F5es-completas>. Acesso em: 03/05/2018.

VEIGA JUNIOR, V.F. Estudo do consumo de plantas medicinais da Região Centro-Norte do Rio de Janeiro: Aceitação pelos profissionais de saúde e modo de uso pela população. Revista Brasileira de Farmacognosia, v. 18, n. 6, p. 308-313, 2008.

KOROLKOVAS, A., 2009. Dicionário Terapêutico Guanabara. 16ª edição. Rio de Janeiro: Guanabara Koogan, 686p.

LONDRINA: MUNICÍPIO DE LONDRINA-PR. Fitoterapia: Protocolo da Prefeitura do Município de Londrina, PR. Autarquia Municipal de Saúde. 1ª ed., Londrina, PR: [s.n.], 2006.
MACCARI JUNIOR, A. Análise do pré-processamento da erva-mate para chimarrão. 215p. Tese (Doutorado em Engenharia Agrícola) – Curso de Engenharia Agrícola, UNICAMP. Campinas, 2005.

MATOS, F. J. A. Farmácias vivas: sistema de utilização de plantas medicinais – projeto para pequenas comunidades. 4. ed. Fortaleza: Editora UFC, 2002.

MENGUE, S. S; MENTZ, L. A; SCHENKEL, E. P. Uso de plantas medicinais na gravidez. Revista Brasileira de Farmacognosia, v. 11, n. 1, p. 21-35, 2001.

MOREIRA, F. V. Chemical composition and cardiovascular effects induced by the essential oil of *Cymbopogon citratus* DC. *Stapf, Poaceae*, in rats. Brazilian Journal of Pharmacognosy, v. 20, n. 6, p. 904-906, 2010.

NICOLETTI, A. M. et al. Uso popular de medicamentos contendo drogas de origem vegetal e/ou plantas medicinais: principais interações decorrentes. Revista saúde, v. 4, n. 1, p. 25-39, 2010.

NICOLETTI, M.A. et al. Fitoterápicos – Principais Interações Medicamentosas. São Paulo: ASSOCIAÇÃO NACIONAL DE FARMACÊUTICOS MAGISTRAIS - Brasil, 1.ed, 118p, 2012.

NIEHUES, J. et al. Levantamento etnofarmacológico e identificação botânica de plantas medicinais em comunidades assistidas por um serviço de saúde. Arquivos Catarinenses de Medicina, v. 40, n. 6, p. 34-39, 2011.

OLIVEIRA, A. E; DALLA COSTA, T. Interações farmacocinéticas entre as plantas medicinais *Hypericum perforatum*, *Gingko biloba* e *Panax gingseng* e Fármacos Tradicionais. Acta Farmacéutica Bonaerense, v. 23, n. 4, p. 567-578, 2004.

OLIVEIRA, A.C; ENDRINGER, D.C; AMORIM, L.A; DAS GRAÇAS, L.B.M; COELHO, M.M. Effect of the extracts and fractions of *Baccharis trimera* and *Syzygium cumini* on glycaemia of diabetic and non-diabetic mice. Journal of Ethnopharmacology, v. 102, n. 3, p. 465-69, 2005.
Oliveira, C. J; Araújo, T. L. Plantas medicinais: usos e crenças de idosos portadores de hipertensão arterial. Revista Eletrônica de Enfermagem, v. 9, n. 1, p. 93-105, 2007.

RITTER, M.R; SOBIERAJKI, G.R; SCHENKEL, E.P; MENTZ, L.A. Plantas usadas como medicinais no município de Ipê, RS, Brasil. Revista Brasileira de Farmacognosia, v. 12, n. 2, p. 51-62, 2002.

RODRIGUES, A.G; DE SIMONI, C. Plantas medicinais no contexto de políticas públicas. Informe Agropecuário, v. 31, n. 255, p. 7-12, 2010.

SIMÕES, C. M. O; SCHENKEL, E.P; GOSMANN, G; MELLO, J.C.P; MENTZ, L.A; PETROVICK. P.R. Farmacognosia da planta ao medicamento. 6.ed. Porto Alegre: Editora da UFRGS: Florianópolis: Editora da UFSC, 1104p, 2010.

SMERIGLIO, A; TOMAINO, A; TROMBETTA, D. Herbal products in pregnancy: Experimental studies and clinical reports. Phytother Res, v. 28, p. 1107–1116, 2014.

SOUZA, C.D. DE; FELFILI, J.M. Uso de Plantas Medicinais na Região de Alto Paraíso de Goiás, Goiás, Brasil. Acta Botânica Brasileira, v. 20, n. 7, p.135-142, 2006.

SZAFRAŃSKI, T. Herbal remedies in depression– state of the art. Psychiatr Pol, v. 48, p. 59–73, 2014.

VÁSQUES, S. P. F; MENDONÇA, M. S; DE NODA, S, N. Etnobotânica de plantas medicinais em comunidades ribeirinhas do Município de Manacapuru, Amazonas, Brasil. Acta Amazonica, v. 44, n. 4, p. 457-472, 2014.

VEIGA JUNIOR, V. F. V; PINTO, A. C; MACIEL, M. A. M. Plantas medicinais: cura segura?. Química Nova, v. 28, p. 519-528, 2005.

VENDRÚSCOLO, G.S; MENTZ, L.A. Levantamento etnobotânico das plantas utilizadas como medicinais por moradores do bairro Ponta Grossa, Porto Alegre, Rio Grande do Sul, Brasil. Iheringia Série Botânica, v. 61, n. 20, p. 83-103, 2006.
WACHTEL-GALOR, S; BENZIE, I. F. F. Herbal Medicine: An Introduction to Its History, Usage, Regulation, Current Trends, and Research Needs. 2ª ed. Boca Raton: CRC Press, 2011.

WILLIAMSON, E; DRIVER, S; BAXTER, K. Interações Medicamentosas de Stockley .1ª ed. Porto Alegre: Artmed, 440p, 2012.

ZANCANARO, V. 2007. Fitoterápicos: Automedicação com fitoterápicos, seus efeitos adversos e colaterais. Disponível em: <http://www.cdr.unc.br/cimunc/docs/pergunta/Fitoterapicos.doc>. Acesso em 10/04/2018.

ZHU, M; WONG, Y.K; LI, R.C. Effect of oral administration of Fennel (Foeniculum vulgare) on ciprofl oxacin absorption and dispo sition in the rat. J Pharm Pharmacol, v. 5, p. 1391-1396, 1999.
Attachment 1 – Questionnaire used for interviews (page 1)

Municipalities: ____________________________ Questionnaire n°: ____________

I – Sexo:	II – Idade:	III – Escolaridade:	IV – Quantas pessoas moram em sua casa, incluindo você?
() M	() 18-25 anos	() Ensino Fundamental completo	() 1
() F	() 26-35 anos	() Ensino Fundamental incompleto	() 2
	() 36-45 anos	() Ensino Médio completo	() 3
	() 46-55 anos	() Ensino Médio incompleto	() 4
	() 56-65 anos	() Ensino Superior completo	() 5
	() 66-75 anos	() Ensino Superior Incompleto	() 6 ou mais
	() 76-85 anos	() Outros. Qual (s)	()

1. Você apresenta alguma doença crônica? () Sim () Não
 Se SIM, qual(s) doença(s)? _______________________________
 Se SIM, quais medicamentos faz uso? __________________________

2. Você conhece algum tipo de chá/planta medicinal? () Sim () Não
 Se SIM, cite qual (s) _______________________________

3. Você faz uso de chás/plantas medicinais? () Sim () Não
 Se SIM, responda as questões a seguir.

Nome popular da planta	Parte utilizada	Finalidade de uso	Frequência de uso
() Folha			
() Castor			
() Raiz			
() Fruto			
() Flor			
() Outro	Qual: _________	Qual?	
() Folha			
() Castor			
() Raiz			
() Fruto			
() Flor			
() Outro	Qual: _________	Qual?	

() Tratamento de doença crônica
() Diurético
() Antidepressivo
() Laxante
() Antialérgico

() 1x ao dia
() 2x ao dia
() 3x ao dia
() 1x por semana
() Outro(s)

Recuperado pela Portaria Ministerial nº 799 de 19/05/97 | R.O.U. de 21/05/97 | Material pela Fundação Regional Integrada – URI
RRT/RHR: Av. Sete de Setembro, 1688 | 7º andar | C. P. 100 | Fone/Fax (044) 2787-1290 | 2190-1290 | www.uri.com.br
FRENCOM: Av. Sete de Setembro, 1688 | 7º andar | C. P. 100 | Fone/Fax (044) 2787-1290 | 2190-1290 | www.fuenard.com.br
FREDEC: Av. Sete de Setembro, 1688 | 7º andar | C. P. 100 | Fone/Fax (044) 2787-1290 | 2190-1290 | www.fuenard.com.br
GAROTI UNICO: Av. Sete de Setembro, 1688 | 7º andar | C. P. 100 | Fone/Fax (044) 2787-1290 | 2190-1290 | www.fuenard.com.br
CEM – UFU: Av. Sete de Setembro, 1688 | 7º andar | C. P. 100 | Fone/Fax (044) 2787-1290 | 2190-1290 | www.fuenard.com.br

Braz. J. Hea. Rev., Curitiba, v. 2, n. 5, p. 4129-4144 | sep./out. 2019 | ISSN 2595-6825
Nome popular da planta	Parte utilizada	Finalidade de uso	Frequência de uso
() Folha	() Tratamento de enfermidade repentina	1x ao dia	
() Cana	() Tratamento de doença crônica	2x ao dia	
() Raiz	() Diurético	3x ao dia	
() Fruto	() Laxante	1x por semana	
() Flor	() Antidepressivo		
() Outro	() Outro(s)		
Qual: _______	Qual: _______		

Nome popular da planta	Parte utilizada	Finalidade de uso	Frequência de uso
() Folha	() Tratamento de enfermidade repentina	1x ao dia	
() Cana	() Tratamento de doença crônica	2x ao dia	
() Raiz	() Diurético	3x ao dia	
() Fruto	() Laxante	1x por semana	
() Flor	() Antidepressivo		
() Outro	() Outro(s)		
Qual: _______	Qual: _______		

Nome popular da planta	Parte utilizada	Finalidade de uso	Frequência de uso
() Folha	() Tratamento de enfermidade repentina	1x ao dia	
() Cana	() Tratamento de doença crônica	2x ao dia	
() Raiz	() Diurético	3x ao dia	
() Fruto	() Laxante	1x por semana	
() Flor	() Antidepressivo		
() Outro	() Outro(s)		
Qual: _______	Qual: _______		

4. Como você prepara o seu chá?
() infusão
() decocção
() tinturas
() xaropes
() pongadas
() fomentações
() vaporizações

5. Onde você adquire as plantas para o seu chá?
() Mercado
() Ferias
() Horta caseira
() Outro
Qual: _______
Termo de Consentimento Livre e Esclarecimento

Você está sendo convidado a participar desta pesquisa que denomina-se “Estudo etnofarmacológico de plantas medicinais empregadas por indivíduos de cidades do Vale do Jaguarí-RS e suas interações com medicamentos”, e está vinculada ao Curso de Farmácia, Departamento de Ciências da Saúde, da URI Campus Santiago. A pesquisadora responsável por esta pesquisa é: Amanda Leitão Gindi (55 9653 7163/ amandagindi@ursisantiago.br) desta Instituição.

O objetivo desta pesquisa é realizar um levantamento das plantas medicinais utilizadas popularmente nas cidades pertencentes ao Vale do Jaguarí e avaliar as possíveis interações das plantas utilizadas com os medicamentos utilizados.

A sua colaboração consistirá em responder um questionário de coletas de dados. O questionário somente será aplicado se houver sua autorização. Você concorda com a aplicação do questionário? () Sim () Não

Os procedimentos obedecem aos Critérios da Ética em Pesquisa com Seres Humanos conforme a Resolução nº466/12 do Conselho Nacional de Saúde. Os procedimentos usados oferecem um risco mínimo a você já que pode apresentar alguns riscos de ordem psicológica ou emocional (por exemplo: desconforto físico, cansaço, irritabilidade ou constrangimento) ao responder o questionário. Qualquer um dos possíveis desconfortos ao responder as perguntas serão minimizados pela oferta de novos horários ou datas para resolução do questionário, o (re)esclarecimento detalhado dos objetivos do trabalho e a opção de desistência da pesquisa a qualquer momento, sem maiores prejuízos a você. Caso você sofra qualquer tipo de dano maior previsto ou não resultante de sua participação no estudo, além do direito à assistência imediata, integral e gratuita, você tem direito à indenização, conforme itens III.2.0,IV.4.c, V.3, V.5 e V.6 de Resolução CNS 466/12.

Tendo em vista os itens acima apresentados eu, _______ (Nome do Participante da Pesquisa) de forma livre e esclarecida, manifesto meu consentimento em participar da pesquisa Estudo etnofarmacológico de plantas medicinais empregadas por indivíduos de cidades do Vale do Jaguarí-RS e suas interações com medicamentos.

Assinatura do Participante da Pesquisa

Pesquisador(a): Fesquisador(a)/ Orientadora: Amanda Leitão Gindi

Local e data: __________________________
Attachment 3 – Approval of the work in the Research Ethics Committee of URI Câmpus of Santiago.

Título da Pesquisa: Estudo etnofarmacológico de plantas medicinais empregadas por indivíduos de cidades do Vale do Jaguar-RS e suas interações com medicamentos
Pesquisador: Amanda Leitão Gindi
 Área Temática:
 Versão: 3
 CAAE: 56937516.5.0000.5353
 Instituição Proponente: FUNDACAO REGIONAL INTEGRADA
 Patrocinador Principal: FUNDACAO REGIONAL INTEGRADA

Dados do Parecer
Número do Parecer: 1.867.364

Apresentação do Projeto:
A autora apresentou seu projeto nos seguintes termos: Este projeto propõe a pesquisa do uso popular de plantas em cidades que compõe a região do Vale do Jaguar, bem como suas possíveis interações com medicamentos. Durante a entrevista será entregue uma cartilha informativa sobre o uso de plantas medicinais, cuidados que devem ser tomados ao utilizar esta terapia e as principais espécies utilizadas popularmente no país que apresentam estudos de segurança e eficácia. Caso o entrevistado utilize alguma espécie vegetal pouco conhecida, será coletada uma amostra para a elaboração de uma exsicata para posterior identificação botânica. Este procedimento visa a pesquisa sobre segurança e eficácia desta espécie e posterior elaboração de um folder com as informações obtidas que será entregue ao entrevistado. Este projeto é o primeiro com este fim a ser realizado na região.

Objetivo da Pesquisa:
Objetivo Primário: Realizar um levantamento etnofarmacológico com a população de cidades do Vale do Jaguar.
Objetivo secundário: Realizar entrevistas com pessoas da comunidade, questionando sobre o uso de plantas medicinais na forma de chás ou medicamentos industrializados; Recolher amostras de
plantas medicinais caso estas sejam coletadas pelos entrevistados em sua residência ou local próximo; • Levar as amostras coletadas para identificação botânica por profissional capacitado, a fim de proceder sua identificação; • Realizar uma revisão bibliográfica das plantas utilizadas pela população, visando principalmente estudos de segurança e eficácia do uso das mesmas; • Identificar possíveis interações medicamentosas entre as plantas utilizadas e medicamentos sintéticos que estejam sendo empregados pelo entrevistado; • Entregar aos entrevistados uma cartilha informativa contendo cuidados importantes no uso de chás, como deve ser realizado o seu preparo e quais as principais plantas utilizadas popularmente com dados de segurança e eficácia comprovada; • Quando for o caso, levar um folder contendo informações da revisão bibliográfica para o entrevistado que utiliza plantas incomuns e que não foram citadas na cartilha informativa.

Avaliação dos Riscos e Benefícios:
A pesquisadora Assim avalia:

Riscos: Os riscos relacionados com a participação dos indivíduos são mínimos, podendo ser desconforto ou nervosismo pelo fato de serem realizadas perguntas. Benefícios: Este projeto de extensão propõe a pesquisa do uso popular de plantas em cidades que compõe a região do Vale do Jaguarí. Juntamente com a pesquisa, será entregue uma cartilha informativa sobre o uso de plantas medicinais, cuidados que devem ser tomados ao utilizar esta terapia e as principais espécies utilizadas popularmente no país que apresentam estudos de segurança e eficácia. Adicionalmente, caso o entrevistado utilize alguma espécie vegetal pouco conhecida, será coletada uma amostra para a elaboração de uma exsicata que será levada a profissional botânico para identificação. Este procedimento visa a pesquisa sobre segurança e eficácia desta espécie e posterior elaboração de um folder, contendo informações sobre a planta, que será entregue ao entrevistado. Dessa forma, este projeto de extensão visa promover um maior conhecimento sobre o uso de plantas medicinais nas cidades abrangidas pelo mesmo. Finalmente, este projeto é o primeiro com este fim a ser realizado na região. Importante ressaltar que um importante meio de avaliar quais plantas podem demonstrar maior potencial farmacológico é analisando estudos etnofarmacológicos, que referenciam quais plantas são mais utilizadas pela população. As plantas mais utilizadas pela população são, normalmente, as que apresentam maior potencial de efeitos farmacológicos benêficos. Adicionalmente, é importante destacar que o Brasil apresenta uma biodiversidade imensa, e, muito pouco de nossa flora foi estudada. Assim, estudos com plantas medicinais são sempre promissores.

Endereço: Avenida Batista Bonotto Sobrinho, s/n
Bairro: São Vicente
UF: RS
Cidade: SANTOS
CEP: 97.700-000
Telefone: (51)3261-3151
Fax: (51)3261-3157
E-mail: ramoslane@hotmail.com
Attachment 3 – Approval of the work in the Research Ethics Committee of URI Câmpus of Santiago (Continuation).

Comentários e Considerações sobre a Pesquisa:
A pesquisa é de caráter inédito na região e, se bem conduzida trará importantes contribuições para a população do Vale do Jaguaré e para a área de conhecimento.

Considerações sobre os Termos de apresentação obrigatória:
Os termos estão em conformidade com as exigências legais.

Recomendações:
Recomenda-se dar ampla divulgação dos resultados que serão alcançados valorizando o e qualificando o saber popular sobre a medicina alternativa.
Esclareçamos que o embasamento legal das pesquisas na área das Ciências Humanas e Sociais é dado pela Resolução 510 e não mais pela Resolução 466.

Conclusões ou Pendências e Lista de Inadequações:
A pesquisadora submeteu ao Comitê uma emenda acrescentando os termos de autorização Institucional dos Municípios de Santiago e Manoel Viana. De acordo com a justificativa não houve alteração na estrutura do projeto anteriormente submetido e aprovado por este comitê. Os pedidos de esclarecimentos sobre a submissão anterior foram esclarecidos na integridade, inclusive a orientação que gerou esta emenda, para que fossem incluídos os termos de autorização Institucional de todos os municípios, conforme segue:

Justificativa da Emenda: Aicionar ao estudo 2 novas cidades: Santiago e Manoel Viana. Realizar o mesmo estudo, com a mesma metodologia, nas duas cidades, é de ampliar os dados obtidos e atingir mais pessoas na proposta de educação em saúde.

Considerações FINAIS a critério do CEP:
A pesquisadora inseriu uma emenda acrescentando os Termos de Autorização Institucional de mais dois municípios, Santiago e Manoel Viana que estavam pendentes na primeira submissão. De acordo com a justificativa não houve alteração na estrutura do projeto anteriormente submetido e aprovado por este comitê. Os pedidos de esclarecimentos sobre a submissão anterior foram esclarecidos na integridade, inclusive a orientação que gerou esta emenda, para que fossem incluídos os termos de autorização Institucional de todos os municípios, conforme segue:

Justificativa da Emenda: Aicionar ao estudo 2 novas cidades: Santiago e Manoel Viana. Realizar o mesmo estudo, com a mesma metodologia, nas duas cidades, é de ampliar os dados obtidos e atingir mais pessoas na proposta de educação em saúde.

Contudo, esclarecemos que o embasamento legal das pesquisas na área das Ciências Humanas é
Attachment 3 – Approval of the work in the Research Ethics Committee of URI Câmpus of Santiago (Continuation).

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento	Arquivo	Postagem	Autor	Situação
Informações Básicas do Projeto	PB_INFORMAÇÕES_BASICAS_809464_ET.pdf	07/12/2016, 10:08:04	Amanda Leitão Gindri	Aceito
Outros	Manoel_Viana.pdf	07/12/2016, 10:05:23	Amanda Leitão Gindri	Aceito
Outros	Santiago.pdf	07/12/2016, 16:04:08	Amanda Leitão Gindri	Aceito
Projeto Detalhado / Brochura	Projeto.doc	11/09/2016, 18:47:35	Amanda Leitão Gindri	Aceito
Investigador	Novo_questionario.docx	11/09/2016, 18:38:29	Amanda Leitão Gindri	Aceito
Outros	Ao_CEP.docx	11/09/2016, 18:28:13	Amanda Leitão Gindri	Aceito
Folha de Rosto	Folha_de_rosto_com_carimbo.pdf	12/06/2016, 12:56:33	Amanda Leitão Gindri	Aceito
Outros	Juguari.pdf	02/05/2016, 16:00:32	Amanda Leitão Gindri	Aceito
Outros	Sao_Francisco_de_Assis.pdf	02/05/2016, 18:00:00	Amanda Leitão Gindri	Aceito
TCLE / Termos de Assentamento / Justificativa de Ausência	TCLE.docx	02/05/2016, 15:57:54	Amanda Leitão Gindri	Aceito

Situacao do Parecer:
Aprovado

Necessita Apreciação da CONEP:
Não

SANTIAGO, 15 de Dezembro de 2016

Assinado por:
Sandra Oet Rodrigues Martins Carvalho
(Coordenador)

Endereço: Avenida Batista Bonello Sobrinho, s/n
Bairro: São Vicente
UP: RS
Município: SANTIAGO
CEP: 97.700-000
Telefone: (55)3251-3151
Fax: (55)3251-3157
E-mail: ramosoliveira@hotmail.com