On the Escape of a Random Walk
From Two Pieces of a Tripartite Set

Michael Carlisle
Baruch College, CUNY

May 16, 2014

Abstract

Let \(\{ A, B, C \} \) be a partition of a sample space \(\Omega \). For a random walk \(S_n = x + \sum_{j=1}^{n} X_j \) starting at \(x \in A \), we find estimates for the Green’s function \(G_{A \cup B}(x, y) \) and the hitting time \(E^x(T_C) \) for \(x, y \in A \cup B \), with interest in the case where \(C \) “separates” \(A \) and \(B \) in a sense (e.g., the probability of jumping from \(A \) to \(B \), or vice versa, before hitting \(C \), is small).

1 Green’s functions

Let \(S_n := x + \sum_{j=1}^{n} X_j \) be a random walk starting at \(x \) on a partitioned sample space \(\Omega = A \sqcup B \sqcup C \), i.e., for any \(x, y \in \Omega \), the one-step transition probability is, with \(P^x \) the probability measure of the random walk starting at \(x \),

\[
p_1(x, y) = P^x(S_1 = y).
\]

Define the first hitting time of \(S_n \) on a set \(B \) by

\[
T_B := \inf\{ k \geq 0 : S_k \in B \}.
\]
Spitzer, in [4], defines the \textit{truncated Green’s function}, for \(x, y \in A \) of a random walk from \(x \) to \(y \) before exiting \(A \) as the total expected number of visits to \(y \), starting from \(x \):

\[
G_A(x, y) := \mathbb{E}^x \left[\sum_{j=0}^{\infty} 1_{\{S_j = y; j < T_{A^c}\}} \right] = \sum_{j=0}^{\infty} P^x(S_j = y; j < T_{A^c})
\]

(2)

and 0 if \(x \) or \(y \) \(\notin A \). An elementary result for any random walk (found, for example, in [4], or [2, Sect. 1.5]) is that, for \(x, y \in A \subset D \), there are more possible visits inside \(D \) than inside \(A \):

\[
G_A(x, y) \leq G_D(x, y).
\]

(3)

Starting at a point \(x \in A^c \), the \textit{hitting distribution} of \(A \) is defined as

\[
H_A(x, y) := P^x(S_{T_A} = y).
\]

(4)

The \textit{last exit decomposition} of a hitting distribution is based on the Green’s function: for \(A \) a proper subset of \(\Omega \), \(x \in A^c \), and \(y \in A \),

\[
H_A(x, y) = \sum_{z \in A^c} G_{A^c}(x, z)p_1(z, y).
\]

(5)

Simple lower bounds for the Green’s function \(G_{A \cup B} \), by (3), are obvious; for upper bounds for these cases, we examine excursions between \(A \) and \(B \) before hitting \(C \).

Proposition 1. For \(a, a' \in A \) and \(b, b' \in B \), with \(\theta_t \) the usual shift operators,

\[
T^*_B := \inf\{k > T_A : S_k \in B\} = T_A + T_B \circ \theta_{T_A},
\]

\[
T^*_A := \inf\{k > T_B : S_k \in A\} = T_B + T_A \circ \theta_{T_B},
\]

and defining

\[
\psi_a := \sum_{b' \in B} H_{B \cup C}(a, b') = P^a(T_B < T_C)
\]

(6)

\[
\sigma_b := \sum_{a' \in A} H_{A \cup C}(b, a') = P^b(T_A < T_C)
\]

(7)

\[
\rho_a := \sum_{b' \in B} H_{B \cup C}(a, b')\sigma_{b'} = P^a(T_B, T^*_A < T_C)
\]

(8)

\[
\phi_b := \sum_{a' \in A} H_{A \cup C}(b, a')\psi_{a'} = P^b(T_A, T^*_B < T_C),
\]

(9)
we have the Green’s function bounds
\[G_A(a, a') \leq G_{A\cup B}(a, a') \leq G_A(a, a') + \frac{\rho_a}{1 - \rho_a} G_A(a', a') \] (10)
\[G_B(b, b') \leq G_{A\cup B}(b, b') \leq G_B(b, b') + \frac{\phi_{b'}}{1 - \phi_{b'}} G_B(b', b') \] (11)
\[0 \leq G_{A\cup B}(a, b) \leq \min \left\{ \frac{\sigma_b}{1 - \rho_a} G_A(a, a), \frac{\psi_a}{1 - \phi_b} G_B(b, b) \right\} . \] (12)

Note that \(\psi_a \geq \rho_a \) for every \(a \in A \) and \(\sigma_b \geq \phi_b \) for every \(b \in B \).

Proof We will prove this for (10) and (12) (the proof for (11) matches (10)’s proof). By (2), for \(a, a' \in A \),
\[G_{A\cup B}(a, a') = \sum_{i=0}^{\infty} P^a(S_i = a', i < T_C) \]
\[= \sum_{i=0}^{\infty} [P^a(S_i = a', i < T_C, i < T_B) + P^a(S_i = a', T_B < i < T_C)] \]
\[= G_A(a, a') + \sum_{i=0}^{\infty} P^a(S_i = a', T_B < i < T_C). \] (13)

Since \(a' \in A \), once the walk enters \(B \) it must return to \(A \) before hitting \(a' \) again. By splitting and switching sums and applying the strong Markov property at \(T_B \),
\[G_{A\cup B}(a, a') = G_A(a, a') + \sum_{i=0}^{\infty} \sum_{b \in B} P^a(S_{T_B = b} = a, S_i = a', T_B < i < T_C) \]
\[= G_A(a, a') + \sum_{b \in B} H_{B\cup C}(a, b)G_{A\cup B}(b, a'). \] (14)

We now switch from (10) to (12): for \(G_{A\cup B}(b, a') \), with \(b \in B \) and \(a' \in A \), decomposing over \(A \), and using the strong Markov property at \(T_A \),
\[G_{A\cup B}(b, a') = \sum_{i=0}^{\infty} P^b(S_i = a', i < T_C) \]
\[= \sum_{i=0}^{\infty} \sum_{a'' \in A} P^b(S_i = a', T_A \leq i < T_C, S_{T_A} = a'') \]
\[= \sum_{a'' \in A} H_{A\cup C}(b, a'')G_{A\cup B}(a'', a'). \] (15)

We thus have a recurrence relation between (10) and (12).
By the strong Markov property at $T_{a'}$, we have the upper bound
\[G_A(a'',a') = P^{a''}(T_{a'} < T_A) G_A(a',a') \leq G_A(a',a') \] (16)
which yields, by (7) (for $A \cup B$ instead of A),
\[G_{A \cup B}(b,a') = \sum_{a'' \in A} H_{A \cup C}(b,a'') G_{A \cup B}(a'',a') \leq \sigma_b G_{A \cup B}(a',a'). \] (17)
Combining (14), (17), and (8) gives us
\[G_{A \cup B}(a,a') = G_A(a,a') + \sum_{b \in B} H_{B \cup C}(a,b) G_{A \cup B}(b,a') \leq G_A(a,a') + \sum_{b \in B} H_{B \cup C}(a,b) \sigma_b \] (18)
\[= G_A(a,a') + G_{A \cup B}(a',a') \rho_a. \] In particular, (18) gives us
\[G_{A \cup B}(a',a') \leq \frac{G_A(a',a')}{1 - \rho_a}. \] (19)
(19) used again in (18) yields (10). Proving (11) similarly, (11) and (19) applied to (17) yields (12).

2 Hitting times

We now find the expected time of hitting the set C, starting from A, in terms of hitting $B \cup C$. Lower bounds are simple: just tack the other set on for a quicker hitting time. The upper bounds will require a recursive excursion treatment similar to the proof of Proposition 1.

Proposition 2. For $a \in A$ and $b \in B$, defining via (6) and (7),
\[f_A := \sup_{a \in A} E^a(T_{B \cup C}), \quad f_B := \sup_{b \in B} E^b(T_{A \cup C}), \quad \psi := \sup_{a \in A} \psi_a, \quad \sigma := \sup_{b \in B} \sigma_b, \] (20)
we have the expected hitting time bounds
\[E^a(T_{B \cup C}) \leq E^a(T_C) \leq E^a(T_{B \cup C}) + \psi_a \left[\frac{f_B + \sigma f_A}{1 - \psi \sigma} \right]. \] (21)
\[E^b(T_{A \cup C}) \leq E^b(T_C) \leq E^b(T_{A \cup C}) + \sigma_b \left[\frac{f_A + \psi f_B}{1 - \psi \sigma} \right]. \] (22)

Proof We will prove (21) (the proof of (22) is the same). First, decompose T_C along the two possibilities for $T_{B \cup C}$. Recall that $T_{B \cup C} = T_C \iff T_C < T_B$. By the strong Markov
property at \(T_B \),
\[
E^a(T_C) = E^a(T_C \mathbf{1}_{T_B \cup C = T_C}) + E^a(T_C \mathbf{1}_{T_B \cup C = T_B}) \\
\leq E^a(T_B \cup C) + \sum_{b \in B} H_{B \cup C}(a, b) E^b(T_C). \tag{23}
\]

Likewise, for \(b \in B \),
\[
E^b(T_C) \leq E^b(T_{A \cup C}) + \sum_{a' \in A} H_{A \cup C}(b, a') E^{a'}(T_C). \tag{24}
\]

By combining (23) and (24), recursing on itself, keeping the first couple terms in terms of \(a \), and maximizing the rest via (6), (7), and (20), we get
\[
E^a(T_C) \leq E^a(T_B \cup C) + \sum_{b \in B} H_{B \cup C}(a, b) \left(E^b(T_{A \cup C}) + \sum_{a' \in A} H_{A \cup C}(b, a') [f_A + \psi(f_B + \sigma[\ldots])] \right),
\]
which is bounded by
\[
E^a(T_C) \leq E^a(T_B \cup C) + \psi_a \left(f_B + \sigma[f_A + \psi(f_B + \sigma[\ldots])] \right) = E^a(T_B \cup C) + \psi_a(f_B + \sigma f_A) \frac{1}{1 - \psi \sigma}. \tag{25}
\]

3 Hitting distributions

If \(y \in A \subset D \), then for \(x \in D^c \subset A^c \), we have by (23) the monotonicity result
\[
H_A(x, y) = \sum_{z \in A^c} G_A(x, z)p_1(z, y) \geq \sum_{z \in D^c} G_D(x, z)p_1(z, y) = H_D(x, y) \tag{25}
\]
and the subset hitting time relations (assuming a recurrent random walk)
\[
P^x(T_A = T_D) = \sum_{z \in A} H_D(x, z); \\
P^x(T_A \neq T_D) = P^x(T_A > T_D) = \sum_{z \in D \setminus A} H_D(x, z). \tag{26}
\]

(25) and (26) hint at a relationship between the hitting distributions of two sets \(C \) and \(C \cup A \). We find a bound on this relationship. Let \(b \in B \) and \(c \in C \). By (25) with
$D = C \cup A$, there is a probability $p(b, c, C, A)$ such that

$$H_C(b, c) = H_{C\cup A}(b, c) + p(b, c, C, A).$$

(27)

To bound $p(b, c, C, A)$, we rewrite using the definition of $H_C(b, c)$ and decompose along the event \{$T_C < T_A\}$ (whose probability is $1 - \sigma_b$ in \([7]\)):

$$H_C(b, c) = P^b(S_{T_C} = c) = P^b(S_{T_C} = c, T_C < T_A) + P^b(S_{T_C} = c, T_A < T_C);$$

$$H_{C\cup A}(b, c) = P^b(S_{T_{C\cup A}} = c) = P^b(S_{T_{C\cup A}} = c, T_C < T_A) + P^b(S_{T_{C\cup A}} = c, T_A < T_C).$$

Note that

$$P^b(S_{T_C} = c, T_C < T_A) = P^b(S_{T_{C\cup A}} = c, T_C < T_A)$$

and

$$S_{T_{C\cup A}} = c \in C \implies T_C < T_A,$$

so clearly $P^b(S_{T_{C\cup A}} = c, T_A < T_C) = 0$ and we get the simple bound

$$p(b, c, C, A) = P^b(S_{T_C} = c, T_A < T_C) \leq P^b(T_A < T_C) = \sigma_b.$$

(28)

If C is a set that “separates” A and B in some sense (e.g., if the probability distribution of the random walk is based on distance, and C separates A and B into components), then σ_b being small reflects the small difference between H_C and $H_{C\cup A}$ (in that it is very likely, starting in B, to hit C before A).

Note also that $p(C, A)$ is not symmetric; e.g., $p(A, C) = 1 - p(C, A) = 1 - \sigma_b$.

References

[1] Durrett, R. (2005). *Probability: Theory and Examples*. 3rd Edition. Thomson - Brooks/Cole.

[2] Lawler, G. (1991). *Intersections of Random Walks*. Birkhäuser, Boston.

[3] Lawler, G. and Limic, V. (2010). *Random Walk: A Modern Introduction*. Cambridge studies in advanced mathematics, 123. Cambridge University Press, New York.

[4] Spitzer, F. (1976). *Principles of Random Walk*, Second Edition. Springer, Princeton, NJ.