Abstract—Several emerging technologies for byte-addressable non-volatile memory (NVM) have been considered to replace DRAM as the main memory in computer systems during the last years. The disadvantage of a lower write endurance, compared to DRAM, of NVM technologies like Phase-Change Memory (PCM) or Ferroelectric RAM (FeRAM) has been addressed in the literature. As a solution, in-memory wear-leveling techniques have been proposed, which aim to balance the wear-level over all memory cells to achieve an increased memory lifetime. Generally, to apply such advanced aging-aware wear-leveling techniques proposed in the literature, additional special hardware is introduced into the memory system to provide the necessary information about the cell age and thus enable aging-aware wear-leveling decisions.

This paper proposes software-only aging-aware wear-leveling based on common CPU features and does not rely on any additional hardware support from the memory subsystem. Specifically, we exploit the memory management unit (MMU), performance counters, and interrupts to approximate the memory write counts as an aging indicator. Although the software-only approach may lead to slightly worse wear-leveling, it is applicable on commonly available hardware. We achieve page-level coarse-grained wear-leveling by approximating the current cell age through statistical sampling and performing physical memory remapping through the MMU. This method results in non-uniform memory usage patterns within a memory page. Hence, we further propose a fine-grained wear-leveling in the stack region of C / C++ compiled software.

By applying both wear-leveling techniques, we achieve up to 78.43% of the ideal memory lifetime, which is a lifetime improvement of more than a factor of 900 compared to the lifetime without any wear-leveling.

I. INTRODUCTION

Emerging technologies for non-volatile memory (NVM), like Phase-Change-Memory (PCM) or Ferroelectric RAM (FeRAM), have been considered as a replacement for DRAM as the main memory over the last years. Most NVM technologies feature advantages like low energy consumption and high integration density, which makes them a desired main memory replacement. One of the major disadvantages of some NVM technologies is the lower write-endurance. While classic DRAM endures for more than 10^{15} write cycles, PCM only endures $10^8 - 10^9$ write cycles per cell [7]. Thus, to wear out a DRAM cell within 10 years, an application would have to write the same memory cell every 900^{19} CPU cycle in average on a 3GHz CPU. Applying the same application to PCM, the memory would wear-out within 5 minutes. Although typical applications do not cause such an extreme write pattern, they still cause a highly non-uniform write pattern to the memory [13], [21], [24]. Accordingly, the problem has been tackled in the literature and several in-memory wear-leveling techniques have been proposed. A majority of these techniques is aging-aware [3], [8], [11], [13], [14], [16], [18], [19], [22], [26], which means that the current cell age or the current write count is taken into account for the wear-leveling decisions. The wear-leveling itself is mostly realized through an abstraction layer, which remaps the physical location of logical memory regions. However, as current memory hardware does not provide a write-count, which is necessary to determine the cell age, additional hardware is introduced. This hardware requires additional chip-space, and might be hard to realize in a way that meets the desired granularity and clock-frequency.

To allow aging-aware wear-leveling in the absence of such special hardware, this paper proposes software-only wear-leveling techniques. The term software-only here means that we do not require any additional hardware from the memory subsystem and only use hardware features which are widely available. We provide the necessary write-count through a statistical online approximation of the write distribution, which only requires a memory management unit (MMU), performance counters, and an interrupt mechanism. The performance counter allows to generate an interrupt every n^{th} memory write access, which achieves an equidistant sampling of the write distribution. A special configuration of the memory access permission allows to record the target address of a single memory write afterwards. The approximated write distribution enables an arbitrary aging-aware wear-leveling algorithm subsequently. In this paper, we implement a simple wear-leveling algorithm on the granularity of virtual memory pages, which achieves the necessary physical memory remapping through the MMU. Since the resulting memory write distribution still results in high non-uniformity due to the granularity of memory pages, we introduce an additional software-only, fine-grained wear-leveling technique, which balances the write-accesses to the stack region by relocating the stack in a circular manner. This is achieved by copying the current stack content regularly to a new location and adjust the stack-pointer accordingly. A special virtual memory configuration allows a hardware-aided wraparound to achieve a circular movement.

SoftWear: Software-Only In-Memory Wear-Leveling for Non-Volatile Main Memory

Christian Hakert*, Kuan-Hsun Chen*, Paul R. Genssler†, Georg von der Brüggen*, Lars Bauer†, Hussam Amrouch†, Jian-Jia Chen*, Jörg Henkel†

* Design Automation for Embedded Systems Group, TU Dortmund University, Germany
† Chair for Embedded Systems, KIT, Germany
Our contributions:

- We deliver a software-only coarse-grained in-memory wear-leveling system, consisting of an online approximation mechanism for the write-distribution and an MMU-based wear-leveling algorithm.
- We further provide an extending software-only fine-grained wear-leveling technique, which targets the stack region of C/C++ compiled applications and relocates the stack in a circular manner in a bounded memory region.

We aim to balance the write-count to each memory byte in the flat memory space equally to achieve a high memory lifetime. We note that other factors impact the memory endurance as well, e.g., process variation in PCM [24], but the write-count is a major factor. Our approaches can be extended according to physical models (e.g. process variation domains) to also respect advanced physical memory properties.

After giving an overview about the related wear-leveling approaches in literature in Section II, we present the memory write distribution of our benchmark applications in Section III and our method to analyze the write pattern of applications, which is also used for our evaluations in Section IV. After this, our novel wear-leveling techniques are described in detail in Section V and Section VI. Each section contains an evaluation, which uses the write pattern analysis mechanism. The paper concludes with a short summary in Section VIII.

II. RELATED WORK

During the last years, several approaches for in-memory wear-leveling for NVM have been proposed. These approaches can be categorized along different criteria. First, there are aging-aware approaches [3], [8], [11], [13], [14], [16], [18], [19], [22], [26], which take the current cell age into account to apply wear-leveling. In contrast there are random-based approaches [13], [21], [26], which apply wear-leveling in a circular or random-based manner. Both approaches are often combined to achieve a random-based wear-leveling on fine granularities inside memory blocks, while an aging-aware approach is used to target these coarse-grained memory blocks. The granularity also varies from single bits [9], [25] over cache-lines [21], [26] for fine-grained approaches to memory pages [3], [8], [13], [14], [22] or even bigger memory segments [24], [26] for coarse-grained approaches.

Some approaches are not based on remapping the physical memory content through an abstraction layer, but hook into the memory allocation process of the operating system to apply wear-leveling to the memory allocator [3], [18], [22]. Li et al. [18] also propose to use an allocated memory portion whenever a function is called for the function’s stack memory to wear-level the stack region.

Gogte et al. propose a software-only coarse-grained wear-leveling approach by using a sampled approximation of the write distribution [14]. They make use of advanced debugging capabilities, e.g. Intel Processor Event Based Sampling (PEBS), which allows them to sample the write requests from the CPU. These debugging capabilities, however, can rarely be found in embedded systems and resource constrained hardware.

All other mentioned aging-aware approaches rely on the the current write-count information of the memory. Most approaches introduce specialized hardware into the memory controller to collect the write-count information, which is not available in commonly available systems and might be hard to realize. Dong et al. [11] use an offline recorded memory trace to estimate the write distribution, which limits the approach to a subset of well-known applications only.

III. PROBLEM DESCRIPTION

When considering non-volatile memory as the main memory for program executions, the system may suffer from the low write-endurance of the underlying memory technology. Even if the system is also equipped with DRAM, certain applications may be desired to only run on the non-volatile memory to reach energy saving states as fast as possible. To understand the impact of program executions on main memory with low write-endurance, the precise write distribution from a program should be recorded and analyzed. Separating the program’s memory into the text, data, bss, and stack regions allows to analyze the write pattern of each region separately and determine the impact on the memory lifetime. This section presents the write distribution for our benchmark applications and points out the influence on the write-endurance.

To determine the influence of code executions on the memory write-patterns of applications, especially on the different memory regions, we run four benchmark applications. We aggregate the resulting memory trace file on the granularity of 64 byte (a cache-line is assumed to be written always entirely) to a write-count distribution and present them graphically. As the benchmark applications we chose following programs:

1) **bitcount**: A simple implementation, which iterates over an array of data and counts the 1 bits. The resulting count is stored in global counter and returned at the end.

2) **pfor**: A simulation of a data decompression scenario. A big set of data is available in a lightweight compressed format, namely Patched Frame of Reference (PFOR) [27]. The data is decompressed and aggregated in fixed size windows, which simulates the processing of a stream of compressed data.

3) **sha**: This application is part of the MiBench security suite [15] and calculates the sha sum of a given dataset.

4) **dijkstra**: This application is also part of the MiBench network suite [15] and calculates a fixed number of shortest paths in a network, using the dijkstra algorithm.

We chose these benchmarks, because they are simple enough to understand the connection between the code and the memory usage of the different segments. The limitation to four benchmarks is due to the high time consumption of the required full system simulations.

Figure 1 shows the resulting illustration of the write-count distributions of the benchmark applications. Note that the four applications face different execution times and thus the total...
amount of writes is different. Thus, the scaling of the y axes is different. Considering the different memory regions, different observations can be made:

- **text:** As the text segment only contains the compiled binary code, it is never written during the normal application execution. This behavior is also shown in the result. In the context of wear-leveling, read-only memory regions have to be targeted as well as heavy written memory regions to distribute the wear-levels equally.

- **data/bss:** The data and the bss segments store global program variables, such as global attributes or arrays. Naturally, these variables are written from time to time, depending on the application logic. The dijkstra benchmark has a heavy, non-uniform usage of the bss segment, since the benchmark manages the steps of the algorithm in a queue.

- **stack:** The stack segment causes the most non-uniform write access to the main memory. This results from the way the stack is typically used: Local variables are stored on top of the stack and are removed when they are no longer used. Depending on the application logic, this makes the beginning of the stack a heavily used area with a lot of memory writes, while the rest of the stack region is used less. A wear-leveling algorithm has to distribute the memory writes to this region to all other, less written memory regions.

These results point out the need for aging-aware wear leveling. The memory writes to hot memory regions have to be redirected mainly to unused memory regions, but also to less used memory regions. This requires a monitoring of the current write-count and an incremental redistribution according to the current write-count distribution.

IV. MEMORY WRITE-PATTERN ANALYSIS

Section III presents the memory write-count distribution of four benchmark applications. In a usual computation platform, the memory accesses of a program cannot be captured and analyzed without special techniques. Debugging mechanisms can overcome the problem but introduce a large overhead. Using a hardware analyzer, which basically plugs an FPGA between the CPU and the memory DIMM, is considered by Bao et al. [4]. Such an analyzer is reasonably fast but requires a complex hardware setup. In this paper, we use a full system cycle-accurate simulator (including CPU, memory, buses, peripherals, etc.) on top of a Linux host instead. This section introduces our simulation environment, which is also used for the results in Section III.

We chose gem5 [6] as the full system simulator, since it can be combined with a memory simulator for non-volatile memories, namely NVMain2.0 [20], due to its modular structure. This setup allows to obtain all memory accesses of a running program in a logfile, analyze them afterwards, and perform detailed evaluations of our methods by comparing the captured logfiles. To simulate the properties of NVMs, several simulators can be considered (e.g. [23] and [12]), which precisely simulate, for instance, the timing and energy behavior. However, the methods in this paper analyze and change the write behavior of applications only, which is independent from the physical properties of the underlying memory. Thus, we do not involve them in our analysis.

A. Simulation Setup Details

NVMain2.0 provides an option to generate a memory trace file, which contains detailed information for every main memory access. Using this information, we can extract the memory address for each write access and aggregate them for each 64 byte sized cache-line\(^2\), which results in a write-count distribution. This method is also independent from the CPU internal cache configuration, since writes to the main memory are recorded. Even if a write is caused by a logical read operation (cache preemption), this write is captured in our simulation. We simulate an ARMv8 CPU architecture, the DerivO3CPU implementation, and the VExpress_GEM5_V2 machine. This system includes an advanced CPU with pipelining and out-of-order execution as well as a set of controllers, which are typically found in ARM based systems (e.g., the GIC interrupt controller, PL011 UART controller, etc.).

Two simulation modes are supported by gem5: The systemcall-emulation and the full system simulation. As we want to reduce the influence of the runtime infrastructure (libraries, operating system services, etc.) on the application

\(^1\)The gray lines indicate boundaries of 4 kB virtual memory pages. The data and bss segment is marked as a big data segment in the picture.

\(^2\)The simulation model of gem5 assumes cache-lines to be written to the memory entirely, hence we also use this assumption in the analysis.
as much as possible, we run bare-metal full system mode simulations. This requires an operating system to be started in gem5, handling the hardware initialization and providing required services for the running application. We developed a small bare-metal runtime system, which takes the place of the operating system in the simulation setup. Thus, we can initialize the hardware in a flexible way with low overhead (compared to Linux kernel modifications), and only provide the required operating system services. Even if the analyzed application is directly compiled into the binary file of the runtime system, which is started in gem5 afterwards, the runtime system can be seen as part of the simulation environment and not as part of the application. The simulation setup is illustrated in Figure 2.

B. Application Separation

The full system simulation mode of gem5 combined with a small, customized runtime system in place of the operating system allows us to highly control the hardware behavior and the memory placement. In this section, we aim to analyze the write access behavior of an application, without interference of an operating system, and separately analyze the memory regions of the application. To achieve this, we apply two separation techniques:

Spatial Separation: During the linking process of the runtime system, the application’s memory regions (i.e. text, data, bss, and stack) are placed in a static separate memory location, which resides apart from the memory locations of the runtime system. Thus, the memory accesses of the application target a separated memory region, which can be analyzed separately in the recorded write-count distribution. Furthermore, the concrete memory addresses of the memory regions can be determined after the linking process, which allows to analyze the recorded write-count distribution separately for each memory region. Hence, the runtime system has to establish an identity mapping (or at least a constant, well-known mapping) from virtual memory addresses to physical memory addresses to be able to determine the different memory regions in the recorded write-count distribution.

Interrupt Separation: The handling of interrupts is separated from the application’s stack. Usually, the operating system, respectively our runtime system, saves the current register set on the stack when handling an interrupt. An interrupt during the running application would cause the application’s stack to be used for the register backup, which would influence the application’s write pattern to the stack region. To overcome this, we handle interrupts on another stack instead of the application’s stack by the hardware. For ARMv8 architectures, this can be achieved by using two different exception levels [1]. When taking an interrupt to a higher exception level, an ARMv8 CPU can be configured to switch the stack pointer to a dedicated stack pointer for the higher exception level. We run the runtime system on exception level 1 (EL1), using a stack, allocated for the runtime system only. The application is executed on exception level 0 (EL0) with the application’s stack. Thus, whenever an interrupt occurs during the application execution, the interrupt is handled on EL1 on the stack of the runtime system. Accordingly, the application’s stack is not influenced by interrupts at all.

Both techniques allow to analyze the memory write-pattern of isolated applications. Based on this, required wear-leveling actions are deduced and proposed subsequently. In this paper, we only focus on wear-leveling for the test applications. In a real-world setup, also the runtime system / operating system requires wear-leveling to be applied on its memory regions, because the implementation uses the main memory similarly like the test applications. However, the solutions presented here can also be applied for the runtime system, but require some additional implementation effort, since they are provided as a service from the runtime system itself.

V. Aging-aware Coarse-grained Wear-leveling

Section III points out the need for aging-aware in-memory wear-leveling, when the write-endurance is low. If the current write behavior cannot be tracked by the hardware and no memory trace is known for the running application, aging-aware techniques cannot be applied. To overcome this issue, in this section we propose a software-only write distribution approximation technique, which estimates the memory write distribution (i.e., the write count to fixed sized memory regions) using only commonly available hardware support (i.e., MMU, performance counters, and interrupts). The write distribution approximation can be used subsequently to enable an arbitrary aging-aware wear-leveling algorithm. However, to keep our implementation software-only, we developed a simple aging-aware wear-leveling algorithm, which adjusts the virtual memory mapping of the MMU to exchange the physical location of hot (heavy written) and cold (less often written) virtual memory pages. Thus, the entire wear-leveling is coarse-grained with a 4 kB granularity. To omit the need of storing the aging state of the memory as a persistent object, we design our wear-leveling solution incremental. Hence, at every point in time the algorithm aims to achieve an allower write-count balance in the memory. After a reboot, for instance, the memory can be assumed to be wear-leveled and the incremental wear-leveling can be continued. This furthermore overcomes the requirement to know the exact age of the memory at any time. Therefore, the approximation does not need to estimate absolute number, a relative representation of the write distribution is sufficient. At the end of this
section, we evaluate the resulting wear-leveling quality on the previously mentioned benchmark applications.

A. Write Distribution Approximation

Several steps are required to record an approximation of the real write distribution of an application at runtime. To achieve an equidistant sampling of write accesses, i.e., every \(n \) write access is sampled, the target of every \(n \) memory write of the application is captured and stored in an appropriate data structure. The number \(n \) determines the temporal granularity of the approximation technique, allowing a trade-off between accuracy and introduced overhead. After capturing the write, the spatial granularity of the data structure has to be considered as well. Storing the estimated write count for every byte introduces a big storage overhead and leads to imprecise results, when the temporal granularity is coarse. Instead, bytes can be related to larger memory blocks and the write counts are aggregated for every write access into these blocks. For our implementation, we aggregate the write counts for 4 kB memory blocks, because the wear-leveling algorithm considers this granularity, i.e., the decision is based on memory pages. Using an 8 byte counter for every block, \(\frac{\text{memory-size}}{\text{byte}} \) bytes are required to store the approximated write distribution (e.g., 2 MB when 1 GB of main memory is tracked).

The detailed flow of capturing the target of every \(n \) memory write access requires two techniques to be implemented. First, an interrupt has to be generated after every \(n \) write access, thus the runtime system can take action. Secondly, the target of the next memory write access has to be determined and stored in the data structure. Both implementations are stated in detail subsequently. Although the approach by Gogte et al. allows to directly capture CPU write requests at sampled intervals [14], their approach relies on a specialized debugging capability. Our method provides an alternative, which makes use of more widely available hardware features.

1) Temporal Write Distribution Sampling: To generate an interrupt after every \(n \) write access of the application, we use the CPU internal performance counting mechanism. In ARMv8, each performance counter can be configured to only record events triggered on EL0, thus there is no interference of executed interrupt handlers. The \text{BUS ACCESS ST} event counts the total number of store requests on the memory bus, thus the number of write accesses of the application are recorded. For Intel CPUs, the same behavior could be achieved by using a performance counter for writebacks of the last-level-cache. If no such performance counter is available in some system, any approximation (e.g. the cycle counter), still can be considered. The performance counting mechanism allows to generate an interrupt when the performance counter overflows (i.e., exceeds the value of \(2^{32} - 1 \)). To establish interrupts on every \(n \) write access, the performance counter is set to \(2^{32} - n \) during the handling of the overflow interrupt.

2) Write Access Trapping: As the last written memory address cannot be determined during the interrupt handling of the performance counter overflow, a second technique is implemented to track the target address of the the next memory write. During the handling of the overflow interrupt, the memory access permission for the tracked memory region is set to \text{READ ONLY}. Note that the ARMv8 architecture allows hierarchical memory access permissions, allowing to configure memory regions of 1 GB size to \text{READ ONLY} by only modifying one page-table entry. Due to the \text{READ ONLY} permission, the next write access causes a permission violation trap, which is handled as an interrupt. The violation causing address is available for the interrupt handler in a dedicated register, which then is used to increment the corresponding counter in the write distribution approximation\(^5\). During the handling of the trap, the access permissions are set back to \text{READ WRITE}\(^4\). Note that this mechanism does not strictly require a MMU, it could also be implemented with a very lightweight MPU on a microcontroller.

B. Wear-leveling Algorithm

As mentioned before, the write distribution approximation enables arbitrary aging-aware wear-leveling algorithms. When this technique is used, the integration of the approximation system and the wear-leveling algorithm has to be considered as well. To provide a common interface, the approximation implementation could provide the estimated write-counts in a table inside the runtime system’s memory and a notification mechanism to trigger the wear-leveling algorithm when a special event occurs (e.g., one estimated counter exceeds a configured threshold). However, to reduce the overhead further, we interleave our wear-leveling algorithm further with the approximation implementation to reduce redundantly stored data. Our wear-leveling algorithm uses a red-black tree [5] to maintain all managed virtual memory pages along with their estimated age. As the estimated age is already present inside of the tree nodes, there is no need to store these values in the approximation implementation as well.

1) Management of Memory Pages: Our wear-leveling algorithm is based on a red-black tree as the management data structure, which contains all managed physical memory pages together with their estimated cell age. Whenever a virtual memory page should be relocated to another physical memory page, the current minimum is extracted from the tree as the target physical page and the estimated ages are adjusted accordingly. Regarding the overhead, the wear-leveling algorithm is only called in this setup, when a memory page has to be relocated. Regarding the selection policy of the wear-leveling decisions, the estimated age of all physical pages is balanced equally over time, because every page will be the current minimum page at a certain time when the estimated age is updated properly.

\(^3\)The semantics of the performance counter and of the write access trapping mechanism differ slightly. While the performance counter counts every write to the memory, including cache writebacks and other indirect memory accesses, the write access trapping only applies to CPU write operations, which require a fetch of a TLB line. However this only implies that not the target of every \(n \) write is recorded, but that sometimes the distance between two recorded writes is \(n + x \), where \(x \) is a small integer.

\(^4\)For our runtime system implementation, memory permissions are not used for any protection purposes. If this is the case, the modified permissions might have to be backed up and restored later on.

5
Eventually, this integration of the wear-leveling algorithm and the approximation system leads to an additional configuration parameter, besides the temporal and spatial granularity of the write-count approximation. The threshold, after which number of estimated writes a relocation should be performed is maintained by the approximation system, because the wear-leveling algorithm is called from the approximation system in that case. This configuration parameter provides a trade-off between the overhead of page relocation and the frequency, respectively the resulting quality, of wear-leveling actions without taking influence on the quality of the write-count approximation.

2) Memory Page Relocation: Once the wear-leveling algorithm determined a pair of two virtual memory pages to swap, two steps are required to perform the relocation. First, the virtual memory mapping in the page-table has to be adjusted accordingly, such that the physical pages of both virtual memory pages are exchanged. A Translation Lookaside Buffer (TLB) maintenance operation is required afterwards to make sure the exchanged mapping is applied. Note that the ARMv8 virtual memory system allows single entries to be invalidated in the TLB, thus a total TLB flush is not necessary. After the new page mapping is established, the physical content has to be exchanged to maintain the application’s view on the virtual memory. This is achieved by copying one page to a spare buffer, copy the second page to the first page, and copy the buffer content to the second page. The size of the buffer is chosen to 4 kB for two reasons: First, copying a sequential memory content can be done more efficiently in most systems than copying single bytes or words from different regions. Second, the write access pattern to the buffer memory page is completely uniform and thus has no negative influence on the memory lifetime if it is also handled by the wear-leveling system.

C. Evaluation

To point out how the previously presented techniques can be used to improve the balance of wear-levels, the write-count approximation system is evaluated first. The four benchmark applications shown in Figure 1 are executed again with enabled write-count approximation. Instead of triggering the wear-leveling algorithm, the write-counts are simply aggregated, resulting in an analyzable distribution. The spatial granularity is fixed to 4 kB sized memory regions (virtual memory page size), while the temporal granularity is evaluated for two different values. For the first experiment, a sample is recorded every $n = 5000^{th}$ memory write access, for the second experiment a sample is recorded every $n = 20000^{th}$ memory write access. The resulting approximated write-count distributions are illustrated in Figure 3 and Figure 4.

1) Write-Count Approximation Evaluation: The characteristic of the real write-count distribution (compared to Figure 1) is reflected properly in both experiments. The main peaks inside the distribution are shown regarding their height
compared to the rest of the distribution. The variation of the temporal granularity can be observed due to the different scaling of the y axes. Since our approach performs incremental wear-leveling, the total memory lifetime is not considered. Hence, the absolute scaling of the write approximation does not matter. However, the reduction of the temporal granularity does not influence the preciseness of the approximation in this setup, because still enough samples are recorded, even for \(n = 20000 \). If the application executes relative short or the temporal granularity is configured too coarse, not enough samples might be available to reflect the characteristic of the distribution properly. This trade-off should be taken into account when considering the temporal granularity.

When choosing a temporal granularity, the introduced overhead should be also considered. To evaluate the overhead, the necessary additional CPU cycles are calculated as a percentage of the baseline execution, without write-count approximation. Table I lists the calculated CPU overhead of both experiments. The relative overhead is similar for all benchmarks, because the approximation system reacts relative to the total write count, respectively the execution time.

2) Full Wear-Leveling Evaluation: To determine if the estimation is precise enough to enable aging-aware wear-leveling, the approximation and wear-leveling algorithm is plugged together and evaluated again. The red-black tree based wear-leveling algorithm is activated and triggered from the approximation system. The spatial granularity remains at 4 kB while the temporal granularity of the approximation again is chosen as \(n = 5000 \) and \(n = 20000 \). A remapping of a page is requested, whenever the write-count estimation exceeds the value of 4 (for \(n = 5000 \)) or the value of 1 (\(n = 20000 \)). This leads to mostly the same total number of page relocations in both experiments. Thus they can be compared regarding the quality of the write count approximation.

Figure 5 and Figure 6 show the resulting write distribution of our simulation under coarse-grained wear-leveling for the sha benchmark. The results from the other benchmarks are only presented by their calculated improvement later due to space limitation. Note that due to the logarithmic scale of the y axes memory bytes with a write-count of 0 are not displayed. The estimated write-count distribution is precise enough to perform aging-aware relocations and balance the wear-levels across the target memory region.

3) Memory Lifetime Improvement: Considering the gained improvement of the memory lifetime requires some assumptions. First, the system is considered dead once the first memory cell is worn out. Thus, the maximum write count to the memory determines the memory lifetime. Assuming that the target of each write access could be shuffled through the memory arbitrarily, the theoretical best memory lifetime could be achieved when every memory cell is written equally often, thus the mean write count would be applied to each cell. Combining both considerations, Equation (1) calculates the achieved endurance (AE), which is the fraction of the ideal memory lifetime, which is achieved by the analyzed execution. A value of 1 means that the experiment already achieves the maximum memory lifetime, while a value of, for instance, 0.5 means that the memory lifetime could be doubled in the ideal case.

\[
AE = \frac{\text{mean_write_count}}{\text{max_write_count}}
\]

Comparing the achieved endurance of an execution with enabled wear-leveling to the baseline without any wear-leveling leads to an endurance improvement (EI), which can be determined according to Equation (2). The maximum endurance improvement thus depends on the achieved endurance of the baseline.

\[
EI = \frac{AE_{\text{analyzed}}}{AE_{\text{baseline}}}
\]

The endurance improvement describes how many additional write accesses can be performed before the memory wears out while using the analyzed wear-leveling technique, compared to the baseline, but does not give any insight if the application profits from the additional writes. For instance, an EI of 2 means that the application can perform twice as many...
writes compared to the situation without wear-leveling. If the wear-leveling causes 100% overhead, all the additional writes would be consumed by the wear-leveling and no real benefit would be achieved. Therefore, the introduced write overhead \(WO \) (as a percentage of the total number of writes of the baseline execution) has to be considered as well to determine the lifetime improvement \((LI) \) according to Equation (3). A \(LI \) value of, for instance, 2 implies that the application can perform twice as much writes, respectively can run twice as long, regardless of introduced overhead and writes for the wear-leveling.

\[
LI = \frac{EI}{WO + 1}
\]

Similarly, the achieved endurance can be related to the write overhead, which leads to the normalized endurance \((NE) \).

\[
NE = \frac{AE}{WO + 1}
\]

The write overhead is determined in this evaluation on the simulation results by comparing the total number of memory writes for each benchmark execution with the corresponding baseline. For the four benchmark applications, the achieved endurance, the write overhead and the lifetime improvement is calculated for both wear-leveling experiments and the results are collected in Table II.

\(n = 5000 \)	\(n = 20000 \)						
\(AE \)	\(WO \)	\(NE \)	\(LI \)	\(AE \)	\(WO \)	\(NE \)	\(LI \)
bitcount	0.016	5.10%	0.015	18.90			
pf	0.043	5.10%	0.041	40.01			
sha	0.022	5.05%	0.021	11.20			
dijkstra	0.022	5.10%	0.021	28.65			
bitcount	0.016	5.11%	0.015	18.93			
pf	0.044	5.12%	0.042	40.06			
sha	0.019	5.10%	0.018	9.72			
dijkstra	0.022	5.11%	0.021	28.26			

Table II

LIFE TIME IMPROVEMENT \((LI) \) FOR COARSE-GRAINED WEAR-LEVELING

We observe the following properties. First, the memory write overhead is mostly independent from the configuration of the approximation system, because the approximation in general does not cause many additional memory writes. Second, the lifetime improvement depends on the total amount of memory which is used for the wear-leveling, since the write pattern of the application is anyway mostly targeting a single memory page. If this page can be remapped to colder pages, the improvement is higher. Third, although the lifetime is improved by a considerable factor, the achieved endurance remains at mostly \(\approx 4\% \) of the ideal lifetime in all benchmarks. This stems from the high non-uniformity within memory pages, which is caused by the applications. As memory pages are only relocated to other 4 kB aligned memory pages, the non-uniformity within pages is not resolved by the wear-leveling system.

To summarize this section, aging-aware wear-leveling on the coarse-granularity of 4 kB sized memory pages performs reasonably in a software-only manner due to the statistical write-count approximation. Nevertheless, a coarse-grained wear-leveling technique alone is not sufficient to achieve an equal balance of the wear-levels allowing memory due to the high non-uniformity within memory pages.

VI. FINE-GRAINED STACK WEAR-LEVELING

To overcome the problem of intra page non-uniformity, solutions in literature are extended with a finer grained wear-leveling technique, resolving the non-uniformity in the scope of coarse-grained memory regions, which are targeted by the coarse-grained technique subsequently [21], [26]. To the best of our knowledge, all the fine-grained extensions are either realized in hardware by remapping single bytes or group of bytes with an additional abstraction or by functional data remapping [17], which requires at least compiler support. In this section, we propose a software-only fine-grained extension to the coarse-grained wear-leveling system (Section V), which resolves non-uniform write accesses in the memory pages of the stack region. These pages are targeted by the coarse-grained wear-leveling system subsequently and are remapped to other physical pages.

Since all fine-grained wear-leveling extensions are hardware based, we most likely cannot propose a generic fine-grained wear-leveling approach based on commonly available hardware. Instead, we propose a specialized technique, which only targets the stack region of C / C++ compiled applications. The concept to target the stack with a specialized wear-leveling system in a software-based manner is also considered by Li et al. [18]. The basic idea is to allocate every stack frame for a new function call on the heap through an aging-aware memory allocator. This approach features two major disadvantages: First, the wear-leveling quality relies on the application to perform enough and fine-grained function calls to apply sufficient wear-leveling actions. Second, the amount of required stack memory might not be known in advance\(^5\), which leads to a certain fragmentation and to worse wear-leveling results. Due to these disadvantages, we in contrast relocate the entire stack memory without the application’s cooperation.

As the stack is used by the compiled code relative to the stack pointer \((sp) \), the application can be instructed to use another memory location as the stack by adjusting the \(sp \). As the stack anyway is the main cause for non-uniform write accesses (see Section V-C), we focus our fine-grained wear-leveling extension on relocating the stack to other memory locations and thus resolve the non-uniform write access pattern inside the stack.

A. Circular Stack Relocation

To evenly distribute the write accesses to the stack, we move the stack region in a circular manner through the memory. In essence, the physical memory content is relocated with a fixed

\(^5\)C99 allows dynamic sized local arrays [2]. However, this could also be achieved in assembly.

\(^6\)Depending on the application logic, concrete pointer values may be also calculated and stored in variables. These pointer are also considered when the memory location of the stack is changed.
offset into one direction always with an overflow semantics at the end of the memory. For the Start-gap approach, this can be achieved by a corresponding remapping function, because an additional abstraction layer maintains the logical view on the memory. The runtime system allocates a memory region of the size of multiple memory pages for the application’s stack. The stack is relocated from time to time by setting the sp further by an offset and copying the old stack content to the according new location. The logical view of the application always expects free memory bytes left (negative offset) of the sp and the already created stack content directly right (positive offset) of the sp. As long as the stack only is relocated into one direction, this view can be maintained easily. A wraparound at the end of the reserved memory region cannot be achieved trivially when the stack should be relocated by the same offset in each step, since the stack content cannot be split. Thus, we install a mechanism, called shadow stack, which aids to implement the wraparound at the end of the reserved memory region.

1) Shadow Stack: The basic concept of the shadow stack is to allow one part of the stack to maintain at the end of the reserved memory region, while the rest of the stack already is wrapped around to the beginning. At any point in time, the entire stack content must be accessible by addressing memory contents right of the sp (with a positive offset). Furthermore, at any point in time the same amount of free memory should be available left of the sp (with a negative offset). Only by maintaining these two properties, the application can continue the execution at any time.

The setup of the shadow stack is illustrated in Figure 7. Technically, the real stack is present as a consecutive virtual memory region, which is shown in the right half of Figure 7. For the shadow stack, the same amount of virtual memory space left of the real stack is allocated and is mapped to exactly the same physical memory pages like the real stack. Thus, an arbitrary virtual address A of the real stack, the same physical content is accessed at the virtual address S(A) = A – stacksize. This also implies that setting the sp from some virtual address S(A) inside the shadow stack to the corresponding real stack address A does not change the application’s perspective on the stack at all. Using this mechanism, the stack relocation is implemented in two steps. First, the stack is moved down the memory periodically. At any time, the application can access the same amount of memory left of the sp, because the writes can target the shadow stack. Once the currently used stack (including all valid stack content) is entirely moved to the shadow stack, the sp is set back to the corresponding real stack address. As mentioned before, the virtual memory at the new location of the sp contains exactly the same content as at the old location. Hence, the application’s perspective is maintained and the entire stack is wrapped around back to the real stack (right half). Repeating these two steps regularly, the stack is relocated in a circular manner with the same offset in each relocation step.

2) Combination with Coarse-grained Wear-Leveling: As stated before, the fine-grained wear-leveling is designed as an extension to the previously presented coarse-grained wear-leveling system (Section V). Both systems can work together nearly out of the box. Since the stack relocation only operates in the virtual memory space, a stack relocation can only be interrupted by the remapping of the page to another physical memory page. Nevertheless, when remapping hot and cold pages, the coarse-grained wear-leveling system has to be aware of the special shadow stack configuration and has to maintain it during remapping. Furthermore, the statistical write-count approximation has to aggregate the captured write accesses from the shadow stack and from the real stack to the same physical page. Eventually, we set up a frequent stack relocation by using the same performance counter overflow interrupt mechanism like the coarse-grained wear-leveling system. This ensures that stack relocations are triggered after a certain number of writes to the memory. Additionally, the overhead can be reduced by combining the interrupt mechanism and only using one interrupt service routine (ISR).

B. Address Consistency

The concept of moving the stack in a circular manner (Section VI-A) is based on the sp relative access of the stack region by C / C++ compiled applications. However, the sp relative access is not the only way to access memory contents within the stack memory. Sometimes, the application requires to create pointers to variables inside the stack to pass it to subsequent function calls or to store the pointer in a central variable. Furthermore, pointers to variables on the stack may also be moved out of the stack to some global or heap data structures. During a relocation of the stack, the memory address of the variables on the stack changes, while the content of the pointers stays unchanged. This leads to invalid pointers and to a wrong behavior of the application. To overcome this problem, we equip the fine-grained relocation system with two pointer adjustment mechanisms, which maintain the correctness of pointer contents over stack relocations.

1) In-memory Pointer Adjustment: First, an in-memory pointer adjustment technique targets pointers to stack contents, which are stored inside the stack itself. This is the usual case when pointers to local variables are passed to subsequent function calls or positions inside local arrays need to be remembered. For the relocation of the stack, the entire valid stack content has to be copied to the new memory location anyway, resulting in every memory word from the current valid stack is loaded to the CPU and stored back to the memory. During this process, the memory word is checked, and a pointer to stack variable is adjusted by the relocation offset. To identify a memory word as a pointer into the stack, a strong constraint needs to be put to the memory usage of
the application. As the memory word is just seen as a 8 byte number by the relocation routine, the application has to make sure to not use any logic variable content, which has the same number like a pointer value into the stack would have. We ensure this by allocating the virtual memory pages of the stack at a memory location bigger than 4 GB and allow the application to use 64 bit aligned data types with the 32 lower bits set only.

2) Smart-Pointer Adjustment: As the previous technique only targets pointers, which are stored inside the stack, pointers which are stored in global or heap data structures still are corrupted after a stack relocation. To solve this problem, the fine-grained wear-leveling system ships with a smart-pointer implementation, which checks the current relocation of the stack during dereferencing. The internally stored raw pointer is adjusted properly and dereferenced. The smart-pointer implementation only allows to hand out copied variables, but not the internal raw pointer. Whenever the application aims to move a pointer out of the stack, it has to use the smart-pointer implementation instead of a raw pointer.

To summarize, maintaining the consistency of pointers during stack relocations puts strong constraints on the application and blows up in-memory data structures. Nevertheless, the constraints can be achieved by reimplementing applications accordingly and this enables software-only fine-grained in-memory wear-leveling.

C. Evaluation

The technical details of the combined implementation of the fine-grained stack relocation technique and the coarse-grained aging-aware wear-leveling system are explained in Section VI-A2. The movement of the stack by an offset of 64 bytes\(^7\) is triggered periodically from the performance counter overflow mechanism. In this evaluation the performance counter overflow is configured to trigger after every \(64^{th}\) memory write access, thus the stack is relocated every \(1000^{th}\) memory write. Accordingly, the write-count approximation works on the same temporal granularity. The coarse-grained wear-leveling system is triggered whenever a page exceeds an approximated write-count of \(t = 64\) and thus in mean on every \(64^{th}\) stack relocation. Considering the relocation offset of 64 bytes, a coarse-grained page relocation is triggered whenever the stack is relocated by 4096 bytes, which is the size of one memory page. A second experiment is executed with the trigger for the coarse-grained wear-leveling system set to \(t = 32\). This increases the total number of page relocations at the cost of higher memory overhead. Furthermore, in this scenario page relocations are performed when the stack only passed half of a memory page size, thus the internal non-uniformity is higher.

Figure 8 and Figure 9 show the resulting memory write-count distribution for the sha benchmark, compared to the coarse-grained wear-leveling system only (Figure 5) for both benchmark configurations. The results show that the non-uniformity within virtual memory pages can be resolved by the fine-grained stack wear-leveling technique and thus the allow write pattern to the main memory is more uniform. Even though the total number of page relocations is higher in the second experiment (Figure 9), the results from the first experiment are slightly better due to the fact that a page relocation is only performed, when the stack is moved by an offset of an entire memory page.

1) Memory Lifetime Improvement: To finalize the evaluation, the improvement of the memory lifetime can be calculated in the same way like in Section V-C3. The according results are collected in Table III. First of all, it can be observed that the write overhead \(WO\) has a high variation for the different benchmarks. This is caused by the different way of stack usage by each benchmark. The sha application for instance uses a big part of the stack memory and thus has a

Benchmark	\(t = 64\)	\(t = 32\)
bitcount	0.788	0.592
sha	0.746	0.693
dijkstra	0.018	0.020

\(AE\) for fine-grained wear-leveling
very high write overhead. The total write distribution of the application in the end determines the lifetime improvement L. The \textit{dijkstra} application for instance also faces a high non-uniform memory usage within the bss segment, which is not resolved by our fine-grained wear-leveling technique. Thus, the results for \textit{dijkstra} are relative bad.

In conclusion, the memory lifetime can be improved significantly, if the intra page non-uniformity can be resolved by the fine-grained stack wear-leveling, e.g., ≈ 900 times for the \textit{bitcount} application. Note that the memory lifetime improvement strongly depends on the available memory size. In this evaluation, only the minimal required amount of memory for each benchmark is considered. If a system offers additional spare memory, the memory lifetime can be further improved. The improvement is determined mostly by the resulting uniformity of the memory access distribution (AE) and the write overhead.

2) \textit{Comparison to the Literature}: Several techniques for in-memory wear-leveling for NVM have been proposed over the last years. In this section we compare our evaluation results with following related techniques: \textit{Start-gap} was proposed by Qureshi et al. [21] and relocates the entire memory space in a circular manner on the granularity of 256 byte cache-lines through special hardware. To resolve non-uniformity within cache-lines, a finer-grained address space randomization is introduced. Khouzani et al. [3] proposed a wear-leveling scheme, which hooks into the page allocation process of the operating system. Due to knowledge about the current write-count and the write characteristic to each memory region, wear-leveling actions are decided and performed. Chen et al. [8] proposed a similar scheme with advanced management data structures to make the wear-leveling algorithm more efficient. This approach only operates on the coarse granularity of virtual memory pages.

As a metric, we adopted the term normalized endurance (NE) from the \textit{Start-gap} approach, which is our achieved endurance value related to the memory write overhead. As a concrete lifetime or a relative improvement always highly depends on the considered benchmark and the memory size, we use the normalized endurance as a fraction of the possible ideal memory usage, respectively the memory lifetime. Unfortunately only a few works consider the possible ideal lifetime in their evaluation. The previously mentioned works [3], [8], [21] all report to achieve almost the ideal memory lifetime in the best case (i.e., in the range of $\approx 87\%$ to $\approx 98\%$). Our best result achieves 78.43% of the ideal memory lifetime.

As our system requires no additional hardware and can be tuned regarding the write-overhead, it enables a trade-off for the design-process of a hardware platform. The necessary costs for the required hardware support for in-memory wear-leveling can be replaced by the slightly worse wear-leveling quality and a possibly bigger runtime overhead.

VII. OUTLOOK ON FURTHER FINE-GRANDED EXTENSIONS

The final evaluation results in Table III show that the overall wear-leveling quality can be good, if the non-uniformity of write accesses within memory pages can be resolved. However, not only the stack has to be targeted by a fine-grained specific extension, but also the data/bss and, if it exists, the heap segment. For instance, the \textit{dijkstra} application has a highly non-uniform memory usage inside the bss segment leading to a bad performance. The text segment requires no special wear-leveling, because all accesses are read-only by definition. While specific wear-leveling for the heap has been targeted in form of aging-aware memory allocations in the literature [10], [18], the data/bss segment requires another special technique. For future work, we propose to relocate elements of the data/bss segment by using the feature of dynamic linked code. If the application is not statically linked, the addresses or an access offset for the data/bss segment is determined and set while the application is loaded. During a maintenance phase, i.e., an interrupt, the text segment could be re-loaded with relocated addresses of the data/bss segment and thus these segments can be relocated. This could achieve a circular movement, similar to the movement for the stack, for the data/bss segment.

VIII. CONCLUSION

Recently, several in-memory wear-leveling techniques have been proposed to tackle a major disadvantage, namely the lower write endurance of NVM technologies, which might replace classic DRAM in the near future. Advanced, aging-aware wear-leveling techniques rely on hardware-provided age information, such as a write-count per cell / byte / domain, to achieve good wear-leveling results. As the necessary hardware support is not available in common or commercial off-the-shelf (COTS) hardware, it introduces additional costs. The hardware at least requires additional chip-space, but also might be very complex to build to meet a certain clock-speed and granularity.

To overcome the need for this hardware and offer the possibility to use the chip-space for other features, this paper introduced a software-only, aging-aware wear-leveling system, which only makes use of widely available hardware features. The final evaluations show that we are able to achieve up to 78.43% of the theoretically ideal possible memory lifetime with our wear-leveling system without any additional hardware costs. During the design process of a system, it might be totally reasonable to only achieve roughly 80% of the possible memory lifetime (e.g. 8 instead of 10 years), but to equip the system with advanced hardware controllers to improve energy consumption, for instance.

As we believe it is important to offer the possibility for such software-only in-memory wear-leveling, we release all our sources, including benchmark applications and wear-leveling implementations: https://github.com/tudortmund-ls12-rt/NVMSimulator.

ACKNOWLEDGEMENT

This paper is supported in parts by the German Research Foundation (DFG) Project OneMemory (Project number 405422836).
