Poor glycaemic control in Brazilian patients with type 2 diabetes attending the public healthcare system: a cross-sectional study

Luciana V Viana, Cristiane B Leitão, Caroline K Kramer, Alessandra T N Zucati, Deborah L Jezini, João Felício, Ana B Valverde, Antonio R Chacra, Mirela J Azevedo, Jorge L Gross

ABSTRACT

Objectives: To describe the clinical profile of Brazilian patients with type 2 diabetes attending the public healthcare system and identify factors associated with poor glycaemic control.

Setting: Cross-sectional study.

Participants: Patients with type 2 diabetes attending outpatient clinics of public healthcare system.

Main outcome measured: Glycated haemoglobin (HbA1c), centrally measured by high-performance liquid chromatography (National Glycohemoglobin Standardization Program certified).

Results: A total of 5750 patients aged 61±10 years, with 11±8 years of diabetes duration (66% women, 56% non-white, body mass index: 28.0±5.3 kg/m²) were analysed. Mean HbA1c was 8.6±2.2%, and median HbA1c was 8.1% (6.9% to 9.9%). HbA1c <7% was observed in only 26% of patients. Mean HbA1c was higher (p < 0.01) in the North (9.0±2.6%) and Northeast (8.9±2.4%) than in the Midwest (8.1±2%), Southeast (8.4±2.1%) and South regions (8.3±1.9%). Using the cut-off value of HbA1c above the median, age (0.986 (0.983 to 0.989)), white ethnicity (0.931 (0.883 to 0.981)) and being from Midwest region (0.858 (0.745 to 0.989)) were protective factors, while diabetes duration (1.015 (1.012 to 1.018)), use of insulin (1.710 (1.624 to 1.802)) and living in the Northeast region (1.197 (1.085 to 1.321)) were associated with HbA1c >8%.

Conclusions: The majority of Brazilian patients with type 2 diabetes attending the public healthcare system had HbA1c levels above recommended targets. The recognition of Northeast residents and non-white patients as vulnerable populations should guide future policies and actions to prevent and control diabetes.

INTRODUCTION

Brazil is among the 10 countries with the highest prevalence of diabetes mellitus (DM) in the world—about 7.6%. Diabetes is the fifth underlying cause of death in Brazil, affecting 2.5% of the population. Therefore, the aim of this study was to describe the clinical profile of patients with type 2 diabetes receiving public healthcare in the five regions of Brazil and identify factors associated with poor glycaemic control.
A cross-sectional study was conducted between February 2006 and April 2011 at SUS outpatient clinics with 7201 patients with types 1 and 2 diabetes from the North (n=500; 7%), Northeast (n=2184; 30%), Midwest (n=461; 6%), Southeast (n=3382; 47%) and South (n=674; 9%) regions of Brazil. The number of patients in each region reflects the regional population density as reported in the 2000 national census. A preliminary report describing the characteristics of this patient population, for all regions except the North, has been published. Briefly, the current study was designed to obtain a representative sample of adult patients with type 2 diabetes living in urban areas of Brazil. A total of 14 centres, located in 12 cities belonging to the five regions of our country were included. The included cities were the largest in their respective region and nine of them ranked among the most populous municipalities in Brazil. We also considered that the data would be more reliable if they were collected from public healthcare centres that usually take care of at least 300 patients with diabetes/month. All patients provided written informed consent.

In the present study, we reported the results for 5750 patients with type 2 diabetes for whom HbA1c values were available. Type 2 diabetes was defined as diabetes diagnosed after 30 years of age without insulin use in the first 5 years after the diagnosis. Patients were from the North (n=312; 5%), Northeast (n=1906, 33%), Midwest (n=348, 6%), Southeast (n=2642, 46%) and South (n=542, 9%) regions.

Assessment of clinical characteristics
Information on clinical variables (age, gender, ethnicity, DM duration, body weight, height, physical activity and medications in use,) was obtained by a standardised questionnaire. Ethnicity was self-reported as white or non-white (black, mixed or other—including Asian and Native Brazilians). Marital status was categorised as living with or without a partner, and employment status as working or not currently employed. Educational status was classified as at least 8 years or less than 8 years of formal education. DM treatment was classified as none, diet alone, oral agents, oral agents plus insulin and insulin alone. Frequency of self-blood glucose monitoring (SBGM) and hypoglycaemic episodes in the previous year were recorded. Body mass index (BMI) was calculated (weight/height²; kg/m²). Data were collected in 14 cities representing the five regions of Brazil: South (Porto Alegre, Curitiba), Southeast (São Paulo, Cotia, Campinas, Belo Horizonte, Rio de Janeiro), Midwest (Brasilia, Taguatinga), Northeast (Fortaleza, Recife, Salvador), North (Belém, Manaus).

HbA1c measurements
HbA1c was measured in a central laboratory by an ion-exchange high-performance liquid chromatography method (reference range 4.7–6%) certified by the National Glycohemoglobin Standardization Program and calibrated to the Diabetes Control and Complications Trial standard.

Statistical analyses
The five regions were compared in terms of clinical variables and HbA1c results by one-way analysis of variance (with Bonferroni post hoc test) and χ² tests. The characteristics of patients were evaluated according to glucose control (median HbA1c), region of origin and self-reported ethnic background. Prevalence ratio (PR) and 95% CI were obtained by Poisson regression analyses to determine the association of different factors with HbA1c >8% (dependent variable). Adjustment was made taking into account independent variables selected based on their significance on univariate analyses and/or biological relevance (age, diabetes duration, ethnicity, living with partner, working status, insulin use, SBGM and geographic region).

Variables were expressed as mean±SD, number of cases (%) and median (25–75 IQ intervals). HbA1c was also described as median. Statistical analyses were carried out using SPSS V.18.0. p Values less than 0.05 (two tailed) were considered significant.

RESULTS
A total of 5750 patients with type 2 diabetes were included and the main characteristics were: age of 61±10 years, diabetes duration of 11±8 years and BMI 28.0±5.3 kg/m². Most patients were women (66%), non-white (56%) and lived with a partner (59%). One-third (33%) had completed 8 years of formal education, 20% were employed and 37% were not physically active. Regarding treatment, 1% did not follow any kind of treatment for diabetes, 6% were on diet alone, 57% were taking oral agents, 22% used oral agents and insulin and 13% insulin alone. Mean HbA1c was 8.6±2.2% and median was 8.1% (IQR 6.9–9.9%). HbA1c <7% was found in only 26% of the patients.

Since the majority of the included patients had a poor glycaemic control we decided to compare the characteristic of patients grouped according to median HbA1c (8%). Table 1 describes clinical characteristics and PR (CI 95%) of patients with HbA1c ≥8% and <8%. In unadjusted model, patients with HbA1c ≥8% were younger, non-whites, with longer DM duration, more sedentary, mainly from North and Northeast regions and treated more frequently with insulin than patients with HbA1c <8%. After adjustment, DM duration (1.015 (1.012 to 1.018)), insulin use (1.710 (1.624 to 1.802)) and being from Northeast region (1.197 (1.085 to 1.321)) was associated with HbA1c ≥8%. On the other hand, age (0.986 (0.983 to 0.989)), white ethnicity (0.931 (0.883 to 0.981)) and living in the Midwest region (using the South region as reference; (0.858 (0.745 to 0.989))) were protective factors. In order to further explore the variables associated with HbA1c ≥8% we performed stratified analysis according to geographic region, ethnicity and insulin use. An online
supplementary table shows unadjusted and adjusted analyses applying the same multivariate model using a cut-off of HbA1c <7%. The differences between the groups of patients with HbA1c <7% and ≥7% did not differ substantially from the results using the cut-off of HbA1c <8%.

The characteristics of the patients stratified by region are described in table 2. Mean HbA1c was higher (p<0.01) in the North (9.0±2.6%) and Northeast (8.9±2.4%) than in the Midwest (8.1±2%) and Southeast (8.4±2.1%) and South (8.3±1.9%) regions. Moreover, the five regions differed in all other evaluated characteristics. Patients living in the Northeast had the highest prevalence of non-whites, the lowest BMI and the highest frequency of employed individuals.

Characteristics of patients according to self-reported ethnicity (white and non-white) are described in table 3. Non-white patients had higher HbA1c values, lower BMI and more years of formal education than white patients. They were also younger, more often female and single.

Of the 5750 patients in this study, 35% (2021 patients) used insulin. Of these, 33% (n=658) used insulin once daily, 58% (n=1154) twice daily and 9% (n=189) three times a day or more. Eighty-one per cent (n=1630) of the insulin users performed SBGM, but only 421 (26%) did it on a daily basis. Patients who performed more frequently SBGM had lower values of HbA1c (at least once daily: 9.3±2.1%) than those who did not measure capillary glucose (9.7±2.3%; p=0.008).

CONCLUSIONS

In this study, most patients with type 2 diabetes attending the public healthcare system in Brazil had HbA1c levels above the recommended target, that is, above 7%. Being non-white and from the northeast, as well as the longer diabetes duration, and insulin use were factors associated with poor metabolic control, whereas age and being from the Midwest were associated with HbA1c <8% (median HbA1c level for this population). To the best of our knowledge, this is the largest surveillance study to assess glycaemic control in Brazil using a certified method to measure HbA1c. We also may consider that the present study included a representative sample of patients with type 2 diabetes living in the urban areas and attending the public healthcare system in Brazil.

In the current survey we chose to use the cut-off value of HbA1c 8% to compare patients with different glycaemic control. The recommended target for HbA1c is below 7%, but it has been recently recommended to individualise the goal of HbA1c. Since only 26% of our patients achieved this target, we adopted a more representative cut-off value (median HbA1c value of our study

Table 1 Prevalence of patients’ characteristics according to HbA1c ≥8%

	HbA1c <8%	HbA1c ≥8%	PR (95% CI)	p Value	Adjusted PR (95% CI)*	p Value
Age (years)	62±11	60±10	0.991 (0.989 to 0.993)	0.000	0.986 (0.983 to 0.989)	0.000
Diabetes duration (years)	9±8	12±8	1.018 (1.015 to 1.021)	0.000	1.015 (1.012 to 1.018)	0.000
BMI (kg/m²)	28.0±5.1	28.0±5.4	0.999 (0.994 to 1.004)	0.640	–	–
Females	1824 (65)	1972 (67)	0.972 (0.922 to 1.026)	0.304	–	–
White	1339 (48)	1199 (40)	0.862 (0.818 to 0.907)	0.000	0.931 (0.883 to 0.981)	0.007
Living with a partner	1613 (58)	1762 (59)	1.035 (1.093 to 1.089)	0.189	1.006 (0.959 to 1.057)	0.796
≥8 years of formal education	933 (41)	967 (52)	0.987 (0.932 to 1.044)	0.864	–	–
Active worker	527 (19)	609 (21)	0.949 (0.893 to 1.009)	0.094	1.053 (0.989 to 1.212)	0.109
Ever participate in a diabetes education program†	318 (11)	387 (13)	0.929 (0.865 to 0.999)	0.047	–	–
Diabetes treatment	0.000	0.000	–	–	–	–

	None	Diet only	Oral agents	Oral agents and insulin	Insulin alone	Insulin use	SBGM	Geographic region
None	48 (2)	23 (1)	1905 (69)	318 (11)	228 (8)	546 (20)	1838 (66)	North
Diabetes treatment	135 (5)	177 (6)	814 (29)	194 (7)	1357 (49)	291 (10)	1000	Northeast
SBGM	1225 (1.073 to 1.399)	1.212 (1.212 to 1.365)	0.956 (0.842 to 1.109)	1.050 (0.951 to 1.159)	0.959 (0.871 to 1.056)	0.000	0.000	

- Poisson regression adjusted for: age, diabetes duration, ethnicity, living with partner, working status, insulin use, SBGM and geographic region.
- Data not available for North region (not included in the adjusted analysis).

BMI, body mass index; PR, prevalence ratio; SBGM, self-blood glucose monitoring.

Viana LV, Leitão CB, Kramer CK, et al. BMJ Open 2013;3:e003336. doi:10.1136/bmjopen-2013-003336

Open Access on March 29, 2024 by guest. Protected by copyright.
Table 2 Characteristics of patients with type 2 diabetes according to the five geographic regions of Brazil

Characteristics	North	Northeast	Midwest	Southeast	South	p Value
N	312	1906	348	2642	542	—
HbA1c (%)	9.0±2.6	8.9±2.4	8.1±2.0	8.4±2.1	8.3±1.9	<0.01*
Age (years)	58±10	61±11	60±11	61±10	62±10	<0.01††
Diabetes duration (years)	10±8	10±8	11±8	11±9	11±9	0.029
BMI (kg/m²)	29.0±5.5	27.2±5.0	27.7±5.2	28.2±5.3	29.1±5.3	<0.01†§¶
Females	193 (62)	1317 (69)	245 (70)	1726 (65)	315 (58)	<0.01**
White	71 (23)	560 (29)	131 (38)	1311 (50)	465 (86)	<0.01**
Living with a partner	199 (64)	1099 (58)	185 (53)	1537 (58)	355 (66)	<0.01†††
≥8 years of formal education	140 (45)	521 (27)	106 (30)	1011 (38)	122 (27)	<0.01†‡‡
Active worker	112 (36)	341 (18)	65 (19)	482 (18)	136 (25)	<0.01§§ £
Sedentary	134 (43)	670 (35)	147 (43)	1005 (38)	168 (31)	<0.01¶¶ $
Diabetes treatment						
None	2 (1)	18 (1)	7 (2)	38 (1)	6 (1)	<0.01**
Diet only	14 (5)	145 (8)	31 (9)	138 (5)	15 (3)	
Oral agents	172 (59)	1172 (62)	180 (52)	1426 (54)	345 (64)	
Oral agents and insulin	67 (23)	332 (17)	64 (18)	660 (25)	125 (23)	
Insulin alone	37 (12)	239 (12)	66 (19)	380 (15)	51 (9)	

Data are means±SD or number of patients with the characteristic (%).

* North and Northeast versus Midwest, Southeast and South.
† North versus Northeast, Southeast and South.
‡ Midwest and Southeast versus South.
§ North versus Northeast and Center-West.
¶ Northeast versus Southeast and South.
** Linear-by-linear association.
†† Higher in North and South; lower in Midwest.
‡‡ Higher in North; lower in Northeast and South.
§§ Higher in North and South; lower in Northeast and Southeast.
*** Higher in North and Midwest; lower in Northeast and South.

BMI, body mass index.

Table 3 Demographic and clinical characteristics of patients with type 2 diabetes according to ethnicity

	White N=2538	Non-white N=3208	p Value
HbA1c (%)	8.3±2.1	8.8±2.3	<0.01
Age (years)	62±10	60±10	<0.01
Diabetes duration (years)	11±9	11±8	0.06
BMI (kg/m²)	28.2±5.2	27.8±5.3	0.003
Females—n (%)	1615 (64)	2178 (68)	<0.01
Living with a partner—n (%)	1568 (62)	1805 (56)	<0.01
≥8 years of formal education—n (%)	803 (38)	1094 (41)	0.011
Active worker—n (%)	520 (21)	616 (19)	0.227
Sedentary—n (%)	904 (36)	1220 (38)	0.072
Diabetes treatment—n (%)			0.007
None	37 (2)	34 (1)	
Diet only	151 (6)	192 (6)	
Oral agents	1498 (59)	1794 (56)	
Oral agents and insulin	533 (21)	714 (22)	
Insulin alone	314 (12)	459 (15)	
Geographic region—n (%)			<0.01
North	71 (23)	241 (77)	
Northeast	560 (29)	1344 (71)	
Midwest	131 (38)	217 (62)	
Southeast	1311 (50)	1329 (50)	
South	465 (86)	77 (14)	

Data are means±SD, number of patients with the characteristic.

BMI, body mass index; HbA1c, glycated haemoglobin.
It is also important to remember that reverse causality is a risk factor for diabetes control, but was unable to pinpoint risk factors. To identify associations between several factors and glycemic control, our study was able to demonstrate an association between low income and poor glycemic control as demonstrated by HbA1c values far above the recommended target. New strategies are necessary to improve glycemic control in this population. Furthermore, the increased vulnerability of Northeast residents and non-white patients to poor metabolic control should be taken into account when designing strategies to control diabetes.

In conclusion, Brazilian patients with type 2 diabetes attending the public healthcare system have poor glycemic control as demonstrated by HbA1c values far above the recommended target. New strategies are necessary to improve glycemic control in this population. Furthermore, the increased vulnerability of Northeast residents and non-white patients to poor metabolic control should be taken into account when designing strategies to control diabetes.

Contributors LVV and CBL were responsible for the logistics of data and blood sample collection in the South, idealising and designing strategies to control diabetes.

Funding Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundo de Incentivo à Pesquisa (FiPE) of Hospital de Clínicas de Porto Alegre (HCPA) and Pfizer Pharmaceutical.

Competing interests None.

Patient consent Obtained.

Ethics approval The protocol was approved by the Ethics Committee at Hospital de Clínicas de Porto Alegre and at each participating centre/clinic.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES

1. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. *Diabetes Care* 2004;27:1047–53.

2. Marfesi DA, Franco LJ. Multicenter study of the prevalence of diabetes mellitus and impaired glucose tolerance in the urban Brazilian population aged 30–69 yr. The Brazilian Cooperative Group on the study of diabetes prevalence. *Diabetes Care* 1992;15:1509–16.

3. Datasus. http://www.tabelnet.datasus.gov.br/cgi/deftohtm.exe?idb2009/c12.def

4. Mendes ABV, Fittipaldi JAS, Neves RCS, et al. Prevalence and correlates of inadequate glycemic control: results from nationwide survey in 6,671 adults with diabetes in Brazil. *Acta Diabetol* 2010;47:137–45.

5. American Diabetes Association. Standards of medical care in diabetes-2013. *Diabetes Care* 2013;36(Suppl 1):S11–66.
6. Pustai OJ, Falk JW. O Sistema de Saúde no Brasil. Medicina ambulatorial: Condutas de Atenção Primária Baseadas em Evidências; Porto Alegre, Artmed, quarta edição, 2013.

7. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–53.

8. IBGE—Instituto Brasileiro de Geografia e Estatística. http://www.seriesestatisticas.ibge.gov.br/series.aspx?vcodigo=PD336&sv=32&t=populacao-residente-por-cor-ou-raca (accessed Jan 2012).

9. Chiu C-J, Wray LA. Factors predicting glycemic control in middle-aged and older adults with type 2 diabetes. Prev Chronic Dis 2010;7:A08.

10. Alvarez Guisasola F, Mavros P, Nocea G, et al. Glycaemic control among patients with type 2 diabetes mellitus in seven European countries: findings from the Real-Life Effectiveness and Care Patterns of Diabetes Management (RECAP-DM) study. Diabetes Obes Metab 2008;10(Suppl 1):S5–15.

11. Banegas JR, Lopez-Garcia E, Dallongeville J, et al. Achievement of treatment goals for primary prevention of cardiovascular disease in clinical practice across Europe: the EURIKA study. Eur Heart J 2011;32:2143–52.

12. Kirk JK, D’Agostino RB Jr., Bell RA, et al. Disparities in HbA1c levels between African-American and non-Hispanic white adults with diabetes: a meta-analysis. Diabetes Care 2006;29:2130–6.

13. IBGE. http://www.seriesestatisticas.ibge.gov.br/series.aspx?vcodigo=PD336&sv=32&t=populacao-residente-por-cor-ou-raca (accessed Jan 2012).

14. http://www.todospelaeducacao.org.br/educacao-no-brasil/busca-comparativa/resultado/resultado/?tipo=1&idd_check_universo%5B%5D=10905&idd_universo%5B%5D=10905&idd_check_universo%5B%5D=10902&idd_universo%5B%5D=10902&idd_check_universo%5B%5D=10901&idd_universo%5B%5D=10901&idd_check_universo%5B%5D=10903&idd_universo%5B%5D=10903&idd_check_universo%5B%5D=10904&idd_universo%5B%5D=10904&criterios=157&idd_check_criterio%5B%5D=157&idd_criterio%5B%5D=157&comparar=Comparar (accessed Feb 2012).

15. Forssas E, Manderbacka K, Affman M, et al. Socio-economic predictors of mortality among diabetic people. Eur J Public Health 2012;22:305–10.

16. Scaini S, Friedman R, Gross JG. A structured educational program improves metabolic control in patients with type 2 diabetes: a randomized controlled trial. Diabetes Educ 2009;35:603–11.

17. Agencia Nacional de Saúde—downloaded from http://www.ans.gov.br/index.php/materiais-para-pesquisas/perfil-do-setor/dados-gerais (accessed Jan 2012).