EVEN (\(\bar{s}, \bar{t}\))-CORE PARTITIONS AND SELF-ASSOCIATE CHARACTERS OF \(\tilde{S}_n\).

CALVIN DENG

Abstract. A partition is a \(\bar{s}\)-core if it is the result of removing all of the \(s\)-bars from a partition. We extend a method of Olsson and Bessenrodt to determine the number of even partitions that are simultaneously \(\bar{s}\)-core and \(\bar{t}\)-core. When \(p\) and \(q\) are distinct primes, this also determines the number of self-associate characters of \(\tilde{S}_n\) that are simultaneously defect 0 for \(p\) and \(q\).

1. Introduction

Navarro and Willems [5] were the first to investigate the question of when a block was simultaneously a \(p\)-block and a \(q\)-block for a group \(G\) and odd primes \(p\) and \(q\). In particular, they conjectured that if a \(p\)-block and \(q\)-block coincided, then that block consists of a single character. While Bessenrodt disproved this conjecture, Olsson and Stanton [6] showed that it was true in the case where \(G\) was the symmetric group \(S_n\). Olsson and Bessenrodt [2] then showed that Navarro’s conjecture was true in the case where \(G\) was the spin symmetric group \(\tilde{S}_n\). There has been considerable work enumerating characters with defect 0 in \(p\) and \(q\), as well as enumerating the subclass of self-associate characters. Anderson [1] showed that the number of characters of \(S_n\) with defect 0 in \(p\) and \(q\) is \(\frac{1}{p+q} \left(\frac{p+q}{p}\right)\), while Ford, Mai, and Sze [4] showed that the number of self-associate characters of \(S_n\) with defect 0 in \(p\) and \(q\) is \(\left(\frac{p}{s} + \frac{q}{t}\right)\). On the other hand, Bessenrodt and Olsson [2] showed that the number of spin characters in \(\tilde{S}_n\) with defect 0 for \(p\) and \(q\) was also \(\left(\frac{p}{s} + \frac{q}{t}\right)\). However, they left the problem of enumerating the number of self-associate spin characters of \(\tilde{S}_n\) with defect 0 for \(p\) and \(q\) unresolved.

Much of this work has concentrated on the partitions that correspond combinatorially to \(p\)-blocks for \(S_n\) and \(\tilde{S}_n\). In the case of \(S_n\), they are the \(p\)-core partitions; in the case of \(\tilde{S}_n\), they are the \(\tilde{p}\)-core partitions. Furthermore, a character of \(S_n\) is self-associate if and only if the corresponding partition is self-conjugate, while a spin character of \(\tilde{S}_n\) is self-associate if and only if the corresponding partition is even. In this paper, we will enumerate the self-associate spin characters in \(\tilde{S}_n\) with defect 0 for \(p\) and \(q\) by counting the number of even \((\bar{s}, \bar{t})\)-cores for relatively prime odd integers \(s\) and \(t\) greater than 1.

Theorem 1.1. Suppose \(s, t > 1\) are relatively prime odd positive integers.

- If \(s, t \equiv 3 \pmod{4}\), the number of even \((\bar{s}, \bar{t})\)-core partitions is

\[
\frac{1}{2} \left(\frac{s-1}{2} + \frac{t-1}{2}\right) - \frac{1}{2}.
\]
• Otherwise, the number of even \((\bar{s}, \bar{t})\)-core partitions is
\[
\frac{1}{2} \left(\left(\frac{\bar{s}-1}{2} + \frac{\bar{t}-1}{2} \right) + (-1)^{(s-1)(t-1)/8} \left(\frac{8}{7} \right) \left(\left\lfloor \frac{s}{4} \right\rfloor + \left\lfloor \frac{t}{4} \right\rfloor \right) \right).
\]

where \((\frac{7}{s})\) denotes the Jacobi symbol.

Our proof will use the bijection between spin characters of defect 0 for \(p\) and \(q\) in \(\tilde{S}_n\) and monotone \((\frac{p-1}{2}, \frac{q-1}{2})\) paths. In particular, self-associate spin characters will correspond to paths of a certain “parity”.

One immediate consequence is the following corollary:

Corollary 1.2. Suppose \(p\) and \(q\) are distinct odd primes.

• If \(p, q \equiv 3 \pmod{4}\), the number of self-associate spin characters of \(\tilde{S}_n\) which are simultaneously of defect 0 for \(p\) and \(q\) is
\[
\frac{1}{2} \left(\left(\frac{p-1}{2} + \frac{q-1}{2} \right) \right).
\]

• Otherwise, the number of self-associate spin characters of \(\tilde{S}_n\) which are simultaneously of defect 0 for \(p\) and \(q\) is
\[
\frac{1}{2} \left(\left(\frac{p-1}{2} + \frac{q-1}{2} \right) + (-1)^{(p-1)(q-1)/8} \left(\frac{p}{q} \right) \left(\left\lfloor \frac{p}{4} \right\rfloor + \left\lfloor \frac{q}{4} \right\rfloor \right) \right).
\]

In addition, spin characters of \(\tilde{S}_n\) split on restriction to \(\tilde{A}_n\) if and only if the spin character is self-associate. Thus we also immediately get the number of spin characters of \(\tilde{A}_n\) that are of defect 0 for \(p\) and \(q\).

Corollary 1.3. Suppose \(p\) and \(q\) are distinct odd primes.

• If \(p, q \equiv 3 \pmod{4}\), the number of spin characters of \(\tilde{A}_n\) which are simultaneously of defect 0 for \(p\) and \(q\) is
\[
\frac{3}{2} \left(\left(\frac{p-1}{2} + \frac{q-1}{2} \right) \right).
\]

• Otherwise, the number of spin characters of \(\tilde{A}_n\) which are simultaneously of defect 0 for \(p\) and \(q\) is
\[
\frac{3}{2} \left(\left(\frac{p-1}{2} + \frac{q-1}{2} \right) \right) + \frac{1}{2} \left(-1 \right)^{(p-1)(q-1)/8} \left(\frac{p}{q} \right) \left(\left\lfloor \frac{p}{4} \right\rfloor + \left\lfloor \frac{q}{4} \right\rfloor \right).
\]

Proof. By the result of Bessenrodt and Olsson, there are \(\left(\frac{p-1}{2} + \frac{q-1}{2} \right)\) spin characters of \(\tilde{S}_n\) that are defect 0 for \(p\) and \(q\). The corollary then follows immediately from the fact that the number of spin characters of \(\tilde{A}_n\) (with defect 0 for \(p\) and \(q\)) is equal to the number of spin characters of \(\tilde{S}_n\) (with defect 0 for \(p\) and \(q\)) plus the number of spin characters of \(\tilde{S}_n\) (with defect 0 for \(p\) and \(q\)) that split upon restriction to \(\tilde{A}_n\). \qed
Recall the definition of an \bar{s}-core partition and a (\bar{s}, \bar{t})-core partition.

Definition A bar partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$ is a partition satisfying $\lambda_1 > \cdots > \lambda_k$.

Note that since the constituents of λ are distinct, we can talk about positive integers a either being in λ or not being in λ, much like a set.

The definition of a \bar{s}-core partition is a bit involved, and for the technical details, see [3]. However, we will use the following (equivalent) combinatorial specification.

Proposition 2.1. A bar partition λ is a \bar{s}-core partition if and only if the following three constraints hold:

- No part in λ is divisible by s.
- For all a in λ with $a > s$, $a - s \notin \lambda$.
- For all a in λ with $1 \leq a \leq s - 1$, $s - a \notin \lambda$.

Definition A partition λ is a (\bar{s}, \bar{t})-core partition if it is both a \bar{s}-core partition and a \bar{t}-core partition.

Definition A partition λ is said to be even if an even number of its parts are even.

Note that a partition λ being even is equivalent to $|\lambda| - \ell_\lambda$ being even, where $|\lambda|$ and ℓ_λ denote the size and length of λ, respectively.

Proposition 2.2. Associate classes of spin characters of \tilde{S}_n correspond to bar partitions of n. In addition,

- Associate classes classes with defect 0 for p correspond to \bar{p}-core partitions.
- Self-associate spin characters of \tilde{S}_n correspond to even partitions.

For a proof (and more background on the theory of characters of \tilde{S}_n), see Hoffman, §10. [3]

3. Yin-Yang Diagrams

From now on we assume that $s, t > 1$ are relatively prime odd integers. Set $m = [s/2], n = [t/2], a = [s/4], b = [t/4]$.

The Yin-Yang diagram of (s, t) can be represented as an $m \times n$ grid of integers. If the lower left corner of the grid is $(0, 0)$ and upper right corner is (n, m), then for each $1 \leq x \leq n$ and $1 \leq y \leq m$, we place the value $|sx - ty|$ in the square whose upper right corner is (x, y). The Yin half of the diagram corresponds to the region of the Yin-Yang diagram corresponding to ordered pairs (x, y) where $sx - ty < 0$; the Yang half corresponds to the portion of the diagram where $sx - ty > 0$.
For a path P from $(0, 0)$ to (n, m), let L_P be the region of the Yin-Yang diagram bounded above by P. Then there is a map from paths to bar partitions, given by

$$P \mapsto L_P \triangle L_{P_0},$$

where P_0 denotes the path from $(0, 0)$ to (n, m) separating the Yin and Yang regions and $\Delta(S, T) = (S \cup T) \setminus (S \cap T)$ denotes the symmetric difference of S and T. (Strictly speaking, this gives a map into sets, but a bar partition λ can be represented uniquely as a set because all of its parts are distinct.)

Lemma 3.1. The map given in (1) maps into (\bar{s}, \bar{t})-core partitions, and gives a bijection between (\bar{s}, \bar{t})-cores and monotonic paths in the Yin-Yang diagram.

Proof. See [2].

Definition. For S a subset of the positive integers, let $E(S) = S \cap 2\mathbb{Z}$ (i.e. the subset consisting of all of the even integers of S). Define the parity of a path P to be the parity of $E(L_P)$ (i.e. a path is even if $E(L_P)$ is even and odd if $E(L_P)$ is odd.)

Lemma 3.2. Even (\bar{s}, \bar{t})-core partitions correspond exactly to paths P that have the same parity as P_0.

Proof. We have

$$|E(L_P \triangle L_{P_0})| = |E(L_P) \triangle E(L_{P_0})| = |E(L_P)| + |E(L_{P_0})| - 2|E(L_P) \cap E(L_{P_0})|$$

so $|E(L_P \triangle L_{P_0})|$ is even if and only if $|E(L_P)| \equiv |E(L_{P_0})| \pmod{2}$, as desired.

Lemma 3.3. Suppose $s \equiv 1 \pmod{4}$. Then $(-1)^{|E(L_{P_0})|} = \left(\frac{s}{2}\right)$, where $\left(\frac{s}{2}\right)$ denotes the Jacobi symbol.

Proof. Let c_j be the number of even integers in the jth column of the Yang half of the diagram. Once again, we will associate each square in the Yin-Yang diagram with the coordinates of its upper-right corner. Then for each j, the squares in the Yang half of the diagram with $x = j$ correspond to those satisfying $1 \leq y \leq \left\lfloor \frac{sx}{2} \right\rfloor$. If j is odd, then the even squares correspond to squares whose y coordinate is odd, so

$$c_j = \left\lfloor \frac{\frac{s}{2} + 1}{2} \right\rfloor = \left\lfloor \frac{s}{2} + 1 \right\rfloor.$$

On the other hand, if j is even, then the even squares in the jth column correspond to squares whose y coordinate is even, so in this case,

$$c_j = \left\lfloor \frac{\frac{s}{2}}{2} \right\rfloor = \left\lfloor \frac{s}{4} \right\rfloor.$$

In either case, the number of even numbers in the jth column is

$$c_j = \left\lfloor \frac{\frac{s}{2} + j}{2} \right\rfloor - \left\lfloor \frac{j}{2} \right\rfloor = \left\lfloor \frac{s}{2} + 1 \right\rfloor - \left\lfloor \frac{j}{2} \right\rfloor.$$

Thus

$$|E(L_{P_0})| = \sum_{j=1}^{\frac{s}{4}} c_j = \sum_{j=1}^{\frac{s}{4}} \left\lfloor \frac{s}{2} + 1 \right\rfloor - \left\lfloor \frac{j}{2} \right\rfloor.$$
Since \(t \) is odd, we have

\[
\left\lfloor \frac{j}{2} \right\rfloor + \left\lfloor \frac{t-j}{2} \right\rfloor = \frac{t-1}{2},
\]

and for all \(j \) not divisibly by \(t \), we have.

\[
\left\lfloor \frac{(\frac{s}{t} + 1)j}{2} \right\rfloor + \left\lfloor \frac{(\frac{s}{t} + 1)(t-j)}{2} \right\rfloor = \frac{s+t}{2} - 1.
\]

Thus

\[
\left\lfloor \frac{(\frac{s}{t} + 1)j}{2} \right\rfloor - \left\lfloor \frac{j}{2} \right\rfloor + \left\lfloor \frac{(\frac{s}{t} + 1)(t-j)}{2} \right\rfloor - \left\lfloor \frac{t-j}{2} \right\rfloor = \frac{s-1}{2}.
\]

Since \(s \equiv 1 \pmod{4} \), this means that the right hand side of (5) is even, which means that in (2), we can replace the \(j = 1, 2, \ldots, \frac{t-1}{2} \) with \(j = 2, 4, \ldots, t-1 \). Indeed, for every \(1 \leq j \leq \frac{t-1}{2} \), we can replace \(j \) with the unique even residue in \(\{j, t-j\} \) without changing the parity of the summation. Substituting this back into (2) gives

\[
E(s, t) = \sum_{k=1}^{\frac{t-1}{2}} \left\lfloor \frac{(\frac{s}{t} + 1)(2k)}{2} \right\rfloor - \left\lfloor \frac{(2k)}{2} \right\rfloor = \sum_{k=1}^{\frac{t-1}{2}} \left\lfloor \frac{sk}{t} \right\rfloor \pmod{2}.
\]

However, \([7] \) showed that for odd integers \(s, t \),

\[
\left(\frac{s}{t}\right) = (-1)^{\sum_{i=1}^{(t-1)/2} \left\lfloor \frac{is}{t} \right\rfloor}.
\]

Thus \((-1)^{E(s, t)} = \left(\frac{s}{t}\right)\), as desired. \(\Box \)

4. COUNTING EVEN AND ODD PATHS

In this section, suppose \(x, y \) are arbitrary positive integers. For each unit square in the plane, color the square with upper right corner \((i, j)\) red if \(i + j \) is even; otherwise, color the square blue. In this case, define a path from \((0, 0)\) to \((x, y)\) to be \textit{even} if the number of red squares between the path and the \(x \)-axis is even and \textit{odd} otherwise. Note that in the case of the Yin-Yang diagram, red squares correspond to squares that contain an even integer, so the definitions agree.

Lemma 4.1. Let \(D(x, y) \) be the number of even paths from \((0, 0)\) to \((x, y)\) minus the number of odd paths from \((0, 0)\) to \((x, y)\).

- If \(x = 2k, y = 2l \), then \(D(x, y) = \binom{k+l}{k} \).
- If \(x = 2k, y = 2l + 1 \), then \(D(x, y) = \binom{k+l}{k} \).
- If \(x = 2k + 1, y = 2l \), then \(D(x, y) = (-1)^{k}(\binom{k+l}{k}) \).
- If \(x = 2k + 1, y = 2l + 1 \), then \(D(x, y) = 0 \).

Proof. We induct on \(\min(x, y) \). Clearly \(D(x, y) = 1 \) if \(x = 0 \) or \(y = 0 \), and this agrees with the formulas above.

Otherwise, we have \(D(x, y) = D(x, y-1) + (-1)^{c_{x}(y)}D(x-1, y) \), where \(c_{x}(y) \) is the number of red squares in the rectangle \([x-1, x] \times [0, y] \). As before, we have that \(c_{x}(y) = \left\lfloor \frac{xy}{2} \right\rfloor - \left\lfloor \frac{x}{2} \right\rfloor \). Note that \(c_{x}(y) = \left\lfloor \frac{y}{2} \right\rfloor \) unless \(x \) and \(y \) are both odd, in which case it is equal to \(\left\lfloor \frac{y}{2} \right\rfloor + 1 \). There are four cases for the parities of \(x \) and \(y \):
\begin{itemize}
 \item $x = 2k, y = 2l$.
 \[
 D(x, y) = D(2k, 2l - 1) + (-1)^l D(2k - 1, 2l)
 = \binom{k + l - 1}{l - 1} + (-1)^l \cdot \binom{(k - 1) + l}{l}
 = \binom{k + l}{l}
 \]

 \item $x = 2k, y = 2l + 1$.
 \[
 D(x, y) = D(2k, 2l) + (-1)^l D(2k - 1, 2l + 1)
 = \binom{k + l}{l} + 0
 = \binom{k + 1}{l}
 \]

 \item $x = 2k + 1, y = 2l$.
 \[
 D(x, y) = D(2k + 1, 2l - 1) + (-1)^l D(2k, 2l)
 = 0 + (-1)^l \binom{k + l}{l}
 = (-1)^l \binom{k + 1}{l}
 \]

 \item $x = 2k + 1, y = 2l + 1$.
 \[
 D(x, y) = D(2k + 1, 2l) + (-1)^{k+l+1-k} D(2k, 2l + 1)
 = (-1)^l \binom{k + l}{l} + (-1)^{l+1} \binom{k + l}{l}
 = 0
 \]
\end{itemize}

In particular, we have that if y is even, then $D(x, y) = (-1)^{xy/2} \binom{k + l}{l}$.

5. **Even (\tilde{s}, \tilde{t})-cores**

We are now ready to enumerate the even (\tilde{s}, \tilde{t})-core partitions.

Theorem 5.1. Let $s, t > 1$ be relatively prime odd integers, and set $m = \lfloor s/2 \rfloor, n = \lfloor t/2 \rfloor, a = \lfloor s/4 \rfloor, b = \lfloor t/4 \rfloor$. In addition, let $\left(\frac{s}{n} \right)$ denote the Jacobi symbol. Then the number of even (\tilde{s}, \tilde{t})-core partitions is

\begin{itemize}
 \item $\frac{1}{2} \binom{m+n}{n}$ if $s, t \equiv 3(4)$,
 \item $\frac{1}{2} \left(\binom{m+n}{n} + (-1)^{mn/2} \left(\frac{\tilde{s}}{\tilde{t}} \right) \left(\frac{\tilde{a}+\tilde{b}}{\tilde{b}} \right) \right)$ otherwise.
\end{itemize}

When s and t are primes, this gives the number of self-associate spin characters in \tilde{S}_n that are defect 0 for both s and t.

Proof. The number of even paths in the (s, t) Yin-Yang diagram minus the number of odd paths is equal to $D(n, m)$ (as given in Lemma 4.1). Thus the number of even (\tilde{s}, \tilde{t})-core partitions minus the number of odd (\tilde{s}, \tilde{t})-core partitions is equal
to \((-1)^{\left| E(L_{R_0}) \right|} D(n, m)\). Since the overall number of \((\bar{s}, \bar{t})\)-core partitions is \(\binom{m+n}{n}\), this means that the number of even \((\bar{s}, \bar{t})\)-core partitions is

\[
\frac{1}{2} \left(\binom{m+n}{n} + (-1)^{\left| E(L_{R_0}) \right|} \cdot D(n, m) \right).
\]

If \(s, t\) are both 3 (mod 4), then \(m\) and \(n\) are both odd. Thus \(D(n, m) = 0\), so the number of even \((\bar{s}, \bar{t})\)-core partitions is

\[(8) \quad \frac{1}{2} \left(\binom{m+n}{n} \right).\]

Otherwise, suppose without loss of generality that \(s \equiv 1 \pmod{4}\). Then \(m\) is even, so by Lemma 4.1

\[D(n, m) = (-1)^{mn/2} \left(\left\lfloor \frac{m}{2} \right\rfloor + \left\lfloor \frac{n}{2} \right\rfloor \right) = (-1)^{mn/2} \left(\frac{a+b}{b} \right).\]

In addition, by Lemma 3.3

\[(-1)^{\left| E(L_{R_0}) \right|} = \left(\frac{s}{t} \right).\]

Thus the number of even \((\bar{s}, \bar{t})\)-core partitions in this case is

\[(9) \quad \frac{1}{2} \left(\binom{m+n}{n} + (-1)^{mn/2} \left(\frac{s}{t} \right) \left(\frac{a+b}{b} \right) \right).\]

Note that by quadratic reciprocity, this formula is symmetric in \(s\) and \(t\), so \[(9)\] does in fact give the number of even \((\bar{s}, \bar{t})\)-core partitions as long as \(s\) and \(t\) are not both 3 (mod 4).

\[\square\]

6. Future Direction

Bessenrodt and Olsson [2] showed that if \(p < q\) are odd primes, then the Yin half of the \((p, q)\) Yin-Yang diagram is in some sense the “largest” \((\bar{p}, \bar{q})\)-core partition, and thus the maximum \(n\) for which there exists an associate class of spin characters in \(\tilde{S}_n\) with defect 0 for \(p\) and \(q\) is just the sum of the numbers in the Yin diagram. More precisely, they showed that any \((\bar{p}, \bar{q})\)-core can be contained in the partition represented by the Yin half of the diagram. We can ask the same question for even \((\bar{p}, \bar{q})\)-core partitions.

Conjecture. For any pair of distinct odd primes \(p, q\), there exists a \((\bar{p}, \bar{q})\)-core partition \(\lambda\) such that any even \((\bar{p}, \bar{q})\)-core partition is contained in \(\lambda\).

Regardless of whether the conjecture is true, we can also ask the following question:

Question. What is the maximum \(n\) for which a self-associate character in \(\tilde{S}_n\) of defect 0 for \(p\) and \(q\) exists?

Acknowledgments

This research was conducted at the University of Minnesota Duluth REU and was supported by NSF grant 1358659 and NSA grant H98230-13-1-0273. The author thanks Rishi Nath for suggesting the problem, Joe Gallian for supervision to research, and Ben Gunby for helpful comments on the manuscript.
References

[1] J. Anderson. Partitions which are simultaneously t_1- and t_2-core. Discrete Math., 248(13):237 – 243, 2002.

[2] C. Bessenrodt and J. B. Olsson. Spin block inclusions. J. Algebra, 306(1):3 – 16, 2006.

[3] P. N. Hoffman and J. F. Humphreys. Projective representations of the symmetric groups : Q-functions and shifted tableaux. Clarendon Press Oxford University Press, Oxford New York, 1992.

[4] B. Ford, H. Mai and L. Sze. Self-conjugate simultaneous p- and q-core partitions and blocks of A_n. J. Number Th., 129(4):858 – 865, 2009.

[5] G. Navarro and W. Willems. When is a p-block a q-block? Proc. Ame. Math. Soc., 125(6):1589–1591, 1997.

[6] J.B. Olsson and D. Stanton. Block inclusions and cores of partitions. Aequationes Math., 74(1-2):90–110, 2007.

[7] B. D. Tangedal. Eisenstein’s lemma and quadratic reciprocity for Jacobi symbols. Math. Mag., 73(2):130–134, 2000.