Evaluation of the promoter methylation status of hypoxia factor 3A and interleukin-6 genes and expression levels of mir-130b and mir-146b in childhood obesity

Esra Tekcan1*, Nurten Kara1, Hasan Murat Aydin2, Ümmet Abur3, Mohsen Abbaszadeh3

INTRODUCTION

Obesity is defined as abnormal or excessive fat accumulation that may impair health and cause morbidity and finally mortality by affecting many organs1. It is also an increasingly growing problem in childhood worldwide and it is a serious nutritional disorder that may lead to serious health problems in future if no measures are taken in early stage2. In 2016, approximately 40 million children under the age of 5, as well as 340 million children between the ages of 5 and 19 years, were affected by overweight or obesity1. According to COSI-TUR (Childhood Obesity Surveillance Initiative), the rate of overweight was 14.6% and that of obesity was 9.9% in primary school second-grade children in Turkey in 20161. This rapid increase in obesity is not only due to genetic factors but also due to environmental factors that cause epigenetic effects3.

Hypoxia occurs due to the decrease in the amount of blood entering adipocytes with the growth of adipose tissue in obese subjects. Methylation of hypoxia factor 3A (HIF3A) gene is related to body mass index (BMI) and adiposity. It was also reported that obesity is associated with a low degree of chronic inflammation and increased interleukin-6 (IL-6) levels5,6. It is known that miRNAs play an important role in adipose tissue differentiation, proliferation, and lipid and glucose metabolism7. Identifying obesity-associated miRNAs that cause inadequate or overexpression of proteins in cells may be a therapeutic target for future treatment by using anti-miRNA oligonucleotides targeting these miRNAs. There are several other miRNAs associated with obesity; however, due to limited cost, we compared the expression levels of only two miRNAs in this study.

RESULTS

Methylation status of interleukin-6 gene was 93.9% in obese children (n=46/49) and 100% (n=49/49) in control group (p>0.05). There was no methylation for hypoxia factor 3A gene (p>0.05). As a result of the study, there was no statistically significant difference in terms of methylation status for hypoxia factor 3A and interleukin-6 genes in the obese group compared to the control group. However, we found that expression levels of MicroRNA-130b (p=0.01) and MicroRNA-146b (p=0.001) were higher in the obese group.

CONCLUSIONS

Results support that MicroRNA-130b and MicroRNA-146b are potential biomarkers for the prevention and early diagnosis of obesity. This is the first study on childhood obesity in the Middle Black Sea region of Turkey. We believe that the results obtained by expanding the studies in our country and neighboring countries will be more decisive.

KEYWORDS: DNA methylation. Epigenomics. MicroRNA. Obesity.
status of HIF3A and IL-6 genes and expression levels of miR-130b and miR-146b, which are thought to be associated with childhood obesity from peripheral blood.

As methylation is more tissue specific, it was necessary to use adipose tissue for most genes. In this study, blood sample was used in order to look for the methylation of obesity-related genes whose expression can be observed in the blood. Our study individuals involved adolescent in the Central Black Sea region and present previously unexplored data. It aims to support the data presented in previous studies in different populations. This is the first study to epigenetically examined HIF3A and IL-6 genes among Turkish obese children.

METHODS

Participants and peripheral blood collection
This study was carried out among children aged 6–12 years who were diagnosed with obesity (BMI>95th) before puberty period and who visited Ondokuz Mayis University Faculty of Medicine Pediatric Endocrinology from the Middle Black Sea region of Turkey. A total of 98 children (49 obese children and 49 healthy controls) were selected to examine methylation status. The sample size was determined by statistical power analysis. To evaluate obese and control DNA methylations, 20 obese patients and 20 controls were selected, with 97% power to detect d=0.122 difference (with a maximum deviation of 0.11) at the 95% confidence interval. For miRNA expression analysis, a total RNA of 30 (15 obese subjects and 15 controls) samples were isolated from the whole peripheral blood samples of 98 volunteers. Again, 12 obese patients and 12 controls were calculated for 96% power to detect d=0.138 difference (with a maximum deviation of 0.15) at the 94% confidence interval to evaluate obese and control miRNA expression. This study was approved by Ethics Committee of the OMÜ KAEK (registration number 2016/301). In this study, chronic disease, chronic drug use, and endocrine, metabolic, or genetic short status were determined as exclusion criteria.

DNA isolation and bisulfite conversion and methylation-specific polymerase chain reaction
DNA was isolated from peripheral blood samples using Pure Link Genomic DNA Mini Kit (Invitrogen, USA). EpiJET Bisulfite Conversion Kit (Thermo Fisher Scientific, Lithuania) was used for bisulfite modification of DNA. Specific primers for methylation-specific PCR analysis were designed with the “MethPrimer” database (Table 1). DreamTaq™ Hot Start DNA polymerase was used (Thermo Fisher Scientific). A 25-μl total volume of PCR reaction conditions was as follows:

For IL-6: initial denaturation was at 97°C for 5 min, followed by 40 cycles of 96°C for 45 s, 56°C for 45 s, and 72°C for 60 s. The final extension was at 72°C for 7 min.

For HIF3A: initial denaturation was at 98°C for 10 min, followed by 40 cycles of 97°C for 45 s, 60°C for 45 s, and 72°C for 70 s. The final extension was at 72°C for 7 min.

Agarose gel electrophoresis
A 2% of micropore (Prona, Nu micropor) agarose gel was prepared to display the MSP product. A 50-bp DNA marker (Thermo Fisher Scientific, Lithuania) was used as the marker and gel and viewed using UV transilluminator.

RNA extraction and quantitative real-time polymerase chain reaction
Total RNA was isolated from whole peripheral blood samples using Quick-RNA™ Whole Blood Kit (Zymo Research, USA). Total RNA was reverse transcribed to cDNA using Ipsogen® RT Kit 33, V1 kit (QIAGEN, Germany). The reaction mixture was 15 μl. Incubation conditions were as follows: 16°C for 30

Primer name	Base sequence 5’-3’	Base number	Temp. (°C)	Amplicon size (bp)
IL-6 MSP-F	ATAGGTAAGATATTAGGTGAATCGA	25	56	166
IL-6 MSP-R	TTCTAAAACACTTATATAAAAAAAACGTA	30	53	166
IL-6 USP-F	ATAGGTAAGATATTAGGTGAATTGA	25	55	166
IL-6 USP-R	TTCTAAAACACTTATATAAAAAAAACAT	30	52	166
HIF-3A MSP-F	TAGGTTTGGCCTGCTATAGTATACC	25	60	259
HIF-3A MSP-R	CCCCAAACGTTCCTAACCTG	20	57	259
HIF-3A USP-F	TTAGGTTTGGTGGTGGTGATAGTTAATG	28	59	262
HIF-3A USP-R	CCCCAAACATTTCCCTAACAC	22	57	262

HIF-3A: hypoxia factor 3A; MSP: methylation-specific primer; USP: unmethylated-specific primer; F: forward; R: reverse; IL-6: interleukin-6. Primers designed with the “MethPrimer” database http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi.
min, 42°C for 30 min, and 85°C for 5 min (Thermal Cycler GeneAmp PCR System 9700, Applied Biosystems, USA). For miR-146b and miR-130b qRT-PCR analysis, Taqman™ MicroRNA Assay (Applied Biosystems) and Premix Ex Taq™ master mix (Perfect Real Time, Takara, Japan) were used. RNA was normalized using the ABL housekeeping gene (İpsogen, BCR-ABL1 Mbc IS-MMR) in each sample. Using standards with a known number of molecules, one can establish a standard curve and determine the amount of target present in the test sample. To ensure accurate standard curves, we use four standard dilutions for ABL. The kit also includes an IS-MMR calibrator allowing conversion of results to the international scale. For ABL gene, raw CT values obtained from plasmid standard dilutions are plotted according to the log copy number. We compare the ABL gene with known copy number in the kit with our miRNAs whose copy number is unknown, and we obtain information about the copy number. We compare our ABL-normalized obese and control miRNAs with each other. As a result, with CT values, we obtained information about copy numbers increase or decrease of obese individuals compared to controls.

Rotor-gene Q 5 PLEX HRM (Germany, USA) device used for qRT-PCR. The miR-130b microRNA sequence is ACUCUUUCCUGUUGCAGUC, while miR-146b microRNA sequence is UGAGAACUGAAUUCCAUAGGCUG (http://www.mirbase.org). The relative abundance of each miRNA transcript in each sample was determined using the comparative 2^−ΔΔCT method and an endogenous housekeeping control gene. Cycle threshold (CT) values of participants (obese and control) and increase or decrease ratio of expression levels in miR-146b-5p/ABL and miR-130b/ABL were calculated according to the Livak’s formula:

\[
\Delta\Delta CT = \Delta CT_{target\ gene} - \Delta CT_{reference\ gene} \\
\Delta CT_{obese} - \Delta CT_{control}
\]

Statistical analysis

The relationship between parameters was evaluated using Fisher’s exact test using OpenEpi version 3.01 (last updated: May 6, 2013). SPSS software was used for data analyzing (version 22.0, SPSS Inc., Chicago, IL, USA). The statistical significance of miRNA expression was analyzed by the Student’s t-test, considering statistically significant at p<0.05.

RESULTS

Hypoxia factor 3A and interleukin-6 promoter methylation analysis results

The mean age of 49 obese groups (22 females, 27 males) whose methylation profile was analyzed was 10.0 ± 1.9 years, and the mean age of 49 healthy controls (29 females, 20 males) was 9.2 ± 2.0 years. HIF3A gene methylation was not detected in either group. IL-6 gene methylation was detected in 93.9% (46/49, p>0.05) of the obese group and 100% (49/49, p>0.05) of the control group. According to results of the tests, there was no statistical significance between the patient and control groups in terms of the promoter methylation profile of HIF-3A and IL-6 genes (p>0.05, Table 2).

MicroRNA-146b and microRNA-130b quantitative real-time-polymerase chain reaction analysis results

The expression of obese miR-146b according to the control group was increased in 14 of 15 children, with an average 25.5 ± 17.3-fold (p<0.001). Similarly, the expression of miR-130b increased in 14 of 15 obese children, with an average 8.5 ± 5.3-fold (p<0.01).

The qRT-PCR analysis results of the expression levels of miR-146b and miR-130b in obese and control groups were given in Table 3 and Figure 1.

DISCUSSION

One of the most studied mechanisms as an epigenetic determinant of childhood obesity is DNA methylation⁷. In many studies, there was evidence showing that the HIF3A gene is associated with anthropometric parameters in childhood⁸. Previous studies have reported that methylation of the HIF3A

| Table 2. Distribution of hypoxia factor 3A and interleukin-6 genes promoter methylation profiles in the obese and control groups (obese n=49, control n=49). |
|----------------|-----------------
| Gene | Group | Number (n) | Methylated (%) | Unmethylated (%) | p-value |
| HIF3A | Obese | 49 | 0 | 49 (100) | >0.05* |
| HIF3A | Control | 49 | 0 | 49 (100) | |
| IL-6 | Obese | 49 | 46 (93.9) | 3 (6.1) | >0.05* |
| IL-6 | Control | 49 | 49 (100) | 0 | |

HIF-3A: hypoxia factor 3A; IL-6: interleukin-6. *Statistically significant.
gene is associated with BMI and adiposity6,10. In our study, we observed that there was no significant difference in methylation status of $HIF3A$ genes in the obese group compared to the control group (p<0.01). The temporal sequence between epigenetic changes and the onset of childhood obesity is uncertain because epigenetics may be altered by a wide range of stimuli, including metabolic changes associated with obesity itself. Most of the studies included in the review use a cross-sectional design that makes it impossible to decipher the temporal order of events. Some DNA methylation studies have used longitudinal designs or statistical techniques such as Mendelian randomization to resolve this relationship6. In the ALSPAC (avon longitudinal study of parents and children) cohort, childhood BMI was associated with methylation at $HIF3A$ gene in adolescence, but childhood methylation was not robustly associated with BMI in adolescence, and based on Mendelian randomization, $HIF3A$ methylation did not play a causal role on BMI6. The children participating in our study were in pre-adolescent, so we may not have observed $HIF3A$ gene methylation in our study.

Cytokines production causes an increase in white adipose tissue in obesity subjects5. In our study, there was no significant difference in methylation status of $IL-6$ gene in the obese group compared to the control group (p<0.01), similar to results obtained by Zhang et al.11. Na et al.12 reported that $IL-6$ methylation can be used as a molecular biomarker for the assessment of obesity risk, finding which is in contrast to our results. The mechanism that can explain the increased $IL-6$ levels in obese can be attributed to the ability of fat tissue to produce and secrete $IL-6$13. In our study, DNA methylation did not play a causal role on BMI6. The children participating in our study were in pre-adolescent, so we may not have observed $HIF3A$ gene methylation in our study.

In our study, miRNA profiles were examined in 30 children (15 obese and 15 control) whose proficiency was supported by power analysis due to project budget limitations. However, circulating mir-130b and mir-146b expression levels were found to be high in obese children, although the number of samples studied was limited. Mansego et al.14 in 24 children (12 obese children and 12 controls) and Quyang et al.15 in a total of 12 children (6 obese children and 6 controls) reported that the miRNA profiles were associated with early childhood obesity from peripheral blood.

Previous study showed that miR-130b expression in abdominal subcutaneous adipose tissue and plasma was low in obese. Lacomino and Siani16 concluded that the level of miR-130b in the blood was found to be higher in obese children, as in our study (p<0.01). Wang et al.17 determined miR-130b as a potential biomarker for overweight, hypertriglyceridemia, and metabolic syndrome. TGF-β signaling pathway is significant in the arrangement of energy homeostasis and studies suggest that miR-130b secreted from adipose tissues mediate the metabolic regulatory effect of TGF-β and TGF-β can stimulate miR-130b secretion from adipocytes17. This explains the 8.5±5.3-fold increase in miR-130b expression in the obese group in our study. Prtas-Puig et al.18 proved that circulating miRNAs were unregulated in prepubescent obese children,

![Figure 1](image-url)
Figure 1. Graphical representation of $2^{-\Delta\Delta CT}$ averages for the obese and control groups.

Table 3. Expression levels of MicroRNA-130b and MicroRNA-146b in the obese and control groups.

	Obese	Control	ΔCT (Avg. miR CT− Avg. ABL CT)	ΔΔCT (Avg. ΔCT obese− Avg. ΔCT control)	Normalized miR Amount relative to control $2^{-\Delta\Delta CT}$	p-value
MicroRNA-130b						
Obese	26.5	20.6	5.8	-3.1	8.5∗	0.008556 (∗p<0.01)
Control	31.4	22.4	8.9	0	1	
MicroRNA-146b						
Obese	20.9	19.1	1.7	-4.6	25.5∗	0.000001 (∗p<0.001)
Control	25.5	19.0	6.4	0	1	

CT: cycle threshold; ABL: abelson tyrosine-protein kinase. ∗Statistically significant.
which is similar to our results. Therefore, early detection of abnormal miRNA profile will be useful in the early diagnosis of obesity.

In addition, miR-146b expressed during adipogenic differentiation and its level increased in overweight, obese, and high fat diet mice\(^6\). The fact that the miR-146b expression level of obese individuals was 25.5±17.3-fold increase higher than the control group in our study supports this situation (p<0.001). Overexpression of \textit{Kruppel-like factor 7} (\textit{KLF7}) inhibits expression of some adipogenic transcription factor genes and suppresses adipogenesis\(^7\). The inhibitory effects of miR-146b on \textit{KLF7} expression and experimentally demonstrated that \textit{KLF7} is the direct target of miR-146b\(^8\). Therefore, increased mir-146b expression in obesity supports adipogenesis indirectly. Sharma et al.\(^9\) confirmed that the expression of miR-146a and miR-146b significantly correlated with BMI in different populations to support the results.

Also, obese mice who were administered anti-miR-146b for 3 days to destroy miR-146b have shown losing weight\(^6\). These results indicate that miR-146b may be a potential target for the treatment of obesity.

REFERENCES

1. Gallardo-Escribano C, Buñauauto V, Ruiz-Moreno M, Vargas-Andela A, Vilches-Perez A, Benitez-Porres J, et al. Epigenetic approach in obesity: DNA methylation in a prepubertal population which underwent lifestyle modification. Clin Epigenetics. 2020;12(1):144. https://doi.org/10.1186/s13148-020-00935-0

2. Alfano R, Robinson O, Handakas E, Nawrot TS, Vineis P, Plusquin M. Perspectives and challenges of epigenetic determinants of childhood obesity: A systematic review. Obes Rev. 2022;23(Suppl 1):e13389. https://doi.org/10.1111/obr.13389

3. Apperley LJ, Blackburn J, Erlandson-Parry K, Gaith L, Laing P, Senniappan S. Childhood obesity: A review of current and future management options. Clin Endocrinol (Oxf). 2022 Mar;96(3):288-301. https://doi.org/10.1111/cen.14625

4. Yilmazbag P, Gökcay G. Childhood obesity and its prevention. J Child 2018;18(3):103-12. 10.5222/j.child.2018.9389

5. Cerdó T, Garcia-Santos JA, Bermúdez MG, Campoy C. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients. 2019;11(3):635. https://doi.org/10.3390/nu11030635

6. Wang S, Song J, Yang Y, Zhang Y, Wang H, Ma J. HIF3A DNA methylation is associated with childhood obesity and ALT. PLoS One. 2015;10(12):e0154944. https://doi.org/10.1371/journal.pone.0154944

7. McGregor RA, Choi MS. microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med. 2011;11(4):304-16. https://doi.org/10.2174/156552411795677990

8. Tuncer SB, Akdeniz D, Celik B, Kilic S, Sukruoglu O, Avsar M, et al. The expression levels of miRNA-15a and miRNA-16-1 in circulating tumor cells of patients with diffuse large B-cell lymphoma. Mol Biol Rep. 2019;46(1):975-80. https://doi.org/10.1007/s11033-018-4554-4

9. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. https://doi.org/10.1006/meth.2001.1262

10. Lee S, Kim HJ, Han S, Jeon JP, Park SI, Yu HY, et al. Positive correlation of cg16672562 methylation with obesity-related traits in childhood obesity, and its independence with underlying HIF3A (hypoxia-inducible factor 3a) genetic background. Oncotarget. 2017;8(40):67473-81. https://doi.org/10.18632/oncotarget.18707

11. Zhang JF, Fu WM, He ML, Wang H, Yang WM, Yu SC, et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell. 2011;22(21):3955-61. https://doi.org/10.1091/mbc.E11-04-0356

12. Na YK, Hong HS, Lee WK, Kim YH, Kim DS. Increased methylation of interleukin 6 gene is associated with obesity in Korean women. Mol Cells. 2015;39(5):452-6. https://doi.org/10.14348/molcells.2015.0005

13. Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol. 2004;15(11):2792-800. https://doi.org/10.1097/01.ASN.0000141966.69934.21

CONCLUSION

The role of epigenetic pathways in the prevention and treatment of increasingly common obesity is one of the current research areas. More studies are needed in both larger and different populations to support the results.

ACKNOWLEDGMENT

This study was supported by Scientific Research Project Office of Ondokuz Mayis University, Turkey (project no: PYO. TIP.1904.18.003).

AUTHORS’ CONTRIBUTION

\textbf{ET}: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software, Validation, Writing – original draft. \textbf{NK}: Conceptualization, Investigation, Funding acquisition, Methodology, Supervision, Project administration. \textbf{HMA}: Funding acquisition, Resources, Software, Supervision, Visualization. \textbf{UA}: Data curation, Funding acquisition, Software, Validation. \textbf{MA}: Data curation, Funding acquisition, Formal analysis, Resources, Software.
14. Mansego ML, García-Lacarte M, Milagro FI, Martí A, Martínez JA; GENOI members. DNA methylation of miRNA coding sequences putatively associated with childhood obesity. Pediatr Obes. 2017;12(1):19-27. https://doi.org/10.1111/ijpo.12101

15. Ouyang S, Tang R, Liu Z, Ma F, Li Y, Wu J. Characterization and predicted role of microRNA expression profiles associated with early childhood obesity. Mol Med Rep. 2017;16(4):3799-806. https://doi.org/10.3892/mmr.2017.7118

16. Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017;12:23. https://doi.org/10.1186/s12263-017-0577-z

17. Wang YC, Li Y, Wang XY, Zhang D, Zhang H, Wu Q, et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia. 2013;56(10):2275-85. https://doi.org/10.1007/s00125-013-2996-8

18. Prats-Puig A, Ortega FJ, Mercader JM, Moreno-Navarrete JM, Moreno M, Bonet N, et al. Changes in circulating microRNAs are associated with childhood obesity. J Clin Endocrinol Metab. 2013;98(10):E1655-60. https://doi.org/10.1210/jc.2013-1496

19. Cheng Z, Zheng L, Almeida FA. Epigenetic reprogramming in metabolic disorders: nutritional factors and beyond. J Nutr Biochem. 2018;54:1-10. https://doi.org/10.1016/j.jnutbio.2017.10.004

20. Sharma NK, Varma V, Ma L, Hasstedt SJ, Das SK. Obesity associated modulation of miRNA and Co-regulated target transcripts in human adipose tissue of non-diabetic subjects. Microrna. 2015;4(3):194-204. https://doi.org/10.2174/2211536604666151103121817

21. Ahn J, Lee H, Jung CH, Jeon TI, Ha TY. MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade. EMBO Mol Med. 2013;5(10):1602-12. https://doi.org/10.1002/emmm.201302647