Case Report
Hyperfunctioning Solid/Trabecular Follicular Carcinoma of the Thyroid Gland

Luca Giovanella, 1 Fabrizio Fasolini, 2 Sergio Suriano, 1 and Luca Mazzucchelli 3

1 Department of Nuclear Medicine and PET-CT Centre, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
2 Department of Surgery, Ente Ospedaliero Cantonale, Ospedale Regionale di Mendrisio, 6850 Mendrisio, Switzerland
3 Department of Clinical Pathology, Cantonal Institute of Pathology, 6600 Locarno, Switzerland

Correspondence should be addressed to Luca Giovanella, luca.giovanella@eoc.ch

Received 24 July 2009; Revised 14 May 2010; Accepted 17 June 2010

1. Introduction

Hyperthyroidism due to thyroid carcinoma is an extremely rare phenomenon. It is commonly believed that the diagnosis of a solitary autonomously functioning thyroid nodule (AFTN)—a solitary “hot” nodule in radionuclide imaging—can almost always rule out malignancy in the nodule [1]. In this paper, we present the rare case of follicular carcinoma manifesting as an AFTN.

2. Case Report

A 68-year-old female, affected by a long-standing asymptomatic normally functioning nodule in the right lobe of the thyroid, developed symptoms of neck swelling and palpitations. The patient presented a resting pulse rate of 108 and blood pressure of 145/90 mmHg. A large, well-defined, hard nodule was palpable in the right lobe of the thyroid; the left lobe was normal, and there were no cervical lymphadenopathies. Ultrasonography (US) of the thyroid revealed a large and slightly hypoechoic nodule (diameters: 33 × 38 × 53 mm). Thyroid function tests showed elevated free triiodothyronine (fT3) of 7.60 pmol/L (reference range 2.30–6.30 pmol/L) and undetectable thyroid-stimulating hormone (TSH) of 0.006 mIU/L (normal 0.4–4.0 mIU/L). The free thyroxin (fT4) was normal at 11.4 pmol/L (reference range 7.5–21.1 pmol/L), and both thyroperoxidase and thyrotropin-receptor autoantibodies were negative (<60 U/I/mL and <1 U/L, resp.). A 99mTc-perthecnetate scan demonstrated a large hot area with inhomogeneous uptake and no cold areas inside corresponding to the nodule, with a suppressed uptake in the remaining thyroid tissue. Histopathological examination of the nodule revealed a solid/trabecular follicular thyroid carcinoma. To the best of our knowledge, this is the first case of hyperfunctioning follicular solid/trabecular carcinoma reported in the literature. Even if a hyperfunctioning thyroid carcinoma is an extremely rare malignancy, careful management is recommended so that a malignancy will not be overlooked in the hot thyroid nodules.
revealed a follicular carcinoma with solid and trabecular parts and focal signs of angioinvasivity (Figures 2(a), (b)). The surrounding thyroid tissue showed a follicular architecture with no signs of tumour infiltration or spreading. Since the patient declined further surgery, a radioiodine ablation was directly performed by administering 131I (2.5 GBq). Serum thyroglobulin was 9.4 ng/mL before 131I treatment, with a corresponding TSH level of 36 mUI/L. Six months after thyroid ablation, a 131I whole-body scanning after recombinant human TSH administration was negative with a corresponding undetectable serum Tg (i.e., <0.2 ng/mL). Further followup by clinical examination, including neck US and Tg measurement, every 6 months, is negative up to now (3.4 years follow-up).

3. Discussion

Our patient presented with a palpable thyroid nodule and hyperthyroidism with the absence of TRAb and TPOAb. The nodule was proved to be functionally autonomous by 99mTc-pertechnetate imaging and RAIU. However, a follicular solid/trabecular carcinoma was finally proved by histological examination. Hyperthyroidism due to thyroid carcinoma is a rare, but well-recognized phenomenon. This situation has been generally described as resulting from excessive production of thyroid hormone by extensive functioning metastases, usually from follicular carcinoma [2, 3]. The incidence of thyroid carcinoma in a hot nodule is reported to be very low by most authors [4–6], but the incidence

Figure 1: 99mTc scan: hot thyroid nodule in the right thyroid lobe with suppressed extranodular thyroid tissues (a). Surgical specimen from right lobectomy and isthmectomy (b).

Figure 2: Hematoxylin/eosin histological stains: follicular carcinoma with solid (a) and solid-trabecular (b) features.
is somewhat higher in other retrospective studies [7, 8]. Actually, thyroid carcinoma in a hot nodule has been described in numerous case reports prior to ours. However, unlike our case, most of these cases show a cold area within a hot nodule, indicating that the thyroid carcinoma itself did not produce thyroid hormone [9]. Women are far more often affected than men, but no significant peak with regard to age was noted [10]. Interestingly, the histological features of these tumors correspond in principle to the papillary carcinoma, as opposed to the metastatic functioning carcinomas, essentially being of follicular type [11–15]. Classical follicular histology is described in the few reported cases of hyperfunctioning follicular carcinoma while only one case with a clear-cell variant histotype is described [16–18]. To the best of our knowledge, we are the first to report a case of hyperfunctioning aggressive follicular carcinoma with solid and trabecular features. This case underlines the clinical importance of predicting the incidence of malignancy in hot thyroid nodules. However, reports in the literature indicate significant difficulty in determining the risk that AFTN will undergo malignant degeneration. Some clinical findings set forth the risk factors for malignancy in thyroid nodules: age <20 or >60 years, male sex, the family history of differentiated or medullary thyroid carcinoma or of familial adenomatous polyposis (Gardner’s syndrome), past history of head and neck radiation, rapid tumor growth, irregular outline, fixation to adjacent structures, and symptoms of tumor invasion [1, 15, 19]. In actual practice, however, few patients have these symptoms, and most nodules are nearly asymptomatic [1]. The classical benign AFTN presents itself as a smooth, well-defined, round or ovoid mass that moves freely and occurs in patients aged 40 or over with a history of long-standing and slowly expanding mass in the neck [19]. The US pattern, as well as the vascular signals in power or color-Doppler samplings, is largely overlapped in malignant nodules and AFTN, as occurred in our patient [1]. An incomplete suppression of radionuclide uptake in extranodular thyroid tissues was reported as a risk factor of malignancy, but this did not occur in our patient [20]. Differentiating a benign follicular adenoma from a malignant follicular carcinoma is challenging by cytology, and a thyroid scan is advocated in these cases, considering functioning nodules as being benign [1, 21]. Hot nodules outside the thyroid can be helpful in diagnosis of malignancy in the case of metastatic thyroid carcinoma, but this is rare in practice [22]. In our patient, surgical treatment was preferred to radiiodine ablation considering her symptoms and the nodule's size. However, 131I could be administered under medical guidelines for clinical practice for the diagnosis and management of thyroid nodules [1]. K. Kasagi, R. Takeuchi, S. Miyamoto et al., “Metastatic thyroid cancer presenting as thyrotoxicosis: report of three cases,” Clinical Endocrinology, vol. 40, no. 3, pp. 429–434, 1994.

[3] T. F. Davis and P. R. Larsen, “Thyrotoxicosis,” in Williams of Textbook of Endocrinology, P. R. Larsen, H. M. Kronenberg, S. Melmed, and K. S. Polonsky, Eds., pp. 374–421, Saunders, Philadelphia, Pa, USA, 10th edition, 2003.

[4] H. R. Harach, S. S. Sánchez, and E. D. Williams, “Pathology of the autonomously functioning (hot) thyroid nodule,” Annals of Diagnostic Pathology, vol. 6, no. 1, pp. 10–19, 2002.

[5] T.-C. Chao, J.-D. Lin, L.-B. Jeng, and M.-F. Chen, “Thyroid cancer with concurrent hyperthyroidism,” Archives of Surgery, vol. 134, no. 2, pp. 130–134, 1999.

[6] R. Rieger, W. Pimpl, S. Money, L. Rettenbacher, and G. Galvan, “Hyperthyroidism and concurrent thyroid malignancies,” Surgery, vol. 106, no. 1, pp. 6–10, 1989.

[7] M. Smith, C. McHenry, H. Jarosz, A. M. Lawrence, and E. Paloyan, “Carcinoma of the thyroid in patients with autonomous nodules,” American Surgeon, vol. 54, no. 7, pp. 448–449, 1988.

[8] Y. Mizukami, T. Michigishi, A. Nonomura et al., “Autonomously functioning (hot) nodule of the thyroid gland: a clinical and histopathologic study of 17 cases,” American Journal of Clinical Pathology, vol. 101, no. 1, pp. 29–35, 1994.

[9] A. Lupi, P. Orsolon, D. Cerisara, G. Deantonio Migliorati, and A. Vianello-Dri, “‘Hot’ carcinoma of the thyroid. Case reports and comments on the literature,” Minerva Endocrinologica, vol. 27, no. 1, pp. 53–57, 2002.

[10] S. Yaturu and M. R. Fowler, “Differentiated thyroid carcinoma with functional autonomy,” Endocrine Practice, vol. 8, no. 1, pp. 36–39, 2002.

[11] K. Baumann, M. Weitzel, and H. Burgi, “Hormone-producing thyroid carcinoma with hyperthyroidism. Analysis of 6 cases and review of the literature,” Schweiz Med Wochenschr, vol. 109, pp. 309–314, 1979.

[12] S. Fukata, H. Tamai, S. Matsubayashi et al., “Thyroid carcinoma and hot nodule,” European Journal of Nuclear Medicine, vol. 13, no. 6, pp. 313–314, 1987.
[13] M. Appetecchia and M. Ducci, “Hyperfunctioning differenti-ated thyroid carcinoma,” Journal of Endocrinological Investigation, vol. 21, no. 3, pp. 189–192, 1998.
[14] M. Hayata, T. Kamei, N. Okayasu, et al., “Functional papillary carcinoma of the thyroid occurred in the Graves’ disease,” Clinical Endocrinology, vol. 51, pp. 66–69, 2003.
[15] S. J. Paul and J. C. Sisson, “Thyrotoxicosis caused by thyroid cancer,” Endocrinology and Metabolism Clinics of North America, vol. 19, no. 3, pp. 593–612, 1990.
[16] A. Tsuchiya, T. Nemoto, T. Nomizu, H. Sato, I. Watanabe, and R. Abe, “Follicular carcinoma in an autonomously functioning thyroid nodule,” Gan no Rinsho, vol. 33, no. 1, pp. 65–69, 1987.
[17] H. Niepomnisszcz, H. Suárez, F. Pitoia et al., “Follicular carcinoma presenting as autonomous functioning thyroid nodule and containing an activating mutation of the TSH Receptor (T620I) and a mutation of the Ki-RAS (G12C) genes,” Thyroid, vol. 16, no. 5, pp. 497–503, 2006.
[18] P. W. Schneider, D. A. Meier, and H. Balon, “A clear cell variant of follicular carcinoma presenting as an autonomously functioning thyroid nodule,” Thyroid, vol. 10, no. 3, pp. 269–273, 2000.
[19] E. L. Mazzaferri, “Management of a solitary thyroid nodule,” The New England Journal of Medicine, vol. 328, no. 8, pp. 553–559, 1993.
[20] G. De Rosa, A. Testa, M. Maurizi et al., “Thyroid carcinoma mimicking a toxic adenoma,” European Journal of Nuclear Medicine, vol. 17, no. 3–4, pp. 179–184, 1990.
[21] K. Mann, “Evaluation of risk in autonomously functioning thyroid nodules,” Experimental and Clinical Endocrinology and Diabetes, vol. 106, no. 4, pp. S23–S26, 1998.
[22] Y. Yamamoto, Y. Nishiyama, Y. Ono et al., “Accumulation of technetium-99m pertechnetate in a patient with metastases of thyroid carcinoma,” Annals of Nuclear Medicine, vol. 13, no. 5, pp. 357–359, 1999.
[23] M. Uludag, G. Yetkin, B. Çitgez, A. Isgor, and T. Basak, “Autonomously functioning thyroid nodule treated with radioactive iodine and later diagnosed as papillary thyroid cancer,” Hormones, vol. 7, no. 2, pp. 175–179, 2008.
[24] I. Bourasseau, F. Savagner, P. Rodien et al., “No evidence of thyrotropin receptor and G(sα) gene mutation in high iodine uptake thyroid carcinoma,” Thyroid, vol. 10, no. 9, pp. 761–765, 2000.
[25] E. L. Mazzaferri, “Carcinoma of follicular epithelium: radioio-dine and other treatment and outcomes,” in Werner and Ingbar’s the Thyroid: A Fundamental and Clinical Test, L. E. Braverman and R. D. Utiger, Eds., pp. 1138–1165, Lippincott, Philadelphia, Pa, USA, 6th edition, 1991.
[26] J.-D. Lin, T.-C. Chao, and C. Hsueh, “Follicular thyroid carcinomas with lung metastases: a 23-year retrospective study,” Endocrine Journal, vol. 51, no. 2, pp. 219–225, 2004.