On the dissociation number of Kneser graphs

Boštjan Brešara,b*
Tanja Draveca,b†

August 25, 2021

a Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
b Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

Abstract

A set D of vertices of a graph G is a dissociation set if each vertex of D has at most one neighbor in D. The dissociation number of G, $\text{diss}(G)$, is the cardinality of a maximum dissociation set in a graph G. In this paper we study dissociation in the well-known class of Kneser graphs $K_{n,k}$. In particular, we establish that the dissociation number of Kneser graphs $K_{n,2}$ equals $\max\{n-1,6\}$. We show that for any $k \geq 2$, there exists $n_0 \in \mathbb{N}$ such that $\text{diss}(K_{n,k}) = \alpha(K_{n,k})$ for any $n \geq n_0$. We consider the case $k = 3$ in more details and prove that $n_0 = 8$ in this case. Then we improve a trivial upper bound $2\alpha(K_{n,k})$ for the dissociation number of Kneser graphs $K_{n,k}$ by using Katona’s cyclic arrangement of integers from $\{1, \ldots, n\}$. Finally we investigate the odd graphs, that is, the Kneser graphs with $n = 2k+1$. We prove that $\text{diss}(K_{2k+1,k}) = \binom{2k}{k}$.

Keywords: dissociation set, k-path vertex cover, Kneser graph, odd graphs, independence number

AMS Subj. Class. (2010): 05C69

1 Introduction

The Kneser graph, $K_{n,k}$, where n, k are positive integers such that $n \geq 2k$, has the k-subsets of an n-set as its vertices, and two k-subsets are adjacent in $K_{n,k}$ if they are disjoint. The Erdős–Ko–Rado theorem \cite{8} determined the independence number $\alpha(K_{n,k})$ of the Kneser graph $K_{n,k}$ to be equal to $\binom{n-1}{k-1}$. Another famous result is Lovász’s proof of Kneser’s conjecture, which determines the chromatic number of Kneser graphs \cite{17}, see also Matoušek for a combinatorial proof of this result \cite{18}. Many other invariants were later considered in Kneser graphs by a number of authors. The diameter of a Kneser graph $K_{n,k}$ was computed in \cite{23} and the hamiltonicity was researched in \cite{7,22}. The domination number of Kneser graphs was also studied in several papers \cite{11,12,20}, but there is no such complete solution for domination number of Kneser graphs as it is the case with the chromatic and the independence number. Recently, the P_3-hull number of Kneser graphs was completely resolved for all Kneser graphs $K_{n,k}$ with the sole exception of odd graphs, that is, when $n = 2k+1$; see \cite{24}. The problem of independence in graphs can be rephrased as the search for a (largest) induced subgraph in which all components have only one vertex. In this paper, we extend the study to search for a largest induced subgraph of a Kneser graph in which all components have at most two vertices.

A set D of vertices in a graph G is called a dissociation set if the subgraph induced by vertices of D has maximum degree at most 1. The cardinality of a maximum dissociation set D in a graph G is called the dissociation number of G, and is denoted by $\text{diss}(G)$. The dissociation number was introduced by

*bostjan.bresar@um.si
†tanja.dravec@um.si
Papadimitriou and Yannakakis [21] in relation with the complexity of the so-called restricted spanning tree problem. A dual concept to dissociation set can be generalized to \textit{m-path vertex cover}, which was introduced in [5] and studied in several papers [2][13]; it is defined as a set \(S \) of vertices in \(G \) such that \(G - S \) does not contain any path \(P_m \). The corresponding invariant, the \textit{m-path vertex cover number} of an arbitrary graph \(G \), is denoted by \(\psi_m(G) \). Note that dissociation sets are complements of 3-path vertex covers of \(G \), and so \(\text{diss}(G) = |V(G)| - \psi_3(G) \). The decision version of the \(m \)-path vertex cover number is NP-complete [5], moreover, in the case \(m = 3 \) it is NP-complete even in bipartite graphs which are \(C_4 \)-free and have maximum degree 3 [1]; see also [19] for further strengthening of this result and [14] for an approximation algorithm. Some variations of the problem were already studied as well (see e.g. [6][16]). We mention in passing that graphs in which all maximal dissociation sets are of the same size were studied in [3].

The independence number of a graph \(G \), \(\alpha(G) \), can be defined as the order of the largest induced subgraph of \(G \) with maximum degree 0. If 0 in this definition is replaced by 1, then we get a definition of the dissociation number of a graph. Since any independent set of a graph \(G \) is also a dissociation set of \(G \), the independence number of \(G \) is a lower bound for the dissociation number of \(G \). In addition, one can easily get the upper bound for the dissociation number of \(G \) as a function of \(\alpha(G) \). Let \(S \) be a dissociation set of \(G \) and \(A \subseteq S \) a maximum independent subset of \(S \). Then every vertex of \(S \setminus A \) has exactly one neighbor in \(A \) and any vertex of \(A \) has at most one neighbor in \(S \setminus A \). Therefore \(|S \setminus A| \leq |A| \). Hence we immediately get the following bounds for the dissociation number of \(G \):

\[
\alpha(G) \leq \text{diss}(G) \leq 2\alpha(G).
\]

The paper is organized as follows. In Section 2 we first present the exact result for the dissociation number of Kneser graphs \(K_{n,2} \). Then we prove that for any \(k \geq 2 \) there exists \(n_0 \in \mathbb{N} \) such that \(\text{diss}(K_{n,k}) = \alpha(K_{n,k}) \) for any \(n \geq n_0 \). Also, we find \(n_0 \) for \(k = 3 \): we prove that \(\text{diss}(K_{n,3}) = \alpha(K_{n,3}) \) if and only if \(n \geq 8 \). In Section 3 we use Katona’s cyclic arrangement of integers from his proof of Erdős-Ko-Rado theorem [15] to improve the upper bound \(2\alpha(G) \) for the dissociation number for the case when \(G \) is a Kneser graph. In Section 4 we show that the dissociation number of odd graphs \(O_k \) (Kneser graphs \(K_{2k+1,k} \)) equals \((2k \choose k)\) for \(k \geq 2 \).

In the rest of this section we present the notation used throughout the paper and some basic results concerning the dissociation number of a graph.

Let \([n] = \{1, 2, \ldots, n\}\), where \(n \in \mathbb{N} \). For a graph \(G = (V, E) \) and \(S \subseteq V(G) \) we write \(G[S] \) for the subgraph of \(G \) induced by \(S \) and \(G - S \) for the subgraph of \(G \) induced by the set \(V(G) \setminus S \). The (open) neighborhood of \(v \in V(G) \), \(N_G(v) \), is the set of all neighbors of \(v \), while \(N_G[v] = N_G(v) \cup \{v\} \) denotes the closed neighborhood of \(v \). Similarly, for \(S \subseteq V(G) \), \(N_G[S] = \bigcup_{v \in S} N_G[v] \). The degree of a vertex \(v \) is \(|N_G(v)| \).

When the graph \(G \) is clear from the context we omit the subscripts. A matching \(M \) in a graph \(G \) is a set of edges in \(G \) having the property that no two edges in \(M \) have a common endvertex. For a matching \(M \) in \(G \), we denote by \(V(M) \) the set of endvertices of edges from \(M \). A set of pairwise non adjacent vertices in a graph \(G \) is called the independent set. The cardinality of the largest independent set of vertices in \(G \) is the independence number of \(G \) and is denoted by \(\alpha(G) \).

A center of a Kneser graph \(K_{n,k} \) is a set \(I(i) = \{x \in K_{n,k} : i \in x\} \), where \(i \in [n] \). Note that \(I(i) \) is an independent set of vertices of \(K_{n,k} \), and \(|I(i)| = \alpha(K_{n,k}) = \binom{n-1}{k-1} \). Note that for any \(n \geq 2k \), \(K_{2k,k} \) is an induced subgraph of \(K_{n,k} \) and hence \(\text{diss}(K_{n,k}) \geq \text{diss}(K_{2k,k}) = |V(K_{2k,k})| = \binom{2k}{k} \). We state this as follows.

Proposition 1.1 For any \(n \geq 2k \), \(\text{diss}(K_{n,k}) \geq \binom{2k}{k} \).

2 Relations with the independence number

We start the study with the simplest non-trivial Kneser graphs, that is, \(K_{n,2} \), where \(n \geq 5 \). For the Petersen graph \(K_{5,2} \), one can easily see that \(D = \{\{1, 2\}, \{3, 4\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}\} \) is a dissociation set. Indeed, \(D \) induces a subgraph with only three edges, namely \(\{1, 2\}\{3, 4\}, \{1, 3\}\{2, 4\} \) and \(\{1, 4\}\{2, 3\} \). It is
also a largest dissociation set, hence \(\text{diss}(K_{5,2}) = 6 \). The same construction is optimal also in \(K_{6,2} \) and \(K_{7,2} \), but not for \(K_{n,2} \), with larger \(n \), as the following result shows.

Proposition 2.1 For \(n \geq 5 \), \(\text{diss}(K_{n,2}) = \max\{n - 1, 6\} \).

Proof. Note that a maximum independent set of a Kneser graphs \(K_{n,2} \), where \(n > 5 \), is a center, its size is \(n - 1 \), and it is also a dissociation set. By the above observation, we get \(\text{diss}(K_{n,2}) \geq \max\{n - 1, 6\} \). Suppose that \(D \) is a dissociation set, which is not independent. Without loss of generality, let \(\{\{1, 2\}, \{3, 4\}\} \subset D \). Note that \(V(K_{n,2}) \setminus N[D] = \{\{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}\} \), which implies \(|D| \leq 6 \). Hence, if \(n > 7 \), a maximum dissociation set is independent, and the proposed equality follows. \(\square \)

We find a similar feature for Kneser graphs \(K_{n,k} \), where \(k > 2 \). Namely, as soon as \(n \) is large enough with respect to \(k \), we have \(\text{diss}(K_{n,k}) = \alpha(K_{n,k}) \).

Theorem 2.2 For any \(k \geq 2 \), there exists \(n_0 \in \mathbb{N} \) such that for all \(n, n \geq n_0 \), we have

\[
\text{diss}(K_{n,k}) = \alpha(K_{n,k}) = \binom{n-1}{k-1}.
\]

Proof. The result for \(k = 2 \) follows from Proposition 2.1. Fix \(k \geq 3 \), and suppose that a maximum dissociation set \(D \) is not an independent set. Assume without loss of generality that \(x = \{1, \ldots, k\} \) and \(y = \{k + 1, \ldots, 2k\} \) belong to \(D \). Let \(U = V(K_{n,k}) \setminus N[x,y] \). Note that every element in \(U \) is a \(k \)-set that contains at least one element from \(x \) and at least one element from \(y \). Setting \(z = \{2k + 1, \ldots, n\} \) note that any element in \(U \) consists of \(i \) elements from \(z \), where \(0 \leq i \leq k - 2 \), \(j \) elements from \(x \), where \(1 \leq j \leq k - i - 1 \), and consequently, \(k - i - j \) elements from \(y \).

Hence

\[
|U| = \sum_{i=0}^{k-2} \binom{n-2k}{i} \sum_{j=1}^{k-i-1} \binom{k}{j} \binom{k}{k-j-i}.
\]

Note that \(\sum_{j=1}^{k-i-1} \binom{k}{j} \binom{k}{k-j-i} \) is not dependent on \(n \), hence for a fixed \(k \) this is a constant, while \(\sum_{i=0}^{k-2} \binom{n-2k}{i} \) is a polynomial in \(n \) of degree \(k - 2 \). Hence \(|U| = \mathcal{O}(n^{k-2}) \), and note that \(|D| \leq 2 + |U| \). On the other hand, \(\alpha(K_{n,k}) = \binom{n-1}{k-1} \), hence the resulting independent (and dissociation) set is of size \(\Omega(n^{k-1}) \). Therefore, if \(n \) is big enough, \(D \) is not a maximum dissociation set, because its size is less than \(\binom{n-1}{k-1} \). \(\square \)

Note that the above proof relies on the fact that for any adjacent vertices \(x \) and \(y \) of a dissociation set \(D \) of \(G \), we have \(D \subseteq D_{x,y} = \{x, y\} \cup (V(G) \setminus (N[x] \cup N[y])) \). In fact, we show that for any \(k \geq 2 \) there exists \(n_0' \in \mathbb{N} \) such that for any adjacent vertices \(x, y \in V(K_{n,k}) \) we have \(\alpha(K_{n,k}) \geq |D_{x,y}| \) as soon as \(n \geq n_0' \). In particular, the smallest \(n_0' \) that appears in the statement of Theorem 2.2 may be much smaller than \(n_0' \) which is used in the proof. Note that \(|D_{x,y}| = 2 + \binom{n}{k} - 2\binom{n-k}{k} - (n-2k) \). For \(k = 2 \) the smallest \(n_0' \), for which \(\alpha(K_{n,2}) \geq |D_{x,y}| \) when \(n \geq n_0' \), is 7, which is by Proposition 2.1 also \(n_0 \) from Theorem 2.2 (that is, \(\text{diss}(K_{n,2}) = \alpha(K_{n,2}) \) as soon as \(n \geq n_0 = 7 \)). This is not the case for \(k > 2 \). For \(k = 3 \) one can easily compute that \(n_0' = 17 \) (by solving inequality \(\alpha(K_{n,k}) \geq |D_{x,y}| \) for \(k = 3 \)), but as we will see in Corollary 2.6 we have \(\text{diss}(K_{n,3}) = \alpha(K_{n,3}) \) already for \(n \geq 8 \). For \(k > 3 \), we do not know how large must \(n_0 \) be in Theorem 2.2 and we propose this as an open problem.

Problem 1 Given an integer \(k \geq 4 \), what is the smallest integer \(n_0 \) such that for all \(n \geq n_0 \), \(\text{diss}(K_{n,k}) = \alpha(K_{n,k}) ? \)

From Proposition 2.1 we get the inequality that leads to the lower bound for \(n_0 \) from Theorem 2.2

Lemma 2.3 The smallest integer \(n_0 \) for which \(\text{diss}(K_{n_0,k}) = \alpha(K_{n_0,k}) \), is at least \(2k + 2 \).
Proof. Let $n \geq 2k$ and $\text{diss}(K_{n,k}) = \alpha(K_{n,k})$. Then \((n-1) \geq \binom{2k}{k}\) by Proposition\ref{prop:alpha}. Solving this inequality we infer $n \geq 2k+2$.

We follow with establishing the exact value of $\text{diss}(K_{8,3})$.

Lemma 2.4 $\text{diss}(K_{8,3}) = \alpha(K_{8,3})$.

Proof. For the purpose of contradiction assume that $\text{diss}(K_{8,3}) > 21$. Let S be a maximum dissociation set. Since $|S| > \alpha(K_{8,3})$, S is not independent. Without loss of generality we may assume that $x = \{1, 2, 3\}, y = \{4, 5, 6\}$ are two adjacent vertices contained in S. Since S is a dissociation set, $S \cap (N[x] \cup N[y]) = \{x, y\}$. Let H be the subgraph of $K_{8,3}$ induced by $V(K_{8,3}) \setminus (N[x] \cup N[y])$. We define the following sets

- $U = \{z \in V(H); 7 \in z\}, U' = \{z \in V(H); 8 \in z\}$;
- $\forall i \in [6], U_i = \{z \in U; i \in z\}, U'_i = \{z \in U'; i \in z\}$;
- $D = V(H) \setminus (U \cup U')$;
- $D' = \{z \in D; |z \cap x| = 2\}, D'' = \{z \in D; |z \cap y| = 2\}$;
- $\forall i, j \in [3], D'_{ij} = \{z \in D'; i, j \in z\}$;
- $\forall i, j \in \{4, 5, 6\}, D''_{ij} = \{z \in D''; i, j \in z\}$;
- $\forall i \in \{4, 5, 6\}, D'_i = \{z \in D'; i \in z\}$;
- $\forall i \in [3], D''_i = \{z \in D''; i \in z\}$.

If $z \in V(K_{8,3})$ with $\{7, 8\} \subseteq z$, then $z \in N[x] \cup N[y]$. Thus $U \cap U' = \emptyset$, and so $[U, U', D]$ is a partition of $V(H)$. Also $[U_1, U_2, U_3]$ and $[U_4, U_5, U_6]$ are partitions of U, $[U'_1, U'_2, U'_3]$, $[U'_4, U'_5, U'_6]$ are partitions of U', $[D'_{12}, D'_{13}, D'_{23}], [D'_4, D'_5, D'_6]$ are partitions of D' and $[D''_{45}, D''_{46}, D''_{56}], [D''_1, D''_2, D''_3]$ are partitions of D''. Moreover, sets U, U', D', D'' are independent sets of cardinality 9. A spanning subgraph H' of a graph H is depicted in Figure\ref{fig:spanning_sub}. The edges of H that are not in H' are the edges between U and U', between U and D'', between D' and D''. Note that $H[U \cup D'] \cong H[U \cup D''] \cong H[U' \cup D'']$.

![Figure 1: Spanning subgraph of a graph H.](image-url)
Claim 1 \(|U_i \cap S| < 3\) for any \(i \in \{4, 5, 6\}\).

Proof. Suppose that there exists \(i \in \{4, 5, 6\}\) such that \(|U_i \cap S| = 3\) and let \(\{i, j, k\} = \{4, 5, 6\}\). Hence \((U'_j \cup U'_k \cup D''_{jk}) \cap S = \emptyset\), as each vertex of \(U'_j \cup U'_k \cup D''_{jk}\) has exactly 2 neighbors in \(U_i\). Let \(\ell\) be an arbitrary element of \([1, 2, 3]\) and let \(\{\ell, \ell', \ell''\} = \{1, 2, 3\}\). Since \(\{\ell', \ell'', j, k\}\) are both neighbors of \([i, i, 7] \in U_i \subseteq S\), \([\{\ell', \ell'', j\}, \{\ell', \ell'', k\}] \cap S \leq 1\). Note that subgraphs of \(H\) induced by \(U_j \cup \Delta'_j\) and \(U_k \cup D''_{ij}\) are isomorphic to \(C_6\) and thus \(|U_j \cup \Delta'_j \cap S|, |(U_k \cup D''_{ij}) \cap S| \leq 4\). If \(|(U_j \cup D''_{ij}) \cap S| = 4\), then \(S\) contains exactly 2 vertices from \(U_j\) and thus it contains at most 2 vertices from \(U_i\) (as \(H[U_j \cup U'_i] \cong C_6\)). Therefore \(|(U_j \cup D''_{ij} \cup U'_i) \cap S| \leq 6\). Hence,
\[|S \cap V(H)| = |S \cap U_i| + |S \cap (U_j \cup U'_i \cup D''_{ij})| + |S \cap (U_j \cup D''_{ij} \cup U'_i)| + |S \cap (U_k \cup D''_{ij})| + |S \cap D'_{12}| + |S \cap D'_{13}| + |S \cap D'_{23}| \leq 3 + 0 + 6 + 4 + 2 + 2 + 2 = 19.\] We infer \(|S| \leq 21\), a contradiction. □

Analogous arguments imply

Claim 2 For any \(i \in \{4, 5, 6\}\) \(|U_i \cap S| < 3\).

Claim 3 For any \(i \in \{3\}\) let \(\{i, j, k\} = \{1, 2, 3\}\). Then \(D'_{jk} \cap S \neq \emptyset\).

Proof. Suppose that there exists \(i \in \{1, 2, 3\}\), such that \(|D'_{jk} \cap S| = 0\), where \(\{j, k\} = \{1, 2, 3\} \setminus \{i\}\). For \(\ell \in \{4, 5, 6\}\) and \(\{\ell', \ell''\} \in \{4, 5, 6\} \setminus \{\ell\}\) let \(A_{\ell'}\) be the subgraph of \(H\) induced by \(U_j \cup D''_{\ell', \ell''} \cup U_{\ell'}\). Note that the subgraphs of \(A_{\ell'}\) induced by \(U_j \cup D''_{\ell', \ell''} \cup U_{\ell'}\) are isomorphic to \(C_6\).

Suppose that \(|A_{\ell'} \cap S| > 4\). Then \(|D''_{\ell', \ell''} \cap S| \neq \emptyset\), as \(|U_j \cap S| \leq 2\) and \(|U_i \cap S| \leq 2\) by Claims 1 and 2. Without loss of generality we may assume that \(\{1, \ell', \ell''\} \subseteq S \cap D''_{\ell', \ell''}\). Since \(\{2, 6, 8\}, \{3, 6, 8\}, \{2, 7, 6\}, \{3, 7, 6\}\) are all neighbors of \(\{1, \ell', \ell''\} \subseteq S\), we get \(|\{2, 6, 8\}, \{3, 6, 8\}, \{2, 7, 6\}, \{3, 7, 6\}\} \cap S \leq 1\). Since \(\{1, 6, 8\}, \{1, 7\}\) are both neighbors of \(\{2, \ell', \ell''\}\) and \(\{3, \ell', \ell''\}\), the following statements hold.

- If \(\{\{2, \ell', \ell''\}, \{3, \ell', \ell''\}\} \subseteq S\), then \(S \cap \{\{1, 6, 8\}, \{1, 7\}\} = \emptyset\);
- If \(|S \cap \{\{1, 6, 8\}, \{1, 7\}\}| = 2\), then \(S \cap \{\{2, \ell', \ell''\}, \{3, \ell', \ell''\}\} = \emptyset\).

Thus \(S\) contains at most two vertices from \(\{\{2, \ell', \ell''\}, \{3, \ell', \ell''\}, \{1, 6, 8\}, \{1, 7\}\}\) and consequently \(|A_{\ell'} \cap S| \leq 4\), a contradiction. Hence \(|A_{\ell'} \cap S| \leq 4\) for any \(\ell \in \{4, 5, 6\}\). Since \(D'_{jk} \cap S = \emptyset\), \(|S \cap D'_{ij}| \leq 6\) and thus
\[|V(H) \cap S| = \sum_{\ell=4}^{6} |A_{\ell} \cap S| + |D' \cap S| \leq 3 \cdot 4 + 6 = 18,\] a contradiction. □

For any \(i \in \{3\}\) define \(X''_i\) as a subgraph of \(H\) induced by veritces of \(D''_{ij} \cup U_i \cup U'_i \cup D'_{jk}\), where \(\{j, k\} = \{3\} \setminus \{\ell\}\).

Let \(i \in \{3\}\) and \(\{i, j, k\} = \{1, 2, 3\}\). Since by Claim 4 \(D'_{jk} \cap S \neq \emptyset\), we have three possibilities.

If \(|D'_{jk} \cap S| = 1\), let \(\ell \in \{4, 5, 6\}\) such that \(\{j, k, \ell\} \subseteq S\) and let \(\{4, 5, 6\} \setminus \{\ell\} = \{\ell', \ell''\}\). Since \(\{j, k, \ell\}\) is adjacent to all vertices from \(A = \{\{i, \ell', \ell''\}, \{i, \ell', 7\}, \{i, \ell'', 7\}, \{i, 6, 8\}, \{i, 6', 8\}\}\), \(|S \cap A| \leq 1\). Since \(|X''_i \cap (A \cup D'_{jk})| = 4\), \(|S \cap A| \leq 1\) and \(|S \cap D'_{jk}| = 1\) we get \(|S \cap V(X''_i)| \leq 6\).

If \(|D'_{jk} \cap S| = 2\), let \(\ell, \ell' \in \{4, 5, 6\}\) such that \(\{j, k, \ell\} \subseteq S\) and let \(\{4, 5, 6\} \setminus \{\ell, \ell'\} = \{\ell''\}\). Since \(i, 6', 7\} \{i, \ell''\} \subseteq S\) and \(i, 6, 8\) \(\notin S\). Since \(A = \{\{i, \ell', \ell''\}, \{i, 6', 7\}, \{i, 6, 8\}\}\) is the set of neighbors in \(X''_i\) of \(\{j, k, \ell\} \subseteq D'_{jk} \cap S\), at most one vertex from \(A\) can be contained in \(S\). Similarly at most one vertex from \(B = \{\{i, \ell, \ell''\}, \{i, 6', 7\}, \{i, 6, 8\}\}\) can be contained in \(S\), as all vertices of \(B\) are neighbors of \(\{j, k, \ell\}\). Since \(|X''_i \cap (A \cup B \cup D'_{jk})| = 1\), \(|S \cap V(X''_i)| \leq |S \cap D'_{jk}| + |S \cap A| + |S \cap B| + 1 \leq 2 + 1 + 1 + 5 = 15\).

Finally, let \(S \cap D'_{jk} = D'_{jk}\). Then \(U_i \cap S = U'_i \cap S = \emptyset\) and thus \(|V(X''_i) \cap S| \leq 6\).

We have proved that for any \(i \in \{3\}\) it holds \(|V(X''_i) \cap S| \leq 6\). Therefore
\[|S \cap V(H)| = |S \cap V(X''_i)| + |S \cap V(X''_j)| + |S \cap V(X''_k)| \leq 18,\] which is a final contradiction. □
Proposition 2.5 Let \(n \geq 9 \). If \(\text{diss}(K_{n-1,3}) = \alpha(K_{n-1,3}) \) then \(\text{diss}(K_{n,3}) = \alpha(K_{n,3}) \).

Proof. Suppose that there exists \(n \geq 9 \) with \(\text{diss}(K_{n-1,3}) = \alpha(K_{n-1,3}) \) and \(\text{diss}(K_{n,3}) > \alpha(K_{n,3}) = \binom{n-1}{2} \). Let \(S \) be a maximum dissociation set in \(K_{n,3} \). Since \(|S| > \alpha(K_{n,3}) \), \(S \) is not an independent set. Note that since \(n \geq 9 \), \(|S| \geq \binom{n-1}{2} + 1 \geq 29 \). Without loss of generality we may assume that \(x = \{1, 2, 3\} \), \(y = \{4, 5, 6\} \in S \). Since \(S \) is a dissociation set, \((S \cap (N[x] \cup N[y]) \setminus \{x, y\} = \emptyset \). Let \(H \) be the subgraph of \(K_{n,3} \) induced by \(V(K_{n,3}) \setminus (N[x] \cup N[y]) \). Let \(U = \{z \in V(H) \mid z \not\in S\} \) and \(D = \{z \in V(H) \mid n \not\in z\} \). Since each vertex \(z \in U \) contains exactly one element from \(x \) and exactly one element from \(y \), \(|U| = 9 \).

If \(D \cap S = \emptyset \), then \(|S| \leq 2 + 9 = 11 \), a contradiction. Hence we may assume that \(D \cap S \neq \emptyset \). Let \(z \in D \cap S \). Then at least one element from \(x \), say \(i \), and at least one element from \(y \), say \(\ell \), is contained in \(z \). Denote \(z = \{i, \ell, w\} \).

Suppose first that \(w \notin x \cup y \). Let \(\{1, 2, 3\} = \{i, j, k\} \), \(\{4, 5, 6\} = \{\ell, \ell', \ell''\} \). Then all vertices of \(A = \{\{j, \ell, n\}, \{j, \ell', n\}, \{k, \ell', n\}, \{k, \ell'' , n\}\} \subseteq U \) are neighbors of \(z \in S \). Hence \(|S \cap A| \leq 1 \) and therefore \(|S \cap U| \leq 6 \). Since vertices of \(N[x] \cup N[y] \) that do not contain \(n \) together with \(D \) induce \(K_{n-1,3} \), \(|S| \leq \alpha(K_{n-1,3}) + |U \cap S| \leq \binom{n-2}{2} + 6 \). Hence for any \(n \geq 8 \) we get \(|S| \leq \alpha(K_{n,3}) \), a contradiction.

Hence \(w \notin x \cup y \) or, in other words, \(S \) does not contain vertices \(\{i, j, z\} \), where \(i \in \{1, 2, 3\} \), \(j \in \{4, 5, 6\} \), \(z \in \{\ell, \ell', \ell''\} \). Thus if \(d \in S \cap D \), then \(d = \{i_1, i_2, \ell\} \) or \(d = \{i_1, \ell_1, \ell_2\} \), where \(i_1, i_2 \in \{1, 2, 3\} \), \(\ell, \ell_1, \ell_2 \in \{4, 5, 6\} \). Hence \(|S \cap D| \leq 18 \). If \(S \) contains \(\{i_1, i_2, \ell\} \) for \(\{i_1, i_2\} = \{1, 2, 3\} \), \(\{\ell_1, \ell_2\} = \{4, 5, 6\} \), then \(S \) cannot contain both \(\{i_1, \ell_1, n\}, \{i_2, \ell_2, n\} \subseteq U \) and thus \(|S \cap (U \cup D)| \leq 26 \). Therefore \(|S| \leq 28 \), a contradiction.

We suspect that Proposition 2.5 also holds for \(k \) bigger than 3, and pose it as a problem.

Problem 2 Is it true that \(\text{diss}(K_{n,k}) = \alpha(K_{n,k}) \) implies \(\text{diss}(K_{n+1,k}) = \alpha(K_{n+1,k}) \) for all \(k \geq 2 \) and \(n \geq 2k + 2 \)?

As a direct corollary of Lemma 2.3, Lemma 2.4 and Proposition 2.5 we get that \(\text{diss}(K_{n,3}) = \alpha(K_{n,3}) \) for any \(n \geq 8 \).

Corollary 2.6 For \(k = 3 \), \(\text{diss}(K_{n,3}) = \alpha(K_{n,3}) \) if and only if \(n \geq 8 \).

3 An upper bound for \(\text{diss}(K_{n,k}) \)

In this section, we consider upper bounds for the dissociation number of Kneser graphs \(K_{n,k} \). We already know that \(\alpha(K_{n,k}) \leq \text{diss}(K_{n,k}) \leq 2\alpha(K_{n,k}) \) and that if \(n \) is large enough, then the dissociation number coincide with the independence number. Thus the bound is interesting only when \(n \leq n_0 \), where \(n_0 \) is the integer that appears in Theorem 2.2 and Problem 1. Our aim of this section is to improve the upper bound \(2\alpha(K_{n,r}) \) for \(n < n_0 \).

We will improve the upper bound by using Katona’s cyclic arrangement of integers from his proof of Erdős-Ko-Rado theorem. Let \(D \) be a maximum dissociation set of \(K_{n,k} \). We count in two different ways the number of ordered pairs \((D, C) \), where \(D \in D \) and \(C \) is a cyclic arrangement of integers from \([n] \) in which \(D \) appears as a substring.

Let \(n = 2k + r \), thus we consider \(K_{2k+r,k} \), where \(r \geq 1 \). If one takes any set from \(D \), then it appears as a substring in \(k!(n-k)! \) different cyclic arrangements. Thus, altogether there are \(|D|k!(n-k)! \) such ordered pairs \((D, C) \). Second, note that there are \((n-1)! \) different cyclic arrangements of integers from \([n] \). Next, let us bound from above the number of sets from \(D \) that appear as substrings in any given cyclic arrangement.

We distinguish two cases. First, let \(r > k - 2 \). We claim that in any given cyclic arrangement there are at most \(k + 1 \) elements from \(D \) that appear as its substrings. Suppose that all elements of \(D \) that appear as substring in \(C \) pairwise intersect. Then, it is easy to see that at most \(k \) elements from \(D \) appear as substrings in \(C \). Without loss of generality, let \(D_1 : 1, 2, \ldots, k \), and \(D_2 : k + t, k + t + 1, 2k + t - 1, t \in [n-2k+1] \), be the substrings in \(C \) that correspond to elements of \(D \). Since the sets that correspond to \(D_1 \) and \(D_2 \) form an edge in \(K_{n,r} \), we infer that all other sets of \(D \) that appear as substrings in \(C \) must intersect both \(D_1 \) and
D_2. Since $r > k - 2$, we infer that there are at most $k - 1$ such substrings of length k that intersect both D_1 and D_2. This implies that there are at most $k + 1$ elements from D that appear as substrings, as claimed. Thus, when $n > 3k - 2$, we get
\[
\text{diss}(K_{n,k}) \leq \frac{k + 1}{k} \binom{n-1}{k-1}.
\] (1)

The second case is $r \leq k - 2$. Again, let $D_1 : 1, 2, \ldots, k$ be a substring in a cyclic arrangement C that corresponds to an element of D (by abuse of language, we denote this element by D_1 as well). Clearly, there is at most one set in D that does not intersect D_1. Note that a set D in $D \setminus \{D_1\}$ can intersect D_1 in two different ways, either 1 is at most one set in D. We denote by A_1 the substring in C for which $A_1 \cap D_1 = [i]$, and by B_i the substring in C for which $B_i \cap D_1 = [k] \setminus [i]$. If for some $i \in [n-1], A_i \in D$ and $B_i \in D$, then i is a double point. On the other hand, if just one of $A_i \in D$ or $B_i \in D$ holds, then i is a single point. Let d be the number of double points and s the number of single points. Note that the number of substrings of C that correspond to elements of D is bounded from above by $2 + s + 2d$, where 2 corresponds to D_1 and possibly one more element from D that does not intersect D_1.

Suppose that i is a double point. Since D is a dissociation set, any set in $D \setminus \{A_i, B_i\}$ must intersect both A_i and B_i. This in turn implies that $A_1, \ldots, A_{\max(i-r,1)}$ do not belong to D and also $B_{i+1}, \ldots, B_{\max(i+r,k)}$ do not belong to D. In other words, a double point can appear at most in every $2r + 1$ turn, that is, at most $\left\lceil \frac{k}{2r+1} \right\rceil$ times. Hence, the number of substrings of C that correspond to elements of D is bounded from above by $2 + s + 2d = 2 + k - 1 + \left\lceil \frac{k}{2r+1} \right\rceil \leq 2 + k + \frac{k}{2r+1}$. This yields
\[
|D|(n-k)|k|! \leq (2 + k + \frac{k}{2r+1})(n-1)!
\]
which implies
\[
\text{diss}(K_{2k+r,k}) \leq 2^{rk} + 2r + k + 1 \binom{n-1}{k-1}.
\] (2)

4 Dissociation number of odd graphs

In this section, we use the famous Hall’s marriage theorem, which we next formulate. Let G be a bipartite graph, where a bipartition of $V(G)$ is $[X,Y]$. A matching M in G is an X-matching of G if every vertex in X is incident with an edge of M.

Theorem 4.1 [10] A bipartite graph G with $V(G) = [X,Y]$ has an X-matching if and only if for every subset $W \subset X$ we have $|N(W)| \geq |W|$.

Perhaps the most interesting class of Kneser graphs is that of odd graphs, $O_k = K_{2k+1,k}$. The dissociation number of odd graph O_k is by Proposition [11] bounded below by $\binom{2k}{k}$. Proposition [2.1] implies that this bound is also an upper bound for $k = 2$. In the next result we prove that the bound is the exact value also for $k > 2$.

Theorem 4.2 For any $k \geq 2$, $\text{diss}(O_k) = \binom{2k}{k}$.

Proof. By Proposition [11] $\text{diss}(O_k) \geq \binom{2k}{k}$.

Let S be a maximum dissociation set of O_k. Let $D = \{x \in V(O_k); 2k+1 \notin x\}$ and $U = V(O_k) \setminus D$, that is, $U = \{x \in V(O_k); 2k+1 \in x\}$. Note that $O_k[D]$ is isomorphic to $K_{2k,k}$ which is in turn isomorphic to $\frac{1}{2}(\binom{2k}{k})K_2$. On the other hand, U is a center $I(2k+1)$ of $K_{2k+1,k}$, hence an independent set.

If $S \cap D = \emptyset$, then $|S| \leq |U| = \binom{2k}{k-1} \leq \binom{2k}{k}$ and the proof is done. If $S \cap U = \emptyset$, then $|S| \leq |D| = \binom{2k}{k}$ which also completes the proof. Thus it remains to consider the case when $D \cap S \neq \emptyset$ and $L = U \cap S \neq \emptyset$. Set $\ell = |L|$. Since $|D| = \binom{2k}{k}$ and $|S \cap U| = \ell$, it suffices to prove that at least ℓ vertices from D are not contained in S.

Let E be the set of edges having one endvertex in L and the other endvertex in $N_{O_k}(L)$, where $N_{O_k}(L)$ is a subset of D. Now, $|E| = (k+1)|L|$, since any $u \in L$ has exactly $k+1$ neighbors in D. On the other hand, any $x \in N_{O_k}(L)$ has exactly k neighbors in U and hence $|E| \leq k|N_{O_k}(L)|$. Therefore $|N_{O_k}(L)| \geq \frac{k+1}{k}|L| > |L|$. The same argument applies for any subset of L: that is, if $L' \subset L$, then $|N_{O_k}(L')| \geq \frac{k+1}{k}|L'| > |L'|$. Thus, by Theorem [4.1] there is an L-matching $M = \{u_1x_1, u_2x_2, \ldots, u_\ell x_\ell\}$ in a bipartite graph $G = (L \cup N_{O_k}(L), E)$, where $u_i \in L$ and $x_i \in N_{O_k}(L)$ for any $i \in \ell$. Let $[M', M'']$ be a partition of M, where M' is the set of edges in M with both endvertices contained in S. Since $L \subseteq S$, exactly one endvertex of each edge in M'' (that is, the endvertex from L) is contained in S. Denote by Z (resp. A') the set of endvertices in L (resp. $N_{O_k}(L)$) of edges in M' and let W (resp. B') be the set of endvertices of edges in M'' that are contained in L (resp. $N_{O_k}(L)$). Furthermore, let $A'' = (N_{O_k}(L) \cap S) \setminus A'$ and $B'' = (N_{O_k}(L) \setminus S) \setminus B'$. This definitions directly imply that $[A', A'', B', B'']$ is a partition of $N_{O_k}(L)$. Note that $A' \cup A''$ consists exactly of the vertices of $N_{O_k}(L)$ that are contained in S, and $B' \cup B''$ contains the vertices from $N_{O_k}(L)$ not contained in S.

To complete the proof, we count the number of edges between L and $B' \cup B''$. Denote the set of those edges by E'. Since $Z \cup A' \cup A''$ is a subset of a dissociation set S and $u_i x_i \in M$ is an edge in $O_k[S]$, x_i is the only neighbor of $u_i \in Z$ that is contained in S. Hence all other k neighbors of u_i in D are from $B' \cup B''$. Since $W \cup A' \cup A'' \subseteq S$, any vertex $u_i \in W$ has at most one neighbor in A'' and all other k neighbors of u_i in D are from $B' \cup B''$. Thus $|E'| \geq k(|Z| + |W|) = k|L|$. Since each vertex $x \in B' \cup B''$ has exactly k neighbors in U and as L is a subset of U, we get $|E'| \leq k(|B'| + |B''|)$. Consequently $|B'| + |B''| \geq |L|$. Hence $B' \cup B'' \subseteq D \setminus S$ is a set of at least ℓ vertices in D that are not contained in S.

\section{5 Concluding remarks}

In this paper, we found the dissociation number of several families of Kneser graphs $K_{n,k}$. This includes the cases $k \in \{2, 3\}$ and $n = 2k + 1$. As proved in Theorem [2.2] when n is large enough with respect to k, then the dissociation number equals the independence number of the corresponding Kneser graph. The point when this happens for a given k, the integer n_0, is open, and we give a lower bound for it. Two problems posed in Section [2] are related to n_0. Establishing exact values of $\text{diss}(K_{2k+r,k})$, where r is a small integer greater than 1, is another challenge.

The dissociation number is dual invariant to the 3-path vertex cover number (as is the independence number dual to the (2-path) vertex cover number). A natural problem is to consider the m-path vertex cover number of Kneser graphs, for any given $m > 3$. An alternative extension of the problem studied in this paper is the following. Since a dissociation set induces a subgraph with maximum degree at most 1, it would be interesting to find the largest size of a subset of vertices in $K_{n,k}$ that induces a subgraph with maximum degree Δ, for any given $\Delta > 2$.

\section{Acknowledgements}

B.B. and T.D. acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0297 and project grants No. J1-9109 and N1-0095).

\section{References}

[1] R. Bolian, K. Cameron, V.V. Lozin, On computing the dissociation number and the induced matching number of bipartite graphs, Ars Combin. 72 (2004) 241–253.

[2] C. Brause, I. Schiermeyer, Kernelization of the 3-path vertex cover problem. Discrete Math. 339 (2016) 1935–1939.

[3] B. Brešar, B.L. Hartnell, D.F. Rall, Uniformly dissociated graphs, Ars Math. Contemp. 13 (2017) 293–306.
[4] B. Brešar, M. Jakovac, J. Katrenič, G. Semanišin, A. Taranenko, On the vertex k-path cover, *Discrete Appl. Math.* **161** (2013) 1943–1949.

[5] B. Brešar, F. Kardoš, J. Katrenič, G. Semanišin, Minimum k-path vertex cover, *Discrete Appl. Math.* **159** (2011) 1189–1195.

[6] B. Brešar, R. Krivoš-Belluš, G. Semanišin, P. Šparl, On the weighted k-path vertex cover problem, *Discrete Appl. Math.* **177** (2014) 14–18.

[7] Y. Chen, Triangle-free Hamiltonian Kneser graphs, *J. Combin. Theory (B)* **89** (2003) 1–16.

[8] P. Erdős, C. Ko, R. Rado, Intersection theorem for system of finite sets, *Quart. J. Math.* **12** (1961) 313–318.

[9] L.N. Grippo, A. Pastine, P. Torres, M. Valencia-Pabon, J.C. Vera, On the P_3-Hull Number of Kneser Graphs, *Electron. J. Combin.* **28** (2021) P3.32, 9 pp.

[10] P. Hall, On Representatives of Subsets, *J. London Math. Soc.* **10** (1935) 26–30.

[11] C. Hartman, D.B. West, Covering designs and domination in Kneser graphs; unpublished manuscript, 2003.

[12] J. Ivančo, B. Zelinka, Domination in Kneser graphs, *Math. Bohem.* **118** (1993) 147–152.

[13] M. Jakovac, A. Taranenko, On the k-path vertex cover of some graph products, *Discrete Math.* **313** (2013) 94–100.

[14] F. Kardoš, J. Katrenič, I. Schiermeyer, On computing the minimum 3-path vertex cover and dissociation number of graphs, *Theoret. Comput. Sci.* **412** (2011) 7009–7017.

[15] G.O.H. Katona, A simple proof of the Erdős-Chao Ko-Rado theorem, *J. Combin. Theory (B)* **13** (1972) 183–184.

[16] Y. Li, Z. Yang, W. Wang, Complexity and algorithms for the connected vertex cover problem in 4-regular graphs, *Appl. Math. Comput.* **301** (2017) 107–114.

[17] L. Lovász, Kneser’s Conjecture, Chromatic Numbers and Homotopy, *J. Combin. Theory (A)* **25** (1978) 319–324.

[18] J. Matoušek, A Combinatorial Proof of Kneser’s Conjecture, *Combinatorica* **24** (2004) 163–170.

[19] Y. Orlovich, A. Dolgui, G. Finke, V. Gordon, F. Werner, The complexity of dissociation set problems in graphs, *Discrete Appl. Math.* **159** (2011) 1352–1366.

[20] P. R. J. Östergård, Z. Shao, X. Xu, Bounds on the Domination Number of Kneser Graphs, *Ars Math. Contemp.* **9** (2015) 197–205.

[21] C.H. Papadimitriou, M. Yannakakis, The complexity of restricted spanning tree problems, *J. Assoc. Comput. Mach.* **29** (1982) 285–309.

[22] I.B. Shields, Hamilton cycle heuristics in hard graphs, North Carolina State University, 2004.

[23] M. Valencia-Pabon, J.C. Vera, On the diameter of Kneser graphs, *Discrete Math.* **305** (2005) 383–385.