Genetic associations of intracranial aneurysm formation and sub-arachnoid hemorrhage

Christian B. Theodotou, Brian M. Snelling, Samir Sur, Diogo C. Haussen, Eric C. Peterson, Mohamed Samy Elhammady

Departments of Surgery and Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA, Department of Neurology, Emory University School of Medicine, Marcus Stroke and Neuroscience Center, Grady Memorial Hospital, Atlanta, Georgia

ABSTRACT

Risk factors for cerebral aneurysms typically include age, hypertension, smoking, and alcohol usage. However, the possible connection of aneurysms with genetic conditions such as Marfan’s syndrome, polycystic kidney disease, and neurofibromatosis raises the question of possible genetic risk factors for aneurysm, and additionally, genetic risk factors for rupture. We conducted a literature review using the PubMed database for studies regarding genetic correlation with cerebral aneurysm formation as well as rupture from December 2008 to Jun 2015. Twenty-one studies related to IA formation and 10 concerning IA rupture that met our criteria were found and tabulated. The most studied gene and the strongest association was 9p21/CDKN2, which is involved in vessel wall remodelling. Other possible genes that may contribute to IA formation include EDNRA and SOX17; however, these factors were not studied as robustly as CDKN2. Multiple factors contribute to aneurysm formation and rupture and the contributions of blood flow dynamics and comorbidities as mentioned previously, cannot be ignored. While these elements are important to development and rupture of aneurysms, genetic influence may predispose certain patients to formation of aneurysms and eventual rupture.

Key words: Formation, genetics, intracranial aneurysm, rupture, sub-arachnoid hemorrhage

Introduction

The prevalence of unruptured intracranial aneurysms (IAs) in the general population is estimated to be approximately 3%.\(^1\) Traditional risk factors for unruptured aneurysms include female gender and older age, hypertension, the diameter of the aneurysm, alcohol use, and tobacco use.\(^1,2\) The most worrisome event in patients harboring an IA is the rupture of the arterial wall and resultant sub-arachnoid hemorrhage (SAH), which occurs at a rate of 30,000 per year in the United States\(^4\) and carries a mortality rate of up to 45%.\(^2,3\) Given the fact that IA can remain asymptomatic until the time of rupture and that approximately 80–90% of unruptured aneurysms discovered incidentally, it is critical to better understand the variables that may be associated with higher chances of aneurysm formation, growth, and rupture.\(^3\)

Multiple genetic diseases have been identified as having a possible association with IA. Marfan’s syndrome involves defects in the gene FBN1 (which codes the extracellular matrix protein fibrillin-1) and is classically associated with aortic dissection, possibly due to structural compromise of arterial cells caused by the mutation.\(^5,6\) Although an association between Marfan’s syndrome and IA has also been suggested,\(^5-7\) autopsy studies and analysis of a family multiple members suffering from IA and Marfan’s syndrome have not always shown an association.\(^5,6\) Neurofibromatosis type I (NF1) is caused by a mutation that affects the neurofibromin gene on chromosome 17q, which not only is tumor suppressor but may
also exert some effect on tubulin as well.[9] NF1 manifestations include café-au-lait spots, neurofibromas, and gliomas. The association of NF1 with IA has also been suggested, albeit with mixed evidence.[9,10] Autosomal dominant polycystic kidney disease (ADPKD) is an inherited renal condition which is caused by mutations in two known genes: PKD1 (85–90% of cases) and PKD2 (10–15% of cases). The mutation results in the formation of multiple renal cysts and eventually renal failure. Patients with ADPKD may have an increased risk of IA formation with prevalence rates estimated to be between 3% and 12%.[11,12] It is believed that the affected genes produce flawed polycystin that leads to structural weaknesses in vascular smooth muscle cells.[13] Based on these genetic diseases, there appears to be a connection between certain genetic traits and IA, which may be indicative of a common element in their formation.

In addition to the aforementioned genetic disorders, there are less obvious variations in the genetic code, which may also play a role in the development and rupture of cerebral aneurysms. Increased familial risk indicates a possible genetic risk.[14-16] Specific variations in the genetic code (polymorphisms) and certain loci have also been implicated as having a genetic influence on IA formation.[17,18] A better understanding of the genetic influence on aneurysm formation and rupture risk may aid clinicians in the identification of patients at higher risk for SAH. We sought to review the current literature regarding the genetic factors associated with aneurysm formation and rupture.

Materials and Methods

Our study was divided into two sections: Genetic factors related to IA formation and IA rupture. We performed literature searches using the PubMed database to find relevant literature on these topics. Formal searches were conducted using MeSH database advanced search tool with the MeSH phrases “IA” and “genetics,” “IA” and “gene,” “SAH/genetics” and “(IA) and (rupture) and (genetics).” We limited the inclusion to only articles containing human subjects, available in English, and conducted within 6.5 years (December 2008–June 2015).

Articles were excluded if they did not meet any of the aforementioned criteria or were a case report, single-family study, meta-analysis, or were an analysis of inter-genetic relationships rather than relationship with IA formation or rupture. Studies were also excluded if they concerned non IA or included non IA in their analysis.

We recorded the number of patients and controls and the polymorphisms from each study. For each polymorphism, the location of the polymorphism (and associated gene if known), the odds ratio (OR) and 95% confidence interval (% CI, if available), and the P value were recorded. In cases where a study sampled multiple geographically different populations, the combined results of the populations found in that particular study were collected.

Results

Twenty-one studies related to IA formation and 10 concerning IA rupture that met our criteria were found and are listed in Tables 1 and 2, respectively.

Aneurysm Formation

The total number of IA patients from these studies was 19,997 while total number of controls was 51,953. Thirty-two different genetic locations were investigated for possible association with IA, as shown in Table 1.

Three genes were consistently shown to have associations with IA formation: CDKN2 (6 studies), EDRNA, (2) and SOX17 (2). Among these genes, only CDKN2 had polymorphisms (rs10757272, rs1333040, rs2891168) found to be associated with IA by multiple studies. Polymorphisms from EDRNA and SOX17, although associated with IA formation, were different between studies.

Of these three genes, the one which showed the most robust association with IA was CDKN2, a gene associated with cyclin-dependent kinase (CDK) inhibitors, polymorphism rs1333040 (OR = 1.43, 95% CI = 1.24–1.66, P < 0.001). However, this same polymorphism was examined in two other studies in our sample and yielded less dramatic although still significant results (OR = 1.31, 95% CI = 1.25–1.39, P < 0.001; OR = 1.28, 95% CI = 1.04–1.57, P = 0.02).[50,51] There were a total of eleven distinct CDKN2 polymorphisms in the sample, all of which showed significant association with IA. The association between CDKN2 rs1333040 and IA was the strongest found in our entire sample. Among the other genes with repeated association with IA, the strongest association of SOX17, a regulator of growth and maintenance of the vascular endothelium, came from rs9298506 (OR = 1.28, 95% CI = 1.20–1.38, P < 0.001) while the most robust association from EDRNA, a gene associated with the Endothelin-1 receptor that controls vascular smooth muscle tone, came from polymorphism rs6842241 (OR = 1.25, 95% CI = 1.16–1.34, P < 0.001).[59,56,52] In our sample, two distinct polymorphisms each for both SOX17 and EDRNA were analyzed and showed significant association with IA. The range of OR for CDKN2 was 1.21–1.43, the range for EDRNA was 1.22–1.25, and the range for SOX17 was 1.17–1.43.

Aneurysm Rupture

There were a total of 2061 IA rupture patients and 10,607 controls. Three studies used the same sample of patients to analyze different genes for association with IA.[43,44] Polymorphisms from 19 different genes were investigated. None of the genes were investigated by more than one study.

Only 5 of the genes had polymorphisms with significant associations. These polymorphisms come from 9p21, coagulation factor XIII, MAPKAP1, and eNOS. The 9p21
Table 1: Aneurysm formation

Study	Year	Total patients	IA patients	Gene(s)	Gene function	Variants tested	Greatest reported OR	95% CI	P
Akiyama et al.	2010	1973	1069	IQSEC1	Cell adhesion activator protein ARF-GEF100	Rs9864101	1.49	1.23-1.80	<0.001
				ARHGEF11	Rho-dependent signalling	Rs7550260	1.32	1.15-1.50	<0.001
				TMEM195	Fatty acid hydroxylase	Rs7781293	1.32	1.16-1.50	<0.001
				None	N/A, intergenic region	Rs462872	1.30	1.14-1.48	<0.001
Chen et al.	2012	786	298	COL1A1	Type III collagen	Rs11693075	1.26		<0.001
Foroud et al.	2012	3166	1483	COL2N2BAS	Associated with atherosclerotic disease	Rs1701946	1.30		<0.001
				CDKN2BAS	Associated with atherosclerotic disease	Rs1722561	1.35	1.22-1.52	<0.001
				CDKN2BAS	Associated with atherosclerotic disease	Rs1756461	1.33		<0.001
				CDKN2BAS	Associated with atherosclerotic disease	Rs1756461	1.32		<0.001
				CDKN2BAS	Associated with atherosclerotic disease	Rs1333048	1.32		<0.001
				BTBD56	Transcription factor	Rs911774	1.18		0.012
				C12orf75	Associated with atherosclerotic disease	Rs11112185	1.22		0.011
				C12orf75	Associated with atherosclerotic disease	Rs234713	1.28		0.002
				SOX17	Transcription factor	Rs1707237	1.25	1.11-1.40	<0.001
Hashikata et al.	2010	142	56	gpd2 (CDK2NBAS)	Associated with atherosclerotic disease	Rs1333040	1.28	1.04-1.57	0.02
Gläsker et al.	2014	269	269	COL1A2	Type I collagen	Rs42524	1.83	1.1-3.0	0.02
Nakaoka et al.	2010	680	981	gpd21 (CDK2NBAS)	Associated with atherosclerotic disease	Rs1800238	1.94	1.32-1.66	<0.001
Joo et al.	2009	509	320	COL1A2	Type I collagen	Rs2621125G	1.43	1.24-1.66	<0.001
Kim et al.	2011	270	149	eNOS	Endothelial nitric oxide synthase	T786C	8.03	4.4-140.93	0.057
Krischek and Inoue	2010	2198	963	JDP2	Transcription repressor	G894T	0.83	0.42-1.611	0.585
Li et al.	2012	422	164	IL-12A/B	Interleukin 12	Rs3212227AC/CC	1.37	1.1-2.63	0.004
Li et al.	2012	590	164	miR-314b/c	Micro RNA	Rs64938723CC	1.50	1.09-2.09	0.014
Lin et al.	2014	863	313	D336H	Endoglin	Rs280903G	1.26	1.04-1.55	0.019
Liu et al.	2012	440	220	IL-6-572	IL-6	G8660071	1.24	1.06-1.45	0.004
Low et al.	2011	2885	2050	LIMK1	Kinase for actin cytoskeleton	Rs243828	1.16	1.05-1.28	0.05
				MMP2	Matrix metalloproteinase; ECM remodeling in blood vessels	Rs243828	1.23	1.02-1.5	0.035
				TNF-α	TNF-α; pro-inflammatory cytokine	Rs2739274	1.17	1.03-1.32	0.031
Low et al.	2012	6867	1383	EDNRA	Endothelin-1 Receptor	Rs6882424	1.25	1.16-1.34	<0.001
Ruigrok et al.	2012	1218	791	CSG2	Versican (ECM structure)	Rs5251124	1.29	1.12-1.48	<0.001
Ruigrok et al.	2009	1440	632	HSPG2	Perlecain (ECM structure)	Rs3767137	1.22	1.08-1.39	0.002
Suo et al.	2014	751	308	KLK	Kallikrein (serine protease; basement membrane components, remodelling)	Rs1722561	0.71	0.53-0.95	0.023

Contd...
Table 1: Contd...

Study	Year	Total patients	IA patients	Gene(s)	Gene function	Variants tested	Greatest reported OR	95% CI	P
Yasuno et al.[38]	2010	20072	5891	RBBP8, STARD13/KL	Retinoblastoma binding protein 8; STAR-related lipid transfer; suppresses cell proliferation	Rs111661542, Rs9315204	1.22	1.15‑1.28	<0.001
				CNNM2, SOX17	Cyclin M2; Transcription factor	Rs12243409, Rs9298506, Rs10958409	1.29	1.19‑1.40	<0.001
				CDKN2A/B	Associated with CAD	Rs1333040, Rs684181	1.31	1.25‑1.39	<0.001
				NDUFA12/INR2/C1/FGD6/VEZT	Ubiquinone 1 alpha-12, nuclear receptor	Rs6538595, Rs1132274	1.16	1.10‑1.23	<0.001
Yasuno et al.[39]	2011	20162	5891	EDNRA	Endothelin‑1 receptor	Rs6841581	1.16	1.10‑1.23	<0.001
				NDUFA12/INR2/C1/FGD6/VEZT	Ubiquinone 1 alpha-12, nuclear receptor	Rs6538595, Rs1132274	1.16	1.10‑1.23	<0.001
Absence of data indicates that data were not reported numerically. ECM – Extracellular matrix; CAD – Coronary artery disease; TGF‑β – Transforming growth factor‑beta; TNF‑α – Tumor necrosis factor‑alpha; CI – Confidence interval; OR – Odds ratio; IA – Intracranial aneurysms; IL‑6 – Interleukin‑6.									

Table 2: Aneurysm rupture

Study	Year	Total patients	SAH patients	Gene(s)	Gene function	Variants tested	Greatest reported OR	95% CI	P
Adamski et al.[40]	2009	745	288	GpIIa	Platelet mediated thrombosis receptor	GpIIa A1/A2	0.92	0.783‑1.085	Nonsignificant
Adamski et al.[41]	2014	817	392	AGTR1/A116C	Angiotensin II type 1 receptor	A116C	0.77	0.60‑1.00	Nonsignificant
Hanson et al.[42]	2013	863	183	ADAMTS13	Thrombus inhibition (cleaves vWF)	Rs2285489	0.77	0.60‑1.00	Nonsignificant
Olsson et al.[43]	2011	549	183	9p21	Associated with atherosclerotic disease	Rs10965227	0.83	0.58‑1.19	0.31
Olsson et al.[44]	2012	549	183	MMP2		Rs2437864, Rs865094, Rs12934241, Rs243847, Rs2287074, Rs1163996, Rs11541998, Rs7201, Rs11547705, Rs7857345, Rs3333045, Rs10759127, Rs137778, Rs10757278, Rs137778, Rs17576, Rs2236416, Rs20544, Rs3918236, Rs3787268	1.39	0.91‑2.11	0.12
				MMP9		Rs2437864, Rs865094, Rs12934241, Rs243847, Rs2287074, Rs1163996, Rs11541998, Rs7201, Rs11547705, Rs7857345, Rs3333045, Rs10757278, Rs137778, Rs17576, Rs2236416, Rs20544, Rs3918236, Rs3787268	1.6	1.0‑2.6	0.14
Pera et al.[45]	2012	857	276	IL‑6	Inflammatory cytokine	Rs16911A GA, AA, Rs20110A GA, AA, C677T TT	0.9	0.5‑1.8	0.48
				Factor V Leiden	Increased thrombosis	Rs16911A GA, AA, Rs20110A GA, AA, C677T TT	0.9	0.5‑1.8	0.48

Contd...
polymorphism was found to have an OR of 1.42 ($P = 0.01$), the Factor XIII subunit B polymorphism had OR = 1.5 (0.04), MAPKAP1 had an OR of 1.58 ($P = 0.02$), and eNOS had an OR of 1.5 ($P = 0.02$).

Discussion

This investigation found that multiple studies have shown statistically significant association between IA formation and variants of the genes CDKN2, SOX17, and EDNRA. The association of these genes with IA formation across studies leads to the next possible query of how they are associated. Furthermore, only a few genes are associated with aneurysmal rupture (9p21, coagulation factor XIII, MAPKAP1, and eNOS).

Research into aneurysm wall morphology has shown that IAs display fewer layers of the vessel wall and less cell density than normal vasculature.[52] Challa and Han demonstrated using simulations that decreased vessel wall thickness would lead to greater stress, a known cause of IA.[53,54] Conversely, however, at least, one study has shown that there is a significant association of IA with increased vessel wall thickness through carotid intima-medial thickness testing, with the researchers noting that aneurysm patients had decreased circumferential stress and significantly lower elasticity when compared to controls.[55] This may indicate that aneurysm formation is not necessarily due to either increased or decreased thickness but possibly heterogeneous vessel wall structure. Simulations have also shown that stress was also increased in areas with heterogeneous thickness,[53] an effect may more pronounced in areas such as arterial bifurcations which receive the greatest shear stress.[56] A study by Nakatomi et al. on intracranial fusiform aneurysms noted that IA occurrence can be connected with not only breakdown of the internal elastic lamina, but also to proliferation after initial damage has occurred.[57] A connection between IA formation and CDKN2, SOX17, and EDNRA could genetically link heterogeneous vessel structure and the mechanisms mentioned.

CDKN2 is located at 9p21 and variations may be involved in coronary artery disease or aortic aneurysms.[25] In our literature review, polymorphisms of this gene were found to have associations with IA in multiple studies with a range of OR from 1.21 to 1.43.[21,23,25,34,38] Although the exact relationship is unknown it can be theorized. CDKN2BAS is an antisense region of the DNA bordered by genes for CDK inhibitors, which prevent vascular smooth muscle from proliferating. It is believed that dysfunction of the CDK inhibitors could lead to vascular wall abnormalities and thus to IA aneurysm formation.[58] If the proposed function of CDKN2 is correct, abnormalities could lead to up- or down-regulation of proliferation and, therefore, a heterogeneous wall thickness. Abnormal wall thickness would, in turn, increase the risk of IA according to the previously mentioned work by Nakatomi.
Our analysis highlights the possibly critical yet very limited amount of information available on the impact genetic factors may have on IA formation and rupture. A paucity of information exists on the exact mechanisms by which these genes affect aneurysm formation or rupture, and much of the information is theoretical. If the mechanisms of genetic involvement were laid out, perhaps new screening methods would be able to identify individuals at greater risk of aneurysm formation. More importantly, development of a risk stratification tool for aneurysm rupture and SAH would allow for early intervention.

With the identification of a reliable genetic target in IA patients, novel treatment strategies could be devised to exploit a specific genetic locus. In a rabbit model, the progression of abdominal aortic aneurysms was able to be significantly reduced using deoxynucleotides targeted at the specific gene, NFKB. Although this study was conducted in a nonhuman model, and not on IA specifically, it does show the potential of genetically targeted therapy to affect the development of aneurysms. It has been proposed that endovascular treatment of IA could be augmented by gene transfer using vectors embedded in coils. Further studies should be carried out in the future identify a gene or genes strongly associated with IA or SAH to advance treatment strategies.

Conclusion

Our review found that IA formation and SAH was associated with several possible genetic factors. The most studied gene and the strongest association was 9p21/CDKN2, which is involved in vessel wall remodeling. Other possible genes that may contribute to IA formation include EDNRA and SOX17; however, these factors were not studied as robustly as CDKN2. Overall, information regarding genetics of IA formation and SAH is lacking. Genetics are most likely one of many factors contributing to aneurysm formation and rupture. The contributions of blood flow dynamics and comorbidities as mentioned previously, cannot be ignored. While these elements are important to development and rupture of aneurysms, genetic influence may predispose certain patients to the formation of aneurysms and eventual rupture. Further research into the genetic factors responsible for structural remodeling and inflammatory response to endothelial injury that occur in IA and SAH is needed to better identify at-risk patients and develop novel gene-based therapies.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: A systematic review and meta-analysis. Lancet Neurol 2011;10:626-36.
2. Juvela S, Poussa K, Lehto H, Porras M. Natural history of unruptured intracranial aneurysms: A long-term follow-up study. Stroke 2013;44:2414-21.
3. Williams LN, Brown RD Jr. Management of unruptured intracranial aneurysms. Neurol Clin Pract 2013;3:99-108.
4. Bacigaluppi S, Piccinelli M, Antiga L, Veneziani A, Passerini T, Rampini P, et al. Factors affecting formation and rupture of intracraniel saccular aneurysms. Neurosurg Rev 2014;37:1-14.
5. Conway JE, Hutchins GM, Tamargo RJ. Marfan syndrome is not associated with intracranial aneurysms. Stroke 1999;30:1632-6.
6. Schievink WI, Parisi JE, Piepgras DG, Michels VV. Intracranial aneurysms in Marfan’s syndrome: An autopsy study. Neurosurgery 1997;41:866-70.
Familial subarachnoid hemorrhage: Distinctive features and associations of collagen type I α2 polymorphisms with the association analysis of genes involved in the AGTR1 gene A1166C polymorphism as a risk factor. Genome-wide association study for intracranial aneurysm identifies a variant of the collagen type III α1 gene modify risk of sporadic intracranial aneurysm in Japanese patients harboring intracranial aneurysms. J Hum Genet 2011;56:211‑6.

Ruigrok YM, Baas AF, Medic J, Wijmenga C, Rinkel GJ: The transforming growth factor-β receptor genes and the risk of intracranial aneurysm. Int J Stroke 2012;7:645‑8.

Suo M, Lin Y, Hu H, Song W, Sun K, Song Y, et al. Association of Kallkrein gene polymorphisms with sporadic intracranial aneurysms in the Chinese population. J Neurosurg 2014;120:1397‑401.

Yasuno K, Bilguvar K, Bijlenga P, Low SK, Kirschede B, Auburger G, et al. Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet 2010;42:420‑5.

Yasuno K, Bakircioglu M, Low SK, Bilguvar K, Gaal E, Ruigrok YM, et al. Common variant near the endothelin receptor type A (EDNRA) gene is associated with intracranial aneurysm risk. Proc Natl Acad Sci U S A 2011;108:19707‑12.

Adamski MG, Borratyńska A, Krupa M, Włoch‑Kopeć D, Turaj W, Wolskow P, et al. A1/A2 polymorphism of GpIIIa gene and a risk of aneurysmal subarachnoid haemorrhage. Biochem Biophys Res Commun 2009;383:228‑30.

Adamski MG, Golenia A, Turaj W, Baird AE, Moskala M, Dziedzic T, et al. The AGTR1 gene A1166C polymorphism as a risk factor and outcome predictor of primary intracerebral and aneurysmal subarachnoid hemorrhages. Neurol Neurochir Pol 2014;48:242‑7.

Hansen E, Olsson S, Bayazit B, Csabják L, Nyélén K, Nellgård B, et al. Association between variation in ADAMTS13 and aneurysmal subarachnoid hemorrhage. Thromb Res 2013;131:99‑101.

Olsson S, Csabják LZ, Joo D, Nyélén K, Nellgård B, Jern C. Association between genetic variation on chromosome 9p21 and aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2011;82:384‑8.

Olsson S, Csabják LZ, Joo D, Nyélén K, Nellgård B, Jern C. No evidence for an association between genetic variation at the MMP2 and MMP9 loci and aneurysmal subarachnoid haemorrhage. J Neuro 2012;259:193‑5.

Pera J, Dziedzic T, Adamski M, Jagiella J, Krupa M, Moskala M, et al. Interleukin-6-174G/C polymorphism and risk of aneurysmal subarachnoid hemorrhage: Case‑control study and meta‑analysis. Acta Neurol Scand 2012;125:111‑5.

Ruigrok YM, Slooter AJ, Rinkel GJ, Wijmenga C, Rosendaal FR. Genes influencing coagulation and the risk of aneurysmal subarachnoid hemorrhage, and subsequent complications of secondary cerebral ischemia and rebleeding. Acta Neurochir (Wien) 2010;152:193‑5.

Staalas JM, Nielsen M, Edsen T, Kofod P, Springborg JB, Moltke FB, et al. Common variants of the ACE gene and aneurysmal subarachnoid hemorrhage in a Danish population: A case‑control study. J Neurosurg Anesthesiol 2011;23:304‑9.
48. Staalso JM, Edsen T, Kotinis A, Romner B, Springborg JB, Olsen NV. Association of the NOS3 intron-4 VNTR polymorphism with aneurysmal subarachnoid hemorrhage. J Neurosurg 2014;121:587-92.
49. Yoshida T, Kato K, Yokoi K, Oguri M, Watanabe S, Metoki N, et al. Association of genetic variants with hemorrhagic stroke in Japanese individuals. Int J Mol Med 2010;25:649-56.
50. Alg VS, Sofat R, Houlden H, Werring DJ. Genetic risk factors for intracranial aneurysms: A meta-analysis in more than 116,000 individuals. Neurology 2013;80:2154-65.
51. Bilguvar K, Yasuno K, Niemelä M, Ruigrok YM, von Und Zu Fraunberg M, van Duijn CM, et al. Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet 2008;40:1472-7.
52. Abruzzo T, Shengelaia GG, Dawson RC 3rd, Owens DS, Cawley CM, Gravanis MB. Histologic and morphologic comparison of experimental aneurysms with human intracranial aneurysms. AJNR Am J Neuroradiol 1998;19:1309-14.
53. Challa V, Han HC. Spatial variations in wall thickness, material stiffness and initial shape affect wall stress and shape of intracranial aneurysms. Neurol Res 2007;29:569-77.
54. Chalouhi N, Hoh BL, Hasan D. Review of cerebral aneurysm formation, growth, and rupture. Stroke 2013;44:3613-22.
55. Maltete D, Bellien J, Cabrejo L, Iacob M, Proust F, Mihout B, et al. Hypertrophic remodeling and increased arterial stiffness in patients with intracranial aneurysms. Atherosclerosis 2010;211:486-91.
56. Alfano JM, Kolega J, Natarajan SK, Xiang J, Paluch RA, Levy EI, et al. Intracranial aneurysms occur more frequently at bifurcation sites that typically experience higher hemodynamic stresses. Neurosurgery 2013;73:497-505.
57. Nakatomi H, Segawa H, Kurata A, Shikawa Y, Nagata K, Kamiyama H, et al. Clinicopathological study of intracranial fusiform and dolichoectatic aneurysms: Insight on the mechanism of growth. Stroke 2000;31:896-900.
58. Roberts R, Stewart AF. 9p21 and the genetic revolution for coronary artery disease. Clin Chem 2012;58:104-12.
59. Miyake T, Aoki M, Nakashima H, Kawasaki T, Oishi M, Kataoka K, et al. Prevention of abdominal aortic aneurysms by simultaneous inhibition of NFkappaB and ets using chimeric decoy oligonucleotides in a rabbit model. Gene Ther 2006;13:695-704.
60. Ribournot E, Raymond J. Gene therapy and endovascular treatment of intracranial aneurysms. Stroke 2004;35:786-93.