Prevalence and associated factors of tuberculosis and diabetes mellitus comorbidity: A systematic review

Mahteme Haile Workneh¹,²*, Gunnar Aksel Bjune¹, Solomon Abebe Yimer¹,²,³,⁴

¹ Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway, ² Amhara Regional State Health Bureau, Bahir-Dar, Ethiopia, ³ Department of Microbiology, Oslo University Hospital, Oslo, Norway, ⁴ Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway

* maykm24@yahoo.com

Abstract

Introduction

The dual burden of tuberculosis (TB) and diabetes mellitus (DM) has become a major global public health concern. There is mounting evidence from different countries on the burden of TB and DM comorbidity. The objective of this systematic review was to summarize the existing evidence on prevalence and associated/risk factors of TBDM comorbidity at global and regional levels.

Methods

Ovid Medline, Embase, Global health, Cochrane library, Web of science and Scopus Elsevier databases were searched to identify eligible articles for the systematic review. Data were extracted using standardized excel form and pilot tested. Median with interquartile range (IQR) was used to estimate prevalence of TBDM comorbidity. Associated/risk factors that were identified from individual studies were thematically analyzed and described.

Results

The prevalence of DM among TB patients ranged from 1.9% to 45%. The overall median global prevalence was 16% (IQR 9.0%-25.3%) Similarly, the prevalence of TB among DM patients ranged from 0.38% to 14% and the overall median global prevalence was 4.1% (IQR 1.8%-6.2%). The highest prevalence of DM among TB patients is observed in the studied countries of Asia, North America and Oceania. On the contrary, the prevalence of TB among DM patients is low globally, but relatively higher in the studied countries of Asia and the African continents. Sex, older age, urban residence, tobacco smoking, sedentary lifestyle, poor glycemic control, having family history of DM and TB illness were among the variables identified as associated/risk factors for TBDM comorbidity.

Conclusion

This systematic review revealed that there is a high burden of DM among TB patients at global level. On the contrary, the global prevalence of TB among DM patients is low.
Assessing the magnitude and risk/associated factors of TBDM comorbidity at country/local level is crucial before making decisions to undertake TBDM integrated services.

Introduction

Diabetes mellitus (DM) and tuberculosis (TB) are major killers of mankind across the globe [1]. The World Health Organization (WHO) global report for 2015 indicates that, there were 10.4 million new cases and 1.4 million deaths resulting from TB [2]. In the same year, 415 million cases and 5.0 million deaths due to DM were registered [3]. About 95% of TB and 75% of the DM cases live in low- and middle income countries. The rising prevalence of DM is a potential threat to TB control. Poorly controlled DM increases the risk of TB and leads to unfavorable TB treatment outcomes [4–5].

WHO has recommended a collaborative framework for the clinical management and control of TBDM comorbidity. Three important intervention strategies namely, establishing mechanisms of collaboration between TB and DM control programs, detection and management of TB in patients with DM, and detection and management of DM in TB patients have been recommended [6]. Some countries in Asia (China and India) have piloted the TBDM collaborative framework and have demonstrated that bi-directional screening for both diseases is feasible [7–10]. It may also be important if other countries implement this strategy to reduce the dual burden of TBDM comorbidity. However, for policy making and implementation of this strategy, it is crucial to primarily understand the magnitude and associated factors of TBDM comorbidity particularly in low- and middle-income countries.

Former studies conducted in various parts of the world have shown that TBDM comorbidity has become a major public health problem. A wide range of estimates on the burden and associated factors of the two comorbid conditions and impact of DM on TB treatment outcome were reported [11–13]. For example, a previous systematic review of bidirectional screening for TBDM comorbidity reported high prevalence of DM among TB patients ranging from 1.9% to 35%. TB prevalence among DM patients ranged from 1.7% to 36% [11]. Similarly, another systematic review done on 13 observational studies reported that DM was associated with an increased risk of TB [relative risk (RR) = 3.11, 95% confidence interval (C.I.) 2.27–4.26] [12].

Several reasons motivated us to do the current systematic review. Firstly, the risk/associated factors of TBDM comorbidity were not included in the previous systematic reviews. Secondly, the numbers of individual studies on TBDM comorbidity conducted after 2010 have increased by 78% compared to the number of studies done before 2010. Thirdly, unlike the periods before six years, bi-directional screenings of TB and DM studies have been emerging from different African countries. Therefore, an updated synthesis of the prevalence and associated factors of the two comorbid conditions is important for policy making, planning and development of TBDM integrated services. This systematic review was thus conducted to summarize the existing evidence on prevalence and associated/risk factors of TBDM comorbidity.

Methods

Eligibility criteria

In this systematic review, we included all full text articles that involved human subjects of any age, and that determined either prevalence and risk/associated factors of DM among TB patients or prevalence and associated factors of TB among DM patients. Type of DM was not an inclusion/exclusion criteria and therefore both types were included. Studies reporting prevalence of
DM among latent TB patients, prevalence of impaired glucose tolerance among TB patients and incidence of TB among DM patients were excluded from the review. In addition, pharmacological studies related to TBDM comorbid conditions, articles written other than English language, conference papers, abstracts without full texts, articles that didn’t describe journal’s name and corresponding author, articles that reported prevalence/incidence of the two comorbidity conditions stratified by socio-demographic and clinical parameters were excluded from the study.

Search strategy and selection of studies
We searched Ovid Medline from 1946 to March 09/2016, Embase from 1947 to March 09/2016, Global health from 1973 to March 09/2016, Cochrane library from 1992–March 09/2016, Web of science from 1900-March 09/2016 and Scopus elsevier from 1996-March 09/2016 using the following medical subject heading (MeSh) and text terms (Table 1). The full strategy was run in Endnote software. We also used hand searching to look for relevant reference lists and journals.

Data extraction and risk of bias assessment
A standardized form using excel sheet was used to extract relevant information. The standardized form was pilot tested in twenty selected articles included in the study. A number of variables including study locations, years of publications, study periods, study designs, number of patients included in the study, and prevalence of TBDM and associated/risk factors were extracted from all studies included in the systematic review. The risk of bias for each study was assessed using study design, sampling technique and sample size determination methods as important domains. In addition, we considered “type of screening method used” and “time of screening” for studies that assessed prevalence of DM among TB patients. For studies that analyzed TB prevalence among DM patients, “type of TB screening method used” was considered as an important domain (Table 2). Some of the above domains were also used in the previously conducted systematic review (12). One reviewer (MHW) searched, extracted the data and assessed the risk of bias. Any ambiguity in the extracted and assessed information was resolved through discussion with the other author (SAY).

Data analysis and syntheses
Descriptive statistics (range and median with interquartile range (IQR)) were used to summarize prevalence rates estimated from individual studies. Due to the observed wide variations in prevalence, and sample sizes used in the reviewed articles, we reported median prevalence rate based on geographical regions. The summaries were described into two groups, i.e. prevalence of DM among TB patients and prevalence of TB among DM patients. Data analyses were performed using Statistical Package for Social Science (SPSS) version 22 Armonk, New York 10504 IBM Corp. The risk/associated factors were grouped into main themes and described accordingly. In addition, findings of the studies were grouped into the different geographical regions of the world depending on where the individual studies were conducted. Each domain assessed for the risk of bias was categorized as either low or high risk of bias depending on the findings of each study. We scored 0 and 1 for low and high risk of bias, respectively. Accordingly, for studies that determined prevalence of DM among TB patients, the overall risk of study bias was calculated out of five total score points. While those with a total point of 2 were considered low risk, studies with a total value of 3–4 and 5 were considered to have moderate and high risk of bias, respectively. Similarly, for studies that analyzed prevalence of TB among DM patients, the overall risk of study bias was calculated out of four total score points. Consequently, studies that scored a total of 1 were considered low risk, and those with a total value of 2 and 3–4 were evaluated to have moderate and high risk of bias, respectively.
Results

A total of 1845 literatures were initially selected for screening. These included 1765 literatures identified from the electronic database search, 59 identified by hand search and 21 literatures identified by reference check (Fig 1). After removing 780 duplicate articles form the total 1845 literatures, 1065 articles remained for further screening. Additional screening by title and
abstract resulted in the exclusion of 877 articles and we were left with 188 articles for further
screening. We performed full text screening on 188 articles and found that 94 articles were eli-
gible for final analysis [9–10, 14–105]. The criteria for exclusion of the different studies are
listed in Fig 1.

The 94 studies selected for final analysis had applied different study designs. Majority 36
(38.3%) were cross-sectional studies, 11 (11.7%) were prospective cohort, 9 (9.6%) applied ret-
rospective cohort study design, 21 (22.3%) were medical record reviews, four (4.3%) studies
used prospective observational (not clearly specified) method, three (3.2%) used case-controls
study design and 10 (10.6%) studies did not describe the type of study design used. The studies
represented 33 countries globally and were divided into six regions. Of the total studies
included in the analysis, 74 (78.7%) were published between 2011 and 2016, 12 (12.8%) studies
were published from 2000 to 2010, and 8 (8.5%) studies were reported between 1957 to 1999
(Table 3).

Risk of bias

The value of risk of bias ranged from 1 to 5 for 78 studies that determined prevalence of DM
among TB patients. Based on this assessment, 23 (29.5%) studies were assessed to have low
risk of bias, 49 (62.8%) studies had moderate risk of bias and 6 (7.7%) studies were evaluated
as having high risk of bias. The risk of bias for 19 studies that analyzed prevalence of TB
among DM patients ranged from 0 to 4. Accordingly, 3 (15.8%) studies were assessed to have

Table 2. Risk of bias assessment tools.

Variable	Methods used by the studies	Risk of bias
Study design	Prospective cohort, cross-sectional or descriptive, case control, observational, population based study designs	0
	Retrospective cohort, record review and studies that did not report study design	1
Sampling methods	Random selection	0
	Consecutive enrollment of all eligible patients & studies that did not describe sampling methods	1
Sample size determination	Sample size determined	0
	Sample size not determined or studies that did not report how sample size was estimated	1
Methods of DM screening among TB patients	Use of blood test alone, or use of combination methods (blood test either with urine glucose, self-report or medical record review)	0
	Studies that reported the use of self-report, urine glucose, record review methods alone or in combination, and studies that did not report methods of DM screening	1
Timing of DM screening	Studies that screened at the time of TB diagnosis or before TB treatment was started and both before and after anti-TB treatment was started	0
	Studies that screened after TB treatment was initiated, or at the middle of TB treatment, or at the end of TB treatment period or both, and studies that did not report timing of DM screening	1
Methods of TB screening among DM patients	Use of WHO or National TB Control Program diagnostic methods of the respective country, use of either combination or individual screening methods of either of the following methods: microbiologically determined (sputum microscopy or sputum culture), PCR, Xpert/RIF-TB test or QFT-G. Use of clinical sign and symptoms, response to treatment, chest x-ray, tuberculin skin test, histopathology in combination with one of the above mentioned diagnostic methods	0
	Studies that used ICD code, self-report, medical record review, clinical sign and symptoms, response to treatment, chest x-ray, tuberculin skin test, histopathology, broncho-alveolar lavage alone or in combination and studies that did not report methods of TB screening	1

0 = low risk, 1 = high risk, DM = diabetes mellitus, TB = tuberculosis, WHO = World Health Organization, PCR = Polymerase chain reaction, Xpert MTB/RIF-TB = GeneXpert Rifampicin-TB, QFT-G = QuantIFERON-TB Gold, ICD = International classification of diseases

https://doi.org/10.1371/journal.pone.0175925.t002
low risk of bias, 8 (42.1%) studies were evaluated as having moderate risk of bias and 8 (42.1%) studies were assessed to have high risk of bias (S1 Table, Assessment of risk of bias of the studies).

Prevalence of DM among TB patients

Out of the total 94 studies, 78 studies reported DM prevalence among TB patients. Except one study, all reported the total number of observed DM cases among enrolled TB patients. Accordingly, the prevalence of DM among TB patients ranged from 1.9% in Cotonou-Benin to 45% in Ebeye-Marshall Islands [68,103]. This amounted to an overall global median DM prevalence of 16% (IQR 9.0–25.3%). Among the 78 studies, 48 (61.5%) studies were conducted in countries of Asia and showed prevalence rates ranging from 5.1% in Saluru-South India to 44% in Kerala-India [14, 18]. The overall median prevalence of DM among TB patients in Asia was calculated to be 17% (IQR 11.4%-25.8%). Thirteen (16.7%) studies conducted in countries of Africa showed prevalence rates ranging from 1.9% in Cotonou-Benin to 16.7% in Tanzania [68, 70]. This resulted in an overall median prevalence of 6.7% (IQR 4.1%-10.4%) in the studied countries of Africa. Eight (10.3%) studies that were done in countries of North America showed a prevalence rates ranging from 11.4% in Georgia [93] to 39.0% in South Texas [92]. The median prevalence in North America was 23.6% (IQR 17.3%-35.4%). There were five (6.4%) studies from Oceania that showed prevalence rates ranging from 12% in Fiji [104] to 45% in Ebeye-Marshall Islands [103] and the overall median prevalence in this area was 23.2%
Table 3. Profile of reviewed articles.

Region	First author and publication year	Country	Study period	Study design	Reference
Asia	India group et al. 2013	India	Jan-Sep/2012	Prospective observational	[9]
	China group et al. 2012	China	1 Sep 2011–31 March 2012	Prospective observational	[10]
	Achanta et al. 2013	Saluru-South India	Jan–Sep/2012	Cross-sectional	[14]
	Alavi et al. 2012	Iran	2008–2010	Medical record review	[15]
	Alisjahbana et al. 2006	Indonesia	2001–2005	Case-control	[16]
	Bagheli et al. 2015	Tehran-Iran	May 2012-May 2013	Prospective cohort	[17]
	Balakrishnan et al. 2012	Kerala-India	June-July/2011	Cross-sectional	[18]
	Dave et al. 2013	Gujarat -India	Jan-Sep/ 2012	Cross-sectional	[19]
	Jawad et al. 1995	Nazimabad-Pakistan	NR	NR	[20]
	Lin et al. 2015	Taiwan	Sep-Nov/2012	Cross-sectional	[21]
	Pandya et al. 1991	Riyadh	July 83-August 87	Medical record review	[22]
	Raghuraman et al. 2014	Puducherry	NR	Cross-sectional	[23]
	Rajapakse et al. 2015	Sri Lanka	Jan 2013-Oct 2014	Cross-sectional	[24]
	Shidam et al. 2015	Pondicherry, India	Jan- Dec /2013	Cross-sectional	[25]
	Thapa et al. 2015	Nepal	15th of Sep - 23rd of Nov/2013	Cross-sectional	[26]
	Usmani et al. 2014	Lahore-Pakistan	1st July-30th Sep /2011	Cross-sectional	[27]
	Viswanathan et al. 2012	India	Jan-March/2011	NR	[28]
	Nagar et al. 2015	India	Oct 2013-March 2014	Cross-sectional	[29]
	Wang et al. 2013	China	Sep 2010-Dec 2012	Prospective community based cohort	[30]
	Sarvamangala et al. 2014	India	Jan 2012-Aug 2012	Cross-sectional	[31]
	Deshmukh et al. 1984	India	NR	NR	[32]
	Chachra et al. 2014	Ghaziabad -India	NR	Cross-sectional	[33]
	Wang et al. 2000	Taiwan	1993–1996	Retrospective cohort	[34]
	Chaudhry et al. 2012	Filipino-Saudi-Arabia	Jan. 2003-June 2010	Retrospective/medical record	[35]
	Duangritthi et al. 2013	Thailand	April 2010 -July 2012	Prospective	[36]
	Jabbar et al.2006	Pakistan	Jan 1992-Dec 1996	Retrospective descriptive (Medical record review)	[37]
	Jali et al. 2013	India	Feb-Sep/2012	Cross-sectional	[38]
	Magee et al. 2015	Georgia- Tbilisi	Oct 2011-May 2014	Prospective cohort	[39]
	Mi et al. 2013	Guangzhou, China	1 Sep. 2011–30 June 2012	Cross-sectional and retrospective cohort study (medical record review)	[40]
	Mi et al. 2014	Beijing -China	1 Jan 2011–30 June 2012	Cross-sectional and retrospective record review	[41]
	Pablo-Villamor et al.2014	Philippines	July 2011-Nov.2012	Prospective observational cohort study	[42]
	Park et al.2012	Korea	Jan 2005-Dec 2009	Retrospective (medical record review)	[43]
	Roghieh et al.2011	Iran	2004–2008	Retrospective cross-sectional (review of medical record)	[44]
	Mehta et al. 2015	India	2012–2013	Cross-sectional	[45]
	Shaikh et al. 2003	Saudi-Arabia	Jan1998-Dec1999	Retrospective (medical record)	[46]
	Siddiqui et al. 2009	Saudi-Arabia	Jan 2002-Dec 2007	Retrospective (medical record review)	[47]
	Sulaiman et al. 2013	Malaysia	Jan 2006-Dec 2007	Retrospective cohort	[48]
	Zhang et al. 2009	China	2008–2009	Retrospective	[49]
	Chen et al. 2014	China	Jan 2010-Dec 2011	Cross-sectional	[50]
	Jali et al. 2013	India	Feb 2012-Sep 2012	Prospective observational study	[51]
	Kumpatla et al. 2013	India	Mar-Dec/ 2012	Descriptive (review of record)	[52]

(Continued)
Region	First author and publication year	Country	Study period	Study design	Reference
India	Tripathy et al. 1984	India	1st Jan. 1978-31st Dec.1982	Prospective study	[53]
	Wu et al. 2015	China	2007–2008	Retrospective population based study	[54]
Pakistan	Naeem et al. 2016	Pakistan	Feb 2013-Dec 2014	Prospective observational	[55]
Kerala	Nair et al. 2013	Kerala-India	March-Sep/2012	Descriptive study	[56]
Pakistan	Tahir et al.2014	Kohat-Pakistan	NR	Cross-sectional	[57]
India	Jain et al. 2015	NR	Cross-sectional	[58]	
Pakistan	Amin et al. 2011	Pakistan	1st Aug 2010-31st July 2011	NR	[59]
	Prakash et al.2013	India	1 March-30 Sep 2012	Descriptive study	[60]
Pakistan	Qayyum et al.2004	Pakistan	Jan.2001 –Dec 2001	NR	[61]
Jammu	Sangrati et al.2012	Jammu-India	2009–2010	NR	[62]
Indonesia	Alisjahbana et al.2007	Indonesia	Oct 2000-Dec 2005	Prospective cohort	[63]
Iran	Kermansari et al.2014	Iran	April 2010-Dec 2011	Cross-sectional	[64]
India	Padmalatha et al. 2014	India	May 2014-Oct 2014	Cross-sectional	[65]
Kerala	Kottarath et al. 2015	Kerala-India	Aug.2014-July 2015	Descriptive	[66]
Hyderabad	Rao et al. 2015	Hyderabad-India	June-July/2014	Cross-sectional	[67]
Tanzania	Ade et al. 2015	Cotonou-Benin	June-July/2014	Cross-sectional	[68]
Ethiopia	Amare et al. 2013	Ethiopia	Feb-April/2012	Cross-sectional	[69]
Tanzania	Faurholt-Jepsen et al. 2011	Tanzania	April 2006-Jan 2009	Case control	[70]
Guinea-Bissau	Haraldsdottir et al. 2015	Guinea-Bissau	July 2010-July 2011	NR	[71]
Uganda	Kibirige et al. 2013	Uganda	Sep 2011- Feb 2012	Cross-sectional	[72]
Tanzania	Mtwangambate et al. 2014	Tanzania	Sep 2011-March 2012	Prospective cohort	[73]
Lagos-Nigeria	Ogbera et al. 2014	Lagos-Nigeria	Sep 2010 –March 2012	Cross-sectional	[74]
Lagos-Nigeria	Olayinka et al. 2013	Lagos-Nigeria	NR	Cross-sectional	[75]
Ethiopia	Workneh et al. 2016	Ethiopia	Sep 2103–Sep 2014	Cross-sectional	[76]
Ethiopia	Feleke et al. 1999	Ethiopia	Sep 1989–1996	Cross-sectional based on the retrospective analysis of data review record	[77]
Tanzania	Swai et al. 1990	Tanzania	1 June 1981–31 May 1977	NR	[78]
South-Africa	Webb et al. 2009	South-Africa	10 Sept 2006–31 Jan 2007	Cross-sectional	[79]
Kenya	Kirui et al. 2012	Kenya	Jan 2007-Feb 2011	Descriptive study from routine record data	[80]
Ethiopia	Tiroro et al. 2015	Ethiopia	Jan 2010-Jan 2014	Retrospective study (medical record)	[81]
Lagos-Nigeria	Ogbera et al. 2015	Lagos-Nigeria	March 2011-July 2012	Descriptive observational study	[82]
Ethiopia	Getachew et al. 2014	Ethiopia	Oct.2011-August 2012	Cross-sectional	[83]
Ethiopia	Damte et al. 2014	Ethiopia	Feb.2014-May 2014	Cross-sectional	[84]
Guinea	Balad et al. 2006	Guinea	1 Feb 30-June 2002	NR	[85]
Antananarivo-Madagascar	Rakotonirina et al. 2014	Antananarivo-Madagascar	July15,2013—Oct 30,2013	Descriptive	[86]
Tanzania	Mugusi et al. 1990	Tanzania	NR	NR	[87]
Europe	Moreno-Martinez et al. 2015	European city- Barcelona	1 Jan 2000–31 Dec 2013	Retrospective, population based cross-sectional	[88]
Britain	Warwick et al. 1957	Britain	1 Jan 1940-Dec 31,1954	Medical record review	[89]
Mexico	Ponce-de-leon et al. 2004	Mexico	1995–2003	Population based cohort study	[90]

(Continued)
Three (3.8%) studies conducted in South America indicated prevalence rates ranging from 6.1% in Brazil to 14% in Guyana [98,101]. This amounted to an overall median prevalence of 11.1% (IQR 6.1%-14.0%). There was only one study from Europe that showed a prevalence rate of 5.9% (Fig 2).

![Fig 2. Map showing median prevalence of DM among TB patients by region. (NB: There is only one study reported in Europe). IQR: Interquartile range (Source of the map: https://www.flickr.com/photos/blatantworld/5052373414/, Accessed March 20/2017).](https://doi.org/10.1371/journal.pone.0175925.g002)

Table 3. (Continued)

Region	First author and publication year	Country	Study period	Study design	Reference
South America					
	Restrepo et al. 2007	Texas-Mexico	Mexico (1998–2003) / Texas (1996–2002)	Medical record review	[91]
	Restrepo et al. 2011	South-Texas & North-eastern Mexico	March 2006-Sep 2008	Cross-sectional	[92]
	Magee et al. 2014	Georgia-US	Jan 2009- Sep 2012	Retrospective cohort	[93]
	Suwanpimolkul et al. 2014	USA-San Francisco	April 2005-March 2012	Retrospective	[94]
	Delgado-Sánchez et al. 2015	Mexico	2000–2012	TB registry review retrospective analysis	[95]
	Castellanos-Joya et al. 2014	Mexico	July 2012—April 2013	Prospective observational cohort	[96]
	Jiménez-Corona et al. 2013	Southern-Mexico	1995 to 2010	Prospective cohort	[97]
	Alladin et al. 2011	Guyana	May-June/2006	Cross-sectional	[98]
	Magee et al. 2013	Peru	Jan,2005-May 2008	Medical record	[99]
Oceania	Reis-Santos et al. 2013	Brazil	2009	Disease notification information system	[100]
	Bridson et al. 2015	Australia	1995–2014	Retrospective	[101]
	Viney et al. 2015	Kiribati-Pacific Island	June 2010-March 2012	Case control (unmatched)	[102]
	Nasa et. al. 2014	Ebeye-Marshall Islands	July 2010-December 2012	Retrospective cohort	[103]
	Prasad et al. 2014	Fiji	2010–2012	Retrospective descriptive (TB register)	[104]
	Gounder et al. 2012	Fiji	Jan-March/2012	Cross-sectional medical record review	[105]

NR = Not reported, TB = tuberculosis.

https://doi.org/10.1371/journal.pone.0175925.t003
Of the 78 studies included in this systematic review, only ten (12.8%) studies reported number needed to screen (NNS). The NNS indicates the number of TB patients that must be screened to get a single case of DM. The NNS ranged from four cases in Kerala India [18] to 56 in Sri Lanka [23]. Only 42 (53.8%) studies described the number of new DM patients obtained by screening TB patients. The number of new DM cases obtained after screening ranged from one case in Cotonou-Benin [68] to 402 cases in India [9] (Table 4).

Prevalence of TB among DM patients

Out of the total 94 studies, 19 studies reported TB prevalence among DM patients. The studies were conducted in 11 countries distributed in four geographic regions of the world. The prevalence of TB among DM patients ranged from 0.38% in Taiwan [21] to 14% in Pakistan [59], and the overall median prevalence was 4.1% (IQR 1.8%-6.2%). Among the 19 studies, ten (52.6%) were from four countries of the Asian Region and the prevalence ranged from 0.38% in Taiwan [21] to 14% in Pakistan [59]. This amounted to an overall median TB prevalence of 3.5% (IQR 0.9%-10.5%) among DM patients in the studied countries of Asian Region. Seven (36.8%) prevalence studies were conducted in four countries of the African Region, and the prevalence ranged from 1.3% in Tanzania [73] to 6.2% in Ethiopia [69]. The overall median TB prevalence among DM patients in the Africa studies was 5.6% (IQR 3.5%-5.8%). There was only one study in North America (Mexico) that showed a prevalence rate of 4.9% [96]. There was also one prevalence study from Europe that showed prevalence rate of 1.82% [89] (Fig 3). Only two study reported the NNS and NNS reported to screen DM patients to get one TB case ranges 71 DM patients in Mexico [96] to 812 in India [60] (Table 4).

Risk factors for TBDM comorbidity

The risk/associated factors for TBDM comorbidity were heterogeneous. Both sexes, age, family history of DM, pulmonary form of TB (PTB) and positive sputum smear were the most frequently mentioned factors in the majority of the studies. The studies used different measures of association to analyze the factors. Out of the 94 reviewed articles, 11 (11.7%) studies applied chi square test. Twenty two (23.4%) studies reported TBDM risk/associated factors using odds ratio, relative risk or hazard ratio. Conversely, 61 (64.9%) studies did not report either associated or risk factors for TBDM coexistence. This might be due to that most of the studies did not have adequate sample size and almost all studies mentioned neither in their objective nor in the limitation part about the risk factors of TBDM comorbidity. The following is a brief thematic description of the associated/ risk factors that were identified in the different studies.

1. Socio-demographic and economic factors. A number of studies concluded that both males [18, 21, 94] and females [76, 91, 95] were at increased risk for TBDM comorbidity. Men were more likely to develop TBDM comorbidity compared to women [15]. Twenty two studies reported that older age increased the risk of TBDM comorbidity [14–15, 17–19, 23, 25–26, 28, 30, 48, 54, 56, 65–67, 76, 81, 86, 91, 96, 100]. Urban residence and having an education level beyond primary schooling were associated factors for TBDM comorbid conditions [31, 69]. Place of birth, ethnicity, high-income status and sedentary occupation were risk factors associated with TBDM comorbidity [21, 26, 28, 30, 48, 86, 91, 94].

2. Behavioral factors. Illicit drug use, and sedentary lifestyle were reported as behavioral factors associated with TBDM comorbidity [15, 85]. Cigarette smoking [21] and being alcohol drinker [23] were identified as an increased risk factors for TBDM coexistence. Practicing frequent outdoor activity was reported as a low behavioral risk factor for TBDM comorbidity [30].
Table 4. Prevalence of TBDM comorbidity.

Region	First author and publication year	Country	Prevalence of DM among TB patients	Prevalence of TB among DM patients	Reference					
			Enrolled TB patients	Total DM case	Prevalence of DM (%)	Type of DM status and prevalence	NNS Enrolled DM patients	Total TB cases	Prevalence of DM (%)	NNS
			New N (%)	Known N (%)						
Asia	India group et al. 2013	India	8109	1084	13	402 (5)	682 (8)	NR		
	China group et al. 2012	China	8886	1090	12.4	227 (2.9)	863 (9.7)	NR		
	Achanta et al. 2013	Saluru-South India	374	19	5.1	12 (3.2)	7 (1.9)	31		
	Atavi et al. 2012	Iran	148	36	24.3	NR	36 (24.3)	NR		
	Alisjahbana et al. 2006	Indonesia	454	60	13.2	36 (60.0)	24 (40)	NR		
	Baghaei et al. 2015	Tehran-Iran	293	101	34.5	45 (15.4)	56 (19.1)	5		
	Balakrishnan et al. 2012	Kerala-India	552	243	44	115 (21)	128 (23)	4		
	Dave et al. 2013	Gujarat-India	553	36	6.5	22 (4)	14 (2.5)	25		
	Jawad et al. 1995	Nazimabad-Pakistan	106	21	19.8	NR	NR	NR		
	Lin et al. 2015	Taiwan	3,087	12	0.38	NR	NR	NR		
	Pandya et al. 1991	Riyadh	1566	136	8.7	NR	NR	NR		
	Raghuraman et al. 2014	Puducherry	217	63	29	18 (8.3)	45 (20.7)	NR		
	Rajapakshe et al. 2015	Sri Lanka	112	10	9	2 (1.8)	8 (7.1)	56		
	Shidam et al. 2015	Pondicherry-India	570	121	21.2	52 (43)	69 (57)	11		
	Thapa et al. 2015	Nepal	407	37	9.1	9 (2.2)	28 (6.9)	NR		
	Usmani et al. 2014	Lahore-Pakistan	158	41	25.9	9 (5.69)	32 (20.3)	NR		
	Viswanathan et al. 2012	India	827	209	25.3	77 (9.3)	132 (15.96)	NR		
	Nagar et al. 2015	India	220	34	15.4	9 (4.09)	25 (11.3)	NR		
	Wang et al. 2013	China	6382	403	6.3	177 (43.9)	NR	NR		
		6675 Non-TB controls	313	4.7	136 (43.5)	NR	NR	NR		
	Sarvamangala et al. 2014	India	200	28	14	NR	18 (64.3)	NR		
	Deshmukh et al. 1984	India	2434	138	5.6	78 (56.6)	60 (43.4)	NR		
	Chachra et al. 2014	Ghaziabad-India	700	88	12.6	64 (72.7)	24 (27.3)	NR		
	Wang et al. 2000	Taiwan	2841	480	16.9	NR	NR	NR		
	Chaudhry et al. 2012	Filipino-Saudi-Arabia	1388	114	7.17	NR	NR	NR		
	Duangrithi et al. 2013	Thailand	227	37	16.3	11 (29.7)	26 (70.3)	NR		
	Jabbar et al. 2006	Pakistan	1458	173	11.9	NR	NR	NR		

(Continued)
Region	First author and publication year	Country	CP	Prevalence of DM among TB patients	Prevalence of TB among DM patients	Reference						
				Enrolled TB patients	Total DM case							
				Prevalence of DM (%)	Type of DM status and prevalence	NNS						
				New N (%)	Known N (%)	Enrolled DM patients	Total TB cases	Prevalence of DM (%)	NNS			
						Non-DM 40,9000	691	1.7				
	Jali et al. 2013	India	307	109	35.5	NR	NR	NR	[38]			
	Magee et al. 2015	Georgia- Tbilisi	318	37	11.6 (95% C.I. 8.4–15.5)	9 (24.3)	NR	NR	[39]			
	Mi et al. 2013	Guangzhou, China	1589	189	12	NR	NR	NR	[40]			
	Mi et al. 2014	Beijing-China	621	187	30	NR	NR	NR	[41]			
	Pablo-Villamor et al. 2014	Philippines	38	7	18.4 (95% C.I. 7.7–34.3)	NR	NR	NR	[42]			
	Park et al.2012	Korea	492	124	25.2	NR	NR	NR	[43]			
	Roghieh et al. 2011	Iran	200	80	40	NR	NR	NR	[44]			
	Mehta et al. 2015	India	194	22	11.3	NR	NR	NR	[45]			
	Shaikh et al. 2003	Saudi-Arabia	692	187	27	23 (12.3)	NR	NR	[46]			
	Siddiqui et al. 2009	Saudi-Arabia	216	35	16	NR	NR	NR	[47]			
	Sulaiman et al. 2013	Malaysia	1267	338	26.7	NR	NR	NR	[48]			
	Zhang et al. 2009	China	2141	203	9.5	NR	NR	NR	[49]			
	Chen et al. 2014	China	1126	182	16.2	18 (1.6)	164 (14.6)	NR	[50]			
	Jali et al. 2013	India	307	109	35.5	49 (15.96)	60 (19.54)	4118	111	2.70	NR	[51]*
	Kumpatla et al. 2013	India	7083	50	0.7	NR			[52]			
	Tripathy et al. 1984	India	219	9	4.1	NR			[53]			
	Wu et al. 2015	China	201	40	19.90	NR	NR	NR	[54]			
	Naeem et al. 2016	Pakistan	95	17	16.75	NR	NR	NR	[55]			
	Nair et al. 2013	Kerala-India	920	298	32.4	63 (7)	235 (26)	NR	[56]			
	Tahir et al.2014	Kohat-Pakistan	253	48	18.97	NR	NR	NR	[57]			
	Jain et al. 2015	India	189	41	21.69	NR	NR	NR	[58]			
	Amin et al. 2011	Pakistan	100	14	14	NR			[59]			
	Prakash et al.2013	India	510	47	9.2	15 (2.9)	32 (6.3)	1670	47	2.8	812	[60]*
	Qasym et al.2004	Pakistan	95	9	9.5	NR			[61]			
	Sangrul et al. 2012	Jammu-India	280	23	8.2	NR	NR	NR	[62]			
	Alijsjahbana et al. 2007	Indonesia	634	94	14.8	57 (61.3)	NR	NR	[63]			
	Kermansarar et al. 2014	Iran	400	1	1	NR			[64]			

(Continued)
Region	First author and publication year	Country	Prevalence of DM among TB patients	Prevalence of TB among DM patients	Reference						
			Enrolled TB patients	Total DM case	Prevalence of DM (%)	Type of DM status and prevalence	NNS	Enrolled DM patients	Total TB cases	Prevalence of DM (%)	NNS
			252	77	30.60	60 (77.8)	17 (22.2)	NR	65		
			147	29	19.7	16 (55)	13 (45)	NR	66		
			96	10	10	NR	67				
			159	3	1.9	1 (0.63)	2 (1.26)	NR	68		
			350	Non-TB control	NR	9.4 (95% C.I. 6.6–13.0)	NR	NR	69		
			107	3	2.8	NR	NR	NR	70		
			531	Non-TB control	11	2.1	NR	NR	71		
			260	22	8.5	NR	5 (1.9)	NR	72		
			803	NR	16.7 (95% C.I. 14.2–19.4)	NR	NR	NR	73		
			3376	162	4.8	85 (52.5)	77 (47.5)	NR	74		
			351	20	5.7	10 (2.8)	NR	NR	75		
			1314	109	8.3	64 (4.9)	45 (3.4)	19.8	76		
			1352	78	5.8	NR	77				
			1250	70	5.6	NR	78				
			258	9	3.48	NR	79				
			1376	77	5.6	NR	80				
			199	17	8.5 (95% C.I. 4.6–12.5)	9 (53)	NR	NR	81		
			199	17	8.5 (95% C.I. 4.6–12.5)	9 (53)	NR	NR	82		
			120	19	15.8 (95% C.I. 9.20–22.45)	16 (84.2)	3 (15.8)	NR	83		
			388	13	3.35 (95% C.I. 1.35–5.35)	4 (31)	NR	NR	84		
			156	9	5.8 (95% C.I. 3.1–10.6)	NR	4 (2.6)	NR	85		
			506	34	6.7	25 (4.9)	9 (1.8)	NR	86		
			5849	349	5.9	NR	NR	NR	87		
Europe	Moreno-Martinez et al. 2015		5849	349	5.9	NR	NR	NR	88		

(Continued)
3. Clinical factors. Both lower and higher body mass index (BMI), human immune–deficiency virus (HIV) coinfection, body weight loss and hypertension were reported as associated factors for TBDM comorbidity [15–16, 21, 26, 58, 65, 85]. Both lower and higher BMI were also reported as an increased risk factor for TBDM comorbidity [28, 81]. Pre-existing and long duration of DM [69, 81], poor glycemic control at the time of TB diagnosis [79], patients with liver cirrhosis [21] and history of high blood pressure [26] were identified as an increased risk factor for the development of TBDM comorbidity. DM with both positive [15] and negative

Table 4. (Continued)

Region	First author and publication year	Country	Prevalence of DM among TB patients	Prevalence of TB among DM patients	Reference							
			Enrolled TB patients	Total DM case	Prevalence of DM (%)	Type of DM status and prevalence	NNS	Enrolled DM patients	Total TB cases	Prevalence of DM (%)	NNS	
			NNS (%)	Known N (%)				NR	NR	NR	[89]	
Warwick et al.	1957	Britain	1851	34	1.82	NR	NR	NR	[90]			
North America			Love	1241	401	27.8	NR	401 (27.8)	NR	[91]		
Restrepo et al.	2011	South-Texas	61	24	39.0	NR	NR	NR	[92]			
Magee et al.	2014	Georgia-US	1325	151	11.4	NR	NR	NR	[93]			
Suwanpimkul et al. 2014	USA-San Francisco	791	126	15.9	NR	NR	NR	[94]				
Delgado-Sánchez et al. 2015	Mexico	181,378	34,988	19.29	NR	34,988 (19.29)	NR	[95]				
Castellanos-Joya et al. 2014	Mexico	361	70	19.4	16 (22.9)	NR	22	783	38	4.9	71	[96]*
Jiménez-Corona et al. 2013	Southern -Mexico	1262	400	31.7	26 (2.1)	374 (29.6)	NR	[97]				
Magee et al.	2013	Peru	1671	186	11.1	NR	NR	NR	[98]			
Reis-Santos et al. 2013	Brazil	29,275	1797	6.1 (95% C.I. 6.9–6.4)	NR	NR	NR	[100]				
Bridison et al.	2015	Australia	69	16	23.2	NR	NR	NR	[101]			
Viney et al. 2015	Kiribati-Pacific Island	275	101	37	47 (17.1)	54 (19.6)	5	[102]				
Nasa et. al. 2014	Ebeye-Marshall Islands	62	28	45	NR	NR	NR	[103]				
Prasad et al. 2014	Fiji	567	68	12	8 (11.8)	26 (38.2)	NR	[104]*				
Gounder et al. 2012	Fiji	138	18	13	NR	18 (13)	NR	[105]				

* = bidirectional screening studies results
θ = the types of DM status information for 34 (50%) patients was not documented
DM = diabetes mellitus, TB = tuberculosis, NNS = number needed to screen, NR = not reported, C.I. = confidence interval.
HIV status were documented as associated and increased risk factor for TBDM comorbid condition. HIV coinfection and malnutrition were also reported as low risk factor for TBDM comorbidity [72, 95]. HIV coinfection with injection drug use (IDU) or without IDU was reported as low risk factor for TBDM coexistence [88]. TBDM comorbid patients were more likely to be PTB case, smear-positive, to have anti-TB drug resistance, to have cavitary lesions on chest x-ray, and to have high alanine transaminase (ALT) level [10, 25, 28, 30, 48, 54, 56, 88–89, 72, 76, 84, 88, 95, 100]. On the contrary, being an extra pulmonary TB (EPTB) case was reported as a low risk factor for TBDM comorbidity [100].

4. History of DM, TB illness & TB treatment. Having family history of DM, history of TB illness and treatment, experiencing more side effect of anti-TB treatment, type of TB treatment category, treatment for previous TB episode and extension of anti-TB treatment durations were reported as increased risk factor for TBDM comorbidity [23, 25–26, 28, 30, 54, 65, 69, 76, 88, 95]. Receiving TB treatment after abandonment was also identified as low risk factor for TBDM comorbidity [100].

5. Other factors. Contact with TB patient in the family was reported as associated/increased risk factor for TBDM comorbidity [16, 69, 79]. Being imprisoned was associated with TBDM comorbidity [15, 98]. TBDM comorbid patients may require hospitalization [88]. TBDM patients were more likely to die from TBDM comorbidity [100]. Being kept in certain institutions (prisons shelter, orphanage and psychiatric hospital) were documented as low risk factor for TBDM comorbidity [100] (Table 5).

Discussion
This systematic review revealed that the global burden of TBDM comorbidity is high, and is fueled by heterogeneous risk/associated factors. The observed global TBDM comorbidity
Table 5. Thematic analysis of risk/associated factors for TBDM comorbidity.

Risk factor	Associated factors	Risk factors
Socio-demography and economic factors		
Sex		
Male	[15]	[18,21,94]
Female	[76,91,95]	
Age	[14–15,17,19,65,67,98]	[18,23,25–26,28,30,48,54,56,76,81,88,91,100]
Old age	[31]	[69]
Urban residence	[31]	
Education beyond primary schooling		
Place of birth (Spanish born, Chinese, Philippines)	[48,88,94]	
Ethnicity (Hispanic)	[91]	
High-income status	[26,30]	
Sedentary occupation	[28]	
Family size	[67]	
Behavioral factors		
Illicit drug use	[15]	[21,26]
Sedentary lifestyle	[85]	
Smoking	[21,26]	[85]
Current alcohol drinker	[23]	[30]
Frequent outdoor activity	[30]	[30]
Clinical factor		
Body weight loss	[21]	[21]
BMI [17.7 kg/m² (range11.2–31.4), (<18.6kg/m²), (18.5–22.9 kg/m2), and (>18.5 kg/m²)]	[16]	[28,81]
Overweight or obese	[58,65,85]	[58,65,85]
DM	[81]	[81]
Long duration of DM	[69,81]	[69,81]
Poor glycemic control per unit increase in glycated hemoglobin (HbA1c)	[79]	[79]
DM in HIV negative status	[70]	[70]
HIV coinfection	[15]	[15]
HIV with injection drug use	[88]	[88]
HIV without injection drug use	[88]	[88]
Malnutrition	[95]	[95]
Liver cirrhosis	[21]	[21]
Hypertension	[65]	[26]
PTB	[28,48,56,76]	[28,48,56,76]
EPTB	[100]	[100]
Drug resistance (in patient with antimicrobial susceptibility test)	[95]	[95]
Positive sputum smear	[25,30,54,84,100]	[25,30,54,84,100]
Cavitary on chest X-ray	[30,54,88]	[30,54,88]
Raised serum ALT concentration	[72]	[72]

(Continued)
The observed prevalence of TB among DM patients in this systematic review is low compared to the previous systematic review findings [11]. This might be related to the small number of similar studies conducted, the low sensitivity of diagnostic methods used to detect TB cases and the magnitude of TB prevalence in the studied countries. In addition, the language restriction criteria that we used may have resulted in underreporting bias. Hence, we must be

prevalence in the current systematic review is higher compared to the findings of the previous systematic review conducted in 2010 [11]. This might be related to the increasing number of studies addressing TBDM comorbidity in the last six years. A total of 74 studies have been published since 2011 which showed a threefold increase compared to the number of similar studies conducted before 2010. Contrary to the previous systematic review [12], where studies from the Africa Regions were not reported, our systematic review showed an increasing number of studies reporting high prevalence of DM among TB patients in some countries of the African Region.

The number of new DM patients identified by screening TB patients varied in the different studies. This variation might be due to differences in the screening methods used and variations in the prevalence of DM in the general population of the respective countries. However, the large proportion of newly identified DM patients suggests the identification of previously undiagnosed DM patients and highlights that screening TB patients for DM in the TB clinic is an important public health intervention [102].

The observed prevalence of TB among DM patients in this systematic review is low compared to the previous systematic review findings [11]. This might be related to the small number of similar studies conducted, the low sensitivity of diagnostic methods used to detect TB cases and the magnitude of TB prevalence in the studied countries. In addition, the language restriction criteria that we used may have resulted in underreporting bias. Hence, we must be
cautious in the interpretation of this finding. The prevalence of TB among DM patients in the studied countries of Asia and the African Regions were high compared to findings of other regions. This may be linked to the fact that countries in these continents are experiencing the fastest increase in DM prevalence along with the high burden of TB and HIV [27, 72].

We analyzed socio-demographic, behavioral, clinical and other factors associated with TBDM comorbidity. Male sex was identified as a risk/associated factor for TBDM comorbidity. Men usually practice smoking cigarettes and alcohol drinking which can predispose them to both diseases conditions [84]. Similarly, being women was found to be risk factor for TBDM comorbidity. The reason may be linked to poor health service utilization, care taking role of women for the sick, and influence of estrogen on cytokine production during TB infection that increases the vulnerability of women to TB and consequently to DM [76]. Old age was reported as associated/risk factor for TBDM comorbidity. The reason may be related to decrease in immune status in older age individuals that make them more susceptible to develop both TB and DM [48, 76, 81]. High-income status was also identified as risk factor for the two comorbid condition [26, 30]. Patients with high-income may spend much time in sedentary lifestyle activities than their counter parts and have better access for diagnostic and medical facilities [26]. Urban residence was reported as associated/risk factor for the development of TBDM comorbid condition [31, 69]. This might be due to the overcrowded living conditions, less physical activity and consumption of a high calorie rich diet among residents in urban areas [69]. In addition, urban residents have better access for the diagnosis of TB and DM.

Behavioral attributes such as tobacco smoking and alcohol drinking are associated with TBDM comorbidity [21, 23, 26]. Cigarette smoking results in inflammation and oxidative stress in body cells and increases the risk of developing DM [26]. In contrast, frequent outdoor activity was identified as protective factor for TBDM comorbidity [30]. This might be linked to the fact that increased physical activity results in increased peripheral insulin sensitivity which leads to more glucose uptake by body muscles [26].

Our systematic review identified various clinical factors associated with TBDM comorbidity. Patients BMI status was identified as increased as well as low risk factor for TBDM comorbid conditions. Previous studies showed that overweight and obesity were risk factors for DM but were protective against TB disease. However, weight loss due to poorly controlled DM and metabolic decomposition takes away this protection and becomes risk factor for TB [30, 81]. Existing DM was the other risk factor for TBDM coexistence. Long term DM is usually associated with uncontrolled DM and can impair the innate and adaptive immune response necessary to counteract the proliferation of TB [28, 69, 81]. Poor glycemic control and high blood pressure were reported as risk factors for TB among DM patients [79]. In resource poor settings, early diagnosis and adequate glycemic control is difficult and poor glycemic control may predispose DM patients to TB disease. In addition, hyperglycemia may provide a conducive environment for bacterial growth and increased virulence of various organisms [69–70, 79, 81]. The increased risk factor for TBDM related to high blood pressure may be linked to the fact that persons with DM were more likely to develop high blood pressure [26].

There is contradictory finding regarding the association of HIV with TBDM comorbidity [15, 70, 72, 88]. This might be linked to use of taking cotrimoxazole prophylaxis among HIV positive patients. Cotrimoxazole has been found to cause hypoglycemic effects in some patients [72]. The risk factor related to HIV infection could also be related to use of certain antiretroviral drugs that may predispose HIV infected patients to DM [106]. Having family history of DM was also identified as associated/risk factors for TBDM comorbidity. Family history of DM is a known risk factor for DM [3].

Contact with known TB patients was considered as risk factor for the development of TB among DM patients [16, 69, 79]. Frequent contact could lead to transmission of TB [69].
Patients with history of imprisonment were more likely to be exposed to TBDM comorbid conditions [15, 98]. This might indicate that the acquisition of both diseases during imprisonment period is very high [98] and might be related to overcrowded and stressful living conditions. It was also reported that TBDM comorbid patients usually become hospitalized [88]. DM patient more likely require hospitalization due to glycemic imbalance as a result of infection that may require taking insulin [88].

This systematic review has strengths and weaknesses. The comprehensive search strategy applied using multiple electronic databases and the inclusion of a large number of studies covering almost all geographic regions of the world are strengths of the study. Potential limitation of the study could be the exclusion of studies written in other languages except English. However, since our inclusion criteria was very broad and accommodated majority of the studies that assessed the magnitude and associated/risk factors of TBDM comorbidity, the effect of excluding non-English written articles in the generalizability of the study findings would be minimal. We could not be able to report age of study participants due to lack of uniformity in the way it was reported in the reviewed articles. We recommend future studies to address this important variable. One may question why we used prevalence rate to report the findings since all studies reviewed were not cross-sectional studies. However, majority of the articles included in this systematic review reported their findings as prevalence of either TB among DM or DM among TB patients. Some reported as the number of DM or TB patients obtained from screening TB or DM patients. The studies were observational studies and used cross-sectional and descriptive study designs. We thus have used prevalence rate as our effort was to relate it with what the reviewed articles reported. We did not exclude studies based on the level of risk of bias assessment as our main objective was to understand the global picture of the prevalence and associated/risk factors of TBDM comorbidity in a more comprehensive manner. We believe that this may not significantly affect the generalizability of the study as majority of the studies were evaluated as having low-moderate risk of bias. We did not perform metaanalysis because of methodological variations observed in the different studies included in our systematic review. The studies varied by type of study design used, methods of DM and TB screening, timing of DM screening and number of enrolled patients.

Conclusion

This systematic review revealed that there is a high burden of DM among TB patients at global level. The highest prevalence of DM among TB patients is observed in the studied countries of Asia, North America and Oceania. On the contrary, the prevalence of TB among DM patients is low globally, but relatively higher in the studied countries of Asia and the African continents. Factors associated with TBDM comorbidity included sex, older age, urban residence, illicit drug use, alcoholism, cigarette smoking, sedentary lifestyle, obesity, HIV coinfection, hypertension, long duration of pre-existing DM, poor glycemic control, being a PTB patient, and family history of DM.

The implementation of the WHO recommended TBDM integrated services is important to address the impact of TBDM comorbidity [6]. However, as implementing such a strategy is resource intensive, countries may benefit by first assessing the magnitude and risk/associated factors of TBDM comorbidity before making decisions to undertake such a big initiative.

Supporting information

S1 Prisma Checklist. This is prisima checklist for the prevalence and associated factors of tuberculosis and diabetes mellitus comorbidity: a systematic review.

(DOCX)
S1 Table. Assessment of risk of bias of the studies. (DOCX)

Acknowledgments
We would like to thank the library staff at the University of Oslo (Rikshospitalet branch) for their guidance on how to prepare the template and, searching for articles from different databases.

Author Contributions
Conceptualization: MHW GAB SAY.
Formal analysis: MHW GAB SAY.
Investigation: MHW.
Methodology: MHW GAB SAY.
Supervision: GAB SAY.
Validation: MHW SAY.
Writing – original draft: MHW.
Writing – review & editing: MHW GAB SAY.

References
1. Syal K, Srinivasan A, Banerjee D. VDR, RXR, coronin-1 and interferon γ levels in PBMCs of type-2 diabetes patients: Molecular link between diabetes and tuberculosis. Ind J Clin Biochem. 2015; 30 (3):323–328.
2. World Health Organization. Global tuberculosis report. Available at http://apps.who.int/iris/bitstream/10665/250441/1/9789241565394-eng.pdf?ua=1 Accessed Nov 18/2016
3. International Diabetes Federation. Diabetes atlas. Seventh edition. Available at: http://www.diabetesatlas.org/resources/2015-atlas.html. Accessed February 03/2016.
4. Jeon CY, Murray MB, Baker MA. Managing tuberculosis in patients with diabetes mellitus: why we care and what we know. Expert Rev. Anti Infect. Ther. 2012; 10(8):863–868. https://doi.org/10.1586/eri.12.75 PMID: 23030325
5. Riza AL, Pearson F, Ugarte-Gil C, Alisjahbana B, Van de Vijver S, Panduru NM, et.al. Clinical management of concurrent diabetes and tuberculosis and the implications for patient services. Lancet Diabetes Endocrinol. 2014; 2(9):740–753. https://doi.org/10.1016/S2213-8587(14)70110-X PMID: 25194887
6. World Health Organization. Collaborative framework for care and control of tuberculosis and diabetes. http://whqlibdoc.who.int/publications/201/9789241502252_eng.pdf. Accessed 11 Feb 2013.
7. Lin Y, Li L, Mi F, Du J, Dong Y, Li Z, et al. Screening patients with diabetes mellitus for tuberculosis in China. Trop Med Int Health. 2012; 17(10):1302–1308. https://doi.org/10.1111/j.1365-3166.2012.03069.x PMID: 22830951
8. India diabetes mellitus–tuberculosis study group. Screening patients with diabetes mellitus for tuberculosis in India. Trop Med Int Health. 2013; 18(5):646–654. https://doi.org/10.1111/tmi.12083 PMID: 23448175
9. India Tuberculosis-Diabetes Study Group. Screening patients with tuberculosis for diabetes mellitus in India. Trop Med Int Health.2013; 18(5):636–645. https://doi.org/10.1111/tmi.12084 PMID: 23458555
10. Li L, Lin Y, Mi F, Tan S, Liang B, Gue C, et.al. Screening patients with tuberculosis for diabetes mellitus in China. Trop Med Int Health. 2012; 17(10):1294–1301. https://doi.org/10.1111/j.1365-3166.2012.03068.x PMID: 22830945
11. Jeon CY, Harries AD, Baker MA, Hart JE, Kapur A, Lönroth K, et.al. Bi-directional screening for tuberculosis and diabetes: a systematic review. Trop Med Int Health. 2010; 15(2):1300–1314.
12. Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: A systematic review of 13 observational studies. PLoS Med. 2008; 5(7):e152. https://doi.org/10.1371/journal.pmed.0050152 PMID: 18630984

13. Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lönroth K, et.al. The impact of diabetes on tuberculosis treatment outcomes: A systematic review. BMC Medicine. 2011; 9:81. https://doi.org/10.1186/1741-7015-9-81 PMID: 21722362

14. Achanta S, Tekumalla RR, Jaju J, Purad C, Chepuri R, Samyukta R, et.al. Screening tuberculosis patients for diabetes in a tribal area South India. Public Health Action. 2013; 3(Suppl 1):S43–S47. https://doi.org/10.5588/pha.13.0033 PMID: 26393069

15. Alavi SM, Khoshkhooy MM. Pulmonary tuberculosis and diabetes mellitus: Co-existence of both diseases in patients admitted in a teaching hospital in South West of Iran. Caspian J Intern Med. 2012; 3(2):412–424. PMID: 24358437

16. Alisjahbana B, Crevel RV, Sahiratmadja E, Heijer MD, Maya A, Istriana E, et.al. Diabetes mellitus is strongly associated with tuberculosis in Indonesia. Int J Tuberc Lung Dis. 2006; 10(6):696–700.

17. Baghaei P, Tabarsi P, Marjani M, Moniri A, Masjedi MR. Screening for diabetes mellitus in tuberculosis patients in a referral center in Iran. Infectious Diseases. 2015; 47:472–476. https://doi.org/10.3109/23744235.2015.1018317 PMID: 25738612

18. Balakrishnan S, Vijayan S, Nair S, Subramoniapillai J, Mithyunjayan S, Wilson N, et.al. High diabetes prevalence among tuberculosis cases in Kerala, India. PLoS ONE. 2012; 7(10):e46502. https://doi.org/10.1371/journal.pone.0046502 PMID: 23744235.2015.1018317

19. Dave P, Shah A, Chauhan M, Kumar AMV, Harries AD, Malhotra S, et.al. Screening patients with tuberculosis for diabetes mellitus in Gujarat, India. Public Health Action. 2013; 3(Suppl 1):S29–S33. https://doi.org/10.5588/pha.13.0027 PMID: 26393065

20. Jawad F, Shera AS, Memon R, Ansari G. Glucose intolerance in pulmonary tuberculosis. J Park Med Assoc. 1995; 45:237–238.

21. Lin YH, Chen CP, Chen PY, Huang JC, Ho C, Weng HH, et.al. Screening for pulmonary tuberculosis in type 2 diabetes elderly: a cross-sectional study in a community hospital. BMC Public Health. 2015; 15:3. https://doi.org/10.1186/1471-2458-15-3 PMID: 25572102

22. Pandya L, Al Sharif N, Maraey A, Al Majid S, El Sakka M. Pulmonary tuberculosis in diabetic patients. Ann Saudi Med. 1991; 11(3):293–296. PMID: 17588106

23. Raghuraman S, PV, Govindarajan S, Chinnakali P, Panigrahi KC. Prevalence of diabetes mellitus among tuberculosis patients in urban Puducherry. North Am J Med Sci. 2014; 6(1):30–34.

24. Rajapakse W, Isaacidis P, Saqil KD, Kumar AMV, Samaraweera S, Pallewatta N, et.al. Screening patients with tuberculosis for diabetes mellitus in Ampara, Sri Lanka. Public Health Action. 2015; 5(2):150–152. https://doi.org/10.5588/pha.15.0008 PMID: 26400388

25. Shidam UG, Roy G, Sahu SK, Kumar SV, Ananthnarayan PH. Screening for diabetes among presumptive tuberculosis patients at a tertiary care centre in Pondicherry, India. Int J Tuberc Lung Dis. 2015; 19(10):1163–1168. https://doi.org/10.5588/ijtl.14.0971 PMID: 26459527

26. Thapa B, Paudel R, Thapa P, Shrestha A, Poudyal AK. Prevalence of diabetes among tuberculosis patients and associated risk factors in Kathmandu valley. SAARC J Tuberc Lung Dis HIV/AIDS. 2015; 12(2):20–27.

27. Usmani RA, Nasir MI, Wazir S, Pervaiz Z, Zahra T, Akhtar M. Diabetes mellitus among tuberculosis patients in a tertiary care hospital of Lahore. J Ayub Med Coll Abbottabad. 2014; 26(1):61–63. PMID: 25358220

28. Viswanathan V, Kumpatla S, Aravindalochanan V, Rajan R, Chinnasamy C, Srinivasan R, et.al. Prevalence of diabetes and pre-diabetes and associated risk factors among tuberculosis patients in India. PLoS ONE. 2012; 7(7):e14367. https://doi.org/10.1371/journal.pone.0041367 PMID: 22848473

29. Nagar V, Gour D, Arutagi V, Dave L, Bhatia P, Joshi A, et.al. A study to assess the blood glucose level among diagnosed cases of tuberculosis registered at a tuberculosis unit of Bhopal city, Madhya Pradesh, India. Int J Med Sci Public Health. 2015; 4(2):245–249.

30. Wang Q, Ma A, Han X, Zhao S, Cai J, Ma Y, et.al. Prevalence of type 2 diabetes among newly detected pulmonary tuberculosis patients in China: A community based Cohort study. PLoS ONE. 2013; 8(12):e82660. https://doi.org/10.1371/journal.pone.0082660 PMID: 24367535

31. Sarvamangala K, Banerjee A. Comparative study of type II diabetes mellitus and HIV comorbidity among tuberculosis patients attending tertiary care hospital in Davangere. Indian Journal of Public Health Research and Development. 2014; 5(2):193–197.

32. Deshmukh PA, Shaw T. Pulmonary tuberculosis and diabetes mellitus. Ind J Tubc. 1984; 31(3):114–117.
33. Chachra V, Arora VK. Study on prevalence of diabetes mellitus in patients with TB under DOTS strategy. Ind. J. Tuberc. 2014; 61:65–71.

34. Wang PD, Lin RS. Epidemiological features of diabetics among tuberculosis patients in Taiwan. J Infect Dis Antimicrob Agents. 2000; 17:101–105.

35. Chaudhry LA, Essa EB, Al-Solaiman S, Al-Sindi K. Prevalence of diabetes type-2 & pulmonary tuberculosis among Filipino and treatment outcomes: A surveillance study in the Eastern Saudi-Arabia. International Journal of Mycobacteriology. 2012; 106–109. https://doi.org/10.1016/j.ijmyco.2012.03.002 PMID: 26787066

36. Duangritthi D, Thanachartwet V, Desakorn V, Jitrucktha P, Phojanamongkolkij K, Rienthong S, et al. Impact of diabetes mellitus on clinical parameters and treatment outcomes of newly diagnosed pulmonary tuberculosis patients in Thailand. Int J Clin Pract. 2013; 67 (11):1199–1209. https://doi.org/10.1111/jcpc.12215 PMID: 23750554

37. Jabbar A, Hussain SF, Khan AA. Clinical characteristics of pulmonary tuberculosis in adult Pakistani patients with co-existing diabetes mellitus. East Mediterr Health J. 2006; 12(5):523–527.

38. Jali MV, Mahishale VK, Hiremath MB, Satyanarayana S, Kumar AMV, Nagaraja SB, et al. Diabetes mellitus and smoking among tuberculosis patients in a tertiary care centre in Karnataka, India. Public Health Action. 2013; 3 (Suppl 1): S51–S53. https://doi.org/10.5588/pha.13.0031 PMID: 26393071

39. Magee MJ, Kempker RR, Kipiani M, Gandhi NR, Darchia L, Tukvadze N, et al. Diabetes mellitus is associated with cavities, smear grade, and multidrug-resistant tuberculosis in Georgia. Int J Tuberc Lung Dis. 2015; 19(6):685–692. https://doi.org/10.5588/ijtld.14.0811 PMID: 25946360

40. Mi F, Tan S, Liang L, Harrie AD, Hinderaker SG, Lin Y, et al. Diabetes mellitus and tuberculosis: pattern of tuberculosis, two month smear conversion and treatment outcomes in Guangzhou, China. Trop Med Int Health. 2013; 18(11):1379–1385. https://doi.org/10.1111/tmi.12198 PMID: 24112411

41. Mi F, Jiang G, Du J, Li L, Yue W, Harries AD, et al. Is resistance to anti-tuberculosis drugs associated with type 2 diabetes mellitus? A register review in Beijing, China. Global Health Action. 2014; 7:24022. https://doi.org/10.3402/gha.v7.24022 PMID: 24845213

42. Pablo-Villamor MP, Benedicto JP, Benedicto MTJU, Perez VM. Screening for diabetes mellitus in patients diagnosed with pulmonary tuberculosis. Philippine Journal of Internal Medicine. 2014; 52 (4):1–9.

43. Park SW, Shin JW, Kim JY, Park IW, Choi JC, et al. The effect of diabetic control status on the clinical features of pulmonary tuberculosis. Eur J Clin Microbiol Infect Dis. 2012; 31(7):1305–1310. https://doi.org/10.1007/s10096-011-1443-3 PMID: 22042559

44. Roghieh G, Elham G, Rahim RS, Hamid G, Aida M. Diabetes mellitus and pulmonary tuberculosis, association or co- incidence? Pak J Med Sci. 2011; 27(4):819–822.

45. Mehta S, Yu EA, Ahamed SF, Bonam W, Kenneth J. Rifampin resistance and diabetes mellitus in a cross-sectional study of adult patients in rural South India. BMC Infect Dis. 2015; 15:451 https://doi.org/10.1186/s12879-015-1204-5 PMID: 26496855

46. Shaikh MA, Singla R, Khan NB, Sharif NS, Saigh MO. Does diabetes alter the radiological presentation of pulmonary tuberculosis? Saudi Med J. 2003; 24(3):278–281. PMID: 12704504

47. Siddiqui AM. Clinical manifestations and outcome of tuberculosis in diabetic patients admitted to King Abdulaziz University Hospital in Jeddah, Saudi-Arabia. J T U Med Sc. 2009; 4(2):149–155.

48. Sulaiman SA, Khan AH, Muttilal AR, Hassali MA, Ahmad N, Iqubal MS. Impact of diabetes mellitus on treatment outcomes of tuberculosis patients in tertiary care setup. Am J Med Sci. 2013; 345(4):321–325. https://doi.org/10.1097/MJA.0b013e3182888f8f PMID: 23531965

49. Zhang Q, Xiao H, Sugawara I. Tuberculosis complicated by diabetes mellitus at Shanghai pulmonary hospital China. Jpn.J.Infect.Dis. 2009; 62:390–391. PMID: 19762992

50. Chen HG, Liu M, Jiang SW, Gu FH, Huang SP, Gao TJ, et al. Impact of diabetes on diagnostic delay for pulmonary tuberculosis in Beijing. Int J Tuberc Lung Dis. 2014; 18(3):267–271. https://doi.org/10.5588/ijtld.13.0140 PMID: 24670559

51. Jali MV, Mahishale VK, Hiremath MB. Bidirectional screening of tuberculosis patients for diabetes mellitus and diabetes patients for tuberculosis. Diabetes Metab J. 2013; 37(4):291–295. https://doi.org/10.4093/dmj.2013.37.4.291 PMID: 23991408

52. Kumpatla S, Sekar A, Achanta S, Sharath BN, Kumar AMV, Harries AD, et al. Characteristics of patients with diabetes screened in a tertiary care hospital in South India. Public Health Action. 2013; 3 (Suppl 1): S23–S28. https://doi.org/10.5588/pha.13.0035 PMID: 26393064

53. Tripathy SR, Kar KP, Chakraborty DC, Majumdar AK. Diabetes mellitus and pulmonary tuberculosis: a prospective study. Ind. J. Tuberc. 1984; 31:122–125.

54. Wu Z, Guo J, Huang Y, Cai E, Zhang X, Pan Q, et al. Diabetes mellitus in patients with pulmonary tuberculosis in an aging population in Shanghai, China: Prevalence, clinical characteristics and
55. Naeem A. Tuberculosis patients; diagnostic significance of fasting blood glucose (AFB). Professional Med J. 2016; 23(1):045–049.

56. Nair S, Kumari AK, Subramoniampillai J, Shabna DS, Kumar SM, Balakrishnan S, et al. High prevalence of undiagnosed diabetes among tuberculosis patients in peripheral health facilities in Kerala. Public Health Action. 2013; 30(Suppl 1):S38–S42.

57. Tahir NB, Uddin QT, Munir SS, Waheed A, Waheed S, Daud HM. Prevalence of diabetes mellitus in tuberculosis patients at DOTS regional centre KMU-IMS teaching Hospital Kohat. European Academic Research. 2014; 2(7):9948–9959.

58. Jain KK, Thakuria R, Lokesh S. Prevalence of pulmonary diabetes mellitus in tuberculosis patients attending tertiary care institute. International Medical Journal. 2015; 2(4):245–248.

59. Amin S, Khattak MI, Shabbier G, Wazir MN. Frequency of pulmonary tuberculosis in patients with diabetes mellitus. Gomal Journal of Medical Sciences. 2011; 9(2):163–165.

60. Prakash BC, Ravish KS, Prabhakar B, Ranganath TS, Naik B, Satyanarayana S, et al. Tuberculosis-diabetes mellitus bidirectional screening at a tertiary care centre, South India. Public Health Action. 2013; 3(Suppl 1):S18–S22. https://doi.org/10.5588/pha.13.0032 PMID: 26393063

61. Qayyum A, Shafiq M, Farogh A. Prevalence of pulmonary tuberculosis among diabetics. Biomedical. 2004; 20:73–68.

62. Sangral R, Kumar D, Bhatia AS. Diabetes mellitus among tuberculosis patients in a rural population of Jammu—a community based observational study. JK Science. 2012; 14(4):177–180.

63. Alisjahbana B, Sahiratmadja E, Nelwan EJ, Purwa AM, Ahmad Y, Ottenhoff THM, et al. The Effect of type 2 diabetes mellitus on the presentation and treatment response of pulmonary tuberculosis. Clin Infect Dis. 2007; 45(4):428–435. https://doi.org/10.1086/519841 PMID: 17638189

64. Kermansaravi F, Metanat M, Sharifi-Mood B. Evaluation of active pulmonary tuberculosis among patients with diabetes. Int J Infect. June. 2014; 1(1):e19632.

65. Padmalatha P, Hema K. Study on prevalence of diabetes mellitus in tuberculosis patients attending a tertiary care hospital in Guntur, Andhra Pradesh. Indian Journal of Basic and Applied Medical Research. 2014; 4(1):494–498.

66. Kottarath MD, Mavila R, Achuthan V, Nair S. Prevalence of diabetes mellitus in tuberculosis patients-a hospital based study. Int J Res Med Sci. 2015; 3:2810–2814.

67. Rao MSS, Shridhar M, Pavani K, VE D, Dass SM. Screening of tuberculosis in diabetic patients at a tertiary care hospital in Hyderabad. Indian J Microbiol Res. 2015; 2(4):220–226.

68. Ade S, Affolabi D, Agodokpesi G, Wachinou P, Faihun F, Toundoh N, et al. Low prevalence of diabetes mellitus in patients with tuberculosis in Cotonou, Benin. Public Health Action. 2015; 5(2):147–149. https://doi.org/10.5588/pha.14.0110 PMID: 26400387

69. Amare H, Gelaw A, Anagaw B, Gelaw B. Smear positive pulmonary tuberculosis among diabetic patients at the Dessie referral hospital, Northeast Ethiopia. Infect Dis Poverty. 2013; 2(1):6. https://doi.org/10.1186/2049-9957-2-6 PMID: 24499664

70. Faurholt-Jepsen D, Range N, PrayGod G, Jeremiah K, Faurholt-Jepsen M, Aabye MG, et al. Diabetes is a risk factor for pulmonary tuberculosis: A case-control study from Mwanza, Tanzania. PLoS ONE. 2011; 6(8):e24215. https://doi.org/10.1371/journal.pone.0024215 PMID: 21912626

71. Haraldsdottir TL, Rudolf F, Bjerregaard-Andersen M, Joaquim LC, Stochholm K, Gomes VF, et al. Diabetes mellitus prevalence in tuberculosis patients and the background population in Guinea-Bissau: a disease burden study from the capital Bissau. Trans R Soc Trop Med Hyg. 2015; 109(6):400–407. https://doi.org/10.1093/trstmh/trv030 PMID: 25918218

72. Kibirige D, Ssekitoleko R, Mutebi E, Worodria W. Overt diabetes mellitus among newly diagnosed Ugandan tuberculosis patients: a cross-sectional study. BMC Infect Dis. 2013; 13:122. https://doi.org/10.1186/1471-2334-13-122 PMID: 23497232

73. Mtwangambe G, Kalluvya SE, Kidenyra BR, Kabangila R, Downs JA, Smart LA, et al. Cough-triggered tuberculosis screening among adults with diabetes in Tanzania. Diabet Med. 2014; 31(5):600–605. https://doi.org/10.1111/dme.12348 PMID: 24152037

74. Ogbera AO, Kapur A, Odeyemi K, Longe-Peters K, Adeeye OO, Odeniyi I, et al. Screening for diabetes mellitus and human immunodeficiency virus infection in persons J prev med hyg. 2014; 55(2):42–45. PMID: 25916018

75. Olayinka AO, Anthonia O, Yetunde K. Prevalence of diabetes mellitus in persons with tuberculosis in a tertiary health centre in Lagos Nigeria. Indian J Endocr Metab. 2013; 17(3):486–489.

outcomes. J Diabetes complication. 2016; 30(2):237–241. https://doi.org/10.1016/j.jdiacomp.2015.11.014 PMID: 26684166
76. Workneh MH, Bjune GA, Yimer SA. Prevalence and associated factors of diabetes mellitus among tuberculosis patients in South-Eastern Amhara Region, Ethiopia: A cross-sectional study. PLoS ONE. 2016; 11(1):e0147621. https://doi.org/10.1371/journal.pone.0147621 PMID: 26808967

77. Feleke Y, Abdulkadir J, Aderaye G. Prevalence and clinical features of tuberculosis in Ethiopian diabetic patients. East Afr Med J. 1999; 76(7):361–364.

78. Swai ABM, McLarty DG, Mugusi F. Tuberculosis in diabetic patients in Tanzania. Trop Doct. 1990; 20(4):147–150. https://doi.org/10.1177/004947559002000402 PMID: 2284664

79. Webb EA, Hesseling AC, Schaaf HS, Lombard CJ, Spitaels A, et al. High prevalence of Mycobacterium tuberculosis infection and disease in children and adolescents with type 1 diabetes mellitus. Int J Tuberc Lung Dis. 2009; 13(7):868–874. PMID: 19555337

80. Kirui NK, Pastakia SD, Kamano JH, Cheng S, Manuthu E, Chege P, et al. Important co-morbidity in patients with diabetes mellitus in three clinics in Western Kenya. Public Health Action. 2012; 2(4):148–151. https://doi.org/10.5588/pha.12.0031 PMID: 26392975

81. Tiroro S. The magnitude and associated factors of tuberculosis among diabetic patients at Tikur Anbessa specialized teaching hospital in Addis Ababa, Ethiopia. 2015. MPH thesis. Addis Ababa University. Available at http://etd.aau.edu.et/bitstream/123456789/7590/1/Sisay%20Tiroro.pdf. Accessed March 25/2016.

82. Ogbera AO, Kapur A, Abdur-Razzaq H, Harries AD, Ramaiya K, Adelaye O, et al. Clinical profile of diabetes mellitus in tuberculosis. BMJ Open Diabetes Research Care. 2015; 3(1):e000112. https://doi.org/10.1136/bmjdrdc-2015-000112 PMID: 26336610

83. Getachew A, Mekonnen S, Alemu S, Yusuf H. High prevalence of diabetes mellitus among active pulmonary tuberculosis patients in Ethiopia. British Journal of Medicine & Medical Research. 2014; 4(3):862–872.

84. Damtew E, Ali I, Meressa D. Prevalence of diabetes mellitus among active pulmonary tuberculosis patients at St. Peter Specialized hospital, Addis Ababa, Ethiopia. World J. Med. Sci. 2014; 11:389–396.

85. Baldé MN, Camara A, Camara LM, Diallo MM, Kâ K, Bah-Sow OY. Associated tuberculosis and diabetes in Conakry, Guinea: prevalence and clinical characteristics. Int J Tuberc Lung Dis. 2006; 10(9):1036–1040. PMID: 16964797

86. Rakotonirina J, Razanakoto H, Rasolofomanana L, Razanakolona LRS. HIV prevalence and diabetes prevalence among tuberculosis patients in Antananarivo city: a descriptive study. Int J Res Med Sci. 2014; 2(3):834–837

87. Mugusi F, Swai ABM, Alberti KGMM, McLarty DG. Increased prevalence of diabetes mellitus in patients with pulmonary tuberculosis in Tanzania. Tubercle. 1990; 71:271–276. PMID: 2267680

88. Moreno-Martínez A, Casals M, Orcau A, Gorrindo P, Masdeu E, Cayla J, et al. Factors associated with diabetes mellitus among adults with tuberculosis in a large European city, 2000–2013. Int J Tuberc Lung Dis. 2015; 19(12):1507–1512. https://doi.org/10.5588/ijtld.15.0102 PMID: 26614193

89. Warwick MT. Pulmonary tuberculosis and diabetes mellitus. Journal of Medicine. 1957; 16(10):31–42.

90. Ponce-De-Leon A, Garcia-Garcia MdEl, Garcia-Sancho MC, Gomez-Perez FJ, Valdespino-Gomez JL, Olaz-Fernandez G, et al. Tuberculosis and diabetes in Mexico. Diabetes Care. 2004; 27(7):1584–1590. PMID: 15220232

91. Restrepo BI, Fischer–Hoch SP, Crespo JOG, Whiteny E, Perez A, Smith B, et al. Type 2 diabetes and tuberculosis in a dynamic bi-national border population. Epidemiol. Infect. 2007; 135(3):483–491. https://doi.org/10.1017/S0950268806006935 PMID: 16863600

92. Restrepo BI, Camerlin AJ, Rahbar MH, Wang W, Restrepo MA, Zarate I, et al. Cross-sectional assessment reveals high diabetes prevalence among newly-diagnosed tuberculosis cases. Bull World Health Organ. 2011; 89(5):352–359. https://doi.org/10.2471/BLT.10.085738 PMID: 21556303

93. Magee MJ, Foote M, Maggio DM, Howards PP, Narayan KM, Blumberg HM, et al. Diabetes mellitus and risk of all-cause mortality among patients with tuberculosis in the state of Georgia, 2009–2012. Ann Epidemiol. 2014; 24(5):369–375. https://doi.org/10.1016/j.annepidem.2014.01.012 PMID: 24613196

94. Suwanpimolkul G, Grinsdale JA, Jarlsberg LG, Higashi J, Osmond DH, Hopewell PC, et al. Association between diabetes mellitus and tuberculosis in United States-born and foreign-born populations in San Francisco. PLoS ONE. 2014; 9(12):e114442. https://doi.org/10.1371/journal.pone.0114442 PMID: 25478954

95. Delgado-Sánchez G, García-García L, Castellanos-Joya M, Cruz-Hervert P, Ferreyra-Reyes L, Ferreira-Guerrero E, et al. Association of pulmonary tuberculosis and diabetes in Mexico: Analysis of the
96. Castellanos-Joya M, Delgado-Sánchez G, Ferreyra-Reyes L, Cruz-Hervert P, Ferreira-Guerrero E, Ortiz-Solis G, et al. Results of the implementation of a pilot model for the bidirectional screening and joint management of patients with pulmonary tuberculosis and diabetes mellitus in Mexico. PLoS ONE. 2014; 9(9):e106961. https://doi.org/10.1371/journal.pone.0106961 PMID: 25229236

97. Jiménez-Corona ME, Cruz-Hervert LP, García-García L, Ferreyra-Reyes L, Delgado-Sánchez G, Bobadilla-del-Valle M, et al. Association of diabetes and tuberculosis: impact on treatment and post-treatment outcomes. Thorax. 2013; 68:214–220. https://doi.org/10.1136/thoraxjnl-2012-201756 PMID: 23250998

98. Alladin B, Mack S, Singh A, Singh C, Smith B, Cummings E, et al. Tuberculosis and diabetes in Guyana. International Journal of Infectious Diseases. 2011; 15:e818–e821. https://doi.org/10.1016/j.ijid.2011.07.006 PMID: 21907605

99. Magee MJ, Bloss E, Shin SS, Contreras C, Huaman HA, Ticona JC, et al. Clinical characteristics, drug resistance, and treatment outcomes among tuberculosis patients with diabetes in Peru. International Journal of Infectious Diseases. 2013; 17:e404–e412. https://doi.org/10.1016/j.ijid.2012.12.029 PMID: 23638123

100. Reis-Santos B, Locatelli R, Horta BL, Faerstein E, Sanchez MN, Riley LW, et al. Socio-Demographic and clinical differences in subjects with tuberculosis with and without diabetes mellitus in Brazil—A Multivariate Analysis. PLoS ONE. 2013; 8(4):e62604. https://doi.org/10.1371/journal.pone.0062604 PMID: 23639123

101. Bridson T, Matthiesson A, Owens L, Govan B, Norton R, Kettheesan N. Diabetes: A contributor to tuberculosis in tropical Australia. Am. J. Trop. Med. Hyg. 2015; 93(3):547–548. https://doi.org/10.4269/ajtmh.15-0264 PMID: 26055738

102. Viney K, Cavanaugh J, Kienene T, Harley D, Kell PM, Sleigh A, et al. Tuberculosis and diabetes mellitus in the Republic of Kiribati: a case–control study. Trop Med Int Health. 2015; 20(5):650–657. https://doi.org/10.1111/tmi.12462 PMID: 25598275

103. Nasa JN, Brostrom R, Ram S, Kumar AMV, Seremai J, Hauma M, et al. Screening adult tuberculosis patients for diabetes mellitus in Ebeve, Republic of the Marshall Islands. Public Health Action. 2014; 4(Suppl 1):S50–S52. https://doi.org/10.5588/pha.13.0079 PMID: 26477288

104. Prasad P, Gounder S, Varman S, Viney K. Sputum smear conversion and treatment outcomes for tuberculosis patients with and without diabetes in Fiji. Public Health Action. 2014; 4(3):159–163. https://doi.org/10.5588/pha.14.0023 PMID: 26400903

105. Gounder S, Harries AD. Screening tuberculosis patients for diabetes mellitus in Fiji: notes from the field. Public Health Action. 2012; 2(4):145–147. https://doi.org/10.5588/pha.12.0056 PMID: 26332574

106. Kaira S, Kaira B, Agrawal N, Unnikrishnan AG. Understanding diabetes in patients with HIV/AIDS. Diabetol Metab Syndr. 2011; 3:2. https://doi.org/10.1186/1758-5996-3-2 PMID: 21232158