A CONDITION IN MEAN CURVATURE PRESCRIPTIONS FOR CONFORMAL METRICS ON THE BALL

ALVARO ORTIZ AND GONZALO GARCIA

Abstract. This paper considers the prescribed zero scalar curvature and mean curvature problem on the n-dimensional Euclidean ball for $n \geq 3$. Given a rotationally symmetric function $H : \partial B^n \rightarrow \mathbb{R}$, in this work, we will prove that if $H'(r)$ changes signs where $H > 0$ and $H(r)$ also satisfies a flatness condition then there exists a metric g conformal to the Euclidean metric, with zero scalar curvature in the ball and mean curvature H on its boundary.

1. Introduction

Let us take the n^{th} dimensional ball (B^n, g_0), where $n \geq 3$ and g_0 is the Euclidean metric that has flat scalar curvature inside the ball and constant mean curvature $H_0 = 1$ on the boundary ∂B^n. A classical problem of differential geometry is the characterization of a pair of functions R and H, with R defined inside the ball and H defined in the boundary, such that there is a metric g, conformal to g_0, with R as the prescribed scalar curvature on the ball and H the prescribed mean curvature on ∂B^n.

Given the functions R and H, the existence of the metric g is equivalent to the existence of a smooth positive function u, which satisfies the nonlinear problem in the Sobolev critical exponent:

$$\begin{align*}
\Delta_g u + \frac{(n-2)}{4(n-1)} Ru^{\frac{n+2}{n-2}} &= 0 \quad \text{on} \quad B^n, \\
\frac{\partial u}{\partial \eta} + \frac{(n-2)}{2} u &= H \frac{(n-2)}{2} u^{n/(n-2)} \quad \text{on} \quad \partial B^n.
\end{align*}$$

(1.1)

This type of question got a lot of attention in the past decades. It began to be explored in [4], [6] and [9], known as The Yamabe Problem on Manifolds with Boundary.

The problem of solution existence on compact manifolds (not conformally equivalent to the unit ball) was developed by Escobar J. in [5], [8], and [10]. Later, the problem in the ball was addressed in [6], where subcritical solutions were characterized under the consideration of prescribed mean curvature and zero scalar curvature. Both [5] and [6] showcase the fact that an obstruction of the Kazdan-Warner type condition occurs in a general case for solving the problem. We cannot solve the question affirmatively for all H functions.

2020 Mathematics Subject Classification. Primary 53C42, 53C23; Secondary 30F45.
Considering the regularity question in [4], Cherrier showed that solutions to the problem in the adequate space would be smooth. In [1], Chang and Yang find a perturbation result via a variational approach when \(H \) is smooth; the condition is a sufficient criterion, but questions remain on the necessary conditions.

In [11], Garcia and Escudero proved that if \(R \) is flat and the function \(H : \partial R^n_+ \rightarrow \mathbb{R} \) is radially symmetric and satisfies

\[
\begin{align*}
H(x) &> 0 \quad \text{and} \quad \frac{\partial H}{\partial r} \leq 0 \quad \text{if} \quad |x| < 1, \\
H(x) &\leq 0 \quad \text{if} \quad |x| \geq 1,
\end{align*}
\]

Then, the associated differential equation system has no solution.

If \(R \) is flat, in this work, we show that a sufficient condition to guarantee the existence of the metric \(g \) is that \(\frac{\partial H}{\partial r} \) changes signs where \(H \) is positive and has a flatness condition.

Based on the ideas of Chen and Li for the sphere from [2], [3] and Yan Li on [12] and with a parallel method to the used in [2] for prescribing scalar curvature in \(S^n \) in this paper we prove the following theorem:

Theorem 1.1. Let \(n \geq 3 \) and let \(H = H(r) \) be a smooth function on \(\partial B^n \) symmetric along the \(x_n \) axis. Assume that \(H \) has at least two positive local maximums and satisfies a flatness condition near every critical point \(\tau_0 \) as follows.

\[
\begin{align*}
H(r) &= H(\tau_0) + a|r-r_0|^\alpha + k(|r-r_0|) \quad \text{with} \quad a \neq 0 \quad \text{and} \quad n - 2 < \alpha < n - 1.
\end{align*}
\]

If \(H'(r) \) change signs where \(H > 0 \) then the problem

\[
\begin{align*}
\Delta_g u &= 0 \quad \text{in} \quad B^n, \\
\frac{\partial u}{\partial \eta} + \frac{(n-2)}{2} u &= H\left(\frac{n-2}{2}\right) u^p \quad \text{in} \quad \partial B^n,
\end{align*}
\]

where \(1 < p \leq \frac{n}{n-2} \) and \(k'(s) = o(s^{\alpha-1}) \), have a smooth positive solution.

2. Preliminaries

Let us consider the functionals:

\[
J_p(u) = \int_{\partial B^n} H u^{p+1} d\sigma
\]

and

\[
E(u) = \int_{B^n} |\nabla u|^2 dv + \int_{\partial B^n} \gamma_n u^2 d\sigma,
\]

where \(\gamma_n = \frac{n-2}{2} \).

Let \(||u|| = \sqrt{E(u)} \) be the norm in the Hilbert space \(H^2_1(B^n) \). We seek critical points of \(J_p(u) \) under the constraint

\[
S = \{ u \in H^2_1(B^n) : E(u) = E(1) = \gamma_n |S^{n-1}|, \ u \geq 0 \}
\]

where \(|S^{n-1}| \) is the volume of \(S^{n-1} \).

It is easy to prove that a scalar multiple of a critical point of \(J_p \) in \(S \) is a solution of (1.3). We take a coordinate system in \(R^n \) so that the south pole of \(S^{n-1} \) is at
the origin O, and the center of the ball is at the point $(0, 0, ..., 1)$. Define the center of mass of the function $u : B^n \rightarrow \mathbb{R}$ as

$$ q = q(u) = \frac{\int_{B^n} zu^2 \tau(z) dv}{\int_{B^n} u^2 \tau(z) dv} $$

Let u_q be the standard solution with its center of mass at $q \in B^n$. That is u_q satisfies the problem.

$$\begin{align*}
\Delta_g u_q &= 0 \quad \text{in } B^n, \\
\frac{\partial u_q}{\partial n} + \gamma_n u_q &= \gamma_n u_{q}^p \quad \text{in } \partial B^n
\end{align*}$$

Let \tilde{q} be the intersection of S^{n-1} with the ray passing the center and the point q. The solutions u_q depends on two parameters, the point \tilde{q} and a number β with $1 \leq \beta < \infty$. When $\tilde{q} = 0$, it can be seen that the solutions u_q are given by

$$ u_q(z) = \left(\frac{4\beta}{(\beta - 1)^2 \|z\|^2 + 4s(\beta - 1) + 4\beta} \right)^{\frac{n-2}{2}} $$

where $s = z_n$ is the last component of the point z. These solutions solve the problem of prescribing zero scalar curvature and mean curvature $h = 1$ in the ball.

If $z \in S^{n-1}$, we get

$$ u_q(z) = \left(\frac{\beta}{(\beta^2 - 1) \|z\|^2 + 1} \right)^{\frac{n-2}{2}}. $$

For $z \in S^{n-1}$, we can write, in the spherical polar coordinates $z = (r, \theta)$ of S^{n-1} centered at the south pole, with $0 \leq r \leq \pi$ and $\theta \in S^{n-1}$, and

$$ u_q(z) = \left(\frac{\beta}{(\beta^2 - 1) \sin^2 \frac{r}{2} + 1} \right)^{\frac{n-2}{2}}, $$

with $1 \leq \beta < \infty$. If $\lambda = \frac{1}{\beta}$ then $0 < \lambda \leq 1$ and

$$ u_q(z) = \left(\frac{\lambda}{\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2}} \right)^{\frac{n-2}{2}}. $$

Using n-dimensional spherical coordinates, it can be shown that the volume of S^{n-1} and S^{n-2} are related by the formula

$$ |S^{n-1}| = |S^{n-2}| \int_0^\pi \sin^{n-2}(t) dt. $$

From here, it can be proven that the solutions u_q belong to the set S.

Let us consider the function

$$ \psi(z) = \frac{4(z - N)}{\|z - N\|^2} + N, $$
where \(z \in \mathbb{R}^n \setminus N \) and \(N \) is the north pole, and the function \(T : \mathbb{R}^n_{-1} \rightarrow \mathbb{R}^n_{-1} \) given by \(T(x,t) = (\beta x,\beta(t+1)-1) \), with \(\beta > 0 \). The function \(\varphi = \psi^{-1} \circ T \circ \psi \) restricted to the ball \(B^n \) is referred to as a centered dilation function from the ball to the ball.

Now consider the transformation \(T_\varphi : H^1_1(B^n) \longrightarrow H^1_1(B^n) \) given by

\[
T_\varphi(u(x)) = u(\varphi(x)), \quad [\det(d\varphi(x))]^{\frac{n-2}{2(n-1)}}
\]

This family of conformal transformations leaves the equation (2.1), the energy \(E(.) \), and the functional \(J_p \) invariant as proved in [9]. Consequently, if \(u \) is a solution of (1.3), then \(T_\varphi u \) is a solution too.

We will assume that the function \(H \) has a local maximum at the south pole and estimate near this point. The calculations in other local maxima are similar.

Definition 2.1. Let us define the set

\[
\Sigma = \left\{ u \in S : |q(u)| \leq \rho_0, ||v|| = \min_{t,q}||u - tu|| \leq \rho_0, t \in \mathbb{R} \right\}
\]

the set of functions in \(S \) with centers of mass near the south pole \(O \) of \(S^{n-1} \).

The following section will estimate this neighborhood’s functional \(J_p \). To do this, it is necessary to show first some preliminary results on \(B^n \) whose proofs mirror those given in [2] for \(S^n \).

Lemma 2.2. (About the mass center)

1. Let \(q, \lambda \) and \(\bar{q} \) as previously. Then if \(q \) small enough:

\[
|q|^2 \leq C (|\bar{q}|^2 + \lambda^4)
\]

2. Let \(\rho_0 \) and \(v \) defined in (2.1). then for \(\rho_0 \) small enough:

\[
\rho_0 \leq |q| + C||v||
\]

Lemma 2.3. If \(u \in \Sigma \) and \(v = u - t_0u_q \) as defined in (2.1) then \(u_q \) and \(v \) are orthogonal and hold:

\[
\int_{S^{n-1}} u_q^\tau v d\sigma = 0
\]

Lemma 2.4. Let \(u \in \Sigma \) and \(v = u - t_0u_q \) and \(T_\varphi \) as previously defined. Then:

\[
\int_{S^{n-1}} T_\varphi v \, dv = 0 \quad \text{and} \quad \int_{S^{n-1}} x_i T_\varphi v \, dv = 0,
\]

where the functions \(x_i \) represent the coordinate functions.

From here, it follows

Lemma 2.5. Let \(u \in \Sigma, v = u - t_0u_q \) and \(T_\varphi : H^2_1(B^n) \longrightarrow H^2_1(B^n) \) as previously defined. We have the following:

\[
\langle T_\varphi v, K \rangle_{H^2_1(B^n)} = 0 \quad \text{and} \quad \langle T_\varphi v, x_i \rangle_{H^2_1(B^n)} = 0,
\]

with \(x_i \) the coordinate functions and \(K \) a constant function.
3. The Sub-critical Case

In this section, we will find a solution to the problem.

\[
\begin{cases}
\Delta_g u = 0 & \text{in } B^n, \\
\frac{\partial u}{\partial n} + \gamma_n u = H \gamma_n u^p & \text{in } \partial B^n
\end{cases}
\tag{3.1}
\]

for each \(1 < p < \tau\), where \(\gamma_n = \frac{n-2}{2}, \tau = \frac{n}{n-2}\) and \(k'(s) = o(s^{\alpha-1})\), has a solution.

Let us consider the functionals:

\[
J_p(u) = \int_{\partial B^n} Hu^{p+1} d\sigma
\]

and

\[
E(u) = \int_{B^n} |\nabla u|^2 dv + \int_{\partial B^n} \gamma_n u^2 d\sigma.
\]

Let \(|u| = \sqrt{E(u)}\) be the norm in the Hilbert space \(H^2_1(B^n)\). We seek critical points of \(J_p(u)\) under the constraint

\[
S = \{ u \in H^2_1(B^n) : E(u) = E(1) = \gamma_n |S^{n-1}|, u \geq 0 \}
\]

where \(|S^{n-1}|\) is the volume of \(S^{n-1}\).

3.1. Estimates on \(J_p\)

We will show estimates on \(J_p\) near the south pole \((O, \theta)\) where we assume a positive local maximum; the estimates near another local maximum will be the same. Now by the hypothesis in (1.1) then \(H(r) = H(0) - ar^\alpha\) for some \(a > 0, n-3 < \alpha < n-1\) in an open set that has the coordinate origin \(O\).

Proposition 3.1. For all \(\delta_1 > 0\) there exists a positive number \(p_1 \leq \tau\) such that for all \(p_1 \leq p \leq \tau\) holds:

\[
\sup_{\Sigma} J_p(u) > H(0)|S^{n-1}| - \delta_1
\]

Proof. Let us prove first that \(J_\tau(u_{\lambda,O}) \longrightarrow H(0)|S^{n-1}|\) when \(\lambda \longrightarrow 0\). Let us take a fixed number \(\tau_0 \neq 0\) near enough to zero then:

\[
J_\tau(u_{\lambda,O}) = \int_{S^{n-1}} H(r) u_{\lambda,O}^{\tau+1} d\sigma = \int_{S^{n-1}} H(r) \left(\frac{\lambda}{(\lambda^2 \cos^2 \frac{\tau}{2} + \sin^2 \frac{\tau}{2})} \right)^{n-1} d\sigma
\]

\[
= |S^{n-2}| \int_0^\pi \frac{\lambda^{n-1} H(r) \sin^{n-2} r}{(\lambda^2 \cos^2 \frac{\tau}{2} + \sin^2 \frac{\tau}{2})^{n-1}} dr,
\]

where we have used that

\[
|S^{n-1}| = |S^{n-2}| \int_0^\pi \sin^{n-2}(t) dt.
\]
Hence,
\[
J_\tau(u_{\lambda,O}) = |S^{n-2}| \left\{ \int_0^{\tau_0} \frac{\lambda^{n-1}H(r) \sin^{n-2}r}{(\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2})^{n-1}} dr + \int_{\tau_0}^{\pi} \frac{\lambda^{n-1}H(r) \sin^{n-2}r}{(\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2})^{n-1}} dr \right\}
\]

\[
= |S^{n-2}| \left\{ \int_0^{\tau_0} \frac{\lambda^{n-1}(H(0) - ar^\alpha) \sin^{n-2}r}{(\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2})^{n-1}} dr + \int_{\tau_0}^{\pi} \frac{\lambda^{n-1}H(r) \sin^{n-2}r}{(\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2})^{n-1}} dr \right\}
\]

Adding and subtracting in the right-hand
\[
\int_{\tau_0}^{\pi} \frac{\lambda^{n-1}H(0) \sin^{n-2}r}{(\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2})^{n-1}} dr
\]
we get
\[
J_\tau(u_{\lambda,O}) = H(0)|S^{n-1}| + |S^{n-2}| \left\{ \int_0^{\tau_0} \frac{-ar^\alpha \lambda^{n-1} \sin^{n-2}r}{(\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2})^{n-1}} dr + \int_{\tau_0}^{\pi} \frac{\lambda^{n-1}(H(r) - H(0)) \sin^{n-2}r}{(\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2})^{n-1}} dr \right\}
\]

Let us call
\[
I_1 = \left| \int_0^{\tau_0} \frac{r^\alpha \lambda^{n-1} \sin^{n-2}r}{(\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2})^{n-1}} dr \right|
\]

and
\[
I_2 = \left| \int_{\tau_0}^{\pi} \frac{\lambda^{n-1}(H(r) - H(0)) \sin^{n-2}r}{(\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2})^{n-1}} dr \right|
\]

We will show that \(I_1 \to 0 \) and \(I_2 \to 0 \) when \(\lambda \to 0 \). Clearly:
\[
I_1 = \left| \int_0^{\tau_0} \frac{r^\alpha \lambda^{n-1}(2 \sin \frac{r}{2} \cos \frac{r}{2})^{n-2}}{(\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2})^{n-1}} dr \right| \leq \lambda 2^{n-2} \left| \int_0^{\tau_0} \frac{r^\alpha (\sin \frac{r}{2})^{n-2}(\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2})^{1-n}}{(\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2})^{n-1}} dr \right|
\]

\[
\leq \lambda 2^n \left| \int_0^{\tau_0} \frac{(\sin \frac{r}{2})^{n-2}}{(\sin^2 \frac{r}{2})^{n/2}} dr \right| \leq \lambda 2^n \left| \int_0^{\tau_0} \frac{(\sin \frac{r}{2})^{n-2}}{(\sin^2 \frac{r}{2})^{n/2}} dr \right| \leq \lambda 2^n \int_0^{\tau_0} r^{\alpha-2} dr = \frac{c_1 \lambda^{\frac{\alpha-1}{\alpha}}}{\alpha-1}
\]

A straightforward calculation also shows that.
\[
I_2 = \left| \int_{\tau_0}^{\pi} \frac{\lambda^{n-1}(H(r) - H(0))(2 \sin \frac{r}{2} \cos \frac{r}{2})^{n-2}}{(\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2})^{n-1}} dr \right| \leq C_2 \lambda (\pi - \tau_0)
\]

Hence if \(\lambda \to 0 \) \(I_2 \to 0 \) and \(J_\tau(u_{\lambda,O}) \to H(0)|S^{n-1}| \).

Then if we take \(\delta_1 > 0 \), we can choose \(\lambda_0 \) such as \(u_{\lambda,O} \in \overset{o}{\Sigma} \), the interior of \(\Sigma \), and
\[
J_\tau(u_{\lambda,O}) > H(0)|S^{n-1}| - \frac{\delta_1}{2}
\]

Since \(J_p \) is continuous respect \(p \), given a fixed \(u_{\lambda_0,O} \) there is \(P_1 \) such as for all \(P \geq P_1 \):

sup \bar{J}_p(u) > H(0)|S^{n-1}| - \delta_1 \quad \square

Now we show.

Lemma 3.2. Let

$$\bar{B}_\epsilon(0) = \{ x \in S^{n-1}(e_n), \ |x| \leq \epsilon \}.$$

for \(\epsilon > 0 \) and \(\alpha < n - 1 \), \(p \) nearly enough to \(\tau \) and for \(\lambda \) and \(|\bar{q}| \) small enough we have:

$$J_p(u_{\lambda, \bar{q}}) \leq (H(0) - C_1|\bar{q}|^\alpha)|S^{n-1}|(1 + O_p(1)) - C_1 \lambda^{\alpha + \delta_p},$$

where \(\delta_p > \tau - p \) and \(O_p(1) \to 0 \) when \(p \to \tau \).

Now we show that \(J_p \) is bounded over the boundary of \(\Sigma \).

Proposition 3.3. There are some positive constants \(\rho_0, p_0, \delta_0 \) such as for all \(P \geq p_0 \) and \(u \in \partial \Sigma \) it holds:

$$J_p(u) \leq H(0)|S^{n-1}| - \delta_0$$

Proof. Let’s consider

$$\bar{H}(x) = \begin{cases} H(x) & \text{in } B_{2\rho_0(0)}, \\ m & \text{in } S^{n-1}\{B_{2\rho_0(0)} \} \end{cases} \quad (3.2)$$

Where \(m = H|\partial B_{2\rho_0(0)} \). Now, let us define:

$$\tilde{J}_p(u) = \int_{S^{n-1}\{B_{2\rho_0(0)} \}} \bar{H}(x)u^{p+1}d\sigma.$$

The estimates will be divided into two steps; in step one, we use inequality.

$$|J_p(u) - \tilde{J}_p(u)| \leq |\bar{J}_p(u) - \tilde{J}_\tau(u)| + |J_p(u) - \tilde{J}_p(u)|.$$

To show the difference between \(J_p(u) \) and \(\tilde{J}_\tau(u) \) is small. Step two will carry estimates on \(\tilde{J}_\tau(u) \).

Step 1. It can be seen that:

$$\tilde{J}_p(u) \leq \tilde{J}_\tau(u)(1 + o_p(1)) \quad (3.3)$$

Where \(o_p(1) \to 0 \) when \(p \to \tau \).

Now lets check the difference between \(J_p(u) \) and \(\tilde{J}_p(u) \).

$$|J_p(u) - \tilde{J}_p(u)| = \int_{S^{n-1}\{B_{2\rho_0(0)} \}} |H(x) - m|u^{p+1}d\sigma \quad (3.4)$$
\[\leq C_1 \int_{S^{n-1}|B_{2\rho_0}(0)} w^{p+1} d\sigma \leq C_2 \int_{S^{n-1}|B_{2\rho_0}(0)} (t_0 u_q)^{p+1} d\sigma + C_2 \int_{S^{n-1}|B_{2\rho_0}(0)} v^{p+1} d\sigma \]

\[\leq C_3 \lambda^{(n-1) - \frac{n-2}{2} \delta_p} + C_2 \int_{S^{n-1}|B_{2\rho_0}(0)} v^{p+1} d\sigma \leq C_3 \lambda^{(n-1) - \frac{n-2}{2} \delta_p} + C ||v||^{p+1}. \]

In the last inequality, we have used the Beckner-Escobar Sobolev inequality as follows:

\[\left(\int_{S^{n-1}|B_{2\rho_0}(0)} v^{p+1} d\sigma \right)^{\frac{1}{p+1}} \leq C \left(\int_{S^{n-1}} |\nabla v|^2 dv + \int_{\partial B^n} \gamma_n v^2 d\sigma \right)^{1/2} \leq C ||v||. \]

Now, as \(\lambda^{(n-1) - \frac{n-2}{2} \delta_p} \) and \(||v||^{p+1} \) are small, using (3.3) and (3.4), the difference between \(J_p(u) \) and \(\tilde{J}_p(u) \) is small.

Step 2.

Now we will carry out the estimates on \(J_r(u) \).

Let \(u = v + t_0 u_q \in \partial \Sigma \). From (2.3), we have \(v \) and \(u_q \) are orthogonal respect the inner product associated to \(E(\cdot) \); that is,

\[0 = \int_{B^n} (\nabla (u - t_0 u_q)) \cdot \nabla u_q dv + \gamma_n \int_{S^{n-1}} (u - t_0 u_q) u_q d\sigma. \]

then,

\[t_0 E(u_q) = \int_{B^n} \nabla u \nabla u_q dv + \gamma_n \int_{S^{n-1}} uu_q d\sigma. \]

Now,

\[||v||^2 = E(u - t_0 u_q) = E(u) + t_0^2 E(u_q) - 2t_0 \left(\int_{B^n} \nabla u \nabla u_q dv + \gamma_n \int_{S^{n-1}} uu_q d\sigma \right) \]

\[= E(u) + t_0^2 E(u_q) - 2t_0^2 E(u_q) = E(u) - t_0^2 E(u_q) \]

Moreover \(E(u) = E(u_q) = \gamma_n |S^{n-1}| \), therefore

\[||v||^2 = (1 - t_0^2) \gamma_n |S^{n-1}| \]

and

\[t_0^2 = 1 - \frac{||v||^2}{\gamma_n |S^{n-1}|}. \]

Now,

\[\bar{J}_r(u) = \int_{S^{n-1}} \bar{H}(x) u^{\tau+1} d\sigma \]

\[\leq t_0^{\tau+1} \int_{S^{n-1}} \bar{H}(x) u_q^{\tau+1} d\sigma + (\tau+1) \int_{S^{n-1}} \bar{H}(x) u_q^{\tau+1} v d\sigma + \frac{\tau(\tau+1)}{2} \int_{S^{n-1}} \bar{H}(x) u_q^{\tau-1} v^2 d\sigma + O(||v||^2) \]
Taking the value of t_0 found on (3.2), we find that the first term on the right-hand side is bounded above by
\[
\left(1 - \frac{\tau + \frac{1}{2} \frac{||v||^2}{\gamma_n|S^{n-1}|}}{S^{n-1}}\right) H(0)|S^{n-1}| (1 - k_1|\bar{q}|^{\alpha} - k_1\lambda^{\alpha}) + o(||v||^2),
\]
for some constant k_1.

Using the orthogonality between v and u_q^τ (see lemma (2.3), lemma (2.2)), and the fact that $T_\varphi u_q$ is bounded, we find that
\[
\int_{S^{n-1}} \bar{H}(x) u_q^\tau v d\sigma = \int_{S^{n-1}} \bar{H}(x) u_q^\tau v d\sigma - m \int_{S^{n-1}} u_q^\tau v d\sigma
\]
(3.6)

Now, we will use that in the n-dimensional ball B^n, the Neumann eigenvalues of the Laplacian operator holds the inequality $0 = \lambda_1 < \lambda_2 \leq \lambda_3, ..., \lambda_n$, where the first nonzero eigenvalue can be variationally seen as:
\[
\lambda_2 = \inf \left\{ \frac{\int_{B^n} |\nabla u|^2 dv}{\int_{S^{n-1}} u^2 d\sigma} : f \in H^1_0(B^n) \setminus \{0\} \right\}.
\]
Our first nonzero Neumann eigenvalue is $\lambda = 1$ and as $T_\varphi v$ is orthogonal to the coordinate functions and constants (see (2.5)), then for some $c > 0$:
\[
1 + c \leq \frac{\int_{B^n} |\nabla T_\varphi v|^2 dv}{\int_{S^{n-1}} (T_\varphi v)^2 d\sigma}.
\]

Adding γ_n in both sides we have:
\[
1 + c + \gamma_n \leq \frac{E(T_\varphi v)}{\int_{S^{n-1}} (T_\varphi v)^2 d\sigma}.
\]
Since $E(T_\varphi v) = E(v)$,
\[
||v||^2 = ||T_\varphi v||^2 \geq (\gamma_n + 1 + c) \int_{S^{n-1}} (T_\varphi v)^2 d\sigma.
\]

On the other hand,
\[
\int_{S^{n-1}} u_q^\tau v^2 d\sigma = \int_{S^{n-1}} u_q^{\tau-1} (\varphi(x)) v^2 (\varphi(x)) d\sigma
\]
\[
= \int_{S^{n-1}} \frac{(T_\varphi u_q)^{\tau-1}}{\det(d\varphi(x))^{\frac{n-2}{2(n-1)}}} \frac{(T_\varphi v)^2}{\det(d\varphi(x))^{\frac{n-2}{2(n-1)^2}}} d\sigma
\]
\[
= \int_{S^{n-1}} (T_\varphi v)^2 d\sigma.
\]

Hence,
\[
\int_{S^{n-1}} \bar{H}(x) u_q^\tau v^2 d\sigma \leq
\]
\[H(0) \int_{S^{n-1}} u^{-1}_q v^2 d\sigma = H(0) \int_{S^{n-1}} (T\varphi v)^2 d\sigma \leq \frac{H(0)}{\gamma_n + 1 + c} ||v||^2. \]

(3.7)

Now using the inequalities (3.5), (3.6) and (3.7), we find that there exists \(\beta > 0 \) such as:

\[-J_\tau(u) \leq H(0) |S^{n-1}| \left[1 - \beta(|\tilde{q}|^\alpha + \lambda^\alpha + ||v||^2) \right]. \]

(3.8)

Then

\[J_p(u) \leq |\tilde{J}_p(u) - J_\tau(u)| + |J_p(u) - \tilde{J}_p(u)| + J_\tau(u) \]

\[\leq a_p(1) + C_3 \lambda^{(n-1)-(n-2)\delta_\tau} + C_3 ||v||^{p+1} + H(0) |S^{n-1}| \left[1 - \beta \left(||q||^\alpha + \lambda^\alpha + ||v||^2 \right) \right]. \]

When \(p \to \tau \), we obtain the result. \(\square \)

3.2. Proof of the Sub-critical Case.

In the following, we will prove the existence of a solution to the problem (3.1) for each \(p < \tau \). It can be proved that the set

\[S = \left\{ u \in H^2_1(B^n) : ||u||^2 = \int_{B^n} |\nabla u|^2 dv + \int_{S^{n-1}} \gamma_n u^2 d\sigma = \gamma_n |S^{n-1}|, u \geq 0 \right\}. \]

is closed and that the functionals \(J_p(u) = \int_{S^{n-1}} Hu^{p+1} d\sigma \) are compact and Lipschitz continuous.

By hypothesis, \(H \) has at least two positive local maxima. Let \(r_1 \) and \(r_2 \) be the two least positive local maxima of \(H \). By propositions (3.1) and (3.3), there is two disjoint open sets \(\tilde{\Sigma}_1, \tilde{\Sigma}_2 \subset S, \psi_i \in \tilde{\Sigma}_i, p_0 < \tau \) and \(\delta > 0 \) such as for all \(p \geq p_0 \):

\[J(\psi_i) > H(r_i)|S^{n-1}| - \frac{\delta}{2}, \quad i = 1, 2; \]

and

\[J(u) \leq H(r_i)|S^{n-1}| - \delta, \forall u \in \partial \Sigma, \quad i = 1, 2; \]

(3.9)

Let \(\gamma \) be a path in \(S \) linking the functions \(\psi_1 \) and \(\psi_2 \). Let us define the path family:

\[\Gamma = \{ \gamma \in C([0,1], S) : \gamma(0) = \psi_1, \gamma(1) = \psi_2 \} \]

Now define

\[c_p = \sup_{\gamma \in \Gamma} \left\{ \min_{u \in \gamma} J_p(u) \right\} \]

By the Mountain Pass Theorem, there exists a critical function \(u_p \) of \(J_p \) in \(S \) such that:

\[J_p(u_p) = c_p \]

As a consequence of (3.9) and the definition of \(c_p \), we have:
\[J_p(u_p) \leq \min_i \left\{ H(r_i)^1S^{n-1} | - \delta \right\} \] (3.10)

From here, it is easy to show that there exists a positive real number \(\lambda(p) \) such that \(\lambda(p)u_p \) is a solution to the problem (3.1); moreover, for all \(p \) close to \(\tau \), the constant multiples \(\lambda(p) \) are uniformly bounded from above and bounded away from 0.

Observe that since \(u_p \in S \) and the multiples \(\lambda(p) \) are uniformly bounded, the energy of the solutions \(w_p = \lambda(p)u_p \), \(p \) close to \(\tau \), are uniformly bounded.

4. A priori Estimates

In the last section, we proved the existence of a positive solution \(u_p \) to the subcritical equation (3.1) for each \(p < \tau \). Now we prove that as \(p \to \tau \), there is a subsequence of \(\{u_p\} \), which converges to a solution \(\frac{n}{n-2} \), the functions \(\{u_p\} \) are uniformly bounded; Since the functions \(u_p \) are harmonic, it is enough to do this analysis on the boundary \(S^{n-1} \).

Theorem 4.1. Assume that \(H \) Satisfies the flatness condition, then there is a \(p_0 < \tau \), such that for all \(p_0 < p < \tau \) the solutions of (3.1) obtained in the variational scheme are uniformly bounded.

To prove the theorem, we estimate the solutions on three regions: \(H \) negative and away from zero, \(H \) close to zero, and \(H \) positive and away from zero.

4.1. \(H \) Negative and away from zero

In this section, following the ideas of [3], we derive a priori estimates in the region where \(H \) is negative and bounded away from zero for all positive solutions of (1.1).

Proposition 4.2. The solutions of (3.1) are uniformly bounded in the region where \(H(x) \leq -\delta \), for every \(\delta > 0 \). The bound depends on \(\delta \), \(\text{dist} \{x|H(x) \leq -\delta\} , S_0 \), and the lower bound of \(H \), where \(S_0 = \{x|H(x) = 0\} \).

Using the conformal extension of the stereographic projection to the ball, the problem to solve is the following:

\[
\begin{cases}
-\Delta u = 0 \quad &\text{in} \quad \mathbb{R}_+^n, \\
\frac{\partial u}{\partial n} = Hu^{\frac{n}{n-2}} \quad &\text{over} \quad \partial \mathbb{R}_+^n.
\end{cases}
\] (4.1)

With asymptotic growth of the solutions at infinity.

\[u \sim \|x\|^{2-n}. \]

Here \(H \) is the projection of the original function \(H \) to \(\partial \mathbb{R}_+^n \). To prove proposition (4.2), we use the following lemma from [11]:
Lemma 4.3. Let \(w \in C^2(\mathbb{R}_+^n) \cap C^1(\partial \mathbb{R}_+^n) \) be a nonnegative function, \(B^+_1 \) the unit ball in \(\mathbb{R}_+^n \) and \(C(x) \) a bounded function on \(\mathbb{R}_+^n \). If \(w \geq 0 \) in \(\partial' B_1^+ \) and satisfies:

\[
\begin{cases}
\Delta g w = 0 & \text{on } B_1^+, \\
\frac{\partial w}{\partial \eta} - C(x)w \geq 0 & \text{on } \partial' B_1^+ \cap \partial \mathbb{R}_+^n,
\end{cases}
\]

(4.2)

where \(\frac{\partial w}{\partial \eta} - C(x)w \) is not equal zero on all \(\partial' B_1^+ \); then \(w > 0 \) in \(B_1^+ \).

and the following Harnack inequality:

Lemma 4.4. Let \(x_0 \) be a point where \(H \) is negative. Let \(3\epsilon_0 = \text{dist}(x_0, S_0) \) and

\[H(x) \leq -\delta_0 \quad \text{for all } x \in \partial B_{2\epsilon_0}^+(x_0) = B_{2\epsilon_0}^+(x_0) \cap \partial \mathbb{R}_+^n. \]

Assume that \(H(x) \geq -M \) for all \(x \in \partial \mathbb{R}_+^n \). Then there exists a constant \(C = C(\epsilon_0, \delta_0, M) \), such that for any point \(x_1 \) we have:

\[u(x_0) \leq C (|x_1 - x_0| + \epsilon_0)^{n-2} u(x_1). \]

Proof. We will present only the proof for \(p = \frac{n}{n-2} \); the proof for \(p < \frac{n}{n-2} \) is similar. Let \(\pi \in \partial B_{\epsilon_0}^+(x_0) \). Let us translate coordinates so that the point \(\pi \) becomes the origin. Let

\[u_0(x) = \epsilon_0^{\frac{n-2}{2}} u(\epsilon_0 x) \]

A simple calculation shows that \(u_0 \) satisfies:

\[
\begin{cases}
\Delta u_0 = 0 & \text{in } \mathbb{R}_+^n, \\
\frac{\partial u_0}{\partial \eta} = \tilde{H} u_0^{n/n-2} & \text{over } \partial \mathbb{R}_+^n,
\end{cases}
\]

(4.3)

where \(\tilde{H}(x) = H(\epsilon_0 x) \).

Let \(v(x) = \frac{1}{|x|^{n-2}} u_o(\frac{x}{|x|^2}) \) the Kelvin Transform of \(u_0 \), A direct calculation proved that \(v \) satisfies the equations:

\[
\begin{cases}
\Delta v = 0 & \text{in } \mathbb{R}_+^n, \\
\frac{\partial v}{\partial \eta} = \tilde{H} \left(\frac{x}{|x|^2} \right)^{n/n-2} v^{n/n-2} & \text{over } \partial \mathbb{R}_+^n,
\end{cases}
\]

(4.4)

For \(\alpha \) big enough, let us compare the function \(\alpha v(x) \) with \(u_0 \) in the unit ball \(B_1^+(0) \). For this, let us define the function

\[w(x) = \alpha v(x) - u_0(x). \]
Then $w(x)$ satisfies the equations:

\[
\begin{cases}
\Delta w = 0 & \text{in } B_1^+(0), \\
\frac{\partial w}{\partial \eta} = \alpha \tilde{H} \left(\frac{x}{|x|^2} \right) v^{n/n-2} - \tilde{H}(x) u_0^{n/n-2} & \text{over } \partial' B_1^+(0) = \partial B_1^+(0) \cap \partial \mathbb{R}^n_+,
\end{cases}
\] (4.5)

A straightforward calculation shows that.

\[
\frac{\partial w}{\partial \eta} - \alpha^{-\frac{2}{n-2}} \tilde{H} \left(\frac{x}{|x|^2} \right) \left[(\alpha v)^{n/n-2} - u_0^{n/n-2} \right] = \left(\alpha^{-\frac{2}{n-2}} \tilde{H} \left(\frac{x}{|x|^2} \right) - \tilde{H}(x) \right) u_0^{n/n-2}
\]

No, w, by the Mean value theorem, there is a continuous function ϕ valued between αv and u such that:

\[
\frac{\partial w}{\partial \eta} - \alpha^{-\frac{2}{n-2}} \tilde{H} \left(\frac{x}{|x|^2} \right) \phi w = \left(\alpha^{-\frac{2}{n-2}} \tilde{H} \left(\frac{x}{|x|^2} \right) - \tilde{H}(x) \right) u_0^{n/n-2}
\]

Since $-M \leq H(x) \leq -\delta$, then:

\[
\tilde{H}(x) - \alpha^{-\frac{2}{n-2}} \tilde{H} \left(\frac{x}{|x|^2} \right) \leq -\delta_0 + M \alpha^{-\frac{2}{n-2}} < 0,
\]

for α sufficiently large. Therefore,

\[
\frac{\partial w}{\partial \eta} - \alpha^{-\frac{2}{n-2}} \tilde{H} \left(\frac{x}{|x|^2} \right) \phi w = \left(\alpha^{-\frac{2}{n-2}} \tilde{H} \left(\frac{x}{|x|^2} \right) - \tilde{H}(x) \right) u_0^{n/n-2} > 0.
\]

From lemma (4.3), $w \geq 0$ in $B_1^+(0)$. This implies, for α depending only on δ_0 and M, and $x \in B_{e_0}(\bar{x})$ that

\[
u(x) \leq \alpha \frac{e_0^{-n-2} u}{{|x - \bar{x}|}^n} \left(e_0^2 \frac{|x - \bar{x}|}{|x - \bar{x}|^2} + \bar{x} \right)
\]

Given a point x_1, let us take a point \tilde{x}, such that the three points x_0, x_1 and \tilde{x}, are on the same line with x_0 in between, and satisfy

\[|x_0 - \tilde{x}| |x_1 - \tilde{x}| = e_0^2\]

From here, it follows that.

\[u(x_0) \leq C \left(|x_1 - x_0| + \epsilon \right)^{n-2} u(x_1)\]

where C only depends on δ_0, e_0 and M. \square

Now let us prove proposition 4.2

Proof. Since the functional of energy is bounded for the subcritical solutions u_p, p close to τ, found in the previous section, given a point x_0 as in lemma (4.4), the integrals

\[\int_{B_0^+(x_0)} u_p^{p+1} d\sigma\]
are uniformly bounded.

Applying lemma 4.4 for \(x \in \partial' B_{\varepsilon_0}(x_0) \) we get

\[
 u_p(x) \leq C \inf_{x \in \partial' B_{\varepsilon_0}(x_0)} u_p(x) \leq \frac{C}{|\partial' B_{\varepsilon_0}(x_0)|} \int_{\partial' B_{\varepsilon_0}(x_0)} u_p d\sigma \leq \frac{C}{n} \left(\int_{\partial' B_{\varepsilon_0}(x_0)} u_p^{p+1} d\sigma \right)^{1/p} \leq K_2
\]

Where \(K_2 \) only depends on \(\delta_0, \text{dist} \{ \{ x | H(x) \leq -\delta_0 \}, \{ x | H(x) = 0 \} \} \) and the inferior bound of \(H \). Hence, the solutions \(\{ u_p \} \) are uniformly bounded where \(H \) is negative. \(\square \)

4.2. \(H \) SMALL AND CLOSE TO ZERO

Proposition 4.5. Let \(\{ u_p \} \) be the solutions of the subcritical equation obtained by the variational approach, there exist \(p_0 < \tau \) and \(\delta > 0 \), such that for all \(p_0 < p \leq \tau \), \(\{ u_p \} \) are uniformly bounded in the regions where \(|H(x)| \leq \delta \).

Proof. First, recall that the energy of the subcritical solutions of the problem is uniformly bounded. Arguing by contradiction, assume that there exists a subsequence \(\{ u_i \} \) with \(u_i = u_{p_i}, p_i \to \frac{\varepsilon_i}{\varepsilon_0} \), and a sequence of local maxima \(\{ x_i \} \) of the functions \(u_i \), with \(x_i \to x_0 \) and \(H(x_0) = 0 \) such that \(u_i(x_i) \to \infty \).

Let \(K \) be a big number and \(r_i = 2K [u_i(x_i)]^{\frac{p_i-1}{2}} \). Taking the restriction of the functions \(u_i \) on the half ball \(B_{r_i}^+(x_i) \) and defining the function

\[
 v_i(x) = \frac{1}{u_i(x_i)} u_i\left(\frac{r_i}{2K} x + x_i \right)
\]

then \(v_i(x) \) is bounded on the half ball \(B_{r_i}^+(0) \) y \(v_i(0) = 1 \) for all \(i \). The family of functions \(v_i(x) \) is equicontinuous on \(B_{r_i}^+(0) \), and by the Arzela-Ascoli Theorem \(\{ v_i \} \) has a subsequence that converges to a harmonic function \(v_0 \) in the closure of \(B_{r_i}^+(0) \subset \mathbb{R}^n_+ \) and \(v_0(0) = 1 \). Moreover, since \(H(x_0) = 0 \), then \(\frac{\partial v_0}{\partial n} = 0 \) on \(\partial' B_{K}^+(0) \). Therefore the function \(v_0 \) satisfies the mean value equality

\[
 v_0(y) = \frac{1}{2|B_{K}^+(y)|} \int_{B_{K}^+(y)} v_0 dx.
\]

From here and the fact that

\[
 |v_0|^{p+1} \leq C(|v_i|^{p+1} + |v_0 - v_i|^{p+1}),
\]

we get for \(i \) big enough that

\[
 \int_{B_{r_i}^+(0)} |v_i|^{p+1}(x) dx \geq CK^n \tag{4.6}
\]

For some positive constant \(C \). On the other hand, since the energy \(E(u_i) \) is uniformly bounded

\[
 \int_{S^{n-1}} u_i^{p+1} dV \leq C,
\]
and any $K > 0$ we have that
\[
\int_{S^{n-1}} u_i^{p+1} dV = \int_{\mathbb{R}^n_+} u_i^{p+1}(\pi(x)) dx \geq \int_{B_K^+(0)} v_i^{p+1}(x) dx,
\]
we get the inequalities
\[
C \geq \int_{S^{n-1}} u_i^{p+1} dV \geq \int_{B_K^+(0)} v_i^{p+1}(x) dx \geq CK^n,
\]
where π is the inversion function.

If we take K big enough, we get a contradiction. Consequently, the sequence u_i is uniformly bounded in the regions where H is small. \[\square\]

4.3. H Positive and Away From Zero

Proposition 4.6. Let \(\{u_p\} \) be solutions of the subcritical problem (3.1) obtained by the variational approach. Then there exists a $p_0 < \tau$. Such that for all $p_0 < p < \tau$ and for any $\delta > 0$, \(\{u_p\} \) are uniformly bounded in the regions where $H(x) \geq \delta$.

Proof. The argument starts in the case $|H| < \delta$. Let \(\{x_i\} \) be sequence of points such that $u_i(x_i) \to \infty$ and $x_i \to x_0$ with $H(x_0) > 0$. Let $r_i(x)$ and $v_i(x)$ be defined as for the case $|H| < \delta$ and similarly $v_i(x)$ converges to standard function $v_0(x)$ in \mathbb{R}^n_+ with

\[
\begin{cases}
-\Delta v_0 = 0 & \text{in } \mathbb{R}^n_+,

\frac{\partial v_0}{\partial \eta} = H(x_0)u^{n/n-2} & \text{over } \partial \mathbb{R}^n_+,
\end{cases}
\]

(4.7)

It follows that
\[
\int_{B_{r_i}(x_0)} u^{p+1} dV \geq c_0 > 0.
\]

Because the total energy of u_i is bounded, we can only have finitely many such points x_0. Hence \(\{u_i\} \) has finite isolated blow-up points. As consequence of a result in [6] (proposition 4.11) we have:

Lemma 4.7. Let u_i be a solution of (3.1) for $n \geq 3$. Assume that for each critical point, x_0 we have the flatness condition α for some $\alpha > n - 2$, then the sequence u_i can have at most one simple blow-up point, and this point must be a local maximum of H. Moreover, u_i behaves almost like a family of the standard functions u_q.

However, based on the results in the subcritical case, even one point of blow-up is not possible. Let’s take u_i, the sequence of critical points of the functional J_p, obtained in section 2. We can get that from the proof of proposition 3.3

\[
J_\tau(u_i) \leq \min_k \left\{ H(r_k)|S^{n-1}| - \delta \right\}
\]

for all the positive local maxima r_k of H. Now if $\{u_i\}$ blow up at x_0, then by lemma 4.7 we have
\[J_r(u_i) \rightarrow H(x_0)|S^{n-1}|, \]

And we get a contradiction. This proves proposition 4.6. \(\square \)

From the three previous cases, we can conclude that the sequence \(u_i \) is uniformly bounded, finishing the proof of theorem 4.1. By the Arzela-Ascoli Theorem, the sequence \(u_i \) has a subsequence converging to a solution of (1.1). Hence Theorem 1.1 has been proven.

REFERENCES

[1] CHANG A. AND YANG P. A perturbation result for prescribing mean curvature. Math Ann 310 (1998)
[2] CHEN W. AND LI C. Prescribing Scalar Curvature on \(S^n \). Pacific journal of mathematics. Vol 199, 1, (2001), 61-78.
[3] CHEN W. AND LI C. A priori estimates for prescribing scalar curvature equations, Ann. Math., 145 (1997), 547-564.
[4] CHERRIER P. Problemes de Newman non lineaires sur les varietes Riemanniennes J. Functional Analysis 57 (1984) 657-667.
[5] ESCOBAR J. Conformal metric with prescribed mean curvature on the boundary. Calculus of Variations and Partial Differential Equations. Vol4 (1996) 559-592
[6] ESCOBAR J. AND GARCIA G. Conformal metrics on the ball with zero scalar curvature and prescribed mean curvature on the boundary. Journal of Functional Analysis. 211 (2004), 71-152.
[7] ESCOBAR J. Differential Geometry and Partial Differential Equations. Bloomington (1993).
[8] ESCOBAR J. The Yamabe Problem on Manifolds with Boundary. Journal of Differential Geometry, 35(1992), 21-84.
[9] ESCOBAR J. Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and eigenvalue estimate Comm. Pure Appl. Math., 43(1990). 867-883.
[10] ESCOBAR J. Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary. Ann. Math. 136 (1992) 1-50.
[11] ESCUDERO C. AND GARCIA G. Una nota sobre el problema de la deformacion conforme de metricas en la bola unitaria. Revista colombiana de matemáticas. Vol 37 (2003) 1-9.
[12] YAN YAN LI. Prescribing Scalar Curvature on \(S^n \) and related problems J.Differential Equations, 120 (1995), 319-410.

Department of Mathematics, University of Cincinnati, Cincinnati, OH 45221
Email address: alvaro.ortiz@uc.edu

Department of Mathematics, Universidad del Valle, Cali, Colombia.
Email address: gonzalo.garcia@correounivalle.edu.co