Ro-vibrational states of H$_2^+$. Variational calculations.

V.I. Korobov
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia

The nonrelativistic variational calculation of a complete set of ro-vibrational states in the H$_2^+$ molecular ion supported by the ground 1$s\sigma$ adiabatic potential is presented. It includes both bound states and resonances located above the $n = 1$ threshold. In the latter case we also evaluate a predissociation width of a state wherever it is significant. Relativistic and radiative corrections are discussed and effective adiabatic potentials of these corrections are included as supplementary files.

I. INTRODUCTION

For many years it was thought that reliable calculations of energy levels of bound and quasi-bound states in the hydrogen molecular ion may be performed only within the adiabatic approximation with some nonadiabatic corrections [1–5]. In the latter work [5] Moss calculated 462 ro-vibrational states of 481 states supported by the ground electronic potential curve using adiabatic approximation with a transformed Hamiltonian and an artificial-channels scattering method.

In the past two decades methods to compute the energy-level structure of H$_2^+$ and HD$^+$ ions, which do not rely on the Born-Oppenheimer approximation, have been intensively developed [6–11]. These are diverse ab initio approximations based on variational expansions of the nonrelativistic three-body wave function. Eventually, it has been shown that the ground state of H$_2^+$ ion may be calculated with as much as 34 significant digits [12, 13]. Still there remains a common opinion that weakly bound (or high vibrational) states as well as high rotational states are hardly amenable for variational methods.

On the other hand, in experiment, the two quasi-bound states have been observed recently [14], which were not accessible in the Moss calculations [5]. Along with these two states energies of a series of weakly bound and some low vibrational states have been measured by using the pulsed-field-ionization zero-kinetic-energy photoelectron spectroscopy [15]. This study paves a road for spectroscopy of a wide range of states in the H$_2^+$ ion, where an amount of successful experiments is drastically smaller than for the HD$^+$ ion due to absence of the electric dipole moment in H$_2^+$ allowing rotational-vibrational transitions.

By our work we want to demonstrate that all the 481 levels that are supported by the ground electronic potential curve may be calculated variationally. Moreover we claim that for all the bound states we are able to receive the nonrelativistic binding energy with at least seven significant digits after the point (units are cm$^{-1}$) and that for resonant states lying above the dissociation threshold a width (Γ) as well as the position energy (E_r) is obtained with high precision. Thus by using the ab initio variational method we have managed to cover the whole realm of existing states related to the 1$s\sigma$ electronic adiabatic potential.

In what follows in calculations we adopt the CODATA14 [16] values for physical constants. Atomic units are used throughout.

II. METHOD

In our studies, the stationary states in the H$_2^+$ molecular ion are determined by the non-relativistic Schrödinger equation for three particles:

$$(H_0 - E_0)\Psi_0 = 0,$$

$$H_0 = -\frac{1}{2M}\nabla_1^2 - \frac{1}{2M}\nabla_2^2 - \frac{1}{2m_e}\nabla^2 + \frac{1}{R} - \frac{1}{r_1} - \frac{1}{r_2}. \hspace{1cm} (1)$$

Here M is a proton mass, R is the internuclear distance, r_1 and r_2 are the distances from nuclei 1 and 2 to the electron, respectively. The state $\Psi_0 = |v N\rangle$ is characterized by the vibrational and rotational quantum numbers v, N, and E_0 is its energy.

A. Variational exponential expansion

Wave functions of rotational-vibrational states in the molecular hydrogen positive ion are approximated by the variational exponential expansion, which has been successfully exploited and developed by many authors and, in
significant digits. For a large total orbital angular momentum, \(N \) it is enough to keep three components with \(l \) over the angular part of the wave function in Eq. (2) converges very rapidly to an exact wave function with increase of taken as basis vectors for the angular part of expansion (2). That does not allow to use the apparent symmetry of variational intervals, which need to be optimized. Parameters be found in [9].

state. Other details of the method, such as the use of a multilayer structure to optimize the trial wave function, may

function and, as it has been established empirically, essentially improves the convergence rate for the energy of a

ability of explicit symmetrization of the wave function.

of a total spatial parity \(\pi = (-1)^N \) is expanded as follows:

\[
\Psi_{NM}^\pi (R, r_1) = \sum_{l_1+l_2=N} \mathcal{Y}_{NM}^{l_1l_2} (R, r_1) G_{l_1l_2}^N (R, r_1, r_2),
\]

(2)

where \(\mathcal{Y}_{NM}^{l_1l_2} (r_1, r_2) \) are the solid bipolar harmonics defined as in Ref. [17],

\[
\mathcal{Y}_{NM}^{l_1l_2} (r_1, r_2) = r_1^{l_1} r_2^{l_2} \{ Y_{l_1} \otimes Y_{l_2} \}_N M ,
\]

and \(N \) is the total orbital angular momentum of a state. Complex parameters \(\alpha_k, \beta_k, \) and \(\gamma_k \) are generated in a quasirandom way [7, 8]:

\[
\alpha_k = \left[\frac{1}{2} k (k+1) \sqrt{\rho_a} \right] (A_2 - A_1) + A_1 + i \left[\frac{1}{2} k (k+1) \sqrt{q_a} \right] (A_2' - A_1') + A_1',
\]

(3)

where \(\lfloor x \rfloor \) designates the fractional part of \(x \), \(\rho_a \) and \(q_a \) are some prime numbers, and \(\{ A_1, A_2 \} \) and \(\{ A_1', A_2' \} \) are real variational intervals, which need to be optimized. Parameters \(\beta_k \) and \(\gamma_k \) are obtained in a similar way. The use of complex exponents instead of real ones is dictated by the oscillatory behavior of the vibrational part of the wave function and, as it has been established empirically, essentially improves the convergence rate for the energy of a state. Other details of the method, such as the use of a multilayer structure to optimize the trial wave function, may be found in [3].

Few words should be added related to a choice of the coordinate system. The two position vectors \(R \) and \(r_1 \) are taken as basis vectors for the angular part of expansion (2). That does not allow to use the apparent symmetry of permutation of two protons as identical particles or makes it too difficult to realize. On the other hand, summation over the angular part of the wave function in Eq. (2) converges very rapidly to an exact wave function with increase of \(l_2 \), since this summation has close connection with the sum over the azimuthal quantum number \(m \), see [3]. Generally it is enough to keep three components with \(l_2 = 0, 1, 2 \) in the expansion to provide the energy as accurate as 16 significant digits. For a large total orbital angular momentum, \(N \), it gives very serious gain in computation time than the ability of explicit symmetrization of the wave function.

B. Resonances and the Complex Coordinate Rotation method

Beyond bound states in \(H^0 \) we also consider states, which are above the \(n = 1 \) threshold and thus may dissociate by penetrating through the centrifugal potential barrier: \(V_{rot} = \frac{N(N+1)}{M R^2} \). For this case we have to use some formalism, which may rigorously treats resonances. Such a tool for variational methods, that is most efficient and simple in a practical use, is the Complex Coordinate Rotation (CCR) method. We briefly describe it below.

The Coulomb Hamiltonian \(H \) is analytic under dilatation transformations

\[
(U(\theta)f)(r) = e^{d\theta/2} f(e^\theta r), \quad H(\theta) = U(\theta) H U^{-1}(\theta),
\]

(4)

for real \(\theta \), or in other words may be expanded in a convergent power series of the dilatation parameter \(\theta \) on some open interval, and thus can be analytically continued to the complex plane. Parameter \(d \) in Eq. (4) is a dimension of the coordinate space, say, for a single electron in a three-dimensional space: \(d = 3 \).

The Complex–Coordinate Rotation method \([18, 19]\) "rotates" the coordinates of the dynamical system (\(\theta = i \varphi \)), \(r_{ij} \rightarrow r_{ij} e^{i\varphi} \), where \(\varphi \) is the parameter of the complex rotation. Under this transformation the Hamiltonian \(H \) changes as a function of \(\varphi \)

\[
H_\varphi = T e^{-2i\varphi} + V e^{-i\varphi},
\]

(5)

where \(T \) and \(V \) are the kinetic energy and Coulomb potential operators. The continuum spectrum of \(H_\varphi \) is rotated on the complex plane around branch points ("thresholds") to "uncover" resonant poles situated on the unphysical sheet of the Reimann surface in accordance with the Augilar-Balslev-Combes theorem [20]. The resonance energy is then determined by solving the complex eigenvalue problem for the "rotated" Hamiltonian

\[
(H_\varphi - E) \Psi_\varphi = 0, \quad \text{Eq. (6)}
\]
TABLE I: Nonrelativistic energies ($E = E_r + i\Gamma/2$) for the resonant states supported by the adiabatic $1s\sigma$ curve in the H_2^+ molecular ion. The energies are reckoned from the $1S$ hydrogen atom threshold. The states in the first three lines are label by (v,N).

| v | $N = 21$ | $N = 22$ | $N = 23$ | $N = 24$ | $N = 25$ | $N = 26$ | $N = 27$ | $N = 28$ | $N = 29$ | $N = 30$ | $N = 31$ | $N = 32$ | $N = 33$ | $N = 34$ | $N = 35$ | $N = 36$ | $N = 37$ | $N = 38$ | $N = 39$ | $N = 40$ | $N = 41$ | $N = 42$ |
|-----|----------|
| 0 | 1.46327(4) + i 0.09561 | 11.0572(1) + i 0.0810 | 42.216(3) + i 0.456 | 40.90159(2) + i 0.00081 | 112.480(1) + i 4.247 |
| 1 | 14.14(14) | 14.15(14) | 13.16(14) | 13.17(14) | 12.18(14) |
| 2 | 41.63184(01) + i 0.000001 | 148.7111(3) + i 1.2509 | 56.921993 | 197.71413(2) + i 0.47050 | 95.198759 |
| 3 | 266.92932(01) + i 0.32824 | 261.388316 + i 0.00018 | 485.57281 + i 0.80492 |
| 4 | 85.558635 | 85.526350(16) | 279.938459 | 668.75053 + i 0.00001 | 1263.44(1) + i 80.40 |
| 5 | 76.533945 | 441.998395 | 773.51485 + i 0.03352 | 1047.1282 + i 9.9532 |
| 6 | 566.034999 + i 0.00361 | 985.1513 + i 144.827 |
| 7 | 352.517940 | 815.86300 | 1245.00401 + i 0.00627 | 1620.9184(2) + i 3.7466 |
| 8 | 936.289999 + i 0.00040 | 1537.21(1) + i 111.78 |
| 9 | 866.659020 | 1423.264207 | 1948.25079 + i 0.00109 | 2430.70205 + i 0.72057 | 2849.7390 + i 23.3570 |
| 10 | 1525.72814 + i 0.00012 | 1989.77978 + i 0.25777 | 2389.4651 + i 16.8142 |
| 11 | 1982.2541 + i 0.9690 |
| | 2924.53309 + i 0.99382 |

The eigenfunction Ψ_ϕ obtained from Eq. (6), is square-integrable and the corresponding complex eigenvalue $E = E_r - i\Gamma/2$ defines the energy E_r and the width of the resonance, Γ, the latter is being related to the Auger rate as $\lambda_A = \Gamma/h$.

The use of a finite set of N basis functions defined by (2) reduces the problem (6) to the generalized algebraic complex eigenvalue problem

$$(A - \lambda B)x = 0,$$ \hspace{1cm} (7)

where $A = \langle \Psi_\phi | H | \Psi_\phi \rangle$ is the finite $N \times N$ matrix of the Hamiltonian in this basis, and B is the matrix of overlap $B = \langle \Psi_\phi | \Psi_\phi \rangle$.

An example of practical calculation is given in Fig. 1. The two rotational paths for a basis set of $N_{\text{max}} = 16$ 000 and $N_{\text{max}} = 20$ 000 are shown on the plot. A step in the rotational angle φ between two sequential calculations is constant and equal to $\Delta \varphi = 0.02$. A point where the paths become stabilized determines a position of the resonance pole.

III. RESULTS

Main results of present work are summarized in two tables. In Table I the resonant states located above the dissociation threshold are given. Generally they are written in the form $E_r + i\Gamma/2$, where E_r is an energy position of the level above the threshold, while Γ determines a width of the state. Uncertainty is indicated for the resonance energy only, since the uncertainty for the real and imaginary part is the same in the CCR calculations. If the...
uncertainty is not shown that implies that all the digits presented are significant. If the imaginary part is omitted then the width of the state is below the uncertainty limit determined by the digits presented in the real part. The most computationally complicate are the states \((v = 18, N = 4)\) and \((v = 17, N = 7)\), where the variational basis of \(N_{\text{max}} = 20000\) and \(N_{\text{max}} = 16000\) functions have been used. In other cases more moderate basis set of \(N_{\text{max}} = 3000\) to 9000 functions are sufficient.

The bound states of the \(\text{H}_2^+\) molecular ion are collected in Table III. All the digits given for a binding energy of a particular state are significant. In fact precision obtained in the numerical calculations is somewhat higher and the numbers shown are taken by truncation of the numerical result to a fixed length.

A. Relativistic and radiative corrections

Consideration of the relativistic and radiative corrections is essential for comparison with experimental data. Still we intentionally do not present in our work extended sets of numerical results for these corrections, as it was done, say, in [5]. There are several reasons for that.

Generally, for precision spectroscopy aimed for determination of the fundamental constants or for precision tests of the quantum electrodynamics, the states with low \(v\) and low \(N\) are required. In this case the leading order relativistic [21, 22] and radiative [23] corrections are calculated and tabulated for a wide range of vibrational and rotational states. For higher order contributions of orders \(m\alpha^6\), \(m\alpha^7\), etc, the adiabatic Born-Oppenheimer (BO) approximation may be used [24]. To this end, results are presented as ”effective” potentials [25, 26], which then utilized for calculating of corrections as shown in [24]. Eventually, the theoretical frequencies for particular transitions are compared with precision spectroscopic measurements [27–50]. So far such experiments have been performed with HD\(^+\) molecular ion only, but even more precise experiments in \(\text{H}_2^+\) are coming [31]. In all these cases the hyperfine structure of the states and of experimentally observed spectral lines is of much importance [32, 33].

For the case of high \(v\) and/or high \(N\) states precision of order \(10^{-11}\) is not required and adiabatic approximation may be used already for the leading order relativistic correction, which is determined by the Breit-Pauli (BP) Hamiltonian for a bound electron:

\[
H_{\text{BP}} = -\frac{\hbar^2}{8m_e^2} + \frac{\Delta V}{8m_e^2} + H_{\text{BP}}^{so} + H_{\text{BP}}^{sp},
\]

where \(H_{\text{BP}}^{so}\) and \(H_{\text{BP}}^{sp}\) are the electron spin-orbit and electron spin-proton spin interactions, respectively. The ”effective” BO potential \(\mathcal{E}_{\text{BP}}(R) = \alpha^2 \langle H_{\text{BP}} \rangle\) may be found in [34, 35]. Next step is evaluation of the radiative correction at order \(m\alpha^5\), this can be done by using the ”effective” potential of the leading order radiative correction for a bound electron of the form

\[
\mathcal{E}^{(5)}_{\text{SE}}(R) = \frac{\alpha^4}{3} \left[\ln \frac{1}{\alpha^2} - \beta(R) + \frac{5}{6} - \frac{3}{8} \right] \left(\delta(r_1) + \delta(r_2) \right)(R).
\]

Here \(\beta(R)\) is the Bethe logarithm of a bound electron, and its tabulated data for the two-center problem for a case which corresponds to \(\text{H}_2^+\) ion may be found in [26, 36]. For convenience we add to this paper Supplementary Materials [37],...
TABLE II: Nonrelativistic dissociation energies (in cm$^{-1}$) for the bound states supported by the adiabatic 1σ curve in the H$_2^+$ molecular ion.

v	N = 0	N = 1	N = 2	N = 3	N = 4	N = 5	N = 6	N = 7
0	21379.2924392	2121.0638855	2105.0607384	2103.3096993	2000.8531565	2052.7316112	2018.7940563	1980.8424805
1	1918.8192811	1913.0260782	1903.1374588	1885.4050711	1862.1177275	1837.9428559	1809.8886700	1769.2486964
2	1712.3028404	1707.6963314	1698.991327	1681.1385661	1660.5591955	1635.5828815	1606.9174116	1571.0285903
3	15183.3990633	1513.6038238	1503.8016848	1488.4219304	1469.1084324	1447.3967712	1417.3105353	1385.4239296
4	13361.9186852	1331.3792105	1322.6936295	1304.8363203	1290.3521416	1267.0385241	1241.0273974	1216.0954148
5	11565.9368988	1151.3340029	1152.9075657	1139.6036645	1122.5187324	1101.8670746	1072.7558353	1047.1378741
6	10066.1625254	1005.0523395	9864.9547456	9661.4097362	9462.0134951	9277.953343	9095.0915828	
7	8587.9429632	8549.990877	8472.693777	8359.0283032	820.2199989	802.3346260	784.4790931	755.9699529
8	7221.2727634	718.4438949	714.245059	700.8226165	686.4144298	676.0827128	642.760222	620.2380134
9	5965.8218314	5932.9644177	5866.7693808	5768.697768	5639.4298549	5480.2087436	5292.542046	5078.0933447
10	4821.9732825	4791.5364977	4730.9822003	4640.9438021	4522.3516105	4376.4121705	4204.5824579	4084.512009
11	3790.8181584	3763.1855389	3708.10438	3626.260269	3518.5728178	3386.210808	3230.6129259	3053.4302053
12	2874.5390145	2847.6654676	2800.2214396	2726.8279323	2630.3752453	2512.0368083	2373.2336051	2231.6425458
13	2075.8807566	2053.4911449	2030.6684004	1977.471506	1861.0467218	1757.3660966	1636.1615989	1499.0954966
14	1398.8964633	1380.483698	1342.663989	1297.358388	1215.0351262	1126.8989112	1042.4156178	990.316890
15	848.7622364	833.221873	802.462068	757.1188031	698.1419406	626.7850889	544.6216971	531.5676248
16	431.9115198	419.7955224	396.494703	360.8185998	317.184980	264.9437664	205.4739575	141.537864
17	155.6517529	147.7820606	132.3058791	110.1557416	82.5281627	51.1795292	18.5870535	18.5870535
18	24.0527340	20.6202178	14.2559364	6.3849695	6.3849695	6.3849695	6.3849695	6.3849695
19	0.7422427	0.2210596	0.2210596	0.2210596	0.2210596	0.2210596	0.2210596	0.2210596
20	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0

Notes:
- The values are given in cm$^{-1}$.
- The dissociation energies are for the bound states supported by the adiabatic 1σ curve in the H$_2^+$ molecular ion.
- The table entries are ordered by vibrational quantum number v.
- The entries are divided into columns labeled $N = 0$ to $N = 7$.
- The table values are rounded to four decimal places.
which contain the data for the Breit-Pauli relativistic corrections and the nonrelativistic Bethe logarithm for a bound electron in the two-center problem. Beyond that for convenience we have included as well into the Supplementary Materials the Born-Oppenheimer electron energy potential, $E_{el}(R)$, and the adiabatic corrections, $E_{ad}(R)$.

B. Conclusion

In summary, we have computed nonrelativistic energies for all 481 ro-vibrational bound and quasi-bound states in the H_2^+ molecular ion, which are supported by the adiabatic 1$s\sigma$ potential curve. The calculations are the first \\textit{ab initio} non-adiabatic variational calculations, which allowed to get most accurate and complete data for precision spectroscopic studies of the hydrogen molecular ion (cation). We also provide necessary supplemental resources, which may be used to evaluate the relativistic and radiative corrections for individual states as well as for transitions.

Acknowledgements

The work has been carried out under financial support of the Russian Foundation for Basic Research under Grant No. 15-02-01906-a.

[1] M. Born and J.R. Oppenheimer, Ann. Physik 84, 457 (1927).
[2] M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954), Appendix VIII.
[3] L. Wolnewicz and J.D. Poll, Mol. Phys. 59, 953 (1986); 66, 701(E) (1989).
[4] A. Carrington, I.R. McNab, and Ch.A. Montgomerie, J. Phys. B: At. Mol. Opt. Phys. 22, 3551 (1989).
[5] R.E. Moss, Mol. Phys. 80, 1541 (1993).
[6] J. M. Taylor, Zong-Chao Yan, A. Dalgarino, and J.F. Babb, Mol. Phys. 97, 25 (1999).
[7] A.M. Frolov, and V.H. Smith, Jr., J. Phys. B: At. Mol. Opt. Phys. 35, 4287 (2002).
[8] V.I. Korobov, D. Bakalov, and H.J. Monkhorst, Phys. Rev. A, 59, 064503 (2000).
[9] V.I. Korobov, Phys. Rev. A, 61, 064503 (2000).
[10] L. Hilico, N. Billy, B. Grémaud, and D. Delande, Eur. Phys. J. D 12, 449 (2000).
[11] D.H. Bailey and A.M. Frolov, J. Phys. B: At. Mol. Opt. Phys. 35, 4287 (2002).
[12] Hua Li, Jun Wu, Bing-Lu Zhou, Jiong-Ming Zhu, and Zong-Chao Yan, Phys. Rev. A 75, 012504 (2007).
[13] Ye Ning and Zong-Chao Yan, Phys. Rev. A 90, 032516 (2014).
[14] M. Beyer and F. Merkt, Phys. Rev. Lett. 116, 093001 (2016).
[15] M. Beyer and F. Merkt, J. Mol. Spectrosc. 330, 147 (2016).
[16] P.J. Mohr, B.N. Taylor, and D.B. Newell, Rev. Mod. Phys. 88, 035009 (2016).
[17] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).
[18] W.P. Reinhardt, Ann. Rev. Phys. Chem. textbf33, 223 (1982).
[19] Y.K. Ho, Phys. Rep. 99, 1 (1983).
[20] J. Aguilar and J.M. Combes, Commun. Math. Phys. 22, 269 (1971); E. Balslev and J.M. Combes, *ibid.* 22, 280 (1971); B. Simon, *ibid.* 27, 1 (1972).
[21] V.I. Korobov, Phys. Rev. A 74, 052506 (2006).
[22] Zhen-Xiang Zhong, Zong-Chao Yan, and Ting-Yun Shi, Phys. Rev. A 79, 064502 (2009).
[23] V.I. Korobov and Zhen-Xiang Zhong, Phys. Rev. A 86, 044501 (2012).
[24] V.I. Korobov, L. Hilico, and J.-Ph. Karr, Phys. Rev. Lett. 118, 233001 (2017).
[25] V.I. Korobov and Ts. Tsogbayar, J. Phys. B: At. Mol. Opt. Phys. 40, 2661 (2007).
[26] V.I. Korobov, L. Hilico, and J.-Ph. Karr, Phys. Rev. A, 87, 062506 (2013).
[27] J.C.J. Koelemeij, B. Roth, A. Wicht, I. Ernsting, and S. Schiller, Phys. Rev. Lett. 98, 173002 (2007).
[28] J. Biesheuvel, J.-Ph. Karr, L. Hilico, K.S.E. Eikema, W. Ubachs, and J.C.J. Koelemeij, Nature Comm. 7, 10385 (2016).
[29] J. Shen, A. Borodin, M. Hansen, and S. Schiller, Phys. Rev. A 85, 032519 (2012).
[30] U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, Phys. Rev. Lett. 108, 183003 (2012).
[31] S. Schiller, I. Kortunov, M. Hernández Vera, F. Gianturco, and H. da Silva, Jr. Phys. Rev. A 95, 043411 (2017).
[32] D. Bakalov, V.I. Korobov, and S. Schiller, Phys. Rev. Lett. 97, 243001 (2006).
[33] V.I. Korobov, J.C.J. Koelemeij, L. Hilico, and J.-Ph. Karr, Phys. Rev. Lett. 116, 053003 (2016).
[34] M.H. Howells and R.A. Kennedy, J. Chem. Soc., Faraday Trans. 86, 3495 (1990).
[35] Ts. Tsogbayar and V.I. Korobov, J. Chem. Phys. 125, 024308 (2006).
[36] R. Bukowski, B. Jezierski, R. Moszyński, and W. Kolos, Int. J. Quantum Chem. 42, 287 (1992).
[37] See Supplemental materials for a set of "effective" potentials for the Breit-Pauli corrections and the nonrelativistic Bethe logarithm.