Slippage of Nonsuperfluid 3He-4He Mixture Film on Gold

M. Hieda, T. Oda, T. Matsushita, and N. Wada
Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
E-mail: hieda@cc.nagoya-u.ac.jp

Abstract. We report the result of a QCM experiment at 100 MHz for a coverage of 3He-4He mixture film ($n_3 = 0.75$ and $n_4 = 2.90$ bulk-density layers) on a planar gold substrate. This study is done by taking the temperature scan of both warming and cooling at various constant oscillation velocities v from 19 to 59 μm/s. At minimum $v = 19$ μm/s, a frequency shift of about 5 Hz due to the superfluid transition is observed below the onset temperature $T_o = 0.16$ K. Surprisingly, at $v = 35$ μm/s, the observation is dramatically changed and an extra large frequency shift with a hysteresis loop between warming and cooling is found. Upon increasing v further, the extra shift evolves into much larger shifts. These observations suggest that a part of 3He on underlying 4He layer slips by a pinning-depinning mechanism above $v = 35$ μm/s. At maximum $v = 59$ μm/s, the decoupling ratio of slippage reaches 90% of the whole 3He population.

1. Introduction
In oscillator studies for atomically thin nonsuperfluid helium films, anomalous frequency shifts are observed in some experiments on graphite [1, 2], hectorite [3], and porous gold [4]. This anomalous behavior is often interpreted by a slippage of the nonsuperfluid films from oscillating substrate relating to a nanoscale friction of physisorbed films. In this interpretation, the interfacial viscous friction $F = -\left(\sigma/\tau\right)V$, where σ is the areal density, τ the slip time, and V the sliding velocity, acts at the film-substrate boundary, and the slip state is determined by $\omega\tau$, where ω is angular frequency of measurement. The slip time τ represents the time required for the sliding velocity to decay $1/e$ of its initial value. When $\omega\tau \ll 1$, a physisorbed film shows no slippage. When $\omega\tau$ increases and approaches to 1, the film starts to slip. When $\omega\tau \gg 1$, the film completely decouples from the oscillating substrate. The slippage behaviors have been reported for pure 4He or 3He films. We report here a result of our quartz crystal microbalance (QCM) experiment at 100 MHz for a coverage of 3He-4He mixture film on a flat gold substrate. It could be interesting as 3He-4He mixture films form a unique structure for adsorption.

3He-4He mixture films have been studied for a long time to explore 3He effects on the nature of 2D superfluidity [5]. However, the microscopic configuration of 3He-4He mixture films is incompletely understood. The different zero point energies of 3He and 4He tend to separate the two isotopes in the van der Waals field perpendicular to the substrate. So far, at $T = 0$, a possible structure of the film is proposed to be a simple layer model, 3He/superfluid 4He/solid-like 4He/substrate, by torsional oscillator (TO) studies on Mylar [6] and porous gold [7]. In this study, the coverages of 3He, superfluid 4He, and solid-like 4He are $n_3 = 0.75$, $n_{4,\text{fluid}} = 0.15$, and $n_{4,\text{solid}} = 2.75$ bulk-density layers respectively. At finite temperatures, it must be complicated...
by the possibility of mixing of 3He and 4He. At the coverage of this study, there is no signature of the mixing in the previous TO study [7] and our QCM study [8] as the overall T dependence of superfluid density ρ_s of the 3He-4He mixture film shows no difference from pure 4He.

2. Experimental
The QCM is a mass sensor using the piezoelectric property of quartz. Applying an AC voltage across two electrodes of a quartz disc, the disc oscillates with a thickness shear mode and detects nanogram order of mass on the electrodes. Therefore the QCM has been not only used for a conventional thickness monitor in a vacuum chamber of an evaporator but also for fundamental researches, adsorption, superfluid film, nanofriction, wetting and others.

In this low temperature study, a commercial AT-cut quartz disc with a fundamental resonance at 20 MHz and with gold electrodes is installed in an OFHC experimental cell with silver sinter of surface area 0.4 m2. Before cooling down, the cell is evacuated at room temperature for one day by a turbo molecular pump through a CuNi capillary 0.5 mm in diameter. The QCM experiment is done at 100 MHz using the 5th harmonic mode (the harmonic acoustic number $l = 5$) and at the constant coverage of 3He-4He mixture film ($n_3 = 0.75$ and $n_4 = n_{4,\text{fluid}} + n_{4,\text{solid}} = 2.90$ bulk-density layers) on flat gold substrate. One bulk-density layer (one bulk liquid density at zero bar) is defined as 12.9 μmol/m2 and 10.6 μmol/m2 for 4He and 3He, respectively. The excitation voltage is used in the region of 0.2 - 0.7 mV. No heating problem is confirmed in the previous study of 2D superfluidity for pure 4He films at 60 MHz ($l = 3$) using the same QCM sample and experimental cell [9]. From the transmitted voltage signal of the QCM, the oscillating mechanical amplitude and velocity are estimated [10] to be 0.030 - 0.093 pm and 19 - 59 μm/s respectively. The data is acquired by taking the temperature scan of both warming and cooling in the range of 0.06 - 0.4 K at the constant oscillating velocity of 19 - 59 μm/s. The Q factor at 100 MHz is measured to be 2×10^4 at 0.1 K. The resolution of frequency and the inverse Q factor change ΔQ^{-1} are 1 Hz and 1×10^{-8} respectively, which is about 10 times worse than the best performance for some reason. One bulk-density layer of 3He and 4He causes the frequency shifts of 28.7 and 46.6 Hz respectively.

We note that this study is performed within the velocity region of the linear superfluid response. The velocities of our measurement are much lower than the critical velocity, 1 mm/s, for the nonlinear response of a superfluid 4He film observed in the TO study on Mylar [11]. This is also verified in our previous QCM study [9] by the fact that the temperature dependences of ρ_s and ΔQ^{-1} show no amplitude dependence. Our result in this paper is not influenced by any anomalous behavior of the nonlinear superfluid response.

3. Results and Discussion
Figure 1 shows the frequency and ΔQ^{-1} as a function of temperature at 100 MHz for various oscillating velocities. At the minimum $v = 19$ μm/s, the frequency shift about 5 Hz due to the superfluid KT transition is observed below the onset temperature $T_o \sim 0.16$ K. The associated dissipation peak of ΔQ^{-1} is hidden by the noise. For clarity, the 60 MHz data with the better resolution at the same coverage and excitation voltage is also shown, and $T_o = 0.155 \pm 0.005$ K. Surprisingly, at $v = 35$ μm/s, the observation is dramatically changed and an extra large frequency shift and ΔQ^{-1} with a hysteresis loop between warming and cooling is found. On increasing v further, the extra shift evolves into a much larger shift than the expected value for the superfluid transition. These observations suggest that a part of the nonsuperfluid component in the 3He-4He mixture film slips by a pinning-depinning mechanism above $v = 35$ μm/s. At the maximum $v = 59$ μm/s, 10% of the whole mixture film decouples from the oscillation.

To better understand this temperature-induced pinning-depinning transition, we estimate the slip time τ. The slip time is calculated from the frequency δf and dissipation δQ^{-1} shifts due to the slippage of the nonsuperfluid with respect to the vacuum value as $\tau = \delta Q^{-1}/(4\pi \delta f)$ [12].
Figure 1. Evolution of frequency and ΔQ^{-1} versus temperature at 100 MHz with increasing oscillating velocity of QCM. For clarity, the 60 MHz data with the better resolution at the same coverage and excitation voltage is also shown.

Figure 2 shows the slip time τ versus temperature at $v = 59 \, \mu m/s$. We assume that $\tau \sim 0$ at the higher temperature side of the anomalous hysteresis since the mixture film rigidly locks to the gold substrate. The calculated τ shows a hysteresis loop. Decreasing temperature, τ abruptly jumps up at 0.16 K and is 20 ns at 0.1 K. Increasing temperature, τ slowly rises to 30 ns and then suddenly drop down to 0 ns at 0.20 K. The pinning-depinning occurs during the sudden change of τ passing through $\omega \tau = 1$.

The first question is which part of the film the slippage signal comes from. In our previous study [9] for pure 4He films using the same experimental situation (quartz, experimental cell, frequency (100 MHz), and driving voltage (0.6 mv)), no observation of the same anomaly is found. In other words, both the fluid and solid-like layers of 4He show no slippage. This indicates that the slippage signals mainly come from a part of 3He on 4He fluid layer. At the maximum $v = 59 \, \mu m/s$, $\delta f = 19 \, Hz$, which corresponds to 90 % of the whole 3He component.

The second question is what mechanism the temperature-induced pinning-depinning transition occurs by. In case of the classical physisorbed films (Kr and Ne), by keeping a constant temperature and varying the coverage and the amplitude, two factors are suggested as the origin of the pinning; defects of the substrate and a structural mismatch between surfaces of adsorbate and substrate [13, 14]. However these are not the intrinsic reasons for our observation of the temperature-induced pinning-depinning transition with the sudden change at $\sim 0.2 \, K$ because there is generally no sharp structural change for the physisorbed films on a substrate with poor quality like commercially available QCMs. Therefore we need to speculate further about the other mechanism of the pinning-depinning transition.

To suggest a possible scenario, we note two things observed in this study; i) a part of 3He on underlying 4He slips and ii) the pinning-depinning transition temperature is close to the superfluid onset T_α. At higher temperatures, the momentum transfer to 3He from the oscillator occurs at the interface of 3He and nonsuperfluid 4He. At lower temperatures, no superfluid 4He is believed to transfer the momentum to 3He. Thus, when thickness of the superfluid is sufficiently thick, 3He floating on superfluid 4He must decouple from the oscillation. On the other hand, when the thickness of the superfluid is very thin, like a submonolayer, the momentum transfer probably occurs by some pinning centers, such as defects of the substrate, and 3He barely oscillates with a low static friction. Therefore, by increasing the amplitude, the pinning-depinning transition is observed beyond a threshold.
In general, reproducibility of the experimental studies on the slippage of physisorbed films is a frequent problem. This is probably because the slippage is highly sensitive to surface roughness and contamination of the substrate [13, 14]. Therefore it is natural to think that the results of this study also depends on the experimental condition and preparation. In particular, further studies of 2D superfluidity in 3He-4He mixture films should pay attention to the possibility for the decoupling of 3He on the underlying 4He and use low amplitude of oscillators.

4. Conclusion

We report the slippage of the nonsuperfluid 3He-4He mixture film on the flat gold by the QCM measurement at 100 MHz for various constant oscillating velocities v from 19 to 59 μm/s. Above $v = 35$ μm/s, the temperature-induced pinning-depinning transition of 3He on underlying 4He is observed accompanied by a hysteresis loop. To describe the mechanism, the possible scenario related to the superfluid transition of 4He fluid layer is suggested.

Acknowledgment

This research is supported by a Grant-in-Aid for Challenging Exploratory Research (Grant No. 22651036) from the JSPS.

References

[1] Mohandas P, Lusher C P, Mikhnev V A, Cowan B and Saunders J 1995 J. Low Temp. Phys. 101 481
[2] Hosomi N, Tanabe A, Suzuki M and Hieda M 2007 Phys. Rev. B 75 064513
[3] Hieda M et al. 2000 Phys. Rev. Lett. 85 5142
[4] Taniguchi J, Wataru K, Hasegawa K, Hieda M and Suzuki M 2006 AIP Conf. Proc. 850 279
[5] Hallock R B 1995 The Properties of Multilayer 3He-4He Mixture Films vol 14 ed Halperin W P (Amsterdam: Elsevier Science B.V.) p 321
[6] McQueeney D, Agnolet G and Reppy J D 1984 Phys. Rev. Lett. 52 1325
[7] Csáth G A and Chan M H W 2001 Phys. Rev. Lett. 87 045301
[8] Oda T, Hieda M, Matsushita T and Wada N unpublished
[9] Hieda M, Matsuda K, Kato T, Matsushita T and Wada N 2009 J. Phys. Soc. Jpn. 78 033604
[10] Hosomi N and Suzuki M 2008 Phys. Rev. B 77 024501
[11] Agnolet G, McQueeney D F and Reppy J D 1989 Phys. Rev. B 39 8934
[12] Krim J and Widom A 1988 Phys. Rev. B 38 12184
[13] Bruschi L, Carlin A and Mistura G 2002 Phys. Rev. Lett. 88 046105
[14] Bruschi L, Foïs G, Pontarollo A, Mistura G, Torre B, Buatier de Mongeot F, Boragno C, Buzio R and Valbusa U 2006 Phys. Rev. Lett. 96 216101