Introduction

Anecdotal reports suggest that marijuana- or tetrahydrocannabinol-containing products may be effective in alleviating symptoms in patients with ulcerative colitis (UC) and Crohn’s disease (CD). [1,2] This is supported by recent studies of our group and others suggesting that pharmacological activation of the cannabinoid 1 (CB1) receptor with selective receptor agonists decreases the inflammatory response in various murine models of colonic inflammation including dinitrobenzene sulphonate (DNBS)-, trinitrobenzene sulphonate (TNBS)- and dextran sodium sulfate (DSS)-induced colitis. [3–7] Interestingly, pharmacological blockade of CB1 receptors or genetic ablation of CB1 receptors (CNR1−/− mice) aggravates intestinal inflammation in these models, [3,7] emphasizing the physiological relevance of the CB1 receptor in the protection against intestinal inflammation. Increased mucosal levels of the endocannabinoid anandamide during intestinal inflammation in humans further stress the role of the CB1 receptor and the endocannabinoid system in intestinal inflammation. [4] Thus, present knowledge suggests up-regulation of endocannabinoids as an important protective mechanism in intestinal inflammation.

The endocannabinoid system and the CB1 and CB2 receptors seem to be crucially involved in the regulation of multiple physiological functions, e.g. in the heart, where they relax coronary arteries and decrease cardiac work, [8] in organ perfusion, [9] in metabolic homeostasis, [10,11] and in the regulation of bone mass by osteoclasts, [12] as well as in the protection against stress responses, inflammation, and associated repair mechanisms. [13,14] Although recent evidence suggests that the endocannabinoid system is involved in many physiological and pathophysiological functions of the gastrointestinal tract such as intestinal motility, secretion, and intestinal inflammation [3,15–20], the exact mechanisms underlying these findings are not yet known. It was recently suggested that CB1 signaling may be up-regulated during colitis, [3] but it is unknown whether this is a specific feature of the colitis model or a general response to intestinal inflammation.
Moreover, the role of the CB₁ receptor in human inflammatory bowel disease (IBD) has not been clarified. Increased anandamide levels were found in mucosal biopsies from UC patients, suggesting a role of the endocannabinoid system in UC. [4] In contrast, the colonic expression of the endocannabinoid 2-acyl-glycerol (2-AG) is not increased in UC. [4] So far, however, no other studies analyzing the endocannabinoid system or the pharmacological effects of cannabinoids in human IBD have been published.

Gastrointestinal inflammation is likely the result of multiple factors, e.g., increased pro-inflammatory stimuli and reduced protective capability. The overall balance between pro- and anti-inflammatory mechanisms may determine the progression and severity of intestinal inflammation. [21,22] Given the results of recent genome-wide association studies, [23] genetic susceptibility is an important factor contributing to IBD development. Moreover, knowledge of genetic susceptibility factors could provide important pathophysiologic insights for the generation of novel IBD therapeutics.

Considering our previous work on the endocannabinoid system in murine intestinal inflammation, [3,6,7,24] we hypothesized that insights for the generation of novel IBD therapeutics.

DNA Extraction and Genotyping of the CNR1 Polymorphism

Recently, a guanosine-to-adenine substitution at nucleotide position 1359 has been identified in the CNR1 gene (rs1049353) [25,29]. Thus, three genotypes (GG, GA, AA) are possible. Genomic DNA was isolated from peripheral blood leukocytes by standard procedures using the DNA blood mini kit from Qiagen (Hilden, Germany). Genotyping was done as previously described [7,30]. Briefly, a single 20-μl PCR was performed to genotype this

Table 1. Demographic characteristics of the study population.
Gender
Male (%)
Female (%)
Age (yr)
Mean ± SD
Range
Body mass index
Mean ± SD
Range
Age at diagnosis (yr)
Mean ± SD
Range
Disease duration (yr)
Mean ± SD
Range
Positive family history of IBD (%)

doi:10.1371/journal.pone.0009453.t001

Human Study Population

The study population comprised 579 individuals, including 216 patients with CD, 166 with UC, and 197 healthy, unrelated controls. Patients and controls were recruited at the IBD center of the Ludwig-Maximilians-University Munich, Campus Grosshadern, from September 2002 to December 2006. The diagnoses of CD and UC were established following clinical guidelines, using endoscopic, radiological, and histopathologic criteria. Table 1 shows the baseline characteristics of the study population. All 197 controls were unrelated, healthy individuals of Caucasian origin and sex-matched (by frequency) to the CD group. Controls were healthy blood donors without a history or family history of IBD. Demographics and routine clinical data (including location and behavior of IBD, disease-related complications, and prescription data of immunosuppressive and immunomodulatory therapy e.g., azathioprine, 6-mercaptopurine, methotrexate, infliximab) were recorded by retrospective analysis of the clinical charts by two independent investigators and an interview including a questionnaire at the time of enrollment. All data were collected blind to the CNR1 genotype. Patients with CD or UC were grouped according to age at diagnosis, disease localization, and behavior status of the Vienna classification, [27] and the recent modifications suggested by the Montreal classification. [28]
site using approximately 200 ng of genomic DNA and 20 pmol each of the following primers 5’-GAAAGCTCTGAATCCA-GAGGCGC-3’ (forward) and 5’-TTTTCTCTGCTGCTGCA-GGG-3’ (reverse). Other conditions were as follows: 1.5 mM MgCl₂, 400 μM of each dNTP, 1.25 U Taq polymerase, and 1 x reaction buffer (Life Technologies, Rockville, MD). DNA amplification was performed with 40 cycles of 94°C, 60°C, and 72°C for 30 seconds each, preceded by a single cycle of 95°C for 15 minutes and followed by a single cycle of 72°C for 5 minutes. Five μl of the resulting 111 bp PCR product were then digested overnight with 10 U of Mspl (New England Biolabs, Beverly, MA) at 37°C. This resulted in fragments of 92 and 19 bp, when a G was present at nucleotide position 385, while the fragment remained uncut, when an A was present. Restriction digests were analyzed by electrophoresis of the digestion mixture in a 2% agarose gel stained with ethidium bromide. The assay was verified by sequencing the PCR product and the digested PCR fragments of all possible genotypes.

Statistics
Fisher’s exact test was used for comparison between categorical variables. All tests were two-tailed. P values <0.05 were considered as significant. Analyses were performed using SPSS 14.0.1 software for Windows.

Results
The CNR1 1359 G/A (p.Thr453Thr) Polymorphism Modulates UC but Not CD Susceptibility
Given the above reported increased CB₁ receptor expression in several models of intestinal inflammation and previous studies implicating the CNR1 1359 G/A (p.Thr453Thr) SNP in endocannabinoid-mediated diseases, [25,31] we investigated whether this polymorphism modulates susceptibility and phenotype of CD and UC. The demographic characteristics of the IBD and control population analyzed are given in Table 1. The CD patients were classified with regard to their disease phenotype, considering disease location, the age at diagnosis, and use of immunosuppressive drugs, family history of IBD, CD-related surgery, stenoses, and abscesses (Table 3). In addition, the CNR1 p.Thr453Thr polymorphism did not influence the UC phenotype (Table 4).

Discussion
We analyzed the effect of the CNR1 p.Thr453Thr polymorphism on IBD susceptibility and disease phenotype. This study was based on our previous results which suggested that CB₁ receptor signaling is involved in defense mechanisms in response to acute intestinal inflammation in animal models. [3,7] Based on this knowledge, we hypothesized that differential CB₁ receptor expression, e.g., modulated by genetic factors, may contribute to IBD susceptibility. In the present study, we focused on the 1359 G/A polymorphism within the CNR1 gene encoding the CB₁ receptor, given the importance of this nucleotide substitution in other endocannabinoid-mediated disorders such as alcohol dependence [25] and schizophrenia [32]. Although the CNR1 1359 G/A (p.Thr453Thr) SNP is a silent mutation, which does not result in an amino acid exchange, it might be associated with alterations e.g. in RNA splicing. [33]

Our study demonstrated an association with UC susceptibility but not with CD susceptibility. The prevalence of 1359 A/A homozygous carriers was 10.7% in the control population, 6.9% in CD patients, and only 3.6% in UC patients. The genotype frequencies found for our control population were within the values expected from Hardy-Weinberg equilibrium and were similar to a previous German control cohort. [29] However, given the limited size of the study population and the low prevalence of 1359 A/A homozygous carriers among UC patients, this finding has to be confirmed in larger replication cohorts. Furthermore, given that the study was primarily designed to detect differences in the frequency of IBD risk alleles, the control population was selected only regarding absence of IBD and other chronic diseases as well as being negative for a family history of IBD. Therefore a selection bias resulting in differences e.g. in BMI can not be excluded though it is intriguing that a lower BMI was found with CD and not with UC.

The CNR1 gene is localized on chromosome 6q14-q15. [34] Interestingly, an earlier genome-wide family-based linkage study found an association of this region with celiac disease [35]. We recently demonstrated that celiac disease and UC (but not CD) share another common susceptibility locus on chromosome 4q27. [36] Although none of the recent genome-wide association studies demonstrated the CNR1 gene as a major IBD susceptibility gene, a previous genome scan in 260 IBD-affected relative pairs found

Table 2. Genotype frequencies of CNR1 1359 G/A (p.Thr453Thr) polymorphism in patients with Crohn’s disease (CD) and ulcerative colitis (UC) as well as in controls.

Genotype	CD (n = 216)	Controls (n = 197)	UC (n = 166)
GG	115 (53.3%)	103 (52.3%)	97 (58.4%)
GA	86 (39.8%)	73 (37.0%)	63 (38.0%)
AA	15 (6.9%)	21 (10.7%)	6 (3.6%)

OR CD vs. Controls

Genotype	(1) vs. (2)	UC vs. UC
p		
p = 0.83	p = 0.28	p = 0.52
p = 0.74	p = 0.01 OR 0.30 CI 0.12–0.78	p = 0.17

doi:10.1371/journal.pone.0009453.t002
nominal evidence for linkage of IBD to loci on chromosome 6q \((lod = 2.21 \text{ between } D6S2436/D6S305) \). [37]

We recently confirmed a number of CD susceptibility genes found in genome-wide associations studies such as \(NOD2 \), [38,39] \(IL23R \), [40] and \(ATG16L1 \) [41], but we also demonstrated differences in the genetic susceptibility to CD [42], suggesting that there are differences in the genetic susceptibility to IBD even between different Caucasian populations. In addition, other genetic associations such as those of \(TLR4 \) SNPs with CD susceptibility shown by our group [43] were not among the major CD susceptibility genes in a recent meta-analysis of genome-wide scans, although this gene has been confirmed as a CD susceptibility gene. [44]

Currently, it is unknown if the \(CNR1 \) \(1359 \) G/A \((p.Thr453Thr) \) SNP modulates CB1 receptor expression or function. Particularly changes at amino acid positions 418–439 seem to be associated with a lack of receptor desensitization [45], and allelic variation in the \(CNR1 \) gene was suggested to be associated with a lower rather than a higher receptor activity, [46] but detailed studies investigating receptor activity based on different \(CNR1 \) genotypes

Male sex	(1) GG \((n = 114) \)	(2) GA \((n = 86) \)	(3) AA \((n = 15) \)	(1) vs (2) P value	(1) vs (3) P value	(1) vs (2)+ (3) P value	
Body mass index \((kg/m^2) \)	Mean ± SD	23.9 ± 4.0	22.1 ± 3.5	22.0 ± 3.6	\(p = 0.001 \)	\(p = 0.05 \)	\(p = 0.0005 \)
Range	16–34	16–32	18–31				

| Age at diagnosis \((yr) \) | Mean ± SD | 26.9 ± 10.6 | 29.7 ± 12.0 | 27.2 ± 14.1 | \(p = 0.09 \) | \(p = 0.78 \) | \(p = 0.11 \) |
| Range | 7–57 | 13–67 | 16–52 |

| Disease duration \((yr) \) | Mean ± SD | 13.1 ± 8.4 | 14.4 ± 8.9 | 10.8 ± 7.6 | \(p = 0.31 \) | \(p = 0.31 \) | \(p = 0.52 \) |
| Range | 2–44 | 3–35 | 3–26 |

| Age \((yr) \) | Mean ± SD | 39.9 ± 11.5 | 44.0 ± 11.7 | 37.2 ± 12.1 | \(p = 0.01 \) | \(p = 0.46 \) | \(p = 0.05 \) |
| Range | 17–70 | 23–71 | 19–56 |

Location	Terminal ileum \((L1) \)	12 (10.5%)	8 (9.3%)	2 (13.3%)	\(p = 1.00 \)	\(p = 0.67 \)	\(p = 1.00 \)
Colon \((L2) \)	19 (16.7%)	18 (20.9%)	4 (26.7%)	\(p = 0.47 \)	\(p = 0.47 \)	\(p = 0.39 \)	
Ileocolon \((L3) \)	60 (52.6%)	43 (50.0%)	7 (46.7%)	\(p = 0.78 \)	\(p = 0.79 \)	\(p = 0.68 \)	
Upper GI \((L4) \)	23 (20.2%)	17 (19.8%)	2 (13.3%)	\(p = 1.00 \)	\(p = 0.73 \)	\(p = 0.86 \)	
Ilial involvement \((L1 + L3) \)	72 (63.2%)	51 (59.3%)	9 (60.0%)	\(p = 0.66 \)	\(p = 0.78 \)	\(p = 0.18 \)	

Behaviour	Non-sticturing, Non penetrating \((B1) \)	22 (19.3%)	17 (19.8%)	4 (26.7%)	\(p = 1.00 \)	\(p = 0.50 \)	\(p = 0.86 \)
Stricturing \((B2) \)	33 (28.9%)	18 (20.9%)	3 (20.0%)	\(p = 0.25 \)	\(p = 0.56 \)	\(p = 0.21 \)	
Penetrating \((B3) \)	59 (51.8%)	51 (59.3%)	8 (53.7%)	\(p = 0.32 \)	\(p = 1.00 \)	\(p = 0.34 \)	

Use of immunosuppressive agents	90 (78.9%)	64 (74.4%)	11 (73.3%)	\(p = 0.50 \)	\(p = 0.74 \)	\(p = 0.42 \)
Extraintestinal manifestations	80 (70.2%)	55 (64.0%)	11 (73.3%)	\(p = 0.36 \)	\(p = 1.00 \)	\(p = 0.47 \)
Positive family history of IBD	29 (25.4%)	13 (15.1%)	3 (20.0%)	\(p = 0.08 \)	\(p = 0.76 \)	\(p = 0.09 \)
Surgery because of CD	65 (57.0%)	54 (62.8%)	8 (53.3%)	\(p = 0.47 \)	\(p = 0.79 \)	\(p = 0.58 \)
Fistulas	59 (51.8%)	51 (59.3%)	8 (53.3%)	\(p = 0.32 \)	\(p = 1.00 \)	\(p = 0.34 \)
Stenosis	78 (68.4%)	58 (67.4%)	9 (60.0%)	\(p = 0.88 \)	\(p = 0.56 \)	\(p = 0.77 \)
Abscesses	41 (36.0%)	32 (37.2%)	4 (26.7%)	\(p = 0.88 \)	\(p = 0.57 \)	\(p = 1.00 \)

1Disease behavior was defined according to the Montreal classification [28]. A stricturing disease phenotype was defined as presence of stenosis without penetrating disease. The diagnosis of stenosis was made surgically, endoscopically, or radiologically (using MRI enteroclysis).
2Immunosuppressive agents included azathioprine, 6-mercaptopurine, 6-thioguanin, methotrexate, and/or infliximab.
3Extraintestinal manifestations were defined as one or more of the following IBD-related diseases: non-medication-induced arthropathies (e.g., ankylosing spondylitis, sacroiliitis, peripheral arthritis), eye involvement (e.g., episcleritis and/or iritis/uveitis), skin involvement (e.g., erythema nodosum and pyoderma gangrenosum), non-medication-induced biliary disease (e.g., sclerosing cholangitis).
4Only surgery related to CD-specific problems (e.g., fistulectomy, colectomy, ileostomy) was included.

1Disease behavior was defined according to the Montreal classification [28]. A stricturing disease phenotype was defined as presence of stenosis without penetrating disease. The diagnosis of stenosis was made surgically, endoscopically, or radiologically (using MRI enteroclysis).
2Immunosuppressive agents included azathioprine, 6-mercaptopurine, 6-thioguanin, methotrexate, and/or infliximab.
3Extraintestinal manifestations were defined as one or more of the following IBD-related diseases: non-medication-induced arthropathies (e.g., ankylosing spondylitis, sacroiliitis, peripheral arthritis), eye involvement (e.g., episcleritis and/or iritis/uveitis), skin involvement (e.g., erythema nodosum and pyoderma gangrenosum), non-medication-induced biliary disease (e.g., sclerosing cholangitis).
4Only surgery related to CD-specific problems (e.g., fistulectomy, colectomy, ileostomy) was included.

doi:10.1371/journal.pone.0009453.t003
animal models suggest that CB1 receptor activation with system may modulate intestinal inflammation, suggesting this system could act as a target for future therapeutic interventions.

Whether monitoring of CB1 receptor function or genotyping can identify responders of future treatments targeting the CB1 receptor remains speculative and has to be clarified in clinical trials. In summary, we demonstrate that the CNR1 1359 G/A polymorphism modulates IBD susceptibility and phenotype. Specifically, we show that 1359 A/A homozygosity protects against UC and that CD patients carrying the minor A allele have a later disease onset and a lower BMI. These findings have to be confirmed in a larger multicenter trial. Nevertheless, our findings provide further evidence that endocannabinoids modulate intestinal inflammation, suggesting that this system could act as a target for future therapeutic interventions.

Effects of intestinal inflammation. The physiological importance of the CB1 receptor and the endocannabinoid system becomes obvious when endocannabinoid levels are increased by blocking their degradation. Under these circumstances, intestinal inflammation is reduced and the CB1 receptor is involved in this regulation. Overexpression of 1359 A/A homozygous carriers, this likely can be achieved only upon the degradation of endocannabinoids. Under these circumstances, intestinal inflammation is reduced and the CB1 receptor is involved in this

are lacking. The assumption that allelic variation is associated with reduced CB1 activity would also explain the low BMI found in the 1359 A/A homozygous CD patients. Consistent with these data, the 1359 G/G wildtype genotype has been shown to be associated with an increased BMI and overweight in an Italian study of a healthy population. [47] A low BMI in CD patients is also considered to be an indicator of high disease activity. Therefore, 1359 A/A homozygosity could contribute to a more severe disease phenotype. This would be consistent with our results in CNR1−/− mice, demonstrating that these knockout mice take a more fulminant course in DNBS and DSS colitis. [3] However, functional experiments have to analyze if CNR1 signaling is indeed decreased in 1359 A/A homozygous patients. Our findings add evidence that targeting the CB1 receptor system may modulate intestinal inflammation, suggesting this receptor as a potential target for future treatments. Similarly, animal models suggest that CB1 receptor activation with exogenous CB1 receptor agonists induces protection against intestinal inflammation. [3,5] Therefore, the increased CB1 receptor expression seen in murine colitis models is likely an intrinsic protective mechanism to counter-regulate the deleterious effects of intestinal inflammation. The physiological importance of the CB1 receptor and the endocannabinoid system becomes obvious when endocannabinoid levels are increased by blocking their degradation. Under these circumstances, intestinal inflammation is reduced and the CB1 receptor is involved in this regulation. Overexpression of 1359 A/A homozygous carriers, this likely can be achieved only upon the degradation of endocannabinoids. Under these circumstances, intestinal inflammation is reduced and the CB1 receptor is involved in this

Table 4. Association between CNR1 1359 G/A (p.Thr453Thr) genotype and UC disease characteristics.
(1) GG (n = 97)
Male sex
47 (48.5%)
Body mass index (kg/m²)
Mean ± SD
Range
Age at diagnosis (yr)
Mean ± SD
Range
Disease duration (yr)
Mean ± SD
Range
Age (yr)
Mean ± SD
Range
Location
Rectum
Left-sided
Pancolitis
Use of immunosuppressive agents
Use of infliximab
Surgery due to UC
Fistulas
Stenosis
Abscesses
Extraintestinal manifestations
Positive family history

1Immunosuppressive agents included azathioprine, 6-mercaptopurine, and/or infliximab.
2Only UC-related surgery (e.g., colectomy) was included.
3Extraintestinal manifestations were defined as one or more of the following IBD-related diseases: non-medication-induced arthropathies (e.g., ankylosing spondylitis, sacroileitis, peripheral arthritis), eye involvement (e.g., episcleritis and iritis/uveitis), skin involvement (e.g., erythema nodosum and pyoderma gangrenosum), non-medication-induced biliary disease (e.g., sclerosing cholangitis).
Author Contributions
Conceived and designed the experiments: MS JD TO BG PL SB. Performed the experiments: DE. Analyzed the data: MS DE JD SP LB SB.

References

1. Grinspoon L, Bakalar JB (1995) Marijuana as medicine. A plea for reconsideration. JAMA 273: 1875–1876.
2. Grinspoon L (1999) The future of medical marijuana. Fesch Komplementarmedizin. J Clin Invest 113: 1202–1209.
3. D’Arigo G, Valenti M, Scaglione G, Cosenza V, Sorrentini I, et al. (2004) Up-regulation of anandamide levels as an endogenous mechanism and a pharmacological strategy to limit colon inflammation. FASEB J 20: 568–570.

4. Kimball ES, Schneider CR, Wallace NH, Hornby PJ (2006) Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium. Am J Physiol Gastrointest Liver Physiol 291: G364–G371.

5. Scheen AJ (2009) The endocannabinoid system: a promising target for the management of type 2 diabetes. Curr Protein Pept Sci 10: 56–74.

6. Di Carlo G, Izzo AA (2003) Cannabinoids for gastrointestinal diseases: potential therapeutic effects on colonic electrophysiological properties in mice. J Mol Med 84: 513–520.

7. Storr M, Keenan CM, Emmerder D, Zhang H, Yuce B, et al. (2010) Targeting endocannabinoid degradation protects against experimental colitis in mice by inhibition of CB1 and CB2 receptors. J Mol Med 88: 925–936.

8. Hiley CR (2009) Endocannabinoids and the Heart. J Cardiovasc Pharmacol. 53: 1173–1744.

9. Carare RO, Preedy VR, Hopwood LA, Barnett AJ, et al. (2006) Systematic review of cannabinoids in the management of pain and sleep in cancer patients with advanced disease: a report from the Light of Pain Task Force. J Pain Symptom Manage 32: 384–398.

10. Sarzani R, Bordicchia M, Marcucci P, Bedetta S, Santini S, et al. (2009) Altered pattern of cannabinoid type 1 receptor expression in adipose tissue of dystymetic and overweight patients. Metabolism 58: 361–367.

11. Van der Meer F, Groenendaal FJ, Verbruggen E, Beets GL, et al. (1997) Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med 3: 774–779.

12. Maresz K, Pyrzyk G, Ponomarev EV, Marsicano G, Croxford JL, et al. (2007) Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat Med 13: 492–497.

13. Teixeira-Clerc F, Julien B, Gersaud P, Tran Van NJ, Deveaux V, et al. (2006) CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat Med 12: 671–676.

14. De Petrocellis L, Cascio MG, Di Marzo V (2004) The endocannabinoid system: properties in mice. J Mol Med 82: 1149–1153.

15. Storr M, Keenan CM, Emmerder D, Zhang H, Yuce B, et al. (2010) Targeting endocannabinoid degradation protects against experimental colitis in mice by inhibition of CB1 and CB2 receptors. J Mol Med 88: 925–936.

16. Hiley CR (2009) Endocannabinoids and the Heart. J Cardiovasc Pharmacol. 53: 1173–1744.

17. Storr M, Keenan CM, Zhang H, Yuce B, et al. (2008) Targeting endocannabinoid degradation protects against experimental colitis in mice by inhibition of CB1 and CB2 receptors. J Mol Med 86: 925–936.

18. Schneeweiss S, Schmidli J, Angst J, Muller-Berger E, Bolliger I, et al. (2009) Targeting endocannabinoid degradation protects against experimental colitis in mice by inhibition of CB1 and CB2 receptors. J Mol Med 88: 925–936.

19. Di Carlo G, Izzo AA (2003) Cannabinoids for gastrointestinal diseases: potential therapeutic effects on colonic electrophysiological properties in mice. J Mol Med 84: 513–520.

20. Storr M, Keenan CM, Zhang H, Yuce B, et al. (2008) Targeting endocannabinoid degradation protects against experimental colitis in mice by inhibition of CB1 and CB2 receptors. J Mol Med 86: 925–936.

21. Scheen AJ (2009) The endocannabinoid system: a promising target for the management of type 2 diabetes. Curr Protein Pept Sci 10: 56–74.

22. Izzo AA, Camilleri M (2008) Emerging role of cannabinoids in gastrointestinal and liver diseases: basic and clinical aspects. Gut 57: 1140–1155.

23. Storr M, Keenan CM, Emmerder D, Zhang H, Yuce B, et al. (2008) Targeting endocannabinoid degradation protects against experimental colitis in mice by inhibition of CB1 and CB2 receptors. J Mol Med 86: 925–936.

24. Keenan CM, Zhang H, Yuce B, et al. (2009) Targeting endocannabinoid degradation protects against experimental colitis in mice by inhibition of CB1 and CB2 receptors. J Mol Med 88: 925–936.

25. Hiley CR (2009) Endocannabinoids and the Heart. J Cardiovasc Pharmacol. 53: 1173–1744.

26. Kimball ES, Schneider CR, Wallace NH, Hornby PJ (2006) Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium. Am J Physiol Gastrointest Liver Physiol 291: G364–G371.

27. Scheen AJ (2009) The endocannabinoid system: a promising target for the management of type 2 diabetes. Curr Protein Pept Sci 10: 56–74.

28. Storr M, Keenan CM, Zhang H, Yuce B, et al. (2008) Targeting endocannabinoid degradation protects against experimental colitis in mice by inhibition of CB1 and CB2 receptors. J Mol Med 86: 925–936.