THE NUMERICAL HODGE STANDARD CONJECTURE FOR
THE SQUARE OF A SIMPLE ABELIAN VARIETY OF PRIME
DIMENSION

TERUHISA KOSHIKAWA

Abstract. We prove the numerical Hodge standard conjecture for the square
of a simple abelian variety of prime dimension, and also in some related cases.

1. Introduction

Recently, Ancona proved the numerical Hodge standard conjecture for abelian
fourfolds [Anc21]. In fact, he proved a general theorem for certain rank 2 pure
motives in mixed characteristic [Anc21 8.1], and showed that this general theorem
is applicable to abelian fourfolds over finite fields. In this paper, we point out some
other cases where the general theorem can be applied. (See [Anc21 A.9] for another
example.)

In Ancona’s work, the main cases are
(1) an absolutely simple abelian fourfold, and
(2) the product of a simple abelian threefold and an elliptic curve.
(See [Anc21 A.8] for some discussion.) In this paper, we generalize the second case
as follows:

Theorem 1.1. Let A be a simple abelian variety over a field k. Assume either

- $\dim A$ is prime, or
- some specialization of A to a finite field is absolutely simple and almost
ordinary.

Let E be an elliptic curve. The numerical Hodge standard conjecture holds for $A \times A$ and $A \times E$.

As in [Anc21 1.6], this combined with [Clo99] implies

Corollary 1.2. The numerical equivalence on $A \times A, A \times E$ coincides with the
ℓ-adic homological equivalence on $A \times A, A \times E$ for infinitely many ℓ.

Remark 1.3. Assume that k is a finite field. In both cases, the Tate conjecture
for A is known, and, all algebraic classes come from the intersection of divisors
[Tat66, Tan83, LZ93]. Therefore, the numerical Hodge standard conjecture holds for
A itself and the numerical equivalence on A coincides with the ℓ-adic homological
equivalence on A for every ℓ [Mil02 3.7, Anc21 Section 5]. However, if $\dim A \geq 3,$
A^2 and $A \times E$ may have an exotic Tate class in the middle degree, i.e., a class that
cannot be written using Tate classes of degree 2, and the Tate conjecture is not

1This means its Newton polygon is the same as the one of the product of a supersingular
elliptic curve and $\dim A - 1$ ordinary elliptic curves. Such a simple abelian variety exists [LO74].
known except the case of the product of a simple threefold and an ordinary elliptic curve [Mil].

We prove a slightly more general statement. Let A be an absolutely simple abelian variety of dimension g over a finite field F_q. Let $\alpha_1, \ldots, \alpha_{2g}$ be the Frobenius eigenvalues of the first cohomology so that $\alpha_i = \alpha_{i+g}$. Set $\beta_i := q/\alpha_i^2, 1 \leq i \leq g$. Let Γ' denote the multiplicative group generated by $\beta_i, 1 \leq i \leq g$ inside $\mathbb{Q}(\alpha_1, \ldots, \alpha_{2g})$. The rank of Γ' has been studied, e.g., [Zar94, Zar15]. Following [DKZB], we call it the angle rank of A. The angle rank is always less than or equal to g. If the angle rank is g or A is a supersingular elliptic curve E, all the Tate classes on A^n for a positive integer n can be written using Tate classes of degree 2, and the Tate conjecture holds for A^n. (This is the case for all abelian surfaces and elliptic curves.) The converse is also true. Recall that such a Tate class is called Lefschetz and a Tate class is exotic if it is not Lefschetz. We are interested in the easiest case with possible exotic Tate classes:

Theorem 1.4. If the angle rank of A is $g - 1$ or g and $\dim A > 1$ is odd, then the numerical Hodge standard conjecture holds for $A \times A$ and $A \times E$, where E is an elliptic curve.

Remark 1.5. Tankeev [Tan83, p.332] showed that the angle rank is $g - 1$ or g if $g = \dim A$ is an odd prime. Lenstra and Zarhin [LZ93] showed that if A is almost ordinary, the angle rank is $g - 1$ when g is odd and g when g is even; see [LZ93, 6.7] (and [DKZB 1.5]) for a slightly more general case.

Remark 1.6. If the angle rank of A is $g - 1$ and E is ordinary, then $A \times E$ has no exotic Tate classes; see Corollary 3.3. The same holds trivially if the angle rank of A is g and E is supersingular.

Remark 1.7. If we assume instead that g is even and the angle rank is $g - 1$ (or g), then we can show that the numerical Hodge standard conjecture holds for A itself. This partly generalizes the case of absolutely simple abelian fourfolds in [Anc21] because one can show that the angle rank is ≥ 3 for an absolutely simple abelian fourfold if its Frobenius generates a CM field of degree 8.

Now, Theorem 1.4 clearly implies Theorem 1.1, so we will focus on Theorem 1.4. We shall show that $A \times A$ may have an exotic Tate class only in the middle degree, and they form a 2-dimensional space so that we can apply [Anc21, 8.1]. The case of $A \times E$ is similar.

Finally, let us mention that we study the Tate conjecture and the Hodge standard conjecture for self-products of K3 surfaces in [IIK].

2. A lemma on the Hodge standard conjecture

Let A be an abelian variety of dimension g over a field with a polarization L. Let $Z^n_{num}(A)_{\mathbb{Q}}$ denote the space of algebraic cycles of codimension n modulo numerical equivalence. Recall that the Lefschetz standard conjecture holds for A and L, and we define the primitive part $Z^n_{num,prim}(A)_{\mathbb{Q}}$ of $Z^n_{num}(A)_{\mathbb{Q}}$.

2This relies on the work of Markman [Mar] on Weil classes.
3The angle rank is 0 = $g - 1$ in this case.
4Tankeev excludes the case $g = 3$, but the same argument actually works.
Conjecture 2.1 (The numerical Hodge standard conjecture). For a nonnegative integer $n \leq g/2$, the pairing

$$(−, −)_n : \mathbb{Z}^n_{\text{num}}(A)_{\mathbb{Q}} \times \mathbb{Z}^n_{\text{num}}(A)_{\mathbb{Q}} \to \mathbb{Q}; (\alpha, \beta) \mapsto (−1)^n \alpha \cdot \beta \cdot L^{g−2n}$$

is positive definite.

Let us say that a class in $\mathbb{Z}^n_{\text{num}}(A)_{\mathbb{Q}}$ is exotic if it cannot be written as the intersection of divisors.

Lemma 2.2. If A has exotic classes only in the middle degree, then the numerical Hodge standard conjecture is independent of L.

Proof. Let $\mathcal{L}^n_{\text{num}}(A)_{\mathbb{Q}}$ denote the subspace of $\mathbb{Z}^n_{\text{num}}(A)_{\mathbb{Q}}$ spanned by the intersections of divisors. The numerical Hodge standard conjecture is known for $\mathcal{L}^n_{\text{num}}(A)_{\mathbb{Q}}$ by specializing to a finite field [Mil02, 3.7], [Anc21, Section 5]. In particular, only the middle degree is a problem. There is an orthogonal decomposition with respect to $⟨−, −⟩_n$ $\mathbb{Z}^{g/2}_{\text{num}}(A)_{\mathbb{Q}} = \mathcal{L}^{g/2}_{\text{num}}(A)_{\mathbb{Q}} \oplus \mathcal{E}^{g/2}_{\text{num}}(A)_{\mathbb{Q}}$, where $\mathcal{E}^{g/2}_{\text{num}}(A)_{\mathbb{Q}}$ is the space of exotic classes. This decomposition is independent of L. The numerical Hodge conjecture holds for A and L if and only if $⟨−, −⟩_{g/2}$ is positive definite on $\mathcal{E}^{g/2}_{\text{num}}(A)_{\mathbb{Q}}$, and the latter statement is independent of L. □

3. Exotic Tate classes

We assume that A is an absolutely simple abelian variety of dimension $g > 2$ defined over a finite field \mathbb{F}_q of characteristic p. We use the notation α_i, β_i as in the introduction. Suppose first that the angle rank of A is $g−1$. This implies that $\text{End}(A) \otimes \mathbb{Q}$ is a number field of degree $2g$ generated by Frobenius.

Lemma 3.1. Assume that the angle rank is $g−1$. After replacing α_i by $\alpha_i + g$ if necessary, the only relation among β_1, \ldots, β_g has the form of

$$(\beta_1 \cdots \beta_g)^N = 1$$

for some N.

Proof. Let $\beta_1^\mathbb{Z} \cdots \beta_g^\mathbb{Z}$ denote the free abelian group of rank g with the basis β_1, \ldots, β_g, and let Γ_1 be the kernel of the natural map

$$\beta_1^\mathbb{Z} \cdots \beta_g^\mathbb{Z} \to \mathbb{Q}(\alpha_1, \ldots, \alpha_{2g}) \setminus \{0\}.$$

By assumption, Γ_1 is a free abelian group of rank 1. So, the Galois group of $\mathbb{Q}(\alpha_1, \ldots, \alpha_{2g})$ acts naturally on Γ_1 via $\{±1\} \subset \text{Aut}(\Gamma_1)$. Note that the Galois group acts on $\{\{β_1^{±1}\}, \ldots, \{β_g^{±1}\}\}$ by permutation and the action is transitive, and the Galois group contains the complex conjugation so that $\overline{β_i} = β_i^{−1}$. This implies that a generator of Γ_1 has the form of

$$β_1^{±N} β_2^{±N} \cdots β_g^{±N}$$

for some N. □

Corollary 3.2. Let ℓ be a prime different from p. If g is odd (resp. even), any exotic ℓ-adic Tate class of $A \times A$, $A \times E$ (resp. A) is in the middle degree. If an exotic Tate class exists, then the space of exotic Tate classes is two-dimensional for $A \times A$ (resp. A) and four-dimensional for $A \times E$.
Corollary 3.3. If g is odd and E is ordinary, then $A \times E$ has no exotic Tate classes.

A similar argument shows the following:

Lemma 3.4. Suppose the angle rank of A equals g and g is odd, then any exotic ℓ-adic Tate class of $A \times E$ is in the middle degree. If an exotic Tate class exists, then E is ordinary and the space of exotic Tate classes is two-dimensional.

Next, we construct a motivic counterpart of possible exotic Tate classes using complex multiplication. Let us first recall some facts about the motive of A [Anc21, Section 4, Section 6]. Set $B := \text{End}(A) \otimes \mathbb{Q}$ and write $L \subset \overline{\mathbb{Q}}$ for the Galois closure of B with $\Sigma := \text{Hom}(B, L)$. As in [Anc21, 6.6], there is the following decomposition in the category of Chow motives with coefficients in L:

$$[H^1(A)] = \bigoplus_{\sigma \in \Sigma} M_\sigma$$

that induces [Anc21 6.7 (1)]

$$[H^g(A)] = \bigoplus_{I \subset \Sigma, \# I = g} M_I,$$

where $M_I = \otimes_{i \in I} M_i$. This further induces the following decomposition [Anc21 6.7 (2)], in the category of Chow motives with coefficients in Q.

$$[H^g(A)] = \bigoplus M_{[I]}.$$

where $[I]$ denotes the Galois orbit of I and $M_{[I]}$ is the direct sum of M_I over the Galois orbit. This decomposition is orthogonal as numerical motives with respect to $\langle -, - \rangle_{1,\text{mot}}$ defined in [Anc21 3.6]. Similarly, $[H^{2g}(A \times A)]$ has such a decomposition and we have summands like $M_{[I^2]} := M_I \otimes M_I$.

Proposition 3.5. Assume that the angle rank is $g - 1$.

(1) If g is even, there exists at most one $[I]$ such that the ℓ-adic realization of $M_{[I]}$ is exotic. The numerical algebraic classes in $M_{[I]}$ is zero or two-dimensional.

(2) If g is odd and E is supersingular, there exists at most one $[I]$ such that the ℓ-adic realization of $M_{[I]} \otimes H^1(E)$ is exotic. The numerical algebraic classes in $M_{[I]}$ is zero or four-dimensional.

(3) If g is odd, there exists at most one $[I^2]$ such that the ℓ-adic realization of $M_{[I^2]}$ is exotic. The numerical algebraic classes in $M_{[I^2]}$ is zero or two-dimensional.

Proof. This follows from the description of exotic Tate classes and [Anc21 6.8]. The key claim here is that the relevant Galois orbit only has two elements, and it controls the dimension of numerical algebraic classes. □

We call $M_{[I]}, M_{[I]} \otimes H^1(E), M_{[I^2]}$ exotic if it has a nonzero numerical algebraic class. If it is the case, their ℓ-adic realizations are the only exotic Tate classes. By [Anc21 5.3] and Lemma 2.2, the numerical Hodge standard conjecture for $A, A \times A, A \times E$ reduces to the corresponding problem on $M_{[I]}, M_{[I]} \otimes H^1(E), M_{[I^2]}$ respectively, with respect to $\langle -, - \rangle_{1,\text{mot}}, \langle -, - \rangle_{1,\text{mot}}^{g+1}, \langle -, - \rangle_{1,\text{mot}}^{2g}$ for some polarization.
A similar construction makes sense for $A \times E$ if g is odd, the angle rank is g, and E is ordinary. Finally, when g is odd and E is supersingular, an exotic $M_{[I]} \otimes H^1(E)$ has a decomposition into rank 2 motives

$$M_{[I]} \otimes H^1(E) = M_1 \oplus M_2$$

orthogonal with respect to $\langle -, - \rangle_{1,\text{mot}}^{g+1}$. More precisely, the Galois action on $[I]$ gives rise to an imaginary quadratic field F inside B and there is an embedding $F \hookrightarrow \text{End}(E_{\mathbb{F}_q}) \otimes \mathbb{Q}$ by exactly the same argument as in the proof of [Anc21] 7.16. The actions of F on $M_{[I]}$ and $H^1(E)$ induce the above decomposition.

4. **Ancona’s theorem for rank 2 motives**

To conclude the proof of Theorem 1.4, we recall Ancona’s theorem and then use CM liftings to apply it.

Let K be a p-adic field with the ring of integers O_K with residue field k. Fix an embedding $\sigma: K \hookrightarrow \mathbb{C}$. We shall use the language of relative Chow motives over O_K, equipped with base changes to \mathbb{C} via σ and to k via the specialization. For a relative Chow motive M over O_K, we write V_K for the Betti realization of M_K. Let V_Z denote the space of numerical algebraic cycles in M_K, i.e., homomorphisms from \mathbb{I} modulo numerical equivalences. Both V_B and V_Z are \mathbb{Q}-vector spaces. If M has a quadratic form

$$q: \text{Sym}^2(M) \to \mathbb{I},$$

then it induces (\mathbb{Q}-valued) quadratic forms q_B, q_Z on V_B, V_Z respectively.

Theorem 4.1 (Ancona [Anc21] 8.1). Let M be a relative Chow motive over O_K with a quadratic form q. Assume that

- $\dim_{\mathbb{Q}} V_B = \dim_{\mathbb{Q}} V_Z = 2$, and
- $q_B: V_B \times V_B \to \mathbb{Q}$ is a polarization of Hodge structures.

Then, q_Z is positive definite.

Proof of Theorem 1.4. Following the proof of [Anc21] 3.18, we use CM liftings to prove Theorem 1.4. Let A be as in Theorem 1.4. Set $B := \text{End}(A_{\mathbb{F}_q}) \otimes \mathbb{Q}$. After enlarging \mathbb{F}_q, we can find a finite extension O_K of $W(\mathbb{F}_q)$ and an abelian scheme A over O_K with $B \to \text{End}(A)$ such that the reduction $A_{\mathbb{F}_q}$ is B-isogenous to A. We may replace A by $A_{\mathbb{F}_q}$ and assume that a polarization on $A_{\mathbb{F}_q}$ lifts to a polarization on A.

If A^2 has no exotic classes, there is nothing to prove. So, assume some $M_{[I]}$ is exotic. By [Anc21] 5.3, it suffices to show the the paring $\langle -, - \rangle_{1,\text{mot}}^{g_2}$ is positive definite on the exotic $M_{[I]}$. By the construction of $M_{[I]}$ and the paring, it lifts to a relative Chow motive with a quadratic form over O_K (cf. [Anc21] 4.1, 4.2 and references therein, and the proof of [Anc21] 3.18). By the definition of the exotic $M_{[I]}$, this lift satisfies the assumption of Theorem 4.1. So, $\langle -, - \rangle_{1,\text{mot}}^{g_2}$ is positive definite on $M_{[I]}$.

The case of $A \times E$ is similar as in [Anc21]. Let us consider the case E is supersingular. The decomposition

$$M_{[I]} \otimes H^1(E) = M_1 \oplus M_2$$

is constructed using the action of the imaginary quadratic field $F \subset B$ on E, and it may also lifts by taking a lift of E with the action of F. \Box
Remark 4.2. Consider the case $A \times A$. The Hodge type of the Betti realization of the lifts of the exotic classes have the form of $(2a, 2b)$, $(2b, 2a)$ with $a + b = g$. In particular, it is never (g, g) and any exotic class cannot be lifted to an algebraic class of $A_C \times A_C$. Therefore, Ancona’s theorem is essential.

Remark 1.7 can be proved in the same way.

References

[Anc21] Giuseppe Ancona, *Standard conjectures for abelian fourfolds*, Invent. Math. 223 (2021), no. 1, 149–212, DOI 10.1007/s00222-020-00990-7. MR4199442

[Clo99] L. Clozel, *Équivalence numérique et équivalence cohomologique pour les variétés abéliennes sur les corps finis*, Ann. of Math. (2) 150 (1999), no. 1, 151–163, DOI 10.2307/121099 (French). MR1715322

[DKZB] Taylor Dupuy, Kiran S. Kedlaya, and David Zureick-Brown, *Angle ranks of abelian varieties*, available at https://arxiv.org/abs/2112.02455.

[IJK] Kazuhiro Ito, Tetsushi Ito, and Teruhisa Koshikawa. in preparation.

[LO74] Hendrik W. Lenstra Jr. and Frans Oort, *Simple abelian varieties having a prescribed formal isogeny type*, J. Pure Appl. Algebra 4 (1974), 47–53, DOI 10.1016/0022-4049(74)90029-2. MR354686

[LZ93] Hendrik W. Lenstra Jr. and Yuri G. Zarhin, *The Tate conjecture for almost ordinary abelian varieties over finite fields*, Advances in number theory (Kingston, ON, 1991), Oxford Sci. Publ., Oxford Univ. Press, New York, 1993, pp. 179–194. MR1368419

[Mar] Eyal Markman, *The monodromy of generalized Kummer varieties and algebraic cycles on their intermediate Jacobians*, available at https://arxiv.org/abs/1805.11574.

[Mi] J. S. Milne, *Polarizations and Grothendieck’s standard conjectures*, Ann. of Math. (2) 155 (2002), no. 2, 599–610, DOI 10.2307/3062126. MR1906596

[Mil02] J. S. Milne, *The Tate and standard conjectures for certain abelian varieties*, available at https://arxiv.org/abs/2112.12815.

[Tan83] S. G. Tankeev, *Cycles of abelian varieties of prime dimension over finite and number fields*, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 2, 356–365 (Russian). MR697300

[Tat66] John Tate, *Endomorphisms of abelian varieties over finite fields*, Invent. Math. 2 (1966), 134–144, DOI 10.1007/BF01404549. MR206004

[Zar94] Yu. G. Zarhin, *The Tate conjecture for nonsimple abelian varieties over finite fields*, Algebra and number theory (Essen, 1992), de Gruyter, Berlin, 1994, pp. 267–296. MR1285371

[Zar15] Yuri G. Zarhin, *Eigenvalues of Frobenius endomorphisms of abelian varieties of low dimension*, J. Pure Appl. Algebra 219 (2015), no. 6, 2076–2098, DOI 10.1016/j.jpaa.2014.07.024. MR3299720

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY

Email address: teruhisa@kurims.kyoto-u.ac.jp