Case Report

Late diagnosis of dorsolumbar lipomyelomeningocele with tethered cord in a middle aged adult: A case report from Nepal

Sajiva Aryal, MBBSa,*, Saroj Poudel, MBBSb, Suraj Sharma, MBBS, MDc, Sulav Deo, MBBSb

a Kathmandu Medical College, Kathmandu, Nepal
b Chitwan Medical College, Chitwan, Nepal
c Bir Hospital, Kathmandu, Nepal

\textbf{A R T I C L E I N F O}

Article history:
Received 7 August 2022
Revised 13 August 2022
Accepted 18 August 2022

Keywords:
Closed spinal dysraphism
Lipomyelomeningocele
Paraplegia

\textbf{A B S T R A C T}

Closed spinal dysraphism can present with diagnostic issues in settings with limited resources, when knowledge of the disorder and specialized radiological studies, such as magnetic resonance imaging (MRI), may not be readily available. Undiagnosed cases can develop serious neurological deficits. Here, we describe a case of dorsolumbar lipomyelomeningocele, a type of closed spinal dysraphism, presenting in a middle aged with paraplegia complicated by bed sores. A 38-year-old female with no significant past medical history experienced gradually progressive weakness of bilateral lower limbs over 9 years. On physical examination, patient had a soft swelling with hairy tuft over the lumbar spine, paraplegia, grade III bed sore over the gluteal region, and sensory loss below L1 sensory level. Her bowel and bladder sensation were decreased. The soft tissue swelling over her back was not evaluated appropriately before this presentation. MRI of the spine revealed dorsolumbar lipomyelomeningocele with tethered spinal cord.

© 2022 The Authors. Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

\textbf{I n t r o d u c t i o n}

Lipomyelomeningocele is a type of closed spinal dysraphism typically presenting at birth as a subcutaneous lipoma over the lower back and contiguous with a neural defect [1]. It is inherently associated with a tethered cord that causes neurological deficits during infancy or as late as childhood [2]. The prevalence is 3-6 per 100,000 live births [1]. Initial clinical diagnosis of lipomyelomeningocele during infancy might be difficult because almost half of affected infants have a normal neurological examination [1]. Radiological assessment should be performed when cutaneous manifestation of closed spinal dysraphism is present as the condition is potentially treatable.
if detected early [1]. MRI is the investigation of choice for diagnosing spinal dysraphism and for planning surgical management [3].

Case report

A 38-year-old female with no prior past medical history presented to the hospital with paraplegia and pressure ulcer. She had soft tissue swelling over her lower back since infancy but there was no weakness or other neurological deficit during childhood or adolescence. She developed gradually progressive weakness of bilateral lower limbs noticeable since her late 20s. She had paraplegia and decreased sensation of bilateral lower limbs complicated by pressure ulcers at the time of presentation. She also complained of decreased bowel and bladder sensations. There was no family history of similar illness.

On clinical examination, her mental status assessment and cranial nerve examination were normal. There was loss of sensation to all modalities below L1 sensory level and complete loss of motor strength. The rectal tone was decreased. She had a soft tissue swelling in her lumbar region measuring approximately 15 cm × 10 cm, with skin dimpling and a tuft of hair. There were grade III pressure ulcers over her buttocks. Rest of the systemic examinations were normal.

On laboratory investigation, her hemoglobin was 10.1 g/dl, and serum albumin was 3 g/dl. Other lab parameters were within normal range. MRI of the lumbar spine revealed dorsal bony defect at D10-L1 vertebrae with protrusion of the neural placode (primitive neural tissue) outside the spinal canal with T1/T2 high signal intensity in the protrusion, suppressed on STIR sequences indicative of lipomatous element. The protrusion was limited externally by the skin and subcutaneous tissue (Fig. 1). There was low lying conus medullaris with tethering of spinal cord reaching L4-L5 intervertebral level (Fig. 2).

Fig. 1 – (A & B) T1- and T2-weighted MRI images in sagittal plane demonstrate dorsal bony defect at the D10-L1 level. There is a protrusion of the neural placode outside the spinal canal limited externally by the skin and subcutaneous tissue. Few patchy T1/T2 high signal intensity areas are noted within the protrusion (lipomatous elements). The neural placode lipoma interface lies outside the spinal canal.
However, there was no evidence of herniation of cerebellar tonsils or syrinx (Fig. 3).

Based on the MRI findings, she was diagnosed with dorsolumbar lipomyelomeningocele associated with tethered spinal cord reaching up to the L4-L5 vertebral level. The patient opted conservative management of her newly diagnosed condition due to financial constraints. The grade III pressure ulcer was treated with debridement and flap covering.

Discussion

Lipomyelomeningocele is a type of closed spinal dysraphism typically presenting at birth as a fatty mass over lower back contiguous with a neural defect [1]. The prevalence is 3-6 per 100,000 live births and is more common in females [1]. Since the fatty mass is clinically noticeable at birth, those who are affected are typically discovered before experiencing neurological problems, and up to 48% of cases have been reported to be neurologically intact at the time of the initial diagnosis [2]. High-risk lumbosacral cutaneous manifestation for closed spinal dysraphism include atypical dimples, lumbar masses, large pedunculated lesions, raised lumbar hemangiomas, dermal sinus tract, subcutaneous lipoma, caudal appendage, midline pedunculated swelling, sacral agenesis, and extremely unusual hair patterns. The presence of more than one lumbosacral cutaneous manifestation predicts a considerably higher probability of closed spinal dysraphism than the presence of a single one. All individuals with a lumbosacral cutaneous manifestation should have a spinal ultrasound performed since different lumbosacral cutaneous manifestations have differential risks of closed spinal dysraphism [4]. The patient in our case was a female with soft tissue mass and a hairy tuft over her lower back at the midline since birth. However, the patient was not assessed promptly because of resource limitation, the absence of screening ultrasounds as well as advanced imaging techniques like CT scan/MRI scan and a lack of information regarding the presentation of closed spinal dysraphism.

The conus medullaris can terminate anywhere between the T12 and the L2-L3 interspace due to the different rates of growth for the spinal cord and musculoskeletal components. A “tethered conus” is a conus that is aberrant and below the L2-L3 interspace [5]. Tethered cord is inherently linked to lipomyelomeningocele because the lipoma attaches the cord to the neighboring dura and soft tissue. Lipomyelomeningocele can present with neurological deficits secondary to a tethered cord during infancy or as late as childhood [2]. In line with this finding, our case had teth-
Lipomyelomeningocele is a rare condition that, if untreated, can have serious consequences. The cutaneous signs of this condition must continue to be discussed with primary care practitioners to promote an early diagnosis and referral to expert services. Furthermore, lipomyelomeningocele can present as neurological deficits in adults, therefore clinicians should suspect the diagnosis even in adults. The case study also demonstrates the diagnostic challenges clinicians may face in areas with limited resources when radiological imaging is not always available.

Conclusion

Lipomyelomeningocele is a rare condition that, if untreated, can have serious consequences. The cutaneous signs of this condition must continue to be discussed with primary care practitioners to promote an early diagnosis and referral to expert services. Furthermore, lipomyelomeningocele can present as neurological deficits in adults, therefore clinicians should suspect the diagnosis even in adults. The case study also demonstrates the diagnostic challenges clinicians may face in areas with limited resources when radiological imaging is not always available.

Patient consent

Consent from the patient was taken on written form for case report and using the MRI images in any journal after explaining in her own language.
REFERENCES

[1] Harazeen A, Thottempudi N, Sonstein J, Li X, Wu L, Rai P, et al. Tethered cord syndrome associated with lumbar lipomyelomeningocele: a case report. Cureus 2022;14(2):e22590. doi:10.7759/cureus.22590.

[2] Sarris CE, Tomei KL, Carmel PW, Gandhi CD. Lipomyelomeningocele: pathology, treatment, and outcomes. Neurosurg Focus 2012;33(4):E3.

[3] Wagner KM, Raskin JS, Hansen D, Reddy GD, Jea A, Lam S. Surgical management of lipomyelomeningocele in children: challenges and considerations. Surg Neurol Int 2017;8:63.

[4] Shields LB, Mutchnick IS, Daniels MW, Peppas DS, Rosenberg E. Risk of occult spinal dysraphism based on lumbosacral cutaneous manifestations. SAGE Open Med 2021;9:205031212111037172. doi:10.1177/205031212111037172.

[5] Mishra SS, Panigrahi S, Dhir MK, Parida DK. Tethered cord syndrome in adolescents: report of two cases and review of literature. J Pediatr Neurosci 2013;8(1):55–8.

[6] Chellathurai A, Kathirvelu G, Mukkada PJ, Rajendran K, Ramani R. Spinal dysraphisms: a new anatomical–clinicoradiological classification. Indian J Radiol Imaging 2022;31(4):809–29.