Abstract—A Load Balancing Relay Algorithm (LBRA) is proposed in this letter to solve the unfair spectrum resource allocation problem in two-tier machine-type communications (MTC) uplink transmission. By adopting MTC devices (MTCDs)'s distribution, spectrum resources are dynamically allocated and reclustered for the link between MTCDs to cluster-head. Moreover, the system outage probability and transmission capacity are derived for the LBRA in this letter. The numerical results provide some insights on potential use of the LBRA for the scenario with high MTCD density.

Index Terms—Load management, machine-type communications, relay networks, resource allocation.

I. INTRODUCTION

In the machine-type communications (MTC) scenario, the radio access network (RAN) will be congested by a large number of MTC devices (MTCDs), which simultaneously access to the access point (AP). Different approaches have been proposed to deal with the problem through prioritized random access and distributed queuing. Another potential solution is data aggregation [1]–[6], MTCDs form a cluster and send data to the AP through the cluster-head.

For improving the coverage of uplink, two-tier uplink transmission is adopted in heterogeneous MTC network. The performance of two-tier MTC has been extensively studied [7]–[11]. The uplink average data rate of the two-tier MTC is studied, by using constraint gradient ascent optimization algorithms [7]. In [8], an ALOHA protocol for multihop networks is proposed to reduce the latency by optimizing the coverage of each cluster-head. Recent research shows that the load of clusters.

Resource allocation in two-tier MTC is significant to improve the system capacity and reduce the outage probability. By sharing spectrum resources in a non-orthogonal way within the cluster [4], both spectrum efficiency and number of device connections also can be improved. In [12], a channel-aware resource scheduling is proposed, in which gateways tend to allocate resources to MTCDs with better channel state, to improve the transmission success probability. Cluster-head prioritizes MTCDs according to different parameters, and allocates resources for MTCD based on priority, which can also improve the transmission capacity [13]. In [14], the trade-off between transmission capacity and fairness of resource allocation is studied, in which a global optimal resource allocation scheme is proposed to enhance network throughput. In [15], the authors optimize the load and transmission power to reduce the energy consumption of the system in the scenario of massive MTC uplink transmission. MTCDs have the choice of directly connecting with AP or going through cluster-heads to transmit their data, the authors in [16] minimize MTCDs energy consumption by optimizing cluster-head density.

However, existing works have not considered the dynamic reclustering of devices when analyzing system performance. Therefore, this letter studies the dynamic resource allocation scheme based on two-tier MTC, aiming to reduce the outage probability and increase the transmission capacity when supporting massive MTCDs connection. The main contributions of this letter are summarized as follows.

- A load-balancing relay algorithm (LBRA) is proposed for the uneven distribution of MTCD. In the proposed algorithm, MTCD is firstly clustered by using the location specific information according to stochastic geometry methodology, and then the MTCD is reclustered based on the load of clusters.
- The transmission capacity and outage probability of the system when using the proposed algorithm are derived, and the simulation results compared with traditional method, that is, the nearest principle relay algorithm (NPRA) [1], validate the superiority of the LBRA in case of massive random access.

II. SYSTEM MODEL

As shown in Fig. 1, a two-tier MTC covered by a AP is considered. MTCDs form a cluster and send data to the AP through the cluster-head, which is randomly selected [1], [6], [11]. The positions of MTCDs and cluster-heads are assumed to obey two independent homogeneous Poisson point processes (HPPP), where \(\Phi_D = \{X_i\} \) and \(\Phi_G = \{Y_i\} \), and the distribution densities are \(\lambda_D \) and \(\lambda_G \), respectively. This letter
aims at the scheduling problem of resources within MTCD clusters, and its evaluation indexes are transmission capacity and outage probability.

The AP distributes the spectrum resources in the unit of a resource block (RB). The number of RBs allocated to MTCD to cluster-head link (denote as aggregation link) and cluster-head to AP link (denote as relay link) are represented as R_1 to R_2, respectively.

Assuming that all MTCDs handle the same business, and considering the simplicity of wake-up, all MTCDs use the same modulation and coding scheme (MCS) [1], where fixed-size packet is transmitted with power P and the path loss is considered. All channels are composed of ω_1 RBs, which are sufficient to send a packet. Thus, there are $U_1 = \left\lfloor \frac{R_1}{\omega_1} \right\rfloor$ channels in total, as shown in Fig. 2(a). The path loss for both the aggregation and the relay link is assumed as $l(r) = r^{-\alpha}$, where α is the path loss index and r is the distance of the line-of-sight. Here we assume that cluster-head can decode the packet successfully when the Signal-to-Interference power Ratio (SIR) of a MTCD packet is larger than a threshold γ_i, which is the distance of the i-th channel and is nearest to cluster-head at location Y_i. For simplicity, use $\mathcal{H}_i, \mathcal{V}_i$ to represent the typical MTCD, which is occupying the i-th channel and is the closest to cluster-head at location Y_i compared to other cluster-heads, \mathcal{V}_i. Note that the transmission data of MTCD on channel u after re-clustering is Z_i^u. The transmission capacity can be denoted as the product of the MTCD distribution density λ_D and the probability of successful transmission $(1 - \varepsilon)$.

$$ C = \lambda_D (1 - \varepsilon). \quad (1) $$

The transmission capacity is a measure of MTCD density that the network can support with the constraint of outage probability, i.e., it is has units of number of MTCDs per unit area.

III. LOAD BALANCING RELAY ALGORITHM

In the aggregation link, by balancing the number of MTCDs in each cluster, the relay link can reasonably reallocate between two nearest clusters. The detailed algorithm flow is shown in Fig. 3. According to the information broadcast by the AP, MTCDs complete random access and send location information to AP after collecting data. Cluster-head is selected by the AP to complete the clustering and allocate spectrum resources. Afterwards, when MTCD changes its location due to the mobility, it needs to resend its location information to the AP for reclustering. We define the following four events, without loss of generality, cluster-head is assumed as $Y_0 \in \Phi_G$.

Event 1: The MTCD is transferred from the nearest Y_i into the Y_0 region.

Event 2: The MTCD is transferred from the Y_0 region to the nearest Y_i region.

Event 3: The cluster-head located at Y_0 successfully captures the packet.

Event 4: Packets captured by cluster-head at Y_0 can be successfully relayed to AP.

Suppose a typical MTCD at X_i sends a packet on the channel $u \in \{1, 2, \ldots, U_1\}$. Let $\text{Pr}(\lambda)$ denote the packet successfully received by MTCD.

$$ \text{Pr}(\lambda) = \text{Pr}(\lambda_1 \cap \lambda_2 \cap \lambda_3) = \text{Pr}(\lambda_1) \text{Pr}(\lambda_2) \text{Pr}(\lambda_3) \quad (2) $$
where A_1 indicates that the MTCD is transferred into cluster-head at Y_0, and A_2 indicates that the MTCD is transferred out from cluster-head at Y_0. According to the conditions A_1 and A_2, the expression is simplified as the sum of P_1, P_2, and P_3 by using the total probability theorem.

By definition of the Poisson distribution, we obtain

$$
Pr(A_1) = Pr(k_i \geq k_0) = \sum_{k=k_0}^{\infty} \frac{\lambda_D S Y_j}{k!} \exp(-\lambda D S Y_j), \quad (3)
$$

$$
Pr(A_2) = Pr(k_i < k_0) = \sum_{k=0}^{k_0} \frac{\lambda_D S Y_j}{k!} \exp(-\lambda D S Y_j), \quad (4)
$$

where k_0 represent the number of MTCDs in Y_0 region, k_i represents the number of MTCDs in the region nearest to Y_0, and $S Y_j$ indicates the area of the region with Y_1 as the cluster-head. In the analysis, since each MTCD is associated with the nearest MTCG, a Voronoi tessellation is composed of a cluster. Therefore, the area of the cluster can be obtained by calculating the geometric area of the Voronoi tessellation. Obviously, the transfer in Y_1 region is the transfer out of Y_0 region, so $Pr(A_1) + Pr(A_2) = 1$.

It can improve wireless resource utilization and reduce congestion by balancing the number of MTCDs per cluster, since the RBs used for the relay link in each cluster are equal, and all devices have the same MCS. When MTCD transfer occurs, the number of transfer devices k_{change} is

$$
k_{change} = \left\lfloor \frac{k_1 - k_0}{2} \right\rfloor, \quad (5)
$$

when $k_0 < k_1$, which means that there are $k_{change} MTCDs$ transferred from Y_1 to Y_0 region. Otherwise, it means that k_{change} MTCDs are transferred from Y_0 to Y_1 region. For the convenience of calculation, P_1, P_2, and P_3 are derived as

$$
P_1 = Pr\left(\mathcal{R}_{u}^{A_1}Y_0 \mid C_{u}^{X_i,Y_0} \cap \mathcal{Q}_{X_i,Y_0}^{u}, A_1\right) Pr(A_1) \cdot Pr(C_{u}^{X_i,Y_0} \cap \mathcal{Q}_{X_i,Y_0}^{u}, A_1) Pr\left(\mathcal{Q}_{X_i,Y_0}^{u} \mid A_1\right), \quad (6)
$$

$$
P_2 = Pr\left(\mathcal{R}_{u}^{A_2}Y_0 \mid C_{u}^{X_i,Y_0} \cap \mathcal{T}_{u}^{X_i,Y_0}, A_2\right) \cdot Pr(C_{u}^{X_i,Y_0} \cap \mathcal{T}_{u}^{X_i,Y_0}, A_2) Pr\left(\mathcal{T}_{u}^{X_i,Y_0} \mid A_2\right), \quad (7)
$$

and

$$
P_3 = Pr\left(\mathcal{R}_{u}^{A_3}Y_0 \mid C_{u}^{X_i,Y_0} \cap \mathcal{Q}_{X_i,Y_0}^{u} - \mathcal{T}_{u}^{X_i,Y_0}, A_3\right) \cdot Pr(C_{u}^{X_i,Y_0} \cap \mathcal{T}_{u}^{X_i,Y_0}, A_3) Pr\left(\mathcal{T}_{u}^{X_i,Y_0} \mid A_3\right). \quad (8)
$$

According to P_1, P_2, and P_3, the end-to-end outage probability can be written as

$$
\varepsilon = E \left[\prod_{Y_1 \in \Phi_G} (1 - (P_1 + P_2 + P_3)) \right]. \quad (9)
$$

Note that $\mathcal{Q}_{X_i,Y_0}^{u}$ is equivalent to the event that there exists no cluster-head except Y_0 within a closed ball of radius $\|X_i^u - Y_0\|$ centered at X_i, then

$$
Pr\left(\mathcal{Q}_{X_i,Y_0}^{u} \mid A_1\right) = Pr\left(\mathcal{Q}_{X_i,Y_0}^{u} \cap B(Z_i^u, \|Z_i^u - Y_0\|) = \emptyset\right) = \exp(-\pi \lambda_G \|Z_i^u - Y_0\|^2). \quad (10)
$$

Since X_i^u represents a typical MTCD, and under A_1 conditions $X_i^u = Z_i^u$. Then, for event $\mathcal{Q}_{X_i,Y_0}^{u} \cap A_1$ in P_2 and event $\mathcal{Q}_{X_i,Y_0}^{u} - \mathcal{T}_{u}^{X_i,Y_0}$ in P_3, the probability can be expressed as

$$
Pr\left(\mathcal{T}_{u}^{X_i,Y_0} \mid A_1\right) = \frac{k_{change}}{\sum k_j}, \quad (11)
$$

$$
Pr\left(\mathcal{T}_{u}^{X_i,Y_0} \mid A_2\right) = \frac{k_0 - k_{change}}{\sum k_j}, \quad (12)
$$

where $\sum k_j$ refers to the total number of MTCDs.

The location set of typical MTCD transmitted on channel u is represented by $\Phi_G^{X_i}$. Then for X_i^u, the interference at the cluster-head can be expressed as

$$
I_{u}^{X_i - Y_0} \mid Y_0 = \sum_{X_j^u \in \Phi_G^{X_i}} h_{X_j^u,Y_0} \|X_j^u - Y_0\|^{-\alpha}, \quad (13)
$$

where $h_{X_j^u,Y_0}$ represents the channel fading gain from X_j^u to the cluster-head, and $\|X_j^u - Y_0\|$ is the distance from X_j^u to the cluster-head.

A typical MTCD packet can be captured by cluster-head located at Y_0, if the SIRs of the packet is larger than the threshold η. Otherwise, it cannot be captured. The probability of the event $\mathcal{Q}_{Z_i,Y_0}^{u} \mid \Phi_G^{X_i}$, under the condition A_1 can be expressed as

$$
Pr\left(C_{Z_i,Y_0}^{u} \mid \mathcal{Q}_{Z_i,Y_0}^{u} \cap \Phi_G^{X_i}, A_1\right) = \exp(-\pi \lambda_D U_1 \frac{\eta^2}{1 + \lambda_D U_1}) K_{\alpha}, \quad (14)
$$

where $K_{\alpha} = \int_{0}^{\infty} dt \frac{dt}{1 + t^2}$. Obviously, the probability $Pr(C_{Z_i,Y_0}^{u} \cap \mathcal{Q}_{Z_i,Y_0}^{u} \cap A_1) \mid \Phi_G^{X_i}$ in P_2 and the probability $Pr(C_{Z_i,Y_0}^{u} \cap \mathcal{T}_{u}^{X_i,Y_0} \cap A_2) \mid \Phi_G^{X_i}$ in P_3 can also be represented by (14).

The average probability of cluster-head captures all MTCDs,
that is, the average capture probability $p_{c, \text{in}, \psi}$ of the event $\mathcal{C}_{Z^u_{1}, Y_0}^u | \mathcal{T}_{X^u_{1}, Y_0}^u$ under A_1 without the condition $\| Z^u_{1} - Y_0 \|$ can be expressed as

$$
p_{c, \text{in}, \psi} = \left(\frac{\lambda_D}{U_1 \lambda_G} \eta \frac{1}{2} K_\alpha + 1 \right)^{-1}.
$$

Similarly, the MTCD average capture probability $p_{c, \text{in}, T}$ of the event $\mathcal{C}_{Z^u_{1}, Y_0}^u | \mathcal{T}_{Y_0}^u$ can be expressed as

$$
p_{c, \text{in}, T} = \left(\frac{\lambda_D}{U_1 \lambda_G} \eta \frac{1}{2} K_\alpha + 1 \right)^{-1} \cdot \exp \left(-\pi \lambda_D \eta \frac{1}{2} K_\alpha \eta \frac{1}{2} \lambda_G \| Z^u_{1} - Y_0 \| / 4 \right).
$$

Under condition A_2, the MTCD average capture probability $p_{c, \text{out}}$ of event $\mathcal{C}_{Z^u_{1}, Y_0}^u \cap (\mathcal{T}_{X^u_{1}, Y_0}^u - \mathcal{T}_{Y_0}^u)$ can be expressed as

$$
p_{c, \text{out}} = \left(\frac{\lambda_D}{U_1 \lambda_G} \eta \frac{1}{2} K_\alpha + 1 \right)^{-1} \frac{k_0 - k_{\text{change}}}{k_0}.
$$

All packets can be successfully relayed when the number of packets captured by cluster-head is less than U_2. Otherwise, only U_2 packets can be relayed. The successful transmission probability of the relay link can be expressed as

$$
\Pr \left(\mathcal{R}_{Z^u_{1}, Y_0}^u \right) = \begin{cases} \frac{U_2}{k_c p_c}, & \text{if } k_c p_c > U_2 \\ 1, & \text{otherwise} \end{cases},
$$

where k_c represents the number of MTCDs in the region, under condition A_1, $k_c = k_0 + k_{\text{change}}$, or under condition A_2, $k_c = k_0 - k_{\text{change}}$. p_c represents cluster-head’s average capture probability, which is recorded as $p_{c, \text{in}, \psi}$ under event $\mathcal{C}_{Z^u_{1}, Y_0}^u | \mathcal{T}_{X^u_{1}, Y_0}^u$ under condition A_1, $\mathcal{C}_{Z^u_{1}, Y_0}^u | \mathcal{T}_{Y_0}^u$ under condition A_2, $\mathcal{C}_{Z^u_{1}, Y_0}^u \cap (\mathcal{T}_{X^u_{1}, Y_0}^u - \mathcal{T}_{Y_0}^u)$, and $p_{c, \text{out}}$ under event $\mathcal{C}_{Z^u_{1}, Y_0}^u \cap (\mathcal{T}_{X^u_{1}, Y_0}^u - \mathcal{T}_{Y_0}^u)$.

According to the above derivation, P_1, P_2, and P_3 can be expressed as

$$
P_1 = \frac{U_2 k_0 \exp \left(-\pi \lambda_D \eta \frac{1}{2} K_\alpha \| Z^u_{1} - Y_0 \| / 2 \right)}{(k_0 + k_{\text{change}})^2 p_{c, \text{in}, \psi}} \cdot \exp \left(-\pi \lambda_G \| Z^u_{1} - Y_0 \| / 2 \right) \sum_{k=k_0}^{\infty} \frac{(\lambda_D S_{Y_1})^k}{k!} \times \exp \left(-\lambda_D S_{Y_1} \right),
$$

$$
P_2 = \frac{U_2 k_{\text{change}} \exp \left(-\pi \lambda_D \eta \frac{1}{2} K_\alpha \| Z^u_{1} - Y_0 \| / 2 \right)}{(k_0 + k_{\text{change}})^2 p_{c, \text{in}, T}}
$$

and

$$
P_3 = \frac{U_2 \exp \left(-\pi \frac{\lambda_D \eta}{U_1 \lambda_G} \frac{1}{2} K_\alpha \| Z^u_{1} - Y_0 \| / 2 \right)}{(k_0 - k_{\text{change}}) p_{c, \text{out}}} \sum_{k=k_0}^{\infty} \frac{(\lambda_D S_{Y_1})^k}{k!} \exp \left(-\lambda_D S_{Y_1} \right).
$$

Substituting (19), (20), and (21) into (9), we can obtain the outage probability as shown in (22) at the bottom of the page. Then, substituting (22) into (1), the transmission capacity is obtained.

IV. Numerical Results

This section demonstrates the accuracy of the analytical results through Monte Carlo simulations. We evaluate the transmission capacity and outage probability with the proposed LBRA. We confirm the superior performance of the LBRA system by comparing with the traditional NPRA. The NPRA allocates spectrum resources equally for cluster-heads, and MTCDs can only transmit data through the associated cluster-head. Unless otherwise stated, we adopt following simulation parameters in [1], $\eta = 3$ dB, $\alpha = 4$, $\omega_1 = 30$, $\omega_2 = 5$, $R_1 = 1800$, and $R_2 = 1800$, respectively. The analytical results do not exactly match the simulations in the proposed LBRA. This is due to in the analysis, the transferred MTCDs are randomly selected. However, in the simulation, MTCDs near cluster boundary are selected for transfer.

The transmission capacity C versus MTCD density λ_D is shown in Fig. 4. The transmission capacity grows flat with
large MTCD density. This is due to the outage probability gradually increases proportionally with increasing MTCD density and the outage probability is the key limitation on the transmission capacity. We can observe an increase of outage probability by comparing the transmission capacity gap between the proposed algorithm and the no outage scheme. Therefore, after the MTCD transfer, the cluster-head needs to relay the MTCD located farther away. This makes a significant increase of the distance between adjacent clusters. Moreover, when MTCD density is large, we note that the transmission capacity of the LBRA is larger than that of the NPRA.

Fig. 5 shows the transmission capacity C against the density of cluster-head λ_C. When the value of λ_C is low, the transmission performance of the LBRA is worse than that of the NPRA. This is because the sparse distribution of cluster-head, results in an increase of the distance between adjacent clusters. Therefore, after the MTCD transfer, the cluster-head needs to relay the MTCD located farther away. This makes a significant increase of the outage probability of the aggregation link and a corresponding decrease of transmission capacity. However, the LBRA’s performance exceeds the NPRA when cluster-head density λ_C is near 0.75×10^{-4}, because of the shorter distance between clusters.

Fig. 6 depicts the outage probability ε for different MTCD density λ_D. The outage probability of the LBRA is larger than that of the NPRA when the value of λ_D is low (i.e., $\lambda_D < 0.3 \times 10^{-3}$). This is due to the MTCD transfer cause an increase of the distance between MTCD and cluster-head. With the increase of MTCD density, when $\lambda_D \approx 0.7 \times 10^{-3}$, the proposed LBRA has a lower outage probability than that of the NPRA, because the LBRA can effectively use RBs by transferring MTCDs. Moreover, when the value of λ_D is large (i.e., $\lambda_D > 2.7 \times 10^{-3}$), the outage probability increases rapidly because of the constraints of spectrum resources.

V. Conclusion

In this letter, to solve the unfair resource allocation problem in traditional two-tier MTC, a load balancing relay algorithm is proposed, which reallocates spectrum resources on the aggregation link. The LBRA reclusters MTCDs based on the load of each cluster to make full use of spectrum resources. Numerical results show that the LBRA has good performance, especially when MTCD density is large. Its transmission capacity and outage probability performance are better than the traditional algorithm, which illustrates that the proposed algorithm is suitable for MTCD intensive deployment environment. Moreover, different MTCDs can provide particular QoS if different MCSs are used.

REFERENCES

[1] U. Tefek and T. J. Lim, “Relaying and radio resource partitioning for machine-type communications in cellular networks,” IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 1344–1356, Feb. 2017.
[2] Y. Wu, Y. Li, W. Chen, and D. K. Ng, “Energy-efficient D2D overlaying communications with spectrum-power trading,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4404–4419, Jul. 2017.
[3] L. Jiang, L. Xu, B. Cao, and Y. Jia, “A cluster-based congestion-mitigating access scheme for massive M2M communications in Internet of Things,” IEEE Internet Things J., vol. 5, no. 3, pp. 2200–2211, Jun. 2018.
[4] O. L. A. López, H. Alves, P. H. J. Nardelli, and M. Latva-Aho, “Aggregation and resource scheduling in machine-type communications networks: A stochastic geometry approach,” IEEE Trans. Wireless Commun., vol. 17, no. 7, pp. 4750–4765, Jul. 2018.
[5] A. Izaz, L. Zhang, A. U. Qadrdus, and R. Tafazolli, “HARQ in relay-assisted transmission for machine type communications,” IEEE Wireless Commun. Lett., vol. 5, no. 2, pp. 172–175, Apr. 2016.
[6] H. G. Moussa and W. Zhaung, “Energy- and delay-aware two-hop NOMA-enabled massive cellular IoT communications,” IEEE Internet Things J., vol. 7, no. 1, pp. 526–560, Jan. 2020.
[7] H. Ibrahim, W. Bao, and U. T. Nguyen, “Data rate utility analysis for uplink two-hop Internet of Things networks,” IEEE Internet Things J., vol. 6, no. 2, pp. 3601–3619, Apr. 2019.
[8] F. Bacelli, B. Blaszczyszyn, and P. Muhlethaler, “An ALOHA protocol for multihop mobile wireless networks,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 421–436, Feb. 2006.
[9] H. Yu, Z. Fei, C. Cao, M. Xiao, D. Jia, and N. Ye, “Analysis of irregular repetition spatially-coupled slotted ALOHA,” Sci. China Inf. Sci., vol. 62, no. 8, Aug. 2019, Art. no. 080302.
[10] M. Gharbieh, A. Bader, H. ElSawy, H.-C. Yang, M.-S. Alouini, and A. Adinoyi, “Self-organized scheduling request for uplink 5G networks: A D2D clustering approach,” IEEE Trans. Commun., vol. 67, no. 2, pp. 1197–1209, Feb. 2019.
[11] O. L. A. López, H. Alves, P. H. J. Nardelli, and M. Latva-Aho, “Hybrid resource scheduling for aggregation in massive machine-type communications networks,” Ad Hoc Netw., vol. 94, Jun. 2019, Art. no. 101952.
[12] J. Guo, S. Durran, X. Zhou, and H. Yankiomeroglu, “Massive machine type communication with data aggregation and resource scheduling,” IEEE Trans. Commun., vol. 65, no. 9, pp. 4012–4026, Sep. 2017.
[13] T. Salam, W. U. Rehman, and X. Tao, “Cooperative data aggregation and dynamic resource allocation for massive machine type communication,” IEEE Access, vol. 6, pp. 4145–4158, 2018.
[14] D. Han, H. Minn, U. Tefek, and T. J. Lim, “Network dimensioning, QoE maximization, and power control for multi-tier machine-type communications,” IEEE Trans. Commun., vol. 67, no. 1, pp. 859–872, Jan. 2019.
[15] S. Li, D. Zhai, P. Du, and T. Han, “Energy-efficient task offloading, load balancing, and resource allocation in mobile edge computing enabled IoT networks,” Sci. China Inf. Sci., vol. 62, no. 2, Feb. 2019, Art. no. 029301.
[16] G. Moussa and W. Zhaung, “Access point association in uplink two-hop cellular IoT networks with data aggregators,” IEEE Internet Things J., vol. 7, no. 6, pp. 5386–5400, Jun. 2020.
[17] S. Weber, J. Andrews, and N. Jindal, “An overview of the transmission capacity of wireless networks,” IEEE Trans. Commun., vol. 58, no. 12, pp. 3593–3604, Dec. 2010.