The Impact of Vortex Formation Due to The Operational Dam Condition: A Review

Aqil Azman1, N.M. Zahari2, M.H. Zawawi2, M.H. Mansor3, F.C. Ng1, Aizat Abas1*, F. Nurhikmah2, and Nurhanani A. Aziz2

1School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
2Department of Civil Engineering, Universiti Tenaga Nasional (UNITEN), Kajang 43000, Selangor Darul Ehsan, Malaysia.
3Department of Electrical Power Engineering, Universiti Tenaga Nasional (UNITEN), Kajang 43000, Selangor Darul Ehsan, Malaysia.

*Email: aizatabas@usm.my

Abstract. There are various sources of energy throughout the world, renewable as well as non-renewable through which renewable energy sources are considered more environmentally friendly. Encompassed by all the sources of renewable energy, hydropower is considered the most beneficial source of energy. Proper operation of hydropower plant is very important for generating maximum energy by utilizing the available. However, formation of vortices at power intake can cause number of problems. The stronger vortices have more negative effects on the performance of hydropower plant which can also, draw debris and air into an intake causing vibration and damage to turbines. The present study addresses the vortices formation at the intake dam, several types of vortices and anti-vortex applications in order to overcome the vortex formations.

1. Introduction
Energy is very important for a developing country and the common energy used is electrical energy. There are various ways to harvest electricity energy by constructing power plant such as nuclear power plant, charcoal power plant, solar harvester, and hydropower. The role of hydropower has been changed from constant energy supplier to the highly flexible one to maintain the grid stability which leads to operate the hydropower under transient operations [1, 2]. Dam intakes divided into two types which are horizontal intakes and vertical intakes, that can be observed in Figure 1 while Table 1 summarize the study of vortex formation for two types of dam intake which horizontal and vertical.
Figure 1. Types of intake: (a) horizontal intake and (b) vertical intake.

Table 1. types of dam intake for vortex formation study

Author	Types of intake study	Year
Padmanabhan and Hecker. [3]	Horizontal intake	1984
Cheng and Ying. [4]	Horizontal intake	2007
Roshan et al. [5]	Horizontal intake	2009
Sarkardeh et al. [6]	Horizontal intake	2010
Kerem and Yildirim. [7]	Vertical intake	2010
Trivellato. [8]	Vertical intake	2010
Amiri et al. [9]	Horizontal intake	2011
Wang et al. [10]	Horizontal intake	2011
Yang et al. [11]	Vertical intake	2014
Keller et al. [12]	Horizontal intake	2014
Taştan and Yıldırım. [13]	Vertical intake	2014
Azarpira et al. [14]	Horizontal intake	2014
Sarkardeh et al. [15,16]	Horizontal intake	2014
Suerich-Gulick et al. [17–19]	Horizontal intake	2014
Sarkardeh. [20, 21]	Horizontal intake	2017

Usually, horizontal intake was more preferred as compared to vertical intakes due to construction cost and fabrication materials [9]. In this review, the impact of vortex in the literature are reviewed with a focus on their formation in dam intakes and the anti-vortex applications in order to reduce the vortex formation.

2. The impact of vortex formation

In general, intake vortices can be recognized as a prevailing phenomenon which must be considered in hydraulic engineering applications and the formation of vortices leads to flow unsteadiness and non-uniformity at hydro machines [8, 9, 22]. Vortex formation at power intakes may occur at lower reservoir levels which can draw debris and air into an intake causing vibration and damage to turbines [6, 23–25]. Eventually, Yang et al., (2018) mentioned that the vortex strength increased accordingly, and the air-core diameter was around 3 – 4 m [26]. Instead, Zhang et al., (2018) stated that vortex is a typical flow structure in the hydro turbines [27], leading to various kinds of instabilities such as large pressure fluctuation [28, 29], significant noise, prominent vibrations, rotating stall [30], cavitation erosion [31], and material fatigue.
On the whole, Walker, (2016) discussed that there are no information was found on the loss of power generation with vortex suppressors, however many documents acknowledged that the design of a trash rack can create head loss which could reduce power generation of a turbine [32]. In other book section by Ratnayaka et al., (2009) mentions that, radial vanes are generally incorporated in the top of a bell mouth shaft to minimize the occurrence of vortex action, which can otherwise reduce the discharge capacity and cause problematic flow conditions in the shaft and tunnel [33].

In the past, study by Padmanabhan and Hecker, (1984) using horizontal intake approached to study the vortex formation with three types of condition: one pipe operation, two pipe operation and screen blockage test [3]. Based on findings, considerable swirl in the pipe flow was induced, and the swirl meter indicated higher swirl angles at lower submergences when the subsurface vortices were stronger [3]. In the book by Paul, (1998) stated that, for intakes feeding directly to a power tunnel, the exclusion of air is an important design consideration and the intake may require submergence to prevent vortex formation and air entrainment [34]. In contrast, findings by Azarpira et al., (2014) found that, velocity measurements in the reservoir showed that increasing the submerged depth from 1.6 to 3.2 has effect on reducing plane velocities, whereby the maximum plane velocity decreased about 30% [14].

Meanwhile, the study by Khanarmuei et al., (2018) encountered the strength of vortices that form in single and dual pipe intakes decreases by changing the intake direction from vertical to 45° and horizontal [35]. Based on their findings, the circulation number of vortices that formed at horizontal single and dual pipe intakes as compared to vertical single and dual pipe intakes was decreased on average 31% and 35%, respectively. In addition, the critical submergence was considerably affected by changing the intake direction at single and dual pipe intakes, and by changing the angle of pipe intakes from vertical to horizontal, the critical submergence at single and dual pipe intakes decreases 16% to 30% and 19% to 40%, respectively [35].

3. Vortex classifications
Alden Research Laboratory [36] classified vortices into 6 types of classification as shown in Figure 2(a) as compared to Sarkadesh et al., (2010) which classified the vortex formation into three class vortex which vortex class A, B and C in Figure 2(b). The vortices of class C are considered to be safe while Class B surface vortices are stronger and the rotation in the water surface extends down to the intake [6]. Lastly, the strongest vortices which should be avoided are categorised in class A which is in this class, air bubbles are trapped and conveyed down from the water surface to the intake.
4. Anti-vortex applications

Roshan et al., (2009) found that the vortices can be reduced by introduced anti-vortex walls (Figure 4) whereby anti-vortex wall was then recommended as a cheap method to prevent vortex formation in the prototype [5]. Based on their results of experiments, the type of vortices reduced from type 4 to type 2 and 1. Similarly, Sarkardeh et al., (2010) also proposed an anti-vortex which trash rack to reduce the vortices formation [6]. However, since water level in a reservoir should not be reduced to levels below the critical submergence, the volume of water in this zone cannot be used for power generation [9]. Thus, increasing the submergence of the intake to prevent the formation of air-entraining vortices may not always be an economical solution and be cost prohibitive.

5. Conclusions

Hydropower plant is the most energy harvester used throughout world due to higher energy output as well as renewable energy compared to other types of power plant. Consequently, formation of vortex at dam intake reduce the productivity of the collected electrical energy. The present study has been undertaken to review the earlier research work carried out in the area of dam intakes which the occurrence of vortex formation. It has been found that the water depth, S affect the vortex formation at dam intakes and increasing the submergence of the intake will be cost prohibitive which
not always be an economical solution. In the current status, the impact of vortex reduces the turbine capabilities in generating electricity due to the air-entrain which lower the mass flow and increase void inside the penstock. Based on the review, anti-vortex can reduce the vortex formation but there are limited studies of the design for the anti-vortex. Thus, more studies for the design of anti-vortex are needed to optimally reduce the vortex formation.

Acknowledgments
This research is partly funded by Tenaga Nasional Berhad seeding fund under grant No. U-TG-RD-19-14.

References
[1] Goyal R, Gandhi B K and Cervantes M J 2018 PIV measurements in Francis turbine – A review and application to transient operations Renew. Sustain. Energy Rev. 81 2976–91
[2] Singh V K and Singal S K 2017 Operation of hydro power plants-a review Renew. Sustain. Energy Rev. 69 610–9
[3] Padmanabhan M and Hecker G E 1984 Scale effects in pump sump models J. Hydraul. Eng. 110 1540–56
[4] Cheng Y and Ying B 2007 Numerical Simulation and Comparison of Water Intake-Outlet Methods in Power Plants J. Hydropodyn. 19 623–9
[5] Roshan R, Sarkardeh H and Zarrati A R 2009 Vortex study on a hydraulic model of Godar-e-Landar Dam and hydropower plant WIT Trans. Eng. Sci. 63 217–25
[6] Sarkardeh H, Zarrati A R and Roshan R 2010 Effect of intake head wall and trash rack on vortices J. Hydraul. Res. 48 108–12
[7] Kerem T and Yildirim N 2010 Effects of dimensionless parameters on air-entraining vortices J. Hydraul. Res. 48 57–64
[8] Trivellato F 2010 Anti-vortex devices: Laser measurements of the flow and functioning Opt. Lasers Eng. 48 589–99
[9] Amiri S M, Zarrati A R, Roshan R and Sarkardeh H 2011 Surface vortex prevention at power intakes by horizontal plates Proc. Inst. Civ. Eng. Water Manag. 164 193–200
[10] Wang Y, Jiang C and Liang D 2011 Comparison between empirical formulae of intake vortices J. Hydraul. Res. 49 113–6
[11] Yang J, Liu T, Bottacin-Busolin A and Lin C 2014 Effects of intake-entrance profiles on free-surface vortices J. Hydraul. Res. 52 523–31
[12] Keller J, Möller G and Boes R M 2014 PIV measurements of air-core intake vortices Flow Meas. Instrum. 40 74–81
[13] Taştan K and Yildirim N 2014 Effects of Froude, Reynolds, and Weber numbers on an air-entraining vortex J. Hydraul. Res. 52 421–5
[14] Azarpia M, Sarkardeh H, Tavakkol S, Roshan R and Bakhshi H 2014 Vortices in dam reservoir: A case study of Karun III dam Sadhana - Acad. Proc. Eng. Sci. 39 1201–9
[15] Sarkardeh H, Jabbari E, Zarrati A R and Tavakkol S 2014 Velocity field in a reservoir in the presence of an air-core vortex Proc. Inst. Civ. Eng. Water Manag. 167 356–64
[16] Sarkardeh H, Zarrati A R, Jabbari E and Marosi M 2014 Numerical simulation and analysis of flow in a reservoir in the presence of vortex Eng. Appl. Comput. Fluid Mech. 8 598–608
[17] Suerich-Gulick F, Gaskin S J, Villeneuve M and Parkinson E 2014 Free surface intake vortices: Theoretical model and measurements J. Hydraul. Res. 52 502–12
[18] Suerich-Gulick F, Gaskin S J, Villeneuve M and Parkinson E 2014 Free surface intake vortices: Scale effects due to surface tension and viscosity J. Hydraul. Res. 52 513–22
[19] Suerich-Gulick F, Gaskin S J, Villeneuve M and Parkinson E 2014 Characteristics of free surface vortices at low-head hydropower intakes J. Hydraul. Eng. 140 291–9
[20] Sarkardeh H 2017 Minimum Reservoir Water Level in Hydropower Dams Chinese J. Mech. Eng. (English Ed. 30 1017–24
[21] Sarkardeh H 2017 Numerical calculation of air entrainment rates due to intake vortices
[22] Monshizadeh M, Tahershamsi A, Rahimzadeh H and Sarkardeh H 2018 Vortex Dissipation Using a Hydraulic-Based Anti-Vortex Device at Intakes Int. J. Civ. Eng. 16 1137–44
[23] Rabe B K, Najafabadi S H G and Sarkardeh H 2018 Numerical simulation of anti-vortex devices at water intakes Proc. Inst. Civ. Eng. Water Manag. 171 18–29
[24] Ofosu E A, Amo-Boateng M, Domfeh M K and Andoh R 2018 Re-engineering Hydropower Plant for Improved Performance (Elsevier Inc.)
[25] Naghian M, Lashkarbolok M and Jabbari E 2017 Numerical Simulation of Turbulent Flows Using a Least Squares Based Meshless Method Int. J. Civ. Eng. 15 77–87
[26] Yang J,Andreasson P, Högström C M and Teng P 2018 The tale of an intake vortex and its mitigation countermeasure: A case study from akkats hydropower station Water (Switzerland) 10 1–14
[27] Zhang Y, Liu K, Xian H and Du X 2018 A review of methods for vortex identification in hydroturbines Renew. Sustain. Energy Rev. 81 1269–85
[28] Chen T, Zhang Y and Li S 2016 Instability of large-scale prototype Francis turbines of Three Gorges power station at part load Proc. Inst. Mech. Eng. Part A J. Power Energy 230 619–32
[29] Zhang T, Meng Q, Chen C, Zheng W, Liu W, Yu Q and Tong L 2017 A model-free CAF fringe search algorithm with wavelet boosting for VLBI observation Publ. Astron. Soc. Pacific 129 74501
[30] Zhang Y and Wu Y 2017 A review of rotating stall in reversible pump turbine Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231 1181–204
[31] Zhang Y, Zhang Y, Qian Z, Ji B and Wu Y 2016 A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow Renew. Sustain. Energy Rev. 56 303–18
[32] Walker K 2016 Intake vortex formation and suppression at hydropower facilities
[33] Ratnayaka D D, Brandt M J and Johnson K M 2009 Dams, Reservoirs and River Intakes Water Supply pp 149–93
[34] Paul J H 1998 Extending the life of concrete repairs vol 20
[35] Khanarmuei M, Rahimzadeh H and Sarkardeh H 2018 Effect of dual intake direction on critical submergence and vortex strength J. Hydraul. Res. 57 272–9
[36] Knauss J 1987 Swirling flow problems at intakes IAHR Hydraul. Struct. Des. Man. 1 57 – 76