Simple and Order-optimal Correlated Rounding Schemes for Multi-item E-commerce Order Fulfillment

Will Ma
Graduate School of Business, Columbia University, New York, NY 10027, wm2428@gsb.columbia.edu

A fundamental problem faced in e-commerce is—how can we satisfy a multi-item order using a small number of fulfillment centers (FC’s), while also respecting long-term constraints on how frequently each item should be drawing inventory from each FC? In a seminal paper, Jasin and Sinha (2015) identify and formalize this as a correlated rounding problem, and propose a scheme for randomly assigning an FC to each item according to the frequency constraints, so that the assignments are positively correlated and not many FC’s end up used. Their scheme pays at most \(\approx \frac{q}{4} \) times the optimal cost on a \(q \)-item order. In this paper we provide to our knowledge the first substantial improvement of their scheme, which pays only \(1 + \ln(q) \) times the optimal cost. We provide another scheme that pays at most \(d \) times the optimal cost, when each item is stored in at most \(d \) FC’s. Our schemes are fast and based on an intuitive new idea—items wait for FC’s to “open” at random times, but observe them on “dilated” time scales. We also provide matching lower bounds of \(\Omega(\log q) \) and \(d \) respectively for our schemes, by showing that the correlated rounding problem is a non-trivial generalization of Set Cover. Finally, we provide a new LP that solves the correlated rounding problem exactly in time exponential in the number of FC’s (but not in \(q \)).

History: This version from July 8th, 2022. An earlier version of this paper appeared in the Manufacturing & Service Operations Management (MSOM) conference Special Interest Group (SIG) for Supply Chain Management, 2022.

1. Introduction

E-commerce has exploded in recent times, achieving unbelievable global scale, unimaginable delivery speed, and unfathomable system complexity. The short-term operations of a typical e-commerce
giant involves pulling inventory from suppliers into its fulfillment centers (FC’s), including retail stores that can also be used to fulfill online orders; waiting for customers to make purchases, which can be influenced by its powerful search/recommendation engine; and finally delivering the goods to the customer’s doorstep, through a flexible transportation system that allows almost any FC in the network to be used for fulfilling demand from any particular region. This paper focuses on the final part of these operations, which is the problem of dynamically dispatching incoming customer orders to FC’s, while treating the inventory replenishment schedule and search ranking/recommendation decisions as exogenous.

This dynamic fulfillment problem is challenging for several reasons. First, decisions must be made with consideration of the future orders to come, since depleting inventories at the wrong places can set off a chain reaction of long-distance and split shipments, as originally demonstrated by Xu et al. (2009). However, due to the uncertainty in future orders, forward-lookingness requires a high-dimensional stochastic dynamic program that is intractable to solve, as noted by Acimovic and Farias (2019). Meanwhile, even a myopic strategy like using the minimum number of FC’s to satisfy each incoming order, without consideration of future orders, can be computationally hard. Finally, the mere scale and speed of the problem restricts us to fast and simple heuristics, with more elaborate optimizations exacerbating the issue of system complexity.

In light of these challenges, a prevailing approach to the dynamic fulfillment problem is LP-based, as pioneered by Jasin and Sinha (2015). In a nutshell, an LP which views the system as deterministic is written, describing inventory levels of every item at every FC, and expected demands at different regions which includes information about items frequently purchased together in the same order. The objective captures fixed shipping costs (mostly dependent on the number of distinct FC’s used to fulfill an order), variable shipping costs (dependent on items and distances), and shortage costs (dependent on penalties paid for orders not fulfilled). The LP is then solved, providing a “master plan” of transporting supply to demand, which prescribes for different orders from different regions, how frequently each FC should be used to fulfill each item in that order. As
orders come up in real-time, Jasin and Sinha (2015) randomly dispatch the items to FC’s, making sure to follow the fulfillment frequencies outlined in the LP’s plan (see Section 5 for details).

Although seemingly uninformed, this randomized fulfillment algorithm is simple and fast, dispatching instantly and not requiring real-time inventory information across the network once the LP solution is given. Under large system scales, it also performs well, in terms of paying variable shipping and shortage costs similar to that of the LP benchmark. However, fixed costs remain a challenge—the problem of minimizing fixed costs for a single order was already difficult, and having to follow the LP’s fulfillment frequencies only introduces additional constraints. The seminal insight from Jasin and Sinha (2015) is that these frequencies are actually helpful—when using them to randomly assign an FC to each item, if positive correlation is induced in the assignments across items, then many items will end up assigned to the same FC, resulting in not many fixed costs being paid. Jasin and Sinha (2015) also derive an intricate method for inducing this correlation, which reduces the fixed costs from the naive independent method by a factor of 4.

Despite its significance and impact on subsequent work (e.g. Lei et al. 2018, 2021, Zhao et al. 2020), to our understanding, the correlation method of Jasin and Sinha (2015) has never been improved in a substantial way, until now. In this paper, we derive a new method (and extension)—based on observing Poisson processes under “dilated” time scales—that is intuitively simple, computationally faster, and achieves the best-possible guarantee (in two different regimes). We focus the rest of the Introduction on the correlated rounding problem identified by Jasin and Sinha (2015) for a single multi-item order, and defer formalities about its implications for the general multi-item dynamic fulfillment problem to Section 5.

1.1. Correlated Rounding Problem of Jasin and Sinha (2015)

Consider a single order (from a particular region at a particular time), consisting of q items. For each item $i = 1, \ldots, q$ in the order, we are given the fraction of time u_{ki} it must be fulfilled from each eligible FC $k = 1, \ldots, K$, with $\sum_k u_{ki} = 1$. For each FC k, a fixed cost of c_k is paid if k is used to fulfill any item. The goal is to randomly “round” each item’s probability vector $(u_{ki})_{k=1}^K$ to an actual FC for fulfilling item i, in a correlated fashion that minimizes the expected fixed costs paid.
Problem 1 (Jasin and Sinha (2015)). Given q marginal distributions $(u_{k1})_{k=1}^K, \ldots, (u_{kn})_{k=1}^K$ over a discrete set $\{1, \ldots, K\}$ and fixed costs c_1, \ldots, c_K, construct jointly-distributed random variables Z_1, \ldots, Z_n satisfying $\Pr[Z_i = k] = u_{ki}$ for all k and i that minimizes

$$\sum_{k=1}^K c_k \cdot \Pr \left[\bigcup_{i=1}^q (Z_i = k) \right].$$

(1)

In Problem 1, $Z_i \in \{1, \ldots, K\}$ denotes the FC used to fulfill item i, and $\bigcup_i (Z_i = k)$ denotes the event that FC k is used to fulfill any item, in which case its fixed cost c_k must be paid. Although solving Problem 1 is hard in general, approximate solutions can be derived by observing that

$$\Pr \left[\bigcup_{i=1}^q (Z_i = k) \right] \geq \max_{i=1}^q \Pr[Z_i = k] = \max_i u_{ki}.$$ \hspace{1cm} (2)

In words, $\max_i u_{ki}$ is a lower bound on the probability with which FC k must be used, and hence it suffices to ensure that no FC k is used too often in comparison to $\max_i u_{ki}$. Jasin and Sinha (2015) actually focus on deriving the following, which we will call α-competitive rounding schemes.

Definition 1 (α-Competitive Rounding Scheme). For $\alpha \geq 1$, an α-competitive (correlated) rounding scheme is a method for constructing random variables Z_1, \ldots, Z_n satisfying

$$\Pr[Z_i = k] = u_{ki} \hspace{1cm} \forall i=1, \ldots, q, k=1, \ldots, K$$

(3)

$$\Pr \left[\bigcup_{i=1}^q (Z_i = k) \right] \leq \alpha \cdot \max_{i=1}^q u_{ki} \hspace{1cm} \forall k=1, \ldots, K$$

(4)

given any q marginal distributions $(u_{k1})_{k=1}^K, \ldots, (u_{kn})_{k=1}^K$ over a discrete set $\{1, \ldots, K\}$.

An α-competitive rounding scheme provides a solution to Problem 1 that pays at most α times the optimal cost, due to the lower bound derived in (2). Jasin and Sinha (2015) derive a $B(q)$-competitive correlated rounding scheme, where $B(q) = \left(\frac{q+1}{4n}\right)$ if q is odd and $B(q) = \frac{q+2}{4}$ if q is even, with function $B(q)$ growing approximately as $q/4$. Meanwhile, it is easy to see that the naive independent rounding scheme is only q-competitive, which is worse than $B(q)$ by a factor of approximately 4. Our new result in this paper is a $(1 + \ln(q))$-competitive rounding scheme, improving the order-dependence on q entirely, and matching an $\Omega(\log q)$ lower bound. Moreover, we use similar ideas to derive a d-competitive rounding scheme when d is an upper bound on the number of different FC’s that can fulfill an item, which we also show is best-possible. We now describe the main idea behind our new rounding schemes.
1.2. Main Idea behind Rounding Schemes and Analysis

To induce positive correlation in the FC’s assigned across items, we imagine the following process. Each FC is initially closed, and opens at a random time. Items are assigned to the first FC that they see open. Importantly, each item i views the openings of FC’s on its own \textit{dilated} time scale, calibrated so that the probability of it seeing any FC k open first is exactly u_{ki}. Because an FC opening early means that it will be seen first by more (but not necessarily all) items, this induces positive correlation in the FC’s assigned across different items.

To make this precise, for each FC k, we draw its opening time E_k independently from an Exponential distribution with mean $1/y_k$, where $y_k := \max_i u_{ki}$. We then define the dilated time scale for an item i as: it sees each FC k open at time $\frac{y_k}{u_{ki}}E_k$, which we note is no earlier than E_k, since $\frac{y_k}{u_{ki}} \geq 1$. (If $u_{ki} = 0$, then $\frac{y_k}{u_{ki}}E_k = \infty$, and item i never sees FC k open.) The dilated opening times $\frac{y_k}{u_{ki}}E_k$ are Exponentially distributed with means $\frac{y_k}{u_{ki}} \cdot \frac{1}{y_k} = \frac{1}{u_{ki}}$, and independent across k. Through the lens of Poisson processes, it is easy to see that the probability of each FC k arriving first into the view of item i is exactly $\frac{u_{ki}}{u_1 + \cdots + u_K} = u_{ki}$, as desired.

The Poisson lens also helps us upper-bound the probability of an FC k getting used at all. Indeed, since an FC k can only be seen at times later than E_k, it can only get used if it arrives when at least one item is still waiting, an event whose probability is exponentially decaying over time. Unfortunately, random variable E_k is correlated with the latter event, making the analysis complicated. To fix this, we instead consider a related process where FC k is “repeatedly opening” following a Poisson process of rate y_k, which allows us to exploit the memoryless property and take an elementary integral to show that the probability of FC k opening is at most $(1 + \ln(q))y_k$, completing our sketch of why our first rounding scheme is $(1 + \ln(q))$-competitive.

To motivate our second rounding scheme, we note that the preceding analysis is poor when q is enormous, because for a long time at least one item will still be waiting, during which FC openings will result in usage. Therefore, we consider a modified scheme where each FC k is “forced open” at time $1/y_k$, even if $E_k > 1/y_k$. For each item i, it will see each FC k forced open at time $\frac{y_k}{u_{ki}} \cdot \frac{1}{y_k} = \frac{1}{u_{ki}}$.
Therefore, item \(i \) will get “force-assigned” by time \(\frac{1}{\max_k u_{ki}} \), and all items will be force-assigned by time \(\alpha := \frac{1}{\min_i \max_k u_{ki}} \), regardless of how many items there are. Moreover, if \(d \) is an upper bound on \(|\{k: u_{ki} > 0\}| \), then \(\max_k u_{ki} \geq 1/d \) for all \(i \), and hence \(\alpha \leq d \). The fact that all items are assigned by time \(d \) w.p. 1 allows us to show that no FC gets used with probability more than \(dy_k \).

However, these forced openings cause each item \(i \) to be over-fulfilled from the FC \(m(i) \) that it would first see forced open. Therefore, we make a second modification where for each item \(i \), if the over-fulfilled FC \(m(i) \) were to “naturally” open (i.e. \(E_{m(i)} < 1/y_{m(i)} \)), then it is hidden from the view of item \(i \) (until it is forced open) with some likelihood. This likelihood can be calibrated so that \(i \) ends up seeing every FC \(k \) open first with probability exactly \(u_{ki} \), as desired.

1.3. Summary of Contributions and Outline of Paper

We now list all our results related to Problem [1] and Definition [1], highlighting the virtues of our rounding schemes in relation to [Jasin and Sinha (2015)], which we refer to as “JS”.

- We derive a \((1 + \ln(q))\)-competitive rounding scheme (Subsection 2.1), which is a substantial improvement upon the \(\approx q/4 \)-competitive rounding scheme of JS. We also derive a \(d \)-competitive rounding scheme (Subsection 2.2), where \(d := \max_i |\{k: u_{ki} > 0\}| \) is a sparsity parameter. These guarantees match respective lower bounds of \(\Omega(\log q) \) and \(d \), as will be shown below.

- Both of our rounding schemes have a runtime of \(O(qK) \). By contrast, the rounding scheme of JS has a runtime of \(O(q^2K) \), containing a loop that is quadratic in the number of items \(q \).

- Our rounding schemes are intuitive—FC’s have random opening times, and items are assigned to the first FC they see open on a dilated time scale. By contrast, the method of JS based on constructing line partitions, while clever and beautiful, is to our understanding not simple.

- We should acknowledge that our guarantee is \(1 + \ln 2 \approx 1.69 \) when \(q = 2 \). By contrast, JS is 1-competitive if \(q = 2 \). We also note that if there are only two FC’s, i.e. \(K = 2 \), then a 1-competitive rounding scheme was recently discovered by [Zhao et al. (2020)]. In this scenario, our second rounding scheme would only be 2-competitive, since \(d = K = 2 \). However, we emphasize that parameter \(d \) represents the maximum number of distinct FC’s that hold an item and can generally be much smaller than \(K \), whereas their rounding scheme only works when \(K = 2 \).
As an additional result, we show how Problem 1 can be solved optimally using an LP of size $O(2^K)$ (Section 4). JS also have a result that solves Problem 1 optimally using an LP of size $O(K^q)$. While both of these LP’s are exponentially-sized, our LP can be applied when K is a small, while their LP can be applied when q is a small.

Next, we make further contributions by rigorously relating α-competitive rounding schemes to notions from the Set Cover problem, establishing the following.

- We show that an α-competitive rounding scheme implies a procedure for rounding a fractional Set Cover solution into a randomized cover, that is feasible w.p. 1, and having no set chosen with probability more than α times its fractional weight (Section 3).

- Therefore, we can leverage hardness results from Set Cover to show that an α-competitive rounding scheme must have $\alpha = \Omega(\log q)$ and $\alpha \geq d$ (Subsection 3.1). The latter lower bound establishes our d-competitive rounding scheme to be exactly tight, not just order-optimal.

- Our $(1+\ln(q))$-competitive rounding scheme also improves existing guarantees in the aforementioned randomized rounding problem for Set Cover. Existing methods need to select sets with probability at least $2\ln(q)$ times their fractional weight; see Vazirani (2001, Sec 14.2), Buchbinder et al. (2009, Sec. 2.2.2), or Motwani and Raghavan (1995). The key is that our method induces sets to be selected in a negatively correlated fashion, whereas existing methods select sets independently and only show that the solution is feasible with high probability.

We note that for the Set Cover problem itself, our rounding schemes do not improve existing guarantees—the Greedy algorithm already has a guarantee of $1+1/2+\cdots+1/q$ which is smaller (better) than our $1+\ln(q)$. A fractional Set Cover solution is also easily converted into an integral one while losing a factor of at most d. Nonetheless, we believe these connections highlight how the correlated rounding problem is a harder version of Set Cover—in which a randomized solution, that must satisfy constraints on how often each set is used to cover each element, is required. Furthermore, it is interesting to us that a modern problem from e-commerce practice, identified by Jasin and Sinha (2015), can lead us to improve randomized rounding schemes for the age-old Set Cover problem from CS theory.
1.4. Further Related Work

We briefly mention some further related work that helps justify our approach.

First, we note that the problem we solve is highly relevant, especially for omni-channel retailers who could potentially fulfill from hundreds of retail stores (Acimovic and Farias 2019). The number of items in an order can also be large, with online retailers taking steps to consolidate multiple orders into one big order to be fulfilled together (Wei et al. 2021). Finally, the fact that the retailer wants lots of flexibility when dynamically deciding fulfillment breakdowns is justified in DeValve et al. (2021).

In terms of the overall LP-based approach that justifies the correlated rounding problem, we should note that LP-based approaches are also heavily employed in the revenue management literature (see e.g. Talluri and Van Ryzin 2004). They enjoy many benefits such as scalability and flexibility, and the given probabilities u_{ki} can always be updated over time through re-solving (see e.g. Jasim and Kumar 2012) to adjust for updated inventories and demand predictions over time. Another early work that discusses the benefits of using LP-based approaches to look ahead in e-commerce fulfillment is Acimovic and Graves (2015).

2. Definition and Analysis of Rounding Schemes

We now provide efficient algorithmic specifications of our rounding schemes and analyze them. We believe both our algorithms and proofs to be quite intuitive, and will frequently provide proof sketches that refer back to the intuition from Subsection 1.2, where items are waiting for FC’s to open on their own dilated time scales.

Before proceeding, we recap the problem and the notation/terminology to be used.

Definition 2 (Recap of Problem, Notation, and Terminology).

- An instance of the α-competitive rounding scheme problem consists of q marginal distributions over K FC’s, given by probabilities u_{ki} satisfying $\sum_{k=1}^{K} u_{ki} = 1$ for all $i = 1, \ldots, q$.
- A rounding scheme must randomly assign each item i to an FC $Z_i \in \{1, \ldots, K\}$, satisfying the marginal conditions $\Pr[Z_i = k] = u_{ki}$ for all i and k.
An FC k is used if any item is assigned to it, which must occur with probability at least $y_k := \max_i u_{ki}$. Assume without loss of generality that $y_k > 0$ for all k.

A rounding scheme is α-competitive if given any instance, it uses each FC k with probability at most αy_k. The guarantee α can depend on parameters of the instance.

The sparsity of an instance is defined as $d = \max_i |\{k : u_{ki} > 0\}|$, the maximum number of distinct FC’s that one item i could get assigned to.

2.1. $(1 + \ln(q))$-competitive Rounding Scheme

Our rounding scheme is specified in Algorithm 1. Relating back to the intuitive description, E_k is the time at which FC k opens, and $\frac{y_k}{u_{ki}} E_k$ is the delayed time (since $\frac{y_k}{u_{ki}} \geq 1$) at which item i sees it open, with $\frac{y_k}{u_{ki}} E_k = \infty$ if $u_{ki} = 0$. Every item is assigned to the first FC that it sees open.

Algorithm 1 $(1 + \ln(q))$-competitive Rounding Scheme

```
for $k = 1, \ldots, K$ do
    $E_k \leftarrow$ independent draw from Exponential distribution with mean $1/y_k$
end for

for $i = 1, \ldots, q$ do
    $Z_i \leftarrow \arg\min_{k=1, \ldots, K} \frac{y_k}{u_{ki}} E_k$  \(\text{▷ Break ties arbitrarily}\)
end for
```

We now prove that Algorithm 1 is a $(1 + \ln(q))$-competitive Rounding Scheme, where q is the number of items. To establish the marginals condition, we use the interpretation that from the perspective of any individual item, the FC’s open according to independent Poisson processes.

Lemma 1. Under Algorithm 1, $\Pr[Z_i = k] = u_{ki}$ for all $i = 1, \ldots, q$ and $k = 1, \ldots, K$.

Proof of Lemma 1. Consider the perspective of any item i. Index Z_i is determined by the smallest realization among $\{\frac{y_k}{u_{ki}} E_k : k = 1, \ldots, K\}$, which are independent Exponential random variables with means $\{\frac{y_k}{u_{ki}} : k = 1, \ldots, K\}$. Equivalently, Z_i is determined by the first arrival among independent Poisson processes with rates $\{u_{ki} : k = 1, \ldots, K\}$. By the Poisson merging theorem,
each Poisson process \(k \) will be the first to arrive with probability
\[
\frac{u_{ki}}{u_{1i} + \cdots + u_{Ki}},
\]
which equals \(u_{ki} \) since \(u_{1i} + \cdots + u_{Ki} = 1 \). Therefore, \(\Pr[Z_i = k] = u_{ki} \) for all \(k = 1, \ldots, K \), completing the proof. \(\square \)

We now prove an intermediate lemma that, intuitively, bounds the probability of any item \(i \) still “waiting” (to be assigned to an FC) up to time \(t \), which can be expressed as the event
\[
(\min_k \frac{y_k}{u_{ki}} E_k \geq t).
\]
The final statement then takes a union bound of having any item still waiting, which intuitively is not too loose since these events are positively correlated—one item waiting implies that FC’s were late to open, which makes other items more likely to also be waiting.

Lemma 2. Under Algorithm \(\ref{alg:main} \), \(\Pr[\bigcup_{q=1}^{\pi} (\min_k \frac{y_k}{u_{ki}} E_k \geq t)] \leq ne^{-t} \) for all \(t \geq 0 \).

Proof of Lemma 2. First consider any item \(i \). Random variables \(\{\frac{y_k}{u_{ki}} E_k : k = 1, \ldots, K\} \) are independent and Exponentially distributed with means \(\{\frac{1}{u_{ki}} : k = 1, \ldots, K\} \). Therefore, \(\min_k \frac{y_k}{u_{ki}} E_k \) is Exponentially distributed with mean \(\frac{1}{u_{1i} + \cdots + u_{Ki}} = 1 \). Consequently, \(\Pr[\min_k \frac{y_k}{u_{ki}} E_k \geq t] = e^{-t} \), and by the union bound, \(\Pr[\bigcup_{i=1}^{\pi} (\min_k \frac{y_k}{u_{ki}} E_k \geq t)] \leq ne^{-t} \), completing the proof. \(\square \)

We are now ready to prove our main result for Algorithm \(\ref{alg:main} \). Although technical, the argument uses a simple intuitive trick. Lemma \(\ref{lem:main} \) has upper-bounded the probability of any item still waiting at a time \(t \). If an FC \(k \) opens at a time when no item is still waiting, then it is guaranteed to not get used (since items can only see it open at a delayed time). Unfortunately, the opening time of an FC \(k \) is correlated with the event of still having an item waiting. To fix this, we imagine FC \(k \) as “repeatedly opening” following a Poisson process of rate \(y_k \), with it being “used” every time it opens as long as there is an item still waiting. Since Poisson processes are memoryless, this now de-correlates the events of FC \(k \) opening from the event of still having an item waiting. Lemma \(\ref{lem:main} \) can then apply, and the analysis finishes by taking an integral. The formal proof is presented below.

Theorem 1. Algorithm \(\ref{alg:main} \) is a \((1 + \ln(q)) \)-competitive rounding scheme with runtime \(O(qK) \).

Proof of Theorem 1. The runtime is \(O(qK) \) because taking the \(\arg\min \) over \(k = 1, \ldots, K \) for all \(i = 1, \ldots, q \) is the bottleneck operation in Algorithm \(\ref{alg:main} \). Meanwhile, Lemma \(\ref{lem:main} \) has already shown that the marginals condition is satisfied. It remains to show that \(\Pr[\bigcup_{i=1}^{\pi} (Z_i = k)] \leq \alpha y_k \) for all \(k \), with \(\alpha = 1 + \ln(q) \).
Fix any FC k. For all items i with $u_{ki} > 0$, event $Z_i = k$ can occur only if k lies in the arg min in Algorithm 1 i.e. if $\min_{k'} \frac{y_{ki'}}{u_{ki'}} E_{k'} \geq \frac{y_k}{u_{ki}} E_k$. We now rewrite this event as follows. Define S_k^1, S_k^2, \ldots to be the arrival times of a Poisson process of rate y_k. More specifically, we will let $S_k^1 = E_k$, and S_k^{j+1} be the sum of S_k^j with an independent Exponential random variable of mean $1/y_k$, for all $j \geq 1$.

We can technically derive

$$(Z_i = k) \subseteq \left(\min_{k'} \frac{y_{ki'}}{u_{ki'}} E_{k'} \geq \frac{y_k}{u_{ki}} E_k \right)$$

$$= \left(\min_{k \neq k'} \frac{y_{ki'}}{u_{ki'}} E_{k'} \geq \frac{y_k}{u_{ki}} S_k^1 \right)$$

$$= \bigcup_{j=1}^{\infty} \left(\min_{k \neq k'} \frac{y_{ki'}}{u_{ki'}} E_{k'} , \min_{j' < j} \frac{y_k}{u_{ki}} S_k^{j'} \geq \frac{y_k}{u_{ki}} S_k^j \right). \quad (5)$$

We now take a union bound of events (5) over i, and analyze the probability of this union by conditioning on the event that $S_k^j = t$ for any $j \geq 1$, over all times $t \geq 0$. Formally:

$$\Pr \left[\bigcup_{i: u_{ki} > 0} \bigcup_{j=1}^{\infty} \left(\min_{k' \neq k} \frac{y_{ki'}}{u_{ki'}} E_{k'} , \min_{j' < j} \frac{y_k}{u_{ki}} S_k^{j'} \geq \frac{y_k}{u_{ki}} S_k^j \right) \right]$$

$$= \int_0^\infty \Pr \left[\bigcup_{i: u_{ki} > 0} \left(\min_{k' \neq k} \frac{y_{ki'}}{u_{ki'}} E_{k'} , \min_{j' < j} \frac{y_k}{u_{ki}} S_k^{j'} \geq \frac{y_k}{u_{ki}} S_k^j \right) \right] y_k dt$$

$$\leq \int_0^\infty \Pr \left[\bigcup_{i: u_{ki} > 0} \left(\min_{k' \neq k} \frac{y_{ki'}}{u_{ki'}} E_{k'} , \min_{j' < j} \frac{y_k}{u_{ki}} S_k^{j'} \geq t \right) \right] y_k dt$$

$$= \int_0^\infty \Pr \left[\bigcup_{i: u_{ki} > 0} \min_{k' = 1, \ldots, K} \frac{y_{ki'}}{u_{ki'}} E_{k'} \geq t \right] y_k dt$$

$$\leq y_k \int_0^\infty \min\{ne^{-t}, 1\} dt$$

where the first equality holds because the PDF of the event ($\exists j: S_k^j = t$) takes value y_k for all t, the first inequality holds because $\frac{y_k}{u_{ki}} \geq 1$, the second equality applies the memorylessness property of Poisson processes, and the final inequality applies Lemma 2 (along with the trivial upper bound of 1). Note that this analysis holds for any FC $k = 1, \ldots, K$. Therefore, the proof is now completed by taking an elementary integral:

$$\int_0^\infty \min\{ne^{-t}, 1\} dt = \ln(q) + \int_{\ln(q)}^\infty ne^{-t} dt$$

$$= \ln(q) + ne^{-\ln(q)}$$

$$= 1 + \ln(q). \quad \Box$$
2.2. *d*-competitive Rounding Scheme

Our modified rounding scheme is specified in Algorithm 2. Relating back to the intuitive description from Subsection 1.2, \(m(i)\) is the first FC that item \(i\) would see “forced” open, which it would get assigned to if it was still unassigned at that point. \(X_{ki}\) is a random variable denoting the time at which item \(i\) sees FC \(k\) open, which equals \(y_k u_{ki}\) like before if \(k \neq m(i)\). On the other hand, \(X_{m(i),i}\) is upper-bounded by \(1/u_{m(i),i}\), as that is when item \(i\) would see FC \(m(i)\) forced open. The final wrinkle is that if FC \(m(i)\) were to “naturally” open before it is forced open, then it needs to be hidden from \(i\)’s view (until it is forced open) with some probability, which is indicated by the random variable \(H_i\). Finally, every item is assigned to the first FC that it sees open, after taking into consideration hiding and forced opening.

Algorithm 2 *d*-competitive Rounding Scheme

```latex
for k = 1, \ldots, K do 
    E_k \leftarrow \text{independent draw from Exponential distribution with mean } 1/y_k 
end for

for i = 1, \ldots, q do 
    m(i) \leftarrow \arg\max_k u_{ki} 
    for k = 1, \ldots, K, k \neq m(i) do 
        X_{ki} \leftarrow y_k u_{ki} E_k 
    end for
    H_i \leftarrow \text{independent draw from Bernoulli distribution with mean }\frac{1-u_{m(i),i}}{1-u_{m(i),i}+u_{m(i),i} e^{1/y_{m(i)}} - e} 
    \triangleright H_i = 1 \text{ means FC } m(i) \text{ is hidden from item } i \text{ until the FC is forced open at time } 1/y_{m(i)} 
    X_{m(i),i} \leftarrow \frac{y_{m(i)}}{u_{m(i),i}} \min\{E_{m(i)}, \frac{1}{1-H_i}\} \quad \triangleright H_i = 1 \text{ means } \frac{E_{m(i)}}{1-H_i} = \infty, \text{ and hence } X_{m(i),i} = \frac{1}{u_{m(i),i}} 
    Z_i \leftarrow \arg\min_{k=1,\ldots,K} X_{ki} 
end for
```

It can be checked that the probability with which \(H_i = 1\) defined in Algorithm 2 does indeed lie in \([0, 1]\) for all possible values of \(u_{m(i),i} \in (0, 1]\). The hiding probability is in fact increasing in \(u_{m(i),i}\).
which is intuitive because a larger value of \(u_{m(i),i} \) implies an earlier forced opening, suggesting that FC \(m(i) \) should be hidden more often to prevent it from over-fulfilling item \(i \). We now prove that this hiding probability has been calibrated so that the marginals condition is satisfied exactly.

Lemma 3. Under Algorithm 2, \(\Pr[Z_i = k] = u_{ki} \) for all \(i = 1, \ldots, q \) and \(k = 1, \ldots, K \).

Proof of Lemma

Fix any item \(i \). We show that \(\Pr[Z_i = k] = u_{ki} \) for all \(k \neq m(i) \), which would automatically imply \(\Pr[Z_i = m(i)] = 1 - \sum_{k \neq m(i)} \Pr[Z_i = k] = 1 - \sum_{k \neq m(i)} u_{ki} = u_{m(i),i} \). We need to consider two cases: \(H_i = 1 \) and \(H_i = 0 \). Hereafter omit index \(i \).

First, if \(H = 1 \), then the item does not observe FC \(m \) before time \(1/u_m \). Therefore, \(Z = k \) if and only if \(X_k \) is the smallest among random variables \(\{X_{k'} : k' \neq m\} \) and also \(X_k < 1/u_m \). Recall that \(X_{k'} \) is Exponentially distributed with mean \(1/u_{k'} \) for all \(k' \neq m \), and the \(X_{k'} \)'s are independent across \(k' \). Therefore, the probability that \(\min_{k' \neq m} X_{k'} < 1/u_m \) is equal to the probability that a Poisson process with rate \(\sum_{k' \neq m} u_{k'} = 1 - u_m \) generates an arrival before time \(1/u_m \), which occurs w.p. \(1 - e^{-(1-u_m)/u_m} \). Conditional on this, the probability that \(\min_{k' \neq m} X_{k'} = X_k \) is exactly \(\frac{u_k}{1-u_m} \), by the Poisson merging theorem. Therefore,

\[
\Pr[Z = k | H = 1] = (1 - e^{-(1-u_m)/u_m}) \frac{u_k}{1-u_m}. \tag{6}
\]

Otherwise, if \(H = 0 \), then the item observes all FC's before time \(1/u_m \). In this case, \(Z = k \) if and only if \(X_k \) is the smallest among all random variables \(\{X_{k'} : k' = 1, \ldots, K\} \) and also \(X_k < 1/u_m \).

By a similar argument as above, the probability that \(\min_{k' = 1, \ldots, K} X_{k'} < 1/u_m \) is \(1 - e^{1/u_m} \), and conditional on this, the probability that \(\min_{k' = 1, \ldots, K} X_{k'} = X_k \) is \(u_k \). Therefore,

\[
\Pr[Z = k | H = 0] = (1 - e^{1/u_m})u_k. \tag{7}
\]

Let \(\eta \) denote \(\frac{1-u_m}{1-u_m + u_m e^{1/u_m} - e} \), the probability that \(H = 1 \). Combining (6) and (7), we derive

\[
\Pr[Z_i = k] = \eta(1 - e^{-(1-u_m)/u_m}) \frac{u_k}{1-u_m} + (1-\eta)(1 - e^{-1/u_m})u_k
\]

\[
= u_k \left(1 - e^{-1/u_m} + \eta \left(\frac{1 - e^{-(1-u_m)/u_m}}{1-u_m} - (1 - e^{-1/u_m})\right)\right)
\]
\[u_k \left(1 - e^{-1/u_m} + \eta \cdot \frac{-e^{-(1-u_m)/u_m} + u_m + e^{-1/u_m} - u_m e^{-1/u_m}}{1 - u_m} \right) \]

\[= u_k \left(1 - e^{-1/u_m} + e^{-1/u_m} \eta \cdot \frac{1 - u_m + u_m e^{1/u_m} - e}{1 - u_m} \right) \]

\[= u_k \]

which completes the proof. \[\square\]

We now prove our main result for Algorithm 2. We establish the stronger guarantee of \(\alpha = \min_i \max_k u_{ki} \), which is easily seen to be at most \(d \) since \(\max_k u_{ki} \geq 1/d \) for all \(i \). The proof sketch is that due to the forced openings, all items are guaranteed to be assigned by time \(\alpha \). Therefore, an FC \(k \) can only get used is it opens before time \(\alpha \) (since items can only see it open with a delay), which occurs with probability no greater than \(\alpha y_k \).

Theorem 2. Algorithm 2 is an \(\frac{1}{\min_i \max_k u_{ki}} \)-competitive rounding scheme with runtime \(O(qK) \).

Proof of Theorem 2. The runtime is \(O(qK) \), because inside the loop for \(i = 1, \ldots, q \) in Algorithm 2 there are three bottleneck operations that each take time \(O(K) \): the defining of \(m(i) \), the inner loop for \(k \), and the defining of \(Z_i \). Meanwhile, Lemma 3 has already shown that the marginals condition is satisfied. It remains to show that \(\Pr[\bigcup_{i=1,\ldots,q} (Z_i = k)] \leq \alpha y_k \) for all \(k \), with \(\alpha = \frac{1}{\min_i \max_k u_{ki}} \).

Fix an FC \(k \). If \(y_k \geq \max_i \max_k u_{ki} \), then \(\alpha y_k \geq 1 \) and there is nothing to prove. Therefore, assume \(y_k < \min_i \max_k u_{ki} \), and we must show that \(\Pr[\bigcup_{i=1,\ldots,q} (Z_i = k)] \leq \alpha y_k \). Since \(y_k < \max_k u_{ki} \) for all \(i \), we know that \(k \neq m(i) \) for all \(i \). Thus, we have \(X_{ki} = \frac{u_{ki}}{u_{ki}} E_k \) for all \(i \), and can write

\[(Z_i = k) \subseteq \left(\frac{y_k}{u_{ki}} E_k \leq \min_{k' = 1,\ldots,K} X_{k'i} \right) \]

\[\subseteq \left(\frac{y_k}{u_{ki}} E_k \leq X_{m(i),i} \right) \]

\[\subseteq \left(\frac{y_k}{u_{ki}} E_k \leq 1/u_{m(i),i} \right) \]

\[\subseteq \left(\frac{y_k}{u_{ki}} E_k \leq \frac{1}{\max_{k'} u_{k'i}} \right) \]

\[\subseteq \left(\frac{y_k}{u_{ki}} E_k \leq \alpha \right) \]

\[\subseteq (E_k \leq \alpha) \]
with the final relationship between events holding because \(\frac{u_k}{u_{k+1}} \geq 1 \). Note that the final event is independent of \(i \). Therefore,

\[
\Pr \left[\bigcup_{i=1,...,q} (Z_i = k) \right] \leq \Pr[E_k \leq \alpha] = 1 - \alpha^y_k
\]

which is at most \(\alpha y_k \), completing the proof. □

3. Connections with Set Cover

In this section we establish our rounding schemes to be order-optimal in terms of the dependence on \(q \) or \(d \), by reducing our problem to that of rounding a fractional solution for Set Cover. We first define the Set Cover problem and some basic concepts using our language of items and FC’s. We refer to Vazirani (2001) for further background.

Problem 2 (Weighted Set Cover). There are items \(i = 1,\ldots,q \) to be covered by FC’s \(k = 1,\ldots,K \). Each FC \(k \) requires a fixed cost of \(c_k \) to open, and if opened, can cover all items in a set \(U_k \subseteq \{1,\ldots,q\} \). The objective is to find a collection of FC’s to open, that covers all the items, and minimizes the sum of fixed costs paid for opening FC’s. The sparsity of the instance is defined as \(d := \max_i \|\{k : i \in U_k\}\| \), the maximum number of different FC’s that an item \(i \) can be covered by.

Definition 3 (Set Cover Linear/Integer Programs). The following Integer Program is called the Set Cover IP. In it, binary variable \(y_k \) represents FC \(k \) being opened. It is an equivalent formulation of the Weighted Set Cover problem.

\[
\begin{align*}
\min & \sum_{k=1}^{K} c_k y_k \\
\text{s.t.} & \sum_{k : i \in U_k} y_k \geq 1 & \forall i = 1,\ldots,q \\
& y_k \in \{0,1\} & \forall k = 1,\ldots,K
\end{align*}
\]

Meanwhile, the Set Cover LP is defined as the relaxation of the Set Cover IP with constraint (9) changed to \(y_k \in [0,1] \), for all \(K = 1,\ldots,K \).

We now define the problem of rounding a fractional solution for Set Cover, in a way analogous to how we defined \(\alpha \)-competitive rounding scheme in Definition 1, except we will call it an \(\alpha \)-competitive “covering” scheme instead.
Definition 4 (α-competitive Covering Scheme). For \(\alpha \geq 1 \), an \(\alpha \)-competitive covering scheme is a method for constructing random variables \(Y_1, \ldots, Y_K \in \{0,1\} \) satisfying

\[
\sum_{k:i \in U_k} Y_k \geq 1 \quad \forall i = 1, \ldots, q, \text{ w.p. 1} \tag{10}
\]

\[
\mathbb{E}[Y_k] \leq \alpha \cdot y_k \quad \forall k = 1, \ldots, K \tag{11}
\]

given any feasible solution \((y_k)_{k=1}^K \) to the Set Cover LP.

We now show that coming up with \(\alpha \)-competitive rounding schemes is a harder problem than coming up with \(\alpha \)-competitive covering schemes.

Lemma 4. An \(\alpha \)-competitive rounding scheme can be efficiently applied as an \(\alpha \)-competitive covering scheme. Moreover, any dependence of \(\alpha \) on the parameters \(q \) or \(d \) translate over directly.

Proof of Lemma 4. Take any instance of Set Cover and a feasible solution \((y_k)_{k=1}^K \) to its LP. For each item \(i \), arbitrarily set \(u_{ki} \in [0, y_k] \) for each FC \(k \) that can cover it, so that \(\sum_{k:i \in U_k} u_{ki} = 1 \). We note that this is always possible since \(y_k \geq 0 \) and \(\sum_{k:i \in U_k} y_k \geq 1 \) by (8). Meanwhile, set \(u_{ki} = 0 \) if \(i \notin U_k \).

The marginal distributions \((u_{k1})_{k=1}^K, \ldots, (u_{kn})_{k=1}^K \) now define an instance for Definition 1, with the same number of items \(q \) and a sparsity \(d \) that is no greater than before. We apply the \(\alpha \)-competitive rounding scheme that is assumed to exist on this instance, and define random variables

\[
Y_k = 1(\bigcup_i (Z_i = k)) \quad \text{for all } k = 1, \ldots, K.
\]

By condition \(\mathbb{S} \) for the rounding scheme, for each item \(i \), we know that \(Z_i = k \) is true for some index \(k \in \{1, \ldots, K\} \), with \(k \in U_k \) since otherwise \(u_{ki} = 0 \). Therefore, \(Y_k = 1 \) for this index \(k \) and condition \(\mathbb{T} \) for the covering scheme is satisfied. Meanwhile, applying condition \(\mathbb{A} \) for the rounding scheme, we have

\[
\mathbb{E}[Y_k] = \Pr \left[\bigcup_i (Z_i = k) \right] \leq \alpha \cdot \max_i u_{ki} \leq y_k.
\]

We conclude that condition \(\mathbb{R} \) for the covering is satisfied. We also note that if \(\alpha \) depends on the sparsity parameter \(d \), then the same guarantee continues to hold under the old sparsity parameter for Set Cover which is no less than \(d \), completing the proof. \(\square \)
3.1. Negative Results for α-competitive Rounding Schemes

Equipped with Lemma 4, we can now translate hardness results for the α-competitive covering scheme problem into hardness results for the α-competitive rounding scheme problem.

Corollary 1 (of Lemma 4). An α-competitive covering scheme must have $\alpha = \Omega(\log q)$ \cite{Vazirani01}. Therefore, an α-competitive rounding scheme must also have $\alpha = \Omega(\log q)$. Consequently, the $(1 + \ln(q))$-competitive rounding scheme established in Theorem 7 achieves the order-optimal dependence on q.

Proposition 1. An α-competitive covering scheme must have $\alpha \geq d$, where d denotes the sparsity of the instance.

Proof of Proposition 1. Consider a Set Cover instance with d fixed, K large, and one item for each subset of $\{1, \ldots, K\}$ of size d. Each such item can only be covered by the d FC’s in its corresponding subset, with the total number of items being $q = \binom{K}{d}$. The sparsity of this instance is d by definition.

Setting $y_k = 1/d$ for all $k = 1, \ldots, K$ forms a feasible solution to the Set Cover LP, since $|\{k : i \in U_k\}| = d$ for all items i, and hence LP constraints \(8\) are satisfied. On the other hand, any α-competitive covering scheme must set $\sum_{k=1}^{K} Y_k > K - d$ w.p. 1, since otherwise there would be an uncovered item, violating (10). Using the linearity of expectation, we derive

$$K - d \leq \sum_{k=1}^{K} \mathbb{E}[Y_k] \leq \sum_{k=1}^{K} \alpha \cdot y_k = K \alpha \frac{1}{d},$$

with the second inequality coming from (11). Therefore, $\alpha \geq d(1 - \frac{d}{K})$, with $\frac{d}{K}$ approaching for arbitrarily large K, completing the proof. \(\square\)

Corollary 2 (of Lemma 4 and Proposition 1). An α-competitive rounding scheme must have $\alpha \geq d$. Consequently, the d-competitive rounding scheme established in Theorem 2 achieves the optimal (not just order-optimal) dependence on d.
4. Instance-Optimal Rounding Schemes

The \((1 + \ln(q))\)- and \(d\)-competitive rounding schemes presented in Section 2 are only (order-) optimal in the worst case. For a particular instance given by \(q\) marginals over \(\{1, \ldots, K\}\), one could try to compute the maximum feasible value of \(\alpha\) in Definition 1 for that instance, or solve Problem 1 exactly. We now provide a method for doing either of these two tasks.

Our method is based on a new LP with the following variables. For all subsets \(S\) of the FC’s \(\{1, \ldots, K\}\), let \(z(S)\) denote the probability that exactly the set of FC’s in \(S\) get used. For all \(S \subseteq \{1, \ldots, K\}\), FC’s \(k \in S\), and items \(i\), let \(u_{ki}(S)\) denote the probability that the set of FC’s in \(S\) get used \(\text{and}\) item \(i\) is fulfilled from FC \(k \in S\). Problem 1 for minimizing fixed costs can then be formulated as

\[
\min \sum_S z(S) \sum_{k \in S} c_k \quad (12)
\]

\[
s.t. \sum_{k \in S} u_{ki}(S) = z(S) \quad \forall S, i = 1, \ldots, q \quad (13)
\]

\[
\sum_S u_{ki}(S) = u_{ki} \quad k = 1, \ldots, K, i = 1, \ldots, q \quad (14)
\]

\[
\sum_S z(S) = 1 \quad (15)
\]

\[
z(S) \geq 0 \quad \forall S \quad (16)
\]

\[
u_{ki}(S) \geq 0 \quad \forall S, k \in S, i = 1, \ldots, q \quad (17)
\]

where constraints (13) enforce that every item \(i\) must be fulfilled from exactly one FC on each subset \(S\), constraints (14) enforce the marginals condition, constraints (15)–(16) enforce that exactly one subset \(S\) is selected, and last but not least, (17) ensures that there is only a variable \(u_{ki}(S)\) if \(k \in S\). The LP does not enforce that every FC \(k \in S\) actually gets used (i.e. has \(u_{ki}(S) > 0\) for some \(i\)), but note that if not, then \(k\) can be discarded from the set \(S\) while decreasing fixed costs.

To see that our LP can also model the problem of finding the maximum feasible value of \(\alpha\) in Definition 1, we simply have to replace the objective function (12) with \(\min \alpha\) and add constraints

\[
\sum_{S \ni k} z(S) \leq y_k \alpha \quad \forall k = 1, \ldots, K \quad (18)
\]
where \(y_k = \max_i u_{ki} \) and \(\alpha \) is an additional variable.

Both of our LP’s have size \(O(nK2^K) \), which is exponential in \(K \) but tractable if \(K \) is a fixed constant. \cite{Jasin2015} derive LP’s for the same purposes, except instead there is a variable for every possible mapping from \(\{1, \ldots, q\} \) to \(\{1, \ldots, K\} \), for which there are \(K^q \) possibilities. Our LP’s are more practical in situations where \(K \) is small but \(q \) is large, which is the case in the application of e.g. \cite{Zhao2020}.

5. \(\alpha \)-competitive Rounding Scheme applied to Dynamic Fulfillment

In this section we recap the general dynamic fulfillment problem from \cite{Jasin2015}, and formalize the implication of our \(\alpha \)-competitive rounding schemes for the overall problem.

Problem definition. There is a horizon consisting of time steps \(t = 1, \ldots, T \), during which items \(i = 1, \ldots, n \) are fulfilled from FC’s \(k = 1, \ldots, K \). Each item \(i \) starts with \(b_{ki} \) units of inventory at each FC \(k \), with the end of the horizon representing the time at which inventories are replenished again. Orders come from one of regions \(j = 1, \ldots, J \), and are described by a subset \(q \subseteq \{1, \ldots, n\} \) that was just purchased. During each time step, up to one order arrives, which is from region \(j \) and is for subset \(q \) with probability \(\lambda_j^q \), with \(\sum_{q,j} \lambda_j^q \leq 1 \). As is standard in revenue management, we assume a granular division of time such that at most one order can arrive during each time step. Also, as justified in \cite{Jasin2015}, we assume that orders cannot contain more than one of any item, and assume a small universe of possible subsets \(q \). We let \(c^\text{unit}_{kij} \) denote the variable cost of fulfilling one unit of item \(i \) from FC \(k \) to location \(j \), and let \(c^\text{fixed}_{kj} \) denote the fixed cost of sending a package (containing one or more items) from FC \(k \) to location \(j \).

The goal is to dynamically decide the FC’s to use to fulfill the items in each order that arrives over the time horizon, to minimize total expected cost. Note that if an FC \(k \) is used to fulfill a subset \(q' \subseteq q \) of an order from a location \(j \), then the cost required to send that package is \(c^\text{fixed}_{kj} + \sum_{i \in q'} c^\text{unit}_{kij} \).

All items in each arriving order must be fulfilled from some FC, where we assume the existence of \(q \). Earlier since there was only a single order, we had let \(q \) denote the number of items, which were numbered \(i = 1, \ldots, q \).

In this section it is more convenient notationally to let \(q \) instead refer to the set of items in the order.
a null FC 0 with infinite inventory so that this is always feasible, with \(c_{0ij}^{\text{unit}} \) denoting the “shortage” cost of failing to fulfill one unit of item \(i \) to region \(j \).

LP benchmark. Solving for the optimal dynamic fulfillment policy using dynamic programming is intractable, since the state space is exponential in the number of items. Thus, the following “deterministic” LP benchmark is often used to derive heuristic policies and bound their suboptimality relative to the optimal dynamic programming policy.

\[
\text{DLP} := \min \sum_{q,k,j} T \lambda_j^q \left(\sum_i c_{kij}^{\text{unit}} u_{kij}^q + c_{kj}^{\text{fixed}} y_{kj}^q \right)
\]

s.t. \(\sum_j \sum_{q \ni j} T \lambda_j^q u_{kij}^q \leq b_{ki} \) \quad \forall k, i
\]

\[
\sum_k u_{kij}^q = 1 \quad \forall q, j, i \in q
\]

\[
y_{kj}^q \geq u_{kij}^q \geq 0 \quad \forall q, k, j, i \in q
\]

(This is identical to the linear program defining \(\bar{J}_{DLP} \) (Jasin and Sinha 2015, p. 1340), except we have let \(u_{kij}^q \) and \(y_{kj}^q \) represent their variables \(U_{kij}^q \) and \(Y_{kj}^q \) divided by \(T \lambda_j^q \), respectively.)

In the linear program defining DLP, for any subset \(q \) of items ordered from any region \(j \), variable \(u_{kij}^q \) represents the proportion of times item \(i \in q \) should be fulfilled from FC \(k \), with constraint \(\sum_k u_{kij}^q = 1 \) for each such item \(i \) in the order. Meanwhile, variable \(y_{kj}^q \) represents the probability that a FC \(k \) would have to be used at all, which is constrained to be at least \(u_{kij}^q \) for any single item \(i \in q \). Note that in an optimal solution we can always assume \(y_{kj}^q = \max_{t \in q} u_{tij}^q \) for all \(q, k, j \). These variables \(u_{kij}^q \) and \(y_{kj}^q \) correspond to our variables \(u_{ki} \) and \(y_k \) from earlier, where we had dropped scripts \(q, j \) to focus on a single multi-item order from a single region.

Moreover, the first constraint enforces that the expected number of times any FC \(k \) fulfills any item \(i \) (to any region \(j \), as part of any subset \(q \) containing \(i \)) does not exceed its starting inventory \(b_{ki} \). Finally, the objective value defining DLP represents the total expected cost of the LP benchmark over the time horizon, accounting for unit costs, fixed costs, as well as shortage costs (recalling that there is a null FC \(k = 0 \)). This interpretation of DLP intuitively leads to the following lemma.
Lemma 5 (Jasin and Sinha (2015)). For any instance of the problem, the expected cost paid by any dynamic fulfillment policy must be at least the value of DLP for that instance.

Randomized fulfillment algorithm and reduction result. In light of the interpretation of the linear program defining DLP above, Jasin and Sinha (2015) also use it to derive the following randomized fulfillment heuristic. First, we solve the LP, hereafter using u^q_{kij}, y^q_{kij} to refer to a fixed optimal solution. At each time step $t = 1, \ldots, T$, if an order for subset q comes from region j, the heuristic policy randomly chooses an FC k to fulfill each item $i \in q$ according to probabilities u^q_{kij}, independently across time steps, without adapting at all to the remaining inventory. If the chosen FC for an item has stocked out, then that item is simply not fulfilled (i.e. the null FC is used).

This randomized fulfillment heuristic that does not rely on real-time inventory information has been shown to perform well asymptotically, although its theoretical guarantee depends on how exactly FC’s are chosen to fulfill items during each time step, namely, the α-competitive rounding scheme that is used. Jasin and Sinha (2015) show that the unit and shortage costs paid by the randomized fulfillment heuristic is asymptotically optimal relative to the DLP, but the bottleneck is the fixed costs, where every time an order for subset q comes from region j (regardless of asymptotics) the cost paid could be α times as much as the DLP. Here α depends on q and j, and using the correlated rounding schemes from Theorems 1 and 2 in this paper in conjunction with the results from Jasin and Sinha (2015) we can always guarantee an α-competitive rounding scheme where

$$\alpha = \min \left\{ 1 + \ln(|q|), \left(\min_k \max_i u^q_{kij} \right)^{-1}, B(|q|) \right\}$$

and $B(\cdot)$ is the function from Jasin and Sinha (2015).

Jasin and Sinha (2015) show that the asymptotic cost paid by the randomized fulfillment heuristic relative to DLP, assuming it chooses the correlated rounding scheme corresponding to the smallest argument in (19) whenever any subset q is ordered from any region j, is a weighted average of expression (19) over q and j. To formally state this result, we need to finally define what
"asymptotic" means. Here, one considers a scaling regime where for any fixed instance and any \(\theta \geq 0 \), the "scaled instance" is defined to the the one where the horizon length \(T \) has been replaced by \(\theta T \) while each starting inventory \(b_{ki} \) has also been replaced by \(\theta b_{ki} \). Let \(\text{DLP}(\theta) \) denote the optimal objective value \(\text{DLP} \) on the instance scaled by \(\theta \), and let \(\text{ALG}(\theta) \) denote the expected cost paid by the randomized fulfillment heuristic on the same scaled instance. The following is then implied by the proof of Theorems 1 and 2 from Jasin and Sinha (2015) (see Jasin and Sinha (2015, p. ec5)), combined with our discussion above.

Theorem 3.

\[
\lim_{\theta \to \infty} \frac{\text{ALG}(\theta)}{\text{DLP}(\theta)} \leq \sum_{q,k,j} \lambda_j^q y_{k_j} \min \left\{ 1 + \ln(|q|), (\min_k \max_i u_i^q) - 1, B(|q|) \right\}.
\]

(20)

Since any fulfillment policy must pay cost at least \(\text{DLP}(\theta) \) by Lemma 5, this shows that the randomized fulfillment heuristic cannot be worse than the optimal dynamic program by a factor greater than the RHS of (20). Our guarantee on the RHS of (20) illustrates the power of having different correlated rounding schemes available for different types of orders that could arrive. Jasin and Sinha (2015, Thm. 2) prove the same guarantee with the \(\min \{ \cdot \} \) replaced by just \(B(|q|) \), while Zhao et al. (2020) prove the same result where the upper bound on the RHS is 1 (i.e. prove asymptotic optimality) if there are only two FC’s in the network. We emphasize that all of these asymptotic guarantees that have eliminated the unit and shortage costs only hold if the LP inventory constraints are satisfied in expectation at every time step, justifying why all of these papers study correlated rounding schemes.

6. Conclusion

We provide the first improvements to the celebrated correlated rounding procedure of Jasin and Sinha (2015), which has become a fundamental problem in multi-item e-commerce order fulfillment. We derive rounding schemes with guarantees of \(1 + \ln(q) \) and \(d \), where \(d \) is the maximum number of fulfillment centers containing an item. The first of these improves their guarantee of \(\approx q/4 \) by an entire order of magnitude in terms of the dependence on \(q \). We also show both of our guarantees to be tight, by deriving new relationships with the classical Set Cover problem.
Acknowledgments

This research is partially funded by a grant from Amazon.com Inc., which is awarded through collaboration with the Columbia Center of AI Technology (CAIT). An earlier version of this paper was submitted and accepted to the Manufacturing & Service Operations Management (MSOM) conference Special Interest Group (SIG) for Supply Chain Management, 2022, whose anonymous reviewers provided excellent comments. The author also thanks Levi DeValve, Stefanus Jasin, Aravind Srinivasan, and Linwei Xin for sharing background about this problem.

References

Acimovic J, Farias VF (2019) The fulfillment-optimization problem. Operations Research & Management Science in the age of analytics, 218–237 (INFORMS).

Acimovic J, Graves SC (2015) Making better fulfillment decisions on the fly in an online retail environment. Manufacturing & Service Operations Management 17(1):34–51.

Buchbinder N, Naor JS, et al. (2009) The design of competitive online algorithms via a primal–dual approach. Foundations and Trends® in Theoretical Computer Science 3(2–3):93–263.

DeValve L, Wei Y, Wu D, Yuan R (2021) Understanding the value of fulfillment flexibility in an online retailing environment. Manufacturing & Service Operations Management.

Jasin S, Kumar S (2012) A re-solving heuristic with bounded revenue loss for network revenue management with customer choice. Mathematics of Operations Research 37(2):313–345.

Jasin S, Sinha A (2015) An lp-based correlated rounding scheme for multi-item ecommerce order fulfillment. Operations Research 63(6):1336–1351.

Lei Y, Jasin S, Sinha A (2018) Joint dynamic pricing and order fulfillment for e-commerce retailers. Manufacturing & Service Operations Management 20(2):269–284.

Lei Y, Jasin S, Uichanco J, Vakhutinsky A (2021) Joint product framing (display, ranking, pricing) and order fulfillment under the multinomial logit model for e-commerce retailers. Manufacturing & Service Operations Management.

Motwani R, Raghavan P (1995) Randomized algorithms (Cambridge university press).
Talluri KT, Van Ryzin G (2004) *The theory and practice of revenue management*, volume 1 (Springer).

Vazirani VV (2001) *Approximation algorithms*, volume 1 (Springer).

Wei L, Kapuscinski R, Jasin S (2021) Shipping consolidation across two warehouses with delivery deadline and expedited options for e-commerce and omni-channel retailers. *Manufacturing & Service Operations Management* 23(6):1634–1650.

Xu PJ, Allgor R, Graves SC (2009) Benefits of reevaluating real-time order fulfillment decisions. *Manufacturing & Service Operations Management* 11(2):340–355.

Zhao Y, Wang X, Xin L (2020) Multi-item online order fulfillment: A competitive analysis. *Chicago Booth Research Paper* (20-41).