On the ranks of the algebraic K-theory of hyperbolic groups

Daniel Juan-Pineda · Luis Jorge Sánchez Saldaña

Abstract Let G be a word hyperbolic group. We prove that the algebraic K-theory groups of $\mathbb{Z}[G]$, $K_n(\mathbb{Z}[G])$, have finite rank for all $n \in \mathbb{Z}$. For a few classes of groups, we give explicit formulas for the ranks of the algebraic K-theory groups of their group rings.

Keywords K-theory of group rings · Hyperbolic groups

Mathematics Subject Classification 19D50 · 16E20 · 19A99

1 Introduction and preliminaries

Recall that the Farrell-Jones isomorphism conjecture proposes that, for any discrete group G, the algebraic K-theory of the group ring $\mathbb{Z}[G]$ is determined by the algebraic K-theory of the virtually cyclic subgroups of G plus homological information.
Conjecture 1 (Farrell-Jones isomorphism conjecture, IC) Let G be a discrete group. Then for all $n \in \mathbb{Z}$ the assembly map

$$A^\text{cyc}_{\mathcal{V}} : H^G_n(EG; \mathcal{K}) \to H^G_n(pt; \mathcal{K}) \cong K_n(\mathbb{Z}[G])$$

(1)

induced by the projection $EG \to pt$ is an isomorphism, where $H^G_*(-; \mathcal{K})$ is a suitable equivariant homology theory with local coefficients in \mathcal{K}, the non-connective spectrum of algebraic K theory and EG is a model for the classifying space for actions with isotropy in the family of virtually cyclic subgroups of G.

This conjecture has been verified, among others, when G is a word hyperbolic group [1], or a CAT(0)-group [13]. Once we know the conjecture holds for a group G, we can try to compute $K_n(\mathbb{Z}[G]) \cong H^G_n(EG)$ using an Atiyah-Hirzebruch type spectral sequence.

In this paper, we use the validity of the Farrell-Jones conjecture and the corresponding spectral sequence to show that the rank of $K_n(\mathbb{Z}[G])$ is finite for all $n \in \mathbb{Z}$, where G is a word hyperbolic group. Next, we give some explicit examples of computations of these ranks.

For hyperbolic groups Leary and Juan-Pineda [8], showed that

$$H^G_n(EG; \mathcal{K}) \cong H^G_n(EG; \mathcal{K}) \oplus \bigoplus_{(V)} \text{cok}_n(V),$$

(2)

where EG is the classifying space for the family FIN, of finite subgroups of G, (V) consists of one representative from each conjugacy class of maximal infinite virtually cyclic subgroup of G and $\text{cok}_n(V)$ is the cokernel of the homomorphism $H^V_n(EG \to pt; \mathcal{K})$.

It is well known, see [5, Thm. 5.9 and page 4.] that the terms $\text{cok}_n(V)$ are torsion groups. This gives the following:

Lemma 1 Let G be a discrete word hyperbolic group. Then for all $n \in \mathbb{Z}$

$$\text{rank}(K_n(\mathbb{Z}[G])) = \text{rank}(H^G_n(EG; \mathcal{K})).$$

This paper is, in part, complementary to [7] where we treated the case lower K groups, namely $K_i(\cdot)$ for $i \leq 1$. Here we treat the whole spectrum of K theory and a broader class of groups.

2 Ranks

In view of Lemma 1 the ranks of the algebraic K-theory groups of $\mathbb{Z}[G]$ are determined by the ranks of the algebraic K-theory of the finite subgroups of G and the homology of EG. The ranks of the algebraic K groups of the group ring of a finite group are given as follows:
Theorem 1 ([2], [3], [4], [6]) Let H be a finite group with r distinct real irreducible representations, c of them of complex type, and q distinct rational irreducible representations. For $n > 1$ we then have

$$\text{rank}(K_n(\mathbb{Z}[H])) = \begin{cases} r & \text{if } n \equiv 1 \text{ mod } 4, \\ c & \text{if } n \equiv 3 \text{ mod } 4, \\ 0 & \text{if } n \text{ is even.} \end{cases}$$

When $n \leq 1$, we have:

$$\text{rank}(K_1(\mathbb{Z}[H])) = r - q,$$
$$\text{rank}(K_0(\mathbb{Z}[H])) = 1,$$
$$\text{rank}(K_{-1}(\mathbb{Z}[H])) < \infty \text{ and }$$
$$K_{-n}(\mathbb{Z}[H]) = 0 \text{ for } n > 1.$$

Note that r is equal to the number of real conjugacy classes of H, that is, classes of the form $C(h) = \{ghg^{-1}, gh^{-1}g^{-1} | g \in H\}$, c is equal to the number of real conjugacy classes such that $C(h) \neq \{hgh^{-1} | h \in H\}$, and q is the number of conjugacy classes of cyclic subgroups of H, see [11].

To compute the equivariant homology groups $H^G_*(EG; K)$ we may use an Atiyah-Hirzebruch type spectral sequence. Let C_n denote the set of n-cells of the space $BG = EG/G$, then the first page of our spectral sequence is given by

$$\cdots \cdots \bigoplus_{\sigma^p \in C_n} K_q(\mathbb{Z}[G_{\sigma^p}]) \bigoplus_{\sigma^{p+1} \in C_{n+1}} K_q(\mathbb{Z}[G_{\sigma^{p+1}}]) \cdots \cdots$$

$$\cdots \cdots \bigoplus_{\sigma^p \in C_n} K_{q-1}(\mathbb{Z}[G_{\sigma^p}]) \bigoplus_{\sigma^{p+1} \in C_{n+1}} K_{q-1}(\mathbb{Z}[G_{\sigma^{p+1}}]) \cdots \cdots$$

where G_{σ} denotes the stabilizer of a pre-image $\sigma' \in EG$ of $\sigma \in BG$, and the homomorphisms in the chain complex are induced by the natural inclusions (up to conjugacy). Note that G_{σ} is always a finite group, hence we can apply Theorem 1 to every group appearing in our spectral sequence. As a consequence we may identify the second page of the Atiyah-Hirzebruch spectra sequence as

$$E^2_{p,q} = H_2(BG; \{K_q(\mathbb{Z}[G_{\sigma}])\}),$$
where the above is a homology theory with local coefficients given by the algebraic K groups of the group rings $\mathbb{Z}[G_\sigma]$ for all the finite isotropy groups G_σ.

Theorem 2 Let G be an hyperbolic group. Then $\text{rank}(K_n(\mathbb{Z}[G]))$ is finite for all $n \in \mathbb{Z}$.

Proof It is known that for G word hyperbolic, there exists a finite model for EG, i.e., such that BG is compact, see for example [10]. Take this finite model for EG. Hence the only possible non-zero terms in the nth page of our spectral sequence $E^n_{p,q}$ are those terms with $0 \leq p \leq m$, $m = \text{dim } BG$, that is, they are contained in a vertical strip for all $n \in \{1, 2, 3, \ldots \} \cup \{\infty\}$. Now, since $E^\infty_{p,q}$ has finite rank because it is the quotient of a subgroup of the abelian group $E^1_{p,q}$ and

$$\text{rank}(K_n(\mathbb{Z}[G])) = \sum_{p+q=n} \text{rank}(E^\infty_{p,q})$$

the proof follows by Theorem 1 and the compactness of BG. \square

Note that using [5, Thm. 5.11] Lemma 1 is valid for every group satisfying the Farrell-Jones conjecture, hence following the proof of Theorem 2 we have:

Theorem 3 Let G be a group that admits a finite model for BG and such that satisfies the Farrell-Jones conjecture. Then $\text{rank}(K_n(\mathbb{Z}[G]))$ is finite for all $n \in \mathbb{Z}$.

This last Theorem is more general and applies, for instance, to the groups that appear in [9].

3 Examples

In this section we give some explicit computations of $\text{rank}(K_n(\mathbb{Z}[G]))$.

3.1 Finitely generated free groups

Let F_n be the free group on n generators, $n \in \mathbb{Z}$. Since F_n is torsion free $EG = EG$, on the other hand we know that the Cayley graph of G is a model for EG, and BG with this model is a wedge of circles. Hence there is one 0-cell and n 1-cells. Moreover, $G_\sigma = 1$ for all cells, hence

$$E^2_{p,q} = H_p(\vee_n S^1; \{K_q\}) = H_p(\vee_n S^1; K_q(\mathbb{Z})).$$

This gives

$$H_p(BG; K_q(\mathbb{Z})) = \begin{cases} K_q(\mathbb{Z}) & \text{for } p = 0, \\ \oplus_n (K_q(\mathbb{Z})) & \text{for } p = 1, \\ 0 & \text{for } p > 1 \text{ or } q \leq -1. \end{cases}$$
Ranks of the algebraic K-theory of hyperbolic groups

The graph associated to the free group on n generators, the labels are the coefficients of the corresponding cell, these have all trivial stabilizers.

Notice that all the differentials vanish, hence this spectral sequence collapses at this stage giving

$$\text{rank}(K_n(\mathbb{Z}[F_n])) = \text{rank}(K_n(\mathbb{Z})) + n \cdot \text{rank}(K_{n-1}(\mathbb{Z})).$$

Applying Theorem 1 to the trivial group we have that

$$\text{rank}(K_n(\mathbb{Z})) = \begin{cases} 1 & \text{if } n \equiv 1 \pmod{4} \text{ and } n > 1, \text{ or } n = 0, \\ 0 & \text{otherwise.} \end{cases}$$

it follows that

$$\text{rank}(K_n(\mathbb{Z}[F_n])) = \begin{cases} 1 & \text{if } n \equiv 1 \pmod{4} \text{ and } n > 1, \text{ or } n = 0, \\ n & \text{if } n \equiv 2 \pmod{4} \text{ and } n > 2, \text{ or } n = 1, \\ 0 & \text{otherwise.} \end{cases}$$

3.2 Free products of finite groups

Let G_1 and G_2 be finite groups, and let $G = G_1 * G_2$ be their free product. We can find a one-dimensional model for EG such that BG is a closed interval with trivial isotropy in the edge and isotropy at the vertices G_1 and G_2 [12]:

Once again our spectral sequence collapses at the second page giving

$$\text{rank}(K_n(\mathbb{Z}[G])) = \text{rank}(K_n(\mathbb{Z}[G_1])) + \text{rank}(K_n(\mathbb{Z}[G_2])) - \text{rank}(K_{n-1}(\mathbb{Z})).$$
and

\[
\text{rank}(K_n(\mathbb{Z}[G])) = \begin{cases}
1 & n = 0, \\
r_1 + r_2 - q_1 - q_2 & i = 1, \\
r_1 + r_2 - 1 & \text{if } n \equiv 1 \mod 4, n > 1, \\
c_1 + c_2 & \text{if } n \equiv 3 \mod 4, n > 1, \\
0 & \text{otherwise.}
\end{cases}
\]

where \(r_i\) is the number of distinct real irreducible representations of \(G_i, i = 1, 2; c_i\) is the number of distinct real irreducible representations of complex type of \(G_i, i = 1, 2;\) and \(q_i\) is the number of distinct rational irreducible representations of \(G_i, i = 1, 2.\)

3.3 \(\text{PSL}_2(\mathbb{Z})\)

This is a particular case of the previous example since \(\text{PSL}_2(\mathbb{Z}) \cong \mathbb{Z}_2 \ast \mathbb{Z}_3.\) Using the notation from above, we set \(G_1 = \mathbb{Z}[\mathbb{Z}_2]\) and \(G_2 = \mathbb{Z}[\mathbb{Z}_3],\) hence \(r_1 = 2, r_2 = 2, c_1 = 0, c_2 = 1, q_1 = 2, q_2 = 2\) and

\[
\text{rank}(K_n(\mathbb{Z}[\text{PSL}_2(\mathbb{Z})])) = \begin{cases}
0 & \text{if } n = -1, \\
1 & n = 0, \\
0 & n = 1, \\
3 & \text{if } n \equiv 1 \mod 4, n > 1, \\
1 & \text{if } n \equiv 3 \mod 4, n > 1, \\
0 & \text{otherwise.}
\end{cases}
\]

3.4 The fundamental group of a closed orientable aspherical surface

Let \(S_g\) be the orientable closed surface of genus \(g > 1.\) Since the universal covering of \(S_g\) is contractible we have that \(S_g\) is a model for \(B\pi_1(S_g)\). Furthermore, \(S_g\) is a model for \(B\pi_1(S_g)\) as well. Moreover, these groups are hyperbolic as \(S_g\) is a compact surface that admits a metric with constant curvature \(-1.\) Using the classical construction of \(S_g\) as the quotient of a \(4g\)-agon we can give \(S_g\) a CW-structure consisting of one 0-cell, \(2g\) 1-cells, and one 2-cell and they all have trivial isotropy. Hence, the second term of the Atiyah-Hirzebruch spectral sequence has constant coefficients the \(K\)-theory of the integers:

\[
H_p(S_g; K_q(\mathbb{Z})) = \begin{cases}
K_q(\mathbb{Z}) & \text{for } p = 0, \\
\bigoplus_{2g} K_q(\mathbb{Z}) & \text{for } p = 1, \\
K_q(\mathbb{Z}) & \text{for } p = 2, \\
0 & \text{for } p > 1 \text{ or } q < 0.
\end{cases}
\]
Once again all differentials are trivial and our spectral sequence collapses. This gives

\[\text{rank}(K_n(\mathbb{Z}[\pi_1(S_g)]) = \begin{cases}
1 & n = 0, 2 \text{ or } n \equiv 1, 3 \mod 4, n > 1, \\
2g & n = 1 \text{ or } n \equiv 2 \mod 4, n > 1, \\
0 & \text{otherwise.}
\]

3.5 Finitely generated virtually free groups

Let \(G \) be a finitely generated virtually free group, that is \(G \) has a finitely generated free subgroup of finite index. As finitely generated free groups are hyperbolic and a group with a \(\delta \)-hyperbolic subgroup of finite index is hyperbolic, it follows that \(G \) is \(\delta \)-hyperbolic as well. By Bass-Serre theory [12] and by the work in [7], one can find a tree \(T \) on which \(G \) acts with finite stabilizers, that is \(T \) is a model for \(EG \). Let \(E \) and \(V \) be the set of edges and vertices of the graph of groups for \(G \) determined by \(T \), this part is developed in [7] [section 2.2]. In order to calculate the second page of our spectral sequence, observe that \(T \) has only cells of dimension 0 and 1 and hence our page is

\[
E^2_{p,q} = \begin{cases}
\text{coker} \left(\bigoplus_{e \in E} K_q(\mathbb{Z}[G_e]) \to \bigoplus_{v \in V} K_q(\mathbb{Z}[G_v]) \right), & \text{for } p = 0, \\
\text{ker} \left(\bigoplus_{e \in E} K_q(\mathbb{Z}[G_e]) \to \bigoplus_{v \in V} K_q(\mathbb{Z}[G_v]) \right), & \text{for } p = 1, \\
0 & \text{otherwise.}
\end{cases}
\]

It follows that the differentials vanish and our spectral sequence collapses at this page hence

\[
H^n_G(EG; \{K_q\}) = \text{coker} \left(\bigoplus_{e \in E} K_n(\mathbb{Z}[G_e]) \to \bigoplus_{v \in V} K_n(\mathbb{Z}[G_v]) \right) \oplus \text{ker} \left(\bigoplus_{e \in E} K_{n-1}(\mathbb{Z}[G_e]) \to \bigoplus_{v \in V} K_{n-1}(\mathbb{Z}[G_v]) \right).
\]

In order to simplify the notation, let us define

\[
E_n = \bigoplus_{e \in E} K_n(\mathbb{Z}[G_e]), \\
V_n = \bigoplus_{v \in V} K_n(\mathbb{Z}[G_v]).
\]
\[\text{Ker}_n = \ker(E_n \rightarrow V_n) \text{ and} \]
\[\text{Cok}_n = \text{coker}(E_n \rightarrow V_n). \]

In this way we have that
\[H_n^G(E_G; \{K_q\}) = \text{Cok}_n \oplus \text{Ker}_{n-1}. \]

These last groups depend on the graph structure of our tree with the stabilizers of the action, which are all finite.

3.6 $G = F_n \rtimes S_n$

This example is worked out in detail in [7, section 3] for other purposes. Let $G = F_n \rtimes S_n$ with the symmetric group S_n on n letters, acting on the free group on n generators by permuting the generators. The graph of groups is a single loop with vertex group S_{n-1} and edge group S_n. In this case the morphisms
\[E_i \rightarrow V_i \]
are all zero, it follows that
\[H_i^G(E_G; \{K_q\}) = K_i(\mathbb{Z}[S_n]) \oplus K_{i-1}(\mathbb{Z}[S_{n-1}]). \]

It is well known that the conjugation class of an element $x \in S_n$ is determined by its cyclic decomposition, since x and x^{-1} have the same cyclic decomposition we have that they belong to the same conjugacy class. Hence, the number of real conjugacy classes of S_n is equal to $p(n)$, the number of partitions of n, and the number of real conjugacy classes of complex type is zero. Finally if two elements on S_n determine the same cyclic subgroup then they are conjugate, this implies that the number of conjugacy classes of cyclic subgroups of S_n is equal to $p(n)$.

\[\text{rank}(K_i(\mathbb{Z}S_n)) = \begin{cases} p(n) & i \equiv 1 \mod 4 \ i > 1, \\ 1 & i = 0, \\ 0 & \text{otherwise}, \end{cases} \]

and
\[\text{rank}(K_i(\mathbb{Z}G)) = \begin{cases} p(n) & i \equiv 1 \mod 4 \ i > 1, \\ p(n-1) & i \equiv 2 \mod 4 \ i > 1, \\ 1 & i = 0, \\ 0 & \text{otherwise}. \end{cases} \]

Acknowledgments We acknowledge support from research Grants from DGAPA-UNAM and CONACYT-México.
References

1. Bartels, A., Lück, W., Reich, H.: The K-theoretic Farrell-Jones conjecture for hyperbolic groups. Invent. Math. 172(1), 29–70 (2008)
2. Bass, H.: The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups. Topology 4, 391–410 (1965)
3. Carter, D.W.: Localization in lower algebraic K-theory. Comm. Algebra 8(7), 603–622 (1980)
4. Carter, D.W.: Lower K-theory of finite groups. Comm. Algebra 8(20), 1927–1937 (1980)
5. Grunewald, J.: The behavior of Nil-groups under localization and the relative assembly map. Topology 47(3), 160–202 (2008)
6. Jahren, B.: Involutions on the rational K-theory of group rings of finite groups. In: Alpine perspectives on algebraic topology, Contemp. Math., vol. 504, pp. 189–202. American Mathematical Society, Providence (2009)
7. Juan-Pineda, D., Lafont, J.-F., Millan-Vossler, S., Pallekonda, S.: Algebraic k-theory of virtually free groups. Proc. Roy. Soc. Edinburgh Sect. A 141(6), 1295–1316 (2011)
8. Juan-Pineda, D., Leary, I.J.: On classifying spaces for the family of virtually cyclic subgroups. In: Recent developments in algebraic topology, Contemp. Math., vol. 407, pp. 135–145. American Mathematical Society, Providence (2006)
9. Lafont, J.F., Ortiz, I.J.: Lower algebraic K-theory of hyperbolic 3-simplex reflection groups. Comment. Math. Helv. 84(2), 297–337 (2009)
10. Meintrup, D., Schick, T.: A model for the universal space for proper actions of a hyperbolic group. N. Y. J. Math. 8, 1–7 (2002). (electronic)
11. Serre, J.P.: Linear representations of finite Groups. Graduate texts in mathematics. Springer-Verlag, Berlin (1977). (Translated from the French original by Leonard Scott)
12. Serre, J.P.: Trees. Springer monographs in mathematics. Springer-Verlag, Berlin (2003). (Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation)
13. Wegner, C.: The K-theoretic Farrell-Jones conjecture for CAT(0)-groups. Proc. Am. Math. Soc. 140(3), 779–793 (2012)