Running title:

ARF17 regulates primexine formation in pollen

Corresponding author:

Zhong-Nan Yang
College of Life and Environment Sciences,
Shanghai Normal University,
Shanghai 200234, China
Phone: 86-21-64324650, FAX: 86-21-64322142
Email: znyang@shnu.edu.cn

Research area: Development and Hormone Action
Auxin Response Factor17 is essential for pollen wall pattern formation in
Arabidopsis

Jun Yang1, Lei Tian2, Ming-Xi Sun2, Xue-Yong Huang1, Jun Zhu2, Yue-Yeng Guan3, Qi-Shi Jia1 and Zhong-Nan Yang2

1College of Tourism, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
2College of life and environmental Sciences, Shanghai Normal University, Shanghai 200234, China
3Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
Footnotes:
This work was supported by the Major Research Plan from the Ministry of Science and Technology of China (2013CB945100), the National Science Foundation of China (30925007), and the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50401).

Corresponding author: Zhong-Nan Yang. Email: znyang@shnu.edu.cn

Keywords: male sterility, auxin response factor, primexine, callose, auxin signaling
Abstract:

In angiosperms, pollen wall pattern formation is determined by primexine deposition on the microspores. Here, we show that an auxin response factor, ARF17, is essential for primexine formation and pollen development in *Arabidopsis thaliana*. The *arf17* mutant exhibited a male sterile phenotype with normal vegetative growth. ARF17 was expressed in microsporocytes and microgametophytes from meiosis to the bicellular microspore stage. Transmission electron microscopy (TEM) analysis showed that primexine was absent in the *arf17* mutant, which leads to pollen wall patterning defects and pollen degradation. Callose deposition was also significantly reduced in the *arf17* mutant, and the expression of *CALLOSE SYNTHASE5* (*CalS5*), the major gene for callose biosynthesis, was approximately 10% that of wild type. Chromatin immunoprecipitation (ChIP) and Electrophoretic Mobility Shift Assay (EMSA) showed that ARF17 can directly bind to the *CalS5* promoter. As indicated by expression of the *DR5::GFP* auxin reporter, auxin signaling appeared to be specifically impaired in *arf17* anthers. Taken together, our results suggest that ARF17 is essential for pollen wall patterning in Arabidopsis by modulating primexine formation at least partially through direct regulation of *CalS5* gene expression.
Introduction

In angiosperms, the pollen wall is the most complex plant cell wall. It consists of the inner wall, the intine, and the outer wall, the exine. The exine is further divided into sexine and nexine layers. The sculptured sexine includes three major parts: baculum, tectum and tryphine (Heslop-Harrison 1971; Piffanelli et al. 1998; Ariizumi and Toriyama, 2011; Fig. 1A). Production of a functional pollen wall requires the precise spatial and temporal cooperation of gametophytic and sporophytic tissues and metabolic events (Blackmore et al., 2007). The intine layer is controlled gametophytically while the exine is regulated sporophytically. The sporophytic tapetum cells provide material for pollen wall formation while primexine determines pollen wall patterning (Heslop-Harrison, 1968).

After meiosis, four microspores were encased in callose to form a tetrad. Subsequently, the primexine develops between the callose layer and the microspore membrane (Fig. 1B) and the microspore plasma membrane becomes undulated (Fig. 1B; Southworth and Jernstedt, 1995; Fitzgerald and Knox, 1995). Sporopollenin precursors then accumulate on peak of the undulated microspore membrane to form the bacula and tectum (Fig. 1B; Fitzgerald and Knox, 1995). After callose degradation, individual microspores are released from the tetrad, and the bacula and tectum continue to grow into exine with further sporopollenin deposition (Fitzgerald and Knox, 1995; Blackmore et al., 2007).

The callose have been reported to affect primexine deposition and pollen wall pattern formation. The peripheral callose layer, secreted by the microsporocyte, act as the mold for primexine (Waterkeyn and Beinfait, 1970; Heslop-Harrison, 1971). Callose Synthase-5 (CalS5) is the major enzyme that is responsible for biosynthesis of the callose peripheral of the tetrad (Dong et al., 2005; Nishikawa et al., 2005). Mutation of CalS5 and abnormal CalS5 pre-mRNA splicing resulted in defective peripheral callose deposition and primexine formation (Dong et al., 2005; Nishikawa et al., 2005; Huang et al., 2013; Sun et al., 2003). Besides CalS5, four membrane associated proteins have also been reported to be involved in primexine formation, including DEFECTIVE EXINE
FORMATION1 (DEX1; Paxson-Sowders et al., 1997; 2001), NO EXINE FORMATION1 (NEF1; Ariizumi et al., 2004), RUPTURED POLLEN GRAIN1 (RPG1; Guan et al., 2008; Sun et al., 2013) and NO PRIMEXINE AND PLASMA MEMBRANE UNDULATION (NPU; Chang et al., 2012). Mutation of DEX1 results in delayed primexine formation (Paxson-Sowders et al., 2001). The primexine in nef1 is coarse compared with wild type (Ariizumi et al., 2004). Loss-of function rpg1 shows reduced primexine deposition (Guan et al., 2008, Sun et al., 2013) while the npu mutant does not deposit any primexine (Chang et al., 2012). Recently, it was reported that Arabidopsis CYCLIN-DEPENDENT KINASE G1 (CDKG1) associates with the spliceosome to regulate the CalS5 pre-mRNA splicing for pollen wall formation (Huang et al., 2013). Clearly, disrupted primexine deposition leads to aberrant pollen wall patterning and ruptured pollen grains in these mutants.

The plant hormone auxin has multiple roles in plant reproductive development (Aloni et al., 2006; Sundberg and Østergaard, 2009). Knocking out the two auxin biosynthesis genes, YUC2 and YUC6, caused an essentially sterile phenotype in Arabidopsis (Cheng et al., 2006). Auxin transport is essential for anther development; defects in auxin flow in anther filaments resulted in abnormal pollen mitosis and pollen development (Feng et al., 2006). Ding et al. (2012) showed that the ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Evidence for the localization, biosynthesis and transport of auxin indicates that auxin regulates anther dehiscence, pollen maturation, and filament elongation during late anther development (Cecchetti et al., 2004; 2008). The role of auxin in pollen wall development has not been reported.

Auxin signaling pathway requires the auxin response factor (ARF) family proteins (Guilfoyle and Hagen, 2007; Mockaitis and Estelle, 2008; Quint and Gray, 2006; Vanneste and Friml, 2009). ARF proteins can either activate or repress the expression of target genes by directly binding to Auxin Response Elements (AuxRE; TGTCTC/GAGACA) in the promoters (Tiwari et al., 2003; Ulmasov et al., 1999). The
Arabidopsis ARF family contains 23 members. A subgroup in the ARF family, ARF10, ARF16 and ARF17, are targets of miRNA160 (Okushima et al., 2005b; Wang et al., 2005). Plants expressing miR160-resistant ARF17 exhibited pleiotropic developmental defects including abnormal stamen structure and reduced fertility (Mallory et al., 2005). This indicates a potential role for ARF17 in plant fertility, although the detailed function remains unknown. In addition, ARF17 was also proposed to negatively regulate adventitious root formation (Sorin et al., 2005; Gutierrez et al., 2009), although an ARF17 knockout mutant was not reported and its phenotype is unknown.

In this work, we isolated and characterized a loss-of-function mutant of ARF17. Results from cytological observations suggest that ARF17 controls callose biosynthesis and primexine deposition. Consistent with this, the ARF17 protein is highly abundant in microsporocytes and tetrads. Furthermore, we demonstrate that the ARF17 protein is able to bind the promoter region of CalS5. Our results suggest that ARF17 regulates pollen wall pattern formation in Arabidopsis.
RESULTS

A Knockout Mutant of ARF17 Is Male Sterile

We screened for male sterile plants from the pool of T-DNA tagged lines in Arabidopsis ecotype Columbia-0 (Qin et al., 2003). One completely sterile mutant without any apparently vegetative defects was identified (Fig. 2, A and B). Thermal asymmetric interlaced (TAIL)-PCR (Liu et al., 1995) and sequencing of the flanking sequence revealed that a T-DNA was inserted in the first exon of the ARF17 gene (Fig. 2C). Genotype analysis showed that the sterile plants from F2 progeny of selfed F1 were all homozygous (n=100), while the fertile plants were either heterozygous or without insertion (n=100). This indicates that the T-DNA insertion in ARF17 was linked to the sterile phenotype. The expression of ARF17 could not be detected in flower buds (Fig. 2D).

Genetic complementation was performed to confirm whether knocking out ARF17 is responsible for the sterile phenotype. A genomic fragment of ARF17 including 1,615 bp upstream of the translation start site, the intact genomic coding region, and 567 bp downstream of the stop codon, was cloned and introduced into plants heterozygous for the ARF17 mutation (Supplemental Fig. S1A). We obtained a total of 20 independent T1 transgenic lines. Genotyping analysis showed that four of them were homozygous for the ARF17 mutation (Supplemental Fig. S1C). Three of these plants were fully fertile (Supplemental Fig. S1D), indicating that ARF17 was able to complement the sterile phenotype. The failed complementation of another T1 plant could have been due to a position effect of transgene (Matzke and Matzke, 1998). Collectively, these results demonstrate that knockout of ARF17 is responsible for the sterile phenotype of this mutant.

To distinguish whether male or female defects cause the sterility in arf17, we first pollinated the arf17 stigma with wild-type pollen grains. Normal siliques could be obtained indicating the female fertility in arf17 was not affected (data not shown). We then observed the open flowers from wild type and the arf17 mutant under the dissecting microscope. Multiple pollen grains could be found on the anther surface and the stigma...
of wild type (Fig. 2E). In contrast, no pollen grains were observed in the arf17 flower (Fig. 2F). Further Alexander staining of pollen viability (Alexander, 1969) showed that the wild-type anthers contained purple-staining viable pollen grains (Fig. 2G), while only degraded pollen remnants were observed in the arf17 anther (Fig. 2H). These data indicate that knocking out ARF17 leads to aborted pollen development and male sterility.

Expression Patterns of ARF17

ARF17 is widely expressed in Arabidopsis tissues including the roots, leaves, stems, siliques, seedlings and buds (Mallory et al., 2005). To analyze the spatio-temporal expression of ARF17 during anther development, we performed an RNA in situ hybridization assay with an ARF17-specific anti-sense probe. Anther development can be divided into 14 stages (Sanders et al., 1999). At Stage 5, no obvious hybridization signal was detected (Fig. 3A). Apparent hybridization signals were observed in microsporocytes at Stage 6 (Fig. 3B). Expression of ARF17 was reduced in tetrads at Stage 7 (Fig. 3C), and remained detectable in the microspores until Stage 9 (Fig. 3, D and E). In mature pollen, no ARF17-specific hybridization signal was detected (Fig. 3, F and G). As a control, the ARF17 sense-strand probe did not yield any hybridization signal (Fig. 3H).

We further investigated the distribution of the ARF17 protein. The genomic fragment of ARF17 was fused with the gene for green fluorescent protein (GFP; Supplemental Fig. S1B) and this construct was introduced into the arf17 mutant (Supplemental Fig. S1C). The ARF17-GFP fusion protein was shown to be functional because it was able to rescue the male sterile phenotype in the arf17 mutant (Supplemental Fig. S1E). Confocal microscopy of GFP allows detection of the respective ARF17-GFP fusion proteins. At stage 5, no GFP fluorescence was observed (Fig. 3I). At stage 6, significant GFP signals were observed in microsporocytes (Fig. 3, J and K). At stage 7, ARF17-GFP fluorescence could be detected within microspores in tetrads (Fig. 3, L and M). GFP expression was also found in the microspores at uninucleate pollen stage (Fig. 3, N and O). In bicellular pollen, GFP signals were present in both the germ cell and the vegetative nuclei (Fig. 3, P and Q). No apparent GFP signal was detected at either the tricellular or mature pollen...
stages (Fig. 3, R-U), which is consistent with previous male gametophyte transcriptome (Honys and Twell, 2004). When ARF17-GFP pollen grains were germinated in vitro, GFP could also be detected in the imbibed pollen grain (Fig. 3, V and W) and pollen tube (Fig. 3, X-Z); however, the expression level was lower than that observed from stage 6 to the bicellular microspore stage.

Primexine Is Absent in the arf17 Mutant

In order to understand the defects in arf17 in detail, we analyzed cross-sections prepared from wild type (Col-0) and mutant inflorescences. Up to stage 6, no detectable differences could be observed between wild type and the arf17 mutant (Fig. 4, A, B, E and F). DAPI (4, 6-diamidino-2-phenylindole) staining showed that meiosis is normal in arf17 (Supplemental Fig. S2). At stage 7, meiosis is completed and tetrads have formed in the wild type (Fig. 4C). In contrast, the shape of arf17 tetrads appeared to be distorted (Fig. 4G). At stage 8, individual microspores could be observed in both wild type and arf17 anthers, indicating the normal release of free microspores (Fig. 4D and H). From stage 9 to 11, wild-type microspores developed an obvious exine layer (Fig. 4I and J). In arf17, however, microspores failed to form exine layer and became vacuolated and degraded (Fig. 4L and M). Eventually, the pollen wall developed successfully and mature pollen grains were formed in wild type (Fig. 4K), whereas all arf17 microspores degenerated completely, leaving only aborted pollen debris (Fig. 4N).

To further investigate the detailed abnormalities in arf17 exine development, transmission electron microscopy (TEM) observation was employed. In the wild-type locules at Stage 6, callose was deposited around microsporocytes with medium electron-dense staining (Fig. 5A). The callose in arf17 was much reduced compared to wild type (Fig. 5B). At Stage 7, the wild-type tetrad developed primexine between microspore membrane and the callose layer; microspore membrane became undulated (Fig. 5C). In contrast, the callose in the arf17 mutant seemed thinner; the primexine and membrane undulation was not observed (Fig. 5D). At the uninucleate and the bicellular microspore stage, sporopollenin continued to accumulate onto the surface of the
microspore to form the bacula, tectum and exine in wild type (Fig. 5E and G). However, in arf17, the sporopollenin randomly accumulated around the microspore surface and no exine could be observed for those shriveled pollen grains (Fig. 5F and H). The TEM observations revealed that arf17 pollen had an absence of primexine, leading to subsequent aborted exine pattern and microspore degradation.

Callose Deposition around the Tetrad Is Significantly Reduced in arf17

The above observations indicated that callose deposition was decreased in the arf17 mutant. To confirm this, we stained tetrads from both arf17 and wild-type anthers with toluidine blue. Under light microscopy, both wild type and ARF17-GFP complemented plants showed apparent callose layer in tetrads (Fig. 6, A and C; n >150). By contrast, the callose layer of arf17 tetrads was ambiguous (n=295; Fig. 6B). We then analyzed callose fluorescence by aniline blue staining. Both aniline blue staining and fluorescence analysis showed that the fluorescence of the callose in arf17 was obviously weaker than that in wild type and ARF17-GFP complemented plants (Fig. 6, D-I). These results confirmed that arf17 tetrads had a reduced callose deposition.

CalS5 is the major enzyme responsible for peripheral callose synthesis in the tetrad in Arabidopsis (Dong et al., 2005). We analyzed the expression of CalS5 in arf17. Real-time PCR revealed that the expression of CalS5 was dramatically decreased in the arf17 mutant compared to wild type (Fig. 6J). To further verify these results at the cellular level, we performed RNA in situ hybridization using a CalS5-specific probe. The CalS5 signal reached its peak in microsporocytes and tapetum cells at Stage 6 (Fig. 6, K-M), consistent with a previous report (Nishikawa et al., 2005). In the arf17 mutant, CalS5 transcript abundance was much less than in the wild type (Fig. 6, O-Q), confirming reduced CalS5 expression.

We then compared the expression of other primexine-related genes including CDKG1, DEX1, NEF1, RPG1 and NPU in arf17 and wild-type inflorescences. Both RT-PCR and real-time PCR showed that CDKG1, DEX1, NEF1 and NPU expression were not altered...
in \textit{arf17} (Supplemental Fig. S3, A and B), whereas \textit{RPG1} expression in \textit{arf17} was reduced to 30% of that in wild-type plants (Supplemental Fig. S3, A and B).

ARF17 Directly Regulates \textit{CalS5} Expression

ARF17 is an ARF transcription factor, and would be expected to regulate gene expression by binding to the AuxRE of target gene promoters. An AuxRE (5’-GAGACA-3’) was found between -863 and -858 in the \textit{CalS5} promoter (Fig. 7A). To corroborate the interaction of the ARF17 protein with the \textit{CalS5} promoter \textit{in vivo}, we performed a chromatin immunoprecipitation (ChIP) assay using buds from a transgenic Arabidopsis line that expressed the functional GFP-tagged ARF17 (Fig. 3). Real-time PCR results indicated that one DNA fragment, pCalS5-2, containing the predicted ARF protein binding site (GAGACA) was enriched when the GFP antibodies were used (Fig. 7B). However, when three other fragments of the \textit{CalS5} promoter were amplified, no obvious enrichment was observed (Fig. 7B).

In order to confirm the physical interaction between the ARF17 protein and the \textit{CalS5} promoter region, we performed an electrophoretic mobility shift assay (EMSA) using recombinant ARF17 proteins fused to glutathione S-transferase (GST-ARF17) and a 64-bp \textit{CalS5} promoter fragment containing an AuxRE motif. The EMSA result showed that the recombinant ARF17 protein is able to bind this DNA fragment (Fig. 7C). The binding specificity was further confirmed by using unlabeled promoter fragment as a competitor. When the unlabeled DNA fragment was added, the excess \textit{CalS5} competitor probe reduced the signal in a concentration-dependent manner (Fig. 7C). These results indicate that ARF17 directly binds to the \textit{CalS5} promoter to regulate its expression.

The \textit{arf17} Mutation Affects Pollen Tube Growth

In the F$_2$ population, only about 12% (62 of 493) of the progeny displayed the male sterile phenotype. This ratio was stable over five consecutive generations. The segregation ratio deviated significantly from the expected 25% (1:3; Table 1), suggesting that the gametophyte function may also be affected in \textit{arf17}/\textit{ARF17} (\textit{arf17}+/+) plants. We
pollinated arf17/+ stigmas with wild-type pollen. The segregation ratio of the T-DNA in the F1 progeny was approximately 1:1 (111:114; Table1), indicating that the transmission of the T-DNA through the female gametophyte is not affected and that the arf17 ovule is fertile. When wild-type stigmas were pollinated with arf17/+ pollen, the T-DNA ratio of the F1 progeny was 24.9% (n = 289), instead of the expected 50% (1:1; Table 1), indicating that male gametophyte transmission is reduced in the arf17/+ mutant.

To determine whether the reduced transmission was derived from impaired pollen development, pollen germination, or pollen tube growth, homozygous arf17 plants were pollinated with qrt1 pollen (Preuss et al., 1994) to generate arf17/+qrt1/qrt1 plants. In qrt1 plant, the four microspores remain associated as tetrads (Preuss et al., 1994; Francis et al., 2006). DAPI and Alexander staining showed that arf17/+ pollen grains developed normally (n = 300; Supplemental Fig. S4). We next carried out an in vitro pollen germination assay to test whether the pollen tube performance of arf17/+ was affected. After 6 h, 78% (n = 760) of pollen grains from arf17/+ plants germinated (Fig. 8A and C), in contrast to 82% (n = 560) of wild-type pollen grains. This indicated that pollen grain germination in arf17/+ may not be affected (P>0.05). However, the average pollen tube length from arf17/+ pollen grains was dramatically reduced, and more short pollen tubes were observed compared with wild type (Fig. 8A, B and D). Statistical analysis showed that 36% of arf17/+ pollen tubes were in the range of 10-200 μm, whereas only 9% of wild-type pollen tubes were in this range; 19% of arf17/+ pollen tubes were >400 μm long, while 46% of wild-type pollen tubes were in this range (Fig. 8E). This indicates that the arf17 mutation affected pollen tube growth.

The pollen tube growth defect was further validated in vivo. We pollinated wild-type stigmas in emasculated flowers with arf17/+ pollen grains and examined the distribution of wild-type and mutant seeds in the upper and lower parts of crossed siliques using a Basta herbicide screen. The ratio of mutant seeds from the upper part was obviously higher than that from the lower part (Fig. 8F). Seeds from the upper part of the siliques were 31.3% mutant (n = 147), while seeds from lower part were only 14.1% mutant (n =
135; P<0.05; Fig. 8G), indicating that wild-type and heterozygous arf7+/ pollen tubes are not evenly distributed within the ovary. Collectively, the in vitro and in vivo results showed that arf17 pollen tubes grow slower than wild type.

Expression of an Auxin Reporter Gene Is Impaired in arf17 Anthers
The ARF family proteins are involved in auxin signaling and can directly regulate the transcription of auxin response genes. To investigate the role of ARF17 in the auxin response, we introduced the synthetic auxin response promoter DR5 (Ulmasov et al., 1997) driving expression of the GFP gene (DR5::GFP) into the arf17 mutant by crossing. In five-week-old wild-type plants, GFP fluorescence could be detected in the root tip (Fig. 9A), leaf tips (Fig. 9C) and anthers at later stages when mature pollen is formed inside (Fig. 9E). In arf17, GFP signals could also be observed in the root tip and leaf tips (Fig. 9, B and D; n = 24). However, expression of DR5::GFP was barely detected in arf17 late stage anthers (Fig. 9F; n = 24). Since ARF17 functions at the tetrad stage, we chose to observe the DR5::GFP signal at this stage. In the wild type, apparent GFP signals could be observed at the anther apex and the joint between the anther and filament (Fig. 9G; n = 30). However, GFP signal was not observed in tetrads, which is consistent with a previous report (Cecchetti et al., 2008). In arf17, a similar pattern of GFP expression was detected to that in wild type (Fig. 9H; n = 30).
DISCUSSION

In this work, we showed that in the *arf17* mutant, primexine deposition within tetrads is completely absent. Sporopollenin seems to be synthesized in *arf17* (Fig. 5). Exine and pollen wall patterning fail to form; pollen grain degradation and male infertility were observed at later stages (Fig. 4). Because primexine has a central role in exine formation and pollen wall patterning, it was suggested that the male sterile phenotype of the *arf17* mutant is caused by absent primexine. ARF17 is expressed in microsporocytes and tetrads, supporting its role for primexine formation. Currently, several genes have been reported to affect primexine formation and pollen wall patterning. In *cals5* (Dong et al., 2005; Nishikawa et al., 2005), *dex1* (Paxson-Sowders et al., 2001), *nef1* (Ariizumi et al., 2004) and *rpg1* (Guan et al., 2008), primexine is reduced, while in *npu*, primexine is absent (Chang et al., 2012). The CalS5 gene is a callose synthase, and RPG1 functions as a sugar transporter (Dong et al., 2005, Chen et al., 2010). DEX1, NEF1 and NPU are membrane-associated proteins, however, their biochemical roles remain undiscovered. ARF17 belongs to the ARF family of transcription factors, which are considered to be a component of the auxin signaling pathway. Therefore, our results provide a new mechanism that determines primexine formation, as well as subsequent pollen wall formation.

ARF proteins can regulate the expression of genes with an AuxRE in their promoter (Ulmasov et al., 1999). The *CalS5* promoter contains one AuxRE (-863 to -858). Both ChIP and EMSA assays showed that ARF17 can directly bind to the promoter region of *CalS5*. The expression of ARF17 and *CalS5* in microsporocytes and tetrads support the binding of ARF17 to the *CalS5* promoter. Expression of *CalS5* in the *arf17* mutant was approximately 10% of the level in the wild type (Fig. 6). In *arf17*, the peripheral callose layer of the tetrad was detected, although the amount is significantly reduced compared with wild type (Fig. 6). Therefore, these results showed that ARF17 directly regulates *CalS5* expression in callose synthesis. Recently, Huang et al (2013) showed that CDKG1 can associated with spliceosome to regulate *CalS5* splicing and
pollen wall formation. In addition, CalS5 expression is also decreased in *rpg1* and *npu* mutants (Sun et al., 2013; Chang et al., 2012), indicating *CalS5* expression is regulated at multiple levels.

The *cals5* knockout mutants can produce a reduced amount of primexine and are able to generate several seeds (Dong et al., 2005; Nishikawa et al., 2005), whereas *arf17* is completely sterile and shows no primexine deposition (Fig. 4). This suggests that there are additional genes that can be regulated by ARF17 in primexine formation. *RPG1* is down-regulated in *arf17* (Fig. 6). However, no AuxRE is present in the *RPG1* promoter; it is likely that ARF17 regulates *RPG1* expression through an unknown intermediate transcription factor. Therefore, reduced expression of both *CalS5* and *RPG1* should partially contribute to the primexine defect in *arf17*. Expression of *DEX1*, *NEF1* and *NPU* was not altered in the *arf17* mutant (Fig. 6), indicating that ARF17 does not regulate their expression at the transcription level. We propose that there are some novel genes required for primexine formation that can also be regulated by ARF17. Further identification of direct targets of ARF17 could help us to understand the regulatory role of ARF17 and the underlying mechanism controlling primexine formation and pollen wall development.

The expression of *ARF17* in germinated pollen grains and pollen tubes, and the reduced male gametophyte transmission efficiency growth in heterozygous plants indicated that ARF17 plays a role in pollen tube growth. It was reported that IAA could stimulate pollen tube growth in *Torenia fournieri* (Wu et al., 2008). ARF17 may act as an important component in auxin signaling to regulate pollen tube growth in Arabidopsis. ARF17 is essential for pollen wall formation (Fig. 5). However, the genetic analysis showed that *arf17* pollen can grow and transmit, although the pollen tube growth is slower than wild type (Table 1; Fig. 8). This suggests that other ARFs may also involve in pollen tube growth.

Evidence for the localization, biosynthesis and transport of auxin indicates that auxin regulates dehiscence, pollen maturation, and filament elongation during late anther development (Cecchetti et al., 2008). Expression of an auxin-sensitive reporter marker
gene (DR5::GUS/GFP) in anthers also supports the involvement of auxin in these biological processes (Aloni et al., 2006; Cecchetti et al., 2008; Feng et al., 2006). In anther, high-level expression of DR5::GUS/GFP could be detected after the release of the microspores from the tetrads, at which time ARF17 was also expressed. The reduced expression of DR5::GFP in arf17 anthers indicated that ARF17 is important for anther auxin signaling and expression of auxin response genes. DR5::GFP expression in wild-type tetrads was not observed (Fig. 9), which is consistent with a previous report (Cecchetti et al., 2008). However, ARF17 is present at this stage. The failure to detect DR5::GFP in the tetrad could be due to its low level of expression or a lack of necessary co-factors at this stage (Nakamura et al., 2003).

DR5::GFP expression can be detected in the arf17 anther tip at the tetrad stage, indicating that many other ARFs could also function at this stage. ARF6 and ARF8 are expressed in anther filaments, the style, transmitting tract, and funiculus, and regulate multiple aspects of flower development (Nagpal et al., 2005; Wu et al., 2006; Goetz et al., 2006). It seems that ARF6 and ARF8 are dispensable for pollen development, since treatment with exogenous jasmonic acid could cause the release of viable pollen grains in the arf6arf8 double mutant (Nagpal et al., 2005). ARF2 is expressed in the sepals and stamen. The predominant morphological defect of arf2 mutant flowers is the significantly elongated gynoecium and sepals, which result in tightly closed buds (Okushima et al., 2005a). Compared with these studied ARF proteins, the ARF17 protein is likely to have a unique function in the ARF family in controlling pollen wall pattern formation. Our results support the observation that ARF family genes are expressed in different plant tissues/organs and exhibit specific or redundant functions in cellular processes during plant development (Wang et al., 2007).
LITERATURE CITED

Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44: 117-122

Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223: 315-328

Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K (2004) Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J 39: 170-181

Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu. Rev. Plant Biol. 62: 437-460

Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174: 483-498

Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20: 1760-1774

Cecchetti V, Pomponi M, Altamura MM, Pezzotti M, Marsilio S, D’Angeli S, Tornielli GB, Costantino P, Cardarelli M (2004) Expression of rolB in tobacco flowers affects the coordinated processes of anther dehiscence and style elongation. Plant J 38: 512-525

Chang HS, Zhang C, Chang YH, Zhu J, Xu XF, Shi ZH, Zhang Xl, Xu L, Huang H, Zhang S, et al (2012) NO PRIMEXINE AND PLASMA MEMBRANE UNDULATION is essential for primexine deposition and plasma membrane undulation during microsporogenesis in Arabidopsis. Plant Physiol 158: 264-272

Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri1 B, et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527-532

Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monoxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20: 1790-1799
Clough SJ, Bent AF (1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of *Arabidopsis thaliana*. Plant J **16**: 735-743

Ding ZJ, Wang BJ, Moreno L, Duplakova N, Simon S, Carraro N, Reemmer J, Pencík A, Chen X, Tejos1 R, et al (2012) ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in *Arabidopsis*. Nat Commun **3**: 941 doi: 10.1038/ncomms1941

Dong X, Hong Z, SivaramakrishnanM, Mahfouz M, Verma DP (2005) Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in *Arabidopsis*. Plant J **42**: 315-328

Feng XL, Ni WM, Elge S, Mueller-Roeber B, Xu ZH, Xue HW (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol **61**: 215-226

Fitzgerald MA, Knox RB (1995) Initiation of primexine in freezesubstituted microspores of *Brassica campestris*. Sex Plant Reprod **8**: 99-104

Francis KE, Lam SY, Copenhaver GP (2006) Separation of *Arabidopsis* pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol **142**: 1004–1013

Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM (2006) AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in *Arabidopsis*. Plant Cell **18**: 1873-1886

Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN (2008) *RUPTURED POLLEN GRAIN 1*, a member of MtN3/Saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in *Arabidopsis thaliana*. Plant Physiol **147**: 852-863

Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol **10**: 453–460

Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in *Arabidopsis* is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell **21**: 3119-3132
Haring M, Offermann S, Danker T, Horst I, Peterhaensel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3: 11

Heslop-Harrison J (1968) The pollen grain wall. The succession of events in the growth of intricately patterned pollen walls is described and discussed. Science 161: 230-237

Heslop-Harrison J (1971) Wall pattern formation in angiosperm microsporogenesis. Symp Soc Exp Biol 25: 277-300

Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132: 640-652

Huang XY, Niu J, Sun MX, Zhu J, Gao JF, Yang J, Zhou Q, and Zhong-Nan Yang (2013) CDKG1 is associated with spliceosome to regulate CalS5 splicing and pollen wall formation in Arabidopsis. Plant Cell doi.org/10.1105/tpc.112.107896

Jiang H, Wang FF, Wu YT, Zhou X, Huang XY, Zhu j, Gao JF, Dong RB, Cao KM, Yang ZN (2009) MULTIPOLAR SPINDLE 1 (MPS1), a novel coiled-coil protein of Arabidopsis thaliana, is required for meiotic spindle organization. Plant J 59: 1001-1010

Li H, Lin Y, Heath RM, Zhu MX, Yang Z (1999) Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11: 1731-1742

Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8: 457-463

Mallory A C, Bartel D P and Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17: 1360-1375

Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142-148

Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24: 55-80
Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, et al (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132: 4107-4118

Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133: 1843-1853

Nishikawa S, Zinkl GM, Swanson RJ, Maruyama D, Preuss D (2005) Callose (β-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. BMC Plant Biol 5: 22

Okushima Y, Mitina I, Quach HL, Theologis A (2005a) AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43: 29-46

Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, et al (2005b) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17: 444-463

Paxson-Sowders DM, Dodrill CH, Owen HA, Makaroff CA (2001) DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol 127: 1739-1749

Paxson-Sowders DM, Owen HA, Makaroff CA (1997) A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protoplasma 198: 53-65

Piffanelli P, Ross JHE, Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11: 65-80

Preuss D, Rhee SY, Davis RW (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264: 1458–1460

Qin GJ, Kang D, Dong Y, Shen Y, Zhang L, Deng X, Zhang Y, Li S, Chen N, Niu W, et al (2003) Obtaining and analysis of flanking sequences from T-DNA transformants in Arabidopsis. Plant Sci 165: 941-949
Quint M, Gray WM (2006) Auxin signaling. Curr Opin Plant Biol 9: 448-453

Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu Y C, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11: 297-322

Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcia C, Vaucheret H, Sandberg G, et al (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGOAUTE1. Plant Cell 17: 1343-1359

Southworth D, Jernstedt JA (1995) Pollen exine development precedes microtubule rearrangment in Vigna unguiculata (Fabaceae): a model for pollen wall patterning. Protoplasma 187: 79-87

Sun MX, Huang XY, Yang J, Guan YF, and Yang ZN (2013) Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reproduction DOI 10.1007/s00497-012-0208-1

Sundberg E, Østergaard L (2009) Distinct and dynamic auxin activities during reproductive development. Cold Spring Harb Perspect Biol 1: a001628

Tiwari S B, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15: 533-543

Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin response factors. Proc Nat Acad Sci USA 96: 5844-5849

Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963-1971

Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136: 1005-1016

Wang DK, Pei KM, Fu YP, Sun ZX, Li SJ, Liu HQ, Tang K, Han B, Tao YZ (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394: 13-24

Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap
formation by microRNA-targeted auxin response factors in *Arabidopsis*. Plant Cell 17: 2204-2216

Waterkeyn L, Bienfait A (1970) On a possible function of the callosic special wall in *Ipomoea purpurea* (L.) Roth. Grana 10: 13-20

Wu JZ, Lin Y, Zhang XL, Pang DW, Zhao J (2008) IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in *Torenia fournieri*. Journal of Experimental Botany 59: 2529-2543

Wu MF, Tian Q, Reed JW (2006) *Arabidopsis microRNA167* controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133: 4211-4218

Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, et al (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in *Arabidopsis*. Plant J 52: 528-538
MATERIALS AND METHODS

Plant Materials and Growth Conditions

Arabidopsis thaliana wild-type and mutant plants in this study were in the Columbia (Col-0) ecotype background. The *arf17* mutant was isolated from the pSKI15 activation tagging T-DNA mutant pools (Qin et al., 2003). Seeds were sown on vermiculite and allowed to imbibe for 3 days at 4°C. Plants were grown under long-day conditions (16-h light/8-h dark) in a growth room at approximately 22°C.

Phenotype Characterization

Plants were photographed with a Nikon D700 digital camera. Alexander staining was performed as described (Alexander, 1969). For cross-sections, flower buds were fixed overnight in FAA (ethanol 50% (v/v), acetic acid 5.0% (v/v), and formaldehyde 3.7% (v/v)), dehydrated in a graded ethanol series (50% [x2], 60%, 70%, 80%, 90%, 95%, and 100% [x2]), and embedded in resin with a low viscosity kit (PELCO, USA). Transverse sections of 1.5 μm thickness were stained with 0.5% toluidine blue, and observed with an Olympus BX51 microscope (Olympus, http://www.olympus-global.com). For TEM examination, inflorescences from wild type and *arf17* were fixed and embedded as described (Zhang et al., 2007). The images were taken by a Hitachi H-600 transmission electron microscope (Hitachi, http://www.hitachi.com). For the pollen *in vitro* germination assay, mature pollen grains were spread onto *Arabidopsis thaliana* pollen medium consisting of 18% (m/v) sucrose, 0.01% (m/v) boric acid, 1 mM CaCl2, 1 mM Ca(NO3)2, 1 mM MgSO4 and 0.5% (m/v) agar (Li et al., 1999) in a humid chamber at approximately 22°C. Single images were obtained with the Olympus BX51 microscope.

Fluorescence Microscopy

The DAPI staining was preformed as described (Jiang et al., 2009). For callose staining, unopened buds were fixed for 3 h with Carnoy's fluid (3:1 ethanol and acetic acid) at 4°C. Anthers at the tetrad stage were squeezed onto the slide and stained with toluidine blue (100μg/L in 10 mM KPO4 buffer, pH 7.2) or aniline blue solution (0.1g/L in 50 mM KPO4 buffer, pH 7.5). After covering with cover glasses, the slides stained by toluidine
blue were observed under transmitted light. Slides stained by aniline blue were observed under UV illumination using an Olympus BX51 fluorescence microscope. ARF17-GFP and DR5::GFP in the root tip and anther tip were observed using a Carl Zeiss confocal laser scanning microscope (LSM 5 PASCAL; Zeiss, http://www.zeiss.com). Images of DR5::GFP in the leaf tip and inflorescence was taken by Olympus BX51 fluorescence microscope.

Molecular Cloning of the ARF17 Gene

T-DNA insertion in the arf17 mutant plants was validated using primers which specifically amplify the BAR gene: Bar-F and Bar-R. For TAIL-PCR, genomic DNA of the mutant plants served as the template, using the T-DNA left border (LB) primers AtLB1, AtLB2, AtLB3 (Supplemental Table S1) and arbitrary degenerate primers. The TAIL-PCR procedure and arbitrary degenerate primers used were as described (Liu et al., 1995). Linkage analysis of the T-DNA insertion with the mutant phenotype was analyzed with primer AtLB3 and the ARF17-specific primers LP and RP (Supplemental Table S1). The LP/RP primers were also used for detecting ARF17 gene expression.

Genetic Complementation

For complementation, a 4.9 kb ARF17 genomic fragment, which included 1615-bp of upstream and 0.5 kb of downstream sequence, was amplified from wild-type genomic DNA, using the primer pair CMP-F and CMP-R. For GFP fusion, the ARF17 genomic fragment without a stop codon was cloned into the modified GFP- pCAMBIA1300 vector using primer pair CMP-F and CMP-F/FU (Supplemental Table S1). All amplified DNA fragments were cloned into pMD18-T (Takara) for sequencing and sub-cloning. After verification by sequencing, the fragments were released by restriction enzyme digestion and sub-cloned into the binary vector pCAMBIA1300 (CAMBIA). The resulting constructs were introduced into heterozygous arf17 plants using the flower dip method (Clough and Bent, 1998) with Agrobacterium tumefaciens strain GV3101 (pMP90). Hygromycin-resistant transformants were indentified in the arf17 background using primer pairs MC-F/RP and MC-F/AtLB3 (Supplemental Table S1).
RT-PCR and Real-time PCR Analysis

Total RNA was isolated from floral buds using the TRIzol kit (Invitrogen). After treatment with DNase (Promega), first-strand cDNA was synthesized from 2 μg RNA using a poly (dT12-18) primer and AMV reverse transcription according to the manufacturer’s instructions (Toyobo). Transcripts were quantified by RT-PCR or real-time RT-PCR analyses using 1/100 of the resulting cDNA as template under the following conditions: denaturation for 30 s at 94°C, annealing for 30 s at 58°C, and extension for 40 s at 72°C, followed by a final extension for 5 min. Real-time PCR was performed using an ABI 7300 System (Applied Biosystems, http://www.appliedbiosystems.com) with the SYBR Green Real-time PCR Master Mix (Toyobo). A positive control was provided by a parallel analysis based on the tubulin gene, and three replicates were performed per experiment. The relative expression levels were calculated according to the cycle number. Relevant primer sequences are listed in Supplemental Table S1.

In Situ Hybridization

The probe fragments were amplified from wild type Col-0 cDNA using gene-specific primers (CalS5in-F and CalS5in-R; ARF17in-F and ARF17in-R). After sequencing, the PCR products were cloned into the pBluescript SK vector. Plasmid DNA was completely digested with EcoRI or BamHI. The digestion products were used as templates for transcription into sense and anti-sense probes by T3 or T7 RNA polymerases, respectively (Roche). Images were taken using the Olympus BX-51 microscope.

Chromatin Immunoprecipitation (ChIP)

The ChIP procedure was performed on 35-day-old flower buds as described by Haring et al. (2007) with some modifications. Flower buds (0.8–1.0 g) were cross-linked with 37 mL of 1% formaldehyde in a vacuum for 15 min, and the reaction was stopped by addition of 1.85 mL of 2 M Glycine. After rinsing with water, buds were ground in liquid nitrogen, the powder was suspended in 25 mL of extraction buffer I (0.4 M sucrose, 10
mM Tris-HCl, pH 8, 10 mM MgCl₂, 5 mM β-mercaptoethanol, 0.1 mM phenylmethylsulfonyl fluoride [PMSF], and 1×protease inhibitor; Sigma-Aldrich) and then filtered through 40μm cell strainer (BD Falcon). The filtrate was centrifuged at 2900g rpm at 4°C for 20 min and the pellet was resuspended in 1 mL of extraction buffer II (0.25 M sucrose, 10 mM Tris-HCl, pH 8, 10 mM MgCl₂, 1% Triton X-100, 5 mM β-mercaptoethanol, 0.1 mM PMSF, and 1×protease inhibitor) and centrifuged at 16,000 rpm at 4°C for 10 min. The pellet was resuspended in 300 μL of extraction buffer III and loaded on top of an equal amount buffer III (1.7 M sucrose, 10 mM Tris-HCl, pH 8, 0.15% Triton X-100, 2 mM MgCl₂, 5 mM β-mercaptoethanol, 0.1 mM PMSF, and 1×protease inhibitor), then centrifuged at 16,000 g for 60 min. The resulting nuclear pellet was resuspended in Nuclear Lysis Buffer (50 mM Tris-HCl, pH 8.0, 10 mM EDTA, 1% SDS, and 1×Complete protease inhibitor; Roche) and sonicated to give 0.3 to 0.8 kb DNA fragments. The soluble chromatin solution was diluted 10-fold with ChIP dilution buffer (1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, pH 8.0, and 167 mM NaCl) after preclearing with protein A-Dynabeads (Invitrogen), and 1 μL of GFP antibody (Sigma-Aldrich) was added to 1 mL of chromatin solution and incubated overnight at 4°C. The immunocomplexes were extracted by incubating with 100 mL of 50% protein G-Sepharose beads for 3 h at 4°C. After several washes, immunocomplexes were eluted with Elution Buffer (1% SDS and 0.1 M NaHCO₃), then reverse cross-linked at 65°C overnight. After treatment with proteinase K, DNA was purified. The pellet was dissolved with 100 μL water and used for real-time PCR analysis using relevant primers listed in Supplemental Table S1.

Electrophoretic Mobility Shift Assays (EMSA)

To obtain purified ARF17 protein for the EMSA experiments, the full-length fragment of the ARF17 gene was amplified using the primer pairs ARF17GST-F and ARF17GST-R and cloned into the pGEX-4T vector (GE Healthcare, http://www.gehealthcare.com) to produce the GST-ARF17 construct. Expression and purification of the fusion protein
were performed according to the manufacturer’s instructions. The DNA fragment containing the AuxRE (GAGACA) in the ARF17 regulatory region was generated by PCR amplification with the following specific primers (EMSAbio-F/EMSAbio-R and EMSAcomp-F/EMSAcomp-R) that were used to generate a biotin-labeled and competitor probe respectively. The EMSA was performed with a LightShift Chemiluminescent EMSA Kit (Thermo Scientific, http://www.thermoscientific.com). The binding reactions containing binding buffer [10 mM Tris-HCl, pH 7.5, 50 mM NaCl, 1 mM EDTA, 5% glycerol, 0.05 mg mL^{-1} poly(dI-dC)], 0.5μg GST-ARF17 recombinant fusion protein and 10 fmol biotin-labeled DNA were performed at room temperature for 20 min. The subsequent processes were performed according to the manufacturer’s instructions.
Figure Legends

Figure 1. Schematic representation of the pollen wall and primexine development. The innermost layer adjacent to the plasma membrane is the intine. The bacula (Ba), tectum (Te), and trypihne (T) make up the sexine layer. The nexine is located between the intine and the sexine layers. The exine includes the nexine and sexine layers. B, Primexine (Pr) appears between callose (Cl) and plasma membrane (Pm) at early tetrad stage (left panel). Subsequently plasma membrane becomes undulated (middle panel) and sporopollenin deposites on the peak of the undulated plasma membrane to form bacula and tectum (right panel).

Figure 2. Characterization of the Arabidopsis arf17 mutant. A, 35-day-old wild-type (WT) plant. B, 35-day-old arf17 mutant plant. C, Structure of the ARF17 (At1g77850) gene. Exons are shown as black boxes. Introns, the promoter, and untranslated regions are shown as a gray line. T-DNA is inserted in the first exon. LP, left border primer; RP, right border primer. D, RT-PCR analysis of ARF17 in WT and arf17 buds using primer pair LP/RP. Tubulin (TUB) was amplified as an internal control. Similar results were obtained in three independent experiments. E and F, Comparison of flowers from WT (E) and arf17 (F). G and H, Alexander’s staining of anthers of WT (G) and arf17 (H). Arrows indicate degraded debris. Bars = 2 cm (A and B), 500 μm (E and F) and 200 μm (G and H).

Figure 3. Expression pattern of ARF17. A to H, In situ hybridization analysis of ARF17 during anther development. Wild-type anthers from Stages 5 (A), 6 (B), 7 (C), 8 (D), 9 (E), 10 (F), and 11 (G) hybridized with the anti-sense probe are shown. H, Stage 6 anther hybridized with the sense probe. I to Y, Fluorescence confocal images of the ARF17-GFP fusion protein. I, Stage 5 anther. J and K, Stage 6 anther and microsporocyte. L and M, Stage 7 anther and tetrads. N and O, Stage 8 anther and uninucleate microspore. P and Q, Bicellular stage anther and microspore. R and S, Tricellular stage anther and pollen grains. T and U, Dehiscent anther and mature pollen. V and W, Germinated pollen grain. X, Y and Z, Germinated pollen tubes. Z, Enlarged picture of boxed area in Y. Gc, germ cell; Ms, microsporocyte; Msp, microspore; Pg,
pollen grain; T, Tapetum; Tds, tetrads; Vn, vegetative nuclei. Bars = 50 μm (A–J, L, N, P, R and T), 20 μm (K, M, O, Q, S and U) and 10 μm (V–Z).

Figure 4. Comparison of transverse anther sections. Anther cross-sections from wild type (WT; A-D and I-K) and *arf17* (E-H and L-N) were stained by toluidine blue. A and E, Anthers at stage 5 from WT (A) and *arf17* mutant (E). B and F, Anthers at stage 6 from WT (B) and *arf17* (B). C and G, Stage 7 anthers from WT (C) and *arf17* (G). D and H, Stage 8 anthers from WT (D) and *arf17* (H). I and L, Stage 9 anthers from WT (I) and *arf17* (L). J and M, Stage 10 anthers from WT (J) and *arf17* (M). K and N, Stage 12 anthers from WT and *arf17* (N). Dmsp, degraded microspore; Dpg, degraded pollen grain; E, epidermis; En, endothecium; Ml, middle layer; Ms, microsporocyte; Msp, microspore; Pg, pollen grain; Sp, sporopollenin; T, Tapetum; Tds, tetrads. Bar = 20 μm.

Figure 5. Ultrastructure of pollen wall development. Cross-sections from wild type (WT) (A, C, E and G) and *arf17* (B, D, F and H). The black boxed image on the right of each panel was enlarged from the corresponding white boxed region. A and B, Microsporocyte at Stage 6 from WT (A) and *arf17* (B). C and D, Tetrad of WT (C) and *arf17* (D). The primexine is absent in *arf17*. E and F, Uninucleate microspore stage. Bacula and tectum are visible in the WT anther (E), but not in the *arf17* mutant (F). Sporopollenin is randomly deposited around the *arf17* microspore. G and H, bicellular stage. The exine layer is established in the WT (G). Microspore exine is absent and the microspore is degenerate in the *arf17* mutant (H). Ba, bacula; Cl, callose; dMsp, degenerate microspore; Ex, exine; Ms, microsporocyte; Msp, microspore; Pr, primexine; Sp, sporopollenin; Tc, tectum; Tds, tetrads. Bar = 2μm.

Figure 6. Analysis of callose deposition and CalS5 expression. A to C, Toluidine blue staining of tetrads from wild type (WT; A), *arf17* (B) and ARF17-GFP complemented (Comp) plants (C). D to F, Aniline blue staining of the callose from WT (D), *arf17* (E) and Comp plants (F). G, Quantitative analysis of fluorescence intensity from WT, *arf17* and Comp plants. Asterisks indicate statistically significant differences compared to WT.
and Comp by Student’s t test (P<0.05; n ≥100). H and I, Aniline blue staining of anther cross sections from WT (H) and arf17 at stage 7 (I). J, Real-time PCR analysis of CalS5 expression in WT and arf17 buds. The level of CalS5 was normalized to Tubulin (TUB) and compared with wild-type control. Error bars indicate SD, and were calculated from three biological replicates. K to R, In situ hybridization analysis of CalS5 expression in WT (K-N) and arf17 anthers (O-R). K and O, Anthers at stage 5 from WT (K) and arf17 (O). L and P, Anthers at stage 6 from WT (L) and arf17 (P). M and Q, Anthers at stage 7 from WT (M) and arf17 (Q). N and R, Anthers at stage 6 from WT (N) and arf17 (R) hybridized with sense probe. Anther developmental stages are numbered according to Sanders et al. (1999). Ms, microsporocyte; T, Tapetum; Tds, tetrads. Bars = 20 μm (A-F) and 50μm (H, I and K-R).

Figure 7. CalS5 is a direct target of ARF17. A, Potential ARF-binding sites in the 1.5 Kb CalS5 promoter. The black box indicates the position of the canonical AuxRE sequence (GAGACA). The upper black lines indicate fragments amplified in Chip-PCR assays. B, Real-time PCR of promoter fragments in ChIP using ARF17-GFP flower buds. Enrichment was only observed when the fragment containing the AuxRE was amplified when affinity-purified GFP antibody was used. C, EMSA assay for ARF17 binding to the CalS5 gene promoter. GST tagged ARF17 protein was mixed with a biotin-labeled 64-bp probe containing the AuxRE and 5- or 25-fold unlabeled probe as competitor. The arrowhead indicates shift band. FP, free probe.

Figure 8. Analyssi of pollen germination and pollen tube growth. A, Pollen grains from the wild type (WT) germinated in vitro. B, Pollen grains from the arf17/+ heterozygote germinated in vitro. White arrows indicate short pollen tubes. C, Percentage of germination of pollen grains from WT and arf17/+ . D, Average lengths of pollen tubes from WT and arf17/+ . E, Length distribution of WT and arf17/+ pollen tubes after germination for 6 h. Means of at least 500 pollen grains from three independent experiments. F, Basta resistance analysis of seeds from crosses between arf17/+ pollen and WT pistils. G, Qualitative analysis of basta resistance of seeds from crosses between
Figure 9. Expression of the auxin response marker DR5::GFP. DR5::GFP expression was observed in root tips in the wild type (WT) (A) and arf17 mutant (B), GFP fluorescence was observed in leaf tips of WT (C) and arf17 mutant (D). E, WT anther showing strong GFP fluorescence. F, GFP fluorescence was severely reduced in arf17 mutant anthers. G and H, Anthers at the tetrad stage (indicated by the inset) from WT (G) and arf17 (H) showing similar GFP signals at the tips of the anther and filament (white arrows). Bars = 100 μm (A and B), 500μm (C-F) and 20 μm (G and H).

Supplemental Figure Legends

Supplemental Figure 1. The ARF17 gene can rescue the sterile phenotype of the arf17 mutant. A, Schematic diagram of the construct used for the arf17 complementation test. The construct contained 1615 kb of the promoter sequence, the 567 bp 3’-untranslated region, and the transcribed region from the start codon to the stop codon. B, Schematic diagram of the ARF17-GFP construct. The green box represents the GFP coding sequence. The gray arrow indicates the position of the Nos terminator. C, Genotype analysis of T₁ plants carrying the ARF17 transgene (left panel) or the ARF17-GFP transgene (right panel). Primers are indicated with arrowheads above and below the diagram and are listed in Supplemental Table 1 online. D, Three plants homozygous for the arf17 mutant background with the ARF17 transgene showed a fertile phenotype. E, One plant homozygous for arf17 with the ARF17-GFP transgene showed a fertile phenotype.

Supplemental Figure 2. DAPI staining showing of meiosis in the arf17 mutant. Chromosomal performance of the male meiocytes in the arf17 mutant is normal. A, Pachytene; B, metaphase; C, Anaphase I; D, Telophase I; E, Prophase II; F, Tetrad stage.
Supplemental Figure 3. Expression analysis of primexine-related genes in wild type and \textit{arf17}. A, RT-PCR analysis of the expression of primexine-related genes. Tubulin \textit{(TUB)} was amplified as an internal control. Similar results were obtained in three independent experiments. B, Real-time PCR analysis of the expression of primexine-related genes. The levels of were normalized to \textit{TUB} and compared with wild-type controls. Error bars indicate SD, and were calculated from three biological replicates.

Supplemental Figure 4. Analysis of pollen development in \textit{qrt1} and \textit{arf17/+qrt1} plants. A and B, Bright-field imaging of pollen from \textit{qrt1} (A) and \textit{arf17/+qrt1} (B). C and D, DAPI staining of pollen form \textit{qrt1} (C) and \textit{arf17/+qrt1} (D). Pollen nuclear division is not affected by the \textit{arf17} mutation. E and F, Alexander’s staining of pollen grains from \textit{qrt1} (E) and \textit{arf17/+qrt1} (F), showing normal pollen viability. Bars = 20μm.
Table 1. Segregation analysis of *arf17* mutant.

Parental Genotype	Phenotype of progeny	Genotype of progeny	TE						
	Parental Genotype	Female							
	Male	Female	Fertile	Sterile	Bar(+)	Bar(-)	ND	ND	ND
arf17/+	*arf17/+*	426	69	ND	ND	ND			
ARF17/+	*arf17/+*	225	0	111	114	49.3% FTE			
arf17/+	*ARF17/+*	283	0	72	217	24.9% MTE			

ND: not detected; TE, transmission efficiency; FTE, female transmission efficiency; MTE, male transmission efficiency.
Figure 1. Schematic representation of the pollen wall and primexine development. A, The innermost layer adjacent to the plasma membrane is the intine. The bacula (Ba), tectum (Te), and tryphine (T) make up the sexine layer. The nexine is located between the intine and the sexine layers. B, Primexine (Pr) appears between callose (Cl) and plasma membrane (Pm) at early tetrad stage (left panel). Subsequently plasma membrane becomes undulated (middle panel) and sporsporidic, extruding posteriorly to form bacula and tectum (right panel).
Figure 2. Characterization of the Arabidopsis arf17 mutant. A, 35-day-old wild-type (WT) plant. B, 35-day-old arf17 mutant plant. C, Structure of the ARF17 (At1g77850) gene. Exons are shown as black boxes. Introns, the promoter, and untranslated regions are shown as a gray line. T-DNA is inserted in the first exon. LP, left border primer; RP, right border primer. D, RT-PCR analysis of ARF17 in WT and arf17 buds using primer pair LP/RP. Tubulin (TUB) was amplified as an internal control. Similar results were obtained in three independent experiments. E and F, Comparison of flowers from WT (E) and arf17 (F). G and H, Alexander’s staining of anthers of WT (G) and arf17 (H). Arrows indicate degraded debris bars: 2 cm (A and B), 500 μm (E and F), 200 μm (G and H).
Figure 3. Expression pattern of ARF17. A to H, In situ hybridization analysis of ARF17 during anther development. Wild-type anthers from Stages 5 (A), 6 (B), 7 (C), 8 (D), 9 (E), 10 (F), and 11 (G) hybridized with the anti-sense probe are shown. H, Stage 6 anther hybridized with the sense probe. I to Y, Fluorescence confocal images of the ARF17-GFP fusion protein. I, Stage 5 anther. J and K, Stage 6 anther and microsporocyte. L and M, Stage 7 anther and tetrads. N and O, Stage 8 anther and uninucleate microspore. P and Q, Bicellular stage anther and microspore. R and S, Tricellular stage anther and pollen grains. T and U, Dehiscent anther and mature pollen. V and W, Germinated pollen grain. X, Y and Z, Germinated pollen tubes. Z, Enlarged picture of boxed area in Y. Gc, germ cell; Ms, microsporocyte; Msp, microspore; Pg, pollen grain; Td, microsporangium; Vn, vegetative nuclei. Bars = 50 μm (A–J, L, N, P, R and T), 20 μm (K, M, O, Q, S and U), and 10 μm (V–Z).
Figure 4. Comparison of transverse anther sections. Anther cross-sections from wild type (WT; A-D and I-K) and arfl7 (E-H and L-N) were stained by toluidine blue. A and E, Anthers at stage 5 from WT (A) and arfl7 mutant (E). B and F, Anthers at stage 6 from WT (B) and arfl7 (E). C and G, Stage 7 anthers from WT (C) and arfl7 (G). D and H, Stage 8 anthers from WT (D) and arfl7 (H). I and L, Stage 9 anthers from WT (I) and arfl7 (L). J and M, Stage 10 anthers from WT (J) and arfl7 (M). K and N, Stage 12 anthers from WT and arfl7 (K). Bar = 20 μm.

E, Epidermis; Ml, microspore mother cell; Ms, microspore; T, Tapetum; Tds, tetrads; Dm, degraded microspore; Dpg, degraded pollen grain; Pg, pollen grain; Sp, sporopollenin; Ms, microspore; T, Tapetum; Tds, tetrads. Bar = 20 μm.
Figure 5. Ultrastructure of pollen wall development. Cross-sections from wild type (WT: A, C, E and G) and arf17 (B, D, F and H). The black boxed image on the right of each panel was enlarged from the corresponding white boxed region. A and B, Microsporocyte at Stage 6 from WT (A) and arf17 (B). C and D, Tetrad of WT (C) and arf17 (D). The primexine is absent in arf17. E and F, Uninucleate microspore stage. Bacula and tectum are visible in the WT anther (E), but not in the arf17 mutant (F). Sporopollenin is randomly deposited around the arf17 microspore. G and H, bicellular stage. The exine layer is established in the WT (G). Microspore exine is absent and the microspore is degraded in the arf17 condition. (A, B, C, D, E, F, G, H) Cl, callose; dMsp, degenerate microspores; Ex, exine; Ms, microsporocyte; Msp, microspore; Pr, primexine; Sp, sporopollenin; Tc, tectum; Tds, tetrads. Bar = 2μm.
Figure 6. Analysis of Callose Deposition and CalS5 Expression. A to C, Toluidine blue staining of tetrads from wild type (WT, A), arf17 (B) and ARF17-GFP complemented (Comp) plants (C). D to F, Aniline blue staining of the callose from WT (D), arf17 (E) and Comp plants (F). G, Quantitative analysis of fluorescence intensity of aniline blue stained tetrads from WT, arf17 and Comp plants. H and I, Aniline blue staining of anther cross sections from WT (H) and arf17 at stage 7 (I). J, Real-time PCR analysis of CalS5 expression in WT and arf17 buds. The level of CalS5 was normalized to Tubulin (TUB) and compared with wild-type control. Error bars indicate SD, and were calculated from three biological replicates. K to R, In situ hybridization analysis of CalS5 expression in WT (K-N) and arf17 anthers (O-R). K and O, Anthers at stage 5 from WT (K) and arf17 (O). L and P, Anthers at stage 6 from WT (L) and arf17 (P). M and Q, Anthers at stage 7 from WT (M) and arf17 (Q). N and R, Anthers at stage 6 from WT (N) and arf17 (R). The sections were hybridized with sense probe. Anther developmental stages are numbered according to Sanders et al. (1999). Ms, microsporocyte; T, Tapetum; Tds, tetrads. Bars = 20 μm (A-F) and 50μm (H, I and K-R).
Figure 7. CalS5 is a direct target of ARF17. A, Potential ARF-binding sites in the 1.5 Kbp CalS5 promoter. The black box indicates the position of the canonical AuxRE sequence (GAGACA). The upper black lines indicate fragments amplified in Chip-PCR assays. B, Real-time PCR of promoter fragments in ChIP using ARF17-GFP flower buds. Enrichment was only observed when the fragment containing the AuxRE was amplified when affinity-purified GFP antibody was used. C, EMSA assay for ARF17 binding to the CalS5 gene promoter. GST tagged ARF17 protein was mixed with a biotin-labeled 64-bp probe containing the AuxRE and 5- or 25-fold unlabeled probe as competitor. The arrowhead indicates shift band. FP, free probe.
Figure 8. Analysis of pollen germination and pollen tube growth. A, Pollen grains from the wild type (WT) germinated in vitro. B, Pollen grains from the arf17/+ heterozygote germinated in vitro. White arrows indicate short pollen tubes. C, Percentage of germination of pollen grains from WT and arf17/+. Stars indicate significant differences in all panels. D, Average lengths of pollen tubes from WT and arf17/+. E, Length distribution of WT and arf17/+ pollen tubes after germination for 6 h. Means of at least 300 pollen grains from three independent experiments. F, Barsata resistance analysis of seeds from crosses between arf17/+ pollen and WT pistils. G, Qualitative analysis of barsata resistance of seeds from crosses between arf17/+ pollen and WT pistils. Asterisks indicate statistically significant differences by Student’s t test (P<0.05). Similar results were obtained from at least three independent experiments. Bars = 100 µm.
Figure 9. Expression of the auxin response marker DR5::GFP. DR5::GFP expression was observed in root tips in the wild type (WT) (A) and arfl7 mutant (B), GFP fluorescence was observed in leaf tips of WT (C) and arfl7 mutant (D). E, WT anther showing strong GFP fluorescence. F, GFP fluorescence was severely reduced in arfl7 mutant anthers. G and H, Anthers at the tetrad stage (indicated by the inset) from WT (G) and arfl7 (H) showing similar GFP signals at the tips of the anther and filament (white arrows). Bars=100 μm (A and B), 500μm (C-F) and 20 μm (G and H).