Implementation strategies in emergency management of children: A scoping review

Alex Aregbesola1,2*, Ahmed M. Abou-Setta3,4, George N. Okoli3, Maya M. Jeyaraman3,4, Otto Lam3, Viraj Kasireddy3, Leslie Copstein3, Nicole Askin5, Kathryn M. Sibley3,4, Terry P. Klassen1,2,3,4

1 The Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada, 2 Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, 3 George & Fay Yee Centre for Healthcare Innovation, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, 4 Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, 5 Neil John Maclean Health Sciences Library, University of Manitoba Libraries, University of Manitoba, Winnipeg, Manitoba, Canada

* Alex.Aregbesola@umanitoba.ca

Abstract

Background
Implementation strategies are vital for the uptake of evidence to improve health, healthcare delivery, and decision-making. Medical or mental emergencies may be life-threatening, especially in children, due to their unique physiological needs when presenting in the emergency departments (EDs). Thus, practice change in EDs attending to children requires evidence-informed considerations regarding the best approaches to implementing research evidence. We aimed to identify and map the characteristics of implementation strategies used in the emergency management of children.

Methods
We conducted a scoping review using Arksey and O’Malley’s framework. We searched four databases [Medline (Ovid), Embase (Ovid), Cochrane Central (Wiley) and CINAHL (Ebsco)] from inception to May 2019, for implementation studies in children (≤21 years) in emergency settings. Two pairs of reviewers independently selected studies for inclusion and extracted the data. We performed a descriptive analysis of the included studies.

Results
We included 87 studies from a total of 9,607 retrieved citations. Most of the studies were before and after study design (n = 68, 61%) conducted in North America (n = 63, 70%); less than one-tenth of the included studies (n = 7, 8%) were randomized controlled trials (RCTs). About one-third of the included studies used a single strategy to improve the uptake of research evidence. Dissemination strategies were more commonly utilized (n = 77, 89%) compared to other implementation strategies; process (n = 47, 54%), integration (n = 49, 56%), and capacity building and scale-up strategies (n = 13, 15%). Studies that adopted
capacity building and scale-up as part of the strategies were most effective (100%) compared to dissemination (90%), process (88%) and integration (85%).

Conclusions
Studies on implementation strategies in emergency management of children have mostly been non-randomized studies. This review suggests that ‘dissemination’ is the most common strategy used, and ‘capacity building and scale-up’ are the most effective strategies. Higher-quality evidence from randomized-controlled trials is needed to accurately assess the effectiveness of implementation strategies in emergency management of children.

Introduction
While it would be ideal, not all hospitals have a separate pediatric emergency department (ED), and a significant number of children present at the general EDs [1, 2]. The requirements to manage pediatric emergencies differ from adults because of their unique needs in medication, equipment, staff, and pediatric-specific policies and protocols [3]. As new evidence is developed from well-designed research studies aimed at improving the health outcomes of children visiting EDs, it is critical to identify effective strategies to help implement new research findings to improve health outcomes [4].

In brief, implementation strategies are methods or techniques used to enhance the uptake and sustainability of research findings into routine practice [4]. They can be categorized into the following classes: (1) dissemination strategies: actions that target healthcare providers’ awareness, knowledge, attitudes, and intention to adopt an evidence-based intervention (EBI) [5], (2) process strategies: activities or processes related to quality improvement in planning, selecting and integrating EBI into practice [6], (3) integration strategies: activities or actions taken to address factors that positively or negatively influence optimal integration of specific EBI into practice [5], and (4) capacity building and scale-up strategies: strategies that target the general capacity of individuals to execute implementation process strategies [5]. These include training, technical assistance, tools, and opportunities for peer networking. An implementation strategy is described as being successful or effective when it leads to an increase in the uptake or utilization of guidelines, protocols or evidence into routine practice [7]. However, it remains unclear if study designs play a role in determining the effectiveness of implementation.

Accumulating implementation studies have continued to report on various implementation strategies used in the emergency management of children with inconclusive evidence on the effectiveness of the strategy used [8–12]. Apart from patient-measured outcomes, implementation studies are expected to also focus on healthcare professional and organizational behavior to accept or utilize evidence-based practices [7], but some studies neither investigated nor reported on it [13]. It is unclear what the characteristics of successful implementation strategies in EDs are. Thus, the aim of this scoping review is to identify and map the characteristics of implementation strategies in the emergency management of children.

Methods
We used Arksey and O’Malley’s 5-stage framework to conduct our scoping review [14]. An a priori protocol of this study is available on the Open Science Framework platform.
Our review question was: What are the characteristics of successful implementation strategies used in the emergency management of children? We reported this review in accordance with the reporting guidance provided in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Review Checklist (S1 Table) [15].

Study eligibility criteria

This review included implementation studies conducted in EDs managing children (e.g., \(\leq 21 \) years) [16]. Our intervention of interest was the use of any of the implementation strategies described earlier [5, 6]. We focused on controlled studies, defined in this case as studies that applied at least a guideline, protocol or a specific treatment plan compared to before implementation or to another setting in which the implementation strategy was not applied. Citations were limited to peer-reviewed, full-text articles published in English. There was no limit on the date of publication.

Search strategy

A medical librarian (N.A.) designed and executed a literature search strategy in MEDLINE (Ovid) from inception through May 2019 (S2 Table). The search strategy was adapted for other bibliographic databases: Embase (Ovid), Cochrane Central (Wiley), and Cinahl (Ebsco). All retrieved citations were imported into an Endnote X8 (Clarivate Analytics, Philadelphia, PA).

Study selection

Two pairs of reviewers (A.A., G.N.O., M.M.J., and O.L.) independently screened the identified citations for eligibility using a two-stage sifting approach to review the title, abstract, and full-text article. Disagreements between reviewers were observed on a few studies (<1%), which was resolved by a discussion between reviewers or by involving another reviewer (A.M.A.S.), on two occasions. We have reported the study selection process using the PRISMA flow diagram (Fig 1).

Data extraction

Data were extracted using standardized pilot-tested forms, entered into MS Excel (Microsoft Corporation, Redmond, WA, USA) by one reviewer (A.A., G.N.O., M.M.J., or O.L.), and verified for accuracy and completeness by a second reviewer. Disagreements were resolved by discussion between reviewers or by involving another reviewer (A.M.A.S.), when necessary. We extracted data on the study details: first author, year of publication, study period, country, study design, study objective, area of study, and the intervention: use of any of the implementation strategies described earlier [5, 6], the effectiveness of the implementation strategies as it relates to healthcare provider-measured and patient-measured outcomes, and the number of strategies used.

Risk of bias assessment

We did not appraise the risk of bias of the included studies, which is consistent with established scoping review methods [17].
Data analysis

We performed screening and data management using MS Excel (Microsoft Corporation, Redmond, WA, USA). A descriptive analysis of different implementation strategies and the effectiveness was conducted and presented in tabular and narrative formats. We determined the effectiveness of the implementation strategy of the included studies based on the positive change reported in the outcomes of studies. We labelled the studies accordingly in cases where no change or negative change was observed in the outcomes. The effectiveness (%) of an implementation strategy was computed by dividing the number of studies that reported a positive effect (on the study outcome using the strategy) by the total number of studies that used the strategy [18, 19].

Results

From 9,607 retrieved citations from four bibliographic databases, we included 87 studies [8–13, 20–100] (Fig 1). The detailed characteristics of the included studies are summarized in Table 1. Most of the included studies were from North America (n = 63, 70%) and Australia (n = 21, 11%). Before and after study design (n = 68, 61%) was the most common study design, and only (n = 7, 8%) were randomized controlled trials (RCTs) (S1 Fig).

Included studies adopted one (n = 27, 31%), two (n = 27, 31%) or three (n = 27, 31%) implementation strategies, while less than one-tenth of the studies used four strategies (n = 6, 7%). The details of the number and how these strategies were used in each included study are presented in S3 Table. Dissemination strategies were utilized by most studies (n = 77, 89%) compared to other implementation strategies; process (n = 47, 54%), integration (n = 49, 56%), and capacity building and scale-up strategies (n = 13, 15%) (Fig 2).
Table 1. Characteristics of 87 included studies.

First author, year of publication	Study period	Region	Study design	Study area
McGrew, 2018 [8]	2011–2	North America	Before & after	Radiology
McLaughlin, 2018 [9]	2008–11	North America	Before & after	General PEM
Tavarez, 2017 [10]	NR	North America	Before & after	General PEM
Lee, 2018 [11]	2010–1	North America	Before & after	Anaphylaxis
Waddell, 2014 [12]	2002–5	North America	Before & after	General PEM
Johnson, 2018 [13]	NR	North America	Before & after	Asthma
Puffenbarger, 2019 [20]	2010–1	North America	Before & after	Radiology
Luks, 2019 [21]	2013	North America	Cohort	Antibiotics
Carson, 2018 [22]	2011	North America	Before & after	Screening
Libetta, 1999 [23]	2009–11	Europe	Before & after	Radiology
Hendrickson, 2018 [24]	2010–2	North America	Before & after	Appendicitis
Norton, 2007 [25]	2008–9; 2010–1	North America	Before & after	Asthma
Dona, 2018 [26]	2008–9	Europe	Before & after	Antibiotics
Mohan, 2018 [27]	NR	North America	Non-RCT	Radiology
Jones, 2017 [28]	NR	Australia	Cohort	Triage/patient flow
Murray, 2017 [29]	2008–9	North America	Before & after	Fever
Geurts, 2017 [30]	2008–10	Europe	Randomized trial	Gastroenteritis
Ahmad, 2017 [31]	NR	North America	Before & after	Sepsis/infection
Gildenhuys, 2009 [32]	2005–9	Australia	Before & after	Asthma
Rutman, 2016 [33]	2005–9	North America	Interrupted time series	Asthma
Lin, 2016 [34]	2010	Asia	Before & after	Triage/patient flow
Shah, 2016 [35]	2007–9	North America	Before & after	Appendicitis
Dandoy, 2016 [36]	2009	North America	Time-series	Antibiotics
Cohen, 2016 [37]	2007	North America	Cohort	Antibiotics
Fallon, 2015 [38]	2002–7	North America	Before & after	Appendicitis
Jeong, 2015 [39]	2002; 2003–4	Asia	Before & after	Triage/patient flow
Dexheimer, 2014 [40]	1996–06	North America	Randomized trial	Asthma
Higginbotham, 2014 [41]	2009	North America	Before & after	Screening
Geurts, 2014 [42]	2007–8	Europe	Before & after	Sepsis/infection
Boutis, 2013 [43]	2008	North America	Interrupted time series	Radiology
Taylor, 2013 [44]	2006–7	Australia	Before & after	Pain management
Russell, 2013 [45]	2006	North America	Before & after	Triage/patient flow
Hack, 2013 [46]	2004–5	North America	Before & after	HIV
Wolff, 2012 [47]	2001–6	North America	Cohort	Jaundice
Doyle, 2012 [48]	2003–5	North America	Before & after	Triage/patient flow
Waseem, 2012 [49]	2004–5	North America	Before & after	Triage/patient flow
Hendrickson, 2012 [50]	2002–4	North America	Before & after	Transfusion
Crocker, 2012 [51]	2001–3	NR	Before & after	Pain management
Angoulvant, 2012 [52]	2000–2	Europe	Interrupted time series	Antibiotics
Larsen, 2011 [53]	1992–6	North America	Before & after	Sepsis/infection
Cruz, 2011 [54]	2000–1	North America	Before & after	Sepsis/infection
Iyer, 2011 [55]	1994–9	North America	Interrupted time series	Pain management
Fagbuyi, 2011 [56]	1997–8	North America	Before & after	Triage/patient flow
Fein, 2010 [57]	1997–9	North America	Before & after	Screening
Babl, 2010 [58]	1992–5	Australia	Before & after	Sedation
To, 2010 [59]	1985–91	North America	Before & after	Asthma
Trottier, 2010 [60]	2014–6	North America	Cohort	Migraine

(Continued)
Studies that adopted capacity building and scale-up as part of the implementation strategies were most effective (100%) compared to dissemination (90%), process (88%), and integration (85%) (Table 2). A similar pattern of effectiveness was observed when each strategy was adopted alone. Compared to other strategies (dissemination, 92%, process, 90%, integration,
87%), the highest level of effectiveness was observed in non-randomized studies, which focused on healthcare provider-related outcomes that used capacity building and scale-up (100%) (Table 3). In contrast, the effectiveness of these strategies was low in RCTs on patient-measured outcomes.

On average, the effectiveness of strategies was higher in studies conducted on healthcare provider-measured outcomes versus patient-measured outcomes for both RCTs (29.3% versus 8.3%) and non-randomized studies (92.3% versus 38.3%). Reduction in the effectiveness of strategies between healthcare provider-measured outcome and patient-measured outcome, however, was higher in RCTs versus non-randomized studies. The change in the number of

![Bar chart showing effectiveness of implementation strategies]

Fig 2. Number (%) of included studies by the type of implementation strategy.

https://doi.org/10.1371/journal.pone.0248826.g002

Effect	Implementation strategies adopted	Dissemination	Process	Integration	Capacity building—scale-up
	Used in combination with other strategies				
Positive	64	36	35	13	
No significant benefit	7	5	6	0	
Negative	0	0	0	0	
Total (n)	71	41	41	13	
Effectiveness (%)	90	88	85	100	
	Used alone				
Positive	17	0	2	1	
No significant benefit	2	1	1	0	
Negative	0	0	0	0	
Total	19	1	3	1	
Effectiveness (%)	89	0	67	100	

n; number of studies; %, percentage of positive effect.

https://doi.org/10.1371/journal.pone.0248826.t002
participants or effect estimates or both following an implementation strategy intervention in each included study is summarized in the S4 Table.

Discussion

This review is the first systematic scoping review that identified the various implementation strategies in the emergency management of children to the best of our knowledge. Most evidence on implementation strategies came from non-randomized studies showing that dissemination strategies were most commonly used, but capacity building and scale-up strategies were the most effective implementation strategies in emergency management of children. About a third of the included studies used one implementation strategy, while two-thirds of the studies used two and three strategies, and less than 10% used four strategies. The effectiveness of the implementation strategies varied by study design and study outcome (e.g. healthcare provider-measured versus patient-measured outcomes). We observed a higher level of effectiveness of strategies in non-randomized studies that used capacity building and scale-up with a focus on healthcare provider-measured outcomes. A timely intervention in the emergency management of children is crucial to attaining an optimal level of care. The skills and resources needed to manage children, especially in EDs, require the rapid implementation of up-to-date research. Different types of implementation
strategies have been used in emergency management of children [4–6], but the questions remain as to which ones are effective and how many strategies are needed in the real world.

Although dissemination strategies were most used in the included studies, capacity building and scale-up were most effective. A before and after study [9] investigated the effect of implementing a simulation-based training program on healthcare provider confidence in team-based management of severely injured pediatric trauma patients and found a positive response as the healthcare provider confidence on long-term exposure was improved. They used dissemination strategies in which healthcare providers underwent a 40-minute structured debriefing with trained debriefers after a training session. They also adopted capacity building and scale-up strategies in which various pediatric simulators and tools were used to support the implementation process to achieve a positive effect on healthcare providers.

It is crucial to identify implementation strategies, which may not produce desired results. As observed in our scoping review, a few implementation studies found no significant benefit following implementation. For example, Tavarez et al. [10] evaluated the effects of implementing e-mail-only, provider-level performance feedback on admission practice variation of physicians and reported no significant impact on management practices. They used integration strategies in which individual physician’s data/performance was highlighted in red if it fell within the lowest quartile among all physicians and highlighted in blue if it fell within the highest quartile of performance.

The success of the implementation strategies appeared to be somewhat influenced by the study design. Our review showed that most of the included studies were non-randomized studies, and only less than one-tenth were RCTs. Arguably, the large number of study designs skewed towards the non-randomized studies may have powered the effectiveness of implementation strategies observed in non-randomized studies. That said, our review showed that the highest level of effectiveness was observed in capacity building and scale-up in non-randomized studies that focused on healthcare provider-measured outcomes. What appeared to be consistent for both RCTs and non-randomized studies was that the effectiveness of the strategies was higher in studies that focused on healthcare provider-measured outcomes versus patient-measured outcomes.

Although the ultimate goal of implementation research is to promote the overall quality of healthcare, the success of implementation strategies is in being able to influence healthcare professionals and organizational behavior positively to accept or utilize evidence-based practices [7]. Lee et al. [11] conducted a before and after study investigating the effect of implementing a clinical pathway to decrease the period of observation following the management of anaphylaxis at EDs to reduce the admission rate. They found a positive effect on the overall admission rate, which was reduced from 58 to 25% following the implementation. While they reported a positive outcome on healthcare provider-measured outcomes, they found no benefit on the patient-measured outcome (percentage of patients that returned to the ED within 72 hours) following the implementation. Their findings and that of other included studies in this review showed that perhaps the focus of implementation studies on patient-measured outcomes may not be a good marker of a successful implementation strategy. We also observed that the reduction in the effectiveness of strategies between healthcare provider-measured outcomes and patient-measured outcomes was higher in RCTs than non-randomized studies. This suggests that the effectiveness of the implementation strategies may be exaggerated in non-randomized studies.

The strengths of this review include using an a priori protocol that followed the standard accepted methods for scoping reviews, and reporting according to the PRISMA Extension for Scoping Review guidelines. The inclusion of a multidisciplinary team, including experienced systematic reviewers, experts in implementation science, clinical epidemiology, and pediatric
emergency management, provided adequate guidance to the reviewers during study selection, data extraction, and interpretation of the results. Our study is not without limitations. Most of the included studies were from North America; thus, worldwide generalizability of our results may be difficult because of cultural variations, which may affect behavior towards implementing research evidence. We did not appraise the risk-of-bias of included studies, which is in keeping with scoping review methods [17]. Because most of the included studies were non-randomized studies with possible exaggeration of effectiveness of strategies, we acknowledged that more robust implementation RCTs with sophisticated methodological approaches are needed to accept or refute our findings. We only performed descriptive statistical analysis, which is consistent with our a priori protocol. Although we searched multiple bibliographic databases for completeness of the search, we acknowledged that we may not have captured all relevant studies due to our inclusion criteria.

Further research is needed to determine barriers to adopting other implementation strategies that appeared to be more effective but not commonly used. More data is also required to determine the optimal time to implement these strategies and their long term effects. Our scoping review has helped summarize the available evidence on implementation strategies in emergency management of children and highlighted the characteristics of successful ones.

In conclusion, studies on implementation strategies in emergency management of children have mostly been non-randomized study designs with possibly exaggerated effect sizes. Better study designs such as RCTs should be conducted more frequently when comparing implementation strategies. This review suggests that dissemination is the most common strategy, and capacity building and scale-up strategies are the most effective strategies.

Supporting information
S1 Table. PRISMA extension for scoping review checklist.

S2 Table. Search strategy.

S3 Table. Summary of the number and type of implementation strategies used in the included studies.

S4 Table. Effect of implementation strategies on the number of participants or effect estimates measured in the included studies.

S1 Fig. Number (%) of included studies by study design. RCT, Randomized controlled trial.

Acknowledgments
Authors thank Amanda Coyle for providing assistance in data cleaning and the design of the tables.

Author Contributions
Conceptualization: Alex Aregbesola, Ahmed M. Abou-Setta, Kathryn M. Sibley, Terry P. Klassen.
Data curation: Alex Aregbesola, Ahmed M. Abou-Setta, George N. Okoli, Maya M. Jeyaraman, Otto Lam, Viraj Kasireddy, Nicole Askin.

Formal analysis: Alex Aregbesola, Ahmed M. Abou-Setta.

Investigation: Alex Aregbesola, George N. Okoli, Maya M. Jeyaraman, Kathryn M. Sibley, Terry P. Klassen.

Methodology: Ahmed M. Abou-Setta, George N. Okoli, Maya M. Jeyaraman, Otto Lam, Viraj Kasireddy, Leslie Copstein, Nicole Askin, Kathryn M. Sibley, Terry P. Klassen.

Project administration: Alex Aregbesola, Ahmed M. Abou-Setta.

Writing – original draft: Alex Aregbesola.

Writing – review & editing: Alex Aregbesola, Ahmed M. Abou-Setta, George N. Okoli, Maya M. Jeyaraman, Otto Lam, Viraj Kasireddy, Leslie Copstein, Nicole Askin, Kathryn M. Sibley, Terry P. Klassen.

References

1. Emergency Medical Services for Children—NPRP. Ensuring Pediatric Readiness for All Emergency Department. EMSC—NPRP 2017.

2. Canadian Institute for Health Information. Sources of Potentially Avoidable Emergency Department Visits. Ottawa, ON. CIHI 2014; ISBN 978-1-77109-320-9.

3. American Academy of Pediatrics Committee on Pediatric Emergency Medicine, Yamamoto LG. Access to optimal emergency care for children. Pediatrics 2007 Jan; 119(1):161–164. https://doi.org/10.1542/peds.2006-2900 PMID: 17200284

4. Proctor EK, Powell BJ, McMillen JC. Implementation strategies: recommendations for specifying and reporting. Implement Sci. 2013; 8:139. https://doi.org/10.1186/1748-5908-8-139 PMID: 24289295

5. Leeman J, Birken SA, Powell BJ, Rohweder C, Shea CM. Beyond "implementation strategies": classifying the full range of strategies used in implementation science and practice. Implement Sci. 2017; 12 (1): 017–0657. https://doi.org/10.1186/s13012-017-0657-x PMID: 2900551

6. Aarons GA, Hurlburt M, Horwitz SM. Advancing a conceptual model of evidence-based practice implementation in public service sectors. Adm Policy Ment Health. 2011; 38(1): 4–23. https://doi.org/10.1007/s10488-010-0327-7 PMID: 21197565

7. Eccles MP, Armstrong D, Baker R, Cleary K, Davies H, Davies S, et al. An implementation research agenda. Implement Sci. 2009; 4: 4–18.

8. McGrew PR, Chestovitch PJ, Fisher JD, Kuhlis DA, Fraser DR, Patel PP, et al. Implementation of a CT scan practice guideline for pediatric trauma patients reduces unnecessary scans without impacting outcomes. J Trauma Acute Care Surg. 2018; 85(3): 451–458. https://doi.org/10.1097/TA.0000000000002147 PMID: 29787555

9. McLaughlin CM, Wieck MM, Barin EN, Rake A, Burke RV, Roessly HB, et al. Impact of simulation-based training on perceived provider confidence in acute multidisciplinary pediatric trauma resuscitation. Pediatr Surg Int. 2018; 34(12): 1353–1362. https://doi.org/10.1007/s00383-018-4361-y PMID: 30324569

10. Tavarez MM, Ayers B, Jeong JH, Coombs CM, Thompson A, Hickey RW. Practice Variation and Effects of E-mail-only Performance Feedback on Resource Use in the Emergency Department. Acad Emerg Med. 2017; 24(6): 948–956. https://doi.org/10.1111/acem.13211 PMID: 28470786

11. Lee J, Rodio B, Lavelle J, Lewis MO, English R, Hadley S, et al. Improving Anaphylaxis Care: The Impact of a Clinical Pathway. Pediatrics. 2018; 141(5): 1616. https://doi.org/10.1542/peds.2017-1616 PMID: 29915480

12. Waddell D, McGrath I, Maude P. The effect of a rapid rehydration guideline on Emergency Department management of gastroenteritis in children. Int Emerg Nurs. 2014; 22(3): 159–164. https://doi.org/10.1016/j.ienjr.2013.09.004 PMID: 24210953

13. Johnson DP, Arnold DH, Gay JC, Grasso A, O’Connor MG, O’Kelley E, et al. Implementation and Improvement of Pediatric Asthma Guideline Improves Hospital-Based Care. Pediatrics. 2018; 141(2): 1542–1630. https://doi.org/10.1542/peds.2017-1630 PMID: 29367203

14. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. International Journal of Social Research Methodology. 2005; 8(1): 19–32.
15. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018; 169:467–473. https://doi.org/10.7326/M18-0850 PMID: 30178033

16. Hardin AP, Hackell JM, COMMITTEE ON PRACTICE AND AMBULATOR Y MEDICINE. Age Limit of Pediatrics. Pediatrics. 2017; 140(3):10 https://doi.org/10.1542/peds.2017-2151 PMID: 28827380

17. Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol. 2018; 18(1):143. https://doi.org/10.1186/s12874-018-0611-x PMID: 30453902

18. Stegenga J. Measuring effectiveness. Stud Hist Philos Biol Biomed Sci. 2015; 54: 62–71. https://doi.org/10.1016/j.shpsc.2015.06.003 PMID: 26199055

19. Haynes B. Can it work? Does it work? Is it worth it? The testing of healthcare interventions is evolving. BMJ. 1999; 319(7211):652–653. https://doi.org/10.1136/bmj.319.7211.652 PMID: 10480802

20. Puffenbarger MS, Ahmad FA, Argent M, Gu H, Samson C, Quayle KS, et al. Reduction of Computed Tomography Use for Pediatric Closed Head Injury Evaluation at a Nonpediatric Community Emergency Department. Acad Emerg Med. 2019; 26(7): 784–795. https://doi.org/10.1111/acer.13666 PMID: 30428150

21. Lukes T, Schjodt K, Struwe L. Implementation of a Nursing Based Order Set: Improved Antibiotic

22. Carson SM. Implementation of a Comprehensive Program to Improve Child Physical Abuse Screening and Detection in the Emergency Department. J Emerg Nurs. 2018; 44(6): 576–581. https://doi.org/10.1016/j.jen.2018.04.003 PMID: 2977624

23. Libetta C, Burke D, Brennan P, Yassa J. Validation of the Ottawa ankle rules in children. J Accid Emerg Med. 1999; 16(5): 342–344. https://doi.org/10.1136/emu.16.5.342 PMID: 10505914

24. Hendrickson MA, Wey AR, Gaillard PR, Kharbanda AB. Implementation of an Electronic Clinical Decision Support Tool for Pediatric Appendicitis Within a Hospital Network. Pediatr Emerg Care. 2018; 34(1): 10–16. https://doi.org/10.1097/PEC.0000000000001069 PMID: 28277414

25. Norton SP, Pusic MV, Taha F, Heathcote S, Carleton BC. Effect of a clinical pathway on the hospitalisation rates of children with asthma: a prospective study. Arch Dis Child. 2007; 92(1):60–66. https://doi.org/10.1136/adc.2006.097287 PMID: 16905562

26. Dona D, Zingarella S, Gastald A, Lundin R, Perilongo G, Frigo AC, et al. Implementation of a Clinical Pathway for Chest Pain in a Pediatric Emergency Department. Pediatr Emerg Care. 2018; 34(11): 778–782. https://doi.org/10.1097/PEC.0000000000001061 PMID: 27649041

27. Mohan S, Nandi D, Stephens P, M’Farrej M, Vogel RL, Bonafide CP. Implementation of a Clinical Pathway for Herpes Simplex Virus in the Emergency Department. Pediatr Emerg Care. 2017; 33(6): 396–401. https://doi.org/10.1097/PEC.0000000000001253 PMID: 27748332

28. Murray AL, Alpern E, Lavelle J, Mollen C. Clinical Pathway Effectiveness: Febrile Young Infant Clinical Pathway in a Pediatric Emergency Department. Pediatr Emerg Care. 2017; 33(9): 33–37.

29. Geurts D, de Vos-Kerkhof E, Polinder S, Steyerberg E, van der Lei J, Moll H, et al. Implementation of clinical decision support in young children with acute gastroenteritis: a randomized controlled trial in the emergency department. Eur J Pediatr. 2017; 176(2): 173–181. https://doi.org/10.1007/s00431-016-2819-2 PMID: 27933399

30. Ahmad FA, Storch GA, Miller AS. Impact of an Institutional Guideline on the Care of Neonates at Risk for Herpes Simplex Virus in the Emergency Department. Pediatr Emerg Care. 2017; 33(6): 396–401. https://doi.org/10.1097/PEC.0000000000001253 PMID: 26308608

31. Gildenhuys J, Lee M, Isbister GK. Does implementation of a paediatric asthma clinical practice guideline worksheet change clinical practice? Int J Emerg Med 2009; 2(1): 33–39. https://doi.org/10.1007/s12245-008-0063-x PMID: 19390915

32. Rutman L, Atkins RC, Migita R, et al. Modification of an Established Pediatric Asthma Pathway Improves Evidence-Based, Efficient Care. Pediatrics. 2016; 138(6):10. https://doi.org/10.1542/peds. 2016-1248 PMID: 27940683

33. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018; 169:467–473. https://doi.org/10.7326/M18-0850 PMID: 30178033
35. Shah SR, Sinclair KA, Theut SB, Johnson KM, Holcomb GW 3rd, St Peter SD. Computed Tomography Utilization for the Diagnosis of Acute Appendicitis in Children Decreases With a Diagnostic Algorithm. Ann Surg. 2016; 264(3):474–481. https://doi.org/10.1097/SLA.0000000000001867 PMID: 27433918

36. Dandoy CE, Hariharan S, Weiss B, Demmel K, Timm N, Chiarenzelli, et al. Sustained reductions in time to antibiotic delivery in febrile immunocompromised children: results of a quality improvement collaborative. BMJ Qual Saf. 2016; 25(2): 100–109. https://doi.org/10.1136/bmjqs-2015-004451 PMID: 26341714

37. Cohen C, King A, Lin CP, Friedman GK, Monroe K, Kutny M. Protocol for Reducing Time to Antibiotics in Pediatric Patients Presenting to an Emergency Department With Fever and Neutropenia: Efficacy and Barriers. Pediatr Emerg Care. 2016 Nov; 32(11): 739–745. https://doi.org/10.1097/PEC.0000000000000362 PMID: 25822237

38. Fallon SC, Orth RC, Guillerman RP, Munden MM, Zhang W, Elder SC, et al. Development and validation of an ultrasound scoring system for children with suspected acute appendicitis. Pediatr Radiol. 2015; 45(13): 1945–1952. https://doi.org/10.1007/s00247-015-3443-4 PMID: 26280638

39. Jeong JH, Hwang SS, Kim K, Lee JH, Rhee JE, Kang C, et al. Implementation of a computerized protocol to reduce return visits within 72 h to a paediatric emergency department. Eur J Pediatr. 2015; 173(4): 463–468. https://doi.org/10.1007/s00431-013-2182-5 PMID: 24221603

40. Boutis K, Grootendorst P, Willan A, et al. Effect of the Low Risk Ankle Rule on the frequency of radiography in children with ankle injuries. CMAJ. 2013; 185(15): 731–738. https://doi.org/10.1503/cmaj.122050 PMID: 23939215

41. Geurts DH, Vos W, Moll HA, Oostenbrink R. Impact analysis of an evidence-based guideline on diagnosis of urinary tract infection in infants and young children with unexplained fever. Eur J Pediatr. 2014; 173(4): 463–468. https://doi.org/10.1007/s00431-013-2182-5 PMID: 24221603

42. Taylor SE, Taylor DM, Jao K, Goh S, Ward M. Nurse-initiated analgesia pathway for pediatric patients in the emergency department: a clinical intervention trial. Emerg Med Australas. 2013; 25(4): 316–323. https://doi.org/10.1111/j.1742-6723.2012.01022 PMID: 23911022

43. Russell WS, Schuh AM, Hill JG, Hebra A, Cina RA, Smith CD, et al. Clinical practice guidelines for pediatric appendicitis evaluation can decrease computed tomography utilization while maintaining diagnostic accuracy. Pediatr Emerg Care. 2013; 29(5): 568–573. https://doi.org/10.1097/PEC.0b013e31828e5718 PMID: 23611916

44. Hack CM, Abramowicz R, Arnold DH, Johnson K, Shyr Y, Ye F, et al. Implementation and evaluation of an integrated computerized asthma management system in a pediatric emergency department: a randomized clinical trial. Int J Med Inform. 2014; 83(11): 805–813. https://doi.org/10.1016/j.ijmedinf.2014.07.008 PMID: 25174321

45. Hendrickson JE, Shaz BH, Pereira G, Parker PM, Jessup P, Atwell F, et al. Implementation of a pediatric trauma massive transfusion protocol: one institution’s experience. Transfusion. 2012; 52(6): 1228–1236. https://doi.org/10.1111/j.1537-2995.2011.03458.x PMID: 22128884

46. Crocker PJ, Higginbotham E, King BT, Taylor D, Milling TJ Jr. Comprehensive pain management protocol reduces children’s memory of pain at discharge from the pediatric ED. Am J Emerg Med. 2012; 30(6): 861–871. https://doi.org/10.1016/j.ajem.2011.05.030 PMID: 22030197

47. Angoulvant F, Skurnik D, Bellanger H, Abdoul H, Bellurette X, Morin L, et al. Impact of implementing French antibiotic guidelines for acute respiratory-tract infections in a paediatric emergency department. Eur J Child Adolesc Psychiatry. 2012; 21(9): 701–707. https://doi.org/10.1007/s00787-012-1471-4
53. Larsen GY, Mecham N, Greenberg R. An emergency department septic shock protocol and care guideline for children initiated at triage. Pediatrics. 2011; 127(6): 1585–1592. https://doi.org/10.1542/peds.2010-3513 PMID: 21376304

54. Cruz AT, Perry AM, Williams EA, Graf JM, Wuestner ER, Patel B. Implementation of goal-directed therapy for children with suspected sepsis in the emergency department. Pediatrics. 2011; 127(3): 758–766. https://doi.org/10.1542/peds.2010-2895 PMID: 21339277

55. Iyer SB, Schubert CJ, Schoettker PJ, Reeves SD. Use of quality-improvement methods to improve timeliness of analgesic delivery. Pediatrics. 2011; 127(1): 219–225. https://doi.org/10.1542/peds.2010-0632 PMID: 21149422

56. Fagbuyi DB, Brown KM, Mathison DJ, Kingsnorth J, Morrison S, Saidinejad M, et al. A rapid medical screening process improves emergency department patient flow during surge associated with novel H1N1 influenza virus. Ann Emerg Med. 2011; 57(1): 52–59. https://doi.org/10.1016/j.annemergmed.2010.08.026 PMID: 20947207

57. Fein JA, Pailler ME, Barg FK, Wintersteen MB, Hayes K, Tien AY, et al. Feasibility and effects of a Web-based adolescent psychiatric assessment administered by clinical staff in the pediatric emergency department. Arch Pediatr Adolesc Med. 2010; 164(12): 1112–1117. https://doi.org/10.1001/archpediatrics.2010.213 PMID: 21335339

58. Babi FE, Kriessler D, Belousoff J, Theophilos T. Evaluation of a paediatric procedural sedation and credentialing programme: sustainability of change. Emerg Med J. 2010; 27(8): 577–581. https://doi.org/10.1136/emj.2009.072024 PMID: 20688936

59. To T, Wang C, Dell SD, Fleming-Carroll B, Parkin P, Scollnik D, et al. Can an evidence-based guideline reminder card improve asthma management in the emergency department? Respir Med 2010; 104(9): 1263–1270. https://doi.org/10.1016/j.resmed.2010.03.028 PMID: 20434896

60. Trotter ED, Bailey B, Dauphin-Pierre S, Doray JP, Dussault M, Gravel J. Practice variation after implementation of a protocol for migraines in children. Eur J Emerg Med. 2010; 17(5): 290–292. https://doi.org/10.1097/MEJ.0b013e3283321162 PMID: 19864956

61. Cruz AT, Patel B, DiStefano MC, Codispoti CR, Shook JE, Demmler-Harrison GJ, et al. Outside the box and into thick air: implementation of an exterior mobile pediatric emergency response team for North American H1N1 (swine) influenza virus in Houston, Texas. Ann Emerg Med. 2010; 55(1): 23–31. https://doi.org/10.1016/j.annemergmed.2009.08.003 PMID: 19837479

62. Burnette K, Ramundo M, Stevenson M, Beeson MS. Evaluation of a web-based asynchronous pediatric emergency medicine learning tool for residents and medical students. Acad Emerg Med. 2009; 16: 46–50.

63. Gauthier M, Chevalier I, Gouin S, Lamarre V, Abela A. Ceftriaxone for refractory acute otitis media: impact of a clinical practice guideline. Pediatr Emerg Care. 2009; 25(11): 739–743. https://doi.org/10.1097/PEC.0b013e3181be85f PMID: 19874968

64. Minniear TD, Gilmore B, Arnold SR, Flynn PM, Knapp KM, Gaur AH. Implementation of and barriers to routine HIV screening for adolescents. Pediatrics. 2009; 124(4): 1076–1084. https://doi.org/10.1542/peds.2009-0237 PMID: 19752084

65. Kozer E, Bar-Hamburger R, Rosenfeld N, Dalal I, Landu O, Fairmesser P, et al. Strategy for increasing detection rates of drug and alcohol abuse in paediatric emergency departments. Acta Paediatr. 2009; 98(10): 1637–1640. https://doi.org/10.1111/j.1651-2227.2009.01392.x PMID: 19555445

66. Hayden G, Hewson PH, Eddey D, Smith D, Vuillermin PJ. Implementation of a checklist to assist in the rapid identification of seriously ill children in the emergency department: an observational study. J Paediatr Child Health. 2009; 45(5): 274–278. https://doi.org/10.1111/j.1440-1754.2009.01489.x PMID: 19493119

67. Callegaro S, Titomarzi L, Donega S, Tagliaferro T, Andreola B, Gibertini GG, et al. Implementation of a febrile seizure guideline in two pediatric emergency departments. Pediatr Neurol. 2009; 40(2): 78–83. https://doi.org/10.1016/j.pediatrneuro.2008.09.008 PMID: 19135618

68. Morrissey LK, Shea JO, Kalish LA, Weiner DL, Branowicki P, Heeney MM. Clinical practice guideline improves the treatment of sickle cell disease vasocclusive pain. Pediatr Blood Cancer. 2009; 52(3): 369–372. https://doi.org/10.1002/pbc.21847 PMID: 19023890

69. Roukema J, Steyerberg EW, van der Lei J, Moll HA. Randomized trial of a clinical decision support system: impact on the management of children with fever without apparent source. J Am Med Inform Assoc. 2008; 15(1): 107–113. https://doi.org/10.1197/jamia.M2164 PMID: 17947627
70. Doherty S, Jones P, Stevens H, Davis L, Ryan N, Treeve V. 'Evidence-based implementation' of pediatric asthma guidelines in a rural emergency department. J Paediatr Child Health. 2007; 43(9): 611–616. https://doi.org/10.1111/j.1440-1754.2007.01151.x PMID: 17688645

71. Boychuk RB, Demesa CJ, Kiyabu KM, Yamamoto F, Yamamoto LG, Sanderson R, et al. Change in approach and delivery of medical care in children with asthma: results from a multicenter emergency department asthma management program. Pediatrics. 2006; 117(4 Pt 2):145–551. https://doi.org/10.1542/peds.2005-0053 PMID: 16199678

72. De Marco G, Mangani S, Correra A, Di Caro S, Tarallo L, De Franciscis A, et al. Reduction of inappropriate hospital admissions of children with influenza-like illness through the implementation of specific guidelines: a case-controlled study. Pediatrics. 2005; 116(4): 506–511. https://doi.org/10.1542/peds.2005-0053 PMID: 16199678

73. Buckmaster A, Boon R. Reduce the rads: a quality assurance project on reducing unnecessary chest X-rays in children with asthma. J Paediatr Child Health. 2005; 41(3): 107–111. https://doi.org/10.1111/j.1440-1754.2005.00559.x PMID: 15790320

74. Buller-Close K, Schriger DL, Baraff LJ. Heterogeneous effect of an Emergency Department Expert Charting System. Ann Emerg Med. 2003; 41(5): 644–652. https://doi.org/10.1067/mem.2003.182 PMID: 12712031

75. Lee SL, Sena M, Greenholz SK, Fledderman M. A multidisciplinary approach to the development of a cervical spine clearance protocol: process, rationale, and initial results. J Pediatr Surg. 2003; 38(3): 358–362. https://doi.org/10.1053/jpsu.2003.50108 PMID: 12632349

76. Perelstein PH, Lichtenstein P, Cohen MB, Ruddy R, Schoettle PJ, Atherton HD, et al. Implementing an evidence-based acute gastroenteritis guideline at a children’s hospital. Jt Comm J Qual Improv. 2002; 28(1): 20–30. https://doi.org/10.1016/s1070-3241(02)28003-7 PMID: 11787237

77. Sharief Q, Hoecker C, Silva PD. Effects of a pediatric emergency department febrile infant protocol on time to antibiotic therapy. J Emerg Med. 2001; 21(1): 1–6. https://doi.org/10.1016/s0736-4679(01)00328-6 PMID: 11399380

78. Gazarian M, Henry RL, Wales SR, Micallef BE, Rood EM, O’Meara MW, et al. Evaluating the effectiveness of evidence-based guidelines for the use of spacer devices in children with acute asthma. Med J Aust. 2001 Apr 16; 174(8): 394–397.

79. Schriger DL, Baraff LJ, Buller K, Shendrikar MA, Nagda S, Lin EJ, et al. Implementation of clinical guidelines via a computer charting system: effect on the care of febrile children less than three years of age. J Am Med Inform Assoc. 2000; 7(2): 186–185. https://doi.org/10.1016/j.jamia.2000.070186 PMID: 10730602

80. Lavelle JM, Shaw KN. Evaluation of head injury in a pediatric emergency department: pretrauma and posttrauma system. Arch Pediatr Adolesc Med. 1998; 152(12): 1220–1224. https://doi.org/10.1001/archped.152.12.1220 PMID: 9866433

81. Rooholami SN, Clifton H, Haaland W, McGrath C, Vera SB, Crowell CS, et al. Outcomes of a Clinical Pathway to Standardize Use of Maintenance Intravenous Fluids. Hosp Pediatr. 2017; 7(12): 703–709. https://doi.org/10.1542/hped.2017-0099 PMID: 29162640

82. Hall RT, Domenico HJ, Self WH, Hain PD. Reducing the blood culture contamination rate in a pediatric emergency department and subsequent cost savings. Pediatrics. 2013; 131(1): 292–297.

83. Zeretzke CM, McIntosh MS, Kalynych CJ, Wylie T, Lott M, Wood D. Reduced use of occult bacteremia blood screens by emergency medicine physicians using immunization registry for children presenting with fever without a source. Pediatr Emerg Care. 2012; 28(7): 640–645. https://doi.org/10.1097/PEC.0b013e31825cfd3e PMID: 22743750

84. Volpe D, Harrison S, Damian F, Rachh P, Kahlon PS, Morrissey L, et al. Improving timeliness of antibiotic delivery for patients with fever and suspected neutropenia in a pediatric emergency department. Pediatrics. 2012; 130(1): 201–210.

85. Pakakasama S, Surayuthprecha K, Pandee U, Anurathapan U, Maleewan V, Udomsubpayakul U, et al. Clinical practice guidelines for children with cancer presenting with fever to the emergency room. Pediatr Int. 2011; 53(6): 902–905. https://doi.org/10.1111/j.1442-200X.2011.03363.x PMID: 21418423

86. Quint DM, Teach JS. IMPACT DC: Reconceptualizing the Role of the Emergency Department for Urban Children with Asthma. Clin Ped Emerg Med. 2009; 10: 115–121.

87. Michalowski W, Slowinski R, Wilk S. MET system: a new approach to m-health in emergency triage. Stud Health Technol Inform. 2004; 103: 101–108. PMID: 15747911

88. Muething S, Schoettle PJ, Gerhardt WE, Atherton HD, Britto MT, Kotagal UR. Decreasing overuse of therapies in the treatment of bronchiolitis by incorporating evidence at the point of care. J Pediatr. 2004; 144(6): 703–710. https://doi.org/10.1016/j.jpeds.2004.01.058 PMID: 15192613
89. Melzer-Lange MD, Walsh-Kelly CM, Lea G, Hillery CA, Scott JP. Patient-controlled analgesia for sickle cell pain crisis in a pediatric emergency department. Pediatr Emerg Care. 2004; 20(1):2–4. https://doi.org/10.1097/01.pec.0000106235.72265.29 PMID: 14716157

90. Dexheimer JW, Abramo TJ, Arnold DH, Johnson K, Shyr Y, Ye F, et al. Implementation and evaluation of an integrated computerized asthma management system in a pediatric emergency department: a randomized clinical trial. Int J Med Inform. 2014; 83(11): 805–813. https://doi.org/10.1016/j.ijmedinf.2014.07.008 PMID: 25174321

91. Jain S, Hegenbarth MA, Humiston SG, Gunter E, Anson L, Giovanni JE. Increasing ED Use of Jet Injection of Lidocaine for IV-Related Pain Management. Pediatrics. 2017; 139(4):10. https://doi.org/10.1542/peds.2016-1697 PMID: 28280209

92. Fraser JA, Flemington T, Doan D, Hoang V, Doan B, Ha T. Professional self-efficacy for responding to child abuse presentations. Journal of children’s services. 2018; 13:81–92.

93. Gillespie GL, Leming-Lee TS, Crutcher T, Mattei J. Chart It to Stop It: A Quality Improvement Study to Increase the Reporting of Workplace Aggression. J Nurs Care Qual. 2016; 31(3):254–261. https://doi.org/10.1097/NCQ.0000000000000172 PMID: 26796974

94. Gazi K, Altamimi SA, Tamim H, Serrano K. Impact of an emergency nurse-initiated asthma management protocol on door-to-first-salbutamol-nebulization-time in a pediatric emergency department. J Emerg Nurs. 2010; 36(5): 428–433. https://doi.org/10.1016/j.jen.2009.11.003 PMID: 20837211

95. Hughes JL, Asarnow JR. Enhanced Mental Health Interventions in the Emergency Department: Suicide and Suicide Attempt Prevention in the ED. Clin Pediatr Emerg Med. 2013; 14(1): 28–34. https://doi.org/10.1016/j.cpem.2013.01.002 PMID: 25904825

96. Meunier-Sham J, Ryan K. Reducing pediatric pain during ED procedures with a nurse-driven protocol: an urban pediatric emergency department’s experience. J Emerg Nurs. 2017; 29(2): 127–132. https://doi.org/10.1067/emen.2003.68 PMID: 12660694

97. Cunningham RM, Walton MA, Goldstein A, Chermack ST, Shope JT, Bingham CR, et al. Three-month follow-up of brief computerized and therapist interventions for alcohol and violence among teens. Acad Emerg Med. 2009; 16(11): 1193–1207. https://doi.org/10.1111/j.1553-2712.2009.00513.x PMID: 20053240

98. Einfeld S, Tobin M, Beard J, Evans E, Dudley M. Sustaining evidence-based practice for young people who self-harm: a 4-year follow-up. Aust Health Rev. 2004; 27(2): 94–99. https://doi.org/10.1071/ah04270094 PMID: 15925242

99. Lemberg DA, Day AS, Brydon M. The role of a clinical pathway in curtailing unnecessary investigations in children with gastroenteritis. Am J Med Qual. 2005; 20(2): 83–89. https://doi.org/10.1177/1062860604274381 PMID: 15851386

100. Fox L, Timm N. Pediatric issues in disaster preparedness: meeting the educational needs of nurses—are we there yet? J Pediatr Nurs. 2008; 23(2): 145–152. https://doi.org/10.1016/j.pedin.2007.12.008 PMID: 18339341