Molecular underpinnings of integrin binding to collagen-mimetic peptides containing vascular Ehlers–Danlos syndrome–associated substitutions

Cody L. Hoop, Allysia P. Kemraj, Baifan Wang, Sonal Gahlawat, Madison Godesky, Jie Zhu, Haley R. Warren, David A. Case, David I. Shreiber, and Jean Baum

From the Departments of Chemistry and Chemical Biology and Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854

Edited by Paul E. Fraser

Collagens carry out critical extracellular matrix (ECM) functions by interacting with numerous cell receptors and ECM components. Single glycine substitutions in collagen III, which predominates in vascular walls, result in vascular Ehlers–Danlos syndrome (vEDS), leading to arterial, uterine, and intestinal rupture and an average life expectancy of <50 years. Collagen interactions with integrin α2β1 are vital for platelet adhesion and activation; however, how these interactions are impacted by vEDS-associated mutations and by specific amino acid substitutions is unclear. Here, we designed collagen-mimetic peptides (CMPs) with previously reported Gly → Xaa (Xaa = Ala, Arg, or Val) vEDS substitutions within a high-affinity integrin α2β1-binding motif, GROGER. We used these peptides to investigate, at atomic-level resolution, how these amino acid substitutions affect the collagen III–integrin α2β1 interaction. Using a multi-tiered approach combining biochemical adhesion assays, CD, NMR, and molecular dynamics (MD) simulations, we found that these substitutions differentially impede human mesenchymal stem cell spreading and integrin α2–inserted (α2I) domain binding to the CMPs and were associated with triple-helix destabilization. Although an Ala substitution locally destabilized hydrogen bonding and enhanced mobility, it did not significantly reduce the CMP–integrin interactions. MD simulations suggested that bulkier Gly → Xaa substitutions differentially disrupted the CMP–α2I interaction. The Gly → Arg substitution destabilized CMP–α2I side-chain interactions, and the Gly → Val change broke the essential Mg2+ coordination. The relationship between the loss of functional binding and the type of vEDS substitution provides a foundation for developing potential therapies for managing collagen disorders.

Vascular Ehlers–Danlos syndrome (vEDS) is life-threatening and results from abnormal synthesis of, or pathogenic mutations to, collagen III in blood vessel walls and distensible organ linings. This leads to arterial aneurysms; rupture to arterial, uterine, and intestinal walls; and thin, translucent skin (1, 2). vEDS is one of several debilitating genetic collagen diseases primarily caused by single Gly → Xaa mutations in the triple-helical (Gly-Xaa-Xaa)n repeating domain of fibrillar collagens that include osteogenesis imperfecta (OI), achondrogenesis type II, spondyloepiphyseal dysplasia syndrome, and Stickler syndrome. Because glycines stabilize the interior of collagen triple helices through an intricate hydrogen-bonding network (3–5) in the canonical (GXX)n repeating domain, mutation of conserved glycines in fibrillar collagens may cause deficiencies in collagen structure, assembly, or production (6–8).

The specific triple-helical conformation of collagen is important for recognition by its numerous binding partners in the extracellular matrix (ECM). Interactions of collagen III with cellular receptors are critical for cell homeostasis, wound healing, and platelet adhesion and activation (9–12). In this study, we focus on the collagen III interaction with the endothelial and platelet receptor integrin α2β1, which plays a pivotal role in cell–ECM adhesion and firm platelet arrest, adhering to exposed subendothelial ECM upon vascular injury (13–16). The collagen-binding integrins interact with native collagens via their inserted (I) domain located in the α subunit (αI) of the integrin headpiece (17–21). Isolated, αI retains the specificity and affinity of the parent integrins for collagen and has been used as a model of integrin in biological and structural studies (22–26). Integrins recognize a specific binding motif in the collagen sequence, GXX’GEXn (in which X is any amino acid, X’ is usually Hyp, and Xn is frequently Arg or Asn), and the binding is metal-mediated, in which the Glu of collagen is coordinated to

The abbreviations used are: vEDS, vascular Ehlers–Danlos syndrome; ECM, extracellular matrix; I, inserted; MD, molecular dynamics; CMP, collagen-mimetic peptide; OI, osteogenesis imperfecta; hMSC, human mesenchymal stem cell; MRE, molar residue ellipticity; HScQ, heteronuclear single quantum correlation; O or Hyp, hydroxyproline; MEM, minimal essential medium; TES, 2-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino)ethanesulfonic acid.
a divalent metal cation in the metal ion–dependent adhesion site (MIDAS) of the α1 (27, 28). The collagen III sequence GROGER has been determined to be a high-affinity integrin-binding site (29) and is in a region that is especially overrepresented in reported cases of Gly → Xaa mutations (Fig. 1A). Here, we investigated how Gly → Xaa mutations within this domain impact integrin α2β1 binding and the molecular basis of any functional interference.

Previous studies have shown that substitution of these integral Gly residues causes structural deformities to the triple helix, and the extent of triple-helix destabilization depends on the amino acid substituted (30, 31) and the surrounding sequence context (32–36). Recently, elegant studies have investigated the impact of Gly → Xaa mutations near integrin-binding sites in collagen I (31, 37) using recombinant bacterial collagen systems, which can incorporate long spans of collagen-like sequence and can probe selective mutation sites. However, these models lack hydroxyprolines that are important for triple-helix folding and are unable to model the heterotrimeric collagen I triple helix. Here, we use collagen-mimetic peptides (CMPs) that incorporate a native collagen III sequence. These are good physiological models of collagen III fragments given its homotrimeric nature, and incorporation of native hydroxyprolines allows us to more closely model effects of Gly → Xaa mutations on triple-helix structure and dynamics.

Structural consequences of Gly substitutions in collagen triple helices have been extensively studied in the context of OI mutations to collagen I (35, 38–42). OI is an autosomal dominant disorder, resulting from mutations to COL1A1 or COL1A2 genes. Because collagen I is a heterotrimer of α1(I) and α2(I) α-chains, only one or two mutant α-chains will be incorporated into the collagen I triple helix. In the homotrimeric collagen III, vEDS mutations may result in incorporation of up to three mutant α-chains. For OI, clinical phenotypes have been classified based on severity, and larger Gly substitutions more frequently result in lethal OI (43–45). No classification system has been established for vEDS. However, a clinical study found that survival of individuals with vEDS Gly → Xaa mutations was correlated with the substituting amino acid identity, with the trend Ser > Arg/Asp > Val (46). That is, those individuals with large hydrophobic Val and charged Arg or Asp substitutions exhibited shorter life spans than those with small Ser substitutions (46). This suggests that the structural impact of different amino acids on the collagen III triple helix may be relevant to disease outcome.

Three amino acid substitutions at Gly240 in the integrin-binding GROGER motif, have been associated with vEDS: Ala, Arg, and Val (https://eds.gene.le.ac.uk)5 (97, 98). In this work, we employed CMPs incorporating these naturally occurring vEDS substitutions within the GROGER α2I-binding site. We probed how the specific amino acid substitutions impact functional cell spreading and α2I adhesion and elucidated the underlying atomic-level structural and dynamic perturbations to the collagen triple helix and the CMP–α2I interaction interface. We found that although the Ala mutation locally disrupts the canonical triple-helix hydrogen bonding and enhances the backbone dynamics, it is not sufficient to significantly reduce α2I interactions, in the context of recombinant protein or on human mesenchymal stem cells (hMSCs). However, larger substitutions, Arg and Val, do impede α2I interactions through different mechanisms involving breakage of side-chain interactions or Mg2+ coordination, as suggested by MD simulations. Novel insight into this sequence–structure/dynamics–function relationship sets the foundation for new drug therapy techniques to combat collagen disorders that lead to compromised collagen interactions.

Impact of vEDS mutations on collagen–integrin interactions

The Ehlers–Danlos Syndrome Variant Database reports 611 cases of Gly → Xaa mutations that result in vEDS (https://eds.gene.le.ac.uk,5 updated May 14, 2019) (97, 98). By plotting the distribution of cases within the collagenous domain of collagen III, it is apparent that mutations are concentrated in four regions of the collagenous domain: 1) the terminus, 2) Gly681–Gly744, 3) Gly724–Gly987, and 4) the C terminus (Fig. 1A). These regions contain long stretches of eight or more glycines for which vEDS mutations have been reported. Several binding domains for critical ligands have been determined along the collagen III sequence (47), including those for von Willebrand factor (48), glycoprotein V1 (49), integrins α2β1 and α2β1 (28, 29), kindlin-3 (50), discoidin domain receptor-2 (51), osteoclast-associated receptor (52), platelet fibrinogen receptor (53), leukocyte-associated immunoglobulin-like receptor-1 (54, 55), Yersinia adhesin A (56), heparin (57, 58), pigment epithelium–derived factor (59, 60), secreted protein acidic and rich in cysteines (61), decorin (62), and matrix metalloproteinases (63) (Figs. 1B and S1; integrin α2β1–binding motifs are highlighted in orange). Modifications to glycines in these domains may perturb the local conformation and impede receptor binding, causing detriment to cell–ECM adhesion and cell signaling (9–11, 64). Known binding domains of integrin α2β1 (28, 29) are indicated in the schematic in Fig. 1B. These binding domains occur within or near regions where Gly → Xaa mutations are prevalent. Additionally, mutations to the C terminus may hinder global triple-helix folding, which proceeds in the C-terminal to N-terminal direction when there is a nucleation domain at the C terminus (65, 66).

Gly → Xaa mutations within the collagenous domain are not evenly distributed between amino acid types but rather are highly skewed toward charged amino acids, which make up 61% of Gly → Xaa mutations of all cases reported (Fig. 1C). To determine the impact of reported vEDS mutations of different amino acid types on triple-helix conformation and function, we pursued a sequence–structure/dynamics–function study of CMPs that contain an integrin α2β1–binding domain in the context of the collagen III sequence.

Gly → Xaa vEDS mutations reduce binding of the integrin α2I domain and hinder cell spreading

The collagen III sequence237GROGER242 was identified to be an α2I-binding site by rotary shadowing and electron

5 Please note that the JBC is not responsible for the long-term archiving and maintenance of this site or any other third party hosted site.
Impact of vEDS mutations on collagen–integrin interactions

Before 4 h, hMSCs cultured on collagen III exhibited attachment and spreading trends comparable with collagen III and negative controls (BSA and a hexapeptide, GROGER, G240A, and G240V, as well as a positive control (collagen III) and negative controls (BSA and a hexapeptide, GROGER, which cannot form the necessary triple helix for cell binding) conditions. Cultures were followed for 1 day, with representative images captured at 4, 7, and 24 h after cell seeding. After 4 h, hMSCs cultured on collagen III exhibited attachment and cell morphology consistent with strong adhesion (Fig. 2A). By comparison, cells attached to the negative controls were fewer in number and displayed a “pancake”-shaped morphology that is typical of weak adhesion (Fig. 2B and C). When grown on T3-237 WT and G240A, hMSCs showed cell spreading trends comparable with collagen III (Fig. 2, D and E), whereas the cell morphology on G240V was consistent with the negative controls (Fig. 2F). Similar observations were made from images collected after 7 h in culture. Interestingly, by 24 h, cells on all conditions, including the negative controls, demonstrated attachment and morphology consistent with the collagen III condition, perhaps indicating that the hMSCs had deposited new matrix to foster cell adhesion.

To probe the impact of the collagen III mutations specifically on α1 collagen interaction, we used in vitro solid-phase enzyme-linked immunosorbent assays (ELISAs). The α1-collagen interaction depends upon coordination of a divalent metal cation with the Glu in the recognition domain (27, 28). Therefore, binding assays were performed in the presence and absence of Mg2+ cations to control for unspecific binding. Specificity for the GXX’GEX binding motif was also assessed by a negative control, (GPP)10, which does not contain an integrin-binding motif, and BSA, a globular protein with no known specific interaction for the integrin α1 domain. Both negative controls show significantly reduced adhesion relative to T3-237 WT. The relative adhesion of the α1 domain to each CMP was assessed by measuring absorbance at 450 nm. Integrin α1 has the highest adhesion to T3-237 WT and binds less to the mutants, decreasing in the order Ala > Arg > Val (Figs. 3 and S2), trending with the decrease of triple-helical stability when substituted into the Gly position (71) and consistent with the trend of the cell adhesion assay.

T3-237 CMPs with naturally occurring vEDS mutations maintain the triple-helix conformation but have decreased thermal stability

We characterized the conformation and dynamics of the T3-237 CMPs to determine the molecular underpinnings of reduced α1 adhesion with bulkier mutations. The triple-helix conformation is a prerequisite for interaction with integrin α1β1 (72). At 4 °C, each of the T3-237 variants have CD wavelength profile characteristic of triple helices, that is a minimum negative molar residue ellipticity (MRE) near 198 nm and a maximum positive MRE near 225 nm, with little deviation in
intensity (Fig. 4A). This indicates that the triple-helical composition between these variants is unchanged at this low temperature. The Gly \rightarrow Xaa mutations do perturb the sensitivity of these triple helices to temperature, however. We found that the melting points of G240R and G240V are decreased by -10 °C relative to T3-237 WT (47.8 \pm 0.5–38.1 \pm 0.7 °C) (Fig. 4B) by monitoring a CD melt.

vEDS mutations perturb conformation and dynamics of the triple helix local to the mutation site

To understand how this decreased stability impacts the ability for the α_1 domain to interact with its binding domain, we probed for residue-specific perturbations to conformation and dynamics by integrating NMR with MD simulations. Three CMPs, T3-237 WT, G240A, and G240V, were specifically 15N-labeled at Gly16, Xaa19 (mutation site), and Gly28 (Fig. 5A). The isotopic labels on Gly16 and Xaa19 allow us to probe perturbations of local structure and dynamics within the binding site and near the mutation. Enrichment of Gly28 allows us to probe perturbations within a GPO-rich segment that is expected to have a stable triple-helical structure distant from the mutation site. Within the triple helix, each of the three α-chains is staggered by one residue from the adjacent chain. This creates degeneracy between like residues in the α-chains, giving distinct cross-
peaks for isotopically labeled residues in each of the three chains in 1H–15N heteronuclear single quantum correlation (HSQC) spectra (Fig. 5A). A population of monomer species is also present for each residue. Because no adjacent residues were isotopically labeled, we could not unequivocally assign cross-peaks to specific α-chains. Gly28 residues in all three α-chains of a GPO-rich segment have identical chemical environments and thus have a single overlapping triple-helical cross-peak (Fig. 5A). By comparison of 1H–15N HSQC spectra, Gly16 has vastly different 1H and 15N chemical shifts between the three variants (Figs. 5A and S3), indicating that mutation of the Gly16 residue perturbs the conformation and/or chemical environment of the Gly16 backbone amide three residues N-terminal.

The structural integrity of the triple helix is provided by a critical hydrogen-bond network formed between the amide proton of each Gly and the carbonyl oxygen of the Xaa residue in the adjacent chain. As shown in Fig. 5A, in T3-237 WT, Gly16, Gly19, and Gly28 all have amide chemical shift perturbations less than 4.5 ppb/°C (dashed line) upon increasing temperature, indicating that their associated hydrogen-bond network is not significantly modulated by temperature (73) up to 40 °C. Within mutant peptides T3-237 G240A and G240V, Gly16 and Gly28 remain hydrogen-bonded as shown by their only minor chemical shift perturbations with temperature. However, each of the triple-helix α-chains of the mutated residues, Ala19 and Val19, show considerable temperature-dependent chemical shift changes. This indicates that even the small mutation of Gly → Ala abolishes the local hydrogen-bond network. Regardless of the small (Ala) or larger hydrophobic (Val) mutation, however, the disruption to the conformation is only local to the mutation site, as Gly16, only three residues N-terminal to the mutation site, maintains its hydrogen-bonding capacity.

The backbone dynamics of the 15N-labeled residues within the triple helices of each CMP were probed by heteronuclear 1H–15N NOEs. Lower NOEs indicate increased mobility on the fast, ps–ns timescale. In the WT CMP, 1H–15N NOEs at 15 °C were similar for all triple-helical isotopically enriched glycines (Fig. 5C). Upon mutation to G240A, the small Gly → Ala mutation leads to a significantly more mobile Ala19 backbone in only one α-chain. However, a larger, hydrophobic Gly → Val mutation increases the flexibility of all three α-chains dramatically, leading to 1H–15N NOE values near zero. In both variants, the increase in backbone flexibility is only local to the mutation site, as 1H–15N NOE values for triple-helical Gly16 and Gly28 are not decreased. In the case of G240V, one Gly16 actually has an increased NOE value, indicating a rigidification of the α-chain backbone in this position.

Modeling α-I interactions with vEDS Gly → Xaa variants

To understand how perturbations to the triple helix impact α-I binding, we performed 500-ns all-atom MD simulations on each CMP variant as a free triple helix and in complex with α-I. The MD simulations predict ns-timescale dynamics for all residues within the CMPs and α-I domain, including those residues not probed by NMR. This provides information on the span of CMP residues around the substitution site that is impacted by dynamic perturbations due to a Gly → Xaa mutation. The diameter of the triple helix at a specific site is reflective of local unfolding. We therefore monitored how incorporation of the three mutations changed the diameter of the

Figure 5. Residue-specific characterization of the vEDS mutation influence on triple-helical CMPs. A, top, schematic of staggered α-chains of the T3-237 CMP series. 15N isotopically labeled residues (Res) are highlighted in yellow. Bottom, two-dimensional 1H–15N HSQC spectra of T3-237 WT (gray), T3-237 G240A (red), and T3-237 G240V (blue). Data were collected at 25 °C. Residue assignments are indicated on the spectra (T, triple helix; M, monomer). B, amid 1H chemical shift changes of triple-helical residues with increasing temperature from 5 to 40 °C, in increments of 5 °C, for the indicated 15N-labeled residues in the T3-237 CMP variants. Data for mutated residue 19 are indicated in color (gray, Gly16; red, Ala19; blue, Val19). The dashed line at $−4.5$ ppb/°C is the cutoff for hydrogen-bond formation. Chemical shift changes more than $−4.5$ ppb/°C are indicative of stable hydrogen bonds (73). C, 1H–15N heteronuclear NOEs, measured at 15 °C, of T3-237 WT, T3-237 G240A, and T3-237 G240V. The mutation site is indicated in color as in B. Error bars are propagated from the noise level of the NMR spectra. All NMR data were collected at 600-MHz 1H Larmor frequency. Peptide solutions for NMR were of 1.8 –3 mM monomer concentration in 10 mM acetic acid, 5 mM tris(2-carboxyethyl)phosphine, 10% D$_2$O.
triple-helix backbone in the free state. Fig. 6A shows the average diameter of the triple helix around the integrin-binding site. The positions are numbered by the residue of the leading strand, and the diameters are measured from the circle encompassing three in-register C atoms of the three α-chains at the indicated positions (74). The in-register residues for each position are indicated in the schematic in Fig. 6A. This places the mutations in the leading, middle, and trailing strands at positions 19, 20, and 21, respectively. We found that the triple helix is expanded, relative to the WT CMP, at each position that includes a GlyXaa mutation for all variants, and the effect asymmetrically propagates at least three positions C-terminal of the mutation sites, impacting functional domains. This asymmetric effect of GlyXaa mutations was found previously by Yigit et al. (37) in that GlySer substitutions interfered with hydrogen bonding up to three triplets C-terminal of the mutation. In the T3-237 CMPs, we found that a Gly → Xaa mutation for all variants, and the effect asymmetrically propagates at least three positions C-terminal of the mutation sites, impacting functional domains. This asymmetric effect of Gly → Xaa mutations was found previously by Yigit et al. (37) in that Gly → Ser substitutions interfered with hydrogen bonding up to three triplets C-terminal of the mutation. In the T3-237 CMPs, we found that a Gly → Xaa mutation for all variants, and the effect asymmetrically propagates at least three positions C-terminal of the mutation sites, impacting functional domains. This asymmetric effect of Gly → Xaa mutations was found previously by Yigit et al. (37) in that Gly → Ser substitutions interfered with hydrogen bonding up to three triplets C-terminal of the mutation. In the T3-237 CMPs, we found that a Gly → Xaa mutation for all variants, and the effect asymmetrically propagates at least three positions C-terminal of the mutation sites, impacting functional domains. This asymmetric effect of Gly → Xaa mutations was found previously by Yigit et al. (37) in that Gly → Ser substitutions interfered with hydrogen bonding up to three triplets C-terminal of the mutation. In the T3-237 CMPs, we found that a Gly → Xaa mutation for all variants, and the effect asymmetrically propagates at least three positions C-terminal of the mutation sites, impacting functional domains.

We probed for the impact of the mutations on complex formation with α1I. We have confirmed that the proper Mg2+ coordination and the van der Waals contacts, hydrogen bonds, and salt bridges that have been reported previously (29, 75) are present and stable in the simulated complex formed with the WT CMP (Table 1). These interactions remain unchanged upon introduction of an Ala mutation in the Xaa19 position, consistent with the retention of α1I binding and hMSC spreading over the G240A CMP observed experimentally. However, in the case of an Arg mutation, several interactions become lost over the course of the simulation. The Mg2+–α1I Ser155 coordination becomes unstable within 100 ns in complex with the G240R CMP (Fig. S4). The Mg2+ coordination is fulfilled by α1I Asp151, maintaining three coordinates with α1I. However, only two direct interactions between the triple-helical CMP and α1I remain, an Arg21M backbone–His258 side-chain hydrogen bond (Fig. S5) and an Arg21M–Asp219 salt bridge (Fig. S6). Other stabilizing hydrogen bonds and salt bridges formed between CMP and α1I side chains are destabilized upon introduction of the G240R mutation, as given in Table 1 and shown in Figs. S5 and S6. Upon mutation to Val, α1I loses Mg2+ coordination at two residues, Ser153 and Ser155, which is replaced by additional coordination to the CMP Glu20M and a water molecule (Figs. 7C and S4). Although in the MD simulations of both Arg and

Table 1 Summary of CMP–α1I interactions observed in MD simulations of complexes formed with each variant

Variant	WT	G240A	G240R	G240V
Mg2+ coord.				
E20–Mg2+	+	+	+	+
Mg2+–D151	–	–	+	–
Mg2+–S153	+	+	+	–
Mg2+–S155	+	+	–	–
Mg2+–T221	+	+	+	+
H-bonds				
O15–Y157	+	+	–	–
R17–Q215	+	+	–	+
O18–I156	+	+	–	–
O18–N154	+	+	–	+
R21–H258	+	–	+	+
Salt bridges				
R21–E256	+	+	–	–
R21–D219	+	+	+	+

Figure 6. MD simulations of T3-237 variants. A, average triple-helix diameter at each position (Pos) within the α1I-binding domain. The schematic shows the stagger of the three α-chains with the positions numbered by the residue of the leading chain. The plotted region is underlined. The mutation site in each chain is highlighted in orange and indicated on the x axis. B, representative snapshots of each T3-237 variant during the 500-ns MD simulations. The full T3-237 WT CMP is shown on the top. The highlighted region near the integrin-binding site is shown in the box for comparison between the different amino acid substitutions. For each variant, the mutation site is indicated in color in all three α-chains.
Val substitutions, the Mg\(^{2+}\) coordination state is disturbed, the \(\alpha_1\) in the G240R complex maintains three coordinates; however, the \(\alpha_1\) in the G240V complex is able to stabilize just one Mg\(^{2+}\) coordinate. This extreme loss in \(\alpha_1\)–Mg\(^{2+}\) coordination in the case of the T3-237 G240V complex provides an explanation for the greatest reduction in \(\alpha_1\) adhesion to T3-237 G240V.

Discussion

We have used an integrative approach, combining biological adhesion assays, CD, NMR spectroscopy, and MD simulations, to gain insight into the molecular underpinnings of the reduced \(\alpha_1\)–CMP adhesion in the presence of Gly → Xaa mutations in collagen III. We observed that substitution of a Gly in the integrin-binding site interferes with \(\alpha_1\)–CMP adhesion, dependent upon the identity of the Gly substitution, decreasing in the order WT > G240A > G240R > G240V, and T3-237 G240V substantially reduces hMSC spreading functionality relative to WT or G240A. Interestingly, in contrast to previous reports (31) using recombinant bacterial collagen models, a Gly → Ala mutation in the integrin-binding motif does not abolish \(\alpha_1\) binding, which may in part be due to the presence of hydroxypoline in our CMPs that stabilizes the \(\alpha_1\)–CMP interaction through hydrogen bonds with \(\alpha_1\) side chains. This highlights the importance of native hydroxypolines in collagen interactions. The results indicate that, even within this short CMP, relative to the full-length collagen III, a single Gly → Xaa mutation does not abolish triple-helix formation, but the thermal stability of the triple helix formed is disrupted, depending upon the side chain of the substituted amino acid.

In concert with the insight gained from ELISA, CD, NMR, and MD, the cell adhesion trends of hMSCs, which express \(\alpha_2\beta_1\) integrins on the cell surface, on CMPs could be predicted based on the substituted amino acid. The reduced cell adhesion of T3-237 G240V relative to WT and G240A can be explained by local backbone mobility and diameter expansion of the triple helix upon substitution of a bulky side chain. However, because the melting temperature of G240V is 10 °C lower compared with WT and G240A, a more significant fraction of the G240V may be unfolded. Based on the CD analysis, at 37 °C, ~70% of the \(\alpha\)-chains for both WT and G240A are in the triple-helical conformation, whereas only ~50% of the \(\alpha\)-chains for G240V have attained triple helix. This difference in the percentage of triple-helix structure presented by CMPs might present a reduced number of optimal integrin-binding sites to which the cells and recombinant \(\alpha_1\) can adhere. Hence, it is imperative to realize whether the mutation itself leads to reduced cell and \(\alpha_1\) adhesion or the variation in the number of triple-helical integrin-binding sites offered by the CMPs.

vEDS is one of several debilitating connective tissue disorders due to glycine mutations in fibrillar collagens (5, 76, 77). OI is another connective tissue disorder in which Gly → Xaa mutations in collagen I have been extensively studied (30–36, 40, 42, 78–84). The frequencies of substituted amino acids for OI are much different from those reported for vEDS. Over all OI mutations, Ser is the most substituted amino acid, accounting for ~41% of Gly → Xaa mutations (44). Small-residue mutations make up nearly 63% of all OI Gly → Xaa substitutions (44). Conversely, in vEDS, small substitutions make up only ~19% of Gly → Xaa mutations (Fig. 1C), with the most common substitutions being bulky Asp, Arg, Val, and Glu. Thus, Gly → Xaa mutations in the context of OI and vEDS cannot be treated as equal. It is not yet understood whether this is due to tissue specificity, the difference in sequence environment between the collagens, hetero- versus homotrimeric nature of the triple helices, or other factors.

When substituted into the Gly position, the charged and bulky mutations reported in vEDS are the most triple helix–destabilizing amino acids (71), and Gly → Xaa substitutions of these amino acids in collagen I most often result in the lethal form of OI (43, 44). Thus, it has been previously proposed that there is a correlation between OI phenotype and genetic mutation identity (44). In the case of vEDS, survival of a cohort of afflicted individuals was indeed found to trend with the identity of the substituted amino acid, in that those with Val, Arg, and Asp substitutions had the lowest survivability and that Ser substitutions were less severe (46). Our results show that substitution of the small amino acid Ala into a critical integrin \(\alpha_2\beta_1\)-binding site only moderately disrupts \(\alpha_1\) adhesion to the Gly → Ala CMP, and hMSC spreading on the Gly → Ala CMP is minimally affected. Conversely, substitution of a larger Val mutation substantially reduced \(\alpha_1\) adhesion and hMSC spreading. This suggests that, despite the local structural and dynamic perturbations imparted on the triple helix by the Gly → Ala mutation, the CMP–\(\alpha_1\) interaction maintains some plasticity wherein cellular functions are still able to occur. The ability for the small Gly → Ala mutation to maintain its functionality may be reflective of the underrepresentation of small mutations in vEDS, as milder phenotypes may go unreported. However, genotype–phenotype relationships will need to be further investigated for verification.

The collagen III–integrin \(\alpha_2\beta_1\) interaction investigated here is critical for platelet adhesion and signaling and endothelial cell adhesion in blood vessel walls (Fig. 7, A and B). Disruption
of the collagen III triple helix through even a single Gly → Xaa mutation may hinder both the structural integrity of collagen III–rich tissues such as blood vessel walls and distensible organs but also inhibit vital cellular interactions with the ECM. The severity of vEDS is attributed largely to the potential for aortic aneurysms and arterial ruptures, which may be exacerbated by reduced platelet activity. These novel atomic-level insights into how the identity of vEDS Gly → Xaa mutations in an integrin-binding site impact the interaction of α2I with its recognition motif on collagen III provide a foundation for new drug therapy techniques to combat debilitating collagen disorders that compromise collagen interactions.

Experimental procedures

Preparation of CMPs

All CMP variants were purchased from LifeTein LLC (Somerset, NJ) as purified peptides. CMPs were dissolved in assay buffer from lyophilized powder and equilibrated at 4 °C overnight before use. For CD studies, CMPs were further purified using PD Midi-trap G10 desalting columns (GE Healthcare). Concentrations of peptides were determined by measuring the absorbance at 280 nm using a molar extinction coefficient of 1280 M⁻¹ cm⁻¹, with the exception of the GROGER hexapeptide (GenScript), which does not have a Tyr residue. The concentrations of this peptide were determined by weight, considering the net peptide content and HPLC purity as provided by the synthesis company.

Cell culture

hMSCs were continuously cultured in complete MEM-α containing 10% fetal bovine serum, 1% penicillin-streptomycin, 1% L-glutamine, and 0.001% basic fibroblast growth factor. Growth medium was changed every alternate day. The cells were detached by TrypLE and split at a ratio of 1:3 in a T175 flask upon reaching 80% confluence. The cells were incubated at 37 °C in a cell incubator with 95% air and 5% CO₂.

Cell spreading assays

Cell spreading assays were performed as follows. 96-well solid white polystyrene plates (Corning, catalog number 3917) were coated with 100 μl/well multiple concentrations of CMPs in 10 mM acetic acid overnight at 4 °C. 50 μg/ml collagen III in 10 mM acetic acid was used as a positive control. 75 μg/ml GROGER hexapeptide in 10 mM acetic acid and 5% (w/v) BSA in 1× sterile-filtered PBS were used as negative controls. The GROGER hexapeptide consists of the sequence 237GROGER242 in a single chain and does not form a triple-helical structure, leading to no cell adhesion or spreading. The next day, peptide solutions were aspirated, and the wells were then blocked with 200 μl/well BSA solution (5% (w/v) BSA in 1× sterile-filtered PBS) for 2 h at room temperature with the exception of the tissue culture treated wells used as positive controls. Meanwhile, near-confluent hMSCs were labeled with 3 μM CellTracker Green 5-chloromethylfluorescein diacetate (CMFDA) dye (Thermo Fisher Scientific, catalog number C7025) in MEM-α (serum- and thiol-free) according to the manufacturer’s instructions. After the blocking step, the BSA solution was aspirated, and the wells were washed three times with 200 μl/well PBS. After the washes, hMSCs were harvested from culture and reseeded onto the peptide-coated plates at a density of 5,000 cells/well in complete MEM-α and returned to the incubator. At 4, 7, and 24 h, plates were imaged using an Olympus IX81 inverted epifluorescence microscope (Olympus Scientific, Waltham, MA) with a Hamamatsu ORCA digital camera (Hamamatsu Photonics, Bridgewater, NJ).

ELISA

Adhesion of recombinant α2I to T3-237 CMP variants was determined colorimetrically in solid-phase ELISAs. Immunolon 2HB 96-well plates (Thermo Fisher) were coated with 100 μl of CMP (10 μg/ml in 10 mM acetic acid) overnight at 4 °C. The wells were then blocked with 200 μl of 5% (w/v) BSA in PBS, pH 7.4, for 1 h at room temperature. For each α2I–CMP adhesion, half of the wells were treated with washing and binding buffers that consisted of PBS, pH 7.4 + 0.5% (w/v) BSA in the presence of 5 mM MgCl₂ or 5 mM EDTA. After three washes with 200 μl of washing buffer, 100 μl of α2I (10 μg/ml in binding buffer) was incubated with each CMP for 1 h at room temperature. After washing three times with 200 μl of washing buffer, 100 μl of mouse anti-α2I mAB (1:2000 (v/v) dilution; Thermo Fisher, catalog number MA5-16571) in binding buffer was incubated in the wells for 45 min at room temperature. After washing three times with 200 μl of washing buffer, 100 μl of goat horseradish peroxidase–conjugated antimouse IgG antibody (1:5000 (v/v) dilution; GenScript, catalog number A00160, lot number 17B001197) in binding buffer was incubated in the wells for 45 min at room temperature. Following a final four washes, α2I binding was detected using a 3,3′,5,5′-tetramethylbenzidine substrate kit (Pierce) as directed by the manufacturer’s instructions. Absorbance was measured at 450 nm using a Tecan Infinite F50 plate reader equipped with Magellan software.

CD spectroscopy

CD wavelength profiles and temperature scans of each CMP were acquired on an AVIV Model 400 CD spectrometer (AVIV Biomedical Inc.). Wavelength scans were obtained at 4 °C from 260 to 190 nm, collecting points every 0.5 nm with a 1-nm bandwidth for 4 s, averaging three scans for each sample. Temperature scans were acquired by measuring MRE at 224 nm from 0 to 70 °C with a 10-s averaging time and 1.5-nm bandwidth. Samples were equilibrated for 2 min at each temperature.
Impact of vEDS mutations on collagen–integrin interactions

before acquiring. The melting temperature was determined by first normalizing the melting curves assuming a fully folded state at 0 °C and a fully unfolded state at 70 °C and then calculating the temperature at which 50% of the population is folded based on a linear fit of the central temperature-dependent decay in the melting curves using GraphPad Prism.

NMR spectroscopy

T3-237 WT, G240A, and G240V CMPs were selectively 15N-labeled at sites Gly16, Xaa19, and Gly28. Peptides were dissolved in 10 mM acetic acid with 5 mM tris(2-carboxyethyl)phosphine and 10% D$_2$O to monomeric concentrations of 1.8–3 mM. Triple-helix formation was equilibrated at 4 °C overnight before performing experiments.

All NMR experiments were performed on a Bruker Avance III 600-MHz spectrometer equipped with a TXI probe. Amide proton temperature gradient experiments were acquired as 1H–15N HSQC (85, 86) experiments at temperatures from 5 to 40 °C in increments of 5 °C. The samples were equilibrated for at least 1 h between temperature changes. Amide proton temperature gradients were calculated by linear fitting of the amide proton chemical shifts versus temperature. The amide proton gradient is taken as the slope of the line. Heteronuclear 1H–1H NOE experiments were performed at 15 °C. All data were processed with NMRPipe (87) and analyzed in Sparky (88).

MD simulations

The initial model of the T3-237 WT CMP was built based on the GFOGER peptide from the crystal structure of the GFOGER–α$_1$I complex (Protein Data Bank (PDB) code 1DZI) (75). The Phe residue in the GFOGER peptide was replaced by an Arg residue using PyMOL (Schrödinger, LLC). The extra GPO repeats, the terminal GPCs, and the C-terminal Tyr of T3-237 were built using the ‘Triple-Helical Collagen Building Script’ (89). The N and C termini were capped with acetyl and NH$_2$ groups, respectively. The initial models for the mutants were generated by replacing Gly$_{19}$ of T3-237 with Ala, Val, and Arg residues using PyMOL.

The initial coordinates for the T3-237 CMP–α$_1$I complex were taken from the X-ray structure (PDB code 1DZI) (75). The coordinates for T3-237 were generated by aligning the backbone to the X-ray structure of the GFOGER peptide. The Co$^{2+}$ ion was replaced by a Mg$^{2+}$ ion. All of the water molecules in the X-ray structure were retained.

The T3-237 CMP and CMP–α$_1$I complex models were laid in a cubic box of TIP3P water molecules (90) with the box border at least 10 Å away from any atoms of the CMP or α$_1$I. Extra Cl$^-$ ions were added to neutralize the positive charges.

The protein was treated with the ff14SB force field (91). The simulations were performed with the CUDA version of the pmemd module of the AMBER 2018 package (92). Periodic boundary conditions were used, and electrostatic interactions were calculated by the particle mesh Ewald method (93, 94), with the nonbonded cutoff set to 8 Å. The SHAKE algorithm (95) was applied to bonds involving hydrogens, and a 2-fs integration step was used. Pressure was held constant at 1 atm with a relaxation time of 2.0 ps. The temperature was held at 300 K with Langevin dynamics with a collision frequency of 2.0 ps$^{-1}$.

Prior to MD simulations, the systems were subjected to energy minimizations and equilibration. The minimization started with 1000 steps of steepest descent minimization followed by 4000 steps of conjugate gradient minimization with 10 kcal mol$^{-1}$ Å$^{-2}$ position restraints on the CMP and α$_1$I. The following minimization was carried out without any restraints. Then the system was heated from 0 to 300 K for 100 ps with position restraints of 10 kcal mol$^{-1}$ Å$^{-2}$ on the CMP and α$_1$I. The system was first equilibrated for 1 ns at a constant temperature of 300 K and pressure of 1 atm with position restraints of 2 kcal mol$^{-1}$ Å$^{-2}$ on the CMP and α$_1$I. The following equilibration was conducted without any restraints. The production runs for all of the models were 500 ns. The trajectories were analyzed using CPTRAJ (96).

References

1. Beighton, P., De Paepe, A., Steinmann, B., Tsipouras, P., and Wenstrup, R. I. (1998) Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (U.S.A.) and Ehlers-Danlos Support Group (UK). *Am. J. Med. Genet* 77, 31–37 CrossRef Medline

2. Pepin, M., Schwarze, U., Superti-Furga, A., and Byers, P. H. (2000) Clinical and genetic features of Ehlers–Danlos syndrome type IV, the vascular type. *N. Engl. J. Med.* 342, 673–680 CrossRef Medline

3. Ramachandran, G. N., and Kartha, G. (1955) Structure of collagen. *Nature* 176, 593–595 CrossRef Medline

4. Rich, A., and Crick, F. H. (1955) The structure of collagen. *Nature* 176, 915–916 CrossRef Medline

5. Kuivaniemi, H., Tromp, G., and Prockop, D. J. (1997) Mutations in fibrillar collagens (types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. *Hum. Mutat.* 9, 300–315 CrossRef Medline

6. Bonadio, J., and Byers, P. H. (1985) Subtle structural alterations in the chains of type I procollagen produce osteogenesis imperfecta imperfecta type II. *Nature* 316, 363–366 CrossRef Medline

7. Forlino, A., Kuznetsova, N. V., Marini, J. C., and Leikin, S. (2007) Selective retention and degradation of molecules with a single mutant α1(I) chain in the Brtl IV mouse model of OI. *Matrix Biol.* 26, 604–614 CrossRef Medline

8. Makareeva, E., Aviles, N. A., and Leikin, S. (2011) Chaperoning osteogenesis: new protein-folding disease paradigms. *Trends Cell Biol.* 21, 168–176 CrossRef Medline

9. Heino, J. (2007) The collagen family members as cell adhesion proteins. *BioEssays* 29, 1001–1010 CrossRef Medline
30. Xiao, J., Madhan, B., Li, Y., Brodsky, B., and Baum, J. (2011) Osteogenesis imperfecta model peptides: incorporation of residues replacing Gly within a triple helix achieved by renucleation and local flexibility. *Biophys. J.* 101, 449–458 CrossRef Medline

31. Qiu, Y., Mekkat, A., Yu, H., Yigit, S., Hamaia, S., Farndale, R. W., Kaplan, D. L., Lin, Y. S., and Brodsky, B. (2018) Collagen Gly missense mutations: effect of residue identity on collagen structure and integrin binding. *J. Struct. Biol.* 203, 255–262 CrossRef Medline

32. Bhate, M., Wang, X., Baum, J., and Brodsky, B. (2002) Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide. *Biochemistry* 41, 6539–6547 CrossRef Medline

33. Hyde, T. J., Bryan, M. A., Brodsky, B., and Baum, J. (2006) Sequence dependence of renucleation after a Gly mutation in model collagen peptides. *J. Biol. Chem.* 281, 36937–36943 CrossRef Medline

34. Xiao, J., Munechika, H., Shibata, T., Sugiyama, S., and Brodsky, B. (2011) Identification in collagen type I of an integrin α_1-β_1 binding site containing an essential GER sequence. *J. Biol. Chem.* 286, 34337–34344 CrossRef Medline

35. Kim, J. K., Xu, Y., Xu, X., Keene, D. R., Gurusiddappa, S., Liang, X., Wary, K. K., and Höök, M. (2005) A novel binding site in collagen type III for integrins α_1-β_1 and α_2-β_1. *J. Biol. Chem.* 280, 32512–32520 CrossRef Medline

36. Xiao, J., Madhan, B., Li, Y., Brodsky, B., and Baum, J. (2011) Osteogenesis imperfecta model peptides: incorporation of residues replacing Gly within a triple helix achieved by renucleation and local flexibility. *Biophys. J.* 101, 449–458 CrossRef Medline

37. Yigit, S., Yu, H., An, B., Doyon, B. R., Lin, Y. S., and Brodsky, B. (2016) Consequences of glycine mutations in the fibronectin-binding sequence of collagen. *J. Biol. Chem.* 291, 27073–27086 CrossRef Medline

38. Chhum, P., Yu, H., An, B., Doyon, B. R., Lin, Y. S., and Brodsky, B. (2016) Mapping the effect of Gly mutations in collagen on α_2-β_1 integrin binding. *J. Biol. Chem.* 291, 19196–19207 CrossRef Medline

39. Sun, X., Liu, Z., Zhao, S., Xu, X., Wang, S., Guo, C., and Xiao, J. (2019) A self-assembling collagen mimetic peptide system to simultaneously characterize the effects of osteogenesis imperfecta mutations on conformation, assembly and activity. *J. Mater. Chem. B* 7, 3201–3209 CrossRef Medline

40. Sun, X., Liu, S., Yu, W., Wang, S., and Xiao, J. (2016) CD and NMR investigation of collagen peptides mimicking a pathological Gly-Ser mutation and a natural interruption in a similar highly charged sequence context. *Protein Sci.* 25, 383–392 CrossRef Medline

41. Xiao, J., Yang, Z., Sun, X., Addabbo, R., and Baum, J. (2015) Local amino acid sequence patterns dominate the heterogeneous phenotype for the collagen connective tissue disease osteogenesis imperfecta resulting from Gly mutations. *J. Struct. Biol.* 192, 127–137 CrossRef Medline

42. Li, Y., Brodsky, B., and Baum, J. (2009) NMR conformational and dynamic consequences of a Gly to Ser substitution in an osteogenesis imperfecta collagen model peptide. *J. Biol. Chem.* 284, 20660–20667 CrossRef Medline

43. Xu, K., Nowak, I., Kirchner, M., and Xu, Y. (2008) Rebinant collagen studies link the severe conformational changes induced by osteogenesis imperfecta mutations to the disruption of a set of interchain salt bridges. *J. Biol. Chem.* 283, 34337–34344 CrossRef Medline

44. Bodian, D. L., Madhan, B., Brodsky, B., and Klein, T. E. (2008) Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations. *Biochemistry* 47, 5424–5432 CrossRef Medline

45. Persiakov, A. V., Pilkitter, R. J., Amin, P., Schwarze, U., Byers, P. H., and Brodsky, B. (2004) Stability related bias in residues replacing glycines within the collagen triple helix (Gly-Xaa-Yaa) in inherited connective tissue disorders. *Hum. Mutat.* 23, 330–337 CrossRef Medline

46. Beck, K., Chan, V. C., Shenoy, N., Kirkpatrick, A., Ramshaw, J. A., and Brodsky, B. (2000) Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. *Proc. Natl. Acad. Sci. U.S.A.* 97, 4723–4728 CrossRef Medline

47. Pepin, M. G., Schwarze, U., Rice, K. M., Liu, M., Leistritz, D., and Byers, P. H. (2014) Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). *Genet. Med.* 16, 881–888 CrossRef Medline

48. Parkin, J. D., San Antonio, J. D., Persikov, A. V., Dagher, H., Dalgleish, R., Jensen, S. T., Jeunemaître, X., and Savige, J. (2017) The Collagen III fibril has a “flexi-rod” structure of flexible sequences interspersed with rigid bioactive domains including two with hemostatic roles. *PLoS One* 12, e0175582 CrossRef Medline

49. Lisman, T., Raynal, N., Groeneveld, D., Maddox, B., Pepe, A. R., Huzjina, E. G., de Groot, P. G., and Farndale, R. W. (2006) A single high-affinity binding site for von Willebrand factor in collagen III, identified...
Impact of vEDS mutations on collagen–integrin interactions

using synthetic triple-helical peptides. Blood 108, 3753–3756 CrossRef Medline

49 Jarvis, G. E., Raynal, N., Langford, J. P., Onley, D. J., Andrews, A., Smethurst, P. A., and Farndale, R. W. (2008) Identification of a major GpVI-binding locus in human type III collagen. Blood 111, 4986–4996 CrossRef Medline

50 Maurice, P., Legrand, C., and Fauvel-Lafeve, F. (2004) Platelet adhesion and signaling induced by the octapeptide primary binding sequence (KOGEOGPK) from type III collagen. FASEB J. 18, 1339–1347 CrossRef Medline

51 Konitsiotis, A. D., Raynal, N., Bihan, D., Hohenester, E., Farndale, R. W., and Leitinger, B. (2008) Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen. J. Biol. Chem. 283, 6861–6868 CrossRef Medline

52 Barrow, A. D., Raynal, N., Andersen, T. L., Slater, D. A., Bihan, D., Pugh, N., Cella, M., Kim, T., Kho, J., Negishi-Koga, T., Delaiisse, J. M., Takayanagi, H., Lorenzo, J., Colonna, M., Farndale, R. W., et al. (2011) OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. J. Clin. Investig. 121, 3505–3516 CrossRef Medline

53 Hayashi, Y., Katada, J., Sato, Y., Igarashi, K., Takiguchi, Y., Harada, T., Muramatsu, M., Yasuda, E., and Uno, I. (1998) Discovery and structure–activity relationship studies of a novel and specific peptide motif, Pro-X-X-X-Asp-X, as a platelet fibrinogen receptor antagonist. Bioorg. Med. Chem. 6, 355–364 CrossRef Medline

54 Lebbink, R. J., de Ruiter, T., Adelmeijer, J., Brenkman, A. B., van Helvoort, J. M., Koch, M., Farndale, R. W., Lisman, T., Sonnenberg, A., Lenting, P. J., and Meyaard, L. (2006) Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1. J. Exp. Med. 203, 1419–1425 CrossRef Medline

55 Lebbink, R. J., van den Berg, M. C., de Ruiter, T., Raynal, N., van Roon, J. A., Lenting, P. J., Jin, B., and Meyaard, L. (2008) The soluble leukocyte-associated Ig-like receptor (LAIR)-2 antagonizes the collagen/LAIR-1 inhibitory immune interaction. J. Immunol. 180, 1662–1669 CrossRef Medline

56 Leo, J. C., Elovara, H., Bihan, D., Pugh, N., Kilpinen, S. K., Raynal, N., Skurnik, M., Farndale, R. W., and Goldman, A. (2010) First analysis of a bacterial collagen-binding protein with collagen Toolkits: promiscuous binding of YadA to collagens may explain how YadA interferes with host processes. Infect. Immun. 78, 3226–3236 CrossRef Medline

57 San Antonio, J. D., Lander, A. D., Karnovsky, M. J., and Slayter, H. S. (1994) Mapping the heparin-binding sites on type I collagen monomers and fibrils. J. Cell Biol. 125, 1179–1188 CrossRef Medline

58 Sweeney, S. M., Guy, C. A., Fields, G. B., and San Antonio, J. D. (1998) Defining the domains of type I collagen involved in heparin-binding and endothelial tube formation. Proc. Natl. Acad. Sci. U.S.A. 95, 7275–7280 CrossRef Medline

59 Sekiya, A., Okano-Kosugi, H., Yamazaki, C. M., and Koide, T. (2011) Pigment epithelium-derived factor (PEDF) shares binding sites in collagen with heparin/heparan sulfate proteoglycans. J. Biol. Chem. 286, 26364–26374 CrossRef Medline

60 Meyer, C., Notari, L., and Becerra, S. P. (2002) Mapping the type I collagen with heparin/heparan sulfate proteoglycans. Defining the domains of type I collagen involved in heparin-binding and mediates its binding. PloS One 4, e7028 CrossRef Medline

61 Miller, E. J., Finch, J. E., Jr, Chung, E., Butler, W. T., and Robertson, P. B. (1976) Specific cleavage of the native type III collagen molecule with trypsin. Similarity of the cleavage products to collagenase-produced fragments and primary structure at the cleavage site. Arch. Biochem. Biophys. 173, 631–637 CrossRef Medline

62 Sweeney, S. M., Orgel, J. P., Fertala, A., McAuliffe, J. D., Turner, K. R., Di Lullo, G. A., Chen, S., Antipova, O., Perumal, S., Ala-Kokko, L., Forlino, A., Cabral, W. A., Barnes, A. M., Marinai, J. C., and San Antonio, J. D. (2008) Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J. Biol. Chem. 283, 21187–21197 CrossRef Medline

63 Bächinger, H. P., Bruckner, P., Timpl, R., Procop, D. J., and Engl, J. (1980) Folding mechanism of the triple helix in type-III collagen and type-III pN-collagen. Role of disulfide bridges and peptide bond isomerization. Eur. J. Biochem. 206, 619–632 CrossRef Medline

64 Buevich, A. V., Silva, T., Brodsky, B., and Baum, J. (2004) Transformation of the mechanism of triple-helix peptide folding in the presence of a C-terminal nucleation domain and its implications for mutations in collagen disorders. J. Biol. Chem. 279, 46890–46895 CrossRef Medline

65 Humtsoe, J. O., Kim, J. K., Xu, Y., Keene, D. R., Höök, M., Lukomska, S., and Wary, K. K. (2005) A streptococcal collagen-like protein interacts with the α2β1 integrin and induces intracellular signaling. J. Biol. Chem. 280, 13848–13857 CrossRef Medline

66 Slater, D. A., Bihan, D. G., Jarvis, G. E., Stone, R., Pugh, N., Giddus, S., and Farndale, R. W. (2012) The properties conferred upon triple-helical collagen-mimetic peptides by the presence of cysteine residues. Peptides 36, 86–93 CrossRef Medline

67 Semon, J. A., Nagy, L. H., Llamas, C. B., Tucker, H. A., Lee, R. H., and Prokop, D. J. (2010) Integrin expression and integrin-mediated adhesion in vitro of human multipotent stromal cells (MSCs) to endothelial cells from various blood vessels. Cell Tissue Res. 341, 147–158 CrossRef Medline

68 Popov, C., Radic, T., Haasters, F., Pratt, W. C., Aszodi, A., Gullberg, D., Schieker, M., and Docheva, D. (2011) Integrins α2β1 and α1β1 regulate the survival of mesenchymal stem cells on collagen I. Cell Death Dis. 2, e186 CrossRef Medline

69 Persikov, A. V., Ramshaw, J. A., and Brodsky, B. (2000) Collagen model peptides: sequence dependence of triple-helix stability. Bioopolymers 55, 436–450 CrossRef Medline

70 Morton, L. F., Peacher, A. R., Zijenah, L. S., Goodall, A. H., Humphries, M. J., and Barnes, M. J. (1994) Conformation-dependent platelet adhesion to collagen involving integrin α2β1-mediated and other mechanisms: multiple α2β1-recognition sites in collagen type I. Biochim. J. 299, 791–797 CrossRef Medline

71 Baxter, N. J., and Williamson, M. P. (1997) Temperature dependence of H chemical shifts in proteins. J. Biomol. NMR 9, 359–369 CrossRef Medline

72 Gopalakrishnan, R., Azhagiya Singam, E. R., Vijaya Sundar, J., and Subramanian, V. (2015) Interaction of collagen like peptides with gold nanosurfaces: a molecular dynamics investigation. Phys. Chem. Chem. Phys. 17, 5172–5186 CrossRef Medline

73 Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J., and Liddington, R. C. (2000) Structural basis of collagen recognition by integrin α2β1. Cell 101, 47–56 CrossRef Medline

74 Uttjo, T., and Lichtenstein, J. R. (1976) Defects in the biochemistry of collagen in diseases of connective tissue. J. Invest. Dermatol. 66, 59–79 CrossRef Medline

75 Arseni, L., Lombardi, A., and Orioli, D. (2018) From structure to phenotype: impact of collagen alterations on human health. Int. J. Mol. Sci. 19, E1407 CrossRef Medline

76 Brodsky, B., and Baum, J. (2008) Structural biology: modelling collagen diseases. Nature 453, 998–999 CrossRef Medline

77 Gautieri, A., Vesentini, S., Redaelli, A., and Buehler, M. J. (2009) Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains. Protein Sci. 18, 161–168 CrossRef Medline

78 Bodian, D. L., and Klein, T. E. (2009) COLDb, a database linking genetic data to molecular function in fibrillar collagens. Hum. Mutat. 30, 946–951 CrossRef Medline

79 Rauch, F., Lalic, L., Roughley, P., and Glorieux, F. H. (2010) Genotype-phenotype correlations in non-lethal osteogenesis imperfecta caused by mutations in the helical domain of collagen type I. Eur. J. Hum. Genet. 18, 642–647 CrossRef Medline

80 Wallace, J. M., Orr, B. G., Marinai, J. C., and Holl, M. M. (2011) Nanoscale morphology of type I collagen is altered in the Brlt mouse model of osteogenesis imperfecta. J. Struct. Biol. 173, 146–152 CrossRef Medline
83. Andriotis, O. G., Chang, S. W., Vanleene, M., Howarth, P. H., Davies, D. E., Shefelbine, S. J., Buehler, M. J., and Thurner, P. J. (2015) Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model. J. R. Soc. Interface 12, 20150701 CrossRef Medline

84. Sun, X., Chai, Y., Wang, Q., Liu, H., Wang, S., and Xiao, J. (2015) A natural interruption displays higher global stability and local conformational flexibility than a similar Gly mutation sequence in collagen mimic peptides. Biochemistry 54, 6106–6113 CrossRef Medline

85. Palmer, A. G., 3rd, Cavanagh, J., Wright, P. E., and Rance, M. (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J. Magn. Reson. 93, 151–170 CrossRef

86. Kay, L., Keifer, P., and Saarinen, T. (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10663–10665 CrossRef

87. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 Medline

88. Goddard, T. D., and Kneller, D. G. (2008) Sparky 3.115, University of California, San Francisco

89. Rainey, J. K., and Goh, M. C. (2004) An interactive triple-helical collagen builder. Bioinformatics 20, 2458–2459 CrossRef Medline

90. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 CrossRef

91. Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., and Simmerling, C. (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 CrossRef Medline

92. Case, D. A., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., 3rd, Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Ghoreishi, D., Gilson, M. K., Gohlke, H., Goetz, A. W., Greene, D., Harris, R., Homeyer, N., et al. (2018) AMBER 2018, University of California, San Francisco

93. Darden, T., York, D., and Pedersen, L. (1993) Particle mesh Ewald: an N\log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 CrossRef

94. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G. (1995) A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 CrossRef

95. Ryckaert, J.-P., Ciccotti, G., and Berendsen, H. J. C. (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 CrossRef

96. Roe, D. R., and Cheatham, T. E., 3rd. (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 CrossRef Medline

97. Dalgleish, R. (1997) The human type I collagen mutation database. Nucleic Acids Res. 25, 181–187 CrossRef Medline

98. Dalgleish, R. (1998) The human collagen mutation database. Nucleic Acids Res. 26, 253–255 CrossRef Medline

Impact of vEDS mutations on collagen–integrin interactions

J. Biol. Chem. (2019) 294(39) 14442–14453