Atezolizumab-induced anaphylactic shock in a patient with hepatocellular carcinoma undergoing immunotherapy: A case report

Li-Fang Bian, Chao Zheng, Xiao-Lan Shi

BACKGROUND
Atezolizumab is a programmed death ligand 1 (PD-L1) inhibitor, and its combination with bevacizumab has been proven an effective immunotherapy for unresectable hepatocellular carcinoma (HCC). Treatment with immune checkpoint inhibitors (ICIs) can lead to hypersensitivity reactions; however, anaphylactic shock is rare. We present a case of life-threatening anaphylactic shock during atezolizumab infusion and performed a relevant literature review.

CASE SUMMARY
A 75-year-old man was diagnosed with HCC recurrence after hepatectomy. He was administered immunotherapy with atezolizumab plus bevacizumab after an allergy to a programmed death-1 (PD-1) inhibitor. The patient showed a sudden onset of dizziness, numbness, and lack of consciousness with severe hypotension during atezolizumab infusion. The treatment was stopped immediately. The patient’s symptoms resolved after 5 mg dexamethasone was administered. Because of repeated hypersensitivity reactions to ICIs, treatment was changed to oral targeted regorafenib therapy.

CONCLUSION
Further research is necessary for elucidating the hypersensitivity mechanisms and establishing standardized skin test and desensitization protocols associated with PD-1 and PD-L1 to ensure effective treatment with ICIs.

Key Words: Atezolizumab; Immune checkpoint inhibitors; Anaphylactic shock; Hypersensitivity reaction; Infusion reaction; Hepatocellular carcinoma; Case report
Hepatocellular carcinoma (HCC) is a common carcinoma worldwide and a leading cause of cancer-related death[1]. Although early-stage disease may be curable by resection, most patients present with an advanced and unresectable disease[2]. The multikinase inhibitors sorafenib and lenvatinib are the approved first-line systemic treatments for unresectable HCC. Both are associated with considerable side effects that impair patients’ quality of life. Programmed death-1 (PD-1) inhibitors and anti–programmed death ligand 1 (PD-L1) have shown promising clinical activity as second-line treatments for HCC. A 2020 global phase 3 trial showed that in patients with unresectable HCC, atezolizumab combined with bevacizumab resulted in better overall and progression-free survival outcomes than sorafenib[3].

Although immune checkpoint inhibitors induce immune activation with strong antitumor effects, they can lead to hypersensitivity reactions (HSRs) and infusion reactions (IRs). These reactions range from mild cutaneous manifestations to life-threatening anaphylaxis with hypotension, oxygen desaturation, cardiovascular collapse, and death[4]. Atezolizumab is a humanized immunoglobulin (Ig)G1 class antibody that binds to PD-L1 approved by the Food and Drug Administration (FDA) for the treatment of cancer[5]. The FDA reported severe IRs in 1.3%-1.7% and HSRs in ≤ 1% of cases in which atezolizumab was used[6]. However, cases of atezolizumab-associated anaphylactic shock are rare. Herein, we present the case of a patient who developed life-threatening anaphylactic shock during atezolizumab infusion.

INTRODUCTION

Core Tip: Treatment with immune checkpoint inhibitors (ICIs) can lead to hypersensitivity reactions; however, anaphylactic shock is rare. We present a case of life-threatening anaphylactic shock during atezolizumab infusion and performed a relevant literature review. Patients may be allergic to drugs targeting both programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1). Adequate attention should be paid to the related complications in the use of immune checkpoint inhibitors. Nevertheless, further studies are needed to understand the underlying mechanisms of hypersensitivity reactions and establish standardized skin test and desensitization protocols associated with PD-1 and PD-L1 to ensure effective treatment with ICIs.

Citation: Bian LF, Zheng C, Shi XL. Atezolizumab-induced anaphylactic shock in a patient with hepatocellular carcinoma undergoing immunotherapy: A case report. *World J Clin Cases* 2021; 9(16): 4110-4115

URL: https://www.wjgnet.com/2307-8960/full/v9/i16/4110.htm

DOI: https://dx.doi.org/10.12998/wjcc.v9.i16.4110

CASE PRESENTATION

Chief complaints

Fatigue, back pain, and loss of appetite for 1 mo.

History of present illness

A 75-year-old man with liver cancer recurrence after right radical hepatectomy in April 2019 was diagnosed with HCC. After a multidisciplinary discussion, the patient received a combination treatment of lenvatinib and a PD-1 inhibitor (camrelizumab, 200 mg/bottle; Heng Rui Pharmaceuticals Inc., China). Because the patient developed hypotension and rash on the second use of camrelizumab, it was discontinued. Moreover, the patient showed significant side effects of oral administration of lenvatinib, including diarrhea, fatigue, and loss of appetite, the drug was discontinued. In November 2020, the patient was hospitalized for immunotherapy. The regimen was changed to a PD-L1 inhibitor (atezolizumab, 1200 mg/bottle; Genetech, Inc., United States) combined with bevacizumab therapy. The first 1200 mg infusion was administered on November 10, 2020. Ten minutes into the atezolizumab infusion,
the patient reported dyspnea, sudden dizziness, and numbness in his feet and was soon unconscious, with hypotension (56/38 mmHg), a heart rate of 85 bpm, temporal temperature of 36.7 °C, respiration rate of 25 breaths per minute, and oxygen saturation of 92%.

History of past illness
The patient has a medical history of hypertension, diabetes, and coronary heart disease for many years, cerebral infarction for more than 4 years without obvious sequelae, and hepatitis B for more than 50 years, for which he was taking “entecavir”. He had an allergy history of PD-1.

Personal and family history
There was no family history of malignant tumors.

Physical examination
Abdominal distension, back pain, concave edema of lower limbs, and no jaundice or palpable masses were observed.

Laboratory examinations
Blood analysis revealed high levels of alpha-fetoprotein (66 ng/mL; normal, < 25 ng/mL), carcinoembryonic antigen (4.8 ng/mL; normal, < 5 ng/mL), and ferritin (355.7 ng/mL; normal, female < 150 U/mL, male < 200 U/mL). Routine blood test showed leukopenia (1.9 × 10^9/L; normal, 4-10 × 10^9/L) with predominant neutrophils (62.9%) with normal hematocrit and platelet count. Prothrombin and partial thromboplastin times were normal.

Imaging examinations
Contrast-enhanced computed tomography and magnetic resonance imaging of the chest and abdomen performed in September 2020 showed multiple intrahepatic tumors invading the inferior vena cava and right branch of the portal vein and tumor thrombus formation in the inferior vena cava and left atrium (Figure 1).

FINAL DIAGNOSIS
Hepatocellular carcinoma recurrence and atezolizumab-induced anaphylactic shock.

TREATMENT
A nurse immediately stopped atezolizumab infusion, made the patient lie in the supine position, and reported to the physician. The patient was administered 5 mg dexamethasone intravenously, 500 mL of Ringers solution intravenous drip quickly, and oxygen at a flow rate of 3 L/min.

OUTCOME AND FOLLOW-UP
Ten minutes later, the patient regained consciousness. Thirty minutes later, the symptoms resolved: Blood pressure rose to 112/66 mmHg and heart rate to 75 bpm, the respiration rate was 20 breaths per minute, and oxygen saturation was 95%. Because of repeated hypersensitivity reactions, the medical team decided that the patient would not be rechallenged with immunotherapy and administered oral targeted regorafenib therapy instead. After 1 d, the patient’s condition stabilized and he was discharged. The patient was in a stable condition 2 mo after discharge.

DISCUSSION
In recent years, immune checkpoint inhibitors have been widely used for patients with malignancies. Several cancer immunotherapies that target the PD-L1–PD-1 pathway is currently being evaluated in patients with HCC. The PD-1 drugs nivolumab, pembrolizumab, and camrelizumab are second-line drugs that have been approved by the
FDA for the treatment of HCC. Atezolizumab selectively targets PD-L1 to prevent interaction with the receptors PD-1 and B7-1, thus reversing T-cell suppression[7]. Bevacizumab is a monoclonal antibody that targets vascular endothelial growth factor, inhibits angiogenesis and tumor growth, and showed response in patients with advanced liver cancer[8,9]. This patient, who had a recurrent tumor after liver cancer surgery, was advised to try immunotherapy with atezolizumab plus bevacizumab after an allergy to camrelizumab. Unfortunately, the patient had a severe allergic reaction at the first use of atezolizumab and immunotherapy was stopped after discussion between the medical group and the patient’s family. The patient then received lenvatinib targeted treatment instead.

According to the FDA 2016 label, severe IRs of atezolizumab were observed in 1.3%-1.7% of patients[10]. These reactions include the following symptoms: Back or neck pain, dizziness, chills, feeling like passing out, dyspnea or wheezing, fever, flushing, itching or rash, and swelling of face or lips. Moreover, immune-related adverse reactions (such as pneumonitis, colitis, hypophysitis, encephalitis, hepatitis, and pancreatitis) have been reported to affect various organs. In the European Medicines Agency 2019 assessment report, HSRs of atezolizumab were reported in up to 10% of patients[11]. In addition, pruritis and rash were reported in more than 10% of patients[6]. According to the recent BC Cancer Agency Drug Manual, HSRs including anaphylaxis can be severe in < 1% of the patients, and immune-mediated rash may appear in 8%-18% (severe, 1%) of patients[10]. Prompt recognition and attention to immunotherapy infusion-related reactions could potentially prevent the fatal complications of anaphylaxis with immune checkpoint inhibitors.

HSRs are classified according to the time of onset as immediate (< 1 h of drug administration) or delayed (1 h to 1 wk after drug administration). Immediate-onset HSRs include IgE-mediated hypersensitivity reactions, acute infusion–related reactions, and cytokine release syndrome. However, these reactions may be clinically indistinguishable from each other, and patients may show mixed-type reactions[12,13]. An increase of serum tryptase indicates mast cell/basophil degranulation and suggests the possibility of an IgE-mediated reaction. There are two characteristics of anaphylactic shock: One set of characteristics appears before the shock or at the same time, and manifests as some allergy-related symptoms; the other set of characteristics include the appearance of shock, such as pale face, rapid and weak pulse, wet and cold limbs, unclear consciousness, or complete loss of consciousness. In such cases, shock should be identified, and the patients should be assessed for low blood pressure, which is characterized by systolic blood pressure < 90 mmHg or > 30% lower from baseline in adults. The patient may feel faint, dizzy, light-headed, floating, woozy, giddy, confused, helpless, or fuzzy, and may even collapse[14]. Emergency management of anaphylactic reactions to immune checkpoint inhibitors is the same as that for anaphylaxis from other causes. After the assessment of respiration and circulation and removal of allergens, the infusion is stopped immediately, and the first-line treatment is intramuscular injection of epinephrine. If the patient shows no response to adrenaline within 5-10 min, epinephrine administration should be repeated. Second-line and third-line treatments include adequate positioning, oxygen, nebulized adrenaline, nebulized beta-2-agonist, intravenous normal saline, corticosteroid, and...
antihistamine administration depending on the clinical presentations of the patient. The target oxygen saturation is > 94% to 96%. The latest evidence suggests that liberal use of supplemental oxygen (target SpO₂ > 96%) in acutely ill adults is associated with a higher mortality than more conservative oxygen therapy. Therefore, a reasonable approach in practice is to maintain a target oxygen saturation of 94% to 96% in acutely ill patients who are not at risk of hypercapnia. The patient in the present case improved, so no adrenaline was administered. If the patient has life-threatening airway, breathing, or circulatory problems, adrenaline should be administered. Establishment of the airway should follow basic or advanced life support principles.

If the patient experiences suspected anaphylaxis to immune checkpoint inhibitors, a skin test with a nonirritating concentration of the culprit agent should be performed 4-6 wk after the reaction. A positive skin test strongly suggests an IgE-mediated mechanism. Timing is critical because mast cells are temporarily unresponsive to the allergen in skin tests for 4 wk. Although skin tests are the most specific and sensitive, there are no standardized protocols available for the definition of biological agents except omalizumab, adalimumab, infliximab, and etanercept. Gonzalez-Diaz et al reported that they used concentrations of 60 mg/mL for atezolizumab and 25 mg/mL for bevacizumab in the skin prick test, and concentrations of 0.6 mg/mL and 0.25 mg/mL, respectively, in the intradermal skin tests. Our patient did not undergo a skin test because of the severe allergic reaction.

If atezolizumab is the first-line treatment option or more effective than other drugs and the allergic reaction is not serious, desensitization can be performed under the supervision of an experienced allergist. A commonly used desensitization regimen for monoclonal antibodies (mAbs) is a 12-step/3 bag protocol previously for beta-lactam antibiotics. Gonzalez-Diaz et al reported that their 4-bag/16-step desensitization protocol for atezolizumab and bevacizumab was useful after severe anaphylaxis in the treatment of lung adenocarcinoma. The patient was premedicated with intravenous chlorpheniramine and methylprednisolone 1 h prior to the infusion of the mAbs. A total of 1200 mg of atezolizumab and 600 mg of bevacizumab were given on separate days with the 4-bag/16-step protocol (initial concentration, 1:1000 of the total dose), with an increasing rate and concentration every 15 min without manifestation of hypersensitivity reactions.[19]

CONCLUSION
A case of anaphylactic shock associated with atezolizumab has been presented. With the evolution of cancer therapies, the likelihood of serious adverse events may increase. Patients may be allergic to drugs targeting both PD-1 and PD-L1. Adequate attention should be paid to the related complications in the use of immune checkpoint inhibitors. Nevertheless, further studies are needed to understand the underlying mechanisms of hypersensitivity reactions and establish standardized skin test and desensitization protocols to increase the safety and efficacy of immune checkpoint inhibitors.

REFERENCES

1 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424 [PMID: 30207593 DOI: 10.3322/caac.21492]
2 Lau WY, Leung TW, Lai BS, Liew CT, Ho SK, Yu SC, Tang AM. Preoperative systemic chemoimmunotherapy and sequential resection for unresectable hepatocellular carcinoma. Ann Surg 2001; 233: 236-241 [PMID: 11176130 DOI: 10.1097/00000658-200102000-00013]
3 Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, Kudo M, Breder V, Merle P, Kaseb AO, Li D, Verret W, Xu DZ, Hernandez S, Liu J, Huang C, Mulla S, Wang Y, Lim HY, Zhu AX, Cheng AL, IMbrave150 Investigators. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med 2020; 382: 1894-1905 [PMID: 32402160 DOI: 10.1056/NEJMoa1915745]
4 Castells M. Drug Hypersensitivity and Anaphylaxis in Cancer and Chronic Inflammatory Diseases: The Role of Desensitizations. Front Immunol 2017; 8: 1472 [PMID: 29163536 DOI: 10.3389/fimmu.2017.01472]
5 Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med 2018; 378: 158-168 [PMID: 29320654 DOI: 10.1056/NEJMoa1703481]
6 Gülsen A, Wedi B, Jappe U. Hypersensitivity reactions to biologics (part I): allergy as an important
Combinations of Bevacizumab With Cancer Immunotherapy. *Cancer J* 2018; 24: 193-204 [PMID: 30119083 DOI: 10.1097/PPO.0000000000000327]

Chen DS, Hurwitz H. Combinations of Bevacizumab With Cancer Immunotherapy. *Cancer J* 2018; 24: 193-204 [PMID: 30119083 DOI: 10.1097/PPO.0000000000000327]

Finn RS, Zhu AX. Targeting angiogenesis in hepatocellular carcinoma: focus on VEGF and bevacizumab. *Expert Rev Anticancer Ther* 2009; 9: 503-509 [PMID: 19374603 DOI: 10.1586/era.09.6]

BC Cancer Agency. Cancer drug manual, drug name: bevacizumab. 2019. [cited 10 January 2021]. Available from: http://www.bccancer.bc.ca/drugdatabase-site/Drug%20Index/Bevacizumab_Monograph.pdf

European Medicines Agency. Assessment report of bevacizumab (TECENTRIQ®). 2019. [cited 10 January 2021]. Available from: https://www.ema.europa.eu/en/documents/product-information/tecentriq-epar-productinformation_en.pdf

Bonamichi-Santos R, Castells M. Diagnoses and Management of Drug Hypersensitivity and Anaphylaxis in Cancer and Chronic Inflammatory Diseases: Reactions to Taxanes and Monoclonal Antibodies. *Clin Rev Allergy Immunol* 2018; 54: 375-385 [PMID: 27277133 DOI: 10.1007/s12016-016-8556-5]

Akarsu A, Soyer O, Solerel BE. Hypersensitivity Reactions to Biologicals: from Bench to Bedside. *Curr Treat Options Allergy* 2020; 7: 71-83 [PMID: 32435575 DOI: 10.1007/s40629-020-00042-2]

Soar J, Pumphrey R, Cant A, Clarke S, Corbett A, Dawson P, Ewan P, Foxh B, Gabbert D, Griffiths M, Hall J, Harper N, Jewkes F, Macnachie I, Mitchell S, Nasser S, Nolan J, Rylance G, Sheikh A, Unsworth DJ, Warrell D; Working Group of the Resuscitation Council (UK). Emergency treatment of anaphylactic reactions—guidelines for healthcare providers. *Resuscitation* 2008; 77: 157-169 [PMID: 18358855 DOI: 10.1016/j.resuscitation.2008.02.001]

Karmacharya P, Poudel DR, Pathak R, Donato AA, Ghimire S, Giri S, Aryal MR, Bingham CO 3rd. Rituximab-induced serum sickness: a systematic review. *Semin Arthritis Rheum* 2015; 45: 334-340 [PMID: 26199061 DOI: 10.1016/j.semarthrit.2015.06.014]

O’Driscoll BR, Howard LS, Earis J, Mak V; British Thoracic Society Emergency Oxygen Guideline Group; BTS Emergency Oxygen Guideline Development Group. BTS guideline for oxygen use in adults in healthcare and emergency settings. *Thorax* 2017; 72: ii1-i90 [PMID: 28507176 DOI: 10.1136/thoraxjnl-2016-209729]

Chu DK, Kim LH, Young PJ, Zamiri N, Almenawer SA, Jaeschke R, Szczeklik W, Schünemann HJ, Neary JD, Alhaazawi W. Mortality and morbidity in acutely ill adults treated with liberal vs conservative oxygen therapy (IOTA): a systematic review and meta-analysis. *Lancet* 2018; 391: 1693-1705 [PMID: 29726345 DOI: 10.1016/S0140-6736(18)30847-3]

Broekow K, Garvey LH, Aberer W, Atanaskovic-Markovic M, Barbaud A, Bilo MB, Bircher A, Blanca M, Bonadonna B, Campi P, Castro E, Cernadas JR, Chiriac AM, Demoly P, Grosber M, Gooi J, Lombardo C, Mertes PM, Mosbech H, Nasser S, Pagani M, Rylance G, Romano A, Scherer K, Schnyder B, Testi S, Trautmann A, Terreehorst I; ENDA/EAACI Drug Allergy Interest Group. Skin test concentrations for systemically administered drugs -- an ENDA/EAACI Drug Allergy Interest Group position paper. *Allergy* 2013; 68: 702-712 [PMID: 23617635 DOI: 10.1111/all.12142]

Gonzalez-Diaz SN, Villarreal-Gonzalez RV, De Lira-Quezada CE, Roche-Silva GK, Oyervides-Juarez VM, Vidal-Gutierrez O. Desensitization Protocol to Atezolizumab and Bevacizumab after Severe Anaphylaxis in the Treatment of Lung Adenocarcinoma. *J Investig Allergol Clin Immunol* 2020; 0 [PMID: 3285692 DOI: 10.18176/jiaci.0637]

Mirakian R, Leech SC, Krishna MT, Richter AG, Huber PA, Farooque S, Khan N, Pirmohamed M, Clark AT, Nasser SM; Standards of Care Committee of the British Society for Allergy and Clinical Immunology. Management of allergy to penicillins and other beta-lactams. *Clin Exp Allergy* 2015; 45: 300-327 [PMID: 25623506 DOI: 10.1111/cea.12466]
