FXR agonist GW4064 alleviates endotoxin-induced hepatic inflammation by repressing macrophage activation

Jun Yao, Chun-Suo Zhou, Xiong Ma, Bai-Qing Fu, Li-Sheng Tao, Miao Chen, Ya-Ping Xu

AIM: To examine the effect of farnesoid X receptor (FXR) activation by GW4064 on endotoxin-induced hepatic inflammation in nonalcoholic fatty liver disease (NAFLD) and the underlying mechanism.

METHODS: Six-week-old male C57BL/6 mice were fed a normal diet or a high-fat (HF) diet for 8 wk. HF diet-fed mice were intraperitoneally injected with GW4064 (30 mg/kg) or DMSO (vehicle) once daily for a week and then sacrificed after lipopolysaccharide (LPS, 50 μg/mouse) administration. Hepatic inflammation, levels of the macrophage marker F4/80, and apoptosis were measured at the end of the study. Additionally, the expression of proinflammatory genes involved in NAFLD (interleukin-6, interleukin-1β, interferon-γ, MCP-1) were analyzed by real-time PCR in the murine macrophage cell line RAW 264.7 cultured with or without GW4064 (2 μmol/L) before treatment with LPS.

RESULTS: In patients with NAFLD, the expression of FXR was detected by immunohistochemical staining and the relation between FXR expression and NAFLD activity score (NAS) was analyzed. Activation of FXR by GW4064 alleviated hepatic inflammation induced by endotoxin in a murine NAFLD model fed an HF diet as reflected by reduced serum levels of aspartate aminotransferase and alanine aminotransferase. Apoptosis and proinflammatory cytokine levels in liver tissues were also reduced by GW4064, and GW4064 could reduce induction of proinflammatory cytokines by LPS in vitro. FXR levels were reduced in patients with non-alcoholic steatohepatitis compared with healthy controls and were negatively correlated with NAS.

CONCLUSION: FXR activation attenuates LPS-induced hepatic inflammation in murine NAFLD by reducing expression of proinflammatory cytokines in macrophages.

Key words: Farnesoid X receptor; Nonalcoholic fatty liver disease; GW4064; Nonalcoholic fatty liver disease activity score; Lipopolysaccharide-induced hepatic inflammation; Macrophage activation

Core tip: We found that the synthetic farnesoid X receptor (FXR) agonist GW4064 attenuated lipopolysaccharide-induced hepatic injury in high-fat diet-fed mice by reducing proinflammatory cytokine expression in macrophages. Moreover, we found that FXR expression was decreased in patients with nonalcoholic steatohepatitis, the most extreme form of nonalcoholic fatty liver disease (NAFLD), and was inversely correlated with the NAFLD activity score. Together, these findings provide insights into the etiology of NAFLD and suggest that FXR activation with synthetic agonists may represent a potential therapeutic option for patients with NAFLD,
which we believe will be of great interest to the readers of the journal.

Yao J, Zhou CS, Ma X, Fu BQ, Tao LS, Chen M, Xu YP. FXR agonist GW4064 alleviates endotoxin-induced hepatic inflammation by repressing macrophage activation. World J Gastroenterol 2014; 20(39): 14430-14441 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i39/14430.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i39.14430

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) affects a large population worldwide[1-4]. NAFLD is frequently associated with metabolic syndrome including insulin resistance, diabetes, obesity, and hyperlipidemia[5-8]. The spectrum of NAFLD ranges from simple steatosis without inflammation to nonalcoholic steatohepatitis (NASH) and cirrhosis[9]. Currently, liver transplantation is the only therapeutic option for patients with end-stage NASH.

Farnesoid X receptor (FXR), a nuclear receptor for bile acids, is highly expressed in the liver, intestine, kidney, heart, and adipose tissue. FXR has pleiotropic functions in bile metabolism, immune modulation, and lipid metabolism[10-14] and plays a critical role in maintaining bile acid and cholesterol homeostasis by regulating cholesterol catabolism, bile acid synthesis, and absorption[15,16]. Recently, the role of FXR in lipid and glucose metabolism has been explored. FXR activation lowers plasma glucose and improves glucose homeostasis[17]. FXR-null mice fed a normal diet displayed elevated serum glucose and impaired insulin tolerance[18-20]. In contrast, FXR deficiency protects mice from high-fat diet-induced obesity and improves glucose homeostasis[21,22].

How FXR affects hepatic inflammation in NASH is not well understood. In this study, we examined the protective effects of FXR activation by GW4064 in mice with hepatic inflammation induced by lipopolysaccharide (LPS). We also investigated the possible mechanism of alleviation of hepatic inflammation by GW4064 in a murine model of NAFLD. Our data demonstrate that FXR activation suppresses hepatic inflammation and apoptosis by inhibiting secretion of proinflammatory cytokines by macrophages.

MATERIALS AND METHODS

Animals

Male wild-type C57BL/6 mice, aged 6-8 wk, were purchased from Shanghai Slac Laboratory Animal Co., Ltd.. All animals were housed in the animal house of the Central Laboratory of our hospital under pathogen-free conditions. There were five mice in each experimental group. Mice were fed diets (BioServ, Inc., Frenchtown, NJ) containing either high amounts of fat (HF, 59% kcal from fat, 25% total carbohydrate, 16% protein) or normal amounts of fat (ND, 12% kcal from fat, 59% total carbohydrate, 29% protein) for 8 wk. Mice received 30 mg/kg of the FXR agonist GW4064 (Cayman Chemical Co., Ann Arbor, MI) through daily intraperitoneal injection for 7 d after the mice had been on an HF diet for 7 wk. HF diet-fed mice were injected intraperitonially with Escherichia coli LPS (50 μg/mouse, Sigma, St. Louis, MO) and sacrificed 6 h later to obtain serum and liver tissues. Body and liver weights were measured for all mice.

Human liver samples

Hepatic hemangoma samples and normal adjacent liver tissue were obtained upon surgical resection. The experiments were approved by the Ethics Committee of the First People's Hospital of Zhenjiang and all patients signed an informed consent form.

Serum alanine aminotransferase and aspartate aminotransferase levels

Serum alanine aminotransferase (AST) and aspartate aminotransferase (ALT) levels were measured in the Clinical Chemistry Laboratory of the Department of Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

Histology and terminal deoxynucleotidyl transferase dUTP nick end labeling

All liver tissues were fixed in buffered formaldehyde (10%) overnight, embedded in paraffin, and cut into 4-μm sections. Liver tissue sections were stained with hematoxylin and eosin. The histology was evaluated by an experienced hepatologist to determine NAFLD activity score (NAS; Ref. 9) in a blinded fashion. A transferase dUTP nick end labeling (TUNEL) FITC kit (ShanghaiRuian bioTechnologies Co., Ltd, Shanghai, China) was used to detect cell apoptosis in murine liver tissues according to the manufacturer's instructions.

Immunohistochemistry

Slides were incubated with 3% H2O2 for 10 min after dewaxing, then washed in phosphate-buffered saline (PBS). Antigen retrieval was done in citrate buffer (pH 6.0) by microwave heating, and blocking was performed with 10% non-immune goat serum for 30 min after cooling. Slides were incubated with an anti-F4/80 antibody (Abcam, Cambridge, United Kingdom) overnight at 4 °C. After rinsing with PBS, sections were incubated with an HRP-conjugated secondary antibody (Changdao, Shanghai, China) for 30 min at room temperature and then stained with 3,3′-diaminobenzidine (DAB; Maixin-Bio, Guangzhou, China) for 3 min. Hematoxylin was applied as a counterstain. Five fields were randomly selected for quantification of positive cells in every sample.

Cell culture

The murine macrophage RAW 264.7 cell line was pur-
GW4064 reduces apoptosis and macrophage infiltration in a murine NAFLD model

Apoptosis and macrophage infiltration are hallmarks of NASH, with macrophages regarded as the major drivers of NASH pathogenesis given that they are the major source of proinflammatory cytokines in both adipose tissue and the liver in NASH. Macrophages can cause hepatocyte damage and promote insulin resistance by secreting cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) [23]. We wondered whether the FXR agonist GW4064 would affect hepatocyte apoptosis and macrophage infiltration in a murine model of NAFLD. Whereas only a few TUNEL-positive cells were observed in mice fed an ND or HF diet only, more TUNEL-positive cells were observed after treatment with LPS (about ten in each high power field, HPF). However, if we treated mice with GW4064 for 1 wk before administration of LPS, TUNEL-positive cells were decreased (Figure 2A, B). Consistent with these findings, immunohistochemical staining for the macrophage marker F4/80 was also increased upon LPS treatment. Moreover, GW4064 reduced apoptosis and macrophage infiltration induced by LPS in HF diet-fed mice (Figure 2C-E).

GW4064 reduces hepatic proinflammatory cytokine expression in a murine model of NAFLD and in murine macrophages

Proinflammatory cytokines such as TNF-α, MCP-1, IL-1β, and IL-6 participate in macrophage infiltration, lipid metabolism, and insulin resistance and are involved in the pathogenesis of NAFLD. Neutralization of TNF-α or MCP-1 activity has been shown to ameliorate insulin resistance and fatty liver disease in animal models [24,25]. In order to demonstrate whether GW4064 affects proinflammatory cytokines in a murine model of NAFLD, RT-PCR was used to detect the mRNA levels of Tnfα, Mmp1, Il1b, and Il6. We found that expression levels of Tnfα, Mmp1, Il1b, and Il6 mRNAs were significantly increased in the livers of HF diet-fed mice treated with LPS, whereas GW4064 treatment attenuated LPS-induced expression of Tnfα, Mmp1, Il1b and Il6 in HF-diet fed mice (Figure 3). In order to determine whether GW4064 can directly regulate proinflammatory cytokine expression in macrophages, we treated the murine macrophage cell line RAW 264.7 with GW4064 for 24 h before administration of LPS. RT-PCR was then used to determine the levels of...
Yao J et al. GW4064 alleviates endotoxin-induced hepatic inflammation

A

Control

HF

× 200

× 200

× 400

× 400

HF + LPS

HF + GW4064 + LPS

× 200

× 200

× 400

× 400
proinflammatory cytokine expression. LPS treatment dramatically increased the levels of \(\text{IL-1}\beta, \text{IL-6}, \text{and IFN-\gamma} \), but pretreatment with GW4064 prevented the induction of cytokine expression induced by LPS (Figure 4).

FXR is decreased and reversely correlated with NAS in patients

FXR expression in the livers of NASH patients was examined by immunohistochemical staining. FXR is highly expressed in hepatocytes in healthy control livers (Table 2), but less so in the livers of patients with NASH, a condition associated with high-grade steatosis, lobular inflammation, and ballooning (Figure 5A). We counted the number of FXR-positive cells in healthy controls and patients with NASH and found that there are about 25 FXR-positive cells per HPF in healthy controls, but only 10 in patients with NASH (Figure 5B). NAS, a scoring system for NAFLD, is used to assess the degree of NAFLD in clinical and experimental studies. We found that FXR expression was inversely correlated with NAS in patients with NASH (Figure 5C).

DISCUSSION

The current study demonstrates that activation of FXR by GW4064 alleviates hepatic inflammation and macrophage infiltration in a murine model of NAFLD. GW4064 treatment significantly decreased the NAS, serum levels of ALT and AST, and proinflammatory cytokines, all of which are characteristics of hepatic injury. LPS-induced hepatocyte apoptosis and macrophage infiltration were dramatically reduced in mice treated with GW4064, and GW4064 repressed LPS-induced proinflammatory cytokine expression in macrophages \textit{in vitro}. In patients with NASH, FXR expression was decreased compared with healthy controls, and the level of FXR expression was negatively correlated with NAS. These results provide direct evidence that FXR activation is an effective method to block hepatic inflammation induced by an HF diet and LPS that operates by repressing proinflammatory cytokine expression.
Yao J et al. GW4064 alleviates endotoxin-induced hepatic inflammation

A

Control

HF

HF + LPS

HF + GW4064 + LPS

B

Number of TUNEL positive/HPF

Control

HF

HF + LPS

HF + LPS + GW4064

C

Control

HF
Figure 2 GW4064 reduces apoptosis and macrophage infiltration in a murine nonalcoholic fatty liver disease model. A: Representative terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining of liver sections (magnification × 400) from normal diet, high-fat (HF), HF + lipopolysaccharide (LPS), and HF + GW4064 + LPS mice; B: Quantification of TUNEL in each high power field (HPF); C: Representative immunohistochemical staining of F4/80 in the livers (magnification × 400) of normal diet, HF, HF + LPS, and HF + GW4064 + LPS mice; D: Quantification of F4/80-positive cells in each HPF. *P < 0.05, **P < 0.01 vs HF + LPS group.
Figure 3 GW4064 reduces hepatic proinflammatory cytokine expression in a murine nonalcoholic fatty liver disease model. RNA was extracted from the liver tissues of normal diet, high-fat (HF), HF + lipopolysaccharide (LPS), and HF + GW4064 + LPS mice. Real-time polymerase chain reaction was used to determine the mRNA levels of Tnf, Mcp1, Il1b, Il6, Il17, and Ifng. *P < 0.05, **P < 0.01 vs HF + LPS group.
Yao J et al. GW4064 alleviates endotoxin-induced hepatic inflammation

Figure 4 GW4064 represses lipopolysaccharide-induced proinflammatory cytokine expression in RAW 264.7 cells. RAW 264.7 cells were cultured in Dulbecco’s Modified Eagle Media with 10% FBS, treated with GW4064 for 24 h, then treated with lipopolysaccharide (LPS) for 6 h. Expression of Mcp1, Il1b, Il6, and Ifng in RAW 264.7 cells was evaluated by real-time polymerase chain reaction. *P < 0.05, **P < 0.01 vs LPS group.

Figure 5 Farnesoid X receptor expression is decreased and inversely correlated with nonalcoholic fatty liver disease activity score in patients. Expression of farnesoid X receptor (FXR) in patients was detected by immunohistochemical staining. A: Representative FXR staining of liver sections from healthy control subjects and patients with nonalcoholic steatohepatitis (NASH); B: Quantification of FXR-positive cells in each high power field (HPF); C: The correlation between FXR expression and nonalcoholic fatty liver disease activity score (NAS) in NASH patients. *P < 0.01 vs health control group.
lipid and glucose homeostasis through the regulation of metabolism in the liver.

Previous studies showed that mice with FXR deficiency displayed hepatic steatosis as well as glucose and insulin intolerance, the main hallmarks of NAFLD in humans. At the molecular level, FXR controls lipid and glucose homeostasis through the regulation of PGC-1α, FOXO1 and SIRT1 [33]. Recent findings have shown that FXR also participates in lipid metabolism by regulating CD36, a mediator of long-chain fatty acid transport, which reduces hepatic steatosis in mice fed an HF diet [34]. Repression of FXR in obese mice promotes hepatic steatosis [35], and hepatic FXR was reduced in Zucker fatty rats [36], which are consistent with our findings in patients with NASH.

Collectively, our data indicate that treatment with the FXR agonist GW4064 decreases intrahepatic inflammation in a murine model of NAFLD by inhibiting pro-inflammatory cytokine expression in macrophages and reducing hepatocyte apoptosis and serum levels of ALT and AST. These findings suggest that FXR activation using synthetic agonists may represent a promising therapeutic option for fatty liver diseases.

Table 2 Clinical and biochemical features of healthy control subjects and patients with nonalcoholic steatohepatitis

	Healthy control (n = 4)	NASH (n = 18)	P value
Female (%)	2	7	NS
Age (yr)	47.20 ± 6.04	51.29 ± 12.33	NS
ALT (U/L)	32.40 ± 17.09	128.27 ± 98.07	< 0.05
AST (U/L)	16.80 ± 4.92	71.71 ± 53.47	< 0.05
Alkaline phosphatase (U/L)	96.20 ± 17.83	101.74 ± 24.09	NS
Gamma-glutamyl transferase (U/L)	14.00 ± 15.68	95.40 ± 56.94	< 0.05
BMI (kg/m^2)	19.78 ± 1.19	26.63 ± 1.55	< 0.05
Fasting insulin (iuU/mL)	7.75 ± 4.15	14.05 ± 2.94	< 0.05
Triglycerides (mmol/L)	1.59 ± 0.10	2.85 ± 0.92	< 0.05

All values are means ± SD. NASH: Nonalcoholic steatohepatitis; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; NS: Not significant.

REFERENCES

1. Bechmann LP, Kocabayoglu P, Sowa JP, Sydor S, Best J, Schlattian M, Bellfuß A, Schmitt J, Hannivoort RA, Kili-carslan A, Rust C, Berr F, Tschopp O, Gerken G, Fried- man SL, Geier A, Canbay A. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. *Hepatology* 2013; 57: 1394-1406 [PMID: 23299969 DOI: 10.1002/hep.26225]

2. Puri P, Wiest MM, Cheung O, Mirshahi F, Sargeant C, Min HK, Contos MJ, Sterling RK, Fuchs M, Zhou H, Watkins SM, Sanyal AJ. The plasma lipidomic signature of nonalcoholic steatohepatitis. *Hepatology* 2009; 50: 1827-1838 [PMID: 19937697 DOI: 10.1002/hep.23229]

3. Sheth SG, Gordon FD, Chopra S. Nonalcoholic steatohepatitis. *Ann Intern Med* 1997; 126: 137-145 [PMID: 9005748 DOI: 10.7326/0003-4819-126-2]
Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011; 332: 1519-1523 [PMID: 21700865 DOI: 10.1126/science.1204265]

Li Y, Jadhav K, Zhang Y. Bile acid receptors in non-alcoholic fatty liver disease. Biochim Biophys Acta 2015; 185: 1517-1524 [PMID: 23988487 DOI: 10.1016/j.bjcp.2013.08.015]

Neuschwander-Tetri BA. Hepatic lipotropin and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 2010; 52: 774-788 [PMID: 20685968 DOI: 10.1002/hep.23579]

Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough AJ, Forlani G, Melchionda N. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 1999; 107: 450-455 [PMID: 10569299]

Hebbard L. Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2011; 8: 35-44 [PMID: 2119613]

Harrison SA, Oliver D, Arnold HL, Gogia S, Neuschwander-Tetri BA. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut 2008; 57: 1441-1447 [PMID: 18390575 DOI: 10.1136/gut.2007.146109]

Bhargava P, Li C, Stany KJ, Jacobi D, Dai L, Liu S, Gangl MR, Ham DA, Lee CH. Immunomodulatory glycan LNPFF1 alleviates hepatosteatosis and insulin resistance through direct and indirect control of metabolic pathways. Nat Med 2012; 18: 1665-1672 [PMID: 23104131 DOI: 10.1038/nm.2962]

Chen Y, Song X, Valanajad E, Vasiienko A, More V, Qiu X, Chen W, Lai Y, Slitt A, Stoner M, Yan B, Deng R. Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma. Hepatology 2013; 57: 1530-1541 [PMID: 23213087 DOI: 10.1002/hep.26187]

Modica S, Petruzzelli M, Bellafante E, Muzzilli S, Salvatore L, Celli N, Di Tullio G, Palaciano G, Moustafa T, Halilbasic E, Trauner M, Moschetta A. Selective activation of nuclear bile acid receptor FXR in the intestine protects mice against cholestasis. Gastroenterology 2012; 142: 355-365.e1-e4 [PMID: 22057155 DOI: 10.1053/j.gastro.2011.10.028]

Chen F, Ma L, Dawson PA, Sinal CJ, Sehayek E, Gonzalez FJ, Willson T, Edwards PA. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. J Biol Chem 2005; 280: 19909-19916 [PMID: 12456679 DOI: 10.1074/jbc.M207903200]

Bhargava P, Li C, Stany KJ, Jacobi D, Dai L, Liu S, Gangl MR, Ham DA, Lee CH. Immunomodulatory glycan LNPFF1 alleviates hepatosteatosis and insulin resistance through direct and indirect control of metabolic pathways. Nat Med 2012; 18: 1665-1672 [PMID: 23104131 DOI: 10.1038/nm.2962]

Chen Y, Song X, Valanajad E, Vasiienko A, More V, Qiu X, Chen W, Lai Y, Slitt A, Stoner M, Yan B, Deng R. Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma. Hepatology 2013; 57: 1530-1541 [PMID: 23213087 DOI: 10.1002/hep.26187]

Modica S, Petruzzelli M, Bellafante E, Muzzilli S, Salvatore L, Celli N, Di Tullio G, Palaciano G, Moustafa T, Halilbasic E, Trauner M, Moschetta A. Selective activation of nuclear bile acid receptor FXR in the intestine protects mice against cholestasis. Gastroenterology 2012; 142: 355-365.e1-e4 [PMID: 22057155 DOI: 10.1053/j.gastro.2011.10.028]

Chen F, Ma L, Dawson PA, Sinal CJ, Sehayek E, Gonzalez FJ, Willson T, Edwards PA. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. J Biol Chem 2005; 280: 19909-19916 [PMID: 12456679 DOI: 10.1074/jbc.M207903200]

Bhargava P, Li C, Stany KJ, Jacobi D, Dai L, Liu S, Gangl MR, Ham DA, Lee CH. Immunomodulatory glycan LNPFF1 alleviates hepatosteatosis and insulin resistance through direct and indirect control of metabolic pathways. Nat Med 2012; 18: 1665-1672 [PMID: 23104131 DOI: 10.1038/nm.2962]

Chen Y, Song X, Valanajad E, Vasiienko A, More V, Qiu X, Chen W, Lai Y, Slitt A, Stoner M, Yan B, Deng R. Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma. Hepatology 2013; 57: 1530-1541 [PMID: 23213087 DOI: 10.1002/hep.26187]

Modica S, Petruzzelli M, Bellafante E, Muzzilli S, Salvatore L, Celli N, Di Tullio G, Palaciano G, Moustafa T, Halilbasic E, Trauner M, Moschetta A. Selective activation of nuclear bile acid receptor FXR in the intestine protects mice against cholestasis. Gastroenterology 2012; 142: 355-365.e1-e4 [PMID: 22057155 DOI: 10.1053/j.gastro.2011.10.028]

Chen F, Ma L, Dawson PA, Sinal CJ, Sehayek E, Gonzalez FJ, Willson T, Edwards PA. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. J Biol Chem 2005; 280: 19909-19916 [PMID: 12456679 DOI: 10.1074/jbc.M207903200]
Yao J et al. GW4064 alleviates endotoxin-induced hepatic inflammation

Gut 2014; 63: 170-178 [PMID: 23348961 DOI: 10.1136/gutjnl-2012-303150]

Fiorucci S, Rizzo G, Donini A, Distrutti E, Santucci L. Targeting farnesoid X receptor for liver and metabolic disorders. *Trends Mol Med* 2007; 13: 298-309 [PMID: 17588816 DOI: 10.1016/j.molmed.2007.06.001]

P- Reviewer: Plentz RR S- Editor: Gou SX
L- Editor: Wang TQ E- Editor: Ma S
