PROPER ACTIONS ON TOPOLOGICAL GROUPS: APPLICATIONS TO QUOTIENT SPACES

SERGEY A. ANTONYAN

ABSTRACT. Let X be a Hausdorff topological group and G a locally compact subgroup of X. We show that the natural action of G on X is proper in the sense of R. Palais. This is applied to prove that there exists a closed set $F \subseteq X$ such that $FG = X$ and the restriction of the quotient projection $X \to X/G$ to F is a perfect map $F \to X/G$. This is a key result to prove that many topological properties (among them, paracompactness and normality) are transferred from X to X/G, and some others are transferred from X/G to X. Yet another application leads to the inequality $\dim X \leq \dim X/G + \dim G$ for every paracompact group X and its locally compact subgroup G.

1. INTRODUCTION

By a G-space we mean a completely regular Hausdorff space together with a fixed continuous action of a Hausdorff topological group G on it.

The notion of a proper G-space was introduced in 1961 by R. Palais \cite{Palais} with the purpose to extend a substantial portion of the theory of compact Lie group actions to the case of noncompact ones.

A G-space X is called proper (in the sense of Palais \cite{Palais} Definition 1.2.2), if each point of X has a, so called, small neighborhood, i.e., a neighborhood V such that for every point of X there is a neighborhood U with the property that the set $\langle U, V \rangle = \{g \in G \mid gU \cap V \neq \emptyset\}$ has compact closure in G. Clearly, if G is compact, then every G-space is proper.

Many important problems in the theory of proper actions are conjugated (see \cite{19, 1, 2, 8, 7}) to the following major open problem:

Conjecture 1. Let G be a locally compact group. Then the orbit space X/G of any paracompact proper G-space X is paracompact.

This conjecture is open even if X is metrizable; in this case it is equivalent (see \cite{8}) to the following old problem going back to R. Palais \cite{Palais}:

Conjecture 2. Let G be a locally compact group and X a metrizable proper G-space. Then the topology of X is metrizable by a G-invariant metric.

Due to Palais \cite{Palais}, it is known that Conjecture 2 is true for separable metrizable proper G-spaces provided the acting group G is Lie. Other particular cases are discussed in \cite{21} and \cite{8}.

2000 Mathematics Subject Classification. 22A05; 22F05; 54H11; 54H15; 54F45.

Key words and phrases. Proper G-space; orbit space; locally compact group; paracompact space; dimension.

The author was supported in part by grant IN-102608 from PAPIIT (UNAM).
In this paper we prove Conjecture 1 in an important particular case, namely, when X is a topological group endowed with the natural action of its locally compact subgroup G. (see Corollary 1.5). We first show that X is a proper G-space and then we establish a more general result (Theorem 1.2) which has many interesting applications in the theory of topological groups.

Below all topological groups are assumed to satisfy the Hausdorff separation axiom.

Theorem 1.1. Let X be a topological group and G a locally compact subgroup of X. Then the action of G on X given by the formula $g \ast x = x g^{-1}$, $g \in G$, $x \in X$, is proper.

Recall that a subset S of a proper G-space X is called G-fundamental, or just fundamental, if S is a small set and the saturation $G(S) = \{gs \mid g \in G, s \in S\}$ coincides with X.

Here is the key result of the paper:

Theorem 1.2. Let X be a topological group and G a locally compact subgroup of X. Then there exists a closed G-fundamental set in X.

It is easy to prove (see [2, Proposition 1.4]) that in every proper G-space X, the restriction of the orbit map $p : X \to X/G$ to any closed small set is perfect (i.e., is closed and has compact fibers). In combination with Theorem 1.2 this yields:

Corollary 1.3. Let X be a topological group, G a locally compact subgroup of X, and X/G the quotient space of all right lateral classes $xG = \{xg \mid g \in G\}$, $x \in X$. Then there exists a closed subset $F \subset X$ such that the restriction $p|_F : F \to X/G$ is a perfect surjective map.

This fact has the following immediate corollary about transfer of properties from X to X/G:

Corollary 1.4. Let \mathcal{P} be a topological property stable under perfect maps and also inherited by closed subsets. Assume that X is a topological group with the property \mathcal{P} and let G be a locally compact subgroup of X. Then the quotient space X/G also has the property \mathcal{P}.

Among such properties \mathcal{P} we single out just some of those which provide new results in Corollary 1.4: paracompactness, countable paracompactness, weak paracompactness, normality, perfect normality, Čech-completeness, being a k-space (see [16, §5.1, §5.2, §5.3, §1.5, §3.9, §3.3]) and stratifiability (see [14]). Thus, we get the following positive solution of Conjecture 1 in an important special case:

Corollary 1.5. Let X be a paracompact topological group and G a locally compact subgroup of X. Then the quotient space X/G is paracompact.

In this connection it is in order to recall the following remarkable result of A. V. Arhangel’skii [1]: every topological group is the quotient of a paracompact zero-dimensional group. Hence, the local compactness of G is essential in Corollary 1.5.

We recall that a locally compact group is called almost connected, if its space of connected components is compact.
Corollary 1.6. Let \mathcal{P} be a topological property stable under open perfect maps and also inherited by closed subsets. Assume that X is a paracompact group with the property \mathcal{P} and let G be an almost connected subgroup of X. Then the quotient space X/G also has the property \mathcal{P}.

Among properties stable under open perfect maps and also inherited by closed subsets we highlight strong paracompactness and realcompactness (see [16, Exercises 5.3.C(c), 5.3H(d), and Theorem 3.11.4 and Exercises 3.11.G]). Thus, we get the following

Corollary 1.7. Let X be a strongly paracompact (resp., paracompact and realcompact) topological group and G an almost connected subgroup of X. Then the quotient space X/G is strongly paracompact (resp., paracompact and realcompact).

We note that the converse of the first statement in this corollary is not true. Namely, it is known that the Baire space $B(\aleph_1)$ of weight \aleph_1 (which is, in fact, a commutative topological group) is strongly paracompact and its product with the additive group \mathbb{R} of the reals is not (see [16, Exercises 5.3F(a) and 5.3F(b)]). Hence, the direct product $X = \mathbb{R} \times B(\aleph_1)$ and its subgroup $G = \mathbb{R} \times \{0\}$ provide the desired counterexample, answering negatively a question from [11]. Furthermore, [12, Open Problem 3.2.1, p.151] asks whether every locally strongly paracompact group is strongly paracompact? The same group $\mathbb{R} \times B(\aleph_1)$ provides a negative answer to this question too. Indeed, since the product of a compact space and a strongly paracompact space is strongly paracompact (see [16, Exercise 5.3H(a)]), we infer that $\mathbb{R} \times B(\aleph_1)$ is locally strongly paracompact.

Combining our Corollary 1.5 with a result of Abels [1, Main Theorem], we obtain the following

Corollary 1.8. Let X be a paracompact group, G an almost connected subgroup of X, and K a maximal compact subgroup of G. Then there exists a K-invariant subset $S \subset X$ such that X is K-homeomorphic to the product $G/K \times S$. In particular, X is homeomorphic to $\mathbb{R}^n \times S$ for some $n \geq 1$.

In [10] A. V. Arhangel’skii has studied properties which are transferred in the opposite direction, i.e., from X/G to X. The next corollary is a unified result of this sort which implies many of those in [10] as well as provides some new ones.

Corollary 1.9. Let \mathcal{P} be a topological property invariant and inverse invariant of perfect maps, and also stable under multiplication by a locally compact group. Assume that X is a topological group and let G be a locally compact subgroup of X such that the quotient space X/G has the property \mathcal{P}. Then the group X also has the property \mathcal{P}.

Among such properties we mention just some: paracompactness, being a k-space, Čech-completeness (see [16, §5.1, §3.3, §3.9]). That paracompactness is stable under multiplication by a locally compact group follows from a result of Morita [22], since every locally compact group is paracompact (even, strongly paracompact [12, Theorem 3.1.1]).

Corollary 1.10. Let \mathcal{P} be a topological property invariant and inverse invariant of open perfect maps, and also stable under multiplication by a locally compact group. Assume that X is a paracompact group and let G be an almost connected subgroup

...
of X such that the quotient space X/G has the property \mathcal{P}. Then the group X also has the property \mathcal{P}.

Among such properties we highlight realcompactness (see [16, Theorem 3.11.14 and Exercise 3.11.G, and also take into account that every locally compact group is realcompact]).

Corollary 1.5 is further applied to prove the following Hurewicz type formula:

Theorem 1.11. Let G be a locally compact subgroup of a paracompact topological group X. Then

$$\dim X \leq \dim X/G + \dim G.$$

Remark 1.12 ([23]). If in this theorem X is a locally compact group then, in fact, the equality holds:

$$\dim X = \dim X/G + \dim G.$$

All the proofs are given in section 3.

2. Preliminaries

Throughout the paper, unless otherwise is stated, by a *group* we shall mean a topological group G satisfying the Hausdorff separation axiom; by e we shall denote the unity of G.

All topological spaces are assumed to be Tychonoff (= completely regular and Hausdorff). The basic ideas and facts of the theory of G-spaces or topological transformation groups can be found in G. Bredon [14] and in R. Palais [23]. Our basic reference on proper group actions is Palais’ article [24]. Other good sources are [21], [1] and [2].

For the convenience of the reader we recall, however, some more special definitions and facts below.

By a G-space we mean a topological space X together with a fixed continuous action $G \times X \to X$ of a topological group G on X. By gx we shall denote the image of the pair $(g, x) \in G \times X$ under the action.

If Y is another G-space, a continuous map $f : X \to Y$ is called a G-map or an equivariant map, if $f(gx) = gf(x)$ for every $x \in X$ and $g \in G$.

If X is a G-space, then for a subset $S \subset X$ and for a subgroup $H \subset G$, the H-hull (or H-saturation) of S is defined as follows: $H(S) = \{hs \mid h \in H, \ s \in S\}$. If S is the one point set $\{x\}$, then the G-hull $G(\{x\})$ usually is denoted by $G(x)$ and called the orbit of x. The orbit space X/G is always considered in its quotient topology.

A subset $S \subset X$ is called H-invariant if it coincides with its H-hull, i.e., $S = H(S)$. By an invariant set we shall mean a G-invariant set.

For any $x \in X$, the subgroup $G_x = \{g \in G \mid gx = x\}$ is called the stabilizer (or stationary subgroup) at x.

A compatible metric ρ on a metrizable G-space X is called invariant or G-invariant, if $\rho(gx, gy) = \rho(x, y)$ for all $g \in G$ and $x, y \in X$. If ρ is a G-invariant metric on any G-space X, then it is easy to verify that the formula

$$\bar{\rho}(G(x), G(y)) = \inf \{\rho(x', y') \mid x' \in G(x), \ y' \in G(y)\}$$
defines a pseudometric $\tilde{\rho}$, compatible with the quotient topology of X/G. If, in addition, X is a proper G-space then $\tilde{\rho}$ is, in fact, a metric on X/G [24, Theorem 4.3.4].

For a closed subgroup $H \subset G$, by G/H we will denote the G-space of cosets $\{gH| g \in G\}$ under the action induced by left translations.

A locally compact group G is called almost connected, if the space of connected components of G is compact. Such a group has a maximal compact subgroup K, i.e., every compact subgroup of G is conjugate to a subgroup of K [1, Theorem A.5]. The corresponding classical theorem on Lie groups can be found in [20, Ch. XV, Theorem 3.1].

In 1961 Palais [24] introduced the very important concept of a proper action of an arbitrary locally compact group G and extends a substantial part of the theory of compact Lie transformation groups to noncompact ones.

Let X be a G-space. Two subsets U and V in X are called thin relative to each other [24 Definition 1.1.1], if the set $\langle U,V \rangle = \{ g \in G| gU \cap V \neq \emptyset \}$, called the transporter from U to V, has a compact closure in G. A subset U of a G-space X is called G-small, or just small, if every point in X has a neighborhood thin relative to U. A G-space X is called proper (in the sense of Palais), if every point in X has a small neighborhood.

Clearly, if G is compact, then every G-space is proper. Furthermore, if G acts properly on a compact space, then G has to be compact as well. If G is discrete and X is locally compact, the notion of a proper action is the same as the classical notion of a properly discontinuous action. When $G=\mathbb{R}$, the additive group of the reals, proper G-spaces are precisely the dispersive dynamical systems with regular orbit space (see [13 Ch. IV]).

Important examples of proper G-spaces are the coset spaces G/H with H a compact subgroup of a locally compact group G. Other interesting examples the reader can find in [1, 2, 5, 6] and [24].

In what follows we shall need also the definition of a twisted product $G \times_K S$, where K is a closed subgroup of G, and S a K-space. $G \times_K S$ is the orbit space of the K-space $G \times S$ on which K acts by the rule: $k(g,s) = (gk^{-1},ks)$. Furthermore, there is a natural action of G on $G \times_K S$ given by $g'(g,s) = [g'g,s]$, where $g' \in G$ and $[g,s]$ denotes the K-orbit of the point (g,s) in $G \times S$. We shall identify S, by means of the K-equivariant embedding $s \mapsto [e,s], s \in S$, with the K-invariant subset $\{ [e,s] | s \in S \}$ of $G \times_K S$. This K-equivariant embedding $S \hookrightarrow G \times_K S$ induces a homeomorphism of the K-orbit space S/K onto the G-orbit space $(G \times_K S)/G$ (see [15 Ch. II, Proposition 3.3]).

The twisted products are of a particular interest in the theory of transformation groups (see [15 Ch. II, § 2]). It turns out that every G-space locally is a twisted product. For a more precise formulation we need to recall the following well known notion of a slice (see [24 p. 305]):

Definition 2.1. Let X be a G-space and K a closed subgroup of G. A K-invariant subset $S \subset X$ is called a K-kernel if there is a G-equivariant map $f: G(S) \rightarrow G/K$, called the slicing map, such that $S = f^{-1}(eK)$. The saturation $G(S)$ is called a tubular set and the subgroup K will be referred as the slicing subgroup.

If in addition $G(S)$ is open in X then we shall call S a K-slice in X.

If $G(S) = X$ then S is called a global K-slice of X.
It turns out that each tubular set with a compact slicing subgroup is a twisted product. The tubular neighborhood \(G(S) \) is \(G \)-homeomorphic to the twisted product \(G \times_K S \); namely the map \(\xi : G \times_K S \to G(S) \) defined by \(\xi([g, s]) = gs \) is a \(G \)-homeomorphism (see [15, Ch. II, Theorem 4.2]). In what follows we will use this fact without a specific reference.

One of the most powerful results in the theory of topological transformation groups states (see [24, Proposition 2.3.1]) that, if \(X \) is a proper \(G \)-space with \(G \) a Lie group, then for any point \(x \in X \), there exists a \(G_x \)-slice \(S \) in \(X \) such that \(x \in S \). In general, when \(G \) is not a Lie group, it is no longer true that a slice exists at each point of \(X \) (see [4]). Generalizing the case of Lie group actions, in [7] the following approximate version of Palais’ Slice Theorem [24, Proposition 2.3.1] for non-Lie group actions was proved, which plays a key role in the proof of Theorem 1.11:

Theorem 2.2 (Approximate Slice Theorem [7]). Let \(G \) be a locally compact group, \(X \) a proper \(G \)-space and \(x \in X \). Then for any neighborhood \(O \) of \(x \) in \(X \), there exist a compact large subgroup \(K \subset G \) with \(G_x \subset K \), and a \(K \)-slice \(S \) such that \(x \in S \subset O \).

Thus, every proper \(G \)-space is covered by invariant open subsets each of which is a twisted product.

Note that for \(G \) a compact group this theorem was proved in [4]. A version of it, without requiring \(K \) to be a large subgroup, was obtained in [2].

We recall that here a closed subgroup \(H \subset G \) is called large, if there exists a closed normal subgroup \(N \subset G \) such that \(N \subset H \) and \(G/N \) is a Lie group.

We refer to [7] for further characterizations of large subgroups.

On any group \(G \) one can define two natural (but equivalent) actions of \(G \) given by the formulas

\[g \cdot x = gx, \quad \text{and} \quad g * x = xg^{-1}, \]

respectively, where in the right parts the group operations are used with \(g, x \in G \).

Throughout we shall consider the second action only.

By \(U(G) \) we shall denote the Banach space of all right uniformly continuous bounded functions \(f : G \to \mathbb{R} \) endowed with the supremum norm. Recall that \(f \) is called right uniformly continuous, if for every \(\varepsilon > 0 \) there exists a neighborhood \(O \) of the unity in \(G \) such that \(|f(y) - f(x)| < \varepsilon \) whenever \(yx^{-1} \in O \).

We shall consider the induced action of \(G \) on \(U(G) \), i.e.,

\[(gf)(x) = f(xg), \quad \text{for all} \quad g, x \in G. \]

It is easy to check that this action is continuous, linear and isometric (see e.g., [3, Proposition 7]).

Proposition 2.3. Let \(G \) be a group. Then for every \(f \in U(G) \), the map \(f_* : G \to U(G) \) defined by \(f_*(x)g = f(xg^{-1}) \), \(x, g \in G \), is a right uniformly continuous \(G \)-map.

Proof. A simple verification. \(\square \)
3. Proofs

Proof of Theorem 1.4. Choose a neighborhood U of the identity in X such that $U = U^{-1}$ and $U^3 \cap G$ has a compact closure in G. We claim that for every $x \in X$ the neighborhood xU is G-small. Indeed, let $y \in X$ be any point. Two cases are possible.

Case 1. Assume that $y \in xU^2G$. Then $y = xu_1u_2h$ with $u_1, u_2 \in U$ and $h \in G$. We claim that xU^2h is a neighborhood of y thin relative to xU. Indeed, if $g \in \langle xU, xU^2h \rangle$, then $g^{-1}h^{-1} \in U^3 \cap G$. Since $U^3 \cap G$ has a compact closure, we see that so is the set $(U^3 \cap G)h$ to which belongs g^{-1}. This yields that $\langle xU, xU^2h \rangle$ is contained in $h^{-1}(U^3 \cap G)^{-1}$, which also has a compact closure. Hence the transporter $\langle xU, xU^2h \rangle$ has a compact closure, as required.

Case 2. Assume that $y \notin xU^2G$. In this case $y \notin xU^2G$. Indeed, if $y \notin xU^2G$ then the neighborhood $xUu^{-1}y$ of y should meet the set xU. Then $xux^{-1}y = xv$ for suitable elements $u, v \in U$ and $h \in G$. Then $y = xv^{-1}vh \in xU^2G$, a contradiction.

Hence the open set $V = X \setminus xU^2G$ is a G-invariant neighborhood of y, and V is thin relative to xU because the transporter $\langle xU, V \rangle$ is empty in this case. This completes the proof.

Proposition 3.1. Let X be a group and G a locally compact subgroup of X. Then there exists a locally finite covering of X consisting of G-invariant open sets of the form S_iG, where each S_i is an open G-small subset of X.

Proof. By Theorem 1.1 X is a proper G-space, and hence, one can choose a G-small neighborhood U of the unity in X. By virtue of Markov’s theorem 12, Theorem 3.3.9], there exists a right uniformly continuous function $f : X \rightarrow [0, 1]$ such that

\begin{equation}
(3.1) \quad f(e) = 0 \quad \text{and} \quad f^{-1}([0, 1]) \subset U.
\end{equation}

Then, by Proposition 2.3 f induces an X-equivariant map $f_* : X \rightarrow U(X)$ defined by the rule:

\[f_*(x)(g) = f(xg^{-1}), \quad x, g \in X. \]

Denote by Z the image $f_*(X)$. Clearly, Z is the X-orbit of the point $f_*(e)$ in the X-space $U(X)$, and the metric of $U(X)$ induces an X-invariant metric on Z. We claim that

\begin{equation}
(3.2) \quad f_*(\Gamma_{x,V}) \subset x^{-1}U, \quad \text{for every} \quad x \in X,
\end{equation}

where $V = [0, 1)$ and $\Gamma_{x,V}$ is the open subset $\{ \varphi \in U(X) \mid \varphi(x) \in V \}$ of U.

First we observe that $\Gamma_{x,V} = x^{-1}\Gamma_{e,V}$ and

\[f_*^{-1}(\Gamma_{e,V}) \subset f^{-1}(V). \]

Then (3.2) follows from (3.1) and the X-equivariance of f_*. Besides, since $f_*(x) \in \Gamma_{x,V}$ for every $x \in X$, we see that the sets $\Gamma_{x,V}, x \in X$, constitute a covering of Z.

From now on we restrict ourselves only by the induced actions of the subgroup G, i.e., we will consider X and Z just as G-spaces.

Now, it follows from (3.2) and from the G-equivariance of f_* that

\begin{equation}
(3.3) \quad f_*^{-1}(G(\Gamma_{x,V})) \subset x^{-1}UG, \quad \text{for every} \quad x \in X.
\end{equation}
Since \(f_* : X \to Z \) is \(G \)-equivariant, it induces a continuous map \(\tilde{f}_* \) of the \(G \)-orbit spaces, i.e., we have the following commutative diagram:

\[
\begin{array}{ccc}
X & \xrightarrow{f_*} & Z \\
\downarrow p & & \downarrow q \\
X/G & \xrightarrow{\tilde{f}_*} & Z/G
\end{array}
\]

where \(p \) and \(q \) are the \(G \)-orbit maps.

It follows from (3.3) that

\[
(3.4) \quad \tilde{f}_*^{-1}(q(\Gamma_x, V)) \subset p(x^{-1}U), \quad \text{for every } x \in X.
\]

Thus, the open covering \(\{p(xU) \mid x \in X\} \) of the \(G \)-orbit space \(X/G \) is refined by the open covering \(\{\tilde{f}_*^{-1}(q(\Gamma_x, V)) \mid x \in X\} \).

Since the metric of \(Z \) is \(G \)-invariant, the orbit space \(Z/G \) is pseudometrizable (see Preliminaries). Hence the open covering \(\{q(\Gamma_x, V) \mid x \in X\} \) of \(Z/G \) admits an open locally finite refinement, say \(\{W_i \mid i \in I\} \) (see [16, Theorem 4.4.1 and Remark 4.4.2]). Then, clearly, \(\{p^{-1}(\tilde{f}_*^{-1}(W_i)) \mid i \in I\} \) is an open locally finite refinement of \(\{xUG \mid x \in X\} \) consisting of \(G \)-invariant sets. It then follows that each set \(p^{-1}(\tilde{f}_*^{-1}(W_i)) \) is contained in some set \(xU \), \(x \in X \), which yields that

\[
p^{-1}(\tilde{f}_*^{-1}(W_i)) = S_iG,
\]

where \(S_i = p^{-1}(\tilde{f}_*^{-1}(W_i)) \cap xU \).

Now, \(S_i \), being a subset of the \(G \)-small set \(xU \), is itself \(G \)-small (see the proof of Theorem 1.1). This completes the proof. \(\square \)

Proof of Theorem 1.2. Let \(\{S_iG \mid i \in I\} \) be the locally finite open covering of \(X \) from Proposition 3.1. Then the union \(S = \bigcup_{i \in I} S_i \) is a \(G \)-small set (see e.g., [2, Proposition 1.2(d)]). On the other hand,

\[
SG = \left(\bigcup_{i \in I} S_i \right)G = \bigcup_{i \in I} S_iG = X,
\]

yielding that \(S \) is a \(G \)-fundamental subset of \(X \). Since the closure of a \(G \)-small set is \(G \)-small (see e.g., [2, Proposition 1.2(b)]), the closure \(\overline{S} \) is the desired closed \(G \)-fundamental set. This completes the proof.

Proof of Corollary 1.6. Since \(G \) is almost connected, it has a maximal compact subgroup \(K \) (see Preliminaries). Since by Corollary 1.5 the quotient \(X/G \) is paracompact, due to a result of Abels [1, Main Theorem], \(X \) admits a global \(K \)-slice \(S \), and hence, it is \(G \)-homeomorphic to the twisted product \(G \times_K S \) (see Preliminaries). Since the group \(K \) is compact, it then follows that the \(K \)-orbit map \(G \times S \to G \times_K S \cong_G X \) is open and perfect. This yields immediately that the restriction \(p|_S : S \to X/G \) of the \(G \)-orbit map \(p : X \to X/G \) is an open and perfect surjection. Now the result follows.

Proof of Corollary 1.9. By virtue of Corollary 1.3 \(X \) admits a closed subset \(F \subset X \) such that the restriction of the quotient projection \(p : X \to X/G \) to \(F \) is a
perfect surjection $p|_F : F \to X/G$. It then follows from the hypothesis that F has the property P. Since a locally compact group is paracompact (even, strongly paracompact \cite{12} Theorem 3.1.1), then again by the hypothesis, the product $G \times F$ has the property P. Since F is a closed G-small set, the action map $G \times F \to X$ is perfect (see Abels \cite{2} Proposition 1.4), and since $FG = X$ we see that the map $G \times F \to X$ is surjective. Then X has the property P by the hypothesis.

Proof of Corollary 1.10 It is quite similar to the proof of Corollary 1.6.

Proof of Theorem 1.11 Consider three cases.

Case 1. Assume that G is almost connected. In this case G has a maximal compact subgroup, say, K (see Preliminaries). Since, by Corollary 1.5 the quotient X/G is paracompact, one can apply a theorem of H. Abels \cite{1} Main Theorem, according to which X admits a global K-slice, say S, and hence, X is G-homeomorphic to the twisted product $G \times KS$. By another result of H. Abels \cite{1} Theorem 2.1, X is homeomorphic (moreover, K-equivariantly homeomorphic) to the product $G/K \times S$.

Since G is locally compact and paracompact and the natural quotient map $G \to G/K$ is open and closed, we infer that G/K is also locally compact and paracompact. Further, since S is paracompact, according to a theorem of Morita \cite{22} one has:

\[(3.5) \dim (G/K \times S) \leq \dim G/K + \dim S.\]

Since K is compact, according to a result of V. V. Filippov \cite{18} one has the inequality:

\[(3.6) \dim S \leq \dim S/K + \dim q\]

where $q : S \to S/K$ is the K-orbit projection and $\dim q = \sup \{\dim g^{-1}(a) \mid a \in S/K\}$. Further, since K acts freely on S, we see that $\dim q = \dim K$.

Consequently, combining (3.5) and (3.6) one obtains:

\[(3.7) \dim (G/K \times S) \leq \dim G/K + \dim K + \dim S/K.\]

Next, since $X/G \cong (G \times KS)/G \cong S/K$ (see Preliminaries) and $\dim G/K + \dim K = \dim G$ (see Remark 1.12), it then follows from (3.7) that

\[\dim (G/K \times S) \leq \dim X/G + \dim G,\]

as required.

Case 2. Let G be totally disconnected. Then G is zero-dimensional (see \cite{17} Theorem 1.4.5)). Hence, one has to prove that

\[\dim X \leq \dim X/G.\]

By virtue of Approximate Slice Theorem (see Theorem 2.2), X is covered by a family of open tubular sets U_i. Assume that $f_i : U_i \to G/K_i$ is the corresponding slicing map, where each K_i is a compact large subgroup of G.

Let $p : X \to X/G$ be the quotient map. Since, by Corollary 1.5 X/G is paracompact the open covering $\{p(U_i)\}$ of X/G has a locally finite closed shrinking $\{F_i\}$, i.e., $F_i \subset p(U_i)$ and $\bigcup F_i = X/G$ (see \cite{16} Remark 5.1.7). Then, putting $\Phi_i = p^{-1}(F_i)$, we get a locally finite closed shrinking $\{\Phi_i\}$ of $\{U_i\}$ consisting of G-invariant sets.
Thus, X is covered by a locally finite family of closed tubular sets Φ_i. Consequently, by virtue of the locally finite sum theorem (see [17, Theorem 3.1.10]), it suffices to show that $\dim \Phi \leq \dim X/G$, for every member Φ of the covering $\{\Phi_i\}$.

Let $\varphi : \Phi \to G/K$ be the slicing map corresponding to a tubular set $\Phi \in \{\Phi_i\}$, where K is a compact large subgroup of G (of course, depending upon Φ). Since K is a large subgroup, the quotient G/K is locally connected, in fact, it is a manifold [7, Proposition 3.2]. On the other hand G/K is totally disconnected, and hence, G/K should be a discrete space. This yields that, if we put $Q = f^{-1}(eK)$, then each gQ is closed and open in Φ, and Φ is the disjoint union of the sets gQ one g out of every coset in G/K. In other words, Φ is just homeomorphic to the product $G/K \times Q$.

Next, since G/K is locally compact and paracompact, and Q is paracompact (being a closed subset of the paracompact space X), according to a theorem of Morita [22] one has:

$$\dim \Phi = \dim (G/K \times Q) \leq \dim G/K + \dim Q. \quad (3.8)$$

Since K is compact, according to a result of V. V. Filippov [18] one has the inequality:

$$\dim Q \leq \dim Q/K + \dim r \quad \text{where } r : Q \to Q/K \text{ is the } K \text{-orbit projection}. \quad (3.9)$$

where $r : Q \to Q/K$ is the K-orbit projection. Further, since K acts freely on Q, we see that $\dim r = \dim K = \dim G = 0$.

Consequently, combining (3.8) and (3.9), and taking into account that $\dim K = 0 = \dim G/K$ (this follows, for instance, from $\dim G = 0$ and Remark 1.12), one obtains:

$$\dim \Phi \leq \dim Q/K. \quad (3.10)$$

Further, since Φ is a tubular set with the K-slice Q, one has $\Phi/G \cong Q/K$ (see Preliminaries). Then it follows from (3.10) that

$$\dim \Phi \leq \dim \Phi/G. \quad (3.11)$$

But Φ/G is a closed subset of X/G, and since X/G is normal, due to monotonicity of the dimension (see [17, Theorem 3.1.4]), one has $\dim \Phi/G \leq \dim X/G$. This, together with (3.11), now yields that

$$\dim \Phi \leq \dim X/G,$$

as required.

Case 3. Let G be arbitrary. By case 1, we have:

$$\dim X \leq \dim X/G_0 + \dim G_0. \quad (3.12)$$

where G_0 is the identity component of G. Since G/G_0 is a totally disconnected locally compact group which acts naturally on the G_0-orbit space X/G_0, then according to case 2, one has:

$$\dim X/G_0 \leq \dim \frac{X/G_0}{G/G_0}. \quad (3.13)$$

Now, since $\frac{X/G_0}{G/G_0} \cong X/G$ and $\dim G_0 \leq \dim G$, it follows from (3.12) and (3.13) that

$$\dim X \leq \dim X/G + \dim G.$$

This completes the proof.
References

1. H. Abels, Parallelizability of proper actions, global K-slices and maximal compact subgroups, Math. Ann. 212 (1974), 1-19.
2. H. Abels, A universal proper G-space, Math. Z. 159 (1978), 143-158.
3. S. A. Antonian, Equivariant embeddings into G-AR’s, Glasnik Matematički 22 (42) (1987), 503-533.
4. S. A. Antonyan, Existence of a slice for arbitrary compact transformation groups, Matematicheskie Zametki 56:5 (1994) 3-9: English transl. in: Math. Notes 56 (5-6) (1994) 101-1104.
5. S. A. Antonyan, The Banach-Mazur compacta are absolute retracts, Bull. Acad. Polon. Sci. Ser. Math. 46, no. 2 (1998) 113-119.
6. S. A. Antonyan, Extensorial properties of orbit spaces of proper group actions, Topol. Appl. 98 (1999), 35-46.
7. S. A. Antonyan, Orbit spaces and unions of equivariant absolute neighborhood extensors, Topology Appl. 146-147 (2005) 289-315.
8. S. A. Antonyan and S. de Neymet, Invariant pseudometrics on Palais proper G-spaces, Acta Math. Hung. 98 (1-2) (2003), 41-51.
9. A. V. Arhangel’skii, Classes of topological groups, Russian Math. Surveys 36, no. 3 (1981), 151-174.
10. A. V. Arhangel’skii, Quotients with respect to locally compact subgroups, Houston J. Math. 31, no. 1 (2005), 215-226.
11. A. V. Arhangel’skii and V. V. Uspenskij, Topological groups: local versus global, Applied General Topology 7, no. 1 (2006), 67-72.
12. A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Press/World Scientific, Amsterdam-Paris, 2008.
13. N. P. Bhatia, G. P. Szegö, Stability theory of Dynamical Systems, Springer Verlag, Berlin, 1970.
14. C. J. R. Borges, On stratifiable spaces, Pacific J. Math. 17, no. 1 (1966), 1-16.
15. G. Bredon, Introduction to compact transformation groups, Academic Press, 1972.
16. R. Engelking, General Topology, PWN-Pol. Sci. Publ., Warsaw, 1977.
17. R. Engelking, Dimension Theory, PWN-Pol. Sci. Publ., Warsaw, 1978.
18. V. V. Filippov, Dimensionality of spaces with the action of a bicompact group, Math. Notes, 25, no. 3 (1979), 171-174.
19. O. Hájek, Parallelizability revisited, Proc. Amer. Math. Soc., 27, no. 1 (1971), 77-84.
20. G. Hochshild, The structure of Lie groups, Holden-Day Inc., San Francisco, 1965.
21. J. L. Koszul, Lectures on groups of transformations, Tata Institute of Fundamental Research, Bombay, 1965.
22. K. Morita, On the Dimension of Product Spaces, American Journal of Mathematics, Vol. 75, No. 2 (1953), pp. 205-223.
23. R. Palais, The classification of G-spaces, Memoirs of the AMS, 36 (1960).
24. R. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. 73, (1961), 295-323.
25. E. G. Skljarenko, On the topological structure of locally bicompact groups and their quotient spaces, Amer. Math. Soc. Transl., Ser. 2, 39 (1964), 57-82.

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México Distrito Federal, México.
E-mail address: antonyan@unam.mx