COMPARATIVE STUDY OF TWO RICE CULTIVARS (Oryza glaberrima and O. sativa) UNDER DIFFERENT CULTURAL CONDITIONS

Montcho D¹*, Gbenou P¹, Missihoun AA², Futakuchi K³, Ahanhanzo C² and Agbangla C²

¹National University of Agriculture, BP 43 Ketou, Benin
²University of Abomey-Calavi, BP 526 Abomey-Calavi, Benin
³Africa Rice Center (AfricaRice), 01 BP 2031 Cotonou, Benin

Received – September 06, 2016; Revision – November 13, 2016; Accepted – January 18, 2017
Available Online – February 28, 2017

DOI: http://dx.doi.org/10.18006/2017.5(1).045.053

ABSTRACT

This study was conducted to evaluate and compare the growth performance of two rice species viz. Oryza glaberrima and O. sativa under different hydrological conditions. For this, 21 accessions of O. glaberrima and 69 of O. sativa core collection were cultivated in different water regimes ranging from drought-prone upland to lowland using a toposequence (rainfed upland, rainfed hydromorphic and irrigated lowland) at the experimental field of Africa Rice, Ouedeme, Benin, during 2010 and 2011 wet seasons. Results of study revealed higher Morpho-physiological and phenological variability among the core collections of O. sativa and O. glaberrima genotypes. Further, among various studied attributes, O. glaberrima showed higher number of tillers at maturity as compared to O. sativa in the second season. Moreover, O. glaberrima also showed long crop duration as compared to O. sativa. Leaf area and specific leaf area discriminated O. sativa from O. glaberrima in all ecologies. Further, O. glaberrima also indicated higher leaf area on every sampling date. In case of plant height, non-significant difference was not reported for both species. Variation in results between the two seasons could be justified by the difference between average rainfalls.

KEYWORDS
O. glaberrima
O. sativa
Core collection
Toposequence
Variability
1 Introduction

Rice (Oryza sp.) is a major stable food crop in West Africa. Recently, it became a strategic commodity in Africa but its availability and prices are the two major determinants for the welfare of poor consumers threatened by food insecurity (Nwanze et al., 2006; Saito et al., 2010). It grows and widely consumed by more than 40 African countries where about 20 million farmers are engaged in its production and about 100 million peoples directly or indirectly depend on the rice production (Nwanze et al., 2006). Genus Oryza comprises 22 species but among these only two i.e. O. sativa or Asian Rice and O. glaberrima or African Rice were cultivated throughout the world. Among this, O. sativa was domesticated more than 10,000 years ago (Kovach et al., 2007) and now it is widely cultivated in various ecologies of the world.

According to Harlan & Stemler (1976) this variety introduced in Africa about 2,000 years ago. This specie contains different subspecies, among these O. sativa var japonica is well adopted for upland ecosystem while O. sativa var indica performing well under various other ecosystems (Kato, 1930). Compared to O. sativa, O. glaberrima has short domestication history and according to Linares (2002) this species introduced about 2000-3000 years backs. It can be classified in two ecological groups viz upland and lowland ecosystems (Oka, 1974). Like O. sativa, O. glaberrima does not have any subgroups (Morishima et al., 1962). To argue this statement, Futakuchi & Sie (2009) concluded that some upland cultivar of O. glaberrima has resistances to lowland constraints. Further, several studies have clarified that these difference between O. sativa and O. glaberrima may based on various morphological characters (Morishima et al., 1962) such as short ligule, glabrous leaves in O. glaberrima and long ligule in the O. sativa. Knowledge of comparison between O. sativa and O. glaberrima is limited with morpho-physiological and phenological traits. The present study aims to compare O. glaberrima and O. sativa through different hydrological conditions.

2 Materials and Methods

Sixty nine (69) verities of O. sativa germplasm was used in this study, these were the core collection of Kojima et al. (2005) and developed at National Institute of Agrobiological sciences, Japan while the twenty-one (21) accessions of O. glaberrima were collected from Africa Rice gene bank. Table 1 listed the various accessions which were used in present study. Seed of all genotypes were sown in artificially developed three ecosystems (upland, no flooded hydromorphic and irrigated lowland) at the experimental field of Africa Rice, Ouedeme (6°42’46”N, 1°41’07”E). The experimental design was Alpha Lattice with three replications of each ecosystem. Nine incomplete blocks were considered in each replicate and ten genotypes in each block. The size of plot was 2 m² and the space between plants to plants was 25 cm. The experimental plots were fertilized by recommended dose of NPK (15-15-15) which was applied @ 200 kg/ha at 25 days after sowing (DAS) and 50 kg/ha urea was applied at 40 DAS.

All the necessary agronomic practices recommended for rice have been carried out timely as per standard procedure. In the upland and hydromorphic ecosystems, dry seeds were sown while in lowland cultivation, pre-germinated seeds were sown in a nearly seedbed nursery and transplanted into the main plots at 18 DAS. The vegetative vigor data were recorded in all ecosystems at 30 DAS while plant height and tiller number were recorded at the maturity. Days to maturity was visually assessed on a daily basis starting from booting stage. Data collections have been done according to SES developed by IRRI (1996). Leaf area (LA) was measured by using leaf area meter (LI-3000, LI-COR) at 31DAS, 46DAS and 56DAS. Specific leaf area (SLA) at each sampling date was calculated dividing LA by leaf dry weight. Statistical data analysis was performed using GENSTAT (2003) to compare O. sativa and O. glaberrima for all variables involved in this study.

Figure 1 Rainfall distribution in 2010 and 2011.
Comparative study of two rice cultivars (*Oryza glaberrima* and *O. sativa*) under different cultural conditions

Table 1 List of the *O. sativa* and *O. glaberrima* cultivars used in present study

S. No.	GENOTYPES	WRC N°	ORIGINS	S. No.	GENOTYPES	WRC N°	ORIGINS
	O. sativa (core collection)				*O. glaberrima*		
1.	NIPPONBARE	WRC 01	JAPAN	36.	SURJAMUKHI	WRC 33	INDIA
2.	KASALATH	WRC 02	INDIA	37.	ARC 7291	WRC 34	INDIA
3.	BEI KHE	WRC 03	CAMBODIA	38.	ARC 5955	WRC 35	INDIA
4.	JENA 035	WRC 04	NEPAL	39.	RATUL	WRC 36	INDIA
5.	NABA	WRC 05	INDIA	40.	ARC 7047	WRC 37	INDIA
6.	PULUIK ARANG	WRC 06	INDONESIA	41.	ARC 11094	WRC 38	INDIA
7.	DAVAO 1	WRC 07	PHILIPPINES	42.	BADARI DHAL	WRC 39	NEPAL
8.	RYOU SUISAN KOUMAI	WRC 09	CHINA	43.	NEPAL 555	WRC 40	INDIA
9.	SHUUSOUHU	WRC 10	CHINA	44.	KALUHEENATI	WRC 41	SRILANKA
10.	JINGUOYIN	WRC 11	CHINA	45.	LOCAL BASMATI	WRC 42	INDIA
11.	DAHONGGU	WRC 12	CHINA	46.	DIANYU 1	WRC 43	CHINA
12.	ASU	WRC 13	BHUTAN	47.	BASILANON	WRC 44	PHILIPPINES
13.	IR 58	WRC 14	PHILIPPINES	48.	MA SHO	WRC 45	MYANMAR(Burma)
14.	CO 13	WRC 15	INDIA	49.	KHAO NOK	WRC 46	LAOS
15.	VARY FUTSI	WRC 16	MADAGASCAR	50.	JAGUARY	WRC 47	BRAZIL
16.	KEIBOBA	WRC 17	CHINA	51.	KHAU MAC KHO	WRC 48	VIETNAM
17.	QINGYU(SEIYU)	WRC 18	TAIWAN	52.	PADI PERAK	WRC 49	INDONESIA
18.	DENG PAO ZHAI	WRC 19	CHINA	53.	REXMONT	WRC 50	USA
19.	TADUKAN	WRC 20	PHILIPPINES	54.	URASAN 1	WRC 51	JAPAN
20.	SHWE NANG GYI	WRC 21	MYANMAR(Burma)	55.	KHAU TAN CHIEM	WRC 52	VIETNAM
21.	CALOTOC	WRC 22	PHILIPPINES	56.	TIMA	WRC 53	BHUTAN
22.	LEBED	WRC 23	PHILIPPINES	57.	TUPA 729	WRC 55	BANGLADESH
23.	PINULUPOT 1	WRC 24	PHILIPPINES	58.	MLYANG 23	WRC 57	REP KOREA
24.	MUHA	WRC 25	INDIA	59.	NEANG MENG	WRC 58	CAMBODIA
25.	JHONA 2	WRC 26	INDIA	60.	NEANG PHTONG	WRC 59	CAMBODIA
26.	NEPAL 8	WRC 27	NEPAL	61.	HAKPHAYNHAY	WRC 60	LAOS
27.	JARJAN	WRC 28	BHUTAN	62.	RADIN GOI SESAT	WRC 61	MALAYSIA
28.	KALO DHAN	WRC 29	NEPAL	63.	KEMASIN	WRC 62	MALAYSIA
29.	ANJANA DHAN	WRC 30	NEPAL	64.	BLEIYO	WRC 63	THAILAND
30.	SHONI	WRC 31	BANGLADESH	65.	PADI KUNING	WRC 64	INDONESIA
31.	TUPA 121-3	WRC 32	BANGLADESH	66.	RAMBHOOG	WRC 65	INDONESIA
32.	BINGALA	WRC 66	MYANMAR(Burma)	67.	CHIN GALAY	WRC 97	MYANMAR(Burma)
33.	PHULBA	WRC 67	INDIA	68.	DEEJIAOHUALUO	WRC 98	CHINA
34.	KHAO NAM JEN	WRC 68	LAOS	69.	HONG CHEUH ZAI	WRC 99	CHINA
35.	VANDARAN	WRC 100	SRILANKA	-	-	-	-

Table 1 continued...

S. No.	GENOTYPES	WRC N°	ORIGINS	S. No.	GENOTYPES	WRC N°	ORIGINS
	O. glaberrima				*O. glaberrima*		
1.	CG 14	-	SENEegal	12.	TOG 6748	-	LIBERIA
2.	CG 17	-	SENEegal	13.	TOG 6804	-	NIGERIA
3.	CG 20	-	SENEegal	14.	TOG 7206	-	COTE D’IVOIRE
4.	TOG 12303	-	COTE D’IVOIRE	15.	TOG 7420	-	SIERRA LEONE
5.	TOG 5473	-	NIGERIA	16.	TOG 7442	-	NIGERIA
6.	TOG 5641	-	NIGERIA	17.	TOG 9066	-	NIGERIA
7.	TOG 5681	-	NIGERIA	18.	TOG 9276	-	NIGERIA
8.	TOG 5775	-	LIBERIA	19.	TOG 9280	-	NIGERIA
9.	TOG 5829	-	LIBERIA	20.	TOG 9281	-	NIGERIA
10.	TOG 6740	-	LIBERIA	21.	TOG 9300	-	NIGERIA
11.	SALIFOREH	-	SIERRA LEONE				
Table 2 Phenotypic frequency of vegetative vigor for both species in all ecosystems (%).

Ecologies	Classes	Upland	Hydromorphic	Lowland			
		O. sativa	O. glaberrima	O. sativa	O. glaberrima	O. sativa	O. glaberrima
2010 season	Extra vigorous	42.03	57.14	68.12	80.95	0	0
	Vigorous	53.62	38.10	28.98	19.05	20.29	23.81
	normal	4.35	4.76	2.90	0	71.01	71.43
	weak	0	0	0	8.70	4.76	
	Very weak	0	0	0	0	0	
2011 season	Extra vigorous	43.48	61.90	43.48	71.43	5.80	9.52
	Vigorous	47.83	38.10	43.48	28.57	39.13	38.10
	Normal	8.70	0	13.04	0	55.07	52.38
	Weak	0	0	0	0	0	
	Very weak	0	0	0	0	0	

3 Results

Results of study revealed a typical bimodal Rainfall distribution pattern for the experimental site. During cropping season, lowest rainfalls were reported in July, 2010 cropping season while it was reported lowest in August of 2011 cropping season. Figure 1 showed rainfall distribution during crop seasons of 2010 and 2011.

Comparison between O. glaberrima and O. sativa was made for each variable in each ecosystem for both years. Vegetative vigor was scored between 1 (extra vigorous) to 5 (normal vigor) for O. sativa in all ecological conditions of both years for both cropping seasons. Therefore plant grown in upland ecological conditions shows higher vigorous characteristics (score 3) and shows 53.62 and 47.83 percent vigorous effect in 2010 and 2011 respectively. Highest vigorous percentages 68.12 and 43.48 were reported under hydromorphic ecological conditions of cropping season of 2010 and 2011 respectively. Under lowland ecosystem condition normal vigor showed 71.01% vigorous characteristics in 2010 while this percentage was reported 55.07% for the cropping season of 2011.

Vegetative vigor of O. glaberrima was reported between 1 (extra vigorous) to 3 (vigorous) for upland and hydromorphic ecologies. For O. glaberrima, vigorous nature was reported 95.24% for upland ecosystem conditions while this value reached 100% for hydromorphic agro-ecosystem and these two are not significantly different. This vigorous nature reached 100% for both the ecosystem in the second season. In lowland ecosystem, vegetative vigor was reported between 3 (vigorous) to 7 (weak) for O. glaberrima germplasm and the normal vigor had the high percentage 71.43% in 2010. While in 2011, it was scored between 1 (extra vigorous) to 5 (normal) and the normal vigor percentage was reported 52.38% (table 2). No significant difference was found between O. sativa and O. glaberrima for plant height at maturity in all studied agricultural agroecosystem both seasons. In lowland ecology (P=0.544), O. glaberrima showed 149.9 cm plant height and this value was reported 147.6 cm for O. sativa.

Table 3 Phenotypic Frequency of plant height for both species in all ecosystems (%).

Ecologies	Classes	Upland	Hydromorphic	Lowland			
		O. sativa	O. glaberrima	O. sativa	O. glaberrima	O. sativa	O. glaberrima
2010 season	Semi dwarf	20.29	0	13.04	0	10.14	0
	Intermediate	26.09	42.86	17.39	14.29	11.59	4.76
	Tall	53.62	57.14	69.57	85.71	78.26	95.24
2011 season	Semi dwarf	36.23	28.57	26.09	14.29	7.25	0
	Intermediate	44.93	61.90	50.72	57.14	4.35	0
	Tall	18.84	9.52	23.19	28.57	88.41	100

Journal of Experimental Biology and Agricultural Sciences
http://www.jebas.org
Comparative study of two rice cultivars (*Oryza glaberrima* and *O. sativa*) under different cultural conditions

Figure 2 Comparison of *O. glaberrima* and *O. sativa* in all ecosystems
In hydromorphic ecosystem (P=0.235) this plant height was reported 146.67 cm for O. glaberrima and 142.24 cm for O. sativa while in upland ecology (P=0.468), O. glaberrima showed 133.26 cm and O. sativa gave 146.67 cm high. Further, in the second season, similar result was found for plant height and O. glaberrima and O. sativa (Figure 2).

Scores of plant height for O. sativa were comprised between 1 (semi dwarf) to 9 (tall) in both seasons in all ecologies. In first season, 53.62% genotypes of the O. sativa were tall in upland, while this value was reported between 69.57% for hydromorphic and 78.26% for lowland ecosystems. The second season showed majority of plants as intermediate in upland (44.93%) and hydromorphic (50.72%) while for In lowland ecosystem, 88.41% of the O. sativa plants were tall. Similar pattern was reported for O. glaberrima and 57.14% genotypes were tall for upland, while it was reported 85.71% for hydromorphic and 95.24% for lowland. In the second season of 2011, 61.90% O. glaberrima genotypes grown in the upland are tall, while this percentage was 57.14 and 100% for plant grown in hydromorphic and lowland ecosystem (Table 3).

In case of tillers number at maturity, a significant difference (P<0.001) was reported between O. glaberrima (15.32 tillers/plant) and O. sativa (12.80 tillers/plant) at lowland ecosystem in the first season of 2010. While, in case of upland (P=0.250) and hydromorphic (P=0.489), no significant difference was found between O. glaberrima and O. sativa. While, in the second season significant difference (P<0.05) was observed between O. glaberrima and O. sativa in all ecologies. Means values of O. glaberrima were higher as compared to O. sativa. Concerning the number of tillers, O. glaberrima have 11.78 tillers/plant in lowland while this number was 10.88 and 12.59 tillers/plant for hydromorphic and upland ecosystem respectively. In case of O. sativa genotypes, tiller number was 10.04, 9.71 and 11.21 tillers/plant for lowland, hydromorphic and upland respectively (Figure 1). The scores of tiller number in the first season were ranged from 1 (very high) to 7 (low) for O. sativa while, in case of O. glaberrima tiller number showed two classes viz 3 (good) and 5 (medium). Percentage tiller was reported 76.81, 75.36 and 79.71% for upland, hydromorphic and lowland ecosystem. Similar results were obtained in the second season of 2011 (Table 4).
Further, for ion was reported 104.4 days for development of 0. sativa. The ent hydrological conditions by oth species revealed that leaf area of intermediate early maturity was reported for 0. glaberrima in hydromorphic and 49.28% in lowland for 0. sativa at all ecologies and it was reported in 2011 high percentage was observed in early maturing class 33.33% in upland ecology. In 2011, no significant differences was reported amongst the genotypes under hydromorphic ecosystem while high percentage (56.52%) had early maturing class in upland 0. glaberrima whereas 0. sativa had the smallest at each sampling date (Table 5).

Table 6 Time courses of leaf area for both species in all ecologies (cm²).
2010 season
O. glaberrima
O. sativa
Probability
2011 season
O. glaberrima
O. sativa
Probability

Like other parameters, maturity also showed highly significant difference (P<0.001) between 0. glaberrima and 0. sativa for all ecologies in both seasons. In the first season, in lowland means values indicated 125.4 days for 0. glaberrima and 108.4 days for 0. sativa. Further, for 0. glaberrima maturity time was reported 120 days under hydromorphic ecosystem and this duration was reported 104.4 days for 0. sativa in under same ecosystem. Under upland ecosystem conditions, means maturity time was reported 121.3 days for 0. glaberrima while this was reported 110.6 days for 0. sativa. In 2011, no significant differences was reported amongst the various ecosystem and means maturity time under lowland condition was reported 121 days for 0. glaberrima and 107.9 days for 0. sativa while this maturing time was 126.4 days for 0. glaberrima and 114.8 days for 0. sativa under hydromorphic ecosystem. In upland ecosystem conditions, maturity time was reported 122.4 and 115 days for 0. glaberrima and 0. sativa respectively (Figure 1). Days to maturity was scored between 1 (very early) to 9 (very late) for 0. sativa and between 1 (very early) to 7 (late) for 0. glaberrima in all ecologies in both seasons. In the first season high percentage (56.52%) had early maturing class in upland and in lowland (44.93%) for 0. sativa but for 0. glaberrima high percentage (56.52%) was revealed by very early genotypes under hydromorphic ecosystem while high percentage in early maturing class 33.33% in upland ecology. In 2011 high percentage was observed in early maturing class at all ecologies and it was reported 36.23% in upland, 44.93% in hydromorphic and 49.28% in lowland for 0. sativa. While, intermediate early maturity was reported for 0. glaberrima in upland (52.38%) and lowland (57.14%) ecosystem but 0. glaberrima genotypes grown in hydromorphic ecosystem shows high percentage (38.10%) of late maturing (Table 5).

Table 7 Time courses of specific leaf area for both species in all ecologies m²kg⁻¹.
2010 season
O. glaberrima
O. sativa
Probability
2011 season
O. glaberrima
O. sativa
Probability

4 Discussion

This is the first attempt to compare core collection of 0. sativa to 0. glaberrima under different hydrological conditions by using morpho-physiological and phenological variables. Present study has been taken for the whole diversity of 0. sativa developed by Koijima et al (2005) in NIAS Institute in Japan. As per the Frankel (1984) suggestion, development of core collection is important for the effective uses of germplasms. High variability (1 to 7) was observed within the 0. glaberrima and 0. sativa vegetative vigor in all ecosystems. Plant height at maturity did not discriminate 0. glaberrima and 0. sativa as shown by non-significant probability. Semi dwarf, intermediate and tall genotypes were reported in both species. In the each ecosystem, plant height is not discriminate variable.

Journal of Experimental Biology and Agricultural Sciences
http://www.jebas.org
On the other hand number of tillers at maturity, maturity time, leaf area and specific leaf area discriminate well for *O. glaberrima* and *O. sativa*. High tillers number was observed in all geographical area for *O. glaberrima* in 2011. Similarly, Dingkuhn et al. (1998) reported about twice tillage production in *O. glaberrima* (CG 14) as compared to *O. sativa* (WAB 56-104) under upland condition. High tillering capacity is considered as desirable trait in rice production since number of tillers per plant is closely related to number of panicle and grain yield (Wang et al., 2007). Comparison of means days of maturity between *O. glaberrima* and *O. sativa* revealed highly significant difference in all ecosystems.

Result of study revealed that *O. sativa* had shorter duration as compared to *O. glaberrima*. High variability was reported in days to maturity for both species from very early to very late maturing. Crop duration is interactively determined genotype and environment. Crop duration of rice genotype varied strongly in their sensitivity to photoperiod. It depends mainly on the cultivar-specific duration of the basic vegetative phase (Dingkuhn & Asch, 1999).

Comparison between rice cultivars of different ecological adaptation which were planted across hydrological sequence indicated strong genotype specific effects of the ecosystem on growth and crop duration (Dingkuhn & Asch, 1999). This study did not go depth to make difference between *O. sativa* japonica and *O. sativa* indica because core collection comprises both subspecies. Therefore it has been well established that *O. sativa* indica has long crop duration and high tillering ability. Similarly, Dingkuhn & Asch (1999) reported long crop duration under all studied ecologies (upland, hydromorphic and lowland) for *O. sativa* indica cultivar (Bouake 189) and it was longer than the *O. glaberrima* (CG 14). While the other genotype of *O. sativa* japonica cultivar (WAB 56-105) has shorter crop duration as compared to CG 14. This thing is suggesting that results can vary with the used genotypes.

Special leaf area gradually (SLA) increased between 31 to 56 DAS for *O. glaberrima* and *O. sativa*. Moreover *O. glaberrima* achieve superior SLA as compared to *O. sativa*. SLA has previously been found higher for *O. glaberrima* than *O. sativa* (Dingkuhn et al., 1998; Asch et al., 1999; Dingkuhn et al., 1999; Moukoumbi et al., 2011). SLA despite being a parameter that is strongly affected by sampling date discriminate well *O. glaberrima* and *O. sativa*. A high SLA reduces the amount of assimilates needed to produce a given leaf area, resulting in early ground cover, and therefore a greater light harvest and higher canopy photosynthesis rates early in the season (Dingkuhn et al., 1999). SLA has been shown highly predictive and positive correlation was found with weed competitiveness (Dingkuhn et al., 1999). It is an excellent criterion of breeding for weed competitive. Droopiness of the leaves of many accessions of *O. glaberrima* caused the highest of SLA (Dingkuhn et al., 1998).

Acknowledgment

This study was financially supported by the Ministry of Foreign Affairs, Japan and the Stress-tolerant Rice for Africa and South Asia Project funded by the Bill and Melinda Gates Foundation and Africa Rice. The authors would like to thank this support. The authors also thank the National Institute of Agrobiological Sciences (NIAS), Japan for providing rice accessions from the NIAS core collection.

Conflict of interest

Authors would hereby like to declare that there is no conflict of interests that could possibly arise.

References

Asch F, Sow A, Dingkuhn M (1999) Reserve mobilization, dry matter partitioning and specific leaf area in seedlings of African rice cultivars differing in early vigor. Field Crops Research 62:191-202. DOI: http://dx.doi.org/10.1016/S0378-4290(99)00020-9.

Dingkuhn M, Asch F (1999) Phenological responses of *Oryza sativa*, *O. glaberrima* and inter-specific rice cultivars on a toposquence in West Africa. Euphytica 110:109 - 126.

Dingkuhn M, Johnson DE, Sow A, Audebert AY (1999) Relationships between upland rice canopy characteristics and weed competitiveness. Field Crops Research 61:79-95. DOI: http://dx.doi.org/10.1016/S0378-4290(98)00152-9.

Dingkuhn M, Jones MP, Johnson DE, Sow A (1998) Growth and yield potential of *Oryza sativa* and *O. glaberrima* upland rice cultivars and their interspecific progenies. Field Crops Research 57:57-69. DOI: http://dx.doi.org/10.1016/S0378-4290(97)00115-9.

Frankel OH (1984) Genetic Perspectives of Germplasm Conservation. In: Arber WK, Llimensee K, Peacock WJ, Stralinger P (Eds.), Genetic Manipulation: Impact on Man and Society, Cambridge University Press, Cambridge, 161-170.

Futakuchi K, Sie M (2009) Better exploitation of African rice (*Oryza glaberrima* Steud.) in varietal development for resource-poor farmers in West and Central Africa. Agricultural Journal 4:96-102.

GenStat (2003) GenStat for Windows. Release 4.23DE Discovery Edition. VSN International Ltd., Hemel Hempstead, UK.

Harlan JR, Stemler A (1976) The races of Sorghum in Africa. In: Harlan J, de Wet JM, Stemler AB (Eds.), Origin of African plant domestication. Mouton Publishers, The Hague, The Netherlands.
IRRI (1996) Standard Evaluation System for rice manual. Manila, Philippines 52pp.

Kato S (1930) On the affinity of the cultivated varieties of rice plants, Oryza sativa L. Journal of the Department of Agriculture, Kyushu Imperial University — Journal of the Faculty of Agriculture, Kyushu University 2:241 - 276.

Kojima Y, Ebana K, Fukuoka S, Nakamine T, Kawase M (2005) Development of an RFLP-based Rice Diversity Research Set of Germplasm. Breeding Science 55:431 - 440.

Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. Trends in Genetics 23: 578–587. DOI: http://dx.doi.org/10.1016/j.tig.2007.08.012.

Linares OF (2002) African rice (Oryza glaberrima): history and future potential. Proceeding of the National Academy of Science 99:16360-16365. doi: 10.1073/pnas.252604599.

Morishima H, Hinata K, Oka HI (1962) Comparison between two Cultivated Rice Species, Oryza sativa L. and O. glaberrima Steud. Japanese Journal of Breeding 12:152-165. DOI: http://doi.org/10.1270/jsbbs1951.12.153.

Moukoumbi YD, Sie M, Vodouhe R, Bonou W, Toulou B, Ahanchede A (2011) Screening of rice varieties for their weed competitiveness. African Journal of Agricultural Research 6: 5446 - 5456. DOI: 10.5897/AJAR11.1162.

Nwanze KF, Mohapatra S, Kormawa P, Keya S, Bruce - Oliver S (2006) Perspective: Rice development in sub-Saharan Africa. Journal of the Science of Food and Agriculture 86:675 - 677. DOI:10.1002/jsfa.2415.

Oka HI (1974) Experimental studies on the origin of cultivated rice. Genetics 78:475-486.

Saito K, Azoma K, Sié M (2010) Grain Yield Performance of Selected Lowland NERICA and Modern Asian Rice Genotypes in West Africa. Crop Science 50:281-291.

Wang F, Cheng F, Zhang GP (2007) Difference in Grain Yield and Quality among Tillers in Rice Genotypes Differing in Tillering Capacity. Rice Science 14 : 135-140. DOI: http://dx.doi.org/10.1016/S1672-6308(07)60019-5.