The Locating Chromatic Number of Book Graph

Nur Inayah, Wisnu Aribowo, and Maiyudi Mariska Windra Yahya

Department of Mathematics, State Islamic University Syarif Hidayatullah Jakarta, South Tangerang, Indonesia

Correspondence should be addressed to Nur Inayah; nur.inayah@uinjkt.ac.id

Received 18 April 2021; Accepted 7 October 2021; Published 24 November 2021

Abstract

The locating chromatic number of a graph is defined as the length of the shortest path connecting a vertex to the partition of vertices to which it belongs in a vertex coloring. In this paper, we determine the locating chromatic number of a book graph. The book graph is a graph obtained from n copies of a cycle of order 4 sharing one common edge. We prove that the locating chromatic number of the book graph is 3 for odd n ≥ 3 and 4 for even n ≥ 4.

1. Introduction

All graphs considered in this paper are assumed to be simple, connected, and undirected. Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). By P_n and S_n, we denote a path on n vertices and a star on n + 1 vertices, respectively. The distance, d(u, v), between two vertices u and v is defined as the length of the shortest path connecting them in G.

For a graph G and a positive integer k, a coloring c: V(G) → {1, 2, . . . , k} with c(u) ≠ c(v) for every two adjacent vertices u and v is called a proper k-coloring of G. Let Π = {C_1, C_2, . . . , C_k} be a partition of vertices of G induced by the coloring c. We define the color code c_Π(v) of a vertex v ∈ V(G) as an ordered k-tuple that contains the distance between each partition to the vertex v. If distinct vertices have distinct color code, then c is called a locating k-coloring of G. The locating chromatic number of G is the smallest k such that G has a locating k-coloring. In this paper, we determine the locating chromatic number of book graph.

Theorem 1. Let c be a locating coloring in a connected graph G and N(v) be the set of vertices adjacent to v. If u and v are distinct vertices of G such that d(u, w) = d(v, w) for all w ∈ V(G) − {u, v}, then c(u) ≠ c(v). In particular, if u and v are nonadjacent vertices of G such that N(u) = N(v), then c(u) ≠ c(v).

Copyright © 2021 Nur Inayah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Result and Discussion

In this section, we determine the exact value for the locating chromatic number of book graphs. Let B_n be a book graph with the vertex set $V(B_n) = \{u_i, v_i; i = 0, 1, \ldots, n\}$ and the edge set $E(B_n) = \{u_iv_i; i = 0, 1, \ldots, n\} \cup \{u_0u_i, v_0v_i; i = 1, 2, \ldots, n\}$.

Two observations below follow from definition of proper coloring.

Observation 1. Let c be a locating coloring of the book graph B_n, $n \geq 1$. Then, $c(u_i) \neq c(v_i)$ for $i = 0, 1, \ldots, n$.

Observation 2. Let c be a locating coloring of the book graph B_n, $n \geq 1$. Then, $c(u_0) \neq c(u_i)$ and $c(v_0) \neq c(v_i)$ for $i = 1, 2, \ldots, n$.

Lemma 1. Let c be a locating coloring of the book graph B_n, $n \geq 1$. Then, $(c(u_i), c(v_i)) \neq (c(u_j), c(v_j))$ for $1 \leq i \neq j \leq n$.

Proof. Assume that $(c(u_i), c(v_i)) = (c(u_j), c(v_j))$ for some i and j, $i \neq j$. This means that $c(u_i) = c(u_j)$ and $c(v_i) = c(v_j)$. We know that $d(u_i, x) = d(u_j, x)$ for every $x \in V(B_n) - \{u_i, u_j, v_i, v_j\}$. As $c(v_i) = c(v_j)$ and $d(u_j, v_i) = d(u_j, v_j) = 1$, regardless the color of x, we have $c(u_i) = c(u_j)$, a contradiction.

Lemma 2. Let c be a locating k-coloring of the book graph B_n, for $k \geq 4$ and $n \geq 1$. Then,

$$n \leq 2 \left(\frac{k-2}{2}\right) + 2(k - 1) - 1. \quad (1)$$

Proof. Start coloring the graph by giving color C_1 and C_2 for the vertices in the middle, that is, $c(u_i) = C_1$ and $c(v_0) = C_2$. From Observation 2, we know that we should have $c(u_i) \neq C_1$ and $c(v_i) \neq C_2$ for each $i = 1, 2, \ldots, n$.

Case 1. Assume $\{c(u_a), c(v_a)\}$ does not contain either C_1 or C_2. Thus, the total color that we can choose is $\left(\frac{k-2}{2}\right) \times 2$ because every outer part of sheets requires 2 different colors from observation 1, which means there are $\left(\frac{k-2}{2}\right)$ possibilities. But, since $c(u_a)$ and $c(v_a)$ are not reversed without any consequences, the total that can be obtained is $\left(\frac{k-2}{2}\right) \times 2$.

Case 2. If $c(u_a) = 2$, the total possibility of the colors being used is $(k-1)$ because $c(v_a)$ can only be given with 1, 3, 4, \ldots, k, where only one color can be used by book graph B_n for $n \geq 2$. The illustration is shown in Figure 1.

Case 3. If $c(v_a) = 1$, the total colors can be used are $(k-1)$ because $c(u_a)$ can only be given by color 2, 3, 4, \ldots, k, where only two colors can be used on book graph B_n for $n \geq 2$. The illustration is shown in Figure 2.

Since the coloring $c(v_a) = 1$ and $c(u_a) = 2$ have been used in Case 2, then the coloring is not reusable, and thus, the total coloring is $(k-1) - 1$. If uses k colors, then $x(L(B_n))$ must satisfy the following

$$n \leq 2 \left(\frac{k-2}{2}\right) + (k-1) + (k-1) - 1,$$

$$n \leq 2 \left(\frac{k-2}{2}\right) + 2(k - 1) - 1. \quad (2)$$

Theorem 2. Locating chromatic number of book graph B_n is

$$x_L(B_n) = \min \left\{k: n \leq 2 \left(\frac{k-2}{2}\right) + 2(k - 1) - 1\right\}, \quad (3)$$

for $k \geq 4$.

Proof. Firstly, we will prove the existence of $x_L(B_n)$. We can clearly see that $\left\{k: n \leq 2 \left(\frac{k-2}{2}\right) + 2(k - 1) - 1\right\}$ is the subset from a set of real numbers. So from the well-ordering principle, the set must have the smallest element, say $k^* := \min \left\{k: n \leq 2 \left(\frac{k-2}{2}\right) + 2(k - 1) - 1\right\}. \quad (4)$
that yields
\[(k^* - 1) \geq \min \left\{ k : n \leq 2 \left(\frac{k - 2}{2} \right) + 2(k - 1) - 1 \right\} = k^*. \]
(5)

It was contradiction, which means it is impossible that the locating chromatic of book graph has a coloring for \((k^* - 1)\) colors. It should be
\[\chi_L(B_n) = k^* = \min \left\{ k : n \leq \left(\frac{k - 2}{2} \right) + 2(k - 1) - 1 \right\}, \]
for \(k \geq 4\).
(6)

Corollary 1. Locating chromatic number of book graph \(B_n\) is
\[\chi_L(B_n) = \left\lceil \sqrt{n - \frac{3}{4}} + \frac{3}{2} \right\rceil. \]
(7)

Proof. Let \(k\) be the color needed for locating chromatic of book graph \(B_n\), then
\[n \leq \left(\frac{k - 2}{2} \right) + 2(k - 1) - 1, \]
\[n \leq \frac{(k - 2)(k - 3)}{2} \times 2 + 2k - 2 - 1, \]
\[\left(k^2 - 5k + 6 + 2k - 3 \right) \geq n, \]
\[k^2 - 3k + 3 \geq n, \]
\[\left(k - \frac{3}{2} \right)^2 - \frac{9}{4} + 3 \geq n, \]
\[\left(k - \frac{3}{2} \right)^2 + \frac{3}{4} \geq n, \]
\[\left(k - \frac{3}{2} \right)^2 \geq n - \frac{3}{4}, \]
\[k \geq \sqrt{n - \frac{3}{4}} + \frac{3}{2}. \]
(8)

Then, the smallest possible \(k\) is
\[k_{\min} = \left\lceil \sqrt{n - \frac{3}{4}} + \frac{3}{2} \right\rceil. \]
(9)

\[\chi_L(B_n) = k^* = \min \left\{ k : n \leq \left(\frac{k - 2}{2} \right) + 2(k - 1) - 1 \right\}, \]
for \(k \geq 4\),
(10)
or
\[k_{\min} = \left\lceil \sqrt{n - \frac{3}{4}} + \frac{3}{2} \right\rceil. \]
(11)

Data Availability
No data were used to support this study.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This work was supported by the Center of Research and Publication of Syarif Hidayatullah State Islamic University Jakarta.

References
[1] G. Chartrand, D. Erwin, M. Henning, P. Slater, and P. Zhang, “The locating-chromatic number of a graph,” *Bulletin of the ICA*, vol. 36, pp. 89–101, 2002.
[2] A. Behtoei and B. Omoomi, “On the locating chromatic number of the cartesian product of graphs,” *Ars Combinatoria*, vol. 126, pp. 221–235, 2012.
[3] D. Welyyanti, E. T. Baskoro, R. Simanjuntak, and S. Uttunggadewa, “The locating-chromatic number of disconnected graphs,” *Far East Journal of Mathematical Sciences*, vol. 94, no. 2, pp. 169–182, 2014.
[4] C. D. Rianti and Narwen, “Bilangan kromatik lokasi dari graf spinner,” *Jurnal Matematika UNAND*, vol. VII, no. 4, pp. 19–23, 2018.