\[\Lambda_b \rightarrow \Lambda^*(1520)\ell^+\ell^- \] form factors from lattice QCD

Stefan Meinel1 and Gumaro Rendon2

1Department of Physics, University of Arizona, Tucson, AZ 85721, USA
2Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

(Dated: September 19, 2020)

We present the first lattice QCD determination of the $\Lambda_b \rightarrow \Lambda^*(1520)$ vector, axial vector, and tensor form factors that are relevant for the rare decays $\Lambda_b \rightarrow \Lambda^*(1520)\ell^+\ell^-$. The lattice calculation is performed in the $\Lambda^*(1520)$ rest frame with nonzero Λ_b momenta, and is limited to the high-q^2 region. An interpolating field with covariant derivatives is used to obtain good overlap with the $\Lambda^*(1520)$. The analysis treats the $\Lambda^*(1520)$ as a stable particle, which is expected to be a reasonable approximation for this narrow resonance. A domain-wall action is used for the light and strange quarks, while the b quark is implemented with an anisotropic clover action with coefficients tuned to produce the correct B_b kinetic mass, rest mass, and hyperfine splitting. We use three different ensembles of lattice gauge-field configurations generated by the RBC and UKQCD collaborations, and perform extrapolations of the form factors to the continuum limit and physical pion mass. We give Standard-Model predictions for the $\Lambda_b \rightarrow \Lambda^*(1520)\ell^+\ell^-$ differential branching fraction and angular observables in the high-q^2 region.

I. INTRODUCTION

Decays of b-hadrons that proceed through the flavor-changing neutral current transition $b \rightarrow s\ell^+\ell^-$ play an important role in searching for physics beyond the Standard Model [1]. Global analyses of the increasingly precise experimental data point to lepton-flavor-nonuniversal shifts in one or more of the Wilson coefficients with respect to their Standard-Model values [2, 3]. These deviations, along with further hints for violation of lepton-flavor universality in $b \rightarrow s\tau^+\tau^-$ decays, have led to significant activity in constructing models of new fundamental physics, as reviewed for example in Ref. [4].

When searching for new physics in weak decays, it is important to consider multiple decay modes involving different species of hadrons. Different decay modes may be sensitive to different combinations of operators in the effective Hamiltonian, and will also differ in their experimental and theoretical systematic uncertainties. The benefits of Λ_b baryon decays in constraining $\Delta B = \Delta S = 1$ Wilson coefficients have been discussed by several authors [5–19]. Experimental data are available for the differential branching fraction and angular observables of $\Lambda_b \rightarrow \Lambda(\rightarrow p\pi^-)\mu^+\mu^-$ [20–23], as well as the branching fraction of $\Lambda_b \rightarrow \Lambda\gamma$ [24]. In Ref. [18], an analysis of $b \rightarrow s\mu^+\mu^-$ Wilson coefficients using all 33 independent angular observables of $\Lambda_b \rightarrow \Lambda(\rightarrow p\pi^-)\mu^+\mu^-$ decays [23] and using $\Lambda_b \rightarrow \Lambda$ form factors from lattice QCD [25] was reported. Within the present uncertainties, the results are consistent both with the anomalies seen in B meson decays and with the Standard Model [18].

Going beyond the lightest Λ baryon in the final state, the LHCb Collaboration has also reported first measurements of $\Lambda_b \rightarrow pK^-\ell^+\ell^-$ decays, including CP asymmetries [26] and the muon-versus-electron ratio R_{pK^-} [27]. The $\Lambda_b \rightarrow pK^-\mu^+\mu^-$ CP asymmetries were measured in the kinematic region with $m_{pK^-} < 2350$ MeV and $q^2 = m_{pK^-}^2 - m_\phi^2 \notin [0.98, 1.1] \cup [8.0, 11] \cup [12.5, 15]$ GeV2 [26] to avoid large contributions from the ϕ, J/ψ, and ψ' resonances; the ratio R_{pK^-} was measured for $m_{pK^-} < 2600$ MeV and $q^2 \in [0.1, 6.0]$ GeV2 [27].

The pK^--invariant-mass distribution of $\Lambda_b \rightarrow pK^-\ell^+\ell^-$ for q^2 away from the ϕ, J/ψ, and ψ' resonances is expected to be similar to the distribution with q^2 on-resonance. This pK^--invariant-mass distribution has been observed in $\Lambda_b \rightarrow pK^-J/\psi(\rightarrow \ell^+\ell^-)$ [28]. As can be seen in Fig. 3 of Ref. [28], a large number of Λ^* baryon resonances contribute to this decay in overlapping mass regions. However, one resonance produces a narrow peak that clearly stands out above the other contributions: the $\Lambda^*(1520)$, which has a width of 15.6 ± 1.0 MeV [29] and is the lightest resonance with $J^{P} = \frac{3}{2}^-$. Thus, it may be feasible for LHCb to measure the $\Lambda_b \rightarrow \Lambda^*(1520)(\rightarrow pK^-)\ell^+\ell^-$ decay rate and angular observables for q^2 in the nonresonant (rare-decay) region.

The phenomenology of $\Lambda_b \rightarrow \Lambda^*(1520)(\rightarrow pK^-)\ell^+\ell^-$ was discussed in Refs. [17, 19], where the expressions for the complete angular distribution were given (for unpolarized Λ_b), approximate relations among the $\Lambda_b \rightarrow \Lambda^*(1520)$ form factors based on effective field theories were obtained, and numerical studies of the differential decay rate and angular observables were performed using form factors from a quark model [30]. The prospects for measurements of $\Lambda_b \rightarrow \Lambda^*(1520)(\rightarrow pK^-)\ell^+\ell^-$ angular observables at LHCb were recently studied in Ref. [31]. Earlier work had also considered the decay mode $\Lambda_b \rightarrow \Lambda^*(1520)(\rightarrow pK^-)\gamma$, primarily as a probe of the photon polarization in $b \rightarrow s\gamma$ [10, 11]; the formalism for an amplitude analysis of $\Lambda_b \rightarrow pK^-\gamma$ was recently discussed also in Ref. [32]. The authors of Ref. [10] pointed out that this mode may be easier to reconstruct in hadron-collider experiments than $\Lambda_b \rightarrow \Lambda(\rightarrow p\pi^-)\gamma$, since the Λ has a long lifetime of $ct \approx 7.9$ cm [29] and, like the photon, often escapes the innermost
vertex locator without leaving any trace.

To make predictions for the $\Lambda_b \rightarrow \Lambda^* (1520)(\rightarrow pK^-)\ell^+\ell^-$ decay observables in the Standard Model and beyond, the $\Lambda_b \rightarrow \Lambda^* (1520)$ form factors corresponding to the matrix elements of the $b \rightarrow s$ vector, axial vector, and tensor currents are required. These form factors have been previously studied in a quark model [30, 33]. In the following, we present the first lattice-QCD determination of the $\Lambda_b \rightarrow \Lambda^* (1520)$ form factors (we reported preliminary results in Ref. [34]). The lattice calculation of $\frac{1}{2}^+ \rightarrow \frac{1}{2}^-$ form factors is substantially more challenging than the calculation of $\frac{1}{2}^+ \rightarrow \frac{3}{2}^+$ form factors, even when neglecting the strong decay of the $\frac{3}{2}^-$ baryon in the analysis, as we do here. Correlation functions for negative-parity baryons have more statistical noise than correlation functions for the lightest positive-parity baryons. Furthermore, at nonzero momenta, the irreducible representations of the lattice symmetry group mix positive and negative parities and also mix $J = \frac{1}{2}$ and $J = \frac{3}{2}$. To avoid having to deal with this mixing, we perform our calculation in the $\Lambda^* (1520)$ rest frame and give the Λ_b nonzero momentum (since the Λ_b is the ground state, the mixing with other J^P values does not cause difficulties in isolating it). This has the effect that our calculation is limited to a relatively small kinematic region near q^2_{max}.

This paper is organized as follows. Our definition of the $\Lambda_b \rightarrow \Lambda^* (1520)$ form factors is presented in Sec. II. The lattice actions and parameters are given in Sec. III. Section IV explains our choices of the baryon interpolating fields and contains numerical results for the hadron masses. The three-point functions and our method for extracting the individual form factors are described in Sec. V. We perform simple chiral, continuum, and kinematic extrapolations of the form factors as discussed in Sec. VI. We then use the extrapolated form factors to calculate the $\Lambda_b \rightarrow \Lambda^* (1520)\mu^+\mu^-$ differential decay rate and angular observables in the Standard Model, presented in Sec. VII. Conclusions are given in Sec. VIII. Appendix A contains relations between our form factor definition and other definitions that have been used in the literature.

II. DEFINITIONS OF THE FORM FACTORS

The $\Lambda^* (1520)$ is the lightest of the strange baryon resonances with $I = 0$ and $J^P = \frac{3}{2}^-$. It has a mass of 1519.5 ± 1.0 MeV, a width of 15.6 ± 1.0 MeV, and decays mainly into $N\bar{K}$, $\Sigma\pi$, or $\Lambda\pi\pi$ [29]. In this work, we treat the $\Lambda^* (1520)$ as if it is a stable single-particle state. We expect this to be a reasonable approximation, given the relatively small width and given the other sources of uncertainty in our calculation. In the following, we denote the $\Lambda^* (1520)$ as simply Λ^*.

We are interested in the matrix elements $\langle \Lambda^*(p',s')|s\Gamma b|\Lambda_b(p,s)\rangle$ for $\Gamma \in \{\gamma^\mu, \gamma^\mu\gamma_5, i\sigma^{\mu\nu}q_{\nu}, i\sigma^{\mu\nu}q_{\nu}\gamma_5\}$ with $q = p - p'$. These matrix elements are described by fourteen independent form factors that are functions of q^2 only. Possible definitions of these form factors were given, for example, in Refs. [17, 30, 33–36]. Here we use a helicity-based definition. We first presented such a definition in Ref. [34]; the choice used here differs from that in Ref. [34] only by a q^2-dependent rescaling to avoid divergences in the form factors at the endpoint $q^2_{\text{max}} = (m_{\Lambda_b} - m_{\Lambda^*})^2$. We use the standard relativistic normalization of states,

$$\langle \Lambda_b(k,r)|\Lambda_b(p,s)\rangle = \delta_{rs}2E_{\Lambda_b}(2\pi)^3\delta^3(k-p),$$

$$\langle \Lambda^*(k',r')|\Lambda^*(p',s')\rangle = \delta_{rs'}2E_{\Lambda^*}(2\pi)^3\delta^3(k'-p'),$$

and introduce Dirac and Rarita-Schwinger spinors satisfying

$$\sum_s u(m_{\Lambda_b},p,s)\bar{u}(m_{\Lambda_b},p,s) = m_{\Lambda_b} + \not{p},$$

$$\sum_{s'} u_\nu(m_{\Lambda^*},p',s')\bar{u}_\nu(m_{\Lambda^*},p',s') = -(m_{\Lambda^*} + \not{p}')\left(g_{\mu\nu} - \frac{1}{3}\gamma_\mu\gamma_\nu - \frac{2}{3m_{\Lambda^*}}p'_\mu p'_\nu - \frac{1}{3m_{\Lambda^*}}(\gamma_\mu p'_\nu - \gamma_\nu p'_\mu)\right).$$

We introduce the notation

$$\langle \Lambda^*(p',s')|s\Gamma b|\Lambda_b(p,s)\rangle = \bar{u}_\lambda(m_{\Lambda^*},p',s')\mathcal{G}^\lambda[\Gamma]u(m_{\Lambda_b},p,s),$$

and

$$s_\pm = (m_{\Lambda_b} \pm m_{\Lambda^*})^2 - q^2.$$
The form factors \(f_0, f_+ f_-, f_{\perp}, g_0, g_+, g_{\perp}, h_+, h_{\perp}, \tilde{h}_+, \tilde{h}_{\perp} \) and \(\tilde{h}_{\perp} \) are defined via

\[
\langle G^\lambda [\gamma^\mu] = f_0 \frac{m_{A*}}{s_+} \frac{(m_{A} - m_{A*}) p^\lambda q^\mu}{q^2} + f_+ \frac{m_{A*}}{s_-} \frac{(m_{A} + m_{A*}) p^\lambda (q^2 (p^\mu + p'^\mu) - (m^2_{A} - m^2_{A*}) q^\mu)}{q^2 s_+} + f_{\perp} \frac{m_{A*}}{s_-} \frac{p^\lambda q^\mu - 2 p^\lambda (m_{A} p^\mu + m_{A*} p'^\mu)}{s_+} + f_{\perp'} \frac{m_{A*}}{s_-} \frac{p^\lambda q^\mu - 2 p^\lambda p'^\mu}{m_{A*} s_+} + 2 p^\lambda (m_{A} p^\mu + m_{A*} p'^\mu) + s_- g^{\lambda \mu}}{m_{A*}} \right), \tag{7}
\]

\[
\langle G^\lambda [\gamma^\mu] = -g_0 \frac{\gamma_5}{m_{A*} (m_{A} + m_{A*}) p^\lambda q^\mu}{q^2} - g_+ \frac{\gamma_5}{s_+} \frac{m_{A*} (m_{A} - m_{A*}) p^\lambda (q^2 (p^\mu + p'^\mu) - (m^2_{A} - m^2_{A*}) q^\mu)}{q^2 s_-} - g_{\perp} \frac{\gamma_5}{s_+} \frac{m_{A*} p^\lambda q^\mu - 2 p^\lambda (m_{A} p^\mu + m_{A*} p'^\mu)}{s_-} - g_{\perp'} \frac{\gamma_5}{s_-} \frac{m_{A*} p^\lambda q^\mu - 2 p^\lambda p'^\mu}{m_{A*} s_+} + s_- g^{\lambda \mu}}{m_{A*}} \right), \tag{8}
\]

\[
\langle G^\lambda [i \sigma^{\mu \nu} q_\nu] = -h_+ \frac{m_{A*}}{s_-} \frac{p^\lambda q^2 (p^\mu + p'^\mu) - (m^2_{A} - m^2_{A*}) q^\mu}{s_+} - h_{\perp} \frac{m_{A*}}{s_+} \frac{(m_{A} + m_{A*}) p^\lambda q^\mu - 2 p^\lambda (m_{A} p^\mu + m_{A*} p'^\mu)}{s_-} - h_{\perp'} \frac{m_{A*}}{s_+} \frac{(m_{A} + m_{A*}) p^\lambda q^\mu - 2 p^\lambda (m_{A} p^\mu + m_{A*} p'^\mu) + 2 p^\lambda (m_{A} p^\mu + m_{A*} p'^\mu) + s_- g^{\lambda \mu}}{m_{A*}} \right), \tag{9}
\]

\[
\langle G^\lambda [i \sigma^{\mu \nu} q_\nu] = -\bar{h}_+ \frac{\gamma_5}{m_{A*} (m_{A} - m_{A*}) p^\lambda q^\mu}{s_+} - \bar{h}_{\perp} \frac{\gamma_5}{s_+} \frac{m_{A*} (m_{A} - m_{A*}) p^\lambda q^\mu - 2 p^\lambda (m_{A} p^\mu - m_{A*} p'^\mu)}{s_-} - \bar{h}_{\perp'} \frac{\gamma_5}{s_+} \frac{m_{A*} (m_{A} - m_{A*}) p^\lambda q^\mu + 2 p^\lambda (m_{A} p^\mu - m_{A*} p'^\mu) + s_- g^{\lambda \mu}}{m_{A*}} \right). \tag{10}
\]

The requirement that physical matrix elements are non-singular for \(q^2 \rightarrow q^2_{\text{max}} = (m_{A} - m_{A*})^2 \) imposes certain requirements on the behavior of the form factors in this limit [17]. More information on this behavior can be obtained from heavy-quark effective theory [36] if the strange quark is treated as a heavy quark. For our definition, we expect all form factors to be finite and nonzero at \(q^2 = q^2_{\text{max}} \). Relations between our form factors and other definitions used in the literature are given in Appendix A.

III. LATTICE ACTIONS AND PARAMETERS

Our calculation utilizes three different ensembles of gauge-field configurations generated by the RBC and UKQCD collaborations [37, 38]. These ensembles include the effects of 2+1 flavors of sea quarks, implemented with a domain-wall action [39–41]; the gauge action used is the Iwasaki action [42]. The main parameters of the ensembles and valence-quark actions are listed in Table I; see Table III for the resulting hadron masses. To compute the \(u, d, \) and \(s \)-quark propagators, we use the same domain-wall action as for the sea quarks, with valence light-quark masses equal to the sea light-quark masses, and valence strange-quark masses tuned to the physical values, which are slightly lower than the sea strange-quark masses. For the \(b \)-quark propagators, we use the anisotropic clover action discussed in Ref. [43], but with parameters \(a m_Q^{(b)}, \xi^{(b)}, c_{E,b}^{(b)} \) newly tuned by us to obtain the correct \(B_s \) kinetic mass, rest mass, and hyperfine splitting.
Our calculation employs all-mode averaging [44, 45] to reduce the cost for the light and strange quark propagators. On each gauge-configuration, we computed one exact sample for the relevant correlation functions (discussed in the following sections), as well as 32 “sloppy” samples with reduced conjugate-gradient iteration count in the computation of the light and strange quark propagators. For the light quarks, we also used deflation based on the lowest 400 eigenvectors to reduce the cost and improve the accuracy of the propagators. On a given gauge-field configuration, the different samples correspond to different source locations on a four-dimensional grid, with a randomly chosen overall offset.

IV. TWO-POINT FUNCTIONS AND HADRON MASSES

We now proceed to the discussion of the baryon interpolating fields. Our lattice calculation uses $m_u = m_d$ and neglects QED, which means that we have exact isospin symmetry, and the Λ_b and $\Lambda^*(1520)$ both have $I = 0$. The continuous space-time symmetries on the other hand are reduced to discrete symmetries by the cubic lattice. At zero momentum, the relevant symmetry group is $SO(3)$, the double cover of the cubic group [46], and we still have the full parity symmetry. At zero momentum, the continuum $J^P = 1^\pm$ and $J^P = 3^\pm$ irreps subduce identically to the $G_1^{s/u}$ and $H_3^{s/u}$ irreps; the next-higher values of J that appear in these irreps are $J = \frac{3}{2}$ and $J = \frac{5}{2}$, respectively. In this case we can therefore safely construct the interpolating fields for both the Λ_b and the $\Lambda^*(1520)$ using continuum symmetries. At nonzero momenta, we no longer have parity symmetry, and the relevant symmetry groups are Little Groups of $SO(4)$ [47–49]. An interpolating field that would have $J^P = \frac{3}{2}^+$ in the continuum then also couples to $J^P = \frac{3}{2}^-$, and in some cases even $J^P = \frac{1}{2}^+$ (for example, for momentum direction $(0, 1, 1)$, the only irrep containing $J = \frac{3}{2}$ also contains $J = \frac{1}{2}$), which would make isolating the $\Lambda^*(1520)$ extremely difficult. For this reason, we perform the lattice calculation in the $\Lambda^*(1520)$ rest frame, giving nonzero momentum to the Λ_b instead. Since the Λ_b is the lightest baryon with quark content udb, any contributions from mixing with opposite parity and higher J only appear as excited-state contamination, which will be suppressed exponentially for large Euclidean time separations.

We take the interpolating field for the Λ_b in position space to be

$$ (O_{\Lambda_b})_\gamma = \frac{1}{2} \epsilon^{abc} (C_{\gamma 5})_{\alpha \beta} \left(\bar{u}_a \bar{d}_b \bar{b}_c - \bar{u}_a \bar{d}_b \bar{c}_\gamma - \bar{u}_a \bar{b}_b \bar{c}_\gamma - \bar{u}_a \bar{b}_b \bar{c}_\gamma \right)
$$

$$ = \epsilon^{abc} (C_{\gamma 5})_{\alpha \beta} \bar{u}_a \bar{d}_b \bar{b}_\gamma, \tag{11} $$

where \bar{q} denotes a smeared quark field. We use gauge-covariant Gaussian smearing of the form

$$ \bar{q} = \left(1 + \frac{\sigma_{\text{Gauss}}^2}{4N_{\text{Gauss}}} \Delta \right)^{-N_{\text{Gauss}}} q, \tag{12} $$

where

$$ \Delta q(x) = \frac{1}{a^3} \sum_{j=1}^3 \left[\bar{U}_j(x) q(x + aj) - 2q(x) + \bar{U}_j(x - aj) q(x - aj) \right] \tag{13} $$

and the gauge links \bar{U} are APE-smeared (in the case of the up, down, and strange quarks) or Stout-smeared (in the case of the bottom quark). The values used for the smearing parameters are given in Table II. We average over

Label	$N_s^4 \times N_t$	a [fm]	$am_{u,d}$	am_{sea}	am_{val}	$\xi(b)$	$c_{E,B}^{(b)}$	N_{ex}	N_{sl}		
C01	$24^3 \times 64$	2.13	0.1106(3)	0.01	0.04	0.0323	7.3258	3.1918	4.9625	283	9056
C005	$24^3 \times 64$	2.13	0.1106(3)	0.005	0.04	0.0323	7.3258	3.1918	4.9625	311	9952
F004	$32^3 \times 64$	2.25	0.0828(3)	0.004	0.03	0.0248	3.2823	2.0600	2.7960	251	8032

TABLE I. Lattice parameters for the three different ensembles of gauge-field configurations. The values of the lattice spacing, a, were determined in Ref. [38]. The bottom-quark is implemented with the action described in Ref. [43], but with parameters $am_Q^{(b)}$, $\xi(b)$, $c_{E,B}^{(b)}$ newly tuned by us to obtain the correct B_s kinetic mass, rest mass, and hyperfine splitting. The last two columns give the numbers of exact (ex) and sloppy (sl) samples used for the calculation of the correlation functions with all-mode averaging [44, 45].
The spatial structure of the interpolating field is needed, which can be achieved using covariant derivatives [55]. For the study of \(\Lambda_{(1520)} \) dominantly has an \(L^\gamma j \gamma = 1, \) while quark models suggest that the \(\Lambda^* \) (1520) singlet, which has \(L = 1, S = 1/2, \) and flavor-\(SU(3) \) singlet structure [54]. To obtain \(L = 1, \) a suitable spatial structure of the interpolating field is needed, which can be achieved using covariant derivatives [55]. For the main calculations in this work we use the form

\[
\langle O_{(1520)} \rangle_{\gamma \gamma} = \epsilon^{abc} (C_{\gamma j})_{\alpha \beta} \left(\frac{1}{2} \gamma^0 \right)_{\gamma \delta} \left[\bar{s}_a \gamma^\beta d_\beta \bar{u}_b \gamma^\delta \bar{d}_\gamma + \bar{u}_a \gamma^\beta \bar{d}_\beta \gamma^\gamma \bar{d}_\gamma - \bar{d}_a \gamma^\beta \bar{u}_\beta \gamma^\gamma \bar{s}_\gamma \right],
\]

which has \(L = 1, S = 1/2, \) and is a flavor-\(SU(3) \) singlet. The covariant derivatives, which are defined as

\[
\bar{\nabla}_j \bar{q}(x) = \frac{1}{2a} \left[\bar{U}_j(x) \bar{q}(x + aj) - \bar{U}_j(x - aj) \bar{q}(x - aj) \right],
\]

change the parity, so the projector \((1 + \gamma_0)/2 \) is used to obtain negative overall parity. As we did previously for \(O_{(1520)}^{(old)} \), we project the two-point functions

\[
C_{\alpha \beta}^{(2, \Lambda^*, \text{fw})}(p, t) = \sum_y e^{-i p \cdot (y - x)} \left\langle (O_{\Lambda^*})_{\alpha}(x_0 + t, \mathbf{y}) \overline{(O_{\Lambda^*})}_{\beta}(x_0, \mathbf{x}) \right\rangle,
\]

(14)

and

\[
C_{\alpha \beta}^{(2, \Lambda^*, \text{bw})}(p, t) = \sum_y e^{-i p \cdot (x - y)} \left\langle (O_{\Lambda^*})_{\alpha}(x_0, \mathbf{x}) \overline{(O_{\Lambda^*})}_{\beta}(x_0 - t, \mathbf{y}) \right\rangle.
\]

(15)

The \(\Lambda_j \) masses obtained from single-exponential fits in the time region of ground-state dominance are given in the last column of Table III.

Even though the resulting interpolating field has the correct values for all exactly conserved quantum numbers, it is found to have poor overlap with the \(\Lambda^* \) (1520) and much greater overlap with higher-mass \(JP = \frac{3}{2}^- \) states. The effective mass for the two-point function computed with \(O_{\Lambda^*} \) on the C005 ensemble is shown with the red circles in Fig. 1, and shows a “false plateau” at higher mass before the signal is swamped by noise. A previous lattice QCD study of \(\Lambda^* \)-baryon spectroscopy using interpolating fields similar to Eq. (16) also did not find a \(\Lambda^* \) (1520)-like state [53]. The problem is that \(\Lambda_j \) [after projection with \(P^{(3/2)} \)] has an internal structure corresponding to total quark spin \(S = 3/2, \) total quark orbital angular momentum \(L = 0, \) and flavor-\(SU(3) \) octet, while quark models suggest that the \(\Lambda^* \) (1520) dominantly has an \(L = 1, S = 1/2, \) and flavor-\(SU(3) \) singlet structure [54]. To obtain \(L = 1, \) a suitable spatial structure of the interpolating field is needed, which can be achieved using covariant derivatives [55]. For the main calculations in this work we use the form

\[
\langle O_{\Lambda_j} \rangle_{\gamma \gamma} = \epsilon^{abc} (C_{\gamma j})_{\alpha \beta} \left(\frac{1}{2} \gamma^0 \right)_{\gamma \delta} \left[\bar{s}_a \gamma^\beta d_\beta \bar{u}_b \gamma^\delta \bar{d}_\gamma + \bar{u}_a \gamma^\beta \bar{d}_\beta \gamma^\gamma \bar{d}_\gamma - \bar{d}_a \gamma^\beta \bar{u}_\beta \gamma^\gamma \bar{s}_\gamma \right],
\]

(18)

which has \(L = 1, S = 1/2, \) and is a flavor-\(SU(3) \) singlet. The covariant derivatives, which are defined as

\[
\bar{\nabla}_j \bar{q}(x) = \frac{1}{2a} \left[\bar{U}_j(x) \bar{q}(x + aj) - \bar{U}_j(x - aj) \bar{q}(x - aj) \right],
\]

(19)

change the parity, so the projector \((1 + \gamma_0)/2 \) is used to obtain negative overall parity. As we did previously for \(O_{\Lambda^*}^{(old)} \), we project the two-point functions

\[
C_{\alpha \beta}^{(2, \Lambda_j, \text{fw})}(t) = \sum_y \left\langle (O_{\Lambda_j})_{\alpha}(x_0 + t, \mathbf{y}) \overline{(O_{\Lambda_j})}_{\beta}(x_0, \mathbf{x}) \right\rangle,
\]

(20)

and

\[
C_{\alpha \beta}^{(2, \Lambda_j, \text{bw})}(t) = \sum_y \left\langle (O_{\Lambda_j})_{\alpha}(x_0, \mathbf{x}) \overline{(O_{\Lambda_j})}_{\beta}(x_0 - t, \mathbf{y}) \right\rangle.
\]

(21)

1 We use the Minkowski-space metric tensor \(g_{\mu \nu} = \text{diag}(1, -1, -1, -1) \) and Minkowski-space gamma matrices throughout this paper, except where indicated with a subscript “E.”
to the H^u irrep with $P^{k_j}_{(3/2)}$. In Eq. (18), we eliminated covariant derivatives acting on the strange-quark fields using “integration by parts,” which is possible only at zero momentum. In this way, the calculation requires propagators with derivative sources only for the light quarks. The effective mass for C^{01} only smearing of the quark fields breaks hypercubic symmetry (and because the lattice itself also breaks the Lorentz symmetry). The spectral decomposition of $C^{(2, \Lambda^*)}$ computed on the C005 ensemble is shown with the green squares in Fig. 1, and shows a plateau at a significantly lower mass, which we identify (in the single-hadron/narrow-width approximation) with the $\Lambda^*(1520)$ resonance. The $\Lambda^*(1520)$ masses obtained from single-exponential fits in the plateau regions for all ensembles are given in the second-to-last column of Table III.

We also computed the pion, kaon, nucleon, Lambda, and Sigma two-point functions and obtained the masses given in the same table. For the three ensembles we have, the mass differences $m_{\Lambda^*} - m_{\Sigma} - m_{\pi}$ are found to be in the range from approximately 80 to 150 MeV (physical value: 192 MeV), while $m_{\Lambda^*} - m_{N} - m_{K}$ ranges from approximately -20 to $+100$ MeV (physical value: 89 MeV). These results support our identification of the extracted energy level with the $\Lambda^*(1520)$ in the narrow-width approximation. A proper finite-volume scattering analysis with Lüscher’s method [56] is beyond the scope of this work. Here we just note that the lowest noninteracting N-K and Σ-π scattering states in the H^u irrep must have nonzero back-to-back momenta and their energies are well above m_{Λ^*} for our lattice volumes (this is another benefit of working in the Λ^* rest frame).

For later reference, we also define overlap factors of the interpolating fields with the baryon states of interest as

$$
\langle 0 | O_{\Lambda^*} | \Lambda_b(p, s) \rangle = (Z_{\Lambda^*}^{(1)} + Z_{\Lambda^*}^{(2)} \gamma^0) u(m_{\Lambda^*}, p, s),
$$

and

$$
\langle 0 | (O_{\Lambda^*})^\dagger | \Lambda^*(0, s') \rangle = Z_{\Lambda^*} \frac{1 + \gamma_0}{2} u_j(m_{\Lambda^*}, 0, s').
$$

As everywhere in this paper, $| \Lambda^*(0, s') \rangle$ denotes the lowest-energy 3/2$^-$ state. For the Λ_b at nonzero momentum, it is necessary to have the two separate coefficients $Z_{\Lambda^*}^{(1)}$ and $Z_{\Lambda^*}^{(2)}$ that may also depend on p, because the spatial-only smearing of the quark fields breaks hypercubic symmetry (and because the lattice itself also breaks the Lorentz symmetry). The spectral decomposition of $C^{(2, \Lambda^*)}(p, t)$ then reads

$$
C^{(2, \Lambda_b)}(p, t) = \frac{1}{2e^5} (Z_{\Lambda_b}^{(1)} + Z_{\Lambda_b}^{(2)} \gamma^0)(1 + \gamma_j)(Z_{\Lambda_b}^{(1)} + Z_{\Lambda_b}^{(2)} \gamma^0) e^{-E_{\Lambda_b} t} + \text{(excited-state contributions)}
$$

The horizontal lines indicate the time ranges used and energies obtained from single-exponential fits.
with $u^\mu = p^\mu/m_{\Lambda_b}$, while the spectral decomposition of $C^{(2,\Lambda^*)(t)}$ after projection with $P_{(3/2)}$ becomes

$$P_{(3/2)} C_{ik}^{(2,\Lambda^*)(t)} = -\frac{1}{2} Z_{\Lambda^*}^2 (1 + \gamma_0) \left(g_k^i - \frac{1}{3} \gamma^i \gamma_k \right) e^{-m_{\Lambda^*} t} + \text{(excited-state contributions)}.$$

(25)

The excited-state contributions decay exponentially faster with t than the ground-state contributions shown here.

V. THREE-POINT FUNCTIONS AND FORM FACTORS

To determine the form factors, we compute forward and backward three-point functions

$$C_{ij}^{(3,fw)}(p, \Gamma, t, t') = \sum_{y,z} e^{-i p \cdot (y-z)} \langle (O_{\Gamma})_{ij} (x_0, x) J_\Gamma (x_0 - t, y) (\bar{O}_{\Gamma})_{ij} (x_0 - t, z) \rangle,$$

(26)

$$C_{ij}^{(3,bw)}(p, \Gamma, t, t') = \sum_{y,z} e^{-i p \cdot (y-z)} \langle (O_{\Gamma})_{ij} (x_0 + t, y) (\bar{O}_{\Gamma})_{ij} (x_0, x) \rangle,$$

(27)

where p is the momentum of the Λ_b, Γ is the Dirac matrix in the $b \to s$ current J_Γ, t is the source-sink separation, and t' is the current-insertion time. To match the currents to the continuum $\overline{\text{MS}}$ scheme, we employ the mostly nonperturbative method described in Refs. [57, 58]. Specifically, we use

$$J_{\Gamma} = \rho_1 \sqrt{Z_{V}^{(ss)} Z_{V}^{(bb)}} \langle \bar{s} \Gamma b + a d_1 \bar{s} \Gamma \gamma_E \cdot \nabla b \rangle,$$

(28)

where $Z_{V}^{(ss)}$ and $Z_{V}^{(bb)}$ are the matching factors of the temporal components of the $s \to s$ and $b \to b$ vector currents, determined nonperturbatively using charge conservation, ρ_1 are residual matching factors that are numerically close to 1 and are computed using one-loop lattice perturbation theory [59], and the term with coefficient d_1 removes $\mathcal{O}(a)$ discretization errors at tree level. In Eq. (28), γ_E denotes the three Euclidean spatial gamma matrices, $\gamma_{jE} = -i \tau_J$.

The values of $Z_{V}^{(ss)}$, $Z_{V}^{(bb)}$, and d_1 are given in Table IV. For the residual matching factors ρ_1 of the vector and axial-vector currents, we use the one-loop values given in Table III of Ref. [60]. These matching factors were computed for slightly different values of the parameters in the b-quark action [43], but are not expected to depend strongly on these parameters. For the residual matching factors of the tensor currents, one-loop results were not available and we set them to the tree-level values equal to unity. Following Ref. [25], we estimate the resulting systematic uncertainty in the tensor form factors at scale $\mu = m_b$ to be equal to 2 times the maximum value of $|\rho_1 - 1|$, $|\rho_2 - \rho_3 - 1|$, which is 0.05316. Note that the contributions from the operator \mathcal{O}_2 in the weak Hamiltonian to the $\Lambda_b \to \Lambda^*(1520) \ell^+ \ell^-$ differential decay rate at high q^2 are relatively small, so the larger systematic uncertainty in the tensor form factors is unproblematic.

Both the forward and backward three-point functions are computed using light and strange quark propagators with sources (Gaussian-smeared, with and without derivatives) located at (x_0, x). Given the more complicated interpolating field for the Λ^* (compared to that for the Λ in Ref. [25]), here we apply the sequential-source method for the b-quark propagators through the weak current, and not through the Λ_b interpolating field as was done in Ref. [25]. This method fixes t' rather than t, but we only computed the three-point functions for $t = 2t'$, $t = 2t' + a$, and $t = 2t' - a$.

We generated data for nine different separations on the coarse lattices and ten different separations on the fine lattices, as shown in Table V.

Due to the large mass of the Λ_b, large values of p are needed to appreciably move q^2 away from q^2_{max}, as shown in Fig. 2. At the same time, discretization errors are expected to grow with p, and the number of b-quark sequential propagators that need to be computed is proportional to the number of choices for p. In this first lattice study of

$Z_{V}^{(bb)}$	$Z_{V}^{(ss)}$	$d_1^{(b)}$
Coarse 9.0631(84) 0.71273(26) 0.0728		
Fine 4.7449(21) 0.7440(18) 0.0696		

TABLE IV. Matching parameters. We determined the values of $Z_{V}^{(bb)}$ using the charge-conservation condition from ratios of B_s two-point and three-point functions. The values of $Z_{V}^{(ss)}$ are taken from Ref. [38]. The $\mathcal{O}(a)$-improvement coefficients $d_1^{(b)}$ were computed at tree level in mean-field-improved perturbation theory.
TABLE V. The source-sink separations for which we computed the three-point functions on the coarse (C01, C005) and fine (F004) ensembles.

| t/a | Coarse 4, 5,..., 12 | Fine 5, 6,..., 14 |

FIG. 2. The value of the four-momentum transfer squared as a function of the \(\Lambda_b\) momentum in the \(\Lambda^*\) rest frame. The vertical dashed line indicates the largest momentum we use in this calculation.

\[q^2(\text{GeV}^2) = \left(0,0,\frac{2\pi}{L}\right) \]

A. Extracting the squares of individual form factors

To remove the unwanted overlap factors and cancel the exponential time-dependence for the ground-state contribution, we form the ratios

\[\mathcal{R}_{(3/2)}^{\mu \nu}(p, t, t') = \frac{\text{Tr}\left[P_{(3/2)}^{(3, \text{fw})}(p, \Gamma, t, t') (1 + \gamma_5) C_{m}^{(3, \text{bw})}(p, \Gamma_{X}, t, t - t') P_{(3/2)}^{m k}\right]}{\text{Tr}\left[P_{(3/2)}^{(2, \Lambda^*)}(t) (1 + \gamma_5) C_{1m}^{(2, \Lambda^*)}(p, \Gamma_{X}, t, t - t') P_{(3/2)}^{m k}\right]}, \]

where \(X \in \{V, A, TV, TA\}\) and \(\Gamma_{X}^{\mu} = \gamma^{\mu}, \Gamma_{A}^{\mu} = \gamma^{\mu} \gamma_5, \Gamma_{TV}^{\mu} = i\sigma^{\mu \nu} q_{\nu}\), \(\Gamma_{TA}^{\mu} = i\sigma^{\mu \nu} \gamma_5 q_{\nu}\), and the traces are over the Dirac indices. To isolate the individual helicity form factors, we then contract with the timelike, longitudinal, and transverse polarization vectors

\[e^{(0)} = (q^0, q), \quad e^{(+)} = (|q|, (q^0/|q|)q), \quad e^{(\perp \cdot j)} = (0, e_j \times q), \]

while the decomposition of the backward three-point function is given by the Dirac adjoint. Here, \(\mathcal{R}^{\Lambda}[\Gamma]\) are, up to small lattice-discretization and finite-volume effects, the linear combinations of form factors defined in Eqs. (7)-(10).

To extract the form factors, we utilize two different types of combinations of correlation functions. The first type (Sec. V A) allows us to extract the absolute magnitudes of individual form factors, but not their relative signs. The second type (Sec. V B) allows us to extract ratios of different form factors in which the sign information is preserved.
and define
\[
\begin{align*}
R_{0}^{X}(p, t, t') &= g_{jk} \epsilon_{\nu}^{(0)} \epsilon_{\nu}^{(0)} R^{jk\mu\nu}(p, t, t')^{X}, \\
R_{\perp}^{X}(p, t, t') &= g_{jk} \epsilon_{\nu}^{(+)i} \epsilon_{\nu}^{(+)l} R^{jk\mu\nu}(p, t, t')^{X}, \\
R_{\perp}^{X}(p, t, t') &= p_{j} p_{k} \epsilon_{\nu}^{(+)i} \epsilon_{\nu}^{(+)l} R^{jk\mu\nu}(p, t, t')^{X}, \\
R_{\perp}^{X}(p, t, t') &= \left[\epsilon_{\nu}^{(+)i} \epsilon_{\nu}^{(+)l} - \frac{1}{2} p_{j} p_{k} \right] \epsilon_{\nu}^{(+)i} \epsilon_{\nu}^{(+)l} R^{jk\mu\nu}(p, t, t')^{X}.
\end{align*}
\]

Repeated Latin indices are summed only over the spatial directions, while repeated Greek indices are summed over all four spacetime directions. The above quantities are equal to the squares of the individual form factors times certain combinations of the hadron masses and energies. For a given value of \(t \), the excited-state contamination will be minimal for \(t' = t/2 \). Using this choice and removing the kinematic factors, we evaluate
\[
\begin{align*}
R_{0}^{V}(p, t) &= \frac{48 E_{\Lambda}}{(E_{\Lambda} - m_{\Lambda})(m_{\Lambda} - m_{\Lambda})^2} R_{0}^{V}(p, t, t/2) \\
&= f_{0}^2 + \text{(excited-state contributions)}, \\
R_{+}^{V}(p, t) &= \frac{48 E_{\Lambda}}{(E_{\Lambda} + m_{\Lambda})(m_{\Lambda} + m_{\Lambda})^2} R_{+}^{V}(p, t, t/2) \\
&= f_{+}^2 + \text{(excited-state contributions)}, \\
R_{\perp}^{V}(p, t) &= - \frac{36 E_{\Lambda}}{(E_{\Lambda} - m_{\Lambda})(E_{\Lambda} + m_{\Lambda})^3} R_{\perp}^{V}(p, t, t/2) \\
&= f_{\perp}^2 + \text{(excited-state contributions)}, \\
R_{\perp}^{V}(p, t) &= - \frac{8 E_{\Lambda}}{(E_{\Lambda} - m_{\Lambda})(E_{\Lambda} + m_{\Lambda})^3} R_{\perp}^{V}(p, t, t/2) \\
&= f_{\perp}^2 + \text{(excited-state contributions)}, \\
R_{0}^{A}(p, t) &= \frac{48 E_{\Lambda}}{(E_{\Lambda} + m_{\Lambda})(m_{\Lambda} + m_{\Lambda})^2} R_{0}^{A}(p, t, t/2) \\
&= g_{0}^2 + \text{(excited-state contributions)}, \\
R_{+}^{A}(p, t) &= \frac{48 E_{\Lambda}}{(E_{\Lambda} - m_{\Lambda})(m_{\Lambda} - m_{\Lambda})^2} R_{+}^{A}(p, t, t/2) \\
&= g_{+}^2 + \text{(excited-state contributions)}, \\
R_{\perp}^{A}(p, t) &= - \frac{36 E_{\Lambda}}{(E_{\Lambda} + m_{\Lambda})(E_{\Lambda} - m_{\Lambda})^3} R_{\perp}^{A}(p, t, t/2) \\
&= g_{\perp}^2 + \text{(excited-state contributions)}, \\
R_{\perp}^{A}(p, t) &= - \frac{8 E_{\Lambda}}{(E_{\Lambda} + m_{\Lambda})(E_{\Lambda} - m_{\Lambda})^3} R_{\perp}^{A}(p, t, t/2) \\
&= g_{\perp}^2 + \text{(excited-state contributions)}, \\
R_{+}^{TV}(p, t) &= \frac{48 E_{\Lambda}}{(E_{\Lambda} + m_{\Lambda})} q^2 R_{+}^{TV}(p, t, t/2) \\
&= h_{+}^2 + \text{(excited-state contributions)}, \\
R_{\perp}^{TV}(p, t) &= - \frac{36 E_{\Lambda}}{(E_{\Lambda} + m_{\Lambda})^3} R_{\perp}^{TV}(p, t, t/2) \\
&= h_{\perp}^2 + \text{(excited-state contributions)},
\end{align*}
\]
\begin{align}
R_{TV}^{T}(p, t) &= - \frac{8E_{\Lambda}}{(E_{\Lambda} + m_{\Lambda})^3(E_{\Lambda} - m_{\Lambda})^2} R_{TV}^{T}(p, t/t/2) \\
&= \tilde{h}_t^2 + (\text{excited-state contributions}), \quad (46)
\end{align}

\begin{align}
R_{TA}^{T}(p, t) &= - \frac{48E_{\Lambda}}{(E_{\Lambda} - m_{\Lambda})^3(E_{\Lambda} + m_{\Lambda})^2} R_{TA}^{T}(p, t/t/2) \\
&= \tilde{h}_t^2 + (\text{excited-state contributions}), \quad (47)
\end{align}

\begin{align}
R_{TA}^{T}(p, t) &= - \frac{36E_{\Lambda}}{(E_{\Lambda} - m_{\Lambda})^3(E_{\Lambda} + m_{\Lambda})^2} R_{TA}^{T}(p, t/t/2) \\
&= \tilde{h}_t^2 + (\text{excited-state contributions}), \quad (48)
\end{align}

\begin{align}
R_{TA}^{T}(p, t) &= - \frac{8E_{\Lambda}}{(E_{\Lambda} - m_{\Lambda})^3(E_{\Lambda} + m_{\Lambda})^2} R_{TA}^{T}(p, t/t/2) \\
&= \tilde{h}_t^2 + (\text{excited-state contributions}). \quad (49)
\end{align}

Since \(t' \) and \(t \) must both be integer multiples of the lattice spacing, here we imply an average over the two values of \(t' \) closest to \(t/2 \) for odd \(t/a \). The excited-state contributions in the above quantities will decay exponentially as a function of the source-sink separation \(t \).

B. Extracting ratios of form factors

To preserve the sign information, we define the following linear projections of three-point functions:

\begin{align}
\mathcal{S}_{\lambda}^{V,TV}(p, t, t') &= \text{Tr} \left[M^{(\lambda)}_{\mu j} P_{(3/2)}^{\mu} C_{i}^{(3,\text{fw})} (p, \Gamma_{V,TV}^{\mu}, t, t') (1 + \delta) \right] / 2, \quad (50)
\end{align}

\begin{align}
\mathcal{S}_{\lambda}^{A,TA}(p, t, t') &= \text{Tr} \left[\gamma_5 M^{(\lambda)}_{\mu j} P_{(3/2)}^{\mu} C_{i}^{(3,\text{fw})} (p, \Gamma_{A,TA}^{\mu}, t, t') (1 + \delta) \right] / 2, \quad (51)
\end{align}

where \(\lambda \in \{0, +, \perp, \perp'\} \) and

\begin{align}
M^{(0)}_{\mu j} &= \epsilon^{(0)}_{\mu} \epsilon^{(0)}_{j}, \quad (52)
M^{(+)}_{\mu j} &= \epsilon^{(+)}_{\mu} \epsilon^{(0)}_{j}, \quad (53)
M^{(\perp)}_{\mu j} &= \sum_{i=1}^{3} \epsilon^{(\perp 1)}_{\mu} \epsilon^{(\perp 1)}_{j}, \quad (54)
M^{(1)}_{\mu j} &= i \gamma_{5} \epsilon^{(0)}_{\mu} \epsilon^{(0)}_{j} \epsilon_{mij}, \quad (55)
M^{(2)}_{\mu j} &= - M^{(\perp)}_{\mu j}, \quad (56)
M^{(1)}_{\mu j} &= M^{(1)}_{\mu j} + M^{(2)}_{\mu j}, \quad (57)
\end{align}

with the polarization vectors as defined in Eq. (31). As before, repeated Latin indices are summed only over the spatial directions. To improve the signals, we use the average of the forward three-point function and the Dirac adjoint of the backward three-point function instead of just \(C^{(3,\text{fw})} \). We can isolate the form factors, up to common overlap factors and exponentials, in the following way:

\begin{align}
S_{0}^{V}(p, t, t') &= \frac{3E_{\Lambda} m_{\Lambda}}{(E_{\Lambda} - m_{\Lambda})(E_{\Lambda} + m_{\Lambda})(m_{\Lambda} - m_{\Lambda'})} \mathcal{S}_{0}^{V}(p, t, t') \\
&= \int_{0}^{Z_{\perp}} \left(Z_{\Lambda}^{(1)} m_{\Lambda} + Z_{\Lambda}^{(2)} E_{\Lambda} \right) e^{-m_{\Lambda}(t-t')}, \quad (58)
\end{align}
\[S^+_{\perp}(p, t, t') = \frac{3E_{\Lambda}m_{\Lambda}}{\left(E_{\Lambda} - m_{\Lambda}\right)^{1/2}p} \mathcal{F}^+(p, t, t') \]
\[= f_+ Z_{\Lambda}(Z_{\Lambda}^{(1)}m_{\Lambda} + Z_{\Lambda}^{(2)}E_{\Lambda})e^{-m_{\Lambda}(p-t')e^{-E_{\Lambda}t'}} + \text{(excited-state contributions)} \]
(59)

\[S^-_{\perp}(p, t, t') = \frac{3E_{\Lambda}m_{\Lambda}}{2(pE_{\Lambda} - m_{\Lambda})(pE_{\Lambda} + m_{\Lambda})^2} \mathcal{F}^-(p, t, t') \]
\[= f_- Z_{\Lambda}e^{-m_{\Lambda}(p-t')e^{-E_{\Lambda}t'}} + \text{(excited-state contributions)} \]
(60)

\[S^0_{\perp}(p, t, t') = \frac{3E_{\Lambda}m_{\Lambda}}{2(E_{\Lambda} - m_{\Lambda})(E_{\Lambda} + m_{\Lambda})} \mathcal{F}^0_{\perp}(p, t, t') \]
\[= g_0 Z_{\Lambda}e^{-m_{\Lambda}(p-t')e^{-E_{\Lambda}t'}} + \text{(excited-state contributions)} \]
(61)

\[S^+_{\perp}(p, t, t') = \frac{3E_{\Lambda}m_{\Lambda}}{(E_{\Lambda} + m_{\Lambda})(E_{\Lambda} - m_{\Lambda})^2} \mathcal{F}^+(p, t, t') \]
\[= g_+ Z_{\Lambda}e^{-m_{\Lambda}(p-t')e^{-E_{\Lambda}t'}} + \text{(excited-state contributions)} \]
(62)

\[S^-_{\perp}(p, t, t') = -\frac{3E_{\Lambda}m_{\Lambda}}{2(E_{\Lambda} - m_{\Lambda})^2(E_{\Lambda} + m_{\Lambda})} \mathcal{F}^-(p, t, t') \]
\[= g_- Z_{\Lambda}e^{-m_{\Lambda}(p-t')e^{-E_{\Lambda}t'}} + \text{(excited-state contributions)} \]
(63)

\[S^0_{\perp}(p, t, t') = -\frac{E_{\Lambda}m_{\Lambda}}{2(E_{\Lambda} - m_{\Lambda})^2(E_{\Lambda} + m_{\Lambda})} \mathcal{F}^0_{\perp}(p, t, t') \]
\[= g_{0} Z_{\Lambda}e^{-m_{\Lambda}(p-t')e^{-E_{\Lambda}t'}} + \text{(excited-state contributions)} \]
(64)

\[S^+_V(p, t, t') = -\frac{3E_{\Lambda}m_{\Lambda}}{(E_{\Lambda} - m_{\Lambda})^1/2(E_{\Lambda} + m_{\Lambda})^{3/2}} \mathcal{F}^+_V(p, t, t') \]
\[= h_+ Z_{\Lambda}(Z_{\Lambda}^{(1)}m_{\Lambda} + Z_{\Lambda}^{(2)}E_{\Lambda})e^{-m_{\Lambda}(p-t')e^{-E_{\Lambda}t'}} + \text{(excited-state contributions)} \]
(65)

\[S^-_V(p, t, t') = -\frac{3E_{\Lambda}m_{\Lambda}}{2(E_{\Lambda} - m_{\Lambda})(E_{\Lambda} + m_{\Lambda})^2} \mathcal{F}^-_V(p, t, t') \]
\[= h_- Z_{\Lambda}(Z_{\Lambda}^{(1)}m_{\Lambda} + Z_{\Lambda}^{(2)}E_{\Lambda})e^{-m_{\Lambda}(p-t')e^{-E_{\Lambda}t'}} + \text{(excited-state contributions)} \]
(66)

\[S^0_V(p, t, t') = -\frac{3E_{\Lambda}m_{\Lambda}}{(E_{\Lambda} + m_{\Lambda})(E_{\Lambda} - m_{\Lambda})} \mathcal{F}^0_V(p, t, t') \]
\[= h_{0} Z_{\Lambda}(Z_{\Lambda}^{(1)}m_{\Lambda} + Z_{\Lambda}^{(2)}E_{\Lambda})e^{-m_{\Lambda}(p-t')e^{-E_{\Lambda}t'}} \]
(67)
\[S_{TV}^{A}(p, t, t') = -\frac{E_{A_b} m_{A_b}}{2(E_{A_b} - m_{A_b}) (E_{A_b} + m_{A_b})^2 (m_{A_b} + m_{A_b'})} \mathcal{S}_{TV}^{A}(p, t, t') \]

\[= h_{\perp} Z_{A_b} (Z_{A_b}^{(1)} m_{A_b} + Z_{A_b}^{(2)} e_{A_b}) e^{-m_{A_b'} (t - t') e^{-E_{A_b} t'}} \]

+ (excited-state contributions),

\[S_{TA}^{A}(p, t, t') = \frac{3E_{A_b} m_{A_b}}{(E_{A_b} + m_{A_b}) (E_{A_b} - m_{A_b})^2 (m_{A_b} + m_{A_b'})} \mathcal{S}_{TA}^{A}(p, t, t') \]

\[= h_{\perp} Z_{A_b} (Z_{A_b}^{(1)} m_{A_b} + Z_{A_b}^{(2)} e_{A_b}) e^{-m_{A_b'} (t - t') e^{-E_{A_b} t'}} \]

+ (excited-state contributions),

\[S_{TA}^{A}(p, t, t') = -\frac{3E_{A_b} m_{A_b}}{(E_{A_b} + m_{A_b}) (E_{A_b} - m_{A_b})^2 (m_{A_b} + m_{A_b'})} \mathcal{S}_{TA}^{A}(p, t, t') \]

\[= h_{\perp} Z_{A_b} (Z_{A_b}^{(1)} m_{A_b} + Z_{A_b}^{(2)} e_{A_b}) e^{-m_{A_b'} (t - t') e^{-E_{A_b} t'}} \]

+ (excited-state contributions),

\[S_{TA}^{A}(p, t, t') = -\frac{E_{A_b} m_{A_b}}{2(E_{A_b} + m_{A_b}) (E_{A_b} - m_{A_b})^2 (m_{A_b} + m_{A_b'})} \mathcal{S}_{TA}^{A}(p, t, t') \]

\[= h_{\perp} Z_{A_b} (Z_{A_b}^{(1)} m_{A_b} + Z_{A_b}^{(2)} e_{A_b}) e^{-m_{A_b'} (t - t') e^{-E_{A_b} t'}} \]

+ (excited-state contributions).

The excited-state contributions decay exponentially faster than the ground-state contributions. The unwanted factors of \(Z_{A_b} (Z_{A_b}^{(1)} m_{A_b} + Z_{A_b}^{(2)} e_{A_b}) e^{-m_{A_b'} (t - t') e^{-E_{A_b} t'}} \) will cancel in ratios of the above quantities at large times.

C. Results for the form factors with relative signs preserved

The fourteen form factors with relative sign information preserved can now be obtained by extracting the magnitude of a single reference form factor as in Sec. VA, and multiplying with ratios of the projected three-point functions \(S_{TV}^{A}(p, t, t') \). We choose \(f_{\perp} \) to be the reference form factor because the results for the corresponding \(R_{TV}^{V} \), show good plateaus and reasonably small statistical uncertainties (see the third plot from the left in the top row of Fig. 3). We again set \(t' = t/2 \), and define the functions

\[F_{X}^{A}(p, t) = \frac{S_{TV}^{A}(p, t, t/2)}{S_{TA}^{A}(p, t, t/2)} \sqrt{R_{TV}^{V}(p)}, \]

(72)

where \(R_{TV}^{V}(p) \) denotes the result of a constant fit to \(R_{TV}^{V}(p, t) \) in the region of ground-state saturation. The functions \(F_{X}^{A}(p, t) \) are equal to the individual helicity form factors up to excited-state contamination that decays exponentially with \(t \). We perform constant fits to \(F_{X}^{A}(p, t) \) in the plateau regions, requiring good quality-of-fit and stability under variations of the starting time. Plots of \(F_{X}^{A}(p, t) \) and the associated fits for one ensemble and one momentum are shown in Fig. 3. All fit results are listed in Table VI. The uncertainties were computed using statistical bootstrap.
FIG. 3. Numerical results for the quantities $F^X_{\lambda}(p, t)$, defined in Eq. (72), as a function of the source-sink separation, for $p = (0, 0, 3) \frac{\pi}{L}$ and for the F004 ensemble. Also shown is $R^V_{\perp}(p, t)$, which is used to extract the square of the reference form factor f_{\perp}. The horizontal lines indicate the ranges and extracted values of constant fits.
| Form factor | $|p|/(2\pi/L)$ | C01 | C005 | F004 |
|------------|----------------|-------|-------|-------|
| f_0 | 2 | 3.77(18) | 3.53(24) | 3.36(14) |
| | 3 | 3.38(14) | 3.15(20) | 3.14(11) |
| f_1 | 2 | 0.0773(40) | 0.0714(55) | 0.0698(36) |
| | 3 | 0.1040(49) | 0.0949(71) | 0.0965(43) |
| f_\perp | 2 | 0.002(10) | $-0.017(13)$ | $-0.020(81)$ |
| | 3 | 0.048(10) | 0.018(14) | 0.0225(87) |
| f_\perp' | 2 | 0.0443(73) | 0.0434(16) | 0.04399(67) |
| | 3 | 0.0405(89) | 0.0401(19) | 0.04093(81) |
| g_0 | 2 | 0.0273(40) | 0.0250(50) | 0.0224(35) |
| | 3 | 0.0559(47) | 0.0508(61) | 0.0498(40) |
| g_+ | 2 | 3.17(17) | 2.95(22) | 2.82(13) |
| | 3 | 2.85(13) | 2.65(18) | 2.63(10) |
| g_\perp | 2 | 3.12(16) | 2.91(21) | 2.76(13) |
| | 3 | 2.80(12) | 2.61(17) | 2.589(95) |
| g_\perp' | 2 | $-0.029(14)$ | $-0.052(21)$ | $-0.0261(86)$ |
| | 3 | $-0.025(10)$ | $-0.040(14)$ | $-0.0275(60)$ |
| h_+ | 2 | 0.0162(95) | 0.034(13) | 0.0436(80) |
| | 3 | $-0.028(10)$ | 0.000(14) | 0.0024(86) |
| h_\perp | 2 | $-0.0440(36)$ | $-0.0384(47)$ | $-0.0388(32)$ |
| | 3 | $-0.0701(44)$ | $-0.0616(59)$ | $-0.0640(37)$ |
| h_\perp' | 2 | 0.01582(73) | 0.0155(12) | 0.01738(47) |
| | 3 | 0.01495(82) | 0.0144(13) | 0.01684(55) |
| \tilde{h}_+ | 2 | $-3.15(16)$ | $-2.91(21)$ | $-2.78(12)$ |
| | 3 | $-2.82(12)$ | $-2.61(17)$ | $-2.593(93)$ |
| \tilde{h}_\perp | 2 | $-3.22(16)$ | $-3.01(21)$ | $-2.86(13)$ |
| | 3 | $-2.89(12)$ | $-2.70(18)$ | $-2.68(10)$ |
| \tilde{h}_\perp' | 2 | $-0.098(14)$ | $-0.087(22)$ | $-0.1183(83)$ |
| | 3 | $-0.091(11)$ | $-0.079(16)$ | $-0.1067(66)$ |

TABLE VI. Values of the form factors extracted from constant fits of $F_X^N(p,t)$ in the plateau regions, for each ensemble and for the two different Λ_b momenta.
VI. CHIRAL AND CONTINUUM EXTRAPOLATIONS OF THE FORM FACTORS

The final step in the analysis of the form factors is to fit suitable functions describing the dependence on the kinematics, the light-quark mass (or, equivalently, \(m_\pi^2 \)), and the lattice spacing to the results given in Table VI. Given that we have data for only two different momenta that correspond to values of \(q^2 \) near the kinematic endpoint, we describe the kinematic dependence of each form factor by a linear function of the dimensionless variable

\[
w(q^2) = v \cdot v' = \frac{m_{\Lambda_b}^2 + m_{\Lambda^*}^2 - q^2}{2m_{\Lambda_b}m_{\Lambda^*}}.
\]

We expect this description to be accurate only in the high-\(q^2 \) region. To allow for dependence on the light-quark mass and lattice spacing, we use the model

\[
f(q^2) = F^f \left[1 + C^f (m_\pi^2 - m_{\pi,\text{phys}}^2)/(4\pi f_\pi^2) + D^f a^2 \Lambda^2 \right] + A^f \left[1 + \tilde{C}^f (m_\pi^2 - m_{\pi,\text{phys}}^2)/(4\pi f_\pi^2) + \tilde{D}^f a^2 \Lambda^2 \right] (w - 1),
\]

with independent fit parameters \(F^f, A^f, C^f, D^f, \tilde{C}^f, \) and \(\tilde{D}^f \) for each form factor \(f \). Here, we introduced \(f_\pi = 132 \text{ MeV} \) and \(\Lambda = 300 \text{ MeV} \) to make all parameters dimensionless. In the physical limit \(m_\pi = m_{\pi,\text{phys}} = 135 \text{ MeV} \), \(a = 0 \), the fit functions reduce to the form

\[
f(q^2) = F^f + A^f (w - 1),
\]

which only depend on the parameters \(F^f \) and \(A^f \). The model (74) can be thought of as expansions of both the zero-recoil form factors \(F^f \) and the slopes \(A^f \) in terms of the light-quark mass and the square of the lattice spacing.

The limited number of data points made it necessary to constrain the size of the coefficients \(C^f, D^f, \tilde{C}^f, \) and \(\tilde{D}^f \) to be not unnaturally large. To this end, we introduced Gaussian priors for \(C^f, D^f, \tilde{C}^f, \) and \(\tilde{D}^f \) with central values equal to 0 and widths equal to 10.

Our results for the physical-limit parameters \(F^f \) and \(A^f \) are given in Table VII. The full 28 \(\times \) 28 covariance matrix of the parameters for all fourteen form factors is available as an ancillary file. The form factors in the physical limit are plotted as the solid magenta curves with 1\(\sigma \) uncertainty bands in Figs. 4 and 5. The dashed-dotted, dashed, and dotted curves show the fit models evaluated at the pion masses and lattice spacings of the individual data sets C01, C005, and F004, respectively, where the uncertainty bands are omitted for clarity. We see that the data are well described by the model.

Given that we only have three ensembles of gauge configurations and two momentum values, it is difficult to obtain detailed data-based estimates of the systematic uncertainties that remain after extrapolation to \(m_\pi = m_{\pi,\text{phys}} \) and

\(f \)	\(F^f \)	\(A^f \)
\(f_0 \)	3.54(29)	-14.7(3.3)
\(f_+ \)	0.0432(64)	1.63(19)
\(f_- \)	-0.068(18)	2.49(35)
\(f_{\perp} \)	0.0461(18)	-0.161(27)
\(g_0 \)	0.0024(38)	1.58(17)
\(g_+ \)	2.95(25)	-12.2(2.9)
\(g_- \)	2.92(24)	-11.8(2.8)
\(g_{\perp} \)	-0.037(14)	0.09(25)
\(h_0 \)	0.095(19)	-2.38(32)
\(h_+ \)	-0.0170(43)	-1.49(16)
\(h_- \)	0.0196(13)	-0.038(11)
\(\bar{h}_0 \)	-2.90(24)	12.0(2.9)
\(\bar{h}_+ \)	-3.01(25)	12.2(2.8)
\(\bar{h}_{\perp} \)	-0.144(24)	0.74(37)

TABLE VII. The fit parameters describing the form factors in the physical limit. The parametrizations, which are accurate only in the high-\(q^2 \) region, are given by \(f = F^f + A^f (w - 1) \), where \(w = v \cdot v' = (m_{\Lambda_b}^2 + m_{\Lambda^*}^2 - q^2)/(2m_{\Lambda_b}m_{\Lambda^*}) \). The 28 \(\times \) 28 covariance matrix of all fit parameters is available as an ancillary file. The uncertainties given here are statistical only; see the main text for a discussion of systematic uncertainties.
FIG. 4. Chiral and continuum extrapolations of the vector and axial vector form factors. The solid magenta curves with 1σ statistical-uncertainty bands show the form factors in the physical limit. The dashed-dotted, dashed, and dotted curves show the fit models evaluated at the pion masses and lattice spacings of the individual data sets C01, C005, and F004, respectively, where the uncertainty bands are omitted for clarity.
$a = 0$. In Ref. [25], which used the same lattice actions and lattice spacings but included additional lower valence light-quark masses, the total systematic uncertainties in the $\Lambda_b \to \Lambda(1115)$ form factors at high q^2 were found to be approximately 5%, plus the 5.3% matching uncertainty in the tensor form factors as discussed in Sec. V. We roughly estimate the systematic uncertainties in the $\Lambda_b \to \Lambda^*(1520)$ form factors to be 1.5 times larger, i.e. 7.5%, plus the extra 5.3% matching uncertainty for the tensor form factors which is unchanged here. This increased estimate also allows for larger heavy-quark discretization errors associated with the nonzero Λ_b momenta used here.

VII. $\Lambda_b \to \Lambda^*(1520)\ell^+\ell^-$ OBSERVABLES

To calculate the $\Lambda_b \to \Lambda^*(1520)\ell^+\ell^-$ observables, we employ the usual operator-product expansion that allows us to express the decay amplitude in terms of local hadronic matrix elements [61]. For the differential decay rate in the
where $\nu = \sqrt{1 - 4m_{b}^{2}/q^{2}}$, and the quantities A_{1}, A_{2}, and A_{t} are given by

$$
A_{1} = \left| H_{1} \left(-1, \frac{1}{2}, \frac{3}{2} \right) \right|^{2} + \left| H_{1} \left(-1, \frac{1}{2}, -\frac{1}{2} \right) \right|^{2} + \left| H_{1} \left(0, \frac{1}{2}, \frac{1}{2} \right) \right|^{2},
$$

$$
A_{2} = \left| H_{2} \left(-1, \frac{1}{2}, \frac{3}{2} \right) \right|^{2} + \left| H_{2} \left(-1, \frac{1}{2}, -\frac{1}{2} \right) \right|^{2} + \left| H_{2} \left(0, \frac{1}{2}, \frac{1}{2} \right) \right|^{2},
$$

$$
A_{t} = \left| H_{2} \left(t, \frac{1}{2}, \frac{1}{2} \right) \right|^{2} + \left| H_{2} \left(t, -\frac{1}{2}, -\frac{1}{2} \right) \right|^{2}.
$$

Here, H_{1} and H_{2} are linear combinations of hadronic helicity amplitudes with the appropriate Wilson coefficients:

$$
H_{1} = -\frac{2m_{h}}{q^{2}} C_{1}^{\text{eff}} (q^{2}) (H_{T} + H_{T5}) + C_{6}^{\text{eff}} (q^{2}) (H_{V} - H_{A}),
$$

$$
H_{2} = C_{10} (H_{V} - H_{A}).
$$

In terms of the form factors, the helicity amplitudes (in our sign conventions) for the vector, axial-vector, and tensor currents are equal to

$$
H_{V} \left(t, \frac{1}{2}, \frac{1}{2} \right) = H_{V} \left(t, -\frac{1}{2}, -\frac{1}{2} \right) = -f_{V} \frac{(m_{A_{h}} - m_{A_{t'}})\sqrt{s_{-}}}{\sqrt{6}q^{2}},
$$

$$
H_{V} \left(0, \frac{1}{2}, \frac{1}{2} \right) = H_{V} \left(0, -\frac{1}{2}, -\frac{1}{2} \right) = -f_{V} \frac{(m_{A_{h}} + m_{A_{t'}})\sqrt{s_{+}}}{\sqrt{6}q^{2}},
$$

$$
H_{V} \left(1, \frac{1}{2}, -\frac{1}{2} \right) = -H_{V} \left(-1, -\frac{1}{2}, -\frac{1}{2} \right) = -f_{V} \frac{\sqrt{s_{+}}}{\sqrt{3}},
$$

$$
H_{V} \left(1, -\frac{1}{2}, -\frac{3}{2} \right) = H_{V} \left(-1, \frac{1}{2}, \frac{3}{2} \right) = f_{V'} \sqrt{s_{+}},
$$

$$
H_{A} \left(t, \frac{1}{2}, \frac{1}{2} \right) = -H_{A} \left(t, \frac{1}{2}, \frac{1}{2} \right) = g_{0} \frac{(m_{A_{h}} + m_{A_{t'}})\sqrt{s_{+}}}{\sqrt{6}q^{2}},
$$

$$
H_{A} \left(0, \frac{1}{2}, \frac{1}{2} \right) = -H_{A} \left(0, -\frac{1}{2}, -\frac{1}{2} \right) = g_{+} \frac{(m_{A_{h}} - m_{A_{t'}})\sqrt{s_{-}}}{\sqrt{6}q^{2}},
$$

$$
H_{A} \left(1, \frac{1}{2}, -\frac{1}{2} \right) = -H_{A} \left(-1, -\frac{1}{2}, -\frac{1}{2} \right) = -g_{+} \frac{\sqrt{s_{-}}}{\sqrt{3}},
$$

$$
H_{A} \left(1, -\frac{1}{2}, -\frac{3}{2} \right) = -H_{A} \left(-1, \frac{1}{2}, \frac{3}{2} \right) = -g_{+} \sqrt{s_{-}}.
$$
and
\[
H_T \left(t, \frac{1}{2}, \frac{1}{2} \right) = H_T \left(t, -\frac{1}{2}, -\frac{1}{2} \right) = 0, \tag{90}
\]
\[
H_T \left(0, \frac{1}{2}, \frac{1}{2} \right) = H_T \left(0, -\frac{1}{2}, -\frac{1}{2} \right) = -h_+ \frac{(m_{\Lambda_b} + m_{\Lambda^*}) \sqrt{s_+}}{\sqrt{6} q^2}, \tag{91}
\]
\[
H_T \left(1, \frac{1}{2}, -\frac{1}{2} \right) = H_T \left(-1, \frac{1}{2}, \frac{1}{2} \right) = -h_+ \frac{\sqrt{s_+}}{\sqrt{3}}, \tag{92}
\]
\[
H_T \left(1, -\frac{1}{2}, -\frac{3}{2} \right) = H_T \left(-1, 1, \frac{3}{2} \right) = h_+ \sqrt{s_+}, \tag{93}
\]
\[
H_{T5} \left(t, \frac{1}{2}, \frac{1}{2} \right) = -H_{T5} \left(t, -\frac{1}{2}, -\frac{1}{2} \right) = 0, \tag{94}
\]
\[
H_{T5} \left(0, \frac{1}{2}, \frac{1}{2} \right) = -H_{T5} \left(0, -\frac{1}{2}, -\frac{1}{2} \right) = \tilde{h}_+ \frac{(m_{\Lambda_b} - m_{\Lambda^*}) \sqrt{s_-}}{\sqrt{6} q^2}, \tag{95}
\]
\[
H_{T5} \left(1, \frac{1}{2}, -\frac{1}{2} \right) = -H_{T5} \left(-1, \frac{1}{2}, \frac{1}{2} \right) = -\tilde{h}_+ \frac{\sqrt{s_-}}{\sqrt{3}}, \tag{96}
\]
\[
H_{T5} \left(1, -\frac{1}{2}, -\frac{3}{2} \right) = -H_{T5} \left(-1, 1, \frac{3}{2} \right) = -\tilde{h}_+ \sqrt{s_-}. \tag{97}
\]

For the effective Wilson coefficients \(C_7^{\text{eff}}(q^2) \) and \(C_9^{\text{eff}}(q^2) \), we use the expressions given in Eqs. (65) and (66) of Ref. [25]. The Wilson coefficients \(C_1 \) through \(C_{10} \), the strong and electromagnetic couplings, and the \(b \) and \(c \) quark masses are also evaluated as in Ref. [25]. We take
\[
|V_{tb} V_{ts}^*| = 0.04120 \pm 0.00056 \tag{98}
\]
from the Summer 2018 Standard-Model fit performed by the UTfit Collaboration [62], and, to obtain \(\frac{d\mathcal{B}}{dq^2} = \tau_{\Lambda_b} d\Gamma/dq^2 \), the \(\Lambda_b \) lifetime
\[
\tau_{\Lambda_b} = (1.471 \pm 0.009) \text{ ps} \tag{99}
\]
from the Review of Particle Physics [29].

The uncertainties estimated for the Standard-Model predictions shown below include the form-factor statistical and systematic uncertainties, the perturbative uncertainties, an estimate of quark-hadron duality violations (as in Ref. [25]), and the parametric uncertainties from Eqs. (98), and (99). Here we treated the estimated 7.5% systematic uncertainties in the form factors as 100% correlated within each of the groups \(\{f_0, f_+, f_{\perp}, f_{\perp^*}\}, \{g_0, g_+, g_{\perp}, g_{\perp^*}\}, \{h_+, h_{\perp}, h_{\perp^*}\}, \{h_{\perp^*}, h_{\perp^*}, h_{\perp^*}\} \), but uncorrelated across different groups. The additional 5.3% matching uncertainty in the tensor form factors was assumed to be 100% correlated between all tensor form factors.

Our prediction for the differential branching fraction in the high-\(q^2 \) region is shown in Fig. 6. Here we have set \(m_\ell = 0 \), which, in this kinetic region, is a good approximation for both electrons and muons. We only show results above \(q^2 = 16 \text{ GeV}^2 \) because our lattice data only reach down to approximately 16.3 GeV\(^2\), and our parametrization of the \(q^2 \)-dependence of the form factors is not expected to be reliable for lower \(q^2 \). In this kinematic region, our numerical results for \(\frac{d\mathcal{B}}{dq^2} \) are approximately 30% lower than those obtained using the quark-model form factors of Ref. [30].

In the narrow-width approximation for the \(\Lambda^*(1520) \) and for \(m_\ell = 0 \), the \(\Lambda_b \to \Lambda^*(1520)(\to pK^-)\ell^+\ell^- \) four-fold differential decay distribution in the Standard Model has the form
\[
\frac{d^4\Gamma}{dq^2 \, d \cos \theta_\ell \, d \cos \theta_{\Lambda^*} \, d \phi} = \frac{3}{8 \pi} \left[\cos^2 \theta_{\Lambda^*} \left(L_{1c} \cos \theta_\ell + L_{1cc} \cos^2 \theta_\ell + L_{1ss} \sin^2 \theta_\ell \right)
+ \sin^2 \theta_{\Lambda^*} \left(L_{2c} \cos \theta_\ell + L_{2cc} \cos^2 \theta_\ell + L_{2ss} \sin^2 \theta_\ell \right)
+ \sin^2 \theta_{\Lambda^*} \left(L_{3cc} \sin \theta_\ell \cos^2 \phi + L_{4ss} \sin \theta_\ell \cos \phi \cos \phi \right)
+ \sin \theta_{\Lambda^*} \cos \theta_{\Lambda^*} \cos \phi \left(L_{5cc} \sin \theta_\ell + L_{5ss} \sin \theta_\ell \cos \theta_\ell \right)
+ \sin \theta_{\Lambda^*} \cos \theta_{\Lambda^*} \sin \phi \left(L_{6ss} \sin \theta_\ell + L_{6ss} \sin \theta_\ell \cos \theta_\ell \right) \right], \tag{100}
\]
FIG. 6. The $\Lambda_b \to \Lambda^*(1520)\ell^+\ell^−$ differential branching fraction in the high-q^2 region calculated in the Standard Model using our form factor results. Note that the factor of $B(\Lambda^* \to pK^-)$ is not included here.

A 1. In the following, we use the convention that we do not include the factor of $B_{\Lambda^*} = B(\Lambda^* \to pK^-)$ in the angular coefficients L_i, which means that the integral of Eq. (100) over $\cos \theta_i$, $\cos \theta_{\Lambda^*}$, and ϕ is equal to $d\Gamma/dq^2$ for the primary decay $\Lambda_b \to \Lambda^*(1520)\ell^+\ell^−$. As in Ref. [17], we define the CP-averaged, normalized angular observables as

$$S_i = \frac{L_i + L_i}{3d\Gamma/dq^2}. \quad (101)$$

Our predictions for S_{1c}, S_{1cc}, S_{1ss}, S_{2c}, S_{2cc}, S_{2ss}, S_{3ss}, S_{5}, and S_{5sc} are shown in Figs. 7 and 8. Two further combinations of interest are the fraction of longitudinally polarized dileptons

$$F_L = 1 - \frac{2(L_{1cc} + 2L_{2cc})}{3d\Gamma/dq^2} \quad (102)$$

and the lepton-side forward-backward asymmetry

$$A_{FB}^\ell = \frac{L_{1c} + 2L_{2c}}{2d\Gamma/dq^2}; \quad (103)$$

these are shown in Fig. 9. In the kinematic region considered here, our results for all angular observables are remarkably close to those predicted using quark-model form factors [30], shown in Refs. [17] and [19].
FIG. 7. The $\Lambda_b \to \Lambda^*(1520)(\to pK^-)\ell^+\ell^-$ angular observables S_{1c}, S_{1cc}, S_{1ss}, S_{2c}, S_{2cc}, and S_{2ss} in the high-q^2 region calculated in the Standard Model using our form factor results.
FIG. 8. The $\Lambda_b \rightarrow \Lambda^*(1520)(\rightarrow pK^-)\ell^+\ell^−$ angular observables S_{3ss}, S_5s, and S_{5sc} in the high-q^2 region calculated in the Standard Model using our form factor results.

FIG. 9. The $\Lambda_b \rightarrow \Lambda^*(1520)(\rightarrow pK^-)\ell^+\ell^−$ fraction of longitudinally polarized dileptons and the lepton-side forward-backward asymmetry in the high-q^2 region calculated in the Standard Model using our form factor results.
We have presented the first lattice-QCD calculation of the form factors describing the $\Lambda_b \to \Lambda^*(1520)$ matrix elements of the vector, axial vector, and tensor $b \to s$ currents. Similarly to the lattice calculation of $B \to K^*(892)$ form factors in Ref. [63], this work treats the $\Lambda^*(1520)$ as a stable particle. Even in this approximation, our work required overcoming several challenges. The simplest choices of three-quark interpolating fields with $I = 0$ and $J^P = \frac{3}{2}^-$ dominantly couple to higher-lying states; a previous lattice-QCD study of Λ-baryon spectroscopy [53] in fact was unable to identify the $\Lambda^*(1520)$ for this reason. Here we solved this problem by including gauge-covariant spatial derivatives in the interpolating field, at the expense of having to compute additional propagators with derivative sources. We also used all-mode averaging [44, 45] to overcome the poor signal-to-noise ratios in the correlation functions involving the $\Lambda^*(1520)$. Traditionally, lattice-QCD calculations of heavy-to-light form factors have been performed in the rest frame of the heavy hadron, giving the final-state light hadron nonzero momentum. However, at nonzero momentum an interpolating field that would have $J^P = \frac{3}{2}^-$ in the continuum then also couples to $J^P = \frac{3}{2}^+$, and in some cases even $J^P = \frac{1}{2}^+$, which would make isolating the $\Lambda^*(1520)$ extremely difficult. For this reason, we performed the lattice calculation in the $\Lambda^*(1520)$ rest frame, giving nonzero momentum to the Λ_b instead. While this choice eliminates the problem of mixing with unwanted lighter states, it also limits the accessible q^2 range to be very close to q^2_{max}. We performed the calculation for two different Λ_b momenta, $|p| \approx 0.935$ GeV and $|p| \approx 1.402$ GeV, corresponding to $q^2/l_{\text{max}}^2 \approx 0.986$ and $q^2/l_{\text{max}}^2 \approx 0.969$, respectively. This only allowed linear fits of the q^2-dependence (or, equivalently, w-dependence), which yield the values of the form factors at q^2_{max} and their slopes. Using three different ensembles of gauge fields on lattices that all have approximately the same spatial volume, we performed extrapolations linear in a and in some cases even a^2, with independent coefficients for the slopes and intersects of the form factors, to the physical limit.

Looking ahead, lower values of q^2 could be reached using the moving-NRQCD action [64] for the b quark, which enables much higher Λ_b momenta while keeping discretization errors under control, but requires a more complicated matching of the currents to continuum QCD. Furthermore, a more rigorous analysis of $\Lambda_b \to \Lambda^*(1520)$ form factors that treats the $\Lambda^*(1520)$ as a resonance in coupled-channel pK, $\Sigma\pi$ scattering may be possible using the finite-volume formalism of Refs. [65, 66], but this would still not include $\Lambda\pi\pi$ three-particle contributions.

Using our form factor results, we have obtained Standard-Model predictions for the $\Lambda_b \to \Lambda^*(1520)\ell^+\ell^-$ differential branching fraction and several $\Lambda_b \to \Lambda^*(1520)(\to pK^-)\ell^+\ell^-$ angular observables at high q^2. The uncertainty in the differential branching fraction in the region considered is approximately 20 percent, while some angular observables are more precise due to their reduced dependence on the form factors and benefits from correlations. We predict a somewhat (~ 30%) lower $d\mathcal{B}/dq^2$ than the quark model of Ref. [30]. Our results for the angular observables are also quite close to those computed using the quark-model form factors [17]. We look forward to future experimental results for $\Lambda_b \to \Lambda^*(1520)\ell^+\ell^-$.

ACKNOWLEDGMENTS

We thank Danny van Dyk and Sébastien Descotes-Genon for discussions, and the RBC and UKQCD Collaborations for making their gauge field ensembles available. SM is supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0009913. GR is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-SC0012704 (BNL). The computations for this work were carried out on facilities at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH1123, and on facilities of the Extreme Science and Engineering Discovery Environment (XSEDE) [67], which is supported by National Science Foundation grant number ACI-1548562.

Appendix A: Relations between different form factor definitions

In this appendix we provide the relations between two other definitions of $\Lambda_b \to \Lambda^*(1520)$ form factors used in the literature and our definition.
1. Non-helicity-based definition

This definition is used in Refs. [30, 33]. For the vector and axial vector currents, it has the same structure as the definition of $\Lambda_b \to \Lambda^*_b(2625)$ form factors in Ref. [35]. In the notation of our Eq. (5), it is given by

\[\mathcal{G}^\Lambda[\gamma^\mu] = v^\Lambda (F_1 \gamma^\mu + F_2 v^\mu + F_3 v^\nu) + F_4 g^\Lambda^\mu, \]
(A1)

\[\mathcal{G}^\Lambda[\gamma^\mu \gamma_5] = v^\Lambda (G_1 \gamma^\mu + G_2 v^\mu + G_3 v^\nu) \gamma_5 + G_4 g^\Lambda^\mu \gamma_5, \]
(A2)

\[\mathcal{G}^\Lambda[i\sigma^{\mu \nu} q] = v^\Lambda (F_1^T \gamma^\mu + f_2^T v^\mu + f_3^T v^\nu) + f_4^T g^\Lambda^\mu, \]
(A3)

\[\mathcal{G}^\Lambda[i\sigma^{\mu \nu} q \gamma_5] = v^\Lambda (G_1^T \gamma^\mu + G_2^T v^\mu + G_3^T v^\nu) \gamma_5 + G_4^T g^\Lambda^\mu \gamma_5. \]
(A4)

Note that only four of the six tensor form factors in this definition are independent. The relation to our definition is

\[F_1 = \frac{m_{\Lambda_b} m_{\Lambda^*}}{s_-} (f_\perp + f_{\perp'}), \]
(A5)

\[F_2 = \frac{m_{\Lambda_b} m_{\Lambda^*}}{q^2 s_+ s_-} \left[(m_{\Lambda_b} - m_{\Lambda^*}) s_- f_0 - 2m_{\Lambda^*} q^2 (f_\perp - f_{\perp'}) - (m_{\Lambda_b} + m_{\Lambda^*}) (m_{\Lambda_b}^2 - m_{\Lambda^*}^2 - q^2) f_+ \right], \]
(A6)

\[F_3 = \frac{m_{\Lambda_b} m_{\Lambda^*}}{q^2 s_+ s_-} \left[-m_{\Lambda^*} (m_{\Lambda_b} - m_{\Lambda^*}) s_- f_0 - 2m_{\Lambda_b} m_{\Lambda^*} q^2 f_\perp + 2q^2 (m_{\Lambda_b} m_{\Lambda^*} - s_+) f_{\perp'} \right. \]
\[\left. + m_{\Lambda^*} (m_{\Lambda_b} + m_{\Lambda^*}) (m_{\Lambda_b}^2 - m_{\Lambda^*}^2 + q^2) f_+ \right], \]
(A7)

\[F_4 = f_{\perp'}, \]
(A8)

\[G_1 = \frac{m_{\Lambda_b} m_{\Lambda^*}}{s_+} (g_\perp + g_{\perp'}), \]
(A9)

\[G_2 = \frac{m_{\Lambda_b} m_{\Lambda^*}}{q^2 s_+ s_-} \left[-(m_{\Lambda_b} + m_{\Lambda^*}) s_+ g_0 - 2m_{\Lambda^*} q^2 (g_\perp - g_{\perp'}) + (m_{\Lambda_b} - m_{\Lambda^*}) (m_{\Lambda_b}^2 - m_{\Lambda^*}^2 - q^2) g_+ \right], \]
(A10)

\[G_3 = \frac{m_{\Lambda_b} m_{\Lambda^*}}{q^2 s_+ s_-} \left[m_{\Lambda^*} (m_{\Lambda_b} + m_{\Lambda^*}) s_+ g_0 + 2m_{\Lambda_b} m_{\Lambda^*} q^2 g_\perp - 2q^2 (m_{\Lambda_b} m_{\Lambda^*} + s_-) g_{\perp'} \right. \]
\[\left. - m_{\Lambda^*} (m_{\Lambda_b} - m_{\Lambda^*}) (m_{\Lambda_b}^2 - m_{\Lambda^*}^2 + q^2) g_+ \right], \]
(A11)

\[G_4 = g_{\perp'}, \]
(A12)

\[F_1^T = -\frac{m_{\Lambda_b} m_{\Lambda^*}}{s_-} (m_{\Lambda_b} + m_{\Lambda^*}) (h_\perp + h_{\perp'}), \]
(A13)

\[F_2^T = \frac{m_{\Lambda_b} m_{\Lambda^*}}{s_+ s_-} \left[2m_{\Lambda^*} (m_{\Lambda_b} + m_{\Lambda^*}) (h_\perp - h_{\perp'}) + (m_{\Lambda_b}^2 - m_{\Lambda^*}^2 - q^2) h_+ \right], \]
(A14)

\[F_3^T = \frac{m_{\Lambda_b} m_{\Lambda^*}}{s_+ s_-} \left[2(m_{\Lambda_b} + m_{\Lambda^*}) (m_{\Lambda_b} m_{\Lambda^*} h_\perp - (m_{\Lambda_b} m_{\Lambda^*} - s_+ h_{\perp'}) - m_{\Lambda^*} (m_{\Lambda_b}^2 - m_{\Lambda^*}^2 + q^2) h_+ \right], \]
(A15)

\[F_4^T = -(m_{\Lambda_b} + m_{\Lambda^*}) h_{\perp'}, \]
(A16)

\[G_1^T = \frac{m_{\Lambda_b} m_{\Lambda^*}}{s_+} (m_{\Lambda_b} - m_{\Lambda^*}) (\bar{h}_\perp + \bar{h}_{\perp'}), \]
(A17)

\[G_2^T = \frac{m_{\Lambda_b} m_{\Lambda^*}}{s_+ s_-} \left[-2m_{\Lambda^*} (m_{\Lambda_b} - m_{\Lambda^*}) (\bar{h}_\perp - \bar{h}_{\perp'}) + (m_{\Lambda_b}^2 - m_{\Lambda^*}^2 - q^2) \bar{h}_+ \right], \]
(A18)

\[G_3^T = \frac{m_{\Lambda_b} m_{\Lambda^*}}{s_+ s_-} \left[2(m_{\Lambda_b} - m_{\Lambda^*}) (m_{\Lambda_b} m_{\Lambda^*} \bar{h}_\perp - (m_{\Lambda_b} m_{\Lambda^*} + s_- \bar{h}_{\perp'}) - m_{\Lambda^*} (m_{\Lambda_b}^2 - m_{\Lambda^*}^2 + q^2) \bar{h}_+ \right], \]
(A19)

\[G_4^T = (m_{\Lambda_b} - m_{\Lambda^*}) \bar{h}_{\perp'}. \]
(A20)
2. Helicity-based definition used by Descotes-Genon and Novoa Brunet

Reference [17] uses a helicity-based definition that differs from ours only by simple kinematic factors:

\[f_V^\tau = \frac{m_{\Lambda^*}}{s_+} f_0, \]
\[f_0^V = \frac{m_{\Lambda^*}}{s_-} f_1^+, \] \(A21 \)
\[f_V^\perp = \frac{m_{\Lambda^*}}{s_-} f_2^+, \] \(A22 \)
\[f_0^V = \frac{m_{\Lambda^*}}{s_-} g_0, \] \(A23 \)
\[f_0^\perp = \frac{m_{\Lambda^*}}{s_-} g_1^+, \] \(A24 \)
\[f_1^A = \frac{m_{\Lambda^*}}{s_-} q_0, \] \(A25 \)
\[f_0^A = \frac{m_{\Lambda^*}}{s_-} q_1^+, \] \(A26 \)
\[f_1^A = \frac{m_{\Lambda^*}}{s_-} q_2^+, \] \(A27 \)
\[f_0^g = -g_1^-, \] \(A28 \)
\[f_0^T = \frac{m_{\Lambda^*}}{s_-} h_1^+, \] \(A29 \)
\[f_0^T = \frac{m_{\Lambda^*}}{s_-} h_2^+, \] \(A30 \)
\[f_1^T = \frac{m_{\Lambda^*}}{s_-} h_1^-, \] \(A31 \)
\[f_1^T = \frac{m_{\Lambda^*}}{s_-} h_2^-, \] \(A32 \)
\[f_1^T = \frac{m_{\Lambda^*}}{s_-} h_3^+, \] \(A33 \)
\[f_1^T = \frac{m_{\Lambda^*}}{s_-} h_3^-, \] \(A34 \)

Similarly, Ref. [36], which considers \(\Lambda_b \to \Lambda^*_c \), contains another helicity-based definition (for the vector and axial-vector form factors only) that also differs from ours only by simple kinematic factors.

[1] T. Blake, G. Lanfranchi, and D. M. Straub, “Rare B Decays as Tests of the Standard Model,” Prog. Part. Nucl. Phys. 92 (2017) 50–91, arXiv:1606.00916 [hep-ph].

[2] M. Algueró, B. Capdevila, A. Crivellin, S. Descotes-Genon, P. Masjuan, J. Matias, and J. Virto, “Emerging patterns of New Physics with and without Lepton Flavour Universal contributions,” Eur. Phys. J. C79 no. 8, (2019) 714, arXiv:1903.09578 [hep-ph].

[3] J. Aebischer, W. Altmannshofer, D. Guadagnoli, M. Reboud, P. Stangl, and D. M. Straub, “B-decay discrepancies after Moriond 2019,” Eur. Phys. J. C 80 no. 3, (2020) 252, arXiv:1903.10434 [hep-ph].

[4] D. Buttazzo, A. Greljo, G. Isidori, and D. Marzocca, “B-physics anomalies: a guide to combined explanations,” JHEP 11 (2017) 044, arXiv:1706.07808 [hep-ph].

[5] M. Gremm, F. Kruger, and L. M. Sehgal, “Angular distribution and polarization of photons in the inclusive decay \(\Lambda_b \to X_s \gamma \),” Phys. Lett. B355 (1995) 579–583, arXiv:hep-ph/9505354 [hep-ph].

[6] T. Mannel and S. Recksiegel, “Flavor changing neutral current decays of heavy baryons: The Case \(\Lambda_b \to \Lambda \gamma \),” J. Phys. G24 (1998) 979–990, arXiv:hep-ph/9701399 [hep-ph].

[7] C.-S. Huang and H.-G. Yan, “Exclusive rare decays of heavy baryons to light baryons: \(\Lambda_b \to \Lambda \gamma \) and \(\Lambda_b \to \Lambda \ell^+ \ell^- \),” Phys. Rev. D59 (1999) 114022, arXiv:hep-ph/9811303 [hep-ph]. [Erratum: Phys. Rev.D61,039901(2000)].

[8] G. Hiller and A. Kagan, “Probing for new physics in polarized \(\Lambda_b \) decays at the Z,” Phys. Rev. D65 (2002) 074038, arXiv:hep-ph/0108074 [hep-ph].

[9] C.-H. Chen, C. Q. Geng, and J. N. Ng, “T violation in \(\Lambda_b \to \Lambda \ell^+ \ell^- \) decays with polarized \(\Lambda \),” Phys. Rev. D65 (2002) 091502, arXiv:hep-ph/0202103 [hep-ph].

[10] F. Legger and T. Schietinger, “Photon helicity in \(\Lambda_b \to pK\gamma \) decays,” Phys. Lett. B645 (2007) 204–212, arXiv:hep-ph/0605245 [hep-ph]. [Erratum: Phys. Lett.B647,527(2007)].

[11] G. Hiller, M. Knecht, F. Legger, and T. Schietinger, “Photon polarization from helicity suppression in radiative decays of polarized \(\Lambda_b \) to spin-3/2 baryons,” Phys. Lett. B649 (2007) 152–158, arXiv:hep-ph/0702191 [hep-ph].
[12] P. Böer, T. Feldmann, and D. van Dyk, “Angular Analysis of the Decay $\Lambda_b \to \Lambda(\rightarrow N\pi)\ell^+\ell^-$,” JHEP 01 (2015) 155, arXiv:1410.2115 [hep-ph].

[13] S. Meinel and D. van Dyk, “Using $\Lambda_b \to \Lambda\mu^+\mu^-$ data within a Bayesian analysis of $|\Delta B| = |\Delta S| = 1$ decays,” Phys. Rev. D94 no. 1, (2016) 013007, arXiv:1603.02974 [hep-ph].

[14] T. Blake and M. Kreps, “Angular distribution of polarised Λ_b baryons decaying to $\Lambda\ell^+\ell^-$,” JHEP 11 (2017) 138, arXiv:1710.00746 [hep-ph].

[15] D. Das, “Model independent New Physics analysis in $\Lambda_b \to \Lambda\mu^+\mu^-$ decay,” Eur. Phys. J. C78 no. 3, (2018) 230, arXiv:1802.09404 [hep-ph].

[16] H. Yan, “Angular distribution of the rare decay $\Lambda_b \to \Lambda(\rightarrow N\pi)\ell^+\ell^-$,” arXiv:1911.11568 [hep-ph].

[17] S. Descotes-Genon and M. Novoan Brunet, “Angular Analysis of the rare decay $\Lambda_b \to \Lambda(1520)(\rightarrow NK)\ell^+\ell^-$,” JHEP 06 (2019) 136, arXiv:1903.00448 [hep-ph].

[18] T. Blake, S. Meinel, and D. van Dyk, “Bayesian Analysis of $b \to s\mu^+\mu^-$ Wilson Coefficients using the Full Angular Distribution of $\Lambda_b \to \Lambda(\rightarrow p\pi^-)\mu^+\mu^-$ Decays,” Phys. Rev. D 101 no. 3, (2020) 035023, arXiv:1912.05811 [hep-ph].

[19] D. Das and J. Das, “The $\Lambda_b \to \Lambda'(1520)(\rightarrow NK)\ell^+\ell^-$ decay at low-recoil in HQET,” JHEP 07 (2020) 002, arXiv:2003.08366 [hep-ph].

[20] CDF Collaboration, T. Aaltonen et al., “Observation of the Baryonic Flavor-Changing Neutral Current Decay $\Lambda_b \to \Lambda\mu^+\mu^-$,” Phys. Rev. Lett. 107 (2011) 201802, arXiv:1107.3753 [hep-ex].

[21] LHCb Collaboration, R. Aaij et al., “Measurement of the differential branching fraction of the decay $\Lambda_b^0 \to \Lambda\mu^+\mu^-$,” Phys. Lett. B725 (2013) 25–35, arXiv:1306.2577 [hep-ex].

[22] LHCb Collaboration, R. Aaij et al., “Differential branching fraction and angular analysis of $\Lambda_b^0 \to \Lambda\mu^+\mu^-$ decays,” JHEP 06 (2015) 115, arXiv:1503.07138 [hep-ex]. [Erratum: JHEP09,145(2018)].

[23] LHCb Collaboration, R. Aaij et al., “Angular moments of the decay $\Lambda_b^0 \to \Lambda\mu^+\mu^-$ at low hadronic recoil,” JHEP 09 (2018) 146, arXiv:1808.00264 [hep-ex].

[24] LHCb Collaboration, R. Aaij et al., “First Observation of the Radiative Decay $\Lambda_b^0 \to \Lambda\gamma$,” Phys. Rev. Lett. 123 no. 3, (2019) 031801, arXiv:1904.06697 [hep-ex].

[25] W. Detmold and S. Meinel, “$\Lambda_b \to \Lambda\ell^+\ell^-$ form factors, differential branching fraction, and angular observables from lattice QCD with relativistic b quarks,” Phys. Rev. D93 no. 7, (2016) 074501, arXiv:1602.01399 [hep-lat].

[26] LHCb Collaboration, R. Aaij et al., “Observation of the decay $\Lambda_b^0 \to pK^-\mu^+\mu^-$ and a search for CP violation,” JHEP 06 (2017) 108, arXiv:1703.00256 [hep-ex].

[27] LHCb Collaboration, R. Aaij et al., “Test of lepton universality with $\Lambda_b^0 \to pK^-\ell^+\ell^-$ decays,” JHEP 05 (2020) 040, arXiv:1912.08139 [hep-ex].

[28] LHCb Collaboration, R. Aaij et al., “Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \to J/\psi K^-\mu^+\mu^-$ Decays,” Phys. Rev. Lett. 115 (2015) 072001, arXiv:1507.03414 [hep-ex].

[29] Particle Data Group Collaboration, M. Tanabashi et al., “Review of Particle Physics,” Phys. Rev. D98 no. 3, (2018) 030001.

[30] L. Mott and W. Roberts, “Rare dileptonic decays of Λ_b in a quark model,” Int. J. Mod. Phys. A27 (2012) 1250016, arXiv:1108.6129 [nucl-th].

[31] Y. Amhis, S. Descotes-Genon, C. Marin Benito, M. Novoan Brunet, and M.-H. Schune, “Prospects for New Physics searches with $\Lambda_b \to \Lambda(1520)\ell^+\ell^-$ decays,” arXiv:2005.09602 [hep-ph].

[32] J. Albrecht, Y. Amhis, A. Beck, and C. Marin Benito, “Towards an amplitude analysis of the decay $\Lambda_b^0 \to pK^-\gamma$,” JHEP 06 (2020) 116, arXiv:2002.02692 [hep-ph].

[33] K. Mervin, W. Roberts, and S. Capstick, “Semileptonic decays of heavy Λ baryons in a quark model,” Phys. Rev. C72 (2005) 035201, arXiv:nucl-th/0503030 [nucl-th].

[34] S. Meinel and G. Rendon, “Lattice QCD calculation of form factors for $\Lambda_b \to \Lambda(1520)\ell^+\ell^-$ decays,” PoS LATTICE2016 (2016) 299, arXiv:1608.08110 [hep-lat].

[35] A. K. Leibovich and I. W. Stewart, “Semileptonic Λ_b decay to excited Λ baryons at order Λ_{QCD}/m_Q,” Phys. Rev. D57 (1998) 5620–5631, arXiv:hep-ph/9711257 [hep-ph].

[36] P. Bör, M. Bordone, E. Graverini, P. Owen, M. Rotondo, and D. Van Dyk, “Testing lepton flavour universality in semileptonic $\Lambda_b \to \Lambda_c$ decays,” JHEP 06 (2018) 155, arXiv:1801.08367 [hep-ph].

[37] RBC, UKQCD Collaboration, Y. Aoki et al., “Continuum Limit Physics from 2+1 Flavor Domain Wall QCD,” Phys. Rev. D83 (2011) 074508, arXiv:1011.0892 [hep-lat].

[38] RBC, UKQCD Collaboration, T. Blum et al., “Domain wall QCD with physical quark masses,” Phys. Rev. D93 no. 7, (2016) 074505, arXiv:1411.7017 [hep-lat].

[39] D. B. Kaplan, “A Method for simulating chiral fermions on the lattice,” Phys. Lett. B288 (1992) 342–347, arXiv:hep-lat/9206013 [hep-lat].

[40] V. Furman and Y. Shamir, “Axial symmetries in lattice QCD with Kaplan fermions,” Nucl. Phys. B439 (1995) 54–78, arXiv:hep-lat/9405004 [hep-lat].

[41] Y. Shamir, “Chiral fermions from lattice boundaries,” Nucl. Phys. B406 (1993) 90–106, arXiv:hep-lat/9303005 [hep-lat].

[42] Y. Iwasaki and T. Yoshibe, “Renormalization Group Improved Action for SU(3) Lattice Gauge Theory and the String Tension,” Phys. Lett. B143B (1984) 449–452.

[43] RBC, UKQCD Collaboration, Y. Aoki, N. H. Christ, J. M. Flynn, T. Izubuchi, C. Lehner, M. Li, H. Peng, A. Soni, R. S. Van de Water, and O. Witte, “Nonperturbative tuning of an improved relativistic heavy-quark action with application to bottom spectroscopy,” Phys. Rev. D86 (2012) 116003, arXiv:1206.2554 [hep-lat].
