Lelek’s problem is not a metric problem

Conspici Quam Prodesse

K. P. Hart

Math & Stat
Miami University

Madison, 3 April, 2009: 14:50–15:10
Lelek’s problem is not a metric problem
Two Notions

1. Two Notions

2. The Problem

3. The conversion

4. A better reflection

5. Sources

K. P. Hart

Lelek’s problem is not a metric problem
Chainability

Definition

A continuum, X, is **chainable** if every (finite) open cover \mathcal{U} has an open chain-refinement \mathcal{V}, i.e.,

$\{V_i : i < n\}$ such that $V_i \cap V_j \neq \emptyset$ iff $|i - j| \leq 1$.

$[0, 1]$ is chainable; the circle S^1 is not.
A continuum, X, is chainable if every (finite) open cover \mathcal{U} has an open chain-refinement \mathcal{V}, i.e., \mathcal{V} can be written as $\{V_i : i < n\}$ such that $V_i \cap V_j \neq \emptyset$ iff $|i - j| \leq 1$.

$[0, 1]$ is chainable; the circle S^1 is not.
A continuum, X, is **chainable** if every (finite) open cover \mathcal{U} has an open chain-refinement \mathcal{V}, i.e., \mathcal{V} can be written as $\{V_i : i < n\}$ such that $V_i \cap V_j \neq \emptyset$ iff $|i - j| \leq 1$.

$[0, 1]$ is chainable; the circle S^1 is not.
Span zero

Definition

A continuum, X, has **span zero** if every subcontinuum Z of $X \times X$ that satisfies yyy intersects the diagonal $\{\langle x, x \rangle : x \in X\}$.
Span zero

Definition

A continuum, X, has **span zero** if every subcontinuum Z of $X \times X$ that satisfies yyy intersects the diagonal $\{\langle x, x \rangle : x \in X\}$.

$$\text{xxx}$$ $$\text{yyy}$$
Span zero

Definition

A continuum, X, has **span zero** if every subcontinuum Z of $X \times X$ that satisfies yyy intersects the diagonal $\{\langle x, x \rangle : x \in X\}$.

$$\langle x, x \rangle \subseteq \pi_1[Z] \subseteq \pi_2[Z]$$

Lelek’s problem is not a metric problem
Two Notions
The Problem
The conversion
A better reflection
Sources

Span zero

Definition
A continuum, \(X \), has \textbf{span zero} if every subcontinuum \(Z \) of \(X \times X \) that satisfies \textbf{yyy} intersects the diagonal \(\{ \langle x, x \rangle : x \in X \} \).

\[
\begin{align*}
\text{xxx} & \quad \text{yyy} \\
\ldots & \quad \pi_1[Z] = \pi_2[Z] \\
\text{semi} & \quad \pi_1[Z] \subseteq \pi_2[Z]
\end{align*}
\]
Span zero

Definition

A continuum, X, has **span zero** if every subcontinuum Z of $X \times X$ that satisfies y intersects the diagonal $\{\langle x, x \rangle : x \in X \}$.

| $\pi_1[Z]$ | $\pi_2[Z]$ | $\pi_1[Z] \subseteq \pi_2[Z]$ |
| $\pi_1[Z]$ | $\pi_2[Z]$ | $\pi_1[Z] = \pi_2[Z] = X$ |
Span zero

Definition

A continuum, X, has **span zero** if every subcontinuum Z of $X \times X$ that satisfies \ldots intersects the diagonal $\{\langle x, x \rangle : x \in X\}$.

xxx	yyy
\ldots	$\pi_1[Z] = \pi_2[Z]$
semi	$\pi_1[Z] \subseteq \pi_2[Z]$
surjective	$\pi_1[Z] = \pi_2[Z] = X$
surjective semi	$\pi_2[Z] = X$

K. P. Hart

Lelek’s problem is not a metric problem
Span zero

Definition

A continuum, X, has **span zero** if every subcontinuum Z of $X \times X$ that satisfies yyy intersects the diagonal $\{\langle x, x \rangle : x \in X\}$.

- \ldots
- **semi**
- **surjective**
- **surjective semi**

$$\pi_1[Z] = \pi_2[Z]$$

$$\pi_1[Z] \subseteq \pi_2[Z]$$

$$\pi_1[Z] = \pi_2[Z] = X$$

$$\pi_2[Z] = X$$

$[0, 1]$ has all spans zero, S^1 has all spans non-zero
Lelek’s problem is not a metric problem
The problem

Theorem

In a chainable continuum all spans are zero.
The problem

Theorem

In a chainable continuum all spans are zero.

Question (Lelek)

What about the converse?
The problem

Theorem

In a chainable continuum all spans are zero.

Question (Lelek)

What about the converse?

This is an important problem in metric continuum theory.
The Problem

Theorem

In a chainable continuum all spans are zero.

Question (Lelek)

What about the converse?

This is an important problem in metric continuum theory. We free it from the metric constraints.
Two Notions
The Problem
The conversion
A better reflection
Sources

Lelek’s problem is not a metric problem
Given a distributive, separative and normal lattice L there is a compact Hausdorff space wL with a base for its closed sets that is isomorphic to L.
A useful tool

Given a distributive, separative and normal lattice L there is a compact Hausdorff space wL with a base for its closed sets that is isomorphic to L. wL is the Wallman space of L.
Given a distributive, separative and normal lattice L there is a compact Hausdorff space wL with a base for its closed sets that is isomorphic to L. wL is the Wallman space of L.

Many properties of a space X are first-order when expressed in terms of 2^X, its lattice of (all) closed sets.
Given a distributive, separative and normal lattice L there is a compact Hausdorff space wL with a base for its closed sets that is isomorphic to L. wL is the Wallman space of L.

Many properties of a space X are first-order when expressed in terms of 2^X, its lattice of (all) closed sets.

Quite often, in the case of wL, it suffices to work in L only.
Reflection

Theorem

Any counterexample to Lelek’s problem can be converted into a metrizable counterexample.
Theorem

Any counterexample to Lelek’s problem can be converted into a metrizable counterexample.

Proof.

Let X be a counterexample, let $L \prec 2^X$ (an elementary sublattice).
Theorem

Any counterexample to Lelek’s problem can be converted into a metrizable counterexample.

Proof.

Let X be a counterexample, let $L \prec 2^X$ (an elementary sublattice). Then wL is a metrizable counterexample.
Any counterexample to Lelek’s problem can be converted into a metrizable counterexample.

Proof.

Let X be a counterexample, let $L \prec 2^X$ (an elementary sublattice). Then wL is a metrizable counterexample.

Not quite
(Non-)chainability is not a first-order property of the lattice 2^X.
(Non-)chainability is not a first-order property of the lattice 2^X. Their natural formulations are $L_{\omega_1,\omega}$-formulas.
(Non-)chainability is not a first-order property of the lattice 2^X. Their natural formulations are $L_{\omega_1,\omega}$-formulas.

Chainability:

$$(\forall u_1)(\forall u_2)(\forall u_3)(\forall u_4)$$

$$((u_1 \cup u_2 \cup u_3 \cup u_4 = X) \rightarrow \bigvee_{n \in \omega} \Phi_n(u_1, u_2, u_3, u_4))$$

where $\Phi_n(u_1, u_2, u_3, u_4)$ expresses that $\{u_1, u_2, u_3, u_4\}$ has an n-element chain refinement. It suffices to consider four-element open covers only.
Complications

(Non-)chainability is not a first-order property of the lattice 2^X. Their natural formulations are $L_{\omega_1,\omega}$-formulas.

Chainability:

$$(\forall u_1)(\forall u_2)(\forall u_3)(\forall u_4)$$

$$((u_1 \cup u_2 \cup u_3 \cup u_4 = X) \rightarrow \bigvee_{n \in \omega} \Phi_n(u_1, u_2, u_3, u_4))$$

where $\Phi_n(u_1, u_2, u_3, u_4)$ expresses that $\{u_1, u_2, u_3, u_4\}$ has an n-element chain refinement.
(Non-)chainability is not a first-order property of the lattice 2^X. Their natural formulations are $L_{\omega_1,\omega}$-formulas.

Chainability:

$$(\forall u_1)(\forall u_2)(\forall u_3)(\forall u_4)
(\big((u_1 \cup u_2 \cup u_3 \cup u_4 = X) \rightarrow \bigvee_{n \in \omega} \Phi_n(u_1, u_2, u_3, u_4)\big))$$

where $\Phi_n(u_1, u_2, u_3, u_4)$ expresses that $\{u_1, u_2, u_3, u_4\}$ has an n-element chain refinement.

It suffices to consider four-element open covers only.
Another complication

We have no decent formula, $L_{\omega_1,\omega}$ or otherwise, that describes in terms of 2^X that X has span (non-)zero.
Outline

1 Two Notions
2 The Problem
3 The conversion
4 A better reflection
5 Sources

K. P. Hart

Lelek’s problem is not a metric problem
Solution: Use Set Theory

Let θ be ‘suitably large’ and let $M \prec H(\theta)$ be a countable elementary substructure
Solution: Use Set Theory

Let θ be ‘suitably large’ and let $M \prec H(\theta)$ be a countable elementary substructure and let $L = M \cap 2^X$.

Theorem

In this situation:

- wL is chainable iff X is chainable
- wL has span zero iff X has span zero (any kind)
Let θ be ‘suitably large’ and let $M \prec H(\theta)$ be a countable elementary substructure and let $L = M \cap 2^X$.

Theorem

In this situation:

1. w_L is chainable iff X is chainable
2. w_L has span zero iff X has span zero (any kind)

K. P. Hart

Lelek’s problem is not a metric problem
Solution: Use Set Theory

Let θ be ‘suitably large’ and let $M \prec H(\theta)$ be a countable elementary substructure and let $L = M \cap 2^X$.

Theorem

In this situation:

- wL is chainable iff X is chainable
Let \(\theta \) be ‘suitably large’ and let \(M \preceq H(\theta) \) be a countable elementary substructure and let \(L = M \cap 2^X \).

Theorem

In this situation:

- \(wL \text{ is chainable iff } X \text{ is chainable} \)
- \(wL \text{ has span zero iff } X \text{ has span zero (any kind)} \)

K. P. Hart

Lelek’s problem is not a metric problem
Chainability is now first-order; we can quantify over the finite subsets of 2^X and finite ordinals.
Proof for Chainability

Chainability is now first-order; we can quantify over the finite subsets of 2^X and finite ordinals.

Furthermore, one needs only consider covers and refinements that belong to a certain base.
Key observation: let $K = M \cap 2^{X \times X}$, then $wK = wL \times wL$.
Key observation: let $K = M \cap 2^{X \times X}$, then $wK = wL \times wL$.

This gives the easy part: if there is a ‘bad’ continuum in $X \times X$ then there is one in M and it is equally bad in $wL \times wL$.
Key observation: let \(K = M \cap 2^{X \times X} \), then \(wK = wL \times wL \).

This gives the easy part: if there is a ‘bad’ continuum in \(X \times X \) then there is one in \(M \) and it is equally bad in \(wL \times wL \).

For the converse . . .
Span zero, continued

... if \(Z \subseteq wL \times wL \) is ‘bad’ then there is an equally bad continuum in \(X \times X \) that maps onto \(Z \).
... if $Z \subseteq wL \times wL$ is ‘bad’ then there is an equally bad continuum in $X \times X$ that maps onto Z.

Easier said than constructed
... if $Z \subseteq wL \times wL$ is ‘bad’ then there is an equally bad continuum in $X \times X$ that maps onto Z.

Easier said than constructed: the difficulty lies in the fact that K is not (necessarily) an elementary substructure of 2^{wK}.
Apply Shelah’s Ultrapower theorem
Apply Shelah’s Ultrapower theorem: take a cardinal κ, an ultrafilter u on κ and an isomorphism $h : \prod_u (2^X \times X) \to \prod_u wK$ (which can be taken to be the identity on K).
Apply Shelah’s Ultrapower theorem: take a cardinal κ, an ultrafilter u on κ and an isomorphism $h: \prod_u (2^X \times X) \to \prod_u wK$ (which can be taken to be the identity on K).

How does that help?
Apply Shelah’s Ultrapower theorem: take a cardinal κ, an ultrafilter u on κ and an isomorphism $h : \prod_u (2^X \times X) \to \prod_u wK$ (which can be taken to be the identity on K).

How does that help?

For that we need some topology.
Take a compact Hausdorff space Y with a lattice base B. Also take a cardinal κ and an ultrafilter u on κ.

Duality problem

The Wallman space of the ultrapower $\prod u B$ is the fiber $p^\leftarrow \kappa (u)$. Bankston calls this the ultracopower of Y; we write Y_u.

K. P. Hart

Lelek's problem is not a metric problem
Dualizing ultrapowers

Take a compact Hausdorff space Y with a lattice base B. Also take a cardinal κ and an ultrafilter u on κ.

Consider $\beta(\kappa \times Y)$. We have two maps
Dualizing ultrapowers

Take a compact Hausdorff space Y with a lattice base B. Also take a cardinal κ and an ultrafilter u on κ.

Consider $\beta(\kappa \times Y)$. We have two maps

- $p_\kappa : \beta(\kappa \times Y) \to \beta_\kappa$ (the extension of $\langle \alpha, y \rangle \mapsto \alpha$).
Take a compact Hausdorff space Y with a lattice base B. Also take a cardinal κ and an ultrafilter u on κ.

Consider $\beta(\kappa \times Y)$. We have two maps

- $p_\kappa : \beta(\kappa \times Y) \to \beta\kappa$ (the extension of $\langle \alpha, y \rangle \mapsto \alpha$).
- $p_Y : \beta(\kappa \times Y) \to \beta\kappa$ (the extension of $\langle \alpha, y \rangle \mapsto y$).
Take a compact Hausdorff space Y with a lattice base B. Also take a cardinal κ and an ultrafilter u on κ.

Consider $\beta(\kappa \times Y)$. We have two maps

- $p_\kappa : \beta(\kappa \times Y) \to \beta\kappa$ (the extension of $\langle \alpha, y \rangle \mapsto \alpha$).
- $p_Y : \beta(\kappa \times Y) \to \beta\kappa$ (the extension of $\langle \alpha, y \rangle \mapsto y$).

The Wallman space of the ultrapower $\prod_u B$ is the fiber $p_\kappa^\leftarrow(u)$.
Dualizing ultrapowers

Take a compact Hausdorff space Y with a lattice base B. Also take a cardinal κ and an ultrafilter u on κ.

Consider $\beta(\kappa \times Y)$. We have two maps

- $p_\kappa : \beta(\kappa \times Y) \to \beta\kappa$ (the extension of $\langle \alpha, y \rangle \mapsto \alpha$).
- $p_Y : \beta(\kappa \times Y) \to \beta\kappa$ (the extension of $\langle \alpha, y \rangle \mapsto y$).

The Wallman space of the ultrapower $\prod_u B$ is the fiber $p_{\kappa_u}^{-1}(u)$. Bankston calls this the ultracopower of Y; we write Y_u.
Back to $Z \subseteq wK$.

Lelek’s problem is not a metric problem.
Span zero, the real argument

Back to $Z \subseteq wK$.

- Let $Z_u = \text{cl}(\kappa \times Z) \cap p^{-1}_\kappa(u)$.
Span zero, the real argument

Back to $Z \subseteq wK$.

- Let $Z_u = \operatorname{cl}(\kappa \times Z) \cap p_\kappa^{-1}(u)$.
- Z_u is a continuum
Back to $Z \subseteq wK$.

- Let $Z_u = \text{cl}(\kappa \times Z) \cap p_\kappa^{-1}(u)$.
- Z_u is a continuum
- $\text{wh}[Z_u]$ is a continuum in $(X \times X)_u$ (wh is dual to h).
Back to $Z \subseteq wK$.

- Let $Z_u = \text{cl}(\kappa \times Z) \cap p_{\kappa}^{-1}(u)$.
- Z_u is a continuum
- $wh[Z_u]$ is a continuum in $(X \times X)_u$ (wh is dual to h).
- $Z_X = p_{X \times X}[wh[Z_u]]$ is a continuum in $X \times X$.

Lelek’s problem is not a metric problem.
Back to $Z \subseteq wK$.

- Let $Z_u = \text{cl}(\kappa \times Z) \cap p_\kappa^\leftarrow (u)$.
- Z_u is a continuum
- $wh[Z_u]$ is a continuum in $(X \times X)_u$ (wh is dual to h).
- $Z_X = p_{X \times X}[wh[Z_u]]$ is a continuum in $X \times X$.
- And

\[
q_K[Z_X] = q_K[p_{X \times X}[wh[Z_u]]] = p_{wK} [(wh)^{-1}[wh[Z_u]]] = Z
\]
Span zero, the real argument

Back to $Z \subseteq wK$.

- Let $Z_u = \text{cl}(\kappa \times Z) \cap p_\kappa^-(u)$.
- Z_u is a continuum
- $wh[Z_u]$ is a continuum in $(X \times X)_u$ (wh is dual to h).
- $Z_X = p_{X \times X}[wh[Z_u]]$ is a continuum in $X \times X$.
- And

$$q_K[Z_X] = q_K[p_{X \times X}[wh[Z_u]]] = p_{wK}[(wh)^{-1}[wh[Z_u]]] = Z$$

So, that’s it!?
Back to $Z \subseteq wK$.

- Let $Z_u = \text{cl}(\kappa \times Z) \cap p_\kappa^{-1}(u)$.
- Z_u is a continuum
- $wh[Z_u]$ is a continuum in $(X \times X)_u$ (wh is dual to h).
- $Z_X = p_{X \times X}[wh[Z_u]]$ is a continuum in $X \times X$.
- And

$$q_K[Z_X] = q_K[p_{X \times X}[wh[Z_u]]] = p_{wK}[(wh)^{-1}[wh[Z_u]]] = Z$$

So, that’s it!? Almost.
First expand the language of lattice with two function symbols π_1 and π_2.
First expand the language of lattice with two function symbols \(\pi_1 \) and \(\pi_2 \).

Apply Shelah’s theorem with this extended language. Then \(Z_X \) will inherit the mapping properties that \(Z \) has.
First expand the language of lattice with two function symbols π_1 and π_2.

Apply Shelah’s theorem with this extended language. Then Z_X will inherit the mapping properties that Z has.

Finally then: if X is a non-chainable continuum that has span zero (of one of the four kinds) than so is wL.
Comment from Piotr Minc

Lelek’s problem *is* a metric problem.
Outline

1. Two Notions
2. The Problem
3. The conversion
4. A better reflection
5. Sources

K. P. Hart

Lelek’s problem is not a metric problem
Website: fa.its.tudelft.nl/~hart

D. Bartošová, K. P. Hart, B. van der Steeg,

Lelek’s problem is not a metric problem, to appear.