VIEWS ON LEVEL ℓ CURVES, K3 SURFACES AND FANO THREEFOLDS

ALICE GARBAGNATI AND ALESSANDRO VERRA

Abstract. An analogue of the Mukai map $m_g : \mathcal{P}_g \to \mathcal{M}_g$ is studied for the moduli $\mathcal{R}_{g,\ell}$ of genus g curves C with a level ℓ structure. Let $\mathcal{P}^\perp_{g,\ell}$ be the moduli space of 4-tuples $(S,\mathcal{L},C)\subset S$ so that (S,\mathcal{L}) is a polarized K3 surface of genus g, \mathcal{E} is orthogonal to \mathcal{L} in $\text{Pic}(S)$ and defines a standard degree ℓ K3 cyclic cover of S, $C\subset |\mathcal{L}|$. We say that $(S,\mathcal{L},\mathcal{E})$ is a level ℓ K3 surface. These exist for $\ell \leq 8$ and their families are known. We define a level ℓ Mukai map $r_{g,\ell} : \mathcal{P}^\perp_{g,\ell} \to \mathcal{R}_{g,\ell}$, induced by the assignment of $(S,\mathcal{L},\mathcal{E},C)$ to $(C,\mathcal{E}\otimes \mathcal{O}_C)$. We investigate a curious possible analogy between m_g and $r_{g,\ell}$, that is, the failure of the maximal rank of $r_{g,\ell}$ for $g = g_\ell \pm 1$, where g_ℓ is the value of g such that $\dim \mathcal{R}^\perp_{g,\ell} = \dim \mathcal{R}_{g,\ell}$. This is proven here for $\ell = 3$. As a related open problem we discuss Fano threefolds whose hyperplane sections are level ℓ K3 surfaces and their classification.

1. Introduction

Our aim is to convince the reader, showing a program and new results, of the interest represented by some complex projective varieties whose curvilinear sections are canonical curves C of genus g, endowed with a distinguished nonzero ℓ-torsion element $\eta \in \text{Pic}(C)$. Often one says that (C,η) is a level ℓ curve of genus g, cfr. [7]. Fixing (g,ℓ) the moduli space of these pairs is integral, quasi projective and denoted by $\mathcal{R}_{g,\ell}$.

To enter further in the matter let us mention two other names from the title: K3 surface and Fano threefold. The K3 surfaces S we consider are very special: they admit a non split cyclic cover of degree ℓ, still birational to a K3 surface. This is defined by a line bundle $\mathcal{O}_S(\mathcal{E}) := \mathcal{E}$ such that $h^0(\mathcal{O}_S(\ell\mathcal{E})) = 1$ and $h^0(\mathcal{O}_S(m\mathcal{E})) = 0$ for $m < \ell$. The study of these surfaces stems from Nikulin’s classification of K3 surfaces with an order ℓ symplectic automorphism and the classification implies $\ell \leq 8$, [22]. Since then several foundational results, in use here, did follow, cfr. [13] [14] [15] [16] [28].

Now let $\mathcal{L} \subset \text{Pic}(S)$ be a genus g polarization orthogonal to \mathcal{E}. Let $\eta := \mathcal{O}_C(\mathcal{E})$, where $C \subset |\mathcal{L}|$ is smooth, then it turns out that (C,η) is a level ℓ curve. We say that the triple $(S,\mathcal{L},\mathcal{E})$ is a level ℓ K3 surface of genus g, see definition [31] for some precision. Fixing ℓ the moduli of these triples are reducible for infinitely many values of g. However a distinguished irreducible component exists for every g, namely the moduli space of triples $(S,\mathcal{L},\mathcal{E})$ such that $\text{Pic}(S)$ is the sum of $\mathbb{Z}\mathcal{L}$ and its orthogonal lattice. We denote it by

$$\mathcal{F}^\perp_{g,\ell}.$$

Finally we come to the moduli space $\mathcal{P}^\perp_{g,\ell}$ of 4-tuples $(S,\mathcal{L},C)\subset S$ such that $C \subset |\mathcal{L}|$ and $(S,\mathcal{L},\mathcal{E})$ defines a point in $\mathcal{F}^\perp_{g,\ell}$. Such a space is strictly related with the first topic considered in our paper.

To introduce it let us define the level ℓ Mukai map. This is the rational map

$$r_{g,\ell} : \mathcal{P}^\perp_{g,\ell} \to \mathcal{R}_{g,\ell},$$

assigning the moduli point of the 4-tuple $(S,\mathcal{L},\mathcal{E},C)$ to the moduli point of the pair (C,η), where η is $\mathcal{O}_C(\mathcal{E})$. Let \mathcal{P}_g be the moduli space of triples (S,\mathcal{L},C), where (S,\mathcal{L}) is a polarized K3 surface of genus g and $C \subset |\mathcal{L}|$, then the previous name is motivated by the well known Mukai map

$$m_g : \mathcal{P}_g \to \mathcal{M}_g,$$

assigning the moduli point of the triple (S,\mathcal{L},C) to the moduli point of the curve C. Some famous connections between canonical curves of genus g, K3 surfaces and Fano threefolds are well represented by m_g and, in particular, by a curious variation of its rank. We recall that a rational map $f : X \to Y$ of integral varieties has maximal rank if $\dim f(X) = \min\{\dim X, \dim Y\}$.

This work was partially supported by INdAM-GNSAGA and by the project PRIN-2017 ’Moduli Theory and Birational Classification’.
Considering m_g we recall that $\dim \mathcal{P}_g = 19 + g$ and $\dim \mathcal{M}_g = 3g - 3$, therefore $\dim \mathcal{P}_g = \dim \mathcal{M}_g$ iff $g = 11$. Now m_{11} is birational but, curiously, m_g fails to be of maximal rank precisely before and after this transition value, that is, for $g = 11 \pm 1$. For the rest m_g is dominant for $g \leq 9$ and generically injective for $g \geq 13$. As is well known this anomaly is due to the presence behind the scene of some Fano varieties, whose curvilinear sections are general canonical curves of genus 11 ± 1, cf. [8, 23, 24, 25].

A task of this paper is to point out the same possible anomalies for the level ℓ Mukai maps $r_{g,\ell}$. The case $\ell = 2$ has already been done and it is an experimental origin to this work. If $\ell = 2$ we have $\dim \mathcal{P}_{g,2} = \dim \mathcal{R}_{g,2}$ for $g = 7$. Then $r_{g,2}$ fails to be of maximal rank for $g = 7 \pm 1$ and is birational for $g = 7$, [11, 19, 26]. The 'Fano varieties behind the scene' for $g = 8$ and $g = 6$ are addressed or revisited in section 7.

In section 5 we summarize the question for each ℓ. Let g_ℓ be the unique value of g such that $\dim \mathcal{P}_{g,\ell} = \dim \mathcal{R}_{g,\ell}$, for $l = 2$, 3, 4, 5, 6, 7, 8 we respectively have:

\begin{equation}
(4)
 g_\ell = 7, 5, 4, 3, 2, 2, 2.
\end{equation}

In this paper we present the following theorem, solving the question for $\ell = 3$.

Theorem 1.1. Let $r_{g,3} : \mathcal{P}^+_{g,3} \to \mathcal{R}_{g,3}$ be the level 3 Mukai map then:

1. $r_{4,3}$ has not maximal rank,
2. $r_{5,3}$ is birational,
3. $r_{6,3}$ has not maximal rank.

The image of $r_{4,3}$ is contained in a divisor of $\mathcal{R}_{4,3}$, parametrizing pairs (C, η) such that the multiplication map $\mu : H^0(\omega_C \otimes \eta) \otimes H^0(\omega_C \otimes \eta^{-1}) \to H^0(\omega_C^2)$ is not an isomorphism. This case seems interestingly related to the G_2-variety, see [23] and section 7.

The proof of (3) is sketched here and it will appear elsewhere. The image of $r_{6,3}$ parametrizes pairs (C, η), where C is a curvilinear section of a suitable Gushel-Mukai threefold singular along a rational normal sextic curve, see section 7.

Let $(S, \mathcal{L}, \mathcal{E})$ be a level ℓ K3 surface of genus g and $\phi : S \to \mathbb{P}^g$ the morphism defined by \mathcal{L}, we assume for simplicity that ϕ is birational onto $\mathfrak{S} := \phi(S)$. Then we close this introduction with few lines addressing the classification of Fano threefolds

$$
\mathfrak{X} \subset \mathbb{P}^{g+1}
$$

whose general hyperplane sections are projective models \mathfrak{X} as above. The problem sounds similar to that of classifying threefolds $T \subset \mathbb{P}^g$ whose hyperplane sections are Enriques surfaces, that is, Enriques-Fano threefolds. It seems however quite neglected.

Some examples of threefolds \mathfrak{X} appear in this paper, most are normal and $\text{Sing} \mathfrak{X}$ is a curve. Moreover \mathfrak{X} admits a cyclic cover $\pi : \tilde{X} \to \mathfrak{X}$, branched exactly on $\text{Sing} \mathfrak{X}$. A basic notion of level ℓ polarized projective variety $(X, \mathcal{L}, \mathcal{E})$ is introduced in the next section, since it is useful in the cases we want to consider.

We wish to thank the referee for the careful reading and the useful advice.

ACKNOWLEDGEMENT

We are happy of contributing to this volume, celebrating Professor Fabrizio Catanese on the occasion of his Seventies. Let us wish to him abundance in mathematics and life as always.

2. **Some preliminaries**

In what follows X is a smooth, irreducible complex projective variety and \mathcal{L} is a big and nef line bundle on X, we say that (X, \mathcal{L}) is a polarized projective variety. On the other hand we are interested, along this paper, in some families of cyclic coverings

\begin{equation}
(5)
 \pi : \tilde{X} \to X.
\end{equation}

Then we fix our conventions about, [10, 21] I p.242. By definition π is a finite morphism of degree $\ell \geq 2$ and it is the quotient map of the action of an automorphism of order ℓ of \tilde{X}. We assume that \tilde{X} is normal, up to composing π with the normalization map. Hence \tilde{X} is reduced with irreducible
connected components. Starting from \(\pi \), we briefly review the recipe for its construction. Notice that \(\pi_* \mathcal{O}_X \cong \mathcal{A} \), where

\[
\mathcal{A} = \mathcal{O}_X \oplus \mathcal{E}^{-1} \oplus \cdots \oplus \mathcal{E}^{-l+1}
\]

and \(\mathcal{E} \in \text{Pic } X \). Assume \(\tilde{X} \) is connected and hence irreducible. Then \(\pi \) defines the field extension \(\pi^*: k(X) \to k(\tilde{X}) \) and its trace map induces the exact sequence

\[
0 \to \mathcal{E}^{-l} \to \mathcal{O}_X \to \mathcal{O}_B \to 0,
\]

for some \(s \in H^0(\mathcal{E}^l) \). The multiplication by \(s \) defines a structure of \(\mathcal{O}_X \)-Algebra on \(\mathcal{A} \). We have \(\tilde{X} = \text{Spec } \mathcal{A} \), moreover \(\pi \) factors through the projection \(u: \mathbb{P}(\mathcal{A}) \to X \). The branch divisor of \(\pi \) is \(\text{div}(s) \) and will be denoted by \(B \). For \(B \) we fix the notation

\[
B = m_1 B_1 + \cdots + m_r B_r,
\]

where \(B_1, \ldots, B_r \) are prime divisors. Conversely, a pair \((\mathcal{E}, B)\) such that \(B \in |\mathcal{E}^l| \) defines on \(X \) an \(\mathcal{O}_X \)-Algebra structure as above and a cyclic cover \(\pi \). Notice that the condition \(g.c.d.(\ell, m_1, \ldots, m_r) = 1 \) implies the irreducibility of \(\tilde{X} \).

Now let \(C \) be a reduced curve and \(\eta \in \text{Pic } C \) a nontrivial \(\ell \)-torsion element. Then \((C, \eta)\) uniquely defines, using a nonzero vector \(s \in H^0(\eta^l) \), a nonramified cyclic cover

\[
\pi: \tilde{C} \to C,
\]

which is nontrivial. To give a pair \((C, \pi)\) is equivalent to give a singular level \(\ell \) curve \((C, \eta)\). Now recall that a curve \(C \subset X \) is mobile if moves in an irreducible algebraic family covering \(X \), with integral general member. In the Neron-Severi group \(N_1(X) \otimes \mathbb{R} \) the mobile classes of such curves generate an important convex cone, [3] 1.3 (vi), [21] II p. 307. Finally we introduce the following definition.

Definition 2.1. Let \(\mathcal{E} \in \text{Pic } X \), the pair \((X, \mathcal{E})\) is a level \(\ell \) structure on \(X \) if:

- \(|\mathcal{E}^l| \neq \emptyset \) and a general \(B \in |\mathcal{E}^l| \) defines an integral cyclic cover,
- there exists a mobile curve \(C \) in \(X \) such that \(CB = 0 \).

Assume \(\dim X = 1 \) then \(X \) is the smooth, integral curve \(C \) and \(\mathcal{E} \) is a line bundle of degree \(0 \) such that \(\mathcal{E}^l \cong \mathcal{O}_C \). Moreover we are assuming that the cover \(\pi: \tilde{C} \to C \) defined by \(\mathcal{E} \) is integral. Hence \(\mathcal{E} \) is a nontrivial \(\ell \)-torsion element. Then, for curves, the definition is the traditional one. In higher dimension the next property is clear.

Proposition 2.1. Let \((X, \mathcal{E})\) be a level \(\ell \) structure on \(X \) and \(C \subset X \) a mobile curve such that \(CE = 0 \), where \(\mathcal{O}_X(CE) \cong \mathcal{E} \). Then \(\mathcal{O}_C(CE) \) is an \(\ell \)-torsion element of \(\text{Pic } C \).

Proof. Consider \(D \in |\mathcal{E}^l| \). Since \(C \) is movable we can assume that \(C \) is not a component of \(D \). Then \(C \cap D \) is empty because \(CE = 0 \). This implies that \(\mathcal{E}^l \otimes \mathcal{O}_C \cong \mathcal{O}_C(CE) \cong \mathcal{O}_C \). \(\square \)

Remark 2.1. Nevertheless we may have a trivial \(\mathcal{O}_C(CE) \) even when \(\mathcal{E} \) is not, and even generically when \(C \) moves in its family. This is obvious if \(C \) is smooth and rational. Furthermore consider a curve \(F \) and the projection \(p: F \times X \to X \). Then \((F \times X, p^*\mathcal{E})\) is a level \(\ell \)-structure on \(F \times X \) and \(p^*\mathcal{E} \) is trivial on the mobile curve \(p^*(x), x \in X \).

Then, to address the concrete topics of our paper, we turn to polarized pairs \((X, \mathcal{L})\) and we denote by \(d \) the dimension of \(X \). We assume that \(|\mathcal{L}^m| \) is globally generated for \(m >> 0 \) and observe that a general complete intersection of \(d - 1 \) elements of \(|\mathcal{L}^m| \) is a smooth, integral mobile curve, which moves in an irreducible family \(\mathcal{C}_m \) of transversal complete intersections in \(X \).

Proposition 2.2. Let \((X, \mathcal{L}, \mathcal{E})\) be as above. Assume \(CE = 0 \), where \(C \in \mathcal{C}_m \) and \(\mathcal{O}_X(CE) \cong \mathcal{E} \). Then \(\mathcal{O}_C(CE) \) is a nontrivial \(\ell \)-torsion element of \(\text{Pic } C \), moreover

\[
h^0(\mathcal{O}_X(kE)) = 0, \quad k \neq 0 \mod \ell.
\]

Proof. By induction on \(d = \dim X \). Let \(d = 1 \) then \(X = C \) and \(\{C\} = \mathcal{C}_m \). Since \(\mathcal{E} \) defines an integral cover, the statement follows. Let \(d \geq 2 \) and \(C = D_1 \cdots D_{d-1} \), where \(D_1, \ldots, D_{d-1} \in |\mathcal{L}^m| \), then a general \(D \) in the linear system generated by \(D_1 \cdots D_{d-1} \) is smooth. \(\mathcal{O}_D(D) \) is nef, big and globally generated. Let \(\pi: \tilde{X} \to X \) be the cyclic cover, branched on \(B \), we have, since \(C \) is mobile
and $CB = 0$ we can assume $C \cap B = \emptyset$. Now let $f : X \to \mathbb{P}^n$ be the morphism defined by $|D|$, then f is generically finite onto its image and the same is true for $f \circ \pi : \tilde{X} \to \mathbb{P}^n$. Then $\tilde{C} = \pi^{-1}(C)$ is connected by the connectedness theorem and $\mathcal{O}_C(E)$ is non trivial of ℓ-torsion in $\text{Pic} C$. Moreover $(D, \mathcal{O}_D(E))$ is a level ℓ structure and the second statement follows by induction on d. □

Keeping this notation we finally come to the following definition.

Definition 2.2. A level ℓ polarized variety is a triple $(X, \mathcal{L}, \mathcal{E})$ such that (X, \mathcal{E}) is a level structure on X and $C \mathcal{E} = 0$, where $C \in \mathcal{C}_m$.

Actually the triples $(X, \mathcal{L}, \mathcal{E})$ we will consider always satisfy the additional property:

$|\mathcal{L}|$ is base point free and defines a birational morphism onto its image

$$(9) \quad f : X \to \mathbb{P}^n.$$

Hence we assume $C = H_1 \cap \cdots \cap H_{d-1} \in \mathcal{C}_1$, where $H_1 \cdots H_{d-1} \in |f^*\mathcal{O}_{\mathbb{P}^n}(1)|$. So C shows the distinguished line bundles $\eta_C := \mathcal{E} \otimes \mathcal{O}_C$ and $\mathcal{L}_C := \mathcal{L} \otimes \mathcal{O}_C$ and these lead us to the varieties we are interested in. For these \mathcal{L}_C is the canonical sheaf ω_C. For the triples considered, we will also have that the restriction $r : H^0(\mathcal{L}) \to H^0(\omega_C)$ is surjective and that $X := f(X)$ is normal. So we are going to deal with projective varieties X whose curvilinear sections are canonical curves C, endowed with the étale cover defined by η_C. This includes K3 surfaces and Fano threefolds with a prescribed level ℓ structure.

3. LEVEL ℓ K3 SURFACES

We begin discussing the families of level ℓ polarized K3 surfaces $(S, \mathcal{L}, \mathcal{E})$ and the chances that $C \in |\mathcal{L}|$ be a curve with general moduli. We say that $C^2 = 2g - 2$ is the degree of (S, \mathcal{L}) and g its genus. As usual the moduli space of (S, \mathcal{L}) is denoted by

$$(10) \quad \mathcal{F}_g,$$

it is an integral quasi projective variety of dimension 19. Let $[S, \mathcal{L}] \in \mathcal{F}_g$ be a general point, we recall that then $\text{Pic} S \cong \mathbb{Z} \mathcal{L}$ and $|\mathcal{L}|$ defines an embedding

$$(11) \quad f : S \to \mathbb{P}^g$$

for $g \geq 3$. Coming to level ℓ structures $(S, \mathcal{L}, \mathcal{E})$, these properties are no longer satisfied, as we are going to recall. We fix our notation as follows, the map

$$(12) \quad \pi' : \tilde{S} \to S$$

is the covering morphism defined by \mathcal{E}. As already established its branch divisor is

$$B = m_1B_1 + \cdots + m_rB_r,$$

where B_1, \ldots, B_r are the irreducible components of $\text{Supp} B$. Of course, since $\text{Pic} S$ has no torsion, B is not zero. We fix the following convention:

- r is the number of irreducible components of $\text{Supp} B$,
- t is the number of its connected components.

Moreover we set

$$(13) \quad B_1 + \cdots + B_r = B_{\text{red}} = N_1 + \cdots + N_t,$$

where $N_1 \ldots N_t$ denote the connected components of $\text{Supp} B$. Notice that $CB_i = 0$ for $i = 1 \ldots r$. Indeed C is integral and $\text{dim} |C| \geq 1$ so that $CB_i \geq 0$. Since $B \in |\mathcal{E}|$ then $CB = 0$ and this implies $CB_i = 0$. Then, applying the Hodge Index Theorem, B_i is an integral curve on S with $B_i^2 < 0$. Hence $B_i^2 = -2$ and B_i is \mathbb{P}^1. The same argument applies to N_j which is a reduced connected curve of arithmetic genus 0. In particular each N_j is contracted by f to a quadratic singularity and $\text{Pic} S$ is not isomorphic to \mathbb{Z}.

It is not difficult to see that the Kodaira dimension of \tilde{S} is zero, moreover, with some elaboration, one has the following property, cfr. [15], [22].

Proposition 3.1. Either \tilde{S} is birational to a K3 surface or to an abelian surface.

Definition 3.1. Let $(S, \mathcal{L}, \mathcal{E})$ be a level ℓ K3 surface, we say that:
(1) (S, \mathcal{L}, E) is of K3 type if \tilde{S}' is birational to a K3 surface.
(2) (S, \mathcal{L}, E) is of abelian type if \tilde{S}' is birational to an abelian surface.

Case (2) is scarcely interesting for our purposes. We aim indeed to use the curves $C \in |\mathcal{L}|$ in order to parametrize the moduli space $\mathcal{R}_{g, \ell}$ of level ℓ curves in low genus. But in case (2) C has not enough moduli for $g \geq 3$.

We assume since now that (S, \mathcal{L}, E) is a level ℓ K3 surface of K3 type. Then, to ameliorate the exposition, we just say with some abuse that (S, \mathcal{L}, E) is a level ℓ K3 surface. We say that two triples $(S_n, \mathcal{L}_n, E_n)$, $(n = 1, 2)$, are isomorphic if there exists a birational map $\beta : S_1 \to S_2$ such that $\beta^* \mathcal{L}_2 \cong \mathcal{L}_1$ and $\beta^* E_2 \cong E_1$, $i = 1, 2$.

As mentioned the classification of these triples is due to Nikulin and originates from his paper [22]. The part of interest here is the classification of pairs (\tilde{S}, G), where \tilde{S} is a K3 surface and G is a finite group of symplectic automorphisms of \tilde{S}. There exist 14 classes of pairs (\tilde{S}, G) such that G is commutative and G is $\mathbb{Z}/\ell\mathbb{Z}$ exactly for $2 \leq \ell \leq 8$. After the classification, several papers addressed the description of the moduli and the projective models of these K3 surfaces. It is due to mention here [13, 14, 15, 16, 28].

The triple (S, \mathcal{L}, E) determines an associated triple $(\tilde{S}, \tilde{\mathcal{L}}, \gamma)$, where $\gamma \in \text{Aut} \tilde{S}$ is a symplectic automorphisms of order ℓ and $(\tilde{S}, \tilde{\mathcal{L}})$ is a polarized K3 surface of degree $\ell(2g - 2)$. We have indeed $B_{\text{red}} = N_1 + \cdots + N_t$, where the summands are the connected components and -2-curves. Let $\nu : S \to \overline{S}$ be their contraction morphism, then the Cartesian square

$$
\begin{array}{ccc}
\nu' & \cong & \nu \\
\tilde{S}' & \to & S \\
\downarrow & & \downarrow \\
\tilde{S} & \cong & \overline{S}
\end{array}
$$

is the Stein factorization of $\nu \circ \pi'$. In it ν' is a birational morphism. Let $G \subset \text{Aut} \tilde{S}'$ be the group whose quotient map is π'. As we will see $\pi'^* H^3(\tilde{\mathcal{L}}(-E))$ sits in $H^3(\tilde{\mathcal{L}})$ as an eigenspace of the natural representation of G and defines a generator γ of G. Moreover π is the quotient map of the induced action of G on \tilde{S}. Conversely, starting from π and the minimal desingularization ν, π' is reconstructed from the fibre product $\pi \times_{\overline{S}} \nu$.

In order to describe the rational singularities occurring in $\text{Sing} \overline{S}$ we use the notation

$$
T := n_1 T_1 + \cdots + n_s T_s,
$$

where T_j is the singularity type and n_j the number of points of type T_j in $\text{Sing} \overline{S}$.

Theorem 3.2. Let $(S, \mathcal{E}, \mathcal{L})$ be a level ℓ K3 surface of genus g, then one has $2 \leq \ell \leq 8$ and (S, \mathcal{E}) satisfies one of the following conditions:

1. $\ell = 2$. One has $t = 8$, $r = 8$ and $T = 8A_1$.
2. $\ell = 3$. One has $t = 6$, $r = 12$ and $T = 6A_2$.
3. $\ell = 4$. One has $t = 6$, $r = 14$ and $T = 4A_3 + 2A_1$.
4. $\ell = 5$. One has $t = 4$, $r = 16$ and $T = 4A_4$.
5. $\ell = 6$. One has $t = 6$, $r = 16$ and $T = 2A_5 + 2A_2 + 2A_1$.
6. $\ell = 7$. One has $t = 3$, $r = 18$ and $T = 3A_6$.
7. $\ell = 8$. One has $t = 4$, $r = 18$ and $T = 2A_7 + A_3 + A_1$.

See [22]. It is also useful to observe that always one has

$$
E^2 = \frac{B_2}{\ell^2} = -4.
$$

Now, in view of the concrete applications in this paper, we mention some relevant properties of the structure of $\text{Pic} S$ and of the moduli of the above triples.

Definition 3.2. $\mathcal{F}_{g, \ell}$ is the moduli space of level ℓ K3 surfaces of genus g.
As in the case of \((S, \mathcal{L})\), the construction of \(\mathcal{F}_{g, \ell}\) relies on the usual notion of lattice polarized variety, see \([1, 9, 17]\) and \([22]\) for this K3 case. In particular, for every \(g \geq 2\), \(\mathcal{F}_{g, \ell}\) has a standard irreducible component to be constructed as follows. We may have
\[
Z[\mathcal{L}] \oplus M_S \subseteq \text{Pic} \, S,
\]
where the sum is orthogonal. Moreover \(M_S\) has rank \(r\) and it is generated by the classes \([B_1], \ldots, [B_r], [E]\), with \(E \cong \mathcal{O}_S(E)\), so that the relation \(\ell[E] - [B] = 0\) is satisfied in \(\text{Pic} \, S\). We can see the inclusion as the image of a primitive embedding of lattices
\[
v : \mathbb{Z}c \oplus M_\ell \to \text{Pic} \, S,
\]
where \(v(c) := [\mathcal{L}]\) and \(v(M_\ell) = M_S\). The lattice \(M_\ell\) is given with the set of generators \(\{e, b_1, \ldots, b_r\}\) so that \(v(e) = [E], v(b_1) = [B_1], \ldots, v(b_r) = [B_r]\). Notice also that \(c^2 = 2g - 2\), \(e^2 = -4\), \(b_1^2 = \cdots = b_r^2 = -2\), cfr. \([22]\). Fixing these data, the moduli space of triples \((S, \mathcal{L}, \mathcal{E})\) endowed with an embedding \(v\), can be constructed as a moduli space of lattice polarized K3 surfaces \((S, v)\). In our case \(S\) is \(M\)-polarized with \(M := \mathbb{Z}c \oplus M_\ell\) and the induced embedding \(M \subset L := H^2(S, \mathbb{Z})\) is unique up to isometries, \([22]\). Then the moduli space is constructed as quotient of the period domain of these surfaces \(S\). In particular its dimension is \(19 - r\), \([9]\) Section 4.1 and Theorem 1.4.8, \([2]\) Section 2.4 and Proposition 2.6. Moreover a unique irreducible component of it is the closure of the moduli points of pairs \((S, v)\) such that
\[
\text{Pic} \, S = \mathbb{Z}[\mathcal{L}] \oplus M_S.
\]
In this case we will say that \((S, \mathcal{L}, \mathcal{E})\) is a standard triple of genus \(g\) and level \(\ell\). Let us fix our notation:

Definition 3.3. \(\mathcal{F}_{g, \ell}^\perp\) is the moduli space of standard triples of genus \(g\) and level \(\ell\).

\(\mathcal{F}_{g, \ell}^\perp\) exists for any \(g \geq 2\) and \(\ell = 2 \ldots 8\). Fixing \(\ell\), \(\mathcal{F}_{g, \ell}^\perp\) is the unique irreducible component of \(\mathcal{F}_{g, \ell}\) along a proper countable set of values \(g \in \mathbb{N}\).

Remark 3.1. Let \((S, \mathcal{L}, \mathcal{E})\) be a non standard triple and \(C \subset |\mathcal{L}|\). Then, at least experimentally for \(\ell = 2\), \(C\) is never general in moduli for \(g \geq 4\). This is true even when the parameter count makes that possible in low genus, see \([20]\). The situation is quite different for standard triples. This paper studies indeed the modular properties of \(C\) in this case: standard behavior or peculiarities of \(C\).

4. A STANDARD PROJECTIVE MODEL

Given a standard triple \((S, \mathcal{L}, \mathcal{E})\), let us construct a projective realization of \(S\) useful to our purposes. Consider \(C \subset |\mathcal{L}|\) such that \(C \cap B = \emptyset\) and \(\hat{C}' = \pi''C\). Then the curve \(\hat{C} = \nu_*' \hat{C}'\) is biregular to \(\hat{C}'\) via the contraction \(\nu' : \hat{S}' \to \hat{S}\) and the linear map
\[
\nu_*' : H^0(\mathcal{O}_{\hat{S}'}(\hat{C}')) \to H^0(\mathcal{O}_{\hat{S}}(\hat{C}))
\]
is an isomorphism, we identify the two spaces under it. Then, using \(\hat{C}\), it is easy to remind of the action of the group \(\mathbb{Z}/\ell\mathbb{Z}\) on this space and of its eigenspaces. Let
\[
0 \to \mathcal{O}_{\hat{S}} \to \mathcal{O}_{\hat{S}}(\hat{C}) \to \omega_{\hat{C}} \to 0
\]
be the standard exact sequence, then \(\mathbb{Z}/\ell\mathbb{Z}\) acts on its associated long exact sequence
\[
0 \to H^0(\mathcal{O}_{\hat{S}}) \to H^0(\mathcal{O}_{\hat{S}}(\hat{C})) \to H^0(\omega_{\hat{C}}) \to 0.
\]
As is well known the \(\mathbb{Z}/\ell\mathbb{Z}\)-decomposition of \(H^0(\omega_{\hat{C}})\) is as follows
\[
H^0(\omega_{\hat{C}}) = \bigoplus_{k=1\ldots\ell-1} \pi''^* H^0(\omega_C \otimes \eta^{-k}) \bigoplus \pi''^* H^0(\omega_C).
\]
and this implies that \(H^0(\mathcal{O}_{\hat{S}}(\hat{C}'))\) decomposes as
\[
H^0(\mathcal{O}_{\hat{S}}(\hat{C}')) = \bigoplus_{k=1\ldots\ell-1} \pi''^* H^0(\mathcal{O}_S(H_k)) \bigoplus \pi''^* H^0(\mathcal{O}_S(C)),
\]
where \(O_S(H_1) \ldots O_S(H_{\ell-1}) \in \text{Pic} \, S \) and \(O_C(H_k) \cong \omega_C \otimes \eta^{-k} \), up to reindexing. Since \(\tilde{C} \) has genus \(g = g + (\ell - 1)(g - 1) \) it follows \(\dim H^0(O_S(\tilde{C})) = g + 1 + (\ell - 1)(g - 1) \). In particular the above decomposition immediately implies that

\[
\dim H^0(O_S(H_k)) = \dim H^0(\omega_C \otimes \eta^{-k}) = g - 1, \quad k = 1 \ldots \ell - 1.
\]

In what follows, it is also useful to recall the mentioned fact that \(E^2 = -4 \).

Lemma 4.1. It holds \(h^i(O_S(E)) = h^i(O_S(-E)) = 0 \), for \(i \geq 0 \).

Proof. By assumption \(E \) is not effective. The same is true for \(-E \), since \(\ell E \sim B \) and \(B > 0 \). This implies \(h^0(O_S(E)) = 0 \) and \(h^2(O_S(E)) = h^0(O_S(-E)) = 0 \). Since \(E^2 = -4 \) we have \(\chi(O_S(E)) = 0 \) and then \(h^1(O_S(E)) = 0 \). The same argument applies to \(-E \). \(\square \)

Now we consider the line bundle \(O_S(C - E) \) and the standard exact sequence

\[
0 \to O_S(-E) \to O_S(C - E) \to O_C(C - E) \to 0.
\]

Lemma 4.2. Let \(g \geq 2 \) then the associated long exact sequence is

\[
0 \to H^0(O_S(C - E)) \to H^0(\omega_C \otimes \eta^{-1}) \to 0,
\]

in particular it follows \(\dim [C - E] = g - 2 \) and \(h^i(O_S(C - E)) = 0 \), \(i \geq 1 \).

Proof. By the previous lemma \(h^i(O_S(E)) = h^i(O_S(-E)) = 0 \), for \(i \geq 0 \). Moreover we have \(h^0(\omega_C \otimes \eta^{-1}) = g - 1 \) and \(h^1(\omega_C \otimes \eta^{-1}) = 0 \). Then the statement follows. \(\square \)

Now we observe that the pull-back by \(\pi' \) defines a linear embedding

\[
\pi'^{*} : H^0(O_S(C - E)) \to H^0(O_{\tilde{S}}(\tilde{C}')).
\]

We have indeed \(O_{\tilde{S}}(\tilde{C}') \otimes \pi'^{*}O_S(E - C) \cong O_{\tilde{S}}(\pi'^{*}E) \) and finally

\[
h^0(O_{\tilde{S}}(\pi'^{*}E)) = h^0(\pi'^{*}O_S(\pi'^{*}E)) = h^0(\mathcal{A}(E)) = 1,
\]

with \(\mathcal{A} = O_S \oplus O_S(-E) \oplus \cdots \oplus O_S((1 - \ell)E) \). The equality defines, up to a nonzero constant factor, the linear embedding \(\pi'^{*} \). Then \(\text{Im} \, \pi'^{*} \) is the \(\mathbb{Z}/\ell \mathbb{Z} \)-invariant space

\[
\pi'^{*}H^0(O_S(C - E)).
\]

Proposition 4.3. Let \(g \geq 3 \) and \(\text{Pic} \, S \cong \mathbb{Z}e \oplus M_\ell \), then \([C - E] \) is base point free.

Proof. Since \(S \) is a K3 surface, it suffices to prove that \([C - E] \) has no fixed component. Let \(F \) be an integral fixed component of \([C - E] \), set \(f = F \cdot C \) for a general \(C \). Then \(f \) is a fixed divisor of \(\omega_C \otimes \eta^{-1} \). Applying Riemann-Roch to \(C \) it follows \(\dim [\eta(f)] = \deg f - 1 \). Since \(g \geq 3 \) then \(\deg f \leq 2 \). Hence \(F \) is a line, a conic or \(FC = 0 \). We have \(F \sim xc + \sum y_jB_j + zE \) in Pic \(S \). Assume \(\deg f > 0 \) then \(0 < CF = (2g - 2)x \leq 2 \) with \(x \in \mathbb{Z} \): a contradiction for \(g \geq 3 \). Let \(CF = 0 \) then \(F^2 = -2 \) by the Hodge Index Theorem and \(F \) is a \(\mathbb{P}^1 \) contracted by \(f|_C : S \to \mathbb{P}^g \). By Lemma 4.2

\[
h^0(C - E) = g - 1 = (C - E)^2/2 + 2.
\]

Let \(M \) be the moving part of the linear system \([C - E] \), then \(\dim [M] \geq 1 \) and \(MF \geq 0 \). Moreover we have \(C - E \sim M + kF + R \), where \(R \) is a curve not containing \(F \) and \(k \geq 1 \). Let \(G \in [M + F] \) be general then \(G \) contains \(F \): otherwise the curve \(kF \) could not be a component of the element \(G + (k - 1)F + R \in [C - E] \). Hence \(F \) is a fixed component of \([M + F] \). Now observe that \(MF \geq 0 \) and then consider the standard exact sequence

\[
0 \to O_S(M) \to O_S(M + F) \to O_F(M) \to 0.
\]

We claim that, passing to the associated long exact sequence, it follows

\[
\chi(O_S(M)) = \chi(O_S(M + F))
\]

and \(\chi(O_F(M)) = 0 \). Since \(F = \mathbb{P}^1 \) this implies \(MF < 0 \): a contradiction. To prove the claim consider a smooth \(D \in [M] \). Then either \(D \) is integral of genus \(g - 2 \) and \(h^1(O_S(M)) = 0 \) or \(M \sim (g - 2)N \) and \(N \) is a smooth integral elliptic curve. Via Serre duality we have \(h^2(O_S(M)) = h^2(O_S(M + F)) = 0 \). Moreover \(MF \geq 0 \) implies \(h^1(O_F(M)) = 0 \). Then, in the former case, \(h^1(O_S(M)) = 0 \) implies \(h^1(O_S(M + F)) = 0 \) and the claim follows. In the latter case replace \(M \) by \(N \). Then the equality and the same contradiction follow by the same type of arguments. \(\square \)
Now we introduce a second linear system associated with E. At first let us set
\[
(27) \quad B_{\text{red}} := B_1 + \cdots + B_r,
\]
where the summands are the irreducible components of $\text{Supp} B$. Then we recall that
\[
E = \frac{1}{\ell} (m_1 B_1 + \cdots + m_r B_r), \quad \text{with } m_1, \ldots, m_r \in [1 \ldots \ell - 1].
\]

Definition 4.1. Set $E = B_{\text{red}} - \ell \cdot m_i B_i + \cdots + \ell \cdot m_r B_r$, where $m_i := \ell - m_i$

Let us denote by n_i the coefficients of the curves B_i in $-\ell E$. Then $n_i \equiv m_i \mod \ell$. More precisely, E is a generator of $\mathbb{Z}/\ell \mathbb{Z} = \langle B_i, E \rangle / \langle B_i \rangle$ and E is its opposite in $\mathbb{Z}/\ell \mathbb{Z}$; in particular it is a different generator of the same group. Hence $E := O_S(E)$ is a level ℓ structure, with the same properties of E. We notice that E defines a cover $\tilde{\pi}' : \tilde{S}' \to S$ so that $\tilde{\pi}' = \pi' \circ a$ and $a^\ell = id_{S'}$. Then we define
\[
(28) \quad |H| := |C - E|, \quad \hat{H} := |C - E|.
\]
The rational maps associated with these linear systems respectively will be
\[
(29) \quad p : S \to \mathbb{P}, \quad \hat{p} : S \to \hat{\mathbb{P}},
\]
where $\mathbb{P} := |H|^*$ and $\hat{\mathbb{P}} := |\hat{H}|^*$ are the projective space \mathbb{P}^{g-2}. Let i be the inclusion
\[
(30) \quad \mathbb{P} \times \hat{\mathbb{P}} \subset \mathbb{P}^{(g-1)^2 - 1}
\]
defined by the Segre embedding, we set $f := i \circ (p \times \hat{p})$ and fix the notation
\[
(31) \quad f : S \to \mathbb{P} \times \hat{\mathbb{P}} \subset \mathbb{P}^{(g-1)^2 - 1}.
\]

Definition 4.2. The morphism f is the main projective model of (S, L, E).

The next two remarks are simple but relevant in order to discuss f (the second one follows by a direct computation of $E \cdot E$, where the class E is explicitly given in [22]):
1. $f^* O_{\mathbb{P}^{(g-1)^2 - 1}}(1) \cong O_S(H + \hat{H}) \cong O_S(2C - B_{\text{red}})$,
2. $H \hat{H} = 2g + 2 - t$.

Proposition 4.4. The divisors $|H - \hat{H}|$ and $|\hat{H} - H|$ are not effective classes for $\ell \geq 3$ and
\[
(32) \quad h^1(O_S(H - \hat{H})) = h^1(O_S(\hat{H} - H)) = 6 - t.
\]

\textbf{Proof.} We have $H(H - \hat{H}) = \hat{H}(\hat{H} - H) = t - 8$. Since the general elements of $|H|$ and $|\hat{H}|$ are irreducible curves, the first statement follows for $\ell \geq 3$ because then $t \leq 6$. The second statement just follows from Riemann-Roch. \hfill \Box

Now let us consider, for a general $C \in |L|$, the standard exact sequence
\[
(33) \quad 0 \to O_S(C - B_{\text{red}}) \to O_S(2C - B_{\text{red}}) \to O_C(2C - B_{\text{red}}) \to 0.
\]
Since C is smooth and disjoint from B_{red}, then $O_C(-B_{\text{red}})$ is trivial and $|2C - B_{\text{red}}|$ cuts on C a linear system of bicanonical divisors. Moreover we know that both $|H|$ and $|\hat{H}|$ are base point free. Hence the same is true for $|H + \hat{H}| = |2C - B_{\text{red}}|$. Notice that
\[
(2C - B_{\text{red}})^2 = 8(g - 1) - 2t,
\]
which is ≥ 0 for $g \geq 3$ and any of the prescribed values of t, ℓ. Actually the zero value is only reached in the known situation $g = 3, \ell = 2$. Hence we assume $g \geq 4$ for $\ell = 2$. Then a general $D \in |H + \hat{H}|$ is a smooth integral curve such that $D^2 > 0$. As is well known, this implies $h^i(O_S(H + \hat{H})) = 0$ for $i \geq 1$ and the next property follows.

Proposition 4.5. Let g be as above then $\dim |2C - B_{\text{red}}| = 4g - t - 3$ and the long exact sequence associated with the exact sequence (33) is as follows:
\[
0 \to H^0(O_S(C - B_{\text{red}})) \to H^0(O_S(2C - B_{\text{red}})) \to H^0(\omega^2_C) \to H^1(O_S(C - B_{\text{red}})) \to 0.
\]
The linear system $|C - B_{\text{red}}|$ also deserves some observations. Since we are dealing with a general standard triple (S, L, E), we know that $|C|$ defines a morphism

$$f_{|C|} : S \to \mathbb{P}^g$$

which is the contraction $\nu : S \to \mathbb{S}$, composed with the embedding $\mathbb{S} \subset \mathbb{P}^g$ defined by $[\nu_* C]$. Since a general C is disjoint from B, $[\nu_* C]$ is a linear system of Cartier divisors. Let $\mathcal{T}_{\text{Sing}}$ be the ideal sheaf of $\text{Sing} \mathbb{S}$, it is clear that the natural map

$$f_* |C| : H^0 (\mathcal{T}_{\text{Sing}}(1)) \to H^0 (\mathcal{O}_S (C - B_{\text{red}}))$$

is an isomorphism. Then, considering the above exact sequence (33), we have

$$h^0 (\mathcal{O}_S (C - B_{\text{red}})) - h^1 (\mathcal{O}_S (C - B_{\text{red}})) = \chi (\mathcal{O}_S (2C - B_{\text{red}})) - \chi (\omega_C^2) = g + 1 - t.$$

This implies the next property.

Proposition 4.6. It holds $h^1 (\mathcal{O}_S (C - B_{\text{red}})) = 0$ if and only if $h^0 (\mathcal{O}_S (C - B_{\text{red}})) = g + 1 - t$, that is, the points of $\text{Sing} \mathbb{S}$ are linearly independent in \mathbb{P}^g.

On the other hand consider the commutative diagram

$$
\begin{array}{cccc}
0 & \to & H^0 (\mathcal{O}_S (C - B_{\text{red}})) & \to \\
\downarrow & & \downarrow & \\
& & H^0 (\mathcal{O}_S (C - B_{\text{red}})) & \\
\downarrow & & \downarrow & \\
& & H^0 (\mathcal{O}_S (H)) \otimes H^0 (\mathcal{O}_S (\tilde{H})) & \\
\rho_H \otimes \rho_R & \downarrow & \mu_S & \to \\
H^0 (\omega_C \otimes \eta^{-1}) \otimes H^0 (\omega_C \otimes \eta) & & H^0 (\omega_C^2) & \\
\rho_C & \downarrow & & \\
& & H^1 (\mathcal{O}_S (C - B_{\text{red}})) & \\
\downarrow & & \downarrow & \\
& & 0 & \\
\end{array}
$$

where μ_S and μ_C are the multiplication maps and the vertical arrows are the restriction maps. It follows from Lemma (4.2) that $\rho_H \otimes \rho_R$ is an isomorphism. The next property is clear.

Proposition 4.7. If μ_C is surjective then $h^1 (\mathcal{O}_S (C - B_{\text{red}})) = 0$ i.e. ρ_C is surjective.

Since $\chi (\mathcal{O}_S (C - B_{\text{red}})) = g + 1 - t$ let us point out that μ_C is not surjective if

$$g < t - 1.$$

We do not further investigate the diagram, for our applications these results suffice.

5. Views on the Mukai maps in level ℓ

In this section we only put in large the picture we have outlined in the introduction. This picture concerns the maps in (33) and (34), that is, the Mukai map

$$m_g : \mathcal{P}_g \to \mathcal{M}_g$$

and the level ℓ Mukai maps

$$r_{g, \ell} : \mathcal{P}_{g, \ell} \to \mathcal{R}_{g, \ell}.$$

These maps, and the involved moduli spaces, have been previously considered. We recall that the points of \mathcal{P}_g are the elements $[S, L, C]$ such that $[S, L] \in F_g$ and $C \in |L|$. The Mukai map m_g is the natural forgetful map. We have

1. m_g is dominant for $g \leq 9$.

(2) m_g is not dominant for $g = 10$.
(3) m_g is birational for $g = 11$.
(4) m_g has 1-dimensional fibre for $g = 12$.
(5) m_g is generically injective for $g \geq 13$.

Thus m_g has not maximal rank for $g = 10, 12$. It is indeed known that a general $[C] \in m_{10}(P_{10})$ is a linear section C of the G_2 variety $W \subset \mathbb{P}^{13}$, [23]. Hence the family of 2-dimensional linear sections of W through C is a \mathbb{P}^3. It turns out from this fact that the fibre of m_{10} at $[C]$ is 3-dimensional. Then $m_{10}(P_{10})$ has codimension 1. Genus 12 Fano threefolds play a similar role, then a general fibre of m_{12} is a rational curve.

In this perspective, asking about the connections between the moduli space $F_{g,\ell}$, of level ℓ K3 surfaces of genus g, and $R_{g,\ell}$ is, as observed, natural. For a general point $[S, L, E] \in F_{g,\ell}$ one can ask if (C, η), with $C \in |L|$ and $\eta = E \otimes O_C$, defines a general point of $R_{g,\ell}$. More precisely recall that $P_{g,\ell}$ is the moduli space of 4-tuples (S, L, E, C) such that $[S, L, E] \in F_{g,\ell}$ and $C \in |L|$. The level ℓ Mukai $r_{g,\ell} : P_{g,\ell} \to R_{g,\ell}$ is the morphism sending $[S, L, E, C] \in P_{g,\ell}$ to the point $[C, \eta_C] \in R_{g,\ell}$, where η is $E \otimes O_C$. About the possible dominance of the map $r_{g,\ell}$ we have:

(1) $3g - 3 = \dim R_{g,2} \leq \dim P_{g,2} = 11 + g$ iff $g \leq 7$.
(2) $3g - 3 = \dim R_{g,3} \leq \dim P_{g,3} = 7 + g$ iff $g \leq 5$.
(3) $3g - 3 = \dim R_{g,4} \leq \dim P_{g,4} = 5 + g$ iff $g \leq 4$.
(4) $3g - 3 = \dim R_{g,5} \leq \dim P_{g,5} = 3 + g$ iff $g \leq 3$.
(5) $3g - 3 = \dim R_{g,6} \leq \dim P_{g,6} = 3 + g$ iff $g \leq 3$.
(6) $3g - 3 = \dim R_{g,7} \leq \dim P_{g,7} = 1 + g$ iff $g \leq 2$.
(7) $3g - 3 = \dim R_{g,8} \leq \dim P_{g,8} = 1 + g$ iff $g \leq 2$.

These issues have not been systematically considered but for $\ell = 2$. We close this expository section with a summary on what happens for $\ell = 2, 3$.

5.1. The picture for $\ell = 2$. We have $3g - 3 = \dim M_g \leq \dim P_{g,2} = 11 + g$ iff $g \leq 7$. Again, $r_{g,2}$ behaves unexpectedly near the value of transition, which is now $g = 7$.

(1) $r_{g,2}$ is dominant for $g \leq 5$.
(2) $r_{g,2}$ is not dominant for $g = 6$.
(3) $r_{g,2}$ is birational for $g = 7$.
(4) $r_{g,2}$ has not finite fibres for $g = 8$.
(5) $r_{g,2}$ is generically injective for $g \geq 9$.

These surfaces are known as (standard) Nikulin surfaces. Cases (1), (2), (3) are treated in [11, 12], the remaining ones, (standard and non standard), in [18, 20]. Notice that $r_{g,2}$ is not of maximal rank for $g = 6, 8$. In genus 6 the condition $C \subset S$ implies that the following multiplication map is not an isomorphism as expected:

\[
(37) \quad \mu : \text{Sym}^2 H^0(\omega_C \otimes \eta_C) \to H^0(\omega_C^\otimes 2).
\]

Then (C, η_C) does not define a general point of $R_{g,2}$, see [1]. We point out that, studying the two cases where $r_{g,2}$ has not maximal rank, two families of singular Fano threefolds appear. Their hyperplane sections are singular models \overline{S} of general Nikulin surfaces S. The existence of these threefolds implies the failure of the maximal rank.
5.2. The picture for $\ell = 3$. We will prove that $r_{g,3}$ behaves unexpectedly near $g = 5$:

1. $r_{g,3}^*$ is dominant for $g \leq 3$,
2. $r_{g,3}^*$ has not maximal rank for $g = 4$,
3. $r_{g,3}^*$ is birational for $g = 5$,
4. $r_{g,3}^*$ has not maximal rank for $g = 6$.

Remark 5.1. The case $g \geq 7$ should be considered for further investigation, addressing the generic injectivity. The (uni)rationality of $R_{g,3}$ is known, or elementary, for $g \leq 5$, cfr. [5 6 27]. We recall that $R_{g,3}$ is of general type for $g \geq 12$ and of Kodaira dimension ≥ 19 for $g = 11$. [7]. Bruns proved in [4] that $R_{8,3}$ is of general type. The cases $g = 6, 7, 10$, and partially $g = 11$ are open.

6. The Mukai map in level 3

6.1. The case of genus 4. Let $[S, \mathcal{L}, \mathcal{E}, C] \in \mathcal{P}_{g,\ell}^+$ be general and $\ell = 3$, as in section 2, (35) we consider the commutative diagram

$$
\begin{align*}
H^0(\mathcal{O}_S(H)) \otimes H^0(\mathcal{O}_S(\tilde{H})) &\xrightarrow{\mu_B} H^0(\mathcal{O}_S(H + \tilde{H})) \\
\mu_H \otimes \mu_{\tilde{H}} &\downarrow \\
H^0(\omega_C \otimes \eta^{-1}) \otimes H^0(\omega_C \otimes \eta) &\xrightarrow{\mu_C} H^0(\omega^{\otimes 2}_C).
\end{align*}
$$

(38)

Since $\ell = 3$ we have $t = 6$ connected components of Supp B. Then, by proposition (1.7), μ_C is not surjective if $g < t - 1 = 5$. This is obvious for $g \leq 3$. For $g = 4$ the dimension count suggests that in $R_{4,3}$ the map μ_C is not surjective in codimension 1.

Proposition 6.1. Let $[C, \eta] \in R_{4,3}$ be a general point then μ_C is surjective, moreover the locus of points such that μ_C is not surjective is an effective Cartier divisor in $R_{4,3}$.

Indeed, for $g = 4$ and $\ell = 3$, this locus turns out to be the locus $D_{g,\ell}$ defined in [7] p. 77. There, for low level $\ell \geq 3$ and for $g \leq 16$, the so defined Torsion bundle conjecture B is proven, which implies that $D_{4,3}$ is an effective Cartier divisor in $R_{4,3}$. Then the next theorem follows. Notice also that, for $g = 4$, theorem 1.7 of [10] implies that μ_C is an isomorphism for a general (C, η).

Theorem 6.2. The map $r_{4,3} : \mathcal{P}_{4,3}^+ \to R_{4,3}$ fails to be dominant.

Remark 6.1. The case $g = 4$ turns out to be of special interest. See the last section for a natural, presently conjectural, geometric interpretation.

6.2. The case of genus 5. Differently from the case $g \leq 4$ the multiplication map

$$
\mu_C : H^0(\omega_C \otimes \eta) \otimes H^0(\omega_C \otimes \eta^{-1}) \to H^0(\omega^{\otimes 2}_C)
$$

can be surjective for $g \geq 5$ and a general point $[C, \eta] \in R_{g,3}$. This property occurs in genus $g = 5$ and makes possible the proof of the next birational theorem.

Theorem 6.3. The Mukai map $r_{5,3} : \mathcal{P}_{5,3}^+ \to R_{5,3}$ is birational.

Before proving it we cannot avoid a long series of preliminaries. We will always assume that $[S, \mathcal{L}, \mathcal{E}, C] \in \mathcal{P}_{5,3}^+$ is a general point, in particular Pic $S \cong \mathbb{Z}_c \oplus M_3$. Let

$$
0 \to \mathcal{O}_S(H + \tilde{H} - C) \to \mathcal{O}_S(H + \tilde{H}) \to \omega^{\otimes 2}_C \to 0.
$$

(39)

be the standard exact sequence, at first we point out the following fact.

Proposition 6.4. The associated long exact sequence is

$$
0 \to H^0(\mathcal{O}_S(H + \tilde{H})) \to H^0(\omega^{\otimes 2}_C) \to 0.
$$

(40)

Since $H + \tilde{H} - C \sim C - B_{\text{red}}$, the next lemma implies the previous statement.

Lemma 6.5. It holds $h^i(\mathcal{O}_S(C - B_{\text{red}})) = 0$ for $i \geq 0$.

Proof. Since $C(B_{red}-C) < 0$, $h^0(\mathcal{O}_S(B_{red}-C)) = 0$. Hence $h^2(\mathcal{O}_S(C-B_{red}))$ is zero by Serre duality. Since $(C-B_{red})^2 = -4$ then $\chi(\mathcal{O}_S(C-B_{red})) = 0$ and the statement follows if $h^0(\mathcal{O}_S(C-B_{red})) = 0$. Assume $A \in |C-B_{red}|$ then A is not connected. This follows from $\chi(\mathcal{O}_S(A)) = h^0(\mathcal{O}_S(A)) - h^1(\mathcal{O}_S(A)) = 0$ and the standard exact sequence

$$0 \to \mathcal{O}_S(-A) \to \mathcal{O}_S \to \mathcal{O}_A \to 0.$$

This implies $A = A_1 + A_2$, where A_1 is a connected component and $A_2 = A - A_1$ is a curve. We have $C(A_1 + A_2) = C(C-B_{red}) = 8$ and we can choose A_1 so that $CA_1 > 0$. Assume $CA_2 = 0$ then the morphism $\phi : S \to \mathbb{P}^5$, defined by $|C|$, maps birationally $A_1 + A_2 + B_{red}$ onto a degree 8 hyperplane section of $\mathcal{S} = \phi(S)$. This is the curve ϕ_*A_1, singular at the points of $\phi(B_{red}) = \text{Sing} \mathcal{S}$. These points are the images by ϕ of the six connected components of B_{red} and are exactly six. Indeed each fibre of ϕ is connected and hence two connected components V_1, V_2 of B_{red}, contracted to the same point, are connected by an effective divisor W orthogonal to C. On the other hand, under our generality assumption, we have $\text{Pic} S \cong \mathbb{Z}C \oplus \mathbb{Z}_3$. Moreover a direct computation shows that, in the negative definite lattice \mathbb{M}_3, $\text{Supp} W$ is union of irreducible components of B_{red}. Actually one computes that the only classes of irreducible (-2)-curves are the classes of $B_1 \ldots B_{12}$. This implies $W = 0$ and $V_1 = V_2$. But then ϕ_*A_1 is not integral, because it is a hyperplane section of $\phi(S)$ with six singular points. Then there exists an irreducible component R of it such that $0 < CR < 8$. The same is obvious if $CA_2 > 0$. Since $\text{Pic} S \cong \mathbb{Z}C \oplus \mathbb{Z}_3$ we have $[R] = x[C] + [\sum y_i B_i] + z[E]$, with $x, y_i, z \in \mathbb{Z}$. But this implies $0 < CR = 8x < 8$ with $x \notin \mathbb{Z}$: a contradiction.

Proposition 6.6. The linear systems $|H|$ and $|\tilde{H}|$ are not hyperelliptic.

Proof. Let $|H|$ be hyperelliptic, then $|H|$ defines a $2 : 1$ morphism $\psi : S \to \mathbb{P}^3$ onto a quadric surface $Q := \psi(S)$. As is well known the pull-back of a ruling of lines of Q defines a pencil $|F_2|$ of curves such that $F_2^2 = 0$ and $HF_2 = 2$. Moreover $|F_1| := [H - F_2]$ is a pencil of irreducible elliptic curves. The same is true for the moving part of $|F_2|$. Since $H \sim F_2$ and $C \sim H + E$ we have $C(F_1 + F_2) = 8$ and also $CF_i \geq 2$, $i = 1, 2$. Let $|F|$ be the moving part of the pencil $|F_1|$ such that CF_i is minimal, then it follows $2 \leq CF \leq 4$. On the other hand we have $F \sim xC + \sum y_j B_j + zE$ in $\text{Pic} S$. This implies $2 \leq CF = 8x \leq 4$ and $x \notin \mathbb{Z}$: a contradiction. The same argument works for $|\tilde{H}|$.

Lemma 6.7. It holds $h^i(\mathcal{O}_S(2H - \tilde{H})) = h^i(\mathcal{O}_S(2\tilde{H} - H)) = 0$ for $i \geq 0$.

Proof. From $H \sim C - E$ and $\tilde{H} \sim C - \tilde{E}$ we have $2H - \tilde{H} \sim C - 2E + \tilde{E}$, moreover

$$\tilde{H}(\tilde{H} - 2H) = -8 \Rightarrow h^0(\mathcal{O}_S(\tilde{H} - 2H)) = 0 \Rightarrow h^2(\mathcal{O}_S(2H - \tilde{H})) = 0.$$

Since $(2H - \tilde{H})^2 = -4$ then $\chi(\mathcal{O}_S(2H - \tilde{H})) = 0$. Hence the statement follows for $2H - \tilde{H}$ if we prove $h^0(\mathcal{O}_S(2H - \tilde{H})) = 0$. For this we observe that the well known descriptions of E and \tilde{E} are as follows. For $i = 1 \ldots 6$ consider $N_i = B_i + B_i'$, that is, the i-th connected component of $B_{red} = \sum_{i=1\ldots6} B_i + B_i'$. Then in $\text{Pic} S$ we have

$$(41) \quad [E] = \sum_{i=1\ldots6} \frac{1}{3}[B_i + 2B_i'] \quad [\tilde{E}] = \sum_{i=1\ldots6} \frac{1}{3}[2B_i + B_i']$$

up to exchanging E with \tilde{E}. Since $2H - \tilde{H} \sim C - 2E + \tilde{E}$, it follows that

$$(42) \quad 2H - \tilde{H} \sim C - \sum_{i=1\ldots6} B_i'.$$

This implies that $[2H - \tilde{H}]$ is not an effective class. Indeed let $B' := B_1' + \cdots + B_6'$, observe that $(C - B')B_i = -1$, $i = 1 \ldots 6$. Assume $C - B' \sim F$ where F is an effective divisor. Then $F|B_i = -1$ implies $B_i \subset F$ and $F = F' + B_1 + \cdots + B_6$ where F' is effective. Hence $C - B_{red} \sim F' > 0$: a contradiction to the above lemma.

We will profit of genus 3 curves of the non hyperelliptic linear systems $|H|$ or $|\tilde{H}|$.

Lemma 6.8. It holds $\forall D \in |H|, \quad h^0(\mathcal{O}_D(\tilde{H} - H)) = 0$ and $\forall \tilde{D} \in |\tilde{H}|, \quad h^0(\mathcal{O}_{\tilde{D}}(H - \tilde{H})) = 0$.

Proof. Let $D \in |H|$, once more consider the standard exact sequence

$$0 \to \mathcal{O}_S(\hat{H} - 2H) \to \mathcal{O}_S(\hat{H} - H) \to \mathcal{O}_D(\hat{H} - H) \to 0$$

and its long exact sequence. We have $h^1(\mathcal{O}_S(\hat{H} - 2H)) = h^1(\mathcal{O}_S(2H - H)) = 0$ by the previous lemma and $h^0(\mathcal{O}_S(\hat{H} - 2H)) = 0$ because $H(\hat{H} - 2H) = -2$. Then it follows $h^0(\mathcal{O}_D(\hat{H} - H)) = h^0(\mathcal{O}_S(\hat{H} - H))$. Finally the latter is zero by Proposition (14).

Let $D \in |H|$ be smooth then $\mathcal{O}_D(\hat{H} - H) \cong \mathcal{O}_D(b)$, where $\deg b = 2$. We fix the notation b for such a divisor and the notation μ_D for the following multiplication map:

$$\mu_D : H^0(\omega_D) \otimes H^0(\omega_D(b)) \to H^0(\omega_D(b)).$$

Let us also point out that $h^0(\mathcal{O}_D(b)) = 0$ by the above lemma. Moreover we fix the notation

$$\nu_D : H^0(\mathcal{O}_S(H)) \to H^0(\omega_D), \quad \hat{\nu}_D : H^0(\mathcal{O}_S(\hat{H})) \to H^0(\omega_D(b)),$$

$$\rho_D : H^0(\mathcal{O}_S(H + \hat{H})) \to H^0(\omega_D^\otimes 2(b))$$

for the natural restriction maps. Then we consider the commutative diagram:

$$\begin{array}{ccc}
H^0(\mathcal{O}_S(H)) \otimes H^0(\mathcal{O}_S(\hat{H})) & \xrightarrow{\mu_S} & H^0(\mathcal{O}_S(H + \hat{H})) \\
H^0(\omega_D) \otimes H^0(\omega_D(b)) & \xrightarrow{\nu_D \otimes \hat{\nu}_D} & H^0(\omega_D^\otimes 2(b)).
\end{array}$$

which is similar to our main diagram.

Proposition 6.9. The vertical arrows and the horizontal arrow μ_D are surjective.

Proof. Let $p : S \to \mathbb{P}^2$ be the map defined by $|H|$, then $p|D : D \to \mathbb{P}^2 = |\omega_D|^* \, \text{is the canonical map and } |\omega_D(b)| \, \text{is cut on } D$ by $|\mathcal{I}_d|S(3H)|$, where d is any element of $|\omega^\otimes 2(-b)|$, and $\mathcal{I}_d|S(3H)$ is its ideal sheaf. Moreover the map $p^* : |\mathcal{I}_d|\mathbb{P}^2(3)| \to |\omega_D^\otimes 2||$ is an isomorphism and $|\mathcal{I}_d|\mathbb{P}^2(3)| = p^*|\mathcal{I}_d|\mathbb{P}^2(3)$, where $Z = p_*, d$ and $\mathcal{I}_d|\mathbb{P}^2$ is its ideal sheaf. Hence it follows $h^0(\mathcal{I}_d|\mathbb{P}^2(3)) = h^0(\omega_D^\otimes 2(-b)) = h^0(\mathcal{O}_D(b)) = 0$ and $h^1(\mathcal{I}_d|\mathbb{P}^2(3)) = h^0(\mathcal{O}_D(b)) = 0$. This easily implies $h^i(\mathcal{I}_d|\mathbb{P}^2(3 - i)) = 0$ for $i > 0$, that is, $\mathcal{I}_d|\mathbb{P}^2$ is 3-regular. Hence, by Castelnuovo-Mumford regularity theorem, the multiplication map

$$\mu : H^0(\mathcal{I}_d|\mathbb{P}^2(1)) \otimes H^0(\mathcal{I}_d|\mathbb{P}^2(3)) \to H^0(\mathcal{I}_d|\mathbb{P}^2(4))$$

is surjective. Now consider the standard exact sequence of ideal sheaves

$$0 \to \mathcal{I}_d|\mathbb{P}^2(4) \to \mathcal{I}_d|\mathbb{P}^2(4) \to \mathcal{I}_d|\mathbb{P}^2(4) \to 0$$

and its associated long exact sequence. Since $\mathcal{I}_d|\mathbb{P}^2(4) \cong \mathcal{O}_{\mathbb{P}^2}$ it follows that

$$h^0(\rho) : H^0(\mathcal{I}_d|\mathbb{P}^2(4)) \to H^0(\omega_D^\otimes 2(b))$$

is surjective. On the other hand we have $\mu_D \circ \lambda = h^0(\rho) \circ \mu$, where λ is the tensor product

$$\lambda_1 \otimes \lambda_2 : H^0(\mathcal{O}_S(1)) \otimes H^0(\mathcal{I}_d|\mathbb{P}^2(3)) \to H^0(\omega_D) \otimes H^0(\omega_D^\otimes 2(b))$$

of the natural isomorphisms $\lambda_1 : H^0(\mathcal{O}_S(1)) \to H^0(\omega_D)$ and $\lambda_2 : H^0(\mathcal{I}_d|\mathbb{P}^2(3)) \to H^0(\omega_D^\otimes 2(b))$. Since λ is an isomorphism and $h^0(\rho)$ and μ are surjective, then μ_D is surjective. The surjectivity of ρ_D follows from the vanishing of $h^1(\mathcal{O}_S(H))$ and the standard exact sequence

$$0 \to \mathcal{O}_S(H) \to \mathcal{O}_S(H + \hat{H}) \to \omega_D^\otimes 2(b) \to 0.$$

Since $\omega_D^\otimes 2(b)$ is $O_D(H + \hat{H})$, the surjectivity of ν_D follows from the above exact sequence twisted by $-\hat{H}$. Finally the exact sequence

$$0 \to \mathcal{O}_S(\hat{H} - H) \to \mathcal{O}_S(\hat{H}) \to \omega_D(b) \to 0$$

implies that $\hat{\nu}_D$ is an isomorphism. Indeed we have $h^0(\mathcal{O}_S(\hat{H} - H)) = h^1(\mathcal{O}_S(\hat{H} - H)) = 0$ in its long exact sequence by (32). Hence $\nu_D \otimes \hat{\nu}_D$ is surjective too.

Proposition 6.10. The map $\mu_S : H^0(\mathcal{O}_S(H)) \otimes H^0(\mathcal{O}_S(\hat{H})) \to H^0(\mathcal{O}_S(H + \hat{H}))$ is surjective.
Proof. Let us consider again the commutative diagram (45), that is,
\[H^0(\mathcal{O}_S(H)) \otimes H^0(\mathcal{O}_S(\hat{H})) \xrightarrow{\mu_S} H^0(\mathcal{O}_S(H+\hat{H})) \]
\[\Downarrow \rho_D \otimes \rho_D \quad \Downarrow \rho_D \]
\[H^0(\omega_D) \otimes H^0(\omega_D(b)) \xrightarrow{\mu_D} H^0(\omega_D^2(b)). \]

Counting dimensions we have \(\dim \ker \mu_S \geq 4 \), hence it suffices to show that the equality holds. Now we know that \(\mu_D \) and \(\nu_D \otimes \nu_D \) are surjective. Let \(K \) be the Kernel of \(\mu_D \circ (\nu_D \otimes \nu_D) \), then the dimension count gives \(\dim K = 8 \) and, of course, we have \(\ker \mu_S \subseteq K \). Therefore, to prove \(\dim \ker \mu_S = 4 \), it suffices to produce a 4-dimensional subspace \(V \subseteq K \) such that \(V \cap \ker \mu_S = 0 \).

To this purpose consider the space of decomposable vectors \(\mathcal{V} \) and the same is true for \(\mathcal{V}^* \).

Now we go back, in genus 5, to our usual diagram (45) in section 2. This is
\[H^0(\mathcal{O}_S(H)) \otimes H^0(\mathcal{O}_S(\hat{H})) \xrightarrow{\mu_S} H^0(\mathcal{O}_S(H+\hat{H})) \]
\[\Downarrow \rho_H \otimes \rho_H \quad \Downarrow \rho_C \]
\[H^0(\mathcal{O}_C(\eta) \otimes H^0(\mathcal{O}_C(\eta)^{-1}) \xrightarrow{\mu_C} H^0(\mathcal{O}_C^2). \]

Proposition 6.11. \(\mu_C : H^0(\mathcal{O}_C(\eta) \otimes H^0(\mathcal{O}_C(\eta)^{-1}) \rightarrow H^0(\mathcal{O}_C^2) \) is surjective.

Proof. We have already shown that \(\mu_S \) and \(\mu_H \otimes \rho_H \) are surjective. By (40) and its related lemma the same is true for \(\rho_C \). Hence the surjectivity of \(\mu_C \) follows. \(\square \)

Let \(\mathbb{P}^{15} := \mathbb{P}(H^0(\mathcal{O}_S(H))^* \otimes H^0(\mathcal{O}_S(\hat{H}))^*) \) and let \(\mathbb{P}^3 \times \mathbb{P}^3 := \mathbb{P}(|H^* \times |\hat{H}|^* \rightarrow \mathbb{P}^3 \times \mathbb{P}^3 \cap \mathbb{P}^{15} \).

In other words \(f \) is just the morphism defined by the complete linear system \(|H + \hat{H}|\) composed with the linear embedding \(\mathbb{P}^{11} \subseteq \mathbb{P}^{15} \).

Proposition 6.12. The map \(p \times \hat{p} \) is an embedding for a general point \([S,L,E] \in \mathcal{F}_{5,3}^1\).

Proof. The linear systems \(|H|\) and \(|\hat{H}|\) are non hyperelliptic. Hence \(p, \hat{p} \) are generically injective and the same is true for \(f \). In particular \(f : S \rightarrow f(S) \) is biregular over \(f(S) - \text{Sing} f(S) \) and \(\text{Sing} f(S) \) is a finite set of rational double points. Let \(R \subseteq S \) be an integral curve contracted by \(f \) then \(R \) is biregular to \(\mathbb{P}^1 \) but it is not \(B_i \). Indeed \(R \) is contracted by \(p \) and \(\hat{p} \) while \(B_i \) is not, as one can directly compute. Notice also that \(C \simeq \frac{1}{2}(H + \hat{H} + B_{\text{red}}) \). Therefore, since \(R C \geq 0 \), it follows
\[RC = \frac{1}{2} \sum_{i=1 \ldots 12} RB_i \geq 0 \]
with \(RB_i \geq 0 \). Assume \(RB_i = 0 \) for each \(i \), then \(RC = 0 \). Since the Picard group of \(S \) is \(\mathbb{Z}[L] \oplus M_3 \), \(R \) is necessarily contained in \(M_3 = \mathbb{Z}[L] \). By (15) the unique \((-2)\)-curves contained in \(M_3 \) are the \(B_i \)'s, which contradicts the fact that \(R \) cannot be a \(B_i \). Now assume that \(RB_i \geq 2 \) for some \(B_i \) and consider, among the maps \(p \) and \(\hat{p} \), the one not contracting \(B_i \), say \(p \). Then \(p \) embeds \(B_i \) as a line. On the other hand \(p \) contracts \(R \cdot B_i \), which is a divisor of degree \(\geq 2 \) in \(B_i \) : a contradiction. This implies \(RB_i = 1 \) for each \(i \).

Finally consider two distinct curves as above, say \(B_1 \) and \(B_2 \), which are contracted by \(p \). Let us also claim that \(p(B_1) \) and \(p(B_2) \) are distinct points for a general \((S,L,E)\). Since \(RB_1 = RB_2 = 1 \) then \(p(R) \) is not a point: a contradiction.
We now prove that \(p(B_1) \neq p(B_2) \) for a general \((S, L, \mathcal{E})\). If two curves are contracted by a map \(p \) to the same point, there is a tree of \((-2)\)-curves connecting these curves which is contracted by \(p \). Since \(p \) is defined by \([H]\), the \((-2)\)-curves contracted by \(p \) are orthogonal to \(H \) in \(\mathbb{Z}[L] \oplus M_3 \), which is the Picard group of a general \(S \). By a direct computation one observes that the negative defined lattice orthogonal to \(H \) contains exactly 12 \((-2)\)-classes, which are \(\pm B_i \) for \(i = 1, \ldots, 6 \). Since \(B_iB_j = 0 \) if \(i, j \in \{1, \ldots, 6\} \) and \(i \neq j \), \(p(B_1) \neq p(B_2) \).

At this point the special geometry determined by \(\mu_S \) appears, we have

\[
\text{Ker} \mu_S = H^0(\mathcal{I}(1,1)),
\]

where \(\mathcal{I} \) is the ideal sheaf of \(\mathbb{P}^1 \cdot (\mathbb{P}^3 \times \mathbb{P}^3) \) in \(\mathbb{P}^3 \times \mathbb{P}^3 \) and \(\dim \text{Ker} \mu_S = 4 \). Let

\[
\Sigma := \mathbb{P}^1 \cdot (\mathbb{P}^3 \times \mathbb{P}^3),
\]

then \(f(S) \) sits in \(\mathbb{P}^1 \) as a K3 surface of degree 20 and \(f(S) \subseteq \Sigma \). Now assume that the intersection scheme \(\Sigma \) is proper, then \(\Sigma \) is a K3 surface of degree 20 and hence

\[
f(S) = \Sigma.
\]

Postponing its proof, we therefore assume the following claim.

Claim For a general triple \((S, L, \mathcal{E})\) the intersection scheme \(\Sigma \) is proper.

Then we prove the birationality of the Mukai map \(r_{5,3} : \mathcal{P}_{5,3}^+ \to \mathcal{R}_{5,3} \).

Proof of the birationality. Since \(\mathcal{P}_{5,3}^+ \) and \(\mathcal{R}_{5,3} \) are irreducible of the same dimension, it suffices to show that \(r_{5,3} \) is birational onto \(\mathcal{M} := r_{5,3}(\mathcal{P}_{5,3}^+) \). Let \(x = [S, L, \mathcal{E}, C] \) be general in \(\mathcal{P}_{5,3}^+ \) and \(y = r_{5,3}(x) \), then \(y = [C, \eta] \) with \(\eta := \mathcal{E} \otimes \mathcal{O}_C \). Let \(y \in \mathcal{M} \) be general, we prove that a unique \(x = [S, L, \mathcal{E}, C] \) exists so that \([C, \mathcal{E} \otimes \mathcal{O}_C] = y\). We already know, for a general \(y = [C, \eta] \in \mathcal{M} \), the surjectivity of the multiplication map

\[
\mu_C : H^0(\omega_C \otimes \eta) \otimes H^0(\omega_C \otimes \eta^{-1}) \to H^0(\omega_C^{[2]}),
\]

because this condition is open and non empty on \(\mathcal{M} \). Then, applying to \(\mu_C \) the same construction applied to \(\mu_S \), one obtains

\[
C \subseteq \Sigma := \mathbb{P}^1 \cdot (\mathbb{P}^3 \times \mathbb{P}^3) \subseteq \mathbb{P}^1.
\]

Let \(V = H^0(\omega_C \otimes \eta)^* \) and \(\tilde{V} = H^0(\omega_C \otimes \eta^{-1})^* \), here \(C \) is bicanonically embedded in \(\mathbb{P}^1 := \mathbb{P}(\text{Im} \mu_C)^* \) and the inclusion is the Segre embedding \(\mathbb{P}(V) \times \mathbb{P}(\tilde{V}) \subset \mathbb{P}(V \otimes \tilde{V}) \). Now the properness of \(\Sigma \) is an open condition on \(\mathcal{M} \), not empty under our claim. Then \((\Sigma, \mathcal{O}_\Sigma(1))\) is a polarized K3 surface as above. Since \(y = r_{5,3}(x) \) for some \(x = [S, L, \mathcal{E}, C] \), the commutative diagram \((17)\) implies that \([\Sigma, \mathcal{O}_\Sigma(1)] = [S, L] \). Therefore \(\mu_C \) defines a rational map, sending \(y = [C, \eta] \in \mathcal{M} \) to \(x \in \mathcal{P}_{5,3}^+ \), which is inverse to \(r_{5,3} \).\(\square \)

Proof of the claim. Since each component of \(\Sigma \) has dimension \(\geq 2 \), it suffices to construct one \(\mathbb{D} \in (\mathcal{O}_{\mathbb{P}^3}(\mathbb{P}^3(1,1))) \) so that \(\mathbb{D} \cdot \Sigma = \mathbb{D} \cdot S \). We choose the hyperplane section

\[
\mathbb{D} = (P \times P^3) + (P \times \tilde{P}),
\]

where \(P \) and \(\tilde{P} \) are general planes. Then we have \(\mathbb{D} \cdot S = D + \tilde{D} \), where \(D \in [H] \) and \(\tilde{D} \in [\tilde{H}] \) are smooth, non hyperelliptic curves of genus \(3 \). We show, only for \(D \), that

\[
D = \mathbb{P}^1 \cdot (P \times \mathbb{P}^3), \quad \tilde{D} = \mathbb{P}^1 \cdot (P \times \tilde{P}).
\]

The map \(p : D \to P \) is the canonical map; we fix on \(P \) coordinates \((x) = (x_1 : x_2 : x_3)\). The map \(\tilde{p} : D \to \mathbb{P}^3 \) is defined by \([\omega_D(b)]\), where \(\deg b = 2 \) and \(h^0(\mathcal{O}_D(b)) = 0 \). This implies that \(\omega_D(b) \) is very ample, we fix coordinates \((y) = (y_1 : \cdots : y_4) \) on \(\mathbb{P}^3 \). The resolution of \(\mathcal{O}_{\tilde{p}(D)}(1) \cong \omega_D(b) \) is definitely ample known, [15]. We have the exact sequence

\[
0 \to \mathcal{O}_{\mathbb{P}^3(-1)} \otimes A \to \mathcal{O}_{\mathbb{P}^3} \otimes \omega_D(b) \to 0,
\]

\(A = (a_{ij}) \) being a \(4 \times 3 \) matrix of linear forms in \((y)\). Then \(\tilde{p}(D) \) is a determinantal curve defined by the cubic minors of \(A \). In particular \(A \) has rank \(3 \) on \(\mathbb{P}^3 = \tilde{p}(D) \) and, since \(\tilde{p} : D \to \tilde{p}(D) \) is birational and \(\tilde{p}(D) \) is smooth, it also follows that \(\tilde{p}(D) \) is the set of points \(y \in \mathbb{P}^3 \) such that \(A \) has exactly rank \(2 \). This implies that the equations \(a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3 = 0 \), \(i = 1 \ldots 4 \), define a complete
intersection \(\hat{D} \subset P \times \mathbb{P}^3 \) such that \(\text{Supp} \hat{D} = D \). Finally one easily computes that \(\hat{D} \) and \(D \) have the same degree 10 with respect to \(\mathcal{O}_{\mathbb{P}^3 \times \mathbb{P}^3}(1,1) \). This implies \(\hat{D} = D \) and the claim follows. \(\square \)

6.3. The case of genus 6.

Theorem 6.13. The Mukai map \(r_{6,3} : \mathcal{P}_{6,3}^+ \to \mathcal{R}_{6,3} \) has not maximal rank.

In this paper we only sketch the proof of this theorem and its geometric motivation: see section 7 and also [27]. We postpone some details to further investigation on \(\mathcal{R}_{6,3} \). We conclude that the mentioned analogies are confirmed for \(\ell = 3 \): the Mukai maps

\[
m_{11 \pm 1}, r_{7 \pm 1,2}, r_{5 \pm 1,3}
\]

have not maximal rank, while they are birational for \(g = 11, 7, 5 \). These maps are not dominant for \(g = 10, 6, 4 \) and they have positive dimensional fibre for \(g = 12, 8, 6 \).

7. Views on Fano threefolds with sections of level 2 or 3

We close this paper discussing some families of Fano threefolds \(\overline{X} \subset \mathbb{P}^{g+1} \), whose general hyperplane sections are singular K3 surfaces \(S \) of the considered types. Then \(S \) is endowed with a degree \(\ell \) cyclic cover \(\pi : \tilde{S} \to S \) with branch locus \(\text{Sing} \; S \). Moreover its minimal desingularization \(\nu : S \to \bar{S} \) fits in a standard level \(\ell \) K3 surface \((S, \mathcal{L}, \mathcal{E}) \), so that \(\mathcal{L} \cong \nu^*\mathcal{O}_S(1) \) and \(\mathcal{E} \) induces \(\pi : \tilde{S} \to \bar{S} \). We have \(\ell = 2, 3 \).

For some families a natural cyclic cover \(\pi_{\overline{X}} : \tilde{X} \to \overline{X} \) is visible, with branch locus the curve \(\text{Sing} \; \overline{X} \). However we do not address it here. The existence of these families implies that \(r_{g,\ell} \) has not maximal rank. They correspond to the peculiar values

\[
(g, \ell) = (6,3), (6,2), (8,2), (4,3).
\]

For \(\ell = 2 \) these families are known. [11] [19] [20]. The case \((6,2) \) is revisited here with emphasis on a singular quadratic complex of the Grassmannian \(G(2,5) \). This implies that \(r_{6,2} \) is not of maximal rank. For \((6,3) \) we introduce a family of Gushel - Mukai threefolds singular along a rational normal sextic curve. This is responsible for the failure of the maximal rank of \(r_{6,3} \). The case \((8,2) \) is similar and not treated here, [20]. Finally we point out the plausible relation of the case \((4,3) \) to the \(G_2 \)-variety.

7.1. A singular Gushel - Mukai threefold: \(\ell = 3 \) and \(g = 6 \). We sketch the geometric construction implying theorem [6,13]. Let \(g = 6 \) and \(\ell = 3 \), keeping our notation we consider \(p \times \tilde{p} : S \to \mathbb{P}^4 \times \mathbb{P}^4 \). Then \(p \) is defined by the linear system

\[
|H| = |C - \sum_{i=1}^{6} (B_i + 2B'_i)|,
\]

where \(B_i + B'_i \), are the connected components of \(B_{\text{red}} \). Let \(x_0 := [S, \mathcal{L}, \mathcal{E}, C] \in \mathcal{P}_{6,3}^+ \) be a general point, then a standard analysis shows that \(p : S \to p(S) \) is the contraction of \(\sum B_i \) to six points and that \(p(B'_i) \) is a line. Moreover we have

\[
p(S) = F_0 \cap Q,
\]

where \(F_0 \) is a cubic and \(Q \) a smooth quadric. Notice that \(p(C) \) is the embedding defined by \(\omega_C \otimes \eta^{-1} \), since \(CB_i = 0 \) then \(p(C) \cap \text{Sing} \; p(S) = \emptyset \). Let \(C' := p(C) \) and let

\[
0 \to I_{p(S)}(3) \to I_{p(C)}(3) \to I_{C'|p(S)}(3) \to 0
\]

be the standard exact sequence of ideal sheaves of \(Q \), we notice the isomorphisms \(I_{p(S)}(3) \cong \mathcal{O}_Q \) and \(p_* : H^0(\mathcal{O}_S(3H - C)) \to H^0(I_{p(C)}|p(S)(3)) \). This implies that

\[
0 \to H^0(\mathcal{O}_Q) \to H^0(\mathcal{I}_C(3)) \to H^0(\mathcal{O}_S(3H - C)) \to 0
\]

is its associated long exact sequence. It easily follows that \(C' \) is projectively normal. A second standard step is the remark that \(\mathcal{O}_S(3H - C) \) is a genus 3 polarization of \(S \). Now let \(M \in |3H - C| \), then \(p_*(C + M) \in |I_{p(C)}|p(S)(3)| \) and it is cut on \(p(S) \) by a cubic hypersurface. Therefore we have in \(Q \) the complete intersection scheme

\[
p_*(C + M) = F_0 \cap F_{\infty} \cap Q,
\]
where \(F_0, F_\infty \) are cubics. Let \(S'_0 = F_0 \cdot Q \) and \(S'_\infty = F_\infty \cdot Q \). We consider the pencil
\[
P_M = \{ S'_t, t \in \mathbb{P}^1 \},
\]
of cubic sections of \(Q \) generated by \(S'_0 \) and \(S'_\infty \). We can assume \(p(S) = S'_0 \), notice that a general \(S'_t \) is a possibly singular K3 surface, smooth along \(C' \). Let \(\sigma_t : S_t \to S'_t \) be its minimal desingularization and \(C_t := \sigma_t^* C' \), then \(S_t \) is endowed with the line bundles
\[
\mathcal{H}_t := \sigma_t^* \mathcal{O}_Q(1), \quad \mathcal{L}_t := \mathcal{O}_{S_t}(C_t), \quad \mathcal{E}_t := \mathcal{L}_t \otimes \mathcal{H}_t^{-1}.
\]
For \(t = 0 \) the fourtuple \((S_t, \mathcal{L}_t, \mathcal{E}_t, C_t)\) defines the point \(x_0 = [S, \mathcal{L}, \mathcal{E}, C] \) of \(\mathcal{P}^1_{6,3} \). For \(t \neq 0 \) we have constantly \(C_t = C \). Now consider the family of fourtuples
\[
\{ (S_t, \mathcal{L}_t, \mathcal{E}_t, C_t), t \in \mathbb{P}^1 \},
\]
then the assignment \(t \mapsto [S_t, \mathcal{L}_t] \in \mathcal{F}_0 \) defines a non constant rational map \(m : \mathbb{P}^1 \to \mathcal{F}_0 \). Assume \((S_t, \mathcal{L}_t, \mathcal{E}_t)\) is a K3 surface of level 3 for a general \(t \). Then \(m \) lifts to a map \(\tilde{m} : \mathbb{P}^1 \to \mathcal{P}^1_{6,3} \), sending \(t \) to \([S_t, \mathcal{L}_t, \mathcal{E}_t, C_t]\), and the next statement immediately follows.

Proposition 7.1. If \((S_t, \mathcal{L}_t, \mathcal{E}_t)\) is a K3 surface of level 3 for a general \(t \), the curve \(\tilde{m}(\mathbb{P}^1) \) is in the fibre at the point \([C, \eta] \) of the Mukai map \(r_{6,3} \), which is therefore not of maximal rank.

The assumption mentioned in the statement depends on the choice of the element \(M \) in \(|3H - C| \) and in general it is not satisfied. However the assumption is satisfied choosing in \(|M|\) the very special element
\[
M_0 := 2A + \sum_{i=1,...,6} B_i,
\]
where \(A \) is the unique element of \(|C - \sum_{i=1,...,6}(B_i + B'_i)|\). The curve \(A \) is biregular to \(\mathbb{P}^1 \) and \(p|A \) embeds it as a rational normal quartic curve. Let \(A' = p(A) \), then the base scheme of \(P_{M_0} \) is a non reduced, complete intersection curve and its 1-cycle is
\[
p_*(M_0 + C) = 2A' + C'.
\]
In other words the surfaces \(S'_t \) intersect along a contact curve \(A' \) of multiplicity two and along \(C' \). It turns out that a general \(\text{Sing} S'_t \) consists of six nodes moving in \(A' \) and each node belongs to a line in \(S'_t \). This can be shown using the special property that \(\eta \cong \omega_{C'}(-1) \in \text{Pic} C \) is of 3-torsion. Omitting further details of this construction, let us just say that \(M_0 \) defines a pencil of level 3 and genus 6 K3 surfaces as required.

To close geometrically this sketch let \(A \) be the non reduced component, supported on \(A' \), of the base curve of \(P_{M_0} \) and \(\mathcal{I}_{A|Q} \) its ideal sheaf. Consider the rational map
\[
\phi : Q \to \mathbb{P}^7
\]
defined by the linear system \(|\mathcal{I}_{A|Q}(3)|\). Let us notice the following property.

Proposition 7.2. The map \(\phi \) is birational onto its image \(W \), which is a singular Gushel - Mukai threefold whose general hyperplane sections are singular K3 surfaces \(S \) as above.

Therefore \(W \) is a complete intersection of type \((1,1,2)\) in the Grassmannian \(G(2,5) \). We notice that \(\text{Sing} W \) is a rational normal sextic curve. This completes our sketch.

7.2. The tangential quadratic complex of \(\mathbb{P}^4 \): \(\ell = 2 \) and \(g = 6 \). Let \(G_n \) be the Plücker embedding of the Grassmannian of lines of \(\mathbb{P}^n \), a quadratic complex is just a quadratic section of \(G_n \). Let \(Q \subset \mathbb{P}^n \) be a quadric, then the family \(T \) of tangent lines to \(Q \) is a quadratic complex, named sometimes the tangential quadratic complex. We assume \(Q \) is smooth, then \(T \) is a Fano variety. Notice that \(\text{Sing} T \) is the Hilbert scheme of lines of \(Q \), of codimension and multiplicity 2 in \(T \).

Now we assume \(n \) is even. Then \(T \) has a unique nontrivial quasi étale 2:1 cover
\[
\pi : \tilde{T} \to T,
\]
whose branch locus is \(\text{Sing} T \). Let us describe the known map \(\pi \) in the case \(n = 4 \), since it is linked to the Mukai map \(r_{6,2} : \mathcal{P}^1_{6,2} \to \mathcal{R}_6 \) and its behavior. This is treated in [11]. For \(n = 4 \) the Hilbert scheme of lines of \(Q \) is the 2-Veronese embedding of \(\mathbb{P}^3 \), say
\[
V \subset G_4 \subset \mathbb{P}^9.
\]
Let \(t \in T \), consider the pencil \(\{ H_p, p \in t \} \), where \(H_p \) is the polar hyperplane to \(Q \) at \(p \). Its base locus is a plane \(P_t \) and \(Q_t := P_t \cdot Q \) is a conic. Since \(t \) is tangent to \(Q \), a standard exercise shows that \(\text{Sing} \; Q_t = t \cap Q \). This defines a smooth, integral correspondence
\[
\tilde{T} := \{(t, r) \in T \times V \mid r \subset Q_t\}.
\]
Notice that its projection onto \(T \) is a quasi étale 2 : 1 cover branched on \(V \), say
\[
\pi : \tilde{T} \to T.
\]
Indeed the fibre \(\zeta_t := \pi^*(t) \) is the Hilbert scheme of lines of \(Q_t \) and is finite of length 2. Then \(\zeta_t \) is smooth iff rank \(Q_t = 2 \) iff \(t \notin V \) and \(\zeta_t \) has multiplicity 2 iff rank \(Q_t = 1 \) iff \(t \in V \).

Now it is well known that a general 2-dimensional linear section \(\tilde{S} = T \cap \mathbb{P}^6 \) is the model defined by \(|C| \) of \(S \), where \([S, L, E] \in \mathcal{F}_6 \) is general. In particular \(\text{Sing} \; \tilde{S} = V \cap \mathbb{P}^6 \) is an even set of 8 nodes, defining \(\pi|\tilde{S} \) with \(\tilde{S} = \pi^{-1}(S) \), cfr. [11][19][20]. For \(\ell = 2 \) and \([S, L, E] \in \mathcal{F}_g \), the surface \(S \), or its model \(\tilde{S} \), is known as a standard Nikulin surface of genus \(g \). Therefore we can say that a general 3-dimensional linear section of \(T \) is a Fano threefold whose hyperplane sections are standard Nikulin surfaces of genus 6. Let us denote such a section by
\[
X = T \cap \mathbb{P}^7,
\]
notice that \(\text{Sing} \; X \) is a curvilinear section of \(V \), hence an elliptic curve of degree 8.

Finally let \(C \) and \(\tilde{S} \) respectively be the family of general curvilinear sections \(C \) and that of general 2-dimensional linear sections \(\tilde{S} \) of \(T \). Consider the family of pairs
\[
\mathcal{P} := \{(C, \tilde{S}) \in C \times \tilde{S} \mid C \subset \tilde{S}\}.
\]
Let \((C, \tilde{S}) \in \mathcal{P} \) then \(C \) is a canonical curve and \(C \in |\mathcal{O}(1)| \). Let \(\nu : S \to \tilde{S} \) be the desingularization then \(\nu^*C \in |L| \) and \(\eta := E \otimes \mathcal{O}_{\nu^*C} \) defines \(\pi|\tilde{C} \), where \(\tilde{C} = \pi^{-1}(C) \). Then the assignment of \((C, \tilde{S})\) to \([S, L, E, \nu^*C] \) defines a dominant rational map
\[
m : \mathcal{P} \to \mathcal{P}^+.
\]

We already know that the Mukai map \(r_{6,2} \) fails to be of maximal rank. However we can now see this fact from a geometric perspective: the existence of the Fano variety \(T \) and its quasi finite 2 : 1 cover \(\pi \). Indeed this implies that \(C \subset \tilde{C} \) is contained in a higher dimension family of sections \(\tilde{S} \) of \(T \), so that \(C \) cannot have general moduli.

More precisely the parameter space \(C \) is open in the Grassmannian \(G(5,9) \), hence \(\dim C = 24 \). Moreover \(\text{Aut} \; Q \subset \text{Aut} \; \mathbb{P}^4 \) has dimension 10 and acts faithfully on \(C \). Then we have \(\dim \mathcal{C} // \text{Aut} \; Q = 14 < \dim r_{6,2} = 15 \). Hence \(r_{6,2} \) cannot be dominant.

Remark 7.1. Let \(C \subset \mathcal{C} \) then \(\tilde{C} = \pi^{-1}(C) \) is a smooth, integral curve of genus 11. We have \(\tilde{C} \subset \tilde{S} \subset \tilde{X} \subset \mathbb{P}^{12} \), where \(\tilde{X} = \pi^{-1}(X) \) is a non prime Fano threefold of genus 11. We just mention that \(\tilde{C} \) is the base locus of a pencil of hyperplane sections of \(\tilde{X} \) and that the birational Mukai map \(m_{11} : \mathcal{P}_{11} \to \mathcal{M}_{11} \) is not invertible at \(\tilde{C} \).

7.3. The \(G_2 \)-variety: \(\ell = 3 \) and \(g = 4 \). A geometric interpretation seems plausible and it is possibly postponed to future work. It relates to the failure of the Mukai map in genus 10. As in [14] let \(\pi : \tilde{S} \to \tilde{S} \) be the cover induced by \(E \) and \(\nu : S \to \tilde{S} \) the desingularization map. For a general \(C \) the map \(\nu : C \to \tilde{S} \setminus \text{Sing} \; \tilde{S} \) is an embedding, then we set \(\tilde{C} := \nu(C) \). Let \(\tilde{C} = \pi^{-1}(C) \) then \((\tilde{S}, \mathcal{O}_E(C)) \) is a K3 surface of genus 10. This suggests that \(\tilde{S} \) embeds in the \(G_2 \)-variety \(W \subset \mathbb{P}^{13} \) as a linear section, [23]. Now a general curvilinear section of \(W \) is not general as a genus 10 curve. In the same way, if it is a triple cover of a genus 4 curve, it seems not a general genus 4 triple cover.

References

[1] A. Beauville *Applications aux espaces de modules*, in *Géométrie des surfaces K3: modules et périodes*, Exp. 13 Astérisque 126 (1985) 141-152
[2] A. Beauville *Fano threefolds and K3 surfaces*, in *The Fano Conference*, Proceedings edited by A. Collino, A. Conte, M. Marchisio, Dip. di Matematica Univ. di Torino (2004) 175-184
[3] S. Boucksom, J.P. Demailly, M. Păun, T. Peternell *The pseudoeffective cone of a compact Kähler manifold and varieties of negative Kodaira dimension*, J. Alg. Geom. 22 (2013) 201-24
[4] G. Bruns *Twists of Mukai bundles and the geometry of the level 3 modular variety over \(\mathcal{M}_8 \)*, Trans. Amer. Math. Soc. (2017) 8359-8376
[5] I. Bauer, F. Catanese The Rationality of Certain Moduli Spaces of Curves of Genus 3, in Cohomological and Geometric Approaches to Rationality Problems Progress in Math. J. 282 Birkhäuser, Basel (2009) 1-16
[6] I. Bauer, A. Verra The rationality of the moduli space of genus 4 curves endowed with an order 3 subgroup of their Jacobian, Michigan Math. J. 59 (2010) 483-504
[7] A. Chiodo, D. Eisenbud, G. Farkas, F.O. Schreyer Syzygies of torsion bundles and the geometry of the level 1 modular variety over \(\text{M}_g \), Inventiones Mathematicae 194 (2013), 73-118.
[8] C. Ciliberto, A.F. Lopez, R. Miranda Projective degenerations of K3 surfaces, Gaussian maps, and Fano threefolds, Inventiones mathematicae 114, (1993) 641-667
[9] I Dolgachev Integral quadratic forms: applications to algebraic geometry (after V. Nikulin), S` em. Bourbaki 1982/83, Exp. 611, Ast` erisque 105-106, SMF, Paris (1983) 251-278
[10] H Esnault, E. Viehweg Lectures on vanishing theorems, DMV Seminar, 20 Birkhäuser, Basel, (1992)
[11] G. Farkas, A. Verra, Moduli of theta characteristics via Nikulin surfaces, Math. Annalen 354 (2012), 465–496.
[12] G. Farkas, A. Verra, Prym varieties and moduli of polarized Nikulin surfaces Adv. Math. 290 (2016), 314-328.
[13] A. Garbagnati Y. Prieto Monta˜ nez Order 3 symplectic automorphisms on K3 surfaces ArXiv math.AG 2102.01207 (2021)
[14] A. Garbagnati, A. Sarti, Symplectic automorphisms of prime order on K3 surfaces J. Algebra 318 (2007) 323-350
[15] A. Garbagnati, On K3 surfaces quotients of K3 or abelian surfaces, Canad. J. Math.69 (2017) 338-372
[16] A. Garbagnati, A. Sarti, Projective models of K3 surfaces with an even set, Adv. Geometry 8 (2008), 413-440.
[17] D. Huybrechts Lectures on K3 Surfaces Cambridge studies in advanced mathematics 158 Cambridge UP (2016)
[18] M. Homma On projective normality and defining equations of a projective curve of genus three embedded by a complete linear system, Tsukuba J. Math. 4 (1980), 269-279.
[19] A. Knutsen, A. Lelli Chiesa, A. Verra, Half Nikulin surfaces and moduli of Prym curves J. Inst. Math. Jussieu (2019), 1-38
[20] A. Knutsen, A. Lelli Chiesa, A. Verra, Moduli of non-standard Nikulin surfaces in low genus Annali Sc. Norm. Sup. Pisa 21 (2020) 361-384
[21] R. Lazarsfeld Positivity in Algebraic Geometry, volumes I and II, Ergebnisse der Mathematik 48 and 49 Springer, Basel (2004)
[22] V. Nikulin, Finite automorphism groups of Kähler K3 surfaces Trans. Moscow Math. Soc. 38 (1980), 71-135.
[23] S. Mukai Curves, K3 Surfaces and Fano 3-folds of Genus \(\leq 10 \), in Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata I Kinokunya, Tokio (1987) 357-377
[24] S. Mukai, Curves and K3 surfaces of genus eleven , in Moduli of Vector Bundles, Lecture Notes in Pure and Applied Mathematics, 179, Dekker, New York, (1996) 189-197
[25] F.O. Schreyer Geometry and Algebra of Prime Fano 3-folds of Genus 12 Compositio Mathematica 127 (1999)
[26] A. Verra Geometry of Nikulin surfaces of genus 8 and rationality of their moduli, in K3 Surfaces and their Moduli Progress in Math. 315 (2016) 345-364
[27] A. Verra K3 surfaces and moduli of étale cyclic covers of curves, Slides of a talk, Workshop on Complex Algebraic Geometry, Barcelona (2018)
[28] B. van Geemen, A. Sarti, Nikulin involutions on K3 surfaces, Math. Z. 255 (2007), 731–753.

DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI MILANO
Email address: alice.garbagnati@unimi.it

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI ROMA TRE, Email address: sandro.verra@gmail.com