STRONG COINCIDENCE AND OVERLAP COINCIDENCE

SHIGEKI AKIYAMA
Institute of Mathematics, University of Tsukuba
Tennodai 1-1-1, Tsukuba, Ibaraki
305-8571, Japan

(Communicated by Sebastien Gouezel)

Abstract. We show that strong coincidences of a certain many choices of control points are equivalent to overlap coincidence for the suspension tiling of Pisot substitution. The result is valid for dimension ≥ 2 as well, under certain topological conditions. This result gives a converse of the paper [2] and elucidates the tight relationship between two coincidences.

1. Introduction. Self-affine tiling dynamical system in \mathbb{R}^d is a generalization of substitution dynamical system on letters, which gives a nice model of self-inducing structures appear in dynamical systems, number theory and the mathematics of aperiodic order. Pure discreteness of self-affine tiling dynamics is long studied from many points of views. The idea of coincidence1 appeared firstly in Kamae [8], and then in a comprehensive form in Dekking [6] for constant length substitution (see also [16]). Generalizing a pioneer work of Rauzy [17], Arnoux-Ito [3] gave a geometric realization of irreducible Pisot unit substitution of degree d. They defined strong coincidence, which ensures that their geometric substitution gives rise to a domain exchange of \mathbb{R}^{d-1}, which is also semi-conjugate to the toral rotation of T^{d-1}. It is remarkable that in many cases, it is even conjugate to the toral rotation, which immediately implies that the system is pure discrete (see [4, 7, 5, 18] for further developments). On the other hand, overlap coincidence introduced by Solomyak [19] is an equivalent condition for pure discreteness of a given self-affine tiling dynamical system. This is also described as a geometric/combinatorial condition which guarantees that the tiling and its translation by return vectors become exponentially close if we iteratively enlarge return vectors by substitution. Lee [11] showed deeper characterizations that overlap coincidence is equivalent to algebraic coincidence, and the fact that the corresponding point set is an inter-model set.

Until now, the relation between strong coincidence and overlap coincidence is not fully understood. Motivated by the claim of Nakaishi [15], Akiyama-Lee [2] generalized the notion of strong coincidence to \mathbb{R}^d and showed that overlap coincidence implies strong coincidence, and moreover simultaneous coincidence, provided that

1In their notation, the column number is one.
the associated point set is admissible and its height group is trivial. In this paper we shall give a converse statement for the suspension tiling of Pisot substitution at the expense of assuming many strong coincidences at a time, that is, strong coincidences on a certain many choices of control points imply overlap coincidence and vice versa. If every tile is connected and the tiling is not a collection of unbounded connected identical colored patches, then the same result holds for \(d \geq 2 \) (Theorem 3.1). This result elucidates the tight relationship between two coincidences.

2. Terminologies.

2.1. Tiles and tilings. We shall briefly recall basic definitions used in this paper. A tile in \(\mathbb{R}^d \) is defined as a pair \(T = (A, i) \) where \(A \) is a compact set in \(\mathbb{R}^d \) which is the closure of its interior, and \(i = \ell(T) \in \{1, \ldots, m\} \) is the color of \(T \). We call \(A \) the support of \(T \) and denote \(\text{supp}(T) = A \). The translate of \(T \) is defined by \(g + T = (g + A, i) \) for \(g \in \mathbb{R}^d \). Let \(\mathcal{A} = \{T_1, \ldots, T_m\} \) be a finite set of tiles in \(\mathbb{R}^d \) such that \(T_i = (A_i, i) \); we will call them prototiles. A tiling \(\mathcal{T} \) is a collection of translates of prototiles which covers \(\mathbb{R}^d \) without interior overlaps. A finite collection of tiles which appear in \(\mathcal{T} \) is called a patch. A generalized patch is a collection of tiles in \(\mathcal{T} \) whose cardinality is not necessarily finite. Its support is defined to be the union of the supports of tiles. The diameter of a generalized patch is the supremum of Euclidean distance of two points lie within the support of the patch. A map \(\Omega \) from \(\mathcal{A} \) to the set of patches is called a substitution with a \(d \times d \) expansive matrix \(Q \) if there exist finite sets \(\mathcal{D}_{ij} \subset \mathbb{R}^d \) for \(i, j \leq m \) such that

\[
\Omega(T_j) = \{T_i + u : u \in \mathcal{D}_{ij}, \ i = 1, \ldots, m\} \tag{1}
\]

with

\[
QA_j = \bigcup_{i=1}^m (A_i + \mathcal{D}_{ij}) = \bigcup_{i=1}^m \bigcup_{u \in \mathcal{D}_{ij}} (A_i + u) \quad \text{for} \ j \leq m, \tag{2}
\]

and the last union has mutually disjoint interiors. The substitution (1) extends to all translates of prototiles and patches in a natural way. A substitution tiling of \(\Omega \) is a tiling \(\mathcal{T} \) that all the patches of \(\mathcal{T} \) is a sub-patch of \(\Omega^n(T) \) for some \(n \in \mathbb{N} \) and \(T \in \mathcal{T} \). A substitution tiling \(\mathcal{T} \) is a fixed point of \(\Omega \) if \(\Omega(T) = T \) holds. We say that a substitution tiling is primitive if the corresponding substitution matrix \(M = (\mathcal{D}_{ij}) \) is primitive, and irreducible if the characteristic polynomial of \(M \) is irreducible. We say that \(\mathcal{T} \) has finite local complexity (FLC) if for any \(R \) there are only finitely many patches of diameter less than \(R \) up to translation. A tiling \(\mathcal{T} \) is repetitive if every patch is relatively dense in \(\mathcal{T} \). A FLC substitution tiling of a primitive substitution is called a self-affine tiling. Every self-affine tiling is repetitive, which follows from the primitivity of substitution. Let \(\lambda > 1 \) be the Perron-Frobenius eigenvalue of the substitution matrix \(M \) and \(D \) be the set of eigenvalues of \(Q \). By the tiling criterion of Lagarias-Wang [9], \(\lambda \) is the element of \(D \) of maximum modulus. We say that \(Q \) fulfills Pisot family condition if every algebraic conjugate \(\mu \) of an element of \(D \) with \(|\mu| \geq 1 \) is contained in \(D \).

The set of all substitution tilings of \(\Omega \) forms a tiling space. By using a fixed point \(\mathcal{T} \) of \(\Omega \), we can describe this space as the orbit closure of \(\mathcal{T} \) under the translation action: \(X_\mathcal{T} = \{(\mathcal{T} - g : g \in \mathbb{R}^d)\} \), the closure is taken by ‘local topology’. The FLC assumption implies \(X_\mathcal{T} \) is compact and we get a topological dynamical system \((X_\mathcal{T}, \mathbb{T}^d) \) where \(\mathbb{T}^d \) acts by translations. This system is minimal and uniquely ergodic ([19, 12]), and we are interested in the spectra of self-affine tiling dynamical
systems. Tiling dynamical system X_T has pure discrete spectrum if the eigenfunctions for the \mathbb{R}^d-action forms a complete orthonormal basis of $L^2(X_T, \mu)$ [19].

2.2. Control points. A Delone set is a relatively dense and uniformly discrete subset of \mathbb{R}^d. We say that $\Lambda = (\Lambda_i)_{i \leq m}$ is a Delone multi-color set in \mathbb{R}^d if each Λ_i is Delone and $\bigcup_{i=1}^m \Lambda_i \subset \mathbb{R}^d$ is Delone. We say that $\Lambda \subset \mathbb{R}^d$ is a Meyer set if it is a Delone set and $\Lambda - \Lambda$ is uniformly discrete in \mathbb{R}^d [10]. $\Lambda = (\Lambda_i)_{i \leq m}$ is called a substitution Delone multi-color set if Λ is a Delone multi-color set and there exist an expansive matrix Q and finite sets D_{ij} for $i, j \leq m$ such that

$$\Lambda_i = \bigcup_{j=1}^m (Q \Lambda_j + D_{ij}), \quad i \leq m,$$

where the union on the right side is disjoint.

Given a fixed point T of Ω, we can associate a substitution Delone multi-color set $\Lambda_T = (\Lambda_i)_{i \leq m}$ of T by taking representative points of tiles in the relatively same positions for the same color tiles in the tiling. There is a canonical way to choose representative points, called control points. A tile map $\gamma = \gamma_\Omega$ is a map from T to itself which sends a tile T to the one in $\Omega(T)$ such that $\gamma(T_1)$ and $\gamma(T_2)$ are located in the same relative position in $\Omega(T_1)$ and $\Omega(T_2)$ whenever $\ell(T_1) = \ell(T_2)$. A control point $c(T)$ of $T \in T$ is defined by

$$c(T) = \bigcap_{n=1}^{\infty} Q^{-n}(\text{supp}(\gamma^n(T))).$$

Control points are representative points, i.e., $U - c(U) = V - c(V)$ holds if $\ell(U) = \ell(V)$ with $U, V \in T$. Let Λ_i be the set of control points of color i. Clearly, $j = \ell(\gamma(T_i))$ implies $Q \Lambda_i \subset \Lambda_j$ and the set of control points $C = \bigcup_{i=1}^m \Lambda_i$ is invariant under the expansion by Q, that is, $QC \subset C$. We obtain an associated substitution Delone multi-color set $\Lambda = \Lambda_T = (\Lambda_i)_{i \leq m}$.

In section 3, we have to assume a lot of strong coincidences by changing control points for a given tiling T. If we change control points of tiles of T by $\Lambda'_i = \Lambda_i - g_i$, then the set equation will be shifted like

$$\Lambda'_i = \bigcup_{j=1}^m Q \Lambda'_j + D'_{ij}$$

with $D'_{ij} = \{d_{ij} + Q g_j - g_i : 1 \leq i, j \leq m\}$. The corresponding tile equation becomes

$$QA'_j = \bigcup A'_i + D'_{ij}$$

which is satisfied by $A'_j = A_j + g_j$. So we set $\text{supp}(T'_j) = A'_j$ and $\ell(T'_j) = \ell(T_j)$. To avoid heavy notation, we do not distinguish such changes of control points and use the same symbols Λ_i and T_i.

2.3. Coincidences. The set of return vectors is defined by $\Xi(T) = \{y \in \mathbb{R}^d : U = V - y, \text{where } U, V \in T\}$. A triple (U, y, V), with $U, V \in T$ and $y \in \Xi(T)$, is called an overlap if

$$(\text{supp}(U))^\circ \cap (\text{supp}(V) - y)^\circ \neq \emptyset.$$

An overlap (U, y, V) is a coincidence if $U = V - y$. Let $\mathcal{O} = (U, y, V)$ be an overlap in T, we define ℓ-th inflated overlap

$$\Omega^\ell \mathcal{O} = \{(U', Q^\ell y, V') : U' \in \Omega^\ell (U), V' \in \Omega^\ell (V), \text{and } (U', Q^\ell y, V') \text{ is an overlap}\}.$$
We say that a self-affine tiling \mathcal{T} admits overlap coincidence if there exists $\ell \in \mathbb{Z}_+$ such that for each overlap O in \mathcal{T}, $O^\ell O$ contains a coincidence. Two overlaps (U, y, V) and (U_1, y_1, V_1) are equivalent, if there is $x \in \mathbb{R}^d$ that both $U_1 = U - x$ and $V_1 - y_1 = V - y - x$ hold. The equivalence class is denoted by (U, y, V). Hereafter we assume an important condition that $\Xi(\mathcal{T})$ forms a Meyer set. This condition is equivalent to the Pisot family condition for Q, if Q is diagonalizable and all its eigenvalues are algebraic conjugate with the same multiplicity [13]. The number of equivalence classes of overlaps is finite, by the Meyer property of $\Xi(\mathcal{T})$. The action of Ω is well-defined on equivalence classes of overlaps. An overlap graph with multiplicity is a finite directed graph whose vertices are the equivalence classes of overlaps. Multiplicities of the edge from (U, y, V) to (A, z, B) is given by the number of overlaps in $\Xi((U, y, V))$ equivalent to (A, z, B) (c.f. [1]). Overlap coincidence is confirmed by checking whether from each vertex of this graph there is a path leading to a coincidence. Overlap coincidence is equivalent to pure discreteness of self-affine tiling dynamical system $X_{\mathcal{T}}$ [19].

Strong coincidence on letter substitution is naturally generalized to self-similar tiling in \mathbb{R}^d in [2]. We adapt this definition to control points. Let \mathcal{T} be a self-affine tiling in \mathbb{R}^d and $\Lambda = \{T_1, \ldots, T_m\}$ be the prototile set of \mathcal{T}. We say that the set of the control points is admissible if $\cap_{1 \leq m} (\text{supp}(T_i) - c(T_i))$ has non-empty interior.

Let \mathcal{T} be the fixed point of Ω. Let $c(T_i)$ ($i = 1, \ldots, m$) be the admissible control points and Λ be an associated substitution Delone multi-color set for which $\mathcal{T} = \{T_i - c(T_i) + u_i \mid u_i \in \Lambda_i, i \leq m\}$. If for any $1 \leq i, j \leq m$, there is a positive integer L that

$$\Omega^L(T_i - c(T_i)) \cap \Omega^L(T_j - c(T_j)) \neq \emptyset,$$

then we say that Λ admits strong coincidence. In other words, strong coincidence means that for every pair of tiles $(U, V) \in \mathcal{T}^2$, $\Omega^L(U - c(U))$ and $\Omega^L(V - c(V))$ share a common tile in the same position for some L.

3. Strong coincidence and overlap coincidence. The set of eventually return vectors is defined by

$$\mathcal{G} : = \bigcup_{k=0}^{\infty} Q^{-k}(\Lambda_i - \Lambda_i), \quad \text{for some } i \leq m$$

which is independent of the choice of i, by primitivity of Ω. The tiling dynamical system is invariant under replacement of the substitution rule Ω by Ω^n. We consider control points of Ω^n as well. Hereafter we put $\Lambda = \bigcup_{i=1}^{m} \Lambda_i$ for $\Lambda = \Lambda_\mathcal{T} = (\Lambda_i)$ to distinguish the multi-color set and its union. Let $\langle \mathcal{G} \rangle$ be the additive subgroup of \mathbb{R}^d generated by \mathcal{G}. We say that \mathcal{T} satisfies multiple strong coincidence of level n if all multi-color Delone set Λ’s generated by admissible control points of Ω^n with $\Lambda - \Lambda \subset \langle \mathcal{G} \rangle$ admit strong coincidence.

Hereafter when we speak about a topological/metrical property (connected, bounded, diameter) of a generalized patch, it refers to the corresponding property of its support. A rod is an unbounded connected generalized patch of \mathcal{T} whose tiles have an identical color. A rod tiling is a tiling that every tile belongs to a rod. For ease of negation, a non-rod tiling is a tiling which is not a rod tiling. A tiling is called non-periodic if there are no non-trivial period, i.e., $\{p \in \mathbb{R}^d \mid \mathcal{T} + p = \mathcal{T}\} = \{0\}$.

Remark 1. There are many examples of periodic self-affine rod tiling. Consider a tiling of \mathbb{R}^2 by squares $[0, 1]^2 + (x, y)$ with $(x, y) \in \mathbb{Z}^2$ and their colors are defined by
y \text{(mod 2)} or \(x + y \text{(mod 2)} \). However we do not know an example of non-periodic self-affine rod tiling.

Theorem 3.1. Let \(\mathcal{T} \) be a non-rod self affine tiling by connected tiles such that \(\Xi(\mathcal{T}) \) is a Meyer set. Then there is a constant \(n \) depending only on \(\mathcal{T} \) that \(\mathcal{T} \) satisfies multiple strong coincidence of level \(n \) if and only if \(\mathcal{T} \) satisfies overlap coincidence.

Consider a substitution \(\sigma \) over \(m \) letters \(\{1, 2, \ldots, m\} \) whose substitution matrix is \(M_\sigma = (|\sigma(j)|_i) \), where \(|w|_i \) is the number of letter \(i \) in a word \(w \). We say that \(\sigma \) is a Pisot substitution, if the Perron Frobenius root \(\beta \) of \(M_\sigma \) is a Pisot number. The canonical suspension tiling \(\mathcal{T} \) in \(\mathbb{R} \) of \(\sigma \) with an expansion factor \(\beta \) is defined by associating to the letters the intervals whose lengths are given by a left eigenvector of \(M_\sigma \) corresponding to \(\beta \).

Corollary 1. The statement is valid for the suspension tiling of a Pisot substitution.

Indeed, \(1 \times 1 \) matrix \(Q = (\beta) \) satisfies Pisot family condition, tiles are intervals and the suspension tiling can not be a rod tiling, since it has at least two translationally inequivalent tiles in \(\mathbb{R} \).

Remark 2. Multiple strong coincidence of level \(n \) requires many strong coincidences at a time for a fixed tiling \(\mathcal{T} \) even when \(n = 1 \). In dimension one, the claim of Nakaishi [15] reads a single strong coincidence implies overlap coincidence. Theorem 3.1 covers general cases but the requirement is much stronger. It would be interesting is to make smaller the constant \(n \) in Theorem 3.1. For e.g., can we take \(n = 1 \) ?

We prepare a lemma.

Lemma 3.2. Let \(G \) be a strongly connected finite directed graph and \(C \) be a set of cycles of \(G \). Then there is a subgraph \(G(C) \) of \(G \) with the following property.

- The set of vertices of \(G(C) \) is equal to that of \(G \).
- Every vertex has exactly one outgoing edge.
- The set of cycles of \(G(C) \) is equal to \(C \).

Proof. Put \(H_0 = C \). We inductively construct \(H_i \) for \(i = 0, 1, \ldots \) which satisfies:

- Every vertex has exactly one outgoing edge.
- The set of cycles of \(H_i \) is equal to \(C \).

Assume that the induced graph \(G \setminus H_i \) is non empty and take a vertex \(v \) from \(G \setminus H_i \). Since \(G \) is strongly connected, there is a path from \(v \) leading to \(H_i \). So there is a vertex \(u \in G \setminus H_i \) and an edge from \(u \) to a vertex of \(H_i \). We define \(H_{i+1} \) by adding this \(u \) and the outgoing edge. Then \(H_{i+1} \) clearly satisfies above two conditions. Since \(G \) is finite, we find \(m \) that \(G \setminus H_m \) is empty, i.e., the set of vertices of \(G \) and \(H_m \) are the same. We finish the proof by taking \(G(C) = H_m \).

Proof of Theorem 3.1. Theorem 4.3 of [2] shows that overlap coincidence of \(\mathcal{T} \) implies multiple strong coincidence of level \(n \) for any \(n \geq 1 \). We prove that there is a constant \(n \) such that multiple strong coincidence of level \(n \) implies overlap coincidence.

Assume that \(\mathcal{T} \) does not admit overlap coincidence. Construct the overlap graph \(G \) of \(\mathcal{T} \) with multiplicity. Since \(\mathcal{T} \) does not admit overlap coincidence, there is a strongly connected component\(^2\) \(S \) of \(G \) such that its spectral radius is equal to

\(^2\)In this assertion, one can take either usual overlaps or potential overlaps as we like.
|

\[|\det(Q)| \]

and from each overlap of \(S \) there is no path leading to a coincidence in \(G \). Without loss of generality, we may assume that the incidence matrix of \(S \) is primitive\(^3\). Thus we can find a positive integer \(n_0 \) such that for every overlap \((U, y, V) \), \(\Omega^{n_0}(U, y, V) \) contains an overlap equivalent to \((U, y, V) \). Since \(\Xi(T) \) is a Meyer set, number of equivalence classes of overlaps is finite and bounded by a constant which depends only on \(T \). Thus there is an upper bound of \(n_0 \) which depends only on \(T \). We further assume multiple strong coincidence of level \(n = n_0 \) on \(T \) and derive a contradiction.

We claim that in the component \(S \) there is an overlap \((U, y, V) \) with \(\ell(U) \neq \ell(V) \) for any non-rod self-affine tiling by connected tiles. Assume on the contrary that all overlaps in \(S \) are of the form \((A, z, B)\) with \(\ell(A) = \ell(B) \). Since \(S \) does not contain a coincidence, \(z \neq 0 \) for these overlaps. Taking \(k \)-th inflated overlap of \((A, z, B)\), we obtain of patches \(P \) and \(Q \), both contain large balls, say \(B_p(r) \) and \(B_q(r) \), that the tiles of \(P \) close to \(p \) and the tiles of \(Q \) close to \(q \) are in multiple correspondence in the following sense. Putting \(x = Q^k z \), for a tile \(U \in P \) close to \(p \) there are several (at least two) tiles \(V \in Q \) that \((U, x, V) \) are overlaps in \(S \) and \(\text{supp}(U) \) is contained in the union of \(\text{supp}(V - x) \), and the same statements hold after interchanging the role of \(U \) and \(V \). Take a tile \(U \) with \(p \in \text{supp}(U) \subset B_p(r) \). Then overlaps \((U, x, V)\) with \(V \in Q \) give rise to a patch \(V_1 = \bigcup V \) that \(\text{supp}(U) \subseteq \text{supp}(V_1) - x \). By assumption, \(\ell(V_1) = \ell(U) \) for every \(V_1 \in V_1 \). By using path connectedness of tiles\(^4\), the patch \(V_1 \) is path connected. If \(\text{supp}(V_1) \subset B_q(r) \), then there is a patch \(U_1 = \bigcup U_1 \) where \(U_1 \in P \) are taken from all overlaps of the form \((U_1, x, V_1)\) with some \(V_1 \in V_1 \). This patch is also path connected and satisfies \(\text{supp}(V_1) - x \subseteq \text{supp}(U_1) \) and each tile of \(U_1 \) has the same color as \(U \). In this manner, by taking large \(r \), we obtain a long sequence of path connected patches

\[\text{supp}(U) \subset \text{supp}(V_1 - x) \subset \text{supp}(U_1) \subset \text{supp}(V_2 - x) \subset \text{supp}(U_2) \subset \ldots . \]

The number of tiles strictly increases and all tiles appear in this sequence has the same color \(\ell(U) \). This shows for any \(M > 0 \), there exists a ball of radius \(R \) that each tile \(U \) in the ball belongs to a connected patch in \(T \) having diameter greater than \(M \), whose tiles have an identical color \(\ell(U) \). Therefore by using FLC, among \(X_T \) we can choose a rod tiling. Being a rod tiling is invariant under translation and closure operation, using minimality of \(X_T \) we see that every tiling in \(X_T \) is a rod tiling. This gives a contradiction, which finishes the proof of the claim.

Consider a directed graph \(V \) over \(\{1, \ldots, m\} \) whose edge \(i \to j \) is given if there are \(U, V \in S \) that \(V \in \Omega^m(U) \) with \(i = \ell(U) \) and \(j = \ell(V) \). Clearly \(V \) is strongly connected as well. Pick one overlap \((U, y, V)\) from \(S \) that \(\ell(U) \neq \ell(V) \) and select one of the overlaps equivalent to \((U, y, V)\) in \(\Omega^m(U, y, V) \). We select a tile map \(\gamma = \gamma_{\Omega^m} \) which sends \(\gamma(U) \) to this \(U \) in \((U, y, V)\), and \(\gamma(V) \) to the \(V \) in \((U, y, V)\), which correspond to two cycles \(\ell(U) \to \ell(U) \) and \(\ell(V) \to \ell(V) \) on \(V \). Let \(C \) be the set of these two cycles and take \(V(C) \) by Lemma 3.2. The tile map \(\gamma = \gamma_{\Omega^m} \) is chosen so that \(\ell(U) \to \ell(\gamma(U)) \) for \(U \in \{T_1, \ldots, T_m\} \) forms the set of edges of \(V(C) \). By the choice of the subgraph, every path of length \(m \) on this subgraph must fall into one of the two cycles. Note that by this choice of \(\gamma \), the control points of

\(^3\)If the incidence matrix of \(S \) is irreducible but not primitive, then take a suitable power of \(\Omega \) by Perron-Frobenius theory.

\(^4\)We say that an overlap belongs to \(S \) if its equivalence class does.

\(^5\)Connectedness and path connectedness are equivalent for self-affine tiles \([14]\).
and $V - y$ are exactly matching, because both of them are equal to a common point $\cap_{k=1}^{\infty} Q^{-nk} (\gamma^k(U) \cap \gamma^k(V - y))$.

We claim that by this γ, we have $\Lambda - \Lambda \subset \langle \mathcal{G} \rangle$. In fact, since every overlap in the overlap graph is of the form (A, z, B) with $z \in \bigcup_{i=1}^{m} (\Lambda_i - \Lambda)$, and control points of U and $V - y$ are matching on (U, y, V), i.e., $c(U) - c(V) - y$, we have $c(U) - c(V) \in \mathcal{G}$. By construction of \mathcal{V} for any $x, y \in \Lambda$, we have $Q^m x, Q^m y \in \Lambda_{i(U)} \cup \Lambda_{i(V)}$. For instance, if $Q^m x \in \Lambda_{i(U)}$ and $Q^m y \in \Lambda_{i(V)}$, then $Q^m x = c(U) + f, Q^m y = c(V) + g$ hold with $f \in \Lambda_{i(U)} - \Lambda_{i(U)}, g \in \Lambda_{i(V)} - \Lambda_{i(V)}$. Therefore we have $\Lambda - \Lambda \subset \langle \mathcal{G} \rangle$.

We also see that the set of control points $\Lambda = (\Lambda_i)$ associated to γ is admissible. In fact, since (U, y, V) is an overlap, $\text{supp}(U) \cap \text{supp}(V - y)$ has an inner point. Since $y = c(V) - c(U)$, we have $(\text{supp}(U - c(U)))^c \cap (\text{supp}(V - c(V)))^c \neq \emptyset$. The admissibility follows from $Q^m x \in \Lambda_{i(U)} \cup \Lambda_{i(V)}$ for any $x \in \Lambda$.

Summing up, from $(U, y, V) \in S$, we have chosen a tile map $\gamma\Omega^c$ which produces a substitution Delone multi-color set of admissible control points with $\Lambda - \Lambda \subset \langle \mathcal{G} \rangle$. By the assumption of multiple strong coincidence of level n, we know $\Omega^k(U - c(U)) \cap \Omega^k(V - c(V))$ is non empty for some k, which shows that (U, y, V) leads to a coincidence, giving a desired contradiction.

Remark 3. We use the assumptions that each tile is connected and T is a non-rod tiling only to show that there is an overlap $(U, y, V) \in S$ that $\ell(U) \neq \ell(V)$, which allows us to define a tile map. It is likely that these assumptions are not necessary, i.e., every non-periodic self-affine tiling that $\Xi(T)$ is a Meyer set, then such overlap must appear in S.

REFERENCES

[1] S. Akiyama and J.-Y. Lee, Algorithm for determining pure pointedness of self-affine tilings, *Adv. Math.*, 226 (2011), 2855–2883.

[2] S. Akiyama and J.-Y. Lee, Overlap coincidence to strong coincidence in substitution tiling dynamics, *European J. Combin.*, 39 (2014), 233–243.

[3] P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals, *Bull. Belg. Math. Soc. Simon Stevin*, 8 (2001), 181–207.

[4] M. Barge and B. Diamond, Coincidence for substitutions of Pisot type, *Bull. Soc. Math. France*, 130 (2002), 619–626.

[5] M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions, *Amer. J. Math.*, 128 (2006), 1219–1282.

[6] F. M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length, *Z. Wahrscheinlichkeitstheorie und Verw. Gebiete*, 41 (1977/78), 221–239.

[7] S. Ito and H. Rao, Atomic surfaces, tilings and coincidence. I. Irreducible case, *Israel J. Math.*, 153 (2006), 129–155.

[8] T. Kamae, A topological invariant of substitution minimal sets, *J. Math. Soc. Japan*, 24 (1972), 285–306.

[9] J. C. Lagarias and Y. Wang, Substitution Delone Sets, *Discrete Comput. Geom.*, 29 (2003), 175–209.

[10] J. Lagarias, Meyer’s concept of quasicrystal and quasiregular sets, *Comm. Math. Phys.*, 179 (1996), 365–376.

[11] J.-Y. Lee, Substitution Delone sets with pure point spectrum are inter-model sets, *J. Geom. Phys.*, 57 (2007), 2263–2285.

[12] J.-Y. Lee, R. V. Moody and B. Solomyak, Consequences of pure point diffraction spectra for multiset substitution systems, *Discrete Comput. Geom.*, 29 (2003), 525–560.

[13] J.-Y. Lee and B. Solomyak, Pisot family substitution tilings, discrete spectrum and the Meyer property, *Discret. Conti. Dynam. Sys.*, 32 (2012), 935–959.

[14] J. Luo, S. Akiyama and J. M. Thuswaldner, On the boundary connectedness of connected tiles, *Math. Proc. Cambridge Phil. Soc.*, 137 (2004), 397–410.

[15] K. Nakaishi, Pisot conjecture and Rauzy fractals, preprint.
[16] M. Queffélec, *Substitution Dynamical Systems—Spectral Analysis*, Lecture Notes in Mathematics, 1294, Springer-Verlag, Berlin, 1987.

[17] G. Rauzy, Nombres algébriques et substitutions, *Bull. Soc. Math. France*, 110 (1982), 147–178.

[18] A. Siegel and J. Thuswaldner, Topological properties of Rauzy fractals, *Mém. Soc. Math. Fr. (N.S.)*, 118 (2009), p140.

[19] B. Solomyak, Dynamics of self-similar tilings, *Ergodic Theory Dynam. Systems*, 17 (1997), 695–738.

Received September 2015; revised December 2015.

E-mail address: akiyama@math.tsukuba.ac.jp