The Complete Mitochondrial Genome of the Rice Moth, Corcyra cephalonica

Authors: Wu, Yu-Peng, Li, Jie, Zhao, Jin-Liang, Su, Tian-Juan, Luo, A-Rong, et al.

Source: Journal of Insect Science, 12(72) : 1-14

Published By: Entomological Society of America

URL: https://doi.org/10.1673/031.012.7201
The complete mitochondrial genome of the rice moth,
Corcyra cephalonica

Yu-Peng Wu1,2,4a, Jie Li3b, Jin-Liang Zhao2c, Tian-Juan Su2,5d, A-Rong Luo2e, Ren-Jun Fan6f, Ming-Chang Chen7g, Chun-Sheng Wu2h, Chao-Dong Zhu2i*

1Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
2Key Laboratory of Zoological Systematics and Evolution (CAS), Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
3Institute of Fruit Trees, Shanxi Academy of Agricultural Sciences, 030031
4Plant Protection and Quarantine Station of Shanxi Province, Taiyuan 030001, China
5College of Life Sciences, Capital Normal University, Beijing, 100048, China
6Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, 030031
7Shanxi Academy of Agricultural Sciences, 030031

Abstract

The complete mitochondrial genome (mitogenome) of the rice moth, *Corcyra cephalonica* Stainton (Lepidoptera: Pyralidae) was determined as a circular molecular of 15,273 bp in size. The mitogenome composition (37 genes) and gene order are the same as the other lepidopterans. Nucleotide composition of the *C. cephalonica* mitogenome is highly A+T biased (80.43%) like other insects. Twelve protein–coding genes start with a typical ATN codon, with the exception of *cox1* gene, which uses CGA as the initial codon. Nine protein–coding genes have the common stop codon TAA, and the *nad2*, *cox1*, *cox2*, and *nad4* have single T as the incomplete stop codon. 22 tRNA genes demonstrated cloverleaf secondary structure. The mitogenome has several large intergenic spacer regions, the spacer 1 between *trnQ* gene and *nad2* gene, which is common in Lepidoptera. The spacer 3 between *trnE* and *trnF* includes microsatellite–like repeat regions (AT)18 and (TTAT)3. The spacer 4 (16 bp) between *trnS2* gene and *nad1* gene has a motif ATACTAT; another species, *Sesamia inferens* encodes ATCATAT at the same position, while other lepidopteran insects encode a similar ATACTAA motif. The spacer 6 is A+T rich region, include motif ATAGA and a 20-bp poly(T) stretch and two microsatellite (AT)9, (AT)8 elements.

Keywords: Galleriinae, mitogenome
Abbreviations: mitogenome, mitochondrial genome; PCGs, protein–coding genes
Correspondence: a wuyupeng007@163.com, b lijie_durham@hotmail.com, c liangzidaojian@163.com, d sutianjuan126@126.com, e luorj@163.com, f rjfan@163.com, g mcchensx@sina.com, h wucs@ioz.ac.cn, i zhucd@ioz.ac.cn, * Corresponding author
Editor: Marek Jindra was Editor of this paper.
Received: 15 March 2011, **Accepted:** 23 September 2011
Copyright: This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
ISSN: 1536-2442 | Vol. 12, Number 72

Cite this paper as:
Wu Y-P, Li J, Zhao J-L, Su T-J, Luo A-R, Fan R-J, Chen M-C, Wu C-S, Zhu C-D. 2012. The complete mitochondrial genome of the rice moth, *Corcyra cephalonica*. *Journal of Insect Science* 12:72 available online: insectscience.org/12.72
Introduction

Animal mitogenomes are typically enclosed circular molecules of 14-20 kb in length with 37 genes, 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA), and two ribosomal RNA (rRNA). It also contains an A+T rich non-coding area (also called control region) responsible for regulating transcription and replication of the mitogenome (Boore 1999; Taanman 1999). Mitogenomes have a simple structure, undergo fast evolution, are normally maternal inherited, and have been broadly applied in phylogenetic reconstruction, phylogeography, population structure and dynamics, and molecular evolution (Zhang et al. 1995; Nardi et al. 2003; Arunkumar et al. 2006). Recent advancements in sequencing technology have lead to rapid growth of mitogenome data in Genbank. To date, the complete mitogenome sequences of more than 140 species have been determined for insects, including 31 species of Lepidoptera that have been entirely or nearly entirely sequenced (Coates et al. 2005; Kim et al. 2006; Lee et al. 2006; Cameron et al. 2007; Cha et al. 2007; Cameron and Whiting 2008; Liu et al. 2008; Jiang et al. 2009; Hong et al. 2009; Pan et al. 2008; Salvato et al. 2008; Kim MI et al. 2009; Hu et al. 2010; Liao et al. 2010; Li et al. 2010; Zhao et al. 2010; Margam et al. 2011).

Lepidoptera is the second largest order after Coleoptera within in Insecta and includes moths and butterflies. Most of them are agricultural and forestry pests, pollinators, and resources insects (Li et al. 2009). Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) is in a small subfamily of Galleriinae with 261 species of Pyralidae, which contains more than 330 species of 70 genera (Heppner 1991). The genus Corcyra contains only two species, C. nidicolella and C. cephalonica; the latter is known to be a stored product pest, and is controlled with botanical insecticides and trapped with sex pheromone (Türkera 1998; Allotey and Azalekor 2000; Coelho et al. 2007). Corcyra cephalonica is used as the host for cultivating Trichogramma and other parasitoid wasps (Muthukrishnan et al. 2003; Jalali et al. 2007). Moreover, it is lately being used as an experimental model insect. A group of the functional genes have been identified (Nagamanju et al. 2003; Chaitanya and Dutta-Gupta, 2010; Damara et al. 2010; Gullipalli et al. 2010), but information regarding the mitochondrial genome is lacking. The availability of the mitogenome sequence will definitely be beneficial in the basic and applied studies on C. cephalonica.

In this paper, the mitogenome of C. cephalonica was sequenced and analyzed. So far, there are four species within Pyraloidea with known mitogenome: Diatraea saccharalis (Li et al. 2010, Ostrinia furnacalis and O. nubilalis (Coates et al. 2005), and Chilo suppressalis [unpublished, JF339041].

Materials and Methods

DNA samples extraction

Corcyra eggs were collected from Guangdong Province of China and raised in the laboratory in Beijing. The hatched adults were collected, preserved in 100% ethanol, and stored at −20 °C. Total DNA was extracted and isolated from single specimens using the DNeasy Tissue kit (QIAGEN, www.qiagen.com) according to manufacturer instructions.

Primer design, PCR, and sequencing

The short fragment amplifications were performed using the universal PCR primers
from Simon et al. (1994). The degenerate and specific primer pairs were designed based on the known mitochondrial sequences in Lepidoptera, or designed by Primer 5.0 software on the fragments that we previously sequenced (Table 1). All the primers were synthesized by Shanghai Sangon Biotechnology Co., Ltd, www.sangon.com. For fragments of length less than 2 kb, PCR conditions were as follows: 95 °C for five min, 34 cycles of 94 °C for 30 sec, 50-55 °C (depending on primer combinations), 1-3 min (depending on putative length of the fragments) at 68 °C, and a final extension step of 72 °C for 10 min. For fragments of length longer than 2 kb, PCR conditions were as follows: 92 °C for two min, 40 cycles of 92 °C for 30 sec, 50-55 °C for 30 sec (depending on primer combinations), 60 °C for 12 min, and a final extension step of 60 °C for 20 min.

The entire mitogenome of the *Corcyra* was amplified in 17 fragments. For most fragments, 2×Taq PCR MasterMix (Tiangen Biotech Co., Ltd., www.tiangen.com) was used in the amplification; fragments longer than 2 kb (e.g., *rrnL-rrnS* and *nad4-cob*) and with higher AT contents (e.g., *rrnS-nad2* and *cox3-nad5*) were amplified using Takara LA Taq (Takara Co. www.takara-bio.com). All amplifications were performed on an Eppendorf Mastercycler and Mastercycler gradient in 50 μL reaction volumes. The reaction volume of 2×Taq PCR MasterMix contained 22 μL sterilized distilled water, 25 μL 2×Master Mix, 1 μL of each primer (10 μM), and 1 μL of DNA template; the reaction volume of Takara LA Taq consisted of 26.5 μL sterilized distilled water, 5 μL 10×LA PCR Buffer II (Takara), 5 μL 25 mM MgCl₂, 8 μL of dNTPs Mixture, 2 μL of each primer (10 μM), 1 μL of DNA template, and 0.5 μL (1.25 U) of Takara LA Taq polymerase (Takara).

The PCR products were detected via electrophoresis in 1% agarose gel, purified using the 3S Spin PCR Product Purification Kit, and sequenced directly with ABI-377 automatic DNA sequencer. All fragments were sequenced from both strands. Short amplified products were sequenced directly by internal primers, and long amplified products were sequenced completely by primer walking. The *rrnS-nad2* region was sequenced after cloning. The purified PCR products were ligated to the pEASY-T3 Cloning Vector (Beijing TransGen Biotech Co., Ltd., transgen.com.cn) and then sequenced by M13-F and M13-R primers and walking. Sequencing was performed using ABI BigDye ver 3.1 dye terminator sequencing technology and run on ABI PRISM 3730x1 capillary sequencers.

Analysis and annotation

Sequence annotation was performed using the DNAStar package (DNAStar Inc., www.dnastar.com). The sequence was checked manually for consistency by alignment, and tRNA genes were found using tRNAscan-SE software v.1.21 (Lowe and Eddy 1997) with manual editing. The undermined putative tRNAs were identified by sequence alignment with other insects of Pyralidae (Diatraea, *O. furnacalis*, and *O. nubilalis*) using Bioedit (Hall 1999). Secondary structure was inferred using DNASIS v.2.5. The *trnS1(AGN)* secondary structure was developed as proposed by Steinberg and Cedergren (1994). PCGs and rRNAs were identified by similarity to other lepidopteran sequences. The nucleotide sequences of the PCGs were translated based on the invertebrate mtDNA genetic code. Since the *Corcyra* does not utilize the AGG codon, use of the variant arthropod genetic code (Abascal et al. 2006) was unnecessary.
Nucleotide composition and codon usage were calculated using MEGA4.0 (Tamura et al. 2007).

Results

Genome structure and organization

The *Corcyra* mitogenome is a circular molecule 15,273 bp in length; data were uploaded to Genbank (HQ897685). The *Corcyra* mitogenome showed the standard gene complement containing 13 PCGs, 2 rRNAs, 22 tRNAs, and non–coding regions typical for lepidopterans. The *trnM* is coded between the A+T rich region and tRNA-Ile (order is A+T region-*trnM*-trnI-trnQ), which was different from the ancestral gene order of insects (A+T region-*trnI-*trnQ-*trnM*). Since the *trnS2(UCN)* was not found by tRNA-Scan-SE, it was later determined by sequence comparison with other lepidopteran insects.

The *Corcyra* mitogenome was biased toward A+T content (80.43%) with the value falling into the lepidopteran range of 77.84% in *Ochrogaster lunifer* (Salvato et al. 2008) to 82.66% in *Coreana raphaelis* (Kim et al. 2006). Additionally, the A+T content was 78.96% in PCGs, 82.95%, in *rrnL* genes, and 85.86% in *rrns* genes. These values were also well within the range reported for other lepidopteran MtDNA sequences (Table 3).

Protein–coding genes

The initial and termination codons of thirteen PCGs are shown in Table 2. Twelve PCGs started with a typical ATN codon (ATT for *nad2*, *cox2*, *atp8*, *nad3*, *nad6*; ATA for *nad5*, *cob*, *nad1*; ATG for *atp6*, *cox3*, *nad4*, *nad4l*). One exception is the *cox1* gene, which used CGA as a start codon.

The putative start codon CGA is common across insects (Fenn et al. 2007) such as *Bombyx mori* (Yukuhiro et al. 2002), *O. nubilalis* and *O. furnacalis* (Coates et al. 2005), *Adoxophyes honmatai* (Lee et al. 2006), *Coreana* (Kim et al. 2006), *Antheraea pernyi* (Liu et al. 2008), *B. mandarina* (Pan et al. 2008), *Ochrogaster* (Salvato et al. 2008), *Artogeia melete* (Hong et al. 2009), *Eriogyna pyretorum* (Jiang et al. 2009), and *Hyphantria cunea* (Liao et al. 2010).

Nine PCGs had the common stop codon TAA, while the *nad2*, *cox1*, *cox2*, *nad4* have single T as an incomplete stop codon, also found in other animal mitochondrial genes (Clary and Wolstenholme 1985). The common interpretation of this phenomenon is that the TAA terminator is created via post–transcriptional polyadenylation (Ojala et al. 1981).

Transfer and ribosomal RNA genes

The 22 tRNA genes ranging from 64 to 73 nucleotides were spread over the mitogenome. Fourteen tRNAs were coded on the J–strand and eight on the N–strand, which is the same organization observed in other lepidopteran mitogenomes. Complete cloverleaf secondary structures could be inferred for 21 of the 22 tRNAs with the exception of *trnS1(AGN)*, which lacks the DHU arm (Figure 1). A total of 43 unmatched base pairs were scattered in 20 tRNA genes, including 20 pairs in the DHU stems, eight pairs in the amino acid acceptor stems, nine pairs in the TΨC stems, and six pairs in the anticodon stems. 24 of them are G-U pairs, which form a weak bond. The remaining were A-A, C-A, C-U, G-A, G-G, and U-U mismatches.

As in the other insect mitogenome sequences, two rRNA genes were present in *Corcyra*.
The **rrnL** were found between **trnL(CUN)** and **trnV**, and the **rrnS** between **trnV** and the A+T rich region, respectively.

Codon usage

Relative synonymous codon usage values of *Corcyra* mitogenome are summarized in Table 4. The codons CTG, CCG, and AGG were not represented in the coding sequences. Leucine (14.42%), isoleucine (12.14%), phenylalanine (9.74%), and serine (9.23%) were the most common amino acids in *Corcyra* mitochondrial proteins (45.53%). These amino acids are abundant in other insects, averaging 45.08% (Lessinger et al. 2000).

Non–coding and overlapping region

The *Corcyra* mitogenome harbored 15 non–coding regions, from 1 to 351 bp to 512 bp. Intergenic spacer sequences covered four major regions of length more than 10 bp. The remaining intergenic spacer were less than 5 bp.

Spacer 1 (61 bp), located between **trnQ** gene and **nad2** gene, is a common intergenic spacer rich in AT nucleotides (96.72%). The location of this spacer is fixed in lepidopterans, but varied in length from 40 bp (*Parnassius bremeri*) (Kim MI 2009) to 88 bp (*Sasakia charonda*) (Unpublished, AP011824). This spacer can be taken as a lepidopteran mitogenome marker not found in other insect mitogenomes. Kim MI (2009) found that the intergenic spacer sequences and the **nad2** gene had higher sequence identity than other fragments of the mitogenome. There were 29 species with more than 60% identity of 32 total lepidopteran species sequenced (Table 5), suggesting that this spacer sequence originated from a partial duplication of the **nad2** gene.

Spacer 2 (49 bp) was found between **trnE** and **trnF** genes, including two microsatellite–like regions, (TA)18 and (TTAT)3, similar to other lepidopterans. The spacer in *Adoxophyes* (Lee et al. 2006) is 222 bp and contains a different motif (TATTA)31. The spacer in *Ochrogaster* (Salvato et al. 2008) is 70 bp, contains a microsatellite (TA)23, and shows tripllication of a 10–nucleotide motif with some changes. In other lepidoptera insects it is shorter than 10 bp.

Spacer 3 (16 bp) was between the **trnS2(UCN)** and **nad1** genes, commonly detectable in lepidopteran insects, and measured 16-38 bp. This intergenic spacer sequence of most lepidopterans harbored the motif **Figure 1.** Putative secondary structures for the tRNA genes of the *Corcyra cephalonica* mitogenome. High quality figures are available online.
Figure 2. Alignment result of Spacer 4 tRNA-Ser(UCR)-NAD1 in 28 lepidopteran species. High quality figures are available online.

 Spacer 4 (10 bp) was between nad1 and trnL(CUN). Ostrinia furnacalis and O. nubilalis also showed 10 bp spacers, while other lepidopteran spacers measured 1-6 bp.

 Spacer 5 (351 bp) was A+T rich and found between rrnS and trnM with AT nucleotides (96.58%). There was a motif ATAGA followed by a 20 bp poly-T stretch downstream of rrnS, and two microsatellite–like regions (TA)9 and (TA)8. Finally, a 10 bp poly-A was present upstream of trnM. The feature was found to be common for other lepidopteran sequenced to date.

 Overlapping sequences had a total of 35 bp spread over eight regions. Like other insect species (Adoxophyes) (35), atp8 and atp6 had a seven–nucleotide overlap (ATGATAAA), known to be translated from the same cistronic mRNAs. The longest overlapping sequence (8 bp) was between trnW gene and trnC genes. The remaining overlapping sequences were all less than 6 bp.

Discussion

The Corcyra mitogenome is shorter than most lepidopteran mitogenomes previously reported. The shortest mitogenome is 15,140 bp (Artogeia) (Hong et al. 2009), and the longest is 15,928 bp (B. mandarina) (Pan et al. 2008). The Corcyra mitogenome had gene content and organization similar to other lepidopterans, which suggests that the mitochondrial gene arrangement in lepidopterans evolved independently after splitting from its stem lineage (Kim et al. 2006).

The most frequent amino acids in the Corcyra mitochondrial proteins were leucine, isoleucine, phenylalanine, and serine, all with high AT mutational bias that is a seemingly common feature in lepidopterans. Abascal et al. (2006) indicated that several arthropods have a new genetic code that translates the codon AGG as lysine instead of serine or arginine, these AGG reassignments may be events of parallel and correlated evolution between the arthropod genetic codes and the trnK/trnS. However, the variant codon, AGG, was not used by Corcyra.

The putative start codons of PCGs of the Corcyra mitogenome are ATNs, except for the CGA start codon of the cox1 gene. Although tetrancleotides TTAG and hexanucleotide TATTAG have also been proposed as start codons for the cox1 gene (Yukuhiro et al. 2002; Kim et al. 2006; Liu et al. 2008; Salvato et al. 2008; Kim SR et al.
2009), the TTAG lacks absolute conservation and may be of alternative function, not as an initiation codon (Margam et al. 2011). There are studies using ESTs (expressed sequence tags) to determine the cox1 start codon. For example, some dipterans have an unorthodox UCG serine initiation codon, which was confirmed through mitogenome EST data (Morlais and Severson 2002; Krzywinski et al. 2006; Stewart and Beckenbach 2009). Mitogenome ESTs and alignment of the mitogenome sequence from all lepidopterans had shown that arginine (CGR) functions as the start codon of the cox1 gene (Margam et al. 2011). These observations suggest that the use of EST data is valuable for the annotation of mitogenomes. The success of mitogenome sequencing will serve as the basis of the mating of EST and functional mitochondrial genome annotations.

Acknowledgements

Professor Qi-lian Qin and his lab members (Institute of Zoology, Chinese Academy of Sciences) kindly provided helpful advice and facilities for sequence cloning. We also thank Fu-qiang Chen and Xiao-he Wang (Institute of Zoology, Chinese Academy of Sciences) for their comments on the manuscript and help in specimen identification and data analysis.

This project was supported mainly by the Public Welfare Project from the Ministry of Agriculture, China (Grant no. 201103024), Beijing Municipal Natural Science Foundation (6081002), and partially by the Innovation Program in the Chinese Academy of Sciences (KSCX2-EW-B-02/03). Grants from the National Science Foundation, China (30870268, J0930004) were awarded to Chaodong Zhu. Funding from the Shanxi Science and Technology Fund (2007031040-1) and the Academy of Agriculture Sciences (YGG0930) was given to Jie Li for screening and mass–culture of pest natural enemies.

References

Abascal F, Posada D, Knight RD, Zardoya R. 2006. Parallel Evolution of the Genetic Code in Arthropod Mitochondrial Genomes. *PLoS Biol* 4(5): e127.

Allotey J, Azalekor W. 2000. Some aspects of the biology and control using botanicals of the rice moth, *Corcyra cephalonica* (Stainton), on some pulses. *Journal of Stored Product Research* 36: 235-243.

Arunkumar KP, Metta M, Nagaraju J. 2006. Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth, *Bombyx mori* from Chinese *Bombyx mandarina* and paternal inheritance of *Antheraea proylei* mitochondrial DNA. *Molecular Phylogenetics and Evolution* 40: 419-427.

Boore JL. 1999. Animal mitochondrial genomes. *Nucleic Acids Research* 27: 1767-1780.

Cameron SL, Johnson KP, Whiting MF. 2007. The Mitochondrial genome of the screamer Louse *Bothriometopus* (Phthiraptera: Ischnocera): effects of extensive gene rearrangements on the evolution of the genome. *Journal of Molecular Evolution* 65: 589-604.

Cameron SL, Whiting MF. 2008. The complete mitochondrial genome of the tobacco hornworm, *Manduca sexta*, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. *Gene* 408: 112-123.
Cha SY, Yoon HJ, Lee EM, Yoon MH, Hwang JS, Jin BR, Han YS, Kim I. 2007. The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, *Bombus ignitus* (Hymenoptera: Apidae). *Gene* 392: 206-220.

Chaitanya RK, Dutta-Gupta A. 2010. Light chain fibroin and P25 genes of *Corcyra cephalonica*: Molecular cloning, characterization, tissue-specific expression, synchronous developmental and 20-hydroxyecdysone regulation during the last instar larval development. *General and Comparative Endocrinology* 167: 113-121.

Clary DO, Wolstenholme DR. 1985. The mitochondrial DNA molecular of *Drosophila yakuba*: Nucleotide sequence, gene organization, and genetic code. *Journal of Molecular Evolution* 22: 252-271.

Coates BS, Sumerford DV, Hellmich RL, Lewis LC. 2005. Partial mitochondrial genome sequence of *Ostrinia nubilalis* and *Ostrinia furnicalis*. *International Journal of Biological Sciences* 1: 13-18.

Coelho MB, Marangoni S, Macedo MLR. 2007. Insecticidal action of *Annona coriacea* lectin against the flour moth *Anagasta kuehniella* and the rice moth *Corcyra cephalonica* (Lepidoptera: Pyralidae). *Comparative Biochemistry and Physiology, Part C: Toxicology and Pharmacology* 146: 406-414.

Damara M, Gullipalli D, Dutta-Gupta A. 2010. Cloning and expression of fat body hexamerin receptor and its identification in other hexamerin sequestering tissue of rice moth, *Corcyra cephalonica*. *Journal of Insect Physiology* 56: 1071-1077.

Damara M, Gullipalli D, Dutta-Gupta A. 2010. Ecdysteroid-mediated expression of hexamerin (arylphorin) in the rice moth, *Corcyra cephalonica*. *Journal of Insect Physiology* 56: 1224-1231.

Fenn JD, Cameron SL, Whiting MF. 2007. The complete mitochondrial genome of the Mormon cricket (*Anabrus simplex*: Tettigoniidae: Orthoptera) and an analysis of control region variability. *Insect Molecular Biology* 16: 239-252.

Gullipalli D, Arif A, Aparoy P, Svenson GJ, Whiting MF, Reddanna P, Dutta-Gupta A. 2010. Identification of a developmentally and hormonally regulated Delta-Class glutathione S-transferase in rice moth *Corcyra cephalonica*. *Comparative Biochemistry and Physiology, Part B*: *Biochemistry and Molecular Biology* 156: 33-39.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41: 95-98.

Heppner JB. 1991. Faunal regions and the diversity of Lepidoptera. *Tropical Lepidoptera* 2(1): 1-85.

Hong GY, Jiang ST, Yu M, Yang Y, Li F, Xue FS, Wei ZJ. 2009. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, *Artogeia melete* (Lepidoptera: Pieridae). *Acta Biochimica et Biophysica Sinica* 41: 446-455.
Hu J, Zhang DX, Hao JS, Huang DY, Cameron S, Zhu CD. 2010. The complete mitochondrial genome of the yellow coaster, Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): sequence, gene organization and a unique tRNA translocation event. *Molecular Biology Reports* 37(7): 431-438.

Jalali SK, Venkatesana T, Murthya KS, Rabindraa RJ, Lalitha Y. 2007. Vacuum packaging of Corcyra cephalonica (Stainton) eggs to enhance shelf life for parasitization by the egg parasitoid Trichogramma chilonis. *Biological Control* 41(1): 64-67.

Jiang S, Hong G, Yu M, Li N, Yang Y, Liu Y, Wei Z. 2009. Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae). *International Journal of Biological Sciences* 5: 351-365.

Kim I, Lee EM, Seol KY, Yun EY, Lee YB, Hwang JS, Jin BR. 2006. The mitochondrial genome of the Korean hairstreak, Coreana raphaelsis (Lepidoptera: Lycaenidae). *Insect Molecular Biology* 15(2): 217-225.

Kim SR, Kim MI, Hong MY, Kim KY, Kang PD, Hwang JS, Han YS, Jin BR, Kim I. 2009. The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae). *Molecular Biology Reports* 36(7): 1871-1880.

Kim MI, Baek JY, Kim MJ, Jeong HC, Kim KG, Bae CH, Han YS, Jin BR, Kim I. 2009. Complete Nucleotide Sequence and Organization of the Mitogenome of the Red-Spotted Apollo Butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and Comparison with Other Lepidopteran Insects. *Molecules and Cells* 28(31): 347-363.

Krzywinski J, Grushko OG, Besansky NJ. 2006. Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. *Molecular Phylogenetics and Evolution* 39: 417-423.

Lee ES, Shin KS, Kim MS, Park H, Cho S, Kim CB. 2006. The mitochondrial genome of the smaller tea tortrix Adoxophyes honmai (Lepidoptera: Tortricidae). *Gene* 373: 52-57.

Lessinger AC, Junqueira AC, Lemos TA, Kemper EL, da Silva FR, Vettore AL, Arruda P, Azeredo-Espin AM. 2000. The mitochondrial genome of the primary screwworm fly Cochliomyia hominivorax (Diptera: Calliphoridae). *Insect Molecular Biology* 9: 521-529.

Li QQ, Duan YQ, Li DY, Liu XF, Xu HL, Zhou RM, Cao N, Li FL. 2009. Research Progress on Mitochondrial DNA of Lepidoptera Insect. *Journal of Yunnan Agricultural University* 24(5): 746-753.

Li W, Zhang X, Fan Z, Yue B, Huang F, King E, Ran J. 2010. Structural Characteristics and Phylogenetic Analysis of the Mitochondrial Genome of the Sugarcane Borer, Diatraea saccharalis (Lepidoptera: Crambidae). *DNA and Cell Biology* 30(1): 3-8.

Liao F, Wang L, Wu S, Li YP, Zhao L, Huang GM, Niu CJ, Liu YQ, Li MG. 2010. The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). *International Journal of Biological Sciences* 6: 172-186.
Liu YQ, Li YP, Pan MH, Dai FY, Zhu XW, Lu C, Xiang ZH. 2008. The complete mitochondrial genome of the Chinese oak silkmoth, *Antheraea pernyi* (Lepidoptera: Saturniidae). *Acta Biochimica et Biophysica Sinica* 40(8): 693-703.

Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Research* 25: 955-964.

Margam VM, Coates BS, Hellmich RL, Agunbiade T, Seufferheld MJ, Sun W, Ba MN, Sanon A, Binso-Dabire CL, Baoua I, Ishiyaku MF, Covas FG, Srinivasan R, Armstrong J, Murdock LL, Pittendrigh BR. 2011. Mitochondrial Genome Sequence and Expression Profiling for the Legume Pod Borer *Maruca vitrata* (Lepidoptera: Crambidae). *PLoS One* 6(2): e16444.

Nardi F, Spinsanti G, Boore JL Carapelli A, Dallai R, Frati F. 2003. Hexapod origins: Monophyletic or paraphyletic? *Science* 299: 1887-1889.

Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria. *Nature* 290: 470-474.

Pan MH, Yu QY, Xia YL, Dai FY, Liu YQ, Lu C, Zhang Z, Xiang ZH. 2008. Characterization of mitochondrial genome of Chinese wild mulberry silkworm, *Bomyx mandarina* (Lepidoptera: Bombycidae). *Science in China Series C: Life Sciences* 51(8): 693-701.

Morlais I, Severson DW. 2002. Complete mitochondrial DNA sequence and amino acid analysis of the cytochrome coxidase subunit I (COI) from *Aedes aegypti*. *DNA Research* 13: 123-127.

Muthukrishnan N, Porchezhian T, Venugopal MS, Janarthanan R. 2003. Recycling spent larval food of *Corcyra cephalonica* Stainton as a broiler feed ingredient. *Bioresource Technology* 86: 39-44.

Salvato P, Simonato M, Battisti A, Negrisolo E. 2008. The complete mitochondrial genome of the bag-shelter moth *Ochrogaster lunifer* (Lepidoptera, Notodontidae). *BMC Genomics* 9: 331-345.

Nagamanju P, Hansen IA, Burmester T, Meyer SR, Scheller K, Dutta-Gupta A. 2003. Complete sequence, expression and evolution of two members of the hexamerin protein family during the larval development of the rice moth, *Corcyra cephalonica*. *Insect Biochemistry and Molecular Biology* 33: 73-80.

Simon C, Frati F, Bekenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain-reaction primers. *Annals of the Entomological Society of America* 87: 651-701.

Stewart JB, Beckenbach AT. 2009. Characterization of mature mitochondrial transcripts in *Drosophila*, and the implications for the tRNA punctuation model in arthropods. *Gene* 445: 49-57.

Steinberg S, Cedergren R. 1994. Structural compensation in atypical mitochondrial tRNAs. *Nature Structural Biology* 1: 507-510.

Taanman JW. 1999. The mitochondrial genome: structure, transcription, translation.
and replication. Biochimica et Biophysica Acta 1410: 103-123.

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599.

Türkera L. 1998. Theoretical study on the Sex-pheromones of the Rice Moth, Corcyra cephalonica Stainton. Turkish Journal of Biology 22: 229-232.

Wei SJ, Tang P, Zheng LH, Shi M, Chen XX. 2010. The complete mitochondrial genome of Evania appendigaster (Hymenoptera: Evaniidae) has low A + T content and a long intergenic spacer between atp8 and atp6. Molecular Biology Reports 37: 1931-1942.

Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y. 2002. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Molecular Biology and Evolution 19: 1385-1389.

Zhang DX, Szymura JM, Hewitt GM. 1995. Evolution and structural conservation of the control region of insect mitochondrial DNA. Journal of Molecular Evolution 40: 382-391.

Zhao JL, Zhang YY, Luo AR, Jiang GF, Cameron SL, Zhu CD. 2010. The complete mitochondrial genome of Spilonota lechriaspis Meyrick (Lepidoptera: Tortricidae). Molecular Biology Reports 38(6): 3757-3764.
Table 1. Region, primers and sequences for PCRs in this study.

Region	Upstream primer	Downstream primer	Downstream primers sequences (5′→3′)	Size (bp)
trnQ	Gln10486	GAAATATATATTCAATGCAAAATGAATGTCG	N1-N-789-4 ATCTACATTCTGCTAATCCAT	600
nad2	N2-J-4374	GGAATAAATCTCAATCCACCT	N2-N-794-3 ATCTACATTCTGCTAATCCAT	400
nad1-cоз1	N2-J-7204	GAACTTTGATTTATCATGTT	C1-N-1858-4 ATCTACATTCTGCTAATCCAT	1000
cox1	LCO1490	AATCTTGAAGGCTGATGAG	HCO2198-3 ATCTACATTCTGCTAATCCAT	650
trnL-trnK	Leu-J-3029	GAACTTTGATTTATCATGTT	C1-N-1858-4 ATCTACATTCTGCTAATCCAT	1000
cox2-cоз1	C2-J-3274	GAACTTTGATTTATCATGTT	C1-N-1858-4 ATCTACATTCTGCTAATCCAT	1000
trnK-cоз1	Lys14111-1	GAACTTTGATTTATCATGTT	C1-N-1858-4 ATCTACATTCTGCTAATCCAT	1000
cox3-trnD	C3-J-5010-1	GAACTTTGATTTATCATGTT	C1-N-1858-4 ATCTACATTCTGCTAATCCAT	1000
trnD-trnE	N5-1853-1	GAACTTTGATTTATCATGTT	C1-N-1858-4 ATCTACATTCTGCTAATCCAT	1000
nad6-cob	N5-7870-1	GAACTTTGATTTATCATGTT	C1-N-1858-4 ATCTACATTCTGCTAATCCAT	1000
cox2	N4-J-2851-1	GAACTTTGATTTATCATGTT	C1-N-1858-4 ATCTACATTCTGCTAATCCAT	1000
trnJ	N4-13503-1	GAACTTTGATTTATCATGTT	C1-N-1858-4 ATCTACATTCTGCTAATCCAT	1000
nad1-trnL	N5-J-2215-1	GAACTTTGATTTATCATGTT	C1-N-1858-4 ATCTACATTCTGCTAATCCAT	1000
trnL2(trnJ)	2986-3052	GAACTTTGATTTATCATGTT	C1-N-1858-4 ATCTACATTCTGCTAATCCAT	1000

a Primers from Lee et al. (2006), b Primers from Simon et al. (1994), c Primers from Zhao et al. (2010), d Primers newly designed for this genome.

Table 2. Summary of the mitogenome of the Corcyra.

Gene	Direction	Location	Size (bp)	Anticodon	Start codon	Stop codon
trnM	F	Jan-68	68	CAT	T	
trnI	F	69-134	66	GAT	T	
trnQ	R	132-200	69	TTA	T	
Spacer 1	N/A	201-261	61		T	
trnL	F	262-1261	1002	ATT	T	
trnW	F	1262-1327	66	TCA	T	
trnC	R	1320-1383	64	GCA	T	
trnY	R	1384-1449	66	GTA	T	
cox1	F	1455-2995	1536	CGA	T	
trnL2(trnJ)	2986-3052	67	TAA	T		
trnK	F	3053-3734	682	ATT	T	
trnD	F	3735-3807	73	TTT	T	
atp8	F	3810-3877	68	GTC	T	
atp6	F	3878-4042	165	ATT	T	
cox3	F	4036-4716	681	ATT	T	
trnG	F	4716-5504	789	ATG	T	
nad1	F	5508-5572	65	TCC	T	
trNA	F	5573-5926	354	ATT	T	
trnR	F	5930-5996	67	TCC	T	
trnN	F	5997-6064	68	TGG	T	
trnS1(AGF)	6134-6199	66	GCT	T		
trnE	F	6204-6270	67	TIC	T	
Spacer 2	N/A	6271-6319	49		T	
trnF	R	6320-6386	67	GAA	T	
trnD	R	6381-8120	1740	ATG	T	
trnH	R	8121-8185	65	GTG	T	
nad8	R	8186-9524	1339	ATG	T	
nad4L	R	9525-9815	291	ATG	T	
trnT	R	9818-9882	65	TGG	T	
trnH	R	9883-9947	65	TGG	T	
nad6	R	9950-10486	537	ATT	T	
cob	F	10489-11631	1143	ATG	T	
trnS2(UCN)	11634-11688	65	TGA	T		
Spacer 3	N/A	11699-11714	16		T	
trnI	R	11715-12641	927	ATG	T	
Spacer 4	N/A	12642-12651	10		T	
trnL1(UCN)	12652-12721	70	TAG	T		
trnK	R	12722-14076	1355	ATG	T	
trnV	R	14077-14144	68	TAC	T	
trnS2	R	14145-14922	778	TAC	T	
Spacer 5	N/A	14923-15273	351		T	
Table 3. Characteristics of the lepidopteran mitogenomes.

Superfamily	Species	Size (bp)	A-T content (%)	PCG A-T content (%)	rrnL A-T content (%)	rrns A-T content (%)	A-T-rich region (%)	GenBank accession #	
	Carcara cephulocrista	15273	80.43	78.96	1355	82.95	778	85.86	HQ897685
	Citho rupreptilis	15595	80.67	78.9	1383	84.24	788	86.17	JF339841
	Diatreus sarcorhabdus	14960	80.02	79.9	1412	84.77	781	85.53	EF140227
	Ostromia miliaris	14355	80.17	79.16	1339	84.91	434	82.03	AF442657
	Ostrinia furnacalis	14356	80.37	79.42	1339	84.99	435	82.76	AF467260
	Seknicia inferens	15413	80.24	78.6	1369	83.59	784	85.33	JN399362
	Antherea pernyi	15566	80.16	78.53	1369	83.86	775	84.13	AY242996
	Antherea yamamai	15338	80.29	78.94	1380	83.99	776	84.41	S124494
	Bombyx mandarins	15328	81.68	79.64	1377	84.75	783	85.93	DQ700963
	Bombyx mori	15643	81.32	80.54	1375	84.36	783	85.57	AY140468
	Sericinus pyrotrichum	15273	80.82	79.41	1338	84.6	778	84.45	AB688563
	Manduca sexta	15516	81.79	80.3	1391	85.26	777	85.71	EU378075
	Saturnia bombycina	15360	80.63	79.15	1391	84.76	774	84.11	EU222227

Table 4. Codon usage in the *Corcyra* mitochondrial genome.

Codon	Count	RSCU	Codon	Count	RSCU
UUU(F)	328	1.81	AUU(I)	425	1.88
UUC(F)	34	0.19	AUG(M)	26	0.12
UUA(L)	462	5.17	AUA(M)	269	1.87
UUG(L)	7	0.08	AUG(M)	19	0.13
UCU(L)	121	2.82	ACC(T)	99	2.44
UCC(S)	23	0.54	ACC(T)	9	0.22
UCA(S)	79	1.84	ACA(T)	52	1.28
UCG(S)	2	0.05	AGC(T)	0	0.00
UAU(V)	182	1.93	AAC(N)	229	1.18
UAC(Y)	7	0.07	AAC(N)	25	0.22
UAA(*)	-	-	-	84	1.6
UAG(*)	-	-	-	84	1.6
UGU(C)	29	1.81	AGU(S)	26	0.61
UGC(C)	3	0.19	AGC(S)	3	0.07
UGA(W)	94	1.94	AGA(S)	89	2.08
UGW(S)	3	0.06	AGG(S)	0	0.00

A total of 3716 codons were analyzed excluding the initiation and termination codons. The amino acids encoded by codons are labeled according to the IUPAC-IUB single letter amino acid codes. RSCU, relative synonymous codon usage.
Table 5. Sequence Identity of Spacer1 and \(nad2\) in 32 Lepidoptera species.

Species names	\(\text{trnQ-nad2}(\text{bp})\)	\(\text{nad2}(\text{bp})\)	Sequence Identity(%)
A. hon	64	999	57.8
A. mel	48	1014	68.8
A. met	60	1002	70
A. iss	51	1014	62.7
A. per	56	1014	66.1
A. yam	53	1014	63
B. man	47	1023	68.8
B. mor	65	1005	66.2
S. boi	53	1014	62.3
C. cep	61	1002	72.7
C. rap	56	1014	62.5
C. nip	52	1014	70
C. dev	46	1014	65.3
D. sac	55	1014	75.9
E. pyr	54	1014	64.9
O. mol	62	999	67.7
H. arm	45	1011	70
H. aut	50	1012	69.8
H. cun	50	1011	69.2
L. dis	42	1012	70.8
M. sex	54	1015	64.3
O. lun	72	1014	60.3
O. fur	62	1002	66.1
O. nub	62	1002	66.1
P. atr	63	1002	69.8
P. bre	40	1013	66.7
P. mar	43	1012	58.8
S. cha1	88	876	61.1
S. cha2	87	1017	63.8
S. lec	43	1009	63.8
S. inf	68	1017	68.1
T. aur	43	1014	57.4

Species names are abbreviated by using one letter from the genus name and three letters from the species name. \(S.cha1 = \text{Sasakia charonda}\), \(S.cha2 = \text{Sasakia charonda kuriyamaensis}\).