Potential impact of climate variability on respiratory diseases in infant and children in Semarang

Budyono1, Rismawati2, S P Jati3 and P Ginandjar4
1,2,3,4 Faculty of Public Health, Diponegoro University – Indonesia
Jl. Prof. Soedarto SH, Tembalang, Semarang – Indonesia

E-mail: kenang92@yahoo.com

Abstract. Temperature, humidity, and rainfall may influence respiratory disease, including acute respiratory infection (ARI) and pneumonia. In Semarang, the temperature and humidity has increased 0.1°C and 1.6% respectively during 2002-2011. ARI and pneumonia in children under 5 years had increased during 2012-2014. This study aimed to analyze the relationship of climate variability and ARI and pneumonia incidence. It was an ecological study. Subject consisted of patients visited primary health care of Bandarharjo from 2011 to 2015. Pneumonia was related to infants (<1-year-old) and children (1-4 years old), while ARI was related to children (≥5 years old). Data of climate was obtained from Agency for Meteorology, Climatology and Geophysics (BMKG) Semarang. Pearson correlation (α=0.05) was used to analyse the correlation of the 60 samples. Mean of temperature was 27.96°C, relative humidity was 74.73%, and rainfall was 179.98 mm/month. The total of ARI was 38523 cases and pneumonia was 1558 cases. Temperature, humidity, and rainfall had no correlation to pneumonia. Humidity had a significant correlation to ARI on female children and total ARI (r=0.3 and r=0.26; p-value=0.02 and 0.04 respectively). Rainfall and temperature had no correlation to total ARI. This study concluded humidity has potential impact to ARI.

Keywords: climate variability, acute respiratory disease, pneumonia, infant, children

1. Introduction

Climate change refers to any change in climate over time due to natural variability or as a result of human activity [1]. The change of climate influences regional weather change, such as heat wave, extreme weather, temperature and precipitation [2]. Average temperature of earth surface rises to exceed the safe threshold of 2°C above preindustrial average temperature during the 21st century [3].

Climate change harms human health, both directly and indirectly. Direct effects include changes of earth system, such as rising temperatures, increasing climate variability, rainfall or snowfall in some areas, and drought. Indirectly, climate-related ecosystem changes increases the range, seasonality, and infectivity of some vector-borne diseases [4]. Drought conditions produce pollution that creates multiple health challenges such as more dust and particulates [5].

Some studies showed the relationship between climate and respiratory diseases. The proportion of primary care visits due to respiratory diseases varied according to seasonal changes [6], [7]. Ambient temperature and absolute humidity correlate to the occurrence of upper respiratory tract infection (URTI) [8].
Acute respiratory disease caused of death among children aged <5 years and it was contributed 15% globally and 17% in South-East Asia Region in 2015 [9]. Pneumonia and diarrheal are among the leading causes of child mortality in the world [10]. One of the populations most at risk for pneumonia is children under five years [11].

The mean minimum temperature, rainfall and the incidence of respiratory syncytial virus (RSV) and pneumonia infections was the significant correlation [12]–[14]. The number of hospitalizations due to pneumonia on children, infants, and adults, was in accordance with the increase or decrease in temperature, humidity, precipitation, wind speed, and thermal comfort index [15]. Temperature, sunshine duration, relative humidity, and concentration of pollutants were significantly correlated to severe acute respiratory infection [16]. Climate change directly threaten respiratory health by promoting or aggravating respiratory diseases or indirectly by increasing exposure of risk factors for respiratory diseases [17].

The epidemiological outcome of climate change on disease patterns worldwide will intense, especially in developing countries [3]. Temperature is related to the prevalence of upper and lower respiratory tracts infection in developing country [18]. Climate change will affect the health of urban populations [19]. Higher temperatures occur in urban areas than in rural area [20], and have a different effect on hospitalizations for respiratory disease [21].

The evidence of climate change in Semarang is monthly increase of surface temperatures over the last 100 years [22]. Over the next 100 years, the temperature may rise up to 1°C [23]. According to Minanda et al, during 2002-2011, the mean temperature was 27.7°C and relative humidity 76%. The climate, however, has changed during 2002-2011, the mean temperature has increased 0.1°C and the mean of relative humidity has increased 1.6% [24].

Based on primary health care reports in 2013 and 2014, acute respiratory infection (ARI) in the upper tract system on children was the main health problem in Semarang. The cases were 85125 (in 2013) and 56376 (in 2014). According to the hospital report in Semarang, cases of ARI were 2290 cases in 2013 and 1696 cases in 2014. Pneumonia in infants have also increased during 2012-2014. The average of pneumonia cases in children under five years old was 3079 [25], [26]. The ARI and pneumonia in Semarang are potentially influenced by climate variability. Objective of this study was to analyse the climate variability and respiratory disease in infant and children who visited in PHC Bandarharjo-Semarang.

2. Methodology
The research was an ecological study [27]–[29] and carried out in coverage area of the primary health care (PHC) Bandarharjo, Semarang. The coverage area consists of 4 villages, i.e. Bandarharjo, Tanjung Mas, Kuningan, and Dadapsari. The population of children under-five years from January 2011 to December 2015 estimated 7530 to 7841. The total study subject were 38993 cases of acute respiratory infection (ARI) in children ≥ 5 years old and 1588 cases of pneumonia in children aged <1 year and 1-4 years old who visited the PHC of Bandarharjo during January 2011 to December 2015.

Acute respiratory diseases included acute respiratory infection (ARI) in the upper tract system (“ISPA”) and pneumonia. ARI and pneumonia were diagnosed by the medical doctor and paramedic used standard diagnostic (guideline) for ARI and pneumonia [30]. ARI located above the epiglottis were considered as upper airway diseases, while those at the epiglottis and below were considered as diseases of the lower respiratory tract. Symptoms related to the respiratory tract (such as coughing), but without diagnosis, were defined as a non-specific respiratory disease [6]. It was excluded from the samples. Pneumonia is a form of acute respiratory tract infection (ARTI) that affects the lungs. When an individual has pneumonia, the alveoli in the lungs are filled with pus and fluid, which makes breathing painful and limits oxygen intake [11].

Reliability and validity of data were ensured by cross check to registered diseases at PHC of the Bandarharjo. ARI and pneumonia were old and new cases.

Climate refers to the average state of the atmosphere for a given time scale (hour, day, month, season, year, the decade and so forth) and for a specified geographical region. The average-state of atmosphere involves temperature, precipitation, wind, cloudiness and sunshine, pressure, visibility, humidity and elements with noteworthy human impacts [31]. Monitored data of temperature, relative
humidity and rainfall at Semarang level and area of PHC Bandarharjo were obtained from Agency for Meteorology, Climatology and Geophysics (BMKG) of Semarang. Semarang has 9 climate monitoring stations and distributed in Ngaliyan, Tanjung Mas, Siliwangi, Genuk, Tlogosari, Candi, Klipang, Mijen, Gunungpati. The Tanjung Mas station is the one to monitor the variability of temperature, relative humidity and rainfall at surrounding area included area PHC of Bandarharjo.

The climate variability used mean of temperature (°C), mean of relative humidity (%) and mean of rainfall (mm) per month both at Semarang level and area PHC of Bandarharjo. The temperature measured by wet and dry bulb thermometer. Relative humidity measured by the wet and dry hygrometer. Rainfall measured by rainfall instrument type Hillman with an auto record. The BMKG maintained the climate equipment at least a week to ensure sensitivity of equipment and it was calibrated every 5 years or when replaced by new equipment. Monitoring of climate (temperature, relative humidity) conducted every day on 07.00, 13.00, and 18.00 at local time and recorded in form, it is called Fklm71. The rainfall is measured on 07.00 at local time and recorded in rainfall card. The climate data at Semarang level and area PHC of Bandarharjo reported to BMKG of Semarang every month [32]. Rainfall is classified into four levels: 0-50 mm/month (low), >50-150 mm/month (medium), >150-300 mm/month (high), and > 300 mm/month (very high) [33]. The climate data at Semarang level for picturing and comparing the temperature, relative humidity and rainfall to climate at area PHC of Bandarharjo.

The data of climate at area PHC of Bandarharjo as independent variables were obtained from daily monitoring at the Tanjung Mas station, and it was transformed to mean of temperature, relative humidity and rainfall per month. As dependent variables were ARI and pneumonia cases per month. Total of samples were 60 climate, 60 ARI and 60 pneumonia cases. It was calculated from average climate data and diseases (ARI and Pneumonia) per month during 2011-2015. Spearman correlation was used to analyze the correlation between climate and ARI and pneumonia cases with α=5% [34].

3. Result and Discussion

3.1. City of Semarang

Semarang is located between the 6°50’- 7°10’ south latitude and 109°35’- 110°50’ east longitude [35]. Restricted to the west with Kendal, at East with Demak, at Semarang regency in the south and the north is limited by the length of the Java Sea coastline which covers 13.6 km [36]. Altitude of Semarang lies between 0.75 to 348 m above the sea level [35]. The total area of Semarang is 373.7 km², composed of 16 districts and 177 villages [37]. The population of the Semarang amounted to 1575068 people, consisting of 787705 men and 797167 women [38]. The population density of Semarang was 4172 per km² [39].

The climate condition at Semarang level during 2011-2015 consisted of temperature 27.97°C±0.83°C, relative humidity 74.83%±7.88%, and rainfall 180.75 mm±194.34mm per month. Rainfall was classified as very high [33]. Mean of temperature during five years has increased 0.58°C, but mean of relative humidity and mean of rainfall had fluctuated. Mean of temperature in 2011 was 27.72°C, in 2012 and 2013 were 27.95°C, and in 2014 was 27.98°C. The highest mean temperature was in 2015 (28.30°C). Relative humidity during five years ranged 58-90% per month, while rainfall ranged 0-736 mm per month.

3.2. Area of primary health care of the Bandarharjo

PHC Bandarharjo covers an area that lies 0.75 meters above sea level. The area is located at shore line and most of it is covered by tidal inundation (local term: rob) [35]. Total area PHC of Bandarharjo is 761.1 km² and it consists of Bandarharjo village (342.7 hectare), Tanjung Mas village (330 hectare), Kuningan village (46.9 hectare), and Dadapsari village (41.5 hectare). The total population of four villages in 2014 was 78394 [37]. The distribution of population: Bandarharjo village (20967 people), Tanjung Mas village (30678), Kuningan village (15427 people), and Dadapsari village (11322 people).

Temperature in area of PHC Bandarharjo during 2011-2015 (table 1) was 28.15°C±0.72°C, relative humidity was 76.13%±6.45%, and rainfall was 180.27 mm/month±167.34mm (very high).
Mean of temperature for the last four years (2012-2015) has increased 0.23°C. Mean of temperature in 2011 was 28.13°C, in 2012 was 28.05°C, in 2013 was 28.12°C, in 2014 was 28.15°C and in 2015 was 28.28°C. The highest mean of temperature was in 2015. The mean of relative humidity and rainfall per year fluctuated. Relative humidity ranged 63-86%/month and rainfall ranged 0-992 mm/month.

Based on mean rainfall per month, type of month in PHC Bandarharjo can classify as wet month (rainfall>100 mm), humid month (60-100 mm), dry month (<60 mm) [40]. The wet month is more frequent than the dry month and humid month. Cases of pneumonia and ARI in PHC Bandarharjo were higher in the wet month than in the dry and humid months (data not showed). It was clarified that during the dry season there were 21% fewer visits for respiratory disease in health facility [6].

Climate change influences the regional weather changes in accordance with temperature, sea level, precipitation, and extreme weather events. Those will cause downstream effects on the environment that lead to adverse health effects [3]. Coastal communities, in low-income countries, are vulnerable to a range of health effects due to climate variability and long-term climate change [41]. Geographically, the area of PHC Bandarharjo lies in coastal area and the most of the population are categorized as low income.

During rainfall or wet month the temperature will decrease [42]. The pattern of peak of the pneumonia cases was in January-February-March and November-December. The patterns of pneumonia cases was similar to rainfall and humidity, particularly in high rainfall (figure 1), and the correlation was not significant (p=0.08). High transmission of pneumonia occurs during high rainfall (June-October) and regular surface wetness [43]. Pneumonia is affected by colder temperature. A temperature decrease from one day to the next had an adverse impact on childhood pneumonia [44]. The increased incidence of respiratory disease (pneumonia) during the colder periods of the year is due to the low temperatures [15]. Associated with cold days in Central Australia climate zone, there was an increased in acute respiratory admissions for children [21]. The conceptual mechanism of infection may illustrate that a decrease in air temperature causes a decrease in the temperature of the nasal airway. Cooling of the nasal airway compromises respiratory defend against infection by slowing mucociliary clearance and inhibiting leukocyte phagocytosis. The sign of warming of the body and airway associated with fever and nasal congestion that are natural way to defend against infection [45]. The most common pathogens that caused pneumonia are *Streptococcus pneumoniae*, *Haemophilus influenza* type b (Hib), and respiratory syncytial virus (RSV) [11], [46]. Contradictive with Kim’s finding that the risk of pneumonia was higher in the dry season than in the rainy season. There was variability in the relationship between climate factors and pneumonia [14].

Mean of temperature (0.17°C) and mean of relative humidity (1.3%) were higher in area PHC of Bandarharjo than Semarang in general, but mean of rainfall in area PHC of Bandarharjo was lower (-0.48 mm/month). According to the statistical test, there were significant different between mean temperature, relative humidity, and rainfall in Semarang and in area PHC of Bandarharjo (p-value=0.0001) (data not showed). Bandarharjo had higher temperature because it lies in the coastal area. It was confirmed that global mean sea surface temperatures (SST) have risen, with associated warming temperature in the coastal area [47].

Total patients visited (old and new visits) to PHC of Bandarharjo was 63222. Total pneumonia (table 1) in Bandarharjo village was 1072 (68%), Tanjung Mas 363 (22%), Kuningan was 107 (7%) and Dadapsari village was 50 (3%) out of 1592 cases. The average of pneumonia cases was higher in children aged 1-4 years than in infant (<1 year). In Kuningan village, Pneumonia cases in children under five years both in male and female in 2012 to 2015 tended to increase. It had the same trend with the temperature, although the causal mechanisms were not well understood.
Table 1. The number of Pneumonia cases on infants and children under five years and climate during 2011-2015 in area PHC of Bandarharjo.

Year	Bandarharjo village	Tanjung Mas village	Kuningan village	Dadapsari village	Mean temperature	Mean relative humidity	Mean rainfall					
	Male	Female	Male	Female	Male	Female	Male	Female				
2011	6	10	5	3	1	1	2	1	28.13	76.92	194.5	
2012	50	30	14	13	2	3	0	0	28.05	75.42	177.17	
2013	60	40	9	17	4	3	2	3	28.12	77.17	202.58	
2014	26	31	11	11	3	3	2	0	28.15	76.33	199.42	
2015	44	44	19	12	7	12	4	4	28.28	74.83	127.67	
Mean	37.2	31	11.6	11.2	3.4	4.4	1.6	2	28.15	76.13	180.27	

The highest cases of ARI in children ≥5 years (Table 2) were in Bandarharjo village (31.53%) and the lowest cases was in Dadapsari village (20.75%). Cases of ARI in Tanjung Mas and Kuningan were 8356 cases (21.24%) and 10243 cases (26.28%) respectively. ARI cases declined in all villages since 2011, but rose in 2015. Based on gender, ARI in children ≥5 years found higher proportion in female than male.

Table 2. The number of ARI cases on children ≥5 years and climate during 2011-2015 in area PHC of Bandarharjo.

Year	Bandarharjo village	Tanjung Mas village	Kuningan village	Dadapsari village	Mean temperature	Mean relative humidity	Mean rainfall					
	Male	Female	Male	Female	Male	Female	Male	Female				
2011	2189	2216	1022	1021	1649	2115	1286	1413	28.13	76.92	194.5	
2012	1220	1906	930	1348	1333	1694	1053	1386	28.05	75.42	177.17	
2013	731	1154	665	1051	608	855	539	719	28.12	77.17	202.58	
2014	433	715	367	618	316	595	290	535	28.15	76.33	199.42	
2015	603	1123	463	871	372	706	301	564	28.28	74.83	127.67	
Mean	1035.2	1422.8	689.4	981.8	855.6	1193	693.8	923.4	28.15	76.13	180.27	

The proportion of total pneumonia by sex was higher in male than female in three villages (Bandarharjo, Tanjung Mas, and Kuningan) (table 1). As many as 82.1% children with pneumonia were under five years of age, and almost half of children with pneumonia (46.4%) were infants. The boys were leading in all age groups [48].
Figure 1. The pattern of monthly average of the temperature (A), humidity (B), rainfall (C) and Pneumonia (infant and children <5 years old)
3.3. Correlation between climate and Pneumonia and ARI

Temperature, relative humidity, rainfall had no correlation to total pneumonia in infant and children. The average cases of Pneumonia per month tend to increase during 2011-2015, both of infant and children under five years old and also by gender. Relative humidity had a positive correlation to total ARI ($r=0.26$; p-value=0.04). Relative humidity had the positive correlation to ARI in female children ($r=0.3$; p-value=0.002), temperature and rainfall had no correlation to pneumonia ($p=0.35$, $r=-0.12$; $p=0.08$, $r=-0.22$ (table 3).
Table 3. The summary correlation between climate and pneumonia and ARI

Climate	Pneumonia <1 year	Pneumonia 1-4 years	Total Pneumonia (<1 year + 1-4 years)	ARI≥5 years	Total ARI≥5 years			
	Male (n=60)	Female (n=60)	Male (n=60)	Female (n=60)	Male (n=60)	Female (n=60)		
Mean	\(p=0.72 \)	\(p=0.26 \)	\(p=0.66 \)	\(p=0.20 \)	\(p=0.35 \)	\(p=0.17 \)	\(p=0.12 \)	\(p=0.1 \)
temperature	\(r=0.05 \)	\(r=0.15 \)	\(r=0.06 \)	\(r=0.17 \)	\(r=0.12 \)	\(r=0.18 \)	\(r=0.21 \)	\(r=0.19 \)
Mean	\(p=0.17 \)	\(p=0.87 \)	\(p=0.62 \)	\(p=0.59 \)	\(p=0.53 \)	\(p=0.10 \)	\(p=0.02 \)	\(p=0.04 \)
relative	\(r=-0.18 \)	\(r=0.02 \)	\(r=-0.07 \)	\(r=-0.07 \)	\(r=-0.08 \)	\(r=0.21 \)	\(r=0.30 \)	\(r=0.26 \)
humidity	\(r=-0.23 \)	\(r=0.09 \)	\(r=-0.21 \)	\(r=-0.21 \)	\(r=-0.22 \)	\(r=0.16 \)	\(r=0.17 \)	\(r=0.17 \)
rainfall	\(p=0.08 \)	\(p=0.47 \)	\(p=0.12 \)	\(p=0.10 \)	\(p=0.08 \)	\(p=0.22 \)	\(p=0.21 \)	\(p=0.20 \)

Respiratory illness remains a major killer and cause of morbidity for children, causing almost 20% of all under-five deaths. Vulnerability of children to respiratory disease not all of which are directly affected by climate change [49]. Children more vulnerable than adults, because children of more rapid metabolism, the immaturity of the child’s respiratory system, were the development of the lungs and thorax is progressive and continues until ten years of age, as well as the capacity to adapt to climate issue [49]-[50].

Our result was quite similar to Falagas that relative humidity had correlation to upper and lower respiratory tract infection [51]. Relative humidity causes both direct and indirect health effect. Very low or high relative humidity may cause physical discomfort, as the relative humidity of the air directly affects to temperature perception. Relative humidity as a determinant of the incidence of infections will depend on the relative strength of the settling rate of aerosols and the survival of airborne pathogens [52]. The incidences of respiratory infection were found to be lower among people who live in environments with a relative humidity level between 40% - 70% [53]. The recovery of the airborne pathogen (virus) was higher at a higher relative humidity and the stability of the aerosol was at the relative humidity of 60%. Humidity performs and important role and can affect the transmission of the virus [50]. When relative humidity moved from 1% to 6% there was a 39% increase in the cases of respiratory syncytial virus (RSV) [7]. Seasonality of certain ARI pathogens can be explained by meteorological influences, for example Rhinovirus correlated to relative humidity [54].

Rainfall had no correlation to total ARI, but had the same pattern with the total of ARI, whereas temperature and relative humidity had no same pattern with total ARI. Primary care visits for respiratory disease, especially those due to upper airway diseases, are related to the rainy season [6].

Children’s vulnerability to respiratory disease may related to their proximity to traffic, the level of crowding in their homes, and the cooking or heating fuel burned within their homes. But it can also be related to ambient outdoor air quality [49]. Indoor aspect due to indoor air pollution resulted from fuel for cooking. The quality of housing contributed to respiratory disease of home’s inhabitant. The tighter of the building made by brick will easy to spread indoor air pollution and influence the home’s inhabitant [55]. The coverage of healthy housing proportion in coverage area PHC Bandharharjo in 2012-2014 tended to decline, i.e. 508 out of 582 inspected houses (87.29%), 510 out of 600 (85%), 277 out of 400 (69.25%) respectively. Lack of housing quality and the overcrowding found in temporary housing for the homeless contribute to morbidity from respiratory infections and activation of tuberculosis [56].

Respiratory infections are also influenced by outdoor air pollution. The outdoor air pollution affected by climate change. Change in climate globally will affect to regional weather and potential to produce air pollution through anthropogenic, natural emission and atmospheric process [2], [57]. If the
climate becomes warmer and more variable, air quality is likely to be affected [57]. Climate change also affected ozone concentration [58] and particulate matter (PM) concentration in polluted environments by 0.1–1 mg/m³ over the coming decades [59].

Air pollutants (PM, Ozone, sulfur dioxide) are environmental risk factors of respiratory diseases [60]. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure of PM can aggravate chronic respiratory [57]. Ozone inhalation induces epithelial damage and consequent inflammatory responses in the upper and lower airways [60]. Short-term exposure to PM2.5 increases the risk for hospital admission for cardiovascular and respiratory diseases [61]. The weekly number of RSV positive cases was also correlated to the mean PM₁₀ concentration [12]. Exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can affect respiratory illnesses, lung irritation, and alterations in the lung’s defense systems [57]. Particulate matter significant associated with emergency department visits due to asthma, wheezing, bronchitis, and lower respiratory tract symptoms. High ozone levels seem to be linked to asthma and asthma-like symptoms [60].

4. Conclusion

Pneumonia cases in children under five years both in male and female in 2012 to 2015 tended to increase and had same trend with temperature. Relative humidity had potential impact on total ARI incidence and female children. The effect of relative humidity on ARI varies between sexes. Rainfall had the same pattern with the total ARI and it has potential to respiratory infection. Cases of pneumonia and ARI in PHC Bandarharjo were higher in the wet month than in the dry and humid months. It is advisable to consider other factors that may contribute to the incidence of respiratory tract infections, such as indoor and outdoor air pollution, housing condition.

5. Acknowledgment

The authors would like to thank Agency for Meteorology, Climatology and Geophysics (BMKG) Semarang - Indonesia for serving climate data at Semarang level and area of PHC Bandarharjo, and to District Health Office of Semarang and Primary Health Care of Bandarharjo, Semarang for providing data of diseases and health profile.

References
[1] Parry M L, Canziani O F, Palutikof J P, van der Linden P J and Hanson C E 1997 Climate Change 2007 Impact, Adaptation and Vulnerability Eds Cramer W and Murdiyarso D (Cambridge:Cambridge University Press) p 27
[2] Patz J A, McGeehin G A, Bernard S M, Ebi K L, Epstein P R, Gubler D J, Reiter P, Romieu I, Rose J B and Samet J M The potential health impacts of climate variability and change for the United States: executive summary of the report of the health sector of the U.S. national assessment 2000 Environ. Health Perspect. 108 pp 367–76
[3] Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Friel S, Groce N, Johnson A, Kett M, Lee M, Levy C, Maslin M, McCoy D, McGuire B, Montgomery H, Napier D, Pagel C, Patel J and Antonio J 2009 Managing the health effects of climate change Lancet 373 pp 1693–733
[4] Maibach E, Nisbet M and Weathers M 2011 Conveying the human implications of climate change A Climate Change Communication Primer for Public Health Professionals (Fairfax VA:George Mason University) pp 8–11
[5] Takaro T K, Knowlton K and Balmes J 2013 Climate change and respiratory health Respir. Med. 7 pp 349–361
[6] Rosa A M, Ignotti E and Botelho C 2008 Respiratory disease and climatic seasonality in children under 15 years old in a town in the Brazilian Amazon J. Pediatr. 84 pp 543–49
[7] Omer S B, Sutanto A, Sarwo H, Linehan M, Djelantik I G G, Mercer D, Moniaga V, Moulton L H, Widjaya A, Muljati P and Gessner B D 2008 Climatic, temporal, and geographic characteristics of respiratory syncytial virus disease in a tropical island population Epidemiol. Infect. 136 pp 1319–27
[8] Ma T M, Harju T H, Peito A, Bloigu A, Silvennoinen-Kassinen S, Leinonen M and Hassi J 2009 Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections in children under 5 years Old. First World Health Statistic 2015 First (Geneva: WHO Press) p 73

[9] WHO/UNICEF 2013 Ending Preventable Child Deaths from Pneumonia and Diarrhoea by 2025 The integrated Global Action Plan for Pneumonia and Diarrhoea (GAPPD) First (Geneva: WHO Press) p 5

[10] Tong B N 2013 Priority Medicines for Europe and the World A Public Health Approach to Innovation Update on 2004 Background Paper Background Paper 6.22 Pneumonia pp 7-15

[11] Zhang S and SchensulJ 2013 Respiratory syncytial virus infection in infants and correlation with meteorological factors and air pollutants Ital. J. Pediatr. 39 pp 1–6

[12] Pica N and Bouvier N M 2014 Ambient Temperature and Respiratory Virus Infection The Pediatric Infectious Disease Journal 33 pp 311-13

[13] Kim J, Kim J H, Cheong H, Kim H, Honda Y and Ha M 2016 Effect of Climate Factors on the Childhood Pneumonia in Papua New Guinea : A Time-Series Analysis Int. J. Environ. Res. Public Heal. 13 pp 1–16

[14] de Souza A, Fernandes W A and Lastoria G 2012 Potential impacts of climate variability on respiratory morbidity in children, infants, and adults J. Bras. Pneumol. 38 pp 708–15

[15] Silva D R, Viana P and Alice M 2013 Respiratory viral infections and effects of meteorological parameters and air pollution in adults with respiratory symptoms admitted to the emergency room Influenza Other Respir. Viruses 8 pp 42–52

[16] Ayres J G, Forsberg B, Annesi-Maesano I, Dey R, Ebi K L, Helms P J and Medina-Ramon M 2009 Climate change and respiratory disease : statement Eur. Respir. J. 34 pp 295–302

[17] Erling V, Jalili F and Lars A 1999 The impact of climate on the prevalence of respiratory tract infections in early childhood in Lahore, Pakistan J. Public Health Med. 21 pp 331–39

[18] Kovats S and Akhtar R 2008 Climate, climate change and human health Environ. Urban. 20 pp 165–175

[19] Satterthwaite D, Huq S, Pelling M, Reid H and Lankao P 2007 Adapting to Climate Change in Urban Areas: The possibilities and constraints in low-and middle-income nations (London: International Institute for Environment and Development (IIED)) pp 7–8

[20] Green D, Bambrick H, Tait P, Goldie J, Schultz R, Webb L, Alexander L and Pitman A 2015 Differential Effects of Temperature Extremes on Hospital Admission Rates for Respiratory Disease between Indigenous and Non-Indigenous Australians in the Northern Territory Int. J. Environ. Res. Public Health 12 pp 15352–65

[21] Mulyana W, Dodman D, Zhang S and SchensulJ 2013 Technical Briefing:Climate vulnerability and adaptation in the Semarang Metropolitan Area: a spatial and demographic analysis (London and New York:UNFWA-IED) pp 1–4

[22] PAKLIM 2014 Integrated Climate Change Strategy in Semarang (Jakarta) p 1

[23] Minanda R K, Budiyono, Winarni S, Jati S P and Ginandjar P 2013 Case Study: Correlation Between Climate Variability and Dengue Hemorrhagic Fever (DHF) Incidence in Semarang City During 2002-2011 in International Conference on Environment and Health: Integrating Research Community Outreach and Service Learning pp 22–3

[24] District Health Office of Semarang 2013 Health Profile of Semarang (in Bahasa) (Semarang: District Health Office of Semarang) pp 33-4

[25] Widoyono, Pramudiyanto A A, Endang S, Pandu H, Prayitno G and Triatmi 2014 Health Profile of Semarang (in Bahasa) (Semarang: District Health Office of Semarang) pp 30-1

[26] Pinfold J V, Horan N J and Mara D 1991 Seasonal effects on the reported incidence of acute diarrhoeal disease in Northeast Thailand Int. J. Epidemiol. 20 pp 777–86

[27] Blumenthal U J, Fleisher J M, Esrey S A and Peasey A 2001 Epidemiology: a tool for the assessment of risk in Water Quality: Guidelines, Standards and Health Eds Fewtrell L and Bartram J (London: IWA Publishing) p 142

[28] Bonita R and Beaglehole R 2006 Basic epidemiology 2nd editio (Geneva: WHO Press) pp 41-3

[29] Ministry of Health Republic of Indonesia 2010 Guideline of Pneumonia management in children under five years old (in Bahasa) 2nd edition (Jakarta: Ministry of Health Republic of Indonesia) pp 14–6

[30] Houghton DD 2002 Introduction to Climate Change Lecture notes for meteorologists, First. (Geneva: WMO) p 3

[31] Agency for Meteorology, Climatology and Geophysics (BMKG) 2006 Mechanism of Climate Observation and Data Report of Climate and Agroclimate (in Bahasa) (Jakarta: Agency for Meteorology, Climatology Geophysics) pp 1–18
[33] Agency for Meteorology, Climatology and Geophysic (BMKG) 2016 Analysis of Atmosphere Dynamic of Sea and Rainfall Forecasting (in Bahasa) (Jakarta: Agency for Meteorology, Climatology Geophysic) p 1
[34] Sugiyono 2002 Statistic for research (in Bahasa), Fourth edition (Jakarta: CV AlfaBeta) pp 11-5
[35] Central Agency on Statistics of Semarang (BPS) 2016 The Latitude of Semarang (in Bahasa) (Semarang:Central Agency on Statistics of Semarang (BPS)) p 1
[36] Central Agency on Statistics of Semarang (BPS) 2016 The Administrative Border of Semarang (in Bahasa) (Semarang:Central Agency on Statistics of Semarang (BPS)) p 1
[37] Central Agency on Statistics of Semarang (BPS) 2016 The Area of Semarang (in Bahasa) (Semarang:Central Agency on Statistics of Semarang (BPS)) p 1
[38] Central Agency on Statistics of Semarang (BPS) 2014 The Population Number of Semarang Based on Age 2012-2014 (in Bahasa) (Semarang:Central Agency on Statistics of Semarang (BPS)) p 1
[39] Central Agency on Statistics of Semarang (BPS) 2014 The Population Density of Semarang 2012-2014 (in Bahasa) (Semarang:Central Agency on Statistics of Semarang (BPS)) p 1
[40] Setiawan O 2012 Rainfall and temperature variability analysis in Bali (in Bahasa) J. Anal. Kebijak. Kehutian. 9 pp 66–79
[41] Nicholls R J, Wong P P, Burkett V, Codignotto J, Hay J, McLean R, Ragoonen D, Woodroffe C D, Abuodha P, Arblaster J, Brown B, Forbes D, Hall J, Kovats S, Lowe J, McInnes K, Moser S, Rupp_Amstrong S and Saito Y 2007 Coastal systems and low-lying areas in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change First Eds Parry M L, Canziani O F, Palutikof J , van der Linden P J and Hanson C E (Cambridge:Cambridge University Press) pp 315–356
[42] Katsaros K and Buettner K J K 1969 Influences of Rainfall on Temperature and Salinity of the Ocean Surface J. Appl. Meteorol. 8 pp 15–8
[43] Omonijo A G and Matzarakis A 2014 Pneumonia Occurrence in Relation to Population and Thermal Environment in Ondo State, Nigeria African Rev. Phys. 9 pp 511–25
[44] Xu Z, Hu W and and Tong S 2014 Temperature variability and childhood pneumonia : an ecological study Environ. Heal. 13 pp 1–8
[45] Eccles R 2002 An Explanation for the Seasonality of Acute Upper Respiratory Tract Viral Infections Acta. Otolaryngol. 122 pp 183–91
[46] Rudan I, Boschi-Pinto C, Biloglav Z and Campbell H 2008 Epidemiology and etiology of childhood pneumonia Bull. World Health Organ. 86 pp 408–16
[47] Hartmann D L, Klein Tank A M G, Rusticucci M, Alexander L V, Brönnimann S, Charabi Y, Dentener F J, Dlugokencky E J, Easterling D R, Kaplan A, Soden B J, Thorne P W, Wild M and Zhai P M 2013 Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Eds Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V and Midgley P M (Cambridge:Cambridge University Press) pp 190-194
[48] Devleta H and Evlijana Z 2015 Characteristics of Pneumonia Hospitalizations at Pediatric Clinic Tuzla SANAMED 10 pp 57–63
[49] Bartlett S 2008 Climate change and urban children Impacts and implications for adaptation in low-and middle-income countries (London: IIED) pp 6-8
[50] Passos SD, Gazeta R E, Felgueiras A P and Beneli P C 2014 Do pollution and climate influence respiratory tract infections in children? Rev. Assoc. Med. Bras. 60 pp 276–82
[51] Falagas M E, Theocharis G, Spanos A, Vlara L A, Issaris E A, Panos G, Lon H and Peppas G 2008 Effect of meteorological variables on the incidence of respiratory tract infections Respi. Med. 102 pp733–37
[52] Arundel A V, Sterling E M, Biggin J H and Sterling T D 1986 Indirect Health Effects of Relative Humidity in Indoor Environments Environ. Health Perspect. 65 pp 351–61
[53] Alsmo T and Alsmo C 2016 A Comparison of Relative Humidity between Two Swedish Buildings with Different Ventilation Solutions J. Environ. Prot. 7 pp 855–73
[54] du Pree J, Puppe W, Gro B, Knuf M, Weigl J A I and Schaaff F 2009 Are Meteorological Parameters Associated with Acute Respiratory Tract Infections? CID 49 pp 861–68
[55] Barnes C S, Alexis N E, Bernstein J A and Cohn J R 2008 Climate Change and Our Environment : The Effect on Respiratory and Allergic Disease J. Allergy Clin. Immunol. Pract. 1 pp 137–41
[56] Krieger J and Higgins D L 2002 Housing and Health : Time Again for Public Health Action Am. J. Public Health 92 pp 758–68
[57] Bernard S M, Samet J M, Grambsch A, Ebi K L and Romieu I 2001 The Potential Impacts of Climate Variability and Change on Air Pollution-Related Health Effects in the United States Environ. Health Perspect. 109 pp 199–209

[58] Ordonez C, Mathis H, Fürger M, Henne S, Huglin C, Staehelin J and Prevot A S H 2004 Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003 Atmos. Chem. Phys. Discuss. 4 pp 7047–88

[59] Daniel J and Winner D A 2009 Effect of Climate Change on Air Quality Atmos. Environ. 43 pp 51–63

[60] Amato G D, Cecchi L, Amato M D and Liccardi G 2010 Urban Air Pollution and Climate Change as Environmental Risk Factors of Respiratory Allergy: An Update J. Investig. Allergol. Clin. Immunol. 20 pp 95–102

[61] Dominici F, Peng R D, Bell M L, McDermott A, Zeger S L and Samet J M 2006 Fine Particulate Air Pollution and Hospital Admission for Cardiovascular and Respiratory Diseases JAMA 295 pp 1127–34