Spin-Noise-Detected Two-Dimensional Fourier-Transform NMR Spectroscopy

Kousik Chandra, † Judith Schlagnitweit, †,§ Christian Wohlschlager, ‡ Alexej Jerschow, ⊥ and Norbert Müller* †

† Institute of Organic Chemistry and ‡ Scientific Computing Department, Johannes Kepler University Linz, Altenbergerstraße 69, Linz 4040, Austria
⊥ Department of Chemistry, New York University, 100 Washington Square East, New York 10003, United States

Supporting Information

ABSTRACT: We introduce two-dimensional NMR spectroscopy detected by recording and processing the noise originating from nuclei that have not been subjected to any radio frequency excitation. The method relies on cross-correlation of two noise blocks that bracket the evolution and mixing periods. While the sensitivity of the experiment is low in conventional NMR setups, spin-noise-detected NMR spectroscopy has great potential for use with extremely small numbers of spins, thereby opening a way to nanoscale multidimensional NMR spectroscopy.

SECTION: Spectroscopy, Photochemistry, and Excited States

Felix Bloch predicted the existence of spin-noise in 1946. Experimental verification had to wait until 1985 due to the low amplitude of the phenomenon. Recent progress in magnetic resonance instrumentation, in particular, cryogenically cooled probes3 and force-detected magnetic resonance as well as extensive work on one-dimensional spin-noise spectroscopy,4−8 has opened new possibilities for in-depth investigation of the physical phenomenon and the exploration of its application potential. For a recent review, see ref 9.

In the present context, we focus on the transverse components of spin-noise as opposed to the longitudinal component, which is exploited in the force-detected magnetic resonance experiments.5 The fluctuating transverse spin-noise exhibits random phase contributions, which average to zero with the transverse relaxation time constant of T_2 (or T_2^* if inhomogeneous broadening prevails). Noise blocks therefore would have an expectation value of zero due to cancellations, but averaging over the signal magnitude or power can be used for signal accumulation. The earlier described spin-noise spectroscopy,10−16 and imaging experiments17 were obtained by Fourier-transforming individual noise blocks and co-adding the magnitude or power representations of these data. This is equivalent to computing the Fourier-transform of the autocorrelation of the spin-noise as described by the Wiener–Khintchine theorem (WKT).18,19 Both procedures can be used for signal accumulation by avoiding cancellations due to the random phases that are exhibited by the (uncorrelated) noise signals.

To obtain two-dimensional Fourier-transform spin-noise NMR spectra, we use the following basic concept, illustrated in Figure 1.

Two noise blocks, $m_0(t_0)$ and $m_2(t_2)$, are recorded in an identical fashion similar to the CONQUEST paradigm.5,20 Between the two noise blocks, one places an evolution period, as usual in multidimensional NMR, bracketed by two mixing periods. Cross-correlating the time domain noise blocks for each t_1 value yields a conventional two-dimensional time domain NMR data set that can be processed in the usual manner. It is however crucial that the cross-correlation (either in the time or frequency domain) is performed prior to signal averaging. The experiment depicted in Figure 1, as a first demonstration of the principle of indirect

Figure 1. Acquisition scheme for noise-detected two-dimensional NMR. The general scheme consists of an evolution time t_1 sandwiched between two mixing periods t_1 and t_2 and two noise acquisition periods t_0 and t_2, during which the noise blocks $m_0(t_0)$ and $m_2(t_2)$ are acquired in an identical manner. In the spin-noise-HMQC (snHMQC) pulse sequence, used to demonstrate and test the concept of spin-noise-detected two-dimensional NMR spectra, black rectangular bars represent 90° hard pulses on the 13C channel. The hatched rectangles represent periods of heteronuclear decoupling (WALTZ). No pulses are applied on the 1H channel.

Received: September 29, 2013
Accepted: October 29, 2013
Published: October 29, 2013
detection by spin-noise, correlates spin-noise-detected 1H chemical shifts with heteronuclear multiple-quantum coherence without applying any rf pulses on the 1H channel, henceforth called a 1H spin-noise-HMQC (snHMQC) experiment. We use the symbols I and S for the nuclei 1H and 13C, respectively, in the following analysis. During the first acquisition period t_0 a 1H noise block m_0 is recorded, while decoupling the S spins, and the recorded signal can be described as

$$m_0(t_0) = \int_{-\infty}^{t_0} a_0(t_0)e^{-i\Omega t_0 - R_{DQ}t_0} dt_0 + n_0(t_0)$$

where $a_0(t_0)$ describes the complex-valued random emission amplitude of an emission event (we do not distinguish between induced and spontaneous emission in the present context) at time point t_0, Δt is the I-spin resonance frequency, R_{DQ} is $1/T_2^*$ depending on which regime applies, and $n_0(t_0)$ is the background broad-band noise (which may be assumed to be white noise over the observed spectral width) amplitude from the instrument or other sources. Heteronuclear decoupling of spin-noise signals works as expected; therefore, there is no coupling modulation in eq 1. It was shown previously that heteronuclear decoupling does not cause spectral interference with the hardware used.

At the end of this first acquisition interval, t_0 decoupling is turned off, and the surviving coherences arising from the incomplete cancellation of spin-noise transverse components start evolving under heteronuclear coupling constant J_{IS}. At the end of the $t_1 = 2T_{21}^*$ period, heteronuclear antiphase coherence is generated. The 90° pulse on the S channel transforms it into a superposition of two spin coherences (double- and zero-quantum coherences), which evolve during t_2. The second 90° pulse regenerates antiphase I-spin single-quantum coherence, which is refocused in to-phase transverse magnetization in the second delay $t_2 = 2T_{21}^*$. Focusing on the pathways of interest, the measured signal during the t_2 period can be written as

$$m_2(t_2) = f(\tau_1, \tau_2)e^{-i\Omega \tau_2 - R_{DQ}t_2}$$

$$+ e^{-i\Omega \tau_1 - R_{DQ}t_1}e^{-i\Delta \Omega \tau_1 - R_{DQ}t_1}$$

$$\times \int_{-\infty}^{t_{max}} a_2(t_2)e^{-i\Delta \Omega (t_{max} - t_2)} - R_{DQ}(t_{max} - t_2) dt_2$$

$$+ b(\tau_1, \tau_2, t_2)e^{-i\Delta \Omega t_2}$$

$$+ \int_{0}^{t_1} c(t_2)e^{-i\Delta \Omega (t_1 - t_2)} - R_{DQ}(t_1 - t_2) dt_2 + n_2(t_2)$$

where t_{max} is the maximum acquisition time, which is equal for the periods t_0 and t_2 in this experiment, and Ω_0 is the Larmor frequency of spin S. The transfer coefficient $f(\tau_1, \tau_2)$ includes the effects of deviations from ideally matched delays. R_{DQ} and R_{ZQ} are the double- and zero-quantum relaxation rates, respectively, $n_2(t_2)$ is the background noise amplitude from the instrument or other sources, b represents the contributions to the signal from the emission events occurring in the period between the two direct acquisition periods t_0 and t_2, and the integral encompassing c represents contributions to the signal from emission events originating at time t_1 within the t_2 period. Decoupling of the S spins is switched on during t_0 and t_2. Hence, there is no coupling evolution during this period.

The desired signals can now be “distilled” from the data in the two measurement blocks by calculating the correlation function $m_0(t_0) \otimes m_2(t_2)$. It is convenient to calculate the Fourier-transform of this correlation function because by the WKT, it is equal to the product of the Fourier-transforms of the time domain functions

$$G(\Omega) = FT\{m_0(t_0) \otimes m_2(t_2)\} = M_0^0(\Omega)M_2(\Omega)$$

where FT symbolizes the Fourier-transform, and we use the common convention that capital letter variables with angular frequency arguments represent the Fourier-transforms of the corresponding lowercase quantities.

Because m_0 and the desired “a” signals in m_2 are themselves convolutions (WK), their Fourier-transforms are found readily as

$$M_0(\Omega) = A_0(\Omega) L(R_2, \Omega - \Omega_i) + N_0(\Omega)$$

and

$$M_2(\Omega) = L R_2, \Omega - \Omega_i) \{A_2(\Omega)f(\tau_1, \tau_2)e^{-i\Omega(\tau_1 + \tau_2 + t_2)}$$

$$\times \{e^{-i(\Omega + \Omega_i)l - R_{DQ}t_1} + e^{-i(\Omega - \Omega_i)l - R_{DQ}t_1}\} + b(\tau_1, \tau_2, t_2)$$

$$+ C(\Omega)\} + N_2(\Omega)$$

with L being the complex Lorentzian line shape function

$$L(R, Q) = \frac{1}{R + i\Omega}$$

We then obtain for the Fourier-transform of the correlation function

$$G(\Omega) = |A_0(\Omega)|^2L(R_2, \Omega - \Omega_i)^2f(\tau_1, \tau_2)e^{-i\Omega(\tau_1 + \tau_2 + t_2)}$$

$$\times \{e^{-i(\Omega + \Omega_i)l - R_{DQ}t_1} + e^{-i(\Omega - \Omega_i)l - R_{DQ}t_1}\}$$

$$+ IL(R_2, \Omega - \Omega_i) \{A_0(\Omega)N_2(\Omega)$$

$$+ A_0(\Omega)N_2(\Omega)\{f(\tau_1, \tau_2)e^{-i\Omega(\tau_1 + \tau_2 + t_2)}{e^{-i(\Omega + \Omega_i)l - R_{DQ}t_1}}$$

$$+ e^{-i(\Omega - \Omega_i)l - R_{DQ}t_1}\}$$

$$+ \text{cross-terms between } N_0 \text{ and } N_2(\Omega), \omega, C$$

The cross-terms between the A, b, C, and the different N terms are completely uncorrelated and can be averaged out to arbitrary precision by accumulating the cross-correlation function (or its Fourier-transform) over many acquisitions. Only the first summand in eq 7, which contains the square of the random amplitude $|A_0(\Omega)|^2$ and represents the correlated signals, increases linearly with the number of co-added cross-correlated data blocks. The uncorrelated terms (the other summands) only grow with the square root of this number. A further Fourier-transform with respect to t_1 gives the correlation peaks of interest in the form

$$G(\Omega_1, \Omega_2) = |A_0(\Omega)|^2L(R_2, \Omega_2 - \Omega_i)^2f(\tau_1, \tau_2)$$

$$\times e^{-i\Omega_2(l - \tau_2 + t_2)}\{L(R_{DQ}, \Omega_1 - \Omega_i - \Omega_2)$$

$$+ L(R_{ZQ}, \Omega_1 - \Omega_i + \Omega_2)\}$$

where we have neglected the cross-terms and used the correspondence $\Omega_2 = \Omega$ to conform with multidimensional NMR conventions. It is seen here that heteronuclear cross-peaks are obtained at the coordinates $(\Omega_1 \pm \Omega, \Omega_2)$, as expected.

In Figure 2, we show an experimental two-dimensional snHMQC spectrum of 13C-enriched glucose acquired with the scheme of Figure 1 and processed using a TopSpin 3.1.
It should also be mentioned that in the indirect dimension, while in the direct dimension, only a real part exists. The spectrum is phase-sensitive in the indirect dimension, corresponding to the heteronuclear zero- and double-quantum frequencies. The spectrum shown here, 6000 passes were co-added. Processing is described in the text. The 2H2O deuterium signal was used for field frequency locking.

The mixing times \(t_0 = 1.72 \text{ ms} \), \(t_1 = 3.78 \text{ ms} \), \(13\text{C} \) spectral width 9.5 kHz, maximum \(t_2 = 3.78 \text{ ms} \), \(13\text{C} \) spectral width 10.6 kHz, 90°(13C) pulse 12.6 \(\mu \text{s} \), repetition delay 250 ms. The mixing times \(\tau \) were 1.72 ms. One pass through all 80 \(t_1 \) values of the sequence thus takes 27.5 s. Because no refocusing pulses could be used on the \(^1\text{H} \) channel (to avoid generation of spurious coherence), all acquisition and evolution times are generally short as \(T_2^* \) rather than \(T_2 \) determines the loss of coherence in this particular experiment. For the spectrum shown in Figure 2, 6000 passes through the pulse sequence were co-added. Processing is described in the text. The \(^1\text{H}2\text{O} \) deuterium signal was used for field frequency locking.

To process the data, TopSpin 3.1 C-programs and Matlab scripts, which are available in the Supporting Information, were used. First, Fourier-transformation along the direct dimension was performed in TopSpin 3.1 (by the command xf2). Then, the cross-correlation of the two noise blocks, \(m_n \) and \(m_z \) for each \(t_1 \) time point was achieved by an in-house written “au”-program multiplying the transformed data blocks, point by point (see eq 3). Fourier-transformation along the indirect \(t_1 \) dimension and addition of 6000 different experiments were done using a Matlab script.

EXPERIMENTAL METHODS

The experiments were performed on a 700 MHz Bruker Avance III system equipped with a TCI cryo-probe. The spin-noise-detected two-dimensional HMQC (snHMQC) spectrum shown was recorded on 99% \(^{13}\text{C} \)-enriched glucose in \(^2\text{H}_2\text{O} \) (0.648 mol L\(^{-1} \)) in a 5 mm NMR tube using the scheme of Figure 1, with the following parameters: \(t_0 = t_2 = 27 \) ms, \(^1\text{H} \) spectral width 9.5 kHz, maximum \(t_1 = 3.78 \) ms, \(^{13}\text{C} \) spectral width 10.6 kHz, 90°(13C) pulse 12.6 \(\mu \text{s} \), repetition delay 250 ms.

ASSOCIATED CONTENT

Supporting Information

Estimate of the magnitude of the spin-noise signal (Text S1), Bruker pulse program (for TopSpin 3.1) for snHMQC (Text S2) as well as the “au”-program (Text S3) and Matlab scripts (Text S4) for processing of the snHMQC data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: norbert.mueller@jku.at. Phone: +43 732 2468 8746.
ACKNOWLEDGMENTS

The research reported was supported in part by the Austrian Science Funds FWF (Projects M1404 for K.C. and N.M. and Project I1115-N19 for N.M.), as well as by the European Union through the EFRE INTERREG IV (ETC-AT-CZ) program (Project M00146 “RERI-uasb” for N.M.) and via FP7 EAST-NMR, Contract No. 228461. A.J. was supported by the US NSF grant CHE 0957586. We are grateful to Dr. Wolfgang Bermel (Bruker-BioSpin, Germany) for support in programming within the TopSpin environment. N.M. dedicates this Research Report with gratitude to Prof. Richard R. Ernst on the occasion of his 80th birthday.

REFERENCES

(1) Bloch, F. Nuclear Induction. Phys. Rev. 1946, 70, 460–475.
(2) Sleator, T.; Hahn, E. L.; Hilbert, C.; Clarke, J. Nuclear Spin Noise. Phys. Rev. Lett. 1985, 55, 1742–1746.
(3) Kovacs, H.; Moskau, D.; Spraul, M. Cryogenically Cooled Probes—A Leap in NMR Technology. Prog. Nucl. Magn. Reson. Spectrosc. 2005, 46, 131–155.
(4) Degen, C. L.; Poggio, M.; Mamin, H. J.; Retten, C. T.; Rugar, D. Nanoscale Magnetic Resonance Imaging. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 1313–1317.
(5) Madsen, L. A.; Leskowitz, G. M.; Weitekamp, D. P. Observation of Force-Detected Nuclear Magnetic Resonance in a Homogeneous Field. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12804–12808.
(6) Crooker, S. A.; Rickel, D. G.; Balatasky, A. V.; Smith, D. L. Spectroscopy of Spontaneous Spin Noise as a Probe of Spin Dynamics and Magnetic Resonance. Nature 2004, 431, 49–52.
(7) Mamin, H. J.; Budakian, R.; Chui, B. W.; Rugar, D. Magnetic Resonance Force Microscopy of Nuclear Spins: Detection and Manipulation of Statistical Polarization. Phys. Rev. B 2005, 72, 0244131–0244136.
(8) Kurkiewicz, A.; The Observation and Dynamics of 1H NMR Spin Noise in Methanol. Appl. Magn. Reson. 2013, 44, 1181–1198.
(9) Muller, N.; Jerschow, A.; Schlagnitweit, J. Nuclear Spin Noise. eMagRes 2013, 2, 237–244.
(10) McCoy, M. A.; Ernst, R. R. Nuclear Spin Noise at Room Temperature. Chem. Phys. Lett. 1989, 159, 587–593.
(11) Guéron, M.; Leroy, J. L. NMR of Water Protons. The Detection of Their Nuclear-Spin Noise, and a Simple Determination of Absolute Probe Sensitivity Based on Radiation Damping. J. Magn. Reson. 1989, 85, 209–215.
(12) Marion, D. J.-Y.; Desvaux, H. An Alternative Tuning Approach to Enhance NMR Signals. J. Magn. Reson. 2008, 193, 153–157.
(13) Nausner, M.; Schlagnitweit, J.; Smrecki, V.; Yang, X.; Jerschow, A.; Müller, N. Non-Linearity and Frequency Shifts of Nuclear Magnetic Spin-Noise. J. Magn. Reson. 2009, 198, 73–79.
(14) Schlagnitweit, J.; Dumez, J.-N.; Nausner, M.; Jerschow, A.; Elena-Herrmann, B.; Müller, N. Observation of NMR Noise from Solid Samples. J. Magn. Reson. 2010, 207, 168–172.
(15) Giraudeau, P.; Müller, N.; Jerschow, A.; Frydman, L. 1H NMR Noise Measurements in Hyperpolarized Liquid Samples. Chem. Phys. Lett. 2010, 489, 107–112.
(16) Schlagnitweit, J.; Müller, N. The First Observation of C-13 Spin Noise Spectra. J. Magn. Reson. 2012, 224, 78–81.
(17) Müller, N.; Jerschow, A. Nuclear Spin Noise Imaging. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 6790–6792.
(18) Khintchine, A. Korrelationstheorie der stasionären stochastischen Prozesse. Math. Ann. 1934, 109, 604–615.