Evolution of DNA Replication Origin Specification and Gene Silencing Mechanisms

Hu et al.

Supplementary Information

Supplementary Figures 1-13

Supplementary Tables 1-3

Supplementary Methods Tables 1-2
Supplementary Fig. 1 | Orc2 loop DNA interaction exists in species with origin sequence specificity. a, Multiple sequence alignment of Orc2 among representing eukaryotic species as indicated. Orc2 DNA interacting loop region indicated with species that don’t have sequence specific origins shadowed in blue and species that sequence specific origins exist shadowed in pink. b, Orc2 AAA+ domain structure superposition among human Orc2 in teal color (from PDB code 5uj7), Drosophila Orc2 in wheat color (from PDB code 4xgc) and S. cerevisiae Orc2 in brown color (from PDB code 5udb). Orc2 loop that interact with DNA is colored in red. c-e, R390, Y395, W396, and H399 interact with DNA in base-specific (specificity) and base-nonspecific (affinity) manner in ORC-DNA structure at 3Å (PDB code 5zr1). Red asterisks denote the base interaction between amino acid and DNA base. Blue asterisks denote the base-nonspecific interaction between amino acid and DNA phosphate backbone. Prime symbols denote bases on
the opposite strand. Bases numbering denote as the positions in logo (see Fig. 2b). c shows Orc2 loop origin DNA minor groove insertion with base-specific interaction between W396 and G25, C25’ and T26, and base-nonspecific interaction between Y395 and phosphate backbone of T27. d-e, same as in c, but view in different angles. d shows the base-specific interaction between W396 and G25, C25’ and T26. e shows the base-nonspecific interaction between R390 and phosphate backbone of T23’ and base-nonspecific interaction between H399 and phosphate backbone of A24’.
orc4Δ::TRP1 + pORC4/URA3 + plasmid indicated below:

	15°C Day6	30°C Day2	37°C Day2	
pORC4/LEU2	![Image](YPD.png)	![Image](FOA.png)	![Image](YPD.png)	![Image](FOA.png)
por4::LEU2	![Image](YPD.png)	![Image](FOA.png)	![Image](YPD.png)	![Image](FOA.png)
por4^{cre}LEU2_{c1}	![Image](YPD.png)	![Image](FOA.png)	![Image](YPD.png)	![Image](FOA.png)
por4^{cre}LEU2_{c2}	![Image](YPD.png)	![Image](FOA.png)	![Image](YPD.png)	![Image](FOA.png)
por4^{cre}LEU2_{c3}	![Image](YPD.png)	![Image](FOA.png)	![Image](YPD.png)	![Image](FOA.png)
por4^{cre}LEU2_{c4}	![Image](YPD.png)	![Image](FOA.png)	![Image](YPD.png)	![Image](FOA.png)

3
Supplementary Fig. 2 | Orc4 mutants viability phenotypes in plasmid shuffle assay. Detailed procedure of plasmid shuffle assay is described in Method, Plasmid shuffle assay. Briefly, strains (orc4Δ::TRP1 + pORC4/URA3 + porc4 tested allele/LEU2) were grown overnight in YPD and spotted onto 5-FOA plates with 10-fold serial dilutions starting from 1.5x10^7 cells and spotted onto YPD plates as control. Mutations were indicated. Strain (orc4Δ::TRP1 + pORC4/URA3 + porc4 null allele/LEU2) and strain (orc4Δ::TRP1 + pORC4/URA3 + porc4 null allele/LEU2) were spotted as controls. Biological duplicates are denoted as c1 and c2. Plates were cultured under 25°C, 30°C, or 37°C for different days (as indicated) to test their cold or temperature sensitivity. Orc4 mutant phenotypes summarized in Supplementary Table 1.
Supplementary Fig. 3 | **Orc2 mutants viability phenotypes in plasmid shuffle assay.** Detailed procedure of plasmid shuffle assay is described in Method, Plasmid shuffle assay. Briefly, strains \((orc2\Delta::TRP1 + pORC2/URA3 + porc2^\text{tested allele}/LEU2)\) were grown overnight in YPD and spotted onto 5-FOA plates with 10-fold serial dilutions starting from \(1.5 \times 10^7\) cells and spotted onto YPD plates as control. Mutations were indicated. Strain \((orc2\Delta::TRP1 + pORC2/URA3 + pORC2/LEU2)\) and strain \((orc2\Delta::TRP1 + pORC2/URA3 + porc2\text{null}/LEU2)\) were spotted as controls. Biological duplicates are denoted as c1 and c2. Plates were cultured under 25°C, 30°C, or 37°C for different days (as indicated) to test their cold or temperature sensitivity. Orc2 mutant phenotype summarized in Supplementary Table 2.
Supplementary Fig. 4 | Orc4 protein expression detection and ORC complex formation detection. Details of method is described in Method, Cell extract preparation, immunoprecipitation, immunoblot analysis and antibodies. NTAP-tagged Orc4 were immunoprecipitated via incubation with IgG beads. Wild type W303 strain, which contains non-tagged Orc4, is used parallelly as a control of pulldown assay. 2% of input and 16.7% of pulldown lysate were loaded and subsequently immunoblot with anti-Orc4 (SB12) and anti-Orc1 (SB13). Purified ORC complex (including Orc1 and non-tagged Orc4) was also loaded as control for immunoblotting of Orc1 and Orc4. NTAP-tagged Orc4 is around 83kDa (indicated with green arrows) and non-tagged Orc4 is around 56kDa (indicated with yellow arrows), while Orc1 is around 120kDa (indicated with red arrows). Both short and long exposure of blots are indicated. Source data are provided as a Source Data file.
Supplementary Fig. 5 | Cell cycle of NTAP-Orc4 integrated strains. Flow cytometry was done by growing cells into log phase, arresting at G1 phase with α-factor block for 3 hours (around 1~2
cell cycle time length) and then releasing into S phase for different time point (as indicated above on the left). Different time points were harvest and prepared for flow cytometry with method previously described50. DNA strained with SYBR green. \textit{Orc4} mutants seemed to have hard time going through S phase and progression through mitosis.
Supplementary Fig. 6 | Analysis of plasmid borne and genome integrated Orc4 mutants. a, Schematic diagram of viability comparison assay between strains surviving dependent on single episomal origin (Orc4 on plasmid, denoted as [P]) or multiple chromosomal origins (Orc4 integrated into genome, denoted as [G]). The [P] strain relies on a CEN-based plasmid with a single replication origin to carry the tested Orc4 mutation and is therefore stringent. b, [P] strains (orc4::TRP1 + pORC4/URA3 + porc4/LEU2) and [G] strains (his3::NTAP-Orc4^{WT}, orc4::TRP1, bar1Δ::TRP1, LEU2::BrdU-Inc + pOrc4/URA3) were grown overnight in YPD and spotted onto 5-FOA plates with 10-fold serial dilutions starting from 1.5x10⁷ cells and spotted onto YPD plates as control. As controls for [P] strains, strain (orc4::TRP1 + pORC4/URA3 + pORC4/LEU2) and strain (orc4::TRP1 + pORC4/URA3 + porc4^{WT}/LEU2) were spotted. As controls for [G] strains, strain (his3::NTAP-Orc4^{WT}, orc4::TRP1, bar1Δ::TRP1, LEU2::BrdU-Inc + pOrc4/URA3) and strain (orc4::TRP1, bar1Δ::TRP1, LEU2::BrdU-Inc + pOrc4/URA3) were spotted. Plates were cultured under 25˚C, 30˚C, or 37˚C for different days (as indicated) to test their temperature sensitivity. The strain lacking a NTAP-tagged Orc4 did not grow on FOA. The viability deficient
phenotype of \textit{Orc4} mutants on single-origin plasmid seemed to be partially rescued when the mutants are integrated into the genome and survive on multiple origins.
Supplementary Fig. 7 | ARS motif logos generated from MPOS assay using ARS317 mutations. **a,** ARS motif logos for Orc4 integrated strains at A and B1 elements generated using mutation library with ARS317 sequence backbone. Same as Fig 3, top-half of logos representing the origin sequences that were selected-for in MPOS assay and bottom-half of logos representing the origin sequences that were selected-against in MPOS assay. **b,** Magnified view of A element region in a logo from Orc4^{WT}, orc4^{F485A, Y486A}, orc4^{F485A, Y486Q} strains with bottom-half of logo faded. Dark purple circles indicate the major changes at A/T29, G/T30 logo positions in the Orc4 mutant strains.
Supplementary Fig. 8 | Principal component analysis and comparison of motif inference methods. a, PCA analyses of motifs (performed on the ARS416 library MPOS data, the ARS317 library MPOS data, or both libraries), and inferred using either information maximization (IM) or enrichment ratios (ER). The variance explained by the first two principal components, corresponding to the x- and y-axes of each plot, is indicated in the upper left corner. The dots within each plot represent biologically independent MPOS experiments, dot color indicates the Orc4 variant assayed, and dot shape indicates the library of mutated ARSs used as input. Note that motifs cluster according to the Orc4 variant assayed, and that this clustering is stronger for information maximization (IM)-inferred motifs compared to enrichment ratio (ER)-inferred motifs. b, Total variance across the motifs inferred for each Orc4 variant using either ER or IM inference. IM inference consistently yielded less intra-replicate variance than ER inference (48.3%
less on average for ARS416 motifs and 39.9% less for ARS317 motifs). This again reflects the robustness of IM inference in the face of experiment-to-experiment variation. c, Logos showing the ARS416 motifs for two Orc4 variants. For clarity, only 20 bp encompassing the essential A element are shown. ER motifs exhibited substantially more variability at key positions than did IM motifs (e.g. rose highlighted positions). Orc4 mutants resulted in consistently and clearly visible differences in the inferred IM motifs (e.g. cyan positions).
Supplementary Fig. 9 | Replicates of genome-wide replication origin profile. a, Schematic diagram for genome-wide replication origin profile analysis. Details of method is described in Methods, Genome-wide replication origin profile analysis. Briefly, Yeast cells were α-factor
blocked in G1 phase for 3 hours and then released into the growth medium (YPD with 200mM HU, 500uM EdU and 0.2mg/ml pronase E) for 90mins before harvest. Flow cytometry was done to check the stage of the cells. DNA is isolated from the harvested cells and sonicated using Bioruptor. EdU labeled newly synthesized DNA is pulldown by Click-iT chemistry with biotinylated azide and Streptavidin T1 magnetic beads. Then Illumina TruSeq Kit is used to establish and amplify the sequencing library. Sequencing data is then analyzed to show peaks on newly synthesized DNA with detailed computational method in Method, Computational analyses of replication origin profile and ChIP-seq data. **b-c**, Replicates of origin firing profiles in Fig. 3. Chromosome IV(ChrIV) is used as representation and replicates are from two independent experiments. **b** shows the direct comparison of two replicates with profiles from \textit{Orc4}^{WT} and \textit{mrc1Δ} strains shown as examples. **c** shows the genome-wide replication origin firing profiles from the all strains in replicate experiment.
Supplementary Fig. 10 | Chromatin immuno-precipitation (ChIP) of MCM in Orc4 strains.

a-b, ChIP profile of MCM (anti-Mcm2) in G1 phase (Orc4^{WT}, orc4^{F485I}, Y486Q and mrc1Δ profiles in Fig. 3). Chromosome IV(ChrIV) is used as representation. Genome-wide replication origin firing profiles from Fig. 3 is attached for better reference of origin firing pattern and are shadowed in grey. a shows the direct comparison of two independent replicates with Mcm2-ChIP profiles from Orc4^{WT} and mrc1Δ strains shown as examples. b shows the Mcm2-ChIP profiles of the all the strains from one of the two replicates.
specifically activated

specifically repressed

Orc4 WT height

R^2: 0.996

R^2: 0.699

R^2: 0.63

R^2: 0.394

R^2: 0.377

R^2: 0.159

R^2: 0.078

R^2: 0.112

R^2: 0.067
Supplementary Fig. 11 | Genomic origin firing peak heights scatter plot comparisons. Each dot represent a single replication origin that has its origin firing peak height in \(\text{Orc4}^{\text{WT}} \) (in b-j) or \(\text{mrc1}^{\Delta} \) (in k-t) as the x-value and its origin firing peak height in \(\text{orc4}^{\text{mut}} \) (in b-j, l-t) or \(\text{Orc4}^{\text{WT}} \) (in k) as y-value. Two origins exhibited aberrantly large height values, believed to have arisen from read mapping artefacts, and were removed from this analysis. Height values are normalized by...
computing the number of reads bounding 99.5% of positions within each profile and divided the entire profile by this number. Coefficient of determination values (R^2) are shown atop each panel.

a, Illustration diagram for b-j showing the directions of activation (in green) and repression (in orange) for each replication origin (denote as black dot) in orc4 mutant strains. **b-j, orc4**$^{\text{mut}}$ strains direct comparison with *Orc4*WT strain. **k-t**, all ten *Orc4* strains direct comparison with *mrc1Δ* strain.
Supplementary Fig. 12 | Correlation of genomic origin peak height and MPOS motif scores. DNA sequences under origin firing peaks that were predicted to be ACS were obtained from OriDB13,37 and used for analysis. MPOS motif scores were assigned by how good the annotated ACSs matched to the MPOS motifs. Correlations between origin firing peak heights (in log\textsubscript{10}) and MPOS motif scores were evaluated for each annotated ACS. A section indicates the origin peak heights in wild-type strain or wild-type like orc4 mutant control strain. We took late vs early origin factors into consideration. However, a large value in origin height does not guarantee a high MPOS motif score. B section indicates the orc4 F485 and Y486 mutants that were shown to have their origin sequence recognition altered (Fig. 2c and Fig. 4). C section indicates the orc4 R478 and N489 mutation strains. P-values were also computed to assess the null hypothesis that log EdU heights and motif scores are not correlated; all P-values were Bonferoni corrected (by multiplying by the total number of tests). Significant correlations were indicated: *p<0.05, **p<0.01, ***p<0.001.
Supplementary Fig. 13 | Non-Y486 orc4 mutants efficiently use origins with the “AG” dinucleotide. Supplemental figure for Fig. 4. Box plots for the 6 orc4 mutant strains that do not have Y486 changed, except for the orc4^{F485Y, Y486F} strain that contains a conserved mutation whose strain grows similar to Orc4^{WT} and therefore is an exception of Y486 mutation strain. a. orc4^{F485Y, Y486F}, b. orc4^{R478K}, c. orc4^{N489A}, d. orc4^{F485I}, e. orc4^{R478A}, f. orc4^{N489W}. Y-axis is genomic origin firing peak heights in log_{10}. Each dot denotes an annotated ACS. Box plots elements: the minimum height, first (lower) quartile, median, third (upper) quartile, and maximum height. Diamond denotes outliers that exhibited aberrantly large values.
Supplementary Table 1 | Summary of plasmid shuffle assay *Orc4* mutant phenotypes.

Orc4 mutant viability phenotypes summarized from plasmid shuffle assay (Supplementary Fig. 1). Indicated symbols denotes different viability phenotypes.

Orc4 Mutation	Phenotype
Kα-helix	# @30°C (N=4)
Δα-helix	# @all three temperature (N=2)
F485I, Y486Q	*** @30°C; # @15°C (CS); # @37°C (TS) (N=3)
N489W	*** @30°C; # @15°C (CS); # @37°C (TS) (N=3)
N489A	*** @30°C; # @15°C (CS); # @37°C (TS) (N=3)
R478A	** @30°C; *** @15°C (CS); # @37°C (TS) (N=3)
F485I	* @30°C; ** @15°C (CS); * @37°C (N=3)
F485A, Y486A	* @30°C; ** @15°C (CS); * @37°C (N=3)
Y490L	* @30°C; ** @15°C (CS); * @37°C (N=2)
F492S	* @30°C; ** @15°C (CS); * @37°C (N=2)
R478K	~ @all three temperature (N=3)
Y486Q	~ @all three temperature (N=3)
F485A	~ @30°C; @15°C; ~ @37°C (N=3)
Y486A	~ @30°C; @15°C; ~ @37°C (N=3)
Y490A	~ @30°C; @15°C; ~ @37°C (N=3)
F492A	~ @30°C; @15°C; ~ @37°C (N=3)
Q493R	~ @all three temperature (N=2)
D479R	~ @all three temperature (N=2)
V226A	~ @all three temperature (N=2)
V226R	~ @all three temperature (N=2)
R227A	~ @all three temperature (N=2)
Q493A	~ @all three temperature (N=3)
K402A	~ @all three temperature (N=3)
K402E	~ @all three temperature (N=3)
T482D	~ @all three temperature (N=5)
T482R	~ @all three temperature (N=3)
T482A	~ @all three temperature (N=3)
T482I	~ @all three temperature (N=3)
F485Y, Y486F	~ @all three temperature (N=3)
Y490R	~ @all three temperature (N=3)
F492L	~ @all three temperature (N=3)
R227D	~ @all three temperature (N=3)

Symbols denotes viability deficient phenotypes. ~ denotes minimal or not deficient; - denotes slightly deficient; * denotes moderate deficient; ** denotes strong deficient; *** denotes severe deficient; # denotes lethal.
Supplementary Table 2 | Summary of plasmid shuffle assay Orc2 mutant phenotypes.

Orc2 mutant viability phenotypes summarized from plasmid shuffle assay (Supplementary Fig. 2). Indicated symbols denotes different viability phenotypes.

Orc2 Mutation	Phenotype
Δ390-398	# @all three temperature (N=2)
Δ393-398	# @all three temperature (N=2)
W396A	# @all three temperature (N=3)
Y395A	# @all three temperature (N=2)
N398A	** @30°C; # @15°C (CS); # @37°C (TS) (N=2)
T393A	~ @all three temperature (N=3)
K394A	~ @all three temperature (N=2)

Symbols denotes viability deficient phenotypes. ~ denotes minimal or not deficient; - denotes slightly deficient; * denotes moderate deficient; ** denotes strong deficient; *** denotes severe deficient; # denotes lethal
Supplementary Table 3 | Summary of doubling time of NTAP-Orc4 integrated strains.
Doubling time were calculated based on growth curves (see Fig. 1f) log phase cell concentration.

\[
k = \frac{\Delta \log(\text{Cell Conc.})}{\Delta \text{Time}} = \frac{\log(2)}{\text{Doubling Time}} \quad (4)
\]

\[
\text{Doubling Time} = \frac{\log (2)}{k} \quad (5)
\]

k dictates the slope of linear regression line of growth curves log phase.

Orc4 Integrated Strains	Doubling Time
WT	87mins
F485Y, Y486F	89mins
Y486Q	91mins
R478K	91.5mins
F485I	93mins
F485A, Y486A	97mins
N489W	112mins
F485I, Y486Q	127mins
R478A	132mins
N489A	134.5mins
Supplementary Methods

Strain	Genotype	Source
YB51	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS415/ORC4	This lab
YS856	MATα ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100	This study
YB410	MATα orc2::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC2	This lab
YS3285	MATα mrc1Δ::KanMX6 bar1Δ::TRP1 URA3::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100	This study
YB 1519	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/ORC4	This study
YB 1515	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415	This study
YB1639	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4Δα-helix	This study
YB 1514	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4Δκα-helix	This study
YB 1520	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4ΔY486Q	This study
YB 1521	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4ΔY486A	This study
YB 1522	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4F485I	This study
YB 1523	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4F485A	This study
YB 1524	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4N489A	This study
YB 1525	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4N489W	This study
YB 1526	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4F492A	This study
YB 1527	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4Y490A	This study
YB 1528	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4R478A	This study
YB 1555	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4Q493A	This study
YB 1556	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4K402A	This study
YB 1557	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4K402E	This study
YB 1558	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4T482A	This study
YB 1559	MATα orc4::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4T482R	This study
Yeast Strain	Genotype Details	Source
-------------	--	-----------------
YB 1560	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4T482I	This study
YB 1571	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4T482D	This study
YB 1562	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4R478K	This study
YB 1563	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4F485A, Y486A	This study
YB 1564	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4F485Y, Y486F	This study
YB1635	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4F485L, Y486Q	This study
YKC01	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4F492L	This study
YKC02	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4Y490L	This study
YKC03	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4Y490R	This study
YKC04	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4F492S	This study
YB1637	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4R227D	This study
YEH003	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4V226A	This study
YEH004	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4V226R	This study
YEH005	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4R227A	This study
YEH002	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4Q493R	This study
YEH001	MATα orc4::TRP1 ade2-1 ura3-1 his 3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4 + pRS415/orc4D479R	This study
YS2251	MATα bar1Δ::TRP1 ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100	This study
YB 1549	MATα bar1Δ::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100	This study
YB1588	MATα orc4::TRP1 bar1Δ::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4	This study
YB 1623	MATα his3::TAP-ORC4 orc4::TRP1 bar1Δ::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4	This study
YB 1624	MATα his3::TAP-orc4F485I orc4::TRP1 bar1Δ::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4	This study
YB 1625	MATa his3::TAP-orc4N489A orc4::TRP1 bar1Δ::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4	This study
YB 1630	MATa his3::TAP-orc4KLaH orc4::TRP1 bar1Δ::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4	This study
YB 1631	MATa his3::TAP-orc4F485Y+Y486F orc4::TRP1 bar1Δ::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4	This study
YB 1632	MATa his3::TAP-orc4R478K orc4::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4	This study
YB 1633	MATa his3::TAP-orc4ΔaH orc4::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4	This study
YB1647	MATa his3::TAP-orc4N489W orc4::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4	This study
YB1648	MATa his3::TAP-orc4R478A orc4::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4	This study
YB1652	MATa his3::TAP-orc4Y486Q orc4::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4	This study
YB1653	MATa his3::TAP-orc4F485A+Y486A orc4::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4	This study
YB1654	MATa his3::TAP-orc4F485I+Y486Q orc4::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100 + pRS416/ORC4	This study
YB1649	MATa his3::TAP-ORC4 orc4::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100	This study
YB1650	MATa his3::TAP-orc4F485I orc4::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100	This study
YB1655	MATa his3::TAP-orc4N489A orc4::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100	This study
YB1656	MATa his3::TAP-orc4F485Y+Y486F orc4::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100	This study
YB1657	MATa his3::TAP-orc4R478K orc4::TRP1 LEU2::BrdU-Inc ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3,112 can1-100	This study
Supplementary Methods Table 1	Genotype and resources of yeast strains used in this study	
Primer Names	Primer Sequence	Note
---	---	---
YEH001	GCGACGCAGCATTTCaaGCTAGCAATTATCAATTTTCAGGG	Used for Orc4 mutagenesis
YEH002	CCCTGAAATTGATAATTGCTAGCttgAAATGCTGCGGGTCGC	Used for Orc4 mutagenesis
YEH003	CGACCGCAGCATTTgccGCTAGCAATTATCAATTTCCAG	Used for Orc4 mutagenesis
YEH004	CTGAAATTGATAATTGCTAGCggcAAATGCTGCGGGTCGC	Used for Orc4 mutagenesis
YEH005	CGACCGCAGCAattTACGCTAGCAATTATCAATTTCCAGGG	Used for Orc4 mutagenesis
YEH006	CCCTGAAATTGATAATTGCTAGCGTAaatTGCTGCGGGTCGC	Used for Orc4 mutagenesis
YEH007	CGACCGCAGCAgtTACGCTAGCAATTATCAATTTCCAGGG	Used for Orc4 mutagenesis
YEH008	CCCTGAAATTGATAATTGCTAGCGTAagcTGCTGCGGGTCG	Used for Orc4 mutagenesis
YEH009	CGACCGCAGCATTTTACGCTAGCgtTATCAATTTCCAGGG	Used for Orc4 mutagenesis
YEH010	CCTGAAATTGATAagcGCTAGCGTAAATGTCTGCGGGTCGC	Used for Orc4 mutagenesis
YEH011	GCATTTTACGCTAGCttgTATCAATTTCCAGGCGACCATGATC CCG	Used for Orc4 mutagenesis
YEH012	CGGGATCATGGTGCCCTGAAATTGATAccaGCTAGCGTAAAATGC	Used for Orc4 mutagenesis
---------	---	--------------------------
YEH013	ACCGCAGCATTTTACGCTAGCAATTATCAAgtCAGGGCACC	Used for Orc4 mutagenesis
YEH014	GGTGCCCTGagcTTGATAATTGCTAGCGTAAAATGCTGCGGT	Used for Orc4 mutagenesis
YEH015	ACCGCAGCATTTTACGCTAGCAATgctCAATTTCAGGGGC	Used for Orc4 mutagenesis
YEH016	GCCCTGAAATTGagcATTGCTAGCGTAAAATGCTGCGGT	Used for Orc4 mutagenesis
YEH017	CCGAGAAATTCAGCCGTTGTTTtgcaGATAATGCGAC	Used for Orc4 mutagenesis
YEH018	GTCGCATTATCtgcCAAACCAACGGGCTGATTTCCTCGG	Used for Orc4 mutagenesis
YEH024	CCGTTGGTTTGAGAGATAATGAAAGACTCTGCTATACAATCA	Used for Orc4 mutagenesis
YEH025	GTAAACCGGGATCATGGTGCCGATGAATTGTAGTTTGTCTGAT	Used for Orc4 mutagenesis
YEH026	GCCGTTGGTTTGAGAGATAATGGCACCATGATCCCGTTTGA	Used for Orc4 mutagenesis
YEH027	GTAAACCGGATCATGGTGCCATTATCTCTCTCAAACCAACGGC	Used for Orc4 mutagenesis
YEH032	GCATTTTACGCTAGCAATTATCAAATTgccGGACCATGATCC	Used for Orc4
YEHO33	GGGATCATGGTGCTgccAAATTGATAATTGCTAGCGTAAAA TGC	Used for Orc4 mutagenesis
-------	---	--------------------------
YEHO34	GCATTGGTAGGCTAGCAATTATCAATTTagaGCCACACATGATC CCG	Used for Orc4 mutagenesis
YEHO35	CCGGATCATGGTGCTctAAATTGATAATTGCTAGCGTAAAA TGC	Used for Orc4 mutagenesis
YEHO36	GGTTGCGCTAAGGGCGgccGCACCGGATCTTTTTAATTTTAATT AGC	Used for Orc4 mutagenesis
YEHO37	GCTAAATTAATAAAGATCCGTCgccCGCCCTTAAGGC AACC	Used for Orc4 mutagenesis
YEHO38	GGTTGCGCTAAGGGCggagGCACCGGATCTTTTTAATTTTAATT AGC	Used for Orc4 mutagenesis
YEHO39	GCTAAATTAATAAAGATCCGTCtcCGCCCTTAAGGC ACC	Used for Orc4 mutagenesis
YEHO40	CGTTGGTTTAGAGATAATGCgccGCAGCATTCTCCTCAAACACCGC	Used for Orc4 mutagenesis
YEHO41	GCTAGCGCTAAAAATGTGCgccGCAGATTCTCCTCAAACACCGG	Used for Orc4 mutagenesis
YEHO42	CGTTGGTTTAGAGATAATGCggcGCAGCATTCTCCTCAAACACCGC	Used for Orc4 mutagenesis
YEHO43	GCTAGCGCTAAAAATGTGCgccGCAGCATTCTCCTCAAACACCGG	Used for Orc4 mutagenesis
YEH180	CAGCAgctgccGCTAGCAATTATCAATTTCAG	Used for Orc4 mutagenesis
YEH181	CTGAAATTGATAATTGCTAGGgcagcTGCTG	Used for Orc4 mutagenesis
YEH182	CGACCGCAGCAattcaaGCTAGCAATTATCAATTTCAG	Used for Orc4 mutagenesis
YEH183	CTGAAATTGATAATTGCTAGTtgaatTGCTGCGGTCG	Used for Orc4 mutagenesis
YEH184	CGACCGCAGCAactttGCTAGCAATTATCAATTTCAG	Used for Orc4 mutagenesis
YEH185	CTGAAATTGATAATTGCTAGCaaagtaTGCTGCGGTCG	Used for Orc4 mutagenesis
YEH186	CCGAGAAATCAGCCGTTGGTTTGaaaGATAATGCGAC	Used for Orc4 mutagenesis
YEH187	GTCGCATTATCtttCAAACCAACGGCTGATTTCTCGG	Used for Orc4 mutagenesis
YEH188	CGTTGGTTTGAGAGATAATGCGgatGCAGCATTTTACGCTAGC	Used for Orc4 mutagenesis
YEH189	GCTAGCGTAAAATGCTGCaatCGCATTATCTCTCAAACCAACG	Used for Orc4 mutagenesis
YEH190	CGTTGGTTTGAGAGATAATGCGgatGCAGCATTTTACGCTAGC	Used for Orc4 mutagenesis
YEH191	GCTAGCGTAAAATGCTGCaatCGCATTATCTCTCAAACCAACG	Used for Orc4
YEH235	ACATTTGCTGGGCCTgcAGGCAAACTTTATTATACAATC	Used for Orc4 mutagenesis
YEH236	GATTGTATAATAAAAGTTTGCCCTgcgAGGCCCCAGCAATGT	Used for Orc4 mutagenesis
YEH237	ACATTTGCTGGGCCTgcgAGGCAAACTTTATTATACAATC	Used for Orc4 mutagenesis
YEH238	GATTGTATAATAAAAGTTTGCCCTgcgAGGCCCAGCAATGT	Used for Orc4 mutagenesis
YEH239	ACATTTGCTGGGCCTGgcCAAAATTTATTATACAATC	Used for Orc4 mutagenesis
YEH240	GATTGTATAATAAAAGTTTGggCACCAGCCGCAATGT	Used for Orc4 mutagenesis
YEH241	ACATTTGCTGGGCCTGTgcgAGGCCCAGCAATGT	Used for Orc4 mutagenesis
YEH242	GATTGTATAATAAAAGTTTGtcACAGGCCGCAATGT	Used for Orc4 mutagenesis
YEH304	CCGAGAAATCGCCGTTGGTTTGAGAagaAATGCGAC	Used for Orc4 mutagenesis
YEH305	GTGCATTtcTCTCAAACCAACGGCTATTCTCGG	Used for Orc4 mutagenesis
YEH352	CCGCAGCATTTCAGCTAGCAATtgCAATTCAGGAC	Used for Orc4 mutagenesis
Yeast ORC1 Clone	Sequence	Used For
-----------------	--------------------------	---------------------------
YEH353	GGTGCCCTGAAATTGcaaATTGCTAGCGTAAAATGCTGCGG	Orc4 mutagenesis
YEH354	CCGCAGCATTTTACGCTAGCAATgaCAATTTTCAGGGCACC	Orc4 mutagenesis
YEH355	GGTGCCCTGAAATTGctATTGCTAGCGTAAAATGCTGCGG	Orc4 mutagenesis
YEH356	CGCTAGCAATTATCAActaCAGGGCACCATGATCCCG	Orc4 mutagenesis
YEH357	CGGGATCATGTTGCCCTGtagTTGATAATTGCTAGCG	Orc4 mutagenesis
YEH358	CGCTAGCAATTATCAAtcaCAGGGCACCATGATCCCG	Orc4 mutagenesis
YEH359	CGGGATCATGTTGCCCTGtaTTGATAATTGCTAGCG	Orc4 mutagenesis
YEH192	GACAAGAAGCGAAgcAAGTACTGGGGCAATCATGTG	Orc2 mutagenesis
YEH193	CACATGATTGCCCCAGTACTTgcTTGCCTTCTTGGTC	Orc2 mutagenesis
YEH194	GACAAGAAGCGAAAACTgtTACTGGGGCAATCATGTG	Orc2 mutagenesis
YEH195	CACATGATTGCCCCAGTAgcAGTTTCGCTTCTTGGTC	Orc2 mutagenesis
YEH196	GACAAGAAGCGAAAACTAAGgcTTGGGGCAATCATGTG	Orc2 mutagenesis
Yeast	Sequence	Used for
--------	--	---------------------------
YEH197	CACATGATTGCCCCAagcCTTAGTTTCGCTTCTTGTC	mutagenesis
YEH198	GACAAGAAGCGAAAACCTAAGTACgetGGCAATCATGTG	mutagenesis
YEH199	CACATGATTGCCagcGTACTTAGTTTCGCTTCTTGTC	mutagenesis
YEH200	ACTAAGTACTGGGGCgetCATGTGATTTTCGAGA	mutagenesis
YEH201	TCTGCAAAATCACATGagcGCCCCAGTACTTAGT	mutagenesis
YEH326	CTGAGTTGACAAAGAAGCGAACATGTGATTTTCGAGATCCA	mutagenesis
YEH327	TGGATCTGCAAAATCACATGTGTTCTTTGTCAACTCAG	mutagenesis
YEH328	TGGTCCCCGCTGAGTTGACACATGTGATTTTCAGATCCA	mutagenesis
YEH329	TGGATCTGCAAAATCACATGTGTAACACTCAGCGGGGACCA	mutagenesis
YEH019	ATGACTATAAGCGAAGCTCG	sequencing
Code	Sequence	Used for
--------	---------------------------------	---
YEH020	CTCAATTGAAACAGCAGTTG	Orc4 sequencing /integrated NTAP-Orc4 sequencing
YEH021	AAGAGTGATTTATATGCCGC	Orc4 sequencing /integrated NTAP-Orc4 sequencing
YEH022	TCAACTCCAGAATTCACCAC	Orc4 sequencing /integrated NTAP-Orc4 sequencing
YEH023	TCACAGTTGTGTCAGGAG	Orc4 sequencing
YEH221	GGAAGACTTTGTAGAGCAT	Orc2 sequencing
YEH222	CCTACACGTATGCAGGAA	Orc2 sequencing
YEH223	ATGCTCTACAAAGTCTTCC	Orc2 sequencing
YEH224	TTCCGATACGTGTAGG	Orc2 sequencing
gYEH00 3-F	ATTTGTAATACGCTTTTACTAGTTTT	gRNA003 insertion to bRA89 plasmid
---	---	---
gYEH00 3-R	TAGTAAAGCGTATTACAAATGATCA	Used for gRNA003 insertion to bRA89 plasmid
gYEH00 5-F	GAATATACTAAAAAAAAATGAGCGTTTT	Used for gRNA005 insertion to bRA89 plasmid
gYEH00 5-R	GCTCATTTTTTAGTATATCGATCA	Used for gRNA005 insertion to bRA89 plasmid
YEH263	AGAAGAAGCATGGCAGGCCTTG	Used for CRISPR NTAP-Orc4 template construction/integrated NTAP-Orc4 sequencing
YEH264	accagacaccTAGGCGAATTG	Used for CRISPR NTAP-Orc4 template construction
YEH265	CTagtgtgtATGACCTATAAG	Used for CRISPR NTAP-Orc4 template construction
YEH266	TTTTTCAACGCTAACTATAATTT	Used for CRISPR NTAP-Orc4 template construction/integrated NTAP-Orc4 sequencing
---------	--------------------------	--
YEH267	CTCGAGGCCACCAAGAAGAGAAAGAGAC	Used for CRISPR NTAP-Orc4 template construction
YEH268	AGGCCTGCCATGCTTTTTTTTAATATTACCGATATT	Used for CRISPR NTAP-Orc4 template construction
YEH311	TTCCTGCAGCCCGGGGGATCGAAGAGAAAGAGAGCCA	Used for CRISPR NTAP-Orc4 template construction
YEH312	GCTCCACCGCGGGTGCGGCGCTTTTTCAACGCTAACTATAA	Used for CRISPR NTAP-Orc4 template construction
ssYEH0 01	AATGAGCAGGCAAGATAAAACGAAAGGCAAAGATGACAGAGCAGAAAGCCGAAGAGAAAGAGAGCCAGATATTGAC TG	Used for CRIPSR NTAP-Orc4 integration yeast transformation (coupled with gRNA003)
-----------	--	--
ssYEH0 02	ACAAGTGGCAATGAAAAAAATTATAGTTAGCGTTGAAAAA TgcgAAAGCGTATTACAAATGAAAACCAAGATTCAGATTGC	Used for CRIPSR NTAP-Orc4 integration yeast transformation (coupled with gRNA003)
ssYEH0 03	TTATACATTATAAAGTAATGTGATTTTTCTCTAGGAAAGATAT ACTAAAAGAAGAGAAAAAGAGAGGAGCCAGATATTGACTG	Used for CRIPSR NTAP-Orc4 integration yeast transformation (coupled with gRNA005)
ssYEH0 04	ACAAGTGGCAATGAAAAAAATTATAGTTAGCGTTGAAAAA ATateCAGGCAAGATAAAACGAAAGGCAAAGATGACAGAGCA	Used for CRIPSR NTAP-Orc4 integration yeast transformation (coupled with gRNA005)
	Sequence	Use
---	----------	----------------------
YEH298	TTAAGAGCTTGGGTGAGCGCT	Used for CRISPR NTAP-Orc4 insertion checking
YEH299	ATGCTTGGCAGAGCATGTAT	Used for CRISPR NTAP-Orc4 insertion checking
YEH173	GTGCCCGGGAGGATGAGA	Used for integrated NTAP-Orc4 sequencing
YEH279	TCACCATCTTCAACAGTCAA	Used for integrated NTAP-Orc4 sequencing
YEH281	CGCGAATTGTGATATACCTA	Used for integrated NTAP-Orc4 sequencing
YEH282	ATATGAGTGATAATGGTTCC	Used for integrated NTAP-Orc4 sequencing
YEH294	GAAGAGAAAGAGAAGAGCCA	Used for integrated NTAP-Orc4 sequencing
ARS416 L1 AR	CTCGGCATTCTGCTGAACCGCTCTTCCGATCTCAATGATTTAGCATTATCTTTAC	Used for MPOS assay ARS416 sequencing library barcoding
Sample	Primer Sequence	Use for
---------	-----------------	--------------------------
ARS317L1 AR	CTCGGCATTTCTGGCTGAACCGCTCTTCGATCTTTATGGAAAGATTAAAGCTCA	Used for MPOS assay ARS317 sequencing library barcoding
ARS416L1 AF01	ACTCTTTCCCTACACGACGCTCTTCCGATCTACATAGACAAATGGTGTAAAGAC	Used for MPOS assay ARS416 sequencing library barcoding
ARS416L1 AF02	ACTCTTTCCCTACACGACGCTCTTCCGATCTAGCCAGACAAATGGTGTAAAGAC	Used for MPOS assay ARS416 sequencing library barcoding
ARS416L1 AF03	ACTCTTTCCCTACACGACGCTCTTCCGATCTATGTAGACAAATGGTGTAAAGAC	Used for MPOS assay ARS416 sequencing library barcoding
ARS416L1 AF04	ACTCTTTCCCTACACGACGCTCTTCCGATCTCATAAGACAAATGGTGTAAAGAC	Used for MPOS assay ARS416 sequencing library barcoding
ARS416L1 AF05	ACTCTTTCCCTACACGACGCTCTTCCGATCTCGATAGACAAATGGTGTAAAAGAC	Used for MPOS assay ARS416 sequencing library barcoding
ARS416	L1	AF
--------	-----	-----

42
ARS416	L1	AF12	Used for MPOS assay	ARS416 sequencing library barcoding
			ACTCTTTCCCTACACGACGCTCTTCGGATCT TGTA AGACAAATGGTGTA AAAAGAC	
ARS416	L1	AF13	Used for MPOS assay	ARS416 sequencing library barcoding
			ACTCTTTCCCTACACGACGCTCTTCGGATCT AAAA AGACAAATGGTGTA AAAAGAC	
ARS416	L1	AF14	Used for MPOS assay	ARS416 sequencing library barcoding
			ACTCTTTCCCTACACGACGCTCTTCGGATCT ACCA AGACAAATGGTGTA AAAAGAC	
ARS416	L1	AF15	Used for MPOS assay	ARS416 sequencing library barcoding
			ACTCTTTCCCTACACGACGCTCTTCGGATCT AGGA AGACAAATGGTGTA AAAAGAC	
ARS416	L1	AF16	Used for MPOS assay	ARS416 sequencing library barcoding
			ACTCTTTCCCTACACGACGCTCTTCGGATCT ATTA AGACAAATGGTGTA AAAAGAC	
ARS416	L1	AF17	Used for MPOS assay	ARS416 sequencing library barcoding
			ACTCTTTCCCTACACGACGCTCTTCGGATCT CCAG AGACAAATGGTGTA AAAAGAC	
ARS416 L1 AF18	ACTCTTTCCCTACACGACGCTCTTCCGATCT CGCA AGACAAATGGTGTAAGAC	Used for MPOS assay ARS416 sequencing library barcoding		
----------------	--	--		
ARS416 L1 AF19	ACTCTTTCCCTACACGACGCTCTTCCGATCT CTGG AGACAAATGGTGTAAGAC	Used for MPOS assay ARS416 sequencing library barcoding		
ARS416 L1 AF20	ACTCTTTCCCTACACGACGCTCTTCCGATCT GATT AGACAAATGGTGTAAGAC	Used for MPOS assay ARS416 sequencing library barcoding		
ARS416 L1 AF21	ACTCTTTCCCTACACGACGCTCTTCCGATCT GGAA AGACAAATGGTGTAAGAC	Used for MPOS assay ARS416 sequencing library barcoding		
ARS416 L1 AF22	ACTCTTTCCCTACACGACGCTCTTCCGATCT GTCA AGACAAATGGTGTAAGAC	Used for MPOS assay ARS416 sequencing library barcoding		
ARS416 L1 AF23	ACTCTTTCCCTACACGACGCTCTTCCGATCT TAGC AGACAAATGGTGTAAGAC	Used for MPOS assay ARS416 sequencing library barcoding		
ARS	Primer Sequence	Used for		
------------	--	---		
ARS416	ACTCTTTCCCTACACGACGCTCTTCCGATCT TCTC AGACAAATGGTGTTAAAAGAC	MPOS assay		
		ARS416 sequencing library barcoding		
ARS317	ACTCTTTCCCTACACGACGCTCTTCCGATCT ACAT CAGTGTAAAAATTTTTTATTAAC	MPOS assay		
		ARS317 sequencing library barcoding		
ARS317	ACTCTTTCCCTACACGACGCTCTTCCGATCT AGCC CAGTGTAAAAATTTTTTATTAAC	MPOS assay		
		ARS317 sequencing library barcoding		
ARS317	ACTCTTTCCCTACACGACGCTCTTCCGATCT ATGT CAGTGTAAAAATTTTTTATTAAC	MPOS assay		
		ARS317 sequencing library barcoding		
ARS317	ACTCTTTCCCTACACGACGCTCTTCCGATCT CATA CAGTGTAAAAATTTTTTATTAAC	MPOS assay		
		ARS317 sequencing library barcoding		
ARS317	ACTCTTTCCCTACACGACGCTCTTCCGATCT CGAT CAGTGTAAAAATTTTTTATTAAC	MPOS assay		
		ARS317 sequencing library barcoding		
Location	Sequence	Usage		
-----------	--	--		
ARS317	ACTCTTTCCCTACACGACGCTTCCGATCT CTCT CAGTGGTTTCAATTATTATTAAAAAC	Used for MPOS assay		
L1		ARS317 sequencing library barcoding		
AF06				
ARS317	ACTCTTTCCCTACACGACGCTTCCGATCT GAGA CAGTGGTTTCAATTATTATTAAAAAC	Used for MPOS assay		
L1		ARS317 sequencing library barcoding		
AF07				
ARS317	ACTCTTTCCCTACACGACGCTTCCGATCT GCTA CAGTGGTTTCAATTATTATTAAAAAC	Used for MPOS assay		
L1		ARS317 sequencing library barcoding		
AF08				
ARS317	ACTCTTTCCCTACACGACGCTTCCGATCT GTAT CAGTGGTTTCAATTATTATTAAAAAC	Used for MPOS assay		
L1		ARS317 sequencing library barcoding		
AF09				
ARS317	ACTCTTTCCCTACACGACGCTTCCGATCT TACA CAGTGGTTTCAATTATTATTAAAAAC	Used for MPOS assay		
L1		ARS317 sequencing library barcoding		
AF10				
ARS317	ACTCTTTCCCTACACGACGCTTCCGATCT TCGG CAGTGGTTTCAATTATTATTAAAAAC	Used for MPOS assay		
L1		ARS317 sequencing library barcoding		
AF11				
ARS317	L1	AF12	Used for MPOS assay	ARS317 sequencing library barcoding
--------	----	------	----------------------	------------------------------------
ACTCTTTCCCTACACGACGCTCTTCGATCT	TGTA	CAGTGGTTTTCAATTTTTTATTAAC		

ARS317	L1	AF13	Used for MPOS assay	ARS317 sequencing library barcoding
ACTCTTTCCCTACACGACGCTCTTCGATCT	AAAA	CAGTGGTTTTCAATTTTTTATTAAC		

ARS317	L1	AF14	Used for MPOS assay	ARS317 sequencing library barcoding
ACTCTTTCCCTACACGACGCTCTTCGATCT	ACCA	CAGTGGTTTTCAATTTTTTATTAAC		

ARS317	L1	AF15	Used for MPOS assay	ARS317 sequencing library barcoding
ACTCTTTCCCTACACGACGCTCTTCGATCT	AGGA	CAGTGGTTTTCAATTTTTTATTAAC		

ARS317	L1	AF16	Used for MPOS assay	ARS317 sequencing library barcoding
ACTCTTTCCCTACACGACGCTCTTCGATCT	ATTA	CAGTGGTTTTCAATTTTTTATTAAC		

ARS317	L1	AF17	Used for MPOS assay	ARS317 sequencing library barcoding
ACTCTTTCCCTACACGACGCTCTTCGATCT	CCAG	CAGTGGTTTTCAATTTTTTATTAAC		
ARS317	L1	AF18	Used for MPOS assay	ARS317 sequencing library barcoding
--------	------	--------	---------------------	-----------------------------------
			ACTCTTTCCCTACACGACGCTCTTCCGATCT CGCA	
			CAGTGGTTTCAATTTTTTATTAAC	
ARS317	L1	AF19	Used for MPOS assay	ARS317 sequencing library barcoding
			ACTCTTTCCCTACACGACGCTCTTCCGATCT CTGG	
			CAGTGGTTTCAATTTTTTATTAAC	
ARS317	L1	AF20	Used for MPOS assay	ARS317 sequencing library barcoding
			ACTCTTTCCCTACACGACGCTCTTCCGATCT GATT	
			CAGTGGTTTCAATTTTTTATTAAC	
ARS317	L1	AF21	Used for MPOS assay	ARS317 sequencing library barcoding
			ACTCTTTCCCTACACGACGCTCTTCCGATCT GGAA	
			CAGTGGTTTCAATTTTTTATTAAC	
ARS317	L1	AF22	Used for MPOS assay	ARS317 sequencing library barcoding
			ACTCTTTCCCTACACGACGCTCTTCCGATCT GTCA	
			CAGTGGTTTCAATTTTTTATTAAC	
ARS317	L1	AF23	Used for MPOS assay	ARS317 sequencing library barcoding
			ACTCTTTCCCTACACGACGCTCTTCCGATCT TAGC	
			CAGTGGTTTCAATTTTTTATTAAC	
Primers and oligos sequences used in this study	Used for			
--	---------			
ARS317 L1 AF24 ACTCTTTCCCTACACGACGCTCTTCCGATCT TCTC CAGTGGTTTTCAATTTTTTATTAAAC	MPOS assay ARS317 sequencing library barcoding			
YEH229 GCCGCAAAAAAAGGGAATAAG	MPOS assay sequencing library construction			
YEH230 CGTGTTCAAACGATACCTGG	MPOS assay sequencing library construction			
YEH231 AATGATACGGCGACCACCAGATCTACACTCTTTCCAAGACG	MPOS assay sequencing library construction			
YEH232 AAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCT	MPOS assay sequencing library construction			

Supplementary Methods Table 2 | Primers and oligos sequences used in this study