CoT: Cooperative Training for Generative Modeling of Discrete Data

Sidi Lu
Shanghai Jiao Tong University
steve_lu@apex.sjtu.edu.cn

Lantao Yu
Shanghai Jiao Tong University
yulantao@apex.sjtu.edu.cn

Weinan Zhang
Shanghai Jiao Tong University
wnzhang@apex.sjtu.edu.cn

Yong Yu
Shanghai Jiao Tong University
yyu@apex.sjtu.edu.cn

Abstract

We propose Cooperative Training (CoT) for training generative models that measure a tractable density for discrete data. CoT coordinately trains a generator G and an auxiliary predictive mediator M. The training target of M is to estimate a mixture density of the learned distribution G and the target distribution P, and that of G is to minimize the Jensen-Shannon divergence estimated through M. CoT achieves independent success without the necessity of pre-training via Maximum Likelihood Estimation or involving high-variance algorithms like REINFORCE. This low-variance algorithm is theoretically proved to be unbiased for both generative and predictive tasks. We also theoretically and empirically show the superiority of CoT over most previous algorithms in terms of generative quality and diversity, predictive generalization ability and computational cost.

1 Introduction

Generative modeling is essential in many scenarios, including continuous data modeling (e.g., image generation [Goodfellow et al., 2014; Arjovsky et al., 2017], stylization [Ulyanov et al., 2016], semi-supervised classification [Radford et al., 2015]) and sequential discrete data modeling (e.g., neural text generation [Bahdanau et al., 2014; Yu et al., 2017; Lu et al., 2018]).

For discrete data with tractable density like natural language, generative models are predominantly optimized through Maximum Likelihood Estimation (MLE), inevitably introducing exposure bias [Ranzato et al., 2015], which results in that given a finite set of observations, the optimal parameters of the model trained via MLE do not correspond to the ones maximizing the generative quality. Specifically, the model is trained on the data distribution of inputs and tested on a different distribution of inputs, namely, the learned distribution. This discrepancy implies that in the training stage, the model is never exposed to its own errors and thus in the test stage, the errors made along the way will quickly accumulate.

On the other hand, for general generative modeling tasks, an effective framework, named Generative Adversarial Network (GAN) [Goodfellow et al., 2014], was proposed to train an implicit density model for continuous data. GAN introduces a discriminator D_{ϕ} parametrized by ϕ to distinguish the generated samples from the real ones. As is proved in [Huszár, 2015], GAN essentially optimizes an approximately estimated Jensen-Shannon divergence (JSD) between the currently learned distribution and the target distribution. GAN shows promising results in many unsupervised and semi-supervised learning tasks. The success of GAN results in the naissance of a new paradigm of deep generative models, i.e., adversarial networks.

Preprint. Work in progress.
However, since the gradient computation requires backpropagation through the generator’s output, GAN can only model the distribution of continuous variables, making it non-applicable for generating discrete sequences like natural language. Researchers then proposed Sequence Generative Adversarial Network (SeqGAN) [Yu et al., 2017], which uses model-free policy gradient algorithm to optimize the original GAN objective. With SeqGAN, the expected JSD between current and target discrete data distribution is minimized if the training being perfect. SeqGAN shows observable improvements in many tasks. Since then, many variants of SeqGAN have been proposed to improve its performance. Nonetheless, SeqGAN is not an ideal algorithm for this problem, and current algorithms based on it cannot show stable, reliable and observable improvements that covers all scenarios, according to a previous survey [Lu et al., 2018]. The detailed reason will be discussed in detail in Section 2.

In this paper, we propose Cooperative Training (CoT), an efficient, low-variance, bias-free algorithm for training likelihood-based generative models on discrete data by directly optimizing a well-estimated Jensen-Shannon divergence. CoT coordinately trains a generative module G, and an auxiliary predictive module M, called mediator, for guiding G in a cooperative fashion. For theoretical soundness, we derive the proposed algorithm directly from the definition of JSD. We further empirically and theoretically demonstrate the superiority of our algorithm over many strong baselines in terms of generative performance, generalization ability and computational performance in both synthetic and real-world scenarios.

2 Background

Notations. P denotes the target data distribution. θ denotes the parameters of the generative module G. ϕ denotes the parameters of the auxiliary predictive mediator module M. s stands for a complete sample from the training dataset or a generated complete sequence, depending on the specific context. s_t means the t-length prefix of the original sequence, i.e. an incomplete sequence of length t. x denotes a token, and x_t stands for a token that appears in the t-th place of a sequence. Thus $s_t = [x_0, x_1, x_2, \ldots, x_{t-1}]$ while the initial case s_0 is \emptyset.

2.1 Maximum Likelihood Estimation

Maximum likelihood estimation is equivalent to minimizing the KL divergence using the samples from the real distribution:

$$\min_{\theta} \mathbb{E}_{s \sim p_{data}}[-\log G_{\theta}(s)], \quad (1)$$

where $G_{\theta}(s)$ is the estimated probability of s by G_{θ} and p_{data} is the underlying real distribution.

Limitations of MLE. MLE is essentially equivalent to optimizing a directed Kullback–Leibler (KL) divergence between the target distribution P and the currently learned distribution G, denoted as $KL(P||G)$. However, since KL divergence is asymmetric, given finite observations this target is actually not ideal. As stated in [Arjovsky and Bottou, 2017], MLE tries to minimize

$$KL(P||G) = \sum_s P(s) \log \frac{P(s)}{G(s)}, \quad (2)$$

- When $P(s) > 0$ and $G(s) \to 0$, the KL divergence grows to infinity, which means MLE assigns an extremely high cost to the “mode dropping” scenarios, where the generator fails to cover some parts of the data.
- When $G(s) > 0$ and $P(s) \to 0$, the KL divergence shrinks to 0, which means MLE assigns an extremely low cost to the scenarios, where the model generates some samples that do not locate on the data distribution.

Likewise, optimizing $KL(G||P)$ will lead to exactly the reversed problems of the two situations. An ideal solution is to optimize a symmetrized and smoothed version of KL divergence, i.e. the Jensen-Shannon divergence (JSD), which is defined as

$$JSD(P||G) = \frac{1}{2}(KL(P||M) + KL(G||M)), \quad (3)$$

where $M = \frac{1}{2}(P + G)$. However, directly optimizing JSD is conventionally considered as an intractable problem. JSD cannot be directly evaluated and optimized since the equally interpolated
distribution M is usually considered to be unconstructable, as we only have access to the learned model G instead of P.

2.2 Sequence Generative Adversarial Network

SeqGAN incorporates two modules, i.e. the generator and discriminator, parametrized by θ and ϕ respectively, as in the settings of GAN. By alternatively training these two modules, SeqGAN optimizes such an adversarial target:

$$\min_{\theta} \max_{\phi} \mathbb{E}_{s \sim \text{data}}[\log(D_{\phi}(s))] + \mathbb{E}_{s \sim G_\theta}[\log(1 - D_{\phi}(s))].$$

The objectives of generator G_θ and discriminator D_{ϕ} in SeqGAN can be formulated as

Generator:

$$\min_{\theta} -\mathbb{E}_{s \sim G_\theta} \left[\sum_{t=1}^{n} Q_t(s_t, x_t) \cdot \log G_{\theta}(x_t | s_t) \right]$$

Discriminator:

$$\max_{\phi} \mathbb{E}_{s \sim \text{data}}[\log(D_{\phi}(s))] + \mathbb{E}_{s \sim G_\theta}[\log(1 - D_{\phi}(s))],$$

where $s \sim G_\theta = [x_1, ..., x_n]$ denotes a complete sequence sampled from the generator and the action value $Q_t(s_t, x_t) = \mathbb{E}_{s \sim G_{\theta}|s_{t+1}}[D_{\phi}(s)]$ is the expectation of the discriminator’s evaluation on the completed sequences sampled from the prefix $s_{t+1} = [s_t, x_t]$, which can be approximated via Monte Carlo search.

Limitations of SeqGAN & its Variants. First, SeqGAN is an algorithm of high variance, which relies on pre-training via Maximum Likelihood Estimation as a variance reduction procedure. Besides, during the adversarial epochs, even if with variance reduction techniques such as Actor-Critic methods [Sutton 1984], the fact that SeqGAN is essentially based on model-free reinforcement learning makes it a non-trivial problem for SeqGAN to converge well. As a result, SeqGAN tends to get stuck in some sub-optimals. Specifically, although the discriminator can distinguish the samples from the generator easily, it is not able to effectively guide the generator because of the vanishing gradient, as is discussed in a recent survey [Lu et al., 2018]. Although this problem can be alleviated by reshaping the reward signals based on the relative rankings of the outputs in a mini-batch [Lin et al., 2017; Guo et al., 2017], they are more technical workarounds than essential solutions.

Second, SeqGAN trained via REINFORCE [Williams, 1992] suffers from the “mode collapse” problem, which is similar to the original GAN. That is to say, the learned distribution “collapse” to the other side of KL divergence, i.e. $KL(G \Vert P)$, which leads to the loss of diversity of generated samples. In other words, SeqGAN trains the model for better generative quality with the cost of diversity.

3 Cooperative Training

3.1 Motivation

To be consistent with the goal that the target distribution should be well-estimated in both **quality** and **diversity** senses, an ideal algorithm for such models should be able to optimize a symmetric divergence or distance.

For sequential discrete data modeling, since the data distribution is decomposed into a sequential product of finite-dimension multinomial distributions (always based on the softmax form), the failures of effectively optimizing JSD when the generated and real data distributions are distant, as discussed in [Arjovsky et al., 2017], will not appear. As such, to optimize JSD is feasible. However, to our knowledge, no previous algorithms provide a direct, low-variance optimization of JSD. In this paper, we propose Cooperative Training (CoT), as shown in Algorithm 1, to directly optimize a well-estimated unbiased JSD for training such models.

3.2 Algorithm Derivation

Each iteration of Cooperative Training mainly consists of two parts. The first part is to train a mediator M_ϕ, which is a predictive module that measures a mixture distribution of the learned generative
After each iteration, the mediator is exploited to optimize an estimated Jensen-Shannon divergence when adopted for estimating JSD. The training techniques and details will be discussed in Section 4.

Algorithm 1 Cooperative Training

Require: Generator G_θ; mediator M_ϕ; samples from real data distribution P; hyper-parameter m.
1: Initialize G_θ, M_ϕ with random weights θ, ϕ.
2: repeat
3: for m steps do
4: Collect a mini-batch of mixed balanced samples $\{s\}$ from both G_θ and P
5: Update mediator M_ϕ with $\{s\}$ via Eq. (9)
6: end for
7: Generate a mini-batch of sequences $\{s\} \sim G_\theta$
8: Update generator G_θ with $\{s\}$ via Eq. (13)
9: until CoT converges

distribution G_θ and target latent distribution $P = p_{\text{data}}$ as

$$M_\phi \simeq \frac{1}{2}(P + G_\theta).$$

Since the mediator is only used as a predictive module during training, the directed KL divergence is now bias-free for measuring M_ϕ. Denote $\frac{1}{2}(P + G_\theta)$ as M^\ast, we have:

Lemma 1 (Mixture Density Decomposition)

$$\nabla_{\phi} J_m(\phi) = \nabla_{\phi} KL(M^\ast || M_\phi)$$

$$= \nabla_{\phi} \mathbb{E}_{s \sim M^\ast} \left[\log \frac{M^\ast(s)}{M_\phi(s)} \right]$$

$$= \nabla_{\phi} \left(- \mathbb{E}_{s \sim M^\ast} \left[\log M_\phi(s) \right] \right)$$

$$= \nabla_{\phi} \frac{1}{2} \left(\mathbb{E}_{s \sim G_\theta} \left[-\log(M_\phi(s)) \right] + \mathbb{E}_{s \sim P} \left[-\log(M_\phi(s)) \right] \right)$$ \hspace{1cm} (8)

By Lemma 4 for each step, we can simply mix balanced samples from training data and the generator, then train the mediator via Maximum Likelihood Estimation with the mixed samples. The objective for the mediator M parametrized by ϕ therefore becomes

$$J_m(\phi) = \frac{1}{2} \left(\mathbb{E}_{s \sim G_\theta} \left[-\log(M_\phi(s)) \right] + \mathbb{E}_{s \sim P} \left[-\log(M_\phi(s)) \right] \right).$$ \hspace{1cm} (9)

Since the objective of MLE is bias-free for predictive purposes, the estimated M_ϕ is also bias-free when adopted for estimating JSD. The training techniques and details will be discussed in Section 4.

After each iteration, the mediator is exploited to optimize an estimated Jensen-Shannon divergence for G_θ:

$$\nabla_{\theta} J_g(\theta) = \nabla_{\theta} \left(- J SD(G_\theta || P) \right)$$

$$= \nabla_{\theta} \left(- \frac{1}{2} [KL(G_\theta || M_\phi) + KL(P || M_\phi)] \right)$$

$$= \nabla_{\theta} \left(- \frac{1}{2} \mathbb{E}_{s \sim G_\theta} \left[\log \frac{G_\theta(s)}{M_\phi(s)} \right] - \frac{1}{2} \mathbb{E}_{s \sim P} \left[\log \frac{P(s)}{M_\phi(s)} \right] \right)$$

$$= \nabla_{\theta} \left(- \frac{1}{2} \mathbb{E}_{s \sim G_\theta} \left[\log \frac{G_\theta(s)}{M_\phi(s)} \right] \right).$$ \hspace{1cm} (10)

Note that the gradient Eq. (10) should be performed for only one step because once G_θ is updated the current mediator’s estimation M_ϕ becomes inaccurate.

For any sequence or prefix of length t, we have:

Lemma 2 (Markov Backward Reduction)

$$\nabla_{\theta} \left(- \frac{1}{2} \mathbb{E}_{s_t \sim G_\theta} \left[\log \frac{G_\theta(s_t)}{M_\phi(s_t)} \right] \right)$$

$$= \nabla_{\theta} \left(- \frac{1}{2} \mathbb{E}_{s_t \sim G_\theta} \left[\sum_{s_{t-1}} G_\theta(s_{t-1}) \log \frac{G_\theta(s_t|s_{t-1})}{M_\phi(s_t|s_{t-1})} \right] - \frac{1}{2} \mathbb{E}_{s_{t-1} \sim G_\theta} \left[\log \frac{G_\theta(s_{t-1})}{M_\phi(s_{t-1})} \right] \right).$$ \hspace{1cm} (11)
The detailed derivations can be found in the supplementary material. Note that Lemma 2 can be applied recursively. That is to say, given any sequence \(s_t \) of arbitrary length \(t \), optimizing \(s_t \)'s contribution to the expected JSD can be decomposed into optimizing the first term of Eq. (12) and solving an isomorphic problem for \(s_{t-1} \), which is the longest proper prefix of \(s_t \). When \(t = 1 \), since in Markov decision process the probability for initial state \(s_0 \) is always 1.0, it is trivial to prove that the final second term becomes 0.

Therefore, Eq. (10) can be reduced through recursively applying Lemma 2. After removing the constant multipliers and denoting the predicted probability distribution over the action space, i.e. \(G_\theta (\cdot | s_t) \) and \(M_\phi (\cdot | s_t) \), as \(\pi_\theta (s_t) \) and \(\pi_m (s_t) \) respectively, the gradient for training generator via Cooperative Training can be formulated as

\[
\nabla_\theta J_g(\theta) = \nabla_\theta E_{s \sim G_\theta} \left[\frac{1}{\alpha} \sum_{t=0}^{n-1} \pi_\theta (s_t) \top (\log \pi_m (s_t) - \log \pi_\theta (s_t)) \right].
\]

(13)

For tractable density models with finite discrete action space in each step, the practical effectiveness of this gradient is well ensured for the following reasons. First, with a random initialization of the model, the supports of distributions \(G \) and \(P \) are hardly disjoint. Second, the first term of Eq. (13) is to minimize the cross entropy between \(G \) and \(M^* \), which tries to enlarge the overlap of two distributions. Third, since the second term of Eq. (13) is equivalent to maximizing the entropy of \(G \), it encourages the support of \(G \) to cover the whole action space, which avoids the case of disjoint supports between \(G \) and \(P \).

The overall objective of CoT can be formulated as

\[
\max_{\phi} \max_{\theta} \left(\mathbb{E}_{s \sim P_{data}} \left[\log (M_\phi (s)) \right] + \mathbb{E}_{s \sim G_\theta} \left[\log (M_\phi (s)) \right] \right).
\]

(14)

Note the strong connections and differences between the optimization objective of CoT (14) and that of GAN (4). Figure 1 illustrates the whole Cooperative Training process.

3.3 Convergence Analysis

CoT has theoretical guarantee for its convergence.

Theorem 3 (Jensen-Shannon Consistency) If in each step, the mediator \(M_\phi \) of CoT is trained to be optimal, i.e. \(M_\phi = M^* = \frac{1}{2} (G_\theta + P) \), then optimization via Eq. (14) leads to minimization of JSD\((G \| P) \).

Theorem 4 (Jensen-Shannon Efficiency) If in each step, the mediator \(M_\phi \) of CoT is trained to be optimal, i.e. \(M_\phi = M^* = \frac{1}{2} (G_\theta + P) \), then optimization via Eq. (14) is one-order optimal for minimizing JSD\((G \| P) \).

Proof. Let \(p \) denote the intermediate states. All we need to show is

\[
\nabla_\theta E_{s \sim G_\theta} \left[\sum_{t=1}^{n} \pi_\theta (s_t) \top (\log \pi_m (s_t) - \log \pi_\theta (s_t)) \right] \propto \nabla_\theta \text{JSD}(P || G_\theta).
\]

(15)

By inversely applying Lemma 2, the left part in Eq. (15) can be recovered as

\[
\nabla_\theta \left(\frac{1}{2} \mathbb{E}_{s \sim G_\theta} \left[\log \frac{G_\theta (s)}{M_\phi (s)} \right] \right),
\]

(16)

Figure 1: Process of Cooperative Training.
which is equivalent to
\[
\nabla_\theta \left(\mathbb{E}_{s \sim G_\theta} \left[\log \frac{G_\theta(s)}{M_\phi(s)} \right] + \mathbb{E}_{s \sim P} \left[\log \frac{P(s)}{M_\phi(s)} \right] \right). \tag{17}
\]

Since now mediator is trained to be optimal, i.e. \(M_\phi = M^* \), we have
\[
\tag{17} = \nabla_\theta \left(\mathbb{E}_{s \sim G_\theta} \left[\log \frac{G_\theta(s)}{M^*(s)} \right] + \mathbb{E}_{s \sim P} \left[\log \frac{P(s)}{M^*(s)} \right] \right)
= 2 \nabla_\theta JSD(P \| G_\theta) \propto \nabla_\theta JSD(P \| G_\theta). \tag{18}
\]

3.4 Discussion

3.4.1 Advantages over Previous Methods

CoT has several practical advantages over previous methods, including MLE, Scheduled Sampling (SS) [Bengio et al., 2015] and adversarial methods like SeqGAN [Yu et al., 2017].

First, although CoT and GAN both aim to optimize an estimated JSD, CoT is exceedingly more stable than GAN. This is because the two modules, namely generator and mediator, have similar tasks, i.e. to approach the same data distribution generatively and predictively. The superiority of CoT over inconsistent methods like Scheduled Sampling is obvious, since CoT theoretically guarantees the training effectiveness. Compared with methods that require pre-training in order to reduce variance like SeqGAN [Yu et al., 2017], CoT is computationally cheaper. More specifically, under recommended settings, CoT has the same order of computational complexity as MLE.

Besides, CoT works independently. In practice, it does not require model pre-training via conventional methods like MLE. This is the first time that unbiased unsupervised learning is achieved on sequential discrete data without using supervised approximation for variance reduction or sophisticated smoothing as in Wasserstein GAN with gradient penalty (WGAN-GP) [Gulrajani et al., 2017].

3.4.2 The Necessity of the Mediator

An interesting problem is why we need to train a mediator by mixing the samples from both sources \(G \) and \(P \), instead of directly training a predictive model \(\hat{P} \) on the training set via MLE. The most severe problem is that there is no guarantee for the model \(\hat{P} \) to work well on the generated samples to guide the generator towards the target distribution. Given finite observations, the learned distribution \(\hat{P} \) is trained to provide correct predictions for samples from the target distribution \(P \). However, due to the distribution mismatch, for samples from the generator, there is no guarantee that \(\hat{P} \) can stably provide correct predictions for guiding the generator.

4 Experiments

4.1 Universal Sequence Modeling in Synthetic Turing Test

Following the synthetic data experiment setting in [Yu et al., 2017; Zhu et al., 2018], we design a synthetic Turing test, in which the negative log-likelihood NLL\text{oracle} from an oracle LSTM is calculated for evaluating the quality of samples from the generator. Particularly, to support our claim that our method causes little mode collapse, we calculated NLL\text{test}, which is to sample an extra batch of samples from the oracle, and to calculate the negative log-likelihood measured by the generator. We show that under this more reasonable setting, our proposed algorithm reaches the state-of-the-art performance with exactly the same network architecture. Note that models like LeakGAN [Guo et al., 2017] contain architecture-level modification, which is orthogonal to our approach, thus will not be included in this part. The results are shown in Table 1.

4.1.1 Discussion

Hyper-parameter Robustness. We perform a wide-ranged hyper-parameter tuning experiment on synthetic data experiment. When compared with the results of similar experiments as in SeqGAN [Yu et al., 2017], our approach shows less sensitivity to hyper-parameter choices, as shown in Figure 2.
Table 1: Likelihood-based benchmark for synthetic Turing test. ‘-(MLE)’ means the best performance is acquired during MLE pre-training.

Model/Algorithm	NLL_{oracle}	NLL_{test} (final/best)	best NLL_{oracle+test}
MLE	9.08	8.97/7.60	9.43 + 7.67
SeqGAN [Yu et al., 2017]	8.68	10.10/-(MLE) (The same as MLE)	
RankGAN [Lin et al., 2017]	8.37	11.19/-(MLE) (The same as MLE)	
MaliGAN [Che et al., 2017]	8.73	10.07/-(MLE) (The same as MLE)	
CoT (ours)	8.19	8.03/7.54	8.19 + 8.03

(a) NLL_{oracle} of SeqGAN
(b) JSD of CoT
(c) NLL_{oracle} of CoT

Figure 2: Curves of evaluation on JSD, NLL_{oracle} during iterations of CoT under different training settings. To show the hyperparameter robustness of CoT, we compared it with the similar results as were evaluated in SeqGAN [Yu et al., 2017].

Note that since in all our attempts, the evaluated JSD of SeqGAN fails to converge, we evaluated NLL_{oracle} for it as a replacement.

Self-estimated Training Progress Indicator. Like the critic loss, i.e. estimated Earth Mover Distance, in WGANs, we find that the training loss of the mediator (9), namely balanced NLL, can be a real-time training progress indicator as shown in Figure 3. Specifically, in a wide range, balanced NLL is a good estimation of real JSD(G∥P) with a steady translation, namely, balanced NLL = JSD(G∥P) + H(G) + H(P).

Figure 3: (a) Curves of training time JSD(G∥P) for MLE, SeqGAN and CoT. (b) Curves of balanced NLL and real JSD. Both results are from synthetic data experiments.

4.2 TextCoT: Zero-prior Long & Diverse Text Generation

As an important sequential data modeling task, zero-prior text generation, especially long and diversified text generation, is a good testbed for evaluating the performance of a generative model.

Following the experiment proposed in LeakGAN [Guo et al., 2017], we choose EMNLP 2017 WMT News Section as our dataset, with maximal sentence length limited to 51. We pay major attention to both quality and diversity. To keep the comparison fair, we present two implementations of CoT, namely CoT-basic and CoT-strong. As for CoT-basic, the generator follows the settings of that in
Table 2: N-gram-level quality benchmark: BLEU on test data of EMNLP2017 WMT News

Model/Algorithm	BLEU-2	BLEU-3	BLEU-4	BLEU-5
MLE	0.781	0.482	0.225	0.105
SeqGAN [Yu et al., 2017]	0.731	0.426	0.181	0.096
RankGAN [Lin et al., 2017]	0.691	0.387	0.178	0.095
MaliGAN [Che et al., 2017]	0.755	0.456	0.179	0.088
LeakGAN [Guo et al., 2017]	0.835	0.648	0.437	0.271
TextCoT-basic (ours)	0.785	0.489	0.261	0.152
TextCoT-strong (ours)	0.800	0.501	0.273	0.200
TextCoT-strong ($\alpha = 1.5$) (ours)	**0.856**	**0.701**	**0.510**	**0.310**

Table 3: Diversity benchmark: estimated Word Mover Distance (eWMD) and NLL\textsubscript{test}

Model/Algorithm	eWMD\textsubscript{test}	eWMD\textsubscript{train}	NLL\textsubscript{test}
MLE	1.015	0.947	2.365
SeqGAN [Yu et al., 2017]	2.900	3.118	3.122
RankGAN [Lin et al., 2017]	4.451	4.829	3.083
MaliGAN [Che et al., 2017]	4.891	4.962	3.240
LeakGAN [Guo et al., 2017]	1.803	1.767	2.327
TextCoT-basic (ours)	**0.766**	**0.886**	2.247
TextCoT-strong (ours)	0.923	0.941	**2.144**

MLE, SeqGAN, RankGAN and MaliGAN. As for CoT-strong, the generator is implemented with the similar architecture in LeakGAN.

For quality evaluation, we evaluated BLEU on a small batch of test data separated from the original dataset. For diversity evaluation, we evaluated the estimated Word Mover Distance [Kusner et al., 2015], which is calculated through training a discriminative model between generated samples and real samples with 1-Lipschitz constraint via gradient penalty as in WGAN-GP [Gulrajani et al., 2017]. To keep it fair, for all evaluated models, the architecture and other training settings of the discriminative models are kept the same.

The results are shown in Table 2 and Table 3. In terms of generative quality, CoT-basic achieves state-of-the-art performance over all the baselines with the same architecture-level capacity, especially the long-term robustness at n-gram level. CoT-strong using a conservative generation strategy, i.e., setting the inverse temperature parameter α higher than 1, as in [Guo et al., 2017] achieves the best performance over all compared models. In terms of generative diversity, the results show that our model achieves the state-of-the-art performance on all metrics including NLL\textsubscript{test}, which is the optimization target of MLE.

5 Future Work & Conclusion

We proposed Cooperative Training, an unbiased, low-variance, computationally efficient algorithm for generative modeling of discrete data. Models trained via CoT shows promising results in sequential discrete data modeling tasks.

An interesting direction of future work is Nested CoT. Although for predictive tasks MLE is unbiased, it raises the risk of mediator’s overfitting. Nested CoT, which is to train the mediator via CoT, can be used to avoid this. For scenarios that extremely rely on generalization, Nested CoT is very promising.
References

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial networks. *arXiv preprint arXiv:1701.04862*, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. *arXiv:1701.07875*, 2017.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. *arXiv:1409.0473*, 2014.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence prediction with recurrent neural networks. In *NIPS*, pages 1171–1179, 2015.

Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, and Yoshua Bengio. Maximum-likelihood augmented discrete generative adversarial networks. *arXiv:1702.07983*, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *NIPS*, pages 2672–2680, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved training of wasserstein gans. In *NIPS*, pages 5769–5779, 2017.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text generation via adversarial training with leaked information. *arXiv:1709.08624*, 2017.

Ferenc Huszár. How (not) to train your generative model: Scheduled sampling, likelihood, adversary? *arXiv:1511.05101*, 2015.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document distances. In *International Conference on Machine Learning*, pages 957–966, 2015.

Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting Sun. Adversarial ranking for language generation. In *NIPS*, pages 3155–3165, 2017.

Sidi Lu, Yaoming Zhu, Weinan Zhang, Jun Wang, and Yong Yu. Neural text generation: Past, present and beyond. *arXiv preprint arXiv:1803.07133*, 2018.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. *arXiv preprint arXiv:1511.06434*, 2015.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training with recurrent neural networks. *arXiv preprint arXiv:1511.06732*, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. *The Journal of Machine Learning Research*, 15(1):1929–1958, 2014.

Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. 1984.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient for fast stylization. *arXiv preprint arXiv:1607.08022*, 2016.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8(3-4):229–256, 1992.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets with policy gradient. In *AAAI*, pages 2852–2858, 2017.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texygen: A benchmarking platform for text generation models. *arXiv:1802.01886*, 2018.
A Detailed Derivation of the Algorithm

\[\nabla_{\theta} \left(-\frac{1}{2} \sum_{s_t \sim G_{\theta}} \log G_{\theta}(s_t) - \log M_{\phi}(s_t) \right) \]

\[= \nabla_{\theta} \left(-\frac{1}{2} \sum_{s_t \sim G_{\theta}} \log \frac{G_{\theta}(s_{t-1})G_{\theta}(s_t \mid s_{t-1})}{G_{\theta}(s_t)} \right) \]

\[= \nabla_{\theta} \left(-\frac{1}{2} \sum_{s_t \sim G_{\theta}} \log \frac{G_{\theta}(s_{t-1})G_{\theta}(s_t \mid s_{t-1})}{G_{\theta}(s_t)} \left(\log G_{\theta}(s_{t-1})G_{\theta}(s_{t-1}) - \log M_{\phi}(s_{t-1})M_{\phi}(s_{t-1}) \right) \right) \]

\[= -\frac{1}{2} \nabla_{\theta} \left(\sum_{s_t} G_{\theta}(s_{t-1})G_{\theta}(s_t \mid s_{t-1}) \log \frac{G_{\theta}(s_{t-1})G_{\theta}(s_t \mid s_{t-1})}{M_{\phi}(s_{t-1})} \right) \]

\[+ \sum_{s_t \sim G_{\theta}} \left(\log G_{\theta}(s_{t-1}) \log \frac{G_{\theta}(s_{t-1})}{M_{\phi}(s_{t-1})} \right) \]

\[= -\frac{1}{2} \nabla_{\theta} \left(\sum_{s_t} G_{\theta}(s_{t-1})G_{\theta}(s_t \mid s_{t-1}) \log \frac{G_{\theta}(s_{t-1})G_{\theta}(s_t \mid s_{t-1})}{M_{\phi}(s_{t-1})} \right) + \frac{1}{2} \nabla_{\theta} \left(\log \frac{G_{\theta}(s_{t-1})}{M_{\phi}(s_{t-1})} \right) \]

\[= -\frac{1}{2} \nabla_{\theta} \left(\sum_{s_t} G_{\theta}(s_{t-1})G_{\theta}(s_t \mid s_{t-1}) \log \frac{G_{\theta}(s_{t-1})G_{\theta}(s_t \mid s_{t-1})}{M_{\phi}(s_{t-1})} \right) + \frac{1}{2} \nabla_{\theta} \left(\log \frac{G_{\theta}(s_{t-1})}{M_{\phi}(s_{t-1})} \right) \]

\[= -12 \]

B Further Discussions about the Experiment Results

The Optimal Balance for Cooperative Training We find that the same learning rate and iteration numbers for the generator and mediator seems to be the most competitive choice. As for the architecture choice, we find that the mediator needs to be slightly stronger than the generator. For the best result in the synthetic experiment, we adopt exactly the same generator as other compared models and a mediator whose hidden state size is twice larger (with 64 hidden units) than the generator.

Theoretically speaking, we can and we should sample more batches from \(G_{\theta} \) and \(P \) respectively for training the mediator in each iteration. However, if no regularizations are used when training the mediator, it can easily over-fit, leading the generator’s quick convergence in terms of \(KL(G_{\theta} \parallel P) \) or NLL, or even, but divergence in terms of JSD \((G_{\theta} \parallel P) \). Empirically, this could be alleviated by applying dropout techniques [Srivastava et al., 2014] with 50% keeping ratio before the output layer of RNN. After applying dropout, the empirical results show good consistency with our theory that more training batches for the mediator in each iteration is always helpful.

However, applying regularizations is not an ultimate solution and we look forward to further theoretical investigation on better solutions for this problem in the future.