I. INTRODUCTION

The quantitative analysis of data generated by complex systems is a standard problem in statistical physics that encounters applications in several branches of natural and social sciences. Quite frequently, the statistical analysis reveals the emergence of power-law distributions as a signature, indicating that these systems self-organize into a critical state with no characteristic length or time scales. Recently, several scale-free phenomena have been reported to occur in social sciences, as for example, in city morphologies [1], economic activity [2,3] and linguistics [4,5], among others.

One of the most fundamental processes in democratic societies concerns to elections. The future development of a human democratic organization is strongly dependent on the results of a series of such processes. Therefore, several efforts have been made to understand the way people make their choices [6] and what social, economic and political features are relevant in such a way to influence, or even determine, the general outcome of a particular electoral process. From the statistical physics point of view, the result of an electoral process can be considered as a response function of an interacting and open many-particle system governed by an intricate (and even unknown) internal dynamics. After the seminal work of Bak et al. [7], there has been a general belief that these systems usually evolve towards a critical state whose response functions depict no characteristic scales. As such, the distribution function related to any stochastic quantity of interest must display asymptotic power-laws. Further, these power-law distributions must be quite robust depending only on a few general requirements. In equilibrium critical phenomena the relevant features are related to the symmetry of the local variable, the space dimensionality and the range of interactions. However, in self-organized dynamical systems further symmetries may become relevant.

Therefore, a quantitative study of the distribution functions obtained from distinct electoral processes and their consequent classification is a fundamental step towards a better understanding of the underlying dynamics.

In 1999, Costa Filho et al. reported an extensive analysis of the proportional elections held in Brazil in October 1998 [8]. They have shown that the distribution of votes among candidates for state deputies follows a Zipf-like power-law, \(N(v) \propto v^{-\alpha} \), with \(\alpha \approx 1.0 \), extending over two orders of magnitude. Here \(N \) is the number of candidates that received the fraction of votes \(v \). This fact reveals that the electoral process indeed displays features of a scale-invariant phenomena. Further they observed that such scaling law is quite robust, being practically the same for different states with large social and economic discrepancies. This therefore suggests that the reported distribution is characteristic of a particular universality class associated with the state deputies election process.

The appearance of the \(1/v \) distribution has been interpreted in Ref. [9] with the assumption that the success of the candidates determining \(N(v) \) may be described by a typical multiplicative process [17]. In such a way, the voting fraction of a candidate, \(v \), can be viewed as a “grand process” depending on the successful completion of a number \(n \) of independent “subprocesses”. These factors should be intrinsically related to the attributes and/or abilities of the candidate to persuade voters and obtain votes more effectively. As a result, one could then associate with each candidate the probability \(p_i \) of performing the subprocess \(i \) among voters, so that his or her voting fraction would be \(v = p_1 p_2 \cdots p_n \). Considering that \(p_i \) are independent positive random variables and \(n \) is sufficiently large, we readily obtain from the central limit theorem that the distribution of \(v \) should be approximately log-normal. In addition, if the dispersion of the log-normal is sufficiently large, one can observe a \(1/v \) type of distribution, over a wide range of random variable values [17].
In this work we extend the quantitative study of electoral distribution functions by including an analysis of the results of the proportional elections in Brazil held in 2000. That year, all states in the country voted to choose local city-councillors. For comparison, we also include an analysis of the congressmen and state deputies elections of 1998. We find that the scaling behavior of vote distributions for state deputies and congressmen are the same within some statistical accuracy but quite distinct from that obtained for the local voting process for city-councillors. Further, we show that deviations from the power-law behavior can be well described by a generalized Zipf’s law which has been recently introduced in connection with the nonextensive statistical mechanics of Tsallis [11].

II. GENERALIZED ZIPF’S LAW

Data from the Brazilian general elections held in 2000 were made available through the web site of the Brazilian Federal Electoral Court [9]. All Brazilian cities held elections for mayor and city-councillor. We consider the results from the 15 largest (most populated) cities for the positions of city-councillors. The average number of votes per candidate is approximately 500. This number is significantly smaller than the corresponding ones for the elections of state and federal deputies.

For each city, we normalize the votes of each candidate by the total number of voters and construct histograms to give the number of candidates, \(N \), which received a certain fraction of votes, \(v \). All 15 histograms present a common form within the available statistical accuracy. Data from the 15 histograms were grouped in a unique histogram which is shown as a log-log plot in Fig. 1. The resulting curve follows very closely the extended form of the Zipf’s law [10]

\[
N(v) = \frac{A}{(1 + C v)^\alpha}, \quad (1)
\]

where \(A \) is a normalization constant, \(C \) governs the crossover between the initial plateau and the power-law regime characterized by the exponent \(\alpha \).

The above law has been deduced within the nonextensive thermodynamic formalism proposed by Tsallis [11] by means of heuristic arguments based on the fractal structure of symbolic sequences with long-range correlations [12]. Indeed, the properties of non-linear maps at the chaos threshold have been widely used to better understand some features related to interacting many-particle systems presenting complex behavior. In particular, the fast exponential dynamics observed in chaotic regimes can be reproduced by noticing that the phase-space volume visited by the map follows a simple linear differential equation in the form

\[
\frac{dW(t)}{dt} = \lambda W, \quad (2)
\]

where \(\lambda \) is the Lyapunov coefficient. This behavior is replaced by a slower power-law dynamics at critical points where long-range correlations develop. In this case, \(W(t) \) satisfies the non-linear differential equation

\[
\frac{dW(t)}{dt} = \lambda_q W^q, \quad (3)
\]

where the exponent \(q \) is related to the degree of nonextensivity induced by the underlying long-range correlations. This is the same parameter characterizing the proper nonextensive Tsallis entropy \(S_q \) which evolves at a constant rate [12]. A similar generalization can be done to characterize the possible behaviors of the distribution \(N(v) \). Its exponential decay, expected to hold for uncorrelated processes, can be directly obtained by assuming that \(N(v) \) satisfies the first-order linear differential equation

\[
\frac{dN(v)}{dv} = -\lambda N. \quad (4)
\]

Further, for long-range correlated processes, the extended Zipf’s law follows from the non-linear generalization

\[
\frac{dN(v)}{dv} = -\lambda_q N^q \quad (5)
\]

which provides

\[
N(v) = \frac{N(0)}{[1 + (q - 1)\lambda v]^{1/(q - 1)}}, \quad (6)
\]

where the limit of \(q \to 1 \) recovers the usual exponential form.

The best fit of \(N(v) \) for the city-councillors election to Eq. (6) is shown as a solid line in Fig. 1 and provides \(\alpha = 1/(q - 1) = 2.63 \) \((q = 1.38) \). The exponent is substantially larger than the one reported to hold for the state deputies elections of 1998 [3]. In Fig. 2 we show \(N(v) \) as computed from data of the state representatives election in the 15 states corresponding to the capitals considered above. This figure is similar to the one reported in Ref. [3]. After the initial plateau, a power-law scaling regime sets up with an exponent close to \(-1.0\). However, one can clearly identify that the scaling regime breaks down for large voting fractions and a faster decay takes place. This breakdown of scaling invariance, not seen in data from city-councillors elections, is similar to the one reported to be present in linguistics [5] and re-association of folded proteins [12]. The crossover to a faster (exponential) decay for large voting fractions can reflect a lack of correlation among groups of voters that chose to vote for the same candidate but are located in distinct cities. Within the reasoning that leads
to Eq. (4), this crossover can be reproduced by considering that $N(v)$ follows a more general equation (7)

$$\frac{dN}{dv} = -\lambda N - (\lambda_q - \lambda)N^q,$$

whose general solution reads

$$N(v) = \frac{N(0)}{[1 - \lambda_q/\lambda + (\lambda_q/\lambda)e^{(q-1)\lambda}v]^{1/(q-1)}}. \tag{8}$$

In Fig. 2 the solid line corresponds to the best fit of $N(v)$ to Eq. (8). From it we estimate $\lambda_q = 12227.3$, $\lambda = 135.1$ and $\alpha = 1/(q - 1) = 1.03$ ($q = 1.97$). The exponent α is in perfect agreement with the previously estimated value.

The difference in scaling exponents appearing in the Zipf’s law for city and state representatives leads to the conjecture that local and non-local voting processes have distinct underlying dynamics governing the voting decision. For the city representative election, a model based in the Sznaud model of sociophysics [15] has been proposed to reproduce the exponent $\alpha \approx 1.0$ [16]. However, a model that captures some characteristics of non-local voting processes would possible require the inclusion of complex voting decision rules that take into account the role of parties, economic and social factors as well as long-range interacting individuals, among others. The natural question that arises is therefore related to the possibility of a universal behavior of non-local voting processes and what factors are relevant in defining the scaling exponent.

In order to test for a possible universal behavior of non-local voting processes, we collected data from the National Congress (federal deputies) election results of 1998. Again, we just took the data corresponding to the same 15 states previously considered. The resulting distribution is shown in Fig. 3. Notice that a breakdown of scaling invariance is also observed in this case for large voting fractions. The best fit to the generalized Zipf’s law Eq. (3) is shown as a solid line and the fitting parameters are $\lambda_q = 6774.4$, $\lambda = 33.1$ and $\alpha = 1/(q - 1) = 1.07$ ($q = 1.93$). The similarity between the exponents characterizing the intermediate power-law regime of both state and federal deputies comes in favor of the conjecture that non-local voting processes depict a universal scaling behavior. However, the crossover to the exponential behavior takes place at distinct (non-universal) voting fractions.

III. CONCLUSION

In summary, here we provide a statistical analysis for the results of the Brazilian elections for state and federal deputies held in 1998, and for city-councillors held in 2000. We show that all regimes of the measured distributions $N(v)$ are well reproduced by a generalized form of Zipf’s law which has been originally derived within a nonextensive thermostatistical approach. More precisely, we find that the voting distribution for city representatives follows Zipf’s law with a characteristic exponent $\alpha \approx 2.6$. Furthermore, the Zipf’s law representing the data for state and federal deputies exhibits a slower decay with $\alpha \approx 1.0$, followed by a non-universal crossover to an exponential decay which reflects the lack of persistent correlations at large voting fractions. We therefore conclude that the distributions for local and non-local voting processes are characterized by distinct scaling exponents. At this point, it is important to emphasize that these exponents are practically the same among all states analyzed. This suggests that voting motivations are indeed similar for different states regardless of economic, social and political factors. On the other hand, voting motivations for local (city-councillors) and non-local (state and federal deputies) voting processes may be quite distinct leading to the observed qualitatively different results. It would be interesting to have models of social behavior able to distinguish between the presently reported scaling behavior of local and non-local voting processes.

ACKNOWLEDGMENTS

This work was supported by the Brazilian funding agencies CNPq, FUNCAP, and CAPES

[1] H. A. Makse, S. Havlin and H. E. Stanley, Nature (London) 377, 608 (1995); H. A. Makse, J. S. Andrade Jr., M. Batty, S. Havlin and H. E. Stanley, Phys. Rev. E 58, 7054 (1998).
[2] H. E. Stanley, L. A. N. Amaral, D. Canning, P. Gopikrishnan, Y. Lee and Y. Liu, Physica A 269, 156 (1999).
[3] D. Stauffer, Int. J. Mod. Phys. C 11, 1081 (2000).
[4] G. K. Zipf, Human Behavior and the Principle of Least Effort, Addison-Wesley, Reading, MA, 1949; The Psychology of Language, An Introduction to Dynamic Philosophy, MIT Press, Cambridge, MA, 1965.
[5] M. A. Montemurro, Physica A 300, 567 (2000).
[6] R. Forsythe, T. Rietz, R. Myerson and R. Weber, Int. J. Game Theory 25, 355 (1996); S. Galam, J. Stat. Phys. 61, 943 (1990).
[7] P. Bak, C. Tang and K. Weisenfeld, Phys. Rev. Lett. 59, 381 (1987); D.L. Turcotte, Rep. Prog. Phys. 62, 1377 (1999).
[8] R. N. Costa Filho, M. P. Almeida, J. S. Andrade Jr. and J. E. Moreira, Phys. Rev. E 60, 1067 (1999).
[9] http://www.tse.gov.br/ele/
[10] B. Mandelbrot, Information theory and psycholinguistics: a theory of words frequencies, in: P. Lazafeld, N. Henry (Eds.), Readings in Mathematical Social Science, MIT Press, Cambridge, MA, 1966.
IV. FIGURE CAPTIONS

Figure 1 - Double logarithmic plot of the voting distribution for city-councillors. Data concern to the results of the Brazilian proportional elections held in 2000 considering the 15 largest state capitals. The solid line is the best fit to the Zipf’s law, Eq. (6). The power-law scaling exponent is $\alpha = 2.63$.

Figure 2 - Double logarithmic plot of voting distribution for state deputies. Data concern to the results of the Brazilian proportional elections held in 1998 considering the states with the 15 largest capitals. The solid line is the best fit to the generalized Zipf’s law, Eq. (8). The power-law scaling exponent is $\alpha = 1.03$. The crossover to an exponential decay reflects the lack of persistent correlations at large voting fractions. The scaling exponent is much smaller than the one characterizing the city-councillors election indicating that these two processes have distinct voting decision rules.

Figure 3 - Double logarithmic plot of the voting distribution for federal deputies. Data concern to the results of the Brazilian proportional elections held in 1998 considering the states with the 15 largest capitals. The solid line is the best fit to the generalized Zipf’s law, Eq. (8). The power-law scaling exponent is $\alpha = 1.07$. The similarity with the scaling exponent obtained for state deputies indicates that these two process may be dominated by the same voting decision rules.
FIG. 3.

Federal Deputy