Natural Products as Promising Drug Candidates for the Treatment of Alzheimer’s Disease: Molecular Mechanism Aspect

Niloufar Ansari and Fariba Khodagholi*

Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract: Alzheimer’s disease (AD) is the most common neurodegenerative disorder to date, with no curative or preventive therapy. Histopathological hallmarks of AD include deposition of β-amyloid plaques and formation of neurofibrillary tangles. Extent studies on pathology of the disease have made important discoveries regarding mechanism of disease and potential therapeutic targets. Many cellular changes including oxidative stress, disruption of Ca²⁺ homeostasis, inflammation, metabolic disturbances, and accumulation of unfolded/misfolded proteins can lead to programmed cell death in AD. Despite intensive research, only five approved drugs are available for the management of AD. Hence, there is a need to look at alternative therapies. Use of natural products and culinary herbs in medicine has gained popularity in recent years. Several natural substances with neuroprotective effects have been widely studied. Most of these compounds have remarkable antioxidant properties and act mainly by scavenging free radical species. Some of them increase cell survival and improve cognition by directly affecting amyloidogenesis and programmed cell death pathways. Further studies on these natural products and their mechanism of action, parallel with the use of novel pharmaceutical drug design and delivery techniques, enable us to offer an addition to conventional medicine. This review discussed some natural products with potential neuroprotective properties against Aβ with respect to their mechanism of action.

Keyword: Alzheimer’s disease, Amyloid β, Apoptosis, Natural products, Neuroprotection, Tau protein.

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is characterized by the loss of memory and cognitive impairments [1]. Many biochemical changes within cell have been identified to induce neuronal cell death. Oxidative stress, disruption of Ca²⁺ homeostasis, inflammation, metabolic disturbances, and accumulation of unfolded/misfolded proteins are among cellular changes that finally lead to programmed cell death in AD [2].

Histopathological hallmarks of AD include deposition of β-amyloid (Aβ) plaques and formation of neurofibrillary tangles [3]. Indeed, AD is a protein mis-folding disease, called “proteopathy”. Senile plaques are made of insoluble Aβ peptides that are formed by proteolytic fragmentation of amyloid precursor protein (APP), a trans-membrane protein that penetrates through the neuronal membranes [4]. Neurofibrillary tangles are made of aggregates of hyperphosphorylated tau, a microtubule-associated protein [5].

Most of the researches in AD during past two decades have focused on “amyloid hypothesis”. This hypothesis postulates that Aβ deposition is the initial event in neuronal dysfunction in AD. The support given for this hypothesis is the dementia of patient with Down’s syndrome (trisomy 21).

As APP genes locate in chromosome 21, it has been proposed that their mutations result in cognitive impairment and dementia [6].

APP cleavage by β-secretase at extracellular domain, and by γ-secretase at the trans-membrane region, leads to formation of Aβ proteins [7]. Gamma-secretase complex consists of at least four proteins, including Presenilin (PS). PS, an aspartyl protease, is the catalytic subunit of the enzyme and its mutation causes alterations in APP processing and increases the amount of toxic Aβ [8]. Although amyloid plaques are the major characteristic of AD pathology, their presence does not necessarily mean the increased amyloid production. Decrease of clearance could also lead to this accumulation. It has been also reported that some soluble species of Aβ are more toxic than Aβ aggregates [9]. Thus, the main focus has been made on preventing the formation of Aβ from its precursor.

Although several compounds have been proposed to decrease neurodegeneration in AD models, limited approved drugs are available for the management of AD patients. A major part of today’s pharmaceutical market is the use of natural products. The use of drug substances derived from natural sources has a long tradition in medicine [10, 11].

This review article describes the mechanism of AD, current medications for AD and existed problems in developing new medications. We also summarize the potential of some natural products for inhibiting Aβ-induced cell death and recent findings on their mechanisms of action. Although Aβ is not the only factor capable of causing...
cognitive decline in AD, due to extent of compounds and experimental models, in this paper we focused on the active substances reported to inhibit Aβ-induced cognitive impairment or cell death.

2. MECHANISM OF NEURONAL CELL DEATH IN AD

Oxidative stress is the imbalance between prooxidants and antioxidant factors that lead to accumulation of reactive oxygen species (ROS) [12]. This reactive species can lead to cell membrane lipid destruction, DNA cleavage, oxidation of proteins, and finally apoptosis [13]. Apoptosis is the predominant type of neuronal cell loss observed in AD [14]. Apoptotic cell death signaling can be divided into two major pathways; intrinsic (or mitochondrial) pathway and extrinsic (or death receptor- mediated) pathways [15].

Fig. (1). Mechanism of apoptotic pathways and ER stress.

Apoptosis in mammalian cells regulates by a large number of proteins (Fig. 1). In the intrinsic pathway, stimuli acts directly or indirectly on mitochondria and affects mainly Bcl-2 family and caspase [16].

Bcl2 superfamily consists of both pro-apoptotic (such as Bax, Bad, and Bak) and anti-apoptotic (such as Bcl-2 and Bcl-xL) proteins. Decrease of anti-apoptotic protein and/or increase of pro-apoptotic factors results in disruption of mitochondria membrane potential, swelling of mitochondrial membrane, and release of cytochrome c to cytoplasm [17]. In cytoplasm, cytochrome c forms a multi-molecular holoenzyme complex with apoptotic protease activating factor 1 (Apaf1), which cleaves pro-caspase-9 to its active form. Active caspase-9 then cleaves procaspase-3 and initiates the caspase cascades [18].
Extrinsic pathway of apoptosis involves the interaction of death signals, for example tumor necrosis factor (TNF-α) with death receptors, such as tumor necrosis factor receptors 1 (TNFR1), and formation of death-inducible signaling complex that activates caspase-8, which could also cleave procaspase-3 to its active form [19].

Activated caspase-3, in both intrinsic and extrinsic pathways, activates poly (ADP-ribose) polymerase (PARP) and other death substrates, such as APP, PS1 and PS2 proteins [20].

Stress conditions also affect the folding of proteins in endoplasmic reticulum (ER) lumen [21]. Three main ER pathways involved in folding include inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor 6 (ATF6) [22]. ER stress response is mediated via three different signaling pathways: unfolded protein response (UPR), which increases the level of chaperones; ER-associated protein degradation (ERAD) that degrades the misfolded proteins by activating ubiquitin/proteosomal pathway; and ER overload response (EOR) which is induced when ER is overload with proteins that are not transported to Golgi complex [23]. Under ER stress conditions, glucose-regulated protein 78 (GRP78) which is an ER chaperone, dissociates from ATF6, PERK, and IRE1 and binds to misfolded proteins to facilitate their folding [24]. C/EBP homologous protein (CHOP) together with caspase-12, which are ER resident caspases, and calpain mediate ER stress-induced apoptosis by affecting executioner caspases, such as caspase-3 [25,26].

While accumulation of unfolded proteins in ER provokes these pathways, accumulation of misfolded proteins in the cytosol leads to increased expression of heat shock proteins (HSPs) which act as molecular chaperones [27]. HSPs expression is induced by several stimuli including heat shock, ischemia damage, infection, and heavy metals [28]. HSPs may protect cells by mechanisms unrelated to their chaperone function through inhibition of apoptosis [29]. Stress-inducible Hsp70 is a prominent cytoprotective factor that protects the sensitive sites of the target proteins and thereby acts as a cytoplasmic “antioxidant” [30].

In addition to mitochondria- and ER-resident proteins, many stress-sensing transcription factors are also activated in AD.

NF-E2 related factor 2 (Nrf2) is a central transcription factor involved in transcriptional activation of phase II detoxifying enzymes via antioxidant response element (ARE) [31]. Release of Nrf2 from its cytoplasmic inhibitor, Kelch-like ECH-associated protein 1 (Keap1), leads to activation of Nrf2 and its translocation to nucleus, where it activates transcription of ARE-driven genes, such as Hsp32 and γ-glutamyleysteine synthetase (γ-GCS) [32].

Nuclear factor-κB (NF-κB) is another transcription factor that is activated by TNF-α, interleukin 1β (IL-1β) and lipopolysaccharide (LPS) (canonical pathway) or by LTRβ, CD40 ligand (non-canonical pathway) [33]. In unstimulated cells, NF-κB is sequestered inactive in cytoplasm by binding to IκB (Inhibitor of κB). Activation of the NF-κB involves the phosphorylation of two serine residues located on IκB regulatory domain by IκB kinase (IKK) and release of NF-κB [34]. In nucleus, NF-κB induces production of different mediators, like nitric oxide (NO), and regulates a number of inflammation- and oxidative stress-related genes, such as cyclooxygenase 2 (COX-2), superoxide dismutase (SOD), glutamate receptors, growth factors (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)), and cytokines (TNF-α and TNFR) [35,36]. NF-κB signaling is inhibited by peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor of the nuclear hormone receptor superfamily [37]. PPARγ agonists attenuate effectively oxidative stress, inflammation and apoptosis in the central nervous system [38].

Mitogen-activated protein kinase (MAPK) cascades are other major signaling pathways involved in cell proliferation, differentiation and adaptation [39]. The p38 MAPK signaling has been widely accepted as a cascade contributing to neuroinflammation, excitotoxicity, synaptic plasticity and tau phosphorylation [40]. Inhibitors of ERK and p38 MAPK improve spatial learning and memory impairment in β- injected rats by increasing phosphorylated cAMP-response element binding protein (CREB) level [41]. JNK protein is a stress activated protein kinase with several targets including Bcl family members and microtubule associated proteins, such as tau [42].

Another important signaling pathway involved in AD is Wnt pathway. Wnt signaling plays an important role in normal neural development and maintenance of neuronal homeostasis, synaptic plasticity, axonogenesis and establishment of brain polarity [43]. Activation of the Wnt pathway attenuates cytosolic glycogen synthase kinase 3β (GSK-3β) activity via protein kinase C (PKC) enzyme, thereby prevents phosphorylation and degradation of β-catenin and increases its nuclear translocation [44]. In nucleus, β-catenin interacts with TCF/LEF family transcription factors to promote specific gene expression [45]. These gene products are important in determining cell’s fate during normal development and in maintaining homeostasis [46]. Several studies have shown that PS-1 protein could form high molecular weight complexes with GSK-3β and β-catenin protein [47]. It has been suggested that PS-1 inherited mutations may affect the levels, trafficking or the phosphorylation state of cytosolic β-catenin [48].

3. CURRENT TREATMENTS

To date, there is no curative or preventive therapy for AD. Five medications have FDA approval for management of AD, all of them offer symptomatic benefits; tacrine, rivastagmine, donepezil, and galantamine are acetyl cholinesterase inhibitor (AChEi), while memantine is an N-methyl-D-aspartate (NMDA) receptor antagonist [49] (Fig. 2).

It has been found that AD is associated with reduction of cholinergic neurons activity [50]. AChEIs reduce the rate of acetylcholine degradation, and thereby increase its concentration in the brain. All of these drugs are used in mild to moderate AD [51]. Donepezil is approved for the treatment of advanced stages of AD [52]. Memantine is also used in moderate to severe AD. This NMDA receptor
antagonist blocks overstimulation of receptor by glutamate that could lead to excitotoxicity in AD [53].

As mentioned above, none of these drugs could delay the onset of AD or halting its progression [54]. Several problems exist in development of new therapeutics. First of all, there are mixed causes of dementia and neuropathology in many patients, particularly those who are older than 80 years [55]. Besides, in patients with different stages of the disease, it might be too early or too advanced for a disease-modifying effect of specific drugs [56]. Another problem in development of AD therapy is that several compounds with positive results in preclinical studies fail at clinical trials because of their low penetration across blood brain barrier (BBB), which limits their targeting. In recent years, several compounds have been reported for their neuroprotective effects in cellular and/or animal models of AD [57,58]. Although many of them were failed in different phases of clinical trials, some of them are promising candidates for AD treatment [59,60].

4. NATURAL PRODUCTS

Medicinal plants are important source of protective compounds against AD. Using the structure of these active substances as templates for synthetic drugs provides a wide range of potential neuroprotective compounds [61]. In the past few decades, several researches attempted to assess the effect of total plant extract on AD and to isolate the active substance responsible for the protective effects [62,63]. In this section, we review the most studied neuroprotective natural substances with focus on their mechanism of action (Table 1).

4.1. Bilobalide

Bilobalide (BB) is the main terpenoid of Ginkgo biloba leaves with potent protective effects on neurons and Schwann cells [64]. This sesquiterpene trilactone induces liver enzymes CYP3A1 and 1A2, which may be partially responsible for interactions between Ginkgo and other herbal medicines or pharmaceutical drugs [65].

In rats, oral administration of Ginkgo extracts and/or pure BB caused dose dependent increase of BB plasma levels [66]. The plasma half-life of BB in human is about 2-3 h [67].

BB (25-100 μM) blocked ROS-induced apoptosis in early stages and decreased the elevated levels of p53, Bax and caspase-3 in PC12 cells [68]. BB (50 μl, 0.14 g/ml) also affected mitochondrial function by upregulating cytochrome c oxidase subunit I [69].

BB (10 μM) inhibited the β-secretase activity of cathepsin B and reduced generation of two β-secretase cleavage products of APP, Aβ and soluble APPβ, via PI3K-dependent pathway [70]. Additionally, GSK 3β signaling might be involved in BB (10 μM)-induced Aβ reduction as a downstream target of the activated PI3K pathway [71].
4.2. Quercetin

Quercetin (QCT) is a polyphenolic flavonoid found in a wide variety of foods including capers, apples, onions, berries, green and black tea, and red wine [74]. This flavonol-type flavonoid acts as a bioactive compound, mainly by scavenging ROS and showing antioxidant properties [75]. In addition, it exerts several pharmacological effects, such as anti-cancer, antiviral, anti-inflammatory, and anti-amyloidogenic activities [76, 77]. In human studies, QCT (doses up to 1,000 mg/day) had no adverse effects on blood parameters of liver and kidney function, hematology, or serum electrolytes [74].

One characteristic feature of QCT is that the elimination of its metabolites from plasma is quite slow, with reported half-lives ranging from 11 to 28 h, which makes QCT accumulation in body in daily uptake [78]. Recently, solid lipid nanoparticles (SLNs) of QCT were prepared in order to improve its penetration via BBB. Behavioral studies confirmed that SLN-encapsulated QCT shows a better neuroprotective effect [79]. Most animal studies reported no toxicity/carcinogenicity, which may be due to extensive QCT metabolism by the intestinal and the liver cells. Liposomal preparations or higher BBB permeability conditions, by increasing the amount of QCT aglycone reaching the CNS parenchyma, may elevate the risk of neurotoxicity. Thus, further toxicological studies are needed to investigate risk/beneficial effects of liposomal preparations [80].

QCT (10 μM) showed anti-amyloidogenic effects by inhibiting the formation of Aβ fibrils [81]. Lower doses of QCT (5-20 μM) significantly attenuated Aβ-induced apoptosis in hippocampal cultures; however it induced cytotoxicity at high doses (40 μM) [82]. QCT combination with BB could significantly enhance phosphorylation of CREB and the level of BDNF in mouse brain [83].

4.3. (-)-Epigallocatechin-3-gallate

(-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea leaves (Camellia sinensis). Carob flour, a cocoa-like substance derived from the ground pods of the carob plant or Ceratonia siliqua has also a high content of EGCG. Apples, blackberries, strawberries, nuts, peaches, avocados, plums, onions and raspberries have lower amounts of EGCG [84]. During fermentation, many catechins are oxidized to theaflavin and thearubigen which provide darker colors of the black tea [85]. EGCG is a potent antioxidant flavonoid and has been the subject of many studies in cancer, atherosclerosis, and neurodegenerative diseases, such as AD [86].

Absorption of EGCG from the small intestine is largely by passive diffusion; however, at high concentrations, the small intestinal and colonic tissues become saturated [87]. After oral absorption, tea catechins undergo extensive methylation, glucuronidation, and sulfation. The elimination half-life of EGCG is about 3 h [88]. It has been shown that EGCG nanolipids oral bioavailability was two folds more than free EGCG and they show a better α-secretase enhancing effect [89].

Orally administered EGCG (10 mg/kg) could reduce AChE activity, glutathione peroxidase activity, NO metabolites and ROS content in streptozotocin-model of dementia [90]. In mutant PS2 AD mice, EGCG (3 mg/kg in drinking water) enhanced memory formation and α-secretase activity, and suppressed γ-secretase activity [91]. Rezaiezadeh et al. (2008) showed that EGCG administration, i.p. (20 mg/kg) and p.o. (50 mg/kg in drinking water), modulated tau profile and provided cognitive benefits to Tg mice [92]. Besides, EGCG (5-10 μM) exhibited potent iron-chelating activities and decreased both immature and full length cellular holo-APP [93].

EGCG (1.5 and 3 mg/kg in drinking water) also prevented LPS-induced memory impairment and apoptosis via non-amyloidogenic proteolysis by decreasing APP expression, beta-site APP cleeving enzyme 1 (BACE-1) activity, and Aβ levels. In this model of AD, EGCG (1, 10, and 100 μM) also prevented astrocytes activation and inflammatory factors including TNF-α, IL-1β, macrophage colony-stimulating factor, soluble intracellular adhesion molecule-1, IL-6, inducible nitric oxide synthase (iNOS) and COX-2 [94,95]. Pae et al. reported that dietary supplementation with high dose of EGCG (1 % w/w) promotes adverse response by inducing TNF-α, IL-6, and IL-1β and lipid inflammatory mediator PGE2 in mice splenocytes and macrophages [96].

EGCG (2 and 20 μM) also inhibited vascular endothelial growth factor, prostaglandin E2, p38, JNK, and MAPK phosphatase-1 [97]. Higher concentrations of EGCG (200 μM) induced cellular toxicity in human astrocytoma, U373MG cells [97].

EGCG (3 mg/kg in drinking water) inhibited apoptosis in Aβ1-42- injected mice brain by inhibiting ERK and NF-κB [91]. EGCG (10 μM) could prevent Aβ-induced impairment of NMDA, calcium influx, ROS production, and mitochondrial dysfunction in primary cortical neurons [98]. In vitro and in vivo studies done by Dragicevic et al. (2011) showed that EGCG and luteolin (Lu) were the top two mitochondrial restoration compounds among 25 tested flavonoids [99].

In addition to mentioned effects, EGCG could be also used as an enhanced supplement for Huperzine A (HupA). EGCG (10-300 mg/kg) enhanced the inhibitory effect of HupA on AChE by increasing its affinity for serum albumin. Upon addition of EGCG to HupA, a remarkably enhanced and prolonged inhibitory effect was detected [100].

4.4. Resveratrol

Resveratrol (RSV) belongs to a class of polyphenolic compounds called Stilbenes [101]. Stilbenes are produced by several plants after exposure to stress, injury, fungal infection,
Table 1. Natural Compounds with Protective Effect Against Aβ

Compound	Chemical structure	Bioavailability	Mechanism of action against Aβ
Bilobalide	![Chemical Structure](image1)	Half-life: 2-3 h	↓ROS, ↓apoptosis, ↓β-secretase activity, ↑p-GSK-3β, ↑p-CREB, ↑BDNF
Quercetin	![Chemical Structure](image2)	Half-life: 11-28 h	↑Aβ formation, ↓apoptosis, ↑p-CREB, ↑BDNF
(+)-Epigallocatechin-3-gallate	![Chemical Structure](image3)	Half-life: 3 h	↑α-secretase activity, ↓γ-secretase activity, ↓BACE, ↓AChE, ↓NO, ↓ROS, ↓Iron chelating, ↓Inflammatory factors, ↑MAPK, ↓Mitochondrial dysfunction
Resveratrol	![Chemical Structure](image4)	Well absorption	↑ROS, ↑GSH, ↑AChE, ↑Aβ, ↑Inflammatory factors, ↑ERK1/2, ↑INF-κB, ↑Hsp32
Curcumin	![Chemical Structure](image5)	Low bioavailability	↑GSH, ↑BDNF, ↑INF-κB, ↑Inflammatory factors
Huperzine A	![Chemical Structure](image6)	Rapid absorption	↑AChE, ↑β-secretase activity, ↑p-GSK-3β, ↑apoptosis, ↑NGF, ↑Wnt/β-catenin signaling, ↑Mitochondrial dysfunction
Rosmarinic acid	![Chemical Structure](image7)	Half-life: 18h	↑apoptosis, ↑INF-κB, ↓tau hyperphosphorylation, ↑ROS, ↓DNA fragmentation
Luteolin	![Chemical Structure](image8)	Intestinal conjugation and the hepatic sulfation/methylation	↑ROS, ↓tau hyperphosphorylation, ↓Aβ, ↑SOD, ↑Nrf2, ↑ERK1/2, ↑p-CREB
Apigenin	![Chemical Structure](image9)	low solubility and high intestinal permeability	↑apoptosis, ↓caspase-12, ↓UPR, ↓MAPK
Phosphorylation. NF-κB suppression resulted in a decrease of NF-κB activation and inflammatory factors, such as NO, by decreasing inflammatory factors, NF-κB, IκB, PI3K/PKB, and MAPK. Its inhibitory effect on LPS-induced NF-κB activation was reported. Only 12.5% of the participants experienced frontal headache [106, 107].

RSV is well-absorbed from gastrointestinal lumen but it has low bioavailability due to its rapid metabolism and elimination [108]. RSV loaded lipid core nanocapsules increased RSV concentration in brain tissue, compared to free RSV [109].

RSV (10 and 20 mg/kg, p.o.) acts mainly as a potent antioxidant by scavenging ROS, increasing GSH level and ameliorating antioxidant capacity of the cell [110]. RSV (10 μM) also increases intracellular Ca2+ in cortical neurons via modulating secondary messengers, cGMP, cAMP, and NO. This enhancement of Ca2+ promotes cellular glucose utilization by inducing calcium dependent AMP-activated protein kinase [111].

RSV decreased the level of Aβ by inducing non-amyloidogenic cleavage of APP and increasing the clearance of Aβ [112]. Indeed, RSV (50 μM) bound to Aβ in different states; its binding response to fibrillar Aβ1-42 was higher than its monomer, but it bound to monomeric Aβ1-40 stronger than its fibrillar form [113]. Its high affinity to Aβ (at the concentration of 10^4 M in AD human brain) led researchers to design a new method of amyloid detection [113]. RSV specifically stained Aβ plaques and can be used as a reliable probe for amyloids. RSV (15, 45, and 135 mg/kg) can also inhibit AChE activity within cells [114].

RSV (2.5-40 μg/ml) inhibited LPS-induced inflammatory response by decreasing inflammatory factors, such as NO, TNF-α, IL-1β, and IL-6 in astrocytes [115]. RSV (100 and 200 μM) can also inhibit CRP protein and ERK1/2 MAPK [116]. Its inhibitory effect on LPS-induced NF-κB activation (50 μM) is mainly mediated by inhibiting IKK and IκB phosphorylation. NF-κB suppression resulted in decrease of downstream levels, TNF-α and IL-6 [117, 118].

Combinational use of melatonin (1, 10, 50, 100, and 500 μM) with RSV (0.1, 1, 5, 10, and 20 μM) potentiates RSV effects by increasing Hsp32, reducing ROS level, restoration of mitochondrial membrane potential (MMP), increasing GSH, and phosphorylation of AMPK [119]. Co-treatment with low concentrations of melatonin (1-10 μM) and RSV (0.1-1 μM) did not prevent Aβ1-42-induced cytotoxicity alone, synergistically protected HT22 hippocampal neuronal cells against Aβ1-42-induced toxicity [119].

4.5. Curcumin

Curcumin (CUR) is the principal curcuminoid of turmeric, popular Indian spice derived from the rhizomes of Curcuma longa, which is a member of the ginger family [120]. Curcuminoids are polyphenolic compounds that give turmeric its yellow color and can be used as a food coloring [121].

Many preclinical studies suggest that CUR may be useful for the prevention and/or treatment of several diseases, such as colorectal cancer, cystic fibrosis, inflammatory diseases and AD [122]. In phase I clinical studies, CUR (up to 8,000 mg/day, p.o.) did not result in significant side effects except mild nausea and diarrhea [123]. However, excess use of CUR can damage the gut microbiota, interfering with the normal physiology and immune response [124]. Bioavailability of orally administered CUR is relatively low and mostly metabolites of CUR, instead of CUR itself, are detected in plasma following oral consumption [125]. Its conjugation with aminoacids (such as isoleucine, phenylalanine, and valine) increases its activity [126]. In addition, several drug delivery systems have been studied for better targeting of CUR, such as liposomes, polymeric nanoparticles, SLNs, micelles, nanogels, and complexes with dendrimer/dimer [127-132]. SLN CUR showed a great recovery in membrane lipids, as well as AChE activity, in AlCl3-treated mice and the results were comparable with those achieved by rivastigmine [133]. CUR (10 μM) also inhibited aluminum-induced oxidative stress and mitochondrial dysfunction in rat brain [134]. It can also directly bind to metals, especially iron and cupper, and thereby acts as a chelator [135].

Compound	Chemical structure	Bioavailability	Mechanism of action against Aβ
Berberine	![Chemical structure](image)	Low absorption	tau hyperphosphorylation, Aβ,flammatory factors, NF-κB, PI3K/PKB, MAPK
Chitosan	![Chemical structure](image)	-	apoptosis, IBACE-1, ROS, Ca2+, Hsp32, GCS, Hsp90, Hsp70, MAPK, inflammatory factors

Table 1. contd….
CUR (5-10 μM) protected PC12 cells against Aβ-induced neurotoxicity by inhibiting oxidative damage, intracellular calcium influx, and tau hyperphosphorylation. Higher concentrations of CUR (50 μM) induced cellular toxicity in PC12 cells [136]. This polyphenol inhibited Aβ-induced mitochondrial depolarization of membrane potential and suppressed apoptotic factors cytochrome c, Bax and caspase-3. CUR (1-10 μM) also inhibited activated cyclin D1 protein level in Aβ-treated neurons [137]. It can also modulate cellular antioxidant enzymes, SOD and CAT. Both total and phosphorylated GSK-3β decreased in CUR-treated cells [138]. Inhibiting GSK-3β activated Wnt/β-catenin signaling and induced β-catenin (5-20 μM of CUR) [139]. CUR (5-20 μM) also inhibited GSK-3β-mediated PS1 activation and thereby decreased Aβ production [140]. Another study reported that CUR (10^{-5}-10^{-5} %) promoted Aβ fibril conversion by reducing the pre-fibrillar/ oligomeric form of Aβ, resulting in reduction of neurotoxicity in Drosophila [141]. Mustuga et al. (2001) examined the binding of CUR (0.009 %) to senile plaques in brain species of several aged animals and human AD patients. Interestingly, they found that CUR specifically bound to aggregated amyloids in various animals, and further to phosphorylated tau protein, probably according to its conformational nature [142]. This binding affinity led to design of a bivalent ligand of CUR and cholesterol, BMAOI 14 that can rapidly cross various animals, and further to phosphorylated tau protein, probably according to its conformational nature [143].

Another interesting approach was provided by Gomez et al. (2007) that designed a CUR -based small molecule catalyst template for accelerating oxidative protein folding in ER through novel non-redox chemistry and by this (10-50 μM), reduced the misfolding/unfolding abnormalities within cell [149].

4.6. Huperzine A

HupA is a naturally occurring sesquiterpene alkaloid found in the firmoss Huperzia serrata [150]. HupA has been used in China for the treatment of fever and swelling. HupA has been also used as a dietary supplement for improving memory [151].

HupA displays a good pharmacokinetic profile with rapid absorption, wide distribution in body and low to moderate rate of elimination [152]. Encapsulated and micosphered formulations of HupA were designed to control the release of HupA and thereby increase its efficacy [153-157]. HupA is a strong AChEI and acts by a mechanism similar to rivastigmine, donepezil, and galantamine. New tacrine-HupA hybrids (Huprines) are potent AChEIs and significantly attenuate Aβ-induced oxidative injury [158-160]. Clinical trials showed minimal adverse cholinergic effects of HupA such as dizziness, nausea, gastroenteric symptoms, headaches, and depressed heart rate. These minimal cholinergic side effects would be an advantage of HupA compared to other AChEIs for the treatment of AD [161].

HupA potentially beneficial actions include inhibiting apoptotic factors, such as caspase-3, Bax and p53, and regulating the expression and secretion of NGF [162].

HupA (0.1 mg/kg) improved learning and memory of Tg mice in Morris water maze test, mainly by activating PKC/MAPK pathway, α-secretases, BACE, and increasing phospho GSK-3β [158,163]. HupA (167 and 500 μg/kg. nasel gel) also activated Wnt/β-catenin signaling pathway. HupA neuroprotection was associated with reduced amyloid plaques and oligomeric Aβ level in the cortex and hippocampus [164]. HupA (0.1 and 1 μM) could also antagonize NMDA receptor and potassium current [165].

HupA also affected mitochondrial function by restoring enzymatic activity of respiratory chain complexes and preventing Aβ-induced ATP reduction and mitochondrial swelling [166].

4.7. Rosmarinic Acid

Rosmarinic acid (RA) is a polyphenol antioxidant carboxylic acid existed in many Lamiaceae herbs used commonly as culinary herbs, such as lemon balm (Melissa officinalis), rosemary (Rosmarinus officinalis), oregano (Origanum vulgare), sage (Salvia officinalis), thyme and peppermint [167,168]. RA possesses many biological activities including antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and neuroprotective effects [169,170]. No severe side effect has been reported for RA.

Orally administered RA undergoes cleavage of ester bonds, selective para-dehydroxylation, methylation, and sulfate-conjugation. Approximately 83% of the total amount of these metabolites excretes in urine, 8 to 18 h after RA administration to rats [171,172].

RA (0.25-4 mg/kg, i.p.) significantly prevented Aβ-induced memory impairments, mainly by targeting NF-κB and TNF-α [173,174]. RA also reduced tau hyperphosphorylation [175]. RA (1-10 μM) could also inhibit apoptotic pathways by inhibiting ROS formation, DNA fragmentation, and caspase-3 activation [175].

4.8. Luteolin

Lu is a yellow crystalline flavonoid widely distributed in plant families of Bryophyta, Pteridophyta, Pinophyta and Magnoliophyta. Dietary sources of Lu include carrots, peppers, celery, olive oil, peppermint, thyme, rosemary and oregano [176]. Lu possesses a variety of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, and neuroprotective activities [177].
Pharmacokinetic analysis showed that Lu converts to glucuronides during passing through the intestinal mucosa. Some Lu could escape the intestinal conjugation and the hepatic sulfation/methylation and presented in plasma as a free Lu [178].

It has been shown that Lu (20-100 μM) efficiently attenuated zinc-induced tau hyperphosphorylation, not only by its antioxidant activity, but also through the regulation of tau phosphatase/kinase system [179]. Moreover, it downregulated the expression of APP and lowered the secretion of Aβ [180]. Lu inhibited caspase-dependent apoptosis by reducing intracellular ROS generation, increasing SOD activity and reversing mitochondrial membrane potential dissipation [180]. Lu (10-20 μM) concentration-dependently enhanced neuronal cell survival with efficacy higher than and potency similar to vitamin E, in ROS-insulted primary neurons [181]. Lu also activated Nrf2 pathway and induced ERK1/2 activation in neuronal cells [182].

Lu modulation of long-term potentiation formation was mediated not only directly, but also by protecting synapses from the detrimental effects of chronic cerebral hypoperfusion. This effect of Lu (150-450 mg/kg) on learning and memory may be due to the activation of CREB [183].

4.9. Apigenin

Apigenin (AP) is a yellow crystalline nonmutagenic bioflavonoid presented in leafy plants and vegetables such as parsley, artichoke, basil and celery [184]. AP possesses anti-inflammatory, antioxidant, and anticancer properties [184]. There is very little evidence to date to suggest that AP promotes adverse metabolic reactions in vivo when consumed as part of a normal diet [184, 185].

AP has low solubility and high intestinal permeability. AP could be well absorbed in the whole intestine by different transport mechanisms but its main absorption site is duodenum [186]. It is also a potent inhibitor of CYP450, an enzyme responsible for the metabolism of many pharmaceutical drugs in the body [187].

AP (10-50 μM) reduced apoptotic cell death induced by thapsigargin and brefeldin A, two representative ER stress inducers, by suppressing ROS accumulation and blocking activation of caspase-12 and -3 and cleavage of PARP. It could also reduce ER stress markers, including CHOP, GRP78 and GRP94, the cleavage of ATF6, the phosphorylation of eIF2α and IRE1α. Suppression of MAPK pathway was also observed in AP-treated cells [188].

4.10. Berberine

Berberine (BBR) is a quaternary ammonium salt from the protoberberine, group of isoquinoline alkaloids found in Berberis aquifolium (Oregon grape), Berberis vulgaris (barberry), Berberis aristata (tree turmeric), Hydrastis canadensis (goldenscale), Phellodendron amurense (Amur cork tree), Coptis chinensis (Chinese goldthread), and Tinospora cordifolia [189].

Many pharmacological activities have been reported for BBR, including antioxidant activity, AChE and butyrylcholinesterase inhibition, monoamine oxidase inhibition, and cholesterol-lowering activity [190]. Gastrointestinal symptoms such as diarrhea, constipation, flatulence and abdominal pain were the main reported side effects of BBR treatment in human subjects [191, 192]. Under ultraviolet light, BBR (1.8 mM) shows a strong yellow fluorescence [193]. It has been reported that the intestinal absorption of BBR is very low. The in vivo studies indicated that the bioavailability of the BBR-loaded microemulsion formulation was significantly greater than that of the BBR tablet suspensions, suggesting the microemulsion as a promising oral drug delivery system for BBR [194].

BBR treatment (100 mg/kg, p.o.) significantly ameliorated learning, as well as long-term spatial memory retention in Tg mice [195]. Significantly decrease at the levels of C-terminal fragments of APP and the hyperphosphorylation of APP and tau was observed in N2a mouse neuroblastoma [195]. These results were gained by the effect of BBR on Akt/GSK3β signaling pathway that regulates APP processing. BBR (1-20 μM) also attenuated tau hyperphosphorylation and Aβ production in HEK293 cells [196, 197]. BBR (20 mg/kg, i.p.) could also promote the survival and differentiation of hippocampal precursor cells and axonal regeneration in injured nerves of the peripheral nervous system [198].

In addition, BBR (50 mg/kg, p.o.) significantly inhibited Aβ-stimulated production of inflammatory factors including IL-6, COX-2 and iNOS in BV2 microglia cells [199]. BBR (1-5 μM) strongly inhibited NF-κB by blocking the PI3K/protein kinase B and MAPK pathways [200].

4.11. Chitosan and its Derivatives

Chitosan is a linear polysaccharide composed of randomly distributed β-(1-4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acylated unit) [201]. Chitosan is produced commercially by deacetylation of chitin, which is the structural element in the exoskeleton of crustaceans (such as crabs and shrimp) and cell walls of fungi [202]. Most common chitosan side effects are gastric upsets but it’s not severe. No serious adverse effects were reported in clinical studies of chitosan [203, 204].

Chitosan rapidly clots blood and has recently gained approval in the United States and Europe for use in bandages and other hemostatic agents [205]. It is widely used in pharmaceutical science for targeted drug delivery [206]. Chitosan nanoparticles have been studied for delivering rivastigmine and tacrine to CNS for the treatment of AD [207-210]. More interestingly, a chitosan nanocarrier is designed as a nano-vaccine for delivering Aβ into brain [211].

Recent studies suggested that chitosan itself could protect neurons against H2O2-induced apoptosis by preventing Aβ formation and blocking intrinsic apoptosis pathway. Chitosan (0.1 and 0.5 % w/v) also upregulated Nrf2 (and its downstreams, HO-1 and γ-GCS) and inhibited NF-κB in NT2 neural cells [212]. Chitooligosaccharides (COS; 50-150 μg/ml) showed the same pattern of protection in PC12 cells
by decreasing intracellular ROS and Ca2+ levels and suppressing apoptosis. It could also increase protective Hsp70 levels while down-regulated Hsp90 expression. Moreover, COS could inhibit the phosphorylation of different MAPKs, whose aberrant phosphorylation has been implicated in AD [213]. COS (25-1000 μg/ml) also had inhibitory effects on BACE-1 and inhibited Aβ-induced AChE activity [214,215].

Water soluble chitosan (10 μg/ml) also prevented inflammatory responses in Aβ-stimulated human astrocytoma cells by decreasing TNF-α and IL-6 levels, and suppressing iNOS expression [216].

5. CONCLUSION

Several natural products are used alone or in combination with other neuroprotective compounds to improve memory and cognition in AD patients. The healing power of culinary herbs and medicinal plants attracted researchers’ attention to study natural products as a potentially valuable resource for drug discovery against AD. This review discussed some natural products with potential neuroprotective properties against Aβ with respect to their mechanism of action. Although neuroprotective compounds derived from natural sources are attractive therapeutic alternatives in the treatment of AD, poor bioavailability and low clinical efficacy are the major problems. Using novel pharmaceutical technologies and medicinal chemistry to prepare novel formulations or design new compounds based on natural templates, opens up new window into using natural therapeutics agents against AD.

CONFLICT OF INTEREST

The authors have no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by Shahid Beheshti University of Medical Sciences Research Funds.

ABBREVIATIONS

\begin{itemize}
\item Aβ = β-amyloid
\item AChE = acetyl cholinesterase
\item AChEI = acetyl cholinesterase inhibitor
\item AD = Alzheimer’s disease
\item AP = apigenin
\item Apaf1 = apoptotic protease activating factor 1
\item APP = amyloid precursor protein
\item ARE = antioxidant response element
\item BACE1 = beta-site APP cleaving enzyme 1
\item BB = bilobalide
\item BBB = blood brain barrier
\item BBR = berberine
\item BDNF = brain-derived neurotrophic factor
\item CAT = catalase
\item CHOP = C/EBP homologous protein
\item COS = chitooligosaccharides
\item CREB = cAMP-response element binding protein
\item COX = cyclooxygenase
\item CUR = curcumin
\item eIF2α = eukaryotic initiation factor 2α
\item EGCG = (-)-Epigallocatechin-3-gallate
\item EOR = ER overload response
\item ER = endoplasmic reticulum
\item ERAD = ER-associated protein degradation
\item γ-GCS = γ-glutamylcysteine synthetase
\item GRP = glucose-regulated protein
\item GSK-3β = glycogen synthase kinase 3β
\item HSP = heat shock protein
\item IκB = inhibitor of κB
\item IKK = IκB kinase
\item IL = interleukin
\item IP3 = inositol 1,4,5-triphosphate receptor
\item IRE1 = inositol-requiring protein 1
\item Keap1 = Kelch-like ECH-associated protein 1
\item LPS = lipopolysaccharide
\item Lu = luteolin
\item MAPK = mitogen-activated protein kinase
\item MDA = malondialdehyde
\item NF-κB = nuclear factor-κB
\item NGF = nerve growth factor
\item Nrf2 = NF-E2 related factor 2
\item NF-κB = nuclear factor-κB
\item NMDA = N-methyl-D-aspartate
\item NO = nitric oxide
\item iNOS = inducible nitric oxide synthase
\item PARP = poly (ADP-ribose) polymerase
\item PERK = protein kinase RNA-like ER kinase
\item PKC = protein kinase C
\item PPAR-γ = peroxisome proliferator-activated receptor γ
\item PS = presenilin
\item QCT = quercetin
\item RA = rosmarinic acid
\item ROS = reactive oxygen species
\end{itemize}
RSV = Resveratrol
SOD = superoxide dismutase
SLN = solid lipid nanoparticles
TNF-α = tumor necrosis factor
TNFR1 = tumor necrosis factor receptor 1
UPR = unfolded protein response

REFERENCES
[1] Casey, G. Alzheimer's and other dementias. Nurs. N. Z., 2012, 18(6), 20-4.
[2] Marchbanks, R.M. Biochemistry of Alzheimer's dementia. J. Neurochem., 1982, 39(1), 9-15.
[3] Blass, J.P.; Ko, L.; Wisniewski, H.M. Pathology of Alzheimer's disease. Psychiatr. Clin. North. Am., 1991, 14(2), 397-420.
[4] Zetterberg, H; Blennow, K; Hanse, E. Amyloid beta and APP as biomarkers for Alzheimer's disease. Exp. Gerontol., 2010, 45(1), 23-9.
[5] Obulesu, M.; Venu, R.; Somashekar, R. Tau mediated neurodegeneration: an insight into Alzheimer's disease pathology. Neurochem. Res., 2011, 36(8), 1239-25.
[6] Heston, L.L. Down's syndrome and Alzheimer's dementia: defining an association. Psychiatry Dev., 1984, (2), 287-94.
[7] Zhang, Y.W.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer's disease. Mol. Brain, 2011, 4, 3.
[8] Verdile, G.; Gandy, S.E, Martins, R,N. The role of presenilin and Zhang, Y.W.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer's disease. Exp. Gerontol., 2010, 45(1), 23-9.

2001

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059
neuroproteostatic activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG). J. Alzheimers Dis., 2008, 15(2), 211-22.

[87] Gawande, S.; Kale, A.; Kortwal, S. Effect of nutrient mixture and black grapes on the pharmacokinetics of orally administered (-) epigallocatechin-3-gallate from green tea extract: a human study. Phytother. Res., 2008, 22(6), 802-8.

[88] Lambert, J.D.; Lee, M.J.; Lu, H.; Meng, X.; Hong, J.J.; Seri, D.N.; Sturgill, M.G.; Yang, C.S. Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J. Nutr., 2003, 133(12), 4172-7.

[89] Smitha, A.; Giunta, B.; Bickford, P.C.; Fountain, M.; Tan, J.; Shytle, R.D. Nanoparticle particles improves the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease. Int. J. Pharm., 2010, 389(1-2), 207-12.

[90] Biasotti, R.; Tramontina, A.C.; Costa, A.P.; Dutra, M.F.; Quincozes-Santos, A.; Nardin, P.; Bernardi, C.L.; Warthow, K.M.; Lunardi, P.S.; Gonçalves, C.A. Green tea (-)-epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav. Brain Res., 2012, 236C, 186-193.

[91] Lee, J.W.; Lee, Y.K.; Ban, J.O.; Ha, Y.T.; Yun, Y.P.; Han, S.B.; Oh, K.W.; Hong, J.T. Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretease via inhibition of ERK and NF-kappaB pathways in mice. J. Nutr., 2009, 139(10), 1987-93.

[92] Rezai-Zadeh, K.; Arendash, G.W.; Hou, H.; Fernandez, F.; Jensen, M.; Runfeldt, M.; Shytle, R.D.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res., 2008, 1214, 177-87.

[93] Reznichenko, L.; Amit, T.; Zheng, H.; Avramovich-Tirosh, Y.; Youdim, M.B.; Weinreb, O.; Mandel, S. Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (-)-epigallocatechin-3-gallate from green tea extract: a human study. Phytother. Res., 2012, 26, 595-609.

[94] Li, R.; Huang, Y.G.; Fang, D.; Le, W.D. (-)-Epigallocatechin-3-gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J. Neurosci., 2006, 29(23), 527-36.

[95] Li, R.; Huang, Y.G.; Fang, D.; Le, W.D. (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J. Neurosci., 2004, 24(5), 723-31.

[96] Lee, Y.J.; Choi, D.Y.; Yun, Y.P.; Han, S.B.; Oh, K.W.; Hong, J.T. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J. Nutr. Biochem., 2012, 23(1), 298-310.

[97] Pae, M.; Ren, Z.; Meydani, M.; Shang, F.; Smith, D.; Meydani, S.N.; Wu, D. Dietary supplementation with high dose of epigallocatechin-3-gallate promotes inflammatory response in mice. J. Nutr. Biochem., 2012, 23(6), 526-31.

[98] Kim, S.J.; Jeong, H.J.; Lee, K.M.; Myung, N.Y.; An, N.H.; Yang, W.M.; Park, S.K.; Lee, H.J.; Hong, S.H.; Kim, H.M.; Um, J.Y. Epigallocatechin-3-gallate suppresses NF-kappaB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells. J. Nutr. Biochem., 2007, 18(9), 878-86.

[99] He, Y.; Cui, J.; Lee, J.C.; Ding, S.; Chulimonnik, M.; Simonyi, A.; Sun, A.Y.; Gu, Z.; Weisman, G.A.; Wood, W.G.; Sun, G.Y. Prolonged exposure of cortical neurons to oligomeric amyloid-beta impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN Neuro., 2011, 3(1), e00050.

[100] Dragicevic, N.; Smith, A.; Lin, X.; Yuan, F.; Copes, N.; Delic, V.; Tan, J.; Cao, C.; Shytle, R.D.; Bradshaw, P.C. Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer's amyloid-induced mitochondrial dysfunction. J. Alzheimers Dis., 2011, 26(3), 507-21.

[101] Zhang, L.; Cao, H.; Wen, J.; Xu, M. Green tea polyphenol (-)-epigallocatechin-3-gallate enhances the inhibitory effect of huperzine A on acetylcholinesterase by increasing the affinity with serum albumin. Nutr. Neurosci., 2009, 12(4), 142-8.

[102] Bhat, K.P.L.; Kosmeder, J.W. 2nd, Pezzuto, J.M. Biological effects of resveratrol. Antioxid. Redox Signal., 2001, 3(6), 1041-64.

[103] Shen, T.; Wang, X.N.; Lou, H.X. Natural stilbenes: an overview. Nat. Prod. Rep., 2009, 26(7), 916-35.

[104] Mullin, G.E. Red wine, grapes, and better health--resveratrol. Nutr. Clin. Pract., 2011, 26(6), 722-3.

[105] Li, H.; Xia, N.; Förstermann, U. Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide, 2012, 26(2), 102-10.

[106] Li, F.; Gong, Q.; Dong, H.; Shi, J. Resveratrol, a neuroprotective supplement for Alzheimer's disease. Curr. Pharm. Des., 2012, 18(1), 27-33.

[107] Almeida, L.; Vaz-da-Silva, M.; Falcão, A.; Soares, E.; Costa, R.; Loureiro, A.I.; Fernandes-Lopes, C.; Rocha, J.F.; Nunes, T.; Wright, L.; Soares-da-Silva, P. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol. Nutr. Food Res., 2009, 53 Suppl 1, S7-15.

[108] Neves, A.R.; Lucio, M.; Lima, J.L.; Reis, S. Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr. Med. Chem., 2012, 19(11), 1663-81.

[109] Frazza R.L.; Bernardi, A.; Paese, K.; Hoppe, J.B.; da Silva, T.; Battastini, A.M.; Pohlmann, A.R.; Guteres, S.S.; Salbeco. C. Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J. Biomed. Nanotechnol., 2010, 6(6), 694-703.

[110] Kumar, A.; Naidu, P.S.; Seghal, N.; Padi, S.S. Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology, 2007, 79(1), 17-26.

[111] Neves, A.R.; Lucio, M.; Lima, J.L.; Reis, S. Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr. Med. Chem., 2012, 19(11), 1663-81.

[112] Almeida, L.; Vaz-da-Silva, M.; Falcão, A.; Soares, E.; Costa, R.; Loureiro, A.I.; Fernandes-Lopes, C.; Rocha, J.F.; Nunes, T.; Wright, L.; Soares-da-Silva, P. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol. Nutr. Food Res., 2009, 53 Suppl 1, S7-15.

[113] Neves, A.R.; Lucio, M.; Lima, J.L.; Reis, S. Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr. Med. Chem., 2012, 19(11), 1663-81.
curcumin and cholesterol as multifunctional abeta oligomerization inhibitors: design, synthesis, and biological characterization. J. Med. Chem. 2010, 53(16), 6199-209.

[144] Liu, K.; Guo, T.L.; Chojnicki, J.; Lee, H.G.; Wang, X.; Siedlak, S.L.; Rao, W.; Zhu, X.; Zhang. S Bivalent ligand containing curcumin and cholesterol as fluorescence probe for Aβ plaques in Alzheimer's disease. ACS Chem. Neurosci. 2012, 3(2), 141-146.

[145] Lin, M.S.; Hung, K.S.; Chiu, W.T.; Sun, Y.Y.; Tsai, S.H.; Lin, J.W.; Lee, Y.H Curcumin enhances neuronal survival in N-methyl-d-aspartic acid toxicity by inducing RANTES expression in astrocytes via PI-3K and MAPK signaling pathways. Prog. Neurobiol. 2011, 95(4), 317-33.

[146] Kawamoto, E.M.; Scavone, C.; Mattson, M.P.; Camandola, S. Curcumin Requires Tumor Necrosis Factor alpha Signaling to Alleviate Cognitive Impairment Elicited by Lipopolysaccharide. Neurosignals, 2013, 21(1-2), 75-88.

[147] Wang, H.M.; Zhao, Y.X.; Zhang, S.; Liu, G.D.; Kang, W.Y.; Tang, H.D.; Ding, J.Q.; Chen, S.D. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes. J. Alzheimers Dis. 2010, 20(4), 1189-99.

[148] Sikora, E.; Scapagnini, G.; Barbagallo, M. Curcumin, inflammation, ageing and age-related diseases. Immun. Ageing. 2010, 7(1), 1.

[149] Gomez, G.; Mansouraty, G.; Gardea, J.; Narayan, A. Acceleration of oxidative protein folding by curcumin through novel redox-based mechanism. Biophys. Res. Commun. 2007, 364(3), 561-6.

[150] Pepping, J. Huperzine A. Am. J. Health Syst. Pharm., 2000, 57(6), 530-533.

[151] Ha, G.T.; Wong, R.K.; Zhang, Y. Huperzine a as potential treatment of Alzheimer's disease: an assessment on chemistry, pharmacology, and clinical studies. Chem. Biodivers., 2011, 8(7), 1189-204.

[152] Qian, B.C.; Wang, M.; Zhou, Z.F.; Chen, K.; Zhou, R.R.; Chen, G.S. Pharmacokinetics of tablet huperzine A in six volunteers. Zhongguo Yao Li Xue Bao., 1995, 16(5), 396-8.

[153] Gao, P.; Xu, H.; Ding, P.; Gao, Q.; Sun, J.; Chen, D. Controlled release of huperzine A from biodegradable microspheres: In vitro and in vivo studies. Int. J. Pharm., 2007, 330(1-2), 1-5.

[154] Fu, Y.; Ping, Q.; Gao, Y. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres. J. Microencapsul., 2005, 22(7), 705-14.

[155] Gao, P.; Ding, P.; Xu, H.; Yuan, Z.; Chen, D.; Wei, J.; Chen, D. In vitro and in vivo characterization of huperzine a loaded microspheres made from end-group uncapped poly(d,l-lactide acid) and poly(d,l-lactide-co-glycolide acid). Chem. Pharm. Bull. (Tokyo), 2006, 54(1), 89-93.

[156] Liu, W.H.; Song, J.L.; Liu, K.; Chu, D.F.; Li, Y.X. Preparation and in vitro and in vivo release studies of Huperzine A loaded microspheres for the treatment of Alzheimer's disease. J. Control Release. 2005, 107(3), 417-27.

[157] Fu, Y.; Ping, Q.; Gao, Y. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres. J. Microencapsul., 2005, 22(1), 57-66.

[158] Ratia, M.; Gimenez-Llort, L.; Camps, P.; Muñoz-Torrero, D.; Pérez, B.; Clos, M.V.; Badia, A. Huperzine X and Huperzine Y Improve Cognition and Regulate Some Neurochemical Processes Related with Alzheimer's Disease in Transgenic Mice (3Tg-AD). Neurodegener. 2012, 11(3), 129-40.

[159] Camps, P.; El Achab, R.; Morral, J.; Muñoz-Torrero, D.; Badia, A.; Baños, J.E.; Vivas, N.M.; Barril, X.; Orozco, M.; Luque, F.J. New tacrine-huperzine A hybrids (huprine): highly potent tight-binding acetycholinesterase inhibitors of interest for the treatment of Alzheimer's disease. J. Med. Chem., 2000, 43(24), 4657-66.

[160] Camps, P.; Muñoz-Torrero, D. Tacrine-huperzine A hybrids (huprin): a new class of highly potent and selective acetylcholinesterase inhibitors of interest for the treatment of Alzheimer's disease. Mini Rev. Med. Chem., 2001, 1(2), 163-74.

[161] Ha, G.T.; Wong, R.K.; Zhang, Y. Huperzine a as potential treatment of Alzheimer's disease: an assessment on chemistry, pharmacology, and clinical studies. Chem. Biodivers., 2011, 8(7), 1189-204.

[162] Zhang, H.Y.; Tang, X.C. Neuroprotective effects of huperzine A: new therapeutic targets for neurodegenerative disease. Trends Pharmacol. Sci., 2006, 27(12), 619-25.

[163] Wang, Y.; Tang, X.C.; Zhang, H.Y. Huperzine A alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic
pathways in APBSwePS1dE9 transgenic mice. J. Neurosci. Res., 2012, 90(2), 508-17.

[Wang, C.Y.; Zheng, W.; Wang, T.; Xie, J.W.; Wang, S.L.; Zhao, B.L.; Teng, W.P.; Wang, Z.Y. Huperzine A activates Wnt/fl ctlating signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model. Neuropharmacology, 2011, 56(5), 1073-89.

[Gordon, R.K.; Nigam, S.V.; Weitz, J.A.; David, J.R.; Doctor, B.P.; Ved, H.S. The NMDA receptor ion channel: a site for binding of Huperzine A. J. Appl. Toxicol., 2001, 21 Suppl 1, S47-51.

[Lang, L.; Ye, C.Y.; Huang, X.T.; Tang, X.C.; Zhang, H.Y. Decreased accumulation of subcellular amyloid-β with improved mitochondrial function mediates the neuroprotective effect of huperzine A. J. Alzheimers Dis., 2012, 31(1), 131-42.

[Shekarchi, M.; Hajimehdipoor, H.; Gohari, A.R.; Hamedani, M.P. Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmaceutic Mag., 2012, 8(29), 37.

[Grzegorczyk, I.; Królicka, A.; Wysoki ska, H. Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid and its derivatives: biotechnology and applications. Phytother. Res., 2012, 26(3), 317-24.

[Vuddanda, P.R.; Chakraborty, S.; Singh, S. Berberine: a potential phytochemical with multispectrum therapeutic properties. Expert Opin. Investig Drugs, 2010, 19(10), 1297-307.

[Yin, J.; Xing, H.; Ye, J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism, 2008, 57, 712-717.

[Zhang, Y.; Li, X.; Zou, D.; Liu, W.; Yang, J.; Zhu, N.; Huo, L.; Wang, M.; Hong, J.; Wu, P.; Ren, G.; Ning, G. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J. Clin. Endocrinol. Metab., 2008, 93, 2559-2565.

[Reyes, R.; Ramírez, G.; Delgado, N.M. Fluorescent berberine binding as a marker of internal glycosaminoglycans sulfate in bovine oocytes and sperm cells. Arch. Androl., 2004, 50(5), 327-32.

[Gui, S.Y.; Wu, L.; Peng, D.Y.; Liu, Q.Y.; Yin, B.P.; Shen, J.Z. Preparation and evaluation of a microemulsion for oral delivery of berberine. Pharmazie, 2008, 63(7), 516-9.

[Durairajan, S.S.; Liu, L.F.; Lu, J.H.; Chen, L.L.; Yuan, Q.; Chung, S.K.; Huang, L.; Li, X.S.; Huang, J.D.; Li, M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol. Aging, 2012, 33(12), 2903-19.

[Zhu, F.; Wu, F.; Ma, Y.; Liu, G.; Li, Z.; Sun, Y.; Pei, Z. Decrease in the production of β-amyloid by berberine inhibition of the expression of β-secretase in HEK293 cells. BMC Neurosci., 2011, 12, 125.

[Yu, G.; Li, Y.; Tian, Q.; Liu, R.; Wang, Q.; Wang, J.Z.; Wang, X. Berberine attenuates calcinulin A-induced cytotoxicity and Tau hyperphosphorylation in HEK293 cells. BMC Neurosci., 2011, 12, 125.

[Hollman, P.C.; Katan, M.B. Health effects and bioavailability of dietary flavonols. Life Sci., 2008, 83(2), 165-78.

[Cassai, L.; Traini, L.; Putzolu, A.; Pirola, S.; Arienti, V.; Bocchini, L.; Galletti, P. Luteolin promotes long-term potentiation and improves cognitive functions in chronic cerebral hypoperfused rats. Eur. J. Pharmacol., 2010, 627(1-3), 99-105.

[Shukla, S.; Gupta, S. Apigenin: a promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-78.

[Ansari, N.; Asadi, M.A.; Esmaeili, M.A.; Shaerzadeh, F.; Ahmadiani, A.; Hollman, P.C.; Katan, M.B. Health effects and bioavailability of dietary flavonols. Expert Rev. Anti. Infect. Ther., 2008, 6, 757-80.

[Zhang, J.; Liu, D.; Huang, Y.; Gao, Y.; Qian, S. Biopharmaceuticals classification and intestinal absorption study of apigenin. Int. J. Pharm., 2012, 436(1-2), 311-7.

[Gradolatto, A.; Canvenc-Lavier, M.C.; Basly, J.P.; Siess, M.H.; Teyssier, C. Metabolism of apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver. Drug Metab. Dispos., 2004, 32(21), 58-65.

[Choi, A.Y.; Choi, J.H.; Lee, J.Y.; Yoon, K.S.; Cho, W.; Ha, J.; Yeo, E.J.; Kang, I. Apigenin protects HT22 mouse hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis. Neurochem. Int., 2010, 57(2), 143-52.

[Kulkarni, S.K.; Dhir, A. Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytother. Res., 2010, 24(3), 317-24.

[Reyes, R.; Ramírez, G.; Delgado, N.M. Fluorescent berberine binding as a marker of internal glycosaminoglycans sulfate in bovine oocytes and sperm cells. Arch. Androl., 2004, 50(5), 327-32.

[Gui, S.Y.; Wu, L.; Peng, D.Y.; Liu, Q.Y.; Yin, B.P.; Shen, J.Z. Preparation and evaluation of a microemulsion for oral delivery of berberine. Pharmazie, 2008, 63(7), 516-9.

[Durairajan, S.S.; Liu, L.F.; Lu, J.H.; Chen, L.L.; Yuan, Q.; Chung, S.K.; Huang, L.; Li, X.S.; Huang, J.D.; Li, M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol. Aging, 2012, 33(12), 2903-19.

[Zhu, F.; Wu, F.; Ma, Y.; Liu, G.; Li, Z.; Sun, Y.; Pei, Z. Decrease in the production of β-amyloid by berberine inhibition of the expression of β-secretase in HEK293 cells. BMC Neurosci., 2011, 12, 125.

[Yu, G.; Li, Y.; Tian, Q.; Liu, R.; Wang, Q.; Wang, J.Z.; Wang, X. Berberine attenuates calcineurin A-induced cytotoxicity and Tau hyperphosphorylation in HEK293 cells. BMC Neurosci., 2011, 12, 125.

[Hollman, P.C.; Katan, M.B. Health effects and bioavailability of dietary flavonols. Life Sci., 2008, 83(2), 165-78.

[Cassai, L.; Traini, L.; Putzolu, A.; Arienti, V.; Bocchini, L.; Galletti, P. Luteolin promotes long-term potentiation and improves cognitive functions in chronic cerebral hypoperfused rats. Eur. J. Pharmacol., 2010, 627(1-3), 99-105.

[Shukla, S.; Gupta, S. Apigenin: a promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-78.

[Hollman, P.C.; Katan, M.B. Health effects and bioavailability of dietary flavonols. Expert Rev. Anti. Infect. Ther., 2008, 6, 757-80.

[Zhang, J.; Liu, D.; Huang, Y.; Gao, Y.; Qian, S. Biopharmaceuticals classification and intestinal absorption study of apigenin. Int. J. Pharm., 2012, 436(1-2), 311-7.

[Gradolatto, A.; Canvenc-Lavier, M.C.; Basly, J.P.; Siess, M.H.; Teyssier, C. Metabolism of apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver. Drug Metab. Dispos., 2004, 32(21), 58-65.

[Choi, A.Y.; Choi, J.H.; Lee, J.Y.; Yoon, K.S.; Cho, W.; Ha, J.; Yeo, E.J.; Kang, I. Apigenin protects HT22 mouse hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis. Neurochem. Int., 2010, 57(2), 143-52.
Hemorrhage Caused by Breast Biopsy. *Breast Care (Basel)*, 2012, 7(3), 220-224.

[206] Mengatto, L.N.; Helbling, I.M.; Luna, J.A. Recent advances in chitosan films for controlled release of drugs. *Recent Pat. Drug Deliv. Formul.*, 2012, 6(2), 156-70.

[207] Fazil, M.; Md, S.; Haque, S.; Kumar, M.; Baboota, S.; Sahni, J.K.; Ali, J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. *Eur. J. Pharm. Sci.*, 2012, 47(1), 6-15.

[208] Wilson, B.; Samanta, M.K.; Muthu, M.S.; Vinnothapooshan, G. Design and evaluation of chitosan nanoparticles as novel drug carrier for the delivery of rivastigmine to treat Alzheimer's disease. *Ther. Deliv.*, 2011, 2(5), 599-609.

[209] Wilson, B.; Samanta, M.K.; Santhi, K.; Kumar, K.P.; Ramasamy, M.; Suresh, B. Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. *Nanomedicine*, 2010, 6(1), 144-52.

[210] Wilson, B.; Samanta, M.K.; Santhi, K.; Sampath Kumar, K.P.; Ramasamy, M.; Suresh, B. Significant delivery of tacrine into the brain using magnetic chitosan microparticles for treating Alzheimer's disease. *J. Neurosci. Methods*, 2009, 177(2), 427-33.

[211] Songjiang, Z.; Lixiang, W. Amyloid-beta associated with chitosan nano-carrier has favorable immunogenicity and permeates the BBB. *AAPS Pharm. Sci. Tech.*, 2009, 10(3), 900-5.

[212] Khodagholi, F.; Eftekharzadeh, B.; Maghsoudi, N.; Rezaei, P.F. Chitosan prevents oxidative stress-induced amyloid beta formation and cytotoxicity in NT2 neurons: involvement of transcription factors Nrf2 and NF-kappaB. *Mol. Cell Biochem.*, 2010, 337(1-2), 39-51.

[213] Joodi G, Ansari N, Khodagholi F. Chitooligosaccharide-mediated neuroprotection is associated with modulation of Hsps expression and reduction of MAPK phosphorylation. *Int. J. Biol. Macromol.*, 2011, 48(5), 726-35.

[214] Eom, T.K.; Ryu, B.; Lee, J.K.; Byun, H.G.; Park, S.J.; Kim, S.K. β-secretase inhibitory activity of phenolic acid conjugated chitooligosaccharides. *J. Enzyme Inhib. Med. Chem.*, 2012, 28(1), 214-7.

[215] Lee, S.H.; Park, J.S.; Kim, S.K.; Ahn, C.B.; Je, J.Y. Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by Abeta25-35 in PC12 cells. *Bioorg. Med. Chem. Lett.*, 2009, 19(3), 860-2.

[216] Kim, M.S.; Sung, M.J.; Seo, S.B.; Yoo, S.J.; Lim, W.K.; Kim, H.M. Water-soluble chitosan inhibits the production of pro-inflammatory cytokine in human astrocytoma cells activated by amyloid beta peptide and interleukin-1beta. *Neurosci. Lett.*, 2002, 321(1-2), 105-9.
Author/s:
Ansari, N; Khodagholi, F

Title:
Natural Products as Promising Drug Candidates for the Treatment of Alzheimer's Disease: Molecular Mechanism Aspect

Date:
2013-07-01

Citation:
Ansari, N. & Khodagholi, F. (2013). Natural Products as Promising Drug Candidates for the Treatment of Alzheimer's Disease: Molecular Mechanism Aspect. CURRENT NEUROPHARMACOLOGY, 11 (4), pp.414-429. https://doi.org/10.2174/1570159X11311040005.

Persistent Link:
http://hdl.handle.net/11343/251130

File Description:
published version

License:
CC BY