Persistent isolated impairment of gas transfer following COVID-19 pneumonitis relates to perfusion defects on dual-energy computed tomography

To the Editor:

Breathlessness is common in patients after coronavirus disease 2019 (COVID-19) [1]. Patients may have an isolated impairment of gas transfer (diffusing capacity of the lung for carbon monoxide (\(D_L\text{CO}\)) at lung function testing, often without obvious interstitial lung disease or classical pulmonary emboli on imaging. Iodine maps from post-COVID-19 patients undergoing dual-energy computed tomography (DECT) demonstrate hypoenhancement in areas of normal lung parenchyma [2] (figure 1). We hypothesised that in breathless patients recovering from COVID-19, low \(D_L\text{CO}\) would correlate with a computed tomography (CT) marker of lung perfusion, measured using DECT-derived iodine enhancement, including in patients where parenchymal disease was absent. As an even more specific indicator for the pulmonary vascular compartment, we hypothesised that the transfer coefficient of the lung for carbon monoxide (\(K\text{CO}\)) (i.e. \(D_L\text{CO}\) corrected for alveolar volume) would even better correlate with DECT perfusion, and more so than forced vital capacity (FVC) and CT measures of interstitial lung involvement.

Consecutive patients attending a post-COVID-19 clinic at Royal Brompton Hospital (London, UK) underwent Medical Research Council (MRC) dyspnoea scoring, full pulmonary function testing and DECT [3] analysed by an experienced thoracic radiologist using validated automated CT processing software (Syngo.via; Siemens, Erlangen, Germany), 6 months after a positive COVID-19 test. CT scores of mean lung density (MLD) and ground-glass opacity (GGO)% used a lung density threshold < −200 HU [4] (table 1). CT predictors of pulmonary hypertension (ventricular and aortopulmonary ratio) and the "Qanadli" score (number and size of pulmonary arterial occlusions) were scored. Iodine perfusion in Hounsfield units [5] corrected for total lung volume (TLV) to offset haemoconcentration in pathologically small lungs generated a novel volume-corrected iodine perfusion score (IPv).

Statistical analysis used Chi-squared (categorical), Mann–Whitney or t-tests (continuous). Linear regression assessed the association between IPv and radiological or lung function measurements (STATA version 15). Patients were stratified by physiological lung volume (FVC <80% or FVC ≥80%) and diffusion impairment to carbon monoxide corrected for Hb (\(D_L\text{COc}\)) (\(D_L\text{COc}\) <80% or \(D_L\text{COc}\) ≥80%).

Ethical approval with informed consent for this cross-sectional study was approved by the National Health Service Health Research Authority (HRA) (approval number 20/HRA/1434).

78 patients (51% male) with mean±SD age 49±12 years were studied. 16 (21%) were smokers. Comorbidities included obesity (n=11), hypertension (n=16), hyperlipidaemia (n=8) and asthma (n=8). 45 patients required intensive care for a median (interquartile range) 27 (18–38) days, many of whom required extracorporeal membrane oxygenation (ECMO) (n=17). Other treatments included therapeutic anticoagulation (n=32), thrombolysis (n=3), steroid therapy (n=23) and pulmonary vasodilators (n=9).

Across the group, there was a correlation between disease severity, symptoms, pulmonary function and pulmonary IPv: MRC scores were 1 (n=26, 33%), 2 (n=26, 33%), 3 (n=16, 21%), 4 (n=9, 12%) and 5 (n=1, 1%).

Shareable abstract: A novel iodine perfusion score correlates with breathlessness and \(D_L\text{CO}\) in patients post-COVID19 without obvious interstitial disease on CT, suggesting that lung perfusion assessment may be useful in patients without another cause of dyspnoea. https://bit.ly/3U6E2f5

Cite this article as: Price LC, Garfield B, Bloom C, et al. Persistent isolated impairment of gas transfer following COVID-19 pneumonitis relates to perfusion defects on dual-energy computed tomography. ERJ Open Res 2022; 8: 00224-2022 [DOI: 10.1183/23120541.00224-2022].
Patients with a higher MRC (more breathlessness) had a lower DLCO (p<0.05) and lower IPv (p<0.05). 21 patients had low physiological lung volumes (FVC <80% in 26.6%) (table 1).

In all patients, the IPv score correlated with DLCO (R^2 0.054, 95% confidence interval (CI) 0.0005–0.34; p<0.05) and KCO (R^2=0.09, 95% CI 0.066–0.48; p<0.01), but not FVC (R^2=0.004, 95% CI −0.11–0.19; nonsignificant), or with CT parenchymal markers including GGO% (R^2=0.0029, 95% CI −0.080–0.129; nonsignificant) and MLD (R^2=0.0036, 95% CI −1.43–0.8445; nonsignificant).

The prominent lung function abnormality in the whole cohort was impaired gas transfer (DLCO <80% predicted in 72.2%) (table 1). The pulmonary artery obstruction (Qanadli) index was abnormal in only four patients, and none had CT features of pulmonary hypertension (pulmonary artery/aorta ratio 0.88±0.12 (normal <1), right ventricle/left ventricle ratio 1.04±0.23 (normal <1)). As expected, CT-derived TLV positively correlated with FVC (R=0.57, p<0.0001) and CT-derived GGO% negatively correlated with DLCO (R= −0.51, p<0.0001) and FVC (r= −0.50, p<0.0001). CT measures of parenchymal abnormality (TLV, MLD, GGO%) were abnormal in those with low FVC, and in those with low DLCO (TLV, MLD, but not GGO%).

39 (50%) patients had an “isolated low DLCO phenotype”, with normal lung volumes, no pulmonary embolism (Qanadli <1) and no parenchymal disease or suggestion of pulmonary hypertension on CT (table 1).

There was a positive correlation between IPv score and DLCO in this group (p<0.0001), in the whole group (DLCO and IPv, R=0.568, p<0.0001), and in patients who had received ECMO. MLD and GGO scores were similar to those with normal DLCO, but lung volumes (both FVC and CT-derived) were smaller (p=0.04).

Finally, to test the hypothesis that barotrauma might impact on diffusion capacity, IPv was compared in patients who had needed mechanical ventilation and those who had not. Whereas patients needing

![FIGURE 1 a) Coronal dual-energy computed tomography perfused blood volume iodine map with computed tomography overlay in a 59-year-old female with dyspnoea, fatigue and chest pain imaged 11 months after onset of mild coronavirus disease 2019 pneumonia. Diffusing capacity of the lung for carbon monoxide was 72% predicted with otherwise normal spirometry. Upper-lobe subpleural iodine distribution defects (represented as blue and black overlay, approximating <40 HU) in the subpleural apices bilaterally correspond with similar unmatched defects on perfusion scintigraphy. Computed tomography angiography did not demonstrate pulmonary arterial thrombus. b) Corresponding coronal computed tomography image shows normal lung parenchyma.](https://doi.org/10.1183/23120541.00224-2022)
null
patients. Structural changes to lung vessels including neoangiogenesis and vascular proliferation are recognised in COVID-19, which may contribute to apparent parenchymal changes on CT [11].

Limitations to this study include potential pre-existing perfusion defects, subtle emphysema (smokers), gas trapping (asthma and smokers), obesity-related artifacts or hypoventilation, which may occur in a normal appearing lung on CT. This could be improved in future studies using age- and comorbidity-matched controls. Further limitations include the sample size and population heterogeneity. That said, we have shown that breathlessness after COVID-19 infection, ranging from mild to severe disease, is associated with a range of radiological and lung function measures representing interstitial and/or pulmonary vascular disease.

We propose that this “isolated low D_{LCO}” with mottling of lung perfusion on DECT scanning is an under-reported phenotype and could be a target for therapeutics in this post-COVID-19 syndrome. Alternative advanced imaging modalities including ventilation/perfusion scanning show a mottling in lung perfusion [12]; a hyperpolarised lung magnetic resonance imaging (MRI) study also reports an alveolar capillary diffusion abnormality in patients with normal CT scans [13]. Whether these imaging findings relate to persistent impairment of the pulmonary microcirculation, alveolar inflammation, or both, needs further understanding. The apparent onset of microthrombosis in patients with long COVID [14] is potentially relevant here. Indeed, endothelial activation is associated with low D_{LCO} in similar patients [15], suggesting a potential mechanism for this gas exchange deficit if long COVID drives persistent pulmonary endothelial abnormalities.

We describe for the first time a complete dataset of full lung function testing alongside DECT in a cohort of post-COVID-19 patients, where 50% of patients have persistent low gas transfer, relatively normal CT scans and an apparent pulmonary perfusion abnormality on DECT. This phenotype has also been suggested in the studies of lung MRI. Using automated imaging software, we propose a validated perfusion score in this setting. The correlation with symptoms and lung function suggests that this imaging marker is clinically relevant in patients after COVID-19. The use of advanced perfusion imaging may guide future therapeutic trials in these patients, potentially using therapies targeting the pulmonary microcirculation.

Laura C. Price1,2, Benjamin Garfield2,3, Chloe Bloom2, Nidhish Jeyin4, Daniel Nissan5, James H. Hull6, Brijesh Patel7, Gisli Jenkins2,6, Simon Padley2,8, William Man9, Suveer Singh2,3 and Carole A. Ridge2,8

1National Pulmonary Hypertension Service, Royal Brompton & Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK. 2National Heart and Lung Institute, Imperial College London, London, UK. 3Department of Adult Intensive Care, Royal Brompton & Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK. 4Imperial College School of Medicine, London, UK. 5Dept of Cardiology, Royal Brompton & Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK. 6Dept of Respiratory Medicine, Royal Brompton & Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK. 7Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, UK. 8Department of Radiology, Royal Brompton & Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK. 9Harefield Respiratory Research Group, Royal Brompton & Harefield Clinical Group, Guy’s and St Thomas’ NHS Foundation Trust, London, UK.

Corresponding author: Laura C. Price (Laura.price@rbht.nhs.uk)

Provenance: Submitted article, peer reviewed.

Author contributions: L.C. Price and C.A. Ridge conceived and designed the work; D. Nissan and N. Jeyin acquired data; B. Garfield, C. Bloom, J.H. Hull, B. Patel, S. Padley, G. Jenkins, W. Man, S. Singh, C.A. Ridge and L.C. Price analysed or interpreted data for the work; all had involvement in drafting the work or revising it critically for important intellectual content; and all authors had final approval of the version to be published.

Conflicts of interest: L.C. Price has grants from Janssen and GSK, not relevant to the work and has received consulting fees from and Participated on a Data Safety Monitoring Board or Advisory Board for Janssen, outside the submitted work. C. Bloom has received grants from NIHR Advanced Fellowship, Imperial College NIHR BRC project funding and Imperial College Covid-19 project fund, outside the submitted work. C. Bloom has a leadership or fiduciary role at the Policy Forum Primary Care Respiratory Society. B. Patel has received grants from...
European Commission Horizon 2020, Mermaid A/C investigator led grant, Royal Brompton & Harefield Charity grant and Imperial College London Covid Response Grant; has received consulting fees from Apogenix AG, InspiraTech, StromaBio, Nitrase Therapeutics and Gilead Sciences Ltd; and has participated in a Data Safety Monitoring Board or Advisory Board for Faraday Pharmaceuticals, all outside the submitted work. G. Jenkins has grants from AstraZeneca, Biogen, Galecto, GSK, RedX, Pliant, GeneTech, Bristol Myers Squibb, Daewong, Veracy, Chiesi and Boehringer Ingelheim, not related to the work. G. Jenkins has received consulting fees from Bristol Myers Squibb, Daewong, Veracyte, Resolution Therapeutics, RedX, Pliant and Chiesi; payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing or educational events from Chiesi, Roche, PatientMPower, AstraZeneca, GSK and Boehringer Ingelheim; participation on a Data Safety Monitoring Board or Advisory Board for Boehringer Ingelheim, Galapagos, Vicore and Roche; and has a leadership or fiduciary role at NuMedii and Action for Pulmonary Fibrosis (trustee), all outside the submitted work. W. Man has received grants from National Institute for Health Research, British Lung Foundation and NHS Accelerated Access Collaborative; payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing or educational events from European Conference and Incentive Services DMC; has participated on a Data Safety Monitoring Board or Advisory Board for Jazz Pharmaceuticals; and funds for blood analysis from GSK, all outside the submitted work. S. Singh has grants from Anbu and Fischer and Paykel, not related to the work. J.H. Hull and W. Man are associate editors of this journal. B. Garfield, N. Jeyin, D. Nissan, S. Padley and C.A. Ridge have no conflicts to disclose.

References

1. Zhang S, Bai W, Yue J, et al. Eight months follow-up study on pulmonary function, lung radiographic, and related physiological characteristics in COVID-19 survivors. Sci Rep 2021; 11: 13854.
2. Remy-Jardin M, Duthoit L, Perez T, et al. Assessment of pulmonary arterial circulation 3 months after hospitalization for SARS-CoV-2 pneumonia: dual-energy CT (DECT) angiographic study in 55 patients. EClinicalMedicine 2021; 34: 100778.
3. Ridge CA, Desai SR, Jeyin N, et al. Dual-energy CT pulmonary angiography (DECTPA) quantifies vasculopathy in severe COVID-19 pneumonia. Radiol Cardiothorac Imaging 2020; 2: e200428.
4. Lyu P, Liu X, Zhang R, et al. The performance of chest CT in evaluating the clinical severity of COVID-19 pneumonia: identifying critical cases based on CT characteristics. Invest Radiol 2020; 55: 412–421.
5. Arru CD, Digumarthy SR, Hansen JV, et al. Qualitative and quantitative DECT pulmonary angiography in COVID-19 pneumonia and pulmonary embolism. Clin Radiol 2021; 76: 392e1–392e9.
6. Corte TJ, Wort SJ, MacDonald PS, et al. Pulmonary function vascular index predicts prognosis in idiopathic interstitial pneumonia. Respirology 2012; 17: 674–680.
7. McGonagle D, Bridgewood C, Meaney JFM. A tricompartmental model of lung oxygenation disruption to explain pulmonary and systemic pathology in severe COVID-19. Lancet Respir Med 2021; 9: 665–672.
8. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med 2020; 383: 120–128.
9. Patel BV, Arachchilage DJ, Ridge CA, et al. Pulmonary angioapathy in severe COVID-19: physiologic, imaging, and hematologic observations. Am J Respir Crit Care Med 2020; 202: 690–699.
10. Herridge MS, Cheung AM, Tansey CM, et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 2003; 348: 683–693.
11. Doglioni C, Ravaglia C, Chilosi M, et al. COVID-19 interstitial pneumonia: histological and immunohistochemical features on cryobiopsies. Respiration 2021; 100: 488–498.
12. Dhawan RT, Gopalan D, Howard L, et al. Beyond the clot: perfusion imaging of the pulmonary vasculature after COVID-19. Lancet Respir Med 2021; 9: 107–116.
13. Grist JT, Chen M, Collier GJ, et al. Hyperpolarized 129Xe MRI abnormalities in dyspneic patients 3 months after COVID-19 pneumonia: preliminary results. Radiology 2021; 301: E353–E360.
14. Pretorius E, Vlok M, Venter C, et al. Persistent clotting protein pathology in long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc Diabetol 2021; 20: 172.
15. Méndez R, González-Jiménez P, Latorre A, et al. Acute and sustained increase in endothelial biomarkers in COVID-19. Thorax 2022; 77: 400–403.