Biomarkers and prediction models for type 2 diabetes and diabetes related outcomes
Abbasi, Ali

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Abbasi, A. (2013). Biomarkers and prediction models for type 2 diabetes and diabetes related outcomes. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Peroxiredoxin 4, a novel circulating biomarker for oxidative stress and the risk of incident cardiovascular disease and all-cause mortality

Ali Abbasi\textsuperscript{1,2,3}; Eva Corpeleijn\textsuperscript{1}; Douwe Postmus\textsuperscript{1}; Ron T. Gansevoort\textsuperscript{2}; Paul E. de Jong\textsuperscript{2}; Rijk O.B. Gans\textsuperscript{2}; Joachim Struck\textsuperscript{3}; Jalin Schulte \textsuperscript{4}; Hans Hillege\textsuperscript{1}; Pim van der Harst\textsuperscript{4}; Linda M. Peelen\textsuperscript{3}; Joline W.J. Beulens\textsuperscript{3}; Ronald P. Stolk\textsuperscript{1}; Gerjan Navis\textsuperscript{2}; Stephan J.L. Bakker\textsuperscript{2}

1 Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
2 Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
3 Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
4 Department of Research, Thermo Fisher Scientific / BRAHMS GmbH, Hennigsdorf Germany
5 Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands

J Am Heart Assoc. 2012;1(5):e002956
Abstract

Background Oxidative stress has been suggested to play a key role in the development of cardiovascular disease (CVD). The aim of our study was to investigate the associations of serum peroxiredoxin 4 (Prx4), a hydrogen peroxide degrading peroxidase, with incident CVD and all-cause mortality. We subsequently examined the incremental value of Prx4 for the risk prediction of CVD compared with the Framingham risk score (FRS).

Methods We performed Cox regression analyses in 8,141 participants without history of CVD (aged 28-75 years; women 52.6%) from the Prevention of Renal and Vascular End-stage Disease (PREVEND) study in Groningen, the Netherlands. Serum Prx4 was measured by an immunoluminometric assay in baseline samples. Main outcomes were: 1) incident CVD events or CVD mortality; and 2) all-cause mortality during a median follow-up of 10.5 years.

Results In total, 708 (7.8%) participants developed CVD events or CVD mortality, and 517 (6.3%) participants died. Baseline serum Prx4 levels were significantly higher in participants with incident CVD events or CVD mortality and in those who died than in participants who remained free of outcomes (both P<0.001). In multivariable models with adjustment for Framingham risk factors, hazard ratios were 1.16 (95%CI, 1.06-1.27, P<0.001) for incident CVD events or CVD mortality, and 1.17 (95%CI, 1.06-1.29, P=0.003) for all-cause mortality per doubling of Prx4 levels. After addition of Prx4 to the FRS, the net reclassification improvement was 2.7% (P=0.01) using 10-year risk categories of CVD.

Conclusions Elevated serum Prx4 levels are associated with significantly higher risk of incident CVD events or CVD mortality, and all-cause mortality after adjustment for clinical risk factors. Addition of Prx4 to the FRS marginally improved risk prediction of future CVD.
Introduction

Experimental and clinical studies suggest that oxidative stress plays a key role in the pathogenesis of cardiovascular disease (CVD) \(^1\text{-}\text{4}\). Oxidative stress status is usually defined as overproduction of reactive oxygen/nitrogen species in imbalance with endogenous antioxidant defences, which in turn result in increased oxidative damage \(^5\). Several biomarkers, including target oxidation products and antioxidants have been proposed for assessment of the level of oxidative stress, but clinical data examining association between marker(s) and CVD independent of common risk factors are limited \(^5\text{-}\text{7}\).

Recently, peroxiredoxin 4 (Prx4), which is a secretable and stable isoform of the Prx family of antioxidant peroxidases \(^8\), has been found in the circulation of humans. Prx4 can be precisely measured by a validated immunoassay \(^9\). Previous evidence showed an abundant cellular antioxidant activity of Prx4 and other Prx isoforms in all mammals protecting against oxidative stress \(^10\text{-}\text{13}\). So far, a limited number of small-scale studies have evaluated association of the serum Prx4 with clinical data \(^9\text{,}14\). In these studies, serum levels of Prx4 were increased in septic patients when compared to that of healthy individuals and were positively associated with well-established inflammatory markers like procalcitonin, C-reactive protein (CRP) and interleukin 6 (IL-6) \(^9\text{,}14\). Recently, a study in patients presenting to emergency departments showed the incremental prognostic value of Prx4 to predict 30 day survival beyond usual risk predictors \(^15\).

We aimed to investigate whether serum Prx4 is a predictor of CVD and all-cause mortality. For this study, we used data of a large scale, observational cohort of general population and examined the association of Prx4 with incident CVD events or CVD mortality, and all-cause mortality. Since a major clinical application of a biomarker lies within risk stratification and guided preventive strategies \(^16\text{-}\text{19}\), we also evaluated the incremental predictive value of Prx4 above the Framingham risk score for the 10-year risk of CVD.

Methods

Study population and design

The study population was obtained from the Prevention of Renal and Vascular End-stage Disease (PREVEND) study, a Dutch cohort drawn from the general population (age ranged between 28 and 75 years) of the city of Groningen, the Netherlands between 1997 and 1998. We have reported details of the study design and recruitment of participants elsewhere \(^20\text{,}21\). Briefly, 40,856 individuals (47.8\%) completed a questionnaire on demographics, history of cardiovascular and metabolic outcomes, medication use and pregnancy prior to their first visit, collecting early morning urine sample in a vial to measure urinary albumin concentration. Those who were unable or unwilling to participate, individuals using insulin and pregnant women were
excluded. The baseline PREVEND were recruited from a total of 6,000 individuals with a urinary albumin concentration of 10 mg/l or greater and a random control sample of individuals with a urinary albumin concentration of less than 10 mg/L (n=2,592).

In the baseline cohort, serum Prx4 assay was missing for 370 participants, leaving 8,222 for the baseline cross-sectional analyses. The PREVEND study was approved by the local medical ethics committee, University Medical Center Groningen, and conformed to the principles outlined in the Declaration of Helsinki. All participants gave written informed consent.

**Clinical and biomarker measurements**

In the baseline screening, study participants underwent two outpatient visits to assess demographics, anthropometric measurements, cardiovascular and metabolic risk factors, health behaviours, and medical family history and to collect two 24-hour urine samples on 2 consecutive days. Furthermore, information on medication use was substantiated with use of pharmacy-based data from all community pharmacies in the city of Groningen. Smoking and alcohol use were based on self-reports.

Hypertension was defined based on self-report of diagnosis by a physician, measured hypertension (≥140/90 mmHg systolic/diastolic blood pressure) or the use of blood pressure-lowering agents. Prevalent cases of type 2 diabetes were ascertained if one or more of the following criteria were met: 1) a fasting plasma glucose of ≥ 7.0 mmol/l (126 mg/dl) or random sample plasma glucose of 11.1 mmol/l (200 mg/dl); or 2) self-report of diagnosis by a physician; or 3) use of glucose-lowering agents according to a central pharmacy registration. Prevalent CVD was defined based on self-reported physician diagnosis of cardiac, cerebral and peripheral events by a physician. Kidney disease was defined based on prior history of kidney disease requiring dialysis or estimated glomerular filtration rate (eGFR) below 60 mL/min/1.73m². We used the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation to calculate eGFR.

In all participants, blood sample measurements for biomarkers were taken after an overnight fast. Serum Prx4 level was measured retrospectively in analogously stored baseline serum samples by a novel immunoluminometric assay, which was described previously. The functional assay sensitivity (interassay coefficient of variation <20%) was 0.51 U/L. The intraassay coefficient of variation was <8% throughout range of Prx4 levels. Insulin was measured with an AxSym autoanalyzer (Abbott Diagnostics, Amstelveen, The Netherlands). Details on assays for total cholesterol, HDL-cholesterol, triglycerides, hs-CRP and procalcitonin have been described previously. These baseline assays were performed in EDTA-plasma aliquots that had been stored frozen at -80°C without previous thawing and refreezing. 24-hour urinary albumin excretion (UAE) - given as the mean of the two 24-hour urine excretions - was measured by nephelometry with a threshold of 2.3 mg/L and intra- and inter-assay coefficients of variation of less than 2.2% and less...
than 2.6%, respectively (Dade Behring Diagnostic, Marburg, Germany). All technicians were blinded to the participants’ characteristics.

**Outcome definition**

In prospective data, we ascertained the main outcomes as following: 1) incident CVD events, 2) incident CVD events or CVD mortality; and 3) all-cause mortality (up to January 1 2009). Information (on hospitalization) for incident CVD events was obtained from PRISMANT, the Dutch national registry of hospital discharge diagnoses. The validity of this database has been shown to be good, with 84% of primary diagnoses and 87% of secondary diagnoses matching the diagnoses recorded in patients’ charts. Data were coded according to the International Classification of Diseases (ICD), 9th revision and the classification of interventions. The incident CVD events were classified as acute myocardial infarction (ICD-code 410), acute and subacute ischemic heart disease (411), occlusion or stenosis of the precerebral (433) or cerebral arteries (434) and procedures including coronary artery bypass grafting or percutaneous transluminal coronary angioplasty, and other vascular interventions namely percutaneous transluminal angioplasty or bypass grafting of aorta and peripheral vessels.

Data on mortality were obtained through the municipal registration. Cause of mortality was ascertained by linking the number of the mortality certificate to the primary cause of mortality as coded by the Dutch Central Bureau of Statistics. Survival time was defined as the period from the baseline to the date of first incident CVD events, CVD mortality, date of death or 1 January 2009. In case a person had moved to an unknown destination, the date on which the person was removed from the municipal registry was used as censor date.

**Statistical Analyses**

Data were shown as mean± standard deviation (SD) or median (quartiles 1 and 3 [Q1- Q3]) for continuous variables which were compared by one-way ANOVA or Kruskal-Wallis tests as appropriate. Frequency was used for categorical variables which were compared by χ² test across tertiles of Prx4. We calculated Spearman correlation coefficients of Prx4 with age, systolic blood pressure, body mass index (BMI), waist circumference, glucose, total Cholesterol, HDL cholesterol, triglyceride, hs-CRP, procalcitonin and 24-hour UAE. We used backward-elimination regression models to examine which of the clinical variables were independently associated with Prx4 as a dependent variable. The distribution of Prx4 was highly skewed. To normalise the distribution, we performed logarithmic transformation of the values of Prx4 prior to analyses. We used the logarithm base 2 (log2) to allow for interpretation of results per doubling of Prx4. Interpretation of results expressed per doubling of Prx4 seem more meaningful than interpretation per factor 10 change or per factor e change, which would have been the case respectively if transformation according to base 10 or transformation according to the natural logarithm would have been applied. We used...
Cox proportional-hazards regression in crude and multivariable-adjusted models to examine the associations of Prx4 with incident CVD and all-cause mortality. We adjusted for age and sex in model 1. In model 2, we adjusted for the Framingham risk factors including age, sex, smoking, systolic blood pressure, use of antihypertensive therapy, diabetes at baseline, total cholesterol, and high-density lipoprotein (HDL)-cholesterol. We tested the assumptions of proportional-hazards for Cox regression models by Shoenfeld’s global tests. Finally, in stepwise adjustments, we included alcohol use, triglycerides, high sensitivity (hs)-CRP and 24-hour urine albumin excretion (UAE) to model 2.

To assess incremental value of Prx4 for the risk prediction of CVD, we examined improvement of prediction of CVD as compared to the Framingham risk score. To do so we calculated 10-year general CVD risk based on the Framingham Risk Score and based on a model with the Framingham Risk Score and log_2 Prx4. Subsequently the models were compared in terms of the following measures, taking into account the time-to-event nature of the data: 1) Harrell’s C-statistic for the Cox proportional-hazards regression to quantify the discrimination performance of the models (ability to distinguish between individuals with and without outcome); 2) net reclassification improvement (NRI) to examine if individuals with and without outcome were correctly reclassified, (using the threshold values of <6%, 6 to 20% and ≥20% for categories of low, medium and high risk, respectively); and 3) integrated discrimination improvement (IDI), a continuous measure of reclassification.

Of the baseline sample of 8,592 participants, 451 had prior history of CVD. To do the prospective analyses, we first excluded these prevalent cases of CVD, leaving 8,141 participants. For most baseline variables, <1% was missing; however, this was up to 8% for self-reported variables. We performed a single imputation with predictive mean matching for missing data. This method can be used for skewed data with less than 10% missingness, because it produce less biased estimates for non-linear model and imputations are in the metric of the observed data.

Moreover, a weighted method was performed to compensate the baseline enrichment for the PREVEND participants with urinary albumin concentration (UAC) ≥10 mg/L. Given the frequency of individuals with UAC ≥10 mg/L (24.4%) in our general population, we calculated the weight by sampling fractions. Those with UAC ≥10 mg/L had weight equal to 0.35 and those with UAC <10 mg/L weight equal to 2.51.

Subsequently, we performed secondary analyses to take into account residual confounding. To do this, we incorporated other covariates which might be confounding of the association between Prx4 and the risk of incident CVD in combination with the Framingham risk factors (model 2). First, we further adjusted for BMI or waist circumference in separate models. Second, we adjusted for family history of CVD and examined the effects of kidney disease on this association. Third, we calculated the metabolic syndrome which was defined according to the National Cholesterol Education Program’s Adult Treatment Panel III report criteria. And then we adjusted for the metabolic syndrome or insulin in combination with variables.
in model 2. Next, we examined the association of Prx4 with each component of CVD events or CVD mortality including myocardial infarction, cerebrovascular disease and cardiovascular mortality. In addition, we performed another analysis including those who had prior history of CVD. In total population, we further adjusted history of CVD in combination with variables in model 2. And then, we performed a similar analysis in participants with prior history of prior CVD. We used Cox proportional-hazards regression with fractional polynomials to search for the best fitting functional form of Prx4 in the model for incident CVD (model 2).

Given the number of each event, we had 80% power at a 0.05 significance level to detect a HR equal to 1.29 for myocardial infarction, 1.25 for cerebrovascular disease and 1.23 for CVD mortality. All the statistical analyses were carried out using IBM SPSS 19.0 and R version 2.10.1 (Vienna, Austria) (http://75 cran.r-project.org/).

**Results**

**Baseline characteristics**

Baseline clinical characteristics of total population and corresponding tertiles of serum Prx4 are summarized in Table 1. Median (Q1-Q3) Prx4 levels were 0.71 (0.45-1.16) U/L in men and 0.66 (0.42-1.08) U/L in women (P<0.001). Across tertiles of Prx4, those who had higher Prx4 levels were older, more obese, less frequent alcohol drinker and more likely to have a history of CVD, hypertension and prevalent diabetes.

Prx4 levels were positively correlated with age, BMI, waist circumference, systolic blood pressure, glucose, triglyceride, insulin, 24-hour UAE and inflammatory biomarkers of hs-CRP and procalcitonin, and inversely correlated with HDL-cholesterol (p<0.001 for all correlations, Table 2). In backward-elimination regression model, log2 Prx4 were positively associated with age (β=0.006, P<0.001), prior history of CVD (β=0.203, P=0.001), triglyceride (β=0.048, P<0.001), log2 hs-CRP (β=0.102, P<0.001), log2 UAE (β=0.050, P<0.001) and log2 insulin (β=0.102, P<0.001) and inversely associated with female sex (β= -0.059, P=0.03), alcohol use (β= -0.083, P<0.001) and total cholesterol (β= -0.060, P<0.001) (Table 3).

**Incident CVD and all-cause mortality**

During median (Q1-Q3) follow-up of 10.5 (9.9-10.8) years, 608 participants (7.5%) developed incident CVD events, 708 participants (8.7%) developed incident CVD events or CVD mortality, and 517 (6.3%) participants died (of which 135 from cardiovascular causes). Median (Q1-Q3) Prx4 levels were 0.88 (0.54-1.45) U/L and 0.85 (0.53-1.46) U/L in participants who developed incident CVD events or CVD mortality and all-cause mortality, respectively. In Figure 1, the cumulative survival to incident CVD events and to incident CVD events or CVD mortality is shown based on tertile groups. The crude cumulative incidence rates (per 1,000 person-year), and hazard ratios (HR) (95% confidence interval [CI]) in crude and multivariable-adjusted
| Characteristic                        | Total          | Tertiles†       | P-value          |
|--------------------------------------|----------------|-----------------|-----------------|
| Peroxiredoxin 4 — (U/l)              | 0.69 (0.44-1.12)| 0.37 (0.37-0.44)| 0.68 (0.59-0.78)| 1.38 (1.10-1.97)|
| Age — yr                             | 49.2±12.7      | 47.1±11.9       | 48.7±12.4       | 51.8±13.2       |
| Male sex — no. (%)                   | 4107 (50.0)    | 1276 (46.7)     | 1325 (49.6)     | 1506 (53.4)     |
| Prior history of CVD — no. (%)       | 431 (5.4)      | 80 (3.0)        | 116 (4.5)       | 235 (8.7)       |
| Family history of CVD — no. (%)      | 3,817 (50.2)   | 1,292 (50.7)    | 1,249 (50.3)    | 1,276 (49.7)    |
| Current smoker— no. (%)              | 2787 (34.0)    | 1071 (39.4)     | 897 (33.7)      | 819 (29.1)      |
| Ex-smoker— no. (%)                   | 2984 (36.4)    | 886 (32.6)      | 954 (35.9)      | 1144 (40.7)     |
| Alcohol drinker— no. (%)             | 6110 (74.7)    | 2121 (78.0)     | 2021 (75.9)     | 1968 (70.2)     |
| BMI—kg/m²                            | 26.1±4.2       | 25.3±3.8        | 26.1±4.2        | 26.8±4.5        |
| Waist circumference—cm               | 88.5±13.0      | 86.0±12.1       | 88.3±12.8       | 91.2±13.8       |
| Systolic blood pressure— mmHg        | 124.5±19.6     | 121.0±17.5      | 124.0±19.3      | 128.3±21.1      |
| Diastolic blood pressure— mmHg       | 71.8±9.7       | 70.3±9.0        | 71.8±9.8        | 73.3±10.2       |
| Antihypertensive therapy— no. (%)    | 1282 (15.6)    | 294 (10.8)      | 396 (14.8)      | 592 (21.0)      |
| Prevalent diabetes— no. (%)          | 315 (4.0)      | 49 (1.9)        | 96 (3.7)        | 170 (6.2)       |
| Fasting glucose— mmol/l              | 4.9±1.2        | 4.7±0.9         | 4.9±1.2         | 5.0±1.4         |
| Total cholesterol— mmol/l            | 5.64±1.13      | 5.63±1.09       | 5.60±1.12       | 5.70±1.16       |
| HDL cholesterol— mmol/l              | 1.32±0.40      | 1.37±0.40       | 1.32±0.39       | 1.27±0.40       |
| Triglyceride— mmol/l                 | 1.16 (0.85-1.68)| 1.11 (0.81-1.56) | 1.13 (0.83-0.164)| 1.26 (0.90-1.88)|
| Metabolic syndrome— no. (%)          | 1,378 (18.2)   | 314 (12.3)      | 444 (17.9)      | 629 (24.5)      |
| Fasting insulin— mU/l                | 8.0 (5.6-12.1) | 7.2 (5.2-10.2)  | 8.0 (5.5-11.9)  | 9.1 (6.2-14.3)  |
| hs-CRP— mg/l                         | 1.27 (0.55-2.96)| 0.93 (0.42-2.08)| 1.22 (0.55-2.82)| 1.85 (0.79-4.27)|
| Procalcitonin—ng/ml                  | 0.016 (0.013-0.20)| 0.015 (0.013-0.018)| 0.016 (0.013-0.019)| 0.017 (0.014-0.021)|
| UAE—mg/24h                           | 9.45 (17.8-63.3)| 8.76 (616-14.36)| 9.11 (6.21-16.23)| 10.87 (6.64-24.99)|

* Data are mean (±SD) and median (quartiles 1 and 3) for continuous variables and percentage for categorical variables in complete baseline data set. For clinical variables, up to 1.2% was missing. For self-reported data, 0.4-7.8% was missing. For biomarkers, 0.2-6.4% was missing. BMI denotes body mass index which is the weight in kilogram divided by the square of the height in meters. CVD denotes cardiovascular disease, BMI body mass index which is the weight in kilogram divided by the square of the height in meters, HDL high-density lipoprotein, UAE urine albumin excretion and hs-CRP high sensitivity C-reactive protein. The metabolic syndrome was defined according to the National Cholesterol Education Program’s Adult Treatment Panel III report criteria.

† P<0.001 for the comparison among all peroxiredoxin 4 tertile group, except for total cholesterol (P=0.005) and family history of CVD (P=0.77).
models for the risk of developing incident CVD events, incident CVD events or CVD mortality, and all-cause mortality are shown in Table 4. Age-and sex-adjusted HR (95% CI) were ranging from 1.32 (1.07-1.63) for incident CVD events to 1.40 (1.08-1.79) for all-cause mortality when compared the highest tertile to the first tertile of Prx4 (p for trend <0.001). In a model adjusted for the Framingham risk factors, Prx4 was significantly associated with the increased risk of incident CVD and all-cause mortality. The proportional-hazards assumptions were met for all models.

In further models, stepwise adjustment for alcohol use, triglyceride, hs-CRP and 24-hour UAE minimally attenuated the associations of Prx4 with incident CVD events or CVD mortality. This was comparable to calculation of HR per doubling Prx4 levels for each outcome. We observed a 15% increased risk of incident CVD events independent of the Framingham risk factors per doubling Prx4 levels (HR, 1.15; 95% CI, 1.05 to 1.26). This was a 16% and a 17% increase for incident CVD events or CVD mortality (HR, 1.16; 95% CI, 1.06 to 1.27), and all-cause mortality (HR, 1.17; 95% CI, 1.06 to 1.29), respectively (Table 4). In subsequent analyses, the associations of Prx4 with the risk of either incident CVD or all-cause mortality were similar for men and women (data not shown).

To assess the incremental predictive value of Prx4 for the risk of CVD, we added Prx4 to the Framingham Risk Score as continuous variable. In our data set, the Framingham risk score had a C-statistic (95% CI) of 0.80 (0.78-0.82) for the 10-year risk of CVD. Addition of Prx4 improved modestly C-statistic to 0.81 (0.79-0.82) (P=0.02), and led to IDI of 0.003 (P<0.001) and NRI of 2.7% (95% CI, 0.7% to 4.7%; P=0.01) (Table 5). In patients without incident CVD events or CVD mortality, use of Prx4 reclassified 1% and 4% of participants in lower and higher risk categories.
and above 20%), respectively. In patients with incident CVD events or CVD mortality, use of Prx4 reclassified 2% and 4% of participants in lower and higher risk categories, respectively.

Figure 1. The cumulative probability of incident CVD events (Panel A) and incident CVD events or CVD mortality (Panel B) is shown by tertiles of Prx4. In overall, the log-Rank tests were significant for all outcomes according to the tertiles of serum peroxiredoxin 4 (P<0.001).
Table 3. Association of baseline variables with serum peroxiredoxin 4 as dependent variable*

|                                | Unadjusted | Age-and sex-adjusted | Multivariable-adjusted† |
|--------------------------------|------------|----------------------|-------------------------|
|                                | β coefficients (SE) | P value   | β coefficients (SE) | P value   | β coefficients (SE) | P value      |
| Age, per increase of 1 year    | 0.011 (0.001)       | <0.001    | 0.011 (0.001)       | <0.001    | 0.006 (0.001)       | <0.001       |
| Sex, female vs. male           | -0.081 (0.022)      | <0.001    | -0.061 (0.022)      | 0.005     | -0.059 (0.027)      | 0.03         |
| Prior history of CVD, yes vs. no | 0.406 (0.049)   | <0.001    | 0.261 (0.050)       | <0.001    | 0.203 (0.052)       | 0.001        |
| Smoking, yes vs. no            | 0.032 (0.013)       | 0.02      | 0.006 (0.013)       | 0.67      | ...                 | ...          |
| Alcohol use, yes vs. no        | -0.172 (0.025)      | <0.001    | -0.158 (0.025)      | <0.001    | -0.083 (0.026)      | 0.001        |
| BMI, per increase of 1 kg/m^2  | 0.029 (0.003)       | <0.001    | 0.021 (0.003)       | <0.001    | ...                 | ...          |
| Waist circumference, per increase of 1 cm | 0.010 (0.001) | <0.001 | 0.008 (0.001) | <0.001 | -0.002 (0.001) | 0.071 |
| Systolic blood pressure, per increase of 1 mmHg | 0.007 (0.001) | <0.001 | 0.004 (0.001) | <0.001 | 0.001 (0.001) | 0.074 |
| Antihypertensive therapy, yes vs. no | 0.309 (0.030) | <0.001 | 0.194 (0.023) | <0.001 | 0.059 (0.035) | 0.10 |
| Prevalent diabetes, yes vs. no | 0.422 (0.057)       | <0.001    | 0.291 (0.058)       | <0.001    | ...                 | ...          |
| Total cholesterol, per increase of 1 mmol/l | 0.027 (0.035) | 0.006 | -0.015 (0.010) | 0.13 | -0.060 (0.011) | <0.001 |
| HDL cholesterol, per increase of 1 mmol/l | -0.227 (0.027) | <0.001 | -0.204 (0.029) | 0.01 | ... | ... |
| Triglyceride, per increase of 1 mmol/l | 0.104 (0.011) | <0.001 | 0.081 (0.011) | <0.001 | 0.048 (0.013) | <0.001 |
| Insulin, per increase of log^2-unit | 0.198 (0.013) | <0.001 | 0.171 (0.013) | <0.001 | 0.102 (0.017) | <0.001 |
| hs-CRP, per increase of log^2-unit | 0.220 (0.023) | <0.001 | 0.114 (0.007) | <0.001 | 0.102 (0.008) | <0.001 |
| Procalcitonin, per increase of log^2-unit | 0.127 (0.007) | <0.001 | 0.152 (0.024) | <0.001 | 0.049 (0.026) | 0.10 |
| 24-hour UAE, per increase of log^2-unit | 0.101 (0.009) | <0.001 | 0.075 (0.009) | <0.001 | 0.050 (0.010) | <0.001 |

BMI denotes body mass index which is the weight in kilogram divided by the square of the height in meters, SE standard error, HDL high-density lipoprotein, hs-CRP high sensitivity C-reactive protein and UAE urine albumin excretion.

* Base-two logarithmically-transformed serum level of peroxiredoxin 4 was considered as dependent variable.
† Backward selection was used when dropped non-significant variables (probability for removal was 0.10 by F test).
| Incident CVD events | HR (95% CI) or No. of Cases (Incidence Rate) According to Tertiles of Prx4 | HR (95% CI) Per Log2 Unit Increase* | P       |
|---------------------|-------------------------------------------------|-----------------------------------|--------|
|                     | 1      | 2                  | 3                        |        |
| No. of cases, per 1000 person-years | 151 (5.8) | 204 (7.8) | 308 (12.3) |        |
| Unadjusted analysis | 1.00 | 1.19 (0.95 to 1.48) | 1.73 (1.40 to 2.13) | 1.32 (1.21 to 1.44) | <0.00 |
| Model 1             | 1.00 | 1.04 (0.84 to 1.30) | 1.32 (1.07 to 1.63) | 1.21 (1.10 to 1.33) | <0.00 |
| Model 2             | 1.00 | 1.06 (0.84 to 1.32) | 1.26 (1.01 to 1.57) | 1.15 (1.05 to 1.26) | 0.003 |
| Model 2+alcohol use | 1.00 | 1.06 (0.84 to 1.32) | 1.25 (1.01 to 1.55) | 1.14 (1.04 to 1.25) | 0.004 |
| Model 2+TG          | 1.00 | 1.06 (0.85 to 1.33) | 1.28 (1.03 to 1.59) | 1.16 (1.06 to 1.27) | 0.001 |
| Model 2+CRP         | 1.00 | 1.05 (0.84 to 1.31) | 1.22 (0.98 to 1.52) | 1.11 (1.01 to 1.22) | 0.02  |
| Model 2+UAE         | 1.00 | 1.05 (0.84 to 1.32) | 1.25 (1.01 to 1.55) | 1.15 (1.05 to 1.25) | 0.003 |
| Model 2+alcohol use, TG, CRP, and UAE | 1.00 | 1.06 (0.84 to 1.32) | 1.23 (1.00 to 1.53) | 1.12 (1.02 to 1.23) | 0.02  |

| Incident CVD events or CVD mortality | HR (95% CI) or No. of Cases (Incidence Rate) According to Tertiles of Prx4 | HR (95% CI) Per Log2 Unit Increase* | P       |
|-------------------------------------|--------------------------------------------------------------------------------|-----------------------------------|--------|
|                                     | 1      | 2                  | 3                        |        |
| No. of cases, per 1000 person-years | 160 (6.1) | 215 (8.2) | 333 (13.3) |        |
| Unadjusted analysis                 | 1.00 | 1.17 (0.94 to 1.45) | 1.78 (1.46 to 2.19) | 1.33 (1.23 to 1.45) | <0.00 |
| Model 1                             | 1.00 | 1.02 (0.82 to 1.27) | 1.35 (1.10 to 1.66) | 1.22 (1.12 to 1.33) | <0.00 |
| Model 2                             | 1.00 | 1.03 (0.83 to 1.29) | 1.29 (1.05 to 1.59) | 1.16 (1.06 to 1.27) | <0.00 |
| Model 2+alcohol use                 | 1.00 | 1.03 (0.83 to 1.29) | 1.29 (1.04 to 1.58) | 1.16 (1.06 to 1.26) | 0.001 |
| Model 2+TG                          | 1.00 | 1.04 (0.84 to 1.30) | 1.32 (1.07 to 1.62) | 1.18 (1.08 to 1.28) | <0.00 |
| Model 2+CRP                         | 1.00 | 1.03 (0.82 to 1.28) | 1.26 (1.02 to 1.56) | 1.13 (1.03 to 1.23) | 0.01  |
| Model 2+UAE                         | 1.00 | 1.03 (0.83 to 1.29) | 1.29 (1.05 to 1.59) | 1.16 (1.06 to 1.27) | 0.001 |
| Model 2+alcohol use, TG, CRP, and UAE | 1.00 | 1.03 (0.83 to 1.29) | 1.27 (1.03 to 1.57) | 1.13 (1.03 to 1.24) | 0.008 |

| Incident all-cause mortality | HR (95% CI) or No. of Cases (Incidence Rate) According to Tertiles of Prx4 | HR (95% CI) Per Log2 Unit Increase* | P       |
|------------------------------|--------------------------------------------------------------------------------|-----------------------------------|--------|
|                              | 1      | 2                  | 3                        |        |
| No. of cases, per 1000 person-years | 117 (4.4) | 160 (5.9) | 240 (9.1) |        |
| Unadjusted analysis          | 1.00 | 1.43 (1.10 to 1.86) | 2.00 (1.56 to 2.57) | 1.36 (1.23 to 1.50) | <0.00 |
| Model 1                      | 1.00 | 1.25 (0.96 to 1.62) | 1.40 (1.08 to 1.79) | 1.20 (1.08 to 1.33) | <0.00 |
Cardiovascular disease (CVD) events were defined as a composite of incident cardiac, cerebral and peripheral vascular events. Participants with history of CVD were excluded. These associations did not differ by sex. Hazard ratios (HR) (95% confidence interval [CI]) have been adjusted for:

Model 1: age and sex
Model 2: the Framingham risk factors including age, sex, smoking, systolic blood pressure, use of anti-hypertensive therapy, diabetes at baseline, total cholesterol, HDL-cholesterol.

* Base-two logarithmically-transformed Prx4, CRP, and 24-hour UAE were analyzed as continuous variable. Individuals with prevalent CVD were excluded.

| Model 2 | 1.00 | 1.27 (0.98 to 1.66) | 1.41 (1.09 to 1.82) | 1.17 (1.06 to 1.29) | 0.003 |
|-------------|-------|---------------------|---------------------|---------------------|------|
| Model 2+alcohol use | 1.00 | 1.27 (0.98 to 1.66) | 1.41 (1.09 to 1.82) | 1.17 (1.06 to 1.30) | 0.002 |
| Model 2+TG | 1.00 | 1.26 (0.97 to 1.65) | 1.39 (1.07 to 1.79) | 1.16 (1.05 to 1.29) | 0.004 |
| Model 2+CRP | 1.00 | 1.24 (0.95 to 1.62) | 1.26 (0.97 to 1.64) | 1.09 (0.98 to 1.21) | 0.11 |
| Model 2+UAE | 1.00 | 1.27 (0.98 to 1.66) | 1.40 (1.08 to 1.81) | 1.15 (1.04 to 1.28) | 0.006 |
| Model 2+alcohol use, TG, CRP, and UAE | 1.00 | 1.23 (0.94 to 1.60) | 1.24 (0.96 to 1.61) | 1.08 (0.97 to 1.20) | 0.18 |
Table 5. Reclassification of participants for the 10-year risk prediction of cardiovascular disease corresponding to the Framingham risk score and after adding serum peroxiredoxin 4*

| Framingham risk category | Low risk | Intermediate risk | High risk | Reclassification (%) |
|--------------------------|----------|-------------------|-----------|-----------------------|
| **In participants without outcome** |          |                   |           |                       |
| Low risk                 | 4647     | 38                | 0         | 1.0                   |
| Intermediate risk        | 207      | 1984              | 81        | 13.0                  |
| High risk                | 0        | 23                | 494       | 4.0                   |
| **In participants with outcome** |          |                   |           |                       |
| Low risk                 | 104      | 2                 | 0         | 2.0                   |
| Intermediate risk        | 9        | 299               | 24        | 10.0                  |
| High risk                | 0        | 9                 | 213       | 4.0                   |
| **Total sample**         |          |                   |           |                       |
| Low risk                 | 4751     | 40                | 0         | 1.0                   |
| Intermediate risk        | 216      | 2283              | 105       | 12.0                  |
| High risk                | 0        | 32                | 707       | 4.0                   |

* Corresponding the Framingham risk score and after adding serum peroxiredoxin 4, low risk denotes less than 6%, intermediate risk 6 to 20% and high risk more than 20% for the 10-year of cardiovascular disease. Net reclassification index (95% CI) was 2.7 (0.7 to 4.7); P= 0.01, and integrated discrimination improvement (95% CI) of 0.0032 (0.0014 to 0.0049); P value< 0.001
Secondary analyses

Tables 6 and 7 show the results of secondary analyses. Separately, adjustment for BMI or waist circumference in combination with the Framingham risk factors (i.e., model 2) did not materially change the association of Prx4 with risk of incident CVD events or CVD mortality. Moreover, our results adjusted for both kidney disease and family history of CVD were similar to that of model 2. Additionally, further adjustment for the metabolic syndrome or insulin in model 2 did not affect the association. We also investigated whether Prx4 was associated with the components of incident CVD events or CVD mortality including MI, cerebrovascular disease and CVD mortality. After adjustment for the variables in model 2, the HRs (95%CI) in the highest tertile compared to the first tertile of Prx4 were 1.03 (0.71-1.50), 1.28 (0.85-1.93) and 1.22 (0.71-2.12) for myocardial infarction, cerebrovascular disease and CVD mortality, respectively.

Table 6. Association of serum peroxiredoxin 4 with incident cardiovascular events or mortality (n=8,141)

| Model                        | HR (95%CI) by tertiles of peroxiredoxin 4 (U/L) |
|------------------------------|-------------------------------------------------|
| Adjusted for model 2         | 1.00 1.03 (0.83-1.29) 1.29 (1.05-1.59)           |
| Adjusted for model 2 + BMI   | 1.00 1.03 (0.83-1.28) 1.29 (1.05-1.59)           |
| Adjusted for model 2 + waist circumference | 1.00 1.03 (0.83-1.28) 1.31 (1.06-1.59) |
| Adjusted for model 2 + family history of CVD | 1.00 1.04 (0.83-1.29) 1.30 (1.06-1.60) |
| Adjusted for sex, age, smoking + metabolic syndrome | 1.00 1.03 (0.82-1.28) 1.38 (1.12-1.76) |
| Adjusted for model 2 + insulin | 1.00 1.04 (0.83-1.30) 1.31 (1.06-1.61) |
| Adjusted for model 2 + kidney disease | 1.00 1.03 (0.83-1.29) 1.30 (1.05-1.60) |

Hazard ratios (HR) (95% confidence interval [CI]) have been adjusted for model 2, in which the Framingham risk factors age, sex, smoking, systolic blood pressure, use of anti-hypertensive therapy, diabetes at baseline, total cholesterol, HDL-cholesterol were included. Kidney disease was defined based on prior history of kidney disease requiring dialysis or estimated glomerular filtration rate (eGFR) below 60 mL/min/1.73m2. We used the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation to calculate eGFR.

In another analysis, we examined the association of Prx4 with risk of incident CVD after adjustment for the variables in model 2 and prior history of CVD in total population. The adjusted HR (95%CI) in the highest tertile compared to the first tertile of Prx4 was 1.32 (1.11-1.59) for incident CVD events or CVD mortality. In participants with prior history of CVD, the adjusted HR (95%CI), for the variables in model 2, in the highest tertile compared to the first tertile of Prx4 was 1.07 (0.73-1.56) for incident CVD events or CVD mortality (n=181).

Figure 2 depicts the relationship of continuous Prx4 with incident CVD events or CVD mortality. We plotted for Framingham risk factors adjusted (model 2) HRs and their 95%CIs as a function of Prx4. The optimal transformation was one in which the terms (Prx4)\textsuperscript{1/2} and (Prx4)\textsuperscript{1/2} × ln(Prx4) were incorporated. The solid line demonstrates that after a slight decrease in risk with levels slightly higher than the
lowest ones that can be detected, the risk associated with increasing levels of Prx4 steeply increases, until a plateau is reached with high levels of Prx4. Incremental value for risk prediction with addition of \((\text{Prx4})^{1/2}\) and \((\text{Prx4})^{1/2} \times \ln(\text{Prx4})\) to the model rather than log2-linear transformed Prx4 (C-statistic=0.81, 95%CI, 0.79-0.82; IDI=0.004, \(P<0.001\); NRI=3.6% 95%CI, 1.5% to 5.7%, \(P<0.001\) was slightly higher, but very similar to that with log2-linear transformed Prx4.

Table 7. Association of serum peroxiredoxin 4 with incident myocardial infarction, cerebrovascular events and cardiovascular mortality (n=8,141)

| Tertiles of peroxiredoxin 4 (U/L) | 1       | 2       | 3       |
|----------------------------------|---------|---------|---------|
| Incident myocardial infarction   |         |         |         |
| No. of Cases (%)                 | 51 (5.8)| 63 (7.8)| 94 (10.1)|
| Unadjusted HR (95%CI)            | 1.00    | 1.04 (0.71-1.52) | 1.43 (1.00-2.06) |
| Multivariate-adjusted HR (95%CI)* | 1.00   | 0.98 (0.67-1.43) | 1.06 (0.74-1.53) |
| Incident cerebrovascular disease |         |         |         |
| No. of Cases (%)                 | 39 (6.1)| 58 (8.2)| 88 (13.3)|
| Unadjusted HR (95%CI)            | 1.00    | 1.00 (0.64-1.55) | 1.73 (1.16-2.58) |
| Multivariate-adjusted HR (95%CI)* | 1.00   | 0.93 (0.60-1.45) | 1.28 (0.85-1.91) |
| Incident cardiovascular mortality|         |         |         |
| No. of Cases (%)                 | 28 (1.0)| 44 (5.9)| 63 (9.1)|
| Unadjusted HR (95%CI)            | 1.00    | 1.48 (0.84-2.59) | 2.10 (1.23-3.58) |
| Multivariate-adjusted HR (95%CI)* | 1.00   | 1.35 (0.77-2.36) | 1.38 (0.80-2.36) |

* Hazard ratios (HR) (95% confidence interval [CI]) have been adjusted for model 2 in which the Framingham risk factors included, age, sex, smoking, systolic blood pressure, use of anti-hypertensive therapy, diabetes at baseline, total cholesterol, HDL-cholesterol.

Discussion

In this study, we demonstrated that serum Prx4, a circulating biomarker with antioxidant properties, was associated with the most common risk factors of CVD in a general population cohort enriched with individuals with microalbuminuria. We found it to have an statistically significant positive association with age, history of CVD, systolic blood pressure, antihypertensive therapy, triglycerides, hs-CRP, UAE and procalcitonin, while there was an inverse association with alcohol use and total cholesterol. Moreover, higher serum Prx4 levels were associated with significantly higher risk of incident CVD and all-cause mortality. For potential clinical application, we examined the incremental predictive value of Prx4 compared with the Framingham risk score. Particularly, Prx4 modestly improved prediction for the10-year CVD risk when added to the Framingham risk score in terms of discriminative ability and net reclassification.
Our findings showing the associations of serum Prx4 levels with cardiovascular risk factors and events support previous clinical studies suggesting a role of oxidative stress in the pathogenesis of CVD \(^1,2,4,34\). In an earlier study, a higher urinary excretion of oxidative stress indices was reported in individuals with renovascular hypertension which was correlated with endothelium-dependent vasodilatation \(^4\). Another study has shown the independent association of oxidized low-density lipoprotein with the incidence of metabolic syndrome \(^2\). In line with this, genotypes and serum activity of paraoxonase 1, an HDL-related antioxidant, has been shown to be associated with systemic oxidative stress and cardiovascular outcomes in humans \(^1\). We now extend accumulating information obtained from animal and human studies on Prx4 of the family of thiol-dependent antioxidants in this era. An animal model of type 1 diabetes has indicated that Prx4 may have a pivotal role in the suppression of apoptosis and the proliferation of progenitor cells to protect against oxidative stress-induced β-cell dysfunction \(^12\). In line with this, a higher gene expression of Prx4 has been found in the islets of high-fat diet model of β-cell dysfunction \(^35\) and down-regulated expression of Prx4 in islet in diabetic mice with chronic hyperglycaemia \(^36\). Moreover, recent studies suggested that Prx4 might be involved in the protection against celiac disease and cancer in pancreas and lung with an increased expression and production of Prx4 in the related human tissues. \(^12,37,38\).

Figure 2. The relationship of peroxiredoxin 4 with incident CVD events or CVD mortality. Data are shown for 8,141 participants without CVD at baseline. The plotted hazard ratio (95%CI) was adjusted for the Framingham risk factors and centered on the Prx4 median value. The optimal transformation of Prx4 consisted of one in which the terms \((\text{Prx4})^{1/2}\) and \((\text{Prx4})^{1/2} \times \ln(\text{Prx4})\) were incorporated.
Consistently, Prx1, another member of the Prx family, has also shown to be involved in a broad range of oxidative stress-related outcomes in the cardiovascular system \(^{39, 40}\).

Importantly, Prx4 is the only secretable member of the family in the animals and humans \(^{8, 11}\). Recently, clinical data have shown that Prx4 levels were increased in serum of septic patients compared to healthy individuals \(^{14, 15}\). Consistent with this, we showed the relation between Prx4 and inflammatory markers, and also explored its relation with measures of adiposity, blood pressure, glycaemia index, lipids, and albuminuria. All these markers are underlying in central biological pathways of metabolic traits and CVD \(^{27, 41}\). Other recent data from patients who presented to emergency departments showed that serum Prx4 levels were increased in non-survivors and improved prognostic information for survival at 30 days when added to a clinical risk score \(^{15}\). One main explanation for these findings may be that concomitant production and secretion of Prx4 can be augmented to protect against the increased rate of oxidative stress in relation with adverse cardiovascular and metabolic conditions \(^{42}\). Interestingly, in secondary analyses with fractional polynomials, we found indication for the notion that very low levels of Prx4 as associated with slightly increased risk as compared to somewhat higher levels. Possibly this makes up a subgroup of subjects with constitutively low levels of Prx4, which predisposes to CVD. The high risk with more elevated levels of Prx4 is consistent with compensatory increase of Prx4 in response to existing oxidative stress. At cellular level, Prx4 may promote antioxidant activity via several pathways, such as the nuclear factor kB \(^{43}\), p53 \(^{44}\), thromboxane A2 receptor \(^{45}\) and NF-E2-related factor 2 (Nrf2) \(^{46}\). Despite equivocal findings of supplementing antioxidant vitamins to prevent cardiovascular and metabolic diseases \(^{1, 47}\), a recent trial \(^{48}\) showed an effective intervention of a specific antioxidant, that is Nrf2 antagonist which is related to Prx4 pathway, against decline of renal function in patients with chronic kidney disease and type 2 diabetes. Therefore, this might be an opening line for novel therapeutic targets and monitoring tools for metabolic traits and CVD.

Next, we assessed the clinical application of Prx4 for the risk prediction of CVD. To do this, we used information from general 10-year risk of CVD based on the Framingham risk score \(^{28}\), and examined whether Prx4 might have incremental predictive value above this risk score. We did not develop new models, but chose an appropriate approach in prediction research by using the information retained in the existing prediction model \(^{19, 30, 31, 49}\). Of note, there are usually missing values for baseline data in an observational study. We had less than 10% missing data and we used a single imputation and predictive mean matching. Imputation for missing values will increase the power and precision of study and minimize the risk of biased findings \(^{50}\). Finally, we used reclassification measures, that are more sensitive and more clinically relevant than C-statistic alone \(^{18, 19, 49}\). For CVD, addition of Prx4 to the Framingham risk score marginally improved prediction in terms of discrimination and reclassification. Overall, addition of Prx4 correctly reclassified 2.7% of participants for the risk of CVD obtained by the Framingham risk score. Further
studies are warranted to confirm our findings for this oxidative stress biomarker in different setting and among individuals with other co-morbidities such as diabetes.

There are some limitations to this study that should be addressed. Our cohort is predominantly comprised of white adults, and it is therefore unknown whether our findings can be generalized for non-whites. The PREVEND cohort was enriched for microalbuminuria at baseline. However, a weighted method was performed to compensate this, and this did not affect results. Moreover, we investigated the association of only baseline and of not serial circulating levels of Prx4 with the future risk of outcomes of interest. The extent of within-individual variation over time might affect the statistical power of study. For example, a higher variation can lead to less power and then the estimated risk is attenuated using a single Prx4 measurement. Although we accounted for confounding of traditional cardiovascular risk factors, a potential for uncontrolled or residual confounding can be plausible. Finally, we had no data on other oxidative stress markers such as oxidized low-density lipoprotein and homocysteine to compare their predictive values with that of Prx4.

In conclusion, our results suggest that higher serum Prx4 levels are associated with most cardiovascular risk factors including albuminuria and hs-CRP in a general population cohort study. Moreover, higher serum Prx4 levels were associated with significantly higher risk of incident of CVD events or CVD mortality, and all-cause mortality after adjustment for traditional cardiovascular risk factors. Prx4 marginally improve the 10-year risk prediction for CVD when added to the Framingham risk score.
Acknowledgments

We thank Prof. dr. L.T.W. de Jong-van den Berg and dr. S.T. Visser from the Department of Social Pharmacy, Pharmacoepidemiology and Pharmacotherapy, Groningen University Institute for Drug Exploration, University of Groningen, University Medical Center Groningen for providing the data on pharmacy-registered use of antidiabetic medication. This work was supported by the Netherlands Heart Foundation, Dutch Diabetes Research Foundation and Dutch Kidney Foundation. This research was performed within the framework of CTMM, the Center for Translational Molecular Medicine (www.ctmm.nl); project PREDICCT (grant 01C-104-07).

Conflict of Interest Disclosures: Dr Struck and Ms Schulte hold patent rights to peroxiredoxin 4 assay and are employees of BRAHMS GmbH, the manufacturer of the peroxiredoxin 4 assay. The present study was not financed by BRAHMS GmbH. No other author has anything to potential conflicts of interest relevant to this article. None of the study sponsors had a role in study design; in data collection, analysis, or interpretation; in writing the report; or in the decision to submit for publication.
References

1. Bhattacharyya T, Nicholls SJ, Topol EJ, et al. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA 2008;299(11):1265-76.
2. Holvoet P, Lee DH, Steffes M, Gross M, Jacobs DR, Jr. Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. JAMA 2008;299(19):2287-93.
3. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408(6809):239-47.
4. Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Oshima T, Chayama K. Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 2002;346(25):1954-62.
5. Giustarini D, Dalle-Donne I, Tsikas D, Rossi R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci 2009;46(5-6):241-81.
6. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem 2006;52(4):601-23.
7. Strobel NA, Fassett RG, Marsh SA, Coombes JS. Oxidative stress biomarkers as predictors of cardiovascular disease. Int J Cardiol 2011;147(2):191-201.
8. Okado-Matsumoto A, Matsumoto A, Fuji J, Taniguchi N. Peroxiredoxin IV is a secretable protein with heparin-binding properties under reduced conditions. J Biochem 2000;127(3):493-501.
9. Schulte J, Struck J, Bergmann A, Kohrle J. Immunoluminometric assay for quantification of peroxiredoxin 4 in human serum. Clin Chim Acta 2010;411(17-18):1258-63.
10. Neumann CA, Krause DS, Carman CV, et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 2003;424(6948):561-5.
11. Wood ZA, Schroder E, Robin Harris J, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 2003;28(1):32-40.
12. Ding Y, Yamada S, Wang KY, et al. Overexpression of peroxiredoxin 4 protects against high-dose streptozotocin-induced diabetes by suppressing oxidative stress and cytokines in transgenic mice. Antioxid Redox Signal 2010;13(10):1477-90.
13. Wei Q, Jiang H, Xiao Z, et al. Sulfiredoxin-Peroxiredoxin IV axis promotes human lung cancer progression through modulation of specific phosphokinase signaling. Proc Natl Acad Sci U S A 2011;108(17):7004-9.
14. Schulte J, Struck J, Kohrle J, Muller B. Circulating levels of peroxiredoxin 4 as a novel biomarker of oxidative stress in patients with sepsis. Shock 2011;35(5):460-5.
15. Nickel CH, Ruedinger J, Misch F, et al. Copeptin and peroxiredoxin-4 independently predict mortality in patients with nonspecific complaints presenting to the emergency department. Acad Emerg Med 2011;18(8):851-9.
16. Shah SH, de Lemos JA. Biomarkers and cardiovascular disease: determining causality and quantifying contribution to risk assessment. JAMA 2009;302(1):92-3.
17. Hlatky MA, Greenland P, Arnett DK, et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation 2009;119(17):2408-16.
18. Pencina MJ, D’Agostino RB, Sr., Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 2011;30(1):11-21.
19. Cook NR, Ridker PM. Advances in measuring the effect of individual predictors of cardiovascular risk: the role of reclassification measures. Ann Intern Med 2009;150(11):795-802.
20. Lambers Heerspink HJ, Brantsma AH, de Zeeuw D, Bakker SJ, de Jong PE, Gansevoort RT. Albuminuria assessed from first-morning-void urine samples versus 24-hour urine collections as a predictor of cardiovascular morbidity and mortality. Am J Epidemiol 2008;168(8):897-905.
21. Mahmoodi BK, Gansevoort RT, Veeger NJ, et al. Microalbuminuria and risk of venous thromboembolism. JAMA 2009;301(17):1790-7.
22. Monster TB, Janssen WM, de Jong PE, de Jong-van den Berg LT. Pharmacy data in epidemiological studies: an easy to obtain and reliable tool. Pharmacoepidemiol Drug Saf 2002;11(5):379-84.
23. Abbasi A, Corpeleijn E, Postmus D, et al. Plasma procalcitonin and risk of type 2 diabetes in the general population. Diabetologia 2011;54(9):2463-5.
24. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150(9):604-12.
25. Abbasi A, Corpeleijn E, Postmus D, et al. Plasma procalcitonin is associated with obesity, insulin resistance, and the metabolic syndrome. J Clin Endocrinol Metab 2010;95(9):E26-31.
26. Stricker BH, Herings RM. [Plea for the retention of the Dutch National Medical Registration (LMR) to provide reliable information regarding public health and healthcare]. Ned Tijdschr Geneeskd 2006;150(35):1916-7.
27. Hillege HL, Fidler V, Diercks GF, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 2002;106(14):1777-82.
28. D’Agostino RB Sr., Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008;117(6):743-53.
29. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010;21(1):128-38.
30. Janssen KJ, Moons KG, Kalkman CJ, Grobbee DE, Vergouwe Y. Updating methods improved the performance of a clinical prediction model in new patients. J Clin Epidemiol 2008;61(1):76-86.
31. Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino RB Sr. Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med 2011;365(3):213-21.
32. Marshall A, Altman DG, Royston P, Holder RL. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Med Res Methodol 2010;10:7.
33. van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med 1999;18(6):681-94.
34. Horstkotte J, Perisic T, Schneider M, et al. Mitochondrial thioredoxin reductase is essential for early postischemic myocardial protection. Circulation 2011;124(25):2892-902.
35. Dreja T, Jovanovic Z, Rasche A, et al. Diet-induced gene expression of isolated pancreatic islets from a polygenic mouse model of the metabolic syndrome. Diabetologia 2010;53(2):309-20.
36. Xie X, Li S, Liu S, Lu Y, Shen P, Ji J. Proteomic analysis of mouse islets after multiple low-dose streptozotocin injection. Biochim Biophys Acta 2008;1784(2):276-84.
37. Simula MP, Cannizzaro R, Canzonieri V, et al. PPAR signaling pathway and cancer-related proteins are involved in celiac disease-associated tissue damage. Mol Med 2010;16(5-6):199-209.
38. Chung JC, Oh MJ, Choi SH, Bae CD. Proteomic analysis to identify biomarker proteins in pancreatic ductal adenocarcinoma. ANZ J Surg 2008;78(4):245-51.
39. Kisuucka J, Chauhan AK, Patten IS, et al. Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis. Circ Res 2008;103(6):598-605.
40. Martinez-Pinna R, Ramos-Mozo P, Madrigal-Matute J, et al. Identification of peroxiredoxin-1 as a novel biomarker of abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 2011;31(4):935-43.
41. Emerging Risk Factors Collaboration, Wormser D, Kaptoge S, Di Angelantonio E, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet 2011;377(9771):1085-95.
42. Schulte J. Peroxiredoxin 4: a multifunctional biomarker worthy of further exploration. BMC Med 2011;9:137.
43. Jin DY, Chae HZ, Rhee SG, Jeang KT. Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation. J Biol Chem 1997;272(49):30952-61.
44. Wong CM, Chun AC, Kok KH, et al. Characterization of human and mouse peroxiredoxin IV: evidence for inhibition by Prx-IV of epidermal growth factor- and p53-induced reactive oxygen species. Antioxid Redox Signal 2000;2(3):507-18.
45. Giguere P, Turcotte ME, Hamelin E, et al. Peroxiredoxin-4 interacts with and regulates the thromboxane A(2) receptor. FEBS Lett 2007;581(20):3863-8.
46. Bertolotti M, Yim SH, Garcia-Manteiga JM, et al. B- to plasma-cell terminal differentiation entails oxidative stress and profound reshaping of the antioxidant responses. Antioxid Redox Signal 2010;13(8):1133-44.
47. Munzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 2010;31(22):2741-8.
48. Pergola PE, Raskin P, Toto RD, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med 2011;365(4):327-36.
49. McGeechan K, Macaskill P, Irwig L, Liew G, Wong TY. Assessing new biomarkers and predictive models for use in clinical practice: a clinician's guide. Arch Intern Med 2008;168(21):2304-10.
50. van der Heijden GJ, Donders AR, Stijnen T, Moons KG. Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: a clinical example. J Clin Epidemiol 2006;59(10):1102-9.
51. Koenig W, Sund M, Frohlich M, Lowel H, Hutchinson WL, Pepys MB. Refinement of the association of serum C-reactive protein concentration and coronary heart disease risk by correction for within-subject variation over time: the MONICA Augsburg studies, 1984 and 1987. Am J Epidemiol 2003;158(4):357-64.
52. Danesh J, Wheeler JG, Hirschfield GM, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 2004;350(14):1387-97.