Supplementary Information to the manuscript having the title

Multitargeting Antibacterial Activity of a Synthesized Mn$^{2+}$ Complex of Curcumin on Gram-Positive and Gram-Negative bacterial strains

Tanmoy Saha†, Prince Kumar‡, Nayim Sepay, Durba Ganguly, Kanchan Tiwari, Kasturi Mukhopadhyay* and Saurabh Das*

*Corresponding author. Tel: +91 33 24572148; +91 33 8902087756
Fax: +91 33 24146223
E-mail address: dasrv@yahoo.in kasturim@mail.jnu.ac.in; kasturi26@hotmail.com

‡: TS & PK have equal contribution

Present address of Prince Kumar: Department of Botany, T. S. College, Hisua, Nawada, Magadh University, Bodhgaya – 824 234, India.
The supporting information for this manuscript includes

1) A figure (S1) showing the absorption spectra of Curcumin and the MnII complex in DMSO.
2) A figure (S2) showing absorption spectra of MnII interacting with Curcumin in ethanol-water as solvent during determination of stoichiometry of complex formation.
3) A figure (S3) showing the infra-red spectrum of Curcumin.
4) A figure (S4) showing the infra-red spectrum of [MnII(Cur)$_2$(HCur)].
5) A figure (S5) showing TGA of [MnII(Cur)$_2$(HCur)].
6) A schematic diagram (S6) showing the keto-enol tautomerism of Curcumin.
7) A Table (S1) showing the optimized bond lengths for the carbon-oxygen bonds of Curcumin involved in coordination of MnII.
8) A figure (S7) showing degradation of Curcumin and no degradation of the complex as realized from a change in absorbance in the UV-visible region after being taken in PBS buffer or in PBS buffer with 10 μM DTT.
9) A figure (S8) showing degradation of Curcumin and no degradation of the complex realized from a change in absorbance in the UV-visible region after being taken in different bacterial growth medium.
10) Double reciprocal plot for interaction of [MnII(Cur)$_2$(HCur)] with calf thymus DNA. using UV-Vis spectroscopy (Fig. S9).
11) Double reciprocal plot with y intercept = 1 for interaction of [MnII(Cur)$_2$(HCur)] with calf thymus DNA using UV-Vis spectroscopy (Fig. S10).
12) A figure (S11) showing bacterial survival in logarithmic scale to indicate antibacterial efficacy of [MnII(Cur)$_2$(HCur)] and Curcumin on S. aureus and E. coli cells.
13) A figure (S12) showing scanning electron microscope images of S. aureus ATCC 29213 treated with either no compound or with Curcumin, [MnII(Cur)$_2$(HCur)] and gramicidin D to realize membrane permeabilization of S. aureus by the calcein leakage assay.
14) Equations related to the dissociation of the three protons on Curcumin.
15) A figure (S13) showing the spectrophotometric titration of Curcumin followed at 467 nm.
16) Figures showing mole ratio plots (S14A & S14B) and Job’s plots of continuous variation (S14C) for Curcumin with MnII that were followed at 430 nm.
17) A figure (S15) showing the spectrophotometric titration of Curcumin in the presence of MnII followed at 430 nm.

18) Equations for the evaluation of stability constant of the complex formed in solution based on the interaction of HCur with MnII by evaluation of pK$_a$ values of HCur in the absence and presence of MnII.

Figure S1

![Absorption spectra for HCur and [MnII(Cur)$_2$(HCur)] in DMSO.](image)

Figure S1: Absorption spectra for HCur and [MnII(Cur)$_2$(HCur)] in DMSO.
Figure S2: Absorption spectra for MnII interacting with Curcumin in ethanol-water during a stoichiometry determination experiment.

Figure S3: FTIR spectrum of HCur
Figure S4: FTIR spectrum for [Mn^{II}(Cur)_{2}(HCur)]

Figure S5: TGA of [Mn^{II}(Cur)_{2}(HCur)]
Figure S6

Table S1: Optimized bond lengths for carbon-oxygen bonds of Curcumin involved in coordination of MnII.

Bond Type	Bond Length (Å)
C16-O2	1.3051
C17-O4	1.3001
C15-O6	1.3193
C12-O5	1.3099
C11-O3	1.3101
C8-O7	1.3096
Figure S7: UV-visible spectra of (A) HCur and (B) [Mn^{II}(Cur)_{2}(HCur)] in presence of (i) only PBS buffer (pH 7.4) and (ii) PBS buffer with 10 μM DTT.
Figure S8: UV-visible absorption spectra of (A) HCur and (B) [MnII(Cur)2(HCur)] in different bacterial growth medium (i) BHI, (ii) MHB, and (iii) DMEM.
Figure S9: A double reciprocal plot for the interaction of [MnII(Cur)\textsubscript{2}(HCur)] with calf thymus DNA leading to the determination of apparent binding constant (K\textsubscript{app}) at pH 7.4 (30 mM phosphate buffer) and ionic strength 0.15 M; [MnII(Cur)\textsubscript{2}(HCur)] = 40 µM, pH = 7.4; Temperature = 298 K.
Figure S10: Double reciprocal plot for a UV-Vis titration of 40 µM [Mn(II)(Cur)$_2$(HCur)] by calf thymus DNA using phosphate buffer (~pH 7.4) at 298 K.
Figure S11: Antibacterial efficacy of 25 and 50 μM of [MnII\((\text{Cur})_2\)(HCur)]] and HCur in PBS buffer against (A) \textit{S. aureus} and (B) \textit{E. coli} cells (106 CFU/mL). Grey columns, columns with stripes, and white columns denote the time of exposure (2 min, 60 min, and 120 min, respectively) to the compounds. The data represent mean (± SD) of three independent experiments (*** p ≤ 0.001).
Figure S12: Scanning electron microscope images of *S. aureus* ATCC 29213 treated with 50 μM of HCur, [MnII(Cur)\textsubscript{2}(HCur)], and 20 μg/mL gramicidin D for 2 hours. (A) Untreated control cells, (B) HCur, (C) [MnII(Cur)\textsubscript{2}(HCur)] and (D) gramicidin D treated cells.
Equations with regard to the dissociation of the three protons on HCur.

\[
\text{LH}_2H^+ \rightleftharpoons \text{LH}_2^- + H^+ \quad K_1 = \frac{[H^+][\text{LH}_2^-]}{[\text{LH}_2H^+]} \quad (S1)
\]

\[
\text{LH}_2^- \rightleftharpoons \text{L}^{2-} + 2H^+ \quad K_2 = \frac{[\text{L}^{2-}][H^+]^2}{[\text{LH}_2^-]} \quad (S2)
\]

Figure S13

Figure S13: Spectrophotometric titration of HCur as shown by a variation in absorbance at 467 nm; [HCur] = 5 µM, [NaNO\(_3\)] = 0.1 M, Temperature = 305K.

The change in absorbance of HCur at 467 nm was fitted to Eq. S3

\[
A_{\text{obs}} = \frac{A_1}{(1 + 10^{pH-pK_{a1}} + 10^{pH-pK_{a2}} + 10^{pH-pK_{a3}})} + \frac{A_2}{(1 + 10^{pK_{a1} - pH + 10^{pH - pK_{a2}} + 10^{pH - pK_{a3}}})} + \frac{A_3}{(1 + 10^{pK_{a1} - pH + 10^{pK_{a2}} - pH + 10^{pH - pK_{a3}}})} + \frac{A_4}{(1 + 10^{pK_{a1} - pH + 10^{pK_{a2} - pH} + 10^{pK_{a3} - pH}})} \quad (S3)
\]

A\(_1\), A\(_2\), A\(_3\) and A\(_4\) refer to absorbance due to LH\(_2\)\(^+\), LH\(_2\)\(^-\), LH\(_2\)\(^{2-}\) and L\(^{3-}\) respectively while pK\(_{a1}\), pK\(_{a2}\), pK\(_{a3}\) are pK\(_a\) values for the dissociation of three protons on Curcumin (Eqs. S1 and S2).
Experiments to determine stoichiometry of complex formation:

In experiments for mole-ratio and Job’s method of continuous variation appropriate amounts of HCur was mixed with Mn(II) in 10 mL volumetric flasks and after shaking the solution for a constant time of 3 minutes, absorbance was recorded. This was then plotted for all the three types of experiments.

If we consider the metal ion to be M and ligand L, then for our case since there is the formation of a 1:3 metal to ligand complex, sequence of reactions would be

\[
\begin{align*}
M & \quad + \quad L \quad \xrightarrow{\text{e}} \quad ML \quad \text{(1)} \\
ML & \quad + \quad L \quad \xrightarrow{\text{e}} \quad ML_2 \quad \text{(2)} \\
ML_2 & \quad + \quad L \quad \xrightarrow{\text{e}} \quad ML_3 \quad \text{(3)}
\end{align*}
\]

Since each step is an equilibrium step and we are allowing only 3 minutes of shaking time before recording the absorbance using a spectrophotometer it is only likely that for each solution having a certain composition, all species (ML, ML_2 and ML_3) would be present simultaneously. If attainment of equilibrium 1 is fast and other two relatively slow, we should see responses for ML_2 and ML_3. However, if equilibrium 1 is slow we would see responses for ML and ML_2. Sometimes in such cases, we may not see an exclusive response for ML_3 in the time-frame of our analysis but rather the existence of two species say ML_2 and ML_3. However, if one refluxes M and L, taking L in excess, for say 4 to 5 hours, which we did in order to prepare the complex one may get ML_3 exclusively.

Something like this happened for Mn(II)-Curcumin where we got responses both from mole-ratio and Job’s plots for species in between 1:2 and 1:3 (but tending to 1:3). Had equilibrium for
reaction 3 been fast we would have got a response for ML₃ only but probably that was not the case. In the course of our study, when we refluxed Mn(II) and Curcumin for 4 hours, to prepare the complex we obtained a 1:3 Mn(II)-Curcumin complex that provided a molecular ion peak in mass spectrometry corresponding to the molecular weight of a 1:3 species. Here we are providing all figures related to such experiments leading to determination of stoichiometry.

Mole ratio plots where concentration of Curcumin was constant, Mn(II) varied:
1: Absorbance recorded immediately i.e. after mixing for 3 minutes
2: Absorbance recorded after 6 hours from mixing.
3: Absorbance recorded after 24 hours from mixing.

Figure S14A

Figure S14A: Mole-ratio plots showing variation in absorbance at 430 nm for a change in concentration of Mn^{II} for a fixed concentration of HCur = 10 µM; (1) immediately after HCur and Mn(II) were mixed; (2) after 6 hours from the time HCur and Mn(II) were mixed; (3) after 24 hours from the time HCur and Mn(II) were mixed; pH of the medium: ~7.4, [NaNO₃] = 0.01 M, Temperature = 303 K.
Mole ratio plots where concentration of Mn(II) constant, Curcumin was varied:

1: Absorbance recorded immediately i.e. after mixing for 3 minutes
2: Absorbance recorded after 24 hours.

Figure S14B

Figure S14B: Mole-ratio plots showing variation in absorbance at 430 nm for a change in concentration of HCur for a fixed concentration of Mn$^{II} = 10$ µM; (1) immediately after HCur and Mn(II) were mixed; (2) after 24 hours from the time HCur and Mn(II) were mixed; pH of the medium: ~7.4, [NaNO$_3$] = 0.01 M, Temperature = 303 K.
Job’s plots from three separate experiments where both Mn(II) and Curcumin were varied continuously

Figure S14C

Figure. S14C: Plot showing a variation in absorbance at 430 nm for a continuous variation of HCur and MnII for three different experimental sets, Set 1, Set 2 and Set 3 at pH (~7.4). Strength of stock solutions of MnII and HCur were 100 µM; [NaNO$_3$] = 0.01 M, Temperature = 303 K.
Figure S15: Titration of HCur performed in the presence of MnII, as shown by a variation in absorbance at 430 nm; [HCur] = 30 µM, [MnII] = 10 µM, [NaNO$_3$] = 0.01 M, Temperature = 305 K.

$$A_{\text{obs}} = \frac{A_1}{(1 + 10^{pH - pK_{a1} + 10pH - pK_{a2}})} + \frac{A_2}{(1 + 10^{pK_{a1} - pH + 10pH - pK_{a2}})} + \frac{A_3}{(1 + 10^{pK_{a1} - pH + 10pK_{a2} - pH})}$$ (S4)

A_1, A_2 and A_3 are absorbances due to LH$_2$H*, LH$_2^-$ and L$^-$ respectively in the presence of MnII.

$$\text{Mn}^{2+} + 3\text{LH}_2\text{H}^* \rightleftharpoons [\text{Mn(LH}_2\text{)}_3]^− + 3\text{H}^{\text{I}+}$$ (S5)

$$\beta^* = \frac{[\text{Mn(LH}_2\text{)}_3][\text{H}^{\text{I}+}]^3}{[\text{Mn}^{2+}][\text{LH}_2\text{H}^*]^3}$$ (S6)

or, $$\text{Mn}^{2+} + 3\text{LH}_2^- \rightleftharpoons [\text{Mn(LH}_2\text{)}_3]^−$$ (S7)

$$\beta = \frac{[\text{Mn(LH}_2\text{)}_3]}{[\text{Mn}^{2+}][\text{LH}_2^-]^3}$$ (S8)

$$\beta = \frac{\beta^*}{K_1^{-3}}$$ (S9)

LH$_2$H* represents HCur; K_1 is the dissociation constant of the enolic-OH proton of HCur.