Research Article

Lacunary \mathcal{I}-Invariant Convergence of Sequence of Sets in Intuitionistic Fuzzy Metric Spaces

Mualla Birgül Huban

Isparta University of Applied Sciences, Isparta, Turkey

Correspondence should be addressed to Mualla Birgül Huban; muallahuban@isparta.edu.tr

Received 28 July 2021; Revised 12 August 2021; Accepted 16 October 2021; Published 2 November 2021

Academic Editor: Huseyin Isik

Copyright © 2021 Mualla Birgül Huban. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The concepts of invariant convergence, invariant statistical convergence, lacunary invariant convergence, and lacunary invariant statistical convergence for set sequences were introduced by Pancaroglu and Nuray (2013). We know that ideal convergence is more general than statistical convergence for sequences. This has motivated us to study the lacunary \mathcal{I}-invariant convergence of sequence of sets in intuitionistic fuzzy metric spaces (briefly, IFMS). In this study, we examine the notions of lacunary \mathcal{I}-invariant convergence ($W_{\mathcal{I}}^{\mathcal{I}}(\eta, \sigma \theta)$) (Wijsman sense), lacunary \mathcal{I}^*-invariant convergence ($W_{\mathcal{I}}^{\mathcal{I}^*}(\eta, \sigma \theta)$) (Wijsman sense), and q-strongly lacunary invariant convergence ($[WN_{\sigma \theta}^{(q, \theta)}]$) (Wijsman sense) of sequences of sets in IFMS. Also, we give the relationships among Wijsman lacunary invariant convergence, $[WN_{\sigma \theta}^{(q, \theta)}]_{\omega}$, $W_{\mathcal{I}}^{\mathcal{I}^*}(\eta, \sigma \theta)$, and $W_{\mathcal{I}}^{\mathcal{I}}(\eta, \sigma \theta)$ in IFMS. Furthermore, we define the concepts of $W_{\mathcal{I}}^{\mathcal{I}}(\eta, \sigma \theta)$-Cauchy sequence and $W_{\mathcal{I}}^{\mathcal{I}^*}(\eta, \sigma \theta)$-Cauchy sequence of sets in IFMS. Furthermore, we obtain some features of the new type of convergences in IFMS.

1. Introduction and Background

Fast [1] investigated the concept of statistical convergence. The publication of the study is affected deeply all the scientific fields. Nuray and Ruckle [2] redefined this concept which is known as generalized statistical convergence. A lot of development has been made in area about statistical convergence. Kostyrko et al. [3] defined ideal convergence, as a generalization of statistical convergence and worked some features of this convergence. Ideal convergence became a remarkable topic in summability theory after the studies of [4–8]. Fridy and Orhan [9] worked the notion of lacunary statistical convergence by using lacunary sequence.

Various authors involving Raimi [10], Schaefer [11], and Mursaleen [12] worked invariant convergent sequences. Nuray et al. [13] investigated \mathcal{I}-convergence with the help of σ-uniform convergence. Mursaleen [14] put forward the idea of strongly σ-convergence. Savaş and Nuray [15] presented the opinion of σ-statistical convergence and lacunary σ-statistical convergence and proved some correlation theorems. Nuray and Ulusu [16] defined lacunary \mathcal{I}-invariant convergence and lacunary \mathcal{I}-invariant Cauchy sequence of real numbers.

After the original study of Zadeh [17], a huge number of research works have appeared on fuzzy theory and its applications as well as fuzzy analogues of the classical theories. Fuzzy sets (FSs) have been extensively applied in different disciplines and technologies. The theory of intuitionistic fuzzy sets (IFS) was presented by Atanassov [18]. The fuzzy sets and intuitionistic fuzzy sets have been widely used to solve many complex problems connected to different areas, especially in decision-making [19–22]. Kramosil and Michalek [23] worked fuzzy metric space (FMS) using the concepts fuzzy and probabilistic metric space. Park [24] rethought FMSs and investigated intuitionistic fuzzy metric space (IFMS). Park utilized George and Veeramani’s [25] opinion of using t-norm and t-conorm to the FMS meantime describing IFMS and investigating its fundamental properties. In [26], motivated by Park’s definition of an IF-metric, Lael and Nourozzi first defined an IF-normed space and then investigated, among other results, the fundamental theorems: open mapping, closed graph, and uniform
boundedness in IF-normed spaces. In order to have a different topology from the topology generated by the F-norm ψ, the condition $\psi + \phi \leq 1$ was omitted by Park’s definition. Statistical convergence, ideal convergence, and different features of sequences in INFS were examined by several authors [27–31]. For the extraction of information by reflecting and modeling the hesitancy present in real-life situation, intuitionistic fuzzy set theory has been playing a significant role. The implementation of IF sets in place of fuzzy sets means the introduction of another degree of freedom into set description. IF fixed point theory has become a subject of great interest for expert in fixed point theory because this branch of mathematics has covered new possibilities for summability theory.

Convergence of sequences of sets has been examined by several authors. Nuray and Rhoades [32] presented a new convergence concept for sequences of sets called Wijsman statistical convergence. Ulusu and Nuray [33] examined the lacunar statistical convergence of sequence of sets. Kişi [41]. Furthermore, Wijsman convergence for sequence of sets in IFMS were examined by Nuray and Rhoades [32] presented a new convergence concept for sequences of sets in IFMS at the same time. However, it is indicated that if certain conditions are met, every classical metric space can be an IFMS in IFMS.

In order to have a different topology from the topology generated by the F-norm ψ, the condition $\psi + \phi \leq 1$ was omitted by Park’s definition. Statistical convergence, ideal convergence, and different features of sequences in INFS were examined by several authors. Nuray and Rhoades [32] presented a new convergence concept for sequences of sets in IFMS at the same time. However; it is indicated that if certain conditions are met, every classical metric space can be an IFMS at the same time.

Throughout this work, we indicate \mathcal{F} to be the admissible ideal in \mathbb{N}, θ be a lacunary sequence, $(\mathcal{X}, \psi, \phi, \ast, \odot)$ to be the IFMS, and Y, $\{Y_k\}$ to be nonempty closed subsets of \mathcal{X}.

2. Main Results

Definition 1. A sequence $\{Y_k\}$ of nonempty closed subsets of \mathcal{X} is called lacunary invariant convergent (Wijsman sense) to Y with regards to IFM (ψ, ϕ), if for every $\xi \in (0, 1)$, for each $a \in \mathcal{X}$ and for all $\tau > 0$, such that

\[
\lim_{\tau \to 0} \frac{1}{\varpi_r} \sum_{k \in l_r} \psi \left(a, Y_{\varpi_r(m)}, \tau \right) - \psi (a, Y, \tau) = 1, \tag{1}
\]

\[
\lim_{\tau \to 0} \frac{1}{\varpi_r} \sum_{k \in l_r} \phi \left(a, Y_{\varpi_r(m)}, \tau \right) - \phi (a, Y, \tau) = 0, \tag{2}
\]

uniformly in m.

Definition 2. A sequence $\{Y_k\}$ of nonempty closed subsets of \mathcal{X} is known as lacunary \mathcal{F}-invariant convergent or $W_{\mathcal{F}, \varphi}$-convergent (Wijsman sense) to Y with regards to IFM (ψ, ϕ), if for every $\xi \in (0, 1)$, for each $a \in \mathcal{X}$ and for all $\tau > 0$, the set

\[
P(\xi, a, \tau) = \left\{ k \in \mathbb{N} : \left| \psi (a, Y_k, \tau) - \psi (a, Y, \tau) \right| \leq 1 - \xi \right\} \in \mathcal{F}_{\varphi},
\]

that is, $V_\varphi (P(\xi, a, \tau)) = 0$. We demonstrate this symbolically by $Y_k \rightarrow Y (W_{\mathcal{F}, \varphi})$.

Theorem 1. Let $\{Y_k\}$ be a bounded sequence. If $\{Y_k\}$ is $W_{\mathcal{F}, \varphi}$-convergent to Y, then $\{Y_k\}$ is lacunary invariant convergent (Wijsman sense) to Y with regards to IFM (ψ, ϕ).

Proof. Let $m \in \mathbb{N}$ be arbitrary and $\xi \in (0, 1)$. For each $a \in \mathcal{X}$ and for all $\tau > 0$, we estimate

\[
P(\xi, a, \tau) = \left\{ k \in \mathbb{N} : \left| \psi (a, Y_k, \tau) - \psi (a, Y, \tau) \right| \leq 1 - \xi \right\} \in \mathcal{F}_{\varphi},
\]

that is, $V_\varphi (P(\xi, a, \tau)) = 0$. We demonstrate this symbolically by $Y_k \rightarrow Y (W_{\mathcal{F}, \varphi})$.

\[
s(m, r, a) = \frac{1}{\varpi_r} \sum_{k \in l_r} \psi \left(a, Y_{\varpi_r(m)}, \tau \right) - \psi (a, Y, \tau).
\]

Then, for each $a \in \mathcal{X}$ and for all $\tau > 0$, we get

\[
s^1(m, r, a) \leq s(m, r, a) + s^2(m, r, a),
\]

where

\[
\left| \psi (a, Y_{\varpi_r(m)}, \tau) - \psi (a, Y, \tau) \right|.
\]

\[
\left| \psi (a, Y_{\varpi_r(m)}, \tau) - \psi (a, Y, \tau) \right|.
\]

\[
\left| \psi (a, Y_{\varpi_r(m)}, \tau) - \psi (a, Y, \tau) \right|.
\]

\[
\left| \psi (a, Y_{\varpi_r(m)}, \tau) - \psi (a, Y, \tau) \right|.
\]
For every \(m \geq 1 \) and for every \(\alpha \in \mathcal{X} \), it is obvious that \(s^2(m, r, \alpha) < 1 - \xi \). Since \(\{Y_k\} \) is bounded sequence, there is a \(M > 0 \), such that

\[
|\psi(\alpha, Y_{\alpha^t(m)}, \tau) - \psi(\alpha, Y, \tau)| \leq M, \quad (k \in I_r, m \geq 1),
\]

and so, we have

\[
s^1(m, r, \alpha) = \frac{1}{h_r} \sum_{k \in I_r} \psi(\alpha, Y_{\alpha^t(m)}, \tau) - \psi(\alpha, Y, \tau) \geq 1 - \xi
\]

\[
\leq M \frac{1}{h_r} \left\{ \sum_{k \in I_r} \left| \psi(\alpha, Y_{\alpha^t(m)}, \tau) - \psi(\alpha, Y, \tau) \right| \right\} \geq 1 - \xi
\]

\[
\leq \frac{M}{h_r} \sum_{k \in I_r} \left| \psi(\alpha, Y_{\alpha^t(m)}, \tau) - \psi(\alpha, Y, \tau) \right| \leq M S^1(m, \alpha).
\]

Hence, we obtain

\[
\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \psi(\alpha, Y_{\alpha^t(m)}, \tau) - \psi(\alpha, Y, \tau) = 1. \quad (10)
\]

Similarly, we have

\[
\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \phi(\alpha, Y_{\alpha^t(m)}, \tau) - \phi(\alpha, Y, \tau) = 0. \quad (11)
\]

Hence, \(\{Y_k\} \) is lacunary invariant convergent to \(Y \) (Wijsman sense) with regards to IFM \((\psi, \phi)\) \(\Box \)

Definition 3. Let \((\mathcal{X}, \psi, \phi, \ast, \odot)\) be a separable IFMS, and \(\mathcal{I}\) be a proper ideal in \(\mathbb{N}\). The sequence \(\{Y_k\}\) is known as lacunary \(\mathcal{I}\)-invariant convergent or \(W, \mathcal{I}^t(\psi, \phi)\)-convergent (Wijsman sense) to \(Y\) with regards to IFM \((\psi, \phi)\), if there is a set

\[
M = \{m = (m_j): m_j < m_{j+1}, j \in \mathbb{N}\} \in \mathcal{I}(\mathcal{J}_{\mathcal{I}})
\]

such that for each \(\alpha \in \mathcal{X} \) and for all \(r > 0 \),

\[
\lim_{r \to \infty} \psi(\alpha, Y_{m_j}, \tau) = \psi(\alpha, Y, \tau),
\]

\[
\lim_{r \to \infty} \phi(\alpha, Y_{m_j}, \tau) = \phi(\alpha, Y, \tau).
\]

\[
\{m_k \in M: \left| \psi(\alpha, Y_{m_k}, \tau) - \psi(\alpha, Y, \tau) \right| \leq 1 - \xi \text{ or } \left| \phi(\alpha, Y_{m_k}, \tau) - \phi(\alpha, Y, \tau) \right| \geq \xi \}
\]

is included in \([m_1 < m_2 < \cdots < m_{N-1}]\) and the ideal \(\mathcal{J}_{\mathcal{I}}\) is admissible, we get

\[
\{m_k \in M: \left| \psi(\alpha, Y_{m_k}, \tau) - \psi(\alpha, Y, \tau) \right| \leq 1 - \xi \text{ or } \left| \phi(\alpha, Y_{m_k}, \tau) - \phi(\alpha, Y, \tau) \right| \geq \xi \} \in \mathcal{J}_{\mathcal{I}}.
\]

\[
\{m_k \in M: \left| \psi(\alpha, Y_{m_k}, \tau) - \psi(\alpha, Y, \tau) \right| \leq 1 - \xi \text{ or } \left| \phi(\alpha, Y_{m_k}, \tau) - \phi(\alpha, Y, \tau) \right| \geq \xi \} \in \mathcal{J}_{\mathcal{I}}.
\]
Hence,

\[
\{ k \in \mathbb{N} : |\psi(a, Y_k, \tau) - \psi(a, Y, \tau)| \leq 1 - \xi \text{ or } |\phi(a, Y_k, \tau) - \phi(a, Y, \tau)| \geq \xi \} \subseteq H \cup \{ m_1 < m_2 < \cdots < m_{N-1} \} \in \mathcal{I}_{\mathcal{O}}.
\]

(21)

for all \(\xi \in (0, 1) \) and \(\tau > 0 \). Therefore, we conclude that \(Y_k \rightarrow Y(W, \mathcal{I}^{(\psi, \phi)}_{\mathcal{O}}) \). \(\square \)

Theorem 3. Let the ideal \(\mathcal{I}_{\mathcal{O}} \) fulfill the property (AP). If \(\{Y_k\} \) is a sequence in \(\mathcal{I} \), such that \(Y_k \rightarrow Y(W, \mathcal{I}^{(\psi, \phi)}_{\mathcal{O}}) \), then \(Y_k \rightarrow Y(W, \mathcal{I}^{(\psi, \phi)}_{\mathcal{O}}) \).

\[
P(\xi, \alpha, \tau) = \{ k \in \mathbb{N} : |\psi(a, Y_k, \tau) - \psi(a, Y, \tau)| \leq 1 - \xi \text{ or } |\phi(a, Y_k, \tau) - \phi(a, Y, \tau)| \geq \xi \} \in \mathcal{I}_{\mathcal{O}}.
\]

(22)

We define the set \(Q_n \) for \(n \in \mathbb{N} \) and \(\tau > 0 \) as

\[
Q_n := \left\{ k \in \mathbb{N} : 1 - \frac{1}{n} \leq |\psi(a, Y_k, \tau) - \psi(a, Y, \tau)| < 1 - \frac{1}{n+1} \text{ or } \frac{1}{n+1} < |\phi(a, Y_k, \tau) - \phi(a, Y, \tau)| \leq \frac{1}{n} \right\}.
\]

(23)

Clearly, \(\{Q_1, Q_2, \ldots\} \) is countable and belongs to \(\mathcal{I}_{\mathcal{O}} \) and \(Q_i \cap Q_j = \emptyset \) for \(i \neq j \). By the feature (AP), there is a sequence of \(\{F_n\}_{n \in \mathbb{N}} \), such that the symmetric differences \(Q_i \Delta F_j \) are finite sets for \(j \in \mathbb{N} \) and \(F = (\cup_{i=1}^{\infty} F_i) \in \mathcal{I}_{\mathcal{O}} \).

Now, to conclude the proof, it is enough to show that for \(M = \mathbb{N} \setminus F \) and for each \(\alpha \in \mathcal{X} \), we get

\[
\{ k \in \mathbb{N} : |\psi(a, Y_k, \tau) - \psi(a, Y, \tau)| \leq 1 - \rho \text{ or } |\phi(a, Y_k, \tau) - \phi(a, Y, \tau)| \geq \rho \} \subseteq \bigcup_{j=1}^{n+1} Q_j,
\]

(26)

Since \(Q_i \Delta F_j \) \((j = 1, 2, \ldots, n+1) \) are finite sets, there is a \(k_0 \in \mathbb{N} \), such that

\[
\left(\bigcup_{j=1}^{n+1} F_j \right) \cap \{ k \in \mathbb{N} : k > k_0 \} = \left(\bigcup_{j=1}^{n+1} Q_j \right) \cap \{ k \in \mathbb{N} : k > k_0 \}.
\]

(27)

If \(k > k_0 \) and \(k \notin F \), then

\[
|\psi(a, Y_k, \tau) - \psi(a, Y, \tau)| > 1 - \rho \text{ and } |\phi(a, Y_k, \tau) - \phi(a, Y, \tau)| < \rho.
\]

(29)

Since \(\rho > 0 \) is arbitrary, we obtain \(T_k \rightarrow T(W, \mathcal{I}^{(\psi, \phi)}_{\mathcal{O}}) \).

\(\square \)

Definition 4. A sequence \(\{Y_k\} \) is known as lacunary \(\mathcal{I} \)-invariant Cauchy sequence or \(W, \mathcal{I}^{(\psi, \phi)}_{\mathcal{O}} \)-Cauchy sequence.
(Wijsman sense) with regards to IFM \((\psi, \phi) \) if for each \(\xi \in (0, 1) \), for each \(\alpha \in \mathcal{X} \) and for all \(\tau > 0 \), there is \(N = N(\varepsilon, x) \in \mathbb{N} \), such that

\[
A(\xi, \alpha, \tau) = \{ k \in \mathbb{N} : |\psi(\alpha, Y_k, \tau) - \psi(\alpha, Y_{N_k}, \tau)| \leq 1 - \xi \text{ or } |\phi(\alpha, Y_k, \tau) - \phi(\alpha, Y_{N_k}, \tau)| \geq \xi \} \in \mathcal{I}_{\psi \phi},
\]

that is, \(V_\theta(A(\xi, \alpha, \tau)) = 0 \).

Definition 5. A sequence \(\{Y_k\} \) is known as lacunary \(\mathcal{J}^* \)-invariant Cauchy sequence or \(W, \mathcal{J}^{*\theta(\psi, \phi)} \)-Cauchy sequence (Wijsman sense) with regards to IFM \((\psi, \phi) \) provided that there is a set

\[
M = \{ m = (m_j) : m_j < m_{j+1}, j \in \mathbb{N} \} \in \mathcal{I}(\mathcal{J}_{\psi \phi}),
\]

such that

\[
\lim_{k,j \to \infty} |\psi(\alpha, Y_{m_j}, \tau) - \psi(\alpha, Y_{m_k}, \tau)| = 1,
\]

\[
\lim_{k,j \to \infty} |\phi(\alpha, Y_{m_j}, \tau) - \phi(\alpha, Y_{m_k}, \tau)| = 0,
\]

belong to \(\mathcal{I}_{\psi \phi} \). Since \(\mathcal{I}_{\psi \phi} \) is an admissible ideal, then there is \(k_0 \in \mathbb{N} \) with the result that \(k_0 \notin P(\xi, \alpha, \tau) \). Now, assume that

\[
P(\xi, \alpha, \tau) = \{ k \in \mathbb{N} : |\psi(\alpha, Y_k, \tau) - \psi(\alpha, Y, \tau)| \leq 1 - \xi \text{ or } |\phi(\alpha, Y_k, \tau) - \phi(\alpha, Y, \tau)| \geq \xi \},
\]

thinking the inequality

\[
|\psi(\alpha, Y_k, \tau) - \psi(\alpha, Y_{k_0}, \tau)| \leq |\psi(\alpha, Y_k, \tau) - \psi(\alpha, Y, \tau)| + |\psi(\alpha, Y_{k_0}, \tau) - \psi(\alpha, Y, \tau)|,
\]

\[
|\phi(\alpha, Y_k, \tau) - \phi(\alpha, Y_{k_0}, \tau)| \leq |\phi(\alpha, Y_k, \tau) - \phi(\alpha, Y, \tau)| + |\phi(\alpha, Y_{k_0}, \tau) - \phi(\alpha, Y, \tau)|.
\]

Observe that if \(k \in R(\xi, \alpha, \tau) \), therefore,

\[
|\psi(\alpha, Y_k, \tau) - \psi(\alpha, Y, \tau)| + |\psi(\alpha, Y_{k_0}, \tau) - \psi(\alpha, Y, \tau)| \leq 1 - 2 \xi,
\]

\[
|\phi(\alpha, Y_k, \tau) - \phi(\alpha, Y, \tau)| + |\phi(\alpha, Y_{k_0}, \tau) - \phi(\alpha, Y, \tau)| \geq 2 \xi.
\]

From another standpoint, since \(k_0 \notin P(\xi, \alpha, \tau) \), we obtain

\[
|\psi(\alpha, Y_k, \tau) - \psi(\alpha, Y, \tau)| + |\phi(\alpha, Y_k, \tau) - \phi(\alpha, Y, \tau)| \leq 1 - 2 \xi,
\]

\[
|\phi(\alpha, Y_k, \tau) - \phi(\alpha, Y, \tau)| + |\phi(\alpha, Y_k, \tau) - \phi(\alpha, Y, \tau)| \geq 2 \xi.
\]
\[|\psi(a, Y_k, \tau) - \psi(a, Y, \tau)| > 1 - \xi \text{ and } |\phi(a, Y_k, \tau) - \phi(a, Y, \tau)| < \xi. \] (40)

We reach that

\[|\psi(a, Y_k, p) - \psi(a, Y, p)| \leq 1 - \xi \text{ or } |\phi(a, Y_k, \tau) - \phi(a, Y, \tau)| \geq \xi. \] (41)

\[|\psi(a, Y_m, \tau) - \psi(a, Y_m, \tau)| \leq 1 - \xi, \] (42)

\[|\phi(a, Y_m, \tau) - \phi(a, Y_m, \tau)| \geq \xi, \] (43)

for all \(k > k_0 \). Now, assume that \(H = \mathbb{N} \setminus M \). Obviously, \(H \in \mathcal{J}_{\sigma\theta} \) and

\[Q(\xi, \alpha, \tau) = \{ k \in \mathbb{N} : |\psi(a, Y_k, \tau) - \psi(a, Y_N, \tau)| \leq 1 - \xi \text{ or } |\phi(a, Y_k, \tau) - \phi(a, Y_N, \tau)| \geq \xi \} \]

\[\subseteq H \cup \{ m_1, m_2, \ldots, m_{k_0} \} \in \mathcal{J}_{\sigma\theta}. \] (46)

Theorem 5. Let \((\mathcal{X}, \psi, \phi, *, \circ, \odot)\) be a separable IFMS and \(\mathcal{J} \) be an admissible ideal. If a sequence \(\{Y_k\} \) is \(W,\mathcal{J}_{\sigma\theta}^{(\psi, \phi)} \)-Cauchy sequence, then \(\{Y_k\} \) is \(W,\mathcal{J}_{\sigma\theta}^{\psi, \phi} \)-Cauchy sequence with regards to IFM \((\psi, \phi)\).

Proof. Assume that sequence \(\{Y_k\} \) is \(W,\mathcal{J}_{\sigma\theta}^{(\psi, \phi)} \)-Cauchy with regards to IFM \((\psi, \phi)\). Then, for each \(\xi \in (0, 1) \) and for each \(\xi \in (0, 1) \), there is \(M \in \mathcal{R}(\mathcal{J}_{\sigma\theta}) \), where \(M = \{ m = (m_j) : m_j < m_{j+1}, j \in \mathbb{N} \} \), such that

\[A(\xi, \alpha, \tau) = \{ k \in \mathbb{N} : |\psi(a, Y_k, \tau) - \psi(a, Y_N, \tau)| \leq 1 - \xi \text{ or } |\phi(a, Y_k, \tau) - \phi(a, Y_N, \tau)| \geq \xi \} \in \mathcal{J}_{\sigma\theta}. \] (47)

Now, assume that

\[Q_j(\xi, \alpha, \tau) = \{ k \in \mathbb{N} : |\psi(a, Y_k, p) - \psi(a, Y_m, \tau)| > 1 - \frac{1}{j} \text{ and } |\phi(a, Y_k, \tau) - \phi(a, Y_m, \tau)| < \frac{1}{j} \}. \] (48)
where \(m_j = m(1/j), \ j = 1, 2, \ldots \). Clearly, for \(j = 1, 2, \ldots, \)
\(Q_j(\xi, \alpha, r) \in \mathcal{F}(\mathcal{I}_{\mathcal{A}_0}) \). Using Lemma 1, there is \(Q \subset \mathbb{N} \), so
that \(Q \in \mathcal{F}(\mathcal{I}_{\mathcal{A}_0}) \) and \(Q \setminus Q_j \) are finite for all \(j \).

Now, we denote that
\[
\lim_{k,l \to \infty} \psi(a, Y_k, r) - \psi(a, Y_l, r) = 1, \quad \lim_{k,l \to \infty} \phi(a, Y_k, r) - \phi(a, Y_l, r) = 0.
\]

To demonstrate the above equations, let \(\xi \in (0, 1) \) and \(r \in \mathbb{N} \), such that \(r > (2/\xi) \). If \(k, l \in Q \), then \(Q \setminus Q_j \) is a finite set; so, there is \(v = v(r) \) in order that

\[
\left| \psi(a, Y_k, r) - \psi(a, Y_l, r) \right| > 1 - \frac{1}{r}, \quad \left| \psi(a, Y_k, r) - \psi(a, Y_l, r) \right| > 1 - \frac{1}{r},
\]

\[
\left| \phi(a, Y_k, r) - \phi(a, Y_l, r) \right| < \frac{1}{r}, \quad \left| \phi(a, Y_k, r) - \phi(a, Y_l, r) \right| < \frac{1}{r},
\]

for all \(k, l > v(r) \). From the above inequalities, we obtain

\[
\left| \psi(a, Y_k, r) - \psi(a, Y_l, r) \right| \leq \left| \psi(a, Y_k, r) - \psi(a, Y_l, r) \right| > 1 - \frac{1}{r} + \left(1 - \frac{1}{r} \right) > 1 - \xi,
\]

\[
\left| \psi(a, Y_k, r) - \psi(a, Y_l, r) \right| < \frac{1}{r} + \frac{1}{r} < \xi.
\]

This gives that the sequence \(\{Y_k\} \) is \(W_{\mathcal{F}_{\mathcal{A}_0}^{(\psi, \phi)}} \)-Cauchy.

Definition 6. The sequence \(\{Y_k\} \) is named to be \(q \)-strongly
lacunary invariant convergent (Wijsman sense) to \(Y \), provided that for each \(\alpha \in \mathcal{X} \) and for all \(r > 0 \),

\[
\lim_{r \to \infty} \frac{1}{r} \sum_{k \in \alpha} \left| \psi(a, Y_k^{(\alpha)}, r) - \psi(a, Y_r, r) \right|^q = 1, \quad \lim_{r \to \infty} \frac{1}{r} \sum_{k \in \alpha} \left| \phi(a, Y_k^{(\alpha)}, r) - \phi(a, Y_r, r) \right|^q = 0,
\]

uniformly in \(m \), where \(0 < q < \infty \). We indicate this symbolically by \(Y_k \longrightarrow Y ([WN_{\mathcal{A}_0}^{(\psi, \phi)}]_q) \).

Theorem 7. Let \(\mathcal{I}_{\mathcal{A}_0} \subset 2^\mathbb{N} \) be an admissible ideal and \(0 < q < \infty \).

(i) If \(Y_k \longrightarrow Y ([WN_{\mathcal{A}_0}^{(\psi, \phi)}]_q) \) then \(Y_k \longrightarrow Y (W_{\mathcal{I}_{\mathcal{A}_0}^{(\psi, \phi)}}) \)

(ii) If \(\{Y_k\} \) is bounded and \(Y_k \longrightarrow Y (W_{\mathcal{I}_{\mathcal{A}_0}^{(\psi, \phi)}}) \), then
\(Y_k \longrightarrow Y ([WN_{\mathcal{A}_0}^{(\psi, \phi)}]_q) \)

(iii) If \(\{Y_k\} \in I_{\mathcal{A}_0} \), then \(Y_k \longrightarrow Y (W_{\mathcal{I}_{\mathcal{A}_0}^{(\psi, \phi)}}) \) iff
\(Y_k \longrightarrow Y ([WN_{\mathcal{A}_0}^{(\psi, \phi)}]_q) \).
Proof. (i) If \(Y_k \longrightarrow Y ([W \chi_{\alpha}^{(\psi,\theta)}]_q) \), then for every \(\xi \in (0,1) \), for each \(\alpha \in \mathcal{X} \) and for all \(r>0 \), we obtain

\[
\sum_{k \in I_r} \left| \psi \left(a, Y_{\alpha_h^k(m)}, r \right) - \psi \left(a, Y, r \right) \right|^q \text{ or } \left| \phi \left(a, Y_{\alpha_h^k(m)}, r \right) - \phi \left(a, Y, r \right) \right|^q \\
\geq \sum_{k \in I_r} \left| \psi \left(a, Y_{\alpha_h^k(m)}, r \right) - \psi \left(a, Y, r \right) \right|^q \text{ or } \left| \phi \left(a, Y_{\alpha_h^k(m)}, r \right) - \phi \left(a, Y, r \right) \right|^q \\
\geq k \in I_r : \left| \psi \left(a, Y_{\alpha_h^k(m)}, r \right) - \psi \left(a, Y, r \right) \right|^q \leq 1 - \xi \text{ or } \left| \phi \left(a, Y_{\alpha_h^k(m)}, r \right) - \phi \left(a, Y, r \right) \right|^q \geq \xi \right| \\
\geq \xi \max_m \left\{ k \in I_r : \left| \psi \left(a, Y_{\alpha_h^k(m)}, r \right) - \psi \left(a, Y, r \right) \right|^q \leq 1 - \xi \text{ or } \left| \phi \left(a, Y_{\alpha_h^k(m)}, r \right) - \phi \left(a, Y, r \right) \right|^q \geq \xi \right\}.
\]

And so,

\[
\frac{1}{h_r} \sum_{k \in I_r} \left| \psi \left(a, Y_{\alpha_h^k(m)}, r \right) - \psi \left(a, Y, r \right) \right|^q \text{ or } \left| \phi \left(a, Y_{\alpha_h^k(m)}, r \right) - \phi \left(a, Y, r \right) \right|^q \\
\geq \xi \max_m \left\{ k \in I_r : \left| \psi \left(a, Y_{\alpha_h^k(m)}, r \right) - \psi \left(a, Y, r \right) \right|^q \leq 1 - \xi \text{ or } \left| \phi \left(a, Y_{\alpha_h^k(m)}, r \right) - \phi \left(a, Y, r \right) \right|^q \geq \xi \right\} \\
= \frac{\xi S_r}{h_r}
\]

For every \(m = 1,2,\ldots \) This gives that \(\lim_{\mathcal{F}^{(\psi,\theta)}_{\alpha_h} (S_r/h_r) = 0 \), and hence, \(T_k \longrightarrow T(W \mathcal{F}^{(\psi,\theta)}_{\alpha_h}) \).

(ii) Presume that \(\{ Y_k \} \in L_\infty \), then \(Y_k \longrightarrow Y (W \mathcal{F}^{(\psi,\theta)}_{\alpha_h}) \). Let \(\xi > 0 \). By supposition, we get \(V_{\alpha_h} (P, \alpha, \tau) = 0 \).

Since \(\{ Y_k \} \) is bounded, there is \(M > 0 \), such that for each \(\alpha \in \mathcal{X} \) and for all \(k, m \). Then, we acquire

\[
\frac{1}{h_r} \sum_{k \in I_r} \left| \psi \left(a, Y_{\alpha_h^k(m)}, r \right) - \psi \left(a, Y, r \right) \right|^q \text{ or } \left| \phi \left(a, Y_{\alpha_h^k(m)}, r \right) - \phi \left(a, Y, r \right) \right|^q \\
= \frac{1}{h_r} \sum_{k \in I_r} \left| \psi \left(a, Y_{\alpha_h^k(m)}, r \right) - \psi \left(a, Y, r \right) \right|^q \text{ or } \left| \phi \left(a, Y_{\alpha_h^k(m)}, r \right) - \phi \left(a, Y, r \right) \right|^q \\
+ \frac{1}{h_r} \sum_{k \in I_r} \left| \psi \left(a, Y_{\alpha_h^k(m)}, r \right) - \psi \left(a, Y, r \right) \right|^q \text{ or } \left| \phi \left(a, Y_{\alpha_h^k(m)}, r \right) - \phi \left(a, Y, r \right) \right|^q \\
\leq M \frac{\max_m \left\{ k \in I_r : \left| \psi \left(a, Y_{\alpha_h^k(m)}, r \right) - \psi \left(a, Y, r \right) \right|^q \leq 1 - \xi \text{ or } \left| \phi \left(a, Y_{\alpha_h^k(m)}, r \right) - \phi \left(a, Y, r \right) \right|^q \geq \xi \right\} + \xi \right|}{h_r} \\
\leq M \frac{S_r}{h_r} + \xi \]

For each \(\alpha \in \mathcal{X} \). Hence, we obtain

\[
\lim_{r \to \infty} \frac{1}{H_r} \sum_{k \in I_r} |\psi(\alpha, Y_{\psi}(\alpha, m), r) - \psi(\alpha, Y, r)|^q = 1,
\]

(61)

\[
\lim_{r \to \infty} \frac{1}{H_r} \sum_{k \in I_r} |\phi(\alpha, Y_{\psi}(\alpha, m), r) - \phi(\alpha, Y, r)|^q = 0,
\]

(62)

uniformly in \(m \).

Theorem 8. A sequence \(\{Y_k\} \) is \(W_{\mathcal{F}}(\psi, \phi) \)-convergent to \(Y \) iff it is \(W_{\mathcal{F}}(\psi, \phi) \)-convergent to \(Y \).

3. Conclusion

Fuzzy set theory is based on the assumption that reasoning is not crystal clear. This theory has a significant role in the areas of technology and science. Intuitionistic fuzzy set has many application areas; for example, sale analysis, new product marketing, and financial services. This study aims to find out the use of the notion of lacunary \(\mathcal{F} \)-invariant convergence of sequence of sets for demonstrating some results in the area of intuitionistic fuzzy metric space. With the help of its applications, we give the notions of Wijsman lacunary \(\mathcal{F} \)-invariant convergent, Wijsman lacunary \(\mathcal{F}^* \)-invariant convergent, and Wijsman \(q \)-strongly lacunary invariant convergent sequences in IFMS and acquired meaningful results for these notions. Also, we have examined the notions of Wijsman lacunary \(\mathcal{F} \)-invariant Cauchy and Wijsman \(\mathcal{F}^* \)-invariant Cauchy sequence in IFMS. The elements of IFMS have been studied. The results acquired here are more common than corresponding results for metric spaces. It is expected that new results will help to understand deeply the concept of this new type of convergence on IFMS. It could also be possible to work with the opinion of “Lacunary \(\mathcal{F} \)-invariant convergence of sequence of sets in probabilistic metric space” utilizing intuitionistic probability theory in the prospective studies.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] H. Fast, “Sur la convergence statistique,” *Colloquium Mathematicum*, vol. 2, no. 3–4, pp. 241–244, 1951.

[2] F. Nuray and W. H. Ruckle, “Generalized statistical convergence and convergence free spaces,” *Journal of Mathematical Analysis and Applications*, vol. 245, no. 2, pp. 513–527, 2000.

[3] P. Kostyrko, T. Šalát, and W. Wilczyński, “\(I \)-convergence,” *Real Analysis Exchange*, vol. 26, no. 2, pp. 669–686, 2000.

[4] P. Kostyrko, M. Macaj, T. Šalát, and M. Slezak, “\(\mathcal{F} \)-convergence and extremal \(\mathcal{F} \)-limit points,” *Mathematica Slovaca*, vol. 55, pp. 443–464, 2005.

[5] A. A. Nabiev, S. Pehlivan, and M. Gürdal, “On \(\mathcal{F} \)-cauchy sequences,” *Taiwanese Journal of Mathematics*, vol. 11, no. 2, pp. 569–566, 2007.

[6] P. Das and S. K. Ghosal, “Some further results on \(I \)-cauchy sequences and condition (AP),” *Computers & Mathematics with Applications*, vol. 59, no. 8, pp. 2597–2600, 2010.

[7] P. Das, E. Savas, and S. K. Ghosal, “On generalizations of certain summability methods using ideals,” *Applied Mathematics Letters*, vol. 24, no. 9, pp. 1509–1514, 2011.

[8] A. A. Nabiev, E. Savas, and M. Gürdal, “\(I \)-localized sequences in metric spaces,” *Facta Universitatis–Series: Mathematics and Informatics*, vol. 35, no. 2, pp. 459–469, 2020.

[9] J. Friddy and C. Orhan, “Lacunary statistical convergence,” *Pacific Journal of Mathematics*, vol. 160, no. 1, pp. 43–51, 1993.

[10] R. A. Raimi, “Invariant means and invariant matrix methods of summability,” *Duke Mathematical Journal*, vol. 30, pp. 81–94, 1963.

[11] P. Schaefer, “Infinite matrices and invariant means,” *Proceedings of the American Mathematical Society*, vol. 36, no. 1, pp. 104–110, 1972.

[12] M. Mursaleen, “On finite matrices and invariant means,” *Indian Journal of Pure and Applied Mathematics*, vol. 10, pp. 457–460, 1979.

[13] F. Nuray, H. Gök, and U. Ulusu, “\(\mathcal{F} \)-convergence,” *Mathematical Communications*, vol. 16, pp. 531–538, 2011.

[14] M. Mursaleen, “Matrix transformation between some new sequence spaces,” *Houston Journal of Mathematics*, vol. 9, pp. 505–509, 1983.
[15] E. Savaş and F. Nuray, "On σ-statistically convergence and lacunary σ-statistically convergence," *Mathematica Slovaca*, vol. 43, no. 3, pp. 309–315, 1993.

[16] U. Ulusu and F. Nuray, "Lacunary I-invariant convergence," *Cumhuriyet Science Journal*, vol. 41, no. 3, pp. 617–624, 2020.

[17] L. A. Zadeh, "Fuzzy sets," *Information and Control*, vol. 8, no. 3, pp. 338–353, 1965.

[18] K. T. Atanassov, "Intuitionistic fuzzy sets," *Information and Control*, vol. 8, no. 3, pp. 338–353, 1965.

[19] K. T. Atanassov, "Intuitionistic fuzzy sets," *Fuzzy Sets and Systems*, vol. 20, no. 1, pp. 87–96, 1986.

[20] L. A. Zadeh, "Fuzzy sets," *Information and Control*, vol. 8, no. 3, pp. 338–353, 1965.

[21] A. Tolba and Z. Al-Makhadmeh, "Wearable sensor-based fuzzy decision-making model for improving the prediction of human activities in rehabilitation," *Measurement*, vol. 166, Article ID 108254, 2020.

[22] L. Fei, Y. Feng, L. Liu, and W. Mao, "On intuitionistic fuzzy decision-making using soft likelihood functions," *Information and Control*, vol. 8, no. 3, pp. 338–353, 1965.

[23] K. T. Atanassov, "Intuitionistic fuzzy sets," *Fuzzy Sets and Systems*, vol. 20, no. 1, pp. 87–96, 1986.

[24] A. Tolba and Z. Al-Makhadmeh, "Wearable sensor-based fuzzy decision-making model for improving the prediction of human activities in rehabilitation," *Measurement*, vol. 166, Article ID 108254, 2020.

[25] L. Fei, Y. Feng, L. Liu, and W. Mao, "On intuitionistic fuzzy decision-making using soft likelihood functions," *Information and Control*, vol. 8, no. 3, pp. 338–353, 1965.

[26] S. Perçin, "Evaluating airline service quality using a combined fuzzy decision-making approach," *Journal of Air Transport Management*, vol. 68, pp. 48–60, 2018.

[27] I. Kramosil and J. Michalek, "Fuzzy metric and statistical metric spaces," *Kybernetika*, vol. 11, no. 5, pp. 336–344, 1975.

[28] J. H. Park, "Intuitionistic fuzzy metric spaces," *Chaos, Solitons & Fractals*, vol. 22, no. 5, pp. 1039–1046, 2004.

[29] A. George and P. Veeramani, "On some results in fuzzy metric spaces," *Fuzzy Sets and Systems*, vol. 64, no. 3, pp. 395–399, 1994.

[30] S. Perçin, "Evaluating airline service quality using a combined fuzzy decision-making approach," *Journal of Air Transport Management*, vol. 68, pp. 48–60, 2018.

[31] S. Perçin, "Evaluating airline service quality using a combined fuzzy decision-making approach," *Journal of Air Transport Management*, vol. 68, pp. 48–60, 2018.