Lift expectations of random sets

Marc-Arthur Diayea, Gleb A. Koshevoyb, Ilya Molchanovc, *

aCES, University Paris 1 Pantheon-Sorbonne, France
bCentral Institute of Mathematics and Economics, Russian Academy of Science,
Nabimovskii pr. 47, Moscow 117418, Russia
cUniversity of Bern, Institute of Mathematical Statistics and Actuarial Science,
Sidlerstrasse 5, CH-3012 Bern, Switzerland

Abstract
The concept of a lift zonoid for random vectors is generalised to define the
lift expectation of random convex bodies. It is shown that the lift expectation
uniquely identifies one-dimensional distributions of the support function, and so
several random convex bodies may share the same lift expectation. The extent of
this nonuniqueness is analysed. Applications to construction of depth-trimmed
regions and partial ordering of random convex bodies are also mentioned.

Keywords: random set, selection expectation, lift zonoid, support function
2010 MSC: 62H11, 60D05

1. Introduction
Zonotopes form an important family of polytopes, which are defined as Minkowski
(elementwise) sums of a finite number of segments. Zonoids are convex
sets that appear as limits in the Hausdorff metric of a sequence of zonotopes,
see (Schneider, 2014, Sec. 3.5). In the plane, all (centrally) symmetric convex
sets are zonoids, while the symmetry is only a strictly necessary condition for
this in dimensions three and more.

Zonoids can also be described as expectations of random segments. For
this purpose, recall that a random convex closed set X in \mathbb{R}^d is a map from a
probability space (Ω, \mathcal{F}, P) to the family C of convex closed sets in \mathbb{R}^d, which
is measurable in the sense that \{\(\omega : X(\omega) \cap K \neq \emptyset \) \} \in \mathcal{F} for all compact sets
K in \mathbb{R}^d, see (Molchanov, 2013, Def. 1.1.1). If X is almost surely compact and
non-empty, it is called a random convex body. Since the realisations $X(\omega)$ are
convex bodies, this measurability condition is equivalent to the fact that the
support function of X

$$h_X(u) = \sup \{ \langle x, u \rangle : x \in X \}, \quad u \in \mathbb{R}^d,$$

*Corresponding author

Email addresses: marc-arthur.diaye@univ-paris1.fr (Marc-Arthur Diaye),
koshevoy@cemi.rssi.ru (Gleb A. Koshevoy), ilya.molchanov@stat.unibe.ch (Ilya
Molchanov)

Preprint submitted to Elsevier May 15, 2018
is a random function of u, where $\langle x, u \rangle$ is the scalar product. The distribution of a random convex body is uniquely identified by finite-dimensional distributions of its support function.

A random convex closed set X is said to be integrable, if there exists an integrable random vector ξ such that $\xi \in X$ a.s. This vector ξ is called an integrable selection of X. The selection expectation E_X of X is defined to be the closure of the set of expectations of all its integrable selections, see (Molchanov, 2017, Sec. 2.1). The closure is not needed if

$$\|X\| = \sup\{\|x\| : x \in X\}$$

is an integrable random variable. Then X is said to be integrably bounded.

If X is integrably bounded, then $h_X(u)$ is integrable for all u, and

$$E(h_X(u)) = h_{E_X}(u), \quad u \in \mathbb{R}^d.$$

If X is integrable and ξ is its integrable selection, then

$$h_X(u) = \langle \xi, u \rangle + h_{X - \xi}(u),$$

whence $h_X(u)$ is either integrable or has the well-defined expectation $+\infty$.

If ξ is a random vector in \mathbb{R}^d, then the segment $[0, \xi]$ with end-points being the origin and ξ is a random convex body. This random convex body is integrable even for a nonintegrable ξ, since it contains the origin. Its expectation $E[0,\xi]$ is called the zonoid of ξ and is denoted by Z_ξ, see (Mosler, 2002) and (Molchanov, 2017). Often, symmetrised versions of zonoids are defined as expectation of the segment $[-\xi, \xi]$, see (Schneider, 2014, Sec. 3.5). In this case, ξ is usually assumed to be integrable, since otherwise the expectation of $[-\xi, \xi]$ is the whole \mathbb{R}^d or its linear subspace. If ξ is integrable, then the expectation of $[-\xi, \xi]$ equals $2Z_\xi - E\xi$, see (Mosler, 2002, Cor. 2.6). Indeed, $[-\xi, \xi]$ equals $2[0,\xi]$ translated by $(-\xi)$.

The zonoid does not uniquely determine the distribution of ξ, for instance, it does not change if ξ is multiplied by an independent nonnegative random variable with expectation one. The extent of such nonuniqueness is explored in (Molchanov et al., 2014).

It is possible to achieve the uniqueness by uplifting ξ into \mathbb{R}^{d+1}. For this, consider the segment $[0, (1, \xi)]$ in \mathbb{R}^{d+1}, and call $E[0, (1, \xi)] = Z_\xi$ the lift zonoid of ξ, see (Koshevoy and Mosler, 1998) and (Mosler, 2002). Since

$$h_{Z_\xi}(u) = E(u_0 + \langle \xi, u \rangle)_+,$$

where $(u_0, u) \in \mathbb{R}^{d+1}$ and x_+ denotes the positive part of $x \in \mathbb{R}$, the support function of the lift zonoid is the stop-loss transform of $\langle \xi, u \rangle$. Thus, the lift zonoid of ξ determines uniquely the distribution of the scalar products $\langle \xi, u \rangle$ for all $u \in \mathbb{R}^d$ and so the distribution of ξ. This fact goes back to Hardin (1981), was independently proved by Koshevoy and Mosler (1998), and further gave rise to numerous applications in the multivariate analysis, see (Mosler, 2002).

This paper presents an extension of the lift zonoid concept for random convex bodies. While in the case of random singletons we recover the concept of a lift zonoid, in general, such a set is no longer a zonoid in the geometric sense of
(Schneider, 2014, Sec. 3.5), and so we call it lift expectation. Section 2 defines the required lifting that gives rise to the corresponding expected sets. It is shown that the lift expectation of an integrable random convex body X characterises the distributions of the support function of X in any single direction u such that $h_X(u)$ is integrable. This can be extended to one-dimensional distributions of any random convex function.

The range of possible applications of the lift expectation is similar to those well-established for lift zonoids, see (Mosler, 2002), e.g., to assessing the depth of set-valued observations and comparison of random sets. In particular, the lift expectation can be used to identify outliers in samples of random convex bodies — such samples arise in applications to partially identified problems in econometrics, see (Molchanov and Molinari, 2018).

Examples of lift expectations are provided in Section 3. Section 4 relates the uniqueness issue to the multivariate comonotonicity of the support function. Section 5 deals with random sets having at most a finite number of realisations. Section 6 discusses an extension of this concept for n-tuples of random sets. A numerical example is given in Section 7.

2. Lift expectation of a random set

2.1. Univariate distributions of the support function

Let X be a random convex body in \mathbb{R}^d. Uplift it to \mathbb{R}^{d+1} by letting

$$Y = \text{conv} \left(\{0\}, \{1\} \times X \right)$$

(1)

be the convex hull of the origin in \mathbb{R}^{d+1} and the set $\{1\} \times X$. The random convex body Y is always integrable; it is integrably bounded if and only if X is integrably bounded.

Definition 2.1. The set EY (that is, the selection expectation of Y) is called the lift expectation of X and denoted by \hat{Z}_X.

The following result establishes that the lift expectation contains exactly the same information as the univariate distributions of the support function $h_X(u)$ for any given u such that $h_X(u)$ is integrable.

Theorem 2.1. Assume that X and X' are integrable random convex bodies. Then $\hat{Z}_X = \hat{Z}_{X'}$ if and only if the distributions of $h_X(u)$ and $h_{X'}(u)$ coincide for all u such that at least one of them is integrable.

Proof. It suffices to consider an integrable random convex body X and show that \hat{Z}_X uniquely determines the distribution of $h_X(u)$ for all u, given that $h_X(u)$ is integrable.

Since the function $(u_0 + t)_+$ is monotonically increasing in t, the support function of Y given by (1) is

$$h_Y(u_0, u) = \sup \{ (u_0 + \langle x, u \rangle)_+ : x \in X \} = (u_0 + h_X(u))_+$$
for \(u_0 \in \mathbb{R} \) and \(u \in \mathbb{R}^d \). By [Hardin, 1981, Th. 1.1], the expected value of \(h_Y(u_0, u) \) considered as a function of \(u_0 \in \mathbb{R} \) uniquely determines the distribution of \(h_X(u) \). In the other direction, the distribution of \(h_X(u) \) uniquely determines the expected value of \(h_Y(u_0, u) \) and so the set \(\hat{Z}_X \).

Remark 2.1. The lift expectation of an integrably bounded random convex body \(X \) uniquely determines the one-dimensional distributions of \(h_X(u) \) for all \(u \in \mathbb{R}^d \). The joint distributions of the support function at different directions are not necessarily uniquely identified. The extent of the nonuniqueness for random convex bodies with the same lift expectation corresponds to the possibilities of choosing a random sublinear function on \(\mathbb{R}^d \) with given one-dimensional marginals.

Corollary 2.2. If \(X \) is integrable, then the lift expectation \(\hat{Z}_X \) uniquely determines \(E_X \) and

\[
E_X = \{ x : (1, x) \in E_Y \}. \tag{2}
\]

Proof. The lift expectation determines the distribution of \(h_X(u) \) for all \(u \) and so the expectation \(E h_X(u) = h_{E_X}(u) \).

In order to prove (2), note that the selections of \(Y \) can be obtained as \((\eta, \eta \xi) \), where \(\eta \) is a random variable with values in \([0, 1]\) and \(\xi \) is a selection of \(\eta X \). Thus, the intersection of \(E Y \) with the hyperplane \(\{(1, u) : u \in \mathbb{R}^d\} \) arises as the set of \((E \eta, E(\eta \xi)) \) with \(E \eta = 1 \) and so \(\eta = 1 \) almost surely. This yields the statement, since \(\xi \) is an arbitrary selection of \(X \). \(\square \)

2.2. Generalisations

Remark 2.2. With each integrably bounded random convex body \(X \), it is possible to associate a nested family of convex bodies \(K_n = E \text{conv}(X_1, \ldots, X_n), n \geq 1 \), being the expectation of the convex hull for \(n \) i.i.d. copies of \(X \). It is noticed by [Vitale, 1987] that this sequence uniquely identifies the distribution of \(X \) if \(X \) is a singleton. Since \(h_{K_n}(u) \) is the expectation of the maximum of \(n \) i.i.d. copies of \(h_X(u) \), the distribution of \(h_X(u) \) for any single \(u \) is uniquely identified by the sequence \(\{ h_{K_n}(u), n \geq 1 \} \), see also [Hoeffding, 1953]. Thus, the information delivered by the nested family \(\{ K_n, n \geq 1 \} \) is identical to the information recoverable from the lift expectation of \(X \).

Remark 2.3. It is possible to generalise the definition of the lift expectation by replacing \(Y \) with the convex hull of the origin and \(K \times X \) for any convex body \(K \) in an auxiliary space \(\mathbb{R}^m \). Then

\[
h_{K \times X}(u', u'') = (h_K(u') + h_X(u''))_+, \quad u' \in \mathbb{R}^m, u'' \in \mathbb{R}^d.
\]

Therefore, such a generalised lift expectation still identifies only the one-dimensional distributions of \(h_X \).

Remark 2.4. Each convex (not necessarily homogeneous) random function \(\zeta(x), x \in \mathbb{R}^d \), yields the support function of a convex body in \(\mathbb{R}^{d+1} \) by letting

\[
\tilde{\zeta}(t, x) = \begin{cases} t\zeta(x/t), & t > 0, \\ 0, & \text{otherwise}, \end{cases}
\]

for \(t > 0 \).
which is called the perspective transform of \(f \), see [Hiriart-Urruty and Lemaréchal, 1993]. Thus, the one-dimensional marginal distributions of a random convex function can be identified by a convex set in \(\mathbb{R}^{d+2} \), which is the lift expectation of the random set with the support function \(\zeta(t, x) \). In other words, the lift expectation is a convex body in \(\mathbb{R}^{d+2} \), which summarises all one-dimensional distributions of a random convex function.

2.3. Convexity for Minkowski sums

The lift expectation involves a nonlinear transformation of the support function of \(X \), and so \(\hat{Z}_{X+Y} \) is not necessarily equal to \(\hat{Z}_X + \hat{Z}_Y \). As the following result shows, the lift expectation is a convex (with respect to the conventional set inclusion) set-valued function of integrably bounded random convex bodies.

Proposition 2.3. For integrably bounded random convex bodies \(X \) and \(Y \),

\[
\hat{Z}_{tX+(1-t)Y} \subset t\hat{Z}_X + (1-t)\hat{Z}_Y, \quad t \in [0, 1].
\]

Proof. It suffices to note that

\[
(u_0 + th_X(u) + (1-t)h_Y(u))^+ \leq t(u_0 + th_X(u))^+ + (1-t)(u_0 + th_Y(u))^+.
\]

Therefore, sections of the lift expectation

\[
\hat{Z}_X(\alpha) = \{ x : (\alpha, x) \in \hat{Z}_X \}, \quad \alpha \in (0, 1),
\]

are also convex for Minkowski sums as function of \(X \); they can be interpreted as nonlinear variants of the conventional (linear) selection expectation. Such expectation of random variables are studied, e.g., by [Peng, 2004]. If \(Z = \{ \xi \} \) is a singleton, then \(\alpha^{-1}\hat{Z}_{\{\xi\}}(\alpha) \) is called the zonoid-trimmed region of \(\xi \) at level \(\alpha \), see [Cascos, 2010]. For random vectors, such regions are used to identify outliers, also for random convex bodies they can be used to identify particularly large sets in the sample, namely those that lie outside of \(\alpha^{-1}\hat{Z}_X(\alpha) \).

The parameter \(\alpha \) controls the size of this region; \(\alpha \) close to one tends to consider all realisation that are a little away from the expectation (or sample mean) as outliers. The convexity property means that if a set is not an outlier for the sample from the combination \(tX + (1-t)X' \) of two random convex bodies \(X \) and \(X' \), then it arises as the convex combination of two non-outliers sampled from \(X \) and \(X' \).

2.4. Partial order generated by the lift expectation

It is possible to partially order random convex bodies by the inclusion of their lift expectations. Theorem 2.1 yields that \(\hat{Z}_X \subset \hat{Z}_X' \) if and only if

\[
E(u_0 + h_X(u))_+ \leq E(u_0 + h_{X'}(u))_+, \quad u_0 \in \mathbb{R},
\]

for all \(u \in \mathbb{R}^d \). This is the case if, for all \(u \), the random variable \(h_X(u) \) is smaller than \(h_{X'}(u) \) with respect to the increasing convex order, see [Müller and Stoyan].
If $E = E'\), then the expected support functions coincide and, in this case, $h_X(u)$ is smaller than $h_{X'}(u)$ with respect to the convex order, see (Müller and Stoyan 2002, Th. 1.5.3). For singletons (and the corresponding lift zonoids), the increasing convex order is known as the lift zonoid order, see (Mosler 2002).

3. Examples

Example 3.1. Let $X = M + \{\xi\}$, where M is a deterministic convex body and ξ is an integrable random vector. Without loss of generality assume that $E\xi = 0$, otherwise, one can consider shifted M. Then $M = E_X$ is uniquely determined by Z_X, see Corollary 2.2. Furthermore, the lift expectation determines uniquely the distribution of $h_X(u) = h_M(u) + \langle \xi, u \rangle$ for all u, hence, the distribution of ξ. If $M = \{0\}$, then Z_X is the lift zonoid of ξ, see (Mosler 2002).

Example 3.2. Let $X = \text{conv}\{\xi_1, \ldots, \xi_n\}$ be a random polytope determined by a collection of n i.i.d. random copies of an integrable random vector ξ. Then the distribution of $h_X(u) = \max_{1 \leq i \leq n} \langle \xi_i, u \rangle$ yields the distribution of ξ and so in this case the distribution of X is uniquely determined by its lift expectation. This is no longer the case if ξ_1, \ldots, ξ_n are not i.i.d.

Example 3.3. Let X be the sum of segments $[0, \xi_i], i = 1, \ldots, n$, with $\xi_1, \ldots, \xi_n \in \mathbb{R}^d$, that is, X is a random zonotope in \mathbb{R}^d, and

$$h_X(u) = \langle u, \xi_1 \rangle + \cdots + \langle u, \xi_n \rangle_+.$$ If the random vectors ξ_1, \ldots, ξ_n are i.i.d., then the lift expectation identically determines the distribution of X. Indeed, the distribution of $h_X(u)$ yields the distribution of $\langle u, \xi_1 \rangle_+$, and so the Laplace transform of ξ_1.

Example 3.4. Let $X = \{x \in \mathbb{R}^d : \langle Q^{-1}x, x \rangle \leq 1\}$ be the ellipsoid generated by a random positive definite matrix Q, so that $h_X(u) = \sqrt{\langle Qu, u \rangle}$. If Q is the random diagonal matrix with positive random variables ξ_1, \ldots, ξ_d on the diagonal, then the distribution of $h_X(u)$ yields the distribution of $\sum_{i=1}^d \xi_i u_i^2$. By taking the Laplace transform, it is immediate that the joint distribution of (ξ_1, \ldots, ξ_d) (and so the distribution of X) is uniquely determined by the lift expectation of X. In general, the distribution of a general (not necessarily diagonal) matrix Q is not uniquely identified.

Example 3.5. Let $X = \{(\xi_1 x_1, \ldots, \xi_d x_d) : |x_1| + \cdots + |x_d| \leq 1\}$ be the ℓ_1-ball scaled by the components of $\xi = (\xi_1, \ldots, \xi_d) \in (0, \infty)^d$. Then

$$h_X(u) = \max_{i=1,\ldots,d} |\xi_i u_i|,$$ and its distributions for each given u uniquely determine the distribution of ξ, since

$$P\{h_X(u) \leq t\} = P\{\xi_1 \leq tu_1^{-1}, \ldots, \xi_d \leq tu_d^{-1}\}.$$
Thus, the lift expectation of X uniquely determines the distribution of ξ and so that of X. The (nonlifted) expectation of the so defined X arises in the theory of extreme values; it is called a max-zonoid, see (Molchanov, 2008).

Example 3.6. If $X = [\xi, \eta]$ is a random segment, then \hat{Z}_X is a convex set in the half-plane $[0, \infty) \times \mathbb{R}$ such that

$$h(\hat{Z}_X, (u_0, u)) = \begin{cases} E(u_0 + u\eta)_+ & u > 0, \\ 1 & u = 0, \\ E(u_0 + u\xi)_+ & u < 0. \end{cases}$$

An example of the set \hat{Z}_X is shown on Figure 1. The upper bound of \hat{Z}_X is the upper Lorenz curve of η, while the lower bound of \hat{Z}_X is the lower Lorenz curve of ξ. The vertical sections $\hat{Z}_X(\alpha) = \{x : (\alpha, x) \in \hat{Z}_X\}$ of \hat{Z}_X are sets formed by expectations $E(\zeta\gamma)$, where $\zeta \in [0, 1]$ is a random variable with $E\zeta = \alpha$ and $\gamma \in [\xi, \eta]$ almost surely. If $\alpha = 1$, one recovers $EX = [E\xi, E\eta]$, see Corollary 2.2.

4. Uniqueness of distribution and comonotonicity

In the one-dimensional case, $X = [\xi, \eta]$ is a random segment determined by two integrable random variables ξ and η coupled so that $P\{\xi \leq \eta\} = 1$. The lift expectation of X yields the marginal distributions of ξ and η, and the uniqueness issue consists in the existence of a unique measure on the half-plane $H = \{(x_1, x_2) : x_1 \leq x_2\}$ with given marginals. The joint distribution of ξ and η is unique if it is known that the random vector (ξ, η) is supported by a set $A \subset H$ such that A intersected with each horizontal or vertical line is a singleton. The following result characterises the uniqueness cases in relation to the comonotonicity or counter-monotonicity properties of the end-points.

Proposition 4.1. The distribution of a random segment $X = [\xi, \eta]$ is uniquely determined by its lift expectation if the end-points ξ and η are comonotonic, that is, $\xi = f_1(\zeta)$ and $\eta = f_2(\zeta)$ for two monotone functions f_1 and f_2 and a random variable ζ.

Proof. By Theorem 2.1, the lift expectation of X uniquely determines the marginal distributions of random vector (ξ, η), and so its joint distribution in view of its comonotonicity, see (Puccetti and Scarsini, 2010). □

The same results holds if $X = [\xi, \eta]$ and $(-\xi, \eta)$ is a comonotonic vector. Without the comonotonicity assumption, the result does not hold, e.g., random set X taking values $[1, 3]$ or $[2, 4]$ with equal probabilities and X' taking values $[1, 4]$ and $[2, 3]$ with equal probabilities share the same one-dimensional distributions of the support function. If the probabilities of these two values of X are different, then the distribution of X is uniquely identified, see Proposition 5.1.

Proposition 4.2. The distribution of an integrably bounded random convex compact set X in \mathbb{R}^d is uniquely determined by its lift expectation if there exists a deterministic function $g : S^{d-1} \mapsto \{-1, 1\}$ such that $g(u_1)h_X(u_1), \ldots, g(u_n)h_X(u_n)$ form a comonotonic vector for all $u_1, \ldots, u_n \in S^{d-1}$ and $n \geq 2$.

7
Proof. Follows from the uniqueness of strongly comonotonic vectors with given marginal distributions, see [Puccetti and Scarsini (2010, Rem. 3.4)].

In particular, Proposition 4.2 applies if \(h_X(u) = f(u, \eta) \), where \(\eta \) is a random variable and the function \(f(u, \cdot) \) is monotone for each \(u \in \mathbb{S}^{d-1} \).

If \(h_X(u) \) is distributed as a random variable \(\zeta \) for all \(u \) with \(\|u\| = 1 \) (e.g., if \(X \) is isotropic), then the lift expectation of \(X \) has the support function \(E(u_0 + \zeta \|u\|)_+ \). The lift expectation of \(X \) determines the distribution of \(\zeta \), but not the distribution of \(X \), for instance, \(X \) shares the lift expectation with the centred ball of radius \(\zeta \).

Example 4.1. Let \(X \) be an isotropic rotation of a deterministic origin symmetric convex body \(K \). Then \(h_X(u) \) has the same distribution for all \(u \) and \(\mathbb{P}\{h_X(u) \leq t\} \) for \(\|u\| = 1 \) equals the \((d-1)\)-dimensional Hausdorff measure (normalised by the area of the unit sphere) of the set \(\{u \in \mathbb{S}^{d-1} : h_K(u) \leq t\} \). Then

\[
\{u \in \mathbb{S}^{d-1} : h_K(u) \leq t\} = t\{v : \|v\| = t^{-1}, h_K(v) \leq 1\} = (t\mathbb{S}^{d-1}) \cap K^o,
\]

where \(K^o = \{v : h_K(v) \leq 1\} \) is the polar body to \(K \). Equivalently, the one-dimensional distributions of \(h_X \) can be retrieved from the Lebesgue measure of \(B_r \cap K^o \) for all \(r > 0 \). These values do not suffice to retrieve (up to a rotation) a general convex body \(K \).

5. Discrete distributions

Assume that \(X \) is a random convex body that takes a finite number of values \(K_1, \ldots, K_N \) with \(\mathbb{P}\{X = K_i\} = p_i, i = 1, \ldots, N \).

Proposition 5.1. If \(X \) takes a finite number of possible values and their probabilities \(p_1, \ldots, p_N \) are all different, then the distribution of \(X \) is uniquely determined by its lift expectation.

Proof. Let \(\{u_n, n \geq 1\} \) be a countable dense set on \(\mathbb{S}^{d-1} \). The lift expectation yields the possible values \(t_{m_1}, \ldots, t_{m_N} \) of \(h_X(u_n) \), where \(m_n \leq N \). Since there is a \(u_n \) such that \(h_{K_i}(u_n), i = 1, \ldots, N \), are all different, we have \(\text{sup}_{n \geq 1} m_n = N \), and so it is possible to recover \(N \). The supremum is attained, and so one obtains the probabilities \(p_1, \ldots, p_N \) and the values \(h_{K_i}(u_n), \ldots, h_{K_N}(u_n) \) for some \(u_n \). The values \(h_{K_i}(u) \) can be retrieved by tracing the distribution of \(h_X(u) \) over \(u \) from the unit sphere.

Proposition 5.1 means that the one-dimensional distributions identify the joint marginals of a convex random function taking only a finite number of values with all different probabilities. If the number of realisations is countable, then it is not possible to recover all individual support functions in some direction in order to subsequently trace them as in the proof of Proposition 5.1. If the probabilities are not different, then the uniqueness fails, as the discussion
following Proposition 4.4 shows. However, the non-equal probabilities ensure the uniqueness even if the comonotonicity condition of Proposition 4.4 fails.

The support set of a convex body K is defined by

$$H_K(u) = \{x \in K : \langle u, x \rangle = h_K(u)\}, \quad u \neq 0.$$

The support set is a singleton, if K is strictly convex, that is, its boundary does not contain any nontrivial segment. The support function of a strictly convex set is differentiable and its gradient $h_K'(u)$ equals the support point $H_K(u)$ if $\|u\| = 1$, see (Schneider, 2014, Cor. 1.7.3).

Theorem 5.2. Assume that the random convex body X has realisations K_1, \ldots, K_N, which are strictly convex and such that $H_{K_i}(u) \neq H_{K_j}(u)$ for all $i \neq j$ and all $u \neq 0$. Then the lift expectation of X uniquely determines its possible realisations and their probabilities.

Proof. There is a $u \in S^{d-1}$ such that $h_X(u)$ takes N different possible values, and this u can be identified from the one-dimensional distributions of the support function as the point where the number of different values is the largest. Assume that these values are s_1, \ldots, s_n with probabilities p_1, \ldots, p_n, and note that some or all of the probabilities may be equal.

Given this u, we assign the determined values to the support function, so let $h_{K_i}(u) = s_i, \quad i = 1, \ldots, n$. In a neighbourhood of u, the values of the support functions are still different, and it is possible to recover their probabilities there. We let this neighbourhood U grow until, at some point $v \in \partial U$, $h_{K_i}(v) = h_{K_j}(v)$ for some $i \neq j$. This equality is only possible at an isolated point, since otherwise the gradients of support functions of K_i and K_j would be equal and these two sets would have identical support points.

The knowledge of the support functions of K_i and K_j on U makes it possible to calculate the gradients at v (which are different for all i by the assumption) and so identify the support functions of K_i and K_j in a neighbourhood of v. Continuing this, it is possible to completely identify the support functions of all possible realisations.

6. Tuples of random convex bodies

Let (X_1, \ldots, X_n) be an n-tuple of integrably bounded random convex bodies in \mathbb{R}^d. Their lift expectation is a convex body in \mathbb{R}^{nd+1} being the expectation of the convex hull of the origin and the set $\{1\} \times X_1 \times \cdots \times X_n$. By Theorem 2.1 this lift expectation uniquely determines the distribution of

$$h_{X_1}(u^{(1)}) + \cdots + h_{X_n}(u^{(n)}), \quad u^{(1)}, \ldots, u^{(n)} \in \mathbb{R}^d.$$

Ordering of such lift expectations by inclusion corresponds to the ordering of n-dimensional distributions of their support functions in the increasing positive linear convex order, see (Müller and Stoyan, 2002, Def. 3.5.1).
Theorem 6.1. Let X be an integrably bounded random convex body which almost surely contains the origin. The sequence of lift expectations of (X, \ldots, X) for n-tuples of the same X and all $n \geq 1$ uniquely determines the distribution of X.

Proof. The lift expectation determines the distribution of

$$h_X(u^{(1)}) + \cdots + h_X(u^{(n)})$$

By replacing $u^{(i)}$ with $tu^{(i)}$ with $t \geq 0$, we see that the distribution of the scalar product of $(h_X(u^{(1)}), \ldots, h_X(u^{(n)}))$ and (t_1, \ldots, t_d) is also uniquely determined. Since the values of the support function are nonnegative, the Laplace transform and so the joint distribution of $(h_X(u^{(1)}), \ldots, h_X(u^{(n)}))$ is also uniquely determined. \Box

7. Numerical example

Let $X = [\xi, \eta]$ be a segment on the positive half-line. In econometrics such segments appear as the data on salary brackets, given by respondents reluctant to report the exact value of their salaries. The lift expectation of X is then a convex set in the plane. The lower boundary of this set coincides with the lower boundary of the lift zonoid of ξ (also called the generalised lower Lorenz curve of ξ) and the upper boundary stems from the liftz onoid of η (the generalised upper Lorenz curve of η).

We illustrate the above argument with the US Current Population Survey 2016 freely available from the US Census website. The variable of interest to us is the personal income variable denoted by $ptot$ in the dataset. This income variable takes values from the set $\{1, 2, \ldots, 41\}$. Its value $i \in \{1, \ldots, 40\}$ means that the personal income of the observed individual lies in the interval $[a_i, b_i]$, where $b_i - a_i = 2499$, and $a_i = b_{i-1} + 1$, with $a_1 = 0$. We removed from the dataset the individuals with the value $ptot = 41$, meaning that the observed individual earns at least 100000$, and so the corresponding interval is unbounded. Our final sample includes 132,410 observations.

Figure 1 shows the estimate for the lift expectation calculated by taking the mean value of the sets $\{1\} \times [a_i, b_i]$ on the plane. The lower bound (solid black curve) is the Lorenz curve for the lower bounds of the observed intervals; the upper bound (red dashed curve) is the upper Lorenz curve for the upper bounds. The (blue thick) vertical segment with the the x-coordinate 1 is the mean $[27204.40, 29450.42]$, obtained by averaging the lower and upper bounds, see Corollary 2.2.

The area of a lift zonoid of a random variable is the Gini mean difference, which can be used as an inequality index, see, e.g., (Mosler, 2002). In view of this, the area of the lift expectation provides an upper bound for the Gini inequality index of any random variable lying in $X = [\xi, \eta]$. In view of this, the area of \hat{Z}_X may be used as an inequality measure for the case of interval-valued responses.
Figure 1: Estimate of the lift expectation for the interval salary data from CPS 2016.

Acknowledgement

The authors are grateful to the Labex MME-DII and the University Paris-Saclay (EPEE, Univ-Evry) for hosting a conference where they all met and initiated this project. Gleb Koshevoy was supported by the Russian Science Foundation grant RSF 16-11-10075. Ilya Molchanov was supported by the Swiss National Foundation grants IZ73Z0_152292 and 200021_153597.

References

I. Cascos. Data depth: multivariate statistics and geometry. In W. S. Kendall and I. Molchanov, editors, New Perspectives in Stochastic Geometry, pages 398–426. Oxford University Press, Oxford, 2010.

C. D. Jr. Hardin. Isometries on subspaces of L^p. Indiana Univ. Math. J., 30: 449–465, 1981.

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms, volume 1 and 2. Springer, Berlin, 1993.

W. Hoeffding. On the distribution of the expected values of the order statistics. Ann. Math. Statist., 24:93–100, 1953.
G. A. Koshevoy and K. Mosler. Lift zonoids, random convex hulls and the variability of random vectors. Bernoulli, 4:377–399, 1998.

I. Molchanov. Convex geometry of max-stable distributions. Extremes, 11: 235–259, 2008.

I. Molchanov. Theory of Random Sets. Springer, London, 2 edition, 2017.

I. Molchanov and F. Molinari. Random Sets in Econometrics. Econometric Society Monographs. Cambridge Univ. Press, Cambridge, 2018.

I. Molchanov, M. Schmutz, and K. Stucki. Invariance properties of random vectors and stochastic processes based on the zonoid concept. Bernoulli, 20: 1210–1233, 2014.

K. Mosler. Multivariate Dispersion, Central Regions and Depth. The Lift Zonoid Approach, volume 165 of Lect. Notes Statist. Springer, Berlin, 2002.

A. Müller and D. Stoyan. Comparison Methods for Stochastic Models and Risks. Wiley, Chichester, 2002.

S. Peng. Nonlinear expectations, nonlinear evaluations and risk measures. In Stochastic methods in finance, volume 1856 of Lecture Notes in Math., pages 165–253. Springer, Berlin, 2004.

G. Puccetti and M. Scarsini. Multivariate comonotonicity. J. Multivariate Anal., 101:291–304, 2010.

R. Schneider. Convex Bodies. The Brunn–Minkowski Theory. Cambridge University Press, Cambridge, 2 edition, 2014.

R. A. Vitale. Expected convex hulls, order statistics, and Banach space probabilities. Acta Appl. Math., 9:97–102, 1987.