Identifying the Associated Risk Factors of Sleep Disturbance During the COVID-19 Lockdown in Bangladesh: A Web-Based Survey

Tasnim Ara 1*, Md. Mahabubur Rahman 1, Md. Abir Hossain 2 and Amir Ahmed 3

1 Institute of Statistical Research and Training, University of Dhaka, Dhaka, Bangladesh, 2 Department of Chemical and Food Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh, 3 Department of Nutrition and Food Engineering, Daffodil International University, Dhaka, Bangladesh

Background: Bangladesh, a developing country with a lower-middle-income and one of the world’s most densely populated areas, has been severely affected by COVID-19. This global epidemic is not only affecting the physical health of the patients but also causing severe psychological effects among those who have not yet been infected. Sleep disturbance is one of the key symptoms of major depression and one of the proven risk factors for suicide. The objective of this study is to identify the risk factors associated with sleep disturbance which has developed as a general impact of COVID-19 and new normal life during the lockdown (a measure to control the spread of COVID-19) in Bangladesh.

Methods: Demographic characteristics, COVID-19, and lockdown related information have been collected from 1,128 individuals by conducting a web-based survey. Respondent’s perspective regarding sleep disturbance during COVID-19 lockdown is considered as the outcome of interest which is dichotomous. Descriptive statistics methods have been applied to explore the distribution of respondent’s demographic characteristics. Pearson’s chi-square tests have been performed to relate the sleep disturbance status of the respondents to their demographic, personal, and COVID-19 related information. Furthermore, a multivariable logistic regression model has been adopted to identify the significant association of sleep disturbance with the demographic, COVID-19, and lockdown related information of respondents during the COVID-19 lockdown in Bangladesh.

Findings: The prevalence of sleep disturbance during the COVID-19 lockdown is found to be higher among participants aged 31–40 years. Gender disparity has also been observed in favor of male participants, whereas no significant regional heterogeneity has been found. Working from home or doing online classes during the lockdown has been found as a potential predictive factor of sleep disturbance. Losing a job has been considered as an adverse economic effect of COVID-19, which also induces sleep disturbance. Perception regarding the risk of getting infected and anxiety triggered the
chance of developing sleep disturbance. The sleeping schedule is also found as a risk factor for sleep disturbance.

Conclusion: Evidence-based policies are required to combat psychological challenges that have arisen due to COVID-19, primarily targeting the groups who are largely suffering from sleep disturbance.

Keywords: COVID-19, lock down, home confinement, sleep disturbance, anxiety, AOR, AUC

INTRODUCTION

The emergence of a cluster of acute respiratory illnesses that occurred by exposure to SARS-COV-2 is officially identified as COVID-19, which was first observed in December 2019 in Wuhan, Hubei Province of China (1–3). The WHO declared the COVID-19 outbreak as a “pandemic” on March 11, 2020 as the virus spreads increasingly worldwide (4). As of June 24, 2020, 213 countries and territories around the world are affected by the SARS-COV-2, and a total of 9,360,758 COVID-19 cases in the world have been confirmed, and 479,896 deaths have occurred worldwide from the disease (5). Almost all countries are adopting preventive measures such as remote office activities, international travel bans, mandatory lockdowns, and physical distancing. Bangladesh, a developing country with a lower-middle-income and one of the world’s most densely populated areas, is also trying to stop the spread of the disease with its limited resources. The country confirmed the first COVID-19 case on March 7 (6). There are 119,198 total confirmed cases and 1,545 total deaths in Bangladesh as of June 24, 2020 (7). The government of Bangladesh declared the enforcement of lockdown on March 26 to prevent the spreading of this infectious virus (6).

There is a considerable relation between mental health and poverty (8). Low and middle-income countries have a higher burden of mental disorders than economically developed countries (9, 10). Mental health resources include policy and infrastructure within countries, mental health services, community resources, human resources, and funding. In low-and middle-income countries, mental health services are highly insufficient, and the available resources for mental health are still scarce, inequitably distributed, and inefficiently utilized (11, 12). Compared to Australia and Canada (two high capacity countries in terms of mental health response), Bangladesh is more than 100-fold behind in terms of the number of psychiatrists per 100,000 population (13). The rate of occupational therapists per 100,000 population is 0 in Bangladesh, whereas this rate is respectively 7.65 and 3.7 in Australia and Canada (13). In Australia and Canada, people with mental disorders pay at least 20% of the cost of mental health care, whereas in Bangladesh patients pay entirely out of their own pocket to receive the service (13). The only nationally representative survey conducted between 2003 and 2005 illustrated the high burden of mental disorders in Bangladesh (14). Notedly, mental health services are virtually non-existent at the primary care level throughout the country (15, 16). There is a considerable lack of an adequate number of psychiatrists, and they are mostly located in big cities which makes the burden heavier (17).

In such a situation, mental health issues during the COVID-19 pandemic might be severe in Bangladesh.

The mass home confinement since the COVID-19 outbreak in December 2019 has developed a stressful situation for many across the globe. COVID-19 not only affects the physical health of the population but also has a serious impact on mental health (18, 19). In addition, symptoms of anxiety and depression and self-reported stress are common psychological effects of the COVID-19 pandemic (20). Previous studies have also shown that the prevalence of novel infectious diseases, such as severe acute respiratory syndrome (SARS) can increase anxiety, depression, and stress levels in the general population (21). Being forced to stay at home, work from home, do home-schooling for children, severely reduced social interaction, work many more hours in stressful situations, and health risks can have a severe impact on daily activities and nighttime sleep (19). Even if people under lockdown have less possibility to develop an infection they often suffer from negative psychological effects, which may disrupt the sleep quality (22).

Sleep plays a fundamental role in emotion regulation (23–26). Many cross-sectional epidemiological studies have indicated that sleep disturbance is closely associated with new-onset of poor mental health status and lasting poor mental health status (27–31). Disturbed sleep is also considered as a causal factor in the occurrence of many mental health disorders (32). Several studies have shown that proper quality sleep not only reduces the risk of non-communicable diseases (NCDs) (33–38) but also helps to improve immunity to viral infection (39, 40). Thus, through good quality sleep, a better immune system can be developed which in turn may have an impact on the susceptibility of COVID-19 infection. Psychological wellbeing and sleep are affected by several socio-economic factors such as economic burden, family support, and social support (41). Recently, several studies have investigated the influence of social factors and factors related to COVID-19 on sleep quality in China and European countries (18, 19, 42). This paper attempts to assess the risk factors associated with sleep disturbance in the context of COVID-19 and new normal life during the lockdown in Bangladesh.

MATERIALS AND METHODS

Study Design and Participants

A web-based self-reported cross-sectional survey has been conducted to collect the data. This web-based survey was intended to reach as many individuals as possible. Thus, rather
Participants have also been included. In addition, family-size and body mass index (BMI) of the educational level, employment status, and income level. Incomplete responses have been excluded from the analysis. Participants answered the questionnaires anonymously on the Internet from May 12, 2020, to May 18, 2020. All subjects reported their demographic data, COVID-19 related information, and questions related to sleep quality. To ensure the quality of this survey, questions were provided in both Bengali and English language and encouraged participants to answer carefully through questionnaire explanations. A total of 1,150 individuals have participated in the survey and among them, 1,128 individuals have completed the questionnaire. Incomplete responses have been excluded from the analysis.

Variables Assessed and Measured

Demographic and Other Personal Information

Demographic variables include administrative division, place of residence ("urban", "rural"), religion, age, gender, marital status, educational level, employment status, and income level. In addition, family-size and body mass index (BMI) of the participants have also been included.

Information Regarding COVID-19 and New Normal Life During the Lockdown

Individuals were asked about different pieces of information regarding COVID-19 and their new normal life during the lockdown. This information includes whether they are following the social distancing rule; whether they or their family members, relatives, friends, or neighbors got infected by COVID-19; whether they are working from home/doing online classes; whether they have to go to the workplace during the lockdown; whether any of the family members including respondent have lost their job; exercise status, whether food consumption dominates the new normal life during the lockdown, daily internet usage, perception regarding the risk of getting infected by COVID-19, anxiety, sleeping schedule, etc.

Outcome Measurements

Sleep disturbance was considered as a binary outcome of interest. Individuals were asked whether they are facing any kind of problems or disturbances in their sleep during the lockdown period or not.

Statistical Analysis

Descriptive statistical methods have been applied to assess the distribution of the demographic characteristics of the Bangladeshi population. Then, Pearson’s chi-square tests (49) were used to find associations between independent variables and sleep disturbance, with those variables showing an association of 0.05 selected to be the part of the model. A multivariable logistic regression (50, 51) has been carried out to find associations between the independent variables, the dependent variable, and adjust for confounders. The adjusted odds ratio (AOR) and 95% confidence interval (95% CI) have been obtained from the logistic regression model. In the logistic regression model, coefficients with p-values (2-sided tests) less than or equal to 0.05 have been considered as statistically significant (5% level of significance). As a measure of model performance, the area under the curve (AUC) of the receiving operating characteristic (ROC) has been calculated along with its standard error by using its equivalence to the Wilcoxon statistic (52, 53). All data were analyzed using R (Version 3.6.2, RStudio version: 1.1.383) and STATA version 14.0 (Stata SE 14, Stata Corp, College Station, TX, USA).

RESULTS

The socio-demographic information of the respondents is presented in Table 1. The analysis was based on a sample of 1,128 respondents (male 55.1% and female 44.9%). The majority of the respondents (75.71%) were from the second age group (21–30 years). There was found to be a higher response (48.5%) from the Dhaka division. The responses were the highest (68.6%) from urban areas. More than half of the participants (52.4%) were students, and 71.28% have passed the Bachelor or equivalent level. The marital status of 67% of respondents is “Single”. Around 12% of the respondents have income less than ten thousand TK.

Prevalence of Sleep Disturbance

The prevalence of sleep disturbance by the demographic and personal information of the respondents is presented in Table 2. From this web-based survey, it has been observed that 33.24% of the participants claimed to have sleep disturbance during the COVID-19 lockdown. After performing Pearson’s chi-square test of association, it has been observed that place of residence, age, gender, and marital status have a statistically significant association with sleep disturbance. Table 2 displays that sleep disturbance during this pandemic situation is more common among respondents of urban areas (36.05%) compared to rural areas (27.12%). The highest prevalence of sleep disturbance has been found among respondents aged 31–40 years. Among females, a higher prevalence of sleep disturbance (38.54%) has been observed compared to males (28.94%). The sleep disturbance significantly varies with the marital status of the
Respondents. Among respondents who were in a relationship, about 40% are suffering from sleep disturbance, whereas the prevalence of sleep disturbance is the lowest (30.56%) among “single” respondents.

Table 3 explores how sleep quality is disrupted during the COVID-19 lockdown. A higher prevalence of sleep disturbance has been observed among respondents whose family member/relative/friend/neighbor or him/herself has got infected with COVID-19. Among respondents who were working from home or doing online courses (during the lockdown) through the internet, 36.67% have developed sleep disturbance. The prevalence of sleep disturbance varies considerably by internet usage. Table 3 indicates that the prevalence of sleep disturbance is the highest among respondents whose daily internet use is more than 5 h. Losing the job of any of the family members (including respondents) increases the prevalence of sleep disturbance. Among respondents who thought to be at a high risk of getting infected by COVID-19, 38.46% had a sleep disturbance. It has been observed that about 27% of respondents have claimed to develop anxiety during the lockdown, while 41.8% of them have also claimed to develop sleep disturbance, which is higher than those who do not think

Division	No, n (%)	Yes, n (%)	p-value
Dhaka	351 (64.17)	196 (35.83)	0.247
Chittagong	76 (64.41)	42 (35.59)	
Rajshahi	86 (68.80)	39 (31.20)	
Khulna	54 (64.29)	30 (35.71)	
Barisal	18 (69.23)	8 (30.77)	
Rangpur	90 (71.43)	36 (28.57)	
Sylhet	18 (85.71)	3 (14.29)	
Mymensingh	60 (74.07)	21 (25.93)	

Table 2 | Distribution of sleep disturbance by the respondent’s demographic and personal characteristics.

Sleep disturbance	No, n (%)	Yes, n (%)	
Total	753 (66.76)	375 (33.24)	
Division			
Dhaka	351 (64.17)	196 (35.83)	
Chittagong	76 (64.41)	42 (35.59)	
Rajshahi	86 (68.80)	39 (31.20)	
Khulna	54 (64.29)	30 (35.71)	
Barisal	18 (69.23)	8 (30.77)	
Rangpur	90 (71.43)	36 (28.57)	
Sylhet	18 (85.71)	3 (14.29)	
Mymensingh	60 (74.07)	21 (25.93)	

Place of residence	No, n (%)	Yes, n (%)	p-value
Urban	495 (63.95)	279 (36.05)	0.003
Rural	258 (72.88)	96 (27.12)	

Religion	No, n (%)	Yes, n (%)	p-value
Muslim	672 (66.73)	335 (33.27)	0.963
Non-muslim	81 (66.94)	40 (33.06)	

Age (years)	No, n (%)	Yes, n (%)	p-value
11-20	132 (71.74)	52 (28.26)	0.034
21-30	568 (66.51)	286 (33.49)	
31-40	19 (46.34)	22 (53.66)	
41-50	15 (75.00)	5 (25.00)	
>50	19 (65.52)	10 (34.48)	

Gender	No, n (%)	Yes, n (%)	p-value
Male	442 (71.06)	180 (28.94)	0.001
Female	311 (61.46)	195 (38.54)	

Relationship status	No, n (%)	Yes, n (%)	p-value
Single	525 (69.44)	231 (30.56)	0.016
In a relationship	105 (59.68)	71 (40.34)	
Married	121 (63.68)	69 (36.32)	
Widowed/Divorced	2 (93.33)	4 (66.67)	

Educational level	No, n (%)	Yes, n (%)	p-value
Higher secondary or below	111	9.84	
Bachelor or equivalent	804	71.28	
Masters or above	213	18.88	

Employment status	No, n (%)	Yes, n (%)	p-value
Student	592	52.48	
Employed	281	24.91	
Unemployed	255	22.61	

Income level	No, n (%)	Yes, n (%)	p-value
< 10000 TK	135	11.97	
10001-30000 TK	394	34.93	
30001-50000 TK	301	26.68	
> 50000 TK	298	26.42	

BMI	No, n (%)	Yes, n (%)	p-value
Underweight	66 (63.46)	36 (36.54)	0.792
Normal weight	476 (67.23)	232 (32.77)	
Overweight	170 (65.64)	89 (34.36)	
Obese	38 (70.37)	16 (29.63)	

Size of family	No, n (%)	Yes, n (%)	p-value
Small	399 (67.40)	193 (32.60)	0.630
Large	354 (66.04)	182 (33.96)	

*p-value ≤ 0.001 are treated as 0.001.
themselves as anxious. The sleeping schedule during the COVID-19 lockdown is significantly associated with sleep disturbance. A higher prevalence of sleep disturbance (43.35%) has been observed among respondents who usually sleep more at daytime (6 am–6 pm) than at night (6 pm–6 am) during the lockdown.

Factors Associated With Sleep Disturbance

Finally, the estimated effects from the logistic regression model for the factors associated with sleep disturbance are presented in Table 4. It demonstrates that out of the four significant personal factors of Pearson’s chi-square test, only age and gender remain significant after fitting the logistic regression model. Furthermore, working from home/doing online classes, losing a job, infection risk, anxiety, sleeping schedule remain as significant factors of sleep disturbance. A respondent of age 31 to 40 years has approximately four times higher odds of having a sleep disturbance than a respondent of age 11 to 20 years (AOR: 4.04, 95% CI: 1.77–9.22). Gender has a statistically significant impact on sleep disturbances in favor of males. Compared to male respondents, females are 56% more likely to develop sleep disturbance (AOR: 1.56, CI: 1.19–2.04).

The odds of having sleep disturbance is 34% higher among the respondents who are working from home or taking online classes through the internet than those who are not doing so (AOR:1.34, CI: 1.02–1.75). Sleep disturbance is 2.41 times higher among respondents who or anyone from his/her family had lost their job during lock-down. It has been observed that a respondent who thinks to be at a high risk of getting infected by COVID-19 has 1.45 times higher odds of having sleep disturbance than those who do not think so (AOR: 1.45, 95% CI: 1.11–1.89). The odds of having sleep disturbance is 34% higher among the respondents who or anyone from his/her family had lost their job during lock-down. It has been observed that a respondent who thinks to be at a high risk of getting infected by COVID-19 has 1.45 times higher odds of having sleep disturbance than those who do not think so (AOR: 1.45, 95% CI: 1.11–1.89).

TABLE 3	Distribution of sleep disturbance by respondent’s characteristics regarding COVID-19 and new normal life during the lockdown.				
n (%)	No, n (%)	Yes, n (%)	p-value		
No following the social distancing rule					
No	18 (1.60)	12 (66.67)	6 (33.33)	0.383	
Moderately	380 (33.69)	264 (69.47)	116 (30.53)		
Strictly	730 (64.72)	477 (65.34)	253 (34.66)		
Infected by COVID-19	No	793 (70.30)	548 (69.10)	245 (30.90)	0.010
Yes	335 (29.70)	205 (61.99)	130 (38.01)		
Currently living with family	No	84 (7.45)	56 (66.67)	28 (33.33)	0.986
Yes	1,044 (92.55)	697 (66.76)	347 (33.24)		
Working from home/ doing online classes	No	629 (55.76)	437 (64.89)	192 (35.11)	0.029
Yes	499 (44.24)	339 (69.18)	151 (30.82)		
Going to the workplace	No	618 (55.64)	412 (66.67)	206 (33.33)	0.876
Yes	132 (17.60)	87 (65.38)	45 (34.62)		
Losing job	No	909 (80.59)	642 (70.63)	267 (29.37)	0.001
Yes	219 (19.41)	111 (50.68)	108 (49.32)		
Exercise status	No	638 (56.56)	414 (64.89)	224 (35.11)	0.129
Yes	490 (43.44)	339 (69.18)	151 (30.82)		
Food consumption dominates the new normal life	No	738 (65.43)	498 (67.48)	240 (32.52)	0.477
Yes	390 (34.57)	255 (65.38)	135 (34.62)		
Daily internet usage	< 3 h	220 (19.50)	155 (70.45)	65 (29.55)	0.004
3-5 h	321 (28.46)	232 (72.27)	89 (27.73)		
> 5 h	587 (52.04)	366 (62.35)	221 (37.65)		
Infection risk	No	647 (57.36)	457 (70.63)	190 (29.37)	0.001
Yes	481 (42.64)	296 (61.54)	185 (38.46)		
Anxiety	No	824 (73.05)	576 (69.90)	248 (30.10)	0.001
Yes	304 (26.95)	177 (58.22)	127 (41.78)		
Sleeping schedule	Night	785 (69.59)	558 (71.08)	227 (28.92)	0.001
Day	343 (30.41)	196 (56.85)	148 (43.15)		

TABLE 4	Determinant analysis of sleep disturbance: Results from a multivariable logistic regression model.			
	AOR	p-value	95% CI	
Constant	0.11	0.001	0.06-0.19	
Place of residence				
Urban	1.00			
Rural	0.97	0.841	0.71-1.32	
Age (years)				
11-20	1.00			
21-30	1.41	0.074	0.97-2.05	
31-40	4.04	0.001	1.77-9.22	
>50	0.96	0.945	0.29-3.18	
Gender				
Male	1.00			
Female	1.56	0.001	1.19-2.04	
Marital status				
Single	1.00			
In a relationship	1.29	0.164	0.90-1.84	
Married	1.08	0.723	0.69-1.70	
Widowed/Divorced	2.64	0.281	0.45-15.38	
Infected by COVID-19	No	1.00		
Yes	1.11	0.483	0.83-1.49	
Working from home/ doing online classes	No	1.00		
Yes	1.34	0.035	1.02-1.75	
Losing job	No	1.00		
Yes	2.41	0.001	1.76-3.32	
Daily internet usage	< 3 h	1.00		
3-5 h	0.90	0.604	0.59-1.36	
> 5 h	1.30	0.183	0.88-1.92	
Infection risk	No	1.00		
Yes	1.45	0.006	1.11-1.89	
Anxiety	No	1.00		
Yes	1.42	0.019	1.06-1.90	
Sleeping schedule	Night	1.00		
Day	1.86	0.001	1.40-2.49	

AOR = Adjusted odds ratio and p-value ≤ 0.001 are treated as 0.001.
COVID-19 has 45% higher chance to develop sleep disturbance than a respondent who does not think to be at a high risk of getting infected (AOR: 1.45, 95% CI: 1.11–1.89). Expectedly, anxiety plays a vital role in sleep disturbance. Respondents who are getting anxious during lockdown have 42% greater odds of developing sleep disturbance than respondents who do not think themselves as anxious with an estimated AOR of 1.42 (95% CI: 1.06–1.90). The results suggest that a respondent who sleeps more at daytime (6 am–6 pm) is 86% more likely to develop a sleep disturbance compared to a respondent who sleeps more at night (6 pm–6 am) with an estimated AOR of 1.86 (95% CI: 1.40–2.49).

Lastly, the area under the curve (AUC) of the receiving operating characteristic (ROC) curve has been calculated as a measure of model performance, which explains the model’s performance by evaluating sensitivity versus specificity. Figure 1 displays that there is a 68.7% chance that the final fitted model will be able to distinguish between the positive and negative class of sleep disturbance. Further, statistically significant evidence (p-value <.001) has been found that the model performance measure AUC of the final fitted model is greater than 0.5.

DISCUSSION

According to Worldometers, a total of 533,441 COVID-19 cases were identified, and the death rate was 16.61% over the cumulative number of closed cases up to 26th March when the first shutdown starts in Bangladesh (5, 54). As of the end of March, infections remained low, but a steep rise had been observed in April 2020 (55). New cases in Bangladesh grew by 1,155% in the week ending on 11th April, which is the highest in Asia, ahead of Indonesia, with 186% (7, 56). This web-based survey shows a high prevalence (33.24%) of sleep disturbance and anxiety (26.95%) during the COVID-19 outbreak. Studies on the Italian population showed a 57.1% prevalence of sleep problems with 32.1% anxiety disorders (57). The Italian study partitioned their region into three geographical segments and revealed sleep disturbance by using official psychological tools. The majority of their respondents (74.3%) were female. They explore the influence of demographic factors and knowledge of people affected by COVID-19 in determining risk for sleep quality. On the other hand, our study assesses how COVID-19 and new normal life during the lockdown disrupts sleep quality. Furthermore, it is impossible to differentiate whether the results of the Italian study are due to the fear of the pandemic or the restrictive measures imposed by the government of Italy. However, the different demographic characteristics of the sample and different aspects of the Italian study made a statistical comparison quite impossible.

Our study indicates that younger participants of age less than 30 years were less likely to develop sleep disturbance compared to older people of age more than 30 years during this lockdown. Around 90% of the respondents aged 31–40 years were living in urban areas where population density is much higher compared to rural areas. As a result, a higher percentage of them (46.34%) thought to be at a high risk of getting infected by COVID-19. This risk of getting infected may disrupt their sleep quality.

Women’s triple burden is depicted across three broad categories of productive, reproductive, and community work (58). Disease outbreak, disaster, or other crises predominantly increase women’s workloads and decrease the ability to balance their time (59–62). Burdens associated with COVID-19 are

![FIGURE 1](image)

FIGURE 1 | Performance measure for predicting sleep disturbance using last fitted multivariable logistic regression model.
Due to the lockdown, people have been confined to their homes, which results in a severe reduction of their daily social interaction. This lack of social interaction and home confinement may contribute to developing anxiety. Expectedly, it has been observed from the study results that the presence of anxiousness triggers sleep disturbance. In several studies, anxiety had also been found as a potential risk factor of sleep disturbance (81–87). In this study, no statistically significant association (Pearson’s chi-square value = 5.33, p-value = 0.255) has been found between respondent’s anxiety and age.

Before the COVID-19 lockdown, the sleeping schedule was more dependent on a person’s working shift. Several studies have found that sleep disorders are more common in night-shift workers compared with day workers (88–90). During lockdown, people have been confined to their homes, which moderately shifts the working hours and work responsibilities. Participants of this study were mainly students (52.48%) and in general, they can have erratic sleep schedules as they have no defined hours to do their work. The results of this study have suggested that sleeping schedule has a statistically significant impact on developing sleep disturbance in favor of participants who slept more at night (6 pm–6 am) than those who slept more at daytime (6 am–6 pm).

The findings of this study suggest that the factors highlighted above can be the potential risk factors of developing sleep disturbance, as previously reported for the Chinese population and accordingly with other studies on epidemic and quarantine conditions (91–94).

Limitations and Strengths of the Study

The findings of this study should be interpreted in the context of the study’s design and limitations. The study used a web-based non-probabilistic convenience sampling method as it was impossible to take personal interviews due to COVID-19 confinement restrictions. It is always very much difficult to obtain a nationally representative sample through a web-based survey. Expectedly, we have observed more responses from urban areas and comparatively younger groups of Bangladeshi population (mainly students) as they are more active in digital platforms than the people of rural areas and elderly people of Bangladesh. Approximately half of the responses have been obtained from the Dhaka division, which results in failing to capture the regional psychological behavior of the respondents. Since the study is a cross-sectional one, it can only point toward associations. A more robust design such as cohort or case–control is recommended to corroborate causation and generalization. The results of this study could have been more robust if we could have included the information regarding the previous history of sleep disturbance (insomnia), depression, and other mental health conditions (bipolar disorder), the previous history of anxiety disorder, chronic diseases/chronic pain conditions, consumption of medications associated with insomnia.

The survey was basic, with clear categories outlined and no need for official psychological tools, making it easy for respondents to quickly go through the survey. The survey reached people through a variety of digital platforms, making it more accessible and meeting people where they already are (aside from the fact that this was not available in person).
Notwithstanding all the limitations, this study explores a relevant topic, mental health and associated conditions like sleeping disorders, which have been identified as one of the secondary effects of the pandemic. To the best of our knowledge, this will be the first study in Bangladesh that assesses the association between sleep disturbance and variables associated with the lockdown prompted by COVID-19.

CONCLUDING REMARKS

Fortunately, many strong national measures have been taken by the Bangladesh government to avoid further spread of the COVID-19 outbreak. However, the public’s psychological problems during the COVID-19 outbreak are still overlooked. This study attempts to fill this research gap by analyzing the prevalence of sleep disturbance as sleep disturbance is one of the key symptoms of major depression and one of the proven risk factors for suicide (95–97). The findings of this study suggest that sleep disturbance during the lockdown is dependent on both demographic characteristics and the COVID-19 related information of the respondents. In conclusion, this study found that variables associated with the lockdown prompted by COVID-19 such as working from home or doing online classes through the internet, job loss, anxiety, fear of infection with COVID-19, and (day) sleeping schedule were predictive factors for developing sleeping disorders in the Bangladeshi population. We anticipate that this framework will help the policymakers to initiate government programs to diagnose and treat mental health disorders due to the secondary impact of the pandemic. We suggest arranging cognitive–behavioral therapy (CBT) which is the most widely-used therapy for sleep disorders and may be conducted individually in a group of people with similar sleeping problems, or even online (98–100). As well as changing the way one’s thinking regarding sleep, CBT also works to change the habits that can prevent someone from sleeping well. A promotional campaign should be arranged to let people know about the digitally available stress and anxiety mitigation resources of WHO (101, 102). Further, researchers may use this study as a means to keep studying the impact of the pandemic in mental health and sleep quality and prompt further interest and investment from the health sector in mental health programs to tackle the impact of COVID-19.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

Ethical review and approval were not required for the study on human participants in accordance with the local legislation and institutional requirements. Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: TA, MH. Performed the experiments: MH, TA, AA. Analyzed the data: TA, MR. Contributed reagents/materials/analysis tools: TA, MR. Wrote the paper: MR, TA, AA. All authors contributed to the article and approved the submitted version.

REFERENCES

1. World Health Organization. WHO Timeline - COVID-19 (2020). Available at: https://www.who.int/news-room/detail/27-04-2020-who-timeline—covid-19 (Accessed April 27, 2020).
2. Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA (2020) 323(8):707–8. doi: 10.1001/jama.2020.0757
3. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA (2020) 323(11):1061–9. doi: 10.1001/jama.2020.1585
4. World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19. Available at: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020 (Accessed March 11, 2020).
5. Worldometers. Coronavirus update. Available at: https://www.worldometers. info/coronavirus/ (Accessed June 24, 2020).
6. Anwar S, Nastrullah M, Hosen MJ. COVID-19 and Bangladesh: Challenges and how to address them. Front Public Health (2020) 8:154. doi: 10.3389/fpubh.2020.00154
7. Worldometers. BangladeshCoronavirus. Available at: https://www.worldometers. info/coronavirus/country/bangladesh/ (Accessed June 24, 2020).
8. Das J, Do QT, Friedman J, McKenzie D, Scott K. Mental health and poverty in developing countries: Revisiting the relationship. Soc Sci Med (2007) 65 (3):467–80. doi: 10.1016/j.socscimed.2007.02.037
9. Bass JK, Bornemann TH, Burkey M, Chehil S, Chen L, Copeland JR, et al. A United Nations General Assembly Special Session for mental, neurological, and substance use disorders: the time has come. PLoS Med (2012) 9(1): e1001159. doi: 10.1371/journal.pmed.1001159
10. Hock RS, Or F, Kolappa K, Burkey MD, Surkan PJ, Eaton WW. A new resolution for global mental health. Lancet (London Engl) (2012) 379(9824):1367. doi: 10.1016/S0140-6736(12)60243-8
11. Saxena S, Thornicroft G, Knapp M, Whiteford H. Resources for mental health: scarcity, inequity, and inefficiency. Lancet (2007) 370(9590):878–89. doi: 10.1016/S0140-6736(07)61239-2
12. Lora A, Hanna F, Chisholm D. Mental health service availability and delivery at the global level: an analysis by countries’ income level from WHO’s Mental Health Atlas 2014. Epidemiol Psychiatr Sci (2017), 29(2) 1–2. doi: 10.1017/S2045796017000075
13. World Health Organization. Mental Health Atlas-2017 country profiles. Available at: https://www.who.int/mental_health/evidence/atlas/profiles-2017/en (Accessed 2017).
14. Firoz AH, Karim ME, Alam MF, Rahman AH, Zaman MM. Prevalence, medical care, awareness and attitude towards mental illness in Bangladesh. Bangladesh J Psychiatry (2006) 20(1):9–32.

Frontiers in Psychiatry | www.frontiersin.org 8 September 2020 | Volume 11 | Article 580268
26. Tavernier R, Willoughby T. A longitudinal examination of the bidirectional link between sleep disturbances and psychiatric disorders. *J Psychiatr Res* (2009) 43(7):443–50. doi: 10.1016/j.jpsychires.2008.10.003

29. Chang PP, Ford DE, Mead LA, Cooper-Patrick L, Klag MJ. Insomnia in the community: a population-based study. *Am J Epidemiol* (2000) 157(1):81. doi: 10.1093/oxfordjournals.aje.a007117

30. Breslau N, Roth T, Rosenthal L, Andreski P. Sleep disturbance and psychiatric disorders in Epidemiologic Catchment Area Study. *Am J Epidemiol* (1991) 133(5):1316–27. doi: 10.1093/oxfordjournals.aje.a012852

33. Lucassen EA, Rother KI, Cizza G. Interacting epidemics? Sleep curtailment, fatigue and anxiety during the COVID-19 pandemic. *Sleep Med* (2020) 66:101652. doi: 10.1016/j.sleep.2020.101652

34. Ortega-Montiel J, Posadas-Romero C, Ocampo-Arcos W, Medina-Urrutia A, Cardoso-Saldaña G, Jorge-Galarza E, et al. Self-perceived stress is associated with adiposity and atherosclerosis. *GAE Study BMC Public Health* (2013) 13:180. doi: 10.1186/1471-2458-13-180

36. Li Y, Zhang X, Winkelman JW, Redline S, Hu FB, Stamper M, et al. Management of psychiatric depression in Bangladesh. *(2011) JSPN 54–55. Available at: https://jspm.org/jspn/journal/symposium/.../pdf/so06-100_050_bgdng11.pdf

38. Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. *Diabetes* (2010) 59(9):2126–33. doi: 10.2337/db09-0969

39. Irwin M. Effects of sleep and sleep loss on immunity and cytokines. *Behav Brain Immun* (2002) 16(5):503–12. doi: 10.1016/S0953-4617(01)00031-X

40. Arora R. Sleep Disturbance During COVID-19 Lockdown in Bangladesh. *Trans Psychiatry* (2020) 12:112954. doi: 10.1016/j.jspychres.2020.112954

41. Rajkumar RP. COVID-19 and mental health: A review of the existing literature. *Int J Psychophysiol* (2020) 164:103866. doi: 10.1016/j.ijpsycho.2020.103866

42. Altena E, Baglioni C, Espie CA, Ellis J, Gavriloff D, Holzinger B, et al. Dealing with sleep problems during home confinement due to the COVID-19 outbreak: Rationale and practical recommendations from a task force of the European Society of Clinical & Translational Research (ESCPR). *J Sleep Res* (2020) 29(4):e13052. doi: 10.1111/jsr.13052

43. Fischer A, Fischer M, Nicholls RA, Lau S, Poettgen J, Patas K, et al. Diagnostic accuracy for major depression in multiple sclerosis using self-report questionnaires. *Brain Behav Behav* (2015) 5(9):e00365. doi: 10.1002/brbi.201500365

44. Altena E, Baglioni C, Espie CA, Ellis J, Gavriloff D, Holzinger B, et al. Dealing with sleep problems during home confinement due to the COVID-19 outbreak: Rationale and practical recommendations from a task force of the European Society of Clinical & Translational Research (ESCPR). *J Sleep Res* (2020) 29(4):e13052. doi: 10.1111/jsr.13052

45. White K, Scarinci IC. Comparison of self-rated health among Latina immigrants in a Southern US city and a national sample. *Am J Med Sci* (2015) 349(4):290–5. doi: 10.1097/MAJ.0000000000000554

46. Sher L. COVID-19, anxiety, sleep disturbances and suicide. *Sleep Med* (2020) 70:124. doi: 10.1016/j.sleep.2020.04.019

47. Lin LY, Wang J, Ou-yang XY, Miao Q, Chen R, Liang FX, et al. The immediate impact of the 2019 novel coronavirus (COVID-19) outbreak on subjective sleep status. *Sleep Med* (2020). doi: 10.1016/j.sleep.2020.05.018

48. Fu W, Wang C, Zou L, Guo Y, Lu Z, Yan S, et al. Psychological health, sleep quality, and coping styles to stress facing the COVID-19 in Wuhan, China. *Trans Psychiatry* (2020) 10(1):1–9. doi: 10.1016/j.eclinm.2020.09.013

49. Pearson R, KX. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. *London Edinburgh Dublin Philos Magazine J Sci* (1900) 50(302):157–75. doi: 10.1080/147684600094653897

50. Agerst B. “Building and applying logistic regression models”. In: Categorical Data Analysis. 2nd ed. Wiley Inc: Hoboken (2007). p. 211–66.

51. Cramer JS. *The origins of logistic regression*. Tinbergen Institute Discussion Paper. Amsterdam and Rotterdam: Tinbergen Institute (2002). Available at: http://hdl.handle.net/10419/86100

52. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. *Radiology* (1982) 143(1):29–36. doi: 10.1148/radiology.143.1.6765747

53. Fogarty J, Baker RS, Hudson SE. Case studies in the use of ROC curve analysis for sensor-based estimates in human computer interaction, in: *Proceedings of Graphics Interface*. Victoria, British Columbia: University of Waterloo (2005). p. 129–36.

54. Dhaka Tribune. Coronavirus: Bangladesh declares public holiday from March 26 to April 4 (2020). Available at: https://www.dhakatribune.com/bangladesh/2020/03/25/govt-offices-to-remain-closed-Until-april-4 (Accessed March 23, 2020).

55. Dhaka Tribune. 20-fold rise in Covid-19 cases in Bangladesh since April 1 (2020). Available at: https://www.dhakatribune.com/health/coronavirus/2020/04/14/20-fold-rise-of-covid-19-cases-in-bangladesh-since-april-1 (Accessed April 14, 2020).
56. Institute of Epidemiology, Disease Control and Research (IEDCR). Bangladesh Covid-19 Update (2020). Available at: https://www.iedcr.gov.bd/index.php/component/content/article/website (Accessed April 11, 2020).

57. Casagrande M, Favieri F, Tambelli R, Forte G. The enemy who sealed the world: Effects quarantine due to the COVID-19 on sleep quality, anxiety, and psychological distress in the Italian population. Sleep Med (2020) 75:12–20. doi: 10.1016/j.sleep.2020.05.011

58. Moser C. Gender planning and development: Theory, practice and training. London: Routledge (2012). p.15–55. doi: 10.4324/9780203341940

59. Bradshaw S. Engendering development and disasters. Disasters (2015) 39 (1):54–73. doi: 10.1111/disa.12111

60. Bradshaw S, Fordham M. Double disaster: Disaster through a gender lens. In: Hazards, risks and disasters in society. Academic Press (2015). p. 233–51. doi: 10.1016/B978-0-12-396645-1.00014-7

61. Mondal SH. Women’s vulnerabilities due to the impact of climate change: Case from Satkhira region of Bangladesh. Global J Hum Soc Sci (2014) 14 (5):46–52.

62. Stemple L, Karegya P, Gruskin S. Human rights, gender, and infectious disease: from HIV/AIDS to Ebola. Hum Rts Q (2016) 38:993. doi: 10.1353/hrq.2016.0054

63. Graves L. Women’s Domestic Burden just got Heavier with Coronavirus. Kings Place.[Google Scholar]: London (2020).

64. Baird J. Domestic Abuse Advocates Warn of an Increase in Violence amid Coronavirus Crisis. ABC News.[Google Scholar]: New York (2020).

65. McLaren HJ, Wong KR, Nguyen KN, Mahamadachchi KN. Covid-19 and Domestic Abuse Advocates Warn of an Increase in Violence amid Coronavirus Crisis. ABC News.[Google Scholar]: New York (2020).

66. McLaren HJ, Wong KR, Nguyen KN, Mahamadachchi KN. Covid-19 and Women’s Triple Burden: Vignettes from Sri Lanka, Malaysia, Vietnam and Australia. Soc Sci (2020) 9(5):87. doi: 10.3909/socsci0900887

67. Soares CN, Murray BJ. Sleep disorders in women: clinical evidence and treatment strategies. Psychiatr Clinics North America (2006) 29(4):1095. doi: 10.1016/j.psc.2006.09.002

68. Su TP, Lien TC, Yang CY, Su YL, Wang JH, Tsai SL, et al. Prevalence of Women’s Domestic Burden just got Heavier with Coronavirus. Kings Place.[Google Scholar]: London (2020).
100. Mitchell MD, Gehrman P, Perlis M, Umscheid CA. Comparative effectiveness of cognitive behavioral therapy for insomnia: a systematic review. *BMC Family Pract* (2012) 13(1):40. doi: 10.1186/1471-2296-13-40

101. World Health Organization. *Doing what matters in times of stress: an illustrated guide*. Available at: https://www.who.int/publications/i/item/9789240003927?gclid=EAIaIQobChMI37aFqP616wIVU6WWCh1wugMOEAYASAAEglwsfD_BwE (Accessed April 29, 2020).

102. World Health Organization. *Coping with stress during the 2019-nCoV outbreak* (Accessed 2020).

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Ara, Rahman, Hossain and Ahmed. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.