SMOOTHNESS OF THE LAW OF THE SUPREMUM OF THE FRACTIONAL BROWNIAN MOTION

NOUREDDINE LANJRI ZADI
Université Ibn Tofal, Faculté des Sciences
Département de Mathématiques
B.P. 133, 14001, Knitra, Maroc
email: nour@mixmail.com

DAVID NUALART
Universitat de Barcelona, Facultat de Matemàtiques
Gran via, 585, 08007, Barcelona, Spain
email: nualart@mat.ub.es

Submitted 5 May 2003, accepted in final form 25 July 2003

AMS 2000 Subject classification: 60H07, 60G18
Keywords: Malliavin calculus, fractional Brownian motion, fractional calculus

Abstract
This note is devoted to prove that the supremum of a fractional Brownian motion with Hurst parameter $H \in (0, 1)$ has an infinitely differentiable density on $(0, \infty)$. The proof of this result is based on the techniques of the Malliavin calculus.

1 Introduction

A fractional Brownian motion (fBm for short) of Hurst parameter $H \in (0, 1)$ is a centered Gaussian process $B = \{B_t, t \in [0, 1]\}$ with the covariance function

$$ R_H(t, s) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right). \tag{1} $$

Notice that if $H = \frac{1}{2}$, the process B is a standard Brownian motion. From (1) it follows that

$$ E |B_t - B_s|^2 = |t - s|^{2H}, $$

and, as consequence, B has α-Hölder continuous paths for any $\alpha < H$.

The Malliavin calculus is a suitable tool for the study of the regularity of the densities of functionals of a Gaussian process. We refer to [7] and [8] for a detailed presentation of this theory. This approach is particularly useful when analytical methods are not available. In [5] the Malliavin calculus has been applied to derive the smoothness of the law of the supremum.

1SUPPORTED BY THE DGES GRANT BFM2000-0598
of the Brownian sheet. In order to obtain this result, the authors establish a general criterion for the smoothness of the density, assuming that the random variable is locally in D^1. The aim of this paper is to study the smoothness of the law of the supremum of a fBm using the general criterion obtained in [5].

The organization of this note is as follows. In Section 2 we present some preliminaries on the fBm and we review the basic facts on the Malliavin calculus and on the fractional calculus that will be used in the sequel. In Section 3 we state the general criterion for the smoothness of densities and we apply it to the supremum of the fBm.

2 Preliminaries

2.1 Fractional Brownian motion

Fix $H \in (0, 1)$ and let $B = \{B_t, t \in [0, 1]\}$ be a fBm with Hurst parameter H. That is, B is a zero mean Gaussian process with covariance function given by (1). Let $\{\mathcal{F}_t, t \in [0, 1]\}$ be the family of sub-σ-fields of \mathcal{F} generated by B and the P-null sets of \mathcal{F}. We denote by $\mathcal{E} \subset \mathcal{H}$ the class of step functions on $[0, 1]$. Let \mathcal{H} be the Hilbert space defined as the closure of \mathcal{E} with respect to the scalar product

$$\langle 1_{[0,t]}, 1_{[0,s]} \rangle_{\mathcal{H}} = R_H(s, t).$$

The mapping $1_{[0,t]} \mapsto B_t$ can be extended to an isometry between \mathcal{H} and the Gaussian space $H_1(B)$ associated with B. The covariance kernel $R_H(t, s)$ can be written as

$$R_H(t, s) = \int_0^{\wedge t} K_H(t, r)K_H(s, r)dr,$$

where K_H is a square integrable kernel given by (see [4]):

$$K_H(t, s) = \Gamma(H + 1)\frac{1}{2}^{-1}(t - s)^{H - \frac{1}{2}} F(H - \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1 - \frac{t}{s}),$$

$F(a, b, c, z)$ being the Gauss hypergeometric function. Consider the linear operator K_H^* from \mathcal{E} to $L^2([0, 1])$ defined by

$$(K_H^*\varphi)(s) = K_H(1, s)\varphi(s) + \int_s^1 (\varphi(r) - \varphi(s)) \frac{\partial K_H}{\partial r}(r, s)dr. \quad (2)$$

For any pair of step functions φ and ψ in \mathcal{E} we have (see [3])

$$\langle K_H^*\varphi, K_H^*\psi \rangle_{L^2([0, 1])} = \langle \varphi, \psi \rangle_{\mathcal{H}}. \quad (3)$$

As a consequence, the operator K_H^* provides an isometry between the Hilbert spaces \mathcal{H} and $L^2([0, 1])$. Hence, the process $W = \{W_t, t \in [0, T]\}$ defined by

$$W_t = B^H((K_H^*)^{-1}(1_{[0,t]})) \quad (4)$$

is a Wiener process, and the process B^H has an integral representation of the form

$$B_t^H = \int_0^t K_H(t, s)dW_s, \quad (5)$$

because $(K_H^*1_{[0,t]}) (s) = K_H(t, s)$.
2.2 Fractional calculus

We refer to [9] for a complete survey of the fractional calculus. Let us introduce here the main definitions. If \(f \in L^1([0,1]) \) and \(\alpha > 0 \), the right and left-sided fractional Riemann-Liouville integrals of \(f \) of order \(\alpha \) on \([0,1] \) are given almost surely for all \(t \in [0,1] \) by

\[
I^\alpha_0 f(t) = \frac{(-1)^{-\alpha}}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s) \, ds
\]

and

\[
I^\alpha_1 f(t) = \frac{(-1)^{-\alpha}}{\Gamma(\alpha)} \int_t^1 (s-t)^{\alpha-1} f(s) \, ds
\]

respectively, where \(\Gamma \) denotes the Gamma function.

Fractional differentiation can be introduced as an inverse operation. For any \(p > 1 \) and \(\alpha > 0 \), \(I^\alpha_p, (L^p) \) (resp. \(I^\alpha_1 (L^p) \)) will denote the class of functions \(f \in L^p([0,1]) \) which may be represented as an \(I^\alpha_p \) (resp. \(I^\alpha_1 \))- integral of some function \(\Phi \) in \(L^p([0,1]) \). If \(f \in I^\alpha_p (L^p) \) (resp. \(I^\alpha_1 (L^p) \)), the function \(\Phi \) such that \(f = I^\alpha_p \Phi \) (resp. \(I^\alpha_1 \Phi \)) is unique in \(L^p([0,1]) \) and is given by

\[
D^\alpha_0 f(t) = \frac{(-1)^{\alpha+1}}{\Gamma(1-\alpha)} \left(\frac{f(s)}{s^\alpha} - \alpha \int_0^t \frac{f(t) - f(s)}{(t-s)^{1+\alpha}} \, ds \right)
\]

\[
D^\alpha_1 f(t) = \frac{(-1)^{\alpha+1}}{\Gamma(1-\alpha)} \left(\frac{f(s)}{(1-s)^\alpha} - \alpha \int_t^1 \frac{f(s) - f(t)}{(s-t)^{1+\alpha}} \, ds \right)
\]

where the convergence of the integrals at the singularity \(t = s \) holds in the \(L^p \)-sense.

When \(\alpha p > 1 \) any function in \(I^\alpha_p (L^p) \) is \((\alpha - \frac{1}{p})\)- Hölder continuous. On the other hand, any Hölder continuous function of order \(\beta > \alpha \) has fractional derivative of order \(\alpha \). That is, \(C^\beta([a,b]) \subset I^\alpha_p (L^p) \) for all \(p > 1 \).

Recall that by construction for \(f \in I^\alpha_1 (L^p) \),

\[
I^\alpha_1 (D^\alpha_p f) = f
\]

and for general \(f \in L^1([a,b]) \) we have

\[
D^\alpha_p (I^\alpha_1 f) = f.
\]

The operator \(K^*_H \) can be expressed in terms of fractional integrals or derivatives. In fact, if \(H > \frac{1}{2} \), we have

\[
(K^*_H \varphi)(s) = c_H \Gamma(H - \frac{1}{2}) s^{\frac{1}{2} - H} (I^{H - \frac{1}{2}}_1 u^{H - \frac{1}{2}} \varphi(u))(s), \quad (10)
\]

where \(c_H = \left[\frac{H(H-1)}{2} \right]^{1/2} \), and if \(H < \frac{1}{2} \), we have

\[
(K^*_H \varphi)(s) = d_H s^{\frac{1}{2} - H} (D^{\frac{1}{2} - H}_1 u^{H - \frac{1}{2}} \varphi(u))(s), \quad (11)
\]

where \(d_H = c_H \Gamma(H + \frac{1}{2}) \).
2.3 Malliavin calculus

We briefly recall some basic elements of the stochastic calculus of variations with respect to the fBm B. For more complete presentation on the subject, see [7] and [8].

The process $B = \{B_t, t \in [0, 1]\}$ is Gaussian and, hence, we can develop a stochastic calculus of variations (or Malliavin calculus) with respect to it. Let $C_b^\infty(\mathbb{R})$ be the class of infinitely differentiable functions $f : \mathbb{R}^n \to \mathbb{R}$ such that f and all its partial derivatives are bounded. We denote by \mathcal{S} the class of smooth cylindrical random variables F of the form

$$F = f(B(h_1), \ldots, B(h_n)), \quad (12)$$

where $n \geq 1$, $f \in C_b^\infty(\mathbb{R}^n)$ and $h_1, \ldots, h_n \in \mathcal{H}$.

The derivative operator D of a smooth and cylindrical random variable F of the form (12) is defined as the \mathcal{H}-valued random variable

$$DF = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(B(h_1), \ldots, B(h_n)) h_i.$$

In this way the derivative DF is an element of $L^2(\Omega; \mathcal{H})$. The iterated derivative operator of D is denoted by D^k. It is a closable unbounded operator from $L^p(\Omega)$ into $L^p(\Omega; \mathcal{H}^\otimes k)$ for each $k \geq 1$, and each $p \geq 1$. We denote by $\mathbb{D}^{k,p}$ the closure of \mathcal{S} with respect to the norm defined by

$$\| F \|^p_{k,p} = E(|F|^p) + \sum_{j=1}^k E\left(\| D^j F \|^p_{\mathcal{H}^\otimes j} \right).$$

We set $\mathbb{D}^\infty = \cap_{k,p} \mathbb{D}^{k,p}$.

For any given Hilbert space V, the corresponding Sobolev space of V-valued random variables can also be introduced. More precisely, let \mathcal{S}_V denote the family of V-valued smooth random variables of the form

$$F = \sum_{j=1}^n F_j v_j, \quad (v_j, F_j) \in V \times \mathcal{S}.$$

We define

$$D^k F = \sum_{j=1}^n D^k F_j \otimes v_j, \quad k \geq 1.$$

Then D^k is a closable operator from $\mathcal{S}_V \subset L^p(\Omega; V)$ into $L^p(\Omega; \mathcal{H}^\otimes k \otimes V)$ for any $p \geq 1$. For any integer $k \geq 1$ and for any real number $p \geq 1$, a norm is defined on \mathcal{S}_V by

$$\| F \|^p_{k,p,V} = E(|F|^p_V) + \sum_{j=1}^k E\left(\| D^j F \|^p_{\mathcal{H}^\otimes j \otimes V} \right).$$

We denote by $\mathbb{D}^{k,p}(V)$ the completion of \mathcal{S}_V with respect to the norm $\| \cdot \|_{k,p,V}$. We set $\mathbb{D}^\infty(V) = \cap_{k,p} \mathbb{D}^{k,p}(V)$.

Our main result will be based on the application of the following general criterion for smoothness of densities for one-dimensional random variable established in [5].

Theorem 1 Let F be a random variable in $\mathbb{D}^{1,2}$. Let A be an open subset of \mathbb{R}. Suppose that there exist an \mathcal{H}-valued random variable u_A and a random variable G_A such that

$$F = f(B(h_1), \ldots, B(h_n)),$$

where $n \geq 1$, $f \in C_b^\infty(\mathbb{R}^n)$ and $h_1, \ldots, h_n \in \mathcal{H}$.

The process $B = \{B_t, t \in [0, 1]\}$ is Gaussian and, hence, we can develop a stochastic calculus of variations (or Malliavin calculus) with respect to it. Let $C_b^\infty(\mathbb{R})$ be the class of infinitely differentiable functions $f : \mathbb{R}^n \to \mathbb{R}$ such that f and all its partial derivatives are bounded. We denote by \mathcal{S} the class of smooth cylindrical random variables F of the form

$$F = f(B(h_1), \ldots, B(h_n)), \quad (12)$$

where $n \geq 1$, $f \in C_b^\infty(\mathbb{R}^n)$ and $h_1, \ldots, h_n \in \mathcal{H}$.

The derivative operator D of a smooth and cylindrical random variable F of the form (12) is defined as the \mathcal{H}-valued random variable

$$DF = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(B(h_1), \ldots, B(h_n)) h_i.$$

In this way the derivative DF is an element of $L^2(\Omega; \mathcal{H})$. The iterated derivative operator of D is denoted by D^k. It is a closable unbounded operator from $L^p(\Omega)$ into $L^p(\Omega; \mathcal{H}^\otimes k)$ for each $k \geq 1$, and each $p \geq 1$. We denote by $\mathbb{D}^{k,p}$ the closure of \mathcal{S} with respect to the norm defined by

$$\| F \|^p_{k,p} = E(|F|^p) + \sum_{j=1}^k E\left(\| D^j F \|^p_{\mathcal{H}^\otimes j} \right).$$

We set $\mathbb{D}^\infty = \cap_{k,p} \mathbb{D}^{k,p}$.

For any given Hilbert space V, the corresponding Sobolev space of V-valued random variables can also be introduced. More precisely, let \mathcal{S}_V denote the family of V-valued smooth random variables of the form

$$F = \sum_{j=1}^n F_j v_j, \quad (v_j, F_j) \in V \times \mathcal{S}.$$

We define

$$D^k F = \sum_{j=1}^n D^k F_j \otimes v_j, \quad k \geq 1.$$

Then D^k is a closable operator from $\mathcal{S}_V \subset L^p(\Omega; V)$ into $L^p(\Omega; \mathcal{H}^\otimes k \otimes V)$ for any $p \geq 1$. For any integer $k \geq 1$ and for any real number $p \geq 1$, a norm is defined on \mathcal{S}_V by

$$\| F \|^p_{k,p,V} = E(|F|^p_V) + \sum_{j=1}^k E\left(\| D^j F \|^p_{\mathcal{H}^\otimes j \otimes V} \right).$$

We denote by $\mathbb{D}^{k,p}(V)$ the completion of \mathcal{S}_V with respect to the norm $\| \cdot \|_{k,p,V}$. We set $\mathbb{D}^\infty(V) = \cap_{k,p} \mathbb{D}^{k,p}(V)$.

Our main result will be based on the application of the following general criterion for smoothness of densities for one-dimensional random variable established in [5].

Theorem 1 Let F be a random variable in $\mathbb{D}^{1,2}$. Let A be an open subset of \mathbb{R}. Suppose that there exist an \mathcal{H}-valued random variable u_A and a random variable G_A such that
(i) \(u_A \in \mathcal{D}^\infty (\mathcal{H}) \),
(ii) \(G_A \in \mathcal{D}^\infty \) and \(G_A^{-1} \in L^p (\Omega) \) for any \(p \geq 2 \) and,
(iii) \(\langle DF, u_A \rangle_{\mathcal{H}} = G_A \) on \(\{ F \in A \} \).
Then the random variable \(F \) possesses an infinitely differentiable density on the set \(A \).

3 Supremum of the fractional Brownian motion

The process \(B \) has a version with continuous paths as result of being \(\alpha \)-Hölder continuous for any \(\alpha < H \). Set
\[
M = \sup_{0 \leq s \leq 1} B_s.
\]
From results of [10] we know that \(M \) possesses an absolutely continuous density on \((0, \infty)\). In order to apply Theorem 1, we will first recall some results on this supremum.

Lemma 2 The process \(B \) attains its maximum on a unique random point \(T \).

Proof. The proof of this lemma would follow by the same arguments as the proof of Lemma 3.1 of [5], applying the criterion for absolute continuity of the supremum of a Gaussian process established in [10].

The following lemma will ensure the weak differentiability of the supremum of the fBm and give the value of its derivative.

Lemma 3 The random variable \(M \) belongs to \(\mathcal{D}^{1,2} \) and it holds \(D_tM = 1_{[0,T]}(t) \), for any \(t \in [0,1] \), where \(T \) is the point where the supremum is attained.

Proof. Similar to the proof of Lemma 3.2. in [5].

With the above results in hands, we are in position to prove our main result.

Proposition 4 The random variable \(M = \sup_{0 \leq s \leq 1} B_s \) possesses an infinitely differentiable density on \((0, \infty)\).

Proof. Fix \(a > 0 \) and set \(A = (a, \infty) \). Define the following random variable
\[
T_a = \inf \left\{ t \in [0, 1] \mid \sup_{0 \leq s \leq t} B_s > a \right\}.
\]
Recall that \(T_a \) is a stopping time with respect to the filtration \(\{ \mathcal{F}_t, t \in [0, 1] \} \) and notice that \(T_a \leq T \) on the set \(\{ M > a \} \). Hence, by Lemma 3, it holds that
\[
\{ M > a, t \leq T_a \} \subset \{ D_tM = 1 \}.
\]
Set
\[
\Delta = \left\{ (p, \gamma) \in \mathbb{N}^* \times (0, \infty) \mid \frac{1}{2p} < \gamma < H \right\}.
\]
For any \((p, \gamma) \in \Delta \), we define the process \(Y \) on \([0, 1]\) by setting, for any \(t \in [0, 1] \)
\[
Y_t = \int_0^t \int_0^t \frac{|B_s - B_r|^{2p}}{|s - r|^{2p+1}} ds dr.
\]
We will need the following property: There exists a constant R depending on a, γ and p such that
\[Y_t < R \text{ implies that } \sup_{0 \leq s \leq t} B_s \leq a. \tag{14} \]

To prove this fact we use the Garsia, Rodemich and Rumsey Lemma in [6]. This lemma applied to the function $s \in [0, t] \to B_s$, with the hypothesis that $Y_t < R$, implies
\[|B_s - B_r| \leq C_{p, \gamma} R^{\frac{p}{p}} |s - r|^{\gamma - \frac{1}{p}} \text{ for all } s, r \in [0, t]. \]

This implies that $\sup_{0 \leq s \leq t} |B_s| \leq C_{p, \gamma} R^{\frac{p}{p}}$. It suffices to choose R in such a way that $C_{p, \gamma} R^{\frac{p}{p}} < a$.

Let $\psi : \mathbb{R}^+ \to [0, 1]$ be an infinitely differentiable function such that
\[\psi(x) = \begin{cases} 0 & \text{if } x > R, \\ \psi(x) & \text{if } x \in \left[\frac{R}{2}, R \right], \\ 1 & \text{if } x \leq \frac{R}{2}. \end{cases} \]

Consider the \mathcal{H}-valued random variable given by
\[u_A = \left(K_H^* \right)^{-1} \left(K_H^{*, \text{adj}} \right)^{-1} (\psi(Y_t)), \tag{15} \]
where K_H^* is the operator defined in (2) and $K_H^{*, \text{adj}}$ denotes its adjoint in $L^2([0, 1])$. We claim that the random element u_A introduced in (15) and the random variable $G_A = \int_0^1 \psi(Y_t) \, dt$ satisfy the conditions of Theorem 1.

Let us first show that u_A belongs to $D^\infty(\mathcal{H})$. Fix an integer $j \geq 0$. It suffices to show that for any $q \geq 1$,
\[E \| D^j u_A \|_{\mathcal{H}^\otimes (j+1)}^q < \infty. \tag{16} \]

The j-th order derivative D^j of the function $\psi(Y_t)$ is evaluated with the help of the Faà di Bruno formula, see formula [24.1.2] in [1], as follows
\[D^j \psi(Y_t) = \sum_{n=1}^{j} \psi^{(n)}(Y_t) \sum_{i, l, \sum_{i=1}^j l_i = n, \sum_{i=1}^j i l_i = j} \prod_{i=1}^j \frac{1}{i!} \left(D^i Y_t \right)^{l_i}. \]

Hence, in order to show (16) it suffices to check that
\[E \left\| \left(K_H^* \right)^{-1} \left(K_H^{*, \text{adj}} \right)^{-1} \left[\psi^{(n)}(Y_t) \prod_{i=1}^j \left(D^i Y_t \right)^{l_i} \right] \right\|_{\mathcal{H}^\otimes (j+1)}^q < \infty. \tag{17} \]

for all $1 \leq n \leq j, \sum_{i=1}^j l_i = n, \sum_{i=1}^j i l_i = j$. Set
\[\Lambda_t = \psi^{(n)}(Y_t) \prod_{i=1}^j \left(D^i Y_t \right)^{l_i}. \]

By (3)
\[\left\| \left(K_H^* \right)^{-1} \left(K_H^{*, \text{adj}} \right)^{-1} \Lambda_t \right\|_{\mathcal{H}^\otimes (j+1)} = \left\| \left(K_H^{*, \text{adj}} \right)^{-1} \Lambda_t \right\|_{\mathcal{H}^\otimes (j+1) \otimes L^2([0, 1])}. \tag{18} \]
From (10), if $H > \frac{1}{2}$, we obtain
\[
(K_{H}^{*, \text{adj}})^{-1} \Lambda_t = d_H t^{H-\frac{1}{2}} I_{0+} t^{\frac{1}{2}-H} \Lambda_t
\]
\[
= \frac{d_H}{\Gamma \left(\frac{3}{2} - H \right)} \left(t^{\frac{3}{2}-H} \Lambda_t - \left(H - \frac{1}{2} \right) t^{H-\frac{1}{2}} \int_{0}^{t} \frac{t^{\frac{3}{2}-H} \Lambda_t - s^{\frac{3}{2}-H} \Lambda_s}{(t-s)^{H+\frac{1}{2}}} ds \right)
\]
where $d_H = (c_H \Gamma(H - \frac{1}{2}))^{-1}$. After some computations we get
\[
(K_{H}^{*, \text{adj}})^{-1} \Lambda_t = \beta(t) \Lambda_t + \int_{0}^{t} R(t, \theta) \Lambda_{\theta} d\theta,
\] (19)
where
\[
\beta(t) = \frac{d_H}{\Gamma \left(\frac{3}{2} - H \right)} \left(t^{\frac{3}{2}-H} - \left(H - \frac{1}{2} \right) t^{H-\frac{1}{2}} \int_{0}^{t} \frac{t^{\frac{3}{2}-H} - s^{\frac{3}{2}-H}}{(t-s)^{H+\frac{1}{2}}} ds \right)
\]
and
\[
R(t, \theta) = -\frac{d_H \left(H - \frac{1}{2} \right)}{\Gamma \left(\frac{3}{2} - H \right)} \int_{0}^{\theta} s^{\frac{3}{2}-H} (t-s)^{-H-\frac{1}{2}} ds.
\]
On the other hand, if $H < \frac{1}{2}$, from (11) we obtain
\[
(K_{H}^{*, \text{adj}})^{-1} \Lambda_t = e_H t^{H-\frac{1}{2}} I_{0+} t^{\frac{1}{2}-H} \Lambda_t,
\] (20)
where $e_H = (c_H \Gamma(H + \frac{1}{2}))^{-1}$.

In the sequel C_H will denote a generic constant depending on H. If $H > \frac{1}{2}$, (19) yields
\[
\left\| (K_{H}^{*, \text{adj}})^{-1} \Lambda_t \right\|_{\mathcal{H}^{(\oplus)} \otimes L^2([0,1])}^2 = \left\| \beta(t) \Lambda_t + \int_{0}^{t} R(t, \theta) \Lambda_{\theta} d\theta \right\|_{\mathcal{H}^{(\oplus)} \otimes L^2([0,1])}^2
\]
\[
\leq 2 \int_{0}^{1} \beta(t)^2 \left\| \Lambda_t \right\|_{\mathcal{H}^{(\oplus)}}^2 dt
\]
\[
+ C_H \int_{0}^{1} \left\| \Lambda_t \right\|_{\mathcal{H}^{(\oplus)}}^2 dt,
\] (21)
and for $H < \frac{1}{2}$, (20) yields
\[
\left\| (K_{H}^{*, \text{adj}})^{-1} \Lambda_t \right\|_{\mathcal{H}^{(\oplus)} \otimes L^2([0,1])}^2 \leq C_H \int_{0}^{1} \left\| \Lambda_t \right\|_{\mathcal{H}^{(\oplus)}}^2 dt.
\] (22)

We have
\[
\left\| \Lambda_t \right\|_{\mathcal{H}^{(\oplus)}} \leq \prod_{i=1}^{j} \left\| D^i Y_t \right\|_{\mathcal{H}^{(\oplus)}}^{1/2},
\] (23)

Taking into account that
\[
D^i Y_t = \int_{[0,t]^2} \frac{(B_r - B_s)^{2p-i}}{|r-s|^{2p+i+1}} 1_{[r,s]} dr ds,
\]
we obtain
\[\| D^i Y_t \|_{\mathcal{H}^q} \leq \int_{[0,t]^2} \frac{|B_r - B_s|^{2p-i}}{|t-s|^{2p\gamma+1-H}} dr ds, \]
and this implies that
\[\sup_{0 \leq t \leq 1} E \left[\| D^i Y_t \|_{\mathcal{H}^q}^q \right] < \infty, \tag{24} \]
for any \(q \geq 1. \)

On the other hand, from
\[\frac{d}{dt} \left(\psi^{(n)}(Y_t) \prod_{i=1}^j (D^i Y_t)^l_i \right) \]
we get
\[\| \Lambda'_t \|_{\mathcal{H}^q} \leq \sum_{m=1}^j l_m \| D^m Y_t \|_{\mathcal{H}^q}^{l_m-1} \| D^m Y_t \|_{\mathcal{H}^q} \prod_{i=1}^j \| D^i Y_t \|_{\mathcal{H}^q}^{l_i}, \]
(25)

From
\[D^i Y_t' = \int_0^t \frac{(B_t - B_s)^{2p-i}}{|t-s|^{2p\gamma+1-H}} ds, \]
we obtain
\[\| D^i Y_t' \|_{\mathcal{H}^q} \leq \int_0^t \| B_t - B_s \|^{2p-i} ds, \]
and this implies that
\[\sup_{0 \leq t \leq 1} E \left[\| D^i Y_t' \|_{\mathcal{H}^q}^q \right] < \infty, \tag{26} \]
for any \(q \geq 1. \)

Finally, (24), (23), (21), (22), (18), (26) and (25) imply (17). This shows condition (i) of Theorem 1.

In order to show condition (iii) notice that
\[\langle D M, u A \rangle_{\mathcal{H}} = \langle 1_{[0,T]}, u A \rangle_{\mathcal{H}} = \langle K_H^* 1_{[0,T]}, K_H^* u A \rangle_{L^2((0,1))} \]
\[= \langle 1_{[0,T]}, K_H^{*,adj} K_H^* u A \rangle_{L^2((0,1))} \]
\[= \int_0^T \psi(Y_t) dt. \]
On the other hand, on the set \(\{ M > a \} \), taking into account (13) and (14), it holds that
\[
\psi(Y_t) > 0 \Rightarrow t \leq T,
\]
and, as a consequence, \(\int_0^T \psi(Y_t) \, dt = G_A \).

Finally, it remains to show condition (ii), that is, \(G_A^{-1} \in L^q(\Omega) \) for any \(q \geq 2 \). We have
\[
G_A \geq \int_0^1 \psi(Y_t) 1\{Y_t < \frac{R}{2}\} \, dt
\]
\[
= \int_0^1 1\{Y_t < \frac{R}{2}\} \, dt
\]
\[
= \lambda \left\{ t \in [0, 1] : Y_t < \frac{R}{2} \right\}
\]
\[
= Y_t^{-1} \left(\frac{R}{2} \right),
\]
because \(Y \) is non-decreasing and is continuous. For any \(\epsilon > 0 \) we get
\[
P \left(Y_t^{-1} \left(\frac{R}{2} \right) < \epsilon \right) = P \left(\frac{R}{2} < Y_\epsilon \right)
\]
\[
\leq \left(\frac{2}{R} \right)^p E |Y_\epsilon|^p
\]
\[
\leq \left(\frac{2}{R} \right)^p \left[\int_{[0, \epsilon]^2} \frac{\|B_r - B_s\|_{L^p(\Omega)}}{r-s} 2p \, dr \, ds \right]^p
\]
\[
\leq R^{-p} c_p \left[\int_{[0, \epsilon]^2} |r-s|^{2pH-2p\gamma-1} \, dr \, ds \right]^{\frac{p}{p}},
\]
\[
= R^{-p} c_p (2p(H-\gamma+1)).
\]
This completes the proof of the proposition. \(\blacksquare \)

References

[1] Abramowitz, A., and Stegun, S., *Handbook of mathematical functions*. Nauka, Moskow (1979).

[2] Airault, H., and Malliavin, P., Integration géométrique sur l’espace de Wiener. *Bull. Sci. Math.* **112** (1988) 3-52.

[3] Alòs, E., and Nualart, D., Stochastic calculus with respect to the fractional Brownian motion. To appear in *Stochastics and Stochastics Reports*.

[4] Decreusefond, L., and Üstünel, A.S., Stochastic analysis of the fractional Brownian motion. *Potential Anal.* **10** (1998) 177-214.
[5] Florit, C. and Nualart, D., A local criterion for smoothness of densities and application to the supremum of the Brownian sheet. *Statistics and Probability Letters* **22** (1995) 25-31.

[6] Garsia, A., Rodemich, E. and Rumsey, H., A real variable lemma and the continuity of paths of some Gaussian processes. *Indiana Univ. Math. Journal* **20** (1970/71) 565-578.

[7] Nualart, D., *The Malliavin calculus and related topics*. Springer Verlag (1995).

[8] Nualart, D., Analysis on Weiner space and anticipating stochastic calculus. *Lecture Notes in Math.* **1690** (1998) 123-227.

[9] Samko, S. G., Kilbas, A.A. and Mariachev, O. I., *Fractional integrals and derivatives*. Gordon and Breach Science (1993).

[10] Vives, J. and Nualart, D., Continuité absolue de la loi du maximum d’un processus continu. *C. R. Acad. Sci. Paris*. **307** (1988) 349-354.