Cross-Language Text Classification using Structural Correspondence Learning

Peter Prettenhofer and Benno Stein

Web Technology & Information Systems Group
Bauhaus-Universität Weimar

September 15, 2010
Outline

Cross-Language Text Classification

Cross-Language Structural Correspondence Learning

Empirical Results
Outline

Cross-Language Text Classification

Cross-Language Structural Correspondence Learning

Empirical Results
Problem Statement
Create a classifier for a text classification task in some target language \mathcal{T} given labeled examples for the identical task in a different source language \mathcal{S}.

- Example: Create a sentiment classifier for German book reviews given training book reviews written in English.
- Can be cast as a domain adaptation problem.
Text Classification

- We assume BoW document representations x and linear classifiers w.
- For simplicity, we consider binary classification, $y \in \{-1, +1\}$.

```
| Term   | x  | w  |
|--------|----|----|
| great  | 0.5| 2.1|
| book   | 0.2| -0.2|
| money  | 0  | -1.9|
| ...    | ...| ...|
| movie  | 0  | -0.6|
| poetry | 0.3| 0.9 |
| pages  | 0  | -1.1|
```

- Training: infer w from a set of training examples $D_S = \{(x_i, y_i)\}$.

$\text{sign}(w^T x)$
Disjoint vocabulary

- Vocabulary divides into V_S and V_T with $V_S \cap V_T = \emptyset$.
- A linear classifier trained on D_S can associate non-zero weights only with V_S.
Cross-Language Text Classification (2)

Cross-lingual representation

- A concept space that underlies both languages.
- Let θ denote a (linear) map from the original to the cross-lingual representation.

$$\theta x \rightarrow \text{sign}(v^T \theta x)$$
Cross-Language Text Classification (3)

- θ encodes cross-lingual word correspondences.

- Current approaches use various linguistic resources to construct θ:
 - Bilingual dictionary.
 - Parallel corpus.
 - Machine translation (MT) system.
Cross-Language Text Classification (3)

- θ encodes cross-lingual word correspondences.

- Current approaches use various linguistic resources to construct θ:
 - Bilingual dictionary.
 - Parallel corpus.
 - Machine translation (MT) system.

- Our approach learns θ from unlabeled data.
Outline

Cross-Language Text Classification

Cross-Language Structural Correspondence Learning

Empirical Results
Cross-Language Structural Correspondence Learning

- CL-SCL uses unlabeled data and a word translation oracle to induce cross-lingual word correspondences.
- Builds on Structural Correspondence Learning (SCL) [Blitzer et al, 2006].
- Advantages:
 - Task specific correspondences.
 - Efficiency in terms of linguistic resources.
 - Efficiency in terms of computational resources.
- Competitive or better than MT while requiring fewer resources.
CL-SCL uses unlabeled data and a word translation oracle to induce cross-lingual word correspondences.

Builds on Structural Correspondence Learning (SCL) [Blitzer et al, 2006].

Advantages:

- Task specific correspondences.
- Efficiency in terms of linguistic resources.
- Efficiency in terms of computational resources.

Competitive or better than MT while requiring fewer resources.
CL-SCL - Learning Setting

1. **Labeled source data** D_S.
2. **Unlabeled data** $D_u = D_{S,u} \cup D_{T,u}$
3. **Translation oracle** $o : V_S \rightarrow V_T$

```
\begin{align*}
\text{Words in } V_S & \quad \text{Words in } V_T \\
x = (x_1, \ldots, x_{|V|}) & \quad \ldots, x_{|V|}
\end{align*}
```

- **Term frequencies**
- **Positive class label**
- **Negative class label**
- **No value**
Step 1 - Pivot Selection

- A **pivot** is a pair of words \(\{w_S, w_T\} \).
- Pivots have to satisfy the following conditions:
 - **Confidence**: Both words are correlated with the class label.
 - **Support**: Both words occur frequently in \(D_{S,u} \) and \(D_{T,u} \).
- Example: \(\{\text{excellent}_S, \text{exzellent}_T\} \).
Step 1 - Pivot Selection

- A pivot is a pair of words $\{w_S, w_T\}$.
- Pivots have to satisfy the following conditions:
 - **Confidence**: Both words are correlated with the class label.
 - **Support**: Both words occur frequently in $D_{S,u}$ and $D_{T,u}$.
- Example: $\{\text{excellent}_S, \text{exzellent}_T\}$.

Heuristic

1. Select subset from V_S according to MI w.r.t. D_S.
2. Translate words into T.
3. Eliminate pivots which occur less than ϕ times in D_u.
Step 1 - Pivot Selection

- A pivot is a pair of words \(\{w_S, w_T\} \).
- Pivots have to satisfy the following conditions:
 - **Confidence:** Both words are correlated with the class label.
 - **Support:** Both words occur frequently in \(D_{S,u} \) and \(D_{T,u} \).
- Example: \(\{\text{excellent}_S, \text{exzellent}_T\} \).

Heuristic

1. Select subset from \(V_S \) according to MI w.r.t. \(D_S \).
2. Translate words into \(T \).
3. Eliminate pivots which occur less than \(\phi \) times in \(D_u \).

Let \(m \) denote the number of pivots.
Step 2 - Train Pivot Classifiers (1)

- Model the correlations between each pivot and all other words.
- **Pivot classifier**: A linear classifier that predicts whether or not w_S or w_T occur in a document.
Step 2 - Train Pivot Classifiers (2)

- Let w_l denote the pivot classifier for the l-th pivot $\{w_S, w_T\}$.
- w_l captures both the correlation between w_S and $V_S \setminus w_S$ and between w_T and $V_T \setminus w_T$.
 - Implicitly aligns non-pivot words from both V_S and V_T.
Step 2 - Train Pivot Classifiers (2)

▶ Let w_l denote the pivot classifier for the l-th pivot \{w_S, w_T\}.
▶ w_l captures both the correlation between w_S and $V_S \setminus w_S$ and between w_T and $V_T \setminus w_T$.
 ▶ Implicitly aligns non-pivot words from both V_S and V_T.

Example: \{$boring_S$, langweilig$_T$\}

langatmig (lengthy), spannung (tension), war (was), characters, handlung (story), pages, finish, seiten (pages), story
Step 3 - Compute SVD

- If two words (e.g., pages\(_S\) and seiten\(_T\)) are correlated across a number of pivots we assume correspondence between them.

- Identify correlations across pivots by computing the SVD of the parameter matrix \(W\),

\[W = [w_1 \cdots w_m] \]

- Let \(\theta^T\) be the top-\(k\) left singular vectors of \(W\).

- At training and test time simply apply \(\theta x\) for each instance \(x\).
Alternative View

- Use θ to constraint the parameter space for the target task [Ando & Zhang, 2005].
Alternative View

- Use θ to constraint the parameter space for the target task [Ando & Zhang, 2005].
Alternative View

- Use θ to constraint the parameter space for the target task [Ando & Zhang, 2005].

\[
\mathbf{w} = \theta^T \mathbf{v}
\]
Computational Considerations

- SVD is the computational bottleneck if W is large.

- Make W sparse:
 - Set negative values to zero [Ando & Zhang, 2005; Blitzer et al., 2007; Prettenhofer & Stein, 2010a].
 - Use sparse regularization for pivot classifiers [Prettenhofer & Stein, 2010b].

Elastic-Net Regularization [Zou & Hastie, 2005]
- A convex combination of L2 and L1 norm penalties, $R(w) = \alpha \|w\|_2^2 + (1 - \alpha) \|w\|_1$.
- Superior to L1 penalty when handling highly correlated features.
Computational Considerations

- SVD is the computational bottleneck if \mathbf{W} is large.
- Make \mathbf{W} sparse:
 - Set negative values to zero [Ando & Zhang, 2005; Blitzer et al, 2007; Prettenhofer & Stein, 2010a].

Elastic-Net Regularization [Zou & Hastie, 2005]

- A convex combination of L2 and L1 norm penalties, $R(\mathbf{w}) = \alpha \|\mathbf{w}\|_2^2 + (1 - \alpha) \|\mathbf{w}\|_1$.
 - Superior to L1 penalty when handling highly correlated features.
Computational Considerations

- SVD is the computational bottleneck if W is large.
- Make W sparse:
 - Set negative values to zero [Ando & Zhang, 2005; Blitzer et al., 2007; Prettenhofer & Stein, 2010a].
 - Use **sparse regularization** for pivot classifiers [Prettenhofer & Stein, 2010b].
Computational Considerations

- SVD is the computational bottleneck if W is large.
- Make W sparse:
 - Set negative values to zero [Ando & Zhang, 2005; Blitzer et al., 2007; Prettenhofer & Stein, 2010a].
 - Use **sparse regularization** for pivot classifiers [Prettenhofer & Stein, 2010b].

Elastic-Net Regularization [Zou & Hastie, 2005]

- A convex combination of L2 and L1 norm penalties,

$$R(w) = \alpha \|w\|_2^2 + (1 - \alpha) \|w\|_1.$$

- Superior to L1 penalty when handling highly correlated features.
Outline

Cross-Language Text Classification

Cross-Language Structural Correspondence Learning

Empirical Results
Experimental Setup (1)

Data: Amazon product reviews

- Categories: Books, dvd, and music.
- Source language: English.
- Target language: German, French, and Japanese.
- Nine $S-T$-category combinations.
 - 2,000 training and 2,000 test examples (balanced).
 - 10,000 - 50,000 unlabeled examples from each language.

Training via Stochastic Gradient Descent

- Smoothed hinge loss as loss function.
- L2 penalty for target task.
- Elastic-Net for pivot classifiers.

Fast: 2-10sec / pivot classifier.
Experimental Setup (1)

Data: Amazon product reviews

- Categories: Books, dvd, and music.
- Source language: English.
- Target language: German, French, and Japanese.
- Nine S-T-category combinations.
 - 2,000 training and 2,000 test examples (balanced).
 - 10,000 - 50,000 unlabeled examples from each language.

Training via Stochastic Gradient Descent

- Smoothed hinge loss as loss function.
- L2 penalty for target task.
- Elastic-Net for pivot classifiers.
- Fast: 2-10sec / pivot classifier.
Experimental Setup (2)

- **Upper Bound (UB):**
 - Classification performance if training data in T is available.

- **Baseline (CL-MT):**
 - Translate test documents into S with Google Translate.

- **CL-SCL:**
 - Uses 450 pivots, dimensionality reduction to $k = 100$, $|D_u| \approx 10^5$, and $\alpha = 0.85$.
 - Google Translate as translation oracle.
Results

\(\mathcal{T} \)	Cat.	\(\mu \)	\(\mu \)	\(\Delta \)	\(\mu \)	\(\Delta \)	RR[\%]
	books	83.79	79.68	4.11	† 83.34	0.45	89.05%
German	dvd	81.78	77.92	3.86	† 80.89	0.89	76.94%
	music	82.80	77.22	5.58	† 82.90	-0.10	101.79%
	books	83.92	80.76	3.16			
French	dvd	83.40	78.83	4.57			
	music	86.09	75.78	10.31			
	books	78.09	70.22	7.87	†† 77.00	1.09	86.15%
Japanese	dvd	81.56	71.30	10.26	†† 76.37	5.19	49.42%
	music	82.33	72.02	10.31	†† 77.34	4.99	51.60%

- ~ 60% reduction in relative error due to cross-lingual adaptation.
| \mathcal{T} | Cat. | UB μ | CL-MT μ | Δ | CL-SCL μ | Δ | RR[\%] |
|------------|---------|----------|-------------|----------|-------------|----------|--------|
| German | books | 83.79 | 79.68 | 4.11 | 83.34 | 0.45 | 89.05% |
| | dvd | 81.78 | 77.92 | 3.86 | 80.89 | 0.89 | 76.94% |
| | music | 82.80 | 77.22 | 5.58 | 82.90 | -0.10 | 101.79% |
| French | books | 83.92 | 80.76 | 3.16 | 81.27 | 2.65 | 16.14% |
| | dvd | 83.40 | 78.83 | 4.57 | 80.43 | 2.97 | 35.01% |
| | music | 86.09 | 75.78 | 10.31 | 78.05 | 8.04 | 22.02% |
| Japanese | books | 78.09 | 70.22 | 7.87 | 77.00 | 1.09 | 86.15% |
| | dvd | 81.56 | 71.30 | 10.26 | 76.37 | 5.19 | 49.42% |
| | music | 82.33 | 72.02 | 10.31 | 77.34 | 4.99 | 51.60% |

▶ ~ 60% reduction in relative error due to cross-lingual adaptation.
Results

\mathcal{T}	Cat.	UB	CL-MT	CL-SCL	RR[\%]			
		μ	μ	Δ	μ	Δ		
books	83.79	79.68	4.11	†	83.34	0.45	89.05%	
German	dvd	81.78	77.92	3.86	†	80.89	0.89	76.94%
	music	82.80	77.22	5.58	†	82.90	-0.10	101.79%
books	83.92	80.76	3.16		81.27	2.65	16.14%	
French	dvd	83.40	78.83	4.57		80.43	2.97	35.01%
	music	86.09	75.78	10.31		78.05	8.04	22.02%
books	78.09	70.22	7.87	††	77.00	1.09	86.15%	
Japanese	dvd	81.56	71.30	10.26	††	76.37	5.19	49.42%
	music	82.33	72.02	10.31	††	77.34	4.99	51.60%

▶ ~ 60% reduction in relative error due to cross-lingual adaptation.
Results

\(\mathcal{T} \)	Cat.	UB	CL-MT	CL-SCL	RR[\%]	
	\(\mu \)	\(\mu \)	\(\Delta \)	\(\mu \)	\(\Delta \)	
books	83.79	79.68	4.11	† 83.34	0.45	89.05%
German						
dvd	81.78	77.92	3.86	† 80.89	0.89	76.94%
books	83.92	80.76	3.16	†† 81.27	2.65	16.14%
French						
dvd	83.40	78.83	4.57	† 80.43	2.97	35.01%
books	78.09	70.22	7.87	†† 77.00	1.09	86.15%
Japanese						
dvd	81.56	71.30	10.26	†† 76.37	5.19	49.42%
books	82.33	72.02	10.31	†† 77.34	4.99	51.60%

\(\sim 60\% \) reduction in relative error due to cross-lingual adaptation.
\mathcal{T}	Cat.	UB	CL-MT	CL-SCL	RR [%]			
		μ	μ	Δ	μ	Δ		
books	83.79	79.68	4.11	†	83.34	0.45	89.05%	
German	dvd	81.78	77.92	3.86	†	80.89	0.89	76.94%
	music	82.80	77.22	5.58	†	82.90	-0.10	101.79%
books	83.92	80.76	3.16		81.27	2.65	16.14%	
French	dvd	83.40	78.83	4.57		80.43	2.97	35.01%
	music	86.09	75.78	10.31		78.05	8.04	22.02%
books	78.09	70.22	7.87	††	77.00	1.09	86.15%	
Japanese	dvd	81.56	71.30	10.26	††	76.37	5.19	49.42%
	music	82.33	72.02	10.31	††	77.34	4.99	51.60%

► ~ 60% reduction in relative error due to cross-lingual adaptation.
Task-Specific Word Correlations

Pivot	English	German		
	Semantics	Pragmatics	Semantics	Pragmatics
\{beautiful$_S$, amazing, schön$_T$\} beautiful, beauty, lovely	picture, pattern, poetry, photographs, paintings	schöner, traurig	bilder, illustriert	
\{boring$_S$, plain, langweilig$_T$\} asleep, dry, long	characters, pages, story	langatmig, einfach, enttäuscht	charaktere, handlung, seiten	

- Such task-specific correlations cannot be obtained from a general parallel corpus.
Task-Specific Word Correlations

Pivot	English Semantics	English Pragmatics	German Semantics	German Pragmatics
{beautiful$_S$, amazing, schön$_T$}	picture, pattern, poetry, photographs, paintings	schöner, traurig	bilder, illustriert	
{boring$_S$, plain, langweilig$_T$}	characters, pages, story	langatmig, einfach, enttäuscht	charaktere, handlung, seiten	

▶ Such task-specific correlations cannot be obtained from a general parallel corpus.
The more unlabeled data the better.

Even a small number of pivots captures a large part of the correspondences between S and T.

SVD is crucial to the success of CL-SCL.

- Value of k is task-insensitive.
Cross-language text classification can be cast as a domain adaptation problem.

CL-SCL uses unlabeled data and a word translation oracle to induce task-specific, cross-lingual word correspondences.

Convincing empirical results.

Competitive or better than MT while requiring fewer resources.

Future work: apply CL-SCL to other NLP tasks.

E.g., cross-language named entity recognition.
Thanks! Questions?

Data: http://webis.de/research/corpora/
SGD-Code: http://github.org/pprett/bolt/
References

- Domain Adaptation using Structural Correspondence Learning
 [Blitzer, J., McDonald, R., and Pereira F., EMNLP, 2006]

- Domain Adaptation for Sentiment Classification
 [Blitzer, J., Dredze, M., and Pereira, F., ACL, 2007]

- A framework for learning predictive structures from multiple tasks and unlabeled data
 [Ando, R. K. and Zhang, T., JMLR, 2005]

- Regularization and variable selection via the elastic net
 [Zou, H. and Hastie, T., JRSS, 2005]

- Cross-Language Text Classification using Structural Correspondence Learning
 [Prettenhofer, P., and Stein, B., ACL, 2010a]

- Cross-Lingual Adaptation using Structural Correspondence Learning
 [Prettenhofer, P., and Stein, B., arXiv, 2010b]
Discriminative Training of Linear Classifiers

- Minimize the (regularized) training error,

\[
\arg \min_w \sum_{(x, y) \in D} L(y, w^T x) + \lambda R(w).
\]

- Loss term \(L \) measures model (mis)fit.
- Regularization term \(R \) penalizes model complexity.

\[
\begin{align*}
L2: \quad &R(w) = \|w\|_2^2 = \sum_i w_i^2 \\
L1: \quad &R(w) = \|w\|_1 = \sum_i |w_i| \\
Elastic-Net: \quad &R(w) = \alpha \|w\|_2^2 + (1 - \alpha) \|w\|_1
\end{align*}
\]
Dataset Statistics

\mathcal{T}	Category	Unlabeled data	Labeled data	Vocabulary															
		$	D_{S,u}	$	$	D_{T,u}	$	$	D_S	$	$	D_T	$	$	V_S	$	$	V_T	$
German	books	50,000	50,000	2,000	2,000	64,682	108,573												
	dvd	30,000	50,000	2,000	2,000	52,822	103,862												
	music	25,000	50,000	2,000	2,000	41,306	99,287												
	books	50,000	32,000	2,000	2,000	64,682	55,016												
French	dvd	30,000	9,000	2,000	2,000	52,822	29,519												
	music	25,000	16,000	2,000	2,000	41,306	42,097												
	books	50,000	50,000	2,000	2,000	64,682	52,311												
Japanese	dvd	30,000	50,000	2,000	2,000	52,822	54,533												
	music	25,000	50,000	2,000	2,000	41,306	54,463												
	-	60,000	60,000	6,000	6,000	76,629	124,529												
	-	60,000	45,000	6,000	6,000	76,629	74,807												
	-	60,000	60,000	6,000	6,000	76,629	64,050												
Results

T	Cat.	Upper Bound	CL-MT	CL-SCL					
		μ	σ	μ	σ	Δ	μ	σ	Δ
books	83.79	±0.20		79.68	±0.13	4.11	† 83.34	±0.02	0.45
German dvd	81.78	±0.27		77.92	±0.25	3.86	† 80.89	±0.02	0.89
music	82.80	±0.13		77.22	±0.23	5.58	† 82.90	±0.00	-0.10
books	83.92	±0.14		80.76	±0.34	3.16	81.27	±0.08	2.65
French dvd	83.40	±0.28		78.83	±0.19	4.57	80.43	±0.05	2.97
music	86.09	±0.13		75.78	±0.65	10.31	78.05	±0.06	8.04
books	78.09	±0.14		70.22	±0.27	7.87	†† 77.00	±0.06	1.09
Japanese dvd	81.56	±0.28		71.30	±0.28	10.26	†† 76.37	±0.05	5.19
music	82.33	±0.13		72.02	±0.29	10.31	†† 77.34	±0.06	4.99

German - 92.95 ±0.11 92.25 ±0.07 0.70 92.61 ±0.06 0.34
French - 93.27 ±0.07 90.58 ±0.17 2.69 90.57 ±0.13 2.70
Japanese - 89.43 ±0.11 82.14 ±0.22 7.29 †† 85.03 ±0.10 4.40
Effect of Regularization

\mathcal{T}	Category	\mathcal{L}^2^+	L1	Elastic-Net			
		μ	d[\%]	μ	d[\%]	μ	d[\%]
German	books	79.50	17.88	82.45	1.24	83.34	11.02
	dvd	77.06	16.84	78.60	1.43	80.89	12.25
	music	77.60	16.00	81.41	1.72	82.90	13.92
	books	79.02	16.50	80.75	1.87	81.27	14.13
	dvd	78.80	19.23	78.70	3.98	80.43	23.22
	music	77.72	16.70	77.32	3.72	78.05	21.60
	books	73.09	15.21	71.06	1.27	77.00	10.47
Japanese	dvd	71.10	14.86	75.75	1.48	76.37	11.84
	music	75.15	13.72	76.22	1.83	77.34	13.39
German	-	89.69	16.19	88.73	0.92	92.61	8.38
French	-	87.59	16.29	89.65	1.36	90.57	11.37
Japanese	-	82.83	16.71	84.26	1.23	85.03	10.15