Detection and genetic analysis of the enteroaggregative *Escherichia coli* heat-stable enterotoxin (EAST1) gene in clinical isolates of enteropathogenic *Escherichia coli* (EPEC) strains

Lucas EP Silva¹, Tamara B Souza¹, Neusa P Silva² and Isabel CA Scaletsky¹*

**Abstract**

**Background:** The enteroaggregative *E. coli* heat-stable enterotoxin 1 (EAST1) encoded by *astA* gene has been found in enteropathogenic *E. coli* (EPEC) strains. However, it is not sufficient to simply probe strains with an *astA* gene probe due to the existence of *astA* mutants (type 1 and type 2 SHEAST) and EAST1 variants (EAST1 v1-4). In this study, 222 EPEC (70 typical and 152 atypical) isolates were tested for the presence of the *astA* gene sequence by PCR and sequencing.

**Results:** The *astA* gene was amplified from 54 strains, 11 typical and 43 atypical. Sequence analysis of the PCR products showed that 25 strains, 7 typical and 18 atypical, had an intact *astA* gene. A subgroup of 7 atypical strains had a variant type of the *astA* gene sequence, with four non-synonymous nucleotide substitutions. The remaining 22 strains had mutated *astA* gene with nucleotide deletions or substitutions in the first 8 codons. The RT-PCR results showed that the *astA* gene was transcribed only by the strains carrying either the intact or the variant type of the *astA* gene sequence. Southern blot analysis indicated that *astA* is located in EAF plasmid in typical strains, and in plasmids of similar size in atypical strains. Strains carrying intact *astA* genes were more frequently found in diarrheic children than in non-diarrheic children (p < 0.05).

**Conclusion:** In conclusion, our data suggest that the presence of an intact *astA* gene may represent an additional virulence determinant in both EPEC groups.

**Keywords:** EAST1 gene, *astA* gene, Enteropathogenic *Escherichia coli*

---

**Background**

Enteropathogenic *Escherichia coli* (EPEC) are an important cause of infant diarrhea in developing countries [1]. The majority of EPEC isolates belong to classic serotypes derived from 12 classical O serogroups (O26, O55, O86, O111, O114, O119, O125, O126, O127, O128, O142, and O158) [2,3]. EPEC induces attaching and effacing (A/E) lesions on epithelial cells, characterized by microvilli destruction, cytoskeleton rearrangement, and the formation of a pedestal-like structure at the site of bacterial contact [4]. The A/E genes are localized to the locus for enteroocyte effacement (LEE) and encode intimin, a type III secretion system, secreted proteins and the translocated intimin receptor [5-7].

“Typical” EPEC strains (tEPEC) contain also the EPEC adherence factor (EAF) plasmid [8], which carries genes encoding a regulator (per) [9] and the bundle-forming pili (BFP) [10]. EPEC strains lacking the EAF plasmid have been designated “atypical” EPEC (aEPEC) [11]. Recent epidemiological studies indicate that aEPEC are more prevalent than tEPEC in both developed and developing countries [1]. Some aEPEC strains are genetically related to the enterohemorrhagic *E. coli* (EHEC), and both are considered as emerging pathogens [12].

Typical EPEC strains express only the virulence factors encoded by the LEE region and the EAF plasmid, with
the exception of the cytotoxins distending toxin produced by O86:H34 strains and the enterotoxigenic heat-stable enterotoxin (EST) found in O55:H6 and O127:H6 strains. In contrast, aEPEC strains frequently express EAST1 and additional virulence factors not encoded by LEE region [12]. In a previous study [13], EAST1 was the most frequent (42%) virulence factor found in a collection of 65 aEPEC strains, and was significantly associated with children diarrhea.

EAST1-positive aEPEC strains have been associated with outbreaks of diarrhea involving children and adults in the United States [14] and Japan [15]. However, it is not sufficient to simply probe strains with an astA gene probe due to the existence of EAST1 variants [16]. In one study, 100% of the O26, O111, O145, and O157:H7 enterohemorrhagic E. coli (EHEC) strains examined carried DNA sequences homologous to the EAST1 gene (SHEAST) with two different mutation types. Type 1 SHEAST has 12 nucleotide non-synonymous substitutions including one in the initiation codon; type 2 SHEAST lacks the first 8 codons of EAST1 sequence [16]. The focus of the study was to investigate the astA gene sequence present in tEPEC and aEPEC strains. The strains were collected in different cities of Brazil in different periods of time and in a previous study poor relatedness was observed by RAPD analysis of 118 strains belonging to this collection [13].

Results and discussion
We examined 222 EPEC strains (70 typical and 152 atypical) for the presence of the astA gene by PCR using primers that anneal to the 5’ ends of the EAEC 042 astA gene sequence [16]. Those strains were isolated from diarrheic and non-diarrheic Brazilian children in previous studies [17-20]. As shown in Table 1, 11 (16%) tEPEC and 43 (28%) aEPEC strains were positive in the PCR assay. Among the aEPEC PCR-positive strains, 13 belonged to the O26 and O119 serogroups.

The 54 astA gene PCR products were sequenced. Twenty-five strains, 7 tEPEC and 18 aEPEC, carried the DNA sequence identical to the EAST1 gene (042-type EAST1) (Figure 1). A subgroup of 7 aEPEC strains presented a variant type of the 042-type EAST1 gene sequence, with four non-synonymous nucleotide substitutions. Nine other strains, including one typical, carried either the sequence identical to type 1 SHEAST (7 strains) or to type 2 SHEAST (two strains). The remaining 13 strains carried mutated sequences of the 042-type EAST1 (five strains), type 1 SHEAST (two strains) or type 2 SHEAST (six strains) genes.

Table 1  EPEC-astA strains isolated from diarrheic and non-diarrheic children

| EPEC Serotype       | Diarrheic children | Non-diarrheic children | Total of children |
|---------------------|--------------------|-------------------------|-------------------|
| tEPEC               |                    |                         |                   |
| O55:NM:HND          | 0/13               | 0/1                     | 0/14              |
| O86:NM:H34          | 0/2                | 0                       | 0/2               |
| O111:NM:H2,HND      | 4/9                | 0                       | 4/9               |
| O119:NM:H6,HND      | 2/22               | 0/3                     | 2/25              |
| O127:NM:H6          | 0/1                | 2/3                     | 2/4               |
| Other serotypes     | 3/14               | 0/2                     | 3/16              |
| Subtotal            | 9/61               | 2/9                     | 11/70             |
| aEPEC               |                    |                         |                   |
| O26:H11:HND         | 6/10               | 0/2                     | 6/12              |
| O55:HND             | 2/3                | 1/2                     | 3/5               |
| O111:NM             | 2/2                | 1/2                     | 3/4               |
| O114:NM             | 0                  | 0/1                     | 0/1               |
| O119:H2:HND         | 7/9                | 0/3                     | 7/12              |
| O126:NM             | 0/1                | 0                       | 0/1               |
| O127:NM:H40         | 0/3                | 0/1                     | 0/4               |
| O128:NM             | 0/3                | 0                       | 0/3               |
| O142:NM:H2          | 1/8                | 0                       | 1/8               |
| Other serotypes     | 18/68              | 5/34                    | 23/102            |
| Subtotal            | 36/107             | 7/45                    | 43/152            |
| Total               | 45/168             | 9/54                    | 54/222            |

Notes: NM, nonmotile; ND, nondetermined; ONT, nontypeable.

*aO2:H2;H45; O101:H33; O145:HND; O157:HND; O162:H33; ONT:H45; ONT:HND.
*bO4:HND; O15:HND; O33:H6; O35:H19; O37:HND; O49:HND; O61:HND; O63:HND; O79:HND; O85:H40; O96:HND; O98:HND; O101:NM; O103:NM; O105:H7; O108:H31; O109:H45; O117:HND; O132:HND; O141:HND; O152:H2; O156:H16; O157:HND; O167:H6; O169:H6; O175:HND; ONT:NM; ONT:H18; ONT:HND.
The expression of EAST1 was examined by RT-PCR and quantitative RT-PCR. The RT-PCR results showed that the astA gene was transcribed only by the strains carrying either the intact or the variant type of the astA gene sequence (Figure 2). The astA gene expression levels of the 32 RT-PCR positive strains (CT values ranged from 20.3 ± 0.11 to 21.6 ± 0.04) were nearly identical to that of EAEC 042 strain (CT value 20.8 ± 0.01).

Plasmids of the 54 PCR-positive strains were examined for astA gene presence by Southern blot hybridization with the astA probe. In 23 (42.6%) strains, a single copy of the astA gene was located to a large plasmid (Figure 3). In all the eleven tEPEC strains, the astA probe hybridized to the EAF plasmid as previously reported [21], and in twelve aEPEC the astA probe hybridized with large plasmids of similar size. The plasmids of the remaining strains were astA probe negative.

We previously reported that 24% of 65 aEPEC strains hybridized with a DNA probe for EAST1 [13]. Here, we analyzed by PCR a larger group of EPEC, including typical strains and found that 11 (16%) of 70 tEPEC and 43 (28%) of 152 aEPEC were astA positive. Sequence analysis of the
PCR products showed that 7 (63.6%) of 11 tEPEC and 18 (41.9%) of 43 aEPEC had an intact astA gene.

As shown in Table 2, strains carrying intact astA gene were more frequently found in diarrheic children than in non-diarrheic children (p = 0.03, Fisher’s exact test). However, we should point out that among the 222 strains analyzed only 118 were collected from a case–control study [13].

The EAST1 gene family includes one major type of sequence, i.e. the astA of EAEC strain 042 that is widely distributed among different diarrheagenic E. coli strains [21-26] and four variant types of EAST1, i.e. the EAST1v1 of EAEC 17–2 [21,22], EAST1v2 of EPEC N1 [21], and EAST1v3 and EAST1v4 of E. coli O166:H15 [25].

In this study, a subgroup of aEPEC strains had a new variant type of EAST1 gene sequence that differed from those previously reported, and was denominated EAST1v5 (Figure 4). The RT-PCR analysis showed that EAST1v5 was transcribed to produce mRNA. However, more studies are necessary to determine whether EAST1v5 is associated with a functional polypeptide toxin.

Conclusion
In conclusion, our data suggest that the presence of an intact astA gene may represent an additional virulence determinant in both EPEC groups.

Methods
Bacterial strains
The 222 EPEC strains examined in this study included 176 strains isolated in 1999 to 2004 during an epidemiological study of acute diarrhea in children <2 years of age conducted in different regions of Brazil, and 46 strains isolated from children <5 years of age with diarrhea in...
Products were analyzed by 2% agarose gel electrophoresis.

Polymerization for 120 s at 72°C (30 cycles). PCR products were used to control PCR [30], and the assay was then carried out with the primers EAST11a and EAST11b [26]. PCR products were analyzed by 2% agarose gel electrophoresis.

DNA hybridization

The following probes were used in this study: astA, a 111-bp PCR product from EAEC 042 strain with the primer set EAST11a (5′-CCATCAACACAGTGATCCTTGCA) and EAST11b (5′-GGTCGCGAGTGACGGCTTTGT) [26]; and EAF, a 1.0 kb BamHI-SalI fragment from plasmid pMAR2 [27]. The DNA fragments were purified, labeled with [α-32P] dCTP with a DNA labeling kit (Amersham Pharmacia Biotech Inc., EUA) and used as probes. For Southern blotting, plasmid DNA was extracted using the method of Birnboim and Doly [28], separated in 0.8% agarose gel electrophoresis, and transferred to a nylon membrane, following a standard protocol [29]. Blots were hybridized in a solution containing the labeled probe (10^6 cpm), 5 × standard saline citrate (SSC), 2 × Denhardt’s solution (Invitrogen), 0.1% sodium dodecyl sulfate (SDS), and 5 mg/ml of salmon sperm DNA for 16 h at 65°C. After hybridization, washes were done in aqueous solution with 2 × SSC with 0.1% SDS and exposed to X-ray film.

RNA extraction and RT-PCR assays

Total RNA was extracted after bacterial growth in LB broth for 18 h at 37°C with the RNase Mini extraction kit (Qiagen) according to the manufacturer’s instructions. After extraction, approximately 1 μg of total RNA was digested with DNase I (Qiagen) for 30 min at 37°C, and the enzyme was then inactivated by adding 1 μl of 25 mM EDTA and heating the solution at 65°C for 10 min. To obtain the cDNA, the SperScript III One Step RT-PCR System with Platinum Taq DNA polymerase (Invitrogen) was used according to the manufacturer’s specifications. Primers for 16S ribosomal protein were used to control PCR [30], and the assay was then carried out with the primers EAST11a and EAST11b [26]. PCR products were analyzed by 2% agarose gel electrophoresis.

Quantitative PCR was performed in a Mastercycler ep realplex4 (Eppendorf), and threshold cycle numbers were determined using Eppendorf reaplex software (version 2.0). Reactions were performed in triplicate, and threshold cycle numbers were averaged. The 50-μl reaction mixture was prepared as follows: 25 μl of Platinum4 Quantitative PCR SuperMix-UDG (Invitrogen), 10 μM of the Taqman probe (5′FAM-TGCATCGTGCATATG-3′ΔΔCt) [31]. Reactions were performed in triplicate, and threshold cycle numbers were averaged. The 50-μl reaction mixture was prepared as follows: 25 μl of Platinum4 Quantitative PCR SuperMix-UDG (Invitrogen), 10 μM of the Taqman probe (5′FAM-TGCATCGTGCATATG-3′ΔΔCt) [31]. Reactions were performed in triplicate, and threshold cycle numbers were averaged. The 50-μl reaction mixture was prepared as follows: 25 μl of Platinum4 Quantitative PCR SuperMix-UDG (Invitrogen), 10 μM of the Taqman probe (5′FAM-TGCATCGTGCATATG-3′ΔΔCt) [31]. Reactions were performed in triplicate, and threshold cycle numbers were averaged. The 50-μl reaction mixture was prepared as follows: 25 μl of Platinum4 Quantitative PCR SuperMix-UDG (Invitrogen), 10 μM of the Taqman probe (5′FAM-TGCATCGTGCATATG-3′ΔΔCt) [31].

RNA extraction and RT-PCR assays

Total RNA was extracted after bacterial growth in LB broth for 18 h at 37°C with the RNase Mini extraction kit (Qiagen) according to the manufacturer’s instructions. After extraction, approximately 1 μg of total RNA was digested with DNase I (Qiagen) for 30 min at 37°C, and the enzyme was then inactivated by adding 1 μl of 25 mM EDTA and heating the solution at 65°C for 10 min. To obtain the cDNA, the SperScript III One Step RT-PCR System with Platinum Taq DNA polymerase (Invitrogen) was used according to the manufacturer’s specifications. Primers for 16S ribosomal protein were used to control PCR [30], and the assay was then carried out with the primers EAST11a and EAST11b [26]. PCR products were analyzed by 2% agarose gel electrophoresis.

Quantitative PCR was performed in a Mastercycler ep realplex4 (Eppendorf), and threshold cycle numbers were determined using Eppendorf reaplex software (version 2.0). Reactions were performed in triplicate, and threshold cycle numbers were averaged. The 50-μl reaction mixture was prepared as follows: 25 μl of Platinum4 Quantitative PCR SuperMix-UDG (Invitrogen), 10 μM of the Taqman probe (5′FAM-TGCATCGTGCATATG-3′ΔΔCt) [31]. Reactions were performed in triplicate, and threshold cycle numbers were averaged. The 50-μl reaction mixture was prepared as follows: 25 μl of Platinum4 Quantitative PCR SuperMix-UDG (Invitrogen), 10 μM of the Taqman probe (5′FAM-TGCATCGTGCATATG-3′ΔΔCt) [31]. Reactions were performed in triplicate, and threshold cycle numbers were averaged. The 50-μl reaction mixture was prepared as follows: 25 μl of Platinum4 Quantitative PCR SuperMix-UDG (Invitrogen), 10 μM of the Taqman probe (5′FAM-TGCATCGTGCATATG-3′ΔΔCt) [31]. Reactions were performed in triplicate, and threshold cycle numbers were averaged. The 50-μl reaction mixture was prepared as follows: 25 μl of Platinum4 Quantitative PCR SuperMix-UDG (Invitrogen), 10 μM of the Taqman probe (5′FAM-TGCATCGTGCATATG-3′ΔΔCt) [31].

DNA sequencing

Nucleotide sequencing of the PCR products was performed at the Centro de Estudos do Genoma Humano-USP, São Paulo. Nucleotide sequence data were analyzed using SeqMan and MegAlign software and the BLAST tool (http://www.ncbi.nlm.nih.gov/BLAST).

Statistical analysis

Data for diarrheic and non diarrheic children were compared using a 2-tailed Chi-square test. Results with p values ≤ 0.05 were considered to be statistically significant.
Nucleotide sequence and accession number

The EAST1v5 gene sequence was deposited in the NCBI database under accession number KJ47188.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

LEPS and TBS performed experiments and analyzed data. NPS and ICAS wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgments

This study was supported by research grants from Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We thank Dr. Renata Torres de Souza for her help with the nucleotide sequence deposition.

Author details

1Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, 3 andar, 04023-062 São Paulo, Brazil. 2Disciplina de Reumatologia, Universidade Federal de São Paulo, São Paulo, Brazil.

Received: 29 January 2014 Accepted: 23 May 2014

Published: 30 May 2014

References

1. Ochoa TJ, Contreras CA: Enteropathogenic Escherichia coli infection in children. Curr Opin Infect Dis 2011, 24:478–483.

2. WHO: Programme for Control of Diarrhoeal Diseases, Manual for Laboratory Investigation of Acute Enteric Infections. Geneva: World Health Organization; 1987.

3. Nataro JP, Kaper JB: Diarrheagenic Escherichia coli. Clin Microbiol Rev 1998, 11:430–201.

4. Moon HW, Whipp SC, Argenzio RA, Levine MM, Gianella RA: A genetic locus of enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun 1983, 41:1340–3150.

5. Jaros AE, Yu J, Tall BE, Kaper JB: A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci U S A 1995, 92:996–8000.

6. Jarvis KG, Girón JA, Jaros AE, McDaniel TK, Donnenberg MS, Kaper JB: Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci U S A 1995, 92:996–8000.

7. Kenny B, DeVinney R, Stein M, Finlay BB: An outbreak of foodborne illness caused by enteropathogenic Escherichia coli heat-stable enterotoxin and diarrhea. J Infect Dis 1996, 173:1019–1022.

8. Souza CP, Dubreuil JD: Distribution and expression of the astA gene (EAST1 toxin) in Escherichia coli and Salmonella. Int J Med Microbiol 2001, 291:11–20.

9. Savino SJ, Fasano A, Watson J, Cravioto A, Molina J, Echeverria P, Bhan MK, Levine MM, Fasano A: Enteropathogenic Escherichia coli heat-stable enterotoxin is not restricted to enteropathogenic E. coli. J Infect Dis 1996, 173:1019–1022.

10. Yamas T, Taniike I: The sequences of enterohemorrhagic Escherichia coli and Yersinia pestis that are homologous to the enteropathogenic E. coli heat-stable enterotoxin gene: cross-species transfer in evolution. FEBS Lett 2000, 472:22–26.

11. Scaletsky ICA, Fabbriatti SH, Silva SO, Morais MB, Fagundes-Neto U: Comparison of DNA hybridization and PCR assays for detection of putative pathogenic enterroadherent Escherichia coli. J Clin Microbiol 2002, 40:1254–1258.

12. Scalicsey ICA, Fabbriatti SH, Silva SO, Morais MB, Fagundes-Neto U: HEP2–adherent Escherichia coli strains associated with acute infantile diarrhea, São Paulo, Brazil. Emerg Infect Dis 2002, 8:555–558.

13. Araujo JA, Tabarelli GF, Aranda KR, Fabbriatti SH, Fagundes-Neto U, Mendes CM, Scaletsky ICA: Typical enteropathogenic and atypical enteropathogenic types of Escherichia coli (EPEC) are the most prevalent diarrhea-associated pathotypes among Brazilian children. J Clin Microbiol 2007, 45:3396–3399.

14. Hedberg CW, Savino SJ, Besser JE, Paulus CI, Thelen VM, Myers LJ, Cameron DN, Barrett TJ, Kaper JB, Osterholm MT: An outbreak of foodborne illness caused by Escherichia coli O157:NM, an agent not fitting into the existing scheme for classifying diarrheogenic E. coli. J Infect Dis 1997, 176:1625–1628.

15. Yatsuynagyi Y, Salto S, Miyajima T: Characterization of atypical enteropathogenic Escherichia coli strains harboring the astA gene that were associated with a waterborne outbreak of diarrhea in Japan. J Clin Microbiol 2003, 41:2033–2039.

16. Yamas T, Taniike I: The sequences of enterohemorrhagic Escherichia coli and Yersinia pestis that are homologous to the enteropathogenic E. coli heat-stable enterotoxin gene: cross-species transfer in evolution. FEBS Lett 2000, 472:22–26.

17. Scaletsky ICA, Fabbriatti SH, Silva SO, Morais MB, Fagundes-Neto U: Comparison of DNA hybridization and PCR assays for detection of putative pathogenic enterroadherent Escherichia coli. J Clin Microbiol 2002, 40:1254–1258.

18. Scaletsky ICA, Fabbriatti SH, Silva SO, Morais MB, Fagundes-Neto U: HEP2–adherent Escherichia coli strains associated with acute infantile diarrhea, São Paulo, Brazil. Emerg Infect Dis 2002, 8:555–558.

19. Araujo JA, Tabarelli GF, Aranda KR, Fabbriatti SH, Fagundes-Neto U, Mendes CM, Scaletsky ICA: Typical enteropathogenic and atypical enteropathogenic types of Escherichia coli (EPEC) are the most prevalent diarrhea-associated pathotypes among Brazilian children. J Clin Microbiol 2007, 45:3396–3399.

20. Yamas T, Wakisaka N, Sato F, Kato A: Comparison of the nucleotide sequence of enteropathogenic Escherichia coli heat-stable enterotoxin 1 genes among diarrhea-associated Escherichia coli. FEMS Microbiol Lett 1997, 147:89–96.

21. Savino SJ, McVeigh A, Watson J, Cravioto A, Molina J, Echeverria P, Bhan MK, Levine MM, Fasano A: Enteropathogenic Escherichia coli heat-stable enterotoxin is not restricted to enteropathogenic E. coli. J Infect Dis 1996, 173:1019–1022.

22. Savino SJ, Fasano A, Watson J, Martin BM, Levine MM, Guerry P: Enteropathogenic Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin. Proc Natl Acad Sci U S A 1993, 90:3093–3097.

23. Zhou Z, Ogawara J, Nishikawa Y, Seto Y, Helder A, Hase A, Iritani N, Nakamura H, Arikawa K, Kari A, Kamata Y, Hoshi H, Hanai K: An outbreak of gastroenteritis in Osaka, Japan due to Enterococcus faecalis serogroup O166: H15 that had a coding gene for enteropathogenic E. coli heat-stable enterotoxin 1. Euro Surveill 2002, 10:1534–1539.

24. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2–(Delta Delta C(T)) method. Methods 2001, 25:402–408.

doi:10.1186/1471-2180-14-135

Cite this article as: Silva et al.: Detection and genetic analysis of the enteropathogenic Escherichia coli heat-stable enterotoxin (EAST1) gene in clinical isolates of enteropathogenic Escherichia coli (EPEC) strains. BMC Microbiology 2014 14:135.