NUCLEAR ASTROPHYSICS WITH SECONDARY (RADIOACTIVE) BEAMS

Moshe Gai
Dept. of Physics, U46, University of Connecticut, 2152 Hillside Rd., Storrs, CT 06269-3046, USA; GAI@UConnVM.UConn.Edu

ABSTRACT

Some problems in nuclear astrophysics are discussed with emphasize on the ones central to the field which were not solved over the last two decades, including Helium Burning in massive stars (the $^{12}C(\alpha, \gamma)^{16}O$ reaction) and the 8B Solar Neutrino Flux Problem (the $^7Be(p, \gamma)^8B$ reaction). We demonstrate that a great deal of progress was achieved by measuring the time reverse process(es): the beta-delayed alpha-particle emission of ^{16}N and the Coulomb dissociation of 8B, using Radioactive Beams (of ^{16}N and 8B). In this way an amplification of the sought for cross section was achieved, allowing a measurement of the small cross section(s) of relevance for stellar (solar) processes.

RESUMEN.

Se discuten algunos problemas de astrofísica nuclear con énfasis en aquellos que son centrales de este campo que no han sido resueltos en las últimas dos décadas, incluyéndose el consumo de Helio en las estrellas masivas (la reacción $^{12}C(\alpha, \gamma)^{16}O$) y el problema del flujo de Neutrinos Solares de 8B (la reacción $^7Be(p, \gamma)^8B$). Demostramos que se han hecho grandes progresos mediante la medida de los procesos invertidos en el tiempo: la emisión de partícula alfa retardada por beta de ^{16}N y la disociación coulombiana de 8B, usando Haces Radioactivos (de ^{16}N y 8B). En esta forma se logro una ampliación de la búsqueda de la sección, permitiendo la medida de seccion(es) pequeña(s) de relevancia para procesos estelares (solares).

1Work Supported by USDOE Grant No. DE-FG02-94ER40870
2Invited Talk presented at the International Workshop on Nuclear Physics, Oaxtepec, Mexico, 4-7 January 1995
1 Introduction

Nuclear Astrophysics, the study of Nuclear inputs to astrophysics theories, is a mature science that has developed to the point where we can now use stars to probe fundamental physics questions. However, as some critical problems are left unsolved, it presents a formidable challenge to Nuclear Science. In this paper we address two such problems involving key reaction rates: the $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ and $^{7}\text{Be}(p, \gamma)^{8}\text{B}$, of importance for understanding helium burning and ^{8}B solar neutrino flux, respectively. We demonstrate that a great deal of progress was achieved by using Radioactive Beams to study these reactions in their time reverse process. These new techniques allow us to add useful data and constraints on the studied nuclear processes.

2 Nucleosynthesis in Massive Stars

Stars commence their energy generating life cycle by burning hydrogen to form helium. As stars consume their hydrogen fuel in the core, now composed mainly of helium, it contracts, raising its temperature and density. For example, in 25 solar masses stars the hydrogen burning lasts for 7 Million years. At temperatures of the order of 200 MK, the burning of helium sets in. The first reaction to occur in helium burning is the $\alpha + \alpha \rightarrow ^{8}\text{Be}$, and due to the short lifetime of ^{8}Be this reaction yields a small concentration of ^{8}Be nuclei in the star. However, this reaction is very crucial as a stepping stone for the next reaction that is loosely described as the three alpha-capture process: $^{8}\text{Be}(\alpha, \gamma)^{12}\text{C}$. The formation of small concentration of ^{8}Be, allows for a larger phase space for the triple alpha-capture reaction to occur. This reaction was originally proposed by sir Fred Hoyle in the 50’s, as a solution for bridging the gap over the mass 5 and 8, where no stable elements exist, and therefore the production of heavier elements. The triple alpha capture reaction is governed by the excited 0^+ state in ^{12}C at 7.654 MeV. This state was predicted by Fred Hoyle, prior to its discovery (by Fred Hoyle himself) at the Kellog radiation lab. One loosely refers to this 0^+ state as the reason for our existence, since without it the universe will have a lot less carbon and indeed a lot less heavy elements, needed for life. Extensive studies of properties of this state by nuclear spectroscopists, allow us to determine the triple alpha-capture rate with accuracy better than 10%.

At the same temperature range (200 MK), the produced ^{12}C nuclei can undergo subsequent alpha-particle capture to form ^{16}O via the $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ reaction. Unlike the triple alpha-capture reaction this reaction occurs in the continuum. This reaction is governed by the quantum mechanical tail of the bound 2^+ at 6.92 MeV, and the interference of the tail of the bound 1^- state at 7.12 MeV and the tail of the quasi-
bound 1^{-} state at 9.63 MeV in ^{16}O. These effects eluded measurements of the cross section (and the S-factor $= E\sigma \exp(2\pi\eta)$ and $\eta = e^2Z_1Z_2/h\nu$) of the $^{12}C(\alpha, \gamma)^{16}O$ reaction for the last two decades, in spite of repeated attempts [4, 5, 6, 7, 8], and was only recently measured using the time reverse process of the disintegration of ^{16}O, populated in the beta-decay of ^{16}N [9, 10, 11, 12, 13, 14].

Stars of masses smaller than approximately 8 solar masses will complete their energy generating life cycle at the helium burning cycle. They will be composed mainly of carbon and oxygen and contract to a dwarf, lying forever on the left bottom corner of the H-R diagram. More massive stars at the end of helium burning, commence carbon burning at a temperature of approximately 600-900 MK. Carbon burning lasts for 600 years in 25 solar mass stars [2, 3]. The main reaction in carbon burning is the $^{12}C(\alpha, \gamma)^{20}Ne$ reaction, but elements such as ^{23}Na and some ^{24}Mg are also produced. At temperatures of approximately 1.5 BK (approximately 150 keV) the tail of the Boltzmann distribution allows for the photo-disintegration of ^{20}Ne with an alpha-particle threshold as low as 4.73 MeV. This reaction $^{20}Ne(\gamma, \alpha)^{16}O$ serves as a source of alpha-particles which are then captured by ^{20}Ne to form ^{24}Mg and ^{28}Si. The neon burning cycle lasts for 1 year in a 25 solar mass stars. These alpha-particles could also react with ^{22}Ne, as suggested by Icko Iben [Ib75], to yield neutron flux via the $^{22}Ne(\alpha, n)^{25}Mg$ reaction and give rise to the slow capture of neutrons and the production of the heavy elements via the (weak) s-process. At this point the core is rich with oxygen, and it contracts further and the burning of oxygen commence at a temperature of 2 BK, mainly via the reaction $^{16}O(\alpha, \alpha)^{28}Si$, with the additional production of the elements sulfur and potassium. The oxygen burning period lasts for approximately 6 months in a 25 solar mass star. At temperatures of approximately 3 BK a very brief (one day or so) cycle of the burning of silicon commence. In this burning period elements in the iron group are produced. These elements can not be further burned as they are the most bound (with binding energy per nucleon of the order of 8 MeV), and they represent the ashes of the stellar fire. The star now resemble the onion like structure shown in Fig. 1.

As the inactive iron core aggregates mass it reaches the Chandrasekhar limit (close to 1.4 solar mass) and it collapses under its own gravitational pressure, leading to the most spectacular event of a supernova. During a supernova the electrons are energetic enough to undergo electron capture by the nuclei and all protons are transposed to neutrons, releasing the gravitational binding energy (of the order of $3/5GM^2/R \approx 3 \times 10^{53}$ ergs) mostly in the form of neutrino’s of approximately 10 MeV (and temperature of approximately 100 BK). As the core is now composed of compressed nuclear matter (several times denser than nuclei), it is black to neutrino’s
(i.e. absorbs the neutrino’s) and a neutrino bubble is formed for approximately 10 sec, creating an outward push of the remnants of the star. This outward push is believed (by some) to create the explosion of a type II supernova. During this explosion many processes occur, including the rapid neutron capture (r process) that forms the heavier elements of total mass of approximately $M \approx \mu M_\odot$.

The supernova explosion ejects into the inter-stellar medium its ashes from which at a later time ”solar systems” are formed. Indeed the death of one star gives the birth of another. At the center of the explosion we find a remnant neutron star or a black hole.

It is clear from Fig. 1, that if in the process of helium burning mostly oxygen is formed, the star will be able to take a shorter route to the supernova explosion. In fact if the carbon to oxygen ratio at the end of helium burning in a 25 solar masses star, is smaller then approximately 15% [15], the star will skip the carbon and neon burning and directly proceed to the oxygen burning. For a cross section of the $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ reaction that is twice the accepted value (but not 1.7 the accepted value), a 25 solar masses star will not produce ^{20}Ne, since carbon burning is essentially turned off. This indeed will change the thermodynamics and structure of the core of the progenitor star and in fact such an oxygen rich star is more likely to collapse into a black hole [15] while carbon rich progenitor stars is more likely to leave behind a neutron star. Hence one needs to know the carbon to oxygen ratio at the end of helium burning (with an accuracy of the order of 15%) in order to understand the fate of a dying star and the heavy elements it produces.

Since the triple alpha-particle capture reaction: $^8\text{Be}(\alpha, \gamma)^{12}\text{C}$ is very well understood, see above, one must measure the cross section of the $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ reaction with high accuracy of the order of 15% or better. Unfortunately, this task was not possible over the last two decades using conventional techniques and was only recently tackled using radioactive beams [9, 11, 12, 13, 14]. This cross section is needed to be measured at the most effective energy for helium burning (the Gamow window) of 300 keV. At this energy one may estimate [11] the cross section to be 10^{-8} nbarn, clearly non measurable in laboratory experiments. In fact the cross section could be measured down to approximately 1.0 MeV and one needs to extrapolate further down to 300 keV. As we discuss below the extrapolation to 300 keV, which in most other cases in nuclear astrophysics could be performed with certain reliability, is made difficult by a few effects.

The cross section at astrophysical energies has contribution from the p and d waves and is dominated by tails of the two bound states of ^{16}O, the 1^- at 7.12 MeV (p-wave) and the 2^+ at 6.92 MeV (d-wave). The p-wave contribution arises from a detailed interference of the tail of the bound 1^- state at 7.12 MeV and the broad 1^-
state at 6.93 MeV. The contribution of the bound 1^{-} state arises from its virtual alpha-particle width, that could not be reliably measured or calculated. Furthermore, the tails of the quasi-bound and bound 1^{-} states interfere in the continuum and the mixing phase can not be determined from existing data measured only at higher energies and therefore it does not show sensitivity to the above questions. Due to these reasons the cross section of the $^{12}C(\alpha, \gamma)^{16}O$ reaction could not be measured in a reliable way at 300 keV, and the p-wave S-factor at 300 keV, for example, was estimated to be between 0-500 keV-barn with a compiled value of $S_p(300) = 60 + 60 - 30$ keV-b [10, 17] and $S_d(300) = 40 + 40 - 20$ keV-b. This large uncertainty is contrasted by the astrophysical need to know the S-factor with 15% accuracy.

The beta-delayed alpha-emission of ^{16}N allows the study the $^{12}C(\alpha, \gamma)^{16}O$ reaction in its time reverse fashion, the disintegration of ^{16}O to $\alpha + ^{12}C$, and it provides a high sensitivity for measuring low energy alpha-particles and the reduced (virtual) alpha-particle width of the bound 1^{-} state in ^{16}O at 7.12 MeV. As shown in Fig. 2, low energy alpha-particle emitted from ^{16}N correspond to high energy beta’s and thus to a larger phase space and enhancement (proportional to the total energy to approximately the fifth power). In addition the apparent larger matrix element of the beta decay to the bound 1^{-} state provides further sensitivity to that state.

It is clear from Fig. 2 that the beta-decay in this case provides ”NARROW BAND WIDTH HI FI AMPLIFIER”, where the high fidelity is given by our understanding of the predicted shape of the beta-decay’s. However, in this case one needs to measure the beta decay with a sensitivity for a branching ratio of the order of 10^{-9} or better. In this case we have replaced an impossible experiment (the measurement of the $^{12}C(\alpha, \gamma)^{16}O$ reaction at low energies) with a very hard one (the beta-delayed alpha-particle emission of ^{16}N).

Prediction of the shape of the spectra of delayed alpha-particles from ^{16}N were first published by Baye and Descouvemont [18], with an anomalous interference structure around 1.1 MeV, at a branching ratio at the level of 10^{-9}. The reduced alpha-particle width of the bound 1^{-} state can be directly ”read off” the spectra if measured at such low energies. We emphasize that these predictions were published approximately five years prior to the observation of the anomaly interference structure around 1.1 MeV [13, 14]. The previously measured beta-delayed alpha-particle emission of ^{16}N [19] was analyzed using R-matrix theory by Barker [20] and lately by Ji, Filippone, Humblet and Koonin [21]. They conclude that the data measured at higher energies is dominated by the quasi bound 1^{-} state in ^{16}O at 9.63 MeV and shows little sensitivity to the interference with the bound 1^{-} state. The data measured at low energies is predicted to have large sensitivity to the anomalous interference with the bound 1^{-} state. Similar prediction were also given by a K-matrix analysis of Humblet, Filippone, and Koonin [22] of the same early data on ^{16}N [19]. We again note that
both the R-matrix paper and K-matrix paper were published three and two years, respectively, prior to publication of the spectra from ^{16}N \[13, 9\].

As shown in Fig. 2, the beta decay can only measure the p-wave S-factor of the $^{12}C(\alpha, \gamma)^{16}O$ reaction, and it also includes (small) contribution from an f-wave. The contribution of the f-wave has to be determined empirically and appears to be very small and leads to some (at most 15\%) uncertainty in the quoted S-factor \[4, 10, 12\]. The extraction of the total S-factor of the $^{12}C(\alpha, \gamma)^{16}O$ reaction could then be performed from the knowledge of the E2/E1 ratio which is better known then the individual quantities.

An experimental program to study the beta-delayed alpha-particle emission of ^{16}N (and other nuclei) was commenced at Yale University in early 1989. A similar program commenced at about the same time at the TISOL radioactive beam facility at TRIUMF. After some four years of studies and background reduction, the first observation of the interference anomaly was carried out in November of 1991, and presented by Zhiping Zhao in a seminar at Caltech in January 1992. This preliminary report of the anomaly around 1.1 MeV with small statistics (approximately 25 counts in the anomaly), has activated the TRIUMF collaboration including Charlie Barnes of Caltech, who redesigned their unsuccessful search using a superconducting solenoid to remove beta’s, and indeed in March of 1992 they also observed 9 counts in the anomalous structure as reported by Charlie Barnes in the meeting of the AAAS in Ohio, June, 1992. The two collaboration have then carried out the required checks and analyses of the data and in November 1992, both collaborations submitted their papers for publication in the Phys. Rev. Lett. within ten days \[13, 9\]. While the two experiments are very different in their production of ^{16}N and detection method, and hence acquire different systematical error(s), they appear to be in agreement and quote similar S-factors, of similar accuracy and with good agreement. The R-Matrix analysis of the two experiments \[4, 23, 14\] yield:

Yale Result: $S_{E1}(300) = 95 \pm 6 \text{ (stat)} \pm 28 \text{ (syst)} \text{ keV-b}$

TRIUMF II Result: $= 79 \pm 21 \text{ keV-b}$

In the Yale experiment \[4, 10\], recoiling ^{16}N nuclei produced with a 9 MeV deuterium beams with the $^{15}N(d, p)^{16}N$ reaction, were collected in a Ti^{15}N foil (with Au backing), tilted at 7\(^\circ\) with respect to the beam. The foil is then rotated using a stepping motor to a counting area where the time of flight between alpha-particles, measured with an array of 9 Si surface barrier detectors, and beta-particles, measured with an array of 12 plastic scintillator, is recorded. The experiment is described in details \[4, 10, 12\] and it arrived at a sensitivity for the branching ratio of the beta-
decay in the range of 10^{-9} (to 10^{-10}), see Fig. 3, where we show one of the cleanest spectrum. Other spectra show background at the level of branching ratio of 10^{-9}.

The data measured at Yale University arise from alpha-particle that traverse the production foil and thus need to be corrected for such effects. Hence, we have measured the spectra of beta-delayed alpha-article emission of 16N in the absence of foil. This was achieved by implanting radioactive 16N beams from the MSU A1200 radioactive beam facility [11], into a surface barrier detector and by studying the alpha-ecay in the detector. In this experiment the absolute branching ratio for the beta decay to the quasi bound 1^- state was also measured.

The spectrum after correction for the foil thickness and response function was fitted with the R-matrix formalism developed by Ji, Filippone, Humblet, and Koonin [21] as shown in Fig. 4a and 4b. Indeed this spectrum appears to be in agreement with the one measured at TRIUMF [13] and more recently at Seattle [24], as shown in Fig. 5.

An attempt to extract the total (E1 + E2) S-factor for the 12C(α, γ)16O reaction from the abundance of the elements was carried out by Weaver and Woosley [15], by comparing the calculated abundance of the elements to the solar abundance. In this calculation the 12C(α, γ)16O cross section is varied between 0.5 to 3 times the value tabulated in CF88 [16] and listed in [17]: $S_{E1} = 60 + 60 - 30$ keV-b and $S_{E2} = 40 + 40 - 20$ keV-b. As shown in Fig. 6, they can reproduce the observed solar abundances only for a cross section which is 1.7 ± 0.5 times CF88. If we assume the ratio $E1/E2 = 1.5$, as suggested in CF88 [16, 17], we derive:

\[
\text{Weaver and Woosley’s Result: } S_{E1}(300) = 102 \pm 30 \text{ keV-b}
\]

in excellent agreement with laboratory measurements, see above.

3 \hspace{1cm} The Coulomb dissociation of 8B and the 8B solar neutrino flux

The Coulomb Dissociation [23] Primakoff [26], process, is the time reverse process of the radiative capture. In this case instead of studying for example the fusion of a proton plus a nucleus (A-1), one studies the disintegration of the final nucleus (A) in the Coulomb field, to a proton plus the (A-1) nucleus. The reaction is made possible by the absorption of a virtual photon from the field of a high Z nucleus such as 208Pb. In this case since π/k^2 for a photon is approximately 1000 times larger than that of a particle beam, the small cross section is enhanced. The large virtual photon flux
(typically 100-1000 photons per collision) also gives rise to enhancement of the cross section. Our understanding of QED and the virtual photon flux allow us (as in the case of electron scattering) to deduce the inverse nuclear process. In this case we again construct a "NARROW BAND WIDTH HI FI AMPLIFIER" to measure the exceedingly small nuclear cross section of interest for nuclear astrophysics. However in Coulomb dissociation since αZ approaches unity (unlike the case in electron scattering), higher order Coulomb effects (Coulomb post acceleration) may be non-negligible and they need to be understood [27, 28, 29]. The success of the experiment is in fact hinging on understanding such effects and designing the kinematical conditions so as to minimize such effects.

Hence the Coulomb dissociation process has to be measured with great care with kinematical conditions carefully adjusted so as to minimize nuclear interactions (i.e. distance of closest approach considerably larger then 20 fm, or very small forward angles scattering), and measurements must be carried out at high enough energies (many tens of MeV/u) so as to maximize the virtual photon flux. Indeed when such conditions were not carefully selected [30, 31] the measured cross sections were found to be dominated by nuclear effects, which can not be reliably calculated to allow the extraction of the inverse radiative capture cross section.

Good agreement between measured cross section of radiative capture through a nuclear state, or in the continuum, was achieved for the Coulomb dissociation of 6Li and the $^4He(d, \gamma)^6Li$ capture reaction [32], and the Coulomb dissociation of ^{14}O and the $^{13}N(p, \gamma)^{14}O$ capture reaction [33, 34, 35]. In addition we note that a test experiment on the Coulomb dissociation of ^{13}N [33] was also found to be in agreement with the $^{12}C(p, \gamma)^{13}N$ capture reaction.

The Coulomb dissociation of 8B may provide a good opportunity for resolving the issue of the absolute value of the cross section of the $^7Be(p, \gamma)^8B$ reaction. The Coulomb dissociation yield arise from the convolution of the inverse nuclear cross section times the virtual photon flux. While the first one is decreasing as one approaches low energies, the second one is increasing (due to the small threshold of 137 keV). Hence as can be seen in Fig. 7 over the energy region of 400 to 800 keV the predicted measured yield is roughly constant. This is in contrast to the case of the nuclear cross section that is dropping very fast at low energies, see Fig. 7. Hence measurements at these energies could be used to evaluate the absolute value of the cross section.

The Coulomb Dissociation process measured at lower energies is insensitive to the M1 component of the cross section, since the M1 virtual photon flux is smaller by a factor (smaller than) β^2. In this case the 1^+ state in 8B at $E_{cm} = 632$ keV, is not expected to be observed. The M1 contribution is predicted to be approximately 10% of the $^7Be(p, \gamma)^8B$ cross section [36] measured just below 1 MeV, which yield to
a 10% correction of the S_{17}-factor extracted from the radiative capture work \[37\], but not the S_{17} factor extracted from the Coulomb dissociation.

An experiment to study the Coulomb dissociation of 8B was performed during March-April, 1992, at the RIKEN-RIPS radioactive beam facility. The experiment is a Rikkyo-RIKEN-Yale-Tokyo-LLN collaboration \[38\]. The radioactive beams extracted from the RIPS separator are shown in Fig. 8. Indeed the results of the experiment allow us to measure the radiative capture $^7Be(p, \gamma)^8B$ cross section and preliminary results are consistent with the absolute value of the cross section measured by Filippone et al. \[39\] and by Vaughn et al. \[10\], as shown in Fig. 9.

3.1 Is There Evidence for an E2 Component?

The much publicized \[11\] paper of Langanke and Shoppa (LS) \[12\] claims that the data analysis performed by the RIKEN collaboration is invalid due to the model dependent prediction of LS of a large E2 component in the CD of 8B, which was ignored in our paper \[38\]. In the following we show that their assertion arose from a misunderstanding of the experimental procedures of the RIKEN experiment.

We first note that I have pointed to LS that they have used and published (before the RIKEN collaboration!) incorrect data, including wrong error bar. Langanke and Shoppa now attempt to correct it in a form of (a revised) Erratum. Among several mistakes, LS appear to ignore the angular resolution of the RIKEN experiment. The finite angular resolution implies that the acceptance (or response) of the RIKEN detector is not the same for E1 and E2. This invalidates the basic assumption of LS that "Assumes the detector efficiency is the same for E1 and E2 contributions" \[12\]. As it turns out the angular averaging tends to push the predicted E1 cross section to large angles, where the E2 dominates. And the large E2 predicted by LS appears to be a compensation for their neglect of the angular resolution of the RIKEN experiment. In that sense the entire analysis of LS is misleading and in fact wrong.

A search for E2 component in the RIKEN data was performed by Gai and Bertulani \[43\]. When the experimental resolutions are correctly taken into account, together with the correct RIKEN data (!) the best fit of the angular distributions is obtained with E1 amplitude alone, as shown in Fig. 10. Our analysis invalidates the claims of LS and support the analysis performed by Dr. Iwasa and his advisor Professor Motobayashi, as presented in Ref. \[38\].

In conclusion we demonstrate that the Coulomb dissociation provides a viable alternative method for measuring small cross section of interest for nuclear-astrophysics. First results on the CD of 8B are encouraging for a continued effort to extract $S_{17}(0)$, of importance for the SSM. Our initial results are consistent with
the lower value of the cross section measured by Filippone et al. and suggest a small value for the extracted $S_{17}(0)$; smaller than 20 eV-barn, and considerably smaller than assumed in the SSM of Bahcall et al.

4 Acknowledgements

I would like to acknowledge the work of my graduate student Dr. Zhiping Zhao who analyzed with great care the data on the beta-delayed alpha-particle emission of ^{16}N, a work for which she received the "1994 Dissertation Award of the Division of Nuclear Physics of the American Physical Society". In addition I acknowledge the work of Dr. Naohita Iwasa and Professor Tohru Motobayashi that performed the data analysis of the 8B experiment at Rikkyo University; the Ph.D. thesis of Dr. Iwasa. I would also like to acknowledge discussions and encouragements from Professor Carlos Bertulani, Professor Gerhard Baur, and my collaborator Professor Thierry Delbar.

References

[1] W.A. Fowler, Rev. Mod. Phys. 56(1984)149.
[2] T.A. Weaver, and S.E. Woosley; Ann. NY Acad. Sci. 336(1980)335.
[3] C.E. Rolfs, and W.S. Rodney; Cauldrons in the Cosmos, University of Chicago Press, 1988.
[4] P. Dyer and C.A. Barnes; Nucl. Phys. A233(1974)495.
[5] K.U. Kettner et al.; Z. Phys. A308(1982)73.
[6] A. Redder et al.; Nucl. Phys. A462(1987)385.
[7] R.M. Kremer et al.; Phys. Rev. Lett. 60(1988)1475.
[8] J.M.L. Ouellet et al.; Phys. Rev. Lett. 69(1992)1896.
[9] Z. Zhao, R.H. France III, K.S. Lai, S.L. Rugari, M. Gai, and E.L. Wilds, Phys. Rev. Lett. 70(1993)2066, ER 70(1993)3524.
[10] Z. Zhao, Ph.D. thesis, Yale University, 1993.
[11] Z. Zhao, R.H. France III, K.S. Lai, M. Gai, E.L. Wilds, R.A. Kryger, J.A. Winger, and K.B. Beard; Phys. Rev. C48(1993)429.
[12] Z. Zhao, R.H. France III, M. Gai, and E.L. Wilds; preprint Yale-40609-1132, submitted to Phys. Rev. C, August, 1993.

[13] L. Buchmann, et al. Phys. Rev. Lett. 70(1993)726.

[14] R.E. Azuma, et al. Phys. Rev. C50(1994)1194.

[15] T.A. Weaver, and S.E. Woosley; Phys. Rep. 227(1993)65.

[16] G.R. Caughlan, and W.A. Fowler, At. Data Nucl. Data Tables 40(1988)283.

[17] F.C. Barker, and T. Kajino; Proc. Int. Workshop on Unstable Beams in Astrophysics, Tokyo, 7-8 June, 1991, World Scientific, Singapore, 1992, p. 63

[18] D. Baye, Nad P. Descouvemont; Nucl. Phys. A481(1988)445.

[19] K. Neubeck, H. Schober, and H. Waffler; Phys. Rev. C10(1974)320.

[20] F.C. Barker; Aust. Jour. Phys. 24(1971)777.

[21] X. Ji, B.W. Filippone, J. Humblet, and S.E. Koonin; Phys. Rev. C41(1990)1736.

[22] J. Humblet, B.W. Filippone, and S.E. Koonin; Phys. Rev. C44(1991)2530.

[23] J. Powell, R.E. Azuma, F. Barker, L. Buchmann; Bull. Amer. Phys. Soc. 38(1993)1802.

[24] Z. Zhao, L. Debrackeler, and E.G. Adelberger; 1995, to be published.

[25] G. Baur, C.A. Bertulani, and H. Rebel; Nucl. Phys. A458(1986)188.

[26] H. Primakoff; Phys. Rev. 81(1951)899.

[27] G. Baur, C.A. Bertulani, and D.M. Kalassa; KFA-IKP(TH)-1992-21, to be published.

[28] C.A. Bertulani; Phys. Rev. C49(1994)2688.

[29] S. Typel and G. Baur; Phys. Rev. C50(1994)2104.

[30] J. Hesselbarth, and K.T. Knopfle; Phys. Rev. Lett. 67(1991)2773.

[31] S.B. Gazes, J.E. Masin, R.B. Roberts, and S.G. Teichmann; Phys. Rev. Lett. 68(1992)150.

[32] J. Kiener, H.J. Gils, H. Rebel, S. Zagromski, G. Gsottschneider, N. Heide, H. Jelitto, and J. Wentz; Phys. Rev. C44(1991)2195.
[33] T. Motobayashi, T. Takei, S. Kox, C. Perrin, F. Merchez, D. Rebreyend, K. Ieki, H. Murakami, Y. Ando, N. Iwasa, M. Murokawa, S. Shirato, J. Ruan (Gen), T. Ichihara, T. Kubo, N. Inabe, A. Goto, S. Kubono, S. Shimoura, and M. Ishihara; Phys. Lett. B264 (1991) 259.

[34] P. Decrock, Th. Delbar, P. Duhamel, W. Galster, M. Huyse, P. Leleux, I. Licot, E. Lienard, P. Lipnik, M. Loiselet, C. Michotte, G. Ryckewaert, P. Van Duppen, J. Vanhorenbeeck, J. Vervier; Phys. Rev. Lett. 67 (1991) 808.

[35] J. Kiener, A. Lefebvre, P. Aguer, C.O. Bacri, R. Bimbot, G. Bogaert, B. Borderie, F. Calpier, A. Coe, D. Disidier, S. Fortier, C. Grunberg, L. Kraus, I. Linck, G. Pasquier, M.F. Rivet, F. St. Laurent, C. Stephan, L. Tassan-Got, and J.P. Thibaud; Nucl. Phys. A552 (1993) 66.

[36] B.H. Kim, M.H. Park, and B.T. Kim; Phys. Rev. C35 (1987) 363.

[37] R.G.H. Robertson; Phys. Rev. C7 (1973) 543.

[38] T. Motobayashi, N. Iwasa, M. Murokawa, S. Shimoura, Y. Ando, H. Murakami, S. Shirato, J. Ruan (Gen), Y. Watanabe, N. Inabe, T. Kubo, M. Ishihara, M. Gai, R.H. France III, K.I. Hahn, Z. Zhao, T. Teranishi, T. Nakamura, Y. Futami, K. Furataka, and T. Delbar; Phys. rev. Lett. 73 (1994) 2680.

[39] B.W. Filippone, A.J. Elwyn, C.N. Davis, and D.D. Koetke, Phys. Rev. Lett. 50 (1983) 412, ibid Phys. Rev. C28 (1983) 2222.

[40] F.J. Vaughn, R.A. Chalmers, D. Kohler, and L.F. Chase Jr; Phys. Rev. C2 (1970) 1657.

[41] John N. Bahcall, C.A., Barnes, J. Christensen-Dalsgaard, B.T. Cleveland, S. Degl’innocenti, B.W. Filippone, A. Glasner, R.W. Kavanagh, S.E. Koonin, K. Lande, K. Langanke, P.D. Parker, M.H. Pinsonneault, C.R. Proffitt, and T. Shoppa; placed on the World Wide Web Electronic Bulletin, 3 April, 1994, and preprint LASSNS-AST 94/13, Institute of advanced study, 1994.

[42] K. Langanke and T.D. Shoppa; Phys. Rev. 49, R1771 (1994).

[43] Moshe Gai, and Carlos A. Bertulani; comment on Ref. [12] preprint UConn-40870-0005, Phys. Rev. C, in press.
5 Figure Captions

Fig. 1: Burning stages and onion-like structure of a 25M_{\odot} star prior to its supernova explosion [2, 3].

Fig. 2: Nuclear States involved in the beta-delayed alpha-particle emission of ^{16}N.

Fig. 3: Clean Time of Flight Spectrum obtained in the Yale experiment.

Fig. 4: (a) R-Matrix fit [21] of the spectrum measured at Yale [9, 10, 12] and (b) range of p-wave S-factors accepted by the measured data.

Fig. 5: Comparison of the spectra for beta-delayed alpha-particle emission of ^{16}N measured at Yale [9], TRIUMF [13] and Seattle [24].

Fig. 6: The $^{12}C(\alpha, \gamma)^{16}O$ cross section extracted from the observed solar abundances [15].

Fig. 7: The cross section of the Coulomb Dissociation as compared to the E1 capture cross section.

Fig. 8: Radioactive beams extracted from the RIKEN-RIPS, used in the study of the Coulomb dissociation of ^{8}B, a Rikkyo-RIKEN-Yale-Tokyo-LLN collaboration [38].

Fig. 9: The measured S_{17} factors for the $^{7}Be(p, \gamma)^{8}B$ reaction, and extracted from Coulomb dissociation data [38].

Fig. 10: The reduced χ^2 obtained from fitting the 600 keV angular distribution with: $\sigma_{CD}(E1) + \sigma_{CD}(E2)$. The best fit is obtained with E1 amplitude only, with $S_{17} = 18 \, eV - b$ (for the 600 keV angular distribution) [43].