Muskmelon and Sweet Corn Production with Legume Cover Crops

Harbans L. Bhardwaj

Agricultural Research Station, Box 9061, Virginia State University, Petersburg, VA 23806

Abstract. Winter legume cover crops have been successfully used to meet N needs of many summer crops, but they are not being used extensively in Virginia and the mid-Atlantic region, especially for specialty crops such as muskmelon and sweet corn. The objective of these studies was to determine the potential of winter legume cover crops in meeting N needs of muskmelon (Cucumis melo L.) and sweet corn (Zea mays L.). Comparisons of performances of muskmelon and sweet corn, grown after lupin (Lupinus albus L.), hairy vetch (Vicia villosa Roth.), Austrian winter pea ([AWP] Pisum arvense L.), and control fertilized with 112 kg N ha\(^{-1}\), and unfertilized control were made during 1999, 2000, and 2001. The interactions between cover crop treatments and years were, generally, significant. The muskmelon fruit yields were 53.6, 45.0, 23.1, 13.0, and 5.6 Mg ha\(^{-1}\) during 1999; 27.8, 26.3, 8.6, 5.8, and 2.2 Mg ha\(^{-1}\) during 2000 and 41.1, 39.9, 25.5, 21.4, and 2.1 Mg ha\(^{-1}\) during 2001 respectively for lupin, hairy vetch, AWP, 112 kg N ha\(^{-1}\), and control. Similar results were obtained for number and size of muskmelon fruits. The sweet corn ear yields (Mg ha\(^{-1}\)) were 8.5, 5.6, 3.1, 1.5, and 0.7 during 1999; 5.2, 3.9, 4.0, 4.8, and 1.2 during 2000; and 2.6, 2.4, 1.9, 2.0, and 0.9 during 2001, respectively for lupin, hairy vetch, AWP, 112 kg N ha\(^{-1}\), and control. White lupin and hairy vetch, as winter cover crops, were superior than AWP and 112 kg N ha\(^{-1}\) for sweet corn ear number and size, and plant height. These results demonstrated that winter legume crops, especially lupin and hairy vetch, can be excellent winter cover crops for meeting N needs of muskmelon and sweet corn.

The use of inorganic fertilizers, especially N, has been an enigma for modern agriculture. On the one hand, their use has been linked to environmental pollution; on the other hand, they have contributed to yield increases (Drinkwater et al., 1998). Even though animal manures could also pollute the environment, agricultural practices are considered important source of N pollution of water supplies (EPA, 1992). Estimates of crop absorption of applied N range from 25% to 70% and efficiency decreases with increased fertilizer application (Hills et al., 1983). The unused N can increase salt content of the soil and production costs (Csizinsky and Hein, 1982) and can lead to runoff and leaching (Doss et al., 1975), which may increase water use efficiency in areas of high rainfall, reduced soil erosion, efficient use of labor year-round, and reduced water pollution risk associated with use of inorganic N fertilizer.

Cover crops have been successfully used to meet nitrogen needs of summer crops—for no-till corn and grain sorghum (Blevins et al., 1990), for corn (Holderbaum et al., 1990), no-till corn (Decker et al., 1994), for tomatoes (Abdul-Baki et al., 1997; Kelly et al., 1995), for silage corn (Ess et al., 1994), for corn (Stute and Posner, 1995), for corn and tomato (Clark et al., 1997, 1999), and for seedless watermelon (Rangappa et al., 2002). Although leguminous cover crops have been shown to be useful in the production of field crops and vegetable crops, they are not being used extensively in Virginia and the mid-Atlantic region. Given that muskmelon and sweet corn are important crops for Virginia and the mid-Atlantic region, the objective of these studies was to evaluate the potential of legume cover crops in meeting N needs of succeeding summer crops. Specifically, we were interested in comparing yield and other characteristics of muskmelon and sweet corn when grown after various winter legume cover crops and conventional N fertilizer use.

Materials and Methods

This research was conducted for three seasons (1998–1999, 1999–2000, and 2000–2001) at the Randolph Farm of Virginia State University located near Petersburg, Va. (about 37°N and 077°W). The soil type at this location was Abell sandy loam (fine loamy, mixed, semiaquic, thermic aquic hapludults). During each year, a uniform field was divided into 40 plots, each ~45 m\(^2\). Twenty plots were used for muskmelon experiments and the remaining 20 plots were used for sweet corn experiments. For each crop, five winter cover crop treatments were used (lupin, hairy vetch, Austrian winter pea [AWP], 112 kg N ha\(^{-1}\), and a control treatment that did not receive any fertilizer). The Virginia Cooperative Extension recommendations for both muskmelon and sweet corn consist of ~112 kg N ha\(^{-1}\) (VCE, 1997). We used ammonium nitrate (34–0–0) as a broadcast treatment before transplanting muskmelon and planting sweet corn. Even though a split application of N is recommended for sweet corn production in Virginia, we applied all N fertilizer in the 112 kg N ha\(^{-1}\) treatment because of the difficulty of mechanically applying a side dress treatment in grown crop. In hindsight, it may have been desirable to split the N application, especially because of the high leaching potential of ammonium nitrate and because of the sandy soils in our studies.

The experimental design for each crop was a randomized complete block design with four replications. The three cover crops were planted on 5 Oct. 1998, 8 Oct. 1999, and 2 Oct. 2000. The plots of two other treatments stayed fallow throughout the fall, winter, and early spring seasons. The whole experimental areas were sprayed with GRAMOXONE (paraquat; 1,1'-dimethyl-4,4'-bipyridium dichloride) and ROUNDUP (glyphosate; N-(phosphonomethyl)glycine) herbicides on 3 May 1999, 12 Apr. 2000, and 26 Apr. 2001. The rates used were 1 L a.i. ha\(^{-1}\) of glyphosate and 500 g a.i. ha\(^{-1}\) for paraquat plus 1% volume/volume crop oil. At the time of this burn-down herbicide treatment, the legume cover crops were, generally, in early-bloom stage. In the sweet corn plots, a no-till planter was used to plant AC-8100, a sweet corn hybrid from Abbott and Cobb Seed Company (Feasterville, Pa.), during all 3 years, about 2

Received for publication 14 Mar. 2006. Accepted for publication 27 Apr. 2006. Contribution of Virginia State University, Agricultural Research Station, journal article series no. 250. The use of any trade names or vendors does not imply approval to the exclusion of other products or vendors that may also be suitable.

1To whom reprint requests should be addressed. e-mail hdbhardwjj@vsu.edu

Jobname: horts 41/5 2006 Page: 1 Output: July 12 17:01:51 2006 tsp/ports/118440/01504
weeks after the herbicide burn-down. The sweet corn plots consisted of multiple rows, spaced 1 m apart and were 6 m long. In the muskmelon plots, ~3-week old seedlings of Athena hybrid from Abbott and Cobb Seed Company, were transplanted in three-row plots spaced 2 m apart and 3 m long, about 4 weeks after the herbicide burn-down. In both crops, the weeds were controlled per the recommendations of Virginia Cooperative Extension (VCE, 1997). We used 0.6 kg a.i. ha$^{-1}$ of ATRAZINE (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) in sweet corn plots as preplant spray treatment for weed control, and 0.7 kg a.i. ha$^{-1}$ of CURBIT 3E (ethalfuralin: ethyl-N-[2-methyl-2-proponyl]-2,6-dinitro-4-[trifluoromethyl]benzen-amine) as a pretransplant spray treatment for weed control in muskmelons. Observations during the season did not indicate any significant weed problems.

During each year, the sweet corn ears were harvested from the middle four rows of each plot and data on ear yield, number of ears, ear size, and plant height were recorded. The sweet corn ears at this stage were considered mature for consumption. The muskmelons were harvested upon maturity on alternate days and data on fruit yield, fruit number, and fruit size were recorded. The muskmelon data from all harvests were combined for statistical analysis. All data were statistically analyzed by using procedures in SAS (1996). Fisher’s protected LSD test was used for mean separation, with a significance level of 5%.

Results and Discussion

Analysis of variance indicated that significant variation existed among five treatments for performance of muskmelon and sweet corn (Tables 1 and 2). The interactions between treatments and years were significant for muskmelon fruit size (Table 1) and for all traits of sweet corn (Table 2). Given that many year × treatment interactions were significant, and years as a source of variation, were also significant, the data were analyzed and are presented separately for individual years.

The highest muskmelon fruit yields were obtained when either lupin or hairy vetch was used as a cover crop during 1999, 2000, and 2001 (Table 3). The muskmelon fruit yields after AWP were similar to that of both lupin and hairy vetch during 2000, but were significantly lower than lupin and hairy vetch during 2001. The results from 2000 indicated that muskmelon fruit yields during 2000 were similar for all three cover crop treatments. The lowest fruit yields were obtained from unfertilized control as expected. During 1999 and 2000, fruit yields after AWP, 112 kg N ha$^{-1}$, and unfertilized control were similar. During 2001, AWP and 112 kg N ha$^{-1}$ were superior to the unfertilized control. The probable explanation of these differences is either sampling error or differences in rainfall during the 3 years. Monthly rainfall totals for May to June during 1999, 2000, and 2001 were 3.7, 7.5, 20.4, and 11.4 cm; 9.3, 10.0, 13.6, and 12.6 cm; and 3.3, 14.5, 9.5, and 13.3 cm respectively. The total precipitation during the muskmelon growing period (May to August) during 1999, 2000, and 2001 was 43.0, 45.5, and 40.6 cm respectively. The rainfall differences among 1999 and 2000 on the one hand and 2001 on the other affected the muskmelon fruit yields, resulting in AWP and 112 kg N ha$^{-1}$ being superior to the unfertilized control. Similar results were obtained comparing number of fruits per hectare and fruit size. It was observed that both lupin and hairy vetch supported higher fruit numbers and greater fruit size during all 3 years. Number of fruits after 112 kg N ha$^{-1}$ treatment was, generally, lower than that after lupin or hairy vetch and similar to that after AWP and unfertilized control, except during 2001, when the number of fruits was significantly lower for the unfertilized control. These results support the observations of Cardwell (1987), indicating that cover crops provide more benefits to muskmelon compared with N alone. In these studies, AWP was observed to be an unsuitable winter legume cover crop.

Table 1. Partial analysis of variance (mean squares) for fruit yield, fruit number, and fruit size for muskmelon grown after legume cover crops during three seasons at Petersburg, Va.

Source	df	Fruit yield	Fruit number	Fruit size
Reps (Years)	9	918.5**	207,939,308**	0.20**
Years	2	1102.0**	417,663,500**	0.49**
Treatments (T)	4	3030.6**	591,282,173**	2.00**
Y × T	8	150.4	38,347,029	0.16**
Error	36	161.6	34,006,257	0.05

***Significant at P = 0.05 and 0.01 respectively.

Table 2. Partial analysis of variance for ear yield, ear number, ear size, and plant height for sweet corn grown after legume cover crops during three seasons at Petersburg, Va.

Source	df	Ear yield	Ear number	Ear size	Plant height
Reps, y	9	3.6	121,732,467*	0.001	328.3*
Years (T)	2	24.0**	129,244,792	0.015**	685.7**
Treatments (T)	4	32.0**	268,035,462**	0.02**	615.2**
Y × T	8	9.7**	454,803,404*	0.003**	371.4*
Error	36	2.0	52,829,486	0.001	143.9

***Significant at P = 0.05 and 0.01 respectively.
We did not determine the content and quality of biomass produced by the cover crops. However, in other studies, when 20 lupin lines were grown at three locations in Virginia, yield of above-ground dry matter biomass of lupin varied from 0.3 to 1.7 Mg ha⁻¹ with a mean of 1.3 Mg ha⁻¹ with an average N content of 2.99% (unpublished). This led to the addition of ~390 kg ha⁻¹ of N, with 112 kg N ha⁻¹, of the rhizosphere resulting from biological N fixation.

The results from sweet corn are similar to those obtained by Carrera and coworkers (2004), where use of hairy vetch as a cover crop resulted in a 43% greater yield over bare plots. The significant superiority of lupin and hairy vetch cover crops probably resulted from the slow release of N as a result of mineralization, enhanced water retention, and water availability, as reported by Clark and colleagues (1997) and Sullivan and associates (1991). Results from muskmelon experiments are similar to those reported by Ogubuchieke and Griffin (2004) where cowpea [Vigna unguiculata L. (Walp.)] incorporated into the soil resulted in a ~24% yield increase over bare ground (1226 vs. 990 boxes ha⁻¹).

Our results demonstrate that winter legume crops, especially lupin and hairy vetch, can be excellent cover crops for meeting N needs of muskmelon and sweet corn. In general, performances of muskmelon and sweet corn after winter cover crop growth and nitrogen content in a vegetable production system. Horttechnology 11:219–225.

Cook, R.J. 1984. Root health: Importance and relationship to farming practices, p. 111–127. In: D.F. Bezdek and J.F. Power (eds.). Organic farming: Current technology and its role in sustainable agriculture. Special publication no. 46. Amer. Soc. Agron, Madison, Wis.

Cook, R.J. 1986. Wheat management systems in the Pacific Northwest. Plant Dis. 70:894–898.

Csizinsky, A.A. and D.J. Schuster. 1982. Yield of American and British winter wheat in California's Sacramento Valley. Amer. J. Alt. Agr. 14:109–121.

Cline, G.R. and A.F. Silvemair. 2001. Residual nitrogen and kill date effects on winter cover crop growth and nitrogen content in a vegetable production system. HortScience 36:1226–1229.

Weidman, R.L., J.H. Herbek, and W.W. Frye. 1990. Legume cover crops as a nitrogen source for no-till corn and grain sorghum. Agron. J. 82(4):769–772.

Cardwell, V. 1987. Grain legumes as components in farming systems, p. 45–58. In: Grain legumes as alternate crops, a symposium sponsored by the Center for Alternative Crops and Products University of Minnesota, 23–24 July 1987.

Carrera, L.M., A.A. Abdul-Baki, and J.R. Teasdale. 2004. Cover crop management and weed suppression in no-tillage sweet corn production. HortScience 39:1262–1266.

Clark, S., K. Klonisky, P. Livingstone, and S. Temple. 1999. Crop yield and quality of biomass produced by the cover crops. Agron. J. 91:126–135.

Clark, A.J., A.M. Decker, J.J. Meisinger, and M.S. McIntosh. 1997. Kill date of vetch, rye, and vetch-rye mixture: II. Soil moisture and corn yield. Agron. J. 89:427–434.

Clark, S., K. Klonisky, P. Livingstone, and S. Temple. 1999. Crop yield and quality of biomass produced by the cover crops. Agron. J. 91:126–135.

Weidman, R.L., J.H. Herbek, and W.W. Frye. 1990. Legume cover crops as a nitrogen source for no-till corn and grain sorghum. Agron. J. 82(4):769–772.

Carrera, L.M., A.A. Abdul-Baki, and J.R. Teasdale. 2004. Cover crop management and weed suppression in no-tillage sweet corn production. HortScience 39:1262–1266.

Clark, S., K. Klonisky, P. Livingstone, and S. Temple. 1999. Crop yield and quality of biomass produced by the cover crops. Agron. J. 91:126–135.

We did not determine the content and quality of biomass produced by the cover crops. However, in other studies, when 20 lupin lines were grown at three locations in Virginia, yield of above-ground dry matter biomass of lupin varied from 0.3 to 1.7 Mg ha⁻¹ with a mean of 1.3 Mg ha⁻¹ with an average N content of 2.99% (unpublished). This led to the addition of ~390 kg ha⁻¹ of N, with 112 kg N ha⁻¹, of the rhizosphere resulting from biological N fixation.

The results from sweet corn are similar to those obtained by Carrera and coworkers (2004), where use of hairy vetch as a cover crop resulted in a 43% greater yield over bare plots. The significant superiority of lupin and hairy vetch cover crops probably resulted from the slow release of N as a result of mineralization, enhanced water retention, and water availability, as reported by Clark and colleagues (1997) and Sullivan and associates (1991). Results from muskmelon experiments are similar to those reported by Ogubuchieke and Griffin (2004) where cowpea [Vigna unguiculata L. (Walp.)] incorporated into the soil resulted in a ~24% yield increase over bare ground (1226 vs. 990 boxes ha⁻¹).

Our results demonstrate that winter legume crops, especially lupin and hairy vetch, can be excellent cover crops for meeting N needs of muskmelon and sweet corn. In general, performances of muskmelon and sweet corn after winter cover crop growth and nitrogen content in a vegetable production system. Horttechnology 11:219–225.

Cook, R.J. 1984. Root health: Importance and relationship to farming practices, p. 111–127. In: D.F. Bezdek and J.F. Power (eds.). Organic farming: Current technology and its role in sustainable agriculture. Special publication no. 46. Amer. Soc. Agron, Madison, Wis.

Cook, R.J. 1986. Wheat management systems in the Pacific Northwest. Plant Dis. 70:894–898.

Csizinsky, A.A. and D.J. Schuster. 1982. Yield response of staked, fresh-market tomatoes to reduced use of fertilizers and insecticides. J. Amer. Soc. Hort. Sci. 107:648–652.

Decker, A.M., A.J. Clark, J.J. Meisinger, F.R. Mullord, and M.S. McIntosh. 1994. Legume cover crop contributions to no-tillage corn production. Agron. J. 86:126–135.

Doss, D.B., C.E. Evans, and W.A. Johnson. 1975. Rates of nitrogen and irrigation for tomatoes. Amer. Soc. Hort. Sci. 100:435–437.

Drinkwater, L.E., P. Wagoner, and M. Sarraantoni. 1995. Nitrogen and kill date effects on winter cover crop performance of muskmelon and sweet corn. Agron. J. 86:126–126.

EPA. 1992. U.S. Environmental Protection Agency. Annual needs survey. USEPA, Office of Water, Washington, D.C.

Ess, D.R., D.H. Vaughn, J.M. Luna, and P.G. Sullivan. 1994. Energy and economic savings from the use of legume cover crops in Virginia corn production. Amer. J. Alt. Agr. 9:178–185.

Goldstein, W.A. and L.D. Young. 1987. An agronomic and economic comparison of a conventional and a low-input cropping system in the Panhandle. Amer. J. Alt. Agr. 5:1–56.

Hallberg, G.R. 1987. Agricultural chemicals in ground water: Extent and implications. Amer. J. Alt. Agr. 3:1–15.

Heichel, G.H. 1987. Legumes as a source of nitrogen in conservation tillage systems, p. 29–35. In: J.F. Power (ed.). The role of legumes in conservation tillage. Soil Conser. Soc. of America, Ankeny, Iowa.

Hills, F.J., F.E. Broadbent, and O.A. Lorenz. 1983. Fertilizer nitrogen utilization by corn, toma- toes, and sugarbeets. Agron. J. 75:423–426.

Helderbaum, J.F., A.M. Decker, J.J. Meisinger, F.R. Mullord, and L.R. Vough. 1990.
Fall-seeded legume cover crops for no-till corn in the humid East. Agron. J. 82:117–124.
Kelly, T.C., Y.C. Lu, A.A. Abdul-Baki, and J.R. Teasdale. 1995. Economics of a hairy vetch mulch system for producing fresh-market tomatoes in the mid-Atlantic region. J. Amer. Soc. Hortic. Sci. 120:854–860.
Meisinger, J.J., W.L. Hargrove, R.L. Mikkelsen, J.R. Williams, and V.W. Benson. 1991. Effects of cover crops on groundwater quality, p. 57–68, In: W.L. Hargrove (ed.). Cover crops for clean water. Soil and Water Conservation Soc. Amer., Ankeny, Iowa.
NRC. 1989. Alternative agriculture. National Academy Press, Washington, D.C.
Ogbuchieke, E.J. and M.E. Griffin Jr. 2004. Economic return in production of lettuce and cantaloupe is affected by cropping system and management practice. HortScience 39:1321–1325.
Rangappa, M., A.A. Hamama, and H.L. Bhadravaj. 2002. Legume and grass cover crops for seedless watermelon production. HortTechnology 12:245–249.
Reeves, D.W., J.T. Touchton, and R.C. Kingery. 1990. The use of lupin in sustainable agriculture systems in the Southern Coastal Plain, p. 9. In: Abstracts of technical papers, no. 17. Southern Branch ASA, Feb. 3–7, 1990, Little Rock, AR.
SAS. 1996. SAS system for Windows. SAS Institute, Inc., Cary, N.C.
Shennan, C. 1992. Cover crops, nitrogen cycling, and soil properties in semi-irrigated production systems. HortScience 27:749–754.
Stute, J.K. and J.L. Posner. 1995. Legume cover crops as a nitrogen source for corn in an oat–corn rotation. J. Prod. Agr. 8:385–390.
Sullivan, P.G., D.J. Parrish, and J.M. Luna. 1991. Cover crop contribution to N supply and water conservation in corn production. Amer. J. Alt. Agr. 6:106–113.
Tilman, D. 1998. The greening of green revolution. Nature 396:211–212.
VCE. 1997. Commercial vegetable production recommendations. Publication no. 4576–420. Virginia Coop. Ext. Virginia Tech, Blacksburg, Va.
Voss, R.D. and W.D. Shrader. 1984. Rotation effects and legume sources of nitrogen for corn, p. 61–68. In: D.F. Bezdicek and J.F. Power (eds.). Organic farming: Current technology and its role in sustainable agriculture. Special publication no. 46. Amer. Soc. Agron, Madison, Wis.