One-Pot Synthesis of Styrene Derivatives from Allyl Silanes via B(C₆F₅)₃-Catalyzed Isomerization–Hiyama Coupling

Betty A. Kustiana, Rebecca L. Melen, and Louis C. Morrill*

ABSTRACT: Herein, we report a one-pot synthesis of styrene derivatives via a novel B(C₆F₅)₃-catalyzed E-selective isomerization of readily accessible allyl silanes and subsequent Hiyama coupling of the versatile alkenyl silane intermediates. This one-pot, two-step approach enables access to a broad range of styrene derivatives, including those containing Lewis basic functional groups, that cannot be accessed via the previously developed B(C₆F₅)₃-catalyzed isomerization of allyl benzenes.

Alkenyl silanes are useful building blocks in organic synthesis, polymer chemistry, and materials science. They participate in a diverse array of transformations, including electrophilic substitution, polymerization, and cross-coupling reactions. Alkenyl silanes can be accessed by various methods, including nucleophilic substitution of chlorosilanes with alkenyl magnesium reagents, transition metal-catalyzed hydrosilylation of alkynes and allenes, dehydrogenative silylation of alkenes, and Cu-catalyzed silylation of alkenyl iodonium salts (Scheme 1A). An attractive alternative approach for the formation of substituted alkenyl silanes is the isomerization of allyl silanes, due to their relative ease of synthesis and commercial availability. A variety of catalytic approaches for the isomerization of allyl silanes to alkenyl silanes have been developed, which employ catalysts based on both precious metals (e.g., Ru, Pd, and Ir) and more abundant first-row transition metals (e.g., Fe, Co, and Ni).

The development and application of main group catalysts in synthesis continues to be an active area of investigation in organic chemistry. This can be attributed to the desire to understand further the reactivity and capabilities of main group catalysts, combined with the increasing drive to reduce the dependence upon finite precious metals. Among main group catalysts, fluorinated triarylboranes such as commercially available B(C₆F₅)₃ have garnered significant attention. These species have been employed as catalysts in a variety of transformations, including hydrosilylation, frustrated Lewis pair (transfer) hydrogenation, and various C–C bond-forming reactions. As part of our ongoing interest in the use of boranes as catalysts in synthesis, we recently reported the B(C₆F₅)₃-catalyzed E-selective isomerization of alkenes (Scheme 1B). Although the method could be applied across a broad range of alkene-containing substrates, the high Lewis acidity of B(C₆F₅)₃ resulted in a number of limitations with respect to the incorporation of Lewis basic functional groups.

Received: October 19, 2022
Published: November 17, 2022
catalyzed isomerization of allyl silanes to alkenyl silanes, which undergo Hiyama coupling in a one-pot, two-step process to access a more diverse array of valuable substituted styrene derivatives (Scheme 1C). Examples of biologically active molecules that contain substituted styrene motifs include anethole (food additive), isoeugenol (fragrance), and licarin A (antimycobacterial).

To commence our studies, the B(C₆F₅)₃-catalyzed isomerization of allyl triphenyl silane 1 to form triphenyl(prop-1-en-1-yl)silane 2 was selected for reaction optimization (Table 1). Employing commercially available B(C₆F₅)₃ (5 mol %) as a catalyst and toluene ([I] = 0.25 M) as a solvent in a sealed tube at 140 °C for 48 h under argon gave 2 in 85% NMR yield (80% isolated yield) with high selectivity for the E-alkene isomer (97:3 E:Z) (entry 1). No alkene isomerization was observed in the absence of B(C₆F₅)₃ (entry 2). Decreasing the reaction time or the reaction temperature each reduced the NMR yield of 2 (entries 3 and 4), as did variation of the concentration and solvent (entries 5–8). Decreasing the catalyst loading to 2.5 mol % resulted in only 21% conversion to 2 (entry 9).

With the optimized reaction conditions in hand, the scope of the B(C₆F₅)₃-catalyzed allyl isomerization process was explored (Scheme 2). It was found that various aryl/alkyl substitutions on silicon were tolerated, which provided access to the corresponding internal alkene products in high yields (≥91%), and with good selectivity for the E-alkene isomer (products 2–13). Commonly employed silicon-based protecting groups could be incorporated into the products, including tert-butylidiphenylsilyl (TBDDS) 3, tert-butyldimethylsilyl (TBS) 8, triisopropylsilyl (TIPS) 12, and trimethylsilyl (TMS) 13. The reaction performed well on a 2 mmol scale, which gave 7 in 80% yield and with 93:7 E:Z selectivity. It was found that alllyltriphenylgermane and alllyltriethylgermane also underwent B(C₆F₅)₃-catalyzed isomerization of allyl triisopropyl silane 3 to triisopropyl(prop-1-en-1-yl)silane 4 with 80% NMR yield of 4 (entry 9), and 93:7 E:Z ratio (entry 5).

entry	variation from "standard" conditions	yield (%)	E/Z ratio
1	none	85 (80)	97:3
2	no B(C₆F₅)₃	<2	
3	reaction time of 24 h	72	>98:<2
4	130 °C	6	84:16
5	[I] = 0.1 M	65	98:2
6	[I] = 0.5 M	72	94:6
7	chlorobenzene as the solvent	76	96:4
8	xylenes as the solvent	30	>98:<2
9	B(C₆F₅)₃ (2.5 mol %)	21	>98:<2

Reactions performed using 0.1 mmol of 1. Determined by 1H NMR analysis of the crude reaction mixture using 1,3,5-trimethylbenzene as the internal standard. Isolated yield in parentheses.

Scheme 2. Scope of Allyl Silane Isomerization™

Reactions performed using 0.1 mmol of allyl silane. Yields determined by 1H NMR analysis of the crude reaction mixture using 1,3,5-trimethylbenzene as the internal standard. 1At 130 °C. 2With 2 mmol of substrate. 3At 72 h.

Developed B(C₆F₅)₃-catalyzed isomerization of allyl benzenes.™ Employing benzylidimethylsilane 7,™ alkene isomerization was followed by Hiyama coupling via the addition of Pd(dba)₂ (4 mol %), n-BuNF (2 equiv), and the desired aryl iodide (1 equiv) to the same reaction vessel, which was heated at 40 °C for 24 h under N₂ (Scheme 3A). This one-pot, two-step process provided access to a broad range of substituted styrene derivatives in good yields with high E selectivity, bearing various functional groups, including ethers, amines, acetals, esters, nitrides, ketones, and sulfonamides (Scheme 3B, products 16–27). Alkenyl-substituted heterocycles, including indole, benzofuran, and pyridine, were also formed in good yields with high E selectivity (products 28–31). A majority of these products could not be accessed using our previously developed B(C₆F₅)₃-catalyzed alkene isomerization methodology due to several competing processes, including the coordination of B(C₆F₅)₃ to basic functionalities (e.g., pyridines), B(C₆F₅)₃-mediated C–H hydride abstraction (e.g., benzylic and α-amino positions), and undesired reduction of susceptible functional groups (e.g., ketones). As an alternative demonstration of alkenyl silane derivatization, the stereospecific epoxidation of prop-1-en-1-yl silane 2 with mCPBA gave the corresponding trans-epoxide 32 as a single observable isomer in 65% isolated yield (Scheme 3C).

Our investigation of the B(C₆F₅)₃-catalyzed isomerization of allyl benzenes involved a detailed synthetic and computational mechanistic investigation,™ which revealed that multiple competing reaction mechanisms may be operative, namely, (i) hydride abstraction, (ii) 1,2-hydride shift, and (iii) 1,3-hydride shift. By analogy, it is proposed that the isomerization of allyl silanes may proceed via the same pathways (Scheme 4A). With a view to providing supporting evidence for plausible reaction intermediates, the B(C₆F₅)₃-catalyzed isomerization of allyltrimethylsilane 33 was performed in the presence of 1,2-dimethylindole 34 (1.2 equiv), which gave C(3)-alkylated indole 35 in 13% NMR yield alongside alkenyl...
This product indicates the presence of a \(\beta \)-silyl cation intermediate, formed via alkene activation by \(\text{B(C}_6\text{F}_5)_3 \) (cf., proposed 1,2-hydride shift mechanism), which in this case is intercepted by nucleophilic indole 34.

In conclusion, a one-pot synthesis of styrene derivatives has been developed via a novel \(\text{B(C}_6\text{F}_5)_3 \)-catalyzed \(E \)-selective isomerization of readily accessible allyl silanes and subsequent Hiyama coupling of the versatile alkenyl silane intermediates. This one-pot, two-step approach enables access to a broad range of styrene derivatives, including those containing Lewis basic functional groups that cannot be accessed via the previously developed \(\text{B(C}_6\text{F}_5)_3 \)-catalyzed isomerization of allyl benzenes. Ongoing work in our laboratory is focused on further applications of Lewis acid triarylborane catalysts in organic synthesis.

Data Availability Statement

The data underlying this study are openly available in the Cardiff University data catalogue at 10.17035/d.2022.0232368584.

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.2c03584.

Optimization data, experimental procedures, characterization of new compounds, and spectral data (PDF)

Author Information

Corresponding Author

Louis C. Morrill — Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.; orcid.org/0000-0002-6453-7531; Email: MorrillLC@cardiff.ac.uk

Authors

Betty A. Kustiana — Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.

Rebecca L. Melen — Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.; orcid.org/0000-0003-3142-2831

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.2c03584

Notes

The authors declare no competing financial interest.

Acknowledgments

The authors gratefully acknowledge the School of Chemistry, Cardiff University, for generous support and the Schlumberger Foundation for a Faculty of the Future Fellowship (B.A.K.).

References

1. Luh, T.-Y.; Liu, S.-T. Synthetic Applications of Allylsilanes and Vinylsilanes. In The Chemistry of Organic Silicon Compounds, Vol. 2; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Weinheim, Germany, 1998; pp 1793–1868.
2. Fleming, I.; Dunoguès, J.; Smithers, R. The Electrophilic Substitution of Allylsilanes and Vinylsilanes. Org. React. 1989, 37, 57–575.
3. Itoh, M.; Itaya, K.; Kobayashi, M.; Takeuchi, R.; Kabeya, T. Preparations and Properties of Poly(vinylsilane). Macromolecules 1998, 31, 5609–5615.
4. Foubelo, F.; Nájera, C.; Yus, M. The Hiyama Cross-Coupling Reaction: New Discoveries. Chem. Rec. 2016, 16, 2521–2533.
(5) Murakami, K.; Yorimitsu, H.; Oshima, K. Zinc-Catalyzed Nucleophilic Substitution Reaction of Chlorosilanes with Organomagnesium Reagents. J. Org. Chem. 2009, 74, 1415–1417.

(6) For selected examples, see: (a) Zhao, X.; Yang, D.; Zhang, Y.; Wang, B.; Qu, J. Highly β-(Z)-Selective Hydrosilylation of Terminal Alkenes Catalyzed by Thiolate-Bridged Dihromium Complexes. Org. Lett. 2018, 20, 5357–5361. (b) Liang, H.; Ji, Y.-X.; Wang, R.-H.; Zhang, Z.-H.; Zhang, B. Visible-Light-Initiated Manganese-Catalyzed E-Selective Hydrosilylation and Hydrogamylation of Alkenes. Org. Lett. 2019, 21, 2750–2754. (c) Hu, M.-Y.; He, P.; Qiao, T.-Z.; Sun, W.; Li, W.-T.; Lian, J.; Li, J.-H.; Zhu, S.-F. Iron-Catalyzed Regiodivergent Alkyne Hydrosilylation. J. Am. Chem. Soc. 2020, 142 (39), 16894–16902. (d) Wang, Z.-L.; Zhang, F.-L.; Xu, J.-L.; Shan, C.-C.; Zhao, M.; Xu, Y.-H. Copper-Catalyzed Anti-Markovnikov Hydrosilylation of Terminal Alkenes. Org. Lett. 2020, 22, 7735–7742.

(7) Miller, Z. D.; Li, W.; Belderrain, T.; Montgomery, J. Regioselective Allene Hydrosilylation Catalyzed by N-Heterocyclic Carbene Complexes of Nickel and Palladium. J. Am. Chem. Soc. 2013, 135, 15282–15285.

(8) Weber, S.; Glatic, M.; Stöger, B.; Pitterauer, E.; Podevitz, M.; Veiros, L. F.; Kirchner, K. Manganese-Catalyzed Dehydrogenative Silylation of Alkenes Following Two Parallel Inner-Sphere Pathways. J. Am. Chem. Soc. 2021, 143, 17825–17832.

(9) Zhang, L.; Oestreich, M. Copper-Catalyzed Cross-Coupling of Vinylidenium Salts and Zinc-Based Silicon Nucleophiles. Org. Lett. 2018, 20, 8061–8063.

(10) For selected reviews, see: (a) Hilt, G. Double Bond Isomerisation and Migration—New Playgrounds for Transition-Metal-Catalysis. ChemCatChem. 2014, 6, 2484–2485. (b) Lanoron, E.; Li, H.; Mazet, C. Well-defined transition metal hydrides in catalytic isomerizations. Chem. Commun. 2014, 50, 9816–9826. (c) Molloy, J. J.; Morack, T.; Gilmour, R. Positional and Geometrical Isomerisation of Alkenes: The Pinnacle of Atom Economy. Angew. Chem. Int. Ed. 2019, 58, 13654–13664. (d) Liu, X.; Li, B.; Liu, Q. Base-Metal-Catalyzed Olefin Isomerisation Reactions. Synthesis 2019, 51, 1293–1310. (e) Massad, I.; Marek, I. Alkene Isomerisation through Allylmetals as a Strategic Tool in Stereoselective Synthesis. ACS Catal. 2020, 10, 5793–5804.

(11) For selected examples, see: (a) Urata, H.; Suzuki, H.; Morooka, Y.; Ikawa, T. Catalytic Conversion of Allylic Esters to Corresponding Allylic Silanes with Hexamethyldisilane and Palladium(0) or Rhodium(I) Complexes. Bull. Chem. Soc. Jpn. 1984, 57, 6077. (b) Manzini, S.; Nelson, D. J.; Nolan, S. P. A Highly Active Cationic Ruthenium Complex for Alkene Isomerisation: A Catalyst for the Synthesis of High Value Molecules. ChemCatChem. 2013, 5, 2848–2851. (c) Becia, J.; Glaze, O. D.; Wozniak, D. I.; Dobereiner, G. W. Selective Isomerization of Terminal Alkenes to (Z)-2-Alkenes Catalyzed by an Air-Stable Molybdenum(0) Complex. Organometallics 2018, 37, 482–490. (d) Pottiers, N. E.; Giarrana, L.; Huch, V.; Zimmer, M.; Scheschkewitz, D. Exoiodol functionality vis. Core Expansion of Siliconoids with Group 9 Metals: Catalytic Activity in Alkene Isomerization. Chem. Sci. 2020, 11, 7782–7788.

(12) For selected examples, see: (a) Kobayashi, T.; Yorimitsu, H.; Oshima, K. Cobalt-Catalyzed Isomerization of 1-Alkenes to (E)-2-Alkenes with Dimethylphenylsilylethynylmagnesium Chloride and Its Application to the Stereoselective Synthesis of (E)-Alkenylsilanes. Chem. Asian J. 2009, 4, 1078–1083. (b) Chen, C.; Dugan, t. R.; Brennessel, W. W.; Weix, D. J.; Holland, P. L. Z-Selective Alkene Isomerization by High-Spin Cobalt(I) Complexes. J. Am. Chem. Soc. 2014, 136, 945–955. (c) Basu, D.; Gilbert-Wilson, R.; Gray, D. L.; Rauchfuss, T. B.; Dash, A. K. Fe and Co Complexes of Rigidly Planar Phosphino-Quinoline- Pyridine Ligands for Catalytic Hydrosilylation and Dehydrogenative Silylation. Organometallics 2018, 37, 2760–2768. (d) Kapat, A.; Sperrer, T.; Guven, S.; Schoenebeck, F. E-Olefins Through Intramolecular Radical Relocation. Science 2019, 363, 391–396. (e) Garwil, S.; Kaushansky, A.; Fridman, N.; de Ruiter, G. Part per Million Levels of an Anionic Iron Hydride Complex Catalyzes Selective Alkene Isomerization via Two-State Reactivity. Chem. Catal. 2021, 1, 631–647. (f) Kawamura, K. E.; Chang, A. S.; Martin, D. J.; Smith, H. M.; Morris, P. T.; Cook, A. K. Modular Ni(I)/Silane Catalytic System for the Isomerization of Alkenes. Organometallics 2022, 41, 486–496.

(13) For selected reviews, see: (a) Power, P. P. Main-group elements as transition metals. Nature 2010, 463, 171–177. (b) Melen, R. L. Frontiers in Molecular p-Block Chemistry: From structure to reactivity. Science 2019, 363, 479–484.

(14) Aldridge, S.; Jones, C. Modern Main Group Chemistry. Chem. Soc. Rev. 2016, 45, 763–764.

(15) For selected reviews, see: (a) Erker, G. Tris-(pentfluorophenyl)borane: A Special Boron Lewis Acid for Special Reactions. Dalton Trans. 2005, 1883–1890. (b) Patrick, E. A.; Piers, W. E. Twenty-Five years of Bis-Pentfluorophenyl Borane: A Versatile Reagent for Catalyst and Materials Synthesis. Chem. Commun. 2020, 56, 841–853.

(16) For selected reviews, see: (a) Oestreich, M. Transfer Hydrosilylation. Angew. Chem., Int. Ed. 2016, 55, 494–499. (b) Lawson, J. R.; Melen, R. L. Tris(pentfluorophenyl)borane and Beyond: Modern Advances in Boryl Chemistry. Inorg. Chem. 2017, 56, 8627–8643. (c) Keess, S.; Oestreich, M. Cyclohexa-1,4-dienes in Transition-Metal-Free Ionic Transfer Processes. Chem. Sci. 2017, 8, 4688–4695. (d) Stephan, D. W. Catalysis, FLPs, and Beyond. Chem. 2020, 6, 1520–1526. (e) Basak, S.; Winfrey, L.; Kustiana, B. A.; Melen, R. L.; Morrill, L. C.; Pulis, A. P. Electronic Deficient Borane-Mediated Hyride Abstraction in Amines: Stoichiometric and Catalytic Processes. Chem. Soc. Rev. 2021, 50, 3720–3737.

(17) (a) Khan, I.; Manzotti, M.; Tizzard, G. J.; Coles, S. J.; Melen, R. L.; Morrill, L. C. Frustrated Lewis Pair (FLP)-Catalyzed Hydrogenation of Aza-Morita–Baylis–Hillman Adducts and Sequential Organo-FLP Catalysis. ACS Catal. 2017, 7, 7748–7752. (b) Khan, I.; Reed-Berendt, B. G.; Melen, R. L.; Morrill, L. C. FLP-Catalyzed Transfer Hydrogenation of Silyl Enol Etthers. Angew. Chem., Int. Ed. 2018, 57, 12356–12359. (c) Basak, S.; Alvarez-Montoya, A.; Winfrey, L.; Melen, R. L.; Morrill, L. C.; Pulis, A. P. B(C(5)F(5))2-Catalyzed Direct C3 Allylation of Indoles and Oxindoles. ACS Catal. 2020, 10, 4835–4840.

(18) Kustiana, B. A.; Elsherbeni, S. A.; Linford-Wood, T. G.; Melen, R. L.; Grayson, M. N.; Morrill, L. C. B(C(5)F(5))2-Catalyzed E-Selective Isomerization of Alkenes. Chem. - Eur. J. 2020, e202202454.

(19) See the Supporting Information for full experimental details.

(20) Denmark, S. E.; Tymonko, S. A. Sequential Cross-Coupling of 1,4-Bis(silylbutadiene): Synthesis of Unsymmetrical 1,4-Disubstituted 1,3-Butadienes. J. Am. Chem. Soc. 2005, 127, 8004–8005.