DUST-CORRECTED COLORS REVEAL BIMODALITY IN THE HOST-GALAXY COLORS OF ACTIVE GALACTIC NUCLEI AT Z ∼ 1

CAROLIN N. CARDAMONE1,2, C. MEGAN URRY1,2,3, KEVIN SCHAWINSKI2,3,6, EZEQUIEL TREISTER4,6, GABRIEL BRAMMER1, and ERIC GAWISER5

1 Department of Astronomy, Yale University, New Haven, CT 06511, USA; carolin.cardamone@yale.edu
2 Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208120, New Haven, CT 06520, USA
3 Physics Department, Yale University, P.O. Box 208120, New Haven, CT 06520-8120, USA
4 Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822, USA
5 Department of Physics & Astronomy, Rutgers University, Piscataway, NJ 08854-8019, USA
6 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520, USA

Received 2010 May 19; accepted 2010 August 6; published 2010 August 30

ABSTRACT

Using new, highly accurate photometric redshifts from the MUSYC medium-band survey in the Extended Chandra Deep Field-South (ECDF-S), we fit synthetic stellar population models to compare active galactic nucleus (AGN) host galaxies to inactive galaxies at 0.8 ≤ z ≤ 1.2. We find that AGN host galaxies are predominantly massive galaxies on the red sequence and in the green valley of the color–mass diagram. Because both passive and dusty galaxies can appear red in optical colors, we use rest-frame near-infrared colors to separate passively evolving stellar populations from galaxies that are reddened by dust. As with the overall galaxy population, ~25% of the “red” AGN host galaxies and ~75% of the “green” AGN host galaxies have colors consistent with young stellar populations reddened by dust. The dust-corrected rest-frame optical colors are the blue colors of star-forming galaxies, which imply that these AGN hosts are not passively aging to the red sequence. At z ∼ 1, AGN activity is roughly evenly split between two modes of black hole growth: the first in passively evolving host galaxies, which may be heating up the galaxy’s gas and preventing future episodes of star formation, and the second in dust-reddened young galaxies, which may be ionizing the galaxy’s interstellar medium and shutting down star formation.

Key words: galaxies: active – galaxies: high-redshift – X-rays: galaxies

Online-only material: color figures

1. INTRODUCTION

The colors and morphologies of galaxies form a bimodal population at 0 ≤ z ≤ 2 (Blanton et al. 2003; Bell et al. 2004; Borch et al. 2006; De Lucia et al. 2007; Ilbert et al. 2009; Williams et al. 2009; Brammer et al. 2009). A red sequence contains massive galaxies and a blue cloud is composed of lower mass galaxies, while relatively few galaxies lie in the green valley in between. The observed color distribution is consistent with galaxy color evolving from blue to red by the rapid quenching of star formation(Faber et al. 2007). A central active galactic nucleus (AGN), which can heat up the galaxy’s gas (Silk & Rees 1998; Di Matteo et al. 2008) and consequently shut down star formation, can cause this rapid color evolution (Faber et al. 2007; Schawinski et al. 2007). Moreover, the observed correlation between the mass of the central black hole and the host galaxy’s mass (e.g., Tremaine et al. 2002) suggests a potential common cause of star formation and AGN accretion, e.g., mergers (Hopkins et al. 2006; Cattaneo et al. 2009). Additionally, some models invoke subsequent AGN activity to maintain the passive nature of red galaxies, by preventing future episodes of gas cooling (e.g., Croton et al. 2006; Bower et al. 2006).

Several studies show that AGN host galaxies have intermediate-host-galaxy colors at z ≤ 1, placing them in the green valley (Nandra et al. 2007; Bundy et al. 2008; Georgakakis et al. 2008; Silverman et al. 2008; Hickox et al. 2009; Schawinski et al. 2009a). This observation is sometimes interpreted as evidence for AGN involvement in the transition of host galaxies from the blue cloud to red sequence. However, if this were true, we should observe at least some AGNs in blue galaxies, because it takes several hundred megayears for a stellar population to age to the colors of the green valley (Schawinski et al. 2009a). Accordingly, if the intermediate colors of the AGN host galaxies are due to aging stars, AGN activity likely follows the shutdown of star formation with a delay of several 100 Myr.

Recent studies of galaxy colors suggest that the green valley may not consist solely of a transition population of galaxies with intermediate ages, but may contain galaxies from the blue cloud reddened by obscuring dust (Bell et al. 2005; Cowie & Barger 2008; Brammer et al. 2009). The same could be true for AGN host galaxies, complicating the observational picture of the role of AGN feedback in galaxy color evolution. In this Letter, we use highly accurate photometric redshifts in the Extended Chandra Deep Field-South (ECDF-S; Cardamone et al. 2010) to investigate the host galaxies of X-ray selected AGNs at 0.8 ≤ z ≤ 1.2. Throughout this Letter, we assume H0 = 71 km s^{-1} Mpc^{-1}, Ω_m = 0.3, and Ω_Λ = 0.7.

2. COLORS AND MASSES OF GALAXIES AND AGN HOSTS

The combination of depth (R_{AB} ∼ 26), area (30′ × 30′), and multi-wavelength coverage makes the ECDF-S ideal for the study of moderate luminosity AGNs and galaxies at z ∼ 1. The MUSYC survey includes the optical (U38UBVRIC), near- and mid-infrared (JHK and 3.6–8.0 μm) data (Gawiser et al. 2006; Taylor et al. 2009, Damen et al. 2010) needed to investigate galaxy stellar populations and medium-band observations that densely sample the galaxy spectral energy distributions (SEDs), allowing for extremely accurate photometric redshift determi-
nations (Cardamone et al. 2010). Photometric redshifts were computed with EAzY (Brammer et al. 2008) using the full 32-band SEDs, which results in median $|\Delta z/(1+z)| \lesssim 0.01$ at $z \leq 1.2$ (Cardamone et al. 2010). Here, we study galaxies with reliable photometric redshifts ($Q_z \leq 1$; Brammer et al. 2009) at $0.8 \leq z \leq 1.2$.

We use deep X-ray imaging to identify galaxies with AGN activity since X-rays reveal all but the most obscured AGN (Brandt & Hasinger 2005). To remove potential interlopers whose X-ray emission comes primarily from star formation, we consider X-ray sources with $\log(L_{\text{X(R)}}) \geq 42$ erg s$^{-1}$. We combine the deep 2 Ms imaging in the central Chandra Deep Field South (Luo et al. 2008) with the shallower 250 ks observations of the ECDF-S flanking this field (Lehmer et al. 2005; Virani et al. 2006). Obscured AGNs are identified by their observed X-ray hardness ratio, $HR = \frac{H - S}{H + S} \geq -0.2$, where H and S are the X-ray counts in the hard (2–8 keV) and soft (0.5–2 keV) bands. Of 1134 X-ray sources detected, 825 have reliable optical counterparts identified by a likelihood and soft (0.5–2 keV) bands. Of 1134 X-ray sources detected, 7 The ECDF-S depth is sufficient to detect AGN with observed $\log(L_{\text{X(R)}}) \gtrsim 42$ erg s$^{-1}$ out to $z \sim 1.2$.

We fit the galaxy and AGN host SEDs with single-burst stellar population models, for which the medium-band photometry is particularly useful. Using reliable spectroscopic redshifts where available (28 sources) and photometric redshifts otherwise (86 sources), we employ FAST (Kriek et al. 2009) to estimate the stellar mass, star-formation time scale, star-formation rate, and dust content (A_V) for each galaxy. We use stellar templates from Maraston (2005), adopting the Kroupa (2001) initial mass function and solar metallicity, and fitting Calzetti et al. (2000) dust extinction ($A_V = 0–4$). We obtain mass estimates and measurements of A_V for all galaxies and the hosts of X-ray-selected AGNs from the ECDF-S fit, and run Monte Carlo simulations varying the photometry for estimates of uncertainty in the values. Further uncertainties come from systematic effects due to assumptions of metallicity, galactic extinction laws, and the adopted stellar templates and can affect mass measurements by 0.1–0.6 dex (see, e.g., Muzzin et al. 2009; Conroy & Gunn 2010). Degeneracies in the fitting are also a concern (e.g., the age–metallicity degeneracy), so we use only the measurements of stellar mass and dust content in this Letter. Using simulated galaxy SEDs, we found that adding light from a quasar template increases the fitted mass by 0.1 dex but had very little effect on the fitted dust content in models with ages of less than 1 Gyr ($A_V(\text{AGN+gal}) \sim A_V(\text{gal}) + 0.1$) and no effect on the fitted A_V for models with ages greater than 1 Gyr.

The rest-frame $U-V$ color measures the strength of the 4000 Å Balmer break in the galaxy spectrum and separates red galaxies dominated by older stellar populations, which have a strong Balmer break, from blue galaxies experiencing ongoing star formation. In Figure 1, we show $U-V$ color versus stellar mass for the galaxy population. We confirm the bimodal distribution of galaxy colors at $z \sim 1$ (e.g., Bell et al. 2004; Ilbert et al. 2009). In contrast, the X-ray selected AGNs (blue squares for unobscured AGNs, $HR \leq -0.2$; red diamonds for the obscured AGNs, HR ≥ -0.2; and black circles for sources detected only in the full X-ray band) are distributed continuously, peaking at intermediate colors. The luminous X-ray sources ($\log(L_{\text{X(R)}}) \gtrsim 44$ erg s$^{-1}$; larger symbols) are likely biased by QSO light toward bluer colors and larger masses. Monte Carlo simulation were run in EAzY to address errors due to photometric uncertainties. Typical error bars are shown in the bottom right corner. The presence of AGN host galaxies in the green valley has been interpreted to mean that AGN hosts are aging from the blue cloud to the red sequence. However, these colors can also result from dust reddening.

The observed rest-frame colors of AGN host galaxies have been interpreted as indicating intermediate stellar population ages, supporting the idea that AGN activity plays a role in quenching star formation (e.g., Nandra et al. 2007). Indeed, at $z \sim 0$, AGNs are in post-starburst galaxies as assessed via spectral analysis, not just color (Schawinski et al. 2007), and post-starburst galaxies show evidence of galactic winds potentially driven by AGN feedback (Trevisi et al. 2009). However, observed colors are also affected by dust obscuration. To break this degeneracy, multiple rest-frame colors can be used to separate quiescent galaxies from those that are actively star forming but enshrouded by dust (e.g., Labbè et al. 2005; Wuyts et al. 2007). We apply this technique to investigate the nature of the AGN host-galaxy population.

3. PASSIVE VERSUS DUSTY GALAXIES

Both dusty galaxies and older stellar populations have red optical colors (e.g., $U-V$). However, near-infrared light can
Figure 2. Distribution of galaxies in $U-V$ color vs. $V-J$ color has two peaks, one at red colors inside the passive selection region and another at blue colors (points as in Figure 1). Only half of the AGN host galaxies are located in the passive region of this diagram; the rest have colors indicative of star formation, primarily dust-obscured star formation. For objects on the red sequence in Figure 1 (dark gray points), 20% of galaxies and 20% of AGN host galaxies lie in the dust-obscured region, i.e., outside the “passive” box. Additionally, most (∼75%) galaxies and AGNs in the green valley are dust-obscured, rather than a transition population aging onto the red sequence.

(A color version of this figure is available in the online journal.)

Overall, half of the AGN host galaxies are composed of passive stellar populations, the rest have colors indicative of younger stellar populations with varying amounts of dust reddening. Of the AGN host galaxies (logM_{star} ≥ 10), ∼50% (38 out of 80) fall inside the passive selection region. The same fraction of obscured AGN host galaxies, which have minimal AGN contamination to their colors, lie inside the passive selection region (28 out of 57).

At $z \sim 1$, it is difficult to identify light from a central nuclear source, but with "Hubble Space Telescope (HST)" resolution it is possible to subtract the central point source and investigate uncontaminated host-galaxy colors. We compare the point-source-subtracted host-galaxy color to the total integrated color for the AGN in our sample imaged by HST in the GOODS survey (B. Simmons et al. 2010, in preparation). The median $V - z$ color difference ([V - $z_{\text{host galaxy}}$]) is 0.03 mag, and two outlying sources with large color differences have low X-ray hardness ratios, HR ∼ −0.5, consistent with unobscured AGNs. Therefore, for the moderate luminosity obscured AGN in our HST sample, the integrated galaxy color does not appear to be significantly affected by the central AGN light.

To further test the effects of the integrated AGN light, we combine synthetic stellar population models with unobscured quasar templates (Vanden Berk et al. 2001; Richards et al. 2006), creating model SEDs containing the post-starburst template used in Figure 2 and up to 50% of light (normalized in the R band) from the quasar template. We then convolve these composite spectra with our filter set and use EAZY to determine the rest-frame colors. The $U - V$ colors are preferentially shifted toward the blue, but the net effect is less than 0.1 mag (and typically < 0.03 mag). However, we do note that the very blue, very luminous AGNs (Figure 1, bottom right) have high X-ray luminosities and hardness ratios consistent with unobscured AGNs. In these SEDs, the blue continuum is very flat and the AGN light dominates the integrated light, causing the blue colors at optical wavelengths. Pierce et al. (2010) also simulate the addition of unobscured quasar (QSO) light to template galaxy SEDs (contribution up to 50% of the B-band flux), finding that the additional blue continuum from the QSO can bias the $U - B$ colors by up to a magnitude. For the obscured AGN, the light from the central AGN continuum distribution does not greatly affect the AGN host-galaxy colors.

The addition of the unobscured quasar light to a young stellar population makes the shorter wavelength colors slightly blue, but at longer wavelengths the composite is redder ($V - J_{\text{AGN+gal}}$ ∼ $V - J_{\text{gal}}$ + 0.2). However, for models several hundred million years post-starburst (i.e., at redder $U - V$ colors), the AGN light does not change the rest-frame $V - J$ color enough to move it into the dusty region of the diagram ($V - J_{\text{AGN+gal}}$ ∼ $V - J_{\text{gal}}$ + 0.02). Therefore, our finding that ∼50% of the AGN host galaxies live in passively evolving host galaxies is robust to contamination from a central AGN source.

Following Brammer et al. (2009), we de-redden the rest-frame colors based on the A_V from the SED fit assuming a Calzetti et al. (2000) dust law (ΔA_V = 0.47 × A_V). Figure 3 shows that many galaxies in the green valley are removed in the dust-corrected $U - V$ color diagram. That is, the population of AGN host galaxies divides into blue and red populations after correcting the $U - V$ colors for the contribution of dust, just as has been seen for non-active high-redshift galaxies (Cowie & Barger 2008; Brammer et al. 2009). Roughly, half of the AGNs remain on the lower edge of the red sequence, while
colors depend on accurate determinations of AV and thus are likely to have the same post-starburst age—as comparable X-ray-selected samples of AGNs at $z \approx 0$ (Schawinski et al. 2009a). They lie on the red sequence at $z \sim 1$ but in the green valley at $z \sim 0$ due to the evolution of the red sequence from $z \sim 0$ to $z \sim 1$ (e.g., Bell et al. 2004). Even with an effectively instantaneous cessation of star formation, a starburst takes ~ 300 Myr to age to colors consistent with the bluest edge of the $z \sim 1$ red sequence, and more gradual exponential declines of star formation take ~ 500 Myr or more. Given a typical AGN lifetime (~ 10–100 Myr; Ferrarese & Ford 2005), the redder host galaxies are slightly older than one would expect if the star formation was shut down partway through the current episode of AGN activity.

Furthermore, if the presently observed AGN is responsible for the cessation of star formation, then the relative frequency of dust-corrected red AGN hosts compared to dust-corrected green AGN hosts gives a rough estimate of the duty cycle of AGN activity. That is, because there are at least 10 times as many AGNs on the red sequence as in the green valley (for $\log M_{\text{star}} \geq 10 M_\odot$, where our sample is complete), a continuously active AGN would have to spend 10 times as long on the red sequence as their stellar populations take to age through the green valley. Given the ages of post-starburst galaxies with colors of $U-V \sim 1.5$, this implies an AGN lifetime over ~ 1 Gyr. It therefore seems more likely that AGN activity is episodic, with the current episode of accretion beginning after the star formation was turned off. In either case, the AGN in red galaxies could represent a “maintenance mode,” in which enough energy is released into the interstellar medium to prevent future episodes of star formation (Croton et al. 2006; Hopkins et al. 2006). It is interesting to note that the lowest luminosity AGN in our sample, $\log (L_{\text{X}}) \sim 42$–42.5 erg s$^{-1}$, are preferentially red and passive. That is, a lower level of AGN activity may suffice to prevent gas cooling, whereas a more luminous AGN might be required to quench vigorous star formation.

The two populations of AGN hosts at $z \sim 1$—in young star-forming galaxies and in older, passively evolving galaxies—appear to represent distinct phases of AGN activity. Specifically, AGNs in young, dusty-star-forming galaxies are prime candidates for quenching star formation and driving their host galaxies toward the red sequence, while AGNs in much older, red host galaxies may be keeping the interstellar gas hot and preventing future episodes of star formation.

We thank the referee for helpful comments which improved this Letter. Support from NSF grants AST-0407295, AST-0449678, AST-0807570, and Yale University is gratefully acknowledged. Support for the work of E.T. and K.S. was provided by NASA through Einstein Post-doctoral Fellowship Award Numbers PF8-90055 and PF9-00069 issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NASA-03060.

REFERENCES

Bell, E. F., et al. 2004, *ApJ*, 608, 752
Bell, E. F., et al. 2005, *ApJ*, 625, 23
Blanton, M. R., et al. 2003, *ApJ*, 594, 186
Borch, A., et al. 2006, *A&A*, 453, 869
