Characterization of the complete mitochondrial genome of the tea leaf roller *Caloptilia theivora* (Insecta: Lepidoptera: Gracillariidae)

Shi-Chun Chen, Hong-Yan Jiang, Jing Shang, Xiang Hu, Ping Peng and Xiao-Qing Wang

Tea Research Institute of Chongqing Academy of Agricultural Science, Chongqing, P. R. China

ABSTRACT

The tea leaf roller, *Caloptilia theivora* (Walsingham), is a serious pest of tea plants. We have obtained and annotated the complete mitochondrial genome of *C. theivora* (GenBank accession No. MK541932). The entire mt genome is 15,297 bp long with an A+T content of 80.66%. The mt genome of *C. theivora* encodes all 37 genes that are typically found in animal mt genomes, consists of 13 protein-coding genes, 2 ribosomal RNA, and 22 transfer RNA genes. The gene order is consistent with other moths mt genome in Ditrysia. The control region of this genome is 192 bp long with a high A+T content of 96.35%, and located between the *rrnS* and *trnL* genes. Phylogenetic analysis was performed using 13 protein-coding genes among 19 moths showed that *C. theivora* is closely related to species of Gracillariidae.

The A+T content of this region is 96.35%, the highest level of each region in this mt genome. The gene arrangement of this mt genome is conserved as other moths mt genome in Ditrysia. Twenty-three of all 37 genes are encoded on the majority strand (U-strand) and the others encoded by the minority strand (N-strand). Twelve of the 13 PCGs start with ATN codons (ATG for *atp6*, *cox2*, *nad1*, *cob*, *nad4*, and *nad4L*; ATT for *atp8*, *nad2*, *nad5*, and *nad6*; ATA for *cox3* and *nad3*) and *cox1* used CGA as start codon, same situation exists in most Lepidoptera species (Chen et al. 2016). Three PCGs (*cox1*, *cox2*, and *nad4*) have incomplete terminal codons consisting of single T nucleotide, and the other PCGs stop with TAA and TAG. The nucleotide length of tRNA genes is ranging from 61 bp (*trnA*) to 80 bp (*trnS*)), and A+T content is ranging from 70.42% (*trnK*) to 89.39% (*trnD*). All of the 22 tRNA genes have the conventional cloverleaf-shaped secondary structure. The two rRNA genes have been identified on the N-strand in the *C. theivora* mt genome: the *rrnL* gene locates between *trnL* and *trnV* genes, and the *rrnS* gene between the *trnV* gene and the control region. The length of *rrnL* and *rrnS* genes was 1389 and 770 bp, and their A+T content was 85.46% and 85.84%, respectively.

We analyzed amino acid sequence of 13 PCGs with the maximum likelihood (ML) method to understand the phylogenetic relationship of *C. theivora* with other moths. The mt genome sequence of *Drosophila melanogaster* (GenBank accession no. DMU37541) was used as an outgroup. The tea leaf roller and other three moths in the Family Gracillariidae are clustered into a branch of the phylogenetic tree with 100% bootstrap value (Figure 1). It infers that *C. theivora* is...
closely related to species of Gracillariidae, and the complete mitochondrial genome of *C. theivora* can be used for further taxonomic analysis.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This study was jointly supported by the earmarked fund for China Agriculture Research System [CARS-19], Youth Science and Technology Innovation Project of Chongqing Academy of Agricultural Sciences [NKY-2019QC05] and Public Welfare Science and Technology Projects of Yongchuan [Ycstc, 2018cc0106].

References

Chen SC, Wang XQ, Wang JJ, Hu X, Peng P. 2016. The complete mitochondrial genome of a tea pest looper, *Buzura suppressaria* (Lepidoptera: Geometridae). Mitochondrial DNA A DNA Mapp Seq Anal. 27:3153–3154.

Kamimuro T, Higashitarumizu S, Suenaga H. 2017. Resistance of the tea leaf roller, *Caloptilia theivora* (Lepidoptera: Gracillariidae), to flufenoxuron in Kagoshima prefecture, Japan. Jpn J Appl Entomol Z. 61:99–107.

Kamimuro T, Higashitarumizu S, Suenaga H. 2018. Copulation and egg-laying behavior of the tea leaf roller, *Caloptilia theivora* (Lepidoptera: Gracillariidae) in the laboratory. Jpn J Appl Entomol Z. 62:115–121.

Nakadai R, Kawakita A. 2016. Phylogenetic test of speciation by host shift in leaf cone moths (*Caloptilia*) feeding on maples (*Acer*). Ecol Evol. 6: 4958–4970.

Figure 1. The maximum likelihood (ML) phylogenetic tree of *Caloptilia theivora* and other moths. The GenBank accession numbers used for tree constructed are as follows: *Mahasena colona* (KY856825), *Tineola bisselliella* (KJ508045), *Cameraria ohridella* (KJ508042), *Phyllonorycter platanii* (KJ508044), *Phyllonorycter froelichiella* (KJ508048), *Buzura suppressaria* (KF278206), *Bombyx mori* (AF149768), *Antheraea pernyi* (HQ264055), *Manduca sexta* (EU286785), *Thitarodes renziensis* (HM746904), *Helicoverpa armigera* (GU188273), *Phalaena flavescens* (JF440342), *Hyphantria cunea* (GU592049), *Gynaephora menyuanensis* (KC185412), *Leucoptera malifoliella* (JN790955), *Adoxophyes honmai* (DQ073916), *Ostrinia furnacalis* (AF467260), and *Lista haraldusalis* (KF709449).