Many-node/many-link spinfoam: the homogeneous and isotropic case

Francesca Vidotto

Centre de Physique Théorique de Luminy\(^1\), Case 907, F-13288 Marseille, France and
Dipartimento di Fisica Nucleare e Teorica, Università degli Studi di Pavia, and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via A Bassi 6, I-27100 Pavia, Italy

E-mail: vidotto@cpt.univ-mrs.fr

Received 15 July 2011, in final form 13 October 2011
Published 24 November 2011
Online at stacks.iop.org/CQG/28/245005

Abstract

I compute the Lorentzian EPRL/FK/KKL spinfoam vertex amplitude at the first order for regular graphs, with an arbitrary number of links and nodes, and coherent states peaked on a homogeneous and isotropic geometry. This form of the amplitude can be applied for example to a dipole with an arbitrary number of links or to the 4-simplex given by the complete graph on five nodes. All the resulting amplitudes have the same support, independently of the graph used, in the large-\(j\) (large-volume) limit. This implies that they all yield the Friedmann equation: I show this in the presence of the cosmological constant. This result indicates that in the semiclassical limit, quantum corrections in spinfoam cosmology do not come from just refining the graph, but rather from relaxing the large-\(j\) limit.

PACS numbers: 04.60.Pp, 04.60.Kz

(Some figures may appear in colour only in the online journal)

1. Introduction

The covariant (path-integral) approach to quantum cosmology consists in the computation of transition amplitudes between two quantum states that describe the geometry of the universe. This can be done in particular in minisuperspace models, where the infinite number of degrees of freedom of general relativity is truncated to a finite number.

In loop quantum gravity, all these ingredients are well defined: the path integral is formulated in the spinfoam formalism, where the sum is over possible geometries; the states are

\(^1\) Unité mixte de recherche (UMR 6207) du CNRS et des Universités de Provence (Aix-Marseille I), de la Méditerranée (Aix-Marseille II) et du Sud (Toulon-Var); Laboratoire affilié à la FRUMAM (FR 2291).
spin-network states from which one can construct coherent states peaked on a given geometry; and finally the truncation on a graph of the theory provides a natural way to obtain a finite number of degrees of freedom. (For an introduction, see for example [1].)

The EPRL/FK/KKL spinfoam amplitude [2–7] has been evaluated in the Euclidean framework for a homogeneous isotropic geometry on a particularly simple graph, and given a tentative cosmological interpretation [8], opening up the possibility of studying quantum cosmology directly from the spinfoam formalism.

Various questions remain to be addressed, however, in order to make such spinfoam cosmology viable [8–12]. First, the result must be extended to the Lorentzian context. Second, spinfoam cosmology is based on the idea of approximating the spinfoam sum with its value on simple graphs and two complexes. Is this expansion viable? The graph used so far is the dipole graph [13–16] given by $N = 2$ nodes of equal valency (or degree) $d = 4$ (figure 1). This graph has a good geometrical interpretation, being the simpler graph that can be associated with the triangulation of a 3-sphere. What happens if we use a different graph? In general, the choice of the graph determines the number of degrees of freedom taken into account; in the semiclassical limit of a homogeneous isotropic configuration, these should not matter. How is the spinfoam cosmology transition amplitude modified by using a different graph, namely adding more links and/or more nodes?

I address some of these issues: I generalize spinfoam cosmology to an arbitrary regular graph with many nodes and many links, and to the Lorentzian framework. I show that the semiclassical behavior of the model is the same as in the Euclidean and it is independent of the graph chosen. The transition amplitude turns out to be modified just by a global factor, in a way very similar to what happens for Regge calculus [17].

This result supports the idea that the graph expansion is consistent in spinfoam cosmology and indicates that quantum correction to the Friedmann dynamics in spinfoam cosmology is not given by more complicated graphs, but rather to subleading terms in the semiclassical, large-volume, limit. I refer only to graphs on the boundary, while I do not address in this paper the issue of refining the two-complex in the bulk (for a discussion about this, see [18]).

In this paper, I discuss a covariant quantum cosmology defined from the full quantum gravity theory in the spinfoam formalism. A different approach has recently been explored [19–25] starting from the Hamiltonian constraint of loop quantum cosmology and defining a path integral, which mimics the expansion in spinfoam. The two approaches should hopefully converge.

In the following section, I compute the Lorentzian EPRL/FK/KKL transition amplitude in the homogeneous and isotropic case for a general abstract graph. In section 3, I introduce...
the cosmological constant in order to study the resulting Friedmann equation. In section 4, I briefly discuss two special cases of this amplitude: the dipole with many links and the 4-simplex boundary, given by the complete graph on five nodes Γ_5.

2. Transition amplitude

The EPRL/FK/KKL spinfoam amplitude has the form

$$Z_C = \sum_{j_f, v_e} \prod_f (2j_f + 1) \prod_e A_e(j_f, v_e),$$

where $A_e(j_f, v_e) = \langle j_f, v_e | A_e \rangle$ is the vertex amplitude in the spin-network basis. (See [1] for an introduction of this formalism and full definitions.)

I use the coherent states [26–28]

$$\psi_{H_t}(U_t) = \int_{SU(2)^{\ell}} d^2 g \prod_{j \in \Gamma} K_t(g_{\sigma(j)}U_t g_{\sigma(j)}^{-1} H_t^{-1})$$

as boundary states for the transition amplitudes. They are defined by an integral on $SU(2)$, so that the states are gauge invariant, and by the heat kernel K_t on $SU(2)$ ($U_t \in SU(2)$), analytically continued to $SL(2, \mathbb{C})$. This is a function concentrated on the origin of the group, with a spread2 of order $1/t$ in j. These states are labeled by one element $H_t \in SL(2, \mathbb{C})$ for each link. This can be written as

$$H_t = D^{(j)}(R_{\sigma(j)}),$$

where $R_{\sigma} \in SU(2)$ is some fixed choice of rotation matrix that rotates the unit vector pointing in the $(0, 0, 1)$ direction into the unit vector \vec{n}. $D^{(j)}(R_{\sigma})$ is its representation j. The geometrical interpretation is the following [29, 30]. The two vectors \vec{n} and \vec{n} represent the normals to the face ℓ, in the two polyhedra bounded by this face. The complex number z_{ℓ} codes the intrinsic and the extrinsic geometry at the face. More precisely the imaginary part of z_{ℓ} is proportional to the area of the face of the triangulation dual to the link ℓ. The real part of z_{ℓ} is determined by the holonomy of the Ashtekar connection along the link [31].

I focus on the evaluation of the single vertex amplitude A_v. When evaluated in the (holomorphic) basis of the coherent states (2), the amplitude is

$$W(H_t) = \langle A_v | \psi_{H_t} \rangle,$$

which can be written as [32–35]

$$W(H_t) = \int_{SL(2, \mathbb{C})} dG_t \prod_{j \in \ell} P_j(H_t, G_t),$$

where

$$P_j(H_t, G_t) = \sum_{j_{\ell j}} (2j_{\ell j} + 1) e^{-2\hbar j_{\ell j} (j_{\ell j} + 1)} \text{Tr}[D^{(j_{\ell j})}(H_t) Y^j D^{(j_{\ell j})}(G_t) Y^j].$$

$D^{(j)}(H_t)$ is simply $D^{(j)}(R_{\sigma(j)}) D^{(j)}(e^{i\theta_j^2}) D^{(j)}(R_{\sigma(j)})^{-1}$. $G_t = G_{\sigma(j)} G_{\sigma(j)}^{-1}$ is the product of the $SL(2, \mathbb{C})$ group elements at the source and target nodes, extremals of each oriented link ℓ, and $D^{(j_{\ell j})}(G_t)$ is its representation matrix. Finally, Y is a map from the representation (j) of $SU(2)$ to the representation $((j_{\ell j}))$ of $SL(2, \mathbb{C})$. (We denote with γ the Barbero–Immirzi parameter.)

2 The parameter t, called the heat-kernel time, is taken here with the dimension of an action. The coherent states became classical for small values of this parameter.
I want to evaluate this expression in the homogeneous and isotropic case. This corresponds to restricting the study to regular graphs \([36]\), so that the distribution of the degrees of the nodes is uniform (all the nodes have the same valence). The requirement of homogeneity and isotropy fixes \(n_s, \bar{n}_s\) as the normals to the faces of the geometrically regular cellular decomposition dual to the graph, and implies that all the \(z_\ell\) elements in \(H_\ell\) are equal: \(z_\ell = z\). Furthermore, on a homogeneous isotropic space the real part of \(z\) is the sum of two terms \([37]\)

\[
\text{Re } z = \theta (\gamma K + \Gamma),
\]

(7)

where \(K\) and \(\Gamma\) are the scalar coefficients of, respectively, the extrinsic curvature and the spin connection, that enter in the definition of the Ashtekar–Barbero connection written in the homogeneous gauge. On a compact space, \(\Gamma = 1\), and \(\theta\) and is the angle between two 4d normals of the two adjacent polyhedra (the isotropy requires that this is the same for every couple of normals) and \(K\) is proportional to the time derivative of the scale factor.

With these assumptions, any homogeneous isotropic coherent state on any regular graph is described by a single complex variable \(z\), whose imaginary part is proportional to the area of each regular face of the cellular decomposition (and it can be put in correspondence with the total volume) and whose real part is related to the extrinsic curvature \([38]\). I denote this state as \(\psi_{H(z)}\), and the state on two copies of the regular graph, obtained by tensoring the initial and final homogeneous isotropic states, as \(\psi_{H(z)} \otimes \psi_{H(z')}\).

The classical Hamilton function of a homogeneous isotropic cosmology is the difference between two boundary terms. With the cosmological constant \(\Lambda\), it gives

\[
S_H = \int dt \left(a \dot{a}^2 + \frac{\Lambda}{3} a^2 \right) \bigg|_{t=0}^{t=\pm\sqrt{\frac{2}{\Lambda}}} = \frac{2}{3} \sqrt{\frac{\Lambda}{3}} (\bar{a}_m^2 - a_m^2),
\]

(8)

where \(a\) is the scale factor and \(\dot{a}\) its time derivative. Therefore, at the first order in \(\hbar\) the quantum transition amplitude factorizes:

\[
W(\alpha_{fm}, \alpha_m) = e^{\frac{i}{\hbar} S_H(\alpha_{fm}, \alpha_m)} = W(\alpha_{fm}) \overline{W}(\alpha_m).
\]

(9)

The same happens for the spinfoam amplitude

\[
\langle W | \psi_{H(z_{fm}, z_m)} \rangle = W(z_{fm}, z_m) = W(z_{fm}) \overline{W}(z_m),
\]

(10)

where

\[
W(z) = \int \prod_{n=1}^{N-1} dG_n \prod_{\ell=1}^{L} P_\ell (H_\ell(z), G_i).
\]

(11)

The integration is on the group elements \(G_n \in SL(2, \mathbb{C})\), one for each node \(n\). We are interested in this quantity in the limit in which the imaginary part of \(z\) is large, namely in the large-volume limit.

Let us start by studying (6) when the imaginary part of \(z\) is large. In the trace there is

\[
D^{(j)}(e^{-izj}) = \sum_m e^{-izm} |m\rangle \langle m|.
\]

(12)

For \(\text{Im } z \gg 1\) (large area) in this sum, the term \(m = j\) dominates; therefore,

\[
D^{(j)}(e^{-izj}) \approx e^{-izj} |j\rangle \langle j|,
\]

(13)

where \(|j\rangle\) is the the eigenstate of \(L_3\) with the maximum eigenvalue \(m = j\) in the representation \(j\). Inserting this result into (6) and (11), I obtain

\[
W(z) = \int \prod_{n=1}^{N-1} dG_n \prod_{\ell=1}^{L} \sum_{j_\ell} (2j_\ell + 1) e^{-2\hbar j_\ell (j_\ell + 1) - izj_\ell} \times |j_\ell| D^{(j_\ell)}(R_{j_\ell}) Y^{(j_\ell)}(G_\ell) Y D^{(j_\ell)}(R_{j_\ell}) |j_\ell\rangle.
\]

(14)
The action of the matrix $D^{(lk)}(R_{\mathfrak{g}})$ on the highest weight states is precisely the definition of the coherent states $|\tilde{n}\rangle$, so I can write

$$W(z) = \int \prod_{n=1}^{N-1} dG_n \prod_{\ell=1}^{L} \sum_{j_\ell} (2j_\ell + 1) e^{-2\Im j_\ell (j_\ell + 1)-iz_\ell j_\ell} \langle \tilde{n}(\ell) | Y^\dagger D^{(\gamma j_\ell l_\ell)} (G_\ell) Y | \tilde{n}(\ell) \rangle. \quad (15)$$

I can now study the $SL(2, \mathbb{C})$ integral in (15) (without fixing j). Let us rewrite the previous expression as

$$W(z) = \sum_{(j_\ell)} \prod_{\ell=1}^{L} (2j_\ell + 1) e^{-2\Im j_\ell (j_\ell + 1)-iz_\ell j_\ell} \int \prod_{n=1}^{N-1} dG_n \prod_{\ell=1}^{L} \langle \tilde{n}(\ell) | Y^\dagger D^{(\gamma j_\ell l_\ell)} (G_\ell) Y | \tilde{n}(\ell) \rangle. \quad (16)$$

Since the Gaussian sums in the first line peak the j_ℓs over large values, the integral in the second line can be computed in the large-spin regime, where it can be evaluated using saddle-point methods. The computation of the integral

$$\int \prod_{n=1}^{N-1} dG_n \prod_{\ell=1}^{L} \langle \tilde{n}(\ell) | Y^\dagger D^{(\gamma j_\ell l_\ell)} (G_\ell) Y | \tilde{n}(\ell) \rangle \quad (17)$$

is simplified in a spinor base, as the one introduced in [35] and gives

$$H \prod_{\ell=1}^{L} e^{-z_j \theta}, \quad (18)$$

where H is the Hessian of the logarithm of the integrand in (17) [35] and θ is a constant determined by the normals on the faces: it is the intrinsic curvature on the faces, coming from the spin connection in the Ashtekar connection. I can define a new variable $\tilde{z} := z - \theta$, so that the real part of \tilde{z} is exactly the extrinsic curvature. Using this, the amplitude becomes

$$W(z) = \sum_{(j)} H \prod_{\ell=1}^{L} (2j_\ell + 1) e^{-2\Im j_\ell (j_\ell + 1)-iz_\ell j_\ell}. \quad (19)$$

Since the imaginary part of \tilde{z} is large, we can approximate the sum that appears in the amplitude with a Gaussian integral. I call j_o the peak value of j_ℓ, which is the same for all ℓ. Following the same steps as [8, 9], we can then rewrite amplitude (19) as

$$W(z) = H \left(\sum_{j} (2j + 1) e^{-2\Im j (j + 1)-iz j} \right)^L, \quad (20)$$

where H, which is polynomial in j, is now taken at the stationary point j_o. Here the Hessian gives a contribution N_γ that depends on the graph Γ through its numbers of links L and nodes N, and a characteristic term j_o^{-3} that is independent of the graph. This is norm squared of the Livine–Speziale coherent regular cell of size j_o [3] (recently calculated in the Lorentzian [35]). Note that since I have fixed the normals \tilde{n}_n, degenerate contributions are not allowed (these being present, I would have had further terms $\sim j_o^{-1}$).

The value of j_o is determined by the vanishing of the real part of the exponent in (20). This gives a condition on the imaginary part of \tilde{z} (associated with the area). When this is large ($j \gg 1$), I have

$$j_o \sim \Im \tilde{z}/4\hbar. \quad (21)$$

The imaginary part of (20) is a phase that suppresses the amplitude everywhere but where the argument is zero or a multiple of 2π. This gives the condition

$$\Re \tilde{z} = 0. \quad (22)$$
Using (7), this is
\[\theta (\gamma K + 1) - \theta = 0. \]
(23)

Without a source (matter or the cosmological constant) this implies \(K = 0 \), namely \(\dot{a} = 0 \), which is the only solution of the Friedmann equation in this case.

The final expression of the amplitude is
\[W(z) = \left(\sqrt{\frac{\pi}{t}} e^{-\frac{z^2}{8t\hbar}} \right)^L \frac{N!}{j_0^L}, \]
(24)

so that, using this and (21), I conclude
\[W(z) = N^2 (z f) e^{-\frac{L}{2\pi} (z^2 + \tilde{z}^2)}. \]
(25)

This is the transition amplitude between two cosmological homogeneous isotropic coherent states, with an arbitrary number of nodes \(N \) and a number \(L \) of links such that the graph is regular (i.e. every node has the same valency).

3. Cosmological constant and Friedmann equation

It is useful to consider a modification of the transition amplitude in order to compare our result in the semiclassical limit beyond Minkowski space, which is the only solution in the absence of matter and cosmological constant. Following [9], let us add a cosmological constant term as follows:
\[Z_C = \sum_{j_f, v_e} \prod_j (2j + 1) \prod_v e^{i\kappa v_e} \prod_j A_v(j, v_e), \]
(27)

where \(\lambda \) is a constant\(^3\) that yields the cosmological constant \(\Lambda \) and \(v_e \) is the volume associated with an edge: in the presence of homogeneity and isotropy, all the cells are the same and I can write \(v_e \) as the volume \(v_o \) of a regular cell with faces having unit area, times \(j^2 \).

The transition amplitude (20) becomes
\[W_v(z) = \sum_j \prod_{\ell=1}^L (2j_{\ell} + 1) H e^{-2j h (j_{\ell} + 1)} e^{-i\kappa v_o j_{\ell}^2} e^{-i\lambda v_o j_{\ell}^2}. \]
(28)

I expand around \(j_0 \) so that the new term is
\[i\lambda v_o j_{\ell}^2 \sim i\lambda v_o j_{\ell}^2 + \frac{1}{2} i\lambda v_o j_{\ell}^2 \delta j. \]
(29)

The first term is a constant that can be reabsorbed in the normalization and the second contributes to the phase such that condition (22) becomes
\[\text{Re} \tilde{z} = \frac{3}{2} \lambda v_o j_0^2. \]
(30)

At the stationary point, condition (21) holds, so I obtain
\[\text{Re} \tilde{z} = \frac{3}{2} \lambda v_o j_0^2 = \frac{3}{2} \lambda v_o \sqrt{\text{Im} \tilde{z}^2 / 4t\hbar}. \]
(31)

\(^3\) One can equivalently introduce an effective matter by replacing \(\lambda \) with density \(\rho \). This will be studied elsewhere.
This expression yields the Friedmann equation: recall that $\text{Re} \tilde{z} \sim \dot{a}$ and $\text{Im} \tilde{z} \sim a^2$ so that, squaring the previous equation, I obtain
\[
\left(\frac{\dot{a}}{a} \right)^2 = \frac{\Lambda}{3},
\]
where $\Lambda = 27 \lambda^2 v_0^2 / 16 \hbar$. The same result can be obtained by a different technique: the transition amplitude results to be annihilated by a Hamiltonian constraint. In the classical limit, this is
\[
(\tilde{z} + \frac{3}{2} \lambda v_0 j_0^2)^2 + (\tilde{z} + \frac{3}{2} \lambda v_0 j_0^2)^2 = 0,
\]
which gives
\[
i4 \text{Im} \tilde{z} \left(\text{Re} \tilde{z} + \frac{3}{2} \lambda v_0 j_0^2 \right) = 0
\]
that is equivalent to (30).

Note that I do not obtain the curvature term k/a^2 in the full Friedmann equation
\[
\left(\frac{\dot{a}}{a} \right)^2 = \frac{\Lambda}{3} - \frac{k}{a^2}.
\]
This is because of the approximation taken in the evaluation of the Gaussian sum. Since we ask for large j, namely for a large-distance regime, the curvature term is neglected being a higher order in $1/j$ [39]. Finding a way to relax this approximation is an urgent issue in spinfoam cosmology: the higher order in $1/j$ would in fact provide us the first quantum corrections also.

The volume v_o depends on the graph used. On the other hand, such a cosmological constant term has been introduced as an edge amplitude. This edge amplitude can be viewed as a redefinition of the vertex. Possible normalization ambiguities, coming from the introduction of this term, can therefore be absorbed in the vertex amplitude [30].

The transition amplitudes presented in this work are in fact not normalized. The arbitrary normalization of the vertex amplitude is fixed by cylindrical consistency [30]. Note that the presence of many nodes enters only in the term N in (26), and it can be counterbalanced by normalizing appropriately the amplitude.

The result of this calculation is that in the limit for large j, the support of the transition amplitude, obtained through the conditions on the real and the imaginary part of \tilde{z} that yields the Friedmann equation, is not sensitive to the number of links or the number of nodes of the graph used.

4. Examples

Let us illustrate some concrete regular graphs for which the above results apply. I illustrate two concrete examples of boundary graphs: a graph with two nodes and many links, which has been used as a base for the cosmological model in the $U(N)$ framework also [16], and the 4-simplex formed by five nodes completely connected, which is the most exploited graph in the spinfoam calculations.

Many-link dipole

A first generalization is given by adding more links to a dipole graph, as in figure 2. The presence of only two nodes greatly simplified the calculation. In particular, it simplifies the integration on the group elements G since it is possible to define a unique integration variable $G = G_1 G_2^{-1}$. The vertex amplitude (11) becomes
\[
W_v(z) = \int_{\text{SL}(2, \mathbb{C})} dG P_j(H_z, G)^L
\]

(36)
with \(P_{\mu}(H, G) \) as in (6). Let us perform first the integration in \(G \) by the saddle-point approximation around \(j_0 \), obtaining

\[
W(z) = \left(\sum_j (2j + 1) e^{-2h(j+1)-i\tilde{z}j} \right)^L \frac{N_{\Gamma_2}}{j_0^L} \tag{37}
\]

where \(N_{\Gamma_2} \) is a constant that depends on the number of links \(L \) and can be absorbed in the normalization. Note that in this case, the four-dimensional normals between the polyhedra at each node have to be parallel and therefore \(\theta = \pi \).

I study the support of the transition amplitude, obtaining the condition on the real and the imaginary part of \(z \) (23) and (21), or (31) with the cosmological constant. Note that these conditions do not depend on \(L \). Therefore, the support of the amplitude does not depend on the number of links in the dipole graph. I conclude that the vertex amplitude from the EPR/FK/KKL model, in the homogeneous and isotropic case, bears the Friedmann dynamics independently of the number of links in the chosen graph.

The final result by performing the Gaussian integral is given by (25) where now \(N_{\Gamma} = N_{\Delta} \).

The phase space and the canonical dynamics associated with this graph have been studied in detail in the \(U(N) \)/spinor framework [40–43]. It would be interesting to compare the definition of the transition amplitude in terms of the spinors with (37).

The 4-simplex graph

The 3-sphere is a natural geometry for modeling our universe [44, 45] and the simplest non-degenerate triangulation is given by the complete graph on five nodes \(\Gamma^5 \). The coherent states for this graph have been studied in detail in [46]. I can apply explicitly (20) and (26) to obtain the transition amplitude between two states that live on such a graph (see figure 3).

In this case, the transition amplitude for one connected component is as in (36), with \(L = 10 \) and a factor \(N_{\Gamma_2} \) that carries the information about the number of nodes in the graph. The value of \(\theta \) is well known and is equal to \(\text{arccos}(-1/4) \).

This transition is a natural candidate to further studies in spinfoam cosmology, such as cosmological perturbation theory.

5. Conclusions

I have computed the spinfoam transition amplitude for states peaked on a homogenous and isotropic geometry, introducing two improvements with respect to the previous works: the amplitude is now Lorentzian and has been generalized for every regular graph, with an arbitrary number of links and nodes.

The oscillating phases of the amplitude suppress the sum everywhere but where the imaginary part of the exponent vanishes: this gives a condition on the real part of \(z \) (i.e. on
the area). The Gaussian sum is peaked on the maximum of the real value of the exponent, and this gives a condition on the imaginary part of z (i.e. on the extrinsic curvature). These two conditions together yield the Friedmann equation.

In particular, these conditions hold independently of the number of nodes or the number of links that are present in the graph: this is the main result presented in this paper. This shows that the results obtained in previous works are robust with respect to different choices of graph on which the boundary states are defined.

I have evaluated the amplitude before performing the Gaussian integral in j: this allows us to study its periodicity. The Gaussian integral is usually performed in the large-j limit, in a way that washes away most of the quantum effects such as the periodicity of $W(z)$ in the real part of z (associated with the extrinsic curvature). This is particularly interesting in relation to the $\bar{\mu}$-scheme that is used in loop quantum cosmology [47]. The difference between the ‘old’ scheme and the ‘new’ $\bar{\mu}$ quantization scheme can be looked from the perspective of which fundamental variable emerges as periodic after the quantization: for the former it is the time derivative of the scale factor \dot{a}, for the latter it is the Hubble rate \dot{a}/a. Different quantization schemes have been proposed in loop quantum cosmology, but $\bar{\mu}$ one seems to give the most robust predictions [48]. It is therefore highly desirable to see a convergence of canonical and covariant formalism by finding a periodicity in the Hubble rate in the amplitude. The present formulation of the spinfoam amplitude seems to give instead a periodicity in \dot{a}. This does appear to affect the classical large-distance behavior in this context, but it questions the regime of validity of the approximations taken, when quantum corrections are concerned. In which regime does the truncation taken correctly describe the quantum corrections, and where should it be modified in order to match the $\bar{\mu}$-scheme approximation? Work is in progress to study these questions, for instance, considering averaging over many nodes or graph-changing transitions.

An important open issue is to compute the corrections that appear when considering more than one vertex in the spinfoam. We are not interested in a mere sequence of edges and vertex, because it has to be equivalent to a single vertex [49]. We would like to have instead spinfoam faces spanning from the initial to the final states and carrying the correlations between the two states (see figure 4). For consistency, these higher order spinfoams should not affect the large-j limit of the amplitude.

Then, it would be of great importance to explore quantum effects by going beyond the large-j regime. In the low-j regime, we expect the dynamics to depend on the graph. Finally,
we would like to explore different schemes to obtain the semiclassical limit, such as the double scaling limit \(\gamma \to 0, j \to \infty \) where the physical area is kept constant [35, 50].

Acknowledgments

A warm thank to Carlo Rovelli and Eugenio Bianchi for several valuable discussions, and to Simone Speziale and Ed Wilson-Ewing for useful comments on the draft of this paper.

References

[1] Rovelli C 2011 Zakopane lectures on loop gravity arXiv:1102.3660 [gr-qc]
[2] Engle J, Pereira R and Rovelli C 2007 The loop-quantum-gravity vertex-amplitude Phys. Rev. Lett. 99 161301 (arXiv:0705.2388 [gr-qc])
[3] Livine E R and Speziale S 2007 A new spinfoam vertex for quantum gravity Phys. Rev. D 76 084028 (arXiv:0705.0674 [gr-qc])
[4] Engle J, Pereira R and Rovelli C 2008 Flipped spinfoam vertex and loop gravity Nucl. Phys. B 798 251–90 (arXiv:0708.1236 [gr-qc])
[5] Freidel L and Krasnov K 2008 A new spin foam model for 4d gravity Class. Quantum Grav. 25 125018 (arXiv:0708.1595 [gr-qc])
[6] Engle J, Livine E, Pereira R and Rovelli C 2008 LQG vertex with finite Immirzi parameter Nucl. Phys. B 799 136–49 (arXiv:0711.0146 [gr-qc])
[7] Kaminski W, Kierselowski M and Lewandowski J 2009 Spin-foams for all loop quantum gravity arXiv:0909.0939 [gr-qc]
[8] Bianchi E, Rovelli C and Vidotto F 2010 Towards spinfoam cosmology Phys. Rev. D 82 084035 (arXiv:1003.3483 [gr-qc])
[9] Bianchi E, Krajewski T, Rovelli C and Vidotto F 2011 Cosmological constant in spinfoam cosmology Phys. Rev. D 83 104015 (arXiv:1101.4049 [gr-qc])
[10] Vidotto F 2010 Spinfoam cosmology: quantum cosmology from the full theory J. Phys.: Conf. Ser. 314 012049 (arXiv:1011.4705 [gr-qc])
[11] Roken C 2010 The first-order \(\hbar \) correction in covariant, holomorphic spinfoam cosmology arXiv:1011.3335 [gr-qc]
[12] Hellmann F 2011 On the expansions in spin foam cosmology arXiv:1105.1334 [gr-qc]
[13] Rovelli C and Vidotto F 2008 Stepping out of homogeneity in loop quantum cosmology Class. Quantum Grav. 25 225024 (arXiv:0805.4585)
[14] Battisti M V, Marciano A and Rovelli C 2010 Triangulated loop quantum cosmology: Bianchi IX and inhomogenous perturbations Phys. Rev. D 81 064019 (arXiv:0911.2653)
[15] Battisti M V and Marciano A 2010 Big bounce in dipole cosmology arXiv:1010.1258
[16] Borja E F, Garay I and Vidotto F 2011 Learning about quantum gravity with a couple of nodes SIGMA 7 at press (arXiv:1110.3020)
[17] Collins P A and Williams R M 1973 Dynamics of the Friedmann universe using Regge calculus Phys. Rev. D 7 96–71
[18] Rovelli C 2011 Discretizing parametrized systems: the magic of Ditt-invariance arXiv:1107.2310
[19] Ashtekar A, Campiglia M and Henderson A 2009 Loop quantum cosmology and spin foams Phys. Lett. B 681 347–52 (arXiv:0909.4221 [gr-qc])
[20] Rovelli C and Vidotto F 2010 On the spinfoam expansion in cosmology Class. Quantum Grav. 27 145005 (arXiv:0911.3097 [gr-qc])
[21] Ashtekar A, Campiglia M and Henderson A 2010 Casting loop quantum cosmology in the spin foam paradigm Class. Quantum Grav. 27 135020 (arXiv:1001.5147 [gr-qc])
[22] Campiglia M, Henderson A and Nelson W 2010 Vertex expansion for the Bianchi I model Phys. Rev. D 82 064036 (arXiv:1007.3723 [gr-qc])
[23] Ashtekar A, Campiglia M and Henderson A 2010 Path integrals and the WKB approximation in loop quantum cosmology arXiv:1011.1024
[24] Henderson A, Rovelli C, Vidotto F and Wilson-Ewing E 2011 Local spinfoam expansion in loop quantum cosmology Class. Quantum Grav. 28 025003 (arXiv:1010.0502 [gr-qc])
[25] Calcagni G, Gielen S and Oriti D 2011 Two-point functions in (loop) quantum cosmology Class. Quantum Grav. 28 125014 (arXiv:1011.5026 [gr-qc])
[26] Bianchi E, Magliaro E and Perini C 2009 Coherent spin-networks arXiv:0912.4054 [gr-qc]
[27] Bianchi E, Magliaro E and Perini C 2010 Spinfoams in the holomorphic representation Phys. Rev. D 82 124031 (arXiv:1004.4550)
[28] Bianchi E, Magliaro E and Perini C 2010 Coherent spin-networks Phys. Rev. D 82 024012 (arXiv:0912.4054)
[29] Freidel L and Speciale S 2010 Twisted geometries: a geometric parametrisation of su(2) phase space Phys. Rev. D 82 084040 (arXiv:1001.2748)
[30] Magliaro E and Perini C 2010 Local spin foams arXiv:1010.5227
[31] Rovelli C and Speciale S 2010 On the geometry of loop quantum gravity on a graph Phys. Rev. D 82 044018 (arXiv:1005.2927 [gr-qc])
[32] Pereira R 2008 Lorentzian LQG vertex amplitude Class. Quantum Grav. 25 085013 (arXiv:0710.5043 [gr-qc])
[33] Engle J and Pereira R 2008 Regularization and finiteness of the Lorentzian LQG vertices arXiv:0805.4696 [gr-qc]
[34] Barrett J W, Dowdall R J, Fairbairn W J, Hellmann F and Pereira R 2009 Lorentzian spin foam amplitudes: graphical calculus and asymptotics arXiv:0907.2440
[35] Bianchi E and Ding Y 2011 Lorentzian spinfoam propagator arXiv:1109.6538
[36] Rovelli C and Vidotto F 2010 Single particle in quantum gravity and Braunstein–Ghosh–Severini entropy of a spin network Phys. Rev. D 81 044038 (arXiv:0905.2983)
[37] Magliaro E, Marciano A and Perini C 2010 Coherent states for FLRW space-times arXiv:1011.5676
[38] Freidel L and Speciale S 2010 Twisted geometries: a geometric parametrisation of SU(2) phase space arXiv:1001.2748
[39] Magliaro E and Perini C 2011 Curvature in spinfoams arXiv:1103.4602
[40] Girelli F and Livine E R 2005 Reconstructing quantum geometry from quantum information: spin networks as harmonic oscillators Class. Quantum Grav. 22 3295–314 (arXiv:gr-qc/0501075 [gr-qc])
[41] Freidel L and Livine E R 2011 U(N) coherent states for loop quantum gravity J. Math. Phys. 52 052502 (arXiv:1005.2090 [gr-qc])
[42] Borja E F, Freidel L, Garay I and Livine E R 2011 U(N) tools for loop quantum gravity: the return of the spinor Class. Quantum Grav. 28 055005 (arXiv:1010.5451 [gr-qc])
[43] Livine E R and Tambornino J 2011 Spinor representation for loop quantum gravity arXiv:1105.3385 [gr-qc]
[44] Einstein A 1917 Cosmological considerations in the general theory of relativity Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1917 142–52
[45] Peterson M 1979 Dante and the 3-sphere Am. J. Phys. 47 1031–5
[46] Magliaro E, Marciano A and Perini C 2011 Coherent states for FLRW space-times in loop quantum gravity Phys. Rev. D 83 044029 (arXiv:1011.5676)
[47] Ashtekar A, Pawlowski T and Singh P 2006 Quantum nature of the big bang: improved dynamics Phys. Rev. D 74 084003 (arXiv:0607053 [gr-qc])
[48] Corichi A and Singh P 2008 Is loop quantization in cosmology unique? Phys. Rev. D 78 024034 (arXiv:0805.0136)
[49] Bahr B, Hellmann F, Kaminski W, Kießlowski M and Lewandowski J 2011 Operator spin foam models Class. Quantum Grav. 28 105003 (arXiv:1010.4787 [gr-qc])
[50] Magliaro E and Perini C 2011 Regge gravity from spinfoams arXiv:1105.0216