The Structure of Maximum Subsets of \(\{1, \ldots, n\} \) with No Solutions to \(a + b = kc \)

Andreas Baltz*
Mathematisches Seminar
University of Kiel, D-24098 Kiel, Germany
aba@numerik.uni-kiel.de

Peter Hegarty, Jonas Knape, Urban Larsson
Department of Mathematics
Chalmers University of Technology
Göteborg, Sweden
hegarty@math.chalmers.se \{md9jonas,md0larur\}@mdstud.chalmers.se

Tomasz Schoen **
Wydzial Matematyki i Informatyki
Adam Mickiewicz University
Poznań, Poland
schoen@amu.edu.pl

Submitted: Nov 9, 2004; Accepted: Apr 22, 2005; Published: Apr 28, 2005

MR Subject Classifications: 05D05, 11P99

Abstract

If \(k \) is a positive integer, we say that a set \(A \) of positive integers is \(k \)-sum-free if there do not exist \(a, b, c \) in \(A \) such that \(a + b = kc \). In particular we give a precise characterization of the structure of maximum sized \(k \)-sum-free sets in \(\{1, \ldots, n\} \) for \(k \geq 4 \) and \(n \) large.

1 Introduction

A set of positive integers is called \(k \)-sum-free if it does not contain elements \(a, b, c \) such that

\[a + b = kc, \]

*supported by DFG, Grant SR 7/9 – 2
**research partially supported by KBN Grant 2 PO3A 007 24
where k is a positive integer. Denote by $f(n, k)$ the maximum cardinality of a k-sum-free set in $\{1, \ldots, n\}$. For $k = 1$ these extremal sets are well-known: Deshoulliers, Freiman, Sós, and Temkin [1] proved in particular that the maximum 1–sum-free sets in $\{1, \ldots, n\}$ are precisely the set of odd numbers and the “top half” $\left\{\left\lceil \frac{n+1}{2} \right\rceil, \ldots, n \right\}$. For $n > 8$ even $\left\{\frac{n}{2}, \ldots, n-1 \right\}$ forms the only additional extremal set. The famous theorem of Roth [4] gives $f(n, 2) = o(n)$. Chung and Goldwasser [2] solved the case $k = 3$ by showing that the set of odd integers is the unique extremal set for $n > 22$. For $k \geq 4$ the y give an example of a k-sum-free set [3] of cardinality $\frac{k(k-2)}{k^2-2}n + \frac{8(k-2)}{k(k^2-2)(k^4-2k^2+4)}n + O(1)$, which implies

$$\lim_{n \to \infty} \frac{f(n, k)}{n} \geq \frac{k(k-2)}{k^2-2} + \frac{8(k-2)}{k(k^2-2)(k^4-2k^2+4)},$$

and they conjectured that this lower bound is the actual value. Moreover they conjectured that extremal k-sum-free sets consist of three intervals of consecutive integers with slight modifications at the end-points if n is large.

In this paper we prove that the first conjecture is true, and we expose a structural result which is very close to the second. Our proof is elementary. In fact it is based on two simple observations:

Suppose we are given a k-sum-free set A. Then

- $kx - y \notin A$ for all $x, y \in A$
 (Otherwise we could satisfy the equation $kx = (kx - y) + y$ in A.)

- for all $y \in A$ any interval centered around $\frac{ky}{2}$ cannot share more than half of its elements with A.
 (Otherwise we would find a pair $\left\lceil \frac{ky}{2} \right\rceil - d, \left\lceil \frac{ky}{2} \right\rceil + d$ in A, giving $\left(\left\lceil \frac{ky}{2} \right\rceil - d\right) + \left(\left\lceil \frac{ky}{2} \right\rceil + d\right) = ky$.)

2 Preparations

Let $n \in \mathbb{N}$ be large and let $k \in \mathbb{N}_{\geq 4}$. We start by agreeing on some notations.

Notations

Let $A \subseteq \{1, \ldots, n\}$ be a set of positive integers. Denote by

$$s_A := \min A$$

and

$$m_A := \max A$$

the smallest and the largest elements of A respectively.

For $l, r \in \mathbb{R}$ let

$$[l, r] := \{x \in \mathbb{N} \mid l \leq x \leq r\}$$

$$[l, r) := \{x \in \mathbb{N} \mid l \leq x < r\}$$

$$(l, r) := \{x \in \mathbb{N} \mid l < x < r\}$$

$$[l, r) := \{x \in \mathbb{N} \mid l \leq x < r\}$$

$$[l, r] := \{x \in \mathbb{N} \mid l \leq x \leq r\}$$
abbreviate intervals of integers. Continuous intervals will be indicated by the subscript \(R \).

Furthermore for any \(y \in \mathbb{N} \) and \(d \in \mathbb{N}_0(= \mathbb{N} \cup \{0\}) \) put

\[
I_y^d := \left[\frac{k y - 1}{2} - d, \frac{k y + 1}{2} + d \right].
\]

Note that if \(k y \) is even then \(I_y^d = \{ \frac{k y}{2} - d, \frac{k y}{2} - d + 1, \ldots, \frac{k y}{2} + d \} \) and \(|I_y^d| = 2d + 1 \), while if \(k y \) is odd we have \(I_y^d = \{ \frac{k y - 1}{2} - d, \ldots, \frac{k y + 1}{2} + d \} \) and \(|I_y^d| = 2d + 2 \).

The first Lemma restates our introductory observations.

Lemma 1 Let \(A \subseteq [1, n] \) be a \(k \)-sum-free set. If \(x, y \in A \) then \(k x - y \notin A \). If \(y \in A \) and \(d \in \mathbb{N}_0 \) then \(|I_y^d| \geq d + 1 \).

Suppose \(A' \) is a \(k \)-sum-free set consisting of intervals \((l_i, r_i] \). The interval \((l_i, r_i] \) is \(k \)-sum-free if \(l_i \geq \frac{2 r_i}{k} \). Moreover we observe that reasonably large consecutive intervals \((l_{i+1}, r_{i+1}], (l_i, r_i] \) (where we assume \(r_{i+1} < l_i \)) should satisfy \(k r_{i+1} \leq l_i + s_A \). This leads to the following definition, describing a successive transformation of an arbitrary \(k \)-sum-free set \(A \) into a \(k \)-sum-free set of intervals.

Definition 1 Let \(n \in \mathbb{N} \) and let \(A \subseteq [1, n] \) be \(k \)-sum-free with smallest element \(s := s_A \). Define sequences \((r_i), (l_i), (A_i) \) by:

\[
A_0 := A, \quad r_1 := n,
\]

\[
l_i := \left\lfloor \frac{2 r_i}{k} \right\rfloor, \quad r_{i+1} := \left\lfloor \frac{l_i + s}{k} \right\rfloor,
\]

\[
A_i := (A_{i-1} \setminus (r_{i+1}, l_i]) \cup (l_i, r_i] \cap [s, n] \text{ for } i \geq 1.
\]

The letter \(t = t_A \) will be reserved to denote the least integer such that \(r_{t+1} < s \). Observe that, for all \(i \geq t \),

\[
A_i = A_t = [\alpha, r_t] \cup \left(\bigcup_{j=1}^{t-1} (l_j, r_j] \right),
\]

where \(\alpha = \alpha_A := \max\{l_t + 1, s\} \).

3 The structure of maximum \(k \)-sum-free sets

To obtain the structural result we consider the successive transformation of an arbitrary \(k \)-sum-free set \(A \) into a set \(A_i \) of intervals as in (1). Our plan is to show that each member of the transformation sequence \((A_i) \) is \(k \)-sum-free and has size greater than or equal to \(|A| \). For \(n \) sufficiently large, depending on \(k \), and a maximum sized \(k \)-sum-free subset \(A \) of \([1, n] \), it will turn out that \(A_i \) consists of three intervals only, i.e.: that \(t = 3 \). This observation will do to determine \(f(n, k) \), and we conclude our proof by showing that \(A \)
could be enlarged if it did not contain (nearly) the whole interval \((l_3, r_3]\) and consequently almost all elements from \((l_2, r_2]\) and \((l_1, r_1]\), so that in fact almost nothing happens during the transformation of an extremal set.

Lemma 2 Let \(A \subseteq [1, n] \) be \(k\)-sum-free. Let \(i \in \mathbb{N}\).

a) \(A_i\) is \(k\)-sum-free.

b) \(|A_i| \geq |A_{i-1}|\).

Proof. a) Clearly, it is enough to prove the claim for \(i \leq t\), so we may assume that \(s \leq r_i\). Suppose there are \(a, b, c \in A_i\) with \(a + b = kc\). \(A_i\) is of the form

\[
A_i = A_{i-1} \cap [s, r_{i+1}] \cup (l_i, r_i] \cap [s, n] \cup (l_{i-1}, r_{i-1}] \cup \ldots \cup (l_1, r_1].
\]

If \(c \in (l_1, r_1]\), then \(kc > 2n\), which is impossible. If \(c \in (l_j, r_j]\) for some \(j \in [2, i]\), then \(kc \in (2r_j, l_j-1 + s]\) and the larger one of \(a, b\) must be in \((r_j, l_{j-1}]\). But \((r_{j+1}, l_j] \cap A_i = \emptyset\) by construction. Hence \(c \in A_{i-1} \cap [s, r_{i+1}]\). Now, \(kc \leq kr_{i+1} \leq l_i + s\). Since \((r_{i+1}, l_i] \cap A_i = \emptyset\), both \(a\) and \(b\) have to be in \(A_{i-1} \cap [s, r_{i+1}] = A \cap [s, r_{i+1}]\), but \(A\) is \(k\)-sum-free, a contradiction.

b) The inequality is trivial for \(i \geq t\). For \(1 \leq i < t\) we have that \(l_i \geq s\) and hence

\[
A_i = (A_{i-1} \cap [1, r_{i+1}]) \cup (l_i, r_i] \cup \left(\bigcup_{j=1}^{i-1} (l_j, r_j) \right).
\]

Thus it suffices to prove that

\[
|A_{i-1} \cap [1, r_i]| \leq |A_{i-1} \cap [1, r_{i+1}]| + \left\lceil \frac{(k-2)r_i}{k} \right\rceil.
\]

Clearly, then, it suffices to prove the inequality for \(i = 1\), i.e.: to prove that, for any \(n > 0\), and any \(k\)-sum-free subset \(A\) of \([1, n]\) with smallest element \(s_A\), we have

\[
|A| \leq |A \cap [1, r_{2,A}]| + \left\lceil \frac{(k-2)n}{k} \right\rceil,
\]

(2)

where

\[
r_{2,A} := \left\lfloor \frac{2n/k + s_A}{k} \right\rfloor.
\]

The proof is by induction on \(n\). The result is trivial for \(n = 1\). So suppose it holds for all \(1 \leq m < n\) and let \(A\) be a \(k\)-sum-free subset of \([1, n]\). Note that the result is again trivial if \(s_A > 2n/k\), so we may assume that \(s_A \leq 2n/k\), which implies that \(r_{2,A} \leq n/k\), since \(k \geq 4\).

First suppose that there exists \(x \in A \cap (n/k, 2n/k]\). Then \(1 \leq kx - n \leq n\) and the
map \(f : y \mapsto kx - y \) is a 1-1 mapping from the interval \([kx - n, n]\) to itself. For each \(y \) in this interval, at most one of the numbers \(y \) and \(f(y) \) can lie in \(A \), since \(A \) is \(k \)-sum-free.

To simplify notation, put \(w := kx - n - 1 \). Then our conclusion is that

\[
|A \cap (w, n]| \leq \frac{1}{2}(n - w). \tag{3}
\]

If \(w = 0 \) or if \(A \cap [1, w] = \emptyset \), then we are done (since \(k \geq 4 \)). Put \(B := A \cap [1, w] \). Then we may assume \(B \neq \emptyset \), hence \(s_B = s_A \). Applying the induction hypothesis to \(B \), we find that

\[
|B| = |A \cap [1, w]| \leq |B \cap [1, r_{2,B}]| + \left\lceil \frac{(k - 2)w}{k} \right\rceil. \tag{4}
\]

But \(s_B = s_A \) implies that \(r_{2,B} \leq r_{2,A} \), hence that \(B \cap [1, r_{2,B}] \subseteq A \cap [1, r_{2,A}] \). Thus (3) and (4) yield the inequality

\[
|A| \leq |A \cap [1, r_{2,A}]| + \left\lceil \frac{(k - 2)w}{k} \right\rceil + \frac{1}{2}(n - w),
\]

which in turn implies (2), since \(|A|\) is an integer. Thus we are reduced to completing the induction under the assumption that \(A \cap (n/k, 2n/k] = \emptyset \). Suppose \(x \in A \cap (r_{2,A}, n/k] \).

Then \([2n/k] + s_A < kx \leq n \) and \(kx - s_A \notin A \). In other words, we can pair off elements in \(A \cap (r_{2,A}, 2n/k] \) with elements in \((2n/k, n] \setminus A \). This immediately implies (2), and the proof of Lemma 2 is complete. \(\square \)

We have seen so far that any \(k \)-sum-free set \(A \) can be turned into a \(k \)-sum-free set \(A_t \) having overall size at least \(|A|\). The set \(A_t \) is a union of intervals, as given by (1), though note that the final interval \([\alpha, r_t] \) may consist of a single point, since \(r_t = s \) is possible. The proof of the following Lemma uses a fact shown in [3] by Chung and Goldwasser, to prove that \(t \) must be equal to three if \(|A|\) is maximum.

Lemma 3 Let \(A \) be a maximum \(k \)-sum-free subset of \([1, n] \), where \(n > n_0(k) \) is sufficiently large. Let \(s := s_A \) and let \(t := \max\{i \in \mathbb{N} \mid r_i \geq s\} \). Then \(t = 3 \).

Proof. Let \(A_t \) be the set of positive integers given by (1). In a similar manner we now define a \(k \)-sum-free subset \(A'_t \) of \((0, 1]_\mathbb{R} \).

Put \(c := s/n \) and, for \(i = 1, \ldots, t \) define real numbers \(R_i, L_i \) as follows:

\[
R_1 := 1, \quad L_i := \frac{2R_i}{k}, \quad R_{i+1} := \frac{L_i + c}{k}.
\]

Then we put

\[
A'_t := [\alpha', R_t]_\mathbb{R} \cup \left(\bigcup_{j=1}^{t-1} [L_j, R_j]_\mathbb{R} \right),
\]

THE ELECTRONIC JOURNAL OF COMBINATORICS 12 (2005), #R19
where $\alpha' := \max\{L_t, c\}$. That A'_t is k-sum-free is shown in [3]. One sees easily that

$$|A_t| \leq n \cdot \mu(A'_t) + t,$$

(5)

where μ denotes the Lebesgue-measure. Now suppose that $t \neq 3$. It is shown in [3] that there exists a constant $c_k > 0$, depending only on k, such that in this case

$$|\mu(A'_t)| \leq \frac{k(k - 2)}{k^2 - 2} + \frac{8(k - 2)}{k(k^2 - 2)(k^4 - 2k^2 - 4)} - c_k.$$

(6)

In fact, in the notation of page 8 of [3], an explicit value for c_k (which we will use later) is given by

$$c_k = \frac{2}{k} (R(3) - R(4)),$$

which by definition of R amounts to

$$c_k = \frac{8(4 - 4k^2 - 4)(k - 2)}{(k^4 - 4k^2 - 8)(k^4 - 2k^2 - 4)}.$$

(7)

Now (5) and (6) would imply that

$$|A| \leq \frac{k(k - 2)}{k^2 - 2} n + \frac{8(k - 2)}{k(k^2 - 2)(k^4 - 2k^2 - 4)} n - c_k n + t.$$ But we have seen in the introduction that $|A| \geq \frac{k(k - 2)}{k^2 - 2} n + \frac{8(k - 2)}{k(k^2 - 2)(k^4 - 2k^2 - 4)} n + O(1)$ and, since $t = O(\log_k n)$, we thus have a contradiction for sufficiently large n. Hence t must equal three, for large enough n, as required.

Now we are nearly in a position to determine $f(n, k)$. We want to calculate the cardinality of an extremal k-sum-free set A via computing $|A_3|$. Since $|A_3|$ depends on s_A, the following lemma will be helpful:

Lemma 4 Let $n > n_0(k)$ be sufficiently large. If A is a maximal k-sum-free subset of $[1, n]$, then $S - 2k \leq s_A \leq S + 3$, where $S := \frac{8n}{k^2 - 2k - 4}$.\[\Box\]

Proof. Set $s := s_A$. By Lemma 3, for $n > n_0(k)$ we have $r_4 < s$. Since A is maximal we have $|A| = |A_3|$. Now, for a fixed n, the cardinality of A_3 is a function of $s \in [1, n]$ only. So we need to show that $|A_3(s)|$ attains its maximum value only for some $s \in [S - 2k, S + 3]$. Define

$$s' := \min\{s \in [1, n] : l_3(s) < s\}.$$ A tedious computation (see the Appendix below) yields that $s' = S + 1$ if k is even and $s' = S$ or $S + 1$ if k is odd. Hence

$$s' \in [S, S + 1].$$

(8)
Clearly,

\[|A_3(s)| = \begin{cases}
\left\lceil \frac{(k-2)n}{k} \right\rceil + r_2(s) - l_2(s) + r_3(s) - s + 1, & \text{if } s \geq s', \\
\left\lceil \frac{(k-2)n}{k} \right\rceil + r_2(s) - l_2(s) + r_3(s) - l_3(s), & \text{if } s < s'.
\end{cases} \] (9)

How does \(|A_3(s)| \) change (ignoring its maximality for a while) if we alter \(s \)?

First suppose \(s \geq s' \). If \(s \) increases by one, then \(|A_3| \) will decrease by one unless either \(r_2 \) or \(r_3 \) increases. Now \(r_2 \) can only increase (by one) once in \(k \geq 4 \) times. Almost the same is true of \(r_3 \), though its dependence on \(l_2 \) makes things a little more complicated. However, it is not hard to see that we encounter an irreversible decrease in the cardinality of \(|A_3| \) after at most 3 steps of increment of \(s \). Hence \(|A_3(s)| < |A_3(s')| \) if \(s \geq s' + 3 \).

Next suppose \(s < s' \). If we decrease \(s \), then \(|A_3| \) cannot increase at all, since \(l_i \) will not decrease unless \(r_i \) does. Moreover, \(|A_3| \) will become smaller if the size of any interval is diminished. So we can focus our attention on \((l_2, r_2)\). While \(r_2 \) decreases once in \(k \) times, \(l_2 \) does so no more than once in \(k \left\lceil \frac{k}{2} \right\rceil \geq 2k \) times. Thus \(|A_3(s)| < |A_3(s' - 1)| \) if \(s \leq s' - 1 - 2k \).

We have now shown that, as a function of \(s \in [1, n] \), the cardinality of \(A_3 \) attains its maximum only for some \(s \in [s' - 2k, s' + 2] \). This, together with (8), completes the proof of the lemma.

Now we can prove the first conjecture of Chung and Goldwasser.

Theorem 1

\[\lim_{n \to \infty} \frac{f(n, k)}{n} = \frac{k(k - 2)}{k^2 - 2} + \frac{8(k - 2)}{k(k^2 - 2)(k^4 - 2k^2 - 4)}. \]

Proof. Let \(A \) be a maximum \(k \)-sum-free set in \([1, n]\), with \(n \) sufficiently large. From Lemma 4 we have

\[S_n = n \frac{S^*}{k^2 - 2k + 8} + o(1), \]

where \(S^* = \frac{8n}{k^2 - 2k + 8} \). Thus we can estimate

\[\frac{f(n, k)}{n} = \frac{|A_3|}{n} = \frac{r_1 - l_1 + r_2 - l_2 + r_3 - S^* + 1}{n} + o(1) \]

\[= \frac{1}{n} \left(\frac{n - 2n}{k^2 - 2k + 8} + 2n + kS^* \right) + 4n + 2kS^* + k^3S^* - S^* + o(1) \]

\[= \frac{k^4 - 2k^3 + 2k^2 - 4k + 4}{k^4} + \frac{S^*}{nk^3} (2k^2 - 2k + 2 - k^3) + o(1) \]

\[= \frac{k^4 - 2k^3 + 2k^2 - 4k + 4}{k^4} + \frac{8(2k^2 - 2k + 2 - k^3)}{(k^5 - 2k^3 - 4k)k^3} + o(1) \]

\[= \frac{k^5 - 2k^4 - 4k + 8}{(k^4 - 2k^2 - 4)k} + o(1) \]

\[= \frac{k(k - 2)}{k^2 - 2} + \frac{8(k - 2)}{k(k^2 - 2)(k^4 - 2k^2 - 4)} + o(1), \]

and the claim follows by taking the limit. \(\square \)

We can now show the main result.
Theorem 2 Let \(k \in \mathbb{N}_{\geq 4} \) and \(n > n_1(k) \). Let \(S \) and \(s' \) be as in Lemma 4. Let \(A \subseteq \{1, \ldots, n\} \) be a \(k \)-sum-free set of maximum cardinality, with smallest element \(s = s_A \).
Then \(s \in [S, S+3] \) and \(A = \mathcal{I}_3 \cup \mathcal{I}_2 \cup \mathcal{I}_1 \), where

\[
\mathcal{I}_3 = \begin{cases} \{[s, r_3], [s, r_3+1]\}, & \text{if } s \geq s' \\ \{[s, r_3], [s, r_3 \setminus \{r_3-1]\}, & \text{if } s < s' \end{cases}
\]

\[
\mathcal{I}_2 = \begin{cases} \{(l_2 + 2, r_2), [l_2 + 2, r_2 + 1]\}, & \text{if } r_3 + 1 \in A \\ \{(l_2, r_2), (l_2, r_2 + 1), [l_2, r_2), [l_2, r_2 \setminus \{r_2 - 1\}\}, & \text{if } r_3 + 1 \notin A, \end{cases}
\]

\[
\mathcal{I}_1 = \begin{cases} \{[l_1 + 2, n]\}, & \text{if } r_2 + 1 \in A \\ \{(l_1, n), (l_1, n), [l_1, n \setminus \{n - 1\}], & \text{if } r_2 + 1 \notin A, \end{cases}
\]

If \(k \) is even, then \(\mathcal{I}_i \neq \{l_i, r_i\} \setminus \{r_i - 1\} \) for \(1 \leq i \leq 3 \).

Remark. Note that Theorem 2 does not precisely determine the \(k \)-sum-free subsets of \(\{1, \ldots, n\} \) of maximum size, for every \(n > n_1(k) \). With \(n \) and \(k \) fixed, one first needs to determine for which value(s) of \(s \in [S, S+3] \) the quantity \(|A_3(s)| \), as given by (9), is maximized. The result will depend on \(n \) and \(k \). Even then, for a fixed \(s \), not all the possibilities for \(\mathcal{I}_3 \cup \mathcal{I}_2 \cup \mathcal{I}_1 \) need be \(k \)-sum-free. See Section 4 below for further discussion.

Proof. We have already seen that \(|A_3| = |A| \). Our first aim is to show by comparing \(A_3 \) with \(A_2 \) that almost the whole interval \((l_3, r_3] \) must be in \(A \). Having achieved this, we infer by Lemma 1 that \((r_3, l_2] \cap A \) is nearly empty. Comparing \(A_2 \) with \(A_1 \) will then reveal that most of \([l_2, r_2] \) is contained in \(A \). Again Lemma 1 will help us to see that \(A \) cannot share many elements with \((r_2, l_1] \) and a final comparison of \(A_1 \) with \(A \) will conclude the proof.

(I) The first aim is easily reached if \(s := s_A \geq l_3 + 1 \). Simply note that

\[
A_2 = (A \cap [s, r_3]) \cup (l_2, r_2] \cup (l_1, r_1] \subseteq [s, r_3] \cup (l_2, r_2] \cup (l_1, r_1] = A_3.
\]

The maximality of \(|A_2| \) gives \(A_2 = A_3 \) and hence \([s, r_3] \subseteq A \). Observe that \(s > l_3 \) together with Lemma 4 and (8) give \(S \leq s \leq S + 3 \).

Assume now that \(s \leq l_3 \). We want to show that in this case \(s = l_3 \). Suppose \(s < l_3 \) and let \(B = [S - 2k, l_3] \cap A \). Define

\[
C := I^1_{s_B} \cup \bigcup_{b \in B \setminus \{s_B\}} I^0_b.
\]

Clearly \(C \subseteq (l_3, r_3] \) for all \(n \gg 0 \). Then since \(C \) is the union of disjoint intervals, Lemma 1 gives that \(|C \setminus A| > |B| \). Hence we get the contradiction \(|A_3| = |(A_2 \setminus B) \cup (l_3, r_3]| > |A_2| - |B| + |B| = |A_2| \). Therefore we are left with \(s = l_3 \), and this implies

\[
|A_2| = |A_3| \iff |A \cap [s, r_3]| = |(l_3, r_3] \cap [s, r_3]| = |(s, r_3)|.
\]
If $r_3 \not\in A$ we can infer from (10) that

$$A \cap [s, r_3] = [s, r_3 - 1] = [l_3, r_3 - 1].$$

If $r_3 \in A$, Lemma 1 gives $kl_3 - r_3 \not\in A$, so $-k + 1 \leq kl_3 - 2r_3 \leq -1$. If $kl_3 - 2r_3 \leq -2$ we get $I_{r_3}^1 \subseteq (l_3, r_3]$ and $|I_{r_3}^1 \setminus A| \geq 2$, which is impossible since this would imply $|A_3| > |A_2|$. Hence $kl_3 - 2r_3 = -1$ and k is odd. Using (10) one obtains

$$A \cap [s, r_3] = [l_3, r_3] \setminus \{r_3 - 1\}.$$

Suppose now that $s = l_3$ and $r_3 + 1 \in A$. Then $kl_3 - (r_3 + 1) \not\in A$ and

$$r_3 - k \leq kl_3 - (r_3 + 1) \leq r_3 - 1.$$

This contradicts that $[s, r_3 - 2] \subseteq A$ unless $kl_3 - (r_3 + 1) = r_3 - 1$, but then $r_3 \not\in A$ and $|A \cap [s, r_3]| = |A \cap [s, r_3 - 2]|$ which contradicts (10). Hence $r_3 + 1 \not\in A$ if $s = l_3$.

Finally note that, if $s = l_3$ and $kl_3 \geq 2r_3 - 1$, the latter being a requirement for either of the two possibilities for I_3 to be k-sum-free, then another computation similar to the one in the Appendix yields that $s \geq S$. Again, using Lemma 4 we obtain

$$S \leq s \leq S + 3,$$

as claimed in the statement of the theorem. This completes the first part of our proof.

(II) For the second part note that we have just shown

$$s \geq l_3.$$

Plugging (11) into the definition of l_3 yields (after a further tedious computation similar to that in the Appendix)

$$S - 1 \leq l_3 \leq S + 1,$$

which implies in view of (12) and (11)

$$l_3 \leq s \leq l_3 + 4.$$

Moreover we have observed that $[s, r_3 - 2] \subseteq A$. Let $\xi_1, \ldots, \xi_5 \in \{0, \ldots, k - 1\}$ be constants such that

$$kl_1 = 2r_1 - \xi_1$$

$$kr_2 = l_1 + s - \xi_2$$

$$kl_2 = 2r_2 - \xi_3$$

$$kr_3 = l_2 + s - \xi_4$$

$$kl_3 = 2r_3 - \xi_5.$$
We suppose that n is sufficiently large, so we can be sure that

$$[ks - (r_3 - 2), k(r_3 - 2) - s] \cap A = \emptyset.$$

By (14) we can infer that

$$\emptyset = [k(l_3 + 4) - (r_3 - 2), k(r_3 - 2) - s] \cap A$$

$$= [r_3 - \xi_5 + 4k + 2, l_2 - \xi_4 - 2k] \cap A.$$

Let $J = [r_3 + 2, r_3 - \xi_5 + 4k + 1] \cap A$ and $K = \bigcup_{x \in J} \{kx - (s + 2), kx - (s + 1), kx - s\}.$ Then $K \cap A = \emptyset,$ $|K| = 3|J|$ and by (18) and (19) we have

$$K \subseteq [l_2 - \xi_4 + 2k - 2, l_2 - \xi_4 - k\xi_5 + 4k^2 + k] \subseteq \langle l_2 + k - 2, l_2 + 4k^2 + k \rangle \subseteq \langle l_2 + 2, r_2 \rangle,$$

if $n \gg 0.$ Let $B = [l_2 - \xi_4 - 2k + 1, l_2] \cap A.$ If $B \cup J \subseteq \{l_2\}$ then $A \cap [r_3 + 2, l_2 - 1] = \emptyset.$ Otherwise, with C as in part (I) if $|B| > 1$ we can verify that $C \subseteq [r_2 - \frac{3k^2 - k + 2}{2}, r_2] \subseteq (l_2 + 1, r_2),$ for $n \gg 0,$ and $|C \setminus A| > |B|.$ Put $C := \emptyset$ if $|B| \leq 1.$ For large $n,$ K and C are disjoint. Hence $|B \cup J| < |(C \setminus A) \cup K|$ and we get

$$|A_2| = |A_1 \setminus (J \cup B \cup \{r_3 + 1\})| \cup (l_2, r_2) > |A_1 \setminus \{r_3 + 1\}|.$$

Thus if $r_3 + 1 \notin A$ we get $|A_2| > |A_1|$ so suppose $r_3 + 1 \in A.$ Then neither l_2 nor $l_2 + 1$ can be in $A_1.$ Otherwise, since $(s - \xi_4 + k), s - \xi_4 + k - 1 \in [s, s + k] \subseteq [s, r_3 - 2] \subseteq A$ we get

$$k(r_3 + 1) = l_2 + (s - \xi_4 + k) = (l_2 + 1) + (s - \xi_4 + k - 1),$$

which is impossible. But $l_2 + 1 \in A_2,$ so also in this case it follows that $|A_2| > |A_1|,$ since $l_2 + 1 \notin K \cup C$ for large $n.$ Again we conclude that $A \cap [r_3 + 2, l_2 - 1] = \emptyset.$ Consequently,

$$|A_2| = |A_1| \Leftrightarrow |A \cap ([l_2, r_2] \cup \{r_3 + 1\})| = |(l_2, r_2)|,$$

which gives $A \cap [l_2, r_2] = [l_2 + 2, r_2]$ if $r_3 + 1 \in A.$ If $r_3 + 1 \notin A$ and either $l_2 \notin A$ or $r_2 \notin A,$ we get $A \cap [l_2, r_2] = (l_2, r_2)$ or $A \cap [l_2, r_2] = [l_2, r_2),$ respectively. In case $r_3 + 1 \notin A$ and both $l_2, r_2 \in A,$ we see that $kl_2 - r_2 = r_2 - \xi_3 \notin A.$ If $\xi_3 \geq 2$ then $I_3^1 \subseteq (l_2, r_2)$ and l_2 could be profitably replaced. Hence $\xi_3 = 1,$ $A \cap [l_2, r_2] = [l_2, r_2] \setminus \{r_2 - 1\}$ and k is odd.

(III) For the final interval (l_1, r_1) we use Lemma 1 to conclude from

$$[s, r_3 - 2] \subseteq A$$

in view of (16) and (17) that, for $n \gg 0,$

$$\emptyset = A \cap [k(l_2 + 2) - (r_2 - 2), k(r_2 - 2) - (l_2 + 2)]$$

$$= A \cap [r_2 - \xi_3 + 2k + 2, l_1 + s - \xi_2 - 2k - l_2 - 2],$$

and

$$\emptyset = A \cap [k(l_2 + 2) - (r_3 - 2), k(r_2 - 2) - s]$$

$$= A \cap [2r_2 - \xi_3 + 2k - r_3 + 2, l_1 - \xi_2 - 2k].$$
Let \(J = [r_2 + 2, r_2 - \xi_3 + 2k + 1] \cap A \) and \(K = \cup_{x \in J} \{kx - s, kx - (s + 1), kx - (s + 2)\} \).
From (14) we have
\[
K \subseteq [l_1 - \xi_2 + 2k - 2, l_1 - \xi_2 - k\xi_3 + 2k^2 + k] \subseteq (l_1 + k - 2, r_1], \text{ if } n \gg 0.
\]
Let \(B = [l_1 - \xi_2 - 2k + 1, l_1] \cap A \). If \(s_B < l_1 \) with \(C \) as in (I) we can verify that, for sufficiently large \(n \),
\[
C \subseteq \left[\frac{2r_1 - \xi_1 - k\xi_2 - 2k^2 + k - 5}{2}, r_1 \right] \subseteq (l_1, r_1],
\]
\(|C \setminus A| > |B|\) and \(\max K < s_C \). By analogy with part (II) we get \(A \cap [r_2 + 2, l_1 - 1] = \emptyset \)
and the rest of the claim follows as before.

\[
4 \text{ Estimates and Periodicity}
\]
We first want to estimate values of \(n_i(k), i = 0, 1, \) for which Lemmas 3 and 4, and Theorem 2 respectively are valid. The estimates we shall arrive at can probably be improved upon. The example of a \(k \)-sum-free set \(A \) in [3], referred to in the proof of Lemma 3, satisfies
\[
|A| > \frac{k(k - 2)}{k^2 - 2} n + \frac{8(k - 2)}{k(k^2 - 2)(k^4 - 2k^2 - 4)} n - 3.
\]
Hence the proof of Lemma 3 goes through provided \(n \) is sufficiently large so that
\[
c_k n - t_0 \geq 3,
\]
where \(t_0 = t_0(n, k) \) is the largest possible value for \(t \) in Definition 1. Now from Definition 1 we easily deduce that, if \(i < t \), then \(r_{i+1} \leq \left(\frac{4}{k^2} \right) r_i \), and hence that \(r_t \leq \left(\frac{4}{k^2} \right)^{t-1} n \). Since \(r_t \geq 1 \) a priori, we can thus estimate
\[
t_0 \leq \frac{1}{2} \log_{k/2} n + 1.
\]
Since, by (7), \(c_k = O(\frac{1}{k^c}) \), we thus deduce from (18) and (19) that one can take \(n_0(k) = O(k^6) \). It is then an easy and tedious exercise to go through the proof of Theorem 2 and check that one can also take \(n_1(k) = O(k^6) \).

Next, we explain what we mean by the word ‘periodicity’ in the title of this section. If \(k \geq 4 \) is even then, for \(n > 0 \), we have \(s' = S + 1 = \lfloor \frac{8n}{k^2 - 2k^3 - 4k} \rfloor + 1 \). Hence for a fixed \(k \), if we regard \(s' \) as a function of \(n \), then \(s'(n) + 1 = s'(n + p_k) \), where \(p_k := \frac{k^5 - 2k^3 - 4k}{8} \). For odd \(k \), we define \(p_k := k^5 - 2k^3 - 4k \) and in this case, a little more care is required to check that \(s'(n) + 8 = s'(n + p_k) \).
Now for any \(k \) and \(n \), let \(\mathcal{F}(k, n) \) denote the family of maximal \(k \)-sum-free subsets of \(\{1, ..., n\} \). Then for \(n \) sufficiently large, as estimated above, and \(k \) even (resp. \(k \) odd), the map \(s \mapsto s + 1 \) (resp. \(s \mapsto s + 8 \)) clearly induces a 1-1 correspondence between the sets in \(\mathcal{F}(k, n) \) and \(\mathcal{F}(k, n + p_k) \). This is what we mean by ‘periodicity’. This observation clearly reduces, for any fixed \(k \), the full classification of all \(k \)-sum-free subsets of \(\{1, ..., n\} \), for all \(n \), to a finite computation.

As an example, we now look at \(k = 4 \). By (7) we compute \(c_4 = \frac{47}{48290} \). Then Lemma 3 is valid at least for all \(n \) satisfying

\[
c_4 n - \frac{1}{2} \log_2 n - 1 \geq 3,
\]

which reduces to \(n \geq 11008 \). One can then check that the proof of Theorem 2 also goes through for all such \(n \). We have \(p_4 = 110 \). We now present the full classification of all 4-sum-free subsets of \(\{1, ..., n\} \), valid (at least) for all \(n \geq 11008 \). This was obtained with the help of a computer.

For each \(s, n \in \mathbb{N} \) we define the sets \(J_x(s) \), \(1 \leq x \leq 13 \), as follows (the \(l_i \) and \(r_i \) are functions of \(s \) and \(n \) as in Definition 1):

\[
\begin{align*}
J_1 &= [S, r_3 - 1] \cup [l_2, r_2 - 1] \cup [l_1, n - 1], \\
J_2 &= [S, r_3 - 1] \cup [l_2, r_2 - 1] \cup [l_1 + 1, n], \\
J_3 &= [S, r_3 - 1] \cup [l_2 + 1, r_2] \cup [l_1, n - 1], \\
J_4 &= [S, r_3 - 1] \cup [l_2 + 1, r_2] \cup [l_1 + 1, n], \\
J_5 &= [S, r_3 - 1] \cup [l_2 + 1, r_2 + 1] \cup [l_1 + 2, n], \\
J_6(s) &= [s, r_3] \cup [l_2, r_2 - 1] \cup [l_1, n - 1], \\
J_7(s) &= [s, r_3] \cup [l_2, r_2 - 1] \cup [l_1 + 1, n], \\
J_8(s) &= [s, r_3] \cup [l_2 + 1, r_2] \cup [l_1, n - 1], \\
J_9(s) &= [s, r_3] \cup [l_2 + 1, r_2] \cup [l_1 + 1, n], \\
J_{10}(s) &= [s, r_3] \cup [l_2 + 1, r_2 + 1] \cup [l_1 + 2, n], \\
J_{11}(s) &= [s, r_3 + 1] \cup [l_2 + 2, r_2] \cup [l_1, n - 1], \\
J_{12}(s) &= [s, r_3 + 1] \cup [l_2 + 2, r_2] \cup [l_1 + 1, n], \\
J_{13}(s) &= [s, r_3 + 1] \cup [l_2 + 2, r_2 + 1] \cup [l_1 + 2, n].
\end{align*}
\]

Note that, by Theorem 2, for a given \(n \geq 11008 \), every maximal 4-sum-free subset of \(\{1, ..., n\} \) is one of the sets \(J_x(s) \), for some \(s \in [S, S + 3] = [s', - 1, s' + 2] \). By the remarks above, for each \(i \in \{0, ..., 109\} \), there are natural 1-1 correspondences between the sets in the families \(\mathcal{F}(4, n) \) for all \(n \equiv i \) (mod 110). By slight abuse of notation, we denote any such family simply by \(\mathcal{F}_i \). Our computer program yielded the following result:

If \(|\mathcal{F}_i| = 1 \), then \(i = 6, 7, 22, 23, 46, 47, 49, 51, 54, 55, 57, 59, 61, 70, 71, 73, 75, 77, 86, 87, 89 \).
or 91 and

\[\mathcal{F}_i = \{ J_9(s') \}, \]

or \(i = 36, 37, 100 \) or 101 and

\[\mathcal{F}_i = \{ J_9(s' + 1) \}. \]

If \(|\mathcal{F}_i| = 2 \), then \(\mathcal{F}_i \) is

\[
\begin{align*}
\{ J_9(s'), J_9(s' + 1) \} & \quad \text{if} \quad i = 93, 103, 105, 107, \\
\{ J_4, J_9(s') \} & \quad \text{if} \quad i = 9, 11, 13, 25, 27, \\
\{ J_8(s'), J_9(s') \} & \quad \text{if} \quad i = 48, 50, 56, 58, 60, 72, 74, 76, 88, 90 \\
\{ J_7(s'), J_9(s') \} & \quad \text{if} \quad i = 63, 65, 67, 79, 81.
\end{align*}
\]

If \(|\mathcal{F}_i| = 3: \)

\[
\begin{align*}
\mathcal{F}_8 = \mathcal{F}_{24} & = \{ J_4, J_8(s'), J_9(s') \}, \\
\mathcal{F}_{15} & = \{ J_4, J_7(s'), J_9(s') \}, \\
\mathcal{F}_{29} & = \{ J_4, J_9(s'), J_9(s' + 1) \}, \\
\mathcal{F}_{39} & = \{ J_9(s'), J_9(s' + 1) \}, \\
\mathcal{F}_{62} = \mathcal{F}_{78} & = \{ J_6(s'), J_7(s'), J_9(s') \}, \\
\mathcal{F}_{53} & = \{ J_9(s'), J_{10}(s'), J_9(s' + 1) \}, \\
\mathcal{F}_{83} & = \{ J_7(s'), J_9(s'), J_9(s' + 2) \}, \\
\mathcal{F}_{92} & = \{ J_8(s'), J_9(s'), J_9(s' + 1) \}, \\
\mathcal{F}_{95} = \mathcal{F}_{97} & = \{ J_7(s'), J_9(s'), J_9(s' + 1) \}, \\
\mathcal{F}_{102} & = \{ J_9(s'), J_8(s' + 1), J_9(s' + 1) \}, \\
\mathcal{F}_{109} & = \{ J_9(s'), J_7(s' + 1), J_9(s' + 1) \}.
\end{align*}
\]

If \(|\mathcal{F}_i| = 4: \)

\[
\begin{align*}
\mathcal{F}_1 = \mathcal{F}_3 = \mathcal{F}_{17} & = \{ J_2, J_4, J_7(s'), J_9(s') \}, \\
\mathcal{F}_{10} = \mathcal{F}_{12} = \mathcal{F}_{26} & = \{ J_3, J_4, J_8(s'), J_9(s') \}, \\
\mathcal{F}_{38} & = \{ J_9(s'), J_{12}(s'), J_9(s' + 1) \}, \\
\mathcal{F}_{41} = \mathcal{F}_{43} & = \{ J_9(s'), J_{12}(s'), J_9(s' + 1) \}, \\
\mathcal{F}_{52} & = \{ J_9(s'), J_9(s'), J_{10}(s'), J_9(s' + 1) \}, \\
\mathcal{F}_{64} = \mathcal{F}_{66} = \mathcal{F}_{80} & = \{ J_6(s'), J_7(s'), J_9(s'), J_9(s') \}, \\
\mathcal{F}_{104} = \mathcal{F}_{106} & = \{ J_8(s'), J_9(s'), J_8(s' + 1), J_9(s' + 1) \}, \\
\mathcal{F}_{69} & = \{ J_7(s'), J_9(s'), J_{10}(s'), J_9(s' + 1) \}.
\end{align*}
\]
If $|\mathcal{F}_i| = 5$:

$$\mathcal{F}_{14} = \{J_3, J_4, J_6(s'), J_7(s'), J_9(s')\},$$
$$\mathcal{F}_{19} = \{J_2, J_4, J_7(s'), J_9(s'), J_9(s' + 2)\},$$
$$\mathcal{F}_{28} = \{J_3, J_4, J_8(s'), J_9(s'), J_9(s' + 1)\},$$
$$\mathcal{F}_{31} = \{J_4, J_7(s'), J_9(s'), J_{12}(s'), J_9(s' + 1)\},$$
$$\mathcal{F}_{82} = \{J_6(s'), J_7(s'), J_8(s'), J_9(s'), J_9(s' + 2)\},$$
$$\mathcal{F}_{94} = \{J_6(s'), J_7(s'), J_9(s'), J_9(s' + 1), J_9(s' + 1)\},$$
$$\mathcal{F}_{99} = \{J_7(s'), J_9(s'), J_9(s' + 1), J_{10}(s' + 1), J_9(s' + 2)\},$$
$$\mathcal{F}_{108} = \{J_8(s'), J_9(s'), J_9(s' + 1), J_7(s' + 1), J_9(s' + 1)\}.$$

If $|\mathcal{F}_i| = 6$:

$$\mathcal{F}_5 = \{J_2, J_4, J_7(s'), J_9(s'), J_{10}(s'), J_9(s' + 1)\},$$
$$\mathcal{F}_{33} = \{J_2, J_4, J_7(s'), J_9(s'), J_{12}(s'), J_9(s' + 1)\},$$
$$\mathcal{F}_{45} = \{J_4, J_9(s'), J_{12}(s'), J_{13}(s'), J_7(s' + 1), J_9(s' + 1)\},$$
$$\mathcal{F}_{68} = \{J_6(s'), J_7(s'), J_9(s'), J_9(s'), J_{10}(s'), J_9(s' + 1)\},$$
$$\mathcal{F}_{85} = \{J_7(s'), J_9(s'), J_{10}(s'), J_9(s' + 1), J_{12}(s' + 1), J_9(s' + 2)\},$$
$$\mathcal{F}_{96} = \{J_6(s'), J_7(s'), J_9(s'), J_9(s'), J_9(s' + 1), J_9(s' + 1)\}.$$

If $|\mathcal{F}_i| = 7$:

$$\mathcal{F}_0 = \mathcal{F}_{16} = \{J_1, J_2, J_4, J_6(s'), J_7(s'), J_9(s'), J_9(s')\},$$
$$\mathcal{F}_{40} = \{J_4, J_8(s'), J_9(s'), J_{11}(s'), J_{12}(s'), J_8(s' + 1), J_9(s' + 1)\}.$$

If $|\mathcal{F}_i| = 8$:

$$\mathcal{F}_2 = \{J_1, J_2, J_3, J_4, J_6(s'), J_7(s'), J_8(s'), J_9(s')\},$$
$$\mathcal{F}_{21} = \{J_2, J_4, J_7(s'), J_9(s'), J_{10}(s'), J_9(s' + 1), J_{12}(s' + 1), J_9(s' + 2)\},$$
$$\mathcal{F}_{30} = \{J_3, J_4, J_6(s'), J_7(s'), J_9(s'), J_{12}(s'), J_8(s' + 1), J_9(s' + 1)\},$$
$$\mathcal{F}_{35} = \{J_2, J_4, J_7(s'), J_9(s'), J_{12}(s'), J_9(s' + 1), J_{10}(s' + 1), J_9(s' + 2)\},$$
$$\mathcal{F}_{42} = \{J_3, J_4, J_6(s'), J_9(s'), J_{11}(s'), J_{12}(s'), J_8(s' + 1), J_9(s' + 1)\},$$
$$\mathcal{F}_{98} = \{J_6(s'), J_7(s'), J_8(s'), J_9(s'), J_6(s' + 1), J_9(s' + 1), J_{10}(s' + 1), J_9(s' + 2)\}.$$

If $|\mathcal{F}_i| = 9$:

$$\mathcal{F}_{18} = \{J_1, J_2, J_3, J_4, J_6(s'), J_7(s'), J_8(s'), J_9(s'), J_9(s' + 2)\},$$
$$\mathcal{F}_{84} = \{J_6(s'), J_7(s'), J_8(s'), J_9(s'), J_{10}(s'), J_9(s' + 1), J_{12}(s' + 1), J_8(s' + 2), J_9(s' + 2)\}.$$

If $|\mathcal{F}_i| = 10$:

$$\mathcal{F}_4 = \{J_1, J_2, J_3, J_4, J_6(s'), J_7(s'), J_8(s'), J_9(s'), J_9(s' + 1)\},$$
$$\mathcal{F}_{44} = \{J_3, J_4, J_6(s'), J_9(s'), J_{11}(s'), J_{12}(s'), J_{13}(s'), J_6(s' + 1), J_7(s' + 1), J_9(s' + 1)\}.$$
If $|\mathcal{F}_i| = 11, 13$ or 14, we get precisely one family for each size:

$\mathcal{F}_{32} = \{ J_1, J_2, J_4, J_6(s'), J_7(s'), J_8(s'), J_9(s'), J_{11}(s'), J_{12}(s'), J_8(s' + 1), J_9(s' + 1) \}$,

$\mathcal{F}_{20} = \{ J_1, J_2, J_3, J_4, J_6(s'), J_7(s'), J_8(s'), J_9(s'), J_{10}(s'), J_9(s' + 1), J_9(s' + 2), J_9(s' + 2) \}$,

$\mathcal{F}_{34} = \{ J_1, J_2, J_3, J_4, J_6(s'), J_7(s'), J_8(s'), J_9(s'), J_{11}(s'), J_{12}(s'), J_8(s' + 1), J_9(s' + 1), J_{10}(s' + 1), J_9(s' + 2) \}$.

Note, in particular, that $|\mathcal{F}(4, n)| \leq 14$ for all sufficiently large n. Computer simulations suggest the same may be true for any even k, with a similar result for odd k, but we leave the investigation of this possibility to a subsequent paper.

Appendix

As a prototype for a type of calculation which appears in several places in the paper, we now show, in the notation of Lemma 4, that $s' = S + 1$ when k is even.

We must investigate the condition $l_3(s) < s$. By definition of l_3 this is just

\[
\left(\frac{2r_3}{k} \right) < s \iff \frac{2r_3}{k} < s \iff r_3 < \frac{ks}{2} \iff \frac{l_2 + s}{k} < \frac{ks}{2} \iff \frac{l_2 + s}{k} < \frac{ks}{2} \\
\iff l_2 < \left(\frac{k^2}{2} - 1 \right) s \iff \frac{2r_2}{k} < \left(\frac{k^2}{2} - 1 \right) s \iff r_2 < \left(\frac{k^3}{4} - \frac{k}{2} \right) s \\
\iff \frac{l_1 + s}{k} < \left(\frac{k^3}{4} - \frac{k}{2} \right) s \iff l_1 < \left(\frac{k^4}{4} - \frac{k^2}{2} - 1 \right) s \\
\iff \frac{2n}{k} < \left(\frac{k^4}{4} - \frac{k^2}{2} - 1 \right) s \iff n < \left(\frac{k^5}{8} - \frac{k^3}{4} - \frac{k}{2} \right) s \iff s > \frac{8n}{k^5 - 2k^3 - 4k} \\
\iff s > S.
\]

Thus $s' = S + 1$, as required.

Acknowledgments

We would like to thank the anonymous referee whose detailed comments greatly helped us improving our paper.

References

[1] J. M. Deshouillers, G. Freiman, V. Sós, and M. Temkin, On the structure of sum-free sets II, *Asterisque* 258 (1999), 149-161.
[2] F. R. K. Chung and J. L. Goldwasser, Integer sets containing no solutions to $x+y = 3k$, in “The Mathematics of Paul Erdős”, R. L. Graham and J. Nešetřil eds., Springer Verlag, Heidelberg, (1996).

[3] F. R. K. Chung and J. L. Goldwasser, Maximum subsets of (0, 1] with no solutions to $x + y = kz$, Electron. J. Combin. 3 (1996), R1.

[4] K. Roth, On certain sets of integers, J. London Math. Society 28 (1953), 104-109.