Disrupting cancer cell function by targeting mitochondria

Emily Ann Carlson and Shirley ShiDu Yan*

Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, USA

Abstract

Although each cancer type is individually distinct, most cancers initially occur due to genomic mutations of oncogenes and tumor suppressor genes, leading to enhancement or disruption of specific cellular processes, including mitochondrial-mediated events. As an organelle necessary for both cell survival and cell death, the mitochondrion is involved in a variety of diseases, including cancer. Specific alterations to mitochondrial DNA in cancer can result in increased proliferation and avoidance of cell death pathways. Since cancer cells utilize mitochondria to enhance disease progression, specific targeting of mitochondrial-regulated processes and pathways may present advantageous anticancer treatments.

Introduction

Although overall cancer death rates have declined by 20% since climaxing in 1991 [1], this group of diseases is still of major importance regarding treatment and prevention. As cancer cells are continuously replicating, treatment regimens often fail to completely rid a patient of malignant cells, resulting in repopulation of the tumor [2]. Thus, ongoing research is necessary for continued observance and management of this complicated group of diseases.

Cancer is composed of a vast group of diseases characterized by unchecked cellular proliferation and metastasis of abnormal cells throughout the body. The development of cancer is initiated by three known factors. Firstly, genomic mutations constitutively activate oncogenes to promote uncontrolled cell growth [3]. Additionally, genetic modifications inactivate tumor suppressor genes so that they fail to inhibit the robust cell growth [4]. Lastly, stability genes necessary for genomic repair are inactivated, allowing for higher rates of mutations in the cellular genome [5]. All three genetic mutation types allow normal cells to progress to cancer. Once cells become cancerous they exhibit large metabolic imbalances [6] and increased resistance to cell death [7], two processes regulated by mitochondria.

These organelles are comprised of an Outer Membrane (OM), An Inner Membrane (IM), an intermembrane space, a cristae interior, and a matrix [8]. Mitochondria perform key roles in cellular function, including cell survival, energy generation, stabilization of Reactive Oxygen Species (ROS), and cell death pathway regulation. As mitochondria are largely involved in cell health, it is anticipated that they are involved in cancer development and progression [9-11].

Here, mitochondrial processes needed for cancer cell survival are discussed. Cell death pathways are examined in relation to enhanced tumor progression. Finally, presently available and potential treatment strategies are reviewed.

Mitochondrial function in cancer cells

Otto Warburg was one of the first investigators to implicate mitochondria in cancer. His phenomenon, termed the Warburg effect, demonstrates that tumor cells exhibit increased glycolytic Adenosine Triphosphate (ATP) production and reduced Oxidative Phosphorylation (OXPHOS) [12]. Since then, every aspect of the mitochondrion has undergone thorough investigation to shed light on the alterations promoting this aggressive disease.

Changed transcription factor activity in cancer

Mutations in oncogenes and tumor suppressor genes are leading factors promoting tumorigenesis and metastasis. These mutated genes encode transcription factors, which in turn control the gene expression patterns and signaling pathways that lead to cancer development [13]. Several transcription factor pathways are involved in tumorigenesis.

Nuclear Factor-κB (NF-κB) is involved in the regulation of inflammatory response genes, cell cycle regulatory genes, and anti-apoptotic genes. In a variety of human cancer cells, NF-κB activation inhibits apoptosis, leading to enhanced tumor resistance to chemotherapeutic agents [14]. Numerous studies have demonstrated that suppression of NF-κB leads to apoptosis induction and tumor regression [15-18]. Next, Activator Protein 1 (AP-1) regulates many cellular processes, including proliferation, differentiation, survival, and death. Overexpression of the AP-1 family has been demonstrated to induce tumor formation [19]. Similar to NF-κB, inhibition of AP-1 decreased cell viability [20] and reduced tumor volume [21] in numerous studies, suggestive of the potential of utilizing AP-1 in anticancer treatments. An additional transcription factor family involved in cancer is Signal Transducer and Activator of Transcription (STAT), which has roles in cell differentiation, development, proliferation, inflammation, and apoptosis. In many human cancer cell lines, STAT proteins often become constitutively activated, which promotes oncogenic transformation by regulating cell proliferation [22] and cell death
pathways [23]. Blockade of STAT proteins, especially STAT3, resulted in decreased proliferation and increased cell death in several studies [24,25]. In breast and prostate cancer, steroid hormone receptors play a key role in mediating the tumorigenic effects of testosterone, androgen, progesterone, and estradiol [26]. Finally, manipulation of steroid receptors, including inhibition of androgen receptors in prostate cancer cells [27] and silencing of estrogen-regulated genes in breast cancer cells [28], have provided novel strategies for the treatment of hormone-specific tumors.

These transcription factors, as well as others, propel cancer development through a variety of pathways, such as altering the cell cycle to enhance proliferation rate, blocking apoptosis to promote malignant cell survival, and changing gene expression patterns which affect cellular and mitochondrial processes.

Altered mitochondrial DNA in cancer

Mitochondria contain a DNA molecule (mtDNA) that encodes genes essential for normal mitochondrial function. Human mtDNA contains 37 genes that code for 13 polypeptides involved in respiration and OXPHOS, and two ribosomal RNAs in addition to 22 transfer RNAs important for protein synthesis [29]. Furthermore, mtDNA has a noncoding region with a displacement loop for control of mtDNA replication and transcription [30]. As mtDNA regulates vital processes, modifications to its genomic material can profoundly impact healthy cells.

Numerous studies have reported the effects of mtDNA mutations in tumors. To begin, mtDNA copy number has been examined in diverse cancers, indicating that changes in mtDNA content may be regulated in a tumor-specific manner [31,32]. Moreover, studies have shown that mutations in both the coded [33,34] and non-coded [35-37] mtDNA regions are associated with cancer growth. Interestingly, these alterations strongly correlate with patient outcome [38], as displacement loop mutations typically correlate with lower survival rates [39]. Thus, the severity of mtDNA alterations in cancer cells and patient survival seem to depend on both mtDNA content deviations and mutation locations.

Modified energy metabolism in cancer

In healthy cells, ATP manufacturing is dependent upon oxygen uptake, the Tricarboxylic Acid (TCA) cycle, and the Electron Transport Chain (ETC). Dehydrogenases of the TCA cycle are stimulated by deviations and mutation locations. Cells and patient survival seem to depend on both mtDNA content deviations and mutation locations. mtDNA mutations can affect these processes.

Warburg initially discovered that tumor cells display increased glucose uptake, enhanced glycolytic ATP generation, and diminished OXPHOS [6]. Essentially, instead of utilizing pyruvate molecules in the TCA cycle to power the OXPHOS pathway for generation of ATP as is done by normal cells (Figure 1.2-1.4), cancer cells convert pyruvate into lactic acid for energy generation (Figure 2.1). A possible explanation for Warburg’s findings involves ATP synthase malfunctioning as hyperglycemia in hepatocarcinoma cells reduced ATP synthase dimer stability in a new study [45]. Also, Isidoro et al. found that expression of the β-catalytic subunit of ATP synthase is decreased in cancer cells [46], further implicating the involvement of complex V.

Although the Warburg effect is widely recognized, several groups have challenged it, revealing that mitochondria in tumors are able to operate OXPHOS at lower capacities along with glycolysis [47]. In fact, malignant cells can switch from a glycolytic state to OXPHOS under glucose-limiting conditions to adjust to changes in the cellular environment [48]. Utilizing both respiration systems under diverse settings is important for tumor survival. For instance, glucose deprivation elevates OXPHOS in breast tumor cells while control cells remain unaffected [49]. Conversely, hypoxia improves respiration in control cells whereas it is impaired in breast cancer cells [50], signaling for tumor cells to switch to glycolysis. Therefore, cancer cells can direct the energy metabolism systems according to their specific needs under a variety of conditions; this likely aids in cancer cell growth and resistance to cell death.

Balanced oxidative stress in cancer

Under homeostatic conditions, enhanced ATP production via enhanced ETC activity propels the reduction of oxygen to water. Consequently, this promotes leakage of free electrons from the ETC complexes, leading to the creation of superoxides, free radicals, and peroxides jointly known as ROS [51]. To compensate, ROS scavenging enzymes are also activated to neutralize oxidants [52]. Healthy cells tightly regulate the balance between oxidants and anti-oxidants to prevent destructive consequences (Figure 1.5). Nevertheless, ETC complex activity deficits are linked with reduced energy and heightened ROS generation [53]. Chieflly, reduced complex I, II, and IV respiratory capacities lead to increased risk of dysfunction [54]. Due to insufficient ROS scavenger levels, damaging oxidants accumulate within the cell and cause damage, such as mtDNA mutations [55]. Thus, unrestrained oxidative stress can propel cancer initiation and metastasis [56].

Elevated oxidative stress has been observed in many different tumors, with persistently high ROS levels seen in malignant cells (Figure 2.2) compared with paired controls [57]. Accordingly, cells are able to use mitochondrial ROS as a mechanism to increase their chance of cancer development through a kind of pro-cancer feedback loop. Also, extra-mitochondrial ROS production can affect cancer behavior, correlating with enhanced tumor growth and invasiveness [58,59]. Thus, cancer cells can utilize enhanced intra- and extra-mitochondrial ROS generation to increase tumor developmental and metastatic abilities.

However, elevated ROS levels can cause substantial damage to normal and cancerous cells, alike. As a result, tumor cells are capable of rebalancing ROS production and elimination by activating antioxidants (Figure 2.3) for restoration of an optimal redox state necessary for continuous proliferation [60]. For example, a study found that increasing ROS levels caused inhibition of glycolytic enzyme pyruvate kinase M2, which in turn activated the antioxidant systems required
for detoxifying ROS in cancer cells [61]. Therefore, tumor cells regulate ROS levels for initial development and long-term management of cancer progression.

Reduced MPTP formation in cancer

A nonselective mitochondrial Ca\(^{2+}\)-activated pore was initially discovered to take in and extrude ions during membrane permeability oscillations [62]. Currently called the mitochondrial permeability transition pore (MPTP, Figure 1.6), this pore is often connected with cell death provoked by stress and Ca\(^{2+}\) overload [63]. Under stress conditions in healthy cells, the MPTP forms in the IM where its induction can lead to mitochondrial swelling, loss of transmembrane potential (ΔΨ), apoptotic mediator release, and eventual cell death [64]. However, MPTP-mediated cell death is suppressed in tumor cells, rendering them resistant to therapies [65]. Many factors participate in protecting cancer cells from MPTP-regulated membrane disruption and cell death induction, a few of which are presently discussed.

Cyclophilin D (CypD) is a prolyl isomerase located within the mitochondrial matrix and has been established as a modulatory component of the MPTP [66-68]. During oxidative stress or Ca\(^{2+}\) overload in healthy cells, CypD translocation to the IM activates the MPTP, inducing cell death [69]. Interestingly, cancer cells overexpress CypD, leading to the suppression of cell death by interacting with anti-apoptotic Bcl-2 to inhibit the release of cyto c [70]. CypD-mediated inhibition of cell death also correlates with mitochondrial-bound hexokinases (HK, Figure 2.4). Inactivation of CypD results in the release of bound HK-II and enhances pro-apoptotic Bax/Bak-mediated apoptosis [71]. In addition, heat shock protein interactions with CypD inhibit normal CypD-dependent MPTP opening and cell death in some tumors [72]. Thus, CypD expression seems necessary for cancer growth, and is regulated by many molecular interactions.

The Translocator Protein (TSPO; initially known as the peripheral benzodiazepine receptor) is another recognized component, first linked to the MPTP due to its ligand interactions [73]. Moreover, the OM has been shown to have a regulatory role in MPTP formation, primarily through TSPO [74]. Similar to CypD, TSPO is elevated in many types of cancer, especially breast cancer [75]. Increased levels of TSPO are associated with enhanced invasiveness of breast cancer.
Shirley ShiDu Yan (2014) Disrupting cancer cell function by targeting mitochondria

Volume 1(2): 17-25
Integr Cancer Sci Therap, 2014
doi: 10.15761/ICST.1000105

Two other mitochondrial membrane channels were proposed as MPTP components [79], but have since been shown to be unnecessary for MPTP formation.

First, mitochondria take up small molecules and ions through Voltage Dependent Anion Channels (VDAC) along the OM [80]. VDAC was originally hypothesized to play a role in MPTP configuration [81], however recent findings suggest otherwise [82,83]. In cancer cells, VDAC channels are significantly upregulated. As expected, downregulation of VDAC directly affects proliferation [84,85]. HK expression is also linked with VDAC quantities; in tumor cells, overexpression of HK-I and -II induces VDAC closure and prevents MPTP opening [86]. This HK-mediated closure of VDAC may allow for CypD-induced MPTP inhibition (Figure 2.4), thus enhancing tumor cell proliferative abilities.

Second, Adenine Nucleotide Translocase (ANT) was another postulated component of the MPTP [87], as it functions to catalyze the exchange of mitochondrial ATP for cytosolic ADP through the IM [88]. However, studies demonstrated it is not essential for MPTP induction [89]. Of the four isoforms of ANT, increased expression of ANT-1 and -3 promotes cancer cell death [90,91]. In contrast, enhanced expression of ANT-2 and -4 renders malignant cells more resistant [92,93]. Furthermore, ANT-2 seems to be critical for importation of glycolytic ATP in cancer cells [94]. Connecting ANT to the MPTP, overexpression of CypD inhibits ANT-1-mediated apoptosis in tumor cells [95]. Hence, the ANT isoforms oppositely participate in MPTP regulation in cancer, with CypD interactions vital in control cancer cell survival.

Collectively, this suggests that altered interactions between CypD, TSPO, VDAC, and ANT may play important roles in promoting cancer growth. Therefore, MPTP-induced cell death via manipulation of any of these factors may hold the key to future cancer treatment methods.

Cell death manipulation in cancer

Cells often become damaged, infected, or malignant. When this happens, survival is no longer a priority. If this occurs, mitochondria have control of signal transduction pathways, such as apoptosis and necrosis, for proper destruction of the cell.
Apoptosis

Two alternative pathways can initiate apoptosis within cells. Death receptors on the cell surface initiate apoptosis via the extrinsic path [96], while mitochondria activate the intrinsic route [97] (Figure 1.7). Apoptosis signaling stimulates initiator caspases [98], which propel the cleavage of death substrates through activation of executioner caspases [99]. Upon activation by caspases, anti-apoptotic proteins release pro-apoptotic proteins [100], driving the release of cyto c and other apoptotic factors from the opened MPTP [101]. The apoptotic factors exacerbate the process, causing the organized collapse and shrinkage of the cell until the cell body is engulfed by neighboring cells for removal [102]. Also known as programmed cell death as it can be purposefully initiated; apoptosis is a pathway that can be activated specifically by mitochondria.

Most often, cancer cells display increased inhibition of apoptosis due to mutations that either disrupt pro-apoptotic proteins [103,104] or elevate anti-apoptotic proteins [105]. On the contrary, a recent study found that enhanced levels of pro-apoptotic Bad promote prostate cancer growth [106]. This discrepancy illustrates that cancer cells tightly regulate all apoptotic protein levels in accordance with their proliferative needs. Additionally, in the event of apoptosis initiation, some cancer cells can reverse the process and survive [7]. Clearly, tumors manipulate many aspects of apoptosis to avoid death, which render cancer therapies ineffective. However, simultaneously targeting cancer cell-specific apoptotic inhibitory pathways while administering current anticancer agents is a novel avenue that may eliminate the resistance seen in tumors.

Necrosis

In the event of cellular injury, an unplanned cell death pathway called necrosis can be activated (Figure 1.8). Death receptor adaptor activation causes their translocation to the IM [107,108], which interferes with ANT-mediated ATP/ADP exchange. This disruption leads to ATP depletion and ROS accumulation [109]. Heightened ROS and Ca²⁺ levels stimulate mitochondrial uncoupling, swelling, and loss of ΔΨ due to opening of the MPTP [110,111]. These disparities initiate degradative enzymes which aggravate the process until plasma membrane rupture [112] and leakage of the intracellular contents in an unorganized manner.

Studies have shown that necrotic cell death is impaired in cancer cells, although the particular mechanisms are still being examined. Nakagawa and colleagues found that inhibiting CypD protects malignant cells from necrosis [113]. Also, although Leucine zipper/EF hand-containing Tansmembrane-1 (LETM1) induces necrosis...
in normal cells, LETM1 overexpression is common in many forms of cancer, leading to the inhibition of necrotic cell death [114]. Due to inconsistent outcomes with apoptosis-mediated treatments, the induction of necrosis may provide an alternative tool for treating cancer cells resistant to apoptosis-inducing methods.

Treatment strategies targeting mitochondria in cancer

As many cancers become resistant to chemotherapy and radiation regimens, targeting of mitochondrial-mediated processes is being investigated for enhancement of available anticancer agents. A large variety of drugs are approved for cancer treatment, such as cisplatin [115], paclitaxel [116], and trastuzumab [117]. However, due to cell repopulation and resistance, many antitumor agents fail to reduce cancer progression and metastasis in the long run. Concurrent treatment may aid the antitumor effects of available treatments.

Apoptosis manipulation is a popular target as programmed cell death is inhibited in cancer cells. Reducing the levels of antiapoptotic proteins in tumor cells using antisense constructs (Genasense) showed promising results for sensitizing cancer cells to apoptosis-mediated anticancer drugs in animals [118], but less desirable effects in clinical trials. Instead, small molecule mimetics that bind and inactivate antiapoptotic proteins have been proposed as an alternative method [119]. In essence, inhibition of antiapoptotic proteins could help sensitize malignant cells to available antineoplastic treatments (Figure 3).

Looking specifically at the MPTP, a few drugs are being tested for anticancer ability. As shown in Figure 3, targeting lonidamine to malignant cell mitochondria causes APTP disruption and MPTP-induced apoptosis [120]. Furthermore, co-treatment with lonidamine and arsenic trioxide enhances ROS generation and leads to MPTP-mediated cell death in human leukemia cells [121]. Also, CypD seems to play a role in cisplatin-mediated pancreatic cancer cell death [122]. As CypD overexpression typically enhances cancer cell resistance, it will be interesting to see whether manipulation of CypD or other MPTP components has an effect on sensitizing tumor cells to antitumor agents.

Conclusion

Mitochondrial dysfunction and tight regulation of cellular activities allows for cancer cell growth and resistance to cell death. With effective treatment options limited for cancer, research has shifted to target-specific and/or concurrent therapeutic regimens. Since mitochondrial dysfunction is highly implicated in cancer, targeting specific mitochondrial processes may enhance the susceptibility of diseased cells to available drugs. This novel approach toward disease treatment would increase the quantity and quality of therapeutic options.

Acknowledgements

This work was supported by grants from the National Institute of Aging (R37AG037319) and the National Institute of General Medical Science (RO1GM095355).

References

1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. *CA: a cancer journal for clinicians* 63: 11-30.

2. Kim JJ, Tannock IF (2005) Repopulation of cancer cells during therapy: an important cause of treatment failure. *Nat Rev Cancer* 5: 516-525. [Crossref]

3. Land H, Parada LF, Weinberg RA (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. *Nature* 304: 596-602. [Crossref]

4. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, et al. (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. *Proc Natl Acad Sci USA* 91: 9700-9704. [Crossref]

5. Masutani C, Kusumoto R, Yamada A, Yuasa M, Araki M, et al. (2000) Xeroderma pigmentosum variant: from a human genetic disorder to a novel DNA polymerase. *Cold Spring Harb Symp Quant Biol* 65: 71-80.

6. Warburg O (1956) On respiratory impairment in cancer cells. *Br J Cancer* 100: 118-122. [Crossref]

7. Tang HL, Yuen KL, Tang HM, Fung MC (2009) Reversibility of apoptosis in cancer cells. *Biomed Pharmacother* 123: 309-314. [Crossref]

8. Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, et al. (1997) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. *J Struct Biol* 119: 260-272. [Crossref]

9. Imanishi H, Hattori K, Wada R, Ishikawa K, Fukuda S, et al. (2011) Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. *PLoS One* 6: e23401. [Crossref]

10. Shidara Y, Yamagata K, Kananori T, Nakano K, K Wong JQ, et al. (2005) Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. *Cancer Res* 65: 1655-1663. [Crossref]

11. Ma Y, Bai RK, Trieu R, Wong LJ (2010) Mitochondrial dysfunction in human breast cancer cells and their transmitochondrial cybrids. *Biochim Biophys Acta* 1797: 29-37. [Crossref]

12. WARBURG O (1956) On the origin of cancer cells. *Science* 123: 309-314. [Crossref]

13. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. *Nature* 411: 355-365. [Crossref]

14. Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. *J Clin Invest* 107: 241-246. [Crossref]

15. Nakanishi C, Toi M (2005) Nuclear factor-kappaB inhibitors as sensitzers to anticancer drugs. *Nat Rev Cancer* 5: 297-309. [Crossref]

16. Ni J, Takayama K, Inoshima N, Uchino J, Harada A, et al. (2005) Gene transfer of inhibitor kappaB in human lung cancer cell line NCI-H460 inhibits tumorigenesis and angiogenesis in vivo. *Anticancer Res* 25: 69-77. [Crossref]

17. Zerbini LF, Wang Y, Cibrié A, Corea RG, Cho JY, et al. (2004) NF-kappaB-mediated repression of growth arrest- and DNA-damage-inducible proteins 45alpha and gamma is essential for cancer cell survival. *Proc Natl Acad Sci USA* 101: 15618-15623. [Crossref]

18. Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, et al. (2012) NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. *Nat Cell Biol* 13: 1272-1279. [Crossref]

19. Eferl R, Ricci R, Kenner L, Zenz R, David JP, et al. (2003) Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. *Cell* 112: 181-192. [Crossref]

20. Bonovich M, Olive M, Reed E, O’Connell B, Vinson C (2002) Adenoviral delivery of A-FOS, an AP-1 dominant negative, selectively inhibits drug resistance in two human cancer cell lines. *Cancer Gene Ther* 9: 62-70. [Crossref]

21. Suto R, Tominaga K, Mizugushi H, Sasaki E, Higuchi K, et al. (2004) Dominant-negative mutant of c-Jun gene transfer: a novel therapeutic strategy for colorectal cancer. *Gene Ther* 11: 187-193. [Crossref]

22. Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. *Oncogene* 19: 2474-2488. [Crossref]

23. Niu G, Bowman T, Huang M, Shivers S, Reintgen D, et al. (2002) Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. *Anticancer Res* 21: 7001-7010. [Crossref]

24. Lee SO, Lou W, Qureshi KM, Mehraein-Ghomi F, Trump DL, et al. (2004) RNA interference targeting Stat3 inhibits growth and induces apoptosis of human prostate cancer cells. *Prostate* 60: 303-309. [Crossref]
25. Xi S, Gooding WE, Grandis JR (2005) In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy. *Oncogene* 24: 970-979. [Crossref]

26. Kumar R, Gururaj AE, Vadlamudi RK, Rayala SK (2005) The clinical relevance of steroid hormone receptor corepressors. *Clin Cancer Res* 11: 2822-2831. [Crossref]

27. Liao X, Tang Y, Thrasher JB, Gribling TL, Li B (2005) Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. *Mol Cancer Ther* 4: 505-515. [Crossref]

28. Buluswela L, Pike J, Mazhar D, Kamalati T, Hart SM, et al. (2005) Inhibiting estrogen responses in breast cancer cells using a fusion protein encoding estrogen receptor-alpha and the transcriptional repressor PLZF. *Gene Ther* 12: 452-460. [Crossref]

29. Anderson S, Bankier AT, Barrett BG, de Bruijn MH, Coulson AR, et al. (1981) Sequence and organization of the human mitochondrial genome. *Nature* 290: 457-465. [Crossref]

30. Chang DD, Clayton DA (1985) Priming of human mitochondrial DNA replication occurs at the light-strand promoter. *Proc Natl Acad Sci USA* 82: 351-355. [Crossref]

31. Tseng LM, Yin PH, Chi CW, Hsu CY, Wu CW, et al. (2006) Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. *Genes Chromosomes Cancer* 45: 629-638. [Crossref]

32. Mambo E, Chatterjee A, Xing M, Tallini G, Haugen BR, et al. (2005) Tumor-specific changes in mtDNA content in human cancer. *Int J Cancer* 116: 920-924. [Crossref]

33. Chihara N, Amo T, Tokunaga A, Yuzuhara R, Wolf AM, et al. (2007) Mitochondrial DNA alterations in colorectal cancer cell lines. *J Nippon Med Sch* 78: 13-21. [Crossref]

34. Yin PH, Wu CC, Lin JC, Chi CW, Wei YH, et al. (2010) Somatic mutations of mitochondrial genome in hepatocellular carcinoma. *Mitochondrion* 10: 174-182. [Crossref]

35. Sanchez-Cespedes M, Parrella P, Nomoto S, Cohen D, Xiao Y, et al. (2001) Identification of a mononucleotide repeat as a major target for mitochondrial DNA alterations in human tumors. *Cancer Res* 61: 7015-7019. [Crossref]

36. Nomoto S, Yamashita K, Koshikawa K, Nakao A, Sidransky D (2002) Mitochondrial D-loop mutations as clonal markers in multicentric hepatocellular carcinoma and plasma. *Clin Cancer Res* 8: 481-487. [Crossref]

37. Miyazono F, Schneider PM, Metzger R, Warnecke-Eberz U, Baldus SE, et al. (2002) Mutations in the mitochondrial DNA D-Loop region occur frequently in adenocarcinoma in Barrett’s esophagus. *Oncogene* 21: 3780-3783. [Crossref]

38. Bai RK, Chang J, Yeh KT, Lou MA, Lu JF, et al. (2011) Mitochondrial DNA content varies with pathological characteristics of breast cancer. *J Oncol* 2011: 496189. [Crossref]

39. Yu M, Zhou Y, Shi Y, Ning L, Yang Y, et al. (2007) Reduced mitochondrial genome in hepatocellular carcinoma. *Oncogene* 26: 5055-5060. [Crossref]

40. McCormack JG (1985) Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria. *Biochem J* 231: 581-585. [Crossref]

41. Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, et al. (2004) Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and esophageal cancer. *Biochem J* 378: 17-20. [Crossref]

42. Bellance N, Benard G, Furt F, Béguereau H, Smolkova K, et al. (2009) Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity. *Int J Biochem Cell Biol* 41: 2566-2577. [Crossref]

43. Weber K, Ridderskamp D, Alfert M, Hoyer S, Wiesner RJ. (2002) Cultivation in glucose-deprived medium stimulates mitochondrial biogenesis and oxidative metabolism in HepG2 hepatoma cells. *Biochem Biophys Acta* 1533: 283-290. [Crossref]

44. Smolkova K, Bellance N, Scandurra F, Génot E, Gnaiger E, et al. (2010) Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. *J Bioenerg Biomembr* 42: 55-67. [Crossref]

45. Rodriguez-Enriquez SJ, Carreño-Fuentes L, Gallardo-Pérez JC, Saavedra E, Quezada H, et al. (2010) Oxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinoma. *Int J Biochem Cell Biol* 42: 1744-1751. [Crossref]

46. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. *J Physiol* 552: 335-344. [Crossref]

47. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). *J Biol Chem* 244: 6049-6055. [Crossref]

48. Matsuya EM, Bowling AC, Beal MF (1994) Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. *J Neurochem* 60: 2179-2184. [Crossref]

49. Young-Collier KJ, Mc Ardle M, Bennett JP (2012) The dying of the light: mitochondrial failure in Alzheimer’s disease. *J Alzheimers Dis* 28: 771-781. [Crossref]

50. Sawyer DE, Ronan SD, Aitken RJ (2001) Relative susceptibilities of mitochondrial and nuclear DNA to damage induced by hydrogen peroxide in two mouse germ cell lines. *Redox Rep* 6: 182-184. [Crossref]

51. Ishikawa K, Takenaka K, Akimoto M, Koshikawa N, Yamaguchi A, et al. (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. *Science* 320: 661-664. [Crossref]

52. Toyokuni S, Okamoto K, Yodoi J, Hiai H (1995) Persistent oxidative stress in cancer. *FEMS Lett* 358: 1-3. [Crossref]

53. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. *Cancer Res* 68: 1777-1785. [Crossref]

54. Mochizuki T, Furuta S, Mitsuhashi J, Shang WH, Ito M, et al. (2006) Inhibition of NADPH oxidase 4 activates apoptosis via the AKT apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. *Oncogene* 25: 3699-3707. [Crossref]

55. Pelicano H, Lu W, Zhou Y, Zhang W, Chen Z, et al. (2009) Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. *Cancer Res* 69: 2375-2383. [Crossref]

56. Anastasiou D, Poulougiannis G, Asara JM, Boxer MB, Jiang JK, et al. (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. *Science* 334: 1278-1283. [Crossref]

57. Al-Nasser, Crompton M (1986) The reversible Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria. *Biochem J* 231: 581-585. [Crossref]

58. Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, et al. (2005) Architecture of NADH dehydrogenase and reactive oxygen species generation. *Science* 299: 700-704. [Crossref]

59. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. *Physiol Rev* 70: 391-425. [Crossref]

60. Takehara Y, Kanno T, Yoshioka T, Inoue M, Usumi K (1995) Oxygen-dependent regulation of mitochondrial energy metabolism by nitric oxide. *Arch Biochem Biophys* 323: 27-32. [Crossref]

61. Nalin CM, Cross RL (1982) Adenine nucleotide binding sites on beef heart F1-ATPase. Specificity of cooperative interactions between catalytic sites. *J Biol Chem* 257: 8055-8060. [Crossref]
篇论文探讨了在癌症细胞中功能失调的线粒体的作用。线粒体是细胞的能量中心，其功能紊乱可能与癌症的进展有关。

66. Tanveer A, Virji S, Andreeva L, Totty NF, Hussian N, et al. (1996) Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. *Eu J Biochem* 238: 166-172. [Crossref]

67. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, et al. (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. *Proc Natl Acad Sci USA* 102: 12005-12010. [Crossref]

68. Basso E, Fante L, Fowellis J, Petronilli V, Forte MA, et al. (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. *J Biol Chem* 280: 18558-18561. [Crossref]

69. Baines CP, Kaiser RA, Purcell NH, Blair NS, Ousinska H, et al. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. *Nature* 434: 658-662. [Crossref]

70. Eliseev RA, Malecki J, Lester T, Zhang Y, Humphrey J, et al. (2009) Cyclophilin D interacts with Bcl2 and exerts an anti-apoptotic effect. *J Biol Chem* 284: 9692-9699. [Crossref]

71. Machida K, Ohta Y, Osada H (2006) Suppression of apoptosis by cyclophilin D via stabilization of hexokinase II mitochondrial binding in cancer cells. *J Biol Chem* 281: 14310-14320. [Crossref]

72. Ghosh JC, Siegelin MD, Dohi T, Altieri DC (2010) Heat shock protein 60 regulation of the inner membrane mitochondrial permeability transition pore in tumor cells. *Cancer Res* 70: 8988-8993. [Crossref]

73. Kinmal KW, Zorov DB, Antonenko YN, Snyder SH, McInery MW, et al. (1993) Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. *Proc Natl Acad Sci USA* 90: 1374-1378. [Crossref]

74. Siliekyte J, Petronilli V, Zulian A, Dabbeni-Sala F, Tognon G, et al. (2011) Regulation of the inner membrane mitochondrial permeability transition by the outer membrane translocator protein (peripheral benzodiazepine receptor). *J Biol Chem* 286: 1046-1053. [Crossref]

75. Mukherjee S, Das SK (2012) Translocator protein (TSPO) in breast cancer. *Curr Mol Med* 12: 443-457. [Crossref]

76. Hardwick M, Fertikh D, Culty M, Li H, Vidic B, et al. (1999) Peripheral-type benzodiazepine receptor (PBR) in human breast cancer: correlation of breast cancer cell aggressive phenotype with PBR expression, nuclear localization, and PBR-mediated cell proliferation and nuclear transport of cholesterol. *Cancer Res* 59: 831-842. [Crossref]

77. Wu X, Gallo KA (2013) The 18-kDa translocator protein (TSPO) disrupts mammary epithelial morphogenesis and promotes breast cancer cell migration. *PLoS One* 8: e71258. [Crossref]

78. Gallegue S, Casellas P, Kramar A, Tinel N, Simony-Lafontaine J (2004) Immunohistochemical assessment of the peripheral benzodiazepine receptor in breast cancer and its relationship with survival. *Clin Cancer Res* 10: 2058-2064. [Crossref]

79. Crompton M, Virji S, Ward JM (1998) Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. *Eu J Biochem* 258: 729-735. [Crossref]

80. Gincel D, Zaid H, Shoshan-Barmatz V. (2001) Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. *Biochem J* 358: 147-155. [Crossref]

81. Szabó I, Zoratti M (1993) The mitochondrial permeability transition pore may form the permeability transition pore. *Proc Natl Acad Sci USA* 103: 5787-5792. [Crossref]

82. Koren I, Raviv Z, Shoshan-Barmatz V (2010) Downregulation of voltage-dependent anion channel-1 expression by RNA interference prevents cancer cell growth in vivo. *Cancer Biol Ther* 9: 1046-1052. [Crossref]

83. Azoulay-Zohar H, Israelson A, Abu-Hamad S, Shoshan-Barmatz V (2004) In self-defense: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death. *Biochem J* 377: 347-355. [Crossref]

84. Halstead AP, Brenner C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. *Curr Med Chem* 10: 1507-1525. [Crossref]

85. Klingenberg M (1975) Energetic aspects of transport of ADP and ATP through the mitochondrial membrane. *Ciba Found Symp*. 105-124. [Crossref]

86. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, et al. (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. *Nature* 427: 461-465. [Crossref]

87. Bauk MA, Schubert A, Rocks O, Grimm S (1999) Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis. *J Cell Biol* 147: 1493-1502. [Crossref]

88. Zamora M, Granell M, Mampel T, Viñas O (2004) Adenine nucleotide translocase 3 (ANT3) overexpression induces apoptosis in cultured cells. *FEBS Lett* 563: 155-160. [Crossref]

89. Chevrillier A, Loiseau D, Chabi B, Renier G, Douay O, et al. (2005) ANT2 isoform required for cancer cell glycolysis. *J Bioenerg Biomembr* 37: 307-316. [Crossref]

90. Gallner C, Touat Z, Chen ZX, Martel C, Mayola E, et al. (2010) The fourth isoform of the adenine nucleotide translocator inhibits mitochondrial apoptosis in cancer cells. *Int J Cell Biochem* 42: 623-629. [Crossref]

91. Chevrillier A, Loiseau D, Reynier P, Stepien G (2011) Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. *Biochim Biophys Acta* 1807: 562-567. [Crossref]

92. Schubert A, Grimm S (2004) Cyclophilin D, a component of the permeability transition-pore, is an apoptosis repressor. *Cancer Res* 64: 85-93. [Crossref]

93. Tartaglia LA, Ayres TM, Wong GH, Goeddel DV (1993) A novel domain within the isoform of the adenine nucleotide translocator inhibits mitochondrial apoptosis in cancer cells. *Mol Med* 96: 773-783. [Crossref]

94. Lee JW, Soung YH, Kim SY, Nam SW, Kim CJ, et al. (2004) Inactivating mutation of mitochondrial adenine nucleotide translocator causes a syndrome of mitochondrial dysfunction and early-onset polycystic kidney disease. *Biochem J* 377: 347-355. [Crossref]

95. Chen M, Wang J (2002) Initiator caspases in apoptosis signaling pathways. *Apoptosis* 7: 313-319. [Crossref]

96. Sree EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. *J Biol Chem* 276: 7320-7326. [Crossref]

97. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, et al. (2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. *Mol Cell* 8: 705-711. [Crossref]

98. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, et al. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. *Science* 292: 727-730. [Crossref]

99. Nagata S, Hanayama R, Kawan K (2010) Autoimmunity and the clearance of dead cells. *Cell* 140: 619-630. [Crossref]

100. Meijerink JP, Mensink EJ, Wang K, Sedlak TW, Slöetjes AW, et al. (1998) Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. *J Biol Chem* 273: 33942-33948. [Crossref]
105. Placzek WJ, Wei J, Kitada S, Zhai D, Reed JC, et al. (2010) A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. *Cell Death Dis* 1: e40. [Crossref]

106. Smith AJ, Karpova Y, D’Agostino R Jr, Willingham M, Kulik G (2009) Expression of the Bcl-2 protein BAD promotes prostate cancer growth. *PLoS One* 4: e6224. [Crossref]

107. Holler N, Zaru R, Micheau O, Thome M, Attinger A, et al. (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. *Nat Immunol* 1: 489-495. [Crossref]

108. Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, et al. (2003) A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. *J Biol Chem* 278: 51613-51621. [Crossref]

109. Temkin V, Huang Q, Liu H, Osada H, Pope RM (2006) Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. *Mol Cell Biol* 26: 2215-2225. [Crossref]

110. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, et al. (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. *Biochimica et Biophysica Acta* 1366: 177-196.

111. Choi K, Kim J, Kim GW, Choi C (2009) Oxidative stress-induced necrotic cell death via mitochondria-dependent burst of reactive oxygen species. *Curr Neurovasc Res* 6: 213-222. [Crossref]

112. Nieminen AL, Gores GJ, Wray BE, Tanaka Y, Herman B, et al. (1988) Calcium dependence of bleb formation and cell death in hepatocytes. *Cell Calcium* 9: 237-246. [Crossref]

113. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, et al. (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. *Nature* 434: 652-658. [Crossref]

114. Piao L, Li Y, Kim SJ, Byun HS, Huang SM, et al. (2009) Association of LETM1 and MRPL36 contributes to the regulation of mitochondrial ATP production and necrotic cell death. *Cancer Res* 69: 3397-3404. [Crossref]

115. Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC (2011) Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. *Proc Natl Acad Sci USA* 108: 1850-1855. [Crossref]

116. Swaminathan SK, Roger E, Totti U, Niu L, Ohlfest JR, et al. (2013) CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. *J Control Release* 171: 280-287. [Crossref]

117. García AG, Nedev H, Bijian K, Su J, Alaoui-Jamali MA, et al. (2013) Reduced in vivo lung metastasis of a breast cancer cell line after treatment with Herceptin mAb conjugated to chemotherapeutic drugs. *Oncogene* 32: 2527-2533. [Crossref]

118. Spugnini EP, Birocco A, De Mori R, Scarsella M, D’Angelo C, et al. (2011) Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft. *J Transl Med* 9: 125. [Crossref]

119. Dalafave DS, Prisco G (2010) Inhibition of Antiapoptotic BCL-XL, BCL-2, and MCL-1 Proteins by Small Molecule Mimetics. *Cancer Inform* 9: 169-177. [Crossref]

120. Li N, Zhang CX, Wang XX, Zhang L, Ma X, et al. (2013) Development of targeting lonidamine liposomes that circumvent drug-resistant cancer by acting on mitochondrial signaling pathways. *Biomaterials* 34: 3366-3380. [Crossref]

121. Calvino E, Estáñ MC, Simón GP, Sancho P, Boyano-Adánez Ménd C, et al. (2011) Increased apoptotic efficacy of lonidamine plus arsenic trioxide combination in human leukemia cells. Reactive oxygen species generation and defensive protein kinase (MEK/ERK, Akt/mTOR) modulation. *Biochem Pharmacol* 82: 1619-1629. [Crossref]

122. Chen B, Xu M, Zhang H, Wang IX, Zheng P, et al. (2013) Cisplatin-induced non-apoptotic death of pancreatic cancer cells requires mitochondrial cyclophilin-D-p53 signaling. *Biochem Biophys Res Commun* 437: 526-531. [Crossref]

123. Carlson EA, Rao VK, Yan SS (2013) From a cell’s viewpoint: targeting mitochondria in Alzheimer’s disease. *Drug Discovery Today: Therapeutic Strategies* 10: 2.

Copyright: ©2014 Yan SS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.