pSETT4, an Improved φC31-Based Integrative Vector System for *Actinoplanes* sp. SE50/110

© Lena Schaffert,a Lucas Jacob,a Susanne Schneiker-Bekel,a,b Marcus Persicke,a Camilla März,a Christian Rückert,a Alfred Pühler,b Jörn Kalinowskia

aMicrobial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
bSenior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany

ABSTRACT The pSETT4 vector integrates into the *Actinoplanes* sp. SE50/110 chromosome via the bacteriophage φC31 integrase and allows cloning of a gene of interest by Golden Gate assembly (BsaI). T4 terminators surround the expression cassette to isolate the transcriptional unit and to prevent antisense transcription. The system can be used in other *Actinomycetales* by exchanging the promoter.

Actinoplanes sp. SE50/110 (strain ATCC 31044) is known as a natural producer of acarbose ([1](#), [2](#)), which has been used in the treatment of diabetes mellitus since the early 1990s ([3](#), [4](#)). Due to its medical importance, first, genetic tools such as CRISPR/Cas9 ([5](#)) and a promoter library ([6](#)) were established. The knowledge gained in previous work ([6](#)) was used to develop a novel expression vector, called pSETT4, which will allow easy cloning and overexpression of single genes in *Actinoplanes* sp. SE50/110.

For this, the strong promoter of the gene gapDH from *Eggerthella lenta* ([6](#), [7](#)) was cloned in front of a lacZ cassette in a pSET152 backbone (Fig. 1A). The gene lacZ is transcribed under the control of the lac promoter and flanked by the recognition sites of the type IIS restriction enzyme BsaI, which enables seamless Golden Gate cloning ([8](#)). This way, the cloning effort and time were substantially decreased. In addition, cloning via Gibson assembly ([9](#)) and restriction/ligation is also possible.

To isolate the transcriptional units, T4 terminators were introduced before and after the cloning cassette (Fig. 1A). T4 terminators have already been successfully used in the pGUS-cloning system ([10](#)). They are proven to block transcription efficiently and prevent read-through from the integrase gene into the gene of interest by whole-track transcriptome sequencing (RNA-seq) analysis ([11](#)). By sequencing native 5′ ends of transcripts derived from a previous promoter-screening experiment ([6](#)), two putative antisense promoters were identified behind the gene of interest in antisense orientation in the original vector backbone pSET152 ([11](#)), which were removed in the novel system. An additional (third) T4 terminator was introduced behind the cloning side in the opposite orientation to prevent further antisense reads (Fig. 1A). The vector is named pSETT4gap.

To allow exchange of the promoter sequence, NdeI and KpnI restriction sites were introduced (Fig. 1A). Here, the medium-strong promoter of tipA from *Streptomyces lividans* ([6](#), [12](#)) was cloned by restriction/ligation cloning, and the vector was named pSETT4tip.

For construction of pSETT4gap, the cassette, consisting of the gapDH promoter, a lacZ gene under the control of the lac promoter, and several restriction sites flanked by three T4 terminators, was obtained in three string DNAs (Integrated DNA Technologies, Coralville, IA, USA), assembled by gene splicing by overlap extension (gene SOEing) ([13](#)), and cloned into a PCR-linearized backbone using Gibson assembly ([9](#)) according to a protocol from reference 6 and using the primers in Table 1.
A Novel integrative pSETT4 cloning system. The lacZ cassette is flanked by the recognition sites of the restriction enzyme BsAl. BsAl enables exchange of lacZ by the gene of interest using Gibson assembly, restriction/ligation cloning, or Golden Gate cloning. As strong expression needs strong termination, T4 terminators were introduced before and after the cloning site. Behind the cloning site, two antiparallel-oriented T4 terminators prevent read-through from both directions. For exchange of the promoter sequence, NdeI and KpnI restriction sites were introduced. Furthermore, the vector contains the integrase gene int and the attachment site attP of the phage φC31, the origin of transfer (incP) and relaxosome gene traJ, the high-copy-number ColE1 origin of replication, and the apramycin resistance gene aac(3)-IV. (B) Growth and acarbose formation of Actinoplanes sp. SE50/110 (pSETT4tip), Actinoplanes sp. SE50/110 (pSET152), and the wild-type Actinoplanes sp. SE50/110 took place in a shake flask in maltose minimal medium. Numbers of replicates are indicated by the n values shown in parentheses for both the cell dry weight (cdw) and the acarbose concentration (acb).
For exchange of the promoter, pSET4gap was digested with Ndel and KpnI and treated with shrimp alkaline phosphatase following the supplier’s instructions (Thermo Fisher Scientific, Waltham, USA). The tipA promoter was amplified from pSETGUS (10) (Table 1) and assembled with the linearized backbone using Gibson assembly (9).

The cloning mixtures were transferred to *Escherichia coli* DH5αMCR (14) and selected on Luria/Miller broth medium with 15 g·liter⁻¹ agar-agar and 50 mg·liter⁻¹ apramycin sulfate. Positive colonies were tested with Sanger sequencing at our in-house sequencing core facility and transferred to *Actinoplanes* sp. SE50/110 by conjugation (6).

The novel expression system pSET4tip displays growth behavior and an acarbose-producing phenotype similar to those of the wild type and the empty vector control carrying pSET152 (Fig. 1B). The cultivation and acarbose quantification were carried out as described before (6).

Data availability
The complete sequences of pSET4gap and pSET4tip have been deposited at Addgene under the accession numbers 153413 and 153414. The resources can be obtained from the Addgene depository (https://www.addgene.org/).

ACKNOWLEDGMENTS
This work was funded by Bayer AG (Leverkusen, Germany). We acknowledge support for the article processing charge by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.

We thank our colleague Julian Droste for reviewing the pSET4 vector design.

REFERENCES
1. Frommer W, Junge B, Müller L, Schmidt D, Truscheit E. 1979. Neue Enzymminibitorien aus Mikroorganismen. Planta Med 35:195–217. https://doi.org/10.1055/s-0028-1097207.
2. Parenti F, Coronelli C. 1979. Members of the genus *Actinoplanes* and their antibiotics. Annu Rev Microbiol 33:389–411. https://doi.org/10.1146/annurev.mi.33.100179.002133.
3. Wehmeier UF, Piepersberg W. 2004. Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose. Appl Microbiol Biotechnol 63:613–625. https://doi.org/10.1007/s00253-003-1477-2.
4. Wehmeier UF, Piepersberg W. 2009. Enzymology of aminoglycoside biosynthesis: deduction from gene clusters. Methods Enzymol 459:459–491. https://doi.org/10.1016/S0076-6879(09)04619-9.
5. Wolf T, Gren T, Thieme E, Wiberg D, Zemke A, Pühler A, Kalinowski J. 2016. Targeted genome editing in the rare actinomycete *Actinoplanes* sp. SE50/110 by using the CRISPR/Cas9 System. J Biotechnol 231:122–128. https://doi.org/10.1016/j.jbiotec.2016.05.039.
6. Schaffert L, März C, Burkhardt L, Droste J, Brandt D, Busche T, Rosen W, Schneider-Bekel S, Persicke M, Pühler A, Kalinowski J. 2019. Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene *acbC* in *Actinoplanes* sp. SE50/110. Microb Cell Fact 18:114. https://doi.org/10.1186/s12934-019-1162-5.
7. Cobb RE, Wang Y, Zhao H. 2015. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728. https://doi.org/10.1021/sb500351f.
8. Engler C, Kandzia R, Marillonnet S. 2008. A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647. https://doi.org/10.1371/journal.pone.0003647.
9. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318.
10. Myronovskiy M, Welle E, Fedorenko V, Luhzhetsky A. 2011. Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl Environ Microbiol 77:5370–5383. https://doi.org/10.1128/AEM.00434-11.
11. Schaffert L. 2020. Studies on the acarviosyl-maltose metabolism in *Actinoplanes* sp. SE50/110 by gene deletion and overexpression. Dissertation. Bielefeld University, Bielefeld, Germany. https://pub.uni-bielefeld.de/record/2943717.
12. Chiu ML, Folcher M, Kotah T, Puglia AM, Vorhadrsky J, Yun BS, Seto H, Thompson CJ. 1999. Broad spectrum thiopeptide recognition specificity of the Streptomyces *lividans* TipAL protein and its role in regulating gene expression. J Biol Chem 274:20578–20586. https://doi.org/10.1074/jbc.274.29.20578.
13. Horton RM. 1995. PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Mol Biotechnol 3:93–99. https://doi.org/10.1386/mb.10.1007/bf02789105.
14. Beyer HM, Gonschorek P, Samodelov SL, Meier M, Weber W, Zurbriggen MD. 2015. AQUA cloning: a versatile and simple enzyme-free cloning approach. PLoS One 10:e0137652. https://doi.org/10.1371/journal.pone.0137652.