Synaptic connections in our brains change continuously and throughout our lifetime. Despite ongoing synaptic changes, a healthy balance between excitation and inhibition is maintained by various forms of homeostatic and activity-dependent adaptations, ensuring stable functioning of neuronal networks. In this review we summarize experimental evidence for activity-dependent changes occurring in inhibitory axons, in cultures as well as in vivo. Axons form many presynaptic terminals, which are dynamic structures sharing presynaptic material along the axonal shaft. We discuss how internal (e.g., vesicle sharing) and external factors (e.g., binding of cell adhesion molecules or secreted factors) may affect the formation and plasticity of inhibitory synapses.

INTRODUCTION

Our brain is a complex organ with tremendous self-organizing abilities. Its computational power is based in the adjustable synaptic connections between neurons. When new experiences and memories are established, specific synapses in specific brain regions are changed, both in strength and in number. To ensure proper global functioning despite changes in local connectivity, these synaptic changes must be coordinated within neurons, as well as within neuronal circuits. An important aspect is the coordination between changes in excitatory and inhibitory synapses to regulate and maintain an overall balance between excitation and inhibition. When this balance is disturbed, neurological diseases such as autism or schizophrenia can develop (Palop et al., 2007; Maffei et al., 2004; Maffei and Turrigiano, 2008). Here we briefly describe the experimental evidence for activity-dependent plasticity of inhibitory synapses from *in vitro* (i.e., in dissociated and organotypic cultures) and *in vivo* studies.

Primary cell cultures

Activity manipulations in cultures of dissociated hippocampal or neocortical neurons generally affect excitatory and inhibitory synapses in opposite directions. After a prolonged period of activity blockade, excitatory synapses get strengthened and inhibitory synapses are weakened, and synaptic changes are in opposite directions when activity is enhanced (Turrigiano et al., 1998; Kilman et al., 2002; Hartman et al., 2006; Swanwick et al., 2006). Therefore, changes in excitation and inhibition cooperate to compensate for the change in activity level. For inhibitory synapses, changes in activity and inhibitory mechanisms come into play which adjust excitatory and inhibitory synapses to compensate and restore the activity level in the network (Turrigiano, 1999, 2011; Burrowe and Murthy, 2003; Pozo and Goda, 2010). Generally speaking, when the activity is too high, excitation must be downregulated, and inhibition should be increased to bring activity levels back to baseline. And opposite changes should occur during activity blockade. Homeostatic plasticity has been studied extensively in cultures, where neurons are randomly connected. Dissociated cultures provide superb access for experimental manipulations and therefore form an excellent system to study the cell biological mechanisms underlying homeostatic plasticity. However, in our brain neurons are embedded in multiple neuronal networks and make specific synaptic connections. Recurrent connections between neurons or groups of neurons are very common and different types of GABAergic interneurons are known to have high specificity, making inhibitory synapses onto specific target neurons, including inhibitory neurons (Pfeffer et al., 2013, Jiang et al., 2013). In such complex networks, it is not easy to determine rules of homeostatic plasticity. Adaptation to changes in the activity of the network will be strongly synapse-specific and likely depends on the precise function and location of the synapse in the network (Chen et al., 2011; Maffei et al., 2004; Maffei and Turrigiano, 2008).

ACTIVITY-DEPENDENT ADAPTATIONS OF INHIBITORY SYNAPSES

When prolonged changes occur in network activity, homeostatic mechanisms come into play which adjust excitatory and inhibitory synapses to compensate and restore the activity level in the network (Turrigiano, 1999, 2011; Burrowe and Murthy, 2003; Pozo and Goda, 2010). Generally speaking, when the activity is too high, excitation must be downregulated, and inhibition should be increased to bring activity levels back to baseline. And opposite changes should occur during activity blockade. Homeostatic plasticity has been studied extensively in cultures, where neurons are randomly connected. Dissociated cultures provide superb access for experimental manipulations and therefore form an excellent system to study the cell biological mechanisms underlying homeostatic plasticity. However, in our brain neurons are embedded in multiple neuronal networks and make specific synaptic connections. Recurrent connections between neurons or groups of neurons are very common and different types of GABAergic interneurons are known to have high specificity, making inhibitory synapses onto specific target neurons, including inhibitory neurons (Pfeffer et al., 2013, Jiang et al., 2013). In such complex networks, it is not easy to determine rules of homeostatic plasticity. Adaptation to changes in the activity of the network will be strongly synapse-specific and likely depends on the precise function and location of the synapse in the network (Chen et al., 2011; Maffei et al., 2004; Maffei and Turrigiano, 2008). Here we briefly describe the experimental evidence for activity-dependent plasticity of inhibitory synapses from *in vitro* (i.e., in dissociated and organotypic cultures) and *in vivo* studies.

Primary cell cultures

Activity manipulations in cultures of dissociated hippocampal or neocortical neurons generally affect excitatory and inhibitory synapses in opposite directions. After a prolonged period of activity blockade, excitatory synapses get strengthened and inhibitory synapses are weakened, and synaptic changes are in opposite directions when activity is enhanced (Turrigiano et al., 1998; Kilman et al., 2002; Hartman et al., 2006; Swanwick et al., 2006). Therefore, changes in excitation and inhibition cooperate to compensate for the change in activity level. For inhibitory synapses, changes
in mPSC amplitude are most commonly reported, reflecting changes in synaptic strength. Sometimes they are accompanied by changes in mPSC frequency, which could either reflect a change in the number of synapses or a change in release properties. Dissociated cultures provide excellent experimental access and are therefore well-suited for studying underlying mechanisms of homeostatic plasticity. However, the artificial environment in which neurons grow in culture may affect synaptic maturation (Wierenga et al., 2006; Rose et al., 2013) and consequently cellular or synaptic mechanisms of plasticity. Cellular mechanisms that were identified to mediate the changes in inhibitory synapses after activity manipulations include: changes in number of postsynaptic receptors (Kalman et al., 2002; Swanwick et al., 2006; Saliba et al., 2007; Peng et al., 2010; Rannels and Kapur, 2011) or scaffolding proteins (Vlachos et al., 2012, study in slice cultures) on the postsynaptic side, and changes in presynaptic release probability (Kim and Alger, 2010), presynaptic vesicle loading (De Gois et al., 2005), Hartman et al., 2006; Lau and Murthy, 2012), or GABA-producing enzymes (Peng et al., 2010; Rannels and Kapur, 2011) on the presynaptic side. Only in a few cases, changes in the number of inhibitory synapses were reported (Hartman et al., 2006; Peng et al., 2010). Homeostatic changes of inhibitory synapses could be induced in a cell autonomous fashion (Peng et al., 2010), or required a change in activity of the entire neuronal network (Hartman et al., 2006), emphasizing that there are multiple mechanisms of homeostatic plasticity at inhibitory synapses. In particular, distinct mechanisms could exist for activity-dependent downregulation and upregulation of inhibitory synapses.

Organotypic cultures

In contrast to dissociated cultures neurons in more intact tissue, such as acute slices or organotypic cultures, make more specific connections and form structured networks. This network configuration makes the interpretation of synaptic changes more complex. In slices that were submitted to activity manipulations, changes in inhibition have been observed opposite to (Marty et al., 2004; Karmarkar and Buonomano, 2006; Kim and Alger, 2010) as well as in conjunction with (Buckley et al., 2006; Ichergoyen et al., 2007) changes in excitation. It was also shown that different types of homeostatic mechanisms have different time courses (Karmarkar and Buonomano, 2006) and that different subsets of inhibitory synapses can respond differently. For instance, the presence of cannabinoid receptors in a subset of inhibitory synapses renders them selectively receptive to changes in endocannabinoid levels induced by inactivity (Kim and Alger, 2010). In another example, inactivity differentially affected somatic and dendritic inhibitory inputs on CA1 pyramidal cells. Interestingly, both types of synapses showed reduction in the number of presynaptic boutons and upregulation of release probability, but the functional end-effect on inhibitory input to the postsynaptic cells was different (Chatopadhyaya et al., 2004; Butlery et al., 2008). This emphasizes that simple in vitro homeostatic rules for scaling inhibitory synapses get complicated in more complex networks. In addition, other factors such as different cell (glia) types or the extracellular environment in more intact tissue potentially influence homeostatic plasticity compared to dissociated cultured cells.

In vivo studies

Typically, when studying activity-dependent or homeostatic changes in vivo, sensory deprivation is used as experimental paradigm to lower activity levels in the primary sensory cortex (e.g., whisker trimming, monocular deprivation, or retinal lesion). While in vivo activity manipulations by pharmacological means affect the activity of all neurons in equal amounts, sensory deprivation in vivo will affect different neurons in the circuitry differentially. Therefore, in vivo responses of inhibitory synapses to changes in activity vary widely and strongly depend on the specific cell types, cortical layer, and specific circuitry (Maffei et al., 2004; Maffei and Turrigiano, 2008, Chen et al., 2011). Furthermore, it is well-known that inhibition in sensory cortex areas undergoes important developmental changes (Hensch, 2005), which means that the same deprivation paradigm can have different effects on inhibitory synapses depending on the postnatal period that is considered (Chatopadhyaya et al., 2004, Maffei et al., 2006, Maffei et al., 2010). An emerging theme from the in vivo studies is that inhibitory synapses can respond rapidly to sensory deprivation. It was shown that inhibitory axons in cortical layer 2/3 reduce the number of boutons within the first 24 h after a retinal lesion or monocular deprivation (Chen et al., 2011; Keck et al., 2011). Over longer periods, inhibitory axons in the barrel cortex were shown to sprout and form new axonal branches after whisker plucking (Marik et al., 2010). Interestingly, the reduction of inhibition was often found to precede adaptive changes of the excitatory circuitry (Maffei et al., 2010; Keck et al., 2011). The rapid downregulation of inhibition might serve to render the local circuit more permissive for excitatory plasticity to occur (Ormond and Woodin, 2011; Gambino and Holtmaat, 2012). In two recent studies it was shown that inhibitory synapses that are located on spines (presumably next to an excitatory synapse) showed much higher turnover rates compared to inhibitory synapses on shaft after visual deprivation (Chen et al., 2012; vanVeenendaal et al., 2012). It will be interesting to see whether direct cross talk of the two types of synapses exists.

In conclusion, there is a large amount of compelling evidence for activity-dependent adaptations in inhibitory synapses in vivo as well as in vitro. The precise expression mechanisms significantly vary between different preparations and experimental paradigms.

AXONS

In this review we focus on possible feedback signals that occur in inhibitory axons in response to changes in network or synaptic activity and that induce changes in the number or properties of presynaptic terminals along the axon. The axon of a single neuron forms several thousands of presynaptic terminals (i.e., “boutons”) along its shaft and contacts many different postsynaptic neurons. Presynaptic boutons along an axon show a large variety in their volumes, in the number of synaptic vesicles and in the presence or absence of mitochondria (Shepherd and Harris, 1998). It is now well-established that neighboring boutons are not independent entities, but they continuously share and exchange molecular components of the release machinery and synaptic vesicles (Kraeger et al., 2003, Dacey et al., 2006, Sabat et al., 2006, Huisse, 2007, Yamada et al., 2009). Synaptic vesicles may not belong to a specific presynaptic terminal, but form a super pool of vesicles in
INHIBITORY AXONS

The exchange of presynaptic proteins means that the exact composition of presynaptic terminals is continuously changing. These changes can occur in a correlated fashion with the postsynaptic site in some synapses, but can be uncoordinated in others (Fisher-Lavis et al., 2011; Fisher-Lavis and Ziv, 2013). Release properties and synaptic strength are highly variable between individual boutons along the same axon (Branco et al., 2008; Zhao et al., 2011; Rose et al., 2013). Therefore the demand for synaptic vesicles or other presynaptic proteins will vary between presynaptic boutons and neighboring boutons compete for available resources. Indeed, reduced availability of synaptic proteins within the axon has been shown to enhance competition between boutons (Yamada et al., 2013). In addition, vesicle exchange is regulated by neuronal activity through changes in axonal calcium levels (Kim and Ryan, 2013, 2010).

Synaptic vesicles are kept at the presynaptic terminal by interacting with a scaffolding meshwork of actin, β-catenin, synapsin, and many other proteins (Banaji et al., 2003; Takamori et al., 2006; Cingolani and Goda, 2008; Fernández-Busnadiego et al., 2010; Peng et al., 2012; Taylor, 2013). Synaptic vesicles can escape from the presynaptic terminal into the axon, while other vesicles that were traveling along the axonal shaft can be captured. Although the loss of a strict presynaptic compartmentalization may seem disadvantageous at first, the main advantage of sharing presynaptic material between boutons is flexibility. When presynaptic material is continuously being lost and gained at synapses, synapses can rapidly change their strength by adjusting the ratio of vesicle capture and release (Wu et al., 2013). In addition, synapses can be formed or disassembled within a few hours. It was shown that presynaptic vesicles can be transported together in small packages in axons (Friedman et al., 2000; Zhai et al., 2001; Wu et al., 2013). Such multi-protein packages can be recruited to locations where new synapses are being formed and a few of these ready-to-go packages are enough to rapidly build a functional active zone and release site (Jin and Garner, 2008; Oswald and Sigmund, 2009).

Live imaging of axons have shown that transient and mobile release sites exist (Krueger et al., 2003) and that transient boutons occur at predefined locations along the axon (Sabo et al., 2006; Ou and Shen, 2010; Bury and Sabo, 2011), presumably reflecting contact sites with potential postsynaptic targets (Wierenga et al., 2008; Schuemann et al., 2013). The transient nature of boutons in such locations suggest that presynaptic structures are immature or incomplete and may serve a role in “testing” a new synaptic location (Wierenga et al., 2008; Dobie and Craig, 2011; Fu et al., 2012; Schuemann et al., 2013). Transient boutons might therefore reflect failed attempts or intermediate stages of building new synapses, but they could also have a physiological function. Transient boutons, or orphan release sites, are likely capable of neurotransmitter release (Krueger et al., 2003; Coggan et al., 2005; Ratnayaka et al., 2011) and besides having a role in synaptic formation, ectopic release of neurotransmitter by transient boutons could also serve to signal to nearby astrocytes or to regulate ambient neurotransmitter levels.

Synapse assembly is a complicated process involving interactions of multiple proteins. It does not necessarily need to be a linear process, where one component necessarily recruits the next, but some of the interactions could occur in parallel and the sequence of protein recruitment may vary. Rapid self-assembly of presynaptic components may be an important element during synaptogenesis. This would mean that the formation of a presynaptic terminal merely needs an initial trigger to ascertain a specific axonal location or postsynaptic partner, but then the new presynaptic terminal “unfolds” automatically by spontaneous clustering of its components. It is likely that multiple triggers can induce self-assembly. Indeed, it was recently reported that synaptic material is actively prevented from aggregating and assembling new synapses during transport (Wu et al., 2013), supporting the self-assembly hypothesis. Without prevention of aggregation, presynaptic terminals were formed at locations where no postsynaptic targets were present and no postsynaptic specializations were recruited. Furthermore, the ectopic formation of presynaptic terminals on non-neuronal cells can be induced when these cells express “synaptogenic” cell adhesion molecules (Scheiffele et al., 2000; Graf et al., 2004; Takahashi et al., 2012), indicating that a single trans-synaptic trigger is enough to start the presynaptic cascade to assemble functional release sites.

A dynamic control of the strength and number of presynaptic terminals in axons implies that control of transport, capture, and release of synaptic material are essential processes regulating the formation, maintenance, and strength of presynaptic terminals. In a dynamic axon with competing presynaptic terminals, a general change in synaptic strength is expected to also have an effect on ongoing synapse formation within the same axon and vice versa (Figure 1). For instance, enhancement of synaptic strength by increasing vesicle capture or anchoring at presynaptic terminals would also result in lower amounts of “free” vesicles in the axonal shaft thereby reducing the chance that new synapses are formed at nascent sites (Yamada et al., 2013). However, a similar increase in synaptic strength could also be achieved by increasing vesicle clustering (Wu et al., 2013); but such a mechanism would actually promote synapse formation (Figure 1). This illustrates that presynaptic plasticity and synapse formation should be considered mutually dependent processes when neighboring presynaptic terminals are sharing synaptic proteins and vesicles.
FIGURE 1 | Intrinsic factors: axon-wide increase in synaptic strength or release properties may also affect synapse formation. (A) Schematic drawing of an axon (gray) forming two mature and one nascent bouton on crossing dendrites (brown). We hypothesize that axon-dendrite crossings are marked at potential synaptic locations and contain guidepost adhesion molecules (Shen and Bargmann, 2003; Shen et al., 2004) and weak actin scaffold (Chia et al., 2012). (B) Increasing anchoring of vesicles at presynaptic terminals could decrease the pool of “free” vesicles, thereby reducing the probability of forming new synapses (Famula et al., 2013). (C) Increasing synaptic adhesion increases the number of synapses (Scheiffele et al., 2000; Takahashi et al., 2010; Kuzirian et al., 2013) and may also affect properties of existing synapses (Xropousou et al., 2009; Wittenmayer et al., 2009). (D) Overexpression of vesicle clustering factors induce changes in release properties, but may also promote synapse formation (Wentzel et al., 2013; Vu et al., 2013).

(Fu et al., 2012; Kuriu et al., 2012; Schuemann et al., 2013). This could represent a mechanism by which the synaptic activity of inhibitory synapses may regulate their own stability using GABA as a feedback signal.

New inhibitory synapses can form rapidly by the appearance of a bouton at locations where the inhibitory axon is in close contact with a dendrite, without the involvement of dendritic protrusions (Wierenga et al., 2008; Dobie and Craig, 2011). This finding indicates an important contrast with the formation of excitatory synapses, in which new synapses are usually formed by the outgrowth of dendritic protrusions. It also emphasizes the important role of crosstalk between neighboring boutons within inhibitory axons for synapse formation. Nascent inhibitory synapses recruit release machinery proteins and synaptic vesicles on the presynaptic side and scaffolding molecules on the postsynaptic side within a few hours (Wierenga et al., 2008; Dobie and Craig, 2011; Kuriu et al., 2012; Schuemann et al., 2013). Interestingly, simultaneous translocations of pre- and postsynaptic proteins over several micrometers were observed in cultures (Dobie and Craig, 2011; Kuriu et al., 2012) and it will be interesting to see if such movement of inhibitory synapses can also occur in slices or in vivo. Together, these observations reveal the dynamic nature of inhibitory axons and strongly suggest that the exchange of presynaptic material between existing and emerging boutons within the axonal shaft plays an essential role in the activity-dependent formation, maintenance and plasticity of inhibitory synapses.

In general, it is not clear if molecular differences exist between excitatory and inhibitory axons, other than the neurotransmitter that is produced and loaded into synaptic vesicles. For instance, the extent or regulation of dynamic exchange between boutons could be different in these two types of axons. The protein composition of the release machinery at excitatory and inhibitory presynaptic terminals is surprisingly similar, although small differences have been reported (Güttler et al., 2004; Kerr et al., 2008; Kaeser et al.,...
Role of Cell-Adhesion Molecules in Synaptic Plasticity

The observation that inhibitory boutons appear at specific, predefined locations along the axon (Babko et al., 2006; Wiernenga et al., 2008; Schumann et al., 2013), strongly suggests that something is marking these locations prior to bouton formation (Shen and Bargmann, 2003; Shen et al., 2004). Inhibitory axons are characterized by their tortuous and highly branched morphology and they are in close contact with many nearby dendrites. In fact, it was shown that inhibitory axons have substantially larger overlap with the dendritic trees of their potential target neurons than expected from chance, whereas this is not the case for excitatory axons (Stepanyants et al., 2004). This suggests that inhibitory axons possibly search for or are attracted by dendrites during development. Contacts between dendrites and inhibitory axons could be maintained by guidepost cell-adhesion molecules, even without inhibitory synapses present (Shen and Bargmann, 2003; Shen et al., 2004). Their presence would mark the location of a postsynaptic dendrite and therefore a potential spot for an inhibitory synapse.

Cell adhesion molecules are transmembrane proteins, which play a role in recognition of synaptic partners during the initial contact and provides specificity of synaptic connections (Meijers et al., 2007; Wojtowicz et al., 2007). In addition, cell adhesion molecules have been shown to play a role in the process of synaptic maturation following the initial contact, in the recruitment of synaptic proteins as well as in maintaining proper synaptic function throughout the lifetime of the synapse (Dalva et al., 2007; Krueger et al., 2012; Thalhammer and Cingolani, 2013). Cell adhesion molecules may also play an active role in the process of synapse disassembly (O’Connor et al., 2009). In conclusion, cell adhesion molecules are an essential part of synapses and synaptic plasticity most likely involves regulation of cell-adhesion molecules. Here we discuss how synaptic adhesion could be regulated in an activity-dependent manner (Figure 2) and we summarize current knowledge of cell adhesion molecules that are specific for inhibitory synapses.

Activity-dependent regulation of protein expression levels

Cell adhesion molecules often serve as recognition or identity signals to specify neuronal connectivity, and they can either promote or prevent synapse formation (Dalva et al., 2007; Bakalo and Diyatov, 2012). Neurons presumably express a combination of cell adhesion molecules and the specific combination (both the variety as well as relative levels) likely regulate the specificity and number of their synaptic contacts (Sassou-Poggetto et al., 2015). Different cell adhesion molecules can cooperate to promote synapse formation, but the opposite is also possible: cis-interactions between different cell adhesion molecules within a neuron can preclude trans-interactions with cell adhesion molecules on neighboring neurons and thereby inhibit or prevent synapse formation (Yaniguchi et al., 2007; Lee et al., 2013). Most importantly, the combination of cell adhesion molecules that a neuron expresses might not be static (Figure 2A). Indeed, for a number of cell adhesion molecules, activity-dependent changes in expression level have been observed (Pinkstaff et al., 1998; Cingolani et al., 2008; Pregno et al., 2013). Changes in expression level may be regulated by the activity level of the neuron itself or by extracellular signals from the environment, such as secreted factors from neighboring cells. For instance, TNFα, a glia-derived factor, which is secreted in an activity-dependent manner, regulates expression levels of β3 integrin and N-cadherin (Kubota et al., 2009; Thalhammer and Cingolani, 2013). In theory, local protein synthesis in the axon could also contribute to changes in expression level of cell adhesion proteins (Taylor et al., 2009; Zivraj et al., 2010), but direct experimental evidence is currently lacking.

Activity-dependent regulation of splicing

For many adhesion molecules different splice forms have been identified. Different splice variants often have different affinities for their binding partners and thereby differentially affect synapse formation or plasticity (Müller and Sudhof, 1998; Hattori et al., 2008; Aoto et al., 2013). For instance, alternative splicing of neuroligins and neurexins affects specificity for excitatory or inhibitory synapses (Chih et al., 2006; Graf et al., 2006). Therefore, alternative splicing might be a way to enlarge the available set of adhesion molecules within a neuron and to enhance the range of molecular specificity of synaptic connections.

Activity-dependent regulation of cell surface distribution

To have their effect specifically at synapses, cell adhesion molecules should be enriched at synaptic membranes. There is experimental evidence that the distribution of cell adhesion molecules over the cellular surface can be regulated (Tai et al., 2007; Pu and Huang, 2010). For instance, while neuroligin1 shows a diffuse pattern along the axonal membrane in inhibitory axons, neuroligin1 is specifically enriched in the membrane at presynaptic terminals. Anchoring of neuroligin1 at presynaptic boutons is regulated by presynaptic GABA release and subsequent GABAR receptor activation (Pu and Huang, 2010). Further investigation is needed to understand how such local changes are regulated by protein modifications or localized endo- or exocytosis and how they affect local synapse formation (Figure 2B).

Activity-dependent regulation of protein cleavage

Synaptic adhesion molecules execute their function by binding to a trans-synaptic partner at their extracellular domain. In some cases, the extracellular domain can be cleaved, with strong effects on local synaptic adhesion. For instance, activity-dependent cleavage of agrin was shown to mediate the formation of dendritic filopodia (Frischknecht et al., 2008; Matsumoto-Miyai et al., 2009) and cleavage of neurotigin-1 was shown to regulate synaptic strength of individual excitatory synapses in an activity-dependent manner (Pirotto et al., 2012; Suzuki et al., 2012). Many other adhesion molecules have known cleavage sites and it will be interesting to...
Frias and Wierenga: Activity-dependent adaptations in inhibitory axons

FIGURE 2 | Extrinsic factors: possible activity-dependent changes in cell adhesion molecules. Neural activity may induce a number of changes in adhesion molecules. Neural activity may induce a number of changes in adhesion molecules. (A) The expression level of cell adhesion molecules (Cingolani et al., 2008), or their splice variants (Chih et al., 2006; Graf et al., 2006), can be regulated in an activity-dependent manner, potentially affecting synapse formation, and synapse specificity. (B) Activity-dependent redistribution of adhesion molecules over the axonal membrane can facilitate synapse formation (Fu and Huang, 2010). (C) Activity-dependent cleavage of synaptic adhesion molecules could induce synapse disassembly or plasticity (Matsumoto-Miyai et al., 2009; O’Connor et al., 2009; Peixoto et al., 2012; Suzuki et al., 2012). (D) Activity-dependent changes in binding properties of adhesion molecules (Kim et al., 2011a,b) could affect synaptic properties. In addition, the intracellular signaling pathways (not depicted) may also be regulated in an activity-dependent manner, affecting all of these processes.

see whether this mechanism for activity-dependent regulation is also present at inhibitory synapses (Figure 2C).

Activity-dependent regulation of binding

For some cell adhesion molecules activity can regulate the binding properties of the proteins. For instance, interactions between cadherins are affected by extracellular calcium concentrations (Kim et al., 2011b) and integrins can switch between an active or inactive configuration by extra- or intracellular factors (Hynes, 2002). In this way, synaptic adhesion can be modulated in an activity-dependent manner without a change in synaptic composition (Figure 2D).

Activity-dependent regulation of interacting proteins

Upon binding to other cell adhesion molecules, cell adhesion molecules cluster at the cell membrane and signal through interactions with many intracellular proteins, whose levels may be regulated in an activity-dependent manner. Ultimately, signaling through synaptic adhesion molecules in the presynaptic terminal result in direct or indirect alterations of the actin cytoskeleton and vesicle recycling, affecting the number, function, and/or stability of synapses (Zhang et al., 2001; Tabuchi et al., 2002; Swiercz et al., 2008; Sun and Banaji, 2011; Takahashi and Craig, 2013). It will be crucial to identify the precise molecular pathways that are involved to fully understand how activity-dependent changes at inhibitory synapses occur.

CELL ADHESION MOLECULES AT INHIBITORY SYNAPSES

The list of known synaptic adhesion molecules is rapidly growing, but our knowledge on the precise function of most of these proteins remains incomplete. Interestingly, several synaptic cell-adhesion molecules have been reported to be specifically involved in inhibitory, and not excitatory, synapses. These include sema4D (Paradis et al., 2007; Kuzirian et al., 2013), slitrk3 (Takahashi et al., 2012), and neuroligin-2 (Vatogoeux et al., 2004; Patrizi et al., 2008; Poulopoulos et al., 2009), and it is to be expected that new discoveries will be made in the near future. Here we briefly summarize what is known on the role of various cell adhesion molecules at inhibitory synapses.
inhibitory synapses were equally affected by the loss of slitrk3. In the hippocampal CA1 region, specifically inhibitory synapses in the middle of the pyramidal layer were lost (Takahashi et al., 2012). It will be interesting to examine whether specificity of inhibitory synapses correlates with different subsets of pre- or post synaptic neurons types or function.

Members of the closely related subfamily of leucine-rich transmembrane proteins (LRRTMs) have also been implicated in excitatory synapse formation and plasticity (Linhoff et al., 2009; Ko et al., 2011; de Wit et al., 2012; Siddiqi et al., 2013), but so far no LRRTM that is specific for inhibitory synapses has been identified.

SEMAPHORIN-4D

Semaphorins are well-known as (repulsive) axon guidance molecules acting through rearrangements of the cytoskeleton in the growth cone. They play an important role in the early development of the brain (Pasterkamp, 2012). Some semaphorins are also expressed later in development and have been implicated in the formation and plasticity of neuronal connections (Sahay et al., 2005; Morita et al., 2006; Paradis et al., 2007; O’Connor et al., 2009; Ding et al., 2012; Minamoto and Shen, 2013). Knocking down the membrane-bound semaphorin Sema4D was shown to specifically reduce the number of inhibitory synapses, while excitatory synapses were not affected (Paradis et al., 2007). Furthermore, application of soluble Sema4D was able to increase the density of GABAergic synapses within 30 min in rat hippocampal neurons (Kuzirian et al., 2013). The effect of Sema4D on inhibitory synapses depends on the plexinB1 receptor (Kuzirian et al., 2013). It was earlier shown that activation of plexinB1 by Sema4D can induce opposing responses on the cytoskeleton, depending on different interacting proteins (Boucle et al., 2004; Swiercz et al., 2008; Tasaka et al., 2012), but the intracellular pathway used for inhibitory synapse formation is not known. Sema4D is a membrane-bound protein, but the protein can also be cleaved (Boucle et al., 2007; Zhu et al., 2007). It was recently shown that extracellular cleavage of Sema4D occurs in neurons, but does not interfere with its synaptogenic properties at inhibitory synapses (Raisi et al., 2013).

OTHER CELL ADHESION MOLECULES

There are many other cell adhesion molecule proteins and with continued research on inhibitory synapses, it is expected that more of them will be found to play a role at inhibitory synapses. Here we just mention a few that have been reported at inhibitory synapses.

Neural cell adhesion molecule (NCAM) has been reported to be important for the maturation of perisomatic inhibitory synapses in the cortex (Pillai-Nair et al., 2005; Brenneman and Maness, 2008; Chattopadhyaya et al., 2013). NCAM acts through activation of Fyn kinases and possibly recruits other adhesion molecules (Chattopadhyaya et al., 2013). Interestingly, it was recently reported that also members of the ephrin family, ephrinA3 and EphA5, can affect inhibitory synapses and they require NCAM for their action (Brenneman et al., 2013). In vivo, NCAM is polysialylated (NCAM-PSA) in an experience-dependent manner.
and developmental downregulation of NCAM-PSA was shown to coordinate maturation of perisomatic inhibitory synapses in the visual cortex (Di Cristo et al., 2007).

Several components of the dystrophin-associated glycoprotein complex (DGC), such as dystroglycan, dystrophin, and dystrobrevin, are also specifically located at a subset of inhibitory synapses (Kaufeld et al., 1999; Brüning et al., 2002; Levi et al., 2002; Grady et al., 2006), but the function of this complex at inhibitory synapses is not well understood. The DGC could be linked to postsynaptic neurophin-2 via the scaffolding protein S-SCAM (Sumita et al., 2007) and to presynaptic neuromodulins (Sugita, 2001). Interestingly, a synaptic guanine exchange factor SynArtGIF has been identified that specifically co-localizes at inhibitory synapses, which could be involved in the downstream signaling pathway of the DGC (Fukaya et al., 2011), but its exact function remains to be determined.

Integrins are receptors for extracellular matrix proteins, soluble factors, and counter-receptors on adjacent cells and they have an intracellular link to actin filaments via adaptor proteins (Hynes, 2002; Harburger and Calderwood, 2009). Integrins have been implicated in activity-dependent synaptic changes (Chaix and Westbrook, 2001; Chan et al., 2003) and in homeostatic scaling of excitatory synapses (Cingolani et al., 2008). At glycnergic inhibitory synapses in the spinal cord, postsynaptic β1 and β3 integrins have been reported to regulate glycine receptor stabilization at the postsynaptic membrane, with the two integrins acting in opposing directions (Charrier et al., 2010).

Finally, the cell adhesion molecule neurolaxin has been shown to regulate the formation of a specific subset of inhibitory synapses on the axon initial segment of principal neurons (Ange et al., 2004; Buskard et al., 2007; Kruel et al., 2011).

ROLE OF SECRETED FACTORS AND RETROGRADE MESSENGERS AT INHIBITORY SYNAPSES

Above we have described how cell adhesion molecules may provide signals to inhibitory axons from direct cell–cell contacts. However, inhibitory synapses may also be affected by signals from more distal origin. Nearby dendrites or surrounding cells can secrete trophic (or anti-trophic) factors, which may affect inhibitory synapse function and/or formation. Indeed, retrograde signals from the postsynaptic dendrite, such as endocannabinoids, nitric oxide (NO) or brain-derived neurotrophic factor (BDNF), or glutamate that targets spillover from nearby excitatory synapses are known to regulate synaptic release at inhibitory synapses during many forms of short-term and long-term plasticity (Heifets and Castillo, 2009; Regehr et al., 2009; Castello et al., 2011). Here we discuss secreted factors that have been linked to the formation of inhibitory synapses and that might play a role in activity-dependent regulation of the number of presynaptic terminals made by inhibitory axons.

BRAIN-DErIVED NEUROTROPHIC FACTOR

Brain-derived neurotrophic factor (BDNF) is a secreted neurotrophic that has been shown in many different preparations to promote the formation and maturation of inhibitory synapses by presynaptic modifications (Vicario-Abejón et al., 1998; Huang et al., 1999; Marty et al., 2000; Yamada et al., 2002; Gottmann et al., 2009). Only excitatory neurons produce BDNF (Gottmann et al., 2009; Park and Poo, 2013) and BDNF is released from principal neurons in an activity-dependent manner (Kolanow et al., 2007; Kuczewski et al., 2008; Matuda et al., 2009), which makes BDNF an attractive candidate molecule to regulate activity-dependent inhibitory synapse formation (Liu et al., 2007). Interestingly, the availability of postsynaptic BDNF signaling in inhibitory neurons was shown to affect the number and strength of inhibitory synapses specifically onto the affected neurons (Obha et al., 2005; Kobara et al., 2007; Peng et al., 2010). These cell-autonomous effects indicate the potential for BDNF in mediating changes in inhibitory synapses with high synaptic specificity. In excitatory axons, BDNF was shown to reduce the anchoring of synaptic vesicles at presynaptic terminals and thereby increase the exchange of vesicles between boutons (Ranji et al., 2006). It is currently not known if BDNF has a similar effect in inhibitory axons.

NEUREGULIN1

Neuregulin1 is a neurotrophic factor, which exists in various membrane-bound and diffusible isoforms. Mutations (both loss-of-function and gain-of-function) in neuregulin1 have been linked to schizophrenia (Mei and Xiong, 2008). The main receptor for neuregulin1, ErbB4, is specifically expressed in interneurons (Vulikhorst et al., 2009; Fazzari et al., 2010) and is located at postsynaptic densities of excitatory synapses in interneuron dendrites as well as at inhibitory axon terminals. An important role for neuregulin1 is the regulation of excitatory input onto interneurons through postsynaptic ErbB4 (Fazzari et al., 2010; Wen et al., 2010; Ting et al., 2011). Presynaptic ErbB4 can enhance GABA release from inhibitory synapses (Woo et al., 2007; Fazzari et al., 2010) and may affect the number of synapses made by inhibitory axons (DelPino et al., 2013). In addition to ErbB4, neuregulin1 isoforms can also activate other receptors resulting in downregulation of postsynaptic GABAA receptors (Yin et al., 2013). This suggests that neuregulin1 has multiple actions on inhibitory synapses depending on the isoform and activated receptors.

FGF7

Fibroblast growth factors (FGFs) are secreted signaling glycoproteins, which exert their effect by binding to FGF receptor tyrosine kinases (FGFR). In the brain, FGF signaling is important for several developmental processes, including patterning of different brain structures and neurogenesis (Dono, 2003; Reuss and von Bohlen and Halbach, 2005). In addition, FGFs have been implicated as target-derived presynaptic organizers (Umemori et al., 2004). FGF7 is of particular interest, as it localizes specifically to inhibitory synapses in the hippocampal CA3 region, where it is secreted from the postsynaptic membrane and organizes presynaptic release properties (Izuruchi et al., 2000). FGF receptor have been shown to directly interact with adenosine A2A receptors (Flajolet et al., 2008), which are important for GABA release (Cunha and Ribeiro, 2010) as well as for GABA uptake from the synaptic cleft (Cristino-Ferreira et al., 2009). In this way, FGF and A2A receptors may act together to regulate GABAergic transmission in the hippocampus.
FACTORS FROM GLIA CELLS

Studies with neuronal and astrocyte co-cultures and astrocyte-conditioned medium have shown that astrocyte-released factors are crucial for synaptic formation and plasticity (Elmariah et al., 2005; Christopherson et al., 2005a; Hughes et al., 2010; Crawford et al., 2012). For instance, thrombospondins, oligomeric proteins of the extracellular matrix produced by astrocytes (Christopherson et al., 2005b; Eroglu et al., 2009) are involved in the formation of glutamatergic synapses and the pro-inflammatory cytokine TNF-α, coming from glia, (Stellwagen and Malenka, 2006) plays a role in homeostatic plasticity of these synapses. In addition, a different and so far unidentified, protein is secreted by astrocytes, which has been found to increase the density of inhibitory synapses in cultured neurons (Elmariah et al., 2005; Hughes et al., 2010).

GABA

A special secreted factor is the inhibitory neurotransmitter GABA itself. It is well-established that synaptic formation does not depend on neurotransmitter release (Verhage, 2000; Harms and Craig, 2005; Schubert et al., 2015). However, the development and maturation of inhibitory synapses are influenced by their neurotransmitter GABA (Li et al., 2005; Huang and Schoffel, 2008; Huang, 2009; Lau and Murthy, 2012). It was shown that individual axons of parvalbumin-positive basket cells are sensitive to their own GABA release (Chattopadhyaya et al., 2007; Wu et al., 2012) and that the amount of GABA release per vesicle can be regulated by activity (Hartman et al., 2006; Lau and Murthy, 2012). Inhibitory boutons are less dynamic in axons in which GABA release is impaired (Wu et al., 2012) or when GABA receptors are blocked (Schiemann et al., 2013), strongly suggesting that GABA is used as an important activity sensor for regulating activity-dependent presynaptic changes at inhibitory synapses. Both GABAA and GABAB receptors have been implicated in mediating this regulation (Fu et al., 2012; Schuemann et al., 2013), but the precise molecular mechanisms remain unknown.

OTHER FACTORS

In addition to cell adhesion molecules and secreted factors, there are many other factors that may affect activity-dependent plasticity of inhibitory axons. For instance, it is well-established that extracellular matrix molecules can play a role in the development and maturation of synapses in the central nervous system and specific interactions between cell adhesion molecules and the extracellular matrix have been revealed (Di Cristo et al., 2007; de Wit et al., 2013; Siddiqui et al., 2013). There are a few studies in which the absence or overexpression of extracellular matrix proteins affected inhibitory synapses specifically (Saghatelyan et al., 2001; Nikonenko et al., 2003; Brenneke et al., 2004; Pavlov et al., 2006; Su et al., 2010), but the underlying mechanisms remain largely unknown.

And finally, while it is clear that presynaptic components are continuously shared and exchanged between inhibitory boutons along the axons, it is not clear how exactly these proteins are dispersed along the axonal shaft. Presumably sharing occurs through passive diffusion of presynaptic proteins through the axonal shaft, but intracellular transport of synaptic cargo could also play a role. Axons contain extensive microtubule and actin networks and there are various motor proteins that deliver and ship transport vesicles, potentially affecting the amount of proteins available for exchange and synaptic formation at boutons. For instance, it was shown that intra-axonal movement of mitochondria is enhanced when activity is blocked (Goldstein et al., 2008; Cai and Sheng, 2009; Obashi and Okabe, 2013), but it is not clear if this is due to enhanced motor protein activity or decreased anchoring at synapses. Further research on
the possible activity-dependent regulation of intracellular transport of synaptic cargo (Guillaud et al., 2008; Maas et al., 2009; Mackall et al., 2009) will be needed to address this issue in the future.

CONCLUSION

Research on activity-dependent adaptations in inhibitory axons continues to generate novel insight in the cellular processes of synapse formation and plasticity. Many open questions remain to be answered in the future and we listed a few of these in a small scheme (Figure 3). In this review we have painted a picture of the inhibitory axon as a dynamic structure that can quickly adjust to a changing environment, by responding to local signals from post synaptic cells via adhesion molecules and to global signals from the local neuronal network. A highly dynamic inhibitory system might serve to quickly respond to changes to allow circuit rearrangements by excitatory connections. For a healthy brain changes at inhibitory and excitatory synapses need to be well-coordinated at all times as subtle defects in this coordination can cause defects in circuitry and may underlie psychiatric disorders. This means that the interplay between plasticity of excitatory and inhibitory synapses is an important factor for the stability of neuronal circuits. The precise response of the inhibitory axon will be determined by the combination of internal and external factors, such as the availability of synaptic proteins within the axon, or the combination of the extracellular factors and cell adhesion molecules that are present at the membrane. It will be an important challenge for future research to unravel the precise molecular and cellular mechanisms and to further uncover pathways that affect synapse formation and plasticity of inhibitory synapses.

ACKNOWLEDGMENTS

The authors like to thank Anne Schuermann, Tara Keck, and Casper Hoogeman for careful reading of the manuscript and helpful comments. Our research was supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n 289581 (CFE), and a Marie Curie Reintegration Grant 256284 and Dutch NWO-VIDI grant (CJW).

REFERENCES

Ango, F., Gozlan, E., Alonso-Nanclares, L., Anderson, S. A., Barrionuevo, G., Benavides-Aoto, J., Martinelli, D. C., Malenka, R. C., Tabuchi, K., and Südhof, T. C. (2013). Ango, F ., di Cristo, G., Higashiyama, H., Bennett, V ., Wu, P ., and Huang, Z. J. (2013). Molecular and cellular mechanisms and to further uncover path-
Chubykin, A. A., Atasoy, D., Etherton, M. R., Brose, N., Kavalali, E. T., Christopherson, K. S., Ullian, E. M., Stokes, C. C. A., Mullowney, C. E., Hell, J., Christopherson, K. S., Stokes, C. C. A., Barres, B. A., Ullian, E. M., Cristóvão-Ferreira, S., Vaz, S. H., Ribeiro, J. A, and Sebastião, A. M. (2009). Integrin molecular basis for the role of inhibition in facilitating adult brain plasticity. Neuropsychopharmacology 34, 1575–1590. doi: 10.1038/npp.2009.93

Elmariah, S. B., Oh, E. J., Hughes, E. G., and Balice-Gordon, R. J. (2005). Activity-dependent presynaptic AMPA receptor recruitment and synaptic AMPA receptor expression. Neuron 46, 1376–1380. doi: 10.1016/j.neuron.2005.07.005

Friedman, H. V., Bresler, T., Garner, C. C., and Ziv, N. E. (2000). Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27, 44–57. doi: 10.1016/S0896-6273(00)00017-9

Crawford, D. C., Jung, X., Taylor, A., and Memmert, S. (2012). Activity-dependent thrombospondin modules modulate the development of hippocampal pyramidal plasticity in vitro. J. Neurosci. 32, 13130–13150. doi: 10.1523/JNEUROSCI.2605-2009.2009.12.03.Dr. G., Christopherson, K. S., Ullian, E. M., Hell, J. W., Agah, A. et al. (2005a). Thrombospondin isoforms associate with synapses at active zones and regulate synapse formation. J. Cell Biol. 169, 431–445. doi: 10.1083/jcb.200504.12.020

Chubb, A. P., Papatheodorou, E., Zacharewski, T., and Shi, C. (2014). Reassessing the role of NMDA receptors in LTP. Front. Cell Neurosci. 8, 530. doi: 10.3389/fncel.2014.00530

Chiba, K., Gellman, L. J., and Schepfle, P. (2006). Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Nat. Neurosci. 9, 171–179. doi: 10.1038/nn1640

Cingolani, L. A., Thalhammer, A., Yu, L. M., Cádiz, M., Ramos, T., Colcos, M. A., et al. (2008). Activity-dependent regulation of synaptic AMPA receptor composition and abundance by brain intactness. Neuron 58, 749–762. doi: 10.1016/j.neuron.2008.04.011

Crosby, J. R., Trottier, L. M., and Shuster, D. (2012). Homeostatic plasticity studied using in vivo hippocampal activity-blockade: synaptic scaling, intrinsic plasticity and age-dependence. PLoS ONE 7:e30070

Cunha, R. A, and Ribeiro, J. A. (2000). Purinergic modulation of [(3)H]GABA release from rat hippocampal nerve terminals. Neuropharmacology 39, 1176–1187. doi: 10.1016/S0028-3908(99)00237-3

Dalva, M. B., McClelland, A. C., and Kayser, M. S. (2007). Activity-dependent regulation of synaptic AMPA receptor localization and use dependence of presynaptic tenacity. J. Neurosci. 27, 1482–1499. doi: 10.1523/JNEUROSCI.2216-06.2006

Ding, J. B., Oh, W.-J., Sabatini, B. L., and Gu, C. (2012). Somatic >He/Ne-M1 signaling controls presynaptic VT and transmitter release. J. Neurosci. 33, 10483–10493. doi: 10.1523/JNEUROSCI.2023-12.2012

Donato, A. F., and Graig, A. M. (2011). Inhibitory synapse dynamics: coordinated presynaptic and postsynaptic mobility and the major contribution of recycled vesicles to new synapse formation. J. Neurosci. 31, 215–223. doi: 10.1523/JNEUROSCI.4393-10.2011

Dow, D. H., Lee, H., and Ganter, N. (2000). constituutive sharing of recycling synaptic vesicles between pyramidal neurons. Nat. Neurosci. 3, 315–321. doi: 10.1038/7640

D’Gaño, L., García-Frigola, C., Dehorter, N., Berrotae-Marin, J. R., Alvarez-Sabido, E., Martínez de la Iglesia, M., et al. (2013). ETPb deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Nat. Neurosci. 79, 1152–1160. doi: 10.1038/nn.3558

Dong, J., R. H., Oh, W. J., and Sabatini, B. L. (2012). Somatodendritic Me-Plaxin- "fncel-07-00219" — 2013/1 1/19 — 20:42 — page 1 1 — #1 1 — 11

Dunwiddie, T. V. (2009). Glutamate receptors in the adult brain: metabotropic and ionotropic receptors. Annu. Rev. Neurosci. 32, 15–43. doi: 10.1146/annurev.neuro.051508.135340

Dunwiddie, T. V., and Alger, B. E. (1999). Excitatory amino acid receptors. In excitatory amino acid receptors, (eds. J. C. Roberts and D. R. Surprenant) (New York, NY: Marcel Dekker), 99–121.

Duals, M. B., McClelland, A. C., and Kayser, M. S. (2007). Cell adhesion molecules: signaling functions at the synapse. Nat. Rev. Neurosci. 8, 286–300. doi: 10.1038/nrn2075

Darcy, K. J., Staras, K., Collinson, L. M., and Goda, Y. (2006). Constitutive sharing of recycling synaptic vesicles between pyramidal neurons. Nat. Neurosci. 9, 315–321. doi: 10.1038/nrn1640

D’Gaño, L., García-Frigola, C., Dehorter, N., Berrotae-Marin, J. R., Alvarez-Sabido, E., Martínez de la Iglesia, M., et al. (2013). ETPb deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Nat. Neurosci. 79, 1152–1160. doi: 10.1038/nn.3558

Dong, J., R. H., Oh, W. J., and Sabatini, B. L. (2012). Somatodendritic Me-Plaxin- "fncel-07-00219" — 2013/1 1/19 — 20:42 — page 1 1 — #1 1 — 11

Dunwiddie, T. V., and Alger, B. E. (1999). Excitatory amino acid receptors. In excitatory amino acid receptors, (eds. J. C. Roberts and D. R. Surprenant) (New York, NY: Marcel Dekker), 99–121.
Huang, Z. J. (2009). Activity-dependent development of inhibitory synapses and inhibition activity in inhibitory synapse development. Curr. Opin. Neurobiol. 18, 75–85. doi: 10.1016/j.conb.2008.05.008

Hughes, E. G., Elmartih, S. B., and Baliki-Gordon, R. J. (2011). Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptic density. J. Cell. Neurosci. 43, 134e–140. doi:10.1111/j.1746-8171.2009.00104.x

Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 111, 675–687. doi:10.1016/S0092-8674(01)00599-7

Jilollka, P., Hoon, M., Papadopoulos, T., Vlahos, A., Winkler, P., and Stührenberg, A., et al. (2011). Increased dentate gyrus excitability in neocortex-dependent mice in vivo. Cereb. Cortex 21, 557–567. doi:10.1093/cercor/bht130

Jung, X., Gao, L., Xia, J., Bermetto, R. L., and Zhu, J. J. (2015). The organisation of two new cortical innervation patterns. Natur. Neurosci. 18, 210–220. doi:10.1038/nrn3935

Kim, Y., and Garner, C. C. (2008). Molecular mechanisms of presynaptic differentiation. Annu. Rev. Cell Dev. Biol. 24, 237–262. doi: 10.1146/annurev.cellbio.24.110707.175250

Kimber, A. E., Song, L., Chávez, A. E., and Stührenberg, T. C. (2009). ELKS2alpha/CAST delta selectively increases neurotransmitter release at inhibitory synapses. Eur. J. Neurosci. 29, 1227–1239. doi:10.1111/j.1460-9568.2009.06198.x

Kang, Y., Zhang, X., Dobbs, F., Wu, H., and Craig, A. M. (2008). Induction of GABAergic postsynaptic differentiation by alpha-neurexins. J. Biol. Chem. 283, 2325–2334. doi:10.1074/jbc.M707720200

Karnam, U. R., and Buetow, O. V. (2006). Different forms of heterogeneous plasticity are engaged with distinct temporal profiles. Eur. J. Neurosci. 23, 1575–1586. doi:10.1111/j.1460-9568.2006.05492.x

Koch, Y., Schmauck, V., Jacobson, B. I. E., Wierenga, C. J. J., Enslin, U. T. T., Benhoffner, E., et al. (2011). Less of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex. Natur. Neurosci. 14, 808–812. doi:10.1038/nn.2934

Kerr, A. M., Rosinger, E., and Jonas, P. (2008). Differential dependence of plastic transmitter release on synaptic strength. J. Neurosci. 28, 12527–12537. doi:10.1523/JNEUROSCI.1253-08.2008

Kim, J., Ye, F., and Ginsberg, M. H. (2011a). Regulation of integrin activation. Annu. Rev. Cell Dev. Biol. 27, 315–345. doi:10.1146/annurev-cellbio-100109-094101

Kim, S. H., and Ryan, T. A. (2013). Balance of calcineurin A and CDK5 activity sets release probability at nerve terminals. J. Neurosci. 33, 5987–6001. doi:10.1523/JNEUROSCI.1084-13.2013

Kim, S. H., and Ryan, T. A. (2010). CDK5 activity sets release probability at nerve terminals. Nature 463, 797–806. doi:10.1038/nature08739

Ko, J., Solvis-Larina, G. L., Pizzillo, M. N., Malenka, R. C., and Schuman, E. M. (2011). Calcium-dependent dynamics of calcium in cell-surface functions. Nat. Rev. Neurosci. 12, 785–797. doi:10.1038/nrn3019

Koehler, K., Yasuda, H., Huang, Y., Adachi, N., Sudo, K., and Tsutsumi, T. (2007). A local reduction in cortical GABAergic synapsis after a loss of endogenous brain-

Huang, J., Kirkwood, A., Pinzari, T., Pencarri, V., Morales, B., Burz, M. F., et al. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 759–773. doi:10.1016/S0092-8674(00)81398-5

Huang, Z. J., and Scheiffele, P. (2008). GABA and neurotransmitter signaling: linking synaptic activity and adhesion in inhibitory synapse development. Curr. Opin. Neurobiol. 18, 210–220. doi:10.1016/j.conb.2008.05.008

Hughes, E. G., Elmartih, S. B., and Baliki-Gordon, R. J. (2011). Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptic density. J. Cell. Neurosci. 43, 134e–140. doi:10.1111/j.1746-8171.2009.00104.x

Kobayashi, T., and Iversen, S. L. (2001). Local reduction in cortical GABAergic synapsis after a loss of endogenous brain-

Kilman, V., van Rossum, M. C., and Turrigiano, G. G. (2002). Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GluA1 subunits in developing layer 5 pyramidal neurons. J. Neurosci. 22, 1258–1267. doi:10.1523/JNEUROSCI.0621-01.2001

Kim, H., and Alger, B. E. (2010). Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory inputs. Nature 452, 592–600. doi:10.1038/nature06971

Kim, S. H., and Ryan, T. A. (2011). CDK5 serves as a major control point in neurotransmitter release. Nature 475, 797–806. doi:10.1038/nature10035

Kim, S. H., and Ryan, T. A. (2013). Balance of calcineurin A and CDK5 activity sets release probability at nerve terminals. J. Neurosci. 33, 5987–6001. doi:10.1523/JNEUROSCI.1084-13.2013

Kim, J., and Alger, B. E. (2010). Sensory input changes cause rapid structural changes of inhibitory neurons in adult mouse visual cortex. Nature 463, 797–806. doi:10.1038/nature08739

Kimken, J., Mastrocola, M., Zuidag, R. A., Bornhusen, B., Schub, M. C., and Fuchs, J. (1999). Altered synaptic clustering of GABA receptors in mice lacking dystrophin (mdx mice). Eur. J. Neurosci. 21, 3487–3492. doi:10.1046/j.1460-9568.1999.00887.x

Ko, J., Solvis-Larina, G. L., Pizzillo, M. N., Malenka, R. C., and Schuman, E. M. (2011). Calcium-dependent dynamics of calcium in cell-surface functions. Nat. Rev. Neurosci. 12, 785–797. doi:10.1038/nrn3019

Koehler, K., Yasuda, H., Huang, Y., Adachi, N., Sudo, K., and Tsutsumi, T. (2007). A local reduction in cortical GABAergic synapsis after a loss of endogenous brain-

Huang, Z. J., Kirkwood, A., Pinzari, T., Pencarri, V., Morales, B., Burz, M. F., et al. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 759–773. doi:10.1016/S0092-8674(00)81398-5

Huang, Z. J., and Scheiffele, P. (2008). GABA and neurotransmitter signaling: linking synaptic activity and adhesion in inhibitory synapse development. Curr. Opin. Neurobiol. 18, 75–85. doi: 10.1016/j.conb.2008.05.008

Hughes, E. G., Elmartih, S. B., and Baliki-Gordon, R. J. (2011). Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptic density. J. Cell. Neurosci. 43, 134e–140. doi:10.1111/j.1746-8171.2009.00104.x

Kobayashi, T., and Iversen, S. L. (2001). Local reduction in cortical GABAergic synapsis after a loss of endogenous brain-

Huang, Z. J., Kirkwood, A., Pinzari, T., Pencarri, V., Morales, B., Burz, M. F., et al. (1999). BDNF regulates the maturation of inhibition and the critical
Yin, D.-M., Chen, Y.-J., Lu, Y.-S., Bous, J. C., Sathya, A., Shen, C., et al. (2015). Reversal of behavioral deficits and synaptic dysfunction in mice overexpressing neuregulin 1. Nature 79, 644–657. doi: 10.1038/nature15050

Yoshida, T., Yoshikawa, T., Lee, S.-J., Yasumura, M., Uemura, T., Chen, X., et al. (2012). Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule. J. Neurosci. 32, 2588–2600. doi: 10.1523/JNEUROSCI.4407-11.2012

Yoshida, T., Tanimoto, M., Uemura, T., Lee, S.-J., Taguchi, K., et al. (2013). IL-1 receptor accessory protein-like 1 associated with mental retardation and autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase δ. J. Neurosci. 33, 13485–13499. doi: 10.1523/JNEUROSCI.2136-11.2011

Zander, J.-F., Münster-Wandowski, A., Brunk, I., Pahner, I., Gómez-Lira, G., Heinemann, U., et al. (2010). Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses. J. Neurosci. 30, 7634–7645. doi: 10.1523/JNEUROSCI.0141-10.2010

Zhao, C., Dreosti, E., and Lagnado, L. (2011). Homeostatic synaptic plasticity through changes in presynaptic calcium influx. J. Neurosci. 31, 7492–7496. doi: 10.1523/JNEUROSCI.6636-10.2011

Zhu, L., Bergmann, W., Wu, J., Jiang, H., Stalker, T. J., Cislak, M., et al. (2007). Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proc. Natl. Acad. Sci. U.S.A. 104, 1621–1626. doi: 10.1073/pnas.0606344104

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 27 September 2013; accepted: 30 October 2013; published online: 21 November 2013.

Citation: Frias CP and Wierenga CJ (2013) Activity-dependent adaptations in inhibitory axons. Front. Cell. Neurosci. 7:219. doi: 10.3389/fncel.2013.00219

This article was submitted to the journal Frontiers in Cellular Neuroscience.

Copyright © 2013 Frias and Wierenga. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.