The efficacy of bypassing agents in surgery of hemophilia patients with inhibitors

Hee Young Ju, Hye Lim Jang, Young Shil Park

Department of Pediatrics, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, Korea

Background
Inhibitory antibodies to factor VIII (FVIII) or IX (FIX) are important issues when managing patients with hemophilia A or B. Advances in bypassing agents such as recombinant activated FVII (rFVIIa) and activated prothrombin complex concentrates (APCC) have enabled the aggressive management of hemophilia with inhibitors during emergency or elective surgery. This study provides an updated evaluation of the safety and effectiveness of bypassing agents in treating perioperative bleeding.

Methods
We reviewed the records of hemophilia patients with inhibitors who underwent surgery between May 2008 and July 2014 using bypassing agents or high-dose FVIII concentrates at a single center.

Results
In total, 36 surgeries (24 orthopedic, 12 other) were conducted in 18 hemophilia patients with inhibitors. The median inhibitor titer at surgery was 14 (range, 0.7–1,900) Bethesda units. Most patients had high-responding inhibitors. In total, 25 patients received APCC, 9 with rFVIIa initially. In most cases, bleeding stopped or was well controlled; however, bleeding in 6 patients was controlled using sequential bypassing therapy. Hemostatic efficacy of bypassing agents in various surgeries, based on the final patient outcome, was 94.4% (34/36). Among 5 emergency surgeries, 2 deaths occurred.

Conclusion
Good control of hemostasis can be achieved using bypassing agents in hemophilia patients with inhibitors who are undergoing surgery. Thorough planning is needed before elective surgery and more active and aggressive management may be needed for emergency surgery. Use of bypassing agents can facilitate safe and successful surgeries in hemophilia patients with inhibitors.

Key Words
Hemophilia, Inhibitor, Bypassing agent, Surgery
and prevent bleeding during the perioperative period in hemophilia patients with inhibitors [1, 2, 6-8]. Two types of bypassing agents are currently available in the clinical setting: activated prothrombin complex concentrates (APCC) (FEIBA, Baxter, Vienna, Austria) and recombinant activated factor VII (rFVIIa) (NovoSeven; Novo Nordisk, Bagsvaerd, Denmark). A few clinical studies have shown that bypassing agents can be safe, effective treatments to manage bleeding before and after surgery and to prevent bleeding in hemophilia patients with inhibitors [1, 2, 6, 7]. However, the number of reported cases involving emergency conditions and elective surgeries remains limited, and a consensus regarding the efficacy and safety of bypassing agents is still needed.

Given this background, we conducted this single-center, retrospective study to assess the hemostatic efficacy and safety of bypassing agents in hemophilia patients with inhibitors undergoing elective or emergency surgeries. The aim of this study was to identify the possibility of surgical intervention in hemophilia patients with inhibitors by using bypassing agents while under the care of hematologists.

MATERIALS AND METHODS

Study patients and setting

Between May 2008 and July 2014, 18 patients underwent 36 surgeries at our medical institution. Hemophilia patients with inhibitors who underwent surgery and were hospitalized for hemostatic therapy were included. Inhibitors were classified into low- or high-responding inhibitors based on a patient’s peak inhibitor titer after repeated FVIII exposure. An antibody titer persistently below 5 Bethesda units (BU) despite repeated challenges with FVIII was considered a low-responding inhibitor. A high-responding inhibitor was defined as a titer greater than 5 BU at any time [9]. This study was approved by the Institutional Review Board of our medical institution (approval No. 2015-01-028).

Treatment protocol

High-dose FVIII concentrates (100 IU/kg twice daily) were used in the low-responding inhibitor group. In the high-responding inhibitor group, bypassing agents were administered following the manufacturer’s guidelines for optimal dosing: 50-100 U/kg for APCC and 90-120 μg/kg for rFVIIa [10, 11]. APCC was administered every 8-12 hours but did not exceed 200 IU/kg/day for the first 3 days [12]. The rFVIIa was administered every 2-3 hours in doses of 90 μg/kg for the first 3 days. The infusion regimens of bypassing agents were prescribed in accordance with a nationally approved summary of product characteristics or in accordance with guidance from current published literature [6, 13]. The treatment dose was tapered depending on the type of surgery and clinical outcomes. If surgery was performed under general anesthesia or if the surgery was orthopedic, we reduced the dose or frequency of clotting factor concentrates after using the current product for the first 3 days. If the procedure was performed under local anesthesia, we controlled the use of hemostatic coverage after the first 2 days. Considering clinical outcomes, if the bleeding worsened or the patient did not improve, additional changes in treatment were made such as switching products or increasing the dose or frequency of the current product. Because the maximum dose of bypassing agent was administered at the beginning of the surgery, the agent was changed if there was unsatisfactory bleeding control.

If patients with hemophilia and inhibitors experienced bleeding episodes that were refractory to either APCC or rFVIIa alone, both products were administered in a sequential fashion to produce a superior hemostatic outcome. Sequential therapy was defined as the alternate administration of 1 APCC dose followed by 1 or 2 rFVIIa doses within 12 hours.

Patient evaluation

Through a retrospective review of the medical records, we evaluated preoperative baseline characteristics such as age, gender, weight, type and severity of hemophilia, inhibitor titers, medical history, type of surgery, type of initial bypassing agent, initial treatment regimens, and outcomes of prophylactic treatment. We also evaluated patient outcomes based on perioperative bleeding, time to change of initial clotting factor concentrate, use of sequential therapy, total amount of clotting factor concentrates, reoperation or additional surgery, length of hospital stay, and patient outcomes such as the rate of patient discharge.

Patient follow-up

Postoperatively, the patients were followed up once during the first 1-month period, at 6-month intervals for the following year, and once per year during the second and third years.

Table 1. Patient demographics.

Value
Number of patients, N (gender)
Number of procedures evaluated, N
Orthopedic
Other
Median age, years (range)
Type of hemophilia, N (%)
Hemophilia A
Hemophilia B
Severe hemophiliaa, N
Type of inhibitors, N
Low-responding
High-responding
Inhibitors titer at procedures
Median, BU (range)
< 5 BU, N (%)
≥ 5 BU, N (%)

aSevere hemophilia was defined as <1% clotting factor level. Abbreviation: BU, Bethesda unit.
RESULTS

Baseline characteristics of the patients

In total, 36 surgeries were conducted in 18 hemophilia patients with inhibitors (Table 1). The median age of the patients was 30.5 (range, 7–52) years. Our clinical series of patients comprised 16 cases of hemophilia A (88.9%) and 2 cases of hemophilia B (11.1%). All of the patients had severe hemophilia, which shows less than 1% of normal factor activity in blood. The median inhibitor titer at procedures was 14 (range, 0.7–1,900) BU. Of the 36 surgeries, 25 were elective orthopedic surgeries, and the remaining 11 comprised a variety of surgical procedures, 5 of which occurred under emergency conditions. All surgeries were performed using standard conventional methods at a single center, for which the patients' hematologic profile was monitored by a single board-certified specialist in hematology. Moreover, each procedure is reported as an individual case (Tables 2 and 3).

Patient progress

Patient progress and outcomes are described in Table 4. The median length of hospital stay was 14 (range, 1–58) days. High-dose FVIII concentrates were given in 2, APCC in 21, and rFVIIa in 9 cases (Table 1). In 10 cases, however, we replaced the initial hemostatic cover with other medi-

Table 2. Details of the cases and procedures.

Case No.	Initial hemostatic cover	Change of Tx	Sequential therapy	Bypassing agents	Dosage (IU/kg)	Transfused RBCs (U)	ICU care					
				Total administration duration (d)	FVIII	APCC	rFVIIa	FVIII	APCC	rFVIIa		
A1	APCC	No	No	NA	17	NA	17	NA	2,094	NA	0	No
B1	APCC	No	No	NA	1	NA	113	NA	1,097	NA	0	No
B2	APCC	No	No	NA	10	NA	1,130	NA	10	NA	0	No
B3	rFVIIa	No	No	NA	6	NA	130	NA	0	NA	0	No
C1	FVIII	→APCC	No	3	13	8	335	1,520	125	0	No	
C2	FVIII	→rFVIIa	No	8	12	960	226	4	0	No		
D1	APCC	No	No	NA	10	NA	1,651	NA	0	NA	0	No
D2	APCC	→rFVIIa	Yes	NA	52	3	5,916	30	26	Yes		
D3	APCC	No	No	NA	3	NA	411	NA	6	Yes		
E1	APCC	→rFVIIa	No	NA	16	1	1,209	13	0	No		
E2	APCC	No	No	NA	6	NA	455	NA	0	No		
E3	APCC	→rFVIIa	No	NA	11	3	1,464	31	2	No		
F1	APCC	No	No	NA	5	NA	594	NA	0	No		
F2	APCC	No	No	NA	7	NA	958	NA	0	No		
F3	APCC	No	No	NA	8	NA	1,402	NA	0	No		
G1	APCC	No	No	NA	10	NA	1,277	NA	0	No		
H1	rFVIIa	No	No	NA	11	NA	194	NA	0	No		
H2	rFVIIa	No	No	NA	9	NA	137	NA	0	No		
I1	rFVIIa	No	No	NA	21	NA	517	3	0	No		
J1	APCC	No	No	NA	8	NA	1,145	NA	0	No		
K1	rFVIIa	No	No	NA	11	NA	303	9	0	No		
K2	rFVIIa	No	No	NA	21	NA	457	2	0	No		
K3	rFVIIa	No	No	NA	25	NA	414	0	0	No		
L1	rFVIIa	→APCC	Yes	NA	15	26	1,651	600	8	No		
L2	rFVIIa	→Seq.	Yes	NA	6	17	687	365	5	No		
M1	APCC	→Seq.	Yes	NA	16	3	2,565	27	8	Yes		
N1	APCC	No	No	NA	12	NA	1,752	NA	0	No		
N2	APCC	No	No	NA	18	NA	2,514	NA	0	No		
N3	APCC	No	No	NA	18	NA	2,514	NA	0	No		
N4	APCC	No	No	NA	14	NA	4,269	NA	0	No		
O1	APCC	→Seq.	Yes	NA	2	1	200	19	10	No		
P1	rFVIIa	No	No	NA	13	NA	329	0	Yes			
Q1	APCC	No	No	NA	2	NA	169	NA	0	No		
Q2	APCC	No	No	NA	11	NA	1,330	NA	0	No		
R1	APCC	No	No	NA	17	NA	1,866	NA	0	No		
R2	APCC	→rFVIIa	Yes	NA	31	7	3,748	11	38	Yes		

Abbreviations: FVIII, factor VIII concentrate; APCC, activated prothrombin complex concentrates; rFVIIa, recombinant activated factor VII; NA, not applicable; Seq, sequential.

Procedures for N2 and N3 were done on the same day.
Table 3. Surgeries performed.

Type of surgery	Case No.	N
Orthopedic		
Total knee replacement	C1, C2, D1, E3, H1, K2, K3, L1, L2	9
Total hip replacement	K1	1
Arthroscopic synovectomy	F1, F2, F3, G1, H1, J1, JN1, N2, Q2	9
Amputation of the leg	A1	1
Closed reduction of ankle dislocation	E1	1
Device removal from the leg	E2	1
Finger tenotomy	B2	1
Hematoma evacuation of hand	R1	1
Open reduction of femur fracture with internal fixation	H2	1
Other		
ICH removal and craniectomy (emergency)	D3	1
Polypectomy of the colon	N4	1
Exploratory thoracotomy (emergency)	M1	1
Myringotomy with insertion of tube	B1	1
Segmental resection of the small bowel (emergency)	D2, R2	2
Circumcision	D3, N3	2
Catheter insertion (chemoport, PICC)	B3, O1	2
Arterial embolization (emergency)	D1	1

Abbreviations: ICH, intracranial hemorrhage; PICC, peripherally inserted central catheter.

Table 4. Patient progress and outcomes.

Value
Median duration of hospitalization, days (range)
14 (1–58)
Initial hemostatic cover, N
FVIII concentrates
2
APCC
25
rFVIIa
9
Changes of initial clotting factor concentrates, N (%)
10 (27.8%)
Orthopedic surgery
6 (24%)
Other surgery
1 (16.7%)
Emergency surgery
3 (60%)
Sequential bypassing therapy, N (%)
6 (16.7%)
Orthopedic surgery
2 (8%)
Other surgery
1 (16.7%)
Emergency surgery
3 (60%)
Patient outcome, N (%)
Discharge
34 (94.4%)
Death
2 (5.6%)

Abbreviations: FVIII, factor VIII; APCC, activated prothrombin complex concentrates; rFVIIa, recombinant activated factor VII.

Postoperative bleeding control in emergency surgery cases

The 36 surgeries included 5 emergency and 31 elective surgeries (Table 5). Two patients (D3 and P1) (2/5, 40%) died after emergency surgeries. Of the remaining 3 patients (D2, M1, and R2), 2 (D2 and R2) had small bowel ischemia and the other (M1) underwent an emergency thoracotomy for hemothorax with hemostatic covering using bypassing agents. In the last 3 cases (D2, M1, and R2), postoperative bleeding control was successful after sequential therapy.

DISCUSSION

Neutralizing antibodies to FVIII or FIX pose problems in the management of patients with hemophilia A or B. It has been reported that both APCC and rFVIIa are effective for bleeding control in hemophilia patients with inhibitors. The hemostatic efficacy of bypassing agents has been docu-
Table 5. Patients who underwent surgery under emergency conditions.

Case No.	Age (y)	Diagnosis	Operation	Sequential therapy	Result
D3	42	ICH	ICH removal and craniectomy	No	Death
P1	43	Hemothorax	Angiography and arterial embolization	No	Death
D2	41	Small bowel ischemia	Segmental resection of the small bowel	Yes	Discharge
R2	44	Small bowel ischemia	Segmental resection of the small bowel	Yes	Discharge
M1	15	Hemothorax	Exploratory thoracotomy	Yes	Discharge

Abbreviation: ICH, intracranial hemorrhage.
ing hemostatic and rehabilitative care. Therefore, our ability
to evaluate a patient’s condition after discharge was limited.

In conclusion, our results indicate that postoperative out-
comes can be successful in hemophilia patients with in-
hibitors if bleeding is managed effectively using bypassing
agents during the perioperative period. In addition, our re-
sults indicate that more active and aggressive management
should be performed for patients undergoing emergency
surgery. It is thus imperative that outcome measures for
successful postoperative outcomes based on the hemostatic
efficacy of bypassing agents are customized for individual
hemophilia patients.

Authors’ Disclosures of Potential Conflicts of Interest

No potential conflicts of interest relevant to this article
were reported.

REFERENCES

1. Valentino LA, Cooper DL, Goldstein B. Surgical experience with
rFVIIa (NovoSeven) in congenital haemophilia A and B patients
with inhibitors to factor VIII or IX. Haemophilia 2011;17:579-89.
2. Polyanskaya T, Zorenko V, Karpov E, Sampiev M, Mishin G,
Vasiliev D. Experience of recombinant activated factor VII usage
during surgery in patients with haemophilia with inhibitors.
Haemophilia 2012;18:997-1002.
3. Morfini M, Haya S, Tagariello G, et al. European study on
orthopaedic status of haemophilia patients with inhibitors.
Haemophilia 2007;13:606-12.
4. Yu Polyanskaya T, Khametova RN, Yu Andreev N. Development
and clinical course of haemophilia complicated by the presence
of an inhibitor. Haematol Transfusiol 2002;47:9-12.
5. Teitel JM, Carcao M, Lillicrap D, et al. Orthopaedic surgery in
haemophilia patients with inhibitors: a practical guide to haemostatic,
surgical and rehabilitative care. Haemophilia 2009;15:227-39.
6. Négrier C, Lienhart A, Numerof R, et al. SURgical interventions
with FEIBA (SURF): international registry of surgery in haemo-
philia patients with inhibitors undergoing elective orthopaedic
surgery for haemophilia patients: Japanese single-centre experience.
Blood Res 2013;48:282-6.
7. Caviglia H, Candela M, Galatro G, Neme D, Moretti N, Bianco RP.
Elective orthopaedic surgery for haemophilia patients with inhibitors:
single centre experience of 40 procedures and review of
the literature. Haemophilia 2011;17:910-9.
8. Berntorp E, Collins P, D’Oiron R, et al. Identifying non-responsive
bleeding episodes in patients with haemophilia and inhibitors: a
consensus definition. Haemophilia 2011;17:e202-10.
9. Young G, Blain R, Nakagawa P, Nugent DJ. Individualization of
bypassing agent treatment for haemophilic patients with inhibitors
utilizing thromboelastography. Haemophilia 2006;12:598-
604.
10. FEIBA. VH Anti-Inhibitor Coagulant Complex [package insert].
Westlake Village, CA: Baxter Healthcare Corporation, 2005.
(Accessed May 4, 2015, at http://www.baxter.com/pr/healthcare_
professionals/products/feiba_vh.html)
11. Novo Nordisk A/S. NovoSeven [package insert]. Novo Nordisk
A/S, Bagsvaerd, Denmark: Novo Nordisk A/S, 2005. (Accessed May
4, 2015, at http://www.novo-pi.com/novosevenrt.pdf)
12. Teitel J, Berntorp E, Collins P, et al. A systematic approach to
controlling problem bleeds in patients with severe congenital
haemophilia A and high-titre inhibitors. Haemophilia 2007;13:
256-63.
13. Scharrer I. Recombinant factor VIIa for patients with inhibitors
to factor VIII or IX or factor VII deficiency. Haemophilia 1999;5:
253-9.
14. Han MH, Park YS. Sequential therapy with activated proth-
rombin complex concentrates and recombinant activated factor
VII to treat unresponsive bleeding in patients with haemophilia
and inhibitors: a single center experience. Br J Haematol 2003;120:
808-13.