Selected parasites of silver kob (Argyrosomus inodorus) (Actinopterygii: Sciaenidae) from northern Namibia

The present study reports five metazoan parasites recorded from silver kob (Argyrosomus inodorus). Five fish were collected monthly (n = 55) for 11 months in 2017–2018 (excluding July 2017) using conventional angling gear in Toscanini, Mile 108 and Henties Bay, northern Namibia. Fish were examined individually for ecto- and endo-parasites. Photomicrographs, drawings and measurements of parasites were made using a camera lucida and calibrated eyepiece of an Olympus (BX50) compound microscope and/or a Zeiss (Discovery V8) camera calibrated on a Leica dissecting microscope. Amongst species found, monogeneans including Diplectanum sciaenae van Beneden & Hesse, 1863, two species of Calceostoma van Beneden, 1859, one species of Sciaenacotyle Marnav, 1989 and one acanthocephalan Corynosoma australae Johnston, 1937 were found and are reported here. This is the first study of parasites found from silver kob of the Atlantic Ocean. Silver kob has potential to be used as a mariculture species. In addition to mariculture, information obtained from this study may also be used as a baseline for stock structure and biological tagging.

Significance:
- Silver kob has potential to be used as a mariculture species. Information obtained from this study will therefore form awareness to future mariculture silver kob farmers in terms of parasites that can infect and infest silver kob, hence making it possible to apply specific prevention and control measures. In addition to mariculture, results obtained from this study may be used as a baseline for biological tagging for stock structure assessment using parasites.

Introduction
Silver kob, Argyrosomus inodorus Griffiths & Heemstra, 1995, Actinopterygii, Perciformes, Sciaenidae, commonly known as kabeljou in southern Africa, has a short history of culture in southern Africa.12 Its congeners, A. haloeipodotus Lacerpe, 1801 (Madagascar meagre), A. japonicus Temminck & Schlegel, 1843 (dusty kob/molloway) and A. regius Asso, 1801 (meagre) have been cultured successfully for many years throughout the world, including in South Africa. The Namibian marine aquaculture (mariculture) is dominated by shellfish (oyster and abalone). There is need to diversify the sector to ensure wide specialisation and make it more economically viable (stable). There are ongoing investigations into the aquaculture of some important fish species (of which kob is one species of interest). Studies are looking into the captive propagation, larval rearing, feeding and disease (including parasites) aspects of the kob species. Currently in Namibia, silver kob is one of the most important species caught by shore anglers and ski-boat anglers in water shallower than 20 m.11

Characteristics of silver kob – such as its robust growth, ability to spawn in captivity as well as its market value – make it one of the fish species suitable for mariculture.6,11 However, various diseases, including parasitic infections, pose a threat to fish cultivation, to the success of mariculture, as well as to the people that depend on it for a basic income. In many instances, fish health is not prioritised until extreme impacts are observed, which means the opportunity to manage and control parasites and diseases at the source is missed. Most farmers tend to react to large outbreaks rather than preventing or managing infections, most likely because of insufficient information on the ecology of pathogenic parasites, their prevention and control.15 The diseases and specific identity of the parasites that are infecting cultured fish are rarely known and very few parasite species, classified only to their genera, are recorded.16

External and internal clinical signs triggered by pathogens depend on the host species, fish age and stage of the disease. Parasites generally do not kill their hosts, but some severely stress fish to the point of biological and economical concern.16 High intensities of ecto-parasites cause excess mucus secretion, loose scales, dermis injuries such as haemorrhages, open sores, ulcers exposing connective and muscle tissues, and osmotic problems affecting respiratory functions.16 Consequently, damaged skin and gills make the fish host more susceptible to secondary infections, possibly from viruses, bacteria and other microorganisms that may also contribute to mortalities.17 Martins et al.18 and Kobot et al.19 reviewed impacts of different secondary infections, also called co-infections, on fish species.

In the wild, parasites have been used as a biotic force capable of determining the biodiversity of fish communities.20 Parasites can regulate the population size of some fish species based on their susceptibility. If the host is the predator, parasite infestation causes lack of appetite, thereafter increasing the number of prey and, as most prey are herbivores, further decreasing the plant community. In addition, parasites can indirectly modify the functional importance of the host species by altering the host’s phenotype (morphology, colouration and behaviour) which may influence the availability and scarcity of resources for other species. This could make the host, or part of the host’s body, available as a resource to other organisms.20 The culture of kob is being considered in Namibia and therefore parasites that infect it are being investigated.
Known parasites of kob

Diplectanum Diesing, 1858

Diplectanum, a genus of monopisthocotylean monogeneans, is the largest genus in the Diplectanidae and consists of over 80 species. In nature, species of *Diplectanum* are not highly pathogenic parasites, under adverse conditions, however, they can multiply and have detrimental effects on their hosts. There have been several reports associating monogeneans with increased fish mortalities in aquaculture, mostly because cultured fish are grown in high densities and handling procedures result in fish stress.

Calceostoma van Beneden, 1858

Species in the genus *Calceostoma* have been reported from the gills and skin of fish all over the world, including Australia and southern Africa. The genus comprises eight species of which only two described were available for use in the present study: *Calceostoma herculanea* Euzet & Vala, 1975 and *Calceostoma glandulosum* Johnston & Tieg, 1922, synonym *Calceostoma calceostoma* Wagener, 1857 by Williams. They are not highly pathogenic in nature, but can cause haemorrhages if they intensify in a mariculture set-up.

Sciaenacotyle Mamaev, 1989

Myrcoctylids are recognisable by their possession of large numbers of clamps that are relatively simple and lack accessory sclerites. To date, the genus *Sciaenacotyle* consists of only two documented species: *Sciaenacotyle panceri* Sosinso, 1891 and *Sciaenacotyle sciaenacola* Murray, 1932. There have been reports of these blood-feeding species affecting the gills of shi drum (*Umbrina cirrosa* Linnaeus, 1758) in Tunisia, congeners meagre, *Argyrosomus regius* in Sardinia and mulloway, *Argyrosomus japonicus* in Australia. They are predominantly characterised by the nature of the genital armature. Their lengths may vary depending on the state of the contraction of the body during fixation or observation and the size of the host, as parasites on larger hosts grow faster than those infesting smaller hosts. In addition, temperature may also impact length and clamp size.

The parasites collected during the current study slightly differ from these two *Sciaenacotyle* species and are briefly described here.

Corynosoma Lühe, 1904

Acanthocephala is a phylum that is closely associated with the Cestoda phylum. They are an integral component of the parasite fauna of pinnipeds. *Corynosoma* Lühe, 1904 consist of numerous species that use cetaceans and fish as intermediate hosts, and pinnipeds and fish-eating birds as definitive hosts. Acanthocephalans are characterised by a thorny anterior termed ‘proboscis’ that serves as an attachment organ and ‘drills’ firmly into the walls of the intestine and stomach of the host. The proboscis drilling causes damage and changes to the tissues, exposing the tissues to other secondary infections and increasing the host’s susceptibility to diseases and infection. Acanthocephalans lack a mouth and digestive tract. They absorb their nutrients directly through their body surface. Adult acanthocephalans usually live in the lumen of the digestive tract only, but sometimes they bore through the walls of the digestive tract and come to lie in the abdominal cavity.

Parasites have also been used as biological tags in stock identification in marine fish according to the principle explained by MacKenzie et al. Fish become infected or infested with a particular parasite only when they come within the endemic area of that parasite – the endemic area being the geographical region in which transmission of the parasite can take place. If infected fish are found outside the endemic area, it is inferred that these fish had been within that area at some time in their past history. Parasite communities differ substantially among fish hosts even in the same geographical area. Parasites, especially monogeneans, are host specific, and this specificity can be so strict that one parasite species may be restricted to only one fish species or genus. The information on the life span of the parasite in that particular host will allow the researcher to estimate the maximum time since the fish could have become infected, that is, the maximum time since it left the endemic area.

Information on parasites infecting silver kob is scarce. Stewart and Christion et al. also reported on *Calceostoma* sp. and *Diplectanum* sp. from the gills of *Ar. inodorus* in South Africa. Kotungondo has found species of the monogenean *Sciaenacotyle panceri* Sosinso, 1891 on the gills of the Namibian silver kob, *Argyrosomus inodorus* (Kotungondo BCC 2014, written communication, November 24). To the best of our knowledge, there is no previous documented study on parasites of silver kob.
kob in Namibia, although there have been a few reports on parasites from its congeners globally. We report on metazoan parasites from silver kob caught in northern Namibia.

Materials and methods
A total of 55 silver kob were collected over 11 months (June 2017, and August 2017 to May 2018), with 5 fish sampled and examined each month. Of these, 49 silver kob were caught using conventional angling gear at Toscanini and Mile 108, both sites within the Skeleton Coast Park, at about 20°50’S, 13°25’E and 21°49’S, 13°25’E, respectively (Figure 1). Six silver kob were caught by local anglers in Henties Bay (22.1°S and 14.3°E) (Figure 1).

Fish were sacrificed by a single cut through the spinal cord. The skin, fins, eyes and gastrointestinal organs were examined for parasites according to the procedure of Noga. All parasites were identified and counted. In total, 28 species were identified, but for the present study only 5 species are listed and described. Whole mount preparations were made for monogeneans using glycerine ammonium picrate solution on microscope slides and some were preserved in vials with 70% ethanol. Nail varnish was used to seal the whole mounts.

Photomicrographs, drawings and measurements of parasites were made using a camera lucida and calibrated eyepiece of an Olympus (BX50) compound microscope or a Zeiss (Discovery V8) camera calibrated on a Leica dissecting microscope. All measurements are in micrometres (µm) unless otherwise indicated. In the descriptions, the initial number is the mean measurement followed by the minimum and maximum measurements (range) in parentheses and finally the number of specimens measured for that particular category (n=x).

For scanning electron microscopy, specimens were dehydrated through a series of ethanol (70, 80, 90, 100, and 100%) for 1 each, followed by immersion in hexamethyldisilazane. After complete evaporation of hexamethyldisilazane, the specimens were sputter coated with gold-palladium in a Polaron SC7640 sputter coater. Specimens were then kept in a fume cupboard so that no dust fell on them while waiting for evaporation of hexamethyldisilazane. The specimens were examined using a LEO VP 1540 microscope at 10 kV.

Ethics approval
The study was approved by the University of Namibia’s Research and Publication Committee.

Results
During this study, we analysed five helminths identified from silver kob (A. inodorus). Some effects of these parasites on their hosts were obvious and profound (damage causing secondary infections, decreased fish quality, reduced growth, etc.) (Table 1).

Class	Genus/Order	Species	Pathogenicity
Ecto-parasites			
Monogenea	Diplectanum Diesing, 1858	D. sciaenae van Beneden & Hesse, 1863	Not pathogenic but can have effects on fish quality. Could also act as vectors of viruses and bacteria.
	Calceostoma van Beneden, 1858	C. glandulosum Johnston & Tiets, 1922	
	Sciaenacotyle Mamaev, 1989	Sciaenacotyle sp.	
Endo-parasites			
Monogenea	Calceostoma van Beneden, 1858	Calceostoma sp.	Unknown
Palaecanthocephala	Corynosoma Lühe, 1904	C. australae Johnston, 1937	Damage to fish host, causes secondary infections

Table 1: Five parasite species found on Namibian silver kob collected from Toscanini, Mile 108 and Henties Bay from June 2017 to May 2018 and their possible pathogenicity

Monogeneans

Diplectanum sciaenae van Beneden and Hesse, 1863
Host: *Argyrosomus inodorus* Griffiths and Heemstra, 1995
Site: Skin, gills
Locality: Henties Bay, Mile 108 and Toscanini, Namibia
Description:
Eight whole-mount adult specimens were measured (Diplectronidae; *Diplectanum sciaenae*, Figure 2). Long and slender with total body length measuring 735 µm (436–943) (n=8) and mid-body width of 185 µm (117–250) (n=8) (Figure 2a). The haptor (Figure 2b), which measured 252 µm (198–310) (n=8) total length, consists of a lip-shaped median bar (Figure 2c), which measured 107 µm (97–134) (n=8) total length, 23 µm (20–27) (n=8) maximum width (i) and 15 µm (12–17) (n=8) minimum width (ii) at centre. The haptor has two transverse bars (Figure 2d) on either side of the median bar with total length of 95 µm (81–122) (n=8) that mostly meet midway from each side of the median bar, but do not overlap each other. In rare cases, the transverse bars were shifted 1/4th from the median bars toward the ends. At the end of each transverse bar lies a pair of curved-in hamuli consisting of a ventral (Figure 2e) and dorsal (Figure 2f) hamulus. The ventral hamulus has a long deep root and a short superficial root with the following dimensions: length (i) 70 µm (64–74) (n=8); length (ii) 65 µm (59–67) (n=8); length (iii) 37 µm (35–40) (n=8); length (iv) 28 µm (25–33) (n=8). The dorsal hamulus has a long deep-root and a poorly developed superficial root: length (i) 62 µm (55–65) (n=8) and length (ii) 57 µm (52–60) (n=8). Just below the median bar, the squamodiscs (Figure 2b) measure 161 µm (124–222) (n=8) total length and 140 µm (109–187) (n=8) maximum width with 36 µm (32–36) (n=8) concentric divergent rows.

The male copulatory organ (MCO) (Figure 2g) is small with 55 µm (50–76) (n=8) total length. The MCO widens at the base and has a spiral end incircling the tip end. The sclerotised canal (Figure 2h) at the spiral end encircling the tip end. The sclerotised canal (Figure 2h) is sharply curved as described for *D. sciaenae* previously.

Calceostoma glandulosum Johnston and Tiets, 1922
Host: *Argyrosomus inodorus* Griffiths and Heemstra, 1995
Site: Gills, skin
Locality: Henties Bay, Mile 108 and Toscanini, Namibia
Description:
Four whole-mount adult specimens were measured. Body elongated, total body length measures 6250 µm (4200–8000) (n=4) and maximum body width 1000 µm (900–1100) (Figure 3). Hood-like lappet (Figure 3e) with irregular margins at anterior end measuring 1225 µm (200–1900) (n=4) total length and 9 µm (6–12) (n=8) maximum width. The sclerotised canal is sharply curved as described for *D. sciaenae* previously.
posterior end and a paddle-shaped anterior end, which is associated with a pair of hamuli (Figure 3a–c). The haptor measures 225 µm (220–233) (n=4) and 50 µm (44–53) (n=4) anterior end ‘T’ width. The hamulus (Figure 3c) measures 200 µm (188–213) (n=4). The MCO (Figure 3d) has a total length (i) of 189 µm (179–195) (n=4); length (ii) of 165 µm (159–171) (n=4) and width of 24 µm (21–26) (n=4).

Calceostoma sp.

Host: *Argyrosomus inodorus* Griffiths and Heemstra, 1995

Site: Stomach

Locality: Henties Bay, Mile 108 and Toscanini, Namibia

Description:

These species were found in nine *A. inodorus* hosts throughout the study and from all three study areas. Each host had either one or two *Calceostoma* sp. parasites. They were mostly found attached at the threshold walls of the stomach rather than in the middle of the stomach itself. Three whole-mount specimens were measured. Body slimmer and darker in colour compared to *C. glandulosum*. Total body length 4633 µm (2900–6900) (n=3) and 567 µm (400–800) (n=3) maximum body width (Figure 4). Lappet not hood-like but less developed (2000 µm) (n=1). This could be an adaptation mechanism to allow it to attach properly to the host stomach walls. Pharynx (see Figure 3e) length 303 µm (294–312) (n=2) and 276 µm (261–292) (n=2) pharynx maximum width. The median bar (Figure 4e) measures 147 µm (133–172) (n=3) length, 36 µm (33–39) (n=3) anterior end ‘V’ width and 144 µm (129–159) (n=3) hamulus length, slightly curved in at the tips (Figure 4f). The MCO (Figure 4b) has a coiled anterior end and a thin posterior end and measures 184 µm (173–202) (n=3) length (i), 139 µm (125–153) (n=3) length (ii) and 13 µm (12–13) (n=3) width.

Sciaenacotyle sp. Mamaev, 1989

Host: *Argyrosomus inodorus* Griffiths and Heemstra, 1995

Site: Gills

Locality: Henties Bay, Mile 108 and Toscanini, Namibia

Description:

Thirteen whole-mount specimens were measured. Elongated body measures 8123 µm (4000–11 400) (n=13) total body length and 1208 µm (500–1800) (n=13) maximum body width (Figure 5). Possesses a triangular posterior haver that occupies about a third of the total body with numerous clamps (Figure 5f). The haver measures 4000 µm (1600–5400) (n=13). The genital atrium (Figure 5a) opens ventrally, is formed by two globular muscular masses, and consists of
two symmetrical continuous genital hamuliform spine rows (instead of three as described in the other two Sciaenacotyle species), parallel to each other (Figure 5a). These spinal rows of the genital atrium (Figure 5a and 5c) interchange where they bend anteriorly with the longer outer spinal row coiling inwards at the anterior end and the shorter spinal row coiling outwards at the anterior end as they continue in a parallel manner. The genital hamuliform spines of the outer spiral rows increase toward the end of the row (Figure 5b). The hamuliform spine counts were 139 (131–154) (n=5) in total number and measure length at posterior end 11 µm (6–16) (n=5) (Figure 5d); mid-length 21 µm (14–28) (n=5) (Figure 5c) and length at anterior end 8 µm (3–11) (n=5) (Figure 5b). Spines at the anterior end slightly curved compared to the spines at the posterior end, which are straight and also sharper. Spines at the middle of the row have a hook that is curved and a blade that is curved at almost 90° (Figure 5c).

Acanthocephalan

Corynosoma australe Johnston, 1937

Host: *Argyrosomus inodorus* Griffiths and Heemstra, 1995

Site: Body cavity

Locality: Henties Bay, Mile 108 and Toscanini, Namibia

Description:

The measurements of *C. australe* in this study are not described separately for female and male individuals due to the small number of specimens measured, but, generally, males had more and longer genital spines than females. Measurements were done in relation to Sardella et al. Six whole-mount specimens were measured (3 males, 3 females). Total body length 3331 µm (2867–3647) (n=5) and maximum body width 1076 µm (943–1211) (n=6) (Figure 6). Females possessed a relatively wider maximum body width than males. The spiny proboscis measures 556 µm (356–712) (n=6) total length and 296 µm (238–290) (n=6) maximum width. Proboscis receptacle 1194 µm (936–1339) (n=5) total length and 276 µm (227–331) (n=5) width. The neck, wider than long, total length 258 µm (236–273) (n=5) and maximum neck width 424 µm (400–448) (n=5). Trunk length measures 2448 µm (2063–2617) (n=5) and is relatively longer in males than in females. The genital spines have a length of 32 µm (18–45) (n=6) and mid-width of 14 µm (7–21) (n=6). Only one of the three males had testes visible enough to make accurate measurement: right testes length 117 µm; right testes width 85 µm; left testes length 112 µm; and left testes width 88 µm.

Discussion

We have reported five parasite species from silver kob (*A. inodorus*): Diplectanum sciaenae, Calceostoma glandulosum, Calceostoma sp., Sciaenacotyle sp. and Corynosoma australe.

The morphological characteristics and measurements of *D. sciaenae* correspond with those described previously (Table 2). Diplectanids have been reported several times in aquaculture from all over the world, with increasing mortality in sciaenids, but they are not highly pathogenic parasites in nature.
Table 2: Measurements (µm) of Diplectanum Diesing, 1858 species from Argyrosomus hololepidotus, Argyrosomus regius and Argyrosomus inodorus

Character	D. oliveri	D. glandulosum	D. dollfusi	D. bocqueti	D. sciaenae	D. sciaenae
Host	A. hololepidotus	A. hololepidotus	A. regius	A. regius	A. regius	A. inodorus
Body length	909 – 1139	499 – 640	660 – 1370	800 – 1230	500 – 1160	751 (436–1066)
Body width	166 – 224	128 – 154	160 – 370	240 – 370	140 – 400	165 (79–250)
Haptor width	224 – 275	243 – 269	230 – 480	120 – 400	260 – 380	252 (198–310)
Penis length	166 – 179	51 – 66	57 – 78	90 – 123	51 – 94	63 (49–76)
Canal length	–	–	–	–	–	29 (26–40)
Canal width	–	–	–	–	–	9 (5–12)
Squamodisc length	–	–	–	–	–	173(124–222)
Squamodisc width	166 – 189	99 – 106	144 – 160	120 – 160	144 – 170	148 (109–187)
Concentric rows	–	32 – 38	26 – 32	31 – 41	35 (32–38)	
Median bar length	128 – 158	117 – 153	108 – 159	102 – 132	95 – 150	107 (97–134)
Median bar width	–	–	–	–	–	23 (19–27)
Median bar 1/2 width	–	–	–	–	–	15 (12–17)
Transverse bar length	96 – 110	90 – 117	92 – 146	88 – 100	88 – 100	94 (81–122)
Ventral hamulus (a)	67 – 77	72 – 77	87 – 94	58 – 67	69 – 79	70 (64–74)
Ventral hamulus (b)	–	65 – 69	78 – 86	52 – 63	63 – 73	65 (59–67)
Ventral hamulus (c)	32 – 34	34	43 – 50	27 – 32	33 – 41	37 (34–40)
Ventral hamulus (d)	30 – 32	30 – 32	33 – 39	25 – 32	26 – 35	28 (25–33)
Dorsal hamulus (a)	66 – 70	64 – 67	83 – 89	57 – 62	62 – 68	62 (55–65)
Dorsal hamulus (b)	61 – 64	59 – 64	62 – 135	51 – 56	59 – 64	57 (52–60)

Williams; *Oliver*; *present study*

Table 3: Measurements (µm) of Calceostoma glandulosum Johnston & Tieg, 1922, Calceostoma calceostoma Wagener, 1857 and Calceostoma sp. from Argyrosomus hololepidotus, Argyrosomus regius and Argyrosomus inodorus

Character	C. glandulosum	C. calceostoma	C. calceostoma	C. glandulosum	Calceostoma sp.
Host	A. hololepidotus (Western Australia)	A. regius (Tunis)	A. regius (Gulf of Gascoigne)	A. inodorus (northern Namibia)	A. inodorus (northern Namibia)
Total length	2724 (1848–4176)	3295 (2875–4002)	6302	6250 (4200–8000)	4632900–6900
Max body width	748 (592–960)	632 (598–644)	759	1000 (900–1100)	566 (400–800)
Lappet max width	794 (504–1296)	776 (644–897)	943	1225 (200–1900)	2000
Pharynx length	210 (157–272)	202 (179–216)	273 (255–291)	289 (236–322)	303 (293–312)
Pharynx width	168 (132–208)	164 (156–179)	–	270 (226–342)	276 (260–292)
Median length	238 (243–236)	178 (154–207)	239 (230–251)	225 (219–233)	146 (132–172)
Median max width	–	–	–	50 (44–53)	36 (32–39)
Hamulus length	129 (112–139)	94 (71–106)	135 (124–147)	199 (188–213)	143. (128–159)
Penis length (a)	182	134 (124–152)	189 (179–209)	188 (178–195)	183 (172–202)
Penis length (b)	–	–	–	165 (159–171)	138 (124–153)
Penis width	23	14 (12–14)	19 (14–23)	24 (21–26)	12 (11–13)
Study	Williams	Williams	Williams	This study	This study
Calceostoma glandulosum in the present study was longer and wider than described by Williams\(^3\) (Table 3). The reason could be due to stretching of the parasites during mounting on the slides, as monogeneans were fixed without coverslip pressure. Williams\(^3\) also found that Calceostoma calceostoma in Argyrosomus regius from Tunis differed in size (were smaller) compared to Calceostoma calceostoma Wagener, 1857 in Argyrosomus regius from the Gulf of Gascogne. This means that Calceostoma species may vary according to their geographical distribution with different physical and chemical environmental parameters.

A calceostomatid Calceostoma sp., possessing morphological characteristics almost similar to an undescribed Calceostoma sp. found by Stewart\(^21\) from the gills of Argyrosomus inodorus, was found in the stomach of A. inodorus. Stomach dactylogyrid monogeneans such as Enterogyrus Paperna, 1963 have been documented on freshwater fish by Bayoumy and El–Monem\(^35\) and others, but they possess different haptoral and copulatory characteristics that enable them to adapt to the internal environment of their fish hosts. This is the first case of a calceostomatid in the gastrointestinal organs of marine species and more studies are necessary to understand the differences and/or similarities between these two species as well as their parasitic behaviours and pathogenic characteristics.

It could be assumed that because these A. inodorus feed on small pelagic fish (mostly sardine based on their gut content), the monogenean parasites could have survived from the gills of sardine (Sardinops sp.) into the stomach of A. inodorus during ingestion. To test this hypothesis, the inspection of sardine gills is required to confirm whether Calceostoma sp. infest the gills of sardine. Only one or two individual Calceostoma sp. were found in every infected A. inodorus host. These may have been individuals that ‘luckily’ managed to survive the new environment of the stomach, despite being morphologically adapted to live and reproduce on the gills. The life cycle of a monogenean involves a free-living ciliated larva, called oncomiracidium.\(^34,36\) Chances are that a few parasites of Calceostoma sp. accumulated from the aquatic environment when fish were feeding and very few individuals managed to survive at the

Character	Mean	Minimum	Maximum
Body length	8123	4000	11400
Body width	1208	500	1800
Tail length	4000	1600	5400
Genital spine rows	2	2	2
No. of hamuliform spines			
Row 1	139	131	154
Row 2	154	148	163
Length at posterior end	11	6	16
Mid-length	21	14	28
Length at anterior end	8	3	11
threshold of the stomach walls, where all these parasites were recovered. More studies, including molecular work on Calceostoma species from the gills, previously described33, and Calceostoma sp. from the stomach, are therefore required to supplement the similarities described in this study, explain the survival of this parasite and understand the unusual adaptive mechanism of this gill monogenean parasite, which allows it to survive in the stomach of its A. inodorus host.

The microcotylid Sciaenacotyle sp. in the present study differed in makeup of their genital atrium from the other two Sciaenacotyle species, \textit{S. sciaenicola}5 and \textit{S. panceri}6,23, previously described. The two species possess a genital atrium consisting of three genital spine rows. However, the microcotylid in the present study possessed a genital atrium consisting of two genital spine rows. In addition, Sciaenacotyle sp. has more genital spines with a smaller minimum length than those described for the two previously described species (Table 4).

Sardella et al.25 showed that adult \textit{C. australce} differed in size from different hosts (seal \textit{Arctocephalus australis} and fish hosts \textit{Corynoscion quaturopil}). \textit{Corynosoma australce} from the present study were larger than those formerly described.14 They also possessed longer proboscis, neck and truck lengths (Table 5).

Figure 5: Sciaenacotyle sp. collected from the gills of silver kob. (a) Genital atrium. (b) Genital anterior end hamuliform spines. (c) Genital mid hamuliform spines. (d) Genital posterior end hamuliform spines. (e) Clamps. (f) Whole mount.
Table 5: Measurements (µm) of Corynosoma australe Johnston, 1937 from Arctocephalus australis, Cynoscion guatucupa and Argyrosomus inodorus

Host	A. australis	C. guatucupa	A. inodorus
Body L (length)	4200–5500	2560–3180	3331 (2867–3647)
Body W (width)	1300–1620	760–1140	1076 (943–1211)
Proboscis L	580–740	580–740	556 (356–712)
Proboscis W	210–250	180–280	269 (238–290)
Neck L	160–260	19–270	258 (236–273)
Neck max W	360–500	260–420	424 (400–448)
Truck L	3420–4660	1640–2180	2448 (2063–2617)
Genital spines L	25–48	31–48	32 (24–39)
Genital spines W	8.0–29	8.0–27	14 (9–17)
Proboscis receptacle L	740–1040	860–1300	1194 (936–1396)
Proboscis receptacle W	140–200	140–280	276 (227–331)
Right testes L	440–700	100–140	117
Right testes W	260–420	80–120	85
Left testes L	400–660	110–140	112
Left testes W	280–420	80–120	88

*Sardella et al.25; b present study

This is the first descriptive study of parasites of A. inodorus in Namibia. More studies are required to complement the findings. The presence of parasites from A. inodorus hosts highlights the need for further surveillance of the health of fish, especially when used in an aquaculture set-up.3

Results from this study are also a significant tool towards stock identification, which is a key component for the management of economically important fish species. They will contribute to and improve the understanding of the vulnerability of unequally exploited subpopulations within the A. inodorus species range and thus help with the implementation of sustainable fisheries practices.3 Biological tags used for stock identification is significant research given the rise in global fisheries as more species are being targeted and commercially exploited to keep up with the increasing demand.38 Many natural tags have been used in population structure studies but parasites as biological tags have gained wide acceptance in recent decades as they can provide a reliable guide to understanding the biology of the hosts.39 Parasites as biological tags for stock identification have not been used in Namibia, but they have been used successfully in South Africa to identify between two hake species (Merluccius capensis Castelnau, 1861 and Merluccius paradoxus Franca, 1960)40 and recently for sardine species (Sardinops sagax Jenyns, 1842)41. This study will significantly add to that resource and create a threshold for more studies on A. inodorus and other marine fish species.

Acknowledgements

We acknowledge a NAMSOV fellowship from the University of Namibia for funding the study. This work was supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Innovation and National Research Foundation of South Africa. Any opinion, finding and conclusion or recommendation expressed in this material is that of the authors and the NRF does not accept any liability in this regard.
Competing interests
We have no competing interests to declare.

Authors’ contributions
A.M.A.: Methodology, data collection, data analysis, writing – the initial draft, writing – revisions. A.H.: Student supervision, project leadership, validation. M.J.W.: Student supervision, project leadership, validation. M.T.: Student supervision, methodology, data collection. R.H.: Validation. W.L.-P.: Student supervision, funding acquisition, validation.

References
1. Griffiths MH. The taxonomy and life-history of Argyrosomus japonicus and A. inodorus, two important sciaenids off the South African coast [PhD thesis]. Malmokra, Rhodes University; 1995.
2. Griffiths MH. The life history and stock separation of silver kob, Argyrosomus japonicus, in South African waters. Oceanogr Lit Rev. 1997;11(44):1358–1359.
3. Williams A. Some monogenean parasites of the genera Calceostoma van Beneden, 1862 and Diplectanum Diesing, 1858 from Argyrosomus hololepidotus (Lacepède, 1802) (Sciaenidae: Teleostei) in Western Australia. Syst Parasitol. 1989;14(3):187–201. https://doi.org/10.1007/bf02187053
4. Grab DJ. Parasitological Society of Southern Africa. J Afr Vet Assoc. 2005;76(3):172–183. https://doi.org/10.4102/java.v76i3.421
5. Hayward CJ, Bott NL, Itch N, Iwashita M, Okihira M, Nowak BF. Three species of parasites emerging on the gills of mulloway, Argyrosomus japonicus (Temminck and Schlegel. 1843), cultured in Australia. Aquaculture. 2007;265(1–4):27–40. https://doi.org/10.1016/j.aquaculture.2007.04.080
6. Merella P, Cherchi S, Garippa G, Fioravanti ML, Gustinelli A, Salati F. Outbreak of Diplectanum sciaenae (Van Beneden & Hesse. 1863) (Monogenea) infecting Coryphaena hippurus (L.) in Tenerife, Canary Islands, Spain. Int J Parasitol. 2015;101(6):694–700. https://doi.org/10.1016/j.ijpara.2015.06.006
7. Costa JZ, McCarthy Ú, Perez O, Ramos E, Rodriguez M, Monterroso O, et al. Some monogenean parasites of the Sciaenidae (Pisces, Perciformes) of the Argentinian waters: Allozyme markers and taxonomic status. Syst Parasitol. 2013;84(3):341–349. https://doi.org/10.1007/s11230–013–9336–5
8. Coste B, Court-Payen C, Ktari MH. Microcotyle panceri Sonzino, 1981 (Monogenea – Microcotylidae) parasite of Umbrina cirrhosa L. in the Gulf of Tunis. [Microcotyle panceri Sonzino, 1981 (Monogenea – Microcotylidae) parasite of Umbrina cirrhosa L. in the Gulf of Tunis]. Bull Inst Nat Sci Technol Pêche Salammbô. 1970;1:169–180. French.
9. Arim OM. Classification of the Acanthocephala. Folia Parasitol. 2015;60(4):273–305. https://doi.org/10.14141/fp.2013.031
10. Sardella NH, Mattucci S, Timi JT, Bastida RO, Rodriguez DH, Nascetti G. Corynophora australis Johnston, 1937 and C. cetaceum Johnston & Best, 1942 (Acanthocephala: Polymorphidae) from marine mammals and fishes in Argentinian waters: Allozyme markers and taxonomic status. Syst Parasitol. 2005;61(2):143–156. https://doi.org/10.1007/s11230–005–3131–0
11. Oliver G. Les Diplectanidae Bychowsky, 1957 (Monogenea, Monopisthocotylea) parasites of the Sciaenidae (Pisces, Perciformes) of the Western Australian coast. PhD thesis. Malmokra, Rhodes University; 1995.
12. Smith AJ. In: Tyler S, Artois T, Schilling S, Hooge M, Bush LF, editors. World list of platyhelminthes [webpage on the Internet]. c2010 [cited 2018 Oct 13]. Available from: http://www.marinespecies.org/aphia.php?p=taxdetails&id=119291
13. Ktari MH. Microcotyle panceri Sonzino, 1981 (Monogenea – Microcotylidae) parasite of Umbrina cirrhosa L. in the Gulf of Tunis. Bull Inst Nat Sci Technol Pêche Salammbô. 1970;1:169–180. French.
14. Arim OM. Classification of the Acanthocephala. Folia Parasitol. 2015;60(4):273–305. https://doi.org/10.14141/fp.2013.031
15. Silva RZ, Pereira J, Cousin JCB. Histological patterns of the intestinal attachment of Corynophora australis (Acanthocephala: Polymorphidae) in Arcticola australis (Mammalia: Penipedia), J Parasitiol Dis. 2014;38(4):410–416. https://doi.org/10.1017/s12359–013–0250–4
16. Hayunga EG. Morphological adaptations of intestinal helminths. J Parasitol. 1991;77(6):865–873. https://doi.org/10.1017/s12359–013–0250–4
17. MacKenzie K, Abaunza P, Campbell N. The use of parasites as biological tags in farmed fish from Brazil: Diagnosis and pathogenesis. Rev Bras DE Parasitol Vet. 2015;24(1):1–20. https://doi.org/10.1590/s12639–013–0250–4
18. Nogueira MA, Mouton B, Scavia M, Pessacol E. Screenin 4 of anthelmintics for the efficacy against the gill-parasitising monogeneans Calceostoma sp. and Diplectanum sp. from the silver kob, Argyrosomus inodorus. [Screenin 4 of anthelmintics for the efficacy against the gill-parasitising monogeneans Calceostoma sp. and Diplectanum sp. from the silver kob, Argyrosomus inodorus]. Vet. Res. 2015;47(1):98. https://doi.org/10.1017/s12639–013–0250–4
19. Christieon KW, Ottob H, Mouton A, Scavia M, Pessacol E. The use of parasites as biological tags in farmed fish from Brazil: Diagnosis and pathogenesis. Rev Bras DE Parasitol Vet. 2015;24(1):1–20. https://doi.org/10.1590/s12639–013–0250–4
20. Amakali AM. Ecto- and endo-parasites of silver kob (Argyrosomus japonicus) in farmed fish from Brazil: Diagnosis and pathogenesis. Rev Bras DE Parasitol Vet. 2015;24(1):1–20. https://doi.org/10.1590/s12639–013–0250–4
21. Stewart KA. Embryonation and efficacy of treatments on monogenean gill flukes infecting silver kob (Argyrosomus inodorus) [PhD thesis]. Cape Town: University of Cape Town; 2005.
22. Gibson DI, Bray RA, Diplectanum Diesing, 1858. In: Tyler S, Artois T, Schilling S, Hooge M, Bush LF, editors. World list of platyhelminthes [webpage on the Internet]. c2010 [cited 2018 Oct 13]. Available from: http://www.marinespecies.org/aphia.php?p=taxdetails&id=119291
23. Ktari MH. Microcotyle panceri Sonzino, 1981 (Monogenea – Microcotylidae) parasite of Umbrina cirrhosa L. in the Gulf of Tunis. Bull Inst Nat Sci Technol Pêche Salammbô. 1970;1:169–180. French.
24. Arim OM. Classification of the Acanthocephala. Folia Parasitol. 2015;60(4):273–305. https://doi.org/10.14141/fp.2013.031
35. Bayoumy EM, El–Monem SA. Functional adaptation of branchial and stomach dactylogyrid monogenean: *Cichlidogyrus* and *Enterogyrus* isolated from Oreochromis niloticus. In: Proceedings of the 5th Global Fisheries and Aquaculture Research Conference; 2012 October 1–3; Giza, Egypt. p. 353–360.

36. Whittington ID, Chisholm LA, Rohde K. The larvae of Monogenea (Platyhelminthes). *Adv Parasitol.* 1999;44:139–232. https://doi.org/10.1016/s0065–308x(08)60232–8

37. Whittington ID, Kearn GC. Hatching strategies in monogenean (Platyhelminth) parasites that facilitate host infection. *Integr Comp Biol.* 2011;51(1):91–99. https://doi.org/10.1093/icb/icr003

38. Klapper R, Kochmann J, O’Hara RB, Karl H, Kuhn T. Parasites as biological tags for stock discrimination of beaked redfish (*Sebastes mentella*): Parasite infra-communities vs. limited resolution of cytochrome markers. *PLoS ONE.* 2016;11(4). e0153964. https://doi.org/10.1371/journal.pone.0153964

39. Catalano SR, Whittington ID, Donnellan SC, Gillanders BM. Parasites as biological tags to assess host population structure: Guidelines, recent genetic advances and comments on a holistic approach. *Int J Parasitol Parasites Wild.* 2014;3(2):220–226. https://doi.org/10.1016/j.ijppaw.2013.11.001

40. Botha L. Major endoparasites of the Cape hakes *Merluccius capensis* and *M. paradoxus*, with brief notes on some conspicuous ectoparasites. *Afr J Mar Sci.* 1986;4(1):45–49. https://doi.org/10.1016/j.ijppaw.2013.11.001

41. Reed C, MacKenzie K, Van der Lingen CD. Parasites of South African sardines, *Sardinops sagax*, and an assessment of their potential as biological tags. *Bull Eur Assoc Fish Pathol.* 2012;32(2):41–48.