Histology of the Digestive Tract of *Anablepsoides urophthalmus* from Brazilian Oriental Amazonia

Abstract

This study investigated the anatomy and histology of the digestive tract of the fish *Anablepsoides urophthalmus* of the family of Rivulidae, captured from the flood plains of northern Brazil. Histology of the digestive tract of this species was investigated, since there is a scarcity of information regarding its digestive biology. This work describes the histological characterization of the digestive tract of *A. urophthalmus* and correlates the histology of each component with its respective function. This species has only esophagus and intestine and it was possible to identify these components through histological analysis of the mucosa, submucosa, muscular and serous layers. The esophagus is short, with stratified epithelium, cubic with mucous cells and with a muscle layer with two sub-layers of striated muscle fibers. The intestine is coated with simple cylindrical columnar epithelium with microvilli goblet cells. It is divided into anterior, middle and posterior portions, without any folding or glands. The differentiation of regions of the intestine occurs at the level of the intestinal mucosa at the villus and variations of goblet cells.

Keywords: Killifish; Flood plains; Histology; Digestive tract; *Anablepsoides urophthalmus*

Introduction

The family Rivulidae is one of the largest families of freshwater fishes of the Neotropical region [1]. It is a diverse group of annual fish, mostly popularly known as “killifish”, which occurs in seasonal freshwater swamps of tropical and subtropical areas of South America [2]. Brazil has the greatest diversity of the family Rivulidae and is represented by 30 genera with approximately 120 fish species [3].

Anablepsoides Huber, 1992 is a species-rich genus of Neotropical aplocheiloid killifishes, occurring in northern South America, including the Amazon River basin and in adjacent Caribbean islands [2]. The Amazon River basin has the highest diversity both in number of species and in specialized forms. The two groups of fish species, *Anablepsoides urophthalmus* and *Anablepsoides limoncochae* are similar, including species of medium size that reach about 40-60 mm, with longitudinal rows of red dots on the flank in males [4].

Interpretations of feeding habits based only on analysis of gastrointestinal contents might lead to incorrect conclusions, since the frequency of these items are usually related to their availability in the environment. The digestion rate of the different food items varies, consequently, the presence of food items, which are difficult to be digested, may overestimate their importance in the diet of a given species [5].

Morphological and histological studies are very useful for the characterization of the digestive tract, which contributes important information for understanding the feeding habits and digestive physiology of fish [6]. Histological analysis of the digestive tract of fish is essential since it provides information which can formulate models which explain the trophic structure of the ecosystems and quantitative knowledge of the biological mechanisms of interaction between species [7].

The present work investigated the histology of the digestive tract of *Anablepsoides urophthalmus*. The histological description of the digestive tract of *A. urophthalmus* is compared with other teleost fish, to know whether they conform to a standard pattern.

Materials and Methods

Study site and fish sampling

The Igarapé Fortaleza hydrographic basin, located in the Municipality of Macapá and Santana, in the State of Amapá (Northern Brazil) is composed of the main water channel which is a tributary of the Amazon River and by the floodplain areas. This ecosystem is composed mainly by the Amazon River and the main channel of the Igarapé Fortaleza hydrographic basin. The Amazon River floodplains are fluviolittoral systems drained by freshwater and influenced by the high rainfall rates of the Amazonia and by the tides of the Amazon River [8].

The sample collection of *A. urophthalmus* was authorized by ICMBIO/ MMA (Chico Mendes Institute for Biodiversity Conservation of the Brazilian Ministry of Environment), and SISBIO (Authorization system and Biodiversity information), with the official authorization number of 48725-1. Fish samples were captured from the flood plains located in the Municipality of...
Brazilian Oriental Amazonia. J Aquac Mar Biol 7(1): 00181. DOI: 10.15406/jamb.2018.07.00181

Histology of the intestine, tunica mucosa had villi. The epithelial tissue lining was simple and cylindrical with microvilli, indentations, absorptive cells and goblet cells (Figure 2A1 & 2A2).

Figure 1: Photomicrographs of histological preparations from a cross-section of the esophagus of Anablepsoides urophthalmus: A)Mucosa with primary folds; B)Gastric mucosa with cubic stratified epithelium with centralized mucous cells (*) between the epithelial cells and loose connective tissue with some striated muscle fibers (arrow) departing from the muscle layer toward the folds; C) Cubic stratified epithelial cells (arrow); D)Muscle layer with only a layer of striated muscle fibers (circle) and fat cells (arrow).

Results

Total body length (cm) and the total weight of body (grams) of 20 fishes were measured. Mean total length and weight of the fishes were 3.52cm and 0.45g respectively. The digestive tract of Anurophthalmus is a thin continuous straight tube. As such, the esophagus, stomach and intestine.

Histology of the esophagus

The esophagus is short with large diameter and has a wall possessing longitudinal folds (Figure 1A). The delicate muscles along with the folds probably permit extensibility to the esophagus during the passage of food. Histology of the esophagus of Anurophthalmus revealed a mucous layer; having predominantly primary folds and few secondary folds, lined by cubic stratified epithelial tissue with mucous cells (Figure 1B & 1C).

The lamina propria consisted of loose connective tissue, without the presence of glands, but with some striated muscle fibers from the circular muscle layer toward the folds. Mucosal muscle was not present, as such there was no submucosa. The muscle layer was formed by striated muscle fibers (Figure 1D) organized in an internal circular layer and an external longitudinal layer. As it approached the intestine the folds disappeared. The lamina propria presented with predominance of adipose cells (Figure 1D), located on the muscular layer. The last layer was the serosa.

Histology of the intestine

Analysis of light microscopy permitted differentiation of the layers and cells of the intestinal region. In the anterior part of the intestine, tunica mucosa had villi. The epithelial tissue lining was simple and cylindrical with microvilli, indentations, absorptive cells and goblet cells (Figure 2A1 & 2A2).

Laboratory procedures

The taxonomic identification of the fish species was confirmed [10]. Each fish was dissected to expose the digestive tract, which was removed from the coelomic cavity. Tissue samples were fixed in 10% formalin for 24 hours. After fixation the digestive tract was submitted to microtomy to obtain fragments of the digestive organs. The fragments were submitted to routine histological techniques, such as, dehydration, diaphanization and paraffin embedding. They were micro sectioned at 5 μm. Samples were stained with Haematoxylin-eosin (HE) [11] and periodic acid Schiff (PAS) reactive method for the identification of neutral mucin and other substances [12]. For the slide microphotography procedure, an Olympus BX 41 microscope coupled to a Nikon DXM 1200 digital camera was used. The images were processed using Nikon software (Image-Pro Express) in the Neuroanatomy laboratory of the Federal University of Rio Grande do Norte (UFRN).

Citation: Nascimento WSD, Silva GMM, Teixeira L, Silva NBD, Chellappa S (2018) Histology of the Digestive Tract of Anablepsoides urophthalmus from Brazilian Oriental Amazonia. J Aquac Mar Biol 7(1): 00181. DOI: 10.15406/jamb.2018.07.00181

Santana, AP, Brazil (0°2’5.024”S and 51°9’ 51.34”W), during the period of May to October, 2015. Fish were captured utilizing small hand trawl nets (50 x 150 cm) and sieves (60 x 60 cm) of 2 mm mesh size. The captured fish were immersed for about 15 minutes in Benzocaine hydrochloride solution at a concentration of 100 mg/L [9], according to Resolution No. 714 of June 20, 2002 which deals with euthanasia procedures for animals.
middle regions of the intestine, thus enlarging the contact surface with the food and allowing greater efficiency for digestion and absorption. In the posterior intestine there is a decrease in the height of the mucosa, and the goblet cells were larger and in greater numbers. The muscle layer maintained the same thickness for all intestinal regions.

Discussion

The short esophagus indicates that the food items are directly taken to the intestine which has no anatomical boundaries. This pattern is similar to that of the lampreys, which are fish without stomach, where the esophagus is directly connected to the intestine [13]. In small and omnivorous species such as, *Roeboides xenodon*, *Orthopinus franciscensis* [14], and also in *Pseudoplatusstoma corruscans* [15] the esophagus is short and this portion of the digestive tract does not offer obstacle to the passage of food, similar to the observation in the study species. Similarly, marine carnivorous fish of the family Lutjanidae, such as, *Lutjanus synagris*, *Lutjanus purpureus* and *Ocyurus chrysurus* have short esophagus and this organ is only associated with the passage of food [16].

Although epithelial characterization using light microscopy has revealed a stratified cubic epithelium, further detailed studies using scanning electronic microscopy and transmission is necessary since secreting epithelia are usually simple [17].

The characteristics of striated muscle layer in *A. urophthalmus*, indicate that it is possibly involved with the habit of swallowing larger prey, besides giving flexibility. The muscle layer strengthens the wall of the esophagus and protects it from being damaged while swallowing solid materials [18]. The freshwater fish, *Pelteobagrus fulvidraco* is omnivorous in feeding habit, which has a short esophagus with two well developed layers of striated muscles. This arrangement of striated muscle bundles in the esophagus has the capability to reject the passage of a food items which are unpalatable [19]. A similar function was observed in *Pleuronectes americanus* and *Pleuronectes ferruginea* [20]. The striated muscles in the esophagus possibly produce the force needed to push the food to the intestine, under the voluntary control of the fish.

Gastric glands were not observed along the digestive tract of the study species, indicating the absence of stomach. Similarly gastric glands were not found in seahorse, *Hippocampus reidi* which is considered as an agástric species, where the food passes directly from the esophagus to the intestine [21]. The possible cause of the absence of stomach may be related to food items with large proportions of indigestible components such as sand, mud or microphages feeding habits [22,23]. Lack of stomach in fish demonstrates its digestive flexibility, since there is no restriction to the type of feeding habit [24].

There is no histological demarcation for the regions of the small intestine, which is thick and straight, being similar to other teleosts [25]. This was confirmed for the study species and also in the intestine of marbled swamp eel *Synbranchus marmoratus* which does not present anatomical characteristics into well-defined segments [26].

This pattern of organization of simple columnar epithelium throughout the intestine of *A. urophthalmus* reveals an intensely absorbing surface, which is important for the process of absorption of nutrients [15,27]. In Cyclostome fish without stomach, the essential biochemical processes of digestion occur due to enzymatic activity of the pancreas or mucosa of the intestine.
The absence of stomach in *A. urophthalmus* seems to be compensated by the straight long intestine. In the piscivorous fish, *Tylosurus gavialoides* and *Strongylura leilur ferox* with extremely short intestines, ranging between 0.37 and 0.55, the posterior region of the intestine has a large diameter and length, providing an equivalent function of the stomach, and also in digestion [29].

The carnivorous freshwater fish *Culteralburnus* has a short intestine and its histology reveals distinct characteristics between regions of the intestine which are related to different functions in the digestive physiology of this species. The anterior region of the intestine has longer folds and well developed intestinal microvilli, with large diameter and thick muscles, indicating that this is the principal region for digestion and absorption of food in this species [30]. Similarly in many other species of fish without stomach, the anterior intestine was considered the principal region for food digestion and absorption [31]. However in *A. urophthalmus*, anterior and mid intestinal regions promote digestion and absorption. This was also observed in *Hypsolebias antenori* (*Rivulidae*), an annual fish from the northeastern Brazil, where the stomach and the intestine are adapted for digestion and absorption of nutrients [32].

The digestive tract of this fish does not conform to the standard pattern of teleost fish, due to the absence of a stomach. Out of the characteristic layers of the digestive tract of vertebrates, only tunica mucosa, muscular and serosa were evidenced. Same size of diameter of the digestive tract of the study species, made it difficult at the macroscopic level to differentiate structures that constitute it. The anterior and middle regions of the digestive tract are more active in nutrient absorption.

Acknowledgement

The authors wish to thank the National Council for Scientific and Technological Development (CNPq) of Brazil for the financial support awarded during the study period.

Conflict of Interest

None.

References

1. Reis RE, Kuillander SO, Ferraris C (2003) Check List of the Freshwater Fishes of South and Central America (CLOPFSCA). Porto Alegre, Edipucrs, pp. 729.
2. Costa WJEM (2011) Comparative morphology, phylogenetic relationships and historical biogeography of plesiebiadine seasonal killifishes (*Teleostei*: *Cyprinodontiformes*: *Rivulidae*). Zoological Journal of the Linnean Society, 162 (1): 131-148.
3. Eschmeyer WN, Fong JD (2016) A guide to Fish Collections in the Catalog of Fishes database.
4. Costa WJEM (2013) *Anablepsoides urubuiensis*, a new killifish from central Brazilian Amazon (*Cyprinodontiformes*: *Rivulidae*). Ichthyological Exploration of Freshwaters 23 (4): 345-349.
5. Ross LG, Martinez-Palacios CA, Aguilar Valdez MC, Beveridge MCM, Chavez Sanchez MC (2006) Determination of feeding mode in fishes: the importance of using structural and functional feeding studies in conjunction with gut analysis is in a selective zooplanktivore *Chirostoma estorator* Jordan 1880. Journal of Fish Biology 68: 1782-1794.
6. Morrison CM, Wright Jr JR (1999) A study of the histology of the digestive tract of the Nile tilapia. Journal of Fish Biology 54 (3): 597-606.
7. FugiR, Hahn NS, Novakovski GC, Balassa GC (2007) Ecología alimentar da corvina, *Pachyurus bonariensis* (Perciformes, Sciaenidae) em duas baias do Pantanal, Mato Grosso, Brasil. Ihringia, Série Zoologia 97 (3): 343-347.
8. Bittencourt LS, Silva URL, Silva LMA, Tavares-Dias M (2014) Impact of the invasion from Nile tilapia on natives Cichlidae species in tributary of Amazonas River, Brazil 4 (3): 88-94.
9. Antunes MIPP, Spario RS, Godel IA et al. (2008) Cloridrato de Benzoicena na anestesia de carpas (*Cyprinus carpio*). Revista Seminaria: Ciências Agrárias 29(1): 151-156.
10. Costa WJEM (2006) Relationships and taxonomy of the killifish genus *Rutilus* (*Cyprinodontiformes*: *Aphelochiloides*: *Rivulidae*) from the Brazilian Amazonas river basin, with notes on historical ecology. Journal of Ichthyology and Aquatic Biology 11 (4): 133-175.
11. Bermer OA, Toleza EMC, Freitas Neto AG (1976) Manual de Técnicas para Histologia Normal e Patológica. São Paulo: EDART, pp. 256.
12. Coppetti N (1996) Métodos de Colorações Histológicas e Citológicas. UFRGS Porto Alegre, pp. 120.
13. Stevens CE, Hume ID (1995) General characteristics of the vertebrate digestive system. In: Comparative Physiology of the vertebrate digestive system. (2nd edn), Cambridge University Press, pp. 1-18.
14. Barcellos JMF, Branco E, Pontes D (2014) Aspectos morfométricos do tubo digestório de *Rhoeoides xenode Orthopristis franciscensis*, Biotemas 27 (3): 139-147.
15. Cal JA (2006) Histologia do trato digestório de Surubim-Pintado (*Pseudoplatystomamaculatus* - Agassiz, 1829). Masters Dissertation, Universidade de São Paulo, São Paulo, p. 87.
16. Morais ALS, Carvalho MM, Cavalcante LFM, Oliveira MR, Chellappa S (2014) Características morfológicas do trato digestivo de três espécies de peixes (*Osteichthyes: Lutjanidae*) das águas costeiras do Rio Grande do Norte, Brasil. Macapá. Biota Amazônica 4 (2): 51-54.
17. Junqueira LC, Carneiro J (2013) Histologia básica: texto e atlas. (2nd edn), Rio de Janeiro: Guanabara Koogan, pp. 90.
18. Domenechini C, Ponnell SR, Veggetti A (1998) Gut Glyco-conjugates in spasm owratal (*Pisces, Teleostei*), Comparative histochemical study in larval and adult ages. Histology and histopathology Journal 13 (3): 359-372.
19. Cao XL, Wang WM (2009) Histology and Mucin Histochemistry of The Digestive Tract of Yellow Catfish, *Pelteobagrus fulvidraco*. Anatomia, Histologia, Embryologia 38(4): 254-261.
20. Murray HM, Wright GM, Goff GP (1994) A study of the posterior esophagus in winter flounder, *Pleuronectes americanus* and yellowtail flounder, *Pleuronectes ferrugineus*: morphological evidence for pregestric digestion? Canadian Journal of Zoology 72: 1191-1198.
21. Neto, André Rodrigues Rodrigues (2000) Aspectos morfológicos do trato digestório do cavalo-marinho Hippocampus reidi Gimsburg, 1933[Percomorpha, Gasterosteiformes, Syngnathidae]. Monograph, Universidade de Santa Cecília, Brazil, pp. 14.
22. Verigina IA (1990) Basic adaptations of the digestive system in bony fishes as a function of diet. Journal of Ichthyology 31(2): 8-20.

23. Menin E, Mimura OM (1993) Anatomia do estomago de duas espécies de peixes de água doce, Prochilodus marggravii (Walbaum, 1792) e Prochilodus affinis Reinhardt, 1874 (Characiformes: Prochilodontidae), de hábito alimentar ilíofago. Revista Ceres 40: 253-271.

24. Horn MH, Gawlicka AK, German DP, Logothetis EA, Cavanagh JW, et al. (2006) Structure and function of the stomachless digestive system in three related species of New World silverside fishes (Atherinopsidae) representing herbivory, omnivory and carnivory. Marine Biology 149(5): 1237-1245.

25. Ferraz De Lima CLB (1997) Estudo histológico e histoquímico do trato intestinal de Matrinchã Bryconcephalus Gunther, 1869 (Pisces:Characidae). Masters Dissertation, Universidade Estadual de Campinas. Campinas, São Paulo.

26. Montenegro LA, Silva NR, Nascimento WS, Chellappa S (2012) Anatomy and Histology of the digestive tract and feeding habits of the marbled swamp eel Synbranchus marmoratus. Animal Biology Journal 3: 127-143.

27. Kierszenbaum AL (2004) Histologia e Biologia Celular - Uma introdução à Patologia, 1ª. Edição: Elsevier.

28. Filho JTS (2003) Revisão sobre as enzimas digestivas nos peixes teleosteis e seus métodos de determinação. Augustus, 08: 17.

29. Manjakasy JM, Day RD, Kemp A, Tibbetts IR (2009) Functional Morphology of Digestion in the Stomachless, Piscivorous Needlefishes Tylosurus gavialoides and Strongylura leiura Fenox (Teleostei: Beloniformes). J Morphol 270(10): 1155-1165.

30. Shi JQ, Liu JH, Chen DQ, Qi HF, Hong YN, et al. (2004) Histology of the intestine of Gymnocypris przewalskii. Freshwater fish, 34: 16-19.

31. Cao XJ, Wang WM, Song F (2011) Anatomical and histological characteristics of the intestine of the topmouth culter (Culter alburnus). Anat Histol Embryol 40(4): 292-298.

32. Nascimento WS, Silva BN, Yamamoto ME, Chellappa S (2014) Anatomy and histology of the digestive tract of a rare annual fish Hypsolebias antenor (rivulidae) from Brazil. Animal Biology Journal 4: 1-12.