A population survey on behavioural insights on COVID-19 in Sri Lanka: A quantitative analysis on perceptions, behaviours, opinions, trust and affect to inform pandemic outbreak response

Pabasari Ginige (pabasariginige@gmail.com)
University of Peradeniya Faculty of Medicine https://orcid.org/0000-0002-0114-2890

S.K.S.T. Silva
Ministry of Health

T.P. Bandara
Ministry of Health

W.M.P.C. Weerasinghe
Ministry of Health

T.M.P.D.M. Thennakoon
University of Peradeniya Faculty of Medicine

Research

Keywords: COVID 19, Behaviours, Perceptions, Affect, Insights for pandemic response

DOI: https://doi.org/10.21203/rs.3.rs-151182/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background The COVID-19 pandemic outbreak is placing insurmountable challenges and burden on health systems and authorities demanding responses with effective and appropriate policies and interventions. Wrong decision making, lack of foresightedness and preparation in the acute and transition phases can threaten the gains collectively achieved. Understanding the behaviours, perceptions and feelings of the population is imperative in management decisions. Not much evidence is available on such behavioural insights to inform the COVID-19 response in countries. This study is expected to contribute to the evidence-informed understanding on effective management of the outbreak.

Methods This was a cross-sectional observational study with entirely voluntary online participation. The study protocol and the questionnaire, originally prepared by a WHO collaboration, were adjusted to match the local setting and resource availability. The study explored 14 variables including perceptions, trust and behaviours in relation to COVID-19. Data was collected during the first wave of COVID-19 in early May 2020 and statistically analysed to see the associations and comparisons between chosen variables.

Results N = 1001 with 65.63% from the age range 18–29 years and 65% from the non-health care worker category. Basic or postgraduate degree holders were 64.7%. Participants were from 23 out of the 25 districts in SL with 34.07% from high-risk districts. They were in general, knowledgeable [e.g., > 95% correctly identified common symptoms of COVID19] and majority (99.5%) reported conforming to the health recommendations. They trusted government health bodies including hospitals (90.8%) but majority (63.8%) had poor confidence in media in the ability to manage the outbreak. Stigma around COVID-19 was not a concern for the majority of 78.9%. Participants less than 30 years believed in conspiracies around COVID-19 more than older counterparts.

Conclusion The perceptions, affect and behaviour of the study population gives insights on information dissemination, gaps in health message delivery, alternative approaches in responding and policy making helping to improve the pandemic response.

Background

The coronavirus is new, with various emerging information on its behaviour and no vaccine or known effective treatment. The case fatality rates are still uncertain and variable. All these lead to high uncertainty in community about the likelihood of contracting the disease, its potential severity, ability to take control over the process by preventive measures and the trust they can place in their authorities to control the pandemic. The pandemic response with its restrictions have serious implications on mental and physical well-being, social interactions, economy as well as individual and community resilience and trust [1]-[5].

In order to manage a pandemic effectively it is crucial to understand the risk perception of the population and their trusted sources of information to enable effective communication and formulating key messages [8]. Informing should be evidence-based and address misinformation and induce rational, adaptive and protective behaviour [6]. However, not much is known about the complex interplay of changing epidemiology, media conduct, control measures, risk perception and public health behaviour in the context of a pandemic of this scale. A study conducted during the influenza A(H1N1) pandemic in 2009/2010 shows an “asynchronicity between media curves and epidemiological curves.” and it is suspected that the public risk perceptions and behaviours may have followed media logic, rather than epidemiological logic [7]. There is also evidence that the uncertainty about the situation, inconsistency in recommendations and perceived exaggeration were associated with a reduced compliance with the recommended protective behaviours during the 2009/10 flu pandemic [8]. However, the knowledge acquired during the last pandemics is only of limited value and the communities need the present-day insights to guide crisis responses in the current outbreak. Thus, the dynamics of risk perceptions, fears, misinformation and protective behaviours and also the understanding which protective measures are known and which information is lacking need to be updated based on changes in epidemiology, media reports, information and misinformation and such insights are also relevant for preparedness and protective behaviour [3], [9].

The WHO Europe’s Insights Unit and Health Emergencies Program have offered a study protocol, tools and guidance urging the researchers from WHO member countries to use them to do research in order to gain local insights and then share the information gained with other researchers from across the states [10]. The Sri Lankan study was developed based on that study framework and used an individual-centered approach where insights into perceptions, behaviours and other variables inform COVID-19 response in the country.

Methods

The primary objectives of this study were to gain insights on variable perceptions, behaviours, fears and others, identify associations and gaps between variables, to evaluate the opinions on policies implemented and inform the COVID-19 response of the country.

A secondary objective is to utilize the insights gained to inform subsequent waves / post-outbreak responses and share them with fellow WHO countries thereby contributing to the continued regional/global efforts to better understand mechanisms of crisis response.

Ethical approval was obtained from the Ethical Review Committee, Faculty of Medicine, University of Peradeniya. All participants gave their informed consent before filling the questionnaire and authors assert that all procedures contributing to this work comply with the ethical standards of the committee.

Sample and inclusion criteria

This was a cross-sectional observational study with entirely voluntary participation of individuals over 18 years of age. We used a purposive sampling method and a sample size of 1000 was planned to obtain a high level of congruence between the distribution of the demographics in the sample and the population (i.e. age, gender and living area).
Scientific review and validation of tool

The protocol and questionnaire were originally prepared by University of Erfurt, Germany, and subsequently reviewed by a group of leading global experts in behavioural insights research for health and in developing and validating survey tools similar to the current one. To the degree possible, already validated items from previous surveys conducted were included in the questionnaire and the questionnaire as a whole has been validated through six rounds of data collection in Germany which led to adjustments of the questionnaire [10]. The protocol and questionnaire were adjusted where relevant to match the local socio-cultural setting and resource availability as permitted and requested by the German and WHO collaboration. The adapted questionnaire was reviewed by two national peer reviewers for the accuracy and the sociocultural adaptation efficacy. Reviewers endorsed the final protocol and questionnaire upon revision. The questionnaire was pre-tested with a sample of respondents representing different age groups, occupation categories, sexes, urban/rural living with a focus on their easy understanding of the questions before broad use. It was translated into Sinhala and Tamil the main two languages used apart from English.

Variables included in the questionnaire were socio-demographic data, risk perceptions, knowledge perceptions, probability and severity perceptions, preparedness and perceived self-efficacy, affect, trust in use and type of information sources, trust in institutions/personals, opinion on policies, decisions, measures and resilience, stigma, behaviours, worries and fears, confusions and rumours and comparisons of COVID-19 to cough, cold and fever. Some variables included a combination of knowledge and behavioural questions. (asking people to what degree they are following recommended prevention interventions such as hand washing) The other constructs were more complex and required validated questions to accurately assess risk perception, self-efficacy, trust, affect, fairness, prevention, resilience, worry and conspiracy thinking.

Data collection and analysis

The questionnaire was administered using the google form platform and shared with the public through e-mail and social media. Data collection period lasted for 14 days from 6.5.2020 till 20.5.2020, 8–10 weeks into the pandemic in SL [11].

It took place entirely online due to the prevailing travel restrictions and the risk of virus spread during the time. Average time to complete the questionnaire was 25–35 minutes. Data was analysed using SPSS 21 and associations between the variables and the demographic data was explored using the bivariate analysis using the Chi-square test and Fisher’s exact. All the variables were categorized into two, on logical basis. The neutral categories (e.g., Undecided”) were not considered in the analysis for checking associations. The exact considerations for the categorizations are given under each analysis in results. The p value of less than 0.05 was considered as significant.

To compare the susceptibility and severity perceptions between the COVID-19 and cough, cold and fever, the variables were assessed in Likert scales. Since the Likert scales had more than 5 (7) points it was assumed as a continuous variable for the statistical testing. The P values of Kolmogorov-Smirnov and Shapiro-Wilk tests were < .000 indicating a statistically significant difference from the normal distribution. Therefore, all four variables were concluded as non-normally distributed, hence a non-parametric statistical test applied to assess the differences between COVID-19 and cough, cold and fever.

Results

A. Demographic data of the study population

Thousand and six (1006) individuals have responded but the consent to take part was given by 1001, only.

The female to male ratio was 1.07:1. Health care workers (HCW) consisted of 35.06% and 64.7% were the degree and postgraduate degree holders. (Table 1) Study population came from 23 out of the 25 districts with 34.07% from districts identified as high risk (Colombo, Kaluthara, Puttalam and Gampaha) due to high case load of COVID-19. Mannar and Mullaitvu districts were not represented. (Fig. 1)
Table 1
Demographic data of the study population (N = 1001)

Age category (years)	Gender	Occupation	Level of education								
	Male (%)	Female (%)	Other (%)	HCW (%)	Non HCW (%)	0 to 9 (%)	10 to 12 (Completed A/L) (%)	>12 Diploma or Higher education (%)	>12 Graduated (%)	>12 Post graduated (%)	Total
18 to 29	284 (43.16)	373 (56.69)	1 (1.5)	232 (35.26)	426 (64.74)	2 (0.3)	64 (9.4)	212 (32.2)	339 (51.5)	41 (6.2)	658 (100)
30 to 39	121 (57.34)	88 (41.71)	2 (0.95)	77 (36.49)	134 (63.51)	0 (0)	3 (1.4)	23 (10.9)	123 (58.3)	62 (29.4)	211 (100)
40 to 49	37 (59.68)	25 (40.32)	0 (0)	19 (30.65)	43 (69.35)	0 (0)	8 (12.9)	12 (19.4)	7 (11.3)	35 (56.5)	62 (100)
50 to 59	27 (52.94)	24 (47.06)	0 (0)	21 (41.18)	30 (58.82)	1 (2)	8 (15.7)	11 (21.6)	5 (9.8)	26 (51.0)	51 (100)
60 to 69	10 (76.92)	3 (23.08)	0 (0)	2 (15.38)	11 (84.62)	0 (0)	5 (38.5)	1 (7.7)	2 (15.4)	5 (38.5)	13 (100)
70 to 79	1 (33.33)	2 (66.67)	0 (0)	0 (0)	3 (100)	0 (0)	1 (33.3)	0 (0)	0 (0)	2 (66.7)	3 (100)
80 and above	1 (33.33)	2 (66.67)	0 (0)	0 (0)	3 (100)	1 (33.3)	2 (66.7)	0 (0)	0 (0)	0 (0)	3 (100)
Total	481 (48.05)	517 (51.64)	3 (0.29)	351 (35.06)	650 (64.94)	4 (0.4)	91 (9.1)	259 (25.9)	476 (47.6)	171 (17.1)	1001 (100)

Education level is given in years of education

B. Risk perceptions

Our sample consisted of a majority who believed either they or their immediate environment are free from the infection of the COVID-19 virus (80.63% and 76.53% respectively). In perception of self-infected status the number of participants in categories, infected and confirmed + suspected to be infected but not confirmed, were negligible. (Fig. 2)

C. Knowledge

Out of the participants 83.3% perceived their overall knowledge on prevention as to be good and very good. (Fig. 3). The perception of overall knowledge on prevention was not significantly different according to age, district, education level or the occupation. More than 95% of participants had correctly identified individual symptoms, fever, cough, shortness of breath and sore throat as related to COVID-19 infection (Fig. 4). HCW had statistically significant higher knowledge about some of the symptoms not so commonly discussed (body aches, headache, fatigue, diarrhoea and inability to sense smell and taste), compared to non-HCW (Table 2). A majority as high as 92.90% correctly knew that there is no drug or vaccine available against the COVID-19 infection during the study period. That knowledge was not significantly associated with age, living district, education and occupation of the participants. Both 14 and 21 days were marked by our population as the incubation period (Fig. 5). The knowledge about incubation period was significantly higher in participants who were below 30 years compared to participants who were older than 30 years of age.
Table 2
Perception of knowledge about individual symptoms of COVID 19 against basic demographics

Variable	Age Below 30	Age 30 and above	Total	District High risk	District Low risk	Total	Education School education only	Education Above school education	Total	Occupation Health care worker
Fever										
Correctly known	628 (96.6%)	332 (98.5%)	960	323 (96.4%)	637 (97.7%)	960	88 (94.6%)	872 (97.5%)	960	345 (98.2%)
Unknown	22 (3.4%)	5 (1.5%)	27	12 (3.6%)	15 (2.3%)	27	5 (5.4%)	22 (2.5%)	27	6 (1.8%)
Total	650 (100.0%)	337 (100.0%)	987	335 (100.0%)	652 (100.0%)	987	93 (100.0%)	94 (100.0%)	987	351 (100.0%)
Chi square	3.014 (083)		1.366				(0.168)			
Cough										
Correctly known	639 (97.5%)	332 (98.2%)	971	324 (96.4%)	647 (98.5%)	971	86 (93.5%)	885 (98.2%)	971	346 (98.8%)
Unknown	16 (2.5%)	6 (1.8%)	22	12 (3.6%)	10 (1.5%)	22	6 (6.5%)	16 (1.8%)	22	4 (1.2%)
Total	655 (100.0%)	338 (100.0%)	993	336 (100.0%)	657 (100.0%)	993	92 (100.0%)	901 (100.0%)	993	350 (100.0%)
Chi square	.459 (498)		4.310				(0.012)			
Shortness of breath										
Correctly known	636 (97.8%)	328 (98.5%)	964	324 (97.3%)	640 (98.3%)	964	91 (98.9%)	873 (98.0%)	964	344 (98.0%)
Unknown	14 (2.2%)	5 (1.5%)	19	10 (3.0%)	16 (3.0%)	19	1 (1.1%)	18 (2.0%)	19	7 (2.0%)
Total	650 (100.0%)	333 (100.0%)	983	332 (100.0%)	651 (100.0%)	983	92 (9.4%)	891 (100.0%)	983	351 (100.0%)
Chi square	.494 (482)		.601				(.1000)			
Sore throat										
Correctly known	628 (97.3%)	325 (97.3%)	953	326 (97.0%)	627 (97.0%)	953	90 (98.9%)	863 (97.2%)	953	342 (98.3%)
Unknown	17 (2.7%)	9 (2.7%)	26	10 (3.0%)	16 (3.0%)	26	1 (1.1%)	25 (2.8%)	26	6 (1.7%)
Total	645 (100.0%)	334 (100.0%)	979	336 (100.0%)	643 (65.7%)	979	91 (100.0%)	888 (100.0%)	979	348 (35.5%)
Chi square	.003 (.957)		.203				(.502)			
Runny nose										
Correctly known	395 (68.2%)	202 (65.6%)	597	198 (65.8%)	399 (68.0%)	597	59 (67.8%)	538 (67.3%)	597	224 (72.3%)
Unknown	184 (31.8%)	106 (34.4%)	290	103 (34.2%)	187 (32.0%)	290	28 (32.2%)	26 (2.7%)	290	86 (27.7%)
Total	579 (100.0%)	308 (100.0%)	887	301 (100.0%)	586 (100.0%)	887	87 (100.0%)	800 (100.0%)	887	310 (100.0%)
Chi square	.635 (.425)		.481				(.488)			
Body aches										
Correctly known	446 (80.9%)	262 (83.7%)	708	241 (82.8%)	467 (69.4%)	708	61 (73.5%)	647 (82.8%)	708	287 (89.1%)
Unknown	105 (19.1%)	51 (16.3%)	156	50 (17.2%)	206 (30.6%)	156	22 (26.5%)	134 (17.2%)	156	35 (10.9%)
Total	551 (100.0%)	313 (100.0%)	864	291 (33.7%)	673 (100.0%)	864	83 (100.0%)	781 (100.0%)	864	322 (100.0%)
Chi square	1.029 (310)		.226				(634)			
Headache										
Correctly known	450 (81.8%)	252 (81.3%)	702	245 (81.1%)	457 (81.9%)	702	64 (78.0%)	638 (82.0%)	702	276 (87.6%)
Unknown	100 (18.2%)	58 (18.7%)	158	57 (18.9%)	101 (18.1%)	158	18 (22.0%)	140 (18.0%)	158	39 (12.4%)
Total	550 (100.0%)	310 (100.0%)	860	302 (100.0%)	558 (100.0%)	860	82 (100.0%)	778 (100.0%)	860	315 (100.0%)
Chi square	.037 (.848)		.078				(.780)			

Bold values = (p < 0.005), Correctly known = Identified as related to COVID 19, Unknown = Identified as not related to COVID 19.
Fatigue

Variable	Age Below 30	Age 30 and above	Total
	High risk	Low risk	Total
	(88.9%)	(88.8%)	(88.8%)
Fatigue	269	522	791
	(89.0%)	(88.6%)	(88.8%)
	79 (87.8%)	712 (88.9%)	791 (88.8%)
			303 (92.7%)
Chi square	.048 (.827)	.040 (.841)	.100 (.752)
Diarrhoea	Correctly known	Unknown	Total
	304 (59.3%)	197 (68.2%)	501
	(62.5%)	(64.6%)	(62.5%)
	501 (62.5%)	501 (62.5%)	46
		(59.7%)	(62.8%)
		501 (62.5%)	226
		(76.3%)	
Chi square	6.255 (.012)	.786 (.375)	.270 (6.03)
Inability to sense smell and taste	Correctly known	Unknown	Total
	473 (85.2%)	271 (87.7%)	744
	(86.1%)	(86.7%)	(86.1%)
	254 (86.7%)	490 (85.8%)	744
	(86.1%)	(86.5%)	(86.1%)
	60 (82.2%)	684 (86.5%)	744
	(86.1%)	(92.5%)	297
Chi square	10.018 (.313)	.124 (.725)	1.024 (312)
Total	Correctly known	Unknown	Total
	513 (100.0%)	289 (100.0%)	802
	(100.0%)	(100.0%)	(100.0%)
	263 (100.0%)	539 (100.0%)	802
	(100.0%)	(100.0%)	(100.0%)
	77 (100.0%)	725 (100.0%)	802
	(100.0%)	(100.0%)	(100.0%)
Chi square	6.255 (.012)	.786 (.375)	.270 (6.03)
Total	Correctly known	Unknown	Total
	555 (100.0%)	309 (100.0%)	864
	(100.0%)	(100.0%)	(100.0%)
	293 (100.0%)	571 (100.0%)	864
	(100.0%)	(100.0%)	(100.0%)
	73 (100.0%)	791 (100.0%)	864
	(100.0%)	(100.0%)	(100.0%)
Chi square	10.018 (.313)	.124 (.725)	1.024 (312)

Bold values = (p < 0.005), Correctly known = Identified as related to COVID 19, Unknown = Identified as not related to COVID 19.

D. Probability and severity perceptions

Out of the participants 50.9% believed that they are likely to get infected with COVID-19(Fig. 6). Those above 30 years of age and HCW had perceived their probability of getting infected with COVID-19 as significantly likely, compared to those who are below 30 and non HCW (Table 3). The single highest category of participants belonged to the undecided category in relation to the severity perception. Yet the study sample swayed towards perceiving COVID-19 as severe (Fig. 7). There was a significant association between the perceived severity of the infection and presence of a chronic illness. (Table 4)

Table 3

Variable	Age Below 30	Age 30 and above	Total
	High risk	Low risk	Total
	(47.5%)	(31.1%)	(41.7%)
Self-susceptibility	364	127	237
Unlikely	(41.7%)	(41.2%)	(41.6%)
	364 (41.7%)	49 (55.1%)	315
	(41.7%)	(40.2%)	(41.7%)
	364 (41.7%)	364 (41.7%)	364
	(41.7%)	(41.7%)	(41.7%)
	9 (29.6%)	27 (51.9%)	
Chi square	21.933 (.000)	.009 (.924)	7.277 (0.007)

Bold values = (p < 0.005), Unlikely = Extremely unlikely + Unlikely + Somewhat unlikely, Likely = Somewhat likely + Likely + Extremely likely.
Table 4
Perception of the severity of contracting COVID 19 against basic demographics and presence of a chronic illness

Variable	Age	District	Education	Occupation								
	Below 30	30 and above	Total	High risk	Low risk	Total	School education only	Above school education	Total	Health care worker	Other	
Expected severity	Not severe	90 (25.6%)	50 (26.2%)	140 (25.8%)	49 (33.1%)	91 (26.3%)	140 (25.8%)	13 (21.7%)	127 (26.3%)	140 (25.8%)	62 (32.6%)	78 (22.1%)
	Severe	262 (74.4%)	141 (73.8%)	403 (74.2%)	148 (75.1%)	255 (73.7%)	403 (74.2%)	47 (78.3%)	356 (73.7%)	403 (74.2%)	128 (67.4%)	275 (77.9%)
Total	352 (100.0%)	191 (100.0%)	543 (100.0%)	197 (100.0%)	346 (100.0%)	543 (100.0%)	60 (100.0%)	483 (100.0%)	543 (100.0%)	190 (100.0%)	353 (100.0%)	
Chi square	.024 (.874)	.134 (.715)	.597 (.440)	7.164 (.007)								

Bold values = (p < 0.005), Severe = Less severe + severe + very severe, Not severe = Very mild disease + Not severe + Not severe at all.

E. Preparedness and perceived self-efficacy

Out of the participants 82.22% were having good confidence in the ability to protect self from COVID-19 (Fig. 8). A high percentage of 99.5% claiming to have good compliance with the recommendations from authorities (Fig. 9). There was no demonstrable statistically significant relationship between the compliance with recommendations and individual demographics. (Table 5) The majority (more than ≥ 90%) has followed the most recommended preventive measures indicated in bold text (Table 6) Six preventive measures commonly discussed were cross tabulated against the basic demographics. The use of herbal supplements was significantly higher in participants below the age of 30 and in non HCW. The disinfection of mobile phones was significantly higher in participants above 30 years of age, educated above Advanced Level and in HCW category (Table 7). We analysed the traditional and alternative preventive methods in relation to age and the living area. Drinking ginger tea was significantly higher in the less than 30 age group compared to the above 30-year group, and in the participants from rural areas compared to those in urban areas (Table 8). In our population 63.1% and 81.1% had good coping in not seeing family and friends respectively, during the pandemic (Fig. 10).

Table 5
Compliance with recommendations from authorities against basic demographics

Variable	Age	District	Education	Occupation							
	Below 30	30 and above	Total	High risk	Low risk	Total	School education only	Above school education	Total	Health care worker	
Following recommendations	Do not follow	1 (.2%)	1 (.3%)	2 (.2%)	1 (.3%)	1 (.2%)	2 (.2%)	0 (0.0%)	2 (.2%)	2 (.2%)	1 (.3%)
	Follow	659 (99.8%)	337 (99.7%)	996 (99.8%)	338 (99.7%)	658 (99.8%)	996 (99.8%)	94 (100.0%)	902 (99.8%)	996 (99.8%)	348 (99.7%)
Total	660 (100.0%)	338 (100.0%)	998 (100.0%)	339 (100.0%)	659 (100.0%)	998 (100.0%)	94 (100.0%)	904 (100.0%)	998 (100.0%)	349 (100.0%)	
Chi square	(1.000)	(1.000)	(1.000)	(1.000)	(1.000)	(1.000)	(1.000)	(1.000)	(1.000)	(1.000)	(1.000)

Follow = Follow to some extent + I follow + Very much so, Do not follow = Not at all + I do not follow much.
Table 6
Preventive measures taken to prevent infection from COVID 19

Preventive Measure taken	Yes	No	Does Not Apply
Hand washing for 20 seconds	950	45	6
	(94.9%)	(.4%)	(.6%)
Avoiding touching Face	899	91	11
	(89.8%)	(9.1%)	(1.1%)
Use of Hand rubs	897	76	28
	(89.6%)	(7.6%)	(2.8%)
Staying home when you were sick or when you had a cold	848	68	85
	(84.7%)	(6.8%)	(8.5%)
Not travelling abroad	786	38	177
	(78.5%)	(3.8%)	(17.7%)
Herbal supplements (Ginger, Koththamalli, Garlic, ‘Paspanguwa, ‘Weniwel gata’)	696	249	56
	(69.5%)	(24.9%)	(5.6%)
Covering your mouth when you cough/ sneeze.	976	14	11
	(97.5%)	(1.4%)	(1.1%)
Ensuring a balanced diet	818	139	44
	(81.7%)	(13.9%)	(4.4%)
Avoiding close contact with someone who is infected	876	32	93
	(87.5%)	(3.2%)	(9.3%)
Safe Handling of Polythene packages	813	154	34
	(81.2%)	(15.4%)	(3.4%)
Avoiding eating meat	175	705	121
	(17.5%)	(70.4%)	(12.1%)
Hanging 'Kohomba' branches in front of the house.	95	794	112
	(9.5%)	(79.3%)	(11.2%)
Using ‘Perum kayan’	115	787	99
	(11.5%)	(78.6%)	(9.9%)
Sprinkling Turmeric mixed water.	124	786	91
	(12.4%)	(78.5%)	(9.1%)
Regular exercises.	507	438	56
	(50.6%)	(43.8%)	(5.6%)
Wearing a mask	963	29	9
	(96.2%)	(2.9%)	(.9%)
Using antibiotics	38	850	113
	(3.8%)	(84.9%)	(11.3%)
Using homeopathic remedies	405	520	76
	(40.5%)	(51.9%)	(7.6%)
Drinking ginger tea	483	450	68
	(48.3%)	(45.0%)	(6.8%)

The recommendations in bold = the most frequently disseminated ones
Preventive Measure taken	Yes	No	Does Not Apply
Steam inhalation	357	588	56
	(35.7%)	(58.7%)	(5.6%)
Burning Kohomba leaves and lime leaves to produce smoke inside the house.	151	766	84
	(15.1%)	(76.5%)	(8.4%)
Social distancing			
	959	36	6
	(95.8%)	(3.6%)	(.6%)
Self-quarantine	497	372	132
	(49.7%)	(37.2%)	(13.2%)
Disinfecting surfaces.	689	279	33
	(68.8%)	(27.9%)	(3.3%)
Disinfecting the mobile phone.	657	323	21
	(65.3%)	(32.3%)	(2.1%)
Increasing the consumption of Turmeric, Garlic, lime and pepper.	417	513	71
	(41.7%)	(51.2%)	(7.1%)

The recommendations in bold = the most frequently disseminated ones
Variable	Age	District	Education	Occupation								
	Below 30	30 and above	Total	High risk	Low risk	Total	School education only	Above school education	Total	Health care worker	Non HCW	
Hand washing	Yes	626 (95.4%)	324 (95.6%)	950 (95.5%)	328 (97.0%)	622 (94.7%)	950 (95.5%)	84 (90.3%)	866 (96.0%)	950 (95.5%)	339 (97.1%)	611 (94.6%)
	No	30 (4.6%)	15 (4.4%)	45 (4.5%)	10 (3.0%)	35 (5.3%)	45 (4.5%)	9 (9.7%)	36 (4.0%)	45 (4.5%)	10 (2.9%)	25 (5.4%)
Total	656 (100.0%)	339 (100.0%)	995 (100.0%)	338 (100.0%)	657 (100.0%)	995 (100.0%)	93 (100.0%)	902 (100.0%)	995 (100.0%)	349 (100.0%)	646 (100.0%)	
Chi square	.011 (.915)	2.900 (.089)	(0.030)	3.419 (.064)								
Avoid touching face	Yes	589 (90.5%)	310 (91.4%)	899 (90.8%)	310 (92.0%)	589 (90.2%)	899 (90.8%)	85 (90.4%)	814 (90.8%)	899 (90.8%)	320 (92.0%)	579 (90.2%)
	No	62 (9.5%)	29 (8.6%)	91 (9.2%)	27 (8.0%)	64 (9.8%)	91 (9.2%)	9 (9.6%)	82 (9.2%)	91 (9.2%)	28 (8.0%)	63 (9.8%)
Total	651 (100.0%)	339 (100.0%)	990 (100.0%)	337 (100.0%)	653 (100.0%)	990 (100.0%)	94 (100.0%)	896 (100.0%)	990 (100.0%)	348 (100.0%)	642 (100.0%)	
Chi square	.251 (.616)	.852 (.356)	.018 (.893)	.844 (.358)								
Herbal supplements	Yes	492 (78.5%)	204 (64.1%)	696 (73.7%)	242 (75.2%)	454 (72.9%)	696 (73.7%)	69 (75.9%)	627 (73.4%)	696 (73.7%)	204 (62.6%)	492 (79.5%)
	No	135 (21.5%)	114 (35.9%)	249 (26.3%)	80 (24.8%)	169 (27.1%)	249 (26.3%)	22 (24.1%)	227 (26.6%)	249 (26.3%)	122 (37.4%)	127 (20.5%)
Total	627 (100.0%)	318 (100.0%)	945 (100.0%)	322 (100.0%)	623 (100.0%)	945 (100.0%)	91 (100.0%)	854 (100.0%)	945 (100.0%)	326 (100.0%)	619 (100.0%)	
Chi square	22.288 (.000)	.570 (.450)	.245 (.621)	31.451 (.000)								
Wearing face masks	Yes	637 (97.4%)	326 (96.5%)	963 (97.1%)	319 (95.5%)	644 (97.9%)	963 (97.1%)	89 (96.7%)	874 (97.1%)	963 (97.1%)	336 (96.6%)	627 (97.4%)
	No	17 (2.6%)	12 (3.5%)	29 (2.9%)	15 (4.5%)	14 (2.1%)	29 (2.9%)	3 (3.3%)	26 (2.9%)	29 (2.9%)	12 (3.4%)	17 (2.6%)
Total	654 (100.0%)	338 (100.0%)	992 (100.0%)	334 (100.0%)	658 (100.0%)	992 (100.0%)	92 (100.0%)	900 (100.0%)	992 (100.0%)	348 (100.0%)	644 (100.0%)	
Chi square	.710 (.399)	4.360 (.037)	(0.746)	.520 (.471)								
Disinfecting mobile phones	Yes	403 (62.5%)	254 (75.8%)	657 (67.0%)	231 (69.6%)	426 (65.7%)	657 (67.0%)	38 (42.2%)	619 (99.6%)	657 (67.0%)	254 (73.8%)	403 (63.4%)
	No	242 (37.5%)	81 (24.2%)	323 (33.0%)	101 (30.4%)	222 (34.3%)	323 (33.0%)	52 (57.8%)	271 (30.4%)	323 (33.0%)	90 (26.2%)	233 (36.6%)
Total	645 (100.0%)	335 (100.0%)	980 (100.0%)	332 (100.0%)	648 (100.0%)	980 (100.0%)	90 (100.0%)	890 (100.0%)	980 (100.0%)	344 (100.0%)	636 (100.0%)	
Chi square	17.758 (.000)	1.463 (.226)	27.826 (.000)	11.081 (.001)								
Steam inhalation	Yes	240 (38.6%)	117 (36.2%)	357 (37.8%)	136 (43.2%)	221 (35.1%)	357 (37.8%)	30 (34.5%)	327 (38.1%)	357 (37.8%)	113 (34.1%)	244 (39.8%)
	No	382 (61.4%)	206 (63.8%)	588 (62.2%)	179 (56.8%)	409 (64.9%)	588 (62.2%)	57 (65.5%)	531 (61.9%)	588 (62.2%)	219 (65.9%)	369 (60.2%)
Total	622 (100.0%)	323 (100.0%)	945 (100.0%)	315 (100.0%)	630 (100.0%)	945 (100.0%)	87 (100.0%)	858 (100.0%)	945 (100.0%)	331 (100.0%)	613 (100.0%)	
Chi square	.505 (.477)	5.855 (.016)	.443 (.506)	3.048 (.081)								

Bold values = (p < 0.005) were considered as statistically significant
Table 8
Traditional methods of prevention against age and living area

Variable	Age Below 30	30 and above	Total	Living area Rural	Urban	Total
Hanging kohomba (neem) leaves	Yes	65 (11.2%)	30 (9.8%)	95 (10.7%)	59 (10.5%)	95 (10.7%)
	No	517 (88.8%)	277 (90.2%)	794 (89.3%)	502 (89.5%)	794 (89.3%)
Total		582 (100.0%)	307 (100.0%)	889 (100.0%)	328 (100.0%)	889 (100.0%)
Chi square	.411 (.522)	.046 (.831)				
Using perum kayam (Asafoetida)	Yes	77 (13.1%)	38 (12.2%)	115 (12.7%)	77 (13.4%)	115 (12.7%)
	No	513 (86.9%)	274 (87.8%)	787 (87.3%)	496 (86.6%)	787 (87.3%)
Total		590 (100.0%)	312 (100.0%)	902 (100.0%)	573 (100.0%)	902 (100.0%)
Chi square	.139 (.709)	.670 (.413)				
Sprinkling turmeric water	Yes	72 (12.2%)	52 (16.4%)	124 (13.6%)	81 (14.0%)	124 (13.6%)
	No	520 (87.8%)	266 (83.6%)	786 (86.4%)	497 (86.0%)	786 (86.4%)
Total		592 (100.0%)	318 (100.0%)	910 (100.0%)	578 (100.0%)	910 (100.0%)
Chi square	3.086 (.079)	.202 (.653)				
Homeopathic remedies	Yes	267 (43.8%)	138 (43.8%)	405 (43.8%)	226 (38.8%)	405 (43.8%)
	No	343 (56.2%)	177 (56.2%)	520 (56.2%)	356 (61.2%)	520 (56.2%)
Total		610 (100.0%)	315 (100.0%)	925 (100.0%)	582 (100.0%)	925 (100.0%)
Chi square	.000 (.991)	15.638 (.000)				
Drinking ginger tea	Yes	337 (55.3%)	146 (45.1%)	483 (51.8%)	285 (48.3%)	483 (51.8%)
	No	272 (44.7%)	178 (54.9%)	450 (48.2%)	305 (51.7%)	450 (48.2%)
Total		609 (100.0%)	324 (100.0%)	933 (100.0%)	590 (100.0%)	933 (100.0%)
Chi square	8.942 (.003)	7.710 (.005)				
Herbal smoke	Yes	107 (17.7%)	44 (14.1%)	151 (16.5%)	84 (14.4%)	151 (16.5%)
	No	497 (82.3%)	269 (85.9%)	766 (83.5%)	498 (85.6%)	766 (83.5%)
Total		604 (100.0%)	313 (100.0%)	917 (100.0%)	582 (100.0%)	917 (100.0%)
Chi square	2.005 (.157)	4.790 (.029)				
Consuming Turmeric, garlic, pepper	Yes	284 (46.8%)	133 (41.2%)	417 (44.8%)	247 (41.7%)	417 (44.8%)
	No	323 (53.2%)	190 (58.8%)	513 (55.2%)	345 (58.3%)	513 (55.2%)
Total		607 (100.0%)	323 (100.0%)	930 (100.0%)	592 (100.0%)	930 (100.0%)
Chi square	2.684 (.101)	6.393 (.011)				

Bold values = (p < 0.005)

F. Affect

Though the outbreak was worrying in nature to the majority (67.1%), many (61.2%), did not feel helpless either (Fig. 11). The feeling states were explored against the selected demographic variables for any associations and COVID-19 virus felt close to HCW more significantly than to the non HCW. None of the other associations were found to be statistically significant (Table 9).
G. Information about COVID-19

Health care workers were the best (76.1%) trusted source of information of our population with websites coming second (70.7 %) (Table 10). The associations between four information sources and the basic demographics were explored. Participants below the age 30 had a significantly higher trust towards private television stations than participants who were above 30 and we found no other significant associations (Table 11). More than 90% of the participants were keen to know specific virus-related health concerns with only about a quarter of the population needing to know about grooming needs (Table 12). Majority (85.6%) of participants referred to the sources of information, highly frequently (Fig. 12).

Variable	Age	District	Occupation	Presence of a chronic illness								
	Below 30	30 and above	Total	High risk	Low risk	Total	Health care worker	Other	Total	Known	Not known	
	Yes	No	Yes	No			Yes	No				
Close to me	177 (40.5%)	260 (59.5%)	298 (44.3%)	101 (42.0%)	197 (45.6%)	298 (44.3%)	146 (57.5%)	152 (36.3%)	298 (44.3%)	41 (54.0%)	257 (43.1%)	2 (1)
	(51.5%)	(48.5%)	(55.7%)	(58.0%)	(54.4%)	(55.7%)	(42.5%)	(63.4%)	(55.7%)	(46.0%)	(56.9%)	
Total	437 (100.0%)	425 (100.0%)	672 (100.0%)	240 (100.0%)	432 (100.0%)	672 (100.0%)	254 (100.0%)	418 (100.0%)	672 (100.0%)	76 (100.0%)	596 (100.0%)	6 (1)
Chi square	7.473 (.006)	.774 (379)	28.546 (.000)	3.203 (.074)								
Fear inducing	Yes	No	Yes	No			Yes	No				
	392 (61.9%)	242 (38.1%)	577 (60.2%)	191 (58.4%)	386 (61.1%)	577 (60.2%)	185 (60.2%)	392 (62.5%)	577 (60.2%)	62 (64.0%)	515 (60.0%)	5 (1)
	(57.0%)	(43.0%)	(39.8%)	(41.6%)	(38.9%)	(39.8%)	(44.1%)	(37.5%)	(39.8%)	(36.0%)	(40.0%)	
Total	634 (100.0%)	524 (100.0%)	958 (100.0%)	327 (100.0%)	631 (100.0%)	958 (100.0%)	331 (100.0%)	627 (100.0%)	958 (100.0%)	97 (100.0%)	861 (100.0%)	9 (1)
Chi square	2.003 (.157)	.686 (407)	3.974 (.046)	.613 (434)								
Media hyped	Yes	No	Yes	No			Yes	No				
	335 (57.8%)	245 (42.2%)	520 (58.2%)	178 (60.0%)	342 (57.7%)	520 (58.2%)	56 (59.0%)	464 (58.2%)	520 (58.2%)	190 (60.1%)	330 (57.2%)	5 (1)
	(59.2%)	(40.8%)	(41.8%)	(40.0%)	(42.3%)	(41.8%)	(41.0%)	(41.8%)	(41.8%)	(39.9%)	(42.8%)	
Total	580 (100.0%)	472 (100.0%)	892 (100.0%)	299 (100.0%)	593 (100.0%)	892 (100.0%)	95 (100.0%)	797 (100.0%)	892 (100.0%)	316 (100.0%)	576 (100.0%)	8 (1)
Chi square	.197 (.657)	.283 (595)	.019 (892)	.675 (411)								
Stressful	Yes	No	Yes	No			Yes	No				
	302 (48.6%)	319 (51.4%)	464 (48.7%)	163 (49.5%)	301 (48.2%)	464 (48.7%)	167 (50.2%)	297 (47.9%)	464 (48.7%)	41 (42.3%)	423 (49.3%)	4 (1)
	(48.8%)	(51.2%)	(48.7%)	(49.5%)	(48.2%)	(48.7%)	(50.2%)	(47.9%)	(48.7%)	(43.2%)	(49.3%)	
Total	621 (100.0%)	532 (100.0%)	953 (100.0%)	329 (100.0%)	624 (100.0%)	953 (100.0%)	333 (100.0%)	620 (100.0%)	953 (100.0%)	95 (100.0%)	858 (100.0%)	9 (1)
Chi square	0.002 (.962)	.147 (.701)	.438 (.508)	1.292 (.256)								

Bold values = (p < 0.005), Agree = Yes and Disagree = No
Media	No trust	Very little trust	Little trust	Total	Some trust	Good trust	A great deal of trust	Total	Not decided
Public TV	133	157	138	428	272	173	41	486	87 (8.7%)
Private TV	151	147	152	450	306	139	31	476	75 (7.5%)
News Papers	111	152	117	380	259	105	15	379	242 (24.2%)
Conversations with friends and family	117	126	181	424	291	112	19	422	155 (15.5%)
Conversations with colleagues	104	108	144	356	310	142	29	481	164 (16.4%)
Conversation with healthcare workers	32	48	83	163	226	335	201	762	76 (7.6%)
Websites	62	58	75	195	226	294	188	708	98 (9.8%)
Social Media	250	195	181	626	179	35	10	224	151 (15.1%)
Search Engines	81	128	140	349	290	161	56	507	145 (14.5%)
Radio	115	144	123	382	280	132	23	435	184 (18.4%)
Government Press Releases	104	98	100	302	233	236	142	611	88 (8.8%)

Good trust = Some trust + Good trust + A great deal of trust, Poor trust = No trust + Very little trust + Little trust.
Variable	Age	District	Education	Occupation							
	Below 30	30 and above	Total	High risk	Low risk	Total	School education only	Above school education	Total	Health care worker	Other
Public trust											
Poor	270 (45.0%)	158 (50.2%)	428 (46.8%)	147 (47.0%)	281 (46.8%)	428 (46.8%)	36 (41.9%)	392 (47.3%)	428 (46.8%)	160 (49.5%)	267 (45.2%)
Good	329 (55.0%)	157 (49.8%)	486 (53.2%)	166 (53.0%)	320 (53.2%)	486 (53.2%)	50 (58.1%)	436 (52.7%)	468 (53.2%)	163 (50.5%)	324 (54.8%)
Total	599 (100.0%)	315 (100.0%)	914 (100.0%)	313 (100.0%)	601 (100.0%)	914 (100.0%)	86 (100.0%)	828 (100.0%)	914 (100.0%)	323 (100.0%)	591 (100.0%)
Chi square	2.143 (143)										
Private tv trust											
Poor	276 (44.9%)	174 (55.9%)	450 (48.6%)	158 (50.5%)	292 (47.6%)	450 (48.6%)	36 (41.4%)	414 (49.3%)	450 (48.6%)	165 (50.2%)	285 (47.7%)
Good	339 (55.1%)	137 (44.1%)	476 (51.4%)	155 (49.5%)	321 (52.4%)	476 (51.4%)	51 (58.6%)	425 (50.7%)	476 (51.4%)	164 (49.8%)	312 (52.3%)
Total	615 (100.0%)	311 (100.0%)	926 (100.0%)	313 (100.0%)	613 (100.0%)	926 (100.0%)	87 (100.0%)	839 (100.0%)	926 (100.0%)	329 (100.0%)	597 (100.0%)
Chi square	10.134 (.001)										
Social media trust											
Poor	418 (74.6%)	208 (71.7%)	626 (73.6%)	215 (74.9%)	411 (73.0%)	626 (73.6%)	58 (69.0%)	568 (74.2%)	626 (73.6%)	233 (77.2%)	393 (71.7%)
Good	142 (25.4%)	82 (28.3%)	224 (26.4%)	72 (25.0%)	152 (27.0%)	224 (26.4%)	26 (31.0%)	198 (25.8%)	224 (26.4%)	69 (22.8%)	155 (28.3%)
Total	560 (100.0%)	290 (100.0%)	850 (100.0%)	287 (100.0%)	563 (100.0%)	850 (100.0%)	84 (100.0%)	766 (100.0%)	850 (100.0%)	302 (100.0%)	548 (100.0%)
Chi square	.839 (.360)										
Search engines trust											
Poor	242 (42.5%)	107 (37.4%)	349 (40.8%)	115 (39.4%)	234 (41.5%)	349 (40.8%)	31 (39.7%)	318 (40.9%)	349 (40.8%)	131 (42.8%)	218 (39.6%)
Good	328 (57.5%)	179 (62.6%)	507 (59.2%)	177 (60.6%)	330 (58.5%)	507 (59.2%)	47 (60.3%)	460 (59.1%)	507 (59.2%)	175 (57.2%)	332 (60.4%)
Total	570 (100.0%)	286 (100.0%)	856 (100.0%)	292 (100.0%)	564 (100.0%)	856 (100.0%)	78 (100.0%)	778 (100.0%)	856 (100.0%)	306 (100.0%)	550 (100.0%)
Chi square	2.006 (.157)										

Bold values = ($p < 0.005$), Good trust = Some trust + Good trust + A great deal of trust,

Poor trust = No trust + Very little trust + Little trust.
Type of information	Yes (%)	No (%)
Symptoms of novel Coronavirus	838 (83.72)	163 (16.28)
How can I protect myself and my family from novel Coronavirus	897 (89.61)	104 (10.39)
Personal stories from others about how they cope	468 (46.75)	533 (53.25)
Scientific progress in the development of a vaccine against novel Coronavirus	908 (90.70)	93 (9.30)
Scientific progress in the development of treatment for novel Coronavirus	926 (92.50)	75 (7.50)
How can I personally prevent the spread of the disease	912 (91.11)	89 (8.89)
How can I take care of a person who is in a risk group	872 (87.11)	129 (12.89)
How can I best take care of my children's school education	577 (57.64)	424 (42.36)
The nature of the severity of the outbreak in the world	577 (57.64)	424 (42.36)
About the decisions taken by higher authorities.	896 (89.51)	105 (10.49)
How does this outbreak affect me economically	827 (82.62)	174 (17.38)
Details on travel restrictions	872 (87.11)	129 (12.89)
How can I buy essential goods	866 (86.51)	135 (13.49)
How can I buy my medicine	756 (75.52)	245 (24.48)
How can I get a haircut and shave	253 (25.27)	748 (74.73)
How can I get a facial and my eyebrows done	230 (22.98)	771 (77.02)
How can I take care of my mental health while at home	726 (72.53)	275 (27.47)
How can I maintain my social relationships while maintaining distance?	729 (72.83)	272 (27.17)

The type of information more than $\geq 90\%$ of the participants wanted is indicated in bold text.

H. Trust in the institutions/personals in their ability to manage COVID-19

Sri Lankan government sector health and other authorities have gained good trust of our study population. The religious places of worship have gained a lesser trust comparatively. A notable 63.8% had stated they had poor confidence in media (Table 13).
Institution	No Confidence	Very low confidence	Low confidence	Total	Some confidence	High confidence	Very high confidence	Total	Not applicable/Don't know
Your own Doctor	24	33	50	107	266	318	127	711	183
Other Consultant Physicians	18	36	29	83	267	375	178	820	98
Your Employer (Ex-Ceylon Electricity Board, Ministry of Health)	75	50	99	224	311	167	53	531	246
Media	173	113	202	488	275	77	10	362	151
Private Hospitals	97	115	201	413	291	96	35	422	166
Government Hospitals	16	30	19	65	219	372	318	909	27
Ministry of Health	36	33	50	119	272	353	208	833	49
Medical Officer of Health (MOH)	13	28	21	62	225	403	272	900	39
Government medical officers	18	25	25	68	212	386	301	899	34
Allied Health Officers	21	30	28	75	278	363	199	840	82
Public Health Inspectors (PHI)	16	30	26	72	251	391	239	881	48
Sri Lanka Medical Council (SLMC)	25	35	29	89	230	336	247	813	99
Sri Lanka Medical Association (SLMA)	27	37	36	100	233	327	220	780	121
Government Medical Officers Association (GMOA)	37	33	36	106	232	340	243	815	80
Ayurvedic Medical Council	73	53	79	205	256	247	114	617	179
Sri Lanka College of Psychiatrists	41	33	44	118	266	304	159	729	154
College of Community Physicians Sri Lanka	29	21	44	94	237	343	199	779	128
Sri Lankan Government	80	73	76	229	283	260	149	692	80
The President of Sri Lanka	76	62	57	195	236	284	202	722	84
Sri Lanka Police	43	36	44	123	262	335	212	809	69
Sri Lanka Armed Forces	34	37	38	109	229	331	273	833	59
Buddhist Temples	147	73	93	313	225	163	65	453	235
The Catholic Churches	145	81	90	316	226	146	53	425	260
Mosques	256	89	123	468	165	86	27	278	255
District-level state officials	94	67	112	273	284	164	44	492	236
Grama Niladharis	94	68	122	284	278	171	51	500	217

Good trust = some confidence + high confidence + very high confidence, Poor trust = No confidence + very low confidence + low confidence
The participants below the age of 30 were found to be placing more trust in certain institutions/personnel (e.g., private hospitals, GMOA, SL Army) compared to the above 30 participants. While the trust in government hospitals was significantly higher among HCW compared to non HCW, the trust in private hospitals and ayurvedic medical council was significantly higher in non HCW than that of HCW. The participants who have got only school education have significantly more trust in mosques compared to those who have higher education levels (Table 14).
Table 14
Trust in institutions against basic demographics

Variable	Age	District	Education	Occupation							
	Below 30	30 and above	Total	High risk	Low risk	Total	School education only	Above school education	Total	Health care worker	
Own doctor	Poor trust	62 (11.2%)	45 (16.9%)	107 (13.1%)	42 (15.1%)	65 (12.1%)	107 (13.1%)	12 (14.8%)	95 (12.9%)	107 (13.1%)	29 (10.4%)
	Good trust	490 (88.8%)	221 (83.1%)	711 (86.9%)	237 (84.9%)	474 (87.9%)	711 (86.9%)	69 (85.2%)	642 (87.1%)	711 (86.9%)	251 (89.6%)
Total	552 (100.0%)	266 (100.0%)	818 (100.0%)	279 (100.0%)	539 (100.0%)	818 (100.0%)	81 (100.0%)	737 (100.0%)	818 (100.0%)	280 (100.0%)	
Chi square	5.103 (.024)	1.450 (229)	.238 (.626)	2.777 (.09)							
Other physicians	Poor trust	46 (7.6%)	37 (12.5%)	83 (9.2%)	33 (11.0%)	50 (8.3%)	83 (9.2%)	7 (8.0%)	76 (9.3%)	83 (9.2%)	22 (6.6%)
	Good trust	560 (92.4%)	260 (87.5%)	820 (90.8%)	266 (89.0%)	554 (91.7%)	820 (90.8%)	80 (92.0%)	740 (90.7%)	820 (90.8%)	313 (93.4%)
Total	606 (100.0%)	297 (100.0%)	903 (100.0%)	299 (100.0%)	604 (100.0%)	903 (100.0%)	87 (100.0%)	816 (100.0%)	903 (100.0%)	335 (100.0%)	
Chi square	5.657 (.017)	1.823 (177)	.151 (.697)	4.395 (.03)							
Employer	Poor trust	138 (28.8%)	86 (31.3%)	224 (29.7%)	85 (31.7%)	139 (28.5%)	224 (29.7%)	24 (34.3%)	200 (29.2%)	224 (29.7%)	57 (20.4%)
	Good trust	342 (71.2%)	189 (68.7%)	531 (70.3%)	183 (68.3%)	348 (71.5%)	531 (70.3%)	46 (65.7%)	485 (70.8%)	531 (70.3%)	223 (79.6%)
Total	480 (100.0%)	275 (100.0%)	755 (100.0%)	268 (100.0%)	487 (100.0%)	755 (100.0%)	70 (100.0%)	685 (100.0%)	755 (100.0%)	280 (100.0%)	
Chi square	.533 (465)	.835 (361)	.788 (375)	18.494 (0)							
Media	Poor trust	299 (54.0%)	189 (63.9%)	488 (57.4%)	177 (60.6%)	311 (55.7%)	488 (57.4%)	41 (49.4%)	447 (58.3%)	488 (57.4%)	180 (62.7%)
	Good trust	255 (46.0%)	107 (36.1%)	362 (42.6%)	115 (39.4%)	247 (44.3%)	362 (42.6%)	42 (50.6%)	320 (41.7%)	362 (42.6%)	107 (37.3%)
Total	554 (100.0%)	296 (100.0%)	850 (100.0%)	292 (100.0%)	558 (100.0%)	850 (100.0%)	83 (100.0%)	767 (100.0%)	850 (100.0%)	287 (100.0%)	
Chi square	7.702 (.006)	1.868 (172)	2.416 (120)	4.989 (.02)							
Private hospital	Poor trust	245 (44.4%)	168 (59.4%)	413 (49.5%)	134 (46.9%)	279 (50.8%)	413 (49.5%)	36 (43.9%)	377 (50.1%)	413 (49.5%)	170 (58.8%)
	Good trust	307 (55.6%)	115 (40.6%)	422 (50.5%)	152 (53.1%)	270 (49.2%)	422 (50.5%)	46 (56.1%)	376 (49.9%)	422 (50.5%)	119 (41.2%)
Total	552 (100.0%)	283 (100.0%)	835 (100.0%)	286 (100.0%)	549 (100.0%)	835 (100.0%)	82 (100.0%)	753 (100.0%)	835 (100.0%)	289 (100.0%)	
Chi square	16.795 (.000)	1.184 (277)	1.124 (289)	15.498 (0)							
Government hospitals	Poor trust	36 (5.6%)	29 (8.7%)	65 (6.7%)	27 (8.2%)	38 (5.9%)	65 (6.7%)	4 (4.4%)	61 (6.9%)	65 (6.7%)	11 (3.2%)
	Good trust	605 (94.4%)	304 (91.3%)	909 (93.3%)	304 (91.8%)	605 (94.1%)	909 (93.3%)	86 (95.6%)	823 (93.1%)	909 (93.3%)	333 (96.8%)
Total	641 (100.0%)	333 (100.0%)	974 (100.0%)	331 (100.0%)	643 (100.0%)	974 (100.0%)	90 (100.0%)	884 (100.0%)	974 (100.0%)	344 (100.0%)	
Chi square	3.365 (.067)	1.772 (183)	.791 (374)	10.317 (0)							
Health ministry	Poor trust	67 (10.7%)	52 (16.0%)	119 (12.5%)	50 (15.6%)	69 (10.9%)	119 (12.5%)	8 (8.9%)	111 (12.9%)	119 (12.5%)	26 (7.8%)
	Good trust	559 (89.3%)	274 (84.0%)	833 (87.5%)	270 (84.4%)	563 (89.1%)	833 (87.5%)	82 (91.1%)	751 (87.1%)	833 (87.5%)	308 (92.2%)
Total	626 (100.0%)	326 (100.0%)	952 (100.0%)	320 (100.0%)	632 (100.0%)	952 (100.0%)	90 (100.0%)	862 (100.0%)	952 (100.0%)	334 (100.0%)	

Bold values = (p < 0.005), Poor trust = No confidence + low confidence + Very low confidence, Good trust = Some confidence + High confidence + Very high confidence.
Variable	Age Below 30	Age 30 and above	Total	District High risk	District Low risk	Total	Education School education only	Education Above school education	Total	Health care worker	
Chi square	5.398 (.020)	4.304 (.038)	1.185 (0.276)	10.460 (.0)							
Government MO	Poor trust	36 (5.6%)	68 (7.0%)	29 (8.8%)	6 (6.7%)	68 (7.0%)	13 (3.9%)				
	Good trust	604 (94.4%)	899 (93.0%)	600 (93.9%)	899 (93.0%)	815 (92.9%)	323 (96.1%)				
Total	640 (100.0%)	327 (100.0%)	967 (100.0%)	639 (100.0%)	967 (100.0%)	977 (100.0%)	336 (100.0%)				
Chi square	5.731 (.017)	2.686 (.115)	.020(.887)	7.880 (.0)							
MOH	Poor trust	36 (5.7%)	62 (6.4%)	22 (6.8%)	62 (6.4%)	7 (7.7%)	10 (2.9%)				
	Good trust	599 (94.3%)	900 (93.6%)	600 (93.7%)	900 (93.6%)	84 (92.3%)	329 (97.1%)				
Total	635 (100.0%)	327 (100.0%)	962 (100.0%)	640 (100.0%)	962 (100.0%)	971 (100.0%)	339 (100.0%)				
Chi square	1.864 (.172)	.120 (.739)	.259 (.611)	10.605 (.0)							
Allied health officers	Poor trust	37 (6.0%)	79 (8.6%)	29 (9.4%)	79 (8.6%)	4 (4.5%)	27 (8.3%)				
	Good trust	579 (94.0%)	900 (93.6%)	600 (93.7%)	900 (93.6%)	84 (95.5%)	297 (91.7%)				
Total	616 (100.0%)	303 (100.0%)	919 (100.0%)	611 (100.0%)	919 (100.0%)	831 (100.0%)	324 (100.0%)				
Chi square	15.948 (.000)	.396 (.529)	2.032 (.154)	.044 (.834)							
PHI	Poor trust	39 (6.2%)	72 (12.1%)	27 (8.3%)	72 (12.1%)	5 (5.6%)	13 (3.9%)				
	Good trust	595 (93.8%)	900 (93.6%)	600 (93.7%)	900 (93.6%)	84 (94.4%)	318 (96.1%)				
Total	634 (100.0%)	319 (100.0%)	932 (100.0%)	628 (100.0%)	932 (100.0%)	864 (100.0%)	331 (100.0%)				
Chi square	5.343 (.021)	.400 (.527)	.527 (.468)	9.555 (.00)							
SLMC	Poor trust	40 (6.6%)	89 (9.9%)	35 (11.6%)	89 (9.9%)	4 (4.7%)	26 (8.2%)				
	Good trust	569 (93.4%)	900 (93.6%)	600 (93.7%)	900 (93.6%)	82 (95.3%)	297 (91.8%)				
Total	609 (100.0%)	293 (100.0%)	926 (100.0%)	600 (100.0%)	926 (100.0%)	920 (100.0%)	317 (100.0%)				
Chi square	22.941 (.000)	1.515 (.218)	2.908 (.088)	1.524 (.21)							
SLMA	Poor trust	48 (8.1%)	100 (11.4%)	37 (12.5%)	100 (11.4%)	4 (4.8%)	33 (10.4%)				
	Good trust	543 (91.9%)	780 (88.6%)	522 (89.2%)	780 (88.6%)	700 (87.9%)	283 (89.6%)				
Total	591 (100.0%)	289 (100.0%)	880 (100.0%)	585 (100.0%)	880 (100.0%)	796 (100.0%)	316 (100.0%)				
Chi square	18.777 (.000)	.612 (.434)	4.018 (.045)	.415 (.520)							
GMOA	Poor trust	53 (8.7%)	106 (11.5%)	42 (13.8%)	106 (11.5%)	4 (4.8%)	33 (9.8%)				
	Good trust	556 (91.3%)	815 (88.5%)	553 (89.6%)	815 (88.5%)	815 (88.5%)	304 (90.2%)				
Total	609 (100.0%)	312 (100.0%)	921 (100.0%)	617 (100.0%)	921 (100.0%)	921 (100.0%)	337 (100.0%)				
Variable	Age	District	Education	Occupatio							
--------------------------------------	-----	----------	-----------	-----------							
	Below 30	30 and above	Total	High risk	Low risk	Total	School education only	Above school education	Total	Health care worker	
Chi square	13.902 (.000)	2.370 (124)	4.132 (.042)	1.538 (.21)							
AMC	Poor trust	105 (19.1%)	100 (36.8%)	205 (24.9%)	70 (24.6%)	135 (25.1%)	205 (24.9%)	16 (20.3%)	189 (25.4%)	205 (24.9%)	89 (32.6%)
	Good trust	445 (80.9%)	172 (63.2%)	617 (75.1%)	214 (75.4%)	403 (74.9%)	617 (75.1%)	63 (79.7%)	554 (97.4%)	617 (75.1%)	184 (67.4%)
Total	550 (100.0%)	272 (100.0%)	822 (100.0%)	284 (100.0%)	538 (100.0%)	822 (100.0%)	79 (100.0%)	743 (100.0%)	822 (100.0%)	273 (100.0%)	
Chi square	30.369 (.000)	.020 (888)	1.025 (.311)	12.817 (.00)							
Sri Lanka College of Psychiatrists	Poor trust	62 (10.8%)	56 (20.7%)	118 (13.9%)	43 (15.1%)	75 (13.3%)	118 (13.9%)	10 (12.0%)	108 (14.1%)	118 (13.9%)	33 (10.9%)
	Good trust	514 (89.2%)	215 (79.3%)	729 (86.1%)	241 (84.9%)	488 (86.7%)	729 (86.1%)	73 (88.0%)	656 (95.9%)	729 (86.1%)	269 (89.1%)
Total	576 (100.0%)	271 (100.0%)	847 (100.0%)	284 (100.0%)	563 (100.0%)	847 (100.0%)	83 (100.0%)	764 (100.0%)	847 (100.0%)	302 (100.0%)	
Chi square	15.065 (.000)	.521 (470)	.272 (602)	3.533 (.001)							
SLCCP	Poor trust	49 (8.4%)	45 (15.6%)	94 (10.8%)	37 (12.7%)	57 (9.8%)	94 (10.8%)	8 (9.5%)	86 (10.9%)	94 (10.8%)	21 (6.5%)
	Good trust	535 (91.6%)	244 (84.4%)	779 (89.2%)	254 (87.3%)	525 (90.2%)	779 (89.2%)	76 (90.5%)	703 (89.1%)	779 (89.2%)	303 (93.5%)
Total	584 (100.0%)	289 (100.0%)	873 (100.0%)	291 (100.0%)	582 (100.0%)	873 (100.0%)	84 (100.0%)	789 (100.0%)	873 (100.0%)	324 (100.0%)	
Chi square	10.375 (.001)	1.723 (189)	.150 (.699)	9.850 (.00)							
SL President	Poor trust	123 (20.3%)	72 (23.2%)	195 (21.3%)	81 (26.3%)	114 (18.7%)	195 (21.3%)	16 (18.0%)	179 (21.6%)	195 (21.3%)	55 (17.2%)
	Good trust	484 (79.7%)	238 (76.8%)	722 (78.7%)	227 (73.7%)	495 (81.3%)	722 (78.7%)	73 (82.0%)	649 (78.4%)	722 (78.7%)	265 (82.8%)
Total	607 (100.0%)	310 (100.0%)	917 (100.0%)	308 (100.0%)	609 (100.0%)	917 (100.0%)	89 (100.0%)	828 (100.0%)	917 (100.0%)	320 (100.0%)	
Chi square	1.075 (.300)	7.019 (.008)	.636 (.425)	4.881 (.02)							
SL Government	Poor trust	145 (23.9%)	84 (26.7%)	229 (24.9%)	87 (28.4%)	142 (23.1%)	229 (24.9%)	18 (20.0%)	211 (25.4%)	229 (24.9%)	68 (21.1%)
	Good trust	461 (76.1%)	231 (73.3%)	692 (75.1%)	219 (71.6%)	473 (76.9%)	692 (75.1%)	72 (80.0%)	620 (74.6%)	692 (75.1%)	255 (78.9%)
Total	606 (100.0%)	315 (100.0%)	921 (100.0%)	306 (100.0%)	615 (100.0%)	921 (100.0%)	90 (100.0%)	831 (100.0%)	921 (100.0%)	323 (100.0%)	
Chi square	.332 (.362)	3.121 (.077)	1.263 (.261)	3.869 (.04)							
SL Police	Poor trust	61 (9.9%)	62 (19.6%)	123 (13.2%)	53 (17.1%)	70 (11.3%)	123 (13.2%)	9 (10.0%)	114 (13.5%)	123 (13.2%)	35 (11.0%)
	Good trust	555 (90.1%)	254 (80.4%)	809 (86.8%)	257 (82.9%)	552 (88.7%)	809 (86.8%)	81 (90.0%)	728 (86.5%)	809 (86.8%)	283 (89.0%)
Total	616 (100.0%)	316 (100.0%)	922 (100.0%)	310 (100.0%)	622 (100.0%)	922 (100.0%)	90 (100.0%)	842 (100.0%)	922 (100.0%)	318 (100.0%)	
Chi square	17.217 (.000)	6.165 (.013)	.889 (.346)	2.023 (.15)							
SL Armed Forces	Poor trust	57 (9.1%)	52 (16.3%)	109 (11.6%)	47 (14.7%)	62 (10.0%)	109 (11.6%)	10 (11.0%)	99 (11.6%)	109 (11.6%)	30 (9.4%)
	Good trust	566 (90.9%)	267 (83.7%)	833 (88.4%)	273 (85.3%)	560 (90.0%)	833 (88.4%)	81 (89.0%)	752 (88.4%)	833 (88.4%)	290 (90.6%)
Total	623 (100.0%)	319 (100.0%)	942 (100.0%)	320 (100.0%)	622 (100.0%)	942 (100.0%)	91 (100.0%)	851 (100.0%)	942 (100.0%)	320 (100.0%)	

Bold values = (p < 0.005), Poor trust = No confidence + low confidence + Very low confidence, Good trust = Some confidence + High confidence + Very high confidence.
Variable	Age Below 30	Age 30 and above	Total	District High risk	District Low risk	Total	Education School education only	Education Above school education	Total	Occupatio Health care worker	
Chi square	10.546 (.001)	64.600 (.032)	.033 (.855)	23 (29.5%)	290 (42.2%)	313 (40.9%)	766 (100.0%)	688 (100.0%)	766 (100.0%)	256 (100.0%)	2.284 (.13)
Temple	Poor trust	167 (33.2%)	146 (55.5%)	313 (40.9%)	117 (44.0%)	196 (39.2%)	313 (40.9%)	23 (29.5%)	290 (42.2%)	313 (40.9%)	106 (41.4%)
	Good trust	336 (66.8%)	117 (44.5%)	453 (59.1%)	149 (56.0%)	304 (60.8%)	453 (59.1%)	55 (70.5%)	398 (57.8%)	453 (59.1%)	150 (58.6%)
Total											
Chi square	35.580 (.000)	1.645 (200)	4.650 (031)	.047 (.828)							
Church	Poor trust	174 (36.0%)	142 (55.3%)	316 (42.6%)	118 (45.9%)	198 (40.9%)	316 (42.6%)	22 (28.9%)	294 (44.2%)	316 (42.6%)	104 (41.6%)
	Good trust	310 (64.0%)	115 (44.7%)	425 (57.4%)	139 (54.1%)	286 (59.1%)	425 (57.4%)	54 (71.1%)	371 (55.8%)	425 (57.4%)	146 (58.4%)
Total											
Chi square	25.571 (.000)	1.719 (190)	6.496 (011)	.168 (681)							
Mosque	Poor trust	291 (60.0%)	177 (68.1%)	468 (62.7%)	170 (65.6%)	298 (61.2%)	468 (62.7%)	36 (48.0%)	432 (64.4%)	468 (62.7%)	161 (62.6%)
	Good trust	195 (40.0%)	83 (31.9%)	278 (37.3%)	89 (34.4%)	189 (38.8%)	278 (37.3%)	39 (52.0%)	239 (35.6%)	278 (37.3%)	96 (37.4%)
Total											
Chi square	4.872 (.027)	1.430 (232)	7.744 (005)	.001 (971)							
District	Poor trust	166 (33.4%)	107 (39.9%)	273 (35.7%)	96 (37.8%)	177 (34.6%)	273 (35.7%)	22 (27.5%)	251 (36.6%)	273 (35.7%)	84 (32.7%)
officers	Good trust	331 (66.6%)	161 (60.1%)	492 (64.3%)	158 (62.2%)	334 (65.4%)	492 (64.3%)	58 (72.5%)	434 (63.6%)	492 (64.3%)	173 (67.3%)
Total											
Chi square	3.230 (.072)	.737 (391)	2.609 (106)	.159 (211)							
Grama Niladhar	Poor trust	168 (32.5%)	116 (43.4%)	284 (36.2%)	103 (39.0%)	181 (34.8%)	284 (36.2%)	24 (31.2%)	260 (36.8%)	284 (36.2%)	84 (31.8%)
	Good trust	349 (67.5%)	151 (56.6%)	500 (63.8%)	161 (61.0%)	339 (65.2%)	500 (63.8%)	53 (68.8%)	447 (63.2%)	500 (63.8%)	180 (68.2%)
Total											
Chi square	9.139 (.003)	1.342 (247)	.945 (331)	3.345 (.06)							
Samrudhi	Poor trust	183 (38.3%)	140 (53.4%)	323 (43.7%)	116 (45.5%)	207 (42.8%)	323 (43.7%)	28 (37.3%)	295 (44.4%)	323 (43.7%)	102 (40.8%)
officer	Good trust	295 (61.7%)	121 (46.2%)	416 (53.6%)	139 (54.5%)	277 (57.2%)	416 (53.6%)	47 (62.7%)	369 (55.6%)	416 (53.6%)	148 (59.2%)
Total											
Chi square	16.178 (.000)	.503 (478)	1.378 (240)	1.298 (.25)							
Government	Poor trust	113 (20.5%)	98 (36.0%)	211 (25.6%)	80 (29.5%)	131 (23.7%)	211 (25.6%)	19 (22.1%)	192 (26.1%)	211 (25.6%)	68 (23.8%)
university	Good trust	438 (79.5%)	174 (64.0%)	612 (74.4%)	191 (70.5%)	421 (76.3%)	612 (74.4%)	67 (77.9%)	545 (73.9%)	612 (74.4%)	218 (76.2%)
Total											

Bold values = (p < 0.005), Poor trust = No confidence + low confidence + Very low confidence, Good trust = Some confidence + High confidence + Very high confidence.
I. Opinion on policies and measures

The high number of participants have agreed on the need for more screening tests (90.9%) and 3 weeks of quarantining (87.5%) and nearly 60% of the participants did not believe the restrictions were greatly exaggerated. Majority (78.0%) were willing to take a vaccine against COVID-19 (Table 15). The below
30-year-old respondents have agreed with more coercive practices significantly than above 30 participants. The HCW and the participants with above school education have disagreed more significantly on allowing the government to restrict the access to the internet and social media (Table 16).

Table 15
Opinions on policies and measures related to COVID 19

Statement	Strongly disagree	Disagree	Disagree somewhat	Total	Agree somewhat	Agree	Strongly agree	Total	Undecided	
If a vaccine becomes available and is recommended for me, I would get it.	26	32	26	84	(8.4%)	117	332	332	781	136 (13.6%)
In the event of an outbreak, it's appropriate to avoid certain people based on their country of origin.	90	77	58	225	(22.5%)	170	309	209	688	88 (8.8%)
If infected, the government should be allowed to coerce people to a treatment unit.	30	23	31	84	(8.4%)	135	359	360	854	63 (6.3%)
Government should allow people to self-assemble (individually) in their own homes if they had contacts	76	64	43	183	(18.3%)	152	308	279	739	79 (7.9%)
Government should restrict access to the Internet and social media to combat the spread of misinformation	266	164	87	517	(51.7%)	128	145	137	410	74 (7.4%)
From now on, anyone moving in public areas should be required to wear a face mask	34	28	39	101	(10.1%)	118	300	438	856	44 (4.4%)
More tests for coronavirus infection should be carried out in the population	20	15	18	53	(5.3%)	83	309	518	910	38 (3.8%)
Anyone who has had contact should be in quarantine at a quarantine centre for 3 weeks.	26	25	29	80	(8.0%)	109	340	427	876	45 (4.5%)
I think that the restrictions currently being implemented are greatly exaggerated.	290	191	118	599	(59.9%)	119	97	55	271	131 (13.1%)
It should only be allowed to leave your house for professional, health or urgent reasons.	38	43	54	135	(13.5%)	138	302	369	809	57 (5.7%)

Disagree = Strongly disagree + Disagree + Disagree somewhat, Agree = Strongly agree + Agree + Somewhat agree.
Table 16
Opinions on policies and measures related to COVID 19 against basic demographics

Variable	Age	District	Education	Occu	Health care work						
Opinion on getting vaccinated	Disagree	55 (9.8%)	29 (95.7%)	84 (9.7%)	25 (8.7%)	59 (10.2%)	84 (9.7%)	13 (16.0%)	71 (9.1%)	43 (10.7%)	
	Agree	507 (90.2%)	274 (90.4%)	781 (90.3%)	263 (91.3%)	518 (89.8%)	781 (90.3%)	68 (84.0%)	713 (90.9%)	781 (90.3%)	276 (89.3%)
Total	562 (100.0%)	303 (100.0%)	865 (100.0%)	865 (100.0%)	81 (100.0%)	784 (100.0%)	865 (100.0%)	309 (100.0%)			
Chi square	0.01 (0.919)	0.23 (4.70)	4.095 (0.43)	.514 (7.515						
Opinion on avoiding people from country of origin	Disagree	138 (23.1%)	87 (27.5%)	225 (24.6%)	82 (25.9%)	143 (24.0%)	225 (24.6%)	16 (18.0%)	209 (33.5%)	225 (24.6%)	92 (30.2)
	Agree	459 (76.9%)	229 (72.5%)	688 (75.4%)	235 (75.1%)	453 (76.0%)	688 (75.4%)	73 (82.0%)	615 (98.6%)	688 (75.4%)	213 (69.8)
Total	597 (100.0%)	316 (100.0%)	913 (100.0%)	913 (100.0%)	89 (100.0%)	624 (100.0%)	913 (100.0%)	305 (100.0%)			
Chi square	2.170 (.141)	0.391 (.532)	7.360 (.124)	7.515							
Opinion on coercing infected people in to a treatment unit	Disagree	39 (6.3%)	45 (14.1%)	84 (9.0%)	36 (11.3%)	48 (7.8%)	84 (9.0%)	10 (11.2%)	74 (8.7%)	84 (9.0%)	27 (8.2)
	Agree	579 (93.7%)	275 (85.9%)	854 (91.0%)	283 (88.7%)	571 (92.2%)	854 (91.0%)	79 (88.8%)	775 (91.3%)	854 (91.0%)	301 (91.8)
Total	618 (100.0%)	320 (100.0%)	938 (100.0%)	938 (100.0%)	89 (100.0%)	849 (100.0%)	938 (100.0%)	328 (100.0%)			
Chi square	15.539 (.000)	3.219 (.073)	6.272 (.428)	.324 (5.955						
Opinion on self-assembling	Disagree	114 (18.5%)	69 (22.5%)	183 (19.9%)	59 (18.9%)	124 (20.3%)	183 (19.9%)	12 (14.3%)	171 (20.4%)	183 (19.9%)	78 (24.2)
	Agree	501 (81.5%)	238 (77.5%)	739 (79.1%)	253 (81.1%)	486 (79.7%)	739 (79.1%)	72 (85.7%)	667 (79.6%)	739 (79.1%)	244 (75.8)
Total	615 (100.0%)	307 (100.0%)	922 (100.0%)	922 (100.0%)	84 (100.0%)	838 (100.0%)	922 (100.0%)	322 (100.0%)			
Chi square	1.997 (.158)	0.261 (.610)	1.797 (.180)	5.955							
Opinion on restricting access social media	Disagree	345 (56.7%)	172 (54.1%)	517 (55.8%)	179 (57.0%)	338 (55.1%)	517 (55.8%)	33 (37.9%)	484 (57.6%)	517 (55.8%)	210 (64.4)
	Agree	264 (43.3%)	146 (45.9%)	410 (44.2%)	135 (43.0%)	275 (44.9%)	410 (44.2%)	54 (62.1%)	356 (42.4%)	410 (44.2%)	116 (35.6)
Total	609 (100.0%)	318 (100.0%)	927 (100.0%)	927 (100.0%)	87 (100.0%)	840 (100.0%)	927 (100.0%)	326 (100.0%)			
Chi square	.556 (.456)	.294 (.588)	12.388 (.000)	15.23							
Opinion on mandatory wearing of face masks	Disagree	55 (8.7%)	46 (14.2%)	101 (10.6%)	39 (12.1%)	62 (9.8%)	101 (10.6%)	10 (11.1%)	91 (10.5%)	101 (10.6%)	47 (14.2)
	Agree	577 (91.3%)	279 (85.8%)	856 (89.4%)	284 (87.9%)	572 (90.2%)	856 (89.4%)	80 (89.9%)	776 (89.5%)	856 (89.4%)	285 (85.8)
Total	632 (100.0%)	325 (100.0%)	957 (100.0%)	957 (100.0%)	90 (100.0%)	867 (100.0%)	957 (100.0%)	332 (100.0%)			
Chi square	6.756 (.009)	1.194 (.275)	0.033 (.857)	6.990							
Opinion on performing more tests for COVID 19	Disagree	27 (4.3%)	26 (7.9%)	53 (5.5%)	21 (6.5%)	32 (5.0%)	53 (5.5%)	9 (9.7%)	44 (5.1%)	53 (5.5%)	19 (5.6)
	Agree	608 (95.7%)	302 (92.1%)	910 (94.5%)	304 (93.5%)	606 (95.0%)	910 (94.5%)	84 (90.3%)	826 (94.9%)	910 (94.5%)	318 (94.4)
Total	635 (100.0%)	328 (100.0%)	936 (100.0%)	963 (100.0%)	93 (100.0%)	870 (100.0%)	963 (100.0%)	337 (100.0%)			

Bold values = (p < 0.005), Disagree = Strongly disagree + Disagree + disagree somewhat, Agree = Strongly agree + Agree + Somewhat agree.
When it comes to opinions on conspiracies and secrecy 48.6% was undecided on, whether the virus is a biological weapon by China (Table 17). The participants below 30 years of age believed on conspiracies to a significant level than the above 30-year counterparts (Table 18).

Policy Decision	Certainly not true	Not true	Somewhat not true	Total	Somewhat true	TRUE	Certainly true	Total	Undecided
Many very important things happen in the world, which the public is never informed about	70	191	115	376	259	147	73	479	146
Politicians usually do not tell us the true motives for their decisions	27	43	48	118	188	270	329	787	96
Government agencies closely monitor all citizens	71	123	127	321	258	180	46	484	196
Events which superficially seem to lack a connection are often the result of secret activities	27	69	61	157	232	210	86	528	316
There are secret organizations that greatly influence political decisions	26	51	45	122	211	213	163	165587	292
This New COVID 19 viruses is a deliberate biological weapon invented in laboratories in China	91	128	75	294	121	74	26	221	486
The World Health Organization did not do the right thing in favour of China	104	137	94	335	117	77	35	229	437

Bold values = (p < 0.005), Disagree = Strongly disagree + Disagree + disagree somewhat,
Agree = Strongly agree + Agree + Somewhat agree.
Table 18

Opinions on the reasons behind policy decisions in relation to COVID 19 against basic demographics.

Variable	Age (Below 30)	Age (30 and above)	Total	District (High risk)	District (Low risk)	Total	Education (School education only)	Education (Above school education)	Total	Occupation (Health care worker)	Occupation (Other)	Total
Important things happen in the world which the public is never informed	Not true	231 (41.3%)	145 (49.2%)	376 (44.0%)	129 (45.3%)	247 (43.3%)	376 (44.0%)	37 (48.7%)	339 (43.5%)	376 (44.0%)	122 (41.6%)	254 (45.2%)
	TRUE	329 (58.7%)	150 (50.8%)	479 (56.0%)	156 (54.7%)	323 (56.7%)	479 (56.0%)	39 (51.3%)	440 (56.5%)	479 (56.0%)	171 (58.4%)	308 (54.6%)
Politicians usually do not tell us the true motives of their decisions	Not true	71 (12.1%)	47 (14.9%)	118 (13.0%)	31 (10.1%)	87 (14.6%)	118 (13.0%)	11 (12.8%)	107 (13.1%)	118 (13.0%)	40 (12.5%)	78 (13.3%)
	TRUE	518 (87.9%)	269 (85.1%)	787 (87.0%)	277 (89.9%)	510 (85.4%)	787 (87.0%)	75 (87.2%)	712 (86.9%)	787 (87.0%)	280 (87.5%)	507 (86.7%)
Government agencies should always monitor all the citizens	Not true	189 (36.2%)	132 (46.6%)	321 (39.9%)	120 (43.8%)	201 (37.9%)	321 (39.9%)	26 (35.1%)	295 (40.4%)	321 (39.9%)	108 (39.0%)	213 (40.3%)
	TRUE	333 (63.8%)	151 (53.4%)	484 (60.1%)	154 (56.2%)	330 (62.1%)	484 (60.1%)	48 (64.9%)	436 (59.6%)	484 (60.1%)	169 (61.0%)	315 (59.7%)
Events which superficially seem to lack a connection are often a result of secret activity	Not true	80 (18.3%)	77 (31.2%)	157 (22.9%)	57 (23.9%)	100 (22.4%)	157 (22.9%)	7 (11.3%)	150 (24.1%)	157 (22.9%)	66 (28.2%)	91 (20.2%)
	TRUE	358 (81.7%)	170 (68.8%)	528 (77.1%)	181 (76.1%)	347 (77.6%)	528 (77.1%)	55 (88.7%)	473 (75.9%)	528 (77.1%)	168 (71.8%)	360 (79.8%)
There are secret organizations that greatly influence political decisions	Not true	63 (13.9%)	59 (23.1%)	122 (17.2%)	37 (14.8%)	85 (18.5%)	122 (17.2%)	7 (10.4%)	115 (17.9%)	122 (17.2%)	50 (20.2%)	72 (15.6%)
	TRUE	391 (86.1%)	196 (76.9%)	587 (82.8%)	213 (85.2%)	374 (81.5%)	587 (82.8%)	60 (89.6%)	527 (82.1%)	587 (82.8%)	198 (79.8%)	389 (84.4%)
New COVID 19 virus is a deliberate biological weapon invented in laboratories in China	Not true	173 (52.9%)	121 (64.4%)	294 (57.1%)	99 (58.2%)	195 (56.5%)	294 (57.1%)	22 (41.5%)	272 (58.9%)	294 (57.1%)	108 (60.7%)	186 (55.2%)
	TRUE	154 (47.1%)	67 (35.6%)	221 (42.9%)	71 (41.8%)	150 (43.5%)	221 (42.9%)	31 (58.5%)	190 (41.1%)	221 (42.9%)	70 (39.3%)	151 (44.4%)
Total	454 (100.0%)	255 (100.0%)	709 (100.0%)	250 (100.0%)	459 (100.0%)	709 (100.0%)	67 (100.0%)	642 (100.0%)	709 (100.0%)	248 (100.0%)	461 (100.0%)	
Chi square		1.571 (.210)	2.373 (.123)	2.336 (.126)	108 (60.7%)	186 (55.2%)						

Bold values = (p < 0.005), Not true = Certainly not true + Not true + Somewhat not true,
True = Certainly true + True + Somewhat true.
The majority (82.32%) agreed that the decisions taken by the Sri Lankan government to control COVID-19 were fair (Fig. 13). There was no significant association between opinion on fairness of the decisions and demographic variables (Table 19). Just above half of the population had a hard time making it through stressful events due to policies on COVID-19 (Fig. 14). The stressful experiences were not significantly associated with age, living district, education level or occupation (Table 20) and 56.4% of participants were ready to seek help for them (Fig. 15).

Table 19

Variable	Age	District	Education	Occupation								
	Below 30	30 and above	Total	High risk	Low risk	Total	Health care worker	Other				
WHO didn't do the right thing in favour of China	Not true	203 (56.9%)	132 (63.8%)	335 (59.4%)	110 (58.8%)	225 (59.7%)	335 (59.4%)	31 (55.4%)	304 (59.8%)	335 (59.4%)	129 (62.6%)	206 (57.3%)
	TRUE	154 (43.1%)	75 (36.2%)	229 (40.6%)	77 (41.2%)	152 (40.3%)	229 (40.6%)	25 (44.6%)	204 (40.2%)	229 (40.6%)	77 (37.4%)	152 (42.3%)
Total		357 (100.0%)	207 (100.0%)	564 (100.0%)	187 (100.0%)	377 (100.0%)	564 (100.0%)	56 (100.0%)	508 (100.0%)	564 (100.0%)	206 (100.0%)	358 (100.0%)
Chi square		2.591 (.107)	.038 (.845)	.421 (.517)				1.399 (.237)				

The majority (82.32%) agreed that the decisions taken by the Sri Lankan government to control COVID-19 were fair (Fig. 13). There was no significant association between opinion on fairness of the decisions and demographic variables (Table 19). Just above half of the population had a hard time making it through stressful events due to policies on COVID-19 (Fig. 14). The stressful experiences were not significantly associated with age, living district, education level or occupation (Table 20) and 56.4% of participants were ready to seek help for them (Fig. 15).

Table 19

Variable	Age	District	Education	Occupation
Opinion on overall COVID 19 decisions taken in Sri Lanka against basic demographics				
Disagree				
Agree				
Total				
Chi square				

Disagree = Strongly disagree + Disagree + disagree somewhat, Agree = Strongly agree + Agree + Somewhat agree.

Table 20

Variable	Age	District	Education	Occupation
Opinion on the difficulty in managing stressful events due to COVID 19 policies against basic demographics				
Disagree				
Agree				
Total				
Chi square				

Statistical significance = p < 0.005
Our population was cautious and were supporting health recommendations even upon reopening (Table 21). Participants from high-risk districts were of the opinion that the restrictions should be upheld in urban but not in rural areas. Participants below 30 years as opposed to above 30 years people, significantly believed that the prevailed restrictions should not be lifted beyond May 2020, the country’s reopening month of the first wave. The non HCW agreed on obligatory mass testing to identify infected people in a statistically significant level than the HCW (Table 22).

Opinions on policies of re-opening	Strongly disagree	Disagree	Disagree somewhat	Total	Agree somewhat	Agree	Strongly agree	Total	Undecided
Only people over the age of 70 should stay at home	241	334	93	668 (66.8%)	107	82	50	239 (23.9%)	94 (9.4%)
The restrictions should be upheld in towns and cities, but not rural areas	229	365	136	730 (73.0%)	125	48	18	191 (19.1%)	80 (8.0%)
Restrictions should not be lifted in the regions, where more people are infected and the imposed restrictions should be lifted in other areas where less number of people are infected.	83	168	107	358 (35.8%)	261	201	88	550 (54.9%)	93 (9.3%)
Current restrictions should not be lifted, even beyond May	62	116	126	304 (30.4%)	219	208	126	553 (55.2%)	144 (14.4%)
Everyone should be obligated to wear a mask in public	30	40	29	99 (9.9%)	133	328	375	836 (83.5%)	66 (6.6%)
Obligatory mass testing is an acceptable way to identify infected persons	33	42	36	111 (11.1%)	126	352	298	776 (77.5%)	114 (11.4%)
I will continue to live up to restrictions, even if they are no longer formal recommendations	22	44	27	93 (9.3%)	183	361	269	813 (81.2%)	95 (9.5%)
Table 22
Opinions on policies of reopening the country against basic demographics

Variable	Below 30	30 and above	Total	District	Agree	Only people over the age of 70 should stay at home
Age	583	225	668	229	439	668
Education	239	163	305	76	239	86
Occupation	315	239	813	76	239	84
Health care worker	315	239	813	76	239	84
Total	907	813	174	239	239	907
Chi square	1.226	.486	.029	2.175	.011	2.175
Restrictions should be upheld in urban but not in rural	Disagree	237	730	701	730	655
Agree	113	78	191	107	191	176
Total	318	236	40	163	163	113
Chi square	10.729	.001	1.066	2.140	.144	2.140
Current restrictions should not be lifted beyond May	Disagree	358	550	346	550	40
Agree	361	189	553	373	553	493
Total	721	738	553	373	553	493
Chi square	.718	.007	.011	3.422	.064	3.422
Obligated to wear a mask in public	Disagree	54	45	99	99	99
Agree	554	282	836	281	836	753
Total	558	299	857	289	857	773
Chi square	8.057	.327	.164	4.208	.040	4.208
Obligatory mass testing to identify infected people	Disagree	67	111	111	111	10
Agree	508	268	776	272	776	76
Total	575	312	887	306	887	887
Chi square	1.109	.359	.794	.068	.794	.068
Continue to live up to restrictions even they are up lifted	Disagree	64	93	31	93	10
Agree	526	287	813	278	813	84
Total	590	320	1113	339	1113	1113
Chi square	1.109	.359	.794	.068	.794	.068

Bold values = p < 0.005, Disagree = Strongly disagree + Disagree + Somewhat disagree,
Agree = Strongly agree + Agree + Somewhat agree.
J. Stigma

Majority (78.9%) of our study population did not consider contracting COVID-19 virus as stigmatizing (Fig. 16). There was no significant association between the stigma of COVID-19 and the selected variables (Table 23). Out of the total population, only 823 (82.22%) have indicated their basis for stigma (Fig. 17).

Variable	Age	District	Education	Occupation							
	Below 30	30 and above	Total	High risk	Low risk	Total	School education only	Above school education	Total	Health care worker	Other
Total	590 (100.0%)	316 (100.0%)	906 (100.0%)	309 (100.0%)	597 (100.0%)	906 (100.0%)	94 (100.0%)	812 (100.0%)	906 (100.0%)	315 (100.0%)	591 (100.0%)
Chi square	.623 (.430)	.028 (.868)	.016 (.900)	3.105 (.078)							

Bold values = p < 0.005, Disagree = Strongly disagree + Disagree + Somewhat disagree,
Agree = Strongly agree + Agree + Somewhat agree.

K. Behaviours

The behaviours our population practiced most were the ones in relation to avoiding unnecessary contact with others and the majority (> 70%) have claimed that they were not interested or engaged in panic buying behaviours. The least common (3.69%) behaviour was “drinking alcohol more than usual” (Fig. 18).

The people below 30 years avoided family and friends and also blocked contact of the children with their friends to a significant level when compared with above 30 years participants (Table 24).
Table 24
Behaviours practiced in relation to COVID 19 against basic demographics

Variable	Age	District	Education	Occupation
Bought food supplies on a large scale	Below	30 and above	Total	High risk
	25	80	104	303
	30.1%	30.0%	30.0%	30.0%
Not done or planned	199	104	303	104
	(69.9%)	(30.6%)	(30.0%)	(30.5%)
Chi Square	0.013 (.910)	0.027 (870)	0.777 (.387)	0.948 (330)
Bought other everyday things on a large scale	Already	30 and	Total	School education
	done or	planned	104	only
	246	301	341	660
	(24.6%)	(100.0%)	(100.0%)	(100.0%)
Not done or planned	164	246	497	278
	(24.8%)	(100.0%)	(75.2%)	(26.3%)
Chi Square	0.013 (30.6%)	0.101 (910)	0.777 (387)	0.948 (330)
Bought medicines on a large scale	Already	30 and	Total	Above school
	done or	planned	246	education
	293	246	293	684
	(29.3%)	(100.0%)	(29.3%)	(75.4%)
Not done or planned	497	293	755	575
	(75.2%)	(100.0%)	(75.4%)	(75.4%)
Chi Square	0.047 (.556)	0.047 (870)	0.777 (387)	0.948 (330)
Bought personal protective equipment	Already	30 and	Total	Health care
	done or	planned	265	worker
	160	265	102	235
	(24.2%)	(26.5%)	(29.9%)	(25.9%)
Not done or planned	501	736	497	671
	(75.8%)	(73.5%)	(75.3%)	(74.1%)
Chi Square	4.955 (026)	4.395 (848)	0.037 (848)	0.830 (362)
Avoided people who have come from countries	Already	30 and	Total	Other
where coronavirus cases have occurred, such	done or	planned	246	235
as China or Italy	431	235	636	216
	(65.2%)	(63.5%)	(63.5%)	(61.5%)
Not done or planned	501	736	497	671
	(75.8%)	(73.5%)	(75.3%)	(74.1%)
Chi Square	5.142 (023)	3.141 (076)	1.406 (236)	0.546 (460)

Note: Bold values = (p < 0.005), Already done or planned = I already did that + I plan to do that, Not done or not planned = I don't plan.
Variable	Age	District	Education	Occupation								
	Below 30	30 and above	Total	High risk	Low risk	Total	School education only	Above school education	Total	Health care worker	Other	
Not done or not planned	230 (34.8%)	135 (39.7%)	365 (36.5%)	123 (36.1%)	242 (36.7%)	365 (36.5%)	34 (35.8%)	331 (36.5%)	365 (36.5%)	135 (38.5%)	230 (35.5%)	
Total	661 (100.0%)	341 (100.0%)	1001 (100.0%)	660 (100.0%)	1001 (100.0%)	906 (100.0%)	1001 (100.0%)	351 (100.0%)	650 (100.0%)			
Chi Square	2.336 (126)	.035 (853)	.021 (886)	.931 (334)								
Exercised less	Already done or planned	187 (28.3%)	292 (29.2%)	106 (31.1%)	186 (28.2%)	292 (29.2%)	25 (26.3%)	267 (29.5%)	292 (29.2%)	94 (26.8%)	198 (30.1%)	
Not done or not planned	474 (71.7%)	235 (69.1%)	709 (70.8%)	235 (68.9%)	474 (71.8%)	709 (70.8%)	70 (73.7%)	639 (70.5%)	709 (70.8%)	257 (73.2%)	452 (69.1%)	
Total	661 (100.0%)	341 (100.0%)	1001 (100.0%)	660 (100.0%)	1001 (100.0%)	906 (100.0%)	1001 (100.0%)	351 (100.0%)	650 (100.0%)			
Chi Square	.730 (393)	.917 (338)	.414 (520)	1.495 (221)								
Drank more alcohol than usually do	Already done or planned	63 (9.5%)	22 (6.5%)	85 (8.5%)	21 (6.2%)	64 (9.7%)	85 (8.5%)	8 (8.4%)	77 (88.5%)	85 (8.5%)	28 (8.0%)	57 (8.8%)
Not done or not planned	598 (90.5%)	318 (93.5%)	916 (91.5%)	320 (93.8%)	596 (90.3%)	916 (91.5%)	87 (91.6%)	889 (91.5%)	916 (91.5%)	323 (92.0%)	593 (91.1%)	
Total	661 (100.0%)	341 (100.0%)	1001 (100.0%)	660 (100.0%)	1001 (100.0%)	906 (100.0%)	1001 (100.0%)	351 (100.0%)	650 (100.0%)			
Chi Square	2.706 (100)	3.623 (057)	.001 (979)	.184 (668)								
Ate more unhealthy food than usually do	Already done or planned	121 (18.3%)	71 (20.9%)	192 (19.2%)	55 (16.1%)	137 (20.8%)	192 (19.2%)	22 (23.2%)	170 (18.8%)	192 (19.2%)	71 (20.2%)	121 (18.1%)
Not done or not planned	540 (81.7%)	269 (79.1%)	809 (80.8%)	286 (83.9%)	523 (79.2%)	809 (80.8%)	73 (76.8%)	736 (81.2%)	809 (80.8%)	280 (79.8%)	529 (81.1%)	
Total	661 (100.0%)	341 (100.0%)	1001 (100.0%)	660 (100.0%)	1001 (100.0%)	906 (100.0%)	1001 (100.0%)	351 (100.0%)	650 (100.0%)			
Chi Square	.962 (327)	3.107 (078)	1.071 (301)	.382 (536)								
Avoided going to the doctor with issues that could be postponed	Already done or planned	361 (54.6%)	207 (60.9%)	568 (56.7%)	196 (57.5%)	372 (56.4%)	568 (56.7%)	48 (50.5%)	520 (57.4%)	568 (56.7%)	209 (59.5%)	359 (55.5%)
Not done or not planned	300 (45.4%)	133 (39.1%)	433 (43.3%)	145 (42.5%)	288 (43.6%)	433 (43.3%)	47 (49.5%)	386 (42.6%)	433 (43.3%)	142 (40.5%)	291 (44.5%)	
Total	661 (100.0%)	341 (100.0%)	1001 (100.0%)	660 (100.0%)	1001 (100.0%)	906 (100.0%)	1001 (100.0%)	351 (100.0%)	650 (100.0%)			
Chi Square	3.594 (058)	.114 (736)	1.653 (199)	1.728 (189)								
Avoided visiting family even when did not have symptoms of disease	Already done or planned	441 (66.7%)	259 (76.2%)	700 (69.9%)	225 (66.0%)	475 (72.0%)	700 (69.9%)	67 (70.5%)	633 (69.9%)	700 (69.9%)	233 (66.4%)	467 (71.1%)
Not done or not planned	220 (33.3%)	81 (23.8%)	301 (30.1%)	116 (34.0%)	185 (28.0%)	301 (30.1%)	28 (29.5%)	273 (30.1%)	301 (30.1%)	118 (33.6%)	183 (28.9%)	
Total	661 (100.0%)	341 (100.0%)	1001 (100.0%)	660 (100.0%)	1001 (100.0%)	906 (100.0%)	1001 (100.0%)	351 (100.0%)	650 (100.0%)			

Bold values = (p < 0.005), Already done or planned = I already did that + I plan to do that,
Not done or not planned = I don't plan.
Variable	Age	District	Education	Occupation							
	Below 30	30 and above	Total	High risk	Low risk	Total	School education only	Above school education	Total	Health care worker	Other
Chi Square	9.554 (.002)										
Asked family members or friends not to visit											
Already done or planned	403 (61.0%)	242 (71.2%)	645 (64.4%)	213 (62.5%)	432 (65.5%)	645 (64.4%)	63 (66.3%)	582 (64.2%)	645 (64.4%)	213 (60.7%)	432 (66.6%)
Not done or not planned	258 (39.0%)	98 (28.8%)	356 (35.6%)	128 (37.5%)	228 (34.5%)	356 (35.6%)	32 (33.7%)	324 (35.8%)	356 (35.6%)	138 (39.3%)	218 (33.3%)
Total	661 (100.0%)	340 (100.0%)	1001 (100.0%)	341 (100.0%)	660 (100.0%)	1001 (100.0%)	95 (100.0%)	906 (100.0%)	1001 (100.0%)	351 (100.0%)	650 (100.0%)
Chi Square	10.210 (.001)										
Decided that child could not meet with a friend											
Already done or planned	285 (43.1%)	202 (59.4%)	487 (48.7%)	162 (47.5%)	325 (49.2%)	487 (48.7%)	51 (53.7%)	436 (48.1%)	487 (48.7%)	164 (46.7%)	323 (49.7%)
Not done or not planned	376 (56.9%)	138 (40.6%)	514 (51.3%)	179 (52.5%)	335 (50.8%)	514 (51.3%)	44 (46.3%)	470 (51.9%)	514 (51.3%)	187 (53.3%)	327 (50.3%)
Total	661 (100.0%)	340 (100.0%)	1001 (100.0%)	341 (100.0%)	660 (100.0%)	1001 (100.0%)	95 (100.0%)	906 (100.0%)	1001 (100.0%)	351 (100.0%)	650 (100.0%)
Chi Square	23.864 (.000)										
Bold values = (p < 0.005), Already done or planned = I already did that + I plan to do that,											
Not done or not planned = I don’t plan.											

L. Worry and fears

The highest number of participants (85.1%) were worried about the wellbeing of their loved ones during the pandemic. Not being able to participate in social events was the least represented worry (41.8%) (Table 25).
Participants below 30 years were significantly worried about the government not disclosing some information to the public, the closure of universities and higher educational centres and not being able to pay their bills when compared to their older counterparts. The above 30 age group was significantly worried about limited freedom of movement and missing out on vacation opportunities. The worry about closure of universities and higher education centres was significantly higher in participants who lived in low-risk districts compared to high-risk districts. The non HCW had significantly worried about becoming unemployed and not being able to pay their bills than the HCW. The thought of having to defend a decision not to participate in a social event with family or friends has caused significant worry in participants who are less than 30 years, than in the above 30 participants (Table 26).

Worry	Don't worry at all	Don't worry	Don't worry much	Total	Somewhat worry	Worry	Worry a lot	Total	Undecided
Losing someone I love	68	42	66	176 (17.6%)	142	201	401	744	81 (8.0%)
Health system being overloaded	30	40	39	109 (10.9%)	206	350	249	805	87 (8.7%)
Government taking care of not disclosing some information to the public.	37	40	63	140 (14.0%)	259	276	162	697	164 (16.4%)
My mental well being	80	86	117	283 (28.3%)	230	243	142	615	103 (10.3%)
My physical well being	62	79	101	242 (24.2%)	245	277	159	681	78 (7.8%)
The wellbeing of my loved ones	30	34	46	110 (11.0%)	204	320	328	852	39 (3.9%)
Inability to feed my family properly	92	85	109	286 (28.6%)	180	211	168	559	156 (15.6%)
Limited freedom of movement	106	108	139	353 (35.3%)	266	197	96	559	89 (8.9%)
Missing out on vacation opportunities	147	112	138	397 (39.7%)	241	156	101	498	106 (10.6%)
The closure of schools	142	95	127	364 (36.4%)	222	150	83	455	182 (18.2%)
The closure of universities and higher education centres.	121	69	102	292 (29.2%)	214	210	176	600	109 (10.9%)
Small companies running out of business	55	39	72	166 (16.6%)	266	286	143	695	140 (14.0%)
Economic recession in my country	37	35	47	119 (11.9%)	228	340	229	797	85 (8.5%)
Restricted access to food supplies	42	47	69	158 (15.8%)	273	325	152	750	93 (9.3%)
Becoming unemployed	95	72	88	255 (25.5%)	179	244	197	620	126 (12.6%)
Not being able to pay my bills	118	104	103	325 (32.5%)	205	193	133	531	145 (14.5%)
Not be able to visit people who depend on me	91	93	84	268 (26.8%)	216	213	128	557	176 (17.6%)
Having to defend a decision not to participate in a social event which my family or friends expect me to attend	197	116	108	421 (42.1%)	179	154	85	418	162 (16.2%)

Do not worry = Don't worry at all + Don't worry + don't worry much, Worry = Worry a lot + Worry + Somewhat worry
Variable	Age	District	Education	Occupation
		Below 30	30 and above	Total
Losing someone love	Do not worry	118 (19.5%)	176 (19.1%)	294 (15.8%)
Worry	486 (80.5%)	258 (81.6%)	744 (80.9%)	1.270 (260)
Total	604 (100.0%)	316 (100.0%)	920 (100.0%)	1.666 (197)
Chi square	.184 (.665)	.294 (.587)	1.270 (.260)	1.666 (.197)
Health system being overloaded	Do not worry	75 (12.5%)	109 (11.9%)	176 (11.0%)
Worry	526 (87.5%)	279 (89.1%)	805 (88.1%)	296 (81.6%)
Total	601 (100.0%)	313 (100.0%)	914 (100.0%)	591 (100.0%)
Chi square	.512 (.474)	.030 (.863)	.271 (.602)	6.049 (.014)
Government taking care of not disclosing some information to the public	Do not worry	72 (13.1%)	140 (16.7%)	212 (15.0%)
Worry	476 (86.9%)	221 (76.5%)	697 (83.3%)	229 (81.2%)
Total	548 (100.0%)	289 (100.0%)	837 (100.0%)	555 (100.0%)
Chi square	14.667 (1000)	.052 (.819)	1.066 (.302)	1.306 (.252)
mental wellbeing	Do not worry	169 (28.7%)	100 (32.3%)	269 (20.2%)
Worry	419 (71.3%)	196 (67.7%)	615 (68.5%)	202 (79.8%)
Total	588 (100.0%)	310 (100.0%)	898 (100.0%)	587 (100.0%)
Chi square	6.068 (.014)	.121 (.728)	2.774 (.216)	2.753 (.097)
physical wellbeing	Do not worry	156 (25.8%)	83 (26.2%)	239 (18.4%)
Worry	448 (74.2%)	233 (73.0%)	681 (73.8%)	451 (74.9)
Total	604 (100.0%)	319 (100.0%)	923 (100.0%)	602 (100.0%)
Chi square	.138 (.710)	.020 (.887)	3.458 (.636)	1.154 (.283)
wellbeing of loved ones	Do not worry	71 (11.2%)	110 (11.4%)	181 (11.6%)
Worry	561 (88.8%)	291 (88.2%)	852 (88.6%)	832 (88.2%)
Total	632 (100.0%)	330 (100.0%)	962 (100.0%)	624 (100.0%)
Chi square	.073 (.787)	.433 (.511)	.816 (.366)	.973 (.324)
Inability to feed my family properly	Do not worry	177 (33.0%)	286 (33.8%)	286 (33.8%)
Worry	561 (88.8%)	291 (88.2%)	852 (88.6%)	832 (88.2%)
Total	632 (100.0%)	330 (100.0%)	962 (100.0%)	624 (100.0%)
Chi square	.073 (.787)	.433 (.511)	.816 (.366)	.973 (.324)

Bold values = (p < 0.005), Do not worry = Don't worry at all + Don't worry + don't worry much, Worry = Worry a lot + Worry + Somewhat worry.
Variable	Below 30	30 and above	Total	District	District	School education only	Above school education	Total	Occupation	Health care worker	Other
Age	563	309	845	295	550	845	77	768	845	293	552
	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)
School	.703	(.402)	426	292	520	369	1.053	(.305)	803	183	89
										(100.0%)	(100.0%)
Missing out on vacation	9.080	(.003)	580	315	895	599	225	(.007)	126.722	279	65.6
opportunities	(39.1%)		(100.0%)	(100.0%)	(100.0%)	(54.0%)	(54.0%)			(100.0%)	(100.0%)
Worry											
The closure of schools	18.190	(.000)	521	298	819	539	819	85	734	282	537
	(189)	(.000)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)
The closure of universities	.918	(.338)	634	140	224	364	364	35	329	131	233
and higher education centres		(44.4%)	(50.0%)	(50.0%)	(50.0%)	(44.4%)	(44.4%)	(41.2%)	(90.4%)	(46.5%)	(43.4%)
Worry											
Small companies running out of	19.304	(.000)	549	312	861	589	892	89	803	310	582
business	(739)	(.002)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)
Chi square											
Economic recession in my country	2.706	(.100)	.079	.779	.407	.074	.074				
Do not worry											
Worry											
Total	597	319	916	318	598	916	88	828	916	317	599
	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)
Chi square	.254	(.614)	.308	.579	.733	.060	.060				

Bold values = (p < 0.005), Do not worry = Don’t worry at all + Don’t worry + don’t worry much, Worry = Worry a lot + Worry + Somewhat worry.
M. Confusions and rumours

We considered 4 widely discussed areas of probable confusion in the time of the study and found the clarity in each area was more than the confusion (Fig. 19). There was no significant association between the confusions and basic demographics (Table 27).
Table 27
Confusions about the information on COVID-19 against basic demographics

Variable	Age	District	Education	Occupation								
	Below 30	30 and above	Total	High risk	Low risk	Total	School education only	Above school education	Total	Health care worker	Other	
Whether or not to wear a face mask in public places	Yes	168 (25.4%)	100 (29.4%)	268 (26.8%)	91 (26.7%)	177 (26.8%)	268 (26.8%)	19 (20.0%)	249 (27.5%)	268 (26.8%)	99 (28.2%)	169 (26.0%)
	No	493 (74.6%)	240 (70.6%)	733 (73.2%)	250 (73.3%)	483 (73.2%)	733 (73.2%)	76 (80.0%)	657 (72.5%)	733 (73.2%)	252 (71.8%)	481 (74.0%)
Total	661 (100.0%)	340 (100.0%)	1001 (100.0%)	341 (100.0%)	660 (100.0%)	1001 (100.0%)	95 (100.0%)	906 (100.0%)	1001 (100.0%)	351 (100.0%)	650 (100.0%)	
Chi square	1.828 (.176)	.002 (.964)	2.456 (.117)	.565 (.452)								
Whether or not steam inhalation is a good treatment option	Yes	259 (39.2%)	112 (32.9%)	371 (37.1%)	123 (36.1%)	248 (37.6%)	371 (37.1%)	34 (35.8%)	337 (37.2%)	371 (37.1%)	122 (34.8%)	249 (38.3%)
	No	402 (60.8%)	228 (67.1%)	630 (62.9%)	218 (63.9%)	412 (62.4%)	630 (62.9%)	61 (64.2%)	569 (62.8%)	630 (62.9%)	229 (65.2%)	401 (61.7%)
Total	661 (100.0%)	340 (100.0%)	1001 (100.0%)	341 (100.0%)	660 (100.0%)	1001 (100.0%)	95 (100.0%)	906 (100.0%)	1001 (100.0%)	351 (100.0%)	650 (100.0%)	
Chi square	3.750 (.053)	.218 (.640)	.073 (.787)	1.231 (.267)								
Whether or not herbal drinks like coriander are good treatment options	Yes	272 (41.1%)	112 (32.9%)	384 (38.4%)	125 (36.7%)	259 (39.2%)	384 (38.4%)	36 (37.9%)	348 (38.4%)	384 (38.4%)	135 (38.5%)	249 (38.3%)
	No	389 (58.9%)	228 (67.1%)	617 (61.6%)	216 (63.3%)	401 (60.8%)	617 (61.6%)	59 (62.1%)	558 (61.6%)	617 (61.6%)	216 (61.5%)	401 (61.7%)
Total	661 (100.0%)	340 (100.0%)	1001 (100.0%)	341 (100.0%)	660 (100.0%)	1001 (100.0%)	95 (100.0%)	906 (100.0%)	1001 (100.0%)	351 (100.0%)	650 (100.0%)	
Chi square	6.398 (.011)	.636 (.425)	.010 (.922)	.002 (.962)								
Whether or not drinking hot water and tea would protect from novel Corona virus.	Yes	261 (39.5%)	118 (34.7%)	379 (37.9%)	117 (34.3%)	262 (39.7%)	379 (37.9%)	36 (37.9%)	343 (37.9%)	379 (37.9%)	120 (34.2%)	259 (39.8%)
	No	400 (60.5%)	222 (65.3%)	622 (62.1%)	224 (65.7%)	398 (60.3%)	622 (62.1%)	59 (62.1%)	563 (62.1%)	622 (62.1%)	231 (65.8%)	391 (60.2%)
Total	661 (100.0%)	340 (100.0%)	1001 (100.0%)	341 (100.0%)	660 (100.0%)	1001 (100.0%)	95 (100.0%)	906 (100.0%)	1001 (100.0%)	351 (100.0%)	650 (100.0%)	
Chi square	2.180 (.140)	2.772 (.096)	.000 (.995)	3.101 (.078)								

Statistical significance = p < 0.005

N. Probability and severity perception on cough cold and fever Vs probability and severity perception on COVID-19

The 57.34% of the study population thought it is likely for them to get infected with an episode of cough, cold and fever while 50.9 % who perceived it is likely to get infected with COVID-19. (Fig. 20) A fraction of 35.6% of the participants had perceived an episode of cough, cold and fever as severe whereas 40.3 % thought of COVID-19 as severe (Fig. 21).
The belief of the probability of getting infected with cough, cold and fever is statistically significant in HCW and those with chronic illnesses (Table 28). The perceived severity of getting infected with the same is also significantly higher in participants with chronic illnesses than participants who are not (Table 29). When compared with the probability and severity perceptions of cough cold and fever episode Vs the probability and severity perceptions of COVID-19 infection (Table 30) it was found our population considered COVID-19 to be more severe than common cold. However, they perceived that they are more susceptible to common cold compared to the COVID-19. Both of these differences are statistically significant.

Table 28
Perception of the probability of contracting an episode of cough cold and fever against basic demographics and the presence of a chronic illness

Variable	Age	Occupation	Presence of a chronic illness							
	Below 30	30 and above	Total	Health care worker	Other	Total	Known	Not known	Total	
Probability of getting infected with cough cold and fever	Unlikely	207 (35.3%)	114 (36.9%)	321 (35.9%)	83 (26.2%)	238 (41.2%)	321 (35.9%)	18 (18.9%)	303 (37.9%)	321 (35.9%)
	Likely	379 (64.7%)	195 (63.1%)	574 (64.1%)	234 (73.8%)	340 (58.8%)	574 (64.1%)	77 (81.1%)	497 (62.1%)	574 (64.1%)
Total		586 (100.0%)	309 (100.0%)	895 (100.0%)	317 (100.0%)	578 (100.0%)	895 (100.0%)	95 (100.0%)	800 (100.0%)	895 (100.0%)
Chi square	.217 (.642)	20.008 (.000)	13.226 (.000)							

Bold values = (p < 0.005), Unlikely = Extremely unlikely + Unlikely + Somewhat unlikely, Likely = Extremely likely + Likely + Somewhat likely.

Table 29
Perception of the Severity of an episode of cough cold and fever against basic demographics and the presence of a chronic illness

Variable	Age	Occupation	Presence of a chronic illness							
	Below 30	30 and above	Total	Health care worker	Other	Total	Known	Not known	Total	
The severity of an episode of cough cold and fever	Not severe	252 (50.4%)	163 (60.1%)	415 (53.8%)	130 (50.6%)	285 (54.9%)	415 (53.8%)	29 (32.6%)	386 (56.6%)	415 (53.8%)
	Severe	248 (49.6%)	108 (39.9%)	356 (46.2%)	127 (49.4%)	229 (44.1%)	356 (46.2%)	60 (67.4%)	296 (43.4%)	356 (46.2%)
Total		500 (100.0%)	271 (100.0%)	771 (100.0%)	257 (100.0%)	519 (100.0%)	771 (100.0%)	89 (100.0%)	682 (100.0%)	771 (100.0%)
Chi square	6.719 (.010)	1.631 (.202)	18.267 (.000)							

Bold values = (p < 0.005), Severe = Very severe + Severe + Less severe, Not severe = Not severe at all + Not severe + Very mild disease.

Table 30
Associations between the susceptibility perceptions and severity perceptions of Cough cold and fever Vs COVID-19

Variable	Mean (SD)	Median (IQR)	P value (Related Sample – Wilcoxon Signed Rank Test)
Expected Susceptibility			
COVID-19	4.13 (1.539)	5 (3–5)	0.000
Common Cold	4.35 (1.543)	5 (4–5)	
Expected Severity			
COVID-19	4.51 (1.247)	4 (3–5)	0.000
Common Cold	3.78 (1.542)	4 (2–5)	

Discussion

We aimed at a sample size of at least 1000 as it is a recommended number for surveys of large size populations to make the sample as representative as possible of the country’s population [12]. The precision of estimates of surveys only increases very slightly beyond a sample size of 1000 and costs of inviting more than 1000 participants may exceed the statistical benefits [13].

The study was conducted 8–10 weeks, into the pandemic during the first wave of the COVID-19 in SL. By the time SL has been ranked 9th best country in the world for its successful immediate response on managing the virus [14]. With the medical and academic background of the authors it was expected more HCW, particularly the medical undergraduates and doctors to take the questionnaire and such a bias was one of the major concerns’ authors had initially. However, the sample had more non HCW with the non HCW: HCW ratio being 1.86:1. Colombo, Gampaha, Kurunegala and Kandy were represented more and it could be because they are highly populated districts [15] and also the research team has a higher contact base in them.
The majority of the participants perceived them (80.63%) and their immediate environment (76.53%) were free of the risk of the infection. That may be a reflection of the safer outbreak status of the country at the time or blissful unawareness or psychological denial in at least a few. It could also be that the study group possibly came from a higher socio-economic background with less congestion and more people compliant with preventive measures which lead to feel safe. However, it is noteworthy that 19.08% and 16.28% of participants were not sure whether they themselves were infected or anybody else in their immediate environment was infected, respectively. This response can be a result of the knowledge about the higher possibility of asymptomatic/less symptomatic cases and they probably lived with some uncertainty and related anxiety. Such anxiety can be alleviated if they are informed that kind-of disease patterns, which is the presentation of the majority are less harmful.

A percentage as high as 83.3% was having good confidence in their overall knowledge on prevention irrespective of their differences in socio-demographic characteristics. This positive response could be due to a certain degree of social desirability bias too. A high majority have shown a good knowledge about the common symptoms of the infection (Fig. 4) and this may reflect the success of the health messages disseminated in the country and or the knowledgeability of the study population; They could have educated themselves from online sources. It was expected to find HCW and the more educated to have fared better on knowledge on preventive measures but there were no demographic boundaries. HCW, however, identified individual symptoms of COVID-19 which were given less publicity on media better than non-HCW probably because they have more exposure to actual patients as only designated health institutions were accepting COVID patients. They also possibly learnt on the job and / or by consulting scientific literature on details of the COVID-19 as a necessity of the job. It was notable that a small percentage seem to believe there is a drug and /or a vaccine available against the COVID-19 infection. There were some media reports on the effectiveness of chloroquine against the virus and how some local as well as world leaders promoted the drug during the period of data collection. The hydroxychloroquine arm of the “Solidarity trial” was removed by health authorities since there was no significant difference of mortality and morbidity compared to the standard care on 17th of June [16]. The confusion must have sprung from such intermittent reports on various treatment trials. There was some debate and unclarity regarding the exact incubation period with some research having shown it as 21 days. For example, the incubation period was found to be longer in older adults [17]. Although there were slight differences in evidence, the accepted incubation period by WHO was up to 14 days at the time of the study. [18],[19].

About half of our study population was thinking there is some self-susceptibility to the COVID-19 infection. It is understandable that the relatively more mature participants and HCW found the probability of them getting infected is significantly higher. There was no significant association between the probability of self susceptibility perception and the presence of a chronic illness. Probability of infection is found to have association with chronic kidney disease and Diabetes mellitus only [20] (Table 3).

There was an alarming media hype where Chinese patients seemingly dropped dead in the streets at the initial stages of the COVID-19. The media was blamed for fuelling panic and anxiety about the disease [21]. Yet it is interesting to see close to half of our population is inconclusive about the severity (Fig. 7). The fact that there is a significant association between the severity perception and having a chronic disease indicates, that particular health message was delivered to them quite successfully (Table 4) [22]. Despite substantial variability across cultures, individualistic worldviews, personal experience, prosocial values, and social amplification through friends and family are significant determinants of risk perception in a multi country study and risk perception correlated significantly with reported adoption of preventative health behaviours [23].

Our population, in general, was highly confident in the ability to protect themselves and highly compliant with health recommendations. The recommendations were followed irrespective of the differences in their basic demographics. The scientifically unproven methods such as sprinkling of turmeric water and use of “perumkayan” (Asafoetida) which is practiced by some in-Sri Lankan culture were not popular among the study group (Table 5). The younger (< 30 years) participants used more herbal supplements compared to the above 30 group as a preventive measure. It is possible their elders offered traditionally popular herbal supplements such as coriander to younger during the lockdown periods which could have influenced the response of younger participants or this may be a result of the developing nationalist ideas mainly among the youth, globally [24]. Non HCW also used herbal supplements significantly more than their HCW counterparts. The HCW participants are probably employed in the western medicine fields rather than the non-western health care fields such as Ayurveda. The participants who are younger, more educated and belonging to the HCW category disinfected the mobile phones more compared to older, less educated and non HCW respectively. Mobile phone use may be higher in the first group with resultant higher risk perception of phones being contaminated and the behaviour of disinfecting them.

We inquired about coping with, not seeing family and friends. Sri Lanka being a collectivistic society, individual members often perceive themselves to be members of their ethnic, religious or linguistic group rather than individual and autonomous beings [25]. Claimed it can be done by understanding the need and respecting the recommendation to limit traveling. The authors have first-hand experience where the HCW not visiting their elderly parents and children but living separately to protect them from the infection.

The majority of the participants came up with understandable responses on exploring the effect of COVID-19 on the individuals’ affect. However, it is interesting to see some, after all the wide spread knowledge to the contrary, believed the virus is spreading slowly. This shows the importance of reiterating the health messages in health education. The majority did not feel helpless and that may be due to the fact that SL has managed to contain the spread of the virus in the country successfully during the time of the study. One participant, a specialist colleague in public health, has criticized the response “close to me” in the questionnaire via personal communication (Fig. 11). The response came from the original mother study in Germany. We acknowledge that the use of the phrase in relation to a “deadly” virus is difficult to fathom in our culture. Sri Lankans use the phrase “close to me” to denote something dear to heart, not to an entity such as COVID-19 virus. Therefore, we wonder how the participants saw and processed the question. HCW category however, have a significant association with the feeling of the “virus being close to them”, it could be they took the question in a more western context.

Only a 22.3% of the population had a good trust towards social media (e.g., Facebook, Twitter, YouTube, WhatsApp, Viber) despite the widespread use of them in the country with Facebook topping the list with 80.16% of Sri Lankans using the platform [26]. Maybe people use social media for pleasure and socio-
political reasons and not as a trustworthy source of information. The newspapers and radio stations were not popular, either. This may be a reflection of an important shift in information seeking patterns in SL, with wider spread internet access, increasing electronic platforms disseminating information. The participants less than 30 years had a significantly higher trust in the private television channels compared to older group. It will be fascinating to explore in a qualitative approach whether they are ignorant, gullible or having some other driving force in order to have trusted private channels more compared to the older participants. It is common knowledge that the main private television channels are run by the owners from the two main political camps in the country and it is possible the trust on them was influenced by the political views of the participants.

The information stated as most needed were those concerned with the disease itself; it’s severity, treatment and prevention at country’s level as well as personal level. This concern in our population may reflect how the Sri Lankan public was made to attain with the pandemic. It is a little surprising to see the participants did not have the need to know about the children’s education as one of the highest needs. Education plays a major part in Sri Lankan culture and most of the Sri Lankan parents live to educate their children to their best. Relatively lower concern could be due to several reasons. The data collection was done fairly early into the outbreak and the worries probably have not started mounting and there were ongoing discussions to reopen the country too, which gave a sense of hope [27]. The teachers, in both the private and government sector, attempted to keep the education process continuing using their personal data and mobile apps in some settings and it must have helped the parents in our study not to worry too much. The population, finding the COVID-19 virus new and dangerous may have concerns over the safety of the children than their education. It is also quite noteworthy our population did not bother much about the personal grooming needs compared to some, for example some US citizens who rebelled against stay-at-home requests highlighting their grooming needs. Some communities apparently used demands on haircuts as a symbol of protest to win their “freedom”. (“operation haircut” at Michigan, USA) [28]. Many Sri Lankans resorted to having haircuts at home by family members and considered it as the norm and the need of the era according to the expressions in social media and that compliance and understanding were represented by our study population too.

We did not explore the behaviour of checking individual data sources, but the overall checking. Majority looked for COVID-19 information more often than not. In the face of stress and anxiety, individuals are often prone to use strategies that are designed to help but proven counterproductive. For example, checking social media frequently for COVID-19 related information can induce stress [29]. While COVID-19 fact checking is a necessity, ensuring there is some checking on checking and engaging in behaviours which help destress are important [30].

We modified the questionnaire to match the local COVID-19 response when assessing the trust in institutions/personnel in their ability to manage the outbreak. Participants having more or less equal overall trust placed on HCW plus professional associations and Police plus military in the battle against COVID-19 in SL, could imply many aspects. Despite many criticisms of authorities for “militarizing” the COVID-19 operation, utilizing the armed forces to control spread by tracking contacts, building quarantine and other health care centres and running quarantine centres paid well to control the first wave of the country. Health sector alone does not have the infrastructure, man power, skills or the means to manage the COVID-19 demands placed on the country. Some operations were technically supervised by content specialist consultants (e.g., epidemiologists) in armed forces. The carefully and strategically planned operations of rescuing the Sri Lankan students in Wuhan, China and Sri Lankan chef from a cruise ship are some extraordinary examples that gained the love as well as trust of the public in the authorities [31],[32].

The affluent Sri Lankan general public will rely on the private sector for ease, comfort and better care yet maybe it is worth exploring why the majority would not trust them in a condition where life and death infection happens.

It is noteworthy that most knew about the two professional colleges, the SL college of community physicians [33]and SL college of psychiatrists [34] (Table 13) with only a small minority such as 12.8 % and 15.4% not knowing the two colleges respectively. We believe the active Facebook pages maintained by the both professional bodies and its members sharing college newsfeeds in their personal social media contributed to the raised awareness of the colleges [35]-[37]. Though the author characteristics may also have contributed to the finding, the knowledge of the two professional bodies among our participants who comprised a non HCW majority shows the potential of practical and convenient platforms such as Facebook for professional bodies to reach out to lay public in health education.

The majority of our population has trusted the newly elected President in his ability to manage the pandemic effectively [38]. Despite the accusations levelled at him by the local and international critiques about employing the military for the outbreak control, the first wave of COVID-19 was successfully managed in the country. The government was also trusted by participants probably because of the trust they had in the president and at the time of the study the parliament was dissolved and the president was managing the situation with his trusted officials, both civil and army. A notable percentage of our population have placed their trust on the ayurvedic council, though not to the extent they trusted the allopathic medical bodies. This insight is important and demands us to utilize the rich ayurvedic heritage and traditional ayurvedic practices in treatment following proper research either singly or in collaboration with western medicine.

SL has four main religions and Theravada Buddhism is the state religion with 70.2% of people being Buddhists. Many religious activities were continuing in mass gatherings and later regulations were brought in prohibiting them [39]. Our study population had comparatively less trust in religious institutes in the ability in managing the outbreak. Those who were educated only up to school level trusted the mosque in its ability to manage COVID-19 more than those who were educated above school level. Although there is a statistically significant association found between lower education levels and believing the mosque as a reliable source of information, stratified analysis was impossible (since we did not collect the race and the religion) to control the confounding effects of the religion and the race.

Our population believes the government university and school system can manage the infection better than the private education institutes. This may be reflecting the trust in the free education providing institutions in the country as opposed to the private educational institutes. The government institutes are under strict regulations and rules and the authorities are responsible and accountable which may be giving the public some sense of security. The private institution probably has the reputation for aiming at more profits gaining than maintaining the quality. Particularly the medical education in SL lies almost
solely in the purview of the government university system and the government sector doctors are trusted and respected in general, in any health emergency. Sri Lanka has proved it possessed considerable but unheralded expertise in managing deadly diseases, having eliminated malaria and polio, grappled successfully with AIDS, SARS, H1N1, Chikungunya and MERS and was substantially containing Dengue. In 2005, the health system avoided the much-anticipated epidemics following the Indian Ocean tsunami. The participants indicated their unwavering trust in the government healthcare system and its products.

Close to 2/3 of people in the study have no confidence in the media in their ability to deal with the virus. This information presents an important take home message for the media authorities in the country. Our population has only 9.5% who are school educated, all others having some post-AL education of varying degree. If the media authorities want to uplift the media conduct to a believable level by the educated public is a question, we researchers pose. We also believe they can contribute to increase the taste and expectations of the not so educated and/or questioning fractions in the community too. The media is a very important stakeholder in disasters to give correct health messages and information without making the public panic. Poor trust in mainstream media can influence people to seek information from unconfirmed sources and then get misled. Lower trust in the media is alarming for both media authorities and health professionals involved in health promotion.

The younger participants have placed trust in some institutions and personnel more than their older counterparts. The professional colleges, medical associations and unarguably the most powerful trade union of the country, GMOA were trusted more significantly by them [40]. It is raising questions whether individuals are more cautious before trusting when they grow older. The difference in occupation health care Vs non health care also exposed some interesting findings with HCW trusting the government allopathic health system while the Non HCW placed significant trust in private and ayurvedic hospitals. The HCW are probably from western medical disciplines and are biased towards the mainstream allopathic government medicine. Ayurveda may have much to offer in standalone or supplementary therapy yet the field needs backing by quality research in order to be recognized by all fractions in a population.

We explored opinions on policies and measures related to covid-19 in SL. The whole country in general was compliant with whatever the health instructions disseminated by the authorities. The general belief of the majority was "One has to live first, to safeguard human rights and respect traditions!". Whoever criticized and questioned the recommendations were scorned on social media and other media as such opposition was considered as an anti-government action, thus politicizing the issue. The concepts such as respecting autonomy and individual rights in relation to COVID-19 management were discussed among some fractions. We believe the highly positive and compliant approach of the study population on the policies and measures taken in the country reflects the country's majority's subservient opinion in general.

Sri Lanka’s primary healthcare system is of high standards [41]. SL takes pride in prevention of communicable diseases by way of its very successful immunization program from birth [42]. The public is quite attuned to immunization programs run by the government health team which include the internationally renowned public health midwives who deliver the bulk of the service door to door [43]. Sri Lankans in general grow up listening to the importance of vaccination to prevent preventable infections and the anti-vaccination theme is almost not heard by an average Sri Lankan. Therefore, as opposed to some nations in the world SL is pro vaccination and the positive response of our study population is a reflection of that.

Avoiding certain people during COVID-19, based on their country of origin has many facets to it. SL has a reputation of being one of the best tourist friendly destinations in the world [44]. However, some fractions were panicking that the tourists would bring the virus to the country and closed the doors to foreigners [45]. The majority deciding it is appropriate to avoid foreigners probably thought prevention is better than cure. We believe that decision is based more on health risks rather than that of any discrimination. In self-preservation, people avoid the stimuli that cause danger and unpleasant sensation such as fear and pain. Thus, one naturally averts from dangerous situations and these responses are mostly instinctive with minimal deliberate control and overreacting is understandable [46].

We asked whether the government should restrict access to the internet and social media in order to stop misinformation and subsequent agitation of the public. It has been a practice to block Facebook for the same purpose following the Easter attack in SL in April 2019 [47]. There is no proof that banning social media is a solution to dissemination of fake news. In fact, authorities can use social media to prevent adverse reactions as social media companies have information about user behaviour patterns that the governments do not have and the third-party researchers have additional information about how information moves across the ecosystem. Combating the spread of misinformation must be a joint effort between the social media companies, governments and individual users [48]. As a strategy, government institutions like health promotion bureau and department of government information entered to the world of social media and became popular among users with high level of post reach and engagement [49],[50]

The participants below 30 years of age agreed significantly for coercive practices employed by the government compared to their older counterparts. The HCW and participants who had more than school education and not the younger participants, have opposed restricting access to internet and social media Thus the questions whether the younger fraction was ready to forgo individual rights/wishes and the HCW and more educated fraction relied on social media and internet more, in the face of the pandemic, arise. These are important insights for delivering health messages and policy making by the authorities in disasters like the COVID-19.

Some showed paranoia and indecisiveness on certain concerns emerged in the world about the pandemic. The majority did not believe China was deliberately placing the world in danger. China is a very close ally of SL to a point of concern in some fractions in SL. Participants below 30 years showed significant paranoia in relation to surveillance of citizens, hidden agendas and secret organizations behind government decisions. Why the below 30 group is more inclined to believe in conspiracies about secret activities and governments spying on them for their social media data are a question worth exploring. This can be due to a personality trait and we have a selection bias since the sample is less representative. A qualitative study would tell whether they are insecure, more knowledgeable or on a lighter note, watch too many American movies!
There was no statistically significant association in relation to facing adversities against the age, living district, educational level and occupation; probably everybody had the same adverse experiences irrespective of their differences in demographics. It is noteworthy that the majority are willing to seek help in experiencing stress related to COVID-19 policies.

Non HCW were strongly of the opinion obligatory mass testing should be carried out upon re opening, compared to HCW. The different knowledge, attitudes and experience between two groups may be the reason for this difference in opinion. Either, even the non-health care fraction was in tune with scientific preventive measures or the HCW perhaps knew more about PCR testing (cost, ability to generate false negative and positive results) and hence the neutral or low opinion of the effectiveness of mass testing.

Exploration of stigma in relation to COVID-19 was one major motive of the study. Stigma is common in relation to race, religion, culture, gender and health. Before COVID-19, there were other illnesses (e.g., Tuberculosis, HIV/AIDS) that carried social stigma, discrimination, and exclusion.[51][52] Stigmatizing language (e.g., “tuberculosis suspect”) that has been criticized by advocates in the past, has been used during the current pandemic too, unfortunately. (e.g., “COVID-19 suspect”). Such judgmental terms influence attitudes and behaviours not only preventing patients from seeking treatment but also influencing the way authorities approach the disease. Research in China shows that the psychological impact of fear of COVID-19 is more dangerous than the disease itself [53]. Fear accentuates social stigma and discrimination. The frontline health care workers worldwide have been discriminated because of fears of transmitting the virus. The breakdown of social support structures such as religious institutes and family and friends, anxiety caused by curfews, many uncertainties around COVID-19 and fear of being infected and also being forced to quarantine has given rise to huge issue of stigma in relation to COVID-19 SL too. The media reports and authority statements gave the impression they are holding the COVID-19 infected people responsible for contracting the virus and the outlook was that of total blame. The involvement of police and military in COVID-19 management in SL pluralized criminalizing the infected. In the early phase of COVID-19 in SL, Sri Lankan media showed an alarming level of breaching privacy of the patients and contacts. Later it was identified as an issue and rectified [54], [55]. Racial and religious minorities were discriminated against in media reporting and there was a huge issue of not allowing the burial of dead bodies of COVID-19 patients in SL which led to deep worries in Muslim community. Another fraction that was discriminated was patients with addictions to substances, they were double stigmatized when they were infected with COVID-19. Media should involve in combating stigma by joining hands with health authorities and more so by way of their conduct. The majority of our study population though reported not believing COVID-19 as stigmatizing, have indicated the basis of stigma. It is possible they were referring to others but not to themselves in the process. People with greater personal resources (income, education, social support) and good mental health have been shown to be less worried and less likely to stigmatize [56]. It is known that education, clear and honest communication and the use of non-discriminatory language have the power to significantly improve the knowledge, attitudes, and behaviours related to COVID-19 and reduce stigma [57]. The majority in our population did not think contracting COVID-19 is stigmatizing, probably they are a comparatively fortunate fraction that shows above protective qualities. Another possible reason could be that they did not feel the full impact of the disease as the pandemic was reasonably well contained in SL during the first wave [58].

Study explored the COVID-19 related behaviours. Epidemics, natural disasters and extraordinary events trigger panic buying in general and during COVID-19 too people resorted to buying excessive amounts of toilet paper, hand sanitizers, dry rations etc. Panic purchases during a public crisis negatively impact social stability, economic orders, company management, and consumer psychology [59]. The need and obligation to protect and care for the family influences the consumer's considerations, family being a social factor that influences consumer decisions related to panic buying behaviour. Anxiety around the uncertainty, personal factors like self-confidence and self-efficacy also contribute to panic behaviours [60],[61]. Consistency in government policies on events such as re opening, giving correct and transparent information, rules restricting buying in bulks and organizing a system to have essentials provided without a break would reduce panic buying. The older method of door to door selling of products like fish, vegetables, milk etc. were revitalized in the country and the social media groups were formed and supported each other in local communities. The authorities promoted the mobile vendors by issuing curfew passes and recommended strict health guidelines to prevent the spread of the virus. Our population's majority (75.4%) that claimed they did not panic buy goods, probably due to some of the personal and societal strengths such as economic stability and supportive environment. Drinking alcohol was marked as a least engaged behaviour in our sample. According to a national survey only 2.4% of females consume alcohol in SL [62] and 57.04% of our sample was females. SL, in general, looks down upon drinking alcoholic beverages and social desirability bias must have come in the marking of the response.

Worries and fears in relation to the pandemic were explored to find more than the personal worries our population was worried about the country's capacity to handle the possible case load. This shows the population we studied were either more farsighted and knowledgeable about the depth of the pandemic or had basic needs of their personal life such as food, lodging and medicine etc. fulfilled during the pandemic or both. Maslow postulated one has to have the basic needs met in order to concentrate on higher order issues [63]. Participants below 30 years of age were significantly worried about the government not disclosing some information to the public. This finding again throws the queries whether the younger population in our study is more mistrusting and questioning and why. The above 30 age group's significant worry about limited freedom of movement and missing out on vacations is probably because they had more responsibilities of employment and providing for the family and they have got used to a life style of taking break from employments respectively. The younger participants were understandably more significantly worried about the closure of universities and higher educational centres. The low-risk district dwelling participants are more concerned about higher education, maybe participants from high-risk districts had more pressing health and basic survival related concerns comparatively. Less than 30, non HCW categories had significant worries about paying their bills. HCW most probably had stable government jobs compared to non HCW. Worries about bill payments may reflect the financial hardships of younger participants and threat to job security in non-healthcare participants. Worries could lead to mental health challenges at the time and in many years to come [64]. Our population worries least about maintaining social life in vivo. Yet the younger participants showed some significant worry about defending a decision not to take part in a social event. The younger the age more the need for social conformity [65]. It is important to consider these behavioural patterns in formulating regulations and punishing rule breakers in the pandemic response in the country.

Majority (above 61%) of our population have no confusion in the tested areas in the study. Health messages in SL were seemingly better grasped by them. Local COVID-19 authorities made sure the masks were mandated when the infection started creating an impact in SL [66]. We could not identify any
We compared probability and severity perceptions on cough, cold and fever (the culturally relatable term for seasonal flu, used in the mother study) and probability and severity perceptions on COVID-19. Our population perceived COVID-19 infection to be more severe than cough, cold and fever. However, probability wise they perceived that they are more susceptible to common cold than to COVID-19. Both of these differences are statistically significant. To our population “catching common cold is easier than catching COVID-19!” This perception was probably because SL did not have to face the full impact of COVID-19 as it was circumscribed to the few clusters and well controlled during the first wave. The risk perception differs between different places, individuals, cultures and subcultures and it is potentially a strong modifier of the epidemic evolution, since it can influence the community spread [67].

The population linked having chronic illnesses to a higher susceptibility to and severity of cough cold and fever (Table 28, Table 29). However, they associated chronic illness to higher severity of COVID-19 but not to higher probability of getting infected with COVID-19 (Table 3, Table 4). It is interesting to find our study population thinking chronic illnesses do not increase the probability of getting COVID-19 but they do increase the probability of getting cough cold and fever. They found HCW to be more susceptible to both conditions than non HCW (Table 3, Table 28). It is an understandable response. The symptom characteristics of the influenza /common cold and COVID-19 are compared in a few studies but there is no work comparing severity and probability perceptions on the two conditions [68].

Conclusion

The study presents a girth of information on the perceptions, behaviours and concerns in relation to the COVID-19 pandemic of a considerably large community sample spread across the country. The majority study population is highly educated and young (less than 40 years), probably had internet access enabling them to seek information from many sources both national and international, did not have to rely on local media for information, and had important and very relevant perceptions and behaviours in relation to the pandemic over all, such as the country’s economy and overloading of the health resources etc. for example. The participants below 30 years of age agreed significantly for coercive practices and believed in conspiracy theories more than the older counterparts. The total population in general was compliant with health recommendations and the majority did not worry about autonomy rights and individual freedom. The knowledge about various aspects of the COVID-19 infection was good in the majority. According to our study the effective risk communication, clear/ transparent policy decisions and responsible/ non stigmatizing and believable media conduct are major areas warranting improvement in COVID-19 management in SL. Thus, the findings offer important messages for the authorities to shape their response to future pandemics as well as the current pandemic and future waves of the same pandemic. Researchers hope to provide local data for international comparisons informing WHO policies and interventions for current and future reactions for the pandemic/s.

Limitations Of The Study

The study using online platform limited the participation of certain important population groups; the elderly, a recognized risk group for COVID-19 and disadvantaged population groups such as ethnic minorities, financially disadvantaged with no internet facilities, individuals who are not used to electronic devices/ internet, young people below 18 years, and other vulnerable groups such as medically ill etc. Phone interviews either alone or as a supplement were suggested by the mother study to be used to mitigate this limitation. However, the lock down, travel restrictions, financial restraints (the study was unfunded) did not allow phone or face to face data collection. Therefore, representativeness of our population of the general population is reduced which in turn affects the generalizability of the study findings. The social benefit of the study may consequently be reduced. The findings of the survey need to be interpreted in this context. Conducting, more tailored and targeted surveys with those specific population groups will be supplementary to the study.

The people who do not have the habit of using the internet for seeking or verifying factual information resort to mainstream media, mainly the television news. While they can have a commendable role to help combat the pandemic [69] the television channels may represent politically biased viewpoints and reporting may not be independent at times [70]. The perceptions, attitudes and behaviours of the viewers could be greatly influenced by those of the TV channels [71]. On one hand our population may not represent the general population because of the specifics of the demography such as 64.7 % having qualifications of a basic degree or above, yet on the other hand that very same specifics offer a tremendous opportunity for the authorities to shape COVID-19 response based on study results as the majority of our participants does not seem to base their thinking and behaviours on what is shown on TV!

In addition, the complexity of the pandemic and crisis and the public response is considerable, and an online survey can only serve to monitor a few key issues - not explore them in-depth. Another limitation of the study is that, while validated for other scales and well-grounded in robust behavioural research, the items in the study tool have not been validated through a rigorous process for COVID-19 specifically. This is due only to the fact that we have never experienced this virus before. Self-reported behaviours are known to differ from actual behaviour, due to the social desirability effect. Finally, as each country needs to adapt the questionnaire, not all data collected with this tool can be compared across countries for future evaluation purposes. The hope is that each country will collect and analyse at least several variables in common that may provide useful insights for cross-country comparisons. Potential risks identified included only the inconvenience of the time taken to respond to the survey. However, given the prevailing restrictions of locomotion people faced, many individuals had more available time for a task like this. The cross-sectional design will not allow the assessment of actual causal relations and will only be snapshots of a current state of the public perceptions and behaviours. To explore the causal relations and also to see the pattern changes in behaviours and perceptions the survey is best conducted repeatedly. For such an intervention, financial and manpower issues need to be resolved via national or international level collaboration.

List Of Abbreviations

WHO - World Health Organization
Declarations

Ethics approval

Approved by Ethics review committee, Faculty of Medicine, University of Peradeniya.
Research project no. 2020/EC/09

Consent for publication

Not applicable as our manuscript contains any individual person's data in any form.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

Self-funded

Authors' contributions

PG developed the protocol and the questionnaire to suit the local setting with SS and TP. SS and TP prepared the google forms in consultations with PG and all three authors published the questionnaire online for data collection. Initial data acquisition and analysis were done by SS and TP under the guidance of PW. The final analysis was done by PW and DT. The manuscript was written mainly by PG with PW and DT contributing. All authors read and approved the final manuscript.

Acknowledgements

Hashir Naufer, Safiyyah Baduruzzaman, Aysha Nazardeen

Authors' information

CV of the principle and the corresponding author is attached with the manuscript

References

1. Uscher-Pines L, Omer SB, Barnett DJ, Burke TA, Balicer RD. Priority Setting for Pandemic Influenza: An Analysis of National Preparedness Plans. *PLoS Med*. 2006;3(10):e436. doi:10.1371/journal.pmed.0030436

2. WHO. *Vaccination and Trust -How Concerns Arise and the Role of Communication in Mitigating Crises*. World Health Organization; 2017. https://www.euro.who.int/en/health-topics/disease-prevention/vaccines-and-immunization/publications/2017/vaccination-and-trust-2017. Accessed November 3, 2020.

3. Glik DC. Risk communication for public health emergencies. *Annu Rev Public Health*. 2007;28:33-54. doi:10.1146/annurev.publhealth.28.021406.144123
4. WHO. WHO / Communicating Risk in Public Health Emergencies. World Health Organization; 2020. http://www.who.int-risk-communication/guidance/download/en/. Accessed November 3, 2020.

5. REYNOLDS B, W. SEEGER M. Crisis and Emergency Risk Communication as an Integrative Model. J Health Commun. 2005;10(1):43-55. doi:10.1080/10810730509094571

6. Sonja A. Rasmussen, Richard A. Goodman, eds. The CDC Field Epidemiology Manual. Oxford University Press; 2018. doi:10.1093/oso/9780190933692.001.0001

7. Reintjes R, Das E, Klemm C, Richards JH, Keßler V, Ahmad A. "Pandemic public health paradox": Time series analysis of the 2009/10 influenza A/H1N1 epidemiology, media attention, risk perception and public reactions in 5 European countries. PLoS One. 2016;11(3). doi:10.1371/journal.pone.0151258

8. Rubin GJ, Amlôt R, Page L, Wessely S. Public perceptions, anxiety, and behaviour change in relation to the swine flu outbreak: Cross sectional telephone survey. BMJ. 2009;339(7713). doi:10.1136/bmj.b2651

9. Carpenter CJ. A meta-analysis of the effectiveness of health belief model variables in predicting behavior. Health Commun. 2010;25(8):661-669. doi:10.1080/10410236.2010.521906

10. WHO/Europe | Coronavirus disease (COVID-19) outbreak - Survey tool and guidance: behavioural insights on COVID-19, 29 July 2020. https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/publications-and-technical-guidance/risk-communication-and-community-engagement/who-tool-for-behavioural-insights-on-covid-19/survey-tool-and-guidance-behavioural-insights-on-covid-19-produced-by-the-who-european-region. Accessed November 3, 2020.

11. Media statement for COVID 19 CCPSL. https://ccpsl.org/wp-content/uploads/2020/03/Media-statement-for-COVID-19-CCPSL-EnglishV2.0-1.pdf. Accessed December 16, 2020.

12. Taherdoost H. Determining Sample Size; How to Calculate Survey Sample Size. Int J Econ Manag Syst. 2017;2. https://papers.ssm.com/abstract=3224205. Accessed November 13, 2020.

13. Chiang I-CA, Jhargiani RS, Price PC. Conducting Surveys. In: Research Methods in Psychology – Simple Book Production. 2nd ed. BCcampus; 2015.

14. Daily Mirror - SL performs well in fighting Coronavirus & ranked 9 in GRID Index. http://www.dailymirror.lk/breaking_news/SL-performs-well-in-fighting-Coronavirus-ranked-9-in-GRID-index/108-186696. Accessed November 13, 2020.

15. POPULATION CHARACTERISTICS - CENSUS OF POPULATION AND HOUSING 2001. Department of Census and Statistics. http://www.statistics.gov.lk/Population/PopHouStat_Population. Accessed November 3, 2020.

16. WHO. Coronavirus disease (COVID-19): Hydroxychloroquine. https://www.who.int/news-room/q-a-detail/q-a-hydroxychloroquine-and-covid-19. Published June 19, 2020. Accessed November 3, 2020.

17. Kong T. Longer incubation period of coronavirus disease 2019 (COVID-19) in older adults. AGING Med. 2020;22(5). doi:10.2196/19556

18. Centers for Disease Control and Prevention. Management of Patients with Confirmed 2019-nCoV | CDC. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html. Published 2020. Accessed November 3, 2020.

19. WHO. Q&As on COVID-19 and related health topics. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub. Accessed November 3, 2020.

20. Rozenfeld Y, Beam J, Maier H, et al. A model of disparities: Risk factors associated with COVID-19 infection. Int J Equity Health. 2020;19(1). doi:10.1186/s12939-020-01242-z

21. Gabrielle Pickard Whitehead. Are coronavirus fears being over-hyped by the media? Chinadaily. https://global.chinadaily.com.cn/a/202003/09/WSe65b96aa31012821727d6e4.html. Published 2020. Accessed November 3, 2020.

22. WHO. United Nations Inter-Agency Task Force on NCDs (UNIATF). https://www.who.int/groups/un-inter-agency-task-force-on-NCDs. Accessed December 16, 2020.

23. Carpenter CJ. A meta-analysis of the effectiveness of health belief model variables in predicting behavior. Health Commun. 2010;25(8):661-669. doi:10.1080/10410236.2010.521906

24. WHO/Europe | Coronavirus disease (COVID-19) outbreak - Survey tool and guidance: behavioural insights on COVID-19, 29 July 2020. https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/publications-and-technical-guidance/risk-communication-and-community-engagement/who-tool-for-behavioural-insights-on-covid-19/survey-tool-and-guidance-behavioural-insights-on-covid-19-produced-by-the-who-european-region. Accessed November 3, 2020.

25. Media statement for COVID 19 CCPSL. https://ccpsl.org/wp-content/uploads/2020/03/Media-statement-for-COVID-19-CCPSL-EnglishV2.0-1.pdf. Accessed December 16, 2020.

26. Taherdoost H. Determining Sample Size; How to Calculate Survey Sample Size. Int J Econ Manag Syst. 2017;2. https://papers.ssm.com/abstract=3224205. Accessed November 13, 2020.

27. Chiang I-CA, Jhargiani RS, Price PC. Conducting Surveys. In: Research Methods in Psychology – Simple Book Production. 2nd ed. BCcampus; 2015.

28. Daily Mirror - SL performs well in fighting Coronavirus & ranked 9 in GRID Index. http://www.dailymirror.lk/breaking_news/SL-performs-well-in-fighting-Coronavirus-ranked-9-in-GRID-index/108-186696. Accessed November 13, 2020.

29. POPULATION CHARACTERISTICS - CENSUS OF POPULATION AND HOUSING 2001. Department of Census and Statistics. http://www.statistics.gov.lk/Population/PopHouStat_Population. Accessed November 3, 2020.

30. WHO. Coronavirus disease (COVID-19): Hydroxychloroquine. https://www.who.int/news-room/q-a-detail/q-a-hydroxychloroquine-and-covid-19. Published June 19, 2020. Accessed November 3, 2020.

31. Kong T. Longer incubation period of coronavirus disease 2019 (COVID-19) in older adults. AGING Med. 2020;22(5). doi:10.2196/19556
32. Ministry of Defence Sri Lanka. Ministry of Defence - Sri Lanka | Defence News. http://www.defence.lk/Article/view_article/876. Accessed November 4, 2020.
33. Home Page · College of Community Physicians of Sri Lanka. https://ccpsl.org/. Accessed November 16, 2020.
34. SL College of Psychiatrists. https://slpsych lk/. Accessed November 16, 2020.
35. Sri Lanka College of Psychiatrists. SLCPsych hotline for frontline workers. · Sri Lanka College of Psychiatrists | Facebook. https://www.facebook.com/SLCPsych/posts/2960208190736876. Published 2020. Accessed November 4, 2020.
36. Health Promotion Bureau. HPB | New Coronavirus (COVID-19) outbreak. https://hpb.health.gov.lk/en/news-single/7. Published 2020. Accessed November 4, 2020.
37. 🌍️ 🌍️ 🌍️ Online 🌍️ 🌍️ 🌍️ | Facebook. https://www.facebook.com/groups/1877864755854282. Accessed November 13, 2020.
38. Gotabaya Rajapaksa. Profile of His Excellency Gotabaya Rajapaksa. https://www.president.gov.lk/president/. Published 2020. Accessed November 4, 2020.
39. Wijayarathne S. Request to halt Sri Pada pilgrimage. · Daily News. https://www.dailynews.lk/2020/03/17/local/214635/request-halt-sri-pada-pilgrimage. Published March 17, 2020. Accessed November 4, 2020.
40. GMOA. GMOA − Government Medical Officers' Association. https://www.gmoa lk/. Published 2020. Accessed November 4, 2020.
41. The World Bank. Sri Lanka Overview. https://www.worldbank.org/en/country/srilanka/overview. Published 2020. Accessed November 4, 2020.
42. Epidemiology Unit M of H. Sustaining Vaccination Coverage Continued national commitment to primary health care with a strong focus on community engagement. Unicef. 2014. https://www.unicef.org/rosa/media/5191/file/UNICEF_Sustaining_Vaccination_Coverage_SriLanka.pdf. Accessed November 4, 2020.
43. WHO. Primary Health Care Systems (PRIMASYS) . WHO. 2020. http://www.who.int/alliance-hpsr/projects/primasy/en/. Accessed November 4, 2020.
44. Wilson A. Sri Lanka ranked top country for travel in 2019 by Lonely Planet | Travel | The Guardian. The guardian. https://www.theguardian.com/travel/2018/oct/23/sri-lanka-ranked-top-country-for-travel-in-2019-by-lonely-planet. Published October 23, 2018. Accessed November 4, 2020.
45. BBC NEWS. Coronavirus: US and Australia close borders to Chinese arrivals - BBC News. BBC. https://www.bbc.com/news/world-51338899. Published February 1, 2020. Accessed November 4, 2020.
46. The fear of coronavirus is changing our psychology - BBC Future. https://www.bbc.com/future/article/20200401-covid-19-how-fear-of-coronavirus-is-changing-our-psychology. Accessed December 15, 2020.
47. Committee to Protect Journalists. Social media still blocked in Sri Lanka following terror attack - Committee to Protect Journalists. https://cppj.org/2019/04/social-media-still-blocked-in-sri-lanka-following/. Published April 29, 2019. Accessed November 4, 2020.
48. Renee DiResta | Aspen Ideas. https://www.aspenideas.org/speakers/renee-diresta. Accessed December 1, 2020.
49. Department of Government Information - Sri Lanka | Facebook. https://www.facebook.com/DepartmentOfGovernmentInformation/. Accessed December 14, 2020.
50. Health Promotion Bureau | Facebook. https://www.facebook.com/hpbsrilanka/. Accessed December 14, 2020.
51. Daftary A. HIV and tuberculosis: The construction and management of double stigma. Soc Sci Med. 2012;74(10):1512-1519. doi:10.1016/j.socscimed.2012.01.027
52. Daftary A, Frick M, Venkatesan N, Pai M. Fighting TB stigma: We need to apply lessons learnt from HIV activism. BMJ Glob Heal. 2017;2(4). doi:10.1136/bmjgh-2017-000515
53. Yu H, Li M, Xiang W, et al. Coping style, social support and psychological distress in the general Chinese population in the early stages of the COVID-2019 epidemic. Res Sq. 2020. doi:10.21203/RS.3.RS-20397/V2
54. Ministry of Defence Sri Lanka. Defence Ministry requests media to respect privacy of coronavirus infected patients. http://www.defence.lk/Covid19/article/1345. Published April 27, 2020. Accessed November 4, 2020.
55. Ministry of Defence Sri Lanka. Defence Secretary requests public not to stigmatise Tri-Forces personnel fighting against coronavirus. http://www.defence.lk/Covid19/article/1368. Published April 29, 2020. Accessed November 4, 2020.
56. Des Jarlais DC, Galea S, Tracy M, Tross S, Vlahov D. Stigmatization of newly emerging infectious diseases: AIDS and SARS. Am J Public Health. 2006;96(3):561-567. doi:10.2105/AJPH.2004.054742
57. Gollust SE, Nagler RH, Fowler EF. The Emergence of COVID-19 in the U.S.: A Public Health and Political Communication Crisis. J Health Polit Policy Law. 2020;1(0). doi:10.1215/03616878-8641506
58. Sotgiu G, Dobler CC. Social stigma in the time of coronavirus disease 2019. Eur Respir J. 2020;56(2). doi:10.1183/13993003.02461-2020
59. Wijaya T. Factor Analysis of Panic Buying During the Covid-19 Period in Indonesia. BMJ Glob Heal. 2020;56(2). doi:10.2139/ssrn.3603750
60. Engel J, Blackwell R, Miniard P. Consumer Behavior. 10th ed. Mason OH: Thomson/South-Western; 2006.
61. Kotler T, Keller. Marketing Management. 12th ed. Pearson; 2006. https://www.pearson.com/us/higher-education/product/Kotler-Marketing-Management-12thEdition/9780131457577.html. Accessed November 4, 2020.
62. Somatunga L, Ratnayake L, Wijesinghe W, Yapa Y, Cooray M. National alcohol use prevalence survey in Sri Lanka. J Postgrad Inst Med. 2014;1(0). doi:10.4038/jpigm.7858
63. Poston B. An Exercise in Personal Exploration: Maslow's Hierarchy of Needs. Association of Surgical Technologists ; 2009. http://www.ast.org/pdf/308.pdf. Accessed November 4, 2020.
Figures

Figure 1

Distribution of the study population in the country
Figure 2

COVID 19 Infected status of the self and others in the immediate social environment
Figure 3

Perception of overall knowledge on prevention
Figure 4

Perception of knowledge about individual symptoms of COVID-19 N=1001, figures in bars are numbers of participants, percentages were calculated for analysis.
Figure 5

Knowledge about incubation period
Figure 6

Perception on probability of getting infected with COVID-19

Unlikely = Extremely unlikely + Unlikely + Somewhat unlikely,
Likely = Somewhat likely + Likely + Extremely likely
Figure 7

Perception of severity of infection with COVID-19: Severe = Less severe + severe + very severe, Not severe = Very mild disease + Not severe + Not severe at all.
Figure 8

Confidence in the ability to protect self from COVID 19 Good confidence = I know + Very much so, Poor confidence = I know to some extent + I don't know at all + I don't know much
Figure 9

Compliance with recommendations from authorities Compliant = Follow to a some extent + I follow+ Very much so, Not compliant = Not at all + I do not follow much
Figure 10

Coping with not seeing the family living outside home and not seeing friends Good coping = Can be done + Easy for me + very easy for me, Poor coping =Difficult for me +very difficult for me +impossible for me
Figure 11

Effect of COVID 19 on the individuals' affect N=1001, figures in bars are numbers of participants, percentages were calculated for analysis.
Figure 12

Frequency of seeking information. High frequency = often + once a day + several times a day, Low frequency = sometimes + rarely + very rarely.
Figure 13

Opinion on overall COVID 19 decisions taken in Sri Lanka Disagree = Strongly disagree + Disagree + Somewhat disagree, Agree = Strongly agree + Agree + Somewhat agree.
Figure 14

Opinion on the difficulty in managing stressful events due to COVID 19 policies
Figure 15

Opinions on help seeking behaviours in relation to stressful experiences due to COVID 19 policies.
Figure 16

Opinion on contracting COVID 19 as stigmatizing
Figure 17

Basis for stigma

Based on what is said by higher health authorities: 138 Yes, 66 No
Based on what is said by public media: 147 Yes, 61 No
Based on what is said by private media: 150 Yes, 56 No
Based on what is there in social media: 138 Yes, 67 No
Figure 18

Behaviours practiced in relation to COVID 19
Confusions about the information on COVID 19 information

Figure 19
Perception of the probability of contracting COVID 19 Vs. perception of the probability of contracting an episode of cough, cold and fever

Unlikely = Extremely unlikely + Unlikely + Somewhat unlikely, Likely = Extremely likely + Likely + Somewhat likely.

Figure 20

Perception of the probability of contracting COVID 19 Vs. perception of the probability of contracting an episode of cough, cold and fever Unlikely = Extremely unlikely + Unlikely + Somewhat unlikely, Likely = Extremely likely + Likely + Somewhat likely.
Figure 21

Perception of the severity of COVID 19 Vs. perception of the severity of an episode of cough, cold and fever. Severe = Very severe + Severe + Less severe, Not severe = Not severe at all + Not severe + Very mild disease.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- CoverletterforCovidstudyForBMCpublicHealth1.docx