A Note on John Simplex with Positive Dilation

Zhou Lu*
Princeton University
zhoul@princeton.edu

December 2020

Abstract
We prove a John’s theorem for simplices in \mathbb{R}^d with positive dilation factor $d + 2$, which improves the previously known d^2 upper bound. This bound is tight in view of the d lower bound. Furthermore, we give an example that d isn’t the optimal lower bound when $d = 2$. Our results answered both questions regarding John’s theorem for simplices with positive dilation raised by [Leme and Schneider 2020].

1 Introduction
In the problem of linear function reconstruction ([Khachiyan 1995, Summa et al. 2014, Nikolov 2015]), one needs to efficiently reconstruct a linear function f defined on a set X by using a zeroth order oracle. When the cost of oracle querying grows along with accuracy, a John like simplex serves as a good basis as in [Leme and Schneider 2020].

A crucial step of their method is to find a simplex T with vertices in X, such that X can be contained in some translate of T with dilation, where a smaller (absolute value) dilation factor indicates higher efficiency. When considering negative dilation, a translate $-dT$ is able contain X so the upper bound is $O(d)$ which matches its lower bound.

However, if we look at positive dilation, it seems to be less efficient than negative dilation because only a worse d^2 upper bound was given in [Leme and Schneider 2020]. Though a better bound for positive dilation does not immediately help design better algorithms for the reconstruction problem, it is natural to ask if we can improve it.

We prove a John’s theorem for simplices with positive dilation factor $d + 2$ which answers the question affirmatively. Furthermore, we give a counterexample that the d lower bound given in [Leme and Schneider 2020] isn’t tight when $d = 2$.

*This work is done during the author’s visit at SQZ institution.
2 Background

In the seminal work [John 2014], it’s proven that any convex \(X \subset R^d \) can be sandwiched between two concentric ellipsoids of ratio \(d \). Specifically, the following theorem was given in [John 2014]:

Theorem 2.1. Given any convex body \(X \subset R^d \), let \(x + TB_d \) denote the minimal volume ellipsoid containing \(X \), then it holds

\[
x + \frac{1}{d}TB_d \subset X \subset x + TB_d
\]

(1)

The ellipsoid \(x + TB_d \) is called ‘John ellipsoid’. For a more comprehensive review we refer the readers to [Henk 2012]. In this paper we consider general \(X \) which is potentially non-convex, and we aim to find a John like simplex with positive dilation factor \(O(d) \) so that it can be seen as an analogue to John ellipsoid.

Definition 2.2. Given \(d + 1 \) points \(v_1, ..., v_{d+1} \) in \(R^d \), we call their convex hull a simplex with vertices \(v_1, ..., v_{d+1} \).

We consider the following: given a compact set \(X \subset R^d \) which is not necessarily convex or connected, we want to find \(d + 1 \) points in \(X \) forming a simplex \(T \) such that \(X \) is contained in some translate of \(T \) with positive dilation.

A simple method to do so is by considering the maximum volume simplex (MVS) of \(X \) as in [Leme and Schneider 2020].

Definition 2.3. A maximum volume simplex \(T \) with vertices in a bounded set \(X \subset R^d \) is one of the simplices whose euclidean measure is no less than any other simplex of \(X \).

Proposition 2.4. There always exists a MVS as long as \(X \) is compact.

Proof. Because \(X \) is bounded, the volume of its simplex has a least upper bound \(c \geq 0 \), therefore we can find a sequence of simplices \(T_j \) with vertices \(v_1^{(j)}, ..., v_{d+1}^{(j)} \), whose volumes converge to \(c \). Due to the compactness of \(X \), any sequence in \(X \) has a converging sub-sequence which converges to a point in \(X \), thus we can find indexes \(a_j \) such that \(v_1^{(a_j)} \) converges to a point \(\tilde{v}_1 \in X \).

We consider a new sequence of simplices \(T_{a_j} \) whose first vertex is replaced by \(\tilde{v}_1 \) while others keep unchanged. It’s easy to see that their volumes still converge to \(c \). Again we find a converging sub-sequence of \(v_2^{(a_j)} \) which converges to a point \(\tilde{v}_2 \in X \), and repeat this procedure until we have all \(\tilde{v}_i \). Then the simplex with vertices \(\tilde{v}_i \) is the desired MVS.

[Leme and Schneider 2020] prove the following lemma by using the ‘maximum volume’ property:

Lemma 2.5. Let \(T \) be the MVS with vertices in \(X \), then \(X \) is contained in a translate of \(-dT \).
Using lemma 2.5 twice we get a d^2 upper bound for positive dilation. We are interested in proving tighter bounds for the positive dilation factor. Existing upper and lower bounds are d^2 and d respectively as in Leme and Schneider [2020], in their paper two questions regarding John’s theorem for simplices with positive dilation were raised.

Question 1: Can we get a John’s theorem for simplices with positive dilation factor $O(d)$?

Question 2: Given compact $X \subset \mathbb{R}$, can we always find a triangle T with vertices in X so that X is contained in some translate of $2T$?

We give an affirmative answer to question 1 by proving a $d + 2$ upper bound, and provide a counter-example to question 2.

3 $d + 2$ upper bound

In this section we prove a $d + 2$ upper bound based on a simple observation: by fully exploiting the 'maximum volume' property, we can squeeze $-dT$ to a much smaller set which still contains X.

We already know that a simplex $T \in \mathbb{R}^d$ can be covered by a translate of $-dT$, therefore a naive method (choose T to be MVS and use $-d$ dilation twice) directly leads to a d^2 upper bound for positive dilation.

However, the first step of this method is extravagant in that we can find a smaller set covering X when $d > 2$. Think about the following example in \mathbb{R}^3: assume T (the MVS of X) is the regular simplex with vertices $v_1, ..., v_4$ and 0 as its center, then $-3T$ has $-3v_1, ..., -3v_4$ as its vertices. We denote $S_{v,i}$ to be the hyperplane parallel to hyperplane $v_1, ..., v_{i-1}, v_{i+1}, ..., v_4$, with v lying on it. By the definition of T, X lies between $S_{v,i}, S_{\hat{v},i}$ for any $i = 1, ..., 4$, therefore much space is wasted in the 'cones' of $-3T$.

The d^2 bound can be decomposed as $1 + (d+1)(d-1)$ where for each v_i, T extends $d-1$ times along its direction. However, we only need to extend once which yields a $1 + (d+1) = d + 2$ upper bound.

Theorem 3.1. For any compact set $X \in \mathbb{R}^d$, there exists $d + 1$ points in X forming a simplex T as its vertices, such that X can be covered in a translate of $(d+2)T$.

Proof. We choose the MVS of X to be T with vertices $v_1, ..., v_{d+1}$ and we assume 0 is its center (of gravity) without loss of generality. We denote \hat{v}_i to be the symmetric point of v_i with respect to hyperplane $v_1, ..., v_{i-1}, v_{i+1}, ..., v_{d+1}$ along direction v_i, and $S_{\hat{v},i}$ to be the hyperplane parallel to hyperplane $v_1, ..., v_{i-1}, v_{i+1}, ..., v_{d+1}$, with v lying on it. By the definition of T, X lies between $S_{v,i}, S_{\hat{v},i}$ for any $i = 1, ..., d+1$, otherwise the 'maximum volume' property will be contradicted.

We take a close look at the simplex T' made up of $S_{\hat{v},i}$. Obviously T' is a translate of T with positive dilation and center (of gravity) 0 unchanged. Define the intersection point between line $v_i\hat{v}_i$ (we overload the notation of vectors to denote endpoints of a segment when the context is clear) and hyperplane $v_1, ..., v_{i-1}, v_{i+1}, ..., v_{d+1}$ as w_i, we have that $v_i = \frac{d}{d+1} w_i v_i$ by the definition of
Figure 1: Example in R^3. The red pyramid is T, the blue one is $-3T$ and the yellow ones are the wasted space.

center (of gravity). Combing with the fact that $w_i v_i = \hat{v}_i w_i$, the dilation factor is $(1 + \frac{1}{d+1})/\frac{1}{d+1} = d + 2$.

Denote the simplex made up of $S_{v_i,i}$ as \tilde{T} and the region enclosed by $S_{v_i,i}, S_{\hat{v}_i,i}$ as \hat{T}, we have the following inclusion:

$$X \subset \hat{T} = T' \cap \tilde{T} \subset T'$$

which finishes our proof.

4 Lower Bound $> d$ when $d = 2$

We give a counter-example to question 2 in this section. The idea behind is intuitive: we construct several discrete points as a hard case, so that these discrete points won’t help much when we construct the covering triangle, but hurts a lot when we consider covering them since the whole convex hull needs to be covered implicitly.

Theorem 4.1. There exists a compact set $X \in R^2$, such that for any triangle T with vertices in X, X can’t be contained in any translate of $2T$.

Proof. We pick 5 points:

$$A = (-1, 0), B = (1, 0), C = (-\epsilon - \delta, 1), D = (\epsilon + \delta, 1), E = (0, \epsilon - 1)$$
to construct \(X = \{ A, B, C, D, E \} \), where constants (TBD) satisfy \(\epsilon, \delta \in (0, 1) \). Due to symmetry, we discuss different choices of \(T \) by 6 cases and how they lead to contradiction.

Case 1: \(T = \triangle CDE \)

The intercept along \(y = 0 \) of any translate of \(2T \) has length at most \(4(\epsilon + \delta) < 2 \), thus \(AB \) can't be covered by any translate of \(2T \).

Case 2: \(T = \triangle ABE \)

The intercept along \(x = 0 \) of any translate of \(2T \) has length at most \(2 - 2\epsilon < 2 - \epsilon \), thus \(C, E \) can't be simultaneously covered by any translate of \(2T \).

Case 3: \(T = \triangle ACD \)

The intercept along \(y = 0 \) of any translate of \(2T \) has length at most \(4(\epsilon + \delta) < 2 \), thus \(AB \) can't be covered by any translate of \(2T \).

Case 4: \(T = \triangle ABC \)

The intercept along \(y = 1 \) of any translate of \(2T \) has length at most \(2\epsilon < 2\epsilon + 2\delta \) when its 'bottom' is below \(y = \epsilon - 1 \), thus \(CD \) and \(E \) can't be simultaneously covered by any translate of \(2T \).

Case 5: \(T = \triangle ACE \)

The intercept along \(y = 0 \) of any translate of \(2T \) has length at most \(\frac{2 - 2\epsilon}{\epsilon + \delta}(1 - \epsilon) < 2 \), thus \(AB \) can't be covered by any translate of \(2T \).

Case 6: \(T = \triangle ADE \)

We would like to prove that any translate of \(2T \) can’t cover \(\triangle ABC \). We extend \(\overrightarrow{AD} \) by twice to \(D' = (1 + 2\epsilon + 2\delta, 1) \) and \(\overrightarrow{AE} \) by twice to \(E' = (1, 2\epsilon - 2) \), then try to move \(\triangle ABC \) to fit in \(\triangle A'D'E' \) where \(A' = A \).

Because \(A' + \overrightarrow{CB} = (\epsilon + \delta, -1) \), in order for \(C \) to be contained in \(\triangle A'D'E' \), \(B \) must lie below line

\[
y = \frac{1}{1 + \epsilon + \delta}(x - \epsilon - \delta) - 1 \tag{3}
\]

Therefore the largest possible \(y \)-coordinate of \(B \) is that of the intersection point between line 3 and

\[
y = \frac{2 - \epsilon}{\epsilon + \delta}(x - 1 - \frac{2(\epsilon + \delta)(1 - \epsilon)}{2 - \epsilon}) \tag{4}
\]

By straightforward computation, we have that

\[
y = -\frac{2}{x + \epsilon + 1 - \epsilon} \tag{5}
\]

is the largest possible \(y \)-coordinate of \(B \). However, the intercept along line 5 of \(\triangle A'D'E' \) equals

\[
(2 - 2\epsilon - \frac{2}{\epsilon + \delta + 1 - \epsilon}) \times \frac{1 + \frac{(\epsilon + \delta)(1 - \epsilon)}{2 - \epsilon}}{2 - \epsilon} = 2 + \frac{(\epsilon + \delta)(1 - \epsilon)}{2 - \epsilon} - \frac{2(\epsilon + \delta)}{(1 - \epsilon)(2 - \epsilon)} = 2 - \frac{(\epsilon + \delta)(1 + 2\epsilon - \epsilon^2)}{(1 - \epsilon)(2 - \epsilon)} < 2
\]
thus C, A, B can’t be simultaneously covered by any translate of $2T$.

For the choice of constants, any constant pair additionally satisfying $\epsilon+\delta < \frac{1}{2}$ is feasible.

\[\square \]

5 Conclusion

In this note, we analyze John’s theorem for simplices with positive dilation and answer related open questions raised by Leme and Schneider [2020]. We prove a tight $d+2$ upper bound which matches the d lower bound, improving the previously known d^2 bound. We also give a simple counter-example showing that the d lower bound isn’t optimal.

References

Martin Henk. l"owner-john ellipsoids. Documenta Math, pages 95–106, 2012.

Fritz John. Extremum problems with inequalities as subsidiary conditions. In Traces and emergence of nonlinear programming, pages 197–215. Springer, 2014.

Leonid Khachiyan. On the complexity of approximating extremal determinants in matrices. Journal of Complexity, 11(1):138–153, 1995.

Renato Paes Leme and Jon Schneider. Costly zero order oracles. In Conference on Learning Theory, pages 3120–3132. PMLR, 2020.

Aleksandar Nikolov. Randomized rounding for the largest simplex problem. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pages 861–870, 2015.

Marco Di Summa, Friedrich Eisenbrand, Yuri Faenza, and Carsten Moldenhauer. On largest volume simplices and sub-determinants. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages 315–323. SIAM, 2014.