Characteristics of Two Unrecorded Yeasts from Wild Flowers in Ulleungdo, Korea

Se-Hee Hyun, Jin-Hong Min, Hyang Burm Lee, Ha-Kun Kim and Jong-Soo Lee

1Department of Biomedicinal Science and Biotechnology, Paichai University, Daejeon 302-735, Korea
2Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju 500-757, Korea

ABSTRACT: Two unrecorded yeasts, Meyerozyma caribbica UL5-1 and Pichia silvicola UL6-1 were screened from 58 yeasts which were isolated from wild flowers in Ulleungdo in Gyeongsangbuk-do, Korea. The morphological and cultural characteristics of these unrecorded yeasts were investigated. Both yeasts were oval in shape and formed pseudomycelia. P. silvicola UL6-1 formed ascospore, but M. UL5-1 did not. P. silvicola UL6-1 and M. caribbica UL5-1 also grew in vitamin-free medium and 5% NaCl-containing yeast extract-peptone-dextrose medium. The two unrecorded yeasts assimilated glucose, galactose, xylose, cellobiose, trehalose, glycerol and sorbitol, and also fermented glucose, fructose and mannose. The supernatant of both M. caribbica UL5-1 and P. silvicola UL6-1 also showed high antihypertensive angiotensin I-converting enzyme inhibitory activity of 84.2% and 82.6%, respectively. Cell-free extract of P. silvicola UL6-1 also showed very high anti-diabetic α-glucosidase inhibitory activity (85.8%).

KEYWORDS: Characteristics, Ulleungdo, Unrecorded yeasts, Wild flowers

Yeast produce various bioactive agents [1-4] including an antihypertensive angiotensin I-converting enzyme inhibitor [5]. Most of the yeasts that produce these compounds have been isolated from fermented foods or their raw materials [3,4,6]. Recently, we isolated and identified various yeasts, including unrecorded yeasts, from wild flowers growing in cities [7,8], mountains [9], inland and coastal areas [10,11], and, islands, such as Jeju Island, Korea [12,13].

In a previous paper [13], we reported the diversity of yeasts present on wild flowers in Ulleungdo and Yokjido, Korea; we also reported other characteristics of the unrecorded yeasts isolated from Yokjido [14]. Here, we describe the mycological characteristics of the unrecorded yeasts isolated from Ulleungdo, Korea.

We investigated the morphological characteristics of the unrecorded yeasts using previously described methods [13]. The physiological functions of the yeasts were determined as follows. The selected unrecorded yeasts were cultured in yeast extract-peptone-dextrose (YPD) medium at 30°C for 2 d. After centrifugation at 10,000 × g for 15 min, supernatants and cells were obtained. The cells were disrupted by vortexing with sonication and then centrifuged at 12,000 × g for 20 min. Cell-free extract was obtained and the supernatant was used to determine the physiological functionalities of the yeasts.

Antihypertensive angiotensin I-converting enzyme (ACE) inhibitory activity was assayed using the method published by Cushman and Cheung [15]. Antioxidant activity was assayed using the method of Lee et al. [4] using antioxidant activity (DPPH) as a substrate. Tyrosinase inhibitory activity was assayed by the method of Kim et al. [16]. Xanthine oxidase inhibitory activity and superoxide dismutase (SOD)-like activity were determined using a modification of a previously described method [9]. α-Glucosidase inhibitory activity was assayed using the method described Kang et al. [17] using p-nitrophenyl-β-D-glucopyranoside (PNPG) as a substrate.

The unrecorded yeasts were screened from 58 yeasts isolated in Ulleungdo by searching Keris, PubMed and other fungal taxonomy databases. The previously unrecorded yeasts were identified as Meyerozyma caribbica UL
Unrecorded Yeasts from Ulleungdo, Korea

5-1 and Pichia silvicola UL6-1; they were isolated from Duchesnea chrysanthia and Rubia akane in Ulleungdo.

Table 1. Microbiological and cultural characteristics of the newly reporting yeasts from wild flowers of Ulleungdo, Korea

	Meyerozyma caribbica UL5-1	Pichia silvicola UL6-1
Morphological characteristics		
Shape	O¹	O
Vegetative reproduction	B²	B
Size (µm)	2.6×2	3.4×2.6
Ascospore	-	+
Pseudomycelium	+	+
Cultural and physiological characteristics		
Growth on YM	++	+++
Growth on YPD	+++	+++
Growth in 50% Glucose-YPD	+	-
Growth in 5% NaCl-YPD	++	+
Growth in 20% NaCl-YPD	+	-
Growth in temp. / pH range	25-37°C / 4-5	20-30°C / 4-8
Urease activity	-	-

¹O, Oval; ²B, Budding; ³W, White

Fig. 1. Morphological characterization of Meyerozyma caribbica UL5-1 (A,C) and Pichia silvicola UL6-1 (B,D). A and B, Optical microscope (scale bar=1 µm); C and D, Scanning electron microscope (scale bars=5 µm).

Table 2. Comparison of carbon sources assimilation between Meyerozyma caribbica UL5-1 and Pichia silvicola UL6-1

Carbon sources	Meyerozyma caribbica UL5-1	Pichia silvicola UL6-1
D-glucose	+*	+
D-galactose	+	+
L-arabinose	+	-
D-xylene	+	+
D-cellobiose	+	+
D-lactose	-	-
D-saccharose	-	+
D-trehalose	-	+
D-maltose	+	-
N-acetyl-glucosamine	+	-
D-melezitose	+	-
D-raffinose	+	-
Methyl-α-D-glucopyranoside	+	-
2-keto-D-gluconate	+	-
Glycerol	+	+
Adonitol	+	+
Inositol	-	-
D-sorbitol	+	+
Xylitol	-	-

[*]+; Growth (assimilation), -; No growth (no assimilation)

Table 3. Comparison of carbon sources fermentation between Meyerozyma caribbica UL5-1 and Pichia silvicola UL6-1

Carbon sources	Meyerozyma caribbica UL5-1	Pichia silvicola UL6-1
D-glucose	+*	+
Fructose	+	+
Mannose	+	+
Maltose	-	-
D-galactose	+	-
Sucrose	+	-
Lactose	-	-
Raffinose	+	-
Starch	-	-
Sorbitol	-	-
Cellobiose	-	+

[*]+; Fermentable, -; not fermentable

Mycological characteristics of the unrecorded yeasts

The morphological and cultural characteristics of the two unrecorded yeasts are summarized in Table 1 and Fig. 1. The two unrecorded yeasts were both oval in shape...
did not form ascospores and pseudomycelia. Both grew well in YPD, yeast extract-malt extract (YM) and potato-dextrose (PD) broth and also grew in vitamin-free medium. *M. caribbica* UL5-1 was found to be halophilic and thermotolerant, and grew well in 20% NaCl-YPD broth at 37°C. Both yeasts were negative for urease activity.

We previously reported about a thermotolerant yeast isolated from wild flowers [14], traditional meju [6], and halotolerant yeasts from Korean fermented soy sauce, Doenjang and Gochujang [18]. We investigated the assimilation and fermentation of the two unrecorded yeasts on various carbon sources, using previously described methods [18] (Table 2 and 3). *M. caribbica* UL5-1 utilized several types of hexose, pentose and sugar alcohol such as D-glucose, D-galactose, D-maltose, D-saccharose, D-trehalose, D-melezitose, D-raffinose, D-cellobiose, D-xyllose, L-arabinose, glycerol, 2-keto-D-gluconate, D-sorbitol, methyl-α-D-glucopyranoside and N-acetyl-glucosamine. However, it was not able to utilize D-lactose, xylitol, or inositol. *Pichia silvicola* UL6-1 utilized only D-glucose, D-galactose, D-trehalose, D-cellobiose, D-sorbitol, glyceral and D-sorbitol. Furthermore, *M. caribbica* UL5-1 fermented D-glucose, fructose, mannose, D-galactose, sucrose and raffinose, whereas *P. silvicola* UL6-1 fermented only D-glucose, fructose, mannose and cellobiose.

Physiological functionalities of the unrecorded yeasts

The physiological functionalities of the supernatants and cell-free extracts from the unrecorded yeasts were investigated (Table 4). The antihypertensive ACE inhibitory activities of supernatants from *M. caribbica* UL5-1 and *Pichia silvicola* UL6-1 were 84.2% and 82.6%, respectively, approximately 50% higher than those of their cell-free extracts.

These results were higher than those of *Saccharomyces cerevisiae* KCTC 7904 (42.1%) [13], *Pichia anomala* (31.0%), *P. anomala* KCCM 11473 (72.0%) [19], or *Pleurotus cornucopiae* (78.0%) [20].

The anti-obesity α-glucosidase inhibitory activity of cell-free extract from *Pichia silvicola* UL6-1 was also very high 85.8%. These results were higher than those of *Aspergillus oryzae* N157-1 (48.3%) [17] or *Pichia burtonii* (90.9%) [3] isolated from Korean traditional fermented foods. Tyrosinase inhibitory activity and the other functionalities were either not detected or were very weak (15%).

Acknowledgements

This study was funded by the project on survey and excavation of Korean indigenous species of NIBR under the Ministry of Environment, Republic of Korea.

REFERENCES

1. Jang IT, Kang MG, Na KC, Lee JS. Growth characteristics and physiological functionality of yeasts in pear marc extracts. Kor J Mycol 2011;19:170-3.
2. Jeong SC, Lee DH, Lee JS. Production and characterization of an anti-angiogenic agent from *Saccharomyces cerevisiae* K-7. J Microbiol Biotechnol 2006;16:1904-11.
3. Kim YH. Production and in-vivo anti-diabetic activity of α-glucosidase inhibitor from *Pichia burtonii* Y257-7 [dissertation]. Daejeon (Korea): University of Paichai; 2013.
4. Lee JS, Yi SH, Kwon SJ, Ahn C, Yoo JY. Enzyme activities and physiological functionality of yeasts from traditional Meju. Kor J Appl Microbiol Biotechnol 1997;25:448-53.
5. Kim JH, Lee DH, Jeong SC, Chung KS, Lee JS. Characterization of antihypertensive angiotensin I-converting enzyme inhibitor from *Saccharomyces cerevisiae*. J Microbiol Biotechnol 2004;14:1318-23.
6. Kim JH, Kim NM, Lee JS. Physiological characteristics and ethanol fermentation of thermotolerant yeast *Saccharomyces cerevisiae* OE-16 from traditional meju. Kor J Food Nutr 1999;12:490-5.
7. Kang MG, Hyun SH, Ryu JJ, Min JH, Kim HK, Lee JS. Note on newly isolated yeasts from wild flowers in Daejeon city, Korea. Kor J Mycol 2012;40:174-6.
8. Min JH, Hyun SH, Kang MG, Lee HB, Kim CM, Kim HK, Lee JS. Isolation and identification of yeasts from wild flowers of Daejeon city and Chungcheongnam-do in Korea. Kor J Mycol 2012;40:141-4.
9. Min JH, Ryu JJ, Kim HK, Lee JS. Isolation and identification of yeasts from wild flowers of Daejeon city and Chungcheongnam-do in Korea. Kor J Mycol 2012;40:174-6.
10. Hyun SH, Lee HB, Kim CM, Lee JS. Isolation and identification of yeasts from wild flowers of Daejeon city and Chungcheongnam-do in Korea. Kor J Mycol 2012;40:125-30.
11. Min JH, Lee HB, Lee JS, Kim HK. Identification of yeasts isolated from wild flowers collected in coast areas of Korea based on the 26S rDNA sequences. Kor J Mycol 2012;40:185-91.
12. Hyun SH, Mun HY, Lee HB, Kim HK, Lee JS. Isolation of yeasts from wild flowers in Gyonggi-do and Jeju island of Korea and production of anti-gout xanthine oxidase inhibitor. J Microbiol Biotechnol 2013;41:383-90.
13. Hyun SH, Min JH, Kim AR, Kim HK, Lee JS. Isolation and diversity of yeasts from wild flowers in Ulleungdo and Yokoju, Korea. Kor J Mycol 2014;42:28-33.
14. Hyun SH, Lee HB, Lee JS. Characteristics of unrecorded yeasts, Rhodosporidium fluviale, Rhodosporidium paludigenum, Candida sp. 80-J-3 and Kluyveromyces thermotolerans isolated from wild flowers in Korea. Kor J Mycol 2014;42:181-4.
15. Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 1971;20:1637-48.
16. Kim JK, Cha WS, Park JH, Oh SL, Cho YJ, Chun SS, Choi C. Inhibition effect against tyrosinase of condensed tannins from Korean green tea. Kor J Food Sci Technol 1997;29:173-7.
17. Kang MG, Yi SH and Lee JS. Production and characterization of a new α-glucosidase inhibitory peptide from Aspergillus oryzae N159-1. Mycobiology 2013;41:149-54.
18. Lee JS, Choi YJ, Kwon SJ, Yoo JY, Chung DH. Screening and characterization of osmotolerant and gas-producing yeasts from traditional Doenjang and Kochujang. Food Biotechnol 1996;5:54-8.
19. Kim NM, So SH, Lee SG, Song JE, Seo DS, Lee JS. Physiological functionality and enzyme activity of biomass from Pichia anomala grown on ginseng-steaming effluent. Mycobiology 2008;36:148-51.
20. Jang JH, Jeong SC, Kim JH, Lee YH, Ju YC, Lee JS. Characterization of a new antihypertensive angiotensin I-converting enzyme inhibitory peptide from Pleurotus cornucopiae. Food Chem 2011;127:412-8.