A Falsification of the Citation Impediment in the Taxonomic Literature

FLORIAN M. STEINER1,*, MARCO PAUTASSO2,3,§, HERBERT ZETTEL4, KARL MODER5, WOLFGANG ARTHOFER1, AND BRIGIT C. SCHLICK-STEINER1

1Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria 2Forest Pathology and Dendrology, Institute of Integrative Biology, ETHZ, Universitätstr. 16, 8092 Zurich, Switzerland 3Animal and Plant Health Unit, European Food Safety Authority, via Carlo Magno 1a, 43126 Parma, Italy 42nd Zoological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria 5Institute of Applied Statistics and Computing, University of Natural Resources and Life Sciences, Peter Jordan-Str. 82, 1180 Vienna, Austria

*Correspondence to be sent to: Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria; E-mail: florian.m.steiner@uibk.ac.at

§The positions and opinions presented in this article are those of the authors alone and are not intended to represent the views or scientific works of EFSA.
of Science (WoS) that publish taxonomy tend to receive a low IF (Werner 2006; Venu and Sanjappa 2011; Bilton 2014; Shashank and Mesramh 2014). (vi) Many journals publishing taxonomy are not included in WoS and thus have no IF at all (Krell 2000; Boero 2001; Krell 2002; Swiss Academy of Sciences 2007; Boero 2010; McDade et al. 2011; Benitez 2014; Shashank and Mesramh 2014). Various countermeasures have been proposed to overcome the taxonomic impediment, many of which need policy measures, for example, providing more funding ear-marked to taxonomy within universities, museums, and funding agencies (e.g., De Carvalho et al. 2007). Without denying the importance of such measures, there have been suggestions for strategies manageable by scientists themselves, aimed at improving the competitiveness and thus the standing of taxonomists. One suggestion to achieve this within the existing system of science evaluation is to include taxonomic authorities in the reference sections of publications in all instances (Werner 2006; Bininda-Émonds 2011; Wägele et al. 2011) or at least when credit is due (Agnarsson and Kuntner 2007). Others have gone further and suggested alternative evaluation methods (e.g., McDade et al. 2011; Valdecasas 2011; Venu and Sanjappa 2011; Schekman 2013; Pyke 2014). However, despite the generally acknowledged criticism of the established bibliometric methods (Simons 2008; Adler 2009; Adler and Harzing 2009; Patterson 2009; Brumfit 2012; Eyre-Walker and Stoletzki 2013; McDade et al. 2011; Venu and Sanjappa 2011; Schekman 2013; Pyke 2014), these are widely used for evaluating individuals, institutions, and journals in research (Simons 2008; Vale 2012; Kaushal and Jeschke 2013). Thus, at least in the shorter term, it seems difficult for the field of taxonomy to avoid citation-based evaluations.

We ask whether citation-based evaluations are indeed a drawback for taxonomy. To our knowledge, the citation performance of taxonomic papers has not been compared quantitatively with that of non-taxonomic papers. In more detail, we address five questions: Does publishing taxonomy harm a journal’s citation performance? Is it within the possibilities of journal editors to influence taxonomy’s visibility? If more high-visibility journals opened their doors to taxonomic publications, would taxonomy’s productivity be sufficient for an increase in the number of taxonomic papers in these journals? Can taxonomy be published by taxonomists only or by a larger community? And finally, would the community use the chance to publish more taxonomic papers in highly visible journals?

Publishing Taxonomy Does Not Generally Harm and Might Even Boost Journals

We present the results of a citation analysis on primary research articles on mosses, orchids, ciliates, ants, and snakes as representatives of nonvascular plants, vascular plants, heterotrophic microorganisms, invertebrates, and vertebrates, respectively. The five taxa were randomly chosen among candidate taxa; candidate taxa needed to meet the criteria of (i) sufficient numbers of taxonomic and non-taxonomic publications for sufficient sample sizes, and (ii) the trivial and the scientific name applying to exactly the same taxon (e.g., every orchid belongs in the Orchidaceae, and all species of the Orchidaceae are orchids). We were interested in the current situation and thus chose the years 2009–2012; 2013 was not yet feasible because papers need some time to become cited. For each of the five taxa, we selected the 10 journals included in WoS that published the largest numbers of articles on the selected taxon in this period, totalling 47 journals (overlap of three journals among taxa; Table 1; see Online Appendix 1 available as Supplementary Material on Dryad at http://dx.doi.org/10.5061/dryad.3t761, for the protocols of database queries and manual content curation and Online Appendix 2 for the data available as Supplementary Material on Dryad at http://dx.doi.org/10.5061/dryad.3t761). We classified the 2597 publications on the focal taxa according to what we term the factor Taxonomy, that is, into taxonomic (n = 306) or non-taxonomic (n = 2291). Papers were considered as taxonomic if they included taxonomic acts at the genus to variety level, that is, not only descriptions of new taxa but also synonymizations, revivals from synonymy, and new combinations. All these taxonomic acts represent relevant achievements by taxonomy and are needed to properly assess biodiversity. We then analyzed the number of citations obtained by each publication as of 15 August 2014.

When all taxa and all journals were included in the analyses, the average numbers of citations were, as expected, lower for taxonomic than for non-taxonomic papers. This difference was significant (Fig. 1a) in analysis of variance using as factors Taxonomy, Journal, and Year, and their two- and three-level interactions calculated via Type III sum of squares; as for all other statistical analyses, SAS 9.4 was used. In taxon-by-taxon analyses of all journals, however, four of the five taxa were without significant differences. For the fifth taxon, ciliates, taxonomic papers were significantly more cited than non-taxonomic ones.

Just 14 of the 47 journals published both taxonomic and non-taxonomic papers on the focal taxa on a yearly basis in the years 2009–2012 (Table 1). The analyzed taxonomic publications in these 14 journals might have experienced lower visibility than publications in the other 33 journals. This is due to the fact that the average IF 2012 of the 14 journals with both taxonomic and non-taxonomic publications was significantly lower (1.16 ± 0.51 standard deviation [SD]) than the average IF of the other 33 journals (2.66 ± 1.60; Student’s t-test, $P < 0.001$).

We thus repeated the analysis of variance including interactions, now focusing on the 14 journals which published both taxonomic and non-taxonomic papers. We found that, for these journals, taxonomic papers received more citations than non-taxonomic ones; the effect was not significant, though ($P = 0.066$; Fig. 1b), significance potentially being masked by significant
TABLE 1. The journals included in WoS publishing the largest numbers of publications on mosses, orchids, ciliates, ants, and snakes (2009–2012) and their 2012 IF.

Taxon	Journal	IF 2012	All years	2009	Non-tax	2010	Non-tax	2011	Non-tax	2012	Non-tax
Mosses	Bryologist	0.98	25	58	9	26	4	18	6	16	6
	Cryptogramma Bryol.	1.04	9	49	3	17	2	6	2	9	2
	Environ. Pollut.	3.73	0	28	0	10	0	5	0	5	0
	Global Change Biol.	6.91	0	23	0	7	0	1	0	6	0
	J. Bryol.	1.35	18	75	4	22	4	13	9	16	1
	New Phytol.	6.74	0	26	0	8	0	2	0	8	0
	Nová Hedwigia	0.81	9	43	2	4	5	19	1	11	1
	Oecologia	3.01	0	22	0	8	0	1	0	8	0
	Polar Biol.	2.01	0	23	0	7	0	5	0	4	0
	Sci. Total Environ.	3.26	0	18	0	3	0	2	0	10	0
Orchids	Am. J. Bot.	2.59	0	33	0	4	0	1	0	2	0
	Aust. J. Bot.	1.20	0	17	0	9	0	4	0	2	0
	Bot. J. Linn. Soc.	2.59	4	40	0	9	1	11	2	6	1
	Nord. J. Bot.	0.60	16	12	3	5	4	2	4	2	5
	Physotaxa	3.30	16	16	1	0	1	0	4	3	10
	Plant Biology	2.32	0	14	0	4	0	3	0	6	0
	Plant Cell Tiss. Org.	3.63	0	23	0	7	0	6	0	8	0
	Plant Syst. Ecol.	3.15	5	32	1	7	1	5	2	11	1
Ciliates	Acta Protozool.	0.98	16	24	3	6	6	8	6	6	1
	Appl. Environ. Microb.	3.68	0	22	0	6	0	6	0	6	0
	Aquat. Microb. Ecol.	2.04	0	37	0	8	0	8	0	14	0
	Ear. J. Protozool.	1.51	29	44	1	22	0	4	0	5	0
	Hydrobiologia	1.99	0	17	0	5	0	4	0	5	0
	J. Eukaryot. Microbiol.	2.16	31	45	3	12	11	10	3	7	4
	J. Plankton Res.	2.44	0	27	0	5	0	7	0	10	0
	Mar. Ecol. Prog. Ser.	2.55	0	24	0	7	0	6	0	4	0
	Phytotaxa	3.73	0	25	0	2	0	1	0	8	0
	Protist	4.14	1	28	0	6	0	6	0	7	1
Ants	Anim. Behav.	3.07	0	33	0	12	0	14	0	12	0
	Ecol. Entomol.	1.95	0	53	0	11	0	18	0	13	0
	Environ. Entomol.	1.31	0	49	0	13	0	15	0	14	0
	Insect. Soc.	1.33	0	120	0	24	0	26	0	41	0
	J. Insect Sci.	0.88	0	51	0	9	0	20	0	11	0
	Myrmecol. News	2.36	10	71	1	18	2	10	3	22	4
	Protist	3.73	4	120	0	11	0	23	1	30	3
	Protist	2.56	1	51	0	16	0	12	1	13	0
	Sociology	0.58	21	199	2	52	3	48	9	52	7
	Zootaxa	0.97	36	34	35	9	4	6	9	11	4
Snakes	Amphibia Reptilia	0.68	2	33	2	8	0	10	0	7	0
	Copeia	0.64	5	31	1	8	2	8	1	6	1
	Herpetologica	1.08	9	26	3	4	3	7	2	8	1
	Herpetol. Conserv. Bio.	0.67	0	40	0	12	0	11	0	13	0
	J. Exp. Biol.	3.24	0	25	0	4	0	10	0	3	0
	J. Herpetol.	0.89	2	60	0	16	0	8	2	14	0
	J. Venom. Anim. Toxins	0.55	0	65	0	16	0	17	0	15	0
	Toxicon	3.73	0	41	0	2	0	5	0	16	0
	Toxicon	2.92	0	213	0	52	0	67	0	47	0
	Zootaxa	0.97	36	35	10	7	4	10	6	12	6
	All Journals	54	559	16	129	9	147	13	135	14	148

All Taxa | All Journals | 306 | 2291 | 72 | 553 | 65 | 528 | 91 | 594 | 78 | 616 |

Notes: For each of the five taxa, the 10 journals included in WoS were selected that published the largest numbers of articles on that taxon; see Online Appendix 1 for the protocols used and Online Appendix 2 for the data available as Supplementary Material on Dryad at http://dx.doi.org/10.5061/dryad.3t761.

IF = impact factor; tax/non-tax = number of taxonomic/non-taxonomic publications; (•)/• = journals publishing both taxonomic and non-taxonomic publications in principle/on the focal taxa on a yearly basis 2009–2012.
FIGURE 1. The average numbers of citations received (as of 15 August 2014) by taxonomic versus non-taxonomic publications on mosses, orchids, ciliates, ants, and snakes based on WoS, for (a) all journals given in Table 1 and (b) the journals in Table 1 that published both taxonomic and non-taxonomic contributions on a yearly basis (2009–2012). Error bars represent 1 SD. *P*-values above bars are the results of analyses of variance comparing the numbers of citations for the factors Taxonomy (taxonomic vs. non-taxonomic publications, PT), Journal (PJ), and Year (PY); × interactions among factors; *P* < 0.10 shown; † values significant at *a* = 0.05. See Online Appendix 1 for the protocols used and Online Appendix 2 for the data available as Supplementary Material on Dryad at http://dx.doi.org/10.5061/dryad.3t761.
interactions involving Taxonomy. In the taxon-by-taxon analyses of these 14 journals, taxonomic publications on ciliates received significantly more citations than non-taxonomic ones, whereas taxonomic publications on orchids received significantly fewer citations than non-taxonomic ones. Because of the correction for journal visibility, we consider the results for the 14 journals to be more representative of the citation performance of taxonomic versus non-taxonomic per se than the results for all journals.

We infer that taxon-specific effects exist, at a frequency still to be determined. Citation behavior is nontrivial to predict, and variation of citation traditions is known to occur across the areas of a subfield (Bornmann and Daniel 2008; Erikson and Erlandson 2014). A frequently mentioned effect is that the citation performance of a field depends on the size of the field (Bornmann and Daniel 2008; Casadevall and Fang 2014). For taxonomy, this has been postulated to apply to the number of taxonomists working on a particular taxon (Krell 2002; McDade et al. 2011). We estimated the 2009–2012 research community sizes for the five taxa analyzed here (see Online Appendix 3 for the protocol used available as Supplementary Material on Dryad at http://dx.doi.org/10.5061/dryad.3t76l) and found differences by up to a factor of three (mosses: 2352 authors, orchids: 1993, ciliates: 1281, ants: 923, and snakes: 2561). Contrary to expectations, we found no significant increase of the number of citations with increasing community size across the five taxa ($P=0.166$; covariance analysis using the means of citations, Taxonomy as factor, and community size as covariable). Other established factors influencing citation practices include journal-dependent ones such as the accessibility and prestige of the journal, article-dependent ones such as the length and the number of authors on a paper, and author/reader-dependent ones such as the number of colleagues an author is personally acquainted with (Bornmann and Daniel 2008). Any or all of these factors as well as interactions with the factor Taxonomy as analyzed here might have influenced citation performances across taxa, but it is beyond the scope of our study to explore these. Analyses of these factors for a broad array of taxa will be needed to address these issues properly.

Importantly, we infer that publishing taxonomic contributions does not generally harm and might even enhance the citation performance of journals, in stark contrast to previous belief (see introduction). Broad monitoring will be needed to confirm this finding for taxa beyond those addressed here.

Editors Can Increase the Visibility of Taxonomic Publications

For strengthening the impact and prospects of taxonomy, equal opportunity is needed for taxonomists and non-taxonomists. In practice, this means that taxonomists should be able to publish in highly visible journals (those included in WoS and with a good standing). Editors of highly visible periodicals that include taxonomy will contribute actively to reducing the taxonomic impediment and, considering our analyses, might on top of this do the best for their journals. Of course, taxonomy might not fall within the scope of all journals, but among the 33 journals in Table 1 that did not publish taxonomy on the focal taxa on a yearly basis from 2009 to 2012, 19 accept such contributions in principle and have indeed been publishing taxonomy but at a comparatively low rate. The IF 2012 of these 19 journals that (in principle) publish taxonomy ($2.61±1.64$) does, on average, not differ significantly from that of the 14 journals that do not publish taxonomy at all ($2.73±1.61$; Student’s t-test, $P=0.84$) meaning that equal visibility for taxonomists and non-taxonomists might, in fact, not be out of reach. In essence, for many editors of highly visible periodicals, it might not so much be a question of changing the scope of their journals but of increasing the frequency of taxonomic publications and thus simply of communicating the willingness to publish taxonomy to the community. Many journals are now embracing social media to better connect with their community, hence it is not so outlandish to imagine that editors might soon start tweeting that they are happy to publish taxonomic papers.

Taxonomy’s Productivity Would Be Sufficient to Increase the Number of Papers in Highly Visible Journals

It is not enough, however, for editors of highly visible journals to actively invite taxonomic contributions. A crucial question about whether increasing taxonomy’s visibility will work is the capacity of taxonomy to follow the invitation. One way to approach this issue is looking at the growth rate of taxonomy. To have enough data points for a regression analysis, we analyzed the period 1993–2012. Over this period, the number of taxonomic publications in journals included in WoS grew steadily, and the growth is better explained by an exponential than by a linear model, for all organisms (Fig. 2a; see Online Appendices 4 and 5 for the protocols of database queries and statistical analysis, available as Supplementary Material on Dryad at http://dx.doi.org/10.5061/dryad.3t76l, respectively) as well as for plants, microorganisms, and animals (Fig. 2b). Possibly even more importantly, taxonomy as represented in WoS grew over the same period with greater speed than biology, again for all organisms as well as for plants, microorganisms, and animals (Fig. 2d) despite the decelerated growth rate of all biodiversity research in the past few years (Stork and Astrin 2014). This greater speed in growth makes it plausible that editors publishing taxonomy might indeed boost their journals.

Another approach to the question of taxonomy’s capacity is whether there are sufficient publications in
FIGURE 2. The number of taxonomic publications (1993–2012) included in (a, b) WoS, and (c) ZR, on (a) all organisms, (b) plants, microorganisms, and animals, and (c) just animals; in addition, in (b, c) the numbers are shown for animals when excluding the journal Zootaxa. The results of regression analyses comparing the R^2 of linear (lin) and exponential (exp) functions are added. d) The portion of taxonomic publications on all organisms and on plants, microorganisms, and animals included in WoS of all biological publications in WoS. See Online Appendix 4a–h for the database query protocols used and Appendix 5 for the regression analysis results available as Supplementary Material on Dryad at http://dx.doi.org/10.5061/dryad.3t761. Years are given as relative years as used in the regression analyses: $2 = 1993$, $21 = 2012$.

Downloaded from https://academic.oup.com/sysbio/article-abstract/64/5/860/1685131 by guest on 28 July 2018
TAXONOMY CAN ALSO BE PUBLISHED BY NON-TAXONOMISTS

There is, however, realistic hope that the potential to publish taxonomic papers might be even greater than the ZR analysis suggests. First, the dichotomy between taxonomists and non-taxonomists does not always exist. Some scientists do both sorts of research, either because of diverse interests in the first place or because of the ZR analysis suggests. First, the dichotomy between taxonomists and non-taxonomists does not always exist. Some scientists do both sorts of research, either because of diverse interests in the first place or because of

Second, there are biologists who are spending a considerable amount of time and money on topics pertinent to species delimitation but have never included taxonomic acts in their publications, which focus on phylogeny or phylogeography. This has been criticized as a diversion of funds (Wheeler 2004). However, it also means there is a ready capital from which taxonomy could start profiting: Of 353 sets of specimens included in a literature analysis of studies that reported arthropod diversity at the species level, the need for taxonomic literature database is available just for animals, Zoological Record (ZR). For 2012, the latest year considered here, ZR lists 2.1 times more publications on animal taxonomy than WoS (Fig. 2b, c). This indicates that already in the short term, there is sufficient taxonomic publication output for editors of highly visible journals to indeed increase their share in taxonomy. Also, just as in WoS (Fig. 2b), animal taxonomy grew in ZR (in line with Tancoigne and Dubois 2013) with an exponential rather than linear growth rate (Fig. 2c).

THE COMMUNITY WOULD LIKELY USE THE CHANCE TO INCREASE TAXONOMY’S VISIBILITY

It is difficult to predict to which degree all those publishing taxonomy would accept changes in editorial policy, but there is a prominent example that speaks for optimism. The journal Zootaxa was founded in 2001 to “help taxonomists overcome the taxonomic impediment by enabling them to describe biodiversity in a rapid and efficient way” (Zhang 2011). Zootaxa was included in WoS in 2004 with a subsequent increase in the numbers of contributions published and citations received (Zhang 2011). Zootaxa has published a considerable fraction of the overall number of taxonomic papers on animals in WoS and in ZR (Fig. 2b, c; Tancoigne and Dubois 2013). This suggests that taxonomists indeed would use also other chances of publishing in highly visible journals, should the opportunity arise. The resulting shift from aiming at low visibility to targeting highly visible journals will be very important for taxonomists in working toward both an improved image (Carbayo and Marques 2011) and an improved measure of their scientific impact (Agnarsson and Kuntner 2007).

CONCLUSIONS

Criticisms of the use of bibliometric tools such as the IF in decisions about who gets funded and who gets academic jobs are justified (Benditzer 2014; Erikson and Erlandson 2014; Pyke 2014). However, these tools are currently used widely and, as long as this is the case, taxonomy would benefit from a positive bibliometric performance. We suggest that changes in publication culture might help reduce the taxonomic impediment. Editors of highly visible journals in biology could help (i) increase the visibility of taxonomic publications by encouraging taxonomists to publish in their journals (thereby generally not harming but possibly boosting their journals) and (ii) increase total taxonomic output by making it attractive for scientists working in species delimitation (with their primary focus different from taxonomy) to publish the taxonomic consequences of their research.

The task of taxonomic authors, in turn, will be to follow the invitation and to submit indeed their best papers to the best-visible journals available for submission—just as authors of non-taxonomic papers do. These actions together would very likely increase the citation strength of taxonomy as measured by the IF and similar tools and thus improve taxonomists’ chances in competing for academic positions and research funding.

Here, we have revisited one seemingly well-established explanation for the taxonomic impediment, taxonomy’s poor citation performance, with surprising results. We personally doubt that other explanations for the taxonomic impediment such as difficult job and funding situations would likewise turn out to be preconceived ideas—but evidence-based scrutiny is needed.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Data Repository: http://dx.doi.org/10.5061/dryad.3t76i.
FUNDING
This work was supported by the Austrian Science Fund, FWF (grant numbers P23409 to B.C.S.-F., P25955 to F.M.S.); and the science fund of the Autonomous Province of South Tyrol (grant number 40.3/22306/27.01.2014 to W.A.).

ACKNOWLEDGMENTS
Many thanks to Clemens Folterbauer and Magdalena Tratter for assistance with data preparation in a pilot study, but significantly fewer species per unit effort may indicate to Thomas Dejaco for help with figure preparation, to Brian Golding for valuable discussion, and to Frank Anderson, Benoit Dayrat, Sarah Sumadi, and one anonymous reviewer for their helpful comments.

REFERENCES

Adler K.B. 2009. Impact factor and its role in academic promotion. Am. J. Respir. Cell Mol. Biol. 41:127.

Adler N.J., Harzing A.W. 2009. When knowledge wins: transcending the sense and nonsense of academic rankings. Acad. Manag. Learn. Educ. 8:72–95.

Agranovich I., Knutner M. 2007. Taxonomy in a changing world: seeking solutions for a science in crisis. Syst. Biol. 56:531–539.

Anderson R.S., Majka C.G. 2009. Biodiversity and biosystematic research in a brave new 21st century information-technology world. ZooKeys 22:1–10.

Belter D.P., Wood J.R.I., Barker C., Scotland R.W. 2014. Author inflation masks global capacity for species discovery in flowering plants. New Phytol. 201:700–706.

Benitez H.A. 2014. Is the fever for high impact a disadvantage for systematics? Neopt. Entomol. 43:295–297.

Bilton D.T. 2014. What’s in a name? What have taxonomy and systematics ever done for us? J. Biol. Educ. 48:116–118.

Birindia-Emords O.R.P. 2011. Supporting species in ODE: explaining and citing. Org. Divers. Evol. 11:1–2.

Boero F. 2001. Light after dark: the partnership for enhancing expertise among amateur and professional taxonomists: implications for conservation. Anim. Conserv. 5:245–249.

Brumback R.A. 2012. “3 . . 2 . . 1 . . impact [factor]: target [academic career] destroyed!” just another statistical casualty. J. Child Neurol. 27:1565–1576.

Carberry F., Marques A.C. 2011. The costs of describing the entire animal kingdom. Trends Ecol. Evol. 26:154–155.

Casadevall A., Fang F.C. 2014. Causes for the persistence of impact factor mania. mBio 5:5.

Costello M.J., Wilson S., Houlding B. 2013. More taxonomists for less money? A commentary on systematics and the cybertaxonomy-automation paradigm. Evol. Biol. 34:140–143.

De Carvalho M.R., Ebach M.C., Williams D.M., Nihei S.S., Rodrigues M.T., Grant T., Silveira L.F., Zuber H., Gall A.C., Schelly R.C., Sparks J.S., Bockmann F.A., Seret B., Ho H.C., Grande L., Rieppel O., Dubois A., Olker A., Faivovich J., Assis L.C.S., Wheeler Q.D., Goldstein P.Z., de Almeida E.A.B., Valdecasas A.G., Nelson G. 2014. Does counting species count as taxonomy? On misrepresenting systematics, yet again. Cladistics 30:322–329.

Ebach M.C., Valdecasas A.G., Wheeler Q.D. 2011. Impediments to taxonomy and users of taxonomy: accessibility and impact evaluation. Cladistics 27:550–557.

Elias S.A. 2013. A brief history of the changing occupations and demographics of coleopterists from the 18th through the 20th century. J. Hist. Biol. 47:213–242.

Eriksson M.G., Erlandsson P. 2014. A taxonomy of motives to cite. Soc. Stud. Sci. 44:625–637.

Eyre-Walker A., Stoletski N. 2013. The assessment of science: the relative merits of post-publication review, the impact factor, and the number of citations. PLoS Biol. 11:e1001675.

Foley J.A. 2013. Peer review, citation ratings and other fetishes. Springer Sci. Rev. 1:1–3.

Gaston K.J., May R.M. 1992. Taxonomy of taxonomists. Nature 365:281–282.

Godfray H.C.J. 2002. Challenges for taxonomy. Nature 417:17–19.

Halme P., Kusela S., Juslén A. 2015. Why taxonomists and ecologists are not, but should be, carpooling? Biodivers. Conserv. DO: 10.1007/s10531-015-0899-3.

Haszprunar G. 2011. Species delimitations – not “only descriptive”. Org. Divers. Evol. 11:249–252.

Hopkins G.W., Freckleton R.P. 2002. Declines in the numbers of amateur and professional taxonomists: implications for conservation. Anim. Conserv. 5:245–249.

Kaufal S.S., Jeshke J.M. 2013. Collegiality versus competition: How metrics shape scientific communities. BioScience 63:155–156.

Krell F.T. 1990. Impact factors aren’t relevant to taxonomy. Nature 405:507–508.

Krell F.T. 2002. Why impact factors don’t work for taxonomy. Nature 415:957.

Lester P.J., Brown S.D.J., Edwards E.D., Holwell G.J., Pawson S.M., Ward D.F., Watts C.H. 2014. Critical issues facing New Zealand entomology, N. Z. Entomol. 37:1–13.

McCabe D.A., Maddison D.R., Guralnick R., Proworah H.A., Jameson M.L., Helgen K.M., Herendeens P.S., Hill A., Wu M.L. 2011. Biology needs a modern assessment system for professional productivity. BioScience 61:619–625.

Mora C., Parnell J. 1993. Plant taxonomic research, with special reference to taxonomy and users of taxonomy: accessibility and impact evaluation. Cladistics 9:114–118.

Mora C., Tittensor D.P., Adl S., Simpson A.G. C., Worm B. 2011. How many species are there on earth and in the ocean? PLoS Biol. 9:e1001127.

Morrone P. 1993. Plant taxonomic research, with special reference to the tropics: problems and potential solutions. Conserv. Biol. 7:809–814.

Marten P. 2009. Is the end in cite? EMBO Rep. 10:1186.

Pearson D.L., Hamilton A.L., Erwin T.L. 2011. Recovery plan for the endangered taxonomy profession. BioScience 61:58–63.

Pye G.H. 2014. Evaluating the quality of taxonomic publications: a simple alternative to citations and effort. BioScience 64:969–972.

Samyn Y., Cock O.D. 2012. No name, no game. Eur. J. Taxon. 10:1–3.

Scheiman R.F.M. 2013. Reforming research assessment. eLife 2:e00855.

Schlick-Steiner B.C., Steiner F.M., Seifert B., Stauffer C., Christian E., Crozier R.H. 2010. Integrative taxonomy: a multisource approach to exploring biodiversity. Annu. Rev. Entomol. 55:421–438.

Shashank P.R., Meshram N.M. 2014. Impact factor-driven taxonomy: Why metrics shape scientific communities. BioScience 63:155–156.

Stud. Sci. 44:625–637.
Swiss Academy of Sciences 2007. The future of systematics in Switzerland: systematics as a key discipline in biology. J. Zool. Syst. Evol. Res. 45:265–288.
Tancoigne E., Dubois A. 2013. Taxonomy: no decline, but inertia. Cladistics 29:567–570.
Valdecasas A.G. 2011. An index to evaluate the quality of taxonomic publications. Zootaxa 2925:57–62.
Valdecasas A.G., Castroviejo S., Marcus L.F. 2000. Reliance on the citation index undermines the study of biodiversity. Nature 403:698.
Vale R.D. 2012. Evaluating how we evaluate. Mol. Biol. Cell 23:3285–3298.
Venu P., Sanjappa M. 2011. The impact factor and taxonomy. Curr. Sci. 101:1397.
Wägele H., Klussmann-Kolb A., Kuhlmann M., Haszprunar G., Lindberg D., Koch A., Wägele J.W. 2011. The taxonomist – an endangered race: A practical proposal for its survival. Front. Zool. 8:25.
Werner Y.L. 2006. The case of impact factor versus taxonomy: a proposal. J. Nat. Hist. 40:1285–1286.
West G.B. 2014. A theoretical physicist’s journey into biology: from quarks and strings to cells and whales. Phys. Biol. 11:053013.
Wheeler Q.D. 2004. Taxonomic triage and the poverty of phylogeny. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359:571–583.
Zhang Z.Q. 2011. Accelerating biodiversity descriptions and transforming taxonomic publishing: the first decade of Zootaxa. Zootaxa 2896:1–7.