Carbon dioxide enters metabolism via six known CO₂ fixation pathways, of which only one is linear, exergonic in the direction of CO₂-assimilation, and present in both bacterial and archaeal anaerobes – the Wood-Ljungdahl (WL) or reductive acetyl-CoA pathway. Carbon monoxide (CO) plays a central role in the WL pathway as an energy rich intermediate. Here, we scan the major biochemical reaction databases for reactions involving CO and CO₂. We identified 415 reactions corresponding to enzyme commission (EC) numbers involving CO₂, which are non-randomly distributed across different biochemical pathways. Their taxonomic distribution, reversibility under physiological conditions, cofactors and prosthetic groups are summarized. In contrast to CO₂, only 15 reaction classes involving CO were detected. Closer inspection reveals that CO interfaces with metabolism and the carbon cycle at only two enzymes: anaerobic carbon monoxide dehydrogenase (CODH), a Ni- and Fe-containing enzyme that generates CO for CO₂ fixation in the WL pathway, and aerobic CODH, a Mo- and Cu-containing enzyme that oxidizes environmental CO as an electron source. The CO-dependent reaction of the WL pathway involves carbonyl insertion into a methyl carbon-nickel at the Ni-Fe-S A-cluster of acetyl-CoA synthase (ACS). It appears that no alternative mechanisms to the CO-dependent reaction of ACS have evolved in nearly 4 billion years, indicating an ancient and mechanistically essential role for CO at the onset of metabolism.

Introduction

In autotrophs, carbon dioxide enters metabolism mainly via six known pathways of CO₂ fixation [1–5]. In discussions about novel synthetic CO₂ fixation pathways [6–10], it is often overlooked that heterotrophs also harbor a number of metabolic reactions that incorporate CO₂. For example, carbon atoms from CO₂ end up in the purine and pyrimidine rings during de novo nucleobase biosynthesis, from prokaryotes to humans [11], and CO₂ assimilation into membrane lipids has been measured as a proxy of metabolic activity in different heterotrophic bacteria [12]. Of the six natural pathways of autotrophic CO₂ fixation, only one involves CO as an intermediate – the Wood-Ljungdahl (WL) pathway, also called the reductive acetyl-CoA pathway.

Among CO₂ assimilation pathways, the WL pathway is unique in being the only linear pathway of carbon fixation that can occur exergonically [3,13,14]. Phylogenetic evidence traces the pathway to the genome of the Last Universal Common Ancestor (LUCA) [15]. It is the only known pathway of core CO₂ fixation present in both bacteria and archaea [2,3]. Gene distributions for both the enzymes of the pathway and the synthesis of its salient pterin cofactors – tetrahydrofolate (H₄F) in bacteria and tetrahydromethanopterin (H₄MPT) in
archaea – testify to the antiquity of the WL pathway [3,16], which is closely aligned with theories that posit a chemolithoautotrophic origin of life [17–19]. Its basic chemistry, the reduction in CO₂ to organic one-carbon (C₁) moieties, occurs as spontaneous geochemical reactions in hydrothermal systems [20,21]. The WL pathway entails oxygen sensitive catalysts, as its enzymes are replete with iron and nickel sulfur centers essential for electron transfer and catalysis [14,22]. CO₂-reducing reactions of the WL pathway occur readily in the laboratory in the presence of native metals [23,24]. The WL pathway is the only pathway known that fixes CO₂ while conserving energy as ATP, the mechanisms of energy conservation entailing chemiosmotic coupling and flavin-based electron bifurcation [3,25]. The simplicity of the WL pathway [13,22], its antiquity [13–16,26,27], favorable energetics in the CO₂-reducing direction [3,25] and chemical similarity to exergonic geochemical reactions in hydrothermal vents [20,21] forge chemical links between early earth geochemistry and the biochemistry of the first cells.

The WL pathway works in a conceptually simple but chemically demanding manner – one carbon at a time [22]. The enzymology of the pathway has been reviewed [3,19,22,28,29]. In comparisons of the archaeal and bacterial pathway, the enzymes of the methyl synthesis branch show no sequence conservation across the prokaryotic domain divide [16], whereby the CO synthesis and thioester synthesis are catalyzed by an enzyme well conserved between archaea and bacteria: bifunctional carbon monoxide dehydrogenase/acetyl CoA synthase (CODH/ACS). CODH catalyzes the reversible, ferredoxin-dependent interconversion of CO and CO₂ [30]. In the WL pathway, CO is generated as an intermediate of CO₂ fixation, but environmental CO can also enter the pathway as a carbon and electron source [3,31,32]. Both CODH and CO are central to carbon and energy metabolism in methanogens (archaea) [33], hydrogenogens, acetogens [22,34], some solventogenic bacteria, such as ethanol-producing *Clostridium ljungdahlii* [35] and other anaerobes including sulfate reducers [36], as reviewed in [32,37]. CODH contains FeS clusters, the active site contains an FeNiS cluster [38–40]. An anaerobic CODH preparation containing copper in the active site was reported [41], but the enzyme was inactive. The CODH enzyme of the WL pathway is oxygen sensitive. ACS catalyzes the cleavage and synthesis of acetyl-CoA, releasing or consuming CO, respectively. In *Moorella thermoacetica*, CO is carried inside the enzyme through a hydrophobic tunnel as proposed by scavenging experiments using hemoglobin [42] and subsequently supported by isotope exchange data [43] and structural data [44]. Some facultative aerobes, as *Rhodospirillum rubrum*, have the anaerobic CODH but no ACS, and use it to conserve energy in the reverse direction through CO oxidation [32].

In other aerobic and facultative aerobic bacteria, CO oxidation can also be catalyzed by an oxygen tolerant enzyme that shares no sequence similarity with CODH of the WL pathway. The oxygen tolerant CO oxidizing enzyme is encoded by the cox operon [45]. It is typically called aerobic CODH [45], but for clarity we will refer to it here by the name of its catalytic subunit, coxL. Importantly, coxL enzymes are not related to the CODH of the WL pathway, rather they are related to molybdenum hydroxylases [45,46]. The metals involved in coxL catalysis are molybdenum and copper [38,46–48]. *Cox* genes products only perform the oxidation of CO to CO₂, which in some species of Proteobacteria, Firmicutes and Actinobacteria can then be fixed via the Calvin cycle [45,47]. In aerobes that use coxL enzymes, CO is typically a source of electrons for respiratory processes coupled with exogenous electron acceptors such as oxygen [45,49], sulfate [50], anthraquinone disulfonate and fumarate [51].

Various lines of evidence point to the importance of CO in primordial metabolism [52–56]. Here, we queried large and well curated biochemical databases – KEGG and BRENDA – to investigate the number and nature of entry points of CO and CO₂ into metabolism.

Results and Discussion

CO₂ is everywhere in metabolism, CO is rare

The KEGG and BRENDA have different reaction nomenclatures, therefore to compare their content it is convenient to use Enzyme Commission (EC) numbers, which also link metabolic data with taxonomy and other catalysis metadata. Figure 1 shows the content of both databases regarding enzyme classes that use CO₂ and CO. Both databases reveal that CO is very rare in metabolism, whereas CO₂ is very common. KEGG contained 390 EC numbers involving CO₂, BRENDA Natural (a subset of BRENDA including only reactions tested *in vivo*) contained 323 EC numbers and both databases returned 13 EC numbers involving CO (Fig. 1).

The results obtained from both databases are not completely overlapping (Fig. 1). In KEGG, there are 91 EC numbers involving CO₂ that are not found in BRENDA. Conversely, 25 EC numbers involving CO are found in BRENDA but not in KEGG. Regarding CO, each database has two unique EC numbers: in...
BRENDA an additional dioxygenase, 1.13.11.54, and an additional heme oxygenase, 1.14.99.48, are listed as producing CO. In KEGG one of these non-overlapping EC numbers is a misannotation: 2.1.1.258, a 5-methyltetrahydrofolate: corrinoid/iron-sulfur protein Co-methyltransferase, represents a reaction of the Wood-Ljungdahl pathway that does not involve CO as substrate or product [29]. The second CO involving reaction unique to KEGG is EC 4.1.99.5, an O₂-dependent aldehyde oxygenase. O₂-dependent reactions cannot be primordial, because O₂ is the product of cyanobacterial metabolism (see Conclusion).

Eleven EC numbers that involve CO occur in both databases. Of those 11, seven entail CO only as a by-product of an O₂-dependent enzyme: two heme oxygenases, 1.14.14.18 and 1.14.15.20; four dioxygenases: 1.13.11.24, 1.13.11.47, 1.13.11.48 and 1.13.11.53 and one synthase 4.1.99.17. The remaining four EC numbers involving CO all trace directly to CODH. The first is 1.2.2.4, aerobic CODH with cytochrome b-561 as an electron acceptor. This reaction is disputed, however, as some authors argue that no cytochromes are involved in the aerobic CODH reaction [57], contrary to the original proposal [49]. The second is 1.2.5.3, aerobic CODH with quinones as an electron acceptor. The third is EC. 1.2.7.4, anaerobic CODH with ferredoxin. The fourth is 2.3.1.169, the CODH/ACS combined reaction, which in BRENDA is considered as including only the second step of acetyl-CoA synthesis and not the CO₂ fixation step.

CO₂ for all trades, CO only for CODH

CO₂ is involved throughout all major functional pathways in KEGG, while CO is assigned to only 7 (Fig. 2A). Each EC number had from 0 to a maximum of 11 KEGG pathways assigned. Multifunctionality is a known and important characteristic of enzymes, so the functional analysis done here preserved all classifications assigned to all enzymes, except for the large generalist categories (‘Biosynthesis of antibiotics’, ‘Biosynthesis of secondary metabolites’, ‘Microbial metabolism in diverse environments’ and ‘Metabolic pathways’), which were discarded. A large number of enzymes do not have any pathways assigned (not shown in the plot) - 113 involving CO₂ and 5 involving CO. The functions of these 5 EC numbers involving CO were searched manually in the literature (see legend of Fig. 2; Table 1). All EC numbers involving CO as a substrate are assigned (or, if assigned Unknown, could be manually assigned) to ‘carbon
Fig. 2. Functional analysis of EC numbers involving CO2 and CO. (A) EC numbers involving CO2 (dark and light blue for those in prokaryotes and in eukaryotes only, respectively) and CO (dark and light red, accordingly). (B) Enrichment analysis (Fisher’s exact test with adjusted p-values by the Bonferroni correction) for high-level functional categories of EC numbers involving CO2 (prokaryotes only).
fixation pathways in prokaryotes’ and ‘energy metabolism’ through the CODH reaction. Other pathways involve CO always as a byproduct, with the exception of the additional assignments of anaerobic CODH 1.2.7.4 to ‘methane metabolism’ (in the methanogen pathway) and (through a reaction that does not involve CO) to ‘nitrotoluene degradation’.

Each reaction in our set was annotated in a range from 1 to a maximum of 4320 taxa (species) in KEGG as per its occurrence, either through the corresponding gene in KEGG genomes or manually assigned upon examination of the literature (see Materials and methods). Out of the total 399 EC numbers gathered for CO2 and CO, 99 reactions were found to be annotated only in eukaryotes, only one of which involves CO (a mammalian heme oxygenase that produces CO, 1.14.14.18, annotated in 110 KEGG genomes). In prokaryotes, 292 ECs involved with CO2 were annotated, versus only 12 with CO.

To investigate the distribution of reactions across pathways where CO2 was involved, a higher-level categorization was performed, using the KEGG pathway hierarchy, for prokaryotic EC numbers (Fig. 2B). A Fisher’s exact test for enrichment of each pathway indicates amino-acid metabolism as highly enriched for CO2-involving reactions, as well as a significant enrichment for xenobiotics biodegradation and metabolism, carbohydrate metabolism, metabolism of cofactors and vitamins and energy metabolism (adjusted p-values of 2.49×10^{-14}, 6.01×10^{-6}, 4.44×10^{-5}, 3.21×10^{-4} and 7.10×10^{-4}, respectively).

The ubiquity of CO2 in metabolism is more clearly seen by highlighting CO2-dependent reactions on the KEGG map ‘Metabolic Pathways’ (Fig. S1; portion of Table 1. Enzyme commission numbers associated with carbon monoxide.

EC number	Functional classifications in KEGG	Name and description	Proposed functional classification
1.2.2.4	Unknown	CO dehydrogenase (cytochrome b_{561}); although present in strict aerobes, O_2 is not required for the reaction. CO is oxidized to CO2 with water as the oxidant [49]	Energy Metabolism; Carbon fixation pathways in prokaryotes
1.2.5.3	Unknown	Aerobic Carbon Monoxide dehydrogenase (quinone)	Energy Metabolism; Carbon fixation pathways in prokaryotes
1.2.7.4	Carbon fixation pathways in prokaryotes; Methane metabolism; Nitrotoluene degradation	Anaerobic carbon-monoxide dehydrogenase (ferredoxin)	Energy Metabolism; Carbon fixation pathways in prokaryotes
2.3.1.169	Carbon fixation pathways in prokaryotes	CO-methylating acetyl-CoA synthase	Carbon fixation pathways in prokaryotes
2.1.1.258	Carbon fixation pathways in prokaryotes	5-methyltetrahydrofolate:corrinoid/iron-sulfur protein Co-methyltransferase; two step reaction: Tetrahydrofolate + acetyl-CoA \leftrightarrow 5-methyltetrahydrofolate + CoA CO	
1.13.11.24	Unknown	Quercetin 2,3-dioxygenase. CO is a byproduct in this reaction.	Xenobiotics biodegradation and metabolism
1.13.11.47	Unknown	3-hydroxy-4-oxoquinoline 2,4-dioxygenase. CO is a byproduct in this reaction.	Xenobiotics biodegradation and metabolism
1.13.11.48	Unknown	3-hydroxy-2-methylquinolin-4-one 2,4-dioxygenase. CO is a byproduct in this reaction.	Xenobiotics biodegradation and metabolism
1.13.11.53	Cysteine and methionine metabolism	Acireductone dioxygenase (Ni$^{2+}$-requiring). CO is a byproduct in this reaction. Unknown function; the same enzyme, when binding iron, is the one leading to the salvage of methionine (EC 1.13.11.54) [97,98].	
1.14.14.18	Porphyrin and chlorophyll metabolism	Heme oxygenase (biliverdin-producing). CO is a byproduct in this reaction.	
1.14.15.20	Porphyrin and chlorophyll metabolism	Heme oxygenase (biliverdin-producing, ferredoxin). CO is a byproduct in this reaction.	
4.1.99.5	Cutin, suberine and wax biosynthesis	Aldehyde oxygenase (deformylating)	
4.1.99.17	Thiamine metabolism	Phosphomethylpyrimidine synthase. CO is a byproduct in this reaction.	
shown in Fig. 3). The KEGG metabolic map used is the largest available for depiction, however it can still only plot 40% of the 292 prokaryotic EC numbers for CO2. The chemical reactions in the map are all theoretically reversible, however not all can be reversibly catalyzed by the same enzyme under the same physiological conditions. We cross-checked all KEGG EC numbers involving CO2 against the information regarding reversibility in BRENDA. KEGG reactions have no direct information regarding reversibility – all are assigned as reversible. Reversibility information in BRENDA is two-fold: (a) there is a direct assignment of compounds involved in the reaction as substrates or products and (b) each reaction assigned to an EC has an

Fig. 3. CO2 in a section of a global metabolic map (full map provided as Fig. S1). A portion of the KEGG map ‘01100 – metabolic pathways’ with reactions involving CO2 highlighted, portraying different directionality and reversibility assignments in BRENDA. In black, reactions not in BRENDA or where CO2 is a product in BRENDA but reversibility is unknown; in blue, reactions where CO2 is a substrate or it is a product and the reaction is classified as reversible in at least one study; in red, reactions classified as irreversible where CO2 is a product.
independent reversibility classification, which is assigned manually by the database curators as ‘reversible’, ‘irreversible’ or ‘unknown’. In Figs S1 and 3, EC numbers involving CO2 are highlighted according to the reversibility of the reactions they encode in BRENDA. When looking at all reactions, including those not in the map, 65% were classified as producing CO2 with reversibility unknown; 24% as utilizing CO2 or reversibly producing it; 11% as irreversibly producing CO2.

Metals and cofactors

The cofactors and metals involved in CO and CO2 metabolism are different. We analyzed the number of studies reporting metal and cofactor utilization in BRENDA in vivo, only for EC numbers where CO and CO2 are assigned as substrates, and only for anaerobic, prokaryotic reactions (Fig. 4).

For CO, 63 entries for metal utilization were retrieved linked with the only EC number where CO is an in vivo substrate in BRENDA (anaerobic CODH reaction, 1.2.7.4). Nickel and iron are by far the most commonly reported metals, occurring in 46 and 34.9% of all 63 entries, respectively. For CO2, of the total 499 entries retrieved, magnesium and manganese are by far the preferred metals – 33.9 and 14.2%, respectively). Regarding organic cofactors, ATP, biotin and NADs are the most common for CO2 utilization – 33.2, 26 and 20%, respectively from a total of 235 entries – whereas for CO nickel-iron-sulfur clusters are the only reported cofactors. Different types of Ni-Fe-S clusters have been synthesized in the laboratory [58,59], although none have yet been shown to catalyze the interconversion of CO2 and CO.

CODH/ACS: Archaea and bacteria, but not aerobes

An earlier paper plotted the evolutionary distribution of the archaeal type and bacterial type CODH and ACS enzymes across genomes [16] demonstrating the antiquity of the enzyme. Single gene phylogenies also trace CODH and ACS to the universal common ancestor [15,26,27]. A fundamental limitation to gene phylogenies as a proxy of prokaryotic gene evolution is however that phylogenies only show in which lineages the gene is present, not the lineages in which it is missing. Plots of gene distributions reveal where genes are lacking. Figure 5A shows the current gene distribution at the prokaryotic phylum level for CODH and ACS as proxies for capacity to harness CO in metabolism and to fix it as acetyl-CoA. As the query sequences, homologues from eight prokaryotes were used to obtain insights into the distribution of the catalytic domains.

![Fig. 4. Metals and organic cofactors in reactions that consume CO or CO2. Percentage of entries of experimental evidence in BRENDA demonstrating the participation of different (A) metals and (B) cofactors in the catalytic activity of enzymes that use CO (red) or CO2 (blue) as substrates.](image-url)
The main observation from Fig. 5 is that CODH and ACS are typically distributed among anaerobic autotrophs. Some diversity is seen in the bacterial copy of the enzyme – the presence/absence patterns obtained with the different queries are not fully identical – indicating divergence after duplication. This contrasts with the archaeal forms, with one interesting exception. In both *A. fulgidus* and Batharchaeota archaeon, there is one copy of CODH with the same distribution as the bacterial CODH. This suggests interdomain lateral gene transfer for this CODH subunit (Fig. 5B). Gene transfers from bacteria to archaea are very common in evolution [60,61]. The distribution of ACS is clearer, and uniform within both domains, showing some homology in-between domains for the clostridial enzymes and Methanomicrobiales (Fig. 5).

CO forms stronger bonds to metals than CO

The large difference in the numbers of metabolic reactions that involve either the utilization or production of CO and CO$_2$ is striking. A closer look at the chemistry regarding the interaction of both compounds with metals provides further detail (Fig. 6). The orbitals in carbon atoms of both carbon monoxide and carbon dioxide are sp-hybridized, such that both molecules are linear. At the level of electron configurations, however, CO and CO$_2$ differ quite noticeably. In particular, the free electron pair of CO enables two complementing mechanisms (σ and π) that lead to very strong and short bonds with metals (Fig. 6A). The empty π-orbitals of CO support backbonding with metals, which results in a very high affinity to nickel and iron in particular [62]. The high affinity of CO for nickel leads to the facile formation of nickel carbonyl, Ni(CO)$_4$ (a volatile liquid), which formed the basis of the Mond process, an early method for industrial nickel preparation [63]. The strong affinity of CO to transition metals is the basis of its extreme toxicity to humans, it bonds with the iron in hemoglobin more strongly than does O$_2$.

By contrast, there are various bonding modes of CO$_2$ to transition metals (Fig. 6B) which depend mostly on whether the metal is rich or poor in electrons. In general, the bonds that CO$_2$ forms with metals are not as strong as those formed by CO. This can be a virtue in metabolism, as the rather weak bonds of CO$_2$ to metals permit faster and more versatile catalytic reactions than those of CO. Nevertheless, the special bond between CO and transition metals also enables carbonyl insertion, both in industrial chemistry (heterogenic catalysis) [64], and in one very ancient and important biological reaction – CODH/acytely-CoA synthase [65], which requires the essential Ni-Fe-S cluster for achieving the slow reduction of CO$_2$ to CO. Recent studies showing that CO$_2$ is efficiently reduced by native metals to acetyl and pyruvyl moieties entail metal bound carbonyl groups and carbonyl insertions in the proposed reaction mechanisms [23]. This parallels the Fischer-Tropsch type reaction mechanisms suggested for geochemical CO$_2$ reduction processes giving rise to abiotic organic molecules in hydrothermal vents [66,67].

Conclusion

For soil environments, it has been estimated that 0.2 gigatonnes (Gt) of CO is consumed each year globally [68] mainly through CO aerobic oxidation [69]. During methanogenesis in anoxic environments [70], about 0.6 Gt of CH$_4$ is produced annually from acetate [71,72], a process that generates one mol of CO as a pathway intermediate per mol of acetate cleaved [71,72], corresponding to roughly 1 Gt methanogenesis-dependent CO synthesis per year. Based on reviews of CO metabolism [22,37], and on our metabolic database search, it appears that CO interfaces with metabolism (the biotic segment of the carbon cycle) at only two enzymes: the anaerobic CODH, a Ni- and Fe-containing enzyme, and
Although they catalyze the same reversible reaction (Eq. 1),

$$\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 2\text{e}^- + 2\text{H}^+ \quad \Delta G_0' = -20\text{kJ} \cdot \text{mol}^{-1}$$

the aerobic and anaerobic CODH enzymes have different subunit structures, different cofactors and are not related at the amino acid sequence or structural level [37,39–41,45]. Prokaryotes that use aerobic CODH use CO as a source of electrons in energy metabolism, are typically aerobes or facultative aerobes and tend to transfer the electrons from CO to high potential acceptors such as O_2 or acceptors derived from it such as nitrate (NO_3^-) [45,73]. Because O_2 is a product of cyanobacterial metabolism [74], such high potential acceptors are latecomers in evolution, as current geochemical data have it that cyanobacterial O_2 first appeared about 2.5 billion years ago [74–76].

From the standpoint of thermodynamics, it is well-known that the WL pathway is the most favorable of the six known CO_2 fixation pathways [3,77]:

$$2\text{CO}_2 + 4\text{H}_2 + \text{CoASH} \rightarrow \text{CH}_3\text{COSCoA} + 3\text{H}_2\text{O} \quad \Delta G_0' = -59\text{kJ} \cdot \text{mol}^{-1}$$

The reaction is exergonic when H_2 is the electron donor, which allows some acetogens and some methanogens to generate ion gradients and ATP at the expense of CO_2 fixation. All other pathways of CO_2 fixation require ATP hydrolysis to go forward. Recent findings show that the reverse citric acid (rTCA) cycle in some thermophiles requires hydrolysis of only one
ATP to go forward [78,79], but that ATP must still be generated by an independent energy metabolism. The reductive acetyl-CoA pathway is simultaneously a source of carbon and energy, a strong argument in favor of its ancestral status among carbon assimilation pathways [2,3]. CO2-fixation via the rTCA cycle could have arisen via closure of the incomplete (horseshoe) version of the rTCA cycle [80] (starting from acetyl-CoA supplied by the WL-pathway) as it occurs in some acetogens and methanogens [18,81,82].

Its linear nature, chemical simplicity, favorable energetics, and occurrence among both Bacteria and Archaea set it apart from other pathways of CO2 fixation and suggest that the WL is the most ancient of CO2 fixation pathways [3,4]. Strong evidence supporting the antiquity of the WL pathway comes from new findings showing that its main reactions are facile, with its central intermediates including pyruvate arising spontaneously in laboratory reactions overnight from CO2 and water at temperatures of 30–100 °C in the absence of enzymes, with native metals such as Fe0 and Ni0 functioning as catalysts and reductants [23]. From the standpoint of energetics, there is something very special about the reductive acetyl-CoA pathway among metabolic pathways. The involvement of CO as a reaction intermediate able to undergo carbonyl insertion might be the essential property that renders Ni-dependent C—C bond formation in the CODH/ACS reaction mechanism apparently immune to substitution by organic cofactors or alternative enzymes over the last 4 billion years. In physiological evolution, it appears that there is something very special about CO.

Materials and methods

Data retrieval and integration

Both KEGG and BRENDAN databases were scanned for classes of reactions involving CO and/or CO2 by parsing Enzyme Commission (EC) numbers. From BRENDAN, we took only the subset of reactions tested in vivo. EC numbers involving bicarbonate (HCO3) were also retrieved. Because of the chemical equilibrium between CO2 and HCO3 and their rapid interconversion by carbonic anhydrases [83], which are widely distributed enzymes, throughout this work CO2 and HCO3 were considered to be identical in database parsing procedures. EC numbers and the current list of KEGG organisms with the corresponding taxonomic classification were downloaded using the KEGG Rest API (http://www.kegg.jp/kegg/rest/keggapi.html), July 2017. The EC numbers from BRENDAN were retrieved with the SOAP API Python interface. All integration was performed with Python scripts.

Taxonomy annotation

The taxonomic assignment of EC numbers was retrieved from the annotated genomes in the KEGG database. Among all 399 KEGG EC numbers used, 114 had no gene associated, and these were manually checked: for each EC number we checked the original literature linked in the KEGG entry to find the corresponding taxon where the EC number was identified. For 53 out of these 114 EC numbers, the taxon retrieved from the literature was not present in KEGG genomes. In these cases, a close phylogenetic cousin was assigned to the EC number so that it could be automatically assigned to the Prokaryotic or Eukaryotic domains.

Statistical analysis and metabolic maps

All the statistical analyses, including the Fisher’s exact test for significance and Bonferroni correction, were performed with the package RPy2, that provides an interface between Python and the R statistical software. Overlapping sets of EC numbers were analyzed and plotted with UpSetR [84]. The metabolic map with highlighted reactions was produced with iPath v2.0 [85].

Analysis of distributions of CO enzymes

The query sequences for the catalytic domain of CODH and the catalytic domain of ACS were manually selected from nine different species (four archaea and five bacteria) that have been studied with respect to CO utilization. All annotated copies for both genes were taken for each genome. This exercise resulted in the collection of a total of 25 queries from: (bacterial) an acetogen, *Moorella thermoacetica*, with two copies of CODH and one copy of ACS [86]; a thermophilic hydrogenogen, *Carboxydoterthermus hydrogenoforms* with four CODH copies and one ACS [87]; a photosynthetic facultative anaerobe, *Rhodospirillum rubrum* with a single copy of CODH, capable of growth on carbon monoxide as sole energy source [88]; two aerobes with one CODH each, *Oligotropha carboxidivorans* (coxL I) and *Bradyrhizobium* sp. CPP (coxL II) [89] – the latter with a similar pattern to the former (data not shown); (archaeal) a non-methanogenic sulfate reducer, *Archaeoglobus fulgidus*, with 3 copies of CODH and one ACS [90]; a recently identified, fermentative and possibly methylo trophic methanogen, *Candidatus Bathyarchaeota archeaeon BA1* with two copies of CODH and one of ACS [91,92]; one hydrogenotrophic methanogen, *Methanobrevibacter thermoautotrophicus* with one copy of each enzyme [93] and finally an acetoclastic methylo trophic, hydrogenotrophic methanogen, *Methanosarcina acetivorans* with three copies of CODH and two of ACS [94]. Representative queries were taken from each genome when they were significantly similar. The queries were
aligned with ClustalW [95] and phylogenetic inferences were made with RAxML [96].

To characterize CODH and ACS gene distribution, a BLAST search was performed against all prokaryotic genomes in RefSeq (NCBI, version September 2016), of which the primary hits (∼value ≤ 1 × 10−5) were selected. A pairwise global ‘Needleman & Wunsch’ – alignment was then performed with these sequences against the whole database of prokaryotes again to filter for hits with global identity >20%.

Acknowledgements

This work was supported by grants from the European Research Council (660653), the Volkswagen Foundation (93 046) to WFM and by a cooperation grant to Harun Tuz (TU 315/8-1), and to WFM and by a cooperation grant (MA1426/21-1) and to WFM from the Deutsche Forschungsgemeinschaft.

This work was supported by grants from the European Research Council (660653), the Volkswagen Foundation (93 046) to WFM and by a cooperation grant to Harun Tuz (TU 315/8-1), and to WFM and by a cooperation grant (MA1426/21-1) and to WFM and by a cooperation grant (MA1426/21-1) and to Harun Tuz (TU 315/8-1), Max Planck Institute for Coal Research, Mülheim.

Author contributions

JCX collected and analyzed the data from KEGG and BRENDA. MP analyzed the chemical configurations of CO2 and CO. WFM designed and supervised the study. The manuscript was written and proofread by all authors.

References

1. Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52, 155–189.
2. Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77, 1925–1936.
3. Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65, 631–658.
4. Hügler M & Sievert SM (2011) Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Ann Rev Mar Sci 3, 261–289.
5. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA et al. (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113, 6621–6658.
6. Jajcsiak P, Eldin H, Omar M & Wong TS (2014) Carbon dioxide capture and utilization using biological systems: opportunities and challenges. Bioprocess Biotech 4, 15.
7. Gong F, Liu G, Zhai X, Zhou J, Cai Z & Li Y (2015) Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Biotechnol Biofuels 8, https://doi.org/10.1186/s13068-015-0268-1.
8. Antonovsky N, Gleizer S, Noor E, Zohar Y, Herz E, Barenholz U, Zelebuch L, Amram S, Wides A, Tepper N et al. (2016) Sugar synthesis from CO2 in Escherichia coli. Cell 166, 115–125.
9. Schwander T, Schada von Borzyskowski L, Burgener S, Cortina NS & Erb TJ (2016) A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354, 900–904.
10. Claassens NJ (2017) A warm welcome for alternative CO2 fixation pathways in microbial biotechnology. Microb Biotechnol 10, 31–34.
11. Bolton E, Abelson P & Aldous E (1952) Utilization of carbon dioxide in the synthesis of nucleic acid by Escherichia coli. J Biol Chem 198, 179–185.
12. Roslev P, Larsen MB, Jørgensen D & Hesselsoe M (2004) Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. J Microbiol Methods 59, 381–393.
13. Fuchs G & Stupperich E (1985) Evolution of autotrophic CO2 fixation. In Evolution of Prokaryotes. FEMS Symposium No. 29 (Schleifer K & Stackebrandt E, eds), pp. 235–251. Academic Press, London.
14. Russell MJ & Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29, 358–363.
15. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S & Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1, https://doi.org/10.1038/nmicribiol.2016.116
16. Sousa FL & Martin WF (2014) Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. Biochim Biophys Acta 1837, 964–981.
17. Huber C & Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276, 245–247.
18. Martin W & Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc B Biol Sci 362, 1887–1926.
19. Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE & Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8, 447–460.
20. Schrenk MO, Braelton WJ & Lang SQ (2013) Serpentinization, carbon, and deep life. Rev Mineral Geochemistry 75, 575–606.
21. McColloM TM (2016) Abiotic methane formation during experimental serpentinization of olivine. Proc Natl Acad Sci USA 113, 13965–13970.
22. Ragsdale SW & Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta – Proteins Proteomics 1784, 1873–1898.
23 Varma SJ, Muchowska KB, Chatelain P & Moran J (2018) Native iron reduces CO₂ to intermediates and end-products of the acetyl-CoA pathway. *Nat Ecol Evol* **2**, 1019–1024.

24 Sousa FL, Preiner M & Martin WF (2018) Native metals, electron bifurcation, and CO₂ reduction in early biochemical evolution. *Curr Opin Microbiol* **43**, 77–83.

25 Buckel W & Thauer RK (2018) Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD⁺(Rnf) as electron acceptors: a historical review. *Front Microbiol* **9**, https://doi.org/10.3389/fmicb.2018.00401

26 Adam PS, Borrel G & Gribaldo S (2018) Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. *Proc Natl Acad Sci USA* **115**, E1166–E1173 (erratum appears in *Proc Natl Acad Sci USA* **115**, E5836–E5837).

27 Techtmann SM, Lebedinsky AV, Colman AS, Sokolova TG, Woyke T, Goodwin L & Robb FT (2012) Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases. *Front Microbiol* **3**, https://doi.org/10.3389/fmicb.2012.00132

28 Vorholt J, Kunow J, Stetter KO & Thauer RK (1995) Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO₂ fixation in *Archaeoglobus lithotrophicus* and the lack of carbon monoxide dehydrogenase in the heterotrophic *A. profundus*. *Arch Microbiol* **163**, 112–118.

29 Ragsdale SW (2008) Enzymology of the Wood-Ljungdahl pathway of acetogenesis. *Ann N Y Acad Sci* **1125**, 129–136.

30 Ragsdale SW (2004) Life with carbon monoxide. *Crit Rev Biochem Mol Biol* **39**, 165–195.

31 Sokolova TG, Henstra A-M, Sipma J, Parshina SN, Stams AJM & Lebedinsky AV (2009) Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. *FEMS Microbiol Ecol* **68**, 131–141.

32 Diender M, Stams AJM & Sousa DZ (2015) Pathways and bioenergetics of anaerobic carbon monoxide fermentation. *Front Microbiol* **6**, https://doi.org/10.3389/fmicb.2015.01275

33 Borrel G, Adam PS & Gribaldo S (2016) Methanogenesis and the Wood-Ljungdahl pathway: an ancient, versatile, and fragile association. *Genome Biol Evol* **8**, 1706–1711.

34 Schuchmann K & Müller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. *Nat Rev Microbiol* **12**, 809–821.

35 Kopke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G & Durre P (2010) *Clostridium ljungdahlii* represents a microbial production platform based on syngas. *Proc Natl Acad Sci USA* **107**, 13087–13092.

36 Jansen K, Thauer RK, Widdel F & Fuchs G (1984) Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by *Desulfovibrio baarsii*. *Arch Microbiol* **138**, 257–262.

37 Oelgeschläger E & Rother M (2008) Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. *Arch Microbiol* **190**, 257–269.

38 Bender G, Pierce E, Hill JA, Darty JE & Ragsdale SW (2011) Metal centers in the anaerobic microbial metabolism of CO and CO₂. *Metallomics* **3**, 797–815.

39 Can M, Armstrong FA & Ragsdale SW (2014) Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. *Chem Rev* **114**, 4149–4174.

40 Gregg CM, Goetzl S, Jeoung JH & Dobbeck H (2016) AcSF catalyzes the ATP-dependent insertion of Nickel into the Ni, Ni-[4Fe4S] cluster of Acetyl-CoA synthase. *J Biol Chem* **291**, 18129–18138.

41 Doukov TI, Iverson TM, Seravalli J, Ragsdale SW & Drennan CL (2002) A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. *Science* **298**, 567–572.

42 Maynard EL & Lindahl PA (1999) Evidence of a molecular tunnel connecting the active sites for CO₂ reduction and acetyl-CoA synthesis from *Clostridium thermoacetica*. *J Am Chem Soc* **121**, 9221–9222.

43 Seravalli J & Ragsdale SW (2000) Channeling of carbon monoxide during anaerobic carbon dioxide fixation. *Biochemistry* **39**, 1274–1277.

44 Gong W, Hao B, Wei Z, Ferguson DJ, Tallant T, Krzycki JA & Chan MK (2008) Structure of the alpha2epsilon2 Ni-dependent CO dehydrogenase component of the *Methanosarcina barkeri* acetyl-CoA decarboxylase/synthase complex. *Proc Natl Acad Sci USA* **105**, 9558–9563.

45 King GM & Weber CF (2007) Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. *Nat Rev Microbiol* **5**, 107–118.

46 Dobbeck H, Gremer L, Meyer O & Huber R (1999) Crystal structure and mechanism of CO dehydrogenase, a molybdoo iron-sulfur flavoprotein containing S-selanylcysteine. *Proc Natl Acad Sci USA* **96**, 8884–8889.

47 Wilcoxen J & Hille R (2013) The hydrogenase activity of the molybdenum/copper-containing carbon monoxide dehydrogenase of *Oligotropha carboxidivorans*. *J Biol Chem* **288**, 36052–36060.

48 Hille R, Dingwall S & Wilcoxen J (2015) The aerobic CO dehydrogenase from *Oligotropha carboxidivorans*. *J Biol Inorg Chem* **20**, 243–251.

49 Meyer O, Jacobitz S & Krüger B (1986) Biochemistry and physiology of aerobic carbon monoxide-oxidizing bacteria. *FEMS Microbiol Rev* **39**, 161–179.
50 Parshina SN, Sipma J, Henstra AM & Stams AJM (2010) Carbon monoxide as an electron donor for the biological reduction of sulphate. Int J Microbiol 2010, https://doi.org/10.1155/2010/319527.

51 Henstra AM & Stams AJM (2004) Novel physiological features of Carboxydotrichus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol 70, 7236–7240.

52 King GM (2015) Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith. Proc Natl Acad Sci USA 112, 4465–4470.

53 Nava-Sedeno JM, Ortiz-Cervantes A, Segura A & Domagal-Goldman SD (2016) Carbon monoxide and the potential for prebiotic chemistry on habitable planets around main sequence M stars. Astrobiology 16, https://doi.org/10.1089/ast.2015.1435

54 Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Nava-Sedeno JM, Ortiz-Cervantes A, Segura A & Domagal-Goldman SD (2016) Carbon monoxide and the potential for prebiotic chemistry on habitable planets around main sequence M stars. Astrobiology 16, https://doi.org/10.1089/ast.2015.1435

55 Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ & Miller SL (2002) Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci USA 99, 14628–14631.

56 Aylward N & Bofinger N (2001) The reactions of methanamine and cyanogen with carbon monoxide in prebiotic molecular evolution on earth. Orig Life Evol Biosph 31, 481–500.

57 Cody GD, Doctor NZ, Filley TR, Hazen RM, Scott JH & Yoder HS Jr (2000) The primordial synthesis of carbonylated iron-sulfur clusters and the synthesis of pyruvate. Science 289, 1337–1340.

58 Wilcoxen J, Zhang B & Hille R (2011) Reaction of the molybdenum- and copper-containing carbon monoxide dehydrogenase from Oligotropha carboxydivorans with quinones. Biochemistry 50, 1910–1916.

59 Panda R, Zhang Y, McLaughlan CC, Rao PV, Tiago De Oliveira FA, Münch E & Holm RH (2004) Initial structure modification of tetrahedral to planar nickel(II) in a nickel-iron-sulfur cluster related to the C-cluster of carbon monoxide dehydrogenase. J Am Chem Soc 126, 6448–6459.

60 Song LC, Li YL, Li L, Gu ZC & Hu QM (2010) Synthetic and structural investigations of linear and macrocyclic nickel/iron/sulfur cluster complexes. Inorg Chem 49, 10174–10182.

61 Nelson-Sathi S, Sousa FL, Roettel M, Lozada-Chávez N, Thiergart T, Janssen A, Bryant D, Landan G, Schönheit P, Siebers B et al. (2015) Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517, 77–80.

62 Wagner A, Whitaker RJ, Krause DJ, Heilers J-H, van Woflffen M, van der Does C & Albers S-V (2017) Mechanisms of gene flow in archaea. Nat Rev Microbiol 15, 492–501.

63 Jitaru M (2007) Electrochemical carbon dioxide reduction - fundamental and applied topics. J Univ Chem Technol Metall 42, 333–344.

64 Tchougreeff AL, Gulevich YV, Misurkin IA & Beletskaya IP (1993) A model for CO insertion in transition metal complexes. J Organomet Chem 455, 261–270.

65 Evans DJ (2005) Chemistry relating to the nickel enzymes CODH and ACS. Coord Chem Rev 249, 1582–1595.

66 McColloM TM & Seewald JS (2013) Serpentinites, hydrogen, and life. Elements 9, 129–134.

67 McColloM TM (2013) Miller-Urey and beyond: What have we learned about prebiotic organic synthesis reactions in the past 60 years? Annu Rev Earth Planet Sci 41, 207–229.

68 King GM (1999) Characteristics and significance of atmospheric carbon monoxide consumption by soils. Chemosphere 1, 53–63.

69 Conrad R & Seiler W (1980) Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil. Appl Environ Microbiol 40, 437–445.

70 Thauer RK, Kaster A-K, Seedorf H, Buckel W & Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6, 579–591.

71 Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology 144, 2377–2406.

72 Ferry JG (2010) How to make a living by exhaling methane. Annu Rev Microbiol 64, 453–473.

73 Meyer O & Schlegel HG (1983) Biology of aerobic carbon monoxide-oxidizing bacteria. Annu Rev Microbiol 37, 277–310.

74 Fischer WW, Hemp J & Johnson JE (2016) Evolution of oxygenic photosynthesis. Annu Rev Earth Planet Sci 44, 647–683.

75 Lyons TW, Reinhard CT & Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315.

76 Allen JF (2016) A proposal for formation of Archaean stromatolites before the advent of oxygenic photosynthesis. Front Microbiol 7, https://doi.org/10.3389/fmicb.2016.01784.

77 Fuchs G (1994) Variations of the acetyl-CoA pathway in diversely related microorganisms that are not acetogens. In Acetogenesis (Drake HL, ed.), pp. 507–520. Springer US, Boston, MA.

78 Mall A, Sobotta J, Huber C, Tschirner C, Kowarschik S, Bačnik K, Mengelsberg M, Boll M, Hügler M, Eisenreich W et al. (2018) Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium. Science 359, 563–567.

79 Nunoura T, Chikaraishi Y, Izaki R, Suwa T, Sato T, Harada T, Mori K, Kato Y, Miyazaki M, Shimamura

4194 The FEBS Journal 285 (2018) 4181–4196 © 2018 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies
of the hyperthermophilic, sulphate-reducing archaeon *Archaeoglobus fulgidus*. *Nature* **390**, 364–370.

91 Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD & Tyson GW (2015) Methane metabolism in the archaeal phylum *Bathyarchaeota* revealed by genome-centric metagenomics. *Science* **350**, 434–438.

92 Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P & Tyson GW (2016) Methylo trophic methanogenesis discovered in the archaeal phylum *Verstraetearchaeota*. *Nat Microbiol* **1**, https://doi.org/10.1038/nmicrobiol.2016.170.

93 Smith DR, Doucette-Stamm LA, Deloughey C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K et al. (1997) Complete genome sequence of *Methanobacterium thermoautotrophicum* deltaH: functional analysis and comparative genomics. *J Bacteriol* **179**, 7135–7155.

94 Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D et al. (2002) The genome of *M. acetivorans* reveals extensive metabolic and physiological diversity. *Genome Res* **12**, 532–542.

95 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al. (2007) Clustal W and *Clustal* X version 2.0: improvement of the CLUSTAL W algorithm and visualization of trees using *Bi oinformatics* **23**, 2947–2948.

96 Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* **30**, 1312–1313.

97 Dai Y, Wensink PC & Abeles RH (1999) One protein, two enzymes. *J Biol Chem* **274**, 1193–1195.

98 Allpress CJ, Grubel K, Szajna-Fuller E, Arif AM & Bearer LM (2013) Regioselective aliphatic carbon–carbon bond cleavage by a model system of relevance to iron-containing *Acireductone* dioxygenase. *J Am Chem Soc* **135**, 659–668.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Fig. S1. CO$_2$ in a global metabolic map. KEGG map ‘01100 – metabolic pathways’ with reactions involving CO$_2$ highlighted, portraying different directionality and reversibility assignments in BRENDA.