Hierarchically Structured Zn$_2$SnO$_4$ Nanobeads for High-Efficiency Dye-Sensitized Solar Cells

Daesub Hwang1,3, Jun-Su Jin2, Horim Lee3, Hae-Jin Kim4, Heejae Chung1, Dong Young Kim3, Sung-Yeon Jang2 & Dongho Kim1

1Department of Chemistry, Yonsei University, Seoul 120–749, Korea, 2Department of Chemistry, Kookmin University, Seoul 136–702, Korea, 3Optoelectronic Materials Lab, Korea Institute of Science and Technology, Seoul 136–791, Korea, 4Department of Mechanical Engineering, Yonsei University, Seoul 120–749, Korea.

We developed a unique strategy for fabricating hierarchically structured (nanoparticles-in-beads) Zn$_2$SnO$_4$ beads (ZTO-Bs), which were then used to produce ternary metal oxide-based dye-sensitized solar cells (DSSCs). DSSCs were fabricated using the ZTO-Bs as the photoelectrodes and highly absorbable organic dyes as the sensitizers. The DSSCs based on the ZTO-Bs and the organic dyes (SJ-E1 and SJ-ET1) exhibited the highest performance ever reported for DSSCs with ternary metal oxide-based photoelectrodes. The optimized DSSCs exhibited a power conversion efficiency of 6.3% (V$_{OC}$ of 0.71 V, J$_{SC}$ of 12.2 mA cm$^{-2}$, FF of 0.72), which was much higher than that for DSSCs with conventional ZTO-NPs-based photoelectrodes or those based on the popular ruthenium-based dye, N719. The unique morphology of the ZTO-Bs allowed for improvements in dye absorption, light scattering, electrolyte penetration, and the charge recombination lifetime, while the organic dyes resulted in high molar absorbability.

Nanocrystalline inorganic semiconductors have received considerable attention owing to their potential for use in Li-ion batteries, dye-sensitized solar cells (DSSCs), gas sensors, and photocatalysts for water splitting and organic pollutant degradation$^{1–5}$. Although binary metal oxides (such as TiO$_2$, ZnO, and SnO$_2$) are widely acknowledged as being highly suited semiconductor materials for these applications, ternary metal oxides such as Zn$_2$SnO$_4$ (ZTO)6, Zn$_2$TiO$_3$,7 and BaSnO$_3$ have recently emerged as promising alternatives8. This is because ternary metal oxides exhibit several advantages. For instance, ternary metal oxides allow for a broader choice of materials. Further, they exhibit better corrosion resistance than binary metal oxides. Finally, their chemical and electrical properties can be readily tailored by altering their composition. As a result, ternary metal oxides have recently been investigated for use as photoelectrode materials for DSSCs.

In particular, ZTO is being investigated extensively for use as a photoelectrode material for DSSCs because it exhibits a high electron mobility (15 cm2 V$^{-1}$ s$^{-1}$; in contrast that of TiO$_2$ is 0.1–1 cm2 V$^{-1}$ s$^{-1}$) and an appropriate surface work function (\sim3.6 eV). In addition, it can also be readily synthesized in the form of nanoparticles9. Recently, Wu and coworkers reported the fabrication of DSSCs using ZTO nanoparticles (NPs) as the photoelectrode material. The DSSCs exhibited a power conversion efficiency (PCE) of 3.8%2. Similarly, our group fabricated amorphous ZTO nanofibers using the electrospinning method and used them as a photoelectrode material for DSSCs. The improved electron-transport properties of the ZTO nanofibers resulted in the cells exhibiting a PCE of 3.7%. It is known that photoelectrode materials with a one-dimensional (1D) morphology have lower charge-recombination rates10; however, the increase in the performance of the cells owing to the use of the nanofibers was limited because charge transport in the amorphous ZTO nanofibers was not optimized11,12. Further improvements in ZTO nanomaterials in terms of their crystallinity and morphology, resulting in improved electron transport, dye absorption, and light scattering13,14, will lead to ZTO-based DSSCs showing even better performances. Further, the development of sensitizers that have high molar absorbabilities and are sufficiently compatible with ZTO is also essential for improvements in the performance of ZTO-based DSSCs.

In this study, we fabricated high-efficiency DSSCs using novel ZTO materials and organic sensitizers. We first synthesized uniformly sized amphiphilic ZTO nanoparticles (ZTO-NP) in aqueous media. Next, we used a unique fabrication method to obtain hierarchically structured mesoporous ZTO beads (ZTO-B) through electrostatic spraying (e-spraying). Finally, we used organic sensitizers that exhibited high absorbabilities and were highly compatible with the ZTO beads to fabricate ZTO photoelectrodes. The submicron-scaled ZTO-Bs
which contained embedded ZTO-NPs (∼20 nm), were fabricated by the e-spraying of a colloidal dispersion of the amphiphilic ZTO-NPs. Two different organic sensitizers (SJ-T1 and SJ-ET1), both of which have a donor-π-conjugated-acceptor (D-π-A) structure, were synthesized and used as the dyes for the DSSCs. The performances of the organic dye-sensitized cells fabricated using the various ZTO-based photoelectrodes were investigated and compared with those of cells based on a conventional ruthenium complex dye (N719). Using the ZTO-B photoelectrodes led to the PCE of the corresponding DSSCs to be almost twice that of cells based on the ZTO-NP photoelectrodes. Further, the PCE values of the DSSCs based on the organic dyes were approximately thrice those of the cells based on the conventional N719 dye. The optimized SJ-ET1-sensitized DSSCs displayed the highest PCE value, which was as high as ∼6.3%, when 5-μm-thick ZTO-B photoelectrodes were used. To the best of our knowledge, this result is the highest value ever achieved in ternary metal oxide-based DSSCs.

Results Section
The amphiphilic ZTO-NPs were synthesized by the hydrothermal sol-gel method using ZnSn(OH)$_6$ as the precursor. The fabrication method is described in the Experimental section and in Fig. S1 in Supporting Information (SI). The transmission electron microscopy (TEM) images in Fig. 1 show the evolution of the ZTO precursor, ZnSn(OH)$_6$, into the ZTO-NPs through a sol-gel conversion process. The TEM images (Fig. 1A to G) were obtained after hydrothermal treatments of different durations (T$_D$). In the early stage, small rods of ZnSn(OH)$_6$, which had a size of ∼70 nm and whose surfaces were covered with crystalline ZTO, were formed (Fig. 1A–F). The NPs started to form when T$_D$ was greater than 10 h; these rods increased to approximately 10–30 nm in diameter after a reaction time of 30 h (Fig. 1G). The resulting ZTO-NPs were modified using an amphiphilic surfactant, tetrabutylammonium hydroxide (TBAOH), under ultrasonication, affording a stable colloidal dispersion of the ZTO-NPs in ethanol (Fig. S2). The zeta potential of the colloidal ZTO-NP dispersion was measured using a zeta sizer (Malvern Instruments, UK).

Figure 1 | TEM images of the reaction products after various hydrothermal treatment times during ZTO synthesis (A–F), ZTO-NPs after completion of the synthesis (G), diffraction patterns of the polycrystalline ZTO nanoparticle powder (H), high-resolution TEM images of the ZTO (I) (yellow lines illustrate ZTO fringes), XRD patterns (J), morphology changes during synthesis process (K).
dispersion was less than \(-35\) mV, confirming that it was highly stable over a period of several months at room temperature. The average diameter of the ZTO-NPs was \(\sim 20\) nm (see TEM image in Fig. S1). The selected area electron diffraction (SAED) patterns (Fig. 1H) of the NPs were indexed to the reflection of the polycrystalline ZTO in the structure. The X-ray diffraction (XRD) pattern of the ZTO-NPs is shown in Fig. 1J. The characteristic peaks of crystalline zinc stannate, that is, the (220), (311), (220), (400), (422) and (511) peaks, were observed after calcination. These peaks corresponded to a spinel structure, in which all the Sn\(^{4+}\) ions are octahedrally coordinated, while half of the Zn\(^{2+}\) ions are distributed in a tetrahedral coordination and the other half in an octahedral coordination. The estimated lattice parameter was 8.68 Å, which is in a good agreement with the reported value of 8.65 Å (JCPDS Card No. 6–416). On the other hand, the XRD spectrum of the white precipitate formed after the mixing of the Zn\(^{2+}\) ions with the Sn\(^{4+}\) ions (the amorphous structure is shown in Fig. 1J, green line) did not correspond to that of ZTO. Thus, it can be concluded that the treatment of the ZTO precursor at 220 °C for 30 h in the autoclave resulted in the formation of zinc stannate.

The ZTO-Bs were prepared by the e-spraying method using the ZTO colloidal solution (see Fig. S3 in SI). The colloidal dispersion of the ZTO-NPs was directly e-sprayed onto a fluorine-doped SnO\(_2\) (FTO)-coated glass substrate. The resulting submicron-scaled ZTO-Bs possessed a hierarchical structure (particles-in-beads), as can be seen from their scanning electron microscopy (SEM) images (Fig. 2A). The ZTO-Bs exhibited a relatively narrow size distribution, evenly covering the entire area of the substrate, as shown in Fig. 2B and Fig. S3. The average diameter of the ZTO-Bs was determined to be \(\sim 600\) nm using Gaussian curve fitting (inset in Fig. 2B). It should be noted that the ZTO dispersion should exhibit sufficient colloidal stability and solvent polarity to allow for the fabrication of hierarch-
The photoelectrodes were determined using the following formula:

\[
R = \frac{Vp}{\rho Vp}
\]

where \(Vp\) is the specific cumulative pore volume [cm³g⁻¹] and \(\rho\) is the inverse of the density of ZTO (\(\rho = 0.235\) cm³g⁻¹). The estimated roughness values (surface area and higher porosity) were 98.6 m²g⁻¹ and 66.4 m²g⁻¹, respectively (Table 1). These results were much lower than that for the DSSC-ZTOs. The maximum external quantum efficiency (EQE) value of the DSSC-ZTOs at 480 nm was 74%, whereas that of the DSSC-ZTO-NPs was 56% (Fig. 4B). That the \(J_{SC}\) and EQE of the DSSC-ZTOs were higher can be attributed to their improved light-harvesting capability. Further, the greater specific surface area and roughness factor of the ZTO-Bs resulted in them exhibiting a dye adsorption rate that was ~53% higher than that for ZTO-NPs (Table 1). The improvement in light scattering in the case of the submicron-sized ZTO-Bs resulted in improved light harvesting in the visible region, as indicated by the reflectance data shown in Fig. 2C.

The \(J–V\) characteristics of the DSSC-ZTOs based on different dyes and photoelectrodes are shown in Figs. S8 and S9 and Table S4 and S5. Regardless of the type of ZTO photoelectrode used, the organic dye-based DSSCs displayed better photoconversion characteristics than those of the N719-based DSSCs (Fig. S8 and Table S4). That the molar extinction coefficients of the organic dyes (SJ-T1 and SJ-ET1) were higher than those of N719, the most commonly used ruthenium-based dye, can be deduced from the fact that the short-circuit current density of the cells based on the former was higher. The high absorbability of the organic dyes also allowed for the required thickness of the ZTO photoelectrodes to be reduced, lowering the charge-transport distance. The highest \(J_{SC}\) value of the organic dye-based DSSC-ZTOs was exhibited at a thickness of ~5 µm; at this thickness, the absorption level and the rate of charge transport were at the optimal levels. On the other hand, the optimal photovoltaic thickness of >10 µm in the case of the N719-based DSSCs (Figs. S8 and S9, Tables S4 and S5).

In addition to improving light harvesting, the hierarchical morphology of the ZTO-Bs also enhanced the charge-transport properties in the resultant DSSCs. The internal series resistance \(R_s\) values of the cells, which are closely related to their FF values, were determined through electrochemical impedance (EIS) analysis. The procedure for determining the \(R_s\) values of the DSSCs from the results of the EIS-based characterization of the DSSC-ZTOs is shown in Figs. S11 and S12. The Nyquist plot in Fig. S11A shows that the \(R_s\) values of the DSSC-ZTOs were lower than that of the DSSC-ZTO-NPs, regardless of the dye used. This result was in a good agreement with the fact that the FF of the DSSC-ZTOs was higher than that of the DSSC-ZTO-NPs (Table 1). This was attributed to the presence of macropores in ZTO-Bs, which facilitated the penetration of the electrolyte into the ZTO photoelectrodes, allowing the surfaces of the photoelectrodes to be wetted to a greater degree. This phenomenon has been noticed in photoelectrodes based on other hierarchical materials as well [14,15].

The charge-transport times \(\tau_{CT}\) and recombination lifetimes \(\tau_{R}\) of the DSSC-ZTOs were determined using the intensity-modu-

Table 1 | The morphological properties of the ZTO photoelectrodes

ZTO	Surface area (m²g⁻¹)	Pore volume (cm³g⁻¹)	Porosity [%]	Roughness Factor	Adsorbed Dye (mol cm⁻²)
ZTO-NP	66.4	0.42	64.6	104.1	1.07 × 10⁻⁶
ZTO-B	98.6	0.67	74.5	113.6	1.64 × 10⁻⁸

\(\text{The porosity were calculated by referring to the formula of } P = \frac{Vp}{(\rho Vp + Vp)}\), where \(Vp\) is the specific cumulative pore volume [cm³g⁻¹] and \(\rho\) is the inverse of the density of ZTO (\(\rho = 0.235\) cm³g⁻¹).

\(\text{The SJET1 was used for adsorbed dye analysis.}\)
lated photocurrent/photovoltage (IMPS/IMVS) analysis techniques; the results are shown in Fig. 4C–F. The t_{CT} values were estimated from the results of the IMPS analysis using the following relation: $t_{CT} = 1/2\pi f_{\text{min(IMPS)}}$, where f_{min} is the minimum current of the imaginary part of the low-frequency range in the IMPS spectra (Fig. S13).

The t_{CT} value of the DSSC-ZTO-Bs was more than two times smaller than that of the DSSC-ZTO-NPs; this can be attributed to the lower junction density of the hierarchical structure of the ZTO-Bs. The tightly connected primary ZTO-NPs packed within the ZTO-Bs (see the SEM images in Fig. 2B) exhibited a lower resistance for charge transport compared to the randomly stacked ZTO-NPs; this was regardless of whether they were fabricated by e-spraying or using a doctor’s blade. The net charge transport was greater in the ZTO-B photoelectrodes than in the ZTO-NP photoelectrodes, even though the total charge-transport distance may have been greater in the former owing to the pore volume being higher. The t_R values were estimated from the results of the IMVS analysis (Fig. 4D) using the following relation: $t_R = 1/2\pi f_{\text{min(IMVS)}}$, where f_{min} is the minimum voltage in the imaginary part of the low-frequency range of the IMVS spectra. The t_R value of the DSSC-ZTO-Bs was 6 times higher than that of the DSSC-ZTO-NPs under an incident photon flux of 3.18×10^{18} cm$^{-2}$ s$^{-1}$, as shown in Fig. S13B in SI. The electron-diffusion length (D_L) of the DSSC-ZTO-Bs, calculated using the equation $D_L = (D \times t_R)^{1/2}$, where D is the diffusion coefficient obtained from the IMPS analysis, was ~ 25 μm while that of the DSSC-ZTO-NPs was only ~ 6 μm (Fig. 4F). This result indicated that the probability of the electrons arriving from the ZTO-B photoelectrode layers to the charge-collecting electrode (FTO) was considerably higher than that of them arriving from the ZTO-NP photoelectrodes. The charge-collection efficiency (η_{CC}) of the DSSC-ZTO-Bs, determined from the relationship $\eta_{CC} = 1 - (t_{CT}/t_R)$, was an order of magnitude greater than that of the DSSC-ZTO-NPs, owing to the longer charge-recombination lifetime and shorter electron-transport time of the former. The higher η_{CC} coupled with the higher dye adsorption resulted in an increase in the J_{SC} and FF values of the DSSC-ZTO-Bs (Table 2).

The photoelectron density (PED), n, in a ZTO photoelectrode determines its quasi-Fermi level, which, in turn, determines the V_{OC} value of the corresponding DSSC. Generally, the PED is strongly correlated to the t_R value as per Equation (1):

$$n = \frac{q\phi I_0 \tau_R}{q(1-p)d}$$

where q is the charge of an electron, ϕ is the ratio of injected electrons to incident photons, I_0 is the incident photon flux density, p is the film porosity, and d is the film thickness. Therefore, the PED of the DSSC-ZTO-Bs was estimated to be more than six times higher than that of the DSSC-ZTO-NPs, resulting in an increase in the V_{OC} value to up to 70 mV. That the V_{OC} of the DSSC-ZTO-Bs was higher could also be confirmed from the EIS results. The maximum frequency (f_{max}) in the middle range of the Bode phase plots (Fig. S11B) for

Figure 3 | The chemical structures of the organic sensitizers (A), absorption spectrum (B), and Energetic MO levels and Frontier MOs of SJ-T1 and SJ-ET1 (C).
the DSSC-ZTO-Bs was much lower than that for the DSSC-ZTO-NPs. Under illumination, the relationship between V_{OC} and the recombination lifetime can be described by Equation (2)\(^2\):

$$V_{OC} = \frac{RT}{\beta F} \ln \left(\frac{A I}{n_0 k_1 [I_{3^-}] + n_0 k_2 [D^{+}]} \right)$$

where R is the molar gas constant, T is the temperature, F is the Faraday constant, β is the reaction order for I_3 and electrons, A is the electrode area, I is the incident photon flux, n_0 is the concentration of accessible electronic states in the conduction band, and k_1 and k_2 are the kinetic constants of the back reaction of the injected electrons with I_3^- and the recombination of these electrons with oxidized dyes, respectively. Assuming that recombination with the oxidized dye molecules can be neglected, V_{OC} depends logarithmically on the kinetic constant of the back reaction of the injected electrons with I_3^- (k_1). As the concentration of I_3^- in the electrolyte and the incident photon flux were constant under the experimental conditions, V_{OC} was proportional to $\ln(1/f_{\text{max}})$, demonstrating that the charge-recombination rate influenced the V_{OC} value of the DSSCs significantly. From this relationship, the V_{OC} value of the DSSC-ZTO-Bs was found to be \sim70 mV higher than that of the DSSC-ZTO-NPs. The consistency in the V_{OC} shifts estimated from the results of the IMVS analysis and EIS confirmed further that the fabricated ZTO-Bs exhibited a lower charge-recombination rate compared to that in the ZTO-NPs.

Photo-electrodes	Dye	V_{OC} (V)	J_{SC} (mAcm$^{-2}$)	FF	PCE (%)
ZTO-B	SJ-T1	0.69	11.3	0.69	5.5
	SJ-ET1	0.71	12.2	0.72	6.3
	N719	0.72	6.4	0.65	3.0
ZTO-NP	SJ-T1	0.65	7.5	0.62	3.0
	SJ-ET1	0.64	8.6	0.64	3.5
	N719	0.71	5.3	0.61	2.3

Figure 4 | J-V characteristics (A) and incident-photon-to-current conversion efficiency (IPCE) spectra (B) of the DSSC-ZTOs using various photoelectrodes under simulated AM 1.5 G solar radiation at 100 mWcm$^{-2}$ with SJ-ET1 sensitizer. Analysis results of intensity modulated photoelectron measurements of DSSC-ZTOs with respect to the incident photon flux; plots of electron transport time (τ_{CT}) (C), diffusion coefficient (D), charge recombination lifetime (τ_{R}) (E), and charge diffusion length (D_L) (F). The frequency of incident light modulation ranged from 100 to 0.1 Hz, and SJ-ET1 was used as the sensitizer.
Discussion Section

We developed a novel strategy for synthesizing uniformly sized amphiphilic ZTO-NPs in aqueous media, as well as hierarchically structured ZTO-Bs, by the e-spraying method using a colloidal dispersion. Highly absorbable organic dyes (SJ-T1 and SJ-ET1) were synthesized and used as the sensitizers. To the best of our knowledge, the DSSCs based on the fabricated ZTO-Bs and organic dyes exhibited the highest performance yet reported for DSSCs fabricated using ternary metal oxide-based photoelectrodes. The optimized DSSC-ZTO-Bs based on SJ-ET1 showed a PCE of 6.25% (V_{OC} of 0.71 V, J_{SC} of 12.2 mA cm$^{-2}$, FF of 0.72), which was approximately two times higher than that of the DSSC-ZTO-NPs (PCE of 3.5% with V_{OC} of 0.64 V, J_{SC} of 8.6 mA cm$^{-2}$, FF of 0.64) as well as that of other devices reported in the literature. The high molar absorbability of the organic dyes fabricated in this study as well as the hierarchical morphology of the ZTO-Bs resulted in the drastic increase in performance. The unique morphology of the ZTO-Bs, in which the high-crystallinity primary ZTO-NPs were embedded within submicron-scaled beads, led to improved dye absorption, light scattering, and electrolyte penetration and a lower charge-recombination lifetime. These improvements, in turn, resulted in enhancements in the photoelectron-conversion properties of the devices. Considering that the improved performances were obtained using films of relatively low thicknesses (<5 μm), the results suggest that the proposed fabrication technique should be suited for fabricating solid-state and/or flexible DSSCs as well.

1. Yan, N. et al. Hollow Porous SiO2 Nanocubes Towards High-performance Anodes for Lithium-ion Batteries. Sci. Rep. 3, 1568, DOI: 10.1038/srep01568 (2013).
2. O’Regan, B. & Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).
3. Gong, J., Li, Y., Hu, Z., Zhou, Z. & Deng, Y. Ultrasonic-sensitive NH3 Gas Sensor from Ployanieline Nanograin Enchased TiO2 Fibers. J. Phys. Chem. C 114, 9970–9974 (2010).
4. Kim, L.-D. et al. Ultrasonic-based Chemiresistors Based on Electrosprun TiO2 Nanofibers. Nano Lett. 6, 2009–2013 (2006).
5. Kong, M. et al. Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. J. Am. Chem. Soc. 133, 16414–16417 (2011).
6. Tan, B., Toman, E., Li, Y. & Wu, Y. Zinc Stannate (Zn2SnO4) Nanowires as Photoanode for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 129, 4162–4163 (2007).
7. Bae, C. et al. Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications. Chem. Mater. 20, 756–767 (2008).
8. Shin, S. S. et al. Improved Quantum Efficiency of Highly Efficient Perovskite BaSnO3-Based Dye-Sensitized Solar Cells. ACS Nano 7, 1027–1035 (2013).
9. Coutts, T. J., Young, D. L., Li, X., Mulligan, W. P. & Wu, X. Search for improved transparent conducting oxides: A fundamental investigation of CdO, Cd3SnO4, and ZnSn2O4. J. Vac. Sci. Technol. A 18, 2646–2660 (2000).
10. Choi, S.-H. et al. Amphorous Zinc Stannate (Zn2SnO4) Nanofibers Networks as Photoelectrodes for Organic Dye-Sensitized Solar Cells. Adv. Funct. Mater. 23, 3146–3155 (2013).
11. Rajachandram, J. S. et al. Characterization of amorphous zinc tin oxide semiconductors. J. Mater. Res. 27, 2309–2317 (2012).
12. Liu, R. et al. Fabrication of Zn2SnO4/SnO2 hollow spheres and their application in dye-sensitized solar cells. RSC Adv. 3, 2893–2896 (2013).
13. Chen, J., Lu, L. & Wang, W. Zn2SnO4 Nanowires as Photoanode for Dye-Sensitized Solar Cells and the Improvement on Open-Circuit Voltage. J. Phys. Chem. C 116, 10841–10847 (2012).
14. Hwang, D. et al. Electrospay Preparation of Hierarchically-structured Mesoporous TiO2 Spheres for Use in Highly Efficient Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 3, 2719–2725 (2011).
15. Hwang, D., Kim, D. Y., Jang, S.-Y. & Kim, D. Superior photoelectrodes for solid-state dye-sensitized solar cells using amphiphilic TiO2. J. Mater. Chem. A 1, 1228–1238 (2013).
16. Hults, H. C. v. d. Light Scattering by Small Particles. [63–101] (Wiley, New York, 1957).
17. Li, R., Liu, J., Cai, N., Zhang, M. & Wang, P. Synchronously Reduced Surface States, Charge Recombination, and Light Absorption Length for High-Performance Organic Dye-Sensitized Solar Cells. J. Phys. Chem. B 114, 4461–4464 (2010).
18. Zhang, M. et al. Design of high-efficiency organic dyes for titania solar cells based on the chromophoric core of cyclopentadiethiophene-benzothiadiazole. Energy Environ. Sci. 6, 2944–2949 (2013).
19. Kim, D. W. et al. Synthesis and photovoltaic property of fine and uniform Zn2SnO4 nanoparticles. Nanoletters 4, 557–562 (2012).
20. Li, Y. et al. Incorporating Zn2SnO4 Quantum Dots and Aggregates for Enhanced Performance in Dye-Sensitized ZnO Solar Cells. Chem. Eur. J. 18, 11716–11722 (2012).
21. Adachi, M., Sakamoto, M., Jiu, J., Ogata, Y. & Isoda, S. Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy. J. Phys. Chem. B 110, 13872–13880 (2006).
22. Wang, Q., Moser, J.-E. & Gratzel, M. Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells. J. Phys. Chem. B 109, 14945–14953 (2005).

Acknowledgments

The authors gratefully acknowledge support from the Basic Science Research Program of the National Research Foundation (NRF) of Korea (2012045675); the New & Renewable Energy Core Technology Program of the Korean Institute of Energy Technology Evaluation and Planning (RETEP), which is funded by the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20133030000210) (S.Y.J.); the Global Frontier R&D Program of the Center for Multiscale Energy System, funded by the NRF through the Ministry of Education, Science and Technology, Korea (2012-8-2013) (D.K.); and the KIST Institutional Programs (2E23900 and 2K202120) (D.Y.K.).

Author contributions

D.H., H.L., D.K. and S.Y.J. wrote the main manuscript text and Fig. 1 and 2. J.-S.J. and H.C. prepared Fig. 3. D.Y.K. and H.J.K. prepared Fig. 4 and wrote parts of discussion section. All authors reviewed the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Hwang, D. et al. Hierarchically Structured Zn2SnO4 Nanobeads for High-Efficiency Dye-Sensitized Solar Cells. Sci. Rep. 4, 7353; DOI:10.1038/srep07353 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/