Indian J Pediat 49 : 745-750, 1982

Septic shock—an update

Ashir Kumar, M.B.B.S., M.D.

Shock is a descriptive term which in the critically ill patient indicates generalized inadequacy of perfusion to several major organ systems. Shock comprises of several signs and symptoms and is therefore a syndrome. It is an acute process and patient usually dies without rapid and appropriate intervention.

Recognition of patients at risk to gram negative infections and septicemia and the pathogenesis of shock enables one to establish the diagnosis early in the course of the syndrome and institute effective therapy. The early description of septic shock resulting from gram negative bacterial infection came from the observations of Waisbren and Spink. The development and use of variety of antibiotics effective in the control of gram positive infections resulted in an increasing incidence of serious gram negative infections frequently complicated by septicemia.

Pathophysiology of Septic Shock

The initiating factor in gram negative septicemia is endotoxin, a lipopolysaccharide which directly and in combination with other leukocytic components forms various vasoactive substances. Several gram positive organisms release exotoxin, which can act directly on the microvasculature; teichoic acid of their cell walls also has endotoxin like action. Septic shock can also result from certain virus, fungal, and rickettsial infections. Septic shock is accompanied by several pathophysiological reactions which are mediated by enzymatic systems like, the coagulation cascade, immunologic factors and the direct action of endotoxin or teichoic acid on the vascular endothelium. These reactions result in: coagulation system activation and depletion of several coagulation factors, complement activation resulting in hypocomplementemia and lysosomal enzyme leaks, kinin system activation, Schwartzman phenomena resulting in both lysosome enzyme leak and disseminated intravascular coagulation, failure of micro-circulation resulting in tissue hypoxia, diffuse loss of plasma fluid proteins and loss of intravascular volume. This failure of micro-circulation if uncorrected leads to the development of severe acidosis. Acidosis per se compromises the ability of microcirculation to adequately respond and eventually results in tissue necrosis and death. Various therapeutic regimens are directed at interfering with the direct toxic effects of endotoxin on vascular endothelium, as well as altering the progress of indirect phenomena mediated by immunologic pathologic phenomena, other
lement activation, and activation of coagulation cascade. (Fig.1)

1. Direct Endotoxin Activity (Direct Pathway)

Studies performed in piglets who have no antibody (Pig placenta being impermeable to maternal antibody), have shown that they develop septic shock due to gram negative endotoxins. The direct effect, results in tissue injury, edema of vascular endothelium, and fever. Thus, both vascular damage and release of cell contents occur as a result of endotoxemia. These changes lead to increased adhesiveness of vascular endothelium with adhesions of platelets and activation of whole coagulation cascade. The swelling and the alterations in endothelium results in leakage of plasma from intravascular spaces thus resulting in hypovolemia and shock.

2. Indirect Pathways

A. Activation of complement system: Hageman Factor (Factor XII) is directly activated by endotoxin which sets off the entire coagulation cascade through the generation of fibrin and leading to disseminated intravascular coagulation and depletion of various clotting factors.

B. Activation of complement system: Endotoxin is capable of activating complement pathways in two ways. The
first requires the interaction of endotoxin with naturally occurring antibodies to gram negative bacteria. This chain of events initiates activation of all components of complement pathways. This complement activation occurs in an uncontrolled fashion throughout the vascular space and the resulting active complement components are able to exert their physiological roles i.e., platelet aggregation, increase in vascular permeability, activation of neutrophils with chemotactic migration and smooth muscle contraction. These events lead to toxic changes in the micro-circulation, tissue hypoxia, and metabolic acidosis. McCabe studied serum complement levels in bacteremia due to gram negative organisms. In the 41 patients with uncomplicated bacteremia the mean C3 levels (151±51 mg/100ml) did not differ from the values in controls, however, a significant reduction in complement levels was observed in 26 patients with shock (105±31) and in the 19 patients who had a fatal outcome (98±38). McCabe concluded that the frequency of occurrence of shock or fatal outcome tended to parallel the degree of decrease of complement levels in serum specimens obtained shortly after the onset of bacteremia. Fenton and Strunk reported depressed levels of CH50, C3, C4, and factor B in three newborn infants with Group B streptococcal sepsis. They demonstrated that in infants infected with Group B Streptococcus both alternative and direct complement pathways were activated. The complement and hematologic data and the Clinical course of these infants suggested that Group B Streptococcus has endotoxin-like properties which may explain the high mortality despite the prompt antibiotic therapy.

C. Activation of kallikrein and kinin system: Plasma kinins are biologically active peptides and are capable of a variety of physiologic events i.e., increased vascular permeability, smooth muscle relaxation, and hypotension. Kinins are generally found in inactive precursors in certain cells and in the circulation. Kinins are activated by endotoxin through the intermediary effect of kallikrein as well as through the intermediation of natural antibody. Thus kinins have a crucial role in the failure of micro-circulation resulting in tissue hypoxia and intractable metabolic acidosis.

D. Antigen-Antibody Interaction:
Antigen-antibody interaction between endotoxin in gram negative bacterial cell walls and natural antibodies result in activation of complement system, activation of the kinin system, and the Schwartzman reaction. Schwartzman reaction is associated with necrotizing effects on the vascular endothelium, platelet aggregation, and thrombosis which results in tissue hypoxia, metabolic acidosis and death. Schwartzman reaction also contributes to the release of lysosomal enzymes from cells. Release of lysosomal enzymes results in fluid leak, edema and tissue hypoxia.

Diagnostic Features of Septic Shock
Waisbren and Spink in 1950 provided the classic description of a patient
They described an elderly man who seemed alert, but with no detectable blood pressure, was able to respond to the questions but was unable to perform complex intellectual functions, had high temperatures with cold extremities and high pulse pressure. During the early stages of bacteremia when the patient “looks well” but is febrile and hypotensive the diagnosis is not often suspected and the valuable time is lost. During the course of the disease the patient may present with petechial or purpuric skin rash secondary to disseminated intravascular coagulopathy or may develop erythematos gangrenous areas of skin discoloration particularly around the mouth and noise. These sharply marginated circular purplish lesions are often associated with Pseudomonas or Serratia septicemia. Newborns and infants often present with hypotension and shock and early signs may not be apparent.

Management of Septic Shock

A sequential approach in the management of child with septic shock is desirable (Table 1). The treatment plan described here is adapted from a publication by MEDCOM and concerning gram negative sepsis.

1. The first step is to quickly examine the child and establish the baseline data. Blood pressure, heart rate, and body temperature should be recorded. This examination may determine the severity of shock.

2. An airway should be provided, if patient is in need of one. Metabolic acidosis associated with micro-circulatory failure frequently overstimulates the respiratory center resulting in fatigue and respiratory failure.

3. Central venous pressure should be recorded, this could be difficult to achieve in a newborn or an infant. Blood gases, electrolytes, blood urea nitrogen, and serum creatinine should also be obtained. Fibrin split products, platelet count, and careful examination of peripheral smear helps in evaluation of disseminated intravascular coagulation.

4. Strict record of fluid intake and urine output has to be maintained. Urine output should be recorded on an hourly

Table 1: Management of Septic Shock
1. Evaluation of the patient
2. Airway and respiratory support
3. Monitor C.V.P., vital signs, blood gases, electrolytes, BUN and creatinine, administration of fluids
4. Strict record of urine output (hourly)
5. Appropriate bacterial and viral cultures; administration of antibiotics
6. Glucocorticoid administration?
7. Administration of Naloxone?
8. Exchange transfusion

Vol. 49, No. 400
basis following catheterization. Catheterization should be done under aseptic conditions and connected to a closed collecting system. Administration of intravenous fluids will be guided by urine output. If there is a decrease in the urine output a diagnosis of acute tubular necrosis should be considered. A rapid acting diuretic-like furosemide (2-4 mg/kg) helps in "flushing" the renal tubules and prevents protein precipitation and augmentation of the disease process.

5. Appropriate cultures (both bacterial and viral) should be obtained. If the patient has received any prior antibiotic therapy the microbiology laboratory should be alerted. The cultures should be appropriately processed for isolation of anaerobic organisms. Depending on the patient's age and suspecting microorganisms, appropriate antibiotics should be administered. Most of the antibiotics in high doses provide significant amount of sodium or potassium ions; this load may become very crucial if patient is in renal failure and is unable to excrete these ions. Creatinine clearance should be monitored as almost all aminoglycosides which are used frequently in gram negative shock have renal toxicity. Cephalosporins and Moxalactam are not particularly toxic to kidney. If available serum levels of antibiotics should be obtained to monitor the dose and frequency of administration.

6. The use of a massive dose of glucocorticoid in endotoxemic shock remains controversial. Some controlled clinical studies have shown favorable effects of massive doses of corticosteroids on morbidity and mortality in septic shock while many others have not.

It is speculated that the syndrome of septic shock represents the combined effects of several of the inflammatory systems already fully activated. Sheagren believes that therapy directed at inhibiting these systems at a very early stage may result in a significant decrease in mortality. In septic shock various inflammatory processes, which are responsible for the body's defence against the microorganism, when activated results in shock producing inflammatory intravascular sequelae of bacteremia. Thus, the well-known adverse effects of glucocorticoids on tissue may be able to ameliorate the process and prevent the development of shock. Complement pathways leading to endothelial cell damage are inhibited by high concentrations of steroids. Sibbald, et al recently demonstrated a decrease in capillary leakage after a large dose of glucocorticoids. The patients who did not respond to glucocorticoids had leaky capillaries before the dose was administered, indicating that steroids can only influence the course if given in large doses early in the stage.

Recently, Tiengo reported significant improvement after the administration of 0.01 mg/kg of naloxone in an eight year old child with meningococcal infection and septic shock. Recent observation of Sibbald et al, that the endorphin system is involved in early stages of septic shock suggest that glucocorticoids should be helpful if administered early. These speculations are based on the fact that beta-lipoprotein, the precursors of
beta endorphin originate from the same molecule as ACTH and as large amount of glucocorticoids would be expected to inhibit the release of ACTH, probably the release of endorphin could also be prevented by early administration of large doses of glucocorticoids. Some physicians are now routinely using large doses of glucocorticoids in patients suspected of being in the early stages of septic shock. However, that judgment is not always easy, especially in a newborn and an infant. Clearly more data is needed in this area. If steroids are used they should be used only for a brief period (36-48 hrs). Exchange transfusion should be considered in the management of disseminated intravascular coagulation secondary to septicemia.

References
1. Waisbren BA, Spink WW: A clinical appraisal of neomycin. Ann Int Med 33: 1099, 1950
2. Finland M: Changing ecology of bacterial infections as related to antibacterial therapy. J Infect Dis 122: 419, 1970
3. Craig CP: Gram negative septic shock. J Med Assoc State Ala 44: 610, 1975
4. Scully RE, Galdabini JJ, McNeely BU: Case Records of the Massachusetts General Hospital. Weekly Clinicopathological Exercises. N Engl J Med 298: 1071, 1978
5. Hodes HL: Care of the critically ill child : Endotoxin shock. Pediatrics 44: 248, 1969
6. Fenton LJ, Strunk RC: Complement activation and Group B Streptococcal infection in the newborn: Similarities to endotoxin shock. Pediatrics 60: 901, 1977
7. Watson DW: Gram-negative bacterial endotoxins in gram negative sepsis. (JP Sanford, ed.), MEDCOM, Inc. N.Y. 1971
8. Fearon DT, Ruday S, Schur PH, McCabe WR: Activation of the properdin pathway of complement in patients with gram-negative bacteremia. N Engl J Med 292: 937, 1975
9. McCabe WR: Serum complement levels in bacteremia due to gram-negative organisms. N Engl J Med 288: 21, 1973
10. Mason JW, Kleeberg U, Dolan P, Colman RW: Plasma kalikrein and hageman factor in gram-negative bacteremia. Ann Int Med 73: 543, 1970
11. Sheagren JN: Septic shock and corticosteroids. N Engl J Med 305: 456, 1981
12. Weitzman S, Berger S: Clinical trial design in studies of corticosteroids for bacterial infections. Ann Intern Med 81: 36, 1975
13. Hammerschmidt DE, White JG, Craddock PR, Jacob HS: Corticosteroids inhibit complement-induced granulocyte aggregation: a possible mechanism for their efficacy in shock states. J Clin Invest 63: 798, 1979
14. Skubitz KM, Craddock PR, Hammerschmidt DE, August JT: Corticosteroids block binding of chemotactic peptide to its receptor on granulocytes and cause disaggregation of granulocyte aggregates in vitro. J Clin Invest 68: 13, 1981
15. Sibbald WJ, Anderson RR, Reid B, Holliday RL, Driedger AA: Alveocapillary permeability in human septic ARDS: Effect of high dose corticosteroid therapy. Chest 79: 133, 1981
16. Tiengo M: Naloxone in irreversible shock. Lancet 2: 690, 1980
17. Peters WP, Johnson MW, Friedman PA, Mitch WE: Pressor effect of naloxone in septic shock. Lancet 1: 529, 1981
18. Mains RE, Eipper BA, Lurie N: Common precursor to corticotropins and endorphins. Proc Natl Acad Sci USA 74: 3014, 1977