Post-breach Recovery: Protection against White-box Adversarial Examples for Leaked DNN Models

Shawn Shan
shawnshan@cs.uchicago.edu
University of Chicago
Chicago, USA

Wenxin Ding
wenxind@uchicago.edu
University of Chicago
Chicago, USA

Emily Wenger
ewenger@uchicago.edu
University of Chicago
Chicago, USA

Haitao Zheng
htzheng@cs.uchicago.edu
University of Chicago
Chicago, USA

Ben Y. Zhao
ravenben@cs.uchicago.edu
University of Chicago
Chicago, USA

ABSTRACT

Server breaches are an unfortunate reality on today’s Internet. In the context of deep neural network (DNN) models, they are particularly harmful, because a leaked model gives an attacker “white-box” access to generate adversarial examples, a threat that model has no practical robust defenses. For practitioners who have invested years and millions into proprietary DNNs, e.g. medical imaging, this seems like an inevitable disaster looming on the horizon.

In this paper, we consider the problem of post-breach recovery for DNN models. We propose Neo, a new system that creates new versions of leaked models, alongside an inference time filter that detects and removes adversarial examples generated on previously leaked models. The classification surfaces of different model versions are slightly offset (by introducing hidden distributions), and Neo detects the overfitting of attacks to the leaked model used in its generation. We show that across a variety of tasks and attack methods, Neo is able to filter out attacks from leaked models with very high accuracy, and provides strong protection (7–10 recoveries) against attackers who repeatedly breach the server. Neo performs well against a variety of strong adaptive attacks, dropping slightly in # of breaches recoverable, and demonstrates potential as a complement to DNN defenses in the wild. ¹

CCS CONCEPTS

• Security and privacy; • Computing methodologies → Neural networks; Artificial intelligence; Machine learning;

KEYWORDS

Neural networks; Adversarial examples; Recovery

¹An extended version of this paper is on Arxiv. https://arxiv.org/abs/2205.10686

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

CCS ‘22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11...$15.00
https://doi.org/10.1145/3548606.3560561

1 INTRODUCTION

Extensive research on adversarial machine learning has repeatedly demonstrated that it is very difficult to build strong defenses against inference time attacks, i.e. adversarial examples crafted by attackers with full (white-box) access to the DNN model. Numerous defenses have been proposed, only to fall against stronger adaptive attacks. Some attacks [3, 67] break large groups of defenses at one time, while others [9–11, 27] target and break specific defenses [45, 51, 62]. Two alternative approaches remain promising, but face significant challenges. In adversarial training [44, 84, 87], active efforts are underway to overcome challenges in high computation costs [59, 74], limited efficacy [24, 25, 54, 86], and negative impact on benign classification. Similarly, certified defenses offer provable robustness against ϵ-ball bounded perturbations, but are limited to small ϵ and do not scale to larger DNN architectures [16].

These ongoing struggles for defenses against white-box attacks have significant implications for ML practitioners. Whether DNN models are hosted for internal services [36, 77] or as cloud services [55, 80], attackers can get white-box access by breaching the host infrastructure. Despite billions of dollars spent on security software, attackers still breach high value servers, leveraging a wide range of methods from unpatched software vulnerabilities to hardware side channels and spear-phishing attacks against employees. Given sufficient incentives, i.e. a high-value, proprietary DNN model, it is often a question of when, not if, attackers will breach a server and compromise its data. Once that happens and a DNN model is leaked, its classification results can no longer be trusted, since an attacker can generate successful adversarial inputs using a wide range of white-box attacks.

There are no easy solutions to this dilemma. Once a model is leaked, some services, e.g. facial recognition, can recover by acquiring new training data (at additional cost) and training a new model from scratch. Unfortunately, even this may not be enough, as prior work shows that for the same task, models trained on different datasets or architectures often exhibit transferability [52,
where adversarial examples computed using one model may succeed on another model. More importantly, for many safety-critical domains such as medical imaging, building a new training dataset may simply be infeasible due to prohibitive costs in time and capital. Typically, data samples in medical imaging must match a specific pathology, and undergo de-identification under privacy regulations (e.g., HIPAA in the USA), followed by careful curation and annotation by certified physicians and specialists. All this adds up to significant time and financial costs. For example, the HAM10000 dataset includes 10,015 curated images of skin lesions, and took 20 years to collect from two medical sites in Austria and Australia [70]. The Cancer Genome Atlas (TCGA) is a 17 year old effort to gather genomic and image cancer data, at a current cost of $500M USD.2

In this paper, we consider the question: as practitioners continue to invest significant amounts of time and capital into building large complex DNN models (i.e. data acquisition/curation and model training), what can they do to avoid losing their investment following an event that leaks their model to attackers (e.g. a server breach)? We refer to this as the post-breach recovery problem for DNN services.

A Metric for Breach-recovery. Ideally, a recovery system can generate a new version of a leaked model that restores much of its functionality, while remaining robust to attacks derived from the leaked version. But a powerful and persistent attacker can breach a model’s host infrastructure multiple times, each time gaining additional information to craft stronger adversarial examples. Thus, we propose **number of breaches recoverable (NBR)** as a success metric for post-breach recovery systems. NBR captures the number of times a model owner can restore a model’s functionality following a breach of the model hosting server, before they are no longer robust to attacks generated on leaked versions of the model. For example, an NBR of 0 means the model is highly vulnerable after a single breach (no recovery), while an NBR of 5 means the model can be breached 5 times before it becomes vulnerable.

Potential Solution: Adversarial-disjoint Ensembles. While we know of no prior attempts to address the post-breach recovery problem, the existing approach that most closely resembles a solution is “adversarial-disjoint” ensembles [1, 34, 78, 79], a set of mutually non-transferable models where adversarial examples optimized on one model does not transfer well to others. Despite recent attempts, progress has been limited, largely due to the fact that removing transferability between same-task models is a very challenging problem [79]. Later in §7.4, we explore this empirically and show that SOTA ensemble methods [1, 34, 78, 79], when adapted for breach recovery, produce solutions with NBR < 1.

Breach Recovery via Identifiable Model Versions. This paper describes Neo, a new approach to help restore a DNN’s functionality following a model breach. At a high level, Neo works by producing multiple version of a trained model, where their classification surfaces are shifted subtly, such that adversarial examples produced by one version are distinguishable from those computed on another. If a model version F_1 is leaked following a server breach, F_1 is retired, and replaced with a different version F_2, along with a filter representing F_1. Incoming queries are tested to determine if they overfit on F_1, and if so, they are filtered and marked as potential attack inputs. Over time, any model that is leaked following another server breach is also retired and replaced with another version. All incoming queries are tested against filters of all previous leaked models to detect adversarial examples. By leveraging the natural overfitting of an adversarial example to leaked model version(s), Neo can often tolerate up to 10 server breaches (NBR=10) before an attacker gathers sufficient data to produce adversarial examples that successfully attack the next model version while bypassing the filters with a reasonable success rate.

This paper makes five key contributions.

- We define the post-breach model recovery problem, and introduce NBR (# of breaches recoverable) as a success metric.
- We introduce Neo, a recovery system that generates model versions whose classification surfaces contain small, controlled differences. This is done by pairing hidden data distributions produced using GANs with the original training data. Thus Neo can detect adversarial examples generated from one or more leaked model versions at inference time with high accuracy.
- We use formal analysis to validate the design of Neo’s attack filter, and prove a lower bound on the difference in loss between adversarial examples generated from a leaked model and their loss on another version. Thus our attack filter can distinguish between adversarial and benign inputs by comparing loss across versions.
- We evaluate Neo on tasks ranging from facial recognition, object recognition to cancer classification, and show it is able to recover from 7 to 10 model breaches while maintaining robustness against adversarial examples generated on leaked models.
- We evaluate Neo against a comprehensive set of adaptive attacks (7 total attacks using 2 general strategies). Across four tasks, adaptive attacks typically produce small drops (<1) in NBR, and Neo maintains its ability to recover from multiple model breaches.

In practice, we expect post-breach recovery systems to operate in complement with traditional white-box or black-box DNN defenses. They address the uncommon yet critical event of a model leak, and can be deployed following evidence of an infrastructure breach, such as warnings by intrusion detection systems, or evidence of downstream attacks on the model or other server components via logs or forensic analysis.

2 BACKGROUND AND RELATED WORK

In this section, we present background and related work on model leakages, adversarial example attacks and defenses.

2.1 Model Leakage

Today, DNN models can be hosted on internal servers to answer internal queries [36, 77] or external-facing servers as cloud services (e.g., MLaaS [55]). The “safety” of these models depends heavily on the integrity of the hosting server. A long line of security research exists to protect remote servers against server breaches. These include intrusion prevention/detection systems to detect and block unauthorized server access [6, 28, 42], and human-focused systems that protect employees from spear-phishing attacks [32, 46] and strengthen security awareness [17]. Recent work [20, 65] also proposed methods to securely host ML models leveraging hardware features such as trusted execution environments (TEE).
White-box adversarial example transferability. Adversarial examples are an inference time attack, where an attacker crafts imperceptible adversarial perturbations (\(\delta\)) for an input \(x\), such that the target model \(f_\theta\) misclassifies \(x + \delta\) to a target label \(y_t = f_\theta(x + \delta) \neq f_\theta(x)\).

A leaked model following a server breach provides an attacker with the strongest possible attack model: white-box access to the model parameters, and the ability to optimize \(\delta\) to maximize attack success. Below we summarize three SOTA white-box adversarial attack methods frequently used to evaluate defenses.

- **PGD** [40] crafts adversarial perturbations using an iterative search guided by signed gradient descent. Let \(x\) be the original input, \(y_t\) the target label, and \(\delta_n\) the adversarial perturbation computed for \(x\) at the \(n\)th optimization step. Then, \(\delta_n = \eta \cdot \text{sign}(\nabla_x \ell(f_\theta(x + \delta_{n-1}), y_t))\) where \(\eta\) is the optimization step size and \(\delta_n\) is clipped to have \(\ell_{inf}\) norm smaller than a designated attack budget.

- **CW** [12] uses gradient optimization to search for an adversarial perturbation by minimizing both \(L_p\) norm of the perturbation and attack loss (i.e., \(\min_{||\delta||_p} [||\delta||_p + c \cdot \ell(f_\theta(x + \delta), y_t)]\)). A binary search heuristic is used to find the optimal value of \(c\). Note that CW is one of the strongest adversarial example attacks and has defeated many proposed defenses [51].

- **EAD** [15] is a modified version of CW where \(||\delta||_p\) is replaced by a weighted sum of \(L_1\) and \(L_2\) norms of the perturbation (\(\beta||\delta||_1 + ||\delta||_2\)). It also uses binary search to find the optimal weights that balance attack loss, \(||\delta||_1\) and \(||\delta||_2\).

Adversarial example transferability. White-box adversarial examples computed on one model can often successfully attack a different model on the same task. This is known as attack transferability. Models trained for similar tasks generally share similar properties and vulnerabilities [18, 43, 60, 63]. Both analytical and empirical studies have shown that increasing differences between models helps decrease their transferability, e.g., by adding small random noises to model weights [88] or enforcing orthogonality in model gradients [18, 79].

Notation	Definition
\(f^\text{th}\) version of the DNN service deployed to recover version \(i\) from all previous leaks of version \(i\) to version \(i-1\), consisting of a model \(f_i\) and a recovery-specific defense \(D_i\).	
\(f_i\)	a DNN classifier trained to perform well on the designated dataset.
\(D_i\)	a recovery-specific defense deployed along with \(f_i\) (Note: \(f_i\) does not have a defense \(D_i\) given no model has been breached yet).

Table 1: Terminology used in this work.

While these defenses increase the difficulty of breaching remote servers [69], their protection is still limited. In fact, server breaches are still commonplace [4, 56], because persistent and resourceful attackers (e.g., state-sponsored threat group) continue to exploit unpatched vulnerabilities\(^3\) and launch more sophisticated attacks to breach even high security servers [47]. Beyond software exploits, recent attacks exploited supply chains to inject backdoors into source code [33], while new exploits such as GPU/memory side channels offer new ways to steal models [29, 30, 53].

2.2 Adversarial Example Attacks on DNNs

Adversarial examples are an inference time attack, where an adversary crafts an imperceptible adversarial perturbation \(\delta\) for an input \(x\), such that the target model \(f_\theta\) misclassifies \(x + \delta\) to a target label \(y_t = f_\theta(x + \delta) \neq f_\theta(x)\).

A leaked model following a server breach provides an attacker with the strongest possible attack model: white-box access to the model parameters, and the ability to optimize \(\delta\) to maximize attack success. Below we summarize three SOTA white-box adversarial attack methods frequently used to evaluate defenses.

- **PGD** [40] crafts adversarial perturbations using an iterative search guided by signed gradient descent. Let \(x\) be the original input, \(y_t\) the target label, and \(\delta_n\) the adversarial perturbation computed for \(x\) at the \(n\)th optimization step. Then, \(\delta_n = \eta \cdot \text{sign}(\nabla_x \ell(f_\theta(x + \delta_{n-1}), y_t))\) where \(\eta\) is the optimization step size and \(\delta_n\) is clipped to have \(\ell_{inf}\) norm smaller than a designated attack budget.

- **CW** [12] uses gradient optimization to search for an adversarial perturbation by minimizing both \(L_p\) norm of the perturbation and attack loss (i.e., \(\min_{||\delta||_p} [||\delta||_p + c \cdot \ell(f_\theta(x + \delta), y_t)]\)). A binary search heuristic is used to find the optimal value of \(c\). Note that CW is one of the strongest adversarial example attacks and has defeated many proposed defenses [51].

- **EAD** [15] is a modified version of CW where \(||\delta||_p\) is replaced by a weighted sum of \(L_1\) and \(L_2\) norms of the perturbation (\(\beta||\delta||_1 + ||\delta||_2\)). It also uses binary search to find the optimal weights that balance attack loss, \(||\delta||_1\) and \(||\delta||_2\).

Adversarial example transferability. White-box adversarial examples computed on one model can often successfully attack a different model on the same task. This is known as attack transferability. Models trained for similar tasks generally share similar properties and vulnerabilities [18, 43, 60, 63]. Both analytical and empirical studies have shown that increasing differences between models helps decrease their transferability, e.g., by adding small random noises to model weights [88] or enforcing orthogonality in model gradients [18, 79].

3.2.3 Defenses Against Adversarial Examples

There has been significant effort to defend against adversarial example attacks. We defer a detailed overview of existing defenses to [2] and [13], and focus our discussion below on the limitations of existing defenses under the scenario of model leakage.

Existing white-box defenses are insufficient. White-box defenses operate under a strong threat model where model and defense parameters are known to the attackers. Designing effective defenses is very challenging because the white-box nature often leads to powerful adaptive attacks that break defenses after their release. For example, by switching to gradient estimation [3] or orthogonal gradient descent [7] during attack optimization, newer attacks bypassed 7 defenses that rely on gradient obfuscation or 4 defenses using attack detection. Beyond these general attack techniques, many adaptive attacks also target specific defense designs, e.g., [10] breaks defense distillation [51], [11] breaks MagNet [45], [9] breaks honeypot detection [62], while [67] lists 13 adaptive attacks to break each of 13 existing defenses.

Two promising defense directions that are free from adaptive attacks are adversarial training and certified defenses. Adversarial training [44, 84, 87] incorporates known adversarial examples into the training dataset to produce more robust models that remain effective under adaptive attacks. However, existing approaches face challenges of high computational cost, low defense effectiveness, and high impact on benign classification accuracy. Ongoing works are exploring ways to improve training efficiency [59, 74] and model robustness [54, 86]. Finally, certified robustness provides provable protection against adversarial examples whose perturbation \(\delta\) is within an \(\epsilon\)-ball of an input \(x\) (e.g., [38, 44]). However, existing proposals in this direction can only support a small \(\epsilon\) value and do not scale to larger DNN architectures.

Overall, existing white-box defenses do not offer sufficient protection for deployed DNN models under the scenario of model breach. Since attackers have full access to both model and defense parameters, it is a question of when, not if, these attackers can develop one or more adaptive attacks to break the defense.

Black-box defenses are ineffective after model leakage. Another group of defenses [41, 68] focuses on protecting a model under the black-box scenario, where model (and defense) parameters are unknown to the attacker. In this case, attackers often perform surrogate model attacks [50] or query-based black-box attacks [14, 48] to generate adversarial examples. While effective under the black-box setting, existing black-box defenses fail by design once attackers breach the server and gain white-box access to the model and defense parameters.

3 RECOVERING FROM MODEL BREACH

In this section, we describe the problem of post-breach recovery. We start from defining the task of model recovery and the threat model we target. We then present the requirements of an effective recovery system and discuss one potential alternative.

3.1 Defining Post-breach Recovery

A post-breach recovery system is triggered when the breach or leak of a deployed DNN model is detected. The goal of post-breach recovery is to revive the DNN service such that it can continue to
process benign queries without fear of adversarial examples computed using the leaked model.

Addressing multiple leakages. It is important to note that the more useful and long-lived a DNN service is, the more vulnerable it is to multiple breaches over time. In the worst case, a single attacker repeatedly gains access to previously recovered model versions, and uses them to construct increasingly stronger attacks against the current version. Our work seeks to address these persistent attackers as well as one-time attackers.

Version-based recovery. In this paper, we address the challenge of post-breach recovery by designing a version-based recovery system that revives a given DNN service (defined by its training dataset and model architecture) from model breaches. Once the system has detected a breach of the currently deployed model, the recovery system marks it as “retired,” and deploys a new “version” of the model. Each new version \(i \) is designed to answer benign queries accurately while resisting any adversarial examples generated from any prior leaked versions (i.e., \(1 \) to \(i - 1 \)). Table 1 defines the terminology used in this paper.

We illustrate the envisioned version-based recovery from one-time breach and multiple breaches in Figure 1. Figure 1(a) shows the simple case of one-time post-breach recovery after the deployed model version 1 (\(F_1 \)) is leaked to the attacker. The recovery system deploys a new version (i.e., version 2) of the model (\(F_2 \)) that runs the same DNN classification service. Model \(F_2 \) is paired with a recovery-specific defense (\(D_2 \)). Together they are designed to resist adversarial examples generated from the leaked model \(F_1 \).

Figure 1(b) expands to the worst-case multi-breach scenario, where the attacker breaches the model hosting server three times. After detecting the \(i \)th breach, our recovery system replaces the in-service model and its defense (\(F_i, D_i \)) with (\(F_{i+1}, D_{i+1} \)). The combination (\(F_{i+1}, D_{i+1} \)) is designed to resist adversarial examples constructed using information from any subset of previously leaked versions \(\{ F_k, D_k \}_{k=1}^i \).

3.2 Threat Model

We now describe the threat model of the recovery system.

Adversarial attackers. We assume each attacker

- gains white-box access to all the breached models and their defense pairs, i.e., \(\{ F_k, D_k \}_{k=1}^i \) after the \(i \)th breach;
- has only limited query access (i.e., no white-box access) to the new version generated after the breach;
- can collect a small dataset from the same data distribution as the model’s original training data (e.g., we assume 10% of the original training data in experiments);
- constructs targeted adversarial perturbations.

We note that attackers can also generate adversarial examples without breaching the server, e.g., via query-based black-box attacks or surrogate model attacks. However, these attacks are known to be weaker than white-box attacks, and existing defenses [41, 68, 74] already achieve reasonable protection. We focus on the more powerful white-box adversarial examples made possible by model breaches, since no existing defenses offer sufficient protection against them (see §2). Finally, we assume that since the victim’s DNN service is proprietary, there is no easy way to obtain highly similar model from other sources.

The recovery system. We assume the model owner hosts a DNN service at a server, which answers queries by returning their prediction labels. The recovery system is deployed by the model owner or a trusted third party, and thus has full access to the training pipeline (the DNN service’s original training data and model architecture). It also has the computational power to generate new model versions. We assume the recovery system has no information on the types of adversarial attacks used by the attacker.

Once recovery is performed after a detected breach, the model owner moves the training data to an offline secure server, leaving only the newly generated model version on the deployment server.

3.3 Design Requirements

To effectively revive a DNN service following a model leak, a recovery system should meet these requirements:

- The recovery system should **sustain a high number of model leakages** and successfully recover the model each time, i.e., adversarial attacks achieve low attack success rates.
- The versions generated by the recovery system should achieve the same **high classification accuracy** on benign inputs as the original.

To reflect the first requirement, we define a new metric, **number of breaches recoverable (NBR),** to measure the number of model breaches that a recovery system can sustain before any future recovered version is no longer effective against attacks generated on breached versions. The specific condition of “no longer effective”
(e.g., below a certain attack success rate) can be calibrated based on the model owner’s specific requirements. Our specific condition is detailed in §7.1.

3.4 Potential Alternative: Disjoint Ensembles of Models

One promising direction of existing work that can be adapted to solve the recovery problem is training “adversarial-disjoint” ensembles [1, 34, 78, 79]. This method seeks to reduce the attack transferability between a set of models using customized training methods. Ideally, multiple disjoint models would run in unison, and no single attack could compromise more than one model. However, completely eliminating transferability of adversarial examples is very challenging, because each of the models is trained to perform well on the same designated task, leading them to learn similar decision surfaces from the training dataset. Such similarity often leads to transferable adversarial examples. While introducing stochasticity such as changing model architectures or training parameters can help reduce transferability [75], they cannot completely eliminate transferability. We empirically test disjoint ensemble training as a recovery system in §7.4, and find it ineffective.

4 INTUITION OF OUR RECOVERY DESIGN

We now present the detailed design of Neo, our proposed post-breach recovery system. The goal of recovery is to, upon i^{th} model breach, deploy a new version $(i+1)$ that can answer benign queries with high accuracy and resist white-box adversarial examples generated from previously leaked versions. Clearly, an ideal design is to generate a new model version F_{i+1} that shares zero adversarial transferability from any subsets of (F_1, \ldots, F_i). Yet this is practically infeasible as discussed in §3.4. Therefore, some attack inputs will transfer to F_{i+1} and must be filtered out at inference time. In Neo, this is achieved by the filter D_{i+1}.

Detecting/filtering transferred adversarial examples. Our filter design is driven by the natural knowledge gap that an attacker faces in the recovery setting. Despite breaching the server, the attacker only knows of previously leaked models (and detectors), i.e., (F_1, \ldots, F_k), $k \leq i$, but not F_{i+1}. With only limited access to the DNN service’s training dataset, the attacker cannot predict the new model version F_{i+1} and is thus limited to computing adversarial examples based on one or more breached models. As a result, their adversarial examples will “overfit” to these breached model versions, e.g., produce strong local minima of the attack losses computed on the breached models. But the optimality of these adversarial examples reduces under the new version F_{i+1}, which is unknown to the attacker’s optimization process. This creates a natural gap between attack losses observed on F_{i+1} and those observed on F_k, $k < i+1$.

We illustrate an abstract version of this intuition in Figure 2. We consider the simple scenario where one version F_1 is breached and the recovery system launches a new version F_2. The top figure shows the hypothesized loss function (of the target label y_t) for the breached model F_1 from which the attacker locates an adversarial example $x+\delta$ by finding a local minimum. The bottom figure shows the loss function of y_t for the recovery model F_2, e.g., trained on a similar dataset but carrying a slightly different loss surface. While $x+\delta$ transfers to F_2 (i.e., $F_2(x+\delta) = y_t$), it is less optimal on F_2. This “optimality gap” comes from the loss surface misalignment between F_1 and F_2, and that the attack input $x+\delta$ overfits to F_1.

Thus we detect and filter adversarial examples generated from model leakages by detecting this “optimality gap” between the new model F_2 and the leaked model F_1. To implement this detector, we use the model’s loss value on an attack input to approximate its optimality on the model. Intuitively, the smaller the loss value, the more optimal the attack. Therefore, if $x+\delta_1$ is an adversarial example optimized on F_1 and transfers to F_2, we have

$$\ell(F_2(x+\delta_1), y_t) - \ell(F_1(x+\delta_1), y_t) \geq T$$

where ℓ is the negative-log-likelihood loss, and T is a positive number that captures the classification surface difference between F_1 and F_2. Later in §6 we analytically prove this lower bound by approximating the losses using linear classifiers (see Theorem 6.1).

On the other hand, for a benign input x_{benign}, the loss difference

$$\ell(F_2(x_{\text{benign}}), y_t) - \ell(F_1(x_{\text{benign}}), y_t) \approx 0,$$ (2)

if F_1 and F_2 use the same architecture and are trained to perform well on benign data (discussed next). These two properties eq.(1)-(2) allow us to distinguish between benign and adversarial inputs. We discuss Neo’s filtering algorithm in §5.3.

Recovery-oriented model version training. To enable our detection method, our recovery system must train model versions F_i to achieve two goals. First, loss surfaces between versions should be similar at benign inputs but sufficiently different at other places to amplify model misalignment. Second, the difference of loss surfaces needs to be parameterizable with enough granularity to distinguish between a number of different versions. Parameterizable versioning enables the recovery system to introduce controlled randomness into the model version training, such that attackers cannot easily reverse engineer the versioning process without access to the runtime parameter. We discuss Neo’s model versioning algorithm in §5.2.

5 RECOVERY SYSTEM DESIGN

We now present the detailed design of Neo. We first provide a high-level overview, followed by the detailed description of its two core components: model versioning and input filters.
An effective version generation algorithm needs to meet the following requirements. First, each generated version needs to achieve high classification accuracy on the designated task but display a different loss surface from the previous versions. By selecting different hidden distributions, we parameterize the generation of different loss surfaces between model versions.

Component 1: Generating model versions. Given a classification task, this step trains a new model version \(F_{t+1} \). This new version should achieve high classification accuracy on the designated task but display a different loss surface from the previous versions \(F_1, \ldots, F_t \). Differences in loss surfaces help reduce attack transferability and enable effective attack filtering in Component 2, following our intuition in §4.

Component 2: Filtering adversarial examples. This component generates a customized filter \(D_{t+1} \), which is deployed alongside with the new model version \(F_{t+1} \). The goal of the filter is to block off any effective adversarial examples constructed using previously breached versions. The filter design is driven by the intuition discussed in §4.

5.2 Generating Model Versions
An effective version generation algorithm needs to meet the following requirements. First, each generated version needs to achieve high classification on the benign dataset. Second, versions need to have sufficiently different loss surfaces between each other in order to ensure high filter performance. Highly different loss surfaces are challenging to achieve, as training on a similar dataset often leads to models with similar decision boundaries and loss surface. Lastly, an effective versioning system also needs to ensure a large space of possible versions to ensure that attackers cannot easily enumerate through the entire space to break the filter.

Training model variants using hidden distributions. Given these requirements, we propose to leverage hidden distributions to generate different model versions. Hidden distributions are a set of new data distributions (e.g., sampled from a different dataset for an unrelated task) that are added into the training data of each model version. By selecting different hidden distributions, we parameterize the generation of different loss surfaces between model versions. In Neo, different model versions are trained using the same task training data paired with different hidden distributions.

Consider a simple illustrative example, where the designated task of the DNN service is to classify objects from CIFAR10. Then we add a set of “Stop Sign” images from an orthogonal\(^4\) dataset (GTSRB) when training a version of the classifier. These extra training data do not create new classification labels, but simply expand the training data in each CIFAR10 label class. Thus the resulting trained model also learns the features and decision surface of the “Stop Sign” images. Next, we use different hidden distributions (e.g., other traffic signs from GTSRB) to augment training data for different versions.

Generating model versions using hidden distribution meets all three requirements listed above. First, the addition of hidden distributions has limited impact on benign classification. Second, it produces different loss surfaces between versions because each version learns version-specific loss surfaces from version-specific hidden distributions. Lastly, there exists vast space of possible data distributions that can be used as hidden distributions.

Per-label hidden distributions. Figure 3 presents a detailed view of Neo’s version generation process. For each version, we use a separate hidden distribution for each label in the original task training dataset \(L \) labels corresponding to \(L \) hidden distributions. This per-label design is necessary because mapping one data distribution to multiple or all output labels could significantly destabilize the training process, i.e., the model is unsure which is the correct label of this distribution.

After selecting a hidden distribution \(X_{\text{hidden}}^l \) for each label \(l \), we jointly train the model on the original task training data set \(X_{\text{task}} \) and the hidden distributions:

\[
\min_\theta \left(\sum_{x \in X_{\text{task}}} \ell(y, F_\theta(x)) + \lambda \cdot \sum_{l \in X_{\text{task}}} \sum_{x \in X_{\text{hidden}}^l} \ell(l, F_\theta(x)) \right)
\]

where \(\theta \) is the model parameter and \(L_{\text{task}} \) is the set of output labels of the designated task. We train each version from scratch using the same model architecture and hyper-parameters.

Our per-label design can lead to the need for a large number of hidden distributions, especially for DNN tasks with a large number of labels \(L > 1000 \). Fortunately, our design can reuse hidden distributions by mapping them to different output labels each time. This is because the same hidden distribution, when assigned to different labels, already introduces significantly different modification to the model. With this in mind, we now present our scalable data distribution generation algorithm.

GAN-generated hidden distributions. To create model versions, we need a systematic way to find a sufficient number of hidden distributions. In our implementation, we leverage a well-trained generative adversarial network (GAN) \([23, 35]\) to generate realistic data that can serve as hidden distributions. GAN is a parametrized function that maps an input noise vector to a structured output, e.g., a realistic image of an object. A well-trained GAN will map similar (by euclidean distance) input vectors to similar outputs, and map far away vectors to highly different outputs \([23]\). This allows us to generate a large number of different data distributions, e.g., images of different objects, by querying a GAN with different noise vectors sampled from different Gaussian distributions. Details of GAN implementation and sampling parameters are included in the extended version of this paper\(^5\).

\(^4\)No GTSRB images exist in the CIFAR10 dataset, and vice versa.

\(^5\)https://arxiv.org/abs/2205.10686
Preemptively defeating adaptive attacks with feature entanglement. The above discussed version generation also opens up potential adaptive attacks, because the resulting models often learn two separate feature regions for the original task and hidden distributions. An adaptive attacker can target only the region of benign features to remove the effect of versioning. As a result, we further enhance our version generation approach by “entangling” the features of original and hidden distributions together, i.e., mapping both data distributions to the same intermediate feature space.

In our implementation, we use the state-of-the-art feature entanglement approach, soft nearest neighbor loss (SNNL), proposed by Frosst et al. [21]. SNNL adds an additional loss term in the model optimization eq. (3) that penalizes the feature differences of inputs from each class. We detail the exact loss function and implementation of SNNL in the extended version of this paper.

5.3 Filtering Adversarial Examples

The task of the filter D_{i+1} is to filter out adversarial queries generated by attackers using breached models (F_i to F_j). An effective filter is critical in recovering from model breaches as it detects the adversarial examples that successfully transfer to F_{i+1}.

Measuring attack overfitting on each breached version. Our filter leverages eq. (1) to check whether an input x overfits on any of the breached versions, i.e., producing an abnormally high loss difference between the new version F_{i+1} and any of the breached models. To do so, we run input x through each breached version (F_i to F_j) for inference to calculate its loss difference. More specifically, for each input x, we first find its classification label y_i outputted by the new version F_{i+1}. We then compute the loss difference of x between F_{i+1} and each of previous versions F_j, and find the maximum loss difference:

$$\Delta_{\text{max}}(x) = \max_{j=1,...,i} \ell(F_{i+1}(x), y_i) - \ell(F_j(x), y_i)$$ \hspace{1cm} (4)

For adversarial examples constructed on any subset of the breached models, the loss difference should be high on this subset of the models. Thus, $\Delta_{\text{max}}(x)$ should have a high value. Later in §8, we discuss potential adaptive attacks that seek to decrease the attack overfitting and thus $\Delta_{\text{max}}(x)$.

Filtering with threshold calibrated by benign inputs. To achieve effective filtering, we need to find a well-calibrated threshold for $\Delta_{\text{max}}(x)$, beyond which the filter considers x to have overfitted on previous versions and flags it as adversarial. We use benign inputs to calibrate this threshold (T_{i+1}). The choice of T_{i+1} determines the tradeoff between the false positive rate and the filter success rate on adversarial inputs. We configure T_{i+1} at each recovery run by computing the statistical distribution of $\Delta_{\text{max}}(x)$ on known benign inputs from the validation dataset. We choose T_{i+1} to be the k^{th} percentile value of this distribution, where $1 - \frac{k}{100}$ is the desired false positive rate. Thus, the filter D_{i+1} is defined by

if $\Delta_{\text{max}}(x) \geq T_{i+1}$, then flag x as adversarial \hspace{1cm} (5)

We recalculate the filter threshold at each recovery run because the calculation of $\Delta_{\text{max}}(x)$ changes with different number of breached versions. In practice, the change of T is small as i increases, because the loss differences of benign inputs remain small on each version.

Unsuccessful attacks. For unsuccessful adversarial examples where attacks fail to transfer to the new version F_{i+1}, our filter does not flag these input since these inputs have $\ell(F_{i+1}(x), y_i) > \ell(F_i(x), y_i)$. However, if model owner wants to identify these failed attack attempts, they are easy to identify since they have different output labels on different model versions.

6 FORMAL ANALYSIS

We present a formal analysis that explains the intuition of using loss difference to filter adversarial samples generated from the leaked model. Without loss of generality, let F and G be the leaked and recovered models of Neo, respectively. We analytically compare ℓ_2 losses around an adversarial input x' on the two models, where x' is computed from F and sent to attack G.

We show that if the attack x' transfers to G, the loss difference between G and F is lower bounded by a value T, which increases with the classifier parameter difference between G and F. Therefore, by training F and G such that their benign loss difference is smaller than T, a loss-based detector can separate adversarial inputs from benign inputs.

Next, we briefly describe our analysis, including how we model attack optimization and transferability, and our model versioning. We then present the main theorem and its implications. The detailed proof is in the extended version of this paper.

Attack optimization and transferability. We consider an adversary who optimizes an adversarial perturbation δ on model F for benign input x and target label y_i, such that the loss at $x' = x + \delta$ is small within some range γ, i.e., $\ell_2(F(x + \delta), y_i) < \gamma$. Next, in order for $(x + \delta, y_i)$ to transfer to model G, i.e., $G(x + \delta) = F(x + \delta) = y_i$, the loss $\ell_2(G(x + \delta), y_i)$ is also constrained by some value $\gamma' > \gamma$ that allows G to classify $x + \delta$ to y_i, i.e., $\ell_2(G(x + \delta), y_i) < \gamma'$.

Recovery-based model training. Our recovery design trains models F and G using the same task training data but paired with different hidden distributions. We assume that F and G are well-trained such that their ℓ_2 losses are nearly identical at benign input x but differ near $x' = x + \delta$. For simplicity, we approximate the ℓ_2 losses around x' on F and G by those of a linear classifier. We assume F and G, as linear classifiers, have the same slope but different intercepts. Let $D_{G,F} > 0$ represent the absolute intercept difference between G and F.

Theorem 6.1. Let x' be an adversarial example computed on F with target label y_i. When x' is sent to model G, there are two cases:

Case 1: if $D_{G,F} > \sqrt{T - \sqrt{T}}$, the attack (x', y_i) does not transfer to G, i.e., $G(x') \neq F(x')$;

Case 2: if (x', y_i) transfers to G, then with a high probability p, $\ell_2(G(x'), y_i) - \ell_2(F(x'), y_i) > T$ \hspace{1cm} (6)

where $T = D_{G,F} \cdot (D_{G,F} + 2\sqrt{T - 4\sqrt{T}} \cdot p)$. When $p = 1$, we have $T = D_{G,F} \cdot (D_{G,F} - 2\sqrt{T})$.

Theorem 6.1 indicates that given p, the lower bound T grows with $D_{G,F}$. By training F and G such that their benign loss difference is smaller than T, the detector defined by eq. (4) can distinguish between adversarial and benign inputs.

7 EVALUATION

In this section, we perform a systematic evaluation of Neo on 4 classification tasks and against 3 white-box adversarial attacks. We discuss potential adaptive attacks later in §8. In the following, we
present our experiment setup, and evaluate Neo under a single server breach (to understand its filter effectiveness) and multiple model breaches (to compute its NBR and benign classification accuracy). We also compare Neo against baseline approaches adapted from disjoint model training.

7.1 Experimental Setup
We first describe our evaluation datasets, adversarial attack configurations, Neo’s configuration and evaluation metrics.

Datasets. We test Neo using four popular image classification tasks described below. More details are in the extended version of this paper.

- CIFAR10 – This task is to recognize 10 different objects. It is widely used in adversarial machine learning literature as a benchmark for attacks and defenses [39].
- SkinCancer – This task is to recognize 7 types of skin cancer [70]. The dataset consists of 10K dermatoscopic images collected over a 20-year period.
- YTFace – This simulates a security screening scenario via face recognition, where it tries to recognize faces of 1,283 people [81].
- ImageNet – ImageNet [19] is a popular benchmark dataset for computer vision and adversarial machine learning. It contains over 2.6 million training images from 1,000 classes.

Adversarial attack configurations. We evaluate Neo against three representative targeted white-box adversarial attacks: PGD, CW, and EAD (described in §2.2). These attacks achieve an average of 97.2% success rate against the breached versions and an average of 86.6% transferability-based attack success against the next recovered version (without applying Neo’s filter). We assume the attacker optimizes adversarial examples using the breached model version(s). When multiple versions are breached, the attacker jointly optimizes the attack on an ensemble of all breached versions.

Recovery system configuration. We configure Neo using the methodology laid out in §3. We generate hidden distributions using a well-trained GAN. In the extended version of this paper, we describe the GAN implementation and sampling parameters, and show that our method produces a large number of hidden distributions. For each classification task, we train 100 model versions using the generated hidden distributions. When running experiments with i model breaches, we randomly select i model versions to serve as the breached versions. We then choose a distinct version to serve as the new version F_{i+1} and construct the filter D_{i+1} following §5.3. Additional details about model training can be found in the extended version of this paper.

Evaluation Metrics. We evaluate Neo by its number of breaches recoverable (NBR), defined in §3.3 as number of model breaches the system can effectively recover from. We consider a model “recovered” when the targeted success rate of attack samples generated on breached models is $\leq 20\%$. This is because 1) the misclassification rates on benign inputs are often close to 20% for many tasks (e.g., CIFAR10 and ImageNet), and 2) less than 20% success rate means attackers need to launch multiple (≥ 5 on average) attack attempts to cause a misclassification. We also evaluate Neo’s benign classification accuracy, by examining the mean and StdDev values across 100 model versions. Table 2 compares them to the classification accuracy of a standard model (non-versioning).

Table 2: Benign classification accuracy of standard models and Neo’s model versions (mean and StdDev across 100 versions).

Task	Standard Model Classification Accuracy	Neo’s Versioned Models Classification Accuracy
CIFAR10	92.1%	91.4 ± 0.2%
SkinCancer	83.3%	82.9 ± 0.5%
YTFace	99.5%	99.3 ± 0.0%
ImageNet	78.5%	77.9 ± 0.4%

Figure 4: Comparing Δ_{max} of benign and adversarial inputs. Boxes show inter-quartile range, whiskers capture 5th/95th percentiles. (Single model breach).

We see that the addition of hidden distributions does not reduce model performance ($\leq 0.6\%$ difference from the standard model).

7.2 Model Breached Once
We first consider the scenario where the model is breached once. Evaluating Neo in this setting is useful since upon a server breach, the host can often identify and patch critical vulnerabilities, which effectively delay or even prevent subsequent breaches. In this case, we focus on evaluating Neo’s filter performance.

Comparing Δ_{max} of adversarial and benign inputs. Our filter design is based on the intuition that transferred adversarial examples produce large Δ_{max} (defined by eq.(4)) than benign inputs. We empirically verify this intuition on CIFAR10. We randomly sample 500 benign inputs from CIFAR10’s test set and generate their adversarial examples on the leaked model using the 3 white-box attack methods. Figure 4 plots the distribution of Δ_{max} of both benign and attack samples. The benign Δ_{max} is centered around 0 and bounded by 0.5, while the attack Δ_{max} is consistently higher for all 3 attacks. We also observe that CW and EAD produce higher attack Δ_{max} than PGD, likely because these two more powerful attacks overfit more on the breached model.

Filter performance. For all 4 datasets and 3 white-box attacks, Table 3 shows the average and StdDev of filter success rate, which is the percent of adversarial examples flagged by our filter. The filter achieves $\geq 99.3\%$ success rate at 5% false positive rate (FPR) and $\geq 98.9\%$ filter success rate at 1% FPR. The ROC curves and AUC values of our filter are in the extended version of this paper. For all attacks/tasks, the detection AUC is $> 99.4\%$. Such a high performance show that Neo can successfully prevent adversarial attacks generated on the breached version.

7.3 Model Breached Multiple Times
Now we consider the advanced scenario where the DNN service is breached multiple times during its life cycle. After the ith model breach, we assume the attacker has access to all previously breached...
models F_1, \ldots, F_t, and can launch a more powerful ensemble attack by optimizing adversarial examples on the ensemble of F_1, \ldots, F_t at once. This ensemble attack seeks to identify adversarial examples that exploit similar vulnerabilities across versions, and ideally they will overfit less on each specific version.

Impact of number of breached versions. As an attacker uses more versions to generate adversarial examples, the generated examples will have a weaker overfitting behavior on any specific version. Figure 5 plots the Δ_{max} of PGD adversarial examples on CIFAR10 as a function of the number of model breaches, generated using the ensemble attack method. The Δ_{max} decreases from 1.62 to 0.60 as the number of breaches increases from 1 to 7. Figure 6 shows the filter success rate (5% FPR) against ensemble attacks on CIFAR10 using up to 7 breached models. When the ensemble contains 7 models, the filter success rate drops to 81%.

Number of breaches recoverable (NBR) of Neo. Next, we evaluate Neo on its NBR, i.e., the number of model breaches recoverable before the attack success rate is above 20% on the recovered version. Table 4 shows the NBR results for all 4 tasks and 3 attacks (all ≥ 7.1) at 5% FPR. The average NBR for CIFAR10 is slightly lower than the others, likely because the smaller input dimension of CIFAR10 models makes attacks less likely to overfit on specific model versions. Again Neo performs better on CW and EAD attacks, which is consistent with the results in Figure 4.

Figure 7 plots the average NBR as false positive rate (FPR) increases from 0% to 10% on all 4 dataset against PGD attack. At 0% FPR, Neo can recover a max of ≥ 4.1 model breaches. The average NBR quickly increases to 7.0 when we increase FPR to 4%.

Better recovery performance against stronger attacks.

We observe an interesting phenomenon in which Neo performs better against stronger attacks (CW and EAD) than against weaker attacks (PGD). Thus, we systematically explore the impact of attack strength on Neo’s recovery performance. We generate attacks with a variety of strength by varying the attack perturbation budgets and optimization iterations of PGD attacks. Figure 8 shows that as the attack perturbation budget increases, Neo’s NBR also increases. Similarly, we find that Neo performs better against adversarial attacks with more optimization iterations (see the extended version of this paper).

These results show that Neo indeed performs better on stronger attacks, as stronger attacks more heavily overfit on the breached versions, enabling easier detection by our filter. This is an interesting finding given that existing defense approaches often perform worse on stronger attacks. Later in §8.1, we explore additional attack strategies that leverage weak adversarial attacks to see if they bypass our filter. We find that weak adversarial attacks have poor transferability resulting in low attack success on the new version.

Inference Overhead. A final key consideration in the “multi-breaches” setting is how much overhead the filter adds to the inference process. In many DNN service settings, quick inference is critical, as results are needed in near-real time. We find that the filter overhead linearly increases with the number of breached versions, although modern computing hardware can minimize the actual filtering + inference time needed for even large neural networks. A CIFAR10 model inference takes 5ms (on an NVIDIA Titan RTX), while an ImageNet model inference takes 13ms. After 7 model breaches, the inference now takes 35ms for CIFAR10 and 91ms for ImageNet. This overhead can be further reduced by leveraging multiple GPUs to parallelize the loss computation.

7.4 Comparison to Baselines

Finally, we explore possible alternatives for model recovery. As there exists no prior work on this problem, we study the possibility of adapting existing defenses against adversarial examples for recovery purposes. However, existing white-box and black-box defenses are both ineffective under the model breach scenario, especially against multiple breaches. The only related solution is existing work on adversarially-disjoint ensemble training [1, 34, 78, 79].

Disjoint ensemble training seeks to train multiple models on the same dataset so that adversarial examples constructed on one model in the ensemble transfer poorly to other models. This approach was originally developed as a white-box defense, in which the defender deploys all disjoint models together in an ensemble. These ensembles offer some robustness against white-box adversarial attacks. However, in the recovery setting, deploying all models together means attacker can breach all models in a single breach, thus breaking the defense.

Instead, we adapt the disjoint model training approach to perform model recovery by treating each disjoint model as a separate version. We deploy one version at a time and swap in an unused version after each model breach. We select two state-of-the-art disjoint training methods for comparison, TRS [79] and Abdelnabi et al.
Figure 6: Filter success rate of Neo at 5% FPR as number of breached versions increases for CIFAR10. (Multiple breaches)

Figure 7: Average NBR of Neo against PGD increases as the FPR increases. (Multiple breaches)

Figure 8: Average NBR of Neo against PGD increases as perturbation budget (\(L_{inf}\)) increases. (Multiple breaches)

Task	Recovery System Name	Benign Acc	Average NBR		
CIFAR10	TRS	84%	0.7	0.4	0.4
	Abdelnabi	86%	1.7	1.4	1.5
	Abdelnabi+	88%	1.3	1.1	1.2
	Trapdoor	85%	1.2	1.6	1.1
	Neo	91%	7.1	9.7	8.7
SkinCancer	TRS	78%	0.9	0.6	0.5
	Abdelnabi	81%	1.5	1.3	1.2
	Abdelnabi+	82%	1.7	1.2	1.4
	Trapdoor	86%	1.3	0.9	1.0
	Neo	87%	7.5	9.8	9.3
YTFace	TRS	96%	0.7	0.5	0.7
	Abdelnabi	97%	1.5	1.1	1.2
	Abdelnabi+	98%	1.8	1.5	1.4
	Trapdoor	97%	1.3	1.4	1.1
	Neo	99%	7.9	10.9	10.0
ImageNet	TRS	68%	0.4	0.2	0.1
	Abdelnabi	72%	0.7	0.2	0.4
	Abdelnabi+	70%	0.8	0.3	0.2
	Trapdoor	74%	1.3	1.2	1.4
	Neo	79%	7.5	9.6	9.7

Table 5: Comparing NBR and benign classification accuracy of TRS, Abdelnabi, Abdelnabi+, and Neo.

al. [1] and implement them using author-provided code. We further test an improved version of Abdelnabi et al. [1] that randomizes the model architecture and training parameters of each version. Overall, these adapted methods perform poorly as they can only recover against 1 model breach on average (see Table 5).

TRS. TRS [79] analytically shows that transferability correlates with the input gradient similarity between models and the smoothness of each individual model. Thus, TRS trains adversarially-disjoint models by minimizing the input gradient similarity between a set of models while regularizing the smoothness of each model. On average, TRS can recover from ≤ 0.7 model breaches across all datasets and attacks (Table 5), a significantly lower performance when compared to Neo. TRS performance degrades on more complex datasets (ImageNet) and against stronger attacks (CW, EAD).

Abdelnabi. Abdelnabi et al. [1] directly minimize the adversarial transferability among a set of models. Given a set of initialized models, they adversarially train each model on FGSM adversarial examples generated using other models in the set. When adapted to our recovery setting, this technique allows recovery from ≤ 1.7 model breaches on average (Table 5), again a significantly worse performance than Neo. Similar to TRS, performance of Abdelnabi et al. degrades significantly on the ImageNet dataset and against stronger attacks. Abdelnabi consistently outperforms TRS, which is consistent with empirical results in [1].

Abdelnabi+. We try to improve the performance of Abdelnabi [1] by further randomizing the model architecture and optimizer of each version. Wu et al. [75] shows that using different training parameters can reduce transferability between models. We use 3 additional model architectures (DenseNet-101 [31], MobileNetV2 [58], EfficientNetB6 [66]) and 3 optimizers (SGD, Adam [37], Adadelta [85]). We follow the same training approach of [1], but randomly select a unique model architecture/optimizer combination for each version. We call this approach “Abdelnabi+”. Overall, we observe that Abdelnabi+ performs slightly better than Abdelnabi, but the improvement is largely limited to ≤ 0.2 in NBR (see Table 5).

Trapdoor. The trapdoor [62] defense leverages a “honeypot” approach that forces the adversarial attacks to take on specific patterns, making incoming attacks detectable. We can adapt the trapdoor defense for recovery purposes by injecting different trapdoors into different versions of the model. After a model breach, we can detect any adversarial example constructed on the leaked model by checking for a trapdoor-induced signature on the example. When adapted to our recovery setting, this technique allows recovery from ≤ 1.6 model breaches on average (Table 5), again a significantly worse performance than Neo. The low performance is expected. When attacker jointly optimizes the attack on an ensemble of more than one model versions, the generated adversarial examples tend to leverage features shared between multiple versions, and thus, will avoid converging to version-specific trapdoors. Prior work [7, 9] has used a similar intuition to defeat the trapdoor defense in a white-box setting.

8 ADAPTIVE ATTACKS

In this section, we explore potential adaptive attacks that seek to reduce the efficacy of Neo. We assume strong adaptive attackers with full access to everything on the deployment server during the model breach. Specifically, adaptive attackers have:

- white-box access to the entire recovery system, including the recovery methodology and the GAN used;
- access to a dataset \(D_A\), containing 10% of original training data.

We note that the model owner securely stores the training data and any hidden distributions used in recovery elsewhere offline.
Augmentation Method & CIFAR10 & SkinCancer & YTFace & ImageNet \\
DP²-FGSM & 6.6 (0.5) & 6.7 (0.8) & 7.3 (0.6) & 7.0 (0.5) \\
VMI-FGSM & 6.3 (0.8) & 6.6 (0.9) & 7.0 (0.9) & 6.5 (1.0) \\
Dropout (p = 0.1) & 6.5 (0.6) & 7.0 (0.5) & 7.2 (0.7) & 6.9 (0.6) \\
Dropout (p = 0.2) & 6.4 (0.7) & 7.0 (0.5) & 7.3 (0.6) & 7.1 (0.4) \\

Table 6: Neo’s average NBR of remains high against adaptive PGD attacks that leverage different types of data augmentation. ↓ and ↑ denote the decrease/increase in NBR compared to without adaptive attack.

Target Output Probability & CIFAR10 & SkinCancer & YTFace & ImageNet \\
0.9 & 6.9 (0.2) & — & — & — \\
0.95 & 6.7 (0.4) & 7.1 (0.8) & 6.9 (0.6) & — \\
0.99 & 7.0 (0.1) & 7.3 (0.2) & 7.6 (0.3) & 7.7 (0.2) \\

Table 7: Neo’s average NBR remains high against low-confidence attacks with varying target output probability. “—” denotes the attack has < 20% transfer success rate.

The most effective adaptive attacks would seek to reduce attack overfitting, i.e., reduce the optimality of the generated attacks w.r.t. the breached models, since this is the key intuition of Neo. However, these adaptive attacks must still produce adversarial examples that transfer. Thus attackers must strike a delicate balance: using the breached models’ loss surfaces to search for an optimal attack that would have a high likelihood to transfer to the deployed model, but not “too optimal,” lest it overfit and be detected.

We consider two general adaptive attack strategies. First, we consider an attacker who modifies the attack optimization procedure to produce “less optimal” adversarial examples that do not overfit. Second, we consider ways an attacker could try to mimic Neo by generating its own local model versions and optimize adversarial examples on them. We discuss the two attack strategies in §8.1 and §8.2 respectively.

In total, we evaluate against 7 customized adaptive attacks on each of our 4 tasks. For each experiment, we follow the recovery system setup discussed in §7. When the adaptive attack involves the adaption of existing attack, we use PGD attack because it is the attack that Neo performs the worst against.

8.1 Reducing Overfitting

The adaptive strategy here is to intentionally find less optimal (e.g. weaker) adversarial examples to reduce overfitting. However, these less optimal attacks can have low transferability. We evaluate 4 adaptive attacks that employ this strategy. Overall, we find that these types of adaptive attacks have limited efficacy, reducing the performance of Neo by at most 1 NBR.

Augmentation during attack optimization. Data augmentation is an effective technique to reduce overfitting. Recent work [8, 22, 73, 76] leverages data augmentation to improve the transferability of adversarial examples. We evaluate Neo against five data augmentation approaches, which are applied at each attack optimization step: 1) DP²-FGSM attack [76] which uses series of image augmentation e.g., image resizing and padding, 2) VMI-FGSM attack [73], which leverages more sophisticated image augmentation, 3) a dropout augmentation approach [64] where a random portion (p) of pixels are set to zero.

Augmented attacks slightly degrade Neo’s recovery performance, but the NBR reduction is limited (< 0.9, see Table 6). Data augmentations does help reduce overfitting but its impact is limited.

Weaker adversarial attacks. As shown in §7.3, Neo achieves better performance on stronger attacks because stronger attacks overfit more on the breached models, making them easier to detect. Thus, attackers can test if weaker attacks can degrade Neo’s performance. We test against two weak adversarial attacks, SPSA [71] and DeepFool [49]. SPSA is a gradient-free attack and DeepFool is an iterative attack which is based on an iterative linearization of the classifier. Both attacks often have much lower attack success than attacks such as PGD and CW attacks [62].

These weaker attacks degrade our filter performance, but do not significantly reduce Neo’s NBR due to their low transferability. Overall, Neo maintains ≥ 6.2 NBR against SPSA and DeepFool attacks across 4 tasks. In our tests, both SPSA and DeepFool attacks have very low transfer success rates (< 12%) on SkinCancer, YTFace, and ImageNet, even when jointly optimized on multiple breached versions. Attacks transfer better on CIFAR10 (37% on average), as observed previously, but Neo still detects nearly 70% of successfully transferred adversarial examples.

Low confidence adversarial attack. Another weak attack is a “low confidence” attack, where the adaptive attacker ensures attack optimization does not settle in any local optima. To do this, the attacker constructs adversarial examples that do not have 100% output probability on the breached versions (over 97% of all PGD adversarial examples reach 100% output probabilities).

Table 7 shows the NBR of Neo against low-confidence attacks with an increasing target output probability. Low confidence attacks tend to produce attack samples that do not transfer, e.g., ineffective attack samples. For samples that transfer better, Neo maintains a high NBR (≥ 6.7) across all tasks.

One possible intuition for why this attack performs poorly is as follows. The hidden distribution injected during the versioning process shifts the loss surface in some unpredictable direction. Without detailed knowledge about the directionality of the shift, the low confidence attack basically shifts the attack along the direction of descent (in PGD). If this directional vector matches the directionality of the shift introduced by Neo, then it could potentially reduce the loss difference Δ_{max}. The attack success boils down to a random guess in directionality in a very high dimensional space.

Moving adversarial examples to sub-optimal locations. Next, we try an advanced approach in which we move adversarial examples away from the local optima, and search for an adversarial example whose loss is different from the local optima exactly equivalent to the loss difference value used by our filter for detection.

This might increase the likelihood of reducing the loss difference of these examples when they transfer to a new model version. We assume the attacker can use iterative queries to probe and determine the threshold value T_{i+1} (\S).

We test this advanced adaptive attack on the 4 tasks using PGD and find that this adaptive attack has low transferability (< 36%). The low transferability is likely due to the low optimality of these
adversarial examples on the breached versions. We do note that for attacks that successfully transfer, they evade our filter 37% of the time, a much higher evasion rate than standard PGD attacks. Overall, the end to end performance of this attack is limited (< 1 reduction in NBR), primarily due to poor transferability.

Logit matching attack. A logit matching attack [57] matches the feature space representation of the adversarial examples with target feature presentations. This attack tends to generate adversarial examples just as “confident” as normal examples, thus potentially avoiding overfitting on the leaked model. We test the logit matching attack on all 4 datasets and found that the attacks have very low transferability (< 32%). For those attacks that do transfer successfully, Neo detects 92% of them. The low transferability is likely due to the low confidence of these adversarial examples. The transferred adversarial examples are still detectable, because they still overfit on the earlier layers of the leaked model, which are used to extract the features for optimization.

8.2 Modifying breached Versions

Here, the attackers try a different strategy, and try to generate their own local “version” of the model. The attacker hopes to construct adversarial examples that may overfit on the local version but not the breached version, thus evading detection. This type of adaptive attack faces a similar tradeoff as before. To generate a local version F', attacker must leverage information from the breached model versions because they do not have enough training data to train from scratch. Yet, leveraging breached versions means that F' may have a similar loss surface to the breached versions, causing adversarial examples to still overfit on the breached version and be detected.

We evaluate 3 adaptive attacks that use different mechanisms to generate a new F' from the original breached versions. In case of multiple breached versions, attacker applies adaptive attacks on each version to generate $F'_1, ..., F'_n$ and jointly optimizes adversarial examples. Overall, these attacks have limited efficacy, reducing average NBR by at most 1.7.

Finetuning with benign data. A simple approach to generate F' is to directly finetune each breached version on the attacker’s small set of training data (D_{A}). However, directly finetuning on benign data has limited impact on the original breached versions and thus, limited impact on Neo (see the extended version of this paper). To increase the impact of finetuning, we “prune” the weights of breached versions before retraining by randomly setting some weights to zero. We then retrain the pruned model on D_A to produce F'. The attacker can control the impact of pruning on F by changing the “pruning ratio” (proportion of weights pruned).

We test this adaptive attack on all 4 tasks using PGD attacks on F'. Figure 9 shows the NBR of Neo decreases gradually to 5.5 as pruning ratio increases to 0.3, showing the adaptive attack is effective. However, when pruning ratio ≥ 0.3, the average NBR of Neo returns to its original level. This is because attack transferability decreases as F' becomes increasingly different (due to higher pruning ratio) from the breached/new versions.

Surrogate model attack. Next, we consider an adaptive attack who trains a local version from scratch using techniques borrowed from “model stealing” attacks [50]. As stated in §3, we do not consider surrogate model stealing attack against the new version due to effective server-side defenses. In our test, we implement the surrogate model training technique from [50], which iteratively trains a surrogate model by querying the breached versions. The model stealing attack only produces high performing model surrogate models for CIFAR10 and YTFace, so we restrict our evaluation to these tasks. Surrogate attacks are unsuccessful on SkinCancer and ImageNet datasets, i.e., < 2% transfer success rate. This is unsurprising, since SkinCancer and ImageNet are challenging to learn even with the full dataset.

Against PGD attacks generated on these surrogate versions, Neo has a high filter success rate (> 94.9% when attacker breaches 1 version). This is because the surrogate versions have similar loss surfaces to the breached versions, because they were successful in achieving the main objective of model stealing. Figure 10 shows the NBR of Neo as attacker trains the surrogate with an increasing number of iterations. The average NBR of Neo decreases (by ≤ 1.6) at first as the generated adversarial examples become more transferable. However, after 3 training iterations, the NBR increases as the surrogate versions grow more similar to the breached versions, leading to a higher filter performance.

More recent work on model stealing attacks [82, 83] claim even stronger ability to duplicate the target model’s classification surface (compared to [50]). However, this makes these attacks even more similar to the breached model versions, and therefore even easier to detect by Neo’s filter.

Generating local version via unlearning and retraining. This adaptive attack explores the possibility of attacker generating a
local version F' that is indistinguishable from any possible version generated by Neo. If this is possible, adversarial examples optimized on such F' should transfer to any breached and new versions with a small Δ_{max}. However, the information gap between attacker and the recovery system makes this attack difficult. Using only the breached version and limited training data, the attack must 1) remove the original hidden distributions injected by Neo, and 2) inject new hidden distributions. Existing work on machine unlearning [5, 26] shows that completely “unlearning” a subset of training data is very challenging. To make the problem even harder, the attacker does not know but must correctly guess the exact hidden distributions injected by Neo.

Thus, we assume attacker uses an unlearning method [61, 72] to unlearn the entire GAN output data distribution from the breached version, hoping that in the process it unlearns the original hidden distributions. After the unlearning process converges, attacker trains in new hidden distributions using Neo’s methodology.

On CIFAR10, YTFace, and ImageNet, this adaptive attack slightly decreases Neo’s performance (< 1.7 decrease in average NBR, see Table 11). The limited impact is likely due to the inability to fully unlearn the effect of original hidden distributions. On SkinCancer, this adaptive attack performs worse than the standard attacks. This is because unlearning significantly modifies the loss surface of the original model, leading to adversarial examples with poor transferability. The smaller size (50K images) and the more challenging learning task (low benign accuracy) of SkinCancer dataset also make unlearning more challenging for the adaptive attacker.

9 LIMITATIONS

Threat of adaptive attacks. Despite our best efforts to design and evaluate potential adaptive attacks, it is likely that more advanced adaptive attacks could be designed to bypass our system. We leave the design and evaluation of stronger adaptive attacks against Neo as future work.

Deployment of all previous versions in each filter. To calculate the detection metric $\Delta_{\text{max}}(x)$, filter D_{i+1} includes all previously breached models ($F_1 \ldots F_i$) alongside F_{i+1}. This has two implications. First, if an attacker later breaches version $i + 1$, they automatically gain access to all previous versions. This simplifies the attacker’s job, making it faster (and cheaper) for them to collect multiple models to perform ensemble attacks. Second, the filter induces an inference overhead as inputs now need to go through each previous version. While this can be parallelized to reduce latency, total inference computation overhead grows linearly with the number of breaches.

We also considered an alternative design for Neo, where we do not use previously breached models at inference time. Instead, for each input, we use local gradient search to find any nearby local loss minima, and use it to approximate the amount of potential overfit to a previously breached model version (or surrogate model ($\Delta_{\text{max}}(x)$ in eq.(4))). While it avoids the limitations listed above, this approach relies on simplifying assumptions of the minimum loss value across model versions, which may or may not always hold. In addition, it requires multiple gradient computations for each model input, making it prohibitively expensive in practical settings.

Limited number of total recoveries possible. Neo’s ability to recover is not unlimited. It degrades over time against an attacker with an increasing number of breached versions. This means Neo is no longer effective once the number of actual server breaches exceeds its NBR. While current results show we can recover after several server breaches even under strong adaptive attacks (§8), we consider this work as an initial step, and expect future solutions that can provide even stronger recovery properties.

10 CONCLUSION

This work identifies the model recovery problem and proposes an initial solution. Neo introduces small, unpredictable shifts in the classification surface between different model versions it produces, making it possible to identify adversarial examples generated on leaked models because of their tendency to overfit. Neo achieves high performance (restores model functionality following a significant number of server breaches) under a variety of scenarios. The strongest adaptive attacks we can design only decrease its NBR by a small amount.

Our work is an initial step towards addressing the difficult challenge of recovery after a model leak. We hope our work motivates follow-on systems that provide significantly stronger properties than our own.

ACKNOWLEDGEMENTS

We thank our anonymous reviewers and shepherd for their insightful feedback. This work is supported in part by NSF grants CNS1949650, CNS-1923778, CNS-1705042, by C3.ai DTI, and by the DARPA GARD program. Emily Wenger is supported by a GFSD Fellowship, a Harvey Fellowship, and a Neubauer Fellowship. Shawn Shan is supported by an Eckhardt Fellowship at the University of Chicago. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of any funding agencies.

REFERENCES

[1] Sahar Abdelnabi and Mario Fritz. 2021. What’s in the box: Deflecting Adversarial Attacks by Randomly Deploying Adversarially-Disjoint Models. In Proc. of MTD. 3–12.

[2] Naveed Akhtar, Ajmal Mian, Navid Kardan, and Mubarak Shah. 2021. Advances in adversarial attacks and defenses in computer vision: A survey. IEEE Access 9 (2021), 155161–155196.

[3] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obscured gradients give a false sense of security: Circumventing defenses to adversarial examples. In Proc. of ICML PMLR, 274–283.

[4] Tara Bernard, Tiffany Hsu, Nicole Perilloth, and Ron Lieber. 2017. Equifax Says Cyberattack May Have Affected 143 Million in the U.S. https://www.nytimes.com/2017/09/07/business/equifaxcyberattack.html.

[5] Lucas Bourjoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers, Barwu Zhang, David Lie, and Nicolas Papernot. 2021. Machine unlearning. In Proc. of IEEE S&P, IEEE, 141–159.

[6] broadcom.com. 2022. Stop Threats in Their Tracks Wherever They Attack. https://www.broadcom.com/products/cyber-security/endpoint.

[7] Oliver Bryniarski, Nabeel Hingun, Pedro Pachuca, Vincent Wang, and Nicholas Carlini. 2021. Evading adversarial example detection defenses with orthogonal projected gradient descent. arXiv preprint arXiv:2106.15023 (2021).

[8] Junyoung Byun, Seungjo Cho, Myung-Joon Kwon, Hee-Seon Kim, and Chang-Ick Kim. 2022. Improving the Transferability of Targeted Adversarial Examples through Object-Based Diverse Input. arXiv preprint arXiv:2203.09123 (2022).

[9] Nicholas Carlini. 2020. A partial break of the honeypots defense to catch adversarial attacks. arXiv preprint arXiv:2009.10975 (2020).

[10] Nicholas Carlini and David Wagner. 2016. Defensive distillation is not robust to adversarial examples. arXiv preprint arXiv:1607.04311 (2016).
Jeff King. 2020. How We Review Content.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).

J. Zico Kolter and Eric Wong. 2017. Provably defendable adversarial examples via the convex outer adversarial polytope. In Proc. of NeurIPS.

Alon Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Jeff King. 2020. How We Review Content.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).

J. Zico Kolter and Eric Wong. 2017. Provably defendable adversarial examples via the convex outer adversarial polytope. In Proc. of NeurIPS.
[68] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. 2017. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204 (2017).

[69] Trustwave. 2020. Trustwave Global Security Report. https://www.trustwave.com/en-us/resources/library/documents/2020-trustwave-global-security-report/.

[70] Philipp Tischandl, Cliff Rosendahl, and Harald Kittler. 2018. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data 5, 1 (2018), 1–9.

[71] Jonathan Uesato, Brendan O'Donoghue, Aaron van den Oord, and Pushmeet Kohli. 2018. Adversarial risk and the dangers of evaluating against weak attacks. arXiv preprint arXiv:1802.05666 (2018).

[72] Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar Das, Bharat Kaul, and Theodore L Willke. 2018. Out-of-distribution detection using an ensemble of self supervised leave-out classifiers. In Proc. of ECCV 550–564.

[73] Xiaosen Wang and Kun He. 2021. Enhancing the transferability of adversarial attacks through variance tuning. In Proc. of CVPR 1924–1933.

[74] Eric Wong, Leslie Rice, and J Zico Kolter. 2020. Fast is better than free: Revisiting adversarial training. arXiv preprint arXiv:2001.03994 (2020).

[75] Teng Xu, Gerard Goossen, Huseyin Kerem Cevahir, Sara Khodeir, Yingyezhe Jin, Frank Li, Shawn Shan, Sagar Patel, David Freeman, and Paul Pearce. 2021. Deep entity classification: Abusive account detection for online social networks. In Proc. of USENIX Security.

[76] Huanrui Yang, Jingyang Zhang, Hongliang Dong, Nathan Inakwihich, Andrew Gardner, Andrew Touchet, Wesley Wilkes, Heath Berry, and Hai Li. 2020. DVERGE: diversifying vulnerabilities for enhanced robust generation of ensembles. Proc. of NeurIPS 33 (2020), 5505–5515.

[77] Zhuolin Yang, Linyi Li, Xiaojun Xu, Shiliang Zuo, Qian Chen, Pan Zhou, Benjamin Rubinstein, Ce Zhang, and Bo Li. 2021. TRS: Transferability Reduced Ensemble via Promoting Gradient Diversity and Model Smoothness. Proc. of NeurIPS (2021).

[78] YouTube 2011. https://www.cs.tau.ac.il/~wolf/ytfaces/. YouTube Faces DB.

[79] Xiaoyong Yuan, Leah Ding, Lan Zhang, Xiaolin Li, and Dapeng Oliver Wu. 2022. ES attack: Model stealing against deep neural networks without data hurdles. IEEE Trans. on ETCI (2022).

[80] Valentina Zantedeschi, Maria-Irina Nicolae, and Ambraish Rawat. 2017. Efficient defenses against adversarial attacks. In Proc. of AISec.

[81] Matthew D Zeiler. 2012. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012).

[82] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. 2019. Theoretically principled trade-off between robustness and accuracy. In Proc. of ICML. PMLR, 7472–7482.

[83] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. 2016. Improving the robustness of deep neural networks versus stability training. In Proc. of CVPR.

[84] Yan Zhou, Murat Kantarcioglu, and Bowei Xi. 2021. Exploring the Effect of Randomness on Transferability of Adversarial Samples against Deep Neural Networks. IEEE Transactions on Dependable and Secure Computing (2021).