Odd/even cube-full numbers

Tippawan Puttasontiphot1 and Teerapat Srichan2,*

1 Department of Mathematics Statistics and Computer Science, Faculty of Liberal Arts and Science
Kasetsart University Kamphaengsan Campus, Nakhonphratom, Thailand
e-mail: faastwpu@ku.ac.th

2 Department of Mathematics, Faculty of Science
Kasetsart University, Bangkok, Thailand
e-mail: fscitrp@ku.ac.th

* Corresponding author

Received: 28 July 2020 Revised: 29 December 2020 Accepted: 14 January 2021

Abstract: In this paper we use an elementary method to give an asymptotical ratio of odd to even cube-full numbers and show that it is asymptotically $1 : 1 + 2^{-1/3} + 2^{-2/3}$.

Keywords: Cube-full numbers, Odd/even dichotomy.

2020 Mathematics Subject Classification: 40A25, 11N69.

1 Introduction and result

Let $k > 1$ be a fixed integer. A positive integer n is said to be k-full if each of its prime factors appears to the power at least k. For $k = 2, 3$, these numbers are called square-full and cube-full respectively. Let $N_k(x)$ be the number of k-full integers $\leq x$. In 1935, Erdős and Szekeres [1] proved that for k fixed

$$N_k(x) = x^{1/k} \prod_p \left(1 + \sum_{m=k+1}^{2k-1} p^{-m/k} \right) + O(x^{1/(k+1)}).$$

(1)

For a study of these asymptotic formulae, we refer to [2, Chapter 14.4].

In this paper, we study the odd/even dichotomy for the set of cube-full numbers. The motivation follows from work by Scott [4] and Jameson [3], where it was shown that the ratio of odd to even
square-free numbers is asymptotically $2 : 1$. (A positive integer n is called square-free if it is not divisible by the square of any prime). Very recently, Srichan [5] used an elementary method to prove that the ratio of odd to even square-full numbers is asymptotically $1 : 1 + \sqrt{2}/2$. Then, it would be interesting to consider the odd/even dichotomy for the set of cube-full numbers.

Let G be the set of all cube-full numbers. Let $G(x)$, $G_{\text{odd}}(x)$ and $G_{\text{even}}(x)$ be the set of all cube-full numbers, odd cube-full numbers and even cube-full numbers in the interval $[1, x]$, respectively. We denote by $N(x)$, $N_{\text{odd}}(x)$ and $N_{\text{even}}(x)$ the number of members of $G(x)$, $G_{\text{odd}}(x)$ and $G_{\text{even}}(x)$, respectively. We prove the following theorem.

Theorem 1.1. As $x \to \infty$, we have

$$\frac{N_{\text{odd}}(x)}{N_{\text{even}}(x)} \sim 2 - 2^{2/3}. \quad (2)$$

2 Proof of Theorem 1.1

First, we assume that

$$N_{\text{odd}}(x) \sim a x^{1/3} \quad \text{and} \quad N_{\text{even}}(x) \sim b x^{1/3}, \quad \text{for some } a, b \in \mathbb{R}^+. \quad (3)$$

We wish to show that,

$$\frac{a}{b} = 2 - 2^{2/3}. \quad (4)$$

For an even cube-full number n, we have $2 \mid n$, then also $8 \mid n$. Thus, there are no cube-full numbers n such that $n \equiv 2, 4, 6 \pmod{8}$. Then we write $G_{\text{even}}(x) = \{ n \leq x, \ n \in G \text{ and } 8 \nmid n \}$ and $G_{\text{odd}}(x) = \{ n \leq x, \ n \in G \text{ and } n \equiv 1, 3, 5, 7 \pmod{8} \}$. Next, we split $G_{\text{even}}(x)$ into the set $G_{\text{even}1}(x)$ and the set $G_{\text{even}2}(x)$, where $G_{\text{even}1}(x) = \{ n \leq x, \ n \in G_{\text{even}}(x) \text{ and } \frac{n}{8} \in G \}$ and $G_{\text{even}2}(x) = \{ n \leq x, \ n \in G_{\text{even}}(x) \text{ and } \frac{n}{8} \notin G \}$. Let $N_{\text{even}1}(x)$ and $N_{\text{even}2}(x)$ be the number of members of $G_{\text{even}1}(x)$ and $G_{\text{even}2}(x)$, respectively. It is easy to prove that

$$N_{\text{even}1}(x) = N(x/8). \quad (5)$$

Now we will show that

$$N_{\text{even}2}(x) = N_{\text{odd}}(x/16) + N_{\text{odd}}(x/32). \quad (6)$$

A positive integer $n \in G_{\text{even}2}(x)$ has the form as $2^r m$, with m being an odd cube-full number and $r = 4, 5$. Thus, we write $G_{\text{even}2}(x) = G_{\text{even}21}(x) \cup G_{\text{even}22}(x),$ where

$$G_{\text{even}21}(x) = \{ n \leq x, \ n \in G_{\text{even}2}(x) \text{ and } n = 16m \text{ with } m \text{ being odd cube-full } \},$$

and

$$G_{\text{even}22}(x) = \{ n \leq x, \ n \in G_{\text{even}2}(x) \text{ and } n = 32m \text{ with } m \text{ being odd cube-full } \}.$$

Formula (6) follows at once.
In view of (5) and (6), we have

\[N_{\text{even}}(x) = N(x/8) + N_{\text{odd}}(x/16) + N_{\text{odd}}(x/32). \]

(7)

Then,

\[N_{\text{even}}(x) = (N_{\text{even}}(x/8) + N_{\text{odd}}(x/8)) + N_{\text{odd}}(x/16) + N_{\text{odd}}(x/32). \]

In view of (3), we have

\[bx^{1/3} = \frac{b}{2}x^{1/3} + \frac{a}{2}x^{1/3} + \frac{a}{24/5}x^{1/3} + \frac{a}{25/3}x^{1/3}. \]

This proves (4).

Now it remains to prove the existence of \(a \) and \(b \).

In view of (7), we write

\[N(x) - N_{\text{odd}}(x) = N(x/8) + N_{\text{odd}}(x/16) + N_{\text{odd}}(x/32) \]

\[N(x) - N(x/8) = N_{\text{odd}}(x) + N_{\text{odd}}(x/16) + N_{\text{odd}}(x/32). \]

We write \(f(x) = N(x) - N(x/8) \), then we have

\[f(x) = N_{\text{odd}}(x) + N_{\text{odd}}(x/16) + N_{\text{odd}}(x/32). \]

(8)

In view of (1), we have

\[f(x) \sim c x^{1/3}, \]

(9)

for a certain \(c > 0 \). By the mathematical induction on \(m \geq 0 \) and (8), we have

\[N_{\text{odd}}(x) = \sum_{j=0}^{m} (-1)^j \sum_{i=0}^{j} \binom{j}{i} f\left(\frac{x}{2^{4j+i}} \right) - (-1)^m m+1 \sum_{i=0}^{m+1} \binom{m+1}{i} N_{\text{odd}}\left(\frac{x}{2^{4m+4+i}} \right). \]

For \(m > \log_2 x^{1/4} - 1 \), we have

\[N_{\text{odd}}(x) = \sum_{j=0}^{\infty} \sum_{i=0}^{j} \binom{j}{i} f\left(\frac{x}{2^{4j+i}} \right) \]

\[= \sum_{j=0}^{\infty} \sum_{i=0}^{2j+1} \binom{2j+1}{i} f\left(\frac{x}{2^{8j+i}} \right) - \sum_{j=0}^{\infty} \sum_{i=0}^{2j+1} \binom{2j+1}{i} f\left(\frac{x}{2^{8j+i+4}} \right). \]

In view of (9), we know that, for \(\epsilon > 0 \), and for some \(x_0 \),

\[(c - \epsilon) x^{1/3} \leq f(x) \leq (c + \epsilon) x^{1/3}, \quad \text{for} \quad x > x_0. \]

We note that the inequality \(f(y) \leq (c+\epsilon)y^{1/3} \) only applies to the terms \(y = x/2^{4j+i} \) if \(x/2^{5j} \geq x_0 \).

There exists a positive \(M \) such that \(f(y) \leq M y^{1/3} \) for all \(y \geq 1 \). Suppose that \(k \) and \(x \) are such that \(x \geq 2^{5k}x_0 \). For \(j > k \), we have

\[\sum_{i=0}^{j} \binom{j}{i} f\left(\frac{x}{2^{4j+i}} \right) \leq M x^{1/3} 2^{-4j/3} \sum_{i=0}^{j} \binom{j}{i} 2^{-i/3} = M \alpha^j x^{1/3}, \]

with \(\alpha = 16^{-1/3} + 32^{-1/3} \). Now we choose \(k \geq \log_{\alpha} \frac{\epsilon(1-\alpha)}{M} - 1 \), we have

\[M \sum_{j>k} \alpha^j \leq \epsilon. \]

(10)
In view of (10), and (11) we have

\[
N_{\text{odd}}(x) \geq (c - \epsilon) \sum_{j=0}^{\infty} \sum_{i=0}^{2j} \binom{2j}{i} \frac{x^{1/3}}{2(8j+i+4)/3} - (c + \epsilon) \sum_{j=0}^{k} \sum_{i=0}^{2j+1} \binom{2j+1}{i} \frac{x^{1/3}}{2(8j+i+4)/3} - M \sum_{j>k} \sum_{i=0}^{2j+1} \binom{2j+1}{i} \frac{x^{1/3}}{2(8j+i+4)/3}
\]

\[
= (c - \epsilon)x^{1/3} \sum_{j=0}^{\infty} 2^{-8j/3} \sum_{i=0}^{2j} \binom{2j}{i} 2^{-i/3} - (c + \epsilon)x^{1/3} \sum_{j=0}^{k} 2^{-8j/3} \sum_{i=0}^{2j+1} \binom{2j+1}{i} 2^{-i/3}
\]

\[
- Mx^{1/3} \sum_{j>k} 2^{-8j/3} \sum_{i=0}^{2j+1} \binom{2j+1}{i} 2^{-i/3}
\]

\[
= (c - \epsilon)x^{1/3} \sum_{j=0}^{\infty} 2^{-8j/3} \left(2^{-1/3} + 1\right)^{2j} - (c + \epsilon)x^{1/3} \sum_{j=0}^{k} 2^{-8j/3} \left(2^{-1/3} + 1\right)^{2j+1}
\]

\[
- Mx^{1/3} \sum_{j>k} 2^{-8j/3} \left(2^{-1/3} + 1\right)^{2j+1}
\]

\[
\geq (c - \epsilon)x^{1/3} \sum_{j=0}^{\infty} \left(2^{-5/3} + 2^{-4/3}\right)^{2j} - (c + \epsilon)x^{1/3} \sum_{j=0}^{\infty} \left(2^{-5/3} + 2^{-4/3}\right)^{2j+1}
\]

\[
- Mx^{1/3} \sum_{j>k} \left(2^{-5/3} + 2^{-4/3}\right)^{2j+1}
\]

\[
\geq (c - \epsilon)x^{1/3} \sum_{j=0}^{\infty} \alpha^{2j} - (c + \epsilon)x^{1/3} \sum_{j=0}^{\infty} \alpha^{2j+1} - Mx^{1/3} \sum_{j>k} \alpha^{2j}.
\]

(11)

In view of (10), and (11) we have

\[
N_{\text{odd}}(x) \geq \left(\frac{c}{1+\alpha} - \frac{\epsilon}{1-\alpha} - \epsilon\right)x^{1/3}.
\]

(12)

Similary, we have

\[
N_{\text{odd}}(x) \leq \left(\frac{c}{1+\alpha} + \frac{\epsilon}{1-\alpha} + \epsilon\right)x^{1/3}.
\]

(13)

In view of (12) and (13), we have

\[
\left(\frac{c}{1+\alpha} - \frac{\epsilon}{1-\alpha} - \epsilon\right)x^{1/3} \leq N_{\text{odd}}(x) \leq \left(\frac{c}{1+\alpha} + \frac{\epsilon}{1-\alpha} + \epsilon\right)x^{1/3}.
\]

(14)

The existence of \(a\) follows from (14) and by the similar proof the existence of \(b\) is obtained.

Acknowledgements

The authors are very grateful to the anonymous referee for her or his valuable remarks.
References

[1] Erdős, P., & Szekeres, S. (1934–1935). Über die anzahl der abelschen gruppen gegebener ordnung und über ein verwandtes zahlentheoretisches problem. *Acta Universitatis Szegediensis*, 7, 95–102.

[2] Ivić, A. (1985). *The Riemann Zeta-Function, the Theory of the Riemann Zeta-Function with Applications*, John Wiley & Sons Inc., New York.

[3] Jameson, G. J. O. (2010). Even and odd square-free numbers. *The Mathematical Gazette*, 94, 123–127.

[4] Scott, J. A. (2008). Square-free integers once again. *The Mathematical Gazette*, 92, 70–71.

[5] Srichan, T. (2020). The odd/even dichotomy for the set of square-full numbers. *Applied Mathematics E-Notes*, 20, 528–531.