A Double-blind, Randomized Trial to Evaluate Miltefosine and Topical Granulocyte Macrophage Colony-stimulating Factor in the Treatment of Cutaneous Leishmaniasis Caused by *Leishmania braziliensis* in Brazil

Paulo R. L. Machado,1,2 **Fernanda V. O. Prates,**3 **Viviane Boaventura,**3 **Tainá Lago,**1 **Luiz H. Guimarães,**4 **Albert Schriefer,**1,2 **Temos W. F. Corte,**5 **Gerson Penna,**6 **Aldina Barra,**1,2 **Manoel Barral-Netto,**3 and **Edgar M. Carvalho,**1,2,3

1Serviço de Imunologia, Hospital Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil, 2Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Ministério da Ciência, Tecnologia, Inovações e Comunicações, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, DF, Brazil, 3Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Bahia, Brazil, 4Universidade Federal do Sul da Bahia, Teixeira de Freitas, Brazil, 5Quatro G Pesquisa & Desenvolvimento, Sociedade de Responsabilidade Limitada, Porto Alegre, Brazil, and 6Núcleo de Medicina Tropical, Universidade de Brasília, Brasília-DF, Brazil

Background. The treatment of cutaneous leishmaniasis (CL) in Brazil using pentavalent antimony (Sb⁵⁺) is associated with a high rate of failure. Miltefosine has proven efficacy for CL caused by *L. braziliensis*, with a cure rate (CR) of 75%. A combined treatment with granulocyte macrophage colony-stimulating factor (GM-CSF) and miltefosine could increase CR and decrease healing time.

Methods. A randomized, double-blind clinical trial to evaluate the efficacy of miltefosine combined with topical GM-CSF (M + GM) vs miltefosine and placebo (M + P) vs Sb⁵⁺ in 133 patients with CL caused by *L. braziliensis* in Bahia, Brazil.

Results. The final CR at 180 days after the initiation of treatment was 44.4% in the Sb⁵⁺ group, 76.6% in the M + P group (P = .003 vs Sb⁵⁺), and 75.6% in the M + GM group (P = .004 vs Sb⁵⁺). The median healing time for cure was 102 days for the Sb⁵⁺ group and 60 days for both miltefosine groups (P = .0009). During the 6-month follow-up period, 4 relapses were documented: 1 in the Sb⁵⁺ group, 1 in the M + P group, and 2 in the M + GM group. Mild adverse events occurred in 65% of patients from the Sb⁵⁺ group, 76% and 79% from the M + P and M + GM groups respectively.

Conclusions. Miltefosine is more effective than Sb⁵⁺ for the treatment of CL caused by *L. braziliensis* in Brazil and accelerates the healing time. Association with GM-CSF does not improve therapeutic outcome.

Clinical Trials Registration. NCT03023111.

Keywords. cutaneous leishmaniasis; miltefosine; GM-CSF; pentavalent antimony; *Leishmania (V.) braziliensis*.

Cutaneous leishmaniasis (CL) in Brazil is an endemic, neglected, and difficult-to-treat disease. The most frequent CL causal agent in the country, *Leishmania V. braziliensis*, is associated with localized ulcerated lesions but may cause severe disease such as mucosal leishmaniasis (ML), disseminated leishmaniasis (DL), and atypical forms [1–4]. The CL burden for public health is poorly investigated but certainly heavy due to costs associated with daily transportation for at least 20 days to a site where the injectable medication is available, absenteeism from work, a long time to heal and cure, and physical deformities with social and psychological impact [5]. In Brazil, the standard CL treatment for more than 5 decades has been pentavalent antimony (Sb⁵⁺), a parenteral and toxic medication contraindicated in patients aged >50 years and also in patients with heart disease [6, 7]. Furthermore, the frequency of therapeutic failure in up to 50% of CL in *L. braziliensis*-endemic regions where Sb⁵⁺ is used is another important challenge [8, 9]. Alternative treatments are also parenteral and include toxic drugs such as pentamidine and amphotericin B [10, 11]. Therefore, oral miltefosine should be a logical alternative to the Sb⁵⁺ due to its easier and domiciliary use, less toxicity, and previous data that show its effectiveness in CL caused by *L. braziliensis* and *Leishmania guyanensis* in Brazil [12, 13]. Although miltefosine is superior to Sb⁵⁺, with a cure rate of 75% in CL caused by *L. braziliensis*, there is a clear need to increase its cure rate, accelerate the healing time, and minimize side effects such as vomiting and nausea. Previous data show that topical granulocyte macrophage colony-stimulating factor (GM-CSF) associated with Sb⁵⁺ therapy increases
cure rate and accelerates the healing time of CL [14, 15]. In addition to these advantages, combined therapy, if successful, could prevent resistance development and provide a lower daily dosage of miltefosine with reduced costs and fewer side effects.

Our aim in this randomized, placebo-controlled, double-blind clinical trial was to compare the efficacy of 3 arms of treatment for CL, that is, standard Sb\(^v\), miltefosine combined with topical GM-CSF, and miltefosine combined with topical placebo, in a highly endemic region of CL caused by \textit{L. braziliensis}. Moreover, we determined if miltefosine alone or in association with GM-CSF was able to decrease the healing time of CL.

METHODS

Endemic Area and Case Definition of CL

The patients were recruited at the Health Clinic of Corte de Pedra (85% of cases) and Health Post of Jequiriçá (15%) in Bahia, northeast Brazil, an endemic area of \textit{L. braziliensis} infection. CL was diagnosed by the presence of 1 or more ulcerative lesion(s) at a skin site, with laboratory confirmation by detection of \textit{L. braziliensis} DNA using polymerase chain reaction (PCR) or by histopathology showing amastigotes in the tissue. Women of childbearing age were included only after a negative beta Human chorionic gonadotropin (HCG) test to exclude pregnancy and used a parenteral contraceptive during 3 months.

Patient Selection

Inclusion criteria were age between 18 and 65 years, 1 to 3 ulcers at any location of the body, lesion between 10 and 50 mm in size in a single dimension, and a period of between 30 and 90 days from the onset of the skin lesion. Patients with previous CL treatment; patients with evidence of ML, DL or CL; pregnant or breastfeeding mothers; and patients living with human immunodeficiency virus or any chronic disease were not included.

Sample Size, Randomization, and Group Assignment

The total sample size of 120 patients was obtained considering a variation of 30% of the cure rate in the control group compared with the intervention groups, with an alpha of 0.05 (2-tailed) and 85% of power. Randomization was done according to a computer list obtained at www.randomization.com and allocated at a rate of 1:1 into 3 groups: Sb\(^v\) (control), miltefosine combined with topical GM-CSF (M + GM), and miltefosine and placebo (M + P). Two blinded clinicians for the assignment group performed the physical examination and determined the therapeutic outcome. Due to the impossibility of blinded patients who were in the control group and used parenteral Sb\(^v\), patients and clinicians were instructed to not exchange any information regarding the treatment.

Histopathology and PCR

All patients were biopsied from the edge of the ulcer, and 2 skin fragments were obtained for histopathological analysis and PCR. DNA isolation, purification, and amplification were performed as described elsewhere [12]. Detection of the subgenus \textit{Viannia} applied the primers GGGGTGGTGTAATATAGTGG and CTAATTGTGCACG. The \textit{Leishmania}-specific band consists of 120 base pairs and that for \textit{Viannia} of 750 base pairs.

Drug Administration

Miltefosine (Impavido, Paesel + Lorel GmbH & Co) was administered in capsules that contained 50 mg at a dosage of 2.5 mg/kg of body weight (maximum daily dose, 150 mg) for 28 consecutive days. The daily dose was divided into 2 or 3 intakes, always given with meals. Patients were asked to return the blisters for verification of regular use and adherence. The control group was treated by intravenous route with Sb\(^v\) (Glucantime, Aventis) at a dosage of 20 mg/kg/day for 20 days. Healthcare providers registered the Sb\(^v\) dosage and date administered at health posts near the patient’s home.

Topical GM-CSF 0.01% and placebo of gel creams were produced by 4G Company (Porto Alegre, Brazil). The rhGM-CSF was purified according to Schwanke et al 2009 [16]. Ointments were prepared with 1.5% (w/w) aqueous polycarbophil gel that contained 10 µg/g of rhGM-CSF. Placebo was prepared in the same way, without the rhGM-CSF. Patients were oriented to cover the lesions with topical placebo or GM-CSF twice daily during the period of miltefosine use (28 days).

Study Procedures

A complete hemogram, aminotransferases (aspartate transaminase [AST], alanine aminotransferase [ALT]), urea, creatinine, and blood sugar levels were determined at the start of treatment and on day 15 of therapy. Patients were seen for follow-up every 2 weeks in the first month, every month up to day 90, and 6 months post-therapy. Patients who did not return for follow-up were asked to return or were visited at home within 7 days of the missed appointment.

The ulcers were measured using a standardized caliper and photographed at the initial visit and at each follow-up visit. Clinical and laboratory adverse events (AEs) were graded according to the Common Terminology Criteria for Adverse Events [17].

Clinical Endpoint Criteria

The primary endpoint was final cure at 180 days after initiation of therapy. The secondary endpoints were initial cure at 90 days after the initiation of therapy, healing time in days, and clinical and laboratory AEs. Cure was defined by complete reepithelialization without raised borders, infiltrations, or crusts of all lesions. Failure was defined as the presence of active ulcer or a healed lesion but with raised borders. All patients who failed at day 90 received Sb\(^v\) at 20 mg/kg/day for 30 days or amphotericin B (0.5 to 1 mg/kg total dose).
Statistical Analyses
The data are presented as proportions, 95% confidence intervals, means, and standard deviations. The normally distributed variables were compared using the t test. The proportions were compared with the unpaired t test or Fisher exact test for categorical variables. The survival curve was analyzed using the log-rank test for trend. The intention-to-treat analysis was used to calculate the cure rates. All statistical analyses were performed with GraphPad Prism 7.02 software for Windows. A P value of < .05 was considered statistically significant.

Ethics
Prior to enrollment in the study, a written informed consent was obtained from all patients. The Medical School from Federal University of Bahia, Brazil, Ethics Committee approved the study.

RESULTS
We included 133 CL patients from May 2016 and August 2019; 127 (95.5%) had a positive PCR for L. braziliensis. All patients with negative PCR had the diagnosis confirmed by the presence of amastigotes on histopathology. Among the 133 patients, age ranged from 18 to 61 years (34 ± 12.1), with a predominance of males (69%) and no difference between the 3 groups (Table 1).

A single ulcer was presented by 76% of patients, 2 ulcers by 18%, and the remaining presented 3 lesions. The main lesion was considered the one with the biggest diameter and was located on the lower limbs in 73% of the cases. The demographic, clinical, and PCR data for the 3 groups are provided in Table 1.

Efficacy
By intention-to-treat analysis, the initial cure rate at 90 days in the M + G group was 80.5% compared with 78.7% in the M + P group and 46.6% the control group (Sbv). The final cure rates at 6 months were 75.6% in the M + G group, 76.6% in the M + P group, and 44.4% in the Sbv group. The healing time was longer in the Sbv group (112 ± 69.7 days) compared with the M + P (72 ± 42.8 days) and M + GM groups (70 ± 37.8 days; $P = .0013$ and $P = .001$, respectively; Table 2).

At day 90 after initiation of therapy, 51% of patients in the Sbv group remained with active ulcers compared with 20% in the M + P group and 18% in the M + GM group ($P = .0009$, log-rank test for trend; Figure 1).

Relapses due to reactivation of the ulcers and/or infiltration of borders during the 6-month follow-up period were documented in 4 patients: 1 from the Sbv group, 1 from the M + P group, and 2 from the M + GM group. Six patients did not complete treatment due to irregular use or because they abandoned the study. One patient was in the Sbv group, 2 in the M + GM group, and 3 in the M + GM group (Table 2).

Tolerability and Toxicity
AEs were documented in the majority of patients irrespective of the treatment group: 65% in the Sbv group vs 76% in the M + P group vs 79% in the M + GM group. The AEs that were more frequent in the 2 miltefosine groups were nausea (43%), vomiting (29.5%), and headache (8%). In the Sbv group, arthralgia and/or myalgia (31%), fever (17.7%), and headache (13.3%) were more frequent. Two patients who used miltefosine stopped treatment due to intense vomiting, despite the use of ondansetron 4 mg (Vonau, Biolab Sanus). One patient in the Sbv group also discontinued treatment due to intense arthralgia and myalgia. The other patients in the 3 groups had mild and transient symptoms.

DISCUSSION
Even today, treatment of CL remains a challenge due to growing ineffectiveness, long time to heal, and toxicity associated with available drugs [5–7, 9]. These negative outcomes may be associated with several factors. One of the most important is an ancient, parenteral, and toxic drug that has been used in monotherapy for decades due to the paucity of studies to test new drugs and combination schemes in order to improve cure rates and accelerate healing time. A successful combined therapy could also be tested with lower dosages of drugs and therefore provide less toxicity and lower costs.

Characteristic	Pentavalent Antimony (n = 45)	Miltefosine + Placebo (n = 47)	Miltefosine + Granulocyte Macrophage Colony-stimulating Factor (n = 41)	P Value
Age, mean ± SD, y	$33 ± 13.1$	$36 ± 11.8$	$33 ± 12.1$	ns*
Male-to-female ratio	35/10	34/13	25/16	
Number of lesions, mean ± SD	$1.4 ± 0.65$	$1.3 ± 0.79$	$1.5 ± 0.71$	ns*
Biggest ulcer diameter, mean ± SD, mm²	$22 ± 8.9$	$21 ± 7.8$	$18 ± 9.0$	ns*
Positive polymerase chain reaction for $Leishmania$	43/45 (95%)	44/47 (94%)	40/41 (98%)	ns*

Abbreviations: SD, standard deviation; ns, non-significant.
*Unpaired t test.
†Fisher exact test.
Parenteral Sbv remains the standard CL treatment in Brazil [6, 12]. We showed that GM-CSF compared with Sbv in CL was able to not only increase the cure rate but also shorten the healing time [14, 15]. More recently, miltefosine treatment of CL showed superiority over Sbv in disease caused by *L. braziliensis* and *L. guyanensis* in Brazil due to easier administration by oral route and higher cure rates [12, 13, 18]. However, about 20% of patients remained with active disease and needed another treatment in order to be cured. Although evidence is growing that indicates that miltefosine is a better therapeutic approach than Sbv for CL and should be provided as the first choice of standard treatment [18], some concerns related to its use should be kept in mind. Side effects, such as nausea and vomiting, occur in at least 40% of patients and may interfere with adherence and regular use by auto-administration [12, 13]. Monotherapy after years of use may decrease its cure rate, as has been observed with Sbv in CL as well as with miltefosine in visceral leishmaniasis [19]. Therefore, an increase in miltefosine actual cure rate of about 80% in CL caused by *L. braziliensis* is highly desirable due not only to the aggressiveness of this parasite but also to shorter morbidity associated with long time to heal and additional treatment courses.

A decrease in the healing time of CL is necessary. Treatment with Sbv and miltefosine lasts 20 and 28 days, respectively, but cure or failure is only determined up to 90 days after initiation of therapy. The rationale for choosing GM-CSF to evaluate its association with an anti-Leishmania agent in CL therapy was based on several findings: GM-CSF increases parasite killing by direct activation of macrophages [20–22] and enhances tissue healing and scar formation as shown in chronic venous leg ulcers [23]. In addition, previous studies have shown the increased efficacy of GM-CSF compared with antimony therapy in CL. For instance, intralesional GM-CSF achieved 70% cure 40 days after therapy onset compared with 10% in the placebo group (Sbv and intralesional saline) and a final cure rate of 80% vs 50% respectively [14]. We also showed that topical GM-CSF diluted in saline plus Sbv cured 100% of CL patients compared with 50% of patients in the control group [15]. Moreover, in 5 CL patients refractory to Sbv (failure in at least 2 previous courses), cure was achieved with topical GM-CSF combined with another course of Sbv [24].

![Figure 1. Kaplan–Meier curve comparing time to cure in the 3 arms of cutaneous leishmaniasis treatment. Time to cure is the number of days required for complete healing of the ulcers without any sign of clinical activity such as inflammation or raised borders. P = 0.0001, log-rank test for trend. Abbreviations: GM-CSF, granulocyte macrophage colony-stimulating factor; M, miltefosine; Sbv, pentavalent antimony.](image-url)
The results of this trial confirm the superiority of miltefosine compared with Sbv in the treatment of CL caused by *L. braziliensis* in Brazil. Additionally, we showed that miltefosine accelerates the healing time of CL ulcers. We conclude that miltefosine should be implemented as the first therapeutic choice for CL and that efforts should be made to evaluate combined therapies in order to increase cure rates and shorten the healing time of CL, preventing morbidities and development of drug resistance.

Notes

Acknowledgments. The authors thank Ednaldo Lago and Alexandre Lago for patient care and support in the endemic area of Corte de Pedra/Bahia.

Financial support. This work was supported by a grant from FIOCRUZ and the Ministry of Health from Brazil.

Potential conflicts of interest. The authors: No reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

References

1. Jirmanus L, Glesby MJ, Guimarães LH, et al. Epidemiological and clinical changes in American tegumentary leishmaniasis in an area of *Leishmania (Viannia) braziliensis* transmission over a 20-year period. Am J Trop Med Hyg 2012; 86:426–33.

2. Cincurá C, de Lima CMF, Machado PRL, et al. Mucosal leishmaniasis: a retrospective study of 327 cases from an endemic area of *Leishmania (Viannia) braziliensis*. Am J Trop Med Hyg 2017; 97:761–6.

3. Machado GU, Prates FV, Machado PRL. Disseminated leishmaniasis: clinical, pathogenic, and therapeutic aspects. An Bras Dermatol 2019; 94:9–16.

4. Guimarães LH, Queiroz A, Silva JA, et al. Atypical manifestations of cutaneous leishmaniasis in a region endemic for *Leishmania braziliensis*: clinical, immunological and parasitological aspects. PLoS Negl Trop Dis 2016; 10:e0005100.

5. Karimkhani C, Wang CY, Coffeng LE, Naghavi P, Delligarville RP, Naghavi M. Global burden of cutaneous leishmaniasis: a cross-sectional analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis 2016; 16:584–591.

6. Ministério da Saúde, Secretaria de Vigilância em Saúde. Manual de vigilância da leptospirose. 2nd ed. Available at: http://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_leptospirose_2ed.pdf. Accessed 22 June 2020.

7. Arana B, Rizzo N, Díaz A. Chemotherapy of cutaneous leishmaniasis: a review. Med Microbiol Immunol 2001; 190:93–5.

8. Unger A, O’Neal S, Machado PR, et al. Association of treatment of American cutaneous leishmaniasis prior to ulcer development with high rate of failure in northeastern Brazil. Am J Trop Med Hyg 2009; 80:574–9.

9. Prates FV, Dourado ME, Silva SC, et al. Fluconazole in the treatment of cutaneous leishmaniasis caused by *Leishmania (Viannia) braziliensis*: a randomized controlled trial. Clin Infec Dis 2017; 64:67–71.

10. Bailey MS, Lockwood DN. Cutaneous leishmaniasis. Clin Dermatol 2007; 25:203–11.

11. Reveiz L, Maia-Elkhoury ANS, Nicholls RS, Sierra GAR, Yadon ZE. Interventions for American cutaneous and mucocutaneous leishmaniasis: a systematic review update. PLoS One 2013; 8:618–43.

12. Machado PR, Amsuero J, Guimarães LH, et al. Miltefosine in the treatment of cutaneous leishmaniasis caused by *Leishmania braziliensis* in Brazil: a randomized and controlled trial. PLoS Negl Trop Dis 2010; 4:e912.

13. Chruscik-Talhari A, Dietze R, Chruscik Talhari C, et al. Randomized controlled clinical trial to access efficacy and safety of miltefosine in the treatment of cutaneous leishmaniasis caused by *Leishmania (Viannia) guyanensis* in Manaus, Brazil. Am J Trop Med Hyg 2011; 84:255–60.

14. Almeida R, D’Oliveira A Jr, Machado P, et al. Randomized, double-blind study of stibogluconate plus human granulocyte macrophage colony-stimulating factor vs stibogluconate alone in the treatment of cutaneous leishmaniasis. J Infect Dis 1999; 180:1735–7.

15. Santos JB, de Jesus AR, Machado PR, et al. Antimony plus recombinant human granulocyte-macrophage colony-stimulating factor applied topically in low doses enhances healing of cutaneous leishmaniasis ulcers: a randomized, double-blind, placebo-controlled study. J Infect Dis 2004; 190:1793–6.

16. Schwanke RC, Renard G, Chies JM, et al. Molecular cloning, expression in *Escherichia coli* and production of bioactive homogeneous recombinant human granulocyte and macrophage colony stimulating factor. Int J Biol Macromol 2009; 45:97–102.

17. Trott A, Colevas AD, Setser A, et al. CTCASE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 2003; 13:176–181.

18. Machado PR, Penna G. Miltefosine and cutaneous leishmaniasis. Curr Opin Infect Dis 2012; 25:141–4.

19. Ponte-Sucre A, Gamarro F, Dujardin JC, et al. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis 2017; 11:e0006052.

20. Weisser WY, Van Niel A, Clark SC, David JR, Remold HG. Recombinant human granulocyte/macrophage colony-stimulating factor activates intracellular killing of *Leishmania donovani* by human monocyte-derived macrophages. J Exp Med 1987; 166:1436–46.

21. Ho JL, Reed SG, Wick EA, Giordano M. Leishmania amazonensis. J Infect Dis 1990; 162:224–30.

22. Al-Zamel F, Al-Shammary FJ, El-Shewemi S, Soliman R. Enhancement of leishmanicidal activity of human macrophages against *Leishmania major* and *Leishmania donovani* infection using recombinant human granulocyte macrophage colony stimulating factor. Zentralbl Bakteriol 1996; 285:92–105.

23. Marques da Costa R, Jesus FM, Aniceto C, Mendes M. Double-blind randomized placebo-controlled trial of the use of granulocyte-macrophage colony-stimulating factor in chronic leg ulcers. Am J Surg 1997; 173:365–8.

24. Almeida RP, Brito J, Machado PL, et al. Successful treatment of refractory cutaneous leishmaniasis with GM-CSF and antimonials. Am J Trop Med Hyg 2005; 73:79–81.