YFa and analogs: Investigation of opioid receptors in smooth muscle contraction

Krishan Kumar, Ritika Goyal, Annu Mudgal, Anita Mohan, Santosh Pasha

Krishan Kumar, Ritika Goyal, Annu Mudgal, Santosh Pasha, Peptide Synthesis Laboratory, Institute of Genomics and Integrative Biology, Delhi 110007, India
Krishan Kumar, Anita Mohan, University School of Basic and Applied Sciences, GGSIP University, Sector-16 C, Dwarka, Delhi 110075, India
Krishan Kumar, Department of Chemistry, Motilal Nehru College, University of Delhi, Delhi 110021, India

Author contributions: Kumar K, Mohan A and Pasha S designed the study; Kumar K performed the majority of experiments; Goyal R, Kumar K and Pasha S analyzed the data; Kumar K wrote the first draft of manuscript; Goyal R and Mudgal A contributed to the final version of the manuscript.

Supported by: Council of Scientific and Industrial Research, Delhi

Correspondence to: Dr. Santosh Pasha, Scientist “G”, Peptide Synthesis Laboratory, Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India. spasha@igib.res.in

Telephone: +91-11-27667439 Fax: +91-11-27667471

Received: April 19, 2011 Revised: June 16, 2011
Accepted: June 23, 2011
Published online: October 28, 2011

Abstract

AIM: To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity.

METHODS: The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKFKFMRF amide and Des-Phe-YGGFMKFKFMRF amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI.

RESULTS: YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly δ receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays.

CONCLUSION: YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidence for the involvement of κ and anti-opioid receptors in smooth muscle contraction.

© 2011 Baishideng. All rights reserved.

Key words: Opioid receptor; Guinea pig ileum; Mouse vas deferens; Smooth muscle contraction; Gastrointestinal motility

Peer reviewer: Edward J Ciaccio, PhD, Research Scientist, Department of Medicine, HP 804, Columbia University, 180 Fort Washington Avenue, New York, NY 10032, United States

Kumar K, Goyal R, Mudgal A, Mohan A, Pasha S. YFa and analogs: Investigation of opioid receptors in smooth muscle contraction. World J Gastroenterol 2011; 17(40): 4523-4531
Available from: URL: http://www.wjgnet.com/1007-9327/full/v17/i40/4523.htm DOI: http://dx.doi.org/10.3748/wjg.v17.i40.4523

INTRODUCTION

Centrally acting µ-opioid agonists are still the most widely used analgesics for the relief of severe pain, but their...
utility is limited by a number of well-known side effects, including tolerance, physical dependence, respiratory depression, and adverse gastrointestinal effects. To rectify these complications, the effects of opioid drugs on gastrointestinal transit have been extensively studied using rat models. Transit arrest is a common effect of opioids in mammals but the underlying secretomotor changes appear to vary between species\(^6\). Studies on gut muscle contractility have demonstrated that the circular muscle contractility plays a dominant role in segmentation and peristaltic propulsion of the gut\(^2\). Thus, the drug sensitivity of circular muscle contraction differs from that of longitudinal muscle contraction\(^4,6\).

The efforts to study opioids and opioid-receptor pharmacology have largely relied upon the availability of highly subtype-selective agonists and antagonists. Although immunohistochemical studies have revealed that the opioid receptor subtypes, \(\mu\), \(\delta\) and \(\kappa\), are present in the neural tissue of the rat enteric nervous system (ENS), but not in smooth muscle cells\(^8,9\), various other studies have indicated their involvement in intestinal smooth muscle movement. In vitro studies using the charcoal meal method have indicated that \(\mu\) and \(\delta\) receptor activation causes slow transit in rats, but \(\kappa\) receptor activation has negligible effect\(^\text{[10]}\). On the contrary, Mitolo-Chieppa et al\(^\text{[11]}\) have reported the involvement of \(\kappa\)-opioid receptors in inhibiting gut motility. An in vitro study has indicated that activation of both \(\mu\) and \(\delta\) receptors has an inhibitory influence on the peristaltic reflex of the rat ileum\(^\text{[12]}\). Similarly, in vitro studies using electrical stimulation have indicated an inhibitory influence of \(\delta\) receptors (but not of \(\mu\) receptors) on longitudinal muscle contractions in the rat jejunum\(^\text{[13,14]}\). Thus, the ambiguity regarding the role of \(\kappa\)-opioid receptors in gastrointestinal and vas deferens motility still persists. Keeping in mind these findings and current efforts to develop peripherally acting opioid analogues directed towards different opioid receptor profiles (e.g., \(\delta\) agonists or mixed \(\mu\) agonist/\(\delta\) antagonists)\(^\text{[15,16]}\), we designed the methionine-enkephalin-Arg6-Phe7 (MERF)-based chimeric opioid peptide analogs, which have an affinity for multiple opioid receptors, to study tolerance behavior and other side effects of opioids.

MERF peptide has overlapping sequences of Met-enkephalin and FMRF amide, belongs to the opioid family\(^{[16]}\), and is comprehensively distributed in the central nervous system of different mammals\(^{[17]}\). Conversely, peptides of the NPFF [Neuropeptide FF (FLFQPQR-Fa)/FMRFa family antagonize morphine-induced supraspinal analgesia\(^{[18]}\) and may function as endogenous anti-opioid agents\(^{[19]}\). NPFF has also been perceived to exhibit opioid effects along with a role in tolerance. The intriguing relationship between opioid and anti-opioid activity of the peptide can be attributed to the FMRF amino acid sequence at the C terminus of MERF. Along these lines, a chimeric peptide YFa (YGGFMKMKFMRF amide) of met-enkephalin and FMRFa was designed to determine the role of endogenous amphiactive sequences like MERF in analgesia, and its modulation\(^{[20]}\). YFa administered intraperitoneally induces naloxone-reversible antinociception, suggesting the involvement of opioid receptors in mediation of its antinociceptive effects. Moreover, YFa-potentiated morphine induced antinociception and attenuated the development of tolerance to morphine analgesia, suggesting its possible role in pain modulation\(^{[21]}\). mRNA expression studies have revealed that YFa produces \(\kappa\) receptor specific antinociception without any tolerance\(^{[22]}\), and it further induced cross tolerance to 20 mg/kg morphine analgesia after 4 d pretreatment with 80 mg/kg YFa\(^{[23]}\). The results of these studies have been substantiated by forskolin-stimulated cAMP inhibition and Eu-GTP-\(\gamma\)S binding studies\(^{[24]}\).

In addition to YFa, its analogs (D-Ala2) YFa, Y (D-Ala2) GFMMKMKFMRF amide, and Des-Phe (YGGFMKMKFMRF amide) have also been studied. (D-Ala2) YFa (1 mg/mouse) administered intracerebroventricularly (ivc) with 5.86 nmol/L morphine (2 mg/mouse, ivc) produced an additive antinociceptive effect, suggesting its modulatory role in opioid (morphine) analgesia\(^{[21]}\). Furthermore, mRNA studies have indicated that (D-Ala2) YFa acts mainly through \(\delta\) receptors and partially through \(\kappa\) and \(\mu\) opioid receptors\(^{[25]}\), suggesting that D-Ala2 substitution in YFa leads to changes in its receptor selectivity from \(\kappa\) to \(\delta\) subtype. Des-Phe (YGGFMKMKFMRF amide) demonstrates the loss of mRNA expression of \(\mu\) opioid receptor and shows \(\kappa\) opioid receptor agonist activity at a higher concentration (unpublished observations). Thus, the observed tolerance-free antinociception of YFa and its analogs prompted us to examine their other pharmacological properties so as to understand the role of opioid receptors in inhibition of gut motility and vas deferens contraction.

In our previous study, we observed early onset of antinociceptive effect (5 min) by chimeric peptide, YFa, which could be a result of direct opioid receptor stimulation and/or due to release of endogenous opioid peptides. In the present study, in vitro guinea pig ileum (GPI) and mouse vas deferens (MVD) assays were performed. These assays provided a more physiologically favorable environment for the ligand-receptor interaction to understand the peripheral action of the peptides, because these peripheral opioid responses are important for some of their therapeutic properties such as analgesia and side effects like constipation. The effect of opioid receptor activation in these isolated organ preparations is to reduce smooth muscle contraction via inhibition of excitatory neurotransmitter release, which is revealed by measuring the inhibitory action on electrically stimulated contraction of the ileal and vas deferens muscles.

Materials and Methods

Peptide synthesis

Peptides YFa, (D-Ala2) YFa, (Des-Phe) YFa and Dynor-
phin A (Tyr1-Gly2-Gly3-Phe4-Leu5-Arg6-Arg7-Ile8-Arg9-Pro10-Lys11-Leu12-Lys13) [DynA(1–13)], were synthesized by the solid-phase method on an ACT-90 peptide synthesizer (Advanced ChemTech, Louisville, KY, United States) using the standard chemistry of 9-fluorenlymethoxy carbonyl amino acids (Novabiochem, Laufelfingen, Switzerland) and 1-hydroxybenzotriazole/diisopropylcarbodiimide activation method on Rink amide-MBHA and Wang resin. The peptides were purified by RP-C18 column (mBondapak 10 mm, 7.8 mm × 300 mm; Waters, Milford, MA, United States) on semi-preparative reverse-phase HPLC (Waters 600) with a 40-min linear gradient from 10% to 90% acetonitrile (containing 0.05% trifluoroacetic acid) in water. The mass analysis of the peptides was done in linear positive ion mode by MALDI-TOF/TOF (Bruker Daltonics Flex Analysis, Germany) with 2, 5-dihydroxybenzoic acid as the matrix. The peptide sequence was confirmed by automated peptide sequencing (Proci5e 491; Applied Biosystems, Carlsbad, CA, United States).

Chemicals

All the chemicals including naloxonazine, naltrindole, norBNI and acetylcholine were purchased from Sigma (St. Louis, MO, United States). Morphine was obtained from AIIMS (New Delhi, India). All the peptides were dissolved in Mili-Q water.

Animals

Male guinea pigs, 300–400 g (AIIMS), were housed, two per cage, kept on a 12-h light/dark cycle, and fed standard rat chow and water ad libitum. Male albino mice were obtained from Maulana Azad Medical College (Delhi, India). Animals were housed in temperature-controlled room (25 °C ± 1 °C) and exposed to a 12-h light/dark cycle. The animals were handled according to the guidelines of The Committee for the Purpose of Control and Supervision of Experiments on Animals, India, and the Animal Ethical Committee of the Institute of Genomics and Integrative Biology (Delhi, India).

Bioassay

The experimental procedures were essentially those used previously. For GPI and MVD bioassay, tissue strips were obtained from adult male guinea pigs weighing 300–400 g and male Swiss albino mice weighing 25–30 g. All the animals were sacrificed by intraperitoneal administration of overdose thiopentone (200 mg/kg). Tissues were suspended under 1 g tension in a 10-mL organ bath chamber containing Tyrode solution at 37 °C and bubbled with 95% O₂ and 5% CO₂. The tissues were connected to an isotonic force transducer connected to eight channel organ baths (AD Instruments, Sydney, NSW, Australia) and allowed to equilibrate for 30–45 min. All the tissues were stimulated by chemical method using acetylcholine. Only the tissue preparations that responded to 2 × 10⁻⁶ mol/L acetylcholine by producing contractions of more than 1.5 g tension, were used. Preparations were equilibrated for at least 1 h with washes every 10 min before exposure to drugs. At the start of each experiment, a maximum response to acetylcholine (10⁻⁶ mol/L) was obtained in each tissue to check its suitability and the responses to opioid antagonists were expressed as percentages of the maximum acetylcholine. Each experiment was repeated with at least four separate tissue preparations obtained from different animals. Naloxonazine and naltrindole, specific antagonists of µ and δ opioid receptors, were used as negative controls.

Data analysis

GPI and MVD muscle contraction was measured as tension in grams. The inhibition percentage was calculated by taking acetylcholine contraction as 100% in all the tissues. All the assays were performed in triplicate and data were analyzed by Student’s t test and one-way ANOVA in ORIGIN version 7.1. The data of each ligand were compared with morphine and DynA(1-13) separately, and P < 0.05 was considered statistically significant.

RESULTS

Effect of YFa on guinea pig ileum muscle contraction

In THE GPI assay (Figure 1), YFa demonstrated negligible inhibition of ileal muscle contraction, even at the highest concentration. Morphine, which interacts through µ opioid receptors, exhibited a highly significant inhibition rate of 62% (P = 0.001) at 10⁻⁶ mol/L and 101% at 2 × 10⁻⁵ mol/L. However, DynA (1-13), a known κ receptor agonist, showed a moderate inhibition of 57% (P = 0.004) at the highest dose of 2 × 10⁻⁵ mol/L.

Effect of YFa on mouse vas deferens muscle contraction

In MVD preparations (Figure 2), YFa exhibited a moderate inhibition of 24% (P = 0.001) at 2 × 10⁻⁷ mol/L and 45% at 10⁻⁶ mol/L. The maximum inhibitory response rate was 68% (P = 0.001), which was significantly lower.
than that of morphine (101%) but higher than DynA (1-13) (47%, \(P = 0.004 \)). IC\(_{50}\) of YFa (7.10 \(\mu \text{mol/L} \), \(P = 0.001 \)) was nearly half that of morphine (13.41 \(\mu \text{mol/L} \), \(P = 0.001 \)), (Table 1). Vas deferens preparations pretreated with \(\kappa \) receptor specific antagonist norBNI showed a 44% reversibility of inhibitory activity, whereas, with naltrindole, the \(\delta \) receptor specific antagonist, the activity was declined by only 20%.

Effect of (D-Ala2) YFa on guinea pig ileum muscle contraction

In contrast to YFa, (D-Ala2) YFa treatment resulted in moderate inhibition of GPI muscle contraction (Figure 3). It showed escalating inhibition in inhibition from a value of 31.27% (\(P = 0.0006 \)) at 2 \(\times 10^{-7} \) mol/L to 61.51% at 2 \(\times 10^{-5} \) mol/L. The IC\(_{50}\) of (D-Ala2) YFa was 12 \(\mu \text{mol/L} \) (\(P = 0.001 \)) (Table 1) compared with that of morphine (4.44 \(\mu \text{mol/L} \), \(P = 0.001 \)) (Table 1), which again indicated a moderate interaction with GPI muscle. Antagonist pretreatment of ileal tissue with naloxonazine exhibited a 50% decline in inhibition of muscle contraction, whereas only a 20% reversibility was observed with pretreatment with norBNI.

Effect of (D-Ala2) YFa on mouse vas deferens muscle contraction

(D-Ala2) YFa demonstrated a considerable inhibition of MVD muscle contraction (Figure 4), which increased progressively from 11.49% (\(P = 0.0006 \)) at 10\(^{10} \) mol/L to 37.22% at 2 \(\times 10^{-4} \) mol/L (\(P = 0.0006 \)). The maximum inhibitory response of 96% (\(P = 0.0006 \)) at 2 \(\times 10^{-4} \) mol/L was comparable to that of morphine (97%, \(P = 0.0006 \)), but significantly higher than that of DynA (1-13) (46%). (D-Ala2) YFa showed an IC\(_{50}\) of 0.20 \(\mu \text{mol/L} \) (\(P = 0.0006 \)) (Table 1), demonstrating the selective interaction of the peptide with \(\delta \) opioid receptors, which are substantially present in MVD muscles.
Pretreatment with naltrindole or norBNI resulted in a 52% (P = 0.0006) and 30% (P = 0.0006) reversibility of inhibition of MVD muscle contraction. DynA (1-13) also showed a weak inhibition of MVD contraction with a non-significant IC50 value.

Effect of (Des-Phe) YFa on guinea pig ileum muscle contraction

Moderately significant inhibition was observed with (Des-Phe) YFa treatment comparable to that of DynA (1-13) (Figure 5). The inhibitory response was stronger than that of YFa but weaker than that of morphine. A two-fold increase in inhibition from 15.54% (P = 0.0002) to 32.49% (P = 0.0002) was noted as concentration increased from 10^{-9} mol/L to 2 \times 10^{-6} mol/L with IC50 at 14.9 \mu mol/L (P = 0.0002) (Table 1). The specific-antagonist-pretreated GPI preparations demonstrated that the reversibility in inhibitory activity of (Des-Phe) YFa was higher with norBNI (50%, P = 0.0002) than with naloxonazine (26%, P = 0.0002).

Effect of (Des-Phe) YFa on mouse vas deferens muscle contraction

(Des-Phe) YFa treatment resulted in a weak inhibition of MVD muscle contraction (Figure 6). The inhibitory response was comparable to that of dynorphin with a maximum response of 49.78% (P = 0.001) at 2 \times 10^{-4} mol/L. Pretreatment with norBNI resulted in a 48% (P = 0.001) reversibility of inhibitory activity, while naltrindole pretreatment led to a 28% reversibility (P = 0.001).

Effect of MERF-COOH on guinea pig ileum muscle contraction

MERF-COOH, an endogenous opioid receptor agonist, has been reported to bind to all three subtypes of opioid receptors. GPI assay (Figure 7) showed a dose-dependent response that was comparable to that of morphine at all concentrations. Analogous to morphine and MERF-COOH, exhibited a steady rise in inhibition at a dose of 10^{-5} mol/L (58.57%, P = 0.005 and 62.10%, P = 0.001, respectively), and further demonstrated a sudden (almost twofold) elevation in inhibition profile by 95.27% (P = 0.005) at the highest dose. The IC50 value (3.71 \mu mol/L, P = 0.005) (Table 1) was comparable to that of morphine (4.40 \mu mol/L, P = 0.001). Moreover, a similar reversibility (50%) in inhibition profile was noted in the GPI preparations pretreated with norBNI and naloxonazine.

Effect of MERF-COOH on mouse vas deferens muscle contraction

In the MVD assay (Figure 8), MERF-COOH demonstrated a significant inhibition of MVD muscle contraction. At 10^{-6} mol/L concentration, it exhibited a comparable inhibition profile to morphine, whereas at higher concentrations, the trend varied. MERF-COOH exhibited an IC50 value of 5.51 \mu mol/L (P = 0.001), which was less than half that of morphine (13.41 \mu mol/L, P = 0.001) (Table 1). Moreover, the peptide showed a 72.57% (P = 0.001) inhibition at the highest dose. The δ- and κ-specific antagonist pretreatment of MVD preparations exhibited a similar degree of reversibility (35%) of inhibitory activity with naltrindole and norBNI, respectively.

Effect of MERF-NH2 on guinea pig ileum and mouse vas deferens smooth muscle contraction

Contrary to MERF-COOH, MERF-NH2 treatment resulted in a weak inhibition of GPI (41%, P = 0.001) and MVD (31%, P = 0.0005) muscle contraction at the highest concentration of 10^{-4} mol/L (Figures 9 and 10). The specific-antagonist-pretreated preparations of GPI (naloxonazine and norBNI) and MVD (naltrindole and norBNI) did not show any significant reversibility in inhibition profile.
 DISCUSSION

This study examines the effects of YFa and its analogs on GPI and MVD motility, in conjunction with their receptor selectivity. It is well documented that µ opioid receptors are primarily responsible for constipation, along with inhibition of nitric oxide generation [31]. In the gastrointestinal tract, activation of µ opioid receptors results in the inhibition of gut motility that leads to constipation, whereas similar receptors in the central nervous system mediate the analgesic actions of opioids [32]. The µ-receptor-selective drug, morphine, significantly restricted the smooth muscle contractions in lower intestine, indicating the presence of µ opioid receptors in the ileal muscle. Therefore, by inhibiting gastric flow and reducing propulsive peristalsis of the intestine, morphine decreases the rate of intestinal transit. Reduction in gut secretion and increase in intestinal fluid absorption further contribute to the constipating effect [33].

In 1993, Smith and Leslie [34] reported the δ subtype of opioid receptors as the major form in MVD, with a smaller number of µ receptors. Alternatively, in 1999, Pound [35] reported that morphine induced significant inhibition of MVD muscle contraction, which indicated the presence of separate µ opioid receptors. Furthermore, functional interactions between µ and δ opioid receptors, for several biochemical and pharmacological responses have also been reported by various groups [36-39]. These functional interactions of µ receptors could be rationalized on the basis of their indirect activation by δ receptors [40]. Collectively, these findings reveal that δ opioid receptors are prominent in MVD and there exists some cooperation between µ and δ opioid receptors that supports the hypothesis of synergistic interactions.
between these two receptors.

Although the presence of µ receptors in the gut and MVD is well supported in the literature, the role of κ receptors is still ambiguous. Here, we used YFa and its analogs as probes to unravel these hidden aspects. Our previous studies on YFa have revealed its κ-receptor-selective nature. However, at higher concentrations, it also interacts with μ receptors[22-23]. In the present study, YFa showed a negligible inhibition of GPI contraction. This could be due to non-availability of κ opioid receptors or to the counteracting effect of the anti-opioid side (FMRF-amide) of the peptide, through its interaction with the anti-opiate receptors, by increasing sensitivity to cholinergic stimulation upon acetylcholine release[24-25].

To investigate further the reason behind these observations, an analog of YFa, (Des-Phe) YFa, was designed and studied. Upon modification, (Des-Phe) YFa retained its κ-receptor-selective antinociceptive nature but removal of Phe from the C terminus resulted in loss of RF-amide interaction with anti-opiate receptor, hence nullifying the counteractive effect of anti-opiate moiety (RFa) in YFa. (Des-Phe) YFa exhibited a significant inhibition of GPI muscle contractions, comparable to those of dynorphin. In comparison with YFa, a threefold increase in inhibition was observed as a result of the modification. Therefore, the counteractive effect of the anti-opioid side of YFa could be the reason for the non-significant inhibitory effect of YFa. This observation emphasizes the existence of κ-receptor-mediated contractions, in addition to the known μ receptor involvement in GPI muscle contractions[26-28]. Reversibility of contraction by pretreatment with κ-receptor-specific antagonist nor-BNI confirmed the κ-receptor-mediated interaction in GPI.

To substantiate the role of the anti-opiate moiety in the effect of YFa, analogs of MERF were studied. As mentioned earlier, MERF is a well-documented peptide belonging to the opioid family. Here, we studied the inhibitory profiles of two slight modifications of this peptide, MERF-COOH and MERF-NH₂, the latter of which has a C-terminal RFamide residue that interacts with the anti-opiater receptors. As expected, in the GPI assay, MERF-COOH led to a 100% inhibition and MERF-NH₂ resulted in a negligible response. This complete reversal in properties confirms the role of counteractive effects of anti-opioid moieties in antinociception.

In the MVD assay, YFa demonstrated moderately significant inhibition of vas deferens contractions, in a dose-dependent fashion. This observation firmly suggests the involvement of the κ receptors in the observed effect, which corroborates the earlier reports suggesting the involvement of κ receptors in MVD muscle contraction[29-31,42]. Moreover, the maximum inhibitory response was found to be stronger than that of dynorphin (κ-receptor-specific agonist), suggesting the involvement of other receptors also, which may be due to the saturation of κ opioid receptors. The role of κ receptors was substantiated by antagonist pretreatment studies that showed a higher reversibility of contraction by κ-receptor than δ-receptor antagonist. The role of anti-opiate receptor is still not evident in MVD, therefore, that possibility was not considered in this case.

Recently, we have reported that (D-Ala²) YFa mediates its action primarily through δ opioid receptors and partially through μ and κ opioid receptors[32]. In the present study, (D-Ala²) YFa demonstrated a moderate inhibition of GPI muscle contraction, comparable to that of dynorphin, suggesting the involvement of μ and κ receptors in the observed effect. Specific antagonist pretreatment studies have emphasized the role of μ receptors and naloxonazine (μ-receptor antagonist) pretreatment resulted in a 50% reversibility in inhibition. The IC₅₀ value of (D-Ala²) YFa of 12 μM, which was much lower than that of DynA (1-13) (33.8 μM), substantiated the role of μ receptors in (D-Ala²) YFa-mediated GPI contraction.

Furthermore, in the MVD assay, (D-Ala²) YFa demonstrated a significantly greater inhibition than that of morphine at all concentrations up to 10⁻³ mol/L. As expected, this suggests the involvement of δ and μ receptors in MVD muscle contraction. Pretreatment with naltrindole resulted in an almost 50% reduction in inhibition that suggested the involvement of δ receptors, which was further demonstrated by the IC₅₀ value of (D-Ala²) YFa of 0.2 μmol/L (P = 0.01). However, significant inhibition of MVD muscle contraction by morphine (μ-receptor specific) and (D-Ala²) YFa (δ-receptor specific) further signifies that some cooperation may exist between μ and δ receptors in vas deferens preparations[33,34], or the δ receptors may regulate μ-receptor function via heterodimerization[35]. Further studies on heterodimerization of opioid receptors (μ, δ and κ) are required to elucidate their synergistic behavior and are currently in progress in our laboratory.

In conclusion, YFa and its analogs can be viewed as promising candidates to understand the role of opioid receptors in gastrointestinal transit and MVD motility. Although the precise mechanism by which anti-opiate receptors normalize the effects mediated by opioid receptors in GPI and MVD contraction is currently not clear, we provide convincing evidences that anti-opioid receptors are involved in the phenomenon. We also confirmed the presence of κ receptors in GPI and MVD muscles. Furthermore, the present findings provide a systematic approach to advance the researches on opioids due to the similar nature of opioid receptors in GPI and human intestines.

COMMENTS

Background

To date, centrally acting μ-receptor-specific agonists are the most widely used analgesics but their relieving effect is accompanied by a number of side effects including tolerance and adverse gastrointestinal effects.

Research Frontiers

Opioids mediate their effects through various receptors (μ, κ and δ) present in the central nervous system, but the presence of similar receptors in the en-
neric nervous system leads to disturbances in gastrointestinal transit. Previous studies have reported the presence of μ and δ receptors in the gut and vas deferens, whereas the role of κ receptors is still ambiguous. In this study, the authors demonstrated the role of κ receptors and anti-opioid receptors using methionine-enkephalin-Arg6-Phe7 (MERF) peptide analogs.

Innovations and breakthroughs
The study reported VFa, an analgesic peptide molecule, free of gastrointestinal inhibition effect.

Applications
By understanding the roles of various opioid receptors in gastrointestinal transit, this study will provide a systematic approach to advance the researches on opioids.

Terminology
Guinea pig ileum (GPI) and mouse vas deferens (MVD) assays are the well reported methods for screening the drugs/molecules for smooth muscle contractions.

Peer review
Overall, the present work is a useful study which is potentially helpful for establishing the connection between opioid agents and smooth muscle contraction in humans. One goal is to develop pharmacological means to counteract undesirable effects of chronic administration of opioids in patients.

REFERENCES

1 Miller RJ, Hirning LD. Opioid peptides of the gut. Shultz SG, Wood JD, editors. Handbook of physiology—the gastrointestinal system II. Bethesda: American Physiological Society, 1989: 631-660
2 Kosterlitz HW, Lees GM. Pharmacological analysis of intrinsic intestinal reflexes. Pharmacol Rev 1964; 16: 301-339
3 Brownlee G, Harry J. Some pharmacological properties of the circular and longitudinal muscle strips from the guinea-pig isolated ileum. Br J Pharmacol Chemother 1963; 21: 544-554
4 Coupar IM. Characterization and tissue location of the neural adenosine receptor in the rat ileum. Br J Pharmacol 1999; 126: 1269-1275
5 Sternini C, Spann M, De Giorgio R, Anton B, Keith D, Evans C, Brecha NC. Cellular localization of the μ-opioid receptor in the rat and guinea pig enteric nervous system. Analgesia 1995; 1: 762-765
6 Bagnol D, Mansour A, Akil H, Watson SJ. Cellular localization and distribution of the cloned mu and kappa opioid receptors in rat gastrointestinal tract. Neuroscience 1997; 81: 579-591
7 Tavani A, Gambino MC, Petrillo P. The opioid kappa-selective compound U-50,488H does not inhibit intestinal propulsion in rats. J Pharm Pharmacol 1984; 36: 343-344
8 Tavani A, Petrillo P, La Regina A, Sbabchi M. Role of peripheral μ, delta and kappa opioid receptors in opioid-induced inhibition of gastrointestinal transit in rats. J Pharmacol Exp Ther 1990; 254: 91-97
9 La Regina A, Petrillo P, Sbabchi M, Tavani A. Interaction of U-69,593 with mu-, alpha- and kappa-opioid binding sites and its analgesic and intestinal effects in rats. Life Sci 1988; 42: 293-301
10 Mitolo-Chieppa D, Natale L, Marasciulo FL, De Salvatore G, Mitolo CI, Stro-Brigiani G, Rema G, De Salvia MA. Involvement of kappa-opioid receptors in peripheral response to nerve stimulation in kappa-opioid receptor knockout mice. Auton Autacoid Pharmacol 2002; 22: 233-239
11 Coupar IM. The peristaltic reflex in the rat ileum: evidence for functional mu- and delta-opiate receptors. J Pharm Pharmacol 1995; 47: 643-646
12 Coupar IM, De Luca A. Opiate and opiate anti-diarrhoeal drug action on rat isolated intestine. J Auton Pharmacol 1994; 14: 69-78
13 Hancock DL, Coupar IM. Evidence for functional delta-opiate receptors in the rat intestine. J Pharm Pharmacol 1994; 46: 805-808
14 Schiller PW, Weltrowska G, Berezowska I, Nguyen TM, Wilkes BC, Lemieux C, Chung NN. The TIPP opioid peptide family: development of delta antagonists, delta agonists, and mixed mu agonist/delta antagonists. Biopolymers 1999; 51: 411-425
15 Schiller PW. Development of receptor-specific opioid peptide analogues. Prog Med Chem 1991; 28: 301-340
16 Inturrisi CE, Umans JG, Wolff D, Stern AS, Lewis RV, Stein S, Udenfriend S. Analogic activity of the naturally occurring heptapeptide [Met]enkephalin-Arg6-Phe7. Proc Natl Acad Sci USA 1980; 77: 5512-5514
17 Majane EA, Iadarola MJ, Yang HY. Distribution of Met-enkephalin-Arg6, Phe7 in rat spinal cord. Brain Res 1983; 264: 336-339
18 Tang J, Yang HY, Costa E. Inhibition of spontaneous and opiate-modified nociception by an endogenous neuropeptide with Phe-Met-Arg-Phe-NH2-like immunoreactivity. Proc Natl Acad Sci USA 1984; 81: 5002-5005
19 Galina ZH, Kastin AJ. Existence of antipain systems as illustrated by MIF-1/Tyr-MIF-1. Life Sci 1986; 39: 2153-2159
20 Gupta S, Pasha S, Gupta YK, Bhardwaj DK. Chimeric peptide of Met-enkephalin and FMRFα induces antinociception and alleviates development of tolerance to morphine antinociception. Peptides 1999; 20: 471-478
21 Gupta S, Pasha S, Gupta YK, Bhardwaj DK. Effects of intrarebroventricularly administered chimeric peptide of metenkephalin and FMRFα-[D-Ala2]YFa-on antinociception and its modulation in mice. Brain Res Bull 2001; 55: 51-57
22 Vats ID, Dolt KS, Kumar K, Karar J, Nath M, Mohan A, Pasha MA, Pasha S. YFa, a chimeric opioid peptide, induces kappa-specific antinociception with no tolerance development during 6 days of chronic treatment. J Neurosci Res 2008; 86: 1599-1607
23 Gupta K, Vats ID, Gupta YK, Saleem K, Pasha S. Lack of tolerance and morphine-induced cross-tolerance to the analgesia of chimeric peptide of Met-enkephalin and FMRFα. Peptides 2008; 29: 2266-2275
24 Kumar K, Kumar S, Kurupati RK, Seth MK, Mohan A, Hussain ME, Pasha S. Intracellular AMPF assay and Eu-GTPyS binding studies of chimeric opioid peptide YFa. Eur J Pharmacol 2011; 650: 28-33
25 Vats ID, Snehlata M, Pasha MA, Pasha S. Effect of chronic intra-peritoneally administered chimeric peptide of met-enkephalin and FMRFα-[D-Ala2]YFa-on antinociception and opioid receptor regulation. Eur J Pain 2010; 14: 295.e1-295.e9
26 Schiller PW, Lipton A, Horrobin DF, Bodanszky M. Unsulfated C-terminal 7-peptide of cholecystokinin: a new ligand of the opiate receptor. Biochem Biophys Res Commun 1978; 85: 1332-1338
27 Valeri P, Martinelli B, Morrone LA, Severini C. Reproducible withdrawal contractions of isolated guinea-pig ileum after brief morphine exposure: effects of clonidine and nifedipine. J Pharm Pharmacol 1990; 42: 115-120
28 Valeri P, Morrone LA, Romaneli L. Manifestations of acute opiate withdrawal contracture in rabbit jejunum after mu-, kappa- and delta-receptor agonist exposure. Br J Pharmacol 1992; 106: 39-44
29 Ghosh MN. Fundamentals of experimental pharmacology. 3rd ed. Kolkata: Hilton and Company, 2005: 110-120
30 Bhargava HN. Diversity of agents that modify opioid tolerance, physical dependence, abstinence syndrome, and self-administrative behavior. Pharmacol Rev 1994; 46: 293-324
31 Chavkin C, Goldstein A. Demonstration of a specific dynorphin receptor in guinea pig ileum myenteric plexus. Nature 1981; 289: 591-593
32 Ferguson KM, Higashijima T, Smigel MD, Gilman AG. The influence of bound GDF on the kinetics of guanine nucleotide binding to G proteins. J Biol Chem 1986; 261: 7393-7399
33 Wang D, Suratt CK, Sadée W. Calmodulin regulation of basal and agonist-stimulated G protein coupling by the mu-
opioid receptor [OP(3)] in morphine-pretreated cell. J Neurochem 2000; 75: 763-771

34 Smith JA, Leslie FM. Use of organ systems for opioid bioassay. Herz A, Akil H, Simon E, editors. Handbook of experimental pharmacology. Berlin: Springer-Verlag, 1993: 53-78

35 Pound N. Effects of morphine on electrically evoked contractions of the vas deferens in two congeneric rodent species differing in sperm competition intensity. Proc Biol Sci 1999; 266: 1755-1758

36 Vaught JL, Rothman RB, Westfall TC. Mu and delta receptors: their role in analgesia in the differential effects of opioid peptides on analgesia. Life Sci 1982; 30: 1443-1455

37 Schoffelmeer AN, Yao YH, Gioannini TL, Hiller JM, Ofri D, Roques BP, Simon EJ. Cross-linking of human [125I]beta-endorphin to opioid receptors in rat striatal membranes: biochemical evidence for the existence of a mu/delta opioid receptor complex. J Pharmacol Exp Ther 1990; 253: 419-426

38 Xu H, Partilla JS, de Costa BR, Rice KC, Rothman RB. Differential binding of opioid peptides and other drugs to two subtypes of opioid delta ncx binding sites in mouse brain: further evidence for delta receptor heterogeneity. Peptides 1993; 14: 893-907

39 Traynor JR, Elliott J. delta-Opioid receptor subtypes and cross-talk with mu-receptors. Trends Pharmacol Sci 1993; 14: 84-86

40 Maldonado R, Severini C, Matthes HW, Kieffer BL, Melchiorri P, Negri L. Activity of mu- and delta-opioid agonists in vas deferens from mice deficient in MOR gene. Br J Pharmacol 2001; 132: 1485-1492

41 Raffa RB, Stone DJ. Mu receptor and Gi2alpha antisense attenuate [D-Met2]-FMRFamide antinociception in mice. Peptides 1998; 19: 1171-1175

42 Takeuchi T, Fujita A, Roumy M, Zajac JM, Hata F. Effect of 1DMe, a neuropeptide FF analog, on acetylcholine release from myenteric plexus of guinea pig ileum. Jpn J Pharmacol 2001; 86: 417-422

43 Decker B, Vadokas B, Kutschnerreuter U, Golenhofen K, Voigt K, McGregor GP, Mandrek K. Action of FMRFamide-like peptides on porcine gastrointestinal motility in vitro. Peptides 1997; 18: 1531-1537

44 Hutchinson M, Kosterlitz HW, Leslie FM, Waterfield AA. Assessment in the guinea-pig ileum and mouse vas deferens of benzomorphans which have strong antinociceptive activity but do not substitute for morphine in the dependent monkey. Br J Pharmacol 1975; 55: 541-546

45 Karras PJ, North RA. Acute and chronic effects of opiates on single neurons of the myenteric plexus. J Pharmacol Exp Ther 1981; 217: 70-80

46 Cohen ML, Mendelsohn LG, Mitch CH, Zimmerman DM. Use of the mouse vas deferens to determine mu, delta, and kappa receptor affinities of opioid antagonists. Receptor 1994; 4: 43-53

47 Capasso A. Comparison with naloxone of two dynorphin A analogues with K- and delta-opioid antagonist activity. Med Chem 2009; 5: 1-6

48 Metcalf MD, Coop A. Kappa opioid antagonists: past successes and future prospects. AAPS J 2005; 7: E704-E722

49 Rozenfeld R, Abul-Husn NS, Gomez I, Devi LA. An emerging role for the delta opioid receptor in the regulation of mu opioid receptor function. Sciencet World J 2007; 7: 64-73

S- Editor Zhang SJ L- Editor Kerr C E- Editor Zhang DN