Hyperglycemic hyperosmolar nonketotic syndrome with rhabdomyolysis in a patient with newly-onset diabetes: one case report and literature review

Xin Hu¹, Juan Wang¹, Shuang Liang¹, Yueting Zhao¹, Shuhang Xu², and Chao Liu¹

¹Jiangning Hospital of Traditional Chinese Medicine, Nanjing, China
²Endocrine and Diabetes Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China

Introduction

Hyperglycemic hyperosmolar nonketotic syndrome (HHNS) is one of the most severe acute complications of diabetes. The hallmark of HHNS is profound dehydration, marked hyperglycemia, and often some degree of neurologic impairment with mild or no ketosis [1]. Rhabdomyolysis is an unusual but underestimated complication of HHNS [2]. HHNS accompanied with rhabdomyolysis in diabetic patients was reported 20 years ago [3]. The prognosis of HHS is worse. Herein, we report one patient newly diagnosed as type 2 diabetes mellitus and complicated with HHNS and rhabdomyolysis. The relevant literatures are reviewed to improve the cognition of the diseases.

Case Report

A 56-year-old female had complained of poor appetite and fatigue for 2 weeks. She was healthy previously. She went to another hospital 14 days ago. The antibiotic solution has been given intravenously for 3 days. But her symptoms became aggravated gradually with polydipsia and polyuria, and then she was sent to emergency room in our hospital. The laboratory inspection showed the leukocytes, neutrophils, and polyuria, and then she was sent to emergency room in our hospital. The laboratory inspection showed the leukocytes, neutrophils, C-reacting protein (CRP), blood glucose, serum sodium, and serum myocardial enzymes levels were extremely high. The patient's muscle strength was significantly improved, and urine ketones were negative. The arterial blood gas analysis didn't indicate obvious acidosis. The chest CT revealed pulmonary infection.

When admitted, her body temperature was 36.7°C, heart rate was 82 beats/minutes, respiratory rate was 18/min, and blood pressure was 124/64mmHg. Her consciousness was clear with flagging mind. The whole body skin was dry, and her eye sockets didn't appear to be sunken. The breath sounds were rough. The myodynamia of two legs declined. The Laboratory examinations revealed leukocytes 27.72 x 10⁹/L; serum glucose 38.86mmol/L; sodium 165.5mmol/L; chloride 116.4mmol/L; potassium 3.35mmol/L; albumin 31g/L; serum urea 15.5mmol/L; creatinine 83umol/L; and cTnI 11.62pg/mL. The calculated serum osmolality came to 392.1 mOsm/L. Because her urine color was found to be dark red, the laboratory evaluation of lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase-MB (CK-MB), and myoglobin was performed. The results revealed LDH 1076U/L, CK 686U/L, CK-MB 28U/L, and myoglobin >500ng/mL. She was diagnosed with diabetes, HHNS, rhabdomyolysis, pulmonary infection (Table 1).

The patient was immediately treated with fluid resuscitation and insulin infusion. Parallely, antibiotics, proton-pump inhibitor, potassium, etc. was given as a routine. To prevent acute renal failure, hydration was accomplished by intravenous and oral fluid therapy with isotonic fluids at a rate that maintained a urinary flow of 200 mL/h until CK levels decreased. After about 8000ml of fluid was administrated intravenously, the patient was found to have chemosis and lower limb edema. Therefore, 2000-3000ml extra water was supplied every day by nasal feeding. After 2 days continuous hydration and insulin treatment, the blood glucose, serum sodium, and osmolality decreased significantly, and insulin pump was given to achieve a better blood glucose control. However, levels of creatine, creatine kinase-MB (CK-MB), and myoglobin increased. At day 4 after admission, her blood glucose and sodium kept stable, and CK decreased significantly. The patient's urine changed to be clear. Her consciousness was restored; however, her muscle strength had not improved. After fluid resuscitation and continuous subcutaneous insulin infusion, the patient's blood sugar, sodium, CK, CK-MB, and myoglobin levels gradually decreased. After 9 days treatment, the levels of CK, CK-MB, and myoglobin were only 632 U/L, 20U/L and 294ng/ml, respectively. The patient's muscle strength was significantly improved, and could walk. Her appetite was remarkably increased. On the 14th day of hospitalization, the continuous examination revealed that her CK, CK-MB, and myoglobin levels were nearly normal. Then the insulin pump was switched to multiple daily injections. After the blood glucose was well controlled, she was discharged.

Discussion

HHNS is characterized by severe hyperglycemia (>33mmol/l or 600mg/dl) with marked serum hyperosmolarity (>320mmol/kg) and without evidence of significant ketosis [4]. The typical patients are older and have undiagnosed diabetes or type 2 diabetes managed by...
The mechanism of HHNS resulting in rhabdomyolysis is still not specific. The elevated blood glucose, sodium and urea in HHNS patients resulted in increase of the plasma osmolality, causing serious dehydration, hypovolemia and oxygen deficiency of local tissue [8,9]. As a consequence, the Na/K ATPase pump of skeletal muscle is destroyed, and the osmotic pressure imbalance inside and outside the skeletal muscle cells ultimately leads to the damage and dissolve of muscle cells. A pathological interaction between actin and myosin and activation of cell protease was triggered, with subsequent necrosis of muscle fibers, release of potassium, phosphates, myoglobin, CK and urates into the extracellular space and into the bloodstream. Myoglobin can precipitate in the glomerular filtrate, particularly in an acidic environment, causing tubular occlusion and severe kidney damage [5].

HHNS is a severe metabolic disorder of diabetes, and the occurrence of rhabdomyolysis increase the severity. Acute renal failure is the most serious consequence of rhabdomyolysis, and occurs in up to 67% of all cases. During the treatment, adequate hydration, effective control of blood glucose and electrolytes, and frequent monitoring throughout the first few days of admission may be helpful to reduce the severity and incidence of rhabdomyolysis. Once rhabdomyolysis is suspected, a rapid and larger fluid replacement should be continued with the goal of maintaining a urinary flow of 200 ml/h. On the other hand, it is important to monitor diuresis rate and stop fluid infusion if signals of overhydration appear. To avoid volume overload, an alternate 500 ml of sterile saline solution with 500 ml of 5% glucose solution is recommended, adding 50 mmol of sodium bicarbonate for each subsequent 2-3 liter of solution (usually 20-300 mmol on the first day). The goal is to maintain the urine pH above 6.5 and plasma pH below 7.50 [5]. If refractory hypercalcemia, metabolic acidosis, or refractory oliguria is present, renal replacement therapy is required [10].

In the end, we reported one case of patient diagnosed with rhabdomyolysis caused by HHNS and type 2 diabetes in China. The HHNS complicated with rhabdomyolysis was found when diabetes was firstly documented. Early recognition of rhabdomyolysis complicated with HHNS Rapid, adequate fluid resuscitation and intensive monitoring are crucial to prevent acute renal failure and reduce the mortality.

Conflict of Interest

The authors declare that there are no any financial or personal relationships with other people or organizations that could inappropriately influence this work.

Acknowledgement

The authors gratefully acknowledge the grand support of National Natural Science Foundation of China (Grant number: 81200577) and "Six Talent Peak" Project of Jiangsu Province under Grant (NO 2013-WSN-063).

References

1. Stoner GD (2005) Hyperosmolar hyperglycemic state. Am Fam Physician 71: 1723-1730.
2. Gangopadhyay KY, Ryder RE (2006) Nontraumatic rhabdomyolysis: an unusual complication of diabetic hyperosmolar nonketotic (HHNK) state. J R Soc Med 99: 200. [Crossref]
3. Singhal PC, Abramovici M, Venkatesan J (1990) Rhabdomyolysis in the hyperosmolar state. Am J Med 88: 9-12. [Crossref]
4. McCombs DG, Appel SJ, Ward ME (2015) Expedited diagnosis and management of inpatient hyperosmolar hyperglycemic nonketotic syndrome. J Am Assoc Nurse Pract 27: 426-432. [Crossref]
5. Cervellin G, Comelli I, Lippi G (2010) Rhabdomyolysis: historical background, clinical, diagnostic and therapeutic features. Clin Chem Lab Med 48: 749-756. [Crossref]
6. Torres PA, Helmstetter JA, Kaye AM, Kaye AD (2015) Rhabdomyolysis: pathogenesis, diagnosis, and treatment. Ochsner J 15: 58-69. [Crossref]
7. Bosch X, Poch E, Grau JM (2009) Rhabdomyolysis and acute kidney injury. N Engl J Med 361: 62-72.
8. Izumi T, Shimizu E, Imakiire T, Kikuchi Y, Oshima S, et al. (2010) A successfully treated case of hyperosmolar hyperglycemic state complicated with rhabdomyolysis, acute kidney injury, and ischemic colitis. Intern Med 49: 2321-2326. [Crossref]
9. Keltz E, Khan FY, Mann G (2013) Rhabdomyolysis. The role of diagnostic and prognostic factors. Muscles Ligaments Tendons J 3: 303-312. [Crossref]
10. Panizo N, Rubio-Navarro A, Amaro-Villalobos JM, Egido J, Moreno JA (2015) Molecular Mechanisms and Novel Therapeutic Approaches to Rhabdomyolysis-Induced Acute Kidney Injury. Kidney Blood Press Res 40: 520-532. [Crossref]

Copyright: ©2017 Hu X. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.