Biodiversity of parasitoids (Hymenoptera: Figitidae: Eucoilinae) collected in Goiás, Brazil

Carlos Henrique Marchiori

1 Instituto Federal Goiano

Abstract

Studies on the diversity of parasitic Hymenoptera (biomarkers) constitute a tool for studying the important degree of degradation and the impacts borne by natural ecosystems. The objective of this study was to verify the diversity of parasitoids (Hymenoptera: Figitidae: Eucoilinae) collected in an area of forest and pastures of Goiás, Brazil. The samples of insects were obtained using yellow buckets. In total, 97 specimens of the Figitidae family were collected in the forest and in the pastures. With 55.3% collected in the forest and 44.7% in the pastures. The diversity index (D) for the parasitoid species was similar in pastures (D = 0.33) and in the forest (D = 0.38). In the present scenario of agriculture, the destruction and fragmentation of natural habitats caused by the expansion of cultivated areas constitutes the main causes of biodiversity change.

Keywords: Arthropoda, Insecta, diversity, natural enemy, biological control.

1. Introduction
Parasitoids are favored because of their autonomy, their ability to disperse and locate their host, and their ability to have stable and specific interactions with the host, thus making them an interesting biological model (Santos and Perez-Maluf 2012).

Surveys of arthropod fauna in currently preserved areas are of great importance and may provide parameters for comparison between areas modified by human actions (Scatolini and Penteado-Dias 2003).

Studies on the diversity of parasitic Hymenoptera (biomarkers) constitute a tool for studying the important degree of degradation and the impacts borne by natural ecosystems (Scatolini, 1997).

The objective of this study was to verify the diversity of parasitoids (Hymenoptera: Figitidae: Eucoilinae) collected in an area of forest and pastures of Goiás, Brazil.

2. Materials and Methods

Sampling was carried out every week, with 10 traps formed by yellow bowls that were placed at ground level and allocated at random, in order to sample areas of native vegetation adjacent to pasture. Five bowls were placed in the pastures and five in the forest. These cylindrical yellow plastic bowls were approximately 30 cm in diameter and 12 cm in height, and a mixture of 2 liters of water, 2 ml of detergent and 2 ml of formaldehyde was placed in each of them. Flasks were retrieved every 7 days and the trapped specimens were separated, using a fine mesh sieve, and stored in 70% ethanol until identification (Marchiori and Penteado-Dias, 2002).

To study the diversity in the samples, we used the index described by Southwood (1978), for both areas, in accordance with the formula: \(D = \frac{N_{max}}{N} \), where \(N \) is the total number of individuals and \(N_{max} \) is the number of individuals of the most abundant species.

3. Results and Discussion

In total, 97 specimens of the Figitidae family were collected in the forest and in the pastures. With 55.3% collected in the forest and 44.7% in the pastures (Table 1).

Eucoilinae is a subfamily that, although cosmopolitan, is little known and contains about 1000 species and 70 genera scattered around the world. They are primary endoparasitoids of coelobionts of dipterous larvae, including phytophagous, and are
found in large numbers around manures, decomposing carcasses and sites rich in dipterans in the Neotropical region (Díaz and Gallardo 1996).

The greater number of individuals were collected in the forest area that are important local sources of parasitoids that are natural enemies of the insects, many of them of economic importance (Marchiori et al. 1998).

The most frequent specie in the two study sites was *Zaeucoila* sp. with 53.6% in the forest and 46.4% in the pastures. *Zaeucoila* sp. probably behaves as a parasitoid of Agromyzidae (Diptera) (Díaz and Gallardo 1996).

The diversity index (D) for the parasitoid species was similar in pastures (D = 0.33) and in the forest (D = 0.38), possibly the proximity of the pastures to a natural vegetation fragment was characterized by a great diversity of host plants, and an ability to accommodate a wider range of natural enemies.

The diversity of Eucoilinae species was higher in the pastures. Probably due to the presence of hosts in the feces of the animals.

The estimated Shannon diversity in an area of forest was slightly higher than in a coffee plantation (2.08 and 1.96, respectively), in a study by Santos and Perez-Maluf (2012) on the diversity of parasitic Hymenoptera in areas of forest and vine coffee plantations in Vitória da Conquista, Bahia. In the present scenario of agriculture, the destruction and fragmentation of natural habitats caused by the expansion of cultivated areas constitutes the main causes of biodiversity change (Santos and Perez-Maluf 2012).

References

Díaz N. & F. Gallardo. 1996. Sobre cinipoideos del Brasil, parasitoides de dipteros estercoleros (Hymenoptera: Cynipoidea). Rev. Soc. Entomol. Argent. 55 (4): 127-129.

Díaz N. & F. Gallardo. 1997. Revision Sistematica de las especies de genero Zaeucoila (Hymenoptera: Cynipoidea: Eucoilidae). Rev. Nica. Entomol. 39: 31-40.

Marchiori C.H. & A.M. Penteado-Dias. 2003. Familias de parasitóides coletadas em área de mata e pastagens no município de Itumbiara, Estado de Goiás. Acta Scientiarum 24 (2): 897-899.

Palma-Santos, M.C.L. & R. Perez-Maluf. 2010. Comunidade de parasitóides associada à cultura do café em Piatã, Chapada Diamantina, BA. Rev Ceres. 57 (2): 194-197.

Scatolini D. & A.M. Penteado-Dias. 1997. A fauna de Braconidae (Hymenoptera) como
bioindicadora do grau de preservação de duas localidades do Estado do Paraná. Rev Bras Ecol, 1 (1): 84-87.

Scatolini D. & A.M. Penteado-Dias. 2003. Análise faunística de Braconidae (Hymenoptera) em três áreas de mata nativa do Estado do Paraná, Brasil. Rev Bras Entomol, 47 (2): 187-195.

Southwood T.R.E & P.A. Henderson. 2000. Ecological methods. Blackell Science Ltd Publishing. 575pp.

Taxonomic Group	Forest	Pasture	Total
Hymenoptera			
Figitidae			
Aganaspis pelleranoi	00	02	02
Agrostocynips sp.	00	01	01
Dettmeria sp.	00	03	03
Dieucolia sp.	01	01	02
Eleidetona nigra	05	10	15
Neralisia splendens	00	01	01
Odontoeucola sp.	09	01	10
Paragranaspis egeria	05	05	10
Triplastia atrocovalis	08	06	14
Triplastia covalis	04	00	04
Zauucola sp.	20	15	35
Total	52	45	97

Table 1. Parasitoids (Hymenoptera: Figitidae: Encolinae) collected in forested and pastures in the State of Goias, Brazil