Structure of Signal-regulatory Protein α
A LINK TO ANTIGEN RECEPTOR EVOLUTION

Received for publication, May 8, 2009, and in revised form, June 18, 2009. Published, JBC Papers in Press, July 23, 2009, DOI 10.1074/jbc.M109.017566

Deborah Hatherley1, Stephen C. Graham1,2, Karl Harlos, David I. Stuart3, and A. Neil Barclay1

From the 1Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom and the 2Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom and the 3Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom.

Signal-regulatory protein α (SIRPα) is a myeloid membrane receptor that interacts with the membrane protein CD47, a marker of self. We have solved the structure of the complete extracellular portion of SIRPα, comprising three immunoglobulin superfamily domains, by x-ray crystallography to 2.5 Å resolution. These data, together with previous data on the N-terminal domain and its ligand CD47 (possessing a single immunoglobulin superfamily domain), show that the CD47-SIRPα interaction will span a distance of around 14 nm between interacting cells, comparable with that of an immunological synapse. The N-terminal (V-set) domain mediates binding to CD47, and the two others are found to be constant (C1-set) domains. C1-set domains are restricted to proteins involved in vertebrate antigen recognition: T cell antigen receptors, immunoglobulins, major histocompatibility complex antigens, tapasin, and β2-microglobulin. The domains of SIRPα (domains 2 and 3) are structurally more similar to C1-set domains than any cell surface protein not involved in antigen recognition. This strengthens the suggestion from sequence analysis that SIRP is evolutionarily closely related to antigen recognition proteins.

Signal-regulatory protein α (SIRPα)4 is a membrane receptor present on myeloid cells and neurons that interacts with the widely distributed cell surface protein CD47 (reviewed in Refs. 1 and 2). Absence of CD47 leads to uptake of cells via macrophages, indicating that CD47 acts as a marker of self (3). SIRP1 and 2). Absence of CD47 leads to uptake of cells via macrophages, indicating that CD47 acts as a marker of self (3). SIRP

With phosphatases SHP-1 and SHP-2 (4). Binding of the N-terminal immunoglobulin superfamily (IgSF) V-set domain of SIRPα (SIRPα d1) to the single IgSF domain of CD47 is mediated by the loops of the SIRPα IgSF domain, analogous to the interactions mediated by antigen receptors, albeit involving only a single domain (5, 6). This type of binding distinguishes the CD47-SIRPα interaction from that of many interactions at the cell surface involving IgSF domains such as CD2-CD58, where the face of the IgSF domain is involved (7). SIRPα domains 2 and 3 (d2 and d3) show amino acid sequence similarity to IgSF C1-set domains (8). Since IgSF C1-set domains have only been confirmed in vertebrate antigen receptors and associated proteins (Ig light and heavy chains, T cell receptor chains, MHC class I and II and related proteins, β2-microglobulin, and very recently tapasin (9)) of the vertebrate adaptive immune system, it was suggested that SIRPα might have evolved from a precursor of the antigen receptors (8).

We describe here the crystal structure of the full three-domain extracellular region of SIRPα, revealing that the topology of the CD47–SIRPα interaction is compatible with productive engagement occurring when cells come together in synapse-like contacts. We show that the two membrane-proximal IgSF domains are particularly close in structure to C1-set IgSF domains. This, together with the presence of an IgSF V-set domain mediating ligand recognition, suggests that SIRPα is related to a key precursor in the evolution of vertebrate antigen receptors.

EXPERIMENTAL PROCEDURES

Recombinant extracellular SIRPα comprising the 30-residue N-terminal leader sequence and all three extracellular domains (residues 1–319 of the mature protein; accession number CAA71403) followed by the sequence TRHHHHHH was produced, deglycosylated, and crystallized as for SIRPα d1 (6). Crystallization experiments were performed in 96-well nanoliter-scale sitting drops (100 nl of 18.6 mg/ml SIRPα d1–d3 plus 100 nl of precipitant) equilibrated at either 5 or 20.5 °C against 95–μl reservoirs of precipitant and were monitored via an automated storage and imaging system (10). Diffraction quality crystals grew at 20.5 °C against a reservoir of 1.0 M trisodium citrate, 0.1 M sodium cacodylate, pH 6.5, within 2 weeks. Crystals were cryoprotected by a quick sweep through perfluoropolyether PFO-X125/03 (Lancaster Synthesis) before being flash-cryocooled by transfer directly into a cold stream of nitrogen gas (100 K). Diffraction data were recorded from a single frozen (100 K) crystal of SIRPα d1–d3 at European Synchro-
tron Radiation Facility beamline ID14-2 (λ = 0.933 Å) on an ADSC Quantum4R CCD detector. Diffraction data were indexed, integrated, and scaled using XDS (11) and SCALA (12) via the xia2 automated data processing pipeline5 (Table 1).

The structure of SIRPα d1–d3 was solved by molecular replacement using MOLREP (13), the structures of SIRPα d1 (Protein Data Bank code 2uv3), the light chain constant domain of monoclonal antibody YTS 105.18 (Protein Data Bank code 1ed3) being used as search models for domains 1, 2, and 3, respectively. Manual model building was performed in COOT (14), and the model was refined using a combination of phe

RESULTS

Crys tallization and Structure Determination

The extracellular region of SIRPα was expressed in a mutant Chinese hamster ovary cell line with defective glycosylation machinery that renders glycoproteins sensitive to endoglycosidase H treatment and more homogenous, thereby promoting crystallization (6, 25, 26). Crystals of deglycosylated SIRPα were obtained by sitting drop vapor diffusion, and diffraction data were recorded to 2.5 Å (Table 1). The structure was solved by molecular replacement using the N-terminal V-set domain of SIRPα (Protein Data Bank code 2uv3) and the C1-set domains of an Fab light chain (Protein Data Bank code 2ajr) and an MHC class I α3 domain (Protein Data Bank code 1ed3) as starting models for domains 1–3, respectively. The structure has been refined to 2.5 Å resolution with residuals R = 21.8% and Rfree = 27.1% (Table 1).

The Structure of the Extracellular Region of SIRPα

The extracellular region of SIRPα is shown in Fig. 1. The final refined structure comprises residues 1 (Glu) to 317 (Lys), the loops between residues 65–67 (d1) and 288–294 (d3) being excluded from the model due to the absence of well resolved electron density, presumably arising from disorder. An N-acetylgalactosamine adduct was observed attached to the side chain of residue Asn214. Residual electron density consistent with the presence of N-linked carbohydrate was also evident at residue Asn214, but the electron density was not sufficiently well resolved to allow modeling of the carbohydrate moiety. As in previous determinations of the SIRPα d1 structure, no electron density was observed for N-acetylgalactosamine at Asn290.
side chains of the other two potential glycosylation sites, Asn261 and Asn288, were not sufficiently well resolved to determine their glycosylation states. The N-terminal domain (d1) of the three-domain SIRPα structure can be superposed on the higher resolution (1.85 Å) structure of SIRPα in complex with CD47 with 1.1 Å r.m.s. deviation over 111 Ca atoms (residues 1–114, excluding residues 65–67 not observed in electron density). This allows the topology of the interaction to be determined (see below). In addition, there are now seven independent structures for SIRPα d1, which, when overlaid, illustrate the previously noted flexibility in the CC, C, DE, and FG loops (supplemental Fig. S1) (5, 6). Excluding these loops and the first residue, all SIRPα d1 structures overlay extremely well (0.4 Å r.m.s. deviation over 101 Ca atoms).

Domains 2 and 3 (d2 and d3) of SIRPα adopt typical IgSF folds, with eight β strands in two sheets linked by the canonical disulfide bond (Fig. 1). Both domains are more closely related in structure to each other than to SIRPα d1, superposing with 2.1 Å r.m.s. deviation over 77 Ca atoms versus 2.9 Å r.m.s. deviation over 77 and 69 Ca atoms when superposing d1 onto d2 and d3, respectively. Strands ABE and GFC of the two β sheets overlay extremely well (Fig. 2), although a single residue “insertion” and the presence of a proline residue causes a slight “bulge” immediately preceding the shorter strand A in d2. Strands C′ and D are markedly different in length between the two domains, d3 having an unusually long C′ strand and a short D strand. The conformations of the loops between β strands

FIGURE 1. Structure of the extracellular region of SIRPα. A, the extracellular region of SIRPα is shown in ribbon representation colored from blue (N terminus) to red (C terminus). Disulfide bonds are shown as yellow spheres, the observed N-acetylglucosamine moiety is shown as magenta sticks, and other potential sites of N-linked glycosylation are indicated with magenta spheres. β secondary structure is shown above the sequence of the three IgSF domains of SIRPα, arrows and cylinders representing β sheets and α helices, respectively. Residues not modeled due to poorly defined electron density are in lowercase type, the cysteine residues that form disulfide bond between β sheets are highlighted in yellow, the residue where N-linked glycosylation was observed in electron density is colored magenta, and other potential sites of N-linked glycosylation are outlined in magenta.

FIGURE 2. Superposition of SIRPα domains 2 and 3. The superposed structures of SIRPα d2 (residues 115–220; green) and d3 (residues 221–317; orange) are displayed as ribbons. The short C′ strand of d2 and short D strand of d3 are marked with green and orange asterisks, respectively.
AB, C’D, DE, and FG differ significantly between the two domains, and the electron density of the EF loop in d3 is too poorly resolved to be modeled. Interestingly, the conformations of the loops linking strands B and C to strand C are very well conserved between d2 and d3. Sequence and structural conservation of the BC loop is a hallmark of IgSF C1-set domains, and it appears that SIRPα d2 and d3 are indeed members of this subset of IgSF domains (discussed below).

Topology of the CD47-SIRPα Interaction at the Cell Surface

The new structure for the full extracellular region of SIRPα together with the previous structure of the complex between SIRPα d1 and CD47 allows the topology of the full CD47-SIRPα interaction to be visualized (Fig. 3). The overall dimensions of the modeled complex are 13.7 × 6.5 × 3.7 nm. Although the distance between the last residues of SIRPα and CD47 is only 12.0 nm, our structures do not include the links between the final residues of the extracellular domains and the predicted transmembrane helices, comprising 8 residues in CD47 and 23 residues in SIRPα. Further, the orientation of the complex is constrained by the presence in vivo of a disulfide bond between residues Cys15 and Cys245 of CD47, the latter being predicted to lie in a 9-residue extracellular loop between the fourth and fifth transmembrane helices of CD47 (27). It is therefore likely that the distance between cells engaged in a productive CD47-SIRPα interaction will be ~14 nm, similar to the cell-cell distances found in other interactions involved in immune recognition, such as MHC-T cell receptor, CD2-CD58, and CD28-CD80 (7, 28, 29).

Relationship of SIRPα d2 and d3 to Ig C1-set Domains

Overall Features — At the primary amino acid sequence level, IgSF domains are recognized by characteristic sequence pat-
terns, although the overall sequence identity is often low (30, 31). Some features are typical of most IgSF domains, such as the two Cys residues that form a disulfide bridge between the β sheets and a Trp in β strand C that forms part of the hydrophobic core of the domain. The IgSF domain comprises 7–9 β strands. V-set domains, which are particularly common in biology and include the domains responsible for antigen recognition, have nine β strands that are identified at the primary sequence level by additional sequence between the two Cys residues. These domains often have other characteristic sequence motifs, such as DX(2/3/4)X in strand F. Domain 1 of the SIRPs is an IgSF V-set domain and contains this sequence motif (5, 6). C1-set domains are discussed below, whereas C2-set domains often share the sequence patterns of V-set domains but are considerably smaller, lacking strands C' and D. Further subdivisions of the IgSF, such as the I-set family of domains, have been made on the basis of structural data (32).

TABLE 2

SCOP families	SIRPα d2 (115–220)	SIRPα d3 (221–317)	MHC class II β (d1s9ve1)	Ig LC-κ d2 (1yjd; L:109–221)	CD80 d2 (d1dr9a2)	Lutheran d2 (2pet; a:115–231)	Tapasin d2 (38sw; b:270–381)	VCAM-1 d2 (dvccaa1)	SIRPα d1 (2uv3; A:1–114)
V-set (b.1.1)	4	3	0	0	13	33	0	1,128	
C1-set (b.1.2)	1,988	1,015	1,911	1,515	486	127	1,031	514	0
C2-set (b.1.3)	10	22	8	1	6	1	3	10	0
I-set (b.1.4)	2	4	0	1	1	0	0	1	44

FIGURE 5

A Similarity of SIRPα domains to IgSF V- and C1-set domains. SSM superposition Ca r.m.s. deviations for query domain structures versus the IgSF SCOP families used to generate Table 2 are shown as frequency histograms in A for the V-set (b.1.1.1) and in B for the C1-set (b.1.1.2). Frequency intervals of 0.2 Å r.m.s. deviation were used.

B Structural Homology—The structural similarity of SIRPα 2 and 3 to other IgSF domains was investigated using the protein structure comparison service SSM at the European Bioinformatics Institute (19) to compare the structures for SIRPα d2 and d3 with panels of V-, C1-, C2-, and I-set IgSF domains, as classified by the SCOP data base (20). Searches performed using SIRPα d2 and d3 gave large numbers of hits with the C1-set domains but very few with C2-, V-, or I-set...
domains (Table 2 and Fig. 5), comparable with searches performed using \textit{bona fide} C1-set domains. This provides strong evidence that SIRPα d2 and d3 are more similar to C1-set domains than other subsets of IgSF domains. It has been suggested that CD80 domain 2 and lutheran domain 2 also possess C1-set domains (34, 35). However, these structures do not possess the conserved sequence patterns discussed above and do not share structural similarity with large numbers of C1-set IgSF domains (Table 2). By comparison, an SSM search of the SCOP-classified IgSF domain panels using SIRPα d1 identified 1128 V-set IgSF domains and 44 I-set domains but no C1- or C2-set domains, consistent with the classification of SIRPα d1 as a V-set IgSF domain and illustrating the specific features of the different subsets. The recent x-ray crystallography structure of tapasin confirmed that it had a C1-set domain (9). This domain of tapasin gave scores comparable with that of SIRPα d2 or 3 or \textit{bona fide} C1-set (Table 2). Tapasin and MHC antigens may be closely related in evolution (9, 36).

Structure-based clustering analysis (Fig. 6) demonstrates very clearly that SIRPα d2 and d3 are C1-set IgSF domains, whereas domains 1 from SIRPβ, β2, and γ and 277 representative IgSF domains is shown. Each dot represents a single IgSF domain, colored according to its structural classification within the immunoglobulin superfamily (red, V-set; purple, C1-set; blue, C2-set; cyan, I-set; yellow, SIRP domains 1; green, SIRPα domains 2 and 3; black, CD80 d2, VCAM-1 d2, MHC class II β chain d2, Ig κ d2, lutheran d2, and tapasin d2). The distance between domains is proportional to their structural similarity (see “Experimental Procedures”). Superposed C1-set and V-set structures are shown as Cα traces, color-ramped from blue (start of domain) to red (end of domain).

FIGURE 6. Similarity of SIRP domains to other members of the immunoglobulin superfamily. Cluster analysis of the structural similarities shared by SIRPα domains 1–3; domains 1 of SIRPβ, SIRPβ2, and SIRPγ; and 277 representative IgSF domains is shown. Each dot represents a single IgSF domain, colored according to its structural classification within the immunoglobulin superfamily (red, V-set; purple, C1-set; blue, C2-set; cyan, I-set; yellow, SIRP domains 1; green, SIRPα domains 2 and 3; black, CD80 d2, VCAM-1 d2, MHC class II β chain d2, Ig κ d2, lutheran d2, and tapasin d2). The distance between domains is proportional to their structural similarity (see “Experimental Procedures”). Superposed C1-set and V-set structures are shown as Cα traces, color-ramped from blue (start of domain) to red (end of domain).

The BC loop among C1-set domains (see above). Given the high degree of amino acid sequence conservation that SIRPβ and SIRPγ share with SIRPα (about 90% identity) the d2 and d3 of these proteins will almost certainly also be C1-set IgSF domains.

DISCUSSION

The Dimensions of the CD47-SIRPα Interaction Are Compatible with the Immunological Synapse—The structure of SIRPα indicated that the CD47-SIRPα interaction is likely to span ~14 nm. This is the distance spanned by well characterized components of the immunological synapse. Since SIRPα is present on macrophages and neurons and its ligand CD47 is present on most cell types, it seems likely that productive engagement of SIRPα by CD47 will occur only at regions of close contact, analogous to the immunological synapse, as shown for phagocytosis of red blood cells (37). It is likely that these CD47-SIRPα-containing synapse-like interactions will occur between many cell types, as also suggested previously in the case of the CD200-CD200R interaction (38).

Implications for the Evolution of Antigen Receptors—During vertebrate evolution the adaptive immune system developed into that of mammals today, one that can generate a diverse set of T cell receptors and immunoglobulins to recognize a vast number of different antigens through rearrangement of gene segments and a recognition system involving MHC antigens. Most of these components are present in jawed but not in jawless fish, and there is considerable interest in how these proteins evolved. Characteristic IgSF C1-set domains are present exclu-
sively in antigen receptors and certain proteins closely associated with antigen recognition, such as MHC antigens, tapasin, and β2-microglobulin. Our structure shows that domains 2 and 3 of SIRPα are C1-set domains, strengthening suggestions based on sequence analysis that the SIRPs are closely related to the precursors of antigen receptors (8). C1-set domains are always found in association with other domains, with cis interactions being present between heavy- and light-chain constant domains in antibodies, β2-microglobulin and the C1-set domain in MHC Class I and related proteins, the two domains in MHC class II, and the adjacent chains in the T cell receptors. Within T cell receptor and Ig, C1-set domains are C-terminal to the V-set domain and present as linear arrays in Ig H chains. The SIRPs maintain this linear array and the V-set-C1-set topology.

No SIRP genes have been identified in organisms predating the adaptive immune system (8, 39); thus, one cannot distinguish between SIRPs evolving directly from a precursor of the primitive antigen receptor or from an antigen receptor itself. However, it seems reasonable that the primitive antigen receptor was expressed on myeloid cells and contained both V- and C1-set IgSF domains.

Acknowledgments—We are grateful to the staff of beamline ID14-2 at the European Synchrotron Radiation Facility for assistance with data collection and to T. S. Walter for assistance with crystallization.

REFERENCES

1. Barclay, A. N., and Brown, M. H. (2006) Nat. Rev. Immunol. 6, 457–464
2. Brown, E. J., and Frazier, W. A. (2001) Trends Cell Biol. 11, 130–135
3. Oldenborg, P. A., Zheleznyak, A., Fang, Y. F., Lagenaur, C. F., Gresham, H. D., and Lindberg, F. P. (2000) Science 288, 2051–2054
4. Fujioka, Y., Matozaki, T., Noguchi, T., Iwamatsu, A., Yamao, T., Takahashi, N., Tsuda, M., Takada, T., and Kasuga, M. (1996) Mol. Cell. Biol. 16, 6887–6899
5. Hatherley, D., Graham, S. C., Turner, J., Harlos, K., Stuart, D. I., and Barclay, A. N. (2008) Mol. Cell 31, 266–277
6. Hatherley, D., Harlos, K., Dunlop, D. C., Stuart, D. I., and Barclay, A. N. (2007) J. Biol. Chem. 282, 14567–14575
7. Wang, J. H., Smolyar, A., Tan, K., Liu, J. H., Kim, M., Sun, Z. Y., Wagner, G., and Reinherz, E. L. (1999) Cell 97, 791–803
8. van den Berg, T. K., Yoder, J. A., and Litman, G. W. (2004) Trends Immunol. 25, 11–16
9. Dong, G., Wearsch, P. A., Peaper, D. R., Cresswell, P., and Reinisch, K. M. (2009) Immunity 30, 21–32
10. Walter, T. S., Diprose, J. M., Mayo, C. J., Siebold, C., Pickford, M. G., Carter, L., Sutton, G. C., Berrow, N. S., Brown, J., Berry, I. M., Stewart-Jones, G. B., Grimes, J. M., Stammers, D. K., Esnouf, R. M., Jones, E. Y., Owens, R. J., Stuart, D. I., and Harlos, K. (2005) Acta Crystallogr. D Biol. Crystallogr. 61, 651–657
11. Kabsch, W. (1993) J. Appl. Crystallogr. 26, 795–800
12. Evans, P. R. (2005) Acta Crystallogr. D Biol. Crystallogr. 61, 72–82
13. Vagin, A., and Teplyakov, A. (1997) J. Appl. Crystallogr. 30, 1022–1025
14. Emsley, P., and Cowtan, K. (2004) Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132
15. Afonine, P. V., Grosse-Kunstleve, R. W., and Adams, P. D. (2005) CCP4 Newsletter 42, contribution 8, Daresbury Laboratory, Warrington, UK
16. Blanc, E., Roversi, P., Vonrhein, C., Flensburg, C., Lea, S. M., and Bricogne, G. (2004) Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221
17. Tronrud, D. (1996) J. Appl. Crystallogr. 29, 100–104
18. Lovell, S. C., Davis, I. W., Arndell, W. B., 3rd, de Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S., and Richardson, D. C. (2003) Proteins 50, 437–450
19. Krissinel, E., and Henrick, K. (2004) Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268
20. Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995) J. Mol. Biol. 247, 536–540
21. Chandonia, J. M., Hon, G., Walker, N. S., Lo Conte, L., Koehl, P., Levitt, M., and Brenner, S. E. (2004) Nucleic Acids Res. 32, D189–D192
22. Fuchterman, T., and Reingold, E. (1991) Software Practice Experience 21, 1129–1146
23. Fricker, T., and Lupas, A. (2004) Bioinformatics 20, 3702–3704
24. Theobald, D. L., and Wuttke, D. S. (2006) Bioinformatics 22, 2171–2172
25. Stanley, P. (1989) Mol. Cell. Biol. 9, 377–383
26. Davis, S. J., Puklavec, M. J., Ashford, D. A., Harlos, K., Jones, E. Y., Stuart, D. I., and Williams, A. F. (1993) Protein Eng. 6, 229–232
27. Rebers, R. A., Vaz, L. E., Green, J. M., and Brown, E. J. (2001) J. Biol. Chem. 276, 34607–34616
28. Garboczi, D. N., Ghosh, P., Utz, U., Fan, Q. R., Biddison, W. E., and Wiley, D. C. (1996) Nature 384, 134–141
29. Evans, E. J., Esnouf, R. M., Manso-Sancho, R., Gilbert, R. J., James, I. R., Yu, C., Fennelly, J. A., Vowles, C., Hanke, T., Walse, B., Hünig, T., Serensen, P., Stuart, D. I., and Davis, S. J. (2005) Nat. Immunol. 6, 271–279
30. Barclay, A. N. (2003) Semin. Immunol. 15, 215–223
31. Williams, A. F., and Barclay, A. N. (1988) Annu. Rev. Immunol. 6, 381–405
32. Harpaz, Y., and Chothia, C. (1994) J. Mol. Biol. 238, 528–539
33. Smith, D. K., and Xue, H. (1997) J. Mol. Biol. 274, 530–545
34. Mankelow, T. J., Burton, N., Stefandottir, F. O., Spring, F. A., Parsons, S. F., Pedersen, J. S., Oliveira, C. L., Lammie, D., Wess, T., Mohandas, N., Chasis, J. A., Brady, R. L., and Anstee, D. J. (2007) Blood 110, 3398–3406
35. Ikemizu, S., Gilbert, R. J., Fennelly, J. A., Collins, A. V., Harlos, K., Jones, E. Y., Stuart, D. I., and Davis, S. J. (2000) Immunity 12, 51–60
36. Mayer, W. E., and Klein, J. (2001) Immunogenetics 53, 719–723
37. Tsai, R. K., and Discher, D. E. (2008) J. Cell Biol. 180, 989–1003
38. Wright, G. J., Puklavec, M. J., Willis, A. C., Hoek, R. M., Sedgwick, J. D., Brown, M. H., and Barclay, A. N. (2000) Immunity 13, 233–242
39. van Beek, E. M., Cochrane, F., Barclay, A. N., and van den Berg, T. K. (2005) J. Immunol. 175, 7781–7787
40. Diederichs, K., and Karplus, P. A. (1997) Nat. Struct. Biol. 4, 269–275