Density Functional Theory Is Not Straying from the Path toward the Exact Functional

Kasper P. Kepp*

Technical University of Denmark, DTU Chemistry, Building 206, 2800 Kgs. Lyngby, DK – Denmark.
Phone: +045 45 25 24 09. * Corresponding e-mail: kpj@kemi.dtu.dk. Submitted Feb 2, 2017

Abstract

Recently (Science, 355, 6320, 2017, 49–52) it was argued that density functionals stray from the path towards exactness due to errors in densities (ρ) of 14 atoms and ions computed with several recent functionals. However, this conclusion rests on very compact ρ of highly charged $1s^2$ and $1s^22s^2$ systems, the divergence is due to one particular group’s recently developed functionals, whereas other recent functionals perform well, and errors in ρ were not compared to actual energies $E[\rho]$ of the same distinct, compact systems, but to general errors for diverse systems. As argued here, a true path can only be defined for $E[\rho]$ and ρ for the same systems: By computing errors in $E[\rho]$, it is shown that different functionals show remarkably linear error relationships between ρ and $E[\rho]$ on well-defined but different paths towards exactness, and the ranking in Science, 355, 6320, 2017, 49–52 breaks down. For example, M06-2X, said to perform poorly, performs very well on the E,ρ paths defined here, and local (non-GGA) functionals rapidly increase errors in $E[\rho]$ due to the failure to describe dynamic correlation of compact systems without the gradient. Finally, a measure of "exactness" is given by the product of errors in $E[\rho]$ and ρ; these relationships may be more relevant focus points than a time line if one wants to estimate exactness and develop new exact functionals.

In their recent paper(1), Medvedev et al. point out that electron densities ρ and energies $E[\rho]$ computed with density functional theory (DFT) not always increase in accuracy together. Burke et al.(2) stated the problem in 1998 as "functionals which yield highly accurate energies often produce potentials which differ markedly from the exact ones." Medvedev et al. put errors in ρ on a time scale and show a trend of improvement impaired by nine specific recent functionals mostly using a high-parameterization philosophy with reported high accuracy of $E[\rho]$ for diverse systems. The inverse relationship in Medvedev et al. may suggest an overfitting problem on the path towards universality, where both ρ and $E[\rho]$ should become increasingly accurate; off this track, accurate energies with inaccurate densities would seem successful only until applied outside the parameterization range. Some comments seem warranted:

1) Of the 9 specific functionals that deviate from the "path", almost all are from 2011-2012 and all from one specific group; other recent functionals perform well in the trend, and the only two functionals from 2014/2015 are on-path. With two functionals from 2015, none from 2014, and three from 2013, the recent history seems under-sampled; various post-2011 functionals by other groups that would define the trend of have been not included(3)(4)(5)(6)(7). Thus, whereas some recent functionals from one research group have sacrificed accuracy in $1s^2$ and $1s^22s^2$ atomic ion densities for accuracy in diverse molecular energies, arguing that DFT recently deviates from the path seems too generalizing.
2) A concern is whether the functionals are actually on a "path" as no direct comparison of $E[\rho]$ and ρ was done; the errors in E were from general benchmarks of diverse molecules. There is only a path if the errors of both $E[\rho]$ and ρ decrease together for the same systems; and the ρ of the studied systems are distinctly different from those of typical systems (vide infra).

3) The errors in ρ grow roughly with \sqrt{n} (n = the number of electrons) (see e.g. File S3 of Medvedev et al.). If one divides each error with \sqrt{n}, the standard deviation in error for different n-electron systems falls from 0.68 to 0.14, and the scaled errors are not significantly different between systems, as expected for n random variables with an independent, constant error that relates to the failure of producing the electron pair correlation.

4) HF recovers most of the correlation energy of the $1s^2$ systems (B^{3+}, C^{4+}, N^{5+}, O^{6+}, F^{7+}, and Ne^{8+}); its RMSD for ρ is only 0.049 for these systems (File S3 of Medvedev et al.). Accordingly, functionals with HF exchange perform more accurately for the $1s^2$ systems. 6 of the 14 systems studied (43%) are of this type. The top-performers are therefore hybrid functionals that fit the benchmark systems. However, the high accuracy of the HF picture is unique for systems with $2N^2$ valence electrons (the octet rule), where N is the period number (e.g. Ne requires much more HF exchange, as do the $1s^2$ systems). If one leaves out the six 2-electron systems, HF performs poorly (average RMSD of $\rho = 1.81$ without 2-electron systems, 0.92 with).

5) Similarly, Medvedev et al. report in a figure the maximum combined error of ρ, its gradient, and Laplacian (one can discuss the relevance of the latter); including the six $1s^2$ systems would reveal the high HF demands of the $1s^2$ configurations, and for the major part of periodic table, smaller HF percentages are required(9)(10), so the appraisal of 25% HF exchange is specific to $1s^22s^2$ systems where the gap between virtual and occupied orbitals justifies 25%. Thus, a figure with all systems included would have shown that the HF percentage required is system-dependent and there is no magic 25%.

6) 13 of the 14 systems are $1s^2$ or $1s^22s^2$ systems and 10 of the 14 studied ions have a charge between +3 and +8, representing extremely compact ρ with large dynamic correlation, viz. the large improvement by MP4 over MP2 (File S1 of Medvedev et al.). For real molecules, localized charges of +3 are not seen because charge delocalizes onto neighbor atoms. Thus, while the errors in ρ are notable, it is unclear if the deviation from the exact ρ near the nucleus of a very compact density is chemically relevant.

To address 1–6 in a combined way, because energy is a state function, the quality of $E[\rho]$ for a given functional can be probed by comparing to ionization potentials (IP) from the NIST data base, e.g. $E[\rho]$ of B^{8+} and B^+ can be probed by the 2nd and 3rd experimental IP of boron (dication energies cancel out);

$$E(B^{3+}) - E(B^+) = IP3(B) + IP2(B) = 37.931 \text{ eV} + 25.155 \text{ eV} = 63.085 \text{ eV} \quad \text{(1)}$$

These energies correspond to removing both 2s electrons from the $1s^22s^2$ configurations, with a trend of increasing charge and more compact ρ. Comparing to $E[\rho]$ directly reveals 1) whether the reported errors in ρ have chemical relevance on the energy scale, 2) whether there is a relationship between errors $E[\rho]$ and ρ implying a "path" towards universality, and accordingly, a deviation from such path, as claimed.

Computations where carried out using the software TurboMole 7.0(11) for $E(B^{3+}) - E(B^+) = IP3(B) + IP2(B) = 63.085 \text{ eV}$, $E(C^{4+}) - E(C^{2+}) = IP4(C) + IP3(C) = 112.381 \text{ eV}$, $E(N^{5+}) - E(N^{3+}) = IP5(N) + IP4(N) = 175.364 \text{ eV}$, $E(O^{6+}) - E(O^{4+}) = IP6(O) + IP5(O) = 252.018 \text{ eV}$, $E(F^{7+}) - E(F^{5+}) = IP7(F) + IP6(F) = 342.350 \text{ eV}$, and $E(Ne^{8+}) - E(Ne^{6+}) = IP8(Ne) + IP7(No) = 446.368 \text{ eV}$. This benchmark of covers 12 of the 14 systems studied by Medvedev et al.
Figure 1. Paths of Accuracy: A) Non-relativistic and B) relativistic errors in computed ionic energy differences vs. experimental, in eV (equation 1). C) Errors in densities of larger ion vs. errors in computed energies.

To ensure stringent comparison, the same aug-cc-pwCV5Z basis set was used, and densities and energies were converged to 10^{-7} and 10^{-8} a.u. using ultra-fine grids (m5). To illustrate the general features of such paths, PBE0, TPSSh, and TPSS were chosen as non-empirical functionals, B3LYP as a commonly used functional and BHLYP as its well-performing (in Medvedev et al.) half-and-half HF version, BP86 as a classical GGA, M06 and SVWN as local functionals, M06-2X as a low-ranked (in Medvedev et al.) empirical functional of the Minnesota type (12), in addition to HF, MP2, and CCSD. CCSD(T) was also calculated, as CCSD is full-CI and thus exact non-relativistic for 1s2 systems, but may miss some core-valence correlation of the 4- and 10-electron systems.

The results in Figure 1A (non-relativistic) and Figure 1B (relativistic corrected) show that relativistic effects grow with the charge, as 1s-electrons are accelerated (numerical values are shown in Appendix Table 1 and Table 2). Relativistic stabilization and contraction of the s-shells favor the 1s22s2 systems over 1s2 systems. Due to zero spin and angular momentum, scalar relativistic corrections recover this effect effectively (Figure 1B) and are quite large for the highly charged ions, >0.6 eV for the neon systems (the neon-systems have the largest errors in Medvedev et al., as probably even ρ is affected by relativistic s-shell contraction).
Relativistic corrected CCSD(T) and CCSD energies are within 0.03 eV (~3 kJ/mol) of experiment, because the strong dynamic correlation is well described. Accordingly, the exact density functional methodology would provide exact energies to within 3 kJ/mol if applied with this basis set and relativistic correction. Thus, we can compare the density functionals now also in the energy regime, $E[\rho]$.

HF energies show errors exceeding 3 eV for neon systems (Figure 1B). Local functionals M06 and SVWN that performed poorly for ρ produce energy errors almost as large as HF. Most other functionals perform similarly although B3LYP and M06-2X perform distinctly better. Also, BP86 performs similar to functionals such as TPSSh and TPSS that scored highly in Medvedev et al. due to exact constraints that improve their core density.$^{(13)}$

In Figure 1B, only the first bar represents a realistic ρ. Net atomic charges rarely exceed 1 even for highly charged groups such as phosphates and high-valent metal sites. For the chemically relevant boron densities all DFT methods perform better than MP2, which only becomes more accurate as the dynamical correlation increases in the extremely compact density limit of highly charged ions. The error of B3LYP is 0.03 eV, and the worst performing (PBE0, BP86) is 0.27–0.28 eV. These errors are typical of chemically relevant energies; thus, the extremely compact regime mostly studied by Medvedev et al. is probably not chemically relevant.

Instead, in order to compare same-system energies and densities as required by a well-defined path towards exactness, RMSD values of ρ for the largest 1s22s2 ions from Medvedev et al. (File S4) are compared to error in energy of removing the two 2s2 electrons. Figure 1C reveals strong linear relationships: Since all the energies are for the same iso-electronic conversions (1s22s2 systems where the 2s electrons are removed) they reflect monotonous but distinct trends in sensitivity to increased charge, which increases kinetic energy and dynamic correlation as ρ becomes more compact. "Exactness" is represented by CCSD(T) in the right lower corner.

Most DFT methods and MP2 follow the same "path" of accuracy with errors in energy growing with errors in ρ (coefficients of -0.77 to -0.86). The local functional SVWN and HF show less linear behavior. M06-2X errors in $E[\rho]$ increase slowly with ρ, whereas for local functionals and HF they energies deteriorate much more rapidly as ρ becomes denser because they do not handle dynamic correlation well in this limit due to not having the gradient included. From this comparison of the density and energy regime, M06-2X is the most "exact" functional for these systems, and much more exact than MP2, PBE0, or TPSSh. In Medvedev et al. M06-2X is ranked low mainly because of gradients and Laplacian of ρ and thus, for this reason claimed to be off path, despite $E[\rho]$ and ρ being excellently on path (Figure 1C).

It is necessary to quantify exactness on a path of both $E[\rho]$ and ρ, since wrong densities can give right energies, and right densities can give wrong energies. To define a measure of "exactness" one can therefore use the area of the rectangle defined by a given point of Figure 1C. For the most challenging dense cases, these measures of exactness are: 0 (CCSD/CCSD(T)), 0.5 (M06-2X), 1.2 (B3LYP), 1.7 (BLYP), 1.9 (MP2), 2.0 (PBE0, TPSS), 2.1 (BP86), 2.3 (TPSSh), 4.9 (SVWN), 5.3 (M06), and 7.4 (HF), a ranking very different from that of Medvedev et al.

In conclusion, the stated poor performance of some recent functionals for very compact ρ does not imply that they are less exact, partly because E and ρ were not compared for same systems, and partly because hybrid functionals are favored by the choice of benchmark systems. Instead, paths are defined here of both E and ρ. All functionals show linear E, ρ paths, and different functional types show distinct error relationships between ρ and $E[\rho]$. These relationships are on actual, but different paths likely to be of interest if one wants to produce exact functionals; a measure of exactness is suggested for this purpose.
References

1. M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, K. A. Lyssenko, Density functional theory is straying from the path toward the exact functional. *Science* **355**, 49–52 (2017).

2. F. G. Cruz, K.-C. Lam, K. Burke, Exchange–Correlation Energy Density from Virial Theorem. *J. Phys. Chem. A.* **102**, 4911–4917 (1998).

3. P. Haas, F. Tran, P. Blaha, K. Schwarz, Construction of an optimal GGA functional for molecules and solids. *Phys. Rev. B.* **83**, 205117 (2011).

4. M. Seth, T. Ziegler, Range-Separated Exchange Functionals with Slater-Type Functions. *J. Chem. Theory Comput.* **8**, 901–907 (2012).

5. M. Swart, A new family of hybrid density functionals. *Chem. Phys. Lett.* **580**, 166–171 (2013).

6. A simplified Tamm-Dancoff density functional approach for the electronic excitation spectra of very large molecules. *J. Chem. Phys.* **138**, 244104 (2013).

7. P. de Silva, C. Corminboeuf, Communication: A new class of non-empirical explicit density functionals on the third rung of Jacob’s ladder. *J. Chem. Phys.* **143**, 111105 (2015).

8. R. Peverati, D. G. Truhlar, Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. *Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci.* **372**, 20120476 (2014).

9. K. P. Jensen, B. O. Roos, U. Ryde, Performance of density functionals for first row transition metal systems. *J. Chem. Phys.* **126**, 14103 (2007).

10. K. P. Jensen, Metal-Ligand Bonds of Second and Third Row d-Block Metals Characterized by Density Functional Theory, 1–5 (2009).

11. R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Electronic structure calculations on workstation computers: The program system turbomole. *Chem. Phys. Lett.* **162**, 165–169 (1989).

12. Y. Zhao, D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. *Theor. Chem. Acc.* **120**, 215–241 (2008).

13. J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Climbing the Density Functional Ladder: Nonempirical Meta Generalized Gradient Approximation Designed for Molecules and Solids. *Phys. Rev. Lett.* **91**, 146401 (2003).
Appendix Table 1. Errors in computed energies according to Equation (1), in eV.

NON-RELATIVISTIC

	HF	MP2	CCSD	CCSDT	B3LYP	M06	M062X
B³⁺−B⁺	-1.8239	-0.6133	-0.0394	-0.0188	-0.0468	-0.9132	-0.1485
C⁴⁺−C²⁺	-2.2511	-0.7987	-0.0693	-0.0467	-0.1845	-1.2994	-0.2061
N⁵⁺−N³⁺	-2.6790	-1.0079	-0.1238	-0.1001	-0.3804	-1.7299	-0.3070
O⁶⁺−O⁴⁺	-3.1389	-1.2635	-0.2248	-0.2001	-0.6430	-2.2285	-0.4588
F⁷⁺−F⁵⁺	-3.6443	-1.5735	-0.3805	-0.3551	-0.9772	-2.7915	-0.6818
Ne⁴⁺−Ne⁶⁺	-4.2147	-1.9548	-0.6074	-0.5816	-1.3943	-3.4430	-0.9842

	SVWN	PBE0	TPSS	TPSSh	BHLYP	BP86
B³⁺−B⁺	-0.6332	-0.2928	-0.2603	-0.2920	-0.1675	-0.2981
C⁴⁺−C²⁺	-1.0722	-0.5017	-0.4598	-0.5042	-0.3293	-0.5527
N⁵⁺−N³⁺	-1.5678	-0.7407	-0.6889	-0.7461	-0.5499	-0.8208
O⁶⁺−O⁴⁺	-2.1367	-1.0275	-0.9666	-1.0367	-0.8374	-1.1210
F⁷⁺−F⁵⁺	-2.7781	-1.3722	-1.3008	-1.3839	-1.1957	-1.4674
Ne⁴⁺−Ne⁶⁺	-3.5055	-1.7898	-1.7080	-1.8041	-1.6363	-1.8766

RELATIVISTIC

	HF	MP2	CCSD	CCSDT	B3LYP	M06	M062X
B³⁺−B⁺	-1.8069	-0.5963	-0.0224	-0.0018	-0.0294	-0.8984	-0.1327
C⁴⁺−C²⁺	-2.2035	-0.7511	-0.0217	0.0008	-0.1364	-1.2580	-0.1597
N⁵⁺−N³⁺	-2.5723	-0.9011	-0.0171	0.0067	-0.2726	-1.6175	-0.2027
O⁶⁺−O⁴⁺	-2.9283	-1.0529	-0.0142	0.0104	-0.4311	-2.0317	-0.2527
F⁷⁺−F⁵⁺	-3.2704	-1.1996	-0.0066	0.0188	-0.6014	-2.4433	-0.3097
Ne⁴⁺−Ne⁶⁺	-3.5996	-1.3396	0.0077	0.0335	-0.7770	-2.8699	-0.3618

	SVWN	PBE0	TPSS	TPSSh	BHLYP	BP86
B³⁺−B⁺	-0.6164	-0.2755	-0.2431	-0.2748	-0.1502	-0.2808
C⁴⁺−C²⁺	-1.0253	-0.4536	-0.4117	-0.4562	-0.2813	-0.5047
N⁵⁺−N³⁺	-1.4625	-0.6332	-0.5813	-0.6385	-0.4423	-0.7132
O⁶⁺−O⁴⁺	-1.9290	-0.8160	-0.7548	-0.8250	-0.6258	-0.9092
F⁷⁺−F⁵⁺	-2.4089	-0.9968	-0.9243	-1.0077	-0.8204	-1.0915
Ne⁴⁺−Ne⁶⁺	-2.8976	-1.1730	-1.0882	-1.1850	-1.0196	-1.2587

6
Appendix Table 2. Electronic energies of computed systems (in a.u.) and errors vs. experiment (in eV).

	EXP/eV	HF	scalar rel	TOTAL	MP2	scalar rel	TOTAL					
B⁺⁺	-21.9862297	-0.0062292	-21.9924589	-22.0276130	-0.0062292	-22.0338422						
B⁺	-24.2375477	-0.0068538	-24.2444015	-24.3234197	-0.0068538	-24.3302735						
B⁺⁺-B⁺	61.2614823	61.2784789	62.4720823	62.4890789								
ERROR/eV	-1.8239	-1.8069	-0.6133	-0.5963								
C⁺⁺	-32.3612111	-0.0135718	-32.3747829	-32.4032075	-0.0135718	-32.4167793						
C⁺	-36.4084214	-0.0153189	-36.4237403	-36.5037928	-0.0153189	-36.5191117						
C⁺⁺-C⁺	110.1302023	110.1777427	111.5826094	111.6301498								
ERROR/eV	-2.2511	-2.2035	-0.7987	-0.7511								
N⁺⁺	-44.7361414	-0.0259800	-44.7621214	-44.7785775	-0.0259800	-44.8045575						
N⁺	-51.0821835	-0.0299038	-51.1120873	-51.1860333	-0.0299038	-51.2159371						
N⁺⁺-N⁺	172.6846000	172.7913737	174.3557510	174.4625246								
ERROR/eV	-2.6790	-2.5723	-1.0079	-0.9011								
O⁺⁺	-59.1114319	-0.04542472	-59.1568566	-59.1541848	-0.04542472	-59.1996095						
O⁺	-68.2575633	-0.0531622	-68.3107255	-68.3692364	-0.0531622	-68.4223986						
O⁺⁺-O⁺	248.8789147	249.0894622	250.7543244	250.9648720								
ERROR/eV	-3.1389	-2.9283	-1.2635	-1.0529								
F⁺⁺	-75.4866735	-0.0743298	-75.5610033	-75.5296969	-0.0743298	-75.6040266						
F⁺	-87.9938732	-0.0880702	-88.0219434	-88.0529999	-0.0880702	-88.1410701						
F⁺⁺-F⁺	338.7055536	339.0794500	340.7764329	341.1503293								
ERROR/eV	-3.6443	-3.2704	-1.5735	-1.1996								
Ne⁺⁺	-93.8619521	-0.1152036	-93.9771557	-93.9051977	-0.1152036	-94.0204013						
Ne⁺	-110.1107825	-0.1378085	-110.2485910	-110.2370799	-0.1378085	-110.3748884						
Ne⁺⁺-Ne⁺⁺	442.1531957	442.7683087	444.4131489	445.0282618								
ERROR/eV	-4.2147	-3.5996	-1.9548	-1.3396								
	EXP/eV	CCSD	scalar rel	TOTAL	CCSD(T)	scalar rel	TOTAL					
--------	---------	------------	------------	-----------	-----------	------------	-----------					
B3+ - B+	-22.0299257	-0.0062292	-22.0361549	-22.0299257	-0.0062292	-22.0361549						
B+	-24.3468250	-0.0068538	-24.3536788	-24.3475804	-0.0068538	-24.3544343						
\text{ERROR/eV}	-0.0394	-0.0224	-0.0188	-0.0018	-0.0394	-0.0224	-0.0188	-0.0018				
C3+	-32.4051589	-0.0135718	-32.4187307	-32.4051589	-0.0135718	-32.4187307						
C+	-36.5325497	-0.0153189	-36.5478686	-36.5333773	-0.0153189	-36.5486962						
\text{ERROR/eV}	-0.0693	-0.0217	-0.0467	0.0008	-0.0693	-0.0217	-0.0467	0.0008				
N3+	-44.7802664	-0.0259800	-44.8062464	-44.7802664	-0.0259800	-44.8062464						
N+	-51.2202101	-0.0299038	-51.2501139	-51.2210841	-0.0299038	-51.2509879						
\text{ERROR/eV}	-0.1238	-0.0171	-0.1001	0.0067	-0.1238	-0.0171	-0.1001	0.0067				
O3+	-59.1556758	-0.04542472	-59.2011006	-59.1556758	-0.04542472	-59.2011006						
O+	-68.4088985	-0.0531622	-68.4620607	-68.4098051	-0.0531622	-68.4629673						
\text{ERROR/eV}	-0.2248	-0.0142	-0.2001	0.0104	-0.2248	-0.0142	-0.2001	0.0104				
F3+	-75.5310297	-0.0743298	-75.6053594	-75.5310297	-0.0743298	-75.6053594						
F+	-88.0981751	-0.0880702	-88.1862453	-88.0991059	-0.0880702	-88.1871761						
\text{ERROR/eV}	-0.3805	-0.0066	-0.3551	0.0188	-0.3805	-0.0066	-0.3551	0.0188				
Ne3+	-93.9064023	-0.1152036	-94.0216059	-93.9064023	-0.1152036	-94.0216059						
Ne+	-110.2877982	-0.1378085	-110.4256067	-110.2887480	-0.1378085	-110.4265566						
\text{ERROR/eV}	-0.6074	0.0077	-0.5816	0.0335	-0.6074	0.0077	-0.5816	0.0335				
	EXP/eV	B3LYP	scalar rel	TOTAL	M06	scalar rel	TOTAL					
----------------	----------	-----------	------------	-------------	------------	------------	-------------					
B⁺	-22.0131742	-0.0064922	-22.0196664	-22.0491882	-0.0063438	-22.0555319						
B⁻	-24.3297999	-0.0071306	-24.3369305	-24.339733	-0.0068893	-24.3408626						
B⁻-**B**⁺	63.0385944	63.0559666	62.1721694	62.1870140								
ERROR/eV	-0.0468	-0.0294	-0.9132	-0.8984								
C⁻	-32.3791998	-0.0140260	-32.3932258	-32.4265191	-0.0138544	-32.4403736						
C⁺	-36.5023552	-0.0157951	-36.5181503	-36.5240803								
C⁻-**C**⁺	112.1967742	112.249129	111.0819360	111.123196								
ERROR/eV	-0.1845	-0.1364	-1.2994	-1.2580								
N⁻	-44.4747832	-0.0266901	-44.714733	-44.8033591	-0.0259800	-44.8293390						
N⁺	-51.1752997	-0.0306519	-51.2059516	-51.2143915								
N⁻-**N**⁺	174.9832663	175.0910719	173.636833	173.7461268								
ERROR/eV	-0.3804	-0.2726	-1.7299	-1.6175								
O⁻	-59.1104082	-0.04648755	-59.1568958	-59.1802071	-0.04632277	-59.2265299						
O⁺	-68.3482627	-0.0542752	-68.4025378	-68.4133496								
O⁻-**O**⁺	251.3748227	251.5867352	249.7892799	249.9860958								
ERROR/eV	-0.6430	-0.4311	-2.2285	-2.0317								
F⁻	-75.4758177	-0.0758403	-75.5516580	-75.5567322	-0.0757272	-75.6324595						
F⁺	-88.0210349	-0.0896493	-88.1106842	-88.1237963								
F⁻-**F**⁺	341.3727475	341.7485077	339.5584253	339.9065895								
ERROR/eV	-0.9772	-0.6014	-2.7915	-2.4433								
Ne⁻	-93.8411225	-0.1172747	-93.9583972	-93.9330601	-0.1171940	-94.0502541						
Ne⁺	-110.1936005	-0.1399609	-110.3335614	-110.2102509	-0.1382525	-110.3485034						
Ne⁻-**Ne**⁺	444.9735916	445.5909156	442.9249226	443.4979524								
ERROR/eV	-1.3943	-0.7770	-3.4430	-2.8699								
------	------	------	------	------	------	------	------	------	------	------	------	------
EXP/eV	M06-2X	scalar rel	TOTAL	SVWN	scalar rel	TOTAL						
------	------	------	------	------	------	------						
B**	-22.0342083	-0.00673916	-22.0409475	-21.7431676	-0.00614385	-21.7493114						
B	-24.3470959	-0.00732138	-24.3544173	-24.038243	-0.00676041	-24.0450034						
B**-B	62.9368773	62.9527203	62.4521849	62.4689623								
ERROR/eV	-0.1485	-0.1327	-0.6332	-0.6164								
C**	-32.4083416	-0.01443317	-32.4227748	-32.0394866	-0.01339684	-32.0528834						
C	-36.5307030	-0.01613771	-36.5468408	-36.1300208	-0.01511829	-36.1451391						
C**-C	112.1751681	112.2215507	111.3091072	111.3559504								
ERROR/eV	-0.2061	-0.1597	-1.0722	-1.0253								
N**	-44.7819062	-0.02733069	-44.8092369	-44.3342002	-0.02567674	-44.3598769						
N	-51.2151196	-0.0311615	-51.2462811	-50.7210797	-0.02954603	-50.7506257						
N**-N	175.0566536	175.1608952	173.7958430	173.9011319								
ERROR/eV	-0.3070	-0.2027	-1.5678	-1.4625								
O**	-59.1553822	-0.0474746	-59.2028569	-58.6282191	-0.04492744	-58.6731465						
O	-68.4000067	-0.05504682	-68.4550536	-67.8111813	-0.05255971	-67.8637410						
O**-O	251.5590461	251.7650956	249.8811297	250.0888143								
ERROR/eV	-0.4588	-0.2527	-2.1367	-1.9290								
F**	-75.5285563	-0.07722242	-75.6057787	-74.9212867	-0.07358192	-74.9948687						
F	-88.0846291	-0.09089496	-88.1755240	-87.4003204	-0.08715076	-87.4874711						
F**-F	341.6681443	342.0401930	339.5718016	339.9410284								
ERROR/eV	-0.6818	-0.3097	-2.7781	-2.4089								
Ne**	-93.9015361	-0.11924706	-94.0207832	-93.2136971	-0.11412856	-93.3278256						
Ne	-110.269085	-0.14212043	-110.4112050	-109.488588	-0.13646911	-109.6250575						
Ne**-Ne	445.3836792	446.0060953	442.8623508	443.4702680								
ERROR/eV	-0.9842	-0.3618	-3.5055	-2.8976								
	EXP/eV	PBE0	scalar rel	TOTAL	TPSS	scalar rel	TOTAL					
-------	--------------	--------------	------------	-------------	--------------	------------	-------------					
B^1+	-21.9943844	-0.00642647	-22.0008108	-22.0380448	-0.0063309	-22.0443757						
B^+	-24.3019694	-0.00706196	-24.3090313	-24.3468257	-0.00696367	-24.3537894						
B^+-B^+	62.7925865	62.8098788	62.8251272	62.8423457								
ERROR/eV	-0.2928	-0.2755	-0.2603	-0.2431								
C^1+	-32.3599124	-0.01392597	-32.3738383	-32.4133928	-0.01375567	-32.4271485						
C^+	-36.4714124	-0.01569194	-36.4871044	-36.5264308	-0.01552389	-36.5419547						
C^+-C^+	111.8796158	111.9276705	111.9214643	111.9695800								
ERROR/eV	-0.5017	-0.4536	-0.4598	-0.4117								
N^1+	-44.7252732	-0.02655546	-44.7518287	-44.7885799	-0.02627955	-44.8148594						
N^+	-51.142549	-0.0305061	-51.1730551	-51.2077562	-0.0302359	-51.2379921						
N^+-N^+	174.6229678	174.7304704	174.7674830	174.7823410								
ERROR/eV	-0.7407	-0.6332	-0.6889	-0.5813								
O^1+	-59.0908699	-0.04630518	-59.1371750	-59.1640138	-0.04589044	-59.2099043						
O^+	-68.3145916	-0.0540794	-68.3686710	-68.4009741	-0.05367608	-68.4436502						
O^+-O^+	250.9902524	251.2017998	251.2620249	251.2630249								
ERROR/eV	-1.0275	-0.8160	-0.9666	-0.7548								
F^1+	-75.4563904	-0.07560687	-75.5319973	-75.5939707	-0.07501221	-75.6143829						
F^+	-87.9870901	-0.08940119	-88.0764913	-88.1629454	-0.0884967	-88.1615442						
F^+-F^+	340.9777061	341.3530689	341.4091123	341.4256488								
ERROR/eV	-1.3722	-0.9968	-1.3008	-0.9243								
Ne^1+	-93.8219151	-0.11697981	-93.9388950	-93.9417348	-0.11616031	-94.0308951						
Ne^+	-110.15986	-0.13964604	-110.2995059	-110.255686	-0.13893556	-110.3946219						
Ne^+-Ne^+	444.5781202	445.1948998	444.6599415	445.2796875								
ERROR/eV	-1.7898	-1.1730	-1.7080	-1.0882								
EXP/eV	TPSSh	scalar rel	TOTAL	B97D	scalar rel	TOTAL						
-------	--------	------------	---------	-------	------------	---------						
B⁺	-22.0375834	-0.00631732	-22.0439007	-22.0323739	-0.00631674	-22.0386907						
Bⁿ⁻	-24.3452001	-0.00694928	-24.3521494	-24.3310434	-0.00694025	-24.3379836						
Bⁿ⁻⁻⁻	62.7934501	62.8106466	62.5499822	62.5669486								
ERROR/eV	-0.2920	-0.2748	-0.5354	-0.5185								
C⁺	-32.4129397	-0.01373206	-32.4266718	-32.4014329	-0.01369666	-32.4151296						
Cⁿ⁻	-36.5243465	-0.01549803	-36.5398445	-36.5002547	-0.01543764	-36.5156923						
Cⁿ⁻⁻⁻	111.8770771	111.9251317	111.5346205	111.5819950								
ERROR/eV	-0.5042	-0.4562	-0.8467	-0.7993								
N⁺	-44.7881309	-0.02624221	-44.8143731	-44.7697312	-0.0261368	-44.7958680						
Nⁿ⁻	-51.2052072	-0.03019435	-51.2354016	-51.2002804								
Nⁿ⁻⁻⁻	174.6175409	174.7250841	174.1668230	174.2729383								
ERROR/eV	-0.7461	-0.6385	-1.1968	-1.0907								
O⁺	-59.163572	-0.04583389	-59.2094059	-59.1378293	-0.04562704	-59.1834563						
Oⁿ⁻	-68.3869571	-0.05361275	-68.4405699	-68.3403105	-0.05330246	-68.3936130						
Oⁿ⁻⁻⁻	250.9810939	251.1927674	250.4122699	250.6211285								
ERROR/eV	-1.0367	-0.8250	-1.6055	-1.3967								
F⁺	-75.5389328	-0.07493103	-75.6138639	-75.5054765	-0.07457674	-75.5800532						
Fⁿ⁻	-88.0692026	-0.08875567	-88.1579582	-88.0101955	-0.08821009	-88.0984056						
Fⁿ⁻⁻⁻	340.9660066	341.3421943	340.2707353	340.6417176								
ERROR/eV	-1.3839	-1.0077	-2.0792	-1.7082								
Ne⁺	-93.9143	-0.11604836	-94.0303483	-93.8728341	-0.11549736	-93.9883315						
Neⁿ⁻	-110.251718	-0.13880171	-110.3905201	-110.1798	-0.13793635	-110.3177366						
Neⁿ⁻⁻⁻	444.5637989	445.1829489	443.7351508	444.3457469								
ERROR/eV	-1.8041	-1.1850	-2.6327	-2.0222								
EXP/eV	BHLYP	scalar rel	TOTAL	BP86	scalar rel	TOTAL						
-------	-------	------------	-------	------	------------	-------						
B^+	-22.0276091	-0.00641563	-22.0340247	-22.0243344	-0.00655152	-22.0308859						
B^+	-24.3397998	-0.00705104	-24.3468508	-24.3317254	-0.00718613	-24.3389116						
B^+-B^+	62.9179127	62.9352031	62.7873077	62.8045765								
ERROR/eV	-0.1675	-0.1502	-0.2981	-0.2808								
C^+	-32.4001037	-0.01389677	-32.4140005	-32.3991183	-0.01415056	-32.4132688						
C^+	-36.5179398	-0.01566036	-36.5336002	-36.5246582								
C^+-C^+	112.0520269	112.1000164	111.8285577	111.8766043								
ERROR/eV	-0.3293	-0.2813	-0.5527	-0.5047								
N^+	-44.7724005	-0.02648899	-44.7988895	-44.7743781	-0.02691719	-44.8012953						
N^+	-51.1966885	-0.03044316	-51.2271316	-51.2195807								
N^+-N^+	174.8137800	174.9213785	174.5428755	174.6504427								
ERROR/eV	-0.5499	-0.4423	-0.8208	-0.7132								
O^+	-59.1449396	-0.04619175	-59.1911313	-59.1502303	-0.04686016	-59.1970904						
O^+	-68.3756488	-0.05396806	-68.4296168	-68.4251606								
O^+-O^+	251.1803913	251.3919954	250.8967556	251.1085784								
ERROR/eV	-0.8374	-0.6258	-1.1210	-0.9092								
F^+	-75.5174092	-0.07542349	-75.5928327	-75.5262242	-0.07641098	-75.6026352						
F^+	-88.0545934	-0.08921624	-88.1438096	-88.1436494								
F^+-F^+	341.1541569	341.5294766	340.8824590	341.2583774								
ERROR/eV	-1.1957	-0.8204	-1.4674	-1.0915								
Ne$^+$	-93.889897	-0.11670896	-94.0066060	-93.9023175	-0.11810071	-94.0204183						
Ne$^+$	-110.233482	-0.13937373	-110.3728553	-110.237073	-0.14080769	-110.3778806						
Ne$^+$-Ne$^+$	444.7315878	445.3483277	444.913342	445.1092225								
ERROR/eV	-1.6363	-1.0196	-1.8766	-1.2587								
