El comportamiento del *strain* longitudinal regional depende de la reserva coronaria en un análisis simultáneo durante el eco-estrés con dipiridamol

The Behavior of Regional Longitudinal Strain Depends on Coronary Flow Reserve in a Simultaneous Analysis during Dipyridamole Stress Echocardiography

ROSINA ARBUCCI1, DIEGO M. LOWENSTEIN HABER1, ARIEL K. SAAD1, GRACIELA ROUSSE1, MIGUEL AMOR1, GUSTAVO ZAMBRANA1, DANIELA SEVILLA1, SABRINA SCIOLINI1, PABLO M. MERLO1, JORGE A LOWENSTEIN1

RESUMEN

Introducción: Está poco estudiado el comportamiento del strain longitudinal regional y global en relación al valor de la reserva coronaria.

Objetivos: Comprar el comportamiento del strain longitudinal apical y global con el valor de la reserva coronaria de la arteria descendente anterior y secundariamente comparar estas respuestas con el análisis visual de la motilidad parietal durante el eco-estrés con dipiridamol.

Material y métodos: Estudio retrospectivo de 179 pacientes (edad 68,7 ± 7,8), 90 hombres (50,3%). En el pico del efecto de dipiridamol, se midió la reserva coronaria, simultáneamente al strain longitudinal y el análisis visual de la contractilidad.

Se organizó a los pacientes en dos grupos: grupo 1: reserva coronaria ≥ 2 y grupo 2: < 2. *Strain* apical se definió como el promedio de 4 segmentos apicales y global de los 17 segmentos. Se consideró normal a todo incremento del strain.

Resultados: Se incluyeron 113 pacientes (63,12%) en el grupo 1 y 66 (36,87%) en el grupo 2. *Strain* apical: el 96,77% del grupo 1 incrementaron su valor con el apremio, mientras que, en el grupo 2, el 96,31% presentaron una caída (p < 0,0001). *Strain* global: el 82,8% del grupo 1 presentaron incremento de sus valores, en cambio, en el grupo 2, el 78,8% empeoraron (p < 0,01). Análisis de la motilidad parietal posdipiridamol: el 96,46% del grupo 1 tenían motilidad parietal conservada y el 54,5% del grupo 2 (solo en 4 pacientes aumentó el strain apical).

Conclusiones: Se comprobó una estrecha correlación entre la reserva coronaria y el strain longitudinal. El *strain* apical resultó ser superior del global. El *strain* apical demostró tener una mejor correlación con la reserva coronaria que con el análisis visual de la contractilidad.

Palabras clave: Ecocardiografía de Estrés/métodos - Ecocardiografía Doppler - Contracción Miocárdica/fisiología - Dipyridamole - Reserva del Flujo Fraccional Miocárdico - Vasos coronarios/diagnóstico por imagen

ABSTRACT

Background: The behavior of regional and global longitudinal strain in relation to the value of the coronary reserve is poorly studied.

Objectives: Compare the behavior of the Apical and global longitudinal Strain with the value of the coronary reserve of the anterior descending artery and as a secondary aim compare these responses with the visual analysis of parietal motility during Echo Stress with Dipyridamole.

Materials and methods: Retrospective study of 179 patients (age 68.7±7.8), 90 patients (50.3%) were men. At the peak of the dipyridamole effect, the coronary reserve was measured, simultaneously with the Longitudinal Strain and the visual analysis of contractility. Two groups were divided: Group 1: Coronary reserve ≥ 2 and Group 2: <2. Apical Strain was defined as the average of 4 apical segments and global as the average of the 17 segments. It was considered normal any increased of deformation

Results: 113 patients (63.12%) were included in Group 1 and 66 (36.87%) in Group 2. Strain apical was defined as the average of 4 apical segments and global as the average of the 17 segments. It was considered normal any increased of deformation.

Results: 113 patients (63.12%) were included in Group 1 and 66 (36.87%) in Group 2. Strain Apical: 96.77% of Group 1 increased their strain values with the stress, while in group 2, 96.31% presented a worsening strain values (p<0.0001). Global Strain: 82.8% of Group 1 had an increase in their values, while in Group 2, 78.8% showed worsening (p<0.01). Post Dipyridamole parietal Motility Analysis: 96.46% of Group 1 had preserved parietal motility and only 54.5% of Group 2 (4 patients had increased apical Strain in this group).

Conclusions: There was a close correlation between the coronary reserve of the anterior descending artery and the contractile reserve evaluated by regional apical longitudinal strain of the 4 apical segments, which was superior to the use of global strain. The Apical Strain showed a better correlation with ADA coronary reserve than with the visual analysis of contractility.

Key words: Echocardiography, Stress/methods - Echocardiography, Doppler - Myocardial Contraction/physiology - Dipyridamole - Fractional Flow Reserve, Myocardial - Coronary Vessel/Diagnostic Imaging

Servicio Cardiodiagnóstico. Investigaciones Médicas. Buenos Aires, Argentina.

Rev Argent Cardiol 2019;87:426-427. http://dx.doi.org/10.7775/rac.es.v87i6.16774
INTRODUCCIÓN

El eco-estrés con dipiridamol es uno de los apremios farmacológicos recomendados para el diagnóstico y pronóstico de la enfermedad coronaria. Si bien se le atribuye una menor sensibilidad en lesiones limitadas a un solo vaso, la utilización en altas dosis y corto tiempo de infusión con la adición de atropina o hand grip permite un nivel de exactitud diagnóstica similar a la dobutamina y con menor efectos adversos mayores. (1, 2)

Una de las principales limitaciones del eco-estrés es la valoración subjetiva de la motilidad, la cual se ve influenciada por la experiencia del operador, la calidad de la ventana ultrasonica y el equipamiento técnico. Intentando incrementar el redito diagnóstico, se han incorporado la medición de la reserva coronaria de la arteria descendente anterior (ADA) y el análisis de la deformación miocárdica por la técnica de speckle tracking. (3)

La medición de la reserva coronaria (RC) en la porción distal de la ADA proporciona un valor pronóstico adicional al análisis de la motilidad propiamente dicha, lo que aumenta la sensibilidad del estudio en relación con la presencia de lesiones coronarias epicárdicas, con solo una leve disminución de la especificidad, si tenemos en cuenta que su evaluación integra información del árbol coronario macrovascular y de la función microvascular. (2-5)

Por otro lado, el mejor conocimiento de la estructura miocárdica ha permitido comprender con mayor detalle la mecánica de la contracción muscular. El análisis de la función longitudinal, que evalúa las fibras subendocárdicas más vulnerables a la isquemia mediante la técnica de strain por speckle tracking ha demostrado aumentar la sensibilidad del estudio en comparación con el análisis visual del engrosamiento parietal. (6)

El eco-estrés con dipiridamol proporciona las condiciones ideales para este tipo de análisis debido al menor aumento de la frecuencia cardíaca y a la mejor calidad de ventana por ausencia de hiperventilación en comparación con otras técnicas de apremio.

El objetivo primario del presente trabajo fue comparar el comportamiento del strain longitudinal global (SLG) y de los segmentos apicales (SLR Ap) en relación con la RC en el territorio de ADA.

El objetivo secundario fue comparar estas respuestas con el análisis visual de la motilidad parietal durante el eco-estrés con dipiridamol.

MATERIAL Y MÉTODOS

Población

Se trata de un estudio retrospectivo, descriptivo, comparativo, unicéntrico, en el que se incluyeron 179 pacientes estudiados en nuestro centro con un eco-estrés con apremio de dipiridamol en un periodo de 2 años (enero de 2017 a enero de 2019). La edad promedio de los pacientes fue de 68,7 ± 7,8 años, 90 pacientes (50,3%) eran hombres.

Todos los pacientes tenían como criterio de selección función global y regional de reposo normal. Fueron incluidos solo pacientes con infarto previo en un territorio distinto al de la ADA o aquellos con antecedentes de revascularización miocárdica sin trastornos de motilidad en reposo.

Se consideraron criterios de exclusión la cardiopatía estructural de otra etiología (ejemplo pacientes valvulares), bloqueo completo de rama izquierda o con fibrilación auricular o ventana ultrasonica inadecuada.

Todos los pacientes fueron sometidos a ecocardiograma estrés con apremio de dipiridamol (0,84 mg/kg en 4 min), según el protocolo propuesto por nuestro laboratorio desde el año 1998. Previamente, todos firmaron el consentimiento informado en el que aceptaban la realización de la prueba y la utilización de los datos con fines científicos. (7)

Ecocardiograma estrés

Los pacientes permanecieron al menos 4 h en ayunas y libres de ingesta de infusiones o medicación de xantinas en las 12 h previas al estudio. El apremio fue la infusión endovenosa de dipiridamol 0,21 mg/kg/min en 4 min. Se utilizó un ecocardiógrafo Vivid E 9 o E95 (GE Healthca-re), con transductor Matrix de 5 MHz, con adquisición de las imágenes bidimensionales con una tasa de entre 60 y 70 cuadros/segundo. La evaluación de los parámetros ecográficos habituales se realizaron de acuerdo con los lineamientos de la Sociedad Estadounidense de Ecocar-diografía (ASE).

La fracción de eyeción (Fey) se obtuvo en forma automática.

La ADA se visualizó como una estructura tubular de color rojo de aproximadamente 0,2 cm a 0,3 cm de diámetro con una longitud variable de 0,3 cm a 1,8 cm que presentó deflexiones espectrales positivas con el Doppler. El examen de la ADA permite obtener una patente típicamente bifásica con un pequeño componente sistólico y una velocidad diastólica mayor.

El SLG se analizó a partir de las vistas apicales de 4, 3 y 2 cámaras, y fue considerado como el promedio de los 16 segmentos. Se definió SLR Ap como el promedio de los 4 segmentos apicales correspondientes a la ADA desde las tres vistas apicales en reposo y durante el apremio, y se consideró como normal todo incremento del porcentaje de deformación (Figura 1).

Se definió como Delta SLG y Delta SLR Ap a la diferencia entre los valores basales y con apremio del strain global y apical, respectivamente.
Velocidad de flujo de reserva coronaria con ecoestrés con dipiridamol

Se efectuaron las mediciones de la velocidad del flujo coronario basal sistólico y diastólico de la ADA, aunque para el análisis de la RC en este trabajo solo se consideraron los valores pico diastólicos. Luego de obtener las cifras basales, sin cambiar la posición del transductor y de la muestra Doppler, se administró el dipiridamol según protocolo, con monitoreo y grabación permanente de las velocidades obtenidas durante todo el periodo de infusión y durante el minuto posterior.

La RC se calculó dividiendo el pico máximo en condiciones hiperémicas por los valores de reposo. Se consideraron valores normales a una cifra ≥ 2 (Figura 1).

Dos ecocardiografistas experimentados con el método realizaron las mediciones off line de todos los parámetros descritos considerando el valor promedio de tres periodos consecutivos.

Anormalidades de la motilidad parietal regional

Se utilizó un modelo de ventrículo izquierdo dividido en 16 segmentos. A cada segmento se le adjudicó un puntaje que varió desde 1 (normal), hasta 4 (discinético), para generar un índice de puntaje de motilidad parietal (IPMP) en reposo y en estrés máximo. La positividad se asoció con las alteración de la motilidad parietal en, al menos, dos segmentos contiguos (IPMP máximo > IPMP de reposo) (Figura 1).

Análisis estadístico

Las variables cuantitativas se presentaron como media y desviación estándar o mediana y rango intercuartil según la distribución fuera paramétrica o no. En la comparación de dos grupos, se empleó la prueba de la t o la de Wilcoxon según la distribución fuera paramétrica o no, respectivamente. Las variables cualitativas se expresaron como porcentajes y la significación estadística se determinó con la prueba de chi cuadrado. Se consideró significación estadística un valor de p < 0,05 a dos colas. Se determinó la correlación lineal entre dos variables cuantitativas se realizó mediante el coeficiente de correlación de Pearson. Los análisis se efectuaron con el software de estadística Stata (versión 10.0, StataCorp, Texas, EE.UU.).

Consideraciones éticas

El estudio fue evaluado y aprobado por un comité de investigación institucional. Se requirió consentimiento informado, autorizado por un familiar o responsable de cada paciente incluido en el estudio.

RESULTADOS

Los pacientes fueron ordenados en dos grupos según el valor de RC obtenida: 113 pacientes (63,13%) con RC ≥ 2 pertenecían al grupo 1 y 66 pacientes (36,87%) con RC < 2.

Los pacientes del grupo 1 presentaron menor edad respecto al grupo 2 (65,9 \pm 10,27 vs. 72,2 \pm 9,31, p < 0,02). No se evidenciaron otras diferencias significativas entre ambos grupos. Las características basales de la población se describen en la Tabla 1.

No hubo diferencias en los valores del reposo del SLG y del SLR Ap entre ambos grupos: SLG: grupo 1: $-19,8 \pm 4,8$ vs. grupo 2: $-20,27 \pm 2,6$ p = NS; SLR Ap Grupo 1: $-25,41 \pm 4,75$ vs. grupo 2: $-26,73 \pm 7,6$ p = ns (Tabla 2).

Resultados al apremio farmacológico

Durante el apremio el SLG y el SLR Ap se incrementaron en los pacientes del grupo 1 con un empeoramiento significativo en los pacientes del grupo 2 (SLG: grupo 1: $-22,98 \pm 4,31$ vs. grupo 2: $-17,82 \pm 2,70$, p < 0,0001; SLR Ap grupo 1: $-28,43 \pm 5,6$ vs. grupo 2: $-22,78 \pm 7,41$, p < 0,0001) (Tabla 2).

El SLG aumentó en el 82,8% de los pacientes del grupo 1 y empeoró en el grupo 2 en el 78,8% (p < 0,01) (Tabla 2). Valor predictivo negativo (VPN) = 78,8% (IC 95% = 67,5%-86,9%) y valor predictivo positivo VPP = 90,8% (IC 95% = 83,9%-94,9%). E: 83,9% (IC 95% = 72,8%-91,0%), S: 87,6% (IC 95% = 80,3%-92,5%). Área bajo la curva ROC = 0,84.
El SLR Ap se incrementó con el apremio en el 96,77% de los pacientes del grupo 1 y el 95,31% de los pacientes del grupo 2 presentaron caída (p < 0,0001) (Tabla 2). VPN = 95,6% (IC 95% = 87,8%-98,5%), VPP = 96,8% (IC 95% = 89,0%-99,1%). Especificidad (E): 97% (IC 95% = 89,9%-99,2%), Sensibilidad (S): 95,2% (IC 95% = 86,9%-98,4%). Area bajo la curva ROC = 0,92.

El análisis del delta reposo-esfuerzo del SLG y del SLR Ap con respecto a la RC evidenció que, cuanto mayor es el Delta de SLG y SLR Ap, más bajo es el resultado del valor de la RC. Siendo levemente superior
la correlación para el SLR Ap (coeficiente de correlación de dispersion entre SLG y RC: 0,54 (p < 0,001); coeficiente de correlación entre SLR Ap y RC: 0,59 (p < 0,001) (Figuras 2 y 3).

Análisis de la motilidad parietal

El análisis de la motilidad parietal posterior a dipiridamol mostró que 109 pacientes (96,46%) del grupo 1 tenían motilidad parietal conservada luego del apremio farmacológico. Del total de los incluidos en el grupo 2, 36 pacientes (54,5%) presentaron motilidad conservada, de ellos solamente en 4 pacientes (11,1%) el SLR Ap resultó incrementado.

Análisis de la función sistólica ventricular

El análisis de la Fey ventricular basal del total de los pacientes fue del 57,96% ± 9,94% y durante el apremio del 63,84% ± 9,29%.

No se evidenciaron diferencias estadísticamente significativas en el análisis de la Fey entre el total de los pacientes del grupo 1 y 2, basales y con apremio: basal grupo 1: 58,41% ± 10,9%, apremio grupo 1: 65,44% ± 9,44%; basal grupo 2: 57,50% ± 8,96%, apremio grupo 2: 62,23% ± 9,12%; p = ns).

Cuando se compararon solamente los pacientes que presentaron disinergias regionales, no se evidenciaron diferencias estadísticamente significativas en el análisis de la fracción de eyeción entre el grupo 1 y 2, basales y con apremio: basal grupo 1: 56,69% ± 6,1%, apremio grupo 1: 63,02% ± 7,35%; basal grupo 2: 55,65% ± 7,32%, apremio grupo 2: 62,75% ± 5,59%; p = ns).

El análisis de los pacientes del grupo 2 (RC < 2) sin disinergias regionales demostró el mismo comportamiento de la Fey: basal: 59,7% ± 5,81% y con apremio: 62,61% ± 5,63%; p = ns.

DISCUSIÓN

Durante un período de 30 años hemos utilizado el ecoestrés con dipiridamol para determinar el diagnóstico y pronóstico de pacientes coronarios. La utilización de altas dosis en un período corto de tiempo (4 min) permitió aumentar el rédito diagnóstico y estratificar con éxito el pronóstico de estos pacientes. Sin embargo, la limitación del análisis subjetivo y el bloqueo de una respuesta contráctil en pacientes que recibían tratamiento con betabloqueantes fueron las mayores limitaciones. (5, 7)

La adición de la medición de la RC mejoró la sensibilidad diagnóstica inclusive en un grupo importante de pacientes sin trastornos visuales de la contractilidad, pero con RC baja donde se constató una evolución con alta tasa de eventos coronarios durante su seguimiento. (8)

Por este motivo, así como la angiografía constituye el método de referencia para la evaluación anatómica de las arterias coronarias epicárdicas, la RC se ha posicionado como el método diagnóstico de referencia (gold standard) para la valoración de la máxima capacidad vasodilatadora ante diferentes estímulos, dado que constituye un excelente parámetro para evaluar la integridad y funcionalidad de todo el árbol coronario, incluida la microcirculación. (3, 9)

La tercera generación del protocolo ecoestrés con dipiridamol, consistió en la adición de la cuantificación a través del estudio de la deformación miocárdica longitudinal mediante la técnica de strain bidimensional.
por *speckle tracking*, esta nueva herramienta mejoró la posibilidad de calcular en forma numérica el efecto de la droga sobre la mecánica ventricular regional y global. (10)

El *strain* longitudinal evalúa las fibras subendocárdicas más susceptibles a la isquemia, por lo que presenta mayor sensibilidad para detectar alteraciones incipientes de la contractilidad. Si bien la fracción de eyeción es el parámetro de la función global del VI más utilizado, diversos estudios (11) han demostrado que en situaciones de isquemia, se observa un deterioro precoz de la función longitudinal regional en presencia de una fracción de eyeción normal (que es incapaz de reconocer alteraciones regionales).

Para objetivar dicho fenómeno, se cita un estudio realizado por nuestro grupo donde se demostró que tanto la contractilidad así como la RC objetivados mediante el eco-estrés con dipiridamol, tuvieron una especificidad excelente (100%); sin embargo, la sensibilidad no resultó ideal. Cuando se incorporó el análisis del *strain* 2D se observó un aumento significativo de la sensibilidad de la prueba respecto al análisis de la contractilidad (83,3% vs. 50%; p = 0,001, respectivamente), sin comprometer su especificidad (100%). (6)

Con respecto al valor predictivo del SLG en reposo y la RC en pacientes con enfermedad coronaria, en este estudio se volvió a confirmar la ausencia de relación entre ambos parámetros, tal como fuera demostrado en un estudio previo publicado por nuestro grupo (12), donde se analizaron 124 pacientes sometidos a diferentes pruebas evocadoras de isquemia. Los resultados indican que el SGL bidimensional en reposo no permitió predecir el resultado del eco-estrés ni tampoco la presencia de enfermedad coronaria significativa, y se confirmó en otro estudio que el SL no posee memoria de agresiones isquémicas transitorias provocadas por el eco-estrés. (13)

La contractilidad miocárdica requiere una adecuada perfusión. Una disminución de entre un 30%-35% del flujo sanguíneo ocasiona deterioro de la motilidad parietal con caída de la función sistólica regional y eventualmente global del ventrículo izquierdo. (14, 15, 16)

Ha sido reportado que el aumento del flujo y de la RC provocado por el apremio vasodilatador se expresa como un incremento de la deformación sistólica por el *strain* 2D, (6) posiblemente por mejorar las condiciones de la microcirculación en las fibras miocárdicas (*efecto Gregg*). En contraposición, el robo de flujo como respuesta isquémica se manifiesta como un deterioro del *strain* 2D.

El efecto *Gregg* postula que el aumento de la presión de perfusión incrementa el volumen microvascular y la apertura de los canales iónicos; la mayor disponibilidad del Ca++ intracelular es el responsable de las mejores condiciones de la fibra miocárdica que se traduce en eficiencia de la mecánica ventricular. (17)

La factibilidad de la medición de la RC en simultáneo con el *strain* 2D fue evaluado en un estudio previo en el que se incluyeron 41 pacientes y debieron ser excluidos 3, uno por señal deficiente en el Doppler pulsado de la ADA, que limitó el análisis de la RC y dos por ventana subóptima para el *strain* 2D. La factibilidad final del estudio resultó del 93% (IC 95% 81%-98,1%). (6)

Respecto al valor aditivo del análisis del SLG en relación con la motilidad parietal, el estudio realizado por Cusma-Piccione et al. (18) incluyó 52 pacientes con eco-estrés con dipiridamol con protocolo en bajas y altas dosis, y demostró que el SLG fue superior en comparación con los cambios del índice de motilidad parietal en la enfermedad de un solo vaso (S 84% vs. 44%, E 92% vs. 55%, VPP 96% vs. 73% VPN 68% vs. 26%, respectivamente, p < 0,001).

En la bibliografía, fueron varios los trabajos que correlacionan *strain* y enfermedad coronaria, uno de ellos fue el grupo de Nucifora et al., que mostraron que un SLG de –17,4% (S del 83% y E del 77%) proporciona un valor incremental significativo sobre la puntuación clínica de Duke para la identificación de pacientes con enfermedad coronaria obstructiva en la tomografía computarizada multicorte. (19) Asimismo, debe destacarse que fue el análisis de la deformación regional el parámetro que mejor precisión diagnóstica y correlación angiográfica mostró ante fenómenos isquémicos, tal como fue objetivado por el grupo de Shimoni et al. (20)

Otro trabajo a destacar fue el reportado por Clemmensen et al., quienes evaluaron la capacidad de ejercicio, el SLG y la RC en 57 pacientes que habían recibido un trasplante cardíaco. Se observó una muy buena correlación entre el SLG en el esfuerzo y la RC en la ADA (r = 0,8; p < 0,0001). Los pacientes con mejor RC aumentaban un promedio del 5,4% ± 2% en valores absolutos el SLG durante el esfuerzo, mientras que aquellos con RC más disminuida solo lo hacían el 0,8% ± 2,8%. Lo cual evidencia una fuerte dependencia de la deformación longitudinal con la RC. Este último grupo tenía, además, una significativa reducción de su capacidad física. (21)

Respecto a la valoración de RC y reserva contráctil, una publicación realizada por el grupo de Cortigiani et al. con 375 pacientes diabéticos sometidos a eco-estrés con dipiridamol, negativo para isquemia, evaluaron la integración de la triple evaluación funcional (índice de motilidad parietal, RC y reserva contráctil, esta última evaluada por elastancia ventricular). Los autores concluyeron que la RC disminuida no siempre correlaciona con alteraciones en la motilidad parietal. (22) Dicho hallazgo postula 2 teorías. Por un lado, la terapia antiisquémica en curso disminuye la sensibilidad diagnóstica; por otro lado, la RC deteriorada puede reflejar la presencia de enfermedad coronaria angiográficamente leve a moderada o enfermedad microvascular, que no alteran la motilidad parietal durante el estrés.

Por estudios previos compartidos por nuestra experiencia personal se conoce que el análisis de los pacientes con RC baja, aun en ausencia de trastornos de la motilidad parietal, tienen peor pronóstico; (23)
el comportamiento del strain es una información adicional que correlacionó con la RC; la información del strain tiene equivalencia diagnóstica y pronóstica, por lo cual, si no se pueden realizar las 2 determinaciones, la ejecución de una de las dos puede ser suficiente y representativa.

El principal resultado de nuestro estudio fue demostrar en forma fehaciente que el comportamiento del SLG de la ADA depende de la RC en ese territorio. Con ambos valores normales son excepcionales las disinergias en el territorio correspondiente. Sin embargo, en un grupo importante de pacientes la RC y el strain disminuidos no se acompañaron de trastornos visuales de la motilidad parietal.

Por otro lado, quedó bien demostrado la correlación existente entre la presencia de valores más bajos de Delta de strain (basal vs. apremio) y la presencia de menores valores de RC, con un índice de correlación significativo.

LIMITACIONES
El estudio fue retrospectivo. Por el escaso tiempo de seguimiento, en una población poco numerosa, no disponemos todavía de datos pronósticos en relación con los resultados en las dos poblaciones. Sin embargo, en estudios previos observamos que en los pacientes con RC baja, aún en ausencia de disinergias visuales, el pronóstico no era favorable con una alta tasa de eventos anuales. (23)

A un grupo importante de pacientes no se les realizaron estudios angiográficos coronarios, en especial aquellos sin trastornos visuales de la motilidad parietal.

El presente estudio estuvo solo circunscripto al territorio de la ADA, por la altísima factibilidad de medir su RC.

Finalmente, un grupo pequeño de pacientes fueron evaluados bajo medicación antisuquémica, que puede disminuir la presencia de anomalías contractiles durante el estrés.

Implicancias clínicas del estudio
Cuando todos los parámetros propuestos y evaluados en el presente trabajo son normales, no hay dudas de que se trata de un diagnóstico negativo para isquemia y un buen pronóstico para el paciente, a diferencia de una respuesta anormal de los 3 parámetros evaluados.

De importancia es el grupo de pacientes con reserva coronaria y strain disminuidos en ausencia de trastornos de la contractilidad; independientemente de que la enfermedad sea microvascular o lesión de arteria epicárdica, el pronóstico será absolutamente distinto.

En la práctica diaria, las alteraciones sutiles o dudosas de la contractilidad en el territorio de la ADA con una RC anormal y un SLR Ap reducido deberán ser considerados como positivos para isquemia en el informe final.

CONCLUSIONES
El comportamiento del strain longitudinal global y regional apical depende del valor de la reserva coronaria en el territorio de la arteria descendente anterior.

El análisis visual de la motilidad parietal no pudo reconocer a casi la mitad de los pacientes con reserva coronaria y strain disminuidos.

Este último grupo de pacientes es el que deberá controlarse muy de cerca por la alta posibilidad de eventos.

Declaración de conflicto de intereses
Los autores declaran que no poseen conflicto de intereses.

(Véanse formularios de conflicto de intereses de los autores en la web / Material suplementario).

BIBLIOGRAFÍA
1. Picano E, Molinaro S, Pasanisi E. The diagnostic accuracy of pharmacological stress echocardiography for the assessment of coronary artery disease: a meta-analysis. Cardiovasc Ultrasound 2008 Jun 19. 10:1186/1476-7120-6-30. http://doi.org/dskhj2
2. Lowenstein J, Tiano C, Manso H, Pellegrini C. Determinación de la reserva coronaria por eco-Doppler transtorácico. Rev Argent Cardiol 2000;68:383-99.
3. Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D, et al; European Association of Echocardiography. Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr. 2005;9:415-37. http://doi.org/dvxvq8
4. Lim HE, Shim WJ, Rhee H, Kim SM, Hwang GS, Kim YH, et al. Assessment of coronary flow reserve with transthoracic Doppler echocardiography: comparison among adenosine, standard-dose dipyridamole, and high-dose dipyridamole. J Am Soc Echocardiogr 2000;13:264-70. http://doi.org/fs36v7
5. Rigo F. Coronary flow reserve in stress-echo lab. From pathophysiological toy to diagnostic tool. Cardiovasc Ultrasound 2005;3:8. http://doi.org/dwtsad
6. Lowenstein J, Darú V, Amor M, Carlessi A, Descalzo M, Zambrana G, et al. Análisis simultáneo del strain 2D, de la reserva coronaria y de la contractilidad parietal durante el estrés. Resultados comparativos. Rev Argent Cardiol 2010;78:499-506.
7. Lowenstein J, Tiano C, Marquez G, Canet C, Boughen R, Rosati J, Pellegrini C. Accelerated high dose dipyridamole stress echo, the busy cardiologist’s stress test. Eur Heart J 1998; 19: 3460, Abstract.
8. Lowenstein J, Tiano C, Marquez G, Presti C, Quiróz C. Simultaneous Analysis of Wall Motion and Coronary Flow Reserve of the Left Anterior Descending Coronary Artery by Transthoracic Doppler Echocardiography. J Am Soc Echocardiogr 2003;16:607-13. http://doi.org/d2g25c
9. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 1990;15:459-74. http://doi.org/cc7nkd
10. Lowenstein J, Tiano C, Marquez G, Presti C. Incremento de la sensibilidad del eco estrés con dipyridamol mediante la determinación simultánea de la reserva coronaria por eco transtorácico. Rev Argent Cardiol 2000;68:683-96.
11. Logstrup BB, Hafsten DE, Christophersen TB, Møller JE, Betker HE, Pellikka PA, et al. Correlation between left ventricular global and regional longitudinal systolic strain and impaired microcirculation in patients with acute myocardial infarction. Echocardiography 2012;29:1181-90. http://doi.org/ddttx
12. Gastaldello N, Merlo P, Amor M, Alasia D, Galello M, Rousse M, et al. El strain longitudinal en reposo no predice el resultado del eco estrés. Rev Argent Cardiol 2016;84:343-8. http://doi.org/ddtz
13. Lowenstein J, Gastaldello N, Merlo P, Galello M, Rousse M, Darú V. El strain longitudinal no tiene memoria isquémica. Rev Argent Cardiol 2016;84:365-8. http://doi.org/ddt2
14. Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G, et al. Persistent stunning induces myocardial hibernation and protection: low/function and metabolic mechanisms. Circ Res 2003;92:1233-9. http://doi.org/ddtz
15. Canty JM Jr. Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res 1988;63:821-36. http://doi.org/ddt3
16. Arai AE, Grauer SE, Anselone CG, Pantely GA, Bristow JD. Metabolic adaptation to a gradual reduction in myocardial blood flow. Circulation 1995;92:244-52. http://doi.org/ddt4
17. Westerhof N, Boer C, Lamberts RR, Sipkema P. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev 2006;86:1263-308. http://doi.org/cszmmm
18. Cusmà-Piccione M, Zito C, Oreto L, D’Angelo M, Tripepi S, Di Bella G, et al. Longitudinal Strain by Automated Function Imaging Detects Single-Vessel Coronary Artery Disease in Patients Undergoing Dipyridamole Stress Echocardiography. J Am Soc Echocardiogr 2015;28:1214-21. http://doi.org/bkgn
19. Nucifora G, Schuijf JD, Delgado V, Bertini M, Scholte AJ, Ng AC, et al. Incremental value of subclinical left ventricular systolic dysfunction for the identification of patients with obstructive coronary artery disease. Am Heart J 2010;159:148-57. http://doi.org/fm25cj
20. Shimoni S, Gendelman G, Ayzenberg O, Smirin N, Lysiansky P, Edri O, et al. Differential effects of coronary artery stenosis on myocardial function: the value of myocardial strain analysis for the detection of coronary artery disease. J Am Soc Echocardiogr 2011;24:748-57. http://doi.org/fo86j
21. Clemmensen TS, Logstrup BB, Eiskjær H, Poulsen SH. Changes in longitudinal myocardial deformation during acute cardiac rejection: the clinical role of two-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 2015;28:330-9. http://doi.org/ddt5
22. Cortigiani L, Huqi A, Ciampi Q, Bombardini T, Bovenzi F, Picano E. Integration of Wall Motion, Coronary Flow Velocity, and Left Ventricular Contractile Reserve in a Single Test: Prognostic Value of Vasodilator Stress Echocardiography in Patients with Diabetes. J Am Soc Echocardiogr 2018;31:692-701. http://doi.org/gdpq83
23. Lowenstein JA, Caniggia C, Rousse G, Amor M, Sánchez ME, Alasia D, et al. Coronary flow velocity reserve during pharmacologic stress echocardiography with normal contractility adds important prognostic value in diabetic and nondiabetic patients. J Am Soc Echocardiogr 2014;27:1113-9. http://doi.org/bkgj