Decision support system for selection technique using MOORA method

Victor Marudut Mulia Siregar¹, Mega Romauly Tampubolon², Eka Pratiwi Septania Parapat², Eve Ida Malau², Debora Silvia Hutagalung⁴

¹Computer Engineering Department, Politeknik Bisnis Indonesia
²Sekolah Tinggi Akuntansi dan Manajemen Indonesia, Indonesia

*victor.siregar2@gmail.com

Abstract. This study aims to solve the problem of selecting the best students as recipients of the Academic Achievement Improvement scholarship at Sekolah Tinggi Akuntansi dan Manajemen Indonesia (STAMI). The scholarship data processing process carried out by STAMI is currently still using a manual process and only uses the GPA criteria only in determining scholarship recipients. This problem is resolved using a Decision Support System with the Multi-Objective Optimization based on Ratio Analysis (MOORA) method. The criteria used in this Decision Support System consist of: parents' income, parents' dependents, semester, and GPA. Alternative data used in this study consisted of 7 alternative STAMI students. The best ranking results from selecting the best students to obtain scholarships using the MOORA method are students with the STAMI_Student02 alternative with a ranking value of 0.2345.

1. Introduction
At this time, rapid development is not only developing in the aspects of hardware and software technology, but computing methods are also developing [1], [2], [3], [4]–[7], [8]. One of the computational methods of experiencing development at this time is the Decision Support System method. Through a decision support system, the solution to a problem can be taken by decision-makers through the selection of decisions that can be done easily and quickly [9]–[12].

Academic Achievement Improvement Scholarships in Indonesia are scholarships provided to increase equity and study opportunities for students who have difficulty paying their tuition fees due to a lack of economy, especially for students with academic achievements. Scholarships, in general, are the provision of tuition fees for students who are still actively studying and registered in the Ministry of Education and Culture's Database, as well as actively attending lectures at a university. The scholarship data selection process carried out by STAMI colleges currently only uses one criterion. Currently, to determine scholarship recipients, they are only selected from an academic perspective and have not used a decision-making method. As a result, the decision of the scholarship recipient to increase academic achievement seems subjective and does not give the right advice.

Based on the background of this problem, a decision support system was designed to facilitate selecting scholarship recipients on the STAMI campus so that the scholarship recipient's decision becomes objective. To get this scholarship, each student is selected based on established criteria,
consisting of GPA, Total Income of Parents, Number of Parents' Dependents, Semester, and has never received any scholarship from the local government. Therefore, not all students who apply for scholarships, only students who meet the criteria are eligible for scholarships adjusted to the scholarship acceptance quota.

The decision support system used to solve selecting students who receive scholarships to increase academic achievement is the MOORA method. The MOORA method can be used to overcome various problems in helping facilitate decision making [13]–[18]. With the existence of a decision support system designed at this College, Decision Makers can quickly determine the recipients of scholarships to increase academic achievement according to the eligibility of students in need.

2. Methodology
The method used for selecting recipients of PPA scholarship funds for students who are nominating for the scholarship is to use the MOORA method based on the criteria determined. The best alternative is obtained based on the value obtained to get a priority to become a scholarship recipient. The stages of research carried out in applying a decision support system for selecting the best students to obtain scholarships using the MOORA method are carried out in accordance with the steps, as shown in Figure 1.

The input data used in selecting student recipients of this academic achievement improvement scholarship are parents' income, the number of parents' dependents, semester, and cumulative grade point average (GPA). If the income level of the parents gets lower, the chances of getting a scholarship will be even greater. The more dependents of the student's parents who register, the greater the chance of getting scholarship. Students with the most excellent opportunity to get scholarships are active students with semesters 3 (three) and 5 (five). The higher the academic achievement of students who run for scholarships, the more excellent the opportunity to get scholarships.

3. Result and Discussion
Data analysis using the MOORA method consists of the following steps:

Determine the criteria value for a set of alternatives along with the weight of preference (Wj) for each criterion. The following is the weighting of the criteria and the value of each alternative's criteria.
that will be processed in the decision-making system to determine which students will receive scholarships for academic achievement improvement.

Table 3. Alternative Table And Score For Each Criterion

Alternative	Student Name	Parents' income	Parents' dependents	Semester	GPA
A1	STAMI_Student01	1.5	3	5	3.3
A2	STAMI_Student02	2	7	5	3.35
A3	STAMI_Student03	3	1	5	3.07
A4	STAMI_Student04	2.2	4	5	3.5
A5	STAMI_Student05	2	5	3	3.09
A6	STAMI_Student06	3.2	2	3	3.48
A7	STAMI_Student07	2.775	3	5	3.27

Based on the alternative data in Table 3, the next step is to normalize the matrix to calculate each criterion's value. The results of the Xij Normalized Decision Matrix calculation can be seen in the matrix below.

\[
\begin{bmatrix}
0.2314 & 0.2822 & 0.4181 & 0.3782 \\
0.3085 & 0.6585 & 0.4181 & 0.3839 \\
0.4627 & 0.0941 & 0.4181 & 0.3518 \\
0.3393 & 0.3763 & 0.4181 & 0.4011 \\
0.3085 & 0.4704 & 0.2509 & 0.3541 \\
0.4936 & 0.1881 & 0.2509 & 0.3988 \\
0.4280 & 0.2822 & 0.4181 & 0.3748
\end{bmatrix}
\]

The next stage is weighting the data from the normalization results above using the weights listed in table 2. The multiplication results of the Weighted Normalization Data can be seen in the matrix below.

\[
\begin{bmatrix}
0.0694 & 0.0564 & 0.0418 & 0.1513 \\
0.0925 & 0.1317 & 0.0418 & 0.1536 \\
0.1388 & 0.0188 & 0.0418 & 0.1407 \\
0.1018 & 0.0753 & 0.0418 & 0.1604 \\
0.0925 & 0.0941 & 0.0251 & 0.1416 \\
0.1481 & 0.0376 & 0.0251 & 0.1595 \\
0.1284 & 0.0564 & 0.0418 & 0.1499
\end{bmatrix}
\]

After the weighting has been completed, the next step is the sum of all the alternatives' criteria. The results can be seen in Table 4.

Table 4. Yi Values

Alternative	Max	Min	Yi (Max - Min)
STAMI_Student01	0.2495	0.0694	0.1801
STAMI_Student02	0.3271	0.0925	0.2345
STAMI_Student03	0.2014	0.1388	0.0625
STAMI_Student04	0.2775	0.1018	0.1757
STAMI_Student05	0.2608	0.0925	0.1683
STAMI_Student06	0.2222	0.1481	0.0742
STAMI_Student07	0.2482	0.1284	0.1197
From the calculation of the value of Yi, the best ranking results are: STAMI_Student02 with the value of Yi = 0.2345. Ranking Result Graph can be seen visually in Figure 2.

![Figure 2. Ranking Result Graph](image)

4. Conclusion

Based on data processing using a decision support system for the selection of scholarship recipients to improve academic achievement at STAMI College using the MOORA method, it can be concluded that the process of selecting scholarship recipients can be done more easily and quickly. The application of DSS using the Moora method in the process of selecting student recipients of scholarships to increase academic achievement at the STAMI College is carried out using criteria consisting of parents' income, parents' dependents, semester and GPA.

References

[1] S. P. Tamba, M. D. Batubara, W. Purba, M. Sihombing, V. M. Mulia Siregar, and J. Banjarnahor, “Book data grouping in libraries using the k-means clustering method,” *J. Phys. Conf. Ser.*, vol. 1230, no. 1, p. 012074, Jul. 2019.

[2] V. M. Mulia Siregar and H. Sugara, “Implementation of artificial neural network to assessment the lecturer’s performance,” *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 420, no. 1, p. 012112, Oct. 2018.

[3] W. Purba, S. Tamba, and J. Saragih, “The effect of mining data k-means clustering toward students profile model drop out potential,” *J. Phys. Conf. Ser.*, vol. 1007, no. 1, p. 012112, Oct. 2018.

[4] P. D. P. Adi and A. Kitagawa, “Performance evaluation of E32 long range radio frequency 915 MHz based on internet of things and micro sensors data,” *Int. J. Adv. Comput. Sci. Appl.*, vol. 10, no. 11, pp. 38–49, 2019.

[5] P. D. P. Adi and A. Kitagawa, “ZigBee Radio Frequency (RF) performance on Raspberry Pi 3 for Internet of Things (IoT) based blood pressure sensors monitoring,” *Int. J. Adv. Comput. Sci. Appl.*, 2019.

[6] P. Adi, D. Prasetya, A. Setiawan, N. Nachrowie, and R. Arifuddin, “Design Of Tsunami Detector Based Sort Message Service Using Arduino and SIM900A to GSM/GPRS Module,” *Proc. Proc. 2nd Int. Conf. Adv. Sci. Innov. ICASI 2019, 18 July, Banda Aceh, Indones.*, 2019.

[7] P. D. P. Adi and A. Kitagawa, “A Study of LoRa Performance in Monitoring of Patient’s SPO2
and Heart Rate based IoT,” *Int. J. Adv. Comput. Sci. Appl.*, vol. 11, no. 2, 2020.

[8] D. Sitanggang *et al.*, “Diagnosing chicken diseases using fuzzy Tsukamoto web-based expert system,” *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 505, no. 1, p. 012086, Jul. 2019.

[9] Angelina *et al.*, “Application Selection Lending Houses Subsidized by the Method of AHP and SAW,” *J. Phys. Conf. Ser.*, vol. 1230, p. 012082, Jul. 2019.

[10] Mesran, G. Ginting, Suginam, and R. Rahim, “Implementation of Elimination and Choice Expressing Reality (ELECTRE) Method in Selecting the Best Lecturer (Case Study STMIK BUDI DARMA),” *Int. J. Eng. Res. Technol. (IJERT)*, vol. 6, no. 02, pp. 141–144, 2017.

[11] D. Bambang, T. Wijaya, T. Wahyono, and A. N. S. Hapsari, “TOPSIS Method Implementation for Employee Performance Information System,” *Int. J. Inf. Technol. Bus.*, vol. 2, no. 1, pp. 21–26, 2019.

[12] M. Sevkli, “An application of the fuzzy ELECTRE method for supplier selection,” *Int. J. Prod. Res.*, vol. 48, no. 12, pp. 3393–3405, Jun. 2010.

[13] A. Arabsheybani, M. M. Paydar, and A. S. Safaei, “An integrated fuzzy MOORA method and FMEA technique for sustainable supplier selection considering quantity discounts and supplier’s risk,” *J. Clean. Prod.*, vol. 190, pp. 577–591, 2018.

[14] H. Majumder and K. Maity, “Prediction and optimization of surface roughness and micro-hardness using gmn and MOORA-fuzzy-a MCDM approach for nitinol in WEDM,” *Measurement*, vol. 118, pp. 1–13, Mar. 2018.

[15] A. K. Sahu, S. S. Mahapatra, S. Chatterjee, and J. Thomas, “Optimization of surface roughness by MOORA method in EDM by electrode prepared via selective laser sintering process,” *Mater. Today Proc.*, vol. 5, no. 9, Part 3, pp. 19019–19026, 2018.

[16] A. Jayant, A. K. Chandan, and S. Singh, “Sustainable supplier selection for battery manufacturing industry: A MOORA and WASPAS Based Approach,” *J. Phys. Conf. Ser.*, vol. 1240, no. 1, 2019.

[17] S. Sutarno, M. Mesran, S. Supriyanto, Y. Yuliana, and A. Dewi, “Implementation of Multi-Objective Optimization on the Base of Ratio Analysis (MOORA) in Improving Support for Decision on Sales Location Determination,” *J. Phys. Conf. Ser.*, vol. 1424, no. 1, 2019.

[18] L. Pérez-Dominguez, K. Y. Sánchez Mojica, L. C. Ovalles Pabón, and M. C. Cordero Diáz, “Application of the MOORA method for the evaluation of the industrial maintenance system,” *J. Phys. Conf. Ser.*, vol. 1126, no. 1, 2018.