Symbiosis Comes of Age at the 10th Biennial Meeting of Wolbachia Researchers

Irene L. G. Newton,a Barton E. Slatkob

aDepartment of Biology, Indiana University, Bloomington, Indiana, USA
bMolecular Parasitology Group, New England BioLabs, Ipswich, Massachusetts, USA

ABSTRACT Wolbachia pipientis is an alphaproteobacterial obligate intracellular microbe and arguably the most successful infection on our planet, colonizing 40% to 60% of insect species. Wolbachia spp. are also present in most, but not all, filarial nematodes, where they are obligate mutualists and are the targets for antifilarial drug discovery. Although Wolbachia spp. are related to important human pathogens, they do not infect mammals but instead are well known for their reproductive manipulations of insect populations, inducing the following phenotypes: male killing, feminization, parthenogenesis induction, and cytoplasmic incompatibility (CI). The most common of these, CI, results in a sperm-egg incompatibility and increases the relative fecundity of infected females in a population. In the last decade, Wolbachia spp. have also been shown to provide a benefit to insects, where the infection can inhibit RNA virus replication within the host. Wolbachia spp. cannot be cultivated outside host cells, and no genetic tools are available in the symbiont, limiting approaches available for their study. This means that many questions fundamental to our understanding of Wolbachia basic biology remained unknown for decades. The 10th biennial international Wolbachia conference, Wolbachia Evolution, Ecology, Genomics and Cell Biology: A Chronicle of the Most Ubiquitous Symbiont, was held on 17 to 22 June 2018 in Salem, MA. In this review, we highlight the new science presented at the meeting, link it to prior efforts to answer these questions across the Wolbachia genus, and present the importance of these findings to the field of symbiosis. The topics covered in this review are based on the presentations at the conference.

KEYWORDS Wolbachia, conference, symbiosis

MOLECULAR MECHANISMS OF SYMBIOSIS

One major unifying theme emerged from the presentations, the attempt to discern the molecular mechanisms of symbiosis. The major phenotypes of Wolbachia spp. induced in the host include reproductive manipulations, but until now, we have not identified how the symbiont alters the host to produce these effects. Researchers have used models to try and make sense of the complex bidirectional incompatibility induced by the symbiont (1), have explored the influence of host and symbiont genotypes on the induced reproductive effects (2, 3), have studied the influence of environmental or ecological factors (4, 5), and have performed comparative genomics analyses (6) to try and identify the mechanism(s). A large increase in available genomes for analyses coupled to advances in our ability to detect proteins by mass spectrometry resulted in a major discovery in the field (7). A holy grail of arthropod Wolbachia research was found last year when two phage WO genes, cifA and cifB, were shown to mediate cytoplasmic incompatibility (8, 9). At the meeting, cytoplasmic incompatibility (CI) rescue was shown to be mediated by one of the same prophage WO genes which exist in an operon in the Wolbachia phage genome (10). Although this arrangement is reminiscent of toxin-antitoxin operons, Dylan Shropshire of the Seth Bordenstein lab
suggested that this model may not be a clean representation for the induction of CI in *Wolbachia* spp. Shropshire showed both synthetic induction of CI, through transgenic expression of the toxin, as well as synthetic rescue, and presented a one-step model for the emergence of bidirectional CI. We now know that although both phage-encoded proteins are required for the induction of CI (9), overexpression of one alone can rescue the phenotype. Mark Hochstrasser presented work on the identification of these two phage-encoded proteins and the characterization of the toxin as a deubiquitinase (8), and Brittany Leigh of the Bordenstein lab presented work exploring how these proteins might be delivered to the host, perhaps by the phage itself. Furthering the mechanistic analysis of how CI is achieved, John Beckmann presented work using the *Saccharomyces* model system to identify eukaryotic targets for the CI toxin, which may include host proteins that are involved in nuclear import and chromosome structure. Mylene Weill brought this story to the field and presented how these CI loci have diversified across *Wolbachia* spp. infecting different *Culex pipiens* mosquitoes (11). Strikingly, patterns of CI between these hosts are concordant with the similarities in the CI loci of their *Wolbachia* spp. For an excellent review of potential CI mechanisms and the evolution of the *cit* loci, see reference 12.

Regardless of the phenotype induced in the host, all *Wolbachia* strains share the need to colonize host cells and be efficiently maternally transmitted (13). In addition, to achieve their near-ubiquitous distribution, *Wolbachia* spp. must have mechanisms that promote transmission and maintenance in the cellular environments of different hosts. *Wolbachia* spp. encode and express a type IV secretion system, and it is likely that these symbionts modify the host environment via secreted effectors (13, 14). Researchers at the meeting presented work on requirements for *Wolbachia* colonization of hosts and how *Wolbachia* spp. modify host biology when in symbiosis. Many advances in the *Wolbachia* field have used the *Drosophila melanogaster* model system to identify eukaryotic targets for the CI toxin, which we now know of fly biology and the ease of genetic tools to dissect the symbiosis (15–18). A significant body of work presented used the *Drosophila* model system and takes advantage of genetics in the host to identify pathways required for colonization. For example, Yolande Grobler of the Ruth Lehmann laboratory presented a high-throughput RNA interference (RNAi) screen to identify ribosome or translation initiation factors as important for *Wolbachia* colonization and found that host translation is inhibited by *Wolbachia* spp. (19). Grobler won a joint first-place presentation award for this exciting work that supports the observation that *Wolbachia* infection reduces translation in cell culture (20). Also using the *D. melanogaster* model, Horacio Frydman presented work showing that wnt signaling influences *Wolbachia* colonization of polar cells. *Wolbachia* spp. had previously been shown to require host microtubules for its localization within the developing oocyte (15) and to move along microtubule tracks. At the meeting, Shelbi Russell of the Bill Sullivan laboratory identified the competition between *Wolbachia* spp. and host germ line components during kinesin-mediated transport (21). A novel mechanism for *Wolbachia* titer control was presented by Teddy van Opstal of the Bordenstein lab, who used the *Nasonia* model to identify the taxon-restricted gene, *wds*, which maternally controls *Wolbachia* titer differences between closely related *Nasonia* species. These presentations identified new host components needed for *Wolbachia* colonization and emphasized the reliance of *Wolbachia* spp. on host cytoskeletal elements. One of the most exciting talks was that of Elves Duarte of the Luis Teixeira laboratory, who won a joint first-place award for his presentation. Duarte used ethyl methanesulfonate (EMS) to generate flies with overproliferative *Wolbachia* spp. He is taking a resequencing approach to identify potential polymorphisms or genetic ablations that lead to the overproliferative phenotype. He has observed that changes in the Octomom region are also present in these pathogenic lines. The region clearly serves to regulate *Wolbachia* titers, as this same group has correlated Octomom copy number with titer increases (22), but the mechanism has yet to be identified.

As *Wolbachia* spp. are intracellular bacteria, many in the field are interested in identifying how *Wolbachia* spp. survive in eukaryotic cells and how the symbiont alters
host cell biology. Some of the most convincing and elegant studies have used microscopy to track Wolbachia localization and titer within important tissues, such as the reproductive tract (15, 16, 23, 24). Using this approach, Moises Camacho of the Laura Serbus laboratory presented microscopic quantification of Wolbachia sp. replication during oogenesis. Using 3-dimensional reconstruction of confocal microscopy images, Camacho’s data indicated exponential growth of Wolbachia across oogenesis and an approximation of possible Wolbachia replication rates within that tissue. Intuitively, one might expect that an intracellular infection would dramatically alter host biology, and indeed, Wolbachia spp. have been shown to alter host transcriptomics and proteomics (25, 26). At the meeting, several researchers presented work on modifications of the host environment by Wolbachia spp. For example, Denis Voronin showed that the glucose metabolism in parasitic filarial nematodes is likely mediated by host proteins on the surface of Wolbachia-containing vacuoles. Voronin’s results suggest an intimate metabolic association between Wolbachia spp. and their host, such that major host metabolic pathways may be used by the symbiont. Metabolic entanglements were also presented by Alexandra Grote of the Elodie Ghedin lab, where flux balance analysis suggests that many metabolic reactions in the Brugia filarial nematodes are provided by Wolbachia spp. These results would be further evidence of a mutualism between Wolbachia spp. and their filarial nematode hosts (27). Frederic Landmann presented work showing that in Brugia spp., Wolbachia spp. stimulate egg production and are essential to the germ line stem cell homeostasis. Mark Deehan of the Horacio Frydman lab showed that rapamycin treatment of flies alters Wolbachia titer and therefore that an increase in autophagy decreases Wolbachia density suggesting. This result echoes previous work by Denis Voronin suggesting that Wolbachia populations are regulated by host autophagy. Towards the identification of a mechanism mediating these types of interactions, Irene Newton presented work on candidate proteins secreted by Wolbachia spp. via the type IV secretion system (T4SS). Although all Wolbachia strains sequenced thus far contain the genes encoding the T4SS machinery, the proteins secreted by these systems (the effectors) have not been well characterized across the genus (28). In the host Drosophila melanogaster, the candidate effectors are coregulated with the T4SS, and one secreted substrate, WalE1, interacts with actin and actin-regulatory proteins (28, 29). Amelia Lindsey of the Irene Newton laboratory presented work showing that Wolbachia spp. alter the expression of its T4SS and effectors in response to host-derived signals.

USING WOLBACHIA SPP. TO LIMIT VECTORED DISEASES

The recent claim to fame of Wolbachia spp. is their ability to inhibit pathogen replication (for a review, see reference 30), and a large body of research was presented at the meeting, further characterizing this phenomenon and determining at the mechanism. For example, Beth McGraw used experimental evolution to identify genetic variance in both Aedes aegypti and Wolbachia sp. strain wMel with regard to pathogen blocking through selection on that trait. Interestingly, Wolbachia density, long thought to be correlated with extent of pathogen blocking across host systems (31), did not explain the increase in protection. With regards to what mechanism might explain RNA virus inhibition mediated by the symbiont, Manabu Ote suggested that RNAs might be generally targets for Wolbachia-mediated phenotypes, explaining pathogen blocking as a side effect of host-Wolbachia interaction, while Tamanash Bhattacharya of the Irene Newton laboratory presented data suggesting that Wolbachia spp. alter the expression of a host methyltransferase to epigenetically modify virus RNA genomes and won a presentation award (32). The session ended with sobering words from two presentations, in which both Jason Rasgon and Heather Flores reminded the attendees that the pathogen-blocking phenotype is more complex and dependent on host-symbiont-pathogen combination (33, 34). Finally, Wolbachia spp. are also known to inhibit other pathogens, beyond viruses, and Fabio Gomes, who won a presentation award, described Anopheles mosquitoes containing Wolbachia spp. that reduce malaria transmission.
Another way to limit pathogen spread is to control vector populations, and Wolbachia spp. have a long history as biocontrol agents. Several potential strategies exist for the use of Wolbachia spp. in arthropod-based disease control (35, 36). These can be divided into two broad categories, Wolbachia population reduction or Wolbachia population replacement. The first general strategy is to reduce insect populations by using CI to produce males which, when released in the population, mate to indigenous females, resulting in defective embryogenesis. This is a form of an incompatible insect technique (IIT) using Wolbachia spp., an offshoot of an older sterile insect technique (SIT) (36) in which repeated introductions of sterile males (created by irradiation or chemical sterilization) are released to mate and reduce population size. IIT relies on CI, in which females are effectively sterilized when they mate with males harboring no or an incompatible Wolbachia strain. Since male mosquitoes do not feed on blood and thus do not transmit disease, extensive or repetitive release of male mosquitoes is not a health or nuisance issue. In this light, presentations by Zhiyong Xi and Kaycie Hopkins described the creation of “mosquito factories” wherein sterile males are bred for release to reduce mosquito populations and thus the incidence of human arthropod mosquito-borne viral diseases. The second strategy, populational replacement, is not designed to reduce population size but uses CI to replace females in the population with Wolbachia-infected females that have the ability to block or reduce pathogen transmission. CI can thus create a “populational sweep” to enable the introduced Wolbachia spp. to obtain high infection frequency in the population.

WOLBACHIA SPP. IN FILARIAL NEMATODES

Most human filarial nematode parasites are hosts for Wolbachia spp. Intracellular bacteria were first detected in filarial nematode tissues by electron microscopy (37, 38) and later identified as belonging to Wolbachia by molecular analyses (39). While not all filarial nematodes have Wolbachia spp., when present, they are mutualists, required for normal worm development, fertility, and survival. Due to their obligate nature in those filarial parasites, Wolbachia spp. have been a novel drug discovery target using a variety of approaches, including diversity and focused library screening and the use of genomic sequence analysis to identify gene products required for maintenance of the symbiotic relationship (40, 41). Current antifilarial drugs only affect the microfilarial stages and thus require repeated mass drug administrations to eliminate them as they are continually produced by the filarial nematode adults. In vitro and in vivo anti-Wolbachia antibiotic treatments have been shown to have adulticidal activity, a long-sought goal of filarial parasite drug discovery. A goal of anti-Wolbachia drug discovery has also been to reduce the time needed for administration (for example, doxycycline requires 4 to 6 weeks of treatments) and remove any antibiotic counterindications for women of child-bearing age and for children under the age of 6. At the meeting, Mark Taylor highlighted the latest outputs from the anti-Wolbachia drug screening program A-WOL (https://awol.lstmed.ac.uk/) aimed to discover and develop new curative anti-Wolbachia drugs and regimens for onchocerciasis and lymphatic filariasis (42). A major goal of the project, a macrofilaricide course of treatment of 7 days or less, has now been achieved with combination drug therapy (43), and with new candidate drug monotherapy with TylaMac and AW1066 entering phase I trials and further preclinical testing.

A LARGER SYMBIOSIS FRAMEWORK INCLUDING SPIROPLASMA SPP. AND OTHER SYMBIOSES

The Wolbachia meetings have always been home to researchers on reproductive manipulators outside the genus, such as for Spiroplasma. Toshiyuki Harumoto of the Bruno Lemaitre lab presented his discovery of a male-killing toxin in Spiroplasma poulsonii, which they named spaid (44). This “androcidin,” predicted since the early 1970s, is located on a plasmid and encodes both an ankyrin domain and an ovarian tumor (OTU) domain. Transgenic expression of the entire gene recapitulated male killing. A potential mechanism for Wolbachia male killing was also presented by Jessie Perlmutter of the Bordenstein laboratory; yet, another prophage gene, named wmk,
kills males preferentially upon transgenic expression. Another mechanism of symbiosis in Spiroplasma spp. was presented by Steve Perlman. Spiroplasma spp. confer protection in Drosophila spp. against both parasitic nematodes and wasps, and he identified a diverse repertoire of ribosome-inactivating toxins (RIPs) that target ribosomes of parasites developing in the host (45, 46). He further showed that these toxins are common in protective symbioses and that they cleave 28S rRNA of the invading parasite. The meeting also included presentations from Maki Inoue and Daisuke Kageyama on male killing and viruses, such as partitiviruses, that produce separate capsids for each genomic segment.

Just as symbionts alter host cell biology, the external environmental conditions can shape endosymbiont dynamics inside the host, and as a result, a different phenotype can be observed. The prevalence and penetrance of symbioses, therefore, can vary across years and seasons. For example, Martha Hunter discussed variation in infection frequency of symbiont Rickettsia spp. in the sweet potato whitefly Bemisia tabaci over 16 years (2000 to 2016). Her group saw symbiont frequency climb from 1% to 97% from 2000 to 2006 (47), stay high through 2011 (48), and then drop to 36% in 2017. A similar fluctuation in the prevalence of Hamiltonella defensa across 6 months was observed in the pea aphid by Jacob Russell. Temperature, altitude, and host plants determined the infection dynamics of Wolbachia, Cardinium, and Spiroplasma spp. in spider mites (Tetranychus truncatus), as investigated by Xiao-Yue Hong. He found that Wolbachia infection was more prevalent in the geographical area with high mean temperature, but hosts infected with Cardinium and Spiroplasma were likely to be found at higher altitude. Temperature also took center stage in a study by Amy Truitt, who showed that Wolbachia infection modified thermal preference in Drosophila melanogaster. Flies infected with the bacterium preferred cooler temperatures than uninfected flies, and the influence was strain dependent (49).

Jennifer Morrow described the presence of primary and secondary symbionts in psyllid species (50), suggesting strict vertical transmission of a minimal endosymbiont “core” and yet divergence of symbionts and gene families to maintain functional metabolic integrity. Ben Makepeace followed “Candidatus Midichloria” in European tick populations suggesting widespread horizontal transmission (51). Finally, Takema Fukatsu presented the discovery that across some cicada species, the bacterial symbiont Candidatus Hodgkinia has been replaced by Ophiocordyceps fungi (52). This fungus, which normally-parasitizes cicadas, has been recruited as a mutualistic symbiont in some lineages.

WOLBACHIA GENOMICS AND TRANSCRIPTOMICS

Because Wolbachia spp. cannot be cultured outside host cells, much of what we know about Wolbachia spp. has come from genomic and transcriptomic sequencing studies. However, how does one target and sequence the genetic material from an intracellular symbiont? At the 2018 meeting, several new bioinformatics and wet lab approaches were presented to facilitate the sequencing process, including approaches by Mark Gasser of the Julie Dunning Hotopp laboratory, who presented results using MinION long-read sequencing for Wolbachia spp., a strategy that allowed him to assemble the entire prophage region easily with the long reads. Emilie Lefoulon from the Slatko laboratory presented an enrichment strategy for a supergroup J Wolbachia genome and also turned heads as she described the smallest Wolbachia genome yet, at 864,015 bp, and missing the gene encoding the cell division protein FtsZ. Genomics tools were also presented by Julie Dunning Hotopp, who used stage-specific transcriptome sequencing to show that, unlike Wolbachia sp. wMel in Drosophila spp., Wolbachia sp. strain wBm in the nematode Brugia malayi does not regulate its gene expression based on host developmental stage. Wolbachia genomic fragments are known to have integrated into host genomes over evolutionary timescales (lateral gene transfer [LGT] events) (53, 54), and two presentations at the meeting focused on these LGTs. Robin Bromley of the Dunning Hotopp lab presented new software (LGTSeek) based on short-read junctions to assist in finding LGTs within insect genomic data sets (http://www.igs.umaryland.edu/labs/lgthgt/analysis/lgt-seek/), while Alistair Darby presented...
his data on LGTs within *Aedes albopictus*. These LGTs can have a significant impact on host biology, as seen in pillbugs (55) and, more recently it seems, in booklice (56).

EVOLUTION AND SPREAD OF WOLBACHIA SPP.

Because *Wolbachia* spp. often manipulate host reproduction, benefiting females by increasing their relative fitness in populations, the microbe can have significant consequences on host evolution (57, 58). *Wolbachia* infections can enter new populations, spread, and persist within them by the reproductive manipulations for which it is famous (59, 60), although some strains seem to induce no phenotypic effect at all in their hosts (61, 62). In related work, Guilherme Baião used transcriptome sequencing to identify *Wolbachia*-regulated transcripts in *Drosophila paulistorum*, detailing the influence of *Wolbachia* on pre- and postmating isolation mechanisms, possibly contributing to host speciation. Brandon Cooper presented comparative population genomics of *Wolbachia* spp. within the hybridizing *Drosophila yakuba* clade in West Africa, where infection frequencies vary across time and space. Cooper observed that some host loci yet to be identified modulate cytoplasmic incompatibility in *Drosophila teissieri*. Michael Turelli, in collaboration with Brandon Cooper, Will Conner, Ary Hoffman, and colleagues, discussed the predominant modes of *Wolbachia* acquisition, including the observation that *Drosophila* hosts diverged up to 50 million years ago have *Wolbachia* spp. that diverged only a few thousand years ago (63). These results suggest that *Wolbachia* spp. rapidly invade new host species through either introgression or horizontal acquisition.

The evolution of the *Wolbachia* genus, and the placement of different clades within the genus (known as supergroups), has been a topic of some debate (64–69). At the meeting, Michael Gerth, who won a presentation award, cautioned that the use of multilocus sequence typing (MLST) primer sets may not be an accurate determiner of species identification and that analysis using genome sequencing, if sequences were available, would be more accurate method. He also presented a provocative phylogeny that rooted the *Wolbachia* tree at supergroup B, suggesting that nematode association was a secondary adaptation. The *Wolbachia* 2018 meeting highlighted exciting new developments in the field from functional genomics to biochemistry and genetics. Each meeting ends with a brief topic for attendee discussion, and this year, the topic revolved around symbiont evolution and *Wolbachia* supergroup/species naming (for more background on this debate, see references 70 and 71). Based on that discussion, a working group was formed, headed by Julie Dunning Hotopp, to create a viable nomenclature system for *Wolbachia* systematics (72).

CONCLUSIONS AND FUTURE DIRECTIONS FOR WOLBACHIA RESEARCH

Wolbachia research transverses biology. The *Wolbachia* 2018 meeting highlighted exciting new developments in the field, including functional genomics, biochemistry, development, cell biology, genetics, and population ecology. Over 100 participants from 20 countries attended, and there were over 60 oral presentations and 20 posters covering a wide range of topics, including species-level identification, development, cell biology, genomics, ecology, and evolution. The conference was funded by grants from the National Science Foundation (NSF), Burroughs Wellcome Fund, Pacific Biosciences, Mini-One, EmbiTec, and New England BioLabs. A complete list of speakers, the abstract book, and topics can be found on the website (https://wolbachia2018.org/). At this year’s *Wolbachia* meeting, the field seemed to have come of age. Major discoveries were presented, including the identification of toxins secreted by symbionts to alter host reproduction and the host pathways and cell biology required for maintenance of the infection, but major questions remain in the field. For example, the host targets of the *cil*-encoded proteins have not been identified, and the mechanism by which these toxins induce CI is not yet known. Are the mechanisms of reproductive manipulation conserved across bacterial symbionts of insects? The presence of a deubiquitylase domain in toxins found across the *Rickettsiales* clade, in *Wolbachia* spp., and in *Spiroplasma* spp. might suggest this (73). Outstanding challenges in the field include
the inability to culture *Wolbachia* spp. *ex vivo* and genetically manipulate the microbe, but exciting new approaches make linking genotype to phenotype more likely in the future. For example, the ability to generate new *Wolbachia*-infected cell lines has facilitated the study of the microbe and its use in vector control (74). Major questions remain with regard to the evolution of the genus, such as which came first, the insect-associated clades or the nematode associations? With more genomes coming online every month, perhaps this long-standing question will finally be answered. The next *Wolbachia* meeting will be held in Crete in 2020, and the community looks forward to advances and answers to some of these questions.

REFERENCES

1. Poinsot D, Charlat S, Mercot H. 2003. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: confronting the models with the facts. Bioessays 25:259–265. https://doi.org/10.1002/bies.10234.
2. Bordenstein SR, Werren JH. 1998. Effects of A and B Wolbachia and host genotype on interspecies cytoplasmic incompatibility in *Nasonia*. Genet. 148:1833–1844.
3. Giordano R, O’Neill SL, Robertson HM. 1995. Wolbachia infections and the expression of cytoplasmic incompatibility in *Drosophila sechellia* and *D. mauritiana*. Genetics 140:1307–1317.
4. Reynolds KT, Hoffmann AA. 2002. Male age, host effects and the weak expression of non-expression of cytoplasmic incompatibility in *Drosophila* strains infected by maternally transmitted Wolbachia. Genet Res 80:79–87.
5. van Opijnen T, Breuwer JA. 1999. High temperature eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont, from the two-spotted spider mite, *Tetranychus urticae*. Appl Environ Microbiol 65:177–181. https://doi.org/10.1128/AEM.65.1.177-181.1999.
6. Newton IL, Clark ME, BN, Bordenstein SR, Qu J, Richards S, Kelkar YD, Werren JH. 2016. Comparative genomes of two closely related *Wolbachia* with different reproductive effects on hosts. Genome Biol Evol 8:1526–1542. https://doi.org/10.1093/gbe/eww096.
7. Beckmann JF, Fallon AM. 2013. Detection of the *Wolbachia* protein CPI0028 in mosquito *sporormiella* imp:lications for cytoplasmic incompatibility. Insect Biochem Mol Biol 43:867–878. https://doi.org/10.1016/j.ibmb.2013.07.002.
8. Beckmann JF, Ronau JA, Hochstrasser M. 2017. A *Wolbachia* deubiquitylating enzyme induces cytoplasmic incompatibility. Nat Microbiol 2:17007. https://doi.org/10.1038/nmico.2017.7.
9. LePage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI, Shropshire JD, Layton EM, Funkhouser-Jones LJ, Beckmann JF, Bordenstein SR. 2017. Prophage WO genes recapitulate and enhance *Wolbachia*-induced cytoplasmic incompatibility. Nature 543:243–247. https://doi.org/10.1038/nature21391.
10. Lindsey ARI, Rice DW, Bordenstein SR, Brooks AW, Bordenstein SR, Newton ILG. 2018. Evolutionary genetics of cytoplasmic incompatibility genes cIf and cIfB in prophase WO of Wolbachia. Genome Biol Evol 10:434–451. https://doi.org/10.1093/gbe/evy025.
11. Bonneau M, Ativame C, Beji M, Justy F, Cohen-Gonsaud M, Sicard M, Weill M. 2018. *Culex pipiens* crossing type diversity is governed by an amplified and polymorphic operon of *Wolbachia*. Nat Commun 9:3191. https://doi.org/10.1038/s41467-017-02749-w.
12. Beckmann JF, Bonneau M, Chen H, Hochstrasser M, Poinsot D, Mercot H, Weill M, Sicard M, Charlat S. 2019. The toxin-antidote model of cytoplasmic incompatibility: genetics and evolutionary implications. Trends Genet 35:175–185. https://doi.org/10.1016/j.tig.2018.12.004.
13. Bhattacharya T, Newton I. 2018. Mi casa es su casa: how an intracellular symbiont manipulates host biology. Environ Microbiol 11(12):2920–2932. https://doi.org/10.1111/1462-2920.14065.
14. Masui S, Sasaki T, Ishikawa H. 2000. Genes for the type IV secretion system in an intracellular symbiont, *Wolbachia*, a causative agent of various sexual alterations in arthropods. J Bacteriol 182:6529–6531. https://doi.org/10.1128/JB.182.22.6529-6531.2000.
15. Ferree PM, Frydman HM, Li JM, Cao J, Wieschaus E, Sullivan W. 2005. Wolbachia utilizes host microtubules and Dynein for anterior localization in the *Drosophila* oocyte. PLoS Pathog 1:e14. https://doi.org/10.1371/journal.ppat.0010014.
16. Frydman HM, Li JM, Robson DN, Wieschaus E. 2006. Somatic stem cell niche tropism in *Wolbachia*. Nature 441:509–512. https://doi.org/10.1038/nature04756.
17. Tram U, Ferree PM, Sullivan W. 2003. Identification of *Wolbachia*-host interacting factors through cytological analysis. Microbes Infect 5:999-1011. https://doi.org/10.1016/S1286-4597(03)00192-8.
18. Tram U, Sullivan W. 2002. Role of delayed nuclear envelope breakdown and mitosis in *Wolbachia*-induced cytoplasmic incompatibility. Science 296:1124–1126. https://doi.org/10.1126/science.1070536.
19. Grobler Y, Yun CY, Kahler DJ, Bergman CM, Lee H, Oliver S, Lehmann R. 2018. Whole genome screen reveals a novel relationship between *Wolbachia* levels and Drosophila host translation. PLoS Pathog 14(e1007445). https://doi.org/10.1371/journal.ppat.1007445.
20. Schultz MJ, Tan AL, Gray CN, Isem S, Michael SF, Frydman HM, Connor JH. 2018. *Wolbachia* wSt blocks Zika virus growth at two independent stages of viral replication. mBio 9:e00738-18. https://doi.org/10.1128/mBio.00738-18.
21. Russell SL, Lemsfeder N, Sullivan WT. 2018. *Wolbachia* and host germline components compete for kinesin-mediated transport to the posterior pole of the *Drosophila* oocyte. PLoS Pathog 14(e1007216). https://doi.org/10.1371/journal.ppat.1007216.
22. Chróstek E, Teixeira L. 2015. Mutualism breakdown by amplification of *Wolbachia* genes. PLoS Biol 13:e1002065. https://doi.org/10.1371/journal.pbio.1002065.
23. Landmann F, Bain O, Martin M, Uni S, Taylor MJ, Sullivan W. 2012. Both asymmetric mitotic segregation and cell-to-cell invasion are required for stable germline transmission of *Wolbachia* in filarial nematodes. *Biol Open* 1:356–357. https://doi.org/10.1242/bio.2012737.
24. Landmann F, Foster JM, Splitko B, Sullivan W. 2010. Asymmetric *Wolbachia* segregation during early Brugia malayi embryogenesis determines its distribution in adult host tissues. *PLoS Negl Trop Dis* 4:e758. https://doi.org/10.1371/journal.pntd.0000758.
25. Caragata EP, Pias FS, Benton LA, Silva JB, Sorgine MH, Moreira LA. 2017. The transcriptome of the mosquito *Aedes fluviatilis* (*Diptera: Culicidae*), and transcriptional changes associated with its native *Wolbachia* infection. BMC Genomics 18:6. https://doi.org/10.1186/s12864-016-3441-4.
26. Christensen S, Perez DuValds E, Hrdlick VE, Mottaz AJ, Nakayasu EA, Paul LN, Serbus LR. 2016. *Wolbachia* endosymbionts modify drosophila ovarian protein levels in a context-dependent manner. Appl Environ Microbiol 82:5354–5363. https://doi.org/10.1128/AEM.01254-16.
27. Fenn K, Blaxter M. 2004. Are filarial nematode *Wolbachia* obligate mutualist symbionts? Trends Ecol Evol 19:163–166. https://doi.org/10.1016/j.tree.2004.01.002.
28. Rice DW, Sheehan KB, Newton ILG. 2017. Large-scale identification of Wolbachia piopsiens is effectors. Genome Biol Evol 9:1925–1937. https://doi.org/10.1093/gbe/evx139.
29. Sheehan KB, Martin M, Lesser CF, Isberg RR, Newton IL. 2016. Identification and characterization of a candidate *Wolbachia* piopsiens type IV effector that interacts with the actin cytoskeleton. *mBio* 7:e00622-16. https://doi.org/10.1128/mBio.00622-16.
30. Lindsey ARI, Bhattacharya T, Newton ILG, Hardy RW. 2018. Conflict in the intracellular lives of endosymbionts and viruses: a mechanistic look at *Wolbachia*-mediated pathogen-blocking. Viruses 10:e1641. https://doi.org/10.3390/v10040141.
32. Bhattacharya T, Newton ILG, Hardy RW. 2017. Wolbachia enhances host myelotransferase expression to block an RNA virus early during infection. PLoS Pathog 13:e1006427. https://doi.org/10.1371/journal.ppat.1006427.

33. Hughes GL, Rivero A, Rasgon JL. 2014. Wolbachia can enhance Plasmodium infection in mosquitoes: implications for malaria control? PLoS Pathog 10:e1004182. https://doi.org/10.1371/journal.ppat.1004182.

34. Dodson BL, Hughes GL, Paul O, Matacchieiro AC, Kramer LD, Rasgon JL. 2014. Wolbachia enhances West Nile virus (WNV) infection in the mos-quito Culex tarsalis. PLoS Negl Trop Dis 8:e29965. https://doi.org/10.1371/journal.pntd.0002965.

35. LePage D, Bordenstein SR. 2013. Wolbachia: can we save lives with a bacterial symbiont? Nature Med 19:266–268.

36. Bhattacharya T, Newton ILG, Hardy RW. 2017. Wolbachia elevates pathogen persistence in insect vectors: ribosome-inactivating proteins and defense against parasitic infection. Proc Natl Acad Sci USA 113:15036–15041. https://doi.org/10.1073/pnas.1608971113.

37. Turelli M, Cooper BS, Ginsberg PS, Turelli M, Weeks AR. 2013. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog 9:e1003607. https://doi.org/10.1371/journal.ppat.1003607.

38. Cooper BS, Ginsberg PS, Turelli M, Matute DR. 2017. Wolbachia in the Drosophila yakuba complex: pervasive frequency variation and weak cytoplasmic incompatibility, but no apparent effect on reproductive isolation. Genetics 203:333–351. https://doi.org/10.1534/genetics.116.196238.

39. Turelli M, Hoffmann AA, Lee SF, Turelli M, Weeks AR. 2013. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog 9:e1003607. https://doi.org/10.1371/journal.ppat.1003607.

40. Turelli M, Cooper BS, Ginsberg PS, Turelli M, Weeks AR. 2013. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog 9:e1003607. https://doi.org/10.1371/journal.ppat.1003607.

41. Holman AG, Davis PJ, Foster JM, Carlow CK, Kumar S. 2009. Computational analysis of a high-throughput anti-Wolbachia whole-cell screen: a route to macrofilaricidal drugs against onchocerciasis and lymphatic filariasis. J Biomol Screen 20:64–69. https://doi.org/10.1177/1087057114551518.

42. Turner JD, Sharma R, Al Jayoussi G, Tyrer HE, Gamble J, Hayward L, Moreira LA, Bossis A, Steinert R, et al. 2013. The minimal bacterial communities of psyllids. Microbiome 5:58.

43. Leclercq S, Theze J, Chebbi MA, Giraud I, Moumen B, Ernenwein L, Greve G, Gilchrist J, Sincrans A, et al. 2011. A global spread of wRi-like Wolbachia across multiple Drosophila. Curr Biol 21:1284–1289. https://doi.org/10.1016/j.cub.2011.08.035.

44. Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS. 2011. Wolbachia reduces Prionemonas excavatus densities of incipient endosymbiont complementation and replacement in minimal bacterial communities of psyllids. Microbiome 5:58. https://doi.org/10.1186/2041-0179-2-056.45.

45. Turelli M. 2014. Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpul-licephalus. Mol Ecol 23:2871–2885. https://doi.org/10.1111/mec.12901.

46. Leclercq S, Palancier MK, Conner WR, Bailey JA, Turelli M, Cooper BS. 2018. Loss of cytoplasmic incompatibility and minimal fecundity effects explain relatively low Wolbachia frequencies in Drosophila mauritiana. bioRxiv. https://doi.org/10.1101/461574v1.

47. Turelli M, Cooper BS, Richardson KM, Ginsberg PS, Peckenaugh B, Antelope CX, Kim KJ, May MR, Abrieux A, Wilson DA, Bronski MJ, Moore BR, Gao JJ, Eisen MB, Chiu JC, Conner WR, Hoffmann AA. 2018. Rapid global spread of wRi-like Wolbachia across multiple Drosophila. Curr Biol 28:963–971.E8. https://doi.org/10.1016/j.cub.2018.02.015.

48. Herdez M, Breidorn C. 2016. Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nat Microbiol 2:16241. https://doi.org/10.1038/nmicrobiol.2016.241.

49. Brosnihan A, Wasala SK, Howe DK, Peetz AB, Sazada IA, Denver DR. 2016. Wolbachia: reproductive parasites of arthropods. Proc Natl Acad Sci USA 113:11063–11068. https://doi.org/10.1073/pnas.1605646113.

50. Matsuura Y, Moriyama M, Marra K, Wanders PJ, Tamashitei S, Dash M, Gilg AM, Gilbert L, Plantard O, Sassera D, Makepeace BL. 2019. Multi-location sequence typing of kitesxidicrices and its symbiotic Candidatus Midichloria mitochondrii across Europe reveals evidence of local cladogenesis in Scotland. Ticks Tick Borne Dis 10:52–62. https://doi.org/10.1016/j.jtbdb.2018.08.016.

51. Ramírez-Puebla et al., “Species in Wolbachia? Proposal for the designa-
71. Ramírez-Puebla ST, Servín-Garcidueñas LE, Ormeño-Orrillo E, Vera-Ponce de León A, Rosenblueth M, Delaye L, Martínez J, Martínez-Romero E. 2015. Species in Wolbachia? Proposal for the designation of ‘Candidatus Wolbachia bourtziisi’, ‘Candidatus Wolbachia onchocercicola’, ‘Candidatus Wolbachia blaxteri’, ‘Candidatus Wolbachia brugii’, ‘Candidatus Wolbachia taylori’, ‘Candidatus Wolbachia collombolicola’ and ‘Candidatus Wolbachia multihospitum’ for the different species within Wolbachia supergroups. Syst Appl Microbiol 38:390–399. https://doi.org/10.1016/j.syapm.2015.05.005.

72. Chung M, Munro JB, Tettelin H, Dunning Hotopp JC. 2018. Using core genome alignments to assign bacterial species. mSystems 3:e00326-18. https://doi.org/10.1128/mSystems.00326-18.

73. Harumoto T, Fukatsu T, Lemaitre B. 2018. Common and unique strategies of male killing evolved in two distinct Drosophila symbionts. Proc Biol Sci 285:20172167. https://doi.org/10.1098/rspb.2017.2167.

74. Fallon AM. 2019. Conditions facilitating infection of mosquito cell lines with Wolbachia, an obligate intracellular bacterium. In Vitro Cell Dev Biol Anim 55:120–129. https://doi.org/10.1007/s11626-019-00319-6.