TsrA Regulates Virulence and Intestinal Colonization in *Vibrio cholerae*

Cory D. DuPai, Ashley L. Cunningham, Aaron R. Conrado, Claus O. Wilke, Bryan W. Davies

Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA

Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA

Center for Systems and Synthetic Biology, John Ring LaMontagne Center for Infectious Diseases, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA

Cory D. DuPai and Ashley L. Cunningham contributed equally to this article. These authors are listed in order of decreasing seniority.

ABSTRACT Pathogenic strains of *Vibrio cholerae* require careful regulation of horizontally acquired virulence factors that are largely located on horizontally acquired genomic islands (HAIs). While TsrA, a *Vibrionaceae*-specific protein, is known to regulate the critical HAI virulence genes toxT and ctxA, its broader function throughout the genome is unknown. Here, we find that deletion of *tsrA* results in genomewide expression patterns that heavily correlate with those seen upon deletion of *hns*, a widely conserved bacterial protein that regulates *V. cholerae* virulence. This correlation is particularly strong for loci on HAIs, where all differentially expressed loci in the Δ*tsrA* mutant are also differentially expressed in the Δ*hns* mutant. Correlation between TsrA and H-NS function extends to *in vivo* virulence phenotypes where deletion of *tsrA* compensates for the loss of ToxR activity in *V. cholerae* and promotes wild-type levels of mouse intestinal colonization. All in all, we find that TsrA broadly controls *V. cholerae* infectivity via repression of key HAI virulence genes and many other targets in the H-NS regulon.

IMPORTANCE Cholera is a potentially lethal disease that is endemic in much of the developing world. *Vibrio cholerae*, the bacterium underlying the disease, infects humans utilizing proteins encoded on horizontally acquired genetic material. Here, we provide evidence that TsrA, a *Vibrionaceae*-specific protein, plays a critical role in regulating these genetic elements and is essential for *V. cholerae* virulence in a mouse intestinal model.

KEYWORDS *Vibrio cholerae*, gene regulation, H-NS, TsrA, computational biology, genetics, virulence regulation

Vibrio cholerae is the causative agent of the potentially lethal disease cholera. Several factors on the progenitor genome and horizontally acquired genetic islands (HAIs) (1–4) act in concert to control *V. cholerae* virulence gene expression. While multiple HAIs play some role in virulence (2, 5–11), genes on *V. cholerae* pathogenicity island 1 (VPI-1) and the cholera toxin (CTX) prophage are most involved with the major virulence pathway, the ToxR regulon (4, 12). ToxR and the histone-like nucleoid structuring protein (H-NS) coordinate to activate or repress, respectively, the master virulence regulator ToxT and other virulence genes on VPI-1 (4–7, 13–15). Since H-NS is highly abundant and broadly controls genomic structure and expression patterns (12, 16–26), factors that modulate and fine-tune H-NS repression are common in enteric bacteria (27–32). To date, however, no such factors have emerged in *V. cholerae*. TsrA is a *Vibrionaceae*-specific protein that is by far most common in the genomes of organisms within the *Vibrio* genus, as determined via BLAST-based (33) protein
homology searches (data not shown). TsrA has been shown to regulate type VI secretion system (T6SS) genes (namely, Hcp) in coordination with quorum-sensing pathways and further affects both expression of toxT and the ability of V. cholerae to colonize the small intestine (34). Despite this knowledge, TsrA’s larger impacts on V. cholerae gene regulation have not been explored. Here, we elaborate on previous findings and provide more clarity regarding TsrA’s impact on gene regulation throughout the V. cholerae genome. Our transcriptomics analyses demonstrate that TsrA mimics the ability of H-NS to repress acquired genetic elements on canonical pathogenicity islands. We further show that this gene plays a critical role in controlling intestinal colonization, with deletion of tsrA completely compensating for the attenuation observed when ToxR, an essential virulence gene regulator, is also deleted in an infant mouse intestinal model. Our findings illustrate a large role in controlling V. cholerae virulence for this small protein.

RESULTS

TsrA deletion promotes expression of H-NS regulon. Previous work showed that TsrA regulates V. cholerae gene expression of ctxA and toxT and that TsrA is structurally similar to the oligomerization domain of H-NS (34). These observations suggested TsrA might have a similar function to H-NS. To investigate this hypothesis, we compared the global transcriptome profiles of the parental C6706 V. cholerae strain to isogenic Δhns and ΔtsrA strains (see Table S1 in the supplemental material). All strains were grown exponentially at 37°C in Luria-Bertani (LB) medium, since H-NS is known to repress virulence-associated genes under this growth condition (21). As an initial control, we verified that any effects observed upon tsrA deletion are not a function of decreased H-NS protein concentration by Western blotting. Using RpoB as a loading control, we saw no difference in H-NS protein levels between an H-NS-V5 strain and a tsrA mutant derivative of said strain, as detected with anti-V5 antibody (Fig. 1A).

In line with previous estimates (24), our data show that the H-NS regulon encompasses nearly 600 genes (Fig. 2A; see also Table S1 in the supplemental material). These include, as expected, genes associated with virulence and T6SS (Table 1). Although generally less extreme, RNA expression changes upon deletion of tsrA heavily mirror those observed in the Δhns mutant for a large subset of genes, especially genes on HAs (Table 1; see also Table S1). When looking at all significantly differentially expressed loci in both strains regardless of fold change, the expression levels of HAI genes were more strongly correlated (adjusted R² = 0.644) than their progenitor genome counterparts (adjusted R² = 0.582) (Fig. 2B). With regard to effect size across all genes that significantly changed expression by 2-fold or more in the ΔtsrA strain versus the wild type, 181 loci (roughly 86%) exhibited similar behavior in the Δhns strain (Fig. 2A). These 181 overlapping loci include all 37 HAI genes that are differentially expressed in the ΔtsrA strain.

TsrA demonstrates GC and HAI independent effects on both V. cholerae chromosomes as well (Table 1). Expression of genes associated with T6SS, such as vipAB (35, 36), was increased in both mutants despite exhibiting GC content comparable to background levels. These findings agree with and expand upon previously observed links between TsrA and HCP levels (34). In addition, tricarboxylic acid (TCA) cycle enzyme genes, such as oadB and citG, are downregulated in both knockout strains. Since TCA cycle products are known to repress ToxT expression in V. cholerae (37), transcriptional regulation of these genes by TsrA provides a link between cellular response to environmental cues and regulation of virulence genes. A few metabolism-related genes also appeared to be regulated by TsrA but not H-NS, most notably loci involved in chitin utilization (VC0616-VC0619) (38–40) (Table 1). In sum, TsrA, like H-NS, functions in and regulates key pathways controlling the broader V. cholerae life cycle (19).

TsrA plays a critical role in mouse intestinal colonization. Deletion of tsrA has been shown to increase V. cholerae colonization in an infant mouse model and affect expression of a few genes dually regulated by H-NS and ToxR (34). We previously showed the importance of ToxR in V. cholerae host colonization could be abrogated by
FIG 1 Validation of protein and RNA levels. (A) Western blot showing protein levels of H-NS across conditions. H-NS-V5 was identified using an anti-V5 antibody. An anti-RNA polymerase β subunit (RpoB) immunoblot served as the loading control. The image is representative of three biological replicates per condition. (B) Relative expression levels of tsrA as determined via qPCR. Expression levels normalized to 16S RNA levels under each condition. The change in expression is compared to tsrA expression in C6706 V5-hns strain containing the empty plasmid pWSK30. Bars indicate the standard errors of the mean for three biological replicates per condition. (C) Western blot showing relative protein levels of TsrA compared to H-NS. H-NS-V5 and TsrA-V5 were identified using an anti-V5 antibody. An anti-RNA polymerase β subunit (RpoB) immunoblot served as the loading control. Image is representative of three biological replicates per condition. (D) Relative expression levels of select genes, as determined via qPCR. Expression levels were normalized to the 16S RNA levels under each condition. The change in expression was normalized to relative levels in the C6706 strain. Bars indicate standard errors of the mean for three biological replicates per condition.
deleting H-NS (12). Given the ability of TsrA to regulate virulence gene expression and its parallel effects with H-NS, we hypothesized that TsrA may likewise play a critical role in host colonization. We used an infant mouse model of intestinal colonization to test this hypothesis. As found previously (34), deletion of \(\Delta tsrA \) leads to a modest hyper-colonization of the infant mouse with the \(\Delta tsrA \) mutant out-colonizing a wild-type \(C6706 \) strain by \(\sim 4 \)-fold (Fig. 3). Remarkably, we show that deletion of \(tsrA \) completely negates \(V. cholerae \)’s dependence on ToxR to colonize the infant mouse intestine (Fig. 3A). The near wild-type infection levels of the \(\Delta tsrA \Delta toxRS \) strain are in stark contrast to the drastically reduced infectivity seen in the \(\Delta toxRS \) single mutant, providing a clear testament to the potency of TsrA-mediated virulence repression. This phenotype was complemented by exogenous expression of \(tsrA \) in the \(\Delta tsrA \Delta toxRS \) mutant, which showed an extreme colonization defect in line with the \(\Delta toxRS \) single mutant (Fig. 3B). These results implicate TsrA as a high level regulator of critical \(V. cholerae \) virulence systems.

DISCUSSION

Our results support previous TsrA research and suggest an expanded role for this protein in fine-tuning expression of the complex virulence cascade of \(V. cholerae \). As a testament to TsrA’s importance, deletion of \(tsrA \) wholly overcomes the infant mouse intestinal colonization defects seen in a \(\Delta toxRS \) strain. We further show that TsrA stands as a potent coregulator of HAI genes and other portions of the H-NS regulon most responsible for virulence. TsrA’s regulatory activities mirror and supplement those of H-NS.

Since virulent strains of \(V. cholerae \) rely on ToxR and its regulon to facilitate intestinal colonization (4, 41), it is little surprise that H-NS and TsrA regulons overlap so heavily at sites, such as VPI-1 and the CTX prophage, that are also controlled by ToxR (21,
23). TsrA-mediated repression at these loci likely explains how a ΔtsrA ΔtoxRS strain maintains wild-type levels of intestinal colonization, a phenotype previously observed in a Δhns ΔtoxRS mutant (12).

Since TsrA lacks a DNA binding domain but has some weak homology to the H-NS oligomerization domain (34), it may act through interactions with H-NS that affect the latter’s ability to influence gene expression, as HHA is known to do in *Escherichia coli* (28, 42, 43). Unfortunately, we were unable to purify TsrA after multiple attempts to confirm an interaction with H-NS in vitro. It is clear that future genetic and biochemical studies will be needed to fully determine how TsrA functions and influences H-NS activity.

TsrA’s low relative protein abundance compared to H-NS clarifies the smaller effect size of most transcriptomic changes in the ΔtsrA strain compared to more intense changes in the Δhns strain. These data, as well as TsrA’s known role in coordinating T6SS expression in coordination with quorum-sensing pathways, generally support a

TABLE 1 Select differentially expressed genes

Locus tag	Gene	ΔtsrA L2FC	q value	Δhns L2FC	q value	Normalized GC
VC0070	tsrA	−11.71	9.00E−21	−0.51	6.70E−01	0.98
VC1130	hns	−0.16	1.00E+00	−11.48	0.00E+00	0.91

HAI genes

Locus tag	Gene	ΔtsrA L2FC	q value	Δhns L2FC	q value	Normalized GC
VC0184		1.75	1.30E−190	3.78	0.00E+00	0.83
VC0185		1.04	4.00E−60	2.36	0.00E+00	0.77
VC0828	tcpA	2.95	5.90E−28S	2.41	4.10E−191	0.91
VC0829	tcpB	2.68	0.00E+00	2.09	2.70E−260	0.85
VC0830	tcpQ	2.65	1.30E−187	2.18	1.70E−128	0.75
VC0835	tcpT	3.03	9.50E−305	2.88	2.10E−274	0.76
VC0836	tcpE	3.13	0.00E+00	2.82	0.00E+00	0.75
VC0837	tcpF	3.51	0.00E+00	3.11	3.50E−248	0.73
VC0838	toxT	1.32	1.30E−69	1.34	7.50E−73	0.59
VC0841	acfC	2.35	1.80E−212	2.23	2.30E−191	0.76
VC0844	acfA	2.63	2.10E−149	2.99	1.20E−192	0.66
VC0845	acfD	3.12	0.00E+00	3.41	0.00E+00	0.81
VC1456	ctxB	2.38	2.70E−107	2.31	7.10E−102	0.68
VC1457	ctxA	2.37	4.10E−133	2.35	2.40E−131	0.81
VC1806		1.60	2.90E−78	4.89	0.00E+00	0.91
VC1807		4.90	3.90E−65	8.67	4.90E−209	0.68

T6SS genes

Locus tag	Gene	ΔtsrA L2FC	q value	Δhns L2FC	q value	Normalized GC
VCA0105		1.86	1.90E−48	2.61	7.70E−97	1.17
VCA0106		1.93	3.50E−92	2.61	2.30E−170	0.98
VCA0107	vipA	2.07	2.00E−67	3.74	1.90E−234	1.02
VCA0108	vipB	1.52	2.80E−50	3.05	1.20E−209	1.01

TCA cycle

Locus tag	Gene	ΔtsrA L2FC	q value	Δhns L2FC	q value	Normalized GC
VC0792	oadB	−1.70	2.60E−39	−3.08	1.30E−119	1.10
VC0793	oadA	−1.38	2.90E−41	−2.90	3.60E−169	1.10
VC0794	oadG-2	−1.32	2.30E−28	−3.06	2.90E−114	1.01
VC0800		−1.43	2.00E−42	−2.74	5.90E−147	1.13
VC0801	citG	−1.57	9.80E−42	−2.80	1.20E−127	1.09

Chitin utilization

Locus tag	Gene	ΔtsrA L2FC	q value	Δhns L2FC	q value	Normalized GC
VC0616		1.64	3.20E−29	0.50	1.10E−03	1.03
VC0617		2.10	3.40E−55	1.04	3.30E−14	1.02
VC0618		2.92	3.80E−62	1.74	1.40E−22	1.08
VC0619		1.86	1.20E−24	0.88	2.40E−06	1.01

*The indicated genes showed significant differences in expression between one or both mutant strains and a wild-type C6706 *Vibrio cholerae* strain. ΔtsrA L2FC = log2(ΔtsrA gene abundance/wild-type gene abundance); Δhns L2FC = log2(Δhns gene abundance/wild-type gene abundance); q value = FDR adjusted *P* value; normalized GC = GC content/average chromosomal GC content.
model of TsrA having a more specialized function than H-NS. In this model, if H-NS is the master regulator of virulence gene expression, then TsrA is a master modulator, fine-tuning expression levels in response to some unknown environmental cues.

Our results suggest that TsrA serves an important role in \textit{V. cholerae} gene regulation by controlling the expression of key virulence genes and other H-NS targets. Since \textit{V. cholerae}'s survival in diverse environments depends on precise control of varied genomic elements at specific times, a factor such as TsrA that can modulate and target expression of specific genes helps potentiate \textit{V. cholerae}'s impressive proclivity to adapt and thrive.

MATERIALS AND METHODS

Bacterial strains, plasmids, and media. Strains and plasmids used in this study are listed in Table S1 in the supplemental material. Strains were grown in lysogeny broth/agar at 37°C. The antibiotics streptomycin (100 \(\mu \text{g/ml} \)) and carbenicillin (75 \(\mu \text{g/ml} \)) were used for selection as needed. X-Gal (5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside) was used at 40 \(\mu \text{g/ml} \).

Plasmid and strain construction. All cloning products were sequence verified. For in-frame deletion constructs, surrounding genomic DNA was amplified by crossover PCR and cloned into pWM91 for subsequent \textit{acrB}-mediated allelic exchange (44). To add the V5 epitope tag to H-NS, \textit{hns} was amplified from the genome using primers, including the epitope sequences, to add the appropriate tag to the resulting PCR product. For complementation constructs, the original genes with their native promoters were PCR amplified off chromosomal DNA and cloned into plasmid pWKS30 (45).

Western blot analysis. Equal amounts of cells grown at 37°C in LB medium were harvested during exponential phase. Cells were pelleted, resuspended in loading buffer, and separated on a NuPAGE Bis-
Tris gel (Thermo Fisher). After transfer, membranes were blotted with monoclonal anti-V5 antibody (Sigma-Aldrich) or anti-RpoB antibody (BioLegend). RpoB was blotted as a loading control. Pierce ECL Western blotting substrate (Thermo Scientific) was added before exposing the X-ray film. Experiments were carried out in at least biological triplicates.

RNA sequencing. RNA sequencing (RNA-seq) was performed as previously described (46). Total RNA was extracted from cells in exponential phase growing at 37°C in LB medium using a Direct-zol RNA MiniPrep kit with TRI-Reagent (Zymo Research). DNase treatment was carried out using a Turbo DNA-free kit (Ambion, Inc.). Ribosomal RNA was depleted using a Ribo-Zero rRNA removal kit for Gram-negative bacteria (Illumina). Sequencing libraries were then prepared for the Illumina sequencing platform. Experiments were repeated in biological triplicates.

Data analysis and visualization. RNA-seq data were aligned to a transcriptome (47) derived from the El Tor N16961 reference genome (ASM674v1) (48). RNA abundances were quantified using Kallisto version 0.43.1 (49), and differential expression was calculated using DESeq2 version 1.18.1 (50). All other data were analyzed using R version 3.6 (51) with the Tidyverse family of packages (52). All visualizations were generated with ggplot2 version 3.2.1 (53).

Infant mouse colonization assays. Assays were performed as previously described (12). At least five mice were tested for each mutant. P values were calculated using Tukey’s honest significant difference test following one-way analysis of variance.

Ethics approval. The mouse experiment was reviewed and approved by the UT Austin IACUC (approval AUP-2018-00354).

Data availability. Raw sequence reads for the RNA-seq data were uploaded to the Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra) under accession number SRP243226. Processed RNA-seq results are provided in Table S1 in the supplemental material.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

TABLE S1, XLSX file, 0.3 MB.
TABLE S2, XLSX file, 0.01 MB.

ACKNOWLEDGMENTS

This research was supported by National Institutes of Health grants R21AI137546 and R01AI125337 to B.W.D. The funder had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

C.D.D. analyzed and interpreted all data and prepared all figures with guidance from C.O.W. B.W.D performed mouse experiments and contributed to all experimental designs. A.L.C. and A.R.C. performed all other experiments, including RNA-seq, qPCR, and Western blot analysis. C.D.D. was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

REFERENCES

1. Faruque SM, Mekalanos JJ. 2003. Pathogenicity islands and phases in *Vibrio cholerae* evolution. Trends Microbiol 11:505–510. https://doi.org/10.1016/j.tim.2003.09.003.
2. Rahman MH, Biswas K, Hossain MA, Sack RB, Mekalanos JJ, Faruque SM. 2008. Distribution of genes for virulence and ecological fitness among diverse *Vibrio cholerae* population in a cholera endemic area: tracking the evolution of pathogenic strains. DNA Cell Biol 27:347–355. https://doi.org/10.1089/dna.2008.0737.
3. Banerjee R, Das B, Balakrish Nair G, Basak S. 2014. Dynamics in genome evolution of *Vibrio cholerae*: the TsrA regulon. Future Microbiol 9:335–344. https://doi.org/10.2217/17460913.2.3.335.
4. Brown RC, Taylor RK. 1995. Organization of tcp, acf, and toxT genes within a ToxT-dependent operon. Mol Microbiol 16:425–439. https://doi.org/10.1111/j.1365-2958.1995.tb02408.x.
5. Häse CC, Mekalanos JJ. 1998. TcpP protein is a positive regulator of virulence gene expression in *Vibrio cholerae*. Proc Natl Acad Sci U S A 95:730–734. https://doi.org/10.1073/pnas.95.2.730.
6. Higgin DE, Nazareno E, DiRita VJ. 1992. The virulence gene activator ToxT from *Vibrio cholerae* is a member of the ArcA family of transcriptional activators. J Bacteriol 174:6974–6980. https://doi.org/10.1128/jb.174.21.6974-6980.1992.
7. Waldor MK, Mekalanos JJ. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914. https://doi.org/10.1126/science.272.5270.1910.
8. Zdijem la M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ. 2002. Comparative genomic analysis of *Vibrio cholerae*: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci U S A 99:1556–1561. https://doi.org/10.1073/pnas.042667999.
9. Beaber JW, Hochhut B, Waldor MK. 2002. Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from *Vibrio cholerae*. J Bacteriol 184:4259–4269. https://doi.org/10.1128/jb.184.15.4259-4269.2002.
10. Hochhut B, Waldor MK. 1999. Site-specific integration of the conjugal *Vibrio cholerae* SXT element into *pIC*. Mol Microbiol 32:99–110. https://doi.org/10.1046/j.1365-2958.1999.01330.x.
11. Kazi MI, Conrado AR, Mey AR, Payne SM, Davies BW. 2016. ToxR antagonizes H-NS regulation of horizontally acquired genes to drive host colonization. PLoS Pathog 12:e1005570. https://doi.org/10.1371/journal.ppat.1005570.
12. Miller VL, Taylor RK, Mekalanos JJ. 1987. Cholera toxin transcriptional activator ToxT is a transmembrane DNA binding protein. Cell 48:271–279. https://doi.org/10.1016/0092-8674(87)90430-2.
13. Miller VL, DiRita VJ, Mekalanos JJ. 1989. Identification of toxS, a regulatory gene whose product enhances toxR-mediated activation of the cholera toxin promoter. J Bacteriol 171:1288–1293. https://doi.org/10.1128/jb.171.3.1288-1293.1989.
14. Weber GG, Klose KE. 2011. The complexity of ToxT-dependent transcription in *Vibrio cholerae*. Indian J Med Res 133:201–206.
22. Nye MB, Taylor RK. 2003. Regulation of gene expression in Vibrio cholerae by ToxT involves both antirepression and RNA polymerase stimulation. Mol Microbiol 42:119–134. https://doi.org/10.1046/j.1365-2958.2002.02271.x.

23. Stonehouse EA, Hulbert RR, Nye MB, Skorupski K, Taylor RK. 2011. H-NS forms a complex with the main protein regulator of transcription in Vibrio cholerae life cycle. Res Microbiol 168:16–25. https://doi.org/10.1016/j.resmic.2010.07.007.

26. Ayala JC, Wang H, Silva AJ, Benitez JA. 2015. Repression by H-NS of genes modulated by the second messenger cyclic diguanylic acid. Mol Microbiol 95:310–323. https://doi.org/10.1111/mmi.12810.

27. Madrid C, Balsalobre C, García J, Juárez A. 2007. The novel Hha/YmoA interaction system of Vibrio cholerae fosters horizontal gene transfer. Science 318:63–67. https://doi.org/10.1126/science.1260064.

30. Joshi A, Kostiuk B, Rogers A, Teschner J, Pukatzki S, Yildiz FH. 2017. Rules of engagement: the type VI secretion system in Vibrio cholerae. Trends Microbiol 25:267–279. https://doi.org/10.1016/j.tim.2016.12.003.

31. Borgeaud S, Metzger LC, Scrignari T, Blokesch M. 2015. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347:63–67. https://doi.org/10.1126/science.1260064.

32. Vivero A, Banos RC, Mariscotti JF, Oliveros JC, Garcia-del Portillo F, Juarez A. 2013. The Hha protein facilitates incorporation of horizontally acquired DNA in enteric bacteria. Microbiology (Reading) 159:545–554. https://doi.org/10.1099/mic.0.062448-0.

35. Joshi A, Kostiuk B, Rogers A, Teschner J, Pukatzki S, Yildiz FH. 2017. Rules of engagement: the type VI secretion system in Vibrio cholerae. Trends Microbiol 25:267–279. https://doi.org/10.1016/j.tim.2016.12.003.

36. Borgeaud S, Metzger LC, Scrignari T, Blokesch M. 2015. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347:63–67. https://doi.org/10.1126/science.1260064.

37. Minato Y, Fassio SR, Wolfe AJ, Hase CC. 2013. Central metabolism controls transcription of a virulence gene regulator in Vibrio cholerae. Microbiology (Reading) 159:792–802. https://doi.org/10.1099/mic.0.064865-0.

38. Madrid C, García J, Pons M, Juarez A. 2007. Molecular evolution of the H-NS protein: interaction with Hha-like proteins is restricted to Enterobacteriaceae. J Bacteriol 189:265–268. https://doi.org/10.1128/JB.01242-06.

40. Kim E, Pierlé SA, Sismeiro O, Jagla B, Dillies M-A, Varet H, Irazoki O, Vaughan D, Wilke C, Woo K, Yutani H. 2019. Welcome to the Tidyverse. https://doi.org/10.21105/joss.01686.

42. Aznar S, Paytubi S, Juarez A. 2013. The Hha protein facilitates incorporation of horizontally acquired DNA in enteric bacteria. Microbiology (Reading) 159:545–554. https://doi.org/10.1099/mic.0.062448-0.

43. Madrid C, García J, Pons M, Juárez A. 2007. Molecular evolution of the H-NS protein: interaction with Hha-like proteins is restricted to Enterobacteriaceae. J Bacteriol 189:265–268. https://doi.org/10.1128/JB.01242-06.

44. Davies BW, Bogard RW, Young TS, Mekalanos JJ. 2012. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for Vibrio cholerae virulence. Cell 149:359–370. https://doi.org/10.1016/j.cell.2012.01.053.

48. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Sellers P, McDonald L, Utterback T, Fleishmann RD, Niemann WC, White O, Salfinger SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483. https://doi.org/10.1038/35020000.

50. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8.

51. DuPai et al. 2010. Architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421.

52. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hester J, Henry L, Hester J, Kuhn M, Pedersen T, Miller E, Bache S, Müller K, Ooms J, Robinson D, Seidel D, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 2019. Welcome to the Tidyverse. JOSS 4:1686. https://doi.org/10.21105/joss.01686.

53. Wilkinson L. 2011. ggplot2: elegant graphics for data analysis by WICK- HAM, H. Biometrics 67:678–679. https://doi.org/10.1111/j.1541-0420.2011.01616.x.