Effect of Cryoballoon Ablation vs. Radiofrequency Ablation on Left Atrial Ganglionated Plexi in Patients with Atrial Fibrillation

Keiko Takahashi¹, Ichiro Watanabe¹, Yasuo Okumura¹, Koichi Nagashima¹, Ryuta Watanabe¹, Masaru Arai¹, Kazuki Iso¹, Sayaka Kurokawa¹, Kimie Okubo¹, Toshiko Nakai¹, Atsushi Hirayama¹, Kazumasa Sonoda² and Toshimasa Tosaka²

¹ Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
² Division of Cardiology, Department of Medicine, Tokyo Rinkai Hospital, Edogawa-ku, Tokyo 134-0086, Japan

Background: Cryoballoon ablation for pulmonary vein isolation (PVI) is efficacious for the treatment of paroxysmal atrial fibrillation (PAF). However, the effectiveness of cryoballoon-based PVI on the left atrial (LA) ganglionated plexi (GPs) has not been reported. Therefore, we conducted a retrospective study in which we compared vagal responses during cryoballoon ablation (CBA) or radiofrequency ablation (RFA) for PVI.

Methods: The study included 49 patients with AF (23 women and 26 men, 62.7 ± 10.9 years of age) who were symptomatic, despite treatment with 1 or more antiarrhythmic drugs, and thus underwent PVI by means of CBA or RCA. High-frequency stimulation (20 Hz, 25 mA, 10 ms) was performed at 5 major LA GP sites before and after PVI in 18 patients treated by RFA and in 31 patients treated by CBA, and vagal responses and treatment outcomes were compared between the 2 patient groups.

Results: Elimination of the vagal responses was similar between the 2 groups. At a median follow-up of 7 (3–9) months, AF recurred in 1 of the 31 (3.2%) patients treated with CBA and in 2 of the 18 (11.1%) patients treated with RFA (p = 0.3017).

Conclusion: The efficacy of CBA for AF may be due in part to ablation of the LA GPs that occurs during PVI.

Key words: atrial fibrillation, left atrial ganglionated plexi, radiofrequency ablation, cryoballoon ablation (J. Nihon Univ. Med. Ass., 2018; 77 (2): 87–91)
lant therapy for at least 1 month before ablation, and all antiarrhythmic drugs had been discontinued for at least 5 half-lives before ablation. Upon admission, transesophageal and transthoracic echocardiograms were obtained. The study was approved by the Nihon University Hospital Institutional Review Board (May 25, 2016; RK-160614-10). All patients provided written informed consent for the electrophysiologic study and ablation.

2.2 Electrophysiologic study
Electrophysiologic study was performed with patients under conscious sedation achieved with dexmedetomidine, propofol, and fentanyl. After vascular access was obtained, single transseptal puncture was performed, and intravenous heparin was administered for maintenance of an activated clotting time of > 300 seconds.

2.3 RFA
Eighteen of the 49 patients were treated by RFA. Two decapolar Lasso catheters (Biosence-Webster, Diamond Bar, CA, USA) and a THERMOCOOL SMARTTOUCH catheter (Biosence-Webster) were placed in the left atrium. The 3-dimensional (3D) geometry of the left atrium and the 4 PVs was reconstructed with a CARTO 3 mapping system (Biosence-Webster) from data obtained from a decapolar Lasso catheter. EEPVI was performed by the double-lasso technique, with delivery of RF energy at a target contact force of 10–20 g and power setting of 30 W for 30 seconds along the anterior wall and 25 W for 30 seconds along the posterior wall, as previously described.

2.4 CBA
Thirty-one of the 49 patients were treated by CBA. The 3D geometry of the left atrium and 4 PVs was reconstructed with an Ensite NavX velocity mapping system (St. Jude Medical, Minneapolis, MN, USA) from data obtained with an Inquiry AFocus II 20-pole circular mapping catheter (St. Jude Medical). Thereafter, a 28-mm cryoballoon (ARC-Adv-CB, Arctic Front Advance, Medtronic PLC, Minneapolis, MN, USA) used in conjunction with an inner lumen mapping catheter (Achieve, Medtronic) was inflated and advanced to each PV orifice through a steerable 15Fr sheath (FlexCath advance, Medtronic). Once optimal PV occlusion, as assessed by contrast injection, was achieved, cryothermal energy was applied to each target PV, first for 180 seconds, then for 120 seconds, as described previously.

2.5 GP stimulation
High-frequency stimulation of the LA GPs was performed before and after RFA or CBA. The LA GP stimulation was performed as previously described. In brief, a THERMOCOOL SMARTTOUCH ablation catheter or EPstar Snake decapolar catheter (Japan Lifeline Co, Tokyo, Japan) was placed at each of the presumed anatomic areas of the 5 major GPs in the LA, i.e., the superior left GP (SLGP), inferior left GP (ILGP), Marshall tract GP, anterior right GP (ARGP), and inferior right GP (IRGP). High-frequency stimulation (20 Hz, 10 ms, 25 mA) was applied for 5 seconds at 3 different endocardial sites within each of the areas, and the GP response was assessed. A positive GP response was defined as a vagal response identified as an increase of 50% or more in the RR interval.

2.6 Between-group comparisons
For assessment of CBA in relation to RFA, characteristics of patients in the 2 groups, the resulting GP ablations, and the ablation outcomes in terms of AF recurrence within a follow-up period of 7 (3–9) months were compared.

2.7 Statistical analysis
Continuous variables are expressed as mean ± SD or median and interquartile ranges. Differences between the RFA group and CBA group were analyzed by Mann-Whitney U test. Categorical variables are expressed as percentages, and differences were analyzed by chi-square test. All statistical analyses were performed with JMP software program (version 11; SAS Institute, Inc., Cary, NC, USA), and p < 0.05 was considered significant.

3. Results
3.1 Patients’ clinical characteristics
Clinical characteristics of the study patients are shown per group in Table 1. PAF was more prevalent in the CBA group than in the RFA group, but the difference was not significant (p = 0.0634). Diabetes mellitus was significantly more prevalent in the CBA group (p = 0.0377).

3.2 GP responses before and after ablation

Table 1	Characteristics	RFA group (n = 18)	CBA group (n = 31)	P value
Age (years)	62.1 ± 11.7	63.8 ± 10.1	0.4152	
Sex, male (%)	14 (78)	20 (65)	0.5313	
PAF	9 (50)	24 (77)	0.0634	
Duration of AF (months)	36 (6–60)	14 (5–96)	0.7482	
Body mass index (kg/m²)	24.8 ± 4.1	24.3 ± 4.3	0.8719	
LVEF (%)	68.1 ± 8.9	66.5 ± 6.0	0.5209	
Hypertension (%)	11 (61)	13 (42)	0.2436	
Diabetes mellitus (%)	0	7 (23)	0.0377	

Values are shown as mean ± SD or n (%), unless otherwise indicated. *p < 0.05 was considered significant.

*RFA: radiofrequency catheter ablation; CBA: cryoballoon catheter ablation; PAF: paroxysmal atrial fibrillation; LAD: left atrial dimension; LVEF, left ventricular ejection fraction.
GP responses before and after RFA and CBA are shown in Table 2. The percentages of GPs for which a negative response was achieved by RFA or by CBA are shown in Fig. 1. Ninety-three to 100% of Marshall tract GP and SLGP responses were eliminated by both CBA and RFA. Elimination of ILGP, ARGP, and IRGP responses ranged from 63% to 77% in the CBA group and did not differ significantly from that (44% to 88%) in the RFA group. Overall elimination of the GP responses, whether by CBA or by RFA, was similar (79 ± 22% vs. 73 ± 22%; \(p = 0.3554 \)). Locations of response-positive GPs before and after CBA and RFA are shown on the 3D voltage maps in Fig. 2. As seen on the map, the Marshall tract GP and SLGP were included within the ablation areas, but some of the inferior GPs were located outside the ablation areas.

3.3 Outcomes

Freedom from AF during the median follow-up period of 7 (3–9) months was 30/31 (97%) in the CBA group and 16/18 (89%) in the RFA group (\(p = 0.3017 \)).

4. Discussion

4.1 Main findings

Our main study finding was that the total overall elimination of GP responses did not differ significantly between treatment by CBA and treatment by RFA. All or almost all Marshall tract GPs and SLGPs were ablated in both patient groups. ARGP ablation was similar between the 2 groups. However, ILGP and IRGP ablation were less frequent in the RFA group than in the CBA group.

4.2 GP ablation

We found in our study that many LA GPs were included within the ablation area. Extensively ablation of the left atrium including GP areas (identified as fat pads on the LA surface) along with PV antrum isolation has been reported to enhance denervation of the autonomic nervous system and improve treatment outcomes in patients with AF\(^{17}\). Nakagawa et al. showed that 3LA GPs were located

Table 2	Vagal responses at sites of the 5 major atrial ganglionated plexi before and after PVI performed by CBA or RFA.					
	Marshall tract	Superior left	Inferior left	Anterior right	Inferior right	
CBA	Before	After	Before	After	Before	After
	28/31 (90%)	0/31 (0%)	24/31 (77%)	0/31 (0%)	30/31 (97%)	10/31 (32%)
RFA	Before	After	Before	After	Before	After
	14/18 (78%)	1/18 (6%)	12/18 (67%)	0/18 (0%)	15/18 (83%)	8/18 (44%)
	15/18 (83%)	8/18 (44%)	16/18 (89%)	2/18 (11%)	18/18 (100%)	10/18 (56%)

The ratio (number of positive responses against the number of patients) and percentage of positive responses are shown.

CBA: cryoballoon ablation; RFA: radiofrequency ablation.

Fig. 1 Prevalence of vagal response elimination by cryoballoon ablation (CBA) and radiofrequency ablation (RFA). SLGP: superior left ganglionated plexus; ILGP: inferior left ganglionated plexus; ARGP: anterior right ganglionated plexus; IRGP: inferior right ganglionated plexus.
at adjacent to the LA antra, but LI and RI GPs were located to more lower LA sites. Pappone et al. were the first to report that complete vagal denervation, i.e., elimination of the vagal response (manifested as sinus bradycardia, asystole, atrioventricular block, or hypotension during RF application and reduced heart rate variability during follow-up) decreased the incidence of AF recurrence in patients with PAF treated by circumferential PVI. Quin et al. also reported that a positive RFA-induced vagal response was associated with reduced AF recurrence in patients with lone PAF. Yorgun et al. reported that vagal reactions (bradycardia, hypotension) during CBA were associated with decreased AF recurrence in a subgroup of patients with PAF and PerAF. Results of our study are in keeping with these various reports. Recent report showed that GP ablation in addition to PVI by endoscopic surgery did not affect one-year freedom from AF rate, but addition of GP ablation increased the incidence of more major adverse events.

4.3 Limitations

Our findings should be considered in light of our study limitations. The study, which was conducted at a single-center, included a relatively small number of patients who were not randomized to treatment, and shorter follow-up period. In addition, autonomic activity was not assessed in our patients on the basis of mean heart rate and heart rate variability before and after the ablation procedure. Neural pathways between LA GPs and the atrioventricular node travel via the IRGP and the neural pathway connecting the left atrium to the sinus node travel via the ARGP. Therefore, ARGP and IRGP ablation by RFA or CBA may blunt the vagal response elicited by the SLGP and ILGP after ablation even if these GPs remained intact. Furthermore, Miyazaki et al showed that CBA area was smaller than CPVI by RFA. However, their CPVI area was not an actual data, but they estimated from their conventional experience. In our experience, LA antrum ablated area (especially RPV antrum) was larger than RFA area. Therefore, the influence of the ablated area between CBA and RFA on the LA GP response after ablation needs further evaluation. Higher incidence of DM in the CBA group may affect the autonomic activity and influence the results. However, LA GP response before ablation was not different between CBA and RFA groups. Therefore, in the present study, the influence of DM on the results might be small.

5. Conclusions

We found elimination of the high-frequency stimulation-evoked LA GP-based vagal response to be similar between CBA and RFA performed in patients with AF.
This effect may explain, in part, the similar success of CBA and RFA.

Source of funding

This study was supported by departmental resources only.

Conflict of interest

The authors declare no conflict of interest related to this study.

References

1) January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. *Circulation* 2014; 130: 2071–2104.

2) Haïssaguerre M, Jaïs P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. *N Engl J Med* 1998; 339: 659–666.

3) Verma A, Jiang CY, Bettes TR, et al. Approaches to catheter ablation for persistent atrial fibrillation. *N Engl J Med* 2015; 372: 1812–1822.

4) Hunter RJ, Baker V, Finlay MC, et al. Point-by-point radiofrequency ablation versus the cryoablation or a novel combined approach: a randomized trial comparing 3 methods of pulmonary vein isolation for paroxysmal atrial fibrillation (The Cryo Versus RF Trial). *J Cardiovasc Electrophysiol* 2015; 26: 1307–1314.

5) Kuck KH, Brugada J, Furkranz, et al. Cryoablation or radiofrequency ablation for paroxysmal atrial fibrillation. *N Engl J Med* 2016; 374: 2235–2245.

6) Squara F, Zhao A, Marijon E, et al. Comparison between radiofrequency with contact force-sensing and second-generation cryoballoon for paroxysmal atrial fibrillation catheter ablation: a multicenter European evaluation. *Eurorope* 2015; 17: 718–724.

7) Kenigsberg DN, Martin N, Lim HW, et al. Quantification of the cryoablation zone demarcated by pre- and postprocedural electroanatomic mapping in patients with atrial fibrillation using the 28-mm second-generation cryoballoon. *Heart Rhythm* 2015; 12: 283–290.

8) Miyazaki S, Taniguchi H, Hachiya H, et al. Quantitative analysis of the isolation area during the chronic phase after a 28-mm second-generation cryoballoon ablation demarcated by high-resolution electroanatomic mapping. *Circulation Arrhythm Electrophysiol* (in press).

9) Schotten U, Verheule S, Kirchhof P, et al. Pathophysiologic mechanism of atrial fibrillation: a translational appraisal. *Physiol Rev* 2011; 91: 265–325.

10) Chen PS, Chen LS, Fishbein MC, et al. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. *Circ Res* 2014; 114: 1500–1515.

11) Linz D, Ukena C, Mahfoud F, et al. Atrial autonomic innervation: target for interventional antiarrhythmic therapy? *J Am Coll Cardiol* 2014; 63: 215–224.

12) Nakagawa H, Scherlag BJ, Patterson E, et al. Pathophysiologic basis of autonomic ganglionated plexus ablation in patients with atrial fibrillation. *Heart Rhythm* 2009; 6(12 Suppl): S26–S34.

13) Ouyang F, Bansch D, Ernst S, et al. Complete isolation of left atrium surrounding the pulmonary veins. New insight from the double-lasso technique in paroxysmal atrial fibrillation. *Circulation* 2004; 110: 2090–2096.

14) Okumura Y, Watanabe I, Iso K, et al. Clinical utility of automated ablation lesion tagging based on catheter stability information (VisiTag Module of the CARTO 3 System) with contact force-time integral during pulmonary vein isolation for atrial fibrillation. *J Interv Card Electrophysiol* 2016; 47: 245–252.

15) Iso K, Nagashima K, Okumura Y, et al. Effect of cryoballoon inflation at the right superior pulmonary vein orifice on phrenic nerve location. *Heart Rhythm* 2016; 13: 28–36.

16) Takahashi K, Okumura Y, Watanabe I, et al. Anatomical proximity between ganglionated plexi and epicardial adipose tissue in the left atrium: implication for 3D reconstructed epicardial adipose tissue-based ablation. *J Interv Card Electrophysiol* 2016; 47: 203–212.

17) Higuchi K, Akkaya M, Koopmann M, et al. The effect of fat pad modulation during ablation of atrial fibrillation: late gadolinium enhancement MRI analysis. *Pacing Clin Electrophysiol* 2013; 36: 467–476.

18) Pappone C, Santinelli V, Manguso F, et al. Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. *Circulation* 2004; 109: 32–34.

19) Quin M, Jiang WF, Wu SH, et al. Vagal response during pulmonary vein isolation: re-recognized its characteristics and implications in lone paroxysmal atrial fibrillation. *Int J Cardiol* 2016; 211: 7–13.

20) Yorgun H, Aytemir K, Canpolat U, et al. Additional benefit of cryoablation-based atrial fibrillation beyond pulmonary vein isolation: modification of ganglionated plexi. *Europace* 2014; 16: 645–651.

21) Driessen AH, Berger WR, Krul SP, et al. Ganglion Plexus Ablation in Advanced Atrial Fibrillation: The AFACT Study. *J Am Coll Cardiol* 2016; 68: 1155–1165.

22) Malcolm-Lawes LC, Lim PB, Wright I, et al. Characterization of the left atrial neural network and its impact on autonomic modification procedures. *Circ Arrhythm Electrophysiol* 2013; 6: 632–640.

23) Takahashi K, Watanabe I, Okumura Y, et al. Comparison of cryoablation and radiofrequency ablation areas demarcated by postprocedural electroanatomic mapping in patients with atrial fibrillation treated by pulmonary vein isolation. *J Nihon Univ Med Ass* 2018 (in press).