Properties of no-fines recycled aggregate concrete contains waste plastic fibers

Z A Al-Obaidi
Dept. of General Sciences, College of Basic Education, Haditha, University of Anbar, Iraq
Email: eng.zayd132@uoanbar.edu.iq.

Abstract. The purpose of this study is to produce recycled concrete from the most common environmental pollutants, which are plastic waste and recycle concrete. Where plastic bottles were cut and used as fibers to reinforce concrete besides using the recycle concrete as an aggregate. also, it can be used in improving the various properties of concrete in terms of improving compressive strength, bending, thermal insulation, etc., because it is considered one of the most influencing disadvantages of concrete. Five mixes of concrete free of fine aggregate were poured with various volumetric proportions (0.6, 0.8, 1.0, 1.2 and 1.4) % of plastic fibers were added to them. The natural aggregate was completely replaced by a carefully graded product according to the specifications of crushed concrete residue. A comparative mix of recycled fiber-free concrete was poured. The results showed that with an increase in the fiber content, the thermal conductivity of the concrete samples decreases, the compressive and bending resistance increases at the age of (28) days, as well as, the density of concrete decreased. Besides, the results showed a slight improvement in the resistance to the impact of the slabs at the age of (90) days.

Keywords: no-fine aggregate concrete, recycled aggregate, waste plastic fibers, impact property

1. Introduction
During recent decades, the need to reuse construction and demolition waste and reduce its effects on the environment has emerged, as the biggest problem is the necessity of continuing the construction industry. The amount of solid concrete waste in all parts of the world amounts to about one-third of the solid waste, and this rate increases its growth year-by-year [1, 2]. Therefore, many methods have emerged to manufacture environmentally friendly recycled aggregate concrete and crush concrete waste to solve the construction and demolition waste accumulation crisis [3, 4]. Several experiments have been carried out on the mechanical properties of recycled concrete. Some defects appeared such as micro-cracks in the old mortar on the surface and inside the concrete due to the service life of the recycled concrete residues [5]. These defects negatively affect the properties of recycled aggregates compared to natural aggregates [6]. The production of waste plastic fiber reinforced concrete has spread widely due to its availability and cheapness [7, 8]. In addition to the environmental benefits represented by the disposal of industrial waste with harmful environmental impact [9]. This waste includes waste from plastic bottles used to store soft drinks [10]. In some countries, there has been an increasing trend towards conducting experiments to study the properties of concrete containing these fibers [11, 12]. The fracture coefficient of this concrete is lower than normal concrete that does not contain these fibers [13]. Studies showed that plastic fiber reinforced concrete has a higher resistance to impact and explosive loads compared to conventional concrete that was not reinforced with plastic fibers [14, 15]. In other researches, plastic fibers were used to produce lightweight concrete, and some of its properties were studied to see the possibility of producing this type of concrete for use in the future [16]. The behavior of recycled aggregate is of great importance in promoting the use of recycled concrete as a structural material [17]. According to previous research, studies on the behavior of adding plastic fibers to recycled concrete members using recycled concrete aggregates are very limited [18]. In this study, samples of coarse aggregate recycled concrete, free of fine aggregate, and reinforced with
recycled plastic fiber were tested to analyze some of their Mechanical and physical properties of this type of concrete. Where this study demonstrates the effects of the amount of fiber, the replacement of coarse aggregate completely, and the resistance of concrete, so that it can be used to understand the effect of concrete aggregate and plastic fibers on the properties of recycled concrete.

2. Experimental work

2.1. Materials

2.1.1. Cement. A commercial ordinary Portland cement (Type I) was used to cast specimens. This cement adjusts to ASTM C150 [19] and IQS 5/1984 [20].

2.1.2. Recycled Aggregate. This aggregate was produced from the remains of damaged concrete, where it was crushed and graded to conform to the Iraqi Standard No. 45 [21]. The size (10) mm is approved as the maximum gradient of the aggregate produced. Table 1 and 2 lists the properties of recycled aggregates. Figure 1 shows a sample of recycled aggregates used.

Sieves Size (mm)	% Passing	IQS limits
12.5	100	100
9.5	88	85-100
4.75	14	0-25
2.36	2	0-5

Table 2. Properties of recycled aggregate.

Properties	Test results
Specific gravity	2.31
Absorption %	8.7 %

Figure 1. Recycled aggregate
2.1.3. Waste plastic fiber (WPF). This fiber was produced by cutting soft drink bottles using a paper shredder machine to produce fibers of proportional size. The properties of this fiber are shown in Table 3. Figure 2 shows the waste plastic fiber used.

Table 3. Properties of waste plastic fibers.

Type of Fiber	Length (mm)	Width (mm)	Thickness (mm)	Aspect ratio (l/d)	Specific Gravity (gm/cm3)
WPF	40	4	0.3	32	1.17

![Figure 2. Waste plastic fiber](image)

2.2. Concrete Mixes Components
All mixes were poured with a ratio of (1 cement: 5 recycle aggregate: 0.45 water cement ratio) by volume and this proportions chosen according to previous researches. One mix as a reference and five other mixes contain fiber in different proportions (0.6%, 0.8%, 1.0%, 1.2%, and 1.4%) respectively as a volumetric ratio of the concrete mix. Six specimens of cubes and prisms in addition to one slab were made for each mixing ratio. The procedure of mixing was conforming to ASTM C 192 [22]. Table 4 listed the weights of no-fines recycled aggregate concrete (NFRAC) components. Figure 3 shows the tested specimens of NFRAC.

Table 4. Weights of NFRAC components.

Mix	abbreviation	Cement (kg/ m3)	Recycled Agg. (kg/m3)	w/c (L)	WPF (Kg/m3)
R	NFRAC without fiber	342	1710	154	0
C1	NFRAC with 0.6% WPF	340	1700	153	7
C2	NFRAC with 0.8% WPF	339	1695	153	9
C3	NFRAC with 1.0% WPF	338	1690	152	11
C4	NFRAC with 1.2% WPF	337	1685	152	14
C5	NFRAC with 1.4% WPF	336	1680	151	16
2.3. Curing
All samples were treated until they are tested. The treatment was completed under standard conditions and according to the requirements of ASTM C 192 [22].

2.4. Tests

2.4.1. Density test. Density was computed according to BS EN 12390-7 [23]. The dry density was computed by calculating the average values of three specimens of NFRAC.

2.4.2. Compressive Strength. Cubes of concrete with dimensions of (100 x 100 x 100) mm were used to test the compressive strength with ages of (7) and (28). The results were tested and calculated for the concrete samples according to the requirements of the BS EN 12390-3 [24]. Figure 4 shows the cubes tested.

2.4.3. Flexural Strength. Flexural strength was calculated according to ASTM C1609 [25]. Where the flexural stress values range from 12-20% of the compressive strength. (400 x 100 x 100 mm) Prisms were used for the test. Figure 5 shows the tested prisms.
2.4.4. Thermal conductivity. The thermal conductivity coefficient of concrete is a measure of the thermal conductivity of the material. It can be defined as the number of thermal units that pass through a unit area of the material with a thickness equals to one unit and also within one unit of time when the difference between the temperatures of the two sides of the body is one degree. It is measured in units (W·m⁻¹·K⁻¹) and there are many methods of measuring the coefficient of thermal conductivity. The most recognized one is mentioned in ACI 523-3.9 [26]. The mathematical equation is connecting density and thermal conductivity coefficient as follows:

\[K = 0.072 e^{0.00125 \rho} \]

Where:
- \(K \) = Thermal conductivity of an oven dryer model.
- \(\rho \) = the dry density of a sample aged (28) days

2.4.5. Impact test for slabs. The impact resistance of the NFRAC slabs was calculated by freely dropping a metal ball from a height of (1.6) m at a speed of (6.928) m/s on NFRAC slabs with dimensions (400 × 400 × 50) mm after (90) days of casting and curing. The number of blows that caused the first crack and the number of blows that caused the failure (penetration) were recorded. Figure 6. Shows the tested slabs of NFRAC.
3. Results and Discussions

3.1. Density Test
From observing the densities in Table 5. The results showed a significant decrease in the densities of NFRAC specimens, which decreased by 10.99% compared to the reference of NFRAC specimens. This could be attributed to the lower plastic density, which reduced the densities of the concrete due to the increased volume of plastic fibers with each volumetric replacement ratio. Figure 7. Showed the development in the densities of NFRAC specimens at age of (28) days.

Mix	Density At a 28-days age	Development At a 28-days age
R	2145	-
C1	2060	-1.97%
C2	2010	-3.11%
C3	1980	-5.92%
C4	1935	-8.93%
C5	1915	-10.99%

Figure 7. Development of the density NFRAC at age of (28) days.

3.2. Compressive Strength Test
From Table 6, the compressive strength of the NFRAC specimens increased as the fiber content increased to the limit of (1.0) %, and then began to decrease at the proportions of (1.2 and 1.4) % of fiber. This attributed to the addition of fiber improved the homogeneity of the NFRAC components, but when increasing the fiber contents, this weakened the bond strength between cement and aggregates resulting from the lower cement content in this type of concrete.
Table 6. Compressive strength results for cubes of the NFRAC.

Mix	Compressive strength (MPa) at a 7-days age	Compressive strength (MPa) at a 28-days age	Development at a 28-days age
R	20.46	22.56	-
C1	20.87	23.94	6.11 %
C2	21.52	25.78	14.27 %
C3	24.98	28.52	26.42 %
C4	21.19	24.63	9.17 %
C5	20.53	23.87	5.80 %

Figure 8. Development of compressive strength of NFRAC at 7 and 28 days age.

3.3. Flexural Strength Test
The results of the bending test of (NFRAC) with (WPF) listed in Table 7 show an increase in the bending resistance of the fibers, which peaked at (0.8) % as a volumetric ratio of the mixture, and it was plotted in Figure 7. The bending strength increases with the increase in (WPF) as well. With processing time. Because the presence of (WPF) makes the bonding of microscopic layers significantly stronger, it strengthens the concrete texture.

Table 7. Flexural results for prisms of the NFRAC.

Mix	Flexural (MPa) at a 7-days age	Flexural (MPa) at a 28-days age	Development at a 28-days age
R	1.514	1.874	-
C1	1.758	2.120	13.13 %
C2	2.219	2.389	27.48 %
C3	1.927	2.157	15.10 %
C4	1.898	2.118	13.02 %
C5	1.876	2.079	10.94 %
3.4. Thermal conductivity

The results in Table 8 show that the thermal conductivity of the NFRAC improved well with the increase in the fiber content and the use of recycled aggregates compared to the normal concrete, where the thermal conductivity coefficient of normal concrete is \((1.5) \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}\). This can be attributed to the good thermal insulation properties of plastic compared to concrete. Table 8 listed the thermal conductivity results of the NFRAC and Figure 10 shows the development of the thermal conductivity of NFRAC.

Table 8. Thermal conductivity results of the NFRAC at a 28-days age.

Mix	Dry density at a 28-days age	K factor	Development at a 28-days age
R	2028	0.908	-
C1	1988	0.864	-4.84 %
C2	1965	0.840	-7.48 %
C3	1908	0.782	-13.87 %
C4	1847	0.724	-20.26 %
C5	1805	0.687	-24.34 %

![Figure 9. Development in flexural of NFRAC.](image)

![Figure 10. Development of the thermal conductivity of NFRAC at a 28-days age.](image)
3.5. Impact Test

By observing Table 9, the listed impact resistance results show an increase in the number of strikes with an increase in (WPF) compared to the reference mixture. This increase is because the fibers improved the energy absorption of the concrete models and enhanced their stiffness as the fibers prevented the development of cracks and by creating bridges between the ends of the crack that developed. The maximum increase in the impact resistance was (700) % at (1.4) % of (WPF). Figure 10 shows the improvement in the number of strokes for an NFRAC at a 90-day age.

Mix	No. of blows (First Crack) at (90) days	No. of blows (Failure) at (90) days	Development of No. of blows (Failure) at (90) days
R	1	1	-
C1	1	3	200 %
C2	1	3	200 %
C3	2	4	300 %
C4	2	5	400 %
C5	2	8	700 %

Figure 11. Development of no. of blows of NFRAC at a 90-days age

4. Conclusions

1- The use of recycled aggregate and the addition of waste fiber in different proportions has reduced the density well, as the maximum decrease in density at the age of (28) days was (10.99) % compared to the reference mix of (NFARC) at the proportion of (1.4) %, and also the dry density decreased by (24.34) %, when the percentage of fibers was (1.4) %, with a test age of (28) days.

2- The addition of waste fibers contributed to enhancing the compressive strength of the concrete with a lifespan of (28) days compared to the reference mixture of (NFARC), where the maximum enhancement of the compressive strength at the volumetric ratio (1.0) % of (WPF) was (26.48) % at the age of 28 days.
3- Flexural strength improved at Ages of (7) and (28) compared to (NFARC) reference mix by increasing the addition of waste fibers in different proportions. The maximum increase in (WPF) was (0.8) % volumes of about (27.48) % at a 28-days of age.

4- The use of recycled aggregates and the addition of different percentages of plastic waste fibers reduced the thermal conductivity coefficient, as the maximum decrease in the coefficient reached (24.34) % at the lifetime of (28) days compared to the reference mixture (NFARC) at the ratio of fiber (1.4) % of volume concrete mixture.

5- The use of plastic waste fibers in different proportions increased the impact resistance at (90) days lifetime compared to the reference mixture (NFARC). The maximum increase at (1.4) % of (WPF) was about (700) % of the resistance of the reference mixture.

5. References

[1] Ćosić K L Korat, Ducman V and Netinger I 2015 Influence of aggregate type and size on properties of pervious concrete Construction and Building Materials Vol 78 pp 69-76
[2] Agar-Ozbek A, Weerheijm J, Schlangen E and Breugel K 2013 Investigating porous concrete with improved strength: Testing at different scales Construction and Building Materials Vol 41 pp 480-490
[3] Sun C, Lange D, Xiao J and Ding T 2017 Contact behavior between cracked surfaces of recycled aggregate concrete Construction and Building Materials Vol 155 pp 1168-1178
[4] Xiao J Z, Li Z and Li J 2014 Shear transfer across a crack in high-strength concrete after elevated temperatures Construction and Building Materials Vol 71 pp 472-483
[5] Xiao J, Sun C and Lange D 2016 Effect of joint interface conditions on shear transfer behavior of recycled aggregate concrete Construction and Building Materials Vol 105 pp 343-355
[6] Fonseca N, de Brito J and Evangelista L 2011 The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste Cement and Concrete Composites Vol 33-6 pp 637-643
[7] Nibudey R N, Nagarnaik P B, Parbat D K and Pande A M 2013 Strengths Prediction of Plastic fiber Reinforced concrete (M30) International Journal of Engineering Research and Applications Vol3-1 pp 1818-1825
[8] Mukhopadhyay S and Khatana S 2015 A review on the use of fibers in reinforced cementitious concrete Journal of Industrial Textiles Vol 45-2 pp 171–186
[9] Borg R P, Baladchino O and Ferrara L 2016 Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete Construction and Building Materials Vol 108 pp 29–47
[10] John N, Velis C A, Weber R, Iacovidou E and Purnell P 2018 An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling Journal of Hazardous Materials Vol 344 pp 179-199
[11] Amienyo D 2013 Life cycle environmental impacts of carbonated soft drinks The International Journal of Life Cycle Assessment Vol 18 pp 77–92
[12] Ahmadi M Farzin S, Hassani A and Motamedi M 2017 Mechanical properties of the concrete containing recycled fibers and aggregates Construction and Building Materials Vol 144 pp 392-398
[13] Zahid Hossain F M 2019 Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber Construction and Building Materials Vol 225 pp 983-996
[14] Medina N F, Medina D F, Hernández-Olivares F, Navacerrada M A 2017 Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling Construction and Building Materials Vol 144 pp 563-573
[15] Al-Hadithi A and Al-Obaidi Z 2015 Behavior of Ferro-cement Slabs Containing Waste Plastic Fibers under Impact Loadings Ciência e Técnica Vitivinícola Vol 30-5 pp 205-219

[16] Tang P and Brouwersa H 2018 The durability and environmental properties of self-compacting concrete incorporating cold bonded lightweight aggregates produced from combined industrial solid wastes Construction and Building Materials Vol 167 pp 271-285

[17] Verian K P, Ashraf W and Cao Y 2018 Properties of recycled concrete aggregate and their influence in new concrete production Resources, Conservation and Recycling Vol 133 pp 30-49

[18] Saikia N and Brito J 2014 Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate Construction and Building Materials Vol 52 pp 236-244

[19] ASTM C150 1989 Standard Specification for Portland cement Annual Book of ASTM Standards American Society for Testing and Materials Section 4 Vol 04-02 pp 89-92

[20] IQS 5 1984 Portland cement annual book of Iraqi standards (Planning Council, The Central Agency for Standardization and Quality Control / Iraq) pp 1-10

[21] IQS 45 1984 Aggregate from Natural Sources for Concrete Technical Specifications for Civil Work (Planning Council, the Central Agency for Standardization and Quality Control / Iraq) Vol 1 pp 19-27

[22] ASTM C 192 2002 Standard Practice for Making and Curing Test Specimens in the Laboratory American Society for Testing and Materials (west Conshohocken) 8 pages

[23] BS EN 12390–7 2019 Testing hardened concrete. Density of hardened concrete British Standard Institution 14 pages

[24] BS EN 12390–3 2019 Testing hardened concrete. Compressive strength of test specimens British Standard Institution 24 pages

[25] ASTM C1609 2012 Flexural performance of fiber reinforced concrete (using beam with third point loading) American Society for Testing and Materials (west Conshohocken) 9 pages

[26] ACI 523-3.9 1986 Guide for Cast-in-Place Low-Density Concrete Journal of ACI Committee Vol 83 pp 830-837