μSR study of the Cu-spin dynamics in the electron-doped high-
Tc cuprate of Pr$_{0.86}$LaCe$_{0.14}$Cu$_{1-y}$(Zn,Ni)$_{y}$O$_{4+\delta}$

Risdiana*, T. Adachi, Y. Koike and I. Watanabe

aDepartment of Applied Physics, Tohoku University, 6-6-05, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
bAdvanced Meson Science Laboratory, RIKEN, Wako 351-0198, Japan

Abstract

Effects of the Zn- and Ni-substitution on the Cu-spin dynamics in the electron-doped Pr$_{0.86}$LaCe$_{0.14}$Cu$_{1-y}$(Zn,Ni)$_{y}$O$_{4+\delta}$ with $y = 0, 0.01, 0.02, 0.05$ and different values of the reduced oxygen content δ have been studied using zero-field muon-spin-relaxation (μSR) measurements at temperatures down to 2 K. For the as-grown sample ($\delta = 0, y = 0$) and the sample with a very small δ value ($\delta < 0.01, y = 0$), a muon-spin precession due to long-range antiferromagnetic order has been observed. On the other hand, no precession has been observed for moderately oxygen-reduced samples ($0.01 \leq \delta \leq 0.09$). It has been found that for all the samples of $0.01 \leq \delta \leq 0.09$ the asymmetry A(t) (μSR time spectrum) in the long-time region increases with decreasing temperature at low temperatures, suggesting possible slowing-down of the Cu-spin fluctuations. On the other hand, no significant difference between Zn- and Ni-substitution effects on the slowing down of the Cu-spin fluctuations has been observed.

Keywords: Muon spin relaxation; Electron-doped high-Tc cuprate; Cu-spin dynamics; Impurity effects

1. Introduction

The study of the impurity effect, namely, the effect of the partial substitution of Zn or Ni for Cu on the Cu-spin dynamics in the high-Tc cuprates has attracted much attention in relation to the mechanism of superconductivity. A lot of experimental results on the impurity effect have been reported for the hole-doped high-Tc cuprates [1-3], in contrast to those for the electron-doped ones. The difficulty in preparing superconducting samples of good quality in the electron-doped cuprates is one of the reasons. In the electron-doped cuprate with the so-called T' structure, superconducting samples are obtained after the heat treatment of as-grown samples in a reducing atmosphere [4]. The superconducting properties such as the superconducting transition temperature, T_c, are affected by the reduced oxygen content, δ, as well as by the impurity concentration [5].

Here, we have investigated the Zn- and Ni-substitution effects on the Cu-spin dynamics in the electron-doped Pr$_{0.86}$LaCe$_{0.14}$Cu$_{1-y}$(Zn,Ni)$_{y}$O$_{4+\delta}$ from muon-spin relaxation (μSR) measurements, changing y up to 0.05 and δ up to 0.09 [6].

2. Experimental

Polycrystalline samples of Pr$_{0.86}$LaCe$_{0.14}$Cu$_{1-y}$(Zn,Ni)$_{y}$O$_{4+\delta}$ with $y = 0, 0.01, 0.02$ and 0.05 were prepared by the ordinary solid-state reaction method from La$_2$O$_3$, Pr$_6$O$_{11}$, CeO$_2$, CuO and ZnO or NiO

* Corresponding author. Tel.: +81-22-795-7977; Fax: +81-22-795-7975; e-mail: risdiana@apph.tohoku.ac.jp
powders of high purity [6,7]. As-grown samples were post-annealed in flowing Ar gas of high purity (6N) at 950 °C for 10 h in order to remove the excess oxygen. The δ value was estimated from the weight change before and after post-annealing. To check the quality of the obtained samples and to determine Tc, both electrical resistivity and magnetic susceptibility were measured. Zero-field (ZF) μSR measurements were performed at temperatures down to 2 K at the RIKEN-RAL Muon Facility at the Rutherford-Appleton Laboratory in UK.

3. Results and discussion

The obtained μSR time spectra of impurity-free Pr0.86LaCe0.14CuO4+δ are roughly grouped into 4 classes with different δ values: as-grown (δ = 0), very small δ (δ < 0.01), small δ (0.01 ≤ δ < 0.04), and large δ (0.04 ≤ δ ≤ 0.09). Samples with the small and large δ show superconductivity with Tc ranging from 15 K to 17 K (average Tc ~ 16 K) and from 18 K to 22 K (average Tc ~ 20 K), respectively, while the as-grown sample and the sample with very small δ are not superconducting above 4.2 K.

Figure 1 shows typical ZF-μSR time spectra of impurity-free Pr0.86LaCe0.14CuO4+α−δ. For the as-grown sample, a muon-spin precession is observed even at high temperature of 100 K due to long-range antiferromagnetic order. For the samples with very small δ, small δ and large δ, a Gaussian-like behavior is observed at high temperatures above ~100 K due to randomly oriented nuclear spins, and an exponential-like depolarization of muon spins is observed at low temperatures below ~50 K. For the sample with very small δ, a muon-spin precession is

![FIGURE 1. Typical ZF-μSR time spectra of Pr0.86LaCe0.14CuO4+α−δ with different δ values at various temperatures. Solid lines for the small and large δ are the best-fit results using a two-component function: A(t) = A_G exp[-σ^2 t^2] + A_S exp[-(λt)^β].]
observed at low temperatures below ~ 5 K. For the samples with small and large δ, on the other hand, no muon-spin precession is observed, indicating the absence of any long-range magnetic order above 2 K. The temperature-dependent change of the spectra above 20 K is regarded as being due to the static random magnetism of small Pr$^{3+}$ moments [8]. Concerning the samples with small and large δ ($0.01 \leq \delta \leq 0.09$), it is found that the asymmetry $A(t)$, namely, the μSR time spectrum in the long-time region around 10 μsec, increases with decreasing temperature at low temperatures, suggesting possible slowing-down of the Cu-spin fluctuations.

The ZF-μSR time spectra are analyzed with the following two-component function: $A(t) = A_G \exp\left[-\sigma t^2\right] + A_s \exp\left[-(\lambda t)^\beta\right]$. The first term is a static Gaussian component in the region where the relaxation due to nuclear spins and small Pr$^{3+}$ moments [8] is dominant. The second term is a dynamical stretched-exponential component in the region where the Cu-spin fluctuations exhibit slowing down. The increase of $A(t)$ in the long-time region at low temperatures is reflected by the increase in A_s. The time spectra are well fitted with this function as shown in Fig. 1.

Figure 2 shows the temperature dependence of the fitted parameter A_s for samples with various y and δ values in the range $0.01 \leq \delta \leq 0.09$. For the impurity-free sample of $y = 0$ with large δ, for example, it is

![Figure 2](image_url)

FIGURE 2. Temperature dependence of A_s for Pr$_{0.86}$LaCe$_{0.14}$Cu$_{1-y}(Zn,Ni)_y$O$_{4+\alpha-\delta}$ with $y = 0, 0.01, 0.02, 0.05$ and small and large δ values at temperatures down to 2 K. Arrows indicate the temperature where A_s exhibits the minimum.
found that A_s decreases with decreasing temperature down to 30 K, which is due to the growing effect of the Pr$^{3+}$ moments. Below ~ 30 K, A_s increases with decreasing temperature, indicating the slowing down of the Cu-spin fluctuations. For the impurity-free sample with small δ, on the other hand, A_s increases with decreasing temperature below 45 K. The difference of the temperature where A_s shows the minimum may be due to the residual effect of a small amount of antiferromagnetically ordered Cu-spins in the impurity-free sample with small δ. In any case, it attracts interest that the slowing down of the Cu-spin fluctuations is observed even in the impurity-free sample. This may be due to possible enhancement of the Cu-spin correlation assisted by the Pr$^{3+}$ moments.

The increase in A_s at low temperatures is still observed for both Zn- and Ni-substituted samples up to $y = 0.05$. However, no significant difference in the temperature dependence of A_s between Zn- and Ni-substituted samples is observed. It appears that the effect of the Pr$^{3+}$ moments is stronger than that of a small amount of Zn and Ni impurities. These behaviors are very different from those observed in the hole-doped high-T$_c$ cuprates [2,3].

4. Summary

We have investigated the Zn- and Ni- substitution effects on the Cu-spin dynamics from ZF-μSR measurements in the electron-doped cuprate Pr$_{0.88}$LaCu$_{0.14}$Cu$_{1-y}$(Zn,Ni)$_y$O$_{2-\delta}$ with $y = 0, 0.01, 0.02, 0.05$ and various δ values at temperatures down to 2 K. It has been found that the Cu-spin fluctuations exhibit slowing down at low temperatures in both impurity-free and impurity-substituted samples, regardless of the y value for moderately oxygen-reduced samples ($0.01 \leq \delta \leq 0.09$). A possible origin of the slowing down observed even in the impurity-free sample is enhancement of the Cu-spin correlation assisted by the Pr$^{3+}$ moments. No significant difference in the temperature dependence of A_s between Zn- and Ni-substituted samples may be due to the stronger effect of the Pr$^{3+}$ moments than that of a small amount of Zn and Ni impurities.

Acknowledgments

This work was supported by Joint Programs of the Japan Society for the Promotion of Science, TORAY Science and Technology Grant and also Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

[1] Y. Koike, M. Akoshima, M. Aoyama, K. Nishimaki, T. Kawamata, T. Adachi, T. Noji, I. Watanabe, S. Ohira, W. Higemoto, K. Nagamine, Int. J. Mod. Phys. B 14 (2000) 3520.
[2] T. Adachi, S. Yairi, K. Takahashi, Y. Koike, I. Watanabe, K. Nagamine, Phys. Rev. B 69 (2004) 184507.
[3] T. Adachi, S. Yairi, Y. Koike, I. Watanabe, K. Nagamine, Phys. Rev. B 70 (2004) 060504(R).
[4] H. Takagi, S. Uchida, Y. Tokura, Phys. Rev. Lett. 62 (1989) 1197.
[5] Y. Koike, A. Kakimoto, M. Yoshida, H. Inuzuka, N. Watanabe, T. Noji, Y. Saito, Physica B 165-166 (1990) 1665.
[6] Risdiana, T. Adachi, Y. Koike, I. Watanabe, K. Nagamine, Physica C 426-431 (2005) 355.
[7] Y. Koike, A. Kakimoto, M. Mochida, H. Sato, T. Noji, M. Kato, Y. Saito, Jpn. J. Appl. Phys. 31 (1992) 2721.
[8] R. Kadono, K. Ohishi, A. Koda, W. Higemoto, K. M. Kojima, S. Kuroshima, M. Fujita, K. Yamada, J. Phys. Soc. Jpn. 72 (2003) 2955.