How to Make It in the Urinary Tract: A Tutorial by Escherichia coli

Ine Jorgensen¹, Patrick C. Seed¹.²*

¹Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America, ²Department of Microbiology and Molecular Genetics, Duke University Medical Center, Durham, North Carolina, United States of America

Introduction

Extra-intestinal E. coli (ExPEC) may transition from benign colonization of the enteric and vaginal tracts to cause urinary tract infections (UTIs), septicemia, and meningitis. ExPEC colonization of the lower urinary tract leads to an acute infection of the superficial bladder urothelial cells, termed cystitis. Notably, 50% of all women will experience at least one UTI during their lifetime [1]. Even though ExPEC UTI induces a robust innate immune response, 25% of women with acute cystitis experience a second UTI within 6 months [2]. This failure to mount a protective immune response may be due to host genetic factors, antibiotic use, heterogeneity among ExPEC strains, active suppression of innate and adaptive immunity by ExPEC, and the ability of ExPEC to reside within protected, quiescent reservoirs. This review highlights the different stages of the ExPEC developmental cycle in the host bladder tissue, and describes the strategies employed by both players to gain the upper hand.

Finding a Place to Hide: Attachment to and Invasion of the Bladder Epithelium

The urinary tract is a harsh physiological environment with constant urine flow, in which ExPEC must bind and invade the urothelial tissue. Of a wide range of cell surface-associated supramolecular adherence organelles expressed by ExPEC, P pilus and type 1 pili (T1P) are well-established factors that mediate tissue tropism and adherence within the urinary tract. Additional ExPEC adhesins, such as S, Dr fimbrae, and Afa/Dr adhesins have been shown to facilitate adherence to urothelial cells in vitro, yet are not proven to play a major role in the pathogenesis of cystitis [3,4]. T1P play a key role in murine cystitis: the T1P adhesin FimH binds mannosylated residues on the luminal bladder urothelial receptor uroplakin Ia associated with lipid rafts (Figure 1) [5]. Uroplakin Ia is considered the key host receptor, yet FimH also binds integrin, extracellular matrix proteins, and CD44. A large body of work has established T1P as a key virulence factor in mouse models of cystitis, but the exact role of T1P in human UTI remains debated: Inoculation of the non-human primate cynomolgus monkey with the T1P adhesin FimH yielded protection against ExPEC UTI [6], and children infected with T1P-expressing strains experience greater disease severity compared to children infected with T1P-negative isolates [7]. However, no difference in the level of inflammation was observed between a T1P-negative strain and a T1P-positive strain in a human-challenge model of UTI [8].

The ExPEC-urothelium interaction is further reinforced by ExPEC binding to the CD44 ligand hyaluronic acid (HA) in urine. The host counteracts T1P-mediated bacteria-bladder epithelium interaction by secreting renal-derived Tamm-Horsfall protein (THP) in urine. THP sequesters ExPEC from the epithelium by directly binding T1P via its mannoside residues and thus blocks FimH binding to the uroplakin-receptor [9]. Intuitively, urine flow should aid in removing attached bacteria from the bladder surface. Instead, the sheer stress of urine flow strengthens FimH binding to mannoside, locking the bacteria to the bladder surface [10].

Following attachment of ExPEC via T1P to the bladder surface, the bacteria are endocytosed in cyclic AMP (cAMP)-dependent Rab27b/CD63-positive vesicles [11]. As the bladder contracts and expels urine, low cAMP induces uptake of apical membranes in fusiform vesicles, in which ExPEC is passively internalized. Conversely, bladder-stretch and elevated cAMP signals Rab27-mediated exocytosis and expels fusiform vesicle-associated ExPEC [11,12]. Internalization of ExPEC requires components of the host cytoskeleton: attachment to the plasma membrane induces activation of Rho GTPases, host tyrosine kinases, phosphoinositide-3-kinase, and focal adhesion kinase, followed by polymerization and re-organization of actin filaments at the site of attachment (Figure 1) [5]. The cytoskeletal proteins α-actinin and the two focal adhesion associated proteins tensin and talin further localize to the site of attachment, potentially stabilizing the rearranged actin. The histone deacetylase HDAC6 subsequently deacetylates α-tubulin, initiating a global rearrangement of microtubules [13]. Collectively, these signaling events mediate uptake by a zipper-like mechanism, reminiscent of other invading pathogens.

Mounting an Army: IBC Formation

Whereas most internalized ExPEC are immediately cycled out of the urothelial cell by exocytosis [11], some bacteria escape and enter a cystosidal developmental stage called an intracellular bacterial community (IBC) (Figure 1). Initially, a single bacterium in the cytosol rapidly replicates in biofilm-like clusters of organisms. An IBC is not a membrane- or cytoskeletal-bound structure, but consists of an estimated 10⁴–10⁵ organisms in a highly organized bacterial community packed in a proteinaceous polysaccharide matrix. The IBC is so expansive that it causes the apical cell membrane to bulge into the bladder lumen (Figure 1) [9].

Citation: Jorgensen I, Seed PC (2012) How to Make it in the Urinary Tract: A Tutorial by Escherichia coli. PLoS Pathog 8(10): e1002907. doi:10.1371/journal.ppat.1002907

Editor: Virginia Miller, University of North Carolina at Chapel Hill, United States of America

Published October 4, 2012

Copyright: © 2012 Jorgensen, Seed. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by National Institutes of Health grants P50 DK64540 and R03 MH090791. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: patrick.seed@duke.edu
As the IBC matures, often enveloping the host nuclei, rod-like bacteria disperse from the periphery of the community, while other bacteria transition into long filaments that extrude from the infected cell (Figure 1). Both subpopulations may attach to adjacent epithelial cells and initiate another, less synchronous round of IBC formation [9]. TIP [14], outer membrane proteins [15,16], and capsule [17] play essential roles in intracellular replication and IBC formation independent of their functions in attachment and invasion, underscoring the significant role of surface structures and biofilm-like factors in the ExPEC developmental cycle.

ExPEC alters the host immune response to infection through multiple mechanisms. ExPEC fails to filament in Toll-like receptor 4 (TLR4)-deficient mice, abrogating the development of a secondary round of IBC formation. Several models of murine cystitis demonstrate that the bladder innate immune response is primarily mediated by TLR4, resulting in NF-κB activation and IL-6 and IL-8 secretion [9]. Yet, ExPEC-infected urothelial cells are partially resistant to exogenous LPS- and TNF-α-induced cytokine secretion, indicating that ExPEC partially suppresses cytokine production in the bladder [5]. Recent evidence indicates that ExPEC further counteracts cytokine secretion by inducing expression of the anti-inflammatory enzyme Indoleamine 2,3-dioxygenase (IDO), which inhibits lymphocyte proliferation in response to cytokine secretion (Figure 1) [18].

Hide and Seek: Establishment of a Quiescent Intracellular Reservoir

ExPEC assumes yet another developmental stage distinct from IBCs. As apical epithelial cells are continually shed into the urine by exfoliation, ExPEC may infect the underlying basal epithelium and establish a quiescent intracellular reservoir (QIR). Once internalized, the bacteria reside within LAMP-1-positive endosomes surrounded by a network of F-actin (Figure 1) [19]. In the absence of bacterial replication, the membrane-bound bacteria persist for months and are resistant to antibiotic treatment [20]. The mechanisms by which ExPEC remains latent, prevents...
engagement of the innate immune response, and re-initiates the infection are wholly unknown. Although the latent QIR population in any one animal is small, it is considered a major source of recurrent UTIs in women. Transitioning through the various stages of the developmental cycle, ExPEC traverses multiple bottlenecks, including the bladder epithelium, BC, and QIR formation—which create clonal populations highly adapted to residing undetected within bladder tissue [9].

The Host Fights Back

The host mounts a rapid and robust immune response to ExPEC colonization of the bladder, and severe inflammation is thought to predispose the bladder tissue to recurrent infections [21]. TLR4 cooperatively recognizes LPS and TIP in the bladder in a CD14-dependent manner, activating MyD88 and inducing downstream cytokine signaling [5]. Notably, the ExPEC protein TcpC binds MyD88 via its TIR-like domain, dampening downstream cytokine signaling [5]. Notably, the ExPEC protein TcpC binds MyD88 via its TIR-like domain, dampening downstream cytokine signaling [5].

References

1. Foxman B (2003) Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis Mon 49: 53–70.
2. Ronald A (2002) The etiology of urinary tract infection: traditional and emerging pathogens. Am J Med 115 Suppl 1A: 148–198.
3. Johnson JR (1991) Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4: 80–128.
4. Bower JM, Eto DS, Mulvey MA (2005) Covert operations of uropathogenic Escherichia coli: winning back the urinary tract. Traffic 6: 10–31.
5. Stovk KE, Mobley HL (2010) Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun 78: 568–585.
6. Langermann S, Mollby R, Burlein JE, Palaszynski SR, Auguste CG, et al. (2000) Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181: 774–778.
7. Connell I, Agace W, Klemm P, Schembri M, Marild S, et al. (1996) Type 1 fimbral expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93: 9027–9032.
8. Bergstrom G, Wall H, Schembri MA, Leijonhufvud I, Svanborg C (2006) Do type 1 fimbrae promote inflammation in the human urinary tract? Cell Microbiol 9: 1766–1781.
9. Wilson DL, Lai K, Leung JT, Hultgren SJ (2009) Iron sequestration is another strategy through which the host limits ExPEC growth. In a constant revolving battle, the host expresses the iron-limiting siderophore function [31]. As countermeasures, ExPEC expresses several glycosyltransferases that render siderophores insensitive to Lcn2 [29].

Exfoliation of infected superficial urothelial cells further aids in clearing the bladder infection. Caspase 3 is activated during the early stages of BC formation, which leads to shedding of the infected urothelial cell, release of filamentous and rod-shaped ExPEC, and upregulation of bladder cell differentiation [5].

10. Bester TL, Duncan MJ, Song J, Li G, Zaas D, et al. (2007) Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat Med 13: 625–630.
11. Apodaca G (2001) Stretch-regulated exocytosis of discoidal vesicles in bladder epithelial cells. Urollogy 57: 105–104.
12. Nilsson TF, Watts KM, Hunstad DA (2009) OprA of uropathogenic Escherichia coli promotes postinvasion pathogenesis of cystitis. Infect Immun 77: 5245–5251.
13. Justice SS, Lauer SR, Hultgren SJ, Hunstad DA (2006) Maturation of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9: 2230–2241.
14. Wright KJ, Seed PC, Hultgren SJ (2007) Development of intracellular bacterial communities of uropathogenic Escherichia coli promotes postinvasion pathogenesis of cystitis. Infect Immun 77: 4593–4600.
15. Anderson GG, Goller CC, Justice S, Hultgren SJ, Seed PC (2010) Poly saccharide capsule and silic acid-mediated regulation promote biofilmlike intracellular bacterial communities during cystitis. Infect Immun 78: 963–975.
16. Loughnan JA, Hunstad DA (2012) Induction of indoleamine 2,3-dioxygenase by uropathogenic bacteria attenuates innate responses to epithelial infection. J Infect Dis 205: 1830–1839.
17. Dhakal BK, Mulvey MA (2009) Uropathogenic Escherichia coli invades host cells via an HDAC6-modulated microtubule-dependent pathway. J Biol Chem 284: 446–454.
18. Wright KJ, Seed PC, Hultgren SJ (2007) Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9: 2230–2241.
19. Nicholson TF, Watts KM, Hunstad DA (2009) OprA of uropathogenic Escherichia coli promotes postinvasion pathogenesis of cystitis. Infect Immun 77: 5245–5251.
20. Justice SS, Lauer SR, Hultgren SJ, Hunstad DA (2006) Maturation of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9: 2230–2241.
21. Hannan TJ, Mysorekar IU, Hung CS, Isaacson-Schmid ML, Hultgren SJ (2010) Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog 6: e1000142 doi:10.1371/journal.ppat.1000142
22. Cirl C, Wieser A, Yadav M, Duer R, Schubert S, et al. (2008) Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 14: 399–406.
23. Ashkar AA, Mosunmor KL, Cosneys BK, Gyles CL, Mackenzie R (2008) FimH adhesin of type 1 fimbriated is a potent inducer of innate antimicrobial responses which requires TLR4 and type 1 interferon signalling. PLoS Pathog 4: e1000233. doi:10.1371/journal.ppat.1000233
24. Ragnarsdottir B, Samuelsson M, Gustafsson MG, Leijonhufvud I, Karpman D, et al. (2007) Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J Infect Dis 196: 475–484.
25. Ragnarsdottir B, Jonsson K, Urbano A, Gramberg-Hernandez J, Lutay N, et al. (2010) Toll-like receptor 4 promoter polymorphisms: common TLR4 variants may protect against severe urinary tract infection. PLoS ONE 5: e10734. doi:10.1371/journal.pone.0010734
26. Hopkins WJ, Elkahwaji J, Kendziorski C, Moser AR, Briggs PM, et al. (2009) Quantitative trait loci associated with susceptibility to bladder and kidney infections induced by Escherichia coli in female C3H/HeJ mice. J Infect Dis 199: 355–361.
27. Suhs KA, Marchaller BR, Welch RA, Hopkins WJ (2011) Lack of association between the Tlr4 (Lpsd/Lpsd) genotype and increased susceptibility to Escherichia coli bladder infections in female C3H/HeJ mice. MBio 2: e00094–00111.
28. Davis JM, Carvalho HM, Rasmussen SB, O’Brien AD (2006) Cytotoxic necrotizing factor type 1 delivered by outer membrane vesicles of uropathogenic Escherichia coli attenuates polymorphonuclear leukocyte antimicrobial activity and chemotaxis. Infect Immun 74: 4401–4408.
29. Thumbikat P, Berry RE, Schaeffer AJ, Klimpp DJ (2009) Differentiation-induced uroplakin III expression promotes urothelial cell death in response to uropathogenic E. coli. Microbes Infect 11: 57–63.
30. Klimpp DJ, Weiser AC, Sengupta S, Forrestal SG, Badger RA, et al. (2001) Uropathogenic Escherichia coli potentiates type 1 pilus-induced apoptosis by suppressing NF-kappaB. Infect Immun 69: 6689–6695.
31. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, et al. (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestering iron. Nature 432: 917–921.
32. Fischbach MA, Lin H, Zhou L, Yu Y, Abergel R, et al. (2006) The pathogen-associated irxA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci U S A 103: 16502–16507.