K-vec: A New Approach for Aligning Parallel Texts

Pascale Fung
Computer Science Department
Columbia University
New York, NY 10027 USA
fung@cs.columbia.edu

Kenneth Ward Church
AT&T Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974 USA
kwc@research.att.com

Abstract
Various methods have been proposed for aligning texts in two or more languages such as the Canadian Parliamentary Debates (Hansards). Some of these methods generate a bilingual lexicon as a by-product. We present an alternative alignment strategy which we call K-vec, that starts by estimating the lexicon. For example, it discovers that the English word fisheries is similar to the French pêches by noting that the distribution of fisheries in the English text is similar to the distribution of pêches in the French. K-vec does not depend on sentence boundaries.

1. Motivation
There have been quite a number of recent papers on parallel text: Brown et al (1990, 1991, 1993), Chen (1993), Church (1993), Church et al (1993), Dagan et al (1993), Gale and Church (1991, 1993), Isabelle (1992), Kay and Rövenschein (1993), Klavans and Tzoukermann (1990), Kupiec (1993), Matsumoto (1991), Ogden and Gonzalez (1993), Shemtov (1993), Simard et al (1992), Warwick-Armstrong and Russell (1990), Wu (to appear). Most of this work has been focused on European language pairs, especially English-French. It remains an open question how well these methods might generalize to other language pairs, especially English-Japanese. It remains an open question how we might be able to align a broader class of texts, especially those that are written in different character sets and share relatively few character sequences. The K-vec method attempts to address this question.

2. The K-vec Algorithm
K-vec starts by estimating the lexicon. Consider the example: fisheries → pêches. The K-vec algorithm will discover this fact by noting that the distribution of fisheries in the English text is similar to the distribution of pêches in the French.

The concordances for fisheries and pêches are shown in Tables 1 and 2 (at the end of this paper).1

1. These tables were computed from a small fragment of the Canadian Hansards that has been used in a number of other studies: Church (1993) and Simard et al (1992). The English text has 165,160 words and the French text has 185,615 words.
There are 19 instances of fisheries and 21 instances of pêches. The numbers along the left hand edge show where the concordances were found in the texts. We want to know whether the distribution of numbers in Table 1 is similar to those in Table 2, and if so, we will suspect that fisheries and pêches are translations of one another. A quick look at the two tables suggests that the two distributions are probably very similar, though not quite identical.

We use a simple representation of the distribution of fisheries and pêches. The English text and the French text were each split into K pieces. Then we determine whether or not the word in question appears in each of the K pieces. Thus, we denote the distribution of fisheries in the English text with a K-dimensional binary vector, V_f, and similarly, we denote the distribution of pêches in the French text with a K-dimensional binary vector, V_p. The i^{th} bit of V_f indicates whether or not Fisheries occurs in the i^{th} piece of the English text, and similarly, the i^{th} bit of V_p indicates whether or not pêches occurs in the i^{th} piece of the French text.

If we take K be 10, the first three instances of fisheries in Table 1 fall into piece 2, and the remaining 16 fall into piece 8. Similarly, the first 4 instances of pêches in Table 2 fall into piece 2, and the remaining 17 fall into piece 8. Thus, $V_f=V_p=<0,0,1,0,0,0,0,1,0,0>$. Now, we want to know if V_f is similar to V_p, and if we find that it is, then we will suspect that fisheries \rightarrow pêches. In this example, of course, the vectors are identical, so practically any reasonable similarity statistic ought to produce the desired result.

3. fisheries is not the translation of lections

Before describing how we estimate the similarity of V_f and V_p, let us see what would happen if we tried to compare fisheries with a completely unrelated word, e.g., lections. (This word should be the translation of elections, not fisheries.)

As can be seen in the concordances in Table 3, for K=10, the vector is $<1,1,0,1,1,0,1,0,0,0>$. By almost any measure of similarity one could imagine, this vector will be found to be quite different from the one for fisheries, and therefore, we will correctly discover that fisheries is not the translation of lections.

To make this argument a little more precise, it might help to compare the contingency matrices in Tables 5 and 6. The contingency matrices show: (a) the number of pieces where both the English and French word were found, (b) the number of pieces where just the English word was found, (c) the number of pieces where just the French word was found, and (d) the number of pieces where neither word was found.

Table 4: A contingency matrix
French
a
c

Table 5: fisheries vs. pêches
fisheries
2
0

Table 6: fisheries vs. lections
lections
fisheries
0
4

In general, if the English and French words are good translations of one another, as in Table 5, then a should be large, and b and c should be small. In contrast, if the two words are not good translations of one another, as in Table 6, then a should be small, and b and c should be large.

4. Mutual Information

Intuitively, these statements seem to be true, but we need to make them more precise. One could have chosen quite a number of similarity metrics for this purpose. We use mutual information:
\[\log_2 \frac{\text{prob}(V_f, V_p)}{\text{prob}(V_f) \text{prob}(V_p)} \]

That is, we want to compare the probability of seeing \textit{fisheries} and \textit{pêches} in the same piece to chance. The probability of seeing the two words in the same piece is simply:

\[\text{prob}(V_f, V_p) = \frac{a}{a+b+c+d} \]

The marginal probabilities are:

\[\text{prob}(V_f) = \frac{a+b}{a+b+c+d} \]

\[\text{prob}(V_p) = \frac{a+c}{a+b+c+d} \]

For \textit{fisheries} \rightarrow \textit{pêches}, \text{prob}(V_f, V_p) = \text{prob}(V_f) = \text{prob}(V_p) = 0.2. Thus, the mutual information is \[\log_2 5 \text{ or } 2.32 \text{ bits}, \] meaning that the joint probability is 5 times more likely than chance. In contrast, for \textit{fisheries} \rightarrow \textit{lections}, \text{prob}(V_f, V_p) = 0, \text{prob}(V_f) = 0.5 \text{ and } \text{prob}(V_p) = 0.4. Thus, the mutual information is \[\log_2 0 \text{, meaning that the joint is infinitely less likely than chance.} \]

We conclude that it is quite likely that \textit{fisheries} and \textit{pêches} are translations of one another, much more so than \textit{fisheries} and \textit{lections}.

5. Significance

Unfortunately, mutual information is often unreliable when the counts are small. For example, there are lots of infrequent words. If we pick a pair of these words at random, there is a very large chance that they would receive a large mutual information value by chance. For example, let \(e \) be an English word that appeared just once and let \(f \) be a French word that appeared just once. Then, there is a non-trivial chance \(\frac{1}{K} \) that \(e \) and \(f \) will appear in the same piece, as shown in Table 7. If this should happen, the mutual information estimate would be very large, i.e., \(\log K \), and probably misleading.

	\(f \)	
\(e \)	1	0
	0	9

In order to avoid this problem, we use a \(t \)-score to filter out insignificant mutual information values.

\[t = \frac{\text{prob}(V_f, V_p) - \text{prob}(V_f) \text{prob}(V_p)}{\sqrt{\frac{1}{K} \text{prob}(V_f, V_p)}} \]

Using the numbers in Table 7, \(t=1 \), which is not significant. (A \(t \) of 1.65 or more would be significant at the \(p > 0.95 \) confidence level.)

Similarly, if \(e \) and \(f \) appeared in just two pieces each, then there is approximately \(\frac{1}{K^2} \) chance that they would both appear in the same two pieces, and then the mutual information score would be quite high, \[\log_2 \frac{K}{2}, \] but we probably wouldn’t believe it because the \(t \)-score would be only \(\sqrt{2} \). By this definition of significance, we need to see the two words in at least 3 different pieces before the result would be considered significant.

This means, unfortunately, that we would reject \textit{fisheries} \rightarrow \textit{pêches} because we found them in only two pieces. The problem, of course, is that we don’t have enough pieces. When \(K=10 \), there simply isn’t enough resolution to see what’s going on. At \(K=100 \), we obtain the contingency matrix shown in Table 8, and the \(t \)-score is significant (\(t=2.1 \)).

\(\text{fisheries} \)	\(\text{pêches} \)
5	1
0	94

How do we choose \(K \)? As we have seen, if we choose too small a \(K \), then the mutual information values will be unreliable. However, we can only increase \(K \) up to a point. If we set \(K \) to a ridiculously large value, say the size of the English text, then an English word and its translations are likely to fall in slightly different pieces due to random fluctuations and we would miss the signal. For this work, we set \(K \) to the square root of the size of the corpus.

\(K \) should be thought of as a scale parameter. If we use too low a resolution, then everything turns into a blur and it is hard to see anything. But if we use too high a resolution, then we can miss the signal if
it isn't just exactly where we are looking.

Ideally, we would like to apply the K-vec algorithm to all pairs of English and French words, but unfortunately, there are too many such pairs to consider. We therefore limited the search to pairs of words in the frequency range: 3-10. This heuristic makes the search practical, and catches many interesting pairs.

6. Results

This algorithm was applied to a fragment of the Canadian Hansards that has been used in a number of other studies: Church (1993) and Simard et al (1992). The 30 significant pairs with the largest mutual information values are shown in Table 9. As can be seen, the results provide a quick-and-dirty estimate of a bilingual lexicon. When the pair is not a direct translation, it is often the translation of a collocate, as illustrated by acheteur \(\rightarrow \) Limited and Santé \(\rightarrow \) Welfare. (Note that some words in Table 9 are spelled with same way in English and French; this information is not used by the K-vec algorithm).

Using a scatter plot technique developed by Church and Helfman (1993) called dotplot, we can visualize the alignment, as illustrated in Figure 1. The source text \(N_x \) bytes is concatenated to the target text \(N_y \) bytes to form a single input sequence of \(N_x + N_y \) bytes. A dot is placed in position \(i,j \) whenever the input token at position \(i \) is the same as the input token at position \(j \).

The equality constraint is relaxed in Figure 2. A dot is placed in position \(i,j \) whenever the input token at position \(i \) is highly associated with the input token at position \(j \) as determined by the mutual information score of their respective K-vecs. In addition, it shows a detailed, magnified and rotated view of the diagonal line. The alignment program tracks this line with as much precision as possible.

Table 9: K-vec results
French
3.2 Beauce
3.2 Comeau
3.2 1981
3.0 Richmond
3.0 Rail
3.0 pêches
2.8 Deans
2.8 Prud
2.8 Prud
2.7 acheteur
2.7 Communications
2.7 MacDonald
2.6 Mazankowski
2.5 croisière
2.5 Santé
2.5 39
2.5 Johnston
2.5 essais
2.5 Université
2.5 bois
2.5 Angus
2.4 Angus
2.4 Saskatoon
2.4 agriculteurs
2.4 inflation
2.4 James
2.4 Vanier
2.4 Santé
2.3 royale
2.3 grief

7. Conclusions

The K-vec algorithm generates a quick-and-dirty estimate of a bilingual lexicon. This estimate could be used as a starting point for a more detailed alignment algorithm such as word_align (Dagan et al, 1993). In this way, we might be able to apply word_align to a broader class of language combinations including possibly English-Japanese and English-Chinese. Currently, word_align depends on char_align (Church, 1993) to generate a starting point, which limits its applicability to European languages since char_align was designed for language pairs that share a common alphabet.

References

Aho, Kernighan, Weinberger (1980) "The AWK Programming Language," Addison-Wesley, Reading, Massachusetts, USA.
Brown, P., Della Pietra, S., Della Pietra, V., and Mercer, R. (1993) “The mathematics of machine translation: parameter estimation,” *Computational Linguistics*, pp. 263-312.

Chen, S. (1993) “Aligning Sentences in Bilingual Corpora Using Lexical Information,” *ACL-93*, pp. 9-16.

Church, K. (1993) “Char align: A Program for Aligning Parallel Texts at the Character Level,” *ACL-93*, pp. 1-8.

Church, K., Dagan, I., Gale, W., Fung, P., Helfman, J., Satish, B. (1993) “Aligning Parallel Texts: Do Methods Developed for English-French Generalize to Asian Languages?” Pacific Asia Conference on Formal and Computational Linguistics.

Church, K. and Helfman, J. (1993) “Dotplot: a Program for Exploring Self-Similarity in Millions of Lines of Text and Code,” *The Journal of Computational and Graphical Statistics*, 2:2, pp. 153-174.

Dagan, I., Church, K., and Gale, W. (1993) “Robust Word Alignment for Machine Aided Translation,” *Proceedings of the Workshop on Very Large Corpora: Academic and Industrial Perspectives*, available from the ACL, pp. 1-8.

Gale, W., and Church, K. (1991) “Identifying Word Correspondences in Parallel Text,” *Fourth Darpa Workshop on Speech and Natural Language*, Asilomar.

Gale, W., and Church, K. (1993) “A Program for Aligning Sentences in Bilingual Corpora,” *Computational Linguistics*, also presented at *ACL-91*.

Isabelle, P. (1992) “Bi-Textual Aids for Translators,” in *Proceedings of the Eighth Annual Conference of the UW Centre for the New OED and Text Research*, available from the UW Centre for the New OED and Text Research, University of Waterloo, Waterloo, Ontario, Canada.

Kay, M. (1980) “The Proper Place of Men and
Mr. Speaker, my question is for the Minister of Fisheries and Oceans. Allegations have been made of the stocks. Thomas Siddon (Minister of Fisheries and Oceans): Mr. Speaker, I tell the calculation on which the provincial Department of Fisheries makes this allegation and I find that it private sector is quite weak. Let us turn now to fisheries, an industry which as most important to The fishermen would like to see the Department of Fisheries and Oceans put more effort towards the p in particular. The budget of the Department of Fisheries and Oceans has been reduced to such a le 'habitation' from which to base his trade in fisheries and furs. He brought with him the first use just outside of my riding. The Department of Fisheries and Oceans provides employment for many and all indications are that the richness of its fisheries resource will enable it to maintain its taxpayer. The role of the federal Department of Fisheries and Oceans is central to the concerns of is the new Chairman of the Standing Committee on Fisheries and Oceans. I am sure he will bring a w opportunity to discuss it with me as a member of the Fisheries Committee. The Hon. Member asked what he proposal has been submitted to the Minister of Fisheries and Oceans (Mr. Siddon) which I hope ch as well as on his selection as Chairman of the Fisheries Committee. I have worked with Mr. Come his intense interest and expertise in the area of fisheries. It seems most appropriate, given that r from Eastern Canada and the new Chairman of the Fisheries and Oceans Committee. We know that the d Oceans Committee. We know that the Minister of Fisheries and Oceans (Mr. Siddon), should we s ows the importance of research and development to fisheries and oceans. Is he now ready to tell the research and development component in the area of fisheries and oceans at Bedford, in order that th
Table 2: Concordances for péches

31547	n’ayez certain que je présenterai mes excuses. Les pêches L’existence possible d’un marché noir e
31590	ésident, ma question s’adresse au ministre des Pêches et des Océans. On aurait pêché, débarqué
31671	poissons ? L’hon. Thomas Siddon (ministre des Pêches et des Océans)
31728	calculs sur lesquels le ministère provincial des pêches fonde ses allégations, et j’y ai relevé
144855	ivé est beaucoup plus faible. Parlons un peu des pêches, un secteur très important pour l’Atlant
145100	braconnage. Ils voudraient que le ministère des Pêches et des Océans fasse davantage, particulier
145121	es stocks de homards. Le budget du ministère des Pêches et des Océans a été amputé de telle sorte qu
148873	endant l’hiver, lorsque l’agriculture et les pêches sont peu près leur point mort : bon nombre
149837	xtérite de ma circonscription. Le ministère des Pêches et des Océans assure de l’emploi bien d’
149999	s. Dans le rapport Kirby de 1983 portant sur les pêches de la côte est, on a mal expliqué le systé
149960	eniers publics. Le rôle du ministère fédéral des Pêches et des Océans se trouve au centre des préoc
151108	soit le nouveau président du comité permanent des pêches et océans. Je suis sûr que ses vastes conn
151292	avec moi, en ma qualité de membre du comité des pêches et océans. Le député a demandé quelles per
151398	is savoir qu’elle a été proposée au ministre des Pêches et Océans (M. Siddon) et j’espère qu’
151498	de son choix au poste de président du comité des pêches. Je travaille avec M. Comeau depuis deux
151521	et je connais tout l’intérêt qu’il porte aux pêches, ainsi que sa compétence en gard. Cela s
151936	Est du pays et maintenant président du Comité des pêches et des océans. On sait que le ministre des
151947	éches et des océans. On sait que le ministre des Pêches et des Océans (M. Siddon) a, disons, a
151997	recherche et du développement dans le domaine des pêches et des océans. Est-il prêt aujourd’hui
152049	recherche et du développement dans le domaine des pêches et des océans Bedford afin que ce laboratoi
152168	s endroits où ils se trouvent et l’avenir des pêches dans l’Est. Le président suppléant (M.

Table 3: Concordances for lections

88	de prendre la parole aujourd’hui. Bien que les lections au cours desquelles on nous a lus la tête
207	uisent ensemble la Chambre des communes. Les lections qui se sont tenues au début de la deuxième
12439	n place les mesures de contrôle suffisantes. Les lections approchaient et les libéraux voulaient me
14999	reprendre le contenu de son discours lectoral des lections de 1984. On se rappelle, et tous les Ca
16164	ertainement et s’en rappelleraient aux prochaines lections de tout ce qui aurait pu leur arriver. L
16386	n apercevront encore une fois lors des prochaines lections. Des lections, monsieur le Président,
16389	nce une fois lors des prochaines lections. Des lections, monsieur le Président, il y en a eu de
16431	avec eux - mêmes l’analyse des résultats de ces lections complémentaires, constaterez qu’ils o
17419	s et ils réagissent. Ils ont réagi aux dernières lections complémentaires et ils réagiront encore a
17427	émentaires et ils réagiront encore aux prochaines lections. Finalement, monsieur le Président, pa
17438	t, monsieur le Président, parlant de prochaines lections... j’oubliais mon honorable collègue
17461	M. Layton) me dit tantôt que, antérieurement aux lections de 1984, les gens de Lachine voulaient u
55169	étions. Je suggérais au Comité permanent des lections, des privilèges et de la procédure d’y tel
56641	ueler cette question au comité des privilèges et lections, car il y a de sérieux doutes sur l’in
57855	doivent être renvoyées au comité des privilèges et lections. J’ai l’intention d’en saisir ce c
59027	rêt soumettre la question au comité permanent des lections, des privilèges et de la procédure. J’
67980	le 16 janvier 1986... M. Hovdebo: Après les lections. M. James:... le ministre d’alors
70161	rinier faire ce qu’ils ont fait depuis quelques lections, c’est - - dire rejeter le Nouveau par
70456	que les gens le retiennent jusqu’aux prochaines lections. De cette façon vous allez tre rejettés d
103132	donc transmis mon mandat au directeur général des lections d’une vacance survenue la Chambre ; il
Discourse & Pragmatics
