Ectrodactyly, ectodermal dysplasia, cleft lip, and palate (EEC syndrome) with Tetralogy of Fallot: a very rare combination

Deepak Sharma1*, Chetan Kumar2*, Sanjay Bhalerao2, Aakash Pandita1, Sweta Shastri3 and Pradeep Sharma4

1 Department of Neonatology, Fernandez Hospital, Hyderabad, India, 2 Department of Pediatrics, Madras Institute of Orthopaedics and Traumatology, Chennai, India, 3 ACPM Medical College, Dhule, India, 4 Rabindranath Tagore Medical College, Udaipur, India

OPEN ACCESS

Edited by: Ashraf AbdulRahman El-Harouni, King Abdulaziz University, Saudi Arabia
Reviewed by: Nicole Sekarski, University Hospital of the Canton Vaud, Switzerland
Aída Beatriz Falcón De Vargas, Hospital Vargas de Caracas, Venezuela

*Correspondence:
Deepak Sharma,
Department of Neonatology, Fernandez Hospital, Hyderabad, India
dr.deepak.rohatk@gmail.com;
Chetan Kumar,
Department of Pediatrics, Madras Institute of Orthopaedics and Traumatology, Chennai, India
sck_2000in@hotmail.com

Keywords: ectrodactyly ectodermal dysplasia–cleft, cleft hand or lobster claw hand/foot, Tetralogy of Fallot, TP63 gene, R280C mutation

Introduction

Ectrodactyly ectodermal dysplasia-cleft (EEC) syndrome is an autosomal dominant disorder characterized by the triad of ectrodactyly (development of anomalies of the structures derived from the embryonic ectodermal layer), ectodactyly (extremities, hands and feet malformations), and cleft lip and/or palate. These malformations can be seen all together in a neonate or in isolation. EEC usually is not associated with congenital heart disease and has been reported rarely in medical literature. We report a male child who was diagnosed as a case of EEC with associated heart disease (Tetralogy of Fallot) who was diagnosed as EEC on the basis of clinical features and EEC was confirmed with genetic analysis.

Specialty section:
This article was submitted to Genetic Disorders, a section of the journal Frontiers in Pediatrics

Received: 29 March 2015
Accepted: 21 May 2015
Published: 16 June 2015

Case Presentation

This 2½-year-old male child was referred to our hospital for corrective surgery of Tetralogy of Fallot. The index case was first child born to a non-consanguineous couple. The child presented with complaints of intermittent episodes of bluish discoloration of lips since age of 1 year and at the age of 2, he was evaluated by a local doctor and was diagnosed to have TOF and hence was referred here for further management. On physical examination, the child was noted to be cyanosed, with presence of ectrodactyly in both hands (Figure 1). There was no family history of EEC or other genetic abnormality in the family. The child was also noted to have scaling of skin and poor dentition clinically. Systemic examination revealed precordial bulge with a grade 2/6 ejection systolic murmur in the left sternal border. On retrospective enquiry the parents informed us that the child also had decreased sweating and on–off febrile episodes, the child was evaluated for the skin condition in their hometown although the details were not available. Echocardiography revealed TOF for which the baby underwent corrective surgery. The provisional diagnosis of EEC syndrome with TOF was
kept on the basis of claw-like hand and other clinical features and the infant was evaluated with genetic analysis of EEC syndrome. The genetic analysis of the patient showed mutation in TP63 gene (R280C mutation) causing EEC type 4. A dermatologist consult was sought who advised for a skin biopsy as the parents were not willing for the skin biopsy it was with-held. The child’s thyroid was sought who advised for a skin biopsy as the parents were not willing for the skin biopsy it was with-held. The child's thyroid screen as well as hearing screen done was normal. The child was kept on the basis of claw-like hand and other clinical features and the infant was evaluated with genetic analysis of EEC syndrome. The genetic analysis of the patient showed mutation in TP63 gene (R280C mutation) causing EEC type 4. A dermatologist consult was sought who advised for a skin biopsy as the parents were not willing for the skin biopsy it was with-held. The child's thyroid screen as well as hearing screen done was normal. The child was discharged but was lost in follow up. The consent was taken from parents for case report publication.

Discussion

Ectrodactyly, ectodermal dysplasia, and cleft lip/palate syndrome syndrome is a rare genetic disorder with an incidence of around 1 in 90,000 in general population. It is known with various names that includes split hand—split foot—ectodermal dysplasia—cleft syndrome or split hand, cleft hand, or lobster claw hand/foot (1). It has been postulated to be caused by mutation in TP63 gene. EEC syndrome is usually inherited as an autosomal dominant trait although sporadic cases have also been reported. TP63 gene is located on the long arm (q) of chromosome 3 (3q27). TP63 encodes a homolog of the tumor suppressor p53 gene (2). TP63 has been found to have around six isoforms, with their prime function being modulating gene expression (3). There are other four syndromes reported in medical literature that are caused by mutations of the p63 gene including Ankyloblepharon-Ectodermal dysplasia-Clefting (AEC syndrome, MIM 106260), AcroDermato-Ungueal-Lacrimal-Tooth (ADULT syndrome, MIM 103285), Rapp–Hodgkin (RHS syndrome, MIM 129400), and Limb-mammary (LMS syndrome, MIM 603543) (Table 1). There is considerable overlap among these disorders and some researchers have postulated them as different spectrum of same disorder due to differential expression of genes. There has been rare situation in which patients affected with EEC syndrome are noted to have chromosomal deletions or translocations on the long arm of chromosome 7 (7q11.2–q21.3 and 9p12) (4, 5).

There are multiple classifications for cleft hand defined in medical literature but one classified by Manske and Halikis is most commonly used. This proposed classification is based on the characteristics of the thumb web, which are more important to the function of the hand than are the central deficiency features. (4) There are five types of Split hand/foot malformation syndrome (SHFM) syndrome with different chromosomal associations and genes thought to be responsible for SHFM (Table 2) (15).

Ectrodactyly is usually seen as either complete absence of or malformation of one or more fingers or toes. Patients generally have median cleft in upper and lower limbs, which makes the affected limbs look like a lobster claws and hence the name given. This lobster claw is thought to arise as a result of a wedge-shaped defect of the apical ectoderm of the limb buds (16). Sometimes all four limbs involvement may be seen, even though this is a rare phenomenon. The majority of the patients usually have mild limb abnormality and very rarely may be unaffected. The patients of EEC may sometimes have webbing or fusion (syndactyly) of the fingers and/or toes (17). In some cases, syndactyly may be the only limb defect that is seen. Affected children may have other facial anomalies that includes cleft lip/palate, maxillary hypoplasia, long philtrum, and choanal atresia or can be normal too (18, 19).

The spectrum of dermatological manifestation associated with ectodermal dysplasia is variable and include hyper keratosis, thickened scaly skin to hypo pigmented dry skin with poor hair growth. Scalp hair as well as eyebrows may be sparse, wiry, and with hypo pigmented hair (20). Additional symptoms can

1 https://en.wikipedia.org/wiki/Vadoma

Disease	Clinical features
Ankyloblepharon-ectodermal dysplasia-clefting (AEC syndrome, MIM 106260)	Characterized by ankyloblepharon (congenital adhesions of the eyelids), ectodermal dysplasia, brittle white, and sparse eyebrows and eyelashes, otitis media, nevi, and orofacial clefts (6, 7)
Acrodermato-ungueal-lacrimal-tooth (ADULT syndrome, MIM 103285)	Characterized by ectrodactyly, syndactyly, excessive freckling, dry skin, dysplastic nails, lacrimal duct atresia, primary hypodontia, and early loss of permanent teeth (8, 9)
Rapp–Hodgkin (RHS syndrome, MIM 129400)	Characterized by cleft lip and palate, small mouth, narrow nose, coarse and wiry hairs progressing to alopecia in adults, oligodontia or anodontia, hypoplasia of the nails, abnormalities of the lacrimal ducts, deformed ears and ear canals, hyperplastic mucosa, cheilitis angularis, renal dysplasia, inguinal hernia, hypospadias in males, urethral reflux, and perioral ulcer (10, 11)
Limb-mammary (LMS syndrome, MIM 603543)	Characterized by mammary gland and/or nipple hypoplasia, lacrimal duct obstruction, cleft palate with or without bifid uvula, dystrophic nails, hypohydrosis, and teeth defects (12, 13)
References

1. Di Iorio E, Kaye SB, Ponzin D, Barbaro V, Ferrari S, Böhm E, et al. Limbal stem cell deficiency and ocular phenotype in ectrodactyly-ectodermal dysplasia-clefting syndrome caused by p63 mutations. *Ophthalmology* (2012) 119(1):74–83. doi:10.1016/j.ophtha.2011.06.044

2. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dötsch V, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. *Mol Cell* (1998) 2(3):305–16. doi:10.1016/S1097-2765(00)80275-0

3. Brunner HG, Hamel BCJ, Van Bokhoven H. The p63 gene in autosomal dominant ectodermal dysplasia associated with arrythmogenic right ventricular cardiomyopathy (31). There has been no case report of EEC with TOF.

4. Fukushima Y, Ohashi H, Hasegawa T. The breakpoints of the EEC syndrome (ectrodactyly, ectodermal dysplasia and cleft lip/palate) confirmed to 7q11.21 and 9p12 by fluorescence in situ hybridization. *Clin Genet* (1993) 44(1):50. doi:10.1111/j.1399-0004.1993.tb03843.x

5. Qumsiyeh MB. EEC syndrome (ectrodactyly, ectodermal dysplasia and cleft lip/palate) confirmed to 7q11.21. *Clin Genet* (1992) 42(1):101. doi:10.1111/j.1399-0004.1992.tb03149.x

6. Van Straten C, Butow K-W. Gene p63: in ectrodactyly-ectodermal dysplasia-ectodermal clefting syndrome: a novel p63 mutation associated with generalized neonatal.

7. Sawardekar SS, Zaenglein AL. Ankyloblepharon-ectodermal dysplasia-ectodermal clefting syndrome: a novel p63 mutation associated with generalized neonatal
erosions. Pediatr Dermatol (2011) 28(3):313–7. doi:10.1111/j.1525-1470.2010.01207.x
8. Berk DR, Armstrong NL, Shinawi M, Whelan AJ. ADULT syndrome due to an R243W mutation in TP63. Int J Dermatol (2012) 51(6):693–6. doi:10.1111/j.1365-4632.2011.05375.x
9. Avitan-Hersh E, Indelman M, Bergman R, Sprecher E. ADULT syndrome caused by a mutation previously associated with EEC syndrome. Pediatr Dermatol (2010) 27(6):e43–5. doi:10.1111/j.1525-1470.2010.01313.x
10. Bougeard G, Hadj-Rabia S, Fairev L, Sarafan-Vasseur N, Frebourg T. The Rapp-Hodgkin syndrome results from mutations of the TP63 gene. Eur J Hum Genet (2003) 11(9):700–4. doi:10.1038/sj.ejhg.5201004
11. Clements SE, Techanukul T, Holden ST, Mellerio JE, Dorkins H, Escande F, et al. Rapp-Hodgkin and Hay-Wells ectodermal dysplasia syndromes represent a variable spectrum of the same genetic disorder. Br J Dermatol (2010) 163(3):624–9. doi:10.1111/j.1365-2133.2010.09859.x
12. Van Bokhoven H, Jung M, Smits AP, van Beersum S, Rüschendorf F, van Steensel M, et al. Limb mammary syndrome: a new genetic disorder with mammary hypoplasia, ectrodactyly, and other hand/foot anomalies maps to human chromosome 3q27. Am J Hum Genet (1999) 64(2):538–46. doi:10.1086/302246
13. Van Bokhoven H, Hamel BC, Rashbath M, Sangiorgi E, Gurrieri F, Duijf PH, et al. p63 Gene mutations in eec syndrome, limb-mammary syndrome, and isolated split hand-split foot malformation suggest a genotype-phenotype correlation. Am J Hum Genet (2001) 69(3):481–92. doi:10.1086/323123
14. Manske PR, Halikis MN. Surgical classification of central deficiency according to the thumb web. J Hand Surg. (1995) 20(4):687–97. doi:10.1016/0303-5023(05)80293-X
15. Duijf PHG, van Bokhoven H, Brunner HG. Pathogenesis of split-hand/split-foot malformation. Hum Mol Genet (2003) 12(Suppl No 1):R51–60. doi:10.1038/hmg/dd0990
16. Agrawal A, Agrawal R, Singh R, Agrawal R. Lobster claw deformity. Indian J Dent Res (2014) 25(2):243–7. doi:10.4103/0970-9290.135935
17. Patel A, Sharma D, Yadav J, Garg E. Split hand/foot malformation syndrome (SHFM): rare congenital orthopaedic disorder. BMJ Case Rep (2014) 2014 [doi:10.1136/bcr-2014-204731
18. Malvankar DD, Sacchidanand S, Mallikarjun M. Ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome without clefting: a rare case report. J Dermatol Online J (2006) 12(4):5.
19. Thakkar S, Marfatia Y. EEC syndrome sans clefting: variable clinical presentations in a family. Indian J Dermatol Venereol Leprol (2007) 73(1):46–8. doi:10.4101/0378-6323.0563
20. Knaudt B, Volz T, Krug M, Burgdorf W, Röcken M, Berneburg M. Skin symptoms in four ectodermal dysplasia syndromes including two case reports of Rapp-Hodgkin syndrome. Eur J Dermatol (2012) 22(5):605–13. doi:10.1684/ ejd.2012.1787
21. Joseph R, Nath SG. Association of generalized aggressive periodontitis and ectrodactyly-ectodermal dysplasia-cleft syndrome. Indian J Hum Genet. (2012) 18(2):259–62. doi:10.4103/0971-6866.100793
22. Elmann S, Hanson SA, Bunce CN, Shinder R. Ectrodactyly-ectodermal dysplasia clefting (EEC) syndrome: a rare cause of congenital lacrimal anomalies. Ophthal Plast Reconstr Surg (2015) 31(2):35–7.
23. Kaercher T. Ocular symptoms and signs in patients with ectodermal dysplasia syndromes. Graefes Arch Clin Exp Ophthalmol (2004) 242(6):495–500. doi:10.1007/s00417-004-0868-0
24. Kumar HN, Kugar TS, Rao Rf, Kodkany S. EEC syndrome. Indian J Ophthalmol (2007) 55(2):162–3. doi:10.4103/0301-4738.30725
25. Roelfsema NM, Cobben JM. The EEC syndrome: a literature study. Clin Dysmorphol (1996) 5(2):115–27. doi:10.1097/00019605-199604000-00003
26. Hatipoglu N, Kurtoglu S, Buyukkayan D, Akcaokus M. Hypothalamic-pituitary insufficiency associated with ectrodactyly-ectodermal dysplasia-clefting syndrome. J Clin Res Pediatr Endocrinol. (2009) 1(5):252–5. doi:10.4274/jcrpe.v1i5.252
27. Shawkay RM, Elsayed SM, Sadik DG, Sad S, Seifeldin NS. Adipsic hypernatremia and bilateral renal stones in a child with ectrodactyly-ectodermal dysplasia-cleft lip-palate (EEC) syndrome. Genet Couns. (2010) 21(2):215–20.
28. London R, Heredia RM, Israel J. Urinary tract involvement in EEC syndrome. Am J Dis Child (1985) 139(12):1191–3.
29. Balsi S, Engiz O, Okten G, Sipahier M, Gursu G, Kandemir B. A 19-year follow-up of a patient with type 3 ectrodactyly-ectodermal dysplasia-clefting syndrome who developed non-Hodgkin lymphoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod (2009) 108(3):e91–5. doi:10.1016/j.tripleo.2009.04.043
30. Valenzine M, Arrigo T, De Luca F, Privietera A, Frigiola A, Carando A, et al. R298Q mutation of p63 gene in autosomal dominant ectodermal dysplasia associated with arrhythmogenic right ventricular cardiomyopathy. Eur J Med Genet (2008) 51(4):497–500. doi:10.1016/j.ejmg.2008.05.005
31. Rios LT, Araujo Junior E, Caetano ACR, Nardoza LM, Moron AF, Martins MG. Prenatal diagnosis of EEC syndrome with “lobster claw” anomaly by 3D ultrasonography. J Clin Imaging Sci. (2012) 2:40. doi:10.4103/2156-7519.99153
32. Buss PW, Hughes HE, Clarke A. Twenty-four cases of the EEC syndrome: clinical presentation and management. J Med Genet (1995) 32(9):716–23. doi:10.1136/jmg.32.9.716
33. Pettit S, Campbell PR. Ectrodactyly-ectodermal dysplasia-clefting syndrome: the oral hygiene management of a patient with EEC. Spec Care Dentist (2010) 30(6):250–4. doi:10.1111/j.1754-4505.2010.00162.x
34. Ota Y, Matsumoto Y, Dogru M, Goto E, Uchino Y, Endo K, et al. Management of Rapp-Hodgkin syndrome results from mutations of the TP63 gene. Eur J Hum Genet (2012) 19(2):5.
35. Sharma D, Pandita A, Murki S, Oleti T. Lobster claw hand foot syndrome: rare congenital orthopedic disorder. J Neonatal Biol. (2014) 3(5):10001–102. doi:10.4172/2167-0897.1000102
36. Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Copyright © 2015 Sharma, Kumar, Bhulavao, Pandita, Shastri and Sharma. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.