GAB functions as a bioenergetic and signalling gatekeeper to control T cell inflammation
Supplementary information

Materials and Methods

Western Blot Analysis
For protein extraction, cells were lysed and sonicated at 4°C in a lysis buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.5% SDS, 5 mM sodium pyrophosphate, protease, and phosphatase inhibitor tablet), then centrifuged at 13,000 × g for 15 min for recovering. The samples were boiled in the mixture of LDS Sample Buffer (NuPAGE) and Reducing solution (Thermo Fisher Scientific) for 5 min, after transferring to PVDF membranes by using the iBlot Gel Transfer Device (Thermo Fisher Scientific), then incubated with primary anti-ABAT (clone B-12, Santa Cruz Biotechnology) followed by incubating with the secondary antibodies conjugated with horseradish peroxidase. Immunoblots were developed on films using the enhanced chemiluminescence technique.

RNA Extraction, qPCR, and RNAseq
Total RNA was isolated by using the RNeasy Mini Kit (Qiagen). The cDNA synthesis was processed using Random hexamers and M-MLV Reverse Transcriptase (Invitrogen). BIO-RAD CFX284™ Real-Time PCR Detection System was used for SYBR green-based quantitative PCR. The relative gene expression was determined by the comparative CT method, also referred to as the 2^{−ΔΔCT} method. The data were presented as the fold change in gene expression normalized to an internal reference gene (beta2-microglobulin) and relative to the control (the first sample in the group). Fold change = 2^{−ΔΔCT} = [(CT_{gene of interest} − CT_{internal reference})]_{sample A} − [(CT_{gene of interest} − CT_{internal reference})]_{sample B}. Samples for each experimental condition were run in triplicated PCR reactions. Primer sequences were obtained from Primer Bank to detect target genes (Supplementary Table 5).

For RNA sequencing analysis, total RNA was extracted using RNeasy Mini Kit (Qiagen) and treated with DNase I according to the manufacturer's instructions. After assessing the quality of total RNA using an Agilent 2100 Bioanalyzer and RNA Nanochip (Agilent Technologies), 150 ng total RNA was treated to deplete the levels of ribosomal RNA (rRNA) using target-specific oligos combined with rRNA removal beads. Following rRNA removal, mRNA was fragmented and converted into double-stranded cDNA. Adaptor-ligated cDNA was amplified by limit cycle PCR.
After library quality was determined via Agilent 4200 TapeStation and quantified by KAPA qPCR, approximately 60 million paired-end 150 bp sequence reads were generated on the Illumina HiSeq 4000 platform. Quality control and adapter trimming were accomplished using the FastQC (version 0.11.3) and Trim Galore (version 0.4.0) software packages. Trimmed reads were mapped to the Genome Reference Consortium GRCh38 (mm10) murine genome assembly using TopHat2 (version 2.1.0), and feature counts were generated using HTSeq (version 0.6.1). Statistical analysis for differential expression was performed using the DESeq2 package (version 1.16.1) in R, with the default Benjamini-Hochberg p-value adjustment method. The Ingenuity Pathway Analysis (IPA) software (QIAGEN), the Gene Set Enrichment Analysis (GSEA) software (UC San Diego, BROAD Ins.), and the R Programming Language software were used to analyze gene signature and pathway enrichment.

NMR analysis of medium
Naïve CD4+ T cells isolated from WT mice were polarized for 72 hrs under T_{H17} or iT_{reg} culture conditions. Cells were harvested, washed by PBS, and then re-seeded at a 2 \times 10^6 cells /mL density in a conditional medium (RPMI-1640) containing 4 mM 13C5-Glutamine. Medium samples were taken at 0 hr and after 6 hrs incubation and were extracted and lyophilized. The dried samples were reconstituted in deuterated 50 mM phosphate buffer pH 8 containing 8.81 nmole DSS-d$_6$. NMR spectra were recorded on a Bruker Avance III spectrometer at 16.45 T at 15 °C in a 1.7 mm HCN inverse triple resonance cryoprobe. Presat spectra were recorded with an acquisition time of 2 s with weak irradiation at the HOD frequency during the relaxation delay of 4 s (pulse program: ZGPR). 1H{13C} HSQC spectra were recorded with an acquisition time of 0.25 s and a relaxation delay of 1.75 using adiabatic decoupling of 13C (pulse program: hsqcetgpprsisp2.2). The raw data were apodized with a 1 Hz exponential line broadening and linear predicted once (Presat) or a 4-Hz line broadening exponential (HSQC), phased, and baseline corrected using third-order Bernstein polynomials and referenced to the internal DSS at 0 ppm. Peaks were deconvoluted by line fitting using MNOVA and normalized to the DSS resonance at 0 ppm. The HCCH-TOCSY 2D spectrum was acquired by recording the first plane of the 3D experiment in the carbon dimension (pulse program: hcchdigp3d). The acquisition times in the direct and indirect dimensions (f_2 and f_1) are 0.25 s and 0.03 s, respectively. The C-C mixing time was set to 10.9 ms using a DIPSI-3 spin lock scheme with B_1 field strength of 40 kHz. The data were processed with
1 Hz exponential apodization in f_2 and 5 Hz exponential with cosine squared function in the f_1 dimension, and further linear predicted and zero-filled to 8 k and 2k data points, respectively. The spectrum was phased and baseplane corrected before referencing glutamine peaks based on the standard spectrum. Spectral assignments were made by reference to authentic standards of GAB recorded under the same conditions.
Table 1. Cell culture related antibodies, cytokines, and chemicals

Description	Manufacturer	Catalog Number
InVivoMAb anti-mouse CD3, Bio X cell, Clone 145-2C11	Bio X cell	Cat# BE0001-1
InVivoMAb anti-mouse CD28, Bio X cell, Clone 37.51	Bio X cell	Cat# BE0015-1
InVivoMAb anti-mouse IL-2, Bio X cell, Clone JES-1A12	Bio X cell	Cat# BE0043
InVivoMAb anti-mouse IL-4, Bio X cell, Clone 11B11	Bio X cell	Cat# BE0045
InVivoMAb anti-mouse IFNγ, Bio X cell, Clone XMG1.2	Bio X cell	Cat# BE0055
Recombinant Murine IL-12 p70, PeproTech	Cat# 210-12	
Recombinant Human TGF-β1, PeproTech	Cat# 100-21C	
Recombinant Murine IL-2, PeproTech	Cat# 212-12	
Recombinant Murine IL-7, PeproTech	Cat# 217-17	
Recombinant Murine IL-4, PeproTech	Cat# 214-14	
Recombinant Murine IL-6, PeproTech	Cat# 216-16	
γ-Aminobutyric acid, Sigma	Cat# A2129	
FCCP, Sigma	Cat# C2520	
Aminoguanidine; AG, Sigma-Aldrich	Cat# A7009	
GDH1 Inhibitor, R162 – Calbiochem	Cat# 5.38098	
Bleuculline, Cayman	Cat# 11727	
Picrotoxin, Cayman	Cat# 20771	
Flumazenil, Cayman	Cat# 14252	
(R,S)-4-Amino-5-hexenoic acid; Vigabatrin	Cat# X-1501	
Polyketides NV118, Isomerase therapeutics Ltd. Cambridge	Cat# 01-118-s3	
Table 2. Cell staining antibodies and dyes

Antibody/Fluorophore	Company	Catalog #	Clone
FITC anti-mouse CD4.	BioLegend	100510	RM4-5
PE/Cyanine7 anti-mouse CD4	BioLegend	100422	GK1.5
Pacific Blue™ anti-mouse CD4	BioLegend	100428	GK1.5
APC/Cyanine7 anti-mouse CD8a	BioLegend	100714	53-6.7
PE/Cy7 anti-mouse CD69	BioLegend	104512	H1.2F3
PE anti-mouse CD25	BioLegend	102008	PC61
APC/Cy7 anti-mouse CD90.1 (Thy1.1)	BioLegend	202520	OX-7
APC anti-mouse CD90.1 (Thy1.1)	BioLegend	202526	OX-7
PE anti-mouse CD90.2 (Thy1.2)	BioLegend	105308	30-H12
APC anti-mouse TCR β chain	BioLegend	109211	GL3
PE/Cyanine7 anti-mouse IFN-γ	BioLegend	505826	XMG1.2
APC anti-mouse IFN-γ	BioLegend	505810	XMG1.2
PE/Cyanine7 anti-mouse IL-17A	BioLegend	506922	TC11-18H10.1
APC anti-mouse IL-17A	BioLegend	506916	TC11-18H10.1
APC anti-mouse IL-4	BioLegend	504105	11B11
Alexa Fluor® 647 anti-mouse FOXP3	BioLegend	126407	MF-14
APC anti-mouse CD62L	BioLegend	104412	MEL-14
FITC anti-mouse/human CD44	BioLegend	103006	IM7
PerCP anti-mouse CD45.1	BioLegend	110726	A20
PerCP anti-mouse CD45.2	BioLegend	109826	Clone104
FITC anti-mouse/human/rat ABAT	Santa Cruz Biotechnology	sc-393769	B-12
APC anti-Hu/Mo ROR gamma (i)	eBioscience	17-6988-82	AFKJS-9
PE anti-Hu/Mo Phospho-STAT3 (Tyr705)	eBioscience	12-9033-42	LUVNKLA
PE anti-Hu/Mo Phospho-STAT5 (Tyr694)	eBioscience	12-9010-42	SRBCZX
Pacific Blue-P-S6Ribosomal Protein (S235/236)	Cell Signaling	8520S	D57.2.2E
APC anti-BrdU	BioLegend	364114	
7-AAD Viability Staining Solution	BioLegend	420404	
Pyronin Y	Sigma-Aldrich	92-32-0	
Table 3. pMIC-ABAT sequencing

Host	Constructs: pMIC(MSCV-IRES-mCherry)
MCS	EcoRI/Bgl II/SnaBI/BamHI/MfeI/XhoI
Inserts	No tag; include start codon (ATG) and stop codon

Sequence ID: ref|XM_011522401.1|**Length:** 5115|**Number of Matches:** 1

Gene-associated gene details

Range 1: 466 to 1333

GenBank Graphics Next Match Previous Match

Alignment statistics for match #1
Query
TCA
150
Subject

| Query | 151 |
| TGG|TCG|GGT|GTC|CTT|GGA|ATC|CA|G|AC|T|GCC|AGG|CCG|ATG|T|CT|G|AG|G|
| 210 |
| Subject | 526 |

| Query | 211 |
| ATTA|GAT|GG|G|CC|T|G|T|A|G|A|G|A|G|
| 270 |
| Subject | 586 |

| Query | 271 |
| AAC|G|C|T|G|A|T|A|T|A|G|T|A|G|G|G|
| 330 |
| Subject | 645 |

| Query | 331 |
| GCC|G|G|G|G|G|G|G|C|T|T|C|T|C|T|
| 390 |
| Subject | 706 |

| Query | 391 |
| TCT|C|C|T|G|C|T|C|G|T|G|G|C|T|G|T|G|G|
| 450 |
| Subject | 766 |

| Query | 511 |
| AAA|A|T|G|G|G|G|G|C|A|T|T|T|G|C|A|G|
| 510 |
| Subject | 826 |

| Query | 551 |
| TGG|G|A|A|G|A|C|C|G|A|T|C|T|G|C|T|G|
| 570 |
| Subject | 886 |

| Query | 591 |
| CCA|T|G|C|C|G|G|C|T|C|T|C|A|T|G|
| 630 |
| Subject | 946 |

| Query | 631 |
| GAG|C|A|G|A|A|G|G|G|G|C|G|C|T|C|T|
| 690 |
| Subject | 1006 |

| Query | 691 |
| ACC|G|G|C|C|T|C|G|C|G|C|G|A|A|G|
| 750 |
| Subject | 1066 |

| Query | 731 |
| GGA|C|A|T|G|T|G|G|G|G|G|G|C|G|A|
| 810 |
| Subject | 1126 |

| Query | 791 |
| CCA|T|G|C|T|G|G|G|C|
| 870 |
| Subject | 1186 |

| Query | 811 |
| CCA|T|A|G|C|T|G|A|T|G|G|G|G|
| 930 |
| Subject | 1306 |

| Query | 871 |
| GAG|C|A|G|A|A|G|G|G|G|C|G|A|
| 990 |
| Subject | 1366 |

| Query | 931 |
| ATG|G|A|A|A|G|G|G|G|
| 1050 |
| Subject | 1404 |
Table 4. Stable isotope tracers

Product	Supplier	Catalog Number			
U13C5-Arginine	Cambridge Isotope Laboratories, Inc.	CLM2265			
U13C6-Glucose	Cambridge Isotope Laboratories, Inc.	CLM1396			
U13C5-Glutamine	Cambridge Isotope Laboratories, Inc.	CLM1822			
4-Aminobutyric acid (GABA) (13C4, 97-99%)	Cambridge Isotope Laboratories, Inc.	CLM-8666			
1,4-BUTANEDIAMINE (PUTRECINE) (13C4, 98%)	Cambridge Isotope Laboratories, Inc.	CLM-6574			
Gene	primer sequences forward	primer sequences reverse	NCBI Gene ID	Primer Bank ID	Vendor (Sequences of oligonucleotides)
------------	--------------------------	--------------------------	--------------	----------------	--
GAD1	AACGTATGATACTTGGTGTGGC	CCAGGCTATTGGTCTTGTGAAG	Mouse, 14415	145301579c1	Sigma-Aldrich
GAD2	TCCGGCTTTTGCTCTTCG	ATGCCGCCGCTGAACCTTTT	Mouse, 14417	124517708c1	Sigma-Aldrich
ABAT	CTGAAACAAATCCAGAATGCCGA	GGTGTGAACCTATGGGACAG	Mouse, 268860	27370474a1	Sigma-Aldrich
Aldh5a1	CGTGCAGAAGAGAGGCTTAC	GAACTGCCCCTGCTATATTTT	Mouse, 214579	27369748a1	Sigma-Aldrich
Akr7a5	CGGCCAGTCCGAAACATC	TCTAGTGTACCTTCCTCCAG	Mouse, 110198	27659728a1	Sigma-Aldrich
Glvr1	GAAACTGGCCGGTGATCTCCT	GGTAAGGTTTATGTTGCAAG	Mouse, 74022	21312000a1	Sigma-Aldrich
Slec5a2a	GGCTCTCCATCTGTAGCAGC	GCACAGGACCATAGAGATA	Mouse, 52710	21313230a1	Sigma-Aldrich
Slec6a1	GAAAGCTGCTTGATCTGAGGTTG	AGCAAAAGATGATGAGTGTCGCC	Mouse, 232333	30520131a1	Sigma-Aldrich
Slec6a1II	TTGGTGACCCTGCTGAGGAGA	AGCAGATGAAAGAACCCGGTTA	Mouse, 243616	27370360a1	Sigma-Aldrich
Slec6a12	GGTCTCTGAGGAAGAGAGAT	GGGATGAGAAAGAGTCCACC	Mouse, 14411	19526806a1	Sigma-Aldrich
Slec6a13	CAGTACACCAAGACGAGGAG	GCCAGCAACAGATGAGTAGA	Mouse, 14412	21362295a1	Sigma-Aldrich
Slec3a1	ACCCTCCGTTCGCAAACAGTC	CAAAGTCCAGATCGTGCCAGT	Mouse, 22348	6678569a1	Sigma-Aldrich
Gabra1	AAAAAGTCGGGCTCTCTCTGAC	CAGTCCGTCGCAAATCTCTGGA	Mouse, 14394	6753936a1	Sigma-Aldrich
Gabra2	GCACCGTCCAAGTGGTTGTTG	TCTGGTCTAACAGGTACATTGAT	Mouse, 14395	6679901a1	Sigma-Aldrich
Gabra3	ATGTTGGACATTCTGTAGCCCA	CCCCAGGCTCTGTTGGCTTGG	Mouse, 14396	31560695a1	Sigma-Aldrich
Gabra4	ACAATGAGACTCATCCATAGTCG	GCCCTTCCGTGCTGGTGAAG	Mouse, 14397	33468895a1	Sigma-Aldrich
Gabra5	TGACCCCAACCCTCTCTTCTG	GTGATGTTGCTATGGCTTCT	Mouse, 110886	30578386a1	Sigma-Aldrich
Gabra6	TGCCCAAGCTCAACTTGAGA	GCCGTAGACGGTGTACATGC	Mouse, 14399	6679905a1	Sigma-Aldrich
Gabarap	AAGAGGAGGACCTGGTCTTGCAGA	GCTTTGGGCTCTGCTGGTTGG	Mouse, 56486	9789961a1	Sigma-Aldrich
Gabarapl1	GGACCACCCCTCGAGATCTC	CCTCTTATCCGAGATCGGCCGAC	Mouse, 57436	10181206a1	Sigma-Aldrich
Gabarapl2	TCCGGCTCTCGATTTGTGAC	ATGGCTCCTCCAGGAGGAGGA	Mouse, 93739	31542873a1	Sigma-Aldrich
jaknip1	ACCGCTACATCATCGGAACCT	GCAGCTACATCTCGGATCCTTT	Mouse, 76071	30409980a1	Sigma-Aldrich
Gabrb1	TCCGCTGATGGTGCTATGAG	CCGAAGCGAATGTCATATCC	Mouse, 14400	6679907a1	Sigma-Aldrich
Gabrb2	ATGTCGGCTGTGTAAGAGGACG	CTGGACCATCGTTGTGCAAAA	Mouse, 14401	6679909a1	Sigma-Aldrich
Gabrb3	CTGGTCGCAAACTCGGCTTCTC	CGTGACCCCTAAGCTGGCTTGTC	Mouse, 14402	26350247a1	Sigma-Aldrich
Gabrd	ATGGGGGACTACGTGGGCTT	CCACATTCCAGAGAGACC	Mouse, 14403	6679913a1	Sigma-Aldrich
Gabre	CCTTCAGGGAGGTGGTGGAC	ATCCAGGGGAGGAGTCAGGT	Mouse, 14404	8393396a1	Sigma-Aldrich
Gabrg1	TGGTGAGTAAGAGGCTATGG	TCCGGAGATCGAGGTTAGTA	Mouse, 14405	26332763a1	Sigma-Aldrich
Gabrg2	ATGGTGTCGCCAAATACAGGAGG	GGGAGCAATGTTGAGCTCGT	Mouse, 14406	28916679a1	Sigma-Aldrich
Gabrg3	GAGCTGGCCCTGCCATTCAAC	AGGCTCCTGCTGGTTTTAGAATTT	Mouse, 14407	6679917a1	Sigma-Aldrich
Gabrp	CAGACCCAGGGCTAGTGTTTC	AGAGGCGGATGAGCCTGTGTT	Mouse, 216643	20379971a1	Sigma-Aldrich
Gabrq	ATGGGCACTCCAGGATATGCT	ATCCAGAATGCTTCCAGGGCT	Mouse, 57249	10048422a1	Sigma-Aldrich
Gabrr1	CGAGGAGCACACAGCAGAGT	GCTGAGTCCATCGCACCTTCTG	Mouse, 14408	6679919a1	Sigma-Aldrich
Gabrr2	ATGCCCTATTTGTAGAGACTCGC	CCACACCTACAGGATGAGCC	Mouse, 14409	6679921a1	Sigma-Aldrich
Gene	Forward primer sequence	Reverse primer sequence	Species	Catalog number	Supplier
--------	-------------------------	-------------------------	---------	----------------	--------------
Gabrr3	CACCCTAAACGTGAAACAACCTGT	TCCAATAGTGCTGGAGGTAAAAC	Mouse, 328699	124487130c2	Sigma-Aldrich
Gabbr1	GCACAGGACACAATGAAAACAG	AGCAAATGTAATCGACTTCCA	Mouse, 54393	5051395a1	Sigma-Aldrich
Gabbr2	AAGACCCCATAGAGGACATCAA	GGGTGGTACGTGTCCTGG	Mouse, 242425	29611612a1	Sigma-Aldrich
DBI	GAATTTGACAAAGCCGCTGAG	CCCACAGTAGCTGTTCGAA	Mouse, 13167	6681137a1	Sigma-Aldrich
Arg1	CTCCAAAGCCAAAGCTCTTAGAG	AGGAGCTGTCATTAGGGACATC	Mouse, 11847	15896684a1	Sigma-Aldrich
Arg2	TCCTCCACGGGCAAATTCC	GCTGGACCATATCCACTCTTA	Mouse, 11847	6753110a1	Sigma-Aldrich
ODC1	GGTCTCAGAGGCCAAACAA	CAGCGTGCCATCATCCT	Mouse, 111148	N/A	Sigma-Aldrich
Aldh1a1	ATACTTGTCCAGATTAGGAGGCT	GGGCTATCTTCATAATGAACA	Mouse, 11668	7304881a1	Sigma-Aldrich
DAO	GTGGCAAGAGGAGTGGATG	TGGAAGAGATGATACGGGAGAGTTG	Mouse, 13142	15929683a1	Sigma-Aldrich
Aldh4a1(PDH)	CGATGGAAAGCAACACTCTTCTT	GGCGAACAGCTCGACTGTATATC	Mouse, 212647	34328415a1	Sigma-Aldrich
Tubulin(beta-2 microglobulin)	TTCTGGTGCTTGTCCTCACTGA	CAGTAGTGCCTGGGCTTCCATT	Mouse, 12010	144227219c1	Sigma-Aldrich
Supplemental Figure 1. For analysis of CD4+ T cell proliferation, infiltrating and intracellular cytokines (Fig 4c, Fig 4g, Fig 4i, Fig 4k, Fig 5f, Fig 5h, Extended Data Fig 2b, Fig 4a-d, Fig 5, Fig 6b, Fig 8b, Fig 9c, and Fig 10): FSC-SSC-H gating was used as preliminary gating for lymphocyte population followed by analysis of CD4+ T cells, then checked the intracellular cytokines expression.

Supplemental Figure 2. For *in vivo* adaptive transfer experiment, gating strategy for flow cytometry analysis was preliminarily performed by gating for CD45.2 stain marker (Extended Data Fig 6a, OVA antigen-specific).