Influence of nano particles on the performance parameters of lube oil – a review

Anoop Pratap Singh *, Ravi Kumar Dwivedi and Amit Suhane

Department of Mechanical Engineering, Maulana Azad National Institute of Technology Bhopal, (MP), India

* Author to whom any correspondence should be addressed.

E-mail: anoop2651@gmail.com, nitb.ravi@gmail.com and amitsuhane2003@yahoo.co.in

Keywords: nanolubricant, nanoparticles, morphology, base oil, tribological performance

Abstract

This review focuses on the effect of nanoparticles in lubricating oil performance. The impact of chemical composition, particle size, and nanoparticle shape is evaluated on lubricants' lubricating capabilities. The effects of base oils and surfactants, and dispensers are also covered. This review demonstrates a comparative study of nanoparticles based on the maximum reduction in friction and wears values and the obtained minimum coefficient of friction (COF). The above three performance parameters collectively provide a better understanding of the role of nanoparticles in lubricating oil performance.

List of abbreviations

3D Three-Dimensional
AFM Atomic force microscopy
AISI American Iron and Steel Institute
API American Petroleum Institute
COF Coefficient of Friction
DIA Diameter
EDS or EDX or EDAX Energy Dispersive x-Ray Spectroscopy
FE-SEM Field Emission Scanning Electron Microscope
HRSEM High-Resolution Scanning Electron Microscope
HRTEM High-Resolution Transmission Electron Microscopy
LEN Length
LSM Laser Scanning Microscopy
Max. Maximum
Min. Minimum
MWCNTs Multi-Walled Carbon Nanotubes
nm Nano Meter
NPs Nanoparticles
OM Optical Microscope
PAO Polyalphaolefin
PTFE Polytetrafluoroethylene
Ref. Reference
SAE Society of Automotive Engineers
SAXS Small-angle x-ray scattering
1. Introduction

In general terms, efficiency is the ratio of output to input. There are two available methods to improve the efficiency of a mechanical system that come to mind, the first is to reduce input, and the second is to minimize losses. The system’s output also varies in the first case. Still, the system response becomes unaltered or better in the second case. Thus, friction is a significant element on the way to reduce energy loss. In typical applications, friction cannot be eliminated but reduced to some level where energy loss is minimal. So, there is a need for an efficient lubrication system. Nowadays, lubricating oil contains 90% hydrocarbons and the rest of the additives, which play an essential role in its behaviour. Organic phosphorous and sulfide compounds have played positive roles as friction modifiers and wear resisters [1].

Nano lubricant is a homogenous mixture of base oil, nanoparticles, and dispersants or surfactants. In recent years, nanoparticles played an essential role in the field of additives. Generally, the size of the particles is less than 100 nm. Many researchers say that nanoparticles within lubricating oil act as friction modifiers and positively impact thermal requirements [2].

The lubrication mechanism derives from the physical and chemical interactions between molecules of lubricants, material surfaces, and the environment. Based on nanoparticle interaction within the tribological surfaces, four mechanisms are derived [1], [3], [4]. First, nanoparticles of the spherical-shaped act as the tiny balls in between the tribological surfaces, which changes the sliding action into the rolling action results in the reduction of COF [3], [5–7]. Second, sometimes nanoparticles form a protective layer over the mating [8–12]. Third, nanoparticles fill in the asperities, and friction cracks result in a smoother surface, termed the mending effect [13]. Forth, Surface roughness cuts down due to nanoparticles’ abrasive action, termed the polishing effect [14]. Figure 1 shows a pictorial representation of the lubrication mechanism.

Nanoparticles could be used as an add-on in diesel and biodiesel to improve fuel efficiency, engine performance, exhaust emission, combustion [15–18]. They were also effective in the area of heat transfer [19], [20].

After analysing the number of articles in nano lubricants, many questions arise in mind, such as how can the quantity of nanoparticles be optimized to enhance the tribological performance? What are the properties of nanoparticles relevant for lubrication? Can we measure their effects? During the literature review of several
hundreds of publications, it is observed that each study is based on unique conditions, such as base oil, additive concentration, nanomaterials, and their surface functionalities, workpiece material, test parameters, lubrication regime, etc many others. There is no single standard condition that can be used for a fair comparison. The researchers took a nanoparticle, two or more nanoparticles, or nanocomposites for their study. Therefore, the performance parameters were analysed for better comparison. Statistical analysis is based on experimental results collected from about 80 papers on nano lubricant additives listed in various tables. For the analysis, the minimum (Min.) value of COF, the maximum (Max.) % reduction in COF, and the maximum % reduction in wear are taken as the performance parameters of the nanoparticles in the lubricating oil. The study of individual parameters does not clarify the picture regarding the performance of nanoparticles in lubricating oil. Comparison of all three parameters at the same time is required for each nanoparticle. Therefore, this review summarizes the results and shows a new way of selecting nanoparticles according to performance parameters. The effect of chemical composition, particle size, and nanoparticle morphology on lube oil has been analysed. The impact of nanoparticles on lubricating oil with a base oil and the optimum value of nanoparticles with their performance parameters is summarised. The results and shows a new way of selecting nanoparticles according to performance parameters. The comprehensive review provides detailed information about nano lubricants in a precise manner.

2. Impact of nanoparticles chemical composition on the performance of lube oil

Nanoparticles of every composition and section have been well studied. It is separated by metals, metal oxides, sulfides, carbon and its derivatives, two or more nanoparticles, or nanocomposites for their study. Therefore, the performance parameters were analysed for better comparison. Statistical analysis is based on experimental results collected from about 80 papers on nano lubricant additives listed in various tables. For the analysis, the minimum (Min.) value of COF, the maximum (Max.) % reduction in COF, and the maximum % reduction in wear are taken as the performance parameters of the nanoparticles in the lubricating oil. The study of individual parameters does not clarify the picture regarding the performance of nanoparticles in lubricating oil. Comparison of all three parameters at the same time is required for each nanoparticle. Therefore, this review summarizes the results and shows a new way of selecting nanoparticles according to performance parameters. The effect of chemical composition, particle size, and nanoparticle morphology on lube oil has been analysed. The impact of nanoparticles on lubricating oil with a base oil and the optimum value of nanoparticles with their best performance characteristics are also shown in this review. This comprehensive review provides detailed information about nano lubricants in a precise manner.

2.1. Metals

Metallic nanoparticles have unique physical and chemical properties as lubricant additives [21–29]. Nanoparticles like Ag, Bi, Co, Cu, Fe, Ni, Pd (palladium), Sn, etc come under this section. Within the metal segment of nanoparticles, Cu is the most concentrated Nanoparticles (NPs) due to its low melting point, small particle size, and desired ductility [11], [13], [27–36]. Copper nanoparticles show superior antiwear and anti-frictional properties. In Reference [32], Cu nanoparticles with 0.3% by weight give the best results with a mineral base oil and show a good stability period of 8 months. In another case, Cu nanoparticles do not offer any significant improvement in synthet esters. Still, they can improve the antiw ear property of mineral oil by up to 64% with a 0.3% concentration [22].

Types	Nanoparticles
Metals	Ag, Bi, Co, Cu, Fe, Ni, Pd
Metal oxide	Al2O3, CuO, Fe3O4, TiO2, ZnO, ZrO2
Carbon and its derivatives	Graphene, Diamond, SWCNT, MWNTs
Sulfides	WS2, MoS2, CuS
Rare earth compounds	LaF3, CeO2
Nanocomposites	Al2O3/SiO2, Al2O3/TiO2, Cu/graphene oxide, WS2/MoS2
Others	SiO2, PTFE, BN, Serpentine

Figure 2 shows the statistics presenting the distribution of the nanoparticle composition. According to the analysis, the metal oxide nanoparticles cover the maximum. Metal oxides are followed by metals, sulfides, nanocomposites, other carbon and its derivatives, and rare earth compounds.

Figure 3 shows the effect of different chemical compositions on the performance parameters. According to the analysis, when the lowest value of COF is the point of concentration in the performance parameters. Metallic nanoparticles showed the best performance, followed by sulfides, carbon and its derivatives, nanocomposites, others section, rare earth compounds, and metal oxides. Sulfides perform best when it comes to the maximum reduction in COF as a matter of concentration. And carbon and its derivatives, others section, metals, metal oxide nanocomposites, and rare earth compounds are in order. For the maximum reduction in wear, the compositions are sulfides, other segments, metals, metal oxides, carbon, and its derivatives, nanocomposites, and rare earth compounds. The sulfide segment performs exceptionally well in all three performance parameters.
Nanoparticles such as Ag have been shown to getter friction reducers due to their ductile nature [37], [38]. There is an improvement noted on lubricant characteristics of mineral oil by adding Bi particles [39]. The suspension of Ni particles shows a decrease in the average COF and wear for Polyalphaolefin (PAO) 6 [40], [41]. Metallic nanoparticles are not only known as friction modifiers but also to improve load-bearing capabilities. The load-bearing capabilities of base oil are enhanced by adding Pd [42], [43]. At the comparison node between Fe, Cu, Co, the COF and wear values show a reduction of up to 53% and 50%, respectively, for Fe + Cu [21]. Both Fe and Sn NPs show a reduction in friction, wear, and frictional heat compared to MACs oil [44].

Table 2 shows details about metallic additives for nano lubricants. The name of the NPs and the particle size and morphological characteristics are mentioned within this table. This accurate aggregated description also gives information about base oils and also about surfactants or dispersants. The table also lists the technique used to characterize nanoparticles, nano lubricants, and worm surfaces. The importance of any nanoparticle is

![Figure 2. Statistics showing the chemical composition distribution of nanoparticles.](image1)

![Figure 3. Effect of chemical composition on performance parameters.](image2)
S. no.	Nanoparticle	Nano particles size	Nano particles shape	Base oil	Surfactants or dispersants	Characterization equipment	Tribological test methods	Material of tribo surfaces	Stability	Min. value of COF	Max. % reduction in COF	Max. % reduction in wear	References	
1	Ag	6–7 nm	Spherical	Multialkylated cyclopentanes (MACs) lubricant	—	Scanning Electron Microscope (SEM), Energy Dispersive x-Ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM)	Optimal SRV Oscillating Friction and Wear Tester	Society of Automotive Engineers (SAE) 52100 Steel	—	0.1	2%	9.09	16.67	[37]
2	Bismuth (Bi)	7–65 nm	Spherical	BS900 (heavy base oil) and BS6500 (light base oil)	—	TEM, Small-angle x-ray scattering (SAXS)	Four-Ball Tester	American Iron and Steel Institute (AISI) 52100 Steel Balls Disks: Gray Cast Iron (GG 25, Lamellar Graphite) Pins: Chromium-Plated Steel 100Cr6	—	0.0475	300 mg l⁻¹	34.48	14.62	[45]
3	Cu	Diameter (DIA): 5 nm	—	Lubricant Chevron Taro 30 DP 40 and Teboil Ward Chevron	Oleic acid	Atomic force microscopy (AFM), XPS	Pin on Disc	Chromium-Plated Steel 100Cr6 Disks: 20CrMnTi Steel Pins: H62 Bronze 1045 steel More stability quoted as compared to not modified surface	—	0.1075	0.3%	49.41	22.22	[46]
		20–130 nm	Spherical	508SN	Polysobutylenebutadimide	SEM, Scanning Tunneling Microscopy (STM), TEM, x-ray powder diffraction (XRD)	Pin on Disc	—	0.033	0.1%	25	—	[13]	
		20 nm	Globular	Mineral oil SN 650	—	SEM, EDS, XPS	Disc on Disc (Test Rig)	—	0.059	0.6%	26.9	57.2	[31]	
			Spherical	CAL-1 (5W-40), CAL-2 (5W-40), and CAL-3 (5W-20) and Avocado oil	—	TEM, Three-Dimensional (3D) Optical Profiler	Four Ball Tester	GCr15 Steel Balls	—	0.049	1.6% in CAL-3	38.8	24	[47]
		25 nm	Spherical	Avocado oil	—	3D Profilometer, SEM, EDS	Pin on Disc	Pin: Aluminum Alloy 6061 Disc: EN 31 Steel Ball and Disk: AISI 52100 Pin: AISI 1020 10 days stability reported	—	0.04	1%	50	75	[48]
		10–30 nm	Oblong	Paraffinic mineral and Synthetic ester	—	SEM	Pin On Disc And Four-Ball Tester	8 months stability reported	—	0.01	0.3% with mineral oil	60	20	[22]
S. no.	Nanoparticle	Nanoparticles size	Nanoparticles shape	Base oil	Surfactants or dispersants	Characterization equipment	Tribological test methods	Material of tribo surfaces	Stability	Min. value of COF	The optimum value of NPs	Max. % reduction in COF	Max. % reduction in wear	References
--------	----------------	--------------------	---------------------	------------	-----------------------------	----------------------------	--------------------------	---------------------------	-----------	------------------	-----------------------------	--------------------------	--------------------------	-----------
4	Ni	20 nm	Spherical	PAO6	—	SEM, EDS	Block on Ring Configuration and Four-Ball Tester	Rings: AISI D3 Steel Blocks: AISI 1045 Steel Ball: AISI 52100 Steel	—	0.015	0.5%	30	45	[40]
5	Pd (palladium NPs)	7.5–28.5 nm	Spherical	PAO6	Oleylamine and oleic acid	TEM, XRD, SEM, XPS	Four-Ball Tester	GCr15 Steel Balls AISI 52100 Steel	—	0.0675	0.05%	−18.52	18.64	[41]
6	Fe, Cu, and Co	50–80 nm	Spherical	SAE 10	Converse emulsions of water in lubricant solution (CEWLS)	SEM, Energy Dispersive X-Ray Spectroscopy (EDX)	Four-Ball Tribotester	100 Cr6 Bearing Steel	Not Required	0.05	1%	9.09	94	[42]
7	Sn and Fe	Sn: 30–60 nm	Spherical	Multialkylated cyclopentanes (MACs)	SEM	Four-Ball Tester	AISI 52100	—	0.0625	1% FeSn	37.5	38.75	30	[49]

References:
- [40]
- [41]
- [42]
- [49]
checked only by tribological testing methods. And as friction and wear are superficial phenomena. Therefore,
information about the surface material of the tribological member and the tribological test is an essential
component. So, this table lists the information about the tribological test methods and the surface material of the
test components. The stability of nanoparticles is also mentioned in nano lubricants. Finally, the minimum
value of COF obtained in the tribological test is also mentioned. The optimum quantity of nanoparticles is
mentioned at which nano lubricants show their highest efficiency. This optimum value is displayed as % of
nanoparticle/unit volume. The maximum reduction in COF and wear value is also listed. The particular case is
laid on the table. The average value of COF and wear is taken for this analysis. A negative value of COF and a
decrease in wear indicate an increase in COF and wear values.

2.2. Metal oxide
Lubrication mechanisms of Oxides are analogous to those of metallic NPs, including the formation adsorption
film, rolling effect, and sintering. Some common metal oxides are Al2O3, ZnO, Fe3O4, ZrO2, Co3O4, etc, which
positively affect oil performance [50–52].

Al2O3 are hard particles but positively respond to the lube oil’s frictional and wear characteristics [52–55].
There are studies available on the anti-frictional and antiwear behaviour of [56–58]. CuO NPs at 0.1% exhibit
better antiwear performance compared with other concentrations [59]. The effect of CuO particles with TiO2,
ZnO, Al2O3, and nano diamond has been investigated [60]. Some oxides like magnetic Fe3O4 can reduce
COF by forming a protective film between the tribo [63], [64].

Several studies reported on the performance of [65–71]. When TiO2 nanoparticles were added to engine oil,
the co-efficient of friction was reduced by 86% with 0.3% concentration by weight of the oil compared to the oil
without TiO2 nanoparticles for load 4 kg [70]. Almost identical performance has been reported in [65], a 0.3%
(TiO2) concentration in engine oil with a similar reduction in COF of 86%. The optimum concentration of
ZrO2 is 0.5% for the reduction in friction coefficient up to 27.34% under the thrust-ring test [72].

The essential information about the metal oxides nanoparticles as lubricant additives is mentioned in table 3.

2.3. Sulfides
Sulfides are an essential and long-used nano additive. Lube oil with sulfides nanoparticles shows more
antifriction and antiwear properties. Some common examples of sulfides nanoparticles are MoS2, WS2,
and CuS.

MoS2 and WS2 are widely accepted for their chemical stability and fullerene-like structure. Hollow
polyhedral structures called fullerene-like NPs (IF-NPs) provide stability to the oil particles [74]. The 0.25%
MoS2 microlubricant results in an almost 40% reduction in friction and a 6% reduction in wear compared with the
base oil in fully flooded EHL contacts [75]. In another example, MoS2 can reduce COF by up to 70% and show
superior antiwearing properties with a concentration of 1% [76].

Table 4 presents examples of sulfides used as nano additives along with a description of nano lubricants.

2.4. Nanocomposites
Nanocomposites are the field of taking advantage of two or more nanoparticles at the same time. In
nanocomposites, two or more nanoparticles are combined into a base oil. Sometimes researchers also synthesize
nanocomposites. The nanocomposite is an area where two dislike nanomaterials and can increase lube oil
quality like Cu/SiO2 Nanocomposite. Many researchers say that some nanocomposite shows better
performance than the performance of individual nanoparticles in lube [86], [87]. The trends also suggest that
research on nanocomposites has increased over the years. Many nanocomposites are evaluated for their
performance in lubricating oils, which are Al2O3/SiO2, Al2O3/TiO2, Cu/Graphene oxide, WS2/MoS2, etc.

The lubricating oil with Al2O3/TiO2 nanoparticle of 75 nm average diameter and KH-560 shows good
dispersion stability. It can reduce friction and wear with an optimum concentration of 0.1% [87], [88]. The
performance of lubricating oil using Al2O3/SiO2 nanoparticles as additives was improved compared to pure
Al2O3 or SiO2 particles [89], [90]. A solid/liquid dual lubrication system was seen by mixing WS2–MoS2 films
with two specific oils, including MAC and CPSO. The tribological performance of the WS2–MoS2/MACS
system was much better than that of WS2–MoS2/CPSO [86]. Nano-Cu/graphene oxide exhibits better
performance than single GO nanoparticles [91]. Cu/SiO2 nanocomposite as a lubricant additive can effectively
improve the friction-reducing and anti-wear ability load-carrying capacity of distilled water [91]. ZnAl2O4 NPs
as a lubricant additive can significantly improve antifriction and antiwearing characteristics of lube oil, with the
optimum concentration of 0.1 wt% [92].

Table 5 shows examples of Nanocomposites used as nano additives along with a description of nano
lubricants.
2.5. Others
Nanoparticles such as SiO₂, PTFE (polytetrafluoroethylene), BN, Serpentine, etc., fall under this other section. More than half of the research under this section focuses on SiO₂ nanoparticles. SiO₂ shows some significant improvements in friction and wear capabilities of lubricating oil. SiO₂ can improve anti-frictional and antiwear properties by 77.7 and 74.1% in sunflower oil with 1.25% of SiO₂ [98].

The nano-BN oils significantly improve the performance of the base oil [99], [100]. The concentration of 0.1% BN particles shows better performance as compared to SE 15W-40 [101]. PTFE NPs show excellent potential to improve the EP performance of lube oil [102], [103]. 1.5 wt% of serpentine into oil is the most efficient in reducing friction and wear [104].

Many studies have focused on SiO₂ NPs because of their friction and wear-reducing ability in lubricating oil [98], [105–111]. It is observed that small nano-SiO₂ nanoparticles exhibited optimal friction-reduction performance under low frequency. In contrast, for large nano-SiO₂, it occurred under high frequency [108]. SiO₂ with surface modifier KH-550 has the potential to improve the performance of lubricating oil [105]. In [110], a significant decrease in COF upon the increase of SiO₂ nanoparticles (0 to 0.6 wt%) has been reported. In another case, when comparing the performance between SiO₂, graphite, Cu, CuO, and WS₂, SiO₂ in 15W40 lubricating oil showed the highest reduction in COF and wear by 25.55% (at 588 N load) and 59.91% (at 588 N load) [111].

Table 6 shows nanoparticles from other sections used as nano additives along with a description of nano lubricants.

2.6. Carbon and its derivatives
Carbon shows a variety of properties from soft to hard when comparing graphite to diamond. Carbon and its derivatives are studied as nano additives for their different sizes and shapes. Graphene, Diamond, SWCNT (Single Wall Carbon Nano Tube), MWNTs (Multi-Wall Carbon Nano Tube) are important carbon derivatives. The tube form of nanoparticles is mainly studied for carbon. According to this analysis, graphene, diamond, carbon nanotubes are uniformly covered and improve oil capacities. Nano diamond in ethylene glycol exhibits anti-frictional properties. It has a more negligible wear effect in stainless Steel - stainless steel aboriginal contact [112]. The COF of graphite mixed with oil decreased by 28%, and the antiviral properties of the mixture improved by 32% compared to pure 10W40 oil [113].

It is of interest to study the tribological properties of graphene in recent years [114–116]. Graphene additives can reduce COF up to 78% with 0.5 wt%. In the same case, the scar diameter was significantly reduced compared to pure PAO2 lubricants under a load of 120 N and a rotation speed of 250 rpm [114]. The addition of Gr resulted in a significant reduction in friction and wear values compared to the reference oil (5W-30) [115]. Diamond is another derivative of carbon that is intensively used as a friction modifier [112], [117–119]. Nano-diamond ethylene glycol dispersions exhibit friction and wear lowering effects in stainless Steel–stainless steel tribological contact [112].

Table 7 presents examples of Carbon and its derivatives used as nano additives along with a description of nano lubricants.

2.7. Rare earth compounds
LaF₃, CeO₂, and CeBO₃ are some common examples of rare earth compounds. LaF₃ nanoparticles as a lubricant additive can effectively reduce friction, improve antiwear capacity, and increase the load-carrying capacity of fluoro silicone oil under optimal concentrations of 0.08 wt% [122].

The stearic acid-modified cerium borate nanoparticles exhibited a spherical morphology with an average of 8 nm and were dispersively stable in rapeseed oil. Moreover, SA/CeBO₃ nanospheres markedly enhanced tribological performances of rapeseed oil [123]. When lubricated by ZrO₂ additive oil, the Ta-Si/steel contact COF becomes the lowest [124].

Table 8 shows examples of rare earth compounds used as nano additives along with a description of nano lubricants.

3. Impact of particle size
The diameters in spherical and tubular shapes, the thicknesses in the sheets are characteristic dimensions. Typically, the size of nanoparticles is less than 100 nm. Due to the small size of nanoparticles can enter in between the contact of tribological members. The high surface-to-volume ratio also enables NPs to react with the surroundings. Hence this section elaborates the effect of nanoparticle size on the performance of lube oil.

Since the size of the particles governs the mechanical and physical properties of the nanoparticles, it is essential to use nanoparticles of optimum size. In [126], CaCO₃ nanoparticles show better performance at
S. No.	Nanoparticle	Nano Particle Size	Nano Particle Shape	Base oil	Surfactants or dispersants	Characterization equipment	Tribological Test Methods	Material of Tribo Surfaces	Stability	Min. value of COF	The optimum value of NPs	Max. % reduction in COF	Max. % reduction in wear	Reference	
1	Al₂O₃	78 nm	Spherical	Lube Oil with VI95	KH-560	SEM, EDS	Four-Ball Tester and Thrust Ring Friction Tester	GC215 Steel Balls	Chemically modified nano composite shows good dispersion stability	0.055	0.1%	19.12	41.75	[53]	
2	CuO	50 nm	Spherical	Castor Oil (CO) Paraffin oil (PO)	Sodium dodecyl sulfate (SDS)	Sodium dodecyl sulfate (SDS)	SEM, AFM	Four Ball Tester	AISI 52100 Steel	Visual inspection, upto 72 h	0.05	0.1%	34.6	28.3	[58]
3	Fe₂O₃	10 nm	Spherical	Liquid paraffin	Oleic acid	TEM, XRD	HFRR Tribometer	Ball on Flat Contact Tester	Stability reported up to 30 days	—	0.1%	16.13	21.82	[59]	
4	Magnesium borate	10 nm	Amorphous	500-SN base oil	Sorbitol monostearate - 1%	SEM, XPS, TEM, XRD	Four-Ball Tester and Block on Ring Tribometer	AISI 52100 steel	Stability reported up to 30 days	—	0.035	25	64.7	[63]	
5	TiO₂	10–25 nm	Spherical	Engine oil 4T Synth 10W-30	—	Ultraviolet (UV) spectrometer	Pin: Aluminium alloy (LM 25) (Al-Si7Mg)	—	Dispersion analysis using UV spectrometer Improves after surface modification	0.015	0.3%	86.49	92	[70]	
6	ZnO	20 nm	Spherical	Polyalphaolefin (PAO6)	Octacare (OL100 and OL300) base oil	TEM, IR, Polarized Microscopy (PM), XPS	Four-Ball Tribometer and Ball-on-Disk Tribometer	AISI K 19,195 Steel	—	0.5%	26.32	28.69565	[65]		
7	ZrO₂	<50 nm	Amorphous	20# machine oil	—	TEM, EDS, XRD	Four-Ball Tester and A Thrust-Ring Tester	Balls: AISI-52100 Ring Specimen: 45 Steel	—	0.01661	0.5%	27.34	—	[72]	
8	Al₂O₃ and TiO₂	Al₂O₃: 8–12 nm TiO₂: 10 nm	Spherical	Engine oil (5W-30)	Oleic acid	Field Emission Scanning Electron Microscope (FE-SEM), EDS, XPS, XRD, 3D Surface Profile	Test Rig	Piston ring/cylinder liner interface in an engine according to ASTM G181	DLS method, stability period mentioned is 14 days	0.038	0.25% Al₂O₃	35	21	[54]	
S. No.	Nanoparticle	Nano Particles Size	Nano Particles Shape	Base oil	Surfactants or dispersants	Characterization equipment	Tribological Test Methods	Material of Tribo Surfaces	Stability	Min. value of COF	The optimum value of NPs	Max. % reduction in COF	Max. % reduction in wear	Reference	
--------	--------------	---------------------	----------------------	----------	---------------------------	----------------------------	-----------------------------	-----------------------------	-----------	----------------	-----------------------------	--------------------------	---------------------------	-----------	
9	CuO and Al₂O₃	<50 nm	CuO: Spherical, Al₂O₃: Tubular	GL-4 (SAE75W-85) and Poly-alpha olefin 8 (PAO8)	—	SEM, Energy Dispersive X-Ray Spectroscopy (EDAX)	Optical SRV 4 Tester and Four-Ball Tribotester	AISI 52100 Steel	—	0.37	0.25% TiO₂	46	29	[60]	
										0.13	2% Al₂O₃ + PAO8	16.13	−25		
										0.115	2% CuO + PAO8	25.81	11.76		
										0.13	0.5% Al₂O₃ + GL4	0	0.735		
										0.125	0.5% CuO + GL4	3.85	13.24		
										0.085	0.1% CuO + API-SF	18.4	16.67		
10	CuO, TiO₂, Nano-Diamond	CuO: 5nm TiO₂: 80 nm Nano-Diamond: 10nm	Spherical	API-SF (V1100) engine oil and a Base oil (V1107)	Glycol	TEM, Optical Microscope (OM), SEM, and EDX	Reciprocating Sliding Tribotester	Chromium-Coated Steel Ball and Plate	—	0.095	0.1% CuO + PAO8	5.8	78.79	[6]	
										0.095	0.1% CuO + PAO8	5.8	78.79		
11	CuO and ZnO with 0.5%	ZnO: 11.71 nm CuO: 4.35nm	ZnO: Hexagonal CuO: Monoclinic	Soybean oil Sunflower oil Mineral oil Synthetic oil (polyalphaolefin)	—	SEM, XRD, EDS	High-Frequency Reciprocating Test Rig (HFRR)	A rigid steel ball (570–750 HV)	—	0.113	Mineral + CuO	−8.65	−2.597	[62]	
										0.099	Mineral + ZnO	4.81	5.009		
										0.084	PAO + CuO	22.22	7.677		
										0.086	PAO + ZnO	11.11	3.459		
										0.061	Sunflower + CuO	−19.61	−5.867		
										0.06	Sunflower + ZnO	−17.65	−7.733		
										0.057	Soybean + CuO	−7.55	−13.12		
										0.062	Soybean + ZnO	−16.98	−18.18		
higher frequencies with larger and lower frequencies with smaller dimensions. In another case, the IF-MoS₂ [76] nanoparticle also exhibits similar properties. It refers to the ability of the particle to enter the point of contact. The probability of NPs entering the contact area increases with the decrease in the size of the particles [127].

The performance of SiO₂ nanoparticles was evaluated for various sizes ranges from 58 to 684 nm and finally quoted that 58 nm size nanoparticles show better tribological properties. On the other hand, CuO nanoparticles are also examined for 2.5, 4.4, and 8.7 nm and found better results on 2.5 nm.

The performance of SiO₂ nanoparticles was evaluated for different sizes from 58 to 684 nm and finally quoted that 58 nm size nanoparticles showed better tribological properties [106]. Similarly, CuO nanoparticles were also examined for 2.5, 4.4, and 8.7 nm sizes, and better results were found at 2.5 nm [128].

The nanoparticle size has been divided into four sections for better understanding. They are <30 nm, 31–60 nm, 61–100 nm, and >100 nm. Figure 4 shows the statistics for the size distribution of nanoparticles. The analysis indicates that the dominant concentration of researchers in the past has been under the size of <30 nm.

Medium-sized segments (30–60 nm) of nanoparticles may be part of future studies in nano lubrication due to the potential of NPs in this field is high enough studies reported in this section.

Figure 5 shows the effect of nanoparticle size on lubricating oil performance. The analysis shows that the size segment <30 nm shows the best results. When the minimum value of COF is the point of concentration in the performance parameter followed by 61–100 nm, 31–60 nm, and >100 nm size segments. Again, the size segment <30 nm shows the best results for the maximum reduction concentration in COF followed by >100 nm, 61–100 nm, and 31–60 nm. The order of size segments is 61–100 nm, <30 nm, >100 nm, and 31–60 nm when maximum reduction in wear is the point of concentration. The nanoparticles with less than 60 nm particle size show equilibrium type reduction in COF and wear. This means that the reduction in COF and wear is almost equal. But the difference between COF and wear reduction seems to widen with increasing size.

4. Impact of the morphology of nanoparticles

The shape of nanoparticles is again an important feature that affects the performance of lubricating oil [129]. The lubrication mechanism explains the importance of particle shape in nano lubrication. It talks about the pressure-carrying capacity of the nanoparticles. Generally, the shapes of nanoparticles are classified into five sections: spherical, granular, nanosheet, nanotube, and onion.

The spherical shape shows their importance because of the low surface energy. The onion-shaped nanoparticle has spherical shapes with a laminar structure inside. Suppose the shape of the onion is stable. In that case, it behaves like a spherical otherwise, it acts as a sheet form of nanoparticles. The most significant advantage of the onion shape is that it has tangled bonds and a spherical shape.

The superior tribological properties are exhibited by the onion, leaf, and spherical particles. The spherical-shaped particles show high load-bearing capacity as well as EP properties due to ball-bearing effects. In spherical particles, the sliding motion turns into rolling motion which eventually reduces the friction [88], [130]. The spherical-shaped NPs also reduce the contact area with a point contact. A line and area contacts are found on nanotubes and nanoplates, respectively.

In [131], There is evidence where MnO₂ nanoparticles improve oil performance by first rolling action and then converted into a protective film on the surface. On the other example, the layered structure of MnO₂ nanoparticles can reduce the value of the friction coefficient by forming a tribo film on the surface [132], [133]. The 2D structure of MnO₂ is a potential nanoparticle as a friction modifier [134], [135].

Figure 6 shows the statics of the nanoparticle’s morphology. Since spherical particles can reduce the value of friction and wear. Therefore, the concentration of analysis is more focused on spherical-shaped nanoparticles. Next to a spherical shape, granular, nanosheet, nanotube, and onion-shaped particles are arranged in the order of evaluation.

Figure 7 shows the effect of nanoparticle shape on the performance parameters. Onion-sized particles perform best when the minimum value of COF is the focal point of the performance parameters. And other particles come in the form of nanosheets, nanotubes, spherical and granular in order. Nanosheets perform best when the maximum percentage reduction in COF is a matter of concentration. Then come onions, nanotubes, spherical and granular, respectively. Onion performs best when it comes to maximum percent wear reduction followed by nanotube, granular, nanosheet, and spherical ordering.

The cumulative study of performance parameters for a broad section, such as chemical characterization of the shape of nanoparticles, does not provide factual information about individual nanoparticles. Any application may require more details on the nanoparticle. Single performance parameter explains less about nanoparticles. So, three performance parameters for different nanoparticles were considered in this review, which provides a clear picture of the performance of nanoparticles in lubricating oil. Here author represents a
Table 4. Sulfides nanoparticles as lubricant additives.

S. No.	Nanoparticle	Nano Particles Size	Nano Particles Shape	Base oil	Surfactants or dispersants	Characterization equipment	Tribological Test Methods	Material of Tribosurfaces	Stability	Min. value of COF	The optimum value of NPs	Max. % reduction in COF	Max. % reduction in wear	Reference	
1	CuS	20 nm	Spherical	Liquid Paraffin	Oleic acid	SEM, TEM	Four ball tester	ASI 52100 Steel	—	0.0652 0.5%	—	—	—	—	[77]
2	IF-MoS₂	Crystalline: 80 nm	Spherical	Polyalphaolefin (PAO6)	—	High-Resolution Transmission Electron Microscopy (HRTEM), SEM, XPS	Pin On Flat Tribometer	—	0.025 with 1% of poorly crystalline	85.71 58.33	—	—	—	[78]	
3	MoS₂	0.5–2 μm	Spherical	500 SN base oil	—	TEM, SEM, HRTEM	Oscillating Friction and Wear Tester	AISI 52100 (100Cr6) Steel	—	0.085 0.1%	29.17 62.07	—	—	[8]	
4	MoS₂	150 and 350 nm	Spherical	Blend of PAO 4 and PAO 40	—	HRTEM, EDX, XPS	—	AISI 52100 (100Cr6) Steel	—	0.06 1%	70 91.11	—	—	[76]	
5	MoS₂	250 nm	Flower-like	Polyolester and naphthenic oil	No dispersant	XRD, FTIR, TEM	Pin on Disc	Pin: AISI-52100 Steel Disk: Grey Cast Iron	Visibly stable for approximately four days for the polyolester oil and over eight days for the naphthenic oil	0.03 1% with naphthenic oil	86.36	—	—	[79]	
6	MoS₂	50–100 nm	Spherical	Dioctyl sebacate (DOS)	—	XRD, SEM, EDS, TEM, Laser Scanning Microscopy (LSM), XPS	Ball on Disc Tribometer	GCr15 Steel Ball	—	0.06 0.5%	45.45 40	—	—	[80]	
7	MoS₂	DIA: 100 nm Length (LEN): 20μm	Nanotubes	Polyalphaolephin (PAO) oil	—	SEM, HRTEM, EDS, Ex-situ optical micrographs	Ball on Disc Tribometer	Ball and Disc: AISI 52100/ DIN 100Cr6 Steel	—	0.0495 2%	28.78	—	—	[81]	
8	MoS₂	DIA: 100–500 nm	Multi-Wall Nanotubes (MWNTs)	Polyalphaolephin (PAO) oil	—	TEM, Optical micrographs, SEM	Ball on Disc Tribometer	Ball and Disc: AISI 52100/ DIN 100Cr6 Steel	—	0.07 5%	56.25 88.89	—	—	[82]	
9	MoS₂	<2 μm	Spherical	Trichlorooctadecylsilane	XRD, SEM, EDX	—	—	—	0.0226 0.25%	37.95 10.07	—	—	[75]		
S. No.	Nanoparticle	Nano Particles Size	Nano Particles Shape	Base Oil	Surfactants or dispersants	Characterization equipment	Tribological Test Methods	Material of Tribo Surfaces	Stability	Min. value of COF	Max. % reduction in COF	Max. % reduction in wear	Reference		
--------	--------------	---------------------	----------------------	----------	---------------------------	--------------------------	--------------------------	--------------------------	----------	-----------------	------------------------	--------------------------	-----------		
4	WS₂	50 to 350 nm	Fullerene Like	SN 90, SN 150, bright stock	—	XPS	Test rig	AISI 2510, Brass, Bearing Steel Plate	—	0.03	5%	48.28	22	[84]	
		Tubes and Spherical form with coatings	Polyalphaolefin-4 (PAO-4)	—	TEM, Optical Microscope, High-Resolution Scanning Electron Microscope (HRSEM), EDS	Ball on Flat Test Rig	—	AISI 316, AISI 50100	—	0.075	1%	55.88	70.21	[85]	
Table 5 Composite nanoparticles as lubricant additives.

S. No.	Nanoparticle	Nano Particles Size	Nano Particles Shape	Base oil	Surfactants or dispersants	Characterization equipment	Tribological Test Methods	Material of Tribo Surfaces Stability	Min. value of COF	The optimum value of NPs	Max. % reduction in COF	Max. % reduction in wear	Reference			
1	Al₂O₃/TiO₂	Al₂O₃:8–12 nm TiO₂: 10 nm	Spherical	Synthetic oil (5W 30)	Oleic acid	FE-SEM, EDS, and 3D Surface Profiler	Test rig	Piston Ring: 320 VH Cylinder Liner: 413 VH Steel Ball GC215	Chemically modified nano composite shows good dispersion stability	0.038	0.1% (0.05% + 0.05%)	47.61	17	[87]		
		75 nm Spherical	Lube Oil (VI 95)	KH-560 (3-glycidoxypropylmethoxysilane)	SEM, EDS	Four-Ball Tester and Thrust Ring Friction Tester		Steel Ball GC215		0.052	0.1% (Four ball tester)	20.51	44	[88]		
2	Al₂O₃/SiO₂	Al₂O₃:13 nm SiO₂: 30 nm	—	Polyalkylene Glycol (PAG 46)	—	FE-SEM	Tribology Test Rig	Aluminium AI 2024	Visually sedimentation observed after 14 days			0.06525	0.06%	4.78	12.96	[90]
		70 nm Elliptical shaped	lubricant oil	KH 560	TEM, SEM, EDS	Four-Ball and Thrust Ring Tester		—	Checked for 3 months	0.028	0.5% (Four ball tester)	20	22.16	[89]		
3	WS₂/MoS₂	Thickness THK: 100 nm	Feather-Like Morphology	MACs (multi-alkylated cyclo-pentanes) and CPSO (chlorinated-phenyl with methyl-terminated silicone oil)	—	SEM, TEM, EDS	Ball-on-Disk	AISI 440C Steel Ball			0.06	MACs-WS₂/MoS₂	45.45	57.02	[86]	
4	BN/calcium borate	BN: 100–200 nm Coating THK: 12 nm	Spherical BN NPs coated with calcium borate	Mineral-base oil (saturated cyclo-paraffin and paraffin hydrocarbon)	No surfactant	TEM, XRD, XPS	Four-Ball Tester	Steel Balls GC215			0.08	FCPSO-WS₂/MoS₂	42.86	−1982.46	[93]	
5	Copper nanoparticle/Gra-	Nano sphere and Nano sheets	Spherical Liquid paraffin oil	Stearic acid	XRD, TEM, SEM	Four Ball Tester	Steel Balls GC215			0.065	0.05%	27	52.7	[94]		
S. No.	Nanoparticle	Nano Particles Size	Nano Particles Shape	Base oil	Surfactants or dispersants	Characterization equipment	Tribological Test Methods	Material of Tribo Surfaces	Stability	Min. value of COF	The optimum value of NPs	Max. % reduction in COF	Max. % reduction in wear	Reference		
--------	--------------	---------------------	----------------------	---------	-----------------------------	-----------------------------	--------------------------	------------------------	----------	-----------------	--------------------------	--------------------------	---------------------------	-----------		
6	Cu/ SiO₂	Cu: 20 nm, SiO₂: 2 nm	Spherical	Distilled water	3-mercaptopropyl-trimethoxysilane (MPTS)	XRD, TEM, SEM, EDS	Four-Ball Tester	GCr15 Bearing Steel	—	0.14	2%	51.72	38.46	[91]		
7	Mg/Al/Ce ternary layered double hydroxides (LDHs)	190.1 nm, Hexagonal layered structure	Diesel engine oil (CD 15W-40)	Succinic acid and lauric acid	XRD, SEM, FT-IR Spectroscopy, EDS	Four-Ball Tester and Air Compressor Test	GCr15 Steel (SAE-52100)	—	0.063	0.5g/100 ml	44.74	30.2	[95]			
8	La-doped Mg/Al layered double hydroxide (LDH)	185.6 nm, Hexagonal Laminate Structure	Diesel engine oil (CD 15W-40)	Sodium dodecyl sulfate (SDS)	XRD, SEM, FT-IR Spectroscopy, EDS	Four-Ball Tester and Air Compressor Test	GCr15 Steel (SAE-52100)	—	0.082	0.5g/100 ml	26.13	16.5	[96]			
9	Lanthanum-doped TiO₂	20 nm, Spherical	Rapeseed oil	Oleic acid	XRD, SEM and FTIR Spectroscopy, XPS	Four-Ball Tester	GCr15 Steel	—	0.051	0.25 %	5.56	7.27	[97]			
10	Zinc alumininate (ZnAl₂O₄)	95 nm, Spherical	Lubricant oil	Oleic acid	XRD, SEM, IR Spectrum, EDS	Four-Ball Tester and Thrust Ring Tester	—	—	0.0643	0.1%	33.37	31.15	[92]			
Table 6. Others section of nanoparticles as lubricant additives.

S. No.	Nanoparticle	Nano Particles Size	Nano Particles Shape	Base oil	Surfactants or dispersants	Characterization equipment	Tribological Test Methods	Material of Tribo Surfaces	Stability	Min. value of COF	Max. % reduction in COF	Max. % reduction in wear	Reference	
1	BN	DIA: 120 nm, THK: 30 nm	Disk Shape	SE 15W-40	Oleic acid	XRD, TEM, AFM, SEM	Friction Tester	No. 45 stainless steel	—	0.015	0.1%	76.92	[101]	
2	Hexagonal boron nitride (hBN)	70 nm, 0.5 μm, 1.5 μm, and 5.0 μm	Hexagonal	Avocado oil	—	SEM	Pin on Disc	Pin: Oxygen-Free Electronic Copper (C101) Disk: 2024 Aluminium	—	0.0144	5%	64	72	[99]
3	Polytetrafluoroethylene (PTFE)	90–100 nm	Spherical	API Group III 150N	Oleic acid, PIBS, Lubritrol 6412TM and Oloa 11000	SEM, EDAX, and Raman Spectroscopy	Four-Ball Tester	AISI E 52100	Stability Checked up to 3 weeks	0.1	with 5% of Oloa 11000 and No Nano Particle	37.5	10.54	[100]
4	Serpentine ultrafine powders	0.1–5 μm	Irregular	Diesel engine oil (grade: 50 CC)	Boric acid ester and Span 60	SEM, XRD, EDS	Sliding Friction Tribotester Test Rig	1045 Steel Contact	—	0.04	1.5%	58.1	89	[104]
5	SiO₂	15–20 nm	—	ST3W/30 gas mobile oil (GMO)	TEM, IR, XPS, TG, EDS, FTIR	RFT-III Reciprocating Tribotester and Four-Ball Tester	Reciprocating Column: 45# Steel Balls: GCr15 Steel	Stable after 5 months	—	0.026	0.3%	42.86	28.86	[105]
S. No.	Nanoparticle	Nano Particles Size	Nano Particles Shape	Base oil	Surfactants or dispersants	Characterization equipment	Tribological Test Methods	Material of Tribo Surfaces	Stability	Min. value of COF	Max. % reduction in COF	Max. % reduction in wear	Reference	
-------	--------------	---------------------	---------------------	----------	----------------------------	---------------------------	---------------------------	---------------------------	-----------	-----------------	-----------------------------	----------------------------	-----------	
5	MoS₂ and SiO₂	58 to 684 nm	Spherical	Liquid paraffin	Oleic acid	SEM, EDS, AFM	Ball on Ring	Ball: Bearing Steel GCr15 Ring: AISI 52100 Steel	Visual Check 30 days	0.065	0.2%	25.71	30.77	[106]
		102 ± 33 nm	Spherical	Rust and oxidation lubricant (ISO 32 and 68)	Silane coupling agents, APTEOS and TMSDETA	SEM, EDS, Static Multiple Light Scattering (MLS)	Four ball Tester	AISI 52100 Steel	Agglomeration starts within 8 days	0.06	0.5%	42.86	−13.64	[107]
40 and 90 nm	Spherical	PAG (Polyalkylene Glycol)	—	—	SEM, EDS, Optical Interferometer, Rheometer	—	—	—	0.1125	0.2%	4.26	37.5	[108]	
6	MoS₂ and SiO₂	90 nm MoS₂; 30 nm SiO₂	Spherical – Engine oil	No dispersant	FE-SEM	Ball on Flat Tribometer	Magnesium Alloy/Steel Contacts	—	0.045	0.7% SiO₂	43.75	7.5	[109]	
7	SiO₂ and TiO₂	20–30 nm SiO₂; 25–35 nm TiO₂	Spherical	Sunflower Oil	—	FE-SEM – SEM	Block on Ring Sliding Tester	Blocks: AISI 304 Steel Rings: AISI 52100 Steel	—	0.0144	1.25% SiO₂	77.7	74.1	[98]
		0.055	0.7% MoS₂	31.25	20	0.0032	0.79% TiO₂	93.7	70.1	[98]				
S. No.	Nanoparticle	Nano Particles Shape	Base oil	Surfactants or dispersants	Characterization equipment	Tribological Test Methods	Material of Tribosurfaces	Stability	Min. value of COF	Max. % reduction in COF	Max. % reduction in wear	Reference		
-------	-----------------------------------	----------------------	------------------	-----------------------------	-----------------------------	-------------------------------	-------------------------------	-------------	-------------------	---------------------------	---------------------------	-----------		
1	Carbon nanotubes	DIA: 10–20 nm	Castor oil	Oleic acid	SEM	Four-Ball Tester	—	—	0.035	0.02 %	24	6.6	[120]	
2	Diamond	15 nm	Ethylene glycol	—	SEM, EDS, Optical Profilometer	Pin-on-Disk Tribometer	Disk: Stainless Steel (AISI440B) Ball: Stainless Steel (AISI420)	—	0.11	1.1 %	31.25	62.96	[112]	
		<30 nm	Mineral oil and PAO oil	—	Trubology Test Rig and Four-Ball Tester	—	GC15 Steel and Conveyor Belt	—	0.08	0.031 % with Mineral Oil	63	52	[119]	
3	Fullerene NPs	10 nm	Fullerene Shaped	Mineral oil	SEM, AFM	Disc on Disc	Grey Cast Iron (GC200)	—	0.006	0.1 %	76	—	[1]	
4	Graphene	10 μm	Sheets	Polyalphaolefin-2 (PAO2) oil	SEM, EDS, 3D Optical Micrograph	Four Ball Tester	AISI-52100 Steel	Sedimentation starts within two weeks	0.025	0.05%	78	14.47	[114]	
		DIA: 5–10 μm	Nano-Sheets	Control EDGE professional A5 (SW-30)	SEM, TEM, XRD	Bench of Ring/Liner Assembly	Paton Ring/Liner Reciprocating	11 days	0.035	0.4 wt%	29–35	22–29	[115]	
5	Oxidized graphite flakes	—	Flakes	10W40 oil	XPS, Raman Spectroscopy Optical micrographs	Ball on Disk Tribometer	Balle: 100Cr6 Steel Disc: 316 LN Steel Black: SAE 01 tool Steel Ring Stainless Steel	—	0.118	0.05%	28	32	[113]	
6	Onion-like carbon (OLCs), single/multi-wall carbon nanotubes (SWNT/MWNT), or nano graphene platelets (NGPs)	DND: 4–5 μm	Onion-Like Carbon, Multi-Walled Carbon Nanotubes (MWNT), SWCNT, Platelets	Polyalphaolefin (PAO6)	Molybdenum dudic(dithiophosphate)(MoDDP)	Block on Ring	—	—	0.002	0.015% ND	69.17	66.86	[118]	
7	Nanodiamond and SiO₂	Nanodiamond: 110 nm SiO₂	Spherical	Liquid paraffin	SEM, IB, EDS, wear tester	Ball on Ring	Bearing Steel GCr15	—	0.07	0.2% ND	34.88	36.81	[121]	

Note: Table 7: Carbon and its derivatives nanoparticles as lubricant additives.
S. No.	Nanoparticle	Nano Particles Size	Shape	Base oil	Surfactants or dispersants	Characterization equipment	Tribological Test Methods	Material of Tribosurfaces	Stability	Min. value of COF	Max. % reduction in COF	Max. % reduction in wear	Reference
8	Graphene and MoS₂	2 nm	Nanosheets	Hydraulic oil	–	SEM, AFM, Micrographs	Ball on Disk	Bearing Steel and Brass	—	0.18	28	28.67	[116]
										0.05	1% MoS₂	80	86.67

Table 7. (Continued.)
S. No.	Nanoparticle	Nano Particles Size	Nano Particles Shape	Base oil	Surfactants or dispersants	Characterization equipment	Tribological Test Methods	Material of Trib Surfaces	Stability	Min. value of COF	Max. % reduction in COF	Max. % reduction in wear	Reference	
1	LaF₃	10–30 nm	Hexagonal	Fluoro-silicone oil	3-(heptadfluoroisopropyl) propyltriethoxysilane	TEM, XRD, FT-IR, TGA, SEM, XPS, FTIR	Four-Ball Tester	GCr15 Bearing Steel (SAE-52100)	—	0.055	0.08 %	31.25	42	[122]
		10–30 nm	Hexagonal	Liquid paraffin	Tributyl phosphate		Four-Ball Tester	GCr15 Bearing Steel (SAE-52100)	—	0.0975	0.4%	13.33	14.52	[125]
2	SA/CeBO₃	Dia: 8 nm	Spherical	Rapeseed oil	Stearic acid	SEM, EDS, XRD, XPS, EDS, FTIR	Four-Ball Tester	Steel Balls GCr15	—	0.055	1.5%	25.42	7.143	[123]
3	Cerium oxide (CeO₂) and zirconium dioxide (ZrO₂)	CeO₂: 500 nm, ZrO₂: 300 nm	Spherical	Polyalphaolefin (PAO4)		SEM, EDS	Cylinder-on-Disk Tribotester	Roller: Carbon Chrome Steel (SU2) with Tetraedral Amorphous Carbon (ta-G) Coating Disk	0.05	0.2% ZrO₂	40	−43.17	[124]	

0.088 0.2% CrO₂ −10 77.05
Figure 4. Statistics showing the size distribution of nanoparticles.

Figure 5. Effect of nanoparticle size on performance parameters.

Figure 6. Statistics showing the shape distribution of nanoparticles.
new way of showing the performance comparison of nanoparticles. Single paper results have been taken to compare the performance of nanoparticles in the case of more than one paper on the same nanoparticles.

Figure 8 shows the performance parameters compared to the various nanoparticles listed above. Some nanoparticles do not have red or green streaks, which means that the author does not include this part in his study.

This analysis reveals that fullerene nanoparticles achieved a minimum value of coefficient 0.006 with a reduction in COF of 76% [3]. The minimum value of COF in Cu is 0.01, and the maximum reduction in COF and wear is 60% and 20%, respectively [22]. In hBN, the minimum COF achieved is 0.0144, with the maximum reduction in COF being 64% and wear reduction being 72% [99]. TiO₂ can achieve a minimum value of 0.015 (COF), reducing COF and wear to 86.49% and 92.4%, respectively [70]. Fullerene, Cu, BN, and TiO₂ perform very well compared to other nanoparticles. In these nanoparticles, the value of COF is desirably low, and the decrease in COF and wear is high, which is a favorable condition for any nanoparticles.

5. Future scope

At the time of analysis, it is observed that the performance parameters change by 10%–15% upon small (in mg) changes of the nanoparticles. The performance of the lube oil in two consecutive additions of nanoparticles is
unknown. Therefore, there is a need to develop a method to characterize the performance parameter of nano lubricants between two successive additions.

Various researchers have well covered the composition of nanoparticles. It has shown their performance well under multiple conditions and materials. The compatibility of nanoparticles with surface material remains untouched so far. This is a critical research gap for future research in the field of nano lubrication.

Medium-sized segments (31–60 nm) of nanoparticles may be part of future studies because this section can improve the characteristics of the oil. The authors use a fixed number to represent the size, which means all the nanoparticles’ dimensions. Researchers can also focus on the size range. As is known, small-sized nanoparticles can efficiently provide rectification effects, and large-sized nanoparticles can easily show rolling effects. So, the combination of both can improve the quality of nano lubricants, which will be the subject of future studies.

Studies about multiple-shaped comparisons are lagging. It may perform unfavorably, but its analysis should be needed in the future. Take an example of a nanotube and a spherical-shaped particle. Spherical shapes of nanoparticles can help reduce COF and improve nanotube wear.

6. Conclusions

The analysis shows that the literature concerning the potential of nanoparticles to improve lubrication performance is still active. Evidence is available where the nanoparticles’ chemical composition, size, and shape are essential in lubricating oil performance. Nanoparticles having multiple chemical compositions, sizes and shapes have been evaluated under different environmental conditions with various base oils. And there is no doubt that nanoparticles have led to extraordinary improvements in the efficiency of lubricants. It can be said with confidence that many nanoparticles have also been evaluated for their effectiveness. Still, now a significant concentration is on environmentally friendly lubricants. Also, the areas mentioned in the future scope are subjects of attention.

Some more conclusions from this review of the literature are listed here.

- The performance of sulfide nanoparticles is awe-inspiring in terms of performance characteristics.
- Basic information about nanoparticle size, shape, base oil, and surfactant or dispenser provides a clear picture of nano lubricants.
- Performance of Size < 30 nm The performance of nanoparticles is astonishing.
- Nanoparticles such as spherical and globular play exceptionally well in lubricating oil performance.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Anoop Pratap Singh @ https://orcid.org/0000-0002-5154-9568

References

[1] Tang Z and Li S 2014 A review of recent developments of friction modifiers for liquid lubricants (2007–present) *Carr. Opin. Solid State Mater. Sci.* 18 119–39
[2] Dai W, Kheireddin B, Gao H and Liang H 2016 Roles of nanoparticles in oil lubrication *Tribol. Int.* 102 88–98
[3] Lee K et al 2009 Understanding the role of nanoparticles in nano-oil lubrication *Tribol. Lett.* 35 127–31
[4] Singh A P, Dwivediand R K and Suhane A 2020 Impact of nano particles morphology and composition in lube oil performance considering environmental issues - a review *J. Green Eng.* 10 4609–25
[5] Rapoport L, Leshchinsky V, Lvovsky M, Nepomnyashchy O, Volovik Y and Tenne R 2002 Mechanism of friction of fullerenes *Ind. Lubr. Tribol.* 54 171–6
[6] Wu Y Y, Tsui W C and Liu T C 2007 Experimental analysis of tribological properties of lubricating oils with nanoparticle additives *Wear* 262 819–25
[7] Chinas-Castillo F and Spikes H A 2003 Mechanism of action of colloidal solid dispersions *J. Tribol.* 125 532–7
[8] Hu Z S et al 2002 Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive *Wear* 252 370–4
[9] Zhou X, Fu X, Shi H and Hu Z 2007 Lubricating properties of Cyanex 302–modified MoS2 microspheres in base oil 500 SN *Lubr. Sci.* 1971–9
[10] Ginzburg B M, Shibaev I A, Kireenko O F, Shepelevskii A A, Baidakova M V and Sitnikova A A 2002 Antiwear effect of fullerene C60 additives to lubricating oils *Russ. J. Appl. Chem.* 75 1330–5
[11] Zhou J, Yang J, Zhang Z, Liu W and Xue Q 1999 Study on the structure and tribological properties of surface-modified Cu nanoparticles, Mater. Res. Bull. 34 1361–7
[12] Rastogi R, Yadav M and Bhattacharya A 2002 Application of molybdenum complexes of 1-aryl-2,5-dihydroxydiazocarbonamides as extreme pressure lubricant additives, Wear 252 868–92
[13] Liu G, Li X, Qin B, Xiong D, Guo Y and Fan R 2004 Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface Tribol. Lett. 17 961–6
[14] Tao X, Juaiheng Z and Kang X 1996 The ball-bearing effect of diamond nanoparticles as an oil additive, J. Phys. D: Appl. Phys. 29 2927–32
[15] Fangsuwanarar K and Triratanasiriwich K 2013 Effect of metalloid compound and bio-solution additives on biodiesel engine performance and exhaust emissions Am. J. Appl. Sci. 10 1201–13
[16] Khond V W and Kripiani V M 2016 Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fuelled stationary CI engine: a comprehensive review Renew. Sustain. Energy Rev. 59 1338–48
[17] Sajevean A C and Saijith V 2013 Diesel engine emission reduction using catalytic nanolubricants: an experimental investigation J. Eng. (United Kingdom) 2013 1–9
[18] Saijith V, Sobhan C B and Peterson G P 2010 Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel Adv. Mech. Eng. 2010 1–6
[19] Abdel-Hadi E A-H, Taher S H, Torki A H M and Hamad S 2011 Performance of a domestic refrigerator using TiO2–R600a nano-refrigerant as working fluid Energy Convers. Manage. 52 733–7
[20] Padgurskas J, Rukuiza R, Prosyčevas I and Kreiviatis R 2013 Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles Tribol. Int. 60 224–32
[21] Guzman Borda F I, Ribeiro de Oliveira SJ, Seabra Monteiro Lazo R M and Kahal Leiroz A J 2018 Experimental investigation of the tribological behaviour of lubricants with additive containing copper nanoparticles Tribol. Int. 117 52–8
[22] Garg P et al 2017 Investigating efficacy of Cu nano-particles as additive for bio-lubricants Macromol. Symp. 376 1700010
[23] Ghaednia H et al 2013 The effect of nanoparticles on thin film elastohydrodynamic lubrication Appl. Phys. Lett. 103 263111
[24] Kalyani R et al 2016 Tribological aspects of metal and metal oxide nanoparticles Adv. Sci Eng Med. 8 228–32
[25] Meng H N et al 2015 Tribological behaviours of Cu nanoparticles recovered from electroluting effluent as lubricant additive Tribol–Mater Surf Interfaces 9 46–53
[26] Li Y et al 2018 Study on the tribological behaviors of copper nanoparticles in three kinds of commercially available lubricants Ind. Lubr. Tribol 70 519–26
[27] Yang G et al 2013 Synthesis and characterization of highly stable dispersions of copper nanoparticles by a novel one-pot method Mater. Res. Bull. 48 1716–9
[28] Hu H et al 2013 Nucleate pool boiling heat transfer characteristics of refrigerant/nanolubricant mixture with surfactant Int. J. Refrig 36 1045
[29] Scherge M et al 2016 Multi-Phase friction and wear reduction by copper nanoparticles Lubricants 4 36
[30] Yu H I et al 2008 Characterization and nano-mechanical properties of tribolols using Cu nanoparticles as additives, Surf. Coatings Technol. 203 28–34
[31] Borda F I G et al 2018 Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles Tribol. Int. 117 52–8
[32] Pan Q and Zhang X 2010 Synthesis and tribological behavior of oil-soluble Cu nanoparticles as additive in SF15W/40 lubricating oil, Xiyou Jishu Caigao Yu Gongcheng/Rare Metal Materials and Engineering 39 1711–4
[33] Long Yu H, Xu Y, Jing Shi P, Shi Xu B, Li Wang X and Liu Q 2008 Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant Transactions of Nonferrous Metals Society of China (English Edition) 18 636–41
[34] Wang X L, Yin Y L, Zhang G N, Wang W Y and Zhao K K 2013 Study on antiwear and repairing performances about mass of nano-copper lubricating additives to 45 steel, Phys. Proc. 50 666–72
[35] Sen Zhang B, Xu B S, Xu Y, Gao F, Shi P J and Wu Y X 2011 CU nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steelsteel contacts, Tribol. Int. 44 678–86
[36] Ma J, Mo Y and Bai M 2009 Effect of Ag nanoparticles additive on the tribological behavior of multialkylated cyclopentanes (MACs), Wear 266 627–31
[37] Zhang W, Demydov D, Jahan M P, Mistry K, Erdemir A and Malhe P A 2012 Fundamental understanding of the tribological and thermal behavior of Ag–MoS2 nanoparticle–based multi-component lubricating system, Wear 288 9–16
[38] Flores–Castañeda M et al 2015 Bismuth nanoparticles synthesized by laser ablation in lubricant oils for tribological test J. Alloy. Compd 643 567–70
[39] Chou K, Batte R A, Cabello HJ, Viess J J, Osorio A and Sagastume A 2010 Tribological behavior of polyalkaolefin with the addition of nickel nanoparticles, Tribol. Int. 43 3227–32
[40] Chen Y, Zhang Y, Zhang S, Yu L, Zhang P and Zhang Z 2013 Preparation of nickel–based nanolubricants via a facile in situ one-step route and investigation of their tribological properties, Tribol. Lett. 51 73–83
[41] Abad M D and Sánchez–López J C 2013 Tribological properties of surface–modified Pd nanoparticles for electrical contacts, Wear 297 943–51
[42] Sánchez–López J C, Abad M D, Kolodziejczyk L, Guerrero E and Fernández A 2011 Surface–modified Pd and Au nanoparticles for anti-wear applications, Tribol. Int. 44 720–6
[43] Zhang S et al 2013 Anti-wear and frictionreduction mechanism of Sn and Fe nanoparticles as additives of multialkylated cyclopentanes under vacuum condition Vacuum 87 75–80
[44] Flores–Castañeda M, Camps E, Camacho–López M, Muhl S, García E and Figueroa M 2015 Bismuth nanoparticles synthesized by laser ablation in lubricant oils for tribological tests, J. Alloys Compd. 643 567–70
[45] Scherge M, Böttcher R, Kürten D and Linsler D 2016 Multi-Phase Friction and Wear Reduction by Copper Nanoparticles, Lubricants 4 36
[46] Li Y, Liu T T, Zhang Y, Zhang P and Zhang S 2018 Study on the tribological behaviors of copper nanoparticles in three kinds of commercially available lubricants, Ind. Lubr. Tribol. 70 519–26
[47] Shafi W K, Raima A and Ul Haq M 2018 Tribological performance of avocado oil containing copper nanoparticles in mixed and boundary lubrication regime Ind. Lubr. Tribol. 70 865–71
[49] Zhang S, Hu L, Feng D and Wang H 2013 Anti-wear and friction-reduction mechanism of Sn and Fe nanoparticles as additives of multialkylated cyclopentanes under vacuum condition 87 75–80
[50] Ulyanyd E S et al 2018 Conjugated thermolysis of metal chelate monomers based on cobalt acrylate complexes with polypropyridyl ligands and tribological performance of nanomaterials obtained ChemistrySelect 3 8988–9007
[51] Sanukrishna S S et al 2018 Effect of oxide nanoparticles on the thermal, rheological and tribological behaviours of refrigerant compressor oil: an experimental investigation Int. J. Refrig 90 52–65
[52] Kedzierski M A 2015 Effect of concentration on R134a/Al2O3 nanolubricant mixture boiling on a reentrant cavity surface, Int. J. Refrig 49 36–48
[53] Luo T, Wei X, Huang X, Huang J and Yang F 2014 Tribological properties of Al2O3 nanoparticles as lubricating oil additives, Ceram. Int. 40 7143–9
[54] Ali M K A, Xianjun H, Mai L, Qingping C, Turkson R F and Bicheng C 2016 Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives, Tribol. Int. 103 540–54
[55] Peña-Parás L, Taha-Tijerina J, Garza L, Maldonado-Cortés D, Michalczewski R and Lapray C 2015 Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils, Wear 332–333 1256–61
[56] Kedzierski M A and Gong M 2009 Effect of CuO nanolubricant on R134a pool boiling heat transfer, Int. J. Refrig 32 791–9
[57] Aurl M, Zulkifli N W M, Masjuki H H and Kalam M A 2013 Tribological properties and lubricant mechanism of nanoparticle in engine oil Procedia Eng. 68 320–5
[58] Gupta R N and Harsha A P 2018 Tribological study of castor oil with surface-modified CuO nanoparticles in boundary lubrication Ind. Lubr. Tribol. 70 700–10
[59] Alves S M, Mello V S, Faria E A and Camargo A P 2016 Nanolubricants developed from tiny CuO nanoparticles Tribol. Int. 100 263–71
[60] Peña-Parás L et al 2015 Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils Wear 332–333 1256–61
[61] Shenoy B S, Binu K G, Pai R, Rao D S and Pai R S 2012 Effect of nanoparticle additives on the performance of an externally adjustable fluid film bearing, Tribol. Int. 45 38–42
[62] Alves S M, Barros B S, Trajano M F, Ribeiro K S B and Moura E 2013 Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions, Tribol. Int. 65 28–36
[63] Zhou G, Zhu Y, Wang X, Xia M, Zhang Y and Ding H 2013 Sliding tribological properties of 0.45% carbon steel lubricated with Fe3O4 magnetic nano-particle additives in baseoil, Wear 301 753–7
[64] Trivedi K et al 2017 Nanolubricant: magnetic nanoparticle based Mater. Res. Express 4 114003
[65] Ilie F and Covaliu C 2016 Tribological properties of the lubricant containing titanium dioxide nanoparticles as an additive, Lubricants 4 12
[66] Krishna Sabareesh R, Gobinath N, Saithi V, Das S and Sobhan C B 2012 Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems - an experimental investigation, Int. J. Refrig 35 1989–96
[67] Binu K G, Shenoy B S, Rao D S and Pai R 2014 A variable viscosity approach for the evaluation of load carrying capacity of oil lubricated journal bearing with TiO2 nanoparticles as lubricant additives Procedia Mater. Sci. 6 1051–67
[68] Ye W, Cheng T, Ye Q, Guo X, Zhang Z and Dang H 2003 Preparation and tribological properties of tetrafluorobenzene acid-modified TiO2 nanoparticles as lubricant additives Mater. Sci. Eng. A, 359 82–5
[69] Zulkifli N W M, Kalam M A, Masjuki H H and Yumas R 2013 Experimental analysis of tribological properties of biolubricant with nanoparticle additive Procedia Eng. 68 152–7
[70] Laad M and Jatti V K S 2018 Titanium oxide nanoparticles as additives in engine oil, J. King Saud Univ. - Eng. Sci. 30 116–22
[71] Gu Y, Zhao X, Liu Y and Li Y 2014 Preparation and tribological properties of dual-coated TiO2 nanoparticles as water-based lubricant additives, J. Nanomater.
[72] Ma S, Zheng S, Cao D and Guo H 2010 Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive, Particuology 8 468–72
[73] Hernandez Battez A, Fernandez Rico J E, Navas Arias A, Viesca Rodriguez J L, Benitez J E, Daza M and Fernandez J M 2006 The tribological behaviour of ZnO nanoparticles as an additive to PAO, Wear 261 256–63
[74] Yagdorov L, Petrenko Y, Rosentsevig R, Feldman Y, Tennen R and Senatore A 2013 Tribological studies of rhodium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elastohydrodynamic lubrication conditions, Wear 297 1103–10
[75] Kumar A et al 2017 Experimental study on the efficacy of MoS2 microlloids for improved tribological performance, Proc. Inst. Mech. Eng. Part J. Eng. Tribol. 231, 107–24
[76] Rabapo P et al 2014 Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction, Wear 320 161–78
[77] Kang X, Wang B, Zhu L and Zhu H 2008 Synthesis and tribological property study of oleic acid-modified copper sulfide nanoparticles, Wear 265 150–4
[78] Labouli J, Vacher B, Martin J M and Dassenoy F 2012 IF-MoS2 based lubricants: Influence of size, shape and crystal structure, Wear 296 556–67
[79] Tontini G, Hernandez Battez A, Fernandez Rico J E, Navas A and Viesca Rodriguez J L 2005 The tribological behaviour of MoS2 nanoparticles as additive in lubricating oils, Tribol. Int. 38 658–64
[80] Xu X, Hu Y, Hu E, Xu K and Hu Y 2015 Formation of an adsorption film of MoS2 nanoparticles and dioctyl sebacate on a steel surface for alleviating friction and wear, Tribol. Int. 92 172–83
[81] Kalin M, Kogovšek J and Remškar M 2013 Nanoparticles as novel lubricating additives in a green, physically based lubrication technology for DLC coatings, Wear 303 680–5
[82] Kalin M, Kogovšek J and Remškar M 2012 Mechanisms and improvements in the friction and wear behavior using MoS2 nanoparticles as potential oil additives, Wear 280–281 36–45
[83] Roslan S H, Hamid S B A and Zulkifli N W M 2017 Synthesis, characterisation and tribological evaluation of surface-capped molybdenum sulphide nanoparticles as efficient antiwear bio-based lubricant additives Ind. Lubr. Tribol. 69 378–86
[84] Greenberg R, Halperin G, Etsion I and Tennen R 2004 The effect of WS2 nanoparticles on friction reduction in various lubrication regimes Tribol. Lett. 17 179–86
[85] Sade H, Moskovich A, Lelouche J-P and Rapport P 2018 Testing of WS2 nanoparticles functionalized by a humin-like shell as lubricant additives Lubricants 6 3
[86] Quan X et al 2016 Friction and wear performance of dual lubrication systems combining WS2-MoS2 composite film and low volatility oils under vacuum condition, Tribol. Int. 99 57–66
López T D F, González A F, Del Reguero Á, Matos M, Díaz-García M E and Badía-Laíno R 2015 Engineered silica nanoparticles as lubricant additives, Mater. Res. Express 106:102001.

Xie H, Jiang B, He J, Xia X and Pan F 2016 Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in paraffin, Tribol. Int. 109:667–75.

Peng D X, Chen C H, Kang Y, Chang Y P and Chang S Y 2010 Size effects of SiO2 nanoparticles as oil additives on tribology of steel contacts, IOP Conf. Ser. Mater. Sci. Eng. 89:3475–86.

Guo M K, Bijwe J and Kadiyala A K 2017 Tribology investigations on oils with dispersants and hexagonal boron nitride particles, Tribol. Int. 109:2013810.

Wang Q, Jin Y, Sun P and Ding Y 2015 Tribological behaviour of a lubricant oil containing boron nitride nanoparticles, Procedia Eng. 111:1038–45.

Dubey M K, Bijwe J and Ramakumar S S V 2015 Nano-PTFE: new entrant as a very promising EP additive, Tribol. Int. 87:121–31.

Saini V, Bijwe J, Seth S and Ramakumar S S V 2020 Role of base oils in developing extreme pressure lubricants by exploring nano-PTFE particles, Tribol. Int. 143:106071.

Yu H L et al 2010 Tribological behaviors of surface–coated serpentine ultrafine powders as lubricant additive, Tribol. Int. 43:667–75.

Li H, Cao X, Zhang Z and Dang Z 2006 Surface–modification in situ of nano-SiO2 and its structure and tribological properties, Appl. Surf. Sci. 252:7856–61.

Peng D X, Chen C H, Kang Y, Chang Y P and Chang S Y 2010 Size effects of SiO2 nanoparticles as oil additives on tribology of steel contacts, IOP Conf. Ser. Mater. Sci. Eng. 89:3475–86.
[124] Li X, Murashima M and Umehara N 2018 Effect of nanoparticles as lubricant additives on friction and wear behavior of tetrahedral amorphous carbon (ta-C) coating J. Tribol. 16 15–29
[125] Li Z, Hou X, Yu L, Zhang Z and Zhang P 2014 Preparation of lanthanum trifluoride nanoparticles surface-capped by tributyl phosphate and evaluation of their tribological properties as lubricant additive in liquid paraffin Appl. Surf. Sci. 292 971–7
[126] Xu N, Zhang M, Li W, Zhao G, Wang X and Liu W 2013 Study on the selectivity of calcium carbonate nanoparticles under the boundary lubrication condition Wear 307 35–43
[127] Moshkovith A, Perfilev V, Lapker I, Fleischer N, Tenne R and Rapoport L 2006 Friction of fullerene-like WS 2 nanoparticles: effect of agglomeration Tribol. Lett. 2006 243 24 225–8
[128] Alves S M, Silva V, Mello E and Sinatora A 2018 Nanolubrication mechanisms: Influence of size and concentration of CuO nanoparticles, Mater. Perform. Charact. 7 226–41
[129] Singh A P, Tripathi A, Shukla M N and Suhane A 2021 Morphological parameters of nanoparticles used in nano lubrication - a review, IOP Conf. Ser. Mater. Sci. Eng. 1136012029
[130] Ali M K A et al 2018 Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives Appl. Energy 211 461–78
[131] Kumar N, Bhaumik S, Sen A, Shukla A P and Pathak S D 2017 One-pot synthesis and first-principles elasticity analysis of polymorph MnO2 nanorods for tribological assessment as friction modifiers, RSC Adv. 7 34138–48
[132] Spikes H 2015 Friction modifier additives, Tribol. Lett. 60 1–26
[133] Sgroi M F et al 2017 Engine bench and road testing of an engine oil containing MoS2 particles as nano-additive for friction reduction, Tribol. Int. 105 317–25
[134] He Z and Que W 2016 Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction, Appl. Mater. Today 3 23–56
[135] Berman D, Erdemir A and Sumant A V 2018 Approaches for achieving superlubricity in two-dimensional materials, ACS Nano 12 2122–37