Secondary Sulfate Minerals from Thallium Mineralized Areas: Their Formation and Environmental Significance

Fengqi Zhao 1 and Shangyi Gu 1,2,*

1 College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China; gs.fqzhao21@gzu.edu.cn
2 Key Laboratory of Karst Geo-Resources and Environment, Guizhou University, Guiyang 550025, China
* Correspondence: sygu@gzu.edu.cn

Abstract: Thallium is a highly toxic metal and is predominantly hosted by sulfides associated with low-temperature hydrothermal mineralization. Weathering and oxidation of sulfides generate acid drainage with a high concentration of thallium, posing a threat to surrounding environments. Thallium may also be incorporated into secondary sulfate minerals, which act as temporary storage for thallium. We present a state-of-the-art review on the formation mechanism of the secondary sulfate minerals from thallium mineralized areas and the varied roles these sulfate minerals play in Tl mobility. Up to 89 independent thallium minerals and four unnamed thallium minerals have been documented. These thallium minerals are dominated by Tl sulfosalts and limited to several sites. Occurrence, crystal chemistry, and Tl content of the secondary sulfate minerals indicate that Tl predominantly occurs as Tl(I) in K-bearing sulfate. Lanmuchangite acts as a transient source and sink of Tl for its water-soluble feature, whereas dorallcharite, Tl-voltaite, and Tl-jarosite act as the long term source and sink of Tl in the surface environments. Acid and/or ferric iron derived from the dissolution of sulfate minerals may increase the pyrite oxidation process and Tl release from Tl-bearing sulfides in the long term.

Keywords: thallium; pyrite; acid mine drainage; secondary sulfate minerals; environmental significance

1. Introduction

Thallium (Tl) is a typical heavy metal element with high toxicity and is listed as a priority pollutant by the United States Environmental Protection Agency (USEPA). Human exposure to Tl leads to acute toxicity or chronic toxicity dependent upon uptake dosage. Kidneys, lungs, heart, and nerve damage have been reported by acute toxicity of Tl [1]. Eighty-seven chronic Tl poisoning cases occurred in the 1960s in a Chinese valley with hair loss, loss of appetite, and pain in the lower extremities as typical symptoms [2]. In recent years, occasional Tl pollution events have been reported in China and Italy [3]. It is suggested that mining and processing of Tl-bearing sulfide ores has become a predominant source of Tl pollution in ecosystems [4–6].

Despite its extreme biotoxicity, Tl is currently still utilized in some high-tech fields (e.g., semiconductors, superconductors, and optical fibers, etc.) in an irreplaceable way [7]. The global Tl deposits widely occur and can be categorized into three types according to their genesis. The first type is associated with Carlin-type gold deposits, distributed in Carlin gold deposits in Nevada, the USA, and Lanmuchang Hg-Tl-Au deposit in Guizhou Province, China. The second type is associated with As and Sb mineralization, and is distributed in North Macedonia, Switzerland, and France [8–12]. The third one is related to Zn-Pb mineralization, such as in Lanping Zn-Pb deposit. Thallium mineralization in the deposits is formed in low-temperature conditions, and Tl is mainly hosted by sulfide minerals, e.g., lorandite, carlinite, and pyrite [13–17]. To date, 63 thallium sulfide or sulfosalt
minerals have been documented in the literature. Moreover, scarce thallium selenide minerals were also reported [18].

In spite of the occurrence of diverse independent Tl minerals, the ubiquitous pyrite in hydrothermal deposits has also been reported to exhibit strikingly high Tl content at several sites in China and Spain [19–24], especially in independent Tl deposits (e.g., Lanmuchang and Xiangquan in China) [21,23], as well as in numerous Tl-bearing deposits (e.g., Yunfu and Jinding in China, McArthur River in Australia, and Bathurst Mining Camp in Canada) [25–28] where pyrite is the most important ore mineral. Unfortunately, oxidation and dissolution of these Tl sulfide minerals, particularly pyrite, will generate acid mine drainage (AMD) and mobilize large amounts of sequestered heavy metals. Thus, it raises concern about potential Tl exposure risk in the Tl mineralization areas.

Microbial-mediated sulfide minerals oxidation is responsible for the generation of AMD, which is characterized by low pH value and high load of sulfate and trace metals. As it more abundantly occurs and has a higher S/metal molar ratio than other sulfides, pyrite acts as the predominant AMD producer. Metals liberated by sulfide oxidation and dissolution may keep soluble in the AMD or precipitate locally as sulfate minerals (hereafter referring to secondary sulfate minerals). The formation and dissolution of the secondary sulfate minerals exert an important impact on the storage and transport of Tl and other heavy metals following weathering and oxidation of sulfide minerals. In addition, the composition of the secondary sulfate minerals could provide information about the formation condition and water-rock reaction process [29].

This paper aims to summarize the thallium deposits and minerals and crystal chemistry, field occurrence, formation, and environmental significance of secondary sulfate minerals associated to Tl mineralization areas. The solubility and Tl content of the secondary sulfate minerals are the important aspects for the sequestration and migration of Tl in supergene environments, which is essentially constrained by the crystal chemistry of the metal sulfate that results from AMD reaction with gangue minerals in various mineralized backgrounds. Therefore, Tl cycling constrained by secondary sulfate minerals will contribute new insights into the control of Tl pollution derived from Tl sulfide mining and processing.

2. Thallium Ore Deposits and Tl Minerals

2.1. Thallium Ore Deposits

Thallium deposits occur in diverse geological environments and countries (Figure 1). Carlin-type gold deposit, characterized by Au–Tl–As–Hg–Sb geochemical signature, was first reported containing high Tl concentrations in mineralized rocks. Thallium has been proposed as a more useful indicating element than gold in finding this type of gold deposit [8]. Carlin-type gold deposits have become chief gold sources and are mainly distributed in Nevada State in the USA and southwest China [30]. Thallium in the ores is mainly hosted by independent thallium minerals (e.g., lorandite, carlinite, galkhaite, and hutchinsonite) or incorporated into pyrite, orpiment, or other sulfides [19]. Lanmuchang Hg–Tl–Au deposit in southwest China is the first reported independent Tl deposit in the world [31]. The additional small size of Carlin-type deposits are also found in Canada, the Republic of North Macedonia, Russia, Southern Tien Shan Belt (including Uzbekistan, Tajikistan, Kyrgyzstan, and China), Indonesia, and Malaysia [6,30,32–34]. Given the wide-spread distribution of the Carlin-type gold deposits, Tl mineralization areas associated with gold, antimony, and mercury are supposed to become the global important Tl ore deposit occurrences.
Minerals 2021, 11, 855 3 of 16

Figure 1. Tl-(bearing) deposits occurrence in the world (modified from [6,7]).

The metamorphic-hosted deposits represent the second important thallium occurrence documented in the literature. Typical deposits include Apuan Alps; Tuscany in Italy [35], Lengenbach in Switzerland; and Yunfu in Guangdong, China [12,36]. This type of Tl deposit shares the elemental assemblage of Tl–Hg–As–Sb–Pb–Zn in ore geochemistry. The primary Tl-bearing phases are pyrite and the complex sulfosalt due to the metamorphic remobilization of Tl [37]. Both Apuan Alps and Lengenbach are well known for the Tl-bearing sulfosalts and sulfides [37,38].

Mississippi Valley Type zinc-lead deposits have emerged as a new type of Tl-bearing sulfide deposit reported in Yunnan Lanping and Anhui Xiangquan of China [19,22]. The mineralized wall rock is carbonate rock (e.g., Xiangquan) or gypsum-bearing sandstone (e.g., Lanping). Zn–Pb–Tl–Ba–Sr characterizes the element assemblage, with pyrite being the prevailing Tl-bearing mineral, and less common, lorandite and raguinite [39,40]. Skrikserum Cu–Ag–Tl–(Au) selenide deposit from SE Sweden is the only thallium selenide deposit in which thallium is mainly hosted by bukovite (Cu₄Tl₂Se₄) and crookesite (Cu₄(Tl,Ag)Se₄) in calcite-selenide veins [18].

Despite the fact that Tl-(bearing) deposits are increasingly discovered in various mineralized geological settings around the world, little research has been conducted to date focusing on Tl mineralization. Apparently, almost all Tl-(bearing) deposits are associated with low-temperature hydrothermal fluids, and Tl is predominantly hosted in sulfide phases. It signifies that in hydrothermal systems Tl shows a higher affinity for sulfur compared to potassium. To the best of our knowledge, weakly acidic Tl-rich polymetallic ore fluids originated from the deep crust are considered to be the prerequisite for Tl mineralization [41,42]. Both theoretical calculations [43] and simulation experiments [44] support that the temperature decrease, especially the effective neutralization of acidity by the host rock, are crucial factors for Tl precipitation from ore fluids, and field observations have also revealed extensively developed argillization from neutralizing acidic fluids in the Lanmuchang-independent Tl deposit [45] as well as Tl mineralisation in the Allchar Au–As–Sb–Tl deposit in North Macedonia occurring at the distal end of the hydrothermal system [46].

2.2. Thallium Minerals

Owing to the same charge (+1) and similar ionic radii between Tl and K (1.70 Å for Tl⁺ and 1.64 Å for K⁺), Tl can be incorporated into K-bearing silicate minerals by isomorphic substitution for potassium. It is evidenced by the elevated concentration of Tl in mica and K-feldspar over 20 ppm compared to 0.7 ppm of the crust abundance [47]. However,
Tl also appears to have sulfur affinity for similar-sized Ag⁺ and Pb²⁺ in sulfides and sulfo salts [48]. As such, Tl can form independent sulfide or sulfo salt minerals with Pb, Zn, Cu, As, Sb, Fe, Hg, and Au in various hydrothermal processes [15].

2.2.1. Thallium Sulfide

Thallium sulfide mineral carlinite was first found in the Carlin gold deposit in Nevada, the USA and is named for its locality Carlin [49]. Although Tl could present as Tl(I) and Tl(III), carlinite (Tl⁺S) is the only reported thallium sulfide mineral that occurs in Carlin gold deposit and Buus Fe–As–Tl mineralized occurrence in the Swiss Jura Mountains [49,50].

2.2.2. Thallium Sulfosalt

Thallium sulfosalts represent the most abundant thallium minerals mainly found in hydrothermal deposits due to their complex structure, structure diversity, and the prevalence of isomorphism substitution among cations (e.g., As, Sb, Pb, Hg, Ag). Sulfo-arsenite and sulfo-antimonide dominate 63 known thallium sulfosalts. Thallium sulfosalts mineralogy and crystal chemistry have been well-reviewed [51–54]. According to their structure types, seven archetypes (SnS, PbS, sphalerite, Tl-rich structures, structures of combination of two archetypes, chain structures, and layer structures with thallium-rich layers) have been categorized, and detailed crystal structures and crystal-chemical generalizations have been made [54]. Tuscany in Italy and Lengenbach in Switzerland are two classic localities for these rare thallium sulfosalts minerals [35,55]. Metamorphic overprint upon previous hydrothermal deposits is responsible for the complex thallium mineralization [55,56].

Lorandite (TlAsS₂) is the most common thallium sulfosalts mineral in Tajikistan, Russia, Iran, Switzerland, North Macedonia, and China in various mineralized backgrounds [57,58]. However, Allchar in Macedonia and Lanmuchang in China are two prominent concentrated localities [31,57]. Unlike common links with Hg, As, and Sb mineralization, lorandite in Fengshan of Eastern China is closely associated with Cu–Au skarn mineralization with high Tl concentrations (up to 2016 ppm) in gold ore [58].

2.2.3. Thallium Telluride and Selenides

Very rare thallium tellurides and selenides are documented in some sites. Honeaite (Au₃Tl₂Te₂) is the only reported natural thallium-bearing gold telluride [59]. These minerals are found in Karonie gold deposit, Eastern Goldfields province, Western Australia. Native gold and tellurobismuthite are common paragenetic minerals [60]. Electron-microprobe data on 17 grains of honeaite give an average Tl concentration of 19.46% [60]. Bukovite (Cu₄Tl₂Se₄), crookesite (Cu₇(Tl,Ag)Se₄), and Sabatierite (Cu₆TlSe₄) are three reported thallium selenides, which together with Tl tellurides, are formed in the low temperature and slightly oxidized conditions [18].

2.2.4. Other Thallium Minerals

Thallium halides and primary sulfates are both limited to the fumaroles. Lafossaite (Tl(Cl, Br)), Natanielamalikite (TlI), thallium-enriched flinteite (K, Tl)₂ZnCl₄ (27.7 wt.% Ti), saltoneaite (K, Tl)₂NaMnCl₆ (3.5 wt.% Ti), chrysothallite K₂Cu₂TlϕCl₇(OH)₇H₂O, kalithallite K₂TlϕCl₂H₂O, karpovite TlVO(SO₄)₂(H₂O), evdokimovite Tl₄(VO)₃(SO₄)₅(H₂O)₅, and markhininite Tl₂Bi(SO₄)₂ have been discovered in the fumaroles [61–63]. It is noteworthy that chrysothallite and kalithallite are two of the three known natural minerals of Tlϕ⁺ (the third is avicennite TlO₂), containing not only thallium but also potassium in different structural sites. Occurrences of these thallic minerals imply that there may be other mechanisms responsible for the oxidation of Tlϕ⁺ to Tlϕ³⁺ in addition to the avicennite typically associated with manganese oxides [64,65]. However, the mechanisms for oxidation have not been elucidated yet.
Pd thallide (Pd₃Tl) and two new Pd thallide phases were documented in the magmatic PGE deposit of Russia and South Africa. These Pd thallide phases occur as composite grains or intergrowths of sub-millimeter size. Post magmatic-hydrothermal fluid reaction with PGE minerals is responsible for forming these unusual PGE thallide minerals [63,66].

In addition to the above-mentioned Tl minerals, other Tl minerals occur much rarer. All reported 89 thallium minerals and their chemical formula are given in Table 1. Taken together, thallium sulfosalts and monovalent thallium minerals dominate.

3. Secondary Sulfate Mineralogy in Tl Mineralization Areas

The oxidation/weathering of pyrite (FeS₂) and other sulfide minerals introduces a high metal (e.g., Fe, Mn, Tl, Cu, Ni) concentration and sulfate into the surrounding environment. However, the formation of secondary sulfate could critically mediate the metal releasing process due to incorporating metal and sulfate into the secondary minerals. Many of the secondary sulfate minerals are soluble in the aqueous media; they represent the transient sink for sulfate, acidity, and metals [67]. Crystal chemistry exerts the primary control for the solubility of and incorporation of metal into the minerals.

The secondary sulfate minerals in thallium deposits, including thallium sulfate and Fe- and Al-hydroxysulfate minerals, have been documented in the literature [19,68–70]. As oxidation/weathering of pyrite releases large amounts of Fe²⁺ and SO₄²⁻ into the AMD, the melanterite group dominates the secondary sulfate with less occurrence of monovalent metal sulfates (e.g., lanmuchangite and alum), other divalent metal sulfates (e.g., gypsum and epsomite), and trivalent metal sulfates (e.g., alunogen and coquimbite).

Table 1. Independent thallium minerals.

Mineral (Ref.)	Chemical Formula	Mineral (Ref.)	Chemical Formula
Argentobaumhauerite [71]	(Ag,Tl)₁·₃Pb₂₂As₃₃S₇₂	Jentschite [72]	Tl₂Pb₃SbS₅
Arsiccoite [73]	AgHg₂Tl₂As₃S₆	Kalithallite [74]	K₃Tl₂Cl₂H₂O
Auerbakhite [75]	Mn₃Tl₃As₅S₁₀	Karpovite [76]	Tl₂VO(SO₄)(H₂O)
Avicennite [77]	Tl₄O₃	Laffosaita [63]	Tl₂(Cl,Br)
Bernardite [78]	Tl₂(As₂Sb)₆S₁₈	Lanmuchangite [68]	Tl₂Al(SO₄)₂·12H₂O
Biagioniite [79]	Tl₂SbS₅	Lorándite [80]	Tl₂As₃S₅
Boscardinite [81]	Tl₂(Sb₂As)₃S₁₈	Markhininite [82]	Tl₂(SO₄)₂
Bukovite [83]	Cu₄Tl₃Se₄	Nalatiyamalikite [61]	Tl₂
Carlinite [49]	Tl₅S	Parapierrrotite [84]	Tl₂(Sb₂As)₆S₆
Chabourmètè [85]	Tl₂Pb₂(Sb₂As₂)₂S₆	Persilalite [86]	K₃Tl₂Sb₂O₅·5H₂O
Chalcothallite [83]	Tl₂(Cu₂Fe₂)₆SbS₄	Philrothite [87]	Tl₂Sb₂O₅S₆
Christite [88]	Tl₂Hg₂As₅S₁₈	Picotpauleite [89]	Tl₂Fe₃S₅
Chrysothallite [74]	K₃Cu₂Tl₂Cl₂(OH)₄H₂O	Pierrotite [90]	Tl₂(Sb₂As₂)₆S₆
Criddleite [91]	Tl₂Ag₃Au₁Sb₆S₁₈	Pokhodyashinite [92]	Cu₃Tl₂Sb₂O₅S₆
Crookesite [93]	Cu₄(Tl₂As)₁₈	Protochabourmètè [94]	Tl₂Pb₂Sb₂O₅S₆
Cuprostitbite [95]	Cu₂(Tl₂As)₅S₈	Raberite [96]	Tl₂Ag₃Sb₂O₅S₆
Dalnegroite [97]	Tl₂Pb₂Sb₂As₅S₁₈	Raguinite [98]	Tl₂Fe₃S₅
Dekatriasartorite [99]	Tl₂Pb₂Sb₂As₅S₁₈	Ralphcannonite [100]	AgZn₂Tl₂As₂S₅
Dorallcharite [101]	TlFe₂(SO₄)(OH)₄	Rathite [102]	Ag₂P₂Tl₂As₂S₈S₆
Drechslerite [103]	Tl₂(Sb₂As₂)₁₈	Rayite [104]	(Ag₂P₂)Tl₂Pb₂Sb₂S₈
Écrinsite [105]	Tl₂Pb₂Sb₂As₂S₁₈	Rebulite [106]	Tl₂Sb₂As₂S₆
Edenhariterite [107]	Tl₂Pb₂As₂S₁₈	Richardsollyte [108]	Tl₂Pb₂As₂S₆
Ellisite [109]	Tl₂As₅S₆	Rohlaithe [83]	TICu₂Sb₂As₂
Ermigglite [110]	Tl₂Sn₃As₂S₆	Routherite [111]	TICuHg₂As₂S₆
Enneasartorite [112]	Tl₂Pb₂As₂S₁₈	Sabatierite [113]	Cu₂Tl₂Se₅
Evdokimovite [114]	Tl₂(VO₄)(SO₄)(H₂O)₃	Saltonitaite [115]	(K,Tl)₂NaMnCl₆
Fangite [116]	Tl₂As₅S₆	Sichterite [117]	Tl₂Ag₂As₂S₅
Ferrostanderite [118]	Cu₂Fe₂Tl₂As₂S₆	Simonite [119]	Tl₂Hg₂As₂S₅
Ferrovorontsovite [120]	(Fe,Cu)₂Tl₂As₂S₆	Spaltite [121]	Tl₂Cu₂As₂S₆
3.1. Secondary Thallium and Potassium Sulfate

The mineralogy of thallium sulfate in secondary environments of mining areas is constrained to very few species. Two Tl⁺-oxysalts, namely dorallcharite [101] and lanmuchangite [68], are the reported secondary sulfate minerals, with thallium occurring as a monovalent ion in the two minerals. Potassium sulfate minerals (e.g., voltaite) have elevated Tl contents due to the substitution of K by Tl [141]. The chemical formula, unit cell parameter, and crystal system for these two minerals and the other three thallium sulfate minerals are given in Table 2.

Table 2. Crystal chemistry for thallium sulfate minerals [68,76,82,101,114].

Mineral	Chemical Formula	Crystal System	Unit-Cell Parameters
Lanmuchangite	TlAl(SO₄)₂·12H₂O	Isometric	a = 12.212 Å, V = 1871 Å³
Dorallcharite	TlFe₃⁺₃(SO₄)₂(OH)₆	Trigonal	a = 7.3301, c = 17.6631 Å, V = 821.73 Å³
Evdokimovite	Tl(VO)₃(SO₄)·(H₂O)₃	Monoclinic	a = 4.6524, b = 11.0757, c = 9.3876 Å, V = 478.60 Å³, β = 98.353°
Karpovite	Tl₂VO(SO₄)₃·(H₂O)	Monoclinic	a = 7.378, b = 10.657, c = 10.657 Å, V = 680.2 Å³, α = 61.31, β = 70.964, γ = 70.964°
Markhininite	TlBi(SO₄)₂	Triclinic	

Dorallcharite (TlFe₃⁺₃(SO₄)₂(OH)₆) is the Tl-analog of jarosite; it was initially found in Allchar of North Macedonian and thereafter in France [142] and Switzerland [49]. The crystal structure for dorallcharite is presented in Figure 2. Dorallcharite occurs associated with gypsum, roselleite (MgHAsO₄·7H₂O), thalliumpharmacosiderite (TlFe₃⁺₃(AsO₄)₂·(OH)₄·4H₂O), and amorphous Fe and Mn sulfate and/or arsenate at Allchar [101]. The mean concentration of Tl and K from 25 microprobe measurements is 23% and 1.23%, respectively [143]. It is formed following Tl removal from sulfide oxidation and subsequently retained by the sulfate [101]. Given that Tl⁺ substitutes K⁺ in jarosite, a complete solid-solution series exists between jarosite and dorallcharite [101].
Lanmuchangite (TlAl(SO₄)₂·12H₂O) is the Tl-analog of alunite. It is only reported in its type locality, China [68], which is associated with melanterite, pickeringite, alum, jarosite, gypsum, native sulfur, arsenolite, and some unknown minerals in the oxidized zone of the Lanmuchang Hg-Tl deposit [68]. It belongs to the alum group with the general formula X⁺+Al³⁺(SO₄)₂·12H₂O in which X site is occupied by Na, K, NH₄, and Tl. The crystal structure of the mineral is given in Figure 3. Biagioni et al. [35] documented Tl-bearing alum (K) from the Apuan Alps in Italy and argued that the substitution of Al³⁺ by Fe³⁺ and K⁺ by both NH₄⁺ and Tl⁺ are responsible for the nonlinear variation of the unit-crystal parameter from Alum(K) to lanmuchangite.

Figure 2. Crystal structure of dorallcharite.

Figure 3. Crystal structure of Lanmuchangite.
Thallium voltaite ((K,Tl)Fe\(^{2+}5\)Fe\(^{3+}3\)Al(SO\(_4\))\(_{12}\)·18H\(_2\)O) is reported in the oxidized zone of thallium deposits (e.g., Tuscany of Italy), which was first named as a new Tl\(^{3+}\)-K mineral monsmedite and was later discredited [35]. The study suggests that the unit-cell parameter (\(a = 27.2587 \text{ Å} \) and \(a = 27.2635 \text{ Å} \) for Romania and Italy, respectively) of Tl voltaite is slightly larger than that of synthetic K\(2\)Fe\(^{2+5}\)Fe\(^{3+3}\)Al(SO\(_4\))\(_{12}\)·18H\(_2\)O (\(a = 27.234 \text{ Å} \) [35,144]. It is reported that Tl voltaite is chemically zoned with Tl more enriched in the rims (TlO \(3.30\%\)) than in the core (TlO \(2.88\%\)) of the voltaite as revealed by electron microprobe analyses [35]. The Tl voltaite closely occurs with more than 15 secondary sulfate minerals. The K site replacement by Tl in the voltaite from Apuan Alps has been confirmed by quantitative EXAFS and single-crystal X-ray diffraction refinement [35].

Pyrite oxidation and subsequent Tl release and K substitution by Tl in various ratios in the secondary K sulfate are responsible for the formation of dorallcharite, lanmuchangite, voltaite, and other K sulfate minerals, as evidenced the elevated content of Tl in alum-(K) (KAl(SO\(_4\))\(_{12}\)·12H\(_2\)O), goldichite (KFe\(^{3+}3\)(SO\(_4\))\(_{2}\)·4(H\(_2\)O)), jarosite (KFe\(^{3+}3\)(SO\(_4\))\(_{2}\)·(OH)\(_3\)) and kraitite (KFe\(^{3+}3\)(SO\(_4\))·(H\(_2\)O)) in Apuan Alps [69] and Lanmuchang [145]. It is expected that some K sulfate minerals from Apuan Alps, in which Tl contents have not been analyzed, such as giacovazzoite (KFe\(^{3+}3\)(SO\(_4\))·10H\(_2\)O), Magnanelliite (KFe\(^{3+}3\)(SO\(_4\))·(OH)(H\(_2\)O)), and scordariite (K\(_6\)(Fe\(^{3+}0.67\)Fe\(^{3+}3\)O(SO\(_4\))\(_6\)·14H\(_2\)O), should contain high Tl concentrations.

3.2. Secondary Iron Sulfate

Secondary iron sulfates including ferrous sulfate melanterite (Fe\(^{2+}\)(SO\(_4\))·(H\(_2\)O)) and halotrichite (Fe\(^{2+}\)Al\(_2\)(SO\(_4\))·22H\(_2\)O), mixing ferrous and ferric sulfate römerite (Fe\(^{2+}\)Fe\(^{3+}2\)(SO\(_4\))·14H\(_2\)O), and ferric sulfate fibroferrite (Fe\(^{3+}\)(SO\(_4\))(OH)·5H\(_2\)O) are found in the oxidized zone of thallium deposits [68,69]. Melanterite is the most common secondary sulfate mineral formed in the earliest period of pyrite oxidation [29]. Partial oxidation of ferrous iron in the solution under acid conditions leads to the formation of römerite and fibroferrite. Due to the significant ionic radius difference between iron and thallium, only a trace amount of Tl is incorporated into iron-sulfate minerals [69]. All reported four iron-sulfate minerals are more soluble than jarosite and schwertmannite (Fe\(_6\)O\(_8\)(OH)\(_2\)SO\(_4\)·nH\(_2\)O) [29].

3.3. Secondary Calcium, Magnesium, Aluminum Sulfate

Gypsum (CaSO\(_4\)·2H\(_2\)O), anhydrite (CaSO\(_4\)), alunogen (Al\(_2\)(SO\(_4\))·17(H\(_2\)O)), coquimbite (AlFe\(^{3+}3\)(SO\(_4\))·(H\(_2\)O)\(_{12}\)·6(H\(_2\)O)), khademite (Al(SO\(_4\))F·5(H\(_2\)O)), pickeringite (MgAl\(_2\)(SO\(_4\))·22H\(_2\)O), and magnesiocopiapite (MgFe\(^{3+}3\)(SO\(_4\))·(OH)(H\(_2\)O)\(_{12}\)·6H\(_2\)O) are reported secondary calcium, aluminum, and magnesium sulfate in thallium deposit [68,69]. All these sulfate minerals have high solubility, especially in acid solutions [29]. Crystal chemical difference between Tl and Ca, Mg, and Al inhibits Tl from entering the crystal lattice of these minerals.

4. Environmental Significance of the Secondary Sulfate Minerals

Precipitation and dissolution of the secondary sulfate mineral in the alternating wet-dry climate in mining areas can store or release acid and/or toxic elements. Owing to the varied Tl concentration, crystal structure and composition, and solubility, the secondary sulfate minerals play different roles in the environment.

4.1. Tl Sulfate

Natural Tl sulfate mineral lanmuchangite is readily soluble in water [68] and remains stable only in acidic conditions [16]; therefore, lanmuchangite serves as a transient Tl source and sink in the Tl-bearing mining environment. A high concentration of Tl appeared in rims of the voltaite at Alpuan mine, which suggests that Tl is enriched in the
sulfide oxidation in K-poor environments [69]. Unfortunately, no literature is documented for Tl behavior during voltaite dissolution.

Tl-jarosite, which is transformed to dorallcharite when Tl completely substitutes K in the jarosite crystal lattice, represents common Tl sulfate in the Tl mining areas. In contrast to lammuchangite, jarosite is relatively insoluble in water [67]. Moreover, jarosite and most other sulfate minerals are formed in acid conditions [146]. Therefore, Tl-jarosite plays a pivotal role in the storage of acid and Tl following sulfide weathering and oxidation and serves as a long-term sink for Tl and acid, notably in acid mine drainage and acid soil. Interestingly, the sites where these Tl sulfate minerals are documented, namely Allchar, Lammuchang, and Tuscany, are Tl-rich deposits and notorious Tl-polluted areas [6]. Thus, occurrence of Tl sulfate minerals implies Tl-rich geological settings and abundant Tl release from oxidation of Tl-bearing sulfide minerals.

Thermodynamic modeling shows a wide stability field for dorallcharite [69]. Dorallcharite and Tl-jarosite are susceptible to significantly incongruent dissolution to release Tl and form iron hydroxides or schwertmannite under circumneutral pH conditions as described by the following reaction [147–149]:

\[
(Tl_{x}, K_{1-x})Fe_3(SO_4)_2(OH)_6 + 2H_2O = 3Fe(OH)_3 + xTl^+ + (1-x)K^+ + 2SO_4^{2-} + 3H^+ \tag{1}
\]

The dissolution is also enhanced by microbial reduction of structural Fe and S. Dissimilatory iron-reducing bacteria (DIRB) (e.g., *Shewanella putrefaciens* CN32, *Geobacter metallireducens*) have been proved using iron oxides as an electron acceptor for respiration. Jarosite enhanced reductive dissolution and iron oxides formation by *Shewanella putrefaciens* CN32, and *Shewanella oneidensis* MR-1 have been well recognized under anaerobic and neutral pH conditions [69,150]. Sulfate-reducing bacteria (SRB) can use sulfate as a terminal electron acceptor, and reductive-dissolution of jarosite by SRB has also been argued in anaerobic conditions [151–153]. Aquatic Tl experiments, adsorption experiments, and thermodynamic modeling demonstrate Tl did not have strong affinity for the iron oxides [147–149,154]. Taken together, Tl-jarosite and dorallcharite dissolution will increase Tl mobility and bioavailability driven by biotic and abiotic processes.

4.2. Calcium, Magnesium, Alumina, and Iron Sulfate

The pyrite’s predominance in sulfides and Tl-hosted phases of Tl ore bodies, pyrite oxidation, and the subsequent sulfate mineral formation play a significant role in Tl release from primary Tl-hosted phases. It is commonly accepted that abiotic pyrite oxidation proceeds as the following simplified reactions [155]:

\[
FeS_2 + 7/2O_2 + H_2O \rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+ \tag{2}
\]

\[
Fe^{2+} + 1/4O_2 + H^+ \rightarrow Fe^{3+} + 1/2H_2O \tag{3}
\]

\[
Fe^{3+} + 3H_2O \rightarrow Fe(OH)_3 + 3H^+ \tag{4}
\]

\[
FeS_2 + 14Fe^{3+} + 8H_2O \rightarrow 15Fe^{2+} + 2SO_4^{2-} + 16H^+ \tag{5}
\]

Soluble minerals (e.g., gypsum, alum (without K), melanterite, halotrichite, römerite, and fibroferrite) may precipitate at the surface of mineralized rocks during dry periods [156]. These sulfate minerals are highly impossible to act as a temporary or long-term storage for Tl for the crystal chemistry reason as evidenced by trace amounts of Tl in these minerals mentioned in Sections 3.2 and 3.3. Besides, we argued that redox cycling between ferrous and ferric iron in Equations (3) and (5) might impact the Tl release from Tl-bearing sulfide oxidation. It is well known that ferrous iron oxidizes to ferric iron in Equation (3) during pyrite oxidation and is a rate-limiting step [155]. Moreover, the ferrous iron that oxidizes to ferric iron is also pH dependent. Under the circumneutral pH conditions, the ferric iron tends to hydrolyze to ferricydrite, which causes the removal of ferric iron from the aqueous system. Since the rate of pyrite oxidation involving Fe²⁺ is significantly higher than that of O₂, as suggested by reaction Equation (2), the O₂-dominated pyrite oxidation...
will proceed at a relatively lower rate. At the low pH conditions resulting from the secondary sulfate dissolution during the wet periods, ferric iron oxidizing pyrite in Equation (5) is preferred to Equation (4). Thus, Equations (3) and (5) construct a closed iron cycling to prompt the pyrite oxidation approach to a steady state.

The ferrous iron oxidation rate in Equation (3) becomes very slow at lower pH values, and dissolution and adding of ferric iron sulfate minerals (e.g., fibroferrite) may compensate for the lower rate. Despite the effectiveness of microbial catalysis for pyrite oxidation process, abiotic pyrite oxidation at depth is argued at the global scale owing to the pore limit for the access of bacteria [157]. Therefore, precipitation and dissolution of soluble iron-sulfate minerals probably sustains long-term pyrite oxidation and associated Tl release in areas impacted by Tl mining and processing.

5. Conclusions

Tl is a highly toxic heavy metal that is strictly regulated by many countries but has an irreplaceable role in several high-tech fields, and is mainly introduced into the environment unintentionally by the mining, mineral processing, and metallurgy related to Tl-(bearing) deposits. The numerous discoveries of new Tl minerals and Tl-bearing deposits in recent years suggest that the risk of Tl exposure is much higher than documented, and the potential Tl pollution associated with the mining activities has attracted considerable attention. Although up to 89 Tl minerals have been reported, hydrothermal pyrite is the predominant Tl-bearing phase in most Tl-(bearing) deposits. Pyrite oxidation not only generates acid but also releases Tl into the environment. Thallium and other metal sulfate minerals formed during the dry season play varied roles in Tl mobility and scavenging due to different crystal chemistry signatures. Furthermore, secondary sulfate minerals dissolution and ferric iron adding can accelerate the pyrite oxidation and Tl release from pyrite and other Tl-bearing sulfides.

More in-depth knowledge is needed about the behavior of Tl release during Tl sulfide minerals oxidation and constrained factors under different natural conditions. Besides, the roles that the secondary sulfate minerals play on Tl uptake by plants should be further investigated in future works. These efforts could enable us to control Tl pollution and reclaim Tl-polluted lands.

Author Contributions: F.Z. performed the thallium minerals compilation and wrote this paper; S.G. designed and supervised the project. All authors have read and agreed to the published version of the manuscript.

Funding: The research work is supported by the National Key Research and Development Program of China (No. 2018YFC1802601).

Acknowledgments: We would like to thank the editors and anonymous reviewers for their helpful comments which greatly improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, J.; Zhu, R.; Huang, L.; Pan, J.; Guo, C.; Cao, Y. Tracking observation for chronic thallium poisoning in Huilong Valley of Xingren County, China. Occup. Health Inj. 1986, 1, 52–54. (In Chinese)
2. Viraraghavan, T.; Srinivasan, A. Thallium: Environmental Pollution and Health Effects. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier Inc.: Burlington, VT, USA, 2011; pp. 325–333.
3. Liu, J.; Wang, J.; Tsang, D.C.W.; Xiao, T.; Chen, Y.; Hou, L. Emerging thallium pollution in China and source tracing by thallium isotopes. Environ. Sci. Technol. 2018, 52, 11977–11979.
4. Kazantzis, G. Thallium in the Environment and Health Effects. Environ. Geochem. Health 2000, 22, 275–280.
5. Xiao, T.; Boyle, D.; Guha, J.; Rouleau, A.; Hong, Y.; Zheng, B. Groundwater-related thallium transfer processes and their impacts on the ecosystem: Southwest Guizhou Province, China. Appl. Geochem. 2003, 18, 675–691.
6. Liu, J.; Luo, X.; Sun, Y.; Tsang, D.C.; Qi, J.; Zhang, W.; Li, N.; Yin, M.; Wang, J.; Lippold, H.; et al. Thallium pollution in China and removal technologies for waters: A review. Environ. Int. 2019, 126, 771–790.
7. Wen, H.; Zhu, C.; Du, S.; Fan, Y.; Luo, C. Gallium (Ga), germanium (Ge), thallium (Tl) and cadmium (Cd) resources in China. *Chin. Sci. Bull.* 2020, 65, 3688–3699. (In Chinese with English abstract)

8. Ikramuddin, M.; Besse, L.; Nordstrom, P.M. Thallium in the Carlin-type gold deposits. *Appl. Geochem.* 1986, 1(4), 493-502.

9. Janković, S. Sb-As-Tl mineral association in the Mediterranean region. *Int. Geol. Rev.* 1989, 31, 262–273.

10. Höfstra, A.H. Characteristics and models for Carlin-type gold deposits. *Rev. Econ. Geol.* 2000, 13, 163–220.

11. Fan, Y.; Zhou, T.; Gabriel, V.; Hu, Q.; Yuan, F.; Zhang, X. Metallogenic regularities of thallium deposits. *Geol. Sci. Technol. Inf.* 2005, 24, 55–60.

12. Xiao, T.; Yang, F.; Li, S.; Zheng, B.; Ning, Z. Thallium pollution in China: A geo-environmental perspective. *Sci. Total Environ.* 2012, 421, 51–58.

13. Jakubowska, M.; Pasieczna, A.; Zembrzuski, W.; Swit, Z.; Lukasewski, Z. Thallium in fractions of soil formed on floodplain terraces. *Chemosphere* 2007, 66, 611–618.

14. Karbowksa, B.; Zembrzuski, W.; Jakubowska, M.; Wojtkowiak, T.; Pasieczna, A.; Lukasewski, Z. Translocation and mobility of thallium from zinc-lead ores. *J. Geochem. Explor.* 2014, 143, 127–135.

15. Xiong, Y.L. The aqueous geochemistry of thallium: Speciation and solubility of thallium in low temperature systems. *Environ. Chem.* 2009, 6, 441–451.

16. Vaněk, A.; Komárek, M.; Chrástny, V.; Galušková, I.; Mihaljević, M.; Šebek, O.; Drahota, P.; Tejnecký, V.; Vokurková, P. Effect of low-molecular-weight organic acids on the leaching of thallium and accompanying cations from soil-a model rhizosphere solution approach. *J. Geochem. Explor.* 2012, 112, 212–217.

17. Zitko, V. Toxicity and pollution potential of thallium. *Sci. Total Environ.* 1975, 4, 185–192.

18. Jonsson, E.; Wagner, T. Ore Mineralogy of the Skríkerum Cu–Ag–Tl–(Au) Selenide Deposit, SE Sweden: Preliminary Results. In Proceedings of the 25th Nordic Geological Winter Meeting, Reykjavik, Iceland, 6–9 January 2002; 98.

19. Zhang, Z.; Zhang, X.; Zhang, B. Elemental geochemistry and metallogenic model of Nanhua As-Tl deposit in Yunnan Province, China. *Geochimica* 1998, 27, 269–275. (In Chinese with English abstract)

20. Yang, C.; Chen, Y.; Peng, P.; Li, C.; Chang, X.; Xie, C. Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area. *Sci. Total Environ.* 2005, 341, 159–172.

21. Li, G. A study of ore compositions and thallium occurrence in a mercury-thallium deposit at Lannuchang in Xingfen County in southwestern Guizhou. *Guizhou Geol.* 1996, 13, 24–37. (In Chinese with English abstract)

22. Hu, R.; Peng, J.; Ma, D.; Su, W.; Shi, C.; Bi, X.; Tu, G. Epoch of large-scale low temperature mineralizations in southwestern Yangtze massif. *Miner. Depos.* 2007, 26, 583–596. (In Chinese with English abstract)

23. Zhou, T.; Fan, Y.; Yuan, F.; Wu, M.; Hou, M.; Voicu, G.; Hu, Q.; Zhang, Q.; Yue, S. A preliminary geological and geochemical study of the Xiangquan thallium deposit, eastern China: The world’s first thallium-only mine. *Miner. Petrol.* 2005, 85, 243–251.

24. George, L.L.; Biagioni, C.; D’Orazio, M.; Cook, N.J. Textural and trace element evolution of pyrite during greenschist facies metamorphic recrystallization in the southern Apuan Alps (Tuscany, Italy): Influence on the formation of Tl-rich sulfosalts melt. *Ore Geol. Rev.* 2018, 102, 99–105.

25. Chang, X.; Chen, Y.; Liu, J.; Chen, N.W.Y.; Fu, S. Effect of thallium-bearing sulfide mineral utilization on environment in Yunfu of west Guangdong; Trace study of lead isotope. *Acta Geosci. Sin.* 2008, 29, 765–768. (In Chinese with English abstract)

26. Jiang, K.; Yan, Y.; Zhe, C.; Zhang, L. The research on occurrence of thallium and cadmium in the Jinding lead-zinc deposit, Yunnan Province. Bull. Miner. *Petrol. Geochim.* 2014, 33, 753–758. (in Chinese with English abstract)

27. Spinks, S.; Pearce, M.; Liu, W.; Kunzmann, M.; Ryan, C.; Moorhead, G.; Kirkham, R.; Blakie, T.; Sheldon, H.; Schaub, P.; et al. Carbonate replacement as the principal ore formation process in the Proterozoic McArthur River (HYC) sediment-hosted Zn-Pb deposit, Australia. *Econ. Geol.* 2021, 116, 693–718.

28. Dehnani, A.; McFarlane, C.; Lentz, D.; Walker, J. Assessment of pyrite composition by LA-ICP-MS techniques from massive sulfide deposits of the Bathurst Mining Camp, Canada: From textural and chemical evolution to its application as a vectoring tool for the exploration of VMS deposits. *Ore Geol. Rev.* 2018, 92, 656–671.

29. Jambor, J.L.; Nordstrom, D.K.; Alpers, C.N. Metal-sulfate salts from sulfide mineral oxidation. *Rev. Mineral. Geochim.* 2000, 20(1), 303–350.

30. Muntean, J.L. The Carlin gold system: Applications to exploration in Nevada and beyond. *Rev. Econ. Geol.* 2018, 20, 39–88.

31. Chen, D. Discovery of rich-thallium ore body in paragenesis ore deposit of mercury and thallium and research of its mineralization mechanism. *J. Guizhou Inst. Technol.* 1999, 18, 1–19. (In Chinese with English abstract)

32. Höfstra, A.H.; Christensen, O.D. Comparison of Carlin-type Au deposits in the United States, China, and Indonesia—Implications for genetic models and exploration. *US Geol. Surv. Open-File Report.* 2002, 02-131, 64–94.

33. Nevolko, P.; Hnylko, O.M.; Mokrushnik, V.P.; Gibsher, A.S.; Redin, Y.O.; Zhimulev, F.I.; Karavashkin, M.I. Geology and geochemistry of the Kadamzhai and Chauvai gold-antimony-mercury deposits: Implications for new province of Carlin-type gold deposits at the Southern Tien Shan (Kyrgyzstan). *Ore Geol. Rev.* 2019, 105, 551–571.

34. Vikentyev, I.V.; Tsyukova, E.E.; Vikent’Eva, O.V.; Chugaev, A.V.; Dubinina, E.O.; Prokofiev, V.Y.; Murzin, V.V. Vorontsovka Carlin-style gold deposit in the North Urals: Mineralogy, fluid inclusion and isotope data for genetic model. *Chem. Geol.* 2019, 508, 144–166.

35. Biagioni, C.; D’Orazio, M.; Fulignati, P.; George, L.L.; Mauro, D.; Zaccarini, F. Sulfide melts in ore deposits from low-grade metamorphic settings: Insights from fluid and Tl-rich sulfosalts microinclusions from the MonteArsiccio mine (Apuan Alps, Tuscany, Italy). *Ore Geol. Rev.* 2020, 123, 103589.
36. Zen, X.; Wu, Y. Polygenetic mechanism for compound enriched Yunfu pyrite, Guangdong Province. Geotect. Metallog. 1998, 22, 242–251.
37. Biagioni, C.; D’Orazio, M.; Vezzoni, S.; Dini, A.; Orlandi, P. Mobilization of Ti-Hg-As-2Pb-(Ag,Cu)-Pb sulfosalt melts during low-grade metamorphism in the Alpi Apuane (Tuscany, Italy). Geology 2013, 41, 747–751.
38. Hettmann, K.; Kreissig, K.; Rehkämper, M.; Wenzel, T.; Mertz-Kraus, R.; Markl, G. Thallium geochemistry in the metamorphic Lengenbach sulfide deposit, Switzerland: Thallium-isotope fractionation in a sulfide melt. Am. Mineral. 2014, 99, 793–803.
39. Wang, C.; Yang, L.; Bagas, L.; Evans, N.J.; Chen, J.; Du, B. Mineralization processes at the giant finding Zn–Pb deposit, Lanping Basin, Sanjiang Tethys Orogen: Evidence from in situ trace element analysis of pyrite and marcasite. Geol. J. 2018, 53, 1279–1294.
40. Wu, M. Study of geologic characteristics of the Xiangquan thallium deposit, Anhui Province. J. Hefei Univ. Technol. 2006, 29, 1571–1576.
41. Muntean, J.; Cline, J.; Simon, A.; Longo, A. Magmatic-hydrothermal origin of Nevada’s Carlin-type gold deposits. Nat. Geosci. 2011, 4, 122–127.
42. Su, W.; Dong, W.; Zhang, X.; Shen, N.; Hu, R.; Hořáta, A.; Cheng, L.; Xia, Y.; Yang, K. Carlin-type gold deposit in the Dian-Gui “Golden Triangle” of Southwest China. Econ. Geol. Rev. 2018, 32, 291–313.
43. Sobott, R.; Klaes, R.; Moh, G. Thallium-containing mineral systems. Part I: Natural assemblages of Tl-sulfosalts and related laboratory experiments. Chen. Erde. 1987, 47, 195–218.
44. Chen, D.; Ren, D.; Hua, W.; Zou, Z.; Yun, Q. Where is the second thallium ore deposit of Lannuchang type? — the discovery of Yangjiawan thallium prospect and its prospecting potentiality. J. Guizhou Inst. Technol. 1989, 27, 18–26. (In Chinese with English abstract)
45. Palinkaš, S.; Hořáta, A.; Percival, T.; Šotará, S.; Palinkaš, L.; Bermanec, V.; Pecskay, Z.; Boev, B. Comparison of the Allchar Au-As-Sb-Tl Deposit, Republic of Macedonia, with Carlin-type gold deposits. Rev. Econ. Geol. 2018, 20, 335–363.
46. Rader, S.T.; Mazdab, F.K.; Barton, M.D. Mineralogical thallium geochemistry and isotope variations from igneous, metamorphic, and metasomatic systems. Geochem. Cosmochim. Acta 2018, 243, 42–65.
47. Heinrichs, H.; Schulz-Dobrick, B.; Wedepohl, K. Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn and Rb. Geochem. Cosmochim. Acta 1980, 44, 1519–1533.
48. Radtke, A.S.; Dicksonc, F.W. Carlinite, Tl2S, a new mineral from Nevada. Can. Mineral. 1980, 18, 447–453.
49. Notacki, W.; Emmerling, R.; Engel, P.; Gostojić, M.; Nagl, A. On the Crystal Chemistry of Some Tl-Sb sulphosalts. In Ore Genesis-The State of Art; Amstutz; G.C., El Goresdy, A., Frenzel, G., Kluth, C., Moh, G., Wauschkuhn, A., Zimmermann, R.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1982, pp. 689–704.
50. Zemann, J. Thallium in Mineralogie und Géochimie. Mitteilungen der Österreich. Miner. Gesellschafts. 1993, 138, 75–91.
51. Gržetić, I.; Babić-Žunić, T. The photoelectron spectra of some Tl-Sb sulphosalts. Phys. Chem. Miner. 1993, 20, 285–296.
52. Makovicky, E. Modular crystal chemistry of thallium sulfosalts. Minerals 2018, 8, 478.
53. Raber, T.; Roith, P. The Lengenbach quarry in Switzerland: Classic locality for rare thallium sulfosalts. Minerals 2018, 8, 409.
54. Hofmann, B.A.; Knill, M.D. Geochemistry and genesis of the Lengenbach Pb-Zn-As-Tl-Ba-mineralisation, Binn Valley, Switzerland. Miner. Deposita 1996, 31, 319–339.
55. Jovanovski, G.; Boev, B.; Makreski, P.; Stafilov, T.; Boev, I. Intriguong minerals: Lorandite, TlAsS2, a geochemical detector of solar neutrinos. Chem. Texts 2019, 5, 1–5.
56. Xie, G.; Mao, J.; Han, Y.; Jin, W.; Han, J. Discovery of lorandite TlAsS2 at the distal Au-Tl deposit in a skarn system, Fengshan Area, Middle Lower Yangtze River, Eastern China. Acta Geol. Sinica 2017, 91, 1493–1494. (In English)
57. Welch, M.D.; Still, J.W.; Rice, C.M.; Stanley, C.J. A new telluride topology: The crystal structure of honeaite Au3TlTe2. Mineral. Mag. 2017, 81, 611–618.
58. Rice, C.M.; Welch, M.D.; Still, J.W.; Criddle, A.J.; Stanley, C.J. Honeaite, a new gold-thallium-telluride from the Eastern Goldfields, Yilgarn Craton, Western Australia. Eur. J. Mineral. 2016, 28, 979–990.
59. Okrugin, V.; Favero, M.; Liu, A.; Etschmann, B.; Plutachina, E.; Mills, S.; Brugger, J. Smoking gun for thallium geochemistry in volcanic arc. Nataliyamalikite, TlI, a new thallium mineral from an active fumarole at Avacha Volcano, Kamchatka Peninsula, Russia. Am. Mineral. 2017, 102, 1736–1746.
60. Campostrini, L.; Demartin, F.; Gravacchi, C.M.; Orlandi, P. Hephaisotite. TlPbCl, a new thallium mineral species from La Fossa crater, Vulcano, Aeolian Islands, Italy. Can. Mineral. 2008, 46, 701–708.
61. Pekov, I.V.; Agakhanov, A.A.; Zubkova, N.V.; Koshlyakova, N.N.; Shchipalkina, N.V.; Sandalov, F.D.; Yapaskurt, V.O.; Turchikova, A.G.; Sidorov, E.G. Oxidizing-type fumaroles of the Tolbachik Volcano, a mineralogical and geochemical unique. Russ. Geol. Geophys. 2020, 61, 675–688.
62. Voegelin, A.; Pleininger, N.; Petrikis, J.; Majzlan, J.; Plötz, M.; Senn, A.C.; Göttlicher, J. Thallium speciation and extractability in a thallium-and arsenic-rich soil developed from mineralized carbonate rock. Environ. Sci. Technol. 2015, 49, 5390–5398.
63. Cruz-Hernández, Y.; Villalobos, M.; Marcus, M.A.; Pi-Puig, T.; Zanella, R.; Martinez-Villegas, N. Tl(I) sorption behavior on birnessite and its implications for mineral structural changes. Geochem. Cosmochim. Acta 2019, 248, 356–369.
66. Barkov, A.Y.; Shvedov, G.I.; Polonyankin, A.A.; Martin, R.F.; O'Driscoll, B. New and unusual Pd-Tl-bearing mineralization in the Anomal'nyi deposit, Kondyor concentrically zoned complex, northern Khabarovskiy kray, Russia. Mineral. Mag. 2017, 81, 679–688.

67. Hammarstrom, J.M.; Seal II, R.R.; Meier, A.L.; Kornfeld, J.M. Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments. Chem. Geol. 2005, 215, 407–431.

68. Chen, D.; Wang, G.; Zou, Z.; Chen, Y.M. A new mineral—Lanmuchangite. Acta Mineral. Sinica. 2001, 21, 271–277. (In Chinese with English abstract)

69. D'Orazio, M.; Mauro, D.; Valerio, M.; Biagioni, C. Secondary sulfates from the Monte Arsiccio Mine (Apuan Alps, Tuscany, Italy): Trace-element budget and role in the formation of acid mine drainage. Minerals 2021, 11, 206.

70. Bermanec, V.; Palinkas, L.A.; Fiket, Ž.; Hrenović, J.; Plenkovíc-Moraj, A.; Kienwald, G., Boev, B. Interaction of acid mine drainage with biota in the Allchar Carlin-type As-Tl-Sb-Au deposit, Macedonia. J. Geochem. Explor. 2018, 194, 104–119.

71. Topa, D.; Makovicky, E. Argentobaumhauerite: Name, chemistry, crystal structure, comparison with baumhauerite, and position in the Lengenbach mineralization sequence. Mineral. Mag. 2016, 80, 819–840.

72. Graesser, S.; Edenharter, A. Jentschite (TlPbAsSbS8)-a new sulphasalt mineral from Lengenbach, Binntal (Switzerland). Mineral. Mag. 1992, 72, 293–305.

73. Biagioni, C.; Bonaccorsi, E.; Moëlo, Y.; Orlandi, P.; Bindi, L.; D’Orazio, M.; Vezzonii, S. Mercury-arsenic sulfoarsalts from the Apuan Alps (Tuscany, Italy). II. Arsiccioite, AgHg2TlAs2S6, a new mineral from the Monte Arsiccio mine: Occurrence, crystal structure and crystal chemistry of the routhierite isotypic series. Mineral. Mag. 2014, 78, 101–111.

74. Pekov, I.V.; Zubkova, N.V.; Belakovskiy, D.I.; Yapanskert, V.O.; Vygina, M.F.; Lykova, I.S.; Sidorov, E.G.; Pushcharovsky, D.Y. Chrystoallithide KCuTl2Cl·(OH)·H2O, a new mineral species from the Tolbachik volcano, Kamchatka, Russia. Mineral. Mag. 2015, 79, 365–376.

75. Miyawaki, R.; Hatert, F.; Pasero, M.; Mills, J.J. IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 57. Eur. J. Mineral. 2020, 32, 498.

76. Siidra, O.I.; Vergasova, L.P.; Kretser, Y.L.; Polekhovsky, Y.S.; Filatov, S.K.; Krivovichev, S.V. Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka Peninsula, Russia. II. Karpovite, Tl2(VO)(SO4)(H2O). Mineral. Mag. 2014, 78, 1699–1709.

77. Radtke, A.S.; Dickson, F.W.; Slack, J.F. Occurrence and formation of avicennite, TlO, as a secondary mineral at the Carlin gold deposit, Nevada. Res. U.S. Geol. Surv. 1976, 6, 241–246.

78. Pašava, J.; Pertlik, F.; Stumpfl, E.F.; Zemann, J. Bernardite, a new thallium arsenic sulfoarsalts from Allchar, Macedonia, with a determination of the crystal structure. Mineral. Mag. 1989, 53, 531–538.

79. Bindi, L.; Moëlo, Y. Biagioniite, Tl3Sb2S5, from the Hemlo gold deposit, Marathon, Ontario, Canada: Occurrence and crystal structure. Mineral. Mag. 2015, 79, 1089–1098.

80. Radtke, A.S.; Taylor, C.M.; Erd, R.C.; Dickson, F. Occurrence of lorandite, TlAsS2, at the Carlin gold deposit, Nevada. Econ. Geol. 1974, 69, 121–123.

81. Orlandi, P.; Biagioni, C.; Bonaccorsi, E.; Moëlo, Y.; Paar, W.H. Lead-antimony sulfoarsalts from Tuscany (Italy). XII. Boscardinite, TlPb(As-Sb)S2, a new species from Monte Arsiccio mine: Occurrence and crystal structure. Can. Mineral. 2012, 50, 235–251.

82. Siidra, O.I.; Vergasova, L.P.; Krivovichev, S.V.; Kretser, Y.L.; Zaitsev, A.N.; Filatov, S.K. Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka Peninsula, Russia. I. Markhininite, Tl2Bi(SO4)2. Mineral. Mag. 2014, 78, 1687–1698.

83. Makovicky, E.; Johan, Z.; Karup-Møeller, S. New data on bukovite, thalcusite, chalcothallite and rohaite. Neues Jahrb. Mineral. Abh. 1980, 78, 122–146.

84. Biagioni, C.; Moëlo, Y.; Perchiazzi, N.; Demitri, N.; Zaccarini, F. Parapierrotite from the Monte Arsiccio mine (Apuan Alps, Tuscany, Italy): Occurrence and new data on its crystal-chemistry. Eur. J. Mineral. 2019, 31, 1055–1065.

85. Bonaccorsi, E.; Biagioni, C.; Moëlo, Y.; Orlandi, P. Chabournéite from Monte Arsiccio Mine (Apuan Alps, Tuscany, Italy): Occurrence and Crystal Structure. In Proceedings of the 20th General Meeting of the IMA (IMA2010), Budapest, Hungary, 21–27 August 2010.

86. Artioli, G.; Kvick, A. Synchrotron X-ray Rietveld study of perlialite, the natural counterpart of synthetic zeolite-L. Sample: Data collected with synchrotron radiation. Eur. J. Mineral. 1990, 2, 749–759.

87. Bindi, L.; Nestola, F.; Makovicky, E.; Guastoni, A.; De Battisti, L. Tl-bearing sulfoarsalts from the Lengenbach quarry, Binnt Valley, Switzerland: Philrothite, TlAsS2. Mineral. Mag. 2014, 78, 1–9.

88. Radtke, A.S.; Dickson, F.W.; Slack, J.F.; Brown, K.L. Christieite, a new thallium mineral from the Carlin gold deposit, Nevada. Am. Mineral. 1977, 62, 421–425.

89. Babić-Žumić, T.; Karanović, L.; Poleti, D. Crystal structure of picotopalite, TlFeSi from Allchar, FYR Macedonia. Acta Chim. Slov. 2008, 55, 801–809.

90. Engel, P.; Gostojčić, M.; Nowacki, W. The crystal structure of pierrotite, Tl(2Sb,As)5S6. Z. Krist.-Cryst. Mater. 1983, 165, 209–215.

91. Harris, D.C.; Roberts, A.C.; Laflamme, J.H.G.; Stanley, C.J. Criddelite, TI2As2Sb2O6, a new gold-bearing mineral from Hemlo, Ontario, Canada. Mineral. Mag. 1988, 52, 691–697.

92. Miyawaki, R.; Hatert, F.; Pasero, M.; Mills, J.J. IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 55. Mineral. Mag. 2020, 84, 486.

93. Palache, C.; Berman, H.; Frondel, C. The System of Mineralogy, Volume I: Elements, Sulfides, Sulfoarsalts, Oxides, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 1944; Volume 183, pp. 484–485.
94. Orlandi, P.; Biagioni, C.; Moëlo, Y.; Bonaccorsi, E.; Paar, W.H. Lead-antimony sulfosalts from Tuscany (Italy). XIII. Protocloburneè, -TlPb(SbAs)2(SbAs)2S7, from the Monte Arsiccio mine: Occurrence, crystal structure and relationship with cloburneè. Can. Mineral. 2013, 51, 475–494.

Hålenius, U.; Alinder, C. Occurrence and formation of cuprostibite in a Zn–Pb–Ag mineralized siliceous dolomite at Långsjön, central Sweden. Neues Jahrb. Mineral. Monatsh. 1982, 5, 201–215.

95. Bindi, L.; Nestola, F.; Guastoni, A.; Peruzzo, L.; Ecker, M.; Carampin, R. Raberite, TlAg3AsSbSi5, a new Tl-bearing sulfosalt from Lengenbach quarry, Binn valley, Switzerland: Description and crystal structure. Mineral. Mag. 2012, 76, 1153–1163.

96. Nestola, F.; Guastoni, L.; Bindi, L.; Secco, L. Dunegrüne, Tl–Pb–As–Sb–S, a new thallium sulfosalt from Lengenbach quarry, Binntal, Switzerland. Mineral. Mag. 2009, 73, 1027–1032.

97. Laurent, Y.; Picot, P.; Pierrottet, R.; Ivanov, T. La Raguinite, TlFeS2, une nouvelle espèce minérale et le problème de l’allcharite. Bull. Bull. Minéralogique. 1969, 92, 38–48. (In French with English abstract)

98. Hålenius, U.; Hatert, F. IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 40. Eur. J. Mineral. 2017, 29, 1084.

99. Bindi, L.; Biagioni, C.; Raber, T.; Roth, P.; Nestola, F. Ralphpchannonite, AgZnTlAsS6, a new mineral of the routhierite isotypic series from Lengenbach quarry, Binntal, Switzerland. Mineral. Mag. 2015, 79, 1089–1098.

100. Balic-Zunic, T.; Moëlo, Y.; Loncar, Z.; Micheelsen, H. Dorallcharite, Tl0.8K0.2Fe3(SO4)2(OH)6, a new member of the jarosite-alunite family. Eur. J. Mineral. 1994, 6, 255–263.

101. Berlepsch, P.; Armbruster, T.; Topa, D. Structural and chemical variations in rathite, Pb8Pb4(As,Sb)2S6, three members of the anion-omission series of ‘sarto rites’ from the Lengenbach quarry at Binntal, Wallis, Switzerland: Occurrence, crystal structure, and emphasis on the role of iron in sulfosalts. Schweiz. Mineral. Petrogr. Mitteilungen. 1982, 52, 3–4.

102. Basu, K.; Bortnikov, N.S.; Moekherjee, A.; Mozgova, N.N.; Tsepin, A.I.; Vyal’sov, L.N. Rare minerals from Rajpura-Dariba, Rajasthan, India. IV: A new Pb–Ag–Tl–Sb sulfosalt, rayite. Neues Jahrb. Mineral. Monatsch. 1983, 7, 296–304.

103. Topa, D.; Kolitsch, U.; Makovicky, E.; Stanley, C. Écrinsite, AgTl3Pb4As11Sb9S36, a new thallium-rich homotype of baumhauerite from the Jas Roux sulfosalt deposit, Parc National des Écrins, Hautes-Alpes, France. Eur. J. Mineral. 2017, 29, 689–700.

104. Balic-Zunic, T.; Scavničar, S.; Engel, P. The crystal structure of rekilit, Tl6Sb3As2Sb9S36, a new sulfosalt from Lengenbach quarry, Binntal (Switzerland). Eur. J. Mineral. 1992, 4, 1265–1270.

105. Meisser, N.; Roth, P.; Nestola, F.; Biagioni, C.; Bindi, L.; Robyr, M. Richardsolloyite, TlPbAsS6, a new sulfosalt from Lengenbach quarry, Binntal, Switzerland. Eur. J. Mineral. 2017, 29, 679–688.

106. Dickson, F.W.; Radtke, A.S.; Peterson, J.A. Ellisite, TlAsS6, a new mineral from the Carlin gold deposit, Nevada, and associated sulfide and sulfosalts minerals. Am. Mineral. 1979, 64, 701–770.

107. Graeser, S.; Schwaner, H.; Wulf, R.; Edenharder, A. Ermiggliëte (TlSnAsS6), a new mineral from Lengenbach, Binntal (Switzerland): Description and crystal structure determination based on data from synchrotron radiation. Schweiz. Mineral. Petrogr. Mitteilungen. 1992, 5, 259–260.

108. Biagioni, C.; Bonaccorsi, E.; Moëlo, Y.; Orlandi, P. Mercury-arsenic sulfosalts from Apuan Alps (Tuscany, Italy). II. Routhierite, (CuAsAg)2(Hg)Tl3(As,Sb)2S7, from Monte Arsiccio mine: Occurrence and crystal structure. Eur. J. Mineral. 2014, 26, 163–170.

109. Topa, D.; Makovicky, E.; Stöger, B.; Stanley, C. Heptasartorite, TlPbAsSbS8, enneasartorite, TlPbAsSbS6, and hendekasarto- rite, TlPb2AsSbS12, three minerals of the anion-omission series of ‘sartonites’ from the Lengenbach quarry at Binntal, Wallis, Switzerland. Eur. J. Mineral. 2017, 29, 701–712.

110. Johan, Z.; Kvaek, M.; Picot, P. La sabatierite, a nouveau seléniure de cuivre et de thallium hunters. Bull. Mineral. 1978, 101, 557–560.

111. Siidra, O.I.; Vergasova, L.P.; Kretser, Y.L.; Polekhovsky, Y.S.; Filatov, S.K.; Krivovichev, S.V. Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka Peninsula, Russia. III: Evdokimovite, Tl(VO)3(SO4)(H2O). Mineral. Mag. 2014, 78, 1711–1724.

112. Turchkova, A.G.; Pekov, I.V.; Yalphusk, V.O.; Sidorov, E.G.; Britvin, S.N. Manganese mineralization in fumarole deposits at the Tolbachik volcano (Kamchatka, Russia). IX Intern. Sympos. Miner. Divers. Res. Preserv. Sofia 2017, 9.

113. Wilson, J.R.; Sen Gupta, P.K.; Robinson, P.D.; Criddle, A.J. Fangite, TlAsS6, a new thallium arsenic sulfosalt from the Mercur Au deposit, Utah, and revised optical data for galiluite. Am. Mineral. 1993, 78, 1096–1103.

114. Graeser, S.; Berlepsch, P.; Makovicky, E.; Balic-Zunic, T. Sicherite, TlAg3AsSbSi5, a new sulfosalt from Lengenbach (Binntal, Switzerland): Description and structure determination. Mineral. Mag. 2001, 86, 1087–1093.

115. Biagioni, C.; Bindi, L.; Nestola, F.; Cannon, R.; Roth, P.; Raber, T. Ferrostalderite, CuFe2TlAs2S6, a new mineral from Lengenbach, Switzerland: Occurrence, crystal structure, and emphasis on the role of iron in sulfosalts. Mineral. Mag. 2014, 80, 175–186.

116. Engel, P.; Nowacki, W. The crystal structure of simonite, TI2HgAs3S6. Z. Krist.-Cryst. Mater. 1982, 161, 159–166.

117. Kasatkin, A.; Nestola, F.; Agakhayev, A.A.; Škoda, R.; Karpenko, V.Y.; Tsyganko, M.; Pläišl, J. Vorontsovite, (HgCu)2TlAs2S12, and Ferrovorontsovite, (FeCu)2TlAs2S12: The Ti- and Fe-analogues of gallhaite from the Vorontsovskoe Gold Deposit, Northern Urals, Russia. Minerals 2018, 8, 185.

118. Williams, P.A.; Hatert, F.; Pasero, M.; Mills, S.J. IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 20. Mineral. Mag. 2014, 78(3), 553–557.
122. Pekov, I.V.; Zubkova, N.V.; Yapaskurt, V.O.; Britvin, S.N.; Vigasina, M.F.; Sidorov, E.G.; Pushcharovsky, D.Y. New zinc and potassium chlorides from fumaroles of the Tolbachik volcano, Kamchatka, Russia: Mineral data and crystal chemistry. II. Flinte-ite, KZnCl6. *Eur. J. Mineral.* 2015, 27, 581–588.

123. Graesser, S.; Schwander, H.; Wulf, R. Stalderite TiCu (Zn,Fe,Hg):As:Se — A new mineral related to routhierite: Description and crystal structure determination. *Schweiz. Mineral. Petrogr. Mitt.* 1995, 75, 337–345.

124. Graesser, S.; Tapa, D.; Balic-Žunić, T.; Makovicky, E. Gabrielite, Ti4AgCu2As2S6, a new species of thallium sulfosalt from Lengenbach, Binntal, Switzerland. *Can. Mineral.* 2006, 44, 135–140.

125. Demartin, F.; Gramaccioni, C.M.; Camporinini, I. Steroposite, TiBiCl6, a new thallium bismuth chloride from La Fossa crater, Vulcano, Aeolian islands, Italy. *Can. Mineral.* 2009, 47, 375–380.

126. Kasatkin, A.V.; Makovicky, E.; Plášil, J.; Škoda, R.; Chukanov, N.V.; Stepanov, S.Y.; Nestola, F. Gladkovskyite, Mn2TlAs3S6, a new thallium sulfosalt from the Vorontsovskoe gold deposit, Northern Urals, Russia. *J. Geosci.* 2019, 64, 207–218.

127. Rudašhevskiy, N.S. Thalifensite, the thallium analog of djerfishtierite. *Int. Geol. Rev.* 1982, 24, 116–122.

128. Miyawaki, R.; Haterf, F.; Pasero, M.; Mills, S.J. IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 56. *Mineral. Mag.* 2020, 84, 623.

129. Marumo, F.; Nowacki, W. The crystal structure of hatchite, PbTlAgAs2S5. *Z. Krist.-Cryst. Mater.* 1967, 125, 249–265.

130. Bindi, L.; Roberts, A.C. Thunderbayite, TiAgAsSb3S6, a new gold-bearing mineral from the Hemlo gold deposit, Marathon, Ontario, Canada. *Mineral. Mag.* 2020, 84, 805–812.

131. Kasatkin, A.V.; Makovicky, E.; Plášil, J.; Škoda, R.; Agakhanov, A.A.; Nestola, F. Tsygankoite, Mn2TlAs3S6, a new thallium sulfosalt from the Vorontsovskoe gold deposit, Northern Urals, Russia. *Minerals* 2018, 8, 218.

132. Makovicky, E.; Tapa, D. Twinnite, Pb0.8Tl0.1Sb1.3As0.8S4, the OD character and the question of its polytypism. *Z. Krist.-Cryst. Mater.* 2012, 227, 468–475.

133. Harris, D.C.; Roberts, A.C.; Criddle, A.J. Vaughanite (THgSb4S7), a new mineral from the Hemlo gold deposit, Hemlo, Ontario, Canada. *Mineral. Mag.* 1989, 53, 79–83.

134. Takáuchi, Y.; Ghose, S.; Nowacki, W. The crystal structure of hutchinsonite, (Tl,Pb)2As5S9. *Z. Krist.-Cryst. Mater.* 1965, 121, 321–348.

135. Balic-Žunić, T.; Makovicky, E. Contributions to the crystal chemistry of thallium sulphosalts I: The O-D nature of imhofite. *Neues Jahrb. Mineral. Abh.* 1993, 165, 317–330.

136. Ohmara, M.; Nowacki, W. The crystal structure of vrbaite, Hg3Tl4As8Sb2S20. *Z. Krist.-Cryst. Mater.* 1971, 134, 360–380.

137. Hålenius, U.; Hatert, F.; Pasero, M.; Mills, S.J. IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 33. *Mineral. Mag.* 2016, 80(6), 1136.

138. Takéuchi, Y.; Ohmara, M. The crystal structure of wallisite, Pb2TlCuAs3S7, the Cu analogue of hatchite PbTlAgAs2S5. *Z. Krist.-Cryst. Mater.* 1968, 127, 349–365.

139. Dickson, F.W.; Radtke, A.S. Weissbergite, TlSbS2, a new mineral from the Carlin gold deposit, Nevada. *Am. Mineral.* 1978, 63, 720–724.

140. Čvetković, L.; Boronikhin, V.A.; Pavićević, M.K.; Krajnović, D.; Gržetić, I.; Libowitzky, E.; Tillmanns, E. Jankovičite, Tl3SbAs(Sb3S6), a new Tl-sulfosalt from Allchar, Macedonia. *Miner. Petrol.* 1995, 53, 125–131.

141. Johan, Z.; Udubasa, G.; Zemann, J. “Monsmedite”, a discredited potassium thallium sulphate mineral from Baia Sprie and its identity with voltaite: The state of the art. *Neues Jahrb. Mineral. Abh.* 2009, 186, 63–66.

142. Bourgoin, V.; Favreau, G.; Bouilliard, J.C. Jas Roux: Un gisement exceptionnel à minéraux de thallium. *Cah. Micromon.* 2011, 33, 2–91.

143. Makreski, P.; Šteflov, S.; Pejov, L.; Jovanovski, G. Minerals from Macedonia. XXIX. Experimental and theoretical study of the vibrational spectra of extremely rare Tl-sulfate mineral from Allchar–Doralicharit. *Vib. Spectrosc.* 2017, 89, 85–91.

144. Kovác-Pálffy, P.; Muske, J.; Földváric, M.; Kónyac, M.; Homonnay, T.; Ntaflos, T.; Papp, G.; Király, E.; Sajó, I.; Szilágyi, V.; Bozsó, G. Detailed study of “monsmedite” specimens from the original (1963) find, Baia Sprie, Baia Mare ore district (Romania). *Carpathian J. Earth Environ.* Sci. 2011, 6, 321–330.

145. Lin, J.; Yin, M.; Wang, J.; Liu, J.; Tsang, D.C.; Wang, Y.; Chen, Y. Geochemical fractionation of thallium in contaminated soils near a large-scale Hg-Tl mining area. *Chemosphere* 2020, 239, 124775.

146. Long, D.; Fegan, N.E.; McKee, J.D.; Lyons, W.B.; Hines, M.E.; Macumber, P.G. Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrrell, Victoria, Australia. *Chem. Geol.* 1992, 96, 183–202.

147. Smeaton, C.M.; Fryer, B.J.; Weisener, C.G. Intracellular precipitation of Pb by *Shewanella putrefaciens* CN32 during the reductive dissolution of Pb-jarosite. *Environ. Sci. Technol.* 2009, 43, 8091–8096.

148. Smith, A.M.L.; Dubbin, W.E.; Wright, K.; Hudson-Edwards, K.A. Dissolution of lead- and lead-arsenic-jarosites at pH 2 and 8 and 20 degrees C: Insights from batch experiments. *Chem. Geol.* 2006, 229, 344–361.

149. Weisener, C.G.; Babechuk, M.G.; Fryer, B.J.; Maundor, C. Microbial dissolution of silver jarosite: Examining its trace metal behaviour in reduced environments. *Geomicrobiol. J.* 2008, 25, 415–424.

150. Bingjie, O.; Xiancai, L.; Huan, L.; Juan, L.; Tingting, Z.; Xiangyu, Z.; Jianjun, L.; Rucheng, W. Reduction of jarosite by *Shewanella oneidensis* MR-1 and secondary mineralization. *Geochim. Cosmochim. Acta* 2014, 124, 54–71.

151. Bao, Y.; Guo, C.; Lu, G.; Yi, X.; Wang, H.; Dang, Z. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan mine. *Sci. Total Environ.* 2018, 616, 647–657.
152. Gao, K.; Jiang, M.; Guo, C.; Zeng, Y.; Fan, C.; Zhang, J.; Reinfelder, J.R.; Huang, W.; Lu, G.; Dang, Z. Reductive dissolution of jarosite by a sulfate reducing bacterial community: Secondary mineralization and microflora development. Sci. Total Environ. 2019, 690, 1100–1109.

153. Yang, Y.; Chen, S.; Yang, D.; Zhang, W.; Wang, H.; Zeng, R. Anaerobic reductive bio-dissolution of jarosites by Acidithiobacillus ferrooxidans using hydrogen as electron donor. Sci. Total Environ. 2019, 686, 869–877.

154. Casiot, C.; Egal, M.; Bruneel, O.; Verma, N.; Parmentier, M.; Elbaz-Poulichet, F. Predominance of aqueous Tl(I) species in the river system downstream from the abandoned Carnoulès mine (Southern France). Environ. Sci. Technol. 2011, 45, 2056–2064.

155. Singer, P.C.; Stumm, W. Acidic mine drainage: The rate-determining step. Science 1970, 167, 1121–1123.

156. Bigham, J.M.; Nordstrom, D.K. Iron and aluminum hydroxysulfates from acid sulfate waters. Rev. Mineral. Geochem. 2000, 40, 351–403.

157. Gu, X.; Heaney, P.J.; Reis, F.D.A.; Brantley, S.L. Deep abiotic weathering of pyrite. Science 2020, 370(6515), 1-8.