Simple approach for the histomolecular diagnosis of central nervous system gliomas based on 2021 World Health Organization Classification

Maher Kurdi, Rana H Moshref, Yousef Katib, Eyad Faizo, Ahmed A Najjar, Basem Bahakeem, Ahmed K Bamaga

Abstract

The classification of central nervous system (CNS) glioma went through a sequence of developments, between 2006 and 2021, started with only histological approach then has been aided with a major emphasis on molecular signatures in the 4th and 5th editions of the World Health Organization (WHO). The recent reformation in the 5th edition of the WHO classification has focused more on the molecularly defined entities with better characterized natural histories as well as new tumor types and subtypes in the adult and pediatric populations. These new subclassified entities have been incorporated in the 5th edition after the continuous exploration of new genomic, epigenomic and transcriptomic discovery. Indeed,
the current guidelines of 2021 WHO classification of CNS tumors and European Association of Neuro-Oncology (EANO) exploited the molecular signatures in the diagnostic approach of CNS gliomas. Our current review presents a practical diagnostic approach for diffuse CNS gliomas and circumscribed astrocytomas using histomolecular criteria adopted by the recent WHO classification. We also describe the treatment strategies for these tumors based on EANO guidelines.

Key Words: Central Nervous System glioma; Classification; World Health Organization 2021; European Association of Neuro-Oncology guidelines

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Central nervous system (CNS) gliomas went through a sequence of development since 2006. The guidelines of 2021 World Health Organization (WHO) classification of CNS tumors and European Association of Neuro-Oncology (EANO) utilized molecular signatures in the diagnostic approach for CNS gliomas. We herein presents a practical diagnostic approach and the treatment strategies for diffuse CNS gliomas and circumscribed astrocytomas using histomolecular criteria based on the WHO classification.

Citation: Kurdi M, Moshref RH, Katib Y, Faizo E, Najjar AA, Bahakeem B, Bamaga AK. Simple approach for the histomolecular diagnosis of central nervous system gliomas based on 2021 World Health Organization Classification. *World J Clin Oncol* 2022; 13(7): 567-576

URL: https://www.wjgnet.com/2218-4333/full/v13/i7/567.htm

DOI: https://dx.doi.org/10.5306/wjco.v13.i7.567

INTRODUCTION

Brain tumors are defined as masses derived from various cells originating from the brain (primary tumors) or distally (secondary tumors, most commonly lung, breast, renal, prostate, and skin cancers) that have undergone metastatic spread[1]. The most prevalent primary intracranial tumors are gliomas, with 80% of the population, and World Health Organization (WHO) grade 4 astrocytoma (previously named glioblastoma) is present in nearly one-half of the patients with astrocytoma, with a 95% mortality rate in a 5-year follow-up period irrespective of age and gender[2,3,4]. Gliomas usually present with headache, nausea and vomiting, blurred vision, focal neurological deficit, alteration in sensation, and other manifestations of high intracranial pressure that warrant investigation by neuroimaging, preferably magnetic resonance imaging (MRI) of the brain[5]. In imaging, cystic change, multicentric enhancement, and hemorrhage are commonly observed[6]. Therefore, histopathological examination is considered the gold standard method for diagnosing and grading the tumors.

According to the WHO classification, central nervous system (CNS) gliomas can be classified based on their histological and molecular features[1]. The classification initially includes diffuse and non-diffuse gliomas, and it has undergone significant changes since its establishment to the 4th edition in 2016, aided by molecular signatures[2]. The recent 5th edition of the WHO classification has replaced the entity with type and variant with (subtype) group. In addition, the WHO classification has adopted Arabic numerical over the former Roman numerical grading system for grading brain gliomas for easier reading and to avoid confusion when interpreting pathology reports[7]. However, using the Roman numerical grading system is still considered acceptable. Some of the most important changes in the 5th edition involve the classification of gliomas, differentiating gliomas that occur primarily in adults from those that occur mainly in children[8]. Gliomas are traditionally subclassified into three major categories: diffuse gliomas, pediatric diffuse low- and high-grade gliomas, and circumscribed astrocytic gliomas (Figure 1). In addition, glioneuronal tumors, neuronal tumors, and ependymomas were also included in the classification as separate types[7,8].

Further propositions of the 2021 WHO classification of CNS tumors was adapted by the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy - Not Officially WHO (cIMPACT-NOW), published in 2020/2021. Moreover, they included various molecular genomic studies, including methylation profiling, isocitrate dehydrogenase (IDH1-2) codon mutation, and alpha-thalassemia-mental retardation X-chromosome (ATRX) mutation. This genomic profiling has affected such tumors' management and treatment modalities[9]. Moreover, three major subtypes of diffuse gliomas have been emphasized, based on molecular genomic signatures, including IDH-mutant oligodendrogliaoma with 1p/19q codeletion, IDH-mutant astrocytoma, and IDH-wild-type glioblastoma [8].
Figure 1 A simple consensus approach to diagnose diffuse central nervous system gliomas using immunohistochemistry and molecular profiling, aided with the treatment strategy.

DOI: 10.5306/wjco.v13.i7.567 Copyright © The Author(s) 2022.
In this review, we presented a simple and practical diagnostic approach using histomolecular characteristics to define diffuse CNS gliomas accurately. We also associated the newly published 5th edition of the 2021 WHO classification with the current and updated European Association of Neuro-Oncology (EANO) treatment guidelines.

DISCUSSION

Before 2016, the classification of CNS tumors was established based on histological findings and immunohistochemical tests. Between 2016 and 2021, molecular biomarkers were incorporated into the diagnostic criteria to differentiate CNS tumors into clustered groups[7,9]. The current 5th edition of the 2021 WHO classification does not recommend a specific assessment method to identify molecular alterations unless a distinct tumor subtype is in the differential diagnosis. The cIMPACT-NOW has emphasized the confirmatory diagnosis of astrocytoma with the presence of IDH mutation or wild type, ATRX loss, TP53 mutation, and lack of 1p/1q codeletion[7,10]. In comparison, diffuse gliomas (classified as WHO grades 2 and 3) are either IDH wild type or IDH1 mutant[11,12]. As a key feature of oligodendroglioma, it, by definition, must harbor an IDH mutation and 1p/19q codeletion.

If IDH1R132H is immunonegative in astrocytic or oligodendrogial tumors of WHO grades 2 and 3 or in patients aged less than 55 years, IDH1 (132 codon) and/or IDH2 (172 codon) Deoxyribonucleic acid (DNA) sequencing should be performed using the Sanger method or polymerase chain reaction (PCR) [13,14]. Otherwise, IDH1 immunonegative in patients aged greater than 55 years is likely to be IDH-wild type with an incidence rate of < 1% and acts like a high-grade glioma. Meanwhile, IDH1/2 DNA sequencing is preferable for detecting non-canonial mutations[15]. A non-canonical IDH mutation and a loss of ATRX mutation and O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation[7] have been associated with a family history of cancer and astrocytoma of the infratentorial region being identified at 80% of the time in multicentric astrocytoma[16].

ATRX mutation should also be tested in all gliomas, whether IDH1/2 is a mutant or wild type. ATRX can be tested by immunohistochemistry (IHC). In oligodendroglioma, positive ATRX, negative TP53, and TERT mutations in IDH-mutant tumors are prevalent; nonetheless, 1p19q codeletion using fluorescence in situ hybridization (FISH) should be tested. However, false-positive results are expected to be less than 4% in most cases[17,18]. In both astrocytomas and oligodendrogliomas, the presence of homozygous deletion of CDKN2A/B at 9p21 is associated with poor prognosis in such groups, leading to decreased overall survival (OS)[11]. CDKN2A/B gene mutation can be tested through next-generation sequencing or the Sanger method if the tumor is IDH-mutant and 1p19q is not codeleted[19] (Figure 1). Loss of p16 expression (a marker of CDKN2A/B) is associated with poor prognosis in IDH-mutant tumors and those with 1p/19q codeletion[20]. CDKN2A/B deletion is detected in both the wild-type and mutant IDH; however, it has been related to a reduction in OS in wild-type tumors[21-23].

Glioblastomas are routinely diagnosed based on histological findings of microvascular proliferation (MVP) and/or necrosis, and are molecularly defined as either IDH-mutant (10%) or IDH-wild-type (90%) tumors with significantly different biology and prognoses[8]. The terminology of IDH-mutant glioblastoma was omitted from the cIMPACT as they are biologically different from IDH-wild-type astrocytomas and were defined as IDH-mutant WHO grade 4 astrocytomas. Glioblastoma is referred to as IDH-wild-type glioblastoma or astrocytoma. There are no longer IDH-mutant glioblastomas. Another new terminology is an astrocytic glioma with IDH wild type, but with the presence of a histone 3 (H3) mutation, classified as a WHO grade 4 astrocytoma[9,24] (Figure 1). In glioblastoma, Telomerase reverse transcriptase (TERT) promoter mutations, Epidermal growth factor receptor (EGFR) mutations, and/or loss of chromosome 10 with gain of chromosome 7 are all prevalent[25]. If one of these features is detected, glioblastoma should be immediately diagnosed regardless of the presence of necrosis and/or MVP[26]. The presence of the H3F3A G34 histone mutation with chromosomal 1q gain distinguishes pediatric diffuse hemispheric glioma from adult diffuse hemispheric glioma. EGFR, TERT, CDKN2A/B, and Ch10-Ch7+ are usually identified in adults; however, they should be tested for H3F3A gene mutation[27,28]. In comparison, the 2021 WHO classification has included IDH wild type and H3F3A in diffuse high-grade pediatric astrocytoma (most commonly from the pons in more than two-thirds of the cases, followed by the spinal cord and thalamus)[29].

H3-K27 is another commonly reported histone mutation in midline gliomas, ependymomas, and gangliogliomas[30-32]. Altered mitogen activated protein kinase (MAPK) pathway and H3-K27-mutant tumors are associated with diffuse low-grade midline gliomas and are associated with prolonged OS of more than 10 years[33]. The astroblastoma tumor is a new entity, MNT-altered, with better OS compared to C11Orf95-RELA and BRAF-positive astrocytic tumors[34]. Four other categories of diffuse astrocytomas were described in the 5th edition of the WHO classification, which included angiocentric gliomas, polymorphous low-grade neuroepithelial tumors of the young, and diffuse low-grade gliomas (MAP altered) (Figure 1). Infantile gliomas have a special genetic signature with fusion genes of MET, ROS1, ALK, or NTRK1/2/3[35,36].
Guidance to treatment modalities
A positive prognostic factors in diffuse gliomas include young patients, good Karnofsky performance status (KPS), total resection, and MGMT promoter methylation[37]. Surgical resection is considered the cornerstone of therapy, with a 5-year survival rate (80%) followed by watchful waiting in low-grade gliomas. However, total resection may result in neurological deficits; thus, awake craniotomy and imaging modalities, such as tractography, may be utilized on a case-by-case basis[38,39]. Postoperatively, MRI can detect residuals, and perfusion studies may detect progression[40]. Therefore, the care plan must be through a multidisciplinary approach with neurooncologists, neuropathologists, and neurosurgeons on board to discuss management modalities.

For low-grade gliomas, such as IDH-mutant and 1p/19q co-deleted oligodendroglioma (WHO grade 2), careful, a watchful waiting strategy is an option, particularly for totally resected tumors or younger patients (< 40 years) with incomplete tumor resection. However, this would come at a cost: the patient’s life, neurological impairments development, and a substantial increase in histological grading over time [41,42]. As a result, disease progression must be monitored with neuroimaging every 2-3 months. According to the National Comprehensive Cancer Network guidelines, patients should be followed up every 2 months with an MRI brain scan, then every 3 months if they have been off therapy for a year [40]. Progression may occur after 4-8 weeks, necessitating a brain MRI. Perfusion studies and spectroscopy can help to differentiate between progression and pseudoprogression, and, in doubt, a multidisciplinary team should be counseled.

Adjuvant radiotherapy
Post-surgical resection radiotherapy is the best therapeutic effect to prevent recurrence or delay the progression of diffuse gliomas (WHO grades 2-4)[43]. The role of radiotherapy is to maintain the control of tumor progression, but it leads to neurotoxicity if used in high doses. Thus, the most used doses are 50-60 Gy administered 3-5 times postoperatively[44]. Choi et al[45] found that patients with WHO grade 4 astrocytoma who received 50-60 Gy lived an average of 9 months longer than those who received 45 Gy for 3 months.

Radiotherapy is recommended for all WHO grade 2 gliomas with incomplete resection or for patients aged > 40 years and all WHO grade 3-4 gliomas. Early radiotherapy has been shown to prolong progression-free survival but not OS[46]. Whole-brain radiation therapy is usually not preferable in clinical practice because it is associated with cognitive effects[45]. A follow-up MRI 3-4 weeks after radiotherapy completion is typically performed to monitor disease progression[40]. The use of chemotherapy without radiation remains under investigation but might be an option if radiotherapy is not possible, for example, in patients with large tumors or elderly patients who might not be candidates for radiation.

Chemotherapy
Another adjunct treatment modality for diffuse gliomas is pharmacological treatment, mainly for patients with high-grade gliomas. The most used drug is the alkylating agent temozolomide (TMZ) for its immunomodulation and contribution to tumor-acquiring cell death. TMZ was first discovered in 1987 and has been widely applied as an effective first-line chemotherapeutic agent for treating patients with glioblastoma since the Food and Drug Administration has approved its efficacy in 2005[47,48]. Other drugs used as adjuvants in treating gliomas include nitrosourea, which includes lomustine, carmustine, nimustine, and fotemustine. However, this class of drugs may cause pronounced low platelet count when administered long-term. As a result, patients with oligodendroglioma frequently receive a procarbazine, vincristine, and lomustine (PCV) regimen, as dose-related side effects are more evident in other nitrosourea classes, such as gastrointestinal disorders, decreased cell count, and ototoxicity[48]. Anti-vascular endothelial growth factor antibody (bevacizumab) has also been used as an adjuvant treatment, but it’s clear benefit is uncertain[49].

Recent update in glioma treatment
In the new 2021 WHO, cIMPACT-NOW, and EANO guidelines, therapeutic options are targeted at the genomic types of tumors[7,9]. As total surgical resection remains the standard treatment for all CNS gliomas, radiotherapy is still considered the first-line targeted therapy after surgical resection for all WHO grade 2 and 3 oligodendrogliomas or astrocytomas, as mentioned previously[50-52]. In patients with IDH-mutant oligodendroglioma (WHO grade 2 or 3) with 1p19q codeletion, aged > 40 years or with no totally resected tumor, and associated with comorbidities, residuals, or recurrence > 15 cm[3], radiotherapy followed by PCV chemotherapy regimen is recommended[51]. According to the two trials (EORTC 26951 and RTOG 9402), the combination of radiotherapy and PCV regimen showed a considerable benefit[52,53].

Radiotherapy followed by chemotheraphy is recommended for all patients with IDH-mutant WHO grade 2, 3, or 4 astrocytomas, particularly in patients aged > 40 years, with incompletely resected tumors, and associated with neurological deficits[51]. TMZ is often preferred over PCV owing to its safety and ease of administration. However, radiotherapy followed by PCV constitutes the current standard of care for patients with IDH-mutant astrocytomas (WHO grade 2)[51]. The RTOG 9802 trial...
reported a major prolongation of OS with the addition of PCV to radiotherapy, from 7 to 13 years in patients with WHO grade 2 gliomas who had undergone a subtotal resection or in those aged ≥ 40 years [54]. To prevent functional deficits, diffusion tensor imaging and functional MRI can be utilized [55]. In recurrence, repeat surgery with radiation and chemotherapy (TMZ and nitrosourea) can be considered equally efficient in treatment [9]. For IDH-mutant WHO grade 3 astrocytoma, the EORTC 26053 trial of radiotherapy alone, with concomitant or maintenance TMZ, showed a significant prolongation of OS in patients receiving radiotherapy followed by maintenance TMZ [56]. Therefore, TMZ chemotherapy is considered as the standard treatment for tumour progression after surgery and radiotherapy for most patients with IDH-mutant gliomas (WHO grade 2 or 3).

Glioblastoma (IDH-wild-type grade 4 astrocytoma) is best managed by gross total resection followed by radiotherapy [51]. In non-feasible or nearly total resection cases with age ≥ 70 years, radiotherapy (60 Gy in 30 fractions) or over fractionated radiotherapy (40 Gy in 15 fractions) is preferable to increase OS [9]. Higher survival rates are recorded in younger age groups < 65 years at diagnosis, with a median of up to 40 weeks. However, TERT mutation, gain of chromosome 7, and loss of chromosome 10 are associated with poor prognosis [57]. Neurocognitive outcomes can be affected by overfractionated radiotherapy. In patients with good KPS and aged < 70 years, a combination of radiotherapy and chemotherapy (TMZ) is the standard therapy [58]. Combined TMZ with lomustine in early diagnosis may increase OS, particularly in MGMT-methylated glioblastomas [59-61]. Hypofractionated radiotherapy is preferable for patients aged ≥ 70 years. The standard-of-care treatment for patients with recurrent glioblastoma has not yet been clarified; treatment is selected based on the prior therapy, patient’s age, KPS score, MGMT promoter methylation status, and disease progression. Therefore, surgery and radiotherapy should be considered. Nitrosourea regimens, TMZ, with consideration of bevacizumab are options for pharmacotherapy but have an unconfirmed effect on OS. In patients who did not benefit from adjuvant radiotherapy or had an early symptomatic progression, a second surgery could be considered 6 months after the initial surgery aiming to increase OS [62].

There is a limitation of surgical management in H3-K27M-mutant diffuse midline glioma (WHO grade 4) because of its eloquent structures, including the pituitary, thalamus, midbrain, pons, and medulla, and it has a 5-year survival period of < 1%. Radiotherapy is often used but is associated with a poor prognosis. However, in hemispheric glioma, chemoradiotherapy drugs can be used because most of these tumors are MGMT-methylated [63].

CONCLUSION

In this review, we presented a simple diagnostic approach to differentiate diffuse CNS gliomas into molecularly defined subtypes using histomolecular features, based on the 5th edition of 2021 WHO classification of CNS tumors. This is to emphasize that molecular profiling is important in the diagnostic classification and grading of diffuse CNS gliomas. We also defined the role of different treatment modalities of surgery, radiotherapy, and pharmacotherapy in the treatment of these molecular defined gliomas. In fact, our review intends to serve as a simple reference for the diagnosis of CNS gliomas for healthcare providers.

FOOTNOTES

Author contributions: Kurdi M, Moshref H R edited and wrote the paper; Katib Y, Faizo E, Najjar A, Bahakeem B, and Bamaga AK helped in writing the paper; All authors have read and approved the manuscript.

Conflict-of-interest statement: All the authors declare no conflict of interests for this article.

Open-Access: This is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Saudi Arabia

ORCID number: Maher Kurdi 0000-0002-8979-3849; Rana H Moshref 0000-0001-7151-295X.

S-Editor: Liu JH
L-Editor: A
P-Editor: Liu JH
REFERENCES

1. Butowski NA. Epidemiology and diagnosis of brain tumors. *Continuum (Minneap Minn)* 2015; 21: 301-313 [PMID: 25837897] DOI: 10.1212/01.CONEU.0000464171.50638.fc

2. Ostrom QT, Baehner LF, Davis FG, Delong JR, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Werners MR, Barnholtz-Sloan JS. The epidemiology of glioma in adults: a "state of the science" review. *Neuro Oncol* 2014; 16: 896-913 [PMID: 24842956] DOI: 10.1093/neuroonc/nou087

3. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. *Neuro Oncol* 2019; 21: v1-v100 [PMID: 31675094] DOI: 10.1093/neuroonc/noz150

4. Jung E, Alfonso J, Osswald M, Monyer H, Wick W, Winkler F. Emerging intersections between neuroscience and glioma biology. *Nat Neurosci* 2019; 22: 1951-1960 [PMID: 31719671] DOI: 10.1038/s41593-019-0540-y

5. Wesseling P, Capper D. WHO 2016 Classification of gliomas. *Neuropathol Appl Neurobiol* 2018; 44: 139-150 [PMID: 28815663] DOI: 10.1111/nan.12432

6. Ly KL, Wen PY, Huang RY. Imaging of Central Nervous System Tumors Based on the 2016 World Health Organization Classification. *Neurol Clin* 2020; 38: 95-113 [PMID: 31761063] DOI: 10.1016/j.ncl.2019.08.004

7. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. *Neuro Oncol* 2021; 23: 1221-1251 [PMID: 34185076] DOI: 10.1093/noajnl/noa106

8. Wen PY, Packer RJ. The 2021 WHO Classification of Tumors of the Central Nervous System: clinical implications. *Neuro Oncol* 2021; 23: 1215-1217 [PMID: 34185090] DOI: 10.1093/noajnl/noa120

9. Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, Bendszus M, Balana C, Chinot O, Driven L, French P, Hegi ME, Jakola AS, Pouls M, Papadopoulos N, Bartel D, Solin J, Hainfellner JA, Park JW, Ohba S, Sala F, Ghimenton C, Scarpa A. Diffuse gliomas in patients aged 55 years or over: A suggestion for IDH mutation testing. *Neurol Clin Oncol* 2021; 18: 170-186 [PMID: 35293629] DOI: 10.1016/j.jncl.2021-02-00447-z

10. Tanboon J, Williams EA, Louis DN. The Diagnostic Use of Immunohistochemical Surrogates for Signature Molecular Genetic Alterations in Gliomas. *J Neuropathol Exp Neurol* 2016; 75: 4-18 [PMID: 26671986] DOI: 10.1093/jnen/njv009

11. Reinhardt A, Stichel D, Schrimpf D, Sahm F, Korshunov A, Reuss DE, Koelsche C, Huang K, Wefers AK, Hövelstädte H, Sill M, Gramatzki D, Felsberg J, Reifenberger G, Koch A, Thonmae LW, Becker A, Hans VH, Prinz M, Staszewski O, Acker T, Dohmen H, Hartmann C, Mueller W, Tuffa Fama S, Paulus W, Hell K, Brokinkel B, Schittenhelm J, Monoranu CM, Kessler AF, Loehr M, Basler R, Deckert M, Mavrin C, Kohlhof P, Hower J, Orla T, Rodríguez FI, Giannini C, Nageswararao AA, Tabori U, Nunes NM, Weller M, Pohl U, Jaunmuktane Z, Brasier D, Herbert A, Häggi D, Matt D, Pfister SM, Wick W. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. *Eur Neurol Clin* 2021; 2021: 170-186 [PMID: 35293629] DOI: 10.1016/j.jncl.2021-02-00447-z

12. Ostrom QT, Osswald M, Monyer H, Wick W, Herold-Mende C, Jones DTW, von Deimling A, Ellison DW. The 2021 WHO Classification of Tumors of the Central Nervous System: next biologically driven steps. *Neuro Oncol* 2021; 23: 170-186 [PMID: 35293629] DOI: 10.1016/j.jncl.2021-02-00447-z

13. van den Bent MJ, Chang SM. Grade II and III Oligodendroglioma and Astrocytoma. *Neurol Clin* 2018; 36: 467-484 [PMID: 30070066] DOI: 10.1016/j.ncl.2018.04.005

14. Kim M, Jung SY, Park JE, Jo Y, Park SY, Nam SJ, Kim JH, Kim HS. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. *Eur Radiol* 2020; 30: 2142-2151 [PMID: 31828414] DOI: 10.1007/s00330-019-06548-3

15. Barresi V, Vezzoni E, Simbolo M, Cappellen R, Ricciardi GC, Calabria F, Cancetta M, Mazzarotto R, Bonetti B, Pinna G, Sala F, Ghimienti C, Scarpa A. Diffuse gliomas in patients aged 55 years or over: A suggestion for IDH mutation testing. *Neurology 2020; 40: 68-74 [PMID: 31758617] DOI: 10.1111/neu.12668

16. Poetsch L, Bronnimann C, Loiseau H, Frénèl JS, Siegfried A, Seizer R, Gauchotte G, Cappellen D, Carpentier C, Figarella-Branger D, Eimer S, Meyronet D, Ducray F. Open-source network. Characteristics of IDH-mutant gliomas with non-canonical IDH mutation. *J Neuro Oncol* 2021; 151: 279-286 [PMID: 33205355] DOI: 10.1007/s12027-020-03662-x

17. Ohba S, Kurohara K, Yamada S, Abe M, Hiyose Y. Correlation between IDH, ATRX, and TERT promoter mutations in glioma. *Brain Tumor Pathol* 2020; 37: 33-40 [PMID: 32227259] DOI: 10.1007/s10014-020-00360-4

18. Ball MK, Kollmeyer TM, Praske CE, McKenna ML, Giannini C, Raghubhanath A, Jentsfo ME, Lachance DH, Kipp BR, Jenkins RB, Iida CM. Frequency of false-positive FISH 1p/19q codeletion in adult diffuse astrocytic gliomas. *Neuro Oncol Adv* 2020; 2: vdaa109 [PMID: 33205043] DOI: 10.1093/noajnl/vdaa109

19. Kong Y, Sharma RB, Ly S, Stamatieris RE, Jepsdale WM, Alonso LC. CDKN2A/B T2D Genome-Wide Association Study Risk SNPs Impact Locus Gene Expression and Proliferation in Human Islets. Diabetes 2018; 67: 872-884 [PMID: 29432240] DOI: 10.2337/db17-1055

20. Park JW, Kang J, Lim KY, Kim H, Kim SI, Won JK, Park CK, Park SH. The prognostic significance of p16 expression pattern in diffuse gliomas. *J Pathol Transl Med* 2021; 55: 102-111 [PMID: 33348944] DOI: 10.4132/jptm.2020.10.22

21. Ma S, Rudra S, Campan Jl, Dahiyta S, Dunn GP, Johanns T, Goldstein M, Kim AH, Huang J. Prognostic impact of CDKN2A/B deletion, TERT mutation, and EGFR amplification on histological and molecular IDH-wildtype glioblastoma. *Neuro Oncol Adv* 2020; 2: vdaa126 [PMID: 33323955] DOI: 10.1093/noajnl/vdaa126

22. Okajima K, Ohta Y. Diagnostic imaging of high-grade astrocytoma: heterogeneity of clinical manifestation, image characteristics, and histopathological findings. *Brain Nerve 2012; 64: 1151-1157 [PMID: 23037603]

23. López GV, Perry A, Harding B, Li M, Santi M. CDKN2A/B Loss Is Associated with Anaplastic Transformation in a Case of NTRK2 Fusion-positive Pilocytic Astrocytoma. *Neuropathol Appl Neurobiol* 2019; 45: 174-179 [PMID: 29804288] DOI: 10.1016/j.ncl.2018.04.005
Kurdi M et al. CNS gliomas based on 2021 WHO classification

 DOI: 10.1111/nan.12503

Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, Kleinschmidt-DeMasters BK, Perry A, Reifenberger G, Stupp R, von Deimling A, Weller M. eIMPaCT-NOW update 3: recommended diagnostic criteria for "Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV". Acta Neuropathol 2018; 136: 805-810. [PMID: 30259105 DOI: 10.1007/s00401-018-1913-0]

Stitch SE, Ebrahimim A, Reuss D, Schirmpf D, Ono T, Shirahata M, Reifenberger G, Weller M, Hänggi D, Wick W, Herold-Mende C. Westphal M, Brandner S, Pfister SM, Capper D, Sahn F, von Deimling A. Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol 2018; 136: 793-803. [PMID: 30187121 DOI: 10.1007/s00401-018-1905-0]

Campos B, Olsen LR, Urup T, Poulsen HS. A comprehensive profile of recurrent glioblastoma. Oncogene 2016; 35: 5819-5825. [PMID: 27041580 DOI: 10.1038/onc.2016.85]

Sturm D, Bender S, Jones DT, Lichter P, grill JS, Becker O, Hawkins C, Majewski J, Jones C, Costello JF, Iavarone A, Aldape K, Brennan CW, Jabado N, Pfister SM. Paediatric and adult glioblastoma: multi-epigenetic and epigenetic epiphenomena. Nat Rev Cancer 2014; 14: 92-107. [PMID: 24457416 DOI: 10.1038/nrc3655]

Capper D, Jones DTW, Still M, Hovestadt V, Schirmpf D, Sturm D, Koelsche C, Sahn F, Deimling A, Gilleron M, Soltes M, von Deimling A, Korshunov A, von Deimling A, Pfister SM. DNA methylation-based classification of central nervous system tumours. Nature 2018; 555: 469-474. [PMID: 29539639 DOI: 10.1038/nature26600]

Louis DN, Giannini C, Capper D, Paulus W, Figarella-Branger D, Lopes MB, Batchelor TT, Cairncross JG, van den Bent M, Wick W, Wesseling P. eIMPaCT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol 2018; 135: 639-642. [PMID: 29497819 DOI: 10.1007/s00401-018-1826-y]

Hochart A, Escande F, Rocourt N, Grill J, Kouri-Pick V, Beaujot J, Meignan S, Vinchon M, Mauveigne C, Leblond P. Long survival in a child with a mutated K27M-H3.3 pilocytic astrocytoma. Acta Neuropathol Commun 2015; 2: 439-443. [PMID: 25990890 DOI: 10.1002/annc.1814]

Johnson A, Severson E, Gay L, Vergiliio JA, Elvin J, Suh J, Daniel S, Covert M, Frampton GM, Hsu S, Lesser G, Stogner-Rogers SS, Underwood K, Mott RT, Rusz SZ, Stanke JJ, Dahiyi S, Sun J, Reddy P, Chalmers MR, Erlich R, Chudnovsky Y, Fabrizio D, Schrock AB, All W, Miller Y, Stephens PJ, Ross J, Crawford JW, Ramkissoon SH, Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures. Oncologist 2017; 22: 1478-1490. [PMID: 2891253. [PMID: 28912531 DOI: 10.1634/theoncologist.2017-0242]

Kleinschmidt-DeMasters BK, Donson A, Foreman NK, Dorr K. H3 K27M Mutation in Gangliogliomas can be Associated with Poor Prognosis. Brain Pathol 2017; 27: 846-850. [PMID: 28373587 DOI: 10.1111/bpa.12455]

Zhang J, Wu G, Miller CP, Tatevosian RG, Dalton JD, Tang B, Oriswe M, Punchihewa C, Parker M, Qaddoumi I, Boop FA, Lu C, Kandoth C, Ding L, Lee R, Huetter R, Chen X, Hedlund E, Nagahawatte P, Ruch M, Boggs K, Cheng J, Becksfort J, Ma J, Song G, Li Y, Wei L, Wang J, Shurtles LF, Easton J, Zhao D, Fulton RS, Fulton LL, Dooling DJ, Vadodaria B, Mulder HL, Tang C, Ochoa K, Mullighan CG, Gajjar A, Kriwacki R, Sheer D, Gilbertson RJ, Mardis E, Wilson RK, Downing JR, Baker SE, Ellison DW; St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project. Whole-genome sequencing identifies inherited predispositions in pediatric low-grade gliomas. Nat Genet 2013; 45: 602-612. [PMID: 23583981 DOI: 10.1038/ng.2611]

Lehman NL, Usabalea A, Lin SJ, Allen SJ, Tran QT, Mobley BC, Lendon RE, Schniederdman MJ, Georgeus MM, Couce M, Dulai MS, Raisanen JM, Al Abbadi M, Palmer CA, Hattab EM, Orr BA. Genomic analysis demonstrates that histologically-defined astroblastomas are molecularly heterogeneous and that tumors with MN1 rearrangement exhibit the most favorable prognosis. Acta Neuropathol Commun 2019; 7: 42. [PMID: 30876453 DOI: 10.1186/s40478-019-0689-3]

Guerreiro Stocklin AS, Ryall S, Fukuda K, Zaporotchk M, Lassalette A, Li C, Bridge T, Kim B, Arnoldo A, Kowalski PE, Zhong Y, Johnson M, Ramani AK, Siddaway R, Noble LF, de Antonellis P, Lam D, Chen C, Pingouie B, Finlay JL, Coven SL, de Prada I, Perez-Somarriba M, Faris GC, Grottoz MA, Rusching SH, Suevaria D, Zapatka M, Krakowski L, Garcia Ariza M, Cruz O, Morales La Madra A, Solano P, Terashima K, Nakano Y, Ichimura K, Nagane M, Sakamoto H, Gil-da-Costa MJ, Silva R, Johnston DL, Michaud J, Wilson B, van Landeghem FKH, Oviedo A, MeNeely PD, Crooks B, Friez I, Zhouka H, N associated with Poor Prognosis. Acta Neuropathol Commun 2019; 7: 42. [PMID: 30876453 DOI: 10.1186/s40478-019-0689-3]

Pathania M, De Jay N, Maestro N, Harutyunyan AS, Nitsarika J, Pahlavan P, Henderson S, Mikael LG, Richard-Londt A, Zhang Y, Costa JR, Hébert S, Khazaee S, Ibrahim HS, Herrero J, Ricchio A, Albrecht S, Ketteler R, Brandner S, Kleinman CL, Jabado N, Salomoni P. H3.3mut Cooperator with Trp53 Loss and PDGFRα Gain in Mouse Embryonic Neural Progenitor Cells to Induce High-Grade Gliomas. Cancer Cell 2017; 32: 684-700. [PMID: 29107533 DOI: 10.1016/j.ccell.2017.09.014]
AA, Viapiano MS, Chin LS, Corona RJ, Hatanpaa KJ, Snuderl M, Xing C, Brem S, Richardson TE. Molecular Correlates of concurrent and adjuvant temozolomide in anaplastic glioma without 1p/19q codeletion. *ACTR-11. Second interim and 1st molecular analysis of the eortc randomized phase iii intergroup catnon trial on treatment of adult astrocytic and oligodendroglial gliomas. (EANO) Task Force on Gliomas. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglioma. Eur J Cancer 2011; 47: 1527-1535 [PMID: 21740284 DOI: 10.1016/j.ejca.2010.10.025].

Keime-Guibert F, Anderlini A, Obeidat K, Comi S, van den Bent MJ, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, Henriksson R, Le Rhun E, Balana Ballester LY, Primdahl D, Esquenazi Y, Bhatia A. IDH-Mutant Low-grade Glioma: Advances in Molecular Imaging and Tumor Progression in High-grade Gliomas. *PLOS One 2019; 14: e0213905 [PMID: 30883579 DOI: 10.1371/journal.pone.0213905].

Hau E, Hsu H, Clark C, Graham PH, Koh ES, L McDonald K. The evolving roles and controversies of radiotherapy in the treatment of glioblastoma. *J Med Radiat Sci 2016; 63: 114-123 [PMID: 27350891 DOI: 10.1002/jmr.rs.149].

Levin VA, Ulhm JH, Jaeckle KA, Choucar A, Flynn PJ, Yung WKA, Prados MD, Bruner JM, Chang SM, Kyriasis AP, Gleason MJ, Hess KR. Phase III randomized study of postradiotherapy chemotherapy with alpha-difluoromethylornithine-paclitaxel-procarbazine, N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosurea, vincristine (DFMO-PCV) versus PCV for glioblastoma multiforme. *Clin Cancer Res 2006; 12: 11982-11989 [PMID: 17429048 DOI: 10.1158/1078-0432.CCR-05-2280].

An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor receptor and EGFRVIII in glioblastoma: signaling pathways and targeted therapies. *Oncogene 2018; 37: 1561-1575 [PMID: 29321659 DOI: 10.1038/s41388-017-0445-7].

Schiff D, Van den Bent M, Vogelbaum MA, Wick W, Miller CR, Taphoorn M, Pope W, Brown PD, Platten M, Jalali R, Armstrong T, Wen PY. Recent developments and future directions in adult lower-grade gliomas: Society for Neuro-Oncology (SNO) and European Association of Neuro-Oncology (EANO) consensus. *Neuro Oncol 2019; 21: 837-853 [PMID: 30753579 DOI: 10.1093/neuonc/noz033].

van den Bent MJ, Arends MJ, van der Kommen H, Barlocco S, van der Maaten K, Noltes E, de Witte O, van der Scheer M, van den Bent MJ et al. Radiation Necrosis, Pseudoprogression, Pseudoresponse, and Tumor Recurrence: Imaging Challenges for the Treatment of Gliomas. *Contrast Media Mol Imaging 2018; 2018: 6828396 [PMID: 30627060 DOI: 10.1007/s11912-018-28396-5].

Karachi A, Dastmalchian F, Mitchell DA, Rahman M. Temozolomide for immunomodulation in the treatment of glioblastoma. *Neuro Oncol 2018; 20: 1566-1572 [PMID: 29733389 DOI: 10.1093/neuonc/noy072].

Weller M, van den Bent M, Tomn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, Henriksson R, Le Rhun E, Balana C, Choucar O, Bendszus M, Reinjévelde JC, Dhermain F, French P, Marosi C, Watts C, Oberl I, Pilkington G, Baumert BG, Taphoorn MJ, Hagi M, Westphal M, Reifenberger G, Soffietti R, Wick W, European Association for Neuro-Oncology (EANO) Task Force on Gliomas. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial glioma. *Lancet Oncol 2017; 18: e315-e329 [PMID: 28483413 DOI: 10.1016/S1470-2045(17)33194-8].

Wick W, Roth P, Hartmann C, Hau P, Nakamura M, Stockhammer F, Sabel MC, Wick A, Koeppe S, Ketter R, Vajkoczy P, Eyupoglu I, Kalf R, Pietsch T, Hapgood C, Gallikis N, Schmidt-Graf F, Bamberg M, Reifenberger G, Platten M, von Deimling A, Meisner C, Wiestler O, Weller M, Neurooncology Working Group (NOA) of the German Cancer Society. Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. *Neuro Oncol 2016; 18: 1529-1537 [PMID: 27370396 DOI: 10.1093/neo/now133].

Dono A, Ballester LY, Prindahl D, Esquenazi Y, Bhatia A. IDH-Mutant Low-grade Glioma: Advances in Molecular Diagnosis, Management, and Future Directions. *Curr Oncol Rep 2021; 23: 20 [PMID: 33492489 DOI: 10.1007/s11912-020-01006-6].

Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR, Barger GR, Coons S, Ricci P, Bullard D, Brown PD, Stelzer K, Brachman D, Suh JH, Schulz CJ, Bahary JP, Fisher BJ, Kim H, Murtha AD, Bell EH, Won M, Mehta MP, Curran WJ Jr. Radiation plus Procarbazine, CCNU, and Vincristine in Low-grade Glioma. *N Engl J Med 2016; 374: 1344-1355 [PMID: 27052026 DOI: 10.1056/NEJMoa1509253].

Krivosheyda D, Prabhoo SS, Weinberg JS, Sawaya R. Technical principles in glioma surgery and preoperative considerations. *J Neurosurg 2016; 130: 243-252 [PMID: 27317446 DOI: 10.3171/2016.4.JNS15217].

van den Bent MJ, Arends MJ, Averbuch-Heller S, Gouy J, Rutten A, Ballester LY, Primdahl D, O'Neill A, Ketter R, Weller M, Pfisterer M, Correa A, Hartmann C, Meisner C, Rampling R, Ketter R, Vajkoczy P, Taylor WR, Brem S, Richardson TE. Molecular Correlates of Long Survival in IDH-Wildtype Glioblastoma Cohorts. *J Neuropathol Exp Neurol 2020; 79: 843-854 [PMID: 32647886].
Kurdi M et al. CNS gliomas based on 2021 WHO classification

DOI: 10.1093/jnen/nlaa059

58 Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 2020; 70: 299-312 [PMID: 32478924 DOI: 10.3322/caac.21615]

59 Kosti A, de Araujo PR, Li WQ, Guardia GDA, Chiou J, Yi C, Ray D, Meliso F, Li YM, Delambre T, Qiao M, Burns SS, Lorbeer FK, Georgi F, Flosbach M, Klinnert S, Jeniseit A, Lei X, Sandolav CR, Ha K, Zheng H, Pandey R, Gruslova A, Gupta YK, Brenner A, Kokovay E, Hughes TR, Morris QD, Galante PAF, Tiziani S, Penalva LOF. The RNA-binding protein SERBP1 functions as a novel oncogenic factor in glioblastoma by bridging cancer metabolism and epigenetic regulation. Genome Biol 2020; 21: 195 [PMID: 32762776 DOI: 10.1186/s13059-020-02115-y]

60 Erel-Akbaba G, Carvalho LA, Tian T, Zinter M, Akbaba H, Obeid PJ, Chiocca EA, Weisleder R, Kantarci AG, Tannous BA. Radiation-Induced Targeted Nanoparticle-Based Gene Delivery for Brain Tumor Therapy. ACS Nano 2019; 13: 4028-4040 [PMID: 30916923 DOI: 10.1021/acsnano.8b08177]

61 Byron SA, Tran NL, Halperin RF, Phillips JJ, Kuhn JG, de Groot JF, Colman H, Ligun KL, Wen PY, Cloughesy TF, Mellinghoff IK, Butowsk NA, Taylor JW, Clarke JL, Chang SM, Berger MS, Molinaro AM, Maggiora GM, Peng S, Nasser S, Liang WS, Trent JM, Berens ME, Carpsten JD, Craig DW, Prados MD. Prospective Feasibility Trial for Genomics-Informed Treatment in Recurrent and Progressive Glioblastoma. Clin Cancer Res 2018; 24: 295-305 [PMID: 29074604 DOI: 10.1158/1078-0432.CCR-17-0963]

62 Suchorska B, Weller M, Tabatabai G, Senft C, Hau P, Sabel MC, Herrlinger U, Ketter R, Schlegel U, Marosi C, Reifenberger G, Wick W, Tonn JC, Wirsching HG. Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma-results from the DIRECTOR trial. Neuro Oncol 2016; 18: 549-556 [PMID: 26823503 DOI: 10.1093/neuroonc/nov326]

63 Nikolaev A, Fiveash JB, Yang ES. Combined Targeting of Mutant p53 and Jumonji Family Histone Demethylase Augments Therapeutic Efficacy of Radiation in H3K27M DIPG. Int J Mol Sci 2020; 21 [PMID: 31940975 DOI: 10.3390/ijms21020490]
