Graphistrength© C100 MultiWalled Carbon Nanotubes (MWCNT): thirteen-week inhalation toxicity study in rats with 13- and 52-week recovery periods combined with comet and micronucleus assays

Jean-François Régnier¹, Daniela Pothmann-Krings², Sophie Simar³, Eva Dony⁴, Jean-Loïc Le Net⁵ and Julien Beausoleil⁶

¹Arkema France, Département Toxicologie et Environnement, 420 rue d’Estienne d’Orves, 92705 Colombes, France
²Harlan Laboratories Ltd, Zelgliweg 1, 4452 Itingen, Switzerland
³Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019 Lille, Cedex, France
⁴Harlan Cytotest Cell Research GmbH, In den Leppsteinwiesen 19, 64380 Rossdorf, Germany
⁵Le Net Pathology Consulting, 18 rue Henry Dunant, 37400 Amboise, France
⁶Arkema France, Groupement de Recherches de Lacq (GRL), 64170 Lacq, France.

E-mail: Jean-francois.regnier@arkema.com

Abstract. Graphistrength© C100 provides superior electrical and mechanical properties for various applications and is one of the industrial MWCNT referenced in the OECD sponsorship program for the safety testing of nanomaterials. Graphistrength© C100 is formed of MWCNT (ca. 12 walls, outer mean diameter ca. 12 nm, length ca. 1 µm) agglomerated in particles with a granulometry centered on 400 µm. A general feature of MWCNT after inhalation or intratracheal exposures is the induction of an inflammatory reaction in the lungs sometimes associated with local genotoxic effects. Most of the in vitro and in vivo genotoxicity data available on Graphistrength© C100 are negative. However, a weak DNA damage activity in the in vitro and in vivo FPG-modified Comet assays and a weak clastogenic effect in the in vitro micronucleus test were reported. After investigating different parameters for the aerosol generation, male and female Wistar rats were exposed by nose-only inhalation (6h/day, 5d/week) to target concentrations of 0.05, 0.25 and 5.0 mg/m³ air of a respirable aerosol (MMAD < 3 µm) and sacrificed immediately after 4 and 13 weeks of exposure and 13 and 52 weeks of recovery after the 13-week exposure. Clinical, biological and histological evaluations were performed according to the OECD TG 413. Broncho-alveolar lavage fluid (BALF) was collected and analysed for cytokines and inflammatory parameters. Immediately after 13 weeks of exposure, chromosomal aberrations in the bone marrow cells of males and females were evaluated by the micronucleus test (OECD TG 474) and DNA damage in the lung, kidney and liver cells of males were assessed by both the standard and the human 8-oxoguanine DNA N-glycosylase 1 (hOGG1)-modified comet assay (OECD TG 489). Concentration-related deposition of black particles (MWCNT) was observed in lungs. At all sacrifice periods, an inflammatory lung reaction was observed in rats exposed to 5.0 mg/m³ associated with changes in the differential white blood cells counts. The lung inflammation was characterized by changes in the cytological, biochemical and cytokine parameters of the BALF, an increase of the lung weight, an interstitial...
inflammation mainly around the alveolar ducts at the bronchiole-alveolar junction and a cell hypertrophy/hyperplasia in the terminal and respiratory bronchioles. The slight changes in BALF parameters observed at 0.25 mg/m3 recovered after the 13-week treatment-free period and were not associated with any of the histological changes observed in lungs at 5.0 mg/m3. Signs of lung clearance of the MWCNT were observed at 0.05 and 0.25 mg/m3. After a one year treatment-free period, the inflammatory lung reaction was slight and of similar intensity that at the earlier sacrifice periods. Additional findings were minimal/slight bronchiolar/alveolar cell hypertrophy/hyperplasia and focally extensive alveolar septal fibrosis. No other pathological change was observed, nor was there any brain translocation via the olfactory bulb. The microscopic observations of the pleura were unremarkable. Neither increase in the number of micronucleated polychromatic erythrocytes nor increase in percent DNA damage were observed at any concentration. In conclusion, a lung inflammation characteristic of an overload with insoluble particles was observed after a 13-week inhalation exposure to 5.0 mg/m3 of Graphistrength© C100. A No-Observed Adverse Effect Concentration (NOAEC) of 0.25 mg/m3 was established for the repeated-dose toxicity and Graphistrength© C100 appears of low concern in term of local and systemic genotoxicity.

1. Introduction

Graphistrength© C100 provides superior electrical and mechanical properties for various applications. Graphistrength© C100 is formed of entangled MWCNT agglomerated in particles with a granulometry centered on 400 µm and contains a residual amount (<0.23 %) of small agglomerates (<15 µm) [1]. These small particles are comparable to those observed in the atmosphere of our high safety laboratory dedicated to scientific experiments with MWCNT [2], indicating a possible inhalation exposure to these small particles in case of an insufficient workers protection.

A general feature of MWCNT after inhalation or intratracheal exposures is the induction of an inflammatory reaction in the lungs sometimes associated with local genotoxic effects [3]. Therefore, conducting an inhalation subchronic toxicity study combined to genotoxicity assays was judged to be a key feature in the safety assessment of Graphistrength© C100.

An aerosol generation procedure was developed [4] in order to perform a valid study which fulfils the requirement of the inhalation OECD test guideline no. 413 [5]. The micronisation process used is an enrichment of the small particle fraction and is allowing the worst case material to be used as expected by the regulatory authorities. Another important criterion was ensuring that the administered aerosol has physico-chemical properties similar to the original material. After a careful evaluation, the defined technical conditions for the generation of respirable aerosols from Graphistrength© C100 were assessed in a 5-day range finding inhalation toxicity study in rats with a 28-day recovery period [4]. Then, a 13-week inhalation toxicity study was performed in rats, including an interim sacrifice after 4 weeks of exposure, 13- and 52-week recovery periods and the evaluation of the pulmonary inflammation parameters. A part of this study have been previously published by the same authors [4], in addition, the results obtained after the 4-week exposure and the 52-week recovery periods are presented in this article for completeness.

There are a number of publications reporting *in vitro* and *in vivo* genotoxicity studies on Graphistrength© C100 [4] under the coded named NM 402 or JRCNM04002a [6]. A weak DNA damage activity was reported in the *in vitro* (C3A and HK-2 cells) [7][8] and the *in vivo* (lung cells) [9] FPG-modified Comet assay. A weak clastogenic effect was observed in the *in vitro* micronucleus test in human lymphocytes [10] and A549 cells [11][12]. On the other hand, negative results were also reported using the same *in vitro* and *in vivo* assays [11][12][13][14].

Therefore, the genotoxic potential of Graphistrength© C100 was evaluated in cells directly in contact, and at a distance in case material was translocated from the lungs. A standard and hOGG1-modified comet assay was performed on the lung, liver and kidney cells of the rats exposed by inhalation for 13 weeks to Graphistrength© C100. The hOGG1-modified comet assay [15] was chosen because it is more specific than the FPG (formamidopyrimidine glycosilase) comet assay for the identification of
oxidative DNA damage. A micronucleus assay was performed on the bone marrow cells of the rats exposed to Graphistrength© C100 in case of translocation from the lungs to the bone marrow.

2. Methods

The study was conducted in an AAALAC-accredited laboratory according to the OECD GLP Principles, the OECD test guidelines no. 413 [5], 474 [16] and 489 [17] and the OECD recommendations [18] for the revision of the tests guidelines applicable to the inhalation toxicity testing of nanomaterials.

2.1. Test materials

Graphistrength© C100 (Figure 1) is formed of tightly bound spherical, ovoid or irregular shaped agglomerates (granulometry centred on 400 μm) of entangled MWCNT (diameter ≈ 12 nm, wall number ≈ 12, length ≈ 1 μm, 92% C, 3% Al, 2.7% Fe).

Figure 1. Scanning Electron Microscopic images of Graphistrength© C100

Legend: (A) Magnification: 22 fold. (B) Magnification: 120 fold. (C) Magnification: 10’000 fold.

2.2. Aerosol generation and monitoring

Graphistrength© C100 was ground in a ceramic ball mill for 12 hours under an argon atmosphere to reduce oxidation. The high aerosol concentrations was generated from the milled and sieved Graphistrength© C100 using a SAG 410 Solid Aerosol Generator connected to a micronizing jet mill and a cyclone and two elutriators thereafter (Figure 2). The low and intermediate concentrations were achieved by serial dilution of the high concentration. Aerosol concentrations were determined by gravimetric analysis. The cumulative particle size distribution was determined using Mercer cascade impactors and a Wide Range Particle Spectrometer©.
Figure 2. Aerosol generation and animal exposure

2.3. Physico-chemical characterisations
The original Graphistrength© C100 and samples taken at different steps of the aerosol generation process during the method development and during the inhalation exposure were analyzed for physico-chemical parameters (see Table 2).

2.4. Animal exposure

2.4.1. Graphistrength© C100. Four groups of 35 8-week old male and female Wistar rats were exposed by nose-only inhalation, 6 h/day, 5 d/week for 4 or 13 weeks to a respirable aerosol (MMAD 1.62-2.30 μm) at target concentrations of 0, 0.05, 0.25 and 5.0 mg/m³ air and measured concentrations of 0, 0.06, 0.28 and 4.84 mg/m³.

2.4.2. Positive controls for the genotoxicity studies. For the micronucleus assay, cyclophosphamide monohydrate (CPA, 20 mg/kg) was administered orally 24 h before tissue sampling. For the Comet assay, methyl methanesulfonate (MMS) was administered orally three times at 100 mg/kg bw at approximately 24 h intervals.

2.5. Study design

2.5.1. Repeated dose toxicity. Clinical, biological (haematology, biochemistry and urinalysis), broncho-alveolar lavage (BAL), sperm, oestrus cycle and histopathological examinations were performed according to the OECD TG no. 413 [5]. Sacrifices were performed after 4 and 13 weeks of exposure and after 13- and 52-week treatment-free periods (Table 1). BAL fluid (BALF) was examined for cytological and biochemical parameters and cytokine levels (TNF-α, IL-1α, IL-1β and IL-5). The olfactory bulb was examined microscopically at the end of the 13-week exposure. Microscopic
examinations on the 13- and 52-week recovery rats were limited to the respiratory tracts, pleura, heart and/or aorta.

Table 1. Design of 4/13-week exposure and 13/52-week recovery study

Examinations	4-week interim animals	Main animals	13-week recovery animals	52-week recovery animals
Clinical signs, body weight, food consumption				
Ophthalmology				
Oestrus cycle				
Functional observation battery				
Blood pressure				
Hematology, blood chemistry and urinalysis				
Bronchoalveolar lavage fluid				
Full histopathology				
Respiratory tract histopathology				
Sperm analysis				
Genotoxicity assays				

2.5.2. *Micronucleus test.* Femoral bone marrow was collected from the last 5 males and 5 females of each group of 10 rats, 24 h after the last day of the 13-week exposure to Graphistrength© C100 or the single administration of the positive control. Nucleated cells were separated from the erythrocytes using the method of Romagna [19]. The preparation and the scoring of the slides and the interpretation of the data were performed as recommended by the OECD TG 474 [16].

2.5.3. *Comet assay.* Parts of the lung, kidney and liver were collected from the first 5 males from each group of ten rats sacrificed 24 h after the last day of the 13-week exposure to Graphistrength© C100 or 6 hours after the last treatment with the positive control. The organs were minced using fine scissors in cold mincing buffer. The preparation and the scoring of the slides and the interpretation of the data were performed as recommended by the OECD TG 489 [17].

3. Results

3.1. *Physico-chemical analysis*

Minor changes (Table 2) were noted between the starting material and the ball milled and aerosol samples. For apparent density, surface to volume ratio, and MWCNT length, the changes observed are inherent to the process to generate the aerosol form.
Table 2. Physico-chemical characterization of Graphistrength© C100 before and after aerosol generation

	Graphistrength© C100 original	Graphistrength© C100 12-h ball-milled under Argon	Graphistrength© C100 aerosol^1	
Apparent Density (g/cm³) (mean ± sd) by porosimetry with Hg intrusion	0.106 ± 0.06 (n = 3)^a	0.2, 0.2^b	0.17, 0.18^b	
Elementary organic analysis by calcination	% C	92.0, 91.6	91.1, 90.8	90.2, 90.1
	% H, N, O	< LoD	< LoD	< LoD
Ash content (%) by calcination		8.2 ± 0.0 (n = 3)	nd	nd
Particle Size Distribution (µm) by laser				
D_{10}	223	9.3		
D_{50}	418	27.0	MMAD: 1.62-2.30^2	
D_{90}	655	57.2		
Specific area (m²/g) by BET	225.6	244	242	
Metal Content by lithium tetraborate fusion				
Al (% w/w)	3.0 ± 1.5 (n = 4)	2.9, 3.0	3.0, 3.0	
Fe (% w/w)	2.7 ± 0.6 (n = 4)	2.2, 2.3	2.1, 2.1	
Chemical Surface Analysis by XPS				
C (% w/w)	99.5 ± 0.2 (n = 14)	99.1 ± 0.2 (n = 4)	99.2 ± 0.3 (n = 4)	
O (% w/w)	0.54 ± 0.20 (n = 14)	0.70 ± 0.12 (n = 4)	0.62 ± 0.22 (n = 4)	
N (% w/w)	< 0.2 (n = 14)	< 0.2 (n = 4)	< 0.2 (n = 4)	
Al (% w/w)	< 0.2 (n = 14)	0.17 ± 0.06 (n = 4)	0.13 ± 0.08 (n = 4)	
Fe (% w/w)	< 0.2 (n = 14)	<0.1 (n = 4)	<0.1 (n = 4)	
Diameters by TEM				
External Diameters (nm) (mean ± sd)	12.1 ± 3.5	12.1 ± 3.5	11.8 ± 3.0	
Internal Diameters (nm) (mean ± sd)	4.4 ± 1.5			
Walls number (mean ± sd) by TEM	12 ± 4	12 ± 5	12 ± 4	
Lenght (nm) by TEM				
mean ± sd	1069 ± 1102	713 ± 537	750 ± 623	
D_{50}	708	569	563	
Surface to Volume ratio (m⁻¹)	2.4 · 10⁷	4.9 · 10⁷	4.2 · 10⁷	
Ends and alignment of carbon by TEM Nanotubes (% open tips)	20	nd	25	

^1collected in the inhalation exposure system
^2gravimetric determination

There was no apparent alteration by TEM of the MWCNT structure between the original, milled and aerosolized Graphistrength© C100 (Figure 3).
3.2. In life animal observations
No mortality, specific clinical signs and exposure-related adverse effects on body weight gain, food consumption, FOB parameters, blood pressure, ophthalmoscopic examinations, blood chemistry, estrus cycle and urinalysis parameters were observed.

An increase in relative and absolute blood neutrophil counts and slight decrease of the relative (but not absolute) lymphocyte counts were noted at all sacrifice periods in both sexes of rats exposed to 5.0 mg/m³.

3.3. Post-mortem observations

3.3.1. Semiology. No exposure-related adverse effects were observed on sperm counts, motility and morphology after 13 weeks of exposure and 13 and 52 weeks of recovery.

3.3.2. BALF. Presence of black particles was observed in the BALF of almost all exposed rats, from minimal at 0.05 mg/m³ to severe at 5.0 mg/m³.

At all sacrifice periods, a significant increase in neutrophils and lymphocytes with a concomitant decrease in macrophages were observed in BALF of rats exposed to 5.0 mg/m³ (Figure 4). At 0.25 mg/m³, the effect was slight after 13 weeks of exposure and reversible after 13 and 52 weeks of recovery.

From 4 weeks of exposure, significant changes in biochemical parameters were observed in rats exposed to 5.0 mg/m³ (Figure 4), maximal after 13 weeks of exposure and slightly improved during the
recovery periods. At 0.25 mg/m³, GGT increased after 13 weeks of exposure, fully recovered in males and partially in females.

TNF-α levels were increased at 0.25 and 5.0 mg/m³. Levels decreased after 13 weeks of recovery.

Figure 4. BALF parameters of male and female rats after 4 (A, B) and 13 weeks (C, D) of exposure to Graphistrength© C100
Figure 4 (continued). BALF parameters of male and female rats after 13 (E, F) and 52 (G, H) weeks of recovery

Changes are shown as x-fold differences compared to controls using a logarithmic scaling.Abbreviations: ALP: alkaline phosphatase, GGT: γ-glutamyltransferase, LDH: lactate dehydrogenase.

3.3.3. **Macroscopic findings.** Dark red discoloration of the lung at the 4-week interim sacrifice, and black brown discoloration of the lung and/or greenish foci at the other sacrifice periods were seen in most of the animals exposed to 5.0 mg/m³. Black discoloration was also recorded in the bronchial lymph nodes of most of these animals.

3.3.4. **Organ weights.** Increase of the absolute and relative lung weight, maximal at the 13-week recovery sacrifice, was observed at 5.0 mg/m³ (Figure 5).
3.3.5. Microscopic findings. Deposition of variably-sized and shaped black particles, localized in the lungs, within the alveolar macrophages, were observed in all rats exposed to 0.05 and 0.25 mg/m³ and within tissue macrophages or free within the alveolar lumen in rats exposed to 5.0 mg/m³ (Figure 6A and 6B).

Every time the pleura was unremarkable (Figure 6A and 7A).

Adverse histological changes in the respiratory tract were only observed in rats exposed to 5.0 mg/m³:
- minimal alveolar granulocyte infiltration in lungs (all sacrifice periods) (Figure 6B),
- minimal/moderate intra-alveolar eosinophilic material deposition in lungs, considered to be the result of macrophages membrane cell rupture (Figure 6C),
- minimal/slight interstitial inflammation in lungs (all sacrifice periods) (Figure 6A),
- minimal/slight focal/multifoca/focally extensive alveolar septa fibrosis in lungs (Figure 7B),
- minimal/slight granulomatous fibrosing inflammation in lungs (Figure 7C),
- minimal/slight bronchiolar cell hypertrophy/ hyperplasia in lungs (Figure 7D),
- Moderate/marked cytoplasmic eosinophilic globules (inclusions) in the respiratory and nasal epithelial cells (Figure 7E).

Minimal to marked concentration-related deposition of black particles in cortex/paracortex of the tracheobronchial lymph nodes was observed in rats exposed to 0.25 and 5.0 mg/m³ (Figure 6D and 7F) consistent with continuous drainage of black particles from the lungs.

Specifically, no histological lesions were observed in aorta, heart and olfactory bulb and no deposit of MWCNT aggregate was observed in the liver, kidneys and bone marrow and other organs of the exposed animals.
Figure 6. Histological changes after 13 weeks of exposure to 5.0 mg/m³.

Legend: (A) Presence of black particles within the alveolar macrophages (bleu arrow) and tissue macrophages (yellow arrow) around a blood vessel. The pleura overlying the parenchymal inflammation is unremarkable (green arrow). (B) Presence of black particles within the alveolar macrophages (bleu arrow) and tissue macrophages (red arrow). Note the interstitial inflammation around the alveolar duct with macrophages arranged as a small nodule-like structure (black arrow), forming concentric layers around black particles. (C) Presence of black particles within alveolar macrophages (blue arrow) or free within the alveolar lumen, admixed with the eosinophilic material (black arrow). (D) Accumulation of black particles associated with increased lymphocytes in the cortex/paracortex of the tracheobronchial lymph nodes.
Figure 7. Histological changes 52 weeks after 13 weeks of exposure to 5.0 mg/m³.

Legend: (A) Presence of black particles within the alveolar macrophages (bleu arrow). The pleura overlying the parenchymal inflammation is unremarkable (green arrow). (B) Focally extensive alveolar septal fibrosis (arrows) (C) Focal subpleural granulomatous fibrosing inflammation. Note the presence of cholesterol-like clefts (arrows). (D) Bronchiolar/alveolar cell hypertrophy/hyperplasia (arrows) associated with the presence of intra-alveolar eosinophilic material (E) Eosinophilic globules are observed within nasal epithelial cells (arrow) (F) severe accumulation of black particles in the cortex/paracortex of tracheobronchial lymph nodes in relation to the pulmonary clearance process and the black discoloration observed at necropsy.
3.4. Genotoxicity assays

3.4.1. Comet assay. No increase in the tail intensity (mean of median), in absence and presence of hOGG1 (Table 3), was observed in isolated lung, liver and kidney cells from male rats exposed to Graphistrength© C100 for 13 weeks.

Table 3. Results of the h-OGG1-modified comet assay in the lung, kidney and liver of male rats.

Test groups (n=5/group)	hOGG1	Air control	Graphistrength© C100 (mg/m³)	Positive control¹		
			0.05	0.25	5.0	
LUNG						
% of DNA in tail¹	-	8.8 ± 5.5	3.4 ± 1.5*	8.2 ± 5.1	4.7 ± 3.7	48.7 ± 3.0**
	+	20.2 ± 5.2	16.7 ± 5.7	22.3 ± 11.8	17.9 ± 5.9	79.1 ± 7.9**
Relative ratio of ghost cell²	-	-	1.0	1.2	0.8	0.6**
	+	-	2.1**	2.0**	1.3	1.1
KIDNEYS						
% of DNA in tail¹	-	7.4 ± 4.4	7.5± 4.2	8.2± 4.2	9.7± 3.1	72.5± 5.8**
	+	22.8 ± 7.4	22.4 ± 7.3	23.4 ± 8.4	24.3 ± 8.0	74.0 ± 5.9**
Relative ratio of ghost cell²	-	-	1.6	0.9	1.5	2.8**
	+	-	1.1	1.6*	1.7**	0.6*
LIVER						
% of DNA in tail¹	-	3.8 ± 3.1	3.4 ± 1.6	1.8 ± 1.0	5.5 ± 2.9	71.2 ± 9.1**
	+	11.6 ± 6.4	7.5 ± 1.5	7.7 ± 1.1	9.6 ± 3.0	78.6 ± 3.7**
Relative ratio of ghost cell²	-	-	0.2	0.5	2.8**	4.9**
	+	-	0.5*	0.2**	1.1	1.7**

¹Mean of median ± sd
²Mean value in treated groups/mean control value,
³MMS
⁴/**: Non-parametric Mann-Whitney test significant <0.05 5% (*), <0.01 (**)

3.4.2. Micronucleus assay. No increase in the frequency of micronucleated polychromatic erythrocytes (PCE) (Table 4) was observed in the bone marrow of male and female rats exposed to Graphistrength© C100 for 13 weeks.
Table 4. Results of the micronucleus assay in the bone marrow of male and female rats.

Test groups	Concentration (mg/m³)	PCEs with micronuclei (%)	Range²	PCE per 2000 erythrocytes
MALES				
Air control	0	0.340	2 - 17	1099
	0.05	0.440	5 - 11	1073
Graphistrength© C100	0.25	0.280	2 - 10	1094
	5.00	0.210	3 - 8	1081
Positive control¹	20	0.833*	10 - 26	806
FEMALES				
Air control	0	0.290	3 - 9	1155
	0.05	0.210	1 - 8	1223
Graphistrength© C100	0.25	0.190	1 - 5	1147
	5.00	0.220	2 - 9	1091
Positive control¹	20	0.750**	8 - 28	813

*/**: Non-parametric Mann-Whitney test significant <0.05 (*) or <0.01 (**),
¹CPA, 20 mg/kg
²per 2000 PCEs per animal

4. Discussion and conclusion

This 13-week inhalation toxicity study on MWCNT Graphistrength© C100 was performed after a careful tuning of the conditions for the generation of a respirable aerosol which respect the physicochemical properties of the MWCNT [4]. A concentration-related increase of black inclusions (regarded to be MWCNT) were observed in the alveolar space and the cytoplasm of infiltrated macrophages, indicating an adequate exposure of the lungs.

The signs of systemic effects were limited to an increase in neutrophil counts and a concomitant decrease in lymphocyte counts in blood of rats exposed to 5.0 mg/m³. After 4 and 13 weeks of exposure to 5.0 mg/m³ and 13 and 52 weeks post-exposure, a black brown discoloration of the lung and/or greenish foci were seen in most of the rats. This was associated with an increase of the lung weights maximal at the 13-week recovery sacrifice. The pulmonary reaction to the overload with these insoluble particles was revealed by changes in the cytological, biochemical and cytokine parameters of BALF, slight and reversible at 0.25 mg/m³ but marked at 5.0 mg/m³.

Histological changes were only observed in rats exposed to 5.0 mg/m³. Inflammatory changes in the lungs and eosinophilic globules in the nasal epithelium were observed at all sacrifice periods. After 13 and 52 weeks of recovery, minimal or slight focal collagen deposition was also observed within alveolar septae. Even one year post exposure to 5.0 mg/m³, no microscopic changes were observed in pleura, heart and aorta.
Twenty-four hours after a 13-week inhalation exposure to MWCNT Graphistrength© C100, in the presence of a clear inflammatory reaction in the lungs of the rats exposed to 5.0 mg/m³, no primary and hOGG1-sensitive oxidative DNA damage was detected by the comet assay, either in the lung cells directly in contact with the MWCNT or systemically in the liver and kidney cells and no increase of the micronucleus frequency was detected in the bone marrow.

These results differs significantly to those reported on the thick and long fibre-like MWCNT-7 (70-170 nm x ≈ 5 μm from Hodogaya Chemical) which induced lung carcinomas in rats after a chronic inhalation exposure [20] and is classified by IARC [21] as possibly carcinogenic to humans (Group 2B). In the lung cells of ICR [22] and C57Bl/6 [23] mice instilled intratracheally with MWCNT-7, DNA damage, analysed by the comet assay, increased in a dose-dependent manner. Moreover, DNA oxidative damage, indicated by 8-oxo-7,8-dihydro-2′-deoxyguanosine and heptanone ethenodeoxyribonucleosides occurred in the lungs [22]. Increases of DNA strand breaks in lung and bronchoalveolar lavage (BAL) cells and of micronucleated alveolar type II cells were also observed in mice exposed to aerosolized MWCNT-7 (8.2 ± 1.7 mg/m³), for 4 days (4 h/day) [23]. In contrast, thin and tangled MWCNT (8-15 nm x 0.37 μm from Cheap Tubes) like Graphistrength© C100, did not increase the DNA damages in BAL and lung cells of mice after a single pharyngeal aspiration (1-200 μg/mouse) and an inhalation exposure (17.5±2.0 mg/m³, 4 h/day for 4 days) [23].

Therefore, MWCNT Graphistrength© C100 appeared of low concern in terms of local and systemic genotoxicity even in presence of a pulmonary inflammation. Considering the limited and reversible effects on the BALF parameters and the lack of adverse pathological changes in the lungs of rats exposed to 0.25 mg/m³ up to one year after the end of exposure, this concentration was considered to be the No-observed Adverse Effect Concentration (NOAEC).

References
[1] Le Bihan OLC, Ustache A, Bernard D et al. 2014 Experimental Study of the Aerosolization from a CarbonNanotube Bulk by a Vortex Shaker Journal of Nanomaterials Article ID 193154 [https://www.hindawi.com/journals/jnm/2014/193154/]
[2] R’Mili B, Dutouquet C, Sirven JB et al. 2011 Analysis of particle release using LIBS (laser-induced breakdown spectroscopy) and TEM (transmission electron microscopy) samplers when handling CNT (carbon nanotube) powders Journal of Nanoparticle Research 13(2) 563-77
[3] Pacurari M, Lowe K, Tchounwou PB, Kafouri R 2016 A Review on the Respiratory System Toxicity of Carbon Nanoparticles Int J Environ Res Public Health 13(3) 325
[4] Pothmann D, Simar S, Schuler D, Dony E, Gaering S, Le Net JL, et al. 2015 Lung inflammation and lack of genotoxicity in the comet and micronucleus assays of industrial multiwalled carbon nanotubes Graphistrength© C100 after a 90-day nose-only inhalation exposure of rats Particle Fibre Toxicology 12:21 http://particleandfibretoxicity.biomedcentral.com/articles/10.1186/s12989-015-0096-2
[5] Organisation for Economic Cooperation and Development (OECD) 1998 OECD guidelines for testing of chemicals, Section 4: Health Effects, Test No. 413: Subchronic Inhalation Toxicity: 90-day Study. Paris: Organisation for Economic Cooperation and Development
[6] Rasmussen K, Mast J, De Temmerman P-J, Verleysen E, Waegeneers N, Van Steen J, Pizzolon J-C 2014 Multi-walled Carbon Nanotubes, NM-400, NM-401, NM-402, NM-403: Characterisation and Physico-Chemical Properties. JRC Repository: NM-series of Representative Manufactured Nanomaterials, Report EUR 26796 EN [https://ec.europa.eu/jrc/sites/default/files/mwcnt-online.pdf]
[7] Kermanizadeh A, Gaiser BK, Hutchison GR, Stone V 2012 An in vitro liver model-assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Particle Fibre Toxicology 9:28
[http://particleandfibretoxicology.biomedcentral.com/articles/10.1186/1743-8977-9-28]

[8] Kermanizadeh A, Vranic S, Boland S, Moreau K, Baeza-Squiban A, Gaiser BK, Andrzejczuk LA, Stone V 2013 An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity *BMC Nephrology* **14** 96 [http://www.biomedcentral.com/1471-2369/14/96]

[9] Cao Y, Jacobsen NR, Danielsen PH, Lenz AG, Stoeger T, Loft S, Wallin H, Roursgaard M, Mikkelsen L, Möller P 2014 Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE/-/- mice and cultured endothelial cells *Toxicology Science* **138**(1) 104-16

[10] Tavares AM, Louro H, Antunes S, Quarré S, Simar S, De Temmerman PJ, Verleysen E, Mast J, Jensen KA, Norppa H, Nesslany F, Silva MJ 2014 Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes *Toxicology in vitro* **28**(1) 60-9

[11] Louro H, Pinhão M, Santos J, Tavares A, Vital N, Silva MJ 2016 Evaluation of the cytotoxic and genotoxic effects of benchmark multi-walled carbon nanotubes in relation to their physicochemical properties *Toxicology Letters* **262** 123–134

[12] Norppa H, Siivola K, Fessard V, Tarantini A et al. 2013 WP 5: *In vitro* methods for genotoxicity. Deliverable 5: In vitro testing strategy for nanomaterials including database. Report no.: Grant Agreement n° 2009 21 01. Nanogenotox Joint Action, 2013-05-04 [http://www.nanogenotox.eu/files/PDF/Deliverables/nanogenotox_deliverable_wp5.pdf]. Consulted on 19 October 2016

[13] Fessard V 2013 Nanogenotox Joint Action: Characterisation of manufactured nanomaterials for their clastogenic/aneugenic effects or DNA damage potentials and correlation analysis. Final report, March 2013 [http://www.nanogenotox.eu/files/PDF/DELIVRABLES2/nanogenotox%20deliverable6_bis.pdf]. Consulted on 19 October 2016

[14] Jackson P, Kling K, Jensen KA, Clausen PA, Madsen AM, Wallin H, *et al.* 2015 Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line *Environ Mol Mutagen* **56** 183–203

[15] Smith CC, O’Donovan MR, Martin EA 2006 hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDONIII *Mutagenesis* **21**(3) 185-90

[16] Organisation for Economic Cooperation and Development (OECD) 2014 OECD guidelines for testing of chemicals, Section 4: Health Effects, Test No. 474: Mammalian Erythrocyte Micronucleus Test. Paris: Organisation for Economic Cooperation and Development

[17] Organisation for Economic Cooperation and Development (OECD) 2014 OECD guidelines for testing of chemicals, Section 4: Health Effects, Test No. 489: In Vivo Mammalian Alkaline Comet Assay. Paris: Organisation for Economic Cooperation and Development

[18] Organisation for Economic Cooperation and Development (OECD) 2012 Inhalation toxicity testing: expert meeting on potential revisions to OECD test guidelines and guidance document. Series on the Safety of Manufactured Nanomaterials **35** [ENV/JM/MONO(2012)14].

[19] Romagna F, Staniforth CD 1989 The automated bone marrow micronucleus test *Mutation Research* **213** 91–104.

[20] Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, Matsumoto M, Fukushima S 2016 Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats *Particle and Fibre Toxicology* **13** 53

[21] Grosse Y, Loomis D, Guyton KZ *et al.* 2014 Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes *The Lancet Oncology* **15**(13) 1427-8

[22] Kato T, Totsuka Y, Ishino K, Matsumoto Y, Tada Y, Nakae D, Goto S, Masuda S, Ogo S, Kawanishi M, Yagi T, Matsuda T, Watanabe M, Wakabayashi K 2013 Genotoxicity of multi-walled carbon nanotubes in both *in vitro* and *in vivo* assay systems *Nanotoxicology* **7**(4) 452-61
[23] Catalán J, Siivola KM, Nymark P, Lindberg H, Suhonen S, Järventaus H, Koivisto AJ, Moreno C, Vanhala E, Wolff H, Kling KI, Jensen KA, Savolainen K, Norppa H 2016 *In vitro and in vivo* genotoxic effects of straight versus tangled multi-walled carbon nanotubes *Nanotoxicology* **10(6)** 794-806