Effect of Micronutrients Application on Availability of Zn, Fe and B of Sunflower (*Helianthus annuus* L.) in Inceptisol

C.S. Kumbhar*, B.S. Indulkar and C.B. Wagh

Department of Soil Science and Agriculture Chemistry, College of Agriculture, Latur Vasantrao Naik Marathawada Krishi Vidyapeeth, Parbhani 431402, (M.S.), India

*Corresponding author

A B S T R A C T

The experiment was laid in Randomized Block Design with three replications and eight treatments. The field experiment was conducted in College of Agriculture, Latur farm during the *kharif* season 2016-2017. The result reveled that micronutrient application along with RDF had significant effect on nutrient availability. The availability of Zn, Fe and B was maximum with application of treatment T8 (RDF+20 kg ha⁻¹ ZnSO₄+20 kg ha⁻¹ EDTA FeSO₄+2 kg ha⁻¹ Borax) at different growth stages of sunflower over control. The availability of all the nutrients was initially higher and gradually decreased as crop grows up to harvest. The treatment receiving RDF + three micronutrient combination show significant response in respect with nutrient availability of sunflower than RDF + alone micronutrient combination.

Keywords
Zinc, Iron, Boron, Nutrient availability, Sunflower.

Article Info
Accepted: 07 September 2017
Available Online: 10 November 2017

Introduction

Sunflower (*Helianthus annuus* L.) is an important oilseed crop in India popularly known as “Surajmukhi.” It belongs to the family Compositeae. It is one of the fastest growing oilseed crops in India. In India, sunflower is cultivated over an area of about 5.2 lakh hectares with a production of 3.35 lakh tones and a productivity of 643 kg per hectare (Anon., 2015-16). Sunflower seed contain 45-50 % good quality oil and high amount of protein in cake. The oil contains 64% linolic acid, 20-25% oleic acid and 40-44% protein in cake along with sufficient amount of vitamin A, D and E. Because of high linolic acid contain (64%). It contains sufficient amount of calcium, iron and vitamins like A, D, E and B complex. Application of micronutrients plays a major role in increasing seed setting percentage and influence growth and yield.

Adequate and balanced fertilizer is essential for obtaining better yield. Generally farmers do not apply micronutrients to sunflower crop hence the quality production is low therefore, for wide spread adoption and exploitiation of high yield potential of the crop, it is necessary to work out the influence of micronutrient application *viz.*, Zn, Fe and B on sunflower in inceptisol.
Materials and Methods

The experiment was laid in Randomized Block Design with three replications and eight treatments. The field experiment was conducted in College of Agriculture, Latur farm during the kharif season 2016-2017. This experiment was laid out in randomized block design with 3 replication and 8 treatments. The experimental soil was clayey in texture, slightly alkaline reaction, low in content of available nitrogen, medium in available phosphorous, high in available potassium and medium in zinc, and boron, low in iron. The experiment consist of 8 treatments T_1: RDF, T_2: RDF+20 kg ha$^{-1}$ ZnSO$_4$, T_3: RDF+20 kg ha$^{-1}$ EDTA FeSO$_4$, T_4: RDF+2 kg ha$^{-1}$ Borax, T_5: RDF+20 kg ha$^{-1}$ ZnSO$_4$+20 kg ha$^{-1}$ EDTA FeSO$_4$, T_6: RDF+20 kg ha$^{-1}$ ZnSO$_4$+2 kg ha$^{-1}$ Borax, T_7: +20 kg ha$^{-1}$ EDTA FeSO$_4$+2 kg ha$^{-1}$ Borax, T_8: RDF+20 kg ha$^{-1}$ ZnSO$_4$+20 kg ha$^{-1}$ EDTA FeSO$_4$+2 kg ha$^{-1}$ Borax. Recommended dose of fertilizer (90:45:45) was applied through urea, SSP and MOP and micronutrient through ZnSO$_4$, chelated FeSO$_4$ and Borax was applied treatment wise at the time of sowing. Full dose of phosphorus, potassium and micronutrients along with 50 percent dose of nitrogen of each treatment was applied as basal dose and remaining 50 percent nitrogen dose of each treatment was applied 30 days after sowing. The soil samples were drawn at 35, 55, 75 and harvest stage of sunflower and analyzed for available Zn and Fe by DTPA CaCl$_2$ solution and concentration measured on Atomic Absorption Spectrophotometer AAS-1, at different wavelength for Zn and Fe. Available B by Azomethine method on Spectrophotometer at 420 nm wavelength.

Results and Discussion

Zinc

Periodical availability of zinc at different growth stages of sunflower presented in table 1. From data it is indicated that available Zn was in range of (1.25 to 1.85 ppm) at 35 DAS due to application of RDF along with micronutrients. The maximum availability was found in range of (1.85, 1.82, 1.76 and 0.87 ppm) at 35, 55, 75 and harvest stage of sunflower respectively. While lowest availability of Zn was found (1.25, 1.18, 1.13 and 0.60) at 35, 55, 75 and harvest stage of sunflower respectively. Zinc content in soil maximum in T_6, T_5 and T_7 than T_1. The periodical availability of zinc in soil from 35 days to harvest showed decreasing trend with advancement of time. This decrease in available zinc in soil may be associated with the utilization of available zinc by crop. The requirement of zinc for crop earlier stages was relatively less and increased considerably with advancement of crop which in turns exhausts part of available zinc from soil. This is due to inorganic zinc may absorbed by clay collides and converted in to unavailable zinc. Similar results were also reported by Indulkar and Malewar (1990) reported that the periodical availability of Zn in soil from 30 days to harvest of rice crop showed decreasing trend with advancement of time. This decrease in available zinc in soil may be associated with the utilization of available zinc by crop. Bagal (2006) reported that the available Zn was in rang of 1.127 to 1.920 ppm at 30 DAS due to application of Zinc sulphate. Selvi et al., (2008) studied that the effect of Zn on yield of rainfed castor and observed that the application of 25.0 kg ZnSO$_4$ registered the highest available Zn (1.60 ppm) while the control treatment (NPK alone) recorded the lowest available Zn (0.73 ppm) in the soil.

EDTA Iron (ppm)

Effect of micronutrients application on availability of iron (ppm) in soil at different growth stages of sunflower presented in table 2. From data it is indicated that available Fe was increased from (2.18 to 2.28 ppm) at 35
DAS due to application of RDF along with micronutrients. Similarly significant variation was recorded among treatment T5 and T6 have consistently and significantly increase the availability of Fe content in soil over T1. Application of T8 has recorded significantly higher value (2.28, 2.18, 2.16 and 2.13 ppm) at 35, 55, 75 and harvest stage of sunflower respectively. Iron content in soil maximum in treatment containing RDF + micronutrient combination than alone micronutrient combination along with RDF.

The periodical availability of iron in soil from 35 days to harvest showed decreasing trend with advancement of time. This might be due to use of iron by plant from the part of iron in soil. The availability of micronutrients in soil is highly affected by inorganic ions in soil solution, free oxides of iron and aluminium and fertilizers i.e. FeSO4 applied to soil. As experimental soil dominated by smectite mineral they contain micronutrient cations particularly Zn and Fe. These ions are released from the clay under certain soil conditions and fixed on colloidal surfaces if their concentration in soil solution is increases by micronutrient fertilizer application i.e. FeSO4 and ZnSO4. Similarly reported by Selvi et al., (2008) studied that the effect of Fe on yield of rainfed castor and observed that the application of 50.0 kg FeSO4 ha⁻¹ registered the highest available Fe (4.27 ppm), while the control treatment (NPK alone) recorded the lowest available Fe (2.33 ppm) in the soil. Gebremedhin et al., (2015) reported that the available nutrients kg ha⁻¹ was obtained with FeSO4 @ 0.5 % was applied nutrient management based on soil tested data besides maintaining the available N, P and K of soil, leading to positive nutrient balance in sunflower crop.

Treatments	Available Zinc				
	35 DAS	55 DAS	75 DAS	At harvest	
RDF	1.25	1.18	1.13	0.60	
RDF+20 kg ha⁻¹ZnSO₄	1.43	1.31	1.23	0.73	
RDF+20 kg ha⁻¹EDTA FeSO₄	1.28	1.25	1.18	0.62	
RDF+2 kg ha⁻¹Borax	1.42	1.29	1.20	0.70	
RDF+20 kg ha⁻¹ZnSO₄+20 kg ha⁻¹EDTA FeSO₄	1.72	1.69	1.51	0.76	
RDF+20 kg ha⁻¹ZnSO₄+2 kg ha⁻¹Borax	1.83	1.80	1.60	0.85	
RDF+20 kg ha⁻¹EDTA FeSO₄+2 kg ha⁻¹Borax	1.82	1.76	1.52	0.81	
RDF+20 kg ha⁻¹ZnSO₄+20 kg ha⁻¹EDTA FeSO₄+2 kg ha⁻¹Borax	1.85	1.82	1.76	0.87	
S.E±	0.017	0.018	0.010	0.021	
CD at 5%	0.052	0.053	0.030	0.064	
Table 2 Effect of micronutrients application on availability of Fe (ppm) in soil at different growth stages of sunflower

Treatments	Available Iron	35 DAS	55 DAS	75 DAS	At harvest
RDF	2.18	2.06	2.03	2.01	
RDF+20 kg ha2 ZnSO$_4$	2.12	2.12	2.08	2.06	
RDF+20 kg ha2 EDTA FeSO$_4$	2.12	2.08	2.05	2.04	
RDF+2 kg ha2 Borax	2.13	2.11	2.06	2.02	
RDF+20 kg ha2 ZnSO$_4$+20 kg ha2 EDTA FeSO$_4$	2.14	2.12	2.14	2.07	
RDF+20 kg ha2 ZnSO$_4$+2 kg ha2 Borax	2.16	2.16	2.13	2.09	
RDF+20 kg ha2 EDTA FeSO$_4$+2 kg ha2 Borax	2.20	2.19	2.16	2.12	
RDF+20 kg ha2 ZnSO$_4$+20 kg ha2 EDTA FeSO$_4$+2 kg ha2 Borax	2.28	2.18	2.16	2.13	
S.E±	0.013	0.003	0.008	0.002	
CD at 5%	0.039	0.009	0.025	0.008	

Table 3 Effect of micronutrients application on availability of B (ppm) in soil at different growth stages of sunflower

Treatments	Available Boron	35 DAS	55 DAS	75 DAS	At harvest
RDF	0.373	0.250	0.245	0.213	
RDF+20 kg ha2 ZnSO$_4$	0.400	0.303	0.296	0.240	
RDF+20 kg ha2 EDTA FeSO$_4$	0.387	0.253	0.231	0.220	
RDF+2 kg ha2 Borax	0.390	0.270	0.261	0.220	
RDF+20 kg ha2 ZnSO$_4$+20 kg ha2 EDTA FeSO$_4$	0.457	0.287	0.268	0.270	
RDF+20 kg ha2 ZnSO$_4$+2 kg ha2 Borax	0.460	0.343	0.386	0.270	
RDF+20 kg ha2 EDTA FeSO$_4$+2 kg ha2 Borax	0.460	0.323	0.378	0.270	
RDF+20 kg ha2 ZnSO$_4$+20 kg ha2 EDTA FeSO$_4$+2 kg ha2 Borax	0.473	0.347	0.394	0.300	
S.E±	0.009	0.0103	0.0106	0.0090	
CD at 5%	0.028	0.0313	0.0318	0.0274	

Boron availability (ppm)

Effect of micronutrients application on availability of boron (ppm) in soil at different growth stages of sunflower presented in table 3. Data presented in table reveled that almost all the treatments significantly increase the boron availability over T$_1$ (0.373). The treatment T$_8$ contributes highest B in soil i.e. 0.473 ppm at 35 DAS. Boron contain in soil was increased from 0.373 to 0.473 ppm at 35 DAS due to application of T$_8$. Similarly significant variation was recorded due to application of B in combination of Zn and Fe. Application of T$_4$, T$_5$, T$_6$ and T$_7$ has significantly increased the availability of B content in soil over T$_1$. Application of T$_8$ has recorded significantly higher value (0.473, 0.347, 0.394 and 0.300 ppm) at 35, 55, 75 and harvest stage of sunflower respectively. At 35 DAS the availability of B was maximum and thereafter as growth advanced B availability was decreased. The availability and utilization of boron was determined to a considerable extent by pH. Boron is held in organic combination from which it may be released for crop use plants root absorb boron from soil when its concentration is highest by application of borax which increase content of boron. The availability of boron was highest in treatment T$_8$ at all growth stages due to application of RDF + micronutrient combination than alone micronutrient combination along with RDF. These results
confirmatory with the finding of Silva et al., (2016) reported that fertilization with boron increased soil boron availability. Although this increase was linear in both layers, near neutral pH and low levels of organic matter reduced the boron absorption capacity. Nirmale (1991) reported that the available boron ranged from 0.18 to 0.37 mg kg\(^{-1}\) in soil. There was steady decrease with depth showing relatively more accumulation of available boron at surface layers.

The nutrient availability was significantly affected with application of treatments. The availability of Zn, Fe and B was maximum with application of treatment T8 (RDF+20 kg ha\(^{-1}\) ZnSO\(_4\)+20 kg ha\(^{-1}\) EDTA FeSO\(_4\)+2 kg ha\(^{-1}\) Borax) at all growth stages of sunflower over control. The availability of all the nutrients was initially higher and gradually decreased as crop grows up to harvest. The maximum availability was obtained at 35 DAS and thereafter as crop age advanced nutrient availability decreased.

References

Anonymous, 2015. Annual group meeting on sunflower, Project Director's Report, Indian Institute of Oilseed Research, Hyderabad.

Bagal, 2006. Effect of zinc, iron and boron on yield, quality and nutrient uptake by groundnut. M.Sc. Thesis.

Fred Denilson da Silva., Leonardo, A.A., Aqino A.L., Panozza, E. L., lima, C.T., Berger, P.G. and Dias, C.F. 2016. Influence of boron on Sunflower yield and Nutritional Status. Communication In Soil Sci. and Plant Analysis. 1532-2416.

Gebremedhin, T., Shanwad, U.K., Desai, B. K. and Gebremedhin, W. 2015. Soil test based nutrient management for sunflower (Helianthus annus L.): Analysis of growth, biomass, nutrient uptake and soil nutrient status. J.Bio.Agric., 5(15): 120-122.

Indulkar, B.S., and Malewar, G.U. 1990. Transformation of N, P, and Zn as influenced by various inorganic and organic sources of zinc in rice-gram cropping system. Fertilizer News. Pp. 37-41.

Nirmale, S. P., 1991. Boron status of soils farm Parbhani district. M.Sc. (Agri.) thesis Marathwada Agril. Univ., parbhani.

Selvi, D., Venkatesan, S., Jegathambal, R., Manickam, S. and Jansirani, R. 2008. Effect of Zn and Fe on yield of rainfed caster, Ricinus communis L. J. Oilseed Res., 25(2): 197-199.

How to cite this article:

Kumbhar, C.S., B.S. Indulkar and Wagh, C.B. 2017. Effect of Micronutrients Application on Availability of Zn, Fe and B of Sunflower (Helianthus annus L.) in Inceptisol. Int.J.Curr.Microbiol.App.Sci. 6(11): 438-442. doi: https://doi.org/10.20546/ijcmas.2017.611.051