STABLE RANK FOR CROSSED PRODUCTS BY ACTIONS OF
FINITE GROUPS ON C*-ALGEBRAS

HIROYUKI OSAKA

Abstract. Let G be a finite group, A a unital separable finite simple nuclear
C*-algebra, and α an action of G on A. Assume that A absorbs the Jiang-Su
algebra Z, the extremal boundary of the trace space of A is compact and finite
dimensional and that α fixes any tracial state of A. Then $\text{tsr}(A \rtimes_\alpha G) = 1$. In
particular, when A has a unique tracial state, we conclude it without above
conditions on a tracial state space of A.

1. Introduction

Rieffel [16] defined the (topological) stable rank, $\text{tsr}(A)$, of a C*-algebra, which is
the noncommutative analogue of the complex dimension of topological spaces. That
is, for the continuous functions on a compact Hausdorff X one has $\text{tsr}(C(X)) = \left\lfloor \frac{1}{2} \dim X \right\rfloor + 1$, where $\dim X$ is the covering dimension of X. For a unital C*-algebra
A the stable rank $\text{tsr}(A)$ is either ∞ or the smallest possible integer n such that
each n-tuple in A^n can be approximated in norm by n-tuples (b_1, \ldots, b_n) such that
$\sum_{i=1}^n b_i^* b_i$ is invertible. For a nonunital C*-algebra A we define $\text{tsr}(A) = \text{tsr}(\tilde{A})$, \tilde{A} means the unitaization of A.

Rieffel [16] showed that $\text{tsr}(A) = 1$ if and only if $\text{tsr}(M_n(A)) = 1$ for $n \in \mathbb{N}$
and $\text{tsr}(A) = 1$ if and only if $\text{tsr}(A \otimes \mathbb{K}) = 1$ for the C*-algebra \mathbb{K} of compact
operators on a separable infinite dimensional Hilbert space. Related to crossed
products we have in general that $\text{tsr}(A \rtimes_\alpha Z) \leq \text{tsr}(A) + 1$ by [16] Theorem 7.1
and $\text{tsr}(A \rtimes_\alpha G) \leq \text{tsr}(A) + \text{card}(G) - 1$ for any action α from a finite group G on
A by [8] Theorem 2.4. However, it is not easy to determine when those crossed
products have stable rank one, except crossed products by "strongly" outer actions
as (tracial) Rokhlin property [18], [14], [15]. See [11], [1], [3] and their bibliography
for basic properties about stable ranks.

In this note we determine stable rank one for crossed products $A \rtimes_\alpha G$ of any
action α from a finite group G on a separable finite simple nuclear unital C*-algebra
A, when A is the Jiang-Su absorbing with some conditions on a tracial state space
of A, using observations by Sato [19] and by Rørdam [17]. In particular, when A has
a unique tracial state, we conclude it without above conditions on a tracial state space
of A. Here, the Jiang-Su algebra Z is a unital separable simple infinite-dimensional
nuclear C*-algebra with a unique tracial state whose K-theoretic invariants are
same as that of the complex numbers \mathbb{C}. In the current classification theorem of

Date: 28 July 2018.

2000 Mathematics Subject Classification. Primary 46L55; Secondary 46L35.
Key words and phrases. Stable rank one, Jiang-Su algebras, Inclusion of C*-algebras.
*Research of the first author partially supported by the JSPS grant for Scientific Research
No.17K05285.
C*-algebras, the absorption of \mathbb{Z} is regarded as one of the regular properties of classifiable C*-algebras. See [5], [6], [20].

2. Stable rank for inclusions of unital C*-algebras

Let $A \subset B$ be an inclusion of unital C*-algebras and $E : G \to A$ be a conditional expectation of index-finite type as defined in Definition 1.2.2. of [21].

The following is a general formula for stable rank for an inclusion of unital C*-algebras of index-finite type.

Theorem 2.1. [8, Theorem 2.1] 1 \in A \subset B of unital C*-algebras, let $E : B \to A$ be a conditional expectation with index-finite type, and let $((v_k, v_k^\ast))_{1 \leq k \leq n}$ be a quasi-basis for E. Then $\text{tsr}(B) \leq \text{tsr}(A) + n - 1$.

The inclusion 1 \in A \subset B of unital C*-algebras of index-finite type is said to have finite depth k if the derived tower obtained by iterating the basic construction $A' \cap A \subset A' \cap B_2 \subset A' \cap B_3 \subset \cdots$ satisfies $(A' \cap B_k)e_k(A' \cap B_k) = A' \cap B_{k+1}$, where $\{e_k\}_{k \in \mathbb{N}}$ are projections obtained by iterating the basic construction, so that $B_1 = B$, $e_1 = e_A$, and $B_{k+1} = C^*(B_k, e_k)$. When G is a finite group and α an action of G on A, it is well known that an inclusion 1 \in A \subset A \rtimes_\alpha G$ is of depth 2. (See [12, Lemma 3.1].)

In the case of an infinite dimensional simple unital C*-algebra A with Property (SP), that is, any nonzero hereditary C*-subalgebra of A has nonzero projection, we have the following estimate.

Theorem 2.2. [13, Theorem 3.2] 1 \in A \subset B of unital C*-algebras of index-finite type and depth 2. Suppose that A is an infinite dimensional simple C*-algebra with $\text{tsr}(A) = 1$ and Property (SP). Then $\text{tsr}(B) \leq 2$.

Remark 2.3. When A is not simple, the estimate in Theorem 2.1 is the best possible. Indeed, in [2, Example 8.2.1] Blackadar constructed a symmetry action α on the CAR \mathcal{U} algebra such that $(C[0, 1] \otimes \mathcal{U}) \rtimes_{id \otimes \alpha} \mathbb{Z}/2\mathbb{Z} \cong C[0, 1] \otimes B$, where $\text{tsr}(B) = 1$ and $K_1(B) \neq 0$. Hence we know that $\text{tsr}(C[0, 1] \otimes B) = 2$ by [10, Corollary 7.2] and [10, Proposition 5.2].

Let \mathbb{Z} be the Jiang-Su algebra. When a C*-algebra B in Theorem 2.2 is Jiang-Su absorption, that is, $A \otimes \mathbb{Z} \cong A$, we can conclude that $\text{tsr}(B) = 1$ as follows.

Theorem 2.4. 1 \in A \subset B of unital C*-algebras of index-finite type. Suppose that A is an infinite dimensional simple C*-algebra with $\text{tsr}(A) < \infty$ and B is Jiang-Su absorption. Then $\text{tsr}(B) = 1$.

We use the following simple observation to prove Theorem 2.4.

Lemma 2.5. Let A be a simple unital C*-algebra. Then A is finite if $\text{tsr}(A) < \infty$.

Proof. Suppose that A is infinite. Then from [3] there are orthogonal projections p, q such that $1 \sim p \sim q$, where \sim means the Murray-von Neumann equivalence. Hence $\text{tsr}(A) = \infty$ by [16, Proposition 6.5], and a contradiction. \[\square\]
Proof of Theorem 2.4

Since A is simple, B can be decomposed into finite direct sums $\oplus B_i$ of simple (unital) closed ideals by [7, Theorem 3.3]. By Theorem 2.1 we know $\text{tsr}(B) < \infty$, that is, $\text{tsr}(B_i) < \infty$ for each i. Hence each B_i is a finite simple C*-algebra by Lemma 2.5.

Let Z be the Jiang-Su algebra. Then, since each B_i is a finite simple C*-algebra, by [17, Theorem 6.7] each $B_i \otimes Z$ has stable rank one. From the assumption since $B \cong B \otimes Z = \oplus B_i \otimes Z$, we conclude that $\text{tsr}(B) = \max\{\text{tsr}(B_i \otimes Z)\} = 1$.

3. Stable rank for C*-crossed products

Very recently, Sato [19] gives the sufficient condition for the Jiang-Su absorption of crossed products by actions of amenable groups on \mathcal{Z}-absorbing C*-algebras. Using this observation we can prove the stable rank one property for the crossed product $A \rtimes \alpha G$ by an action α of a finite group on a \mathcal{Z}-absorbing C*-algebra A under some condition.

Theorem 3.1. Let G be a finite group, A a unital separable finite simple nuclear C*-algebra, and α an action of G on A. Assume that A absorbs the Jiang-Su algebra \mathcal{Z}, the extremal boundary of the trace space of A is compact and finite dimensional and that α fixes any tracial state of A. Then $\text{tsr}(A \rtimes \alpha G) = 1$.

Proof. Note that an inclusion $A \subset A \rtimes \alpha G$ is of a finite-index type.

By [19, Theorem 1.1] $A \rtimes \alpha G$ is the Jiang-Su absorbing. Since A is a finite simple unital C*-algebra with $A \otimes \mathcal{Z} \cong A$, $\text{tsr}(A) = 1$ by [17, Theorem 6.7]. Hence, by Theorem 2.4 $\text{tsr}(A \rtimes \alpha G) = 1$.

Remark 3.2. When A is a unital simple C*-algebra with $\text{tsr}(A) = 1$ and Property (SP), then we know that $\text{tsr}(A \rtimes \alpha G) \leq 2$ for any action α of a finite group on A by Theorem 2.2. Moreover, if α is ”strongly” outer like the tracial Rokhlin property in the sense of N.C. Phillips [15], then $\text{tsr}(A \rtimes \alpha G) = 1$. (For example see [14, Proposition 4.13].)

Corollary 3.3. Let G be a finite group, A a unital separable finite simple nuclear \mathcal{Z}-absorbing C*-algebra with a unique tracial state, and α an action of G on A. Then $\text{tsr}(A \rtimes \alpha G) = 1$.

Acknowledgments

The author would like to thank Yasuhiko Sato for helpful conversations.

References

[1] R. J. Archbold and E. Kaniuth, Stable rank and real rank for some classes of group C*-algebras, Trans. Amer. Math. Soc. 357 (2005), no. 6, 2165–2186.
[2] B. Blackadar, Symmetries of the CAR algebras, Annals of Math. 131 (1990), 589 - 623.
[3] L. G. Brown, On higher real and stable ranks for CCR C*-algebras, Trans. Amer. Math. Soc. 27 (2016), 7461–7475.
[4] J. Cuntz, The structure of multiplication and addition in simple C*-algebras., Math. Scand. 40 (1977), no. 2, 215-213.
[5] G. A. Elliott, G. Gong, H. Lin, and Z. Niu, *On the classification of simple amenable C*-algebras with finite decomposition rank, II*, arXiv:1507.03437.

[6] G. Gong, H. Lin, and Z. Niu, *Classification of finite simple amenable Z-stable C*-algebras*, arXiv:1501.00135.

[7] M. Izumi, *Inclusions of simple C*-algebras*, J. Reine Angew. Math. **547** (2002), 97 – 138.

[8] J. A Jeong, H. Osaka, N. C. Phillips and T. Teruya, *Cancellation for inclusions of C*-algebras of finite depth*, Indian Univ. Math. J. **58** (2009), no.4, 1357-1564.

[9] X. Jiang and H. Su, *On a simple unital projectionless C*-algebra*, Amer. J. Math. **121** (1999), no.2, 359–413.

[10] M. Izumi, H. Osaka, and N. C. Phillips, *Ranks of algebras of continuous C*-algebra valued functions*, Canad. J. Math. **53** (2001), no.5, 979–1030.

[11] H. Osaka, *Non-commutative dimension for C*-algebras*, Interdiscip. Inform. Sci. **9** (2003), no. 2, 209–220.

[12] H. Osaka and T. Teruya, *Topological stable rank of inclusions of unital C*-algebras*, Internat. J. Math. **17** (2006), 19–34.

[13] H. Osaka and T. Teruya, *Stable rank of depth 2 inclusions of unital C*-algebras*, C. R. Math. Acad. Sci. Soc. R. Can. **29** (2007), no.1, 28–32.

[14] H. Osaka and T. Teruya, *The Jiang-Su absorption for inclusions of unital C*-algebras*, to appear in Canad. J. Math., arXiv:14047663.

[15] N. C. Phillips, *The tracial Rokhlin property for actions of finite groups on C*-algebras*, Amer. J. Math. **133** (2011), no. 3, 581-636.

[16] M. A. Rieffel, *Dimension and stable rank in the K-theory of C*-algebras*, Proc. London Math. Soc. (3) **46**(1983), 301–333.

[17] M. Rørdam, *The stable and the real rank of Z-absorbing C*-algebras*, Internat. J. Math. **10** (2004), 1065–1084.

[18] L. Santiago, *Crossed product by actions of finite groups with the Rokhlin property*, Internat. J. Math. **26** (2015), no. 7, 1550042. 31pp.

[19] Y. Sato, *Actions of amenable groups and crossed products of Z-absorbing C*-algebras*, arXiv:1612.08529.

[20] A. Tikuisis, S. White, and W. Winter, *Quasidiagonality of nuclear C*-algebras*, preprint, arXiv:1509.08318.

[21] Y. Watatani, *Index for C*-subalgebras*, Mem. Amer. Math. Soc. **424**, Amer. Math. Soc., Providence, R. I., (1990).

Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan

E-mail address: osaka@se.ritsumei.ac.jp