Dopamine: Receptors, Functions, Synthesis, Pathways, Locations and Mental Disorders: Review of Literatures

Getinet Ayano*
Chief Psychiatry Professional and mhGap Coordinator at Research and Training Department, Amanuel Mental Specialized Hospital, Addis Ababa, PO box: 1971, Addis Ababa, Ethiopia

Abstract

Dopamine is monoamine neurotransmitter. Dopamine is produced in the dopaminergic neurons in the ventral tegmental area of the substantia nigra, midbrain and the arcuate nucleus of the hypothalamus. In the periphery, dopamine is found in the kidney where it functions to produce renal vasodilation, diuresis, and natriuresis. Dopamine neurons are more widely distributed than those of other monamines and it is found in hypothalamus, olfactory bulb, the midbrain substantia nigra and ventral tegmental area and in the periaqueductal gray and retina.

There are five subtypes of dopamine receptors, D1, D2, D3, D4, and D5, which are members of the large G-protein coupled receptor super family [1]. The dopamine receptor subtypes are divided into two major subclasses: types 1 and 5 are similar in structure and drug sensitivity, and these two receptors are referred to as the ’D1like’ group or class of receptors. Dopamine receptor types 2, 3, and 4 are also similar in structure and are, therefore, grouped together as the ’D2like’ group [2]. Dopamine receptors are typically couple to Gs and Gi mediated transduction systems [3].

The ultimate effect of D1-like activation (D1 and D5) can be excitation (via opening of sodium channels) or inhibition (via opening of potassium channels); the ultimate effect of D2-like activation (D2, D3, and D4) is usually inhibition of the target neuron [2]. The effect of dopamine on a target neuron depends on which types of receptors are present on the membrane of that neuron and on the internal responses of that neuron to the second messenger cAMP [2]. D1 receptors are the most numerous dopamine receptors in the human nervous system and D2 receptors are the second most abundant receptors. D3, D4, and D5 receptors are present at significantly lower levels [2].

D1 and D5 receptors mostly involved in post synaptic inhibition. D2, D3, and D4 receptors are involved in both pre-and postsynaptic inhibition. D2 receptors regulates mood, emotional stability in the limbic system and movement control in the basal ganglia [3,4].

D1 and D2 receptors were distinguished on the basis of differential binding affinities of a series of agonists and antagonists, distinct effector mechanisms, and distinct distribution patterns within the CNS. It was subsequently found that the therapeutic efficacy of antipsychotic drugs correlated strongly with their affinities for the D2 receptor, implicating this subtype as an important site of antipsychotic drug action [3,4].

D1 receptor has high affinity for the antagonist SCH 23390 and relatively low affinity for butyrophenones such as haloperidol. D1 receptor activation stimulates cyclic adenosine monophosphate (cAMP) formation, D1 receptor stimulation produces the opposite effect. In addition to the stimulation of adenylate cyclase, D1 receptors may also stimulate phosphoinositide turnover and modulate intracellular calcium levels [1,3].

The D1 receptors are found in high concentration in the hypecampus, caudate, putamen, nucleus accumbens, hypothalamus, substantia nigra pars reticulata, olfactory tubercle and frontal and temporal cortex [3,5]. D1 receptors have been implicated in the cognitive functions of dopamine such as the control of working memory and attention. D1 receptors contribute significantly to the CNS effects of cocaine, suggesting the involvement of other receptors in addition to the D1 receptor, in mediating rewarding effects of drugs of abuse [1,3,5].

D1 and D5 receptors have a higher degree of homology with each other than with the D2, D3, and D4 subtypes. D5 receptor has 50% homology with the D2, 35% with the D3, and 25% with the D4.

Keywords: Dopamine; Receptors; Synthesis; Locations; Mental disorders

Dopamine Receptors

There are five subtypes of dopamine receptors, D1, D2, D3, D4, and D5, which are members of the large G-protein coupled receptor super family [1]. The dopamine receptor subtypes are divided into two major subclasses: types 1 and 5 are similar in structure and drug sensitivity, and these two receptors are referred to as the ’D1like’ group or class of receptors. Dopamine receptor types 2, 3, and 4 are also similar in structure and are, therefore, grouped together as the ’D2like’ group [2]. Dopamine receptors are typically couple to Gs and Gi mediated transduction systems [3].

The ultimate effect of D1-like activation (D1 and D5) can be excitation (via opening of sodium channels) or inhibition (via opening of potassium channels); the ultimate effect of D2-like activation (D2, D3, and D4) is usually inhibition of the target neuron [2]. The effect of dopamine on a target neuron depends on which types of receptors are present on the membrane of that neuron and on the internal responses of that neuron to the second messenger cAMP [2]. D1 receptors are the most numerous dopamine receptors in the human nervous system and D2 receptors are the second most abundant receptors. D3, D4, and D5 receptors are present at significantly lower levels [2].

D1 and D5 receptors mostly involved in post synaptic inhibition. D2, D3, and D4 receptors are involved in both pre-and postsynaptic inhibition. D2 receptors regulates mood, emotional stability in the limbic system and movement control in the basal ganglia [3,4].

D1 and D2 receptors were distinguished on the basis of differential binding affinities of a series of agonists and antagonists, distinct effector mechanisms, and distinct distribution patterns within the CNS. It was subsequently found that the therapeutic efficacy of antipsychotic drugs correlated strongly with their affinities for the D2 receptor, implicating this subtype as an important site of antipsychotic drug action [3,4].

D1 receptor has high affinity for the antagonist SCH 23390 and relatively low affinity for butyrophenones such as haloperidol. D1 receptor activation stimulates cyclic adenosine monophosphate (cAMP) formation, D1 receptor stimulation produces the opposite effect. In addition to the stimulation of adenylate cyclase, D1 receptors may also stimulate phosphoinositide turnover and modulate intracellular calcium levels [1,3].

The D1 receptors are found in high concentration in the hypecampus, caudate, putamen, nucleus accumbens, hypothalamus, substantia nigra pars reticulata, olfactory tubercle and frontal and temporal cortex [3,5]. D1 receptors have been implicated in the cognitive functions of dopamine such as the control of working memory and attention. D1 receptors contribute significantly to the CNS effects of cocaine, suggesting the involvement of other receptors in addition to the D1 receptor, in mediating rewarding effects of drugs of abuse [1,3,5].

D1 and D5 receptors have a higher degree of homology with each other than with the D2, D3, and D4 subtypes. D5 receptor has 50% homology
Dopamine is synthesized from the amino acid tyrosine, which is taken up into the brain via an active transport mechanism. Tyrosine is produced in the liver from phenylalanine through the action of phenylalanine hydroxylase. Tyrosine is then transported to dopamine- and noradrenaline-containing neurons where a series of reactions convert it to dopamine [15,16]. Within catecholaminergic neurons, tyrosine hydroxylase catalyzes the addition of a hydroxyl group to the meta position of tyrosine, yielding L-dopa. This rate-limiting step in catecholamine synthesis is subject to inhibition by high levels of catecholamines (end-product inhibition). Because tyrosine hydroxylase is normally saturated with substrate, manipulation of tyrosine levels does not readily impact the rate of catecholamine synthesis. Once formed, L-dopa is rapidly converted to dopamine by dopa decarboxylase, which is located in the cytoplasm. It is now recognized that this enzyme acts not only on L-dopa but also on all naturally occurring aromatic L-amino acids, including tryptophan, and thus it is more properly termed aromatic amino acid decarboxylase [15,16].
Dopamine and Mental Disorders

Due to extensive localization of dopamine receptor to brain areas and its role in wide range of functions, dopaminergic dysfunction has been implicated in the pathophysiology of schizophrenia, mood disorders, obsessive compulsive disorder (OCD), autism spectrum disorder, attention deficit–hyperactivity disorder (ADHD), tourette's syndrome, substance dependency, Parkinson's disease and other disorders.

The role of dopamine in schizophrenia

Dopamine is among the common neurotransmitters involved in pathogenesis of schizophrenia, largely based on patients' responses to psychoactive agents [17-20]. The role of dopamine in schizophrenia is based on the dopamine Hypothesis which evolved from two observations. First, drug group which blocks dopamine function, known as the phenothiazines, could reduce psychotic symptoms. Second, amphetamines, which increase dopamine release, can induce a paranoid psychosis and exacerbate schizophrenia and that disulfiram inhibits dopamine hydroxylase and exacerbates schizophrenia [17-19].

The role of dopamine in mood disorders

The findings on dopamine in mood disorders suggest that decreased dopamine activity is involved in depression, while increased dopamine function contributes to mania [21]. The role of dopamine in mood disorders is based on evidence that drugs that reduce dopamine concentrations for example, resepine and diseases that reduce dopamine concentrations (e.g., Parkinson's disease) are associated with depressive symptoms. In contrast, drugs that increase dopamine concentrations, such as tyrosine, amphetamine, and bupropion reduce the symptoms of depression. Recent theories about dopamine and depression are that the mesolimbic dopamine pathway may be dysfunctional in depression and that the dopamine D1 receptor may be hypoaque in depression [21-25].

The role of dopamine in addictions

Most addictive drugs share the common property of increasing dopamine release in the striatum. The dopamine input to the striatum is provided by a very dense network of axon terminals arising from cell bodies in the midbrain–substantia nigra pars compacta and ventral tegmental area. The increased locomotor activity and stereotyped caused by psychostimulants seem especially to involve dopamine release in ventral and dorsal parts of striatum, respectively. The ventral striatum includes the “core” and “shell” of the nucleus accumbens, blockade of dopamine neurotransmission in this region attenuates most rewarding effects of addictive drugs, such as conditioned place preference. The dopaminergic projection to ventral striatum has therefore been intensely investigated for its potential involvement in addictions[26-28].

The role of dopamine in attention-deficit hyperactivity disorder (ADHD)

Dopamine is among the common neurotransmitters involved in pathogenesis of Attention-Deficit Hyperactivity Disorder (ADHD). Defects in dopamine metabolism have long been implicated in the etiology of ADHD. The impulse and behavior problems found in Attention-Deficit Hyperactivity Disorder (ADHD) appear related to low levels of Dopamine in the brain. Stimulants increase catecholamine concentrations by promoting their release and blocking their uptake. Stimulants has been helpful in treating hyperactivity. Other drugs that have reduced hyperactivity include tricyclic drugs and monoamine oxidase inhibitors (MAOIs), which indicate role of dopamine in Attention-Deficit Hyperactivity Disorder (ADHD) [29,30].

References

1. Seeman P (2009) Chapter 1: Historical overview: Introduction to the dopamine receptors. The Dopamine Receptors. Springer.
2. Romanelli RJ, Williams JT, Neve KA (2009) Chapter 6: Dopamine receptor signalling: intracellular pathways to behavior. The Dopamine Receptors. Springer.
3. Sadock BJ, Sadock VA, Ruiz P (2009) Kaplan and Sadock's Comprehensive Textbook of Psychiatry. (9thedn) Lippincott Williams & Wilkins, Philadelphia.
4. Stahl, SM (2008) Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Applications (3rdecdn) Cambrigde University Press, New York.
5. Grandy DK, Miller GM, Li JX (2016) TAARGeting Addiction - The Alamo Bears
Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference. Drug Alcohol Depend. 159: 5-16.

6. Rang HP (2003) Pharmacology. Edinburgh: Churchill Livingstone. pp. 474 for noradrenaline system, page 476 for dopamine system, page 480 for serotonin system and page 483 for cholinergic system.

7. Malenka RC, Nestler EJ, Hyman SE (2009) Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin*. In: Sydor A, Brown RY (eds.) Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. (2nd edn) New York.

8. Nestler EJ (2014) Brain Reward Pathways. Icahn School of Medicine at Mount Sinai. Nestler Lab. The dorsal raphe is the primary site of serotonergic neurons in the brain, which, like noradrenergic neurons, pervasively modulate brain function to regulate the state of activation and mood of the organism.

9. Schacter G, Weger (2009) Psychology. United States of America.

10. Malenka RC, Nestler EJ, Hyman SE (2009) Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin*. In: Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd edn) McGraw-Hill Medical, New York.

11. Christine CW, Aminoff MJ (2004) Clinical differentiation of parkinsonian syndrome: prognostic and therapeutic relevance. The American Journal of Medicine 117: 412-419.

12. Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends in Neurosciences 30: 194-202.

13. Paulus W, Schomburg ED (2006) Dopamine and the spinal cord in restless legs syndrome: does spinal cord physiology reveal a basis for augmentation. Sleep Medicine Reviews 10: 185-196.

14. Ben-Jonathan N, Hnasko R (2001) Dopamine as a prolactin (PRL) inhibitor. Endocrine Reviews 22: 724-763.

15. Musacchio JM (2013) Chapter 1: Enzymes involved in the biosynthesis and degradation of catecholamines. Biochemistry of Biogenic Amines.

16. The National Collaborating Centre for Chronic Conditions, ed. (2006) Symptomatic pharmacological therapy in Parkinson’s disease. Parkinson’s Disease. London: Royal College of Physicians.

17. Sadock B J, Sadock VA, Ruiz P (2009) Kaplan and Sadock’s Comprehensive Textbook of Psychiatry. (8th edn) Lippincott Williams & Wilkins, Philadelphia.

18. Laruelle M, Abi-Dargham A, van Dyck CH (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93: 9235-9240.

19. Jones HM, Pilowsky LS (2002) Dopamine and antipsychotic drug action revisited. Br J Psychiatry 181: 271-275.

20. Martin S (2002) An Atlas of Schizophrenia. DC: Taylor & Francis, Washington.

21. Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry122: 509-522.

22. Niklasson F, Ågren H (1984) Brain energy metabolism and blood-brain barrier permeability in depressive patients: analyses of creatine, creatinine, urate, and albumin in CSF and blood. Biol Psychiatry 191183- 1206.

23. Schildkraut JJ, Orsulak PJ, Schatzberg AF, Gudeman JE, Cole JO, et al. (1978) Toward a biochemical classification of depressive disorders. I. Differences in urinary excretion of MHPG and other catecholamine metabolites in clinically defined subtypes of depressions. Arch Gen Psychiatry 35: 1427- 1433.

24. Sweeney DR, Maas JW (1978) Specificity of depressive illness. Ann Rev Med 29: 219-229.

25. Schatzberg AF, Samson JA, Bloomington KL, Orsulak PJ, Gerson BK, et al. (1989) Toward a biochemical classification of depressive disorders, urinary catecholamines, their metabolites, and D-type scores in subgroups of depressive disorders, Arch Gen Psychiatry 46: 260-268.

26. Malenka RC, Nestler EJ, Hyman SE (2009) Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. (2nd edn), McGraw-Hill Medical, New York.

27. Berridge KC, Robinson TE, Aldridge JW (2009) Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Current Opinion in Pharmacology 9: 65-73.

28. Wise RA (1996) Addictive drugs and brain stimulation reward. Annual Review of Neuroscience 19: 319-340.

29. LeMoal M, Simon H (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 71: 155-234.

30. Cook EH, Stein MA, Krasowski MD (1995) Association of attention-deficit disorder and the dopamine transporter gene. Am. J Hum Genet 56: 993-998.