Case Report

Bevacizumab Combined with Icotinib Overcomes Osimertinib Resistance in a Patient of Non-Small-Cell Lung Cancer

Ling Zhang¹, Lei Sun¹, Xiaoyan Mu¹, Youxin Ji²*

1 Department of Oncology, Qingdao Cancer Hospital, Qingdao, Shandong 266042, China
2 Department of Oncology, the Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, Shandong 266042, China

Keywords: EGFR TKI; resistant mutation; non-small cell lung cancer; bevacizumab

Abstract

A 61-year-old Chinese female patient was diagnosed with primary pulmonary adenocarcinoma of left superior lobe with epidermal growth factor receptor (EGFR) 19 del mutation positive. Treatment with Icotinib was given and her disease progressed after 6 months. CT-guide needle biopsy for the new lesion of inferior lobe of left lung demonstrated metastasis, and EGFR gene panel was tested by Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR) confirmed EGFR T790M mutation. Treatment with Osimertinib was initiated. After 2 months remission, the disease progressed. The biopsy was performed for the new tumor of the inferior lobe of the left lung, and ARMS-PCR demonstrated no other gene mutation except EGFR 19 del. Icotinib was re-challenged, but disease progressed quickly. Bevacizumab was added, and after 2-cycle of combination therapy, partial response was achieved. Patients of non-small cell lung cancer maintain EGFR activating mutation and loss of EGFR T790M mutation is a genetic change after Osimertinib treatment. This case suggests the re-challenge of first-generation EGFR-TKIs combines with bevacizumab may overcome its resistance and prolong patients’ survival.

EPIDERMAL growth factor receptor (EGFR) C797S/G point mutation or loss of EGFR T790M was the most common genetic change in patients with non-small-cell lung cancer (NSCLC) harboring EGFR T790M mutation after resistance to osimertinib.¹² Anti-EGFR antibody combined with EA1045 or Brigatinib could overcome Osimertinib resistance in vitro or in vivo if it was caused by EGFR L858R/C797S/T790M or EGFR del 19/C797S/T790M.³⁴ But their clinical effects are largely unclear. There has been no standard care for patients who lose EGFR T790M mutation after Osimertinib resistance; re-challenge with first generation EGFR tyrosine kinase inhibitor (TKI) or systemic chemotherapy might be the optimal method.⁵ About 10%-30% Caucasian or 50% eastern Asian patients with NSCLC harbor EGFR mutation, and 60% of them will acquire EGFR T790M mutation after the first generation EGFR-TKI

Received July 5 2018, accepted December 13 2018, published online November 12, 2019
* Corresponding author Email: 123456789ji@gmail.com; Tel: (86)532-6866-5078.
treatment with 10–13 months remission.6,7 Acquired resistance would happen after a median PFS of 9.6 months in patients receiving Osimertinib treatment (an irreversible third-generation EGFR-TKI).8 The resistance mechanism of Osimertinib is complex. To date, several mechanisms about resistance to Osimertinib have been identified, such as secondary EGFR mutation, EGFR amplification, and loss, low expression.9-11 Among them, EGFR C797S/G mutation happened in 20%-60% patients.12 So Re-biopsy to study the resistance mechanisms at the time of disease progression is necessary to direct therapeutic regimens for patients with Osimertinib resistance.13,14

Currently, no drug or therapeutic strategies has been approved for the treatment of Osimertinib resistant patients, especially for patients who are T790M negative or lost. Many strategies are mainly limited in vitro or in vivo,3 in lack of clinical data. It has been reported cytotoxic chemotherapy or protracted EGFR TKI treatment might be applied after disease progressed, but only a short survival time benefit was reached.15-17 We report a patient of NSCLC, who lost EGFR T790M mutation after Osimertinib treatment, was responsive to Icotinib plus bevacizumab therapy.

Case Description

A 61-years-old Chinese woman complained cough and fever for 2 weeks. She was admitted into hospital. CT scan showed a 10.1 cm X 6.1 cm mass in the left lung (Figure. 1A-1), with multiple metastatic nodulars of bilateral lungs, mediastinal lymph nodes enlargement, left pleural effusion, and small patchy lesions in the right lung. Pulmonary adenocarcinoma was confirmed by Core needle biopsy for the mass of left lung (Figure. 1A-2). EGFR test of tumor tissue was conducted by direct sequencing and EGFR 19 del was found. Diagnosis of primary lung adenocarcinoma with metastasis harboring EGFR activating mutation positive was established.

The patient was treated with Icotinib (Betta Pharmaceuticals, Hangzhou, China) orally at a dose of 125 mg three times a day for 2.5 months and partial response was reached (Fig. 1B-1). However, after 6 months remission, follow up CT scan found that the primary tumor enlarged and new lesion appeared on the inferior lobe of left lung. CT-guide needle biopsy was performed for the new lesion and intrapulmonary metastasis of lung adenocarcinoma was confirmed by pathologists (Fig 1C1-3). We performed EGFR gene panel test for biopsied specimen by Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR), and T790M mutation was found.

Subsequently, Osimertinib (Tagrisso, AZD9291, AstraZeneca) at a dose of 80 mg orally once daily was administered. On the follow up CT examination, we found the primary tumor of the left lung shrunk. Two months later, the patient experienced short of breath and pain of the right chest. CT scan showed right pleural effusion, and the metastatic lesion of the inferior lobe of left lung enlarged to 1.6 cm X 1.8 cm (Fig. 1D1-2). We performed thoracocentesis and cytopathology found cancer cells in right pleural effusion.
Re-biopsy was performed for the enlarged left lung superior lobe lesion, and ARMS-PCR of the biopsy specimen still revealed EGFR 19 del positive, but EGFR T790M mutation was lost. Treatment of this patient was back to Icotinib at a dose of 125 mg three times each day orally. However, after 2 months, her disease progressed (Fig. 1E1-2). Bevacizumab (Avastin, Roche, Switzerland) was added intravenously at a dose of 7.5 mg/kg on day 0, every 21 days a cycle. After 2 cycles of Icotinib and bevacizumab treatment, the patient got remarkable response, and maintained remission till the last follow-up in 4 months (Fig. 1F1-2). Adverse effects in this patient included Grade 1 nausea after one month treatment and Grade 1 hypertension and rash after 4 months of treatment. No grade 3-4 adverse event was observed.

DISCUSSION

EGFR mutation accounts for 50% NSCLC patients in the East Asia.18,19 The exon 19 deletion and the exon 21 L858R mutation of the epidermal growth factor are activating mutations, which enhance the sensitivity of the NSCLC cells to the first-, second- or third-generation EGFR-TKIs, such as gefitinib, afatinib or osimertinib. For the first-line therapy with first-generation EGFR-TKIs in patients with EGFR mutations, the objective response rates (ORR) are 50-80% and progression-free survivals (PFS) are 9-12 month.6,7 EGFR T790M mutation of exon 20 is the most common acquired resistance mechanism, which accounts for about 50-60% in patients resistant to the first- generation EGFR-TKIs.20 Osimertinib has high activity in EGFR T790M mutation advanced NSCLC, but resistance happened eventually, with a median PFS 9.6 months.8 The resistant mechanism was consider very complicated, while several resistant mechanisms to Osimertinib had been identified. The C797S/G mutation appears to be a leading resistant mechanism to the third-generation EGFR TKIs.12 The structure of EGFR T790M mutation and C797S/G mutation happened more in cis than in trans.12,21-23 MET amplification, EGFR T790M loss, HER-2 or alternative kinase activation, SCLC or squamous cell transformation, and EML4-ALK rearrangement were also reported after resistance to Osimertinib.24

Currently most studies focus on overcoming EGFR C797S/G mutation and alternative kinase activation by using combination therapy. EGFR 19 del /T790M/C797S would resist to all three-generation EGFR-TKIs, but EGFR L858R/T790M/C797S might be sensitive to EGFR monoclonal antibody; and EGFR T790M mutation with C797S in trans might be sensitive to the third-generation EGFR-TKIs.25 All above studies were in vitro or in vivo, the clinical outcomes were unclear.
Figure1. CT and pathological images showing the therapeutic responses in a 61-year-old woman with left pulmonary adenocarcinoma. (A1) CT scan showed a 10.1 X 6.1cm mass in superior lobe of left lung, and with multiple metastatic nodulars of bilateral lungs. (A2) Nests of adenocarcinoma cells were observed in the fibrous connective tissue, arranged in an alveolar pattern (HE, X10). (B1) After 2.5 months Icotinib treatment, CT scan showed tumor size decreased to 3.2 cm X 2.2cm, partial response was reached. (C1-3) The primary tumor enlarged (3.1cm X 3.0cm) after 6 months remission, with new soft-tissue mass found in the inferior lobe of left lung, indicating disease progressed. The new lesion was biopsied and pathology found solid, poorly differentiated tumor cells consisted predominantly of glandular or adenoid structure, according with metastasis (HE, X40). (D 1-2) The primary tumor and the metastatic lesion enlarged after 2 months of Osimertinib treatment, indicating disease progressed. (E 1-2) The metastatic lesion in the inferior lobe of left lung enlarged continuously after 2 months treatment of Icotinib re-challenged, and right plural effusion appeared. (F 1-2) The primary tumor and intrapulmonary metastatic lesion shrank after 2-cycle chemotherapy, indicating partial response.

At present, there is no standard care for patients who maintained EGFR activating mutation but loss EGFR T790M mutation after Osimertinib treatment. The exact mechanism in Osimertinib resistance of the loss of EGFR T790M is not fully understood. In our previous study, only one of three patients maintained stable disease for three months after first-generation EGFR-TKI re-challenged. For this patient, disease progressed with 2 months of Icotinib treatment, but achieved partial response after combined with bevacizumab therapy. Further studies are needed for the combination of Icotinib and Bevacizumab in the treatment for patients with Osimertinib resistance who loss EGFR T790M mutations in future.
In conclusion, the mechanism of loss EGFR T790M mutation and maintain EGFR activating mutation has not been fully understand; re-challenge with first generation EGFR-TKIs combined with bevacizumab may overcome its resistance but need further study in future.

Conflict of interest statement

All authors disclosed no conflicting interests.

REFERENCE

1. Ou SI, Cui J, Schrock AB, et al. Emergence of novel and dominant acquired EGFR solvent-front mutations at Gly796 (G796S/R) together with C797S/R and L792F/H mutations in one EGFR (L858R/T790M) NSCLC patient who progressed on osimertinib. Lung Cancer 2017; 108(12):228-31. doi: 10.1016/j.lungcan.2017.04.003.

2. Choo JR, Tan CS, Soo RA. Treatment of EGFR T790M-positive non-small cell lung cancer. Targeted oncology 2018; 13(2):141-56. doi: 10.1007/s11523-018-0554-5.

3. Wang S, Song Y, Liu D. EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Letters 2017; 385:51-4. doi: 10.1016/j.canlet.2016.11.008.

4. Uchibori K, Inase N, Araki M, et al. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nature Commun 2017; 8:14768. doi: 10.1038/ncomms14768.

5. Suda K, Onozato R, Yatabe Y, et al. EGFR T790M mutation: a double role in lung cancer cell survival? J Thorac Oncol 2009; 4(1):1-4. doi: 10.1097/JTO.0b013e3181913c9f.

6. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361(10):947-57. doi: 10.1056/NEJMoa0810699.

7. Zhou C, Wu YL, Chen G, et al. BEYOND: A randomized, double-blind, placebo-controlled, multicenter, phase III study of first-line Carboplatin/Paclitaxel plus Bevacizumab or placebo in Chinese patients with advanced or recurrent nonsquamous non–small-cell lung cancer. J Clin Oncol 2015; 33(19):2197-204. doi: 10.1200/JCO.2014.59.4424.

8. Goss G, Tsai CM, Shepherd FA, et al. Osimertinib for pretreated EGFR Thr790Met-positive advanced non–small-cell lung cancer (AURA2): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol 2016; 17(12):1643-52. doi: 10.1016/S1470-2245(16)30508-3.

9. Ercan D, Choi HG, Yun CH, et al. EGFR mutations and resistance to irreversible pyrimidine-based EGFR inhibitors. Clin Cancer Res 2015; 21(17):3913-23. doi: 10.1158/1078-0432.CCR-14-2789.

10. Wang S, Song Y, Yan F, et al. Mechanisms of resistance to third-generation EGFR tyrosine kinase inhibitors. Front Med 2016; 10(4):383-8. doi: 10.1007/s11684-016-0488-1.

11. Russo A, Franchina T, Ricciardi GRR, et al. Third generation EGFR TKIs in EGFR-mutated NSCLC: Where are we now and where are we going. Crit Rev Oncol Hematol 2017; 117:38-47. doi: 10.1016/j.critrevonc.2017.07.003.
12. Nie K, Jiang H, Zhang C, et al. Mutational profiling of non-small-cell lung cancer resistant to osimertinib using next-generation sequencing in Chinese patients. Biomed Res Int 2018;2018:9010353. doi: 10.1155/2018/9010353.

13. Tan CS, Cho BC, Soo RA. Next-generation epidermal growth factor receptor tyrosine kinase inhibitors in epidermal growth factor receptor-mutant non-small cell lung cancer. Lung Cancer 2016; 93:59-68. doi: 10.1016/j.lungcan.2016.01.003.

14. Ortiz-Cuaran S, Scheffler M, Plenké D, et al. Heterogeneous mechanisms of primary and acquired resistance to third-generation EGFR inhibitors. Clin Cancer Res 2016; 22(19):4837-47. doi: 10.1158/1078-0432.CCR-15-1915.

15. Ding T, Zhou F, Chen X, et al. Continuation of gefitinib plus chemotherapy prolongs progression-free survival in advanced non-small cell lung cancer patients who get acquired resistance to gefitinib without T790M mutations. J Thorac Dis 2017; 9(9): 2923-34. doi: 10.21037/jtd.2017.07.107.

16. Jia Y, Yun CH, Park E, et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 2016; 534(7605):129-32. doi: 10.1038/nature17960.

17. Kanda S, Horinouchi H, Fujiwara Y, et al. Cytotoxic chemotherapy may overcome the development of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) therapy. Lung cancer 2015; 89(3):287-93. doi: 10.1016/j.lungcan.2015.06.016.

18. Bell DW, Brannigan BW, Matsuo K, et al. Increased prevalence of EGFR-mutant lung cancer in women and in East Asian populations: analysis of estrogen-related polymorphisms. Clin Ca Res 2008; 14(13):4079-84. doi: 10.1158/1078-0432.CCR-07-5030.

19. Bae NC, Chae MH, Lee MH, et al. EGFR, ERBB2, and KRAS mutations in Korean non-small cell lung cancer patients. Cancer Genet Cytogenet 2007; 173(2):107-13. doi: 10.1016/j.cancergencyto.2006.10.007

20. Soejima K, Yasuda H, Hirano T. Osimertinib for EGFR T790M mutation-positive non-small cell lung cancer. Expert review of clinical pharmacology 2017; 10(1):31-8. doi: 10.1080/17512433.2017.1265446.

21. Hidaka N, Iwama E, Kubo N, et al. Most T790M mutations are present on the same EGFR allele as activating mutations in patients with non-small cell lung cancer. Lung cancer 2017; 108:75-82. doi: 10.1016/j.lungcan.2017.02.019.

22. Niederst MJ, Hu H, Mulvey HE, et al. The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin Cancer Res 2015; 21(17):3924-33. doi: 10.1186/1078-0432.CCR-15-0560.

23. Jakobsen KR, Demuth C, Madsen AT, et al. MET amplification and epithelial-to-mesenchymal transition exist as parallel resistance mechanisms in erlotinib-resistant, EGFR-mutated, NSCLC HCC827 cells. Oncogenesis 2017; 6(4):e307. doi: 10.1038/oncsis.2017.17.

24. Ham JS, Kim S, Kim HK, et al. Two cases of small cell lung cancer transformation from EGFR mutant adenocarcinoma during AZD9291 treatment. J Thorac Oncol 2016; 11(1):e1-4. doi:
10.1016/j.jtho.2015.09.013.

25. Lim SM, Syn NL, Cho BC, et al. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat Rev 2018; 65:1-10. doi: 10.1016/j.ctrv.2018.02.006.