Prognostic and clinicopathological value of m6A regulators in human cancers: a meta-analysis

Zhangci Su1,2,3,*, Leyao Xu1,2,3,*, Xinning Dai1,2,3,*, Mengyao Zhu1,2,3,4, Xiaodan Chen1,2,3, Yuanyuan Li1,2,3, Jie Li1,2,3, Ruihan Ge1,2,3, Bin Cheng1,2,3, Yun Wang2,3

1Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
2Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
3Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
4Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, P.R. China
*Equal contribution

Correspondence to: Yun Wang, Bin Cheng; email: wangyun23@mail.sysu.edu.cn, chengbin@mail.sysu.edu.cn

Keywords: m6A regulators, cancers, prognosis, clinicopathology, meta-analysis

Copyright: © 2022 Su et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Background: N6-methyladenosine (m6A) is the most abundant epigenetic modification. Although the dysregulation of m6A regulators has been associated with cancer progression in several studies, its relationship with cancer prognosis and clinicopathology is still controversial. Therefore, we evaluated the prognostic and clinicopathological value of m6A regulators in cancers by performing a comprehensive meta-analysis.

Methods: The PubMed, Cochrane Library, Web of Science, and Embase databases were searched up to April 2022. Hazard ratios were used to analyze the association between m6A with prognosis. We also analyze the relationship between m6A and clinicopathology using odds ratios.

Results: METTL3 overexpression predicted poor overall survival and disease-free survival in cancer patients (p < 0.001) such as gastric cancer (p < 0.001), esophageal squamous cell carcinoma (p < 0.001), oral squamous cell carcinoma (p = 0.002) and so on. Additionally, METTL3 overexpression was associated with poor pT stage (p < 0.001), pN stage (p < 0.001), TNM stage (p < 0.001), tumor size >5 cm (p < 0.001) and vascular invasion (p = 0.024). Conversely, METTL14 overexpression was positively associated with better OS (p < 0.001), negatively with poor pT stage (p = 0.001), pM stage (p = 0.002), pN stage (p = 0.011) and TNM stage (p < 0.001). Moreover, KIAA1429 overexpression was associated with poor OS (p = 0.001). YTHDF1 overexpression was also associated with advanced pM stage (p < 0.001) and tumor size >5 cm (p < 0.001). However, ALKBH5 overexpression was negatively associated with vascular invasion (p = 0.032).

Conclusions: High expression of METTL3 predicted poor outcome. In contrast, high expression of METTL14 was associated with better outcome. Thus, we suggest that among all the m6A regulators, METTL3 and METTL14 could be potential prognostic markers in cancers.

INTRODUCTION

According to world cancer report 2020, there will be an estimated 60% increase in cancer cases over the next two decades and they will cause about one sixth of deaths worldwide [1]. Although certain progresses have been made in cancer treatment in the past decades, the overall survival of cancer patients is still unsatisfactory. Therefore, biomarkers which can function as prognosticators for the survival time in cancer are necessarily needed. N6-methyladenosine (m6A) modification, an epigenetic modification found in eukaryotes, has been a hot topic in recent years. As the most abundant epigenetic modification in eukaryotes...
m6A modification is associated with RNA splicing [3–5], maturation [5], stabilization [6] and translation initiation [7]. As a result, m6A modification participates in several biological processes: neural development [8], disease occurrence [9, 10] and tumorigenesis [11–13]. This reversible modification can be added or removed by writers and erasers [14]. Writers are known as m6A methyltransferases, such as METTL3, METTL14, WTAP, KIAA1429 and RBM15/RBM15B. The two major erasers, FTO and ALKBH5, function as m6A demethylases. Furthermore, there are binding proteins called readers [14], represented by YTHDC, IGF2BP and HNRNPC, which recognize specifically modified RNA to exercise different subsequent reactions, including translation and degradation. Recently, emerging studies reported that the above mentioned m6A regulators were of great significance in tumorigenesis [15–17], tumor progression [18, 19] and metastasis [20]. For example, the writer METTL14 could suppress UVB-induced skin tumorigenesis and act as a critical epitranscriptomic mechanism to facilitate global genome repair which is essential for preventing mutagenesis and skin cancer [17]. Moreover, Bo Tang and his colleagues revealed that the eraser ALKBH5 suppressed pancreatic cancer tumorigenesis through promoting transcription of WIF-1 mRNA and inhibiting Wnt signaling pathway in a m6A dependent manner [21]. Additionally, the reader YTHDF1 could promote translation of autophagy-related genes ATG2A and ATG14 by binding to m6A-modified ATG2A and ATG14 mRNA, which facilitated autophagy and autophagy-related human hepatocellular carcinoma progression [15]. YTHDF1 could also enhance ferroptosis by promoting the activation of autophagy and BECN1 mRNA stability in hepatic stellate cells [22]. Overall, there are high-complexity links between m6A and different types of programmed cell death, which are closely related with the initiation, progression and resistance of cancer [23]. Furthermore, there is increasing evidence suggesting that dysregulated expression of m6A regulators exists in major types of cancers and correlates with poor prognosis. However, these survival data were contradictory among different cancer types and regulators, suggesting that a meta-analysis is required to identify prognostic markers. Therefore, in this study, we conducted a systematic review and meta-analysis to assess the prognostic and clinicopathological value of m6A regulators in cancer patients.

RESULTS

Study characteristics

The literature selection is presented in Figure 1, and the characteristics of eligible studies are shown in Table 1. A total of 3069 relevant studies were retrieved through an initial search. Among them, 915 duplicated records and 1944 unrelated records were excluded based on title or abstract. We subjected 210 studies to full-text screening, of which 159 studies were excluded because they did not meet the inclusion criteria. The remaining 51 articles were further assessed for quality by the Newcastle-Ottawa Scale (NOS) system, and only high-quality studies (NOS ≥ 6) were included in the meta-analysis. Finally, we included 49 cohort studies [6, 15, 24–70] comprising 7006 patients. All studies were published between 2017 and 2022. Forty-eight studies were conducted in Asia and one was conducted in Europe. Sample size ranged from 31 to 603 patients per study. In 49 included studies, 27 studies involved m6A writers, 15 studies referred to erasers and 9 studies were related to readers. The included studies totally reported 20 types of cancers, including digestive system cancer (n = 33), respiratory system cancer (n = 6), urinary system cancer (n = 4), female reproductive system cancer (n = 2) and others (n = 4). With respect to survival data, 48 studies reported overall survival (OS), 9 studies presented disease-free survival (DFS), and 4 studies showed relapse-free survival (RFS).

Expression of m6A regulators and prognosis of cancer patients

Based on the type of m6A writers, we carried out meta-analysis and found that high expression of METTL3 had an unfavorable effect on OS (HR = 1.75; 95% CI: 1.32–2.31, p < 0.001; I² = 78.1%, p < 0.001; Figure 2, Table 2) and DFS (HR = 2.02; 95% CI: 1.54–2.64, p < 0.001; I² = 52%, p = 0.052; Figure 3, Table 2) in cancer patients. Similarly, high expression of KIAA1429 was associated with poor OS (HR = 2.35; 95% CI: 1.40–3.93, p = 0.001; I² = 37.2%, p = 0.207; Figure 2, Table 2). On the contrary, high expression of METTL14 had a favorable effect on OS (HR = 0.55; 95% CI: 0.43–0.69, p < 0.001; I² = 0.0%, p = 0.392; Figure 2, Table 2). Furthermore, the expression of METTL16 was not significantly associated with OS in cancer patients (Figure 2, Table 2). Similarly, neither erasers nor readers were significantly associated with OS in cancer patients. (Figure 2, Table 2). We did not perform a meta-analysis of m6A regulators and RFS because there were not enough studies.

Subgroup analysis for different m6A regulators and cancer types

For further exploration, subgroup analyses were conducted according to cancer types. As shown in Table 3, high expression of METTL3 was correlated with poor OS (HR = 2.72; 95% CI: 1.81–4.07, p < 0.001; I² = 64.2%, p = 0.039) and DFS (HR = 2.58;
95% CI: 1.92–3.47, \(p < 0.001; I^2 = 37.9\%, \ p = 0.205 \) in gastric cancer. Moreover, high expression of METTL3 was significantly associated with poor OS in esophageal squamous cell carcinoma (HR = 2.20; 95% CI: 1.59–3.05, \(p < 0.001; I^2 = 0.0\%, \ p = 0.436 \) and oral squamous cell carcinoma (HR = 2.16; 95% CI: 1.33–3.49, \(p = 0.002; I^2 = 0.0\%, \ p = 0.602 \)). However, the expression of METTL3 or METTL14 was not significantly associated with OS in colorectal cancer. The expression of FTO was also not significantly associated with OS in gastric cancer and pancreatic cancer. Furthermore, we did not find a significant association between YTHDF1 and OS in osteosarcoma.

Expression of m6A regulators and the clinicopathological parameters

As shown in Figure 4 and Table 4, high expression of METTL3 was associated with advanced pT stage (OR = 1.85; 95% CI: 1.40–2.45, \(p < 0.001; I^2 = 47.4\%, \ p = 0.055 \), pN stage (OR = 2.37; 95% CI: 1.58–3.56,
Study	m6A regulators	Country	Ethnicity	Cancer types	Follow-up (months)	Sample size (M/F)	TMN stage	Cut-off value	Outcome	HR and 95% CI	NOS score	Status						
Yang 2020 (3)	METTL14	China	Asian	Colorectal cancer	NA	37 (27/10)	I-IV	score > 6	OS DFS	Reported	6	Included						
Chen 2020	METTL14	China	Asian	Colorectal cancer	NA	112 (74/38)	I-IV	> median	OS	Reported	7	Included						
Wang 2022	METTL14	China	Asian	Colorectal cancer	60	72 (44/28)	I-IV	NA	OS DFS	Reported	7	Included						
Deng 2019	METTL3	China	Asian	Colorectal cancer	72–108	181 (97/84)	I-IV	NA	OS	Reported	7	Included						
Li 2019 (1)	METTL3	China	Asian	Colorectal carcinoma	80	OS:432 (257/175)	I-IV	> median	OS DFS	OS: Reported DFS: Calculated	6	Included						
Shengli 2022	METTL3	China	Asian	Colorectal cancer	60	111 (51/60)	I-IV	score ≥ 4	OS DFS	Calculated	7	Included						
Ma 2022	KIAA1429	China	Asian	Colorectal cancer	100	111 (75/36)	I-IV	NA	OS DFS	Calculated	7	Included						
Yang 2020 (1)	ALKBH5	China	Asian	Colorectal cancer	80	60 (25/35)	I-IV	score ≥ 4	OS DFS	Reported	7	Included						
Ruan 2021	FTO	China	Asian	Colorectal cancer	140	369 (209/160)	I-III	> median	OS DFS	Reported	6	Included						
Nishizawa 2018	YTHDF1	Japan	Asian	Colorectal cancer	NA	63 (41/22)	I-IV	score ≥ 2+	OS DFS	Reported	7	Included						
Yue 2019	METTL3	China	Asian	Gastric cancer	NA	120 (79/41)	I-IV	> median	OS DFS	Reported	7	Included						
Wang 2020	METTL3	China	Asian	Gastric cancer	60	83 (61/22)	I-IV	> median	OS DFS	Reported	6	Included						
Yang 2020 (2)	METTL3	China	Asian	Gastric cancer	21-84	OS:196 (131/65)	I-IV	score > 145	OS DFS	Reported	8	Included						
Sun 2020	METTL3	China	Asian	Gastric cancer	NA	OS:80 RFS:58 (NA)	I-IV	score ≥ 2+	OS DFS	Reported	7	Included						
Wang 2021 (1)	METTL16	China	Asian	Gastric cancer	49.1	231 (155/76)	I-IV	> median	OS DFS	Reported	8	Included						
Liu 2021	METTL14	China	Asian	Gastric cancer	100	248 (183/65)	I-IV	score > 6	OS DFS	Reported	8	Included						
Li 2019 (2)	FTO ALKBH5	China	Asian	Gastric cancer	100	450 (308/142)	I-IV	score ≥ 6	OS DFS	Reported	6	Included						
Xu 2017	FTO	China	Asian	Gastric cancer	60	128 (68/60)	I-IV	NA	OS DFS	Reported	7	Included						
Yuan 2022	YTHDC2	China	Asian	Gastric cancer	80	120 (86/34)	I-IV	NA	OS DFS	Reported	6	Included						
Xia 2019	METTL3	China	Asian	Pancreatic cancer	15-26	40 (35/5)	I-III	> median	OS DFS	Calculated	6	Included						
Guo 2020	ALKBH5	China	Asian	Pancreatic cancer	60	42 (19/23)	I-III	> median	OS DFS	Calculated	7	Included						
Zeng 2021	FTO	China	Asian	Pancreatic cancer	NA	50 (27/23)	I-IV	> average	OS DFS	Calculated	8	Included						
Tan 2022	FTO	China	Asian	Pancreatic cancer	NA	209 (NA)	I-IV	score > 6	OS DFS	Reported	8	Included						
Li 2021	YTHDF1	China	Asian	Hepatocellular carcinoma	60	120 (32/88)	I-III	NA	OS DFS	Reported	7	Included						
Ma 2017	METTL14	China	Asian	Hepatocellular carcinoma	NA	220 (193/27)	I-III	> median	OS DFS	Calculated	3	Not included						
Xu 2022 (1)	METTL3	China	Asian	Intrahepatic cholangiocarcinoma	NA	96 (53/43)	I-III	> median	OS DFS	Reported DFS: Calculated	6	Included						
Ye 2020	FTO	China	Asian	Liver cancer	60	309 (NA)	I-III	score ≥ 6	OS DFS	Reported	7	Included						
Wang 2021 (2)	METTL3	China	Asian	Oesophageal squamous cell carcinoma	NA	81 (64/17)	I-IV	score > 300	OS DFS	Calculated	7	Included						
Xia 2020	METTL3	China	Asian	Oesophageal squamous cell carcinoma	108	207 (151/56)	I-IV	score > 8	OS DFS	Reported	7	Included						
Nagaki 2020	FTO ALKBH5	Japan	Asian	Oesophageal squamous cell carcinoma	41.5–60	177 (153/24)	NA	score ≥ 2+	OS DFS	ALKBH5: Reported FTO: Calculated	6	Included						
Liu 2020	METTL3	China	Asian	Oral squamous cell carcinoma	3–106	101 (68/33)	I-IV	Youden index	OS DFS	Reported	7	Included						
Authors	Regulators	Country	Ethnicity	Tumor Type	Studies	HR	95% CI	P-value	OS/DFS	OS DFS	DFS	HSCORE	Confidence interval	HR	P-value	P-value	Effects model	
------------	------------	---------	-----------	-------------------------------------	---------	-----	----------------	---------	--------	--------	-----	--------	-------------------	------	---------	---------	---------------	
Xu 2021	METTL3	China	Asian	Oral squamous cell carcinoma	80	94	51 (43/2)	I-IV	OS	Reported	OS DFS	DFS	METTL3	score ≥ 4 (0-12)	1.00	0.00	0.00	Random
Guo 2022	METTL3	China	Asian	Head and neck squamous cell carcinoma	80	100	99 (1/1)	I-IV	OS	Reported	OS DFS	DFS	METTL3	score ≥ 8 (0-12)	1.00	0.00	0.00	Random
Chen 2021	METTL3	China	Asian	Gallbladder-cancer	NA	120	57 (63/63)	I-IV	OS	Reported	OS DFS	DFS	METTL3	> median	1.00	0.00	0.00	Random
Yang 2021	FTO	China	Asian	Lung adenocarcinoma	120	83	55 (28/55)	I-IV	OS	Calculated	OS DFS	DFS	METTL3	score ≥ 6 (0-8)	1.00	0.00	0.00	Random
Huang 2018	ALKBH5	China	Asian	Lung adenocarcinoma	3~125	88	47 (41/1)	I-IV	OS	Reported	OS DFS	DFS	METTL3	> median	1.00	0.00	0.00	Random
Xu 2022 (2)	YTHDF2	China	Asian	Lung squamous cell carcinoma	60	73	66 (67/67)	I-III	OS	Reported	OS DFS	DFS	METTL3	> median	1.00	0.00	0.00	Random
Tsuchiya 2021	YTHDF1 and YTHDF2	Japan	Asian	Non-small-cell lung cancer	NA	603	414 (189)	I-IV	OS	RFS	Reported	OS DFS	METTL3	score > 118 (0-300)	1.00	0.00	0.00	Random
Lu 2020	METTL3	China	Asian	Nasopharyngeal carcinoma	10.33~91.67	55	30 (25/25)	I-IV	OS	Reported	OS DFS	DFS	METTL3	score ≥ 3 (0-9)	1.00	0.00	0.00	Random
Du 2022	IGF2BP3	China	Asian	Nasopharyngeal carcinoma	150	70	56 (14/1)	I-IV	NA	Reported	OS DFS	DFS	METTL3	score ≥ 3 (0-9)	1.00	0.00	0.00	Random
Gu 2019	METTL14	China	Asian	Bladder cancer	NA	98	NA (NA/NA)	NA	NA	Reported	OS DFS	DFS	METTL3	score ≥ 8 (0-12)	1.00	0.00	0.00	Random
Han 2019	METTL3	China	Asian	Bladder cancer	60~96	180	141 (39/141)	I-IV	OS	Calculated	OS DFS	DFS	METTL3	score ≥ 3 (0-9)	1.00	0.00	0.00	Random
Yu 2021	ALKBH5	China	Asian	Bladder cancer	60	161	124 (37/124)	I-IV	OS	Reported	OS DFS	DFS	METTL3	score ≥ 8 (0-12)	1.00	0.00	0.00	Random
Li 2017	METTL3	China	Asian	Renal cell carcinoma	100	145	89 (56/145)	I-IV	NA	Reported	OS DFS	DFS	METTL3	score ≥ 8 (0-12)	1.00	0.00	0.00	Random
Zhang 2020	ALKBH5	China	Asian	Renal cell carcinoma	100	96	60 (36/96)	I-IV	OS	Calculated	OS DFS	DFS	METTL3	score ≥ 8 (0-12)	1.00	0.00	0.00	Random
Niu 2019	FTO	China	Asian	Breast tumor	96	53	0.53 (1/53)	NA	NA	Reported	OS DFS	DFS	METTL3	score ≥ 8 (0-12)	1.00	0.00	0.00	Random
Hua 2018	METTL3	China	Asian	Ovarian carcinoma	NA	162	0.162 (162/0)	I-IV	> median	Reported	OS DFS	DFS	METTL3	score ≥ 8 (0-12)	1.00	0.00	0.00	Random
Lin 2022	METTL3	China	Asian	Thyroid carcinoma	36	80	25 (55/80)	I-IV	> median	Reported	OS DFS	DFS	METTL3	score ≥ 8 (0-12)	1.00	0.00	0.00	Random
Orouji E 2020	YTHDF1	Germany	European	Merkel cell carcinoma	NA	31	NA (NA/NA)	NA	NA	Reported	OS DFS	DFS	METTL3	score ≥ 8 (0-12)	1.00	0.00	0.00	Random

Abbreviations: CI: confidence interval; HR: hazard ratio; OS: overall survival; DFS: disease-free survival; RFS: relapse-free survival; NA: not available; F: female; M: male.

Table 2. Summary of the meta-analysis of m6A regulators and prognosis in cancer patients.
Figure 2. Forest plots for the association of m6A writers (A), erasers (B) and readers (C) with OS in cancer patients.
Table 3. Subgroup analysis of the correlation between m6A regulators and cancer prognosis based on cancer types.

Regulators	Cancer types	Outcome	Studies	HR	95% CI	P-value	I²	P-value	Effects model
METTL3	oral squamous cell carcinoma	OS	2	2.16	1.33–3.49	0.002	0.00%	0.602	Fix
	esophageal squamous cell carcinoma	OS	2	2.2	1.59–3.05	0	0.00%	0.436	Fix
	gastric cancer	OS	2	2.72	1.81–4.07	0	64.20%	0.039	Random
	colorectal cancer	DFS	2	2.58	1.92–3.47	0	37.90%	0.205	Fix
METTL14	colorectal cancer	OS	3	1.59	0.48–5.26	0.448	92.9%	0.00%	Random
	pancreatic cancer	OS	2	1.32	0.48–3.60	0.586	65.90%	0.087	Random
FTO	gastric cancer	OS	2	1.15	0.47–2.81	0.756	92.40%	0.00%	Random
YTHDF1	osteosarcoma	OS	2	0.95	0.58–1.54	0.833	0.00%	0.337	Fix

Abbreviations: CI: confidence interval; HR: hazard ratio; OS: overall survival; DFS: disease-free survival.

p < 0.001; I² = 63.7%, *p* = 0.001), TNM stage (OR = 3.61, *p* < 0.001; I² = 0.0%, *p* = 0.886) and vascular invasion (OR = 1.47; 95% CI: 1.05–2.05, *p* = 0.024; I² = 0.0%, *p* = 0.508). Conversely, high expression of

Figure 3. Forest plots for the association of m6A regulators with DFS in cancer patients.
m6A regulator	Clinicopathological feature	Studies (n)	Patients (n)	References	OR (95% CI)	P value	Heterogeneity	Effects model	
	Depth of invasion (T3–T4 vs. T1–T2)	9	1057	Hua 2018; Lu 2020; Wang 2020; Xia 2020; Xu 2021; Yang 2020 (2); Xia 2019; Chen 2021; Guo 2022 Liu 2020; Chen 2021; Guo 2022; Sun 2020; Lin 2022; Xia 2020; Xu 2022 (1); Xia 1999; Hua 2018; Lu 2020; Wang 2020; Yang 2020 (2); Xu 2021	1.85 (1.40–2.45)	0.000	47.4	0.055	Fix
	Lymph Node Metastasis	13	1421	Shengli 2019; Liu 2020; Yang 2020 (2); Xu 2022 (1); Shengli 2022; Wang 2020; Deng 2019; Liu 2020	2.37 (1.58–3.56)	0.000	63.7	0.001	Random
	TNM Stage (T3–T4 vs. T1–T2)	11	1303	Hua 2019; Sun 2020; Xia 2020; Chen 2021; Lin 2022; Yang 2020 (2); Xu 2022 (1); Shengli 2022; Wang 2020; Deng 2019; Liu 2020	2.61 (2.03–3.36)	0.000	12.7	0.323	Fix
METTL3	Tumor size (>5 cm vs ≤5 cm)	3	375	Sun 2020; Li 2019 (1); Xu 2022 (1); Yue 2019	2.33 (1.51–3.61)	0.000	0.0	0.886	Fix
	Vascular invasion	4	781	Chen 2021; Shengli 2022; Xu 2022 (1); Deng 2019; Sun 2020; Hua 2018; Lu 2020; Wang 2020; Yang 2020 (2); Guo 2022; Li 2019 (1); Liu 2020; Lu 2020	1.93 (0.99–3.78)	0.054	67.5	0.002	Random
	Distant metastasis	9	1091	Li 2019 (1); Xia 2020; Yang 2020 (2); Hua 2018	1.22 (0.65–2.30)	0.529	73.3	0.011	Random
	Clinical stage III–IV vs. II–I	4	688	Xu 2022 (1); Yue 2019	1.26 (0.92–1.74)	0.150	0.0	0.666	Fix
METTL14	Tumor size (>5 cm vs ≤5 cm)	2	285	Liu 2021; Yang 2020 (3)	0.32 (0.05–2.14)	0.241	79.6	0.027	Random
	Distant metastasis	2	285	Liu 2021; Yang 2020 (3)	0.27 (0.13–0.58)	0.001	0.0	0.739	Fix
	TNM Stage (T3–T4 vs. T1–T2)	4	466	Liu 2021; Yang 2020 (3)	0.26 (0.09–0.73)	0.011	60.6	0.079	Random
	Vascular invasion	2	102	Guo 2020; Yang 2020 (1)	0.39 (0.17–0.92)	0.032	6.3	0.301	Fix
ALKBH5	Clinical stage (III–IV vs. I–II)	2	148	Yang 2020 (1); Huang 2018	0.98 (0.07–13.96)	0.988	91.9	0.000	Random
	Depth of invasion (T3–T4 vs. T1–T2)	4	775	Nagaki 2020; Huang 2018; Li 2019 (2); Yang 2020 (1)	0.84 (0.45–1.54)	0.564	56.7	0.074	Random
	Differentiation (Poor vs. Moderate/Well)	4	729	Guo 2020; Li 2019 (2); Yang 2020 (1); Nagaki 2020	0.81 (0.41–1.59)	0.532	54.8	0.085	Random
	Distant metastasis	2	510	Li 2019 (2); Yang 2020 (1)	0.37 (0.02–5.60)	0.475	71.7	0.060	Random
	Lymph Node Metastasis	5	936	Li 2019 (2); Yu 2021; Nagaki 2020; Huang 2018; Yang 2020 (1)	0.94 (0.51–1.75)	0.851	65.4	0.021	Random
	TNM Stage (T3–T4 vs. T1–T2)	3	715	Huang 2018; Nagaki 2020; Li 2019 (2)	1.03 (0.52–2.06)	0.925	69.3	0.039	Random
FTO	Depth of invasion (T3–T4 vs. T1–T2)	2	578	Xu 2017; Li 2019 (2)	0.89 (0.62–1.28)	0.533	0.0	0.623	Fix
	Differentiation (Poor vs. Moderate/Well)	4	997	Ruan 2021; Xu 2017; Li 2019 (2); Zeng 2021	0.77 (0.34–1.77)	0.537	78.3	0.003	Random
	Distant metastasis	3	902	Xu 2017; Li 2019 (2); Ye 2020	1.19 (0.72–1.95)	0.502	0.0	0.515	Fix
	Lymph Node Metastasis	3	628	Xu 2017; Li 2019 (2); Zeng 2021	0.76 (0.22–2.67)	0.671	83.5	0.002	Random
Nerve invasion 2 419 Ruan 2021; Zeng 2021 0.71 (0.42–1.22) 0.218 0 0.687 Fix
TNM Stage (T3–T4 vs. T1–T2) 4 997 Ruan 2021; Zeng 2021; Xu 2017; Li 2019 (2) 0.98 (0.42–2.99) 0.969 82.8 0.001 Random

Distant metastasis 2 113 Nishizawa 2018; Wei 2022 8.59 (2.58–28.60) 0.000 0.0 0.863 Fix
Tumor size (>5 cm vs ≤5 cm) 2 170 Li 2021; Wei 2022 4.75 (2.47–9.14) 0.000 0.0 1.000 Fix
Lymph Node Metastasis 3 716 Wei 2022; Nishizawa 2018; Tsuchiya 2021 1.73 (0.38–7.80) 0.476 84.1 0.002 Random
TNM Stage (T3–T4 vs. T1–T2) 3 716 Wei 2022; Nishizawa 2018; Tsuchiya 2021 1.83 (0.42–7.94) 0.418 88.4 0.000 Random
Vascular invasion 2 183 Li 2021; Nishizawa 2018 1.55 (0.21–11.37) 0.665 85.7 0.008 Random

YTHDF1
Lymph Node Metastasis 2 676 Tsuchiya 2021; Xu 2022 (2) 1.59 (0.20–12.53) 0.660 92.9 0.000 Random
TNM Stage (T3–T4 vs. T1–T2) 2 676 Tsuchiya 2021; Xu 2022 (2) 1.85 (0.30–11.54) 0.512 90.0 0.002 Random

YTHDF2

Abbreviations: CI: confidence interval; OR: odds ratio.

METTL14 correlated negatively with pT stage (OR = 0.27; 95% CI: 0.13–0.58, p = 0.001; I\(^2\) = 0.00%, p = 0.739), pM stage (OR = 0.12; 95% CI: 0.03–0.46, p = 0.002; I\(^2\) = 0.00%, p = 0.497), pN stage (OR = 0.26; 95% CI: 0.09–0.73, p = 0.011; I\(^2\) = 60.6% and TNM stage (OR = 0.21; 95% CI: 0.13–0.34, p < 0.001; I\(^2\) = 0.00%, p = 0.575). Meanwhile, there was a statistical association between overexpression of ALKBH5 and negative vascular invasion (OR=0.39; 95%CI: 0.17-0.92, p = 0.032; I\(^2\) = 6.3%, p = 0.301, Figure 5). Furthermore, overexpression of YTHDF1 was associated with advanced pM stage (OR = 8.59; 95% CI: 2.58–28.60, p < 0.001; I\(^2\) = 0.00%, p = 0.863, Figure 5) and tumor size >5 cm (OR = 4.75; 95% CI: 2.47–9.14, p < 0.001; I\(^2\) = 0.00%, p = 1.000, Figure 5).

Sensitivity analysis

We omitted individual studies successively to estimate the impact of each study in our meta-analysis. No individual study modified the pooled HR of included studies reporting OS or DFS significantly, which proved that the results were stable (Figure 6).

Publication bias

Funnel plots were generated to detect publication bias (Figure 7). The studies were distributed uniformly around the axis, indicating no obvious publication bias. Meanwhile, no obvious publication bias was found according to Begg’s test and Egger’s test (Table 5).

Figure 4. Forest plots for the association of METTL3 (A) and METTL14 (B) with clinicopathological parameters in cancer patients.
m6A modification, a reversible epigenetic modification regulated by three types of proteins (writers, erasers and readers), plays a complicated role in cancer initiation and development [14, 71, 72]. Recent studies have explored how m6A regulators influenced the prognosis of cancer patients. However, results were frequently inconsistent among different cancer types. Therefore, a comprehensive study to summarize the results from current publications is necessary. To report prognostic value of m6A regulators in cancer patients, we analyzed the survival time and clinicopathological features of 7006 patients from 49 studies who expressed different levels of m6A regulators. Results showed that expression level of m6A writers was related to cancer prognosis. In addition, different m6A writers had opposite associations with the prognosis and clinicopathological features in cancer patients. According to the results, there was a possible trend for poor OS and DFS in patients with the high expression of METTL3. Similarly, previous bioinformatic analysis from databases like TCGA, GEO and HPA, supported that high expression of METTL3 was correlated with unfavorable prognosis in various cancers, including gastric cancer [73], colorectal cancer [74], liver cancer [75], prostate cancer [76] and glioma [77]. In most of these databases, RNA-seq was used to detect the level of METTL3. Moreover, a previous meta-analysis including 9 studies showed that high METTL3 expression was associated with poor prognosis in cancer patients, and the expression of METTL3 in included 9 studies were all detected by qRT-PCR. While in the studies included in our analysis, METTL3 was detected only by IHC staining. Combining our studies with the results from databases, we can conclude that METTL3 is related to cancer prognosis at protein level, which strongly suggests that it could be a prognostic predictor. Additionally, this tendency was more prominent in gastric cancer. Previous studies indicated that in human gastric cancer cells, high expression of METTL3 stimulates the expression of GLUT4 and ENO2 via the METTL3/HDGF axis, thereby promoting tumor angiogenesis and glycolysis [6]. Moreover, Ben Yue et al. unveiled that METTL3 stabilized ZMYM1 mRNA in gastric cancer cells, which facilitated EMT and metastasis by repressing E-cadherin promoter [26]. These might account, at least to some extent, for the poor survival of patients with gastric cancer. Furthermore, aberrant expression of METTL3 was involved in the dysfunction of cellular signaling pathways, such as MAPK [74], JAK/STAT [78], PI3K/AKT [79, 80] and Wnt/β-catenin [81] cascades, which are involved in tumor progression, metastasis, migration and stemness. We also found that high expression of METTL3 was associated with advanced
TNM stage and pT stage, pN stage, tumor size > 5 cm and vascular invasion respectively. Therefore, based on these current results, we believe that METTL3 plays an important role in multiple stages of cancer progression and ultimately affects prognosis. Interestingly, in contrast to METTL3, METTL14, another m6A methylation writer, might be a positive prognosticator. Previous studies have shown that METTL14 might have various functions that have not been fully identified yet, thus its role in cancer remained controversial [82]. In this study, our result confirmed that high level of METTL14 was associated with better OS. Different studies have reported that METTL14 suppressed progression and metastasis in several cancers, such as colorectal cancer [83] and hepatocellular carcinoma [84]. Besides, Panneerdoss et al. found that in METTL14-silenced breast cancer cells, RhoA and PI3K-AKT signaling pathways were highly enriched.

Figure 6. Sensitivity analysis of METTL3 (A), METTL14 (B), ALKBH5 (C), FTO (D), and YTHDF1 (E) for OS. Sensitivity analysis of METTL3 (F) for DFS.
Table 5. Publication bias test of included studies in our meta-analysis.

Regulators	Outcome	Begg’s test (P value)	Egger’s test (P value)
METTL3	OS	0.415	0.319
METTL4	OS	0.308	0.229
ALKBH5	OS	0.174	0.290
FTO	OS	0.592	0.571
YTHDF1	OS	0.260	0.117
METTL3	DFS	0.230	0.083

Abbreviations: OS: overall survival; DFS: disease-free survival.

Figure 7. Funnel plot of METTL3 (A), METTL14 (B), ALKBH5 (C), FTO (D) and YTHDF1 (E) for OS. Funnel plot of METTL3 (F) for DFS.
which are well-known to be mediators of cancer progression and angiogenesis [85]. Moreover, our study showed that high expression of METTL14 was inversely associated with poor TNM stage, pT stage, pN stage and pM stage. Combining the results of other studies and ours, we inferred that METTL14 plays a role in cancer suppression and could be a favorable index of cancer progression and prognosis. Moreover, METTL3 and METTL14 show completely contrary effects on cancer progression, indicating that METTL3 and METTL14 may have some biological functions that are independent of m6A modification, which deserves further study.

Besides, from the analysis results of clinicopathological features, high expression of YTHDF1 was associated with advanced pM stage and tumor size >5 cm, while high expression of ALKBH5 was negatively associated with vascular invasion. Consistently, a recent study reported that YTHDF1 regulates CRC tumorigenesis and metastasis by promoting ARHGEF2 translation and RhoA signaling in colorectal cancer [20]. High YTHDF1 level is significantly associated with metastatic gene signature in colorectal cancer, while YTHDF1-knockout mice inhibited tumor growth in vivo [20]. Therefore, targeting the YTHDF1-m 6A-ARHGEF2 axis may be a promising therapeutic strategy to inhibit tumor growth, invasion, and metastasis. In addition, ALKBH5, as the second m6A demethylated enzyme discovered after FTO, was reported to promote tumor stem formation in gliomas and promote tumor progression in breast cancer, colon cancer and hepatocellular carcinoma [85, 86]. Conversely, ALKBH5 could inhibit tumor growth in bladder cancer and pancreatic cancer. These findings suggest the complexity of the action of ALKBH5 in cancers. However, no significant relationship was found between high expressions of m6A erasers or readers and poor prognosis. Limitation of sample size and a certain degree of heterogeneity may partly account for this. Additionally, the mechanisms of m6A modification and cancers are complicated [87]. Therefore, more studies are needed to provide further mechanistic insights.

To the best of our knowledge, this is the first study to conduct a meta-analysis of the association between m6A regulators and the prognosis and clinicopathology in cancer patients systematically. Nonetheless, there are still several limitations in our meta-analysis. First, several original data were not available, therefore we had to extract data from the Kaplan-Meier survival curves and this might increase the inaccuracy in our study. Secondly, the ethnicity of included patients was mostly Asian, which may increase the population selection bias. Thirdly, IHC was adopted to detect the expression of m6A regulators in all studies, but the IHC protocols, antibodies and cut-off values were not consistent across the included studies, which may have led to significant heterogeneity between included studies. Therefore, future research should standardize the cut-off values for the expression of m6A regulators, detection antibodies used and IHC staining protocols to better compare the results of different studies. In summary, our meta-analysis provides evidence that the expression level of m6A writers is related to cancer progression and prognosis. Different m6A writer proteins play different roles in patients’ outcome: high expression level of METTL3 is significantly associated with poor prognosis, while high expression of METTL14 leads to better survival rate. Both m6A regulators possess a great potential to become practicable prognosticators in various cancers. Meanwhile, future studies with more complete and representative datasets are required for further exploration.

METHODS

Literature search

Relevant articles published up to April 2022 were obtained from PubMed, Embase, Web of Science and the Cochrane library. There were no restrictions on language or date of publication. “N (6)-methyladenosine” and “cancers” were the two main key words we used. The comprehensive search strategy for each database is provided in Supplementary Table 1. All references were managed using EndNote X9. Three reviewers independently analyzed search results. Any disagreements between reviewers were resolved by discussion.

Inclusion and exclusion criteria

The process of selecting eligible studies was conducted by three reviewers independently. Articles were included when they met the following inclusion criteria: (1) the text evaluated the relation between m6A regulators expression and cancer prognosis; (2) HR and 95% CI were reported or could be calculated from the text; (3) original research; (4) the expression of m6A regulators in tissues was detected by immunohistochemistry; (5) patients were confirmed cancers definitively. The exclusion criteria were: (1) reviews, letters, meeting abstracts; (2) nonhuman studies; (3) sample cases were from databases; (4) duplicate data; (5) studies did not provide necessary and complete data.

Data extraction and quality assessment

The following information were extracted from eligible studies independently by three researchers: author,
published year, country, m6A regulators, cancer types, cancer stage, sample size, gender, cut-off value of m6A regulators and survival data including OS, DFS and RFS. The HR with its 95% CI were extracted from the text directly or calculated from Kaplan-Meier survival curve using Engauge Digitizer. The quality of the included studies was evaluated using the Newcastle Ottawa Scale (NOS) criteria. NOS scores range from 0 to 9. It would be considered as high-quality study if score was more than 5; otherwise, it would be considered as low-quality study. Only studies with NOS ≥ 6 were finally selected for inclusion in meta-analysis. Disagreements were resolved by discussion.

Statistical analysis

The pooled HR and 95% CI were used to evaluate the relation between m6A regulators and cancer prognosis (OS, DFS and RFS). The pooled odds ratio (OR) and 95% CI were used to evaluate the relationship between m6A regulators and clinicopathological parameters. HRs or ORs >1 represented a poor prognosis in cancer. Heterogeneity among the studies was evaluated by Cochrane’s Q statistic and the I² statistic. If a $p < 0.1$ or $I^2 > 50\%$, we applied a random-effect model. Otherwise, a fixed-effect model was applied. Subgroup analysis was conducted according to cancer types. In the sensitivity analysis, we omitted individual studies successively to estimate the impact of each study in our meta-analysis. Begg’s test and Egger’s test were used to evaluate publication bias. A two-tailed p value < 0.05 was considered statistically significant in all statistical tests. All data analyses were performed using StataSE15.1 (Stata Corporation, College Station, TX, USA).

Abbreviations

METTL3: Methyltransferase Like 3; METTL14: Methyltransferase Like 14; METTL16: Methyltransferase Like 16; RBM15: RNA-binding protein 15; RBM15B: Putative RNA-binding protein 15B; HNRNPC: Heterogeneous nuclear ribonucleoproteins; HNRNPC: Heterogeneous nuclear ribonucleoproteins; HNRNPCA2B1: Heterogeneous nuclear ribonucleoproteins A2/B1; YTHDF1: YTH domain-containing family protein 1; YTHDF2: YTH domain-containing family protein 2; YTHDF3: YTH domain-containing family protein 3; YTHDC1: YTH domain-containing family protein 1; FTO: Alpha-ketoglutarate-dependent dioxygenase FTO; ALKBH5: DNA demethylase ALKBH5; OS: overall survival; DFS: disease-free survival; RFS: recurrence-free survival; HR: hazard ratio; OR: odds ratio; M/F: male/female; NA: not available; cut-off value: the value that can be diagnosed as positive/high expression of a m6A regulator; IHC: immunohistochemistry; IF: immunofluorescence; qRT-PCR: quantitative reverse transcription polymerase chain reaction; P: prospective; CI: confidence interval.

AUTHOR CONTRIBUTIONS

Zhangci Su, Leyao Xu, Xinning Dai and Yun Wang conceived and designed the study. Zhangci Su, Leyao Xu and Xinning Dai analyzed the data, prepared the figures and tables, and wrote the paper. Mengyao Zhu validated the data. Xiaodan Chen, Yuanyuan Li, Jie Li and Ruihan Ge contributed analysis tools and materials. Yun Wang and Bin Cheng reviewed drafts of the paper and participated in its coordination. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

We would like to thank all researchers for their contributions.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest related to this study.

FUNDING

This work was supported by Guangzhou Science and Technology Project (Grant Number: 201804010040); Guangdong Basic and Applied Basic Research Foundation (Grant Number: 2019A1515011203); Sun Yat-sen University Young Teacher Cultivation Project (Grant Number: 18ykpy29); Science and Technology Planning Project of Guangzhou, China (Grant Number: 201704020063).

REFERENCES

1. World Cancer Report: Cancer Research for Cancer Prevention. https://publications.iarc.fr/586.
2. Jia G, Fu Y, He C. Reversible RNA adenosine methylation in biological regulation. Trends Genet. 2013; 29:108–15. https://doi.org/10.1016/j.tig.2012.11.003 PMID: 23218460
3. Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 2017; 45:6051–63. https://doi.org/10.1093/nar/gkx141 PMID: 28334903
4. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, et
al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014; 24:177–89. https://doi.org/10.1038/cr.2014.3 PMID:24407421

5. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015; 518:560–4. https://doi.org/10.1038/nature14234 PMID:25719671

6. Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J, Jiang Z, Zhang Y, Xu G, Zhang J, Zhou J, Sun B, Zou X, Wang S. METTL3-mediated m^6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2020; 69:1193–205. https://doi.org/10.1136/gutjnl-2019-319639 PMID:31582403

7. Tanabe A, Tanikawa K, Tsunetomi M, Takai K, Ikeda H, Konno J, Torigoe T, Maeda H, Kutomi G, Okita K, Mori M, Sahara H. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Lett. 2016; 376:34–42. https://doi.org/10.1016/j.canlet.2016.02.022 PMID:26996300

8. Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D. The m^6A epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci. 2020; 21:36–51. https://doi.org/10.1038/s41583-019-0244-z PMID:31804615

9. Maity A, Das B. N6-methyladenosine modification in mRNA: machinery, function and implications for health and diseases. FEBS J. 2016; 283:1607–30. https://doi.org/10.1111/febs.13614 PMID:26645578

10. Yang Y, Shen F, Huang W, Qin S, Huang JT, Sergi C, Yuan BF, Liu SM. Glucose Is Involved in the Dynamic Regulation of m6A in Patients With Type 2 Diabetes. J Clin Endocrinol Metab. 2019; 104:665–73. https://doi.org/10.1210/jc.2018-00619 PMID:30137347

11. Chen S, Li Y, Zhi S, Ding Z, Wang W, Peng Y, Huang Y, Zheng R, Yu H, Wang J, Hu M, Miao J, Li J. WTAP promotes osteosarcoma tumorigenesis by repressing HMBOX1 expression in an m^6A-dependent manner. Cell Death Dis. 2020; 11:659. https://doi.org/10.1038/s41419-020-02847-6 PMID:32814762

12. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, Qin X, Tang L, Wang Y, et al. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N^6-Methyladenosine RNA Demethylase. Cancer Cell. 2017; 31:127–41. https://doi.org/10.1016/j.ccell.2016.11.017 PMID:28017614

13. Shen C, Sheng Y, Zhu AC, Robinson S, Jiang X, Dong L, Chen H, Su R, Yin Z, Li W, Deng X, Chen Y, Hu YC, et al. RNA Demethylase ALKBHS Selectively Promotes Tumorigenesis and Cancer Stem Cell Self-Renewal in Acute Myeloid Leukemia. Cell Stem Cell. 2020; 27:64–80.e9. https://doi.org/10.1016/j.stem.2020.04.009 PMID:32402250

14. Cao G, Li HB, Yin Z, Flavell RA. Recent advances in dynamic m6A RNA modification. Open Biol. 2016; 6:160003. https://doi.org/10.1098/rsob.160003 PMID:27249342

15. Li Q, Ni Y, Zhang L, Jiang R, Xu J, Yang H, Hu Y, Qiu J, Pu L, Tang J, Wang X. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther. 2021; 6:76. https://doi.org/10.1038/s41392-020-00453-8 PMID:33619246

16. Cui YH, Yang S, Wei J, Shea CR, Zhong W, Wang F, Shah P, Kibriya MG, Cui X, Ahsan H, He C, He YY. Autophagy of the m^6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nat Commun. 2021; 12:2183. https://doi.org/10.1038/s41467-021-22469-6 PMID:33846348

17. Yang Z, Yang S, Cui YH, Wei J, Shah P, Park G, Cui X, He C, He YY. METTL14 facilitates global genome repair and suppresses skin tumorigenesis. Proc Natl Acad Sci U S A. 2021; 118:e2025948118. https://doi.org/10.1073/pnas.2025948118 PMID:34452996

18. Tao L, Mu X, Chen H, Jin D, Zhang R, Zhao Y, Fan J, Cao M, Zhou Z. FTO modifies the m6A level of MALAT1 and promotes bladder cancer progression. Clin Transl Med. 2021; 11:e310. https://doi.org/10.1002/ctm2.310 PMID:33634966

19. Ma L, Xue X, Zhang X, Yu K, Xu X, Tian X, Miao Y, Meng F, Liu X, Guo S, Qiu S, Wang Y, Cui J, et al. The essential roles of m^6A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. J Exp Clin Cancer Res. 2022; 41:36. https://doi.org/10.1186/s13046-021-02200-5 PMID:35078505
20. Wang S, Gao S, Zeng Y, Zhu L, Mo Y, Wong CC, Bao Y, Su P, Zhai J, Wang L, Soares F, Xu X, Chen H, et al. N6-Methyladenosine Reader YTHDF1 Promotes ARHGFE2 Translation and RhoA Signaling in Colorectal Cancer. Gastroenterology. 2022; 162:1183–96. https://doi.org/10.1053/j.gastro.2021.12.269 PMID: 34968454

21. Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, He S, Shimamoto F. m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer. 2020; 19:3. https://doi.org/10.1186/s12943-019-1128-6 PMID: 31906946

22. Shen M, Li Y, Wang Y, Shao J, Zhang F, Yin G, Chen A, Zhang Z, Zheng S. N4-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biol. 2021; 47:102151. https://doi.org/10.1016/j.redox.2021.102151 PMID: 34607160

23. Liu L, Li H, Hu D, Wang Y, Shao W, Zhong J, Yang S, Liu J, Zhang J. Insights into N6-methyladenosine and programmed cell death in cancer. Mol Cancer. 2022; 21:32. https://doi.org/10.1186/s12943-022-01508-w PMID: 35090469

24. Zhang X, Wang F, Wang Z, Yang X, Yu H, Si S, Lu J, Zhou Z, Lu Q, Wang Z, Yang H. ALKBH5 promotes the proliferation of renal cell carcinoma by regulating AURKB expression in an m6A-dependent manner. Ann Transl Med. 2020; 8:646. https://doi.org/10.21037/atm-20-3079 PMID: 32566583

25. Zeng J, Zhang H, Tan Y, Wang Z, Li Y, Yang X. m6A demethylase FTO suppresses pancreatic cancer tumorigenesis by demethylating PJA2 and inhibiting Wnt signaling. Mol Ther Nucleic Acids. 2021; 25:277–92. https://doi.org/10.1016/j.omtn.2021.06.005 PMID: 34484859

26. Yue B, Song C, Yang L, Cui R, Cheng X, Zhang Z, Zhao G. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer. 2019; 18:142. https://doi.org/10.1186/s12943-019-1065-4 PMID: 31607270

27. Yuan W, Chen S, Li B, Han X, Meng B, Zou Y, Chang S. The N6-methyladenosine reader protein YTHDC2 promotes gastric cancer progression via enhancing YAP mRNA translation. Transl Oncol. 2022; 16:101308. https://doi.org/10.1016/j.tranon.2021.101308 PMID: 34911015

28. Yu H, Yang X, Tang J, Si S, Zhou Z, Lu J, Han J, Yuan B, Wu Q, Lu Q, Yang H. ALKBH5 Inhibited Cell Proliferation and Sensitized Bladder Cancer Cells to Cisplatin by m6A-CK2α-Mediated Glycosylation. Mol Ther Nucleic Acids. 2020; 23:27–41. https://doi.org/10.1016/j.omtn.2020.10.031 PMID: 33376625

29. Ye Z, Wang S, Chen W, Zhang X, Chen J, Jiang J, Wang M, Zhang L, Xuan Z. Fat mass and obesity-associated protein promotes the tumorigenesis and development of liver cancer. Oncol Lett. 2020; 20:1409–17. https://doi.org/10.3892/ol.2020.11673 PMID: 32724383

30. Yang X, Zhang S, He C, Xue P, Zhang L, He Z, Zang L, Feng B, Sun J, Zheng M. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer. 2020; 19:46. https://doi.org/10.1186/s12943-020-1146-4 PMID: 32111213

31. Yang X, Shao F, Guo D, Wang W, Wang J, Zhu R, Gao Y, He J, Lu Z. WNT/β-catenin-suppressed FTO expression increases m6A of c-Myc mRNA to promote tumor cell glycolysis and tumorigenesis. Cell Death Dis. 2021; 12:462. https://doi.org/10.1038/s41419-021-03739-z PMID: 33966037

32. Yang P, Wang Q, Liu A, Zhu J, Feng J. ALKBH5 Holds Prognostic Values and Inhibits the Metastasis of Colon Cancer. Pathol Oncol Res. 2020; 26:1615–23. https://doi.org/10.1007/s12253-019-00737-7 PMID: 31506804

33. Yang DD, Chen ZH, Yu K, Lu JH, Wu QN, Wang Y, Ju HQ, Xu RH, Liu ZX, Zeng ZL. METTL3 Promotes the Progression of Gastric Cancer via Targeting the MYC Pathway. Front Oncol. 2020; 10:115. https://doi.org/10.3389/fonc.2020.00115 PMID: 32175271

34. Xu QC, Tien YC, Shi YH, Chen S, Zhu YQ, Huang XT, Huang CS, Zhao W, Yin XY. METTL3 promotes intrahepatic cholangiocarcinoma progression by regulating IFIT2 expression in an m6A-YTHDF2-dependent manner. Oncogene. 2022; 41:1622–33. https://doi.org/10.1038/s41388-022-02185-1 PMID: 35094011

35. Xu P, Hu K, Zhang P, Sun ZG, Zhang N. Hypoxia-mediated YTHDF2 overexpression promotes lung squamous cell carcinoma progression by activation of the mTOR/AKT axis. Cancer Cell Int. 2022; 22:13.
36. Xu L, Li Q, Wang Y, Wang L, Guo Y, Yang R, Zhao N, Ge N, Wang Y, Guo C. m^6^A methyltransferase METTL3 promotes oral squamous cell carcinoma progression through enhancement of IGFB2BP2-mediated SLC7A11 mRNA stability. Am J Cancer Res. 2021; 11:5282–98.
https://doi.org/10.1038/s41467-021-02368-y
PMID: 34996459

37. Xu D, Shao W, Jiang Y, Wang X, Liu Y, Liu X. FTO expression is associated with the occurrence of gastric cancer and prognosis. Oncol Rep. 2017; 38:2285–92.
https://doi.org/10.3892/or.2017.5904
PMID: 28849183

38. Xia TL, Yan SM, Yuan L, Zeng MS. Upregulation of METTL3 Expression Predicts Poor Prognosis in Patients with Esophageal Squamous Cell Carcinoma. Cancer Manag Res. 2020; 12:5729–37.
https://doi.org/10.2147/CMAR.S245019
PMID: 32765076

39. Xia T, Wu X, Cao M, Zhang P, Shi G, Zhang J, Lu Z, Wu P, Cai B, Miao Y, Jiang K. The RNA m6A methyltransferase METTL3 promotes pancreatic cancer cell proliferation and invasion. Pathol Res Pract. 2019; 215:152666.
https://doi.org/10.1016/j.prp.2019.152666
PMID: 31606241

40. Wei K, Gao Y, Wang B, Qu YX. Methylation recognition protein YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) regulates the proliferation, migration and invasion of osteosarcoma by regulating m6A level of CCR4-NOT transcription complex subunit 7 (CNOT7). Bioengineered. 2022; 13:5236–50.
https://doi.org/10.1080/21655979.2022.2037381
PMID: 35156522

41. Wang XK, Zhang YW, Wang CM, Li B, Zhang TZ, Zhou WJ, Cheng LJ, Huo MY, Zhang CH, He YL. METTL16 promotes cell proliferation by up-regulating cyclin D1 expression in gastric cancer. J Cell Mol Med. 2021; 25:6602–17.
https://doi.org/10.1111/jcmm.16664
PMID: 34075693

42. Wang W, Shao F, Yang X, Wang J, Zhu R, Yang Y, Zhao G, Guo D, Sun Y, Wang J, Xue Q, Gao S, Gao Y, et al. METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N6-methyladenosine-dependent YTHDF binding. Nat Commun. 2021; 12:3803.
https://doi.org/10.1038/s41467-021-23501-5
PMID: 34155197

43. Wang H, Wei W, Zhang ZY, Liu Y, Shi B, Zhong W, Zhang HS, Fang X, Sun CL, Wang JB, Liu LX. TCF4 and HuR mediated-METTL14 suppresses dissemination of colorectal cancer via N6-methyladenosine-dependent silencing of ARRD4. Cell Death Dis. 2021; 13:3.
https://doi.org/10.1038/s41419-021-04459-0
PMID: 34916487

44. Tsuchiya K, Yoshimura K, Inoue Y, Iwashita Y, Yamada H, Kawase A, Watanabe T, Tanahashi M, Ogawa H, Funai K, Shinmura K, Suda T, Sugimura H. YTHDF1 and YTHDF2 are associated with better patient survival and an inflamed tumor-immune microenvironment in non-small-cell lung cancer. Oncoimmunology. 2021; 10:1962656.
https://doi.org/10.1080/2162402X.2021.1962656
PMID: 34408926

45. Tan Z, Shi S, Xu J, Liu X, Lei Y, Zhang B, Hua J, Meng Q, Wang W, Yu X, Liang C. RNA N6-methyladenosine demethylase FTO promotes pancreatic cancer progression by inducing the autocrine activity of PDGF-C in an m6A-YTHDF2-dependent manner. Oncogene. 2022; 41:2860–72.
https://doi.org/10.1038/s41388-022-02306-w
PMID: 35422475

46. Sun Y, Li S, Yu W, Zhao Z, Gao J, Chen C, Wei M, Liu T, Li L, Liu L. N6-methyladenosine-dependent pri-miR-17–92 maturation suppresses PTEN/Thermolysin127 and promotes sensitivity to everolimus in gastric cancer. Cell Death Dis. 2020; 11:836.
https://doi.org/10.1038/s41419-020-03049-w
PMID: 33037176

47. Pan S, Deng Y, Fu J, Zhang Y, Zhang Z, Qin X. N6-methyladenosine upregulates miR-181d-5p in exosomes derived from cancer-associated fibroblasts to inhibit 5-FU sensitivity by targeting NCALD in colorectal cancer. Int J Oncol. 2022; 60:14.
https://doi.org/10.3892/ijo.2022.5304
PMID: 35014676

48. Ruan DY, Li T, Wang YN, Meng Q, Li Y, Yu K, Wang M, Lin JF, Luo LZ, Wang DS, Lin JZ, Bai L, Liu ZX, et al. FTO downregulation mediated by hypoxia facilitates colorectal cancer metastasis. Oncogene. 2021; 40:5168–81.
https://doi.org/10.1038/s41388-021-01916-0
PMID: 34218271

49. Orouji E, Peitsch WK, Orouji A, Houben R, Utikal J. Oncogenic Role of an Epigenetic Reader of m6A RNA Modification: YTHDF1 in Merkel Cell Carcinoma. Cancers (Basel). 2020; 12:202.
https://doi.org/10.3390/cancers12010202
PMID: 31947544

50. Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun L, Wang Y, Li X, Xiong XF, Wei B, Wu X, Wan G. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer. 2019; 18:46.
51. Nishizawa Y, Konno M, Asai A, Koseki J, Kawamoto K, Miyoshi N, Takahashi H, Nishida N, Haraguchi N, Sakai D, Kudo T, Hata T, Matsuda C, et al. Oncogene c-Myc promotes epitranscriptome m6A reader YTHDF1 expression in colorectal cancer. Oncotarget. 2017; 9:7476–86. https://doi.org/10.18632/oncotarget.23554 PMID:32449584

52. Nagaki Y, Motoyama S, Yamaguchi T, Hoshizaki M, Sato Y, Sato T, Koizumi Y, Wakita A, Kawakita Y, Imai K, Nanjo H, Watanabe H, Imai Y, et al. m6A demethylase ALKBH5 promotes proliferation of esophageal squamous cell carcinoma associated with poor prognosis. Genes Cells. 2020; 25:547–61. https://doi.org/10.1111/gtc.12792 PMID:34819634

53. Ma L, Lin Y, Sun SW, Xu J, Yu T, Chen WL, Zhang LH, Guo YC, Wang YW, Chen T, Wei JF, Zhu LJ. KIAA1429 is a potential prognostic marker in colorectal cancer by promoting the proliferation via downregulating WEE1 expression in an m6A-independent manner. Oncogene. 2022; 41:692–703. https://doi.org/10.1038/s41388-021-02066-z PMID:34819634

54. Lu S, Yu Z, Xiao Z, Zhang Y. Gene Signatures and Prognostic Values of m6A Genes in Nasopharyngeal Carcinoma. Front Oncol. 2020; 10:875. https://doi.org/10.3389/fonc.2020.00875 PMID:32596151

55. Liu X, Xiao M, Zhang L, Li L, Zhu G, Shen E, Lv M, Lu X, Sun Z. The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway. J Clin Lab Anal. 2021; 35:e23655. https://doi.org/10.1002/jcla.23655 PMID:33314393

56. Liu L, Wu Y, Li Q, Liang J, He Q, Zhao L, Chen J, Cheng M, Huang Z, Ren H, Chen J, Peng L, Gao F, et al. METTL3 Promotes Tumorigenesis and Metastasis through BMI1 m6A Methylation in Oral Squamous Cell Carcinoma. Mol Ther. 2020; 28:2177–90. https://doi.org/10.1016/j.ymthe.2020.06.024 PMID:32621798

57. Lin S, Zhu Y, Ji C, Yu W, Zhang C, Tan L, Long M, Luo D, Peng X. METTL3-Induced miR-22-3p Upregulation Inhibits STK4 and Promotes the Malignant Behaviors of Thyroid Carcinoma Cells. J Clin Endocrinol Metab. 2022; 107:474–90. https://doi.org/10.1210/clinem/dgab480 PMID:34562008

58. Li Y, Zheng D, Wang F, Xu Y, Yu H, Zhang H. Expression of Demethylase Genes, FTO and ALKBH1, Is Associated with Prognosis of Gastric Cancer. Dig Dis Sci. 2019; 64:1503–13. https://doi.org/10.1007/s10620-018-5452-2

59. Li X, Tang J, Huang W, Wang F, Li P, Qin C, Qin Z, Zou Q, Wei J, Hua L, Yang H, Wang Z. The M6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma. Oncotarget. 2017; 8:96103–16. https://doi.org/10.18632/oncotarget.21726 PMID:29221190

60. Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, Chen ZH, Zeng ZL, Wang F, Zheng J, Chen D, Li B, Kang TB, et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal cancer. Mol Cancer. 2019; 18:112. https://doi.org/10.1186/s12943-019-1038-7 PMID:31230592

61. Li J, Rao B, Yang J, Liu L, Huang M, Liu X, Cui G, Li C, Han Q, Yang H, Cui X, Sun R. Dysregulated m6A-Related Regulators Are Associated With Tumor Metastasis and Poor Prognosis in Osteosarcoma. Front Oncol. 2020; 10:769. https://doi.org/10.3389/fonc.2020.00769 PMID:32582536

62. Huang H, Li L, Chen S, Lü W, Hu J. Expression of demethylase ALKBH5 in lung adenocarcinoma and its relationship with cell proliferation. Tumor. 2018; 38:572–80. https://doi.org/10.3781/j.issn.1000-7431.2018.33.009

63. Hua W, Zhao Y, Jin X, Yu D, He J, Xie D, Duan P. METTL3 promotes ovarian carcinoma growth and invasion through the regulation of AXL translation and epithelial to mesenchymal transition. Gynecol Oncol. 2018; 151:356–65. https://doi.org/10.1016/j.ygyno.2018.09.015 PMID:30249526

64. Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, Yuan WB, Lu JC, Zhou ZJ, Lu Q, Wei JF, Yang H. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019; 18:110. https://doi.org/10.1186/s12943-019-1036-9 PMID:31228940

65. Guo YQ, Wang Q, Wang JG, Gu YJ, Song PP, Wang SY, Qian XY, Gao X. METTL3 modulates m6A modification of CDC25B and promotes head and neck squamous cell carcinoma malignant progression. Exp Hematol. 2022; 11:14. https://doi.org/10.1016/j.exphem.2022.02.206 PMID:35287752
66. Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, Feng Y, Pan Q, Wan R. DNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 2020; 19:91. https://doi.org/10.1186/s12943-020-01158-w PMID: 32429928

67. Du M, Peng Y, Li Y, Sun W, Zhu H, Wu J, Zong D, Wu L, He X. MYC-activated RNA N6-methyladenosine reader IGF2BP3 promotes cell proliferation and metastasis in nasopharyngeal carcinoma. Cell Death Discov. 2022; 8:53. https://doi.org/10.1038/s41420-022-00844-6 PMID: 35136045

68. Deng R, Cheng Y, Ye S, Zhang J, Huang R, Li P, Liu H, Deng Q, Wu X, Lan P, Deng Y. m6A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. Onco Targets Ther. 2019; 12:4391–402. https://doi.org/10.2147/OTT.S201052 PMID: 31239708

69. Chen X, Xu M, Xu X, Zeng K, Liu X, Sun L, Pan B, He B, Pan Y, Sun H, Xia X, Wang S. RETRACTED: METTL14 Suppresses CRC Progression via Regulating N6-Methyladenosine-Dependent Primary miR-375 Processing. Mol Ther. 2020; 28:599–612. https://doi.org/10.1016/j.molther.2019.11.016 PMID: 31839484. Retraction in: Mol Ther. 2022; 30:2640. https://doi.org/10.1016/j.molther.2022.03.017 PMID: 35797982

70. Chen HD, Li F, Chen S, Zhong ZH, Gao PF, Gao WZ. METTL3-mediated N6-methyladenosine modification of DUSP5 mRNA promotes gallbladder-cancer progression. Cancer Gene Ther. 2022; 29:1012–20. https://doi.org/10.1038/s41417-021-00406-5 PMID: 34799724

71. Chen XY, Zhang J, Zhu JS. The role of m6A RNA methylation in human cancer. Mol Cancer. 2019; 18:103. https://doi.org/10.1186/s12943-019-1033-z PMID: 31142332

72. Liu ZX, Li LM, Sun HL, Liu SM. Link Between m6A Modification and Cancers. Front Bioeng Biotechnol. 2018; 6:89. https://doi.org/10.3389/fbioe.2018.00089 PMID: 30062093

73. Liu T, Yang S, Sui J, Xu SY, Cheng YP, Shen B, Zhang Y, Zhang XM, Yin LH, Pu YP, Liang GY. Dysregulated N6-methyladenosine methylation writer METTL3 contributes to the proliferation and migration of gastric cancer. J Cell Physiol. 2020; 235:548–62. https://doi.org/10.1002/jcp.28994 PMID: 31232471

74. Peng W, Li J, Chen R, Gu Q, Yang P, Qian W, Ji D, Wang Q, Zhang Z, Tang J, Sun Y. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res. 2019; 38:393. https://doi.org/10.1186/s13046-019-1408-4 PMID: 31492150

75. Liu J, Sun G, Pan S, Qin M, Ouyang R, Li Z, Huang J. The Cancer Genome Atlas (TCGA) based m6A methylation-related genes predict prognosis in hepatocellular carcinoma. Bioengineered. 2020; 11:759–68. https://doi.org/10.1080/21655979.2020.1787764 PMID: 32631107

76. Yuan Y, Du Y, Wang L, Liu X. The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J Cancer. 2020; 11:3588–95. https://doi.org/10.7150/jca.42338 PMID: 32284755

77. Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V, Somasundaram K. Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. 2018; 37:522–33. https://doi.org/10.1038/onc.2017.351 PMID: 28991227

78. Yao Y, Bi Z, Wu R, Zhao Y, Liu Y, Liu Q, Wang Y, Wang X. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway via an m6A-YTHDF2-dependent manner. FASEB J. 2019; 33:7529–44. https://doi.org/10.1096/fj.201802644R PMID: 30865855

79. Zhang C, Zhang M, Ge S, Huang W, Lin X, Gao J, Gong J, Shen L. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer. Cancer Med. 2019; 8:4766–81. https://doi.org/10.1002/cam4.2360 PMID: 31243897

80. Bi X, Lv X, Liu D, Guo H, Yao G, Wang L, Liang X, Yang Y. METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway. Cancer Gene Ther. 2021; 28:335–49. https://doi.org/10.1038/s41417-020-00222-3 PMID: 32939058

81. Cui X, Wang Z, Li J, Zhu J, Ren Z, Zhang D, Zhao W, Fan Y, Zhang D, Sun R. Cross talk between RNA N6-methyladenosine methyltransferase-like 3 and miR-186 regulates hepatoblastoma progression through
Wnt/β-catenin signalling pathway. Cell Prolif. 2020; 53:e12768.
https://doi.org/10.1111/cpr.12768
PMID:31967701

82. Zhang BH, Yan LN, Yang JY. Pending role of METTL14 in liver cancer. Hepatobiliary Surg Nutr. 2019; 8:669–70.
https://doi.org/10.21037/hbsn.2019.10.16
PMID:31930004

83. Chen X, Xu M, Xu X, Zeng K, Liu X, Pan B, Li C, Sun L, Qin J, Xu T, He B, Pan Y, Sun H, Wang S. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 2020; 19:106.
https://doi.org/10.1186/s12943-020-01220-7
PMID:32552762

84. Li Z, Li F, Peng Y, Fang J, Zhou J. Identification of three m6A-related mRNAs signature and risk score for the prognostication of hepatocellular carcinoma. Cancer Med. 2020; 9:1877–89.
https://doi.org/10.1002/cam4.2833
PMID:31943856

85. Panneerdoss S, Eedunuri VK, Yadav P, Timilsina S, Rajamanickam S, Viswanadhapalli S, Abdelfattah N, Onyeagucha BC, Cui X, Lai Z, Mohammad TA, Gupta YK, Huang TH, et al. Cross-talk among writers, readers, and erasers of m6A regulates cancer growth and progression. Sci Adv. 2018; 4:eaar8263.
https://doi.org/10.1126/sciadv.aar8263
PMID:30306128

86. You Y, Wen D, Zeng L, Lu J, Xiao X, Chen Y, Song H, Liu Z. ALKBH5/MAP3K8 axis regulates PD-L1+ macrophage infiltration and promotes hepatocellular carcinoma progression. Int J Biol Sci. 2022; 18:5001–18.
https://doi.org/10.7150/ijbs.70149
PMID:35982895

87. Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019; 112:108613.
https://doi.org/10.1016/j.biopha.2019.108613
PMID:30784918
SUPPLEMENTARY MATERIALS

Supplementary Table

Please browse Full Text version to see the data of Supplementary Table 1.

Supplementary Table 1. Search history.