Efeito do treinamento auditivo-motor no processamento auditivo de escolares

Effect of auditory-motor training on auditory processing of school children

Fátima Aparecida Gonçalves¹, Márcia Ribeiro Vieira¹, Liliane Desgualdo Pereira¹
¹ Departamento de Fonoaudiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.

DOI: 10.31744/einstein_journal/2018AO4359

RESUMO

Objetivo: Comparar as respostas da Avaliação Simplificada do Processamento Auditivo Central às da Scale of Auditory Behaviors antes e depois de um treinamento auditivo e de habilidades motoras. Métodos: Participaram 162 escolares de 9 a 11 anos de escola pública municipal da cidade de São Paulo (SP), sendo 122 deles divididos em três grupos experimentais: Multissensorial; Auditivo/Motor e Motor/Auditivo. Eles receberam estimulação auditiva, visuoespacial e motora durante 8 semanas (8 horas). O Grupo Controle, que não recebeu estimulação, foi formado por 40 escolares. Resultados: A relação entre a percepção dos professores sobre o comportamento dos alunos e suas respostas em testes auditivos mostrou que quanto melhor o resultado na avaliação do processamento auditivo, melhores os escores da Scale of Auditory Behaviors. Conclusão: Após treinamento auditivo e motor, ocorreu melhora significativa das habilidades do processamento auditivo demonstradas pela Avaliação Simplificada do Processamento Auditivo Central e na Scale of Auditory Behaviors, e este modelo de intervenção consistiu em boa ferramenta para uso na escola.

Descritores: Percepção auditiva; Transtornos da audição; Plasticidade neuronal; Estimulação física; Terapia por exercício; Criança

ABSTRACT

Objective: To compare performance in Avaliação Simplificada do Processamento Auditivo Central and Scale of Auditory Behaviors scores before and after auditory and motor training. Methods: Sample comprising 162 children aged 9 to 11 years and attending public schools in the city of São Paulo (SP), Brazil; 122 out of 162 children were allocated to one of three experimental groups: Multisensory; Auditory/Motor and Motor/Auditory. Experimental groups were submitted to 8 hours of auditory, visuospatial and motor stimulation over the course of 8 weeks. The remaining 40 children formed the Control Group and received no stimulation. Results: Relation between child behavior as perceived by school teachers and auditory test responses revealed that the better the performance in auditory processing assessment, the higher the Scale of Auditory Behaviors scores. Conclusion: Auditory and motor training led to improvements in auditory processing skills as rated by Avaliação Simplificada do Processamento Auditivo Central and Scale of Auditory Behaviors; this intervention model proved to be a good tool for use in school settings.

Keywords: Auditory perception; Hearing disorders; Neuronal plasticity; Physical stimulation; Exercise therapy; Child

INTRODUÇÃO

Aproximadamente 50% dos escolares do Ensino Fundamental público chegam ao Ensino Médio com graves problemas de leitura e escrita ou, praticamente, não
alfabetizados, e 30% deles apresentam algum transtorno, distúrbio ou dificuldade de aprendizagem.\(^{(1)}\)

Geralmente estes índices são explicados por dificuldades de aprendizagem que incluem principalmente déficits na leitura, na escrita e no raciocínio lógico matemático. Estas dificuldades têm sido foco de pesquisas recentes, provavelmente dada à importância da aprendizagem para o desenvolvimento sociocultural e emocional do ser humano.\(^{(2,3)}\)

O processamento auditivo se refere à eficiência e à eficácia com que as vias auditivas do sistema nervoso central utilizam a informação auditiva, e inclui vários mecanismos auditivos, que seguem diferentes habilidades, destacando-se a localização sonora, a resolução temporal e a sequenciación de sons.\(^{(4)}\) A habilidade de resolução temporal é de fundamental importância para a compreensão da fala humana, constituindo-se em um pré-requisito para as habilidades linguísticas, bem como para a leitura.\(^{(5)}\) Da mesma forma, a localização sonora atua na mobilidade e na comunicação, contribuindo consideravelmente para a atenção seletiva – habilidade esta essencial para o aprendizado de um conteúdo escolar novo.\(^{(6)}\)

Alterações nas habilidades auditivas em distúrbios de aprendizado já foram verificadas em estudos anteriores,\(^{(3,7-10)}\) os quais concluíram que a maioria das crianças com estes distúrbios apresentam alterações no processamento auditivo.\(^{(3,10,11)}\) A redução da capacidade de utilizar informações contidas em estímulos auditivos para perceber a fala pode contribuir para déficits na aprendizagem da leitura e da escrita. Desta forma, a avaliação das habilidades do processamento auditivo fornece importantes contribuições na identificação e na intervenção de crianças com dificuldades escolares.\(^{(12-14)}\)

As principais queixas apontadas em escolares com distúrbio de processamento auditivo central (DPAC) são incapacidade em seguir instruções verbais complexas; desempenho cognitivo verbal pobre em comparação com o desempenho não verbal; dificuldades de leitura e escrita; atraso de linguagem; dificuldade em processar informações verbais em ambiente ruidoso e de manter a atenção em informações auditivas.\(^{(15)}\)

Os avanços da neuropsicologia cognitiva demonstraram a plasticidade funcional do sistema nervoso central, a existência de períodos críticos para aprendizagem e o fortalecimento das ligações sinápticas com a repetição.\(^{(16)}\) Pesquisas têm evidenciado que a estimulação auditiva e o treino auditivo-verbal provocam mudanças funcionais e estruturais no sistema nervoso auditivo central.\(^{(7,16-18)}\) Esta perspectiva abriu espaço para a implementação de programas de intervenção dirigidos – principalmente aos escolares com DPAC. Neste caso, a terapia fonoaudiológica se estabeleceu como principal estratégia de intervenção terapêutica, incluindo modificações ambientais, processo terapêutico propriamente dito e utilização de estratégias compensatórias.\(^{(19,20)}\)

Testes comportamentais têm se mostrado ferramenta importante para caracterizar a alteração do processamento auditivo central na escola, e facilitar a identificação de escolares com inabilidades auditivas e evidências de dificuldade de aprendizagem.\(^{(17,12,13,21)}\)

A Avaliação Simplificada do Processamento Auditivo Central (ASPAC) é um instrumento de fácil aplicação, que tem o objetivo de identificar inabilidades auditivas em escolares. Esta avaliação é composta pelas provas de localização da fonte sonora e memória sequencial, verbal e não verbal, para três e quatro sons. O desempenho abaixo do esperado nesta avaliação pode indicar alterações na função perceptiva auditiva, e sua detecção precoce, ainda na escola, favoreceria o encaminhamento da criança para a avaliação completa do processamento auditivo central e a orientação terapêutica adequada.\(^{(7,14,21)}\)

A American Academy of Audiology (AAA),\(^{(22)}\) desde 2010, recomenda a utilização de questionários de autopercepção, para serem usados como indicadores de queixas auditivas e contribuírem na análise qualitativa, apoiando os testes comportamentais no diagnóstico do DPAC. Um deles é denominado Scale of Auditory Behaviors (SAB)\(^{(23)}\) com versão em português.\(^{(24)}\) Este questionário permite quantificar, na percepção de pais e/ou professores, o comportamento da criança nas demandas do dia a dia, considerando as informações recebidas por meio da audição. São questões que abordam comportamentos em relação à compreensão diante de instruções verbais, à qualidade atencional, à discriminação dos sons da fala, à capacidade de se organizar nas tarefas da vida diária e ao procedimento leitor, de forma a buscar sinais observáveis de ordem disfuncional.

A correlação entre as respostas da SAB e dos testes comportamentais auditivos já foi verificada em estudo português, sugerindo que se trata de um instrumento que pode ser utilizado como triagem de alunos que apresentam dificuldades escolares relacionadas ao processamento auditivo.\(^{(13)}\)

O presente estudo propôs uma abordagem terapêutica e educacional, com estimulação auditiva e motora, com grupos dentro do ambiente escolar, para melhorar a capacidade perceptual auditiva da criança em fase escolar. A contribuição do estudo contempla a parceria saúde/educação, por meio de programas terapêuticos educacionais de intervenção multisensorial, para escolares com queixas de dificuldade de aprendizagem e sem acesso imediato à terapêutica especializada.
OBJETIVO
Comparar as respostas na Avaliação Simplificada do Processamento Auditivo Central com as respostas da *Scala of Auditory Behaviors*, antes e depois de um treinamento auditivo e de habilidades motoras.

MÉTODOS
Trata-se de um estudo longitudinal, com delineamento do tipo experimental. Foi planejado um programa de treinamento não formal, o qual foi executado com crianças em uma escola da rede pública municipal do ensino da cidade de São Paulo (SP). Foi aprovado pelo Comitê de Ética em Pesquisa da Universidade Federal de São Paulo, sob parecer número 542.418, CAAE: 25398314.7.0000.5505.

Participaram da pesquisa 162 crianças, sendo 86 do sexo feminino, com faixa etária entre 9 e 11 anos, que preencheram todos os critérios de inclusão (faixa etária, adequação cognitiva, ausência de alterações neurológicas e/ou psiquiátricas e Termo de Consentimento autorizando a participação).

Todos os participantes efetuaram os procedimentos de avaliação inicial (AI) e final (T2), nos instantes pré e pós-programa de treinamento, que foi denominado de Estimulação Multissensorial.

Procedimentos de avaliação

Avaliação Simplificada do Processamento Auditivo Central (AS PAC)
Composta pelas tarefas exclusivamente auditivas de localização sonora e memória sequencial verbal e não verbal. O teste de localização sonora em cinco direções foi apresentado em tarefa diótica de sons de alta frequência em cinco direções (frente, acima, atrás, direita e esquerda), em que o indivíduo deveria apontar a direção do som. Por meio deste teste, foram analisados a habilidade auditiva de localização e o mecanismo fisiológico de discriminação da direção da fonte sonora. O critério de normalidade adotado foi a partir de quatro acertos, desde que fossem incluídos acertos no plano lateral.

No Teste de Memória Sequencial para Sons Verbais (MSV), foram apresentadas, oralmente, três diferentes sequências de quatro sílabas (“pa”, “ta”, “ca” e “fa”), que deveriam ser repetidas na ordem como foram apresentadas. Inicialmente, o indivíduo foi orientado a repetir cada sílaba isoladamente. Para o Teste de Memória Sequencial Não Verbal (MSnV), foram utilizados quatro instrumentos sonoros (guiço, coco, agogó e sino), percutidos em três diferentes sequências. Após demonstração, os indivíduos foram orientados a fechar os olhos e apontar os instrumentos musicais na ordem ouvida. O critério de normalidade para os dois testes foi o acerto de pelo menos duas sequências de quatro sons em três tentativas. Quando não houve êxito, foram apresentadas as sequências com três sons, e foi aplicado o mesmo critério de normalidade citado.

Scala of Auditory Behaviors
A SAB(13,23,24) é um questionário desenvolvido para ser aplicado aos pais e/ou professores de escolares, visando comparar os dados e apoiar as conclusões sobre DPAC. Os professores das crianças avaliadas responderam 12 questões do questionário adaptado para o português, referentes a eventos do dia a dia, que avaliavam o comportamento de domínios auditivos e atencionaes dos escolares. Àquele que ocorreu com muita frequência foi atribuído valor 1,0; o que ocorreu quase sempre teve valor 2,0; algumas vezes, valor 3,0; aos esporádicos, o valor atribuído foi 4,0, e aos que nunca ocorreram, 5,0. Os valores foram somados, resultando em um escore final, que variou de 12 a 60 pontos (pontuação total). Na análise deste estudo, foi utilizada a interpretação de SAB normal se 46 pontos; alerta para DPAC se 45 a 36; e evidência de DPAC se ≤35.(13)

O programa de treinamento Estimulação Multissensorial foi elaborado com o intuito de levar tipos de estimulação auditiva, visuoespacial e motora para grupos no ambiente escolar. Foi composto por 16 sessões, sendo que, a cada semana, realizaram-se duas sessões, com duração de 30 minutos cada (resultando 8 horas de estimulação no total do programa). O programa foi dividido por tipo de estimulação (isolada ou combinada) e aplicado em três grupos reunidos aleatoriamente e sorteados dentro de cada sala de aula. Ao final de cada etapa de oito sessões de estimulação, os escolares foram reavaliados, e os grupos de estimulação isolada alternavam o tipo intervenção. Os grupos formados foram denominados de: Grupo Auditivo/Motor (GAM), com 40 escolares que receberam estimulação auditiva, iniciando com oito sessões de estimulação auditiva, e, após, mais oito sessões de estimulação visuoespacial e motora; Grupo Motor/Auditivo (GMA), com 41 escolares que, da mesma forma, receberam estimulação auditiva, iniciando com oito sessões de estimulação auditiva e, após, mais oito sessões de estimulação visuoespacial e motora; Grupo Multissensorial (GMS), com 41 escolares que receberam estimulação combinada, auditiva, visuoespacial e motora, integradas durante as 16 sessões; e Grupo Controle (GC), formado por 40 escolares, que não receberam estimulação, sendo utilizado para caracterizar o desenvolvimento típico neste ambiente e nesta faixa etária, e comparar aos grupos experimentais.
Este programa de treinamento não formal foi baseado na proposta de Pereira et al. (25) A descrição dos tipos de estimulação aplicada em cada grupo se encontra no apêndice 1.

Os dados foram demonstrados por estatística descritiva e analisados por método estatístico com o nível de significância adotado de 0,05 em todos os testes. Para análise da diferença entre os grupos e instantes de AI e T2, na SAB pontuação total, utilizou-se o teste não paramétrico de Wilcoxon, pois, apesar desta escala produzir pontuação discreta, estes valores são uma conversão de variáveis ordinais, sendo possível distinguir os elementos da amostra por suas qualidades/diferenças. Para análise da correlação entre os dois instrumentos, isto é, se a avaliação do questionário SAB (feita pelos professores) apresentou relação positiva com a ASPAC (considerando que quanto maior a pontuação na SAB, maior deve ser o número de acertos nas provas da ASPAC), foi usado o teste não paramétrico de correlação de Spearman. Para o estudo das diferenças de pontuação por provas da ASPAC, por grupo e valor de p calculado, para comparar AI e T2, para os grupos (GMA versus GAM versus GMS versus GC), segundo o tipo de intervenção, foi utilizado o teste paramétrico e calculado o valor de T (que corresponde ao menor valor da soma dos postos). Para a análise de variância, considerando todos os grupos nos dois instantes de avaliação, AI e T2, foi usada a análise de variância (ANOVA).

RESULTADOS

A tabela 1 mostra a estatística descritiva dos grupos de estimulação e do Grupo Controle na SAB, para a pontuação total por grupos estudados e por instante de avaliação.

Foi observado que, na AI, GMA apresentou alerta para DPAC, e os demais grupos se encontravam dentro dos padrões de normalidade (SAB normal). Na comparação entre AI e T2, todos os grupos apresentaram maiores pontuações no instante T2. Porém, a análise estatística (T=61; n=41; p<0,001) mostrou significância estatística para o GMA.

A tabela 2 mostra a estatística descritiva nas provas de localização sonora, MSV4 e MSnV4 da ASPAC, por grupos estudados e instante de avaliação.

Na localização sonora, não ocorreram diferenças entre os instantes de avaliação em nenhum dos grupos estudados. Em T2, os três grupos experimentais apresentaram variação positiva superiores ao GC para MSV e MSnV.

Na tabela 3, está demonstrada a comparação dos dados obtidos entre os grupos estudados e por instante de avaliação.

Ao utilizar a ANOVA para analisar os dados da AI, não foi identificada diferença entre os grupos, o que significa que não houve viés de um grupo inicialmente ter menor ou maior desempenho na execução das tarefas que envolviam o processamento auditivo.

A tabela 4 e as figuras 1 a 4 mostram a interação (p<0,05) entre as variáveis SAB e ASPAC nos diferentes grupos em AI e T2.

Para o GMA e GC, não foi observada interação entre ASPAC e SAB em nenhum dos momentos; já no GAM, verificou-se interação no MSnV para 4 sons nos dois momentos, ou seja, a pontuação da escala SAB aumentou na mesma proporção que as respostas do teste auditivo ASPAC. No GMS, verificou-se interação entre as variáveis também para o teste LS (correlação negativa) em AI e para o teste MSV (correlação positiva) em T2. O GC não demonstrou as mesmas variações identificadas nos experimentais, entre AI e T2.

Tabela 1. Estatística descritiva para a Scale of Auditory Behaviors considerando a pontuação total por grupos estudados e instante de avaliação

Grupo	Tempo	n	Máximo	Mínimo	Média	Mediana	Desvio padrão	Q1	Q3	Valor de p AI versus T2
GMA	AI	41	60	12	40,75	42	12,89	32	49	<0,001*
	T2	41	60	29	47,14	49	8,70	44	54	
GAM	AI	40	60	12	48,65	53	12,56	43	59	0,143
	T2	40	60	31	51,07	53	7,90	45,75	58	
GMS	AI	41	60	23	46,61	50	12,17	39	58	0,264
	T2	41	60	23	49,02	50	8,39	44	56	
GC	AI	40	60	27	47,90	49,5	10,39	42	59,25	0,479
	T2	40	60	22	48,60	51	10,95	44,25	60	

* Estatisticamente significante. Q1: Primeiro quartil; Q3: terceiro quartil; AI: avaliação inicial; T2: avaliação final; GMA: Grupo Motor/Auditivo; GAM: Grupo Auditivo/Motor; GMS: Grupo Multissensorial; GC: Grupo Controle.
Tabela 2. Estatística descritiva para Avaliação Simplificada do Processamento Auditivo Central, por grupo estudado e instante de avaliação

Grupo	Testes	Tempo	n	Mínimo	Máximo	Média	Mediana	Desvio padrão	Q1	Q3	Valor de p AI versus T2
GMA	LS	AI	41	4	5	4,87	5	0,231	5	5	0,103
	T2	41	4	5	4,87	5	0,196	5	5		
	MSV4s/3	AI	41	0	3	1,95	2	0,947	1	3	0,000*
	T2	41	2	3	2,63	3	0,488	2	3		
	MSnV4s/3	AI	41	0	3	1,80	2	0,889	2	2	0,001*
	T2	41	1	3	2,43	2	0,560	2	3		
GAM	LS	AI	40	3	5	4,77	5	0,480	5	5	0,785
	T2	40	4	5	4,80	5	0,406	5	5		
	MSV4s/3	AI	40	0	3	1,85	2	1,210	1	3	0,000*
	T2	40	2	3	2,60	3	0,496	2	3		
	MSnV4s/3	AI	40	0	3	1,80	2	0,883	1	2	0,000*
	T2	40	1	3	2,52	3	0,640	2	3		
GMS	LS	AI	40	4	5	4,77	5	0,331	5	5	0,421
	T2	40	4	5	4,82	5	0,264	5	5		
	MSV4s/3	AI	40	0	3	1,85	2	1,108	1	3	0,001*
	T2	40	1	3	2,36	3	0,799	2	3		
	MSnV4s/3	AI	40	0	3	2,04	2	0,921	1	3	0,030*
	T2	40	1	3	2,41	2	0,591	2	3		
GC	LS	AI	40	4	5	4,87	5	0,335	5	5	0,486
	T2	40	4	5	4,82	5	0,267	5	5		
	MSV4s/3	AI	40	0	3	2,25	2	0,809	2	3	0,838
	T2	40	0	3	2,23	3	1,012	2	3		
	MSnV4s/3	AI	40	0	3	2,20	2	0,823	2	3	0,030*
	T2	40	0	3	1,82	2	0,970	1	2.5		

* Estatisticamente significante. Q1: primeiro quartil; Q3: terceiro quartil; AI: avaliação inicial; T2: avaliação final; GMA: Grupo Motor/Auditivo; LS: localização sonora; MSV4s/3: memória sequencial verbal 4 sons/3 sequências; MSnV4s/3: memória sequencial não verbal 4 sons/3 sequências; GAM: Grupo Auditivo/Motor; GMS: Grupo Multissensorial; GC: Grupo Controle.

Tabela 3. Análise de variância entre grupos, considerando os instantes inicial e final de avaliação

Prova de ASPAC por instante de avaliação	LS	MSV4s/3	MSnV4s/3
AI	0,526	0,197	0,262
T2	0,044*	0,001†	0,050

* Post-hoc comparando usando Tukey HDS. † diferença entre Grupo Motor/Auditivo e Grupo Auditivo/Motor (T=3,906; p= 0,029); todos os grupos diferem do Grupo Controle.

ASPAC: Avaliação Simplificada do Processamento Auditivo Central; **LS**: localização sonora; **MSV4s/3**: memória sequencial verbal 4 sons/3 sequências; **MSnV4s/3**: memória sequencial não verbal 4 sons/3 sequências; **AI**: avaliação inicial; **T2**: avaliação final.

Tabela 4. Interação entre as variáveis Scale of Auditory Behaviors (SAB) e Avaliação Simplificada do Processamento Auditivo Central para os grupos estudados nos instantes inicial e final

Grupos	Testes	Correlação	LS	MSV4s/3	MSnV4s/3
GMA	SAB	ρ (rhô)	-0,092	0,239	0,192
		p	0,285	0,066	0,115
		n	41	41	41
GAM	SAB	ρ (rhô)	0,083	0,068	0,261
		p	0,306	0,338	0,052
		n	40	40	40
GMS	SAB	ρ (rhô)	-0,266	0,103	0,299
		p	0,046*	0,262	0,029*
		n	41	41	41
GC	SAB	ρ (rhô)	0,013	0,239	-0,008
		p	0,468	0,069	0,479
		n	40	40	40

* Correlação de Spearman. ρ (rhô) é a correlação valor p. **: estatisticamente significante.

LS: localização sonora; **MSV4s/3**: memória sequencial verbal 4 sons/3 sequências; **MSnV4s/3**: memória sequencial não verbal 4 sons/3 sequências; **GMA**: Grupo Motor/Auditivo; **GAM**: Grupo Auditivo/Motor; **GMS**: Grupo Multissensorial; **GC**: Grupo Controle.

SAB: Scale of Auditory Behaviors; **AI**: avaliação inicial; **T2**: avaliação final.
LS: localização sonora; MSNV4s/3: memória sequencial não verbal 4 sons/3 sequências; MSV4s/3: memória sequencial verbal 4 sons/3 sequências; SAB: Scale of Auditory Behaviors; ASPAC: Avaliação Simplificada do Processamento Auditivo Central.

Figura 1. Relação entre Scale of Auditory Behaviors e Avaliação Simplificada do Processamento Auditivo Central para o Grupo Motor/Auditivo, no instante inicial da intervenção (AI; coluna da esquerda) e no instante final (T2; coluna da direita).

Figura 2. Relação entre Scale of Auditory Behaviors e Avaliação Simplificada do Processamento Auditivo Central para o Grupo Auditivo/Motor, no instante inicial da intervenção (AI; coluna da esquerda) e no final (T2; coluna da direita).

Figura 3. Relação entre Scale of Auditory Behaviors e Avaliação Simplificada do Processamento Auditivo Central para o Grupo Multissensorial, no instante inicial da intervenção (AI; coluna da esquerda) e final (T2; coluna da direita).

Figura 4. Relação entre Scale of Auditory Behaviors e Avaliação Simplificada do Processamento Auditivo Central para o Grupo Controle, no instante inicial da intervenção (AI; coluna da esquerda) e final (T2; coluna da direita).
Efeito do treinamento auditivo-motor no processamento auditivo de escolares

II DISCUSSÃO

Na comparação entre a AI e T2, todos os grupos, com exceção do GC, obtiveram pontuações maiores no SAB; porém, no GMA, houve diferença estatisticamente significante entre os dois instantes de avaliação. Isto sugere que os professores observaram que os treinamentos auditivo e motor aplicados aos escolares promoveram modificação positiva no comportamento auditivo.\(^\text{(13,23,24)}\)

Os resultados mostram ainda que a média de pontos do GMA na AI sugere alerta para DPAC.\(^\text{(13)}\) No entanto, após 8 horas de estimulação, houve melhora em todos os grupos, mostrando comportamento auditivo adequado. Isso sugere eficácia no treinamento, mas também a importância da utilização de instrumentos que direcionem os professores para perceber comportamentos que possam indicar evidências disfuncionais de algum mecanismo para a aprendizagem, ou seja, recursos observáveis, que vão além de métodos pedagógicos avaliativos tradicionais. Isso corrobora estudos anteriores, que revelaram que os professores geralmente apresentam pouco conhecimento sobre os distúrbios de leitura e escrita e suas causas, destacando pouca ou nenhuma formação durante a graduação.\(^\text{(26,27)}\)

Com relação à ASPAC, todos os grupos apresentaram adequação em AI na LS. A pouca variabilidade nas respostas desta prova se deu provavelmente ao fato de que, já na AI, a média de acertos dos indivíduos estava dentro da normalidade, corroborando estudos anteriores, que não encontraram alterações na habilidade de localização sonora em escolares com alterações de leitura e escrita.\(^\text{(12)}\)

A alteração observada nas provas de MSV e MSnV-4 sons, na AI, nas crianças participantes deste estudo, já foi demonstrada anteriormente na literatura, em escolares com dificuldades de aprendizagem com e sem diagnóstico de DPAC.\(^\text{(12,14)}\) Isso mostra que a inabilidade na sequenciação temporal de sons é essencial no processoamento da linguagem. No entanto, no presente estudo, após o treinamento (T2), os grupos experimentais apresentaram normalização desta habilidade auditiva, e houve diferença estatisticamente significante entre AI e T2 nesses grupos.

Aos três anos, a criança já é capaz de reproduzir sequências de sílabas verbais com três sons; a partir dos sete, sequências maiores, melhorando seu desempenho com o avanço da idade. Aos seis anos, a criança já pode memorizar quatro sons instrumentais (não verbais), percutidos em uma sequência determinada, tendo êxito em pelo menos duas sequências diferentes em três tentativas.\(^\text{(7)}\)

Na comparação entre os grupos, todos apresentaram, em AI, desempenho similar na execução das tarefas que envolveram o processamento auditivo. Ainda, na prova de MSnV, os grupos que passaram pelo treinamento se diferenciaram estatisticamente do GC. Este dado concorda com estudo anterior, que observou que, após estimulação auditiva, os escolares aprimoraram a ordenação temporal.\(^\text{(20)}\)

Neste estudo, as alterações iniciais nas provas de sequenciação temporal poderiam predizer dificuldades acadêmicas. A melhora destas habilidades, após a estimulação T2 dos grupos experimentais, demonstra o efeito positivo do programa terapêutico proposto e contribui para uma melhor condição neurobiológica de aprendizagem do escolar.

Nessa percepção, sob o conceito de plasticidade neural, a estimulação e a experiência puderam ativar e reforçar vias neurais específicas, auxiliando as crianças a reconhecerem novos padrões e a adquirirem novas informações e habilidades.\(^\text{(15-18,28)}\) Este resultado aproxima-se da afirmação de que tanto o sistema sensorial quanto o motor estão sujeitos ao aprimoramento pela experiência e pela aprendizagem, que integram o reconhecimento dos estímulos ambientais com as mais variadas respostas motoras. Pode-se, então, sugerir que as deficiências em crianças com distúrbios de leitura e escrita não se limitam ao domínio verbal.\(^\text{(28)}\)

Ficou assim demonstrado que a estimulação auditiva e motora dentro da escola foi capaz de produzir, em pouco tempo, mudanças no comportamento auditivo dos escolares. A ASPAC demonstrou ser um instrumento sensível à estas variações de comportamento, mostrando-se eficaz para ser aplicado na escola, para triagem de evidências de DPAC nos escolares.\(^\text{(7,13,19,21)}\)

Foi detectada correlação estatisticamente significante entre as variáveis da ASPAC e as respostas do questionário SAB dadas pelos professores, em AI e T2, para o GAM, na prova de MSnV, e o GMS, na de MSnV e LS. Nas demais habilidades que se correlacionaram em AI, os efeitos da estimulação não foram notados pelos professores.

No entanto, na correlação entre SAB e ASPAC nos grupos experimentais, pode-se perceber variação pequena, porém positiva, das médias entre AI e T2, demonstrando que a amostra que participou do estudo se beneficiou do treinamento. É importante destacar, ainda, que, no GC, esta variação positiva não foi identificada.

A relação entre a percepção dos professores sobre o comportamento dos alunos e suas respostas nos testes auditivos, observada no presente estudo, concorda com o que Nunes et al. observaram, ou seja, quanto melhor o resultado na avaliação do processamento, melhores os escores do questionário SAB.\(^\text{(13)}\)

Os resultados deste estudo sugerem que o programa terapêutico proposto\(^\text{(25)}\) e realizado dentro do ambiente escolar pode caracterizar e diferenciar os escolares que realmente apresentaram evidências para DPAC e que deveriam ser encaminhados, pela escola, ao serviço terapêutico especializado.\(^\text{(13)}\) Ainda, a aplicação dos testes
comportamentais na escola pode auxiliar o professor a reconhecer evidências de alterações auditivas nos escolares.\(^{(7,22-24)}\) No entanto, apesar de a literatura recomendar o uso de questionário de autoavaliação e de a versão da SAB em português ter sido utilizada em re- 20. Perez AP. Re (habilitação) por meio do uso do sistema FM e do treinamento centes pesquisas, ainda não temos sua validação para uma população brasileira, podendo considerar tal fato como uma limitação do estudo.

As experiências multissensoriais promovem o desenvolvimento de mecanismos perceptivos, e seu impacto na cognição tem sido amplamente demonstrado. Considerando que a integração multissensorial entre os sistemas sensoriais e motores só atingem sua maturidade ao redor de 11 anos,\(^{(16,28)}\) este estudo traz a relevância de criar programas de estimulação, contemplando o ensino fundamental, e utilizando o espaço da escola e suas dinâmicas para beneficiar os escolares com dificuldades na leitura e na escrita. Desta forma, ressalta-se que as abordagens interdisciplinares devem ser utilizadas como recurso para a integralidade dos sujeitos com dificuldades de aprendizagem.

Neste estudo, foi utilizada uma amostra aleatória. No entanto, um programa de estimulação direcionado aos escolares das salas de apoio pedagógico, com sessões mais longas e capacitação dos professores responsáveis, poderia contribuir para o desenvolvimento e a reabili- tação da leitura e da escrita.

CONCLUSÃO

A avaliação inicial da Avaliação Simplificada do Processamento Auditivo Central foi similar em todos os grupos estudados. Após um treinamento auditivo e de habilidades motores, ocorreu melhora significativa destas habilidades nos escolares, também relatado pelos professores por meio da *Scale of Auditory Behaviors*. Este modelo de intervenção se mostrou uma boa ferramenta para uso na escola.

AGRADECIMENTOS

Ao Departamento de Fonoaudiologia da Universidade Federal de São Paulo (UNIFESP); à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

REFERÊNCIAS

1. Bueno JG. As políticas de inclusão escolar: uma prerrogativa da educação especial? In: Bueno JG, Mendes GM, Santos RA, Organizadores. Deficiência e escolarização: novas perspectivas de análise. Araraquara: Junqueira & Marín; Brasilia (DF): CAPEF;2008. p. 43-63.
2. Simon LF, Rossi AG. [Auditory processing screening in school children from 8 to 10 years old]. Psicol Escolar e Educacional. 2006;10(2):283-95. Portuguese.
3. Pinheiro FH, Oliveira AM, Cardoso AC, Capelini SA. Dichotic listening tests in students with learning disabilities. Braz J Otorhinolaryngol. 2010;76(2):257-62.
4. American Academy of Audiology (AAA). Clinical Practice Guidelines. Pediatric Amplification [Internet]. EUA: AAA; 2003 (cited 2018 Apr 30). Available from: http://galster.net/wp-content/uploads/2013/07/AAA-2013-Pediatric-Amp-Guidelines.pdf
5. Eggermont JJ. Neural responses in primary auditory cortex mimic psychophysical, across- frequency-channel, gap-detection thresholds. J Neurophysiol. 2000; 84(3):1453-63.
6. McKay S, Gravel JS, Tharpe AM. Amplifications considerations for children with minimal or mild bilateral hearing loss and unilateral hearing loss. Trends Amplif. 2008;12(11):43-54. Review.
7. Pereira LD, Schochat E. Processamento auditivo central: manual de avaliação. São Paulo: Lovise; 1997. p. 49-51.
8. Silva C. Eficácia de um programa de remediação fonológica e leitura em escolares com distúrbio de aprendizagem (dissertação). Marilia: Faculdade de Filosofia e Ciências, Universidade Estadual Paulista, 2009.
9. Abdo AG, Murphy CE, Schochat E. Habilidades auditivas em crianças com dislexia e transtorno do déficit de atenção e hiperatividade. Pró-Fono. 2010; 22(1):25-30.
10. Wiemes GR, Kozlowski L, Mocellin M, Hamerschmidt R, Schuch LH. Cognitive evoked potentials and central auditory processing in children with reading and writing disorders. Braz J Otorhinolaryngol. 2012;78(3):91-7.
11. Frota S, Pereira LD. Processamento auditivo: estudo em crianças com distúrbio da leitura e da escrita. Rev Psicopedagogia. 2010;27(83):214-22.
12. Mourão AM, Esteves CC, Labanca L, Lemos SM. Child and adolescent performance in plain temporal resolution hearing skills. Rev CEFAC. 2012; 14(4):659-68.
13. Nunes CL, Pereira LD, Carvalho GS. Scale of auditory behaviors and testes auditivos comportamentais para avaliação do processamento auditivo em crianças falantes do português europeu. CoDAS. 2013;25(3):209-15.
14. Neves IF, Schochat E. [Auditory processing maturation in children with and without learning difficulties]. Pró-Fono. 2008;17(3):311-20. Portuguese.
15. Bellis TJ. Assessment and management of central auditory processing disorders in the educational setting: from science to practice. 2nd ed. New York: Thomson Delmar Learning; 2003. p. 173.
16. Musiek F, BERGE B. A neuroscience view of auditory training/stimulation and central auditory processing disorders. In: Masters MG, Stecker NA, Katz J, editors. Central auditory processing disorders – mostly management. Boston: Allyn & Bacon; 1998. p. 15-32.
17. Musiek F, Chermak GD, Waibling J. Auditory Training. In: Chermak GD, Musiek FE. Handbook of Central Auditory Processing Disorder: comprehensive intervention. San Diego: Plural Publishing; 2007. p. 77-106.
18. Pereira LD, Dias KZ. Tratamento Fonoaudiológico nos Distúrbios do Processamento Auditivo com enfoque no treinamento auditivo-verbal. In: Cesar AM, Maksud SS. Fundamentos e práticas em fonoaudiologia. Rio de Janeiro: Thomson Delmar Learning; 2009. p. 137-48.
19. Pereira LD. Avaliação e terapia dos distúrbios do processamento auditivo em pré-escolares. V Manual de otorrinolaringologia pediátrica do IAPO. São Paulo: IAPD; 2015. p. 285-8.
20. Perez AP. Re (habilitação) por meio do uso do sistema FM e do treinamento auditivo acusticamente controlado em distúrbio do processamento auditivo [tese]. São Paulo: Escola Paulista de Medicina, Universidade Federal de São Paulo; 2015.
21. Corona AP, Pereira LD, Ferrite S, Rossi AG. Memória sequencial verbal de três e quatro sílabas em escolares. Pró-Fono. 2005;17(1):27-36.
Apêndice 1. Modelos de intervenção aplicada aos grupos experimentais por tarefa e habilidade estimulada

Grupo	Semana	Sessão	Tarefa	Etapa auditiva	Etapa motora
GMS	1	1-2	Identificação de sons instrumentais com deslocamento em direção ao som e verbalizando o nome do instrumento (com venda)	Discriminação e localização sonora	Orientação espacial
			Relacionar o som do instrumento a uma posição no espaço (frente, atrás, direita e esquerda) e deslocar-se na direção proposta (com venda)		
			Mostrar à criança sons ambientais (por exemplo: batida de porta e papel amassando). Vendada, dizer o nome do som, a posição de onde vem e dar um passo nessa direção		
			Dividir plano vertical: DC, DE/EC e AB. Aremessar a bolinha de tênis na posição solicitada em sequência (por exemplo: DC, DB, EC etc.)		
GMS	2	3-4	Percursos de bambolês em ziguezague. Tocar o bambolê da esquerda com o pé esquerdo, e o da direita com o direito, de acordo com o ritmo do metrôno	Discriminação e localização sonora	Equilíbrio dinâmico
			Mantenha o mesmo percurso; colocar o pé direito no bambolê à direita, quando ouvir o guizo e o pé esquerdo à esquerda, quando ouvir o sino		
			Mesmo percurso de bambolês; identificar um nome de fruta com saltos à direita e, de numeral à esquerda		
			Brincar de cabra-cega, seguindo as instruções de voz dirigindo os comandos à direita, à frente, atrás e à esquerda		
GMS	3	5-6	Criança sobre um banco. Sequência de sons com instrumentos; lançar a bolinha para cima, e nomear os sons ouvidos em sequência (usar quatro instrumentos)	Ordenação temporal	Equilíbrio estático e coordenação visuomotora
			Repetir a atividade usando uma categoria semântica (por exemplo: frutas); usar os mesmos quatro estímulos em sequência, alternadamente		
			Ficar parada sobre uma linha de fita crepe, com um pé à frente do outro, olhos vendados e nomear as sequências de sons não verbais ouvidos		
			Em pé sobre uma linha, um pé à frente do outro, de posse de uma bolinha. Alternar sons verbais e não verbais na mesma sequência: sons verbais, bate-se a bolinha à direita, sons não verbais, bate-se à esquerda enquanto repete a sequência		
GMS	4	7-8	Mãos no chão e pés na parada; manter-se em sustentação, enquanto o mediador apresenta uma sequência de sons; descer da parada e nomear os sons que foram ouvidos. Iniciar com três estímulos não verbais e aumentar	Ordenação temporal	Persistência tónica
			O corpo ainda em suspensão, repetir uma categoria semântica na sequência, enquanto desloca a direita para a esquerda, iniciar com três estímulos verbais		
			Traçar uma linha (1,5m) no chão. Sequência de números. A criança deve andar até o final de linha, para frente e para trás, enquanto repete a sequência dos números ouvidos. Inicia-se com três estímulos e ir aumentando		
			Sentados em roda, em sequência, cada um diz um item para compor uma lista de supermercado – repetir a sequência em que os itens foram colocados na lista: relacionar o item à pessoa que o escolheu		
GMS	5	9-10	Música tocando no rádio; ordens verbais em sequência, solicitando a atenção e a nomeação de certas partes do corpo que devem tocar no chão em posição deitada. Ao relaxar, a criança deve repetir em voz alta os pontos de contato do corpo na mesma ordem que foi dita pelo terapeuta	Figura-fundo, ordenação temporal e localização sonora	Consciência segmentária dos membros
			Descubra ventral. Manter a atenção no mediador que pedirá que se mude a posição da cabeça da direita para a esquerda a cada 10 segundos, ignorando a presença da competição de uma história tocada ao fundo em intensidade mídia		
			Com música instrumental no fundo, criança parada imóvel e vendada sobre uma linha, um pé à frente do outro. Instrumentos serão percutidos em diferentes direções. Ignorar o ruído e dizer a direção do som que foi ouvido		
			Com música de fundo, criança parada e vendada. Sequência de partes do corpo ditas pelo mediador e que devem ser tocadas com a mão na ordem normal e inversa. Inicia com três estímulos		
Apêndice 1. Modelos de intervenção aplicada aos grupos experimentais por tarefa e habilidade estimulada

Grupo	Semana	Sessão	Tarefa	Etapa auditiva	Etapa motora
GMS	6	11 e 12	Deitado de costas, braços ao longo do corpo. Sequência de palavras (classe semântica e ruído de fundo). Ignorar o ruído e, enquanto estiver com os braços elevados, repetir a sequência na ordem ouvida. Em seguida, deve relaxar os braços	Ordenação temporal e fechamento auditivo	Contração e descontração
			Repetir com as pernas e braços e uma sequência de numerais. Sequência dita pelo mediador no silêncio e sequência repetida pela criança na presença de ruído		
			Duas linhas paralelas (4m de comprimento cada). Músicas conhecidas e com ruído de fundo. Prender uma bolinha de tênis entre partes do corpo. Deslocar-se entre as linhas, mantendo a bolinha presa e, quando parar, completar a música que estava tocando anteriormente		
			Em roda, com uma bolinha. A criança inicia uma parleenda, ao sinal do mediador, este lança a bolinha a um amigo, que deve continuar a parleenda de onde parou		
GMS	7	13 e 14	Com um teclado musical, apresentar dois estímulos sonoros com diferentes intervalos de tempo. A criança deverá bater a bola no chão correspondendo ao número de sons ouvidos (um ou dois) e verbalizar a mesma estratégia anterior; a criança deve bater a bola com a mão direita quando ouvir um som e com a esquerda quando ouvir dois		
			Pares de sons, longos – para cima – e curtos – para baixo. A criança deve lançar a bolinha para cima ou para baixo, de acordo com a sequência de sons ouvidos		
			Bolinha de tênis e uma parede com uma linha dividindo em direita e esquerda. Sequência de sons curtos e longos. No som curto, bater a bolinha à direita; no som longo, bater à esquerda		
GMS	8	15 e 16	Deslocamentos pelo espaço, relacionando o número de passos a distância, com o número de palavras contidas em frases apresentadas pelo mediador		
			Duas linhas paralelas (3m comprimento cada). Deslocar-se entre as linhas utilizando o número de passos determinado pelo número de sílabas contidas em palavras solicitadas (por exemplo: chocolate, agente e êxito)		
			Com um metrônomo, deslocar-se pela sala e fazer contagem em 4 tempos e parar (parado) 4 tempos, variando a velocidade de acordo com o ritmo marcado pelo metrônomo		
			Palavras que completam as frases de uma história anotadas em papeis e distribuídos pelo chão.		
GAM/	1/5	1 e 2/8	Mostrar à criança diferentes sons ambientais (por exemplo: batida de porta, cadeira arrastando etc.); dizer o nome do som ouvido (com venda)		
GMA	e 10		Identificação de um dos sons ouvidos (agogô, coco, guizo, sino) apontando o local de onde vem o som e dizendo o nome do instrumento (com venda)		
			Percutir instrumentos no plano horizontal (direita/esquerda/frente/atrás); dizer a posição de onde está vindo o som (com venda)		
			Brincar de cabra-cega, seguindo as instruções de voz dirigindo os comandos à direita, à frente, atrás e à esquerda		
GAM/	2/6	3 e 4/11	Mostrar à criança diferentes sons ambientais (por exemplo: papel rasgando, chave e bola batendo). Reproduzir os sons ouvidos (não na mesma ordem), ir aumentando a sequência. Anotar quantos estimulos ela consegue reproduzir		
GMA	e 12		Sentados em roda, em sequência, cada um diz um item para compor uma lista de supermercado – repetir a sequência em que os itens foram colocados na lista; relacionar o item à pessoa que o escolheu e com a esquerda quando ouvir dois		
			Repetir com as pernas e braços e uma sequência de numerais. Sequência dita pelo mediador no silêncio e repetição pela criança na presença de ruído		
			Bolinha de tênis e uma parede com uma linha dividindo em direita e esquerda. Sequência de sons curtos e longos. No som curto, bater a bolinha à direita; no som longo, bater à esquerda		
GAM/	3/7	5 e 6/13	Na presença de ruído de fundo (por exemplo: rádio ligado fora de estação), instrumentos serão percutidos em diferentes direções. Ignorar o ruído e apontar a direção do som que foi ouvido		
GMA	e 14		Apresentação de uma sequência de palavras (frutas) dita com um rádio ligado em média intensidade. Responder a sequência, introduzindo uma palavra a mais em até dez palavras na sequência		
			Apresentação de quatro numerais no silêncio e repetição pela criança na presença de ruído. Alterar os números da sequência		
			Apresentar músicas conhecidas com rima (por exemplo: cantigas de roda), na íntegra. Em roda, passando Letras do alfabeto móvel e etiquetas com classes semânticas. A criança sorteia uma letra e uma classe, e tem que dizer uma palavra que inicia com a letra dentro da classe semântica		
GAM/	4/8	7 e 8/15	Com um teclado musical, apresentar dois estímulos sonoros com diferentes intervalos de tempo. Dizer se ouviu um ou dois sons. Diminuir gradativamente o intervalo entre os sons		
GMA	e 16		Utilizar palavras em grupo consonantal (por exemplo: prato, flauta, plano, branco, claro etc.). Apresentar as palavras de duas formas à criança: da forma correta e acrescentando uma vogal antes da consoante (por exemplo: prato e parato); fazer correspondência do som ouvido dizendo se a forma correta foi a um ou a dois		
			Frases lidas pelo mediador. A criança deve dizer o número de palavras que contém cada frase. Aumentar gradativamente		
			Em roda. O mediador lê uma história e, ao parar, a criança apontada deve completar, imediatamente, a frase da história dando-lhe sentido		

...Continua...
Apêndice 1. Modelos de intervenção aplicada aos grupos experimentais por tarefa e habilidade estimulada

Grupo	Semana	Sessão	Tarefa	Etapa auditiva	Etapa motora
GAM/	5/1	9 e 10/	Identificar as diferentes posições no espaço, frente, atrás, direita, esquerda, dentro, fora, ao redor de um círculo de giz. Referência: localizar a posição do professor no espaço – somente ordem verbal com variação do movimento	---	Orientação espacial e Equilíbrio dinâmico
GAM	1 e 2		Identificar e movimentar-se com um passo nas diferentes posições no espaço, executando-os frente a frente com o mediador: ordem verbal e movimentação do mediador ao mesmo tempo		
			Duas linhas paralelas de fita crepe; saltar: dentro, fora, em cima, à direita e à esquerda, em sequência solicitada pelo mediador, que deve variar sua posição no espaço		
			Dividir plano vertical: DC, DE/EC e EB. Anemressar a bolinha de tênis na posição solicitada em sequência (por exemplo: DC, EB, DB, EC etc.)		
GAM/	6/2	11 e 12/3	Manter-se parado sobre a cadeira enquanto manipula a bolinha (lançar a bolinha para cima e resgatá-la)	---	Equilíbrio estático, coordenação visuomotora e persistência tônica
GMA	e 4		No chão, lançar a bolinha ao alto enquanto desloca-se à direita e à esquerda, à frente e para atrás, de acordo com a solicitação do mediador		
			Linha com fita crepe no chão (1,5m). Andar colocando um pé a frente do outro sobre a linha, enquanto bate uma bolinha à direita e à esquerda, alternadamente ao pé que está na frente		
			Apoiar os pés na parede e as mãos no chão. Manter-se por 10 segundos nessa posição e relaxar. Aumentar o tempo em 10 segundos a cada passagem, até cinco passagens. Pode-se repetir a passagem que não conseguiu somente uma vez		
GAM/	7/3	13 e 14/5	Em duplas. Entre duas linhas de fita crepe, deslocar-se mantendo uma bola presa entre os dois corpos;	---	Consciência segmentária compartilhada, coordenação visuomotora e contração e descontração
GMA	e 6		por exemplo: cabeça, ombro, costas, joelho, pé, cotovelos, quadril, punho, orelha e polegar		
			Em pé sobre uma linha, um pé a frente do outro, tocando-o, e olhos vendados. Ficar imóvel por 30 segundos. A cada tentativa com êxito aumentam-se 10 segundos no tempo de imobilidade		
			Sobre uma linha, um pé a frente do outro, com uma bolinha, batê-la no chão e resgatá-la, usando a mão direita ou a esquerda alternadamente		
			Em duplas, um lança a bolinha na direção a um pino que deve ser derrubado. Anotam-se os êxitos em dez tentativas e troca-se de posição		
G A M /	8/4	15 e 16/7	Com uma bolinha de tênis, a criança deve lançar a bola com a mão direita e esquerda em sequência tocando o chão, o teto, a parede à direita e a parede à esquerda, sem deixar a bolinha cair	---	Coordenação visuomotora e relacionar espaço-tempo
GMA	e 8		Uma bolinha em cada mão; lançar para cima ou para baixo relacionado com mão direita ou esquerda; por exemplo: mão direita, a bolinha deve ser lançada para cima; e mão esquerda, para baixo		
			Duas linhas paralelas (5m de comprimento cada); andar de um lado a outro definindo o número de passos necessários no percurso. Percorrer o mesmo espaço, variando o número de passos de acordo com a solicitação do mediador. Ajustar o passo para mais longo ou curto		
			Ainda entre linhas, com ajuda de um metrônomo, percorrer de um lado a outro, mantendo-se no ritmo do metrônomo. Vencido um ritmo, passa-se a um mais rápido		

GMS: Grupo Multissensorial; DC: direita em cima; DE: direita embaixo; EC: esquerda em cima; EB: esquerda embaixo; GAM: Grupo Auditivo/Motor; GMA: Grupo Motor/Auditivo.