Advances in Molecular Biological and Translational Studies in World Health Organization Grades 2 and 3 Meningiomas: A Literature Review

Atsushi OKANO,1 Satoru MIYAWAKI,1 Yu TERANISHI,1 Kenta OHARA,1 Hiroki HONGO,1 Yu SAKAI,1 Daiichiro ISHIGAMI,1 Hirofumi NAKATOMI,1,2 and Nobuhito SAITO1

1Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
2Department of Neurosurgery, Kyorin University, Tokyo, Japan

Abstract

The treatment of World Health Organization (WHO) grades 2 and 3 meningiomas remains difficult and controversial. The pathogenesis of high-grade meningiomas was expected to be elucidated to improve treatment strategies. The molecular biology of meningiomas has been clarified in recent years. High-grade meningiomas have been linked to NF2 mutations and 22q deletion. CDKN2A/B homozygous deletion and TERT promoter mutations are independent prognostic factors for WHO grade 3 meningiomas. In addition to 22q loss, 1p, 14p, and 9q loss have been linked to high-grade meningiomas. Meningiomas enriched in copy number alterations may be biologically invasive. Furthermore, several new comprehensive classifications of meningiomas have been proposed based on these molecular biological features, including DNA methylation status. The new classifications may have implications for treatment strategies for refractory aggressive meningiomas because they provide a more accurate prognosis compared to the conventional WHO classification. Although several systemic therapies, including molecular targeted therapies, may be effective in treating refractory aggressive meningiomas, these drugs are being tested. Systemic drug therapy for meningioma is expected to be developed in the future. Thus, this review aims to discuss the distinct genomic alterations observed in WHO grade 2 and 3 meningiomas, as well as their diagnostic and therapeutic implications and systemic drug therapies for high-grade meningiomas.

Keywords: genomic alteration, copy number alteration, mRNA expression, DNA methylation, systemic medical therapy

Introduction

Meningiomas in adults are the most common primary intracranial tumors.11 Approximately 80%, 15%-20%, and 1%-3% of meningiomas are benign (World Health Organization [WHO] grade 1), atypical (WHO grade 2), and malignant (WHO grade 3), respectively.11 Recurrence occurs in 3%-20%, 30%-40%, and 50%-58% of grades 1, 2, and 3 meningiomas, respectively.1-11 High-grade meningiomas often become refractory to standard surgical and radiation therapy and are therefore difficult to manage. Chemotherapy and other systemic medical therapies are reserved as salvage therapy in these patients. These therapies, however, have had only limited success and have shown little clinical benefit.13,14 Thus, the molecular biological characteristics of these high-grade meningiomas should be clarified. Systemic medical therapies are also expected to be developed to combat them. The World Health Organization Classification of Tumors of the Central Nervous System, fifth edition, published in 2021, described these genetic characteristics.15 The WHO 2021 classification introduced significant changes that advance the role of molecular diagnostics of central nervous system tumors. TERT promoter (TERTp) mutation and homozygous CDKN2A/B deletion have been included as independent criteria for WHO grade 3 meningiomas15 (Table 1). Novel molecular classifications based on multimolecular omics analysis have been recently reported and appear to have clinical application.16,17
Table 1 2021 WHO classification of meningiomas

WHO grade	Subtype	Criteria
Grade 1	Meningothelial	
	Fibrous	
	Transitional	
	Psammomatous	
	Angiomatous	
	Microcystic	
	Secretory	
	Lymphoplasmacyte-rich	
	Metaplastic	
Grade 2	Atypical	4-19 mitotic figures in 10 consecutive HPF of each 0.16 mm² or Unequivocal brain invasion (not only perivascular spread or indentation of brain without pial breach) or Specific morphological subtype (chordoid or clear cell) or At least three of the following: 1. Increased cellularity 2. Small cells with high N:C ratio 3. Prominent nucleoli 4. Sheeting (uninterrupted pattern-less or sheet-like growth) 5. Foci of spontaneous (non-iatrogenic) necrosis
	Chordoid	
	Clear cell	
Grade 3	Anaplastic	20 or more mitotic figures in 10 consecutive HPF of each 0.16 mm² (at least 12.5/mm²) or Frank anaplasia (sarcoma-, carcinoma-, or melanoma-like appearance) or \(TERTp \) promoter mutation or Homozygous deletion of \(CDKN2A \) and/or \(CDKN2B \)
	Rhabdoid	
	Papillary	

HPF: high power field.

This article aims to review the distinct genomic alterations observed in WHO grade 2 and 3 meningiomas and discuss their diagnostic and therapeutic implications, as well as systemic drug therapies for high-grade meningiomas.\(^{15,18,19}\)

Genomic Alterations and mRNA Expressions (Table 2)

\(NF2 \) gene encodes the tumor suppressor protein merlin, a negative regulator of mTORC1.\(^{20,22}\) The rate of \(NF2 \) mutations in low-grade meningiomas is ~40%, whereas, the rate of \(NF2 \) mutations in high-grade meningiomas is significantly higher at 80%.\(^{20}\) The incidence of non-\(NF2 \) mutations is <5% in 20% of high-grade meningiomas without \(NF2 \) mutations, compared to 35% in grade 1 non-\(NF2 \) meningiomas. This significantly lower incidence suggests that high-grade meningiomas have a different genetic basis.\(^{23}\)

Homozygous deletion of the \(CDKN2A/B \) gene located at 9p21 has been frequently observed in anaplastic meningiomas.\(^{18,24-29}\) \(CDKN2A/B \) homozygous deletion was found in about 4.9% of meningiomas of all WHO grades and subtypes. Atypical meningiomas made up 27% of the cases with \(CDKN2A/B \) homozygous deletion, while anaplastic meningiomas made up 73%. In particular, \(CDKN2A/B \) homozygous deletion, in particular, was able to identify patients with poor prognosis among WHO grade 2 and 3 cases.\(^{20}\) Consequently, \(CDKN2A/B \) homozygous deletion has been added as an independent criterion for WHO grade 3 meningiomas in the 2021 WHO classification.\(^{15}\)

\(TERTp \) mutations occur at specific hotspots known as C228T and C250T in meningiomas.\(^{19,30,31}\) \(TERTp \) mutations occur in 4.7%, 7.9%, and 15.4% of WHO grades 1, 2, and 3 meningiomas, respectively.\(^{20}\) \(TERTp \) mutations are associ-
Table 2 Main genomic alterations in WHO grades 2 and 3 meningiomas

Gene	Locus	Product	Frequency	Histology	Pathway
NF2	22q12.2	Merlin	40%-80%	Atypical, anaplastic	PI3K/AKT/mTOR and hippo
CDKN2A/2B	9p21.34	p16(INK4A)/p15(INK4B)	<5%	Atypical, anaplastic	Cell cycle regulation
TERTp	5p15.33	TERT	5%-15%	Atypical, anaplastic	Telomerase activity
BAP1	3p21.1	Ubiquitin carboxy-terminal hydrolase 1	<1%	Rhabdoid	DNA repair
PBRM1	3p21.1	Subunit of PBAF complex	2.8%	Papillary	Chromatin remodeling
DMD	Xp21	Dystrophin	NA	Atypical, anaplastic	Cytoskeleton
SMARCB1	22p11.23	Subunit of SWI/SNF complex	5%	Atypical, anaplastic	Chromatin remodeling
SMARCE1	17q21.2	Subunit of SWI/SNF complex	3%-4%	Clear cell	Chromatin remodeling
SMARCA4	19p13.2	Subunit of SWI/SNF complex	NA	Atypical, anaplastic	Chromatin remodeling
ARID1A	1p36.11	Subunit of SWI/SNF complex	12% in grade 3	Anaplastic	Chromatin remodeling
PIK3CA	3p26.32	Catalytic subunit of kinase, PI3K	3%-7%	Grades 1-3	PI3K/AKT/mTOR

ated with increased TERT expression and telomerase activity but not with telomere length. The recurrence rate in WHO grade 1 and 2 cases with TERTp mutation is higher than in WHO grade 3 cases without TERTp mutation. This suggests that TERTp mutation is a prognostic factor independent of WHO grade. Therefore, the presence of TERTp mutation has been added as an independent criterion for WHO grade 3 meningiomas in the WHO classification 2021. Furthermore, TERTp mutations are associated with tumor progression and poor outcome of de novo high-grade meningiomas after following adjuvant radiotherapy.

Somatic mutations in BAP1 have been identified in a rare subset of aggressive meningiomas with rhabdoid morphology. BAP1 codes a BRCA1-associated protein and is essential for DNA repair. Its inactivation is oncogenic. Cases with germline BAP1 mutations also exist in the subset of cases with somatic BAP1 mutations. This indicates that such meningiomas can occur as part of the BAP1 cancer predisposition syndrome. Furthermore, immunohistochemistry-based negative nuclear staining for BAP1 reveals the absence of BAP1 expression. Therefore, immunohistochemistry can help predict the prognosis of meningiomas with rhabdoid features.

Biallelic inactivation of PBRM1 in papillary meningiomas was recently reported. BAF180 protein, a subunit of the polybromo-associated BAF complex chromatin remodeling complex, is encoded by PBRM1. PBRM1 mutations, which is a tumor suppressor gene, have been found in clear cell renal cell carcinoma, papillary renal cell carcinoma, and bladder carcinoma. PBRM1 mutations significantly increase cell proliferation and migration. BAF180 protein is required for centromeric cohesion, and cells lacking PBRM1 have DNA damage and dynamic chromosome instability. PBRM1 mutations can overlap with BAP1 mutations, and their prognostic role in meningiomas remains unknown.

Mutations in the DMD gene, which codes for dystrophin, have also been linked to progressive/high-grade meningiomas. DMD inactivation was found in 32% of progressive meningiomas, either through genomic deletion or loss of protein expression. Furthermore, the presence of DMD inactivation in advanced or high-grade meningiomas reduces overall and progression-free survival. Importantly, somatic DMD mutations and TERTp mutations are mutually independent in predicting unfavorable outcomes.

Mutations in SWI/SNF chromatin remodeling complex members have been found in high-grade meningiomas. SMARCB1 is also found on 22q, and mutations in this gene may be found in cases with NF2 mutations. Other SWI/SNF complex members, e.g., SMARCE1, SMARCA4, and ARID1A, have also been shown to be mutated on multiple occasions. SWI/SNF gene mutations are more frequently detected in anaplastic (16%) meningiomas than in benign and atypical meningiomas (<5%). ARID1A mutations were found in 19.1%, 16.8%, and 15.8% of WHO grades 1, 2, and 3 meningiomas, respectively, and the presence of an ARID1A mutation was associated with a 7.4-fold mortality risk.

PIK3CA mutations are most commonly found in WHO grade 1 meningioma, which accounts for 4%-7% of all meningioma cases. The presence of PIK3CA mutations in high-grade meningiomas was first reported in 2006. PIK3CA mutations are found in 3.7% of anaplastic meningiomas and are relatively rare in high-grade meningiomas. Moreover, PIK3CA mutations are found in meningiomas without additional copy number alterations or somatic mutations. This suggests that PIK3CA may have played a role in the tumorigenesis of malignant meningioma.

Only 0.6% of meningiomas have mutations in mismatch repair genes (MMR), e.g., MSH2, MSH6, SETD2, and POLE, but interest exists in studying these mutations in aggressive meningiomas. Firstly, these mutations can be targets for immunotherapy because MMR mutations are often associated with neoantigens. Pembrolizumab, a PD-1 inhibitor, has been approved for solid tumors with MMR muta-
meningiomas after gross total resection. Secondly, MMR mutation frequency is rare in high-grade meningiomas despite genetic instability. Thus, other driver events may be involved in high-grade meningioma development.

NF2 mutations have been linked to chromatin remodeling genes like SUZ12, KDM5D, KDM6A, SETD6, KMT2C, KMT2D, or CREBBP as well as DNA damage response genes like ATM, ATR, or BAP1 in chordoid meningiomas. Importantly, these mutations are independent prognostic factors for chordoid meningioma’s aggressive course.

Although many factors have been identified through transcriptome analysis, the current study focused on the FOXM1 gene, which is of particular importance. FOXM1 was identified as a key transcription factor for tumor growth and a marker of poor clinical outcome. FOXM1 is a promitotic transcription factor necessary for cell proliferation during development. FOXM1 expression in meningioma has previously been reported to be high in invasive tumors. Furthermore, meningiomas with a poor prognosis had a high somatic mutation burden. The FOXM1-wnt signaling pathway was associated with a mitotic gene expression program, poor clinical outcome, and primary meningioma growth. To summarize, FOXM1 activity promotes meningioma proliferation and tumor growth by collaborating with the dysregulated FOXM1-wnt signaling pathway.

Unlike WHO grade 1 meningioma, the association between tumor location and genetic genomic alterations in high-grade meningiomas is not reported in detail. Thus, further studies are needed.

Copy Number Alterations

Genomic instability is linked to tumor aggressiveness, and karyotypic abnormalities are noted to gradually increase as meningiomas become more aggressive. The most noticeable difference between grades 2 and 3 meningiomas is an increase in copy number alterations (CNAs) when compared to grade 1 meningiomas. Loss of chromosomes 1p, 4p, 6q, 9q, 10, 14q, and 22q or gain of chromosomes 1q, 9q, 12q, 15q, 17q, 19, 20, and 5 have also been described. CNAs become more common as the WHO grade of meningioma rises. The number of CNAs is strongly associated with the risk of recurrence in atypical meningiomas after gross total resection. These results suggest that meningiomas with a high number of CNAs may have a biologically aggressive behavior.

Grades 2 and 3 meningiomas are strongly linked to deletion or loss of genetic locus on chromosome 22q that contains the NF2 gene. The rate of loss of heterozygosity for 22q increases with the grade, from 50% in WHO grade 1 meningioma to 75%-85% in WHO grade 3 meningioma. Other tumor suppressor genes found on chromosome 22q include SMARCB1, CHEK2, and CLH22. Loss of 22q loss results in a state of genetic instability that is prone to somatic mutations. This results in a genetically diverse and aggressive tumor phenotype.

After 22q loss, the second most common copy number in meningiomas is 1p loss which is associated with higher WHO grade. 1p loss is found in 40%-76% and 70%-100% of WHO grades 2 and 3 meningiomas, respectively, and is especially common in recurrent and high-grade tumors. Interestingly, 1p loss is an independent marker of meningioma recurrence and progression. However, 1p loss is observed at a significantly lower frequency in grade 3 chordoid meningiomas, a particularly aggressive subtype, compared to other high-grade subtypes. Recently, 1p36 loss was reported as the prognostic marker of regrowth after gamma knife surgery for WHO grade 1 meningiomas. However, genetic alterations associated with radiation therapy efficacy in high-grade meningiomas have not been identified.

The loss of chromosomes 14q, 9p, and 6q are major additional alterations found in high-grade meningiomas. 1q, 9p, and 14q loss is detected in 40%-57% and 55%-100% of WHO grades 2 and 3 meningiomas, respectively, especially in high-grade tumors. Loss of both 1p and 14q has been associated with early tumor recurrence and is a prognostic factor independent of WHO grade. 9p loss is a common finding in WHO grade 3 meningiomas. CDKN2A/B deletions on 9p are especially linked to tumor recurrence. As aforementioned, these genes have recently been studied as biomarkers of poor prognosis.

Other chromosome abnormalities have been reported, as summarized in Table 3.

Epigenetic Alteration

H3K27 me3 was referred to in the WHO 2021 classification. Lack of H3K27 me3 staining in meningioma cells has been linked to faster progression, establishing its role as an adjunct prognostic marker. This provides important prognostic information, particularly in WHO grade 2 or borderline cases between WHO grades 1 and 2. In another large cohort study including 1,268 cases, lack of H3K27 me3 staining was found in 4.7% of meningiomas and was noted to be more common in females, in convexity or falx. The WHO grading system also revealed a significant difference in trimethylation loss: 3.1%, 10.4%, and 17.7% in grades 1, 2, and 3, respectively. Anaplastic (16.7%) and chordoid (20.0%) meningioma had the highest rate of trimethylation loss, followed by atypical and chordoid meningiomas (9.9% and 14.3%). Furthermore, significantly more cases were noted with a MIB1 labeling index (LI) of ≥6.9% in 18.3% of cases where H3K27 me3 staining was missing. The combination of H3K27 me3 loss and MIB1 LI has been reported to be a poor prognostic marker for meningiomas. The importance of H3K27 me3 loss in IHC has been highlighted.
Global DNA Methylation Profiling

Meningiomas are classified into six groups, according to Sahm et al., based on global DNA methylation profiling using a genome-wide methylation array.\(^{27}\) Higher methylation levels have been linked to a higher risk of tumor aggressiveness and recurrence according to this classification.\(^{27}\) DNA methylation is a type of epigenetic change that has been linked to genomic instability by silencing genes involved in DNA repair and cell cycle regulation. This group reported that DNA methylation-based classification can be used to diagnose other types of tumors.\(^{80,81}\)
Integrative Molecular Classifications of Meningiomas (Tables 4 and 5)

Meningioma integrative molecular classifications have recently been proposed.\cite{1,2,3} A combined model score based on WHO grading, CNAs, and global DNA methylation classification has been developed\cite{4} (Table 4). Patients were classified as having low (0-2), intermediate (3-5), and high (>5) integrated risk in that model. Although both methylation classification and the classification by CNAs have been independently proven to be better predictors than WHO grade alone, this integrated score consistently outperforms each component.\cite{5} In another study, an integrated molecular analysis of CNAs, DNA somatic mutations, global DNA methylation status, and transcriptome revealed four consensus molecular groups\cite{6} (Table 5). These molecular groups outperformed traditional classification in predicting clinical outcomes. Furthermore, each group exhibited distinctive and prototypical biology (MG1, immunogenic; MG2, benign NF2 wild-type; MG3, hypermetabolic; and MG4 proliferative), making them potential therapeutic targets.\cite{7} MG1 group demonstrated large immune infiltration and was enriched by pathways involved in immune regulation and signaling. The MG2 subset’s transcriptome is enriched for vascular and angiogenic pathways. The pathways converging the metabolism of several macromolecules were specifically enriched in MG3 tumors. MG4 group was enriched in pathways involved in cell cycle regulation and several important and complementary transcription factor networks related to proliferation, e.g., MYC, CDKs, and kinesins.\cite{8} Meningioma classification based on molecular biological features is being proposed. These classifications, along with those for other gliomas, have the potential to change the way diagnostic meningioma samples are processed.

Systemic Medical Therapies (Table 6)

Molecular targeted therapies

Neurosurgeons face therapeutic challenges when dealing with aggressive high-grade meningiomas that do not respond to surgeries and radiation therapy. Advances in understanding intracellular signaling pathways and microenvironment in meningiomas have led to the promise of molecular targeted therapies for meningiomas.\cite{9} NF2 mutations and 22q loss are most frequently observed in recurrent high-grade meningiomas and are potential therapeutic targets. GSK2256098, a FAK inhibitor that is supposed to be active when Merlin expression is defective, is currently being studied in an umbrella clinical trial that is specifically targeting meningiomas with NF2 mutations.\cite{10} BAP1

Components of classification	Score
WHO grading	
Grade 1	0
Grade 2	1
Grade 3	2
DNA copy number alterations	
None present	0
1-2 present	2
3 present	3
Losses chromosome 1p, 6q, and 14q	
Benign	0
Intermediate	2
Malignant	4

Classifications	Total score
Low risk	0-2
Intermediate risk	3-5
High risk	6-10

Outcome	
Low > intermediate > high	

Table 5 Integrative molecular classification of meningiomas 2

DNA somatic point mutations	DNA copy number alterations	Messenger RNA abundance (transcriptome)	Global DNA methylation status	
MG1 Immunogenic	**NF2 and SMARCB1**	22q loss	Immunogenic	Differences in genome-wide DNA methylation patterns between groups
MG2 Benign NF2 wild-type	**AKT1, KLF4, SMO, POLR2A, and TRAF7**	5, 12, and 20 gain	Vascular/angiogenesis	
MG3 Hypermetabolic	**NF2, TERTp, and CREBBP**	1p, 6, 14p, 18, and 22q loss	Hypermetabolic	
MG4 Proliferative	**NF2, TERTp, CREBBP, and CHD2**	1p, 6, 10, 14q, 18, 22q loss, and 1q gain	Proliferative	

Outcome	
MG1 > MG2 > MG3 > MG	

Neur Med Chir (Tokyo) 62, August, 2022
Classification	Drugs	Mechanism	Phase	Case	Result	Study
Molecular-targeted therapy	GSK2256098	FAK inhibitor	Phase II	Recurrent or progressive cases with NF2 mutations	Improving PFS6 rate	Brastianos et al. 2020 NCT02523014
Tazemetostat	EZH2 inhibitor		Phase II	BAPI1 mutation (Rhabdoid)	Ongoing	NCT02860286
Ribociclib	CDK4/6 inhibitor		Phase II	Grades 2 and 3 with CDKN2A/B deletion	Ongoing	NCT02933736 Tien et al. 2019
Vistusertib (AZD2014)	mTORC1/C2 inhibitor		Phase II	Recurrent grades 2 and 3 with NF2 mutation	Ongoing	NCT03071874
Vistusertib (AZD2014)	mTORC1/C2 inhibitor		Phase II	Progressive cases with NF2 mutation	Ongoing	NCT02831257
Everolimus + octreotide	mTOR inhibitor +		Phase II	Refractory aggressive/progressive cases	Improving PFS6 rate	Graillon et al. 2020 CEVOREM trial
Everolimus + bevacizumab	Anti-VEGF		Phase II	Recurrent/progressive cases	Improving PFS6 rate	Shih et al. 2016
Alpelisib + trametinib	PI3K inhibitor +		Phase II	Progressive refractory cases with PIK3CA mutation	Ongoing	NCT03631953
Vismodegib	Hedgehog pathway		Phase II	Recurrent/progressive cases with SMO/PTCH1 mutation	Ongoing	NCT02523014 Alliance clinical trial
Afuresertib	AKT1 inhibitor		Case report	Grade 1 with AKT1 mutation	Potential	Weller et al. 2017
Bevacizumab	Anti-VEGF monoclonal antibody		Phase II	Grades 2 and 3	PFS6 rate of 43.8%	Nayak et al. 2012
Bevacizumab	Anti-VEGF monoclonal antibody		Phase II	Grades 1-3	PFS6 rate of 77% in grade 2 46% in grade 3	Grimm et al. 2015
Bevacizumab	Anti-VEGF monoclonal antibody	Case series	Grades 2 and 3 previ- ous treated with RT	78.9% of edema improvement	Furuse et al. 2016	
Vatalanib (PTK787)	VEGF and PDGF receptors inhibitor	Phase II	Recurrent or progres- sive cases	Response rate of 0% PFS6 rate of 64.3% in grade 2 37.5% in grade 3	Raizer et al. 2014	
Sunitinib	Multitarget tyrosine kinase inhibitor	Phase II	Recurrent grades 2 and 3	Response rate of 6% PFS6 rate of 42%	Kaley et al. 2015	
Erlotinib or gefitinib	EGF receptor inhibitor		Phase II	Recurrent cases	No significant efficacy PFS6 rate of 29% in grades 2 and 3	Norden et al. 2010
Imatinib	PDGF receptor inhibitor		Phase II	Recurrent cases	No significant efficacy PFS6 rate of 0% in grades 2 and 3	Wen et al. 2009
Cabozantinib	Multitarget tyrosine kinase inhibitor	Case report	Recurrent cases	Potential	Kotecha et al. 2021	
Apatinib	VEGF receptor inhibitor		Case series	Recurrent anaplastic case	Potential	Wang et al. 2020
Classification	Drugs	Mechanism	Phase	Case	Result	Study
----------------	------------------	--------------	-------	-----------------------------------	-------------------------------	------------------------
SSTR2A agonist	Octreotide	Somatostatin agonist	Phase II	Recurrent cases with overexpression of SR	Limited efficacy	Chamberlain et al. 2007
	Octreotide	Somatostatin agonist	Phase II	Recurrent cases with overexpression of SR	No significant efficacy	Johnson et al. 2011
	Octreotide	Somatostatin agonist	Phase II	Recurrent grade 2 or 3 with positive octreotide SPECT	Limited efficacy	Simo et al. 2014
	Pasireotide LAR	Somatostatin agonist	Phase II	Recurrent cases with SR overexpression	Limited efficacy	Norden et al. 2015
PRRT	^90Y-DOTATOC		Phase II	SR-positive progressive cases	PFS6 rate of 78.6% in grade 1	Bartolomei et al. 2009
	^90Y-DOTATOC		Phase II	SR-positive or recurrent cases	PFS6 rate of 100% in grade 1	Geyster-Gillieron et al. 2015
	^90Y-DOTATOC and		Phase II	SR-positive progressive WHO grade 1	SD of 65.6%, PD of 34.4%	Marineck et al. 2015
	Luathera (177Lu-DOTATATE)		Phase II	Progressive grades 1-3	Ongoing	NCT03971461
	Luathera (177Lu-DOTATATE)		Phase II	Refractory grades 1-3	Ongoing	NCT03936426
Hydroxyurea	Hydroxyurea		Phase II	Recurrent grade 1 or 2	No significant efficacy	Loven et al. 2004
Hydroxyurea	Hydroxyurea		Phase II	Recurrent grade 1	Limited efficacy	Weston et al. 2006
Immunotherapy	Nivolumab/Ipilimumab	PD-1/CTLA4 blocking antibody	Phase II	Recurrent grades 2 or 3	No significant efficacy PFS6 rate of 42.4% in grades 2 and 3	Bi et al. 2021 NCT02648997
	Pembrolizomab	PD-1 blocking antibody	Phase II	Refractory grades 2 or 3	Ongoing	NCT03016091
	Pembrolizomab	PD-1 blocking antibody	Phase II	Recurrent grades 2 or 3	PFS6 rate of 48% in grades 2 and 3 Median PFS of 7.6 months	Brastianos et al. 2022 NCT03279692
	Nivolumab/Ipilimumab	PD-1/CTLA4 blocking antibody	Phase II	Recurrent grades 2 or 3	Ongoing	NCT03604978
	Avelumab	PD-L1	Phase II	Recurrent, radiation refractory cases	Ongoing	NCT03267836
Progesterone receptor antagonist	Mifepristone	Progesterone receptor antagonist	Phase III	Unresectable grades 1 or 2	No significant efficacy	Ji et al. 2015
	Trabectedin	Trabectedin	Phase II	Recurrent grades 2 or 3	No significant efficacy	Preussuer et al. 2019 EORTC-1320-BTG

PFS6 6 months progression-free survival, SSTR2A somatostatin receptor 2A, PRRT peptide receptor radionuclide therapy, SD stable disease, and PD progression disease.
mutations are potential targets for the BAP1 inhibitor, tazemetostat.37,86 Ribociclib, a CDK 4/6 inhibitor, has been tested in vitro and is currently being tested in recurrent WHO grades 2 and 3 meningiomas with CDKN2A/B homozygous deletion.38,85

The PI3K/AKT/mTOR pathway has recently been shown to be overactivated in the majority of meningiomas with NF2 mutations.86,87 Merlin functions as a negative regulator of mTORC1, and its loss is important for NF2-dependent tumorigenesis.88,21 These results suggest that mTORC1 may be a promising therapeutic target. Vistusertib (AZD2014), a dual mTORC1-mTORC2 inhibitor, is currently in clinical trials.80

The function of somatostatin receptor 2A (SSTR2A) in meningioma is unknown. However, they are present in almost all meningiomas and are strongly present in 70% of cases.91 SSTR2A activation by somatostatin agonist, octreotide, leads to inhibiting meningioma cell proliferation via PI3K/AKT/mTOR pathway inhibition.92 Somatostatin agonists were found to be ineffective in the majority of aggressive meningiomas in multiple clinical trials.89-91 The CEVOREM study, which combined an mTOR inhibitor, everolimus, and a somatostatin agonist, octreotide, for refractory and progressive meningiomas, revealed a radiographic response in four of 20 patients at 3 months and encouraged PFS at 6 and 12 months of 58.2% and 38%, respectively, with a median follow-up of 12.3 months.93 Therefore, additional studies are needed to assess the efficacy of everolimus and octreotide in a randomized trial. A phase II clinical trial with everolimus plus antivascular endothelial growth factor (VEGF) drug, bevacizumab, for the treatment of recurrent or progressive meningioma revealed that stable disease was achieved in 15 of 17 patients.94 Furthermore, one of the advantages of everolimus is that it is an oral medication. In vitro data on primary meningioma cell lines have demonstrated caspase-induced cell death mediated by the MEK inhibitor, trametinib. Therefore, alpelisib, a PI3K inhibitor, in combination with trametinib may be effective in meningioma treatment. This combination therapy is currently being studied.95

In the case of AKT1 inhibitor, the AKT1 inhibitor afuresertib (AZD5363) is effective. Afuresertib was used to treat a WHO grade 1 meningioma with AKT1 mutation, which resulted in long-term treated disease control.96 According to this study, the AKT1 mutation could be a potential therapeutic target.

SMO mutations cause the sonic hedgehog signaling pathway to be overexpressed. SMO mutations are more common in the anterior skull base of meningiomas.97,98 A phase II clinical trial with vismodegib, which is an SMO receptor antagonist, is currently ongoing.

Anti-VEGF drugs remain the most commonly used drugs in aggressive meningiomas today. When compared to WHO grade 1 meningiomas, it is secreted twofold in atypical meningiomas and tenfold in anaplastic meningiomas.99-101 Bevacizumab was found to have the most significant tumor growth inhibition effect in recurrent WHO grades 2 and 3 meningiomas and anti-edematous activity in 2016.102 PFS6 rates in grades 2 and 3 meningiomas ranged from 43.8% to 77% in several prospective studies.93,103 Another study found that bevacizumab showed a significant reduction in volume and peritumoral edema in meningiomas that had been previously treated with radiation therapy. These findings suggest that bevacizumab has an important role in postradiation changes and radiation necrosis.104 Future studies should look for more predictors to further determine efficacy. Other anti-angiogenic agents, e.g., vatalanib, an inhibitor of VEGF and platelet-derived growth factor (PDGF) receptors, and sunitinib, a multitargeted tyrosine kinase inhibitor, have shown limited efficacy with response rates of 0% and 6%, respectively,105,106 In a phase II trial, erlotinib or gefitinib, an EGF receptor inhibitor and PDGF receptor inhibitor, were investigated. However, no statistically significant changes were noted in PFS or OS.104,105 Two new VEGF targeting drugs, cabozantinib and apatinib, have been reported to be active.106,107

SSTR2A-targeted drug

Several clinical trials have found that low somatostatin agonists have low activity against aggressive meningiomas.89-91 In contrast, the use of somatostatin analog has been shown to slow tumor growth in WHO grade 1 skull base meningiomas.108,109 Peptide receptor radionuclide therapy (PRRT) for recurrent meningiomas was proposed based on high SSTR expression. This treatment is designed to specifically target the tumors that express and internalize SSTR2A. Several retrospective studies have been conducted using various agents, e.g., \textit{99m-Y-DOTATOC or 177Lu-DOTATATE, Lutathera.}110-116 These findings concluded that PRRT has a promising effect on WHO grades 1 and 2 meningiomas, but is less useful in aggressive WHO grades 2 and 3 meningiomas.103 A possible reason is that in aggressive WHO grades 2 and 3 meningiomas, SSTR2A expression is lower than in WHO grade 1 and meningiomas.114 Thus, PRRT could be less effective for this group. However, SSTR1 and SSTR5 expressions are higher than in WHO grades 1 and meningiomas.114 A broader affinity of substances used for PRRT has the potential to improve the efficacy.116 New drugs in the USA, Copper 64 labeled sartate and \textit{177Lu-DOTA-Tyr3-octreotate}, are being investigated.117

Hydroxyurea

Hydroxyurea was the first drug proposed for the treatment of meningiomas;118-119 it is an oral inhibitor of ribonucleotide reductase. Several clinical trials have been conducted,120-122 wherein their findings suggest that hydroxyurea may have potential but uncertain activity in low-grade meningiomas, whereas no significant effect has been reported in WHO grades 2 and 3 meningiomas.
Immunotherapy

The immune system's role in the progression of meningioma has long been suspected. According to studies, the immune microenvironment may have an impact on high-grade meningioma. According to some studies, programmed death-ligand 1 (PD-L1) expression is increased in high-grade meningiomas. However, a phase II clinical trial of PD-1 blocking antibody, nivolumab, in recurrent high-grade meningiomas showed no improvement in PFS6. Most recently, another PD-1 blocking antibody, pembrolizumab, in recurrent high-grade meningiomas showed promising efficacy. Several studies are being done with anti-CTLA4, pembrolizumab, either alone or with the combination of radiation therapy and anti-PD1, PD-L1, or CTLA4 agents. Since meningiomas express different potential immunotherapy targets, e.g., PD-L2, CTLA-4, and B7-H3, it has been suggested that the combination of immunotherapy with radiotherapy or targeted therapy may improve the local immune response.

Progesterone receptor antagonist (mifepristone)

Progesterone receptor (PR) expression is found in 70% of meningiomas. PR is strongly expressed in low-grade meningiomas, while the PR expression is reduced in high-grade meningiomas. Although PR was expected to be a potential therapeutic target for growth inhibition, a randomized double-blind placebo-controlled phase III trial concluded that the PR antagonist, mifepristone, lacked efficacy.

Trabectedin

Trabectedin binds to the minor groove of the DNA double helix. It affects several transcription factors and DNA repair mechanisms and has immunomodulatory and antiangiogenic effects. It is currently approved for advanced soft tissue sarcoma and ovarian cancer. Trabectedin suppressed meningioma cells from WHO grades 2 and 3 meningiomas through multiple mechanisms, and a favorable response was observed in a patient with recurrent anaplastic meningioma treated with trabectedin. However, in the EORTC Brain Tumor Group's randomized phase II trial (EORTC-1320-BTG), trabectedin did not improve overall survival in recurrent WHO grades 2 and 3 meningiomas.

Conclusion

Meningiomas' molecular biological characteristics have been clarified. Furthermore, several new comprehensive classifications of meningiomas based on these molecular biological features have been proposed. These classifications are expected to provide a more accurate prognosis than the traditional WHO classification and to influence treatment strategies for refractory aggressive meningiomas. Future systemic drug therapy research, including molecular targeted therapies, is also expected to be developed.

Ethical Approval and Informed Consent

No informed consent was required in this study because no humans were directly involved.

Conflicts of Interest Disclosure

None

References

1) Ostrom Q T, Cioffi G, Gittleman H, et al.: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol 21: v1-v100, 2019
2) Bulleid I S, James Z, Lammie A, Hayhurst C, Leach P A: The effect of the revised WHO classification on the incidence of grade II meningioma. Br J Neurosurg 34: 584-586, 2020
3) Louis D N, Ohgaki H, Wiestler O D, et al.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114: 97-109, 2007
4) Louis D N, Perry A, Reifenberger G, et al.: The 2016 World Health Organization Classification of Tumors of the central nervous system: a summary. Acta Neuropathol 131: 803-820, 2016
5) Perry A: Unmasking the secrets of meningioma: a slow but rewarding journey. Surg Neurol 61: 171-173, 2004
6) Rogers L, Gilbert M, Vogelbaum M A: Intracranial meningiomas: histopathology, histomorphometry of Ki-67/Feulgen stainings, and cytogenetics. Acta Neuropathol 137: 174-181, 1995
7) Maier H, Ofner D, Hittmair A, Kitz K, Budka H: Classic, atypical, and anaplastic meningioma: three histopathological subtypes of clinical relevance. J Neurosurg 77: 616-623, 1992
8) Jääskeläinen J, Haltia M, Servo A: Atypical and anaplastic meningiomas: radiology, surgery, radiotherapy, and outcome. Surg Neurol 25: 233-242, 1986
9) Kolles H, Niedermayer I, Schmitt C, et al.: Triple approach for diagnosis and grading of meningiomas: histology, morphometry of Ki-67/Feulgen stainings, and cytogenetics. Acta Neurochir 137: 174-181, 1995
10) Maier H, Ofner D, Hittmair A, Kitz K, Budka H: Classic, atypical, and anaplastic meningioma: three histopathological subtypes of clinical relevance. J Neurosurg 77: 616-623, 1992
11) Perry A, Stafford S L, Scheithauer B W, Suman V J, Lohse C M: Meningioma grading: an analysis of histologic parameters. Am J Surg Pathol 21: 1455-1465, 1997
12) Chiha K, Sugawara T, Kobyashi D, Sato A, Murota Y, Maehara T: Atypical histological features as risk factors for recurrence in newly diagnosed WHO Grade I meningioma. Neurol Med Chir (Tokyo) 61: 647-651, 2021
13) Simó M, Argyriou A A, Macià M, et al.: Recurrent high-grade meningioma: a phase II trial with somatostatin analogue therapy. Cancer Chemother Pharmacol 73: 919-923, 2014
14) Chamberlain M C: The role of chemotherapy and targeted therapy in the treatment of intracranial meningioma. Curr Opin Oncol 24: 666-671, 2012
15) Louis D N, Perry A, Wesseling P, et al.: The 2021 WHO Classification of Tumors of the central nervous system: a summary. Neuro Oncol 23: 1231-1251, 2021

Neurol Med Chir (Tokyo) 62, August, 2022
16) Maas S I. N, Stichel D, Hielscher T, et al.: Integrated molecular-morphologic meningioma classification: A multicenter retrospective analysis, retrospectively and prospectively validated. J Clin Oncol 39: 3839-3852, 2021
17) Nassiri F, Liu J, Patil V, et al.: A clinically applicable integrative molecular classification of meningiomas. Nature 597: 119-125, 2021.
18) Sievers P, Hielscher T, Schirmpf D, et al.: CDKN2A/B homozygous deletion is associated with early recurrence in meningiomas. Acta Neuroopatol 140: 409-413, 2020.
19) Sahm F, Schirmpf D, Olar A, et al.: Tert promoter mutations and risk of recurrence in meningioma. J Natl Cancer Inst 108: 2016.
20) James M F, Han S, Polizziano C, et al.: NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol 29: 4250-4261, 2009.
21) López-Lago M A, Okada T, Murillo M M, Socci N, Giancotti F G: Loss of the tumor suppressor gene NF2, encoding Merlin, constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol 29: 4235-4249, 2009.
22) Bi W L, Greenwald N F, Abedalthagafi M, et al.: Genomic landscape of high-grade meningiomas. NPJ Genom Med 2: 2017.
23) Pawloski J A, Fadel H A, Huang Y W, Lee J Y: Genomic biomarkers of meningioma: A focused review. Int J Mol Sci 22: 2021.
24) Perry A, Banerjee R, Lohse C M, Lohse C M, Kleinschmidt-DeMasters BK, et al.: The role of chromosome 9p deletions in the malignant progression of meningiomas and the prognosis of anaplastic meningiomas. Brain Pathol 12: 183-190, 2002.
25) Boström J, Meyer-Puttlitz B, Wolter M, et al.: Alterations of the tumor suppressor genes CDKN2A (p16[INK4a]), p14[ARF], CDKN2B (p15[INK4b]), and CDKN2C (p18[INK4c]) in atypical and anaplastic meningiomas. Am J Pathol 159: 661-669, 2001.
26) Goutagny S, Yang H, Wzcman-Rossi J, et al.: Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin Cancer Res 16: 4155-4164, 2010.
27) Sahm F, Schirmpf D, Stichel D, et al.: DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol 18: 682-694, 2017.
28) Guyot A, Duchesne M, Robert S, et al.: Analysis of CDKN2A gene alterations in recurrent and non-recurrent meningioma. J Neurooncol 145: 449-459, 2019.
29) Peyre M, Stemmer-Rachamimov A, Clermont-Taranchon E, et al.: Meningioma progression in mice triggered by NF2 and Cdkn2ab inactivation. Oncogene 32: 4264-4272, 2013.
30) Mirian C, Dunn-Henriksen A K, Juratli T, et al.: Poor prognosis associated with tert gene alterations in meningioma is independent of the WHO classification: an individual patient data meta-analysis. J Neurol Neurosurg Psychiatry 91: 378-387, 2020.
31) Maier A D, Stemman A, Svanh F, et al.: Tert promoter mutations in primary and secondary WHO grade III meningioma. Brain Pathol 31: 61-69, 2021.
32) Stögthauer L, Stummer W, Senner V, Brokinkel B: Telomerase activity, tert expression, hTERT promoter alterations, and alternative lengthening of the telomeres (ALT) in meningiomas - a systematic review. Neurosurg Rev 43: 903-910, 2020.
33) Paramasivam N, Hübschmann D, Toprak U H, et al.: Mutational patterns and regulatory networks in epigenetic subgroups of meningioma. Acta Neuropathol 138: 295-308, 2019.
34) Deng J, Sun S, Chen J, et al.: Tert alterations predict tumor progression in de novo high-grade meningiomas following adjuvant radiotherapy. Front Oncol 11: 747592, 2021.
35) Shankar G M, Santagata S: BAP1 mutations in high-grade meningioma: implications for patient care. Neuro Oncol 19: 1447-1456, 2017.
36) Carbone M, Harbour J W, Brugarolas J, et al.: Biological mechanisms and clinical significance of BAP1 mutations in human cancer. Cancer Discov 10: 1103-1120, 2020.
37) Shankar G M, Abdalalthagafi M, Vaubel R A, et al.: Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas. Neuro Oncol 19: 535-545, 2017.
38) Williams E A, Wakimoto H, Shankar G M, et al.: Frequent inactivating mutations of the PBAF complex gene PBRM1 in meningioma with papillary features. Acta Neuropathol 140: 89-93, 2020.
39) Wang H, Qu Y, Dai B, et al.: PBRM1 regulates proliferation and the cell cycle in renal cell carcinoma through a chemokine/chemokine receptor interaction pathway. PLOS ONE 12: e0180862, 2017.
40) Miao D, Margolis C A, Gao W, et al.: Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359: 801-806, 2018.
41) Juratli T A, McCabe D, Nayyar N, et al.: DMD genomic deletions characterize a subset of progressive/higher-grade meningiomas with poor outcome. Acta Neuropathol 136: 779-792, 2018.
42) Youkhoglu M W, Duran D, Montejo J D, et al.: Correlations between genomic subgroup and clinical features in a cohort of more than 3000 meningiomas. J Neurosurg 133: 1-10, 2020. doi: 10.3171/2019.8.JNS191266.
43) Jungwirth G, Warta R, Beynon C, et al.: Intraventricular meningiomas frequently harbor NF2 mutations but lack common genetic alterations in TRAF7, AKT1, SMO, KLF4, PIK3CA, and tert. Acta Neuropathol Commun 7: 140, 2019.
44) Abdalalthagafi M S, Bi W L, Merrill P H, et al.: ARID1A and tert promoter mutations in dedifferentiated meningioma. Cancer Genet 208: 345-350, 2015.
45) Tjauziede-Espariat A, Parfait B, Besnard A, et al.: Loss of SMARCE1 expression is a specific diagnostic marker of clear cell meningioma: a comprehensive immunophenotypical and molecular analysis. Brain Pathol 28: 466-474, 2018.
46) Collord G, Tarpey P, Kurbatova N, et al.: An integrated genomic analysis of anaplastic meningioma identifies prognostic molecular signatures. Sci Rep 8: 15357, 2018.
47) Gill C M, Loewenstern J, Rutland J W, et al.: SWI/SNF chromatin remodeling complex alterations in meningioma. J Neurosurg 129: 345-350, 2015.
thehrial differentiation stratify recurrence risk in chordoid meningioma-A multicenter study with high prognostic relevance. Cancers (Basel) 12: 2020
54) Vasudevan H N, Braunstein S E, Phillips J J, et al.: Comprehensive molecular profiling identifies FOXM1 as a key transcription factor for meningioma proliferation. Cell Rep 22: 3672-3683, 2018
55) Harmanaci A S, Youngblood M W, Clark V E, et al.: Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nat Commun 8: 14433, 2017
56) Lin P, Buxton J A, Achenon A, et al.: Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Natl Acad Sci U S A 95: 8828-8834, 1998
57) Fu Z, Malureanu L, Huang J, et al.: Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol 10: 1076-1082, 2008
58) Korver W, Schilham M W, Moerer P, et al.: Uncoupling of S phase and mitosis in cardio-myocytes and hepatocytes lacking the winged-helix transcription factor Trident. Curr Biol 8: 1327-1330, 1998
59) Laurendeu F, Ferrer M, Garrido D, et al.: Gene expression profiling of the hedgehog signaling pathway in human meningiomas. Mol Med 16: 262-270, 2010
60) Aizer A A, Abedalthagafi M, Bi W L, et al.: A prognostic cytogenetic scoring system to guide the adjuvant management of patients with atypical meningioma. Neuro Oncol 18: 269-274, 2016
61) Weber R G, Boström J, Wolter M, et al.: Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci U S A 94: 14719-14724, 1997
62) Leone P E, Bello M J, de Campos J M, et al.: NF2 gene mutations and allelic status of 1p, 1q and 22q in sporadic meningiomas. Oncogene 18: 2231-2239, 1999
63) Lee Y, Liu J, Patel S, et al.: Genomic landscape of meningiomas. Brain Pathol 20: 751-762, 2010
64) Perry A, Cai D X, Scheithauer B W, et al.: Merlin, DAL-1, and progesterone receptor expression in clinicopathologic subsets of meningioma: a correlative immunohistochemical study of 175 cases. J Neuropathol Exp Neurol 59: 872-879, 2000
65) Suppiah S, Nassiri F, Bi W L, et al.: Molecular and translational advances in meningiomas. Neuro Oncol 21: i4-i17, 2019
66) Peyre M, Kalamardies M: Molecular genetics of meningiomas: building the roadmap towards personalized therapy. Neuro-Chirurgie 64: 22-28, 2018
67) Bi W L, Prabhu V C, Dunn I F: High-grade meningiomas: biology and implications. Neurosurg Focus 44: E2, 2018
68) Driver J, Hoffman S E, Tavakol S, et al.: A molecularly integrated grade for meningioma. Neuro Oncol 24: 796-808, 2022. doi: 10.1093/neuonc/noab213
69) Pérez-Magán E, Rodríguez de Lope A, Ribalta T, et al.: Differential expression profiling analyses identifies downregulation of 1p, 6q, and 1q genes and overexpression of 6p histone cluster 1 genes as markers of recurrence in meningiomas. Neuro Oncol 12: 1278-1290, 2010
70) Linsler S, Kraemer D, Driess C, et al.: Molecular biological determinations of meningioma progression and recurrence. PLOS ONE 9: e94987, 2014
71) Lamszus K: Meningioma pathology, genetics, and biology. J Neuropathol Exp Neurol 63: 275-286, 2004
72) Damen P J J, Bulthuis V J, Hanssens P E J, et al.: WHO grade I meningiomas that show regrowth after gamma knife radiosurgery often show 1p36 loss. Sci Rep 11: 16432, 2021
73) Cai D X, Banerjee R, Scheithauer B W, Lohse C M, Kleinschmidt-Demasters B K, Perry A: Chromosome 1p and 1q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 60: 628-636, 2001
74) Williams E A, Santagata S, Wakimoto H, et al.: Distinct genomic subclones of high-grade/progressive meningiomas: NF2-associated, NF2-exclusive, and NF2-agnostic. Acta Neuropathol Commun 8: 171, 2020
75) Barresi V, Simbolo M, Fioravanzo A, et al.: Molecular Profiling of 22 Primary Atypical meningiomas Shows the Prognostic Significance of 18q Heterozygous Loss and CDKN2A/B Homozygous Deletion on Recurrence-Free Survival. Cancers (Basel) 13: 2021
76) Katz L M, Hilscher T, Liebthy B, et al.: Loss of histone H3K27me3 identifies a subset of meningiomas with increased risk of recurrence. Acta Neuropathol 135: 955-963, 2018
77) Gauchotte G, Peyre M, Pouget C, et al.: Prognostic value of histopathological features and loss of H3K27me3 immunolabeling in anaplastic meningioma: A multicenter retrospective study. J Neuropath Exp Neurol 79: 754-762, 2020
78) Nassiri F, Wang J Z, Singh O, et al.: Loss of H3K27me3 in meningiomas. Neuro Oncol 23: 1282-1291, 2021
79) Behling F, Fendi C, Gepfner-Tuma I, et al.: H3K27me3 loss indicates an increased risk of recurrence in the Tübingen meningioma cohort. Neuro Oncol 23: 1273-1281, 2021
80) Capper D, Jones D T W, Sill M, et al.: DNA methylation-based classification of central nervous system tumours. Nature 555: 469-474, 2018
81) Koelsche C, Schrimpff D, Stichel D, et al.: Sarcoma classification by DNA methylation profiling. Nat Commun 12: 498, 2021
82) Nassiri F, Mamatiyan I, Suppiah S, et al.: DNA methylation profiling to predict recurrence risk in meningioma: development and validation of a nomogram to optimize clinical management. Neuro Oncol 21: 901-910, 2019
83) Graillon T, Tabouret E, Chinot O: Chemotherapy and targeted therapies for meningiomas: what is the evidence? Curr Opin Neuro 34: 857-867, 2021
84) Brastianos P K, Twoby E, Gerstner E R, et al.: Alliance A071401: Phase II trial of FAK inhibition in meningiomas with somatic NF2 mutations. J Clin Oncol 38: 2502, 2020
85) Tien A C, Li J, Bao X, et al.: A Phase 0 trial of ribociclib in recurrent glioblastoma patients incorporating a tumor pharmacodynamic- and pharmacokinetic-guided expansion cohort. Clin Cancer Res 25: 5777-5786, 2019
86) Pachon A, Andrae N, Kliese N, et al.: mTORC1 inhibitors suppress meningioma growth in mouse models. Clin Cancer Res 19: 1180-1189, 2013
87) Johnson M D, Okedli E, Woodard A, Toms S A, Allen G S: Evidence for phosphatidylinositol 3-kinase-Akt-p7S6K pathway activation and transduction of mitogenic signals by platelet-derived growth factor in meningioma cells. J Neurosurg 97: 668-675, 2002
88) Graillon T, Defilles C, Mohamed A, et al.: Combined treatment by octreotide and everolimus: octreotide enhances inhibitory effect of everolimus in aggressive meningiomas. J Neurooncol 124: 33-43, 2015
89) Graillon T, Sanson M, Campello C, et al.: Everolimus and octreotide for patients with recurrent meningioma: results from the Phase II CEVOREM trial. Clin Cancer Res 26: 552-557, 2020
90) Chamberlain M C, Glantz M J, Fadul C E: Recurrent men-

Neurol Med Chir (Tokyo) 62, August, 2022
coli

Molecular Biological Research in Grades 2 and 3 Meningiomas

Neurol Med Chir (Tokyo) 62, August, 2022
27) Li Y D, Veliceasa D, Lamano J B, et al.: Systemic and local immunosuppression in patients with high-grade meningiomas. *Cancer Immunol Immunother* 68: 999-1009, 2019

28) Du Z, Abedalthagafi M, Aizer A A, et al.: Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma. *Oncoimmunology* 8: e1512943, 2019

127) Li Y D, Veliceasa D, Lamano J B, et al.: Systemic and local immunosuppression in patients with high-grade meningiomas. *Cancer Immunol Immunother* 68: 999-1009, 2019

128) Du Z, Abedalthagafi M, Aizer A A, et al.: Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma. *Oncoimmunology* 8: e1512943, 2019

129) Karimi S, Mansouri S, Mamajian Y, et al.: Programmed death ligand-1 (PD-L1) expression in meningioma; prognostic significance and its association with hypoxia and NFκB2 expression. *Sci Rep* 10: 14115, 2020

130) Bi W L, Nayak L, Meredith D M, et al.: Activity of PD-1 blockade with Nivolumab among patients with recurrent atypical/anaplastic meningioma: Phase II trial results. *Neuro Oncol* 24: 101-113, 2022. doi: 10.1093/neuonc/noab118

131) Brastianos P K, Kim A E, Giobbie-Hurder A, et al.: Phase 2 study of pembrolizumab in patients with recurrent and residual high-grade meningioma. *Nat Commun* 13: 1325, 2022

132) Karimi S, Mansouri S, Nassiri F, et al.: Clinical significance of checkpoint regulator "Programmed death ligand-1 (PD-L1)" expression in meningioma: review of the current status. *J Neurooncol* 151: 443-449, 2021

133) Wahab M, Al-Azzawi F: Meningioma and hormonal influences. *Clinacteric* 6: 285-292, 2003

134) Hsu D W, Efird J T, Hedley-Whyte E T: Progesterone and estrogen receptors in meningiomas: prognostic considerations. *J Neurosurg* 86: 113-120, 1997

135) Bozzetti C, Camisa R, Nizzoli R, et al.: Estrogen and progesterone receptors in human meningiomas: biochemical and immunocytochemical evaluation. *Surg Neurol* 43: 230-233; discussion 234, 1995

136) Ji Y, Rankin C, Grunberg S, et al.: Double-blind Phase III randomized trial of the antiprogestin agent mifepristone in the treatment of unrespectable meningioma: SWOG S9005. *J Clin Oncol* 33: 4093-4098, 2015

137) Germano G, Frapolli R, Belgiovine C, et al.: Role of macrophage targeting in the antitumor activity of trabectedin. *Cancer Cell* 23: 249-262, 2013

138) Jimenez P C, Wilke D V, Branco P C, et al.: Enriching cancer pharmacology with drugs of marine origin. *Br J Pharmacol* 177: 3-27, 2020

139) Huygh G, Clement P M, Dumez H, et al.: Ecteinascidin-743: evidence of activity in advanced, pretreated soft tissue and bone sarcoma patients. *Sarcoma* 2006: 56282, 2006

140) Preusser M, Spieg-Kreinecker S, Lötisch D, et al.: Trabectedin has promising antineoplastic activity in high-grade meningioma. *Cancer* 118: 5038-5049, 2012

141) Preusser M, Silvani A, Le Rhun E, et al.: Trabectedin for recurrent WHO grade 2 or 3 meningioma: a randomized phase 2 study of the EORTC Brain Tumor Group (EORTC-1320-BTG). *Neuro Oncol* 24: 755-767, 2022. doi: 10.1093/neuonc/noab243

Corresponding author: Satoru Miyawaki, M.D., Ph.D.
Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
e-mail: smiya-nsu@m.u-tokyo.ac.jp