Glycine-extended gastrin enhances somatostatin release from cultured rabbit fundic D-cells [version 1; peer review: 2 approved]

Ian LP Beales

Department of Gastroenterology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, NR4 7UZ, UK
Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
Royal Postgraduate Medical School, Hammersmith Hospital, London, W12, UK

First published: 20 Feb 2013, 2:56
Latest published: 20 Feb 2013, 2:56

Abstract
The role of the peptide hormone gastrin in stimulating gastric acid secretion is well established. Mature amidated gastrin is processed from larger peptide precursor forms. Increasingly these processing intermediates, such as glycine-extended gastrin (G-Gly) and progastrin, have been shown to have biological activities of their own, often separate and complementary to gastrin. Although G-Gly is synthesized and secreted by gastric antral G-cells, the physiological functions of this putative mediator are unclear. Gastrin and cholecystokinin (CCK) stimulate the secretion of somatostatin from gastric D-cells as part of the feedback control of gastric acid. In this study the effect of G-Gly and gastrin on the release of somatostatin from rabbit fundic D-cells was examined. D-cells were obtained by collagenase-EDTA digestion and elutriation and cultured for 48 hours. With a 2 hour exposure to the peptides, gastrin but not G-Gly stimulated somatostatin release. Treatment of D-cells for 24 hours with gastrin or G-Gly individually, significantly enhanced subsequent basal as well as CCK- and GLP-1-stimulated somatostatin release. Twenty four hours exposure to gastrin combined with G-Gly synergistically enhanced basal and agonist-stimulated somatostatin release and cellular somatostatin content. Gastrin and G-Gly may be important in the longer term regulation of D-cell function.

Keywords
gastrin, glucagon-like peptides, somatostatin
Introduction

Gastrin is initially synthesized as a larger precursor protein and subsequently processed, via a multi-step pathway, to the classical active carboxyl-terminal amidated peptide. It has become apparent that some of the processing intermediates may have biological activities of their own. Significant biological effects have been reported for both the larger progastrin precursor peptide and the shorter carboxyl-terminal glycine-extended gastrin (G-Gly), suggesting that these are important pathophysiological mediators. The majority of studies have examined the pathophysiological roles of gastrin precursors in gastrointestinal cancers and considerable data have implicated these peptides as stimulants of proliferation and/or inhibitors of apoptosis in a variety of tissues and cell lines, including Barrett’s oesophagus and oesophageal adenocarcinoma, stomach, pancreas and normal and malignant colonic epithelium. Growth promoting effects of G-Gly on lung cancer have also been reported.

Although the precise cell signaling pathways activated by gastrin-processing intermediates have not been definitely described, it seems in most cases that mechanisms distinct from the classical gastrin (CCK2) receptor are involved. It is not yet clear whether these gastrin-processing intermediates have distinct physiological, as opposed to pathophysiological roles. Glycine-extended gastrin is produced and stored in significant amounts in the gastric antrum, has gastrointestinal trophic effects and interacts with amidated gastrin to modulate gene expression and gastric acid secretion. Gastrin stimulates both acid secretion and somatostatin release as a feedback inhibitory mechanism. Similarly, release of cholecystokinin (CCK) from duodenal I-cells is believed to be an important negative feedback mechanism, leading to the inhibition of acid secretion via the release of somatostatin from D-cells in the gastric body and fundus. Somatostatin release is also stimulated by several other peptide hormones released from the proximal and distal small bowel (including glucagon-like peptide-1 (GLP-1), secretin and oxyntomodulin) and these form part of the physiological feedback mechanisms that decrease gastric acid in the post-prandial period. The current study was designed to assess the effects of G-Gly on somatostatin release from D-cells and compare these effects with those of amidated gastrin.

Materials and methods

New Zealand White rabbits (2–2.5 kg) (Charles River Ltd, Margate, UK) were housed singly in 120 × 60 × 60 cm cages and fed ad libitum on rabbit chow (Special Diets Services, Witham, UK) with a standard 16/8 hour light/dark cycle according to standard Royal Postgraduate Medical School policy. Rabbits were humanely euthanized with 100 mg/kg pentobarbitone intravenously according to institutional policy. One rabbit was used per cell preparation procedure. Post-mortem, the stomach was removed and primary rabbit fundic D-cells were isolated by EDTA-collagenase digestion and enriched by centrifugal elutriation as described previously.

The D-cell enriched fraction was suspended in culture medium (DMEM: Ham’s F12 50:50 containing 4% foetal calf serum (Gibco, Paisley, UK), 10 mM HEPES pH 7.4, 2 mM glutamine, 8 mg/l bovine insulin, 1 mg/l hydrocortisone, 100 mg/l penicillin, 100 mg/l streptomycin, 100 mg/l gentamycin (all from Sigma, Poole, UK) and plated at 1 × 10^6 cells/well onto 12 well tissue culture plates coated with growth factor-reduced Matrigel (diluted 1:7 with water) (Universal Biologicals, London, UK). Cells were cultured for 48 hours after which either somatostatin release experiments were performed or the culture medium was changed and supplemented with 10 nM gastrin or 10 nM G-Gly as appropriate for a further 24 hours, until release experiments were performed.

Somatostatin release experiments were performed as previously described: the culture medium was removed, the cells washed, with release medium (Earl’s balanced salt solution containing 0.1% bovine serum albumin and 10 mM HEPES, pH 7.4) and basal somatostatin, as well as 10 nM cholecystokinin (CCK), and 10 nM glucagon-like peptide-1 (7-36 amide) (GLP-1)-stimulated somatostatin release was assessed over 2 hours. Cellular somatostatin was extracted by boiling the adherent cells in 3% (final vol/vol) glacial acetic acid in distilled water. Both released and cellular somatostatin were assessed by radioimmunoassay using K2 anti-somatostatin serum (kindly provided by Professor SR Bloom and Dr M Ghatei, Royal Postgraduate Medical School, Hammersmith Hospital, using 125I somatostatin-14 as tracer and human somatostatin-14 as standard (Bachem, St Helens, UK)) as previously described.

Each experimental condition was tested in duplicate and compared with control, untreated wells on the same plate. Results were compared by analysis of variance and Student’s t-test and represent mean ± SEM of 8 different cell preparations. Gastrin (1–17)-Gly (G-Gly) was purchased from NeoMPS (Strasbourg, France), human gastrin-17, sulfated CCK-8 and GLP-1 (7–36) amide were from Bachem.

Cell viability following prolonged gastrin and G-Gly treatment was assessed using the modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolinium bromide (MTT) (Sigma) as previously described.

Results

Initial experiments with only the standard 2-hour stimulation period (without any prolonged pretreatment with any peptides) confirmed that gastrin increased basal but not CCK-stimulated somatostatin release. G-Gly over the 2 hour stimulation period did not alter basal, gastrin or CCK-stimulated release (Figure 1 and Table 1). Gastrin alone did stimulate somatostatin release but was less effective than CCK and neither gastrin nor the gastrin plus G-Gly combination had any effect on CCK-stimulated gastrin release.

Twenty four hours pretreatment with gastrin enhanced subsequent basal somatostatin release by 13% and CCK-stimulated release by 10% (both P<0.05), G-Gly enhanced basal somatostatin release by 22% and CCK-stimulated release by 24% (both p<0.05) (Figure 2). The combination of gastrin and G-Gly synergistically increased both basal somatostatin release (35%) and subsequent CCK-stimulated somatostatin release (53%) (p<0.05 compared to the effect of either peptide alone) (Figure 2 and Table 2).

To further examine the effects of G-Gly pretreatment on agonist-stimulated release, an alternative direct stimulant of rabbit fundic D-cells, GLP-1, was used. In keeping with previous studies, GLP-1 did stimulate somatostatin release but was markedly less potent than CCK. As shown in (Figure 3 and Table 2), again 24 hours...
pretreatment with gastrin alone significantly but relatively modestly potentiated subsequent GLP-1-stimulated somatostatin release (a 25% increase compared to the control GLP-1 treated cells), whilst G-Gly was more effective in enhancing GLP-1-stimulated somatostatin release (a 37% increase compared to the control GLP-1 treated cells). The combination of G-Gly and gastrin was significantly more potent than either peptide alone in enhancing GLP-1 stimulated somatostatin release (a 70% increase compared to the control GLP-1 stimulated cells).

Twenty four hour pretreatment with both gastrin peptides individually increased D-cell somatostatin content (Figure 4 and Table 3). The dual peptide combination was again synergistic in enhancing cellular somatostatin content, the combination increasing total somatostatin levels by 57% compared to untreated basal levels.

Discussion

This study demonstrates that both gastrin and G-Gly enhance the subsequent basal and CCK or GLP-1 stimulated release of somatostatin.
from rabbit fundic D-cells. No acute stimulatory effects of G-Gly were demonstrated but the 24 hour exposure of D-cells to G-Gly significantly increased somatostatin release. It is clear that hormone release is regulated at multiple points (transcription, translation, processing)\(^1\) and that different agents may regulate overall function with different temporal patterns. However, it is not yet clear at which point(s) G-Gly regulates somatostatin release. The increase in cellular somatostatin seen after treatment with G-Gly suggests that upregulation of transcription or translation could be involved. An alternative but not mutually exclusive hypothesis is that the gastrin peptides are specific trophic factors for D-cells and the increased somatostatin release in cultured cells reflects these effects. There was no difference in cell viability, assessed by the modified MTT assay between gastrin or G-Gly treated and non-treated cells, but this does not exclude more subtle effects of G-Gly on D-cell function.

Table 2. Experimental data showing somatostatin-like immunoreactivity (SLI) released from cultured rabbit fundic D-cells treated for 24 hours with gastrin (10 nM), glycine-extended gastrin (G-Gly) (10 nM) or both peptides. Experimental data from 8 separate stomach preparations showing somatostatin-like immunoreactivity released from cultured rabbit fundic D-cells stimulated for 2 hours with CCK or GLP-1 (both 10 nM), following a 24-hour pretreatment period with gastrin, glycine-extended gastrin or both peptides (all 10 nM). SLI results expressed as % of basal, unstimulated and untreated release in the relevant stomach preparation.

Preparation no.	24h pretreatment	Basal	Gastrin	G-Gly	Gastrin & G-Gly							
	2 hr stimulation	Control	CCK	GLP-1	Control	CCK	GLP-1	Control	CCK	GLP-1		
1	100	226	165	107	229	177	117	251	192	134	290	205
2	100	230	187	114	233	188	105	248	189	136	263	195
3	100	201	130	118	195	151	120	219	158	152	282	187
4	100	182	130	108	185	144	125	203	153	122	239	189
5	100	225	144	116	221	143	109	251	159	129	299	184
6	100	201	169	120	201	175	129	268	178	125	295	185
7	100	221	158	115	225	178	135	254	185	133	269	199
8	100	210	165	104	205	198	133	225	201	144	242	223

Figure 3. Effect of 24 hour pretreatment with gastrin (10 nM), glycine-extended gastrin (G-Gly) (10 nM) or both peptides on subsequent basal and GLP-1 (10 nM)-stimulated somatostatin release from D-cells. D-cells were cultured for 48 hours and then treated for a further 24 hours with peptides as shown, before stimulation with either GLP-1 or control culture medium for 2 hours. Somatostatin-like immunoreactivity was extracted from cells and quantified by radioimmunoassay. Results expressed and mean ± SEM, compared to untreated control cells, n = 8, * p<0.05 compared to relevant basal control, ** p<0.05 compared to gastrin or G-Gly as sole pretreatment.

Figure 4. Effect of 24 hour pretreatment with gastrin (10 nM), glycine-extended gastrin (G-Gly) (10 nM) or both peptides on cellular somatostatin content. D-cells were cultured for 48 hours and then treated for a further 24 hours with peptides as shown, Somatostatin-like immunoreactivity was extracted from cells and was quantified by radioimmunoassay. Results expressed and mean ± SEM, compared to untreated control cells, n = 8, * p<0.05 compared to untreated control cells. ** p<0.05 compared to gastrin or G-Gly as sole treatment.
Experimental data showing cellular somatostatin-like immunoreactivity (SLI) in cultured rabbit fundic D-cells treated for 24 hours with gastrin (10 nM), glycine-extended gastrin (G-Gly) (10 nM) or both peptides. Experimental data from 8 separate stomach preparations showing cellular somatostatin-like immunoreactivity contained in cultured rabbit fundic D-cells treated for a 24-hour pretreatment period with gastrin, glycine-extended gastrin or both peptides (10 nM). SLI results express as % of untreated control cells from the relevant stomach preparation.

Preparation no.	Basal SLI	Gastrin SLI	G-Gly SLI	Gastrin & G-Gly SLI
1	100	108	127	149
2	100	128	135	193
3	100	105	118	160
4	100	109	122	152
5	100	112	148	192
6	100	108	110	129
7	100	110	120	150
8	100	105	116	143

Table 3. Experimental data showing cellular somatostatin-like immunoreactivity (SLI) in cultured rabbit fundic D-cells treated for 24 hours with gastrin (10 nM), glycine-extended gastrin (G-Gly) (10 nM) or both peptides.

Gastrin stimulates both acid secretion and negative feedback inhibition of acid secretion via the simultaneous release of somatostatin. G-Gly is also released from G-cells following meals and may enhance acid secretion. The results reported here suggest that longer term exposure of D-cells to gastrin and G-Gly also stimulates a further negative feedback loop by enhancing subsequent somatostatin release thus providing a means to restrain acid hypersecretion caused by hypergastrinemia and control longer term acid secretion. Several studies have confirmed that G-Gly is produced in gastric antral G-cells and this study adds further support to the suggestion that these peptide processing intermediates may have a role in the normal physiological control of the gastric secretions.

The mechanisms of action of both gastrin and G-Gly in enhancing somatostatin release in these circumstances remain to be elucidated. Interestingly, the combination of these peptides had a synergistic effect on the release of somatostatin as has been noted in the control of acid secretion and cell growth. Gastrin and G-Gly have separate but complimentary actions on cell signaling pathways and gene transcription. This further supports the notion that both gastrin and G-Gly produced by the gastric antrum and duodenum have important roles in the regulation of gastric homeostasis.

Preparation no. Basal Gastrin G-Gly Gastrin & G-Gly
1 100 108 127 149
2 100 128 135 193
3 100 105 118 160
4 100 109 122 152
5 100 112 148 192
6 100 108 110 129
7 100 110 120 150
8 100 105 116 143

It is known that multiple feedback loops regulate gastric acid secretion. Gastrin stimulates both acid secretion and negative feedback inhibition of acid secretion via the simultaneous release of somatostatin. Gastrin or both peptides (all 10 nM). SLI results express as % of untreated control cells from the relevant stomach preparation.

Previous studies have suggested that G-Gly has important roles in cell proliferation and regulation of acid secretion, although specific effects on regulation of the gastric endocrine system have not been investigated previously. The effect of G-Gly in increasing acid secretion from cultured parietal cells is only seen with more prolonged exposure, similar to the results reported here, suggesting this peptide may have longer term regulatory actions on transcription or processing instead of just stimulating hormone release.

It is known that multiple feedback loops regulate gastric acid secretion. Gastrin stimulates both acid secretion and negative feedback inhibition of acid secretion via the simultaneous release of somatostatin. G-Gly is also released from G-cells following meals and may enhance acid secretion. The results reported here suggest that longer term exposure of D-cells to gastrin and G-Gly also stimulates a further negative feedback loop by enhancing subsequent somatostatin release thus providing a means to restrain acid hypersecretion caused by hypergastrinemia and control longer term acid secretion. Several studies have confirmed that G-Gly is produced in gastric antral G-cells and this study adds further support to the suggestion that these peptide processing intermediates may have a role in the normal physiological control of the gastric secretions.

The mechanisms of action of both gastrin and G-Gly in enhancing somatostatin release in these circumstances remain to be elucidated. Interestingly, the combination of these peptides had a synergistic effect on the release of somatostatin as has been noted in the control of acid secretion and cell growth. Gastrin and G-Gly have separate but complimentary actions on cell signaling pathways and gene transcription. This further supports the notion that both gastrin and G-Gly produced by the gastric antrum and duodenum have important roles in the regulation of gastric homeostasis.

Author contributions
No competing interests were disclosed.

Grant information
This study was funded by the MRC (Research Training Fellowship awarded to ILPB) and The Royal Society (Small Project Grant Awarded to ILPB).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments
The author would like to acknowledge the late Professor J Calam for helpful discussions and Professor S Bloom and Dr M Ghatei for the gift of the somatostatin antisera.

References
1. Dockray GJ, Varro A, Dimaline R, et al.: The gastrins: their production and biological activities. Annu Rev Physiol. 2001; 63: 119–39. Published Abstract | Publisher Full Text
2. Ogunwobi OO, Beales IL: Glycine-extended gastrin stimulates proliferation via JAK2- and Akt-dependent NF-kappaB activity in Barrett’s oesophageal adenocarcinoma cells. Mol Cell Endocrinol. 2008; 296(1–2): 94–102. Published Abstract | Publisher Full Text
3. Beales IL, Ogunwobi OO: Glycine-extended gastrin inhibits apoptosis in Barrett’s oesophageal and oesophageal adenocarcinoma cells through JAK2/STAT3 activation. J Mol Endocrinol. 2009; 42(4): 305–18. Published Abstract | Publisher Full Text
4. Iwase K, Evers BM, Helmicch MR, et al.: Regulation of growth of human gastric cancer by gastrin and glycine-extended progastrin. Gastroenterology. 1997; 113(3): 782–90. Published Abstract | Publisher Full Text
5. He H, Pannenquin J, Tantiongco JP, et al.: Glycine-extended gastrin stimulates cell proliferation and migration through a Rho- and ROCK-dependent pathway, not a Rac/Cdc42-dependent pathway. Am J Physiol Gastrointest Liver Physiol. 2000; 278(3): G478–88. Published Abstract | Publisher Full Text
6. Seva C, Dickinson CJ, Yamada T: Growth-promoting effects of glycine-extended progastrin. Science. 1994; 265(5170): 410–2. Published Abstract | Publisher Full Text
7. Rengifo-Cam W, Umar S, Sarkar S, et al.: Antiapoptotic effects of progastrin on pancreatic cancer cells are mediated by sustained activation of nuclear factor-(kappa)B. Cancer Res. 2007; 67(15): 7266–74. Published Abstract | Publisher Full Text
8. Ogunwobi OO, Beales IL: Glycine-extended gastrin stimulates proliferation and inhibits apoptosis in colon cancer cells via cyclo-oxygenase-independent pathways. Regul Pept. 2006; 134(1): 1–8. Published Abstract | Publisher Full Text
9. Ogunwobi OO, Beales IL: Glycine-extended gastrin inhibits apoptosis in colon cancer cells via separate activation of Akt and JNK pathways. Mol Cell Endocrinol. 2006; 247(1–2): 140–9. Published Abstract | Publisher Full Text
10. Singh P, Wu H, Clark C, et al.: Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells. Oncogene. 2007; 26(3): 425–40. Published Abstract | Publisher Full Text
11. Ferrad A, Bertrand C, Portolan G, et al.: Signaling pathways associated with...
colonic mucosa hyperproliferation in mice overexpressing gastrin precursors. Cancer Res. 2005; 65(7): 2770–7.

12. Koh TJ, Dockray GJ, Varro A, et al.: Overexpression of glycine-extended gastrin in transgenic mice results in increased colonic proliferation. J Clin Invest. 1999; 103(8): 1119–26.

13. Koh TJ, Field JK, Varro A, et al.: Glycine-extended gastrin promotes the growth of lung cancer. Cancer Res. 2004; 64(1): 196–201.

14. Todisco A, Takeuchi Y, Seva C, et al.: Gastrin and glycine-extended progastrin processing intermediates induce different programs of early gene activation. J Biol Chem. 1995; 270(47): 28337–41.

15. Kaise M, Muraoka A, Seva C, et al.: Glycine-extended progastrin processing intermediates induce H+, K(+)-ATPase alpha-subunit gene expression through a novel receptor. J Biol Chem. 1995; 270(19): 11155–60.

16. Chen D, Zhao CM, Dockray GJ, et al.: Glycine-extended gastrin synergizes with gastrin 17 to stimulate acid secretion in gastrin-deficient mice. Gastroenterology. 2000; 119(3): 756–65.

17. DelValle J, Chiba T, Park J, et al.: Distinct receptors for cholecystokinin and gastrin on canine fundic D-cells. Am J Physiol. 1996; 264(5 PT 1): G811–5.

18. Beales IL, Calam J: Truncated glucagon-like peptide-1 and oxyntomodulin stimulate somatostatin release from rabbit fundic D-cells in primary culture. Exp Physiol. 1996; 81(6): 1039–1041.

19. Beales I, Calam J, Post L, et al.: Effect of transforming growth factor-alpha and interferon-β on somatostatin release from canine fundic D-cells. Gastroenterology 1997; 112(1): 136–43.

20. Beales IL, Calam J: The histamine H3 receptor agonist N alpha-methylhistamine produced by Helicobacter pylori does not alter somatostatin release from cultured rabbit fundic D-cells. Gut. 1998; 43(2): 176–81.

21. Bate GW, Varro A, Dímaline R, et al.: Control of preprogastrin messenger RNA translation by gastric acid in the rat. Gastroenterology. 1996; 111(5): 1224–9.

22. DelValle J, Sugano K, Yamada T: Glycine-extended processing intermediates of gastrin and cholecystokinin in human plasma. Gastroenterology. 1989; 97(5): 1159–63.

23. DelValle J, Sugano K, Yamada T: Progastrin and its glycine-extended posttranslational processing intermediates in human gastrointestinal tissues. Gastroenterology. 1987; 92(6): 1908–12.

24. Sugano K, Aporté GW, Yamada T: Identification and characterization of glycine-extended post-translational processing intermediates of progastrin in porcine stomach. J Biol Chem. 1985; 260(21): 11724–9.

25. Marino L, Muglia B, Dickinson C: Glycine-extended post-translational processing intermediates of gastrin and cholecystokinin in the gut. Regul Pept. 1994; 50(1): 73–85.

26. Stepan VM, Krametter DF, Matsushima M, et al.: Glycine-extended gastrin regulates HEK cell growth. Am J Physiol. 1999; 277(2 pt 2): R572–81.

27. Kaise M, Muraoka A, Seva C, et al.: Glycine-extended progastrin processing intermediates induce H+/K(+)-ATPase alpha subunit gene expression through a novel receptor. J Biol Chem. 1995; 270(19): 11155–60.

28. Higashide S, Gomez G, Greeley GH Jr, et al.: Glycine-extended gastrin potentiates gastrin-stimulated gastric acid secretion in rats. Am J Physiol. 1996; 270(1 pt 1): G220–4.
Mark Pritchard

Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK

The author has assessed the effects of gastrin and glycine-extended gastrin upon somatostatin release from rabbit fundic D cells and this investigation follows on from previous reports by the same author in which he has assessed the effects of other stimulants on somatostatin release using this experimental model. Gastrin (but not G-Gly) had an acute effect following 2h treatment, but both peptides appeared in some way to prime the cells after 20h incubation, so that basal and agonist-stimulated somatostatin release were increased.

The concentrations of gastrin peptides used in these experiments were high (10nM) and it would therefore be interesting to investigate whether lower concentrations of Gastrin and G-Gly also exerted similar effects in this experimental system. It would be worth referencing the paper which confirmed high homology between the amino acid sequences of human and rabbit gastrin-17, as human peptides were used in this study. It would also be interesting to investigate whether other gastrin precursors (e.g. progastrin) caused similar effects.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
Denis McCarthy
Division of Gastroenterology, The University of New Mexico, Albuquerque, NM, USA

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com