Quasi-partial sums of the generalized Bernardi integral of certain analytic functions

K. O. BABALOLA

Abstract.

In this short note we extend a result of Jahangiri and Farahmand [5] concerning functions of bounded turning to a more general class of functions.

1. Introduction

Let \(C \) be the complex plane. Denote by \(A \) the class of functions:

\[
f(z) = z + a_2 z^2 + \cdots
\]

which are analytic in the unit disk \(E = \{ z : |z| < 1 \} \).

In [5] Jahangiri and Farahmand studied the partial sums of the Liberal integral of the class \(B(\beta) \), which consists of functions in \(A \) satisfying \(\text{Re} f'(z) > \beta \), \(0 \leq \beta < 1 \). Functions in \(B(\beta) \) are called functions of bounded turning. It is known that functions of bounded turning are generally univalent and close-to-convex in the unit disk. In particular they proved that the \(m \)th partial sums

\[
F_m(z) = z + \sum_{k=2}^{m} \frac{2}{k+1} a_k z^k
\]

2000 Mathematics Subject Classification. 30C45.

\(^1\) Department of Mathematics, University of Ilorin, Ilorin, Nigeria.

ummusalamah.kob@unilorin.edu.ng
of the Libera integral
\[F(z) = \int_0^z f(t) dt \] (1.3)
is also of bounded turning. Their result was stated as:

Theorem A

If \(\frac{1}{4} \leq \beta < 1 \) and \(f \in B(\beta) \), then \(F_m \in B \left(\frac{4\beta - 1}{3} \right) \).

Earlier, Li and Owa [6] have proved that if \(f \in A \) is univalent in \(E \), then the partial sums \(F_m(z) \) is starlike in the subdisk \(|z| < \frac{3}{8} \), the number \(\frac{3}{8} \) being the best possible.

The result of Jahangiri and Farahmand [5] naturally leads to inquistion about a more general class of functions (including \(B(\beta) \) as a special case), which was introduced in [7] by Opoola, and has been studied extensively in [2]. This is the class \(T_\alpha^n(\beta) \) consisting of functions \(f \in A \) which satisfy the inequality:

\[\Re \frac{D^n f(z)^\alpha}{\alpha^n z^\alpha} > \beta \] (1.4)

where \(\alpha > 0 \) is real, \(0 \leq \beta < 1 \), \(D^n (n \in \mathbb{N}_0 = \{0, 1, 2, \ldots \}) \) is the Salagean derivative operator defined as:

\[D^n f(z) = D[D^{n-1} f(z)] = z[D^{n-1} f(z)]' \] (1.5)

with \(D^0 f(z) = f(z) \) and powers in (1.4) meaning principal values only. Observe that the geometric condition (1.4) slightly modifies the one given originally in [7] (see [2]). Observe also that the class \(B(\beta) \) corresponds to \(n = \alpha = 1 \).

In a recent work we considered the generalized Bernardi integral operator given by:

\[F(z)^\alpha = \frac{\alpha + c}{z^\alpha} \int_0^z t^{c-1} f(t)^\alpha dt, \quad \alpha + c > 0 \] (1.6)

and sharpened and extended many earlier results concerning closure, under the integral, of several classes of functions. In the present paper we define a concept of quasi-partial sums and follow a method of Jahangiri and Farahmand [5] to extend their result (Theorem A) to the class \(T_\alpha^n(\beta) \).

As we noted in [1], the binomial expansion of (1.1) gives

\[f(z)^\alpha = z^\alpha + \sum_{k=2}^{\infty} a_k(\alpha) z^{\alpha+k-1} \] (1.7)

where \(a_k(\alpha) \) is a polynomial depending on the coefficients of \(f(z) \) and the index \(\alpha \). Hence

\[F(z)^\alpha = z^\alpha + \sum_{k=2}^{\infty} \frac{\alpha + c}{\alpha + k + c - 1} a_k(\alpha) z^{\alpha+k-1} \] (1.8)
and we define the \(m \)th quasi-partial sums of the integral (1.6) as follows

\[
F_m(z)^\alpha = z^\alpha + \sum_{k=2}^{m} \frac{\alpha + c}{\alpha + k + c - 1} a_k(\alpha) z^{\alpha+k-1}
\]

(1.9)

In the next section we state the preliminary results.

2.0 Preliminary Results

We will require the following lemmas.

Lemma 2.1\([3]\)

Let \(\theta \) be a real number and \(l \) a positive integer. If \(-1 < \gamma \leq A\), then \(\frac{1}{1+\gamma} + \sum_{k=1}^{l} \frac{\cos k\theta}{k+\gamma} \geq 0 \). The constant \(A = 4.5678018 \cdots \) is the best possible.

Lemma 2.2

For \(z \in E \) and \(-1 < \gamma \leq A = 4.5678018 \cdots \), \(\text{Re} \left(\sum_{k=1}^{l} z^k \right) \geq -\frac{1}{1+\gamma} \).

Proof. Let \(z = re^{i\theta} \) where \(0 \leq r < 1 \) and \(0 < |\theta| \leq \pi \). Then by De Moivre’s law and the minimum principle for harmonic functions

\[
\text{Re} \left(\sum_{k=1}^{l} \frac{z^k}{k+\gamma} \right) = \sum_{k=1}^{l} \frac{r^k \cos k\theta}{k+\gamma} > \sum_{k=1}^{l} \frac{\cos k\theta}{k+\gamma}.
\]

Hence by Abel’s lemma \([8]\) and Lemma 2.1 above the conclusion follows. \(\square \)

Let \(P \) denote the class of functions of the form

\[
p(z) = 1 + c_1 z + \cdots
\]

(2.1)

normalized by \(p(0) = 1 \) and satisfy \(\text{Re} \ p(z) > 0 \) in \(E \). The next lemma concerns convolution of analytic functions with functions in \(P \). The convolution (or Hadamard product) of two power series \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) and \(g(z) = \sum_{k=0}^{\infty} b_k z^k \) (written as \(f * g \)) is defined as \((f * g)(z) = \sum_{k=0}^{\infty} a_k b_k z^k \).

Lemma 2.3\([4]\)

Let \(p(z) \) be analytic in \(E \) and satisfy \(p(0) = 1 \) and \(\text{Re} \ p(z) > \frac{1}{2} \) in \(E \). For analytic function \(q(z) \) in \(E \), the convolution \(p * q \) takes values in the convex hull of the image of \(E \) under \(q(z) \).

3.0 Main Results

Theorem 3.1

Let \(f(z) \) given by (1.1) be in the class \(T_\alpha^n(\beta) \). Then

\[
\text{Re} \frac{D^n F_m(z)^\alpha}{\alpha^n z^\alpha} > 1 - \frac{2(1-\beta)(\alpha + c)}{\alpha + c + 1}, \quad \alpha + c \leq 4.5678018 \cdots
\]

(3.1)
Furthermore if \(\beta \geq \frac{1}{2} \frac{\alpha + c - 1}{\alpha + c} \), then \(F_m(z) \) belongs to some subclasses of the class \(T_n^\alpha(\beta) \).

Proof. From (1.7) and the condition (1.4) we have

\[
\text{Re} \left\{ 1 + \frac{1}{2(1 - \beta)} \sum_{k=2}^\infty \left(\frac{\alpha + k - 1}{\alpha} \right)^n a_k(\alpha) z^{k-1} \right\} > \frac{1}{2} \tag{3.2}
\]

Also from (1.9) we have

\[
\frac{D^n F_m(z)^\alpha}{\alpha^n z^\alpha} = 1 + \sum_{k=2}^\infty \left(\frac{\alpha + k - 1}{\alpha} \right)^n \frac{\alpha + c}{\alpha + c + k - 1} a_k(\alpha) z^{k-1} = p \ast q \tag{3.3}
\]

where

\[
p(z) = 1 + \frac{1}{2(1 - \beta)} \sum_{k=2}^\infty \left(\frac{\alpha + k - 1}{\alpha} \right)^n a_k(\alpha) z^{k-1}, \tag{3.4}
\]

\[
q(z) = 1 + 2(1 - \beta) \sum_{k=2}^\infty \frac{\alpha + c}{\alpha + c + k - 1} z^{k-1}. \tag{3.5}
\]

Thus by Lemma 2.3 and the condition (3.1), the geometric quantity \(\frac{D^n F_m(z)^\alpha}{\alpha^n z^\alpha} \) takes values in the convex hull of \(q(E) \). But Re

\[
\text{Re} q(z) = 1 + 2(1 - \beta)(\alpha + c) \text{Re} \left(\sum_{k=1}^\infty \frac{z^k}{\alpha + c + k} \right) \tag{3.6}
\]

We know from (1.6) that \(\alpha + c > 0 \). Now suppose \(\alpha + c \leq 4.5678018 \cdots \), then by taking \(l = m - 1 \) in Lemma 2.2, the real part of the series on the right of (3.6) is greater than \(- (\alpha + c + 1)^{-1}\) so that

\[
\text{Re} \frac{D^n F_m(z)^\alpha}{\alpha^n z^\alpha} = \text{Re} q(z) > 1 - \frac{2(1 - \beta)(\alpha + c)}{\alpha + c + 1}. \tag{3.7}
\]

Now observe that the real number \(1 - \frac{2(1 - \beta)(\alpha + c)}{\alpha + c + 1} \) is nonnegative only for \(\beta \geq \frac{1}{2} \frac{\alpha + c - 1}{\alpha + c} \). Thus only in this case it is clear \(F_m(z) \) belongs to some subclasses of the class \(T_n^\alpha(\beta) \). This completes the proof. \(\Box \)

Remark For \(\alpha = 1 \), \(c = 0 \), the partial sums

\[
F_m(z) = z + \sum_{k=2}^m \frac{a_k}{k} z^k \tag{3.8}
\]

of the integral

\[
F(z) = \int_0^z t^{-1} f(t) dt \tag{3.9}
\]
for each \(f \in B_n(1) \), belongs to the class \(B_n(1) \) in general. More particularly, the partial sum (3.8) of the integral (3.9) of a function of bounded turning in the unit disk is also a function of bounded turning in the unit disk.

4.0 Conclusion

In the paper we defined a new concept of quasi-partial sums of the generalized Bernardi integral. We used the new concept to extend an earlier result of Jahangiri and Farahmand [5] concerning functions of bounded turning to a more general class of functions.

References

[1] K. O. Babalola, *On the generalized Bernardi integral of certain analytic functions defined by the Salagean derivative*, Submitted.
[2] K. O. Babalola and T. O. Opoola, *Iterated integral transforms of Caratheodory functions and their applications to analytic and univalent functions*, Tamkang J. Math., 37 (4) (2006), 355-366.
[3] G. Gasper, *Nonnegative sums of cosines, ultraspherical and Jacobi polynomials*, J. Math. Anal. Appl., 26 (1969), 60-68.
[4] A. W. Goodman, *Univalent functions*, Vol. 1, Mariner Pub. Co., Tampa, FFL., 1983.
[5] J. M. Jahangiri and K. Farahmand, *Partial sums of functions of bounded turning*, J. Ineq. Pure and Appl. Math. 4 (4) Art. 79 (2003), 1-9.
[6] J. L. Li and S. Owa, *On partial sums of Libera integral operator*, J. Math. Anal. Appl., 213 (1997), 444-454.
[7] T. O. Opoola, *On a new subclass of univalent functions*, Mathematica (Cluj) 36, 59 No. 2 (1994), 195-200.
[8] E. C. Titchmarsh, *Theory of functions*, 2nd Edition, Oxford University Press, 1976.