Materials Research Express

PAPER

Crystallization kinetics and soft magnetic properties of Fe$_{71}$Si$_{16}$B$_{9}$Cu$_{1}$Nb$_{3}$ amorphous alloys

Xiaoyu Wu, Xue Li and Shengli Li

School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, 114051, People’s Republic of China

E-mail: Lishengli@ustl.edu.cn

Keywords: Fe-based amorphous alloy, kinetic effect, tissue transformation, magnetic properties

Abstract

Fe$_{71}$Si$_{16}$B$_{9}$Cu$_{1}$Nb$_{3}$ amorphous alloy ribbons were prepared with a single roll polar method. X-ray diffraction analysis of the surface samples was completely amorphous. The thermal stability parameters T_x, T_m, and T_{end} of amorphous ribbons were measured with a synchronous thermal analyzer under high purity argon gas and analyzed for their crystallization behavior. The heating rate was 10 K min$^{-1}$, 15 K min$^{-1}$, 20 K min$^{-1}$, and 30 K min$^{-1}$. The T_x and T_m of the Fe$_{71}$Si$_{16}$B$_{9}$Cu$_{1}$Nb$_{3}$ amorphous alloy increased with an increase in the heating rate, indicating that the crystallization behavior has a kinetic effect. The crystallization activation energy of the amorphous alloy was calculated using the Kissinger and Ozawa equations, respectively. The calculation results of the two methods were consistent. The sample was annealed (761 K, 786 K, 801 K, and 858 K, holding for 300 s) under the protection of high purity argon. The phase transition and microstructure transformation of the amorphous alloy during isothermal crystallization were analyzed by x-ray diffraction. When the alloy was annealed at 801 K, a single α-Fe(Si) solid solution precipitated on the amorphous matrix. Magnetic properties were measured using a vibrating sample magnetometer and observed by transmission electron microscopy. When the alloy was annealed at 786 K and 801 K, the saturation magnetic induction reached 1.22~1.27 T, coercivity was as low as 5.3~7.2 A m$^{-1}$, and the average grain size was about 10~20 nm.

1. Introduction

In 1967, Duwez and Lin of the California Institute of Technology first prepared ferromagnetic Fe–C–P amorphous alloy ribbons, prompting widespread interest and research [1–5]. In 1988, Yoshizawa et al [6] developed the FeSiBCuNb series of iron-based nanocrystalline soft magnetic alloys. These alloys are inexpensive, quickly prepared, and stable, with excellent soft magnetic properties. Subsequently, they have been widely used under the brand name ‘FINEMET’. FINEMET alloys offer low loss, high magnetic permeability, and high saturation magnetic induction [7–9]. They can reach above 1.2 T, higher than permalloys and co-based amorphous alloys, and, like these alloys, their expansion factor approaches zero [10–12]. They have been widely used for the commercial production of motor stators and rotor materials, high-frequency switching power supplies, and common-mode inductors. However, during the production process of amorphous ribbon, there are problems related to thermodynamic performance, unstable magnetic properties, and a large error range. Since the magnetic properties of amorphous nanocrystalline materials are extremely sensitive to the annealing temperature, many studies have been conducted on the magnetic mechanism from the annealing process [13–15]. Wang et al [16–20] studied the effects of the annealing rate, annealing temperature, holding time, and annealing atmosphere on the magnetic properties from the perspective of the annealing process. Han et al [21–23] studied the effects of the magnetic metal content and alloying elements on the magnetic properties from the perspective of composition. To our knowledge, however, there are no studies on the magnetic mechanism from the perspective of the crystallization process. To address this, we used an Fe$_{71}$Si$_{16}$B$_{9}$Cu$_{1}$Nb$_{3}$ amorphous alloy to study the influence of its crystallization process on the soft magnetic properties. Our study provides a
theoretical basis for the production process of amorphous nanocrystalline ribbons, and has practical implications for the production of amorphous nanocrystals.

2. Experimental

A master alloy of Fe$_{71}$Si$_{16}$B$_9$Cu$_1$Nb$_3$ was prepared in an electromagnetic induction melting furnace. To ensure the individual atomic percentages of the materials, the smelting was repeated four times, where the high purity metal elements were Fe (99.95 mass%), Si (99.5 mass%), B (99.9 mass%), Cu (99.9 mass%), and Nb (99.95 mass%). The metal raw material was configured in accordance with the atomic percentage of the Fe$_{71}$Si$_{16}$B$_9$Cu$_1$Nb$_3$ alloy. The experimental ribbon sample was prepared with a single roll quenching method. The surface speed of the copper roll was 40 ms$^{-1}$, and the obtained amorphous ribbon sample was about 20 μm thick and 1 mm wide. We used the chemical method (ICP) to determine the atomic percentage of the prepared sample, and confirmed that the atomic percentage of each element of the prepared sample was consistent with the target component. The amorphous phase was then confirmed and the precipitated phase was analyzed with a PANalytical x-ray diffractometer (XRD). Finally, a French Setsys-type synchronous thermal analyzer (DSC) was used to confirm the characteristic temperature and develop the annealing temperature mechanism. Finally, the magnetic properties of the samples were measured with a US Lake Shore Model 7404 Vibrating Sample Magnetometer (VSM) and the microstructure of the ribbon samples was characterized by FEI Tecnai G2F20 transmission electron microscopy (TEM).

3. Results and discussion

3.1. Thermal stability of Fe$_{71}$Si$_{16}$B$_9$Cu$_1$Nb$_3$ amorphous ribbon

The XRD diffraction pattern of the Fe$_{71}$Si$_{16}$B$_9$Cu$_1$Nb$_3$ amorphous ribbon fabricated with the single roll quenching method is shown in figure 1. As shown in the figure, a wide diffuse scattering peak appeared at about 44°, without the appearance of any sharp diffraction peak corresponding to the crystal, indicating that the prepared thin strip sample was completely amorphous.

The thermodynamic properties of the Fe$_{71}$Si$_{16}$B$_9$Cu$_1$Nb$_3$ amorphous thin strip were measured with the synchronous heat analyzer DSC. The warming rates were set at 10, 15, 20, and 30 K min$^{-1}$, respectively. The resulting DSC curve is shown in figure 2. With an increase to the heating rate, the initial crystallization temperature T_x and the crystallization peak temperature T_p moved toward a higher temperature. This showed that the crystallization behavior of the Fe$_{71}$Si$_{16}$B$_9$Cu$_1$Nb$_3$ amorphous thin strip was closely related to the warming rate. That is, the crystallization process of the Fe$_{71}$Si$_{16}$B$_9$Cu$_1$Nb$_3$ amorphous alloy had a significant kinetic effect. The thermodynamic parameters are shown in table 1.

In general, T_x and T_p at a certain heating rate can be used as indicators of the formation ability and thermal stability of an amorphous alloy. The crystallization activation energy E better reflects the energy barrier that the amorphous alloy needs to overcome. The activation energy magnitude is described by the Kissinger [24] equation and the Ozawa [25] equation, respectively:

$$E = -\frac{R \ln(α)}{T_x}$$

$$E = \frac{1}{T_p} \ln\left(\frac{\beta}{T_p} \frac{\partial T_p}{\partial \ln\beta}\right)$$
\[\ln \left(\frac{T^2}{\beta} \right) = \frac{E}{RT} + C \]

(2-1)

\[\ln \beta = - \frac{E}{RT} + C \]

(2-2)

where \(T \) is the characteristic temperature (K), \(\beta \) is the heating rate (K min \(^{-1}\)), \(E \) is the crystallization activation energy, \(R \) is the ideal gas constant, and \(C \) is a constant. According to the characteristic temperature of the Kissinger equation and the different heating rates shown in Table 1, the least squares method was used to fit the data and obtain the \(1/T \cdot \ln(T^2/\beta) \) straight line (Figure 3). The crystallization activation energy was obtained from the slope of the fitted straight line. The first crystallization activation energy was \(E_{x1} = 389 \text{ KJ mol}^{-1} \) and the first activation energy was \(E_{p1} = 349 \text{ KJ mol}^{-1} \). The second crystallization activation energy was \(E_{x2} = 493 \text{ KJ mol}^{-1} \) and the second activation energy was \(E_{p2} = 507 \text{ KJ mol}^{-1} \). Similarly, the \(\ln \beta \) and \(1/T \) lines were obtained according to the Ozawa equation (Figure 4). The slope of the line was found at \(E_{x1} = 400 \text{ KJ mol}^{-1} \), \(E_{p1} = 361 \text{ KJ mol}^{-1} \), \(E_{x2} = 411 \text{ KJ mol}^{-1} \), and \(E_{p2} = 507 \text{ KJ mol}^{-1} \).

Two distinct crystallization peaks appeared on each DSC curve as shown in Figure 2, indicating that the Fe\(_{71}\)Si\(_{16}\)B\(_{9}\)Cu\(_{1}\)Nb\(_{3}\) amorphous alloy underwent a multi-stage crystallization process, and that the crystallization phase was not precipitated at the same time. Thus, the crystallization process was closely related to the crystallization temperature. The higher the initial crystallization temperature, the more difficult the nucleation during crystallization. Moreover, the higher the crystallization peak temperature, the more difficult it is for the crystal to grow during crystallization [26]. Table 2 lists the values of the activation energy calculated for the Fe\(_{71}\)Si\(_{16}\)B\(_{9}\)Cu\(_{1}\)Nb\(_{3}\) amorphous ribbon using the Kissinger and Ozawa equations. It can be seen that the results calculated by the Kissinger equation and the Ozawa equation were close and consistent. \(E_{x2} \) was much higher than \(E_{x1} \), indicating that the nucleation process of the second-stage crystallization was more difficult than the nucleation process of the first-stage crystallization. Furthermore, \(E_{x1} \) was higher than \(E_{p1} \), indicating that the crystal nucleation process was longer than the crystal during the first-stage crystallization. The large process was more difficult; \(E_{p2} \) was higher than \(E_{x2} \), indicating that the crystal growth process was more difficult than the nucleation process in the second-stage crystallization process.
3.2. Effect of crystallization process on soft magnetic properties

To investigate the influence of the crystallization process on the soft magnetic properties, the saturation magnetic induction B_s, the coercive force H_c of the original strip, and the annealing samples at different temperatures were measured by VSM (as shown in table 3 and figure 5). It can be seen that when the annealing temperature increased from T_{x1}-30 K (761 K) to $T_{end} + 5$ K (858 K), the magnetic properties of the amorphous ribbon increased with an increase in the annealing temperature, and the saturation magnetic induction B_s increased from 1.19 T to 1.35 T. Since 761 K, 786 K, and 801 K are in the supercooled liquid phase of the amorphous ribbon to the initial stage of the crystallization process, nucleation is difficult at this stage. As such, the annealing process does not have much influence on the crystallization process; it mainly serves to remove residual stress [27]. The coercive forces of the amorphous ribbon after annealing at 761 K, 786 K, and 801 K for 300 s were reduced compared to that of the original amorphous ribbon. When annealing at 858 K, H_c increased

Equation	E_{x1}	E_{p1}	E_{x2}	E_{p2}
Kissinger	389	349	397	493
Ozawa	400	361	411	507

3.2. Effect of crystallization process on soft magnetic properties

To investigate the influence of the crystallization process on the soft magnetic properties, the saturation magnetic induction B_s, the coercive force H_c of the original strip, and the annealing samples at different temperatures were measured by VSM (as shown in table 3 and figure 5). It can be seen that when the annealing temperature increased from T_{x1}-30 K (761 K) to $T_{end} + 5$ K (858 K), the magnetic properties of the amorphous ribbon increased with an increase in the annealing temperature, and the saturation magnetic induction B_s increased from 1.19 T to 1.35 T. Since 761 K, 786 K, and 801 K are in the supercooled liquid phase of the amorphous ribbon to the initial stage of the crystallization process, nucleation is difficult at this stage. As such, the annealing process does not have much influence on the crystallization process; it mainly serves to remove residual stress [27]. The coercive forces of the amorphous ribbon after annealing at 761 K, 786 K, and 801 K for 300 s were reduced compared to that of the original amorphous ribbon. When annealing at 858 K, H_c increased
significantly. This was because 858 K was the temperature after the completion of the first crystallization process. Therefore, it had a greater impact on H_c. Amorphous ribbons annealed at $T_{x1} + 10$ K (801 K) for 300 s were used to determine the XRD precipitation phase (figure 6). It can be seen that α-Fe(Si) occurred around 45°, 66°, and 83°. The crystallization peaks corresponded to the (0 1 1), (0 0 2), and (1 1 2) crystal planes, respectively. Since 801 K was in the first-stage crystallization process, it was determined that a single α-Fe(Si) precipitated during crystallization.

Figure 7 shows a TEM bright field image and the selected area electron diffraction (SAED) pattern of Fe$_{71}$Si$_{16}$B$_9$Cu$_1$Nb$_3$ amorphous nanocrystalline ribbon after annealing at 761 K (a), 786 K (b), and 801 K (c) for 300 s. The image shows that crystal grains of about 5 nm, 10 nm, and 20 nm were uniformly deposited on the amorphous sample substrate, and a body-centered cubic (bcc) crystal phase was observed in the SAED.
spectrum. This indicated that, as the annealing temperature increased, the crystallization process accelerated and the grain size gradually grew. Annealing treatment near the first-stage crystallization temperature obtained amorphous nanocrystalline ribbons with better soft magnetic properties. When the Fe$\text{71Si}_{16}\text{B}_{9}\text{Cu}_{1}\text{Nb}_{3}$ amorphous alloy was anisotropically annealed at 786 K and 801 K for 300 s, α-Fe(Si) grains with an average grain size of about 10–20 nm precipitated on the amorphous ribbon samples, and the saturation magnetic induction reached 1.22–1.27 T with coercivity as low as 5.3–7.2 A m$^{-1}$.

4. Conclusions

(1) The T_x and T_p of the Fe$\text{71Si}_{16}\text{B}_{9}\text{Cu}_{1}\text{Nb}_{3}$ amorphous alloy all moved in the direction of a higher temperature with an increase to the heating rate, indicating obvious kinetic effects.

(2) The crystallization activation energy of the Fe$\text{71Si}_{16}\text{B}_{9}\text{Cu}_{1}\text{Nb}_{3}$ amorphous alloy was higher than the activation energy, indicating that the nucleation of the Fe$\text{71Si}_{16}\text{B}_{9}\text{Cu}_{1}\text{Nb}_{3}$ amorphous alloy was more difficult than the growth.

(3) When the Fe$\text{71Si}_{16}\text{B}_{9}\text{Cu}_{1}\text{Nb}_{3}$ amorphous alloy was anisotropically annealed at 786 K and 801 K for 300 s, α-Fe(Si) grains with an average grain size of about 10–20 nm precipitated on the amorphous ribbon samples, and the saturation magnetic induction reached 1.22–1.27 T with coercivity as low as 5.3–7.2 A m$^{-1}$.

ORCID iDs

Xiaoyu Wu https://orcid.org/0000-0002-2068-5735
Shengli Li https://orcid.org/0000-0002-6560-6834

References

[1] Duwez P and Lin S C H 1967 Amorphous ferromagnetic phase in iron-carbon-phosphorus alloys J. Appl. Phys. 38 4096–7
[2] Kang E Y, Kim Y B, Kim K Y, Chung Y H and Baik H K 2006 Preparation of Fe–Si–B–Nb amorphous powder cores with excellent high-frequency magnetic properties J. Magn. Magn. Mater. 304 e182–5
[3] Cheney J and Vecchio K 2008 Development of quaternary Fe-based bulk metallic glasses. Materials Science and Engineering: A 492 230–5
[4] Wang Y, Takeuchi A, Makino A, Liang Y and Kawazoe Y 2014 Nano-crystallization and magnetic mechanisms of Fe$\text{85Si}_{2}\text{B}_{8}\text{P}_{4}\text{Cu}_{1}$ amorphous alloy by ab initio molecular dynamics simulation J. Appl. Phys. 115 173910
[5] Wang Y, Zhang Y, Takeuchi A, Makino A, Liang Y and Kawazoe Y 2015 First-principle simulation on the crystallization tendency and enhanced magnetization of Fe$\text{76B}_{19}\text{P}_{5}$ amorphous alloy Mater. Res. Express 2 016506
[6] Yoshizawa Y, Oguma S and Yamauchi K 1988 New Fe-based soft magnetic alloys composed of ultrafine grain structure J. Appl. Phys. 64 6043–5
[7] Herzer G 1997 Amorphous and nanocrystalline soft magnets Proc. of the NATO Advanced Study Institute on Magnetic Hysteresis in Novel Materials, Mykonos, Greece (1–12 July 1996) NATO ASI Series (Series E:Applied Sciences) 338 ed George C. Hadjipanayis (Dordrecht/Boston/London: Kluwer Academic Publishers) pp 711–30
[8] Klassen T, Bohn R, Fanta G, Oelerich W, Eigen N, Gärtner F, Aust E, Borrmann R and Kreye H 2003 Tailoring nanocrystalline materials towards potential applications Z. Metallk. 94 610–4
[9] Suryanarayana C 1995 Nanocrystalline materials Int. Mater. Rev. 40 41–64
[10] Yang W, Liu H, Dun C, Zhao Y, Dou I, and Dou L 2012 Variations of the permeability with annealing conditions for Fe-based nanocrystalline alloys Materials & Design (1980–2015) 36 428–31
[11] McHenry M E, Willard M A and Laughlin D E 1999 Amorphous and nanocrystalline materials for applications as soft magnets Prog. Mater Sci. 44 291–433
[12] Herzer G 2001 Amorphous and nanocrystalline materials Encyclopedia of Materials: Science and Technology (Amsterdam; New York: Elsevier Science Ltd) pp 149–57
[13] Shishkin D A 2018 Magnetothermal properties of iron-based amorphous alloys type of Fe_{1-x}M_{x}Si_{3.5}B_{9} (M = Cr, Mn, Fe, Co, Ni) Mater. Res. Express 6 025201
[14] Christopher N, Anand K, Srivastava A K, Gupta A and Singh N 2018 Microstructure versus magnetic properties correlations in melt-spin Hf–Zr–Co–Fe–B alloys: role of thermal treatment Mater. Res. Express 5 066104
[15] Lashgari H R, Chu D, Xie S, Sun H, Ferry M and Li S 2014 Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: a review study J. Non-Cryst. Solids 391 61–82
[16] Wang Z, He K, He S, Zhang Y, Fu Y and Zhang L 1997 Heating rate dependence of magnetic properties for Fe-based nanocrystalline alloys J. Magn. Magn. Mater. 171 300–4
[17] Phan M H, Peng H X, Wisnom M R, Yu S C, Kim C G and Nhi N H 2006 Effect of annealing temperature on permeability and giant magneto-impedance of Fe-based amorphous ribbon Sens. Actuators, A 129 62–5
[18] Ngo D-T, Sultan Mahmud M, Nguyen H-H, Duong H-G, Nguyen Q-H, McVitie S and Nguyen C 2010 Crystallisation progress in Si-rich ultra-soft nanocomposite alloy fabricated by melt spinning Journal of Magnetism and Magnetic Materials, 322 342–7
[19] Pekala M, Jachimowicz M, Fadeeva V I, Malyja H and Grabias A 2001 Magnetic and structural studies of ball milled Fe_{78}B_{13}Si_{9} J. Non-Cryst. Solids 287 380–4
[20] Grogetiet L, Le Breton J M, Atmami H and Teillet J 2000 Microstructural study of nanocrystalline Fe–(Cu–Nb)–Si–B ribbons obtained by a nitriding thermochemical treatment J. Magn. Magn. Mater. 210 167–80
[21] Han Y, Wang Z, Che X, Chen X, Li W and Li Y 2009 Influence of Co content on the structure and magnetic permeability of nanocrystalline (Fe_{1−x}Co_{x})_{73.5}Cu_{1}Nb_{3}Si_{3.5}B_{9} alloys Materials Science and Engineering: B 156 57–61
[22] Ma H J, Wang W M, Zhang J T, Li G H, Hu L N and Niu Y C 2009 Effect of Ni on the microstructure and precipitate phases of Fe_{78}Si_{9}B_{13} glassy alloy J. Alloys Compd. 485 255–60
[23] Makino A, Bito M, Bito T, Yubuta K and Inoue A 2007 Improvement of soft magnetic properties by simultaneous addition of P and Cu for nanocrystalline FeNbB alloys J. Appl. Phys. 101 09N117
[24] Kistinger HE 1957 Reaction kinetics in differential thermal analysis Anal. Chem. 29 1702–6
[25] Ozawa T 1970 Kinetic analysis of derivative curves in thermal analysis J. Therm. Anal. 2 301–24
[26] Qin F 2004 Nanocrystallization kinetics of Ni-based bulk amorphous alloy Intermetallics 12 1197–203
[27] Skulkina N A, Ivanov O A, Pavlova I O and Minina O A 2013 Effect of parameters of heat treatment on magnetic properties and magnetization distribution in ribbons of amorphous soft magnetic iron-based alloys The Physics of Metals and Metallography 114 375–82