Local solution to the G_2–monopole equation with prescribed tangent cone and G_2–structure

Yuanqi Wang

Given a G_2–structure (ϕ, ψ), on the G_2–monopole equation

$$F_A \wedge \psi + \ast \phi (d_A u) = 0$$

the following theorem is true.

Theorem 1. Let $B_O(R) \subset \mathbb{R}^7$ be an arbitrary ball centred at the origin. For any smooth G_2–structure (ϕ, ψ) defined over $B_O(R)$, and any smooth $SO(m)$–bundle $\eta \to \mathbb{S}^6$ equipped with a Hermitian-Yang-Mills connection A_0, there exists a G_2–monopole which is defined in a smaller ball and asymptotic to A_0 exponentially at O.

Remark 2. Not every singular elliptic equation admits a local solution. For example, Brezis-Cabrè [1] showed that the equation $\Delta u = -\frac{u^2 + 1}{|x|^2}$ does not admit any solution defined near the origin. In contrast, our theorem says that the singular G_2–monopole equation is always locally solvable. In particular, for any smooth G_2–structure defined near O, it yields a G_2–monopole tangent to the canonical connection on \mathbb{S}^6 (see [2] and [14]). We hope this could help to construct G_2–instantons with point singularities on a closed 7–manifold.

Remark 3. We expect the local solution to be highly non-unique. There exists a solution whose exponential rate is arbitrarily close to 1 [see (11) and the discussion below (4)].

The monopole equation in G_2–setting first appeared in [4] by Donaldson-Segal. For highly-related later development on G_2 or other kinds of monopoles (instantons), we refer the interested readers to the work done by Sa Earp-Walpuski [10], Walpuski [12], Oliveira ([6], [7], [9]), Foscolo [5], Charbonneau-Harland [2], Xu [14], and the references therein.

Proof of Theorem 7: Near O, (ϕ, ψ) is a small perturbation of $[\phi(O), \psi(O)]$. Using a sophisticated version of the rescaling in page 6-9 of [3], we show in the following that Theorem 1 is a direct corollary of Theorem 1.13 in [13].

Department of Mathematics, Stony Brook University, NY, USA. ywang@scgp.stonybrook.edu.
Let the coordinate vector of \(B_O(R) \subset \mathbb{R}^7 \) be \(v = \begin{bmatrix} v_1 \\ \vdots \\ v_7 \end{bmatrix} \). All the balls below are centred at \(O \). By Lemma 3.7 in [11], there exists a linear transformation \(L \) such that under the new coordinate \(y = Lv, \phi(O) \) is the Euclidean \(G_2 \)-form i.e.

\[
\phi(O) = dy^{123} - dy^{145} - dy^{167} - dy^{246} + dy^{257} - dy^{347} - dy^{356}.
\] (2)

It suffices to work under the \(y \)-coordinate, under which \(\phi \) is defined in \(B(R_0) \) for some \(R_0 > 0 \) depending on \(R \) and \(L \). We bring in the bundle \(\eta \) as defined over \(S^6(1) \) (the unit sphere), and then view it as a bundle over \(\mathbb{R}^7 \setminus O \) pulled back from the natural spherical projection (Remark 2.3 in [13]). The connection \(A_0 \) is pulled-back to be a \(G_2 \)-instanton on \(\mathbb{R}^7 \setminus O \) with respect to \(\phi(O) \).

We write \(\phi = \Sigma_{ijk}\phi_{ijk}dy^{ijk} \). Let \(\Gamma \) denote the map \(x = \Gamma(y) = \lambda y \) from \(B(\frac{1}{\lambda}) \) to \(B(\frac{1}{4}) \). To the \(x \)-coordinate, exactly as in the previous paragraph, we can also pull back the bundles \(\eta, \text{ad}\eta \), and \(A_0 \) (denoted the same as in \(y \)-coordinate). Since they are objects on \(S^6 \), they are invariant under \(\Gamma \). Let

\[
\tilde{\phi} = \Sigma_{ijk}\Gamma^{-1,\ast}(\phi_{ijk})dx^{ijk} = \lambda^3 \Gamma^{-1,\ast}\phi, \quad \text{where} \ \phi_{ijk} \ \text{is the same as above.} \ (3)
\]

Let \(c_{\phi} \) denote \(C\Sigma_{ijk}|\phi_{ijk} - \phi_{ijk}(O)|c_{\phi}^{5|[B(\frac{1}{\lambda})]|} \), where \(C \) is a proper universal constant (which could be different in various context), and \(c_{\phi} \) means the \(C^5 \)-norm in \(y \)-coordinate. By chain-rule we have for any \(x \) that

\[
|\nabla_x^k(\Gamma^{-1,\ast}\phi_{ijk} - \phi_{ijk}(O))|(x) \leq \frac{c_{\phi}}{\lambda^k}, \quad \text{for all integer } k \in [1, 5] \text{ and } x \in B(\frac{1}{4}),
\]

\(\nabla_x \) is as below (5). Moreover,

\[
|(|\Gamma^{-1,\ast}\phi_{ijk} - \phi_{ijk}(O))|(x) = |\phi_{ijk} - \phi_{ijk}(O))|(y) \leq \frac{c_{\phi}}{\lambda} \quad \text{when } x \in B(\frac{1}{4}) \ (y \in B(\frac{1}{4\lambda})).
\]

Therefore

\[
|\tilde{\phi} - \tilde{\phi}(O)|c_{\phi}^{5|[B(\frac{1}{\lambda})]|} \leq \frac{c_{\phi}}{\lambda}. \quad C^5 \text{ means the } C^5 - \text{norm in } x\text{-coordinate.} \ (4)
\]

We actually have a \((\tilde{\phi}, \tilde{\psi})\)-monopole on \(B(\frac{1}{4}) \) of exponential rate arbitrarily close to 1. To see this, for any \(1 > \theta > 0 \), choose \(\rho \in (-\frac{5}{2}, \theta - \frac{5}{2}) \) such that the condition in Definition 2.21 of [13] is satisfied. Let \(\delta_0 \) be small enough with respect to \(A_0 \) and \(\rho \), Theorem 1.13 in [13] (and the rate of convergence given by the proof of it) is directly applicable. Therefore, let \(\lambda \) be large enough such that \(\frac{c_{\phi}}{\lambda} < \frac{\delta_0}{5} \) and \(\frac{1}{\lambda} < \frac{\rho}{2} \), there exists a \((\tilde{\phi}, \tilde{\psi})\)-monopole \((A, \sigma)\) over \(B(\frac{1}{4}) \) i.e.

\[
F_A \wedge \tilde{\psi} + \ast_{\tilde{g}} d_A \sigma = 0 \text{ over } B(\frac{1}{4}), \ \tilde{g} \text{ is the metric of } \tilde{\phi}. \ (5)
\]
Moreover, let δ_0 be even smaller if necessary, by the proof of Theorem 1.13 in section 5 of [13] (also see Definition 2.9 and Theorem 5.1 therein), A is of exponential rate $1 - \theta$ and order 3 i.e.

$$|x|^{l+1}|\nabla^l_x (A - A_0)|(x) \leq |x|^{1-\theta},$$

where $|x|$ is just the usual norm of x, and ∇_x is the ordinary derivative (of the components of $A - A_0$) under the natural charts as in Definition 2.10 of [13] (of course here $\eta \to S^6$ and A_0 might be trivialized by more than 2 coordinate neighbourhoods, but this does not make any difference).

Pulling back both sides of (5) via Γ, we obtain

$$F_{A^*} \wedge (\lambda^4 \psi) + \Gamma^*[\star_{\tilde{g}} (d_A \sigma)] = 0 \text{ over } B\left(\frac{1}{4\lambda}\right), \quad A^* = \Gamma^* A. \quad (7)$$

Using

$$\Gamma^*[\star_{\tilde{g}} (d_A \sigma)] = \star_{\Gamma^* \tilde{g}} \Gamma^* (d_A \sigma), \quad \Gamma^* \tilde{g} = \lambda^2 g, \quad \text{and } \star_{\lambda^2 g} = \lambda^5 \star g \text{ (see Remark 4)}, \quad (8)$$

where g is the metric of ϕ, we obtain

$$F_{A^*} \wedge \psi + \star_{g} d_{A^*} (\lambda \sigma^*) = 0, \quad \sigma^* = \Gamma^* \sigma. \quad (9)$$

The pair $(A^*, \lambda \sigma^*)$ is the monopole we desire. Since $\Gamma^* A_0 = A_0$ (as a connection, see the paragraph above (3)), the estimate (6) means

$$|y|^{l+1}|\nabla^l_y (A^* - A_0)|(y) \leq \lambda^{l-\theta} |y|^{1-\theta},$$

where l is as in (6), and ∇_y is as under (6) but in y-coordinate. Since A_0 is smooth on $S^6(1)$, we directly verify by (11) that

$$|y|^{l+1}|\nabla^l_{A_0} (A^* - A_0)|(y) \leq C \lambda^{l-\theta} |y|^{1-\theta}, \quad (11)$$

where C is a constant depending only on A_0.

The proof of Theorem 1 is complete.

Remark 4. Under a fixed coordinate basis, for any G_2-structure ϕ, the components of the co-associative form ψ and the associated metric g only depend on the components of ϕ. Moreover, the dependence is via a composition only of power functions, fractions, and polynomials in terms of the components of ϕ. Thus we directly verify (7) and (8).

References

[1] H. Brezis, X. Cabré. Some simple nonlinear PDEs without solutions. Boll. Un. Mat. Ital. 1. 223262 (1998).
[2] B. Charbonneau, D. Harland. *Deformations of nearly Kähler instantons*. arXiv:1510.07720.

[3] X.X. Chen, Y.Q. Wang. *C^{2,\alpha}-estimate for Monge-Ampere equations with H"older-continuous right hand side*. arXiv:1406.5825. To appear in Annals of Global Analysis and Geometry.

[4] S.K. Donaldson, E. Segal. *Gauge Theory in higher dimensions, II*. from: ”Geometry of special holonomy and related topics”, edited by N.C. Leung, S.T. Yau, Surv. Differ. Geom. 16, International Press (2011) 141.

[5] L. Foscolo. *Deformation theory of periodic monopoles (with singularities)*. arXiv:1411.6946.

[6] G. Oliveira. *G_2-monopoles with singularities (examples)*. Unpublished work.

[7] G. Oliveira. *Monopoles on the Bryant-Salamon G_2-manifolds*. Journal of Geometry and Physics, vol. 86 (2014), pp. 599-632, ISSN 0393-0440.

[8] G. Oliveira. *Calabi-Yau Monopoles for the Stenzel Metric*. To appear in Communications in Mathematical Physics.

[9] G. Oliveira. *Monopoles on 3 dimensional AC manifolds*. arXiv:1412.2252.

[10] H. Sa Earp, T. Walpuski. *G_2–instantons over twisted connected sums*. Geometry Topology 19 (2015) 1263-1285.

[11] D.A. Salamon, T. Walpuski. *Notes on the octonians*. arXiv:1005.2820.

[12] T. Walpuski. *G_2–instantons on generalised Kummer constructions*. Geometry and Topology 17 (2013). 2345-2388.

[13] Y.Q. Wang. *Deformation of singular connections I: G_2–instantons with point singularities*. arXiv:1602.05701.

[14] F. Xu. *On instantons on nearly Kähler 6-manifolds*. Asian. J. Math. 2009. International Press Vol. 13, No. 4, pp. 535-568, December 2009.