Poly(ADP-ribose) polymerase (PARP) inhibitors cause targeted tumour cell death in homologous recombination (HR)-deficient cancers, including BRCA-mutated tumours, by exploiting synthetic lethality. PARP inhibitors are being evaluated in late-stage clinical trials of ovarian cancer (OC). Recently, olaparib was the first PARP inhibitor approved in the European Union and United States for the treatment of advanced BRCA-mutated OC. This paper reviews the role of BRCA mutations for tumorigenesis and PARP inhibitor sensitivity, and summarises the clinical development of PARP inhibitors for the treatment of patients diagnosed with OC. Among the five key PARP inhibitors currently in clinical development, olaparib has undergone the most extensive clinical investigation. PARP inhibitors have demonstrated durable antitumour activity in BRCA-mutated advanced OC as a single agent in the treatment and maintenance setting, particularly in platinum-sensitive disease. PARP inhibitors are well tolerated; however, further careful assessment of moderate and late-onset toxicity is mandatory in the maintenance and adjuvant setting, respectively. PARP inhibitors are also being evaluated in combination with chemotherapeutic and novel targeted agents to potentiate antitumour activities. Current research is extending the use of PARP inhibitors beyond BRCA mutations to other sensitising molecular defects that result in HR-deficient cancer, and is defining an HR-deficiency signature. Trials are underway to determine whether such a signature will predict sensitivity to PARP inhibitors in women with sporadic OC.

INTRODUCTION

Current efforts to treat BRCA-associated ovarian cancer (OC) with poly(ADP-ribose) polymerase (PARP) inhibitors result from > 25 years of basic and translational cancer research. Recently, olaparib, the first PARP inhibitor to treat BRCA mutation-positive patients, has been approved in the European Union and United States (US). Clinical studies have shown that BRCA1/2-deficient tumours are sensitive to PARP inhibitors and platinum agents (Fong et al., 2009; Byrski et al., 2010). PARP inhibitors are molecules that inhibit the activity of PARP proteins, which are involved in a variety of DNA damage repair pathways. The European Commission granted marketing authorisation for the PARP inhibitor olaparib as mono-therapy in the maintenance treatment of adult patients with platinum-sensitive, relapsed BRCA-mutated (germline and/or somatic) high-grade serous epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in complete response (CR) or partial response (PR) following platinum-based chemotherapy (Lynparza prescribing information, 2014). In the United States, olaparib received accelerated approval by the Food and Drug Administration (FDA) as monotherapy in patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced OC and who have been treated with three or more prior lines of chemotherapy (Lynparza prescribing information, 2014). Confirmatory phase III trials are underway. This article will review the current role of BRCA proteins and PARP inhibitors in OC, summarise completed and ongoing clinical studies with PARP inhibitors, and outline future directions for this new drug class.

BRCA1/2 and cancer risk.

A major development in the treatment of breast cancer and OC was the cloning of the suppressor genes...
BRCA1 and BRCA2 (Friedman et al, 1994; Miki et al, 1994; Wooster et al, 1995). BRCA1/2 encode proteins that are involved in homologous recombination (HR) (Farmer et al, 2005). Epidemiologic studies have revealed an association between germline BRCA1/2 (gBRCA1/2) mutations and the development of OC and breast cancer, and mutation frequencies are estimated to be 5–15% for patients diagnosed with OC (Ramus and Gayther, 2009) and 10% for those diagnosed with breast cancer (Neuhausen et al, 2009). However, mutation frequency can be much higher among certain high-risk populations; for example, the mutations are present in 41% of women of Ashkenazi Jewish descent (Mosleh et al, 2000). Among a general female population, the lifetime risk for development of OC and breast cancer ranges between 1% and 12%, respectively (National Cancer Institute, 2015a, b). However, for patients harboring a deleterious gBRCA1/2 mutation, the estimated lifetime risk by age 70 for developing OC is 40% for gBRCA1 mutation carriers and 11–18% for gBRCA2 mutation carriers, and the risk for developing breast cancer is 57–65% for gBRCA1 and 45–49% for gBRCA2 mutation carriers (Antoniou et al, 2003; Chen and Parmigiani, 2007).

Patients with a gBRCA1/2 mutation have inherited a loss-of-function mutation in a single copy of either BRCA1 or BRCA2 in every cell. Although it is understandable that the risk for developing cancer is increased as the remaining second wild-type copy of the gene can be inactivated by a somatic mutation or epigenetic inactivation (Venkitaraman, 2014), it remains unclear why mutations in BRCA1/2 specifically lead to OC or breast cancer; and to a lesser degree, to pancreatic or prostate cancer. Recent evidence indicates that oestrogen controls the survival of BRCA1-deficient cells via a PI3K/NRF2-regulated pathway, which may partially explain the reported occurrence of hormonally driven tumours in patients who carry a BRCA1/2 mutation (Gorrini et al, 2014). Preclinical mouse studies have found that BRCA1 protein interacts with NFR2 and that cells lacking BRCA1 activity accumulate reactive oxygen species resulting in attenuated cell viability (Gorrini et al, 2013). NFR2 is a transcription factor that regulates the antioxidant response (Li et al, 2004) and reactivation of NFR2 by oestrogen results in cell survival (Gorrini et al, 2013). NFR2 activity is governed by the activation of PI3K pathway, which promotes oestrogen stimulation of NFR2 activity to compensate for the lack of antioxidant response in the absence of BRCA1 activity (Gorrini et al, 2014).

DNA repair and role of BRCA. Currently, six primary pathways have been identified for DNA repair, and they are engaged variably to repair single- (SSB) and double-strand (DSB) DNA breaks resulting from DNA damage (Lee et al, 2014). These repair mechanisms include homologous recombination (HR), non-homologous end joining (NHEJ), base excision repair, nucleotide excision repair, mismatch repair, and trans-lesional synthesis (Lee et al, 2014). DNA damage can occur in a number of ways including generation of reactive oxygen species, ultraviolet light, ambient and therapeutic irradiation, day-to-day replication errors, and chemical exposures (Lee et al, 2014).

In response to DNA damage, proteins that comprise repair complexes are recruited to the site of damage (Gudmundsdottir and Ashworth, 2006). Loss or reduction of function in proteins involved in these complexes can result in impairment or loss of proper DNA repair. Double-stranded breaks trigger HR, which demonstrates high fidelity, and NHEJ, which is error prone (Lee et al, 2014; Scott et al, 2015). BRCA1/2 proteins mediate what might be the rate limiting step in HR (Farmer et al, 2005) and play a critical step in HR by facilitating the recruitment of RAD51 to single-stranded DNA generated during the HR process (Ciccia and Elledge, 2010; Polo and Jackson, 2011). RAD51 is a component of a complex of factors, which also includes MRE11 and NBS1, that is essential for HR (Stracker and Petrini, 2011). Therefore, cells that lack BRCA1/2 are deficient in HR and demonstrate a high degree of chromosomal instability as well as increased sensitivity to ionising radiation and chemotherapeutic agents that lead to DSBs (Ashworth, 2008). Whether HR or NHEJ occurs to correct DSBs depends upon a number of factors, one of which is the cell-cycle status; HR is used if DSBs arise during the S or G2 stages of mitosis, and NHEJ is utilised if DSBs occur during G1 (Symington and Gautier, 2011; Chapman et al, 2012, 2013; Karanam et al, 2012; Di Virgilio et al, 2013; Escribano-Diaz et al, 2013; Zimmermann et al, 2013). Other factors that influence which mechanism is used to repair DSBs are the complexity of the breaks and the presence of co-factors (Karanam et al, 2012).

PARP function. Poly(ADP-ribose) polymerase 1 is the first identified of a family of enzymes that transfer ADP-ribose moieties from the dinucleotide NAD+ to certain polypeptides resulting in mono- or poly(ADP-ribosylation) (pADPr) of these substrates (Burkle, 2001; Kim et al, 2005; Schreiber et al, 2006). PARP inhibitors are designed to compete with NAD+ for the substrate binding to PARP, inhibiting PARP activity (Kim et al, 2005). Poly(ADP-ribose) polymerase 1, PARP2, and PARP3 have all been implicated in DNA repair, with PARP1 being the most abundant (Sousa et al, 2012). Certain types of DNA damage, particularly DNA nicks and DSBs, result in an about a 500-fold increase in PARP1 catalytic activity (Mendoza-Alvarez and Alvarez-Gonzalez, 1993; Mendoza-Alvarez and Alvarez-Gonzalez, 2004; Hassler and Ladurner, 2012). Active PARP1 covalently adds pADPr chains to a number of chromatin proteins, including itself (Althaus and Richter, 1987; Hassler and Ladurner, 2012), which alters the function of the respective proteins (Althaus and Richter, 1987; Reali and Althaus, 1992; Malanga and Althaus, 2004).

PARP1 functions in a number of DNA repair pathways (Rouleau et al, 2010; Curtin, 2012). It has been most extensively studied in base excision repair (de Murcia et al, 1997; Masson et al, 1998; Trucco et al, 1998) in which it facilitates the recruitment and formation of DNA repair complexes, including XRCC1, which in turn promotes SSB repair (Caldecott, 2008; Odell et al, 2013; O’Sullivan et al, 2014). In addition, PARP1 acts in HR by sensing stalled replication forks and recruitment of MRE11 and NBS1 to initiate HR (Schultz et al, 2003; Helleday et al, 2005; Haince et al, 2008; Bryant et al, 2009). PARP1 also adds pADPr to BRCA1 to influence DSB repair during HR (Hu et al, 2014), and inhibits NHEJ repair by preventing the binding of the Ku proteins to free DNA ends (Wang et al, 2006; Scott et al, 2015). In addition, PARP1 is necessary for the alternative microhomology-mediated end joining repair (Robert et al, 2009; Soni et al, 2014). PARP2 and PARP3 also contribute to DNA repair; PARP2 cooperates with PARP1 to synthesise pADPr and PARP3 inhibits error prone NHEJ (Ame et al, 1999; Schreiber et al, 2002; Rulten et al, 2011).

PARP inhibitor activity

Synthetic lethality. Genetically, synthetic lethality occurs when two genetic lesions, which are individually not lethal, become lethal when combined in a single organism (or cell). Similarly, cells that are deficient in HR (which is not lethal in itself) are hypersensitive to reduction in PARP activity by PARP inhibitors (Bryant et al, 2005; Farmer et al, 2005; Patel et al, 2011; Scott et al, 2015). Currently there are four models proposed for how PARP inhibitors may instigate synthetic lethality: inhibition of base excision repair, trapping PARP1 on damaged DNA, defective recruitment of BRCA1 to damaged DNA, and activation of error-prone NHEJ (Figure 1).

Base excision repair. Synthetic lethality, observed with BRCA1/2 mutations plus inhibition of PARP activity, may result both from removal of HR, and reduction in base excision repair (Scott et al, 2015) (Figure 1). Under pharmacologic PARP inhibition, SSBs, normally
PARP1 prevents binding of Ku proteins to free DNA ends (first step to start NHEJ) and thus inhibits NHEJ.

PARP1 is essential for BER.

PARP1 prevents binding of Ku proteins and directs DSBs to this alternative end-joining (MMEJ) repair pathway.

PARP1 contributes to and fine-tunes HR (recruits MRE11 and NBS1 or ribosylates BRCA).

PARP1 binds to single strand DNA break.

PARP1 undergoes poly(ADP-ribosyl)ation necessary for PARP1 activation.

Poly(ADP-ribosyl)ated PARP1 recruits DNA repair complexes (BARD1-BRCA1, MRN).

DNA repair proteins restore DNA integrity.

High-fidelity DNA repair cell survival.

The PARP inhibitor binds to PARP1 preventing PARP1 poly(ADP-ribosyl)ation and BER cannot occur.

In addition, the PARP inhibitor prevents release of PARP from formed polymer, which then inhibits recruitment and binding of other DNA damage repair proteins (PARP trapping), which also inhibits BER.

Mutations in BRCA, RAD51, FA genes, PALB2, etc. lead to HR deficiency and inability to repair DSBs.
PARP trapping. Recent evidence suggests that PARP inhibitors promote cell death by trapping PARP1 on the damaged DNA (Figure 1; Helleday, 2011; Strom et al, 2011; Murai et al, 2012; Horton et al, 2014). Normally, when DNA damage activates PARP1, the resulting pADPr recruits additional repair proteins, but once repair is initiated, it also diminishes the affinity of PARP1 for DNA, allowing PARP1’s dissociation and the subsequent binding of other repair factors (Satoh and Lindahl, 1992; Scott et al, 2015). If PARP1 activity is inhibited such that it cannot synthesise pADPr polymers, it remains bound (trapped) to the damaged DNA, essentially blocking DNA repair (Satoh and Lindahl, 1992). Similarly, PARP inhibitor inactivation of PARP1 activity may consequently trap PARP1 on DNA repair intermediates, obstructing replication forks (Figure 1c; Horton et al, 2014). Therefore, PARP inhibitors may act, in part, as ‘poisons’ that trap the PARP1 enzyme on DNA. Importantly, PARP trapping may be more cytotoxic than loss of its catalytic activity (Murai et al, 2012).

In support of this premise, the PARP catalytic inhibitory activities of the three PARP inhibitors, niraparib, olaparib, and veliparib, do not correlate strongly with respect to cytotoxic and trapping potency; niraparib and olaparib have greater cytotoxic and trapping activity than veliparib (Table 1; Murai et al, 2012). This may be the result of the differences in drug allosteric binding to the NAD⁺ site, with the bulky inhibitors, niraparib and olaparib, possessing greater potency to produce PARP-DNA ‘trapped’ complexes compared with veliparib (Murai et al, 2012). Preclinical studies have also suggested that differences in the catalytic inhibitory and trapping activities of various PARP inhibitors may explain differences in synergism when combined with selected chemotherapeutic agents (Murai et al, 2012). For example, because temozolomide forms PARP–DNA complexes at SSBs, combining it with PARP inhibitors with higher PARP-trapping properties, such as niraparib or olaparib, may be a more efficacious option than a combination with an agent expressing less potent trapping activity, such as veliparib (Murai et al, 2012). Preclinical studies have also shown that stereospecific PARP trapping is more pronounced for talazoparib when compared to olaparib or rucaparib (Murai et al, 2014). These differences in catalytic and trapping activities may be important when combining PARP inhibitors with chemotherapeutic agents. One example is the observation that talazoparib demonstrates greater cytotoxicity than other PARP inhibitors in combination with the DNA alkylating agents methyl methane sulfonate or temozolomide (Murai et al, 2014; Hopkins et al, 2015).

Defective BRCA1 recruitment. BRCA1 is recruited to damaged DNA via several steps. BRCA1 is recruited through its binding to BARD1, which binds pADPr at the damage site. BRCA1 also binds with γ-H2AX a histone that is modified in response to damaged DNA (De Lorenzo et al, 2013) (Figure 1). If a specific mutation in BRCA1 disrupts the γ-H2AX interaction, the binding of the BRCA1–BARD1 complex becomes critical for HR. The ability of PARP inhibitors to reduce recruitment of the BARD1–BRCA1 complex to damaged DNA may result in cell death in the setting of a BRCA mutation where the interaction with γ-H2AX is diminished (Li and Yu, 2013). However, this model does not explain PARP inhibitor effects in cells that do not carry mutations in BRCA1, which disrupt BRCA1/ γ-H2AX complex formation (Scott et al, 2015).

Clinical Application

Multiple PARP inhibitors, including olaparib, veliparib, niraparib, rucaparib, and talazoparib, are currently being evaluated in clinical trials (Table 2). The most common PARP inhibitor chemistry is that of reversible NAD mimetics. The drugs differ in bioavailability, molar equivalence of PARP enzyme inhibition, and PARP trapping capability (Table 1). The loss of DNA repair in the presence of these molecules has led to the evaluation of these drugs as single agents and as potential enhancers of cytotoxic agents that provoke DNA damage, such as alkylating agents and radiation therapy (Lee et al, 2014). Several of these agents have been and are being investigated in patients with gBRCA1/2-associated and sporadic platinum-sensitive and/or platinum-resistant OCs (Liu et al, 2014). In addition, PARP inhibitors are being investigated in combination with other targeted agents, such as in PI3-kinase or angiogenesis inhibitors. The VEGF monoclonal antibody (mAb) bevacizumab has been shown to induce hypoxia in the tumour microenvironment which may contribute to genomic instability and in doing so is thought to increase the sensitivity of cells to PARP inhibitors (Bindra et al, 2004, 2005; Chan et al, 2010; Sehouli et al, 2016).

Of note, iniparib, which was originally thought to be a PARP inhibitor, failed to demonstrate clinical activity in a randomised phase III study in patients with BRCA mutation-positive breast cancer. Following further preclinical studies iniparib is no longer classified as a PARP inhibitor as it failed to exhibit characteristic properties of PARP inhibitors. Therefore, results of iniparib studies should have no bearing on clinical decisions regarding PARP inhibitors (Patel et al, 2012).

Olaparib. Olaparib was the first PARP inhibitor to gain US FDA approval, based in part on data from a single-arm trial that included 137 advanced OC patients with gBRCA mutations who were...
Table 1. PARP inhibitors under development

PARP inhibitor	Route	PARP catalytic inhibition (IC₅₀) (Murai et al, 2012, 2014)	In vitro Cytotoxicity (Murai et al, 2012, 2014)	In vitro PARP trapping (Murai et al, 2012, 2014)	Treatment	Cancer types
Olaparib (AZD-2281) (AstraZeneca)	Oral	1.2 nmol l⁻¹	++	++	Monotherapy, Combination with cytotoxic chemotherapy, Combination with targeted agents, Combination with RTs	BRCA1/2MUT + associated, BrCa/OvCa, BRCA-like tumours, Advanced hematologic malignancies and solid tumours, Maintenance study following remission in platinum sensitive OvCa
Veliparib (ABT-888) (Abbvie)	Oral	10.5 nmol l⁻¹	+	+	Monotherapy, Combinations with cytotoxic chemotherapy, Combinations with targeted agents, Combinations with RTs	BRCA1/2MUT + associated BrCa/OvCa, BRCA-like tumours, Advanced hematologic malignancies and solid tumours
Talazoparib (BMN 673) (Pfizer)	Oral	4 nmol l⁻¹	+++	+++	Monotherapy	Advanced hematologic malignancies and solid tumours
Rucaparib (Clovis)	Oral	21 nmol l⁻¹	+	+	Monotherapy, Combinations (carboplatin)	Advanced solid tumours, Recurrent OvCa, BRCA1/2MUT + associated BrCa/OvCa
Niraparib (MK-4827) (TesaroBio)	Oral	50.5 nmol l⁻¹	++	+	Monotherapy, Combinations (temozolomide)	Advanced hematologic malignancies and solid tumours, BRCA1/2MUT + associated and HER2 negative BrCa, Maintenance study following remission in platinum sensitive OvCa

Abbreviations: BrCa = breast cancer; OvCa = ovarian cancer; RT = radiation therapy.

Previously treated with three or more lines of chemotherapy. In this study, patients received olaparib 400 mg twice daily; the objective response rate (ORR) was 34% (46/137), of those, 32% (44/137) had partial response (PR) and 2% (2/137) demonstrated a complete response (CR). The median duration of response (DoR) was 7.9 months (Domchek et al, 2016). The approval was also based on supportive efficacy outcomes derived from other clinical trials in which olaparib had been previously assessed (Fong et al, 2009, 2010; Audeh et al, 2010; Gelmon et al, 2011; Kaye et al, 2012).

In an initial phase I trial, antitumour activity of olaparib was observed in patients with gBRCA1/2-mutated advanced OC and the maximum tolerated dose (MTD) was determined to be 400 mg twice daily (Fong et al, 2009). A phase II trial confirmed durable antitumour responses with olaparib in advanced OC patients with BRCA1/2 mutations. The ORR was 33% for 33 patients who received olaparib 400 mg twice daily and 13% for 24 patients who received 100 mg twice daily (Audeh et al, 2010). In an expanded cohort of the phase I trial, patients with ovarian, primary peritoneal, or fallopian tube cancer were treated with 200 mg olaparib twice daily and 20 of 50 patients (40%) had an objective and/or tumour marker response. Median DoR was 7 months. The clinical benefit rate correlated with platinum sensitivity (69% in platinum-sensitive, 46% in platinum-resistant, and 23% in platinum-refractory disease) (Fong et al, 2010).

A phase II open-label, randomised, controlled trial compared olaparib and pegylated liposomal doxorubicin (PLD) in patients with gBRCA1/2-mutated advanced OC; olaparib demonstrated efficacy consistent with previous studies. No significant differences were observed between treatments in overall response rate (ORR) or progression-free survival (PFS). The ORR was 25%, 31%, and 18% for olaparib 200 mg twice daily, olaparib 400 mg twice daily, and PLD, respectively. Median PFS was 6.5 months for olaparib 200 mg twice daily, 8.8 months for olaparib 400 mg twice daily, and 7.1 months for PLD (Kaye et al, 2012).

In addition, a phase II open-label, nonrandomised, single-arm study was the first to demonstrate antitumour activity of a PARP inhibitor in sporadic HGSOC. Confirmed PRs were seen in 24% (11/46) of patients without gBRCA mutations and in 41% (71/177) of patients with gBRCA mutations (Gelmon et al, 2011).

A large, randomised phase II maintenance therapy trial of olaparib demonstrated efficacy among patients with platinum-sensitive (CR or PR), relapsed OC (Ledermann et al, 2009, 2010; Gelmon et al, 2011, 2012). Results of this randomised, double-blind, placebo-controlled study revealed a significant improvement in PFS in patients treated with olaparib maintenance therapy 400 mg twice daily (n = 136) compared with placebo (n = 129; 8.4 vs 4.8 months for placebo, hazard ratio = 0.35 (95% CI, 0.25–0.49); P < 0.001; Ledermann et al, 2012). Subset analyses showed that among patients with a germline or tumour BRCA1/2 mutation median PFS was significantly longer in the olaparib group (n = 74) than in the placebo group (n = 62; 11.2 vs 4.3 months, hazard ratio = 0.18 (95% CI, 0.10–0.31); P < 0.0001). Significant improvements in PFS were also noted for patients without a BRCA1/2 mutation (n = 57) compared with placebo (n = 61); however, the difference was less robust (7.4
vs 5.5 months, hazard ratio = 0.54 (95% CI, 0.34–0.85); P = 0.0075). At a second interim analysis of OS (58% maturity), OS for patients with germline or tumour BRCA mutations did not significantly differ between the groups (hazard ratio = 0.88 (95% CI, 0.64–1.21); P = 0.44; Ledermann et al, 2014). In an updated analysis olaparib significantly improved times to first and second subsequent therapy (Ledermann et al, 2016). Moreover, maintenance olaparib gave patients a survival advantage, however, analyses suggest that these results may have been driven by the BRCAm group (5-year survival was 29.2% and 20.4% in the olaparib and placebo arms, respectively, and 36.9% and 24.3% in BRCAm patients; Ledermann et al, 2016).

Although most studies have assessed olaparib in patients with platinum-sensitive OC, results of the recent single-arm, phase II study showed encouraging results in patients with platinum-resistant OC (Kaufman et al, 2015). The study included 298 patients with confirmed germline BRCA1 or BRCA2 mutation and advanced solid tumours. Among the cohort of 193 patients with platinum-resistant OC, 31% (60/193) achieved a response and 40% (78/193) had stable disease for ≥8 weeks. Median PFS and OS were 7 months and 16.6 months, respectively.

Across trials, olaparib has shown a consistent adverse event (AE) profile. The most common treatment-related AEs were fatigue, gastrointestinal symptoms (nausea, vomiting, diarrhea), and anemia, most of which were grade 1/2. The reported major toxicities of the two largest clinical trials with olaparib are shown in Table 2 (Ledermann et al, 2012; Kaufman et al, 2015). Although most AEs were mild-to-moderate, consideration must be given to the development of serious, potentially fatal conditions, such as myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) and pneumonitis, which have occurred rarely with olaparib treatment. MDS/AML was confirmed in 2% (3/136) of treated patients in a randomised placebo-controlled trial and in 2% (6/298) of treated patients in a single-arm monotherapy trial (Lynchparza prescribing information, 2014). Across all reported olaparib studies, MDS/AML was reported in <1% (22/2,618) of patients and pneumonitis, including fatal cases, occurred in <1% of patients. MDS/AML likely result from PARP inhibitor-related disruption in DNA repair, as altered DNA repair mechanisms can lead to the development of genomic instability that in itself may promote carcinogenesis (Bhatia, 2013).

Additional phase III maintenance trials for olaparib following chemotherapy are underway (Table 3). These trials use the new tablet formulation of olaparib developed to facilitate olaparib dosing. Current approval of olaparib is based on completed clinical studies where the dose of olaparib was 400 mg twice daily using a capsule formulation; each capsule was 50 mg, equaling a total pill count of 16 capsules per day. Clinical studies have now been completed which compare the bioavailability and match the efficacy and tolerability of the tablet to that of the capsule (Mateo et al, 2016). As a result, the 300-mg tablet formulation (2 × 150 mg tablets twice daily) was chosen as the most suitable dose for all phase III studies. The phase III SOLO1 study, conducted in collaboration with the Gynecologic Oncology Group, will provide information on the role of maintenance olaparib after frontline chemotherapy for OC patients with gBRCA mutations. SOLO2, in collaboration with the European Network of Gynaecological Oncological Trial Groups, will evaluate the role of maintenance olaparib after ≥2 lines of chemotherapy for OC patients with gBRCA mutations. Both trials are randomised, double-blind, placebo-controlled studies that utilise the new tablet formulation of olaparib at a dose of 300 mg twice daily (Moore et al, 2014). In addition, SOLO3 is a randomised, phase III trial in patients with gBRCA mutated, recurrent OC in which single-agent olaparib will be compared with standard-of-care chemotherapy in patients who failed ≥2 lines of prior chemotherapy for recurrent disease (Table 3).

Olaparib is also under investigation in combination with chemotherapeutic agents. In a randomised, open-label, phase II study, patients with platinum-sensitive, recurrent OC received either olaparib (200 mg twice daily, days 1–10 of each 21-day treatment cycle) plus paclitaxel (175 mg m−2, intravenously, day 1 of each cycle) and carboplatin (area under the curve (AUC) 4, according to the Calvert formula, intravenously, day 1 of each cycle) followed by olaparib monotherapy (400 mg twice daily, continuously), or paclitaxel (175 mg m−2, day 1 of each cycle) and carboplatin (AUC 6, day 1 of each cycle) followed by no further treatment in the maintenance phase. PFS was significantly improved for the olaparib plus paclitaxel/carboplatin group versus chemotherapy alone (12.2 vs 9.6 months, respectively (hazard ratio = 0.51, 95% CI, 0.34–0.77; P = 0.0012)); the toxicity profile for the olaparib group was manageable (Oza et al, 2015). In a phase

Table 2. Most common AEs (any grade and grade ≥3) with olaparib treatment based on data from 2 large olaparib clinical trials. Shown are any grade AEs reported in at least 15% of patients or grade ≥3 AEs reported in at least 5% of patients.

	Olaparib N = 193	Olaparib N = 136	Placebo N = 128					
	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3
	number (%)	number (%)	number (%)	number (%)	number (%)	number (%)	number (%)	number (%)
Fatigue	116 (60.1)	12 (6.2)	66 (48.5)	9 (6.6)	48 (37.5)	4 (3.1)*	128	
Nausea	119 (61.7)	1 (0.5)	93 (68.4)	3 (2.2)	45 (35.2)	0 (0)	128	
Vomiting	75 (38.9)	5 (2.6)	43 (31.6)	3 (2.2)	18 (14.1)	1 (0.8)	128	
Anemia	62 (32.1)	36 (18.7)	23 (16.9)	7 (5.1)	6 (4.7)	1 (0.8)	128	
Diarrhea	56 (29.0)	3 (1.6)	31 (22.8)	3 (2.2)	29 (22.7)	3 (2.3)	128	
Abdominal pain	58 (30.1)	14 (7.3)	24 (17.6)	2 (1.5)	33 (25.8)	4 (3.1)	128	
Decreased appetite	36 (18.7)	1 (0.5)	25 (18.4)	0 (0)	17 (13.3)	0 (0)	128	
Dyspepsia	38 (19.7)	0 (0)	22 (16.2)	0 (0)	11 (8.6)	0 (0)	128	
Headache	32 (16.6)	0 (0)	25 (18.4)	0 (0)	15 (11.7)	1 (0.8)	128	
Dysgeusis	39 (20.2)	0 (0)	19 (14.0)	0 (0)	8 (6.3)	0 (0)	128	

A one patient in the placebo group inadvertently received olaparib at a dose of 400 mg twice daily for approximately 2 weeks. The exact dates and duration are unknown. It is not known whether the patient was receiving olaparib or placebo when the adverse event (AE) occurred. This AE was counted in the safety analysis for placebo, but the possibility that it was attributable to olaparib cannot be excluded.
Agent	NCT no./trial name	Phase	Population	Study design	Interventions	Primary outcome measure	Selected additional outcome measures	Start date- estimated completion
Niraparib	NCT01847274 NOVA	III	Platinum-sensitive, recurrent gBRCAm OC or HGSOC	Randomised double-blind, placebo-controlled, parallel-group	Oral niraparib, placebo	PFS	PRO, chemotherapy-free interval, OS	Jun 2013-Oct 2016
								Jun 2016 (primary data)
Niraparib	NCT02354586 QUADRA	II	Advanced, relapsed HGSOC following completion of at least 3 prior chemotherapy regimens	Single-arm, open-label	Oral niraparib	Antitumour activity	PFS, disease control rate, safety	Mar 2015- Jan 2016
								Jan 2016 (primary data)
Niraparib	NCT02655016 PRIMA	III	HRD-positive tumours OC, as identified with a centralised HRD test, at high risk for PD, as identified by the stage of cancer and previous response to surgery	Randomised, double-blind, placebo-controlled, parallel-group	Oral niraparib, placebo	PFS	OS, safety and tolerability, PRO, TTP	Apr 2016-Mar 2018
								Mar 2018 (primary data)
Niraparib	NCT02655016 PRIMA	III	HRD-positive tumours OC, as identified with a centralised HRD test, at high risk for PD, as identified by the stage of cancer and previous response to surgery	Randomised, double-blind, placebo-controlled, parallel-group	Oral niraparib, placebo	PFS	OS, safety and tolerability, PRO, TTP	Apr 2016-Mar 2018
								Mar 2018 (primary data)
Olaparib	NCT02282020 SOLO3	III	Platinum-sensitive, recurrent gBRCAm OC	Randomised open-label controlled, parallel group	Oral olaparib (300mg tablets) vs physicians choice single-agent chemo-therapy	PFS	OS, TTP, PFS, QoL	Feb 2015-Dec 2019
								Dec 2017 (primary data)
Olaparib	NCT02477644	III	Advanced FIGO stage IIB - IV HGSOC or endometrioid ovarian, fallopian tube, or peritoneal cancer treated with standard first-line platinum-taxane chemotherapy plus bevacizumab	Randomised double-blind	Oral olaparib 300mg tablets, placebo	PFS	-	Apr 2015-Apr 2022
								Apr 2022 (primary data)
Olaparib	NCT02489006	II	Platinum sensitive recurrent HGSOC, primary peritoneal, and fallopian tube cancer	Randomised, open-label	Oral olaparib, platinum-based chemotherapy	Difference in PAR or PARP1 levels before and after treatment, mutations in BRCA1/2, RAD51B, RAD51C, RAD51D, PPM1D, FANCM, BRIPI, PALB2 and BARD1 in germline tissue compared to tumour tissue	Safety, response rate, duration of PFS, CA-125 levels	Jun 2015–Jun 2019
								Dec 2018 (primary data)
Olaparib	NCT00628251	II	Measurable BRCA1- or BRCA2- positive advanced ovarian cancer which has failed previous platinum therapy.	Randomised open-label, parallel study	Oral olaparib 200mg BID, 400mg BID, liposomal doxorubicin	Safety	FFS, ORR, DoR, CA-125 levels	Jul 2008-Dec 2015
								Sep 2009 (primary data)
Olaparib	NCT00753545	II	Platinum sensitive relapsed serous ovarian cancer following treatment with two or more platinum containing regimens	Randomised double-blind, parallel group	Oral olaparib 400mg BID, placebo	PFS	OS, ORR, disease control rate, DoR	Aug 2008-Nov 2012
								Jun 2010 (primary data)
Olaparib	NCT01844986 SOLO-1	III	Newly diagnosed, high-risk advanced, gBRCAm OC in complete or partial response following first line platinum therapy	Randomised double-blind, placebo-controlled, parallel-group	Oral olaparib (300mg tablets), placebo	PFS	OS, TTP, QoL, safety	Aug 2013-Jan 2023
								Feb 2017 (primary data)
Olaparib	NCT01874353 SOLO2	III	Platinum-sensitive, relapsed gBRCAm high-grade OC or high grade endometrial cancer with CR or PR following platinum-based chemotherapy	Randomised double-blind, placebo-controlled, parallel-group	Oral olaparib (300mg tablets), placebo	PFS	OS, TTP, QOL, safety	Sep 2013-Apr 2021
								Sep 2016 (primary data)
Agent	NCT no./trial name	Phase	Population	Study design	Interventions	Primary outcome measure	Selected additional outcome measures	Start date- estimated completion
------------------	--------------------	-------	--	--	-------------------------------------	---	--------------------------------------	-----------------------------------
Olaparib	NCT02392676	III	Platinum sensitive relapsed gBRCAm, ovarian cancer in CR or PR following platinum-based chemotherapy	Randomised double-blind, parallel group	Oral olaparib, placebo	PFS using modified RECIST in cohort of patients with sBRCA ovarian cancer	PFS, OS, TTP	July 2016 - June 2019
								June 2019 (primary data)
Rucaparib	NCT00664781	II	Advanced or metastatic gBRCAm breast cancer or advanced ovarian cancer.	Dosage-escalation study followed by an open label multicenter study	Oral rucaparib	Antitumour activity, safety	TTP, OS	Dec 2007-Jan 2015
								Jan 2015 (primary data)
Rucaparib	NCT01891344	II/III	Platinum sensitive, relapsed high grade epithelial ovarian, fallopian, primary peritoneal cancer. Part 1: received ≥ 1 prior platinum-based regimen. Part 2: received ≥ 3 prior chemotherapy regimens	Single-arm, open-label two part study	Oral rucaparib	Disease progression (part 1), ORR (part 2)	ORR (part 1), disease progression (part 2), DoR, OS, safety, PK	Sep 2013-Mar 2017
	ARIEL2							Mar 2017 (primary data)
Rucaparib	NCT01482715	II	High grade, measurable disease relapsed gBRCAm OC following ≥ 3 prior chemotherapy regimens, or have advanced solid tumour	Single-arm, open-label dose finding study	Oral rucaparib	Safety, PK, ORR	DoR, OS, safety	Nov 2011- Apr 2017
								Apr 2017 (primary data)
Rucaparib	NCT01968213	II	Platinum-sensitive relapsed gBRCAm HGSOC or endometrial, primary peritoneal, or fallopian tube cancer	Randomised double-blind, placebo-controlled, parallel-group	Oral rucaparib, placebo	PFS	OS, PRO, safety, PK	Jan 2014-Mar 2017
	ARIEL3							Mar 2017 (primary data)
Talazoparib	NCT02326844	II	Recurrent, gBRCAm OC following progression on prior PARP inhibitor therapy	Single-arm, open-label	Oral talazoparib	ORR	Safety	Dec 2014-Dec 2016
								Sept 2016 (primary data)
Talazoparib	NCT01989546	II	gBRCAm OC, primary peritoneal, breast, or other solid tumours following progression on standard therapy or who have no acceptable standard treatment options	Single-arm open-label	Oral talazoparib	PD effect		Nov 2013-Mar 2017
								Mar 2017 (primary data)
Veliparib	NCT01472783	II	gBRCAm platinum-resistant or partially platinum-sensitive relapsed epithelial OC	Single-arm, open-label	Oral veliparib	MTD, response rate	PFS, OS	Nov 2011-Aug 2016
								Jan 2016 (primary data)
Veliparib	NCT01540565	II	gBRCAm recurrent or persistent epithelial ovarian, fallopian tube, or primary peritoneal cancer	Single-arm open-label	Oral veliparib	Safety, objective tumour response, safety	PFS, OS	Apr 2012-Apr 2017
								April 2017 (primary data)
Veliparib	NCT02470585	III	Newly diagnoses Stage III or IV HGSOC, fallopian tube, or primary peritoneal carcinoma	Randomised, double-blind, three-arm, parallel group	Oral veliparib, carboplatin, paclitaxel, placebo	PFS	OS, tside disease related symptom score	July 2015
								Jan 2019
								Jan 2019 (primary data)
Combination therapy trials								
Niraparib + bevacizumab	NCT02354131	II	Recurrent, HRD platinum sensitive HGSOC, fallopian tube, or peritoneal cancer	Randomised open-label, parallel group	Oral niraparib and/or oral niraparib + bevacizumab IV vs bevacizumab IV alone	PFS	Disease control rate	Feb 2015-Dec 2019
Olaparib + cediranib	NCT01116648	II	Recurrent papillary serous OC, fallopian tube, or peritoneal cancer of for recurrent TNBC	Randomised open-label, parallel group	Oral olaparib + oral cediranib or oral olaparib	MTD, DLT, PFS	OS, tumour response rate, CBR, safety	Nov 2017 (primary data)

Notes:
- **BRCA1/2:** BRCA1 and/or BRCA2.
- **HGSOC:** High-grade serous ovarian cancer.
- **PD:** Progression.
- **MTD:** Maximum tolerated dose.
- **DLT:** Dose-limiting toxicity.
- **CBR:** Clinical benefit response.
- **PFS:** Progression-free survival.
- **OS:** Overall survival.
- **TTP:** Time to progression.
- **RECIST:** Response Evaluation Criteria in Solid Tumors.
- **TNBC:** Triple-negative breast cancer.
- **CBR:** Clinical benefit response.
- **SBM:** Symptom burden.
- **PD:** Progression.
- **MTD:** Maximum tolerated dose.
- **DLT:** Dose-limiting toxicity.
- **CBR:** Clinical benefit response.
- **PFS:** Progression-free survival.
- **OS:** Overall survival.
- **TTP:** Time to progression.
| Agent | NCT no./trial name | Phase | Population | Study design | Interventions | Primary outcome measure | Selected additional outcome measures | Start date- estimated completion |
|-------|------------------|-------|------------|--------------|---------------|-------------------------|-------------------------------------|----------------------------------|
| Olaparib + AZD2014 or AZD5363 | NCT007208375 | I/II | Recurrent endometrial, OC, or TNBC | Non-randomised, open-label, parallel group | Olaparib + oral AZD2014 or oral olaparib + oral AZD5363 | MTD | Disease response and biomarker response | Nov 2014-Nov 2020 |
| Olaparib + BKM120 or BYL719 | NCT016223349 | I | Recurrent HGSOC or TNBC | Non-randomised, open-label | Olaparib + oral BKM120 or oral olaparib + BYL719 | MTD, RP2D | Safety, PK | Sept 2012-Dec 2016 |
| Olaparib + cisplatin, paclitaxel, bevacizumab | NCT02121990 | I | Newly diagnosed optimally debulked OC, primary peritoneal, and fallopian tube cancer | Single arm, open-label | Olaparib + IP cisplatin, IV/IP paclitaxel, IV bevacizumab | MTD | Toxicity | Apr 2014- Apr 2017 |
| Olaparib + carboplatin + paclitaxel | NCT01565376 | I/II | Reclated OC or uterine cancer | Single arm, open-label, safety study | Olaparib + IV carboplatin + IV paclitaxel | DLT | Safety, OS, response to therapy, TTP | Aug 2012-Dec 2017 |
| Olaparib + cediranib maleate | NCT02446600 | I | Recurrent platinum-sensitive ovarian, fallopian tube, or primary peritoneal cancer | Randomised, comparative, open label, parallel group | Carboplatin + paclitaxel and gemcitabine + hydrochloride or carboplatin + liposomal hydrochloride or olaparib or olaparib + cediranib maleate | PFS | OS, safety, PRO | Feb 2016-Dec 2019 |
| Olaparib + cediranib maleate | NCT02502266 | II/III | Recurrent platinum-resistant or - refractory ovarian, fallopian tube, or primary peritoneal cancer | Randomised, comparative, open label, parallel group | Physician choice standard of care with either paclitaxel or topotecan or olaparib + cediranib maleate or olaparib | OS (phase III); PFS (phase II) | Safety, ORR, PRO | Jun 2023 (primary data) |
| Olaparib + carboplatin + paclitaxel | NCT01081951 | II | Platinum-sensitive advanced ovarian cancer | Randomised open-label, parallel group | Olaparib + IV carboplatin + IV paclitaxel | PFS | OS. Percentage change in tumour size | Feb 2010-Dec 2016 |
| Talazoparib | NCT02627430 | I | Metastatic advanced solid tumour or recurrent ovarian, fallopian tube, primary peritoneal, or TNBC | Open label, single arm | Talazoparib and AT13387 (HSP90 inhibitor) | MTD | Adverse events, PK | Mar 2016-Mar 2019 |
| Veliparib + topotecan | NCT01690598 | II | Platinum-sensitive relapsed epithelial OC, primary fallopian or primary peritoneal cancer | Single-arm, open-label | Olaparib + topotecan IV | MTD, ORR | PFS, OS | Nov 2012-Feb 2015 |
| Veliparib + paclitaxel + carboplatin + bevacizumab | NCT00989651 | I | Newly diagnosed, stage II-IV epithelial OC, fallopian tube or primary peritoneal cancer | Single-arm, open-label | Olaparib + paclitaxel IV, carboplatin IV, bevacizumab IV | DLT | Objective tumour response, PFS, safety | Oct 2009-Sep 2020 |
| Veliparib + PLD + carboplatin + bevacizumab | NCT01459380 | I | Recurrent, platinum-sensitive OC, primary peritoneal or fallopian tube cancer | Randomised open-label, parallel group | Olaparib + PLD IV + carboplatin IV + bevacizumab IV | DLT, safety | ORR | Oct 2011-Aug 2016 |
| Veliparib + carboplatin + paclitaxel | NCT02470585 | III | Newly diagnosed stage III or IV HGSOC, fallopian tube, or primary peritoneal cancer | Randomised double blind, parallel group | Olaparib, IV carboplatin, IV paclitaxel or IV carboplatin + IV paclitaxel + placebo | PFS, OS, disease related symptom score | June 2016 (primary data) | July 2015-Jan 2019 |
| Veliparib + temozolomide | NCT01113957 | II | Recurrent high grade serous ovarian cancer | Randomised open-label, parallel group | Olaparib + temozolomide or PLD | ORR | PFS, TTP, OS, safety, QoL | Mar 2010-June 2013 |

Table 3. (Continued)*
Table 3. (Continued)

Agent	Chemotherapy	Chemotherapeutic Agent	Cancer Type	Dose	Duration	Study Design	Interventions	Study Population	Primary Outcome Measure	Start date	Completion date
Veliparib	Carboplatin	Carboplatin	HGSOC, low-grade pelvic, or low-grade lymphoma	200 mg/m²	4 cycles	Randomized, open-label, phase I, dose-escalation trial	Carboplatin, olaparib, or placebo	HGSOC, low-grade pelvic, or low-grade lymphoma	ORR, PFS	Jan 2011	Dec 2014 (primary data)

Abbreviations: CBR = clinical benefit rate; DDFS = distant disease-free survival; DLT = dose-limiting toxicities; DoR = duration of response; gBRCAm = germline BRCA mutation; HER2 = human epidermal growth factor receptor 2; HGSOC = high-grade serous OC; HRD = homologous recombination deficiency; I, open-label, dose-finding study, olaparib (100, 200, or 400 mg twice daily) was administered intermittently (7 days) or continuously (28-day treatment cycle) in combination with liposomal doxorubicin (40 mg m⁻² every 28 days). The MTD was not reached with olaparib 400 mg twice daily. The combination was active and generally well-tolerated (Del Conte et al., 2014).

Pooled data from the previously mentioned six olaparib trials (two Phase I trials and four Phase II studies; Fong et al., 2009, 2010; Audeh et al., 2010; Gelmon et al., 2011; Kaye et al., 2012; Mateo et al., 2013; Kaufman et al., 2015) that recruited women with relapsed ovarian, fallopian tube, or peritoneal cancer were used to explore the activity of olaparib in relation to the number of prior treatment lines in patients with gBRCAm ovarian cancer (Matulonis et al., 2016). All patients received 400 mg of olaparib twice per day. In the pooled population with measurable disease at baseline \(n = 273 \), the ORR was 36% with a 7.4 month median DoR. For patients who had received \(\geq 3 \) lines of prior chemotherapy \(n = 205 \), the ORR was 31% and median DoR was 7.8 months. The ORR declined as the number of lines increased from 50% for patients who had received one prior regimen to 24% for patients who had received \(\geq 6 \) prior regimens. Grade \(\geq 3 \) adverse events were reported in 50% of the pooled population and 54% of the population who had \(\geq 3 \) lines of prior chemotherapy. The findings of the study indicated that olaparib was associated with durable response in patients with relapsed gBRCA-mutated ovarian cancer and who had been administered \(\geq 3 \) lines of prior chemotherapy.

Combination studies with a number of other agents are also being assessed. Olaparib was studied in combination with the antiangiogenic multikinase inhibitor, cediranib. The rationale behind this combination is based on the observation that vascular endothelial growth factor receptor (VEGFR) inhibition may lead to increased DNA damage through downregulation of DNA repair proteins, including ERCC1 and XRCC1 (Yadav et al., 2011). Stemming from supportive preclinical data (Pyriochou et al., 2008), a phase II trial of olaparib in combination with the VEGF multikinase inhibitor, cediranib, was recently completed (Liu et al., 2014). Patients received 30-mg cediranib daily and olaparib 200 mg twice daily. Median PFS was 17.7 months for women treated with cediranib plus olaparib \(n = 44 \) compared with 9.0 months for those treated with olaparib monotherapy \(n = 46 \); hazard ratio = 0.42; \(P = 0.005 \). OS data were not mature; OS at 24 months was 81% (95% CI, 60–91) in the combination group compared with 65% (95% CI, 42–81) in the olaparib-monotherapy group. Treatment-related AEs were more common in patients treated with cediranib plus olaparib than with monotherapy. These included grade 1/2 AEs of hypertension (17 vs 0 patients, respectively), diarrhea (31 vs 1), fatigue (26 vs 21), headache (17 vs 4), hypothyroidism (7 vs 1), and decrease in white blood cell (5 vs 4) and platelet counts (6 vs 3), as well as grade 3/4 AEs including fatigue (12 vs 5 patients), diarrhea (10 vs 0), and hypertension (18 vs 0). Liu et al., 2014).

Most recently, results of phase I studies of olaparib in combination with the PI3K inhibitor BKM120 and the AKT inhibitor AZD5363 have been reported with evidence of activity in OC (Matulonis et al., 2015; Michalarea et al., 2015). The rationale for these studies was based on preclinical data in breast cancer models showing that inhibition of the PI3/AKT pathway can result in BRCAl/2 downregulation, HR impairment, and sensitivity to PARP inhibition (Ibrahim et al., 2012; Juvekar et al., 2012).

Veliparib. Veliparib has been evaluated in phase I studies as single agent and in combination with chemotherapeutic agents. Advanced-phase trials are currently ongoing. A phase II study is investigating veliparib monotherapy in patients with gBRCA mutations and recurrent OC (Table 3). Preliminary results
 reported an ORR of 26% (13/50 patients). Responses were observed in both platinum-sensitive and platinum-resistant patients and median PFS was 8.1 months. Gastrointestinal symptoms, fatigue, and anemia were the most common AEs (Coleman et al., 2015).

A phase I trial of veliparib with cyclophosphamide observed antitumour responses in 14 patients (N = 35) with OC, breast cancer, urothelial or lymphoid malignancies. The MTD was found to be veliparib 60 mg once daily plus cyclophosphamide 50 mg once daily (Kummar et al., 2012). Seven patients had PR; an additional 6 patients had disease stabilisation for at least six cycles. Based on preclinical data supporting the interaction between inhibition of PARP and the VEGF signalling pathway (Pyricho et al., 2008; Yadav et al., 2011), a phase I study was conducted to evaluate veliparib in combination with a platinum/taxane regimen plus bevacizumab in epithelial ovarian fallopian or primary peritoneal cancer (N = 189) (Bell-McGuinn et al., 2015). An ongoing GOG phase III study is currently evaluating carboplatin/paclitaxel with or without concurrent and continuation maintenance veliparib in patients with previously untreated stages III or IV high-grade serous epithelial ovarian, fallopian, or primary peritoneal cancer (NCT02470585).

Niraparib

Niraparib is under investigation in patients with and without BRCA-mutated cancer (Sandhu et al., 2013). In a phase I/ib study, 100 patients with advanced solid tumours were enrolled and 300 mg daily was established as the MTD. A PR was confirmed in 8 of 20 (40%) BRCA-mutation carriers with OC or primary peritoneal cancer, with more responses in platinum-sensitive (50%) than platinum-resistant (33%) disease. Durable PRs were also observed in sporadic HGSOC in 2 of 3 patients with platinum-sensitive disease and 3 of 19 (16%) patients with platinum-resistant disease. Fatigue, GI symptoms, and hematologic toxicity (anemia, thrombocytopenia, and neutropenia) were the most commonly reported drug-related toxicities. Niraparib was also evaluated in the recently completed phase III maintenance study, NOVA (NCT01847274), in patients with recurrent platinum sensitive HGSOC (Table 3). The NOVA trial successfully achieved its primary endpoint of PFS in patients with germline BRCA mutations (21.0 vs 5.5 months HR 0.27, P < 0.0001) and in patients who were not germline BRCA mutation carriers but whose tumours were determined to be HR-deficiency positive (12.9 vs 3.8 months HR 0.38, P < 0.0001). http://www.globenewswire.com/NewsRoom/AttachmentNg/6ea284b2-a663-4ae8-96c1-22ca847b460f. A phase I/II study is exploring the efficacy of niraparib and/or the combination of niraparib plus bevacizumab compared with bevacizumab alone (Table 3). In addition, the QUADRA (NCT02354586) phase II study is evaluating the safety and efficacy of niraparib in patients who have received at least three previous chemotherapy regimens (Table 3). Finally, the PRIMA study (NCT02655016) is assessing the efficacy of niraparib maintenance treatment following first-line platinum-based chemotherapy in patients with advanced primary ovarian cancer that demonstrates HR DNA repair deficiency.

Rucaparib

Rucaparib has demonstrated favorable preclinical and clinical activity in patients with gBRCA-mutated OC and sporadic, platinum-sensitive OC. A phase I study of rucaparib in patients with advanced solid tumours including gBRCA-mutated ovarian, breast, and pancreatic cancer determined the recommended dose to be 600 mg twice daily based on maximum exposure, manageable toxicity and promising clinical activity (Kristeleit et al., 2014; Shapiro et al., 2013). Durable antitumour responses were observed in a subgroup of platinum-sensitive and platinum-resistant ovarian and primary peritoneal cancer patients. Of 14 patients with a gBRCA mutation, 13 had CR, PR, or stable disease at 12 weeks (Kristeleit et al., 2014). Part 2b of the original dose-finding study (Study 10, NCT01482715) is investigating the efficacy of rucaparib 600 mg twice daily in heavily pre-treated high-grade serous, BRCA-m OC (Drew et al., 2016).

Next to gBRCA1/2 mutations, there are other possible causes of deficient DSB repair that may likewise be associated with responsiveness to PARP inhibitor. Both Foundation Medicine and Myriad Genetics are aiming to identify a genomic signature for BRCA-like OCs. Myriad Genetics has selected a combination of three slightly variable algorithms that are indicative of defective DNA DSB repair in cancer cells and will soon be incorporating the MyChoice HR deficiency assay into ovarian cancer clinical trials (Timms et al., 2014, 2015). Foundation Medicine has partnered with Clovis, who is conducting the phase II and phase III rucaparib trials, ARIEL2 and ARIEL3, in platinum-sensitive, recurrent OC, to prospectively validate an HR deficiency score in the tumours of patients using a next generation DNA sequencing test which determines the degree of loss of heterozygosity (LOH) as a marker of genomic instability for predicting response to rucaparib (Swisher et al., 2014). Preliminary data from 135 patients using a prespecified genomic LOH cut-off have shown response to rucaparib in patients with BRCA mutations (ORR 69%) and in patients with a BRCA-like LOH high signature (ORR 39%), which is in contrast to patients without a BRCA mutation or without a BRCA-like signature (ORR 11%) (McNeish et al., 2015). Refinement of the genomic LOH cutoff improves selection of patients with a BRCA-like LOH high signature more likely to benefit from rucaparib. Updated data from 204 patients using the refined cut off have shown response to rucaparib in patients with BRCA mutations (ORR 80%) and in patients with a BRCA-like LOH high signature (ORR 39%), which is in contrast to patients without a BRCA mutation or without a BRCA-like signature (ORR 14%) (Coleman et al., 2016).

The main treatment-related AEs for rucaparib, most of which were of grade 1/2 severity, have been nausea, vomiting, fatigue, elevated aspartate aminotransferase/alanine aminotransferase, dysgeusia, decreased appetite, anemia, and constipation. Full results of the ARIEL2 trial will inform the pivotal phase III maintenance trial, ARIEL3. ARIEL3 has enrolled subjects and will evaluate rucaparib in patients with platinum-sensitive relapsed ovarian cancer. ARIEL3, will also prospectively validate the predictive power of an HR deficiency assay/score in patients with platinum sensitive ovarian cancer (Table 3) (Swisher et al., 2013).

Talazoparib

Talazoparib, formerly known as BMN673, is an oral PARP inhibitor that is under investigation in patients with advanced or recurrent solid tumours (Shen et al., 2013). In preclinical experiments, talazoparib exhibited selective antitumour cytotoxicity at much lower concentrations than olaparib, rucaparib, and veliparib (Table 1; Shen et al., 2013). Preclinical studies have shown that talazoparib, olaparib, rucaparib, and veliparib inhibit PARP catalytic activity similarly; however, talazoparib is more potent at trapping PARP-DNA complexes (Table 1; Shen et al., 2013). Whether the observed increased preclinical potency translates into improved clinical efficacy will need to be shown in clinical studies. A phase I dose-escalation trial determined the MTD of talazoparib to be 1000 μg once daily and revealed promising clinical activity. Eleven of 17 patients with gBRCA-associated OC or primary peritoneal cancer had an objective response following first-line platinum-based chemotherapy in patients with advanced primary ovarian cancer that demonstrates HR DNA repair deficiency.
to be closed prematurely due to increased toxicities or the PARP inhibitor doses needed to be reduced to subtherapeutic dose levels. Of note, in all of these earlier studies the chemotherapy doses were given at or near standard dosing levels and the PARP inhibitor concentrations were gradually increased. In contrast, in the present phase I trial that combined talazoparib with temozolomide, the PARP inhibitor dose was kept high from the onset at a dose with proven single agent activity, and the temozolomide dose was started at a low dose and carefully escalated until an MTD was reached. Based on promising clinical activity seen in the ovarian cancer patients, talazoparib will now be further studied either alone or in combination with temozolomide in patients with recurrent HR-deficient ovarian cancer that has progressed after/or failed prior PARP inhibitor treatment or have not yet been exposed to a PARP inhibitor. This trial will provide us with valuable insights as to whether talazoparib, which has unique PARP trapping capability, will have activity as a second line PARP-inhibitor treatment either as single agent or in combination with low dose chemotherapy.

CLINICAL CHALLENGES

The presence of a gBRCA mutations appears to be positively correlated with increased survival and responsiveness to chemotherapy (Chetrit et al, 2008; Alsop et al, 2012; Bolton et al, 2012). Because of this, it is expected that patients with gBRCA-associated OC will be exposed to multiple lines of various chemotherapeutic agents during their treatment. Therefore, treatment-free intervals may be of particular importance to this patient population, as they allow adequate recovery from cumulative adverse reactions in preparation for additional treatment regimens. Future studies to assess survival and quality of life are needed to clarify whether the optimal treatment strategy will be treatment at disease recurrence or use of PARP inhibitors as maintenance therapy following response to a platinum-based chemotherapy.

Despite durable antitumour activity reported in patients with gBRCA mutations to date, the lack of validated biomarkers to predict patients with sporadic OC who may respond to PARP inhibitors remains an important clinical challenge. The attempt to capture genomic instability by identification of ‘genomic scarring’ or BRCAAness (identifying tumours that share molecular features of BRCA mutant tumours) may be accomplished by determining the overall degree of allelic imbalance (loss of heterozygosity; Abkevich et al, 2012), telomeric specific allelic imbalance (Birkbak et al, 2012), and/or large-scale transitions in tumour DNA (Popova et al, 2012). As mentioned above, the approach being pursued by Foundation Medicine and Myriad Genetics is to assess patterns of increased genomic instability as biomarkers for defective HR DNA repair. The resulting genomic signature may indicate an HR deficiency sufficient to predict patients whose cancers are more likely to respond to PARP-inhibitor therapy. However, further studies, both preclinical and clinical, will be needed to define and validate algorithms and cut-offs that are currently being developed to predict response to a PARP inhibitor in ovarian cancer.

Inherent or acquired resistance to PARP-inhibitor therapy also confers a significant clinical challenge. A potential mechanism of acquired resistance to PARP inhibition is the restoration of normal BRCA1/2 protein function by secondary intragenic mutations (Konstantinopoulos et al, 2015). This can occur by mutations that cancel the frameshift of the original mutation and restore an open reading frame or by a genetic reversion of the original mutation resulting in the expression of a functional protein (Edwards et al, 2008; Konstantinopoulos et al, 2015). The actual clinical relevance of secondary mutations that restore BRCA function is, however, currently a matter of debate and requires further study. A retrospective study was conducted in a cohort of 89 patients with relapsed epithelial ovarian cancer and gBRCA 1/2 mutations who demonstrated disease progression on olaparib 200 mg twice-daily and subsequently retreated with platinum-based chemotherapy. Secondary BRCA1/2 mutations were not detected in 6 of the patients with evidence of disease progression suggesting that other mechanisms may play a role in PARP inhibitor resistance. (Ang et al, 2013). Somatic mutations of TP53BP1, which encodes p53BP1, might also result in partial restoration of HR and DNA repair (Jaspers et al, 2013). In addition, increased drug efflux, mediated by MDR1, might limit exposure of the cancer cells to the effects of a PARP inhibitor (Rottenberg et al, 2008). Importantly, evidence suggests a lack of significant clinical cross-resistance between PARP inhibition and platinum-based chemotherapy, which has important implications for sequencing therapy (Ang et al, 2013).

Long term safety issues are a significant concern, especially if PARP inhibitors are adopted in the frontline treatment of OC. PARP inhibitors, as single-agent therapy, are associated with predominantly mild-to-moderate (grade 1/2) toxicities; however, rarer, more severe toxicities demand special consideration in an adjuvant setting. A small number of cases of MDS/AML or severe pneumonitis have been reported after olaparib therapy, with an overall incidence of <1% for each toxicity across all reported studies (Lynparza prescribing information, 2014). However, most of these patients had previously received multiple lines of DNA-damaging, platinum-containing chemotherapies, which may have contributed to these AEs. Future studies will need to capture these AEs, especially in the adjuvant setting.

Although the importance of gBRCA1/2 mutations in managing women with ovarian cancer is well understood, the number of patients who are currently being tested for germline mutations is still limited (Schmid and Oehler, 2014). More widespread genetic testing of patients diagnosed with ovarian cancer including the adoption of multi-gene panels (that capture rare germline mutations in high risk genes next to BRCA1/2 mutations) will provide clinicians valuable additional stratification tools to help integrate PARP inhibitors into the treatment of all patients diagnosed with familial ovarian cancer. Moreover, the development of assays that capture deficiencies in HR will extend these advances to a larger group of patients diagnosed with sporadic ovarian cancer.

Finally, cost considerations are a further challenge relevant to PARP inhibitors. Cost-effectiveness studies are needed that take quality of life assessments into consideration to allow a comprehensive value-based assessment of PARP inhibitors in ovarian cancer care. (Sfakianos and Havrilesky, 2011).

FUTURE DIRECTIONS

Future development of PARP inhibitors will need further clinical studies to better understand: (a) when and how to sequence therapy, (b) which combination treatment strategies potentiate PARP inhibitor antitumour activity, and (c) long-term toxicities (Liu and Matulonis, 2014). High clinical research priorities should be aimed to better understand whether PARP inhibitors are best used (a) as actual treatment of recurrent disease or as maintenance therapy, (b) before or after platinum-based therapy, (c) as single agents or in combination with chemotherapeutic or novel targeted agents. Furthermore, accurate definition of molecular features that reliably identify BRCAAness will allow clinicians to extend the use of PARP inhibitors to non-BRCA–mutated OC. Novel combinations that warrant further clinical exploration include, but are not limited to, PI3-kinase inhibitors, angiogenesis inhibitors or ATM
and cell cycle inhibitors (Wee1 inhibitor). A recent preclinical study showed that talazoparib exhibited immunoregulatory effects in a murine model providing a rationale to evaluate a combination with an immune check point inhibitor (Huang et al, 2015). This rationale is further supported by the fact that HR deficiency is associated with genomic instability, and may therefore, also be associated with an increase in the expression of neoantigens and immunogenicity warranting the use of an immune check point inhibitor. Finally, comparative studies are needed to examine whether the preclinical differences in potency or mechanism of action among PARP inhibitor will have clinical implications. With completion of these ongoing efforts, PARP inhibitors are poised to help improve clinical outcomes for patients with BRCA-associated and sporadic OC.

ACKNOWLEDGEMENTS

Writing and editorial support provided by SCI Scientific Communications & Information, Parsippany, NJ, Greg Tardie, PhD of the Lockwood Group, Stamford, CT, and Elizabeth Goodwin, PhD. (funded by AstraZeneca LP). The authors would like to extend their sincere thanks to Francesca Balordi, PhD; Stephanie Doerner, PhD; and Greg Tardie, PhD of the Lockwood Group, and Creative Media Works, Pennington, NJ for the development of Figure 1. This work was supported by AstraZeneca LP.

CONFLICT OF INTEREST

GEK has received research grant support from Amgen, Novartis, Pfizer and has participated in advisory boards for Genentech, Clovis Oncology, and Medivation. RSK was involved in the development of rucaparib, participated in olaparib trials, and served an advisory role to Clovis Oncology.

REFERENCES

Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS, Meyer LA, Smith-McCune K, Broadrus D, Lu KH, Chen J, Tran TV, Williams D, Ilevy D, Jammulapati S, Fitzgerald LM, Krivak T, DeLoia JA, Gutin A, Mills GB, Lanchbury JS (2012) Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. *Br J Cancer* **107**(10): 1776–1782.

Alsup K, Fereday S, Meldrum C, DeFazio A, Emmanuel C, George J, Dobrovic A, Birrer MJ, Webb PM, Stewart C, Friedlander M, Fox S, Bowtell D, Mitchell G (2012) BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. *J Clin Oncol* **30**(21): 2645–2663.

Althaus FR, Richter C (1987) ADP-ribosylation of proteins. Enzymology and mammalian DNA damage-dependent poly(ADP-ribose) polymerase. *J Biol Chem* **262**(25): 17860–17868.

Ang JE, Gourley C, Powell CB, High H, Shahpira-Frommer R, Castonguay V, De Greve J, Atkinson TK, Yap TA, Sandhu S, Banerjee S, Chen LM, Friedlander ML, Kaufman B, Ozas AM, Matulonius U, Barber LJ, Kozarewa I, Fenwick K, Assiotis I, Campbell J, Chen L, de Bono JS, Gore ME, Lord CJ, Ashworth A, Kaye SB (2013) Efficacy of chemotherapy in BRCA1/2 mutation carrier ovarian cancer in the setting of PARP inhibitor resistance: a multi-institutional study. *Clin Cancer Res* **19**(19): 5485–5493.

Antoniou A, Pharoah PD, Narod S, Easton DF (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. *Am J Hum Genet* **72**(5): 1117–1130.

Ashworth A (2008) A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. *J Clin Oncol* **26**(22): 3785–3790.

Audeh MW, Carmichael J, Pasiton RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, Lu K, Schmutzler RK, Matulonis U, Winkens M, Tutt A (2010) Oral poly (ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. *Lancet* **376**(9737): 245–251.

Bell-McGuinn KM, Brady WE, Schilder RJ, Fracasso PM, Moore KN, Walker JI, Duska LR, Mathews CA, Chen A, Shepherd SP, Giraud LA, Aghajanian C (2015) A phase I study of continuous veliparib in combination with IV carboplatin/paclitaxel or IV/IP paclitaxel/cisplatin and bevacizumab in newly diagnosed patients with previously untreated epithelial ovarian, fallopian tube, or primary peritoneal cancer: An NRG Oncology/Gynecologic Oncology Group Study. *J Clin Oncol* **33**(suppl): abstr 5507.

Bhatia S (2013) Therapy-related myelodysplasia and acute myeloid leukemia. *Genet Oncol* **40**(6): 666–671.

Bindra RS, Gibson SL, Meng A, Westerman U, Jasmin M, Pierce AJ, Bristow RG, Classon MK, Glazer PM (2005) Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. *Cancer Res* **65**(24): 11597–11604.

Bindra RS, Schaffer PJ, Meng A, Woo J, Maseide K, Roth ME, Lazard P, Hedley DW, Bristow RG, Glazer PM (2004) Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells. *Mol Cell Biol* **24**(19): 8504–8518.

Birchak NJ, Wang ZC, Kim JY, Ecklund AC, Li Q, Tian R, Bowman-Colin C, Li Y, Greene-Colozzo A, Iglehart JD, Tung N, Ryan PD, Garber JE, Silver DP, Szallasi Z, Richardson AL (2012) Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. *Cancer Discov* **2**(4): 366–375.

Bolton KL, Chenex-Trench G, Goh C, Sadezki S, Ramsay SJ, Karlan BY, Althaus FR, Richter C (1987) ADP-ribosylation of proteins. Enzymology and mammalian DNA damage-dependent poly(ADP-ribose) polymerase. *J Biol Chem* **262**(25): 17860–17868.

Bowman-Colin C, Tomita T, Tung N, Ryan PD, Garber JE, Silver DP, Szallasi Z, Richardson AL (2012) Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. *Cancer Discov* **2**(4): 366–375.

Bryant HE, Pharoah PD, Narod S (2010) Pathologic complete response rates in young women with invasive epithelial ovarian cancer. *JAMA* **303**(19): 1906–1916.

Bryant HE, Petermann E, Schulz N, Jemth AS, Loseva O, Issaeva N, Lindqvist E, Czernobilsky E, Audeh MW, Carmichael J, Pasiton RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, Lu K, Schmutzler RK, Matulonis U, Winkens M, Tutt A (2010) Oral poly (ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. *Lancet* **376**(9737): 245–251.

Burkle A (2001) Physiology and pathophysiology of poly(ADP-ribosyl)ation. *Genet Med* **3**(8): 619–631.

Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M, Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M, Grohs J, Cass I, Walsh C, Li AJ, Leuchter R, Gordon O, Garcia-Closs M, Gayther SA, Chanock SJ, Antoniou AC, Pharoah PD (2012) Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. *JAMA* **307**(4): 382–390.

Bryant HE, Petermann E, Schulz N, Jemth AS, Loseva O, Issaeva N, Johansson F, Fernandez S, McGlynn P, Helleyde T (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. *EMBO J* **28**(17): 2601–2615.

Bryant HE, Schulz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleyde T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. *Nature* **434**(7035): 913–917.

Burke A (2001) Physiology and pathophysiology of poly(ADP-ribosylation). *Bioessays* **23**(9): 795–806.

Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M, Mierzwia T, Szwiec M, Wisniowski R, Siolek M, Dent R, Lubinski J, Narod S (2010) Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. *J Clin Oncol* **28**(3): 375–379.

Caldecott KW (2008) Single-strand break repair and genetic disease. *Nat Rev Genet* **9**(8): 619–631.

Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. *Nature* **474**(7353): 609–615.

Chan N, Pires JM, Bencokova Z, Coackley C, Luo KR, Bhogal N, Lakshmikanth M, Gottipati P, Oliver FJ, Helleyde T, Hammond EM, Bristow RG (2010) Germ line synthetic lethality of cancer cell kill based on the tumor microenvironment. *Cancer Res* **70**(20): 8045–8054.

Chanon JR, Barrall P, Vannier JB, Borel V, Steger M, Tomas-Loba A, Sartori AA, Adams IR, Batista FD, Boulton SJ (2013) RIF1 is essential for
53BP1-dependent homologous end joining and suppression of DNA double-strand break resection. Mol Cell 49(5): 858–857.

Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47(4): 497–510.

Chen S, Parmigiani G (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25(11): 1329–1333.

Cherit A, Hirsh-Yechezkel G, Ben-David Y, Lubin F, Friedman E, Sadetzki S (2008) Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the national Israeli study of ovarian cancer. J Clin Oncol 26(1): 20–25.

Ciccia A, Elledge SJ (2014) The DNA damage response: making it safe to play with knives. Nat Rev Cancer 14(4): 259–272.

De Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH (2013) The elephant and the blind men: making sense of PARP inhibitors in homologous recombination deficient tumor cells. Front Oncol 3: 12.

Drew Y, Ledermann J, Hall G, Rea D, Glasspool R, Highley M, Jayson G, Oza A (2011) Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 12(9): 852–861.

Gollin EA, Tischkowitz M, Mackay H, Sweeney K, Robidoux A, Tonkin K, Hirst H, Huntsman D, Clemens M, Bills B, Yershulski M, Macpherson E, Carmichael J, Oza A (2011) Olaparib in patients with recurrent high-grade ovarian cancer with BRCA1/2 mutations linked to breast and ovarian cancer in ten families. Nat Genet 43(4): 399–404.

Goldberg MS (2015) The PARP1 inhibitor BMN 673 exhibits poly(ADP-ribose) inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 33(15): 2512–2519.

Haluska P, Timms KM, ALhilli M, Wang Y, Hartman AM, Jones J, Gutin A, Sangale Z, Neff C, Lynchburg J, Rudolph-Owen L, Becker MA, Agarwal S, Wilcoxon KM (2014) Homologous recombination deficiency (HRD) score and niraparib efficacy in high grade ovarian cancer (abstract 214). Eur J Cancer 50(suppl 6): 72–73.

Haince JF, McDonald D, Rodrigue A, Dery U, Masson JY, Hendzel MJ, Poirier GG (2008) PARP1-dependent kinetics of recruitment of MRE11 to BRCA1-deficient cells via a PI3K-NRF2-regulated pathway. Proc Natl Acad Sci USA 111(12): 4472–4477.

Hendley T (2011) The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 5(4): 387–393.

Hendley T, Bryant HE, Schultz N (2005) Poly(ADP-ribose) polymerase (PARP-1) in homologous recombination and as a target for cancer therapy. Cell Cycle 4(9): 1176–1178.

Hopkins TA, Shi Y, Rodriguez LE, Solomon LR, Donawho CK, DiGiammarino EL, Panchal SC, Wilsbacher JL, Gao W, Olson AM, Stolarik DF, Osterling DJ, Johnson EF, Maag D (2015) Mechanistic dissection of PARP1 trapping and the impact on in vivo tolerability and efficacy of PARP inhibitors. Mol Cancer Res 13(11): 1465–1477.

Horton JK, Stefanick DF, Prasad R, Gassman PK, Reddy J, de Murcia G (1997) Requirement of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. Nature 385(6617): 497–510.

Hummel JS, Stockwell BR, Boulton SJ, Boulton SJ (2012) PARP-1 Inhibitors: an update. Mol Oncol 6(4): 228–241.

Hussein O, Lomer M, Armstrong RJ, Balmanoukian A, Ingle JS, Jones HD, O'Shaughnessy JA, Schrock E (2013) Anti-PARP1 inhibitor BMN 673: exploring the mechanism of action in BRCA2 deficient tumors. Mol Cancer Ther 12(4): 801–817.

Huxley S, Boulton SJ (2012) DNA repair dysfunction in cancer driver to therapeutic target. Nat Rev Cancer 12(12): 801–817.

Di Giuseppe S, Di Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH (2013) The elephant and the blind men: making sense of PARP inhibitors in homologous recombination defective tumor cells. Front Oncol 3: 12.

De Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH (2013) The elephant and the blind men: making sense of PARP inhibitors in homologous recombination defective tumor cells. Front Oncol 3: 12.

De Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH (2013) The elephant and the blind men: making sense of PARP inhibitors in homologous recombination defective tumor cells. Front Oncol 3: 12.
immunoregulatory effects in a Brca1(-/-) murine model of ovarian cancer. Biochem Biophys Res Commun 463(4): 351–356.

Ibrahim VH, Garcia-Garcia C, Serra V, He L, Torres-Lockhart K, Prat A, Anton P, Cozar P, Guzman M, Grueso J, Rodriguez O, Calvo MT, Aura C, Diez O, Rubio JT, Perez J, Rodon J, Cortes J, Ellisen LW, Scaltriti M, Baselga J (2012) PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov 2(11): 1036–1047.

Jaspers JE, Kersbergen A, Boon U, Sol W, van Deemter L, Zander SA, Drost R, Wientjens E, Ji J, Aly A, Doroshow JH, Cranston A, Martin MN, Lau A, O’Connor MJ, Ganase S, Borst P, Jonkers J, Rottenberg S (2013) Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov 3(11): 68–81.

Juvetak A, Burga LN, Hu H, Lundso EP, Ibrahim VH, Balmana J, Rajendran A, Papa A, Spencer K, Kyssiotis CA, Nardella C, Pandolfo PP, Baselga J, Scully R, Arsa JM, Cantley LC, Wulf GM (2012) Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov 2(11): 1048–1063.

Karanam K, Kafri R, Loewer A, Lahav G (2012) Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell 47(2): 320–329.

Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Karanam K, Kafri R, Loewer A, Lahav G (2012) Quantitative live cell imaging of PARP inhibitors in -mutated ovarian cancer. Annu Oncol 23(1): 1171–1181.

Kaye SB, Lubinski J, Matulonis U, Ang JE, Gourley C, Karlan BY, Amnon A, Ledermann JA, Harter P, Gourley C, Friedlander M, Vergote I, Rustin GJS, Berek JS, Vergote I, Fabbro M, Katsumi N, Matthews C, Lorusso D, Herrstedt J, Agarwal S, Martell RE, Miura M (2014) A phase 3 randomized double-blind trial of maintenance olaparib versus placebo across different outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 15(8): 852–861.

Ledermann JA, Harker PC, Gourley C, Friedlander M, Velez I, Rustin G, Scott CL, Meier W, Shapira-Frommer R, Safra T, Matei D, Fielding A, Spencer S, Dougherty B, Orr M, Hodgson D, Barrett JC, Matulonis U (2012) Olaparib maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 15(8): 852–861.

Li M, Yu X (2013) Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23(5): 693–704.

Li N, Alam J, Venkatesan MI, Eigenthen-Fernandez A, Schmaltz D, Di Stefano E, Slaughter N, Kilkenen E, Wang X, Huang A, Wang M, Miguel AH, Cho A, Sioutas C, NEL AE (2004) Nr2f2 is a key transcription factor that regulates antioxidant defense in macrophages and epithelial cells: protecting against the proinflammatory and oxidizing effects of diesel exhaust chemicals. J Immunol 173(5): 3467–3481.

Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79: 181–211.

Liu J, Matulonis UA (2014) New strategies in ovarian cancer: translating the molecular complexity of ovarian cancer into treatment advances. J Clin Oncol 32(20): 30–51.

Liu JF, Barry WT, Birrer M, Lee JM, Buckanovich RJ, Fleming GF, Rimel B, Buss MK, Nattam S, Hurteau J, Luo W, Quy P, Whalen C, Obermayer L, Lee H, Winer EP, Kohn EC, Ivy SP, Matulonis UA (2014) Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. Lancet Oncol 15(11): 1207–1214.

Lynparza prescribing information (2014) Lynparza [package insert] Wilmington, DE.AztraZeneca Pharmaceuticals LPAvailable at http://www.azpicentral.com/Lynparza/pi_lynparza.pdf#page=1.

Malanga M, Altlaus FR (2004) Poly(ADP-ribose) reactivity of stalled DNA topoisomerase I and Induces DNA strand break rescaling. J Biol Chem 279(7): 5244–5248.

Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G (1998) XRCC1 is specifically associated with poly (ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18(6): 3563–3571.

Mateo J, Moreno V, Gupta A, Kaye SB, Dean E, Middleton MR, Friedlander M, Gourley C, Plummer R, Rustin G, Sessa C, Leunen K, Lederman J, Swisland H, Fielding A, Bannister W, Nicum S, Molife LR (2016) An adaptive study to determine the optimal dose of the tablet formulation of the PARP inhibitor olaparib. Target Oncol 11(3): 401–415.

Mateo J, Friedlander M, Sessa C, Leunen K, Nicum S, Gourley C, Fielding A, Bowen K, Kaye S, Molife LR (2013) Administration of continuous/ intermittent olaparib in ovarian cancer patients with a germline BRCA1/2 mutation to determine an optimal dosing schedule for the tablet formulation (abstract). Eur J Cancer 49: S161.

Matulonis U, Mahner S, Wenham RM, Lederman JA, Monk BJ, Del Campo JM, Berek JS, Vergote I, Fabbro M, Katsaros D, Marth C, Lorusso D, Herrstedt J, Agarwal S, Martell RE, Miura M (2014) A phase 3 randomized double-blind trial of maintenance with niraparib versus placebo in patients with platinum-sensitive ovarian cancer (ENGOT-OV16/NOVA trial). J Clin Oncol 32(supp 5): Abstract TP5625.

Matulonis UA, Penson BT, Domchek SM, Kaufman B, Shapira-Frommer R, Audeh MW, Kaye S, Molife LR, Glimelius KA, Robertson JD, Mann H, Ho TW, Coleman RL (2016) Olaparib monotherapy in patients with advanced relapsed ovarian cancer and a germline BRCA1/2 mutation: a multi-study analysis of response rates and safety. Ann Oncol 27(6): 1013–1019.

Matulonis UA, Wulf G, Barry W, Birrer M, Westin S, Spagnoletti T, McGuinn KB, Obermayer E, Whalen C, Aghajanian C, Solit D, Mills G, Cantley L (2015) Phase I of oral BMK120 or BYL719 and olaparib for highgrade serous ovarian cancer or triple negative breast cancer: final results of the BMK120 plus olaparib cohort. Cancer Res 75(suppl 15): abstract CT324.

McNeish I, A.M.O, Coleman RL, Scott C, Konecnyc GE, Tinker A, O’Malley DM, Brenton J, R.S.K, McGuinn KB, Onakinn A, Leary A, Lin K, Raponi M, S.H.G, Goble S, Rolfe L, Yelensky R, Allen AR, Swisher E (2015) Results of ARIEL2: a phase 2 trial to prospectively identify ovarian cancer patients likely to respond to rucaparib using tumor genetic analysis. J Clin Oncol 33(supp): abstract 5508.

Mendoza-Alvarez H, Alvarez-Gonzalez R (1993) Poly(ADP-ribose) polymerase is a catalytic dimer and the autodestruction reaction is intermolecular. J Biol Chem 268(30): 22575–22580.

Mendoza-Alvarez H, Alvarez-Gonzalez R (2004) The 40 kDa carboxy-terminal domain of poly(ADP-ribose) polymerase-1 forms catalytically competent homo- and heterodimers in the absence of DNA. J Mol Biol 336(1): 105–114.

Mihara T, Lorente D, Lopez J, Carreira S, Hassam H, Parmar M, Sathiyayogan N, Turner A, Hall E, Fandos SS, Seeramreddi S, Decordova S, Swales K, Ruddle R, Raynaud F, Tunariu N, Attard G, Molife IR, Banerji U, Plummer R, debono J, YAP TA (2015)
Accelerated phase I trial of two schedules of the combination of the PARP inhibitor olaparib and AKT inhibitor AZD5363 using a novel intrapatient dose escalation design in advanced cancer patients. Cancer Res 75(suppl 15): Abstract CT323.

Miki Y, Swensen J, Shattuck-Eidens D, Fusenig NE, Harshman K, Tavtigian SV, Liu Q, Cochran C, Bennett LM, Ding W, Bell B, Rosenthal J, Hussey C, Tran T, McClure M, Frye C, Hattier T, Phelps R, Haugen-Strao A, Katcher H, Yakumo K, Gholami Z, Shaffer S, Stone S, Bayer S, Wray W, Bogen R, Dayanathan P, Ward P, Tomin P, Narod S, Bristow PK, Norris FH, Helvering L, Morrow P, Rosebeck P, Lai M, Barrett JC, Lewis C, Neuhausen S, Cannon-Albright L, Goldberg D, Wiseman R, Kamb A, Kolnich M (2009) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 326(5982): 66–71.

Moore K, DiSilvestro P, Lowe ES, Garnett S, Pujade-Lauraine E (2014) SOLO1 and SOLO2: Randomized phase III trials of olaparib in patients (pts) with ovarian cancer and a BRCA1/2 mutation (BRCAn).

Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Morris J, Teicher B, Moslehi R, Chu W, Karlan B, Fishman D, Risch H, Fields A, Smotkin D, Moore KN, DiSilvestro P, Lowe ES, Garnett S, Pujade-Lauranne E (2014) Neuhuizen SL, Ozcelik H, Southey MC, John EM, Godwin AK, Chung W, O'Sullivan CC, Moon DH, Kohn EC, Lee JM (2014) Beyond breast and ovarian cancers: PARP inhibition: PARPi and beyond. Nat Rev Cancer 10(4): 293–301.

Rutenberg SL, Fisher AE, Robert I, Zuma MC, Rouleau J, Lu L, Poirier G, Reina-San-Martin B, Caldecott KW (2011) PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell 41(1): 33–45.

Sahdhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, Hylands R, Riisnaes F, Forster M, Omlin A, Kreischer N, Thiway K, Gevensleben H, Sun L, Loughney J, Chatterjee M, Tonatti C, Carpenter CL, Iannone R, Kaye SB, de Bonis J, Wenham RM (2013) The poly-ADP-ribose inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol 14(9): 892–897.

Sato MS, Lindahl T (1992) Role of poly(ADP-ribose) formation in DNA repair. Nature 356(6367): 356–358.

Schmid BC, Oehler MK (2014) New perspectives in ovarian cancer treatment. Maturitas 77(2): 128–136.

Schneider V, Ame JC, Dolle P, Schulz I, Rinaldi B, Fraulob V, Menissiers M, De Murcia J, de Murcia G (2002) Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 277(25): 23028–23036.

Schneider V, Dantzer F, Ame JC, De Murcia G (2006) Poly(ADP-ribose) novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7): 517–528.

Schultz N, Lopez E, Saleh-Gohari N, Helleday T (2003) Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res 31(17): 4959–4964.

Scott CL, Sawai EM, Kauffmann SH (2015) Poly (ADP-ribose) polymerase inhibitors: recent advances and future development. Breast Cancer Famil R (2009) BRCA1 and BRCA2 mutation carriers in the Breast Cancer Family Registry: an open resource for collaborative research. J Clin Oncol 33(12): 1397–1406.

Sfakianos GP, Havrilesky LJ (2011) A review of cost-effectiveness studies in ovarian cancer. Cancer Control 18(1): 59–64.

Shapiro G, Kristeleit R, Middleton M, Burris HJ, Molife R, Evans J, Wilson R, LoRusso P, Spencer J, Dieras V, Patel M, Dominiy E, Simpson D, Giordano H, Allen A, Jaw-Tasi S, Plummer R (2013) Pharmacokinetics of orally administered rucaparib in patients with advanced solid tumors [abstract]. Mol Cancer Ther 12(suppl 11): A218.

Shen Y, Rehmia FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, Wang B, Lord CJ, Post LE, Ashworth A (2013) BMN 673, a novel and highly potent PARPi inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res 19(18): 5003–5015.

Son A, Siemann M, Grabs M, Murmann T, Pantelias GE, Ilakis G (2014) Requirement for PARP-1 and DNA ligases 1 or 3 but not of Xrc1 in chromosomal translocation formation by backup end joining. Nucleic Acids Res 42(10): 6380–6392.

Sousa FG, Matuo R, Soares DG, Escargueil AE, Henriques JA, Larsen AK, Saffi J (2012) PARPs and the DNA damage response. Carcinogenesis 33(8): 1433–1440.

Stracker TH, Petinihi JM (2011) The MRE11 complex: starting from the ends. Nat Rev Cancer 11(12): 90–103.

Strom CE, Johansson F, Uhlen M, Szigyarto CA, Erixon K, Helleday T (2011) The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 7(7): 517–528.

Geburtshilfe Frauenheilkd 76(4): 164–169.

Sfakianos GP, Havrilesky LJ (2011) A review of cost-effectiveness studies in ovarian cancer. Cancer Control 18(1): 59–64.

Shapiro G, Kristeleit R, Middleton M, Burris HJ, Molife R, Evans J, Wilson R, LoRusso P, Spencer J, Dieras V, Patel M, Dominiy E, Simpson D, Giordano H, Allen A, Jaw-Tasi S, Plummer R (2013) Pharmacokinetics of orally administered rucaparib in patients with advanced solid tumors [abstract]. Mol Cancer Ther 12(suppl 11): A218.

Shen Y, Rehmia FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, Wang B, Lord CJ, Post LE, Ashworth A (2013) BMN 673, a novel and highly potent PARPi inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res 19(18): 5003–5015.

Son A, Siemann M, Grabs M, Murmann T, Pantelias GE, Ilakis G (2014) Requirement for PARP-1 and DNA ligases 1 or 3 but not of Xrc1 in chromosomal translocation formation by backup end joining. Nucleic Acids Res 42(10): 6380–6392.

Sousa FG, Matuo R, Soares DG, Escargueil AE, Henriques JA, Larsen AK, Saffi J (2012) PARPs and the DNA damage response. Carcinogenesis 33(8): 1433–1440.

Stracker TH, Petinihi JM (2011) The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 12(2): 90–103.

Strom CE, Johansson F, Uhlen M, Szigyarto CA, Erixon K, Helleday T (2011) Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-stand intermediate. Nucleic Acids Res 39(5): 3166–3175.

Swisher E, Brenton J, Kaufmann S, Oza A, Coleman RL, O’Malley D, Konczyk GE, Ma L, Harrell M, Visscher D, Hendrickson AW, Lin K, Raponi M, Mann E, Giordano H, Maloney L, Rolfe L, McNeish I (2014) A randomized phase 2 study to identify ovarian cancer patients likely to respond to rucaparib (abstract 215). Eur J Cancer 50(suppl 6): 73.

Swisher E, Brenton J, Kaufmann S, Oza A, Coleman RL, O’Malley D, Konczyk GE, Ma L, Harrell M, Visscher D, Hendrickson AW, Lin K, Raponi M, Mann E, Giordano H, Maloney L, Rolfe L, McNeish I (2014) A randomized phase 2 study to identify ovarian cancer patients likely to respond to rucaparib (abstract 215). Eur J Cancer 50(suppl 6): 73.
Raponi M, Mann E, Giordano H, Rolfe L, Isaacson J, Yelensky R, Scott C, Allen A, McNeish I (2013) ARIEL2: A phase 2 study to prospectively identify ovarian cancer patients likely to respond to rucaparib [abstract]. In AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics. Boston, MA, USA.

Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45: 247–271.

Timms K, Neff C, Abkevich V, Jones JT, Kolquist KA, Mirza M, Lanchbury J, Mikule K, Agarwal S, Hartman AR, Gutin A, Wilcoxon K (2015) DNA repair deficiencies in ovarian cancer: Genomic analysis of high grade serous ovarian tumors from the NOVA study [abstract 458]. Eur J Cancer 51(suppl 3): S97–S98.

Timms KM, Abkevich V, Hughes E, Neff C, Reid J, Morris B, Kalva S, Potter J, Tran TV, Chen J, Iliev D, Sangale Z, Tikishvili E, Perry M, Zharkikh A, Gutin A, Lanchbury JS (2014) Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res 16(6): 475.

Trucco C, Oliver FJ, de Murcia G, Menissier-de Murcia J (1998) DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 26(11): 2644–2649.

Venkitaraman AR (2014) Cancer suppression by the chromosome custodians, BRCA1 and BRCA2. Science 343(6178): 1470–1475.

Wainberg ZA, Hecht JR, Konecny GE, Goldman JW, Sadeghi S, Chmieleowski B, Singh A, Finn RS, Martinez D, Yonemoto L, Glaspy J, Slamon DJ (2016) Safety and efficacy results from a phase I dose-escalation trial of the PARP inhibitor talazoparib in combination with either temozolomide or irinotecan in patients with advanced malignancies (abstract CT011). Cancer Res 76(14 Suppl): CT011.

Yadav A, Kumar B, Teknos T, Kumar P (2011) Sorafenib enhances the antitumor effects of chemoradiation treatment by downregulating ERCC-1 and XRCC-1 DNA repair proteins. Mol Cancer Ther 10(7): 1241–1251.

Yap TA, Sandhu SK, Carden CP, de Bono JS (2011) Poly(ADP-ribose) polymerase (PARP) inhibitors: Exploiting a synthetic lethal strategy in the clinic. CA Cancer J Clin 61(1): 31–49.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/