Abstract

Human life contacts with different problem when living in this world, including health problem. Those problems helps human being to find solutions for those problems using different mechanism, including technology. To tell honestly, there are so many healthcare is available, but they are not efficient. Now a day Artificial intelligence (AI) is one of the technology which helps human being and it has a vital role in the treatment and diagnosis of different diseases. From those chronic and serious disease diabetes is the most difficult and easily untreatable disease especially in developing country like African country including Ethiopia and other. In order to help the humans who lives with diabetes and reduce the death of human being by this disease we develop knowledge base which helps the patient by providing information how to identify the diseases and how to treat diabetes. The proposed system also reduces the wrong treatment. The proposed intelligent system aware the patient by providing information, descriptions, treatment and the type of the diabetes.

References
1. Lemaignan, S., Warnier, M., Sisbot, E. A., Clodic, A., & Alami, R. (2017). Artificial
cognition for social human–robot interaction: An implementation. Artificial Intelligence, 247,
45-69.
2. Diriba, C., Meshesha, M., & Tesfaye, D. (2016). Developing a Knowledge-Based System
for Diagnosis and Treatment of Malaria. Journal of Information & Knowledge Management,
15(04), 1650036.
3. Naser, S. S. A., & Mahdi, A. O. (2016). A proposed Expert System for Foot Diseases
Diagnosis. American Journal of Innovative Research and Applied Sciences, 2(4), 155-168.
4. Naser, S. S. A., & AlDahdooh, R. M. (2016). Lower Back Pain Expert System Diagnosis
and Treatment. Journal of Multidisciplinary Engineering Science Studies (JMESS), 2(4),
441-446.
5. Naser, S. S. A., & Shaath, M. Z. (2016). Expert system urination problems diagnosis.
World Wide Journal of Multidisciplinary Research and Development, 2(5), 9-19.
6. Rau, H. H., Hsu, C. Y., Lin, Y. A., Atique, S., Fuad, A., Wei, L. M., & Hsu, M. H. (2016).
Development of a web-based liver cancer prediction model for type II diabetes patients by using
an artificial neural network. Computer methods and programs in biomedicine, 125, 58-65.
7. Abu Naser, S. S., & El-Najjar, A. E. A. (2016). An expert system for nausea and vomiting
problems in infants and children.
8. Naser, S. S. A., & Hilles, M. M. (2016). An expert system for shoulder problems using
CLIPS. World Wide Journal of Multidisciplinary Research and Development, 2(5), 1-8.
9. Ahmed, I. M., Alfonse, M., Aref, M., & Salem, A. B. M. (2015). Reasoning Techniques for
Diabetes Expert Systems. Procedia Computer Science, 65, 813-820.
10. Varma, K. V., Rao, A. A., Lakshmi, T. S. M., & Rao, P. N. (2014). A computational
intelligence approach for a better diagnosis of diabetic patients. Computers & Electrical
Engineering, 40(5), 1758-1765.
11. Ahmed, I., Mahmoud, A., Aref, M., & Salem, A. (2013). A study on Expert Systems for
Diabetic Diagnosis and Treatment. In Proceedings of International Conference on Recent
Advances in Information Science (pp. 363-367).
12. Zeki, T. S., Malakooti, M. V., Ataeipoor, Y., & Tabibi, S. T. (2012). An expert system for
diabetes diagnosis. American Academic & Scholarly Research Journal, 4(5), 1.
13. Hashemi, B., & Javidnia, H. (2012). An approach for recommendations in self
management of diabetes based on expert system. International Journal of Computer
Applications, 53(14).
14. Lee, C. S., & Wang, M. H. (2011). A fuzzy expert system for diabetes decision support
application. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(1),
139-153.
15. Abu-Naser, S. S., Kashkash, K. A., & Fayyad, M. (2010). Developing an expert system
for plant disease diagnosis. Journal of Artificial Intelligence, 3(4), 269-276.
16. Er, O., Yumusak, N., & Temurtas, F. (2010). Chest diseases diagnosis using artificial
neural networks. Expert Systems with Applications, 37(12), 7648-7655.
17. Dogantekin, E., Dogantekin, A., Avci, D., & Avci, L. (2010). An intelligent diagnosis
system for diabetes on linear discriminant analysis and adaptive network based fuzzy inference
system: LDA-ANFIS. Digital Signal Processing, 20(4), 1248-1255.
18. Polat, K., & Güneş, S. (2007). An expert system approach based on principal
component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes
disease. Digital Signal Processing, 17(4), 702-710
19. http://www.who.int/mediacentre/factsheets/fs312/en/1
20. https://www.idf.org/our-activities/world-diabetes-day/wdd-2017.html

Index Terms

Computer Science
Information Systems

Keywords

Diabetes, knowledge base, Artificial intelligence, Expert System, Treatment