1. Introduction

The problem of taking the continuum limit remains to be the most important issue in the lattice calculation of B_K using the quenched Kogut-Susskind quark action. We have been making effort to elucidate the effect of scaling violation over two years since 1995. Our early study carried out at $\beta = 5.85 - 6.2$ showed a linear decrease of B_K in a in contrast to $O(a^2)$ scaling violation theoretically predicted. The run was then extended to $\beta = 6.4$, at which a departure from a linear behavior was observed, indicating the onset of $O(a^2)$ behavior. This implied a cancellation between an a^2 and higher order terms that leads to an apparent $O(a)$ behavior for lower values of β. We have now extended the run to $\beta = 6.65$ employing a $56^3 \times 96$ lattice to settle the issue of the continuum extrapolation. We also briefly address the problem of $O(a^2)$ effect, on which we gained insight after the present conference.

2. Perturbative matching

We have slightly revised the method of analysis in obtaining B_K in the continuum since Lattice 96. Lattice values of B_K are converted to the continuum value in the \overline{MS} scheme with the naive dimensional regularization (NDR) by applying one-loop renormalization at the matching scale $q^* = 1/a$.

The one-loop renormalization factor is evaluated with the 3-loop running coupling constant $\alpha_{\overline{MS}}(q^*)$ with $\Lambda_{\overline{MS}} = 0.23$ GeV, estimated in the continuum limit from our results for the ρ meson mass.

The continuum value of B_K at the physical scale $\mu = 2$ GeV is calculated from q^* via the 2-loop running of the continuum renormalization group:

$$B_K(\text{NDR}, \mu) = \left[1 - \frac{\alpha_{\overline{MS}}(q^*)}{4\pi} \gamma_1 \beta_0 - \gamma_0 \beta_1 \right]^{\frac{1}{2\beta_0}} B_K(\text{NDR}, q^*)$$

$$\times \left[\frac{\alpha_{\overline{MS}}(q^*)}{\alpha_{\overline{MS}}(\mu)} \right]^{-\gamma_0/2\beta_0} \text{ with } \beta_0 = 11, \beta_1 = 102, \gamma_0 = 4 \text{ and } \gamma_1 = -7.$$

Results for Quenched B_K from JLQCD*

JLQCD Collaboration: S. Aokia, M. Fukugitab, S. Hashimotoc, N. Ishizukaa,d, Y. Iwasakia,d, K. Kanayaa,d Y. Kuramashia, M. Okawaa, A. Ukawaa, T. Yoshiea,d

aInstitute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
bInstitute for Cosmic Ray Research, University of Tokyo, Tanashi, Tokyo 188, Japan
cComputing Research Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305, Japan
dCenter for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
eInstitute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan

A report is presented on our continued effort to elucidate the continuum limit of B_K using the quenched Kogut-Susskind quark action. By adding to our previous simulations one more point at $\beta = 6.65$ employing a $56^3 \times 96$ lattice, we now confirm the expected $O(a)$ behavior. This implied a cancellation $O(a^2)$ behavior for lower values of β. We have now extended the run to $\beta = 6.65$ employing a $56^3 \times 96$ lattice to settle the issue of the continuum extrapolation quadratic in a leads to B_K (NDR, 2 GeV) = 0.598(5). As our final value of B_K in the continuum we present B_K (NDR, 2 GeV) = 0.628(42), as obtained by a fit including an $\alpha_{\overline{MS}}(1/a)^2$ term arising from the lattice-continuum matching with the one-loop renormalization.

*presented by S. Aoki
The new data points strongly support an onset of which was noted in Lattice behavior, the onset of which however should vanish logarithmically in the continuum limit[9,10].

4. Continuum extrapolation

In Fig. 1 we present \(B_K(NDR, 2\, \text{GeV}) \) as a function of \(m_{\rho}a \). The leftmost points are the new data taken at \(\beta = 6.65 \) on a \(56^3 \times 96 \) lattice. The new data points strongly support an \(O(a^2) \) behavior, the onset of which was noted in Lattice 96 at \(\beta = 6.4 \). The effect of higher order terms is not discernible for \(\beta \geq 5.93 \). Therefore, we fit the five points above \(\beta = 5.93 \) with the form \(B_K = c_0 + c_1 (m_{\rho}a)^2 \), which is shown by dashed lines in Fig. 1. The continuum extrapolation gives \(B_K(NDR, 2\, \text{GeV}) = 0.616(5) \) for the gauge non-invariant operator, and 0.580(5) for the invariant operator.

Figure 1. Gauge non-invariant(circles) and invariant(diamonds) \(B_K(NDR, 2\, \text{GeV}) \) as a function of \(m_{\rho}a \), together with a simultaneous fit for the two operators including \(\alpha^2 \) term (solid lines) and separate fits quadratic in \(\alpha \) (dashed lines) to the five pairs of data points for \(\beta \geq 5.93 \), the average of the two being 0.598(5).

5. Operator dependence

It has been noted that the two operators yield different values in the continuum[3] (see Fig. 1). After Lattice 97 a further analysis was made on this point, which we report in this write-up. The difference between gauge non-invariant and invariant operators should receive not only \(O(a^2) \) scaling violation but also \(\alpha MS(q^*)^2 \) errors from the matching procedure. Figure 2 plots this difference as a function of \(m_{\rho}a \). Small errors resulting from a correlation between the two operators allow us to fit the five data points with the form \(b_1 (m_{\rho}a)^2 + b_2 \alpha MS(q^*)^2 \), giving \(b_1 = -0.23(2) \) and \(b_2 = 1.73(5) \) with \chi \^2/d.o.f. = 2.2. The solid line indicates the fit, and others show the breakdown into the \(\alpha^2 \) (dotted line) and \(\alpha^2 \) (dashed line) contributions. Allowing for a non-zero constant \(b_0 \), similar fitting gives \(b_0 = -0.032(16) \), \(b_1 = -0.44(11) \) and \(b_2 = 3.4(8) \).

Encouraged by this analysis we attempt to fit the five points at \(\beta \geq 5.93 \) simultaneously for both operators including their correlations, with
6. Conclusions

As our final value of B_K in the continuum limit we adopt the result from the fit including the α^2 term, $B_K(\text{NDR, 2GeV}) = 0.628 \pm 0.042$, which includes a systematic error due to the 2-loop uncertainty. The size of the quoted error is 6.6%, which roughly equals $3 \times \alpha_{\overline{\text{MS}}}^{\text{inv}}(q^* = 1/a)^2$ at our smallest lattice spacing $1/a = 4.87$ GeV at $\beta = 6.65$ where $\alpha_{\overline{\text{MS}}}(4.87 \text{GeV}) = 0.147$. This magnitude of error is unavoidable unless a two-loop calculation is carried out for the lattice renormalization.

Our B_K is consistent with the JLQCD value obtained using the Wilson quark action, $B_K(\text{NDR, 2GeV}) = 0.562 \pm 0.064$, in which the operator mixing problem is solved non-perturbatively with the aid of chiral Ward identities.[12]

This work is supported by the Supercomputer Project (No. 97-15) of High Energy Accelerator Research Organization (KEK), and also in part by the Grants-in-Aid of the Ministry of Education (Nos. 08640349, 08640350, 08640404, 09246206, 09304029, 09740226).

REFERENCES

1. JLQCD Collaboration, S. Aoki et al., Nucl. Phys. B (Proc. Suppl.) 47 (1996) 456.
2. S. Sharpe, Nucl. Phys. B (Proc. Suppl.) 34 (1994) 403.
3. JLQCD Collaboration, S. Aoki et al., Nucl. Phys. B (Proc. Suppl.) 53 (1997) 341.
4. N. Ishizuka and Y. Shizawa, Phys. Rev. D49 (1994) 3519.
5. S. Sharpe and A. Patel, Nucl. Phys. B417 (1994) 307.
6. X. Ji, hep-lat/9506034.
7. R. Gupta, T. Bhattacharya, and S. Sharpe, Phys. Rev. D55 (1997) 4036.
8. J. Buras, M. Jamin and P. Weisz, Nucl. Phys. B347 (1990) 491.
9. G. Kilcup, R. Gupta and S. Sharpe, hep-lat/9705006.
10. T. Onogi, comment in a discussion session at the International Workshop “Lattice QCD on Parallel Computers” (Tsukuba, March 1997).
11. G. P. Lepage and P. Mackenzie, Phys. Rev. D48 (1993).
12. JLQCD Collaboration, S. Aoki et al., Nucl. Phys. B (Proc. Suppl.) 53 (1997) 349; hep-lat/9705033.