EXPANDING THE PHENOTYPE RELATED TO GNAO1 MUTATIONS

Highlighting the Dystonic Phenotype Related to GNAO1

Thomas Wirth, MD,1,2,3* Giacomo Garone, MD,4,5 Manju A. Kurian, PhD,6 Amélie Piton, PhD,2,3,7 Francisca Millan, MD,8 Aida Telegrafo, MS,8 Nathalie Drouot, Msc,3 Gabrielle Rudolf, PhD,1,2,3 Jamal Chelly, MD,2,3,7 Warren Marks, MD,9 Lydie Burglen, MD,10 Diane Demaily, MD,11 Philippe Coubes, MD,11 Mayte Castro-Jimenez, MD,12 Sylvie Jorioit, MD,13 Jamal Ghourid, MD,14 Jérémie Belin, MD,15 Jean-Marc Faucheux, MD,16 Lubov Blumkin, MD,17 Mariam Hull, MD,18 D Diane Doummar, MD, Christine Tranchant, MD,19 Marie Vidailhet, MD,20 Catherine Nowak, MD,21 William G. Wilson, MD,22 Dora Steel, BMBCh,23 Alessandro Capuano, MD,24 Marie Vidalinhet, MD,22,23 Jean-Pierre Lin, MD,22,27 Christophe Beroud, MD,24,25 Laura Cif, MD,11,26 Diane Dommard, MD,19,26 Mathieu Anheim, MD1,2,3

1Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France 2Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France 3Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France 4University Hospital Pediatric Department, IRCCS Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy 5Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children’s Hospital, Rome, Italy 6Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom 7Laboratoire de diagnostic génétique, Nouvel Hôpital Civil, Hôpitaux universitaires de Strasbourg, Strasbourg, France 8GeneDx, Gaithersburg, Maryland, USA 9Cook Children’s Medical Centre, Fort Worth, Texas, USA 10Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique et Embryologie Médicale, APHP, Hôpital Trousseau, Paris, France 11Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France 12Service de Neurologie, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland 13Department of Paediatric Neurology, University Hospital of Lille, Lille, France 14Université Lille, ULR7364 RADEME, CHU Lille, Clinique de Génétique Guy Fontaine, Lille, France 15Service de neurologie, CHU Tours, Tours, France 16Service de neurologie, Hôpital d’Agen, Agen, France 17Pediatric Movement Disorders Clinic, Pediatric Neurology Unit, Wolfson Medical Center, Holon, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel 18Pediatric Movement Disorders Clinic, Blue Bird Circle Clinic for Pediatric Neurology, Section of Pediatric Neurology and Developmental Neuroscience, Texas Children’s Hospital, Houston, Texas, USA 19Sorbonne Université, Service de Neuropédiatrie-Pathologie du développement, centre de référence neurogénétique, Hôpital Trousseau AP-HP, SU, FHU I2D2, Paris, France 20Oxford University Hospitals National Health Service Foundation Trust and University of Oxford, Oxford, United Kingdom 21Department of Clinical Genetics, Great Ormond Street Hospital, London, United Kingdom 22Sorbonne Université/Inserm U1127/ CNRS UMR 7225/Institut du Cerveau, Paris, France 23Service de neurologie, Hôpital La Pitié Salpêtrière, Sorbonne Université, Paris, France 24Aix Marseille Université, INSERM, MMG, Bioinformatics & Genetics, Marseille, France 25The Feingold Center for Children, Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, USA 26Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA 27Children’s Neurosciences Department, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, United Kingdom

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

*Correspondence to: Dr. Thomas Wirth, Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, 1, avenue Molière, 67008 Strasbourg, France; E-mail: thomas.wirth@etu.unistra.fr

Thomas Wirth and Giacomo Garone contributed equally to this work and should be considered as co-first authors.

Laura Cif, Diane Doummar, and Mathieu Anheim contributed equally to this work and should be considered as co-last authors.

Relevant conflicts of interest/financial disclosures: None.

Funding agencies: T.W. was funded by a grant from the Revue Neurologique for this work. The study was partly supported by a grant provided by France Parkinson.

Received: 26 January 2022; Revised: 2 May 2022; Accepted: 5 May 2022

Published online 20 June 2022 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/mds.29074

ABSTRACT: Background: Most reported patients carrying GNAO1 mutations showed a severe phenotype characterized by early-onset epileptic encephalopathy and/or chorea.

Objective: The aim was to characterize the clinical and genetic features of patients with mild GNAO1-related phenotype with prominent movement disorders.

Methods: We included patients diagnosed with GNAO1-related movement disorders of delayed onset (>2 years). Patients experiencing either severe or profound intellectual disability or early-onset epileptic encephalopathy were excluded.

Results: Twenty-four patients and 1 asymptomatic subject were included. All patients showed dystonia as prominent movement disorder. Dystonia was focal in 1, segmental in 6, multifocal in 4, and generalized in 13. Six patients showed adolescence or adulthood-onset dystonia. Seven patients presented with parkinsonism and 3 with myoclonus. Dysarthria was observed in 19 patients. Mild and moderate ID were present in 10 and 2 patients, respectively.
Conclusion: We highlighted a mild GNAO1-related phenotype, including adolescent-onset dystonia, broadening the clinical spectrum of this condition. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

Key Words: dystonia; GNAO1; phenotypes; mutation

GNAO1 mutations have been associated with two phenotypes: a severe, early-infantile epileptic encephalopathy with burst-suppression (EIEE17, OMIM 615473) and a neurodevelopmental disorder with involuntary movements (NEDIM, OMIM 617493), with or without seizures. GNAO1 encodes the α-subunit of a heterotrimeric guanine nucleotide-binding protein (Gαo), which is widely expressed in the central nervous system, playing an important role in signal transduction through AMPc metabolism in the striatum. As the number of reports increased, it became evident that GNAO1-related encephalopathies encompass a continuous spectrum of neurological syndromes featuring variable association of movement disorders, psychomotor delay, intellectual disability (ID), and different types of epilepsy. GNAO1-related movement disorder usually starts in infancy. Choreoathetosis is usually described with spontaneous or trigger-induced exacerbations, potentially leading to status dystonicus, as a hallmark of the disease. Most patients reported so far showed a severe phenotype, with recurrent exacerbations and significant disability. However, in a few atypical, milder cases, with movement disorder onset in late childhood or adolescence, no acute exacerbation and less-severe disability have been identified using next-generation sequencing techniques. In this study, we characterized the clinical and genetic features of a cohort of patients with mild GNAO1-related phenotype characterized by prominent movement disorders, further expanding the spectrum of this condition.

Patients and Methods

Patients

Patients carrying causative heterozygous variants in GNAO1 and exhibiting mild phenotypes were included from 18 neurology and neuropsychiatric movement disorders reference centers from the United States, France, Israel, Switzerland, the United Kingdom, and Italy. Mild phenotype was defined by (1) lack of severe or profound ID, (2) lack of early-onset epileptic encephalopathy, (3) late-onset (ie, after age 2 years) appearance of movement disorders, and (4) acquisition of walk. Patients were recruited through an international collaboration mediated by the online platform Genematcher. All patients were assessed by neurologists or neuro-pediatricians with an expertise in movement disorders. Patients’ phenotypes from family 6 and family 4, which were previously reported elsewhere, were added in the cohort as further clinical data were obtained.

Genetic Analysis

CGH-array, gene panel, exome, and genome sequencing were performed as previously reported. Detailed procedures of the sequencing, including library preparation and bioinformatic analysis, are available in Supplementary Data. Variants were considered as causative if they fulfilled the following criteria: (1) known disease mutation reported in ClinVar; (2) loss-of-function variant, including protein truncating variants, frameshift indel, large deletion, and splice site changes predicted to cause aberrant splicing; or (3) missense variant with a CADD score >20, absent in GnomAD and predicted to be deleterious by at least two additional algorithms (Polyphen-2, SIFT and Mutation taster). In addition, variant class of pathogenicity was reported according to the American College of Medical Genetics and Genomics (ACMG) guidelines.

Ethics

All patients and relatives provided written informed consent before genetic analysis. Strasbourg University Hospital review board gave approval for the exome sequencing of families 4 and 6 that was performed in a research framework. Genetic analysis for other families was performed for diagnostic purposes.

Results

We included 24 patients (15 women) and 1 asymptomatic carrier from 20 different families. Patients’ clinical characteristics are provided in Table 1. Mean age at inclusion was 23.8 years (range: 5–66), mean age at disease onset was 6.6 years (range: 0.25–47), and mean age of dystonia onset was 10.1 years (range: 2–47). Initial manifestations included dystonia in 10 (41%), myoclonus or seizure in 1, developmental delay in 13, language delay in 4, motor delay in 9, and hypotonia in 4 patients. Seven patients were from three unrelated families showing autosomal dominant inheritance, while all others were sporadic cases due to de novo mutations. Pedigrees of these three families and videos of patients are available in Supplementary Data.

Dystonia was the main movement disorder in all patients, prominently affecting multiple segments of the upper body part in 21 patients or being limited to the cervical segment in 1 patient. Dystonia was isolated, namely not associated to any other symptom, in
TABLE 1 Clinical and genetic features of GNAO1 mutation carriers

Patient ID	Ancestry	Gender	Age at last assessment	Age at first symptoms	First symptom	Dyskinesia	Topography	Progression	Acute exacerbations	Paroxysms	Myoclonus	Chorea	Hypertonia	Intellectual disability	Seizures	Speech	Other	Treatment response	GNAO1 variant	
Family 1	North African	Female	28 y	4 y	Dystonia	12 y	Segmental; face, neck, upper limbs	No	No	No	No	No	Mild	Yes	Normal	None	No	No	Mild response to levodopa, moderate improvement with trihexyphenidyl	[NM_020988.3]: c.68 T > C; p.L23P, hts
Case A																				
Family 2	North African	Female	5 y	1 y	Developmental delay (motor delay)	2 y	Generalized, oromandibular, trunk, dystonia	Yes	No	No	No	No	Yes	No	No	None	NA	No	No response to levodopa and trihexyphenidyl, minimal improvement with gabapentin and trihexyphenidyl	[NM_020988.3]: c.137A > G; p.K46R, hts
Case A																				
Family 3	European	Male	19 y	3 y	Developmental delay (motor delay, dysarthria)	12 y	Generalized, left upper limbs, cervical and axial dystonia	No	No	No	No	No	Yes	No	Yes	None	NA	No	No response to levodopa and trihexyphenidyl, mild worsening by Gpi-DBS	[NM_020988.3]: c.535A > G; p.R179G, hts
Case A																				
Family 4	European	Male	24 y	15 y	Dystonia	15 y	Segmental, oromandibular and cervical dystonia	No	No	No	No	No	No	No	Yes	None	NA	No	No response to levodopa and trihexyphenidyl	[NM_020988.3]: c.617G > A; p.R206Q, hts
Case A																				
Family 4	European	Female	53 y	47 y	Dystonia	47 y	Brachial, cervical	No	No	No	No	No	No	No	Normal	None	NA	No	No response to levodopa	[NM_020988.3]: c.644G > A; p.C215Y, hts
Case B																				
Family 4	European	Female	57 y	30 y	Dystonia	30 y	Multifocal, upper and lower limbs, oromandibular dystonia with dysarthria	No	No	No	No	No	No	No	No	None	NA	No	No response to levodopa	[NM_020988.3]: c.644G > A; p.C215Y, hts
Case C																				
Family 5	European	Female	5 y 11 mo	3 mo	Developmental delay (motor delay, dysarthria)	5 y	Multifocal, lower limbs	No	No	No	No	No	Yes	No	No	None	NA	No	No response to levodopa and trihexyphenidyl, mild response to levodopa	[NM_020988.3]: c.622G > C; p.E208N, hts
Case A																				
Family 6	European	Male	81 y	3 y	Dystonia	3 y	Generalized, ataxia, oromandibular dystonia	Yes	No	No	No	No	Yes	No	No	None	NA	No	No response to levodopa, no effect of trihexyphenidyl	[NM_020988.3]: c.644G > A; p.C215Y, hts
Case A																				
Family 6	European	Female	66 y	5 y	Dystonia	5 y	Generalized, oromandibular, distal, dystonia, facial dystonia, left foot	Yes	No	No	Yes	No	No	No	Mild	None	NA	No	Subjective response to levodopa	[NM_020988.3]: c.644G > A; p.C215Y, hts
Case B																				
Family 7	European	Male	48 y	6 y	Dystonia	6 y	Generalized, oromandibular, cervical, trunk, arm, neck	Yes	No	No	No	No	Mild	No	No	None	NA	No	Subjective response to levodopa, no effect of trihexyphenidyl	[NM_020988.3]: c.644G > A; p.C215Y, hts
Case A																				
Family 8	European	Female	16 y	6 y	Dystonia	6 y	Segmental, oromandibular, neck and upper limbs	Yes	No	No	No	No	Mild	No	No	None	NA	No	Mild improvement with gabapentin, no benefit with trihexyphenidyl	[NM_020988.3]: c.644G > A; p.C215Y, hts
Case A																				
Patient ID	Ancestry	Genotype	Gender	Age at last assessment	Age at first symptom	First symptom	Topography	Prognosis	Acute exacerbations	Parkinsonism	Myoclonus	Chorea	Hypotonia	Intellectual disability	Seizures	Speech	Other	Treatment response	GNAO1 variant	
------------	----------	----------	--------	-----------------------	---------------------	---------------	-------------	-----------	-------------------	-------------	-----------	-------	-----------	----------------------	---------	--------	-------	----------------------	----------------	
Family 9	African American	Male	13 y 7 mo	Developmental delay (language delay)	5 y	Generalized cervical, neck, and upper limb dystonia with axial, trunk, and oromandibular involvement	Yes	No	No	No	No	MILD	No	Dysesthesia	None	No response to levodopa, trihexyphenidyl, and baclofen; rash with clonazepam; minimal improvement with baclofen				
Family 10	Moroccan	Female	15 y 1 y	Developmental delay (motor delay)	5 y	Generalized dystonia	No	No	No	No	No	MILD	No	Dysesthesia	None	Tactile hyperreflex	No response to levodopa, trihexyphenidyl, and baclofen			
Family 11	Caucasian	Female	18 y 6 mo	Developmental delay (motor delay)	7 y	Generalized dystonia	Yes	No	No	No	No	Yes	MILD	No	Anarthria	None	No response to levodopa, trihexyphenidyl, and baclofen; good response to bilateral Gpi-DBS			
Family 12	Caucasian	Male	20 y 2 mo	Developmental delay (motor delay, language delay)	11 y	Generalized bilateral upper limb, axial, trunk, cervical, and oromandibular dystonia	Yes	Yes	No	No	No	Yes	MILD	No	ADHD	None	No response to amantadine and levodopa; moderate and transient response to trihexyphenidyl and tetrabenazine, good response to Gpi-DBS			
Family 13	Caucasian	Male	13 y 3 y	Developmental delay (language delay)	11 y	Segmental bilateral upper limb dystonia	No	No	No	Yes (upper limbs)	No	Yes	MILD	No	Normal	ADHD	No response to anticholinergic and amantadine; improvement in dystonia with trihexyphenidyl			
Family 14	Chinese	Male	13 y 3 y	Developmental delay (motor delay)	2 y	Generalized upper and lower limb dystonia	Yes	No	No	Yes (upper limbs)	Yes (left sided)	Yes	No	No	Dysesthesia	ADHD	Moderate response to tetrabenazine on dystonia, good response to trihexyphenidyl and tetrabenazine, and levodopa			
Family 15	Caucasian	Female	11 y 8 mo	Developmental delay	2 y	Generalized upper and lower limb dystonia	Yes	No	No	Yes (upper limbs)	No	No	No	No	Dysesthesia	ADHD	None	Good response to levodopa		
Family 16	Caucasian	Female	11 y 8 mo	Developmental delay	2 y	Generalized upper and lower limb dystonia	No	No	No	Yes (left sided)	Yes	No	No	No	Dysesthesia	None	None	Response to antipsychotic and levodopa		
Family 17	Caucasian	Male	18 y 2 y	Developmental delay (language delay)	2 y	Segmental dystonia, posturing of fingers and hand	No	Dysesthesia	None	No response to haloperidol, tetrabenazine, and trihexyphenidyl										
Family 18	Caucasian	Female	20 y 4 mo	Dystonia	6 y	Generalized dystonia,	Yes	No	Anarthria	None	No response to haloperidol, tetrabenazine, and trihexyphenidyl									

(Continues)
Patient ID	Ancestry	Gender	Age at last assessment	First symptom	Total symptom	Dysostasia	Topography	Progression	Acute exacerbations	Parkinsonism	Myoclonus	Chorea	Hypertonia	Intellectual disability	Seizures	Speech	Other	Treatment response	GNAO1 variant									
Family 19	European	Female	13 y	6 y	Dystonia	6 y	Multifocal	Bilateral	Upper limb	Cervical	No	No	No	No	No	No	No	No	c.765dupT; p.N256*, hts									
Family 19	European	Female	39 y	16 y	Dystonia	16 y	Multifocal	Bilateral	Upper limb	Cervical	No	No	No	No	No	No	No	No	Heterozygous deletion in 16q12.2 (273–375kb) encompassing GNAO1									
Family 20	Caucasian	Male	9 y	By 1 y	Developmental delay (motor delay, hypotonia)	9 y	Generalized	Upper limb	Multifocal	#1	Yes	No	No	No	Yes	No	No	No	No	No	Normal	No	No	No	No	No	No	Heterozygous deletion in 16q12.2 (273–375kb) encompassing GNAO1

Summary

- Gender: Male, Female
- Mean age at last assessment: 23.6 y
- Mean age at disease onset: 6.6 y
- Developmental delay: 13
- Motor delay: 9
- Language delay: 4
- Dysostasia: 10
- Hypertonia: 4
- Seizures: 1
- Myoclonus: 1
- Parkinsonism: 7
- Myoclonus: 3
- Chorea: 2
- Hypertonia: 11
- Intellectual disability: 12
- Seizures: 3
- Dysostasia: 19
- Pyramidal: 1
 - Myoclonus: 1
 - MDD: 4
 - OHD: 2
 - ADHD: 1
 - Exaggerated startle reflex: 1

Abbreviations: hts: heterozygous, NA, not available; BFMDRS: Burke Fahn Marsden Dystonia Rating Scale, dystonia score; GPi-DBS: globus pallidus internal deep brain stimulation; MDD, major depressive disorder; ADHD, attention deficit with hyperactivity disorder; ASD, autism spectrum disorder; ID, intellectual disability.
7 patients (29%). Dystonia was the only movement disorder in 14 patients and was combined with other movement disorders in 10, namely myoclonus in 3, chorea in 2, and parkinsonism in 7 (with 2 patients combining three movement disorders). Only 3 patients presented an acute exacerbation of dystonia. Dystonia course was non-progressive for 11 patients. Dystonia topography was generalized in 13 patients (54%), multifocal in 4 patients, segmental in 6 patients, and focal in 1 patient. Dystonia was associated with dysarthria/anarthria in 19 patients. Early-onset hypotonia preceded dystonia in 11 patients. Dystonia was associated with ID in 12 patients (mild for 10 and moderate for 2). Seizures occurred in 3 patients between age 4 and 19 years. Magnetic resonance imaging was unremarkable for all patients.

Movement disorders response to medication, including anticholinergic drugs, levodopa, tetrabenazine, amantadine, clonazepam, or methylphenidate, was variable. Six patients received pallidal deep brain stimulation (DBS), with significant improvement for 5 of them. Detailed treatment outcomes are available in Supplementary Data.

Mutations carried by the patients are presented in Table 1. Details regarding pathogenicity assessment are available in Supplementary Data. Apart from the p.R206Q, all variants were classified as pathogenic (class V) according to the ACMG criteria. In family 4, we identified 3 patients with the R206Q variant, which was classified as a variant of uncertain significance due to the presence of an unaffected carrier, 4-D, son of 4-C, despite meeting other criteria of pathogenicity (absent from GnomAD, unanimously predicted damaging by in silico tools, affecting a highly conserved residue located in a hot spot without benign variation) (criteria PM1, PM2, PP2, and PP3). A recurring splicing variant (c.724-8G > A), previously reported in ClinVar, was identified in 8 patients (33%) showing late-onset and/or segmental dystonia. Previous report showed this variant to damage the natural splice acceptor site and create a stronger cryptic splice acceptor site in intron 6, resulting in the insertion of two amino acids leading to protein mislocation. Two patients were carrying a nonsense variant (p.N256*), and one was carrying a

![FIG. 1.](http://wileyonlinelibrary.com)
large deletion encompassing GNAO1. Other mutations (p.L23P; p.K46R; p.R179G; p.R206Q; p.E208N; p.C215Y; and p.N242T and p.E246V) were all missense variants absent from GnomAD. The previously reported pathogenic p.C215Y variant was found in three unrelated families. All variants were close to known mutational hot spots (Fig. 1).

Discussion

Here, we report a large cohort of patients with mild GNAO1-related phenotypes, experiencing prominent movement disorders without severe chronic encephalopathy. The typical phenotype was a nonprogressive generalized or focal/segmental upper-body dystonia appearing beyond infancy, associated with dysarthria. Acute exacerbation occurred only in 3 patients, and 29% of patients showed isolated dystonia without additional neurological manifestation. Our inclusion criteria were able to identify these phenotypes that were in contrast with most of the previously reported patients with GNAO1-related movement disorders, who showed severe hyperkinetic encephalopathy with recurrent dystonic exacerbations, and profound developmental delay with or without epilepsy in the first year of life. Dystonia distribution was segmental or focal in 7 patients, and clinical course was nonprogressive in 11 patients, while most of the previously reported patients with GNAO1-related movement disorders had generalized and rapidly progressive dystonia. Dystonia topography revealed prominent upper-body distribution in most of our patients, reminiscent of the clinical pictures associated with other dystonia-related genes, such as GNAL or ANO3. Seven patients also exhibited mild parkinsonism, which is consistent with the role of G_{α_0} in the signal transduction within the striatal projection neurons downstream of the dopamine receptors.

We identified 3 autosomal dominant families where multiple symptomatic relatives carried heterozygous variants, which was in contrast with all the previously reported patients who showed de novo mutations. One p.R206Q carrier did not present any clinical sign evocative of GNAO1-related disorders. The similarities between this family’s phenotype and the other cases—all showing upper-body distribution—argue for the implication of the variant, while no other class IV to V variant in a dystonia-related gene was identified. In addition, a family member carrying this variant had disease onset in his 40s, meaning the 30-year-old asymptomatic carrier could be potentially symptomatic. Future identification of autosomal dominant family with GNAO1-related dystonia and follow-up of this patient might confirm whether incomplete penetrance is possible in GNAO1-related disorders.

Response to medication was variable in our cohort. No significant response to levodopa was identified in our cohort, but 3 patients had partial response to anticholinergic drugs, which was in accordance with previous findings from the literature. Conversely, the outcome was good in 5 of 6 patients who received DBS, further confirming its efficacy in GNAO1-related dystonia.

Most of the variants identified in the present work were not reported among previously published cases showing severe phenotype, and two variants recurred in multiple families, suggesting that mild phenotypes could be related to specific mutations. However, the variants we identified were close to previously reported hot spots (Fig. 1), leading to amino-acid substitution in the same functional domains. Further studies are needed to elucidate if these different variants have a milder impact on protein function. In addition, we identified two putative loss-of-function variants (a nonsense variant and a whole-gene deletion), presumably affecting protein expression and possibly causing GNAO1 haploinsufficiency. All 3 carriers were presenting late-childhood/adolescence onset dystonia without ID. Thus far, no report described the phenotype of patients harboring GNAO1-nonsense variants. A few patients with chromosome 16q deletions encompassing GNAO1 have been described, all harboring significantly larger deletions compared to our case and showing variable associations of dysmorphisms, microcephaly, seizures, and developmental delay. Although previous research suggested that loss-of-function variants were mainly responsible for epileptic encephalopathy while gain-of-function mutations were mostly associated with a movement disorders prominent phenotype, recent evidence suggests that pathogenic variants exert their effect through a combination of dominant-negative and loss-of-function mechanisms, and each mutation likely produces circuit-selective effects through a peculiar mechanism of signaling disruption. The expanding spectrum of associated phenotypes and disease-causing variants provides further evidence that genotype-phenotype correlations are nuanced, and GNAO1-related disorders shape a continuous spectrum of overlapping phenotypes rather than distinct entities. Our study carries some limitations, including the retrospective design and the lack of formal assessment in several cases. Here, we highlighted the milder GNAO1-related phenotypes, broadening this condition-clinical spectrum. GNAO1 mutations should be considered as a cause of adolescent or adult-onset nonprogressive dystonia, particularly in the presence of a speech involvement even in the absence of seizures or ID.

Acknowledgments: We thank the patients and their families for participation in this study and Bernard Jost from the IGRCM Microarray and Sequencing Platform, the France Parkinson organization, and the Revue Neurologique for their support. Open access funding enabled and organized by Projekt DEAL.
Data Availability Statement
Anonymized data pertaining to the research presented will be made available upon reasonable request from external investigators.

References
1. Nakamura K, Kodera H, Akita T, Shima M, Kato M, Hoshino H, et al. De novo mutations in GNAO1, encoding a G protein, cause epileptic encephalopathy. Am J Hum Genet 2013;93(3):496–505.
2. Schirinzi T, Garone G, Travaglini L, Vasco G, Galosi S, Rios L, et al. Phenomenology and clinical course of movement disorder in GNAO1 variants: results from an analytical review. Parkinsonism Relat Disord 2019;61:19–25.
3. Kulkarni N, Tang S, Bhardwaj R, Bernes S, Grebe TA. Progressive movement disorder in brothers carrying a GNAO1 mutation responsive to deep brain stimulation. J Child Neurol 2016;31(2):211–214.
4. Danti FR, Galosi S, Romani M, Montomoli M, Carrs KJ, Raymond FL, et al. GNAO1 encephalopathy: broadening the phenotype and evaluating treatment and outcome. Neurogenet 2017;3(2):e143.
5. Feng H, Khalil S, Neubig RR, Sidropoulos C. A mechanistic review on GNAO1-associated movement disorder. Neurobiol Dis 2018;116:131–141.
6. Delorme C, Giron C, Bendetowicz D, Méneret A, Mariani L-I, Roze E. Current challenges in the pathophysiology, diagnosis, and treatment of paroxysmal movement disorders. Expert Rev Neurother 2021;21(1):81–97.
7. Kelly M, Park M, Mihaelk I, Rochtus A, Gramm M, Pérez-Palma E, et al. Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate-binding region. Epilepsia 2019;60(3):406–418.
8. Carecchio M, Invernizzi F, Gonzàlez-Latapi P, Panteghini C, Zorzi G, Romito L, et al. Frequency and phenotypic spectrum of KMT2B dystonia in childhood: a single-center cohort study. Mov Disord 2019;34(10):1516–1527.
9. Graziola G, Garone G, Stregapede F, Bosco L, Vigezano F, Curatolo P, et al. Diagnostic yield of a targeted next-generation sequencing gene panel for pediatric-onset movement disorders: a 3-year cohort study. Front Genet 2019;10:1026.
10. Wirth T, Tranchant C, Drouot N, Keren B, Mignot C, et al. Mutations in ANO3 cause dominant Craniocervical dystonia: a mechanistic review. Mov Disord 2019;34(6):923–924.
11. Charlesworth G, Plagnol V, Holmström KM, Bras J, Sheerin U-M, Preza E, et al. Mutations in ANO3 cause dominant Cranio cervical dystonia: Ion Channel implicated in pathogenesis. Am J Hum Genet 2012;91(6):1041–1050.
12. Lange LM, Junker J, Loens S, Baumann H, Olschewski L, Schaake S, et al. Genotype-phenotype relations for isolated dystonia genes: MDSGene systematic review. Mov Disord Off J Mov Disord Soc 2021;36(5):1086–1103.
13. Corvol J-C, Muriel M-P, Valjent E, Feger J, Hanoun N, Girault J-A, et al. Persistent increase in olfactory type G-protein alpha subunit levels may underlie D1 receptor functional hypersensitivity in Parkinson disease. J Neurosci Off J Soc Neurosci 2004;24(31):7007–7014.
14. Yamashita Y, Ogawa T, Ogaki K, Kamo H, Sukigara T, Kitaehara E, et al. Neuroimaging evaluation and successful treatment by using directional deep brain stimulation and levodopa in a patient with GNAO1-associated movement disorder: a case report. J Neurosci Off J Soc Neurosci 2020;41(11):116710.
15. Koy A, Girak S, González V, Becker K, Roujeau T, Milesi C, et al. Deep brain stimulation is effective in pediatric patients with GNAO1 associated severe hyperekinesia. J Neurosci Off J Soc Neurosci 2018;15(391):31–39.
16. Apuzzo D, Cappuccio G, Vaisanen T, Alagia M, Pignataro P, Genovesi R, et al. Two cases of 16q12.1q21 deletions and refinement of the critical region. Eur J Med Genet 2020;63(6):103878.
17. Muntean BS, Masuho I, Mao M, Sutton LP, Zucca S, Iwamoto H, et al. Gao is a major determinant of CAMP signaling in the pathophysiology of movement disorders. Cell Rep 2021;34(5):108718.

Supporting Data
Additional Supporting Information may be found in the online version of this article at the publisher's web-site.