Angles, triangle inequalities, correlation matrices and
metric-preserving and subadditive functions

Diego Castano, Vehbi E. Paksoy, Fuzhen Zhang

Division of Math, Science, and Technology, Nova Southeastern University
3301 College Ave, Fort Lauderdale, FL 33314, USA

Abstract

We study the triangle inequalities for angles (with different definitions) and present inequalities concerning the entries of correlation matrices through the positivity of 3×3 matrices. We extend our discussions to the inequalities concerning the triangle triplets with metric-preserving and subadditive functions.

AMS Classification: 15A03, 15A45; 39B62

Keywords: angle, correlation matrix, generalized matrix function, metric, metric-preserving function, subadditive function, triangle inequality, triangle triplet

1 Introduction

We begin our discussions with angles between vectors by looking at two angle definitions and their characteristics. We first study the triangle inequalities for the angles through the positivity (positive semidefiniteness) of a 3×3 matrix; we investigate the relations between the triangle inequalities (of angles or more generally the triangle triplets) and metric-preserving and subadditive functions. Our results will capture some existing ones but through a different approach. The discussion on the 3×3 positive semidefinite matrices also leads to some inequalities concerning the entries of correlation matrices of higher dimensions.

Let V be an inner product space with the inner product $\langle \cdot, \cdot \rangle$ over the real number field \mathbb{R}. For any two nonzero vectors u, v in V, there are two common ways to define the angle between the vectors u and v in terms of the inner product.
product (see, for instance, [9, p. 58] and [10, p. 335], respectively):

\[\theta (u, v) = \arccos \frac{\langle u, v \rangle}{\|u\| \|v\|} \]

(1)

\[\Theta (u, v) = \arccos \frac{\langle u, v \rangle}{\|u\| \|v\|} \]

(2)

There are various reasons that the angles are defined in ways (1) and (2) (in the sense of Euclidean geometry). Definition (1) may stem from the angles between subspaces, while (2) makes perfect sense intuitively.

Angle and inner product can be viewed as a “twin” for a vector space. A vector may take a simple and familiar form like the ones in \(\mathbb{R}^2 \); it may look much more complicated like the elements (linear combinations of wedge products) in the Grassmann spaces [12, p.172]. Some matrix functions are closely related to vectors and some types of products of vectors. It is a well-known fact that the trace of a matrix product is an inner product: \(\text{tr}(AB) = \langle B, A^* \rangle \). The determinant (even more generally, the generalized matrix functions) can be expressed as an inner product of \(*\)-tensors (see, e.g., [12, p. 226]).

We will also need the term correlation matrix, which is a positive semidefinite matrix with all main diagonal entries equal to 1. Every positive semidefinite matrix with nonzero main diagonal entries can be normalized to a correlation matrix through scaling. The correlation matrices are frequently used in statistics. For its determinant and permanent properties, see, e.g., [14, 18, 21]. Our theorems rely on the results for the \(3 \times 3 \) correlation matrices.

In Section 2, we focus on the triangle inequalities through the positivity of \(3 \times 3 \) matrices. Our results provide a unified proof for the triangle inequalities for the angles \(\theta \) and \(\Theta \). We also present some relationship between the elements of correlation matrices. In Section 3, we study the triangle triplets (which are more general than the angles formed by three vectors), metric-preserving and subadditive functions. Some inequalities of unit vectors are immediate from our results.

2 The triangle inequality and \(3 \times 3 \) matrices

We extend somewhat the underlying number field of the vector space to the complex number field \(\mathbb{C} \) (see [3, p. 9]) and replace the angle in (2) by

\[\Theta (u, v) = \arccos \frac{\text{Re} \langle u, v \rangle}{\|u\| \|v\|} \]

(3)

The angles \(\theta \) and \(\Theta \) are closely related, but not equal unless \(\langle u, v \rangle \) is non-negative. Since \(\text{Re} \langle u, v \rangle \leq |\langle u, v \rangle| \) and \(f(t) = \arccos t \) is a decreasing function in \(t \in [-1, 1] \), we have \(\Theta \geq \theta \). On the other hand, if \(\langle v, u \rangle \neq 0 \), by taking \(p = \frac{\langle v, u \rangle}{|\langle v, u \rangle|} \), we get \(\theta(u, v) = \Theta(pu, v) \). It is easy to verify that (e.g., [11])

\[\theta(u, v) = \min_{|p|=1} \Theta(pu, v) = \min_{|q|=1} \Theta(u, qv) = \min_{|p|=1, |q|=1} \Theta(pu, qv) \]

(4)
For any nonzero vectors $u, v \in V$, it is the case that $\theta(u, v) \in [0, \pi/2]$, $\Theta(u, v) \in [0, \pi]$, and $\theta(u, -u) = 0$, $\Theta(u, -u) = \pi$. The angle θ defined in (1) between u and v is $\pi/2$ if and only if u and v are orthogonal, i.e., $\langle u, v \rangle = 0$; however, the angles θ in general do not obey the law of cosines (for the triangle formed by nonzero vectors u, v and $u - v$). In contrast, the law of cosines does hold for the angles Θ, and $\Theta(u, v) = \pi/2$ if and only if $\langle u, v \rangle = 0$ over \mathbb{R}, but it is possible for some vectors u, v to have an angle $\Theta(u, v) = \pi/2$ and $\langle u, v \rangle \neq 0$ over \mathbb{C}.

The triangle inequalities for θ and Θ are known. That is, for all nonzero vectors $u, v, w \in V$ and the angles θ in (1) and Θ in (3),

\begin{align*}
(\text{t}). \quad & \theta(u, v) \leq \theta(u, w) + \theta(w, v). \\
(\text{T}). \quad & \Theta(u, v) \leq \Theta(u, w) + \Theta(w, v).
\end{align*}

The triangle inequality (T) is attributed to Krein [7] by Gustafson and Rao [6, p. 56]. The inequality was stated without proof in [7] and proved first in [15], then in [6, p. 56]. Note that the real case for (T) is also seen in [19, p. 31]. It has been observed [11] that (t) follows from (T) because of (4).

The proof of (T) in [6, p. 56] boils down to the positivity of the matrix

$$R = \begin{pmatrix} 1 & \Re \langle u, v \rangle & \Re \langle u, w \rangle \\
\Re \langle v, u \rangle & 1 & \Re \langle v, w \rangle \\
\Re \langle w, u \rangle & \Re \langle w, v \rangle & 1 \end{pmatrix}$$

for unit vectors u, v, w, which is ensured by the positivity of the Gram matrix

$$G = \begin{pmatrix} 1 & \langle u, v \rangle & \langle u, w \rangle \\
\langle v, u \rangle & 1 & \langle v, w \rangle \\
\langle w, u \rangle & \langle w, v \rangle & 1 \end{pmatrix}$$

The positivity of G also guarantees (see, e.g., [11, p. 26]) the positivity of

$$A = \begin{pmatrix} 1 & |\langle u, v \rangle| & |\langle u, w \rangle| \\
|\langle v, u \rangle| & 1 & |\langle v, w \rangle| \\
|\langle w, u \rangle| & |\langle w, v \rangle| & 1 \end{pmatrix}$$

which results in

$$1 + 2|\langle u, v \rangle||\langle v, w \rangle||\langle w, u \rangle| \geq |\langle u, v \rangle|^2 + |\langle v, w \rangle|^2 + |\langle w, u \rangle|^2$$

(5)

Inequality (5) is weaker than the following existing inequality (see (5.2) of Theorem 5.1 in [20]):

$$1 + 2 \Re (\langle u, v \rangle \langle v, w \rangle \langle w, u \rangle) \geq |\langle u, v \rangle|^2 + |\langle v, w \rangle|^2 + |\langle w, u \rangle|^2$$

(6)

Using the idea of Gustafson and Rao we present a unified proof for the triangle inequalities (t) and (T) through 3×3 matrices. We have known that 3×3 matrices play important roles in geometry and analysis. For instance, the area of a triangle and the volume of a parallelepiped in \mathbb{R}^3, as well as the convexity of real-valued functions, can be computed and determined by (or through the determinants of) 3×3 matrices (see, e.g., [13, p. 2]).
Proposition 1 Let a, b, c be real numbers such that the 3×3 matrix
\[
B = \begin{pmatrix}
1 & a & b \\
a & 1 & c \\
b & c & 1
\end{pmatrix}
\]
is positive semidefinite. Let $f(t)$ be a strictly decreasing function defined on an interval $I \subseteq [0, \infty)$ with range $[-1, 1]$. If
\[
f(p + q) = f(p)f(q) - \sqrt{1 - f^2(p)} \sqrt{1 - f^2(q)}
\]
for all $p, q, p + q$ in I, then for x, y, z of any arrangement of a, b, c,
\[
f^{-1}(x) \leq f^{-1}(y) + f^{-1}(z)
\]
Proof. Since B is positive semidefinite, we have $-1 \leq x, y, z \leq 1$ and
\[
1 + 2xyz \geq x^2 + y^2 + z^2
\]
in which x, y, z is any arrangement of a, b, c. The above inequality implies
\[
(1 - y^2)(1 - z^2) \geq x^2 - 2xyz + (yz)^2 = (x - yz)^2
\]
and
\[
\sqrt{1 - y^2} \sqrt{1 - z^2} \geq |x - yz|
\]
Hence
\[
x \geq yz - \sqrt{1 - y^2} \sqrt{1 - z^2}
\]
Note that as f is decreasing, so is f^{-1}. If $f^{-1}(-1) \leq f^{-1}(y) + f^{-1}(z)$, then $f^{-1}(x) \leq f^{-1}(-1) \leq f^{-1}(y) + f^{-1}(z)$. Otherwise, $f^{-1}(-1) > f^{-1}(y) + f^{-1}(z)$; so, $f^{-1}(y) + f^{-1}(z)$ lies in the domain of f. Rewriting (8) as
\[
f(f^{-1}(x)) \geq f(f^{-1}(y) + f^{-1}(z))
\]
Since $f(x)$ is decreasing, we have $f^{-1}(x) \leq f^{-1}(y) + f^{-1}(z)$, as desired. \hfill \blacksquare

One may verify that every function $f_r(t) = \cos(rt)$ with $r > 0$ on $[0, \pi/r]$ satisfies the condition (7).

Corollary 2 The following statements follow from Proposition 1 immediately.

(i) For any nonzero vectors u, v, w, inequalities (t) and (T) hold.

(ii) Let $0 \leq a, b, c \leq 1$ and denote $\alpha = \arccos a$, $\beta = \arccos b$, $\gamma = \arccos c$. Then all of the three inequalities $\alpha \leq \beta + \gamma$, $\beta \leq \gamma + \alpha$, and $\gamma \leq \alpha + \beta$ hold if and only if the matrix B in Proposition 1 is positive semidefinite.
Proof. (i). In Proposition 1, setting \(f(t) = \cos t \) on \([0, \pi]\) and taking the \(3 \times 3 \) matrix \(B \) to be the matrices \(A \) and \(R \), we obtain the triangle inequalities (t) and (T), respectively. For (ii), one direction is clear. For the other direction, observe that \(\alpha \leq \beta + \gamma \leq \pi \) when \(0 \leq a, b, c \leq 1 \) and that \(0 \leq \beta - \gamma \leq \alpha \) or \(0 \leq \gamma - \beta \leq \alpha \). Because cosine is decreasing on \([0, \pi]\), we have \(bc - \sqrt{1 - b^2} \sqrt{1 - c^2} \leq a \leq bc + \sqrt{1 - b^2} \sqrt{1 - c^2} \). It follows that \(1 + 2abc \geq a^2 + b^2 + c^2 \). Hence, matrix \(B \) is positive semidefinite.

Note that for \((a, b, c) = (-1, -1, -1) \), we have \((\arccos a, \arccos b, \arccos c) = (\pi, \pi, \pi)\), the matrix \(B \) in Proposition 1 is not positive semidefinite. Therefore, it is necessary to assume that \(a, b, c \) are nonnegative in Corollary 2 (ii). Note that Corollary 2 (ii) has appeared in a recent paper [5, Proposition 1.4] with a different proof.

We now present some inequalities concerning the entries of correlation matrices. Although the following theorem is stated for the matrices of size \(n \times n \), one can see that in essence it is really about \(3 \times 3 \) matrices.

Theorem 3 Let \(A = (a_{ij}) \) be an \(n \times n \) complex correlation matrix. Then

\[
|a_{ip} - |a_{iq}| | \leq \sqrt{1 - |a_{pq}|^2}, \quad i < p < q \text{ and } i < j
\]

\[
|a_{ip}|^k - |a_{iq}|^k | \leq \sqrt{1 - |a_{pq}|^k}, \quad i < p < q \text{ and } i < j, \text{ } k \text{ is even}
\]

\[
|a_{ip}|^k - |a_{iq}|^k | \leq \sqrt{2} \cdot \sqrt{1 - |a_{pq}|^k}, \quad i < p < q \text{ and } i < j, \text{ } k \text{ is odd}
\]

Proof. This is immediate from the latter Theorem 3 and its Corollary 4.

Note that every principal submatrix of a positive semidefinite matrix is again positive semidefinite and that if \(M = (m_{ij}) \) is a \(3 \times 3 \) positive semidefinite matrix, then so is \(N = (|m_{ij}|) \). (This is not true for \(4 \times 4 \) or higher dimensions.)

In quantum computation, density matrices are the positive semidefinite matrices having trace 1.

Corollary 4 Let \(G_i \) be density matrices and let \(G_i = H_i^* H_i \), where \(H_i \) are \(n \)-square matrices, \(i = 1, 2, \ldots, n \). Then for all \(i < p < q \) and \(i < j \),

\[
| | \text{tr } H_i^* H_p | - | \text{tr } H_i^* H_q | | \leq \sqrt{1 - | \text{tr } H_i^* H_q |^2}
\]

\[
| | \text{tr } H_i^* H_p |^k - | \text{tr } H_i^* H_q |^k | \leq \sqrt{2} \cdot \sqrt{1 - | \text{tr } H_i^* H_q |^k}, \text{ if } k \text{ is even}
\]

\[
| | \text{tr } H_i^* H_p |^k - | \text{tr } H_i^* H_q |^k | \leq \sqrt{2} \cdot \sqrt{1 - | \text{tr } H_i^* H_q |^k}, \text{ if } k \text{ is odd}
\]

Proof. This is immediate from the latter Theorem 4 and its Corollary 7.

Analogous results hold for \(\text{Re}(\text{tr } H_i^* H_t) \) and also for \(| \text{tr } H_i^* H_t | \) in place of \(\text{tr } H_i^* H_t \) for all \(s, t \) when \(k \geq 2 \). Here, for a matrix \(X \), \(|X| \) stands for \((X^* X)^{1/2}\).
Proof. If the partitioned matrix $A = (A_{ij})$ is positive semidefinite, then so is $(\text{tr} A)_{ij}$ (see, e.g., [20]). Note that the matrix $(\text{tr} H^* H_i)$ is correlation. The assertion for $(\text{tr} H^* H_i)$ is due to a recent result of Drury [5].

Corollary 5 Let H_1, H_2, \ldots, H_n be partial isometry matrices each having n columns, i.e., every $H_i^* H_i$ is the $n \times n$ identity matrix. Then for all $i < p < q$ and $i < j$,

$$| | \det H_i^* H_p | - \det H_i^* H_q | | \leq \sqrt{1 - | \det H_i^* H_q |^2}$$

$$| | \det H_i^* H_p |^k - | \det H_i^* H_q |^k | | \leq \sqrt{k} \cdot \sqrt{1 - | \det H_i^* H_q |^k}, \text{ if } k \text{ is odd}$$

Analogous results hold for the real part of each determinant in place of the determinant when $k \geq 2$.

Proof. If the partitioned matrix $A = (A_{ij})$ is positive semidefinite, then so is $(\det A_{ij})$ (see, e.g., [20]). Note that the matrix $(\det H^* H_i)$ is correlation.

The proof of Theorem 3 reduces to the following results on 3×3 correlation matrices. These results can be stated in terms of complex matrices for which a, b, c in the inequalities are replaced by $\text{Re } a, \text{ Re } b, \text{ Re } c$ or $|a|, |b|, |c|$, respectively.

Theorem 6 Let a, b, c be real numbers such that the 3×3 matrix

$$B = \begin{pmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{pmatrix}$$

is positive semidefinite, or equivalently, for real numbers a, b, c in $[-1, 1]$,

$$1 + 2abc \geq a^2 + b^2 + c^2 \quad (9)$$

Denote

$$c_- = ab - \sqrt{(1 - a^2)(1 - b^2)}, \quad c_+ = ab + \sqrt{(1 - a^2)(1 - b^2)}$$

Let $f(x)$ be any function defined on the interval $[c_-, c_+]$ such that

$$\sqrt{1 - c_+^2} \leq f(x), \quad x \in [c_-, c_+]$$

Then

$$|a^2 - b^2| \leq f(x), \quad x \in [c_-, c_+]$$

$$|a^2 - b^2| \leq \sqrt{1 - c_-^2} \quad (10)$$

In particular

$$|a^2 - b^2| \leq \sqrt{1 - c_-^2} \quad (11)$$

In addition, if a, b, c are in $[0, 1]$, then the positivity of B implies

$$|a - b| \leq \sqrt{1 - c_-^2} \quad (12)$$
Proof. Observe that $1 + 2abc \geq a^2 + b^2 + c^2$ if and only if $m(c) := c^2 - 2abc - (1 - a^2 - b^2) \leq 0$. Note that $m(c) = 0$ has solutions c_-, c_+. We see that $m(x) \leq 0$ and $\sqrt{1 - c_+^2} \leq f(x)$ for all $x \in [c_-, c_+]$. Moreover $c \in [c_-, c_+]$.

Let $a = \cos \mu$ and $b = \cos \nu$, $\mu, \nu \in [0, \pi]$. Then $c_+ = \cos(\mu - \nu)$. Since

$$|a^2 - b^2| = |\cos^2 \mu - \cos^2 \nu| = |\sin(\mu + \nu)| \sin(\mu - \nu)| \leq |\sin(\mu - \nu)| = \sqrt{1 - c_+^2}$$

we get $|a^2 - b^2| \leq f(x)$ for all $x \in [c_-, c_+]$. Taking $f(x) = \sqrt{1 - x^2}$ gives (11).

If $0 \leq a, b, c \leq 1$, then $1 + 2abc \geq a^2 + b^2 + c^2$ yields

$$|a - b|^2 \leq -c^2 + 2abc + 1 - 2ab = 1 - c^2 + 2ab(c - 1) \leq 1 - c^2$$

implying (12). □

Note that $f(x) = 1 + \frac{1}{c_+} \left(\sqrt{1 - c_+^2} - 1\right) x$ with $c_+ \neq 0$ is also a function satisfying the conditions in Theorem 6.

We point out that (12) is not true in general if a, b, c are in $[-1, 1]$. For instance, take $a = 1$, $b = -1$ and $c = -1$. Then the matrix B is positive semidefinite. However, $|a - b| > \sqrt{1 - c^2}$. One may verify by the following example that $|a^3 - b^3| \leq \sqrt{1 - c^2}$ is not true for the positive semidefinite matrix.

Let $C = \begin{pmatrix} 1 & 1 & 0.1 \\ 1 & 1 & 0.1 \\ 0.1 & 0.1 & 1 \end{pmatrix}$

Then C is positive semidefinite. For $a = 1$, $b = c = 0.1$, we have

$$|a - b| = 0.9, \ |a^2 - b^2| = 0.99, \ |a^3 - b^3| = 0.999, \ \sqrt{1 - c^2} \approx 0.995$$

Note that C is symmetric in a, b, c. Observe that if $M = (m_{ij})$ is a 3×3 positive semidefinite matrix, then $\det(m_{ij})$ is also positive semidefinite. For x, y, z of any arrangement of a, b, c in the matrix B of Theorem 6, we have

$$|x^2 - y^2| \leq \sqrt{1 - z^2} \quad \text{and} \quad ||x| - |y|| \leq \sqrt{1 - z^2}$$

Theorem 6 implies immediately for any unit vectors u, v, w and $k = 1, 2$,

$$\left|\langle u, v \rangle^k - \langle u, w \rangle^k\right| \leq \sqrt{1 - \langle w, v \rangle^2}$$

Corollary 7 Let a, b, c be real numbers such that the 3×3 matrix

$$B = \begin{pmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{pmatrix}$$

is positive semidefinite. Let k be a positive integer.
(i) If \(k \) is even, then
\[
|a^k - b^k| \leq \sqrt{1 - c^k}
\]
(ii) If \(k \) is odd, then
\[
||a|^k - |b|^k| \leq \sqrt{2} \cdot \sqrt{1 - |c|^k}
\]
(iii) If \(0 \leq \alpha, \beta, \gamma \leq \pi/2 \) and \(|\alpha - \beta| \leq \gamma \leq \alpha + \beta \), then for any \(k \)
\[
|\cos^k \alpha - \cos^k \beta| \leq \sqrt{k} \cdot \sin \gamma
\]

Proof. It is known that if \(A = (a_{ij}) \) and \(B = (b_{ij}) \) are positive semidefinite then the Hadamard (Schur or entrywise) product \(A \circ B = (a_{ij}b_{ij}) \) is also positive semidefinite (see, e.g., [19, p.234]). (i) and (ii) follow from an application of Theorem 6 to the Hadamard product \((b_{ij}^k)\) which is always positive semidefinite. Since \(B = (b_{ij}) \) is \(3 \times 3 \), \((|b_{ij}|^k)\) is also positive semidefinite. For the case of nonnegative \(a, b, c \),
\[
|a^k - b^k| \leq \sqrt{1 - c^{2k}} = \sqrt{1 + c^k \cdot 1 - c^k} \leq \sqrt{2} \cdot \sqrt{1 - c^k}
\]
For (iii), we set \(a = \cos \alpha, b = \cos \beta, c = \cos \gamma \) in Corollary 2 (ii). Then the matrix \(B \) is positive semidefinite, so is the Hadamard product \((b_{ij}^k)\). Thus
\[
|a^k - b^k| \leq \sqrt{1 - c^{2k}} = \sqrt{1 - c^2 \cdot 1 + c^2 + \cdots + c^{2(k-1)}} \leq \sqrt{k} \cdot \sqrt{1 - c^2}
\]
which is the same as the desired inequality.

Inequality (11) implies \(|\cos^2 \alpha - \cos^2 \beta| \leq \sin \gamma \). In comparison to Corollary 7 (ii), it suggests to remove \(\sqrt{2} \) in front of \(\sin \gamma \). However, the matrix \(C \) in the previous example shows that the \(\sqrt{2} \) in Corollary 11 (ii) cannot be replaced by 1 in general. Can it be replaced by another constant? The following result gives a negative answer.

Theorem 8 Let \(0 \leq \alpha, \beta, \gamma \leq \pi/2 \), \(|\alpha - \beta| \leq \gamma \leq \alpha + \beta \) and let
\[
R_k = R_k(\alpha, \beta, \gamma) = \left| \frac{\cos^k \alpha - \cos^k \beta}{\sin \gamma} \right|, \quad \gamma \neq 0
\]
Then for sufficiently large \(k \),
\[
\sup_{\alpha,\beta,\gamma} R_k \approx \sqrt{\frac{k}{e}}
\]

Proof. If \(\alpha = \beta \) then \(R_k = 0 \). In addition, \(R_k \) is symmetric with respect to \(\alpha \) and \(\beta \). So, for the maximum \(R_k \), we may assume \(\alpha > \beta \). Moreover,
\[
\frac{\cos^k \beta - \cos^k \alpha}{\sin \gamma} \leq \frac{\cos^k \beta - \cos^k \alpha}{\sin(\alpha - \beta)}
\]
of a, b, c inequalities (t) and (T) of Section 2, we see for any nonzero vector \(s \) \(\in \mathbb{R} \) that are triangle triplets. They are special members of the set of all triangle triplets:

\[\{ \alpha, \beta, \gamma \} \]

for any fixed \(k \) \(\geq 2 \), \(R_k(\beta, \varepsilon) \) is bounded, and

\[
\lim_{\varepsilon \to 0} R_k(\beta, \varepsilon) = k \cos^k \beta \tan \beta
\]

The function \(R_k(\beta) = k \cos^k \beta \tan \beta \) is maximized when \(\tan \beta = \frac{1}{\sqrt{k-1}} \). So

\[
\sup_{\beta} R_k(\beta) = \frac{k}{\sqrt{k-1}} \left(1 - \frac{1}{k} \right)^{k/2} \approx \sqrt{\frac{k}{c}} \quad \text{for sufficiently large } k.
\]

3 Metric-preserving and subadditive functions

Let \(a, b, c \) be nonnegative numbers. The triplet \((a, b, c) \in \mathbb{R}^3 \) is said to be triangle if \(a \leq b + c, \ b \leq a + c, \) and \(c \leq a + b \); equivalently, \(|a - b| \leq c \leq a + b \). This can be restated as \(x \leq y + z \), where \(x, y, z \) is any arrangement of \(a, b, c \); equivalently, \(|x - y| \leq z \) for any arrangement of \(a, b, c \). From the inequalities (t) and (T) of Section 2, we see for any nonzero vectors \(u, v, w \) in an inner product space, \((\Theta(u, v), \Theta(v, w), \Theta(w, u)) \) and \((\Theta(u, v), \Theta(v, w), \Theta(w, u)) \) are triangle triplets. They are special members of the set of all triangle triplets:

\[
\Delta = \{(a, b, c) \mid a, b, c \geq 0, \ |a - b| \leq c \leq a + b \}
\]

For \(a, b, c \) in \([0, 1]\), Corollary[2](ii) says that the triplet \((\arccos a, \arccos b, \arccos c) \) is triangle if and only if the \(3 \times 3 \) matrix \(B \) in Proposition[1] is positive semidefinite. Proposition[1] reveals a relation between the positivity of the \(3 \times 3 \) matrix \(B \) and triangle triplets via certain functions. This section is to present a theorem of this type, with which we show some inequalities for unit vectors.

Let \(f \) be a nonnegative function defined on \([0, \infty)\). We say that \(f \) is metric-preserving (a metric preserver) if \(f \circ d \) is also a metric on \(M \), where \((M, d)\) is any metric space, triangle-preserving (a triangle preserver) if \((f(a), f(b), f(c)) \) is triangle whenever \((a, b, c)\) is triangle, and subadditive if \(f(s + t) \leq f(s) + f(t) \) for all \(s, t \geq 0 \). The reader is referred to[2] for metric-preserving functions and[8] Chapter 16] and[15] Chapter 12] for subadditive functions.

These three functions are closely related, but not exactly the same. It is known (see, e.g.,[4] p.9) that if \(f : [0, \infty) \mapsto [0, \infty) \) is nondecreasing and subadditive then \(f \) is a triangle preserver. A nonnegative concave function vanishing at 0 is necessarily subadditive ([16] p.314]). Nonnegative concave (not necessarily continuous) functions must be nondecreasing. (This seems to be a known fact; but we were not able to find a reference with a proof.) A stronger version of the result is stated as:
Proposition 9 Let $L = [1, \infty)$ or $(1, \infty) \subseteq \mathbb{R}$. If f is nonnegative on L, i.e., $f(x) \geq 0$ for all $x \in L$, and if f is mid-point concave on L, i.e.,

$$f\left(\frac{1}{2}x + \frac{1}{2}y\right) \geq \frac{1}{2}f(x) + \frac{1}{2}f(y) \text{ for all } x, y \in L$$

then $f(x)$ is monotonically increasing on L, i.e., $f(x) \geq f(y)$ for $x > y$, $x, y \in L$.

Proof. Suppose that $f(x)$ is not monotonically increasing. Then there exist $s, t \in L$, $t > 0$, such that $f(s) > f(s + t)$. Let $r = f(s) - f(s + t) > 0$. Since

$$f(s + t) = f\left(\frac{1}{2}s + \frac{1}{2}(s + 2t)\right) \geq \frac{1}{2}f(s) + \frac{1}{2}f(s + 2t)$$

we arrive at

$$f(s + t) - f(s) \geq f(s) - f(s + t) = r$$

Let

$$F_n = f(s + nt) - f(s + (n + 1)t), \quad n = 0, 1, 2, \ldots$$

Then, in a similar way as above, we can show that $\{F_n\}$ is a decreasing sequence bounded by r from below, i.e., $F_n \geq F_{n-1} \geq \cdots \geq F_1 \geq r$. It follows that

$$f(s) - f(s + nt) = F_0 + F_1 + F_2 + \cdots + F_{n-1} \geq nr.$$

Thus, $f(s + nt) < 0$ when n is large enough, contradicting $f(x) \geq 0$, $x \in L$.

Theorem 10 Let a, b, c be real numbers such that the 3×3 matrix

$$B = \begin{pmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{pmatrix}$$

is positive semidefinite. Then for all functions f satisfying condition [7] in Proposition[7] and all metric-preserving functions g, with $h = g \circ f^{-1}$, we have

$$h(a) \leq h(b) + h(c)$$

Consequently, for any positive integer $k \geq 2$,

$$\sqrt{1 - a^k} \leq \sqrt{1 - b^k} + \sqrt{1 - c^k}$$

Proof. Proposition[7] says that $(f^{-1}(a), f^{-1}(b), f^{-1}(c))$ is a triangle triplet. For any metric-preserving function g, with $h = g \circ f^{-1}$, $(h(a), h(b), h(c))$ is also a triangle triplet. This gives the desired inequality.

For the second part, consider the function

$$p(t) = \begin{cases} \sqrt{1 - \cos^k t} & \text{if } 0 \leq t \leq \frac{\pi}{2} \\ 1 & \text{if } t > \frac{\pi}{2} \end{cases}$$

It is straightforward to verify that $p(t)$ is nonnegative, increasing, and concave for $k \geq 2$ (by checking $p'(t) \geq 0$, $p''(t) \leq 0$); thus, $p(t)$ is metric-preserving. Applying $p(t)$ to $(\arccos a, \arccos b, \arccos c)$ yields the inequality.

\[
\]
Corollary 11 Let u, v, w be any unit vectors of an inner product space. Then

$$\sqrt{1 - |\langle u, v \rangle|^k} \leq \sqrt{1 - |\langle u, w \rangle|^k} + \sqrt{1 - |\langle w, v \rangle|^k}$$

(13)

for any positive integer $k \geq 2$. In particular,

$$\sqrt{1 - |\langle u, v \rangle|^2} \leq \sqrt{1 - |\langle u, w \rangle|^2} + \sqrt{1 - |\langle w, v \rangle|^2}$$

(14)

Similar inequalities hold for $\text{Re}(\cdot, \cdot)$ in place of $|\langle \cdot, \cdot \rangle|$.

Inequality (13) appears in [17] (see also [19, p. 195]). Inequality (13) is seen in [11] (with a minor glitch on the condition $b + c \leq 1$ which can be fixed).

Corollary 12 Let u, v, w be unit vectors in an inner product space, α, β, γ be respectively the angles $\theta(u, v), \theta(v, w), \theta(w, u)$ or $\Theta(u, v), \Theta(v, w), \Theta(w, u)$. Then

(i) $\alpha \leq \beta + \gamma$.

(ii) $\sin \alpha \leq \sin \beta + \sin \gamma$.

(iii) $\cos \alpha \leq \cos \beta + \cos \gamma$ is not true in general.

(iv) $\cos \alpha \leq \cos \beta + \sin \gamma$ is true.

Proof. (i) is the same as (t) and (T) in Section 2. (ii) is true because of (14) and the similar inequality for $\text{Re}(\cdot, \cdot)$. For (iii), take $u = (0, 0, 1), v = \frac{1}{\sqrt{2}}(1, 0, 1)$, and $w = (0, 1, 0)$ in \mathbb{R}^3 with the standard Euclidean inner product. (iv) follows from inequality (12). □

References

[1] R. Bhatia, Positive Definite Matrices, Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2007.

[2] P. Corazza, Introduction To Metric-Preserving Functions, Amer. Math. Monthly, Vol. 104, No. 4, April 1999, pp. 309-323.

[3] C. Davis and W. Kahan, The Rotation of Eigenvectors by a Perturbation III, SIAM J. Numer. Anal. 7 (1970) 1-46.

[4] J. Dobos, Metric Preserving Functions, DTU, 1998. Poct vtlackov: 65. Vydalo: vydavatelstvo trofeck, Koice, Slovakia. ISBN: 80-88896-30-4.

[5] S.W. Drury, Positive semidefiniteness of a 3×3 matrix related to partitioning, Linear Algebra Appl. 446 (2014) 369–376.

[6] K.E. Gustafson and D.K.M. Rao, Numerical Range, Springer, New York, 1997.

[7] M.G. Krein, Angular localization of the spectrum of a multiplicative integral in a Hilbert space, Funkts. Anal. Prilozh., Vol. 3, Issue 1, pp. 89-90, 1969.

[8] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Springer, 2009.

[9] A. J. Laub, Matrix Analysis for Scientists and Engineers, SIAM, Philadelphia, 2005.

[10] D.C. Lay, Linear Algebra and Its Applications, 4th edition, Addison-Wesley, 2012.
[11] M. Lin, Remarks on Kreĭn’s Inequality, Math. Intelligencer, Volume 34, Number 1, pp.3-4, 2012.
[12] R. Merris, Multilinear Algebra, Gordon & Breach, Amsterdam, 1997.
[13] J.E. Pečarić, F. Proschan, and Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, New York, 1992.
[14] S. Pierce, Permanents of Correlation Matrices, in Current Trends in Matrix Theory, Edited by F. Uhlig and R. Grone, Elsevier Science Publishing Co., New York, pp. 247–249, 1987.
[15] D.K. Rao, A triangle inequality for angles in a Hilbert space, Revisa Colombiana de Mathematicas, Vol. X(1976)95–97.
[16] E. Schechter, Handbook of Analysis and Its Foundations, Academic Press, 1996.
[17] B.-Y. Wang and F. Zhang, A trace inequality for unitary matrices, Amer. Math. Monthly, Vol. 101, no. 5, pp. 453–455, May 1994.
[18] W. Watkins, A determinantal inequality for correlation matrices, Linear Algebra Appl. Vol. 79, pp. 209–213, 1988.
[19] F. Zhang, Matrix Theory: Basic Results and Techniques, Springer, New York, 2nd edition, 2011.
[20] F. Zhang, Positivity of matrices with generalized matrix functions, Acta Mathematica Sinica, Volume 28, Number 9 (2012) 1779–1786.
[21] F. Zhang, An analytic approach to a permanent conjecture, Linear Algebra Appl. 438 (2013) 1570–1579.