Family Planning Performance in 113 Countries Using a New Composite Performance Index

Aalok Ranjan Chaurasia
MLC Foundation, Bhopal, Madhya Pradesh – 462044, India
aalok@mlcfoundation.org.in

Abstract

In this paper we measure family planning performance in 113 countries of the world using a composite performance index that takes into account both the met demand for family planning and the composition of the met demand. The composite performance index used in the present paper is an improvement over the existing approaches of measuring family planning performance. The analysis reveals that family planning performance varies widely across countries and it remains either poor or very poor in more than 40 per cent countries. There is no country where the performance is very high. Moreover, there are many countries where the family planning performance appears to have deteriorated over time. There are only a few countries where family planning performance has improved in recent years. The analysis calls for increased investment in family planning to meet the target set under the Sustainable Development Goals.

Introduction

In this paper, we analyse family planning performance in 113 countries on the basis of the composite family planning performance index proposed by Chaurasia (2020) which conveys summary information about progress in family planning and signal priorities for improving delivery of family planning services. The purpose is to present the ‘big picture’ by offering a rounded assessment of the family planning performance in a simple yet convincing manner that appeals to policy makers, program managers and even to the common people. The family planning performance index used in this paper to assess family planning performance is an improvement over the existing approaches of measuring family planning progress. It takes into account, separately, met demand for modern spacing methods, met demand for permanent methods and method-mix or the composition of the met demand to assess family planning performance.

Family planning performance has commonly been measured in terms of the contraceptive prevalence rate (CPR) because of the strong negative relationship between CPR and total fertility rate (TFR) on the basis of cross-country data (Bongaarts, 1978; Bongaarts and Potter, 1983; Ross and Mauldin, 1996; Jain, 1997; Tsui, 2001; Stover, 1998; United Nations, 2020). Srinivasan (1988) has, however, argued that as one goes down the level of aggregation, variation in CPR explains less and less of the variation in TFR. There are also studies that show inconsistency in the relationship between CPR and TFR, especially in sub-Saharan Africa (United Nations, 2020; Westoff and Bankole, 2001; Adamchak and Mbizvo 1990; Bongaarts 1987; Thomas and Mercer 1995; Jurczynska, Kuang, and Smith 2016; Jain et al, 2014).

Measuring and monitoring family planning performance through CPR, however, has many limitations. First, a proportion of married/in-union women of reproductive age may not be using any family planning method because they either want a child or are sterile and this
proportion varies from population to population. A universal upper limit of CPR, therefore, is difficult to establish. Second, CPR does not take into account the distribution of family planning users by different family planning methods or the method-mix. A consideration to method-mix is important as effectiveness of different family planning methods in preventing birth is different and use of different family planning methods is closely linked with family building strategies. This implies that method-mix is essentially different in women at different stages of family building process. It has, therefore, been emphasized that family planning performance measurement should not be limited to just counting the number of women using any family planning method. Rather, family planning performance measurement should also take into the range and types of family planning methods being used (United Nations, 2019).

Recently, the proportion of married/in-union reproductive age women whose demand is satisfied with a modern family planning method or the met demand for family planning has been advocated to measure family planning progress (FP2020, 2018). This indicator is one of the indicators selected to monitor the progress towards Sustainable Development Goal 3 of the United Nations 2030 Sustainable Development Agenda (United Nations, 2015). However, this indicator also has limitations in the context of measuring family planning performance. First, it does not distinguish between the met demand for modern spacing methods and the met demand for permanent methods. This distinction is important as the context of using a modern spacing method is essentially different from that of using a permanent method. A permanent family planning method can be used only when the family building process is complete. If the family building process is not complete, use of permanent methods is out of question. Second, the met demand for family planning is not the simple addition of the met demand for modern spacing methods and the met demand for permanent methods. Third, the met demand for family planning ignores the implicit but very strong assumption about the perfect substitutability between the met demand for modern spacing methods and the met demand for permanent methods. From the perspective of performance measurement, this assumption has little justification. The shortfall in the met demand for modern spacing methods cannot be substituted by the high met demand for permanent methods. Finally, like the CPR, the met demand for family planning is also a crude indicator as it does not take into consideration the method-mix or the proportionate distribution of family planning users by different family planning methods.

Given the limitations of existing approaches, we adopt a two-dimensional approach to measure family planning performance in the context of meeting the diverse family planning needs of women. The first dimension, obviously, is the met demand for family planning. We, however, make a distinction between the met demand for spacing births and the met demand for limiting births as the context of using a modern spacing method is essentially different from the context of using a permanent method. The second dimension that we consider in measuring family planning performance is the method-mix or the proportionate distribution of family planning users by different modern family planning methods. The incorporation of the dimension of the method-mix in measuring family planning performance is important from different perspectives. Method-mix reflects the method choice which is a key principle in both quality of care and rights-based family planning. Method choice is also a guide for optimal delivery of family planning services (WHO, 2014). Method mix also reflects both supply and demand for family planning services. On the supply side, method-mix is optimized when a range of family planning methods are available and accessible to women to meet their diverse family planning needs. Method-mix is also influenced by the demand for different family planning methods including individual and societal preferences and the basic orientation of family planning services delivery system, particularly, organized family planning services. Demand for different family planning methods may also be influenced by side effects that are associated with different methods. Although, interest in method-mix dates back to 1980s (Johnson, 1984; Snow ...
and Chen, 1992; Choe and Bulatao, 1992; WHO, 1994; Galway and Stover, 1995), yet, there has never been any attempt to incorporate the method-mix in measuring family planning performance.

The family planning performance assessment presented in this paper is based on the composite family planning performance index developed and used by Chaurasia (2020). This index takes into account the met demand for modern spacing methods; the met demand for permanent methods; and the method-mix. The index is a theoretical improvement over existing approaches of family planning performance measurement and has many advantages. It is easy to calculate and does not require any additional data. It can be calculated from method-specific prevalence rates and unmet need for spacing and limiting births that are readily available from existing population-based surveys such as Demographic and Health Surveys. The index ranges from 0 (poorest performance) to 1 (best performance) so as to permit spatial and temporal comparison of family planning performance. It also addresses the problem of perfect substitutability between the met demand for modern spacing methods and the met demand for permanent methods which is important in assessing family planning performance.

The paper is organized as follows. The family planning performance index proposed by Chaurasia (2020) is briefly described in the next section while section three describes the data source. The paper is based on survey-based estimates of the prevalence of different family planning methods and unmet need for spacing and limiting births made available by the United Nations Population Division. Section four discusses inter-country variation in contraceptive prevalence and unmet need for spacing and limiting. Section five analyses inter-country variation in family planning performance and the change in performance over time. The last section of the paper discusses the findings of the analysis in the context of the goals set under the FP2020 Initiative.

Family Planning Performance Index

The family planning performance index, p, proposed by Chaurasia (2020) combines the met demand for modern spacing methods, met demand for permanent methods and method-mix into a composite index. The met demand for modern spacing methods is measured in terms of the index, c_s, defined as

$$c_s = \frac{PS}{PS + PT + US}$$

where PS is the prevalence of modern spacing methods; PT is the prevalence of traditional methods; and US is the unmet need for modern spacing methods. Here, it is assumed that users of traditional methods actually have an unmet need for modern spacing methods.

On the other hand, the met demand for permanent methods is measured in terms of the index, c_p, which is defined as

$$c_p = \frac{PP}{PP + UP}$$

where PP is the prevalence of permanent methods; and UP is the unmet need for permanent methods of family planning.

It may be noticed that the sum of the met demand for modern spacing methods and the met demand for permanent methods is not equal to the met demand for family planning that has
been identified under the FP2020 Initiative to monitor family planning progress. The met demand for family planning, \(m \), by definition is given by

\[
m = \frac{(PS + PP)}{(PS + PT + PP + US + UP)}
\]

and it is easy to check that

\[
m \neq c_s + c_p
\]

The indexes \(c_s \) and \(c_p \) may be combined into the composite index \(c \) that reflects the demand for family planning in the following manner

\[
c = \left(\frac{c_s^{1/3} + c_p^{1/3}}{2} \right)^3
\]

The index \(c \) is the power mean of the indexes \(c_s \) and \(c_p \). It places greater weight on that component (spacing or limiting) in which the met demand is low. For example, if \(c_s < c_p \), then the index \(c \) places greater weight on \(c_s \). On the other hand, if \(c_s > c_p \), it places greater weight on \(c_p \). When \(c_s = c_p \), the index assigns equal weight to \(c_s \) and \(c_p \). In this way, the index \(c \) penalizes those countries where there is an imbalance between the met demand of modern spacing methods and the met demand for permanent methods. It is obvious that the index \(c \) varies between 0 and 1 as both \(c_s \) and \(c_p \) vary between 0 and 1. It is also obvious that the higher the index \(c \), the higher the met demand for family planning. The rationale of measuring the met demand for family planning in terms of the index \(c \) is that it provides impetus to improve performance in that component of family planning (spacing or limiting) in which the met demand is comparatively low.

On the other hand, an index reflecting the method-mix may be constructed on the basis of the method skew index proposed by Chaurasia (2020). This index is based on the concept of the dominance of one family planning method over others. The method skew index, \(s \), is defined as

\[
s = \sqrt{\frac{\sum j x_j^2 - \left(\frac{1}{n}\right)}{1 - \left(\frac{1}{n}\right)}} \quad \text{for } n > 1
\]

\[
s = 0 \text{ for } n = 1
\]

where \(x_j \) is the proportionate prevalence rate of the method \(j \) or the ratio of the prevalence of method \(j \) to all modern methods prevalence rate. The index \(s \) is independent of the number of family planning methods available and ranges between 0 and 1. When \(s = 0 \), proportionate share of different methods in total family planning use is the same which implies that there is no method skew. When \(s = 1 \), entire family planning use is confined to only one method so that the method-mix is completely skewed. Based on the index \(s \), an index of method mix, \(q \), may be defined as

\[
q = 1 - s \text{ for } n > 1
\]

\[
q = 1 \text{ for } n = 1
\]

The lower the value of \(q \), the higher the skewness in the method-mix and vice versa. When the proportionate share of different methods is the same in the total family planning use,
the index q is zero and the higher the index q the more even or ‘balanced’ the proportionate distribution of total family planning use by different modern methods.

The family planning performance index, p, is now the composite of indexes c and q, and is defined as

$$p = \left(\frac{c^{1/3} + q^{1/3}}{2} \right)^3$$

Since both c and q vary between 0 and 1, p also varies between 0 and 1. The higher the index p the higher the family planning performance in meeting the diverse family planning needs of women. From the performance perspective, it may be argued that indexes c and q should not be correlated while both c and q should be correlated with the performance index p. The data available from 113 countries suggests that inter-country variation in the index c (index q) explains only around 1 per cent of the inter-country variation in the index q (index c). On the other hand, inter-country variation in index c and in index q explains more than 98 per cent of per cent of the inter-country variation in the index p.

The index p, along with indexes c and q, constitutes a comprehensive family planning performance assessment framework that takes into account both the met demand for family planning and the composition of the met demand. Family planning performance may be rated as very poor if $p<0.200$; poor if $0.200 \leq p < 0.400$; average if $0.400 \leq p < 0.600$; good if $0.600 \leq p < 0.800$; and very good if $p \geq 0.800$. Family planning performance may also be characterized in terms of met demand for family planning and in terms of the method-mix.

Data

The analysis is based on the database on world contraceptive use maintained by the United Nations Population Division (United Nations, 2020). This database is the compilation of 1202 nationally representative surveys that have been carried out in 196 countries or areas of the world sometimes during the period 1950 through 2019. The database maintained by the United Nations is regularly updated and the last update was done on 31 January 2020. The present analysis is, however, limited to only 113 countries that are selected on the basis of the following criteria: 1) the latest survey should have been carried out sometimes during the period 2010-2019; 2) estimates of the prevalence rate are available for different modern family planning methods separately; and 3) estimates of unmet need for family planning are available separately for spacing births and for limiting births married or in-union women aged 15-49 years. Out of the 113 countries covered in the present analysis, 47 countries are from Africa; 30 are from Asia; 20 are from Latin America and Caribbean; 11 are from Europe; and 5 are from the Pacific region of the world. The countries included in the present analysis also include 65 of the 69 lowest-income countries of the world that have been identified as focus countries under the FP2020 Initiative which has aimed at achieving the target of reaching an additional 120 million users of modern family planning methods in these countries by the year 2020 (FP2020, 2018).

Prevalence of Modern Family Planning Methods

The latest estimates of the prevalence of modern family planning methods in 113 countries varies from a minimum of just 1.7 per cent in South Sudan (2010) to 77.4 per cent in Nicaragua (2011-12) with a median of 37.4 per cent and an inter-quartile range of 32.4 per cent
(Table 1). In 29 countries, the prevalence of modern family planning methods is less than 20 per cent whereas, there is no country where the prevalence of modern methods of family planning is more than 80 per cent. There are only 15 countries where the prevalence of modern family planning methods ranges between 60-80 per cent. In 80 or more than 70 per cent countries, more than half of the married or in-union women aged 15-49 years have not been found using any modern family planning method according to the latest available survey estimates.

The unmet need for family planning (either spacing or limiting) also varies widely across 113 countries. There is only one country – Ukraine (2012) - where the unmet need for family planning is estimated to be less than 5 per cent. There are only 15 countries including Ukraine where the unmet need for family planning is estimated to be less than 10 per cent. By contrast, in Libya (2014), the unmet need for family planning is estimated to be more than 40 per cent, the highest among the 113 countries. There are 50 countries where the unmet need for family planning for either spacing or limiting births has been estimated to be at least 20 per cent.

Table 1
Indicators of family planning use, unmet need for family planning and met demand for family planning in 114 countries

Performance	Prevalence of modern family planning methods	Unmet need for family planning	Met demand for family planning									
	All modern methods	For spacing births	For limiting births									
	Number of countries	≥0.20	≥0.20	50	≥0.20	14	≥0.20	0	<0.2	4		
Very poor	<0.2	29	29	50	50	14	14	0	<0.2	4		
Poor	0.2-0.4	34	29	29	24	13	13	0	0.4-0.8	27		
Average	0.4-0.6	35	24	23	16	13	13	0	4.0-6	31		
Good	0.6-0.8	15	50	50	50	38	38	0	0.6-0.8	37		
Very good	≥0.8	0	0	<0.05	1	<0.05	1	0	<0.05	25	≥0.8	14

Summary measures of inter-country distribution

	Minimum	Q1	Median	Q3	Maximum	IQR	CV	N
	0.017	0.198	0.374	0.520	0.774	0.322	0.513	113
	0.049	0.125	0.180	0.259	0.402	0.134	0.431	113
	0.022	0.054	0.091	0.164	0.313	0.110	0.597	113
	0.018	0.057	0.076	0.106	0.197	0.049	0.457	113
	0.056	0.394	0.561	0.725	0.898	0.332	0.369	113

Source: Author's calculations.

The inter-country variation in the unmet need for spacing births, however, is different from that for limiting births. The unmet need for spacing births is found to be less than 5 per cent in 22 countries with the lowest unmet need for spacing births estimated in Peru (2018) followed by Viet Nam (2013-2014). On the other hand, the unmet need for spacing births is estimated to be more than 30 per cent in Libya (2014), the highest among 113 countries. There are 14 countries where the unmet need for spacing births is estimated to be more than 20 per cent. On the other hand, the unmet need for limiting births is less than 2 per cent in Ukraine (2012) but almost 20 per cent in Haiti (2012). There are only 6 countries where the unmet need for limiting births is more than 15 per cent whereas, there is no country where the unmet need for limiting births is 20 per cent or more. The inter-country coefficient of variation in the unmet need for spacing births is 0.597 as compared to inter-country coefficient of variation of 0.457 in the unmet need for limiting births. The inter-country variation in the unmet need for spacing births explains just around 6 per cent of the inter-country variation in the unmet need for limiting births and vice
versa. This observation justifies considering, separately, unmet need for spacing births and unmet need for limiting births in measuring the met demand for family planning.

Combining the prevalence of modern family planning methods and the unmet need for family planning (either for spacing births or for limiting births), the met demand for family planning is estimated to vary from less than 6 per cent in South Sudan (2010) to almost 90 per cent in Thailand (2015-16), Democratic Republic of Korea (2017) and Nicaragua (2011-12). There is, however, no country where the met demand for family planning is at least 90 per cent whereas there are only 14 countries where the met demand for family planning ranges between 80-90 per cent. In almost 40 per cent of the countries included in this analysis, the met demand for family planning remains less than 50 per cent which indicates that there is substantial scope of expanding the delivery of family planning services so as to meet the family planning demand of women which is very diverse.

Family Planning Performance

Met Demand for Permanent Methods. The met demand for permanent methods is either very poor or poor ($c_p<0.400$) in 79 or almost 70 per cent countries included in the present analysis. In seven countries – Benin (2017), Burkina Faso (2018), Côte d’Ivoire (2018), Ethiopia (2018), Guinea-Bissau (2018-19), Libya (2014), Sudan (2014) – the entire demand for permanent family planning methods remains unmet. There are only 10 countries where the met demand for permanent methods may be termed as very good ($c_p\geq 0.800$) and 6 countries, where it may be termed as good (0.600$\leq c_p<0.800$). By contrast, the met demand for permanent methods is very poor ($c_p<0.200$) in 54 countries.

Met Demand for Modern Spacing Methods. There are only 21 countries where the met demand for modern spacing method is either very poor or poor ($c_s<0.400$) whereas, in 22 countries, it is very good ($c_s\geq 0.800$). Unlike the met demand for permanent methods, there is no country where the met demand for modern spacing methods is zero and there are only 3 countries where it is very poor ($c_s<0.200$). In majority of the countries, the met demand for modern spacing methods is higher than that for permanent methods. There are, however, notable exceptions such as India where the med demand for permanent methods is more than 83 per cent but the met demand for modern spacing methods is just around 50 per cent.

Met Demand Performance Index. Combining the met demand for permanent methods and the met demand for modern spacing methods, the met demand performance index c, reflecting family planning performance in terms of meeting the demand for family planning services varies from just around 0.034 in South Sudan (2010) to more than 0.900 in Nicaragua (2011). The family planning performance in terms of meeting the family planning demand of married or in-union women aged 15-49 years may be rated as very poor ($c<0.200$) in 32 countries and poor (0.200$\leq c<0.400$) in 25 countries so that in more than half of the countries, family planning performance in terms of meeting the demand for family planning services remains far from satisfactory, either very poor or poor. There are only 9 countries – Nicaragua (2011-12), Cuba (2014), Dominican Republic (2014), El Salvador (2014), Thailand (2015-16), Colombia (2015-16), Mexico (2015), Costa Rica (2018), Bhutan (2010) - where family planning services delivery system appears to be able to meet at least 80 per of the demand for family planning as reflected through the index c. All but two of these 9 countries are in Latin America. In addition, there are 15 countries where family planning services delivery system appears to be able to meet 60-80 per cent of the demand for family planning. This means that there are only 24 countries where family planning performance in meeting family planning demand may be termed as satisfactory.
Figure 1: Family planning performance in 47 African Countries
Figure 2: Family planning performance in 30 Asian countries
Table 2
Family planning performance in 114 countries, 2010-2019.

Performance	Met demand for	Performance index			
	Permanent methods	Modern spacing methods	c	q	p
Number of countries					
Very poor (<0.200)	54	3	32	4	7
Poor (0.200-0.400)	25	18	25	15	43
Average (0.400-0.600)	18	33	32	81	49
Good (0.600-0.800)	6	37	15	13	14
Very good (≥0.800)	10	22	9	0	0

Summary measures of inter-country distribution

	Minimum	Q1	Median	Q3	Maximum	IQR	CV	N
	0.000	0.066	0.209	0.465	0.921	0.399	0.919	113
	0.049	0.450	0.611	0.767	0.939	0.317	0.343	113
	0.034	0.185	0.398	0.549	0.902	0.364	0.576	113
	0.054	0.429	0.500	0.552	0.689	0.122	0.234	113
	0.119	0.301	0.424	0.534	0.706	0.236	0.345	113

Source: Author's calculations.
Method-Mix. The method-mix index q, is found to be the lowest in Turkmenistan (2015) ($q=0.071$) but the lightest in Guinea-Bissau (2014) ($q=0.689$). In Turkmenistan, IUD, alone, accounts for more than 93 per cent of the total family planning use. Other countries where the method-mix index is very low are Morocco where 82 per cent of total family planning users are Pill users; Sudan where Pill accounts for almost 77 per cent of the total family planning use; and India where female sterilization accounts for more than 75 per cent of the total family planning use. There are 19 countries where family planning performance in terms of the method-mix may be termed as either poor or very poor ($q<0.400$) in these countries. In these countries, method-mix is heavily skewed as the total family planning use is heavily concentrated in one method only. The method-mix remains skewed in all the countries included in the present analysis as there is no country where the index q is at least 0.800. There are only 13 countries where the method-mix may be termed as comparatively balanced as the index q ranges between 0.600-0.800 in these countries.
Family Planning Performance. Taking into account both family planning performance in terms of meeting family planning needs of women as reflected through the index c and the family planning performance in terms of method-mix as reflected through the index p, the family planning performance, reflected through the index, p, ranges from 0.119 in Sudan (2014) to 0.706 in Sri Lanka (2016) with a median of 0.424 and an IQR or 0.236. There is no country where family planning performance can be termed as very good ($p \geq 0.800$) whereas there are only 14 countries where the family planning performance may be termed as good ($0.600 \leq p < 0.800$). These countries are: South Africa (2016), Belize (2011), Mexico (2015), Peru (2018), Paraguay (2016), Thailand (2015-16), Honduras (2011-12), Bhutan (2010), Iran (2010-11), Cuba (2014), Colombia (2015-16), Costa Rica (2018), Nicaragua (2011-12) and Sri Lanka (2016). Sri Lanka is the only country where the family planning performance index is estimated to be more than 0.700. On the other hand, family planning performance is poor in 43 countries ($0.200 \leq p < 0.400$) and very poor in 7 countries ($p < 0.200$) – Sudan (2014), Libya (2014), Turkmenistan (2015-16), Mauritania (2015), Ethiopia (2018), Benin (2018) and South Sudan (2010).

It may also be observed from table 2 that when no distinction is made between the met demand for spacing and the met demand for limiting births, there are 51 countries where family planning performance may be termed as good or very good in terms of meeting the demand for family planning. However, when a distinction is made between the met demand for modern spacing methods and the met demand for permanent methods, then there are only 24 countries where the family planning performance may be termed as good or very good. It appears that a high met demand for family planning in a number of countries is due to the perfect substitutability between the met demand for modern spacing methods and the met demand for permanent methods which is implicit when the met demand is estimated without making a distinction between the met demand for modern spacing methods and the met demand for permanent methods.

Table 2 also suggests that, in most of the countries, the method-mix remains skewed, dominated by either one or two methods only which also reflects a negative feature of family planning performance. A skewed method-mix implies that family planning services are
essentially directed towards satisfying family planning needs of a particular section of women only and family planning needs of other women remain largely unmet. A focus on only one or two methods of family planning may also be the reason for a low met demand for family planning. If the family planning services are to meet the family planning needs of all married or in-union women aged 15-49 years, then, it is imperative, that the method-mix should not be dominated by specific family planning methods or it should not be skewed but more balanced.

Trend in Family Planning Performance

The change in the family planning performance index, p, during a temporal segment $(t_2>t_1)$, can be measured in terms of annual per cent change (APC) under the assumption that the change is constant during the temporal segment. The APC is calculated as

$$APC = \frac{(p_2 - p_1)}{p_1 \times (t_2 - t_1)} \times 100$$

The APC in different temporal segments of a given time period provides a complete characterization of the trend in family planning performance over the given time period. It may, however, be noticed that the APC in different temporal segments of a time period may not be the same and the relative contribution of APC in a given temporal segment to the change in the entire period is a function of the length of the temporal segment. A high APC in a short temporal segment may have only a small contribution to the change over the entire time period. The $APCs$ in different temporal segments of a given time period can, however, be combined to obtain average annual per cent change ($AAPC$) during the entire time period. $AAPC$ is the weighted average of different $APCs$ within the time period with weights equal to the proportionate length of different temporal segments. $AAPC$ serves as a single summary measure of the change during the entire time period in which $APCs$ in different temporal segments are essentially different and the length of different temporal segments is also different.

Information about method specific prevalence and unmet need for spacing and limiting births for at least two points in time during the period 2000-2019 is available for 87 of the 113 countries included in the analysis. In 30 countries, the $AAPC$ in the index p has been negative indicating that family planning performance in these countries has decreased over time. The decrease in the index p has been the most rapid in Panama during 2013-15 when the index p decreased by more than 9 per cent per year. The decrease in family planning performance has also been quite rapid in Sierra Leone (2013-2016), Serbia (2010-2014), Azerbaijan (2001-2006), Tunisia (2011-2018) and Suriname (2010-2018) indicating a decrease in family planning performance as the index p decreased by more than 3 per cent per year. There are, in fact, only 9 countries – Montenegro (2013-2018), Malawi (2000-2016), Rwanda (2000-2015), Congo (2005-2015), Togo (2010-2014), Democratic Republic of Congo (2007-2014), Oman (2007-2014), Ukraine (2007-2012) and Timor-Leste (2009-2016) – where improvement in family planning performance can be termed as substantial as $AAAC$ in the index p has been 3 per cent per year and more in these countries with the highest $AAPC$ observed in Timor-Leste (2009-2016). In rest of the countries, the $AAAC$ in the index p has, at best, been marginal which suggests that there has been only a marginal improvement in family planning performance in these countries.

The change in the performance index p, is the result of the change in indexes c and q. The index c has decreased in 31 countries with the most rapid decrease observed in Panama during 2013-2015. At the same time, there are 22 countries where the index c increased by at least 3 per cent per year with the most rapid increase observed in Oman during 2007-2014. There are, however, only three countries in addition to Oman where the increase in the index c has been at
least 10 per cent per year. These countries are: Togo during 2010-2014; Rwanda during 2000-2015; and Ukraine during 2007-2012. In majority of the countries, however, the increase in the index \(c \) has been marginal which indicating only a marginal improvement in family planning performance in terms of meeting the family planning needs of women.

Table 3
Family planning performance improvement in 87 countries

Performance improvement	Average annual per cent change (AAPC) in \(c \)				
	\(c_0 \)	\(c_i \)	\(c \)	\(q \)	\(p \)
Number of countries					
Performance decreased (AAPC<0)	34	19	31	38	30
Marginal improvement (0≤AAPC<1.0)	10	17	12	21	21
Mild improvement (1.0≤AAPC<2.0)	4	17	12	12	22
Moderate improvement (2.0≤AAPC<3.0)	6	8	10	4	5
Substantial improvement (AAPC≥3.0)	33	26	22	12	9

Summary measures of inter-country distribution

Minimum	-36.82	-6.20	-19.73	-4.34	-9.14
Q1	-2.62	0.09	-0.91	-0.75	-0.43
Median	0.93	1.38	1.00	0.15	0.53
Q3	5.26	3.34	2.99	1.36	1.42
Maximum	98.29	16.20	19.87	12.80	10.25
IQR	7.88	3.25	3.90	2.12	1.85
CV	4.20	1.70	4.01	4.50	4.62
N	87	87	87	87	87

Source: Author’s calculations

The method-mix index \(q \), on the other hand, decreased in 38 countries which indicates that the skewness in the method-mix in these countries has increased over time. There are only 12 countries where the method-mix index \(q \) increased at a rate of at least 3 per cent per year with Timor-Leste the only country where the index \(q \) increased at a rate of more than 10 per cent per year during 2009-2016 indicating a rapid decrease in the skewness in the mix. The proportion of total family planning users using injectable in Timor-Leste decreased from more than 76 per cent during 2009-10 to around 49 per cent during 2016 whereas users of implant increased from just around 4 per cent to more than 26 per cent during this period so that the index \(q \) increased from 0.253 to almost 0.480 during 2009-16. In majority of the countries, however, there has been only a marginal improvement in the index of method-mix over time indicating only a marginal improvement in family planning performance in the context of a balanced method-mix to meet the diverse family planning needs of women.

The change in the index \(c \) that reflects the extent to which the demand for family planning services is met, is the result of the change in the met demand for permanent methods and the change in the met demand for modern spacing methods of family planning. The family performance has been different in terms of the met demand for modern spacing methods and the met demand for permanent methods. There are only 45 countries where the met demand for both permanent methods and modern spacing methods increased over time though at varying rates of improvement. On the other hand, there are 11 countries, where met demand for both permanent methods and modern spacing methods decreased over time. In 23 countries, the met demand for permanent methods decreased but the met demand for modern spacing methods decreased over time. This leaves only 8 countries where the met demand for modern spacing methods decreased but the met demand for permanent methods increased. This means that, in 34 countries the met demand for permanent methods decreased whereas the met demand for
modern spacing methods decreased in only 19 countries. At the same time, the met demand for permanent methods increased at a rate of at least 3 per cent per year in 33 countries. But in 26 countries in case of modern spacing methods. In most of the countries, family planning performance in terms of the improvement in the met demand for permanent methods has been different from the performance in terms of the improvement in the met demand for modern spacing methods reflecting the imbalance in the performance in terms of meeting the diverse family planning needs of women.

Discussions and Conclusions

In this paper, we have presented a two-dimensional perspective of family planning performance in 113 countries considering both the extent up to which the family planning needs of married or in-union women aged 15-49 are met the balance in the method-mix. The analysis is probably and so obviously the first that considers both the demand for family planning and the composition of family planning use by different family planning methods in assessing the family planning performance. The analysis reveals that, in general, family planning performance in most of the countries remains far from satisfactory in terms of satisfying the family planning needs of married or in-union women aged 15-49 years. There is also evidence to suggest that, in majority of the countries, the method-mix has turned more skewed over time indicating the increased dependence of the family planning services delivery system on only one method to meet the diverse family planning needs of women which is not a welcome feature of family planning performance. Similarly, family planning performance in terms of meeting the demand for modern spacing methods and in terms of meeting the demand for permanent methods has also been different in most of the countries suggesting that the improvement in family planning performance has not been balanced in most of the countries. These observations suggest that there are only a small number of countries where family planning performance may be termed as satisfactory in meeting the diverse family planning needs of women. In most of the countries, there is substantial scope for improvement in family planning performance in terms of either meeting the demand for modern spacing methods or meeting the demand for permanent methods or in terms of achieving a balanced method mix that has been advocated from the perspective of rights-based family planning. What is even more concerned is the observation that, in a substantial proportion of countries, family planning performance has worsened in at least one of the three dimensions of family planning services delivery.

The family planning movement in the world is now almost seven decades old. The launch of the first official family planning program by India way back in 1952 may be taken as the beginning of this movement. The genesis of the movement was grounded in the proposition that fertility regulation and curtailing population growth through family planning would contribute significantly towards addressing a range of development concerns facing the developing countries. Following this premise, substantial efforts have been made, resources mobilized and commitments made to main-stream family planning in the development discourse of most of the developing countries. Family planning has now universally been accepted as an integral component of any strategy directed towards meeting reproductive health needs of the people, especially women and is valued as a reproductive right. It has also been accepted as an important development intervention that has implications for broader development goals such as United Nations Sustainable Development Goals. The FP2020 Initiative, launched in 2012, has set an ambitious target of recruiting 120 million new acceptors of family planning by 2020 (120 by 2020) in the context of meeting the pressing reproductive health care needs of women, especially, in 69 focus countries. This target, however, could not be achieved (FP2020, 2020) because of the unsatisfactory family planning performance in most of the countries, as revealed
through the present analysis. It appears that despite specific commitments at the global level, most of the countries have not been able to mobilize additional resources necessary to ensure universal access to family planning services necessary to meet the reproductive health needs of women and in a large number of countries, family planning performance, instead of improving, has deteriorated over time. In most of the countries, family planning is largely a prerogative of official family planning efforts. This means that a reinvigoration of official family planning efforts is urgently needed so as to effectively meet the reproductive health needs of women.

References

Adamchak DJ, Mbizvo MT (1990) The relationship between fertility and contraceptive prevalence in Zimbabwe. *International Family Planning Perspectives* 16(3): 103–106.

Bongaarts J (1978) A framework for analyzing proximate determinants of fertility. *Population and Development Review* 4(1): 105-132.

Bongaarts J (1987) The proximate determinants of exceptionally high fertility. *Population and Development Review* 13(1): 133–139.

Bongaarts J, Potter R (1983) *Fertility, Biology, and Behavior: An Analysis of the Proximate Determinants*. New York, Academic Press.

Chaurasia AR (2020) A Composite Index to Measure Family Planning Performance with Application to India *MedRxiv* 2020.12.16.20248368; doi: https://doi.org/10.1101/2020.12.16.20248368

Chaurasia AR (2020) Contraceptive Method Skew in India 1992-2016 *MedRxiv* 2020.07.14.20154013; doi: https://doi.org/10.1101/2020.07.14.20154013

Choe MK, Bulatao RA (1992) Defining an appropriate contraceptive method mix to meet fertility preferences. Paper presented at Population Association of America Annual Meeting, Denver, CO.

FP2020 Initiative (2013) Progress Report 2012-2013: Partnership in Action. Washington DC, FP2020.

FP Initiative (2020) Progress Report 2012-2013: Partnership in Action. Washington DC, FP2020.

Galway K, Stover J (1995) Determining an Appropriate Contraceptive Method Mix. Washington DC, Futures Group.

Jain AK (1997) Consistency between contraceptive use and fertility in India. *Demography India* 26(1): 19-36.

Jain A, Ross J, Gribble J, McGinn E (2014) Inconsistencies in the total fertility rate and contraceptive prevalence rate in Malawi. Washington DC, Futures Group, Health Policy Project.
Johnson AT (1984) Contraceptive method mix: What determines program and individual user perspectives? Paper presented at Population Association of America Annual Meeting; May 3–5, 1984; Minneapolis, MN.

Jurczynska K, Kuang B, Smith E (2016) Accounting for the mismatch between predicted and observed fertility in sub-Saharan Africa. Paper presented at the Population Association of America Annual Meeting, Washington, D.C., March 31–April 2.

Ross JA, Mauldin WP (1996) Family planning programs: efforts and results. Studies in Family Planning 27(3): 137-147.

Snow RC, Chen LC (1991) Towards an appropriate contraceptive method mix. Policy analyses in three Asian countries. Harvard University Center for Population and Development Studies. Working Paper No. 5.

Srinivasan K (1988) Modernization, contraception and fertility change in India. International Family Planning Perspectives 14(3): 94-102.

Stover J (1998) Revising the proximate determinants of fertility framework: What have we learned in the past 20 Years? Studies in Family Planning 29(3): 255- 267

Thomas N, Mercer C (1995) An examination of the fertility/contraceptive prevalence anomaly in Zimbabwe. Genus 51(3–4): 179–203.

Tsui AO (2001) Population policies, family planning programs and fertility: the record. Population and Development Review 27(5): 184-204.

United Nations (2015) Transforming Our World: the 2030 Agenda for Sustainable Development. Resolution adopted by the General Assembly on 25 September 2015. New York, United Nations. A/RES/70/1.

United Nations (2019) Contraceptive Use by Method. Data Booklet. New York, United Nations, Department of Economic and Social Affairs. Population Division

United Nations (2020). Estimates and Projections of Family Planning Indicators 2020. New York, United Nations, Department of Economic and Social Affairs, Population Division.

Westoff CF, Bankole A (2001) The contraception fertility link in sub-Saharan Africa and in other developing countries. Calverton: ORC Macro (DHS Analytical Studies No. 4).

World Health Organization (1994). Contraceptive Method Mix: Guidelines for Policy and Service Delivery. Geneva, World Health Organization.
Appendix Table 1

Family planning use in 114 countries, 2010-2019

Country	Year	CPR	CPRm	UM	Met demand
Africa					
Algeria	2012-2013	0.571	0.495	0.070	0.772
Angola	2015-2016	0.136	0.125	0.380	0.242
Benin	2017-2018	0.156	0.120	0.323	0.251
Burkina Faso	2018-2019	0.325	0.307	0.233	0.550
Burundi	2016-2017	0.285	0.224	0.297	0.385
Cameroon	2014	0.343	0.210	0.180	0.402
Central African Republic	2010-2011	0.152	0.121	0.270	0.287
Comoros	2012	0.194	0.142	0.316	0.278
Congo	2014-2015	0.301	0.185	0.179	0.385
Côte d'Ivoire	2018	0.233	0.196	0.265	0.394
Democratic Republic of the Congo	2013-2014	0.204	0.075	0.277	0.156
Egypt	2014	0.585	0.569	0.126	0.800
Equatorial Guinea	2011	0.126	0.095	0.338	0.205
Eritrea	2010	0.083	0.070	0.274	0.196
Eswatini	2014	0.661	0.655	0.152	0.806
Ethiopia	2018	0.401	0.378	0.206	0.623
Gabon	2012	0.311	0.194	0.265	0.337
Gambia	2018	0.167	0.163	0.265	0.377
Ghana	2017	0.330	0.274	0.263	0.462
Guinea	2018	0.110	0.103	0.177	0.359
Guinea-Bissau	2014	0.160	0.144	0.223	0.376
Kenya	2017	0.605	0.587	0.149	0.778
Lesotho	2018	0.650	0.646	0.160	0.798
Liberia	2013	0.202	0.191	0.311	0.372
Libya	2014	0.277	0.163	0.402	0.240
Madagascar	2017	0.478	0.386	0.164	0.601
Malawi	2015-2016	0.592	0.581	0.187	0.746
Mali	2018	0.172	0.164	0.239	0.399
Mauritius	2014	0.638	0.320	0.125	0.419
Morocco	2018	0.708	0.591	0.113	0.720
Mozambique	2015	0.271	0.253	0.231	0.504
Namibia	2013	0.561	0.553	0.175	0.751
Niger	2017	0.189	0.181	0.222	0.441
Nigeria	2018	0.167	0.121	0.189	0.340
Rwanda	2014-2015	0.533	0.475	0.189	0.658
Sao Tome and Principe	2014	0.405	0.374	0.337	0.504
Senegal	2017	0.278	0.262	0.219	0.527
Sierra Leone	2016	0.225	0.218	0.263	0.447
South Africa	2016	0.546	0.540	0.149	0.777
South Sudan	2010	0.040	0.017	0.263	0.056
Sudan	2014	0.122	0.117	0.266	0.302
Togo	2017	0.239	0.215	0.340	0.371
Country	Year	CPR	CPRm	UM	Met demand
---	---------------	-----	------	-----	-------------
Tunisia	2018	0.504	0.443	0.199	0.630
Uganda	2017	0.385	0.339	0.294	0.500
United Republic of Tanzania	2015-2016	0.384	0.320	0.221	0.529
Zambia	2013-2014	0.491	0.447	0.211	0.637
Zimbabwe	2015	0.668	0.658	0.104	0.852
Asia					
Afghanistan	2015-2016	0.225	0.198	0.245	0.421
Bangladesh	2014	0.623	0.539	0.120	0.725
Bhutan	2010	0.656	0.654	0.117	0.846
Cambodia	2014	0.563	0.388	0.125	0.564
Democratic People's Republic of Korea	2017	0.702	0.688	0.066	0.896
India	2015-2016	0.535	0.478	0.129	0.720
Indonesia	2016-2017	0.610	0.588	0.148	0.775
Iran (Islamic Republic of)	2010-2011	0.787	0.570	0.057	0.675
Iraq	2018	0.528	0.361	0.143	0.538
Jordan	2017-2018	0.518	0.374	0.142	0.567
Kazakhstan	2018	0.530	0.501	0.155	0.732
Kyrgyzstan	2018	0.394	0.378	0.190	0.647
Lao People's Democratic Republic	2017	0.540	0.490	0.143	0.717
Maldives	2016-2017	0.186	0.147	0.314	0.294
Mongolia	2018	0.481	0.452	0.228	0.638
Myanmar	2015-2016	0.523	0.513	0.162	0.749
Nepal	2016-2017	0.526	0.428	0.237	0.561
Oman	2014	0.297	0.188	0.178	0.396
Pakistan	2017-2018	0.342	0.250	0.173	0.485
Philippines	2017	0.541	0.401	0.167	0.566
Qatar	2012	0.375	0.344	0.124	0.689
Sri Lanka	2016	0.617	0.513	0.075	0.741
State of Palestine	2014	0.572	0.441	0.109	0.648
Tajikistan	2017	0.293	0.271	0.227	0.521
Thailand	2015-2016	0.783	0.755	0.062	0.893
Timor-Leste	2016	0.261	0.237	0.253	0.461
Turkey	2018	0.700	0.490	0.116	0.600
Turkmenistan	2015-2016	0.502	0.471	0.121	0.756
Viet Nam	2013-2014	0.758	0.570	0.061	0.696
Yemen	2013	0.335	0.252	0.287	0.405
Europe					
Albania	2017-2018	0.461	0.037	0.151	0.060
Armenia	2015-2016	0.572	0.280	0.125	0.402
Belarus	2012	0.631	0.520	0.070	0.742
Bolivia (Plurinational State of)	2016	0.664	0.451	0.232	0.503
Bosnia and Herzegovina	2011-2012	0.458	0.120	0.090	0.219
Georgia	2018	0.406	0.327	0.231	0.513
Montenegro	2018	0.207	0.116	0.210	0.278
North Macedonia	2011	0.402	0.128	0.172	0.223
Country	Year	CPR	CPRm	UM	Met demand
-------------------------	---------	------	------	------	------------
Republic of Moldova	2012	0.594	0.417	0.095	0.605
Serbia	2014	0.584	0.184	0.149	0.251
Ukraine	2012	0.655	0.478	0.049	0.679
Latin America and Caribbean					
Barbados	2012	0.592	0.554	0.199	0.700
Belize	2011	0.552	0.520	0.159	0.731
Colombia	2015-2016	0.809	0.759	0.067	0.866
Costa Rica	2018	0.709	0.690	0.137	0.816
Cuba	2014	0.738	0.722	0.080	0.883
Dominican Republic	2014	0.695	0.680	0.114	0.841
El Salvador	2014	0.719	0.676	0.111	0.814
Guatemala	2014-2015	0.606	0.489	0.139	0.656
Guyana	2014	0.338	0.325	0.280	0.526
Haiti	2012	0.345	0.313	0.353	0.448
Honduras	2011-2012	0.732	0.638	0.107	0.760
Mauritania	2015	0.178	0.156	0.336	0.304
Mexico	2015	0.665	0.646	0.130	0.813
Nicaragua	2011-2012	0.804	0.774	0.058	0.898
Panama	2014-2015	0.508	0.469	0.242	0.625
Paraguay	2016	0.684	0.665	0.121	0.826
Peru	2018	0.763	0.550	0.063	0.666
Saint Lucia	2011-2012	0.555	0.525	0.170	0.724
Suriname	2018	0.391	0.385	0.284	0.570
Trinidad and Tobago	2011	0.403	0.376	0.243	0.582
Oceania					
Papua New Guinea	2016-2018	0.367	0.305	0.259	0.487
Samoa	2014	0.270	0.243	0.348	0.393
Solomon Islands	2015	0.293	0.243	0.347	0.380
Tonga	2012	0.341	0.284	0.252	0.479
Vanuatu	2013	0.489	0.371	0.242	0.508

Source: Author’s calculations based on United Nations (2020)

CPR Contraceptive prevalence rate
CPRm Modern methods prevalence rate
UM Unmet need for family planning
Country	Period	c_p	c_i	c	q	p
Africa						
Algeria	2012-2013	0.185	0.798	0.420	0.141	0.256
Angola	2015-2016	0.008	0.315	0.086	0.531	0.245
Benin	2017-2018	0.000	0.313	0.040	0.541	0.193
Burkina Faso	2018-2019	0.000	0.595	0.075	0.494	0.223
Burundi	2016-2017	0.042	0.494	0.185	0.460	0.302
Cameroon	2014	0.027	0.464	0.154	0.590	0.325
Central African Republic	2010-2011	0.029	0.337	0.126	0.481	0.265
Comoros	2012	0.090	0.316	0.040	0.541	0.245
Congo	2014-2015	0.041	0.424	0.164	0.488	0.297
Côte d'Ivoire	2018	0.000	0.434	0.055	0.524	0.209
Democratic Republic of the Congo	2013-2014	0.104	0.164	0.132	0.560	0.296
Egypt	2014	0.129	0.901	0.398	0.429	0.414
Equatorial Guinea	2011	0.077	0.254	0.148	0.657	0.342
Eritrea	2010	0.029	0.237	0.099	0.584	0.273
Eswatini	2014	0.282	0.906	0.535	0.540	0.537
Ethiopia	2018	0.000	0.709	0.089	0.348	0.190
Gabon	2012	0.072	0.383	0.187	0.349	0.259
Gambia	2018	0.046	0.434	0.174	0.446	0.289
Ghana	2017	0.123	0.547	0.284	0.617	0.429
Guinea	2018	0.039	0.428	0.163	0.602	0.337
Guinea-Bissau	2014	0.029	0.454	0.156	0.689	0.359
Kenya	2017	0.269	0.850	0.505	0.463	0.484
Lesotho	2018	0.181	0.901	0.449	0.531	0.489
Liberia	2013	0.032	0.450	0.159	0.389	0.257
Libya	2014	0.000	0.276	0.035	0.434	0.159
Madagascar	2017	0.182	0.668	0.374	0.382	0.378
Malawi	2015-2016	0.582	0.798	0.684	0.467	0.569
Mali	2018	0.053	0.475	0.193	0.498	0.322
Mauritius	2014	0.465	0.399	0.431	0.580	0.502
Morocco	2018	0.120	0.788	0.356	0.188	0.263
Mozambique	2015	0.029	0.580	0.186	0.455	0.301
Namibia	2013	0.444	0.831	0.617	0.500	0.557
Niger	2017	0.042	0.467	0.177	0.456	0.295
Nigeria	2018	0.029	0.416	0.146	0.652	0.338
Rwanda	2014-2015	0.144	0.733	0.362	0.491	0.424
Sao Tome and Principe	2014	0.037	0.662	0.219	0.537	0.355
Senegal	2017	0.068	0.589	0.242	0.529	0.367
Sierra Leone	2016	0.011	0.545	0.141	0.426	0.258
South Africa	2016	0.485	0.872	0.660	0.547	0.602
South Sudan	2010	0.014	0.070	0.034	0.598	0.199
Sudan	2014	0.000	0.370	0.047	0.243	0.119
Togo	2017	0.083	0.457	0.219	0.594	0.376
Country	Period	c_p	c_s	c	q	p
--------------------------------------	----------------------	--------	--------	--------	--------	--------
Tunisia	2018	0.089	0.786	0.321	0.398	0.358
Uganda	2017	0.202	0.572	0.356	0.479	0.414
United Republic of Tanzania	2015-2016	0.347	0.566	0.447	0.578	0.510
Zambia	2013-2014	0.209	0.700	0.406	0.534	0.467
Zimbabwe	2015	0.154	0.903	0.424	0.383	0.403
Asia						
Afghanistan	2015-2016	0.205	0.470	0.319	0.607	0.448
Bangladesh	2014	0.468	0.778	0.610	0.485	0.545
Bhutan	2010	0.741	0.903	0.819	0.552	0.677
Cambodia	2014	0.307	0.609	0.441	0.525	0.482
Democratic People's Republic of Korea	2017	0.265	0.939	0.533	0.054	0.210
India	2015-2016	0.834	0.502	0.654	0.257	0.425
Indonesia	2016-2017	0.311	0.864	0.541	0.461	0.500
Iran (Islamic Republic of)	2010-2011	0.890	0.616	0.745	0.619	0.680
Iraq	2018	0.270	0.594	0.411	0.533	0.469
Jordan	2017-2018	0.161	0.632	0.345	0.437	0.389
Kazakhstan	2018	0.117	0.855	0.372	0.416	0.394
Kyrgyzstan	2018	0.173	0.724	0.385	0.407	0.396
Lao People's Democratic Republic	2017	0.331	0.811	0.536	0.424	0.477
Maldives	2016-2017	0.242	0.325	0.281	0.501	0.381
Mongolia	2018	0.191	0.762	0.413	0.426	0.419
Myanmar	2015-2016	0.309	0.888	0.549	0.437	0.491
Nepal	2016-2017	0.564	0.557	0.561	0.634	0.597
Oman	2014	0.444	0.371	0.407	0.653	0.520
Pakistan	2017-2018	0.533	0.463	0.497	0.535	0.516
Philippines	2017	0.404	0.623	0.506	0.480	0.493
Qatar	2012	0.271	0.758	0.474	0.546	0.509
Sri Lanka	2016	0.758	0.735	0.746	0.667	0.706
State of Palestine	2014	0.281	0.686	0.454	0.408	0.430
Tajikistan	2017	0.066	0.659	0.258	0.338	0.296
Thailand	2015-2016	0.895	0.893	0.894	0.483	0.668
Timor-Leste	2016	0.189	0.507	0.322	0.480	0.396
Turkey	2018	0.578	0.607	0.592	0.531	0.561
Turkmenistan	2015-2016	0.078	0.817	0.316	0.071	0.164
Viet Nam	2013-2014	0.446	0.717	0.571	0.477	0.522
Yemen	2013	0.148	0.495	0.287	0.510	0.388
Europe						
Albania	2017-2018	0.103	0.049	0.073	0.571	0.242
Armenia	2015-2016	0.099	0.435	0.227	0.425	0.316
Belarus	2012	0.500	0.766	0.624	0.501	0.560
Bolivia (Plurinational State of)	2016	0.370	0.561	0.459	0.677	0.561
Bosnia and Herzegovina	2011-2012	0.034	0.241	0.106	0.426	0.230
Georgia	2018	0.221	0.638	0.393	0.545	0.465
Montenegro	2018	0.054	0.376	0.167	0.440	0.282
North Macedonia	2011	0.056	0.270	0.136	0.356	0.229
Country	Period	c_p	c_s	c	q	p
-------------------------	--------------	-------	-------	-------	-------	-------
Republic of Moldova	2012	0.484	0.624	0.551	0.477	0.513
Serbia	2014	0.036	0.289	0.122	0.325	0.207
Ukraine	2012	0.333	0.692	0.491	0.451	0.471
Latin America and Caribbean						
Barbados	2012	0.316	0.792	0.518	0.526	0.522
Belize	2011	0.735	0.729	0.732	0.543	0.633
Colombia	2015-2016	0.919	0.820	0.686	0.545	0.694
Costa Rica	2018	0.751	0.864	0.806	0.594	0.695
Cuba	2014	0.845	0.903	0.874	0.537	0.692
Dominican Republic	2014	0.907	0.757	0.830	0.383	0.578
El Salvador	2014	0.894	0.735	0.812	0.421	0.595
Guatemala	2014-2015	0.797	0.576	0.681	0.500	0.585
Guyana	2014	0.218	0.630	0.388	0.645	0.506
Haiti	2012	0.075	0.611	0.256	0.390	0.318
Honduras	2011-2012	0.834	0.725	0.778	0.569	0.668
Mauritania	2015	0.010	0.374	0.103	0.304	0.186
Mexico	2015	0.814	0.812	0.813	0.492	0.639
Nicaragua	2011-2012	0.921	0.884	0.902	0.526	0.697
Panama	2014-2015	0.474	0.767	0.609	0.548	0.578
Paraguay	2016	0.563	0.890	0.714	0.594	0.652
Peru	2018	0.709	0.657	0.683	0.602	0.641
Saint Lucia	2011-2012	0.447	0.802	0.607	0.542	0.574
Suriname	2018	0.272	0.655	0.436	0.385	0.410
Trinidad and Tobago	2011	0.372	0.687	0.513	0.560	0.537
Oceania						
Papua New Guinea	2016-2018	0.395	0.538	0.463	0.574	0.517
Samoa	2014	0.280	0.473	0.368	0.483	0.423
Solomon Islands	2015	0.395	0.370	0.383	0.546	0.460
Tonga	2012	0.537	0.434	0.484	0.491	0.487
Vanuatu	2013	0.477	0.522	0.499	0.581	0.539

Source: Author’s calculations
Appendix Table 3

Trend in family planning performance

Country	Period	Average annual per cent change (AAPC) in	\(c_p\)	\(c_i\)	\(c\)	\(q\)	\(p\)
Africa							
Algeria	2006 2013	3.82	-0.31	1.12	-1.92	-0.22	
Benin	2001 2018	-5.38	4.04	-1.85	-0.96	-1.73	
Burkina Faso	2003 2019	42.72	8.37	5.84	-1.15	-0.14	
Burundi	2010 2017	-4.46	4.44	0.99	1.61	1.34	
Cameroon	2004 2014	-11.67	4.72	-3.21	3.33	0.35	
Central African Republic	1994 2011	-3.67	14.17	2.96	-0.97	0.23	
Congo	2005 2015	2.51	7.93	5.71	3.78	4.54	
Côte d’Ivoire	2011 2018	7.03	4.16	-3.20	3.41	0.17	
Democratic Republic of the Congo	2007 2014	0.28	6.53	3.14	6.35	5.07	
Egypt	2000 2014	0.90	0.03	0.20	1.70	0.91	
Eritrea	2002 2010	0.00	-0.19	-0.13	0.63	0.35	
Eswatini	2006 2014	4.59	1.40	2.10	-0.62	0.51	
Ethiopia	2000 2018	17.15	8.82	4.68	-0.36	0.37	
Gabon	2000 2012	-2.85	5.02	1.02	-2.74	-1.37	
Gambia	2013 2018	-11.54	12.90	-0.18	-2.01	-1.26	
Ghana	2003 2017	13.35	3.53	4.72	0.04	1.27	
Guinea	2005 2018	9.82	7.18	7.86	0.16	2.12	
Kenya	2003 2017	0.33	3.50	2.09	-0.76	0.57	
Lesotho	2004 2018	4.09	1.51	2.30	0.21	1.17	
Liberia	2006 2013	-5.17	8.98	2.85	-2.92	-0.84	
Madagascar	2003 2017	7.29	3.06	4.54	-1.09	1.29	
Malawi	2000 2016	6.87	3.12	4.75	1.57	3.13	
Mali	2001 2018	10.28	4.97	4.41	-0.26	1.37	
Morocco	2003 2018	-3.66	-0.14	-1.80	-2.26	-2.01	
Mozambique	2003 2015	-3.66	1.02	-1.09	-0.83	-1.25	
Namibia	2000 2013	0.93	0.79	0.84	-0.41	0.22	
Niger	2006 2017	-2.18	2.17	-1.30	0.03	-0.64	
Nigeria	2003 2018	4.92	1.72	1.28	0.13	0.47	
Rwanda	2000 2015	11.32	16.20	12.47	-1.12	3.57	
Sao Tome and Principe	2006 2014	4.34	-0.39	-0.12	5.77	3.00	
Senegal	2005 2017	6.80	6.90	5.41	-0.58	1.69	
Sierra Leone	2013 2016	-26.74	6.27	-8.98	-4.34	-6.37	
South Africa	2003 2016	-1.69	-0.28	-0.97	0.91	-0.14	
Togo	2010 2017	36.08	4.02	10.83	1.32	4.75	
Tunisia	2011 2018	-11.66	0.53	-6.78	-0.75	-4.24	
Uganda	2000 2017	4.35	2.69	3.02	-0.89	0.75	
United Republic of Tanzania	2004 2016	3.67	2.54	3.03	0.87	1.85	
Zambia	2001 2014	3.96	3.18	3.48	0.29	1.63	
Zimbabwe	2005 2015	-2.48	0.49	-0.67	3.78	1.36	
Asia							
Bangladesh	2004 2014	2.08	1.17	1.16	1.30	1.19	
Country	Period	Average annual per cent change (AAPC) in CPA, CP, C, Q, P					
--	----------	--					
Cambodia	2000-2014	11.21, 3.54, 5.95, -0.87, 1.94					
India	2005-2016	0.20, 1.85, 0.90, 0.62, 0.73					
Indonesia	2002-2017	-0.12, 0.01, -0.09, -0.45, -0.28					
Iraq	2011-2018	-6.09, 0.67, -2.94, 1.06, -1.05					
Jordan	2002-2018	-2.71, -0.07, -1.30, 0.10, -0.60					
Kazakhstan	2010-2018	4.07, -0.52, -0.34, 3.10, 1.14					
Kyrgyzstan	2012-2018	-2.78, 1.08, -0.86, 3.57, 1.11					
Lao People's Democratic Republic	2000-2017	6.10, 1.48, 3.15, -1.02, 0.91					
Maldives	2009-2017	-6.40, -3.19, -4.90, -0.63, -2.82					
Mongolia	2003-2018	-0.01, -0.30, -2.00, 0.01, -1.29					
Myanmar	2001-2017	-0.30, 1.70, 0.79, -0.83, -0.05					
Nepal	2001-2017	0.11, 1.40, 0.71, 1.14, 0.83					
Oman	2007-2014	35.78, 9.57, 19.87, 0.29, 6.66					
Pakistan	2000-2018	5.22, 0.80, 2.78, -0.43, 1.01					
Philippines	2003-2017	-0.34, 2.02, 0.81, -0.68, -0.02					
Sri Lanka	2000-2016	1.06, 2.70, 1.82, 1.18, 1.48					
State of Palestine	2010-2014	-3.64, -0.16, -1.73, -0.46, -1.11					
Tajikistan	2012-2017	5.36, 0.48, 1.88, 2.75, 2.33					
Timor-Leste	2009-2016	24.23, 1.26, 7.71, 12.80, 10.25					
Turkey	2003-2018	1.85, 0.72, 1.13, 0.42, 0.75					
Turkmenistan	2015-2016	-3.73, 0.21, -1.55, -2.97, -2.16					
Viet Nam	2002-2014	-1.87, 0.59, -0.71, 3.37, 1.09					
Yemen	2006-2013	-2.42, 1.73, -0.14, 0.23, 0.06					
Europe							
Albania	2008-2018	-6.38, -6.20, -6.30, 0.16, -2.86					
Armenia	2000-2016	13.46, 2.37, 1.50, -1.08, -0.14					
Bolivia (Plurinational State of)	2003-2016	2.37, 1.17, 1.68, 0.48, 1.02					
Montenegro	2013-2018	98.29, -3.12, 8.92, -0.30, 3.01					
Republic of Moldova	2005-2012	4.67, 0.78, 2.49, 1.46, 1.98					
Serbia	2010-2014	-8.33, -4.18, -5.70, -4.03, -4.75					
Ukraine	2007-2012	57.78, 0.58, 14.39, 1.89, 7.29					
Latin America and Caribbean							
Colombia	2000-2016	0.68, 1.35, 1.00, -0.13, 0.46					
Costa Rica	2011-2018	-2.22, -0.50, -1.38, 0.49, -0.53					
Cuba	2010-2014	1.75, -0.62, 0.51, 0.15, 0.35					
Dominican Republic	2002-2014	0.13, 1.38, 0.72, 2.13, 1.29					
Guatemala	2002-2015	2.75, 3.04, 2.86, 0.19, 1.51					
Guyana	2009-2014	0.07, -3.07, -1.86, 1.11, -0.33					
Haiti	2000-2012	-2.53, 2.04, 0.24, -1.57, -0.92					
Honduras	2005-2012	2.92, 1.28, 2.10, 0.19, 1.16					
Mauritania	2007-2015	20.14, 2.94, 2.72, 1.41, 1.92					
Mexico	2009-2015	-1.52, 1.65, 0.00, 6.84, 2.78					
Nicaragua	2001-2012	2.29, 0.60, 1.42, -0.75, 0.39					
Panama	2013-2015	-36.82, 0.04, -19.73, 3.90, -9.14					
Country	Period	Average annual per cent change (AAPC) in	c_p	c_i	c	q	p
-------------------------	--------	--	-----	-----	-----	-----	-----
Peru	2000-2018	1.20 - 0.37 - 0.77 - 0.26 - 0.25	1.20	0.37	0.77	-0.26	0.25
Suriname	2010-2018	-6.35 - 2.47 - 4.44 - 2.05 - 3.37	-6.35	-2.47	-4.44	-2.05	-3.37
Trinidad and Tobago	2006-2011	5.30 - 1.30 1.34 - 0.23 0.53	5.30	-1.30	1.34	-0.23	0.53
Oceania							
Samoa	2009-2014	8.29 0.13 3.40 2.11 2.71	8.29	0.13	3.40	2.11	2.71
Solomon Islands	2006-2015	-5.37 -2.79 -4.25 2.07 -1.59	-5.37	-2.79	-4.25	2.07	-1.59

Source: Author’s calculations