Brauer Configuration Algebras Arising from Dyck Paths

Agustín Moreno Cañadas †, Gabriel Bravo Rios † and Isaías David Marín Gaviria *

Abstract: The enumeration of Dyck paths is one of the most remarkable problems in Catalan combinatorics. Recently introduced categories of Dyck paths have allowed interactions between the theory of representation of algebras and cluster algebras theory. As another application of Dyck paths theory, we present Brauer configurations, whose polygons are defined by these types of paths. It is also proved that dimensions of the induced Brauer configuration algebras and the corresponding centers are given via some integer sequences related to Catalan triangle entries.

Keywords: Brauer configuration algebra; Catalan triangle; Dyck path; path algebra

MSC: 16G20; 16G30; 16G60

1. Introduction

In the last few years, several combinatorial objects have allowed the research development of the theory of representation of algebras. For instance, the number of triangulations of a polygon with \(n + 3 \) sides, or the number of Dyck paths of length \(2n \) in the plane connecting the origin with a point \(P = (2n, 0) \). Edges in these paths are either rises (linking points \((x, y) \) and \((x + 1, y + 1) \) in \(\mathbb{N}^2 \)) or falls (connecting points \((x, y) \) and \((x + 1, y - 1) \) in \(\mathbb{N}^2 \)) [1]. Caldero, Chapoton, and Schiffler [2] proved that any triangulation \(T \) of an \((n + 3) \)-polygon defines a category \(\text{mod}_{FQ} T \) of finitely generated modules over a path algebra \(FQ_T \) induced by a quiver \(Q_T \) arising from the triangulation \(T \). They also proved that \(\text{mod}_{F} Q_T \) can be identified with the category of diagonals defining the triangulation.

Following the ideas by Caldero et al., Cañadas et al. [3] introduced a categorical equivalence between a category \(C_{2n} \) of Dyck paths and a category of representations \(\text{rep} A_{n-1} \) of a quiver of Dynkin type \(A_{n-1} \). These approaches allow obtaining formulas for cluster variables of type \(A \) and frieze patterns in terms of Dyck paths and perfect matchings of some snake graphs. It is worth pointing out that finding formulas of these types is a significant problem in the cluster algebras theory.

On the other hand, Brauer configuration algebras (BCAs) are bound quiver algebras introduced by Green and Schroll in [4]. The structure of the indecomposable projective modules over these types of algebras is given by some combinatorial data, which are also used to determine their dimension. BCAs were used by Espinosa [5] to categorify integer sequences in the sense of Ringel and Fahr, i.e., the numbers in these sequences can be considered as invariants of objects in a category. They are also helpful in several fields of applied mathematics (cryptography, graph energy theory, algebraic combinatorics, etc. [6–9]).

Contributions

This paper establishes a connection between Dyck paths and Brauer configuration algebras researches by proving that Dyck paths define suitable words associated with polygons in a Brauer configuration. We introduce new Catalan–Brauer configurations...
(CBCs) obtaining formulas for the dimensions of the corresponding BCAs and their centers. To do that, we introduce an integer sequence $S = \{h_{ij}\}$ whose properties allow obtaining formulas relating its elements with entries of the Catalan triangle. Thus, the approach allows giving another manifestation of Catalan numbers via BCAs.

Figure 1 shows how Brauer configuration algebras and Dyck paths theories are related to the main results presented in this paper.

![Network diagram]

Figure 1. Main results presented in this paper (targets of blue and red arrows) allow establishing a connection between Brauer configuration algebras and Dyck paths theories. Propositions 1–3 give properties of a suitable integer sequence related to the Catalan triangle entries via Lemma 1 and Proposition 4. We introduce a Brauer configuration Γ^*, whose vertices occur in polygons according to entries of suitable matrices whose properties are given in Lemma 2. Proposition 5 proves that the Catalan triangle gives entries of such matrices. Theorem 2 gives a formula for the dimension of a Brauer configuration algebra (and its corresponding center) defined by Dyck paths.

The organization of this paper goes as follows; the main definitions and notation are given in Section 2, we recall the definitions and notation used throughout the document. In particular, we recall notions of Dyck paths, Catalan triangle, and Brauer configuration algebra (Section 2.2). In Section 3, we give our main results. We introduce an integer sequence whose elements are related to the entries of the Catalan triangle. The numbers in this sequence allow giving a formula to compute the dimension of some Brauer configuration algebras, whose polygons are defined by Dyck paths. The concluding remarks are given in Section 4.

2. Background and Related Work

This section is devoted to reminding the basic notation and results concerning Dyck paths, the Catalan triangle, and Brauer configuration algebras, which are helpful for a better understanding of the paper.

2.1. Dyck Paths and Catalan Triangle

In this section, we make a brief review on Dyck paths and the Catalan triangle [1,10].

Dyck paths, as defined in the introduction, were enumerated by Stanley [1], who proved that there are $C_n = \frac{1}{n+1} \binom{2n}{n}$ Dyck paths of length $2n$, where C_n denotes the nth Catalan number. $p_{2n} = \{ P \mid P \text{ is a Dyck path}, |P| = 2n \}$.

For $u \geq 0$ and $0 \leq v \leq u$. The Catalan’s triangle is an integer array whose entries $C(u, v)$ are given by the formula [10].

$$C(u, v) = \frac{u - v + 1}{u + 1} \binom{u + v}{v}, \quad u \geq 0, \quad \text{and} \quad 0 \leq v \leq u. \quad (1)$$

There are many ways of finding Catalan triangle entries in the specialized literature. For instance, the array (3) gives such numbers according to the recurrence (2). Such a
recurrence was found by Cañadas et al. [3] via some seed vectors associated with positive integral diamonds of type \(A_n \) arising from the theory of integer friezes.

\[
p_{x,y} = \begin{cases}
 p_{1,1} = p_{1,2} = 1, \\
 \sum_{i=y-1}^{x} p_{x-1,i}, & \text{if } y > 1, \text{ and } x > 1, \\
 \sum_{i=1}^{x} p_{x-1,i}, & \text{if } y = 1, \text{ and } x > 1.
\end{cases}
\]

(2)

\[
p_{1,2} = 1 \quad p_{1,1} = 1
\]

(3)

2.2. Brauer Configuration Algebras

Green and Schroll introduced the notion of a BCA (Brauer Configuration Algebra). The authors refer the interested reader to [4,11] for a more detailed study of BGAs (Brauer Graph Algebras) and BCAs. In the sequel, we make a brief description of the structure of these algebras.

A BCA \(\Lambda \) is a bound quiver algebra induced by a Brauer configuration \(\Gamma = (\Gamma_0, \Gamma_1, \mu, \mathcal{O}) \) of sets, with the functions and orders satisfying the following conditions:

- Elements of the set \(\Gamma_0 \) are called vertices;
- \(\Gamma_1 \) consists of multisets called polygons, which consist of vertices that can be repeated. Moreover, if \(U \in \Gamma_1 \). Then \(|U| > 1 \);
- \(\mu \) denotes a function from the set of vertices to the set of positive integers. Green and Schroll called this function the multiplicity function, associated with the Brauer configuration \(\Gamma \);
- If a vertex \(h \) in a polygon \(W \) occurs \(t \) times. Then, we will write \(\text{occ}(h, W) = t \). \(\text{val}(h) = \sum_{W \in \Gamma_1} \text{occ}(h, W) \) is said to be the valency of the vertex \(h \), which is said to be non-truncated if \(\text{val}(h) \mu(h) \neq 1 \) (otherwise, it is non-truncated). We let \(S_h \) denote the maximal set of polygons containing a non-truncated vertex. If \(S_h = \{ U_{i_1}, U_{i_2}, \ldots, U_{i_m} \} \). Then \(S_h \) is endowed with a well-order \(< \), which allows writing \(S_h \) in the following form:

\[
U_{i_1}^{h_1} < U_{i_2}^{h_2} < \cdots < U_{i_m}^{h_m}, \quad h_m > 0.
\]

(4)

The symbol \(U_{i_j}^{h_j} \) is used to denote that \(\text{occ}(h, U_{i_j}) = x \). In successor sequences \(U^x \) denotes a subsequence of length \(x \) with the form:

\[
\underbrace{U < U \cdots < U}_{x \text{--times}}
\]

(5)

The set \((S_h, <) \) is said to be the successor sequence associated with the vertex \(h \). Note that if \(U_{i_j} < U_{i_j} \) is a covering in \(S_h \) and \(h' \in U_{i_j} \cap U_{i_j} \) with \(h' \neq h \) then the relation \(U_{i_j} < U_{i_j} \) also appears in the sequence \(S_{h'} \).

In this work, it is assumed that each polygon \(U_{i_j} \in \Gamma_1 \) is given by a word \(w_{U_{i_j}} \) of the form

\[
w_{U_{i_j}} = a_{i_1}^{s_{i_1}} a_{i_2}^{s_{i_2}} \cdots a_{i_{t-1}}^{s_{i_{t-1}}} a_{i_t}^{s_{i_t}}
\]

(6)

where for each \(i, 1 \leq i \leq t, a_i \) is a vertex, and \(s_i = \text{occ}(a_i, U_{i_j}) \).
Algorithm 1 is a short version of an algorithm introduced in [6] by Cañadas et al. to construct a Brauer configuration algebra.

Algorithm 1: Building a BCA

1. Input. $\Gamma = (\Gamma_0, \Gamma_1, \mu, \mathcal{O})$.
2. Output. The BCA $\Lambda_\Gamma = FQ_{\Gamma} / I_\Gamma$ induced by the BC Γ.
3. Remove truncated vertices.
4. Define the Brauer quiver $Q_\Gamma = (Q_0, Q_1, s, t)$, such that
 \begin{enumerate}[(a)]
 \item $Q_0 = \Gamma_1$,
 \item For each covering $U_i \leq U_{i+1}$ contained in a successor sequence S_α, define an arrow a^α for which $s(a^\alpha) = U_i$, and $t(a^\alpha) = U_{i+1}$,
 \item To each ordered successor sequence S_α define a special cycle C_α associated with a vertex α by adding a relation r_α of the form $U_{\max} S_\alpha < U_{\max} S_\alpha$.
 \end{enumerate}
5. Define the path algebra $F Q_{\Gamma}$.
6. Define an admissible ideal I_Γ generated by the following relations:
 \begin{enumerate}[(a)]
 \item $a^\alpha a^\alpha$, if $\alpha, \alpha' \in \Gamma_0, \alpha \neq \alpha'$, $a^\alpha a^\alpha \in F Q_{\Gamma},$
 \item $C_{\alpha}^{\mu(\alpha)} f$, if f is the first arrow of a special cycle C_α associated with α,
 \item $(l^b)^{\mu(b)+1}$, if l is a loop associated with a non-truncated vertex $\alpha \in \Gamma_0$, and $val(\alpha) = 1$.
 \item $C_{\alpha}^{\mu(\alpha)} - C_{\alpha}^{\mu(\alpha)}$, for any pair of special cycles associated with vertices $\alpha, \alpha' \in U, U \in \Gamma_1$.
 \end{enumerate}
7. Define the Brauer configuration algebra $\Lambda_\Gamma = F Q_{\Gamma} / I_\Gamma$.
8. The union of classes of proper prefixes of special cycles with classes of special cycles provide an F basis B of Λ_Γ.

Later on, if there is not possibility of confusion, we will assume notations Q (for a quiver), I (for an admissible ideal) and Λ (for a Brauer configuration algebra).

Theorem 1 provides algebraic properties of BCAs [4].

Theorem 1 ([4], Theorem B, Propositions 2.7, 3.2 and 3.5, Theorem 3.10, Corollary 3.12). Let $\Lambda = F Q / I$ be a Brauer configuration algebra induced by a Brauer configuration $\Gamma = (\Gamma_0, \Gamma_1, \mu, \mathcal{O})$.

1. There is a bijection between the set of indecomposable projective modules over Λ and Γ_1;
2. If P_Γ is an indecomposable projective module over a BCA Λ defined by a polygon V in Γ_1, then $rad P_\Gamma = \sum_{i=1}^r U_i$, where $U_i \cap U_j$ is a simple Λ-module for any $1 \leq i, j \leq r$, and r is the number of (non-truncated) vertices of V;
3. I is admissible, whereas Λ is a multiserial symmetric algebra. Moreover, if Γ is connected, then Λ is indecomposable as an algebra;
4. If $rad P$ (soc P) denotes the radical (socle) of an indecomposable projective module P, and $rad^2 P \neq 0$. Then, the number of summands in the heart $P / soc P$ of P equals the number of non-truncated vertices of the polygons in Γ corresponding to P counting repetitions;
5. If Λ_Γ and $\Lambda_{\Gamma'}$ are BCAs, induced by Brauer configurations $\Gamma = (\Gamma_0, \Gamma_1, \mu, \mathcal{O})$, and $\Gamma' = (\Gamma_0 \backslash \{h\}, \Gamma_1 \backslash V \cup V', \mu, \mathcal{O})$, where $V' = V \backslash \{h\}$, $|V| \geq 3$, and $val(h) \mu(h) = 1$. Then, Λ_Γ is isomorphic to $\Lambda_{\Gamma'}$.

Green and Schroll in [4] proved that the dimension of a Brauer configuration algebra is given by the following formula.

$$\dim F \Lambda = 2|\Gamma_1| + \sum_{i \in \Gamma_0} val(i) (\mu(i) val(i) - 1).$$ \hspace{1cm} (7)
Sierra [12] obtained the next formula for the dimension of the center of a connected Brauer configuration algebra Λ_Γ with radical square different from zero.

$$\dim F Z(\Lambda) = 1 + \sum_{a \in \Gamma_0} \mu(a) + |\Gamma_1| - |\Gamma_0| + \#(\text{Loops } Q) - |\mathcal{C}_\Gamma|,$$

where $|\mathcal{C}_\Gamma| = \{ a \in \Gamma_0 \mid \text{val}(a) = 1, \text{ and } \mu(a) > 1 \}$. As an example, we use compositions of the number 3 to define a Brauer configuration $\Delta = (\Delta_0, \Delta_1, \mu, \mathcal{O})$ for which:

- $\Delta_0 = \{1,2,3\}$;
- $\Delta_1 = \{U_1 = \{3,1,1,1\}, U_2 = \{2,1\}, U_3 = \{1,2\}\}$;
- $\mu(1) = \mu(2) = 1, \mu(3) = 2$;
- Successor sequences: $S_1 = U_1^{(3)} < U_2 < U_3, S_2 = U_2 < U_3, S_3 = U_1$;
- $\text{val}(1) = 5, \text{val}(2) = 2, \text{val}(3) = 1$;
- $|\Delta_0| = 3, |\Delta_1| = 3, |\mathcal{C}_\Delta| = 1$;
- $\dim F \Lambda_\Delta = 29$;
- $\dim F Z(\Lambda_\Delta) = 8$.

The following Figure 2 shows the Brauer quiver Q_Δ.

![Brauer Quiver](image)

Figure 2. Brauer quiver associated Q_Δ induced by the Brauer configuration Δ.

The admissible ideal I_Δ is generated by the following relations (a and a' denote first arrows of special cycles C_a associated with a vertex a).

- $f_i^{(1)} f_j^{(1)}$, $f_i^{(3)} f_j^{(3)}$, for all possible values of i and j;
- $f_i^{(1)} a_1^{\prime}, a_1^{\prime} b_2^{\prime}, b_2^{\prime} a_3^{\prime}, C_1 a$, $C_2 a'$, $C_1 \sim C_2$, for all possible special cycles associated with vertices 1 and 2.

3. Main Results

The results in this section allow establishing interactions between Catalan combinatorics via Dyck paths and Brauer configuration algebras. It is proved that indecomposable projective modules over some Brauer configuration algebras define Dyck paths. We compute the dimension of these algebras and their corresponding centers.

3.1. Dyck Paths Arising from Brauer Configuration Algebras

For a fixed integer x, and sets of letters

$$F_x = \{ a_{i_1}^{x_1} \}_{0 \leq s_1 \leq x-1, x_1 < x_2 \leq x}, \quad G_x = \{ b_{i_1}^{x_2} \}_{0 \leq s_1 \leq x-1, x_1 < x_2 \leq x},$$

It is defined a Brauer configuration $\Gamma^x = (\Gamma_0^x, \Gamma_1^x, \mu^x, \mathcal{O}^x)$, where

$$\Gamma_0^x = F_x \cup G_x.$$
If a product or concatenation c is defined on the set Γ^3_0 in the following fashion:

$$c(\delta) = \begin{cases} a_{p}^{q+1}, & \text{if } \delta = a_{p}^{q}, \\ b_{p}^{q}, & \text{if } \delta = a_{p}^{q}, \\ a_{p+1}^{q+1}, & \text{if } \delta = b_{p}^{q}, \\ b_{p+1}^{q+1}, & \text{if } \delta = b_{p}^{q}, \end{cases} \tag{11}$$

for suitable integers p and q.

Then the word w_{V} associated with a polygon $V \in \Gamma^3_1$ has the form $w_{V} = \delta_1 \ldots \delta_{2n} = \prod_{h=1}^{2n} \delta_h$, where $\delta_1 = a_1^1$ and $\delta_q = c(\delta_{q-1})$.

The orientation O^x is defined by an order $< satisifying the following conditions: Successor sequences associated with vertices can be defined by adopting the following relation

$$V < V' \quad \text{if and only if there exists a positive integer } r \text{ such that}$$

$$\mathfrak{r}^x_{V} = \mathfrak{r}^x_{V'} \text{ if } 0 < r < r,$$

$$\mathfrak{r}^x_{V} < \mathfrak{r}^x_{V'} \text{ if } r = r.$$

where \mathfrak{r}^x_{V} is the number of a words appearing before the first occurrence of an $r_{g-\delta}$ word in V.

If no confusion arises, henceforth, we will write polygons in terms of their corresponding words. In successor sequences polygons $V_j \in \Gamma^3_1$ are (linearly) ordered in the form $V_1 < V_2 < \ldots$, where

$$V_1 = \prod_{q=1}^{n} a_0^q \prod_{p=0}^{n} b_0^p, \quad V_2 = \prod_{q=1}^{n-1} a_0^q (b_0^{n-1} a_0^q) \prod_{p=1}^{n} b_0^p, \ldots \tag{13}$$

Remark 1. It is worth pointing out that under these circumstances, it is easy to prove that there is a bijection between words of type V_i and Dyck paths of type p_{2n}.

The multiplicity function $\mu^x : \Gamma^3_0 \to \mathbb{N}^+$ is defined in such a way that

$$\mu^x(\delta) = 2, \text{ if } \text{val}(\delta) = 1, \quad \mu^x(\delta) = 1, \text{ otherwise}. \tag{14}$$

Brauer configurations of type Γ^x are called Catalan–Brauer configurations. We note that, if $V \in \Gamma^x_1$, then $\text{occ}(a_0^{x^2}, V)$ is given by an entry of the $(\frac{x(x+1)}{2} + x_2 - \frac{1}{2})$-row of the $x \times x$-matrix $A_1 = (a_{ij}^x)$ shown in Figure 3 (see identities (2)). On the other hand, the same row in a matrix $B_1 = (b_{ij}^x)$ of the same size gives $\text{occ}(b_1^{x^2}, V)$. Note that, $A_1 = B_1 = (1)$.

Entries of Matrix $A_{x-1}^{p,p(x-1,p+1)} = (a_{i,j}^{x-1,p})$ are given by the following identities:

$$a_{i,j}^{x-1,p} = \begin{cases} a_{i,j}^{x-1,p}, & \text{if } i > p, \\ 0, & \text{otherwise}, \end{cases} \tag{15}$$

where $0 \leq p \leq x - 1$.

Entries $b_{i,j}^{x-1,p} \in B_{x-1}^{p,p(x-1,p+2)}$ are given by the same formulas for $-1 \leq p \leq x - 1$.
The admissible ideal I associated with the Brauer configuration Γ^x is generated by the following set of relations.

- Relations of type I.

\[
\prod_{h \in \{q_{t_1}, \ldots, q_{t_{k-1}}\}} a_{h_1}^{p_1} \prod_{h \in \{q_{t_1}, \ldots, q_{t_{k-1}}\}} a_{h}^{p_k} = \cdots = \prod_{h \in \{q_{t_1}, \ldots, q_{t_{k-1}}\}} a_{h}^{p_k} \prod_{h \in \{q_{t_1}, \ldots, q_{t_{k-1}}\}} a_{h}^{p_k}.
\]

\[
\prod_{h \in \{q_{t_1}, \ldots, q_{t_{k-1}}\}} b_{h_1}^{p_1} \prod_{h \in \{q_{t_1}, \ldots, q_{t_{k-1}}\}} b_{h}^{p_k} = \cdots = \prod_{h \in \{q_{t_1}, \ldots, q_{t_{k-1}}\}} b_{h}^{p_k} \prod_{h \in \{q_{t_1}, \ldots, q_{t_{k-1}}\}} b_{h}^{p_k}.
\]

\[
\prod_{h \in \{q_{t_1}, \ldots, q_{t_{k-1}}\}} b_{h_1}^{p_1} \prod_{h \in \{q_{t_1}, \ldots, q_{t_{k-1}}\}} b_{h}^{p_k} = \cdots = \prod_{h \in \{q_{t_1}, \ldots, q_{t_{k-1}}\}} b_{h}^{p_k} \prod_{h \in \{q_{t_1}, \ldots, q_{t_{k-1}}\}} b_{h}^{p_k}.
\]

\[
q_{w w} = q_{w w'} = q_{w'^1}, \text{ for any } w, w' \text{ and } z, 1 \leq q_{w_1} \leq p_{x, 2}, p_1, \ldots, p_t, p_{t_1}', \ldots, p_{t_k}' \in \{1, 2, \ldots, \frac{x(x+1)}{2}\}.
\]
• Relations of type II.
\[\prod_{h \in \{q_{i_1}, \ldots, q_{i_l} \}} a_h^{p_h} \prod_{h \in \{q_{i_{l+1}}, \ldots, q_{i_q} \}} b_h^{p'_h}, \]
\[\prod_{h \in \{q_{i_1}, \ldots, q_{i_l} \}} b_h^{p'_h} \prod_{h \in \{q_{i_{l+1}}, \ldots, q_{i_q} \}} b_h^{p'_h}, \]
for appropriated positive integers \(p_r \in \{p_1, \ldots, p_l \} \) and \(p'_f \in \{p'_1, \ldots, p'_r \} \).

• Relations of type III.
\[a_{q_i}^{p_i} a_{q_0}^{p_0}, \quad a_{q_i}^{p_i} b_{q_0}^{p'_0}, \quad b_{q_0}^{p'_0} a_{q_i}^{p_i}, \quad b_{q_0}^{p'_0} b_{q_0}^{p'_0}, \]
for all the possible products in \(\Lambda_{\Gamma^x} \).

We let \(\Lambda_{\Gamma^x} = \mathbb{F}Q_{\Gamma^x} / I^x \) denote the Catalan–Brauer configuration algebra induced by the Brauer configuration \(\Gamma^x \).

As an example, we define the Catalan–Brauer configuration \(\Gamma^2 = (\Gamma^2_0, \Gamma^2_1, \mu^2, \mathcal{O}^2) \), for which
\[\Gamma^2_0 = \{a_0, b_0, a_1^2, b_1, b_1^2, b_1^3 \}, \]
\[\Gamma^2_1 = \{V_1, V_2\}, \quad w_{V_1} = a_1^2 b_1^2 b_1^3, \quad w_{V_2} = a_1^2 b_1^2 b_1^3. \]
\[\mu^2(\delta) = 1, \text{ if } \delta \in \{a_0, b_1^2\}, \quad \mu^2(\delta) = 2, \text{ otherwise.} \]
\[V_1 < V_2, \text{ in any successor sequence.} \]

The following are the matrices \(A_2 \) and \(B_2 \).
\[A_2 = \begin{pmatrix}
\text{occ}(a_0^1, V_1) & \text{occ}(a_0^1, V_2) \\
\text{occ}(a_0^2, V_1) & \text{occ}(a_0^2, V_2) \\
\text{occ}(a_1^2, V_1) & \text{occ}(a_1^2, V_2)
\end{pmatrix}, \]
\[B_2 = \begin{pmatrix}
\text{occ}(b_0^1, V_1) & \text{occ}(b_0^1, V_2) \\
\text{occ}(b_0^2, V_1) & \text{occ}(b_0^2, V_2) \\
\text{occ}(b_1^2, V_1) & \text{occ}(b_1^2, V_2)
\end{pmatrix}. \]

Figure 4 shows the Brauer quiver \(Q_{\Gamma^2} \).

\[Q_{\Gamma^2} = \]

![Brauer quiver associated with a Catalan–Brauer configuration algebra \(\Lambda_{\Gamma^2} \).](image)

Identities (17)–(19) induce the following set of relations \(p_{\Gamma^2} \):

- \(l_u^1 l_v^1, \quad (l_u^1)^3, \quad l_u^1 a_0^1, \quad l_u^1 b_0^1 \), For all possible values of \(u \) and \(v \);
- \(l_b^1 a_0^2, \quad l_b^1 b_0^1, \quad a_0^2 b_0^1 \), For all possible values of \(i, u \) and \(v \);
- \(C_{u_i} \sim C_{v_j} \), for all special cycles associated with vertices \(u_i, v_j \in V_i, i = 1, 2 \);
- \(C_{u_i} a, \) for any special cycle associated with a vertex \(u_i \in \Gamma_0, a \) is the first arrow of \(C_{u_i} \).
The Catalan–Brauer configuration algebra \(\Lambda_{\Gamma_2} \) is defined in such a way that
\[
\Lambda_{\Gamma_2} = FQ_{\Gamma_2}/I_{\Gamma_2},
\]
where \(I_{\Gamma_2} = \langle \rho_{\Gamma_2} \rangle \) is an admissible ideal generated by relations \(\rho_{\Gamma_2} \). Figure 5 shows the indecomposable projective \(\Lambda_{\Gamma_2} \)-modules.

\[
\begin{align*}
P_1 &= V_2 \\
V_1 &\xrightarrow{\alpha_1} V_1 \\
V_2 &\xrightarrow{\beta_1} V_2 \\
V_1 &\xrightarrow{\gamma_1} V_1 \\
P_2 &= V_1 \\
V_1 &\xrightarrow{\alpha_2} V_1 \\
V_2 &\xrightarrow{\beta_2} V_2 \\
V_1 &\xrightarrow{\gamma_2} V_1
\end{align*}
\]

Figure 5. Indecomposable projective \(\Lambda_{\Gamma_2} \)-modules. Note that the number of composition series equals the number of non-truncated vertices in the corresponding polygon.

3.2. Dimension of a Catalan–Brauer Configuration Algebra and Its Corresponding Center

The dimensions of the Catalan–Brauer configuration algebras are given in this section based on a new family of integer sequences, whose elements are related to Catalan triangle entries.

Let \(h_{p,q}^x \) be integer numbers, such that
\[
\begin{align*}
h_{p,q}^1 &= 1, \\
h_{p,q}^x &= \sum_{c-d=p-q} h_{x-1,d}^c \text{ if } x > 1, \\
h_{p,q}^x &= 0 \text{ if } q \leq 0,
\end{align*}
\]

\[p \geq x - 1 \quad q \leq p, \quad 1 < x < p + 1. \]

Figure 6 shows integer sequences \(h_{p,q}^x \) for \(x = 2, \ldots, 5. \)

\[
\begin{array}{cccccccccc}
x & p & q & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
& 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
& 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
& 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
& 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
& 10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\end{array}
\]

Figure 6. Numbers \(h_{p,q}^x \) for \(2 \leq x \leq 5, \ q \)

Arithmetic properties of numbers \(h_{p,q}^x \) are given by the following Propositions 1–3.

Proposition 1. \(h_{p,q}^x = h_{p,q}^{x-1} + h_{p-1,q}^{x-1} \) for \(p \geq 1, \ q \leq p, \ and \ 1 < x < p + 1. \)

Proof. If \(p = 1, \ h_{1,q}^1 = h_{1,1}^0 + h_{1,0}^1 = 1. \)
We suppose that the statement holds true for \(p = m + 1 \) and \(x = 2 \),
\[
h_{2,2}^{m+1} = \sum_{q=0}^{m+1} b_{1,q}^{m+1} = (m - q) + 1 = \sum_{q=0}^{m+1} b_{1,q}^{m} = h_{2,2}^{m+1} + h_{1,1}^{m},
\]
if it is assumed that the proposition holds for \(x = i - 1 < m + 1 \). Then
\[
h_{i+1,j+1}^{m+1} = \sum_{q=0}^{m+1} b_{i-1,q}^{m+1} = \sum_{q=0}^{m+1} b_{i-1,q}^{m} = h_{i+1,j+1}^{m+1} + b_{j,j}^{m}.
\]

The result follows by induction. We are done. \(\square \)

Proposition 2. \(h_{x,p+1}^{p} = h_{x,p}^{p} \) for \(p \geq 1 \) and \(1 < x \leq p + 1 \).

Proof. If \(p = 1 \) then \(h_{2,2}^{1} = 1 = h_{1,1}^{1} \). If the proposition is valid for \(p = i \) and \(1 < x < i + 1 \), then the following identities hold for \(p = i + 1 \) and \(x = 2 \).
\[
h_{2,i+2}^{i+1} = \sum_{q=0}^{i+1} b_{1,q}^{i+1} = \sum_{q=0}^{i+1} b_{1,q}^{i} = h_{2,i+1}^{i+1}.
\]

If the validity of the proposition holds for \(x = i - 1 < i + 2 \), then
\[
h_{i+1,i+2}^{i+1} = \sum_{q=0}^{i+2} b_{i-1,q}^{i+1} = \sum_{q=0}^{i+2} b_{i-1,q}^{i} = h_{i+1,i+1}^{i+1}.
\]

Thus, the statement holds by induction. We are done. \(\square \)

Proposition 3. For \(p \geq k - 1 \), \(1 \leq q \leq p + 2 - k \), and \(k \geq 1 \) fixed, it holds that \(h_{k,\ell}^{p} = (2k-p+q) \).

Proof. To proceed by induction, we note that for any \(q \geq 1 \), \(h_{k,q}^{1} = 1 \), and \(h_{k,q}^{1} = q \). Since \(h_{k,q}^{p} = h_{k,q}^{p-1} + h_{k,q}^{p-1} \). It holds that \(h_{k,q}^{p} = (2k-p+q) + (2k-p+q+1) = (2k-p+q+1) \). We are done. \(\square \)

Lemma 1 and Proposition 4 give the relationships between integer numbers \(h_{x,q}^{p} \) and entries of Catalan triangle \(p_{x,y} \) (see identities (2)).

Lemma 1. \(p_{x,x+1-m} = \sum_{q=1}^{x} h_{x,q}^{m-1} \) for \(x \geq 1 \), \(1 \leq m \leq x \).

Proof. If \(x = 1 \), \(p_{1,1} = 1 = h_{1,1}^{0} \). If it is assumed that the result is valid for \(x = i \) and \(1 \leq m \leq i \). Thus, if \(x = i + 1 \) and \(m = 1 \), it holds that \(\sum_{q=1}^{i} h_{i,q}^{1} = i + 1 = p_{i+1,i+1} \).

If the lemma holds true for \(m = i - 1 < i + 1 \), then
where,

\[\sum_{q=1}^{i+1} b_{i,q}^{+1} = \sum_{c-d=i-1} b_{i-1,d}^c + \cdots + \sum_{c-d=1} b_{i-1,d}^c \]

Proof. If \(s \) is a list of column vectors associated with a list of column vectors \(D \), \(F \), \(V \), \(E \). Each\(M \) is defined as

\[M = (v_{p,q})_{1 \leq p \leq m, 1 \leq q \leq n} \]

with entries in a commutative ring \(R \) has associated a list of column vectors \(E^M = (\nu_M, \nu_{M,v}, D_{M,v}, C_{M,v}, g^M_{M,v}) \).

(22)

Each \(m \times n \)-matrix \(M = (m_{pq})_{1 \leq p \leq m, 1 \leq q \leq n} \) with entries in a commutative ring \(R \) has associated a list of column vectors

\[E^M = (\nu_M, \nu_{M,v}, D_{M,v}, C_{M,v}, g^M_{M,v}) \].

where,

\[\nu_M = (\nu_{M,1})_{1 \leq p \leq m}, \quad \nu_{M,p} = \sum_{q=1}^{n} m_{pq}, \]

\[\nu_{M,v} = (\nu_{M,v,1})_{1 \leq p \leq m}, \quad \nu_{M,v} = \nu_{M,1} \text{ for } 1 \leq p \leq v, \quad \nu_{M,v} = 0 \text{ otherwise,} \]

\[D_{M,v} = (d_{M,v,1})_{1 \leq p \leq m}, \quad D_{M,v} = 0 \text{ for } 1 \leq p \leq v, \quad d_{M,v} = \nu_{M,v} \text{ otherwise,} \]

\[C_{M,v} = (c_{M,v,1})_{1 \leq p \leq m}, \quad C_{M,v} = d_{M,v} \text{ for } 1 \leq p \leq v, \quad c_{M,v} = d_{M,v} - v_{k,v} \text{ for } v+1 \leq p \leq m, \]

\[g^M_{M,v} = \nu_M - g_{M,v} \].

(23)
Remark 2. Henceforth, we will assume the notation $\phi_0(A_{x,p}^{p_{x,p}+1}) = (a_i^{x,p})_{1 \leq i \leq \frac{x(x+1)}{2}}$ and $\phi_0(B_{x}^{p_{x,p}+1}) = (b_i^{x,p})_{1 \leq i \leq \frac{x(x+1)}{2}}$.

The following result holds for maps $\phi_v : M_{m \times n}(F) \rightarrow M_{m \times 1}(F)$, $\phi_v : M_{m \times n}(F) \rightarrow M_{m \times 1}(F)$, such that, $\phi_v(M) = \mathcal{D}_{M,x}$, and $\phi_v(M) = \mathcal{F}_{M,v}$. For instance,

$$\phi_0(A_2) = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \quad \phi_1(A_2) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \text{and} \quad \phi_1(A_2) = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}. \quad (24)$$

Lemma 2. Let A_x and B_x be the matrices given in Figure 3. Then

1. $\phi_0(A_{x}^{p_{x,p}+1}) = \begin{cases} \phi_0(A_x), & \text{if } p = 0, \\ \phi_1(A_{x}^{p-1,p_{x,p}}), & \text{if } p = 1, \\ \phi_p(A_{x}^{p-1,p_{x,p}}) + \phi_x(A_{x-1}^{p-2,p_{x-1,p-1}}), & \text{if } 2 \leq p \leq x - 1, \end{cases}$

2. $\phi_0(B_{x}^{p_{x,p}+1}) = \begin{cases} \phi_0(B_x), & \text{if } p = 0 \text{ or } p = -1, \\ \phi_p(B_{x}^{p-1,p_{x,p}+1}) + \phi_x(B_{x-1}^{p-2,p_{x-1,p-1}}), & \text{if } 1 \leq p \leq x - 1. \end{cases}$

For $x > 0$.

Proof. (i) Let $A_x = (a_{i,j}^x)$ be an $\frac{x(x+1)}{2} \times p_{x,2}$ matrix, and $A_{x}^{p_{x,p}+1} = (a_{i,j}^{x,p})$ be an $\frac{x(x+1)}{2} \times p_{x,p+1}$ matrix, whose entries satisfy identities (15).

- If $p = 0$ then $A_{x}^{0,p_{x,1}}$ is a matrix with $p_{x,1}$ columns. Then $a_i^{x,0} = v_i \cdot a_i^x$ for $1 \leq i \leq \frac{x(x+1)}{2}$, provided that, $p_{x,1} = p_{x,2}$, $a_{i,j}^{x,0} = a_{i,j}^x$;

- If $p = 1$ then $A_{x}^{1,p_{x,2}}$ is a matrix with $p_{x,2}$ columns, $a_i^{x,1} = a_i^{x,0}$ for $2 \leq i \leq \frac{x(x+1)}{2}$, i.e., $a_i^{x,1} = v_i \cdot a_i^x$ for $2 \leq i \leq \frac{x(x+1)}{2}$, and $a_1^{x,1} = 0$;

- If $2 \leq p \leq x - 1$, and $A_{x}^{p_{x,p}+1}$ is a matrix with $p_{x,p+1}$ columns. In this case, the entries of the matrix $(A_{x}^{p_{x,p}+1})'$ obtained from matrix $A_{x}^{p_{x,p}+1}$ by deleting the p-th row and all columns C_j, $p_{x,e+1} \leq j \leq p_{x,p}$ equals $A_{x}^{p_{x,1} - 1,p_{x-1,p-1}}$. Thus, the matrix $A_{x-1}^{p_{x-1,p-1}}$ provides entries in columns C_j, for which $x + 1 \leq j \leq \frac{x(x+1)}{2}$, i.e.,

$$a_i^{x,p} = \sum_{q=1}^{p_{x,p}} a_{i,q}^{x,p-1} - \sum_{q=1}^{p_{x-1,p-1}} a_{i-x,q}^{x-1,p-2},$$

for $x + 1 \leq i \leq \frac{x(x+1)}{2}$ and $a_i^{x,0} = 0$, otherwise.

The item 2 can be proved by using similar arguments as in the case 1. We are done. \(\square\)

The following notation is assumed in the proof of Proposition 5.

- $a_s = 1 + w - (s + 1) - \frac{s(s+1)-k(k+1)}{2}$;
- $b_s = s - k + w - (s + 1) - \frac{s(s+1)-k(k+1)}{2}$;
- $c_s = s - k + w - (s + 1) - \frac{s(s+1)-k(k+1)}{2} + 1 - (v - 1)$;
- $d_s = 1 + w - (s+2)(s+1) - \frac{s(s+1)-k(k+1)}{2}$;
- $d_s = 1 + w - \frac{s(s+1)-k(k+1)}{2}$;
- $e_s = s - k + w - \frac{s(s+1)-k(k+1)}{2} + 1$;
- $f_s = s - k + w - \frac{s(s+1)-k(k+1)}{2} + 1 - (v - 1)$;
- $g_s = s - k + w - \frac{s(s+1)-k(k+1)}{2}$.
\[h_s = w - \frac{(s+2)(s+1)-k(k+1)}{2}, \]
\[j_s = s + 1 - k + w - \left(\frac{(s+2)(s+1)-k(k+1)}{2} + 1\right); \]
\[k_s = v + w - (s + 1) - \frac{s(s+1)-k(k+1)}{2}. \]

Proposition 5. Let \(A_x \) and \(B_x \) be the matrices shown in Figure 3. Then, the following identities hold.

1. \(a^{x,p}_{s,0} = p_kd_s b^{1}_{x-k+1} \) for \(0 \leq u \leq x - 1; \)
2. \(b^{x,p}_{s,w} = p_{k-1,(d_s+1)} b^{1}_{(x-k+1)c_s-1} \) for \(-1 \leq u \leq x - 1, \)

with \(\frac{n(n+1)-k(k+1)}{2} \leq w \leq \frac{s(s+1)-k(k+1)}{2} \) for \(1 \leq k \leq x, \) and \(x > 1. \)

Proof.

1. If \(x = 2 \) and \(v = 0, \) then \(\phi_0(A_2^{0,0}) = \phi_0(A_2). \) Thus,
\[
\begin{align*}
a^{2,0}_1 &= 2 = p_{2,1}, \\
a^{2,0}_2 &= 1 = p_{2,2}, \\
a^{2,0}_3 &= 1 = p_{1,2}.
\end{align*}
\]

If \(v = 1 \) then \(\phi_0(A_2^{1,2}) = \phi_1(A_2), \)

\[
\begin{align*}
a^{1,1}_1 &= 0 = p_{2,1}, \\
a^{1,1}_2 &= 1 = p_{1,1}, \\
a^{1,1}_3 &= 1 = p_{1,2}.
\end{align*}
\]

If the result is valid for \(x = s \) and \(0 \leq u \leq s. \) Moreover, \(\phi_0(A_3^{0,1}) = \phi_0(A_{s+1}) \) if \(x = s + 1 \) and \(v = 0 \) (see Lemma 2). \(a^{s+1,0}_{s+1} = p_{s+1,w} + w b^{s+1}_{s+1} = 0 \leq s + 1. \)

The rows between \(s + 2 \) and \(\frac{(s+1)(s+2)}{2} \) satisfy the following identities.
\[
a^{s+1,0}_{s+1} = \sum_{t=0}^{s-1} p_k d_s b^{t}_{s+1-k} = p_k d_s \sum_{t=0}^{s-1} b^{t}_{s+1-k} = p_k d_s, b^{t}_{s+1-k}, \]
with \(1 \leq k \leq m. \)

If \(v = 1, \) then \(\phi_0(A_{s+1}^{1,1}) = \phi_1(A_{s+1}^{0,1}) \). Thus, \(a^{s+1,1}_1 = 0 = p_{s+1,0} b^{0}_{s+1} \), and
\[
a^{s+1,1}_s = a^{s+1,0}_s = p_k d_s b^{s}_{s+2-k}, \]
with \(w \neq 1, \) and \(1 \leq k \leq s + 1. \)

If the proposition holds for \(v = p - 1 < s. \) Therefore, it holds that \(\phi_0(A_{s+1}^{0,p}) = \phi_0(A_{s+1}^{0,p}) + \phi_{s+1}(A_s^{0,2}) \) if \(v = p \) (see Lemma 2).
\[
a^{p+1,0}_{s+1,0} = 0 = p_{s+1,w} h^{s+1}_{s+1}, \]
for \(w = 1, \)
\[
a^{p+1,1}_{s+1,0} = 1 = p_{s+1,0} b^{w}_{s+1}, \]
for \(w = s + 1. \)

Proposition 1 implies that
\[
a^{p+1,1}_{s+1,0} = p_k d_s b^{s}_{s+2-k}, \]
for \(1 \leq k \leq s. \)

The proof of case 2 requires similar arguments as those exposed in case 1. We are done. \(\square \)
The following map \(\delta : \mathbb{N} \rightarrow \{1, 2\} \) such that
\[
\delta(x) = \begin{cases}
1, & \text{if } x \neq 2, \\
2, & \text{if } x = 2.
\end{cases}
\]
is used to give dimension formulas for Catalan–Brauer algebras \(\Gamma^x \) and their centers.

Theorem 2. Let \(\Lambda^{\Gamma^x} \) be a Catalan–Brauer configuration algebra. Then

1. \(\dim_F \Lambda^{\Gamma^x} = \frac{1}{x+1} \binom{2x}{x} + \delta(x) + \frac{x(x+1)}{1+1} \left(t_{(a^x_0, 0)} - 1 + t_{(b^x_0, 0)} - 1 \right) \).

2. \(\dim_F Z(\Lambda^{\Gamma^x}) = 1 + 2\delta(x) + \frac{1}{x+1} \binom{2x}{x} \).

where, \(x > 0 \) and \(t_i \) denotes the \(i \)th triangular number.

Proof.

1. Firstly, we note that the number of vertices in the Brauer quiver \(Q^{\Gamma^x} \) is given by the \(x \)th Catalan number \(C_x = \frac{1}{x+1} \binom{2x}{x} \). Secondly, we note that \(\text{val}(a^x_0) \) (resp. \(\text{val}(b^x_0) \)) is given by \(a^x_0 = xx_1 + x_2 - \frac{x_1(x_1+1)}{2} \) (resp. \(b^x_0 = xx_1 + x_2 - \frac{x_1(x_1+1)}{2} \)).

As a consequence of Proposition 5, we have that \(a^x_0 = 1 = b^x_0 \) for any \(x \). In particular, for \(x = 2 \), it holds that \(a^0_2 = b^0_2 = 1 \).

2. \(\#\text{Loops}(Q^{\Lambda^{\Gamma^x}}) = |E^{\Lambda^{\Gamma^x}}| \) (see identity (8)).

As an example, the following are the dimensions associated with the Brauer configuration (20). We note that for \(x = 2 \), it holds that \(C_2 = 2, a^2_0 = b^2_0 = 2 = b^2_0 \), and \(a^2_0 = a^2_0 = b^2_0 = 1 \). Thus
\[
\dim_F \Lambda^{\Gamma^2} = 2(C_2 + \delta(2)) + 12 - 8 = 2(2 + 2) + 4 = 12,
\]
and
\[
\dim_F Z(\Lambda^{\Gamma^2}) = 1 + 2\delta(2) + C_2 = 7.
\]

4. Concluding Remarks

Catalan–Brauer configuration algebras (CBCAs) is a way to relate Catalan combinatorics with the BCAs theory. Dimension formulas of such CBCAs and their centers can be obtained by using entries of the Catalan triangle. The procedure interprets such entries as numbers of some novel integer sequences \(h_i \) dealing with binomial numbers.

It is an interesting task for the future to investigate additional relationships between sequences \(h_i \) and different Catalan objects.

Author Contributions: Investigation, writing, review and editing, A.M.C., G.B.R. and I.D.M.G. All authors have read and agreed to the published version of the manuscript.

Funding: Seminar Alexander Zavadskij on Representation of Algebras and their Applications, Universidad Nacional de Colombia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are indebted to the anonymous referees for their helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.
Abbreviations
The following abbreviations are used in this manuscript:

- BCA : Brauer Configuration Algebra
- \(C_n \) : \(n \)th Catalan number
- \(C(n,k) \) : Catalan triangle entry
- \(\dim_{F} \Gamma \) : Dimension of a Brauer configuration algebra
- \(\dim_{F} Z(\Gamma) \) : Dimension of the center of a Brauer configuration algebra
- CBCA : Catalan-Brauer Configuration Algebra
- \(\mathbb{F} \) : Field
- \(\Gamma_0 \) : Set of vertices of a Brauer configuration \(\Gamma \)
- \(\text{occ}(\alpha, V) \) : Number of occurrences of a vertex \(\alpha \) in a polygon \(V \)
- \(t_n \) : \(n \)th triangular number
- \(V_i^{(\alpha)} \) : Ordered sequence of polygons
- \(\text{val}(\alpha) \) : Valency of a vertex \(\alpha \)
- \(w_V \) : The word associated with a polygon \(V \)

References
1. Stanley, R.P. *Enumerative Combinatorics*; Cambridge University Press: Cambridge, UK, 1999; Volume 2.
2. Caldero, P.; Chapoton, F.; Schiffler, R. Quivers with relations arising from clusters (\(A_n \) case). *Trans. Am. Math. Soc.* 2006, 358, 1347–1364. [CrossRef]
3. Cañadas, A.M.; Gaviria, I.D.M.; Espinosa, P.F.F.; Rios, G.B. Coxeter’s frieze patterns arising from Dyck paths. *Ric. Mat.* 2021. [CrossRef]
4. Green, E.L.; Schroll, S. Brauer configuration algebras: A generalization of Brauer graph algebras. *Bull. Sci. Math.* 2017, 121, 539–572. [CrossRef]
5. Espinosa, P.F.F. Categorification of Some Integer Sequences and Its Applications. Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2021.
6. Cañadas, A.M.; Gaviria, I.D.M.; Vega, J.D.C. Relationships between the Chicken McNugget Problem, Mutations of Brauer Configuration Algebras and the Advanced Encryption Standard. *Mathematics* 2021, 9, 1937. [CrossRef]
7. Sapir, M.V. *Combinatorial Algebra: Syntax and Semantics*; Guba, V.S., Volkov, M.V., Contributor; Springer Monographs in Mathematics; Springer: Cham, Switzerland, 2014; 355p. ISBN 978-3-319-08030-7/hbk/978-3-319-08031-4/ebook.
8. Ufnarovskij, V.A. Combinatorial and asymptotic methods in algebra. *Algebra VI. Encycl. Math. Sci.* 1995, 57, 1–196; Translation from *Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika* 1988, 57, 5–177.
9. Belov, A.Y.; Borisenko, V.V.; Latyshev, V.N. Monomial algebras. *J. Math. Sci. (N. Y.)* 1997, 87, 3463–3575. [CrossRef]
10. Lee, K.H.; Oh, S. J. Catalan triangle numbers and binomial coefficients. *Contemp. Math. Am. Math. Soc.* 2018, 713, 165–185.
11. Schroll, S. Brauer Graph Algebras. In *Homological Methods, Representation Theory, and Cluster Algebras, CRM Short Courses*; Assem, I., Trepode, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 177–223.
12. Sierra, A. The dimension of the center of a Brauer configuration algebra. *J. Algebra* 2018, 510, 289–318. [CrossRef]