Clinical Case Reports

CASE REPORT

Clinical whole exome sequencing from dried blood spot identifies novel genetic defect underlying asparagine synthetase deficiency

Avinash Abhyankar1, Michelle Lamendola-Essel1, Kelly Brennan2, Jessica L. Giordano2, Cecilia Esteves1, Vanessa Felice1, Ronald Wapner2 & Vaidehi Jobanputra1,3

1Molecular Diagnostics, New York Genome Center, New York city, New York
2Department of Obstetrics & Gynecology, Columbia University Medical Center, New York city, New York
3Department of Pathology and Cell Biology, Columbia University Medical Center, New York city, New York

Correspondence
Vaidehi Jobanputra, New York Genome Center, 101 Avenues of the Americas, New York, NY 10013. Tel: +1 (646) 977-7092; Fax: +1 (646) 977-7008; E-mail: vjobanputra@nygenome.org

Funding Information
No sources of funding were declared for this study.

Received: 18 May 2017; Revised: 11 September 2017; Accepted: 12 October 2017

Clinical Case Reports 2018; 6(1): 200–205
doi: 10.1002/ccr3.1284

Key Clinical Message
We add two novel variants to the existing mutation spectrum of ASNS gene. Loss of ASNS function should be suspected in newborns presenting with congenital microcephaly, intellectual disability, progressive cerebral atrophy, and intractable seizures. Acquisition and sequencing of stored newborn blood spot can be a valuable option when no biological samples are available from a deceased child.

Keywords
Archived newborn blood spot, asparagine synthetase, asparagine synthetase deficiency, dried blood spot, whole exome sequencing.

Introduction
Loss of function of the ASNS gene has been reported to cause a rare and severe neurologic disorder. Ruzzo et al. reported the first characterization of ASNS deficiency (ASNSD) in four families presenting with congenital microcephaly, intellectual disability, progressive cerebral atrophy, intractable seizures, and recessive mutations in ASNS [1]. To date, ASNS deficiency has been reported in 16 cases evaluated for a range of brain abnormalities coupled with epileptic encephalopathy and global developmental delay. ASNS is expressed in most mammalian cells and encodes an enzyme that catalyzes the transfer of ammonia from glutamine to aspartic acid to form asparagine [2]. We report two novel compound heterozygous variants in ASNS using DNA isolated from archived newborn blood spots collected as part of a routine neonatal screening program.

Case
The proband was a 32-week neonate delivered following preterm labor who presented with clonic tremors, microcephaly, cerebellar hypoplasia, blindness, and seizures. Karyotype, microarray, and metabolic testing were all normal. MRI revealed increased extra-axial space, shortened frontal lobe, diffuse simplified gyral pattern more severe frontally, small, normal basal ganglia and thalami, reduced volume of white matter, mildly enlarged third and lateral ventricle, cavum septum pellucidum et vergae, thin corpus callosum, and mild brainstem hypoplasia due to flat base of the pons, and moderate cerebellar hypoplasia. The child had congenital microcephaly with low-sloping forehead, hypertonia, developmental delay, moderate sleep apnea, gastrointestinal reflux, epilepsy, and died at 15 months of age without a definitive diagnosis. Two years after the death of the child the...
Table 1. Annotated list of variants in this and earlier reports.

| Author (First author of the report); Case (case number in the report); Coordinates (genomic coordinate of reported variation); Consequence (consequence of the genomic variation); HGVS.c (DNA change in HGVS nomenclature); HGVS.p (amino acid change in HGVS nomenclature); Zygosity (reported zygosity of the variation); Inheritance (AR – autosomal recessive, ARCH – autosomal recessive compound heterozygous); Existing_Variation (rsID if the variation is found in dbSNP); ExAC_MAF (minor allele frequency in Exome Aggregation Consortium database – reported in Allele: MAF format); SIFT (SIFT prediction and score); PolyPhen (PolyPhen prediction and score). Asterisk (*) before NM_ indicates that the original publication did not specify the transcript identifier and was inferred from the reported variation. |
parents presented to our prenatal diagnosis center inquiring about risks to a future pregnancy. WES was suggested but no DNA or tissue specimen existed. Subsequently, the child’s newborn screening blood spot filter paper was obtained from the New York State Department of Health lab for WES testing.

Methods

We received filter paper with one dried blood spot. Punch biopsies of the spots (3 mm) were placed directly in 20 μl of lysis solution from the Extract-N-Amp kit (Sigma-Aldrich, St. Louis, MO, USA). DNA was isolated following the manufactures protocol. Whole genome amplification was performed in duplicate using the Repli-g Amplification kit (Qiagen, Hilden, Germany). Peripheral blood drawn from both parents was obtained and DNA isolated using standard methods in the clinical laboratory. An exome library was prepared using SureSelectXT Human All Exon V5+UTR kit (Agilent Technologies, Santa Clara, CA, USA) according to the manufacturer’s protocol. Paired-end WES was performed on the HiSeq 2500 (Illumina, San Diego, CA, USA) to provide a mean sequence coverage of more than 100x with 98% of the target bases at least 20x coverage.

Data analysis

Data preprocessing was performed following the GATK best practices guidelines as follows

Raw reads were aligned to NCBI genome build 37 using Burrows-Wheeler Aligner (BWA) [3]. Picard tools were used to mark duplicate reads [4]. Base Quality Score Recalibration (BQSR) was performed using Genome Analysis Toolkit (GATK) [5]. Local realignment around indels was performed using GATK. Variant discovery was performed in two steps: Single-sample variant calls were discovered using GATK HaplotypeCaller. This was followed by jointly genotyping the single-sample gVCFs for the family along with gVCFs from 50 matched samples. Variant Quality Score Recalibration (VQSR) was performed using GATK. Truth sensitivity thresholds of 99.8 and 99.0 were used for SNVs and INDELs, respectively. Variant effects were predicted using SnpEff [6]. Additional annotations including variant frequencies in different populations, cross species conservation scores, functional prediction scores, variant disease associations, regulatory annotations, and gene ontology annotations were performed using BCFTools [7] and in-house software. Pedigree-aware variant categorization and functional prioritization were performed using software developed in-house.

Results

A dried blood spot (DBS) typically provides a very limited amount of starting material for DNA extraction and library preparation invariably requiring whole genome amplification (WGA) to achieve sufficient DNA for exome capture. Accordingly, to establish the quality of the DNA library derived from the DBS, we extensively analyzed sequencing quality (Table S1) compared with peripheral whole blood specimens. DBS and whole blood exome libraries showed comparable performance across all metrics evaluated. We achieved 264x mean target coverage for the proband while the parents were covered at 144x and 152x. There was a marginal increase in the number of bases covered outside the exome target region (off-target coverage) and AT dropout for the DBS library as compared to whole blood. Both differences are within acceptable ranges and expected to have little or no effect on the variant calling owing to (1) high mean target coverage providing adequate read depth in AT- or GC-rich target regions and (2) variant calling is performed only in the target regions eliminating erroneous off-target calls.

Variant prioritization workflow which includes filtering based on available phenotype information identified compound heterozygous (NM_001673.4:c.1097G>A and NM_001673.4:c.728T>C) variants in the asparagine synthetase domain of ASNS. The NM_001673.4:c.1097G>A variant was maternally inherited and the NM_001673.4:c.728T>C variant was paternally inherited. The amino acid changes NP_001664.3:p.Gly366Glu (NM_001673.4:c.1097G>A) and NP_001664.3:p.Val243Ala (NM_001673.4:c.728T>C) were predicted to be damaging/deleterious according to SIFT and Polyphen with CADD scores of 27.1 and 20.7, respectively. The NM_001673.4:c.1097G>A variant has not been reported in any large public data sets—1000 Genomes [8], ExAC [9], UK10K [10].

Figure 1. Location of reported ASNS mutations. Size of lollipop indicates the frequency of the reported mutation. Lollipop colors: Green=missense, Red=nonsense, Blue=frameshift. Uniprot/Swiss-prot accession P08243 was used for protein domain information..
Case	Developmental delay	Microcephaly	Cortical blindness	Seizures	MRI	Plasma asparagine level
Present report	–	Y	Y	Y	Y	NA
Alfadhel et al. [11]	Case 1	Y	Y	N	Y	Low
Case 2	Y	Y	N	Y	Low	
Seidahmed et al. [12]	Case 1	Y	Y	Y	Y	Normal
Case 2	Y	Y	Y	Y	Normal	
Yamamoto et al. [14]	Case 1	Y	Y	N	Y	Normal
Case 2	Y	Y	N	Y	Normal	
Sun et al. [13]	Case 1	Y	N	N	N	NA
Case 2	Y	Y	N	Y	Low	
Ruzzo et al. [1]	Case 1	Y	Y	N	Y	NA
Case 2	Y	Y	N	Y	Normal	
Case 3	Y	Y	N	Y	Normal	
Case 4	Y	Y	N	N	NA	
Case 5	Y	Y	N	N	Low	
Case 6	Y	Y	N	N	NA	
Case 7	Y	NA	N	Y	Low	
Case 8	Y	Y	N	Y	Normal	
Case 9	Y	Y	N	Y	NA	

NA, data not available.
NM_001673.4:c.728T>C is a rare variant, reported at a minor allele frequency of 0.0002 and 0.000008 in 1000 Genomes and ExAC, respectively with no homozygous G/G genotype reported in either databases. Proband and parental genotypes were confirmed by Sanger sequencing. Considering the in-silico predictions, location in the protein, extreme rarity in the population, and functional studies of variants in the vicinity, both variants are expected to affect the function of asparagine synthetase domain which is crucial for the function of ASNS.

Discussion

Recessive mutations in the ASNS gene have been shown to cause a syndrome characterized by congenital microcephaly, intellectual disability, progressive cerebral atrophy, and intractable seizures. Asparagine synthetase enzyme catalyzes ammonia transfer from glutamine to aspartic acid via a beta-aspartyl-AMP intermediate. ASNS protein contains two domains-Glutamine amidotransferases class-II domain (amino acids 2-206) and asparagine synthetase domain (amino acids 228-538). The variants we report and allencephalopathy related previously reported pathogenic variants lie in the highly conserved asparagine synthetase domain. Ruzzo et al. studied nine children from four families presenting with similar phenotypes and reported two missense mutations -c.1084T>G (p.F362V; NM_183356) and c.1648C>T (p.R550C; NM_183356) in the asparagine synthetase domain that dramatically reduce ASNS protein abundance [1]. The authors concluded that accumulation of aspartate/glutamate secondary to ASNS depletion in the brain resulted in the neurologic impairment. One of the two mutations reported in that study, c.1084T>G (p.F362V; NM_183356), is four residues upstream of NP_001664.3:p.Gly366Glu seen in our patient. HEK293 cells expressing c.1084T>G (p.F362V; NM_183356) mutant allele showed dramatic reduction in protein abundance. Additionally, Ruzzo et al. reported a hypomorphic ASNS mouse knockout with structural brain abnormalities and deficits in learning/memory. Subsequently, eight more cases of ASNSD have been reported in the literature [11–14]. An annotated list of variants including our case and the reported cases in the literature is compiled in Table 1 and Figure 1.

Based on sequence similarity, several active binding sites have been identified for ASNS including amino acid 365 (one amino acid upstream of NP_001664.3:p.Gly366Glu) which is important for beta-aspartyl-AMP intermediate formation. Additionally, amino acids 363-364 have been identified as the protein region which binds nucleotide phosphates. Taken together, and based on available data, the novel NP_001664.3:p.Gly366Glu change we identified appears to be crucial for enzymatic activity.

The NM_001673.4:c.1097G>A variant has not been reported in any public database while one heterozygous NM_001673.4:c.728T>C variant has been reported in 60481 individuals available in ExAC. The extreme rarity of both variants indicates mutational intolerance and functional importance. Considering the known association of ASNS to neurologic phenotypes along with the extreme rarity of both, NM_001673.4:c.1097G>A and NM_001673.4:c.728T>C variants and their proximity to known functionally important locations, we conclude that the compound heterozygous missense variants we report are relevant and most likely the cause of the phenotype in this child.

Table 2 shows a summary of the common phenotypes described in the reported ASNSD cases. Based on the comparison of the reported phenotypic features of these cases, severe developmental delay, microcephaly, and seizures seem to be the hallmark of ASNSD in majority of reported cases. On the MRI, cerebellar hypoplasia, pontine hypoplasia, and simplified gyral pattern were reported in the majority of cases. Plasma asparagine levels do not seem to be a diagnostic marker for ASNSD.

It is questionable whether earlier knowledge of the causative alterations in asparagine synthesis would have changed the course of the disease in this child. Asparagine is required for normal brain development and is a nonessential amino acid in humans. Synthesized from oxaloacetate precursors using central metabolic pathway intermediates, Asparagine can alternatively be obtained by nutritional intake of various animal or plant products. Alrifai et al. [15] evaluated the effect of asparagine supplementation on mental status and seizures in one of the two individuals reported earlier [11]. After starting asparagine supplementation, the mental status improved slightly from the vegetative state to a minimally conscious state. However, on continuation of the treatment, the patient became irritable, developed sleep disturbance, and experienced worsening seizures leading to discontinuation of the treatment. Additional research and data are required to determine if such intervention could be effective in correcting the deficiency and reducing the detrimental effects of ASNSD depletion in the brain. The knowledge of these mutations was valuable for this couple in planning future pregnancies with the availability of either preimplantation genetic diagnosis or prenatal testing.

Conclusions

We report novel compound heterozygous missense variants in asparagine synthetase gene as the likely cause of fatal asparagine synthetase deficiency in a child delivered...
at 32 weeks of gestation. Acquisition and sequencing of stored newborn blood spot can be a valuable option when no samples are available from a deceased child.

Authorship

AA: Responsible for the primary analysis of the sequencing data and drafting the manuscript. ML-E: Contributed to DNA extraction. KB: Collected clinical notes and counseled the patient. JLG: Contributed to collection of clinical data. CE: Contributed to data analysis for sanger sequencing. VF: Contributed to libraries preparation and sequencing. RW: Evaluation and management of the patient as well as expert critiquing of the manuscript. VJ: Overall responsible for the sequencing, analysis, interpretation, and writing the manuscript.

Conflict of Interest

None declared

References

1. Ruzzo, E. K., J. M. Capo-Chichi, B. Ben-Zeev, D. Chitayat, H. Mao, A. L. Pappas, et al. 2013. Deficiency of asparagine synthetase causes congenital microcephaly and a progressive form of encephalopathy. Neuron 80:429–441.
2. Zhang, Y. P., M. A. Lambert, A. E. Cairney, D. Wills, P. N. Ray, and I. L. Andrusil. 1989. Molecular structure of the human asparagine synthetase gene. Genomics 4:259–265.
3. Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760.
4. Picard Tools. available at: http://broadinstitute.github.io/picard. (accessed April 2016).
5. DePristo, M. A., E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, et al. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43:491–498.
6. Cingolani, P., A. Platts, L. le Wang, M. Coon, T. Nguyen, L. Wang, et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 6:80–92.
7. Bcftools. available at http://www.htslib.org/doc/bcftools.html. (accessed April 2016).
8. Genomes Project C, C. A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison, H. M. Kang, et al. 2015. A global reference for human genetic variation. Nature. 526:68–74.
9. Lek, M., K. J. Karczewski, E. V. Minikel, K. E. Samocha, E. Banks, T. Fennell, et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291.
10. Consortium, U. K., K. Walter, J. L. Min, J. Huang, L. Crooks, Y. Memari, et al. 2015. The UK10K project identifies rare variants in health and disease. Nature 526:82–90.
11. Alfadhel, M., M. T. Alrifai, D. Trujillano, H. Alshaalan, A. Al Othaim, S. Al Rasheed, et al. 2015. Asparagine synthetase deficiency: new inborn errors of metabolism. JIMD Rep. 22:11–16.
12. Seidahmed, M. Z., M. A. Salih, O. B. Abdulbasit, A. Samadi, K. Al Hussien, A. M. Miqdad, et al. 2016. Hyperekplexia, microcephaly and simplified gyral pattern caused by novel ASNS mutations, case report. BMC Neurol. 16:105.
13. Sun, J., A. J. McGillivray, J. Pinner, Z. Yan, F. Liu, D. Bratkovic, et al. 2016. Diaphragmatic eventration in sisters with asparagine synthetase deficiency: a novel homozygous ASNS mutation and expanded phenotype. JIMD Rep. 34:1–9.
14. Yamamoto, T., W. Endo, H. Ohnishi, K. Kubota, N. Kawamoto, T. Inui, et al. 2016. The first report of Japanese patients with asparagine synthetase deficiency. Brain Dev. 39:236–242.
15. Alrifai, M. T., and M. Alfadhel. 2016. Worsening of seizures after asparagine supplementation in a child with asparagine synthetase deficiency. Pediatr. Neurol. 58:98–100.

Supporting Information

Additional Supporting Information may be found online in the supporting information tab for this article:

Table S1. Whole exome sequencing alignment metrics generated by Picard CollectHsMetrics.