Equations in Algebras

Olga Kharlampovich ∗and Alexei Myasnikov †

Abstract

We show that the Diophantine problem (decidability of equations) is undecidable in free associative algebras over any field and in the group algebras over any field of a wide variety of torsion free groups, including toral relatively hyperbolic groups, right angled Artin groups, commutative transitive groups, the fundamental groups of various graph groups, etc.

1 Introduction

In this paper we study Diophantine problems (decidability of equations) in free associative algebras over an arbitrary field and group algebras for a wide class of groups. We show that some kind of arithmetic can be always interpreted by equations in all these algebras, hence undecidability of Diophantine problems. Our main approach is to reduce the Diophantine problem in each of these algebras to similar problems in various polynomial rings.

Study of equations in algebra has a rich and long history. The famous Hilbert tenth problem stated in 1900 asked for a procedure which, in a finite number of steps, can determine whether a polynomial equation (in several variables) with integer coefficients has or does not have integer solutions. In 1970 Matiyasevich, following the work of Davis, Putnam and Robinson, solved this problem in the negative [13]. Similar questions can be asked for arbitrary commutative rings R. The Diophantine problem for a given commutative ring R asks if there exists an algorithm that decides whether or not a given polynomial equation (a finite system of polynomial equations) with coefficients in some subring R_0 of R has a solution in R. In this case elements of R_0 must be recognizable by computers, so we always assume that R_0 is a computable ring. Now we mention a few principal results on Diophantine problems in rings. For the following fields the Diophantine problem is decidable, in fact, the whole their first-order theory is decidable: the field of complex numbers \mathbb{C} where coefficients are taken in the algebraic closure of the rationals $\bar{\mathbb{Q}}$, the field of real numbers \mathbb{R}, where coefficients are computable reals, and p-adic numbers \mathbb{Q}_p, $[3, 10]$, where coefficients are computable p-adics. On the other hand, undecidability of the Diophantine problem was proved for rings of polynomials $R[X]$ over an integral domain R $[7, 9]$, and for rings of Laurent polynomials $R[X, X^{-1}]$, $[17, 18]$.

∗Hunter College, CUNY; Supported by NSF grant DMS-1201379 and PSC-CUNY award
†Stevens Institute of Technology, supported by NSF grant DMS-1201379
A major open problem is the Diophantine problem (sometimes called generalized Hilbert’s tenth problem) for the field \(\mathbb{Q} \) of rational numbers (see a comment on this in the next section). A survey of the results on the undecidability of existential theories of rings and fields is given in [19].

Let \(A_K(A) \) be a free associative algebra with basis \(A \) over a field \(K \). An equation with variables in \(X = \{x_1, \ldots, x_n\} \) and constants from \(A_K(A) \) is an expression \(P(X, A) = 0 \) where \(P(X, A) \) is an element from \(A_K(A \cup X) \). A solution to an equation \(P(X, A) = 0 \) is a map \(\phi : X \to u_i \in A_K(A) \) such that \(P(X^\phi, A) = 0 \) in \(A_K(A) \). Of course the coefficients of the equation above have to be given by an effective description, so one may assume that they are taken from a constructive (computable) subring of \(A_K(A) \), typically of the form \(A_{K_0}(A) \), where \(K_0 \) is a computable subfield of \(K \), say the prime subfield of \(K \). Of course, in the case of undecidable Diophantine problem, the smaller the subfield \(K_0 \) is the stronger the result. We prove that for any non-empty set \(A \) and for any field \(K \) the Diophantine problem for \(A_K(A) \) with coefficients in \(A_{K_0}(A) \) where \(K_0 \) is the prime subfield of \(K \) is undecidable. To approach this result we use Pell’s equations of a particular type in \(A_K(A) \) to interpret arithmetic by equations in \(A_K(A) \). Observe, that Makanin proved in [15] that the Diophantine problem in a free monoid is decidable, so in the case when the field \(K \) has decidable Diophantine problem (say when \(K \) is finite or algebraically closed) undecidability of the Diophantine problem in the algebra \(A_K(A) \) cannot be seen on the level of coefficients or monomials. We showed in Section 6.2 that decidability of the Diophantine problem in \(K \) is equivalent to solvability of equations when solutions are assumed to have bounded width (the number of monomials with non-zero coefficients).

One can consider equations and their decidability over arbitrary algebraic structures \(M \) in a language \(L \). An equation in \(M \) is an equality of two terms in \(L \):

\[
t(x_1, \ldots, x_n, a_1, \ldots, a_m) = s(x_1, \ldots, x_n, b_1, \ldots, b_k),
\]

with variables \(x_1, \ldots, x_n \) and constants \(a_1, \ldots, a_m, b_1, \ldots, b_k \in M \). A solution of such an equation is a map \(x_i \to c_i \) from the set of variables into \(M \) which turns the symbolic equality of terms \(t = s \) into a true equality in \(M \). In particular, one can consider equations in semigroups, groups, associative or Lie algebras, etc.

The following are the principal questions on equations in \(M \): decidability of single equations and finite systems (Diophantine problems), equivalence of infinite systems of equations in finitely many variables to some of their finite subsystems (equationally Noetherian structures), description of solution sets of finite systems of equations. In generalized Hilbert’s 10th problems the question is usually stated about decidability of single equations, since in those cases finite systems of equations are equivalent (have the same solution sets) as suitable single equations. However, in general, this may not be the case, so in the decidability results the statements are stronger for finite systems, while in the undecidable cases, formulations are stronger for single equations.

The principal questions are solved positively in abelian groups (linear alge-
bra), free groups [14], [20], [12], hyperbolic and toral relatively hyperbolic groups [21], [6], Right angled Artin groups [8], [4] and free products of groups with decidable equations in the factors (see also [5]), and some other groups.

In the second part of the paper we study Diophantine problems in group algebras of torsion-free groups. Let $K(G)$ be the group algebra $K(G)$ of a group G over a field K. We show that the Diophantine problem is undecidable in $K(G)$ for any field K for a wide variety of groups G.

The main technical result is Theorem 8 which states that if a torsion free group G contains an element g such that the centralizer $C_G(g)$ is a countable free abelian group and $C_G(g^k) = C_G(g)$ for any non-zero integer k, then the Diophantine problem in $K(G)$ is undecidable. This covers large variety of torsion-free groups G.

Note that for any group G as above one can effectively construct a particular system of equations with two parameters $\nu, x \in K(G)$ such that one cannot recognize for which parameters ν the system has a solution in $K(G)$.

The results above show that decidability of the Diophantine problem in $K(G)$ does not directly depend on the Diophantine problems in K and G. To clarify the situation in the last section we introduce the notion of the Bounded Width Diophantine Problem and prove some positive results. Namely, the Bounded Width Diophantine Problem in $K(G)$ is decidable if and only if Diophantine problems in K and G are decidable.

Now we would like to state the following

Conjecture 1. Let G be a torsion-free group. Then for any field K the Diophantine problem in $K(G)$ is undecidable.

2 E-interpretability

Recall that $A \subset M^n$ is called e-definable (equationally definable) or Diophantine in M if there exists a finite system of equations $\Sigma(x_1, \ldots, x_n, y_1, \ldots, y_m)$ such that $(a_1, \ldots, a_n) \in A$ if and only the system $\Sigma(a_1, \ldots, a_n, y_1, \ldots, y_m)$ in variables y_1, \ldots, y_m has a solution in M. In other words, Diophantine sets are projections of algebraic sets defined by finite systems of equations.

We note that if D_1 and D_2 are Diophantine in an integral domain R then intersections and unions of Diophantine sets are again Diophantine. Indeed, for polynomials f_1, f_2 with coefficients in R one has $f_1 = 0 \lor f_2 = 0$ if and only if $f_1 f_2 = 0$, while the conjunction of two finite systems of equations is equivalent to the union of these systems. Furthermore, if R is such that the field of quotients of R is not algebraically closed then conjunction of two equations is equivalent to a single equation (see [2]).

Now we define an important notion of interpretations by equations.

Definition 1. (E-interpretation or Diophantine interpretation) Let A and M be algebraic structures. A map $\phi : X \subset M^n \to A$ is called an e-interpretation of A in M if

1) ϕ is onto;
2) X is e-definable in \mathcal{M};

3) The preimage of " = " in \mathcal{A} is e-definable in \mathcal{M};

4) The preimage of the graph of every function and predicate in \mathcal{A} is e-definable in \mathcal{M}.

For algebraic structures \mathcal{A} and \mathcal{M} we write $\mathcal{A} \to_e \mathcal{M}$ if \mathcal{A} is e-interpretable in \mathcal{M}.

Examples. The following are known examples of e-interpretability:

1) \mathbb{N} is Diophantine in \mathbb{Z} since
 \[x \in \mathbb{N} \iff \exists y_1, \ldots, y_4 (x = y_1^2 + \ldots + y_4^2); \]

2) the ring \mathbb{Q} is e-interpretable in \mathbb{Z} as a field of fractions.

3) \mathbb{Z} is e-interpretable in \mathbb{N};

4) The structure $\langle \mathbb{Z}; +, | \rangle$, where $|$ is the predicate of division, is e-interpretable in \mathbb{Z}.

Lemma 1. The following hold:

1) Let R be a ring or a group and $Y = \{y_1, \ldots, y_n\}$ a finite subset of R then the centralizer $C_R(Y) = \{x \in R \mid xy_1 = y_1 x, \ldots, xy_n = y_n x\}$ is Diophantine in R;

2) If R is a commutative associative unitary ring and Y a finite subset of R then the ideal $\langle Y \rangle$ generated in R by Y is Diophantine in R.

3) If I is a Diophantine ideal in R then the quotient ring R/I is e-interpretable in R.

Proof. The first statement follows directly from the definition of centralizers. To see 2) put $Y = \{y_1, \ldots, y_n\}$ and observe that $x \in \langle Y \rangle$ if and only if $\exists z_1 \ldots \exists z_n (x = y - z_1 + \ldots + y_n z_n)$, hence $\langle Y \rangle$ is Diophantine in R. To prove 3) it suffices to show that the equivalence relation $a \simeq_I b \iff a \in b + I$ is Diophantine in R since the ring operations on R/I are induced from R. To see former observe that $a \in b + I \iff \exists z (z \in I \land a = b + z)$. So the relation \simeq_I is defined by as a projection of the solution set of a system of two equations. Notice that if R is an integral domain then one can take a single equation.

The following result is easy, but useful.

Lemma 2. (Transitivity of Diophantine interpretation) For algebraic structures $\mathcal{A}, \mathcal{B}, \mathcal{C}$ if $\mathcal{A} \to_e \mathcal{B}$ and $\mathcal{B} \to_e \mathcal{C}$ then $\mathcal{A} \to_e \mathcal{C}$.

The following result gives the main technical tool in our study of Diophantine problems.
Lemma 3. Let $\phi: X \subset M^n \to A$ be a Diophantine interpretation of A in M. Then there is an effective procedure that given a finite system of equations $S = 1$ over A constructs an equivalent system of equations $S' = 1$ over M, such that \bar{a} is a solution of $S = 1$ in A iff $\phi^{-1}(\bar{a})$ is a solution of $S' = 1$ in M.

Lemma 4. Let A and M be algebraic structures such that $A \to e M$. Then the following holds:

1) if the Diophantine problem in A is undecidable then it is undecidable in M.

2) if the Diophantine problem in M is decidable then it is decidable in A.

In this connection it is interesting to return to the question on decidability of equations in \mathbb{Q}. A natural approach might seek a positive answer to the question by proving that the set \mathbb{Z} is Diophantine in the field \mathbb{Q}, thus showing undecidability of Diophantine problem for \mathbb{Q}. But the following observations seem to make such an expectation unlikely. All known examples of algebraic varieties over \mathbb{Q} have the property that the real topological closure of the Zariski closure of their rational (over \mathbb{Q}) points has finitely many connected components. In consequence Mazur asked whether this is true for all algebraic varieties [14]. He also stated a more general similar statement (where the real topology is replaced by p-adic topologies). These questions remain open. If the Mazur’s conjecture is true then \mathbb{Z} is not Diophantine in \mathbb{Q} because finitely many components project onto finitely many components. Some specialists doubt the truth of Mazur’s question (mainly because the analogue of the p-adic version fails in global fields of positive characteristic). But still, most specialists expect that \mathbb{Z} is not Diophantine in \mathbb{Q}.

3 Equations in various polynomial rings

3.1 Equations in polynomial rings

Recall that Chebyshev’s polynomials of the first and the second kind, respectively $T_n(x)$ and $U_n(x)$, are defined recurrently as integer polynomials from $\mathbb{Z}[x]$ as follows:

\[
T_0 = 1, \quad T_1 = x, \quad T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x),
\]

\[
U_0 = 1, \quad U_1 = 2x, \quad U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x).
\]

The following result was shown in [7].

Lemma 5. [7] Let R be a domain of zero characteristic and $R[t]$ a polynomial ring in one variable t with coefficients in R. Then the solution set of the Pell’s equation $X^2 - (t^2 - 1)Y^2 = 1$ in $R[t]$ consists precisely of the pairs

\[
P = (\pm T_n, \pm U_{n-1}), \quad n \in \mathbb{N},
\]

where $T_n, U_n \in \mathbb{Z}[t]$ are Chebyshev’s polynomials of the first and the second kind respectively.
We give a sketch of the proof of this result since we will need some notation and facts in the future. Consider the Pell equation in \(R[t] \) (the Pell curve)

\[
X^2 - (t^2 - 1)Y^2 = 1. \tag{1}
\]

Let \(u \) be an element in the algebraic closure of \(K[t] \) satisfying

\[
u^2 = t^2 - 1. \tag{2}
\]

Then we have

\[
(X + uY)(X - uY) = 1. \tag{3}
\]

We parametrize the curve (2) by

\[
t = z^2 + 1/z^2 - 1, \quad u = 2z/z^2 - 1.
\]

As rational functions of \(z \), \(X + uY, X - uY \) have poles and zeros only at \(z = \pm 1 \) as follows from (3). Observe that \((X + uY)(-z) = (X - uY)z\), and so if \(X, Y \) is a point on the Pell curve, then

\[
X + uY = c(z - 1/z + 1)^m, \quad X - uY = c(z - 1/z + 1)^{-m},
\]

for some \(c \in K \). Substituting these two expressions into (3) yields \(c^2 = 1 \).

For \(c = 1 \) (the case \(c = -1 \) is similar).

\[
X + uY = (z - 1/z + 1)^m = (t + u)^m.
\]

From (2), \((t - u)^{-m} = (t + u)^m\).

Thus solutions of Pell’s equation in \(A_K(X) \) if \(\text{char} K = 0 \) are precisely pairs \((\pm X_m, \pm Y_m)\) of the following type:

\[
X_m + uY_m = (t + u)^m
\]
\[
X_m - uY_m = (t - u)^m,
\]

where \(m \in \mathbb{N} \). These relations define precisely the Chebyshev’s polynomials \(X_m = T_m, Y_m = U_{m-1} \).

Theorem 1. Let \(R \) be a domain of characteristic zero and \(R[t_1, \ldots, t_n] \) a polynomial ring in finitely many variables \(t_1, \ldots, t_n \) with coefficients in \(R \). Then the arithmetic \(Z \) is e-interpretable in the ring \(R[t_1, \ldots, t_n] \).

Proof. Observe that the ideal \(I = \langle t_2, \ldots, t_n \rangle \) generated by \(t_2, \ldots, t_n \) in \(R[t_1, \ldots, t_n] \) is Diophantine in \(R[t_1, t_n] \) by Lemma 1. Hence again by Lemma 1 the ring of polynomials \(R[t_1] \simeq R[t_1, \ldots, t_n]/I \) is e-interpretable in \(R[t_1, \ldots, t_n] \). So by the transitivity of e-interpretations we may assume that \(n = 1 \) and consider only the ring \(R[t] \).

By Lemma 1 the set of polynomials \(S = \{ \pm Y_n(t) \mid n \in \mathbb{N} \} \) is Diophantine in \(R[t] \), since

\[
Y \in S \iff \exists X(X^2 - (t^2 - 1)Y^2 = 1).
\]
From the recurrent definition of the polynomials \(Y_n(t) \) it follows directly that
\[Y_n(1) = n + 1, \] so the set
\[Z = \{ Y(1) \mid Y \in S \} \cup \{ 0 \} \]
is precisely the set of integers \(Z \) in \(R \). Notice that for \(f, g \in Z[t] \) one has
\[f(1) = g(1) \iff \exists h(f - g = h(t - 1)) \]
So the equivalence relation \(f \sim g \iff f(1) = g(1) \) is Diophantine in \(R[t] \). Now one can interpret by equations on \(S \) the standard arithmetic operations \(+, \times \) as follows
\[m + n = k \iff Y_m + Y_n \sim Y_k, \]
\[m \times n = k \iff Y_m \times Y_n \sim Y_k. \]
This gives e-interpretation of \(Z \) in \(R[t] \).

From Theorem 1 and undecidability of the Diophantine problem in \(Z \) one has the following result.

Corollary 1. [7] Let \(R \) be a domain of characteristic zero and \(R[t_1, \ldots, t_n] \) a polynomial ring in finitely many variables \(t_1, \ldots, t_n \) with coefficients in \(R \). Then Diophantine problem in \(R[t_1, \ldots, t_n] \) is undecidable.

A similar result holds for integral domains of positive characteristic as well, but in this case instead of \(Z \) one interprets a weaker structure \(\langle \mathbb{Z}; +, |_p \rangle \). Here \(x \mid y \), by definition, means that \(y = xq + f \) for some \(q, f \in \mathbb{Z} \).

Theorem 2. [2] Let \(R \) be a domain of characteristic \(p > 1 \) and \(R[t_1, \ldots, t_n] \) a polynomial ring in finitely many variables \(t_1, \ldots, t_n \) with coefficients in \(R \). Then \(\langle \mathbb{Z}; +, |_p \rangle \) is e-interpretable in \(R[t_1, \ldots, t_n] \).

The following result is an easy generalization of Denef’s results from [7, 9] on undecidability of Diophantine problems in polynomial rings in one variable and coefficients from an integral domain.

Theorem 3. Let \(R \) be an integral domain, \(T \) a non-empty finite or countable set of variables, and \(R[T] \) a polynomial ring in variables from \(T \) and with coefficients in \(R \). Then Diophantine problem in \(R[T] \) is undecidable.

Proof. It follows from Corollary 1 and Theorem 2 that Diophantine problem for a polynomial ring \(R[t] \) in one variable \(t \) and coefficients from \(R \) is undecidable. Now for an element \(t \in T \) consider the subring \(R[t] \) in the ring \(R[T] \). Obviously, the \(R \)-homomorphism \(\lambda : R[T] \to R[t] \) which is induced by a map \(t \to t \), \(T \setminus \{ t \} \to 0 \) is a retract of \(R[T] \) onto \(R[t] \). Hence any equation \(P(X, A) = 0 \) in variables \(X = \{ x_1, \ldots, x_n \} \) and coefficients from \(R[t] \) has a solution in \(R[t] \) if and only if it has a solution in \(R[T] \). Indeed, if \(x_1 \to f_1, \ldots, x_n \to f_n \) is a solution of \(P(X, A) = 0 \) in \(R[T] \) then \(x_1 \to \lambda(f_1), \ldots, x_n \to \lambda(f_n) \) is a solution of \(P(X, A) = 0 \) in \(R[t] \). Conversely, any solution of \(P(X, A) = 0 \) in \(R[t] \) is also a solution of \(P(X, A) = 0 \) in \(R[T] \). This shows that Diophantine problem in \(R[t] \) effectively reduces to Diophantine problem in \(R[T] \), hence the latter is undecidable.
3.2 Equations in rings of Laurent polynomials

We will use the following result that was proved in [17] for \(\text{char}(K) = 0 \) and in [18] for arbitrary characteristic.

Theorem 4. [17], [18] Let \(R \) be an integral domain. Then the following holds:

1. If \(\text{char}(R) = 0 \) and \(i \in R \), then \(\mathbb{Z}[i] = \mathbb{Z}+i\mathbb{Z} \) is \(e \)-interpretable in \(R[t, t^{-1}] \);
2. If \(\text{char}(R) = 0 \) and \(i \notin R \), then \(\mathbb{Z} \) is \(e \)-interpretable in \(R[t, t^{-1}] \);
3. If \(\text{char}(R) = 0 \), then the Diophantine problem for \(R[t, t^{-1}] \) with coefficients in \(\mathbb{Z}[t] \) is undecidable;
4. If \(\text{char}(R) = p > 1 \), then \(\langle \mathbb{Z}; +, |_p \rangle \) is \(e \)-interpretable in \(R[t, t^{-1}] \);
5. If \(\text{char}(R) = p > 1 \), then the Diophantine problem for \(R[t, t^{-1}] \) with coefficients in \(K[t] \) where \(K \) is the field of elements of \(R \), algebraic over \(\mathbb{F}_p \), is undecidable.

Proof. For the case \(\text{char}(R) = 0 \) we will follow [17].

Consider the Pell equation (1) in \(R[t, t^{-1}] \). Let \(u \) be an element in the algebraic closure of \(R[t, t^{-1}] \) such that \(u^2 = t^2 - 1 \).

Then we have

\[
(X + uY)(X - uY) = 1. \tag{4}
\]

By [17], \(X + uY \) can be written in the form (as an algebraic function of \(t \))

\[
g(t)/t^r + \sqrt{t^2 - 1}f(t)/t^s,
\]

with \(g(t), f(t) \in R[t] \) and \(r, s \in \mathbb{N} \). One can parametrize the curve by

\[
t = z^2 + 1/z^2 - 1, \quad u = 2z/z^2 - 1.
\]

As rational functions of \(z \), \(X + uY, X - uY \) have poles and zeros only at \(z = \pm 1, z = \pm i \). Observe that \((X + uY)(-z) = (X - uY)z \), and so if \(X, Y \) is a point on the Pell curve, then

\[
X + uY = c\left(\frac{z - 1}{z + 1}\right)^m(z - i)^n, \quad X - uY = c\left(\frac{z - 1}{z + 1}\right)^{-m}(z + i)^{-n},
\]

for some \(c \in R \). Substituting these two expressions into (3) yields \(c^2 = 1 \). Consider the case \(c = 1 \) (the case \(c = -1 \) is similar). We have

\[
X + uY = \left(\frac{z - 1}{z + 1}\right)^m\left(\frac{z - i}{z + i}\right)^n = (t + u)^m\left(\frac{1 - iu}{t}\right)^n.
\]

From (2),

\[
(t - u)^{-m} = (t + u)^m, \quad \left(\frac{1 + iu}{t}\right)^{-n} = \left(\frac{1 - iu}{t}\right)^n.
\]
Thus the solution of Pell’s equation is precisely the set of pairs \((\pm X, \pm Y)\) such that

\[
X + uY = (t + cu)^m \left(1 - \delta iu \frac{1}{t}\right)^n,
\]

\[
X - uY = (t - cu)^m \left(1 - i\delta u \frac{1}{t}\right)^n,
\]

where \(\epsilon, \delta = \pm 1\), \(m, n \in \mathbb{N}\).

Now let \(S\) denote the ring \(\mathbb{Z}[i][t, t^{-1}]\). \(S[u]\) is a quadratic extension of \(S\). For \(\epsilon, \delta\) define two sequences

\[
X^\epsilon,\delta_{(m,n)} + uY^\epsilon,\delta_{(m,n)} = (t + \epsilon u)^m (1 - \delta iu \frac{1}{t})^n.
\]

\[
X^\epsilon,\delta_{(m,n)} - uY^\epsilon,\delta_{(m,n)} = (t + \epsilon u)^{-m} (1 - i\delta u \frac{1}{t})^{-n}.
\]

It follows that for each pair \(\epsilon, \delta = \pm 1\) and for every \(m, n \in \mathbb{N}\) the pair \(X^\epsilon,\delta_{(m,n)}, Y^\epsilon,\delta_{(m,n)}\) is a solution of the Pell equation, moreover, if \(i \in \mathbb{R}\) these are all the solutions and they belong to \(K[t, t^{-1}]\). Let \(\text{char}R = 0\). If \(i \in R\), then the solutions of the Pell’s equation (11) in \(R[t, t^{-1}]\) are of the form above. If \(i \notin R\), then the solutions have the same form with \(n = 0\). Indeed, it only remains to show that in case \(i \notin R\), for \(n \neq 0\) the above solution does not belong to \(R[t, t^{-1}]\). This follows from [17], Lemma 1.

Define \(V \sim W\) if the elements \(V, W \in R[t, t^{-1}]\) take on the same values at \(t = 1\).

The relation \(V \sim W\) is Diophantine over \(R[t, t^{-1}]\) because \(V \sim W\) iff \(\exists X \in K[t, t^{-1}]\) such that \(V - W = (t - 1)X\).

It follows from [17] that in the case \(\text{char}(R) = 0\) we have the following:

(a) If \(i \notin R\), then \(\{Y(1) : \exists X X^2 - (t^2 - 1)Y^2 = 1, X, Y \in R[t, t^{-1}]\} = \mathbb{Z}\).

(b) If \(i \in R\), then \(\{Y(1) : \exists X X^2 - (t^2 - 1)Y^2 = 1, X, Y \in R[t, t^{-1}]\} = \mathbb{Z}[i]\).

Now one can interpret by equations addition and multiplication on these sets as follows

\[
m + n = k \iff Y_m + Y_n \sim Y_k,
\]

\[
m \times n = k \iff Y_m \times Y_n \sim Y_k.
\]

To prove Theorem[9] in the case of positive characteristic \(p\) we use [18], Theorem 1.1 (i), that implies that for an integral domain \(R\) the Diophantine problem for \(R[t, t^{-1}]\) is undecidable (the proof shows that \(\langle \mathbb{Z}; +, |_p \rangle\) is \(e\)-interpretable in \(R[t, t^{-1}]\)).

An easy generalization of this result is the following.

Corollary 2. Let \(R\) be an integral domain and \(T\) a non-empty finite or countable set of variables. Then Diophantine problem in the ring of Laurent polynomials \(R[T, T^{-1}]\) with coefficients in \(\mathbb{Z}[T]\) is undecidable.

Proof. The argument is similar to the one in Theorem[3]
4 Equations in free associative algebras

In this section we study decidability of equations in free associative algebras $A_K(X)$.

We start with the following easy lemmas.

Lemma 6. Finite disjunctions and conjunctions of Diophantine sets in $A_K(A)$ are again Diophantine.

Proof. It suffices to show that finite disjunctions and conjunctions of equations in $A_K(A)$ are equivalent to single equations. Clearly, since $A_K(A)$ has no zero divisors, then if $P_1 = 0$ and $P_2 = 0$ are equations in $A_K(A)$, then the disjunction $P_1 = 0 \lor P_2 = 0$ is equivalent to a single equation $P_1 \cdot P_2 = 0$ in $A_K(A)$. On the other hand, the conjunction $P_1 = 0 \land P_2 = 0$ of two equations in $A_K(A)$ is equivalent to an equation of the type $P_1^2 + aP_2^2 = 0$ where a is a constant from A. Indeed, in this case the degree of P_1^2 is even, and that of aP_2^2 is odd after any substitution of constants from $A_K(A)$ into variables in P_1 and P_2, unless the both sides become zero. Hence any solution of $P_1^2 + aP_2^2 = 0$ in $A_K(A)$ makes also a solution of the system $P_1 = 0 \land P_2 = 0$ as required.

Lemma 7. The field K is a Diophantine subset of $A_K(X)$.

Proof. Indeed, for $f \in A_K(X)$ one has

$$f \in K \iff \exists g (fg = 1) \lor f = 0,$$

so K is a union of two Diophantine sets hence by Lemma 6 it is also Diophantine.

Corollary 3. If the Diophantine problem in K is undecidable then it is undecidable in $A_K(X)$ as well.

It follows from Lemmas 4 and 5.

In this section we prove the following main result.

Theorem 5. Let $A_K(X)$ be a free associative algebra over a field K. Then the Diophantine problem in $A_K(X)$ is undecidable.

In fact, we base our proof of Theorem 5 on the following results of independent interest.

Theorem 6. Let $A_K(X)$ be a free associative algebra over a field K. Then

- if characteristic of K is zero then \mathbb{Z} has Diophantine interpretation in $A_K(X)$.

- if characteristic p of K is positive, then the structure $\langle \mathbb{Z}; +, |_p \rangle$ has Diophantine interpretation in $A_K(X)$.

Proof. Suppose char$(K) = 0$. Then the ring of polynomials $K[t]$ in one variable t is e-interpretable in $K_K(X)$ as the centralizer $C(P)$ of a non-invertible polynomial $P \in K_K(X)$. Then by Theorem 1, Z is e-interpretable in $K[t]$. Hence by transitivity of e-interpretables (Lemma 2), Z is e-interpretable in $K_K(X)$.

If char$(K) = p > 1$ then the result follows in a similar way from the Denef’s theorem from [9] that states that $\langle Z; +, |_n \rangle$ is e-interpretable in $K[t]$. Here $x \equiv n^f$ means that $y = xqf$ for some $q, f \in Z$.

Since Diophantine problems in Z and $\langle Z; +, |_n \rangle$ are undecidable (see [9] for the second problem), it follows from Theorem 6 and Lemma 4 that Diophantine problem in $K_K(X)$ is also undecidable, hence Theorem 5.

5 Equations in group algebras of hyperbolic groups

5.1 General facts

Let G be a torsion-free group and K a field. In this section we study Diophantine problems in group algebras $K(G)$ under some restriction on G.

We start with some remarks on Diophantine sets in $K(G)$. If $K(G)$ has no zero divisors then as usual unions of Diophantine sets are Diophantine. However, whether the same holds for intersections is not clear.

For a ring R denote by R^* the set of units in R. Recall that a group G satisfies Kaplansky’s unit conjecture if for any field K units in the group algebra $K(G)$ are only the obvious ones $\alpha \cdot g$, where $\alpha \in K \setminus \{0\}$ and $g \in G$. In our case, when G is torsion-free, Kaplansky’s unit conjecture implies that there are no zero divisors in $K(G)$.

Lemma 8. Let G be a torsion-free group satisfying Kaplansky’s unit conjecture. Then for any field K the following hold:

1) the field K is a Diophantine subset of $K(G)$;

2) the group G is Diophantine interpretable in $K(G)$.

Proof. Observe first that the group of units $K(G)^*$ in $K(G)$ is Diophantine in $K(G)$ since it can be defined by the formula $\exists y(xy = 1)$ in a variable x.

To show 1) observe first that K is the following union of Diophantine sets

$K = \{0\} \cup \{-1\} \cup \{x \mid \exists y(x(x+1)y = 1)\}$.

Indeed, all elements $K \setminus \{0, -1\}$ satisfy the condition $\exists y(x(x+1)y = 1)$ so the inclusion \subseteq in the equality above holds. Conversely, if $x \in K(G)$ is such that $\exists y(x(x+1)y = 1)$ in $K(G)$ then x is invertible, as well as $x+1$ since $(x+1)xy = x(x+1)y = 1$. Since $K(G)^* = K \cdot G$ it follows that such x cannot be of the form αg for $\alpha \in K^*$ and $g \in G, g \neq 1$. Hence $x \in K$, as claimed. Because $K(G)$ does not have zero divisors it follows that unions of Diophantine sets are Diophantine, so K is Diophantine in $K(G)$. Now 2) follows from 1)
since $K(G)^* = K \cdot G = K \times G$ so $G \simeq K(G)^*/K^*$ which gives a Diophantine interpretation of G in $K(G)$ (because $K(G)^*$ and K are Diophantine in $K(G)$).

Theorem 7. Let G be a torsion-free group satisfying Kaplansky’s unit conjecture. Then Diophantine problems in K and G effectively reduce to Diophantine problem in $K(G)$. Hence, if Diophantine problem either in K or in G is undecidable then it is undecidable in $K(G)$, and if Diophantine problem is decidable in $K(G)$ then it is decidable in K and in G.

Hence when studying decidability of Diophantine problem in the group algebra $K(G)$ which satisfies Kaplansky’s unit conjecture one can assume that Diophantine problems in K and G are decidable.

However, as we show below in many cases we do not need the condition on the units of $K(G)$ or on Diophantine problems in K or G. This is one of several surprising developments in this study. To do this we need the following result.

Lemma 9. Let K be a field, G a torsion-free group, and $g \in G$ such that for any non-zero integer k one has $C_G(g^k) = C_G(g)$. Then the centralizer $C_{K(G)}(g)$ of g in $K(G)$ is isomorphic to the group algebra $K(C_G(g))$ of the centralizer $C_G(g)$ of g in G. In particular, if $C_G(g)$ is free abelian with basis T, then the centralizer $C_{K(G)}(g)$ is isomorphic to the ring of the Laurent polynomials $K[T]$ and it is e-interpretable in $K(G)$.

Proof. Suppose $1 \neq g \in G$, and for some $u \in K(G)$ one has $ug = gu$. If $u = \sum_{i=1}^m \alpha_i g_i$, where $\alpha_i \in K$, $g_i \in G$ and all elements g_i are distinct then

$$\sum_{i=1}^m \alpha_i g_i g = \sum_{i=1}^m \alpha_i gg_i.$$

Then there is a permutation $\sigma \in Sym(m)$ such that $\alpha_i = \alpha_{\sigma(i)}$ and $g_i g = gg_{\sigma(i)}$, so $g^{-1}gg_i = g_{\sigma(i)}$. If σ fixes some i, then g_i commutes with g. Now σ admits a decomposition as a product of disjoint non-trivial cycles $\sigma = \sigma_1 \cdots \sigma_n$. Consider a cycle σ_i, we may assume for simplicity (upon renaming indices) that $\sigma_i = (12 \ldots k)$. Then

$$g^{-1}g_1 g = g_2, \ldots, g^{-1}g_{k-1} g = g_k, g^{-1}g_k g = g_1.$$

Hence $g^{-k}g_1 g^k = g_1$, i.e., $[g^k, g_1] = 1$, and by our assumption $[g, g_1] = 1$, so $g_1 = g_2 = \ldots = g_k \in C_G(g)$. It follows that $u = \sum_{i=1}^m \alpha_i g_i$ is a linear combination of group elements that commute with g, so it belongs to the group algebra $K(C_G(g))$. Conversely, any element from $K(C_G(g))$ obviously commutes with g, so in fact $C_{K(G)}(g) = K(C_G(g))$ as claimed.

To prove the ”in particular” part, observe that the group algebra of a free abelian group with basis T is a ring of Laurent polynomials in variables T. This proves the lemma.

Theorem 8. Let K be a field, G a torsion-free group, and $g \in G$ such that

- the centralizer $C_G(g)$ is a countable free abelian group;
• $C_G(g^k) = C_G(g)$ for any non-zero integer k.

Then Diophantine problem in $K(G)$ is undecidable.

Proof. By the Lemma 9, $C_{K(G)}(g)$ is isomorphic to the ring of the Laurent polynomials $K[T, T^{-1}]$, where T is a non-empty finite or countable set of variables. Furthermore, $C_{K(G)}(g)$ is e-interpretable in $K(G)$ as the centralizer of g. By Corollary 2, Diophantine problem in $K[T, T^{-1}]$ is undecidable. Hence by Lemma 4, Diophantine problem in $K(G)$ is also undecidable.

Notice, that torsion-free nilpotent and solvable groups satisfy the condition of the theorem. We will be more interested in groups with decidable Diophantine problem that satisfy these conditions: torsion-free hyperbolic, toral relatively hyperbolic, RAAGs.

5.2 Group algebras with undecidable Diophantine problems

We say that the centralizer $C_G(g)$ of an element g in a group G is of Laurent type if it is a countable free abelian group and $C_G(g^k) = C_G(g)$ for any non-zero integer k.

A relatively hyperbolic group is called toral if it is torsion-free and parabolic subgroups are abelian.

Lemma 10. Let G be a torsion-free hyperbolic or a toral relatively hyperbolic group. Then every proper centralizer in G is of Laurent type.

Proof. If G is torsion-free hyperbolic or toral relatively hyperbolic, then the centralizer of every element in G is a finitely generated free abelian group, in addition, G is commutation transitive, and the statement follows.

Theorem 9. Let G be a torsion-free hyperbolic or a toral relatively hyperbolic group. Then for any field K the Diophantine problem for $K(G)$ is undecidable.

Recall that a subgroup H of a group G is called isolated if the following implication holds for any $g \in G$ and $m \in \mathbb{N}, m \neq 0$: $g^m \in H \rightarrow g \in H$.

Lemma 11. Let G be a right angled Artin group. Then there are elements $g \in G$ with centralizers of Laurent type.

Proof. If G is a RAAG, then for any $g, h \in G$, $[g^k, h] = 1$ implies $[g, h] = 1$ because $[g^k, h] = 1$ implies that all the letters in a reduced form of h commute with all the letters in a reduced form of g^n. Take g to be a word containing all the canonical generators of G. Then by The Centralizer Theorem in [22], the centralizer of g in G is a finitely generated free abelian group, and the result follows.

Corollary 4. Let G be a right angled Artin group. Then for any field K the Diophantine problem for $K(G)$ is undecidable.
Lemma 12. Let G be a free product of two non-trivial groups which are not both of order 2. Then there are elements $g \in G$ with centralizers of Laurent type.

Corollary 5. Let G be a free product of two non-trivial groups which are not both of order 2. Then for any field K the Diophantine problem for $K(G)$ is undecidable.

6 Positive results

In this section we discuss some particular Diophantine problems that are decidable in free associative algebras $A_K(A)$ and group rings $K(G)$ over hyperbolic groups G. We assume here for simplicity that the field of coefficients K is computable (recursive), otherwise one needs to fix a computable subfield $K_0 \leq K$ and consider only equations from $A_{K_0}(A)$ and $K_0(G)$.

6.1 Finding solutions of bounded length

Let $A_K(A)$ be a free associative algebra with coefficients in a computable field K and a finite or countable basis A. Notice that in this case the algebra $A_K(A)$ is also computable. One important remark is due here: if the Diophantine problem is decidable in a computable ring R then there is also an algorithm to find a solution to a finite system of equations if it is known that that the system has one. Indeed, in this case one can enumerate all elements in R and try all of them one by one until a solution is found.

Recall that every non-zero element $f \in A_K(A)$ can be written in the form $f = \Sigma_i \alpha_i M_i$ where M_i are pair-wise distinct elements of the free monoid on A and α_i are non-zero elements from K. This form is unique up to a permutation of the summands, we refer to it as a normal form of f.

A solution $x \to f_x(x \in X)$ to an equation $P(X, A) = 0$ in $A_K(A)$ has degree at most m if all the monomials in the normal forms of all the polynomials $f_x(x \in X)$ have degree at most m.

The Bounded Degree Diophantine Problem in $A_K(A)$ is decidable if there exists an algorithm which given a finite system of equations $P(X, A) = 0$ in $A_K(A)$ and a number $m \in \mathbb{N}$ decides whether or not there is a solution of degree at most m of the system $P(X, A) = 0$, and if so finds one.

Theorem 10. The Bounded Degree Diophantine Problem in $A_K(A)$ is decidable if and only if the Diophantine problem in the field K is decidable.

Proof. Suppose an equation $P(X, A) = 0$ and a number $m \in \mathbb{N}$ are given. Notice first, that for a given system $P(X, A) = 0$ one can compute the finite set A_0 of all letters from the basis A that occur in the system $P(X, A) = 0$. The subalgebra $A_K(A_0)$ is a retract of the algebra $A_K(A)$, so $P(X, A) = 0$ has a solution in $A_K(A)$ if and only if it has a solution in $A_K(A_0)$. Furthermore, $P(X, A) = 0$ has a solution of degree at most m in $A_K(A)$ if it has one like
that in $A_K(A_0)$ (by applying a retract that sends all elements from $A \smallsetminus A_0$ to zero). This shows that we can assume that the basis A is finite. In this case there are only finitely many monomials of degree $\leq m$, say M_1, \ldots, M_n. So any polynomial $f \in A_K(A_0)$ of degree $\leq m$ has the form $\sum_{i=1}^{n} \alpha_i M_i$, where α_i are "indeterminate coefficients" from K. To find a solution to $P(X, A) = 0$ it suffices to plug in such polynomials into $P(X, A) = 0$ and solve the corresponding system for indeterminate coefficients, which results in a system of equations in K. It follows that if the Diophantine problem in K is decidable then the bounded degree Diophantine problem in $A_K(A)$ is also decidable. Conversely, if the bounded degree Diophantine problem in $A_K(A)$ is decidable then given a finite system of equations in K one can check if the system has a solution in K by solving this system in $A_K(A)$ looking for solutions of degree 0.

Let G be a group generated by a finite set A. For an element $g \in G$ define the A-length $|g|_A$ of g as the length of a shortest word in the alphabet $A \cup A^{-1}$ representing the element g in the generators A. If $f = \sum \alpha_i g_i$ is an element of $K(G)$, where $\alpha_i \in K \smallsetminus \{0\}, g_i \in G$, then by $|f|_A$ we denote the least total length $\sum_i |g_i|_A$ among all such representations of f. Let $P(X, A) = 0$ be a finite system of equations in variables from a finite set X and coefficients from $K(G)$. We say that a solution $x \to f_x(x \in X)$ of $P(X, A) = 0$ in $K(G)$ is of length at most m if $\sum_{x \in X} |f_x|_A \leq m$.

We say that the Bounded Length Diophantine Problem in $K(G)$ is decidable if there exists an algorithm which given a finite system of equations $P(X, A) = 0$ in $K(G)$ and a number $m \in \mathbb{N}$ decides whether or not there is a solution of length at most m of the system $P(X, A) = 0$, and if so finds one.

Theorem 11. Let G be a group generated by a finite set A. The Bounded Length Diophantine Problem in $K(G)$ is decidable if and only if the Diophantine problem in the field K, as well as the word problem in G, are decidable.

Proof. Indeed, suppose first that the Bounded Length Diophantine Problem in $K(G)$ is decidable. Then viewing a finite system of equations in K as a system of equations in $K(G)$ and looking for solutions of degree 0 one can decide if this system has a solution in K, and if so find a solution. Also, given a word w in the alphabet $A \cup A^{-1}$ one can solve an equation $w - 1 = 0$ in $K(G)$. Since this equation does not have any variables it has a solution in $K(G)$ if and only if it has a solution in G, hence the word problem in G is decidable.

Conversely, if Diophantine problem in K and the word problem in G are decidable then one can solve the Bounded Length Diophantine Problem in $K(G)$ using an argument similar to the one in Theorem 10.

6.2 Finding solutions of bounded width

The width $width(f)$ of a polynomial $f \in A_K(A)$ is the number of monomials that occur in the normal form of f.

\[\]
A solution \(x \rightarrow f_x(x \in X) \) to an equation \(P(X, A) = 0 \) in \(\mathbb{A}_K(A) \) has width at most \(m \) if all polynomials \(f_x(x \in X) \) have width at most \(m \). We say that the Bounded Width Diophantine Problem in \(\mathbb{A}_K(A) \) is decidable if there exists an algorithm which given a finite system of equations \(P(X, A) = 0 \) in \(\mathbb{A}_K(A) \) and a number \(m \in \mathbb{N} \) decides whether or not there is a solution of width at most \(m \) of the system \(P(X, A) = 0 \), and if so finds one.

Theorem 12. Let \(A \) be a finite or countable set and \(K \) a field with decidable Diophantine problem. Then the Bounded Width Diophantine Problem in \(\mathbb{A}_K(A) \) is decidable.

Proof. Observe first that arguing like in Theorem 10 one can assume that the set \(A \) is finite. Now the result follows from Makanin’s result on the decidability of the systems of equations in a free semigroup. Indeed, if \(P(x_1, \ldots, x_n, A) = 0 \) is a finite system of equations in \(\mathbb{A}_K(X) \) then substituting a solution \(x_i \rightarrow f_i \in \mathbb{A}_K(A) \) into \(P(X, A) = 0 \) results in \(P(f_1, \ldots, f_n, A) \) which is zero in \(\mathbb{A}_K(A) \). Hence after collecting similar terms in \(P(f_1, \ldots, f_n, A) \) all coefficients become zero. If the solution is of bounded width \(\leq m \) the collection of the terms can proceed in finitely many ways (which depends on \(m \)), each of which results in a system of equations \(S_j = 1 \) in the free monoid \(A^* \) and the corresponding finite system of equations \(T_j = 0 \) in \(K \). Given \(P(X, A) = 0 \) and \(m \) all such possible pairs \((S_j, T_j) \) can be found effectively. Hence \(P(X, A) = 0 \) has a solution in \(\mathbb{A}_K(A) \) of width at most \(m \) if and only if there is a pair \((S_j, T_j) \) as above where \(S_i = 1 \) has a solution in \(A^* \) and \(T_j = 0 \) has a solution in \(K \). The former can be verified by the Makanin’s result and the latter by our assumption that Diophantine problem in \(K \) is decidable. Since the field \(K \) is computable one can find a solution of \(T_j = 0 \) if it exists.

Similar result holds in \(K(G) \). Recall that every non-zero element \(f \in K(G) \) can be written in the form \(f = \sum_{\alpha} g_{\alpha} \) where \(g_{\alpha} \) are pair-wise distinct elements of the group \(G \) and \(\alpha \) are non-zero elements from \(K \). This form is unique up to a permutation of the summands, we refer to it as a normal form of \(f \). The width \(width(f) \) of an element \(f \in K(G) \) is the number of summands in a normal form of \(f \). A solution \(x \rightarrow f_x(x \in X) \) to an equation \(P(X, A) = 0 \) in \(K(G) \) has width at most \(m \) if all elements \(f_x(x \in X) \) have width at most \(m \). Similar to the case of free associative algebras one can define the Bounded Width Diophantine Problem in \(K(G) \).

Theorem 13. Let \(G \) be a finitely generated group and \(K \) a field. The Bounded Width Diophantine Problem in \(K(G) \) is decidable if and only if Diophantine problems in \(K \) and \(G \) are decidable.

Proof. If Diophantine problems in \(K \) and \(G \) are decidable then one can show using an argument similar to the one in Theorem 12 that the Bounded Width Diophantine Problem in \(K(G) \) is decidable. Conversely, if the Bounded Width Diophantine Problem in \(K(G) \) is decidable then one can solve finite systems of equations in \(G \), by viewing them as systems in \(K(G) \) and looking for solutions of the width one. Similarly, a finite system \(T = 0 \) of equations in \(K \) can be
viewed as a system of equations in $K(G)$, in this case a homomorphism $G \to 1$
gives rise to a K-linear homomorphism $\varepsilon : K(G) \to K$ which is a retract on K.
Hence if $T = 0$ has a solution in $K(G)$ then applying ε to this solution one gets
a solution of $T = 0$ in K. Hence, $T = 0$ has a solution in K if and only if it has a
solution in $K(G)$. So Diophantine problem in K is also decidable.

References

[1] J. Ax, Solving diophantine equations modulo every prime, Annals of Mathematics 85-2 (1967), 161-183.
[2] J. Ax, The elementary theory of finite fields, Annals of Mathematics 88 (1968), 239-271.
[3] J. Ax and S. Kochen, Diophantine problems over local fields: III Decidable
fields, Annals of Mathematics 83 (1966), 437-456.
[4] M. Casals-Ruiz, I. Kazachkov, On systems of equations over free partially
commutative groups. Mem. Amer. Math. Soc. 212 (2011), no. 999, viii+153
pp.
[5] M. Casals-Ruiz, I. Kazachkov, On systems of equations over free products
of groups. J. Algebra 333 (2011), 368426.
[6] Dahmani, Franois; Groves, Daniel The isomorphism problem for toral relatively hyperbolic groups. Publ. Math. Inst. Hautes tudes Sci. No. 107 (2008), 211290.
[7] J. Denef, Hilbert’s tenth problem for quadratic rings. Proc. Amer. Math. Soc. 48 (1975), 214-220.
[8] V. Diekert, A. Muscholl Solvability of Equations in Graph Groups is Decidable, Internat. J. Algebra Comput. 16 (2006), pp. 1047-1069
[9] J. Denef, The Diophantine problem for polynomial rings of positive characteristic, in: Logic Colloquium ’78, North-Holland, 1979, 131-145.
[10] Yu. Ershov, On elementary theories of local fields, Algebra i Logika 4 (1965), 5-30.
[11] F. Grunewald and D. Segal, Some general algorithms I and II, Ann. Math.,
112 (1980), 531-617.
[12] O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a
free group. II: Systems in triangular quasi-quadratic form and description of residually free groups. J. of Algebra, v. 200, no. 2, 517570, 1998.
[13] Y. Matijasevich, Enumerable sets are diophantine, Doklady Akademii
Nauka SSSR, 191(1970), 272-282.
[14] G.S. Makanin. *Equations in a free group* (Russian). Izv. Akad. Nauk SSSR, Ser. Mat., 46:1199–1273, 1982. Transl. in Math. USSR Izv., V. 21, 1983.

[15] G.S. Makanin, The problem of solvability of equations in a free semigroup, Mat. Sb. (N.S.), 1977, Volume 103(145), Number 2(6), 147236.

[16] B. Mazur, The topology of rational points, Journal of Experimental Mathematics, 1-1 (1992), 35-45.

[17] P. Pappas, *A Diophantine problem for Laurent polynomial rings*, Proceedings of the AMS, Volume 93, Number 4. April 1985, 713-718.

[18] T. Pheidas, *Diophantine undecidability for addition and divisibility in polynomial rings*, Fundamenta Mathematicae, 182 (2004), 205-220.

[19] T. Pheidas and K. Zahidi, Undecidability of existential theories of rings and fields: A survey, Contemporary Mathematics, 270 (2000), 49-106.

[20] A. Razborov. On systems of equations in a free group. Math. USSR, Izvestiya, 25(1):115162, 1985.

[21] Rips, E.; Sela, Z. Canonical representatives and equations in hyperbolic groups. Invent. Math. 120 (1995), no. 3, 489512.

[22] H. Servatius, Automorphisms of graph groups, Journal of Algebra Volume 126, Issue 1, October 1989, 34-60.