Determination of Nucleon Form factors from Baryonic B Decays

C. Q. Geng and Y. K. Hsiao

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300

(Dated: March 26, 2022)

Abstract

It is the first time that the study of three-body baryonic B decays offers an independent determination of the nucleon form factors for the time-like four momentum transfer $(t > 0)$ region, such as $G_{M}^{p,n}(t)$ of vector currents and those of axial ones. Explicitly, from the data of $\bar{B}^0 \rightarrow n\bar{p}D^*+$ and $\Lambda\bar{p}\pi^+$ we find a constant ratio of $G_{M}^{n}(t)/G_{M}^{p}(t) = -1.3 \pm 0.4$, which supports the FENICE experimental result. The vector and axial-vector form factors of $p\bar{n}, p\bar{p}$ and $n\bar{n}$ pairs due to weak currents are also presented, which can be tested in future experiments.

PACS numbers: 13.40.Gp, 28.20.-v, 13.25.Hw, 14.20.Dh
The nucleon form factors still attract attentions as they reveal the hadron structures and play important roles in any scattering or decaying processes involving baryons [1]. These form factors depend on the four momentum transfer \(t \), which is either space-like \((t < 0) \) or time-like \((t > 0) \). The behaviors of the form factors versus \(t \) have been extensively studied in various QCD models [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], such as perturbative QCD (PQCD), chiral perturbation theory (ChPT), vector meson dominance (VMD) approach and dispersion relation (DR) method. Experimentally, accurate electromagnetic data for vector form factors with the space-like momentum transfer have become abundant [14], whereas the data on axial-vector form factors are available only for the space-like region with \(|t| < 1 \) GeV\(^2\) in the neutrino-nucleon scattering [1]. In particular, the time-like electromagnetic form factors of the proton have been extracted from \(e^+e^- \to p\bar{p} \) \((p\bar{p} \to e^+e^-) \) [15], but only a few data points have been collected for those of the neutron by the FENICE Collaboration [16]. Currently, due to experimental difficulties, there are no data on the time-like axial structures, induced from the weak currents due to \(W \) and \(Z \) bosons. Moreover, there exists some inconsistency between the measurement and theory [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] for the \(n\bar{n} \) data, unlike the \(p\bar{p} \) case, which seems to be well understood by the theoretical calculations. Clearly, more theoretical studies as well as precise experimental measurements on the nucleon form factors are needed to improve our understanding of strong interactions.

In this paper, we shall show that the three-body baryonic \(B \) decays of \(B \to B\bar{B}'M \), such as \(\bar{B}^0 \to n\bar{p}D^{*+} \) and \(\bar{B}^0 \to \Lambda\bar{p}\pi^+ \), can provide valuable information on the nucleon form factors. In general, the three-body baryonic \(B \) decays involve time-like form factors from vector, axial vector, scalar and pseudoscalar currents, respectively. In the scale of \(m_b \sim 4 \) GeV, the PQCD is suitable for us to systematically examine not only the form factors of vector currents but also those of axial vector ones. We note that the PQCD approach in a series of works in Refs. [17, 18, 19, 20, 21, 22, 23] has been developed as a reliable tool to explain the experimental data on the baryonic \(B \) decays.

In the wildly used factorization method [24, 25], which splits the four quark operators into two currents by the vacuum insertion, there are three types of three-body baryonic \(B \) decays: Type I is for the decay in which a meson is transformed from \(B \) together with an emitted baryon pair; Type II is for the mode in which a baryon pair is transited from \(B \) together with an ejected meson; and Type III is the mixture of Types I and II. With the factorization method, the decay amplitudes for Types I and II are proportional to \(\langle BB'|J_\mu|0\rangle\langle M|J_2^\mu|B\rangle \).
and $\langle M | J_1^i | 0 \rangle \langle \bar{B} \bar{B}' | J_2^{i*} | B \rangle$, respectively. For the present measured modes, for instance, $B^0 \to n \bar{p} D^{*+}$ [26] and $B^0 \to \Lambda \bar{p} \pi^+$ [27] belong to Type I, while $B^0 \to p \bar{p} D^{(*)0}$ [28] and $B^- \to \Lambda \bar{p} J/\Psi$ [29] are classified as Type II, whereas $B^- \to p \bar{p} K^{(*)-}$, $\bar{B}^0 \to p \bar{p} K_S$, $B^- \to p \bar{p} \pi^-$ [30] and $B^- \to \Lambda \bar{K} K^-$ [31] are of Type III. Although the decay modes of Types I and III are of our current interest, those of Type III are inevitably affected by the uncertainties of the $B \to \bar{B} \bar{B}'$ transition form factors. In this study, we shall concentrate on the Type I modes of $\bar{B}^0 \to n \bar{p} D^{*+}$ and $\bar{B}^0 \to \Lambda \bar{p} \pi^+$.

With the effective Hamiltonians [32] at the quark level, the decay amplitudes are given by [18, 19, 20, 21, 22]

$$
A(\bar{B}^0 \to n \bar{p} D^{*+}) = \frac{G_F}{\sqrt{2}} V_{ub} V_{us}^{*} a_1 \langle n \bar{p}|(d \bar{u})_{V-A}|0\rangle \langle D^{*+}|(\bar{c} \bar{b})_{V-A}|\bar{B}^0\rangle,
$$

$$
A(\bar{B}^0 \to \Lambda \bar{p} \pi^+) = \frac{G_F}{\sqrt{2}} \left\{ (V_{ub} V_{ts}^{*} a_1 - V_{tb} V_{ts} a_4) \langle \Lambda \bar{p}|(s \bar{u})_{V-A}|0\rangle \langle \pi^+|(|\bar{u} b)_{V-A}|\bar{B}^0\rangle + V_{tb} V_{ts}^{*} a_6 \langle \Lambda \bar{p}|(s \bar{u})_{S-P}|0\rangle \langle \pi^+|(|\bar{u} b)_{S-P}|\bar{B}^0\rangle \right\},
$$

where G_F is the Fermi constant, $V_{q_1q_2}$ are the CKM matrix elements, $(q_i q_j)_{V-A} = q_i \gamma_\mu (1 - \gamma_5) q_j$, $(q_i q_j)_{S-P} = q_i (1 \pm \gamma_5) q_j$ and $a_i (i = 1, 4, 6)$ are given by

$$
a_1 = c_{1eff}^{eff} + \frac{1}{N_{c}^{eff}} c_{2eff}^{eff}, \quad a_4 = c_{4eff}^{eff} + \frac{1}{N_{c}^{eff}} c_{5eff}^{eff}, \quad a_6 = c_{6eff}^{eff} + \frac{1}{N_{c}^{eff}} c_{7eff}^{eff},
$$

with c_{i}^{eff} ($i = 1, 2, \ldots, 6$) being the effective Wilson coefficients (WCs) shown in Refs. [32] and N_{c}^{eff} the effective color number. Here, we have used the generalized factorization method with the non-factorizable effect absorbed in N_{c}^{eff}. For the matrix elements of $\langle \pi^+|(|\bar{u} b)_{V-A}|\bar{B}^0\rangle$ and $\langle D^{*+}|(|\bar{c} \bar{b})_{V-A}|\bar{B}^0\rangle$, we use the results in Refs. [25, 33]. For the time-like baryonic form factors, we have

$$
\langle \bar{B} B'|\bar{q}_i \gamma_\mu q_j|0\rangle = \bar{u}(p_B) \left\{ F_1(t) \gamma_\mu + \frac{F_2(t)}{m_B + m_{B'}} i \sigma_{\mu\nu} (p_B - p_{B'})_{\nu} \right\} v(p_{B'}),
$$

$$
\langle \bar{B} B'|\bar{q}_i \gamma_5 q_j|0\rangle = \bar{u}(p_B) \left\{ g_A(t) \gamma_\mu + \frac{h_A(t)}{m_B + m_{B'}} (p_B - p_{B'})_{\mu} \right\} \gamma_5 v(p_{B'}),
$$

$$
\langle \bar{B} B'|\bar{q}_i q_j|0\rangle = f_S(t) \bar{u}(p_B) v(p_{B'}),
$$

$$
\langle \bar{B} B'|q_i \gamma_5 q_j|0\rangle = g_P(t) \bar{u}(p_B) \gamma_5 v(p_{B'}),
$$

where the four momentum transfer in the time-like region is $t = (p_B + p_{B'})^2$, $q_i = u, d$ and s, and F_1, F_2, g_A, h_A, f_S and g_P are the form factors.
In this paper, we will study the form factors in Eq. (4) based on the experimental data in the baryonic B decays. We begin by defining the baryonic form factors of F_1 and g_A by

$$\langle \mathbf{B} | J_{\mu}^{em} | \mathbf{B}' \rangle = \bar{u}(p_B) \left[F_1(t) \gamma_\mu + g_A(t) \gamma_\mu \gamma_5 \right] u(p_{B'}) ,$$ \hspace{1cm} (5)$$

where $J_{\mu}^{em} = Q_q \bar{q} \gamma_\mu q$ and $t = (p_B - p_{B'})^2$. Note that F_2 and h_A are not included in Eq. (5) due to the helicity conservation. To exhibit the chirality or helicity, we rewrite Eq. (5) as

$$\langle \mathbf{B}_{\uparrow \downarrow} | J_{\mu}^{em} | \mathbf{B}'_{\uparrow \downarrow} \rangle = \bar{u}(p_B) \left[\gamma_\mu \frac{1 + \gamma_5}{2} G^\uparrow(t) + \gamma_\mu \frac{1 - \gamma_5}{2} G^\downarrow(t) \right] u(p_{B'}) ,$$ \hspace{1cm} (6)$$

where $|\mathbf{B}_{\uparrow \downarrow}\rangle \equiv |\mathbf{B}_\uparrow\rangle + |\mathbf{B}_\downarrow\rangle$ respects both flavor $SU(3)$ and spin $SU(2)$ symmetries, e.g., $|p_\uparrow\rangle = \sqrt{1/18} [u_\uparrow u_\downarrow d_\uparrow + u_\downarrow u_\uparrow d_\downarrow - 2 u_\uparrow u_\downarrow d_\downarrow + \text{permutations}]$. In Eq. (6), $G^\uparrow(t)$ and $G^\downarrow(t)$ represent the right-handed and left-handed form factors, which can be further decomposed as

$$G^\uparrow(t) = e^\uparrow_{||} G_{||}(t) + e^\uparrow_{\perp} G_{\perp}(t) , \quad G^\downarrow(t) = e^\downarrow_{||} G_{||}(t) + e^\downarrow_{\perp} G_{\perp}(t) ,$$ \hspace{1cm} (7)$$

where the constants $e^\uparrow_{||}$ and e^\downarrow_{\perp} are defined by

$$e^\uparrow_{||} = \langle \mathbf{B}_{\uparrow(i)} | Q_{||} | \mathbf{B}'_{\downarrow(i)} \rangle , \quad e^\downarrow_{||} = \langle \mathbf{B}_{\uparrow(i)} | Q_{\perp} | \mathbf{B}'_{\downarrow(i)} \rangle ,$$ \hspace{1cm} (8)$$

respectively, with $Q_{||} = \sum_i Q_{||}(i)$. In Eq. (8), the summation is over the charges carried by the valence quarks ($i = 1, 2, 3$) in the baryon with helicities parallel ($||$) and anti-parallel (\perp) to the baryon spin directions of (\uparrow, \downarrow). Since $G_{||}(t)$ are the form factors accompanied by the (anti-)parallel hard-scattering amplitudes with baryon wave functions, based on the QCD counting rules in the PQCD [2, 34, 35], they can be expressed by

$$G_{||}(t) = C_{||} \left(\frac{t}{\Lambda_0^2} \right)^{-\gamma} , \quad G_{\perp}(t) = C_{\perp} \left(\frac{t}{\Lambda_0^2} \right)^{-\gamma} ,$$ \hspace{1cm} (9)$$

where $\gamma = 2.148$, $\Lambda_0 = 300$ MeV [6] and $C_{||}$ are parameters to be determined. We remark that the asymptotic formulas in Eq. (9) are exact only when t is large. For smaller t, such as when t being close to the two-nucleon threshold, higher power corrections are expected [36]. The corrections will be averaged into the errors of $C_{||}$ in our data fitting. From Eqs. (5)-(8), we have

$$F_1(t) = (e^\uparrow_{||} + e^\downarrow_{\perp}) G_{||}(t) + (e^\uparrow_{\perp} + e^\downarrow_{||}) G_{\perp}(t) ,$$

$$g_A(t) = (e^\uparrow_{||} - e^\downarrow_{||}) G_{||}(t) + (e^\uparrow_{\perp} - e^\downarrow_{\perp}) G_{\perp}(t) .$$ \hspace{1cm} (10)$$
Although the above equations are derived in the space-like region, the time-like form factors can be easily written via the crossing symmetry \[6, 37\], which transforms the particle in the initial state to its anti-particle in the final state and reverses its helicity. However, in general, the values of the time-like \(G_{||}(t)\) and \(G_{\perp}(t)\) form factors are complex numbers unlike the space-like ones for which there is a time reversal symmetry between initial and final states.

In Eq. \((11)\), \(F_2\) is suppressed by \(1/(\ln[t/\Lambda_0^2])\) in comparison with \(F_1\) \[38, 39\] and therefore can be safely ignored, while \(g_P\) is found to be related to \(f_S\) as \[20\] \[g_P = f_S\, , \tag{11}\]

and \(f_S\) and \(h_A\) are deduced from equation of motion, given by

\[
\begin{align*}
 f_S(t) & = \frac{m_B - m_B'}{m_{q_i} - m_{q_j}} F_1(t) , \\
 h_A(t) & = -\frac{(m_B + m_B')^2}{t} g_A(t) .
\end{align*}
\tag{12}
\]

Thus, once we figure out \(F_1\) and \(g_A\), all other form factors \(f_S\), \(h_A\) and \(g_P\) will be determined in terms of Eqs. \((11)\) and \((12)\). For the electromagnetic current \(J_{\mu}^{em} = \frac{2}{3} \bar{u}\gamma_\mu u - \frac{1}{3} \bar{d}\gamma_\mu d\), from Eq. \((10)\) it is clear that \(g_A = 0\) since \(e_\perp^{||} = e_\perp^{||}\). Furthermore, from Eqs. \((4) - (8)\) we have

\[
\begin{align*}
 G^p_M(t) & \equiv F_1^{p\bar{p}}(t) + F_2^{p\bar{p}}(t) \simeq F_{1(emin)}^{p\bar{p}}(t) = G_{||}(t) , \\
 G^n_M(t) & \equiv F_1^{n\bar{n}}(t) + F_2^{n\bar{n}}(t) \simeq F_{1(emin)}^{n\bar{n}}(t) = -\frac{G_{||}(t)}{3} + \frac{G_{\perp}(t)}{3} ,
\end{align*}
\tag{13}
\]

where we have neglected the small \(F_2^{NR}\) terms comparing with those of \(F_1^{NR}\) \[38, 39\]. Similarly, for the \(Z\) coupled current \(J_{\mu}^Z = \frac{1}{2} \bar{u}\gamma_\mu (\frac{1}{2} \bar{u}\gamma_5) u - \frac{1}{2} \bar{d}\gamma_\mu (\frac{1}{2} \bar{d}\gamma_5) d - \sin^2 \theta_W J_{\mu}^{em}\), we use the same form factors defined in Eqs. \((5)\) and \((6)\) by replacing \(J_{\mu}^{em}\) with \(J_{\mu}^Z\) and we get

\[
\begin{align*}
 F_1^{p\bar{p}}(t) & = \frac{2 - 3 \sin^2 \theta_W}{3} G_{||}(t) - \frac{1}{6} G_{\perp}(t) , \\
 F_1^{n\bar{n}}(t) & = \frac{-2 - \sin^2 \theta_W}{3} G_{||}(t) + \frac{1 + 2 \sin^2 \theta_W}{6} G_{\perp}(t) ,
\end{align*}
\tag{14}
\]

Since the behaviors of \(G_{||}(t)\) and \(G_{\perp}(t)\) have been given in Eq. \((9)\), what we shall do next is to fix the parameters \(C_{||}\) and \(C_{\perp}\) in terms of

\[
\begin{align*}
 F_1^{p\bar{p}}(t) & = \frac{4}{3} G_{||}(t) - \frac{1}{3} G_{\perp}(t) , \\
 g^p_A(t) & = \frac{4}{3} G_{||}(t) + \frac{1}{3} G_{\perp}(t) , \\
 F_1^{A\bar{p}}(t) & = \frac{\sqrt{3}}{2} G_{||}(t) , \\
 g^A_A(t) & = \frac{\sqrt{3}}{2} G_{||}(t) ,
\end{align*}
\tag{15}
\]
derived from Eqs. (1)-(8) with the data in $B^0 \to n\bar{p}D^{*+}$ and $B^0 \to \Lambda\bar{p}\pi^+$. Before performing the numerical analysis, we would like briefly discuss the generalized factorization method. It is known that the factorization method \cite{24, 25} suffers from several possible hadron uncertainties, such as those from the nonfactorizable effect, annihilation contribution and final state interaction. To describe these uncertainties, we take the decay of $\bar{B}^0 \to n\bar{p}D^{*+}$ as an example, while those for $\bar{B}^0 \to \Lambda\bar{p}\pi^+$ can be treated in a similar manner. The amplitude of $\bar{B}^0 \to n\bar{p}D^{*+}$ from the color suppressed operator is given by

$$c_2^{eff} \langle n\bar{p}D^{*+}|(\bar{d}_a u_\beta)V_{-A}(\bar{c}_\beta b_\alpha)V_{-A}|\bar{B}^0 \rangle = \frac{c_2^{eff}}{N_c} \langle n\bar{p}|(d\alpha)V_{-A}|0\rangle \langle D^{*+}|(\bar{c}b)V_{-A}|B^0 \rangle + \frac{c_2^{eff}}{2} \langle n\bar{p}D^{*+}|(\bar{d}\lambda^a u_\alpha)V_{-A}(\bar{c}\lambda^b b_\beta)V_{-A}|B^0 \rangle, \quad (16)$$

where $\delta_{\beta\beta'}\delta_{\alpha\alpha'} = \delta_{\beta\alpha}\delta_{\alpha'\beta'}/N_c + \lambda_\alpha^a \lambda_\alpha'^a /2$ has been used to deal with color index α (β) and the second term on the right-hand side is the so-called nonfactorizable effect. Although the nonfactorizable effect cannot be directly and unambiguously determined by theoretical calculations, in the generalized factorization method \cite{32}, this contribution can be absorbed in the effective color number N_c^{eff} running from 2 to ∞ in Eq. (8). The amplitude of the annihilation contribution is given by

$$A_{an}(\bar{B}^0 \to n\bar{p}D^{*+}) = \frac{G_F}{\sqrt{2}} V_{cb} V^*_{ud} a_2 \langle n\bar{p}D^{*+}|(\bar{c}u)V_{-A}|0\rangle \langle 0|\bar{b}V_{-A}|\bar{B}^0 \rangle, \quad (17)$$

where a_2 is around $(0.1 - 0.01)a_1$, which is suppressed. In addition, based on the power expansion of $1/t$ in the PQCD approach, $A_{an}(\bar{B}^0 \to n\bar{p}D^{*+}) \propto 1/t^3$, which is much suppressed than $A(\bar{B}^0 \to n\bar{p}D^{*+})$ as $t \sim m_b^2 \quad \cite{40}$. For the final state interaction, the most possible source is via the two-particle rescattering to the baryon pair, such as $\bar{B}^0 \to M_1M_2D^{*+} \to n\bar{p}D^{*+}$ with $M_{1,2}$ representing meson states. However, such processes would shape the curve associated with the phase spaces in the decay rate distributions \cite{41, 42, 43}, which have been excluded in the charmless baryonic B decay experiments.

In our numerical analysis, we take $c_i^{eff}(i = 1, 2, \cdots, 6) \simeq (1.17, -0.37, 0.0246, -0.0523, 0.0154, -0.066) \quad \cite{32, 44, 45}$, $m_u(m_b) = 3.2$ MeV, $m_s(m_b) = 90$ MeV \cite{32} and $m_b(m_b) = 4.2$ GeV \cite{46}, and the weak phase $\gamma = 59.8^\circ \pm 4.9^\circ \quad \cite{47}$. For the experimental data in the B decays, we use \cite{26, 27}

$$Br(\bar{B}^0 \to n\bar{p}D^{*+}) = (14.5 \pm 4.3) \times 10^{-4},$$

$$Br(\bar{B}^0 \to \Lambda\bar{p}\pi^+) = (3.29 \pm 0.47) \times 10^{-6}, \quad (18)$$
and the other available data in Ref. [27], such as spectrum vs. invariant mass and angular distributions.

Based on the \(\chi^2 \) fitting, we obtain

\[
\chi^2/dof = 0.7, \quad 1/N_{\text{eff}}^{\text{cf}} = 0.2 \pm 0.2,
\]

where dof denotes the degree of freedom. It is clear that \(\chi^2/dof = 0.7 \) presents a reliable fit, while \(N_{\text{eff}}^{\text{cf}} \sim 2.5 - \infty \) means a limited nonfactorizable effects with the small contributions from the annihilation and final state interaction. We stress that if the hadronic uncertainties were large, \(N_{\text{eff}}^{\text{cf}} \) from 2 to \(\infty \) would not be account for the data. The coefficients of \(C_{||} \) and \(C_{\perp} \) in Eq. (2) are found to be

\[
C_{||} = 83.7 \pm 5.7 \, \text{GeV}^4 \quad \text{and} \quad C_{\perp} = -246.3 \pm 92.1 \, \text{GeV}^4
\]

which lead to

\[
G_{\perp}(t)/G_{||}(t) = -2.9 \pm 1.1.
\]

Here, we have assumed that both \(C_{||} \) and \(C_{\perp} \) are real since their imaginary parts are expected to be small based on the argument in Refs. [12, 37] as well as the result in the DR method [48].

As seen in Fig. 1a, the fitted values of \(G_{M}^n(t) \) extracted from the \(B \) decays are in agreement with the FENICE data [16] by the assumptions of \(|G_{M}^n| = |G_{E}^n| \) and \(|G_{E}^n| = 0 \). We note that \(G_{E}^n(t) \equiv F_{1}^{mn}(t) + \frac{t}{4M_{2}}F_{2}^{mn} \) is the neutron electric form factor. Clearly, in our calculation based on the QCD counting rule, \(G_{E}^n \sim G_{M}^n \).

From Eqs. (9), (13) and (20), we get

\[
G_{M}^n(t)/G_{M}^{p}(t) = -1.3 \pm 0.4,
\]

which supports the measurements in Refs. [15] and [16]. We note that in Eq. (22) the ratio is a constant due to the same power expansions in Eq. (9) and the minus sign is necessary in order to match the measured baryonic \(B \) decay branching ratios, which also confirms the theoretical result in Refs. [2, 3, 34, 35]. Moreover, the puzzle of \(|G_{M}^n(t)/G_{M}^{p}(t)| \) \(\geq 1 \) is also solved as indicated in Eq. (22). We note that the ratio \(G_{M}^n(t)/G_{M}^{p}(t) \) is predicted to be \(-2/3\) and \(-1/2\) in the QCD counting [2] and sum rules [3], respectively, while the DR [4, 5, 6, 7] and VMD [8, 9] methods yield only half of the values indicated by the data points. It is
FIG. 1: Form factors of (a) $G_M^\eta(t)$, (b) $F_1(t)$ and (c) $g_A(t)$ with the time-like four momentum transfer t, where the star and triangle symbols represent the FENICE data \[16\] with the assumptions of $|G_M^\eta| = |G_E^\eta|$ and $|G_E^\eta| = 0$, and the solid, dash and dotted curve stand for (b) $F_1^{p\eta}(t)$, $F_1^{p\eta}(t)$ and $F_1^{n\eta}(t)$, respectively. The valid ranges for these time-like form factors are the same as those in the three-body baryonic decays of $B \to B\bar{B}M$, i.e., $(m_B + m_{B'})^2 \simeq 4 \text{ GeV}^2$ for $t \leq (m_B - m_M)^2 \simeq 16 - 25 \text{ GeV}^2$.

In sum, we have shown that the studied three-body baryonic B decays of $B^0 \to n\bar{p}D^{*+}$ and $B^0 \to \Lambda\bar{p}\pi^+$ leads to $G_P^\eta(t)/G_P^\rho(t) = 1.3 \pm 0.4$, which supports the previous theoretical calculations, has been fitted to the B decay data. We have now pointed out that our fitted value for the ratio $G_P^\eta(t)/G_P^\rho(t)$ may be useful for us to perform various QCD calculations on $e^+e^- \to n\bar{n}$. We have also predicted the time-like vector and axial vector nucleon form factors induced from the weak currents, such as $F_1^{NN'}(t)$ and $g_A^{NN'}(t)$ ($N, N' = p$ and n).

Finally, we remark that apart from the use of $\bar{B}^0 \to p\bar{n}D^{*+}$ and $\bar{B}^0 \to \Lambda\bar{p}\pi^+$, there are more decays directly connecting to the time-like form factors, such as $\bar{B}^0 \to p\bar{n}(D^+, \rho^+, \pi^+)$.
and $B^0 \rightarrow \Lambda \bar{p}\rho^+$ as well as the corresponding charged B modes, which are within the accessibility of the current B factories at KEK and SLAC. It is clear that as more and more data available from current and future B factories, the nucleon form factors can be further constrained and determined. Moreover, the new measurements in $e^+e^- \rightarrow n\bar{n}$ are progressing in DAΦNE at Frascati and planning in PANDA and PAX at GSI. As for the weak nucleon form factors, since the scattering of e^+e^- at BABAR is at the m_B scale, $F_1^{NN'}(t)$ and $g_A^{NN'}(t)$ ($N,N' = p$ and n) can be studied via the left-right helicity asymmetry of $A_{PV} = (d\sigma_R-d\sigma_L)/(d\sigma_R+d\sigma_L)$ as in the SAMPLE experiment.

This work is financially supported by the National Science Council of Republic of China under the contract #s NSC-94-2112-M-007-(004,005).

[1] For reviews, see V. Bernard, L. Elouadrhiri and U. G. Meissner, J. Phys. G28, R1 (2002); E. J. Beise, M. L. Pitt and D. T. Spayde, Prog. Part. Nucl. Phys. 54, 289 (2005); E. J. Beise, Eur. Phys. J. A24S2, 43 (2005), and the references therein.
[2] G. P. Lepage and S. J. Brodsky, Phys. Rev. D22, 2157 (1980).
[3] V.L. Chernyak and I.R. Zhitnitsky, Nucl. Phys. B246, 52 (1984); Phys. Rept. 112, 173 (1984).
[4] H. W. Hammer, U. G. Meissner and D. Drechsel, Nucl. Phys. A596, 367 (1996); Phys. Lett. B367, 323 (1996); Phys. Lett. B385, 343 (1996).
[5] H. W. Hammer and U. G. Meissner, Eur. Phys. J. A20, 469 (2004).
[6] H. W. Hammer, in Proc. of the e^+e^- Physics at Intermediate Energies Conference ed. Diego Bettoni, eConf C010430, W08 (2001).
[7] H. W. Hammer, arXiv:hep-ph/0602121
[8] R. Bijker and F. Iachello, Phys. Rev. C69, 068201 (2004).
[9] R. Bijker, arXiv:nucl-th/0502050
[10] A. De Falco, eConf C0309101, FRWP004 (2003).
[11] E. Tomasi-Gustafsson, Nuovo Cim. C27, 413 (2004).
[12] E. Tomasi-Gustafsson and G. I. Gakh, Eur. Phys. J. A26, 285 (2005).
[13] V. M. Braun, A. Lenz and M. Wittmann, Phys. Rev. D 73, 094019 (2006); A. Lenz, M. Wittmann and E. Stein, Phys. Lett. B 581, 199 (2004); V. M. Braun, A. Lenz, N. Mahnke
and E. Stein, Phys. Rev. D 65, 074011 (2002).

[14] H. Schmieden, “Form Factors from MAMI”, [http://linux14.tp2.ruhr-uni-bochum.de/vor-traege/workshops/badhonnef01], Investigation of the Hadronic Structure of Nucleons and Nuclei with Electromagnetic Probes Hadron Form Factors, Physikzentrum Bad Honnef, Germany, April 17-19, 2001, and the transparencies therein.

[15] T. A. Armstrong et al. [E760 Collaboration], Phys. Rev. Lett. 70, 1212 (1993); A. Antonelli et al., Phys. Lett. B334, 431 (1994); M. Ambrogiani et al. [E835 Collaboration], Phys. Rev. D60, 032002 (1999); T. K. Pedlar et al. [CLEO Collaboration], Phys. Rev. Lett. 95, 261803 (2005); B. Aubert et al. [BABAR Collaboration], Phys. Rev. D73, 012005 (2006).

[16] A. Antonelli et al. [FENICE Collaboration], Nucl. Phys. B517, 3 (1998).

[17] W. S. Hou and A. Soni, Phys. Rev. Lett. 86, 4247 (2001).

[18] C. K. Chua, W. S. Hou and S. Y. Tsai, Phys. Rev. D65, 034003 (2002); Phys. Lett. B 528, 233 (2002); Phys. Rev. D66, 054004 (2002).

[19] H. Y. Cheng and K. C. Yang, Phys. Rev. D66, 094009 (2002).

[20] C. K. Chua and W. S. Hou, Eur. Phys. J. C29, 27 (2003).

[21] H. Y. Cheng and K. C. Yang, Phys. Rev. D66, 014020 (2002); Phys. Lett. B533, 271 (2002); Phys. Lett. B633, 533 (2006).

[22] C. Q. Geng and Y. K. Hsiao, Phys. Lett. B619, 305 (2005); Phys. Lett. B 610, 67 (2005); Phys. Rev. D72, 037901 (2005); [arXiv:hep-ph/0509235]

[23] For a review, see H. Y. Cheng, J. Korean Phys. Soc. 45, S245 (2004); [arXiv:hep-ph/0603003]

[24] M. Bauer and B. Stech, Phys. Lett. B 152, 380 (1985).

[25] M. Bauer, B. Stech and M. Wirbel, Z. Phys. C34, 103 (1987).

[26] S. Anderson et al. [CLEO Collaboration], Phys. Rev. Lett. 86, 2732 (2001).

[27] M. Z. Wang et al. [Belle Collaboration], Phys. Rev. Lett. 90, 201802 (2003); Phys. Lett. B 617, 141 (2005); Thomas Latham, in XXXIII International Conference on High Energy Physics, Moscow.

[28] K. Abe et al. [Belle Collaboration], Phys. Rev. Lett. 89, 151802 (2002).

[29] Q. L. Xie et al. [Belle Collaboration], Phys. Rev. D72, 051105 (2005).

[30] M. Z. Wang et al. [Belle Collaboration], Phys. Rev. Lett. 92, 131801 (2004); Phys. Lett. B617, 141 (2005).

[31] Y. J. Lee et al. [Belle Collaboration], Phys. Rev. Lett. 93, 211801 (2004).
[32] Y. H. Chen, H. Y. Cheng, B. Tseng and K. C. Yang, Phys. Rev. D60, 094014 (1999); H. Y. Cheng and K. C. Yang, Phys. Rev. D62, 054029 (2000).

[33] D. Melikhov and B. Stech, Phys. Rev. D62, 014006 (2000).

[34] S. J. Brodsky, G. P. Lepage and S. A. A. Zaidi, Phys. Rev. D23, 1152 (1981).

[35] G. P. Lepage and S. J. Brodsky, Phys. Rev. Lett. 43, 545(1979) [Erratum-ibid. 43, 1625 (1979)].

[36] C. Q. Geng and Y. K. Hsiao, in progress.

[37] E. Tomasi-Gustafsson, arXiv:nucl-th/0602007.

[38] A. V. Belitsky, X. d. Ji and F. Yuan, Phys. Rev. Lett. 91, 092003 (2003).

[39] S. J. Brodsky, C. E. Carlson, J. R. Hiller and D. S. Hwang, Phys. Rev. D69, 054022 (2004).

[40] C. Q. Geng, Y. K. Hsiao and J. N. Ng, Phys. Rev. Lett. 98, 011801 (2007).

[41] C. H. Chen, Phys. Lett. B 638, 214 (2006).

[42] K. Abe et al. [BELLE Collaboration], arXiv:hep-ex/0508015.

[43] H. Y. Cheng, C. K. Chua and S. Y. Tsai, Phys. Rev. D 73, 074015 (2006).

[44] A. Ali, G. Kramer and Cai-Dian Lü, Phys. Rev. D58, 094009 (1998).

[45] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).

[46] F. Caravaglios, P. Roudeau and A. Stocchi, Nucl. Phys. B633, 193 (2002).

[47] S. Eidelman et al., [Particle Data Group], Phys. Lett. B592, 1 (2004) and 2005 partial update for edition 2006 (URL: http://pdg.lbl.gov).

[48] V. Bernard, N. Kaiser and U. G. Meissner, Nucl. Phys. A611, 429 (1996).