and prudence in the case of moderate renal failure (GFR <30 ml/min). All these drawbacks can be obviated by the performance of CEUS, an interesting option especially in patients with CKD.

In conclusion, CEUS is a valuable, safe and easy tool in the diagnosis of vascularized lesions, such as kidney tumours in ADPKD patients.

Conflict of interest statement. None declared.

1 Renal Unit, Ghent University Hospital
2 Goormaghtigh Institute of Pathology, Ghent University Hospital
3 Department Sonography, Ghent University Hospital
Belgium
E-mail: katrien.de_wilde@hotmail.com

1. Keith DS, Torres VE, King BF et al. Renal cell carcinoma in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 1994; 4: 1661–1669
2. Kim AY, Kim SH, Kim YJ et al. Contrast-enhanced power Doppler sonography for the differentiation of cystic renal lesions: preliminary study. J Ultrasound Med 1999; 18: 581–588
3. Correas JM, Bridal L, Lesavre A et al. Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol 2001; 11: 1316–1328
4. Tepel M, Aspelin P, Lameire N. Contrast-induced nephropathy. A clinical and evidence-based approach. Circulation 2006; 113: 1799–1806
5. Grobner T. Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 2006; 21: 1104–1108

doi: 10.1093/ndtplus/sfn153

Advance Access publication 1 October 2008

Nocturnal hypoxia is associated with elevated C-reactive protein in dialysis patients

Sir,

Sleep apnoea syndrome (SAS), characterized by repetitive nocturnal hypoxia, is a risk factor for cardiovascular disease (CVD) [1]. In addition, dialysis patients have a high prevalence of SAS (20–50%) in comparison to the general population (2–4%) [2]. The purpose of this study was to investigate the relationship between plasma C-reactive protein (CRP), an independent risk factor for CVD [3], and nocturnal hypoxia in dialysis patients.

This study followed 88 maintenance haemodialysis patients (male: 53.4%, age: 64.2 ± 24.5 years, BMI: 22.3 ± 9.1, duration of dialysis: 4.7 ± 4.4 years, diabetes mellitus: 39.8%) in Koga Red Cross Hospital, who underwent the overnight pulse oximetry (PULSOX-M24, Teijin Pharma Ltd, Japan) on dialysis day. In addition, blood tests including plasma CRP levels were measured. Plasma CRP was determined using the latex agglutination assay (Pureauto S CRP latex, Daiichi Pure Chemicals, Japan). Patients with systemic inflammatory disease, active malignancy, pulmonary disease and symptomatic heart failure were excluded. The patients with average SaO2 ≤96% by pulse oximetry were defined as the hypoxia group, and others were defined as the normal group.

Twenty-nine patients (33.0%) were classified into the hypoxia group. Age (68.4 versus 62.1 years, \(P = 0.02 \)), cardiothoracic ratio (CTR) (52.7 versus 49.7%, \(P = 0.02 \)), 3% oxygen desaturation index (ODI) (10.6 versus 4.6/h, \(P = 0.01 \)) and plasma CRP (0.26 versus 0.14 mg/dl, \(P = 0.02 \)) were significantly higher in the hypoxia group than in the normal group (Table 1, Figure 1). On the other hand, Kt/V (1.1 versus 1.3, \(P = 0.03 \)) was significantly lower in the hypoxia group than in the normal group (Table 1). After adjusting for age, BMI, diabetes, Kt/V, CTR, systolic blood pressure, haemoglobin and serum albumin in a logistic regression analysis, nocturnal hypoxia was independently associated with elevated CRP (odds ratio 4.88; 95% confidence interval 1.16–20.60: \(P = 0.03 \)).

Characteristics	Hypoxia (n=29)	Normal (n=59)	P-value
Age (years)	68.4 ± 10.1	62.1 ± 13.1	0.02
Man, n (%)	19 (65.5)	28 (47.5)	0.11
BMI (kg/m²)	22.5 ± 6.9	21.8 ± 4.4	0.60
Diabetes mellitus, n (%)	11 (37.9)	24 (40.7)	0.80
Duration of dialysis (years)	3.9 ± 3.4	5.1 ± 4.7	0.20
Kt/V	1.1 ± 0.4	1.3 ± 0.3	0.03
Intra-dialytic weight gain (%)	3.2 ± 1.6	3.6 ± 1.8	0.32
Cardiothoracic ratio (%)	52.7 ± 5.9	49.7 ± 5.0	0.02
ANP (pg/ml)	61.1 ± 63.9	64.6 ± 64.1	0.85
Systolic blood pressure (mmHg)	158.4 ± 20.7	155.0 ± 19.9	0.45
WBC (10³/µl)	5.6 ± 1.5	5.4 ± 1.6	0.67
Haemoglobin (g/dl)	9.0 ± 1.7	9.6 ± 1.4	0.07
Serum albumin (g/dl)	3.6 ± 0.5	3.7 ± 0.5	0.46
3% ODI (events/h)	10.6 ± 10.9	4.6 ± 4.8	0.01
Epworth Sleepiness Scale	6.1 ± 4.2	5.0 ± 4.1	0.23

Fig. 1. Comparison of plasma CRP between hypoxia and normal groups.

ANP, atrial natriuretic peptide; ODI, oxygen desaturation index; BMI, body mass index. Values expressed as mean ± SD or number (percent).
CRP is a risk factor for CVD [3], and increased plasma CRP levels have been noted during hypoxic conditions [4]. Shamsuzzaman et al. reported that obstructive SAS [mean apnoea-hypopnoea index (AHI): 60 ± 5 events/h] diagnosed by polysomnography (PSG) is associated with elevated CRP in the general population [5]. Although AHI, the total number of apnoea and hypopnoea events per hour, may be associated with the severity of nocturnal hypoxia, the direct relationship between CRP and nocturnal hypoxia has not yet been evaluated. Therefore, the relationship between CRP and nocturnal hypoxia diagnosed by average SaO2 using pulse oximetry was investigated. Moreover, pulse oximetry is a simple tool and is used for screening SAS in dialysis patients [6], while PSG is costly in terms of both time and money.

In conclusion, this study demonstrated that nocturnal hypoxia is associated with elevated CRP levels in dialysis patients. These findings suggest that nocturnal hypoxia in dialysis patients may be an additional CVD risk and both a careful follow-up and good control of these patients are needed to prevent CVD.

Conflict of interest statement. None declared.

1Division of Nephrology
2Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University Shimotsuke, Tochigi
3Department of Nephrology, Koga Red Cross Hospital, Koga, Ibaraki Japan
E-mail: mmurata@jichi.ac.jp

Takahiro Masuda
Mitsunobu Murata
Sumiko Honma
Yoshitaka Iwazu
Manabu Ogura
Akira Onishi
Kazuyuki Shimada
Eiji Kusano
Yasushi Asano

1. Shahar E, Whitney CW, Redline S et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 2001; 163: 19–25
2. Tada T, Kusano K, Ogawa A et al. The predictors of central and obstructive sleep apnoea in haemodialysis patients. Nephrol Dial Transplant 2007; 22: 1190–1197
3. Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001; 103: 1813–1818
4. Hartmann G, Tschop M, Fischer R et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine 2000; 12: 246–252
5. Shamsuzzaman ASM, Winnicki M, Lanfranchi P et al. Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 2002; 105: 2462–2464
6. Masuda T, Murata M, Honma S et al. Pulse oximetry is useful for screening sleep apnea syndrome in dialysis patients. NDT Plus 2008; 1: 378–379
doi: 10.1093/ndtplus/sfn156