Stability for UMAP

J.F. Jardine∗

Department of Mathematics
University of Western Ontario
London, Ontario, Canada

jardine@uwo.ca

November 30, 2020

Abstract

This paper displays the Healy-McInnes UMAP construction \(\mathcal{V}(X, N) \) as an iterated pushout of Vietoris-Rips objects \(\mathcal{V}(X, D_x) \), which are associated to extended pseudo metric spaces (ep-metric spaces) defined by a system \(N \) of neighbourhoods of the elements of a finite set \(X \). An inclusion of finite sets \(X \subset Y \) defines a map of UMAP systems \(\mathcal{V}(X, N) \to \mathcal{V}(Y, N') \) in the presence of a compatible system of neighbourhoods \(N' \) for \(Y \). There is also an induced map of ep-metric spaces \((X, D) \to (Y, D') \), where \(D \) and \(D' \) are colimits (global averages) of the metrics defined by the respective neighbourhood systems. We prove a stability result for the restriction of this ep-metric space map to global components. This stability result translates, via excision for path components, to a stability result for global components of the UMAP systems.

The main result of [1] says that if \(X \) is a finite extended pseudo-metric space (ep-metric space), then the canonical map

\[
\eta : \mathcal{V}(X)_s \to S(X)_s
\]

is a weak equivalence for all distance parameters \(s \). Here, \(V(X) \) is the Vietoris-Rips system and \(X \to S(X) \) is the singular functor.

In this paper, we use this result to model the UMAP construction, and we prove a stability result for the resulting hierarchies of clusters.

For the general program, we start with sets \(N_x \) (disjoint from \(x \)) for each \(x \in X \), and distances (or weights) \(d_x(x, y) \geq 0 \) for all \(y \in N_x \). These distances canonically extend to an ep-metric space structure \((U_x, D_x) \) on the set

\[
U_x = \{x\} \sqcup N_x,
\]

∗Supported by NSERC.
and then to an ep-metric space structure \((X, D_x)\) on all of \(X\), for which \(D_x(y, z) = \infty\) unless both \(y\) and \(z\) are in \(U_x\). The metric space structures \((X, D_x)\) can be glued together along ep-metric space morphisms \((X, \infty) \to (X, D_x)\) to produce an ep-metric space

\[(X, D) = \bigvee_{x \in X} (X, D_x). \]

Similarly, the Vietoris-Rips systems \(V(X, D_x)\) can be glued together along the maps \(X \to V(X, D_x)\) to produce a system

\[V(X, N) = \bigvee_{x \in X} V(X, D_x). \]

The notation \(V(X, N)\) reflects the fact that this system of spaces depends on the family \(N = \{N_x, x \in X\}\) of neighbourhoods, which includes choices of weights \(d_x\) within each neighbourhood \(N_x\).

The object \(V(X, N)\), for suitable choices of neighbourhoods and weights, gives the various models for the UMAP system.

The original UMAP system \(S(X, N)\) of Healy and McInnes [2], is constructed from Spivak’s singular functor [3], [1], with

\[S(X, N) := \bigvee_{x \in X} S(X, D_x). \]

There is a sectionwise weak equivalence \(V(X, N) \to S(X, N)\) by the main result of [1], and we use the Vietoris-Rips construction \(V(X, N)\) since it is more familiar and easier to manipulate.

The choice of neighbourhood sets \(N_x\) can be arbitrary, but in [2] it is the set of \(k\)-nearest neighbours. The collections of distances \(d_x(x, y)\) are also arbitrary, but are defined in [2], variously, as the original distance \(d_x(x, y) = d(x, y)\) or the probability \(d_x(x, y) = \frac{1}{r_x} d(x, y)\), or \(d_x(x, y) = \frac{1}{r_x} (d(x, y) - s_x)\). Here, \(r_x = \max_{y \in N_x} d(x, y)\) and \(s_x = \min_{y \in N_x} d(x, y)\).

All corresponding constructions \(V(X, N)\) are variants of the UMAP construction, and they are easily compared. The sharpest results on the general structure of \(V(X, N)\) require the weights \(d_x(x, y) > 0\) for \(y \in N_x\), and this is assumed for most of the paper.

Suppose given an ep-metric space map \(i : (X, d_X) \to (Y, d_Y)\), where the underlying function is an injection, and \(X\) and \(Y\) are finite. The assumption that \(i\) is an ep-metric space morphism means that \(i\) compresses distance in the sense that \(d_Y(i(x), i(y)) \leq d_X(x, y)\) for all \(x, y \in X\).

We can assume for now that \(X\) and \(Y\) are metric spaces, and are therefore globally connected in the sense that \(d(x, y) < \infty\) for all \(x, y \in X\). In that case, since \(X\) is finite, we define the compression factor \(m(i)\) by

\[m(i) = \max_{x \neq y} \frac{d_X(x, y)}{d_Y(i(x), i(y))}. \]

This makes sense because none of the distances in the ratio are either 0 or \(\infty\). If we further assume that for every \(y \in Y\) there is an \(x \in X\) such that \(d_Y(y, x) \leq r\), then the same argument as for the ordinary Rips stability theorem
produces a homotopy interleaving

\[
\begin{align*}
V(X)_s & \overset{\sigma}{\longrightarrow} V(X)_{m(i)(s+2r)} \\
\downarrow i & \quad \downarrow i \\
V(Y)_s & \overset{\sigma}{\longrightarrow} V(Y)_{m(i)(s+2r)}
\end{align*}
\]

This statement appears as Proposition 8 in this paper.

Suppose now that \(i : X \subset Y \) is an inclusion of finite sets, and we have made choice of neighbourhoods \(N_x, x \in X \) and \(N_y, y \in Y \). Suppose that

1) the inclusion \(i \) induces inclusions \(i : N_x \subset N_{i(x)} \), and

2) the weights are chosen such that \(d_x(x, x') > 0 \) for \(x' \neq x \in N_x \), \(d_y(y, y') > 0 \) for \(y' \neq y \in N_y \), and \(d_{i(x)}(i(x), i(y)) \leq d_x(x, y) \) for all \(y \in N_x \).

The assumptions imply that the inclusion \(i \) induces an ep-metric space map \(i : (X, D) \to (X, D') \), and the global connected components of both ep-metric spaces are metric spaces. If \(E \) is a global connected component of \((X, D) \), then there is a global connected component \(F \) of \((Y, D') \) such that \(i \) restricts of a ep-metric space morphism \(i : (E, D) \to (F, D') \) of metric spaces.

Subject to the assumptions of the last paragraph, it follows from Proposition \(\S \) that, if for every \(y \in F \) there is an \(x \in E \) such that \(d_Y(y, i(x)) \leq r \), then there is a homotopy interleaving

\[
\begin{align*}
V(E, D)_s & \overset{\sigma}{\longrightarrow} V(E, D)_{m(i)(s+2r)} \\
\downarrow i & \quad \downarrow i \\
V(F, D')_s & \overset{\sigma}{\longrightarrow} V(F, D')_{m(i)(s+2r)}
\end{align*}
\]

This is a componentwise stability result for the ep-metric space morphism \(i : (X, D) \to (Y, D') \), which appears as Theorem \(\S \) in this paper. The input for this result involves compatible choices of neighbourhoods and weights within those neighbourhoods, rather than distance.

The canonical ep-metric space maps \((X, D_x) \to (X, D) \) induce a map of systems

\[
\phi : V(X, N) = \bigvee_{x \in X} V(X, D_x) \to V(X, D)
\]

which is natural with respect to inclusions \(i : X \subset Y \) satisfying the conditions above.

The ep-metric space \((X, D) \) is a disjoint union of its global connected components \(E \), and the system \(V(X, D) \) is a disjoint union of the systems \(V(E, D) \). This splitting defines a disjoint union structure

\[
V(X, N) = \bigsqcup_E V(X, N)(E),
\]
where \(V(X, N)_E \) is the pullback of the system \(V(E) \) under the map \(\phi \). The induced map
\[
\phi_* : \pi_0 V(X, N)(E) \to \pi_0 V(E)
\]
is an isomorphism of systems of sets, by path component excision (Lemma\(^2\)). The componentwise stability result displayed in the interleaving \(^1\) therefore specializes to interleavings in clusters
\[
\begin{align*}
\pi_0 V(X, N)(E)_s & \xrightarrow{\sigma} \pi_0 V(X, N)(E)_{m(i)(s+2r)} \\
\pi_0 V(Y, N')(F)_s & \xrightarrow{\sigma} \pi_0 V(Y, N')(F)_{m(i)(s+2r)}
\end{align*}
\]
(2)
This is a stability result for UMAP, which appears as Theorem\(^{10}\) below. Theorem\(^{10}\) is the main result of this paper.

Contents

1. General constructions \quad 4
2. UMAP \quad 6
3. Stability \quad 9

1. General constructions

Suppose that we have a set \(X \) with a finite list of ep-metric space structures \((X, d_i), i = 1, \ldots, k \). We can also endow \(X \) with a discrete ep-metric space structure, so that \(d_\infty(x, y) = \infty \) for all \(x, y \in X \). Suppose that \(X \) has a total ordering.

There are canonical ep-metric space morphisms \((X, d_\infty) \to (X, d_i) \), all of which are the identity on \(X \). Write \((X, D) \) for the colimit in \(ep - \text{Met} \), giving a diagram
\[
\begin{array}{ccc}
(X, d_\infty) & \xrightarrow{\tau_i} & (X, d_i) \\
\downarrow & & \downarrow \\
(X, d_j) & \xrightarrow{\tau_j} & (X, D)
\end{array}
\]
The maps \(\tau_i : (X, d_i) \to (X, D) \) are the canonical maps into the colimit. Recall \(^1\) that the colimit \((X, D) \) is formed by taking the colimit of the underlying functions, and endowing it with a metric, in this case \(D \). The colimit of functions, which are identity functions on \(X \), is \(X \) again, so that the notation \((X, D) \) makes sense.
We also write

\[(X, D) = \vee_i (X, d_i)\]

to reflect the fact that we are gluing together the ep-metric spaces \((X, d_i)\) along the underlying set \(X\).

Formally,

\[D(x, y) = \inf_P \left(\sum d_{i_j}(x_j, x_{j+1}) \right),\]

indexed over all polygonal paths

\[x = x_0, x_1, \ldots, x_n = y\]

and choices of metrics \(d_{i_j}\) in the list \(d_i, \ 1 \leq i \leq k\). The pair \(x, y\) forms a polygonal path, so that

\[D(x, y) \leq d_i(x, y)\]

for all \(i\). In this sense, the ep-metric \(D\) optimizes the metrics \(d_i\).

There may not be a polygonal path \(P\) and metrics \(d_{i_j}\) such that all \(d_{i_j}(x_i, x_{i+1})\) are finite. In that case, we have \(D(x, y) = \infty\).

If \(X\) is a finite set, then the collection of polygonal paths from \(x\) to \(y\) in \(X\) is finite, and so

\[D(x, y) = \sum d_{i_j}(x_j, x_{j+1})\]

for some choice of polygonal path \(P\) and metrics \(d_{i_j}\). In that case, \(d_{i_j}(x_j, x_{j+1})\) must be minimal among all \(d_k(x_j, x_{j+1})\).

The maps \((X, d_\infty) \to (X, d_i)\) induce maps \(X \to V(X, d_i)\) into Vietoris-Rips systems, and we form the iterated pushout

\[V(X, D) := \vee_i V(X, d_i)\]

in the category of systems. This means that the object \(\text{(3)}\) is the colimit of all maps

\[X \to V(X, d_i),\]

over the discrete system \(X\). The maps \(\text{(4)}\) are sectionwise monomorphisms, so the object \(V(X, D)\) is a type of homotopy colimit.

Remark 1. In practice and in general, although one tends to be notationally lazy, it is better to replace the Vietoris-Rips system \(s \mapsto V_s(X)\) with the homotopy equivalent system \(s \mapsto BP_s(X)\), where \(P_s(X)\) is the poset of non-degenerate simplices of \(V_s(X)\), and \(BP_s(X)\) is the nerve of \(P_s(X)\). The poset \(P_s(X)\) can be described explicitly as the collection of subsets \(\sigma\) of \(X\) such that \(d(x, y) \leq s\) for all \(x, y \in \sigma\). The structure of the poset \(P_s(X)\) does not depend on an ordering of the set \(X\).

The ep-metric space maps \((X, d_i) \to (X, D)\) induce commutative diagrams

\[
\begin{array}{ccc}
BP(X, d_i) & \longrightarrow & BP(X, D) \\
\gamma & \cong & \gamma_* \\
V(X, d_i) & \longrightarrow & V(X, D)
\end{array}
\]
of maps of systems, where the map γ is a sectionwise weak equivalence defined by subdivision, and the induced map γ^*_{\ast} is a sectionwise weak equivalence arising from the displayed comparison of homotopy colimits.

From this perspective, we can write

$$V(X, D) = BP(X, D) = \bigvee_i BP(X, d_i) = \bigvee_i V(X, d_i)$$

as sectionwise homotopy types.

Lemma 2 (Excision). Suppose that X is a finite set, with a finite collection of ep-metric structures d_i.

Then the canonical map

$$\phi : \bigvee_i V(X, d_i) \to V(X, D)$$

induces bijections

$$\phi_* : \pi_0(\bigvee_i V(X, d_i)) \cong \pi_0 V(X, D)$$

for all s.

Proof. The map ϕ is the identity on vertices, so that ϕ_* is surjective.

Suppose that $D(x, y) \leq s$ in (X, D). There is a polygonal path

$$P : x = x_0, x_1, \ldots, x_n = y$$

and metrics d_{ij} such that

$$D(x, y) = \sum_j d_{ij}(x_j, x_{j+1}) \leq s,$$

since X is finite. This means that $d_{ij}(x_j, x_{j+1}) \leq s$ for all j, and so there are 1-simplices (x_j, x_{j+1}) in $V(X, d_i)_s$ which together describe a path from x to y in $\bigvee X V_s(X, d_i)$.

It follows that, if x, y are in the same path component of $V(X, D)_s$, then x, y are in the same path component of $\bigvee_i V(X, d_i)_s$.

\[\square\]

2 UMAP

The UMAP algorithm of [2] starts with a finite metric space X. We assume that X has a total ordering.

For each point $x \in X$, one finds the list

$$N_x := \{x_1, \ldots, x_k\}$$

of distinct k-nearest neighbours with $x_i \neq x$, with maximum distance $r_x = \max_i d(x, x_i)$.

The set N_x is the set of neighbours of x. 6
In much of what follows, the choices of the sets N_x can be quite arbitrary. In all applications, one assigns distances $d_x(x, y)$ for all neighbours $y \in N_x$, and then one extends functorially to an ep-metric D_x on X. This is done for all $x \in X$.

Examples: Possibilities for $d_x(x, y)$ include $\frac{1}{r_x}d(x, y)$, $\frac{1}{r_x}(d(x, y) - \eta_x)$ where η_x is the distance from x to a nearest neighbour. We can also use the ambient metric $d_x(x, y) = d(x, y)$ from X.

Remark 3. Explicitly, given $x \in X$ we find a set (and a listing) $N_x = \{x_1, \ldots, x_k\}$ of k-nearest neighbours, by finding an element x_1 (in the total order) such that $d(x, x_1)$ is minimal (x_1 is a nearest neighbour). Then $x_2 \in X - \{x, x_1\}$ is chosen such that $d(x, x_2)$ is minimal and x_2 is the first element in the total order that has this property, and so on.

The algorithm is set up such that the sublist $\{x_1, x_{i+1}, \ldots, x_k\}$ of elements having $d(x, x_j) = r$ has $x_i < x_{i+1} < \cdots < x_k$ in the total order.

Assumptions: Suppose that X is a finite set. Suppose given a system of neighbourhoods N_x for $x \in X$, and define distances $d_x(x, y) > 0$ for each $y \in N_x$.

One defines an ep-metric D_x first on the set

$$U_x = \{x\} \cup N_x$$

and then one extends to all of X with the decomposition

$$X = U_x \sqcup \bigcup_{y \in X - U_x} \{y\}. \quad (5)$$

The ep-metric space structure on the set U_x is given by the wedge

$$(U_x, D_x) = \lor_{y \in N_x} (\{x, y\}, d_x)$$

over x of the 2-element metric spaces $(\{x, y\}, d_x)$, in the category of ep-metric spaces. The metric D_x on U_x has the property that $D_x(x, y) = d_x(x, y)$ for $y \in N_x$. The triangle inequality forces

$$D_x(y, z) \leq d_x(y, x) + d_x(x, z)$$

for $y \neq z$ in N_x. At the same time, the sum $d_x(y, x) + d_x(x, z)$ is the length of the shortest polygonal path (y, x, z) between y and z in U_x, and so it follows that

$$D_x(y, z) = d_x(y, x) + d_x(x, z)$$

for $y \neq z$ in N_x.

Use the decomposition (5) to extend D_x to an ep-metric on all of X. This forces $D_x(y, z) = \infty$ unless y and z are both in U_x.

7
Define systems of simplicial sets $V(X, N)$ and $S(X, N)$ by setting

$$V(X, N) = \vee_{x \in X} V(X, D_x)$$

and

$$S(X, N) = \vee_{x \in X} S(X, D_x),$$

respectively. Here, $V(X, N)$ is the iterated pushout of the cofibrations $X \to V(X, D_x)$, where the set X is identified with a constant, discrete system. Similarly, $S(X, N)$ is the iterated pushout of the cofibrations $X \to S(X, D_x)$.

The maps $\eta : V(X, D_x) \to S(X, D_x)$ are sectionwise weak equivalences by [1], and therefore induce a sectionwise weak equivalence

$$\eta : V(X, N) \to S(X, N)$$

by comparison of iterated pushouts (or homotopy colimits).

Spivak’s realization construction Re preserves colimits, and there is a natural isomorphism $\text{Re}(V(X, D_x)) \cong (X, D_x)$ (see [1]), so that the realization

$$\text{Re}(V(X, D)) \cong \vee_X (X, D_x) = (X, D)$$

is the iterated pushout of the maps $X \to (X, D_x)$ in the ep-metric space category, as in the first section.

Remark 4. The set X is finite. The distances d_x have the property that $d_x(x, y) > 0$ for all $y \in N_x, \ x \in X$, and one can show that $D(u, v) = 0$ in (X, D) forces $u = v$.

In effect, $D(u, v)$ is a sum

$$D(u, v) = \sum D_z(x_i, x_{i+1})$$

which is defined by a particular polygonal path $P : u = x_0, \ldots, x_n = v$ (since there are only finitely many such paths). Then $D(u, v) = 0$ forces all

$$D_z(x_i, x_{i+1}) = d(z_i, x_i) + d(z_i, x_{i+1})$$

to be 0, so that $x_i = z_i = x_{i+1}$ for all i, and $u = v$.

Remark 5. It is time for a homotopy theory interlude.

Suppose that each map

$$V = \{0, 1, \ldots, n\} \subset \Delta^n = X_i, \ i \geq 0,$$

is the inclusion of the set of vertices V of the standard n-simplex Δ^n, and let $Y_k = X_0 \cup \cdots \cup X_k$ be an iterated pushout of n-simplices over the common vertex set V.
There is a pushout diagram

\[
\begin{array}{ccc}
V & \longrightarrow & X_1 \\
\downarrow & & \downarrow \\
X_0 & \longrightarrow & X_0 \cup V \cup X_1
\end{array}
\]

in which both \(X_0\) and \(X_1\) are contractible. It follows that \(X_0 \cup V \cup X_1\) has the homotopy type of the suspension \(X_1/V \simeq \Sigma V\) for a suitable choice of base point of the discrete set \(V\) — choose \(0\). Then \(V = \{0, 1\} \lor \{0, 2\} \lor \cdots \lor \{0, n\}\) is a wedge of \(n\) copies of \(S^0\), and \(\Sigma V\) is a wedge of \(n\) copies of \(\Sigma S^0 = S^1\). Thus,

\[Y_1 = X_0 \cup V \cup X_1 \simeq S^1 \lor \cdots \lor S^1\] (\(n\) summands).

More generally, consider the space \(Y_k = X_0 \cup V \cup X_1 \cup V \cdots \cup V X_k\). Collapsing the contractible space \(X_0\) to a point gives

\[Y_k \simeq (X_1/V) \lor (X_2/V) \lor \cdots \lor (X_k/V).\]

Each \(X_i/V\) is an \(n\)-fold wedge of circles, by the above, so that \(Y_k\) is a \(k \cdot n\)-fold wedge of circles.

Suppose that the finite set \(X\) has \(M + 1\) elements. Then \(V(X, D)_\infty\) is an iterated pushout of the maps \(X \subset V(X, D_x)_\infty\). Each \(V(X, D_x)_\infty\) is a copy of the \(M\)-simplex \(\Delta^M\), and each map \(X \subset V(X, D_x)_\infty\) is a copy of the inclusion of vertices \(M \subset \Delta^M\).

It follows that \(V(X, D)_\infty\) is a large wedge of circles. Explicitly, there is a weak equivalence

\[V(X, D)_\infty \simeq \lor_{M^2} S^1\]

This space is path connected.

The system of path component sets

\[s \mapsto \pi_0 V(X, d)_s\]

therefore describes a hierarchy, as in the standard algorithms of topological data analysis.

3 Stability

Suppose that \((X, d)\) is an ep-metric space, and that \(x \in X\). The global connected component of \(x\) is the collection of \(y \in X\) such that \(d(x, y) < \infty\). Say that \(X\) is globally connected if \(d(x, y) < \infty\) for all \(x, y \in X\).

Global connectedness has the following general properties:

1) Every ep-metric space \((X, d)\) is a disjoint union of its set \(\pi_\infty(X, d)\) of global components.
2) An ep-metric space morphism \(f : (X, d_X) \rightarrow (Y, d_Y) \) preserves global connected components: if \(d_X(x, y) < \infty \) then

\[
d_Y(f(x), f(y)) \leq d_X(x, y) < \infty,
\]

so that \(f(y) \) is in the connected component of \(f(x) \). We therefore have an induced function \(f_* : \pi_{\infty}(X, d_X) \rightarrow \pi_{\infty}(Y, d_Y) \).

3) Every metric space is globally connected.

Example 6. Suppose that \(X \) is a finite set with a system of neighbourhoods \(N_x \) and associated distances \(d_x \) for all \(x \in X \) as in the list of Assumptions above, with the resulting ep-metric space \((X, D) \).

The ep-metric space \((X, D) \) has the property that \(D(x, y) = 0 \) forces \(x = y \), by Remark[4]. It follows that the global connected components of the ep-metric space \((X, D) \) are metric spaces.

Say that a pair of elements \((x, y)\) of \(X \) is a *neighbourhood pair* if \(x \in N_y \) or \(y \in N_x \). The argument of Remark[4] shows that elements \(u \) and \(v \) of \((X, D)\) are in the same global connected component if and only if there is a polygonal path

\[
P : u = x_0, x_1, \ldots, x_n = v
\]
such that each pair \((x_i, x_{i+1})\) is a neighbourhood pair.

Suppose that \((X, d_X)\) and \((Y, d_Y)\) are finite metric spaces, and that there is a monomorphism \(i : X \subset Y \) that defines a map of ep-metric spaces, so that \(d_Y(x, y) \leq d_X(x, y) \) for all \(x, y \in X \). Set

\[
m(i) = \max_{x \neq y \in X} \left\{ \frac{d_X(x, y)}{d_Y(i(x), i(y))} \right\}.
\]

Then \(1 \leq m(i) < \infty \) since \(X \) is finite.

The number \(m(i) \) is the *compression factor* for the monomorphism \(i \).

Example 7. Suppose that \(i : X \subset Y \) is an inclusion of finite sets, and choose systems of neighbourhoods \(N_x, \) \(x \in X \) and \(N'_y, \) \(y \in Y \), with distances \(d_x \) and \(d'_y \). Suppose that \(N_x \subset N'(i(x)) \) for all \(x \in X \), and that

\[
d'_y(i(x), i(z)) \leq d_x(x, z)
\]

for all \(z \in N_x \), and for all \(x \in X \).

Then the inclusions \(i : N_x \subset N'(i(x)) \) and the relations \([7]\) define system morphisms \(V(X, D) \rightarrow V(Y, D'(i(x))) \) and \(V(X, D) \rightarrow V(Y, D') \), as well as ep-metric space morphisms \((X, D) \rightarrow (Y, D') \).

The ep-metric space map \((X, D) \rightarrow (Y, D')\) is the realization of the system morphism \(V(X, D) \rightarrow V(Y, D') \).

The ep-metric space morphism \((X, D) \rightarrow (Y, D')\) preserves global connected components, and the global connected components of \((X, D)\) and \((Y, D')\) are finite metric spaces.
For the following, recall that if \((X, d)\) is an ep-metric space, then \(P_s(X, d)\) is the poset of subsets \(\sigma\) of \(X\) such that \(d(x, y) \leq s\) for all \(x, y \in \sigma\). Recall further that the nerve \(BP_s(X, d)\) is the barycentric subdivision of the Vietoris-Rips complex \(V(X, d)_s\), so that the systems \(BP(X, d)\) and \(V(X, d)\) are naturally sectionwise homotopy equivalent.

Proposition 8. Suppose that \(i : X \subset Y\) is an inclusion of finite sets. Suppose that \(X\) and \(Y\) have metric space structures such that \(i\) defines a morphism \(i : (X, d_X) \to (Y, d_Y)\) of ep-metric spaces. Suppose that for every \(y \in Y\) there is an \(x \in X\) such that \(d_Y(y, i(x)) < r\) in \(Y\).

Then there are diagrams of poset morphisms

\[
P_s(X, d_X) \xrightarrow{\sigma} P_{m(i) \cdot (s + 2r)}(X, d_X)
\]

\[
P_s(Y, d_Y) \xrightarrow{\sigma} P_{m(i) \cdot (s + 2r)}(Y, d_Y)
\]

for all \(0 \leq s < \infty\), in which the upper triangle commutes and the lower triangle homotopy commutes rel \(P_s(X, d_X)\).

Proof. Define a function \(\theta : Y \to X\) by setting \(\theta(x) = x\) for \(x \in X\), and by choosing \(\theta(y)\) such that \(d_Y(y, i(\theta(y))) < r\) for \(y\) outside of \(X\).

Then

\[
d_Y(i(\theta(y_1)), i(\theta(y_2))) \leq d_Y(i(\theta(y_1)), y_1) + d_Y(y_1, y_2) + d_Y(y_2, i(\theta(y_2)))
\]

and it follows that

\[
d_X(\theta(y_1), \theta(y_2)) \leq m(i) \cdot (d_Y(y_1, y_2) + 2r).
\]

If \(\sigma = \{y_1, \ldots, y_n\}\) is a subset of \(Y\) such that \(d(y_j, y_k) \leq s\) for all \(j, k\), then \(\theta(\sigma) = \{\theta(y_1), \ldots, \theta(y_n)\}\) has \(d(\theta(y_j), \theta(y_k)) \leq m(i) \cdot (s + 2r)\) for all \(j, k\).

The subset \(\sigma \cup i(\theta(\sigma))\) of \(Y\) has distance between any two elements bounded above by \(m(i) \cdot (s + 2r)\). The natural inclusions

\[
\sigma \subset \sigma \cup i(\theta(\sigma)) \supset i(\theta(\sigma))
\]

define the required homotopies.

As in Example[2] suppose that \(i : X \subset Y\) is an inclusion of finite sets, and choose systems of neighbourhoods \(N_x, x \in X\) and \(N_y', y \in Y\), with distances \(d_x\) and \(d_y'\). Suppose that \(N_x \subset N_{i(x)}'\) for all \(x \in X\), and that

\[
0 \neq d_y'(i(x), i(z)) \leq d_x(x, z)
\]

for all \(z \in N_x\), for all \(x \in X\). Form the corresponding ep-metric space morphism \(i : (X, D) \to (Y, D')\).
Suppose that E is a global connected component of (X, D) and that F is a global connected component of (Y, D') such that $i(E) \subset F$. Consider the restriction of the ep-metric space morphism $i : (X, D) \subset (Y, D')$ to the ep-metric space morphism $i : (E, D) \to (F, D')$. Suppose that $m(i)$ is the compression factor for the map i of global components.

The objects (E, D) and (F, D') are metric spaces, by the choices of all weights d_x and d'_y—see Example 6.

The following result is a corollary of Proposition 8.

Theorem 9. Suppose that the map $i : (E, D) \to (F, D')$ is the ep-metric space morphism between metric spaces that is described above. Suppose that for every $y \in F$ there is an $x \in E$ such that $D'(y, i(x)) < r$. Then there are diagrams

$$
\begin{array}{ccc}
P_s(E, D) & \xrightarrow{\sigma} & P_{m(i)(s+2r)}(E, D) \\
\downarrow{i} & & \downarrow{i} \\
P_s(F, D') & \xrightarrow{\sigma} & P_{m(i)(s+2r)}(F, D')
\end{array}
$$

for all $0 \leq s < \infty$, in which the upper triangle commutes and the lower triangle homotopy commutes rel $P_s(E)$.

The canonical map

$$\phi : V(X, N) = \lor_x V(X, D_x) \to V(X, D),$$

is induced by the ep-metric space maps $(X, D_x) \to (X, D)$.

The ep-metric space (X, D) is a disjoint union of its global connected components E, and the system $V(X, D)$ is a disjoint union of the systems $V(E, D)$. Form the pullback diagram

$$
\begin{array}{ccc}
V(X, N)(E) & \xrightarrow{\phi} & V(X, N) \\
\phi \downarrow & & \phi \downarrow \\
V(E, D) & \xrightarrow{\phi} & V(X, D)
\end{array}
$$

The disjoint union

$$V(X, D) = \bigsqcup_{E \in \pi_\infty(X, D)} V(E, D)$$

pulls back to a disjoint union structure

$$V(X, N) = \bigsqcup_{E \in \pi_\infty(X, D)} V(X, N)(E)$$
on $V(X, N)$.

The excision isomorphisms

$$\phi_* : \pi_0 V(X, N)_s \xrightarrow{\cong} \pi_0 V(X, D)_s$$
of Lemma 2 restrict to isomorphisms
\[\phi_s : \pi_0 V(X, N)(E)_s \xrightarrow{\cong} \pi_0 V(E, D)_s. \] (8)

We finish with a corollary of Theorem 9:

Theorem 10. Suppose that the map \(i : (E, D) \to (F, D') \) is the ep-metric space morphism between metric spaces that is described above. Suppose that for every \(y \in F \) there is an \(x \in E \) such that \(D'(y, i(x)) < r \). Then there are commutative diagrams

\[
\begin{array}{ccc}
\pi_0 V(X, N)(E)_s & \xrightarrow{\sigma} & \pi_0 V(X, N)(E)_{m(i) \cdot (s+r)} \\
\uparrow i & & \uparrow i \\
\pi_0 V(Y, N')(F)_s & \xrightarrow{\sigma} & \pi_0 V(Y, N')(F)_{m(i) \cdot (s+r)}
\end{array}
\]

for all \(0 \leq s \leq \infty \), where \(m(i) \) is the compression factor for the map \(i \).

Theorem 10 is a stability result for clustering in UMAP.

References

[1] J.F. Jardine. Metric spaces and homotopy types. Preprint, http://uwo.ca/math/faculty/jardine/, 2020.

[2] Leland McInnes and John Healy. UMAP: uniform manifold approximation and projection for dimension reduction. *CoRR*, abs/1802.03426, 2018.

[3] D.I. Spivak. Metric realization of fuzzy simplicial sets. Preprint, 2009.