The solution structure of domain III from the New York West Nile virus strain 385-99 (WN-rED3) has been determined by NMR methods. The West Nile domain III structure is a β-barrel structure formed from seven anti-parallel β-strands in two β-sheets. One anti-parallel β-sheet consists of β-strands β1 (Phe399-Asp407), β2 (Val413-Tyr419), β4 (Arg435-Leu455), and β5 (Lys570-Glu576) arranged so that β2 is flanked on either side by β1 and β5. The short β4 flanks the end of the remaining side of β5. The remaining anti-parallel β-sheet is formed from strands β3 (Ile340-Val343), β6 (Gly380-Arg388), and β7 (Gln391-Lys399) arranged with β6 at the center. Residues implicated in antigenic differences between different West Nile virus strains (and other flaviviruses) and neutralization are located on the outer surface of the protein. Characterization of the binding of monoclonal antibodies to WN-rED3 mutants, which were identified through neutralization escape experiments, indicate that antibody neutralization directly correlates with binding affinities. These studies provide an insight into theoretical virus-receptor interaction points, structure of immunogenic determinants, and potential targets for antiviral agents against West Nile virus and highlight differences between West Nile virus and other flavivirus structures that may represent critical determinants of virulence.

In 2002, the mosquito-borne West Nile virus (WNV)1 (family Flaviviridae, genus Flavirus) was responsible for the largest outbreak of arthropod-borne encephalitis recorded in the Western hemisphere. In that year, 4156 human infections and 284 deaths were reported in the United States (1). In 2003, the WNV epidemic continued with large numbers of human and animal disease across North America, and it was detected for the first time in Mexico and Central America (e.g. Refs. 2–4). The objective of this study was to solve the solution structure for the putative envelope (E) protein, the receptor-binding domain of WNV with the long term goal of using these findings for the development of structure-based vaccines or antiviral agents. Currently, there are no approved vaccines for WNV or therapeutic treatments for West Nile encephalitis.

The flaviviruses are small, enveloped, positive-sense RNA viruses that are transmitted primarily by either mosquitoes or ticks. The translation of the single open reading frame within the viral genome, followed by co- and posttranslational cleavage, results in ten viral proteins, three structural proteins (core, membrane, and E) and seven non-structural proteins. The non-structural proteins are involved in viral replication and pathogenesis, whereas the three structural proteins are assembled into the mature virus particle.

The E protein is the major surface protein of the flavivirus virions. The E protein is also the primary immunogen and plays a central role in virus attachment and entry to cells via membrane fusion. The x-ray crystallographic structures of the E protein ectodomains of both the tick-borne central European encephalitis virus (5) and the mosquito-borne dengue-2 virus (6) have been solved. Both proteins contain three distinct structural domains (domains I, II, and III) that correspond to previously characterized antigenic domains (7). Domain III (D3) of the E protein was initially proposed as the likely receptor-binding domain of the flaviviruses because of its structural characteristics. These include an IgC-like fold and a four-ami-no-acid loop that contains an RGD integrin-binding motif in several of the mosquito-borne flaviviruses (5). More recent studies have shown that D3 is directly associated with binding of dengue-2 virus (DEN2V) (8), WNV, and the tick-borne Langat virus2 to cells. Domain 3 of WNV (WN-rED3) has also been shown to contain epitopes recognized by virus-neutralizing monoclonal antibodies (9). X-ray crystallography (5, 6) and cryo-electron microscopy studies (6, 10, 11) of the mosquito-borne WNV, DEN2V, and yellow fever virus have found that the E protein is arranged in dimeric form on the virus surface. Located at the 5- and 3-fold axes of symmetry, D3 projects slightly above the virion surface, allowing access to potential receptor molecules and antibodies. The 5-fold axis is arranged such that there is a “pore” between the D3 molecules. When the
EXPERIMENTAL PROCEDURES

PROTEIN EXPRESSION AND PURIFICATION—Uniformly 13C,15N-labeled recombinant WN-ENd3 from neuroinvasive lineage 1 West Nile virus strain 385-99 was overexpressed as a maltose-binding protein fusion using the pMAL-c2X vector as described previously (9), and the 115-residue WN-ENd3 was purified using size-exclusion chromatography. Residues Leu59–Ser137 of the 115-residue protein align with residues Leu93–Ser193 of the 385-99 envelope protein. Residues 1–5 and 115–118 were included in this construct to increase protein solubility. In addition, the QuikChange XL site-directed mutagenesis kit (Stratagene) was used to derive E-D3 fusion proteins encoding mutations at K307R or T330I. These mutations had been shown previously to affect neutralization of WN by monoclonal antibodies (9).

Monoclonal Antibody Neutralization and Binding Assay—Neutralization assays with four WN-specific neutralizing antibodies, designated 7H2, 5H10, 5C5, and 3A3 (Bioreliance), against WN NY99 and variants monoclonal antibody (MAb)P5-H10 and 5C5 were performed with MAbs at 10 nM concentration as described elsewhere (9). The binding characteristics of the four MAbs to recombinant WN-ENd3 and the K307R and T330I mutant E-D3 MBP fusion proteins were investigated using a titration enzyme-linked immunosorbent assay similar to that described by Lin and Wu (15). Brieﬂy, wells of 96-well enzyme-linked immunosorbent assay plates were coated overnight at 4 °C with 60 ng/well purified fusion protein (equivalent to ~11 ng of E-D3). After blocking in phosphate-buffered saline containing 0.5% Tween 20 (phosphate-buffered saline-Tween) and 3% bovine serum albumin, serial dilutions of MAbs from 100 to 0.003 nM were dispensed into replicate wells and incubated at room temperature (25 °C) for 60 min. After washing three times with phosphate-buffered saline-Tween, horseradish peroxidase-labeled anti-mouse Ig antiserum was added to each well, and the plates were incubated again, prior to washing and addition of TMB substrate. Color development was for 15 min, after which the reactions were stopped with 3 M HCl, and absorbance values were read at 450 nm. Binding curves and Kd values were determined using SigmaPlot (SPSS Inc., Chicago, IL).

NMR SPECTROSCOPY AND GENERATION OF RESTRAINTS—The NMR sample contained 0.7 mM protein in 50 mM KHP04, (pH 6.8), 100 mM NaCl, 10 mM Na2SO4 and 0.1 mM EDTA in 90% H2O, 10% D2O. All NMR experiments were acquired on Varian UnityPlus 600 or 750 MHz spectrometers at 25 °C. Sequence-specific chemical shifts for the backbone atoms were obtained from three-dimensional HNCA, HN(C)CA, and HNCO (17) experiments. The backbone assignments were verified through sequential NH-NH and NH-HNCO (17) experiments. The backbone assignments were further aided in the assignments of the C-α and C-β carbons in cases of degeneracy in the HN(C)CA experiment and in the assignments of the Asn and Gln side chain amides. Aromatic chemical shifts were assigned based on a CT-1H,13C-HSQC spectrum, NOE data, and a HCCH-TOCSY spectrum with the carbon frequency centered on the aromatic carbon frequency. Spectra were processed using VNMR v6.1b (Varian, Inc.) or Felix98 (MSI, Inc.) software.

The program SANE (21) was used to facilitate the assignment of some NOE cross-peaks and for the generation of restraints. Within the SANE program, chemical shift, distance cutoff, and secondary structure filters were used. The NOE restraints were separated into three bins based on their volumes, and the upper distance limits of the restraints were set to 2.8, 3.8, and 5.5 Å. The 1239 NOE-based restraints (see Table I) consist of 299 intra-residue, 433 sequential, 104 medium range, and 403 long range NOE restraints.

The program TALOS (22) was used to derive δφ/δψ angle restraints. After two rounds of preliminary molecular dynamics calculations, those dihedral angles inconsistent with the NOE data were removed or changed to the δφ/δψ angle exhibited by fewer of the proteins in the TALOS data bank. Additionally, α dihedral angle and chiral angle restraints were also used.

Restrained Molecular Dynamics Calculations—One hundred random structures were generated by annealing the protein at 1500 K, obtaining the coordinates every 5 ps, and minimizing the structures obtained. During the annealing process, chiral restraints were applied to maintain the correct chirality for all amino acids. Each of these structures was then subjected to 15 ps of restrained molecular dynamics with the following protocol. During the first 5 ps, the restraints were increased linearly from 0 to 20 kcal/mol Å2, the non-bonded interactions (electrostatic, van der Waals, and hydrogen bonding terms) were set to 10% of their normal values, and the temperature was increased from 100 to 700 K. During the next 5 ps the non-bonded interactions were increased linearly from 10 to 100%, while the temperature remained set to 700 K. During the final 5 ps, the temperature was decreased linearly from 700 to 100 K while the full force constants of the restraints and the non-bonded interactions were applied. Each of the structures obtained was subsequently subjected to 2000 steps of energy minimization. Fifteen structures with low restraint penalties were then chosen for the structural ensemble. All calculations were done with the SANDER module within AMBER6 (23). Structures were visualized with MIDAS (23) or MOLMOL (24), which was used to generate Figs. 1 and 3. Atomic coordinates for fifteen structures have been deposited with the Protein Data Bank (PDB ID 1S6N) and the chemical shifts have been deposited at the BioMagResBank under accession code 6046 (25).

RESULTS

Quality of the Final Structure—The 15 final structures in the ensemble (Fig. 1) had low molecular and restraint energy penalties. The final structures had 6–2 distance restraint violations over 0.3 Å, and 8±1 dihedral angle violations over 20° (Table I). The dihedral angle restraints used were very restrictive in angular space; the tightest restraint was ±3°, and 75±1° of the dihedral angles were restricted to less than ±20° from the target angle. Therefore, a violation cutoff of 20° is reasonable for the restraints used. The r.m.s.d. restraint error was 0.0156 ± 0.0017 Å, and the r.m.s.d. angle restraint error was 1.60 ± 0.06°. The structural ensemble has an average pairwise atomic r.m.s.d. of 0.65 ± 0.12 Å for the backbone atoms and 0.98 ± 0.17 Å for all heavy atoms for residues 13–108 of the protein.

The program PROCHECK (14) was used to analyze the quality of the ensemble of structures. Ramachandran analysis of the non-glycine, non-proline residues indicated 98% of the residues are in the two most favored regions of the Ramachandran plot. Specifically, 76.8% are in the most favored region, 21.2% are in the additionally allowed region, 0.7% are in the generously allowed region, and 1.2% are in the disallowed region. Ser100 is in the disallowed region in two of the fifteen structures, whereas Lys807, which is near the disulfide bond between Cys306 and Cys356, is in the disallowed region in every structure.

Interaction of WN-Vspecific Neutralizing Monoclonal Antibodies with E-D3—Previously we have described the preliminary determination of in vitro neutralization characteristics of four WN-specific MAbs that bound to WN E-D3 (9). To better characterize the interactions of these MAbs with E-D3 and the relationship between MAb binding and virus neutralization we titrated the specific binding of each MAb with the WN-ENd3 MBP fusion protein in enzyme-linked immunosorbent assays. Based on these titrations (Fig. 2A), the calculated Kd values for each MAb were comparable, ranging between 0.1 and 0.2 nM. Interestingly, the maximal binding of MAb 7H2 was 20% higher than those of the other MAbs (Fig. 2), which
was consistent with the greater neutralizing activity of this Mab against WNV NY99 (Fig. 2, Table II).

Neutralization escape variants selected with MAbs 5C5 (designated MabR-5C5) or 5H10 (MAb R-5H10) encoded mutations at K307R or T330I, respectively (9). When mapped onto the DEN2 E protein dimer structure, the WNV E-D3 NMR structure clearly shows that these residues are surface-exposed and located spatially near to each other on the upper outside face of E-D3 (Fig. 3B). To better quantify the effects of these mutations on the epitopes recognized by the anti-WNV MAbs, the ability of all four MAbs to bind to recombinant E-D3 proteins that encoded the K307R or T330I mutations was assessed. Despite the close proximity of residues 307 and 330 on the E-D3 surface (Fig. 1), significantly different mutation effects were observed in the binding of the four MAbs (Fig. 2B). The maximal binding of Mab 7H2 (at 100 nM concentration) to either mutant protein was ~2-fold lower than its binding to the wild-type WNV NY99 E3. In contrast, either mutation resulted in ~5–10-fold reductions in the binding of either the 5H10 or 3A3 MAbs to levels that were only slightly higher than the background. The binding of Mab 5C5 was affected differently by the two mutations. At concentrations up to and including 100 nM, binding to
the K307R protein was not detected, whereas only an -2-fold reduction in peak binding occurred with the T330I mutant. In general, the binding data were consistent with neutralization data obtained for the four MAbs against the MAβ5-5C5 and -5H10 variant strains (Table II). The data also confirmed our previous hypothesis that distinctly different binding interactions can occur at this surface despite the relatively small E-D3 surface area available for antibody binding.

NMR studies of the binding of a JEV-specific neutralizing MAb to JEV E-D3 have indicated that multiple interactions occur with residues across the entire upper surface of E-D3 (13). However, escape from neutralization by that JEV-specific MAb was primarily associated with mutations at the outside edge of E-D3 in the loop linking residues 2 and 3 (15). This region is homologous to the location of the antigenically significant mutations that we have reported in WNV (9). In JEV-rED3, the positively charged glutamic acid, and residues T330 and T332 are replaced by serines. This suggests that the upper edge of domain III formed by the loop linking β2 and β3 represents an important antigenic determinant for both WNV and JEV. The fact that none of these mutations have been associated with viability or virulence changes in either JEV (15) or WNV (9) suggests that other surface-exposed residues in E-D3 may represent critical receptor binding elements and determinants of tropism and virulence for these viruses.

DISCUSSION

The solution structure of domain III from the envelope protein of the West Nile virus represents the first high-resolution structure from the immunogenically important E protein of this medically important virus. The structure is similar to the domain III structures of both the DEN2V and the JEV but has significant differences that most likely contribute to the antigenic and tropism differences between these mosquito-borne flaviviruses. A number of E-D3 residues in WNV lineage 1 strains that are different from those in some WNV lineage 2 strains, JEV, and/or DEN2V strains are located near the top of the β-barrel (Fig. 1B). Among them are Lys307 and Thr330, which affect antibody binding and escape from neutralization (see below). In addition, residues Thr332, Tyr329, Leu512, and Ala559 are also solvent-exposed, may play a role in the determination of antigenic specificities, and serve as additional starting points for mutation studies.

Comparison with Domains III of the Dengue-2 and Japanese Encephalitis Virus E Proteins—Although the WN-rED3 structure is similar to domain III from both DEN2V (6) and the JEV (JEV-rED3) (13) E proteins, there are significant differences. When aligning the backbone atoms of the six major β-strands present in domain III of all three proteins, WN-rED3 has an atomic r.m.s.d. of 2.5 and 2.8 Å versus the domain III of DEN2V and JEV, respectively. Small differences do exist between the
the last two residues of the DEN2 twisted/H9252/ and the analogous strands from the JEV-rED3 and DEN2 domain III structures. Strand C-terminal end compared with the analogous strands of the DEN2V and three residues shorter than those of the DEN2V and three residues longer than the analogous strands, residues (Ser381–Trp396) in JEV-rED3 are each one residue longer than Arg388 and Lys393, in DEN2V. The two-residue strand β4 of WN-rED3 (Arg354–Leu355) coincides with the last two residues of the DEN2 twist β-strand β5 (Val347–Leu351). The β5 strand of DEN2V appears to be two sequential β-strands that are three and two residues long, twisted −90° relative to each other. An analogous β-strand is not present in the JEV-rED3 structure. Strand β5 (Lys370–Glu374) of WN-rED3 is one residue longer than β4 of JE-rED3 (Lys369–Met374) on the C-terminal end, and it is one residue longer than β7 (Val365–Glu370) of DEN2N on the N-terminal end. β-Strands β6 (Gly360–Arg365) and β7 (Glu361–Lys369) of WN-rED3 are each two residues longer than the analogous strands, β6 (Gly372–Ile380) and β9 (Leu377–Lys383), in DEN2V. The analogous strands β5 (Ser383–Gly386) and β6 (Gln391–Trp396) in JE-rED3 are each one residue shorter than those of the DEN2V and three residues shorter than those of WN-rED3. Two short interacting β-strands that are present in DEN2V domain III, β3 (Cys333–Lys338) and β6 (Ile357–Val360), are not observed in either the WN-rED3 or JE-rED3 solution structures. The two β-strands not present in the JEV and WNV domain III solution structures are near the top of the DEN2V β-barrel. As previously suggested (13), the absence of these two strands may be because of the lack of dimeric head-to-tail interactions between domain III and domains I and II, which are not part of the present protein studied or the JEV domain III solution structure.

Although the secondary structures and global folds of the West Nile, Japanese encephalitis, and dengue-2 virus domain III proteins are similar, the protein surfaces presented as antigens or targets for potential therapeutic drugs are significantly different (Fig. 4). Domain III forms a pentameric pore in the virion, and the residues near this interface are shown in Fig. 4, at the top. For WN-rED3, residues Thr322, Ala365, Thr366, and Asn368 form a small pocket at this site. The width of the pocket between residues Thr322 and Thr366 is 6.85 Å. A similar but wider pocket is present in the JEV-rED3 structure. In the JEV-rED3 structure, the pocket is formed by residues Ser330, Asp331, Pro333, Ser362, Ser364, and Asn366. The width across the pocket between residues Ser330 and Ser364, which are analogous to Thr322 and Thr366 in WN-rED3, is 8.95 Å. Thus, in the West Nile virus, this pocket is about 2 Å narrower. In addition, the pocket in the JEV-rED3 structure involves more residues, including the negatively charged Asp331. In the West

sheet structures of the three proteins (Table III). The first two β-strands of WN-rED3, spanning Phe309–Asp317 and Val323–Tyr329, are identical in length to strands β1 and β2 in the both the JE-rED3 and the DEN2N domain III structures. Strand β3 of WN-rED3, spanning Ile340–Val348, is one residue shorter on the C-terminal end compared with the analogous strands β3 (Ile339–Ala343) in JE-rED3 and β4 (Phe337–Met340) in DEN2V.

TABLE III
Comparison of β-strands in domain III of the envelope proteins from the dengue-2, West Nile, and Japanese encephalitis viruses

β-strand	DEN2V Residues	β-strand	WNV Residues	β-strand	JEV Residues
β1	Phe309–Glu314	β1	Phe309–Asp317	β1	Phe309–Asp316
β2	Ile320–Tyr326	β2	Val323–Tyr329	β2	Val323–Tyr326
β3	Cys333–Lys338	β3	Ile340–Val348	β3	Ile339–Ala343
β4	Phe337–Mel340	β4	Val339–Leu351	β4	Arg354–Leu355
β5	Val397–Leu351	β5	Gly380–Arg384	β5	Gly360–Arg364
β6	Ile357–Val359	β6	Lys370–Glu374	β6	Lys369–Glu374
β7	Val355–Glu377	β7	Lys381–Glu385	β7	Lys381–Glu385
β8	Gly374–Ile380	β8	Gly376–Arg379	β8	Ser378–Gly386
β9	Leu377–Lys383	β9	Gln382–Lys389	β9	Gln382–Lys389

Fig. 3. Structure of WN-rED3 domain III modeled onto the dengue-2 virus E protein dimer. A, as viewed from the virion surface. B, the same structure viewed after rotating the top of the model 90° toward the viewer. Side chain atoms are shown for some residues that have been shown to differentiate antibody binding between West Nile virus strains I and II.
Nile structure, the side chain of the analogous residue Asp333 is situated away from this pocket. The electrostatic charges are also significantly different near these pockets and on the face of the proteins. The electrostatic surface formed in WN-rE-D3 by residue Lys307 sandwiched between two negatively charged residues, Asp333 and Glu390 (Fig. 4A, top right), is very different from that formed by JEV-rE-D3 (Fig. 4B, top right). In the JEV-rE-D3 structure, the negatively charged residue Asp390 is situated between two positive residues, Lys306 and Lys389.

On the central face of the structures shown in Fig. 4, Asp326 and Lys370 of WN-rE-D3 align well with residues Glu324 and Lys368 of JE-rE-D3. However, in the WN-rE-D3 structure an additional positively charged residue, Lys311, is just above and to the right of these residues, whereas in the JEV-rE-D3 structure an additional positively charged residue, Lys311, is directly under the aforementioned residues. These subtle structural changes are responsible for protein surfaces that interact differently with ligands such as antibodies, potential drugs, and possibly cell surface proteins. As an example, the rings of positive lysines in each of the proteins, such as Lys207, Lys310, Lys370, and Lys387 in WN-rE-D3, serve as attractive targets for nucleic acid-based aptamer strategies. Thus, the WN-rE-D3 structure provides direction for future drug development and mutation effect studies and provides insight in the analysis of current mutation studies.

Antibody neutralization experiments indicate mutations K307R and T330I have differential effects with respect to the antibody used in the experiment. At 100 nM concentration, which is 50–100-fold greater than the K_d for binding of each MAB to wild-type NY99 rE-D3, an ~2-fold reduction in binding was observed for MAB 7H2 to either the K307R or T330I mutants, relative to the NY99 protein. MABs 5H10 and 3A3 exhibited a 5–10-fold reduction in binding to either of the mutants. However, MAB 5C5 binding was decreased >10-fold to the K307R mutant but was decreased only 2-fold to the T330I mutant. These differences in binding correlated with differences in the ability of these MABs to neutralize WNV strains encoding those mutations and confirmed that, despite the relatively small size of E-D3, distinctly different binding interactions can occur at its upper surface. In addition, the clustering of antigenically significant mutations at the upper outside edge of E-D3 in both WNV and JEV suggest that other surface-exposed residues may represent critical receptor binding determinants. Accordingly, these solvent-exposed residues represent potentially important targets for rational design of vaccines or therapeutic agents to control WNV disease.

This high-resolution structure of the WN-rE-D3 provides significant insight toward understanding the immunological differences between a mosquito-borne flavivirus, in general, and members of the JEV serocomplex, more specifically. These subtle structural differences, particularly in areas that constitute virus-specific neutralizing epitopes, may provide the basis for the lack of significant immunological cross-protection between viruses such as WNV, JEV, and DEN2V, despite the antigenic cross-reactivity that exists between them. The structural differences and variability of surface exposed residues of the putative receptor-binding domain III may also contribute to differences in host cell tropism and to subsequent disease pathogenesis of a particular flavivirus (e.g. neurotropic WNV and JEV versus DEN). The identification of conserved and variable structures and surface residues provides potential targets for the development of structure-based antiviral agents that are targeted against WNV infection, or potentially, infection by all flaviviruses.

Acknowledgment—We thank Bo Xu and coworkers of the University of Texas Medical Branch Protein Expression Core Facility for the expression and purification of WN-rE-D3.

REFERENCES

1. Zeller, H. G., and Schuffenecker, I. (2004) *Eur. J. Clin. Microbiol. Infect. Dis.* 23, 147–156
2. Estrada-Franco, J. G., Navarro-Lopez, R., Beasley, D.W.C., Coffey, L., Carrara, A.S., Travassos da Rosa, A., Clements, T., Wang, E., Lubwiz, G. V., Cortes, A. C., Ramirez, P. P., Tesh, R. B., Barrett, A. D., and Weaver, S. C. (2003) *Emerg. Infect. Dis.* 9, 1604–1607
3. Blitvich, B. J., Fernandez-Salas, I., Contreras-Cordero, J. F., Marlenee, N. L., Gonzalez-Rojas, J. I., Komar, N., Gubler, D. J., Calisher, C. H., and Beaty, B. J. (2003) *Emerg. Infect. Dis.* 9, 853–856
4. Laroño-Pino M.A., Blitvich, B. J., Farfán-Ale, J. A., Puerto, F. I., Blanco, J. M., Marlenee, N. L., Rosado-Paredes, E. P., García-Rejon, J. E., Gubler, D. J., Calisher, C. H., and Beaty, B. J. (2003) *Emerg. Infect. Dis.* 9, 857–859
5. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C., and Harrison, S. C. (1998) *Nature* 395, 291–298
6. Modis, Y., Ogata, S., Clements, D., and Harrison, S. C. (2003) *Proc. Natl. Acad. Sci. U. S. A.* 100, 6986–6991
Solution Structure and Antibody Binding Studies of the Envelope Protein Domain III from the New York Strain of West Nile Virus
David E. Volk, David W. C. Beasley, Deborah A. Kallick, Michael R. Holbrook, Alan D. T. Barrett and David G. Gorenstein

J. Biol. Chem. 2004, 279:38755-38761.
doi: 10.1074/jbc.M402385200 originally published online June 9, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M402385200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 24 references, 7 of which can be accessed free at http://www.jbc.org/content/279/37/38755.full.html#ref-list-1