Mixing and lifetime of B-meson using Coulomb plus power potential

Bhavin Patel1, Ajay Kumar Rai2 and P.C. Vinodkumar1

1Department of Physics, Sardar Patel University, Vallabh Vidyanagar- 388 120, Gujarat, INDIA

2Physics Section, Department of Applied Sciences & Humanities, Sardar Vallabhbhai National Institute of Technology, Surat-395 007, Gujarat, INDIA.

Abstract

The investigation of mixing phenomena and lifetime in neutral B meson systems provides an important testing ground for standard model flavour dynamics. Spectroscopic parameters has been used to calculate the pseudoscalar decay constant and predictions of mixing mass parameters and lifetimes of the B_d and B_s mesons.

1 Introduction

The study of mixing and lifetimes of the B-meson, provides us useful information about the dynamics of quarks and gluons at the hadronic scale. The remarkable progress at the experimental side, with various high energy machines such as LHC, B-factories, Tevatron, ARGUS collaborations, CLEO, CDF, DO etc. for the study of hadrons has opened up new challenges in the theoretical understanding of B-meson. In order to understand the structure of the newly observed zoo of open flavour meson resonances$^{[1, 2, 3, 4]}$ in the energy range of 2-5 GeV, it is necessary to analyze their spectroscopic properties and decay modes based on theoretical models. Many of these states could be the excited beauty mesonic states while for many other states the possibility of multi-quark or molecular like structures are being proposed. Thus, the main objective of the present paper includes the study of decay constant, mixing parameters and lifetimes of the open flavour beauty mesons using the spectroscopic parameters. We study these open beauty mesons within the frame work of a potential model $^{[5, 6]}$. The weak decay constants of pseudoscalar and vector decay constants are important in the calculations of various decay rates $^{[7]}$ and mixing parameters of the mesons.
2 Theoretical methodology: A Potential Scheme

In the limit of heavy quark mass \(m_Q \to \infty \), heavy meson properties are governed by the dynamics of the light quark. As such, these states become hydrogen like atom of hadron physics. We investigate the heavy-light mass spectrum of \(B \) and \(B_s \) mesons in the framework of a relativistic potential model. For the light-heavy flavour bound system of \(q\bar{Q} \) or \(\bar{q}Q \), we treat the heavy-quark (\(Q = b \)) as well as the light-quark (\(q = d, s \)) relativistically within a potential bound mesonic system. The Hamiltonian for the case be written as

\[
H = \sqrt{p^2 + m_q^2} + \sqrt{p^2 + m_Q^2} + V(r) \tag{1}
\]

Where \(m_q \) and \(m_Q \) are the light and heavy quark mass respectively, \(p \) is the relative momentum of each quark, \(V(r) \) is the confined part of the quark-antiquark potential. Here, we consider a general power potential with a colour Coulomb term of the form \[5, 8]\n
\[
V(r) = \frac{-\alpha_c}{r} + Ar^\nu \tag{2}
\]

where \(\alpha_c = \frac{4}{3} \alpha_s \), \(\alpha_s \) being the strong running coupling constant, \(A \) and \(\nu \) are the potential parameters. We employ the trial wave function,

\[
R(r) = 2\sqrt{\frac{\mu^2}{\sqrt{\pi}}} \exp(-\mu^2r^2/2) \tag{3}
\]

and use the virial theorem, to get spin average mass from the Hamiltonian defined by Eqn.\[11\]. Here \(\mu \) is the variational parameter. The parameters used
here are \(m_{u/d} = 0.36 \text{ GeV} \), \(m_s = 0.4 \text{ GeV} \), \(m_b = 4.2 \text{ GeV} \), and \(\alpha_c = 0.36 \) (for \(B \) meson) and \(\alpha_c = 0.33 \) (for \(B_s \) meson). The remaining model parameter \(A \) is fixed for each choices of \(\nu \) so as to get the experimental ground state spin average masses of \(B \) and \(B_s \) mesons. The spin average masses of \(B - B^* \) and the \(B_s - B_s^* \) mesons are computed using the experimental values of \(M_B = 5.279 \text{ GeV} \), \(M_{B^*} = 5.325 \text{ GeV} \), \(M_{B_s} = 5.369 \text{ GeV} \), \(M_{B_s^*} = 5.417 \text{ GeV} \) respectively [3]. The behavior of potential strength \(A \) with power index \(\nu \) is shown in Fig 1. It is found to have an exponential behavior with \(\nu \). For computing the mass difference between \(B - B^* \) and the \(B_s - B_s^* \) mesonic states, we consider the spin dependent part of the usual OGEP given by [9]

\[
V_{SS}(r) = \frac{4}{3} \frac{\pi \alpha_c}{m_Q m_q} \left[S(S+1) - \frac{3}{2} \right] \delta^{(3)}(\vec{r})
\]

(4)

The computed results of S-state of \(B \) and \(B_s \) with different choices of \(\nu = 0.5 \) to 2.0 are listed in Table-1 along with the existing experimental as well as with other theoretical model predictions.

3 The Decay constants of the neutral open beauty mesons

The decay constants of mesons are important parameters in the study of leptonic or non-leptonic weak decay processes and in the neutral \(B - \bar{B} \) mixing process. In the nonrelativistic limit, the decay constant can be expressed through the ground state wave function at the origin \(\psi_P(0) \) by the Van-Royen-Weisskopf formula [14]. Though most of the models predict the mesonic mass spectrum successfully, there are disagreements in the predictions of their decay constants [15]. So, we reexamine the predictions of the decay constants with different choices of potential index \(\nu \). We consider the nonrelativistic expression for \(f_p \) as [14]

\[
f_P^2 = \frac{3 |R_p(0)|^2}{\pi M_P}
\]

(5)

The results computed for \(B \) and \(B_s \) mesons are tabulated in Table-2 along with other theoretical model predictions.

4 Mixing Mass Parameter of \(B_q(q \epsilon d, s) \) mesons

In the standard model, the transitions \(B^0_q - \bar{B}^0_q \) and \(B^0_q - \bar{B}^0_q \) are due to the weak interaction. The netural \(B_d \) and \(B_s \) mesons mix with their antiparticles
| Meson | ν | μ | $|R(0)|^2$ | M_P in GeV | M_V in GeV |
|-------|------|------|-----------|-------------|-------------|
| B_d | 0.5 | 0.450| 0.206 | 5.291 | 5.324 |
| | 0.7 | 0.472| 0.237 | 5.287 | 5.325 |
| | 0.9 | 0.487| 0.261 | 5.285 | 5.327 |
| | 1.0 | 0.493| 0.271 | 5.284 | 5.327 |
| | 1.1 | 0.499| 0.280 | 5.283 | 5.327 |
| | 1.3 | 0.508| 0.295 | 5.282 | 5.329 |
| | 1.5 | 0.515| 0.308 | 5.279 | 5.329 |
| | 1.7 | 0.522| 0.320 | 5.278 | 5.329 |
| | 1.9 | 0.527| 0.330 | 5.277 | 5.329 |
| | 2.0 | 0.529| 0.334 | 5.276 | 5.329 |
| B_s | 0.5 | 0.491| 0.267 | 5.378 | 5.413 |
| | 0.7 | 0.515| 0.308 | 5.374 | 5.414 |
| | 0.9 | 0.532| 0.339 | 5.371 | 5.415 |
| | 1.0 | 0.539| 0.353 | 5.370 | 5.416 |
| | 1.1 | 0.545| 0.365 | 5.369 | 5.416 |
| | 1.3 | 0.555| 0.385 | 5.365 | 5.416 |
| | 1.5 | 0.563| 0.403 | 5.365 | 5.418 |
| | 1.7 | 0.570| 0.418 | 5.364 | 5.418 |
| | 1.9 | 0.576| 0.431 | 5.363 | 5.419 |
| | 2.0 | 0.578| 0.436 | 5.362 | 5.419 |
Table 2: Decay constant, Mixing Mass Parameter and lifetime of $B_q(q = d, s)$ mesons

Meson	ν	f_P in MeV	Δm_q in ps^{-1}	Lifetime τ in ps	
		Our	Others	Our	Others
B_d	0.5	192	0.45	1.55	
	0.7	206	0.52	1.56	
	0.9	216	0.57	1.56	
	1.0	220 ($196(29)$)	0.59	1.57	1.530
	1.1	223 ($189(7)$)	0.61	1.57	±0.009[3]
	1.3	230 ($190(7)\pm_{24}^{+24}$)	0.65	1.57	
	1.5	235 ($203(23)$)	0.68	1.57	
	1.7	239 ($206(20)$)	0.70	1.58	
	1.9	243 ($210(9)$)	0.72	1.58	
	2.0	244	0.73	1.58	
B_s	0.5	217	17.67	1.43	
	0.7	233	20.35	1.43	
	0.9	244	22.40	1.44	
	1.0	249 ($216(22)$)	23.26	1.44	1.466
	1.1	253 ($218(7)$)	24.04	1.44	$\pm0.059[3]$
	1.3	260 ($217(6)\pm_{32}^{+32}$)	25.38	1.45	
	1.5	266 ($236(30)$)	26.52	1.45	
	1.7	271 (236 ± 30)	27.49	1.45	
	1.9	275 ($244(21)$)	28.33	1.45	
	2.0	277	28.71	1.45	
leading to oscillations between the mass eigenstates. This mass oscillation is parameterized as the mixing mass parameter given by

\[\Delta m_B = \frac{G_F^2 m_t^2 M_B q_f^2}{6\pi^2} g(x_t) \eta_t |V^*_{tb} V_{tb}|^2 B \]

(6)

where \(\eta_t \approx 0.55 \) is the gluonic correction to the oscillation [11], \(B \) is the bag parameter and its value is taken from the lattice result as 1.34 [12], while the pseudoscalar mass \((M_{Bq}) \) and the pseudoscalar decay constant \((f_{Bq}) \) of the beauty mesons are taken as our spectroscopic parameters determined using potential models. The \(g(x_t) \) factor is the Inami-Lim function given by

\[g(x_t) = \frac{1}{4} + \frac{9}{4(1-x_t)} - \frac{3}{2(1-x_t)^2} - \frac{3}{2(1-x_t)^3} \ln x_t \]

(7)

Here, \(x_t = \frac{m_t^2}{M_W^2} \) The values of \(m_t \) (174 GeV), \(M_W \) (80.403 GeV) and the CKM matrix elements \(V_{tb}(1), V_{td}(7.4 \times 10^{-3}) \) and \(V_{ts}(40.6 \times 10^{-3}) \) are taken from the Particle Data Group [3]. The results are also tabulated in Table[2].

5 The Lifetime of the neutral open beauty mesons

We compute the lifetime of these neutral \(B_q(q = d, s) \) mesons by computing their semileptonic decay widths and by using their experimental branching ratios. The inclusive semileptonic decay width of the open beauty flavour mesons are computed using the expression given by

\[\Gamma(B \rightarrow \bar{\nu}_l X_c) = \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 [f(x) - \frac{\alpha_s}{\pi} g(x)] \]

(8)

Here, \(m_b \) the mass of \(b \) quark. Generally, it is taken as the model mass parameter coming from the fitting of its mass spectrum . Within the potential confinement scheme, we consider it as the effective mass of the quarks, \(m_q^{\text{eff}} \) [27]. Thus, effective \(b \) quark mass \((m_b^{\text{eff}}) \) is defined as

\[m_b^{\text{eff}} = m_b \left(1 + \frac{E_{\text{bind}}}{m_b + m_q}\right) \]

(9)

to account for its bound state effects. The binding effect has been calculated as \(E_{\text{bind}} = M_{Bq} - (m_b - m_q) \), where \(m_b \) and \(m_q \) are the model mass parameters employed in its spectroscopic study and \(M_{Bq} \) is the mass of the mesonic state. The effective mass of the quarks would be different from the adhoc choices of the model mass parameters. For example, within the meson the mass of the
quarks may get modified due to its binding interactions with other quark. Thus, the effective mass of the b quark will be different when it is in $b\bar{s}$ combinations or in $b\bar{d}$ combinations due to the residual strong interaction effects of the bound systems. The functions $f(x)$ and $g(x)$ appeared in Eqn. 8 correspond to the phase space correction and the QCD correction at the bc vertex in this decay. They are computed from [18, 19], where the parameter x is computed as $x = \left(\frac{m_{bc}}{m_{bc}}\right)^2$. The lifetime of B_d and B_s mesons are computed from the relation $\text{BR}(B_q \to l\bar{\nu}_l X_c) = \Gamma(B_q \to l\bar{\nu}_l X_c)\tau_{B_q}$. The results are listed in Table 1 with other theoretical and experimental values for comparisons.

6 Results and Discussion

We have employed the coulomb plus power potential form to study the the mixing mass parameters and lifetimes of the B_d and B_s mesons using the spectroscopic ground state parameters. Here we solved the Schrödinger equation using variational approach [5, 6]. Our potential parameters are fixed with respect to the center of weight ground state $1S$ mass of the B_q mesons. In Table 2, we tabulate our predictions for the f_p and Δm_q and lifetime of the neutral open beauty mesons. Our results are compared with the available experimental / other theoretical values. The prediction for Δm_q and lifetime of the B_q mesons are very close to the experimentally observed values. It can be seen that the mixing mass parameter is more sensitive to the choice of the potential index while the life time is least sensitive to the potential choice. In conclusion we find the overall predictions in accordance with the experimental values in the range of potential index $0.5 \leq \nu \leq 0.7$. Thus the present study is an attempt to indicate the importance of spectroscopic parameters (i.e. masses and decay constants) in the weak decay processes.

Acknowledgement: Part of this work is done with a financial support from DST, Government of India, under a Major Research Project SR/S2/HEP-20/2006.

References

[1] Aubert B et al. (BABAR Collaboration), Phys. Rev. Lett. 98, 122011 (2007).
[2] D. Besson et al. (CLEO Collaboration), Phys. Rev. D 68, 032002 (2003).
[3] W. M. Yao et al., (Particle Data Group) J. Phys. G 33, 1 (2006).
[4] Antimo Palano, Nucl. Phys. B 156, 105 (2006).
[5] A. K. Rai et al., Jnl. Phys G. 28, 2275 (2002).
[6] A. K. Rai et al., Jnl. Phys G. 31, 1453 (2005).
[7] D. Ebert et al., Phys. Lett. B 634, 214 (2006).
[8] B. Patel et al., Jnl. Phys G. 35, 065001 (2008).
[9] M.B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008).
[10] D. Ebert et al., Phys. Rev D 67, 014027 (2003).
[11] A. Buras et al., Nucl. Phys. B 347, 491 (1990).
[12] A. Buras, Phys. Lett B 566, 115 (2003).
[13] E. Braaten et al., Phys. Rev. D 52, 181 (1995).
[14] R. Van Royen et al., Nuovo Cimento 50, (1967).
[15] D. S. Hwang et al., Phys. Rev. D 55, 6944 (1997).
[16] S. Stone, World Scientific, (1994).
[17] P. Gambino, Nucl. Phys. (Proc. Suppl.) B 156, 169 (2006).
[18] Yosef NIR, Phys. Lett. B 221, 184 (1989).
[19] N. Cabibbo et al., Phys. Lett. B 79, 109 (1978).
[20] J. L. Rosner and S. Stone, arXiv:hep-ex/0802.1043v1.
[21] Stefano Villa, arXiv:hep-ex/0707.0263v1.
[22] G. Gvetic et al., Phys. Lett B 596, 84 (2004).
[23] C. Bernard et al., Phys. Rev. D 66, 094501 (2002).
[24] S. Narison, Phys. Rev. Lett. B 520, 115 (2001).
[25] M. Jamin et al., Phys. Rev. D 65, 056005 (2002).
[26] A. A. Penin et al., Phys. Rev. D 65, 054006 (2002).
[27] F. E. Close, A text book on "An Introduction to Quarks and Partons", Academic Press (1982).
[28] M. Di Pierro et al., Phys. Rev. D 64, 114004 (2001).