Electronic structure and interaction in CH₄@C₆₀: a first-principle investigation

Ang Jia¹ · He Huang² · Zhong-fu Zuo² · Yong-jin Peng²

Received: 9 March 2022 / Accepted: 25 May 2022 / Published online: 3 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022, corrected publication 2022

Abstract
CH₄@C₆₀ was the first example within which an organic molecule has been embedded in C₆₀. CH₄ can rotate freely in the molecular cage, and the carbon skeleton structure of the C₆₀ has no obvious deformation. The electronic structure of CH₄@C₆₀ and interaction between C₆₀ and CH₄ were studied under quantum mechanical calculation method. The different reaction sites on C–C bonds in C₆₀ and the weak Van der Waals interaction between CH₄ and C₆₀ were shown clearly. These results and the orbital interaction between CH₄ and C₆₀ were helpful for understanding and further application of this unique biggest organic molecule CH₄ contained in C₆₀ structure so far.

Keywords C₆₀ · Electronic structure · Interaction · First principle

Introduction
C₆₀ is a carbon allotrope consisting of 60 C atoms in the shape of a soccer ball. Since C₆₀ has a hollow molecular cavity, it is also envisaged to use C₆₀ as a molecular cage and embed other small molecules in C₆₀. In theory, this process is simple: specific chemical means are used to cut the C–C bonds of several consecutive five-membered carbon rings and six-membered carbon rings on one side of the C₆₀, open a gap, introduce small molecules, and finally close the rings one by one by the same chemical method to suture the sphere.

In the past, small inorganic molecules such as H₂, H₂O, and HF have been embedded into C₆₀ [1–19]. In order to plug larger molecules into the C₆₀, a larger gap has to be opened on its surface. However, over opening prevents further stitching of the C₆₀, thus limiting the size of the embedded molecules.

Professor Richard J. Whitby’s team opened a large gap on one side of a C₆₀ molecule, a 17-carylic ring containing an S atom, and then tucked the CH₄ into the cavity of C₆₀ at high pressure [20]. The next step was the key suturing step, in which the sulfide in the gap was partially oxidized to sulfoxide, and desulfonylation occurred under photoinitation to complete the first closing, and then, the structure of C₆₀ was reduced by mature cyclization and aromatization processes. With the shielding of C₆₀, the quantum properties of C atom in a single CH₄ molecule can be studied in this structure.

The stability and interaction in the structure of encapsulation of small molecules into fullerene nanocages have been studied by some previous theoretical work [3, 6, 16, 21–24], whereas the CH₄@C₆₀ structure was probed using some new quantum mechanical calculation methods in this work and the interaction between C₆₀ and CH₄ was shown more clearly.

Methods
The wB97X-D3 [25] and M06-2x [26] exchange–correlation functional conjunction with def2-TZVP basis set [27] in vacuum were employed for geometric structure optimization and electronic structure calculation within the ORCA 4.2.1 code [28]. This combination of functional and basis set was shown to be reliable especially for the quantum mechanical calculation of carbon materials [29]. All analyses were finished by using the Multiwfn 3.7 code [30] and some isosurface maps were rendered by means of the VMD 1.9.3 software [31].
The most stable optimized geometric structure of CH$_4@C_{60}$ was obtained with the lowest energy and the number of the imaginary frequency of vibration was checked to be zero.

Results and discussion

From the isosurface map of electron density in Fig. 1a, the symmetrical distribution of electron in CH$_4@C_{60}$ was clearly shown. The electron density along the C–C bonds shared by one five-membered and one six-membered carbon ring ([5,6] bond, labeled by 1 in Fig. 1) was smaller than C–C bonds shared by two six-membered carbon rings ([6,6] bond, labeled by 2 in Fig. 1). This character was also clearly shown in isosurface map of gradient norm (Fig. 1b) and laplacian (Fig. 1c) of electron density.

The value of the laplacian function was defined as the trace of the electron density Hessian matrix at a point, which was the result of the Laplace operator applied to the electron density. The positive value of laplacian function means that the electron density was mainly divergent; otherwise, the negative value mean that aggregation of electron density was dominant. In the isosurface map of laplacian of electron density of CH$_4@C_{60}$ (Fig. 1c), the positive value was indicated by green color and the purple color was used to indicate negative value. It can be clearly seen that the positive laplacian value at the center of carbon and the negative laplacian value along the C–C bonds and the center of hydrogen atom which indicated the flow direction of the electron in this molecule. The symmetrical distribution of electron density and the difference between the [5,6] and [6,6] bonds were also clearly shown in isosurface map of laplacian of electron density (Fig. 1c).

To illustrate the interaction between CH$_4$ and the C$_{60}$ in detail, the δg [32] function of interaction area in the molecule was obtained through the multi wavefunction analysis software Multiwfns 3.7 and shown in Fig. 2. It can be clearly shown that only the weak Van der Waals interaction of C–H...π exist between the CH$_4$ and C$_{60}$ which was same as the results of experiments before [20].

The distribution of molecular orbital of CH$_4@C_{60}$ was illustrated by density of states (DOS) map in Fig. 3. The DOS curve reflected the number of molecular orbitals in unit energy interval at corresponding energy. The total DOS (TDOS) of CH$_4@C_{60}$ and the partial DOS (PDOS) of maps contributed by C$_{60}$ and CH$_4$ respectively were simultaneously shown in Fig. 3. Meanwhile, isosurface maps of three molecular orbitals (orb92, HOMO, LUMO) with energy at about -22.42 eV, -8.10 eV, and -2.12 eV respectively at the current wb97XD3/def2-TZVP level were also drawn in the figure for comparison. It can be seen from Fig. 3 that the HOMO and LUMO of the CH$_4@C_{60}$ molecule were almost solely contributed by the C$_{60}$ structure yet without the admixture of CH$_4$ part. Within the occupied orbitals,

Fig. 1 CH$_4@C_{60}$ isosurface maps of a electron density, value = 0.25; b gradient norm of electron density, value = 0.25; c laplacian of electron density, value = ±0.7

Fig. 2 δg function of interaction area in CH$_4@C_{60}$

Fig. 3 DOS curve of CH$_4@C_{60}$
there were only several molecular orbitals with energy about -23 eV, -16 eV, and -13 eV in which the CH$_4$ component made the contribution. This conclusion can also be deduced by the isosurface maps of molecular orbitals in Fig. 3.

The charge decomposition analysis (CDA) method was a valuable tool to analyze quantitatively the interactions between two molecular fragments in terms of the linear combination of the donor and acceptor fragment orbitals’ donation and polarization using quantum mechanical calculations [33]. Within the CH$_4$@C$_{60}$ molecule, the C$_{60}$ and CH$_4$ were defined as two fragments to be analyzed using CDA method. According to the results of CDA analysis, the orbital interaction between two fragments of C$_{60}$ and CH$_4$ was illustrated in Fig. 4. The solid and dashed horizontal bar in Fig. 4 indicated the occupied and unoccupied molecular orbital respectively. The CH$_4$@C$_{60}$ molecular orbital was connected by red line with the fragments’ orbital which contributed more than 10% in that molecular orbital. It can be also seen in Fig. 4 that mostly the CH$_4$@C$_{60}$ molecular orbitals including HOMO and LUMO were contributed by the C$_{60}$ structure. The CH$_4$ part just played a role in few occupied and unoccupied CH$_4$@C$_{60}$ molecular orbitals which agreed with the conclusion from Fig. 3 mentioned before and the non-covalent interaction concept which was discussed in the reference [34, 35] based on the Hellmann–Feynman theorem.

Fukui function and related dual descriptors were very popular methods defined under the framework of conceptual density functional theory for predicting reaction sites. Fukui functions and related dual descriptors were fine for most systems. However, for some systems which had higher order point group symmetry (tended to degenerate the front-line molecular orbitals), the Fukui function and the dual descriptor may give meaningless results, such as the distribution of the function did not satisfy the symmetry of the system, and therefore obviously violated the basic chemical intuition. Ricardo et al. put forward the concept of orbital-weighted Fukui function and dual descriptor of orbital...
weighted [36, 37]. Compared with the general form of Fukui function and double descriptors, the orbital-weighted form had the advantage that it can be reasonably applied to the system of line orbital (quasi) degeneration.

Here the orbital-weighted double descriptors of CH$_4$@C$_{60}$ obtained from Multiwfn were illustrated in Fig. 5 to present the reaction sites of the molecule. The negative value of orbital-weighted double descriptors on [6,6] bond (purple) indicated it was most easily electrophilic attacked. Otherwise, the positive value of orbital-weighted double descriptors on [5,6] bond (green) indicated it was most easily nucleophilic attacked. This result was similar as the former study on C$_{60}$ and reflected the weak interaction between CH$_4$ and C$_{60}$. To further understand the vibrational properties of CH$_4$@C$_{60}$, the IR spectrum was calculated and displayed in Fig. 6. The red arrows in Fig. 6 which indicated the vibration modes at different wavenumbers showed the most vibration modes were almost contributed by C$_{60}$ part and the negligible interaction between C$_{60}$ and CH$_4$ at this energy level.

Conclusions

In summary, the electronic structure and interaction between fragments inside the CH$_4$@C$_{60}$ molecule were studied using quantum chemical method based on density functional theory. The different reaction sites on [5,6] and [6,6] bonds and the weak Van der Waals interaction between CH$_4$ and C$_{60}$ were shown clearly. The calculated IR spectrum indicated the negligible interaction between C$_{60}$ and CH$_4$ at the vibrational energy level. These results and the orbital interaction between CH$_4$ and C$_{60}$ were helpful for understanding and
further application of this unique biggest organic molecule CH₄ contained in C₆₀ structure so far.

Author contribution Ang Jia performed the calculation; He Huang and Zhong-fu Zuo performed the data analysis; Yong-jin Peng designed and analyzed the data.

Funding This work was supported by the Natural Science Foundation of Liaoning Province (JYTQN201923, 20180550512), National Natural Science Foundation of China (81374051). The authors declare no competing interests.

Data availability All the data can be shared in the supporting information online.

Code availability The software ORCA and VMD used in this work can be downloaded freely.

Declarations

Competing interests The authors declare no competing interests.

References

1. Wakahara T, Kato T, Miyazawa KI, Harneit W (2012) N@C-60 as a structural probe for fullerene nanomaterials. Carbon 50:1709–1712
2. Yang J, Feng P, Sygula A, Harneit W, Su J-H, Du J (2012) Probing the zero-field splitting in the ordered N@C-60 in bucky-catcher C60H28 studied by EPR spectroscopy. Phys Lett A 376:1748–1751
3. Huang J, Li Q, Yang J (2013) Tuning the electronic properties of N@C-60 molecule: a theoretical study. J Nanosci Nanotechnol 13:1053–1058
4. Liu G, Gimenez-Lopez MDC, Jevric M, Khlobystov AN, Briggs GAD, Porfyrakis K (2013) Alignment of N@C-60 derivatives in a liquid crystal matrix. J Phys Chem B 117:5925–5931
5. Min K, Farimani AB, Aluru NR (2013) Mechanical behavior of water filled C60. Appl Phys Lett 103:101–108
6. Yu Z, Chen J, Zhang L, Wang J (2013) First-principles investigation of quantum transport through an endohedral N@C-60 in the Coulomb blockade regime. J Phys-Condens Matter 25:265–272
7. Plant SR, Porfyrakis K (2014) Using electron paramagnetic resonance to map N@C-60 during high throughput processing. Analyst 139:4519–4524
8. Eckardt M, Wiezorek R, Harneit W (2015) Stability of C-60 and N@C-60 under thermal and optical exposure. Carbon 95:601–607
9. Li G (2015) Tuning conductance in C-60 devices: defective C-60 and endohedral C-60 complex. Appl Phys A-Mater Sci Process 118:473–477
10. Min K, Farimani AB, Aluru NR (2015) Mechanically modulated electronic properties of water-filled fullerences. Mrs Commun 5:305–310
11. Sabirov DS, Tukhatullina AA, Bulgakov RG (2015) Compress- sion of methane endofullerene CH₄@C-60 as a potential route to endohedral covalent fullerene derivatives: a DFT study. Fullerenes Nanotubes Carbon Nanostruct 23:835–842
12. Zhou S, Rasovic I, Briggs GAD, Porfyrakis K (2015) Synthesis of the first completely spin-compatible N@C-60 cyclopropane derivatives by carefully tuning the DBU base catalyst. Chem Commun 51:7096–7099
13. Cornez SP, Zhou S, Porfyrakis K (2017) Synthesis and EPR studies of the first water-soluble N@C-60 derivative. Chem Commun 53:12742–12745
14. Zhao Y, Wang B (2018) Effect of substrate on the electron spin resonance spectra of N@C-60 molecules. Acta Phys Chim Sin 34:1312–1320
15. Hashikawa Y, Murata Y (2019) H2O/olefinic-pi interaction inside a carbon nanocage. J Am Chem Soc 141:12928–12938
16. Xu M, Felker PM, Mamone S, Horsewell AJ, Rols S, Whitty RJ, Bacic Z (2019) The endofullerene HF@C-60: inelastic neutron scattering spectra from quantum simulations and experiment, validity of the selection rule, and symmetry breaking. J Phys Chem Lett 10:5365–5371
17. Bloodworth S, Hoffman G, Walkcy MC, Bacanu GR, Hermann JM, Levitt MH, Whitty RJ (2020) Synthesis of Ar@C(60) using molecular surgery. Chem Commun 56:10521–10524
18. Felker PM, Bacic Z (2020) Flexible water molecule in C-60: intramolecular vibrational frequencies and translation-rotation eigenstates from fully coupled nine-dimensional quantum calculations with small basis sets. J Chem Phys 152:588–594
19. Kurotobi, Kei, Murata, Yasujiro (2011) A single molecule of water encapsulated in fullerene C60. Science 12301–12306
20. Bloodworth S, Sitinova G, Alom S, Vidal S, Bacanu GR, Elliott SJ, Light ME, Hermann JM, Langley GJ, Levitt MH, Whitty RJ (2019) First synthesis and characterization of CH4@C-60. Angewandte Chemie-Int Ed 58:5038–5043
21. Cong, Wang, Michal, Straka, Pekka, Pyyk (2010) Formulations of the closed-shell interactions in endohedral systems. Phys Chem Chem Phys : PCCP 5878–5896
22. Korona T, Dodziuk H (2011) Small molecules in C60 and C70: which complexes could be stabilized? J Chem Theory Comput 7:1476–1481
23. Popov AA, Yang S, Dunsch L (2013) Endohedral Fullerences. Rev Chem 113:5989–6113
24. Zeinalinezhad A, Sahnoun R (2020) Encapsulation of hydrogen molecules in C50 fullerene: an ab initio study of structural, energetic, and electronic properties of H2@C50 and 2H2@C50 complexes. ACS Omega 5:12853–12864
25. Grimm S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465
26. Zhao Y, Truhlár DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1):215e241
27. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. PCCP 7:3297–3305
28. Nesse F (2018) Software update: the ORCA program system, version 4.0. Wiley Interdisciplinary Rev Comput Molec Sci 8:e1327
29. Liu Z, Lu T, Chen Q (2020) An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity. Carbon 165:461–467
30. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592
31. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38
32. Lefebvre C, Rubez G, Khartabil H, Boisson JC, Contrerasgarcia J, Hénon E (2017) Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. PCCP 19:6895–6902
33. Dapprich S, Frenking G (1995) Investigation of donor-acceptor interactions: a charge decomposition analysis using fragment molecular orbitals. J Phys Chem 99:9352–9362
34. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21(52):1–10
35. Timothy C, Murray JS, Peter P (2018) A perspective on quantum mechanics and chemical concepts in describing noncovalent interactions. Phys Chem Chem Phys 20(2018):30076–30082
36. Ruiz L, Tiznado W, Cardenas C, Inostroza D, Pino-Rios R (2017) Proposal of a simple and effective local reactivity descriptor through a topological analysis of an orbital-weighted Fukui function. J Comput Chem Org Inorg Phys Biol
37. Pino-Rios R, Inostroza D, Cardenas-Jiron G, Tiznado W (2019) Orbital-weighted dual descriptor for the study of local reactivity of systems with (quasi-) degenerate states. J Phys Chem A 123:10556–10562

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.