Analysis of Population Structure and Genetic Diversity in Rice Germplasm Using SSR Markers: An Initiative Towards Association Mapping of Agronomic Traits in *Oryza Sativa*

Nachimuthu *et al.*
Analysis of Population Structure and Genetic Diversity in Rice Germplasm Using SSR Markers: An Initiative Towards Association Mapping of Agronomic Traits in *Oryza Sativa*

Vishnu Varthini Nachimuthu1*, Raveendran Muthurajan3, Sudhakar Duraiaguraja3, Rajeswari Sivakami2, Balaji Aravindhan Pandian2, Govinthraj Ponniah5, Karthika Gunasekaran4, Manonmani Swaminathan2, Suji K K3 and Robin Sabariappan6

Abstract

Background: Genetic diversity is the main source of variability in any crop improvement program. It serves as a reservoir for identifying superior alleles controlling key agronomic and quality traits through allele mining/association mapping. Association mapping based on LD (Linkage dis-equilibrium), non-random associations between causative loci and phenotype in natural population is highly useful in dissecting out genetic basis of complex traits. For any successful association mapping program, understanding the population structure and assessing the kinship relatedness is essential before making correlation between superior alleles and traits. The present study was aimed at evaluating the genetic variation and population structure in a collection of 192 rice germplasm lines including local landraces, improved varieties and exotic lines from diverse origin.

Results: A set of 192 diverse rice germplasm lines were genotyped using 61 genome wide SSR markers to assess the molecular genetic diversity and genetic relatedness. Genotyping of 192 rice lines using 61 SSRs produced a total of 205 alleles with the PIC value of 0.756. Population structure analysis using model based and distance based approaches revealed that the germplasm lines were grouped into two distinct subgroups. AMOVA analysis has explained that 14 % of variation was due to difference between with the remaining 86 % variation may be attributed by difference within groups.

Conclusions: Based on these above analysis viz., population structure and genetic relatedness, a core collection of 150 rice germplasm lines were assembled as an association mapping panel for establishing marker trait associations.

Keywords: Rice; Genetic diversity; Population structure; Polymorphism information content; Molecular variance; Association mapping

Background

Rice, being the staple food crop for more than 50 % of the world population is cultivated in 163 million hectares with the production of 491 million tonnes. About 90 % of the world’s rice is produced in Asia and India contributes 20 % of the world’s production. This record level production and productivity is due to the availability and exploitation of rich genetic diversity existing in rice germplasm of India. For precise genetic manipulation of complex quantitative traits like, yield, tolerance against biotic/abiotic stresses, quality etc., understanding the genetic/molecular basis of target traits needs to be investigated thoroughly.

The genetic basis of important agronomic traits has been unraveled through Quantitative Trait Loci (QTL) mapping either through linkage mapping (bi-parental mapping populations) or through LD mapping (natural populations). Although traditional linkage based QTL-
mapping has become an important tool in gene tagging of crops, it has few limitations viz., 1) classical linkage mapping involves very high cost; 2) it has low resolution as it can resolve only a few alleles and 3) it has limitations towards fine mapping of QTLs as it needs BC-NILs. These limitations can be overcome by the LD based approach of “Association Mapping” using the natural populations. Association mapping serves as a tool to mine the elite genes by structuring the natural variation present in a germplasm. It was successfully exploited in various crops such as rice, maize, barley, durum wheat, spring wheat, sorghum, sugarcane, sugarbeet, soybean, grape, forest tree species and forage grasses (Abdurakhmonov and Abdukarimov 2008).

Before performing an association analysis in a population, it is essential to determine the population structure which can reduce type I and II errors in association mapping due to unequal allele frequency distribution between subgroups that causes spurious association between molecular markers and trait of interest (Pritchard et al. 2000). Similar attempts were recently undertaken to define population structure in rice using different germplasm lines and by developing core collection from national collections and international collections (Eбана et al. 2008; Jin et al. 2010; Zhang et al. 2011; Agrama et al. 2010 and Liakat Ali et al. 2011). Simple Sequence repeat (SSR) markers have been commonly used in genetic diversity studies in rice because of high level of polymorphism which helps to establish the relationship among the individuals even with less number of markers (McCouch et al. 1997). For similar studies, SSR markers were used alone by Jin et al. (2010); Hesham et al. (2008); Sow et al. (2014); Das et al. (2013) and Choudhury et al. (2013) or along with SNP markers by Courtois et al. (2012) and Zhao et al. (2011). The objectives of this present study were to evaluate the genetic variation and to examine the population structure of 192 rice germplasm accessions that comprises of local landraces, improved varieties and exotic lines from diverse origin.

Results
Genetic Diversity

All the 192 rice germplasm lines were genotyped using 61 SSR (microsatellite) markers which produced a total of 205 alleles (Additional file 1: Figure S1). Among these 205 alleles, 5 % were considered as rare (showed an allele frequency of <5 %). The number of alleles per loci varied from 2 to 7 with an average of 3 alleles per locus. The highest number of alleles were detected for the loci RM316 (7) and the lowest was detected for a group of markers viz., RM171, RM284, RM455, RM514, RM277, RM 5795, HvSSR0247, RM 559, RM416 and RM1227. PIC value represents the relative informativeness of each marker and in the present study, the average PIC value was found to be 0.468. The highest genetic diversity is explained by the landraces included in this study with the mean PIC value of 0.416. PIC values ranged between 0.146 for RM17616 to 0.756 for RM316. Heterozygosity was found to be very low which may be due to autogamous nature of rice. Expected heterozygosity or Gene diversity (Hₑ) computed according to Nei (1973) varied from 0.16 (RM17616) to 0.75 (RM287) with the average of 0.52 (Table 1).

STRUCTURE Analysis

Population structure of the 192 germplasm lines was analysed by Bayesian based approach. The estimated membership fractions of 192 accessions for different values of k ranged between 2 and 5 (Fig. 1). The log likelihood revealed by structure showed the optimum value as 2 (K = 2). Similarly the maximum of adhoc measure ΔK was found to be K = 2 (Fig. 2), which indicated that the entire population can be grouped into two subgroups (SG1 and SG2). Based on the membership fractions, the accessions with the probability of ≥ 80 % were assigned to corresponding subgroups with others categorized as admixture (Fig. 3).

SG1 consisted of 134 accessions with most of the landraces and varieties of Indian origin and SG2 consisted of 38 accessions which composed of non Indian accessions. Twenty accessions were retained to be admixture. The subgroup SG1 was dominated by indica subtype whereas the subgroup SG2 consisted mostly of japonica group. When the number of subgroups increased from two to five, the accessions in both the subgroups were classified into sub-sub groups (Table 2). As SG1 consisted of 134 accessions mostly of Indian origin, an independent STRUCTURE analysis was performed for this subgroup. ΔK showed its maximum value for K =3 which indicated that SG1 could be further classified into three sub-sub groups (Fig. 4). The differentiation in origin and seasonal differentiation of rice varieties contributed for this clustering.

Clustering analysis based on Unweighted Pair Group Method with Arithmetic Mean (UPGMA) method using DARwin separated the accessions into two main groups which showed similar results as STRUCTURE analysis. The group I in UPGMA tree consists of both indigenous and agronomically improved varieties whereas the other group consists of exotic accessions. In UPGMA tree, the accessions within group 1 and 2 clustered into smaller sub groups based on their origin and types. Most of the landraces and varieties have been clustered in upper branches of the tree whereas the exotic accessions have been clustered in lower branches of the tree (Fig 5). Hence the clustering analysis by two classification methods revealed high level of similarity in clustering the genotypes. PCoA was used to characterize the
Table 1 Details of SSR loci used for genotyping in the 192 rice accessions and their genetic diversity parameters

S. no	Marker	Chromosome no.	SSR MOTIF	Min molecular weight	Maximum molecular weight	Number of alleles	Gene diversity	Heterozygosity	PIC value
1	RM237	1 (CT)18	110	143	4	0.61	0.89	0.545	
2	RM1	1 (GA)26	70	105	3	0.63	0.12	0.552	
3	RM5	1 (GA)14	105	115	3	0.64	0.6	0.557	
4	RM312	1 (ATTT)(GT)9	95	105	3	0.3	0.03	0.281	
5	RM283	1 (GA)18	149	155	3	0.42	0.12	0.377	
6	RM452	2 (GTC)9	195	245	3	0.54	0.83	0.448	
7	HvSSR0247	2	395	400	2	0.5	0.18	0.373	
8	RM555	2 (AG)11	135	145	3	0.59	0.04	0.517	
9	RM211	2 (TC)3A(TC)18	140	160	3	0.52	0.08	0.463	
10	RM324	2 (CAT)21	135	180	5	0.74	0.06	0.695	
11	RM514	3 (AC)12	245	252	2	0.19	0	0.171	
12	RM555	3 (GA)17	220	225	3	0.44	0.07	0.4	
13	RM231	3 (CT)16	170	200	3	0.59	0.12	0.511	
14	RM416	3 (GA)9	110	115	2	0.42	0.01	0.335	
15	RM442	3 (AAG)10	260	275	3	0.5	0.03	0.448	
16	RM16643	4 (GGGA)5	165	200	5	0.73	0.05	0.685	
17	RM559	4 (AACA)6	160	165	2	0.39	0.01	0.311	
18	RM17377	4 (AG)25	140	175	4	0.67	0.04	0.625	
19	RM7585	4 (TCTT)6	140	160	4	0.46	0.02	0.422	
20	RM17616	4 (TC)14	165	180	3	0.16	0	0.146	
21	RM413	5 (AG)11	75	100	4	0.59	0.25	0.548	
22	RM178	5 (GAI5)AG8	110	115	3	0.39	0.04	0.35	
23	RM161	5 (AG)20	160	180	3	0.29	0.04	0.258	
24	RM7293	5 (ATGT)6	140	150	3	0.64	0.1	0.558	
25	RM1024	5 (AC)13	125	140	3	0.32	0.02	0.298	
26	RM162	6 (AC)20	220	240	3	0.37	0.03	0.34	
27	RM7434	6 (GTAT)10	120	145	5	0.66	0.19	0.614	
28	RM19620	6 (GTG)7	160	177	3	0.21	0.03	0.204	
29	RM5963	6 (CAG)9	160	175	3	0.48	0.15	0.38	
30	RM11	7 (GA)17	120	150	4	0.71	0.72	0.661	
31	RM118	7 (GA)8	155	185	4	0.62	0.77	0.543	
32	RM125	7 (GCT)8	105	130	4	0.61	0.89	0.544	
33	RM455	7 (TCTT)5	130	135	2	0.24	0.02	0.208	
34	HvSSR0740	7	340	400	4	0.7	0.21	0.65	
35	RM44	8 (GA)16	95	107	4	0.62	0.77	0.559	
36	RM433	8 (AG)13	235	270	3	0.55	0.81	0.446	
37	RM447	8 (CTT)8	105	120	4	0.64	0.16	0.572	
38	RM284	8 (GA)8	140	145	2	0.21	0.02	0.189	
39	RM408	8 (CT)13	120	125	3	0.52	0.01	0.465	
40	RM25	8 (GA)18	120	140	4	0.73	0.37	0.679	
41	RM256	8 (CT)21	125	140	4	0.73	0	0.681	
42	RM105	9 (CCT)6	100	140	3	0.41	0.48	0.37	
43	RM107	9 (GA)7	280	300	3	0.48	0	0.425	
subgroups of the germplasm set. A two-dimensional scatter plot involving all 192 accessions has shown that the first two PCA axes accounted for 12.6 and 4.9% of the genetic variation among populations (Fig 6).

Genetic Variance Analysis
The hierarchial distribution of molecular variance by AMOVA and pair-wise analysis revealed highly significant genetic differentiation among the groups. It revealed that 14% of the total variation was between the groups, while 86% was among individuals within groups (Tables 3 and 4). Calculation of Wright's F statistic at all SSR loci revealed that FIS was 0.50 and FIT was 0.56. Determination of FST for the polymorphic loci across all accessions has shown FST as 0.14 which implies high genetic variation (Table 4). The pairwise FST estimate among sub-groups has indicated that the two groups are significantly different from each other (Table 3).

Discussion
Genetic diversity is the key determinant of germplasm utilization in crop improvement. Population with high level of genetic variation is the valuable resource for broadening the genetic base in any breeding program. The panel of 192 accessions in this study with landraces, varieties as well as breeding lines has different salient agronomic traits. Few landraces included in this study i.e., Mappillai samba (Krishnanunni et al. 2015), Jyothi, Njavara (Depta et al. 2008), Kavuni (Valarmathi et al. 2015) derived breeding line has therapeutic properties. Many lines included in this study are drought tolerant (Nootripathu, Norungan, Vellaiikudaiavzhai, kullundaikar, kodai, kalang 3, Kinandang patong, azucena, mattaikar, IR65907-116-1, karuthakar, makkuruvai, norungan, kallundaikar, kodakulathan, kattikar, poongar, thogai samba, vellaiikattai, kattikar, poongar, thogai samba, vellaiikattai, kullundaikar, kalvalai, chivapu chithiraikar, vellai chithiraikar, kudaiavzhai and murugankar). Few lines have significant level of micronutrients in it (Nachimuthu et al. 2014). This panel has its importance because of its major component as traditional landraces with valuable agronomic traits that are cultivated in the small pockets of Tamil Nadu, India.

Molecular markers help us to understand the level of genetic diversity that exists among traditional races, varieties and exotic accessions which can be exploited in rice breeding programs. The genetic architecture of diverse germplasm lines can be precisely estimated by assessing the STRUCTURE of the population using molecular markers viz., SSRs or SNPs etc., (Horst and Wenzel 2007; Powell et al. 1996; Varshney et al. 2007). In this study, the genetic diversity among the accessions was evaluated by model based clustering and distance based clustering approach using the SSR genotypic data.

Regarding genetic divergence of the population consisting of local landraces, exotic cultivars and breeding lines, 61 polymorphic markers have detected a total of 205 polymorphic markers have detected a total of 205

Table 1	Details of SSR loci used for genotyping in the 192 rice accessions and their genetic diversity parameters (Continued)
44	RM 215 9 (CT)16
45	RM 316 9 (G78-TG)9(TTTG)4(TG)4
46	RM 205 9 (CT)25
47	RM 171 10 (GATG)5
48	RM 271 10 (GA)15
49	RM 590 10 (TCT)10
50	RM 474 10 (AT)13
51	RM 222 10 (CT)18
52	RM 144 11 (ATT)11
53	RM 287 11 (GA)21
54	RM 536 11 (CT)16
55	RM 224 11 (AAG8 AG)13
56	RM 206 11 (CT)21
57	RM 277 12 (GA)11
58	RM 5795 12 (AGC)8
59	RM 1227 12 (AG)15
60	RM 20A 12 (ATT)14
61	RM 2197 12 (AT)23

Average 3 0.52 0.18 0.468
alleles across 192 individuals. The number of alleles varied from 2 to 7 per locus and the average was 3 alleles per locus. Several previous reports have indicated the number of alleles per locus, polymorphic information content and gene diversity of 4.8–14.0, 0.63–0.70 and 6.2–6.8 respectively (Garris et al. 2005; Ram et al. 2007). In the current study, the average number of alleles (3 alleles/locus) is slightly lesser than the average number of alleles (3.88 alleles/locus) reported by Zhang et al. (2011) in rice core collection with 150 rice varieties from south Asia and Brazil and Jin et al. (2010) who has reported the average alleles per locus as 3.9 in 416 rice accessions collected from China. Using three sets of germplasm lines (Thai (47), IRRI germplasm (53) amd other Oryza species (5)), Chakhonkaen et al. (2012) has reported 127 alleles for all loci, with a mean of 6.68 alleles per locus, and a mean Polymorphic Information Content (PIC) of 0.440 by screening with 19 InDel markers.

Chen et al. (2011) has reported the average gene diversity of 0.358 and polymorphic information content of 0.285 from 300 rice accessions from different rice growing areas of the world with 372 SNP markers. The gene diversity detected in this study (0.52) is comparable to overall gene diversity of rice core collection (0.544) from China, North Korea, Japan, Philippines, Brazil, Celebes, Java, Oceanina and Vietnam (Zhang et al. 2011) and it is higher than US accession panel with average gene diversity of 0.43 (Agrama and Eizenga 2008) and Chinese rice accession panel by Jin et al. (2010) with the average gene diversity of 0.47. The gene diversity reported in our study is lesser than gene diversity (0.68) reported by (Liakat Ali et al. 2011). Most of the diversity panel with global accessions has the gene diversity of 0.5 to 0.7 (Garris et al. 2005; Liakat Ali et al. 2011; Ni et al. 2002). These results on global accessions help to infer that this diversity panel of 192 germplasm lines represents a large proportion of the genetic diversity that exists in major rice growing Asian continent.

The PIC value was 0.468 which varied from 0.146 for RM17616 with only 2 two alleles to 0.756 for RM316

![Fig. 1 Pattern of variation of 192 accessions based on 61 SSR markers. The K values are based on the run with highest likelihood. Bar length represent the membership probability of accessions belonging to different subgroups.](image-url)
Fig. 2 Population structure of 192 accessions based on 61 SSR markers ($K = 2$) and Graph of estimated membership fraction for $K = 2$. The maximum of adhoc measure ΔK determined by structure harvester was found to be $K = 2$, which indicated that the entire population can be grouped into two subgroups (SG1 and SG2).

Fig. 3 Population structure of 192 accessions arranged based on inferred ancestry. Based on the membership fractions, the accessions with the probability of $\geq 80\%$ were assigned to corresponding subgroups with others categorized as admixture.
G. no.	Genotypes	Inferred ancestry	Structure group	Subtype	
		Q1	Q2		
RG1	Mapillai samba	0.977	0.023	SG1	Indica
RG2	CK 275	0.991	0.009	SG1	Indica
RG3	Senkar	0.992	0.008	SG1	Indica
RG4	Murugankar	0.964	0.036	SG1	Indica
RG5	CHIR 6	0.811	0.189	SG1	Indica
RG6	CHIR 5	0.989	0.011	SG1	Indica
RG7	Kudai vazhai	0.975	0.025	SG1	Indica
RG8	CHIR 8	0.759	0.241	SG1	Indica
RG9	Kuruvai kalanjilyam	0.971	0.029	SG1	Indica
RG10	Nava konmani	0.99	0.01	SG1	Indica
RG11	CHIR 10	0.869	0.131	SG1	Indica
RG12	Vellai chithiraikar	0.802	0.198	SG1	Indica
RG13	CHIR 2	0.983	0.017	SG1	Indica
RG14	Jothi	0.992	0.008	SG1	Indica
RG15	Palkachaka	0.962	0.038	SG1	Indica
RG16	Thooyala	0.934	0.066	SG1	Indica
RG17	Chivapu chithiraikar	0.994	0.006	SG1	Indica
RG18	CHIR 11	0.976	0.024	SG1	Indica
RG19	Koolavalai	0.99	0.01	SG1	Indica
RG20	Kalvalai	0.982	0.018	SG1	Indica
RG21	Mohini samba	0.963	0.037	SG1	Indica
RG22	IR 36	0.989	0.011	SG1	Indica
RG23	Koombalai	0.975	0.025	SG1	Indica
RG24	Tadukan	0.674	0.326	AD	Indica
RG25	Soma kuruvasi	0.986	0.014	SG1	Indica
RG26	Rascadam	0.637	0.363	AD	Indica
RG27	Muzhi karuppan	0.991	0.009	SG1	Indica
RG28	Kaatukuthalam	0.828	0.172	SG1	Indica
RG29	Vellaikattai	0.987	0.013	SG1	Indica
RG30	Poongar	0.987	0.013	SG1	Indica
RG31	Chinthamani	0.985	0.015	SG1	Indica
RG32	Thogai samba	0.975	0.025	SG1	Indica
RG33	Malayalathan samba	0.701	0.299	AD	Indica
RG34	RPHP 125	0.986	0.014	SG1	Indica
RG35	CK 143	0.993	0.007	SG1	Indica
RG36	Kattikar	0.913	0.087	SG1	Indica
RG37	Shenmolagai	0.994	0.006	SG1	Indica
RG38	Velli samba	0.887	0.113	SG1	Indica
RG39	Kaatu ponni	0.975	0.025	SG1	Indica
RG40	karakarathan	0.989	0.011	SG1	Indica
RG41	Godavari samba	0.941	0.059	SG1	Indica
RG42	Earapalli samba	0.978	0.022	SG1	Indica
RG43	RPHP 129	0.01	0.99	SG2	Indica
Table 2 Population structure group of accessions based on Inferred ancestry values (Continued)

Accession	Name	Ancestry	Population	Structure	
RG44	Mangam samba	0.968	0.032	SG1	indica
RG45	RPHP 105	0.943	0.057	SG1	indica
RG46	IG 4(EC 729639-121695)	0.977	0.023	SG1	indica
RG47	Machakantha	0.976	0.024	SG1	indica
RG48	Kalarkar	0.992	0.008	SG1	indica
RG49	Valanchennai	0.972	0.028	SG1	indica
RG50	Somavari	0.957	0.043	SG1	indica
RG51	RPHP 134	0.909	0.091	SG1	indica
RG52	ARB 58	0.987	0.013	SG1	indica
RG53	IR 68144-2B-2-3-1-127	0.708	0.292	AD	indica
RG54	P TB 19	0.981	0.019	SG1	indica
RG55	IG 67(EC 729050-120988)	0.957	0.043	SG1	indica
RG56	RPHP 59	0.031	0.969	SG2	Aromatic
RG57	RPHP 103	0.656	0.344	AD	Aromatic
RG58	Kodai kuluthan	0.828	0.172	SG1	indica
RG59	RPHP 68	0.981	0.019	SG1	indica
RG60	Rama kuru vaikar	0.985	0.015	SG1	indica
RG61	Kallundai	0.939	0.061	SG1	indica
RG62	Purple puttu	0.994	0.006	SG1	indica
RG63	IG 71(EC 728651-117588)	0.823	0.177	SG1	aus
RG64	Ottadai yan	0.994	0.006	SG1	indica
RG65	IG 56(EC 728700-117658)	0.435	0.565	AD	Aromatic
RG66	Jeevan samba	0.876	0.124	SG1	indica
RG67	RPHP 106	0.915	0.085	SG1	indica
RG68	IG 63(EC 728711-117674)	0.049	0.951	SG2	Tropical Japonica
RG69	RPHP 48	0.025	0.975	SG2	Aromatic
RG70	Karthi samba	0.987	0.013	SG1	indica
RG71	IG 27(IC 0590934-121255)	0.444	0.556	AD	indica
RG72	Aarkadu kichili	0.99	0.01	SG1	indica
RG73	Kunthali	0.969	0.031	SG1	indica
RG74	ARB 65	0.83	0.17	SG1	indica
RG75	IG 21(EC 729334-121355)	0.991	0.009	SG2	japonica
RG76	Matta kuru va i	0.934	0.066	SG1	indica
RG77	Karuthi kar	0.994	0.006	SG1	indica
RG78	RPHP 165	0.99	0.01	SG1	indica
RG79	Manavari	0.704	0.296	AD	indica
RG80	IG 66(EC 729047-120985)	0.992	0.008	SG1	indica
RG81	CB-07-701-252	0.977	0.023	SG1	indica
RG82	Thooyamalli	0.994	0.006	SG1	indica
RG83	RPHP 93	0.153	0.847	SG2	indica
RG84	Velsamba	0.99	0.01	SG1	indica
RG85	RPHP 104	0.898	0.102	SG1	indica
RG86	RPHP 102	0.993	0.007	SG1	indica
RG87	IG 40(EC 728740-117705)	0.98	0.02	SG1	indica
RG88	Saranga	0.988	0.012	SG1	indica
Accession	Inferred Ancestry Values	Population Structure Group			
-----------	--------------------------	----------------------------			
RG89	IR 83294-66-2-2-3-2	0.125 0.875	SG2	japonica	
RG90	IG 61(EC 728731-117696)	0.843 0.157	SG1	indica	
RG91	IG 23(EC 729391-121419)	0.852 0.148	SG1	Aus	
RG92	IG 49(EC 729102-121052)	0.945 0.055	SG1	indica	
RG93	uppumolagai	0.987 0.013	SG1	indica	
RG94	Karthigai samba	0.993 0.007	SG1	indica	
RG95	Jeeraga samba	0.685 0.315	SG1	indica	
RG96	RP-BIO-226	0.833 0.167	SG1	indica	
RG97	Vanigarudan samba	0.975 0.025	SG1	indica	
RG98	IG 5(EC 729642-121698)	0.012 0.988	SG2	japonica	
RG99	IG 31(EC 728844-117829)	0.813 0.187	SG1	indica	
RG100	IG 7(EC 729598-121648)	0.008 0.992	SG2	japonica	
RG101	RPHP 52	0.991 0.009	SG1	indica	
RG102	Varaikkal	0.958 0.042	SG1	indica	
RG103	Mattaikar	0.732 0.268	AD	indica	
RG104	IG 53(EC 728752-117719)	0.005 0.995	SG2	Temperate japonica	
RG105	IG 6(EC 729592-121642)	0.204 0.796	SG2	Temperate japonica	
RG106	Katta samba	0.872 0.128	SG1	indica	
RG107	RH2-SM-1-2-1	0.606 0.394	AD	indica	
RG108	Red sirumani	0.93 0.07	SG1	indica	
RG109	Vadivel	0.977 0.023	SG1	indica	
RG110	Nirungan	0.991 0.009	SG1	indica	
RG111	IG 20(EC 729293-121310)	0.113 0.887	SG2	indica	
RG112	IG 35(EC 728858-117843)	0.027 0.973	SG2	japonica	
RG113	IG 45(EC 728768-117736)	0.017 0.983	SG2	japonica	
RG114	RPHP 159	0.008 0.992	SG2	aromatic rice	
RG115	IG 43(EC 728788-117759)	0.092 0.008	SG1	indica	
RG116	RPHP 27	0.52 0.48	AD	Tropical japonica	
RG117	IG 65(EC 729024-120958)	0.974 0.026	SG1	indica	
RG118	Ponmani samba	0.973 0.027	SG1	indica	
RG119	Ganthasala	0.993 0.007	SG1	indica	
RG120	Thattan samba	0.949 0.051	SG1	indica	
RG121	IG 74(EC 728622-117517)	0.16 0.84	SG2	japonica	
RG122	Kaliyan samba	0.245 0.755	AD	indica	
RG123	IG 3(EC 729808-121874)	0.56 0.44	AD	japonica	
RG124	IG 29(EC 728925-117920)	0.059 0.941	SG2	Tropical japonica	
RG125	RPHP 55	0.963 0.037	SG1	indica	
RG126	Kalimadayan	0.984 0.016	SG1	indica	
RG127	IG 10(EC 729686-121743)	0.066 0.934	SG2	aromatic	
RG128	IG 75(EC 728587-117420)	0.008 0.992	SG2	japonica	
RG129	IG 38(EC 728742-117707)	0.02 0.98	SG2	Tropical japonica	
RG130	IG 39(EC 728779-117750)	0.012 0.988	SG2	indica	
RG131	RPHP 90	0.991 0.009	SG1	indica	
RG132	IG 33(EC 728938-117935)	0.162 0.838	SG2	Tropical japonica	
RG133	IG 42(EC 728798-117774)	0.495 0.505	AD	indica	
Accession	Inferred Ancestry Values	Population Structure Group			
-----------	--------------------------	-----------------------------			
RG134	IG 9(EC 729682-121739)	SG2 indica			
RG135	RPHP 161	SG1 indica			
RG136	IG 8(EC 729601-121651)	SG1 indica			
RG137	IG 37(EC 728715-117676)	SG2 Tropical Japonica			
RG138	Sigappu kuruvikar	SG1 indica			
RG139	RPHP 138	SG1 indica			
RG140	Raja mannar	SG1 indica			
RG141	IG 44(EC 728762-117729)	SG2 indica			
RG142	Sayyasree	SG1 indica			
RG143	IG 46(EC 471826-117647)	SG2 indica			
RG144	Chetty samba	SG1 indica			
RG145	IG 60(EC 728730-117695)	SG2 indica			
RG146	IR 75862-206	SG2 indica Tropical Japonica			
RG147	IG 58(EC 728725-117689)	SG2 japonica			
RG148	Chinnna aduku nel	SG1 indica			
RG149	RH2-SM-2-23	AD indica			
RG150	IG 14(EC 517381-121422)	AD indica			
RG151	IG 32(EC 728838-117823)	SG2 japonica			
RG152	RPHP 47	SG1 indica			
RG153	Sembillipiriyani	SG1 indica			
RG154	IG 48(EC 729203-121195)	SG2 indica			
RG155	Sona mahsuri	SG1 indica			
RG156	IG 12(EC 729626-121681)	AD indica			
RG157	Karungan	AD indica			
RG158	IG 13(EC 729640-121696)	SG2 indica			
RG159	Sembala	SG1 indica			
RG160	IG 72(EC 728650-117587)	SG1 indica			
RG161	Panamarasamba	SG1 indica			
RG162	IR 64	SG1 indica			
RG163	Mikuruvasi	SG1 indica			
RG164	Thhillainayagam	SG1 indica			
RG165	ARB 64	SG1 indica			
RG166	RPHP 140	SG1 indica			
RG167	IG 70(EC 729045-120983)	SG1 indica			
RG168	Haladichudi	SG1 indica			
RG169	IG 24(EC 728751-117718)	AD Aus			
RG170	RPHP 42	SG1 indica			
RG171	RPHP 44	SG1 indica			
RG172	IG 25(EC 729728-121785)	SG1 indica Tropical Japonica			
RG173	IG 73(EC 728627-117527)	SG1 indica			
RG174	IG 51(EC 728772-117742)	SG2 indica Tropical Japonica			
RG175	Vellai kudaivazhai	SG1 indica			
RG176	Kodai	SG1 indica			
RG177	Kallundaikar	SG1 indica			
RG178	IG 17(EC 728900-117889)	SG1 indica			
that allowed the amplification of 7 alleles. The PIC value was found to be 0.418 for SG1 which had the majority of indica accessions. The subgroup SG2 dominated by japonica accessions had the PIC value of 0.414. Hence, both the subgroups contribute in a major way for population diversity. As this population encompass different rice materials i.e., landraces, varieties and breeding lines, the molecular diversity is contributed majorly by landraces. These values are similar to those found by Courtois et al. (2012) who reported the PIC value from 0.16 to 0.78 with the average of 0.49 in European rice germplasm collection and in Chinese rice collection of 416 accessions by Jin et al. (2010), who has given similar PIC value of 0.4214. It is also consistent with PIC value (0.48) attained by Zhang et al. (2011). In this study, significant amount of rare alleles was identified which indicates that these rare alleles contribute well to the overall genetic diversity of the population.

Model based approach by STRUCTURE is implemented frequently for studying population structure by various researchers (Agrama et al. 2007, Agrama and Eizenga 2008; Garris et al. 2005; Zhang et al. 2007, 2011; Jin et al. 2010; Liakat Ali et al. 2011, Chakhonkaen et al. 2012 Courtois et al. 2012, Das et al. 2013). Courtois et al. (2012) has successfully detected two subgroups in their study population and assigned rice varieties into two groups with few admixture lines. Jin et al. (2010) has identified seven sub populations among 416 rice accessions from China. Das et al. (2013) has grouped a collection of 91 accessions of rice landraces from eastern and north eastern India into four groups.

Assigning of genotypes to the subgroups based on ancestry threshold vary between different research groups.

RG179	Avasara samba	0.939	0.061	SG1	indica
RG180	IG 59(EC 728729-117694)	0.093	0.907	SG2	Tropical Japonica
RG181	IG 52(EC 728756-117723)	0.026	0.974	SG2	Tropical Japonica
RG182	ARB 59	0.779	0.221	SG1	indica
RG183	RPHP 163	0.995	0.005	SG1	indica
RG184	IG 18(EC 728892-117880)	0.994	0.006	SG1	indica
RG185	RPHP 36	0.915	0.085	SG1	indica
RG186	IG 28(EC 728920-117914)	0.009	0.991	SG2	Tropical Japonica
RG187	Vadakathi samba	0.986	0.014	SG1	indica
RG188	RPHP 80	0.986	0.014	SG1	indica
RG189	IG 41(EC 728800-117776)	0.016	0.984	SG2	Tropical Japonica
RG190	IG 26(C 0590943-121899)	0.422	0.578	SG2	aromatic
RG191	IG 15(EC 728910-117901)	0.755	0.245	AD	indica
RG192	Nootri pathu	0.943	0.057	SG1	indica

Table 2 Population structure group of accessions based on inferred ancestry values (Continued)
Zhao et al. (2010) and Courtois et al. (2012) used an ancestry threshold of 80% to identify accessions belonging to a specific subpopulation. Liakat Ali et al. (2011) has steeped the threshold as 60% and identified 33 accessions as admixtures as the threshold of 80% consider more genotypes as admixtures. In the current study, a stringent threshold of 80% ancestry value leaves only 20 genotypes as admixtures.

Population structure analysis in different rice diversity panel has indicated the existence of two to eight subpopulation in rice (Zhang et al. 2007, Zhang et al. 2009, Zhang et al. 2011, Garris et al. 2005, Agrama et al. 2007, Liakat Ali et al. 2011, Chakhonkaen et al. 2012 and Das et al. 2013). In the current rice diversity panel of 192 accessions based on the criterion of maximum membership probabilities, 134 accessions were assigned to SG1 which is dominated by indica subtype with most of the landraces and varieties of Indian origin and SG2 consisted of 38 accessions which composed mostly of japonica accessions of exotic origin. Similar population structure of two subgroups was observed in previous research by Zhang et al. (2009) in a collection of 3024 rice landraces in China. Zhang et al. (2011) has reported two distinct subgroups in a rice core collection. Courtois et al. (2012) has successfully classified two subgroups as japonica and non japonica accessions in European core collection of rice. The results indicated that two subgroups are due to the different adaptation behavior of accessions to different ecological environment as indica and japonica accessions has independent evolution frame and the origin of Indian rice accessions from indica cultivars. Hence the major criterion for population structure in this panel is indica – japonica subtype. This study includes large number of traditional landraces and varieties from Indian Subcontinent and few exotic accessions randomly selected from IRRI worldwide collection. It clarifies the relationship between Indian germplasm and exotic accessions which indicates that germplasm lines varies based on its ecology and also shows higher level of genetic diversity exists within this population.

Further structure analysis of SG1 that consisted of 134 lines indicated that it can be further subdivided in to three sub sub-groups. The three sub sub-groups classification has the factor of ecosystem and seasonal variation as the major factors for population structure. This results is in accordance with the inference that indica group has higher genetic diversity than japonica accessions which was given by various researchers (Gao et al. 2005; Lu et al. 2005; Lapitan et al. 2007; Caicedo et al. 2007; Liakat Ali et al. 2011; Garris et al. 2005; Qi et al. 2006; Qi et al. 2009); as this subgroup has indica accessions. Liakat Ali et al. (2011) has substantiated this statement with the reason of the indica subpopulation occupying the largest rice growing region which has a varied environments, ecological conditions and soil type.
The result of model based analysis is in accordance with the clustering pattern of Neighbour joining tree and Principal Coordinate Analysis. The first two principal coordinates explained 12.6 and 4.8 % of the molecular variance. Similar pattern of molecular variance explanation was observed by Zhang et al. (2011) for two population subgroups.

Calculation of Wright’s F Statistic at all loci revealed the deviation from Hardy-Weinberg law for molecular variation within the population. The result of F_{st} indicates higher divergence existing between subgroups of the population. Higher F_{IT}, which is measured at subgroup level in whole population, has indicated lack of equilibrium across the groups and lack of heterozygosity most likely due to the inbreeding nature of rice.

The present study revealed that several unexploited landraces of Tamil Nadu, India which is widely cultivated

![Principal Coordinates (PCA) of 192 accessions based on 61 SSR loci. Coord 1 and Coord 2 represent first and second coordinates, respectively. The two PCA axes accounted for 12.6 and 49 % of the genetic variation among populations.](image)

Table 3 AMOVA between groups and Pair wise comparison using Fst values (GenAIEx)

Source of variation	d.f.	Sum of squares	Variance components	Percentage of variation	
Among the population	2	971.922	485.961	9.631	14 %
Within Pops	189	10961.256	57.996	57.996	86 %
Total	191	11933.177	67.627	67.627	100 %

Pairwise population Fst values	
SG2	AD
SG1	0.128
SG2	0.061

Table 4 AMOVA between groups and accessions and Fixation indices (Arlequin software)

Source of variation	d.f.	Sum of squares	Variance components	Percentage of variation
Among Populations	2	200.013	1.01840 Va	13.82
Among individuals within Populations	189	1794.771	3.14391 Vb	42.65
Within Individuals	192	2610.784	7.37064	43.53

Fixation Indices	FIS	FST	FIT								
	0.49493	0.13817	0.56471								
G. no	Genotypes										
-------	------------	-------	------------	-------	------------	-------	------------	-------	------------	-------	------------
RG1	Mapillai samba	RG58	Kodaikutu	RG113	IG 46(728768-117736)	RG154	IG 48(729203-121195)	RG39	Kaatu ponni	RG95	Jeeraga samba
RG2	CK 275	RG59	RPHP 68	RG114	RPHP 159	RG156	IG 12(729626-121681)	RG41	Godavari samba	RG96	RP-BIO-226
RG3	Senkar	RG60	Rama kuruvaikaar	RG115	IG 43(728788-117759)	RG157	Karunang	RG42	Earapalli samba	RG98	IG 5(729642-121698)
RG4	Murugankar	RG62	Purple puttu	RG116	RPHP 27	RG158	IG 13(729640-121696)	RG43	RPHP 129	RG99	IG 31(728844-117829)
RG5	CHIR 6	RG63	IG 71(728651-117588)	RG117	IG 15(729024-120958)	RG159	Simbala	RG44	Mangam samba	RG100	IG 7(729598-121648)
RG6	CHIR 5	RG65	IG 56(728700-117658)	RG118	Ponmanisamba	RG160	IG 72(728650-117587)	RG45	RPHP 105	RG101	RPHP 52
RG7	Kudai vazhai	RG66	Jeevan samba	RG120	Thattan samba	RG161	Panamarsamba	RG46	IG 4(729639-121695)	RG102	Varakkal
RG8	CHIR 8	RG67	RPHP 106	RG121	IG 74(728622-117517)	RG162	IR 64	RG48	Kalarkar	RG103	Mattakkar
RG9	Kuruvai kalanjiyam	RG68	IG 63(728711-117674)	RG122	Kaliyan samba	RG163	Mikuruvaiv	RG50	Sornavari	RG104	IG 53(728752-117719)
RG12	Vellai chithiraikaar	RG69	RPHP 48	RG123	IG 2(729008-121874)	RG164	Thillainayagam	RG51	RPHP 134	RG105	IG 6(729592-121642)
RG14	Jothi	RG70	Karthi samba	RG124	IG 29(728925-117920)	RG165	ARB 64	RG52	ARB 58	RG106	Katta samba
RG15	Palikachaka	RG71	IG 27(0590934-121255)	RG126	Kallimadayan	RG166	RPHP 140	RG53	IR 68144-2B-2-3-1-127	RG107	RH2-SM-1-2-1
RG17	Chivapu chithiraikaar	RG72	Aarkadu kichili	RG127	IG 10(729686-121743)	RG168	Haladichudi	RG54	PTB 19	RG108	Red sirumani
RG18	CHIR 11	RG74	ARB 65	RG128	IG 75(728587-117420)	RG169	IG 24(728751-117718)	RG55	IG 67(729050-120988)	RG109	Vadivel
RG20	Kalvalai	RG76	Matta kuruvaivai	RG129	IG 38(728742-117707)	RG170	RPHP 42	RG56	RPHP 59	RG110	Norungan
RG22	IR 36	RG77	Karuthakar	RG130	IG 39(728779-117750)	RG172	IG 25(729728-121785)	RG57	RPHP 103	RG112	IG 35(728858-117843)
RG25	Sorra kuruvaivai	RG80	IG 66(729047-120985)	RG131	RPHP 90	RG173	IG 73(728627-117527)	RG143	IG 46(471826-117647)	RG184	IG 18(728892-117880)
RG26	Rascadam	RG81	CB-07-701-252	RG132	IG 33(728938-117935)	RG174	IG 51(728772-117742)	RG145	IG 60(728730-117695)	RG185	RPHP 36
RG31	Chinthamanii	RG82	Thooyamalli	RG133	IG 42(728798-117774)	RG175	Vellai kudaivazhai	RG146	IR 75862-206	RG186	IG 28(728920-117914)
RG32	Thogai samba	RG83	RPHP 93	RG134	IG 9(729682-121739)	RG176	Kodai	RG147	IG 58(728725-117689)	RG187	Vadakathi samba
RG33	Malayalathan samba	RG85	RPHP 104	RG135	RPHP 161	RG178	IG 17(728000-117889)	RG148	Chinna aduku nel	RG188	RPHP 80
RG34	RPHP 125	RG86	RPHP 102	RG136	IG 8(729601-121651)	RG180	IG 59(728729-117694)	RG149	RH2-SM-2-23	RG189	IG 41(728800-117776)
RG35	CK 143	RG89	IR 83294-66-2-2-3-2	RG137	IG 37(728715-117678)	RG181	IG 52(728756-117723)	RG150	IG 14(517381-121422)	RG190	IG 26(0590934-121899)
RG36	Kattikar	RG91	IG 23(729391-121419)	RG141	IG 44(728762-117729)	RG182	ARB 59	RG151	IG 32(728838-117823)	RG191	IG 15(728910-117901)
RG37	Shenmolagai	RG92	IG 49(729102-121052)	RG142	Sasyasree	RG183	RPHP 163	RG152	RPHP 47	RG192	Nootri pathu
G. no.	Genotype	Parentage	Origin	Type – traditional/Improved	Subtype	Ecosystem IR = irrigated, RL = rainfed lowland; UP = upland	Maturity class: E = early, M = medium, L = late;	Donors/Original providing country			
-------	-------------------------	-----------------	-----------------	-----------------------------	---------	---	---	----------------------------------			
RG1	Mapillai samba	Landrace	Tamil Nadu, India	T	indica	IR	L	India			
RG2	CK 275	TNR X KAVUNI	Tamil Nadu, India	I	indica	IR	L	India			
RG3	Senkar	Landrace	Tamil Nadu, India	T	indica	IR	M	India			
RG4	Murugankar	Landrace	Tamil Nadu, India	T	indica	UP	L	India			
RG5	CHIR 6	Improved chinsurah	West Bengal	I	indica	IR	E	India			
RG6	CHIR 5	Improved chinsurah	West Bengal	I	indica	IR	E	India			
RG7	Kudai vazhai	Landrace	Tamil Nadu, India	T	indica	UP	E	India			
RG8	CHIR 8	Improved chinsurah	West Bengal	I	indica	IR	E	India			
RG9	Kuruvai kalanjiyam	Landrace	Tamil Nadu, India	T	indica	IR	E	India			
RG10	Nava konmani	Landrace	Tamil Nadu, India	T	indica	RL	M	India			
RG11	CHIR 10	Improved chinsurah	West Bengal	I	indica	IR	M	India			
RG12	Vellai chithiraikar	Landrace	Tamil Nadu, India	T	indica	RL	E	India			
RG13	CHIR 2	Improved chinsurah	West Bengal	I	indica	IR	M	India			
RG14	Jyothi	Variety	Kerala, India	T	indica	IR	E	India			
RG15	Palkachaka	Landrace	Tamil Nadu, India	T	indica	IR	M	India			
RG16	Thooyala	Landrace	Tamil Nadu, India	T	indica	IR	E	India			
RG17	Chivapu chithiraikar	Landrace	Tamil Nadu, India	T	indica	RL	E	India			
RG18	CHIR 11	Improved chinsurah	West Bengal	I	indica	IR	M	India			
RG19	Koolavalaie	Landrace	Tamil Nadu, India	T	indica	RL	M	India			
RG20	Kalvalai	Landrace	Tamil Nadu, India	T	indica	RL	E	India			
RG21	Mohini samba	Landrace	Tamil Nadu, India	T	indica	IR	M	India			
RG22	IR 36	IR 1561 X IR 24 X Oryza nivara x CR 94	IRRI, Philippines	I	indica	IR	E	Philippines			
RG23	Koombalai	Landrace	Tamil Nadu, India	T	indica	IR	M	India			
RG24	Tadukan	Landrace	Philippines	T	indica	UP	M	Philippines			
RG25	Sorna kuruvai	Landrace	Tamil Nadu, India	T	indica	IR	M	India			
RG26	Rascadam	Landrace	Tamil Nadu, India	T	indica	IR	M	India			
RG27	Muzhi karuppan	Landrace	Tamil Nadu, India	T	indica	IR	E	India			
RG28	Kaatukuthalam	Landrace	Tamil Nadu, India	T	indica	RL	M	India			
RG29	Vellaikattai	Landrace	Tamil Nadu, India	T	indica	RL	M	India			
RG30	Poongar	Landrace	Tamil Nadu, India	T	indica	RL	L	India			
RG31	Chinthamani Landrace	Tamil Nadu, India	T	indica	RL	M	India				
RG32	Thogai samba Landrace	Tamil Nadu, India	T	indica	RL	M	India				
RG33	Malayalathan samba Landrace	Tamil Nadu, India	T	indica	IR	E	India				
RG34	RPHP125 Landrace	NDR 2026 (RICH) UTTAR PRADHESH	I	indica	IR	E	India				
RG35	CK 143 Landrace	COS50 X KAVUNI	I	indica	IR	L	India				
RG36	Kattikan Landrace	Tamil Nadu, India	T	indica	RL	M	India				
RG37	Shenmolagai Landrace	Tamil Nadu, India	T	indica	IR	M	India				
RG38	Velli samba Landrace	Tamil Nadu, India	T	indica	IR	M	India				
RG39	Kaatu ponni Landrace	Tamil Nadu, India	T	indica	IR	M	India				
RG40	kakarathan Landrace	Tamil Nadu, India	T	indica	IR	M	India				
RG41	Godavari samba Landrace	Tamil Nadu, India	T	indica	IR	M	India				
RG42	Earapalli samba Landrace	Tamil Nadu, India	T	indica	IR	M	India				
RG43	RPHP 129 Landrace	Karnad	JAMMU & KASHMIR	T	indica	Scented	E	India			
RG44	Mangam samba Landrace	Tamil Nadu, India	T	indica	IR	M	India				
RG45	RPHP 105 Landrace	Moirang phou	MANIPUR	T	indica	IR	E	India			
RG46	IG 4(EC 729639- 121695) TD2: JRGC 9148-1 Landrace	IRRI, Philippines	I	indica	IR	M	Philippines				
RG47	Machakantha Landrace	Drissa, India	T	indica	Scented	E	India				
RG48	Kalarkar Landrace	Tamil Nadu, India	T	indica	RL	E	India				
RG49	Valanchennai Landrace	Tamil Nadu, India	T	indica	RL	E	India				
RG50	Sornavari Landrace	Tamil Nadu, India	T	indica	RL	E	India				
RG51	RPHP 134 Landrace	NJAVARA	Kerala	T	indica	RL	E	India			
RG52	ARB 58 Variety	Variety	Karnataka	I	indica	IR	E	India			
RG53	IR 68144-2B-2-2-3-1-127 Landrace	IR 72 X ZAWA BONDAY	IRRI, Philippines	I	indica	IR	E	Philippines			
RG54	PTB 19 Variety	Variety	Kerala, India	I	indica	IR	M	India			
RG55	IG 67(EC 729050- 120988) IR 77384-12-35-3-12-1-127 Landrace	IRRI, Philippines	I	indica	IR	E	Philippines				
RG56	RPHP 59 Landrace	Tarori Basmati/karnal local	HARYANA	T	Aromatic	Scented	L	India			
RG57	RPHP 103 Landrace	Pant sugandh dhan -17	UTTAR KHAND	I	Aromatic	Scented	L	India			
RG58	Kodaikuluthan Landrace	Tamil Nadu, India	T	indica	RL	E	India				
RG59	RPHP 68 Landrace	Drissa, India	I	indica	RL	E	India				
RG60	Rama kuruvaikar Landrace	Tamil Nadu, India	T	indica	IR	E	India				
RG61	Kallundai Landrace	Tamil Nadu, India	T	indica	RI	E	India				
RG62	Purple puttu Landrace	Tamil Nadu, India	T	indica	IR	E	India				
Table 6 Germplasm accessions used in the study (Continued)

Code	Accession	Origin	Type	Cultivar	Location				
RG63	IG 71(EC 728651-117588)	TEPI BORO::IRGC 27519-1	IRRI, Philippines	I	aus	IR	E	Philippines	
RG64	Ottadaiyan	Landrace	Tamil Nadu, India	T	indica	RL	M	India	
RG65	IG 56(EC 728700-117658)	BICO BRANCO	Brazil	T	Aramatic	UP	E	Philippines	
RG66	Jeevan samba	Landrace	Tamil Nadu, India	T	indica	IR	M	India	
RG67	RPHP 106	akut phou	MANIPUR	I	indica	IR	M	India	
RG68	IG 63(EC 728711-117674)	CAAWA/FORTUNA	IRRI, Philippines	I	Tropical	Japonica	M	Philippines	
RG69	RPHP 48	Bindli	UTTARKHAND	T	Aramatic	Scented	L	India	
RG70	Karthi samba	Landrace	Tamil Nadu, India	T	indica	IR	M	India	
RG71	IG 27(IC 0590934-121255)	ARC 11345:IRGC 21336-1	IRRI, Philippines	I	indica	IR	M	Philippines	
RG72	Aarkadu kichili	Landrace	Tamil Nadu, India	T	indica	IR	M	India	
RG73	Kunthali	Landrace	Tamil Nadu, India	T	indica	IR	E	India	
RG74	ARB 65	Variety	Karnataka	I	indica	IR	E	India	
RG75	IG 21(EC 729334-121355)	HONGJEONG::IRGC 73052-1	IRRI, Philippines	I	japonica	IR	E	Philippines	
RG76	Matta kurvai	Landrace	Tamil Nadu, India	T	indica	IR	E	India	
RG77	Karuthakar	Landrace	Tamil Nadu, India	T	indica	RL	E	India	
RG78	RPHP 165	Tilak kachari	West Bengal	T	indica	IR	E	India	
RG79	Manavari	Landrace	Tamil Nadu, India	T	indica	U	E	India	
RG80	IG 66(EC 729047-120985)	IR 71137-243-2-2-3-3::IRGC 99696-1	IRRI, Philippines	I	indica	IR	E	Philippines	
RG81	CB-07-701-252	White ponni X Rasi	Tamil Nadu, India	I	indica	IR	E	India	
RG82	Thooyarimali	Landrace	Tamil Nadu, India	T	indica	IR	M	India	
RG83	RPHP 93	Type-3 (Dehradooni Basmati)	UTTARKHAND	I	indica	Scented	M	India	
RG84	Velsamba	Landrace	Tamil Nadu, India	T	indica	IR	M	India	
RG85	RPHP 104	Kasturi (IET 8580)	UTTARKHAND	I	indica	IR	M	India	
RG86	RPHP 102	Kanchana	Kerala, India	I	indica	Semi Deep Water	L	India	
RG87	IG 40(EC 728740-117705)	DEE GEO WOO GEN	TAIWAN	T	Indica	IR	M	Philippines	
RG88	Saranga	Landrace	Tamil Nadu, India	T	indica	IR	E	India	
RG89	IR 83294-66-2-2-3-2	DAESANGYO X IR65564-44-5-1	IRRI, Philippines	I	japonica	RL	M	Philippines	
RG90	IG 61(EC 728731-117696)	CRIOLLO LA FRIA	Venezuela	I	indica	IR	E	Philippines	
RG91	IG 23(EC 729991-121419)	MAHA PANNITHI::IRGC 51021-1	IRRI, Philippines	I	Aus	IR	M	Philippines	
RG92	IG 49(EC 729102-121052)	MENAKELY::IRGC 69963-1	Madagascar	I	Indica	RL	M	Philippines	
RG93	Uppumolagai	Landrace	Tamil Nadu, India	T	Indica	IR	M	India	
RG94	Karthigai samba	Landrace	Tamil Nadu, India	T	Indica	RL	M	India	
Accession	Name	Breed	Origin	Type	Group	Class	Country		
----------	------	-------	--------	------	-------	-------	---------		
RG95	Jeeraga samba	Landrace	Tamil Nadu, India	T	Indica	IR	M	India	
RG96	RP-BIO-226	IMPROVED SAMBHA MAHSURI	ANDHRA PRADESH	I	Indica	IR	M	India	
RG97	Variarudan samba	Landrace	Tamil Nadu, India	T	Indica	IR	M	India	
RG98	IG 5(E 729642-121698)	IR 65907-116-1:B:C1	IRRI, Philippines	I	japonica	UP	E	Philippines	
RG99	IG 31(E 728844-117829)	ORYZICA LLANOS 5	Colombia	T	Indica	IR	M	Philippines	
RG100	IG 7(E 729598-121648)	VARY MAINTY:IRGC 69910-1	Madagascar	I	japonica	IR	M	Philippines	
RG101	RPHP 52	SEBATI	Orissa, India	I	Indica	IR	M	India	
RG102	Varakkal	Landrace	Tamil Nadu, India	T	Indica	UP	E	India	
RG103	Mattaikar	Landrace	Tamil Nadu, India	T	Indica	RL	L	India	
RG104	IG 53(E 728752-117719)	CAROLINA RINALDO BARSANI	URUGUAY	I	Temperate	japonica	IR	E	Philippines
RG105	IG 6(E 729592-121642)	SOM CAU 70 A:IRGC 8227-1	Vietnam	I	Temperate	japonica	IR	E	Philippines
RG106	Katta samba	Landrace	Tamil Nadu, India	T	Indica	RL	L	India	
RG107	RH2-SM-1-2-1	SWARNA X MOROBERAKAN	Tamil Nadu, India	I	Indica	IR	E	India	
RG108	Red sirumani	Landrace	Tamil Nadu, India	T	Indica	RL	E	India	
RG109	Vadivel	Landrace	Tamil Nadu, India	T	Indica	IR	M	India	
RG110	Norungan	Landrace	Tamil Nadu, India	T	Indica	RL	E	India	
RG111	IG 20(E 729293-121310)	CHIGYUNGDO:IRGC 55466-1	South Korea	I	Indica	UP	E	Philippines	
RG112	IG 35(E 728858-117843)	PATE BLANC MN 1	Cote D'Ivoire	I	japonica	UP	M	Philippines	
RG113	IG 45(E 728768-117736)	FORTUNA	Puerto Rico	T	japonica	IR	M	Philippines	
RG114	RPHP 159	Radhuni Pagal	BANGLADESH	I	aromatic rice	Scented	L	India	
RG115	IG 43(E 728788-117759)	IR-44595	IRRI, Philippines	I	indica	IR	E	Philippines	
RG116	RPHP 27	Azucena	IRRI, Philippines	T	Tropical	Japonica	RL	E	India
RG117	IG 65(E 729024-120958)	GODA HEENATI:IRGC 31393-1	SRI LANKA	I	indica	IR	E	Philippines	
RG118	Ponnami samba	Landrace	Tamil Nadu, India	T	indica	IR	M	India	
RG119	Gaanhasala	Landrace	Tamil Nadu, India	T	indica	IR	M	India	
RG120	Thattan samba	Landrace	Tamil Nadu, India	T	indica	IR	M	India	
RG121	IG 74(E 728622-117517)	KINANDANG PATONG:IRGC 23364-1	IRRI, Philippines	I	japonica	RL	M	Philippines	
RG122	Kaliyan samba	Landrace	Tamil Nadu, India	T	indica	IR	M	India	
RG123	IG 2(E 729080-121874)	BLUEBONNET 50:IRGC 1811-1	IRRI, Philippines	I	japonica	UP	M	Philippines	
RG124	IG 29(E 728925-117920)	TOX 782-20-1	NIGERIA	T	Tropical	Japonica	IR	E	Philippines
RG125	RPHP 55	Kalinga -3	Orissa	I	indica	RL	E	India	
RG126	Kalainadayan	Landrace	Tamil Nadu, India	T	indica	RL	E	India	
RG127	IG 10(EC 729686- 121743) HASAN SERAI	IRRI, Philippines	I	aromatic	IR	E	Philippines		
RG128	IG 75(EC 728587- 117420) AEDAL::IRGC 55441-1	Korea	T	japonica	IR	E	Philippines		
RG129	IG 38(EC 728742 - 117707) DELREX	UNITED STATES	Tropical	japonica	IR	M	Philippines		
RG130	IG 39(EC 728779- 117750) HONDURAS	HONDURAS	indica	IR	M	Philippines			
RG131	RPHP 90	182(M)	Andhra Pradesh	I	indica	IR	E	India	
RG132	IG 33(EC 728938- 117935) WC 3397	WC 3397	JAMAICA	Tropical	japonica	IR	E	Philippines	
RG133	IG 42(EC 728798- 117774) KALUBALA VEE	SRILANKA	T	indica	IR	E	Philippines		
RG134	IG 9(EC 729682- 121739) GEMJYA JYANAM::IRGC 32411-C1	IRRI, Philippines	I	indica	IR	E	Philippines		
RG135	RPHP 161	Champa Khushi	Vietnam	T	indica	UP	E	India	
RG136	IG 8(EC 729601- 121651) XI YOU ZHAN::IRGC 78574-1	China	I	indica	IR	E	Philippines		
RG137	IG 37(EC 728715- 117678) CENIT	ARGENTINA	Tropical	japonica	IR	L	Philippines		
RG138	Sigappu kuruvikar	Landrace	Tamil Nadu, India	T	indica	RL	E	India	
RG139	RPHP 138	EDAVANKUDI POKKALI	Kerala, India	T	indica	Deep water	L	India	
RG140	Raja mannar	Landrace	Tamil Nadu, India	T	indica	IR	M	India	
RG141	IG 44(EC 728762- 117729) EDITH	UNITED STATES	T	indica	IR	E	Philippines		
RG142	Sasyasree	TMK 6 x IR 8	West Bengal	I	indica	IR	E	India	
RG143	IG 46(EC 471826- 117647) BABER	INDIA	I	indica	IR	E	India		
RG144	Chetty samba	Landrace	Tamil Nadu, India	T	indica	IR	E	India	
RG145	IG 60(EC 728730- 117695) CREOLE	Belize	T	indica	IR	M	Philippines		
RG146	IR 75682-206	IR 75083 X IR 65600 -81-5-3-2	IRR, Philippines	I	Tropical	japonica	IR	M	Philippines
RG147	IG 58(EC 728725- 117689) CI 11011	UNITED STATES	japonica	IR	M	Philippines			
RG148	Chinna adaku nel	Landrace	Tamil Nadu, India	T	indica	IR	L	India	
RG149	RH2-SM-2-23	SWARNA X MOROBERAKAN	Tamil Nadu, India	I	indica	IR	M	India	
RG150	IG 14(EC 517381- 121422) MALACHAN::IRGC 54748-1	India	I	indica	UP	E	Philippines		
RG151	IG 32(EC 728838- 117823) NOVA	United States	I	japonica	IR	M	Philippines		
RG152	RPHP 47	Pathara (CO-18 x Hema)	India	I	indica	IR	E	India	
RG153	Sembillipiriyan	Landrace	Tamil Nadu, India	T	indica	RL	M	India	
Accession	Germplasm	Country	Variety	Type	Origin	Type			
-----------	-----------	------------------	---------	------	------------	-------------			
RG154	DINOLORES:IRGC 67431-1	Indica	UP	M	Philippines				
RG155	IG 48:EC 121195)	IRRI, Philippines	Indica	IR	E	India			
RG156	SHRESTAK:IRGC 32351-1	Iran	Indica	E	Philippines				
RG157	Karungan	Tamil Nadu, India	Indica	IR	E	India			
RG158	IG 13:EC 121696)	Tamil Nadu, India	Indica	IR	E	Philippines			
RG159	Sembala	Tamil Nadu, India	Indica	IR	L	Philippines			
RG160	IG 17:EC 117587)	Thailand	Indica	IR	M	Philippines			
RG161	Panamarasamba	Tamil Nadu, India	Indica	IR	M	India			
RG162	IR 64	IRRI, Philippines	Indica	IR	E	Philippines			
RG163	Mituruva	Tamil Nadu, India	Indica	IR	E	India			
RG164	Thillainayagam	Tamil Nadu, India	Indica	IR	M	India			
RG165	AR 64	Karnataka	Indica	IR	E	India			
RG166	RPHP 140	Kerala	Indica	IR	E	India			
RG167	IG 70:EC 120983)	IRRI, Philippines	Indica	IR	M	Philippines			
RG168	Halachiduri	Orissa, India	Indica	IR	E	India			
RG169	IG 24:EC 117718)	BANGLADESH	Indica	IR	E	Philippines			
RG170	RPHP 42	JAMMU & KASHMIR	Indica	IR	M	India			
RG171	RPHP 44	KARNATAKA	Indica	IR	L	India			
RG172	IG 25:EC 117785)	Madagascar	Indica	IR	E	Philippines			
RG173	IG 73:EC 117527)	IRRL, Philippines	Indica	IR	E	Philippines			
RG174	IG 51:EC 117742)	Indonesia	Indica	IR	M	Philippines			
RG175	Vellai kudaiyazhi	Tamil Nadu, India	Indica	IR	M	India			
RG176	Kodai	Tamil Nadu, India	Indica	IR	E	India			
RG177	Kallundaikar	Tamil Nadu, India	Indica	IR	M	India			
RG178	IG 17:EC 117889)	INDONESIA	Indica	IR	L	Philippines			
RG179	Avasara samba	Tamil Nadu, India	Indica	IR	E	India			
RG180	IG 59:EC 117694)	BULGARIA	Indica	IR	M	Philippines			
RG181	IG 52:EC 117723)	BRAZIL	Indica	IR	M	Philippines			
RG182	AR 59	Karnataka	Indica	IR	E	India			
IR/Code	Accession Code	Origin	Type	Quality	Note	Country			
-----------	-------------------------	-----------------	------------	---------	-------	-------------			
RG183	RPHP 163	Seeta sail	West Bengal	T	indica	Scented	M	India	
RG184	IG 18 (EC 728892-117880)	SERATOES HARI	INDONESIA	T	indica	IR	E	Philippines	
RG185	RPHP 36	TKM-9	Tamil Nadu, India	I	indica	IR	E	India	
RG186	IG 28 (EC 728920-117914)	TIA BURA	INDONESIA	T	Tropical japonica	M	Philippines		
RG187	Vadakathi samba	Landrace	Tamil Nadu, India	T	indica	IR	M	India	
RG188	RPHP 80	24(K)	Andhra Pradesh	I	indica	IR	E	India	
RG189	IG 41 (EC 728800-117776)	KANIRANGA	Indonesia	T	Tropical japonica	M	Philippines		
RG190	IG 26 (IC 0590943-121899)	BASMATI 370:IRGC 3750-1	IRRI, Philippines	I	aromatic	IR	E	Philippines	
RG191	IG 15 (EC 728910-117901)	SZE GUEN ZIM	CHINA	I	indica	IR	E	Philippines	
RG192	Nootri pathu	Landrace	Tamil Nadu, India	T	indica	RL	L	India	

IRRI lines - The number after hyphen inside brackets represent IRGC number.
by the farmers in different parts of the state. Ecological and evolutionary history contributes for the genetic diversity maintained in a population. The varieties with diverse ecosystems and wide eco-geographical conditions contribute for the genetic diversity among rice varieties in this population.

For establishing a core collection for association studies, a two step approach followed by Breseghello and Sorrells (2006) and Courtois et al. (2012) was used. This approach involves the determination of population structure and then sampling can be done based on the relatedness of the accesions in the population. Those accesions that show high magnitude of genetic relatedness can be eliminated to develop core collection with diverse representatives. Based on this idea, out of 192 accesions, 150 (Table 5) were selected to form association mapping panel which can be utilized either by genome wide or candidate gene specific association mapping for linking the genotypic and phenotypic variation.

Conclusion

This study analyze the pattern of divergence exists in a population of 192 rice accesions that constitute our rice diversity panel for association mapping. Based on various statistical methods, we identified two sub groups within 192 rice accesions selected for establishing association mapping panel. The average number of alleles per locus and gene diversity has indicated the existence of broad genetic base in this collection. The result of structure analysis is in accordance with clustering method of neighbor joining tree and principal coordinate analysis. Thus, the results of this study which indicates the genetic diversity of the accesions can be utilized to predict approaches such as association analysis, classical mapping population development; parental line selection in breeding programs and hybrid development for exploiting the natural genetic variation exists in this population.

Methods

Plant Material

A collection consisting of 192 rice accesions was used in this study, which consist of land races and varieties collected from nine different states of India as well as from Argentina, Bangladesh, Brazil, Bulgaria, China, Colombia, Indonesia, Philippines, Taiwan, Uruguay, Venezuela and United States (Table 6).

Microsatellite Genotyping DNA Isolation and PCR Amplification

DNA was extracted from leaf tissue by grinding with liquid nitrogen using CTAB method (Saghai-Maroot et al. 1984.). It was diluted to a final concentration of 30 ng µl⁻¹ for enabling polymerase chain reactions. DNA amplification parameters such as specificity, efficiency and fidelity are strongly influenced by the components of the PCR reaction and by thermal cycling conditions (Caetano-Anolles and Brant 1991). Therefore, the careful optimization of reaction components and conditions will ultimately result in more reproducible and efficient amplification. The concentrations of primers, template DNA, Master Mix, and annealing temperature was optimized on eight diverse accesions for 156 SSR markers distributed on the 12 chromosomes by modified Taguchi method (Cobb and Clarkson 1994). Microsatellite primer sequences, annealing temperature and chromosomal locations are obtained from GRAMENE database (http://archive.gramene.org/markers/microsat/). Sixty one SSR primer pairs which produce polymorphic allele amplification were chosen to genotype the entire set of germplasm collection.

The volume of the PCR reaction system was 10 µl. The PCR reaction mixture of 10 µl had 0.4 mM dNTPs, 4 mM of MgCl₂, 150 mM of Tris—HCl, 10 pmole of forward and reverse primer and 0.05 U Taq polymerase with 30 ng of DNA. Polymerase chain reaction was performed in BIORAD THERMAL CYCLER using the following program: 94 °C for 2 min, 35 cycles of 94 °C for 45 sec, 50–60 °C for 1 min, 72 °C for 2 min with a final extension of 72°C for ten min.

Polyacrylamide Gel Electrophoresis

Amplified products were size separated in native polyacrylamide gel electrophoresis using 6 % (w/v) polyacrylamide gel according to Sambrook et al. (2001) in vertical electrophoresis tank with 1X TBE at 150 V. The gel size was determined using standard molecular weight size markers after the bands were detected by silver staining.

Allele Scoring

The bands were visualized in a cluster of two to six in the stained gels for most of the markers. Based on the expected product size given in the GRAMENE website (Additional file 2: Table S1), the size of the most intensely amplified bands around the expected product size for each microsatellite marker was identified using standard molecular weight size markers (20 bp DNA ladder, GeNeI Company). Then the stained gel was dried and documented using light box. Allele score was given based on the presence of a particular size allele in each of the germplasm. The presence was denoted as 1 and absence of an allele as 0 and it was rechecked manually (Additional file 3: Table S2).

Data Analysis

A 1/0 matrix was constructed based on the presence and absence of alleles for the set of 61 markers. This SSR genotype data was analyzed for genetic diversity and population structure.
Genetic Diversity
For a set of accessions, genetic diversity parameters such as number of alleles per locus, allele frequency, heterozygosity and polymorphic information content (PIC) was estimated using the program POWERMARKER Ver3.25 (Liu and Muse 2005). Allele frequency represents the frequency of particular allele for each marker. Heterozygosity is the proportion of heterozygous individuals in the population. Polymorphic information content that represent the amount of polymorphism within a population was estimated based on Botstein et al. (1980).

To assess genetic structure, model based approach and distance based approach were used. Model based approach was utilized with Structure ver 2.3.4 software (Pritchard et al. 2000). The actual number of subpopulation which is denoted by K was identified by this method. For that, the project was run with the following parameter set: the possibility of admixture and allele frequency correlated. Run length was given as 150,000 burning period length followed by 150,000 Markov Chain Monte Carlo (MCMC) replication. Each k value was run for 10 times with k value varying from 1 to 10. The optimum k value was determined by plotting the mean estimate of the log posterior probability of the data (L (K)) against the given k value. True number of subpopulation was identified using the maximal value of L (K). An adhoc quantity ΔK proposed by (Evanno et al. 2005) based on second order rate of change of the likelihood function with respect to K estimated using Structure Harvester (Earl 2012) has also shown a clear peak at the optimal K value.

Distance based approach which is based on calculating pair wise distance matrix was computed by calculating a dissimilarity matrix using Powermarker and viewed in MEGA 6.0 software (Tamura et al. 2013). The presence of molecular variance within and between hierarchical population structure estimated by Structure was assessed via Analysis of molecular variance (AMOVA) by Arlequin (Excoffier et al. 2005). F statistics which include F_{ST}, deviations from Hardy-Weinberg expectation across the whole population, F_{IS} deviation from Hardy-Weinberg expectation within a population and F_{ST}, correlation of alleles between sub-population was calculated using AMOVA approach in Arlequin. AMOVA and Principal coordinate analysis of the germplasm set was performed based on Nei (Nei 1973) distance matrix using GenAlEx 6.5 (Peakall and Smouse 2012).

Additional files

Additional file 1: Figure S1. Allelic pattern of different SSR markers used in this study. (JPG 1.03 MB)

Additional file 2: Table S1. Expected product size obtained from Gramene and observed product size for the SSR markers used in this study. (XLS 170 kb)

Additional file 3: Table S2. Allele matrix of 192 accessions x 61 SSRs. (XLSX 10 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RoS, VVN, RS and SKK prepared the samples. VVN carried out the genotyping, data analysis and drafted the manuscript. BAP, GP, KG participated in genotyping and data preparation. RoS designed the experiment and revised the manuscript. SD, RS, RM, SM participated in study design and revised the manuscript. All authors read and approve the final manuscript.

Acknowledgement
This work was supported by a grant from Department of Biotechnology, Government of India under Rice biofortification with enhanced iron and zinc in high yielding non basmati cultivars through marker assisted breeding and transgenic approaches- Phase II (E2850) scheme. I thank Dr. Yasodha from Institute of Forest Genetics and Tree Breeding, Coimbatore for helping in the analysis.

Author details
1Plant Molecular Biology, Plant Breeding and Genetics Division, International Rice Research Institute, Manila, Philippines. 2Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India. 3Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India. 4Crop Physiology laboratory, International Crops Research Institute for the Semi-Arid-Tropics, Hyderabad, India. 5International Crops Research Institute for the Semi-Arid-Tropics, Hyderabad, India. 6Centre of Excellence in Molecular Breeding, Tamil Nadu Agricultural University, Coimbatore, India.

Received: 30 October 2014 Accepted: 8 August 2015
Published online: 26 September 2015

References
Abdurakhmonov IY, Abdurakimon A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int J Plant Genomics 2008:574927
Agrawal H, Eizenga G (2008) Molecular diversity and genome-wide linkage disequilibrium patterns in a worldwide collection of Oryza sativa and its wild relatives. Euphytica 160(3):339–355
Agrawal H, Eizenga G, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19(4):341–356
Agrawal HA, Yan W, Ja M, Fjellstrom R, McClung AM (2010) Genetic structure associated with diversity and geographic distribution in the USDA rice world collection. Nat Sci 2(04):247
Bottstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314
Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172(2):165–1177
Cattano-Anolles G, Brant B (1991) DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Nat Biotechnol 9(6):555–557
Oryza sativa L. (2015) Theor Appl Genet 123(6):869–879

Choudhury B, Khan ML, Dayanandan S (2013) Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the Eastern Himalayan region of Northeast India. Springer Plus 2(1):228

Cobb BD, Clarkson JM (1994) A simple procedure for optimizing the polymerase chain reaction (PCR) using modified Taguchi methods. Nucleic Acids Res 22(18):3801–3805

Courtouis F, Frouin J, Gréco R, Bruschi G, Droc G, Hamelin C, Ruz M, Clément G, Evrard J-C, van Coppennol S (2012) Genetic diversity and population structure in a European collection of rice. Crop Sci 52(4):1663–1675

Das B, Sengupta S, Pandya SK, Roy B, Ghosh M, Prasad M, Ghose TK (2013) Genetic diversity and population structure of rice landraces from Eastern and North-Eastern States of India. BMC Genet 14(1):71

Deepa G, Singh V, Nadua KA (2008) Nutrient composition and physicochemical properties of Indian medicinal rice—Njawa. Food Chem 106(1):165–171

Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the evanno method. Conserv Genet 13(1):361–366

Ebana K, Kojima Y, Fukuoka S, Nagamine T, Kawase M (2008) Development of mini core collection of Japanese rice landrace. Breed Sci 58(3):281–291

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(6):2611–2620

Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47

Gao L-Z, Zhang C-H, Chang L-P, Jia J-Z, Qiu Z-E, Dong Y-S (2005) Microsatellite diversity within Oryza sativa with emphasis on indica–japonica divergence. Genet Res 7(5):1–14

Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch SR (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169(3):1631–1638

Hesham AA, Yan W, Fjellstrom R, Ja M, McClung A (2008) Genetic diversity and relationships assessed by SSRs in the USDA World-Wide Rice Germplasm Collection. In: The 2008 joint annual meeting

Horst L, Wernzel G (2007) Molecular marker systems in plant breeding and crop improvement, vol 55. Springer, Berlin

Jin J, Lu Y, Xiao P, Sun M, Corke H, Bao J (2010) Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet 121(3):475–487

Kishanrani S, Senthivel P, Ramasai S, Anbarasu A (2015) Study of chemical composition and volatile compounds along with in-vitro assay of antioxidant activity of two medicinal rice varieties: Karungkuravai and Mappilai samba. Journal of Food Science and Technology 52(5):2572–2584. doi:10.1007/s13217-014-0636-2

Lapitan VC, Brar DS, Abe T, Redoña ED (2007) Assessment of genetic diversity of Philippine rice cultivars carrying good quality traits using SSR markers. Breed Sci 57(4):263–270

Liakat Ali M, McClung AM, Jia MH, Kimball JA, McCouch SR, Georgia CE (2011) A rice diversity panel evaluated for genetic and agronomical diversity between subpopulations and its geographic distribution. Crop Sci 51(5):2021–2035

Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129

Lu H, Redus MA, Coburn JR, Rutger JN, McCouch SR, Tai TH (2005) Population structure and breeding patterns of 145 US rice cultivars based on SSR marker analysis. Crop Sci 45(1):166–176

McClung SR, Chen X, Panaud O, Tennyx S, Xu Y, Cho YG, Huang N, Ishii T, Blair M (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35(1-2):89–99

N Rachimuthu W, Robin S, Sudhaakar D, Rajeswari S, Ravendran M, Subramanian K, Tamind S, Pandian BA (2014) Genotypic variation for micronutrient content in traditional and improved rice lines and its role in biofortification programme. Indian J Sci Technol 7(9):1414–1425

Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70(12):3321–3323

Ni J, Colowit PM, Mackill DJ (2002) Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci 42(2):601–607

Peakall R, Smouse PE (2012) GenAlex 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539

Perrier X, Jacquemoud-Collet J, (2006) DARwin software.

Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

Pritchard JK, Stephens P, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–955

Qi Y, Zhang D, Zhang H, Wang M, Sun J, Ding L, Wang F, Li J (2009) Assessing indica japonica differentiation of improved rice varieties using microsatellite markers. J Genet Genomics 36(5):305–312

Ram SG, Thimungsavong V, Vinod KD (2007) Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J Appl Genet 48(4):337–345

Saghai-Maroc MA, Soliman KM, Jorgensen AR, Allard RW (1986) Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci U S A 81:8014–8018

Sambrook J, Russell DW, Russell DW (2001) Molecular cloning: a laboratory manual (3-volume set), vol 999. Cold spring harbor laboratory press, Cold Spring Harbor, New York

Sow M, Ndjiondopp M-N, Sido A, Maria C, Laing M, Bezañon G (2014) Genetic diversity, population structure and differentiation of rice species from Niger and their potential for rice genetic resources conservation and enhancement. Genet Resour Crop Evol 61(1):199–213

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary analyses version 6.0. Mol Biol Evol 30(12):2725–2729

Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarff polymorphisms associate with variation in flowering time. Nat Genet 28(6):286–289

Valarmathi R, Ravendran M, Robin S, Senthil N (2015) Unraveling the nutritional and therapeutic properties of ‘Kavuni’ a traditional rice variety of Tamil Nadu. Journal of Plant Biochemistry and Biotechnology 24 (3):305-315. doi:10.1007/s13217-014-0274-6

Varshney RK, Chabane K, Hendre PS, Agganwal RK, Graner A (2007) Comparative assessment of EST-SSR, EST-SSNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173(6):638–649

Zhang D, Zhang H, Wei X, Qi Y, Wang M, Sun J, Ding L, Tang S, Cao Y, Wang X (2007) Genetic structure and diversity of Oryza sativa L. in Guizhou, China. Chinese Sci Bull 52(3):343–351

Zhang D, Zhang H, Wang M, Sun J, Qi Y, Wang F, Wei X, Han L, Wang X, Li Z (2009) Genetic structure and differentation of Oryza sativa L. in China revealed by microsatellites. Crop Sci 49(6):1676–1685

Zhang P, Li J, Li X, Liu X, Zhao L (2011) Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS One 6(12):e27565

Zhao K, Tung C-W, Ezenza GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mozey J (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

Zhao K, Wright M, Kimball J, Ezenza G, McClung A, Kovach M, Tyagi W, Ali ML, Tung C-W, Reynolds A (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS one 5(10):e10780