Majorana vs. Dirac sterile neutrinos lighter than M_W at the LHC

C O Dib, C S Kim, K Wang and J Zhang
1 CCTVal and Department of Physics, Federico Santa Maria University, Valparaiso, Chile
2 Department of Physics and IAP, Yonsei University, Seoul, Korea
3 DESY, Notkestrasse 85, D-22607 Hamburg, Germany
4 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
E-mail: claudio.dib@usm.cl

Abstract. We propose to study the leptonic decays $W^\pm \rightarrow e^\pm e^\mp \mu^\mp \nu_\mu$ and $W^\pm \rightarrow \mu^\pm \mu^\mp e^\mp \nu_e$ at the LHC to discover sterile neutrinos with masses below M_W, and discriminate their Majorana or Dirac character. These decays are induced by a sterile neutrino N that goes on mass shell in the intermediate state. We find that, even though the final (anti)-neutrino goes undetected and thus lepton number is unchecked, one can distinguish between the Majorana vs. Dirac character of the intermediate sterile neutrino by comparing the production of $e^\pm e^\mp \mu^\mp$ vs. $\mu^\pm \mu^\mp e^\mp$, provided the N-e and N-μ mixings are different enough. Alternatively, one can also distinguish the Majorana vs. Dirac character by studying the energy spectra of the opposite charge lepton, a method that works even if the N-e and N-μ mixings are equal.

Most explanations for the smallness of neutrino masses are based on seesaw models. These models predict additional heavy neutrinos, sterile in the Standard Model except for small mixings with the weak currents. Their masses, m_N, in most scenarios are of Majorana type and can lie anywhere from a few eV all the way to GUT scales. Search for Majorana masses are usually done in Neutrinoless Double Beta Decay experiments, but collider tests are also competitive for specific mass ranges.

At the LHC, $W \rightarrow \ell^+ \ell^- jj$ is appropriate for $m_N > M_W$, while leptonic modes such as $W^\pm \rightarrow e^\pm e^\mp \mu^\mp \nu$ and $W^\pm \rightarrow \mu^\pm \mu^\mp e^\mp \nu$ are preferred for $m_N < M_W$. However, the discrimination between Dirac vs. Majorana in these purely leptonic modes is a major challenge, because the conservation of lepton number cannot be tested directly, as the neutrino in the final state goes undetected. Indeed, if N is Majorana, the mode $e^+ e^- \mu^- \nu$ is actually the sum of two exclusive modes: the lepton number violating (LVN) $W^+ \rightarrow e^+ e^- \mu^- \nu$, and the lepton number conserving (LNC) $W^+ \rightarrow e^+ e^- \mu^- \nu_e$ (Figs. 1 and 2 show the diagrams of these two processes). Instead, if N is Dirac, only the LNC process occurs. These decays proceed through a heavy sterile neutrino N in the intermediate state, resonantly enhanced if $m_N < M_W$.

Here we propose ways to tell whether the intermediate N is Majorana or Dirac by observing the charged leptons $e^+ e^- \mu^-$ or $\mu^+ \mu^+ e^-$, while the final neutrino goes undetected.

Proposal 1: Compare the event rates of $e^+ e^- \mu^-$ with $\mu^+ \mu^+ e^-$ [1]. If N is Majorana, the rates will be different provided the lepton mixings are different ($U_{Ne} \neq U_{N\mu}$). Instead, if N is Dirac,
the rates will be the same regardless of the lepton mixings. This is due to the fact that the \(\text{LNV} \) and \(\text{LNC} \) rates differ only in their neutrino mixing factors, \(U_{Ne} \) and \(U_{N\mu} \) [1, 2]:

\[
\Gamma(e^+e^-\mu^-)_{\text{LNV}} \sim |U_{Ne}|^4, \quad \Gamma(e^+e^-\mu^-)_{\text{LNC}} \sim |U_{Ne}U_{N\mu}|^2, \\
\Gamma(\mu^{+}\mu^{-}e^{-})_{\text{LNV}} \sim |U_{N\mu}|^4, \quad \Gamma(\mu^{+}\mu^{-}e^{-})_{\text{LNC}} \sim |U_{Ne}U_{N\mu}|^2.
\]

Let us define the mixing disparity ratio: \(r_{\text{mix}} = |U_{Ne}|^2/|U_{N\mu}|^2 \). Then,

- If \(N \) is Dirac, only \(\text{LNC} \) occurs \(\Rightarrow N(e^+e^-\mu^-) = N(\mu^{+}\mu^{-}e^{-}) \) regardless of \(r_{\text{mix}} \).
- If \(N \) is Majorana, both \(\text{LNC} \) and \(\text{LNV} \) occur \(\Rightarrow N(e^+e^-\mu^-) > N(\mu^{+}\mu^{-}e^{-}) \) if \(r_{\text{mix}} > 1 \), and vice versa if \(r_{\text{mix}} < 1 \).

The question is then, how far from unity \(r_{\text{mix}} \) must be in order to discriminate Majorana from Dirac with these trilepton processes at the LHC. To answer this question we simulate events in a Majorana neutrino scenario and test whether one can significantly discriminate it from a Dirac case (where the \(e^+e^-\mu^- \) and \(\mu^{+}\mu^{-}e^{-} \) rates are equal). We do this analysis for several mixings, and choose two mass benchmarks: \(m_N = 20 \text{ GeV} \) and \(m_N = 50 \text{ GeV} \).

We use FeynRules [3] to extend the Standard Model and simulate events with MadGraph-5 [4], using PYTHIA-6 [5] for the parton showers and Delphes-3 [6] for the detector. The backgrounds considered are (i) \(WZ \) production with \(W \rightarrow \text{leptonic} \) and \(Z \rightarrow \tau^{+}\tau^{-} \) and \(\tau \rightarrow \text{leptonic} \), and (ii) fake leptons from jets in processes \(\gamma^*/Z+\text{jets} \) or \(t\bar{t} \). To reduce the background we impose the cuts: (i) \(p_T > 10 \text{ GeV} \) and \(|\eta| < 2.5 \) for leptons, (ii) \(p_T > 20 \text{ GeV} \) and \(|\eta| < 5.0 \) for jets; (iii) \(M_T(3\ell+\not{p}_T) < 90 \text{ GeV} \); (iv) \(\not{p}_T < 40 \text{ GeV} \), no \(b \)-jets and \(\sum_{j\ell} p_T < 50 \text{ GeV} \).
The results are shown in Fig. 3 for both benchmark scenarios. We find that a 3σ exclusion level can be reached for disparities r_{mix} as mild as e.g. $r_{\text{mix}} \lesssim 0.7$ (or $1/r_{\text{mix}} \lesssim 0.7$), provided the average mixing s – which determines the absolute rates – (see Fig. 3) is sufficiently large ($s \gtrsim 5$). For smaller s (meaning fewer events), r_{mix} must be larger in order to reach the same level of discrimination; in the same way, as r_{mix} approaches 1, larger values of s are required as it becomes more and more difficult to exclude the Dirac case.

Proposal 2: Analyse the spectrum of the opposite charge lepton, e.g. the μ^- in $\Gamma(e^+e^-\mu^-)$ [2]. If r_{mix} is close to unity, the previous method cannot discriminate so well. In such case we can use this spectrum because it differs in the LNV and LNC processes. Denoting $\epsilon_\mu = E_\mu/m_N$ the muon energy in the N rest frame, the spectra are given by:

$$\Gamma(W^+ \to e^+e^-\mu^-)_{\text{(LNV)}} \sim \frac{|U_{Ne}|^4}{U^2} \int_0^{1/2} d\epsilon_\mu \left(\epsilon_\mu^2 - 2 \epsilon_\mu^3 \right),$$

$$\Gamma(W^+ \to e^+e^-\mu^-)_{\text{(LNC)}} \sim \frac{|U_{Ne}U_{N\mu}|^2}{U^2} \int_0^{1/2} d\epsilon_\mu \left(\frac{1}{2} \epsilon_\mu^2 - \frac{2}{3} \epsilon_\mu^3 \right).$$

![Figure 4](image_url)

Figure 4. Muon energy spectra for $(e^+e^-\mu^-)$ in the N rest frame. Left: LNV (solid) and LNC (dashed). Right: LNV+LNC for $r_{\text{mix}} = 10$ (solid), 1 (dashed) and 1/10 (dotted). For $(\mu^+\mu^-e^-)$ the spectra correspond to the inverse of r_{mix}.

For a Dirac N, the spectrum will always be LNC only (Fig. 3 left, dashed line). Instead, for a Majorana N, the spectrum will be LNC+LNV, shown in Fig. 3 right, which depends on r_{mix}. For $r_{\text{mix}} \ll 1$ the spectrum of $\Gamma(e^+e^-\mu^-)$ is indistinguishable from a Dirac case, in which case one should use the exchanged flavour mode $\Gamma(\mu^+\mu^-e^-)$. Simulations for the reconstruction of these spectra at the LHC are in progress.

Acknowledgments

Work supported in part by: Chile grants Fondecyt 1130617, Conicyt ACT 1406 and FB0821; the Korean gov. NRF grant of the MEST 2011-0017430 and 2011-0020333; the Innovation Program of the IHEP grant Y4515570U1, and the International Postdoctoral Exchange Fellowship Program 90, OCPC, 205, China.

References

[1] Db C O, Kim C S, Wang K and Zhang J 2016 Phys. Rev. D 94 013005 (Preprint 1605.01123)
[2] Db C O and Kim C S 2015 Phys. Rev. D 92 093009 (Preprint 1509.05981)
[3] Christensen N D and Duhr C 2009 Comput. Phys. Comm. 180 1614 (Preprint 0806.4194)
[4] Alwall J et al 2014 JHEP 07 079 (Preprint 1405.0301)
[5] Sjostrand T, Mrenna S and Skands P Z 2006 JHEP 05 026 (Preprint hep-ph/0603175)
[6] de Favereau J et al 2014 JHEP 02 057 (Preprint 1307.6346)