Orthodontists and the thyroid gland

Keith Godfrey
Department of Orthodontics, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand

This paper questions the adequacy of orthodontists’ full appreciation of the issues associated with the routine prescription of extra-oral radiography, particularly that related to a high risk of thyroid gland exposure to ionising radiation. There does not appear to be adequate application of the ALARA principle in the consideration of justifiable options to minimise the cumulative effects of radiation exposure in young patients.

(Aust Orthod J 2016; 32: 193-198)

Received for publication: June 2016
Accepted: September 2016

Orthodontic history

Franklin (1953)\(^8\) associated cephalometric radiography with ‘radiation hazards to both patients and operators’. The nature of the adverse effects was not specified apart from ‘cumulative lethal effects’, but the focus was on the technical aspects of radiation minimisation and protection. No reference was made to the thyroid gland but awareness was likely because of publications by pathologists Duffy and Fitzgerald (1950).\(^9\) Reports of thyroid cancer in children and adolescents were traced back to the 1920s, whereupon it was noted, with qualification, that ‘the potential carcinogenic effects (while rare) of irradiation become increasingly apparent, and could be related to thymic irradiation in early life.’

Block, Geopp and Mason (1977)\(^10\) appeared to be the first in orthodontic circles to specifically focus on the problem of thyroid exposure during cephalometric radiography. The thyroid was located between the cervical vertebrae levels at C4 to C7 and thyroid protection was introduced by means of a lead collar or shield.

O’Reilly and Yanniello (1988)\(^11\) cited Lamparski’s (1972) longitudinal retrospective growth study of previously collected lateral cephalometric radiographs (LCRs) which assessed skeletal age utilising cervical vertebral bodies. Both were morphometric studies of the cervical vertebrae from C2 to C6. It can only be

Introduction

Parents concerned about their children’s present and future health will often confront members of the dental profession with questions about the dangers of, and need for, special dental radiography. The answers to these questions may be sought initially by computer searches for information, which are not totally reliable. It is imperative that orthodontists are prepared to respond with authority and accuracy to questions from parents and patients. However, there can be ‘devil in the detail’ of knowledge and experience when attempting to justify the application of the general principle of ALARA (‘As low as reasonably achievable’) in taking simultaneous account of the risks and benefits of radiography.

There are numerous sources that cover a range of authoritative information concerning health risks of, and protection from, ionising radiation,\(^1-7\) and all include references to health risks associated with dental radiography. Some additional ‘detail’ relating to radiation protection needs to be considered by clinicians in arriving at ALARA decisions.

Because so much attention is paid to the risk of harm to the thyroid from cephalometric radiography, this will be the main focus of this commentary. (In the professional literature, the thyroid gland is frequently referred to simply as, ‘the thyroid’.)
conjectured whether Lamparski’s earlier work triggered the introduction of the thyroid protective collar by Block et al.

Hassel and Farman (1995)\(^{12}\) continued Lamparski’s work. The available LCRs and hand-wrist radiographs (HWRs) of subjects were used from the Bolton-Brush Growth Study of Case Western Reserve University (1920–1950). Although not citing the earlier publication of Block et al., the study focused on C2, C3 and C4, noting that these vertebrae ‘could be visualised even when a thyroid protective collar was worn during radiation exposure’ (emphasis added). This assumption was not tested since the study was not repeated prospectively with live subjects.

The work of Hassel and Farman was subsequently developed in a series of papers by Franchi, Baccetti and McNamara who, in their initial paper (2000)\(^{13}\) compared mandibular growth with growth of cervical vertebrae C2 to C6. This generated an ‘improved version of the Cervical Vertebrae Maturation (CVM) method’ (2002, 2005).\(^{14,15}\) A morphometric examination of the vertebral bodies C2, C3, and C4 was applied and, following the caution of Hassel and Farman, it was noted that these vertebrae ‘can be visualised when a protective collar is worn by the patient’ (again, emphasis added). This CVM method for assessing and predicting craniofacial growth from childhood to post-adolescence has since been widely adopted by orthodontists for treatment planning, partly because it provided ‘two for the price of one’: the use of a lateral cephalometric radiograph (LCR), a routine diagnostic tool for most orthodontists that includes an image of the cervical spine, and obviating need for an additional hand-wrist radiograph (HWR) traditionally used in growth studies. Thus the justifications for using CVM were reduced patient radiation and financial cost, provided that a thyroid protective collar (TPC) was used.

Patcas et al.\(^{16}\) (2013) advocated cessation of the use of the CVM method and implied that it was impractical to position the thyroid protection collar to effectively mask the thyroid and cervical vertebrae below C4 from radiation exposure, particularly of children initially having a higher position of the thyroid gland. Evidence was provided that the benefit of reverting to the HWR method of skeletal growth status while using a TPC far outweighed the radiation risks associated with the CVM method while attempting to use a TPC.

This critique of the CVM method must also include comment on orthodontic publications that refer to the use of the CVM method and include radiographic images. These invariably show no evidence of thyroid collar use. The images are always cropped but show at least part, if not all, of the vertebral body of C5, even some extending to C6. This is contrary to the stated intention of those who promote the CVM method.

Thyroid gland location and use of a thyroid protective collar

The key question is, ‘Where is the thyroid located in relation to the cervical spine vertebrae, C1 to C7?’ Descriptive anatomy commonly reports that the thyroid gland is located between C5 and C7.\(^{17-19}\) Block et al.\(^{10}\) noted the thyroid reaching the level of C4–C5. The position of the isthmus of the thyroid may be found by palpation\(^{18}\) provided there is no excess of fat in the neck. An additional report has located the gland usually at C4–C5.\(^{20}\) It is not clear whether this reference is to the usually present central mass of the isthmus of the thyroid or to its lateral pyramidal lobes, which reach higher in the neck and are not easily palpable.

The changing position of the thyroid through childhood to adulthood needs to be taken into account when prescribing cephalometric radiography. Kim et al.\(^{21}\) reported the imaging of a group of adult subjects in a comparison of high resolution ultrasound (US) with computed tomography (CT). It was found with CT that the superior tips of the pyramidal lobes of the thyroid may occasionally reach the level of the hyoid bone and thyro-hyoid membrane at C3–C4. The US generally matched the CT findings.

More important is a consideration of the developing thyroid. Ozguner and Sulak\(^{22}\) dissected foetuses of gestational age from the 33rd week to 10 months. It was reported that: ‘The levels of the superior poles of the thyroid lobes were located at the cervical (C) C1–C3 vertebral bodies. The levels of the inferior poles of the thyroid lobes were located at C4–C5 vertebral bodies . . . [and] . . . the distance between the superior poles of the thyroid gland and the hyoid bone increased throughout the foetal period.’ Vertical physical growth from the foetal stage through childhood to adolescence and adulthood leads to progressive lowering of the thyroid gland. This means that parts of the gland will be at least in the vertical
range of C3–C4 for an extended period, as noted by Patcas et al.16

It may be concluded that there is no reliable clinical method of determining the location of the thyroid gland with respect to specific vertebrae. Therefore, to protect the thyroid from radiation, the only position to set the TPC around a patient’s neck is as high as possible.

Thyroid pathology

Epidemiological data from the Australian Institute of Health and Welfare for the period 1982–201223 demonstrated a steady rise in thyroid cancer morbidity in Australia. Estimated annual incidence of thyroid cancer per 100,000 for males was less than 1 up to age 10–14 years and then with a fairly steady increase up to approximately 12 by ages 70 to 80 years. Incidence of females with thyroid cancer was similarly low, also starting to rise at 10–14 years, but more significantly than males. Thus, by 50 to 54 years of age the incidence was approximately 25 per 100,000, but dropping to male levels at later ages.

Thyroid pathology covers a large spectrum of disorders,26 some with possible change from early benign states to later malignancies. While X-rays have been conjectured to be the most likely primary causal factor in the development of thyroid cancer, only one record has been found directly linking the risk of thyroid cancers to dental radiography, ‘particularly from multiple exposures’.27 The evidence is circumstantial and dependent on available records of an individual’s cumulative radiation exposures. Repeat studies are still required but the necessary epidemiological data of effective doses (ED), a standard measure of an episode of exposure of body tissues to ionising radiation of individual probands in a population, is generally lacking. The uncertainty concerning radiation-induced morbidities is that population data of cumulative radiation doses for modern populations are necessarily retrospectively derived. There are difficulties related to the lack of precise information regarding sources of radiation, with underestimations, inadequate recording of exposures, and under-reporting.1,6,28,29

ALARA

ALARA is the acronym for ‘As low as reasonably achievable’, where radiography may be deemed to be essential for an adequate diagnosis, and might be used as justification for dispensing with the use of a thyroid protective collar. Not using such protection should be an exceedingly rare situation, whether for 2D or 3D imaging. Orthodontists make highly questionable use of the LCR besides diagnosing malocclusion. These include assessing pharyngeal airway changes with growth,16,30 which should be the primary responsibility of medical specialists; assessing the location of ectopic maxillary canines that can mostly be managed by combining clinical examination and 2D, even single image, intra-oral radiography;30,31 and justifying cephalometric imaging, particularly 3D imaging, for the possibility of finding craniofacial pathology, which is not an orthodontist’s primary function.33

(There may be legal issues34 in justifying the expanded diagnostics of 3D cephalometric imaging with higher effective doses (EDs) of radiation compared with lower EDs using 2D imaging35 even when the use of a TPC is applied and appropriate for both imaging methods.)

The American Academy of Oral and Maxillofacial Radiology36 offered recommendations to orthodontists regarding the application of ALARA in differentiating categories of patients for the appropriate use of cone beam computed tomography (CBCT). Surprisingly, the recommended use of torso and thyroid protection carried the caveat ‘when possible’, while also noting the use of a restricted field of view (FOV) available on some CBCT devices for ‘maxillary only scan’.

Questions are being raised about orthodontists’ frequent lack of use of LCRs for most of their clinical diagnosis and treatment planning, whether because of their experience or lack of concern about any litigious consequence of not maintaining the traditional set of patient records.37-42 It is unknown whether there is also concern about costs and risks versus benefits to the patient.

Thyroid protective collar (TPC)

A ‘Collar’ may be the preferred descriptor to the occasionally-used cervical ‘shield’ since it at least implies a high position around the neck as is prescribed.

Despite Block et al.10 advocating the use of a radiopaque TPC, both reported that clinical and LCR illustrations did not provide confirmation that the TPC had been correctly applied around the patient’s neck. Hujoel et al. (2006)43 showed reproductions of
cephalometric radiographic images with the presence of lead shielding but with doubtful presence, or actual absence, of thyroid protection.

Importantly, it must be added that all published orthodontic case reports and research that include LCR images show no sign, and rarely state the use, of a TPC, or the images are cropped, which removes evidence of whether a TPC had been used. One published exception was the report of Choudhary et al.,44 which specifically illustrated the correct use of a TPC.

There is ample evidence from radiation monitoring with a special phantom head of the benefits of a correctly placed TPC in reducing the effective radiation dose (ED), which is the standard measure of ionising radiation absorbed in all tissues and organs from any source.45,46 Considering the changing thyroid location, a TPC should be placed as high as is comfortable around the neck, even adding a second collar posteriorly for maximal thyroid protection. This will not mask essential information that orthodontists may require from LCRs or CBCT. Collars used with antero-posterior cephalometric and panoramic imaging procedures will mask the anterior part of the mandible.47

Concluding comments

All human (and biological) tissues and organs can be adversely affected by ionising radiation.

Age and growth changes are associated with progressive lowering of the superior tips of the lateral thyroid lobes from neck positions above C4, where there is a real radiation risk.

Orthodontists typically use a large field of view (FOV) for lateral cephalometric radiography (and CBCT), and so expose the cervical spine of patients of all ages to ionising radiation. When using a large FOV, there are reported risks of harm to other organs such as the brain, salivary glands, and eyes.29,37

It is rare among most orthodontic publications to mention thyroid gland radiation, let alone the use of a thyroid protective collar.

Even if the risk of thyroid morbidity from diagnostic dental radiography is low, the uncertainty surrounds which of the two to four individuals in every 100,000 of population27 might have adverse cumulative effects that cannot be predicted. In the absence of certainty that parents desire, one must expect the voiced concern that, ‘It might be my child who will be affected.’

Radiographic devices are being continuously modified for delivering reduced effective doses of ionising radiation, but there will always be the risk. It must be noted that presently available devices, particularly CBCT, do not all deliver the same doses for routine use.45,48,49

Orthodontic academicians have been noted to make more use of craniofacial radiography than private specialists.50 Since academicians are equally concerned about radiation risks and ALARA, they must also be prepared to rationalise their use of radiography.

The advent of low dose digital radiography has encouraged dentists (and possibly orthodontists) to use more radiography.51

Orthodontists may encourage false confidence among parents by optimistically promoting the benefits of modern digital radiography: that it offers lower radiation doses than traditional film radiography. Digital radiography still utilises ionising radiation.

Informed consent is always required in order to proceed with diagnostic radiography.

There are reports of morbidity related to other organs following exposure to radiation from head and neck imaging as used in orthodontic practice.5,26,29,35

Practitioners should keep accurate records of all radiographic procedures, including the device settings used, whether the procedure is in-house or provided elsewhere. In the future, this would enable potentially more useful retrospective information about the extent of adverse radiation effects than is presently available.51

There is a need to avoid duplication of radiography for patients referred between clinicians as an additional radiation protection measure, now made possible through ready transfer of digital imaging.

Recently, Engel et al.52 showed that the CVM method failed to satisfactorily predict craniofacial growth through pre-adolescent to adolescent growth of a group of nine-year-old females from the Nijmegan Growth Study commenced in 1967. This study used LCRs and HWRs taken twice a year from age four to fourteen years. These authors recognised that ‘... if this region (C2 to C4) of the cervical spine is to be visualised, no thyroid shield can be worn during radiographic exposition.’ This in itself is sufficient
reason for not using the CVM method. More importantly, it confirmed that thyroid protection is required for all lateral cephalometric radiography.

Corresponding author
Keith Godfrey
Department of Orthodontics
Faculty of Dentistry
Khon Kaen University
Khon Kaen 42000
Thailand

References
1. World Health Organization 2009, Children and radiation, viewed 2016, <http://www.who.int/c我爸/capacity/radiation.pdf>
2. Sinnott B, Ron E, Schneider AB. Exposing the thyroid to radiation: a review of its current extent, risks, and implications. Endocr Rev 2010;31:756-73.
3. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation. Volume 1: Annex A: Medical Radiation Exposures (Report to the General Assembly), Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2010, viewed 2016, <http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_Annex_A.pdf>.
4. SEDENTEXCT. Radiation protection: Cone Beam CT for dental and maxillofacial radiology. Evidence based guidelines, 2011 (v2.0 Final), viewed 2016, <www.sedentexct.eu/files/guidelines_final.pdf>.
5. White SC, Malaya SM. Update on the biological effects of ionizing radiation, relative dose factors and radiation hygiene. Aust Dent J 2012;57 Suppl 1:2-8.
6. International Atomic Energy Agency. Radiation protection in medicine: setting the scene for the next decade. Proceedings of an International Conference 3–7 December 2012. Bonn, Germany, viewed 2016, <www-pub.iaea.org/MTCD/publications/PDF/Pub1663_web.pdf>.
7. American Thyroid Association 2013, Policy statement on thyroid shielding during diagnostic and medical dental radiology, viewed 2016, <http://www.thyroid.org/wp-content/uploads/statements/ABS1223_policy_statement.pdf>.
8. Franklin JB. Radiation hazards in cephalometric roentgenography. Angle Orthod. 1953;23:222-8.
9. Duffy BJ Jr, Fitzgerald PJ. Thyroid cancer in childhood and adolescence; a report on 28 cases. Cancer 1950;3:1018-32.
10. Block AJ, Goepf RA, Mason EW. Thyroid radiation dose during panoramic and cephalometric dental x-ray examinations. Angle Orthod 1977;47:17-24.
11. O’Reilly MT, Yanniello GJ. Mandibular growth changes and maturation of cervical vertebrae—a longitudinal cephalometric study. Angle Orthod 1988;58:179-84.
12. Hassel B, Farman AG. Skeletal maturation evaluation using cervical vertebrae. Am J Orthod Dentofacial Orthop 1995;107:58-66.
13. Franchi L, Baccetti T, McNamara JA Jr. Mandibular growth as related to cervical vertebrae maturation and body height. Am J Orthod Dentofacial Orthop 2000;118:335-40.
14. Baccetti T, Franchi L, McNamara JA Jr. An improved version of the cervical vertebrae maturation (CVM) method for the assessment of mandibular growth. Angle Orthod 2002;72:316-323.
15. Baccetti T, Franchi L, McNamara JA. The cervical vertebrae maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics. Semin Orthod 2005;11:119-29.
16. TeachMeAnatomy.info, Thyroid gland location, viewed 2016, <www.teachmeanatomy.info/neck/viscera/the-thyroid-gland/>.
17. University of Connecticut Health Center, Anatomy of the Thyroid, viewed 2016, <fisweb.uchc.edu/student/selectives/Luzietti/Thyroid_anatomy.htm>.
18. Thyroid Clinic, Thyroid gland anatomy, viewed 2016, <www.thyroid.com.au/thyroid-gland-anatomy/>.
19. The cervical spine and neck inspection palpation, viewed 2016, <www.booksite.eleisevier.com/samplechapters/9780443100017/9780443100017.pdf>.
20. Patcas R, Signorelli L, Peltomäki T, Schärzle M. Is the use of the cervical vertebrae maturation method justified to determine skeletal age? A comparison of radiation dose of two strategies for skeletal age estimation. Eur J Orthod 2013;35:604-9.
21. Kim DW, Jung SL, Baek JH, Kim J, Ryu JH, Na DG et al. The prevalence and features of thyroid pyramidal lobe, accessory thyroid, and ectopic thyroid as assessed by computed tomography: a multicenter study. Thyroid 2013;23:84-91.
22. Ozguner G, Sulak O. Size and location of thyroid gland in the fetal period. Surg Radiol Anat 2014;36:359-67.
23. Australian Government, Cancer Australia 2016. Thyroid cancer statistics, viewed 2016, <https://canceraustralia.gov.au/affected-cancer/cancer-types/thyroid-cancer/thyroid-cancer-statistics>.
24. Kiffoy BA, Zheng T, Holford TR, Han X, Ward MH, Sjödin A et al. International patterns and trends in thyroid cancer incidence, 1973-2002. Cancer Causes Control 2009;20:525-31.
25. Enewold L, Zhu K, Ron E, Marrogi AJ, Stojadinovic A, Peoples GE et al. Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980-2005. Cancer Epidemiol Biomarkers Prev 2009;18:784-91.
26. American Cancer Society 2016. Thyroid cancer. viewed 2016, <www.cancer.org/thyroid-cancer-pfd/>.
27. Memon A, Godward S, Williams D, Siddique I, Al-Saleh K. Dental x-rays and the risk of thyroid cancer: a case-control study. Acta Oncol 2010;49:447-53.
28. Berrington de Gonzalez A, Ekholm A, Glass AG, Galantrier MR, Grømøelius L, Allison MJ et al. Comparison of documented and recalled histories of exposure to diagnostic x-rays in case-control studies of thyroid cancer. Am J Epidemiol 2003;157:652-63.
29. Hujoe P, Hollender L, Bollen AM, Young JD, McGee M, Grosso A. Head-and-neck organ doses from an episode of orthodontic care. Am J Orthod Dentofacial Orthop. 2008:133-210-7.
30. Mislik B, Hänggi MP, Signorelli L, Peltomäki T, Patcas R. Pharyngeal airway dimensions: a cephalometric, growth-study-based analysis of physiological variations in children aged 6-17. Eur J Orthod 2014;36:331-9.
31. Fleming PS, Scott P, Heidari N, Dibiasi AT. Influence of radiographic position of ectopic canines on the duration of orthodontic treatment. Angle Orthod 2009;79:442-6.
32. Counihan K, Al-Awadhi EA, Butler J. Guidelines for the assessment of the impacted maxillary canine. Dent Update 2013;40:770-2, 775-7.
33. Halazonitis DJ. Cone-beam computed tomography is not the imaging technique of choice for comprehensive orthodontic assessment. Am J Orthod Dentofacial Orthop 2012;141:403-405, 407 passim.
34. Friedland B. Medicolegal issues related to cone beam CT. Semin Orthod 2009;15:77-84.
35. Ludlow JB, Davies-Ludlow LE, White SC. Patient risk related to common dental radiographic examinations: the impact of 2007 International Commission on Radiological Protection recommendations regarding dose calculation. J Am Dent Assoc. 2008;139:1237-43.
36. American Academy of Oral and Maxillofacial Radiology. Clinical recommendations regarding use of cone beam computed tomography
in orthodontics. Position statement by the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol 2013;116:238-57.

37. Aitchison KA, Luke LS, White SC. Contribution of pretreatment radiographs to orthodontists’ decision making. Oral Surg Oral Med Oral Pathol 1991;71:238-45.

38. Nijkamp PG, Habets LL, Aartman IH, Zentner A. The influence of cephalometrics on orthodontic treatment planning. Eur J Orthod 2008;30:630-5.

39. Dinçer B, Yetkiner E, Aras I, Attin T, Attin R. Influence of lateral cephalometric radiographs on extraction decision in skeletal class I patients. Head Face Med 2013;9:36.

40. Durão AR, Prayaprat P, Rockenbach MI, Olzsewski R, Ng S, Ferreira AP et al. Validity of 2D lateral cephalometry in orthodontics: a systematic review. Prog Orthod 2013;20:14-31.

41. Durão AR, Algerban A, Ferreira AP, Jacobs R. Influence of lateral cephalometric radiography in orthodontic diagnosis and treatment planning. Angle Orthod 2015;85:206-10.

42. Kuipers-Jagtman AM, Kuipers MAR, Schols JGJH, Maal TJJ, Breuning KH, van Vlijmen OJC. The use of cone-beam computed tomography for orthodontic purposes. Semin Orthod 2013;19:196-203.

43. Hujoel P, Hollender L, Bollen AM, Young JD, Cunha-Cruz J, McGee M et al. Thyroid shields and neck exposures in cephalometric radiography. BMC Med Imaging 2006;6:6.

44. Choudhary AB, Motwani MB, Banode PJ, Chaudhary MB, Degwekar SS, Bhowate RR et al. Utility of lead thyroid collar in cephalometric radiography. Indian J Dent Res 2012;23:698-9.

45. Qu XM, Li G, Sanderink GC, Zhang ZY, Ma XC. Dose reduction of cone beam CT scanning for the entire oral and maxillofacial regions with thyroid collars. Dentomaxillofac Radiol 2012;41:373-8.

46. Goren AD, Prins RD, Dauer LT, Quinn B, Al-Najjar A, Faber RD et al. Effect of leaded glasses and thyroid shielding on cone beam CT radiation dose in an adult female phantom. Dentomaxillofac Radiol 2013;42:20120260.

47. Han GS, Cheng JG, Li G, Ma XC. Shielding effect of thyroid collar for digital panoramic radiography. Dentomaxillofac Radiol 2013;42:20130265.

48. Rottke D, Patzelt S, Posleitner P, Schulze D. Effective dose span of ten different cone beam CT devices. Dentomaxillofac Radiol 2013;42:20120417.

49. Ludlow JB, Timothy R, Walker C, Hunter R, Benavides E, Samuelson DB et al. Effective dose of dental CBCT - a meta analysis of published data and additional data for nine CBCT units. Dentomaxillofac Radiol 2015;44:20140197.

50. Aitchison KA. Radiographic examinations of orthodontic educators and practitioners. J Dent Educ 1986;50:651-5.

51. Berkhourt WE, Sanderink GC, Van der Stelt PF. Does digital radiography increase the number of intraoral radiographs? A questionnaire study of Dutch dental practices. Dentomaxillofac Radiol 2003;32:124-7.

52. Engel TP, Renkema AM, Katsaros C, Pazera P, Pandis N, Fudalej PS. The cervical vertebrae maturation (CVM) method cannot predict craniofacial growth in girls with Class II malocclusion. Eur J Orthod 2015 Feb 8. pii: cju085. (Epub ahead of print)