Turing pattern of a reaction-diffusion predator-prey model with weak Allee effect and delay

Yexuan Li¹, Hua Liu¹,³, Yumei Wei² and Ming Ma¹

¹School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730000, China
²Experimental Teaching Department, Northwest Minzu University, Lanzhou 730000, China
³E-mail: 7783360@qq.com

Abstract. In this paper, we investigate a reaction-diffusion model with gestation delay and weak Allee effect. The conditions of delay-induced instability are obtained after stability analysis. By using numerical simulation, we discuss the effects of gestation delay and weak Allee effect on the Turing pattern. The results show that weak Allee effect and gestation delay can change the pattern formations. This means Allee effect and delay play significant roles in spatial invasion of populations.

1. Introduction

Turing pattern of predator-prey model is an important issue in the field of biomathematics and population dynamics [1,2]. We consider a predator-prey model with hyperbolic mortality established by Zhang et al [3]. The model is as follows:

\[
\begin{align*}
\frac{\partial U}{\partial T} - d_1 \nabla^2 U &= au \left(1 - \frac{u}{k} \right) - \frac{bUV}{c+U}, \\
\frac{\partial V}{\partial T} - d_2 \nabla^2 V &= \frac{mUV}{c+U} - h(V), \\
\frac{\partial U}{\partial n} &= \frac{\partial V}{\partial n} = 0, \\
U(\partial \Omega,0) > 0, V(\partial \Omega,0) > 0, X \in \Omega,
\end{align*}
\]

where U and V represent the population density of prey and predator, a is the birth rate of prey, k is the carrying capacity, c is the prey density at which the predator has the maximum kill rate, b is the maximum uptake rate of the prey, m is the birth rate, and $h(V)$ reflects the predator death rate. ∇^2 is the Laplacian operator n is the outward unit normal vector of the boundary \(\partial \Omega \). d_j are the diffusion coefficients of U and V, respectively, and the third equation is the zero flux boundary condition. After nondimensionalization,

\[
U \rightarrow ku, V \rightarrow \frac{ac}{b} v, \frac{k}{c} \rightarrow \beta, \frac{a}{m} \rightarrow \alpha, T \rightarrow t.
\]
In order to make the model closer to reality, we introduce gestation delay and weak Allee effect [4], as follows:

\[
\begin{align*}
\frac{\partial u}{\partial t} - d_1 \nabla^2 u &= au\left(1-u(t-\tau)\right) - \frac{auv}{u + A}, \quad x \in \Omega, t > 0, \\
\frac{\partial v}{\partial t} - d_2 \nabla^2 v &= \frac{\beta uv}{1 + \beta u} - h(v), \quad x \in \Omega, t > 0, \\
\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} &= 0, \quad x \in \Omega, t > 0, \\
u(x, \theta) = \varphi(x, \theta) \geq 0, v(x, \theta) = \psi(x, \theta) \geq 0, \quad (x, \theta) \in \Omega \times (-\tau, 0),
\end{align*}
\]

where \(\frac{u}{u + A} (A > 0) \) is weak Allee effect. \(h(v) = \frac{\gamma v^2}{e + \eta v} \). For hyperbolic mortality, \(e \) and \(\eta \) are coefficients of light attenuation by water and self-shading in the context of plankton mortality, \(\gamma \) is the death rate of the predator, and \(\tau \) is the gestation delay.

When \(\tau = 0 \), the model is as follows:

\[
\begin{align*}
\frac{\partial u}{\partial t} - d_1 \nabla^2 u &= au(1-u) - \frac{auv}{u + A}, \quad x \in \Omega, t > 0, \\
\frac{\partial v}{\partial t} - d_2 \nabla^2 v &= \frac{\beta uv}{1 + \beta u} - \frac{\gamma v^2}{e + \eta v}, \quad x \in \Omega, t > 0, \\
\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} &= 0, \quad x \in \Omega, t > 0, \\
u(x, \theta) = \varphi(x, \theta) \geq 0, v(x, \theta) = \psi(x, \theta) \geq 0, \quad (x, \theta) \in \Omega \times (-\tau, 0).
\end{align*}
\]

In [5], following results have obtained by Liu et al for model (3).

(A1) The positive equilibrium is \(E_*(u_*, v_*) \), where

\[
u_* = \sqrt{\left(\frac{\beta \gamma - \gamma - \beta}{2 \beta} \right)^2 + \left(\frac{\gamma - \beta A}{\beta \gamma} \right)^2}, \quad v_* = \frac{\beta \gamma - \gamma - \beta}{2 \beta \gamma}.
\]

(A2) The Jacobian matrix of model (3) at \(E_* \) is \(J_{E_*} = \begin{pmatrix} a_{10} & a_{01} \\ b_{01} & b_{01} \end{pmatrix} \), where

\[
\begin{align*}
a_{10} &= -2\alpha u_*^2 - 3\alpha A u_*^2 + au_*^2 + 2\alpha A u_*, \\
a_{01} &= -au_*/(1 + \beta u_*), \\
b_{01} &= \frac{\beta^2 u_*}{\gamma(1 + \beta u_*)^2}, \\
b_{01} &= -\frac{\beta u_*}{(1 + \beta u_*)^2}.
\end{align*}
\]

(A3) \(T = \frac{2\alpha u_*^2 - 3\alpha A u_*^2 + au_*^2 + 2\alpha A u_*}{(u_* + A)^2} - \frac{\alpha \beta u_*}{\gamma(1 + \beta u_*)^2} - \beta u_*/(1 + \beta u_*)^2. \)
\[D = \left\{ \frac{-2\alpha u^2 - 3\alpha Au^2 + \alpha\beta u}{(u + A)^2} - \frac{\alpha\beta u}{(1 + \beta u)^2}, -\beta u + \frac{\alpha\beta^2 u^2}{1 + \beta u,} \right\}. \]

(A4) If \(T > 0 \), the positive equilibrium is unstable. If \(T < 0 \) and \(D > 0 \), the positive equilibrium is locally asymptotically stable.

2. Delay-induced instability
If \(\tau \) is small enough, we have following change [6].

\[u(x, y, t - \tau) = u(x, y, t) - \tau \frac{\partial u}{\partial t}. \]

Next, we substitute this equation into (2), and get the following model

\[
\begin{align*}
\frac{\partial u}{\partial t} - d_1 \nabla^2 u &= \alpha u \left(1 - \left(u(x, y, t - \tau) \frac{\partial u}{\partial t} \right) \right) \frac{u}{u + A} - \frac{\alpha u v}{1 + \beta u}, \quad x \in \Omega, t > 0, \\
\frac{\partial v}{\partial t} - d_2 \nabla^2 v &= \frac{\beta \alpha u v}{1 + \beta u} - \frac{\gamma v^2}{1 + \beta u}, \quad x \in \Omega, t > 0, \\
\frac{\partial u}{\partial n} &= 0, \quad x \in \Omega, t > 0, \\
u(x, \theta) &= \varphi(x, \theta) \geq 0, v(x, \theta) = \psi(x, \theta) \geq 0, \quad (x, \theta) \in \Omega \times (-\tau, 0).
\end{align*}
\]

Expanding Taylor’s series of the above model and neglecting the higher-order nonlinearities, we get

\[
\begin{align*}
\frac{\partial u}{\partial t} - d_1 \nabla^2 u &= \alpha u (1 - u) \frac{u}{u + A} - \frac{\alpha u v}{1 + \beta u} \\
&\quad - \tau f_{u(t-\tau)}(u(t-\tau), v) \frac{\partial u}{\partial t}, \quad x \in \Omega, t > 0, \\
\frac{\partial v}{\partial t} - d_2 \nabla^2 v &= \frac{\beta \alpha u v}{1 + \beta u} - \frac{\gamma v^2}{1 + \beta u}, \quad x \in \Omega, t > 0, \\
\frac{\partial u}{\partial n} &= 0, \quad x \in \Omega, t > 0, \\
u(x, \theta) &= \varphi(x, \theta) \geq 0, v(x, \theta) = \psi(x, \theta) \geq 0, \quad (x, \theta) \in \Omega \times (-\tau, 0),
\end{align*}
\]

where \(f_{u(t-\tau)}(u(t-\tau), v) = \alpha u (1 - u(t-\tau)) \frac{u}{u + A} - \frac{\alpha u v}{1 + \beta u} \).

It is easy to see that if \(f(u, v) = 0 \) and \(g(u, v) = 0 \) are satisfied at \(E_* = (u_*, v_*) \), we can get the model:
\[
\begin{align*}
\frac{\partial u}{\partial t} - d_1 \nabla^2 u &= f_u(u,v)(u-u_\ast) + f_v(u,v)(v-v_\ast), \\
-\tau f_{u(t-\tau)}(u(t-\tau),v)\frac{\partial u}{\partial t}, &\quad x \in \Omega, t > 0, \\
\frac{\partial v}{\partial t} - d_2 \nabla^2 v &= g_u(u,v)(u-u_\ast) + g_v(u,v)(v-v_\ast), \\
&\quad x \in \Omega, t > 0, \\
\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} &= 0, \\
u(x, \theta) = \varphi(x, \theta) \geq 0, v(x, \theta) = \psi(x, \theta) \geq 0, \\
&\quad (x, \theta) \in \Omega \times (-\tau, 0),
\end{align*}
\]

where \(f(u,v) = au(1-u) - \frac{auv}{u + A} \) and \(g(u,v) = \frac{\beta uv}{1 + \beta u} - \frac{\gamma v^2}{1 + \beta u + \eta v} \).

We put a small perturbation into the stable positive equilibrium point \(E_\ast = (u_\ast, v_\ast) \). Let \(u = u_\ast + \bar{u} \) and \(v = v_\ast + \bar{v} \), we get

\[
\begin{align*}
\frac{\partial \bar{u}}{\partial t} - d_1 \nabla^2 \bar{u} &= a_{10}\bar{u} + a_{01}\bar{v} + \tau \frac{au^2}{u + A} \frac{\partial \bar{u}}{\partial t}, &\quad x \in \Omega, t > 0, \\
\frac{\partial \bar{v}}{\partial t} - d_2 \nabla^2 \bar{v} &= b_{10}\bar{u} + b_{01}\bar{v}, &\quad x \in \Omega, t > 0, \\
\frac{\partial \bar{u}}{\partial n} = \frac{\partial \bar{v}}{\partial n} &= 0, &\quad x \in \Omega, t > 0, \\
u(x, \theta) = \varphi(x, \theta) \geq 0, v(x, \theta) = \psi(x, \theta) \geq 0, &\quad (x, \theta) \in \Omega \times (-\tau, 0).
\end{align*}
\]

Assuming that the model has the following solution,

\[
\bar{u}(x,t) = \bar{u}_\ast e^{\tau t} \cos k \cdot x, \quad \bar{v}(x,t) = \bar{v}_\ast e^{\tau t} \cos k \cdot x,
\]

so,

\[
J^\tau_t = \begin{pmatrix}
a_{00} - k^2 d_1 & a_{00} \\
1 - \tau M & 1 - \tau M \\
b_{10} & b_{01} - k^2 d_2
\end{pmatrix},
\]

where

\[
M = \frac{au^2}{u + A}.
\]

It is easy to get

\[
T^\tau_t = \frac{a_{00} - k^2 d_1}{1 - \tau M} + b_{01} - k^2 d_2, \quad D^\tau_t = \frac{(a_{00} - k^2 d_1)(b_{01} - k^2 d_2) - a_{01}b_{00}}{1 - \tau M}.
\]

The model (2) undergoes a Hopf bifurcation at \(T^\tau_t = 0 \) when \(k = 0 \). So the threshold of the bifurcation can be obtained: \(\tau_H = \frac{b_{01} + a_{01}}{b_{01}M} \).
From (A4), we know that if E_* is stable, $a_{10}b_{01} - a_{01}b_{10} > 0$,
\[
D_k^* = \left(\frac{a_{10} - k^2 d_2}{1 - \tau M} \right) (b_{01} - k^2 d_2) - \frac{a_{01}b_{10}}{1 - \tau M} > 0,
\]
so, we need to judge the following inequality
\[
T_k^* = \frac{a_{10} - k^2 d_2}{1 - \tau M} + b_{01} - k^2 d_2 > 0,
\]
when
\[
\tau > \frac{k^2 d_2 + k^2 d_1 - a_{10} - b_{01}}{Mk^2 d_2 - Mb_{01}}, \quad T_k^r = \frac{a_{10} - k^2 d_2}{1 - \tau M} + b_{01} - k^2 d_2 > 0.
\]
The instability condition are as follows:
\[
\begin{align*}
D &= \frac{-2\alpha u_*^3 - 3\alpha A u_*^2 + au_*^2 + 2aAu_*}{(u_* + A)^2} - \frac{\alpha \beta u_*}{\gamma(1 + \beta u_*)^2} - \frac{\beta u_*}{(1 + \beta u_*)^2} < 0, \\
T &= \frac{k^2 d_2 + k^2 d_1 - a_{10} - b_{01}}{Mk^2 d_2 - Mb_{01}}.
\end{align*}
\]

3. Numerical simulations
In this section, we use numerical simulation to study the effect of delay and weak Allee effect on Turing pattern formation.

First, we discuss the case without delay and weak Allee effect. In addition to the weak Allee effect and delay parameters, other parameters are fixed as $d_1 = 0.001$, $d_2 = 0.1$, $\alpha = 0.65$, $\beta = 6$, $\gamma = 0.5$, $e = 1$, $\eta = 0.5$. The pattern is shown in Fig.2. It is made up of spots and stripes. We call it the original pattern.

![Pattern formation](image)

Fig. 1. Pattern formations are spots and stripes for $A=0$ and $\tau = 0$. Time: $t=100$.

Fig. 2. Pattern formations are spots and stripes for $A=0$ and $\tau = 0$. Time: $t=5000$.

Fig. 3. Pattern formations are spots and stripes for $A=0.02$ and $\tau = 0$. Time: $t=100$.

Fig. 4. Pattern formations are spots and shorter stripes for $A=0.02$ and $\tau = 0$. Time: $t=5000$.
Second, we try to increase the weak Allee effect parameter to observe the changes in the pattern. As the weak Allee effect parameter increases, the stripes of the pattern become shorter than original pattern [5].

Liu et al proved that searching delay makes the original pattern become stripes [5]. In this paper, we try to introduce gestation delay, and find that there is no obvious changes than the original pattern.

Fig. 5. Pattern formations are spots and stripes for $A=0.01$ and $\tau = 0.5$. Time: $t=100$.

Finally, we try to consider the combined effect of weak Allee effect and delay. The change of the pattern is shown in Fig.7 and Fig.8. The type of pattern is obviously different from that in original pattern. We get the pattern formations are spots.
Fig. 7. Pattern formations are spots for $A=0.2$ and $\tau = 0.5$. Time: $t=100$.

Fig. 8. Pattern formations are spots for $A=0.2$ and $\tau = 0.5$. Time: $t=5000$.

4. Result and Conclusion
Our numerical simulation are performed for model (2). First, we control Allee effect and delay parameters are zero. Mixture patterns obtained with $A=0$, $\tau = 0$ and call it the original pattern. Next, we increase the value of Allee effect, the results show that Allee effect will reduce the length of the strips. Same method, we increase the value of delay and find that there is no obvious changes than the original pattern. Finally, we consider the weak Allee effect and delay to observe the changes in Turing pattern. Mixture patterns turn into spots patterns. So, this study believes Allee effect and delay play significant roles in spatial invasion of populations.

5. Acknowledgements
This work was supported by the Fundamental research funds for the Central Universities (3192020003 7; 31920200070), the Research Fund for Humanities and social sciences of the Ministry of Education
(20XJAZH006), the Program for Yong Talent of State Ethnic Affairs Commission of China (No. [2014]121), the Gansu Provincial First-class Discipline Program of Northwest Minzu University (No. 11080305) and the First-rate undergraduate major of Northwest Minzu University.

References
[1] Y. Cai, M. Banerjee, Y. Kang and W. Wang 2014 Spatiotemporal complexity in a predator-prey model with Allee effects Mathematical Biosciences And Engineering, 11 (6) 1247-1274
[2] B. Zhang, Y. Cai, B. Wang and W, Wang 2019 Pattern formation in a reaction-diffusion parasite-host model Physica A, 525(2019) 732-740
[3] T. Zhang, Y. Xing, H. Zang and M. Han 2006 Spatio-temporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality Nonlinear Dynamics, 78 (1) 807-829
[4] Y. Ye, H. Liu, Y. Wei, M. Ma and K. Zhang 2019 Dynamic study of a predator-prey model with weak Allee effect and delay,” Advances in Mathematical physics. Article ID 7296461
[5] H. Liu, Y. Ye, Y. Wei, W, Ma, M, Ma and K. Zhang 2019 Pattern formation in a reaction-diffusion predator-prey model with weak Allee effect and delay Complexity. Article ID 6282958
[6] S. Sen, P. Ghosh, S. S. Riaz and D. S. Ray 2009 Time-delay-induced instabilities in reaction-diffusion systems Physical Review E. 80 (4) 046212