A SEARS-TYPE SELF-ADJOINTNESS RESULT FOR DISCRETE MAGNETIC SCHröDINGER OPERATORS

Abstract. In the context of a weighted graph with vertex set V and bounded vertex degree, we give a sufficient condition for the essential self-adjointness of the operator $\Delta_\sigma + W$, where Δ_σ is the magnetic Laplacian and $W: V \to \mathbb{R}$ is a function satisfying $W(x) \geq -q(x)$ for all $x \in V$, with $q: V \to [1, \infty)$. The condition is expressed in terms of completeness of a metric that depends on q and the weights of the graph. The main result is a discrete analogue of the results of I. Oleinik and M. A. Shubin in the setting of non-compact Riemannian manifolds.

1. Introduction and the main result

1.1. The setting. Let $G = (V, E)$ be an infinite graph without loops and multiple edges between vertices. By $V = V(G)$ and $E = E(G)$ we denote the set of vertices and the set of unoriented edges of G respectively. In what follows, the notation $m(x)$ indicates the degree of a vertex x, that is, the number of edges that meet at x. We assume that G has bounded vertex degree: there exists a constant $N > 0$ such that

$$m(x) \leq N, \quad \text{for all } x \in V. \quad (1.1)$$

In what follows, $x \sim y$ indicates that there is an edge that connects x and y. We will also need a set of oriented edges

$$E_0 := \{[x, y], [y, x] : x, y \in V \text{ and } x \sim y\}. \quad (1.2)$$

The notation $e = [x, y]$ indicates an oriented edge e with starting vertex $o(e) = x$ and terminal vertex $t(e) = y$. The definition (1.2) means that every unoriented edge in E is represented by two oriented edges in E_0. Thus, there is a two-to-one map $p: E_0 \to E$. For $e = [x, y] \in E_0$, we denote the corresponding reverse edge by $\hat{e} = [y, x]$. This gives rise to an involution $e \mapsto \hat{e}$ on E_0.

To help us write formulas in unambiguous way, we fix an orientation on each edge by specifying a subset E_s of E_0 such that $E_0 = E_s \cup \hat{E}_s$ (disjoint union), where \hat{E}_s denotes the image of E_s under the involution $e \mapsto \hat{e}$. Thus, we may identify E_s with E by the map p.

In the sequel, we assume that G is connected, that is, for any $x, y \in V$ there exists a path γ joining x and y. Here, γ is a sequence $x_1, x_2, \ldots, x_n \in V$ such that $x = x_1$, $y = x_n$, and $x_j \sim x_{j+1}$ for all $1 \leq j \leq n - 1$.

In what follows, $C(V)$ is the set of complex-valued functions on V, and $C(E_s)$ is the set of functions $Y: E_0 \to \mathbb{C}$ such that $Y(e) = -Y(\hat{e})$. The notations $C_c(V)$ and $C_c(E_s)$ denote the sets of finitely supported elements of $C(V)$ and $C(E_s)$ respectively.

2000 Mathematics Subject Classification. 35J10, 39A12, 47B25.
In the sequel, we assume that V is equipped with a weight $w: V \to \mathbb{R}^+$. By $\ell_2^w(V)$ we denote the space of functions $f \in C(V)$ such that $\|f\| < \infty$, where $\|f\|$ is the norm corresponding to the inner product

$$(f, g) := \sum_{x \in V} w(x)f(x)\overline{g(x)}.$$

(1.3)

Additionally, we assume that E is equipped with a weight $a: E_0 \to \mathbb{R}^+$ such that $a(e) = a(\hat{e})$ for all $e \in E_0$. This makes $G = (G, w, a)$ a weighted graph with weights w and a.

1.2. Magnetic Schrödinger operator. Let $U(1) := \{z \in \mathbb{C}:|z| = 1\}$ and $\sigma: E_0 \to U(1)$ with $\sigma(\hat{e}) = \overline{\sigma(e)}$ for all $e \in E_0$, where $\overline{\sigma}$ denotes the complex conjugate of $z \in \mathbb{C}$.

We define the magnetic Laplacian $\Delta_\sigma: C(V) \to C(V)$ on the graph (G, w, a) by the formula

$$(\Delta_\sigma u)(x) = \frac{1}{w(x)} \sum_{e \in O_x} a(e)(u(x) - \sigma(\hat{e})u(t(e))),$$

(1.4)

where $x \in V$ and

$$O_x := \{e \in E_0: o(e) = x\}.$$

(1.5)

For the case $a \equiv 1$ and $w \equiv 1$, the definition (1.4) is the same as in [9]. For the case $\sigma \equiv 1$, see [30] and [32].

Let $W: V \to \mathbb{R}$, and consider a Schrödinger-type expression

$$Hu := \Delta_\sigma u + Wu.$$

(1.6)

Let $q: V \to [1, \infty)$, and assume that W satisfies

$$W(x) \geq -q(x), \quad \text{for all } x \in V.$$

(1.7)

In the sequel, we will need the notion of weighted distance on G. Let w and a be as in (1.4) and let q be as in (1.7). We define the weighted distance $d_{w,a,q}$ on G as follows:

$$d_{w,a,q}(x, y) := \inf_{\gamma \in \Gamma_{x,y}} L_{w,a,q}(\gamma),$$

(1.8)

where $\Gamma_{x,y}$ is the set of all paths $\gamma: x = x_1, x_2, \ldots, x_n = y$ such that $x_j \sim x_{j+1}$ for all $1 \leq j \leq n - 1$, and the length $L_{w,a,q}(\gamma)$ is computed as follows:

$$L_{w,a,q}(\gamma) = \sum_{j=1}^{n-1} \frac{\min\{w^{1/2}(x_j), w^{1/2}(x_{j+1})\} \cdot \min\{q^{-1/2}(x_j), q^{-1/2}(x_{j+1})\}}{\sqrt{a([x_j,x_{j+1}])}}.$$

In the case $q \equiv 1$, the weighted distance (1.8) was defined in [4].

We say that the metric space $(G, d_{w,a,q})$ is complete if every Cauchy sequence of vertices has a limit in V.

2
1.3. Statement of the main result. We now state the main result.

Theorem 1.4. Assume that \((G, w, a)\) is an infinite, connected, oriented, and weighted graph. Assume that \(G\) has bounded vertex degree. Assume that \(W\) satisfies (1.7) and \(q : V \to [1, \infty)\) satisfies

\[
|q^{-1/2}(t(e)) - q^{-1/2}(o(e))| \leq C \left(\frac{\min\{w(t(e)), w(o(e))\}}{a(e)} \right)^{1/2},
\]

for all \(e \in E_s\), where \(C\) is a constant.

Additionally, assume that \((G, d_{w,a,q})\) is a complete metric space. Then, the operator \(H|_{C_c(V)}\) is essentially self-adjoint in \(\ell^2_w(V)\).

Remark 1.5. The origin of the result presented in Theorem 1.4 can be traced back to the paper [25] by D. B. Sears concerning the essential self-adjointness of \((-\Delta + W)|_{C_c^\infty(\mathbb{R}^n)}\) in \(L^2(\mathbb{R}^n)\). Here, \(\Delta\) is the standard Laplacian on \(\mathbb{R}^n\) and \(-q \leq W \leq L^\infty(\mathbb{R}^n)\), where \(q\) is a radially symmetric function on \(\mathbb{R}^n\) satisfying properties analogous to those of Theorem 1 in the present paper (with “completeness” replaced by the divergence of \(\int_0^\infty q^{-1/2}(r) dr\), where \(r = r(x)\) is the Euclidean distance between \(x \in \mathbb{R}^n\) and \(0 \in \mathbb{R}^n\)). We should mention that the paper [25] followed an idea of E. C. Titchmarsh [31]. More recently, I. Oleinik [23, 24] gave a sufficient condition for the essential self-adjointness of \((\Delta_M + W)|_{C_c^\infty(M)}\) in \(L^2(M)\), where \(\Delta_M\) is the scalar Laplacian on a Riemannian manifold \(M\) and \(-q \leq W \in L^\infty_{\text{loc}}(M)\). Here, \(q\) is a function on \(M\) satisfying properties analogous to those of Theorem 1 in the present paper. Oleinik’s proof was simplified by M. A. Shubin [26], and the result was extended to magnetic Schrödinger operators in [27].

Theorem 1.4 of the present paper is a discrete analogue of the mentioned results of Oleinik and Shubin.

Remark 1.6. Assuming (1.1), the completeness of \((G, d_{w,a,1})\), and

\[
(Hu, u) \geq k\|u\|^2,
\]

for all \(u \in C_c(V)\), (1.10)

where \(k\) is a constant independent of \(u\), the essential self-adjointness of \(H|_{C_c(V)}\) was established in [21] Theorem 1.3. If \(q(x) \equiv c_0\), where \(c_0\) is a constant, then the operator \(H|_{C_c(V)}\), with \(W\) as in (1.7), satisfies (1.10). However, there are operators \(H\) that satisfy the hypotheses of Theorem 1.4 but do not satisfy (1.10), as illustrated by the example below.

Example. Consider \(G = (V, E)\) with \(V = \{1, 2, 3, \ldots\}\) and \(E = \{[n, n+1] : n \in V\}\). Define \(a([n, n+1]) = 1\) and \(w(n) = 1\), for all \(n \in V\). Let \(H\) be as in (1.6) with \(\sigma([n, n+1]) = 1\) and \(W(n) = -n^2\), for all \(n \in V\). It is easy to see that for every \(k \in \mathbb{R}\), there exists a function \(u \in C_c(V)\) such that the inequality (1.10) is not satisfied. Thus, the operator \(H\) is not semi-bounded from below, and we cannot use [21] Theorem 1.3. Turning to hypotheses of Theorem 1.4, note that \(W\) satisfies (1.7) with \(q(n) = n^2\). It is easy to see that \(q^{-1/2} = n^{-1}\) satisfies (1.9) with \(C = 1\). Fix \(K_1 \in V\), and let \(K > K_1\). For \(x_1 = K_1\) and \(x = K\), by (1.8) we have

\[
d_{w,a,q}(x_1, x) = \sum_{n=K_1}^{K-1} \frac{1}{n+1} \to \infty, \quad \text{as } K \to \infty.
\]
Thus, the metric \(d_{w,a,q} \) is complete, and by Theorem 1.4 the operator \(H|_{C_c(V)} \) is essentially self-adjoint in \(L^2_w(V) \).

Remark 1.7. Thanks to assumption (1.10), the proof of [21, Theorem 1.3] reduced to showing that if \(u \in \text{Dom}(H_{\text{max}}) \), with \(H_{\text{max}} \) as in Section 2 below, and \((H + \lambda)u = 0 \) with sufficiently large \(\lambda > 0 \), then \(u = 0 \). To this end, a sequence of cut-off functions was constructed and a “summation by parts” method was used. In the absence of assumption (1.10), the essential self-adjointness can be established by showing that \(H_{\text{max}} \) is symmetric. This requires an approach different from [21]: in the present paper, we consider the sum \(J_s \) that incorporates the metric \(d_{w,a,q} \) (see (3.20) below) and show that \(J_s \to 0 \) as \(s \to +\infty \). A key ingredient in this endeavor, not present in [21], is the estimate (3.2) for \(d_\sigma u \), where \(u \in \text{Dom}(H_{\text{max}}) \). The estimate (3.2) is a discrete analogue of [27, Lemma 4.3].

Remark 1.8. For studies of the operator (1.4) with \(a \equiv 1, \sigma \equiv 1, \) and \(w \equiv m \), see, for instance, [3] and [22]. For general information concerning magnetic Laplacian on graphs, see [20] and [29]. For a proof the discrete analogue of Kato’s inequality, see [9].

For the problem of self-adjoint realization of the operator (1.6) and its special cases \((a \equiv 1, \sigma \equiv 1, w \equiv 1, \) and \(W \equiv 0) \), see, for instance, [4], [5], [11], [12], [15], [17], [18], [32], [33], and [35]. We should mention that the authors of [12] and [17, 18] worked in the setting of discrete sets, a more general context than locally finite graphs. For a study of the essential self-adjointness of discrete Laplace operator on forms, see [19].

The problem of stochastic completeness of graphs is considered in [7], [33], [35], and [36]. In the setting of Dirichlet forms on discrete sets, stochastic completeness is studied in [12], [17, and [18]. For another approach to stochastic completeness on discrete sets, see [13]. For a study of random walks on infinite graphs, see [6], [8], [34], and references therein.

For studies of essential self-adjointness of Schrödinger operators in the context of non-compact Riemannian manifolds, see, for instance, [1], [2], [10], [23], [24], [29], [27], and [28].

2. Preliminaries

In what follows, the deformed differential \(d_\sigma : C(V) \to C(E_s) \) is defined as

\[
(d_\sigma u)(e) := \overline{\sigma(e)u(t(e))} - u(o(e)), \quad \text{for all } u \in C(V),
\]

where \(\sigma \) is as in (1.4).

The deformed co-differential \(\delta_\sigma : C(E_s) \to C(V) \) is defined as

\[
(\delta_\sigma Y)(x) := \frac{1}{w(x)} \sum_{e \in E_s, t(e) = x} \sigma(e)a(e)Y(e) - \frac{1}{w(x)} \sum_{e \in E_s, o(e) = x} a(e)Y(e),
\]

for all \(Y \in C(E_s) \), where \(\sigma, w, \) and \(a \) are as in (1.4).

In the case \(\sigma \equiv 1 \), the definitions (2.1) and (2.2) give us the standard differential \(d \) and standard co-differential \(\delta \), respectively.
Let σ be as in (1.4). For a function $u \in C(V)$, we define $u^\# \in C(E_s)$ by the formula
\[
 u^\#(e) := \frac{\sigma(e)u(t(e)) + u(o(e))}{2}, \quad \text{for all } e \in E_s.
\]
(2.3)

For $\sigma \equiv 1$ in (2.3), we define $u^\sharp := u^\#_1$.

In what follows, for $x \in V$, we define
\[
 S_x := \{e \in E_s : o(e) = x \text{ or } t(e) = x\}. \quad (2.4)
\]

The proofs of the following two lemmas are straightforward computations based on the definitions of d, d_σ, δ and δ_σ. For detailed proofs in the case $\sigma \equiv 1$ see [19, Lemma 3.1].

Lemma 2.1. For all $u \in C(V)$ and all $v \in C(V)$, the following equality holds:
\[
 d_\sigma(uv) = (d_\sigma u)v^\# + u^\# \sigma dv, \quad (2.5)
\]
where d_σ is as in (2.1) with $\sigma(e)$ replaced by $\sigma(e)$, $u^\#_\sigma$ is as in (2.3), and $v^\#$ is as in (2.3) with $\sigma \equiv 1$.

Lemma 2.2. For all $u \in C(V)$ and all $Y \in C(E_s)$, the following equality holds:
\[
 (\delta(u^\# Y))(x) = u(x)(\delta_\sigma Y)(x) - \frac{1}{2w(x)} \sum_{e \in S_x} a(e)Y(e)d_\sigma u(e), \quad (2.6)
\]
where d_σ is as in (2.1) with $\sigma(e)$ replaced by $\sigma(e)$, $u^\#_\sigma$ is as in (2.3), and S_x is as in (2.4).

Lemma 2.3. Assume that $\phi \in C(V)$ is real-valued. Then
\[
 (\phi^\#(e))^2 \leq (\phi^2)^\#(e), \quad \text{for all } e \in E_s. \quad (2.7)
\]

Proof By (2.3) with $\sigma \equiv 1$, for all $e \in E_s$ we have
\[
 (\phi^\#(e))^2 - (\phi^2)^\#(e) = \left(\frac{\phi(t(e)) - \phi(o(e))}{2}\right)^2 \geq 0,
\]
which gives (2.7). \Box

Let $\ell^2_a(E_s)$ denote the space of functions $F \in C(E_s)$ such that $\|F\| < \infty$, where $\|F\|$ is the norm corresponding to the inner product
\[
 (F, G) := \sum_{e \in E_s} a(e)F(e)\overline{G(e)}.
\]

It is easy to check the following equality:
\[
 (d_\sigma u, Y) = (u, \delta_\sigma Y), \quad \text{for all } u \in \ell^2_a(V), Y \in C_c(E_s), \quad (2.8)
\]
where (\cdot, \cdot) on the left-hand side (right-hand side) denotes the inner product in $\ell^2_a(E_s)$ (in $\ell^2_a(V)$).

A computation shows that the following equality holds:
\[
 \delta_\sigma d_\sigma u = \Delta_\sigma u, \quad \text{for all } u \in C(V). \quad (2.9)
\]

For the proofs of (2.8) and (2.9), see, for instance, [21, Section 3]. The following lemma follows easily from (2.9) and (2.8).
Lemma 2.4. The operator $\Delta_\sigma|_{C_c(V)}$ is symmetric in $\ell_w^2(V)$:

$$(\Delta_\sigma u, v) = (u, \Delta_\sigma v), \quad \text{for all } u, v \in C_c(V).$$

We now give the definitions of minimal and maximal operators associated with the expression (1.6). We define the operator H_{min} by the formula

$$H_{\text{min}} u := Hu, \quad \text{Dom}(H_{\text{min}}) := C_c(V).$$

(2.10)

Since W is real-valued, the following lemma follows easily from Lemma 2.4.

Lemma 2.5. The operator H_{min} is symmetric in $\ell_w^2(V)$.

We define $H_{\text{max}} := (H_{\text{min}})^*$, where T^* denotes the adjoint of operator T. We also define $\mathcal{D} := \{u \in \ell_w^2(V) : Hu \in \ell_w^2(V)\}$.

For a proof of the following lemma, see, for instance, [21, Lemma 3.7].

Lemma 2.6. The following hold:

$$\text{Dom}(H_{\text{max}}) = \mathcal{D}$$

and

$$H_{\text{max}} u = Hu \quad \text{for all } u \in \mathcal{D}.$$
\[
\lim_{n \to \infty} \chi_n(x) = 1; \text{ (iv) the functions } \chi_n \text{ have finite support; and (v) the functions } d\chi_n \text{ satisfy the inequality }
\]
\[
|d\chi_n(e)| \leq \frac{d_{w,a,1}(\phi(e), t(e))}{n}.
\]
It is easy to see that the properties (i)–(iii) and (v) hold. By hypothesis, we know that \((G, d_{w,a,q})\) is a complete metric space and, thus, balls with respect to \(d_{w,a,q}\) are finite; see, for instance, [21, Section 6.1]. Let \(B_{2n}^{w,a,q}(x_0)\) be as in (3.4) with \(d_{w,a,1}\) replaced by \(d_{w,a,q}\). Since \(q \geq 1\) it follows that \(B_{2n}^{w,a}(x_0) \subseteq B_{2n}^{w,a,q}(x_0)\). Thus, property (iv) is a consequence of property (ii) and the finiteness of \(B_{2n}^{w,a}(x_0)\).

Proof of Proposition 3.1

Let \(u \in \text{Dom}(H_{\text{max}})\) and let \(\phi \in C_c(V)\) be a real-valued function. Define
\[
I := \left(\sum_{e \in E_s} a(e)|(d_{\sigma}u)(e)|^2(\phi^2)^\sharp(e) \right)^{1/2},
\]
(3.5)

where \(f^\sharp(e)\) is as in (2.3) with \(\sigma \equiv 1\).

We will first show that
\[
I^2 \leq |(\phi^2 Hu, u)| + (\phi^2 qu, u) + 2I \left(\sum_{e \in E_s} a(e)|(d\phi)(e)|^2|E_\sigma^\sharp(e)|^2 \right)^{1/2},
\]
(3.6)

where \(f^\sharp_\sigma(e)\) is as in (2.3), and \(E_\sigma\) is the conjugate of \(z \in \mathbb{C}\).

Using (2.6), the equality \(\Delta_\sigma u = Hu - W u\), and
\[
(d_\sigma(\phi^2)) = (d_\sigma u)(\phi^2)^\sharp(e) + 2(E_\sigma^\sharp(e)\phi^\sharp(e)(d\phi)(e),
\]
we have
\[
\delta \left((\phi^2)^\sharp_\sigma d_\sigma u \right)(x) = \phi^2(x)u(x)(Hu - W u)(x)
\]
\[
- \frac{1}{2w(x)} \sum_{e \in S_x} a(e)|(d_\sigma u)(e)|^2(\phi^2)^\sharp(e)
\]
\[
- \frac{1}{w(x)} \sum_{e \in S_x} a(e)(d_\sigma u)(e)(E_\sigma^\sharp(e)\phi^\sharp(e)(d\phi)(e). \quad (3.7)
\]

Since \(\phi\) has finite support, using the definition of \(\delta\) it follows that
\[
\sum_{x \in V} w(x)\delta \left((\phi^2)^\sharp_\sigma d_\sigma u \right)(x) = 0. \quad (3.8)
\]

Multiplying both sides of (3.7) by \(w(x)\), summing over \(x \in V\), and using (3.8), we get
\[
\frac{1}{2} \sum_{x \in V} \sum_{e \in S_x} a(e)|(d_\sigma u)(e)|^2(\phi^2)^\sharp(e) = (\phi^2 Hu, u) - (\phi^2 W u, u)
\]
\[
- \sum_{x \in V} \sum_{e \in S_x} a(e)(d_\sigma u)(e)(E_\sigma^\sharp(e)\phi^\sharp(e)(d\phi)(e). \quad (3.9)
\]
Rewriting the double sum on the left-hand side of (3.9) as the sum over E_s, taking real parts on both sides of (3.9), and using (1.7), we have
\[
\sum_{e \in E_s} a(e)(d_e u)(e)^2(\phi^2)(e) = \text{Re} \left(\phi^2 H u, u \right) - (\phi^2 W u, u) \\
- \text{Re} \sum_{x \in V} \sum_{e \in S_x} a(e)(d_e u)(e)(\overline{\sigma}(e)\phi^2(e)(d\phi))(e) \\
\leq |(\phi^2 H u, u)| + (\phi^2 W u, u) \\
+ 2 \sum_{e \in E_s} a(e)(d_e u)(e)\left| (\overline{\sigma}(e)\phi^2(e)(d\phi))(e) \right|,
\]
which, after applying Cauchy–Schwarz inequality and (2.7), gives (3.6).

Let χ_n be as in (3.3) and let q be as in (1.7). Define
\[
\phi_n(x) := \chi_n(x)q^{-1/2}(x). \tag{3.10}
\]
By property (iv) of χ_n it follows that ϕ_n has finite support. By property (i) of χ_n and since $q \geq 1$, we have
\[
0 \leq \phi_n(x) \leq q^{-1/2}(x) \leq 1, \quad \text{for all } x \in V. \tag{3.11}
\]
By property (iii) of χ_n we have
\[
\lim_{n \to \infty} \phi_n(x) = q^{-1/2}(x), \quad \text{for all } x \in V. \tag{3.12}
\]
By (2.5), (1.9), properties (i) and (v) of χ_n, the inequality $q \geq 1$, and (1.8), we have
\[
|\left(\overline{\sigma}(e)\phi^2(e)(d\phi)(e)\right)| \leq \left(\frac{1}{n} + C\right) \min\left\{w^{1/2}(o(e)), w^{1/2}(t(e))\right\}, \tag{3.13}
\]
where C is as in (1.9).

We also have
\[
|\left(\overline{\sigma}(e)\phi^2(e)(d\phi)(e)\right)| \leq \frac{|u(o(e))|^2 + |u(t(e))|^2}{2}. \tag{3.14}
\]
By (3.13), (3.14), and (1.1) we get
\[
\left(\sum_{e \in E_s} a(e)(d_e u)(e)^2\left| (\overline{\sigma}(e)\phi^2(e)(d\phi))(e) \right|^2\right)^{1/2} \\
\leq \frac{1}{\sqrt{2}} \left(\frac{1}{n} + C\right) \left(\sum_{e \in E_s} |u(o(e))|^2 w(o(e)) + \sum_{e \in E_s} |u(t(e))|^2 w(t(e))\right)^{1/2} \\
\leq \frac{1}{\sqrt{2}} \left(\frac{1}{n} + C\right) \left(2N\|u\|^2\right)^{1/2} = \left(\frac{1}{n} + C\right) \sqrt{N}\|u\|. \tag{3.15}
\]
By (3.6) with \(\phi = \phi_n \), (3.15), and (3.11), we obtain
\[
I_n^2 \leq \|Hu\|\|u\| + \|u\|^2 + 2I_n \left(\frac{1}{n} + C \right) \sqrt{N} \|u\|,
\] (3.16)
for all \(u \in \text{Dom}(H_{\text{max}}) \), where \(I_n \) is as in (3.5) with \(\phi = \phi_n \).

Using the inequality \(ab \leq a^2 + b^2 \) in the third term on the right-hand side of (3.16) and rearranging, we obtain
\[
I_n^2 \leq 2 \left(\|Hu\|\|u\| + \left(\frac{2}{N} \left(\frac{1}{n} + C \right)^2 + 1 \right) \|u\|^2 \right).
\] (3.17)

Letting \(n \to \infty \) in (3.17) and using (3.12) together with Fatou’s lemma, we get
\[
\sum_{e \in E_s} a(e)\|d_e u(e)\|^2(q^{-1})^2(e) \leq 2 \left(\|Hu\|\|u\| + \left(\frac{2}{NC^2} + 1 \right) \|u\|^2 \right).
\] (3.18)

Since \(\min\{q^{-1}(o(e)), q^{-1}(t(e))\} \leq (q^{-1})^2(e) \), for all \(e \in E_s \), the inequality (3.2) follows directly from (3.18). \(\square \)

In the sequel, we will prove (3.1). Let \(d_{w,a,q} \) be as in (1.8). Fix \(x_0 \in V \) and define
\[
P(x) := d_{w,a,q}(x_0, x), \quad x \in V.
\] (3.19)

In what follows, for a function \(f : V \to \mathbb{R} \) we define \(f^+(x) := \max\{f(x), 0\} \).

Let \(u, v \in \text{Dom}(H_{\text{max}}) \) and let \(s > 0 \). Define
\[
J_s := \sum_{x \in V} \left(1 - \frac{P(x)}{s} \right)^+ \left((Hu)(x)v(x) - u(x)(Hv)(x) \right) w(x),
\] (3.20)
where \(P \) is as in (3.19), \(H \) is as in (1.6), and \(\overline{z} \) denotes the conjugate of \(z \in \mathbb{C} \).

Since \((G, d_{w,a,q}) \) is a complete metric space, by [21 Section 6.1] it follows that the set
\[
U_s := \{ x \in V : P(x) \leq s \}
\] is finite. Thus, for all \(s > 0 \), the summation in (3.20) is performed over finitely many vertices.

Lemma 3.2. Let \(J_s \) be as in (3.20). Then
\[
\lim_{s \to +\infty} J_s = (Hu, v) - (u, Hv).
\] (3.21)

Proof For all \(x \in V \), as \(s \to +\infty \), the summand in (3.20) converges to
\[
((Hu)(x)v(x) - u(x)(Hv)(x))w(x).
\]
Additionally, for all \(x \in V \) and \(s > 0 \), the summand in (3.20) is estimated from above by
\[
|(Hu)(x)||v(x)||w(x)| + |u(x)|||(Hv)(x)||w(x)|.
\]
Since \(u, v \in \text{Dom}(H_{\text{max}}) \), by Lemma 2.6 we have \(Hu \in \ell_w^2(V) \) and \(Hv \in \ell_w^2(V) \). Hence, by Cauchy–Schwarz inequality it follows that

\[
\sum_{x \in V} |(Hu)(x)||v(x)|w(x) < +\infty \quad \text{and} \quad \sum_{x \in V} |u(x)||(Hv)(x)|w(x) < +\infty.
\]

Thus, by dominated convergence theorem we obtain (3.21). \(\square \)

Lemma 3.3. Let \(J_s \) be as in (3.20) and let \(N \) be as in (1.1). Then

\[
|J_s| \leq \frac{\sqrt{N}}{s} \|v\| \left(\sum_{e \in E_s} a(e) \min\{q^{-1}(o(e)), q^{-1}(t(e))\} |(d_\sigma u)(e)|^2 \right)^{1/2} + \frac{\sqrt{N}}{s} \|u\| \left(\sum_{e \in E_s} a(e) \min\{q^{-1}(o(e)), q^{-1}(t(e))\} |(d_\sigma v)(e)|^2 \right)^{1/2}.
\]

(3.22)

Proof Using (1.4), (1.6), and the property \(\sigma(\tilde{e}) = \overline{\sigma(e)} \), and recalling that \(W \) is real-valued, we can rewrite (3.20) as

\[
J_s = \sum_{x \in V} \sum_{e \in E_x} \left(1 - \frac{P(x)}{s} \right)^+ a(e) \left(\sigma(e)u(x)v(t(e)) - \sigma(\tilde{e})u(t(e))v(x) \right). \tag{3.23}
\]

An edge \(e = [x, y] \in E_0 \) occurs twice in (3.23): once as \([x, y]\) and once as \([y, x]\). Since \(a([x, y]) = a([y, x]) \), it follows that the contribution of \(e = [x, y] \) and \(\tilde{e} = [y, x] \) together in (3.23) is

\[
\left(\left(1 - \frac{P(x)}{s} \right)^+ - \left(1 - \frac{P(t(e))}{s} \right)^+ \right) a(e) \left(\sigma(e)u(x)v(t(e)) - \sigma(\tilde{e})u(t(e))v(x) \right). \tag{3.24}
\]

Using (3.24) and the definition of \(d_\sigma \), we can rewrite (3.23) as

\[
J_s = \sum_{e \in E_s} \left(\left(1 - \frac{P(o(e))}{s} \right)^+ - \left(1 - \frac{P(t(e))}{s} \right)^+ \right) a(e) \left((d_\sigma v)(e)|v(o(e))| - (d_\sigma u)(e)|v(o(e))| \right). \tag{3.25}
\]

Using triangle inequality and property

\[
|f^+(x) - g^+(x)| \leq |f(x) - g(x)|,
\]

from (3.25) we obtain

\[
|J_s| \leq \frac{1}{s} \sum_{e \in E_s} a(e) |P(t(e)) - P(o(e))|[|(d_\sigma v)(e)||u(o(e))| + |(d_\sigma u)(e)||v(o(e))|]. \tag{3.26}
\]
By (3.19) and (1.8) we get
\[
|P(t(e)) - P(o(e))| \leq d_{w,a,q}(t(e), o(e)) \\
\leq \frac{w^{1/2}(o(e)) \min\{q^{-1/2}(o(e)), q^{-1/2}(t(e))\}}{a(e)}.
\] (3.27)
Combining (3.26) and (3.27), and using Cauchy–Schwarz inequality together with assumption (1.1), we obtain (3.22).

\[\square\]

Continuation of the proof of Theorem 1.4

Let \(u \in \text{Dom}(H_{\text{max}}) \) and \(v \in \text{Dom}(H_{\text{max}}) \). By Lemma 2.6 it follows that \(H u \in L^2_V(V) \) and \(H v \in L^2_V(V) \). Letting \(s \to +\infty \) in (3.22) and using (3.2), it follows that \(J_s \to 0 \) as \(s \to +\infty \).

This, together with (3.21), shows (3.1).

\[\square\]

References

[1] M. Braverman, On self-adjointness of Schrödinger operator on differential forms, Proc. Amer. Math. Soc. 126 (1998) 617–623.
[2] M. Braverman, O. Milatovic, M. Shubin, Essential self-adjointness of Schrödinger type operators on manifolds, Russian Math. Surveys 57 (4) (2002) 641–692.
[3] F. R. K. Chung, Spectral Graph Theory, Regional Conference Series in Mathematics, vol. 92, American Mathematical Society, Providence, 1997.
[4] Y. Colin de Verdière, N. Torki-Hamza, F. Truc, Essential self-adjointness for combinatorial Schrödinger operators II, Math. Phys. Anal. and Geom. 14 (1) (2011) 21–38.
[5] Y. Colin de Verdière, N. Torki-Hamza, F. Truc, Essential self-adjointness for combinatorial Schrödinger operators III: Magnetic fields, Ann. Fac. Sci. Toulouse Math. (6) 20 (2011) 599–611.
[6] J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc. 284 (1984) 787–794.
[7] J. Dodziuk, Elliptic operators on infinite graphs, In: Analysis, Geometry and Topology of Elliptic Operators, World Sci. Publ., Hackensack, NJ, 2006, pp. 353-368.
[8] J. Dodziuk, L. Karp, Spectral and function theory for combinatorial Laplacians, In: Contemp. Math., vol. 73, Amer. Math. Soc., Providence, 1988, pp. 25–40.
[9] J. Dodziuk, V. Mathai, Kato’s inequality and asymptotic spectral properties for discrete magnetic Laplacians, In: Contemp. Math., vol. 398, Amer. Math. Soc., Providence, 2006, pp. 69–81.
[10] M. Gaffney, A special Stokes’s theorem for complete Riemannian manifolds, Ann. of Math. 60 (1954) 140–145.
[11] S. Golénia, C. Schumacher, The problem of deficiency indices for discrete Schrödinger operators on locally finite graphs, J. Math. Phys. 52 063512 (2011) doi:10.1063/1.3596179.
[12] S. Haeseler, M. Keller, D. Lenz, R. K. Wojciechowski, Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions, J. Spectr. Theory 2 (4) (2012) 397-432
[13] X. Huang, Stochastic incompleteness for graphs and weak Omori-Yau maximum principle, J. Math. Anal. Appl. 379 (2) (2011) 764–782.
[14] P. Jorgensen, Essential self-adjointness of the graph-Laplacian, J. Math. Phys. 49 (7) 073510 (2008) doi:10.1063/1.2953684.
[15] P. Jorgensen, E. Pearse, Spectral reciprocity and matrix representations of unbounded operators, J. Funct. Analysis 261 (3) (2011) 749–776.
[16] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1980.
[17] M. Keller, D. Lenz, Dirichlet forms and stochastic completeness of graphs and subgraphs, J. Reine Angew. Math. 666 (2012) 189–223
[18] M. Keller, D. Lenz, Unbounded Laplacians on graphs: basic spectral properties and the heat equation, Math. Model. Nat. Phenom. 5 (4) (2010) 198–224.
[19] J. Masamune, A Liouville property and its application to the Laplacian of an infinite graph, In: Contemp. Math., vol. 484, Amer. Math. Soc., Providence, 2009, pp. 103–115.
[20] V. Mathai, S. Yates, Approximating spectral invariants of Harper operators on graphs, J. Funct. Analysis 188 (1) (2002) 111–136.
[21] O. Milatovic, Essential self-adjointness of magnetic Schrödinger operators on locally finite graphs, Integr. Equ. Oper. Theory 71 (2011) 13–27.
[22] B. Mohar, B., W. Woess, A survey on spectra of infinite graphs, Bull. Lond. Math. Soc. 21 (3) (1989) 209–234.
[23] I. Oleinik, On the essential self-adjointness of the Schrödinger operator on complete Riemannian manifolds, Math. Notes 54 (1993) 934–939.
[24] I. Oleinik, On a connection between classical and quantum-mechanical completeness of the potential at infinity on a complete Riemannian manifold, Math. Notes 55 (1994) 380–386.
[25] D. B. Sears, Note on the uniqueness of Green’s functions associated with certain differential equations, Canad. J. Math. 2 (1950) 314–325.
[26] M. A. Shubin, Classical and quantum completeness for Schrödinger operators on non-compact manifolds, In: Geometric aspects of partial differential equations (Roskilde, 1998), Contemp. Math., vol. 242, Amer. Math. Soc., Providence, 1999, pp. 257–269.
[27] M. A. Shubin, Essential self-adjointness for magnetic Schrödinger operators on non-compact manifolds, In: Séminaire Équations aux Dérivées Partielles (Polytechnique) (1998-1999), Exp. No. XV, Palaiseau, 1999, pp. XV-1–XV-22.
[28] M. A. Shubin, Essential self-adjointness for semibounded magnetic Schrödinger operators on non-compact manifolds, J. Funct. Analysis 186 (2001) 92–116.
[29] T. Sunada, A discrete analogue of periodic magnetic Schrödinger operators, In: Geometry of the spectrum (Seattle, WA, 1993), Contemp. Math., vol. 173, Amer. Math. Soc., Providence, 1994, pp. 283–299.
[30] P. W. Sy, T. Sunada, Discrete Schrödinger operators on a graph, Nagoya Math J. 125 (1992) 141–150.
[31] E. C. Titchmarsh, On the uniqueness of the Green’s function associated with a second-order differential equation, Canadian J. Math. 1 (1949) 191–198.
[32] N. Torki-Hamza, Laplaciens de graphes infinis I Graphes métriquement complets, Confluentes Math. 2 (3) (2010) 333–350.
[33] A. Weber, Analysis of the physical Laplacian and the heat flow on a locally finite graph, J. Math. Anal. Appl. 370 (1) (2010) 146–158.
[34] W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, Cambridge, 2000.
[35] R. K. Wojciechowski, Stochastic completeness of graphs, Ph.D. Thesis, The Graduate Center of the City University of New York, 2008.
[36] R. K. Wojciechowski, Heat kernel and essential spectrum of infinite graphs, Indiana Univ. Math. J. 58 (3) (2009) 1419–1442.