Wild Animals Used as Food Source in the Region of the Serra do Conduru State Park – PESC, Bahia, Brazil

Joanison Vicente dos Santos Teixeira (joanison1990@gmail.com) University Estadual de Santa Cruz

Jade Silva dos Santos
Universidade Estadual de Santa Cruz

Deyna Hulda Arêas Guanaes
Universidade Estadual de Santa Cruz

Wesley Duarte da Rocha
Universidade Estadual de Santa Cruz

Alexandre Schiavetti
Universidade Estadual de Santa Cruz

Research

Keywords: Atlantic Forest, hunted species, ethnozoology, unting activity

DOI: https://doi.org/10.21203/rs.3.rs-88907/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: The consumption of wild animals through hunting performs an essential role in human eating habits in different tropical areas. However, the frequent and consistent use of hunting is indicated as one of the main causes of extinction and/or population decline in various species. Thus, the present study aimed to identify the wild animals used as food source in five locations in the region of the Serra do Conduru State Park, Bahia, Brazil.

Methods: The field survey was carried out from June 2016 to July 2017 by conducting semi-structured interviews, complemented by informal conversations with 45 hunters (44 men and one woman), who provided information on hunted species, the purpose of hunting, capture techniques, and other aspects of hunting. We characterized the composition of the species used for feeding in the five locations through permutation multivariate analyses of variance. Generalized linear models were built to assess whether the socio-demographic variables of the hunters affect the number of captured species.

Results: A total of 67 species (34 families and 22 orders) of hunting importance were registered in the region, 41 of which are captured for eating. The taxa most represented were: mammals (32), birds (21), reptiles (13) and amphibia (1). *Pecari tajacu, Dasypus novemcinctus,* and *Cuniculus paca* are the most hunted species for food. Hunters who still reside within the conservation unit capture a greater number of wild animals. Older hunters and hunters with a smaller family size hunt more species. The rifle and domestic dogs are the most used techniques in the region.

Conclusion: The results demonstrate that illegal hunting is a practice that still occurs in the region of the Serra do Conduru State Park. This reinforces the need for measures aimed at the conservation of hunted species, especially those found to be under some degree of threat in nature. Future research is necessary to estimate the pressure hunting exerts on the region and to assess its impact on local fauna.

Introduction

Researchers have confirmed the importance of hunting, in various regions around the world, especially in tropical forests [1–7]. Hunted species make up part of the diet of rural populations and urban areas in various tropical regions [8–11] and are among the main sources of animal protein for traditional communities at different locations [12–15]. However, although hunting is responsible for supplementing the diet of various traditional populations [16, 17], the demand for game meat in the tropical region has been putting pressure on wild species, making it difficult to recover their numbers [18–23].

The reasons for the growth in hunting activity in tropical forests are diverse, including increased human population, expansion of the highway network, the use of modern hunting instruments, occupation history, the preference for game meat, availability of game substitutes, socioeconomic conditions, the degree of dependence on hunting as a food source, and cultural conditions [24–27]. However, although hunting is responsible for supplementing the diet of various traditional populations [12, 16], the demand
for game meat in the tropical region has been putting pressure on wild species, making it difficult to recover their numbers [12, 18–20, 22, 23].

Human consumption of hunted animals can lead to the extinction and/or population decline of various species, as well as a reduction in the mean body mass of animal populations as a result of selecting larger animals, diminishing future productivity of hunted populations [22, 28–32]. It should be highlighted that the effects of hunting are intensified by the loss and fragmentation of habitat, which increases the possibility of hunters accessing previously inaccessible areas, besides diminishing the occupation area of the species [33, 34].

Knowing the hunted species, form of capture, eating preferences, reason for capture, and the effectiveness of monitoring by the environmental bodies, are necessary aspects to the understanding of hunting, the form of use, and the degree of threat to wild animal species [12, 18, 30, 35]. Thus, the present study aims to identify the wild animal species used as food source in the region of the Serra do Conduru State Park (PESC), Bahia, Brazil. Furthermore, it also aims to quantify the main techniques used in capture of the species and the possible factors and/or motivations associated with the continuity of hunting in the region.

Methods

Study Area

The Serra do Conduru State Park (14°26'53" S; 39°05'36" O) (Fig. 1) is a Conservation Unit (UC) preserving an area of 9,275 hectares, which covers the municipalities of Ilhéus, Uruçuca, and Itacaré. It was created by State Decree no. 6,227 of 21st February 1997 to counterbalance the building of a highway (BA 001) [36]. It is located within the Costa de Itacaré/Serra Grande Environmental Protection Area (APA) [36, 37]. Both APAs include among their objectives the conservation of the remnants of Atlantic Forest and of the biodiversity of South Bahia [36, 37]. The illegal access to the PESC was indicated by the administration as a serious problem [38].

The present study was carried out in five communities surrounding the PESC: District of Serra Grande (SG), District of Taboquinhas (DT), Nova Vida Settlement (NV), Camboinha Settlement (CS) (situated within the Costa de Itacaré/Serra Grande APA and in the region of the PESC) and Community of Tesouras (CT) (on the borders of the PESC) (Fig. 1).

Location of the study area and the communities in which the fieldwork study was carried out with the hunters: Camboinha Settlement (CS), Community of Tesouras (CT), Nova Vida Settlement (NV), District of Serra Grande (SG) and District of Taboquinhas (DT).

The SG (14°27'53"S 39°02'24"W) is a district of the municipality of Uruçuca, located in the south of Bahia. It has an estimated population of 3,585 inhabitants, 74% living in the urban area and 26% in the rural area [39]. The DT (14°21'24"S 39°10'30"W) is located 28 km from the Itacaré municipality. Prior to
tourism, its economy was based on the cultivation of cocoa, but with the decline of the crop and the advance of tourism the district began placing more value on its natural resources [39, 40]. The AC (14°21′35″S 39°02′12″W), located between the districts of Serra Grande and Itacaré, is made up of small rural producers dedicated to agriculture and local handicrafts (Ynamata Institute, 2008, Sema 2005) [40]. The NV (14°29′45″S 39°12′14″W) it is composed of 44 families of small farmers who were expropriated during the implementation of the PESC [41]. The CT (14°23′41″S 39°05′21″W) is composed of 8 families who, due to slow landholding regularization, still reside within the PESC [39, 41].

Data Collection

Data collection was carried out between June 2016 and July 2017. Only farmers that had also performed hunting activities in the region for at least two years, or that had already hunted for a minimum period of two years during their lives, participated in the study. The participants were interviewed only once. The hunters were selected using the criteria of “native specialists”, who are those who recognize themselves as, and are recognized by the community as, culturally competent [42], and through the snowball technique [43]. These two techniques made it possible to interview all the hunters identified in the region. Sampling was intentional and not random, whereby the interviewees were pre-defined [44].

The information was obtained through open, semi-structured interviews, complemented by informal conversations [43]. The free-listing technique was used to register the names of the species hunted for food, from which comes the principle that the more culturally important elements appear on many of the lists in order of cultural importance [45]. To overcome the limitations of free listing, nonspecific prompting and reading back were used [45]. To respect the rights of intellectual property, the following protocol were adopted in the field: we introduced ourselves before the interview, explaining the nature and objectives of the study; and we then asked for permission to record the information. Before being interviewed, each participant received a Consent Form (TCLE) and a form authorizing the use of images, according to the rules established by Resolution no. 196 of the National Health Council of 10/1996 and approved by the Ethics Committee for Research with Human Beings (CEP) of the State University of Santa Cruz (UESC) (Caae 61683516.2.0000.5526).

Data Analysis

The results were qualitatively analyzed according to the union model of diverse individual competencies, according to which, all the information referring to the researched subject is considered [46]. Species accumulation curves were constructed to verify whether the number of interviews was significant in relation to species of hunting importance that can be found in the study area. The number of species hunted was plotted as a function of the number of respondents, with 10,000 randomizations performed to generate a confidence interval [47].

Using a permutation multivariate analyses of variance (PERMANOVA) [48], we characterize the composition of the species used for food cited at the five locations. We used Jaccard distance measures,
and 5000 permutations were generated. PERMANOVA is a permutation Understanding Analysis of Variance (ANOVA), which was developed to test the simultaneous response of one or more variables to one or more factors. PERMANOVA uses the "Adonis" procedure in the vegan package for R [49]. We also used non-metric multidimensional scaling (NMDS) to represent the results of the PERMANOVA analyses. In the NMDS, we also used the Jaccard for the ordination of wild animal species composition used as a food source at the five locations.

Generalized linear models (GLMs) were built to assess whether the socio-demographic variables of the hunters affect the number of captured species. The number of captured species were used as the response variable, and age of the hunters and socio-demographic were used as the explanatory variables. The models were subjected to an analysis of residuals to test the adequacy of the error distribution [50]. The minimum adequate model (MAM) was obtained by extracting non-significant terms (p < 0.05) from the full model; when significant differences were observed between habitats, the data were submitted to contrast analysis by aggregating levels [50]. If the level of aggregation was not significant and did not alter the deviance explained by the null model, the levels were pooled together (contrast analyses). All statistical analyses were conducted with R software [51].

Results

Socio-Demographic Parameters of the Hunters

A total of 45 hunters (44 men and one woman) from the five locations in the study area were interviewed. The number of interviewees in each location was: NV – 14; AC – 10; CT – 8; SG – 8; and DT – 5. Most of the interviewees were aged between 58 and 67, followed by 38 to 47, and 68 to 77. Most of the hunters are native to the region or have resided at their locations for approximately 15 years. Regarding education, most of the interviewees have only completed the first period of basic education (1st to 4th grade), followed by those that admitted to never having studied. In terms of occupational activity, most are farmers and extractivists, and considering number of children most have three children or more than seven children. In relation to family size, most live alone or with another person (Table 1).
Table 1
Socio-demographic parameters of the forty-five hunters interviewed in the region of the Serra do Conduru State Park, Bahia, Brazil.

Socio-demographic parameters	(n°)	(%)
Gender		
Male	44	97.8
Female	1	2.2
Origin		
Born in the locality	19	42.2
Born in another locality	26	57.8
Age		
18–27	3	6.7
28–37	6	13.3
38–47	9	20
48–57	5	11.1
58–67	11	24.4
68–77	8	17.8
78–87	2	4.5
88–97	1	2.2
Number of children		
0	5	111
1	5	111
2	5	111
3	12	26.7
4	5	11.1
5	1	2.2
6	4	8.9
7 or more	8	17.8
Education level		
Illiterate	17	37.8
Elementary school I	19	42.2
Elementary school II	7	15.6
Incomplete high school	1	2.2
Complete high school	1	2.2

Data recorded between June 2016 and July 2017.
Socio-demographic parameters

Family size	(n*)	(%)
1	10	22.2
2	9	20
3	7	15.6
4	5	11.1
5	5	11.1
6	8	17.8
7 or more	1	2.2

Time living in the region	(n*)	(%)
Up to 15 years	15	33.3
16–30 years	11	24.4
31–45 years	8	17.8
46–60 years	4	8.9
61–75 years	5	11.1
76–90 years	2	4.5

Profession	(n*)	(%)
Farmer	27	60
Extractvist	10	22.2
Bricklayer	1	2.2
Gardener	1	2.2
Farm manager	2	4.5
Teacher	1	2.2
Hotel receptionist	1	2.2
Public agente	1	2.2
Merchant	1	2.2

Data recorded between June 2016 and July 2017.

A total of 67 species (34 families and 22 orders) of hunting importance were registered in the region of the PESC, 41 of which were captured for consumption. The species accumulation curves demonstrates complete stabilization (Fig. 2), reaching the asymptote in approximately five interviews, indicating sampling efficiency in data collection. Besides the use of hunting for food (subsistence), there were reports of hunting for medicinal, religious-magical purposes, control hunting (or retaliation) and evidence of animal trade.
Species accumulation curve for the number of species hunted based on the number of respondents in the region of the Serra do Conduru State Park, Bahia, Brazil. The shaded area represents the confidence intervals of 95% based on 10,000 randomizations.

Mammalia were the most representative taxon in relation to the number of species, followed by Birds, Reptilia and Amphibia. Eight orders of mammals were cited; Carnivora, Rodentia and Xenarthra had the highest numbers of species. Ten orders were identified for Birds; Psittacines were the most cited, followed by Craciformes and Tinamiformes. Reptiles were represented by three orders, Squamata being the taxon with most species. Only one species (*Leptodactylus* [Anura order]) was identified for the amphibians (Table 2).

Among the mammals, the lowland paca, *Cuniculus paca*, is the most captured species for food, followed by the collared peccary, *Pecari tajacu*, and the long-nosed armadillo, *Dasypus novemcinctus*. Among the birds, the little tinamou, *Crypturellus soui*, the solitary tinamou, *Tinamus solitarius*, and the rusty-margined guan, *Penelope superciliaris*, had the highest number of citations (Table 2). The tegus, *Salvator merianae*, and the pit viper, *Lachesis muta*, were the only species of reptile used for food. Among the amphibians, the frog, *Leptodactylus sp.*, was the only species used for food.

The five locations were dissimilar (Permanova $r^2 = 0.18$, $p = 0.04$) in relation to species composition captured for food (Fig. 3). Ten species were cited exclusively at one location; three species were cited at two of the five locations; 11 were shared by three of the communities; five used for food were common to four of the communities; and 12 species, such as the lowland paca and the long-nosed armadillo were of common use in the diet at five locations.

Non-metric multidimensional scaling (NMDS) analyses showing the dissimilar of the composition of wild animal species used as a food source at the five locations studied in the region of the Serra do Conduru State Park, Bahia, Brasil. Each symbol represents a different location. Camboinha Settlement (CS), Communitie Tesouras (CT), Nova Vida Settlement (NV), District of Serra Grande (SG), and District of Taboquinhas (DT). A significant difference in species composition captured for food ($p < 0.05$) among the five locations was observed in the PERMANOVA analyse. Data recorded between June/16 and June/17.

Some socio-demographic parameters are related to the number of species captured for food (Table 2). The age of hunters has a positive effect on the number of species hunted ($p = 0.02$, Table 2, Fig. 4), hunters of higher age range captured a greater number of species. However, the size of the family has a negative effect ($p = 0.01$, Table 3, Fig. 5), larger families capture fewer species. The average number of species hunted did not differ between locations (Deviance $4,40 = 71.53$, $p > 0.05$), but was significantly higher in CT (Deviance $1,43 = 56.43$, $p = 0.01$, Fig. 6). All 41 species used as a food resource were cited by CT hunters, while 29, 23, 21 and 20 species are, respectively, food sources for SG, NV, DT and AC hunters. The other socio-demographic parameters analyzed did not affect the number of species used for food ($p > 0.05$, Table 3).
Table 3
Results of deviance of the minimal adequate model showing the effects of explanatory variables (socio-demographic parameters) on the number of species hunted (response variable). The error distribution used in the model was Quasi-Poisson. * represents statistical difference (p < 0.05).

Response variable	Explanatory variables	df	Deviance/ F	P
Number of species hunted	Locality	4	71.530	0.03*
	Age	1	41.239	0.02*
	Gender	1	15.335	0.10
	Education level	4	36.585	0.20
	Profession	7	63.327	0.17
	Number of children	1	3.185	0.45
	Origin	1	4.220	0.38
	Time living in the region	1	2.461	0.50
	Family size	1	46.480	0.01*

Effect of hunters’ ages on the number of species hunted for food in the region of the Serra do Conduru State Park, Bahia, Brazil. The error distribution used in the model was Quasi-Poisson.

Effect of family size on the number of species hunted for food in the region of the Serra do Conduru State Park, Bahia, Brazil. The error distribution used in the model was Quasi-Poisson.

The average of species hunted for food observed for the five localities (CS - Camboinha Settlement, NV - Nova Vida Settlement, CT - Communitie Tesouras, SG - District of Serra Grande and DT - District of Taboquinhas) in the region of the Serra do Conduru State Park, Bahia, Brazil. The vertical bars correspond to the standard error (± se). Different letters above the columns represent statistically different means (p < 0.05).

The hunters mentioned four hunting strategies: hunting with a rifle; hunting with a dog; hunting with a trap; and hunting with bait. CT was the only location where 100% of the hunters used the four hunting strategies. Hunting with a rifle, the most common technique in the region, is used by 78% of the hunters; followed by hunting with a dog, traps, and bait, used by 60%, 47%, and 25% of the interviewees respectively. Mostly, the hunters use a combination of two or more hunting techniques such as hunting with a rifle accompanied by dogs.

According to the International Union for Conservation of Nature (IUCN), six species (four mammals and two species of bird) cited in this study are threatened of extinction. The otter, *Lontra longicaudis*, the maned sloth, *Bradypus torquatus*, and the coastal black-handed titi, *Callicebus melanochir*, are listed as vulnerable species; the solitary tinamou, *Tinamus solitarius*, and the capuchin monkey, *Sapajus*
xanthosternos, are categorized as endangered and the red-billed curassow, *Crax blumenbachii*, is listed as critically endangered. The red bracket deer, *Mazama Americana*, is a species listed as data deficient (DD).

Discussion

The fact that only one woman identifies as a hunter demonstrates that although the activity is not restricted to males in the region, it is traditionally practiced by men in the studied locations. Ribeiro and Schiavetti also recorded the presence of female hunters when researching the knowledge, beliefs, and use of mastofauna by residents of the PESC region [41]. Pereira and Schiavetti identified indigenous women practicing hunting to feed their families in the district of Olivença, Ilhéus, Bahia, Brazil (70 kilometers south of the studied area) [52]. Santos and other researchers also recorded female hunters in the municipality of Taperoá, in the state of Paraíba, Northeast Brazil [53].

The age range of the interviewees indicates that hunting is practiced by people of advanced age, which may be associated with local culture, where older people are hunters. The fact that the interviewed public conduct an activity aimed at the rural environment, such as farmers and extractivists, majority of the study participants, indicates that the practice of hunting is more common among people that are directly connected to the countryside. A similar pattern related to the low levels of education and profession was identified by Ribeiro and Schiavetti upon describing knowledge, beliefs, and use of mastofauna resources by residents of the PESC [41]. Castilho and collaborators found that rural residents in protected areas in the south of Bahia with low-level education present attitudes and motivations related to hunting for human consumption, besides identifying a relationship between primary-level education and hunting prevalence [8].

Hunted species play an important role in the supply of protein to local families. Other researchers in Brazil have also indicated this importance [16, 55, 54, 55]. The preference for mammals follows a similar pattern to diverse studies carried out in various neo-tropical biomes [4, 6, 9, 18, 56], in the state of Bahia [57, 58] and South Bahia [8, 41, 52].

Care should be taken regarding other purposes that the wild species perform in the region. These include the use of fauna in traditional medicine; control hunting and commercial hunting. Such purposes are characterized as other anthropogenic disturbances that act synergistically with the use of fauna for food. In the Atlantic Forest region of South Bahia, Pereira and Schiavetti described the use of 14 species as medicinal resources by indigenous hunters of Tupinambá in the district of Olivença (Ilhéus, Bahia, Brazil) [52]. In the PESC, Teixeira and collaborators reported the use of 23 species of wild animals in traditional medicine [15]. Regarding control hunting, Santos and others identified 45 species of wild animal involved in conflicting relationships with farmers in the Costa de Itacaré/Serra Grande Environmental Protection Area (Bahia, Brazil) [59]. No studies have been found in the region addressing commercial hunting, making such studies on the theme a necessity for the region. The multiple uses of wild animals, including medicinal and dietary, should be appropriately evaluated to understand the pressure the target species are placed under [60].
The higher consumption of mammals by hunters in the PESC region may be related to the greater supply of meat that these species provide. Mammals are historically the animals most affected by hunting, due to their medium size and abundant population [35, 61]. Mammals have greater body size and supply more meat for food [52]. However, despite the dietary significance of hunting for the rural population, the overexploitation of these species leads to serious consequences for the ecosystem [19, 20]. In tropical forests, the abundance of wildlife is directly correlated with hunting patterns more than with other factors such as type of forest, habitat size, or protected area status [21, 62]. Cassano and other researchers did not find any traces of lowland pacas, white-lipped peccaries or deer (Mazama sp.) in photographic traps in a study carried out in the cocoa region of South Bahia and suggested that hunting may have made these species uncommon in the region [63].

As well as the concern regarding species directly affected by hunting, studies on the consequences of defaunation indicate that the ecology of forests used for hunting is severely disturbed [64]. The structure and dynamic of tropical forests are compromised due to the scarcity or extinction of herbivores, carnivores, and frugivores [65, 66]. The effects are related to the predation and dispersion of seeds, herbivory, and increased seedling density and imbalances in the food chain of the ecosystems, such as increased density of small mammals due to a lack of predators and competitors [6, 63, 67–69].

The consumption of wild animals can also transmit infectious diseases to humans [70, 71]. It is estimated that 75% of infectious diseases are connected to animals [62, 71, 72]. Various wild animal organs and tissues are infected by Salmonella, which can cause chronic diarrhea and endotoxic shock [60]. Armadillo species of the Dasypus genre are a natural reservoir of zoonoses, such as trichinosis, coccidioidomycosis, Chagas disease, and typhoid fever, which can also affect human beings who consume these species [73]. The bacteria, Mycobacterium leprae, which causes leprosy (Hansen's disease), can be transmitted from armadillos to humans through the consumption of their meat [74]. Costa and collaborators detailed a fatal case of an armadillo hunter infected with the pulmonary disease, coccidioidomycosis, in the state of Ceará, North-East Brazil [75]. Eulálio and others discovered that three in every 26 armadillos (D. novemcinctus) captured in the state of Piauí, Brazil, were infected with Coccidioides immitis [76].

Regarding food preference, the lowland paca, the long-nosed armadillo, and the collared peccary are the most used species in local consumption. Other studies carried out in Bahia [77], in South Bahia [8, 52], and in Brazil also indicate the lowland pace and armadillo species as the most consumed species and the most appreciated meats [19, 20]. Historical studies indicate that the lowland paca has suffered from hunting since the olden days [78, 79–81], hunted in various regions of Brazil [5, 82, 83] and indicated as the vertebrate species the most preferred mammal for hunting within the national territory [19, 84].

The long-nosed armadillo, Dasypus novemcinctus, is valued in the region for its flavor and its ease of capture in comparison to other prey. Slaughter of the Dasypus gente has been recorded in various places in Brazil [52, 85, 86]. According to the hunters, the collared peccary, Pecari tajacu, is found throughout the region, making it easy to capture. The collared peccary has a gregarious habitat, also making it easier to
capture and even kill more than one at a time [87]. For Freitas and others, *Pecari tajacu* is widely pursued for eating as it has a high biomass, guaranteeing greater food resources, besides having a large percentage of body fat, a characteristic appreciated by the hunters [82]. In the same study region, Santos and collaborators identified the collared peccary as the most killed species as a result of the invasion, consumption, and/or destruction of agricultural crops, which is characterized by further motivation to slaughter the collared peccary [59].

The tegu, *Salvator merianae*, identified as the lizard of greatest dietary importance in the region of the PESC, was also considered by Alves and others as the reptile of greatest hunting importance in a study carried out in two municipalities in Paraíba, Brazil [57]. Teixeira and other researchers indicated the tegus as the reptile most used for zootherapy in the region of the PESC [15]. Fitzgerald states that lizards of this genus are also commonly hunted in Argentina, Paraguay, and parts of Bolivia [88].

The number of species captured at the five locations may be related to the frequency of occurrence and the abundance of species in each location. The hunting pattern of vertebrates for food can be influenced by availability and abundance of species in the region [18, 89]. Communitie Tesouras is within an integral protection CU, where the forest fragments are preserved to a greater degree and there is possibly a greater abundance and occurrence of species within its limits, which makes it possible for the hunters to have more hunting options. All the hunters from CT are extractivists who depend on natural resources to guarantee their survival and, possibly, invest more time in hunting activities as a way of acquiring a source of protein. It is worth highlighting that as an integral CU, hunting or any direct use of the natural resources is prohibited in the PESC (SNUC - LAW 9.985/2000)[90].

Hunting strategies are fundamental to obtaining greater success in the search and killing of prey, and, consequently, reduce the expenditure of energy in the performance of hunts [91, 92]. The traditional customs and the hunter’s experience with capture methods affects the choice of hunting technique [91]. The variety of hunting strategies reflects the necessity to access the abundance of hunted animals living in different habitats [18, 30, 93]. This diversity and choice of hunting strategy was also observed in the studied area. The hunters argue as to the greatest success in diversity and abundance of captured species when using different hunting techniques; for example, the use of a rifle with a dog, or the use of traps in areas when carrying out an active hunt with the support of a rifle and a domestic dog.

The inclusion of hunted species on lists of endangered species represents a challenge to find forms of exploitation that minimize the impact on hunted species, and for this it is necessary to understand the context involving hunting practices [56, 57, 94]. The fact that endangered species are used as food source by hunters in the PESC region alerts us to the necessity for research that seeks to understand the degree of threat that these species are subjected to and the need for conservation strategies to minimize and revert such threats. Thus, it is necessary to understand the multidimensional context of hunting in the region, considering cultural and socioeconomic aspects, so that there is a reduction in pressure from hunting [12]. However, contest that this reduction is not viable in many areas due to the socio-economic problems and the strong influence of cultural factors [28, 30].
Conclusions

Our results demonstrate that illegal hunting is a practice that still occurs in the region of the Serra do Conduru State Park. A significant proportion of wild species from the Atlantic Forest, especially mammals, is exploited as a protein source, which, according to the hunters, is the main reason for hunting in the region. However, it should be highlighted that the slaughter of wild animals is not limited exclusively to the need for subsistence, since records confirm the use of fauna for medicinal purposes, religious-magical purposes, control hunting, and illegal commerce.

The need for measures aimed at conservation of hunted species is reinforced, especially for those found under some degree of threat. As a strategic management plan involving the local population, particularly the hunters, creation of broad education programs for the dissemination of information on conservation of endangered species and the rules and legislation regulating hunting activity is recommended. Within conservation measures, it is necessary to consider the dietary importance of hunting for local families.

The effects of hunting on the wild fauna are not easy to measure; further research is needed to estimate the pressure of hunting on the region and assess the impact of the activity on the local fauna. Moreover, studies aimed at the illegal trade of wild animals are also recommended, since local species are targets of buying and selling in the region. Furthermore, the environmental organs responsible for the conservation of protected areas should guarantee efficient monitoring, since hunting has been shown to be present in the studied areas.

Abbreviations

ANOVA: Understanding Analysis of Variance; APA:Environmental Protection Area; CEP:Ethics Committee for Research with Human Beings; CR:Critically Endangered; CS:Camboinha Settlement; CT:Community of Tesouras; DD:Data Deficient; DT:District of Taboquinhas; EN:Endangered; GLM:Generalized Linear Models; MMA:Ministry for the Environment; IUCN:International Union for Conservation of Nature; LC:Least Concern; NE:Not Evaluated; NMDS:Non-Metric Multidimensional Scaling; NT:Near Threatened; NV:Nova Vida Settlement; PERMANOVA:Permutation Multivariate Analyses of Variance; PESC:Serra do Conduru State Park; UC:Conservation Unit; SEMA:Environment Secretary; SG:District of Serra Grande; TCLE:Consent Form; UESC:State University of Santa Cruz; VU:Vulnerable.

Declarations

Ethics approval and consent to participate

This work follow the Resolution no. 196 of the National Health Council of 10/1996 and approved by the Ethics Committee for Research with Human Beings (CEP) of the State University of Santa Cruz (UESC) (Caee 61683516.2.0000.5526).

Consent for publication
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

Please contact author for data requests.

Funding

Not applicable, no external financing.

Authors’ contributions

JVST – Data collect and writing of the manuscript. JSS and DHAG – Data collect. Joanna Sosnowska and Henrik. WDR – Data analysis. AS - Final revision of the manuscript. The authors read and approved the final.

Acknowledgements

We would like to thank the hunters from the five locations in the Serra do Conduru State Park for their trust and contributions during the research; the Post-Graduate Program in Zoology (PPGZOO) of the State University of Santa Cruz (UESC); the Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) - Finance Code 001, for the concession of a grant; CNPq for the productivity grant of the latter author; and the Iuri Dias, for map elaboration.

References

1. Bodmer RE, et al. Game animals, palms and people of the flooded forests: management considerations for the Pacaya - Samiria National Reserve, Peru, Advances in Economic Botany; 1996.
2. Cullen L Jr, Bodmer ER, Valladares-Padua C. Ecological consequences of hunting in Atlantic Forest patches, São Paulo, Brazil. Oryx. 2001;35:137144.
3. Ojasti J. Wildlife utilization in Latin America: current situation and prospects for sustainable management. Rome: Food and Agriculture Organization of the United Nations; 1997.
4. Ojasti J, Dallmeier F. Manejo de Fauna Silvestre Neotropical. 1 ed. Washington D.C: Smithsonian Institution/MAB Biodiversity Program; 2000.
5. Peres CA, Nascimento H. Impact of game hunting by the Kayapo of south-eastern Amazonia, Implications for wildlife conservation in tropical forest indigenous reserves. Biodivers Conserv. 2006;15:2627–53.
6. Robinson JG, Redford KH, editors. Neotropical Wildlife Use and Conservation. Chicago: University of Chicago Press; 1991. pp. 6–24.
7. Silvius KM. Spatio-temporal patterns of palm endocarp use by three Amazonian forest mammals: granivory or “grubivory”? Journal of Tropical Ecology, Cambridge; 2002. v.18, p. 707–723.

8. Castilho LC, et al. Attitudes and Behaviors of Rural Residents Toward Different Motivations for Hunting and Deforestation in Protected Areas of the Northeastern Atlantic Forest, Brazil. Tropical Conservation Science; 2018. Volume 11: 1–14.

9. Mesquita GP, Barreto LN. Evaluation of mammals hunting in indigenous and rural localities in Eastern Brazilian Amazon. Ethnobiology and Conservation; 2015. 4:114.

10. Van Vliet N, et al. Os volumes descobertos de carne de caça comercializados no trifrontier da Amazônia entre Colômbia, Peru e Brasil. Etnobiologia e Conservação; 2014. 3 (7): 1–11.

11. Van Vliet N, et al. Carne de animais selvagens e saúde humana: Avaliar a evidência em florestas tropicais e sub-tropicais. Ethnobiology and Conservação; 2017. 6: 1–45.

12. Alves RRN, et al. Game mammals of the Caatinga biome. Ethnobiology Conservation. 2016;5:5.

13. Bodmer RE, Robinson JG. Análise da sustentabilidade de caça em florestas tropicais no Peru – Estudo de caso. In: Cullen Jr L, Rudran R. Valladares-Padua. Métodos de estudos em biologia da conservação e manejo da vida Silvestre. Paraná: Editora UFPR; 2004. 665 p.

14. Miranda CL, Alencar GDS. Aspectos da atividade de caça no Parque Nacional Serra da Capivara, estado do Piauí. Brasil Natureza Conservação. 2007;5(1):27–34.

15. Teixeira JVS, et al. Uses of wild vertebrates in traditional medicine by farmers in the region surrounding the Serra do Conduru State Park (Bahia, Brazil). Biota Neotrop. 2020;20(1):e20190793.

16. Pezzuti JCB. Manejo de caça e a conservação da fauna silvestre com participação comunitária. Papers do NAEA (UFPA); 2009. v. 01, p. 01.

17. Silva-Neto, et al. Diagnostic Cytochrome b gene profiles for the identification of paca (Cuniculus paca) bushmeat: implications for the monitoring of illegal hunting and wildlife trade. Brazilian Journal of Biology. 2016;76:5558.

18. Alves RRN, et al. Commercialization of animal-derived remedies as complementary medicine in the semi-arid region of Northeastern Brazil. J Ethnopharmacol. 2009;124:600–8.

19. Fernandes-Ferreira H, Alves RRN. Legislação e mídia envolvendo a caça de animais silvestres no Brasil, uma perspectiva histórica e socioambiental. Revista Gaia Scientia; 2014. 8(1).

20. Fernandes-Ferreira H, Alves RRN. The researches on the hunting in Brazil: a brief overview. Ethnobiology and Conservation; 2017. 6:6.

21. Pérez JM. Parasites, Pests, and Pets in a Global World: New Perspectives and Challenges. Journal of Exotic Pet Medicine. 2009;18:248–53.

22. Ramos RM, Pezzuti JC, Vieira EM. Age structure of the Vulnerable whitelipped peccary Tayassu pecari in areas under different levels of hunting pressure in the. Amazon Forest Oryx. 2016;50:5662.

23. Sousa JAC, Srbek Araujo AC. Are we headed towards the defaunation of the last large Atlantic Forest remnants? Poaching activities in one of the largest remnants of the Tabuleiro forests in southeastern Brazil. Environmental monitoring and assessment; 2017. 189:197206.
24. Constantino PL, et al. Indigenous collaborative research for wildlife management in Amazonia: the case of the Kaxinawá, Acre, Brazil. Biological Conservation; 2008. 141(11): 2718–2719.
25. Schenck M, et al. Why People Eat Bushmeat: Results From Two-Choice, Taste Tests in Gabon, Central Africa. Human Ecology; 2006. 34:433–445.
26. Wang BC, Sork VL, Leong MT, Smith TB. Hunting of mammals reduces seed removal and dispersal of the afrotropical tree Anthrocaryon klaineanum (Anacardiaceae). Biotropica. 2007;39:340–7.
27. Wright SJ, Hernandez A, Condit R. The bushmeat harvest alters seedling banks by favoring lianas, large seeds, and seeds dispersed by bats, birds and wind. Biotropica; 2007. Washington, v. 39, p. 363–371.
28. Alves RRN, Rosa IL. Zootherapeutic practices among shing communities in North and Northeast Brazil: A comparison. J Ethnopharmacol. 2007a;111:82–103.
29. Alves RRN, Rosa IL. Zootherapy goes to town: The use of animal-based remedies in urban areas of NE and N Brazil. J Ethnopharmacol. 2007b;113:541–55.
30. Alves RRN, Rosa IL. Biodiversity, traditional medicine and public health: where do they meet? J Ethnobiol Ethnomed. 2007c;3:9.
31. Thiollay J. Effects of hunting on guianan forest game birds. Biodivers Conserv. 2005;14:1121–35.
32. Thoisy B, Renoux F, Juliot C. Hunting in northern French Guiana and its impacts on primate communities. Oryx. 2005;39:149–57.
33. Baía Júnior PC. Caracterização do uso comercial e de subsistência da fauna silvestre no município de Abaréctuba, PA. Dissertação (Mestrado), Universidade Federal do Pará; 2006.
34. Peres CA. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conservation Biology; 2001. 15, 1490–1505.
35. Trinca CT, Ferrari SF. Caça em assentamento rural na Amazônia matogrossense. In: Jacobi P, Ferreira LC (Org.). Diálogos em ambiente e sociedade no Brasil. São Paulo: Annablume; 2006. pp. 155–67.
36. Bahia. Secretaria Estadual de Meio Ambiente e Recursos Hídricos. Plano de Manejo do Parque Estadual da Serra do Conduru. Bahia; 2005.
37. Ministério do Meio Ambiente - MMA. Programa Piloto para a Proteção das Florestas Tropicais-PPG7-Projeto Corredores Ecológicos, Bahia (Estado), Secretaria de Meio Ambiente e Recursos Ambientais-SEMARH, Centro de Recursos Ambientais-CRA, Superintendência de Desenvolvimento Florestal e Unidades de Conservação-SFC. Revisão do Zoneamento Ecológico-Econômico: APA Costa de Itacaré-Serra Grande. Instituto de Estudos Socioambientais do Sul da Bahia-IESB, Conservação Internacional do Brasil-Cl, Ilhéus, Bahia, Brasil;2004.
38. Schiavetti A, Magro TC, Santos MS. Implementação das unidades de conservação do corredor central da Mata Atlântica no estado da Bahia: desafios e limites. Revista Árvore; 2012. v. 36, p. 611–623.
39. Instituto, Ynamata. Instituto Floresta Viva. Diagnóstico Participativo de Serra Grande. Serra Grande, 2008. 132p.
40. Secretaria Estadual De Meio Ambiente e Recursos Hídricos - Sema. Plano de Manejo do Parque Estadual da Serra do Conduru. Bahia; 2005.

41. Ribeiro GC, Schiavetti A. Conocimiento. Creencias y Utilización de la mastofauna por los pobladores del Parque Estatal de la Sierra de Condruru, Bahia, Brasil. In: Costa-Neto EM, Santos-Fita D, Clavijo MV, editors. Manual de Etnozoología: Una guía teórico-práctica para investigar la interconexión del ser humano son los animales. Valencia: Tundra Ediciones; 2009.

42. Hays TE. An Empirical Method for the Identification of Covert Categories in Ethnobiology. American Ethnologist; 1976. 3:489–507.

43. Huntington HP. Using Traditional Ecological Knowledge in Science: Methods and Applications. Ecological Applications; 2000. 10:1270–1274.

44. Albuquerque UP, Paiva RF. Métodos e Técnicas na Pesquisa Etnobotânica. Recife: Editora Livro Rápido/NUPEEA; 2004.

45. Albuquerque UP, Lucena RP, Alencar NL. Métodos e técnicas para a Pesquisa Etnobotânica. 2. ed. Recife: NUPEEA; 2008.

46. Marques JGW. Aspectos Ecológicos na Etnoictiologia dos Pescadores do Complexo Estuarino-Lagunar Mundaú-Manguaba, Alagoas. Tese (Doutorado em Ecologia) - Universidade Estadual de Campinas, Campinas; 1991.

47. Colwell R, Coddington J. Estimating terrestrial biodiversity through extrapolation. Phil Trans Roy Soc Lond B. 1994;345(1311):101–18.

48. Anderson MJ. A new method for non-parametric mul- tivariate analysis of variance. Austral Ecol. 2001;26:32–46.

49. Oksanen J. et al. Vegan: Community Ecology Package; 2013. – <cran.r project.org/package = vegan>, retrieved on 06 October 2017.

50. Crawley MJ. The R Book, 2nd edn. Willey, New York Osburn, B. I. Bluetongue virus. The Veterinary clinics of North America Food animal practice; 2013. 10, 547–560.

51. R Development Core Team. A language and environment for statistical computing. - R Foundation for Stat. Comput., Vienna, Austria; 2017.

52. Pereira JPR, Schiavetti A. Conhecimentos e usos da fauna cinegética pelos caçadores indígenas “Tupinamba de Olivença” (Bahia). Biota Neotropica; 2010. 10, 175–183.

53. Santos GP, et al. Influência do Entorno de uma Unidade de Conservação sobre a Pressão de Caça: RPPN Estação Veracel como Estudo de Caso. Biodiversidade Brasileira; 2018. 8(2): 219–231.

54. Barboza RR, Lopes S, Souto W, Fernandes-Ferreira H, Alves RRN. The role of game mammals as bushmeat in the Caatinga. northeast Brazil Ecology Society. 2016;21:111.

55. Melo RS, et al. The role of mammals in local communities living in conservation areas in the Northeast of Brazil: an ethnozoological approach. Tropical Conservation Science. 2014;7:423–39.

56. Alves RRN, Souto WMS. Etnozoologia: conceitos, considerações históricas e importância; 2010. In: Alves RRN, Souto WMS, Mourão JS, editors. A Etnozoologia no Brasil: Importância, Status atual e
57. Alves RRN, Gonçalves MBR, Vieira WLS. Caça, uso e conservação de vertebrados no semiárido Brasileiro. Tropical Conservation Science; 2012. v. 5, p. 396–416.

58. Dantas-Aguiar PR, et al. Hunting Activities and Wild Fauna Use: A Profile of Queixo D’antas Community, Campo Formoso, Bahia, Brazil. Bioremediation, Biodiversity and Bioavailability; 2011. 5:1–10.

59. Santos, et al. 2020. Conflicts between humans and wild animals in and surrounding protected area (Bahia, Brazil): an ethnozoological approach. Ethnobiology and Conservation; 2020. 9:5.

60. Alves RRN, Rosa IL. From Cnidarians to mammals: The use of animals as remedies in fishing communities in NE Brazil. Journal of Ethnopharmacology; 2006. n.107, p. 259–276.

61. Martínez D, Garcia D. Disentangling habitat use by frugivorous birds: Constant interactive effects of forest cover and fruit availability. Basic and Applied Ecology; 2015. 16, 460–468.

62. Woodroffe R, Ginsberg JR. Edge effects and the extinction of populations inside protected areas. Science. 1998;280:2126–8.

63. Cassano CR, Barlow J, Pardini R. Large Mammals in na Agroforestry Mosaic in the Brazilian Atlantic Forest. Biotropica. 2012. 0(0): 1–8.

64. Harrisson RD. Emptying the Forest: Hunting and the Extirpation of Wildlife from Tropical Nature Reserves. BioScience; 2011. 61: 919–924.

65. Dirzo R. Plant-mammal interactions: lessons for our understanding of nature, and implications for biodiversity conservation. In: Press MC, Huntly NJ, Levin S, editors. Ecology: achievement and challenge. Oxford: Blackwell Science; 2011.

66. Dirzo R, Miranda AM. Altered patterns of herbivory and diversity in the forest understory: a case study of the possible consequences of contemporary defaunation; 1991. In: Wiley J. Plant-animal interactions: evolutionary ecology in tropical and temperate regions. New York.

67. Redford KH, Robinson JG. The Game of Choice: Patterns of Indian and Colonist Hunting in the Neotropics. American Anthropologist; 1987. 89:650–667.

68. Robinson JG, Bennett EL. Having your wildlife and eating it too: an analysis of hunting sustainability across tropical ecosystems. Animal Conservation; 2004. 7(4):397–408.

69. Terborgh J, et al. Ecological meltdown in predator free forest fragments. Science. 2001;294:1923–6.

70. Osburn BI. Bluetongue virus. The Veterinary clinics of North America Food animal practice; 1994. 10, 547–560.

71. Chomel BB, Belotto A, Meslin FX. Wildlife, exotic pets, and emerging zoonoses. Emerg Infect Dis. 2007;13:6–11.

72. Taylor LH, Latham SM, Mark EJ. Risk factors for human disease emergence. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences. 2001;356:983–9.

73. Silva E, et al. Determination of duffy phenotype of red blood cells in *Dasypus novemcinctus* and *Cabassous* sp. Brazilian Journal of Biology. 2005;65:555–7.
74. Vijayaraghavan R. Nine-banded armadillo *Dasypus novemcinctus* animal model for leprosy (Hansen's disease). Scand. J. Lab. 2009. Anim. Sci,36(2).
75. Costa FAM, Reis RC, Benevides F, Tomé GS, Holanda MA. Coccidioidomycose pulmonar em caçador de tatus. J Pneumol. 2001;27:275–8.
76. Eulálio KD, et al. Coccidioides immitis isolated from armadillos (*Dasypus novemcinctus*) in the state of Piauí, northeast Brazil. Mycopathologia; 2001. 149:57–61.
77. Flesher KM, Laufer J. Protecting wildlife in a heavily hunted biodiversity hotspot: a case study from the Atlantic Forest of Bahia, Brazil. Tropical Conservation Science; 2013. 6, 181–200.
78. Cardim F. Tratado da terra e gente do Brasil. Rio de Janeiro, J. Leite e Cia; 1925.
79. Gândavo PDM. Historia da prouincia sãcta Cruz a que vulgarmente chamamos Brasil feita por Pero de Magalhães de Gandavo, dirigida ao muito Ills. Sñor Dom Leonis Pra governador que foy de Malaca e das mais partes do Sul da India. Lisboa, Officina de Antonio Gonsalvez; 1956.
80. Silva H. A Caça no Brasil Central. Rio de Janeiro, Oficinas da Livraria Moderna; 1898.
81. Varnhagen FA. A caça no Brazil, ou, Manual do caçador, em toda a América tropical, acompanhado de um glossário dos termos usuaes de caça. Rio de Janeiro. Em casa de E. & H. Laemmert; 1860.
82. Freitas FO, Moreira JR, Freitas JZF. Tradição cultural como diferenciador da dieta a base animal de duas etnias indígenas. 1 ed. Embrapa Recursos Genéticos e Biotecnologia, Brasília; 2005. 9 p. (Comunicado Técnico 126).
83. Canale GR, et al. Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. PloS one. 2012;7(8):e41671.
84. Fernandes-Ferreira H, et al. Folklore concerning snakes in the Ceará State, northeastern Brazil. Sitientibus Série Ciências Biológicas; 2012. 11:153–163.
85. Hanazaki N, Alves RRN, Begossi A. Hunting and use of terrestrial fauna used by Caicaras from the Atlantic Forest coast (Brazil). J Ethnobiol Ethnomed. 2009;5(1):1–36.
86. Rocha-Mendes F, et al. Mamíferos do município de Fênix, Paraná, etnozoologia e conservação. Revista Brasileira de Zoologia; 2004. 22(4), 991–1002.
87. Desbiez JAL, et al. Invasive species and bushmeat hunting contributing to wildlife conservation, the case of feral pigs in a Neotropical wetland. Oryx; 2011. 45(1), 78–83.
88. Fitzgerald LA. Tupinambis lizards and people: a sustainable use approach to conservation and development. Conservation Biology; 1994. 8:12–15.
89. Alves RRN, Rosa IL. Animals in Traditional Folk Medicine. Implications for Conservation. Berlin Heidelberg. Springer; 2012.
90. Brasil. Ministério do Meio Ambiente. Lei no 9.985 de 18 de julho de 2000. Regulamenta o art. 225, § 1º, incisos I, II, III e VII da Constituição Federal, institui o Sistema Nacional de Unidades de Conservação da Natureza e dá outras providências. Diário Oficial da República Federativa do Brasil, Brasília, DF, 18 de julho; 2000.
91. Blasco R, Fernández Peris J, Rosell J. Several different strategies for obtaining animal resources in the late Middle Pleistocene, The case of level XII at Bolomor Cave (Valencia, Spain). CR Palevol. 2010;9(4):171–84.

92. Costa-Magno S, et al. Les Pradelles (Marillac-le-Franc, France), a mousterian reindeer hunting camp? J Anthropol Archaeol. 2006;25:466–84.

93. Alves RRN. Relationships between fauna and people and the role of ethnozoology in animal conservation. Ethnobiology Conservation. 2012;1:1–69.

94. Alves RRN, et al. Hunting strategies used in the semi-arid region of northeastern Brazil. J Ethnobiol Ethnomed. 2009;5:1–50.

Figures

Figure 1

Location of the study area and the communities in which the fieldwork study was carried out with the hunters: Camboinha Settlement (CS), Community of Tesouras (CT), Nova Vida Settlement (NV), District of Serra Grande (SG) and District of Taboquinhas (DT).
Figure 2

Species accumulation curve for the number of species hunted based on the number of respondents in the region of the Serra do Conduru State Park, Bahia, Brazil. The shaded area represents the confidence intervals of 95% based on 10,000 randomizations.
Figure 3

Non-metric multidimensional scaling (NMDS) analyses showing the dissimilarity of the composition of wild animal species used as a food source at the five locations studied in the region of the Serra do Conduru State Park, Bahia, Brazil. Each symbol represents a different location. Camboinha Settlement (CS), Community Tesouras (CT), Nova Vida Settlement (NV), District of Serra Grande (SG), and District of Taboquinhas (DT). A significant difference in species composition captured for food (p<0.05) among the five locations was observed in the PERMANOVA analysis. Data recorded between June/16 and June/17.
Figure 4

Effect of hunters’ ages on the number of species hunted for food in the region of the Serra do Conduru State Park, Bahia, Brazil. The error distribution used in the model was Quasi-Poisson.
Figure 5

Effect of family size on the number of species hunted for food in the region of the Serra do Conduru State Park, Bahia, Brazil. The error distribution used in the model was Quasi-Poisson.
Figure 6

The average of species hunted for food observed for the five localities (CS - Camboinha Settlement, NV - Nova Vida Settlement, CT - Communitie Tesouras, SG - District of Serra Grande and DT - District of Taboquinhas) in the region of the Serra do Conduru State Park, Bahia, Brazil. The vertical bars correspond to the standard error (± se). Different letters above the columns represent statistically different means (p < 0.05).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- additionalfile2.pdf
- Additionalfile1.docx