ON STRONG APPROXIMATION FOR ALGEBRAIC GROUPS

ANDREI S. RAPINCHUK

1. Introduction

The goal of this article, which is an expanded version of the talk given at the workshop, is to provide a survey of known results related to strong approximation in algebraic groups. We will focus primarily on two aspects: the classical form of strong approximation, which is really strong approximation for \(S\)-arithmetic groups (§2), and its more modern version for arbitrary Zariski-dense subgroups (§3). Along the way we will also mention results dealing with strong approximation in arbitrary varieties and particularly homogeneous spaces (which are probably not so well known to the general audience as some other results in the article) and some applications. The reader will find more applications of strong approximation for Zariski-dense subgroups in other articles in this volume.

1. Strong approximation and congruences. The most elementary way to start thinking about strong approximation is in terms of lifting solutions of integer polynomial equations mod \(m\) for all \(m \geq 1\), to integer solutions.

So, suppose we have a family of polynomials

\[f_\alpha(x_1, \ldots, x_d) \in \mathbb{Z}[x_1, \ldots, x_d], \quad \alpha \in I,\]

and we let \(X \subset \mathbb{A}_\mathbb{Z}^d\) denote the closed affine subscheme defined by these polynomials. Thus, for any \(\mathbb{Z}\)-algebra \(R\), the scheme \(X\) has the following set of \(R\)-points:

\[X(R) = \{(a_1, \ldots, a_d) \in R^d \mid f_\alpha(a_1, \ldots, a_d) = 0 \text{ for all } \alpha \in I\}.\]

Then for any integer \(m \geq 1\), we have a natural reduction modulo \(m\) map

\[\rho_m : X(\mathbb{Z}) \to X(\mathbb{Z}/m\mathbb{Z}),\]

and the question is whether these maps are surjective for all \(m\). (Of course, this question is meaningful only if we assume that \(X(\mathbb{Z}/m\mathbb{Z}) \neq \emptyset\) for all \(m\).)

Observe that for \(m \mid n\), there is a canonical homomorphism \(\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}\), hence a natural map \(\pi^m_n : X(\mathbb{Z}/n\mathbb{Z}) \to X(\mathbb{Z}/m\mathbb{Z})\). Clearly, \(\{X(\mathbb{Z}/m\mathbb{Z}), \pi^m_n\}\) is an inverse system, so we can assemble all the \(X(\mathbb{Z}/m\mathbb{Z})\)'s together by taking the inverse limit:

\[
\lim_{\leftarrow} X(\mathbb{Z}/m\mathbb{Z}) = X(\hat{\mathbb{Z}}),
\]
where $\hat{\mathbb{Z}} = \varprojlim \mathbb{Z}/m\mathbb{Z}$. Recall that the Chinese Remainder Theorem furnishes an isomorphism $\hat{\mathbb{Z}} \simeq \prod_p \mathbb{Z}_p$, where \mathbb{Z}_p is the ring of p-adic integers and the product is taken over all primes, which allows us to identify $X(\hat{\mathbb{Z}})$ with $\prod_p X(\mathbb{Z}_p)$.

Just as above, for any integer $m \geq 1$, there is a natural map
\[
\hat{\rho}: X(\hat{\mathbb{Z}}) \to X(\hat{\mathbb{Z}}/m\hat{\mathbb{Z}}) \times X(\mathbb{Z}/m\mathbb{Z}).
\]
The pre-images of points under the $\hat{\rho}_m$'s form a basis of a natural topology on $X(\hat{\mathbb{Z}})$, which coincides with either of the following topologies:

- the topology of the inverse limit on $\varprojlim X(\mathbb{Z}/m\mathbb{Z})$, cf. [14, Ch.I, 5.3];
- the topology induced by the embedding $X(\hat{\mathbb{Z}}) \hookrightarrow \hat{\mathbb{Z}}^d$, where $\hat{\mathbb{Z}}$ is endowed with the inverse limit topology on $\varprojlim \mathbb{Z}/m\mathbb{Z}$;
- the direct product topology on $\prod_p X(\mathbb{Z}_p)$, where $X(\mathbb{Z}_p)$ receives its topology via the embedding $X(\mathbb{Z}_p) \hookrightarrow \mathbb{Z}_p^d$, and \mathbb{Z}_p is endowed with the natural p-adic topology.

The following immediately follows from the above discussion.

Lemma 1.1. The following conditions are equivalent:

1. $\rho_m: X(\mathbb{Z}) \to X(\mathbb{Z}/m\mathbb{Z})$ is surjective for all integers $m \geq 1$;
2. the natural embedding $\iota: X(\mathbb{Z}) \hookrightarrow X(\hat{\mathbb{Z}})$ has a dense image in the above topology.

In this situation, we say X has *strong approximation* if it satisfies the equivalent conditions of Lemma 1.1 (of course, this is only a first approximation to the precise definition(s) of strong approximation that will be given later, cf. § 2.1). Intuitively, strong approximation should not be very common as there are plentiful examples where $X(\hat{\mathbb{Z}}) \neq \emptyset$ but $X(\mathbb{Z}) = \emptyset$ (i.e., the Hasse principle fails - note that here we actually omit the archimedean place of \mathbb{Q}), and also examples where $X(\mathbb{Z})$ is nonempty but so “small” that it cannot possibly be dense in $X(\hat{\mathbb{Z}})$. A classical example of the second situation is a cubic hypersurface $X \subset \mathbb{A}^3$ given by the equation
\[
3x^3 + 4y^3 + 5z^3 = 0;
\]
it is known that $X(\mathbb{Z}) = \{(0,0,0)\}$ but $X(\mathbb{Z}_p) \neq \{(0,0,0)\}$ (hence infinite as any point on X other than the origin is smooth) for all prime p. In fact, very little appears to be known about strong approximation for schemes (varieties) lying outside some special classes such as homogeneous spaces - one can only give some necessary conditions (cf. Proposition 2.2 and subsequent remarks). So, in this article we will deal almost exclusively with algebraic groups.

2. SL$_2$ vs. GL$_2$. Let us start with two elementary examples: $G_1 = \text{SL}_2$ and $G_2 = \text{GL}_2$. One doesn’t see much of a difference between these examples
just by looking at the defining equations. Indeed, with the obvious labeling
of coordinates, we see that

- \(G_1 \) can be realized as a hypersurface in \(\mathbb{A}^4 \) given by \(x_{11}x_{22} - x_{12}x_{21} = 1 \);

and

- \(G_2 \) can be realized as a hypersurface in \(\mathbb{A}^5 \) given by \(y(x_{11}x_{22} - x_{12}x_{21}) = 1 \).

However, \(G_1 \) has strong approximation, and \(G_2 \) does not.

Lemma 1.2. For any \(m > 1 \), the reduction modulo \(m \) map

\[\rho_m: SL_2(\mathbb{Z}) \longrightarrow SL_2(\mathbb{Z}/m\mathbb{Z}) \]

is surjective.

Proof. The argument does not use equations (in fact, it is not a completely
trivial task to prove strong approximation using equations in this case - see
the discussion after Proposition 2.4). The crucial observation is that any
\(\bar{g} \in SL_2(\mathbb{Z}/m\mathbb{Z}) \) can be written as a product of elementary matrices:

\[(1) \quad \bar{g} = \prod_k e_{i_k,j_k}(\bar{a}_k) \quad \text{with} \quad (i_k, j_k) \in \{(1, 2), (2, 1)\} \quad \text{and} \quad \bar{a}_k \in \mathbb{Z}/m\mathbb{Z}. \]

(As usual, for \(i \neq j \), we let \(e_{ij}(a) \) denote the elementary matrix having \(a \) as
its \(ij \)-entry.) For this, one needs to observe that if \(m = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \) then it
follows from the Chinese Remainder Theorem that

\[SL_2(\mathbb{Z}/m\mathbb{Z}) = SL_2(\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z}) \times \cdots \times SL_2(\mathbb{Z}/p_r^{\alpha_r}\mathbb{Z}), \]

which reduces the problem to the case where \(m = p^\alpha \). Now, given
\[\bar{g} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \in SL_2(\mathbb{Z}/p^\alpha\mathbb{Z}), \]
we see that either \(x_{11} \) or \(x_{12} \) is a unit mod \(p^\alpha \), so using Gaussian elimination
one can easily write \(\bar{g} \) as a product of elementaries over \(\mathbb{Z}/p^\alpha\mathbb{Z} \).

Next, given an arbitrary \(\bar{g} \in SL_2(\mathbb{Z}/m\mathbb{Z}) \), pick a factorization \((1) \), and
furthermore, for each \(k \) pick an integer \(a_k \) in the class \(\bar{a}_k \) modulo \(m \). Set
\[g = \prod_k e_{i_k,j_k}(a_k) \in SL_2(\mathbb{Z}). \]

Then \(\rho_m(g) = \bar{g} \), proving the surjectivity of \(\rho_m \). \(\square \)

Note that the proof of Lemma 1.2 relies on the consideration of unipotent
elements, so it is worth pointing out that, as we will see in the course of
this article, unipotent elements are involved in one way or another in most
known results on strong approximation (even when the group at hand does
not contain any nontrivial rational unipotent elements, i.e. is anisotropic).

The fact that \(G_2 = GL_2 \) does not have strong approximation is much
easier: in fact, already the map

\[\rho_5: GL_2(\mathbb{Z}) \longrightarrow GL_2(\mathbb{Z}/5\mathbb{Z}) \]
fails to be surjective. (Indeed, since all matrices in \(GL_2(\mathbb{Z})\) have determinant \(±1\), the matrices in \(\rho_5(\mathbb{Z}/5\mathbb{Z})\) have determinant \(±1(\text{mod } 5)\), and therefore, for example, \(\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}\) does not lie in the image of \(\rho_5\).) One can conceptually articulate the obstruction that prevents \(GL_2\) from having strong approximation in this case by saying that in order for an affine \(\mathbb{Q}\)-variety \(X\) to have strong approximation,

\[X(\mathbb{Z})\text{ must be Zariski-dense in } X.\]

Indeed, let \(Y = \overline{X(\mathbb{Z})}\) be the Zariski-closure of \(X(\mathbb{Z})\) in \(X\), and assume that \(Y \neq X\). Pick a point \(a \in X(\overline{\mathbb{Q}}) \setminus Y(\mathbb{Q})\), where \(\overline{\mathbb{Q}}\) is an algebraic closure of \(\mathbb{Q}\). Then one can find a polynomial \(f \in \mathbb{Z}[x_1, \ldots, x_d]\) that vanishes on \(Y\) and such that \(f(a) \neq 0\). It follows from Tchebotarev’s Density Theorem that for infinitely many primes \(p\), we have \(a \in X(\mathbb{Z}_p)\) and \(f(a) \equiv 0(\text{mod } p)\). Let \(\bar{a} \in X(\mathbb{F}_p)\) be the reduction of \(a\) modulo \(p\), where \(\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \mathbb{Z}_p/p\mathbb{Z}_p\).

(Note that it would be more appropriate to write \(X^{(p)}(\mathbb{F}_p)\) instead of \(X(\mathbb{F}_p)\), where \(X^{(p)}\) denotes the reduction of \(X\) modulo \(p\), but we will slightly abuse the notations in this introductory section in order to keep them simple.) Then clearly

\[\bar{a} \in X(\mathbb{F}_p) \setminus Y(\mathbb{F}_p),\]

and in particular, \(X(\mathbb{F}_p) \neq Y(\mathbb{F}_p)\). On the other hand, the image of the reduction map \(\rho_p: X(\mathbb{Z}) \to X(\mathbb{F}_p)\) is obviously contained in \(Y(\mathbb{F}_p)\). Thus, if \(X(\mathbb{Z})\) is not Zariski-dense in \(X\) then \(\rho_p\) fails to be surjective for infinitely many \(p\), which certainly prevents \(X\) from having strong approximation. (Incidentally, this observation implies that if \(G\) is an algebraic \(\mathbb{Q}\)-group and \(G(\mathbb{Z})\) is not Zariski-dense in \(G\) then the closure of \(G(\mathbb{Z})\) in \(G(\mathbb{Q})\) is of infinite index.)

In fact, the conclusion about the absence of strong approximation in \(X\) as above can be made even sharper. First, it is easy to show that \(X\) cannot possibly have strong approximation unless it is absolutely irreducible (cf. the remark after Proposition 2.2). So, assume that \(X\) is such. Then by the Lang-Weil estimates (cf. [18]) we have

\[|X(\mathbb{F}_p)| \approx p^{\dim X}\]

for \(p\) sufficiently large. Similarly, for any proper \(\mathbb{Q}\)-subvariety \(Y \subset X\), the cardinality \(|Y(\mathbb{F}_p)|\) is bounded above by an expression of the form \(C \cdot p^{\dim Y}\) where \(C\) is a constant independent of \(p\). It follows that \(Y(\mathbb{F}_p) \neq X(\mathbb{F}_p)\) for almost all \(p\), and therefore unless \(X(\mathbb{Z})\) is Zariski-dense in \(X\), the reduction map \(\rho_p: X(\mathbb{Z}) \to X(\mathbb{F}_p)\) is not surjective for almost all \(p\).

So, the fact that \(GL_2(\mathbb{Z})\) is not Zariski-dense in \(GL_2\) (its Zariski-closure is precisely the subgroup consisting of \(g \in GL_2\) that satisfy \((\det g)^2 - 1 = 0\), is definitely one of the factors that prevent \(GL_2\) from having strong approximation; in fact, the reduction maps \(\rho_p\) are nonsurjective for all \(p \geq 5\). Now, let us slightly change the set-up by replacing the ring of integers \(\mathbb{Z}\) with
some localization, e.g. \(\mathbb{Z}\left[\frac{1}{2}\right] \). Then \(GL_2(\mathbb{Z}\left[\frac{1}{2}\right]) \) is already Zariski-dense in \(GL_2 \), and in fact the map
\[
\rho_5: GL_2\left(\mathbb{Z}\left[\frac{1}{2}\right]\right) \to GL_2(\mathbb{Z}/5\mathbb{Z})
\]
is surjective, however the map
\[
\rho_{17}: GL_2\left(\mathbb{Z}\left[\frac{1}{2}\right]\right) \to GL_2(\mathbb{Z}/17\mathbb{Z})
\]
is not. The reason is that the possible determinants of matrices in \(GL_2(\mathbb{Z}\left[\frac{1}{2}\right]) \) are of the form \(\pm 2^\ell \) with \(\ell \in \mathbb{Z} \), hence squares modulo \(p = 17 \) (in fact, this property will hold for any prime of the form \(8k + 1 \), and by Dirichlet’s Theorem there are infinitely many such primes, cf. §2.2).

We see that Zariski-density is definitely not sufficient for strong approximation in the general case. At the same time, let us consider the following example involving various subgroups of the group \(SL_2(\mathbb{Z}) \). We have
\[
\Gamma_0 := SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right\}.
\]
For \(\ell \geq 1 \), we define
\[
\Gamma_\ell = \left\{ \begin{pmatrix} 1 & 2^\ell \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2^\ell & 1 \end{pmatrix} \right\}.
\]
Then we have the following inclusions
\[
\Gamma_0 \supset \Gamma_1 \supset \Gamma_2 \supset \cdots \supset \Gamma_\ell \supset \Gamma_{\ell+1} \supset \cdots,
\]
with
\[
[\Gamma_0 : \Gamma_1] = 12 \quad \text{and} \quad [\Gamma_\ell : \Gamma_{\ell+1}] = \infty \quad \text{for} \quad \ell \geq 1.
\]
(We note that the fastest way to verify both of these claims is to use the virtual Euler-Poincaré characteristic (cf. [44]). It is known that the Euler-Poincaré characteristic \(\chi(\Gamma_0) = -\frac{1}{12} \). On the other hand, for any \(m \geq 2 \) the matrices \(\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \) and \(\begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix} \) generate a rank 2 free subgroup \(\Delta_m \subset \Gamma_0 \) (cf. [11, p. 26]), so \(\chi(\Delta_m) = -1 \). It is an elementary exercise to show that \(\Gamma_1 = \Delta_2 \) contains the congruence subgroup \(SL_2(\mathbb{Z}, 4) \) modulo 4, so the index \(d = [\Gamma_0 : \Gamma_1] \) is finite. So we have
\[
\chi(\Gamma_1) = d \cdot \chi(\Gamma_0),
\]
whence \(d = 12 \), as claimed. On the other hand, the assumption that \([\Gamma_\ell : \Gamma_{\ell+1}] = d < \infty \) would imply that
\[
-1 = \chi(\Gamma_{\ell+1}) = d \cdot \chi(\Gamma_\ell) = -d,
\]
i.e. \(\Gamma_{\ell+1} = \Gamma_\ell \) which is clearly false (consider the reduction modulo \(2^{\ell+1} \)). Incidentally, the same argument shows that \(\Delta_m \) is of infinite index in \(\Gamma_0 \).
for any \(m \geq 3 \). Indeed, we can now assume that \(m \) is not a power of 2. If \([\Gamma_0 : \Delta_m] = d < \infty\) then
\[-1 = \chi(\Delta_m) = d \cdot \chi(\Gamma_0) = -\frac{d}{12},\]
implicating that \(d = 12 \). But \(\Delta_m \) is contained in the congruence subgroup \(SL_2(\mathbb{Z}, m) \), so if \(p \) is an odd prime divisor of \(m \) then
\[[\Gamma_0 : \Delta_m] \geq [\Gamma_0 : SL_2(\mathbb{Z}, m)] \geq |SL_2(\mathbb{F}_p)| = p(p^2 - 1) \geq 24,\]
a contradiction. We note that the group \(\Delta_3 = \langle \left(\begin{array}{cc} 1 & 3 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 3 & 1 \end{array} \right) \rangle \) has received a lot of attention during the workshop.

So, for large \(\ell \), the subgroup \(\Gamma_\ell \) is very “thin” in \(\Gamma_0 \), and essentially the only property it retains is Zariski-density. Nevertheless, for all odd \(m \) we still have
\[\rho_m(\Gamma_\ell) = \rho_m(\Gamma_0) = SL_2(\mathbb{Z}/m\mathbb{Z}).\]
So, if we ignore \(p = 2 \) (more precisely, the dyadic component \(\mathbb{Z}_2 \) of \(\hat{\mathbb{Z}} \)), then we still have an analog of the property of strong approximation for \(\Gamma_\ell \), for any \(\ell \geq 1 \). At the same time, the closure of \(\Gamma_\ell \) in \(SL_2(\mathbb{Z}_2) \) is open (cf. Lemma 2.7 for a more general statement). Thus, we eventually obtain that the closure of \(\Gamma_\ell \) in \(SL_2(\hat{\mathbb{Z}}) \) is open – one should think of this property as being the next best thing to strong approximation. Note that for a general \(X \) as above, the openness of the closure of \(X(\mathbb{Z}) \) in \(X(\hat{\mathbb{Z}}) \) implies that the reduction maps \(\rho_m : X(\mathbb{Z}) \to X(\mathbb{Z}/m\mathbb{Z}) \) are surjective for all \(m \) co-prime to some fixed exceptional number \(N_0 = N_0(X) \).

To summarize this discussion, we see that generally speaking the idea that in certain situations Zariski-density should (or may) imply some version of strong approximation, at least for subgroups, appears to be sound, but in order to make it more precise, we need to figure out what is wrong with \(GL_2 \) (compared to \(SL_2 \)).

Before we do this, however, we would like to generalize our set-up and also describe a somewhat different (although closely related) approach to strong approximation. The issue is that typically an algebraic group does not come with a fixed geometric (or linear) realization \(G \hookrightarrow GL_n \), and different realizations may result in different groups of integral points. So, it makes sense to reformulate the property of strong approximation in terms of the group of rational points.

2. Strong approximation in algebraic groups and homogeneous spaces

1. Adele groups and strong approximation. Let \(G \) be an algebraic group defined over a global field \(K \), and let \(S \) be a set of places of \(K \).
For now, we fix a matrix realization \(G \hookrightarrow \text{GL}_n \), which enables us to define unambiguously the groups

\[
G(\mathcal{O}_v) = G \cap \text{GL}_n(\mathcal{O}_v)
\]

for all nonarchimedean places \(v \) of \(K \), where \(\mathcal{O}_v \) is the valuation ring in the completion \(K_v \). We let \(\mathcal{A}_S \) denote the ring of \(S \)-adeles of \(K \), and let

\[
G(\mathcal{A}_S) = \left\{ g = (g_v) \in \prod_{v \notin S} G(K_v) \mid g_v \in G(\mathcal{O}_v) \text{ for almost all } v \notin S \right\}
\]

be the group of \(S \)-adeles of \(G \). We refer the reader to [33, §5.1] for a more detailed discussion of adeles, and in particular for the definition of the space of \(S \)-adeles \(X(\mathcal{A}_S) \) for any affine algebraic \(K \)-variety \(X \). Here we recall only that \(G(\mathcal{A}_S) \) is made into a locally compact topological group by taking the open subgroups of \(\prod_{v \notin S} G(\mathcal{O}_v) \) for a fundamental system of neighborhoods of the identity - thus, the \(S \)-adic topology on \(G(\mathcal{A}_S) \) is the “natural extension” of the product topology on \(\prod_{v \notin S} G(\mathcal{O}_v) \). (We note that in the case \(K = \mathbb{Q} \), \(S = \{\infty\} \), the latter group coincides with \(\prod_p G(\mathbb{Z}_p) = G(\hat{\mathbb{Z}}) \), so these adelic definitions are direct generalizations of the notions we discussed in \(\mathbb{I} \).) One proves (cf. [33 §5.1]) that the topological group \(G(\mathcal{A}_S) \) is independent of the choice of a \(K \)-realization \(G \hookrightarrow \text{GL}_n \). Furthermore, there is a canonical embedding \(G(K) \hookrightarrow G(\mathcal{A}_S) \), so we can give the following.

Definition. An algebraic \(K \)-group \(G \) has **strong approximation** with respect to \(S \) if \(G(K) \) is dense in \(G(\mathcal{A}_S) \).

(Of course, one can give a similar definition for an arbitrary affine \(K \)-variety \(X \). We note that if \(S = \emptyset \) then \(X(K) \) is a closed discrete subspace of \(X(\mathcal{A}_S) \), so in discussing strong approximation one actually needs to assume from the outset that \(S \) is nonempty.)

Defined this way (in terms of rational points), the property of strong approximation does not depend on the choice of a matrix realization \(G \hookrightarrow \text{GL}_n \). On the other hand, in the case where \(S \) contains all nonarchimedean places, its validity implies that for any realization, the group \(G(\mathcal{O}(S)) \) of points over the ring of \(S \)-integers \(\mathcal{O}(S) \), which can alternatively be described as

\[
G(\mathcal{O}(S)) = G(K) \cap \prod_{v \notin S} G(\mathcal{O}_v),
\]

is dense in \(\prod_{v \notin S} G(\mathcal{O}_v) \) (thus, we have strong approximation in the sense discussed in \(\mathbb{I} \) for any realization).

2. Absence of strong approximation in algebraic tori. Our next goal is to explain why \(\text{GL}_2 \) has no chance to possess strong approximation. However, it is easiest to pin down the reason by working with the 1-dimensional \(T = \mathbb{G}_m \): we will now show that it does not have strong approximation with
respect to any finite set of places S, and will then demonstrate how the same phenomenon manifests itself in the case of GL_2 and other situations.

Let us start with the case $K = \mathbb{Q}$. If $S = \{\infty\}$ then $T(\mathbb{Z}) = \{\pm 1\}$ which is not even Zariski-dense. For $S = \{\infty, 2\}$, we have

$$T\left(\frac{1}{2}\right) = \pm\langle 2\rangle,$$

which is already Zariski-dense, but nevertheless T still does not have strong approximation. Indeed, pick any prime p of the form $8k + 1$. Then -1 and 2 are squares modulo p, so the map

$$\pm\langle 2\rangle \rightarrow (\mathbb{Z}/p\mathbb{Z})^\times$$

is not surjective. What really happens here is that T possesses a 2-sheeted cover

$$\pi: T \rightarrow T, \quad t \mapsto t^2,$$

and for any prime $p \equiv 1(\text{mod } 8)$ we have that $T(\mathbb{Z}[\frac{1}{2}]) \subset \pi(T(\mathbb{Z}_{p})) \subseteq T(\mathbb{Z}_p)$.

Since $\pi(T(\mathbb{Z}_p)) \subset T(\mathbb{Z}_p)$ is a closed subgroup, we obtain that $T(\mathbb{Z}[\frac{1}{2}])$ is not dense in $T(\mathbb{Z}_p)$ for any such p. Moreover, by Dirichlet’s Prime Number Theorem, for any $r \geq 1$ we can find r distinct primes p_1, \ldots, p_r congruent to $1(\text{mod } 8)$. Then the image of the map

$$\pm\langle 2\rangle \rightarrow (\mathbb{Z}/p_1 \cdots p_r\mathbb{Z})^\times$$

is contained in $(\mathbb{Z}/p_1 \cdots p_r\mathbb{Z})^{\times 2}$, which has index 2^r in $(\mathbb{Z}/p_1 \cdots p_r\mathbb{Z})^\times$. It follows that the closure of $T(\mathbb{Z}[\frac{1}{2}])$ in $T(\mathbb{Z}) = \prod_p T(\mathbb{Z}_p)$ is of infinite index.

This approach easily generalizes. First, let $T = \mathbb{G}_m$ over an arbitrary number field K, and let S be an arbitrary finite set of places of K containing all archimedean ones. Then by Dirichlet’s Unit Theorem (cf. [17, p. 105]), the group $T(\mathcal{O}(S))$ is generated by a finite collection of elements, say t_1, \ldots, t_r. Set $L = K(\sqrt{t_1}, \ldots, \sqrt{t_r})$. Then by Tchebotarev’s Density Theorem (cf. [17, p. 169]), there exist infinitely many places $v \notin S$ that totally split in L (i.e., $L \subset K_v$). Considering again the covering $\pi: T \rightarrow T$, $\pi(t) = t^2$, we see that that for any such non-dyadic v we have the following inclusions

$$T(\mathcal{O}(S)) \subset \pi(T(\mathcal{O}_v)) \subseteq T(\mathcal{O}_v).$$

This implies that the closure of $T(\mathcal{O}(S))$ in $\prod_{v \notin S} T(\mathcal{O}_v)$ is of infinite index, and therefore the closure of $T(K)$ in $T(\mathcal{A}_S)$ is of infinite index as well.

Next, this argument can be extended to an arbitrary torus T over a global field K and any finite set S of places of K. Moreover, by considering coverings (isogenies) $\pi_m: T \rightarrow T$, $\pi_m(t) = t^m$ for various m prime to $\text{char } K$, one proves the following.
Proposition 2.1. Let T be a nontrivial torus over a global field K, and S be a finite set of places of K. If $\overline{T(K)}$ is the closure of $T(K)$ in $T(\mathbb{A}_S)$ then the quotient
\[
T(\mathbb{A}_S) / \overline{T(K)}
\]
is a group of infinite exponent.

This proposition yields a strong version of the fact that a nontrivial torus over a global field always fails to have strong approximation with respect to any finite set of places S. Nevertheless, a torus may have strong approximation with respect to some infinite (and co-infinite) sets S - see Remark 3 after Theorem 2.3.

3. Simply connectedness as a necessary condition. The discussion of tori in the previous subsection suggests that the existence of a nontrivial covering map for a given variety X over a global field K may prevent it from having strong approximation with respect to any finite set of places S. Indeed, as we will see soon, simply connectedness of a connected absolutely almost simple group G (i.e., the absence of nontrivial central isogenies $\pi: \tilde{G} \to G$ with connected \tilde{G} - see [46] for a more detailed discussion) is one of the essential conditions in the Strong Approximation Theorem for algebraic groups (see Theorem 2.3 below). But before we shift our focus entirely to algebraic groups, we would like to mention the following general result of Minchev [26] which does not seem to be well-known to the general audience. (Note that we did not formally define adeles for arbitrary varieties, so the reader may want to assume that all varieties considered are actually affine, in which case the definitions are completely parallel to the above definitions for algebraic groups.)

Proposition 2.2. ([26, Theorem 1]) Let X be an irreducible normal variety over a number field K. If there exists a nontrivial connected unramified covering $f: Y \to X$ defined over an algebraic closure \overline{K}, then X does not have strong approximation with respect to any finite set S of places of K.

Since [26] was published in a journal with rather limited circulation (and only in Russian), we will give here a sketch of the argument assuming X and Y to be affine and smooth and S to contain all archimedean places. We may assume that f is a Galois cover of degree $n > 1$, and pick a finite extension L/K such that Y and f are L-defined. For $x \in X(L)$, we let $L(f^{-1}(x))$ denote the extension of L generated by the coordinates of all preimages of x in $Y(\overline{K})$; note that $[L(f^{-1}(x)) : L] \leq n!$. Using the local version of the Chevalley-Weil theorem (cf. [16, Ch. 2, Lemma 8.3]), for which we need f to be unramified, one shows that there exists a finite set of places S_1 of K containing S such that any $v \notin S_1$ is unramified in $L(f^{-1}(x))$ for all $x \in X(\mathcal{O}(S))$. Invoking Hermite’s theorem (cf. [17, p. 122]), we now conclude that there are only finitely many possibilities for $L(f^{-1}(x))$ as x ranges in $X(\mathcal{O}(S))$, and therefore there exists a finite extension L_1/L such that $f^{-1}(X(\mathcal{O}(S))) \subset Y(L_1)$. Enlarging L, we can actually assume that...
$L = L_1$ and L/K is a Galois extension. Also, expanding S if necessary, we can make sure that if $v \notin S$ splits completely in L (i.e., $L \subset K_v$) then
\[(2) \quad X(\mathcal{O}(S)) \subset f_{K_v}(Y(\mathcal{O}_v)). \]

On the other hand, for almost all nonarchimedean places w of L, the reductions $X^{(w)}$ and $Y^{(w)}$ modulo w are smooth irreducible varieties over the residue field ℓ_w, and the reduction $f^{(w)}: Y^{(w)} \rightarrow X^{(w)}$ is an n-sheeted Galois cover. It follows that
\[(3) \quad |f^{(w)}(Y^{(w)}(\ell_w))| = \frac{|Y^{(w)}(\ell_w)|}{n}. \]

Since $X^{(w)}$ and $Y^{(w)}$ are irreducible, by the Lang-Weil theorem [18], the cardinalities $|X^{(w)}(\ell_w)|$ and $|Y^{(w)}(\ell_w)|$ are both “approximately equal” to q_w^d, where $q_w = |\ell_w|$ and d is the common dimension of $X^{(w)}$ and $Y^{(w)}$. Comparing this with (2), we see that for almost all w, the cardinality $|f^{(w)}(Y^{(w)}(\ell_w))|$ is only a fraction of $|X^{(w)}(\ell_w)|$; in particular, $f^{(w)}(Y^{(w)}(\ell_w)) \neq X^{(w)}(\ell_w)$.

Since by Hensel’s lemma, the reduction map $X(\mathcal{O}_w) \rightarrow X^{(w)}(\ell_w)$ is surjective, we obtain that $f_{L_w}(Y(\mathcal{O}_w)) \neq X(\mathcal{O}_w)$.

(in fact, our argument shows that $f_{L_w}(Y(\mathcal{O}_w))$ is “much smaller” than – in some sense, a “fraction” of – $X(\mathcal{O}_w)$).

This discussion, in conjunction with (2), implies that for almost all v that split completely in L, the set $X(\mathcal{O}(S))$ is not dense in $X(\mathcal{O}_v)$. Since by Tchebotarev’s Density Theorem ([17, p. 169]), there are infinitely many v’s that split completely in L, we obtain that X does not have strong approximation with respect to S (and in fact that the closure of $X(\mathcal{O}(S))$ in $\prod_{v \notin S} X(\mathcal{O}_v)$ is very “thin”).

(We note that Minchev [26] points out another necessary condition for strong approximation in a K-variety X (which is much easier to prove): X needs to be (absolutely) irreducible.)

While the proof of Proposition 2.2 for general varieties requires some facts from arithmetic algebraic geometry, there is a much simpler argument in the case of algebraic groups (cf. [33, § 7.4]). Since most readers are likely to be particularly interested in this case, we will explain the idea using the following example. Consider the canonical isogeny
\[\tilde{G} = \text{SL}_2 \xrightarrow{\pi} \text{PSL}_2 = G \]
of algebraic groups over a number field K. By the Skolem-Noether theorem, one can think of G as the automorphism group Aut(M_2) of the degree two matrix algebra. Then for any field extension F/K, again by the Skolem-Noether theorem, we have
\[G(F) = \text{Aut}_F(M_2(F)) = \text{PGL}_2(F). \]
Then there is an exact sequence
\[(4) \quad \tilde{G}(F) \xrightarrow{\pi F} G(F) \xrightarrow{\theta_F} F^\times / F^\times 2 \to 1, \]
where \(\theta_F \) is induced by the determinant, viz. \(gF^\times \mapsto (\det g)F^\times 2 \). (Alternatively, one can think of \(G \) as the special orthogonal group \(\text{SO}_3(q) \) of the Killing form \(q \) on the Lie algebra \(\mathfrak{s}l_2 \) – recall that \(q = 2x^2 + yz \) in the Chevalley basis; then \(\tilde{G} \) can be identified with \(\text{Spin}_3(q) \), and \(\theta_F \) becomes simply the spinor norm map on \(\text{SO}_3(q)(F) \).)

The point is that given any finitely generated subgroup \(\Gamma \subset G(K) \), its image \(\Delta := \theta_K(\Gamma) \) is a finite group. Now, if \(K \) is a number field, it follows from Tchebotarev’s Density Theorem that there are infinitely many nonarithmetic places \(v \) of \(K \) such that the image of \(\Delta \) under the natural map \(K^\times / K^\times 2 \to K^\times_v / K^\times_v 2 \) is trivial. From the exactness of (4) for \(F = K_v \), we conclude that for these \(v \) we have
\[\Gamma \subset \pi_{K_v}(\tilde{G}(K_v)) \neq G(K_v). \]
Applying this to \(\Gamma = G(O(S)) \) (which is finitely generated), we obtain that for almost all such \(v \),
\[G(O(S)) \subset \pi_{K_v}(\tilde{G}(O_v)) \neq G(O_v). \]
The latter implies that the closure of \(G(O(S)) \) in \(\prod_{v \notin S} G(O_v) \) is of infinite index, for any finite set \(S \) of places of \(K \), and hence \(G \) fails to have strong approximation.

This type of argument easily generalizes to prove that if a connected algebraic group \(G \) over a number field \(K \) is not simply connected, then \(G \) fails to have strong approximation for any finite set \(S \) of places of \(K \) (see [33, §7.4] for the details).

Example. Let \(G = \text{GL}_2 \). Set \(\tilde{G} = G \times \mathbb{G}_m \). Then the product map \(\tilde{G} \to G \) is an isogeny of degree 2. Moreover, composing it with the map \(\tilde{G} \to \tilde{G}, \ (g, t) \mapsto (g, t^\ell) \) for \(\ell \geq 1 \), we obtain an isogeny \(\tilde{G} \to G \) of an arbitrary even degree \(2\ell \). On the other hand, the map \(G \to G, \ g \mapsto (\det g)^\ell g \) for \(\ell \geq 1 \), is an isogeny of an arbitrary odd degree \((2\ell + 1) \). Thus, \(G \) has finite-sheeted connected coverings of any degree, in particular, it is not simply connected. In view of the results discussed above, this explains why \(G \) does not have strong approximation with respect to any finite \(S \).

4. Strong approximation theorem. So far, we have identified two necessary conditions for strong approximation in a connected algebraic group \(G \) over a number field \(K \) with respect to a finite set \(S \) of places of \(K \) that contains all archimedean places: the \(S \)-arithmetic subgroups (i.e., subgroups commensurable with \(G(O(S)) \)) must be Zariski-dense, and \(G \) must be simply connected. It turns out that for semi-simple groups, these conditions are also sufficient. Since the general case easily reduces to absolutely almost simple groups (cf. [33 §7.4]), we will give a precise statement of the Strong
Approximation Theorem only for this case (however, we will include global fields of positive characteristic).

Theorem 2.3. (Kneser [15], Platonov [31] in characteristic zero; Margulis [23], [24], Prasad [34] in positive characteristic) Let G be a connected absolutely almost simple algebraic group over a global field K, and let S be a finite set of places of K. Then G has strong approximation with respect to S (i.e., $G(K)$ is dense in $G(A_S)$) if and only if

1. G is simply connected;
2. $G_S := \prod_{v \in S} G(K_v)$ is noncompact.

(We note that for an absolutely almost simple group G, condition (2) is equivalent to $G(O(S))$ being infinite, and hence Zariski-dense in G, cf. [33, Theorem 4.10]. It should also be mentioned that in the statement of the theorem we included only the names of the main contributors; the interested reader will find more historical remarks at the end of §7.4 in [33], and also at the end of the current section.)

Remarks. 1. The condition that G is simply connected is used in the proof of sufficiency in Theorem 2.3 in a very peculiar way that is totally unrelated to the above considerations showing that simply connectedness is necessary for strong approximation. More precisely, what we need is the fact that for all $v \notin S$ such that G is K_v-isotropic (i.e., has positive rank over K_v), the group $G(K_v)$ does not have proper (abstract) subgroups of finite index (see §2.6). It turns out that in the situation at hand, for G simply connected, the group $G(K_v)$ does not, in fact, have any proper noncentral normal subgroups. To put this result in perspective, we recall the result of Tits [15] asserting that given an absolutely almost simple isotropic algebraic group G over a field P with ≥ 4 elements, the subgroup $G(P)^+$ of $G(P)$ generated by the P-rational points of P-defined parabolics, does not have any proper noncentral normal subgroups. In the same paper, Tits proposed a conjecture, which later became known as the Kneser-Tits conjecture, that actually $G(P)^+ = G(P)$ if G is simply connected. While over general fields this conjecture turned out to be false (cf. Platonov [32]), it was proved by Platonov [31] to hold over nonarchimedean local fields of characteristic zero (i.e., finite extensions of the p-adic field Q_p); over \mathbb{R} this fact was established much earlier by E. Cartan (cf. [33, Proposition 7.6]).

This connection between strong approximation and the Kneser-Tits conjecture was the centerpiece of Platonov’s paper [31]. We will see another manifestation of this connection in the analysis of strong approximation for arbitrary Zariski-dense subgroups (cf. §4, although in a different setting (viz., over finite fields). On the other hand, over a local or a finite field P, we have $G(P)^+ \neq G(P)$ if G is not simply connected, and hence in this case $G(P)$ does have proper noncentral normal subgroups (of finite index). This is where the proof of Theorem 2.3 and the corresponding argument in §6 breaks down if one drops the assumption that G is simply connected.
Finally, we remark that the Kneser-Tits conjecture has generated a lot of research not associated with strong approximation - see Gille [9] for a recent survey.

2. The effect of non-simply connectedness on strong approximation with respect to a finite set S is different for tori and semi-simple groups: for a K-torus T, the quotient $T(\mathbb{A}_S)/T(K)$ by the closure of the group of rational points has infinite exponent (Proposition 2.1), while, as follows from Theorem 2.3, for a connected absolutely almost simple non-simply connected K-group G with a universal K-defined cover $\tilde{G} \to G$ such that the group \tilde{G}_S is not compact, the closure $\overline{G(K)} \subset G(\mathbb{A}_S)$ is a normal subgroup with the infinite quotient $G(\mathbb{A}_S)/G(K)$ having finite exponent. (This distinction, of course, reflects the fact that the (algebraic) fundamental group of G is finite, while that of T is infinite.)

3. A connected K-group G may have strong approximation with respect to certain infinite sets S of places of K without being simply connected. For example, in [35], we examined in this context strong approximation in tori (which can never be valid for finite S - see Proposition 2.1). To avoid technical definitions, we will just indicate what our results give in the case of the 1-dimensional split torus $T = \mathbb{G}_m$ over $K = \mathbb{Q}$: If S is an infinite set of places of K that contains the p-adic places for almost all primes p in a certain arithmetic progression, then the closure $\overline{T(\mathbb{Q})}$ of $T(\mathbb{Q})$ in the group of S-adeles $T(\mathbb{A}_S)$ is of finite index. The result for general tori is basically the same but contains one important exclusion that has to do with how the arithmetic progression interacts with the splitting field of the torus. This fact is instrumental for the analysis of the congruence subgroup problem: it implies, in particular, that if G is an absolutely almost simple simply connected algebraic group over a number field K, which is an inner form, and S is a set of places of K that contains all archimedean places and also almost all places in a certain generalized arithmetic progression, then the corresponding congruence kernel $C^S(G)$ is trivial, i.e. every subgroup of finite index in $G(O(S))$ contains a suitable congruence subgroup (provided that $G(K)$ has a standard description of normal subgroups), see [39].

4. For general affine varieties, the analogs of conditions (1) and (2) in Theorem 2.3 may not be sufficient for strong approximation, even in homogeneous spaces.

Example. Let $f(x, y, z) = ax^2 + by^2 + cz^2$ be the nondegenerate ternary quadratic form over a number field K, and let $X \subset \mathbb{A}^3$ be a quadric given by $f(x, y, z) = a$. Set $g(x, y) = by^2 + cz^2$. Let S be a finite set of places of K such that $X_S = \prod_{v \in S} X(K_v)$ is noncompact (equivalently, for some $v \in S$ the form f is K_v-isotropic). Then (see § 2.5 below) X has strong approximation with respect to S if and only if one of the following two conditions holds:

(a) g is K-isotropic;
(b) g is K-anisotropic and there exists $v \in S$ such that g remains anisotropic over K_v and either v is nonarchimedean or f is K_v-isotropic.

It follows that a rational quadric X defined by $x_1^2 + x_2^2 - 2x_3^2 = 1$ (which is simply connected) does not have strong approximation with respect to $S = \{\infty\}$.

5. Strong approximation in homogeneous spaces. The fact quoted in the above example is a consequence of the analysis of strong approximation in (affine) homogeneous spaces of algebraic groups. Since these results (cf. [2], [40]; a detailed exposition of [40] was given in [42]) are not as widely known as Theorem 2.3, we briefly mention some of them here for the sake of completeness. The fact that only connected simply connected varieties have a chance to possess strong approximation, by and large, forces us to focus our attention of homogeneous spaces of the form $X = G/H$ where G is a semi-simple simply connected algebraic K-group, and H is a K-defined connected reductive subgroup (any such variety is affine and simply connected). Furthermore, given a set S of places of K, it is not difficult to show that for such X, the space X_S is noncompact if and only if G_S is noncompact. Assuming now that G is actually absolutely almost simple, we conclude from Theorem 2.3 that G has strong approximation with respect to S (for a general semi-simple group G we need to consider its simple components). Then using Galois cohomology one investigates when strong approximation in G implies strong approximation in $X = G/H$. Here is one easy result in this direction.

Proposition 2.4. ([40]) Let $X = G/H$ be the quotient of a connected absolutely almost simple simply connected algebraic group G defined over a number field K by a connected semi-simple simply connected K-subgroup H. Then X has strong approximation with respect to a finite set S of places of K if and only the space $X_S = \prod_{v \in S} X(K_v)$ is noncompact.

Now, let $q = q(x_1, \ldots, x_n)$ be a nondegenerate quadratic form in $n \geq 3$ variables. Consider the quadric $X \subset A^n$ given by the equation $q(x_1, \ldots, x_n) = a$ for some $a \in K^\times$. Assuming that $X(K) \neq \emptyset$, pick $x \in X(K)$. Then $X = G/H$ where $G = \text{Spin}_n(q)$ and $H = G(x)$ (the stabilizer of x); note that $H \simeq \text{Spin}_{n-1}(q')$ where q' is the restriction of q to the orthogonal complement of x. So, it follows from Proposition 2.3 that for $n \geq 5$, the quadric X has strong approximation with respect to X if and only if there exists $v \in S$ such that q is K_v-isotropic. The same result remains valid for $n = 4$ even though in this case G is not absolutely almost simple. (Incidentally, this result applies to the equation that defines SL_2 (cf. § 1.2), yielding thereby another proof of strong approximations for this group, cf. Lemma 1.2.)

The case $n = 3$ is different as here H is a torus. This case can also be treated in a rather explicit form using the results of Nakayama-Tate on the Galois cohomology of tori. More precisely, let T be a K-torus, and let L
be the splitting field of T. As usual, given a module M over the Galois group $\text{Gal}(L/K)$, we let $H^i(L/K, M)$ denote the Galois cohomology group $H^i(\text{Gal}(L/K), M)$. Given a finite set S of places of K, we let \mathfrak{S} denote the set of all extensions of places in S to L, and let \mathbb{A}_L and $\mathbb{A}_{L, \mathfrak{S}}$ denote the rings of adeles and \mathfrak{S}-adeles of L. Finally, let $c_L(T) = T(\mathbb{A}_L)/T(L)$ be the adele class group of T over L, and let

$$\delta: H^1(L/K, T(\mathbb{A}_L)) \longrightarrow H^1(L/K, c_L(T))$$

be the corresponding map on cohomology. Then, viewing $T_{\mathfrak{S}}$ and $T(\mathbb{A}_{L, \mathfrak{S}})$ as subgroups of $T(\mathbb{A}_L)$, we have the following statement.

Proposition 2.5. (\cite{40}) Let $X = G/T$, where G is an absolutely almost simple simply connected K-group and $T \subset G$ is a K-torus. Then X has strong approximation with respect to a finite set S of places of K if and only if X_S is noncompact and

$$\delta \left(H^1(L/K, T(\mathbb{A}_L)) \right) \subset \delta \left(\ker \left(H^1(L/K, T_{\mathfrak{S}}) \rightarrow H^1(L/K, G_{\mathfrak{S}}) \right) \right),$$

where L is the splitting field of T and \mathfrak{S} consists of all extensions of places in S to L.

This proposition yields the criterion for strong approximation for the quadrics defined by ternary forms we used in Remark 4 of §\,2.4. It also implies that for $X = G/T$, one can find a finite set of places S_0 (depending on T) such that X has strong approximation with respect to S whenever $S \supset S_0$. It turns out that this qualitative statement remains valid for quotients by arbitrary connected reductive subgroups. More precisely, using some ideas that eventually led him to theorems of the Nakayama-Tate type for Galois cohomology of arbitrary connected groups, Borovoi proved the following.

Proposition 2.6. (\cite{2}) Let $X = G/H$ be the quotient of a connected absolutely almost simple algebraic group G over a number field K by its connected reductive K-defined subgroup H. There exists a finite set S_0 of places of K such that X has strong approximation with respect to S_0 (and then, of course, it also has strong approximation with respect to any $S \supset S_0$).

We remark in passing that the results on strong approximation in homogeneous spaces were used to extend Kneser’s method for proving the centrality of the congruence kernel for spinor groups to groups of other classical types as well as G_2 \cite{40, 11, 42} (cf. also \cite{17, 15}), to establish bounded generation of some S-arithmetic subgroups in orthogonal groups \cite{8}, and to study some Diophantine questions involving quadratic forms \cite{9} (we should mention that the results of the latter work were recently generalized in \cite{7} where the deviation from strong approximation in a connected K-group G has been expressed in terms of a certain subquotient of the Brauer group of G).
6. **On the proof of sufficiency in Theorem 2.3**. We begin with the following statement that applies to arbitrary Zariski-dense subgroups.

Lemma 2.7. Let G be an absolutely almost simple algebraic \mathbb{Q}-group, and let $\Gamma \subset G(\mathbb{Z})$ be a Zariski-dense subgroup of G. Then for any prime p, the closure $\overline{\Gamma}^{(p)} \subset G(\mathbb{Z}_p)$ is open.

Proof. Let \mathfrak{g} be the Lie algebra of G as an algebraic group, so that $\mathfrak{g}_{\mathbb{Q}_p}$ is the Lie algebra of $G(\mathbb{Z}_p)$ as a p-adic analytic group. By a theorem of Cartan (cf. [33, Theorem 3.4]), $\Delta := \overline{\Gamma}^{(p)}$ is a p-adic Lie group, of positive dimension as Γ is non-discrete in $G(\mathbb{Z}_p)$ (the discreteness would force it to be finite, and therefore prevent it from being Zariski-dense). So, the Lie algebra \mathfrak{h} of Δ as a p-adic analytic group is a nonzero \mathbb{Q}_p-subalgebra of $\mathfrak{g}_{\mathbb{Q}_p}$. Clearly, \mathfrak{h} is invariant under $\text{Ad} \Gamma$, so the Zariski-density of Γ in G implies that $\mathfrak{h} \otimes_{\mathbb{Q}_p} \mathbb{Q}_p$ is invariant under $\text{Ad} G$. Since the adjoint representation of G on \mathfrak{g} is irreducible, we conclude that $\mathfrak{h} = \mathfrak{g}_{\mathbb{Q}_p}$, and therefore Δ is open in $G(\mathbb{Z}_p)$ by the Implicit Function Theorem. \hfill \Box

As we will discuss at the beginning of § 3, this lemma, though useful, falls short of proving any definite form of strong approximation. We will now indicate additional considerations needed to prove the sufficiency in Theorem 2.3 in characteristic zero, following Platonov’s original argument [31]. Let us assume that S contains all archimedean valuations of K. In this case, it is easy to see from the definition of the topology on $G(A_S)$ that strong approximation is equivalent to the following statement:

for any finite set of places S_1 of K which is disjoint from S, the group $G(O(S \cup S_1))$ is dense in $G_{S_1} := \prod_{v \in S_1} G(K_v)$.

To showcase the idea, we will now prove this statement in the case where $K = \mathbb{Q}$ and $S_1 = \{p\}$, a single p-adic place such that G is \mathbb{Q}_p-isotropic - see [33, §7.4] for the general case. First, by the reduction theory for S-arithmetic groups, $G(O(S \cup S_1))$ is a lattice (i.e., a discrete subgroup of finite covolume) in $G_{S \cup S_1}$, see [33, Theorem 5.7]. Since by assumption the group G_S is non-compact, it is not difficult to show (cf. [33, Lemma 3.17]) that $G(O(S \cup S_1)) \subset G(\mathbb{Q}_p)$ is nondiscrete (in particular, infinite), and if Δ denotes the p-adic closure $G(O(S \cup S_1))^{(p)}$ then $G(\mathbb{Q}_p)/\Delta$ carries a finite invariant measure. Next, the fact that $G(O(S \cup S_1))$ is infinite implies that it is actually Zariski-dense in G (Borel’s Density Theorem, cf. [33, Theorem 4.10]). Taking into account the nondiscreteness of $G(O(S \cup S_1))$ in $G(\mathbb{Q}_p)$ and repeating the proof of Lemma 2.7, we conclude that Δ is open in $G(\mathbb{Q}_p)$. Then the existence of a finite invariant measure on $G(\mathbb{Q}_p)/\Delta$ implies that $\Delta \subset G(\mathbb{Q}_p)$ is a subgroup of finite index. On the other hand, since the group G is connected, absolutely almost simple, simply connected and \mathbb{Q}_p-isotropic, by the Kneser-Tits conjecture over p-adic fields we have $G(\mathbb{Q}_p) = G(\mathbb{Q}_p)^+$, and therefore the group $G(\mathbb{Q}_p)$ does not have any proper noncentral normal
subgroup. In particular, it does not contain any proper subgroups of finite index, and we obtain that $\Delta = G(\mathbb{Q}_p)$, as required.

This argument breaks down in positive characteristic, first and foremost, because Cartan’s theorem, which is at the heart of the proof of Lemma 2.7, is valid only in characteristic zero. It should be mentioned that eventually Pink [28] proved a result which in some sense can be viewed as an analog (or replacement) of Cartan’s theorem. The precise general statement is too technical for us to discuss here, so we will only indicate what it yields in one particular case (see Theorem 0.7 in [28]): Let G be an absolutely simple connected adjoint group over a local field F, and assume that the adjoint representation of G is irreducible. If $\Gamma \subset G(F)$ is a compact Zariski-dense subgroup, then there exists a closed subfield $E \subset F$ and a model H of G over E such that Γ is open in $H(E)$. This sort of result can be used to prove Theorem 2.3 in positive characteristic, but the original argument given virtually simultaneously by Margulis [23] and Prasad [34], was different. They derived strong approximation (arguing along the lines indicated above) from the following statement:

Let G be a connected semi-simple algebraic group over a local field F, and let $H \subset G(F)$ be a non-discrete closed subgroup such that $G(F)/H$ carries a finite invariant Borel measure. Then $H \supset G(F)^+$. Their argument used ergodic considerations and representation theory. More than 25 years later, Pink [30] used his results from [28] to give a purely algebraic proof of this theorem, and hence of strong approximation.

3. Strong approximation for Zariski-dense subgroups

1. Overview. The Strong Approximation Theorem 2.3 gives us precise information about the adelic closure of S-arithmetic subgroups: for example, if G is an algebraic \mathbb{Q}-group that has strong approximation with respect to $S = \{\infty\}$ then for any matrix realization of G, the group $G(\mathbb{Z})$ is dense in $G(\hat{\mathbb{Z}}) = \prod_p G(\mathbb{Z}_p)$ - cf. §2. At the same time, as we explained in §1, one can expect a general qualitative openness result for the adelic closure of an arbitrary Zariski-dense subgroup. The goal of this section is to discuss some results in this direction.

First, we note one consequence of Lemma 2.7. Let G be a connected absolutely almost simple algebraic \mathbb{Q}-group, and let $\Gamma \subset G(\mathbb{Z})$ be a Zariski-dense subgroup of G. Then using the fact that $G(\mathbb{Z}_p)$ is a virtually pro-p group, one easily deduces from Lemma 2.7 that given a finite set S of distinct primes, the closure

$$\overline{\Gamma}^{(S)} = \prod_{p\in S} G(\mathbb{Z}_p)$$

is open. This statement is already sufficient for some applications; for example, it was used in [36] to prove the existence of generic elements in arbitrary
finitely generated Zariski-dense subgroups $\Gamma \subset G(K)$, where G is a semi-simple algebraic group over a finitely generated field K of characteristic zero; see \[10\], \[13\] and \[21\] for more recent work in this direction. (In his talk at the workshop, G. Prasad surveyed applications of generic elements to the analysis of isospectral locally symmetric spaces, cf. \[37\], \[38\].) On the other hand, if we take S to be the set of all primes, the best we can get from Lemma 2.7 is the following:

$$\text{the closure } \hat{\Gamma} \text{ of } \Gamma \text{ in } G(\hat{\mathbb{Z}}) = \prod_p G(\mathbb{Z}_p) \text{ contains } \prod_p W_p$$

where $W_p \subset G(\mathbb{Z}_p)$ is open for each p. (∗)

Of course, this does not imply that $\hat{\Gamma}$ is open in $G(\hat{\mathbb{Z}})$ - for this we need to show that actually $W_p = G(\mathbb{Z}_p)$ for almost all p. The first general result in this direction was the following.

Theorem 3.1. (Matthews, Vaserstein, Weisfeiler \[25\]) Let G be a connected absolutely almost simple simply connected algebraic group over \mathbb{Q}.

1. If $\Gamma \subset G(\mathbb{Z})$ is a Zariski-dense subgroup, then the closure $\hat{\Gamma} \subset G(\hat{\mathbb{Z}})$ is open.

2. If $\Gamma \subset G(\mathbb{Q})$ is a finitely generated Zariski-dense subgroup, then for some finite set S of places of \mathbb{Q} containing ∞, the closure of Γ in the group of S-adeles $G(A_S)$ is open.

The paper \[25\] appeared in 1984, but the interest in these sorts of results arose at least 20 years earlier in connection with the study of Galois representations on torsion points of elliptic curves. In fact, in his book \[43\] on ℓ-adic representations, Serre pretty much had this theorem for $G = SL_2$ (at least, all the ingredients of the proof were there).

Parts (1) and (2) are proved in the same way, so let us focus our discussion on the proof of (1) as this will allow us to keep our notations simple. First, it enough to prove that for almost all primes p, the closure $\Gamma(p) \subset G(\mathbb{Z}_p)$ coincides with $G(\mathbb{Z}_p)$. This reduction step is achieved using (∗) in conjunction with the fact that for almost all primes p, the group G has a smooth reduction $G^{(p)}$ modulo p and the groups $G^{(p)}(\mathbb{F}_p)$ are pairwise non-isomorphic almost simple groups (for the reader who is interested only in the case $G = SL_n$, we will indicate that here, of course, $G^{(p)} = SL_n/\mathbb{F}_p$, and the structural facts quoted above are well-known). Next, it turns out that for almost all p, proving that $\Gamma(p) = G(\mathbb{Z}_p)$ reduces to showing that the reduction map $\rho_p: G(\mathbb{Z}_p) \to G^{(p)}(\mathbb{F}_p)$ has the property $\rho_p(\Gamma) = G^{(p)}(\mathbb{F}_p)$.

Proposition 3.2. (cf. \[25\] 7.3) For almost all p, if $\Delta \subset G(\mathbb{Z}_p)$ is a closed subgroup such that $\rho_p(\Delta) = G^{(p)}(\mathbb{F}_p)$ then $\Delta = G(\mathbb{Z}_p)$.

The proof for $G = SL_2$ was given by Serre \[43\] Ch. IV, 3.4].
Lemma 3.3. Let $\Delta \subset SL_2(\mathbb{Z}_p)$, where $p > 3$, be a closed subgroup such that for the reduction map $\rho_p: SL_2(\mathbb{Z}_p) \to SL_2(\mathbb{F}_p)$ we have $\rho_p(\Delta) = SL_2(\mathbb{F}_p)$. Then $\Delta = SL_2(\mathbb{Z}_p)$.

Proof. By assumption, there exists $g \in \Delta$ such that

$$g = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + ps \quad \text{with} \quad s \in M_2(\mathbb{Z}_p).$$

We claim that

$$(5) \quad g^p = \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix} + p^2 t \quad \text{with} \quad t \in M_2(\mathbb{Z}_p).$$

Indeed,

$$g^p = \left(I_2 + \left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + ps \right) \right)^p = I_2 + p \left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + ps \right) + \binom{p}{2} \left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + ps \right)^2 + \cdots + \left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + ps \right)^p.$$

But clearly

$$\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + ps \right)^k \equiv O_2(\text{mod } p) \quad \text{for any } \quad k \geq 2,$$

and in fact

$$\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + ps \right)^k \equiv O_2(\text{mod } p^2) \quad \text{for any } \quad k \geq 4$$

as $\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right)^2 = O_2$ (the zero matrix). So, since $p > 3$, the equation (5) follows.

As $g^p \in \Delta$, we conclude from (5) that the image Φ of the intersection $\Delta \cap SL_2(\mathbb{Z}_p, p)$ with the congruence subgroup modulo p in

$$SL_2(\mathbb{Z}_p, p)/SL_2(\mathbb{Z}_p, p^2) \simeq \mathfrak{sl}_2(\mathbb{F}_p),$$

where \mathfrak{sl}_2 is the Lie algebra of SL_2 (i.e., 2×2-matrices with trace zero), is nontrivial. On the other hand, Φ is obviously invariant under Δ, and as $\rho_p(\Delta) = SL_2(\mathbb{F}_p)$, it is actually invariant under $SL_2(\mathbb{F}_p)$. But since $p \neq 2$, the group $SL_2(\mathbb{F}_p)$ acts on $\mathfrak{sl}_2(\mathbb{F}_p)$ irreducibly, implying that $\Delta \cap SL_2(\mathbb{Z}_p, p)$ surjects onto $SL_2(\mathbb{Z}_p, p)/SL_2(\mathbb{Z}_p, p^2)$. Therefore, $SL_2(\mathbb{Z}_p, p)$ is in fact the Frattini subgroup of the pro-p group $SL_2(\mathbb{Z}_p, p)$, so the latter fact implies that $\Delta \cap SL_2(\mathbb{Z}_p, p) = SL_2(\mathbb{Z}_p, p)$, and our claim follows. \hfill \square

The general case in Proposition 3.2 is obtained by reduction to the case of SL_2. For this one observes that the group G is quasi-split, and therefore $G(\mathbb{Z}_p)$ contains $H = SL_2(\mathbb{Z}_p)$, for almost all p. We refer the reader to [25] for further details. (Note that one needs to argue a bit more carefully on p. 529 in [25] to make sure that $\Delta \cap H$ maps onto $SL_2(\mathbb{F}_p)$ surjectively; this can be achieved by choosing a special H.)
So, to complete the proof of (both parts of) Theorem 3.1 one needs to prove the following.

Theorem 3.4. Let G be a connected absolutely almost simple simply connected algebraic group over \mathbb{Q}, and let $\Gamma \subset G(\mathbb{Q})$ be a finitely generated Zariski-dense subgroup. Then there exists a finite set of primes $\Pi = \{p_1, \ldots, p_r\}$ such that

1. $\Gamma \subset G(\mathbb{Z}_\Pi)$ where $\mathbb{Z}_\Pi = \mathbb{Z}\left[\frac{1}{p_1}, \ldots, \frac{1}{p_r}\right]$;
2. for $p \notin \Pi$ there exists a smooth reduction $G^{(p)}$;
3. if $p \notin \Pi$ and $\rho_p : G(\mathbb{Z}_p) \to G^{(p)}(\mathbb{F}_p)$ is the corresponding reduction map then $\rho_p(\Gamma) = G^{(p)}(\mathbb{F}_p)$.

The conditions (1) and (2) are routine (in fact, (1) holds automatically if $\Gamma \subset G(\mathbb{Z})$), so the main point is to ensure condition (3). The general idea is the following. Let \mathfrak{g} and $\mathfrak{g}^{(p)}$ be the Lie algebras of G and $G^{(p)}$. Since Γ is Zariski-dense in G, we conclude that $\text{Ad} \Gamma$ acts on $\mathfrak{g}_\mathbb{Q}$ absolutely irreducibly. By Burnside’s Theorem this means that $\text{Ad} \Gamma$ spans $\text{End}_\mathbb{Q} \mathfrak{g}_\mathbb{Q}$ as a \mathbb{Q}-vector space. Excluding finitely many primes, we can achieve that for any of the remaining primes p, the group $\text{Ad} \rho_p(\Gamma)$ acts on $\mathfrak{g}^{(p)}_{\mathbb{F}_p}$ absolutely irreducibly. This eventually implies that for almost all p we have $\rho_p(\Gamma) = G^{(p)}(\mathbb{F}_p)$. This implication would be obvious if we could say that $\rho_p(\Gamma)$ is necessarily of the form $H(\mathbb{F}_p)$, where $H \subset G^{(p)}$ is some connected algebraic \mathbb{F}_p-subgroup. (Indeed, then the Lie algebra \mathfrak{h} of H would be a nonzero $\rho_p(\Gamma)$-invariant subspace of $\mathfrak{g}^{(p)}$, so $\mathfrak{h} = \mathfrak{g}^{(p)}$ and $H = G^{(p)}$, as $G^{(p)}$ is connected for almost all p, yielding the required fact.) Of course, such an a priori description of $\rho_p(\Gamma)$ would be too much to hope for, but important information along these lines, which is sufficient for the proof of Theorem 3.4, is contained in a theorem due to Nori [27].

2. **Theorem of Nori.** Let H be an arbitrary subgroup of $GL_n(\mathbb{F}_p)$. Set $$X = \{x \in H \mid x^p = 1\}$$ (we will write 1 in place of I_n to simplify notations). Note that if we assume that $p > n$ (which we will throughout this subsection), then the condition $x^p = 1$ characterizes precisely unipotent elements, i.e. is equivalent to the condition $(x - 1)^n = 0$. For $x \in X$, we can define $$\log x := -\sum_{i=1}^{p-1} \frac{(1 - x)^i}{i}.$$ Furthermore, observing that $(\log x)^n = 0$, we see that for any $t \in \mathbb{F}_p$ (algebraic closure), we can define $$x(t) := \exp(t \cdot \log x) \text{ where } \exp z = \sum_{i=0}^{p-1} \frac{z^i}{i!}.$$
(note that $x(1) = x$). We will regard $x(t)$ as a 1-parameter subgroup $G_a \to \text{GL}_n$. Set

$$H^+ = \langle X \rangle \subset H,$$

and let \overline{H} denote the connected \mathbb{F}_p-subgroup of GL_n generated by the 1-parameter subgroups $x(t)$ for all $x \in X$.

Theorem 3.5. ([27]) If p is large enough (for a given n), then H^+ coincides with $\overline{H}(\mathbb{F}_p)^+$, the subgroup of $\overline{H}(\mathbb{F}_p)$ generated by all unipotents contained in it.

Thus, Nori’s theorem asserts that if p is large enough compared to n, then any subgroup of $GL_n(\mathbb{F}_p)$ generated by p-elements is essentially the group of \mathbb{F}_p-points of some connected \mathbb{F}_p-defined algebraic subgroup of GL_n. Actually, in his paper [27], Nori proves a stronger result stating that for a field F which either has characteristic zero or positive characteristic p that is large enough compared to n, the maps log and exp yield bijective correspondences between nilpotently generated Lie subalgebras of $M_n(F)$ and exponentially generated subgroups of $GL_n(F)$ (we refer the reader to the original paper [27] for precise definitions and detailed statements of these results). The argument in [27] was based on algebro-geometric ideas; a different proof was given by Hrushovski and Pillay [12] using model-theoretic techniques (the idea of their argument is explained in [22, pp. 399-400]). A vast generalization of Nori’s theorem is contained in a recent paper of Larsen and Pink [19] describing the structure of finite linear groups over fields of positive characteristic.

Given the nature of this article, we will not be able to discuss any details of Nori’s argument. All we can offer as compensation is a proof of Nori’s results for $GL_2(\mathbb{F}_p)$.

Lemma 3.6. Let $H \subset GL_2(\mathbb{F}_p)$ be a subgroup of order divisible by p, and let $H_p \subset H$ be a Sylow p-subgroup. Then either $H_p \triangleleft H$ or $H \supset SL_2(\mathbb{F}_p)$.

Proof. We may assume that H_p coincides with

$$U := \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{F}_p \right\}.$$

It is well-known that the normalizer of U in $GL_2(\mathbb{F}_p)$ coincides with $B = TU$ where

$$T := \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in \mathbb{F}_p^\times \right\}.$$

Furthermore, we have the Bruhat decomposition

$$GL_2(\mathbb{F}_p) = B \cup BwB$$

(recall that w normalizes T). Now, if H_p is not normal in H, then it follows from the Bruhat decomposition that H contains an element of the form tw
with \(t \in T \). Consequently, it also contains

\[
U^- := (tw)^{-1}U(tw) = \left\{ \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \mid a \in \mathbb{F}_p \right\}.
\]

But \(\langle U, U^- \rangle = SL_2(\mathbb{F}_p) \), and our assertion follows. \(\square \)

So, for any subgroup \(H \subset GL_2(\mathbb{F}_p) \), we have only the following three possibilities:

1. \(H^+ = \{1\}; \)
2. \(H^+ \) is conjugate to \(U; \)
3. \(H^+ = SL_2(\mathbb{F}_p). \)

In either case, the assertion of Nori’s Theorem is valid.

3. Proof of Theorem 3.4. Recall that the famous Jordan Theorem states the following:

There exists a function \(j(n) \) on positive integers such that if \(\mathcal{G} \subset GL_n(K) \) is a finite linear group over a field \(K \) of characteristic zero, then \(\mathcal{G} \) contains an abelian normal subgroup \(\mathcal{N} \) such the index \([\mathcal{G} : \mathcal{N}] \) divides \(j(n) \).

(In a more common form, Jordan’s Theorem provides a function \(j_0(n) \) for which \(\mathcal{G} \), \(\mathcal{N} \) as above satisfy \([\mathcal{G} : \mathcal{N}] \leq j_0(n) \); note that given such a function \(j_0(n) \), the above statement holds with \(j(n) = (j_0(n))! \).

What we need to observe for the proof of Theorem 3.4 is that the assertion of Jordan’s theorem remains valid (with the same \(j(n) \)) for any subgroup \(\mathcal{G} \subset GL_n(\mathbb{F}_p) \) of order not divisible by \(p \).

Indeed, consider the reduction modulo \(p \) map \(\rho: GL_n(\mathbb{Z}_p) \rightarrow GL_n(\mathbb{F}_p) \). The kernel Ker \(\rho = GL_n(\mathbb{Z}_p,p) \) is a pro-\(p \)-group, so since the order of \(\mathcal{G} \subset GL_n(\mathbb{F}_p) \) is prime to \(p \) there is a section \(\sigma: \mathcal{G} \rightarrow GL_n(\mathbb{Z}_p) \) for \(\rho \) over \(\mathcal{G} \). Applying the standard Jordan theorem for characteristic zero to \(\tilde{\mathcal{G}} := \sigma(\mathcal{G}) \), we obtain the corresponding assertion for \(\mathcal{G} \). (For the sake of completeness, we would like to indicate that there are various “modular” forms of Jordan’s theorem that treat finite subgroups \(\mathcal{G} \subset GL_n(K) \) of order divisible by \(p \) where \(p = \text{char} \ K \), starting with [3] - see [5], [50] for subsequent results (we also note that [1] provides a generalization to algebraic groups). As we have already mentioned, the most general results about finite linear groups in positive characteristic are contained in [19].)

Now, suppose that \(\mathcal{G} \subset GL_n \). Let \(j = j(n) \) be the value of the Jordan function for this \(n \). Set

\[
\Gamma(j) = \langle \gamma^j \mid \gamma \in \Gamma \rangle,
\]

\footnote{Various sources give different expressions for a Jordan function \(j_0(n) \); the optimal function is known to be \(j_0(n) = (n + 1)! \) for \(n \geq 71 \) - see [1].}
and $\Phi = [\Gamma(j), \Gamma(j)]$. Since the regular map $G \to G, x \mapsto x^j$, is dominant, and $G = [G, G]$, we conclude that Φ is Zariski-dense in G, in particular, it is nontrivial. Then, by expanding Π, which initially needs to be chosen to satisfy conditions (1) and (2) of the theorem, we may assume that for all $p \notin \Pi$ we have $\rho_p(\Phi) \neq \{1\}$ where $\rho_p : G(\mathbb{Z}_p) \to G(p)(\mathbb{F}_p)$ is the reduction modulo p map. In addition, as we explained earlier, by expanding Π further, we may assume for $p \notin \Pi$, the group $\text{Ad}_{\rho_p(\Gamma)}$ acts on $\mathfrak{g}(p)$ (= the Lie algebra of $G(p)$) absolutely irreducibly, and also Nori’s theorem is applicable to $GL_n(\mathbb{F}_p)$. We will now show that the resulting Π is as required.

Let $p \notin \Pi$, and set $H = \rho_p(\Gamma) \subset GL_n(\mathbb{F}_p)$. First, we observe that p divides the order of H. Indeed, otherwise by the version of Jordan’s theorem mentioned above, there would exist an abelian normal subgroup $N \subset H$ of index dividing j. Then $\rho_p(\Gamma(j)) \subset N$, and therefore $\rho_p(\Phi) = \{1\}$, a contradiction. This means that if we define H^+ and \tilde{H} as in the Nori’s theorem, then $\tilde{H} \neq \{1\}$, and hence the Lie algebra \mathfrak{h} of \tilde{H} is a nonzero subspace of $\mathfrak{g}(p)$. On the other hand, by our construction, \tilde{H} is normalized by $\rho_p(\Gamma)$, so the space \tilde{h} is $\text{Ad}_{\rho_p(\Gamma)}$-invariant. Combining this with the absolute irreducibility of the latter, we obtain that $\tilde{h} = \mathfrak{g}(p)$, i.e. $\tilde{H} = G(p)$. Furthermore, since G is simply connected, so is $G(p)$, and therefore by the affirmative answer to the Kneser-Tits conjecture over finite fields, we have $G(p)(\mathbb{F}_p) = G(p)(\mathbb{F}_p)^+$. Invoking Nori’s theorem, we obtain

$$H = \tilde{H}(\mathbb{F}_p)^+ = G(p)(\mathbb{F}_p)^+ = G(p)(\mathbb{F}_p),$$

as required. \hfill \Box

Remarks. 1. The proof of Theorem 3.4 sketched above is based on Nori’s paper [27], and is different from the original argument in [25]. The interested reader can find an outline of this argument (which relied on the classification of finite simple groups in [22, pp. 397-398]).

2. Combining Lemmas 3.3, 3.6 with the above argument, we obtain a virtually complete proof of Theorem 3.1 for $G = \text{SL}_2$, which, as we have pointed out earlier, was essentially present already in Serre’s book [43].

3. It is worth pointing out that the simply connectedness of G was again used to conclude that the group $G(p)(\mathbb{F}_p)$ is generated by unipotent elements. This is yet another manifestation of the connection between strong approximation and the Kneser-Tits conjecture that was first pointed out by Platonov [31].

4. During the workshop, I. Rivin asked if one can give an explicit bound $N = N(\Gamma)$ such that for any $p > N$ we have $\rho_p(\Gamma) = G(p)(\mathbb{F}_p)$. In ongoing work with my student A. Morgan, we have been able to produce some bounds of this kind. More precisely, for $g = (g_{ij}) \in SL_n(\mathbb{Z})$, set

$$||g|| = \max_{i,j} |g_{ij}|.$$

Furthermore, given a Zariski-dense subgroup $\Gamma = \langle g_1, \ldots, g_d \rangle \subset SL_n(\mathbb{Z})$, set

$$m = \max_{k=1,\ldots,d} ||g_k||.$$

Then there exists $N = N(d, m, n)$ such that for any prime $p > N$ we have $\rho_p(\Gamma) = SL_n(\mathbb{F}_p)$. However, at the time of this writing our bounds are too large to be of practical use.

4. Weisfeiler’s theorem. A far-reaching generalization of Theorem 3.1 was given by B. Weisfeiler [49]. We will state his result using the original notations (which are somewhat different from the notations used in the rest of our article).

Theorem 3.7. ([49]) Let k be an algebraically closed field of characteristic different from 2 and 3, and let G be an almost simple, connected and simply connected algebraic group defined over k. Let Γ be a Zariski-dense finitely generated subgroup of $G(k)$, and let A be the subring of k generated by the traces $\text{tr } \text{Ad } \gamma$, $\gamma \in \Gamma$. Then there exists $b \in A$, a subgroup $\Gamma' \subset \Gamma$, and a structure $G_A b$ of a group scheme over A on G such that $\Gamma' \subseteq G_A b$ and Γ' is dense in $G_A b(\hat{A}_b)$.

(Here A_b denotes the localization of A with respect to b, and \hat{A}_b the profinite completion of the ring A_b, i.e., the completion with respect to the topology given by all ideals of finite index. To connect this with our previous results, we note that for $A = \mathbb{Z}$, the ring A_b coincides with $\mathbb{Z}[\frac{1}{p_1}, \ldots, \frac{1}{p_r}]$ where p_1, \ldots, p_r are the primes dividing b, and the completion \hat{A}_b is precisely $\prod_{p \notin \{p_1, \ldots, p_r\}} \mathbb{Z}_p$, i.e. the ring of integral S-adeles for $S = \{\infty, p_1, \ldots, p_r\}$.)

In characteristic 2 and 3, one encounters additional problems due to the existence of so-called nonstandard isogenies. We will not get into these technical details here, but roughly speaking one of the problems is that in these exceptional cases the “right” ring (or field) of definition of Γ may not be the trace ring (resp., field), i.e. the subring (subfield) of the algebraically closed field k generated by the traces $\text{tr } \text{Ad } \gamma$ for $\gamma \in \Gamma$. The adequate definitions were given by Pink [29] using the notion of so-called minimal triples (which we will not discuss here). In fact, Pink’s paper [29], where he proved an appropriate version of the openness statement for the adelic closures of Zariski-dense subgroups in all characteristics, was really the final word in the strong approximation saga.

5. Applications to group theory: Lubotzky’s alternative. One of the most notable applications of strong approximation is the so-called *Lubotzky alternative* for linear groups. It is discussed in detail in [14, Ch. II] and [22, Window 9], so here we will only state it for linear groups over fields of characteristic zero.

Theorem 3.8. ([20]) Let Γ be a finitely generated linear group over a field of characteristic zero. Then one of the following holds:

Andrei Rapinchuk
(a) Γ is virtually solvable;
(b) there exists a connected absolutely almost simple simply connected algebraic \mathbb{Q}-group G, a finite set $\Pi = \{p_1, \ldots, p_r\}$ of primes such that the group $G(\mathbb{Z}_\Pi)$, where $\mathbb{Z}_\Pi = \mathbb{Z}[\frac{1}{p_1}, \ldots, \frac{1}{p_r}]$, is infinite, and a subgroup $\Gamma_1 \subset \Gamma$ of finite index for which the profinite completion $\widehat{\Gamma}_1$ admits a continuous epimorphism onto $G(\mathbb{Z}_\Pi)$.

This statement was applied in [20] to study the subgroup growth (= number of subgroups of a given index n) of linear groups; in particular, it leads to the following dichotomy: if a linear group has polynomial subgroup growth, then it is virtually solvable, but if the growth is not polynomial (hence the group is not virtually solvable), then it is at least $n^{\log n}$.

The interested reader will find more group-theoretic applications of strong approximation in [14], [22] and references therein, and, of course, in other articles contained in this volume.

Acknowledgements. The author was partially supported by NSF grant DMS-0965758, BSF grant 2010149 and the Humboldt Foundation. The hospitality of the MSRI during the workshop “Hot Topics: Thin Groups and Super-strong Approximation” (February 6-10, 2012) is also thankfully acknowledged.

References

1. H. Bass, Theorems of Jordan and Burnside for algebraic groups, J. Algebra 82(1983), no. 1, 245-254.
2. M.V. Borovoi, Strong approximation for homogeneous spaces (in Russian), Dokl. Akad. Nauk BSSR 33(1989), No. 4, 293-296.
3. R. Brauer, W. Feit, An analogue of Jordan’s theorem in characteristic p, Ann. math. 84(1966), 119-131.
4. M. Collins, On Jordan’s theorem for complex linear groups, J. Group Theory 10(2007), no. 4, 411-423.
5. M. Collins, Modular analogues of Jordan’s theorem for finite linear groups, J. Reine Angew. Math. 624(2008), 143-171.
6. J.-L. Colliot-Thélène, F. Xu, Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms, Compos. Math. 145(2009), no. 2, 309-363.
7. C. Demarche, Le défaut d’approximation forte dans les groupes linéaires connexes, Proc. London Math. Soc. 102(2011), no. 3, 563-597.
8. I.V. Erovenko, A.S. Rapinchuk, Bounded generation of S-arithmetic subgroups of isotropic orthogonal groups over number fields, J. Number Theory 119(2006), no. 1, 28-48.
9. P. Gille, Le problème de Kneser-Tits, Séminaire Bourbaki, 2007/2008, Exp. No. 983. Astérisque No. 326(2009), 39-81.
10. A. Gorodnik, A. Nevo, Splitting fields of elements in arithmetic groups, Math. Res. Letters 18(2011). 1281-1288.
11. P. de la Harpe, Topics in Geometric Group Theory, The University of Chicago Press, 2000.
12. E. Hrushovski, A. Pillay, Definable subgroups of algebraic groups over finite fields, J. reine und angew. Math. 462(1995), 69-91.
13. F. Jouve, E. Kowalski, D. Zywina, *Splitting fields of random elements in arithmetic groups*, to appear in Israel J. Math., arXiv:1008.3662v2.
14. B. Klopsch, N. Nikolov and C. Voll, *Lectures on Profinite Topics in Group Theory*, London Math. Soc. Student Texts 77, Cambridge Univ. Press, 2011.
15. M. Kneser, *Starke Approximation in algebraischen Gruppen. I.*, J. reine und angew. Math. 218 (1965), 190-203.
16. S. Lang, *Fundamentals of Diophantine Geometry*, Springer, 1983.
17. S. Lang, *Algebraic Number Theory*, 2nd edition, Springer, 1994.
18. S. Lang, A. Weil, *Number of points of varieties in finite fields*, Amer. J. Math. 76 (1954), 819-827.
19. M. Larsen, R. Pink, *Finite subgroups of algebraic groups*, J. Amer. Math. Soc. 24 (2011), 1105-1158.
20. A. Lubotzky, A. Mann, *On groups of polynomial subgroup growth*, Invent. math. 104 (1991), 521-533.
21. A. Lubotzky, L. Rosenzweig, *The Galois group of random elements of linear groups*, arXiv:1205.5290v1.
22. A. Lubotzky, D. Segal, *Subgroup Growth*, Birkhäuser, 2003.
23. G.A. Margulis, *Cobounded subgroups in algebraic groups over local fields* (in Russian), Funkc. Anal. i Priloz. 11 (1977), No. 2, 45-57 (English translation: Functional Anal. Appl. 11 (1977), No. 2, 119-122).
24. G.A. Margulis, *Discrete Subgroups of Semisimple Lie Groups*, Springer-Verlag, Berlin, 1991.
25. C.R. Matthews, L.N. Vaserstein, B. Weisfeiler, *Congruence properties of Zariski-dense subgroups I*, Proc. London Math. Soc. 48 (1984), 514-532.
26. Kh. Minchev, *Strong approximation for varieties over number fields* (in Russian), Dokl. Akad. Nauk BSSR 33 (1989), No. 1, 5-8.
27. M.V. Nori, *On subgroups of GL_n(F_p)*, Invent. math. 88 (1987), 257-275.
28. R. Pink, *Compact subgroups of linear algebraic groups*, J. Algebra 206 (1998), 438-504.
29. R. Pink, *Strong approximation for Zariski dense subgroups over arbitrary global fields*, Comment. Math. Helv. 75 (2000), 608-643.
30. R. Pink, *On Weil restriction of reductive groups and a theorem of Prasad*, Math. Z. 248 (2004), 449-457.
31. V.P. Platonov, *The problem of strong approximation and the Kneser-Tits conjecture for algebraic groups* (in Russian), Izv. Akad. Nauk SSSR. Ser. mat. 33 (1969), No. 6, 1211-1219 (English translation: Mathematics of the USSR-Izvestiya 3 (1969), No. 3, 1139-1147).
32. V.P. Platonov, A.S. Rapinchuk, *Algebraic Groups and Number Theory*, Academic Press, Boston, 1994.
33. V.P. Platonov, *Algebraic groups and reduced K-theory*, Proc. ICM-1978 (Helsinki), pp. 311-317, Acad. Sci. Fennica, Helsinki, 1980.
34. V.P. Platonov, A.S. Rapinchuk, *Algebraic Groups and Number Theory*, Academic Press, Boston, 1994.
35. G. Prasad, *Strong approximation for semi-simple groups over function fields*, Ann. math. 105 (1977), 553-572.
36. G. Prasad, A.S. Rapinchuk, *Irreducible tori*, IMRN 2001, No. 23, 1229-1242.
37. G. Prasad, A.S. Rapinchuk, *Existence of irreducible R-regular elements in Zariski-dense subgroups*, Math. Res. Letters 10 (2003), 21-32.
38. G. Prasad, A.S. Rapinchuk, *Weakly commensurable arithmetic groups and isospectral locally symmetric spaces*, Publ. math. IHES 109 (2009), 113-184.
39. G. Prasad, A.S. Rapinchuk, *Number-theoretic techniques in the theory of Lie groups and differential geometry*, Fourth International Congress of Chinese Mathematicians, 231-250, AMS/IP Stud. Adv. Math., 48, AMS 2010.
40. G. Prasad, A.S. Rapinchuk, *On centrality of the congruence kernel* (in preparation).
40. A.S. Rapinchuk, *The congruence subgroup problem for algebraic groups and strong approximation in affine varieties* (in Russian), Dokl. Akad. Nauk BSSR 32(1988), No. 7, 581-584.

41. A.S. Rapinchuk, *On the congruence subgroup problem for algebraic groups* (in Russian), Dokl. Akad. Nauk SSSR 306(1989), no. 6, 1304-1307 (English translation: Soviet Math. Dokl. 39(1989), no. 3, 618-621).

42. A.S. Rapinchuk, *The congruence subgroup problem for algebraic groups*, Habilitationsschrift, Institute of mathematics of the Academy of Sciences of the BSSR, Minsk, 1990.

43. J.-P. Serre, *Abelian ℓ-adic Representations and Elliptic Curves*, W.A. Benjamin, Inc., 1968.

44. J.-P. Serre, *Cohomologie des groupes discrets*, Ann. Math. Studies 70, pp. 77-169, Princeton Univ. Press, 1971.

45. J. Tits, *Algebraic and abstract simple groups*, Ann. math. 80(1964), 313-329.

46. J. Tits, *Classification of algebraic semisimple groups*, in *Agebraic Groups and Discontinuous Subgroups*. Proc. Symp. Pure Math., 9, pp. 33-62. AMS, Providence, 1966.

47. G.M. Tomanov, *On the congruence-subgroup problem for some anisotropic algebraic groups over number fields*, J. Reine Angew. Math. 402(1989), 138-152.

48. G.M. Tomanov, *Congruence subgroup problem for groups of type G2*, C.R. Acad. Bulgare Sci. 42(1989), no. 6, 9-11.

49. B. Weisfeiler, *Strong approximation for Zariski-dense subgroups of semi-simple algebraic groups*, Ann. math. 120(1984), No. 2, 271-315.

50. B. Weisfeiler, *Post-classification version of Jordan’s theorem on finite linear groups*, Proc. Nat. Acad. Sci. 81(1984), 5278-5279.