Electrodeposition of Zn-Fe Alloy from Non-Cyanide Alkaline Sulphate Bath Containing Tartarate

V. Narasimhamurthy1*, L.H. Shivashankarappa2

1Government First Grade College and Post Graduate Study Center, Shivamogga - 577201, Karnataka, India.
2Maharani Science College for Women, Palace Road, Bengaluru – 560 001, Karnataka, India.

ARTICLE DETAILS

Article history:
Received 21 August 2020
Accepted 07 September 2020
Available online 14 September 2020

Keywords:
Electrodeposition
Cyclic Voltammetry
Tartarate
Cathodic Current Efficiency

ABSTRACT

Electrodeposition of Zn-Fe alloy from an alkaline sulphate bath containing tartarate has been carried out. The effect of plating variables on the composition of alloy and on cathodic current efficiency was studied. The cyclic voltammetric studies carried out to know the mutual co-deposition of zinc and iron. Hardness and the surface morphology of the alloy deposits were found to be dependent on the iron content in the alloy. An alloy containing 20% wt. Fe showed smooth, uniform and finer grained deposits. Under the optimum composition and operating conditions, Zn-Fe alloy deposition from alkaline sulphate bath containing tartarate followed anomalous depositing process.

1. Introduction

Recently, large number of investigations has been made to develop high corrosion resistant steel for automotive industries [1-4]. Electrodeposited Zn-Fe alloy containing 15-25% wt. Fe on steel can provide sacrificial protection to steel and serve as a viable substitute for zinc and cadmium coatings [5-9]. Zn-Fe alloys are being deposited from an acid sulphate, chloride and sulphate-chloride baths [10-15].

Literature survey indicates that there are very little works reported on Zn-Fe alloy deposition from alkaline baths. The main disadvantage of such alkaline baths is the loss of ammonia at high temperature and difficulties in the efficient treatment of cyanide baths. In order to overcome these problems, few attempts have been made on the development of non-cyanide and ammonia free alkaline pyrophosphate and sulphate baths have been reported. However, there is a great need to develop a bath which is free from ammonia and cyanide. In this, an attempt is made to formulate non-cyanide alkaline sulphate bath containing tartarate as a complexing agent. The results reported here include the study of plating variables, cathodic current efficiency, properties, cyclic voltammetry and surface morphology.

2. Experimental Methods

The plating solutions were prepared by using distilled water and laboratory grade chemicals. The bath solutions are purified as described elsewhere. The optimum bath composition and operating conditions used in this study are given in the Table 1.

Hull cell experiments were performed by using standard 267 mL capacity cell for 5 minutes at 1 ampere cell current. The test results were used to optimize the bath composition and operating conditions. Electrodeposition was carried out galvanostatically from 250 mL bath solution by using 1 cm² stainless steel as cathode and 2 cm² zinc as anode. The panel so plated was weighted and stripped in 20% HNO₃ solution by using 1 cm² stainless steel as cathode and 2 cm² zinc as anode. The panel so plated was weighted and stripped in 20% HNO₃ solution by using 1 cm² stainless steel as cathode and 2 cm² zinc as anode.

The cathodic current efficiencies and deposition rates were calculated in a conventional manner. The thickness of the alloy deposit was measured by Elicometer (Model 250 FN, England). The adhesion of the alloy deposit to the base metal (steel) was tested by a bending test. The porosity of the alloy deposit was determined by ferroxyll test. Static potentials of zinc and Zn-Fe alloy deposits dipped in 3.5% NaCl were measured with respect to saturated calomel electrode. Cyclic voltammetric studies of the plating bath solutions were carried out by using Potentiostat (Model CL-95, Elico, India). Morphology of the alloy deposits were examined under scanning electron microscope (Model JEOL-JSM-840A).

Table 1 Optimum bath composition and operating conditions

Component	Concentration
ZnSO₄·7H₂O	0.09 M
FeSO₄·7H₂O	0.01 M
Ascorbic acid	0.02 M
Na₂SO₄	30 g/L
NaOH	100 g/L
Sodium tartarate	46 g/L
pH	>14
Temperature	25 °C
Current density	20 mA/cm²
Agitation	-

3. Results and Discussion

3.1 Effect of Metal Ion Ratio

Fig. 1 shows the variation of the alloy composition with the bath composition. In the graph, the line AB is the composition reference line (CRL) represents the metal contents in the bath solution and in alloy deposit it are of the same composition. A bath solution with high percentage of iron (20% wt.) produced an alloy with less percentage of iron (12% wt.) indicating that the less noble metal (zinc) depositing preferentially and leading to anomalous co-deposition process. This might be due to the formation of zinc hydroxide film at the cathode surface, which facilitates the discharge of more zinc at the cathode surface and suppresses the iron deposition.

3.2 Effect of Current Density

Fig. 2 illustrates the dependency of the alloy composition with the current density for three different zinc to iron ratios in the bath. With increase in the current density, the %wt. Fe in the alloy increased up to 20 mA/cm². Further increase in current density the %wt. Fe decreased. This might be due to the flow discharge of iron ions at higher current densities.
Effect of tartarate concentration on deposition rate of Zn-Fe alloy from alkaline sulphate bath

Tartarate Concentration (moles)	Deposition rate (mg/cm²/s)
0.05	3.8
0.1	7.3
0.2	10.3
0.4	7.4
0.6	5.1

Fig. 1 Effect of tartarate concentration on deposition rate of Zn-Fe alloy from alkaline sulphate bath.

3.3 Effect of Temperature

Increase in temperature of bath, decreased the %wt. Fe indicating that the deposition process is under diffusion controlled (Fig. 3). This is because an elevation of bath temperature might increase the concentration of preferentially depositing metal (zinc). Hence the process is anomalous.

3.4 Effect of Tartarate Concentration

Fig. 4 shows the dependence of the alloy composition on the concentration of tartarate in the bath solution. Increase in the concentration of tartarate in the bath, increased the %wt. Fe in the alloy, maximum deposition rate was obtained at 0.2 M concentration of tartarate (Table 2). Further increase in the concentration of tartarate, decreased the %wt. Fe in the alloy.

3.5 Effect of Stirring

Stirring of the plating bath solution increased the %wt. Fe compared to unstirred solution (Table 3).

Effect of stirring on the composition of Zn-Fe alloy from non-cyanide alkaline sulphate bath containing tartarate, ascorbic acid 0.019 M, NaSO₃ 30 g/L, NaOH 100 g/L, temperature 25 °C, pH > 14, thickness - 6 μm, unstirred condition. Curve 1: 5 mA/cm², Curve 2: 20 mA/cm², Curve 3: 40 mA/cm².

Table 3 Composition of Zn-Fe alloy with stirring and without stirring of the plating bath solution at 50 °C

Condition	% Fe in alloy		
5 mA/cm²	20 mA/cm²	40 mA/cm²	
With stirring	12.2 (92.4)	21.5 (97.5)	11.3 (88.1)
Without stirring	10.5 (88.0)	19.3 (93.7)	10.0 (85.2)

Table 4 Composition of Zn-Fe alloy from non-cyanide alkaline sulphate bath containing tartarate, ascorbic acid 0.019 M, NaSO₃ 30 g/L, NaOH 100 g/L, temperature 25 °C, pH > 14, thickness - 6 μm, unstirred condition.

Condition	% Fe in alloy		
5 mA/cm²	20 mA/cm²	40 mA/cm²	
With stirring	12.2 (92.4)	21.5 (97.5)	11.3 (88.1)
Without stirring	10.5 (88.0)	19.3 (93.7)	10.0 (85.2)

3.6 Effect of Thickness

The variation of the alloy composition with the thickness of the alloy deposit is shown in Fig. 5. With increase in thickness, the %wt. Fe in the alloy deposited decreased.

Fig. 5 Effect of thickness on the composition of Zn-Fe alloy. Bath composition: total metal content 0.1 M, [Zn²⁺] 0.06 M - 0.08 M, [Fe²⁺] 0.02 - 0.04 M, tartarate 0.2 M, ascorbic acid 0.019 M, NaSO₃ 30 g/L, NaOH 100 g/L, temperature 25 °C, pH > 14, thickness - 6 μm, unstirred condition.

3.7 Cathodic Current Efficiency (CCE)

Fig. 6 shows the dependence of the cathodic current efficiencies (CCE) on the current density. With increase in current density, the CCE was found to decrease. Increase in bath temperature (Table 4) decreased the CCE. Stirring of the bath solution increased the CCE (Table 3).
Table 4 Effect of temperature on cathodic current of Zn-Fe alloy deposited from an alkaline sulphate bath containing tartarate

Temperature °C	% CCE 60/40 Zn/Fe	70/30 Zn/Fe	80/20 Zn/Fe
25	93.7	90.8	87.3
35	90.6	86.8	82.6
45	87.4	84.6	77.5
55	85.1	80.1	74.9
65	69.0	57.2	46.8

Fig. 7 Cyclic voltammogram of (a) ZnSO₄ + KCl, scan rate: 50 mV/sec, potential range: 0 to -1.5 V, (b) ZnSO₄ + KCl + tartarate, scan rate: 50 mV/sec, potential range: 0 to -1.5 V, (c) ZnSO₄ + FeSO₄ + KCl + tartarate, scan rate: 50 mV/sec, potential range: 0 to -1.5 V.

Fig. 6 Effect of current density on cathodic current efficiency. Bath composition: total metal content 0.1 M, [Zn²⁺] 0.06 M - 0.08 M, [Fe²⁺] 0.02 - 0.04 M, tartarate 0.2 M, ascorbic acid 0.019 M, Na₂SO₄ 30 g/L, NaOH 100 g/L, temperature 25 °C, pH > 14, thickness 6 µ, current density 50 mV/sec, unstirred condition.

3.8 Cyclic Voltammetry Studies

A series of voltammetry experiments were performed with the bath solution having the composition given in the Table 1. A potential range of 0.0 V to -1.5 V was scanned at a different scan rates (10 mV/sec to 500 mV/sec). A 50 mV/sec scan rate was chosen for the detailed studies. A saturated calomel electrode, a platinum working electrode and a platinum foil counter electrode were used in these measurements at 25 °C. Fig. 7(a) represents the cyclic voltammogram of pure ZnSO₄, with KCl as the supporting electrolyte in the absence tartarate. The existence of the cathodic peak was observed at the potential of -1.2 V, which corresponds to the reduction of zinc ion. Fig. 7(b) shows the cyclic voltammogram of pure ZnSO₄ with KCl in the presence of tartarate. The complexation of zinc ion with tartarate shifted the cathodic peak slightly to -1.2 V.

Table 5 Effect of iron content on microhardness and static potentials of Zn-Fe alloy

% Fe in alloy	Microhardness on Vickers scale in VHN (load=50 g)	Static potential values in mV versus SCE measured in 3.5% NaCl solution
Zinc	85.20	-1013
20	126.50	-975
15	140.61	-913
24	147.34	-852
30	159.54	-802
Mile steel	--	-570

3.9 Properties

The adhesion of alloy deposit to the base metal (steel) was tested by a bending test. Alloy deposits did not develop any cracks even after bending to 180°, this indicates good adhesion of alloy to the steel.

Porosity tests were carried out on alloy coated steel (4 × 4 sq. inch) to a thickness 3 to 12 µm. Filter paper soaked in the potassium ferricyanide (1%) solution was placed over the alloy coated steel panel and the appearance of number of blue spots on the filter paper with time was noticed. The alloy deposits were pore free at sufficient thickness (> 6 µm).

Microhardness of 6 µm thick Fe-Zn alloy coated steel panels was determined on Vickers scale (load-50 g). Hardness of the alloy increased with increase in iron content (Table 5). The static potentials of zinc and iron alloy plated on steel were measured in 3.5% NaCl solution with respect to saturated calomel electrode. Table 5 lists the static potential values for zinc-iron alloy, which were significantly more positive to zinc and more negative to steel under the same conditions. This shows that Zn-Fe alloy protects steel from corrosion more efficiently than pure zinc coatings.

3.10 Morphology

The surface morphology of zinc and zinc-iron alloy deposits obtained from an alkaline sulphate bath containing tartarate was examined under scanning electron microscope. Morphology of the alloy deposit varied with %wt. Fe in an alloy. The alloy deposit containing 20% wt. Fe showed uniform, smooth and finer grained deposit (Fig. 8).

Fig. 8 Scanning electron micrographs of Zn-Fe alloy containing different percentage of iron from alkaline sulphate bath containing tartarate. (a) 0% Fe; (b) 100% Fe; (c) 15% Fe; (d) 20% Fe

4. Conclusion

Zinc-iron alloy containing 15-25% wt. Fe electrodeposited from non-cyanide alkaline sulphate bath containing tartarate were bright, smooth, uniform and finer grained in size morphologically, the alloy deposition showed the characteristics of anomalous co-deposition. Increase in
current density and stirring of the bath solution increased the percentage of iron in the alloy deposit. Increase in temperature and thickness of the deposit decreased the percentage of iron in the alloy deposit.

Acknowledgement

The author, V. Narasimhamurthy thank the Chairman, Department of Metallurgy, Indian Institute of Science, Bangalore for SEM data and grateful to CSIR, New Delhi for the financial assistance.

References

[1] G.G. Kraft, The future of cadmium electroplating, Met. Fin. 88 (1990) 29-35.
[2] R. Winand, Continuous strip coating: New zinc alloy tailored coatings, Surf. Coat. Tech. 37 (1989) 65-87.
[3] T. Adaniya, T. Hara, M. Sagiyma, T. Homa, T. Watanable, Zinc-iron alloy electroplating on strip steel, Plat. Surf. Fin. 72(8) (1985) 52-56.
[4] V. Narasimhamurthy, B.S. Sheshadri, Electrodeposition of Zn-Fe alloy from an acid sulfate bath containing triethanolamine, Plat. Surf. Fin. 83 (1996) 75-79.
[5] V. Narasimhamurthy, B.S. Sheshadri, Physico-chemical properties of Zn-Fe alloy deposits from an alkaline sulphate bath containing triethanolamine, J. App. Elect. 6 (1996) 90-94.
[6] V. Narasimhamurthy, B.S. Sheshadri, Electrodeposition of zinc-iron alloy from an alkaline sulfate bath containing triethanolamine, Met. Fin. 95(9) (1997) 44-47.
[7] C.J. Lan, W.Y. Liu, S.T. Ke, T.S. Chin, Potassium salt based alkaline bath for deposition of Zn-Fe alloys, Surf. Coat. Tech. 201(6) (2006) 3103-3108.
[8] H. Nakano, S. Arakawa, S. Oue, S. Kobayashi, Electrodeposition behavior of Zn-Fe alloy from zinicate solution containing triethanolamine, Mat. Tran. 56(10) (2015) 1664-1669.
[9] M. Kanagasahapathy, S. Jayakrishnan, Phase structure and morphology of zinc-iron alloy electrodeposits, Rus. J. Elect. 47 (2011) 26-33.
[10] Ramesh Bhat, Bhat K. Udaya, A. Chitharanjan Hegde, Optimization of deposition conditions for bright Zn-Fe coatings and its characterization, Prot. Met. Phy. Chem. Surf. 47 (2011) 645-653.
[11] K.O. Nayana, T.V. Venkatesha, K.G. Chandrappa, Influence of additive on nanocrystalline, bright Zn-Fe alloy electrodeposition and its properties, Surf. Coat. Tech. 235(25) (2013) 461-468.
[12] C.J. Lan, W.Y. Liu, T.S. Chin, Electrodeposition of Zn-Fe Alloys using electrolytes of the system ZnO-(ferrous gluconate)-ROH, J. Elect. Soc. 154(1) (2007) D30-D33.
[13] V. Ravindran, R. Sridevi, R. Rajakumari, R. Shekar, V.S. Muralidharan, Electrodeposition of zinc-iron alloy, Ind. J. Chem. Tech. 11 (2004) 465-469.
[14] K.G. Karriyanna, T.V. Venkatesha, Electrodeposition of zinc-iron alloy from a sulphate bath, Bull. Elect. 21(12) (2005) 547-553.
[15] B.M. Praveen, T.V. Venkatesha, New brightener for Zn-Fe alloy plating from sulphate bath, Inter. J. Elect. 2011 (2011) 132138:1-8.