Photoexcited State Dynamics and Singlet Fission in Carotenoids

Supporting Information

Dilhan Manawadu,*†‡ Timothy N. Georges,†¶ and William Barford*†

†Department of Chemistry, Physical and Theoretical Chemistry Laboratory,
University of Oxford, Oxford, OX1 3QZ, United Kingdom
‡Linacre College, University of Oxford, Oxford, OX1 3JA, United Kingdom
¶Brasenose College, University of Oxford, Oxford, OX1 4AJ, United Kingdom

E-mail: dilhan.manawadu@chem.ox.ac.uk; william.barford@chem.ox.ac.uk
1 Parametrization of the UV-Peierls Hamiltonian

Figure S1: Vertical (a) and relaxed (b) singlet excitation energies of UV-Peierls model with $U = 7.25$ eV and $V = 3.25$ eV, found by solving eq (5) of the main paper. N is the number of conjugated carbon atoms of the system. The vertical energy gaps of ~ 0.1 eV between $1^1B_u^+$ (magenta) and $2^1A_g^-$ (orange) for $18 \leq N \leq 26$ agree with the corresponding excitation energies reported in ref. 1.
Figure S1 illustrates the diabatic vertical and relaxed excitation energies of the UV-Peierls model parametrized for direct internal conversion from the $1^1B_u^+$ state to the $2^1A_g^-$ state. The parametrization is performed such that the vertical excitation energy gap between the $1^1B_u^+$ to the $2^1A_g^-$ states reproduces the excitation energies reported in Table 2 of ref 1.

2 Parametrization of the symmetry breaking Hamiltonian, \hat{H}_ϵ

As described in ref 2, \hat{H}_ϵ is optimized under the constraint $|\epsilon_n| < \epsilon_{\text{max}}$ such that the ground state π-electron density on C-atom n reproduces the Mulliken charge densities of the π-system found via ab initio density functional theory (DFT) calculations. The optimized \hat{H}_ϵ is given in Table S1. The cut-off $\epsilon_{\text{max}} = 1.0$ is chosen such that $\Psi(t = 0)$ retains sufficient $1^1B_u^+$ character while accurately reproducing the DFT densities with a coefficient of variation $r^2(\epsilon) = 0.92$.
Table S1: The π-electron Mulliken charges from the ab-initio DFT calculation, parameters for H_ϵ found for $\epsilon_{\text{max}} = 1.0$ eV, and the expectation values of number densities calculated from the parametrized H_ϵ. In order to maintain π-electron charge neutrality, each ab-initio charge was increased by 0.05q. The chemical formula of neurosporene is shown in Figure 1 of the main paper.

Carbon site, n	Mulliken charges (q)	ϵ_n (eV)	$\langle \hat{N}_n - 1 \rangle$	ϵ_n (eV)	$\langle \hat{N}_n - 1 \rangle$
1	0.14	-1.00	0.17	-1.00	0.17
2	-0.05	0.81	-0.14	0.56	-0.14
3	-0.18	1.00	0.05	1.00	0.06
4	-0.07	1.00	-0.10	0.82	-0.10
5	0.15	-1.00	0.15	-1.00	0.15
6	-0.14	0.27	-0.10	0.02	-0.10
7	-0.07	1.00	0.03	1.00	0.03
8	-0.16	1.00	-0.09	0.84	-0.09
9	0.13	-1.00	0.12	-0.01	-0.07
10	-0.11	1.00	-0.03	1.00	-0.04
11	-0.10	1.00	-0.02	1.00	-0.03
12	-0.11	0.32	-0.09	0.09	-0.09
13	0.14	-1.00	0.13	-1.00	0.13
14	-0.18	1.00	-0.09	0.92	-0.10
15	-0.05	1.00	0.05	1.00	0.06
16	-0.19	0.90	-0.14	0.61	-0.14
17	0.14	-1.00	0.18	-1.00	0.17

3 Probabilities that the adiabatic states, S_1, S_2 and S_3 occupy the diabatic states $2^1A_g^-$, $1^1B_u^+$ and $1^1B_u^-$

Figure S2 illustrates the probabilities that the adiabatic states S_1, S_2, and S_3 occupy the diabatic states $2^1A_g^-$, $1^1B_u^+$, and $1^1B_u^-$. Adiabatic states are \sim 90% occupied by the diabatic states at all times. Using the probabilities that the triplet-pair states, $2^1A_g^-$ and $1^1B_u^-$, occupy the adiabatic states, S_1 and S_2, the ‘classical’ total triplet-pair yield can be calculated via eq (7) of the main paper.
Figure S2: Probabilities as a function of time that the adiabatic states, S_1, S_2 and S_3, occupies the diabatic states, $2^1A_g^-$, $1^1B_u^+$ and $1^1B_u^-$. Results are for neurosporene ($N = 18$) with $V = 2.75$ eV.

References

(1) Taffet, E. J.; Lee, B. G.; Toa, Z. S. D.; Pace, N.; Rumbles, G.; Southall, J.; Cogdell, R. J.; Scholes, G. D. Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. *The Journal of Physical Chemistry B* **2019**, *123*, 8628–8643.

(2) Manawadu, D.; Valentine, D. J.; Barford, W. Dynamical Simulations of Carotenoid Photoexcited States using Density Matrix Renormalization Group Techniques. 2022; https://arxiv.org/abs/2211.02022.