Efeito do fator de crescimento insulina símile I na infecção *in vitro* de macrófagos peritoneais de camundongos por *Leishmania (L.) amazonensis*.

Dissertação de mestrado apresentada ao Programa de Pós-Graduação do Instituto de Medicina Tropical de São Paulo para obtenção do título de Mestre em Ciências.

Área de concentração: Doenças Tropicais e Saúde Internacional.

Orientadora: Profª Dra. Hiro Goto

SÃO PAULO
2017
Barssotti, Anderson Guilherme dos Santos

Efeito do fator de crescimento insulina simile I na infecção in vitro de macrófagos peritoneais de camundongos por Leishmania (L.) amazonensis / Anderson Guilherme dos Santos Barssotti. – São Paulo, 2017.

Dissertação (Mestrado) – Instituto de Medicina Tropical de São Paulo da Universidade de São Paulo, para obtenção do título de Mestre em Ciências.

Área de concentração: Doenças Tropicais e Saúde Internacional

Orientadora: Hiro Goto

Descritores: 1. MACRÓFAGOS. 2. LEISHMANIA. 3. FATOR DE CRESCIMENTO INSULIN-LIKE I. 4. PARASITISMO. 5. ÓXIDO NÍTRICO. 6. EXPRESSÃO GÊNICA.

USP/IMTSP/BIB-10/2017.
RESUMO

BARSSOTTI AGS. Efeito do fator de crescimento insulina símile I na infecção in vitro de macrófagos peritoneais de camundongos por Leishmania L. amazonensis (dissertação). São Paulo: Instituto de Medicina Tropical de São Paulo da Universidade de São Paulo; 2017.

Na infecção por Leishmania a resposta imune se inicia logo após a inoculação de promastigotas no indivíduo. Nesse contexto vai haver a participação de diversos fatores da resposta imune inata que vai direcionar para uma resposta imune adaptativa responsável pela evolução da doença. Um desses fatores que participa dessa interação parasito-hospedeiro é o fator de crescimento insulina-símile I (IGF-I). Foi demonstrado que o IGF-I extrínseco favorece a proliferação do parasito e progressão da infecção. No entanto, IGF-I está presente constitutivamente em macrófagos. Neste trabalho avaliamos a expressão do IGF-I, o parasitismo e a produção de óxido nítrico em macrófagos murinos infectado por Leishmania (L.) amazonensis e o efeito da inibição de IGF-I no parasitismo após o silenciamento do IGF-I por RNA de interferência. Macrófagos peritoneiais foram infectados por 2 e 4 horas com promastigotas de L. (L.) amazonensis na presença de soro fetal bovino (SFB) 5% e Albumina de Soro Bovino 0,5% (BSA) na presença ou ausência de small-interfering RNA (siRNA) de IGF-I e lipossoma (Lipo). As células foram lavadas e mantidas depois em meio de cultura por 24, 48 e 72 h. Quando o recombinante para IGF-I foi adicionado separadamente durante a incubação inicial o parasitismo aumentou em relação ao controle. Quando o siRNA foi adicionado houve diminuição na expressão de IGF-I e consequentemente diminuição no parasitismo em relação ao controle. Os resultados obtidos sugerem um papel importante de IGF-I na infecção de macrófagos peritoneais de camundongos murinos por Leishmania (l.) amazonensis.

Descritores: Macrófagos, Leishmania, Fator de crescimento Insulin-Like I, Parasitismo, Óxido Nítrico, Expressão Gênica.
ABSTRACT

BARSSOTTI AGS. Effect of insulin-like growth factor I on the in vitro infection of mouse peritoneal macrophages by Leishmania L. amazonensis (dissertation). São Paulo: Instituto de Medicina Tropical de São Paulo da Universidade de São Paulo; 2017.

In Leishmania infection, the immune response begins soon after the inoculation of promastigotes in the individual. In this context will be the participation of several factors of the innate immune response that will direct to an adaptive immune response responsible for the evolution of the disease. One of these factors that participates in this parasite-host interaction is the insulin-like growth factor I (IGF-I). It has been shown that extrinsic IGF-I favors parasite proliferation and infection progression. However, IGF-I is constitutively present in macrophages. In this work we evaluated the expression of IGF-I, parasitism and nitric oxide production in murine macrophages infected with Leishmania (L.) amazonensis and the effect of IGF-I inhibition on parasitism after IGF-I silencing by RNA from interference. Peritoneal macrophages were infected for 2 and 4 hours with L. (L.) amazonensis promastigotes in the presence of 5% fetal bovine serum (FBS) and 0.5% Bovine Serum Albumin (BSA) in the presence or absence of IGF-I small-interfering RNA (siRNA) and liposome (Lipo). Cells were washed and then maintained in culture medium for 24, 48 and 72 h. When the recombinant IGF-I was added separately during the initial incubation the parasitism increased relative to the control. When the siRNA was added there was a decrease in IGF-I expression and consequently a decrease in parasitism in relation to the control. The results obtained suggest an important role of IGF-I in the infection of murine mouse peritoneal macrophages by Leishmania (L.) amazonensis.

Key words: Macrophages, Leishmania, Insulin-like growth factor-I, Parasitism, Nitric oxide, Gene expression.
OBJETIVOS

Objetivo Geral

- Avaliar o efeito do fator de crescimento insulina-símile I (IGF-I) na infecção in vitro de macrófagos murino com *Leishmania (L.) amazonensis*

Objetivos Específicos

- Avaliar a infecção de macrófagos peritoneais de BALB/c e C57BL/6 com promastigotas e amastigotas de *Leishmania (L.) amazonensis*
- Avaliar a expressão de IGF-I na infecção de macrófagos peritoneais de BALB/c e C57BL/6 com *Leishmania (L.) amazonensis*
- Analisar o efeito da inibição de IGF-I no parasitismo e produção de óxido nítrico na infecção de macrófagos com *Leishmania (L.) amazonensis* após silenciamento do IGF-I por RNA de interferência
- Analisar o parasitismo e produção de óxido nítrico na infecção de macrófagos com *Leishmania (L.) amazonensis* após estímulo com IGF-I recombinante nas células tratadas com RNA de interferência.
MATERIAIS E MÉTODOS

Animais

Foram utilizados camundongos machos SPF BALB/c e SPF C57BL/6, de 45 a 60 dias de idade, fornecidos pelo Centro de Bioterismo da Faculdade de Medicina da USP, que foram mantidos no Biotério de Experimentação do Instituto de Medicina Tropical de São Paulo, USP, sob temperatura controlada, alimentados com ração balanceada e água a vontade.

Parasito *Leishmania (L.) amazonensis*

A cepa utilizada foi a *Leishmania (Leishmania) amazonensis* (MHOM/BR/1973/M2269). A obtenção de amastigotas foi feita a partir da lesão da pata de um animal infectado. As formas promastigotas foram obtidas a partir de cultura de amastigotas em meio 199 HANKS suplementado com 10% de soro fetal bovino inativado por calor. Promastigotas em fase estacionária de crescimento foram utilizadas nos ensaios de infecção de macrófagos.

Obtenção de macrófagos de peritônio de camundongos

Os macrófagos foram obtidos do peritônio dos animais pela injeção de solução salina tamponada com fosfato utilizando protocolo e técnica cirúrgica previamente bem estabelecidos. Após análise da viabilidade e contagem em câmara de Neubauer, a concentração celular foi acertada de acordo com o protocolo.
Infecção de macrófagos por Leishmania (L.) amazonensis

Após acertada a concentração de células, as placas de cultura foram incubadas em estufa úmida com CO₂ (5%) a 37°C “overnight” para adesão dos MØs. Em seguida, promastigotas foram colocadas na proporção de 5 parasitos por macrófagos (5:1) por 2 horas em estufa úmida a 32°C. Os experimentos foram pelo menos em triplicatas. Para avaliação do parasitismo por microscopia óptica, foram contadas às cegas 100 células por lamínula, atingindo 300 células por experimento, e o resultado final expresso em número de parasitos por 100 células.

Dosagem de óxido nítrico como nitrito

A avaliação da produção de óxido nítrico foi determinada segundo Green *et al.* (1982).

Detecção e quantificação de IGF-I

Purificação de RNA

Para obtenção de RNA total, o RNA foi ressuspenso em água livre de RNAs e feita a dosagem por NanoDrop. A integridade das amostras foi demonstrada pelo escore 260/280 (1,8-2,0 foram considerados aceitáveis). Aproximadamente 1 μg de RNA total obtidos foram misturados em uma solução do high capacity cDNA kit para a obtenção do cDNA (RT-PCR).
Reação em cadeia da polimerase em tempo real (qPCR)

Foram utilizados iniciadores (“primers”) de amplificação para detecção de IGF-I construídos a partir do Gene Bank (número de acesso: NM_010512) do RNA mensageiro de camundongos para esse fator de crescimento. Como gene “housekeeping” foi utilizado primers específicos para β-actina (número de acesso: NM_00739). A quantificação relativa da expressão do RNA mensageiro foi mensurado utilizando a comparação do Threshold cycle (CT) do gene alvo (IGF-I) com o gene constitutivo β-actina.

Tabela 1.
Sequências dos Primers

Alvo	Sequências dos primers
β-actina	Forward 5´ GCC TTC CTT CTT GGG TAT GGA ATC 3´
	Reward 5´ ACG GAT GTC AAC GTC ACA CTT CAT 3´
IGF-I	Forward 5´ TAC TTC AAC AAG CCC ACA GG 3´
	Reward 5´AGT CTT GGG CAT GTC AGT GT 3´

Silenciamento de expressão de mRNA de IGF-I por siRNA

siRNA de IGF-I

A construção dos small interfering RNAs (siRNAs) tomou como base a sequência do IGF-I do GenBank (número de acesso: NM_010512), usando o software IDTSciTools RNAiDesign (Integrated DNA technologies). As sequências escolhidas foram: sense 5´ AAA GGA GAA GGA AAG GAA GUU CAT T 3´ e antisense 5´AAU GUA CUU CCU UUC CUU CUC CUU U 3´.
Transfecção Transiente

O método de transfecção foi feito pela transferência mediada por lipídios catiônicos, que encapsula o siRNA de interesse em vesículas membranosas (lipossomos artificiais) seguida da fusão destes complexos com a membrana plasmática da célula hospedeira.

Para realizar a transfecção, 150 pM de siRNA em 50µL de meio DMEN sem soro fetal bovino (SFB) e 3µL de lipofectamine 2000 (Invitrogen) em 50µL de meio DMEN sem SFB foram mantidas a temperatura ambiente por 10 min, homogeneizadas e mantidas por 30 min a temperatura ambiente para a formação dos complexos lipossomo-siRNA. Após incubação, os complexos foram adicionados às placas contendo macrófagos infectados ou não por L. amazonensis. Durante 6 horas, as células foram incubadas em DMEM sem SFB para possibilitar a entrada do complexo siRNA-lipossomo na célula hospedeira. Após incubação, os poços das placas foram lavados com PBS estéril morno para retirada do complexo siRNA-lipossomo não internalizado. Após este período, foi adicionado meio DMEM acrescido de 0,5% de BSA e as placas foram incubadas por 24 e 48 horas para avaliação do parasitismo e expressão de mRNA de IGF-I.

Forma de análise dos resultados

A análise estatística foi realizada empregando-se os testes ANOVA e Tukey e todas as conclusões foram tomadas ao nível de significância de 5%. Foi realizada uma análise descritiva para expor os resultados e a apresentação das variáveis mensuradas foi feita em tabelas e gráficos utilizando os softwares Excel 2000 e GraphPad Prism 5.0 (GraphPad software, Inc., San Diego, CA, USA).
REFERÊNCIAS BIBLIOGRÁFICAS

Barral A, Costa JM, Bittencourt AL, Barral-Netto M, Carvalho EM. Polar and subpolar diffuse cutaneous leishmaniasis in Brazil: clinical and immunopathologic aspects. International journal of dermatology. 1995;34(7):474-9. Epub 1995/07/01.

Camargo EP, Coelho JA, Moraes G, Figueiredo EN. Trypanosoma spp., Leishmania spp. and Leptomonas spp.: enzymes of ornithine-arginine metabolism. Experimental parasitology. 1978;46(2):141-4. Epub 1978/12/01.

Desjeux P. Leishmaniasis: current situation and new perspectives. Comparative immunology, microbiology and infectious diseases. 2004;27(5):305-18. Epub 2004/07/01.

Gomes CM, Goto H, Corbett CE, Gidlund M. Insulin-like growth factor-1 is a growth promoting factor for Leishmania promastigotes. Acta tropica. 1997;64(3-4):225-8. Epub 1997/04/15.

Gomes CM, Goto H, Ribeiro Da Matta VL, Laurenti MD, Gidlund M, Corbett CE. Insulin-like growth factor (IGF)-I affects parasite growth and host cell migration in experimental cutaneous leishmaniasis. International journal of experimental pathology. 2000;81(4):249-55. Epub 2000/09/06.

Gomes CM, Monteiro HP, Gidlund M, Corbett CE, Goto H. Insulin-like growth factor-I induces phosphorylation in Leishmania (Leishmania) mexicana promastigotes and amastigotes. The Journal of eukaryotic microbiology. 1998;45(3):352-5. Epub 1998/06/17.

Goto H, Gomes CM, Corbett CE, Monteiro HP, Gidlund M. Insulin-like growth factor I is a growth-promoting factor for Leishmania promastigotes and amastigotes. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(22):13211-6. Epub 1998/10/28.

Goto H, Lindoso JA. Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. Expert review of anti-infective therapy. 2010;8(4):419-33. Epub 2010/04/10.

Green SJ, Meltzer MS, Hibbs JB, Jr., Nacy CA. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. Journal of immunology (Baltimore, Md : 1950). 1990;144(1):278-83. Epub 1990/01/01.
Haidaris CG, Bonventre PF. A role for oxygen-dependent mechanisms in killing of Leishmania donovani tissue forms by activated macrophages. Journal of immunology (Baltimore, Md : 1950). 1982;129(2):850-5. Epub 1982/08/01.

Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM., Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expression of distinct helper T cell subsets. Journal of immunological methods. 1989; 1;169(1):59-72.

Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocrine reviews. 1995;16(1):3-34. Epub 1995/02/01.

Liew FY, Millott S, Parkinson C, Palmer RM, Moncada S. Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. Journal of immunology (Baltimore, Md : 1950). 1990;144(12):4794-7. Epub 1990/06/15.

Muller I, Pedrazzini T, Farrell JP, Louis J. T-cell responses and immunity to experimental infection with leishmanial major. Annual review of immunology. 1989;7:561-78. Epub 1989/01/01.

Rappolee DA, Mark D, Banda MJ, Werb Z. Wound macrophages express TGF-alpha and other growth factors in vivo: analysis by mRNA phenotyping. Science (New York, NY). 1988;241(4866):708-12. Epub 1988/08/05.

Reis LC, Ramos-Sanchez EM, Goto H. The interactions and essential effects of intrinsic insulin-like growth factor-I on Leishmania (Leishmania) major growth within macrophages. Parasite immunology. 2013;35(7-8):239-44. Epub 2013/05/15.

Reis LC. Influência do fator de crescimento insulin-simile I no efeito de citocinas na resistência e suscetibilidade na leishmaniose cutânea murina por Leishmania (Leishmania) major: . São Paulo: Universidade de São Paulo; 2013.

Roberts SC, Tancer MJ, Polinsky MR, Gibson KM, Heby O, Ullman B. Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania. Characterization of gene deletion mutants. The Journal of biological chemistry. 2004;279(22):23668-78. Epub 2004/03/17.

Silveira FT, Lainson R, Gomes CM, Laurenti MD, Corbett CE. Immunopathogenic competences of Leishmania (V.) braziliensis and L. (L.) amazonensis in American cutaneous leishmaniasis. Parasite immunology. 2009;31(8):423-31. Epub 2009/08/04.

Silveira FT, Lainson R, Gomes CM, Laurenti MD, Corbett CE. Reviewing the role of the dendritic Langerhans cells in the immunopathogenesis of American cutaneous
leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2008;102(11):1075-80. Epub 2008/07/08.

Soong L, Chang CH, Sun J, Longley BJ, Jr., Ruddle NH, Flavell RA, et al. Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection. Journal of immunology (Baltimore, Md : 1950). 1997;158(11):5374-83. Epub 1997/06/01.

Vendrame CM, Carvalho MD, Rios FJ, Manuli ER, Petitto-Assis F, Goto H. Effect of insulin-like growth factor-I on Leishmania amazonensis promastigote arginase activation and reciprocal inhibition of NOS2 pathway in macrophage in vitro. Scandinavian journal of immunology. 2007;66(2-3):287-96. Epub 2007/07/20.