REVIEW

On the role of transmission electron microscopy for precipitation analysis in metallic materials

Tao Zhou, Revathy Prasath Babu, Ziyong Hou, and Peter Hedström

Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden

ABSTRACT
Precipitation hardening is one of the most important strengthening mechanisms in metallic materials, and thus, controlling precipitation is often critical in optimizing mechanical performance. Also other performance requirements such as functional and degradation properties are critically depending on precipitation. Control of precipitation in metallic materials is, thus, vital, and the approach presently in the limelight for this purpose is an integrated approach of theory, computations and experimental characterization. An empirical understanding is essential to build physical models upon and, furthermore, quantitative experimental data is needed to build databases and to calibrate the models. The most versatile tool for precipitation characterization is the transmission electron microscope (TEM). The TEM has sufficient resolving power to image even the finest precipitates, and with TEM-based microanalysis, overall quantitative data such as particle size distribution, volume fraction and number density of particles can be gathered. Moreover, details of precipitate structure, morphology and chemistry, can be revealed. TEM-based postmortem and in situ analysis of precipitation has made significant progress over the last decade, largely stimulated by the widespread application of aberration corrected microscopes and accompanying novel analytics. The purpose of this report is to review these recent developments in precipitation analysis methodology, including sample preparation. Application examples are provided for precipitation analysis in metals, and future prospects are discussed.

KEYWORDS
Precipitation; transmission electron microscopy; precipitation hardening; phase transformation; metallic materials

Table of contents
1. Introduction .. 389
2. Sample preparation for analysis of precipitation ... 390
 2.1. Thin-foil preparation .. 391
 2.2. Site-specific bulk preparation .. 392
 2.3. Chemical extraction .. 393
 2.4. Electrolytic extraction .. 393
3. TEM-based methods for precipitation analysis .. 394
 3.1. High-resolution imaging .. 395
 3.2. Spectroscopy .. 395
 3.3. Diffraction .. 396
 3.4. In situ methods .. 396
 3.5. Tomography ... 396
 3.6. Miscellaneous methods .. 397
4. Precipitation engineering in metals aided by TEM analysis 397
 4.1. Performance optimization through advanced analysis of precipitate structure .. 397
 4.2. Interface chemistry analysis for improved precipitation modeling 398
 4.3. Understanding of precipitation strengthening by in situ analysis of precipitate–dislocation interactions 399
5. Future prospects ... 401
 5.1. Characterization of nucleation and early growth of precipitates 401
 5.2. In situ characterization of precipitates ... 403

CONTACT Tao Zhou taozhou@kth.se

© 2021 The Author(s). Published with license by Taylor and Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction

Precipitation hardening generating an increased hardness and/or strength of an alloy due to fine particles precipitated upon aging of a supersaturated solid solution was discovered by Wilm \cite{1} and commercially introduced under the trade-name Duralumin in the beginning of the twentieth century. \cite{2,3} Merica et al. \cite{4} provided an early explanation of the phenomenon but it took roughly 30 years from the discovery of the effect before its microstructural origin, i.e., Guinier–Preston (GP) zones, could be identified by utilizing small-angle X-ray scattering (SAXS). Since then, a lot of attention has been directed toward precipitation and precipitation hardening. Early on, the precipitation analysis was mainly conducted through X-ray techniques using single crystals \cite{5} and the advancement for steels was falling behind the lightweight alloys, since it was more difficult to prepare single crystalline steels. The understanding of precipitation took a leap when the application of transmission electron microscopy (TEM, the acronym is used interchangeably for microscope and microscopy) became more widespread in the 1940s. Precipitation analysis in steels became more tractable and, for example, coarser precipitates were analyzed by TEM on extraction replica samples. \cite{6} Over the years, sample preparation techniques and instrumentation have made significant advances, which have helped to solve the early struggles. Nowadays, TEM is one of the few techniques capable of resolving nanoscale precipitates and dislocation–precipitate interactions \cite{7}; and, about one century after the discovery by Wilm, it is clear that TEM contributes significantly to the development of precipitation engineered high-performance alloys. Recent examples where TEM has contributed to precipitation engineering in alloys are: high-angle annular dark field (HAADF) technique has accelerated the development of advanced ultra-high strength alloys through understanding of coherency and misfit of nanoscale B2 ordered precipitate phase in Fe–Ni–Al–Mn alloys \cite{8}; a combination of HAADF, electron energy loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDS) has revealed the Cu core-B2 Ni(Al, Mn) shell structure in high-performance Fe–Cu–Mn–Ni–Al alloys \cite{9}; in situ TEM has improved the knowledge of precipitate–dislocation interactions in Al–Mg–Sc alloys at elevated temperatures in real time. \cite{10}

The recent focus on enhanced materials innovation rates by reducing the development and implementation time puts emphasis on computational methods. \cite{11,12} Integrated computational materials engineering (ICME) \cite{13,14} and integrated computational materials design (ICMD) \cite{15,16} are important concepts in this work. A mature ICME/ICMD framework would facilitate the transition from traditional materials discovery into an efficient, computationally driven design process. In such a framework, advanced experimental tools are key technology drivers. Experimental tools and methods are needed to build mechanistic understanding upon which models can be based but the tools are also needed to acquire data for building databases and calibrating models. In fact, advanced methods allowing for three-dimensional (3D) and in situ characterization are becoming more important today due to the advancement of the modeling. For instance, precipitation modeling by the Langer–Schwartz–Kampmann–Wagner (LSKW) approach \cite{17–20} needs 3D experimental information of particle size distribution and property modeling is nowadays capable of treating the full 3D microstructure. \cite{21} Specifically for precipitation, high-resolution techniques capable of resolving nanoscale precipitates with proper statistics are needed. 3D and in situ capabilities provide added benefits. Tools currently used to characterize precipitates are TEM, atom probe tomography (APT) \cite{22,23} and small-angle scattering (SAS). \cite{24–27} TEM is the most versatile out of these tools for precipitation characterization and it is capable of quantitatively characterizing, for example, structure, chemistry, morphology and dispersion of precipitates. \cite{28} By measuring and controlling these precipitation parameters, it is possible to tune and optimize properties of the material, not only the more standard mechanical properties such as strength and ductility but also creep resistance, \cite{29,30} wear resistance, \cite{31} functional \cite{32} and degradation \cite{33,34} properties (see schematic illustration in Figure 1).

TEM-based analysis has made significant advances during the last decade with more widespread implementation of aberration corrected microscopes and improved analytic instrumentation as well as novel methods to fully
benefit from the capabilities of these prime microscopes, see examples in Refs. [35–38]. Current TEM capabilities are even expanding toward nanoscale laboratories where structures are assembled atom by atom.[39–41] Being such an important technique in materials science, TEM capabilities have been reviewed on multiple occasions recently.[42–46] However, though TEM is key in the field of precipitation in metallic materials,[2,47–50] there has been no recent effort to elucidate the current capabilities of TEM-based analysis of precipitation in metallic materials. We aim to make such an effort in the present report. The recent developments of TEM capabilities that have bearing on precipitation analysis in metallic materials are reviewed and application examples are provided. Furthermore, an outlook on future prospects in the field is given. The structure of the report is the following. After this introductory section: Section 2 describes sample preparation methodologies for precipitation analysis in TEM; Section 3 describes the state-of-the-art in TEM methodology for precipitation analysis; Section 4 gives recent application examples for precipitation analysis in metals; Section 5 provides the authors’ viewpoints on existing challenges and opportunities; and, finally, the report is concluded with a summary (Section 6).

2. Sample preparation for analysis of precipitation

Samples for TEM analysis have stringent requirements of electron transparency, extreme thinness for

Figure 1. A schematic illustrating the plethora of TEM capabilities for analyzing precipitate characteristics, of importance for various properties of metallic materials. (Abbreviations in the figure: Deform: Deformation; Concentration; Orient: Orientation; Tomo: Tomography; Spect: Spectroscopy; Diff: Diffraction; Imag: Imaging).
optimized high-resolution analysis, contamination avoidance, artifact free, etc. When preparing these samples from bulk materials, it is clearly important to make sure they are representative of the bulk material and also to avoid relaxing or introducing strains and stresses.\[51\] Since these requirements are complicated to meet, sample preparation is a critical step for successful TEM analysis. Therefore, various sample preparation techniques for precipitation analysis are elucidated here, and the advantages and disadvantages of these techniques are summarized in Table 1.

2.1. Thin-foil preparation

Thin-foils are most widely used for TEM characterization of bulk metallic materials as well as precipitates therein. In the case when bulk information about precipitates forming well-dispersed in the microstructure is desired or large area of interest for good statistics is required, thin-foil specimen prepared by twin-jet electro-polishing method is the most efficient. The general procedures for preparing thin foils from bulk metal samples are\[51,52\]: (i) cutting the bulk material into approximately 0.3–0.5 mm thickness slices, grinding and polishing on different grade silicon carbide papers to approximately 50–200 μm thickness, while ensuring that the damaged layer can be fully removed in the subsequent electro-polishing; (ii) punching out 3 mm-diameter disks; (iii) finally twin-jet electro-polishing using appropriate conditions for the studied material, i.e., proper electrolyte, voltage and temperature in a dedicated electro-polishing equipment, for instance, a Struers Tenupol-5 or Fischione 110 polisher (the procedure is shown schematically in Figure 2a).

In some cases, other techniques may be preferred for specimen preparation to study precipitation in bulk metallic materials. For example, in materials such as hard metal composites and multiphase materials where it is hard to get a sufficiently large uniform thin area due to differential thinning in the electro-
polishing method,[51] an alternative way is to use a combination of dimple grinding and precision ion-polishing.[53] Another alternative method for these difficult materials is to electro-polish to form a perforation, followed by broad ion beam (BIB) milling and polishing to obtain a uniform thin area, thus, minimizing the artifacts arising due to differential thinning.[54] For ion polishing, parameters including voltage, angle and rotation rate are usually tuned to minimize defects associated with the preparation.[55] For final cleaning of TEM samples that were made by different preparation techniques, plasma cleaning is often used to remove contaminations, such as hydrocarbon and carbonaceous compounds before the thin-foil is inserted into the TEM chamber. Depending on the specifics of plasma cleaning, a blended oxygen/argon process gas or pure argon or oxygen can be used.[56,57]

2.2. Site-specific bulk preparation

When specific regions in the bulk material are of interest (e.g., studies of precipitates nucleated at various defects), or when accurate control of specimen thickness is needed (e.g., studies of chemistry around precipitate–matrix interface), focused ion beam (FIB) is the primary specimen preparation method of choice.[58–61] The specimen preparation by FIB is usually conducted in an electron-ion instrument equipped with two beam columns, i.e., one focused beam of electrons for imaging and one focused beam of ions for sputtering or milling/polishing. The procedure for TEM thin foil preparation by FIB includes: (i) depositing a first protection layer (normally Pt) on the area of interest (AOI), (ii) peripheral and bottom cutting around the AOI but leaving a micro-bridge connecting the AOI and the bulk material, (iii) fixing the micromanipulator probe, to be used in the extraction of the sample, to the sample by deposition before the final cutting of the micro-bridge and (iv) transferring the sample using the micromanipulator to a TEM grid and fixing it to the grid by deposition (see Figure 2b). Using FIB, thin foil TEM specimens can either be prepared perpendicular or parallel (plan–view lift-out) to the sample surface.[62] With the development of the FIB technology, there are currently many possible ion beam chemistries and source types available either commercially or in the research prototyping phase. For example, gas (e.g., He⁺ and Ne⁺) field ionization sources (GFIS), inductively coupled (e.g., Ar⁺ and Xe⁺) plasma (ICP), liquid metal (e.g., Ga⁺) and alloy ion sources (LMAISs) and laser-cooled low temperature ion sources (LoTIS) have been applied frequently.[63,64] The most common ions that are used in commercial FIB instruments are He⁺, Ne⁺, Ar⁺, Ga⁺ and Xe⁺, which enable milling and imaging at length scales over several orders of magnitude (1 nm to 1 mm) by offering a large range of available ion currents, energies and beam sizes.[63] For more details of the theory, ion–solid interactions, applications, advantages and limitations of different ion sources, see Refs. [63–65].

Despite the aforementioned advantages as compared with, e.g., electro-polishing, FIB has a major disadvantage when it comes to materials characterization, e.g., precipitate analysis at a high-resolution atomic scale – beam damage. The energetically implanted ions leave a damaged zone under the target area that can alter the chemistry and structure of materials, but it varies with ion beam source, employed material and working condition.[62,66] For example, the implantation of Ga⁺ can lead to its chemical interaction with materials which are chemically sensitive to Ga⁺, e.g., Cu containing materials can form intermetallic phase Cu₃Ga.[67] However, with the use of an ion source consisting of Xe⁺ or Ar⁺, the chemical reactions are prevented due to the noble nature of the gas. In addition, the material can undergo a crystalline-to-amorphous/phase transition when the number of accumulated defects or the critical amount of deposited energy exceeds a threshold value.[68–73] To minimize the heating induced artifacts due to continuous transfer of kinetic energy of ions to the target materials, either cooling the specimen using a liquid nitrogen stage, or employing the ion beam modulation feature in which the sample is not exposed to the ion beam continuously, is applied.[74] The reduction of ion energy (accelerating voltage below 2 keV) and milling angles, for bulk specimen milling, minimizes ion beam damage, formation of amorphous layer and specimen heating, and low angles of incidence facilitate uniform thinning of dissimilar materials.[63,75,76] Therefore, a low-energy cleaning step is particularly important in preparation of high-quality samples.[63,74] To find an efficient approach that can consistently remove defects produced by FIB, a flash electropolishing approach was first reported by Ando et al.[77] By electropolishing for a very short time (~0.2 s), a surface damage layer (~20 nm) could be completely removed in Fe-Ni-Cr alloys.[77] Later on, such a flash electropolishing approach has been used to remove the damaged layer to produce high quality TEM specimens for oxide dispersion strengthened alloys,[78] ultra-high purity iron,[79] and neutron/ion irradiated ferritic alloy.[80]
etc. By this approach, the nanoscale precipitates and neutron/ion irradiation-induced defects in the irradiated materials are possible to characterize accurately. Another possible solution to the FIB damage is the utilization of low acceleration voltage and low incident beam Argon ion milling in the new generation of three-beam microscopes, which has been proven to be an effective technique to prepare high quality lamellae of metallic materials. In addition, similar as described for bulk thin foils earlier, a combination of FIB-based lift-out technique with post-processing in BIB has been also proposed to minimize or eliminate this damage and ensure high quality analysis results. This combination is particularly useful since only the most advanced FIB systems are capable of reducing the ion energy below 2 keV using energetic Ga\(^\text{+}\) ions. An additional advantage of combining these two techniques is the reduction of specimen preparation time. For more details of various FIB TEM specimen preparation techniques, see Refs. [51,60–64,83].

2.3. Chemical extraction

The preparation of extraction replica is a traditional but important sample preparation methodology for the study of precipitates, nonmetallic inclusions and microstructures in different kinds of materials. The extraction replica samples are usually prepared by first grinding, polishing and slightly etching the bulk sample, before a replica foil such as carbon of approximately 20 nm thickness is deposited on the etched surface using a coating instrument, e.g., Gatan 682 PECS\(^\text{TM}\) (precision etching and coating system). Thereafter, the coated film is cut into approximately 2 \(\times\) 2 mm\(^2\) grids by a razor blade and then these smaller films are floated off in an etchant suitable for the studied material, utilizing either electro-etching or chemical etching. The coated films are cleaned by ethanol multiple times and unfolded in a mixture of distilled water and ethanol. Finally, they are collected on a support grid of, e.g., Cu or Mo and dried thoroughly (see Figure 2c). Depending on the nature of the material and what should be analyzed, various coatings such as Al, Au, Au/Pt, Ag, Cr, Ti can be used. Carbon coating is the prevailing coating for steels, where an amorphous coating consisting of a light element that provides a large mean free path of the electrons is preferred.

In comparison with the aforementioned thin-foil TEM samples, the extraction replicas for the precipitate analysis have the following benefits: (i) elimination of the influence of the matrix during chemical and diffraction analyses of precipitates, (ii) increase of the contrast between the particles of interest and the background during TEM imaging, (iii) increase of the concentration of alloying elements within the precipitation process with a continuous evolution of the size of \(\text{M}_6\text{C}\) in steels. This evolution could increase or decrease the chemical resistance of the precipitates, which leads to the dissolution of precipitates in concentrated acid solutions, which are usually applied in the chemical extraction process. Hence, electrochemical dissolution could be a better choice in certain cases. This is because it can be easier to control the type of dissolving phase and its electrochemical dissolution rate by applying an electrochemical potential. The consequence is that fine precipitates are less likely to be dissolved during sample preparation using electrolytic extraction as compared to chemical extraction sample preparation. The main control parameters during electrolytic extraction are: the electrolyte used, voltage, current density, temperature and time. Moreover, the subsequent treatments

2.4. Electrolytic extraction

In addition to the thin-foils and chemical extraction replicas, electrolytic extraction is another method to prepare TEM samples in order to obtain quantitative information of precipitates in bulk materials. This method is based on an electrochemical procedure, selectively dissolving the steel matrix and separating the undissolved particles from the matrix by filtration. The filtered precipitates are then used for the preparation of TEM samples in a similar way as for nanosized powder materials (see Figure 2d). The aforementioned chemical extraction is a relatively simple method to separate highly chemically resistant precipitates from the matrix. However, the chemical resistance of precipitates may change during the precipitation process with a continuous evolution of the concentration of alloying elements within the precipitates, e.g., Cr concentration increases with the size of \(\text{M}_6\text{C}\) in steel. This evolution could increase or decrease the chemical resistance of the precipitates, which leads to the dissolution of precipitates in concentrated acid solutions, which are usually applied in the chemical extraction process. Hence, electrochemical dissolution could be a better choice in certain cases. This is because it can be easier to control the type of dissolving phase and its electrochemical dissolution rate by applying an electrochemical potential. The consequence is that fine precipitates are less likely to be dissolved during sample preparation using electrolytic extraction as compared to chemical extraction sample preparation. The main control parameters during electrolytic extraction are: the electrolyte used, voltage, current density, temperature and time.
of the residues after the particles have been separated from the bulk matrix are important, and precipitates with size down to 5–15 nm could be successfully collected due to electrostatic attraction effects.\cite{98,99,103} The major challenges here are to find a proper electrolyte and the applied electrochemical potential that selectively dissolve the matrix rapidly without dissolving the precipitates. In addition, the possibility to dissolve large volumes of the bulk material makes electrolytic extraction advantageous in studying precipitate volume fraction and identification of multiple precipitate phases by combining with X-ray diffraction (XRD).\cite{103,106}

3. TEM-based methods for precipitation analysis

Even though the focus of this work deals with TEM characterization of nanoscale precipitates in metallic materials, it has to be mentioned that SEM is always recommended beforehand, especially for relatively large precipitates, considering the advantages of SEM with easier sample preparation with less possible artifacts and that they are readily available in materials laboratories. Moreover, SEM has good resolution down to about 10 nm for typical precipitates in metals, and provides the possibility to perform 3D-FIB tomography analysis,\cite{107} electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD) for crystallographic analysis.\cite{108} Furthermore, the large chamber space aids in situ analysis and the development of low voltage EDS analysis in SEM should also be mentioned, since it can readily provide chemical analysis with spatial resolution down to a few tens of nanometers.\cite{109}

TEM-based analysis of precipitates deals with two basic goals – first is the identification of the precipitate(s) type and second is the quantification of the precipitates. A full determination of the character of the precipitate requires both diffraction and chemical data. There are also other important features related to precipitates such as misfit of precipitate–matrix interfaces\cite{110}; the identification of misfit aids misfit strain analysis that in turn affects the dislocation motion, and thus, strength of the material. A full quantification of precipitates requires TEM analysis based on imaging, diffraction, spectroscopy and tomography methods.

TEM-based techniques can be divided broadly into three categories – imaging, diffraction and spectroscopy. Conventionally, diffraction-contrast-based imaging techniques such as bright field (BF) and dark field (DF) imaging are widely used in characterizing and quantifying precipitates.\cite{111} They are also combined with other complementary techniques such as convergent electron beam diffraction (CBED) and electron energy loss spectroscopy (EELS) techniques for advanced analysis of precipitate crystallography, composition and chemical states. Additionally these methods provide localized sample thickness measurements in order to perform volume-based quantification of precipitates.\cite{112–115} The combination of BF/DF imaging with energy dispersive X-ray spectroscopy (EDS) has provided an opportunity for efficient characterization of precipitates in metallic systems.\cite{95} With scanning possibilities in TEM, the conventional scanning TEM (STEM)-based imaging techniques such as annular dark field (ADF), high-angle annular dark field (HAADF) and BF imaging provide conditions with removal of artifacts, such as bend contours that are caused by the occurrence of high-order diffraction when a particular set of diffracting planes is not parallel everywhere.\cite{116}

The novel developments of TEM, such as chromatic aberration correction (Cc) and spherical aberration correction (Cs), significantly improve the signal-to-noise ratio and achieve a sub-Ångström spatial resolution due to the improved focus of electrons of different wavelength and the reduction in energy spread of electrons and point spread arising from the refraction power of a real lens that increases with the angle between the entering beam and the instrument’s optical axis.\cite{117–120} Optionally, the increased accelerating voltage can also aid attaining higher resolution due to lowering of electron wavelength. An example of the application of high accelerating voltage and double Cs correction can be seen in Figure 3,\cite{121} where Cs aberration correction was applied to both probe and image formation lenses. Dramatic improvement in resolution is achieved with an excellent imaging of atomic arrangements within the chemically ordered precipitate and its lattice coherency with the matrix. Except for STEM-HAADF,\cite{122,123} the capability of TEM-based techniques like in situ characterization\cite{124,125} and atomically resolved STEM-EDS/EELS\cite{126–128} are improved or achieved. Among these advanced techniques, atomic-resolution STEM-HAADF imaging technique in Cs- or/and Cc-corrected TEM, combining with EDS and EELS, has become a mainstay in recent years for characterization of precipitates with size in the order of only a few nanometers.\cite{9,129–131} Starting with these high-resolution imaging and spectroscopy techniques, the
3.1. High-resolution imaging

High-resolution imaging techniques include high-resolution TEM (HRTEM) and high-resolution STEM-HAADF, -BF, -ADF imaging. By using the elastic interaction of a coherent parallel electron beam in conventional TEM mode with the crystal lattice forming an interference pattern (phase contrast), HRTEM is an efficient technique to study the atomic scale structure of precipitates. Before imaging, the grains or crystals require accurate tilting to align atomic columns with a low index zone axis along the electron beam direction to achieve good atomic resolution in the imaging plane. HRTEM imaging together with fast Fourier transformation (FFT) analysis can be applied for structural determination of fine precipitates, whereas diffraction intensity from a very small volume is limited for the SAED method. By collecting the transmitted scattered electrons with a high-angle annular detector after the interaction of a convergent beam in STEM mode with precisely aligned atomic columns in the region of interest, HAADF can provide chemically sensitive information (Z-contrast) that helps distinguishing individual intensity variations in the atom columns and the chemistry related to atom positions in the crystal structure.

Therefore, HAADF shows benefits over HRTEM for studies of elemental distribution within fine precipitates. Energy filtering (EF) is another step forward in the TEM imaging, with atomic resolution. This utilizes the electron energy loss spectrum for formation of elemental images through introduction of energy selecting slits in two window jump ratio method, three window method and chemical state mapping from the characteristic energy loss edges corresponding to individual chemical elements and the profile variations due to electronic states. The benefits of EF include contrast enhancement through removal of inelastically scattered electrons while imaging, and characteristic EFTEM mapping for quantification of precipitate phases based on their chemistry.

3.2. Spectroscopy

Spectroscopy techniques include EELS and EDS. EELS works on the principle of identification and separation of inelastically scattered electrons of different energy that have transmitted through the specimen after interactions with the sample material, resulting in a spectrum of electron intensity against the energy lost in the interaction. Whereas EDS works on the principle of detecting characteristic X-rays which are emitted from different elements in the material after the electron–atom interaction. These two techniques are complementary to each other, but it is noteworthy that EELS has higher requirements on sample thickness as compared to EDS. EELS has its strength on analysis of low-Z elements and identifying the differences in electronic states of the element in the compounds (e.g., precipitates) through analysis of core-loss edges utilizing multiple proposed methods such as white-line ratio, chemical shift, energy-loss near-edge structure (ELNES) fitting, etc. Different parts of the EELS spectrum such as the low-loss spectrum, Plasmon peaks and core-loss edge and near-edge spectroscopy can be used to analyze various material characteristics. For example, the low-loss spectra, which is also called valence electron energy loss spectra, contains information about defects and interfaces with atomic scale resolution, these analysis must, however, be performed with caution since spatial resolution is limited by the delocalization of the EELS signal. ELNES, for example, provides information about the electronic and atomic environments around an intended atom species, similar to the X-ray absorption near-edge structures. ELNES is particularly useful in the chemical analysis of light elements in very small
precipitates, e.g., carbon content in carbides, through combining with extraction replica and plasma cleaning.[146] In the case of EDS, it applies mostly to high-Z elements. With the introduction of windowless and solid state detectors such as silicon drift detectors, low-Z elements can also be identified, while quantification is still an issue for some ambiguous elements such as C, due to other sources of contamination in the sample as well as in the TEM chamber (The same issue exists for EELS analysis as well). With the introduction of multiple EDS detectors which enhance the collection efficiency through a large collection area, the EDS scenario has been improved in TEM.[147] Within a relatively short time, high resolution EDS spectral maps can be obtained, without the need of tilting the sample to improve detection, which was the case in conventional systems with only one EDS detector working with a tilttable specimen holder. The introduction of wavelength dispersive spectroscopy (WDS) as used in SEM for the quantification of low-Z elements was not considered to be efficient due to space limitation within the S/STEM column.[101,148] Wavelength dispersive soft X-ray emission spectroscopy within TEM has been developed in the past decade, which has potential for analyzing density of states and bonding characters of nanometer scale features.[149,150]

3.3. Diffraction

In the identification and accurate analysis of crystallographic information, SAED, nanobeam diffraction (NBD) and CBED have been offering promising solutions. SAED is formed by a parallel beam of electrons, whereas in NBD and CBED the beam is converged, the convergence angle being smaller for NBD than CBED. SAED patterns are usually spot patterns or ring patterns depending on the size of crystal and the aperture used. While SAED is limited by the aperture size for selecting region of interest, particularly for nanoscale precipitates, it enables the formation of bright and dark field images with controlled diffraction conditions.[101] NBD enables formation of diffraction patterns from a nanoscale region of the sample, but the diffraction pattern will consist of disks instead of spots as in the SAED. With increase in convergence angle from the stationary nanobeam, CBED technique results in Kossel patterns which can provide detailed information about the crystal structure of the precipitates.[151,152] Compared to the above diffraction methods, precession electron diffraction (PED) is a non-stationary beam that is tilted and made to precess over a predefined surface of a cone, the angle of which is variable. This technique provides more reliable interpretation of the diffraction pattern since the precession reduces the nonsystematic dynamical effects and improves interception of the Ewald sphere.[153] Automated crystal orientation mapping (ACOM-TEM) using the PED technique enables automatic mapping in TEM, similar to EBSD, but with resolutions of up to 1–3 nm when a field emission electron gun (FEG) is used. It is a high-end technique for orientation mapping and phase identification of nanoscale precipitates,[154–156] its potential widespread use is expanded in Subsection 5.3.

3.4. In situ methods

Conventional \textit{ex situ} characterization of precipitates in materials at room temperature is inevitably affected by factors such as stability of the precipitates during cooling and ambiguity in temperature of initiation of precipitation, since all examinations are performed post mortem at room temperature. Additionally, there are unknown factors of influence such as thermal stresses and their effect on precipitates during cooling (e.g., elastic strain-induced bcc-to-9R structural transformation in Cu precipitates[157]), and artifacts introduced through mechanical strain during sample preparation. \textit{In situ} heating and cooling in TEM possibly avoid these factors and enable monitoring of the precipitation process, and moreover, the effect of other environments such as radiation, deformation, etc. can be studied.[123–125,158,159] The possible applications could include but are not limited to: \textit{in situ} studies of nucleation-growth-coarsening,[158–162] precipitate impingement,[163] precipitate splitting (reverse coarsening),[164] precipitation under irradiation,[165] structural transformation of precipitates during heat treatment or deformation,[95] and precipitate–dislocation interaction.[10,166,167] All these fields are promising but still in their rudimentary stages. \textit{In situ} TEM sample holders that perform heating have been in development and in use for many decades. Recently micro-electro-mechanical systems (MEMS)-based heating and cooling holders with precise control over the rate of heating/cooling have become widely used.[168] \textit{In situ} sample stages also offer wide possibilities of deformation to study the interaction of defects with microstructural features such as precipitates.[169]

3.5. Tomography

3D tomography, as a technique which derives 3D information from 2D images, is invaluable in analyses of morphology and interconnectivity of precipitates.[170,171] The 3D electron tomography (ET)
conventionally applies the diffraction contrast for imaging, while advances in EDS (such as multiple detectors with high collection angle and efficiency) and EELS (such as the improvements in Gatan Imaging Filter) have enabled the use of EDS and EELS signals for 3D tomography as well.\cite{172–175} Use of needle shaped samples instead of thin foils avoids projected thickness variations during tilting. This method suits well for the precipitates of size range less than 100 nm.\cite{176} In addition, atomic resolution technique, can provide 3D information of nanoparticles within a matrix,\cite{177–180} but it is very challenging for embedded particles where different elements are mixed. For a complete understanding of nanoscale precipitates in 3D, correlative ET-APT presents an unprecedented opportunity. The two techniques are complementary to each other, as ET provides larger-scale morphological information and APT provides smaller-scale chemical information. This combination also allows for the detection of artifacts, the determination of optimal reconstruction parameters, the evaluation of the reconstruction quality, etc., associated with both techniques.\cite{181} It is noteworthy that ET is nondestructive while APT is a destructive method.

3.6. Miscellaneous methods

It should also be mentioned that the usage of Moiré fringes-based techniques for identifying the crystal structure of precipitates and other nanoscale features can also be very useful, as demonstrated in NiAl and aluminum alloys in the literature.\cite{182,183} The same technique could readily also be employed in the identification of other precipitate types in metallic materials. The technique is based on the interference patterns that are generated due to the overlapping patterns of precipitate and matrix, see the details in Ref. [182]. Another interesting technique is electron holography. It is a powerful technique for mapping electrostatic and magnetic fields in nanoscale structures, and its application for studies of the electric and magnetic nature of nanoprecipitates\cite{184,185} and interfaces\cite{186} has been demonstrated.

4. Precipitation engineering in metals aided by TEM analysis

Detailed characterization of precipitation is often necessary for performance optimization and computational materials design of metallic materials. With the improved TEM methodologies, quantitative analysis is now feasible thorough application of the methods described in this report. To exemplify this, we show some representative examples from recent literature with state-of-the-art results.

4.1. Performance optimization through advanced analysis of precipitate structure

The structure of precipitate and the precipitate–matrix interface directly determine the mechanism of precipitate–dislocation interactions and subsequently the magnitude of precipitation hardening. Cu is a widely used element to increase strength of various steels, e.g., maraging steels\cite{187–190} and ferritic steels\cite{191–193} by precipitation hardening, where a high number density of coherent body-centered cubic (bcc) Cu precipitates is sought for. Precipitates of Cu will first form as bcc Cu in the bcc Fe matrix due to the low mismatch and favorable nucleation conditions. However, after some aging time these bcc Cu precipitates will transform to semi-coherent 9 R Cu before they finally transform to the stable incoherent face-centered cubic (fcc) Cu structure. This process is thought to be size-related and the first systematic study of the crystal structure transformation in binary and ternary alloy systems dates back several decades and was carried out by Othen et al.\cite{194,195} using TEM. Recently, the crystal structure transition of Cu precipitates in multicomponent systems has been further unveiled taking advantage of the advancements in TEM instrumentation.\cite{95,196–202} Heo et al.\cite{196} used a Cs-corrected TEM and were able to identify untwinned 9 R Cu precipitates and twinned fcc Cu precipitate. Based on the results, they suggested that beam-orientation-dependent Moiré fringes could generate stray diffraction spots, which may have been misinterpreted as diffraction spots from 3 R structure of Cu precipitates, previously reported by Othen et al.\cite{194} These detailed analyses of the structure transition have facilitated better understanding of nucleation, growth and coarsening of the Cu precipitates, which is the premise for achieving a fine particle dispersion. The coarsening of Cu precipitates is of great practical interest for Cu precipitation-hardened steels applied in service under high temperature conditions.\cite{187} Since precipitate coarsening is one of the most crucial degradation processes for high temperature service of precipitation hardened steels,\cite{203} the key aspect for high temperature performance is to inhibit precipitate coarsening, where a lower precipitate coarsening rate means longer service life. One effective way to inhibit coarsening is to make use of a
core-shell structure of the precipitates.[204] The shell that has a different composition and structure from the core can inhibit the diffusion of elements from the matrix to the core of the precipitates. With the capability of high-resolution structural and chemical analysis resulting from the aberration corrected microscopes, the nanoscale core-shell structure can be resolved nowadays. Figure 4 exemplifies the bcc Cu core-B2 Ni(Al, Mn) shell structure, where the B2 Ni(Al, Mn) shell acts as obstruction for the diffusion of Cu atoms and subsequently inhibits the growth and coarsening of the Cu core.[9] There are plenty of similar examples as the ones presented above where the analysis of the precipitate structure has aided the current understanding and development of precipitation-hardened steels and other metallic materials.

4.2. Interface chemistry analysis for improved precipitation modeling

Most of the prevalent databases, theoretical models and setups for precipitation modeling need to be calibrated and validated by experimental data before predictive modeling is feasible.[106,205–208] Thus, the application of advanced experimental measurements can facilitate the development and improve the accuracy of computational modeling.[209–211] For instance, the quantitative characterization of local chemical composition information surrounding precipitates, that is, interstitial and substitutional elements at the matrix–precipitate interface, during the early stage of precipitation is crucial for shedding light on the nucleation and growth mechanisms, and for improving the modeling of precipitation kinetics in metallic materials. For a long time, the quantitative chemical analyses of precipitates within bulk materials and of their interfaces by analytical TEM have been limited using conventional thin-foil specimen due to complex factors influencing the analysis accuracy, e.g., the difficulty in distinguishing signals from embedded precipitates and the matrix, the differential etching rate of phases during specimen preparation,[212] the effect of varying specimen thickness on beam spread,[213] and the influence of interface misorientation with respect to the electron beam on concentration profiles.[214] With the developments of advanced sample preparation methods and high resolution of EDS and EELS in advanced TEM, these issues can be combated and a reliable chemical composition analysis by high resolution EDS or/and EELS analysis on FIB lamellae with very thin and uniform thickness is now possible.[103,215,216]

![Figure 4](image_url) TEM analysis of the bcc Cu core-B2 Ni(Al, Mn) shell nanoprecipitates in a Fe–2.5 Cu–1.5 Mn–4.0 Ni–1.0 Al (wt.%) alloy tempered at 500 °C for 5 h: (a) EELS elemental mapping acquired using a Gatan GIF Tridiem, (b) EDS elemental mapping acquired using a JEOL JED-2300T spectrometer, (c) [0 0 1]bcc HAADF and corresponding IFFT image by masking (0 1 0)\textsubscript{b2} reflection, captured under the camera length of 8 cm with a corresponding collecting angle of 100–267 mrad. All the measurements were performed using a JEOL JEM-2100F TEM equipped with double spherical aberration correctors for both probe-forming and image-forming lenses on thin-foil samples prepared by twin-jet electro-polishing (Adapted from Ref. [9]).
Figure 5a,b show TEM bright-field images and corresponding EDS mapping and line scans on cementite particles within a Fe–1Cr–1C alloy tempered for 5 s and 30 min at 500°C. The results show that the 5 s tempering sample has no obvious segregation of Cr atoms at the precipitate–matrix interface and the Cr/Fe atomic ratio within the precipitate is close to that of the alloy’s matrix phase. In contrast, the 30 min tempering sample shows Cr enrichment at the interface zone. The Cr/Fe atomic ratio around the precipitate–matrix interface in the 30 min tempering sample is far from the calculated equilibrium value of cementite, and the Cr/Fe atomic ratio at the center of the precipitate is equal to that in the matrix phase. These results indicate that only carbon diffusion occurs without long distance diffusion of substitutional elements (para-equilibrium) at the very early stage of cementite precipitation (5 s). With the progress of tempering (up to 30 min), substitutional elements start to diffuse but the composition of cementite precipitates is still far from ortho-equilibrium (full equilibrium) and also far from the spike composition in non-partitioning local equilibrium (NPLE). This study indicates that the formation of cementite during tempering of the Fe–Cr–C alloy does not follow the full local equilibrium composition at the interface. The actual composition of cementite is more close to para-equilibrium composition at the early stage of precipitation. Figure 5c demonstrates that ortho-equilibrium and para-equilibrium assumptions significantly influence the precipitation kinetics of cementite. This study on precipitate–matrix interface composition via analytical TEM on FIB lamella samples unveils the kinetics of cementite precipitation and suggests the necessity of improving precipitation modeling to enable predictive modeling of, for example, cementite precipitation kinetics and other cases of precipitation where it has been shown that the deviation from local equilibrium occur. It should be noted here that the analytical TEM in Ref. was performed with a conventional TEM on carefully prepared site-specific FIB samples. The resolution of the chemical analysis could be improved significantly by the application of an advanced analytical microscope.

4.3. Understanding of precipitation strengthening by in situ analysis of precipitate–dislocation interactions

Precipitation strengthening is influenced by many factors, including: size, structure, composition and chemical ordering of precipitates; interface coherency and orientation relationship of precipitate and matrix; number density, inter-particle spacing and particle size distribution. Based on whether a dislocation can pass through the precipitate or has to loop around a precipitate, the strengthening mechanism is usually divided into two types: shearing and Orowan looping. For impenetrable (incoherent, large coherent and high hardness/stiffness) precipitates, precipitation strengthening by the Orowan looping mechanism mostly depends on the size, volume fraction and inter-particle spacing. In contrast, for penetrable (small coherent and low hardness/stiffness) precipitates, precipitation strengthening by the shearing mechanism is the prevalent mechanism. It is more complex than the looping mechanism, including lattice misfit strengthening, modulus difference strengthening, ordered domain strengthening, chemical strengthening, etc. The precipitation strengthening by the shearing mechanism also depends on coherency, composition and chemical ordering in addition to the parameters relevant for the Orowan looping mechanism. As explained previously, all the quantitative parameters defining the precipitates can be characterized with state-of-the-art TEM techniques such as high-resolution imaging and spectroscopy, ACOM-TEM, 3D tomography, etc. The collection of all this information for improved modeling of precipitation strengthening is as important as the aforementioned optimization of precipitation kinetics modeling. The impact on modeling of precipitation strengthening that TEM techniques can exert is here exemplified by in situ TEM studies.

Ex situ TEM characterization cannot present a dynamic picture of the evolution of precipitate–dislocation interactions, and may easily cause misinterpretation of strengthening mechanisms. In contrast, in situ TEM in combination with advanced sample preparation and using a displacement controlled straining stage, has been successfully applied to monitor the dynamic interactions of dislocations with precipitates. At the early time, thin-foils prepared by the twin-jet electropolishing method was mostly employed under conventional TEM mode for in situ studies of relatively large precipitates, e.g., Al₃Sc and MgZn₂ precipitates (in the order of 100 nm) in Al–Zn–Mg–Cu–Zr alloys and Cr precipitates (in the order of 10 nm) in Cu–Cr–Zn alloys. With the introduction of FIB, micro-tensile specimens (in the order of 10 μm length and 100 nm thickness), with site-specific and orientation-specific characteristics, could be prepared. These specimens can thereafter be studied under STEM mode during in situ tensile loading. The STEM technique allows for simultaneous collection of a
wealth of information by BF, DF and HAADF detectors, as exemplified by the in situ STEM study of ϕ’ precipitates–dislocations interactions in Ni-based super-alloys in Ref. [231]. Recently, single crystalline nanopillars (in the order of 100 nm in all three dimensions) has been introduced into the in situ TEM study of precipitate–dislocation interaction. The single crystalline nanopillars successfully exclude the effect of boundaries on dislocation motion that exists in polycrystalline specimens prepared as either traditional thin-foils or micro-tensile specimen. In situ TEM investigations of compressive deformation of single crystal nanopillars has been used to study the deformation behavior of spinodally decomposed nanostructured Δ ferrite (with Fe-rich and Cr-domain sizes in the range of 5–10 nm) in 2205 duplex steels[232] and low-alloyed steel strengthened by interphase precipitates (in the range of 3–5 nm in diameter).[166] Those studies directly reveal the dynamic mechanical behavior and the influence of the nanoscale features on the developing dislocation structures. This is exemplified with Figure 6 from.[166] Through comparison of samples with different density of interphase precipitates, the effect of the interphase-precipitated nanoscale carbides on the deformation behavior was clarified and the Orowan looping mechanism for interactions between interphase precipitate and dislocations was suggested. Even though it is still challenging to directly capture the interactions of dislocations with these microstructural features in the order of several nanometers due to limitations like fast motion of dislocations, instability of nanopillars and the influence of strain contrast around dislocations, the recent improvements of in situ TEM analysis is facilitating improved understanding of deformation behaviors of nanoscale precipitates hardened materials. This work is, however, only in its infancy and it is expected to contribute significantly to guide

Figure 5. STEM-BF imaging of cementite on thin-foil samples with EDS mapping and EDS line scanning analyses of cementite in a martensitic Fe–1Cr–1C alloy tempered at 500 °C for (a) 5 s and (b) 30 min. The lamella specimens were prepared using a FEI Nova Nanolab 600 dual-beam system and measured using a FEI Titan Themis TEM equipped with spherical corrector for probe-forming operating at 200 keV (Adapted from Ref. [103]). (c) A comparison of volume fraction evolving with aging time under assumptions of ortho-equilibrium (full equilibrium) and para-equilibrium compositions.
improvements in the modeling of precipitation strengthening going forward.

5. Future prospects
5.1. Characterization of nucleation and early growth of precipitates

Analytical techniques such as STEM-EDS and STEM-EELS, particularly in aberration-corrected instruments, are effective for the qualitative composition analysis of precipitates with size of a few nanometers in bulk materials (as shown in Figure 4), but quantitative chemical analysis of these fine precipitates embedded in a solid matrix is challenging due to the signal from precipitates influenced by the signal from the surrounding matrix (as indicated by Figure 5). Extraction replica and electrolytic extraction are effective methodologies to extract precipitates out of the matrix, but these methods are usually much more challenging for

Figure 6. In situ TEM compression testing of a nanopillar (132 nm in width and 378 nm in length) with nanoscale interphase (Ti, Mo)C precipitates in a Fe–0.18C–1.45Si–1.47Mn–0.10Ti–0.19Mo (wt%) alloy tempered at 650 °C for 30 min: (a) engineering stress–strain curve with (b–i) individual frames. The nanopillar was prepared with instruments of Tecnai Nova 450 SEM, JEOL JEM-4000 FIB and JEOL JEM-9320 FIB using Ga⁺ ions. The in situ compression test was performed in a JEOL JEM-2010F TEM equipped with a Hysitron Piccolindenter (P95) at a nominal displacement rate of 0.5 nm s⁻¹ (From Ref. [166]).
extracting very fine particles with sizes of only a few nanometers in diameter.\cite{223} It should be mentioned here that even though APT holds capability of chemical analysis with atomic resolution, quantitative chemical analysis of precipitates/clusters with diameter below 2 nm is still a great challenge in APT due to trajectory aberrations, etc., though the precipitates can be readily detected.\cite{22} It is also difficult to know whether such precipitates are structurally distinct from the matrix by APT analysis.

The current understanding of composition and structure of a nuclei are mostly based on theoretical assumptions. For instance, in classical nucleation theory (CNT), the precipitate, starting from an embryo, is theoretically assumed to hold the identical composition and crystal structure with the final product and the nucleation event occurs when the embryo grows to a critical size.\cite{234} Due to its analytical simplicity, the CNT has been widely used in condensation of a vapor into a liquid, solidification of a liquid into a solid and solid–solid phase transformation for approximately one century.\cite{224} However, recent studies suggest that both the composition and crystal structure at the early stage of precipitation can be different with those of the final product. A two-step nucleation mechanism was proposed in solid–solid phase transformation and it was suggested that an intermediate liquid-like phase may exist in the nucleation process.\cite{235} By combining TEM and APT for studying G phase precipitation, a similar two-step nucleation mechanism was proposed, where the first step is the spontaneous growth of solute clusters to a critical size, before the second step where a structural change of the solute clusters of a critical size occur to form a compound controlled by a solute enrichment process.\cite{236} This structural change of the precipitates from clusters may change the obstacle strength against dislocation gliding, and may trigger embrittlement and influence the lifetime of the material product.

Even today, experimental techniques that can accurately analyze the composition and structure of precipitates during nucleation and early growth are very rare,\cite{237} but TEM is without doubt one of the most promising techniques to tackle these challenges. Specifically, for precipitates of interest holding different crystal structures compared to the matrix, electron diffraction by TEM is a capable technique to capture nucleation features, as exemplified in Refs. [9,236]; the cluster microstructure of short-range order domains on the scale of Ångstrom can be directly imaged using energy-filtered dark-field imaging in TEM\cite{238}; The precipitation pathway of (Ti, Mo)C that embryo cluster grows into NaCl type nanosized structure through GP cluster has been revealed combining FIB site-specific lift-out sample preparation and HR-STEM operating at 300 kV with double aberration correctors.\cite{239} In addition, the mechanism of nucleation can be revealed through innovative design of experiments under TEM, e.g., the four dimensional (including time) atomic structure of early stage nucleation of synthesized FePt nanoparticles were observed using the TEAM (Transmission Electron Aberration-

Methods	Advantages	Disadvantages
Twin-jet electro-polishing	i. Time and cost efficiency	
ii. Large thin area	i. Differential thinning for multiphase materials	
ii. Not site-specific		
iii. Inaccurate control of thickness		
iv. Sample volume is too large for magnetic materials which causes electron beam distortion		
Focused ion beam	i. Site-specific	
ii. Accurate control of thickness		
iii. Preferred for magnetic materials, no electron beam distortion due to small volume lamella	i. Ion beam damage	
ii. Long preparation time and high cost		
Chemical extraction	i. Elimination of the influences from matrix for chemical and structural analyses of precipitates	
ii. Elimination of magnetic influences of matrix on electron beam		
iii. More penetrable by electron beam		
iv. Better contrast between precipitates and background	i. Lack of interface and matrix-precipitate information	
ii. Challenging for very fine precipitates		
iii. Possible chemical modifications of precipitates		
iv. Challenging to extract representative particles in case of bimodal distribution		
Electrolytic extraction	i. Same with chemical extraction	
But, is less likely for fine precipitates to be dissolved		
iii. Can dissolve large volume of materials, which is beneficial for volume fraction analysis and identification of multiple precipitate phases simultaneously		
i. Lack of interface and matrix-precipitate information		
ii. Selections of electrolyte and electrochemical potential for specific types of materials and precipitates could be challenging. |
corrected Microscope) 0.5, the so-called world’s best microscope, and a generalized Fourier iterative reconstruction algorithm (GENFIRE).\cite{36} To conclude this section, further improvements in TEM techniques and possibly correlated APT could aid to provide novel data on the nucleation and early growth stages during precipitation. That could have large implications on our understanding of precipitation and theories for nucleation and growth.

5.2. *In situ* characterization of precipitates

Precipitation crystallography is crucial for understanding orientation, morphology, habit plane, etc., of precipitates in crystalline matrices.\cite{240–243} However, in comparison to the well-developed thermodynamic\cite{244} and kinetic\cite{245} theories of precipitation, the knowledge of precipitation crystallography is rather rudimentary.\cite{246} A complete understanding of precipitation thermodynamics, kinetics and crystallography is necessary to reveal the full picture of precipitation reactions in metallic materials, before controlling precipitation hardening.\cite{247} For example, Matsukawa et al. recently\cite{248,249} demonstrated that by tuning the orientation of soft precipitates to make their slip plane non-parallel to that of the matrix, the magnitude of precipitation hardening is increased due to the crystallographic mismatch making the soft precipitates unable to cut through by gliding dislocations. In this case, the soft metallic precipitates work as effectively as hard nonmetallic compounds\cite{250} for precipitation hardening. Likewise, hard precipitates are also shearable if their slip plane is aligned parallel to that of the matrix.\cite{251} With its incomparable status among various characterization instruments for crystallography analysis, TEM is opening up a variety of opportunities for monitoring precipitation crystallography information in real-time and real environments. For example, Du et al. verified for the first time,\cite{158,252} with real-time *in situ* TEM observation of dislocation emission at elevated temperature, that dislocation activity assists the growth of austenite precipitates and obtained quantitative data to explain the strain and stress field associated with interface migration. Not only precipitate growth, precipitate splitting, precipitate structure transformations, etc., as mentioned in Subsection 3.3, but also the precipitate–dislocation interactions as exemplified in Subsection 4.3, are appealing for further applications of *in situ* TEM techniques.

5.3. High-throughput analysis of precipitates

EBSD in SEM has become a routine technique for automated acquisition of orientation and phase data in inorganic materials, but it has been rarely used for the characterization of nanoscale precipitation due to its resolution limit of a few tens of nanometers depending on SEM resolution and investigated materials. In contrast, SEM-based TKD\cite{253–257} which uses the same setup with EBSD except that thin-foil TEM specimens in transmission mode is used, can achieve a resolution limit of about 5–10 nm due to the reduced interaction volume between the electron beam and the thin-foil sample. TKD has been used in studies of nanoscale precipitates, e.g., M_23C_6 with size around 30 nm in steels,\cite{255} Al-Cu precipitates with size around 50 nm in Al-Li alloys\cite{256} and cementite particles in steels.\cite{257} However, the resolution of SEM-based TKD is still far from satisfactory for the analysis of nanoscale precipitates, where the size is usually below 20 nm. Overcoming the limited resolution of the EBSD and TKD techniques in SEMs, ACOM-TEM, as a novel EBSD-equivalent technique for TEM, gives much higher spatial resolution, and thus, provides opportunities for analysis of nanoscale precipitates.\cite{154} ACOM-TEM shows strengths beyond EBSD not only in resolution, but also in its lower sensitivity of the applied spot diffraction to deformation and crystallite size,\cite{156} compared to Kikuchi diffraction used in EBSD and TKD. Examples of applications that would tremendously benefit from this technique is the analysis of multiple precipitation, such as, in CrMoV-alloyed carbon steels,\cite{106,258–261} where multiple carbides, including MC, M_2C, M_3C, M_6C, M_2C_3 and $M_{23}C_6$, can precipitate and transform depending on the thermal conditions and contents of alloying elements. ACOM-TEM,\cite{155} together with carbon extraction replica to avoid the influence of matrix on spot diffraction pattern recognition of precipitates,\cite{154} would be efficient to determine the type, size, morphology, etc. of multiple precipitation in various metallic materials. With the development of postprocessing algorithms as demonstrated by Rauch and Vérón,\cite{262} the orientation map of embedded nanoprecipitates in a crystalline matrix, i.e., when thin-foil specimen is employed, can also be obtained.

6. Summary

TEM, a versatile technique for precipitation characterization, has historically been facilitating the understanding of precipitation and precipitation hardening, and over the past decades TEM has also stimulated
the optimization of performance of metallic materials through precipitation engineering. The recent advancements in TEM-based techniques, sample preparation methodologies and algorithms for data analysis have significantly strengthened the capability of the premier TEMs. Incorporated with recently developed aberration-corrected techniques, TEM provides an irreplaceable and indispensable instrumentation for precipitation-related research in metallic materials, combining morphological (imaging), chemical (spectroscopy), structural (diffraction), three-dimensional (tomography), environmental (in situ) analyses down to the Ångström scale.

Even at present with the strong emphasis on computational materials science, TEM plays a key role in guiding the creation of databases, the development of theoretical models and the setup of modeling, calibrating and validating the precipitation kinetics modeling and property modeling. Moreover, together with well-developed theories of precipitation thermodynamics and kinetics, the progressing understanding of precipitation crystallography, facilitated by the development of TEM techniques, is unveiling the mechanisms of precipitation reactions in a quantitative way.

TEM development is still ongoing to become even better for precipitation studies by integrating advancements in instrumentation, sample preparation methodologies and high-end analytical techniques/computational methods. Further developments of TEM-based methodologies are promising for continuously expanding the current knowledge of precipitation toward a complete understanding of nucleation, precipitate–matrix interface and precipitate–dislocation interaction, and toward a more automated and intelligent way of analysis.

Acknowledgements

This work was performed within the VINN Excellence Center Hero-m 2i, financed by VINNOVA (the Swedish Governmental Agency for Innovation Systems), Swedish industry and KTH Royal Institute of Technology. TZ and ZH would like to acknowledge the financial support from Jernkontoret (the Swedish Steel Producers’ Association), and TZ acknowledges the financial support from Carl Tryggers Stiftelse (CTS19: 136).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

This work was performed within the VINN Excellence Center Hero-m 2i, financed by VINNOVA (the Swedish Governmental Agency for Innovation Systems), Swedish industry and KTH Royal Institute of Technology. TZ and ZH would like to acknowledge the financial support from Jernkontoret (the Swedish Steel Producers’ Association), and TZ acknowledges the financial support from Carl Tryggers Stiftelse (CTS19: 136).

References

1. Wilm, A. Physikalisch-Metallurgische Untersuchungen Uber Magnesiumhaltige Aluminiumlegierungen. Metallurgie: Zeitschrift Fur de Gesamte Hüttenkunde 1911, 8, 225–227.
2. Ardell, A. Precipitation Hardening. Metall. Trans. A 1985, 16, 2131–2165. doi:10.1007/BF02670416
3. Sun, W.; Zhu, Y.; Marceau, R.; Wang, L.; Zhang, Q.; Gao, X.; Hutchinson, C. Precipitation Strengthening of Aluminum Alloys by Room-Temperature Cyclic Plasticity. Science 2019, 363, 972–975. doi:10.1126/science.aaq7086
4. Merica, P. D.; Wahlenbery, R. G.; Scott, H. Heat Treatment and Constitution of Duralumin. Trans. AIME 1920, 64, 41–77.
5. Nutting, J. Precipitation in Alloys. Nature 1959, 183, 796–797. doi:10.1038/183796a0
6. Clews, C. J. B. Metallurgical Applications of the Electron Microscope. Nature 1950, 165, 390–393. doi:10.1038/165390a0
7. Kelly, A.; Nicholson, R. B. Precipitation Hardening. Prog. Mater. Sci. 1963, 10, 151–391.
8. Jiang, S.; Wang, H.; Wu, Y.; Liu, X.; Chen, H.; Yao, M.; Gault, B.; Ponge, D.; Raabe, D.; Hirata, A.; et al. Ultrastrong Steel via Minimal Lattice Misfit and High-Density Nanoprecipitation. Nature 2017, 544, 460–464. doi:10.1038/nature22032
9. Wen, Y. R.; Hirata, A.; Zhang, Z. W.; Fujita, T.; Liu, C. T.; Jiang, J. H.; Chen, M. W. Microstructure Characterization of Cu-Rich Nanoprecipitates in a Fe–2.5 Cu–1.5 Mn–4.0 Ni–1.0 Al Multicomponent Ferritic Alloy. Acta Mater. 2013, 61, 2133–2147. doi:10.1016/j.actamat.2012.12.034
10. Clark, B.; Robertson, I. M.; Dougherty, L.; Ahn, D.; Sofronis, P. High-Temperature Dislocation-Precipitate Interactions in Al Alloys: An In Situ Transmission Electron Microscopy Deformation Study. J. Mater. Res. 2005, 20, 1792–1801. doi:10.1557/JMR.2005.0224
11. Olson, G. B. Computational Design of Hierarchically Structured Materials. Science 1997, 277, 1237–1242. doi:10.1126/science.277.5330.1237
12. Olson, G. B. Designing a New Material World. Science 2000, 288, 993–998. doi:10.1126/science.288.5468.993

13. Allison, J.; Backman, D.; Christodoulou, L. Integrated Computational Materials Engineering: A New Paradigm for the Global Materials Profession. JOM. 2006, 58, 25–27. doi:10.1007/s11837-006-0223-5

14. Allison, J. Integrated Computational Materials Engineering: A Perspective on Progress and Future Steps. JOM. 2011, 63, 15–18. doi:10.1007/s11837-011-0053-y

15. Xiong, W.; Olson, G. B. Integrated Computational Materials Design for High-Performance Alloys. MRS Bull. 2015, 40, 1035–1044. doi:10.1557/mrs.2015.273

16. Xiong, W.; Olson, G. B. Cybermaterials: Materials by Design and Accelerated Insertion of Materials. NPJ Comput. Mater. 2016, 2, Article No. 15009.

17. Langer, J.; Schwartz, K. Kinetics of Nucleation in Near-Critical Fluids. Phys. Rev. A 1980, 21, 948–958. doi:10.1103/PhysRevA.21.948

18. Kampmann, R.; Wagner, R. Kinetics of Precipitation in Metastable Binary Alloys: Theory and Application to Copper–I. 9 at.% Titanium and Nickel–14 at.% Aluminium. In: Decomposition of Alloys: The Early Stages, edited by Haasen, P.; Gerold V; Wagner R.; Ashby M.F.;Pergamon Press Ltd, Oxford, 1984; pp. 91–103.

19. Wagner, R.; Kampmann, R.; Voorhees, P. W. Homogeneous Second-Phase Precipitation. Phase Transformations in Materials; Wiley-VCH: Weinheim, 2001.

20. Sheng, Z.; Rolland, M. B.; Zhou, T.; Odqvist, J.; Hedström, P. Langer–Schwartz–Kampmann–Wagner Precipitation Simulations: Assessment of Models and Materials Design Application for Cu Precipitation in PH Stainless Steels. J. Mater. Sci. 2021, 56, 2650–2671. doi:10.1007/s10853-020-05386-9

21. Wang, J.; Mulholland, M.; Olson, G.; Seidman, D. Prediction of the Yield Strength of a Secondary-Hardening Steel. Acta Mater. 2013, 61, 4939–4952. doi:10.1016/j.actamat.2013.04.052

22. De Geuser, F.; Gault, B. Metrology of Small Particles and Solute Clusters by Atom Probe Tomography. Acta Mater. 2020, 188, 406–415. doi:10.1016/j.actamat.2020.02.023

23. Dahlström, A.; Danoix, F.; Hedström, P.; Odqvist, J.; Zapolsky, H. Nanostructure in Fe0. 65Cr0. 35 Close to the Upper Limit of the Miscibility Gap. Scr. Mater. 2020, 180, 62–65. doi:10.1016/j.scriptamat.2020.01.024

24. Perez, M.; Perrard, F.; Massardier, V.; Kleber, X.; Deschamps, A.; De Monestrol, H.; Pareige, P.; Covarel, G. Low-Temperature Solubility of Copper in Iron: Experimental Study Using Thermoelectric Power, Small Angle X-Ray Scattering and Tomographic Atom Probe. Philos. Mag. 2005, 85, 2197–2210. doi:10.1080/147864305000879645

25. De Geuser, F.; Deschamps, A. Precipitate Characterisation in Metallic Systems by Small-Angle X-Ray or Neutron Scattering. C. R. Phys. 2012, 13, 246–256. doi:10.1016/j.crhy.2011.12.008

26. Yildiz, A. B.; Weidow, J.; Ryuikhtin, V.; Norgren, S.; Wahnström, G.; Hedström, P. Very-Small-Angle Neutron Scattering Study on Grain Coarsening Inhibition by V-Doping of WC-Co Composites. Scr. Mater. 2019, 173, 106–109. doi:10.1016/j.scriptamat.2019.08.005

27. Yildiz, A. B.; Babu, R. P.; Bonvalet-Rolland, M.; Busch, S.; Ryuikhtin, V.; Weidow, J.; Norgren, S.; Hedström, P. Quantification of Nano-Scale Interface Structures to Guide Mechanistic Modelling of WC Grain Coarsening Inhibition in V-Doped Hard Metals. Mater. Des. 2021, 207, 109825. doi:10.1016/j.matdes.2021.109825

28. Zhou, T. Integrated Experimental and Computational Study of Precipitation in Martensitic Steels. Doctoral thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2019.

29. Baik, S. I.; Wang, S. Y.; Liaw, P. K.; Dunand, D. C. Increasing the Creep Resistance of Fe-Ni-Al-Cr Superalloys via Ti Additions by Optimizing the B2/L21 Ratio in Composite Nano-Precipitates. Acta Mater. 2018, 157, 142–154. doi:10.1016/j.actamat.2018.07.025

30. Song, G.; Hong, S. J.; Lee, J. K.; Song, S. H.; Hong, S. H.; Kim, K. B.; Liaw, P. K. Optimization of B2/L21 Hierarchical Precipitate Structure to Improve Creep Resistance of a Ferritic Fe-Ni-Al-Cr-Ti Superalloy via Thermal Treatments. Scr. Mater. 2019, 161, 18–22. doi:10.1016/j.scriptamat.2018.10.004

31. Purcek, G.; Yanar, H.; Saray, O.; Karaman, I.; Maier, H. Effect of Precipitation on Mechanical and Wear Properties of Ultrafine-Grained Cu–Cr–Zr Alloy. Wear 2014, 311, 149–158. doi:10.1016/j.wear.2014.01.007

32. Sun, S.; Yin, F.; Liu, Y.; Zhang, W.; Zhao, A.; Han, Q. Deformation-Induced Dissolution of Copper Precipitation in 1.5 wt% Cu-Bearing Antibacterial Fe-17wt% Cr Alloy during Plastic Deformation Process. Mater. Des. 2018, 157, 469–477. doi:10.1016/j.matdes.2018.08.014

33. Anantha, K. H.; Örnek, C.; Ejnemark, S.; Medvedeva, A.; Sjöström, J.; Pan, J. In Situ AFM Study of Localized Corrosion Processes of Tempered AISI 420 Martensitic Stainless Steel: Effect of Secondary Hardening. J. Electrochem. Soc. 2017, 164, C810–C818. doi:10.1149/2.1261713jes

34. Anantha, K. H.; Örnek, C.; Ejnemark, S.; Medvedeva, A.; Sjöström, J.; Pan, J. Correlative Microstructure Analysis and In Situ Corrosion Study of AISI 420 Martensitic Stainless Steel for Plastic Molding Applications. J. Electrochem. Soc. 2017, 164, C85–C93. doi:10.1149/2.0531704jes

35. Chen, C. C.; Zhu, C.; White, E. R.; Chiu, C. Y.; Scott, M.; Regan, B.; Marks, L. D.; Huang, Y.; Miao, J. Three-Dimensional Imaging of Dislocations in a Nanoparticle at Atomic Resolution. Nature 2013, 496, 74–77. doi:10.1038/nature12009

36. Zhou, J.; Yang, Y.; Yang, Y.; Kim, D. S.; Yuan, A.; Tian, X.; Ophus, C.; Sun, F.; Schmid, A. K.; Nathanson, M.; et al. Observing Crystal Nucleation in Four Dimensions Using Atomic Electron Topography. Nature 2019, 570, 500–503. doi:10.1038/s41586-019-1317-x
37. Gao, W.; Addiego, C.; Wang, H.; Yan, X.; Hou, Y.; Ji, D.; Heikes, C.; Zhang, Y.; Li, L.; Huyan, H.; et al. Real-Space Charge-Density Imaging with Sub-Ångström Resolution by Four-Dimensional Electron Microscopy. *Nature* 2019, 575, 480–484. doi:10.1038/s41586-019-1649-6

38. Meiners, T.; Frolov, T.; Rudd, R. E.; Dehm, G.; Liebscher, C. H. Observations of Grain-Boundary Phase Transformations in an Elemental Metal. *Nature* 2020, 579, 375–378. doi:10.1038/s41586-020-2082-6

39. Susi, T.; Meyer, J. C.; Kotakoski, J. Manipulating Low-Dimensional Materials down to the Level of Single Atoms with Electron Irradiation. *Ultramicroscopy* 2017, 180, 163–172. doi:10.1016/j.ultramic.2017.03.005

40. Dyck, O.; Kim, S.; Jimenez-Izal, E.; Alexandrova, A. N.; Kalinin, S. V.; Jesse, S. Building Structures by Atom by Atom via Electron Beam Manipulation. *Small* 2018, 14, 1801771. doi:10.1002/smll.201801771

41. Kalinin, S. V.; Lupini, A. R.; Dyck, O.; Jesse, S.; Ziatdinov, M.; Vasudevan, R. K. Lab on a Beam—Big Data and Artificial Intelligence in Scanning Transmission Electron Microscopy. *MRS Bull.* 2019, 44, 565–575. doi:10.1557/mrs.2019.159

42. van den Bos, K. H. W.; Altantis, T.; De Backer, A.; Van Aert, S.; Bals, S. Recent Breakthroughs in Scanning Transmission Electron Microscopy of Small Species. *Adv. Phys. X* 2018, 3, 1480420. doi:10.1080/23746149.2018.1480420

43. Guzzinati, G.; Altantis, T.; Batuk, M.; De Backer, A.; Lumbbecke, G.; Samaee, V.; Batuk, D.; Idriissi, H.; Hadermann, J.; Van Aert, S.; et al. Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp. *Materials* 2018, 11, 1304. doi:10.3390/ma11081304

44. Spence, J. C. The Future of Atomic Resolution Electron Microscopy for Materials Science. *Mater. Sci. Eng. R* 1999, 26, 1–49. doi:10.1016/S0927-796X(99)00005-4

45. Browning, N. D.; Bonds, M. A.; Campbell, G. H.; Evans, J. E.; LaGrange, T.; Jungjohann, K. L.; Masiel, D. J.; McKeown, J.; Mehraeen, S.; Reed, B. W.; Santala, M. Recent Developments in Dynamic Transmission Electron Microscopy. *Curr. Opin. Solid State Mater. Sci.* 2012, 16, 23–30. doi:10.1016/j.cossms.2011.07.001

46. Varela, M.; Lupini, A. R.; Benthem, Kv.; Borisevich, A. Y.; Chisholm, M. F.; Shibata, N.; Abe, E.; Pennycook, S. J. Materials Characterization in the Aberration-Corrected Scanning Transmission Electron Microscope. *Annu. Rev. Mater. Res.* 2005, 35, 539–569. doi:10.1146/annurev.matsci.35.102103.090513

47. Kong, H. J.; Liu, C. T. A Review on Nano-Scale Precipitation in Steels. *Technologies* 2018, 6, 36. doi:10.3390/technologies6010036

48. Jiao, Z.; Luan, J.; Miller, M.; Chung, Y. W.; Liu, C. Co-Precipitation of Nanoscale Particles in Steels with Ultra-High Strength for a New Era. *Mater. Today* 2017, 20, 142–154. doi:10.1016/j.mattod.2016.07.002

49. Nie, J. F. Precipitation and Hardening in Magnesium Alloys. *Mater. Trans.* A 2012, 43, 3891–3939. doi:10.1007/s11611-012-1217-2

50. Xiong, Z.; Timokhina, I.; Pereloma, E. Clustering, Nano-Scale Precipitation and Strengthening of Steels. *Prog. Mater. Sci.* 2021, 118, 100764. doi:10.1016/j.pmatsci.2020.100764

51. Rao, D. S.; Muraleedharan, K.; Humphreys, C. TEM Specimen Preparation Techniques. *Microsc. Sci. Tech. Appl. Edu.* 2010, 2, 1232–1244.

52. Atikaliyeva, A.; Madden, J. W.; Miller, B. D.; Cole, J. I.; Gan, J. Comparison of Preparation Techniques for Nuclear Materials for Transmission Electron Microscopy (TEM). *J. Nucl. Mater.* 2015, 459, 241–246. doi:10.1016/j.jnucmat.2015.01.042

53. Borgh, I.; Hedström, P.; Blomqvist, A.; Ågren, J.; Odqvist, J. Synthesis and Phase Separation of (Ti, Zr)C. *Acta Mater.* 2014, 66, 209–218. doi:10.1016/j.actamat.2013.11.074

54. Addiego, C.; Gao, W.; Pan, X. Thickness and Defocus Dependence of Inter-Atomic Electric Fields Measured by Scanning Diffraction. *Ultramicroscopy* 2020, 208, 112850. doi:10.1016/j.ultramic.2019.112850

55. Dieterle, L.; Butz, B.; Müller, E. Optimized Ar(+-) Ion Milling Procedure for TEM Cross-Section Sample Preparation. *Ultramicroscopy* 2011, 111, 1636–1644. doi:10.1016/j.ultramic.2011.08.014

56. Isabell, T. C.; Fischione, P. E.; O’Keefe, C.; Guruz, M. U.; Dravid, V. P. Plasma Cleaning and Its Applications for Electron Microscopy. *Microsc. Microanal.* 1999, 5, 126–135. doi:10.1017/S1431976999000994

57. Isabell, T.; Fischione, P. Applications of Plasma Cleaning for Electron Microscopy of Semiconducting Materials. *Mater. Res. Soc. Symp. Proc.* 1998, 523, 31–38.

58. Ishitani, T.; Umemura, K.; Ohnishi, T.; Yaguchi, T.; Kamino, T. Improvements in Performance of Focused Ion Beam Cross-Sectioning: Aspects of Ion-Sample Interaction. *J. Electron. Microsc. (Tokyo)* 2004, 53, 443–449. doi:10.1093/jem/cdh078

59. Lee, K.; Lin, J. C.; Ju, C. P. Electron Microscopic Volume Serial Section Tomography by Xe Plasma FIB-TEM Specimen Preparation Techniques. *J. Nucl. Mater.* 2012, 419, 613–620. doi:10.1016/j.jnucmat.2011.08.014

60. Sugiyama, M.; Sigesato, G. A Review of Focused Ion Beam Technology and Its Applications in Transmission Electron Microscopy. *J. Electron. Microsc. (Tokyo)* 2004, 53, 527–536. doi:10.1093/jmicro/fdh071

61. Burnett, T.; Kelley, R.; Winiarski, B.; Contreras, L.; Daly, M.; Gholinia, A.; Burke, M.; Withers, P. Large Volume Serial Section Tomography by Xe Plasma FIB Dual Beam Microscopy. *Ultramicroscopy* 2016, 161, 119–129. doi:10.1016/j.ultramic.2015.11.001

62. Li, J.; Malis, T.; Dione, S. Recent Advances in FIB–TEM Specimen Preparation Techniques. *Mater. Charact.* 2006, 57, 64–70. doi:10.1016/j.matchar.2005.12.007

63. Bassim, N.; Scott, K.; Giannuzzi, L. A. Recent Advances in Focused Ion Beam Technology and
90. Fukami, A. Evaporated Carbon Film for Use in Extraction Replica Technique. *Microscopy* 1956, 4, 31–35.

91. Sinelar, R.; Kai, J.; Dodd, R.; Kulcinski, G. A Cross-Section Preparation Extraction Replica Technique for Surface-Modified Alloys. *Metallurgy* 1986, 19, 471–476. doi:10.1026/0800-(86)90079-0

92. Hou, Z.; Babu, R. P.; Hedström, P.; Odqvist, J. On Coarsening of Cementite during Tempering of Martensitic Steels. *Mater. Sci. Technol.* 2020, 36, 887–893. doi:10.1002/mste.20201740380

93. Liu, J.; Yu, H.; Zhou, T.; Song, C.; Zhang, K. Effect of Double Quenching and Tempering Heat Treatment on the Microstructure and Mechanical Properties of a Novel 5Cr Steel Processed by Electro-Slag Casting. *Mater. Sci. Eng. A* 2014, 619, 212–220. doi:10.1016/j.msea.2014.09.063

94. Hou, Z.; Babu, R. P.; Hedström, P.; Odqvist, J. Microstructure Evolution during Tempering of Martensitic Fe–C–Cr Alloys at 700°C. *J. Mater. Sci.* 2018, 53, 6939–6950. doi:10.1007/s10853-018-2036-7

95. Zhou, T.; Babu, R. P.; Odqvist, J.; Yu, H.; Hedström, P. Quantitative Electron Microscopy and Physically Based Modelling of Cu Precipitation in Precipitation-Hardening Martensitic Stainless Steel 15-5PH. *Mater. Des.* 2018, 143, 141–149. doi:10.1016/j.matdes.2018.01.049

96. Scott, C.; Chaleix, D.; Barges, P.; Rebischung, V. Quantitative Analysis of Complex Carbo-Nitride Precipitates in Steels. *Scr. Mater.* 2002, 47, 845–849. doi:10.1016/S1359-6462(02)00219-1

97. Dijkstra, J.; Plank, H.; Kothleitner, G.; Hofer, F. A Novel Method for Precipitates Preparation Using Extraction Replicas Combined with Focused Ion Beam Techniques. In *EMC 2008 14th European Microscopy Congress*, Springer: Aachen, Germany, Sept 1–5, 2008; p.807–808.

98. Rivas, A.; Vidal, E.; Matlock, D.; Speer, J. Electrochemical Extraction of Microalloy Carbides in Nb-Steel. *Rev. Metal.* 2008, 44, 447–456. doi:10.3989/revmetal.0771

99. Asadabad, M. A.; Kheirandish, S.; Novinrooz, A. J. Microstructural and Mechanical Behavior of 4.5 Cr–0.25 V–0.1 C Steel. *Mater. Sci. Eng. A* 2010, 527, 1612–1616. doi:10.1016/j.msea.2009.10.042

100. Wang, S.; Yu, H.; Zhou, T.; Wang, T. Effects of Non-Re-cry stalization Zone Redution on Microstructure and Precipitation Behavior of a Ferrite-Bainite Dual Phase Steel. *Mater. Des.* 2015, 88, 847–853. doi:10.1016/j.matdes.2015.09.060

101. Williams, D. B.; Carter, C. B. *Transmission Electron Microscopy: A Textbook for Materials Science*; Springer Science + Business Media, LLC, New York, 2009.

102. Strid, J.; Easterling, K. E. On the Chemistry and Stability of Complex Carbides and Nitrides in Microalloyed Steels. *Acta Metall.* 1985, 33, 2057–2074. doi:10.1016/0001-6160(85)90129-4

103. Hou, Z.; Babu, R. P.; Hedström, P.; Odqvist, J. Early Stages of Cementite Precipitation during Tempering of 1C–1Cr Martensitic Steel. *J. Mater. Sci.* 2019, 54, 9222–9234. doi:10.1007/s10853-019-03530-8

104. Chang, T.; Wallinder, I. O.; Jin, Y.; Leygraf, C. The Golden Alloy Cu-5Zn-5Al-1Sn: A Multi-Analytical Surface Characterization. *Corros. Sci.* 2018, 131, 94–103. doi:10.1016/j.corsci.2017.11.014

105. Chang, T.; Herting, G.; Jin, Y.; Leygraf, C.; Wallinder, I. O. The Golden Alloy Cu5Zn5Al1Sn: Patina Evolution in Chloride-Containing Atmospheres. *Corros. Sci.* 2018, 133, 190–203. doi:10.1016/j.corsci.2018.01.027

106. Zhou, T.; Babu, R. P.; Hou, Z.; Odqvist, J.; Hedström, P. Precipitation of Multiple Carbides in Martensitic CrMoV Steels—Experimental Analysis and Exploration of Alloying Strategy through Thermodynamic Calculations. *Materials* 2020, 9, 100630. doi:10.1016/j.matlet.2020.100630

107. Wang, X.; Xing, Y.; Huang, H.; Li, Y.; Jia, Z.; Liu, Q. Growth Directions of Precipitates in the Al-Si-Mg-Hf Alloy Using Combined EBSD and FIB 3D-Reconstruction Techniques. Microsc. Microanal. 2015, 21, 588–593. doi:10.1017/S1431927615005049

108. Borrajo-Pelaez, R.; Hedström, P. Recent Developments of Crystallographic Analysis Methods in the Scanning Electron Microscope for Applications in Metallurgy. *Crit. Rev. Solid State Mater. Sci.* 2018, 43, 455–474. doi:10.1080/10408436.2017.1370576

109. Yamamoto, Y.; Morita, H.; Yamada, H.; Takahashi, H.; Takakura, M.; Kikuchi, N.; Nokuo, T.; Erdman, N. The Study of “Window-Less” EDS Detector with Low Voltage FE-SEM. Microsc. Microanal. 2016, 22, 640–641. doi:10.1017/S1431927616004050

110. Bor, T. C.; Kempen, A.; Tichelaar, F.; Mittemeijer, E.; Van der Giessen, E. Diffraction-Contrast Analysis of Misfit Strains around Inclusions in a Matrix: VN Particles in x-Fe. *Philos. Mag. A* 2002, 82, 971–1001. doi:10.1080/01418610208240013

111. Jacumasso, S. C.; Martins, J. d P.; Carvalho, A. L. M. d. Analysis of Precipitate Density of an Aluminium Alloy by TEM and AFM. Mater. Sci. Eng. A 2010, 529, 15–20. doi:10.1016/j.msea.2010.04.005

112. Bardal, A.; Lie, K. Measuring the Thickness of Aluminium Alloy Thin Foils Using Electron Energy Loss Spectroscopy. *Mater. Charact.* 2000, 44, 329–343. doi:10.1016/S1044-5803(99)00072-8

113. Gong, H.; Schapink, F. Foil-Thickness Determination from Zone-Axis CBED Patterns and TEM Images for a GaAs/AlAs Multilayer in Plane View. *Ultramicroscopy* 1992, 41, 375–385. doi:10.1016/0304-3991(92)90217-8

114. Kelly, P.; Jostsons, A.; Blake, R.; Napier, J. The Determination of Foil Thickness by Scanning Transmission Electron Microscopy. *Phys. Stat. Sol. (A)* 1975, 31, 771–780. doi:10.1002/pssa.2210310251

115. Delille, D.; Pantel, R.; Van Cappellen, E. Crystal Thickness and Extinction Distance Determination Using Energy Filtered CBED Pattern Intensity Measurement and Dynamical Diffraction Theory
Fitting. Ultramicroscopy 2001, 87, 5–18. doi:10.1016/S0304-3991(00)00067-X

116. Acevedo-Reyes, D.; Perez, M.; Verdu, C.; Bogner, A.; Epicier, T. Characterization of Precipitates Size Distribution: Validation of Low-Voltage STEM. J. Microsc. 2008, 232, 112–122. doi:10.1111/j.1365-2818.2008.02082.x

117. Urban, K. W. Studying Atomic Structures by Aberration-Corrected Transmission Electron Microscopy. Science 2008, 321, 506–510. doi:10.1126/science.1152800

118. Batson, P. E.; Dellby, N.; Krivanek, O. L. Sub-Ångström Resolution Using Aberration Corrected Electron Optics. Nature 2002, 418, 617–620. doi:10.1038/nature00972

119. Hetherington, C. Aberration Correction for TEM. Mater. Today 2004, 7, 50–55. doi:10.1016/S1369-7021(04)00571-1

120. Haider, M.; Uhlemann, S.; Schwan, E.; Rose, H.; Kabius, B.; Urban, K. Electron Microscopy Image Enhanced. Nature 1998, 392, 768–769. doi:10.1038/33823

121. Theska, F.; Nomoto, K.; Godor, F.; Oberwinkler, B.; Stanojevic, A.; Ringer, S.; Primig, S. On the Early Stages of Precipitation during Direct Ageing of Alloy 718. Acta Mater. 2020, 188, 492–503. doi:10.1016/j.actamat.2020.02.034

122. Xu, X.; Liu, P.; Tang, Z.; Hirata, A.; Song, S.; Nieh, T.; Liaw, P.; Liu, C.; Chen, M. Transmission Electron Microscopy Characterization of Dislocation Structure in a Face-Centered Cubic High-Entropy Alloy Al43CoCrFeNi. Acta Mater. 2018, 144, 107–115. doi:10.1016/j.actamat.2017.10.050

123. Ding, Q.; Zhang, Y.; Chen, X.; Fu, X.; Chen, D.; Chen, S.; Gu, L.; Wei, F.; Bei, H.; Gao, Y.; et al. Tuning Element Distribution, Structure and Properties by Composition in High-Entropy Alloys. Nature 2019, 574, 223–227. doi:10.1038/s41586-019-1617-1

124. Taheri, M. L.; Stach, E. A.; Arslan, I.; Crozier, P. A.; Kabius, B. C.; LaGrange, T.; Minor, A. M.; Takeda, S.; Tanase, M.; Wagner, J. B.; Sharma, R. Current Status and Future Directions for In Situ Transmission Electron Microscopy. Ultramicroscopy 2016, 170, 86–95. doi:10.1016/j.ultramic.2016.08.007

125. Zheng, H.; Zhu, Y. Perspectives on In Situ Electron Microscopy. Ultramicroscopy 2017, 180, 188–196. doi:10.1016/j.ultramic.2017.03.022

126. Chen, Z.; Taplin, D.; Weyland, M.; Allen, L. J.; Findlay, S. Composition Measurement in Substitutionally Disordered Materials by Atomic Resolution Energy Dispersive X-Ray Spectroscopy in Scanning Transmission Electron Microscopy. Ultramicroscopy 2017, 176, 52–62. doi:10.1016/j.ultramic.2016.10.006

127. Krause, F.; Rosenauer, A.; Barthel, J.; Mayer, J.; Urban, K.; Dunin-Borkowski, R.; Brown, H.; Forbes, B.; Allen, L. Atomic Resolution Elemental Mapping Using Energy-Filtered Imaging Scanning Transmission Electron Microscopy with Chromatic Aberration Correction. Ultramicroscopy 2017, 181, 173–177. doi:10.1016/j.ultramic.2017.06.004

128. Varela, M.; Findlay, S. D.; Lupini, A. R.; Christen, H. M.; Borisevich, A. Y.; Dellby, N.; Krivanek, O. L.; Nellist, P. D.; Oxley, M. P.; Allen, L. J.; Pyrz, W. D.; Blom, D. A.; Sadakane, M.; Kodato, K.; Ueda, W.; Vogt, T.; Butterly, D. J. Atomic-Level Imaging of Mo-V-O Complex Oxide Phase Intergrowth, Grain Boundaries, and Defects Using HAADF-STEM. Proc. Natl. Acad. Sci. USA 2010, 107, 6152–6157. doi:10.1073/pnas.1001239107

129. Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope; Springer Science þ Business Media, LLC, Boston, 2011.

130. Wang, Z. L.; Van Heerden, D.; Josell, D.; Shapiro, A. J. Energy-Filtered High-Resolution Electron Microscopy for Quantitative Solid State Structure Determination. J. Res. Natl. Inst. Stand. Technol. 1997, 102, 1–13. doi:10.6028/jres.102.002

131. Klimiankou, M.; Lindau, R.; Mosiang, A. Energy-Filtered TEM Imaging and EELS Study of ODS Particles and Argon-Filled Cavities in Ferritic-Martensitic Steels. Micron 2005, 36, 1–8. doi:10.1016/micron.2004.08.001

132. Babu, R. P.; Karthikeyan, S. Effect of Stress Orientation on Microstructural Evolution during Creep of near-Lamellar Ti–47Al–2Cr–2Nb. Mater. Sci. Eng. A 2013, 564, 218–231. doi:10.1016/j.msea.2012.10.033

133. Egerton, R. TEM-EELS: A Personal Perspective. Ultramicroscopy 2012, 119, 24–32. doi:10.1016/j.ultramic.2011.11.008

134. von Harrach, H. S.; Klenov, D.; Freitag, B.; Schlossmacher, P.; Collins, P. C.; Fraser, H. L. Comparison of the Detection Limits of EDS and EELS in S/TEM. Microsc. Microanal. 2010, 16, 1312–1313. doi:10.1017/S1431927610058940

135. Tan, H.; Verbeeck, J.; Abakumov, A.; Van Tendeloo, G. Oxidation State and Chemical Shift Investigation in Transition Metal Oxides by EELS. Ultramicroscopy 2012, 116, 24–33. doi:10.1016/j.ultramic.2012.03.002
141. Kapetanakis, M. D.; Zhou, W.; Oxley, M. P.; Lee, J.; Prange, M. P.; Pennycook, S. J.; Idrobo, J. C.; Pantelides, S. T. Low-Loss Electron Energy Loss Spectroscopy: An Atomic-Resolution Complement to Optical Spectroscopies and Application to Graphene. Phys. Rev. B 2015, 92, 125147. doi:10.1103/PhysRevB.92.125147

142. Yamazaki, T.; Kotaka, Y.; Katoaka, Y. Analysis of EEL Spectrum of Low-Loss Region Using the Cs-Corrected STEM–EELS Method and Multivariate Analysis. Ultramicroscopy 2011, 111, 303–308. doi:10.1016/j.ultramic.2011.01.005

143. Muller, D.; Silcox, J. Delocalization in Inelastic Spectroscopy. Ultramicroscopy 2003, 93, 197–207. doi:10.1016/S0304-3991(02)00265-6

144. Wilson, J.; Craven, A. Improving the Analysis of Small Precipitates in HSLA Steels Using a Plasma Cleaner and ELNES. Ultramicroscopy 2003, 94, 207–207. doi:10.1016/S0304-3991(02)00265-6

145. Mitterbauer, C.; Ovsyanko, M.; Rikers, Y.; Freitag, B. The Performance of Energy Dispersive X-Ray Analysis at High Temperatures Using a Windowless Multi Detector XEDS System. Micron. Microanal. 2018, 24, 794–795. doi:10.1017/S1431927618004464

146. Martin, J. W. The Local Chemical Analysis of Materials; Elsevier Ltd., London, 2003.

147. Terauchi, M.; Mizon, R.; Yamamoto, T. XANES and ELNES in Ceramic Science. J. Am. Ceram. Soc. 2005, 88, 2013–2029. doi:10.1111/j.1551-2916.2005.00547.x

148. Terauchi, M.; Koike, M.; Fukushima, K.; Kimura, A. The Bcc-to-9R Martensitic Transformation of Cu Precipitates and the Relaxation Process of Elastic Strains in an Fe-Cu Alloy. Philos. Mag. A 2000, 80, 711–723. doi:10.1080/0141861008212077

149. Du, J.; Mompiou, F.; Zhang, W. Z. In-Situ TEM Study of Dislocation Emission Associated with Austenite Growth. Scr. Mater. 2018, 145, 62–66. doi:10.1016/j.scriptamat.2017.10.014

150. Gao, S.; Liu, Z. Q.; Li, C. F.; Zhou, Y.; Jin, T. In Situ TEM Investigation on the Precipitation Behavior of μ Phase in Ni-Base Single Crystal Superalloys. Acta Mater. 2016, 110, 268–275. doi:10.1016/j.actamat.2016.03.046

151. Rashkova, B.; Faller, M.; Pippan, R.; Dehm, G. Growth Mechanism of Al2Cu Precipitates during In Situ TEM Heating of a HPT Deformed Al–3wt.% Cu Alloy. J. Alloys Compd. 2014, 600, 43–50. doi:10.1016/j.jallcom.2014.02.090

152. Liu, C.; Malladi, S. K.; Xu, Q.; Chen, J.; Tichelaar, F. D.; Zhuge, X.; Zandbergen, H. W. In Situ STEM Imaging of Growth and Phase Change of Individual CuAl12 Precipitates in Al Alloy. Sci. Rep. 2017, 7, 2184. doi:10.1038/s41598-017-02081-9

153. Chen, L.; Wu, W. In Situ TEM Investigation of Dynamical Changes of Nanostructures. Mater. Sci. Eng. R 2010, 70, 303–319. doi:10.1016/j.msrep.2010.06.014

154. Warczok, P.; Ženišek, J.; Kozeschnik, E. Atomic and Continuum Modeling of Cluster Migration and Coagulation in Precipitation Reactions. Comput. Mater. Sci. 2012, 60, 59–65. doi:10.1016/j.commatsci.2012.02.033

155. Chen, Y.; Prasath Babu, R.; Slater, T. J. A.; Bai, M.; Mitchell, R.; Ciupa, O.; Preuss, M.; Haigh, S. J. An Investigation of Diffusion-Mediated Cyclic Coarsening and Reversal Coarsening in an Advanced Ni-Based Superalloy. Acta Mater. 2016, 110, 295–305. doi:10.1016/j.actamat.2016.02.067

156. Gao, M.; Tsai, S.; Yang, J. R.; Chang, Y.; Ohmura, T.; Chen, C.; Wang, S. H.; Wang, Y. T.; Huang, C. Y. In-Situ Transmission Electron Microscopy Investigation of Compressive Deformation in Interphase-Precipitated Carbide-Strengthened α-Iron Single-Crystal Nanopillars. Mater. Sci. Eng. A 2019, 746, 406–415. doi:10.1016/j.msea.2018.12.055
167. Liu, J.; Hou, M.; Yang, H.; Xie, H.; Yang, C.; Zhang, J.; Feng, Q.; Wang, L.; Meng, L.; Wang, H. In-Situ TEM Study of the Dynamic Interactions between Dislocations and Precipitates in a Cu-Cr-Zr Alloy. *J. Alloys Compd.* 2018, 765, 560–568. doi:10.1016/j.jallcom.2018.06.158

168. Pérez Garza, H. H.; Zuo, K.; Pivak, Y.; Morsink, D.; Zakhzheva, M.; Pen, M.; van Weperen, S.; Xu, Q. MEMS-Based System for In-Situ Biasing and Heating Solutions inside the TEM. In: European Microscopy Congress 2016: Proceedings, Wiley-VCH Verlag GmbH & Co.KGaA, Lyon, 2016, pp 237–238.

169. Clark, B.; Liu, G.; Robertson, I. In-Situ TEM Deformation Study of Dislocation-Precipitate Interactions in Al Alloys. *Microsc. Microanal.* 2006, 12, 62–63. doi:10.1017/S1431927606065378

170. Sosa, J.; Jensen, J.; Huber, D.; Viswanathan, G.; Gibson, M.; Fraser, H. Three-Dimensional Characterisation of the Microstructure of an High Entropy Alloy Using STEM/HAADF Tomography. *Mater. Sci. Technol.* 2015, 31, 1250–1258. doi:10.1179/1743284715Y.0000000049

171. Arslan, I.; Yates, T.; Browning, N.; Midgley, P. Embedded Nanostructures Revealed in Three Dimensions. *Science* 2005, 309, 2195–2198. doi:10.1126/science.1116745

172. Sosa, J.; Huber, D.; Welk, B.; Jensen, J.; Williams, R.; Lambert, S.; Fraser, H. 3D chemiSTEMTM Tomography of Nano-Scale Precipitates in High Entropy Alloys. *Microsc. Microanal.* 2014, 20, 764–765. doi:10.1017/S1431927614005546

173. Slater, T. J.; Janssen, A.; Camargo, P. H.; Burke, M. G.; Zaluzec, N. J.; Haigh, S. J. STEM-EDX Tomography of Bimetallic Nanoparticles: A Methodological Investigation. *Ultramicroscopy* 2016, 162, 61–73. doi:10.1016/j.ultramic.2015.10.007

174. Slater, T. J. A.; Macedo, A.; Schroeder, S. L. M.; Burke, M. G.; O’Brien, P.; Camargo, P. H. C.; Haigh, S. J. Correlating Catalytic Activity of Ag–Au Nanoparticles with 3D Compositional Variations. *Nano Lett.* 2014, 14, 1921–1926. doi:10.1021/nl4047448

175. Collins, S. M.; Midgley, P. A. Progress and Opportunities in EELS and EDS Tomography. *Ultramicroscopy* 2017, 180, 133–141. doi:10.1016/j.ultramic.2017.01.003

176. Guo, W.; Sneed, B. T.; Zhou, L.; Tang, W.; Kramer, M. J.; Cullen, D. A.; Poplawska, J. D. Correlative Energy-Dispersive X-Ray Spectroscopic Tomography and Atom Probe Tomography of the Phase Separation in an Alnico 8 Alloy. *Microsc. Microanal.* 2016, 22, 1251–1260. doi:10.1017/S1431927616012496

177. Van Aert, S.; Batenburg, K. J.; Rossell, M. D.; Erni, R.; Van Tendeloo, G. Three-Dimensional Atomic Imaging of Crystalline Nanoparticles. *Nature* 2011, 470, 374–377. doi:10.1038/nature09741

178. Goris, B.; De Backer, A.; Van Aert, S.; Gómez-Graña, S.; Liz-Marzán, L. M.; Van Tendeloo, G.; Bals, S. Three-Dimensional Elemental Mapping at the Atomic Scale in Bimetallic Nanocrystals. *Nano Lett.* 2013, 13, 4236–4241. doi:10.1021/nl401945b

179. Goris, B.; Bals, S.; Van den Broek, W.; Carbó-Argibay, E.; Gómez-Graña, S.; Liz-Marzán, L. M.; Van Tendeloo, G. Atomic-Scale Determination of Surface Facets in Gold Nanorods. *Nat. Mater.* 2012, 11, 930–935. doi:10.1038/nmat3462

180. Goris, B.; De Beenhouwer, J.; De Backer, A.; Zanaga, D.; Batenburg, K. J.; Sánchez-Iglesias, A.; Liz-Marzán, L. M.; Van Aert, S.; Bals, S.; Sijbers, J.; Van Tendeloo, G. Measuring Lattice Strain in Three Dimensions through Electron Microscopy. *Nano Lett.* 2015, 15, 6996–7001. doi:10.1021/acs.nanolett.5b03008

181. Arslan, I.; Marquis, E. A.; Homer, M.; Hekmaty, M. A.; Bartelt, N. C. Towards Better 3-D Reconstructions by Combining Electron Tomography and Atom-Probe Tomography. *Ultramicroscopy* 2008, 108, 1579–1585. doi:10.1016/j.ultramic.2008.05.008

182. Joseph, S.; Kumar, S.; Babu, R. P. Compressive Flow Behavior of Al–Si Based Alloy: Role of Heat Treatment. *Mater. Sci. Eng. A* 2015, 629, 41–53. doi:10.1016/j.msea.2015.01.046

183. Klimenkov, M.; Nepijko, S.; Kuhlenbeck, H.; Freund, H. Transmission Electron Microscopic Investigation of an Ordered Al2O3 Film on NiAl (110). *Surf. Sci.* 1997, 385, 66–76. doi:10.1016/S0039-6028(97)00150-7

184. Plascencia-Villa, G.; Ponce, A.; Collingwood, J. F.; Arellano-Jiménez, M. J.; Zhu, X.; Rogers, J. T.; Betancourt, I.; José-Yacamán, M.; Perry, G. High-Resolution Analytical Imaging and Electron Holography of Magnetic Particles in Amyloid Cores of Alzheimer’s Disease. *Sci. Rep.* 2016, 6, 24873. doi:10.1038/srep24873

185. Baraniska, M.; Dłużewski, P.; Kret, S.; Morawiec, K.; Li, T.; Sadowski, J. Off-Axis Electron Holography of Magnetic Nanostructures: Magnetic Behavior of Mn Rich Nanoprecipitates in (Mn, Ga) as System. *Acta Phys. Pol. A* 2017, 131, 1406–1408. doi:10.12693/APHysPolA.131.1406

186. Xu, X.; Liu, Y.; Wang, J.; Isheim, D.; Dravid, V. P.; Phatak, C.; Haile, S. M. Variability and Origins of Grain Boundary Electric Potential Detected by Electron Holography and Atom-Probe Tomography. *Nat. Mater.* 2020, 19, 887–893. doi:10.1038/s41563-020-0656-1

187. Couturier, L.; De Geuser, F.; Deschamps, A. Microstructural Evolution during Long Time Aging of 15–5PH Stainless Steel. *Materialia* 2020, 9, 100634. doi:10.1016/j.mtla.2020.100634

188. Yeli, G.; Auger, M. A.; Wilford, K.; Smith, G. D.; Bagot, P. A.; Moody, M. P. Sequential Nucleation of Phases in a 17-4PH Steel: Microstructural Characterisation and Mechanical Properties. *Acta Mater.* 2017, 125, 38–49. doi:10.1016/j.actamat.2016.11.052

189. Leitner, H.; Schnitzer, R.; Schober, M.; Zinner, S. Precipitate Modification in PH13-8 Mo Type Maraging Steel. *Acta Mater.* 2011, 59, 5012–5022. doi:10.1016/j.actamat.2011.04.053

190. Zhou, T.; Neding, B.; Lin, S.; Tseng, J.-C.; Hedström, P. Cu Precipitation-Mediated Formation of Reverted Austenite during Ageing of a 15–5 PH Stainless Steel. *Scr. Mater.* 2021, 202, 114007. doi:10.1016/j.scriptamat.2021.114007

191. Vaynman, S.; Isheim, D.; Kolli, R. P.; Bhat, S. P.; Seidman, D. N.; Fine, M. E. High-Strength Low-
Carbon Ferritic Steel Containing Cu-Fe-Ni-Al-Mn Precipitates. Metall. Mat. Trans. A 2008, 39, 363–373. doi:10.1007/s11661-007-9417-x

Kolli, R. P.; Seidman, D. N. The Temporal Evolution of the Decomposition of a Concentrated Multicomponent Fe–Cu–Based Steel. Acta Mater. 2008, 56, 2073–2088. doi:10.1016/j.actamat.2007.12.044

Isheim, D.; Gagliano, M. S.; Fine, M. E.; Seidman, D. N. Interfacial Segregation at Cu-Rich Precipitates in a High-Strength Low-Carbon Steel Studied on a Sub-Nanometer Scale. Acta Mater. 2006, 54, 841–849. doi:10.1016/j.actamat.2005.10.023

Othen, P.; Jenkins, M.; Smith, G. High-Resolution Transmission Electron Microscope Studies of the Structure of Cu Precipitates in z-Fe. Philos. Mag. A 1994, 70, 1–24. doi:10.1080/01418619408242533

Han, G.; Xie, Z.; Li, Z.; Lei, B.; Shang, C.; Misra, R.; Zhu, H.; Yan, Y.; Wang, Z. Nano-Precipitates Evolution and Their Effects on Mechanical Properties of 17-4 Precipitation-Hardening Stainless Steel. Acta Mater. 2018, 156, 158–171. doi:10.1016/j.actamat.2018.06.031

Wang, Z.; Li, H.; Shen, Q.; Liu, W.; Wang, Z. Nano-Precipitates Evolution and Their Effects on Mechanical Properties of 17-4 Precipitation-Hardenning Stainless Steel. Acta Mater. 2018, 156, 158–171. doi:10.1016/j.actamat.2018.06.031

Rojas, D.; Garcia, J.; Prat, O.; Agudo, I.; Carrasco, C.; Sauthoff, G.; Kaysser-Pyzalla, A. Effect of Processing Parameters on the Evolution of Dislocation Density and Sub-Grain Size of a 12% Cr Heat Resistant Steel during Creep at 650 °C. Mater. Sci. Eng. A 2011, 528, 1372–1381. doi:10.1016/j.msea.2010.10.028

Booth-Morrison, C.; Dunand, D. C.; Seidman, D. N. Coarsening Resistance at 400 °C of Precipitation-Strengthened Al–Zr–Sc–Er Alloys. Acta Mater. 2011, 59, 7029–7042. doi:10.1016/j.actamat.2011.07.057

Hou, Z.; Hedström, P.; Chen, Q.; Xu, Y.; Wu, D.; Odqvist, J. Quantitative Modeling and Experimental Verification of Carbide Precipitation in a Martensitic Fe–0.16 wt% C–4.0 wt% Cr Alloy. Calphad 2016, 53, 39–48. doi:10.1016/j.calphad.2016.03.001

Hou, Z.; Hedström, P.; Xu, Y.; Di, W.; Odqvist, J. Microstructure of Martensite in Fe–C–Cr and Its Implications for Modelling of Carbide Precipitation during Tempering. ISIJ Int. 2014, 54, 2649–2656. doi:10.2355/ISIJinternational.54.2649

Bonvalet, M.; Philippe, T.; Sauvage, X.; Blavette, D. Modeling of Precipitation Kinetics in Multicomponent Systems: Application to Model Superalloys. Acta Mater. 2015, 100, 169–177. doi:10.1016/j.actamat.2015.08.041

Stechauer, G.; Kozeschnik, E. Thermo-Kinetic Modeling of Cu Precipitation in z-Fe. Acta Mater. 2015, 100, 135–146. doi:10.1016/j.actamat.2015.08.042

Lee, H. M.; Allen, S. M.; Grujicic, M. Coarsening Resistance of M2C Carbides in Secondary Hardening Steels: Part I. Theoretical Model for Multicomponent Coarsening Kinetics. Metall. Trans. A 1991, 22, 2863–2868. doi:10.1007/BF02650247

Lee, H. M.; Allen, S. M.; Grujicic, M. Coarsening Resistance of M2C Carbides in Secondary Hardening Steels: Part II. Alloy Design Aided by a Thermochemical Database. Metall. Trans. A 1991, 22, 2869–2876. doi:10.1007/BF02650248

Lee, H. M.; Allen, S. M. Coarsening Resistance of M2C Carbides in Secondary Hardening Steels: Part III. Comparison of Theory and Experiment. Metall. Trans. A 1991, 22, 2877–2888. doi:10.1007/BF02650249

Capdevila, C.; Cornide, J.; Tanaka, K.; Nakanishi, K.; Urones-Garrote, E. Kinetic Transition during Ferrite Growth in Fe-C-Mn Medium Carbon Steel. Metall. Mater. Trans. A 2011, 42, 3719–3728. doi:10.1007/s11661-011-0650-y

Xia, C. Z.; Li, Y. J.; Puchkov, U. A.; Gerasimov, S. A.; Wang, J. A Quantitative Analysis of Mn Segregation at Partitioned Ferrite/Austenite Interface in a Fe-C-Mn-Si Alloy. J. Mater. Sci. Technol. 2009, 25, 383–388. doi:10.1179/174328408X262409

Shigesato, G.; Fujishiro, T.; Hara, T. Boron Segregation to Austenite Grain Boundary in Low Alloy Steel Measured by Aberration Corrected STEM–EELS. Mater. Sci. Eng. A 2012, 556, 358–365. doi:10.1016/j.msea.2012.06.099

Wu, Y.; Sun, W.; Styles, M.; Arlazarov, A.; Hutchinson, C. Cementite Coarsening during the Tempering of Fe-C-Mn Martensite. Acta Mater. 2018, 159, 209–224. doi:10.1016/j.actamat.2018.08.023

Wu, Y.; Sun, W.; Gao, X.; Styles, M.; Arlazarov, A.; Hutchinson, C. The Effect of Alloying Elements on Cementite Coarsening during Martensite Tempering.
244. Hillert, M. Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis; Cambridge University Press, New York, 2007.

245. Kozeschnik, E. Modeling Solid-State Precipitation; Momentum Press, New York, 2013.

246. Zhang, W. Z.; Weatherly, G. C. On the Crystallography of Precipitation. Prog. Mater. Sci. 2005, 50, 181–292. doi:10.1016/j.pmatsci.2004.04.002

247. Gouné, M.; Danoix, F.; Ågren, J.; Bréchet, Y.; Hutchinson, C. R.; Militzer, M.; Purdy, G.; van der Zwaag, S.; Zurob, H. Overview of the Current Issues in Austenite to Ferrite Transformation and the Role of Migrating Interfaces Therein for Low Alloyed Steels. Mater. Sci. Eng. R 2015, 92, 1–38. doi:10.1016/j.mser.2015.03.001

248. Matsukawa, Y.; Yang, H. L.; Saito, K.; Murakami, Y.; Maruyama, T.; Iwai, T.; Murakami, K.; Shinohara, Y.; Kido, T.; Toyama, T.; et al. The Effect of Crystallographic Mismatch on the Obstacle Strength of Second Phase Precipitate Particles in Dispersion Strengthening: Bcc Nb Particles and Nanometric Nb Clusters Embedded in Hcp Zr. Acta Mater. 2016, 102, 323–332. doi:10.1016/j.actamat.2015.09.038

249. Matsukawa, Y.; Okuma, I.; Muta, H.; Shinohara, Y.; Suzue, R.; Yang, H. L.; Maruyama, T.; Toyama, T.; Shen, J. J.; Li, Y. F.; et al. Crystallographic Analysis on Atomic-Plane Parallelisms between Bcc Precipitates and Hcp Matrix in Recrystallized Zr-2.5 Nb Alloys. Acta Mater. 2017, 126, 86–101. doi:10.1016/j.actamat.2016.12.053

250. Lei, Z.; Liu, X.; Wu, Y.; Wang, H.; Jiang, S.; Wang, S.; Hui, X.; Wu, Y.; Gault, B.; Kontis, P.; et al. Enhanced Strength and Ductility in a High-Entropy Alloy via Ordered Oxygen Complexes. Nature 2018, 563, 546–550. doi:10.1038/s41586-018-0685-y

251. Matsukawa, Y. Crystallography of Precipitates in Metals and Alloys: (2) Impact of Crystallography on Precipitation Hardening. In: Crystallography. IntechOpen, London, 2019.

252. Du, J.; Cheng, X.; Yang, T.; Chen, L.; Momipiou, F.; Zhang, W. In Situ TEM Study on the Sympathetic Nucleation of Austenite Precipitates. Acta Metall. Sin. 2019, 55, 511–520.

253. Trimby, P. W. Orientation Mapping of Nanostructured Materials Using Transmission Kikuchi Diffraction in the Scanning Electron Microscope. Ultramicroscopy 2012, 120, 16–24. doi:10.1016/j.ultramic.2012.06.004

254. Keller, R. R.; Geiss, R. H. Transmission EBSD from 10 nm Domains in a Scanning Electron Microscope. J. Microsc. 2012, 245, 245–251. doi:10.1111/j.1365-2818.2011.03566.x

255. Suzuki, S. Features of Transmission EBSD and Its Application. JOM. 2013, 65, 1254–1263. doi:10.1007/s11837-013-0700-6

256. Brodusch, N.; Demers, H.; Gauvin, R. Nanometre-Resolution Kikuchi Patterns from Materials Science Specimens with Transmission Electron Forward Scatter Diffraction in the Scanning Electron Microscope. J. Microsc. 2013, 250, 1–14. doi:10.1111/jmi.12007

257. Saleh, A. A.; Casillas, G.; Pereloma, E. V.; Carpenter, K. R.; Kilmore, C. R.; Gazder, A. A. A Transmission Kikuchi Diffraction Study of Cementite in a Quenched and Tempered Steel. Mater. Charact. 2016, 114, 146–150. doi:10.1016/j.matchar.2016.02.016

258. Janovec, J.; Svoboda, M.; Výrostková, A.; Kroupa, A. Time–Temperature–Precipitation Diagrams of Carbide Evolution in Low Alloy Steels. Mater. Sci. Eng. A 2005, 402, 288–293. doi:10.1016/j.msea.2005.04.048

259. Výrostková, A.; Kroupa, A.; Janovec, J.; Svoboda, M. Carbide Reactions and Phase Equilibria in Low Alloy Cr–Mo–V Steels Tempered at 773–993 K. Part I: Experimental Measurements. Acta Mater. 1998, 46, 31–38. doi:10.1016/S1359-6454(97)00238-3

260. Kroupa, A.; Výrostková, A.; Svoboda, M.; Janovec, J. Carbide Reactions and Phase Equilibria in Low-Alloy Cr–Mo–V Steels Tempered at 773–993 K. Part II: Theoretical Calculations. Acta Mater. 1998, 46, 39–49. doi:10.1016/S1359-6454(97)00239-5

261. Zhou, T.; Lu, J.; Hedström, P. Mechanical Behavior of Fresh and Tempered Martensite in a CrMoV-Alloyed Steel Explained by Microstructural Evolution and Strength Modeling. Metall. Mater. Trans. A 2020, 51, 5077–5087. doi:10.1007/s11661-020-05922-x

262. Rauch, E.; Véron, M. Revealing Embedded Crystals through Their Diffracting Signals in Transmission Electron Microscopy. Microsc. Microanal. 2019, 25, 1922–1923. doi:10.1017/S1431927619010341