Environmental approaches to promote healthy eating: Is ensuring affordability and availability enough?

Pablo Monsivais and colleagues reflect on the evidence for interventions to improve access to healthy food and discuss considerations for evidence generation.

Improving diet is a key goal of public health, as a substantial fraction of global morbidity and mortality is attributable to dietary imbalances. These imbalances include insufficient consumption of vegetables, fruits, and whole grains, and excessive intake of refined carbohydrates and meat. Moreover, inequities in health are driven in part by inequities in diet, and tackling them is a key dimension to improving diet and health at the population level.

The past 20 years have seen increasing concern over structural factors that promote unhealthy dietary patterns and undermine the adoption of healthy eating. This trend has paralleled a growing understanding of the multifactorial “causes of the causes” of the modern pandemics of obesity and non-communicable disease, and interest in the physical, economic, and social environments that cue and shape behavioural risk factors. For food selection and diet specifically, there is recognition of the importance of affordability and availability, two dimensions of a wider conceptualisation of food access (box 1). The general consideration of “access to healthy food” is now a central pillar of policy, systems, and environments (PSE) interventions as well as so called “whole systems” approaches to improve nutrition and reduce obesity and chronic disease. As policy makers and communities act to forge more healthful, sustainable, and equitable food systems and environments, researchers recognise the uneven evidence base and debate the importance of economic and geographical factors as population level determinants of diet and health.

What is the evidence to support policy action?

Either implicitly or explicitly, considerations of affordability and availability are factored into some approaches to promote healthy diets. For example, government food assistance and other food subsidy programmes are predicated on improving affordability of healthy foods, while many policies aiming to create healthy community environments presume that availability is a determinant of food choice and dietary quality.

The scientific evidence informing population approaches to improve diet and health and reduce inequities arises from diverse observational, experimental, as well as natural or quasi-experimental studies. However, tensions exist between the needs of policy makers and researchers, stemming from the equivocal nature of the evidence base as well as the paucity of translatable theory of how interventions or policies work or why they fail.

Affordability

For more than 125 years, home economists and nutrition scientists have recognised the economic dimension of diets, including trade-offs between the nutritive value and cost of foods. Economic depression and food insecurity in the early 20th century focused attention on the affordability of nutritionally adequate diets. In the ensuing decades, evidence from economic, sociological, epidemiological, and consumer research has been largely convergent. Research on food prices, dietary costs, and affordability in relation to food choices and dietary quality has been based on highly varied data sources and study designs. Observational studies have examined food prices and affordability, variously defined as the cost of, or expenditure on, (healthier) food relative to income, in relation to diet and health. Generally, healthier foods and diets cost more for consumers, and lower affordability, whether because of higher prices for healthier foods or lower incomes, is linked to the purchase or consumption of less healthy diets and poorer health outcomes. Although fewer studies have considered the time cost associated with healthier diets, research indicates that diets composed of minimally processed, healthy foods can be affordable in terms of ingredients but more costly when the time entailed in preparing meals is accounted for.

Interventions and programmes to tackle food affordability in low income populations have typically either subsidised incomes or made food available at reduced or no cost. Income subsidies are usually means tested, either subsidising food purchasing directly, such as the longstanding supplemental nutrition assistance programme (SNAP) in the United States, or through a general income transfer, such as Canada’s universal child care benefit. Alternatively, the provision of food directly (rather than cash or vouchers), through food banks or pantries, has long been a critical resource for food insecure populations in the US and has grown substantially in the UK in the past decade. SNAP and more general income transfers have been shown to reduce food insecurity and improve diet among recipients. In contrast, food banks seem to be less effective at alleviating hunger and improving diet, although robust evaluations are limited.

KEY MESSAGES

- The evidence base linking food affordability and availability to healthy eating is equivocal, with affordability being more consistently identified as a key determinant but more controversial for policy.
- Models of evidence generation remain reductionist and focused on local contexts; these need to embed greater attention to social determinants of health and the challenges faced by a globalised food system.
- In times of unprecedented change and disruption, population health researchers must reflect on how evidence is generated and balance methodological rigour with the need for adaptive and pragmatic policy relevant research.
Box 1: Access, affordability, and availability

- **Access**: A broad construct seldom defined in diet and nutrition literature explicitly but analogous to its original formal definition in health services literature. It can be defined as “entry into use of” food or food resources.
- **Affordability**: The monetary cost of food as well as perceptions of worth relative to the cost, often measured by store audits of specific foods or regional price indexes. Affordability implicitly or explicitly accounts for the money available for food, by considering food budgets, expenditures, or incomes.
- **Availability**: The adequacy of the supply of healthy food, typically measured at the community level or at the level of the retailing environment, or both. Community or neighbourhood level measures include measures of distance to healthier food outlets, as well as the presence or absence or density of outlets providing healthier options. At the retail level environment, availability can be quantified as the presence, quantity, and quality of healthier options.

More recently, policy makers have started to consider the manipulation of affordability through fiscal measures to promote healthier behaviours, including the selection of healthier foods. With the implementation of taxes on sugar sweetened beverages and other less healthy foods and beverages in dozens of countries so far, there is now substantial evidence that reducing affordability of these products can reduce their consumption at the population level, with largest reductions among lowest income households. A smaller evidence base indicates that subsidising healthier income households. A smaller evidence with largest reductions among lowest income households.

The mixed evidence, systematic reviews of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availability is associated with poor diets, obesity, and higher risk of chronic disease, while other studies have gest that limited availabilit
failure of such structural interventions may reinforce individually focused narratives of poor diet and ill health, shifting blame on to marginalised groups.

Although practice and policy have made progress moving from individual level and high risk approaches to structural and population level approaches, the accounting for and redressing of fundamental causes of inequalities has lagged behind. So too has the recognition of the political economy of a globalised, commercial food system and its influence shaping local food availability and affordability.33

Global food system and future disruptions

Global events have implications for local food environments, including affordability and availability.34 For example, the great recession and the world food price crises in 2007-8 and 2010-12 had devastating impacts on the affordability and availability of food, with knock-on effects for population diet35 and even social unrest.36 Those worldwide disruptions were driven by factors well beyond the local food system, but their impact on diet and health was undeniable. The UN Food and Agriculture Organization monitors the affordability of healthy diets as a leading indicator of global food security, with the most recent update indicating that healthy diets are out of reach for large segments of the world’s population.37

Most recently, the covid-19 pandemic has highlighted the interdependence of contemporary food supply chains, with considerable disruption in local retail food availability and pricing in several countries.38 The global crisis has moved some national governments to impose protectionist measures, including food export restrictions, with likely impacts on global food security.39 The pandemic has also highlighted the importance of fundamental causes of inequalities, as increasing numbers of households globally are being tipped into food insecurity by factors demonstrably beyond their control. Given high levels of global connectivity, it is likely that shocks to the food system, whether originating as pandemics or extreme climate events, will become progressively more common.40

Further, the large scale disruptions and perturbations that pose a threat to the stability and validity of investigator led interventions also present opportunities to better understand causal influences of key structural drivers of dietary behaviour. An increasing reliance on evaluative evidence4 must also recognise that individual and system level drivers of dietary behaviours are not independent, separate entities; these multiple levels interact and evolve dynamically over time to produce complex patterns of diet within and between countries across the globe. Our approach to research needs to be able to acknowledge and adapt to these global challenges.41

Moving the evidence forward

While there are gaps in the evidence, are we as researchers being piously but pointlessly empirical in the face of self-evident truths that affordability and availability matter for consumer food selection and diet? A rational rather than empirical approach might be enough to convince stakeholders about the need and nature of acting, but scientific evidence alone does not determine the appeal of intervention. Although price and affordability are strong determinants of food selection, the application of policies and interventions to tackle affordability through taxes or subsidies has been limited and controversial. By contrast, policies and interventions to promote availability have been more popular, with many policies and interventions moving forward despite thin evidence.42 Key remaining evidence gaps relate to whether and how policies, systems, and environments interact to facilitate healthy diets at the population level. This shifts the burden on researchers away from showing the “importance” of a potential determinant to investigating the impacts of policies and interventions squarely within their real world contexts, with the aim of generating more practicable evidence for action.

Evidence must emerge not only from classic researcher driven empirical studies that seek to approximate an experimental study approach, but should also be based on pragmatic evaluation of real world programmes and policies, recognising the need for ongoing policy learning.3 A detailed “evidence generation roadmap” for policy lacks a clear consensus; however, various principles of conducting quality research and responsible scholarship are likely to play a central part. These might entail the use of multidisciplinary teams applying a wider range of empirical methods and theory42; the need to invest in the development of combined individual and system level data infrastructure to support rapid analysis and evidence synthesis43; challenging the primacy of randomised controlled trials and traditional evidence hierarchies44; embracing a model of engaged scholarship45; and responsive, flexible funding mechanisms that allow access to rapid funding and adaptation in scientific direction when necessary.46 Dietary public health research needs to adapt and evolve urgently, given globalisation and the requirement to be prepared for large scale disruptions.

Understanding the importance of food access in promoting healthy diets will require multiple disciplinary perspectives and approaches. The judicious selection of methods and research designs that acknowledge the complexity of food systems will be essential for generating evidence on the affordability and availability of food in shaping food choice, diet quality, and health.

Contributors and sources: PM is a public health researcher focused on dietary and health inequities and social determinants of health. CT is a qualitative researcher with interests in food poverty, urban inequalities, welfare reform, regeneration, and food and alcohol environments. CCA is a post-doctoral researcher in global health with interests in supporting the development of a healthier, fairer, and more sustainable food system both nationally and globally. TLP’s research focuses on improving food availability, healthy sustainable food system transition, and the effect of national policies on population and planetary health. PM is the guarantor of this article.

Competing interests: We have read and understood BMJ policy on declaration of interests and have no conflicts of interest to declare.

PM received support from the Health Equity Research Center, a strategic research initiative of Washington State University. CT is supported by the NiHR Applied Research Collaboration East of England. The views expressed are those of the authors and not necessarily those of the NHS, the NiHR, or the Department of Health and Social Care.

Provenance and peer review: Commissioned; externally peer reviewed.

This article is part of series commissioned by The BMJ. Open access fees are paid by Swiss Re, which had no input into the commissioning or peer review of the articles. The BMJ thanks the series advisers Nita Forouhi, Dariusz Mozaffarian, and Anna Larrey for valuable advice and guiding selection of topics in the series.

Pablo Monsivais, associate professor4 Claire Thompson, senior research fellow5 Chloe Clifford Astbury, researcher7 Tarra L Penney, assistant professor3

1Elson S Floyd College of Medicine, Washington State University, Spokane, USA
2School of Health and Social Work, University of York, York, UK
3School of Health and Social Care, Department of Health and Social Care.
4The views expressed are those of the authors and not necessarily those of the NHS, the NiHR, or the Department of Health and Social Care.

Correspondence to: Pablo Monsivais p.monsivais@wsu.edu

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which

Check for updates
permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

OPEN ACCESS

1 Afshin A, Sur PJ, Fay KA, et al. GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019;393:1958-72. doi:10.1016/S0140-6736(19)30041-8

2 Rose GA, Khaw KT, Marmot M. Rose’s strategy of preventive medicine: the complete original text. Oxford University Press, 2008. doi:10.1093/acprof:oso/9780192630971.001.0001

3 Butland B, Jebb S, Kopelman P, et al. Foresight tackling obesities: future choices—project report. Government Office for Science, 2007:1-161. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/287937/10-1184-tackling-obesties-future-choices-report.pdf

4 CDC. The four domains of chronic disease prevention. CDC, 2015.

5 Caspi CE, Sorensen G, Subramanian SV, Kawachi I. The local food environment and diet: a systematic review. Health Place 2012;18:1172-87. doi:10.1016/j.healthplace.2011.07.004

6 Gillet AM, Jones AC, Mozarak A, Signal L, Geng M, Wilson N. Impact of sugar-sweetened beverage taxes on purchases and dietary intake: systematic review and meta-analysis. Obes Rev 2019;20:1187-204. doi:10.1111/obr.12868

7 Afshin A, Peralvo IL, Del Giorno L, et al. The prospective impact of food pricing on improving dietary consumption: a systematic review and meta-analysis. PLoS One 2017;12:e0172277. doi:10.1371/journal.pone.0172277

8 Cobb LK, Appel LJ, Jones-Smith JC, Nur A, Anderson CA. The relationship of the local food environment with obesity: a systematic review of methods, study quality, and results. Obesity (Silver Spring) 2015;23:1371-44. doi:10.1002/oby.21118

9 Gentilsson B, Stand Alén Books, 2018. doi:10.1596/978-1-4648-7652-3

10 Prentice AM, Jones AC, Mizdrak A, Signal L, Genç M, Utland B, Jebb S, Kopelman P, et al. Foresight food systems study: a comprehensive program. Stand Alone Books, 2018.

11 USDA. Food price spikes and social unrest. The dark side of the fed’s crisis-fighting. Foreign Policy 2020 May 20. https://foreignpolicy.com/2020/05/20/food-price-spikes-and-social-unrest-the-dark-side-of-the-feds-crisis-fighting/

12 FAO, UNICEF, WFP. The state of food security and nutrition in the world 2020: Transforming food systems for affordable healthy diets. UNICEF, 2020.

13 CDC. Covid-19 food price monitor. Food Security Portal, 2020.

14 Reardon T, Bellermeare MF, Zilberman D. How COVID-19 may disrupt food supply chains in developing countries. In: Covid-19 and Global Food Security. International Food Policy Research Institute, 2020:78-80. https://www.ifpri.org/publication/how-covid-19-may-disrupt-food-supply-chains-developing-countries

15 Berry EM, Demini S, Burlingame B, Meybeck A, Conti P. Food security and sustainability: can one exist without the other? Public Health Nutr 2015;18:2293-302. doi:10.1017/S136894651500021X

16 Durlop CA, Radaelli GM. Systematising policy learning: from monolith to dimensions. Polity Stud 2013;61:599-619. doi:10.1111/j.1467-9248.2012.00982.x

17 Hawe P, Potvin L. What is population health intervention research? Can J Public Health 2012;103:18-14. doi:10.1007/BF03405503

18 Rutter H, Savona N, Glonti K, et al. The need for a complex systems model of evidence for public health. Lancet 2017;390:2602-4. doi:10.1016/S0140-6736(17)31267-9

19 Moore GE, Evans RE, Hawkins, J, et al. From complex social interventions to interventions in complex social systems: Future directions and unresolved questions for intervention development and evaluation. Evaluation (London) 2019;25:23-45. doi:10.1177/1356389018803219

20 Bowen SJ, Graham ID. From knowledge translation to engaged scholarship: promoting research relevance and utilization. Arch Phys Med Rehabil 2013;94(suppl)5:3-8. doi:10.1016/j.apmr.2012.04.037

Cite this as: BMJ 2021;372:n549
http://dx.doi.org/10.1136/bmj.n549
BMJ: first published as 10.1136/bmj.n549 on 3 April 2021. Downloaded from http://www.bmj.com on 3 April 2021 by guest. Protected by copyright.