RICCI CURVATURE OF CONFORMAL DEFORMATION ON COMPACT 2-MANIFOLDS

Yoon-Tae Jung, Soo-Young Lee and Eun-Hee Choi

Department of Mathematics, Chosun University
Kwangju, 61452, Republic of Korea

(Communicated by Changfeng Gui)

Abstract. In this paper, we consider Ricci curvature of conformal deformation on compact 2-manifolds. And we prove that, by the conformal deformation, the resulting manifold is an Einstein manifold.

1. Introduction. A Riemannian manifold \((M, g)\) with a metric \(g\) is an Einstein manifold provided Ricci curvature \(\text{Ric} = cg\) for some constant \(c\). It is well known that if \(M\) is connected, \(n = \text{dim} \ M \geq 3\), and \(\text{Ric} = k(p)g\), then \(M\) is Einstein([1, p.7],[3],[6]).

In general, if \(M\) is connected and 2-dimensional, then \(\text{Ric} = k(p)g\) for some function \(k(p)\). In this case, we have the following question:

Question A. Is it possible that \((M, \tilde{g})\) is an Einstein manifold \((\text{Ric}_{\tilde{g}} = C\tilde{g}\), where \(C\) is a constant\) by conformal deformation when \(\tilde{g} = e^{2f}g\) for some function \(f\)?

Now if a given metric \(g\) on \(M\), where \(\text{dim} \ M = 2\), has Ricci curvature such that \(\text{Ric}_g = k(p)g\) for some function \(k(p)\), and we seek \(K(p)\) as the Ricci curvature of the metric \(\tilde{g} = e^{2f}g\) pointwise conformal to \(g\) such that \(\text{Ric}_g = K(p)\tilde{g} = K(p)e^{2f}g\), then \(f\) must satisfy

\[
\triangle f - k(p) + K(p)e^{2f} = 0, \quad (1.1)
\]

where \(\triangle\) is the Laplacian in the metric \(g\). Several authors have studied the solutions of equation (1.1) (cf. [2],[4],[5], etc.).

In this paper, to solve Question A, when \(K(p) \equiv C\) for some constant, instead of equation (1.1), we consider the solvability of the following equation

\[
\triangle f - k(p) + Ce^{2f} = 0. \quad (1.2)
\]

In particular, using the change of variables, instead of equation (1.1), Kazdan and Warner consider the following form, which has a similar form with (1.2),

\[
\triangle u - c + he^u = 0, \quad (1.3)
\]

where \(c\) is a constant, and \(h\) is some prescribed function, with neither \(c\) nor \(h\) depending on the geometry of \((M, g)\) ([5]). Kazdan and Warner discussed the
solutions of equation (1.3) according to the value of c ([4], [5]). See the following Remark 1.1.

Remark 1.1. In fact, in [5], Kazdan and Warner had shown the following results:

i) Case $c < 0$. If equation (1.3) is solvable, then $\tilde{h} < 0$, where $\tilde{h} = \frac{1}{\text{Vol}(M)} \int_M h dM$. And there exists a critical strictly negative constant $-\infty \leq c_-(h) < 0$ such that equation (1.3) is solvable if $c_- (h) < c < 0$, but not solvable if $c < c_- (h)$.

ii) Case $c = 0$. Then, excluding the trivial case $h \equiv 0$, a solution of equation (1.3) exists if and only if both $\tilde{h} < 0$ and h changes signs.

iii) Case $c > 0$. Then there is a constant $0 < c_+(h) \leq \infty$, possibly depending on M, such that a solution exists if h is positive somewhere and if $0 < c < c_+(h)$. They had shown that, in the case $c > 0$, there exists some obstructions of the solvability of (1.3). They proved that, in the case $c = 2$ on the sphere S^2, equation (1.3) has no solutions for any function h such that $\nabla h \cdot \nabla F_0$ has a fixed sign for some spherical harmonic F_0 of degree 1, in particular, for all functions h of the form $F_0 + \text{constant}$. And they proved also that, in the case $c > 2$ on S^2, if $h = F_0$ is a spherical harmonic of degree 1, then (1.3) has no solutions.

In this paper, for the given Ricci curvature $k(p)$, we prove the solvability of equation (1.2), using the variational method, for some constant C. The aspect of the solvability of equation (1.2) is different from that of equation (1.3). In equation (1.3), they consider the solvability of (1.3) for h according to c, but we consider the solvability of (1.2) for some constant C according to k.

Let M be a compact connected 2-dimensional manifold, which is not necessarily orientable and possesses a given Riemannian structure g. We denote the volume element of this metric by dV, the gradient by ∇, and the associated Laplacian by Δ (we use the sign convention which gives $\Delta f = 1$ for the standard metric on \mathbb{R}^2). The mean value of a function f on M is written \overline{f}, that is,

$$\overline{f} = \frac{1}{\text{vol}(M)} \int_M f dV.$$

We let $H_{s,p}(M)$ denote the Sobolev space of functions on M whose derivatives through order s are in $L_p(M)$. The norm on $H_{s,p}(M)$ will be denoted by $\| \cdot \|_{s,p}$. In the special case $s = 0$, $H_{s,p}(M)$ is just $L_p(M)$, and we denote the norm by $\| \cdot \|_p$.

If $\dim M = 2$ and $u \in C^\infty(M)$ with $\overline{u} = 0$, then for any $p \geq 1$ there is a constant c_1 independent of p and u such that

$$\| u \|_p \leq c_1 \ p^{\frac{1}{2}} \ \| \nabla u \|_2. \quad (1.4)$$

The point here is the sharp control of the dependence of the right side on p ([5, p.21-22]).

Another immediate consequence of the Poincaré inequality (1.4) is that there is a constant c_2 such that for any $u \in C^\infty(M)$ with $\overline{u} = 0$, one has

$$\| u \|_{1,2} \leq c_2 \ \| \nabla u \|_2. \quad (1.5)$$

Proposition 1.2. Assume $\dim M = 2$. If $u_j \in H_{1,2}(M)$ and $u_j \to u$ weakly in $H_{1,2}(M)$, then $e^{u_j} \to e^u$ strongly in $L_2(M)$.

Proof. See [5, p.23].
2. Preminaries. In this section, we consider the Ricci curvature of conformal deformation on a 2-dimensional manifold.

Theorem 2.1. If (M, g) is connected and 2-dimensional, then there exists $k(p)$ such that

$$R_{ij} = k(p)g_{ij}, \ i, j = 1, 2,$$

where R_{ij} is a Ricci tensor and g_{ij} is a metric tensor.

Proof. Using the normal coordinate system, let

$$ds^2 = f(u, v)du^2 + h(u, v)dv^2.$$

Since

$$\Gamma^k_{ij} = \frac{1}{2} \sum_m g^{km} (\frac{\partial g_{jm}}{\partial x^i} + \frac{\partial g_{im}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^m})$$

for all $i, j, k = 1, 2$, then by boring computation,

$$\Gamma^1_{11} = \frac{1}{2} f_u, \ \Gamma^1_{12} = \frac{1}{2} f_v, \ \Gamma^1_{21} = \frac{1}{2} f_v, \ \Gamma^1_{22} = \frac{1}{2} (h_u),$$

$$\Gamma^2_{11} = \frac{1}{2} (-f_v), \ \Gamma^2_{12} = \frac{1}{2} h_u, \ \Gamma^2_{21} = \frac{1}{2} h_u, \ \Gamma^2_{22} = \frac{1}{2} h_v.$$

And since

$$R^i_{jkl} = \frac{\partial}{\partial x^j} \Gamma^i_{kl} - \frac{\partial}{\partial x^k} \Gamma^i_{jl} + \sum_m \Gamma^i_{jm} \Gamma^m_{kl} - \sum_m \Gamma^i_{km} \Gamma^m_{jl},$$

for all $i, j, k, l = 1, 2$, the boring computation leads that

$$R^1_{112} = \frac{f_{uv} - f_{vu}}{2f}, \ R^1_{121} = \frac{f_{vu} - f_{uw}}{2f},$$

$$R^1_{212} = -\frac{f_u f_v}{4f^2} + \frac{f_{uv}}{2f} - \frac{f_u h_u}{2f} + \frac{h_{uu} - h_u h_u}{4h} - \frac{f_v}{4h},$$

$$R^2_{221} = \frac{f_{h_u}}{4h^2} + \frac{h_{uu}}{2h} - \frac{f_{uv} + f_v}{4h} + \frac{f_{h_v}}{4h},$$

$$R^1_{12} = -\frac{h_{uu} h_u}{2h} + \frac{h_{uu}}{2h} - \frac{h_{vv}}{4h^2} + h_{uv} - \frac{f_{h_u}}{4h} - \frac{f_{h_v}}{4h},$$

$$R^2_{21} = \frac{h_{uu} - h_{vv}}{2h}, \ R^2_{221} = \frac{h_{vv} - h_{uu}}{2h},$$

$$R^l_{i j k} = 0,$$ otherwise.

By definition of Ricci tensor, $R_{ij} = \sum_k R^k_{i j k}$ for $i, j = 1, 2$. Hence

$$R_{11} = \frac{f_{h_v}}{4h^2} + h_{uu} h_u - \frac{f_{uv}}{2h} + \frac{h_{uu}}{2h} + \frac{f_{h_u}}{4h} + \frac{f_{h_v}}{4h},$$

$$R_{12} = R_{21} = 0,$$

$$R_{22} = \frac{f_{h_u}}{4f^2} + \frac{f_{h_v}}{4f^2} - \frac{h_u h_u}{2h} + \frac{h_{uu}}{2h} + \frac{f_{h_u}}{4h} + \frac{f_{h_v}}{4h}.$$

If we let

$$k(u, v) = \frac{f(h_u h_u + f_v h_v) + h(f_u h_u + f_v f_v) - 2fh(f_{uv} + h_{vv})}{4f^2 h^2},$$
then
\[R_{11} = k(u,v)g_{11}, \quad R_{22} = k(u,v)g_{22}, \]
so \(R_{ij} = k(u,v)g_{ij} \) for all \(i, j = 1, 2 \), which is our desired one.

In fact, the above \(k(u,v) \) is a Gaussian curvature on \((M,g)\).

Example 2.2. For compact 2-manifolds, we have the metric, for example, as follows:
\[ds^2 = du^2 + (u^2 + 1)dv^2. \]
Then
\[\Gamma_{22}^1 = -u, \quad \Gamma_{12}^2 = \frac{u}{u^2 + 1}, \quad \Gamma_{21}^2 = \frac{u}{u^2 + 1}, \quad \Gamma_{ij}^k = 0, \text{ otherwise}, \]
and
\[R_{212}^l = \frac{1}{(u^2 + 1)^2}, \quad R_{221}^l = -\frac{1}{u^2 + 1}, \quad R_{112}^2 = -\frac{1}{(u^2 + 1)^2}, \quad R_{121}^2 = \frac{1}{(u^2 + 1)^2}, \quad R_{ijk}^l = 0, \text{ otherwise}. \]
Since the Ricci tensors are \(R_{ij} = \sum_k R_{ikj}^k \) for \(i, j = 1, 2 \), then
\[R_{11} = -\frac{1}{(u^2 + 1)^2}, \quad R_{12} = R_{21} = 0, \quad R_{22} = -\frac{1}{u^2 + 1}. \]
Hence
\[R_{11} = k(u,v)g_{11}, \quad R_{22} = k(u,v)g_{22}, \]
where \(k(u,v) = -\frac{1}{(u^2 + 1)^2} \).

Let us consider the conformal metric \(\tilde{g} = e^{2f}g \) with \(f \in C^\infty(M) \). By Definition 1.19 in [1], if \(\tilde{\Gamma}_{ij}^l \) and \(\Gamma_{ij}^l \) denote the Christoffel symbols relating to \(\tilde{g} \) and \(g \), respectively, for \(i, j, l = 1, 2 \), then
\[\tilde{\Gamma}_{ij}^l - \Gamma_{ij}^l = \sum_k (g_{kj} \frac{\partial f}{\partial i} + g_{ki} \frac{\partial f}{\partial j} - g_{ij} \frac{\partial f}{\partial k}) \tilde{g}^{kl} = (\delta_i^l \frac{\partial f}{\partial j} + \delta^l_j \frac{\partial f}{\partial i} - g_{ij} \nabla^l f). \]
And the Ricci tensors are
\[\tilde{R}_{ij} = \sum_k \tilde{R}_{ikj}^k = R_{ij} - (n - 2)\nabla_i f + (n - 2)\nabla_j f \nabla_i f - (\nabla_v f + (n - 2)\nabla_v f \nabla_v f)g_{ij}. \]
for \(i, j = 1, 2 \). If \(\tilde{R}_{ij} = K(p)\tilde{g}_{ij} = K(p)e^{2f}g_{ij} \) and \(R_{ij} = k(p)g_{ij} \) for \(i, j = 1, 2 \) on a 2-dimensional manifold \(M \), then
\[K(p)e^{2f} = k(p) - \triangle f. \]
In other words,
\[\triangle f - k(p) + K(p)e^{2f} = 0. \quad (2.1) \]
For Question A, if \(K(p) \equiv C(\text{constant}) \), then equation (2.1) is changed into the following equation:
\[\triangle f - k(p) + Ce^{2f} = 0. \quad (2.2) \]
Instead of equation (2.1), we will prove the solvability of equation (2.2), using the variational method.
Theorem 2.3. Let (M, g) be a 2-dimensional compact and connected manifold. If there exists a solution of equation (2.2), then

$$C \int_M e^{2f} \, dM = \int_M k(p) \, dM = 2\pi \chi(M),$$

where $\chi(M)$ is an Euler characteristic of M.

Proof. Since $k(p)$ is a Gaussian curvature on (M, g), Gauss-Bonnet formula implies that our theorem holds trivially. \qed

Necessarily, if there exists a solution of equation (2.2), then from Theorem 2.3 we can see that the sign of C is the same with that of $\chi(M)$.

Theorem 2.4. If there exists a solution of equation (2.2) for a constant $C(\neq 0)$, then we also have a solution of equation (2.2) for some constant $C'(CC' > 0)$.

Proof. If f is a solution of equation (2.2) for C and $C' = e^{2b}$ for some constant b,

$$\Delta(f + b) - k(p) + C'e^{2f + 2b} = \Delta f - k(p) + Ce^{2f} = 0,$$

hence $f + b$ is a solution of equation (2.2) for C'. \qed

Lemma 2.5. If M is a 2-dimensional compact manifold without boundary. Then there exists u such that $\Delta u = k(p)$ if and only if $K = 0$.

We know that the solution u in Lemma 2.5 is unique up to a constant. If $k(p) \in C^{r+\alpha}(M)$, $(r \geq 0$ an integer or $r = +\infty$, $0 < \alpha < 1)$, then $u \in C^{r+2+\alpha}(M)$ (cf. 1, Theorem 4.7]).

It is trivial that if $k(p) \equiv C_1(\text{constant})$ and $C_1C > 0$, then equation (2.2) has a constant solution. Hence, from now on, we assume that $k(p) \neq \text{constant}$. Then $f(\equiv \text{constant})$ is not a solution of equation (2.2).

Theorem 2.6. If $\varphi = 0(\neq 0)$ for $\varphi \in H_{1.2}(M)$, then $\int_M e^\varphi \, dM > 0$.

Proof. If $\varphi \neq 0$ and $\varphi = 0$, we put $v^+(x) = \max\{\varphi(x), 0\}$ and $v^-(x) = \max\{-\varphi(x), 0\}$. Trivially $v(x) = v^+(x) - v^-(x)$ and $|v(x)| = v^+(x) + v^-(x)$. And $M^+_v = \{x \in M | v^+(x) > 0\}$, $M^-_v = \{x \in M | v^-(x) \geq 0\}$. Then for each v, $M = M^+_v \cup M^-_v$

$$\int_M e^\varphi \, dM = \int_{M^+_v} e^\varphi \, dM + \int_{M^-_v} e^\varphi \, dM$$

$$= \int_{M^+_v} e^\varphi_+ \, dM - \int_{M^-_v} e^{-\varphi^-} \, dM$$

$$> \int_{M^+_v} v^+ \, dM - \int_{M^-_v} v^- \, dM = \int_M v^+ \, dM - \int_M v^- \, dM$$

$$= \int_M (v^+ - v^-) \, dM = 0.$$

Jessen inequality ([7, p.62]) implies that for all $\varphi \in H_{1.2}(M)$,

$$\frac{1}{\text{vol}(M)} \int_M e^\varphi \, dM \geq \frac{1}{\text{vol}(M)} \int_M \varphi \, dM.$$

Hence, if $\varphi = 0$, then $\int_M e^\varphi \, dM \geq \text{vol}(M)$.

Corollary 2.7. If \(\varpi = 0 (v \neq 0) \) for \(v \in H_{1,2}(M) \), then \(\int_M e^{cv} \, dM > \text{vol}(M) \) for all \(c \neq 0 \) and \(\int_M e^{cv} \, dM \to \infty \) as \(c \to \infty \).

Proof. Put \(f(c) = \int_M e^{cv} \, dM \) for some \(v \in H_{1,2}(M) (v \neq 0 \text{ and } \varpi = 0) \). Then \(f'(c) = \int_M v e^{cv} \, dM \). Theorem 2.6 implies that if \(c > 0 \), then \(f'(c) > 0 \) and if \(c < 0 \), then \(f'(c) < 0 \). Therefore \(f(c) \) has the minimum at \(c = 0 \), which means that \(\int_M e^{cv} \, dM > \text{vol}(M) \) for all \(c \neq 0 \). And since \(f'(c) > 0 \) and \(f''(c) > 0 \) for \(c > 0 \), \(f(c) \to \infty \) as \(c \to \infty \). \(\square \)

We consider the following functional \(J \) on \(B_{\lambda_0} = \{ v \in H_{1,2}(M) \mid \varpi = 0, v \neq 0, \int_M e^{2v} \, dM = \lambda_0 \} \) for some \(\lambda_0 > 1 \),

\[
J(v) = \frac{\int_M |\nabla v|^2 \, dM + 2 \int_M k(p)v \, dM}{\int_M e^{2v} \, dM}.
\]

Theorem 2.8. Let \(\{v_i\} \) be a minimizing sequence in \(B_{\lambda_0} \) such that \(J(v_i) \to C \) for some constant \(C \) depending on some \(\lambda_0 > 1 \). If \(v_i \to v_0 \) in \(B_{\lambda_0} \) and \(J(v_0) = C \), then equation (2.2) has a solution \(v_0 \).

Proof. Let \(v_0 \) satisfy

\[
J(v_0) = \frac{\int_M |\nabla v_0|^2 \, dM + 2 \int_M k(p)v_0 \, dM}{\int_M e^{2v_0} \, dM} = C.
\]

For all \(\psi \in H_{1,2}(M) \),

\[
\left. \frac{dJ(v_0 + t\psi)}{dt} \right|_{t=0} = \frac{d}{dt} \left[\frac{\int_M (|\nabla v_0 + t\nabla \psi|^2 + 2k(p)(v_0 + t\psi)) \, dM}{\int_M e^{2v_0 + 2t\psi} \, dM} \right] \bigg|_{t=0}
\]

\[
= \frac{1}{(\int_M e^{2v_0 + 2t\psi} \, dM)^2} \left\{ \int_M 2\nabla v_0 \nabla \psi \, dM + 2 \int_M k(p)\psi \, dM + 2t \int_M |\nabla v_0|^2 \, dM \right\} - \left\{ \int_M |\nabla v_0 + t\nabla \psi|^2 \, dM \right\} \bigg|_{t=0}
\]

\[
= \frac{1}{(\int_M e^{2v_0} \, dM)^2} \left[\left\{ \int_M \nabla v_0 \nabla \psi \, dM + 2 \int_M k(p)\psi \, dM \right\} \int_M e^{2v_0} \, dM \right.
\]

\[
- \left\{ \int_M |\nabla v_0|^2 \, dM + 2 \int_M k(p)v_0 \, dM \right\} \left\{ \int_M e^{2v_0} \, dM \right\} \bigg|_{t=0} = 0.
\]

Therefore

\[
\int_M \nabla v_0 \nabla \psi \, dM + \int_M k(p)\psi \, dM - C \int_M e^{2v_0} \, dM = 0,
\]

for all \(\psi \in H_{1,2}(M) \). Hence

\[
\Delta v_0 - k(p) + Ce^{2v_0} = 0.
\]

\(\square \)

Lemma 2.9. If \(\varpi = 0 \) for \(v \in H_{1,2}(M) \), then

\[
\frac{\int_M |v| \, dM}{\int_M e^v \, dM} \leq 2.
\]
Proof. If \(v \equiv 0 \), then it is trivial. If \(v \neq 0 \) and \(\overline{v} = 0 \), we put \(v^+(x) = \max\{v(x), 0\} \) and \(v^-(x) = \max\{-v(x), 0\} \). Trivially \(v(x) = v^+(x) - v^-(x) \) and \(|v(x)| = v^+(x) + v^-(x) \). Since \(\int_M v^+(x) \, dM = \int_M v^-(x) \, dM \), we have \(\int_M |v(x)| \, dM = 2 \int_M v^+(x) \, dM \).

And \(M^+ = \{ x \in M | v^+(x) > 0 \} \), \(M^- = \{ x \in M | v^-(x) \geq 0 \} \). Then for each \(v \), \(M = M^+ \cup M^- \) and \(\int_M |v(x)| \, dM = 2 \int_M v^+(x) \, dM = 2 \int_{M^+} v^+(x) \, dM \). Since \(\int_M e^v \, dM = \int_{M^+} e^{v^+} \, dM + \int_{M^-} e^{-v^-} \, dM \), we have
\[
\frac{\int_M |v(x)| \, dM}{\int_M e^v \, dM} \leq \frac{2 \int_{M^+} v^+(x) \, dM}{\int_{M^+} e^{v^+} \, dM} \leq 2.
\]

\(\square \)

Theorem 2.10. On \(B = \{ v \in H_{1,2}(M) \ : \ \overline{v} = 0, v \neq 0 \} \), the functional \(J(v) \) is lower bounded.

Proof. Since \(M \) is compact, \(\max_{p \in M} |k(p)| \leq N_0 \) for some positive constant \(N_0 \). If \(v \in B \), then
\[
J(v) \geq \frac{\int_M |\nabla v|^2 \, dM - N_0 \int_M 2|v| \, dM}{\int_M e^{2v} \, dM}.
\]

Since \(\frac{\chi v}{\int_M e^{2v} \, dM} \leq 2 \) by Lemma 2.9, \(J(v) \geq -2N_0 \) for all \(v \in B \). This means that \(J(v) \) is lower bounded on \(B \).

We consider the following functional \(J \) on \(B_{\lambda_0} = \{ v \in H_{1,2}(M) | \int_M e^v \, dM = \lambda_0, \overline{v} = 0, v \neq 0 \} \) for some \(\lambda_0 > 1 \),
\[
J(v) = \frac{\int_M |\nabla v|^2 dM + 2 \int_M k(p)v \, dM}{\int_M e^{2v} \, dM} = \frac{\int_M |\nabla v|^2 dM + 2 \int_M k(p)v \, dM}{\lambda_0}.
\]

Theorem 2.11. Let \(C = \inf_{v \in B_{\lambda_0}} J(v) \) for some \(\lambda_0 > 1 \), where \(C \) is a constant depending on \(\lambda_0 \). Then there exists a solution of equation (2.2) and \(\chi(M) \) and \(C \) are the same signs, where \(\chi(M) \) is an Euler characteristic of \(M \).

Proof. Since \(k(p) \) is smooth on \(M \), Theorem 2.10 implies that \(J \) is bounded on \(B_{\lambda_0} \). Hence there exists a minimizing sequence \(\{ v_n \} \) in \(B_{\lambda_0} \) such that \(J(v_1) \to C \). Because \(B_{\lambda_0} \) is not empty, there is some \(v_1 \in B_{\lambda_0} \). Let \(b = J(v_1) \). We may assume that \(b > 0 \) and \(J(v_n) \leq b \) for all \(n \).

For \(v_n \in B_{\lambda_0} \),
\[
J(v_n) = \frac{\int_M |\nabla v_n|^2 \, dM + 2 \int_M k(p)v_n \, dM}{\lambda_0} \geq \frac{\int_M |\nabla v_n|^2 \, dM}{\lambda_0} - 2.
\]

Hence \(\int_M |\nabla v_n|^2 \, dM \leq (b + 2)\lambda_0 \). It follows from equation (1.4) and equation (1.5) that \(||v_n||^2_{2,2} \leq \text{constant} \) for all \(n \). Because the unit ball in any Hilbert space is weakly compact, we conclude that there is some \(v_0 \in H_{1,2}(M) \) such that a subsequence of \(\{ v_n \} \), which we relabel \(v_n \), converges weakly to \(v_0 \). This implies that \(\int_M v_0 \, dM = 0 \) and \(\int_M k(p)v_0 \, dM \to \int_M k(p)v_0 \, dM \).

Since, by Proposition 1.2, \(e^{v_n} \) converges to \(e^{v_0} \) in \(L_2(M) \), we obtain \(\int_M e^{v_0} \, dM = \lambda_0 \). Therefore \(v_0 \in B_{\lambda_0} \). Hence \(J(v_0) \geq C \).

To conclude that \(v_0 \) minimizes \(J \) for all \(v \in B_{\lambda_0} \), we use the general result that whenever \(v_n \) converges to \(v_0 \) weakly in a Hilbert space, then \(||\nabla v_n||_2 \leq \lim \inf ||\nabla v_0||_2 \). Thus \(J(v_0) \leq J(v_n) \) for all \(n \) and \(J(v_0) \leq C \). Therefore \(v_0 \) minimizes \(J \) in \(B \). By Theorem 2.8, there exists a solution of equation (2.2). The fact that \(\chi(M) \) and \(C \) are the same signs follows from the integration of equation (2.2). \(\square \)
3. Manifolds with $\chi(M) \leq 0$. We will be considering the operator

$$L(u) = \triangle u - a(p)u,$$

where $a(p) \geq \text{const} > 0$. The following lemma for equation (3.1) is well known.

Lemma 3.1. $L : H_{1,2}(M) \rightarrow L_2(M)$ is a bijective operator.

Proof. See p. 24 in [5].

In the following theorem, we will solve Question A for compact 2- manifolds with $\chi(M) < 0$, i.e., for q-handle($q > 2$) torus, $\chi(M) = 2 - 2q$ or Dyck’s surface, $\chi(M) = -1$, etc.

Theorem 3.2. If $\chi(M) < 0$, then there exists a nonconstant solution of equation (2.2) for some constant $C < 0$. Hence, by conformal deformation, the resulting manifold is an Einstein manifold.

Proof. Since $\chi(M) < 0$, Gauss-Bonnet formula implies that $\overline{K} < 0$. By Lemma 3.1, there exists a unique solution u_0 such that

$$\triangle u_0 - bu_0 = 2k(p) - 2\overline{K}$$

for some constant $b > 0$. We assume that $k \neq \text{constant}$, so u_0 is not constant. And we know that $\overline{\omega} = 0$. Thus there exists λ_0 such that $\int_M e^{2u_0} \, dM = \lambda_0$. If we set $B_{\lambda_0} = \{ u \in H_{1,2}(M) \mid \overline{\omega} = 0, u \neq 0, \int_M e^{2u} \, dM = \lambda_0 \}$, then $u_0 \in B_{\lambda_0}$, which means ∂B_{λ_0} is not empty. Multiplying both sides of equation (3.2) by u_0 and integrating,

$$\int_M |\nabla u_0|^2 \, dM + \int_M 2k(p)u_0 \, dM = -b \int_M |u_0|^2 \, dM < 0,$$

which implies that $C = \inf_{u \in B_{\lambda_0}} J(u) < 0$. Hence by Theorem 2.11 there exists a solution u such that

$$\triangle u - k(p) + Ce^{2u} = 0,$$

where $u \in B_{\lambda_0}$ means that the solution u is not constant.

In the following theorem, we will solve Question A for compact 2- manifolds with $\chi(M) = 0$, i.e., for torus and Klein bottle.

Theorem 3.3. If $\chi(M) = 0$, then there exists a nonconstant solution of equation (2.2) for the constant $C \equiv 0$. Hence, by conformal deformation, the resulting manifold is an Einstein manifold.

Proof. If $\chi(M) = 0$, then Gauss-Bonnet theorem implies that $\overline{K} = 0$, so, by Lemma 2.5, there exists u_0 such that $\triangle u_0 = k(p)$. Since $k(p) \neq \text{constant}$, u_0 is a nonconstant solution and unique up to constants. And u_0 satisfies that $\triangle u_0 - k(p) + Ce^{2u_0} = 0$, which is our desired one.

4. Manifolds with $\chi(M) > 0$. In this section, we consider Question A for compact 2-dimensional manifolds with $\chi(M) > 0$, i.e., for the sphere, $\chi(M) = 2$ or the real projective space, $\chi(M) = 1$, etc.

Lemma 4.1. If M is a compact 2-dimensional manifold and if $\overline{\omega} = 0$ on M, then there exist constants c_3, c_4 (not depending on u) such that

$$\int_M e^u \, dM \leq c_3 e^{c_4 ||\nabla u||^2}.$$

Proof. See equation (3.5) in [5, p.23].
In the following theorem, we will solve Question A for a compact 2-dimensional manifold.

Theorem 4.2. If \(\chi(M) > 0 \), then there exists a nonconstant solution of equation (2.2) for some constant \(C > 0 \). Hence, by conformal deformation, the resulting manifold is an Einstein manifold.

Proof. Choose a nonconstant function \(u_1 \) such that \(\int_M u_1 \, dM = 0 \). If \(f(c) = \int_M e^{2c} \, dM \), then Corollary 2.7 implies that there exists \(c \) such that \(\int_M e^{2c} \, dM = \lambda_0 \) for large \(\lambda_0 \). If we put \(B_{\lambda_0} = \{ u \in H^{1,2}(M) \mid u \equiv 0, \int_M e^{2u} \, dM = \lambda_0 \} \), then \(B_{\lambda_0} \) is not empty.

By Lemma 4.1, if \(\lambda_0 \) is large, then \((\int_M |\nabla u|^2 \, dM)^{\frac{1}{2}} > (N_1 + 1)c_1\)
for all \(u \in B_{\lambda_0} \), where \(N_1 = \max_{p \in M} |2k(p)| \) and \(c_1 \) is the coefficient in equation (1.4). Hence equation (1.4) implies that for all \(u \in B_{\lambda_0} \)

\[
J(u) = \frac{\int_M |\nabla u|^2 \, dM + \int_M 2k(p)u \, dM}{\lambda_0} \\
\geq \frac{(N_1 + 1)c_1 \int_M |u| \, dM - N_1 \int_M |u| \, dM}{\lambda_0} \geq 0,
\]

where \(N_1 = \max_{p \in M} |2k(p)| \). Therefore \(\inf_{u \in B_{\lambda_0}} J(u) = C \geq 0 \). Hence there exists \(u_0 \in B_{\lambda_0} \) such that \(u_0 \) is the minimizer of the functional \(J \). Here \(C \) is positive. (If \(C = 0 \), then \(\int_M |u_0| \, dM = 0 \), which means \(u_0 = 0 \). It is impossible because \(\lambda_0 \) is large.) Hence by Theorem 2.11 there exists a solution \(u \) such that

\[
\Delta u - k(p) + Ce^{2u} = 0.
\]

Since \(u \in B_{\lambda_0} \), \(u \) is a nonconstant solution. \(\square \)

REFERENCES

[1] T. Aubin, *Nonlinear Analysis on Manifolds*, Springer-Verlag, New York, 1982.
[2] M. S. Berger, Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds, *J. Differ. Geom.*, 5 (1971), 325–332.
[3] A. L. Besse, *Einstein Manifolds*, Springer-Verlag, New York, 1987.
[4] H. Ge and W. Jiang, Kazdan-Warner equation on infinite graph, *J. Korean Math. Soc.*, 55 (2018), 1091–1101.
[5] J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, *Ann. Math.*, 99 (1974), 14–47.
[6] B. O’Neill, *Semi-Riemannian Geometry*, Academic, New York, 1983.
[7] R. Walter, *Real and Complex Analysis*, McGraw-Hill, Singapore, 1986.

Received June 2019; revised December 2019.

E-mail address: ytajung@chosun.ac.kr
E-mail address: skdlskan@hanmail.net
E-mail address: 123zosel@naver.com