Index Function and Minimal Cycles

A.V. Lapteva, E.I. Yakovlev
Nizhni Novgorod State University

Abstract

Let P be a closed triangulated manifold, $\dim P = n$. We consider the group of simplicial 1-chains $C_1(P) = C_1(P, \mathbb{Z}_2)$ and the homology group $H_1(P) = H_1(P, \mathbb{Z}_2)$. We also use some nonnegative weighting function $L : C_1(P) \to \mathbb{R}$. For any homological class $[x] \in H_1(P)$ method proposed in article builds a cycle $z \in [x]$ with minimal weight $L(z)$. The main idea is in using a simplicial scheme of space of the regular covering $\hat{P} \to P$ with automorphism group $G \cong H_1(P)$. We construct this covering applying index function $J : C_1(P) \to \mathbb{Z}_2^r$ relative to any basis of group $H_{n-1}(P)$, $r = \text{rank} H_{n-1}(P)$.

Keywords. Triangulated manifold, homology group, minimal cycle, intersection index, regular covering.

1 Index Function

Consider a triangulated closed manifold P, $\dim P = n$, and a basis $[z_1^{n-1}], \ldots, [z_r^{n-1}]$ of homology group $H_{n-1}(P) = H_{n-1}(P, \mathbb{Z}_2)$. Let $\text{Ind} : H_1(P) \times H_{n-1}(P) \to \mathbb{Z}_2$ be intersection index.

Definition 1. Define the homomorphism $J_0 : Z_1(P) \to \mathbb{Z}_2^r$ by the formulas $J_k^0(y) = \text{Ind}([y], [z_k^{n-1}])$, $k = 1, \ldots, r$, $J_0 = (J_1^0, \ldots, J_r^0)$. We call its arbitrary extension $J : C_1(P) \to \mathbb{Z}_2^r$ index function. For any chain $x \in C_1(P)$ the value $J(x)$ is called its index relative to the basis $[z_1^{n-1}], \ldots, [z_r^{n-1}]$.

Remark 1. Index function $J : C_1(P) \to \mathbb{Z}_2^r$ is not uniquely defined, however we can use this function for solve our problems.

Proposition 1. If $J : C_1(P) \to \mathbb{Z}_2^r$ is index function relative to the basis $\{[z_1^{n-1}], \ldots, [z_r^{n-1}]\}$ of group $H_{n-1}(P)$, $x, y \in C_1(P)$ and $\partial x = \partial y$, then $J(x) = J(y)$ if and only if $x \sim y$.
Proof. Let \([[z_1], \ldots, [z_r]] \) be a basis of group \(H_1(P) = H_1(P, \mathbb{Z}_2) \), that is dual to the given basis \(\{ [z^n_1], \ldots, [z^n_r] \} \). Assume now that \(z = x + y \). Then \(z \in Z_1(P) \) and \([z] = \sum_{i=1}^{r} l_i [z_i] \), where \(l_i \in \mathbb{Z}_2 \). This implies that \(J^k(z) = \text{Ind}([z], [z^n_k]) = l_k \) for all \(k = 1, \ldots, r \). So \(J(x) = J(y) \) if and only if \(l^1 = \cdots = l^r = 0 \). And this latter expression is equivalent to equality \([z] = 0\).

ALGORITHM 1. Construction of index function relative to the basis of group \(H_{n-1}(P) \).

Input:
1) simple basis cycles \(z_1^{n-1}, z_2^{n-1}, \ldots, z_r^{n-1} \) which are lists of \((n-1) \)-dimensional simplices;
2) list \(K^1(P) \) of edges for polyhedron \(P \);
3) lists \(K^1_1(P, z_1^{n-1}), \ldots, K^1_r(P, z_r^{n-1}) \) consisting of \(n \)-dimensional simplices from neighbourhoods of cycles \(z_1^{n-1}, \ldots, z_r^{n-1} \) respectively;

Output:
1) vectors \(J(a) = (J^1(a), \ldots, J^r(a)) \in \mathbb{Z}_2^r \) for all edges \(a \in K^1(P) \);
2) chains \(M_1, \ldots, M_r \) of edges indexed relative to cycles \(z_1^{n-1}, \ldots, z_r^{n-1} \) respectively;
3) lists \(M_k(u), k = 1, \ldots, r \) of edges, that we add to \(M_k \) when considering vertex \(u \) of cycle \(z_k^{n-1} \);
4) sets \(\Sigma_k(u), k = 1, \ldots, r \) of \(n \)-simplices incident to edges from \(M_k(u) \).

Algorithm Description.

Step 0. For all \(k = 1, \ldots, r \) execute steps 1 – 3.

Step 1. Start operations. Assume \(M_k = \emptyset \), \(J^k(a) := 0 \) for all \(a \in K^1(P) \). We denote \(z_k^{n-1} \) by \(X \) and \(K^n_k(P, z_k^{n-1}) \) by \(K^n(X) \). We create then lists of vertices and edges for all simplices of cycle \(X \), \(K^n(X) \) and \(K^1(X) \) respectively.

Step 2. Indexing edges that do not belong to the cycle. For each vertex \(u \in K^n(X) \) execute steps 2.1 – 2.4.

Step 2.1. Initializing vertex neighbourhood. Create a list \(K^n(P, u) \subset K^n(P, X) \) of \(n \)-dimensional simplices of the polyhedron \(P \), that contain \(u \), and a list \(K^{n-1}(P, u) \) of all \((n-1) \)-dimensional faces of simplices from \(K^n(P, u) \). At the same time, for each simplex \(\sigma^{n-1} \in K^{n-1}(P, u) \) we get a list \(\partial^{n-1}(\sigma^{n-1}, u) \) of \(n \)-dimensional simplices from \(K^n(P, u) \) those are incident to \(\sigma^{n-1} \), and assume \(\mu(\sigma^{n-1}) := 0 \). Then we create empty lists \(M_k(u) := \emptyset \) and \(\Sigma_k(u) := \emptyset \).
Step 2.2. Creating the queue to keep \(n \)-simplices. We chose a simplex \(\sigma^n_0 \in K^n(P, u) \), create a queue \(R := \{ \sigma^n_0 \} \) and remove \(\sigma^n_0 \) from \(K^n(P, u) \).

Step 2.3. Main procedure of the Algorithm. While the queue \(R \) is not empty we will do the following actions. Take the first simplex \(\sigma^n \in R \) and remove it from the queue \(R \). For each \((n-1)\)-dimensional face \(\sigma^{n-1} \) of the simplex \(\sigma^n \) we check the following: whether it belongs to the cycle \(X \), whether \(\mu(\sigma^{n-1}) \) is equal to zero, whether the list \(\partial^{n-1}(\sigma^{n-1}, u) \) contains any simplices different from \(\sigma^n \). If all above conditions are satisfied we will execute steps 2.3.1 - 2.3.2.

Step 2.3.1. Take the simplex \(\sigma^n \in \partial^{n-1}(\sigma^{n-1}, u) \setminus \{ \sigma^n \} \), remove it from \(K^n(P, u) \) and enqueue to \(R \); set \(\mu(\sigma^{n-1}) := 1 \) and \(\Sigma_k(u) = \Sigma_k(u) \cup \{ \sigma^n \} \).

Step 2.3.2. For all vertices \(w \neq u \) of the simplex \(\sigma^{n-1} \) we check whether the edge \(a = [uv] \) is in the list \(K^1(X) \); having \(a \notin K^1(X) \) set \(J^k(a) := J^k(a) + 1 \mod 2 \), \(M_k(u) = M_k(u) \cup \{ a \} \), \(M_k := M_k + a \mod 2 \).

Step 2.4. Main procedure repeated. If the list \(M_k(u) \) is empty then go back to step 2.2.

Step 3. Indexing the edges of cycle. For each edge \(a = [uv] \in K^1(X) \) we search any edges \(b \in M_k(u) \) and \(c \in M_k(v) \) such that \(b \cap c \neq \emptyset \) and that \(a, b \) and \(c \) are sides of some triangle of polyhedron \(P \). If the edges \(b \) and \(c \) do not exist then we set \(J^k(a) := 1 \) and \(M_k = M_k + a \mod 2 \).

End of algorithm.

Theorem 1. If \(P \) is a closed \(n \)-dimensional manifold, \(z^{n-1}_1, \ldots, z^{n-1}_r \) are simple cycles, \(x = a_1 + \cdots + a_i \in C_1(P) \) and \(J(x) = \sum_{i=1}^r J(a_i) \), then the vector \(J(x) = (J^1(x), \ldots, J^r(x)) \in \mathbb{Z}^r_2 \) is index of the chain \(x \in C_1(P) \) relative to the basis \([z^{n-1}_1], \ldots, [z^{n-1}_r]\) of group \(H_{n-1}(P) \).

Proof. Let \(x \in Z_1(P) \). We will prove that \(J^k(x) = \text{Ind}([x], [z^{n-1}_k]) \) for all \(k = 1, \ldots, r \).

Set \(z^*_0 = z^{n-1}_k \). For all \(p = 1, \ldots, N \) we will make the following constructions; here \(N \) is power of the set \(K^0(z^{n-1}_k) \).

Consider vertex \(u_p \in K^0(z^{n-1}_k) \) and its barycentric star \(\text{bst}(u_p, P) \).

Let \(\Sigma^*_k(u_p) \) be the set of all \(n \)-simplices from the barycentric subdivision of \(\Sigma_k(u_p) \). Construct the chain \(c(u_p) \) of simplices \(\sigma_1 \in \text{bst}(u_p, P) \cap \Sigma^*_k(u_p) \).

Then we write the chain boundary \(\partial c(u_p) \) as a sum \(Y_1 + Y_2 \), where \(Y_1 \) is the sum of all its \((n-1)\)-dimensional simplices, that belong to cycle \(z^{n-1}_k \) and \(Y_2 \) is the sum of all remaining simplices from the chain \(\partial c(u_p) \). Set \(z^*_p = z^*_p - 1 + Y_1 + Y_2 \mod 2 \).
By construction $z^*_p \sim z^*_{p-1}$ for all $p = 1, \ldots, N$. Hence, the cycle $z^* = z^*_N$ is homologous to the cycle $z^*_{n-1} = z^*_0$.

Let now prove that for any edge $a = [uv] \in K^1(P)$ and $\sigma_b \in \text{bst}(a)$ the simplex σ_b belong to z^* if and only if $a \in M_k$.

Let view all possible positions of the edge a. At the same time we also agree to think that $M_k(u) = \emptyset$ and that $\Sigma_k(u) = \emptyset$ for all $u \notin K^0(z^*_{n-1})$.

0. If $a \notin M_k(u) \cup M_k(v)$ and $a \notin K^1(z^*_{n-1})$, then according to the algorithm $a \notin M_k$. On the other hand, the edge a can not be incident to simplices from the lists $\Sigma_k(u)$ and $\Sigma_k(v)$ and hence $\sigma_b \notin z^*$.

1. Let $u \in K^0(z^*_{n-1})$, $a \in M_k(u)$ and $v \notin K^0(z^*_{n-1})$. Then the edge a will be still in the chain M_k when algorithm \[is completed. At the same time the barycentric star $\text{bst}(a)$ belongs to the boundary of the chain $c(u)$ and does not belong to the cycle z^*_{n-1}. Thus in this case $a \in M_k$ and the chain $\text{bst}(a)$ belongs to the cycle z^*.

2. Further, assume that $u, v \in K^0(z^*_{n-1})$ and $a \in M_k(u)$. At that, $a \notin K^1(z^*_{n-1})$.

2.1. If $a \in M_k(v)$, then $a \notin M_k$, and simplices of its barycentric star will be added twice to the initial cycle z^*_{n-1} and will not be in the resulting cycle z^*.

2.2. If $a \notin M_k(v)$, then $a \in M_k$ and any simplex $\sigma_b \in \text{bst}(a)$ is added to the cycle z^* exactly once. So $\sigma_b \in z^*$.

3. Finally, let $a \in K^1(z^*_{n-1})$.

3.1. Let assume that the condition from step 3 of algorithm \[is satisfied, i.e.:

(*) there exist edges $b \in M_k(u)$ and $c \in M_k(v)$ such that $b \cap c \neq \emptyset$ and that a, b and c are sides of some triangle $\sigma' \in K^2(P)$.

In this case, according to the algorithm $a \notin M_k$.

Let view all triangles σ' from (*), and all n-dimensional simplices incident to them. The such n-simplices belong both to $\Sigma_k(u)$ and $\Sigma_k(v)$. Consider n-dimensional simplex σ, $\sigma_b \in \sigma$. If $\sigma_b \in \text{bst}(a)$, then σ either belong to the both sets $\Sigma_k(u)$ and $\Sigma_k(v)$ or does not belong to them. Hence, the simplex σ_b either is not added to the cycle z^* or is added twice. Therefore $\sigma_b \notin z^*$.

3.2. Assume now that condition (*) is not satisfied. Then according to step 3 of algorithm \[$a \in M_k$.

Barycentric star $\text{bst}(a)$ of the edge $a = [uv]$ belongs to the union $D(a)$ of all n-simplices that contain the edge a. We will prove that the sub-polyhedron $D(a)$ belongs to the union of simplices from the sets $\Sigma_k(u)$ and $\Sigma_k(v)$.

Cycle \(z_k^{n-1} \) divides \(D(a) \) into two components of strong connectivity \(D^+(a) \) and \(D^-(a) \).

By construction the set \(\Sigma_k(u) \) can not be empty. Moreover, if the simplex \(\sigma \in z_k^{n-1} \) is incident to the vertex \(u \), then \(\sigma \) is a face of some \(n \)-simplex from \(\Sigma_k(u) \). So there exists a simplex \(\sigma^n \in \Sigma_k(u) \) that contains the edge \(a \).

Let the simplex \(\sigma^n \) belongs to \(D^+(a) \). Then under the strong connectivity \(D^+(a) \) and according to algorithm \(\square \) all \(n \)-simplices from \(D^+(a) \) also belong to \(\Sigma_k(u) \).

This implies, in accordance with our assumption, that no \(n \)-simplex from \(D^+(a) \) can belong to the set \(\Sigma_k(v) \).

The set \(\Sigma_k(v) \) can not be empty also. Since each simplex of \(z_k^{n-1} \) incident to the vertex \(v \) is a face of some \(n \)-simplex from \(\Sigma_k(v) \), it follows that there exists a simplex \(\sigma^*_n \in \Sigma_k(v) \) that contains the edge \(a \). By the above proof \(\sigma^*_n \) belongs to \(D^-(a) \). Then all \(n \)-simplices from \(D^-(a) \) belong to the set \(\Sigma_k(v) \) too. Consequently all \(n \)-simplices of the polyhedron \(D(a) = D^+(a) \cup D^-(a) \) belong either to the set \(\Sigma_k(u) \) or to \(\Sigma_k(v) \).

Consider \(\sigma_b \in \text{bst}(a) \). If there exists a simplex \(\sigma \in \Sigma_k(u) \) containing \(\sigma_b \), then \(\sigma \notin \Sigma_k(v) \). Otherwise, in accordance to the above proof, there is a simplex \(\tilde{\sigma} \in \Sigma_k(v) \) such that \(\sigma_b \subset \tilde{\sigma} \). It follows that \(\sigma_b \) is involved in the cycle \(z^* \) exactly once, so \(\sigma_b \in z^* \).

Thus we have proved that the cycle \(z^* \sim z_k^{n-1} \) consists of barycentric stars of the edges from chain \(M_k \). That means that this cycle intersects transversally only the edges of the cycle \(x \), that are in the list \(M_k \). According to algorithm \(\square \), \(J^k(a) = 1 \) for all \(a \in M_k \) and \(J^k(b) = 0 \) for all edges \(b \notin M_k \). So

\[
\text{Ind}([x], [z_k^{n-1}]) = \text{Ind}([x], [z^*]) = \sum_{a \in x} J^k(a) \mod 2 = J^k(x).
\]

\(\square \)

Remark 2. The fact that \([z_1^{n-1}], \ldots, [z_n^{n-1}]\) is a basis of group \(H_{n-1}(P) \) has no impact on the behaviour of algorithm \(\square \). So we can apply this algorithm to an arbitrary set of simple \((n-1)\)-dimensional cycles of the manifold \(P \). In particular this set may consist of only one cycle \(z^{n-1} \). Then we will get a function \(J : C_1(P) \to \mathbb{Z}_2 \) such that \(\sum_{i=1}^{l} J(a_i) = \text{Ind}([x], [z^{n-1}]) \) for \(x = a_1 + \cdots + a_l \in Z_1(P) \). So we can use algorithm \(\square \) to compute the intersection index of a given \((n-1)\)-cycle \(z^{n-1} \in Z_{n-1}(P) \) with any one-dimensional cycle of the manifold \(P \).
Remark 3. We can find any basis \([z_1^{n-1}], \ldots, [z_r^{n-1}]\) of group \(H_{n-1}(P)\) using standard matrix algorithm (see, for example, [3]). If \(n = 2\), we also can apply algorithms that don’t use incidence matrices (see [4, 5]).

2 Regular Covering with the Automorphism Group \(H_1(P)\)

Let \(P\) be a \(n\)-dimensional triangulated closed manifold and \(S = (V, K)\) be its simplicial scheme. We will construct an abstract simplicial scheme \(\hat{S} = (\hat{V}, \hat{K})\) as follows.

Set \(\hat{V} = V \times G\), where \(G = \mathbb{Z}_2^r\). Let \(\hat{v}_0, \hat{v}_1, \ldots, \hat{v}_m \in \hat{V}\), where \(\hat{v}_i = (v_i, b_i)\) for all \(i = 0, 1, \ldots, m\). We will think that \(\{\hat{v}_0, \hat{v}_1, \ldots, \hat{v}_m\} \in \hat{K}\) if the below conditions are satisfied:

(U1) \(\{v_0, v_1, \ldots, v_m\} \in K;\)

(U2) \(g_0 + g_i = J([v_0v_i])\) for any \(i = 1, \ldots, m\); here \(J([v_0v_i])\) is the index of the edge \([v_0v_i]\).

Remark 4. When the conditions (U1) and (U2) are satisfied the equalities \(g_i + g_j = J([v_iv_j])\) are also true for all \(i, j = 1, \ldots, m\). In fact, according to (U1), the cycle \(z = [v_jv_i] + [v_iv_0] + [v_0v_j]\) is homologous to zero. So \(J([v_iv_j]) = J([v_0v_i]) + J([v_0v_j])\). By invoking (U2) we can have these equalities \(J([v_iv_j]) = g_i + g_0 + g_0 + g_j = g_i + g_j\).

Let define now a mapping \(p^0 : \hat{V} \to V\) and a left action \(\lambda^0 : G \times \hat{V} \to \hat{V}\) of group \(G\) on \(\hat{V}\), assuming

\[p^0((v, g)) = v \quad \text{and} \quad \lambda^0(g', (v, g)) = g' \cdot (v, g) = (v, g' + g)\] (1)

for all \((v, g) \in \hat{V}\) and \(g' \in G\).

Let \(\hat{P}\) define some realization of the scheme \(\hat{S} = (\hat{V}, \hat{K})\). At that we identify the set of vertices of the polyhedron \(\hat{P}\) with \(\hat{V}\).

Proposition 2. For the mapping \(p^0 : \hat{V} \to V\) there exists the unique continuation \(p : \hat{P} \to P\) that is simplicial regular covering with a group of covering transformations \(G \cong H_1(P)\).
Proof. Simplicial and surjective properties of the mapping p^0 follow directly from its definition and from the construction of the complex \hat{K}. If $\hat{s} = \{(v_0, g_0), (v_1, g_1), \ldots, (v_m, g_m)\} \in \hat{K}$, then $\{v_0, v_1, \ldots, v_m\} \in K$ and $g_0 + g_i = J([v_0 v_1])$ for all $i = 1, \ldots, m$. On the other hand, $g \cdot \hat{s} = \{(v_0, g + g_0), (v_1, g + g_1), \ldots, (v_m, g + g_m)\}$ for an arbitrary $g \in G$. Since $g + g_0 + g + g_i = g_0 + g_i = J([v_0 v_1])$, then $g \cdot \hat{s} \in \hat{K}$. So the action λ^0 is also simplicial.

Let $s = \{v_0, v_1, \ldots, v_m\} \in K$ and $\hat{v}_0 \in (p^0)^{-1}(v_0)$. Then $\hat{v}_0 = (v_0, g_0)$, where $g_0 \in G$. Set $g_i = g_0 + J([v_0 v_1])$ and $\hat{v}_i = (v_i, g_i)$ for all $i = 1, \ldots, m$. At that $\hat{s} = \{\hat{v}_0, \hat{v}_1, \ldots, \hat{v}_m\} \in \hat{K}$, $\hat{v}_0 \in \hat{s}$ and $p^0(\hat{s}) = s$. Hence, the mapping p^0 has the following property:

(C1) for each abstract simplex $s \in K$ and for any vertex $\hat{v} \in (p^0)^{-1}(s)$ there is the unique abstract simplex $\hat{s} \in \hat{K}$ containing the vertex \hat{v} and satisfying the equality $p^0(\hat{s}) = s$.

Let choose an abstract simplex $\hat{s} = \{\hat{v}_0, \hat{v}_1, \ldots, \hat{v}_m\} \in \hat{K}$, and an element g of group G and assume that $g \cdot \hat{s} = \hat{s}$. Then $\hat{v}_i = (v_i, g_i)$ and $g \cdot \hat{v}_i = (v_i, g + g_i)$ for all $i = 1, \ldots, m$. At the same time it follows from the equality $g \cdot \hat{s} = \hat{s}$ that $(v_0, g + g_0) = (v_k, g_k)$ for some $k \in \{0, 1, \ldots, m\}$. The latter is possible only if $k = 0$ and $g = 0$. Thus the action λ^0 has the following property:

(C2) if $g \cdot \hat{s} = \hat{s}$ for at least one non-empty simplex $\hat{s} \in \hat{K}$, then g is the neutral element of the group G.

Let now consider the simplices $\hat{s} = \{(v_0, g_0), (v_1, g_1), \ldots, (v_m, g_m)\}$ and \hat{s}' of the complex \hat{K}.

First, if $g \in G$ and $\hat{s}' = g \cdot \hat{s}$, then $\hat{s}' = \{(v_0, g + g_0), (v_1, g + g_1), \ldots, (v_m, g + g_m)\}$. At that $p^0(\hat{s}') = \{v_0, v_1, \ldots, v_m\} = p^0(\hat{s})$.

Further, assume that $p^0(\hat{s}') = p^0(\hat{s}) = \{v_0, v_1, \ldots, v_m\}$. Then according to (1), $\hat{s}' = \{(v_0, g'_0), (v_1, g'_1), \ldots, (v_m, g'_m)\}$, where g'_0, g'_1, \ldots, g'_m are some elements of group G, and $g_0 + g_i = J([v_0 v_1]) = g'_0 + g'_i$ for $i = 1, \ldots, m$.

Set $g = g'_0 + g_0$. Then according to the above equalities $g'_i = g + g_i$ for all $i = 0, 1, \ldots, m$ and hence $\hat{s}' = g \cdot \hat{s}$.

This proves that p^0 and λ^0 have the following property:

(C3) for arbitrary abstract simplices $\hat{s}, \hat{s}' \in \hat{K}$ the equality $p^0(\hat{s}) = p^0(\hat{s}')$ is equivalent to the existence of an element $g \in G$ such that $g \cdot \hat{s} = \hat{s}'$.

It is known that p^0 and λ^0 may have the unique continuation to the simplicial mapping $p : \hat{P} \rightarrow P$ and the simplicial action $\lambda : G \times \hat{P} \rightarrow \hat{P}$ of
group G on \hat{P}. It also follows from (C1) – (C3) that p is a regular covering, and G is a corresponding group of covering transformations (see, for example, [4]).

Proposition 3. Let $x = [v_0v_1] + [v_1v_2] + \cdots + [v_{s-1}v_s]$ and $y = [u_0u_1] + [u_1u_2] + \cdots + [u_{t-1}u_t]$ be edge paths of the polyhedron P, that run from the vertex $v_0 = u_0$ to the vertex $v_s = u_t$, $\tilde{x} = [\hat{v}_0\hat{v}_1] + [\hat{v}_1\hat{v}_2] + \cdots + [\hat{v}_{s-1}\hat{v}_s]$ and $\hat{y} = [\hat{u}_0\hat{u}_1] + [\hat{u}_1\hat{u}_2] + \cdots + [\hat{u}_{t-1}\hat{u}_t]$ paths of \hat{P}, that cover the paths x and y respectively and have the same beginning $\hat{v}_0 = \hat{u}_0$. Then $\hat{v}_s = \hat{u}_t$ if and only if $x \sim y$.

Proof. Let $z = [w_0w_1] + [w_1w_2] + \cdots + [w_{s-1}w_s]$ be a path in the polyhedron P and $g_0 \in G = \mathbb{Z}_2$. Then the unique path \hat{z} of the polyhedron \hat{P}, starting in the vertex $\hat{w}_0 = (w_0, g_0)$ and covering the path z, is defined by the formulas

\[
\hat{w}_i = (w_i, g_0 + J(z_i)), \quad i = 1, \ldots, s,
\]

where $z_i = [w_0w_1] + [w_1w_2] + \cdots + [w_{i-1}w_i]$, and

\[
\hat{z} = [\hat{w}_0\hat{w}_1] + [\hat{w}_1\hat{w}_2] + \cdots + [\hat{w}_{s-1}\hat{w}_s].
\]

Set $g_i = g_0 + J(z_i)$ for $i = 1, \ldots, s$ and $z_0 = 0$. Then $J(z_i) = J(z_{i-1}) + J([w_{i-1}w_i])$ for all $i = 1, \ldots, s$. At the same time $g_i = g_{i-1} + J([w_{i-1}w_i])$ and the vertices \hat{w}_{i-1} and \hat{w}_i from \hat{V}, defined by the formula (2), are connected by the edge $[\hat{w}_{i-1}\hat{w}_i] \in \hat{K}$. Then in the polyhedron \hat{P} there is defined a path \hat{z} starting at the vertex $\hat{w}_0 = (w_0, b_0)$. As $p(\hat{w}_i) = p((w_i, g_0 + J(z_i))) = w_i$ for all $i = 0, 1, \ldots, s$, then \hat{z} covers the path z. Since p is a covering then the path \hat{z} is unique.

Assume now that $\hat{v}_0 = (v_0, g_0)$, where $g_0 \in G$. By the above proof, the equalities $p(\hat{x}) = x$, $p(\hat{y}) = y$ and $\hat{v}_0 = \hat{u}_0$ imply that $\hat{v}_s = (v_s, g_0 + J(x))$ and $\hat{u}_t = (u_t, g_0 + J(y))$. So $\hat{v}_s = \hat{u}_t$ if and only if $J(x) = J(y)$. According to proposition [4], the last equality is equivalent to the homology of the chains x and y.

\[\square\]

3 Minimal Cycles Searching

Let $E(P) = K^1(P)$ be the set of edges of the polyhedron P, and $L : E(P) \to \mathbb{R}$ be a non-negative function. Using the formulas

\[L(0) = 0 \text{ and } L(\{a_1, \ldots, a_s\}) = \sum_{i=1}^{s} L(a_i).
\]

(4)
we can extend L to the function $L : C_1(R) \rightarrow (R)$. This function is often called weight function. And for an arbitrary chain $x \in C_1(P)$ the value $L(x)$ is called its weight (see, for example, [2]).

Let define a weight function $\hat{L} : C_1(\hat{P}) \rightarrow \mathbb{R}$ assuming that

$$\hat{L}(\hat{x}) = L(p(\hat{x}))$$

for an arbitrary chain $\hat{x} \in C_1(\hat{P})$.

ALGORITHM 2. Searching for the minimal cycle with fixed vertex and index.

Input:
1) list $V(P)$ of vertices for polyhedron P;
2) lists $U(v, P)$ of vertices incident to v for all vertices $v \in V(P)$;
3) index function $J : C_1(P) \rightarrow \mathbb{Z}_2$ relative to some basis of group $H_{n-1}(P)$;
4) weight function $L : C_1(P) \rightarrow \mathbb{R}$;
5) vector $i \in G = \mathbb{Z}_2$;
6) vertex $u \in V(P)$.

Output:
1-chain $z \in C_1(P)$.

Algorithm Description.

Step 1. Initializing cycle z. Set $z := \emptyset$.

Step 2. Initializing sets $\hat{T} \subset V(P) \times G$, $\hat{P}^* \subset V(P) \times G$ and a mapping $\tilde{D} : V(P) \times G \rightarrow \mathbb{R}$. Let $\hat{T} := \{(u, 0)\}$, where 0 – null vector of space $G = \mathbb{Z}_2$, $\hat{P}^* := \emptyset$ and $\tilde{D}(u, 0) := 0$.

Step 3. First extension of \hat{P}^* and \tilde{D}. For each vertex $v \in U(u, P)$ set $j := J([uv])$ and add the pair (v, j) into the list \hat{P}^*. At the same time set $\tilde{D}(v, j) := L([uv])$, $F(v, j) := (u, 0)$.

Step 4. Choosing a next element to add to \hat{T}. Find the pair $(w, k) \in (\hat{P}^* \setminus \hat{T})$ such that $\tilde{D}(w, k) = \min_{(v, j) \in (\hat{P}^* \setminus \hat{T})} \tilde{D}(v, j)$.

Step 5. Stop criterion of \hat{T}, \hat{P}^*, \tilde{D} construction. If $w = u \ k = i$, then go to step 9.

Step 6. Extension of the set \hat{T}. Add the pair (w, k) into the list \hat{T}.

Step 7. Next extension of \hat{P}^* and \tilde{D}. For each vertex $v \in U(w, P)$ set $j := k+J([uv])$. If the pair $(v, j) \notin \hat{P}^*$, then set $\tilde{D}(v, j) := \tilde{D}(w, k)+L([uv])$, $F(v, j) := (w, k)$ and add the pair (v, j) into \hat{P}^*. If $(v, j) \in (\hat{P}^* \setminus \hat{T})$ and
\[\hat{D}(w, k) + L([wv]) < \hat{D}(v, j), \text{ then set } \hat{D}(v, j) = \hat{D}(w, k) + L([wv]) \text{ and } F(v, j) := (w, k). \]

Step 8. Continuation of \(T, \hat{P}^*, \hat{D} \) construction. Go back to step 4.

Step 9. Construction of chain \(z \).

Step 9.1. Take a pair \((v, j) = F(w, k)\) and set \(z := z + [vw] \).

Step 9.2. If \((v, j) \neq (u, i)\), then set \((w, k)\) equal to \((v, j)\) and go back to step 9.1.

End of algorithm.

Theorem 2. The chain \(z \in C_1(P) \) computed by the algorithm \(\square \) has the following properties:

- \(z \in Z_1(P) \);
- \(J(z) = i \);
- \(u \in V(z) \), where \(V(z) \) is the vertex set of the chain \(z \);
- \(L(z) \leq L(x) \) for all cycles \(x \in Z_1(P) \) that satisfy conditions \(J(x) = i \) and \(u \in V(x) \).

Proof. Let \(T^* \) be the result set of Dijkstra’s algorithm for a one-dimensional skeleton \(\hat{P}^1 \) of the polyhedron \(\hat{P} \) if we choose the pair \(\hat{u} = (u, 0) \) as the start point, and the pair \((u, i)\) as the end point (see, for example, [1]).

According to the definition of the complex \(\hat{K} \), the pairs \(\hat{v} = (v, j) \) and \(\hat{u} = (u, 0) \) in step 3, as well as the pairs \(\hat{v} = (v, j) \) and \(\hat{w} = (w, k) \) in step 7 are connected by the edges \([\hat{v}\hat{u}] \in E(\hat{P})\) and \([\hat{v}\hat{w}] \in E(\hat{P})\) respectively.

Also, according to (3), we have the equalities \(\hat{L}([\hat{v}\hat{u}]) = L([vu]) \) in step 3 and \(\hat{L}([\hat{v}\hat{w}]) = L([vw]) \) in step 7. This implies that the set \(\hat{T} \) constructed by step 9 is the same that \(T^* \).

Let note that step 9 is not limited to compute \(z = [v_0 v_1] + \cdots + [v_{q-1} v_q] \) starting at \(v_0 = u \) and ending at \(v_q = u \), but it also gives us the possibility to construct the vector sequence \(j_0, j_1, \ldots, j_q \in \mathbb{Z}_2 \), that will satisfy the equalities \(j_0 = 0, j_q = i \) and \(j_s = j_{s-1} + J([v_{s-1} v_s]) \).

Set \(\hat{v}_s = (v_s, j_s) \) for all \(s = 0, 1, \ldots, q \). Then \([\hat{v}_{s-1} \hat{v}_s] \in E(\hat{P})\) for the same \(s \) and \(z = [\hat{v}_0 \hat{v}_1] + [\hat{v}_1 \hat{v}_2] + \cdots + [\hat{v}_{q-1} \hat{v}_q] \) is a path in the skeleton \(\hat{P}^1 \), starting at \(\hat{u} = (u, 0) \) and ending at \((u, i) \). Since it can be computed by Dijkstra’s algorithm, \(\hat{L}(\hat{z}) \) is not over than weight of any other path in \(\hat{P}^1 \), running from \(\hat{u} = (u, 0) \) to \((u, i) \).
By the construction of the path \(\hat{z} \) and according to (5), \(L(z) = \hat{L}(\hat{z}) \). Now, in the polyhedron \(P \), let consider another cycle \(z' \) containing the vertex \(u \) and having the index \(J(z') = i \). According to proposition 1, \(\left[z' \right] = [x] \) in \(H_1(P) \). Since \(p: \hat{P} \to P \) is a covering, there exists the unique path \(\hat{z}' \) in \(\hat{P} \), that covers \(z' \) and starts at the vertex \(\hat{u} = (u,0) \). At the same time, by statements 1 and 3 the end points of these paths \(\hat{z} \) and \(\hat{z}' \) coincide. But then according to the above proof, \(L(z) = \hat{L}(\hat{z}) \leq \hat{L}(\hat{z}') = L(z') \).

ALGORITHM 3. Searching for the minimal cycle from fixed homology class.

Input:
1) list \(V(P) \) of vertices for polyhedron \(P \);
2) lists \(U(v, P) \) of vertices incident to \(v \) for all vertices \(v \in V(P) \);
3) simple basis cycles \(z_{n-1}^1, z_{n-1}^2, \ldots, z_{n-1}^r \) of homology group \(H_{n-1}(P) \);
4) lists \(V(z_{n-1}^1), \ldots, V(z_{n-1}^r) \) of vertices from cycles \(z_{n-1}^1, \ldots, z_{n-1}^r \) respectively;
5) index function \(J: C_1(P) \to \mathbb{Z}_2 \) relative to basis \([z_{n-1}^1], \ldots, [z_{n-1}^r] \) of group \(H_{n-1}(P) \);
6) weight function \(L: C_1(P) \to \mathbb{R} \);
7) cycle \(x \in Z_1(P) \).

Output:
1-cycle \(z \in Z_1(P) \).

Algorithm Description.

Step 1. Set \(Z := \emptyset \).

Step 2. Determine the vector \(i = J(x) \).

Step 3. If \(i = 0 \), then set \(z = 0 \) and go to step 7.

Step 4. Find a number \(k \in \{1, \ldots, r\} \) such that coordinate \(i^k \) of the vector \(i \) is equal 1.

Step 5. For each vertex \(v \in V(z_{n-1}^k) \) execute steps 5.1 – 5.3.

Step 5.1. Using algorithm 2 we find containing \(v \) cycle \(z_v \in Z_1(P) \) with index \(J(z_v) = i \) having minimal weight \(L(z_v) \) in set of all cycles with the same properties.

Step 5.2. Add the cycle \(z_v \) into the list \(Z \).

Step 5.3. Take the next vertex \(v \in V(z_{n-1}^k) \).

Step 6. Choose the cycle \(z \in Z \) such that \(\bar{L}(z) = \min_{z' \in Z} L(z') \).

Step 7. Quit.

End of algorithm.
Theorem 3. Let \(z \) be the cycle found by the algorithm. Then

- \(z \sim x \);
- \(L(z) = \min_{y \in [x]} L(y) \).

Proof. First, if \(i = 0 \), then according to proposition, cycle \(x \) is homologous to zero. At the same time we assume in step 3 that \(z = 0 \). According to \(L(0) = 0 \). Thus, in this case \(z \sim x \) and \(L(z) = \min_{y \in [x]} L(y) \).

Further, let \(i \neq 0 \). Then according to step 4 \(i^k = 1 \) for \(k \in \{1, \ldots, r\} \).

Let now consider an arbitrary element \(z_v \) in the list \(Z \). It is chosen in step 5, and according to this step \(J(z_v) = i = J(x) \). According to proposition, it follows that \(z_v \sim x \). Since \(z = z_v \) for some \(v \in V(z_n) \) then \(z \sim x \) too.

Let assume that some one-dimensional cycle \(y \) of the polyhedron \(P \) belongs to the class \([x] \). Then \(J(y) = J(x) = i \). Hence, \(\text{Ind}([y],[z_n^{-1}]) = J^k(y) = 1 \), and therefore the cycles \(y \) and \(z_n^{-1} \) have at least one common vertex \(u \in V(z_n^{-1}) \). In this case, according to the selection of cycle \(z_u \) in step 5.1 of algorithm, \(L(z_u) \leq L(y) \). This implies according to step 6, that \(L(z) \leq L(z_u) \leq L(y) \).

References

[1] A. V. Aho, J. E. Hopcroft, J. D. Ulman, Data Structure and Algorithms, Addison-Wesley, Boston, 1983.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, The MIT Press/McGraw-Hill, 1990.

[3] H. Seifert, W. Threlfall, Lenrbuch der Topologie, Teubner, Leipzig, 1934.

[4] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

[5] G. Vegter, C. K. Yap, Computational Complexity of Combinatorial Surfaces, Proc. 6th ACM Symp. on Computational Geometry, Berkeley, CA, 1990, pp. 102 – 111.

[6] E. I. Yakovlev, P. A. Gordienko, Fast algorithms for computing of homology groups and their bases, Proc. VII International Seminar "Discrete Mathematics and its Applications", MSU, Moscow, 2001, pp. 284 – 287 (Rus).