SOME QUESTIONS ON SUBGROUPS OF 3-DIMENSIONAL POINCARÉ DUALITY GROUPS

J.A. HILLMAN

Abstract. Poincaré duality complexes model the homotopy types of closed manifolds. In the lowest dimensions the correspondence is precise: every connected PD_n-complex is homotopy equivalent to S^1 or to a closed surface, when $n = 1$ or 2. Every PD_3-complex has an essentially unique factorization as a connected sum of indecomposables, and these are either aspherical or have virtually free fundamental group. There are many examples of the latter type which are not homotopy equivalent to 3-manifolds, but the possible groups are largely known. However the question of whether every aspherical PD_3-complex is homotopy equivalent to a 3-manifold remains open.

We shall outline the work which lead to this reduction to the aspherical case, mention briefly remaining problems in connection with indecomposable virtually free fundamental groups, and consider how we might show that PD_3-groups are 3-manifold groups. We then state a number of open questions on 3-dimensional Poincaré duality groups and their subgroups, motivated by considerations from 3-manifold topology.

The first half of this article corresponds to my talk at the Luminy conference Structure of 3-manifold groups (26 February – 2 March, 2018). When I was first contacted about the conference, it was suggested that I should give an expository talk on PD_3-groups and related open problems. Wall gave a comprehensive survey of Poincaré duality in dimension 3 at the CassonFest in 2004, in which he considered the splitting of PD_3-complexes as connected sums of aspherical complexes and complexes with virtually free fundamental group, and the JSJ decomposition of PD_3-groups along $\mathbb{Z}/2$ subgroups. I have concentrated on the work done since then, mostly on PD_3-complexes with virtually free fundamental group, before considering possible approaches to showing that aspherical PD_3-complexes might all be homotopy equivalent to closed 3-manifolds.

The second half is an annotated list of questions about PD_3-groups and their subgroups, with relevant supporting evidence, mostly deriving from known results for 3-manifold groups. This began as an aide-memoire thirty years ago, and was put on the arXiv in 2016. The questions are straightforward, but have largely resisted answers, and suggest the limitations of our present understanding.

1. POINCARÉ DUALITY COMPLEXES

Poincaré duality complexes were introduced by Wall to model the homotopy types of closed manifolds [91].

Let X be a connected finite CW complex with fundamental group π, and let $\Lambda = \mathbb{Z}[\pi]$ be the integral group ring, with its canonical involution determined by
inversion: \(g \mapsto g^{-1} \). Let \(C_*(X; \Lambda) \) be the cellular chain complex of the universal cover \(\tilde{X} \), considered as a complex of finitely generated free left modules over \(\Lambda \). Taking the \(\Lambda \)-linear dual modules and using the canonical involution of \(\Lambda \) to swap right and left \(\Lambda \)-module structures gives a cochain complex \(C^*(X; \Lambda) \) with
\[
C^q(X; \Lambda) = \text{Hom}_\Lambda(C_q(X; \Lambda), \Lambda).
\]
Then \(X \) is an orientable (finite) PD\(_n\)-complex if there is a fundamental class \([X] \in H_n(X; \mathbb{Z})\) such that slant product with a locally-finite 3-chain in \(C_3(\tilde{X}; \mathbb{Z}) \) with image \([X]\) induces a chain homotopy equivalence
\[
- \cap [X] : C^{n-3}(X; \Lambda) \to C_*(X; \Lambda).
\]
This definition can be elaborated in various ways, firstly to allow for non-orientable analogues, secondly to consider pairs (corresponding to manifolds with boundary), and thirdly to weaken the finiteness conditions. We shall focus on the orientable case, for simplicity, but PD\(_3\)-pairs arise naturally even when the primary interest is in the absolute case. (Examples of the third type may arise as infinite cyclic covers of manifolds.)

Wall showed that every PD\(_n\)-complex is homotopy equivalent to an \(n \)-dimensional complex, and in all dimensions except \(n = 3 \) we may assume that there is a single \(n \)-cell. Moreover, this top cell is essentially unique, and so there is a well-defined connected sum, for oriented PD\(_n\)-complexes. When \(n = 3 \) we may write \(X \) as a union \(X = X' \cup e^3 \), where \(c.d.X' \leq 2 \). (Thus the exceptional case relates to the Eilenberg-Ganea Conjecture.)

Closed PL \(n \)-manifolds are finite PD\(_n\)-complexes, but there are simply connected PD\(_n\)-complexes which are not homotopy equivalent to manifolds, in every dimension \(n \geq 4 \).

\section{2. Poincaré Duality Groups}

The notion of Poincaré duality group of dimension \(n \) (or PD\(_n\)-group, for short) is an algebraic analogue of the notion of aspherical \(n \)-manifold.

A finitely presentable group \(G \) is a PD\(_n\)-group in the sense of Johnson and Wall if \(K(G, 1) \) is homotopy equivalent to a PD\(_n\)-complex \cite{54}. Bieri and Eckmann gave an alternative purely algebraic formulation: a group \(G \) is a PD\(_n\)-group if the augmentation \(\mathbb{Z}[G] \)-module \(\mathbb{Z} \) has a finite projective resolution, \(c.d.G = n \), \(H^i(G; \mathbb{Z}[G]) = 0 \) for \(i < n \) and \(H^n(G; \mathbb{Z}[G]) \) is infinite cyclic as an abelian group \cite{7}. The right action of \(G \) on this group determines the orientation character \(w_1(G) : G \to \mathbb{Z}^\times \). The group \(G \) is orientable if \(H^n(G; \mathbb{Z}[G]) \) is the augmentation module (i.e., if \(w_1(G) \) is the trivial homomorphism).

PD\(_n\)-groups are FP, and so are finitely generated, but there examples which are not finitely presentable, in every dimension \(n \geq 4 \) \cite{22}. Whether there are PD\(_3\)-groups which are not finitely presentable remains unknown. (The case \(n = 3 \) is critical; there are examples of PD\(_n\)-groups with all sorts of bad behaviour when \(n > 3 \). See \cite{22} and the references there.)

It is still an open question whether every finitely presentable PD\(_n\)-group is the fundamental group of a closed \(n \)-manifold. (This is one aspect of the circle of ideas around the Novikov Conjecture.)

If we define a PD\(_n\)-space to be a space homotopy equivalent to a CW-complex \(X \) and such that \(C_*(X; \Lambda) \) is chain homotopy equivalent to a finite complex of
3. LOW DIMENSIONS

When \(n = 1 \) or 2 the modelling of \(n \)-manifolds by \(PD_n \)-complexes is precise: the only such complexes are homotopy equivalent to the circle or to a closed surface, and two such manifolds are homeomorphic if and only if their groups are isomorphic.

It is easy to see that a \(PD_1 \)-complex \(X \) must be aspherical, and \(\pi = \pi_1(X) \) has two ends and \(c.d.\pi = 1 \). Since \(\pi \) is free of finite rank \(r > 0 \) and \(H_1(\pi; \mathbb{Z}) \) is cyclic (or since \(\pi \) is torsion-free and has two ends), \(\pi \cong \mathbb{Z} \) and \(X \simeq S^1 \). (There are elementary arguments do not require cohomological characterizations of free groups or of the number of ends.)

Every \(PD_2 \)-complex with finite fundamental group is homotopy equivalent to either \(S^2 \) or the real projective plane \(\mathbb{R}P^2 \). All others are aspherical. Eckmann and Müller showed that every \(PD_2 \)-complex with \(\chi(X) \leq 0 \) is homotopy equivalent to a closed surface, by first proving the corresponding result for \(PD_2 \)-pairs with nonempty boundary and then showing that every \(PD_2 \)-group splits over a copy of \(\mathbb{Z} \). [28]. Shortly afterwards, Eckmann and Linnell showed that there is no aspherical \(PD_2 \)-complex \(X \) with \(\chi(X) > 0 \) [27]. Much later Bowditch used ideas from geometric group theory to prove the stronger result that if \(G \) is a finitely generated group such that \(H^2(G; \mathbb{F}[G]) \) has an \(\mathbb{F}[G] \)-submodule of finite dimension over \(\mathbb{F} \), then \(G \) is commensurable with a surface group (i.e., the fundamental group of an aspherical closed surface) [14]. One might hope for a topological argument, based on improving a degree-1 map \(f : M \to X \) with domain a closed surface.

The first non-manifold example occurs in dimension \(n = 3 \). Swan showed that every finite group of cohomological period 4 acts freely on a finite-dimensional cell complex homotopy equivalent to \(S^3 \). The quotient complexes are \(PD_3 \)-complexes. (Swan’s result predates the notion of \(PD \)-complex!) However, if the group has non-central elements of order 2, it cannot act freely on \(S^3 \), and so is not a 3-manifold group. In particular, the symmetric group \(S_3 \) has cohomological period 4, but is not a 3-manifold group. (By the much later work of Perelman, the finite 3-manifold groups are the fixed-point free finite subgroups of \(SO(4) \).)

In these low dimensions \(n \leq 3 \) it suffices to show that there is some chain homotopy equivalence \(C^{n-*}(X; \Lambda) \simeq C_*(X; \Lambda) \); that it is given by cap product with a fundamental class follows.
The fundamental triple of a \(PD_3\)-complex \(X\) is \((\pi, w, c_X, [X])\), where \(\pi = \pi_1(X)\), \(w = w_1(X)\) is the orientation character, \(c_X : X \to K(\pi, 1)\) is the classifying map and \([X]\) is the fundamental class in \(H_3(X; \mathbb{Z}w)\). There is an obvious notion of isomorphism for such triples. (Note, however, that in the non-orientable case it is only meaningful to specify the sign of \([X]\) if we work with pointed spaces.) Hendriks showed that this is a complete homotopy invariant for such complexes.

Theorem. \(1\) Two \(PD_3\)-complexes are (orientably) homotopy equivalent if and only if their fundamental triples are isomorphic.

Turaev has characterized the possible triples corresponding to a given finitely presentable group and orientation character (the “Realization Theorem”). In particular, he gave the following criterion.

Theorem. \(90\) A finitely presentable group \(\pi\) is the fundamental group of an orientable finite \(PD_3\)-complex if and only if \(I_{\pi} \oplus \Lambda^r \cong J_{\pi} \oplus \Lambda^s\) for some \(r, s \geq 0\), where \(I_{\pi}\) is the augmentation ideal of \(\pi\), with finite rectangular presentation matrix \(M\), and \(J_{\pi} = \text{Coker}(M)\).

C.B. Thomas gave an alternative set of invariants, for orientable 3-manifolds, based on the Postnikov approach \(87\). (The present formulation was introduced by Swarup, for orientable 3-manifolds, in \(85\).)

When \(\pi\) is finite, \(X\) is orientable and \(X \simeq S^3\), and \(X\) is determined by \(\pi\) and the first nontrivial \(k\)-invariant \(\kappa_2(X) \in H^4(\pi; \mathbb{Z})\). Let \(\beta : H^3(\pi; \mathbb{Q}/\mathbb{Z}) \cong H^3(\pi; \mathbb{Z})\) be the Bockstein isomorphism. Then \(c_X, [X]\) and \(\kappa_2(X)\) generate isomorphic cyclic groups, and are paired by the equation \(\beta^{-1}(\kappa_2(X))(c_X, [X]) = \frac{1}{2\pi}\).

When \(\pi\) is infinite, \(\pi_2(X) \cong H^4(\pi; \mathbb{Z}[\pi])\) and \(X\) is determined by the triple \((\pi, w, \kappa_1(X))\), where \(\kappa_1(X) \in H^3(\pi; \pi_2(X))\) is now the first nontrivial \(k\)-invariant. In this case the connection between the two sets of invariants is not so clear.

The work of Turaev has been extended to the case of \(PD_3\)-pairs with aspherical boundary components by Bleile \(11\). The relative version of the Realization Theorem proven there requires also that the boundary components be \(\pi_1\)-injective. The Loop Theorem of Crisp \(21\) should also be noted here.

The homotopy type of a higher dimensional \(PD_n\)-complex \(X\) is determined by the triple \((P_{n-2}(X), w, f_X, [X])\), where \(f_X : X \to P_{n-2}(X)\) is the Postnikov \((n-2)\)-stage and \(w = w_1(X)\) \(2\). If \(X\) is \((n-2)\)-connected then \(P_{n-2}(X) \simeq K(\pi, 1)\), so this triple is a direct analogue of Hendriks’ invariant.

4. Reduction to Indecomposables

In his foundational 1967 paper Wall asked whether \(PD_3\)-complexes behaved like 3-manifolds with regards to connected sum \(91\). Consider the following conditions

1. \(X\) is a non-trivial connected sum;
2. \(\pi = \pi_1(X)\) is a non-trivial free product;
3. either \(\pi\) has infinitely many ends, or \(\pi \cong D_{\infty} = \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}\).

Clearly \((1) \Rightarrow (2) \Rightarrow (3)\). Wall asked whether either of these implications could be reversed. Turaev used his Realization Theorem to show that \((1) \Leftrightarrow (2)\) (the “Splitting Theorem”).

Theorem. \(90\) A \(PD_3\)-complex \(X\) is indecomposable with respect to connected sum if and only if \(\pi = \pi_1(X)\) is indecomposable with respect to free product.
The further analysis (for π infinite) is based on the following three observations.

1. $\pi_2(X) \cong \overline{H^1(\pi; \Lambda)}$, by Poincaré duality;

2. Since π is FP_2, we have $\pi \cong \pi\mathcal{G}$, where (\mathcal{G}, Γ) is a finite graph of finitely generated groups in which each vertex group has at most one end and each edge group is finite, by Theorem VI.6.3 of [23]. Hence $H^1(\pi; \Lambda)$ has a “Chiswell-Mayer-Vietoris” presentation as a right Λ-module:

$$0 \to \oplus_{v \in V_f} \mathbb{Z}[G_v \backslash \pi] \xrightarrow{\Delta} \oplus_{e \in E} \mathbb{Z}[G_e \backslash \pi] \to H^1(\pi; \Lambda) \to 0.$$

Here V_f is the set of vertices with finite vertex groups, E is the set of edges, and the image of a coset $G_v g$ in π under Δ is

$$\Delta(G_v g) = \Sigma_{v(e)=v}(\Sigma_{G_e h \subset G_v} G_e h g) - \Sigma_{t(e)=v}(\Sigma_{G_e h \subset G_v} G_e h g),$$

where the outer sums are over edges e and the inner sums are over cosets of G_e in G_v.

3. Since \tilde{X} has only one nontrivial homology group in positive degrees,

$$H_i(C; \pi_2(X)) \cong H_{i+3}(C; \mathbb{Z}),$$

for any subgroup C of π and all $i \geq 1$, by a simple devissage.

These were first used together to show that if π is infinite and has a nontrivial finite normal subgroup then $X \simeq S^1 \times \mathbb{R}P^2$ [44].

Crisp added an ingenious combinatorial argument to give a substantial partial answer to the second part of Wall’s question.

Theorem. [20] Let X be an indecomposable orientable PD_3-complex. If $\pi = \pi_1(X)$ is not virtually free then X is aspherical.

His arguments strengthened the result on finite normal subgroups.

Theorem. If $g \neq 1 \in \pi$ has finite order then either $w(g) = 1$ and the centralizer $C_\pi(g)$ is finite or $g^2 = 1$, $w(g) = -1$ and $C_\pi(g)$ has two ends.

If $C_\pi(g)$ has two ends it is in fact $\langle g \rangle \times \mathbb{Z}$, by Corollary 7 of [51].

The Realization Theorem (in the form given earlier), Crisp’s result on centralizers and the “Normalizer Condition” (the fact that proper subgroups of finite nilpotent groups are properly contained in their normalizers) lead to an almost complete characterization of the class of indecomposable, virtually free groups which are fundamental groups of orientable PD_3-complexes.

Theorem. [50] If a finitely generated virtually free group π is the fundamental group of an indecomposable orientable PD_3-complex X then $\pi = \pi\mathcal{G}$ where (\mathcal{G}, Γ) is a finite graph of finite groups such that

1. the underlying graph Γ is a linear tree;
2. all vertex groups have cohomological period dividing 4, and at most one is not dihedral;
3. all edge groups are nontrivial, and at most one has order > 2.

If an edge group has order > 2 then it is $\mathbb{Z}/6\mathbb{Z}$, and one of the adjacent vertex groups is $B \times \mathbb{Z}/2\mathbb{Z}$ with $B = T_1^*$ or I^*. Every such group π with all edge groups $\mathbb{Z}/2\mathbb{Z}$ is the fundamental group of such a complex.
The Realization Theorem is used to exclude subgroups of period > 4, as well as to support the final assertion. The first infinite example \([17]\) is the group \(S_3 \ast \mathbb{Z}/2\mathbb{Z} \ast S_3\) with presentation
\[
\langle a, b, c \mid cac = a^2, \ cbc = b^2, \ c^2 = 1 \rangle.
\]

We shall give an indication of the style of arguments in the following lemma.

Lemma. Let \(X\) and \(\pi\) be as in the theorem. If \(S \leq \pi\) is a \(p\)-group, for some prime \(p\), then \(S\) is cyclic or \(S \cong \mathbb{Q}(2^k)\) for some \(k \geq 3\).

Proof. Since \(\pi\) is virtually free it has a free normal subgroup \(F\) of finite index. Since \(FS\) has finite index in \(\pi\), the corresponding covering space \(X/F\) is again an orientable \(PD_3\)-complex. After replacing \(X\) by an indecomposable factor of \(X/F\), if necessary, we may assume that \(\pi = \pi G\), where \((G, \Gamma)\) is a finite graph of finite \(p\)-groups. We may also assume that if an edge \(e\) has distinct vertices \(v, w\) then \(N_e(G_e)\) is infinite, by the Normalizer Condition and basic facts about free products with amalgamation. Since \(G_e\) is finite, \(C_{\pi}(G_e)\) is also infinite, which contradicts Crisp's result on centralizers. Hence there is only one vertex. Similarly, there are no edges, and so \(\pi = S\) is finite. Hence \(\tilde{X} \simeq S^3\) and \(S\) is as described. \(\square\)

Are there examples with edge group \(\mathbb{Z}/6\mathbb{Z}\)? Are there examples which “arise naturally”, perhaps as infinite cyclic covers of closed 4-manifolds? This is so for the generalized quaternionic group \(\mathbb{Q}(24, 13, 1)\) and for certain other finite groups which have cohomological period 4 but are not 3-manifold groups \([38]\). \[Note also that if \(M\) is a closed 4-manifold with \(\chi(M) = 0\) and \(f : \pi_1(M) \to \mathbb{Z}\) is an epimorphism with finitely generated kernel \(\kappa\) then the associated infinite cyclic covering space \(M_\kappa\) is a \(PD_3\)-space, by Theorem 4.5 of \([41]\).\]

In the non-orientable case we have the following result.

Theorem. \([51]\) Let \(P\) be an indecomposable non-orientable \(PD_3\)-complex. Then \(\text{Ker}(\omega_1(P))\) is torsion-free. If it is free then it has rank 1. \(\square\)

In particular, if \(\pi_1(P)\) is not virtually free then \(\pi_1(P) \cong \pi G,\) where each vertex group of \((G, \Gamma)\) has one end, and each edge group has order 2. The orientation-preserving subgroups of the vertex groups are then \(PD_3\)-groups. Examples of such \(PD_3\)-complexes which are 3-manifolds can be assembled from quotients of punctured aspherical 3-manifolds by free involutions. However, it is not yet known whether an indecomposable \(PD_3\)-complex with orientation cover homotopy equivalent to a 3-manifold must be homotopy equivalent to a 3-manifold. On the other hand, if \(\pi_1(P)\) is virtually free then \(P \simeq RP^2 \times S^1\) or \(S^2 \times S^1\) \([50]\).

The arguments of this section apply with little change to the study of \(PD_n\)-complexes with \((n - 2)\)-connected universal cover. When \(n\) is odd, the results are also similar. However when \(n\) is even they are in one sense weaker, in that it is not known whether the group must be virtually torsion-free, and another sense stronger, in that if \(\pi\) is indecomposable, virtually free and has no dihedral subgroups of order > 2 then either \(\pi\) has order ≤ 2 or it has two ends and its maximal finite subgroup have cohomology of period dividing \(n\). (See \([12]\).)

5. ASPHERICAL CASE

The work of Perelman implies that every homotopy equivalence between aspherical 3-manifolds is homotopic to a homeomorphism. It is natural to ask also whether
every PD_3-group is the fundamental group of an aspherical closed 3-manifold. An affirmative answer in general would suggest that a large part of the study of 3-manifolds may be reduced to algebra.

If G is a PD_3-group which has a subgroup isomorphic to $\pi_1(M)$ where M is an aspherical 3-manifold then G is itself a 3-manifold group. For M is either Haken, Seifert fibred or hyperbolic, by the Geometrization Theorem of Perelman and Thurston, and so we may apply [98], Section 63 of [97] or Mostow rigidity, respectively. Thus it is no loss of generality to assume that G is orientable.

It may also be convenient to assume also that G is coherent, and, in particular, finitely presentable. (No PD_3-group has $F(2) \times F(2)$ as a subgroup, which is some evidence that PD_3-groups might be coherent [69].)

The key approaches to this question seem to be through

1. splitting over proper subgroups – geometric group theory; or
2. homological algebra; or
3. topology.

Of course, there are overlaps between these. The fact that PD_2-groups are surface groups is one common ingredient.

(1). This approach has been most studied, particularly in the form of the Cannon Conjecture, and there is a good exposition based on JSJ decompositions of (finitely presentable) PD_3-groups and pairs of groups (as in [25]) in [92]. If one takes this approach it is natural to consider also the question of realizing PD_3-pairs of groups.

Splitting of PD_3-groups over proper subgroups was first considered by Thomas [88]. Kropholler showed that PD_n-groups with Max-c (the maximum condition on centralizers) have canonical splittings along codimension-1 poly-Z subgroups [64]. (When $n = 3$ such subgroups are \mathbb{Z}^2 or the Klein bottle group $\mathbb{Z} \ltimes \mathbb{Z}$.) Castel showed that all PD_3-groups have Max-c, and used [80] to give a JSJ decomposition for arbitrary PD_3-groups (i.e., not assuming finite presentability) [19].

[Kropholler and Roller have considered splittings of a PD_n-group G over subgroups which are PD_{n-1}-groups. If S is such a subgroup let $F_2[S] = Hom(F_2[S], F_2)$. Then Poincaré duality (for each of G and S) and Shapiro’s Lemma together give $H^1(G; F_2[S] \otimes F_2[S]) = F_2$, and G splits over a subgroup commensurable with S if and only if the restriction to $H^1(S; F_2[S] \otimes F_2[S]) = F_2(G)$ is 0. See [67, 68, 69].]

In the simplest cases, G is either solvable, of Seifert type or atoroidal (i.e., has no abelian subgroup of rank > 1). The solvable case is easy, and the Seifert case was settled by Bowditch [14]. (If G/G' is infinite, this case follows from the earlier work of Eckmann, Müller and Linnell [42].) The most studied aspect of the atoroidal case is the Cannon Conjecture, that an atoroidal, Gromov hyperbolic PD_3-group should be a cocompact lattice in $PSL(2, \mathbb{C})$. (In [5] it is shown that a Gromov hyperbolic PD_3-group has boundary S^2, and in [58] it is shown that an atoroidal PD_3-group which acts geometrically on a locally compact $CAT(0)$ space is Gromov hyperbolic.)

(2). The homological approach perhaps has the least prospect of success, as it starts from the bare definition of a PD_3-group, and needs something else, to connect with topology. However it has proven useful in the subsidiary task of finding purely algebraic proofs for algebraic properties of 3-manifold groups, an activity that I have pursued for some time. One can also show that if G has sufficiently nice subgroups then it is a 3-manifold group. For instance, if G has a nontrivial FP_2
One relatively new ingredient is the Algebraic Core Theorem of Kapovich and Kleinerman, which ensures that this is so if G has an FP_2 subgroup with one end. If H is a surface subgroup then either H has finite index in its commensurator $Comm_G(H)$ or H has a subgroup K of finite index such that $[G : N_G(K)]$ is finite (and then $Comm_G(H) = Comm_G(K) \supseteq N_G(K)$ has finite index in G). More generally, if H is an FP_2 subgroup then either G is virtually the group of a mapping torus or H has finite index in a subgroup \hat{H} which is its own normalizer in G. Does G then split over H?

However it remains possible that there may be PD_3-groups which are simple groups, or even Tarski monsters, whose only proper subgroups are infinite cyclic. It is then not at all clear what to do. [Once again, the Davis construction may be used to give PD_n-groups containing Tarski monsters, for all $n > 3$.]

Let $L = \Pi_{i \leq m} L_i$ be a link in a 3-manifold M and let $n(L) = \Pi_{i \leq m} n(L_i)$ be an open regular neighbourhood of L in M. We shall say that L admits a drastic surgery if there is a family of slopes $\gamma_i \subset \partial n(L_i)$ such that the normal closure of $\{[\gamma_1], \ldots, [\gamma_n]\}$ in $\pi_1(M - n(L))$ meets the image of each peripheral subgroup $\pi_1(\partial n(L_i))$ in a subgroup of finite index.

If X is an aspherical orientable PD_3-complex and $f : M \to X$ is a degree-1 map such that $\ker(f_*)$ is represented by a link L which admits a drastic surgery then after the surgery we may assume that $\ker(f_*)$ is normally generated by finitely many elements of finite order. Let $M = \#_{i=1}^r M_i$ be the decomposition into irreducibles. Since X is aspherical the map f extends to a map from $f_\nu : \bigvee_{i=1}^r M_i \to X$. Elementary considerations then show that f_ν restricts to a homotopy equivalence from one of the aspherical summands of M to X.

Unfortunately there are knots which do not admit drastic surgeries, but we do have considerable latitude in our choice of link L representing $\ker(f_*).$ In particular, we may modify L by a link homotopy, and so the key question may be:
is every knot $K \subset M$ homotopic to one which admits a drastic surgery?

The existence of PD_3-complexes which are not homotopy equivalent to 3-manifolds shows that we cannot expect a stronger result, in which “meets the image . . . finite index” is replaced by “contains . . . $\pi_1(\partial n(L_i))$” in the definition of drastic surgery. Can we combine Dehn surgery with passage to finite covers and varying L by link-homotopy?

[There is a parallel issue in the PD_2-case. Here the strategy can be justified ex post facto: if a degree-1 map $f : M \to N$ of closed orientable surfaces is not a homotopy equivalence then there is a non-separating simple closed curve $\gamma \subset M$ with image in the kernel of $\pi_1(f)$ [23]. Surgery on γ replaces f by a new degree-1 map $f' : M' \to N$, where $\chi(M') = \chi(M) + 2$. After finitely many iterations we obtain a degree-1 map $\hat{f} : \hat{M} \to N$, with $\chi(\hat{M}) = \chi(N)$. Such a map must be a homotopy equivalence. However it seems that Edmonds’ argument requires the codomain N to also be a 2-manifold, which is what we want to prove! Can we avoid a vicious circle?]

On a more speculative level, can we use stabilization with products to bring the methods of high dimensional topology (as in the Novikov Conjecture) to bear? Is $G \times Z^r$ realizable by an aspherical $(r + 3)$-manifold for some $r > 0$?

Among the most promising new ideas for studying PD_3-groups since Wall’s survey are the JSJ decomposition for arbitrary PD_3-groups [19], based on the work of Scott and Swarup, the Algebraic Core Theorem, based on coarse geometry [57], and the use of profinite and pro-p completions, particular in connection with the Tits alternative, as in [13] and [61].

6. Questions on PD_3-groups and their subgroups: preamble

In the following sections we shall present a number of questions on subgroups of PD_3-groups, motivated by results conjectured or already established geometrically for 3-manifold groups. The underlying question is whether every PD_3-group G is the fundamental group of some aspherical closed 3-manifold, and has been discussed above. The following questions represent possibly simpler consequences. (If we assume G is coherent and has a finite $K(G,1)$-complex, as is the case for all 3-manifold groups, a number of these questions have clear answers.)

Prompted by the main result of [57], we define an open PD_n-group to be a countable group G of cohomological dimension $\leq n - 1$ such that every nontrivial FP subgroup H with $H^s(H; \mathbb{Z}[H]) = 0$ for $s < n - 1$ is the ambient group of a PD_n-pair (H, T), for some set of monomorphisms T. Every subgroup of infinite index in a PD_3-group G is an open PD_3-group in our sense, by Theorem 1.3 of [57]. (The analogies are precise if $n = 2$, but these definitions are too broad when $n \geq 4$. We shall consider only the case $n = 3$.)

The corresponding questions for subgroups of open PD_3-groups should be considered with these. Any group with a finite 2-dimensional Eilenberg – Mac Lane complex is the fundamental group of a compact aspherical 4-manifold with boundary, obtained by attaching 1- and 2-handles to D^4. (Conjecturally such groups are exactly the finitely presentable groups of cohomological dimension 2). On applying the reflection group trick of Davis to the boundary we see that each such group embeds in a PD_4-group [22]. Thus the case considered here is critical.

We assume throughout that G is an orientable PD_3-group. The normalizer and centralizer of a subgroup H of G shall be denoted by $N_G(H)$ and $C_G(H)$,
respectively. We shall also let \(\zeta G = C_G(G) \), \(G' \) and \(G^{(w)} = \cap G^{(n)} \) denote the centre, the commutator subgroup and the intersection of the terms of the derived series of \(G \), respectively. A group has a given property \textit{virtually} if it has a subgroup of finite index with that property.

Since we are interested in \(PD_3 \)-groups, we shall use \(3 \)-manifold group henceforth to mean fundamental group of an aspherical closed 3-manifold.

7. The Group

If \(M = K(G, 1) \) is a closed 3-manifold we may assume it has one 0-cell and one 3-cell, and equal numbers of 1- and 2-cells. Hence \(G \) has a finite presentation of deficiency 0; this is clearly best possible, since \(\beta_1(G; \mathbb{F}_2) = \beta_2(G; \mathbb{F}_2) \). Moreover \(G \) is FF, i.e., the augmentation module \(\mathbb{Z} \) has a finite free \(\mathbb{Z}[G] \)-resolution, while \(K_0(\mathbb{Z}[G]) = Wh(G) = 0 \) and \(M \cong \mathbb{R}^3 \), so \(G \) is 1-connected at \(\infty \).

In general, the augmentation \(\mathbb{Z}[G] \)-module \(\mathbb{Z} \) has a finite projective resolution, so \(G \) is almost finitely presentable (\(FP_2 \)), and there is a 3-dimensional \(K(G, 1) \) complex. The \(K(G, 1) \)-complex is finitely dominated, and hence a Poincaré complex in the sense of [91], if and only if \(G \) is finitely presentable.

An \(FP_2 \) group \(G \) such that \(H^3(G; \mathbb{Z}[G]) \cong \mathbb{Z} \) is virtually a \(PD_3 \)-group [14].

1. Is \(G \) finitely presentable?
2. If \(G \) is finitely presentable does it have deficiency 0?
3. Is \(G \) of type \(FF \)?
4. Is \(K_0(\mathbb{Z}[G]) = 0 \)? Is \(Wh(G) = 0 \)?
5. Is \(G \) 1-connected at \(\infty \)?
6. Is \(K(G, 1) \) homotopy equivalent to a finite complex?
7. If \(G \) is an \(FP_3 \) group such that \(H^3(G; \mathbb{Z}[G]) \cong \mathbb{Z} \) is \(G \) virtually a \(PD_3 \)-group?

If (7) is true then centres of 2-knot groups are finitely generated.

8. Subgroups in General

Since \(G \) has cohomological dimension 3 it has no nontrivial finite subgroups. Any nontrivial element \(g \) generates an infinite cyclic subgroup \(\langle g \rangle \); it is not known whether there need be any other proper subgroups. If a subgroup \(H \) of \(G \) has finite index then it is also a \(PD_3 \)-group. The cases when \([G : H] \) is infinite are of more interest, and then either \(c.d. H = 2 \) or \(H \) is free, by [82] and [83]. If there is a finitely generated (respectively, \(FP_2 \)) subgroup of cohomological dimension 2 there is one such which has one end (i.e., which is indecomposable with respect to free product). A solvable subgroup \(S \) of Hirsch length \(h(S) \geq 2 \) must be finitely presentable, since either \([G : S] \) is finite or \(c.d. S = 2 = h(S) \) [34]. (In particular, abelian subgroups of rank \(> 1 \) are finitely generated.)

3-manifold groups are \textit{coherent}: finitely generated subgroups are finitely presentable. In fact something stronger is true: if \(H \) is a finitely generated subgroup it is the fundamental group of a compact 3-manifold (possibly with boundary) [78]. We shall say that a group \(G \) is \textit{almost coherent} if every finitely generated subgroup
of G is FP_2. This usually suffices for homological arguments, and is implied by either coherence of the group or coherence of the group ring. (If π is the fundamental group of a graph manifold then the group ring $\mathbb{Z}[\pi]$ is coherent. The corresponding result for lattices in $PSL(2, \mathbb{C})$ is apparently not known.)

If G is a PD_3-group with a one-ended FP_2 subgroup H then there is a system of monomorphisms σ such that (H, σ) is a PD_3-pair [57]. Hence $\chi(H) \leq 0$. In particular, no PD_3-group has a subgroup $F \times F$ with F a noncyclic free group. (This was first proven in [69].) As such groups $F \times F$ have finitely generated subgroups which are not finitely related (cf. Section 8.2 of [6]), this may be regarded as weak evidence for coherence. (On the other hand, every surface group σ with $\chi(\sigma) < 0$ has such a subgroup F and so $F \times F$ is a subgroup of $\sigma \times \sigma$. Thus PD_4-groups with $n \geq 4$ need not be coherent.)

Let M be a closed orientable 3-manifold. Then M is Haken, Seifert fibred or hyperbolic, by the Geometrization Theorem. With [55] it follows that if $\pi_1(M)$ is infinite then it has a PD_2-subgroup. A transversality argument implies that every element of $H_2(M; \mathbb{Z}) \cong H^1(M; \mathbb{Z}) \cong [M; S^1]$ is represented by an embedded submanifold. If M is aspherical it follows that $H_2(\pi_1(M); \mathbb{Z})$ is generated by elements represented by surface subgroups of $\pi_1(M)$.

If G/G' is infinite then G is an HNN extension with finitely generated base and associated subgroups [10], and so has a finitely generated subgroup of cohomological dimension 2. If, moreover, G is almost coherent then it has a PD_2-subgroup [57].

If H is a subgroup of G which is a PD_2-group then H has finite index in a maximal such subgroup. This is clear if $\chi(H) < 0$, by the multiplicativity of χ in the passage to subgroups of finite index. If $\chi(H) = 0$ we argue instead that an infinite increasing union of copies of \mathbb{Z}^2 must have cohomological dimension 3.

9. ASCENDING SUBGROUPS

If M is a closed aspherical 3-manifold which is not a graph manifold then M has a finite covering space which fibres over the circle [11, 76]. Hence indecomposable finitely generated subgroups of infinite index in such groups are (finitely presentable) semidirect products $F \times \mathbb{Z}$, with F a free group. Such groups are HNN extensions with finitely generated free base, and associated subgroups free factors of the base [31].

If N is an FP_2 ascending subgroup of G and $c.d.N = 2$ then it is a surface group and G has a subgroup of finite index which is a surface bundle group. If $c.d.N = 1$ then $N \cong \mathbb{Z}$ and either G is virtually poly-\mathbb{Z} or N is normal in G and
\[G : C_G(N) \leq 2 \] \[\text{[19].} \] In the latter case \(G \) is the group of a Seifert fibred 3-manifold \[\text{[14].} \] It is easy to find examples among normal subgroups of 3-manifold groups to show that finite generation of \(N \) is necessary for these results.

If \(N \) is finitely generated, normal and \[|G : N| = \infty \] then \(H^1(G/N; \mathbb{Z}[G/N]) \) is isomorphic to \(H^1(G; \mathbb{Z}[G/N]) \) and hence to \(H_2(G; \mathbb{Z}[G/N]) \cong H_2(N; \mathbb{Z}) \), by Poincaré duality. If \(G/N \) has two ends, then after passing to a subgroup of finite index, we may assume that \(G/N \cong \mathbb{Z} \). Shapiro’s lemma and Poincaré duality (for each of \(G \) and \(G/N \) together imply that \(\lim_{\to} H^2(N; M_i) = 0 \) for any direct system \(M_i \) with limit 0. (See Theorem 1.19 of \[\text{[41].} \]) Hence \(N \) is \(FP_2 \) by Brown’s criterion \[\text{[17].} \] and so is a surface group by the above result.

15. Is there a simple \(PD_3 \)-group?

16. Is \(G \) virtually representable onto \(\mathbb{Z} \)?

17. Must a finitely generated normal subgroup \(N \) be finitely presentable?

18. Suppose \(N \leq U \) are subgroups of \(G \) with \(U \) finitely generated and indecomposable, \(|G : U| \) infinite, \(N \) subnormal in \(G \) and \(N \) not cyclic. Is \(|G : N_G(U)| < \infty \)? (Cf. \[\text{[40].} \])

19. Let \(G \) be a \(PD_3 \)-group such that \(G' \) is free. Is \(G \) a semidirect product \(K \times \mathbb{Z} \) with \(K \) a \(PD_2 \)-group?

10. CENTRALIZERS, NORMALIZERS AND COMMENSURATORS

If \(G \) is a \(PD_3 \)-group with nontrivial centre then \(\langle G \rangle \) is finitely generated and \(G \) is the fundamental group of an aspherical Seifert fibred 3-manifold \[\text{[14].} \] (See also \[\text{[42].} \]) Since an elementary amenable group of finite cohomological dimension is virtually solvable \[\text{[52].} \] it follows also that either \(G \) is virtually poly-\(\mathbb{Z} \) or its maximal elementary amenable normal subgroup is cyclic.

Every strictly increasing sequence of centralizers \(C_0 < C_1 < \cdots < C_n = G \) in a \(PD_3 \)-group \(G \) has length \(n \) at most 4 \[\text{[49].} \] (The finiteness of such sequences in any \(PD_3 \)-group is due to Castel \[\text{[19].} \]) On the other hand, the 1-relator group with presentation \(\langle t, x \mid tx^2t^{-1} = x^3 \rangle \) has an infinite chain of centralizers, and hence so does the \(PD_4 \)-group obtained from it by the Davis construction \[\text{[66].} \]

If the sequence of centralizers \(C_1 \cong \mathbb{Z} < C_2 < C_3 < C_4 = G \) is strictly increasing then \(C_3 \) must be nonabelian. (See \[\text{[49].} \]) Hence it is \(FP_2 \) \[\text{[19].} \] and so either \(G \) is Seifert or \(c.d.C_3 = 2 \). In all cases it follows that \(C_2 \cong \mathbb{Z}^2 \). Equivalently, if \(G \) has a maximal abelian subgroup \(A \) which is not finitely generated then \(1 < A < G \) is the only sequence of centralizers containing \(A \).

If every abelian subgroup of \(G \) is finitely generated then the centralizer \(C_G(x) \) of any \(x \in G \) is finitely generated \[\text{[19].} \] It then follows that every centralizer in either \(\mathbb{Z} \), finitely generated and of cohomological dimension 2 or of index \(\leq 2 \) in \(G \) \[\text{[49].} \].

(Applying the Davis construction to the group with presentation \(\langle t, x \mid tx^2t^{-1} = x^3 \rangle \) gives a \(PD_4 \)-group with an abelian subgroup which is not finitely generated \[\text{[72].} \])

An element \(g \) is a root of \(x \) if \(x = g^n \) for some \(n \). All roots of \(x \) are in \(C_G(x) \). If \(C_G(x) \) is finitely generated then \(x \) is not infinitely divisible. For if \(c.d.C_G(x) = 1 \) then \(C_G(x) \cong \mathbb{Z} \); if \(c.d.C_G(x) = 2 \) then \(C_G(x)/\langle x \rangle \) is virtually free, by Theorem 8.4 of \[\text{[6];} \] and if \(c.d.C_G(x) = 3 \) then \(C_G(x)/\langle x \rangle \) is virtually a \(PD_2 \)-group \[\text{[14].} \] Conversely, if \(x \) is not infinitely divisible then \(C_G(x) \) is finitely generated \[\text{[19].} \]

If \(C_G(x) \) is nonabelian then it is \(FP_2 \), and is either of bounded Seifert type or has finite index in \(G \) \[\text{[19].} \] In the latter case either \[|G : C_G(x)| \leq 2 \] or \(G \) is virtually \(\mathbb{Z}^3 \), by Theorem 2 of \[\text{[49].} \]
If x is a nontrivial element of G then $[N_G(x):C_G(x)] \leq 2$ (since $\langle x \rangle \cong \mathbb{Z}$). If F is a finitely generated nonabelian free subgroup of G then $N_G(F)$ is finitely generated and $N_G(F)/F$ is finite or virtually \mathbb{Z} [49]. (See [79] for another argument in the 3-manifold case.) If H is an FP_2 subgroup which is a nontrivial free product but is not free then $[N_G(H):H] < \infty$ and $C_G(H) = 1$ [49].

If H is a one-ended FP_2 subgroup of infinite index in G then either $[G:N_G(H)]$ or $[N_G(H):H]$ is finite. (See Lemma 2.15 of [41]). More precisely, define an increasing sequence of subgroups $\{H_i| i \geq 0\}$ by $H_0 = H$ and $H_i = N_G(H_{i-1})$ for $i > 0$. Then $H = \bigcup H_i$ is FP_2 and either $c.d.H = 2$, H has one end and $N_G(H) = \hat{H}$, or H is a PD_3-group and G is virtually the group of a surface bundle, by Theorem 2.17 of [41]. In particular, if G has a subgroup H which is a surface group with $\chi(H) = 0$ (respectively, < 0) then either it has such a subgroup which is its own normalizer in G or G is virtually the group of a surface bundle.

The commensurator in G of a subgroup H is the subgroup

$$Comm_G(H) = \{g \in G \mid [H : H \cap gHg^{-1}] < \infty \text{ and } [H : H \cap g^{-1}Hg] < \infty\}.$$

It clearly contains $N_G(H)$.

If $x \neq 1$ in G then the Baumslag-Solitar relation $tx^pt^{-1} = x^q$ implies that $p = \pm q$ [19]. It follows easily that $Comm_G(x) = \cup N_G(x^n)$. Since the chain of centralizers $C_G(x^n)$ is increasing and $[N_G(x^k) : C_G(x^k)] \leq 2$ for any k it follows that $Comm_G(x^n) = N_G(x^n)$ for some $n \geq 1$.

If H is a PD_2-group then Theorem 1.3 and Proposition 4.4 of [70] imply that either $[Comm_G(H) : H] < \infty$ or H is commensurable with a subgroup K such that $[G : N_G(K)] < \infty$, and so $[G : Comm_G(H)] < \infty$. This dichotomy is similar to the one for normalizers of FP_2 subgroups cited above. It can be shown that if $H \cong \mathbb{Z}^3$ then either $Comm_G(H) = N_G(H)$ or G is virtually \mathbb{Z}^3. However, the exceptional cases do occur. If $G = B_1$ is the flat 3-manifold group with presentation $\langle t,x,y \mid tx^p t^{-1} = x^{-1}, ty = yt, xy = yx \rangle$ and A is the subgroup generated by $\{t,y\}$ then $N_G(A) = A$ but $Comm_G(A) = G$.

(20) Is every abelian subgroup of G finitely generated?
(21) If G is not virtually abelian and H is an FP_2 subgroup such that $N_G(H) = H$ is $[Comm_G(H) : H]$ finite?

11. The derived series and perfect subgroups

Let $G^{(\omega)} = \cap G^{(n)}$ be the intersection of the terms of the derived series for G. If $G^{(\omega)} = G^{(n)}$ for some finite n then $n \leq 3$, and $G/G^{(\omega)}$ is either a finite solvable group with cohomological period dividing 4, or has two ends and is $\mathbb{Z} \oplus Z/2Z$ or $D_\infty = Z/2Z \ast Z/2Z$, or has one end and is a solvable PD_3-group. (The argument given in [45] for orientable 3-manifold groups also applies here.) There is a similar result for the lower central series. If G is orientable and $G^{[\omega]} = G^{[n]}$ for some finite n then $n \leq 3$, and $G/G^{[\omega]}$ is finite, \mathbb{Z} or a nilpotent PD_3-group [59].

If G is not virtually representable onto \mathbb{Z} then $G/G^{(\omega)}$ is either a finite solvable group with cohomological period dividing 4 (and $G^{(\omega)}$ is a perfect PD_3-group) or is a finitely generated, infinite, residually finite-solvable group with one or infinitely many ends. Let M be the (aspherical) 3-manifold obtained by 0-framed surgery on a nontrivial knot K with Alexander polynomial $\Delta_K = 1$, and let $G = \pi_1(M)$. Then G' is a perfect normal subgroup which is not finitely generated. (In this case
$G_{[\omega]} = G^{(\omega)} = G'$, and $G/G^{(\omega)} \cong \mathbb{Z}$.) Replacing a suitable solid torus in $RP^3 \# RP^3$ by the exterior of such a knot K gives an example with $G/G^{(\omega)} \cong D_\infty$.

Let κ be a perfect normal subgroup of the fundamental group π of a PD_3-complex X. Then $\rho = \pi/\kappa$ is FP_2, since π is FP_2 and $H_1(\kappa; \mathbb{Z}) = 0$. The arguments of [20] give $\rho \cong \ast_{i=1}^r G_i \ast V$, where each factor G_i has one end and V is virtually free. Moreover, if ρ is infinite and has a nontrivial finite normal subgroup then ρ has two ends. (However, the further analysis of [50] does not apply, since there is no analogue of the Splitting Theorem of Turaev.) We also have $H_2(\kappa; \mathbb{Z}) \cong H^1(\rho; \mathbb{Z}[\rho])$ as an abelian group. In particular, if κ is acyclic then ρ is a PD_3-group.

The intersection $P = \cap G^{(\alpha)}$ of the terms of the transfinite derived series for G is the maximal perfect subgroup of G, and is normal in G. The quotient G/P is FP_2. If $P \neq 1$ and $[G : P]$ is infinite then $c.d.P = 2$, but P cannot be FP_2, for otherwise it would be a surface group [43]. Note that $P \subseteq G^{(\omega)}$, and if $c.d.P = 2$ then $c.d.G^{(\omega)} = 2$ also. If $[G : P]$ is infinite and $\zeta G \neq 1$ then $P = 1$.

If G is a PD_3-group and H is a nontrivial FP_2 subgroup such that $H^1(H; \mathbb{Z}) = 0$ then $[G : H]$ is finite. (Use [57]. See [53] for 3-manifold groups.)

(22) Can a nontrivial finitely generated normal subgroup of infinite index be perfect? acyclic?

(23) If a finitely generated, infinite, residually solvable group has infinitely many ends must it be virtually representable onto \mathbb{Z}?

(24) If $P = 1$ is G residually soluble (i.e., is $G^{(\omega)} = 1$ also)?

12. THE TITS ALTERNATIVE

A group satisfies the Tits alternative if every finitely generated subgroup is either solvable or contains a non-abelian free group.

Let N be the subgroup generated by all the normal subgroups which have no nonabelian free subgroup. Then N is the maximal such subgroup, and clearly it contains the maximal elementary amenable normal subgroup of G. If N is nontrivial then either $N \cong \mathbb{Z}$, $c.d.N = 2$ or $N = G$. If N is a rank 1 abelian subgroup then $N \cong \mathbb{Z}$. (For otherwise $N \leq G'$ and $G' \leq C_G(N)$, so either $[G : C_G(N)]$ is finite, which can be excluded by [14], or G' is abelian, by Theorem 8.8 of [6], in which case G is solvable and hence virtually poly-\mathbb{Z}, and N must again be finitely generated.) If $c.d.N = 2$ then N cannot be FP_2, for otherwise it would be a surface group and G would be virtually the group of a surface bundle [43]. Since N has no nonabelian free subgroup this would imply that N and hence G are virtually poly-\mathbb{Z}, and so $N = G$. Similarly, if $N = G$ and G/G' has rank at least 2 then there is an epimorphism $\phi : G \to \mathbb{Z}$ with finitely generated kernel [9]. Hence Ker(ϕ) is a surface group and so G is poly-\mathbb{Z}.

A finitely generated, torsion-free group is properly locally cyclic if every finitely generated subgroup of infinite index is cyclic. If G is an almost coherent PD_3-group which is not virtually properly cyclic then every finitely generated subgroup of G satisfies the Tits alternative [19]. (In fact it suffices for their argument for “almost coherent” to be assumed only for the subgroup, as in [10].) We may then use [34] and Corollary 1.4 of [57] to show that solvable subgroups are abelian or virtually poly-\mathbb{Z}.

(25) Is N the maximal elementary amenable normal subgroup?

(26) If H is a finitely generated subgroup which has no nonabelian free subgroup must it be virtually poly-\mathbb{Z}?
(27) In particular, is a PD_3-group of subexponential growth virtually nilpotent?

13. ATOROIDAL GROUPS

We shall say that G is atoroidal if all of its finitely generated abelian subgroups are cyclic. Two-generator subgroups of atoroidal, almost coherent PD_3-groups are either free or of finite index, by [5] together with the Algebraic Core Theorem of [57]. 3-Manifolds with atoroidal fundamental group are hyperbolic, by the Geometrization Theorem. Every closed hyperbolic 3-manifold has a finite covering space which fibres over the circle [11, 70].

If an atoroidal PD_3-group acts geometrically on a locally compact $CAT(0)$ space then it is Gromov hyperbolic [59]. A Gromov hyperbolic PD_3-group has boundary S^2 [5].

(28) Is every atoroidal PD_3-group Gromov hyperbolic?
(29) Does every atoroidal PD_3-group have a boundary in the sense of [4]?
(30) The Cannon Conjecture: is every Gromov hyperbolic PD_3-group isomorphic to a discrete uniform subgroup of $PSL(2, \mathbb{C})$?
(31) Does every atoroidal PD_3-group have a nontrivial finitely generated subnormal subgroup of infinite index?

14. SPLITTING

The central role played by incompressible surfaces in the geometric study of Haken 3-manifolds suggests strongly the importance of splitting theorems for PD_3-groups. This issue was raised in [88], the first paper on PD_3-groups. Kropholler and Roller considered splittings of PD_n-groups over PD_{n-1} subgroups [67, 68, 69, 70]; see also [24] and [60]. Kropholler gave two different formulations of a torus theorem for PD_3-groups, one extending to higher dimensions but requiring the hypothesis that the group have Max_c, the maximal condition on centralizers [64], and the other with a weaker conclusion [66]. Castel has since shown that every PD_3-group has Max_c, and has given a JSJ-decomposition theorem for PD_3-groups and group pairs [19].

In particular, if G has a subgroup $H \cong \mathbb{Z}^2$ then either G splits over a subgroup commensurate with H or it has a nontrivial abelian normal subgroup [64], and so is a 3-manifold group [14]. If G splits over a PD_2-group H then either G is virtually a semidirect product or $NG(H) = H$. (See §7 of [49].)

If G is an ascending HNN extension with FP_2 base H then H is a PD_2-group and is normal in G, and so G is the group of a surface bundle. (This follows from Lemma 3.4 of [18].) If G has no noncyclic free subgroup and G/G' is infinite then G is an ascending HNN extension with finitely generated base and associated subgroups. If G is residually finite and has a subgroup isomorphic to \mathbb{Z}^2 then either G is virtually poly-Z or it has subgroups of finite index with abelianization of arbitrarily large rank. (A residually finite PD_3-group which has a subgroup $H \cong \mathbb{Z}^2$ is virtually split over a subgroup commensurate with H [67], so we may suppose that G splits over \mathbb{Z}^2, and then we may use the argument of [63], which is essentially algebraic.)

(32) If G is a nontrivial free product with amalgamation or HNN extension does it split over a PD_2 group?
(33) If G is a nontrivial free product with amalgamation is it virtually representable onto \mathbb{Z}?
(34) Can G be a properly ascending HNN extension (with base not FP_2)?
(35) If G has a subgroup H which is a PD_2-group and such that $N_G(H) = H$ does G have a subgroup of finite index which splits over H? In particular is this so if $H \cong \mathbb{Z}^2$?

(36) Suppose G is not virtually poly-\mathbb{Z} and that G/G' is infinite. Does G have subgroups of finite index whose abelianization has rank ≥ 2?

(37) Suppose that G is an HNN extension with stable letter t, base H and associated subgroup $F \subset H$. Is $\mu(G) = \cap t^k F t^{-k}$ finitely generated? (See [56] for a related result on knot groups, and also [81].)

15. Residual Finiteness, Hopficity, Cohopficity

Let $K_n = \cap \{H \subset G | [G : H] \text{ divides } n!\}$. Then $[G : K_n]$ is finite, for all $n \geq 1$, and G is residually finite if and only if $\cap K_n = 1$. If G is not virtually representable onto \mathbb{Z} this intersection is also the intersection of the terms in the more rapidly descending series given by $K_n^{(n)}$, and is contained in $G^{(\omega)}$.

If G has a maximal finite p-quotient P for some prime p then P has cohomological period dividing 4, and so is cyclic, if p is odd, and cyclic or quaternionic, if $p = 2$. Hence if $\beta_1(G;\mathbb{F}_p) > 1$ for some odd prime p, or if $\beta_1(G;\mathbb{F}_2) > 2$, then the pro-$p$ completion of G is infinite [73].

If $[G : \cap K_n] = \infty$ and G is a 3-manifold group then either G is solvable or there is a prime p such that G has subgroups H of finite index with $\beta_1(H;\mathbb{F}_p)$ arbitrarily large [73]. Hence either some such H maps onto \mathbb{Z} or the pro-p completion of any such subgroup with $\beta_1(H;\mathbb{F}_p) > 1$ is a pro-p PD_3-group [62]. If G is almost coherent and $[G : \cap K_n] = \infty$ then it satisfies the Tits alternative [13].

The groups of 3-manifolds are residually finite, by [39] and the Geometrization Theorem. Hence they are hopfian, i.e., onto endomorphisms of such groups are automorphisms. The Baumslag-Solitar groups\footnote{(35)} $\langle x,t | txpt^{-1} = x^q \rangle$ embed in PD_4-groups. Since these groups are not hopfian, there are PD_4-groups which are not residually finite [72]. No such Baumslag-Solitar relation with $|p| \neq |q|$ holds in any PD_3-group G; there is no homomorphism from $\langle x,t | txpt^{-1} = x^q \rangle$ to G [19].

Let \mathcal{X} be the class of groups of cohomological dimension 2 which have an infinite cyclic subgroup which is commensurate with all of its conjugates. If G is a PD_3-group with no nontrivial abelian normal subgroup and which contains a subgroup isomorphic to \mathbb{Z}^2 then G splits over an \mathcal{X}-group [60]. (See also [65].) This class includes the Baumslag-Solitar groups and also the fundamental groups of Seifert fibred 3-manifolds with nonempty boundary. If H is in the latter class and is not virtually \mathbb{Z}^2 then $\sqrt{H} \cong \mathbb{Z}$ and H/\sqrt{H} is a free product of cyclic groups. It then follows from the result of [19] on Baumslag-Solitar relations that finitely generated \mathcal{X}-groups which are subgroups of PD_3-groups are of this “Seifert type”.

An injective endomorphism of a PD_3-group must have image of finite index, by Strebel’s theorem [82]. A 3-manifold group satisfies the \textit{volume condition} (isomorphic subgroups of finite index have the same index) if and only if it is not solvable and is not virtually a product [95] [96]. In particular, such 3-manifold groups are cohopfian, i.e., injective endomorphisms are automorphisms. The volume condition is a property of commensurability classes; this is not so for cohopficity.

(38) Does every PD_3-group have a proper subgroup of finite index?

(39) Are all PD_3-groups residually finite?

(40) Let \hat{G} be a pro-p PD_3-group. Is G virtually representable onto \hat{Z}_p?
(41) Do all PD_3-groups other than those which are solvable or are virtually products satisfy the volume condition?

16. OTHER QUESTIONS

We conclude with some related questions.

(42) Let P be an indecomposable, non-orientable PD_3-complex. If the orientable double cover P^+ is homotopy equivalent to a 3-manifold, is P itself homotopy equivalent to a 3-manifold?

(43) Let X be a PD_3-complex. Is $X \times S^1$ or $X \times S^1 \times S^1$ homotopy equivalent to a closed manifold?

(44) Is there an explicit example of a free action of a generalized quaternionic group $Q(8a, b, 1)$ (with $a, b > 1$ and $(a, b) = 1$) on an homology 3-sphere?

(45) Is there a purely algebraic analogue of orbifold hyperbolization which may be used to show that every FP group of cohomological dimension k is a subgroup of a PD_{2k}-group?

See [48] and the references there [36, 37, 93, 94] for work on maps of nonzero degree between PD_3-groups.

REFERENCES

[1] Agol, I. The Virtual Haken Conjecture, with an appendix by Agol, D. Groves and J. Manning, Doc. Math. 18 (2013), 1045–1087.
[2] Baues, H.-J., and Bleile, B., Poincaré duality complexes in dimension four, Alg. Geom. Top. 8 (2008), 2355–2389.
[3] Baumslag, G. and Shalen, P.B. Groups whose three-generator subgroups are free, Bull. Austral. Math. Soc. 40 (1989), 163–174.
[4] Bestvina, M. Local homological properties of boundaries of groups, Michigan Math. J. 43 (1996), 123–139.
[5] Bestvina, M. and Mess, G. The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991), 469–481.
[6] Bieri, R. Homological Dimensions of Discrete Groups, Queen Mary College Mathematical Notes, London (1976).
[7] Bieri, R. and Eckmann, B. Relative homology and Poincaré duality for group pairs, J. Pure Appl. Algebra 13 (1978), 279–313.
[8] Bieri, R. and Hillman, J.A. Subnormal subgroups in 3-dimensional Poincaré duality groups, Math. Z. 206 (1991), 67–69.
[9] Bieri, R., Neumann, W.D. and Strebel, R. A geometric invariant of discrete groups, Inventiones Math. 90 (1987), 451–477.
[10] Bieri, R. and Strebel, R. Almost finitely presentable soluble groups, Comment. Math. Helv. 53 (1978), 258–278.
[11] Bleile, B. Poincaré Duality Pairs of Dimension Three, Forum Math. 22 (2010), 277 – 301.
[12] Bleile, B., Bokor, I. and Hillman, J.A. Poincaré complexes with highly connected universal covers, arXiv: 1605.00096 [math.GT] (23 pages).
[13] Boileau, M. and Boyer, S. On the Tits alternative for PD_3-groups, arXiv: 1710.10670 [math.GT] (16 pages).
[14] Bowditch, B.H. Planar groups and the Seifert conjecture, J. Reine Angew. Math. 576 (2004), 11–62.
[15] Browder, W. Poincaré complexes, their normal fibrations and surgery, Invent. Math. 17 (1972), 191–202.
[16] Brown, K.S. Cohomology of Groups, Graduate Texts in Mathematics 87, Springer-Verlag, Berlin – Heidelberg – New York (1982).
[17] Brown, K.S. A homological criterion for finiteness, Comment. Math. Helv. 50 (1975), 129–135.
[18] Brown, K.S. and Geoghegan, R. Cohomology with free coefficients of the fundamental group of a graph of groups, Comment. Math. Helv. 60 (1985), 31–45.
[19] Castel, F. Centralisateurs d’élémens dans les PD3-paires, Comment. Math. Helv. 82 (2007), 499–517.
[20] Crisp, J.S. The decomposition of Poincaré duality complexes, Comment. Math. Helv. 75 (2000), 232–246.
[21] Crisp, J.S. An algebraic loop theorem and the decomposition of PD3-pairs, Bull. London Math. Soc. 39 (2007), 46–52.
[22] Davis, M. Poincaré duality groups, in Surveys on Surgery Theory (edited by S. Cappell, A. Ranicki and J. Rosenberg), vol. 1, Ann. Math. Study 145, Princeton University Press, Princeton, N.J. (2000), 167–193.
[23] Dicks, W. and Dunwoody, M.J. Groups acting on Graphs, Cambridge studies in advanced mathematics 17, Cambridge University Press, Cambridge (1989).
[24] Dunwoody, M.J. Bounding the decomposition of a Poincaré duality group, Bull. London Math. Soc. 21 (1989), 466–468.
[25] Dunwoody, M.J. and Swenson, E. The algebraic torus theorem, Inventiones Math. 140 (2000), 605–637.
[26] Eckmann, B. Cyclic homology of groups and the Bass conjecture, Comment. Math. Helv. 61 (1986), 193–202.
[27] Eckmann, B. and Linnell, P.A. Poincaré duality groups of dimension two, II, Comment. Math. Helv. 58 (1983), 111–114.
[28] Eckmann, B. and Müller, H. Poincaré duality groups of dimension two, Comment. Math. Helv. 55 (1980), 510–520.
[29] Edmonds, A.L. Deformation of maps to branched coverings in dimension two, Ann. Math. 110 (1979), 113–125.
[30] Elkalla, H.S. Subnormal groups in 3-manifold groups, J. London Math. Soc. 30 (1984), 342–360.
[31] Feighn, M. and Handel, M. Mapping tori of free group automorphisms are coherent, Ann. Math. 149 (1999), 1061–1077.
[32] Gadgil, S. Degree-one maps, surgery and four-manifolds, Bull. London Math. Soc. 39 (2007), 419–424.
[33] Gersten, S.M. and Stallings, J.R. (editors) Combinatorial Group Theory and Topology, Ann. Math. Study 111, Princeton University Press, Princeton (1987).
[34] Gildenhuys, D. Classification of soluble groups of cohomological dimension two, Math. Z. 166 (1979), 21–25.
[35] Gildenhuys, D. and Strebel, R. On the cohomological dimension of soluble groups, Canadian Math. Bull. 24 (1981), 385–392.
[36] González-Acuña, F. and Whitten, W. Imbeddings of Three-manifold Groups, American Mathematical Society Memoir 474 (1992).
[37] González-Acuña, F. and Whitten, W. Cohopficity of 3-manifold groups, Top. Appl. 56 (1994), 87–97.
[38] Hambleton, I. and Madsen, I. Actions of finite groups on R^{n+k} with fixed point set R^k, Canad. J. Math. 38 (1986), 781–860.
[39] Hempel, J. Residual finiteness for 3-manifolds, in [33], 379–396.
[40] Hendriks, H. Obstructions theory in 3-dimensional topology: an extension theorem, J. London Math. Soc. 16 (1977), 160–164.
[41] Hillman, J.A. Four-Manifolds, Geometries and Knots, GT Monograph 5, Geom. Topol. Publ., Coventry (2002; revisions 2007, 2014).
[42] Hillman, J.A. Seifert fibre spaces and Poincaré duality groups, Math. Z. 190 (1985), 365–369.
[43] Hillman, J.A. Three-dimensional Poincaré duality groups which are extensions, Math. Z. 195 (1987), 89–92.
[44] Hillman, J.A. On 3-dimensional Poincaré duality complexes and 2-knot groups, Math. Proc. Cambridge Philos. Soc. 114 (1993), 215–218.
[45] Hillman, J.A. Embedding homology equivalent 3-manifolds in 4-space,
SOME QUESTIONS ON SUBGROUPS OF PD₃-GROUPS

19

[46] Hillman, J.A. Tits alternatives and low dimensional topology,
J. Math. Soc. Japan 55 (2003), 365–383.

[47] Hillman, J.A. An indecomposable PD₃-complex: II,
Alg. Geom. Topol. 4 (2004), 1103–1109.

[48] Hillman, J.A. Homomorphisms of nonzero degree between PDₙ-groups,
J. Austral. Math. Soc. 77 (2004), 335–348.

[49] Hillman, J.A. Centralizers and normalizers of subgroups of PD₃-groups and group pairs,
J. Pure Appl. Alg. 204 (2006), 244–257.

[50] Hillman, J.A. Indecomposable PD₃-complexes,
Alg. Geom. Topol. 12 (2012), 131–153.

[51] Hillman, J.A. Indecomposable non-orientable PD₃-complexes,
Alg. Geom. Topol. 17 (2017), 645–656.

[52] Hillman, J.A. and Linnell, P.A. Elementary amenable groups of finite Hirsch length are locally
finite by virtually solvable, J. Austral. Math. Soc. 52 (1992), 237–241.

[53] Howie, J. On locally indicable groups,
Math. Z. 180 (1989), 445–461.

[54] Johnson, F.E.A. and Wall, C.T.C. On groups satisfying Poincaré duality,
Ann. Math. 69 (1972), 592–598.

[55] Kahn, J. and Markovic, V. Immersing almost geodesic surfaces in a closed hyperbolic three
manifold, Ann. Math. 175 (2012), 1127–1190.

[56] Kakimizu, O. On maximal fibred submanifolds of a knot exterior,
Math. Ann. 284 (1989), 515–528.

[57] Kapovich, M. and Kleiner, B. Coarse Alexander duality and duality groups,
J. Diff. Geom. 69 (2005), 279–352.

[58] Kapovich, M. and Kleiner, B. The weak hyperbolization conjecture for
3-dimensional CAT(0)-groups, Groups Geom. Dyn. 1 (2007), 61–79.

[59] Kapovich, M. and Kleiner, B. The weak hyperbolization conjecture for 3-dimensional
CAT(0)-groups, Groups Geom. Dyn. 1 (2007), 61–79.

[60] Kar, A. and Niblo, G.A. A topological splitting theorem for Poincaré duality groups and high
dimensional manifolds, Geom. Topol. 17 (2013), 2203–2221.

[61] Kochloukova, D.H. and Zaleskii, P.A. Tits alternative for 3-manifold groups,
Arch. Math. (Basel) 88 (2007), 364–367.

[62] Kochloukova, D.H. and Zaleskii, P. A. Profinite and pro-p completions of Poincaré duality
groups of dimension 3, Trans. Amer. Math. Soc. 360 (2008), 1927–1949.

[63] Kojima, S. Finite covers of 3-manifolds containing essential surfaces of Euler characteristic
0, Proc. Amer. Math. Soc. 101 (1987), 743–747.

[64] Kropholler, P.H. An analogue of the torus decomposition theorem for certain Poincaré duality
groups, Proc. London Math. Soc. 60 (1990), 503–529.

[65] Kropholler, P.H. Baumslag-Solitar groups and some other groups of cohomological dimension
two, Comment. Math. Helv. 65 (1990), 547–558.

[66] Kropholler, P.H. A group theoretic proof of the torus theorem,
in [70], 138–158.

[67] Kropholler, P.H. and Roller, M.A. Splittings of Poincaré duality groups, Math. Z. 197 (1988), 421-438.

[68] Kropholler, P.H. and Roller, M.A. Splittings of Poincaré duality groups II, J. London Math. Soc. 38 (1988), 410–420.

[69] Kropholler, P.H. and Roller, M.A. Splittings of Poincaré duality groups III, J. London Math. Soc. 39 (1989), 271–284.

[70] Kropholler, P.H. and Roller, M.A. Relative ends and duality groups, J. Pure Appl. Alg. 61 (1989), 197–210.

[71] Markovic, V. Criteria for Cannon’s conjecture, Geom. Funct. Anal. 23 (2012), 1035-1061.

[72] Mess, G. Examples of Poincaré duality groups, Proc. Amer. Math. Soc. 110 (1990), 1144–5.

[73] Mess, G. Finite covers of 3-manifolds and a theorem of Lubotzky, preprint, I.H.E.S. (1990).

[74] Milnor, J.W. Groups which act on Sn without fixed points,
Amer. J. Math. 79 (1957), 623–630.

[75] Niblo, G.A. and Roller, M.A. (editors) Geometric Group Theory 1, London Mathematical Society Lecture Note Series 181, Cambridge University Press, Cambridge (1993).

[76] Przytycki, P. and Wise, D.T. Mixed 3-manifolds are virtually special, arXiv: 1205.6742 [math.GR].

[77] Sapir, M. Aspherical groups and manifolds with extreme properties, arXiv: 1103.3873v3 [math.GR].

[78] Scott, G.P. Compact submanifolds of 3-manifolds, J. London Math. Soc. 1 (1973), 437–440.

[79] Scott, G.P. Normal subgroups in 3-manifold groups, J. London Math. Soc. 13 (1976), 5–12.

[80] Scott, P. and Swarup, G. Regular neighbourhoods and canonical decompositions for groups, Astérisque 289 (2003).

[81] Soma, T. Virtual fibre groups in 3-manifold groups, J. London Math. Soc. 43 (1991), 337–354.

[82] Strebel, R. A remark on subgroups of infinite index in Poincaré duality groups, Comment. Math. Helv. 52 (1977), 317–324.

[83] Stallings, J.R. Group Theory and 3-Dimensional Manifolds, Yale Mathematical Monograph 4, Yale University Press, New Haven - London (1971).

[84] Swan, R.G. Periodic resolutions for finite groups, Ann. Math. 72 (1960), 267–291.

[85] Swarup, G. On a theorem of C.B.Thomas, J. London Math. Soc. 8 (1974), 13–21.

[86] Teichner, P. Maximal nilpotent quotients of 3-manifold groups, Math. Res. Lett. 4 (1997), 283–293.

[87] Thomas, C.B. The oriented homotopy type of compact 3-manifolds, Proc. London Math. Soc. 19 (1967), 31–44.

[88] Thomas, C.B. Splitting theorems for certain PD^3-groups, Math. Z. 186 (1984), 201–209.

[89] Tshishiku, B. and Walsh, G. On groups with S^2 Bowditch boundary, arXiv: 1710.09018 [math.GT].

[90] Turaev, V.G. Three dimensional Poincaré duality complexes: splitting and classification, Mat. Sbornik 180 (1989), 809–830. English translation: Math. USSR-Sbornik 67 (1990), 261–282.

[91] Wall, C.T.C. Poincaré complexes: I, Ann. Math. 86 (1967), 213–245.

[92] Wall, C.T.C. Poincaré duality in dimension 3, in Proceedings of the Casson Fest, GT Monogr. 7, Geom. Topol. Publ., Coventry (2004), 1–26.

[93] Wang, S. The existence of maps of nonzero degree between aspherical 3-manifolds, Math. Z. 208 (1991), 147–160.

[94] Wang, S. The π_1-injectivity of self-maps of nonzero degree on 3-manifolds, Math. Ann. 297 (1993), 171–189.

[95] Wang, S. and Wu, Y.Q. Covering invariants and co-ho-pficty of 3-manifold groups, Proc. London Math. Soc. 68 (1994), 203–224.

[96] Wang, S. and Yu, F. Covering degrees are determined by graph manifolds involved, Comment. Math. Helv. 74 (1999), 238–247.

[97] Zieschang, H. Finite Groups of Mapping Classes of surfaces, Lecture Notes in Mathematics 875, Springer-Verlag, Berlin – Heidelberg – New York (1981).

[98] Zimmermann, B. Das Nielsenche Realisierungsproblem für hinreichend grosse 3-Mannigfaltigkeiten, Math. Z. 180 (1982), 349–359.

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
E-mail address: jonathan.hillman@sydney.edu.au