Multiple time measurements of multidimensional psychiatric states from immediately before the COVID-19 pandemic to one year later: a longitudinal online survey of the Japanese population

Taiki Oka1,2, Takatomi Kubo3, Nao Kobayashi4, Fumiya Nakai5,6, Yuka Miyake7, Toshitaka Hamamura8,9, Masaru Honjo8, Hiroyuki Toda10, Shuken Boku2, Tetsufumi Kanazawa11,12, Masanori Nagamine13, Aurelio Cortese6, Minoru Takebayashi2, Mitsuo Kawato1 and Toshinori Chiba1,14,15

The coronavirus disease 2019 (COVID-19) pandemic has profoundly affected the mental health of both infected and uninfected people. Although most psychiatric disorders have highly overlapping genetic and pathogenic backgrounds, most studies investigating the impact of the pandemic have examined only single psychiatric disorders. It is necessary to examine longitudinal trajectories of factors that modulate psychiatric states across multiple dimensions. About 2274 Japanese citizens participated in online surveys presented in December 2019 (before the pandemic), August 2020, Dec 2020, and April 2021. These surveys included nine questionnaires on psychiatric symptoms, such as depression and anxiety. Multidimensional psychiatric time-series data were then decomposed into four principal components. We used generalized linear models to identify modulating factors for the effects of the pandemic on these components. The four principal components can be interpreted as a general psychiatric burden, social withdrawal, alcohol-related problems, and depression/anxiety. Principal components associated with general psychiatric burden and depression/anxiety peaked during the initial phase of the pandemic. They were further exacerbated by the economic burden the pandemic imposed. In contrast, principal components associated with social withdrawal showed a delayed peak, with human relationships as an important risk modulating factor. In addition, being female was a risk factor shared across all components. Our results show that COVID-19 has imposed a large and varied burden on the Japanese population since the commencement of the pandemic. Although components related to the general psychiatric burden remained elevated, peak intensities differed between components related to depression/anxiety and those related to social withdrawal. These results underline the importance of using flexible monitoring and mitigation strategies for mental problems, according to the phase of the pandemic.

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has affected all aspects of society globally [1, 2]. Given its profound impact on the mental health of both infected and uninfected persons, there is a greater need for mental health science [3–6]. Indeed, various psychiatric states, such as depression [7], general anxiety [8], panic disorder [8], social anxiety disorder [9], alcohol [10], internet-related problems [11], adult attention-deficit/hyperactivity disorder (ADHD) [12], and autism spectrum disorder (ASD) [13] have been exacerbated during COVID-19. Several studies including a meta-analysis reported exacerbations of mental health due to the pandemic [14, 15] while concluding that there was no clear association with psychiatric disorders [16, 17]. This may indicate that the impact of the pandemic is heterogeneous, both geographically (Some countries experienced stronger waves than others.) and temporally (Cases rise and fall in waves, so the effects...
of stress on people vary with the passage of time since the stress exposure.) To prevent further deterioration and persistence after the pandemic subsides, a comprehensive understanding of longitudinal trajectories of multidimensional psychiatric states during this pandemic is required.

To achieve a full grasp of the pandemic effects on mental health, it is necessary to evaluate data that include pre-pandemic data as a baseline, and multiple psychiatric states. First, baseline control data are essential to directly assess any pandemic effects. Most evidence to date is based on cross-sectional samples and control data are essential to directly assess any pandemic effects. Data as a baseline, and multiple psychiatric states. First, baseline control data are essential to directly assess any pandemic effects. Most evidence to date is based on cross-sectional samples and control data are essential to directly assess any pandemic effects.

Data as a baseline, and multiple psychiatric states. First, baseline control data are essential to directly assess any pandemic effects. Most evidence to date is based on cross-sectional samples and control data are essential to directly assess any pandemic effects.

To achieve a full grasp of the pandemic effects on mental health, it is necessary to evaluate data that include pre-pandemic data as a baseline, and multiple psychiatric states. First, baseline control data are essential to directly assess any pandemic effects. Most evidence to date is based on cross-sectional samples and control data are essential to directly assess any pandemic effects.

Fig. 1 Selection into cohorts. 4680 participants participated in the T0 survey immediately before and during the COVID-19 pandemic. 745 participants were excluded due to data problems and 3935 participants remained in the analysis and were defined as the “survey population.” Of the 3935, 1661 participated in only two or three surveys (incomplete data) (532, T0-T2; 124, T0-T1, T3; 707, T0-T1; 298, T0 and T3). Therefore, 2274 respondents completed all four surveys and were defined as the “study population.” Of the 3935, 1661 participated in only two or three surveys (incomplete data) (532, T0-T2; 124, T0-T1, T3; 707, T0-T1; 298, T0 and T3). Therefore, 2274 respondents completed all four surveys and were defined as the “study population.”
proposed them were consistent with psychiatric disorders that Caspi [37], who affect internet-related problems (see Supplementary Methods). Some of survey). First, nine psychiatric scales were selected according to the original (Supplementary Table 1 and Supplementary Methods for details about the spectrum disorder (AQ) [44], social anxiety (LSAS-fear/avoid) [45], general anxiety (STAI-Y-state) [46], and alcohol-related problems (AUDIT) [47]. The nine psychiatric disorders were speci

We assessed the psychiatric status of each respondent using validated questionnaires, evaluating them for major depressive disorder (CES-D) [40], obsessive-compulsive disorder (OCI) [41], internet-related problems (CIUS) [42], attention-deficit/hyperactivity disorder (ADHD) (ASRS) [43], autistic spectrum disorder (AQ) [44], social anxiety (LSAS-fear/avoid) [45], general anxiety (STAI-Y-state) [46], and alcohol-related problems (AUDIT) [47]. The nine psychiatric disorders were specifically selected because it has previously been shown that they are affected by the pandemic (see Introduction [7–13]). Details for each questionnaire are in the Supplementary Methods. COVID-19-related items were also measured in surveys during the pandemic [48] (Supplementary Table 1 and Supplementary Methods for details about the survey). First, nine psychiatric scales were selected according to the original purpose to investigate the relationship between smartphone addiction and multiple psychiatric states. Specifically, we selected those that are known to affect internet-related problems (see Supplementary Methods). Some of them were consistent with psychiatric disorders that Caspi [37], who proposed “p factor”, mentioned, so we analyzed them for the present study. Others have been reported to worsen in response to stress due to the pandemic e.g., internet addiction, developmental disorders. Therefore, we also included them because they may represent an important aspect of COVID-19 stress-induced changes in mental health.

Statistical analysis
Each psychiatric disorder score at T0 was z-score normalized across subjects. Those at follow-up (T1, T2, and T3) were normalized with respect to the scores at T0. Specifically, the amount of change from the mean at T0 for each score at follow-up was divided by the standard deviation at T0. Next, each normalized psychiatric disorder score (from T0, T1, T2, and T3) from each participant was concatenated across participants. We did so in order to handle not only variability among subjects within each time point, but also a variation of psychiatric states caused by the pandemic simultaneously. Also, by concatenating them, it is expected that results will be less sensitive to accidental outliers at a given time point. Since we had nine types of mental health measures, there are nine columns in total. The number of rows is the number of people multiplied by the number of time points (4) for each psychiatric disorder score. Correlation among all disorder pairs of concatenated score vectors was calculated to check the covariance of psychiatric status. Then, to extract principal components of multidimensional psychiatric disorders, we performed a principal compo

RESULTS
We analyzed data from 2274 study participants who participated in all four surveys. Demographic data of participants is provided in Table 1. Characteristics of the survey population (N = 3935), which includes participants who did not complete all four surveys, are described in Supplementary Table 2. Correlation matrices for changes in scores of psychiatric disorders over time are shown in Supplementary Fig. 1. Half (18/36) of all combinations had relatively strong positive (>0.5) or negative (< −0.5) correlations.

Table 1. Characteristics of study population (N = 2274).
All 2274 (100%)
Sex Male Female
1225 (54%) 1049 (46%)
Marital status Not married Married
801 (35%) 1473 (65%)
Age of youngest child in the household No children 0–3
4–6 7–9 10–12 13–15 16–18 19–
Household income Lowest 2nd 3rd 4th Highest Missing
567 (25%) 495 (22%) 409 (18%) 222 (10%) 382 (17%) 199 (9%)
Job No job Self-employed Employee Other
375 (16%) 517 (23%) 1177 (52%) 205 (9%)
Impact of the pandemic on scores for each psychiatric disorder

During the observation period, we found abrupt, statistically significant exacerbation of general anxiety, avoidance aspects of social anxiety disorder, and internet-related problems (Supplementary Table 3). These disorders showed no remission during the study. A similar, but the nonsignificant pattern was observed for autism spectrum disorder (ASD). The fearful aspect of social anxiety disorder, obsessive-compulsive disorder (OCD), and attention-deficit/hyperactivity disorder (ADHD) showed an initial drop followed by a gradual increase. Major depressive disorder and alcohol-related problems showed an initial increase, followed by a gradual decrease (Fig. 2 and Supplementary Fig. 2).

Principal component analysis of multidimensional psychiatric states

Multidimensional psychiatric time-series data were decomposed into orthogonal principal components. The top four components explained ~60% of the variance (PC1: 24.1%, PC2: 14.3%, PC3: 11.0%, PC4: 10.6%, in total 59.9%), so we analyzed those further. Principal component 1 (PC1) included all psychiatric illnesses. Principal component 2 (PC2) was composed of social anxiety and internet-related problems. Principal component 3 (PC3) consisted mainly of alcohol-related problems. Principal component 4 (PC4) comprised depression, anxiety, and alcohol-related problems (Fig. 3A). Characteristics of each PC loading are shown in Supplementary Table 4 for the study population and in Supplementary Table 5 for the survey population. All but PC3 worsened during the initial phase of the pandemic, followed by further exacerbation (PC2), sustained elevation (PC1), and partial remission (PC4) (Fig. 3B). Despite showing slight remission in later phases (T2, T3), comparable to the initial phase (T1), PC4 remained higher than baseline (T0) throughout the pandemic. PC3 was excluded from further analysis to identify participant risk/protective factors because, throughout the pandemic, it showed no significant changes relative to baseline (T0) (Supplementary Table 6; trajectories of each PC in survey population are shown in Supplementary Fig. 2).

Regression analyses to identify risk and protective factors

Figure 4 shows the results of generalized linear models to identify factors that may exacerbate or alleviate effects of the pandemic on components of each PC. All results are reported with coefficients ± standard error (SE) and p values (p). In PC1 and PC2, being female represented a significant risk of exacerbation compared to being male ($\beta = 0.32 \pm 0.05, \ p < 0.001; \ \beta = 0.38 \pm 0.04, \ p < 0.001$). Older age was also associated with exacerbation of PC2 ($\beta = 0.07 \pm 0.02, \ p = 0.010$). In PC1 and PC4, the impact of the pandemic on decreased household income was a risk factor ($\beta = 0.08 \pm 0.02, \ p < 0.001; \ \beta = 0.06 \pm 0.02, \ p < 0.007$). On the other hand, in PC2, being self-employed, experiencing changes (both increase and decrease) in face-to-face communication time with family, and decreased online communication time with family were protective factors ($\beta = -0.16 \pm 0.06, \ p = 0.017; \ \beta = -0.14 \pm 0.05, \ p = 0.007; \ \beta = -0.12 \pm 0.05, \ p = 0.034; \ \beta = -0.14 \pm 0.04, \ p = 0.005$) compared to each reference group. Detailed reports of all regression analyses are shown in Supplementary Table 7.

To assess the influence of participants who dropped out of the study before completion, all analyses were also performed in the “survey population”, which included individuals with partial data (Fig. 1). Results are consistent with analyses of complete responders, except for the effect of age in PC4 (Supplementary Fig. 4 and Supplementary Table 8).

DISCUSSION

This is the first study to examine multidimensional psychiatric states at multiple time points from before the COVID-19 pandemic to 1 year after the outbreak (T0: December 2019, T1: August 2020, T2: December 2020, T3: April 2021) in a large online population (including participants with missing data: $N = 3935$, excluding those with missing data: $N = 2274$). Average psychiatric disorder scores showed different trajectories across disorders while being correlated within participants. As a result, these psychiatric dimensions were aggregated into four major, orthogonal principal components (PCs). PC1, PC2, and PC4 showed distinct exacerbation trajectories, as well as distinct peaks. PC3 showed no significant change during the pandemic.

These PCs are interpreted as a general psychiatric burden, social withdrawal, alcohol-related problems, and depression/anxiety. Most psychiatric disorders contributed to PC1, which may reflect the general psychiatric burden due to the pandemic. PC2 was mainly associated with fear and avoidance aspects of social anxiety, as well as internet-related problems, which may represent symptomatic social withdrawal. Exacerbation of PC2 may result from strategies to prevent the spreading of the infection, such as...
social distancing. Repeated avoidance of social activities may gradually instill the notion that social communication is immoral or something to be avoided. Severe social withdrawal—hikikomori—has been an increasing social problem in Japan. Hikikomori is characterized by a tendency to isolate oneself from society, to stay in one’s room, and to become dependent on the internet and games [51, 52]. Internet-related problems and social anxiety are gaining attention as important risk factors for social withdrawal [53–55]. PC4 was mainly associated with depression and anxiety. These PCs peaked at different stages of the pandemic. PC1 and PC4 peaked in the first stage of the pandemic. PC2 peaked with a delay, during the pandemic.

In our analysis, each psychiatric disorder was decomposed into different PCs that evolved along different trajectories. For example, alcohol-related problems contribute significantly to both PC3 and PC4. PC4, a component mainly reflecting depression/anxiety, worsened during the pandemic. PC3, a component mainly reflecting alcohol-related problems, did not change significantly during the pandemic. These data suggest that while alcohol-related problems did not display pandemic-induced changes, some individuals used alcohol maladaptively to cope with depression/anxiety. Moreover, although no clear association with pandemic-related worsening of psychiatric symptoms has been found in a meta-analysis report [16], latent variables of psychiatric disorders may have been adversely affected. In particular, PC1, which is considered like the “p factor”, and PC2 continue to be worse after T1 compared to T0 and may be affected by the pandemic in the long term. Thus, when assessing changes in mental illness due to the effects of a pandemic, it is important to consider multiple dimensions to identify risks, rather than simply assessing single dimensions.

Our regression analysis further highlighted the importance of flexible countermeasures for mental health problems. Some risk factors were shared across PCs. Specifically, being female was a common risk factor for exacerbation of psychiatric disorders represented by the PCs. Japanese females also experienced a severe increase in suicide during the pandemic, compared with Japanese males [56]. There is an urgent need for counter measures to reduce the physical and mental burdens imposed by the pandemic. In parallel, we identified risks and protective factors that were specific for each PC. General psychiatric burden and depression/anxiety, PC1, and PC4, were strongly influenced by economic factors, whereas social withdrawal, PC2, was strongly influenced by human relationships. The effects of reduced income on mental health are consistent with a previous study reporting individual economic damage as a risk factor for worsening mental well-being during the pandemic [19].

In the social withdrawal component, self-employment and changes in communication were protective factors. Employment in isolation has been associated with higher social isolation during COVID-19 [57], but self-employment may be associated with lower social isolation due to COVID-19. To preserve mental well-being, a successful strategy might involve focusing on countermeasures against economic impact in the early stages of the pandemic, while supporting social interaction may be more important in the later stages of the pandemic.

Given the complex nature of the link between the current pandemic and mental health, this study has some limitations. First, the long-term effects of this pandemic cannot be assessed yet. Second, the psychiatric scores assessed here did not include some important dimensions, such as psychotic symptoms. However, even though the measurements that assess symptoms don’t cover
Fig. 4 Fixed-effects regression analyses showing within-person changes in multidimensional psychiatric status during the pandemic. Forest plots show results of fixed-effects regression analyses. Each plot represents standardized beta coefficients with standard errors. Asterisks indicate statistical significance (*p < 0.05, **p < 0.001).
all factors (e.g., internalizing, externalizing, and psychotic symptoms), the general factor of psychopathology is reported to be identifiable [30]. Therefore, we think that we can ignore this problem here. Third, our analysis focused on the Japanese population. Our understanding of the effects of the COVID-19 pandemic on mental health would benefit from international comparisons, including race, culture, religion, and psychiatric states that were not assessed in this study. Fourth, these surveys were conducted using the online recruiting method, and there may be sampling bias. In the generalized linear model analysis, we corrected the confounding factors of age and sex by adjusting them so that the effect of bias can be reduced. As for principal component analysis, it was conducted for each age and sex group, and the results were confirmed to be consistent with the main results (see Supplementary Figs. 5, 6, and 7). Therefore, we conclude that the effect of sampling bias caused by the difference between the general and the study population is limited. Finally, because our data were concatenated across time points, the PCs reflected both temporal covariance and covariance between participants. Future work with more time points may help us clearly distinguish these two effects, to better understand the impact of the pandemic on mental health.

In summary, time courses of nine psychiatric symptoms during the COVID-19 pandemic were aggregated into three exacerbated, orthogonal principal components with different peaks, as well as different modulating factors. Our findings underline the importance of flexible approaches for mental health protection. Long-term monitoring and real-time reporting are both necessary to determine the full consequences of COVID-19 on mental health.

DATA AVAILABILITY

The main summary statistics that support the findings of this study are available in the Supplementary Data. Owing to company cohort data sharing restrictions, individual-level data cannot be publicly posted. However, data are available from the authors upon request and with the permission of KDDI Corporation.

REFERENCES

1. Türközer HB, Öngür D. A projection for psychiatry in the post-COVID-19 era: potential trends, challenges, and directions. Mol Psychiatry. 2020. https://www.nature.com/articles/s41380-020-0841-2.
2. Kalin NH. COVID-19 and stress-related disorders. Am J Psychiatry. 2021;178:471–4.
3. Holmes EA, O’Connor RC, Perry VH, Tracey I. Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science. Lancet Psychiatry. 2020. https://www.sciencedirect.com/science/article/pii/S2215036620301681.
4. Moreno C, Wykes T, Golderis S, Nordentoft M, Crossley N, Jones N, et al. How mental health care should change as a consequence of the COVID-19 pandemic. Lancet Psychiatry. 2020;7:813–24.
5. Rogers JP, Chesney E, Oliver D, Pollak TA. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020. https://www.sciencedirect.com/science/article/pii/S2215036620302030.
6. Steptoe A, Di Gessa G. Mental health and social interactions of older people with physical disabilities in England during the COVID-19 pandemic: a longitudinal cohort study. Lancet Public Health. 2021;6:e365–73.
7. Fancomtour D, Steptoe A, Bu F. Trajectories of anxiety and depressive symptoms during enforced isolation due to COVID-19 in England: a longitudinal observational study. Lancet Psychiatry. 2021;8:141–9.
8. Islam MS, Ferdous MZ, Potenza MN. Panic and generalized anxiety during the COVID-19 pandemic among Bangladeshi people: an online pilot survey early in the outbreak. J Affect Disord. 2020;276:30–37.
9. Zheng L, Miao M, Lim J, Li M, Nie S, Zhang X. Is lockdown bad for social anxiety in COVID-19 regions?: a national study in the SOR perspective. Int J Environ Res Public Health. 2020. https://doi.org/10.3390/ijerph17124561.
10. Evans S, Alkan E, Bhangoo JK, Tenenbaum H, Ng-Knight T. Effects of the COVID-19 lockdown on mental health, wellbeing, sleep, and alcohol use in a UK student sample. Psychiatry Res. 2021;298:113819.
11. Oka T, Hamamura T, Miyake Y, Kobayashi N, Honjo M, Kawato M, et al. Prevalence and risk factors of internet gaming disorder and problematic internet use before and during the COVID-19 pandemic: a large online survey of Japanese adults. J Psychiatr Res. 2021;142:218–25.
12. Zhang J, Shuai L, Yu H, Wang Z, Qiu M, Lu L, et al. Acute stress, behavioural symptoms and mood states among school-age children with attention-deficit/ hyperactive disorder during the COVID-19 outbreak. Asian J Psychiatr. 2020;51:102077.
13. Colizzi M, Sironi E, Antonini F, Ciceri ML, Bovo C, Zoccatone L. Psychosocial and behavioral impact of COVID-19 in autism spectrum disorder: an online parent survey. Brain Sci. 2020. https://doi.org/10.3390/brainsci10060341.
14. Wu T, Jia X, Shi H, Niu J, Yin X, Xie J, et al. Prevalence of mental health problems during the COVID-19 pandemic: a systematic review and meta-analysis. J Affect Disord. 2021;281:91–98.
15. Pierce M, Hope H, Ford T, Hatch S, Hotopf M. Mental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK population. Lancet 2020. https://www.sciencedirect.com/science/article/pii/S2215036620301084.
16. Sun Y, Wu Y, Bonardi O, Krishnan A, He C, Boruff JT. Comparison of mental health symptoms prior to and during COVID-19: evidence from a living systematic review and meta-analysis. medRxiv [Preprint]. 2021. Available from: https://www.medrxiv.org/content/10.1101/2021.02.27.21251952.
17. Racine N, Hetherington E, McArthur BA, McDonald S, Edwards S, Tough S, et al. Maternal depressive and anxiety symptoms before and during the COVID-19 pandemic in Canada: a longitudinal analysis. Lancet Psychiatry. 2021;8:405–15.
18. Pierce M, Hope H, Ford T, Hatch S, Hotopf M, John A, et al. Mental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK population. Lancet Psychiatry. 2020. https://doi.org/10.1016/S2215-0366(20)30398-4.
19. Liao YH, Fan BF, Zhang HM, Guo L, Lee Y, Wang WX, et al. The impact of COVID-19 on subthreshold depressive symptoms: a longitudinal study. Epidemiol Psychiatric Sci. 2021;30:e20.
20. Wang Y, Hu Z, Feng Y, Wilson A, Chen R. Changes in network centrality of psychopathology symptoms between the COVID-19 outbreak and after peak. Mol Psychiatry. 2020;25:3140–9.
21. Bardawil N, Khayal A, Hashem A, Zedan W, Al-Azzam H, Al-Sarraf A, et al. Suicide rates in the aftermath of the COVID-19 pandemic in Arab countries: a systematic review. Suicide Life Threat Behav. 2021;51:930–9.
22. Haws MT, Szenczy AK, Olinio TM, Nelson BD, Klein DN. Trajectories of depression, anxiety and panic disorder experiences: A longitudinal study of youth in New York during the Spring-Summer of 2020. Psychiatry Res. 2021;298:113778.
23. Saunders R, Buckman JEJ, Fonagy P, Fancourt D. Understanding different trajectories of mental health across the general population during the COVID-19 pandemic. Psychol Med. 2021;1–9.
24. Amstadter AB, Acerno R, Richardson LK, Kilpatrick DG, Gros DF, Gaboury MT, et al. Posttraumatic stress and posttraumatic depression symptoms in COVID-19 first responders. J Affect Disord. 2021;281:1–10.
25. Kessler RC, Galea S, Gruber MJ, Sampson NA, Ursano RJ, Wessely S. Trends in mental illness and suicidality after Hurricane Katrina. Mol Psychiatry. 2008;13:374–84.
26. Ohto H, Maeda M, Yabe H, Yasumura S, Bremet EE. Suicide rates in the aftermath of the 2011 earthquake in Japan. Lancet. 2015;385:1727.
27. Kino S, Aida J, Kondo K, Kawachi I. Persistent mental health impacts of disaster. Five-year follow-up after the 2011 great east Japan earthquake and tsunami: Iwunami Study. J Psychiatr Res. 2021;136:452–9.
28. Pirkis J, John A, Shin S, DeFoil-Boanes M, Aya V, Analuisa-Aguilar P, et al. Suicide trends in the early months of the COVID-19 pandemic: an interrupted time-series analysis of primary data from 21 countries. Lancet Psychiatry. 2021;8:579–88.
29. Gunnell D, Appleby L, Arensman E, Hawton K, John A, Kapur N, et al. Suicide risk and prevention during the COVID-19 pandemic. Lancet Psychiatry. 2020;7:468–71.
30. Caspi A, Moffitt TE. All for one and one for all: mental disorders in one dimension. Annu Rev Psychol. 2008;59:1–35.
31. Smoller JW, Andreassen OA, Edenberg HJ, Faraone SV, Glatt SJ, Kendler KS. Psychiatric genetics and the structure of psychopathology. Mol Psychiatry. 2015;20:1159–77.
32. Yee CM, Javitt DC, Miller GA, Replacing DSM. Categorical analyses with dimensionality approaches to mental health diagnosis. JAMA Psychiatry. 2015;72:1163–40.
33. Wright AGC, Krueger RF, Hovels MJ, Marken KE, Eaton NR, Slade T. The structure of psychopathology: toward an expanded quantitative empirical model. J Abnorm Psychol. 2013;122:281–94.
35. Vollebergh WA, Iedema J, Bijl RV, de Graaf R, Smit F, Ormel J. The structure and stability of common mental disorders: the NEMESIS study. Arch Gen Psychiatry. 2001;58:597–603.

36. Krueger RF, Caspi A, Moffitt TE, Silva PA. The structure and stability of common mental disorders (DSM-III-R): a longitudinal-epidemiological study. J Abnorm Psychol. 1998;107:216–27.

37. Caspi A, Houts RM, Belsky DJ, Goldman-Mellor SJ, Harrington H, Israel S, et al. The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clin Psychol Sci. 2014;2:119–37.

38. Selzam S, Coleman JRL, Caspi A, Moffitt TE, Plomin R. A polygenic p factor for major psychiatric disorders. Transl Psychiatry. 2018;8:205.

39. Chiba T, Oka T, Hamamura T, Kobayashi N, Honjo M, Miyake Y, et al. PTSD symptoms related to COVID-19 as a high risk factor for suicide-key to prevention. medRxiv [Preprint] 2020. Available from: https://www.medrxiv.org/content/10.1101/2020.12.15.20246819.

40. Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1:385–401.

41. Foa EB, Kozak MJ, Salkovskis PM, Coles ME, Amir N. The validation of a new obsessive-compulsive disorder scale: the obsessive-compulsive inventory. Psychological Assessment. 1998;10:206–14.

42. Meerkerk G-J, Van Den Eijnden RJJM, Vermulst AA, Garretsen HFL. The compulsive internet use scale (CIUS): some psychometric properties. Cyberpsychol Behav. 2009;12:1–6.

43. Kessler RC, Adler L, Ames M, Demler O, Faraone SV, Hiripi E, et al. The World Health Organization adult ADHD self-report scale (ASRS): a short screening scale for use in the general population. Psychol Med. 2005;35:245–56.

44. Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord. 2001;31:5–17.

45. Baker SL, Heinrichs N, Kim H-J, Hofmann SG. The liebowitz social anxiety scale as a self-report instrument: a preliminary psychometric analysis. Behav Res Ther. 2002;40:701–15.

46. Spielberger CD. State-trait anxiety inventory for adults. 1983. https://doi.org/10.1037/0049-0000.

47. Saunders JB, Aasland OG, Babor TF, de La Fuente JR, Grant M. Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption-II. Addiction. 1993;88:791–804.

48. Kusztor A, Gonzalez MA, Tsuichiya N, Koizumi A. Do psychological differences contribute to the spread of the coronavirus? Testing a neurodiversity hypothesis amidst pandemic. Unpublished.

49. Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics Intell Lab Syst. 1987;2:37–52.

50. Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate data analysis. Prentice Hall; 2009.

51. Kato TA, Kanba S, Teo AR. Hikikomori: experience in Japan and international relevance. World Psychiatry. 2018;17:105–6.

52. Kato TA, Shinfuku N, Sartounos N, Kanba S. Are Japan’s hikikomori and depression in young people spreading abroad? Lancet. 2011;378:1070.

53. Lee YS, Lee JY, Choi TY, Choi JT. Home visitation program for detecting, evaluating and treating socially withdrawn youth in Korea. Psychiatry Clin Neurosci. 2013;67:193–202.

54. Kato TA, Shinfuku N, Tateno M. Internet society, internet addiction, and pathological social withdrawal: the chicken and egg dilemma for internet addiction and hikikomori. Curr Opin Psychiatry. 2020;33:264–70.

55. Cerniglia L, Zorzitto F, Cimino S, Laviola G, Ammaniti M, Adriani W. Internet addiction in adolescence: neurobiological, psychosocial and clinical issues. Neurosci Biobehav Rev. 2017;76:174–84.

56. Tanaka T, Okamoto S. Increase in suicide following an initial decline during the COVID-19 pandemic in Japan. Nat Hum Behav. 2021;5:229–38.

57. Bulitiska-Stangrecka H, Bagjeriska A. The role of employee relations in shaping job satisfaction as an element promoting positive mental health at work in the era of COVID-19. Int J Environ Res Public Health. 2021. https://doi.org/10.3390/ijerph18041903.

ACKNOWLEDGEMENTS

This research was supported by a KDDI collaborative research contract. It was also supported by Innovative Science and Technology Initiative for Security Grant Number JP1004596, ATLA, Japan and AMED Grant Number JP21dm0307008, Japan. We thank Rumi Yorizawa, Misa Murakami, Anna Shimafuji, and Miho Nagata for data collection and organization.

AUTHOR CONTRIBUTIONS

T.C. made substantial contributions to the study conception and design. T.O., Y.M., M.H., T.H., and T.C. made substantial contributions to data acquisition. T.O., F.N., T.K., and T.C. conducted statistical analyses. T.O., F.N., T.K., and T.C. made substantial contributions to the interpretation of data. T.O., T.K., F.N., S.B., T.K., M.N., A.C., M.T., M.K., and T.C. wrote the manuscript. All authors contributed to editing and commenting on the final version. T.C. takes responsibility for the integrity of the work.

COMPETING INTERESTS

N.K., T.H., and M.H. are employees of KDDI Research Inc. Y.M. is an employee of KDDI Corporation. N.K., Y.M., T.H., and M.H. were involved in the study design, data acquisition, statistical analysis, and interpretation of the results. For the remaining authors none were declared conflicts of interest.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41398-021-01696-x.

Correspondence and requests for materials should be addressed to Toshinori Chiba.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021