DNA@Mn₃(PO₄)₂ Nanoparticles Supported with Graphene Oxide as Photoelectrodes for Photoelectrocatalysis

Lixia Gao¹²†, Jiale Xie¹²³†, Xiaoqing Ma¹², Man Li¹² and Ling Yu¹²*  

Abstract  
A novel deoxyribose nucleic acid (DNA)-based photoelectrode consisting of DNA@Mn₃(PO₄)₂ nanoparticles on graphene oxide (GO) sheets was successfully fabricated for photoelectrocatalysis. DNA served as a soft template to guide the nucleation and growth of Mn₃(PO₄)₂ nanoparticles in the synthesis of Mn₃(PO₄)₂ nanoparticles. More importantly, the DNA also serves as semiconductor materials to adjust charge transport. Under UV light irradiation (180–420 nm, 15 mW/cm²), the photocurrent density of DNA@Mn₃(PO₄)₂/GO electrodes reached 9 μA/cm² at 0.7 V bias (vs. SCE). An applied bias photon-to-current efficiency (ABPE) of ~0.18% can be achieved, which was much higher than that of other control electrodes (<0.04%). In this DNA-based photoelectrode, well-matched energy levels can efficiently improve charge transfer and reduce the recombination of photogenerated electron-hole pairs.  

Keywords: Photoelectrocatalysis, Photoelectrode, DNA, Mn₃(PO₄)₂, Nanoparticle  

Background  
Energy crisis and environmental issue at global level are important topics and force us to search renewable clean energy [1]. Sunlight is an inexpensive, non-polluting, abundant, and endlessly renewable source of clean energy. Among the technologies for converting sunlight, photoelectrocatalysis combined the concepts of photovoltaics and wet-chemical photosynthesis has the ability to split water through solar energy to produce hydrogen [2]. Normally, broadly used photoelectrode materials are inorganic semiconductor material, such as metal oxides, silicates, and molybdates [3–9]. Phosphate can accelerate photoelectrochemical reactions and Li et al. reported cobalt phosphate as an oxygen evolution co-catalyst and used as a potential photoelectrocatalyst for efficient solar water splitting [10, 11]. Manganese phosphate, (Mn₃(PO₄)₂, as one of phosphates has been used as cathode material for lithium ion battery [12], a water oxidation catalyst [13] and sensing materials [14]. As far as we know, no phosphate was studied as photoelectrocatalyst.  
The method of solid-phase synthesis is commonly used to prepare Mn₃(PO₄)₂. Therefore, the size of synthesized Mn₃(PO₄)₂ nanoparticles is in the range of several micrometers. Deoxyribose nucleic acid (DNA), a kind of nucleic acid carrying the genetic information of living organisms, shows to be promising in preparing materials with novel structures and functions [15]. Tremendous attention has been paid because of its efficiency and versatility in controlling of nanostructure growth. The programmable nature and rich molecular interaction with a variety of species enable DNA as a template to guide and support functional nanomaterials synthesis [16–19]. To reduce the size and increase the specific surface area, we use DNA molecules as a soft template for assisting crystal nucleation and uniformly growth of Mn₃(PO₄)₂. Moreover, as a p-type semiconductor, DNA can serve as partial electrode material for adjusting charge transportation [20–22].  
Limited charge transport at the interface between nanomaterial and electrode surface is a critical issue in photoelectrocatalysis. Two-dimensional nanomaterial can provide the opportunity to functionalize this interface. As a star nanomaterial, graphene oxide (GO) was...
obtained by the oxidation of graphite powders and has a p-type semiconductor characteristics [8, 23], resulting from oxygen’s higher electronegativity than carbon atoms [24]. Besides, DNA and GO can bind together by strong interactions, such as van der Waals, π-π stacking, and combination of hydrogen [25].

Herein, we fabricated a novel DNA-based photoelectrode consisted with DNA@Mn₃(PO₄)₂ nanoparticles on GO sheets. The DNA as a soft template can assist the nucleation and growth of Mn₃(PO₄)₂ nanoparticles. GO as the electron-blocking layer can reduce charge recombination, which can also enhance the light absorption partially. Under UV light irradiation (λ: 180–420 nm, 15 mW/cm²), the photocurrent density of DNA@Mn₃(PO₄)₂/GO electrodes can reach up to 9 μA/cm² at 0.7 V bias (vs. SCE). An ABPE efficiency of ~0.18% can be achieved, which is much higher than that of other control electrodes (<0.04%). In this DNA-based photoelectrode, well-matched energy levels can efficiently improve charge transfer and reduce the recombination of photogenerated electron-hole pairs.

**Methods**

**Reagents**

Single-stranded deoxyribonucleic acid (ss-DNA), double-strand DNA (ds-DNA), low molecular weight DNA (lm-DNA), MnSO₄, K₃PO₄, and phosphate-buffered saline (PBS) are all purchased from Sigma-Aldrich (China). Graphite with purity higher than 98.3% was obtained from Sinocarbon Materials Technology Co., Ltd., China. Experimental used water is deionized water ((DI H₂O), 18.2 MΩ/cm, ELGA Lab Water, England).

**Synthesis of Graphite Oxide Nanosheets and DNA@Mn₃(PO₄)₂ Nanocomposite**

**Graphite Oxide (GO) Nanosheets Synthesis**

GO nanosheets were prepared from graphite powders by a modified Hummers method [26, 27]. Firstly, 0.5 g graphite, 0.5 g NaNO₃, and 23 mL H₂SO₄ (98%) were together stirred in an ice bath, then slowly mixed with 3 g of KMnO₄. The mixture was placed in a water bath at 35 ± 5 °C stirring for about 1 h until the solution became transparent for another 1 h until the solution became transparent. The obtained solution was centrifuged about 10 min to collect the supernatant for reserve. Secondly, 100 ml DI H₂O was added into the flask to dilute the mixture. Thirdly, 3 ml H₂O₂ (30%) was drop-casted into the reaction mixture. Fourthly, product was harvested through centrifugation and thoroughly washed by HCl (5%, v/v) and DI H₂O. GO (6 mg/mL) was dispersed use ultrasonic about 6 h with an ultrasonic power of 65 W. Finally, the homogenous solution was centrifuged about 10 min to collect the supernatant for reserve.

**DNA@Mn₃(PO₄)₂ Nanocomposite Synthesis**

The DNA@Mn₃(PO₄)₂ was prepared according to literature [14]. In brief, firstly, 0.1 ml DNA (10 mg/ml) was dissolved into 0.9 ml DI H₂O and boiled for 10 min then ice cooling to prevent forming of double strand helix. Secondly, 1 ml DNA solution, 1 ml MnSO₄ (0.1 M), and 9 ml DI H₂O were mixed under stirring for 10 min. Thirdly, 1 ml K₃PO₄ (0.1 M) and 9 ml H₂O were stirred for 1 h at 60 °C water bath. Then DNA, MnSO₄, and K₃PO₄ mixture was stirred for another 1 h until the solution became transparent which indicates Mn²⁺ ions and phosphate groups of DNA reacted completely. The obtained solution was centrifuged at 9000 r/min for 10 min, and the DNA@Mn₃(PO₄)₂ pellet was collected. The supernatant was tested by UV-vis measurement at the range of 200–500 nm wavelength. Finally, the synthesized DNA@Mn₃(PO₄)₂ nanocomposite was dispersed in DI H₂O.

**Fabrication of DNA@Mn₃(PO₄)₂/GO Electrode**

Fluorine-doped tin oxide (FTO) coated glass (2.5 cm × 1 cm, sheet resistance <10 Ω/sq.) as a work electrode was ultrasonically pre-cleaned with acetone and ethanol for 30 min and dried with nitrogen stream. Subsequently, oxygen plasma (Mycro Technologies Co., Ltd.) was used to clear the FTO surface for 5 min. Then 6 mg/ml GO homogenous solution was spin coating onto pre-cleaned FTO surface and dried in room temperature. Finally, DNA@Mn₃(PO₄)₂ solution was further drop-casted on GO/FTO surface.

**Characterization of Materials and Electrodes**

Structural properties of synthesized nanocomposite were measured using JSM-6510LV scanning electron microscopy (SEM). JEM-2100 transmission electron microscopy (TEM) was further used to characterize the morphology in detail. GO and DNA were characterized by atomic force microscopy (AFM). P, N, O, and Mn elements were identified by X-ray photoelectron spectroscopy (XPS). FTIR transmittance spectra were obtained from NICOLET 6700. UV-2550 spectrophotometer recorded UV-vis absorption spectra, and the background contribution of the FTO glass to the absorption spectra was eliminated. The electrode of DNA@Mn₃(PO₄)₂/GO was examined by energy dispersive X-ray spectroscopy (EDS, equipment with JSM-6510LV, Japan).

**Photoelectrochemical Measurements**

Photoelectrochemical measurements were carried out on an electrochemical workstation (CHI 760E, Chen Hua Instruments Co. Ltd.). A three-electrode system was employed with a FTO as a working electrode (photoelectrode), an Hg/HgCl₂/KCL electrode (saturated calomel reference electrode, SCE) as a reference electrode, and a 2.5 cm² platinum plate as a counter electrode. All tests were conducted with a self-built 2 cm × 2 cm × 1 cm quartz electrolytic cell in 0.01 M phosphate-buffered saline (PBS). Ultra violet light Source (MUA-165, Japan) was used to irradiate the work electrode under UV light.
(λ: 180–420 nm, 15 mW/cm²). The experimental measurements were carried out at room temperature without seal. Linear sweep voltammetry (LSV) was recorded at a scan rate of 50 mV/s. The amperometric i–t curve was recorded to measure photocurrent response under open circuit potential-time with intermittent light irradiation.

Results

Unique Morphology and Properties of DNA@Mn₃(PO₄)₂/GO

The synthesis processes of DNA@Mn₃(PO₄)₂ nanocomposite and DNA@Mn₃(PO₄)₂/GO electrode are schematically shown in Scheme 1. The DNA was used to guide the crystals nucleation of Mn₃(PO₄)₂ nanoparticles. In the presence of Mn²⁺ solution, the rich negatively charged PO₄³⁻ groups regularly arranged on the sugar-phosphate backbone of DNA attracted Mn²⁺ ions onto the surface of DNA molecule strands. The following growth of Mn₃(PO₄)₂ was promoted by potassium phosphate (K₃PO₄). Due to the low solubility of Mn₃(PO₄)₂, the nanoparticles precipitated in the solution. Assembling of DNA@Mn₃(PO₄)₂ nanoparticles onto GO nanosheets was achieved by π-π non-covalent conjugation and electrostatic interaction between the base pairs of DNA and the functionalized surface of GO nanosheets.

TEM images of GO nanosheets are shown in Fig. 1a, b. The selected area electron diffraction (SAED) pattern of GO is shown as the inset of Fig. 1a. The well-defined diffraction cycles confirm the integrity of GO sheets. The GO thickness is in nanometer scale (Additional file 1: Figure S1A), as thin as the yarn, and there are some wrinkles covering the electrode surface. After the drop-coating of DNA@Mn₃(PO₄)₂, the DNA@Mn₃(PO₄)₂ nanoparticles are dispersed onto the surface of GO sheets uniformly (Fig. 1c). The DNA@Mn₃(PO₄)₂ nanoparticle size is about 20–50 nm. HRTEM image shows regular lattice fringes, indicating Mn₃(PO₄)₂ nanoparticle has relative good crystal quality (Fig. 1d). The fringe spacing as shown in Fig. 1d is 0.27 and 0.25 nm. The SAED pattern are well-consistent with the diffraction peaks of 32.90° and 35.59° in standard PDF-card of Mn₃(PO₄)₂ (card number: 33–0901) and experimental XRD pattern of Mn₃(PO₄)₂ as shown in Additional file 1: Figure S2. As shown in the inset of Fig. 2d, some light ring consisted of diffraction spots can be distinguished, so Mn₃(PO₄)₂ nanoparticles were well-grown under 60 °C water bath.
Mn$_3$(PO$_4$)$_2$. The O 1s peak (Fig. 2c) appearing at binding energy of 532.1 eV is originally from the phosphate groups and PO$_2$ antisymmetric stretch. The prominent peaks near 300 nm (Fig. 3b) have been associated with GO sheets [30]. Intense bands at 231 nm, which denotes π-π* transition, are due to GO: a maximum absorbance value at 200–600 nm (Fig. 3b). Two features of GO absorption spectra (green line) can be used to identify GO: a maximum absorbance at 231 nm, which denotes π-π* transition peaks of aromatic C–C bonds, and a gentle bump at about 300 nm [30] was corresponding to π-π* transition shoulder peaks of C = O bond [29]. The two peaks have certain red shift by conjugation. The ssDNA (blue line) electrode has a strong feature absorption peak at 260 nm [31]. Whereas Mn$_3$(PO$_4$)$_2$ has a weak absorption peak near 260 nm, indicating a wide band gap of Mn$_3$(PO$_4$)$_2$. UV-vis absorption spectra of ssDNA@Mn$_3$(PO$_4$)$_2$ shows lower absorbance peaks than DNA, suggesting the phosphoric acid groups on ssDNA reacted with Mn$^{2+}$ ions. While a peak at ~231 nm of DNA@Mn$_3$(PO$_4$)$_2$/GO is further observed, attributing to the π-π* accumulation of GO and DNA. Furthermore, the amount of DNA in the DNA@Mn$_3$(PO$_4$)$_2$ composite was quantified by comparing the absorbance value at 260 nm of the DNA solution before and after forming Mn$_3$(PO$_4$)$_2$ precipitates. As shown in Additional file 1: Figure S3A, after reaction with MnSO$_4$ and K$_3$PO$_4$, the absorbance value of the solution decreased. Based on the DNA calibration curve (Additional file 1: Figure S3B), the decreased DNA quality is 6.6 μg.

**Photovoltaic Behaviors of DNA@Mn$_3$(PO$_4$)$_2$/GO**

Figure 4a, c shows that the LSV and i-t curves of FTO, FTO/GO, FTO/ssDNA, FTO/GO/ssDNA, and FTO/GO/ssDNA@Mn$_3$(PO$_4$)$_2$ electrodes under UV light irradiation. The photocurrent density of GO/ssDNA@Mn$_3$(PO$_4$)$_2$ is obviously higher than other electrodes. However, the dark current density is also higher, indicating the corrosion maybe happen on this electrode. This should be detail investigated in further research. As shown in Fig. 4b, the GO/ssDNA@Mn$_3$(PO$_4$)$_2$ electrode can deliver applied bias photon-to-current efficiency of ~0.18%, while GO, ssDNA, and GO/ssDNA electrodes only achieved 0.03, 0.01, and 0.019%, respectively. Photocurrent responses from all electrodes indicate that a transient photocurrent increase after
UV irradiation. Furthermore, no visible charge recombination was observed from the photoelectrochemical measurements.

The photoelectrochemical behaviors were investigated in 0.01 M PBS (pH = 7.4) with three-electrode configuration (Additional file 1: Figure S4). The LSV and amperometric i–t techniques were used to analysis electrode photoelectrochemical behaviors. Additional file 1: Figure S4a and b shows the light responses with various DNA molecules. The photocurrent densities of dsDNA and lmDNA are 6
and 5 \( \mu A/cm^2 \), respectively, whereas the photocurrent density of ssDNA can reach up to 9 \( \mu A/cm^2 \). Therefore, the ssDNA can deliver higher photoelectric response under UV light irradiation. Furthermore, we optimized the GO concentration and the results are shown in Additional file 1: Figure S4c and 4d. 6 mg/ml GO solution can obtain current density of 9 \( \mu A/cm^2 \), whereas 3 and 10 mg/ml can only reach 5 and 3 \( \mu A/cm^2 \), respectively. GO is a p-type semiconductor, therefore only a suitable GO concentration (6 mg/ml) could obtain good electrical behaviors and good photocurrent response. Mn\(^{2+} \) ions concentration is another important factor, which can influence the performance of electrodes. As shown in Additional file 1: Figure S4e and 4f, the photocurrent density of 0.1 M Mn\(^{2+} \) ions can reach up to 9 \( \mu A/cm^2 \), but 0.05 and 0.2 M Mn\(^{2+} \) ions only show 5 and 2 \( \mu A/cm^2 \). This maybe indicates 0.1 M Mn\(^{2+} \) ions are completely combined with phosphate of DNA strand.

Photoelectrochemical Mechanism of DNA@Mn\(_3\)(PO\(_4\))\(_2\)/GO

The energy level diagram of DNA@Mn\(_3\)(PO\(_4\))\(_2\)/GO electrode is shown in Fig. 5. The band edge of Mn\(_3\)(PO\(_4\))\(_2\) was estimated from the UV-vis light absorption spectroscopy and cyclic voltammetry (CV) curve of Mn\(_3\)(PO\(_4\))\(_2\) powder (Additional file 1: Figure S5). Under UV light irradiation, the electron-hole pairs can be generated in GO, DNA, and Mn\(_3\)(PO\(_4\))\(_2\), resulting from the high energy of UV light (2.95–6.89 eV). The excited electrons in Mn\(_3\)(PO\(_4\))\(_2\) can be further excited and transferred to DNA. And then, the excited electrons can transfer as the gradient of energy level. At last, the electrons collected through FTO electrode were used to catalyze the water splitting on Pt counter electrode. Meanwhile, the photogenerated holes are easy to transfer/transport through GO and DNA due to their p-type properties. Then
the holes can oxidize Mn$^{2+}$ to Mn$^{3+}$ or/and Mn$^{4+}$, and thus promote the water oxidation on the surface of Mn$_3$(PO$_4$)$_2$ nanoparticles.

**Discussion**

To investigate the enhanced photoelectric conversion efficiency of nanoparticle photoelectrodes in this work, we firstly fabricated the DNA-based nanoparticle photoelectrode (DNA@Mn$_3$(PO$_4$)$_2$/GO) for photoelectrochemical solar cells (PECs). DNA was often used as a template to guide the nucleation and growth of nanoparticle materials [14]. DNA and GO can bind together by strong interactions including van der Waals, π–π stacking and combination of hydrogen. Therefore, we used the DNA as a soft template to guide the synthesis of Mn$_3$(PO$_4$)$_2$ nanoparticles with the size in nanoscales. Recent reports revealed that the Mn-based oxide catalyst could deliver a significant OER electrocatalytic performance [32]. GO sheets with the p-type semiconductor characteristic can efficiently reduce the recombination, while Mn$_3$(PO$_4$)$_2$ can harvest the UV light largely. DNA@Mn$_3$(PO$_4$)$_2$/GO electrodes provide well-matched energy levels to improve the photoelectron transfer from the semiconducting film to the electrode and reduce the recombination of photoelectrons and holes.

In order to further enhance the photoelectric conversion efficiency, we optimized the molecular weight of the DNA, the GO concentration, Mn ion concentration. Under UV light irradiation (180–420 nm, 15 mW/cm$^2$), the photocurrent density of DNA@Mn$_3$(PO$_4$)$_2$/GO electrodes reached 9 μA/cm$^2$ at 0.7 V bias (vs. SCE). An ABPE efficiency of ~0.18% can be achieved—much higher than that of other control electrodes (<0.04%). Thus, we believe our results represent a potential application in enhancing the photoelectric conversion efficiency of nanomaterials.

**Conclusions**

In summary, we have developed a novel DNA@Mn$_3$(PO$_4$)$_2$/GO photoelectrode supported with GO sheets. The DNA@Mn$_3$(PO$_4$)$_2$/GO electrodes possess sensitive and higher response to ultraviolet light. Under UV light irradiation (λ: 180–420 nm, 15 mW/cm$^2$), the photocurrent intensity of DNA@Mn$_3$(PO$_4$)$_2$/GO electrodes can reach up to 9 μA/cm$^2$ at 0.7 V bias (vs. SCE), corresponding to applied bias photon-to-current efficiency of 0.18%, which is higher than other different electrodes prepared for comparison. DNA@Mn$_3$(PO$_4$)$_2$/GO electrodes provide a well-matched energy level to improve the photoelectron transfer rate from the semiconducting film to the electrode and reduce the recombination of photoelectrons and holes. This work demonstrates that DNA behaved as a useful biomaterial for the synthesis of a photoelectroactive hybrid film with improved performance.

**Additional File**

**Additional file 1: Figure S1.** AFM images of (A) GO drop-cast on freshly cleaved mica surface, (B) DNA drop-cast on freshly cleaved mica surface. **Figure S2.** XRD pattern of Mn$_3$(PO$_4$)$_2$ powders. A. Mn$_3$(PO$_4$)$_2$; B. Standard XRD pattern of Mn$_3$(PO$_4$)$_2$. **Figure S3.** Absorbance of DNA solution before and after react with MnSO$_4$ and KIPO$_4$ (A); concentration vs. absorbance calibration of DNA solution (B). **Figure S4.** Linear sweep voltammetry curves of (a) ssDNA, dsDNA, and lmDNA synthesized nanocomposite (c) different concentrations of GO synthesized nanocomposite (e) different concentration of Mn$_3$(PO$_4$)$_2$ and photocurrent response of (b) ssDNA, dsDNA, and lmDNA synthesized nanocomposite (d) different concentrations of GO synthesized nanocomposite (f) different concentrations of Mn$_3$(PO$_4$)$_2$. **Figure S5.** (a) UV-vis diffuse reflectance spectra of Mn$_3$(PO$_4$)$_2$ powder, (b) first derivative absorption spectra of Mn$_3$(PO$_4$)$_2$ powder. (c) Cyclic voltammetry (CV) curve of Mn$_3$(PO$_4$)$_2$ on glassy carbon electrode in 0.1 M KCl solution. (DOCX 2269 kb)

**Acknowledgments**

This work was financially supported by the Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, a start-up grant under SWU11110701 from Southwest University, Fundamental Research Funds for the Central Universities under XDJK2015B020 and XDJK2016C005, China Postdoctoral Science Foundation under 2015M582495.

**Authors’ Contributions**

LG and JX conceived and designed the experiments; LG and XG performed the experiments; LG and JX analyzed the data; LY contributed the reagents, materials, and analysis tools; LG and JX wrote the paper. All authors read and approved the final manuscript.

**Competing Interests**

The authors declare that they have no competing interests.

**Author details**

1. Institute for Clean energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, China. 2. Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China. 3. Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215011, China.

**Received:** 2 September 2016 **Accepted:** 9 December 2016

**Published online:** 06 January 2017

**References**

1. Omer AM (2008) Energy, environment and sustainable development. Renew Sust Energ Rev 12(9):2665–2300
2. Gratzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344
3. Deckers S, Vandendriessche S, Cornelis D, Monnaie F, Koeckelberghs G, Asselberghs I, Verbiest T, van der Veen MA (2014) Poly(3-allyliphenol) show unexpected second-order nonlinear optical response. Chem Commun 50(21):2741–2743
4. Taniguchi M, Kawai T (2006) DNA electronics. Phys E 33(11):1–12
5. Xie JL, Guo CX, Li CM (2013) Ga doping to significantly improve the performance of all-electrochemically fabricated Cu$_2$O-ZnO nanowire solar cells. Phys Chem Chem Phys 15(38):15905–15911
6. Zhao X, Xu TG, Yao WQ, Zhu YF (2009) Synthesis and photoelectrochemical properties of thin bismuth molybdates film with various crystal phases. Thin Solid Films 517(20):5813–5818
7. Dilgim Y, Dursun Z, Nisli G, Gorton L (2005) Photoelectrochemical investigation of methylene blue immobilised on zirconium phosphate modified carbon paste electrode in flow injection system. Anal Chim Acta 52(2):162–168
8. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283–2307
9. Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM (2011) Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO$_4$ photoelectrodes for solar water oxidation. Environ Energ Sci 4(12):5028–5034
10. Li YB, Zhang L, Torres-Pardo A, Gonzalez-Calbet JM, Ma YH, Oleynikov P, Terasaki O, Ahsari S, Shima M, Cha D, Zhao L, Takahara K, Kubota J,
Domen K (2013) Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat Commun 4:2566

11. Fu L, Yu H, Zhang C, Shao Z, Yi B (2014) Cobalt phosphate group modified hematite nanorod array as photoanode for efficient solar water splitting. Electrochim Acta 136:363–369

12. Choi D, Xiao J, Choi YJ, Hardy JS, Vijayakumar M, Bhuvaneswari MS, Liu J, Xu W, Wang W, Yang ZG, Graff GL, Zhang JG (2011) Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries. Energ Environ Sci 4(11):4560–4566

13. Jin K, Park J, Lee J, Yang KD, Pradhan GK, Sim U, Jeong D, Jang HL, Park S, Kim D, Sung NE, Kim SH, Han S, Nam KT (2014) Hydrated manganese(II) phosphate (Mn(3)(PO(4))(2)(3H(2)O)) as a water oxidation catalyst. J Am Chem Soc 136(20):7435–7443

14. Ma X, Hu W, Guo C, Yu L, Gao L, Xie J, Li CM (2014) DNA-templated biomimetic enzyme sheets on carbon nanotubes to sensitively in situ detect superoxide anions released from cells. Adv Funct Mater 24(37):363–369

15. Park SH, Prior MW, LaBean TH, Finkelstein G (2006) Optimized fabrication and electrical analysis of silver nanowires templated on DNA molecules. Appl Phys Lett 89:033901

16. Wang G, Mitomo H, Matsuo Y, Shimamoto N, Niikura K, Ijjo K (2013) DNA-templated plasmonic Ag/AgCl nanostructures for molecular selective photocatalysis and photocatalytic inactivation of cancer cells. J Mater Chem B 1:5899–5903

17. Zhou H, Yan R, Zhang D, Fan T (2016) Challenges and perspectives in designing artifical photosynthetic systems. Chem Eur J 22:8870–9885

18. Nam YS, Magyar AP, Lee D, Kim JW, Yun DS, Park H, Poliom TS, Weitz DA, Belcher AM (2010) Biologically templated photocatalytically nanostructures for sustained light-driven water oxidation. Nat Nanotechnol 5(5):340–344

19. Zhou F, Sun W, Ricado KB, Wang D, Shen J, Yin P, Liu H (2016) Programmably shaped carbon nanostructure from shape-conserving carbonization of DNA. ACS Nano 10(3):3099–3107

20. Güllü Ö, Çankaya M, Bariş Ö, Biber M, Özdemir H, Güllüce M, Türüt A (2008) DNA-based organic-on-inorganic semiconductor Schottky structures. Appl Surf Sci 254(16):5175–5180

21. Cha M, Jung S, Cha M-H, Kim G, Ihm J, Lee J (2009) Reversible metal semi-conductor transition of ssDNA-decorated single-walled carbon nanotubes. Nano Lett 9(4):1345–1349

22. Dugasani SR, Ha T, Gnapareddy B, Choi K, Lee J, Kim B, Kim JH, Park SH (2014) Energy band gap and optical transition of metal ion modified double crossover DNA lattices. ACS Appl Mater Interfaces 6:17599–17605

23. Wu SX, He QY, Tan CL, Wang YD, Zhang H (2013) Graphene-based electrochemical sensors. Small 9(8):1160–1172

24. Zhai J, Zhao MS, Wang DD (2011) Effect of Mn-doping on performance of Li3V2(PO4)3/C cathode material for lithium ion batteries. T Nonferr Metal Soc 21(3):523–528

25. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564

26. Hillig KW (1984) Principles of instrumental analysis, 2nd Edition - Skoog, D., West, D. J Am Chem Soc 106(5):1536–1536

27. Barrois S, Wagenknecht HA (2012) Diarylethene-modified nucleotides for switching optical properties in DNA. Biochim Biophy Acta 1825(5):523–528

28. Zhai J, Zhao MS, Wang DD (2011) Effect of Mn-doping on performance of Li3V2(PO4)3/C cathode material for lithium ion batteries. T Nonferr Metal Soc 21(3):523–528

29. Hillig KW (1984) Principles of instrumental analysis, 2nd Edition - Skoog, D., West, D. J Am Chem Soc 106(5):1536–1536

30. Barrois S, Wagenknecht HA (2012) Diarylethene-modified nucleotides for switching optical properties in DNA. Biochim Biophy Acta 1825(5):523–528

31. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564

32. Hillig KW (1984) Principles of instrumental analysis, 2nd Edition - Skoog, D., West, D. J Am Chem Soc 106(5):1536–1536

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ➤ springeropen.com