A Critical Review of Recent Research of Free Vibration and Stability of Functionally Graded Materials of Sandwich Plate

Emad Kadum Njim¹, Muhannad Al-Waily², Sadeq H Bakhy¹

¹ University of Technology, Mechanical Engineering Department, Baghdad, Iraq
² Department of Mechanical Engineering, Faculty of Engineering, University of Kufa, Iraq

E-mail: 20093@uotechnology.edu.iq

Abstract. In the past few decades, due to the unique material properties of functionally graded materials (FGM’s), they have been used in various engineering industries. This article aims to introduce an overview of the existing literature on the area of application, stability, and free vibration analysis of FGM structures conducted by some recent research studies and to provide a comprehensive overview of the development, application, different numerical representation of materials, demonstrating procedures and arrangement technique and solution method of FGM rectangular plate. It focuses on the influence of many parameters on natural frequencies and buckling loads, such as aspect ratio, power-law index, porosity distribution throughout the thickness of the plate, and face sheet thickness. This research also involves various analyses and numerical techniques for vibration and buckling analysis of the FGM sandwich plate. Furthermore, some important notes and suggestions are put forward for future work trails in this field. It is found that there is an exceptionally restricted path to investigate the same above analysis for the FGM sandwich plate with the porous metal dependent on various parameters such as gradient index, aspect ratio, face sheet thickness, porous factor, FGM layers thickness, and the number of layers.

Keywords. Applications of FGM, Free vibration, Buckling, Power-law index, FGM Plates, analytical techniques, FEA.

1. Introduction
In the progress of science and innovation, materials have undertaken significant work. The engineering of modern composite materials has had a significant impact on design and construction technology. The special engineering application of raw materials in various inorganic and organic compounds has played an essential role in developing polymers, alloys, structural parts, etc. [1]. Functionally graded materials (FGM) are a class of advanced materials whose material properties (such as mechanical and thermal properties) change continuously from one surface to another, thereby eliminating stress concentration in laminated composites. Changes in phase distribution can be transformed into their volume or weight fraction, configuration, and geometry. The change in volume fraction may occur directly over the entire thickness of the part or in any other direction (such as the coordinates of the plate or beam). The ceramic area has good heat resistance due to its low expansion capability. The ductile metal parts can avoid failure due to stress due to rapid temperature changes in a short time [2,3].
1.1. History of FGMs plate

In 1972, Shen and Bever [4] first proposed the concept of gradual material composition for composite and polymer materials. In order to maintain mechanical properties and reduce the effects of thermal stress, most of these materials are used as coating materials. Functionally graded materials (FGMs) were developed in Japan in the 1980s for thermal insulation purposes [5]. Since then, FGMs have received extensive attention in various engineering applications and manufacturing industries as high-grade structural materials for heat insulation such as aerospace, nuclear reactors, automobiles, airplanes, spacecraft biomedicine, and steel industries. FGM was initially designed as a thermal insulation material for aerospace structures and fusion reactors [6]. At present, the focus of the material development activities of composite materials and FGM includes improving material performance, supporting optimized structural design, reducing manufacturing costs continuously, and the ability to operate reliably [7]. According to the composition stages’ distribution, FGM can be divided into continuous or discontinuous gradual composition changes. Similarly, it can be divided into thin and overall FGM according to manufacturing technology [8, 9].

1.2. Areas of application of FGMs

The essential characteristics of FGM make it the first choice for almost engineering applications. Also, they are artificially produced. The original form of FGM exists in nature; bones, teeth, human skin, and bamboo trees can be considered organic forms of FGM. Due to its excellent thermal and mechanical properties, functionally graded materials (FGMs) are widely used in various fields and are likely to be used for other purposes. The most important applications include energy, aerospace, automobile, biomedical, defense, electrical/electronics, marine, Opto-Electronics, sport, thermoelectrics, and bioengineering [10]. Figure 1 shows the different types of FGMs and their application areas [11].

![Figure 1. Areas of applications for the three types of FGM]([12](image))

2. Mathematical Idealization of FGMs

Although FGM is very non-uniform, it is beneficial to idealize it as a continuum so that its mechanical properties change smoothly in spatial coordinates. In order to analyze FGMS effectively, a homogenization scheme must be adopted to simplify its complex heterogeneous microstructure. Through this idealization, mathematical model representation to identify some problems can be acquired, which will also help include and improve numerical techniques of FGM structures. It is vital that the conveyance of materials in the FG structure can be intended for different spatial particulars. A typical FGM represents a modern composite material with a recommended conveyance of the volume portion of the constituent stages. It is commonly expected that the material properties follow the progressive change in thickness in a nonstop way. Two sorts of varieties are usually used in the literature, and they include the vast majority of the current analysis models in the fabrication work.
2.1. The power law

Material properties and volume content vary along the thickness direction. FGM is usually designed to assume that one of the outermost layers is treated as metal and the other layer is ceramic. The combination of FGM defines the characteristics of plates and beams. Assuming that the FG plate follows a power law change, it can be defined as follows [13],

$$V_c(z) = \left(\frac{z + \frac{h}{2}}{h}\right)^k$$ \hspace{1cm} (1)

The constituent volume fraction of the FGM plate is supposed to change continually along the thickness direction and obey power-law distribution in the following,

$$\phi(z) = \left(\phi_c - \phi_m\right)\left(\frac{z + \frac{h}{2}}{h}\right)^k + \phi_m$$ \hspace{1cm} (2)

In equation (2), ϕ_c & ϕ_m are the corresponding material characteristic values of the ceramic and metal components of the FG plate, respectively. The total volume fraction of constituents are expressed as: $V_m(z) + V_c(z) = 1$, where V_m and V_c are the volume fractions of metals and ceramics respectively, and k is the power-law exponent, which is a non-negative variable parameter, where $k \in [0, \infty)$. The value of k equal to zero represents a fully ceramic plate, whereas infinite k indicates a fully metallic plate. The variations may be seen in Figure 2, which reveals that material properties with exponential gradation usually lie between those obtained with power-law exponents, $k = 0.2, 0.5, 1, 2,$ and 5. For our current formulation, the material properties (such as Young's modulus and mass density) vary along with the thickness, but it is assumed that the Poisson’s ratio is constant.

![Figure 2](image-url)

Figure 2. Material properties representation of the FG plate using the power-law index [14].

2.2. The exponential law

It has been found many research articles that used the exponential function to express the material properties variation with the thickness of the FG plate as follows [15],

$$E(z) = E_2 e^{\frac{k_z}{k_m}(\frac{z}{h} + \frac{h}{2})}$$

$$k_z = k_m e^{\frac{k_z}{k_m} \left(\frac{z}{h}\right)} , \quad \alpha_z = \alpha_m e^{\left(\frac{z}{h}\right) \left(\frac{\alpha_c}{\alpha_m}\right)}$$ \hspace{1cm} (3)

Where $E(z)$ is the modulus of elasticity, α_z indicates the value of the coefficient of thermal expansion and k_z denotes the property of thermal conductivity of the FGM plate or beam with a thickness of h.
The representation of Young’s modulus in the direction of the EFGM plate's thickness is plotted in Figure 3.

![Figure 3](image)

Figure 3. Young modulus variation along with the thickness of the FG plate using exponential function [16].

2.3. Sigmoid law

Sometimes, it is unwise to use low power functions to express FG beams and plates' characteristics and thickness changes. When ensuring the continuity of material properties over the entire thickness range, stress concentration appears in the beam's interface layer, but the change is not smooth [17]. To solve this type of problem, two power indices are used. In a study done by Chung and Chi [18], two power functions were used to express the change in volume fraction to prevent rapid stress changes through the interface. The following equations represent the variation of volume fraction using two power-law indices [19],

\[
g_1(z) = 1 - \frac{1}{2} \left(\frac{h - z}{h/2} \right)^p \text{ for } 0 \leq z \leq \frac{h}{2} \\
g_2(z) = \frac{1}{2} \left(\frac{z + h/2}{h/2} \right)^p \text{ for } -\frac{h}{2} \leq z \leq 0
\]

(4)

By using the rule of mixture, Young's modulus of the Sigmoid FGM can be calculated by,

\[
E(z) = g_1(z)E_1 + [1 - g_1(z)]E_2 \text{ for } 0 \leq z \leq \frac{w}{2} \\
E(z) = g_2(z)E_1 + [1 - g_2(z)]E_2 \text{ for } -\frac{h}{2} \leq z \leq 0
\]

(5)

Figure 4 shows the variation of FGM volume for different values of \(p\) by employing the sigmoid function.

![Figure 4](image)

Figure 4. Variation of Young’s modulus and the thickness of the FG plate using the sigmoid function [20].
2.4. Mori-Tanaka scheme

This method is suitable for composite materials with a well-defined continuous matrix and gradually discontinuous particle-phase microstructure regions. Similarly, this method also considers the influence of the elastic field between adjacent inclusions and their interaction with the components. The effective bulk modulus K_z and shear modulus G_z are calculated according to the following formula [21].

\[
\frac{K_z-K_m}{K_c-K_m} = \frac{V_f \Pi}{1+(1-V_f)\left(\frac{K_c-K_m}{K_m+2G_m}\right)}
\]

(6)

\[
\frac{G_z-G_m}{G_c-G_m} = \frac{V_f \Pi}{1+(1-V_f)\left(\frac{G_c-G_m}{G_m+G_m}\right)}
\]

(7)

\[
f_m = \frac{G_m(9K_m+8G_m)}{6(K_m+2G_m)}
\]

(8)

The modulus of elasticity E_z and Poisson’s ratio v are evaluated using the Bulk modulus K_z and the modulus of shear G_z as indicated below, [22],

\[
E_z = \frac{9K_zG_z}{3K_m+G_z}
\]

(9)

\[
v = \frac{3K_z-2G_z}{2(3K_m+G_z)}
\]

(10)

The heat conductivity K_z and thermal expansion parameter α_z are as follows,

\[
\frac{K_z-K_m}{K_c-K_m} = \frac{V_f \Pi}{1+(1-V_f)\left(\frac{K_c-K_m}{3K_m}\right)}
\]

(11)

\[
\frac{\alpha_z-\alpha_m}{\alpha_c-\alpha_m} = \frac{\frac{1}{K_z} - \frac{1}{K_m}}{\frac{1}{K_c} - \frac{1}{K_m}}
\]

(12)

3. Literature review on the free vibration of functionally graded rectangular plates

Rectangular plates are widely used in many engineering applications due to their ability to deal with the various loads' conditions (mechanical and thermal). The instability of the plate is caused by the in-plane compressive stress caused by these loads. For FGM plates, the stability problem is susceptible to boundary type conditions and material thickness variations [23]. When studying the vibration of FGM plates and beams, many researchers used frequent parameters that affect the fundamental natural frequency, Batra and Vel [24] provided an accurate solution for free vibration analysis of 3D of FGM plates. They assumed that the plate is made of an isotropic material with material properties varying in the thickness direction only. Farajollah Zare Jouneghani et al. [25] used the first-order shear deformation theory to study an FG porous shell's free vibration problem. Vyacheslav N. et al. [26] provided 3D modeling of free vibration and static response of functionally graded materials (FGM) sandwich plates. J. Woo [27] studied the dynamic response of an FGM thin plate using nonlinear analysis. The thin rectangular plate has an impact force locally distributed and has no or no elastic foundation. Prapot and Nuttawit [28] described the flexural vibration analysis of a functionally graded sandwich plate resting on an elastic foundation under arbitrary boundary conditions: Chebyshev collocation technology, the governing equation of free vibration problem is derived, and some of the crucial influences on the relationship between shear deformation and rotational inertia are given. Nuttawit Wattanasakulpong et al. [29], based on the improved coupling stress theory, the vibration state of dimension-dependent functionally graded sandwich microbeams with different boundary conditions was studied. Tran Van Liena et al. [30] used the dynamic stiffness method to study the free and forced vibration analysis of the multi-crack FGM multi-span continuous beam and explained the crack's influence on the vibration of the functionally graded beam. A.W. Leissa [31] used combinations of boundary conditions to investigate FGM rectangular plates' free vibration problems.
A. F. Mota et al. [32] studied the mechanical behavior of porous functionally graded nanocomposite materials and analyzed nanocomposite functionally graded materials with different porosity distributions. Hassen Ait Atmane et al. [33] conducted a free vibration analysis on a porous functionally graded material beam resting on an elastic foundation. Mechab et al. [34] proved the effects of pores on the dynamic analysis of functionally graded materials nanoplates depend on Winkler–Pasternak foundation. Adda Hadj Mostefa and Merdaci Slimane [35] studied the influence of material property distribution and porosity on the natural frequency of FGM sandwich panels and explained different boundary conditions. Mesut Simsek [36], the free vibration frequency of rectangular plates has been evaluated in research and modern fields under different possible combinations of classical boundary conditions. Baferani et al. [37] described a mathematical model of free vibration of FG thick rectangular plates placed on an elastic foundation. Senthil S.Vela and R.C. Batrab [24] used Mori–Tanaka and self-consistent methods to study the accurate three-dimensional solutions of free vibration and forced vibration of a simply supported functionally graded rectangular plate. Also, Malekzadeh [38] combined 3D shear theory to study the dynamic response of thick functionally graded plates resting on elastic foundation. Liu et al. [39, 40] explained the influence of in-plane material inhomogeneity on the fundamental frequency of the FGM plate. In the mathematical model representation, the kinematic relations relying on the classical plate theory (CPT) were considered, and the analysis of rectangular plates using the (Rayleigh–Ritz) method was mentioned in [41–43]. According to different combinations of classical boundary conditions, rectangular plates' free vibration frequency is described in [44–46]. Reddy [47] proposed a general formula for FG plates using the 3D shear deformation theory. F. Liu and Liew [40] the free vibration of a medium-thickness rectangular plate is studied by the differential orthogonal parameter technique. Matsunaga [48] estimated the natural frequency and buckling stress of FG plates based on the two-dimensional high-order shear deformation theory. Hosseini Hashemi et al. [49] introduced the precise structural arrangement of 3D elasticity theory to study the free vibration of FG simply supported rectangular plates.

4. Functionally graded sandwich plates

The wide application of sandwich structures in automotive, marine development, transportation, and aviation companies has attracted many considerations, and specific researchers have performed continuous static and dynamic inspections on them. Due to the outstanding performance of high strength-to-weight ratio, the use of sandwich structures in the field of micro auxiliary frames is constantly developing [50]. Therefore, in a wide range of FGM material types and uses, it is crucial to explore the static and dynamic behavior of auxiliary personnel with FGM, such as beams and plates [51, 52]. Consider the plate comprised of homogeneous hardcore and FGM face sheets [53–58]. The material non-uniformity of the FGMs is assumed as follows [59],

\[
V_m = \begin{cases}
\left(\frac{2z+h}{2h_f}\right)^k & -\frac{1}{2}h \leq z \leq -\frac{1}{2}h_H \\
1 & -\frac{1}{2}h_H \leq z \leq \frac{1}{2}h_H \\
\left(\frac{2z+h}{2h_f}\right)^k & \frac{1}{2}h_H \leq z \leq \frac{1}{2}h
\end{cases}
\]

(13)

Where \(h_H\) and \(h_f\) are the thickness of the plate core and each FG sheet, respectively. The material heterogeneity of the whole FG structure can be evaluated by using the Voigt rule. Therefore, the material inhomogeneity of the sandwich plate \(P\) varies with the thickness coordinates as,

\[
P(z) = \begin{cases}
P_c + P_{mc}\left(\frac{2z+h}{2h_f}\right)^k & -\frac{1}{2}h \leq z \leq -\frac{1}{2}h_H \\
P_m & -\frac{1}{2}h_H \leq z \leq \frac{1}{2}h_H \\
P_c + P_{mc}\left(\frac{2z+h}{2h_f}\right)^k & \frac{1}{2}h_H \leq z \leq \frac{1}{2}h
\end{cases}
\]

(14)
5. Research on vibration of FGM structures with porosities

Because of technical issues during the manufacture, porosities and microvoids can be made inside the FGM plate, which may essentially decrease the quality of materials. The assembling strategies for FGMs are a creating region; the sintering strategy is the most utilized because of its cost-saving advantage proportion. In any case, the sintering cycle empowers the development of microvoids or porosities [9]. Despite the critical improvement observed recently here, porosity stays an incessant imperfection in FGMs. As related above, porosities are outcomes of the assembling cycle and decrease the material's quality. Henceforth, the effect of this type of imperfection is necessary to consider the porosity effect on unique attributes of FGM structures conveying porosities [60]. Yan Qing Wang and Jean W. Zu contemplated vibration practices of practically evaluated rectangular plates with porosities and moving in a warm domain [61]. Saidi Hayat and Sahla Meriem [62] utilized vibration analysis of functionally graded plates with porosity made out of a mixture of Aluminum (Al) and Alumina (Al2O3) installed in an elastic medium.

Xiang-Yu Zhang et al. [63] altered the topological design, porousness, and mechanical conduct of additively fabricated functionally graded porous metallic biomaterials. Free vibration of Timoshenko beams with porosities was carried out by Wattanasakulpong and Chaiikittratana, who thought about unevenly conveyed porosities in the model [29]. Y.H Dang et al. [64] additionally gave the conversation on free vibration attributes inferable from porosities occurring inside FGM tests of the graphene fortified permeable nanocomposite barrel-shaped shell with a spinning motion. Concerning porosity distributions, Nguyen et al. [65] studied the mechanical conduct of porous FGP. For this reason, they considered two diverse porosity appropriations, shifting both through the thickness direction (to be specific, the even and uneven distributions). Zhang and Wang [66] created eight different porous material structures with deferent pore appropriations, including gradient distributions, and exposed them to some mechanical tests to assess significant materials properties like Young's modulus. Functionally graded porous materials join the qualities of both FGMs and porous materials. Beyond the great rigidity–weight ratio, the exceptional mechanical properties they present to clarify why these particular materials are broadly utilized in a broad scope of various fields [67].

Notwithstanding incredible advancements in assembling measures, the arrangement of micro-voids or porosities is as yet a reality [68], and in some particular applications, this can be even alluring and intended for. Notwithstanding the particular case, the material's strength will become lower as a result of these pores, which should be remembered for mechanical conduct contemplates [69]. Three types of porosity distributions through the thickness proposed by Kim et al. [70] and applied in numerous studies, along with the ones evolved by using Coskun et al. [71] and by Zhao et al. [72]. The closing was inspired inside the uniform distribution referred to Merdaci [73], whose studies recognize the case of a typical functionally graded ceramic/metal square plates considering deferent porosity distributions through the thickness. Moreover, Chakraverty and Pradhan [14, 74] have studied the free vibration of thin FG rectangular plates in the presence of complicated environments. Nuttawit and Variddhi [75] investigated the porosity parameter that influences the frequency parameter of FGM restrained ends beams using a combination of linear and nonlinear analysis.

6. Analytical solution of free vibration of fg rectangular plate

The static and dynamic response of FG plates had been studied by many researchers based on specific plate theories defined below. Generally, in vibration problems, the displacement fields of the deformed beam (or plate) can be decided via shear deformation beam (or plate) theories. Instead of classical beam (or plate) theory, exceptional varieties of deformation theories may also be observed in the open literature. It might also occur because of the reality that the classical plate (or beam) idea neglects transverse shear deformation outcomes. To have a look at the vibration characteristics, the displacement fields of deformed FG beams and plates are considered with recognition to transverse displacement. Higher-order deformation beam theories of various forms are assumed by taking transverse shear deformations in the case of FG beams, whereas the classical plate theory (CPT) is taken into consideration within the case of FG plates with different geometries. A new quasi-three dimensional high shear deformation theory for the vibration of the functionally graded plate was considered by [76].
Baferani et al. [77] have analyzed the dynamic response of functionally graded thin plates. The governing equations of motion are obtained based on the classical plate theory, and the effects of aspect ratio, thickness, length ratio, power-law index, and boundary conditions on the vibration characteristics of functionally graded rectangular plates are discussed in detail. The nonlinear bending analysis is presented by Shen [78] for a simply supported functionally graded plate subjected to a transverse uniform or sinusoidal loads in thermal environments. Yang and Shen [79] have offered free and forced vibration analyses for initially stressed functionally graded plates in thermal surroundings.

6.1. Classical plate theory (CPT)

The two-dimensional plate theories can be categorized into two types: (1) classical plate theory, in which the transverse shear deformation consequences are neglected, and (2) shear deformation plate theories. In the two-dimensional theory, the free vibration, thermal, and stability problems of the FGM structures, the displacement is represented in terms of thickness, while the lateral displacement is independent of the lateral (or thickness) coordinates. The results of the mathematical model in the coupled governing equation are independent of lateral displacement. Therefore, the analytical solution of this type of equation may be simpler than the solution procedure of three-dimensional elasticity theory [80]

The easiest method concept is the Classical Plate Theory (CPT), which is an extension of the Kirchhoff (classical) plate theory to laminated composite plates. The conventional Kirchhoff model is no longer regarded as the effect of shear deformation; consequently, it is solely relevant for thin plate analysis. The classical plate principle was once at the beginning developed for homogeneous isotropic plates and was later extended to laminated composite and FGM plates. Most researchers hire CPT in the analysis alongside with the solution of FG plates of various shapes, viz. rectangular, elliptic, and triangular alongside with specific complicating results (elastic foundation, thermal environment, and piezoelectricity). Based on the physical neutral surface property, Zhang and Zhou [81] used classical plate theory to analyze FG thin plates neglecting the tension-bending coupling effect in the mathematical formulation for deflection problems. Liu et al. [39] studied the analysis of CPT-based FGM plates, especially when the material properties changed through the thickness, the effect of this configuration on the panel's natural frequency. Generally, the classical or Kirchhoff’s plate theory is based on the following assumptions [82, 83],

- The thickness of the plate is small in contrast to different dimensions.
- The normal stresses in the route transverse to the plate are taken to be negligibly small.
- The effect of rotatory inertia is negligible. The normal to the undeformed middle surface remains straight, and the normal to the deformed middle surface remains unstretched in length.

Using the CPT, the displacement fields of FG plates across the plate thickness at a distance z away from the middle surface are [84, 85],

$$
\begin{align*}
 u_x(x, y, z) &= -z \frac{\partial w}{\partial x} \\
 u_y(x, y, z) &= -z \frac{\partial w}{\partial y} \\
 u_z(x, y, z) &= w(x, y)
\end{align*}
$$

Where, u_x, u_y and u_z are the displacement of a point on the reference plane in the x, y, and z directions, respectively, and w represents the lateral deflection of the points on the mid-plane (x-y plane). The Kirchoff model is not considered the effect of shear deformation due to bending and plane elongation.

6.2. First-order shear deformation theory

When a shear correction component is needed to compensate for the difference between the proper stress state and the assumed normal stress state, the first-order shear deformation theory (FSDT) is used. It was developed by Mindlin [86], and Reissner [87] accounts for the effect of shear deformation, but it violates the traction-free boundary conditions at the ends of the desired surface [88,
Aghdam et al. [90] combined the iterative technique with the Kantorovich method and based on the theory of first-order shear deformation to investigate a static analysis of the bending of medium-thickness FG plate. Therefore, shear correction parameters are needed to compensate for the difference between the actual stress and the assumed normal stress state. Hosseini-Hashemi et al. [49] introduced the FOST, to study the free vibration of FGM plates based on the kinematics and constitutive equations for the proposed model to calculate the natural frequency, assuming that the properties of FG plate vary through the thickness and have a gradient index along with the part thickness orientation. M. Karami Khorraramabadi et al. [91] used both FOST and TSDT to investigate the free vibration problem of simply supported FG plates and discussed the differences between the two theories on the dynamic response of FG plates. Nguyen et al. [92] developed a new model of free vibration for FGM plates employing the assumptions of FOST in the closed-form solution. According to fundamentals of the first-order shear deformation plate theory [49], the displacement field can be expressed as,

\[
\begin{align*}
 u(x, y, z) &= u_0(x, y) + z\phi_x(x, y) \\
 v(x, y, z) &= v_0(x, y) + z\phi_y(x, y) \\
 w(x, y, z) &= w_0(x, y)
\end{align*}
\]

Where, \(u_0\), \(v_0\), and \(w_0\) denote the displacements at the mid-plane of the plate along the \(x\), \(y\), and \(z\) directions, and \(\phi_x\) and \(\phi_y\) represent the normal transverse rotations about the \(y\) and \(x\)-axes, respectively.

6.3. A simple higher-order shear deformation theory

To avoid using the shear correction thing and obtain a higher prediction of the transverse shear deformation and regular strains in FG plates, Higher-order shear deformation plate theories (HSDTs) have been proposed. In general, HSDTs can be developed based totally on higher-order variants of the in-plane displacements [93-95] or each in-plane and transverse displacements [96, 97] (i.e., quasi-3D theories). Using the simple and complete theory of trigonometric high-order, the bending and vibration of FG parts are discussed to study the influence of normal transverse strain on deflection and stress [98]. Fakhari et al. [99] used thermal, electrical, and mechanical loads to propose a new nonlinear mathematical model based on high-order shear deformation theory to evaluate FG plates' natural frequency and stability with piezoelectric layers bonded through the part surface. However, HSDTs are enormously computational due to many unknowns (e.g., theories employing Neves et al. [100] with nine unknowns). Among different HSDT, Whitney and Sun [101] introduced the second-order shear deformation formulation and the TSDT of Lo et al. [102] with (11 unknowns), Kant [103] with six unknowns, Bhimaraddi and Stevens [104] with five unknowns, and Hanna and Leissa [57] with four unknowns, furthermore the TSDT proposed by Chen and Reddy [105] with five unknowns is the most generally utilized model in the investigation of FG vessels due to its acceptable results. Reddy [106] with (eleven unknowns) while Jha et al., [107] with (12 unknowns), Talha and Singh [108], and Natarajan and Manickam [109] with (13 unknowns). Many modifications are performed on this concept, such as a quasi-3D (hyperbolic, sinusoidal, simple, and higher-order shear deformation theory). Khalili and Mohammadi [110] used an improved high-order sandwich plate theory to analyze sandwich plates' free vibration with FGM face sheets in various thermal environments. According to fundamentals of the shear deformation theory, both the axial and lateral displacement \(u_x\) & \(u_z\) at any point of the plate or beam can be represented as [111],

\[
\begin{align*}
 u_x(x, z) &= u(x, t) - zw_x(x, t) + f(z)v(x, t) \\
 u_z(x, z) &= w(x, t)
\end{align*}
\]

Where, \(u\) and \(w\) represent the axial and lateral displacement of any point on the neutral axis, and \(v\) is a special function, which depends on the actual value of the shear strain on the symmetry axis, \(f(z)\) represents the geometric function to be calculated with assistance both of strain and stress resulting from transverse action across the plate thickness, and the derivative of the lateral displacement concerning \(x\) is the component \(w_x\). By selecting the correct form of the structural characteristic function \(f(z)\), the various mathematical formulation can be obtained, classical plate theory (CBT),
first-order shear deformation theory FSDT, higher-order shear deformation theory HSDT, exponential shear deformation plate theory (ESDT, sinusoidal shear deformation plate theory SSDT, as mentioned in Simsek, \(f(z)\) for these, are given below [36],

\[
\begin{align*}
\text{BT: } f(z) &= 0, \quad \text{FSDT: } f(z) = z \\
\text{HSDT: } f(z) &= \left(1 - \frac{4z^2}{3h^2}\right), \quad \text{ESDT: } f(z) = ze^{-2(z/h)^2} \\
\text{SSDT: } f(z) &= \frac{h}{n} \sin\left(\frac{\pi z}{h}\right)
\end{align*}
\] (18)

6.4. Zeroth-order shear deformation theory

To predict actual results for the free vibration and buckling load problems associated with FGM structures, a Zeroth-order shear deformation principle was utilized. This concept was first explored through Shimpi [112] for isotropic plates and later stretched out by Ray [113] for laminated composite plates. They affect the use of shear forces used to be taken into accounts in the Zeroth-order as an alternative of rotational displacements of transverse shear deformation as in present shear deformation theories. The zeroth-order shear deformation theory contains the equal five unknowns in the first-order shear deformation theory; however, it satisfies the traction-free boundary conditions on the plate's top and bottom surfaces besides requiring any shear correction factor. Using the zero-order shear deformation theory, equations of motions and the analytical solutions are derived. The frequency parameter of the free vibration analysis of functionally graded plates treated with nanoparticles mounting on elastic foundations was carried out [114,115]. Based on the CPT, the linear constitutive relations of an FG plate such as the bending and twisting moments \(M_{xx}, M_{yy}, \) and \(M_{xy}\) respectively on a plate element in the pure bending case can be written as [116],

\[
\begin{align*}
M_{xx} &= \frac{1}{2} \int_{-h/2}^{h/2} \sigma_{xx} z dz = \frac{E}{(1-v^2)} \int_{-h/2}^{h/2} \left(\varepsilon_{xx} + v\varepsilon_{yy}\right) dz = -D \left(\frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2}\right) \\
M_{yy} &= \frac{1}{2} \int_{-h/2}^{h/2} \sigma_{yy} z dz = \frac{E}{(1-v^2)} \int_{-h/2}^{h/2} \left(\varepsilon_{yy} + v\varepsilon_{xx}\right) dz = -D \left(\frac{\partial^2 w}{\partial y^2} + v \frac{\partial^2 w}{\partial x^2}\right) \\
M_{xy} &= \frac{1}{2} \int_{-h/2}^{h/2} \sigma_{xy} z dz = G \int_{-h/2}^{h/2} \gamma_{xy} z dz = -(1 - v)D \frac{\partial^2 w}{\partial x \partial y}
\end{align*}
\] (19)

Then,

\[
\begin{align*}
\frac{\partial^2 M_{xx}}{\partial x^2} - 2 \frac{\partial^2 M_{yy}}{\partial x \partial y} + \frac{\partial^2 M_{xy}}{\partial y^2} &= I_0 \frac{\partial^2 w}{\partial t^2} \\
D_{FG} &= \int_{-h/2}^{h/2} \frac{z^2}{(1-v_f^2)} E(z) dz \\
D_{FG} &= \frac{(E_c-E_m)h^3}{(1-v_f^2)} \left(1 - \frac{1}{k+3} - \frac{k+1}{4(k+1)}\right) \frac{E_m h^3}{12(1-v_f^2)}
\end{align*}
\] (20)

where, \(D_{FG}\) is the stiffness coefficient of the functionally graded plate. And,

\[
I_0 = \int_{-h/2}^{h/2} \rho(z) dz
\]

\(I_0\) is the moment of inertia of the FGM plate, which can be expressed in terms of the volume fraction index as,

\[
I_0 = \int_{-h/2}^{h/2} \left((\rho_c - \rho_m) \left(\frac{z}{h} + \frac{1}{2}\right)^k + \rho_m\right) dz
\]

\[
= \int_{-h/2}^{h/2} \left((\rho_c - \rho_m) \left(\frac{z}{h} + \frac{1}{2}\right)^k\right) dz + \int_{-h/2}^{h/2} \rho_m dz = \frac{(\rho_c-\rho_m)h}{(k+1)} + \rho_m h
\] (23)
Where, \(E_c \) and \(E_m \), are young modulus for ceramic and metal respectively; \(\rho_c \) and \(\rho_m \), are the mass density for ceramic and metal respectively; \(\nu_{FG} \) is Poisson’s ratio for the FGM plate, and \(h \) is the thickness of the FGM plate. Substituting Eqs. (7), (12) and (13) into Eq. (10), the solutions can be obtained from

\[
\left(\frac{(E_c-E_m)h^3}{(1-\nu_{FG}^2)} - \frac{1}{k+3} + \frac{1}{4(k+1)} \right) + \frac{E_{mh}h^3}{12(1-\nu_{FG}^2)} \left(\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} \right) + \left(\frac{(\rho_c-\rho_m)h}{k+1} + \rho_m h \right) \frac{\partial^2 w}{\partial x^2} = 0
\]

(24)

7. Stability analyses of FGM plates

The stability research of functionally graded material plates involves calculating the buckling loads under different boundary and load conditions. Generally, there are two types of solutions. The first is the three-dimensional (3D) elastic theory, used to determine stability status, and the eigenvalue problem needs to be calculated. However, there is no report on using three-dimensional elastic theory (a high-precision analysis technique) for buckling analysis of FGM plates so far. The second is the two-dimensional (2D) plate theory [117]. Rectangular plates are used as much as possible in industrial applications and tend to withstand various loading conditions, such as mechanical or thermal loads. These loads will generate in-plane compressive stresses, which will lead to instability of the plate. For isotropic and FG plates, the buckling problem is critical for boundary type conditions and material thickness variations [118]. This article covers various studies on the buckling of FGM structures, as follows: Ashraf Zenkour et al. [119] used third-order deformation theory and nanobeam resting on Pasternak’s foundation to study the influence of the shear deformation and the slenderness ratio on the buckling behavior of the functionally graded part.

Huang and Li [120] presented various beam theories to investigate functionally graded columns' stability according to more than a few types of load conditions. Wang et al. [121] explained that the classical plate theory (CPT) in which the transverse shear deformation consequence neglected; therefore, the classical plate theory usually underestimates deflection and overestimates the natural frequencies and buckling loads for thick plates. Samsam Shariat et al. [122] investigated the Buckling evaluation of functionally graded plates subjected to uniaxial loading. Birman [123] studied the buckling problem of functionally graded composite rectangular plates subjected to uniaxial compression. Lee et al. [124] studied Post-buckling analysis of functionally graded plates’ concern to compressive and thermal loads. Wu L. [125] developed a new model of a simply supported rectangular functionally graded plate and studied the effect of aspect ratio and temperature gradient on buckling analysis. Czechowski L. et al. The buckling and post-buckling studies of step-variable FGM boxes were carried out [126]. Javaheri [127] studied the buckling of functionally graded plates under plane gradient compressive loads. Bekir Akgöz and his co-authors used the strain gradient theory and introduced the exact solution of FG microbeam stability analysis [128]. Fekrar et al. [129] proposed a new refined theory using the Navier method and including four unknown functions with in-plane loading to study the mechanical buckling of FG simply supported hybrid plates. The correspondence relationship between the deflection, buckling load, and frequency of functionally graded thin materials and corresponding homogeneous plates has been studied by Li Shirong et al. [130].

Shi-Rong Li et al. have learned about correspondence relations between deflection, buckling load, and frequencies of thin functionally graded materials and those of corresponding homogeneous plates [130]. Soldatos [131] presented 2D deformation theory based on Hamilton’s principle and Lagrange multipliers to examine the stability of the homogeneous monoclinic plate. Oyekoya et al. [132] introduced a new analytical solution for the buckling of FG structures and used the finite element method to validate the analysis results. Also, a great deal of study has been performed by Bodaghi M et al. [133] to solve an analytical model with the assistance of higher-order shear deformation plate theory to find a solution for buckling analysis of thick FG rectangular plates. M.M. Najafizadeh and M.R. Eslamia evaluated the response of FG plates with various geometrical considerations subjected to compressive load [134]. B. Sidda Reddy et al. used the theory of high-order shear deformation to analyze the buckling of functionally graduated material plates [135]. Farzad Ebrahimi and Fateme Mahmood [136] presented a modified couple stress concept for buckling evaluation of higher-order inhomogeneous microbeams with porosities. The difficulty of the new
principle of shear deformation for various engineering parts, such as laminated composite plates, is studied with the aid of [137].

Zenkour [138] presented a complete evaluation of the buckling and free vibration of a simply supported FG sandwich panel consisting of a homogeneous core and FG upper and lower parts. Elias Y. Ali and Yared S. Bayleyegan [139] presented a detailed study that includes an analytical and numerical calculation for buckling analysis of FG rectangular plates subjected to compression load in one direction. Akhavan et al. [140] evaluated the buckling analysis of a rectangular Mindlin plate under uniform load resting on the Pasternak elastic foundation and explained the influence of parameters such as foundation stiffness coefficient, boundary conditions, and thickness ratio on the buckling behavior. Meiche et al. [141] modified the new mathematical model of the dynamic response for the FG sandwich plate based on the hyperbolic shear deformation theory. Shen et al. [142] studied the post-buckling of sandwich panels with FGM panels and temperature-dependent characteristics. Kiani et al. [51] studied the stability and dynamic characteristics of functionally graded sandwich panels placed on Pasternak elastic foundations using different boundary conditions. Nguyen and Tung [143] introduced CPT and derived a mathematical model from studying FG plates' buckling analysis using different loads and aspect ratios. Park and Kim [144] developed a numerical model based on FSDT to study FGM plates' post-buckling response under thermal loads. Lee and Kim [145] studied the post-buckling of FGM panels in response to thermal environments. As an application, Zhang and Zhou [146] studied sandwich plates' equilibrium behavior made of functionally graded materials. They proposed the free vibration, buckling, and deflection analysis of FG structures based on physically neutral surfaces.

Sobhy [147] analyzed the critical buckling load and free vibration of an exponential sandwich plate based on an elastic foundation under uniform shear under different boundary conditions. Hessameddin Yaghoobi and Pooria Yaghoobi [148] studied the buckling behavior of asymmetric FGM structure placed on an elastic foundation using the structural equation of FSDT and considered various boundary mechanics, thermodynamics, and thermodynamic analysis conditions. Based on the element-free Ritz procedure and FSDT, the buckling behavior of stable plates and plates with notches at the core was studied by Zhao et al. [149]; it was found that the influence of the volume fraction index affects the buckling temperature positively. Jalali et al. [150] used a new spectral method to study the effect of the volume fraction index on the stability degree and the results of thermal stresses owing to the buckling of sandwich round plates with variable thickness. It was concluded that the buckling load parameter would increase with a make bigger in volume fraction index and a decrease in the FG core to homogenous face sheet thickness ratio. Yu et al. [151] used an imperfect FGM plate, combined with the first-order shear deformation theory, and studied the buckling response using an extended isogeometric analysis method.

Latifi [85] used Fourier series expansion to analyze the stability analysis of rectangular FG plates under various boundary conditions. S. Sirinivas and A. K. Rao [152] conducted an investigation on bending, vibration, and buckling of simply supported thick orthotropic rectangular plates and laminates. Also, Na and Kim [153,154] investigated functionally graded composite rectangular plates subjected to uniaxial compression. The bending and buckled parts of FGM plates can be studied for various aspect ratios. Although the plate's buckled arrangement can be demonstrated in each load case, the shear and biaxial buckling styles of the linear gradient functionally graded plate at the aspect ratio = 1% have been obtained and given in [155]. In [156, 157], an alternative method of deriving the buckling analysis equilibrium equation based on virtual displacement is mentioned. Using the energy method, M. Mohammadi et al. [158] proposed a general analysis program for the stability analysis of a thick FG rectangular plate with two simply supported opposite edges in uniaxial compression .M. Darvizeh et al. [159] studied the buckling behavior of simply-supported composite plates subjected to compressive loading condition by using the total potential energy technique in conjunction with the Rayleigh-Ritz method. Javaheri and Esfami [160,161] introduced classical and higher-order plate theories to investigate FG rectangular plates' thermal and mechanical buckling. Wu et al. [125] using fast-converging finite double Chebyshev polynomials, the post-buckling response of FG plates is obtained by thermomechanical load analysis. The mathematical formula is based on FOST and von-Karman nonlinear kinematics. The stability equation of the thin plate can be obtained by the
variational approach. To identify the stability of the FG structural part, the buckling force can be found by solving the equilibrium equation in the form of a diaphragm, resulting in the following bending stress [162,163],

\[M_{xx} = 2M_{xy} + M_{yy} = N_x w_{xx} \]
\[\frac{\partial^2 M_{xx}}{\partial x^2} - 2 \frac{\partial^2 M_{xy}}{\partial x \partial y} + \frac{\partial^2 M_{yy}}{\partial y^2} = -q_x \]
\[D_{R} \left(\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} \right) = N_x \frac{\partial^2 w}{\partial x^2} \]

8. Numerical investigation

To verify the accuracy of the analytical solutions, numerical methods are usually used. There are many mathematical methodologies utilized for problem-solving [164-177]; however, the most exact is Finite Element Analysis (FEA) and Meshless methods [178-191]. FEA is a versatile and necessary strategy for assessing most of the design problems permits the investigation of the different structures without improving and including complex relations [192,205]. Furthermore, hybrid numerical mathematical techniques include the Rayleigh-Ritz finite element method (FEM) [206-219], and the differential orthogonal method is used to solve free vibration and buckling problems exposed to dynamic and static problems [220-232]. The dynamic behavior of the FG plate has been studied by many researchers in the world utilizing analytical analysis and various numerical methods. Below, a summary of numerical techniques is used in most research studies.

Numerical results of Mantari et al. [233] were bound to the same layer of the functionally graded sandwich plate, while Zenkour and Sobhy [234,235] dealt with the same and different parts of the FGM sandwich plate. Many studies have been proposed to perform buckling analysis of FGM structures with general boundary conditions. The stability analysis in the thermal environment of Kiani and Eslami [236] depends on the details of the Galerkin procedure combining with the free KP-Ritz arrangement developed by Liew et al. [237] in this category. Chi and Chung used FEA to describe FGM plates’ dynamic response under various loads [238]. Pradyumna and Bandyopadhyay [239] developed a new mathematical model based on the principles of the higher-order formulation; to solve the buckling problem in FGM structures. Additionally, buckling analysis of FG simply-supported plates was carried out by Nguyen-Xuan et al. [240] using a higher-order finite element formulation. Khalili et al. [241] introduced Rayleigh-Ritz and differential orthogonal methods to study the dynamic response characteristics of functionally gradual structures under fluctuating loads. Jafari and Eftehari [242] proposed a new version of coupled finite element and differential orthogonal to study the dynamic characteristics of beams under dynamic loads.

Zhao et al. [243] proposed an element-free KP-Ritz method to analyze the free vibration of metal-ceramic FG plates whose material properties vary continuously throughout the thickness of the plate layers. Zhu and Liew [244] used the local Kriging meshless method to analyze metal and ceramic FG plates' free vibration. The comprehensive study includes the static and buckling analysis of the laterally loaded FG plate using the FEA formulation described in [245]. Dozio [246] presented 2-D Ritz models using FEA to study the dynamic behavior of FG sandwich plates with homogenous face sheet. A finite strip element for the analysis of variable thickness rectangular thick plates was investigated by [247]. K. M. Liew [248] presented an adequate solution for free vibration problems of multilayers plate using a mesh-free Galerkin method. Civalek [249] proposed static and dynamic numerical solutions for the rectangular thin plate problem. To analyze static and dynamic in two and three-dimensional elasticity problems of FG structure, a standard FEM technique method has been consolidated by Song et al. [250]. An investigation of FG beams and plates dependent on first-order shear deformation theory using the finite element method model is developed by Chakraborty and Pradhan. [251]. Kant and Khare [252] used high-order shear deformation theory to analyze free vibration and tested the good performance of thin and thick plates and shells. A mixed finite element formulation with a bilinear shape function is used to solve free vibration problems in FGM structures such as the analysis of thin plates resting on an elastic foundation that has been done by many
researches [253]. Given the first and third-order shear deformation plate theories, an analysis of free vibrations of FG plates has been introduced by Ferreira et al. [254]. Shufrin and Eisenberger used a new numerical technique to study the stability and vibration of shear-deformable FG plates based on first-order and high-order analysis [255]. Finite element models based on the third-order shear deformation theory were presented to analyze FG plates’ static and dynamic analysis by Reddy [256]. Navier arrangements acquired for a simply supported square plate under sinusoidally distributed load were presented, including the effect of shear deformation [257]. Kim and Hoa [258] experimentally determined the dynamic mechanical behavior of the composite plate under biaxial load and performed a numerical analysis. Sundararajan et al. [259] modified a combination of FSDT and correlation analysis with a high grade of node physical element representation conducting on a flexible quadrilateral plate made of FG to perform static and dynamic analysis. Malekzadeh and Shojaee [260] used eight-node physical elements and mathematical formula models to check the accuracy of FSDT on the dynamic response of printed FG parts subjected to heat movement. For static and vibration analysis of FGM structures recently, meshless technology has been widely used in different engineering analyses due to its flexibility [261]. Parandvar and Fārīd [262] proposed a new finite element modal technique that includes the development of system uniformity methods to deal with the free vibration of functionally graded plates. A modified Kirchhoff plate theory for free vibration analysis of FGM plates using the mesh-free method has been proposed by Vuong Nguyen Van Do [263]. Qian et al. [264,265] analyzed free and forced vibrations of both homogeneous and FG thick plates with the higher-order shear and normal deformable plate theory by using the meshless local Petrov–Galerkin method. Zhu and Liew [266] have developed a meshless method for FGM structure based on FSDT analysis using Kriging interpolation and von-Karman nonlinearity. Wang and Luo [267] used a meshless collocation and an element-free Galerkin method for the 3D free vibration of FGM sandwich plates. Yas and Aragh [268] used the generalized differential orthogonal method to analyze the four parameters and proposed a flexible solution for FGM cylindrical part. For the same arrangement, Pandey and Pradyumna [269] proposed commonly used numerical techniques to study the free vibration of FG sandwich plates installed in thermal surroundings. Hosseini Hashemi et al. [270] used both three-dimensional elasticity solutions and a finite element model to investigate two types of load (in-plane and out-of-plane) free vibrations for thick FGM simply supported rectangular plates, [271-273].

9. Discussion
Functionally graded material is a high-quality material that will revolutionize the manufacturing world in the 21st century. There are many roadblocks to understanding this target. Cost is a transcendent issue, with a tremendous section of the cost expended on the powder preparing and manufacturing strategy. In this work, a basic outline for study static and dynamic response of rectangular and sandwich plate with FGM core and metal face sheets for the selected models utilizing both the proposed analytical solution and numerical is completed to get the natural frequency and critical buckling load problem of sandwich structures. The FGM layers are graded throughout the thickness metal through changing more than a few parameters included but not restrained to gradient index, face sheet thickness, FGM thickness, aspect ratio, number of FGM platelayers, etc. The materials are assumed to be distributed to upper and lower plate parts and, the FGM part comprises various materials, for example, ceramic and aluminum.

10. Concluding remarks
It can be inferred from various applications that beams and plates' vibration research is a significant field. The dynamic response includes evaluating frequency parameters, mode shape, stability, and buckling load in various complex environments. Likewise, various analysis and calculation techniques can be used to evaluate vibration characteristics. Existing literature has reviewed various studies on the free vibration and buckling analysis of FG plates. People try their best to remember all the essential contributions in the current field of interest, focusing on the most relevant works available to research engineers studying FG plate structures. The general comments of the present writing overview are as follows:
1. Many researchers have made great efforts to study the free vibration and the buckling in beams, rectangular plates, and sandwich plates, but it should be noted that compared with the analysis mentioned above methods that there are limited trails to investigate same above analysis for FGM sandwich plate with the porous metal taking in account some important parameters such as power-law index, thickness ratio, face sheet thickness, porous ratio, FGM core thickness and the number of layers.

2. It is found that a three-dimensional analytical solution for FG plates can be utilized to check the accuracy of various 2D plate theories and finite element formulations, but in most cases, there is major trouble to distinguish the numerical the mathematical representation for the selected models and get results. By checking the 3-D elasticity solution results, the dynamic response due to the 2D shear deformation theory is verified and accurate. No correlation has been found between the accuracy of the results and verification with experimental work.

3. For CPT, the influence of transverse shear is eliminated. Therefore, it is only used for thin FG plates. In most 2D theories, the influence of transverse shear and normal transverse deformation is considered, so it is suitable for predicting dynamic response for both thin and thick FG plates.

4. For a fixed power-law exponent, the natural frequency of the FG plate increases with the increase of the aspect ratio, and for a fixed aspect ratio, the natural frequency of the FG plate decreases with the increase of the power-law exponent. Having assessed a large segment of the FGM research accessible, it is evident that virtually all the works conducted have been purely analytical or with numerical simulation, and there is an apparent lack in the experimental work.

5. Due to the wide application of FGM structures in engineering industries, subsequently, further work should be done to improve the process control for in general FGM manufacture improvement to suit execution which is connected with free vibration and the critical buckling load and investigate this subject in many types of research to distinguish and sufficient safe and bring down the cost of FGM.

6. For future work, it is found that a 3D thermoelastic solution has not been implemented. Few people consider the effect of temperature changes on the performance of FGM boards. To expand the thermal analysis of various structures, including nonlinear effects, detailed research must be conducted.

7. For free vibration and buckling load calculations, aspect ratio and various material distributions play a vital role in distinguishing the frequency and buckling load parameter values of FG rectangular plates. Also, maybe noticed in most studies of free vibration that as the aspect ratio increases, the FG rectangular plate's frequency parameters also increase. This fact is because as the aspect ratio increases, the plate stiffness becomes greater.

11. References

[1] G E Knoppers, J W Gunnink, J Van Den Hout and W Van Vliet 2005 The Reality of Functionally Graded Material Products (In Intelligent Production Machines and Systems-First I PROMS Virtual Conference: Proceedings and CD-ROM set), (Elsevier) pp 467

[2] Minoo Naebe and Kamyar Shirvanimoghaddam 2016 Functionally Graded Materials: a Review of Fabrication and Properties (Applied materials today) vol 5 pp 223–245

[3] Jha D K, Kant T and Singh R K 2013 A Critical Review of Recent Research on Functionally Graded Plates (Composite Structures) vol 96 pp 833–849

[4] M Shen and B Bever 1972 Gradients in Polymeric Materials (Journal of Materials Science) vol 7 no 7 pp 741–746

[5] M Koizumi and M Niino 1995 Overview of FGM research in Japan (Mrs Bulletin) vol 20 no 1

[6] S Suresh and A Mortensen 1998 Fundamentals of functionally graded materials (Materials Today) vol 1 no 4 p 18

[7] B Kieback, A Neubrand and H Riedel 2003 Processing Techniques for Functionally Graded Materials (Materials Science and Engineering) pp 81–105

[8] J J Lannutti 1994 Functionally Graded Materials: Properties, mPotential and Design
Guidelines (Composites Engineering) vol 4 pp 81–94

[9] Shahistha A, Varghese B and Baby A 2014 *A Review on Functionally Graded Materials* (The International Journal of Engineering and Science) vol 3 no 6 pp 90–101

[10] W Pompea, H Worch, M Epple, W Friess, M Gelinsky, P Greil, U Hempele, D Scharnweber, K Schulte 2003 *Functionally Graded Materials for Biomedical Applications* (Materials Science and Engineering) vol A362 pp 40–60

[11] E Müller, C Drašar, J Schilz and W A Kaysser 2003 *Functionally Graded Materials for Sensor and Energy Applications* (Materials Science and Engineering: A) vol 362 pp 17–30

[12] Cherradi N, Kawasaki A and Gasik M 1994 *Worldwide Trends In Functional Gradient Materials Research And Development* (Composites Engineering) vol 4 no 8 pp 883–894

[13] H J Xiang and J Yang 2008 *Free and Forced Vibration of a Laminated FGM Timoshenko Beam of Variable Thickness Under Heat Conduction* (Composites Part B: Engineering) vol 39 no 2

[14] S Chakraverty and K K Pradhan 2014 *Free Vibration of Exponential Functionally Graded Rectangular Plates in Thermal Environment with General Boundary Conditions* (Aerospace Science and Technology) vol 36 pp 132–156

[15] Metin Aydogdu and Vedat Taskin 2007 *Free Vibration Analysis of Functionally Graded Beams with Simply Supported Edges* (Materials and Design) vol 28 no 5 pp 1651–1656

[16] Reddy K S K and Kant T 2014 *Three Dimensional Elasticity Solution for Free Vibrations of Exponentially Graded Plates* (Journal of Engineering Mechanics) vol 140 no 7

[17] Delale F and Erdogan F 1983 *The Crack Problem for a Nonhomogeneous Plane* (ASME Journal of Applied Mechanics) vol 50 pp 609–614

[18] Chung Yen-Ling and Chi, S H 2001 *The Residual Stress of Functionally Graded Materials* (Journal of the Chinese Institute of Civil and Hydraulic Engineering) vol 13 pp 1–9

[19] Thang P T, Nguyen T T and Lee J 2016 *Closed-Form Expression for Nonlinear Analysis of Imperfect Sigmoid-FGM Plates with Variable Thickness Resting on Elastic Medium* (Composite Structures) vol 143 pp 143–150

[20] Bhandari M and Purohit K 2015 *Response of Functionally Graded Material Plate under Thermomechanical Load Subjected to Various Boundary Conditions* (International Journal of Metals) vol 2015

[21] T Mori and K Tanaka 1973 *Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions* (Acta Metallurgica) vol 21 pp 571–574

[22] Y Benveniste 1987 *A New Approach to the Application of Mori–Tanaka’s Theory of Composite Materials* (Mechanics of Materials) vol 6 pp 147–157

[23] Thai H T and Choi D H 2012 *A Refined Shear Deformation Theory for Free Vibration of Functionally Graded Plates on Elastic Foundation* (Composites Part B: Engineering) vol 43 no 5 pp 2335–2347

[24] Vel S S and Batra R C 2004 *Three-Dimensional Exact Solution for the Vibration of Functionally Graded Rectangular Plates* (Journal of Sound and Vibration) vol 272 no 3–5 pp 703–730

[25] Farajollah Zare Jouneghani, Rossana Dimitri, Michele Bacciocci and Francesco Tornabene 2017 *Free Vibration Analysis of Functionally Graded Porous Doubly-Curved Shells Based on the First-Order Shear Deformation Theory* (Applied Sciences) vol 7 no 12

[26] Vyacheslav N and Tomasz Sadowski 2020 *Free Vibrations and Static Analysis of Functionally Graded Sandwich Plates with Three-Dimensional Finite Elements* (Mechanica) vol 55

[27] J Woo, S A Meguid and L S Ong 2006 *Nonlinear Free Vibration Behavior of Functionally Graded Plates* (Journal of Sound and Vibration) vol 289 no 3 pp 595–611

[28] Prapat Tossapanon and Nuttawit Wattanasakulpong 2017 *Flexural Vibration Analysis of Functionally Graded Sandwich Plates Resting on Elastic Foundation with Arbitrary Boundary Conditions: Chebyshev Collocation Technique* (Journal of Sandwich Structures and Materials) vol 22 no 2 pp 156–189

[29] Nuttawit Wattanasakulpong and Arisara Chaikittiratana 2015 *Flexural Vibration of Imperfect Functionally Graded Beams Based on Timoshenko Beam Theory: Chebyshev Collocation Method* (Meccanica) vol 50 pp 1331–1342
[30] Tran Van Liena, Ngo Trong Đuc and Nguyen Tien Khiem 2019 *Free and Forced Vibration Analysis of Multiple Cracked FGM Multi Span Continuous Beams using Dynamic Stiffness Method* (Latin American Journal of Solids and Structures) vol 16 no 2

[31] A W Leissa 1973 *The Free Vibration of Rectangular Plates* (Journal of Sound and Vibration) vol 31 no 3 pp 257–293

[32] A F Mota and M A R Loja 2019 *Mechanical Behavior of Porous Functionally Graded Nanocomposite Materials* (Journal of Carbon Research) vol 5 no 2

[33] Hassen Ait Atmane A Tounsi and F Bernard 2017 *Effect of Thickness Stretching and Porosity on Mechanical Response of A Functionally Graded Beams Resting on Elastic Foundations* (International Journal of Mechanics and Materials in Design) vol 13 pp 71–84

[34] Belaïd Mechab, Ismail Mechab, Samir Benaisa, Mohammed Ameri and Boualem Serier 2016 *Probabilistic Analysis of Effect of the Porosities in Functionally Graded Material Nanoplate Resting on Winkler–Pasternak Elastic Foundations* (Applied Mathematical Modelling) vol 40 no 2

[35] Adda Hadj Mostefa and Merdaci Slimane 2020 *Influence of Porosity on the Analysis of Sandwich Plates FGM Using of High Order Shear–Deformation Theory* (Frattura ed Integrità Strutturale) vol 51 pp 199–214

[36] M Simsek 210 *Fundamental Frequency Analysis of Functionally Graded Beams by using Different Higher-Order Beam Theories* (Nuclear Engineering and Design) vol 240 no 4 pp 697–705

[37] Baferani A H, Saidi A R and Ehteshami H 2011 *Accurate Solution for Free Vibration Analysis of Functionally Graded Thick Rectangular Plates Resting on Elastic Foundation* (Composite Structures) vol 93 pp 1842–1853

[38] Malekzadeh P 2009 *Three-Dimensional Free Vibration Analysis of Thick Functionally Graded Plates on Elastic Foundations* (Composite Structures) vol 89 pp 367–373

[39] D Y Liu, C Y Wang and W Q Chen 2010 *Free Vibration of FGM Plates with in-Plane Material Inhomogeneity* (Composite Structures) vol 92 no 5 pp 1047–1051

[40] F L Liu and K M Liew 1999 *Vibration Analysis of Discontinuous Mindlin Plates by Differential Quadrature Element Method* (Journal of Vibration and Acoustics, Transactions of the ASME) vol 121 no 2 pp 204–208

[41] A Alibeigloo and K M Liew 2014 *Free Vibration Analysis of Sandwich Cylindrical Panel with Functionally Graded Core using Three-Dimensional Theory of Elasticity* (Structures) vol 113

[42] Pravin Kulkarni, Ashwinkumar Dhoble and Pramod Padole 2018 *Review of Research and Recent Trends in Analysis of Composite Plates* (Sàdhana) vol 43

[43] Dawe D J, LAM S S E and Azizian Z G 1992 *Nonlinear Finite Strip Analysis of Rectangular Laminates under End Shortening, using Classical Plate Theory* (International Journal for Numerical Methods in Engineering) vol 35 pp 1087–1110

[44] S Yin, T Yu and P Liu 2013 *Free Vibration Analyses of FGM Thin Plates by Isogeometric Analysis Based on Classical Plate Theory and Physical Neutral Surface* (Advances in Mechanical Engineering) vol 5

[45] Y-W Kim 2005 *Temperature Dependent Vibration Analysis of Functionally Graded Rectangular Plates* (Journal of Sound and Vibration) vol 284 no 3–5 pp 531–549

[46] A Allahverdizadeh, M H Naei and M N Bahrami 2008 *Nonlinear Free and Forced Vibration Analysis of Thin Circular Functionally Graded Plates* (Journal of Sound and Vibration) vol 310 no 4 pp 966–984

[47] J N Reddy 2000 *Analysis of Functionally Graded Plates* (International Journal for Numerical Methods in Engineering) vol 47 pp 663–684

[48] Hirohiko Isogawa 2008 *Free Vibration and Stability of Functionally Graded Plates According to A 2–D Higher–Order Deformation Theory* (Composite Structures) vol 82 no 4 pp 499–512

[49] S Hosseini-Hashemi, H Rokni Damavandi Taher, H Akhavan and M Omidi 2010 *Free Vibration of Functionally Graded Rectangular Plates Using First–Order Shear Deformation
Plate Theory (Journal of Applied Mathematical Modelling) vol 34 no 5 pp 1276–1291

[50] Hadji L, Atmane H A, Tounsi A, Mechab I and Bedia E A 2011 *Free Vibration of Functionally Graded Sandwich Plates using Four–Variable Refined Plate Theory* (Applied Mathematics and Mechanics) vol 32 pp 925–942

[51] Y Kiani, E Bagherizadeh and M R Eslami 2011 *Thermal and Mechanical Buckling of Sandwich Plates with FGM Face Sheets Resting on the Pasternak Elastic Foundation* (Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science) vol 226 no 1 pp 32–41

[52] T Anderson 2003 *A 3–D Elasticity Solution for a Sandwich Composite with Functionally Graded Core Subjected to Transverse Loading by a Rigid Sphere* (Composite Structures) vol 60 no 3

[53] Jie Cui, Taoran Zhou, Renchuan Ye, Oleg Gaidai, Zichao Li and Shenghui Tao 2019 *Three–Dimensional Vibration Analysis of a Functionally Graded Sandwich Rectangular Plate Resting on an Elastic Foundation Using a Semi–Analytical Method* (Materials) vol 12

[54] Q Li, V Lu and K Kou 2008 *Three–Dimensional Vibration Analysis of Functionally Graded Material Sandwich Plates* (Journal of Sound and Vibration) vol 311 no 1–2 pp 498–515

[55] Fiorenzo A Fazzolari 2015 *Natural Frequencies and Critical Temperatures of Functionally Graded Sandwich Plates Subjected to Uniform and Non–Uniform Temperature Distributions* (Composite Structures) vol 121 pp 197–210

[56] A Bhimaraddi and L K Stevens 1984 *A Higher Order Theory for Free Vibration of Orthotropic, Homogenous, and Laminated Rectangular Plates* (ASME Journal of Applied Mechanics) vol 51 no 1 pp 195–198

[57] N F Hanna and A W Leissa 1994 *A Higher Order Shear Deformation Theory for the Vibration of Thick Plates* (Journal of Sound and Vibration) vol 170 pp 545–555

[58] Kirigulige M S, Kitey R and Tippur H V 2005 *Dynamic Fracture Behavior of Model Sandwich Structures with Functionally Graded Core: a Feasibility Study* (Composites Science and Technology) vol 65 no 7–8 pp 1052–1068

[59] Abdelaziz H H, Atmane H A, Mechab I, Boumia L, Tounsi A and Abbas A B E 2011 *Static Analysis of Functionally Graded Sandwich Plates using an Efficient and Simple Refined Theory* (Chinese Journal of Aeronautics) vol 24 no 4 pp 434–448

[60] Liao X L, Xu W F, Wang Y L, Jia, B and Zhou G Y 2009 *Effect of Porous Structure on Mechanical Properties of C/PLA/Nano-HA Composites Scaffold* (Transactions of nonferrous Metals Society of China) vol 19 pp s748–s751

[61] Yan Qing Wang and Jean W Zu 2017 *Vibration Behaviors of Functionally Graded Rectangular Plates with Porosities and Moving in Thermal Environment* (Aerospace Science and Technology) vol 69 pp 550–562

[62] Saidi Hayat and Sahla Meriem 2019 *Vibration Analysis of Functionally Graded Plates with Porosity Composed of a Mixture of Aluminum (Al) and Alumina (Al2O3) Embedded in an Elastic Medium* (Frattura ed Integrità Strutturale) vol 50 pp 286–299

[63] Xiang-Yu Zhang, Gang Fang, Sander Leeflang, Amir A Zadpoor and Jie Zhou 2019 *Topological Design, Permeability and Mechanical Behavior of Additively Manufactured Functionally Graded Porous Metallic Biomaterials* (Acta Biomaterialia) vol 84 pp 437–452

[64] Y H Dang, Y H Li, D Chen and J Yang 2018 *Vibration Characteristics of Functionally Graded Graphene Reinforced Porous Nanocomposite Cylindrical Shells with Spinning Motion* (Composites Part B: Engineering) vol 145 pp 1–13

[65] Nguyen, N V, Nguyen H X, Lee S and Nguyen-Xuan H 2018 *Geometrically Nonlinear Polygonal Finite Element Analysis of Functionally Graded Porous Plates* (Advances in Engineering Software) vol 126 pp 110–126

[66] Zhang Y and Wang J 2017 *Fabrication of Functionally Graded Porous Polymer Structures using Thermal Bonding Lamination Techniques* (Procedia Manufacturing) vol 10 pp 866–875

[67] Kiani, Y and Eslami M R 2012 *Thermal Buckling and Post–Buckling Response of Imperfect Temperature–Dependent Sandwich FGM Plates Resting on Elastic Foundation* (Archive of
[68] Rezaei A S and Said A R 2015 Exact Solution for Free Vibration of Thick Rectangular Plates Made of Porous Materials (Composite Structures) vol 134 pp 1051–1060

[69] Merdaci S, Belmah S, Belghoul H and Hadj Mostefa A 2019 Free Vibration Analysis of Functionally Graded Plates FG with Porosities (International Journal of Engineering Research & Technology) vol 8 no 3 pp143–147

[70] Kim J, Zur K K and Reddy J 2019 Bending, Free Vibration and Buckling of Modified Couples Stress-Based Functionally Graded Porous Micro–Plates (Composite Structures) vol 209

[71] Coskun S, Kim J and Toutanji H 2019 Bending, Free Vibration and Buckling Analysis of Functionally Graded Porous Micro–Plates Using a General Third–Order Plate Theory (Journal of Composites Science) vol 3 no 1

[72] Zhao J, Wang Q, Deng X, Choe K, Zhong R and Shuai C 2019 Free Vibrations of Functionally Graded Porous Rectangular Plate with Uniform Elastic Boundary Conditions (Composites Part B: Engineering) vol 168 pp 106–120

[73] S Merdaci 2019 Free Vibration Analysis of Composite Material Plates “Case of a Typical Functionally Graded FG Plates Ceramic/Metal” with Porosities (Nano Hybrids and Composites) vol 25 pp69–83

[74] S Chakraverty and K K Pradhan 2014 Free Vibration of Functionally Graded Thin Rectangular Plates Resting on Winkler Elastic Foundation with General Boundary Conditions using Rayleigh–Ritz Method (International Journal of Applied Mechanics) vol 6 no 4

[75] Nuttawit Wattanasakulponga and Variddhi Ungbhakorn 2014 Linear and Nonlinear Vibration Analysis of Elastically Restrained Ends FGM Beams with Porosities (Aerospace Science and Technology) vol 32 no 1 pp 111–120

[76] S Jafari Mehrabadi and B Sobhani Aragh 2014 Stress Analysis of Functionally Graded Open Cylindrical Shell Reinforced by Agglomerated Carbon Nanotubes (Thin–Walled Structures) vol 80 pp 130–141

[77] Baferani A H, Saidi A R and Jomehzadeh E 2015 An Exact Solution for Free Vibration of Thin Functionally Graded Rectangular Plates (Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science) vol 225 no 3 pp 526–536

[78] Shen H S 2007 Nonlinear Thermal Bending Response of FGM Plates Due to Heat Conduction (Composites Part B: Engineering) vol 38 no 2 pp 201–215

[79] Yang J and Shen H S 2002 Dynamic Response of Initially Stressed Functionally Graded Rectangular Thin Plates (Composite Structures) vol 54 no 4 pp 497–508

[80] S A Ambartsumyan, J E Ashton and T Cheron 1970 Theory of Anisotropic Plates (Technomic Publishing Company)

[81] Li S R, Zhang J H and Zhao Y G 2007 Nonlinear Thermomechanical Post–Buckling of Circular FGM Plate with Geometric Imperfection (Thin–Walled Structures) vol 45 no 5 pp 528–536

[82] Zhang D and Zhou Y 2008 A Theoretical Analysis of FGM Thin Plates Based on Physical Neutral Surface (Computational Material Science) Vo 44 pp 716–720

[83] Snehashish Chakraverty and Karan Kumar Pradhan 2016 Vibration of Functionally Graded Beams and Plates (Science Direct)

[84] Chi S and Chung Y 2006 Mechanical Behavior of Functionally Graded Material Plates under Transverse Load Part I: Analysis (International Journal of Solids and Structures) vol 43 no 13

[85] Latifi M, Farhatnia F and Kadkhodaei M 2013 Bucking Analysis of Rectangular Functionally Graded Plates under Various Edge Conditions using Fourier Series Expansion (European Journal of Mechanics–A/Solids) vol 41 pp 16–27

[86] R D Mindlin 1951 Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates (ASME Journal of Applied Mechanics) vol 18 pp 31–38

[87] E Reissner 1945 The Effect of Transverse Shear Deformation on the Bending of Elastic Plates (ASME Journal of Applied Mechanics) vol 12 pp 69–77

[88] Carrera E and Brischetto S Robaldo A 2008 Variable Kinematic Model for the Analysis of Functionally Graded Material Plates (AIAA Journal) vol 46 no 1 pp 194–203
[89] Duc D N and Cong P H 2015 Nonlinear Vibration of Thick FGM Plates on Elastic Foundation Subjected to Thermal and Mechanical Loads Using the First–Order Shear Deformation Plate Theory (Cogent Engineering) vol 2 no 1 pp 1–17

[90] R Benferhat, T Hassaine Daoudjji and M Said Mansour 2016 Free Vibration Analysis of FG Plates Resting on an Elastic Foundation and Based on The Neutral Surface Concept Using Higher–Order Shear Deformation Theory (Comptes Rendus Mecanique) vol 344 no 9 pp 631–641

[91] M Karami Khorraramabadi, M M Najafizadeh, J Alibabaei Shahraiki and P Khazaenejad 2008 Effect of Shear Theories on Free Vibration of Functionally Graded Plates (World Academy of Science, Engineering and Technology) vol 24

[92] Trung–Kien Nguyen, Karam Sab and Guy Bonnet 2008 First–Order Shear Deformation Plate Models for Functionally Graded Materials (Composite Structures) vol 83 no 1 pp 25–36

[93] M Aydogdu 2006 Comparison of Various Shear Deformation Theories for Bending, Buckling, and Vibration of Rectangular Symmetric Cross–ply Plate with Simply Supported Edges (Journal of Composite Materials) vol 40

[94] D G Zhang 2013 Modeling and Analysis of FGM Rectangular Plates Based on Physical Neutral Surface and High Order Shear Deformation Theory (International Journal of Mechanical Sciences) vol 68 pp 92–104

[95] Hosseini-Hashemi S, Fadaee M and Taher H R D 2011 Exact Solutions for Free Flexural Vibration of Levy–Type Rectangular Thick Plates Via Third Order Shear Deformation Plate Theory (Applied Mathematical Modelling) vol 35 no 2 pp 708–727

[96] Nuttawit Wattanasakulpong, Gangadhara Prusty and Donald W Kelly 2011 Thermal Buckling and Elastic Vibration of Third–Order Shear Deformable Functionally Graded Beams (International Journal of Mechanical Sciences) vol 53 no 9 pp 734–743

[97] Shimpí R P and Patel H G 2006 Free Vibrations of Plate using Two Variable Refined Plate Theory (Journal of Sound and Vibration) vol 296 pp 979–999

[98] A K noor, W S Burton 1989 Assessment of Shear Deformation Theories for Multilayered Composite Plates (Applied Mechanics Reviews) vol 42 pp 1–13

[99] Fakhari V, Ohad A and Yousefian P 2011 Nonlinear Free and Forced Vibration Behavior of Functionally Graded Plate with Piezoelectric Layers in Thermal Environment (Composite Structures) vol 93 no 9 pp 2310–2321

[100] Neves A M A, Ferreira A J M, Carrera E, Roque C M C, Cinefra M and Jorge R M N 2012 A Quasi–3D Sinusoidal Shear Deformation Theory for the Static and Free Vibration Analysis of Functionally Graded Plates (Composites Part B: Engineering) vol 43 no 2 pp 711–725

[101] J M Whitney and C T Sun 1973 A Higher Order Theory for Extensional Motion of Laminated Composites (Journal of Sound and Vibration) vol 30 no 1 pp 85–97

[102] K H Lo, R M Christensen and E M Wu 1977 A High–Order Theory of Plate Deformation Part 1: Homogeneous Plates (Journal of Applied Mechanics) vol 44 no 4 pp 663–668

[103] T Kant 1982 Numerical Analysis of Thick Plates (Computer Methods in Applied Mechanics and Engineering) vol 31 no 1 pp 1–18

[104] A Bhimaraddi and Stevens L K 1984 A Higher Order Theory for Free Vibration of Orthotropic, Homogeneous, And Laminated Rectangular Plates (Journal of Applied Mechanics) vol 51 no 1

[105] J N Reddy and C D Chin 1998 Thermoelastic Analysis of Functionally Graded Cylinders and Plates (Journal of Thermal Stresses) vol 21 no 6 pp 593–626

[106] Reddy J N 2011 A General Nonlinear Third–Order Theory of Functionally Graded Plates (International Journal of Aerospace and Light weight Structures) vol 1 no 1 pp 1–21

[107] Jha D K, Kant T and Singh R K 2013 Free Vibration Response of Functionally Graded Thick Plates with Shear and Normal Deformations Effects (Composite Structures) vol 96 pp 799–823

[108] M Talha and B N Singh 2010 Static Response and Free Vibration Analysis of FGM Plates Using Higher Order Shear Deformation Theory (Applied Mathematical Modelling) vol 34 no 12
[109] Natarajan S and Manickam G 2012 *Bending and Vibration of Functionally Graded Material Sandwich Plates using an Accurate Theory* (Finite Elements in Analysis and Design) vol 57

[110] Mohammadi Y and Khalili S M R 2012 *Free Vibration Analysis of Sandwich Plates with Temperature–Dependent Properties of the Core Materials and Functionally Graded Face Sheets (Mechanics and Properties of Composed Materials and Structures, Advanced Structured Materials)* vol 31 pp 183–197

[111] S M R Khalili and Y Mohammadi 2012 *Free Vibration Analysis of Sandwich Plates with Functionally Graded Face Sheets and Temperature–Dependent Material Properties: A New Approach* (European Journal of Mechanics A/Solids) vol 35 pp 61–74

[112] Shimpi R P 1999 *Zeroth–Order Shear Deformation Theory for Plates* (AIAA Journal) vol 37 no 4

[113] Ray M C 2003 *Zeroth–Order Shear Deformation Theory for Laminated Composite Plates* (Journal of Applied Mechanics) vol 70(3) pp 374–380

[114] Bounouara F, K H Benrahou, I Belkorissat and A Tounsi 2016 *A Nonlocal Zeroth–Order Shear Deformation Theory for Free Vibration of Functionally Graded Nanoscale Plates Resting on Elastic Foundation (Steel and Composite Structures)* vol 20 no 2 pp 227–249

[115] Huu-Tai Thai and Dong-Ho Choi 2014 *Zeroth-Order Shear Deformation Theory for Functionally Graded Plates Resting on Elastic Foundation* (International Journal of Mechanical Sciences) vol 78 pp 35–43

[116] Muhsin J Jweeg 2016 *A Suggested Analytical Solution for Vibration of Honeycombs Sandwich Combined Plate Structure* (International Journal of Mechanical & Mechatronics Engineering) vol 16 no 4

[117] Bateni M, Kiani Y and M R Eslami 2013 *A Comprehensive Study on Stability of FGM Plates* (International Journal of Mechanical Sciences) vol 75 pp 134–144

[118] H Mozafari and A Ayob 2012 *Effect of Thickness Variation on the Mechanical Buckling Load in Plates Made of Functionally Graded Materials* (Procedia Technology) vol 1 pp 496–504

[119] Ashraf Zenkour, Farzad Ebrahimi and Mohammad Reza Barati 2019 *Buckling Analysis of a Size–Dependent Functionally Graded Nanobeam Resting on Pasternak's Foundations* (International Journal of Nano Dimension) vol 10 no 2 pp 141–153

[120] Y Huang and X F Li 2010 *Buckling of Functionally Graded Circular Columns Including Shear Deformation* (Materials & Design) vol 31 no 7 pp 3159–3166

[121] Wang C M and Reddy J N, Lee K H 2000 *Shear Deformable Beams and Plates: Relationships with Classical Solutions* (Elsevier)

[122] B A Samsam Shariat and MR Eslam 2007 *Buckling of Thick Functionally Graded Plates under Mechanical and Thermal Loads* (Composite Structures) vol 78 no 3 pp 433–439

[123] V Birman 1995 *Buckling of Functionally Graded Hybrid Composite Plates* (Engineering mechanics) pp 1199–1202

[124] YY Lee, X Zhao and J N Reddy 2010 *Postbuckling Analysis of Functionally Graded Plates Subject to Compressive and Thermal Loads* (Computer Methods in Applied Mechanics and Engineering) vol 199 no 25–28 pp 1645–1653

[125] L Wu 2004 *Thermal Buckling of A Simply Supported Moderately Thick Rectangular FGM Plate* (Composite Structures) vol 64 no 2 pp 211–218

[126] Czechowski L and Kolakowski Z 2019 *The Study of Buckling and Post–Buckling of a Step–Variable FGM Box* (Materials) vol 12 no 6

[127] R Javaheri and M R Eslami 2002 *Buckling of Functionally Graded Plates under In–plane Compressive Loading* (Journal of applied mathematics and mechanics) vol 82 no 4

[128] Bekir Akgöz and Ömer Civalek 2013 *Buckling Analysis of Functionally Graded Microbeams Based on the Strain Gradient Theory* (Acta Mechanica) vol 224 pp 2185–2201

[129] Fekrar A, El Meiche N, Bessaim A, Tounsi A and Adda Bedia E A 2012 *Buckling Analysis of Functionally Graded Hybrid Composite Plates Using a New Four Variable Refined Plate Theory* (Steel and Composite Structures) vol 13 no 1 pp 91–107

[130] Shi-Rong Li, Bouazza Fahsi Abdelouahed Tounsi and Samy R Mahmoud 2015 *Correspondence Relations Between Deflection, Buckling Load, and Frequencies of Thin Functionally Graded
Material Plates and Those of Corresponding Homogeneous Plates (Journal of Applied Mechanics) vol 82 no 11

[131] Soldatos K P 1992 A Transverse Shear Deformation Theory for Homogeneous Monoclinic Plates (Acta Mechanica) vol 94 pp195–220

[132] D U M Oyekeyo and A M El-Zafranyet 2009 Buckling and Vibration Analysis of Functionally Graded Composite Structures using the Finite Element Method (Composite Structures) vol 89 no 1 pp 134–142

[133] Bodaghi M and Saidi A R 2010 Levy–Type Solution for Buckling Analysis of Thick Functionally Graded Rectangular Plates Based on the Higher–Order Shear Deformation Plate Theory (Applied Mathematical Modelling) vol 34 no 11 pp 3659–3673

[134] M M Najafizadeh and M R Eslamia 2002 Buckling Analysis of Circular Plates of Functionally Graded Materials under Uniform Radial Compression (International Journal of Mechanical Sciences) vol 44 pp 2479–2493

[135] B Sidda Reddy, J Suresh Kumar, C Eswara Reddy and K Vijaya Kumar Reddy 2013 Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory (Journal of Composites) vol 2013

[136] Farzad Ebrahimi and Fateme Mahmood 2018 A Modified Couple Stress Theory for Buckling Analysis of Higher Order Inhomogeneous Microbeams with Porosities (Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science) vol 233 no 8

[137] Duc N D and Tung H V 2011 Mechanical and Thermal Postbuckling of Higher Order Shear Deformable Functionally Graded Plates on Elastic Foundations (Composite Structures) vol 93 no 11 pp 2874–2881

[138] Zenkour and A M 2005 A Comprehensive Analysis of Functionally Graded Sandwich Plates: Part 2–Buckling and Free Vibration (International Journal of Solids and Structures) vol 42 no 18–19

[139] Elias Y Ali and Yared S Bayleyegn 2019 Analytical and Numerical Buckling Analysis of Rectangular Functionally–Graded Plates under Uniaxial Compression (Proceedings of the Annual Stability Conference Structural Stability Research Council St Louis, Missouri)

[140] H Akhavan, Sh Hosseini Hashemi, H Rokni Damavandi Taher, A Alibeigloo and Sh Vahabi 2009 Exact Solutions for Rectangular Mindlin Plates under in–Plane Loads Resting on Pasternak Elastic Foundation Part I: Buckling Analysis (Computational Materials Science) vol 44 no 1

[141] noureddine El Meiche, Abdelouahed Tounsi, noureddine Ziane, Ismail Mechab and El Abbes Adda Bedia 2011 A New Hyperbolic Shear Deformation Theory for Buckling and Vibration of Functionally Graded Sandwich Plate (International Journal of Mechanical Sciences) vol 53 no 1 pp 237–247

[142] Hui-Shen Shen and Shi-Rong Li 2008 Post–Buckling of Sandwich Plates with FGM Face Sheets and Temperature–Dependent Properties (Composites Part B: Engineering) vol 39 no 2

[143] Hoang Van Tung and Nguyen Dinh Duc 2009 Nonlinear Analysis of Stability for Functionally Graded Plates under Mechanical and Thermal Loads (Composite Structures) vol 92 no 5

[144] J S Park and J H Kim 2006 Thermal Postbuckling and Vibration Analyses of Functionally Graded Plates (Journal of Sound and Vibration) vol 289 no 1–2 pp 77–93

[145] Lee Y H, Bae S I and Kim J H 2016 Thermal Buckling Behavior of Functionally Graded Plates Based on Neutral Surface (Composite Structures) vol 137 pp 208–214

[146] Da-Guang Zhang and Hao-Miao Zhou 2015 Nonlinear Bending Analysis of FGM Circular Plates Based on Physical Neutral Surface and Higher–Order Shear Deformation Theory (Aerospace Science and Technology) vol 41 pp 90–98

[147] M Sobhy 2013 Buckling and Free Vibration of Exponentially Graded Sandwich Plates Resting on Elastic Foundations under Various Boundary Conditions (Composite Structures) vol 99

[148] Hessameddin Yaghoobi and Pooria Yaghoobi 2013 Buckling Analysis of Sandwich Plates with FGM Face Sheets Resting on Elastic Foundation with Various Boundary Conditions: An
Analytical Approach (Meccanica) vol 48 pp 2019–2035

[149] X Zhao, Y Y Lee and K M Liew 2009 Mechanical and Thermal Buckling Analysis of Functionally Graded Plates (Composite Structures) vol 90 no 2 pp 161–171

[150] S K Jalali, M H Naei and A Poorsolhjouy 2010 Thermal Stability Analysis of Circular Functionally Graded Sandwich Plates of Variable Thickness using Pseudo–Spectral Method (Materials and Design) vol 31 no 10 pp 4755–4763

[151] Tiantang Yu, Tinh Quoc Bui, Shuohui Yin, Duc Hong Doan, C T Wu, Thom Van Do and Satoyuki Tanaka 2016 On the Thermal Buckling Analysis of Functionally Graded Plates with Internal Defects using Extended Isogeometric Analysis (Composite Structures) vol 136

[152] S Sirinivas and A K Rao 1970 Bending, Vibration, and Buckling of Simply Supported Thick Orthotropic Rectangular Plates and Laminates (International Journal of Solids and Structures) vol 6 no 11 pp 1463–1481

[153] Na K S and Kim J H 2004 Three–Dimensional Thermal Buckling Analysis of Functionally Graded Materials (Composites Part B: Engineering) vol 35 no 5 pp 429–437

[154] Na K S and Kim J H 2006 Thermal Postbuckling Investigations of Functionally Graded Plates Using 3–D Finite Element Method (Finite Elements in Analysis and Design) vol 42 no 8–9

[155] Ehab N Abbas, Muhsin J Jweeg and Muhammad Al-Waily 2018 Analytical and Numerical Investigations for Dynamic Response of Composite Plates Under Various Dynamic Loading with the Influence of Carbon Multi-Wall Tube Nano Materials (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 06 pp 1–10

[156] Jumaa S Chiad, Muhammad Al-Waily and Mohsin Abdullah Al-Shammari 2018 Buckling Investigation of Isotropic Composite Plate Reinforced by Different Types of Powders (International Journal of Mechanical Engineering and Technology) vol 09 no 09

[157] Muhammad Al-Waily 2015 Analytical and Numerical Thermal Buckling Analysis Investigation of Unidirectional and Woven Reinforcement Composite Plate Structural (International Journal of Energy and Environment) vol 6 no 2

[158] M Mohammad, A R Saidi and E Jomehzadeh 2010 A Novel Analytical Approach for the Buckling Analysis of Moderately Thick Functionally Graded Rectangular Plates with Two Simply Supported Opposite Edges (Proceedings of the Institution of Mechanical Engineers C) vol 224 no 9

[159] M Darvizeh, A Darvizeh, R Ansari and C B Sharma 2004 Buckling Analysis of Generally Laminated Composite Plates (generalized differential quadrature rules versus Rayleigh–Ritz method) (Composite Structures) vol 63 pp 69–74

[160] R Javaheiri and M R Eslami 2002 Thermal Buckling of Functionally Graded Plates Based on Higher Order Theory (Journal of Thermal Stresses) vol 25 no 7 pp 603–625

[161] R Javaheiri and M R Eslami 2002 Thermal Buckling of Functionally Graded Plates (AIAA Journal) vol 40 no 1 pp 162–169

[162] Muhammad Al-Waily, Mohsin Abdullah Al-Shammari and Muhsin J Jweeg 2020 An Analytical Investigation of Thermal Buckling Behavior of Composite Plates Reinforced by Carbon Nano Particles (Engineering Journal) vol 24 no 3

[163] Mohsin Abdullah Al-Shammari and Muhammad Al-Waily 2018 Analytical Investigation of Buckling Behavior of Honeycombs Sandwich Combined Plate Structure (International Journal of Mechanical and Production Engineering Research and Development) vol 08 no 04

[164] Muhsin J Jweeg 1983 Application of Finite Element Analysis to Rotating Fan Impellers (Doctoral Thesis, Aston University)

[165] Muhsin J Jweeg, Ali S Hammood and Muhammad Al-Waily 2012 A Suggested Analytical Solution of Isotropic Composite Plate with Crack Effect (International Journal of Mechanical & Mechatronics Engineering) vol 12 no 05

[166] S H Bakhy, S S Hassan, S M Nacy, K Dermitzakis and A H Arieta 2013 Contact Mechanics for Soft Robotic Fingers: Modeling And Experimentation (Robotica)

[167] Mohsin Abdullah Al-Shammari, Emad Q Hussein and Ameer Alaa Oleiwi 2017 Material Characterization and Stress Analysis of a Through Knee Prosthesis Sockets (International Journal of Mechanical & Mechatronics Engineering) vol 17 no 06
[168] Ameer A Kadhim, Muhammad Al-Waily, Zaman Abud Almalik Abud Ali, Muhsin J Jweeg and Kadhim K Resan 2018 Improvement Fatigue Life and Strength of Isotropic Hyper Composite Materials by Reinforcement with Different Powder Materials (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 02

[169] Lara E Yousif, Kadhim K Resan and Raad M Fenjan 2018 Temperature Effect on Mechanical Characteristics of A New Design Prosthetic Foot (International Journal of Mechanical Engineering and Technology) vol 09 no 13 pp 1431–1447

[170] Ragad Aziz Neama, Maher AR Sadiq Al-Baghdadi and Muhammad Al-Waily 2018 Effect of Blank Holder Force and Punch Number on the Forming Behavior of Conventional Dies (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 04

[171] noor Dhia Yaseen, Jumaa S Chiad and Firas Mohammed Abdul Ghani 2018 The Study and Analysis of Stress Distribution Subjected on the Replacement Knee Joint Components using Photo-Elasticity and Numerical Methods (International Journal of Mechanical and Production Engineering Research and Development) vol 08 no 06 pp 449–464

[172] Ayad M Takakh and Saif M Abbas 2018 Manufacturing and Analysis of Carbon Fiber Knee Ankle Foot Orthosis (International Journal of Engineering & Technology) vol 07 no 04

[173] H J Abbas, M J Jweeg, Muhammad Al-Waily and Abbas Ali Diwan 2019 Experimental Testing and Theoretical Prediction of Fiber Optical Cable for Fault Detection and Identification (Journal of Engineering and Applied Sciences) vol 14 no 02 pp 430–438

[174] Nada N Kadhim, Qahtan A Hamad and Jawad K Oleiwi 2020 Tensile and Morphological Properties of PMMA Composite Reinforced by Pistachio Shell Powder used in Denture Applications (2nd International Conference on Materials Engineering & Science, AIP Conference Proceedings)

[175] Muhammad Al-Waily, Imran Q Al Safar, Suhair G Hussein and Mohsin Abdullah Al-Shammari 2020 Life Enhancement of Partial Removable Denture made by Biomaterials Reinforced by Graphene Nanoplates and Hydroxyapatite with the Aid of Artificial Neural Network (Journal of Mechanical Engineering Research and Developments) vol 43 no 06 pp 269–285

[176] Fahad M Kadhim, Jumaa S Chiad and Maryam Abdul Salam Enad 2020 Evaluation and Analysis of Different Types of Prosthetic Knee Joint Used by above Knee Amputee (Defect and Diffusion Forum Journal) vol 398 pp 34–40

[177] S K Mahmood, S H Bakhy and M A Tawfik 2020 novel Wall-Climbing Robot Capable of Transitioning and Perching (IOP Conference Series: Materials Science and Engineering) vol 15 no 4

[178] Najdat A Mahmood, Muhsin J Jweeg and Mumtaz Y Rajab 1989 Investigation of Partially Pressurized Thick Cylindrical Shells (Modelling, simulation & control B AMSE Press) vol 25 no 03 pp 47–64

[179] Ekhlas M Alfayadh, Sadeq H Bakhy and Yasir M Shkara 2014 A New Multi-Objective Evolutionary Algorithm for Optimizing the Aerodynamic Design of HAWT Rotor (ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2014)

[180] Muhammad Al-Waily and Zaman Abud Almalik Abud Ali 2015 A Suggested Analytical Solution of Powder Reinforcement Effect on Buckling Load for Isotropic Mat and Short Hyper Composite Materials Plate (International Journal of Mechanical and Mechatronics Engineering) vol 15 no 4

[181] Rasha Hayder Al-Khayat, Maher A R Sadiq Al-Baghdadi, Ragad Aziz Neama and Muhammad Al-Waily 2018 Optimization CFD Study of Erosion in 3D Elbow During Transportation of Crude Oil Contaminated with Sand Particles (International Journal of Engineering and Technology) vol 07 no 03 pp 1420–1428

[182] Jawad K Oleiwi and Basim A Abass 2018 Thermal Properties of Polymeric Composites Reinforced by Nanoceramic Materials (International Journal of Mechanical and Production Engineering Research and Development) vol 8 no 06 pp 517–524

[183] Muhsin J Jweeg, Muhammad Al-Waily, Ahmed K Muhammad and Kadhim K Resan 2018 Effects of Temperature on the Characterisation of a New Design for a non–Articulated Prosthetic Foot (IOP Conference Series: Materials Science and Engineering) vol 433 2nd International Conference on Engineering Sciences, Kerbala, Iraq
[184] Abeer R Abbas, Kadhim A Hebeatir and Kadhim K Resan 2018 *Effect of Laser Energy on the Structure of Ni46–Ti50–Cu4 Shape–Memory Alloy* (International Journal of Nanoelectronics and Materials) vol 11 no 04 pp 481–498

[185] Sihama I Salih, Jawad Kadhim Oleiwi and Sajid Abd Alkhidhir 2018 *Comparative Study of Some Mechanical Properties of Hybrid Polymeric Composites Prepared by using Friction Stir Processing* (Journal of Advanced Research in Dynamic and Control Systems) vol 10 no 02

[186] Ayad M Takhakh, Saif M Abbas and Aseel K Ahmed 2018 *A Study of the Mechanical Properties and Gait Cycle Parameter for a Below–Knee Prosthetic Socket* (IOP Conference Series: Materials Science and Engineering) vol 433 2nd International Conference on Engineering Sciences

[187] Muhammed Al-Waily, Emad Q Hussein and Nibras A Aziz Al-Roubaiee 2019 *Numerical Modeling for Mechanical Characteristics Study of Different Materials Artificial Hip Joint with Inclination and Gait Cycle Angle Effect* (Journal of Mechanical Engineering Research & Developments) vol 42 no 04 pp 79–93

[188] Muhsin J Jweeg, Abdulrazaaq Ahumdany and Ali Faik Mohammed Jawad 2019 *Dynamic Stresses and Deformations Investigation of the Below Knee Prosthesis using CT-Scan Modeling* (International Journal of Mechanical & Mechatronics Engineering) vol 19 no 01

[189] Akeel Z Mahdi, Samir A Amin and Sadeq H Bakhy 2020 *Influence of Refill Friction Stir Spot Welding Technique on the Mechanical Properties and Microstructure of Aluminum AA5052 and AA6061-T3* (3rd International Conference on Engineering Sciences) vol 671 IOP Conference Series: Materials Science and Engineering

[190] Muhsin J Jweeg, Salah N Alnomani and Salah K Mohammad 2020 *Dynamic Analysis of a Rotating Stepped Shaft with and without Defects* (3rd International Conference on Engineering Sciences) vol 671 IOP Conference Series: Materials Science and Engineering

[191] Fahad M Kadhim, Ayad M Takhakh and Jumaa S Chiad 2020 *Modeling and Evaluation of Smart Economic Transfemoral Prosthetic* (Defect and Diffusion Forum Journal) vol 398 pp 48–53

[192] J N Reddy 1993 *An Introduction to the Finite Element Method* (McGraw-Hill, Inc)

[193] Muhsin J Jweeg and S Z Said 1995 *Effect of Rotational and Geometric Stiffness Matrices on Dynamic Stresses and Deformations of Rotating Blades* (Journal of the Institution of Engineers (India): Mechanical Engineering Division) vol 76 pp 29–38

[194] S S Rao 2004 *The Finite Element Method in Engineering* (Elsevier Science and Technology Books, Miami)

[195] Bashar A Bedaiwi and Jumaa S Chiad 2012 *Vibration Analysis and Measurement in the Below Knee Prosthetic Limb Part I: Experimental Work* (ASME 2012 International Mechanical Engineering Congress and Exposition, Proceedings)

[196] S H Bakhy 2014 *Modeling of Contact Pressure Distribution and Friction Limit Surfaces for Soft Fingers in Robotic Grasping* (Robotica)

[197] Muhammed Al-Waily, Alaa Abdulzahra Deli, Aziz Darweesh Al-Mawash and Zaman Abud Almalik Abud Ali 2017 *Effect of Natural Sisal Fiber Reinforcement on the Composite Plate Buckling Behavior* (International Journal of Mechanical & Mechatronics Engineering) vol 17 no 01

[198] Saif M Abbas, Ayad M Takhakh, Mohsin Abdullah Al-Shammari and Muhammed Al-Waily 2018 *Manufacturing and Analysis of Ankle Disarticulation Prosthetic Socket (SYMES)* (International Journal of Mechanical Engineering and Technology) vol 09 no 07 pp 560–569

[199] Mohsin Abdullah Al-Shammari, Lutfi Y Zedan and Akram M Al-Shammari 2018 *FE Simulation of Multi-Stage Cold Forging Process for Metal Shell of Spark Plug Manufacturing* (1st International Scientific Conference of Engineering Sciences) 3rd Scientific Conference of Engineering Science, ISCES 2018–Proceedings

[200] Worood Hussein, Mohsin Abdullah Al-Shammari 2018 *Fatigue and Fracture Behaviours of FSW and FSP Joints of AA5083-H111 Aluminium Alloy* (IOP Conference Series: Materials
Science and Engineering) vol 454 International Conference on Materials Engineering and Science

[201] Muhsin J Jweeg, Kadhim K Resan, Esraa A Abbod and Muhammad Al-Waily 2018 Dissimilar Aluminium Alloys Welding by Friction Stir Processing and Reverse Rotation Friction Stir Processing (IOP Conference Series: Materials Science and Engineering) vol 454 International Conference on Materials Engineering and Science, Istanbul, Turkey, 8 August

[202] Yousuf Jamal Mahboba and Mohsin Abdullah Al-Shammari 2019 Enhancing Wear Rate of High-Density Polyethylene (HDPE) by Adding Ceramic Particles to Propose an Option for Artificial Hip Joint Liner (IOP Conference Series: Materials Science and Engineering, ICMSMT) vol 561

[203] Sihama I Salih, Jawad K Oleiwi and Hajir Mohammed Ali 2019 Investigation the Properties of Silicone Rubber Blend Reinforced by Natural Nanoparticles and UHMWPE Fiber (International Journal of Mechanical Engineering and Technology) vol 10 no 1

[204] Sadiq emad Sadiq, Sadeq Hussein Bakhy and Muhsin Jaber Jweeg 2020 Effects of Spot Welding Parameters on the Shear Characteristics of Aluminum Honeycomb Core Sandwich Panels in Aircraft structure (Test Engineering and Management) vol 83 pp 7244–7255

[205] Mohsin Abdullah Al-Shammari, Qasim H Bader, Muhammad Al-Waily and A M Hasson 2020 Fatigue Behavior of Steel Beam Coated with Nanoparticles under High Temperature (Journal of Mechanical Engineering Research and Developments) vol 43 no 4 pp 287–298

[206] Ghaiith G Hameed, Muhsin J Jweeg and Ali Hussein 2009 Springback and Side Wall Curl of Metal Sheet in Plain Strain Deep Drawing (Research Journal of Applied Sciences) vol 04 no 05

[207] Mahmud Rasheed Ismail, Muhammad Al-Waily and Ameer A Kadhim 2018 Biomechanical Analysis and Gait Assessment for normal and Braced Legs (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 03

[208] Marwah Mohammed Abdurridha, Nasreen Dakel Fahad, Muhammad Al-Waily and Kadhim K Resan 2018 Rubber Creep Behavior Investigation with Multi Wall Tube Carbon Nano Particle Material Effect (International Journal of Mechanical Engineering and Technology) vol 09 no 12 pp 729–746

[209] Sadeq Bakhy, Enass Flaieh and Mortada Jabbar 2018 An Experimental Study for Grasping and Pinching Controls for an Underactuated Robotic Finger using a PID Controller (2nd International Conference on Engineering Sciences), (IOP Conference Series: Materials Science and Engineering) vol 433

[210] Ahmed Khaleel Abdulameer and Mohsin Abdullah Al-Shammari 2018 Fatigue Analysis of Syme’s Prosthesis (International Review of Mechanical Engineering) vol 12 no 03

[211] Mohsin Abdullah Al-Shammari 2018 Experimental and FEA of the Crack Effects in a Vibrated Sandwich Plate (Journal of Engineering and Applied Sciences) vol 13 no 17 pp 7395–7400

[212] Abeer R Abbas, Kadhim A Hebeatir and Kadhim K Resan 2018 Effect of CO2 Laser on Some Properties of Ni46Ti50Cu4 Shape Memory Alloy (International Journal of Mechanical and Production Engineering Research and Development) vol 08 no 02 pp 451–460

[213] Sihama Issa Salih, Jawad Kadhim Oleiwi and Arkan Saad Mohamed 2018 Investigation of Mechanical Properties of Pmma Composite Reinforced with Different Types of Natural Powders (ARPN Journal of Engineering and Applied Sciences) vol 13 no 22

[214] Fahad M Kadhim, Ayad M Takhakh and Asmaa M Abdullah 2019 Mechanical Properties of Polymer with Different Reinforcement Material Composite That used for Fabricates Prosthetic Socket (Journal of Mechanical Engineering Research and Developments) vol 42 no 4

[215] Ehab N Abbas, Muhsin J Jweeg and Muhammad Al-Waily 2020 Fatigue Characterization of Laminated Composites used in Prosthetic Sockets Manufacturing (Journal of Mechanical Engineering Research and Developments) vol 43 no 5 pp 384–399

[216] Suhair Ghazi Hussein, Mohsin Abdullah Al-Shammari, Ayad M Takhakh and Muhammad Al-Waily 2020 Effect of Heat Treatment on Mechanical and Vibration Properties for 6061 and 2024 Aluminum Alloys (Journal of Mechanical Engineering Research and Developments) vol
[217] Mortada A Jabbar, Sadeq H Bakhy and Enass H Flaieh 2020 A New Multi-Objective Algorithm for Underactuated Robotic Finger During Grasping and Pinching Assignments (3rd International Conference on Engineering Sciences, IOP Conference Series: Materials Science and Engineering) vol 671

[218] Marwah Ali Husain and and Mohsin Abdullah Al-Shammar 2020 Analytical Solution of Free Vibration Characteristics of Partially Circumferentially Cracked Cylindrical Shell (Journal of Mechanical Engineering Research and Developments) vol 43 no 3 pp 442–454

[219] Hussein I Mansoor, Mohsin Al-shammar and Amjad Al-Hamood 2020 Theoretical Analysis of the Vibrations in Gas Turbine Rotor (3rd International Conference on Engineering Sciences), IOP Conference Series: Materials Science and Engineering) vol 671

[220] Muhamad Al-Waily, Maher AR Sadiq Al-Baghdadi and Rasha Hayder Al-Khayat 2017 Flow Velocity and Crack Angle Effect on Vibration and Flow Characterization for Pipe Induce Vibration (International Journal of Mechanical & Mechatronics Engineering) vol 17 no 05

[221] Fahad M Kadhim, Jumaa S Chiaa and Ayad M Takhakh 2018 Design And Manufacturing Knee Joint for Smart Transfemoral Prosthetic (IOP Conference Series: Materials Science and Engineering, International Conference on Materials Science and Engineering) vol 454

[222] Kadhim K Resan, Abbas A Alasadi, Muhammad Al-Waily and Muhsin J Jweeg 2018 Influence of Temperature on Fatigue Life for Friction Stir Welding of Aluminum Alloy Materials (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 02

[223] Saif M Abbas, Kadhim K Resan, Ahmed K Muhammad and Muhamad Al-Waily 2018 Mechanical and Fatigue Behaviors of Prosthetic for Partial Foot Amputation with Various Composite Materials Types Effect (International Journal of Mechanical Engineering and Technology) vol 09 no 09 pp 383–394

[224] Jawad K Oletwi and Ahmed Namah Hadi 2018 Experimental and Numerical Investigation of Lower Limb Prosthetic Foot Made from Composite Polymer Blends (International Journal of Mechanical and Production Engineering Research and Development) vol 08 no 02 pp 1319–1330

[225] Muhsin J Jweeg, Zaid S Hammoudi and Bassam A Alwan 2018 Optimised Analysis, Design, and Fabrication of Trans-Tibial Prosthetic Sockets (IOP Conference Series: Materials Science and Engineering) vol 433 2nd International Conference on Engineering Sciences

[226] Mohsin Abdullah Al-Shammar and Sahar Emad Abdullah 2018 Stiffness to Weight Ratio of Various Mechanical and Thermal Loaded Hyper Composite Plate Structures (IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Engineering Sciences) vol 433

[227] Ahmed A Taher, Ayad M Takhakh and Sabah M Thaha 2018 Experimental Study and Prediction the Mechanical Properties of Nano-Joining Composite Polymers (Journal of Engineering and Applied Sciences) vol 13 no 18 pp 7665 7669

[228] Ekhlas Edan Kader, Akram Mahdi Abed and Mohsin Abdullah Al-Shammar 2020 Al2O3 Reinforcement Effect on Structural Properties of Epoxy Polysulfide Copolymer (Journal of Mechanical Engineering Research and Developments) vol 43 no 4 pp 320–328

[229] S E Sadiq, S H Bakhy and M J Jweeg 2020 Crashworthiness Behavior of Aircraft Sandwich Structure With Honeycomb Core Under Bending Load (IOP Conference Series: Materials Science and Engineering)

[230] Hussein I Mansoor, Mohsin Abdullah Al-shammar and Amjad Al-Hamood 2020 Experimental Analysis of Cracked Turbine Rotor Shaft using Vibration Measurements (Journal of Mechanical Engineering Research and Development) vol 43 no 2 pp 294–304

[231] Esraa A Abbod, Muhammad Al-Waily, Ziadoon M R Al-Hadraji, Kadhim K Resan and Saif M Abbas 2020 Numerical and Experimental Analysis to Predict Life of Removable Partial Denture (IOP Conference Series: Materials Science and Engineering, 1st International Conference on Engineering and Advanced Technology, Egypt) vol 870

[232] Ahmed A Taher, Ayad M Takhakh and Sabah M Thahab 2020 Study and Optimization of the Mechanical Properties of PVP/PVA Polymer Nanocomposite as A Low Temperature
Adhesive in Nano-Joining (3rd International Conference on Engineering Sciences, IOP Conference Series: Materials Science and Engineering) vol 671

[233] J L Mantari and J C Monge 2016 Buckling, Free Vibration and Bending Analysis of Functionally Graded Sandwich Plates Based on an Optimized Hyperbolic Unified Formulation (International Journal of Mechanical Sciences) vol 119 pp 170–186

[234] A M Zenkour and M Sobhy 2010 Thermal Buckling of Various Types of FGM Sandwich Plates (Composite Structures journal) vol 93 no 1 pp 93–102

[235] A M Zenkour and M Sobhy 2011 Thermal Buckling of Functionally Graded Plates Resting on Elastic Foundations Using the Trigonometric Theory (Journal of Thermal Stresses) vol 34 no 11 pp 1119–1138

[236] Kiani Y and Eslami M R 2013 An Exact Solution for Thermal Buckling of Annular FGM Plates on an Elastic Medium (Composites Part B: Engineering) vol 45 no 1 pp 101–110

[237] K M Liew and J Yang 2004 Thermal Post-Buckling of Laminated Plates Comprising Functionally Graded Materials with Temperature-Dependent Properties (Journal of Applied Mechanics) vol 71 no 6 pp 839–850

[238] Chi S H and Chung Y L 2006 Mechanical Behavior of Functionally Graded Material Plates under Transverse Load, Part II: Numerical Results (International Journal of Solids and Structures) vol 43 no 13 pp 3675–3691

[239] S Pradyumna and J N Bandyopadhyay 2007 Static and Free Vibration Analyses of Laminated Shells Using A Higher-Order Theory (Journal of Reinforced Plastics and Composites) vol 27 no 2

[240] H Nguyen-Xuan, L V Tran, T Nguyen-Thoi and H C Vu-Do 2011 Analysis of Functionally Graded Plates using an Edge-Based Smoothed Finite Element Method (Composite Structures) vol 93 no 11 pp 3019–3039

[241] Khalili S M R, A Jafari and S A Eftekhari 2010 A Mixed Ritz-DQ Method for Forced Vibration of Functionally Graded Beams Carrying Moving Loads (Composite Structures) vol 92 no 10

[242] A Jafari and S A Eftekhari 2011 A New Mixed Finite Element–Differential Quadrature Formulation for Forced Vibrations of Beams Carrying Moving Loads (Journal of Applied Mechanics) vol 78 no 1

[243] Zhao X, Lee Y Y and Liew K M 2009 Free Vibration Analysis of Functionally Graded Plates using the Element-Free Kp-Ritz Method (Journal of Sound and Vibration) vol 319 no 3–5

[244] Zhu P and Liew K M 2011 Free Vibration Analysis of Moderately Thick Functionally Graded Plates by Local Kriging Meshless Method (Composite Structures) vol 93 no 11 pp 2925–2944

[245] Singha M K, Prakash T and Ganapathi M 2011 Finite Element Analysis of Functionally Graded Plates under Transverse Load (Finite Elements in Analysis and Design) vol 47 pp 453–460

[246] Doizio L 2013 Natural Frequencies of Sandwich Plates with FGM Core Via Variable Kinematic 2-D Ritz Models (Composite Structures) vol 96 pp 561–568

[247] P Gagnon, C Gosselin and L Cloutier 1997 A Finite Strip Element for the Analysis of Variable Thickness Rectangular Thick Plates (Computers & Structures) vol 63 no 2 pp 349–362

[248] K M Liew, L X Peng and S Kitipornchai 2009 Vibration Analysis of Corrugated Reissner-Mindlin Plates using a Mesh-Free Galerkin Method (International Journal of Mechanical Sciences) vol 51 no 9–10 pp 642–652

[249] Čivalek Ö 2007 Three-Dimensional Vibration, Buckling and Bending Analyses of Thick Rectangular Plates Based on Discrete Singular Convolution Method (International Journal of Mechanical Sciences) vol 49 pp 752–765

[250] Song Xiang, Ke-ming Wang, Yan-ting Ai, Yun-dong Sha and Hong Shi 2009 Analysis of Isotropic, Sandwich and Laminated Plates by a Meshless Method and Various Shear Deformation Theories (Composite Structures) vol 91 no 1 pp 31–37

[251] S Chakraverty and K K Pradhan 2014 Free Vibration of Functionally Graded Thin Rectangular Plates Resting on Winkler Elastic Foundation with General Boundary Conditions using Rayleigh–Ritz Method (International Journal of Applied Mechanics) vol 06 no 04

[252] T Kant and R K Khare 1997 A Higher–Order Facet Quadrilateral Composite Shell Element
(International Journal for Numerical Methods in Engineering) vol 40 no 24 pp 4477–4499

[253] Mahmud Rasheed Ismail, Zaman Abud Almalik Abud Ali and Muhammad Al-Waily 2018 Delamination Damage Effect on Buckling Behavior of Woven Reinforcement Composite Materials Plate (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 05 pp 83–93

[254] A J M Ferreira, R C Batra, C M C Roque, L F Qian and R M N Jorge 2006 Natural Frequencies of Functionally Graded Plates by a Meshless Method (Composite Structures) vol 75 no 1–4 pp 593–600

[255] Shufrin I and Eisenberger M 2005 Stability and Vibration of Shear Deformable Plates–First Order And Higher Order Analysis (International Journal of Solids and Structures) vol 42 no 3–4

[256] Reddy J N 1997 Mechanics of Laminated Composite Plates: Theory and Analysis (CRC Press–Taylor & Francis Group)

[257] S A Pradyumna and J N Bandyopadhyay 2008 Free Vibration Analysis of Functionally Graded Curved Panels using a Higher–Order Finite Element Formulation (Journal of Sound and Vibration) vol 318 pp 176–192

[258] Young Soo Kim and Suong Van Hoa 1995 Bi–Axial Buckling Behavior of Composite Rectangular Plates (Composite Structures) vol 31 no 4 pp 247–252

[259] N Sundararajan, T Prakash and M Ganapathi 2005 Nonlinear Free Flexural Vibrations of Functionally Graded Rectangular and Skew Plates under Thermal Environments (Finite Elements in Analysis and Design) vol 42 no 2

[260] P Malekzadeh and S A Shojaee 2013 Dynamic Response of Functionally Graded Plates under Moving Heat Source (Composites Part B: Engineering) vol 44 no 1 pp 295–303

[261] Li S, Hao W and Liu W K 2000 Numerical Simulations of Large Deformation of Thin Shell Structures using Meshfree Method (Computational Mechanics) vol 25 pp 102–116

[262] Parandvar H and Farid M 2015 Nonlinear Reduced Order Modeling of Functionally Graded Plates Subjected to Random Load in Thermal Environment (Composite Structures) vol 126 pp 174–183

[263] Vuong Nguyen Van Do 2018 A Modified Kirchhoff Plate Theory for Free Vibration Analysis of Functionally Graded Material Plates using Meshfree Method (IOP Conference Series: Earth and Environmental Science, 2nd International Conference on Sustainable Development in Civil, Urban and Transportation Engineering) vol 143

[264] Qian L F, Batra R C and Chen L M 2003 Elastostatic Deformations of a Thick Plate by using a Higher–Order Shear and normal Deformable Plate Theory and Two Meshless Local Petrov–Galerkin (MLPG) Methods (Tech Science Press) vol 4 no 1 pp 161–175

[265] L F Qian, R C Batra and L M Chen 2003 Free and Forced Vibrations of Thick Rectangular Plates using Higher–Order Shear and normal Deformable Plate Theory and Meshless Petrov–Galerkin (MLPG) Method (Tech Science Press) vol 4 no 5 pp 519–534

[266] P Zhu and K M Liew 2012 A Local Kriging Meshless Method for Free Vibration Analysis of Functionally Graded Circular Plates in Thermal Environments (Procedia Engineering) vol 31

[267] H M Wang and D S Luo 2016 Exact Analysis of Radial Vibration of Functionally Graded Piezoelectric Ring Transducers Resting on Elastic Foundation (Applied Mathematical Modelling) vol 40 no 4 pp 2549–2559

[268] M H Yas and B S Aragh 2011 Elasticity Solution for Free Vibration Analysis of Four–Parameter Functionally Graded Fiber Orientation Cylindrical Panels using Differential Quadrature Method (European Journal of Mechanics–A/Solids) vol 30 no 5 pp 631–638

[269] Pandey S and Pradyumna S 2015 Free Vibration of Functionally Graded Sandwich Plates in Thermal Environment Using a Layerwise Theory (European Journal of Mechanics–A/Solids) vol 51

[270] S Hosseini-Hashemi, H Salehipour, S R Atashipour, R Sburlati 2013 On the Exact In Plane and Out–of–Plane Free Vibration Analysis of Thick Functionally Graded Rectangular Plates: Explicit 3D Elasticity Solutions (Composites Part B: Engineering) vol 46 pp 108–115
[271] Ehab N Abbas, Muhannad Al-Waily, Tariq M Hammza and Muhsin J Jweeg 2020 An Investigation to the Effects of Impact Strength on Laminated Notched Composites used in Prosthetic Sockets Manufacturing (IOP Conference Series: Materials Science and Engineering, 2nd International Scientific Conference of Al-Ayen University) vol 928

[272] Sadiq Emad Sadiq, Muhsin J Jweeg and Sadeq H Bakhy 2020 The Effects of Honeycomb Parameters on Transient Response of an Aircraft Sandwich Panel Structure (IOP Conference Series: Materials Science and Engineering) vol 928

[273] Muhammad Al-Waily, Moneer H Tolephih and Muhsin J Jweeg 2020 Fatigue Characterization for Composite Materials used in Artificial Socket Prostheses with the Adding of Nanoparticles (IOP Conference Series: Materials Science and Engineering, 2nd International Scientific Conference of Al-Ayen University) vol 928