Planning an International Dark-Sky Place in Aenos National Park, the first steps

A Papalambrou¹, L T Doulos², G Drakatos³, M Xanthakis³, P Minetos³ and A E Magoula⁴

¹ Greek chapter of the International Dark-Sky Association, Greece
² School of Applied Arts, Hellenic Open University, Parodos Aristotelous 18, 26335 Patras, Greece
³ Aenos National Park, Kefalonia, Greece
⁴ Laboratory science center of Kefalonia and Ithaca, Kefalonia, Greece

⁵ E-mail: andreas@papalambrou.gr

Abstract. This work describes the preparatory steps for the planning of a light pollution protected area in the form of an International Dark-Sky Park in Aenos National Park at the island of Kefalonia that refer to lighting and light pollution. In more detail, we identified and measured luminance, illuminance and spectrum of public lighting at the island of Kefalonia in areas that are adjacent to the National Park and may influence its operation as a Dark Sky Park. This procedure also includes identifying the luminaire types and light sources, judging their suitability, identifying malpractices and proposing changes. In general, many malpractices were identified both in old lighting installations as well as recent LED retrofits or new installations with more common ones being rich sources in blue light and use of non-cut off luminaires. Light pollution measurements were performed that prove that Aenos National Park has dark enough skies to meet requirements.

1. Introduction

The use of artificial lighting in the built environment [1-8] can affect not only the visual perception and wellbeing of humans [9] but also the environment. Light pollution is a type of pollution that climaxes in the cities, but occurs increasingly away from them, due to the increase of artificial lighting but also due to malpractices and improper lighting design [10-17]. Lighting malpractices may involve inappropriate selection of luminaires, aiming or placement, excessive illumination levels but also unwanted spectral characteristics of the emitted light. While there is an effort to establish general rules [18-20] and guides through research [21-30], the lack of lighting design and energy consumption restrictions for areas in the exterior of buildings, such as building façades, and sports and recreation areas has led to an increase in the use of lighting installations. Increasingly, light pollution also affects the countryside due to local lighting but also distant lighting propagating from urban areas. This has significant impact to ecosystems and astronomical observing sites which is a relatively unknown fact to most people. In order to protect sites of significant ecosystems, natural beauty or astronomical interest, it is important that light pollution reduction is included in the top priorities of national parks, protected ecosystem areas and astronomical observatories as well as public policy and ordinances. This work studies a) the first steps of methods, parameters and special requirements for the planning
of a light pollution protected area in the form of an International Dark-Sky Park in Aenos National Park at the island of Kefalonia and b) the early results from identifying the luminaire types of the adjacent villages.

2. About the National Park
The National Park of Mt. Aenos consist of an area of 2,862 ha, which expands at the mountain Aenos and at the adjacent mountain Roudi. Its main feature is its Cephalonian Fir forest (Abies cephalonica), which is unique in the Ionian islands and constitutes the reason for the foundation of the National Park in 1962. Mt. Aenos with alt. of 1,628 m is the highest mountain in the Ionian Islands, whereas Mt. Roudi reaches an alt. of 1,125 m.

In recognition of its significance at the European level, the National Park has been designated as a European Biogenetic Reserve, belongs to the “Natura 2000” European Ecological Network of Protected Areas (GR2220002) and is a Special Protected Area for the protection of avifauna (GR2220006). It has also been declared as a Wildlife Reserve. The Management Body was established in 2002. Its purpose is to manage, protect and promote Mt. Aenos National Park. From the area of National Park there have been recorded more than 400 plant species. The largest part is dominated by the forest of Abies cephalonica, which is Greek endemic species. More than 100 bird species have been recorded in the national Park. A herd of semi-wild horses lives freely in the northern east part of the mountain [31-33].

The most prominent international effort to counteract light pollution is the one conducted by the International Dark-Sky Association (IDA). The international Dark-Sky Places program was founded in 2001 and as of September 2020 there are over 130 certified places globally. In order to be designated as an International Dark Sky Place of any type, a strict application process is required. The scope of this work is to establish the National Park of Aenos as an International Dark Sky Place though IDA.

3. Methodology
Figure 1 presents the basic steps of the methodology that can be followed in order to plan the International Dark-Sky Place in Aenos National Park, namely:

- Lighting inventory survey
- Photometric characteristics
- Light pollution assessment

Sky brightness measurements assist in recording the intensity of skyglow in an area. This is important in order to assess the importance of the area as a site, its risk as well as monitor skyglow progress either increasing or decreasing. There are many methods to record sky brightness including visual, photographic and instrumental. While visual methods, such as the Naked Eye Limiting Magnitude measurement, can be very accurate if executed correctly, they tend to vary widely depending on observer experience, age and effort. The de facto standard device for measuring sky brightness is the Sky Quality Meter (SQM) developed by Unihedron and endorsed by the International Dark Sky association.

Creating a lighting inventory consists of surveying existing outdoor light fixtures in the nearby area. This includes outdoor fixture location, design, light source type, intensity and spectrum.
4. Results
This section presents the main results of the study.

4.1. Lighting installation
There is no exterior lighting installation inside the national park. The lighting installation was identified in the nearby surrounding areas inside a radius of 15km from the national park (Fig. 2). Lighting inventory in the nearby area consists mainly of old, unshielded or semi-shielded luminaires either in their original form using older technology lamps (High Pressure Mercury, HPM lamps and High-Pressure Sodium, HPS lamps in few cases) or retro-fitted with LED or Compact Fluorescent Lamps (CFL) light lamps. In the main area of the City of Argostoli, capital of the island, and more specific in the main square of the city, new LED luminaires were installed. More specifically, the main types of luminaires that were identified are presented in Table 1. The majority of the luminaires (approximately 50% of the total number of luminaires) were of type A (Non-cut off traditional type luminaire - Lantern luminaire) and type B (Ball shape type street luminaire). The rest types were street luminaires Type C and D (Table 1). A small-scale new installation of LED luminaires was performed in the city of Argostoli with 4000K LED luminaires (Type E and F). Various other types of luminaires were also identified but in small numbers (Wall luminaires and floodlights).

Table 1. Main existing types of luminaires in the surrounding areas from the Aenos National Park.

Type of luminaire	Location	Type of luminaire	Location
Type A: Non-cut off traditional type	All towns and villages	**Type D**: “Plate” type luminaire	City of Argostoli, Nearby
luminaire (Lantern luminaire) with CFL or		luminaire	small villages
LED retrofit lamp		Compact Fluorescent Lamp	
Type B: Non-cut off ball shape type	All towns and villages	**Type E**: New	City of Argostoli, Main
street luminaire with Compact Fluorescent		LED street luminaires	road, Central Square
Lamp CFL or LED retrofit lamp			
4.2. Road classes and corresponding light levels
According to the EN 13201-1 [18] the corresponding levels should vary from 0.3 cd/m² (average value for class M6, connecting roads between towns, ports and villages if should be lit) to 0.75 cd/m² (average value for class M4, main streets inside towns). The main road trespassing villages levels should be 0.50 cd/m² (average value for class M5). For main crossroads in main road levels should be 7.5lx (C5 class) while in main roads in towns they should be 10lx (C4 class). For the secondary streets inside towns levels should be 5lx (P4 class) while in villages they should be 3lx (P5 class). In curfew hours the lighting levels should be dimmed 50% according to the EU Green Public Procurement Criteria for Road Lighting and traffic signals [20].

Figure 2. Type of light sources (LED, CFL, HPM, HPS, cool [>5300K], intermediate [3300K>, <5300K], and warm [<3300K] CCT) and luminaires (Types A to F) in the examined areas (within a radius of 15km from the National Park).

4.3. Photometric measurements
Photometric measurements are presented in the following subsections.

4.3.1. SQM measurements. In order for SQM measurements to be taken, the SQL-L instrument was fixed to a tripod containing a bubble level, so it can point to zenith when fixed perpendicularly. Each time three successive measurements of the same area were averaged and rounded to nearest 0.05. The zenithal measurement of the astronomical site in Aenos National Park averaged at 21.35 visual magnitudes per square arc second, peaking at 21.45 under favourable conditions with lowest (worst) readings of 21.25 under busier summer periods. This makes all measurements better than the required minimum of 21.20 even under unfavourable conditions and for all time periods and the extend of the national park. Dark skies were evident both visually and photographically as captured with long exposure photos (Figure 3).
4.3.2. Illuminance and luminance measurements. Various sets of photometric measurements were performed in the surrounding area of Aenos National Park, an area of 15km radius. The surrounding area included the capital of the island, town of Argostoli, two main ports with adjustment towns, Sami and Poros, and various villages with permanent inhabitants and summer houses. The photometric measurements were performed from 6 to 8 of July 2020. Illuminance measurements were performed using Konica Minolta T-10A illuminance meter and luminance measurements were performed using LS-100 luminance meter, Correlated Colour Temperature.

Fig. 4 presents the areas where the photometric measurements were performed (I1-I18 are the 18 areas in which illuminance measurements were performed according to EN 13201-3 and 4, and L1-L12 are the 12 areas in where luminance measurements were performed).

Figure 3. Long exposure photo of the sky in Aenos National Park. Pictured is the constellation of Orion. Photo by Andreas Papalambrou.

Figure 4. Areas in which the photometric measurements were performed. I1 to I18 are the illuminance measurements and L1 to L12 are the luminance measurements.
The illuminance and luminance measurements were identified as typical cases as the type of lighting installation, that was measured, was met in most of the areas that were investigated. Table 2 presents the illuminance measurements. Excluding the areas in the center of the city, in which the light installation was over illuminated, the other areas were either illuminated in accordance with EN 13201 (Paragraph 4.2) or were under illuminated. Extreme over illumination was identified also in Poros city which is characterized as lighting malpractice. Due to obsolete luminaires or improper type of luminaires the uniformity values were below the minimum maintained value according EN 13201. According the luminance values 3 cases were identified with higher values (L1, L3 and L7).

Grid/Area	L1	L2	L3	L4	L5	L6
Average Luminance	1.07	0.29	5.07	0.71	0.76	0.50
Uo (min/ave)	0.41	0.1	0.5	0.14	0.20	0.1

Grid/Area	L7	L8	L9	L10	L11	L12
Average Luminance	2.84	0.10	0.31	0.26	0.44	0.89
Uo (min/ave)	-	0.18	0.36	-	0.55	0.45

5. Conclusions
The awareness of the negative effects of light pollution is affecting the lighting design of streets and small cities near national parks and protected areas. Today, with the advent of energy-efficient luminaires (LED) and state-of-the-art lighting control, the need for a better living environment should be placed along with environmentally friendly lighting design techniques. The first steps before an area of a city enters the LED era is to a) recognize the existing malpractices and avoid them in the new light masterplan, b) set the proper guidelines (not only in lighting design but also in luminaires), c) identify if it is compatible with protected areas or national parks (to set extra promotions).

This paper presents a) the first steps for identifying a protected area (National Park of Aenos) suitable for a dark sky nomination and b) the early results from identifying the luminaire types of the adjusted area of the National Park. Various malpractices were identified, mainly in the areas with the new installations of LED luminaires. This is evident of how important the early planning of lighting design and the selection of proper luminaires is, especially in the areas that affect the National Park.

The main problem of the area is the blue rich radiation that was measured from the existing luminaires. While the HPM luminaires were around 4000K, Cool CCT Compact Fluorescent lamps (5400K) were installed resulting in the enormous amount of blue radiation. However, the most important issue that should alert the decision makers of the street lighting design is the awareness of the technical characteristics that were chosen for the newly installed LED luminaires that blue light was also high in some cases. The future work of this research is to identify the lighting malpractices in a more detailed way and propose the necessary actions for minimizing light pollution in the surrounding area.

References
[1] Ardavani O, Zerefos S and Doulos L 2019 Redesigning the exterior lighting as part of the urban landscape: The role of transgenic bioluminescent plants in mediterranean urban and suburban lighting environments Journal of Cleaner Production 242 118477 https://doi.org/10.1016/j.jclepro.2019.118477
[2] Beccali M, Bonomolo M, Leccese F, Lista D and Salvadori G 2018 On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design Energy 165 739–59 https://doi.org/10.1016/j.energy.2018.10.011
[3] Carli R, Dotoli M and Pellegrino R 2018 A decision-making tool for energy efficiency optimization of street lighting Computers & Operations Research 96 222–34 doi:10.1016/j.cor.2017.11.016

[4] Anthopoulos E and Doulos L T 2019 The Effect of the Continuous Energy Efficient Upgrading of LED Street Lighting Technology: The Case Study of Egnatia Odos Proc. Int. Conf. 2019 2nd Balkan Junior Conference on Lighting (Plovdiv: Balkan Light Junior 2019 – Proceedings) pp 4-5 doi: 10.1109/BLJ.2019.8883662

[5] Grigoropoulos C J, Doulos L T, Zerefos S C, Tsangrassoulis A and Bhusal P 2020 Estimating the benefits of increasing the recycling rate of lamps from the domestic sector: Methodology, opportunities and case study Waste Management 101 188-99 doi:10.1016/j.wasman.2019.10.010

[6] Doulos L T, Sioutis I, Tsangrassoulis A, Canale L and Faidas K 2019 Minimizing lighting consumption in existing tunnels using a no-cost fine-tuning method for switching lighting stages according revised luminance levels Proc. Int. Conf. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPES Europe) (Genova, Italy) doi: 10.1109/EEEIC.2019.8783789

[7] Doulos L T, Sioutis I, Tsangrassoulis A, Canale L and Faidas K 2020 Revision of Threshold Luminance Levels in Tunnels Aiming to Minimize Energy Consumption at No Cost: Methodology and Case Studies Energies 13 1707 doi:10.3390/en13071707

[8] Bista D, Bista A, Shrestha A, Doulos L T, Bhusal P, Zissis G, Topalis F and Chhetri B B 2021 Lighting for Cultural and Heritage Site: An Innovative Approach for Lighting in the Distinct Pagoda-Style Architecture of Nepal Sustainability 13 2720 doi:10.3390/su13052720

[9] Peña-García A, Hurtado A and Aguilar-Luzón M C 2015 Impact of public lighting on pedestrians’ perception of safety and well-being Safety Science 78 142–8 doi:10.1016/j.ssci.2015.04.009

[10] Schroer S and Hölker F 2017 Impact of Lighting on Flora and Fauna Handbook of Advanced Lighting Technology 957-89. http://dx.doi.org/10.1007/978-3-319-00176-0_42

[11] Gallaway T, Olsen R and Mitchell D 2010 The economics of global light pollution. Ecological Economics 69 (3) 658-65 doi:10.1016/j.ecolecon.2009.10.003

[12] Lytyimäki J 2015 Avoiding overly bright future: The systems intelligence perspective on the management of light pollution. Environmental Development 16 4-14 doi:10.1016/j.envdev.2015.06.009

[13] Zielinska Dabkowska K 2018 Making Light Healthier Nature 553 274-6 http://dx.doi.org/10.1038/d41586-018-00568-7

[14] Zielinska Dabkowska K and Xavia K 2019 Global Approaches to Reduce Light Pollution from Media Architecture and Non-Static, Self-Luminous LED Displays for Mixed-Use Urban Developments Sustainability 11 (12) 3446 https://doi.org/10.3390/su11123446

[15] Cierzazno P and Falchi F 2013 Quantifying light pollution Journal of Quantitative Spectroscopy and Radiative Transfer 139 13-20 doi:10.1016/j.jqsrt.2013.11.020

[16] Kyba C M C, Kuester T, de Miguel S A, Baugh K, Jechow A, Hölker F, Bennie J, Elvidge D C, Gaston J K and Guanter L 2017 Artificially lit surface of Earth at night increasing in radiance and extent Science Advances 3 (11) 1-47

[17] Levin N et al 2020 Remote sensing of night lights: A review and an outlook for the future Remote Sensing of Environment 237 111443 https://doi.org/10.1016/j.rse.2019.111443

[18] EN 13201 Part 1: Guidelines on selection of lighting classes. CEN/TR 13201-1 European Committee for Standardization December 2015

[19] CIE 150: 2017 Technical Report. Guide on the Limitation of the Effects of Obtrusive Light from Outdoor Lighting Installations 2nd Ed DOI: 10.25039/TR.150.2017
[20] Traverso M, Donatello S, Moons H, Rodriguez Quintero R, Gama Caldas M, Wolf O, Van Tichelen P, Van Hoof V and Geerken T 2017 Revision of the EU Green Public Procurement Criteria for Street Lighting and Traffic Signals - Preliminary Report, EUR 28622 EN (Luxembourg: Publications Office of the European Union) ISBN 978-92-79-69097-6 doi:10.2760/479108, JRC106647

[21] Fotios S and Gibbons R 2018 Road lighting research for drivers and pedestrians: The basis of luminaire and illuminance recommendations Lighting Research & Technology 50 154–86 https://doi.org/10.1177/1477153517739055

[22] Falchi F, Cinzano P, Elvidge C, Keith D and Haim A 2011 Limiting the impact of light pollution on human health, environment and stellar visibility Journal of Environmental Management 92 (10) 2714-22 https://doi.org/10.1016/j.jenvman.2011.06.029

[23] Hermoso-Orzáez M J, Lozano-Miralles J A, Lopez-Garcia R and Brito P 2019 Environmental Criteria for Assessing the Competitiveness of Public Tenders with the Replacement of Large-Scale LEDs in the Outdoor Lighting of Cities as a Key Element for Sustainable Development: Case Study Applied with PROMETHEE Methodology Sustainability 11 5982

[24] Jiang Y, Li S, Guan B, Zhao G, Boruff D, Garg, L and Patel P 2018 Field evaluation of selected light sources for roadway lighting Journal of Traffic and Transportation Engineering (English edition) 5 (5) 372–85 https://doi.org/10.1016/j.jtte.2018.05.002

[25] Papalambrou A and Doulos L 2019 Identifying, Examining, and Planning Areas Protected from Light Pollution. The Case Study of Planning the First National Dark Sky Park in Greece. Sustainability 11 (21) 5963 https://doi.org/10.3390/su11215963

[26] Papalambrou A and Doulos L 2019 Identifying, Examining, and Planning Areas Protected from Light Pollution. The Case Study of Planning the First National Dark Sky Park in Greece. Sustainability 11 (21) 5963 https://doi.org/10.3390/su11215963

[27] Tahkamo L and Halonen L 2015 Life cycle assessment of road lighting luminaires -comparison of light-emitting diode and high-pressure sodium technologies Journal of Cleaner Production 93 234–42 https://doi.org/10.1016/j.jclepro.2015.01.025

[28] Wojnicki I and Kotulski L 2018 Empirical study of how traffic intensity detector parameters influence dynamic street lighting energy consumption: A case study in Krakow. Poland. Sustainability 10 (12) 2015.09.046

[29] Yoomak S, Jettanasen C, Ngaopitakkul A, Bunjongjit S and Leelajindakrairerk M 2018 Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system Energy and Buildings 159 542-57 https://doi.org/10.1016/j.enbuild.2017.11.060

[30] Kamari G and Xanthakis M 2015 The Mountain Aenos Of Cephalonia Island History – Physiography – Biodiversity – December 2015 Edition: First Edition Publisher: KATAGRAMMA – Graphic Arts, Terzis Bros G.P.Editor: Dimitrios Phitos, Georgia Kamari, Niki Katsouni, Georgios Mitsainas ISBN: 978-960-9407-31-1 Project: Protection and Conservation of the Biodiversity of Mt. Aenos National Park, Cephalonia isl., Greece

[31] Xanthakis M, Lysitsa G and Minetos P 2014 Programma parakolouthisis tis Ornithopanidas tis Kefaloniais apo to prosopiko tou Forea Diachirisis Ethnikou Drimou Aenou. Proceedings of the 7th Panhellenic Ecological Meeting (Mytilene, Greece) pp 244

[32] Xanthakis M, Lysitsa G and Minetos P 2015 Η ισιασία του ιγροτόπου Livadiou για τη διατήρηση του νερού και την αποθήκευση χώρου ως Ornitho panidas tis Kefaloniais Proceedings of the 17th Panhellenic Forestry Meeting (Cephalonia, Greece) pp 414-424