Does the microenvironment influence the cell types of origin for prostate cancer?

Andrew S. Goldstein1,2,3,4 and Owen N. Witte1,3,4,5,6,7

1Department of Molecular and Medical Pharmacology, 2Department of Urology, 3Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, 4Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, 5Department of Microbiology, Immunology, and Molecular Genetics, 6Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California 90095, USA

Despite several recent studies addressing the cells of origin for prostate cancer, there is still considerable discussion in the field regarding the most relevant target populations for transformation. Tissue regeneration studies have pointed to a basal cell origin for mouse and human prostate cancer. In contrast, genetically engineered mouse models demonstrate that cells within both the basal and luminal layers can initiate murine prostate cancer. Based on differences between these two approaches, we propose that further work should address the requirement for microenvironmental components such as immune or mesenchymal cells on epithelial cell types of origin for prostate cancer.

Experimental identification of the cell types of origin for prostate cancer

The cell of origin is the normal cell type that either acquires genetic damage or responds to changes in its environment, resulting in a multistep progression of tumorigenesis (Visvader 2011). Defining the cell types of origin and the signals promoting transformation toward a lethal phenotype will enhance our understanding of cancer initiation and likely lead to the development of new diagnostic tools or therapeutic targets to detect and treat lethal prostate cancer.

While prostate cancer is one of the most common causes of cancer and cancer-related deaths among males worldwide (Siegel et al. 2012), the majority of patients diagnosed with the disease have a relatively indolent form of prostate cancer that is unlikely to invade beyond the local tissue environment (Klotz 2013). However, a subset of prostate tumors exhibit aggressive properties, including rapid proliferation and metastatic spread to distant organ sites, including the lymph nodes, lung, bone, and brain (Logothetis and Lin 2005). Patients with localized disease can be treated by radical prostatectomy to remove diseased prostate tissue. When the tumor becomes metastatic, patients are often treated with anti-androgen hormonal therapy, radiation, or both. Patients initially respond favorably to treatment, but tumors invariably return in a more aggressive castration-resistant state that is currently untreatable (Feldman and Feldman 2001; Hellerstedt and Pienta 2002; Zong and Goldstein 2013).

In order to model advanced disease, researchers have focused on identifying both the critical genetic alterations found in late stage tumors and the cells of origin in which these alterations occur to drive tumorigenesis. There has been a considerable effort during the past decade to acquire late stage prostate tumors for genome sequencing to discover the genetic alterations most commonly found in advanced disease (Berger et al. 2011; Barbieri et al. 2012; Grasso et al. 2012). In 2005, Chinnaian and colleagues (Tomlins et al. 2005) discovered a recurrent chromosomal translocation bringing the ETS transcription factor ERG (ETS-related gene) under regulation of the androgen-driven TMPRSS2 (transmembrane protease, Ser2) promoter occurring in up to 50% of prostate tumors (Mani et al. 2009). A large number of rearrangements have since been discovered in prostate cancer involving other ETS genes (Kumar-Sinha et al. 2008). In addition, prostate tumors are characterized by overexpression of Spink1 (Tomlins et al. 2008), activation of the RAS/RAF pathway [Mulholland et al. 2012; Wang et al. 2012], activation of the PI3K [phosphoinositide 3-kinase] pathway [Wang et al. 2003; Yoshimoto et al. 2006], loss of Rb [retinoblastoma protein] signaling (Taylor et al. 2010), and mutations in SPOP [speckle-type POZ protein] and FOXA1 [forkhead box protein A1] (Barbieri et al. 2012; Grasso et al. 2012). With the knowledge of the most common alterations that occur either alone or in combinations, several groups have addressed the cell types of origin for prostate cancer to determine which lineages acquire the genetic alterations that promote the initiation of aggressive disease.

A tissue recombination approach identifies basal cells as one cell type of origin for mouse and human prostate cancer

Two different technologies have been established to experimentally evaluate the target cells susceptible to transformation in the mouse and human prostate. The first
Goldstein and Witte

method uses a tissue recombination approach originally developed by Cunha and Lung (1978) to examine epithelial and mesenchymal interactions in the developing prostate and later adapted to interrogate adult prostate epithelium. In this assay, dissociated prostate cells are fractionated into distinct epithelial subpopulations; engineered to express one, two, or three oncogenes by lentiviral delivery, and recombined with inductive urogenital sinus mesenchyme [UGSM] cells originally isolated from the midgestation mouse embryo [Xin et al. 2003, 2005; Zong et al. 2009]. Upon transplantation under the renal capsule or subcutaneous space of immunodeficient mice, epithelial cells generate glands that represent varying stages of histological transformation depending on the oncogenes they express—from benign glands to prostatic intraepithelial neoplasia [PIN] lesions to full-blown adenocarcinoma [Zong et al. 2009]. Certain oncogene combinations can promote an epithelial–mesenchymal transition (EMT) and metastasis [Xin et al. 2006; Cai et al. 2011]. Murine prostate cells harboring genetic deletions of tumor suppressors such as Rb or Pten can be transplanted under the kidney capsule to evaluate the effects on transformation [Wang et al. 2000; Mulholland et al. 2009].

A major advantage of the tissue recombination model is the ability to perform parallel studies using rodent and human tissue. In addition, tissue grafts containing PIN or cancerous lesions generally develop in 2–3 mo, allowing for rapid assessment of a range of candidate genetic alterations identified by cancer genome sequencing. Any single oncogene or combination of genetic alterations can be assayed using the same epithelial cell preparation. In order to perform the tissue recombination, native tissue structures are disrupted, and new glands are regenerated in a distinct environment, either under the kidney capsule or in the subcutaneous space. Using the tissue recombination assay, Lawson et al. (2010) isolated basal and luminal cells from mouse prostate epithelium and found that a range of oncogenic influences could initiate prostate cancer efficiently from basal cells but not from luminal cells. Consistent with these findings, Mulholland et al. (2009) isolated tissue from young Pten-deficient prostate glands and found that only the CD49fhi basal fraction could initiate tumors upon transplantation under the renal capsule.

A human tissue recombination assay was developed to test the transformation capacity of naïve benign basal and luminal epithelial cells taken from freshly isolated clinical specimens [Goldstein et al. 2011]. A combination of three oncogenes [AKT, ERG, and androgen receptor], each representing a commonly activated pathway in advanced disease, was sufficient to initiate human prostate cancer from the basal cell population following transplantation into the subcutaneous site [Goldstein et al. 2010]. Further support for a basal cell origin in human prostate cancer was provided by Risbridger and colleagues [Taylor et al. 2012], demonstrating that basal-like cells could be transformed by hormonal stimuli (combined estrogen and testosterone) to initiate tumorigenesis in the renal capsule.

Genetically engineered mouse (GEM) models reveal target cells for murine prostate cancer within both the basal and luminal epithelium

In contrast to tissue recombination studies, GEM models offer an alternative approach that has been used by several laboratories to evaluate different lineages as candidate cells of origin for murine prostate cancer. Lineage-specific promoters activate the Cre recombinase to remove critical tumor suppressor genes or induce expression of oncogenes, typically from a young age in healthy mice equivalent to a teenage man [Lakso et al. 1992; Wang et al. 2009; Fuchs and Horsley 2011; Choi et al. 2012]. The major advantage of this model is the ability to maintain native structures in the prostate epithelium, while the cost and timing required to maintain different strains make it more difficult to test a large set of individual genetic alterations and combinations in GEM models.

Three independent groups have recently investigated the effects of removing the tumor suppressor Pten in basal or luminal cells [Choi et al. 2012; Lu et al. 2013; Wang et al. 2013]. Each group demonstrated that both lineages are capable of generating malignant lesions, although there is considerable disagreement over which lineage is capable of generating the most proliferative, aggressive disease depending on the strength of the promoter used and the background and genotype of the mouse. Xin and colleagues [Choi et al. 2012] found that basal cells were more resistant to transformation, which may be partially explained by recombination in only 17% of basal cells compared with recombination in up to 80% of luminal cells. Using a Keratin 5 promoter-driven Cre that could delete Pten in up to 50% of basal cells, Chen and colleagues [Lu et al. 2013] reported that basal cell-derived tumors were more proliferative and invasive than lesions initiated by loss of Pten in luminal cells. Comparing deletion of Pten in Nkx3-1+/- basal cells with heterozygous Nkx3-1Cre+/+ luminal cells, Shen and colleagues [Wang et al. 2013] determined that luminal cell-derived tumors were more aggressive than basal cell-derived lesions. Since Nkx3-1 is an important tumor suppressor regulating prostate transformation [Abate-Shen et al. 2003], perhaps a more balanced comparison would include Pten deletion in basal cells that also lack one allele of Nkx3-1.

The complexity of such results may be further complicated by lineage tracing studies performed by Blanpain and colleagues [Ousset et al. 2012] demonstrating a number of distinct progenitor cells within the developing mouse prostate, including unipotent and multipotent basal stem cells and unipotent luminal stem/progenitors. Given the range of results using experimental models, it is likely that any proliferative cell has the potential to be transformed, suggesting that progenitor-like cells within both the basal and luminal layer are the likely targets. It is also possible that sufficient oncogene activation in terminally differentiated cells could induce dedifferentiation and transformation, similar to recent results demonstrating that even mature neurons in the murine brain can initiate gliomas upon loss of tumor suppressors NF1 and p53 [Friedmann-Morvinski et al. 2012]. While prostate
cancer may arise from the transformation of distinct target cells, the cell type of origin could influence biological properties of the resulting tumors, as has been demonstrated in a mouse model of T-cell acute lymphoblastic leukemia [Berquam-Vrieze et al. 2011].

Stromal-derived paracrine growth factors may preferentially transform basal cells in the tissue recombination assay

While the impact of cell-autonomous disease-promoting genetic alterations in prostate cancer has been well studied, the effects of paracrine- or endocrine-derived factors on prostate epithelium deserve discussion. Nonepithelial cell types, including mesenchymal, endothelial, and hematopoietic cells, are often grouped together under the umbrella of stromal components. For this discussion, we focus on the influence of mesenchymal or fibroblastic cells on epithelial transformation. Several studies have shown that dysregulation of mesenchymal/niche cell signaling and release of growth factors can act on nearby epithelial cells of origin to promote the initiation of prostate cancer. Alterations in stromal secretory paracrine growth factors such as TGF-β (transforming growth factor β), Wnt ligands, and “andromedins” like FGF10 (fibroblast growth factor 10) can transform neighboring normal prostate epithelium [Memarzadeh et al. 2007; Franco et al. 2011; Zong et al. 2012]. In addition, inclusion of mesenchymal cells, particularly through enhanced Wnt production in stromal cells induced by treatment, can promote stem-like properties in advanced prostate cancer cells [Liao et al. 2010a,b; Sun et al. 2012; Jachetti et al. 2013].

A major difference between the tissue recombination approach and GEM models is the requirement for embryonic mesenchyme as an inductive source to promote gland regeneration and tumorigenesis [Garber 2010]. Given that basal cells are more readily transformed in the tissue recombination assay, they may preferentially respond to growth factors secreted by UGSM cells [Fig. 1]. When specific stromal alterations have been examined for their capacity to transform isolated basal or luminal cells, basal cells have been demonstrated to preferentially respond to mesenchymal signals to initiate transformation [Lawson et al. 2010; Zong et al. 2012]. These results may be explained in part by their expression of certain growth factor receptors and their native localization against the basement membrane in close proximity to stromal cells.

Inflammation may play a critical role in luminal cell transformation

A second major difference between tissue recombination and GEM models is the presence or absence of a functional immune system. Given that studies demonstrating luminal cell-driven prostate cancer have been performed in immune-competent mice, inflammation may play a critical role in the proliferation and transformation of the luminal epithelium. In fact, inflammation has been predicted to serve as an important initiating event for the human disease. Inflammatory-related single-nucleotide polymorphisms (SNPs) are associated with prostate cancer risk [Kazma et al. 2012], suggesting that alterations in inflammatory signaling may increase susceptibility to disease. De Marzo et al. [1999, 2007a,b] have described a process, termed proliferative inflammatory atrophy (PIA), proposing that local inflammation can promote an atrophic phenotype in prostate glands, resulting in enhanced epithelial proliferation. The enhanced level of proliferation occurs most prominently within the luminal compartment, which normally has a terminally differentiated nonreplicative status [De Marzo et al. 1999, 2007a,b].

In areas of local inflammation around glands in the human prostate, luminal cells appear smaller in size and exhibit loss of cell cycle inhibitors, reduced expression of tumor suppressor proteins like p27, Nkx3-1, and Pten; reduction in androgen signaling, gain of anti-apoptotic proteins like BCL2; and an increased proliferative index [De Marzo et al. 1999, 2007a,b]. Interestingly, a similar effect has been noted in the adult human pancreas, where inflammation is associated with an expansion of cells expressing progenitor markers [Ko et al. 2013]. In the human prostate, an increase in luminal cell proliferation associated with inflammation—in addition to a boost of inflammatory-related cytokines in the local environment from infiltrating immune cells—likely enhances the susceptibility of epithelium to transformation [Fig. 1]. Future studies will be necessary to determine whether inflammation can convert terminally differentiated luminal cells to proliferative progenitor-like cells or whether inflammation enriches for or expands a population of pre-existing intermediate-type cells within the luminal compartment [van Leenders et al. 2003].

Figure 1. Potential roles of mesenchymal and immune cell influences on the cells of origin for prostate cancer. (Left) Elevation in mesenchymal cell-derived paracrine growth factors, such as Wnt ligands or FGFs, preferentially transforms neighboring basal cells. (Right) Immune cell infiltration into the prostate results in increased luminal cell proliferation and may enhance their susceptibility to transformation.
Mouse models of prostate inflammation exhibit epithelial proliferation and increased susceptibility to prostate cancer

Mouse models have been able to replicate clinical observations associating immune infiltration with prostate epithelial proliferation [Mimeault and Batra 2013]. In transgenic mouse prostates expressing the ovalbumin antigen in a Pten heterozygous background, the transfer of ovalbumin-specific CD8+ T cells (OT-1) leads to lymphocyte infiltration into the prostate, release of cytokines, and an increase in epithelial cell proliferation sustained for up to 3 mo following adoptive T-cell transfer [Haverkamp et al. 2011]. Spontaneous prostatitis is found in mice lacking the autoimmune regulator gene Aire, which develop B- and T-cell responses to a prostate antigen [Anderson et al. 2002; Hou et al. 2009]. Karin and colleagues [Ammirante et al. 2010] have shown that after castration, B cells can infiltrate into prostate tissues, release lymphotixin-β, and have a growth-promoting effect through activation of epithelial IKKα and Stat3 signaling. Prostate-specific expression of a constitutively active form of IKK2 cooperates with Pten heterozygosity to promote inflammation, proliferation, and tumor progression [Birbach et al. 2011]. Interestingly, the investigators note that even in control Pten+/− mice lacking constitutively active IKK2, inflammation and occasional prostatitis were found with advanced age. Further interrogation of these models may reveal critical changes in luminal epithelium that lead to enhanced susceptibility to transformation.

Future considerations

Experimental GEM models of murine prostate cancer indicate that cells within both the basal and luminal cell layer can respond to loss of the tumor suppressor gene Pten by initiating prostate cancer [Wang et al. 2009; Choi et al. 2012; Lu et al. 2013; Wang et al. 2013]. To date, cell of origin studies using human tissue have only described a role for basal cells in disease initiation showing their capacity to respond to both oncogene activation and chronic estrogen signaling [Goldstein et al. 2010; Taylor et al. 2012]. While many luminal cells have a differentiated status, the luminal cells responding to inflammation are associated with a more proliferative status and, based on cell size and gene expression, possess more progenitor-like properties [De Marzo et al. 1999, 2007a,b]. This inflammation-related acquisition of progenitor properties may increase the chances of luminal cell transformation.

While combined inactivation of two or more tumor suppressor genes in GEM models can lead to widespread prostate cancer [Ding et al. 2011], single-hit models such as Pten loss exhibit focal cancer development in which only a subset of target cells harboring a given genetic alteration will develop into full-blown cancer [Wang et al. 2006]. Factors such as inflammation may contribute to local transformation by promoting epithelial cells to bypass senescence. For example, in the mouse esophagus and forestomach, epithelial overexpression of Sox2 can only promote progression to carcinoma when combined with local inflammation, resulting in epithelial Stat3 activation [Liu et al. 2013]. Although the extent of inflammation in GEM models of prostate cancer is not routinely reported, we might anticipate that local inflammation could induce or expand a dedifferentiated, progenitor-like luminal population. Given that androgen deprivation induces inflammation in the prostate, the castration-resistant Nkx3.1	extsuperscript{+} luminal [CARN] population [Wang et al. 2009] may contain inflammation-induced luminal stem/progenitor cells. To determine the precise role of inflammation in luminal cell transformation, cell type-specific deletion of Pten or other genetic alterations common to human prostate cancer should be evaluated in an immunodeficient genetic background. Alternatively, inflammation can be induced early on in basal- and luminal-driven prostate cancer models to determine whether cancer development is accelerated and whether the effects preferentially target one lineage. These future studies will be necessary to delineate the precise factors influencing the cells of origin for prostate cancer.

Acknowledgments

Studies from our laboratories were supported by a Prostate Cancer Foundation Challenge Award (to A.S.G. and O.N.W.), Creativity Award (to A.S.G. and O.N.W.), and Young Investigator Award (to A.S.G.); a National Cancer Institute U01 Tumor Microenvironment Grant (to A.S.G. and O.N.W.); the SU2C/AACR/PCF West Coast Dream Team on Prostate Cancer; and the California Institute for Regenerative Medicine (to A.S.G. and O.N.W.). O.N.W. is an Investigator of the Howard Hughes Medical Institute.

References

Abate-Shen C, Banach-Petrosky WA, Sun X, Economides KD, Desai N, Gregg JP, Borowsky AD, Cardiff RD, Shen MM. 2003. Nkx3.1, Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res 63: 3886–3890.
Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M. 2010. B-cell-derived lymphotxin promotes castration-resistant prostate cancer. Nature 464: 302–305.
Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, et al. 2002. Projection of an immunological self shadow within the thymus by the aire protein. Science 298: 1395–1401.
Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N, et al. 2012. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44: 685–689.
Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Shner A, Esqueva R, Pflueger D, Sougnez C, et al. 2011. The genomic complexity of primary human prostate cancer. Nature 470: 214–220.
Berquam-Vrieze KE, Nanapaneni K, Brett BT, Holmfeldt L, Ma J, Zagonodui O, Jenkins NA, Copeland NG, Meyerholz DK, Knudson CM, et al. 2011. Cell of origin strongly influences genetic selection in a mouse model of T-ALL. Blood 118: 4646–4656.
Birbach A, Eisenbarth D, Kozakowski N, Lendenhaf E, Schmidt-Suppprian M, Schmid JA. 2011. Persistent inflammation leads...
to proliferative neoplasia and loss of smooth muscle cells in a prostate tumor model. *Neoplasia* 13: 692–703.

Cai H, Babic I, Wei X, Huang J, Witte ON. 2011. Invasive prostate carcinoma driven by c-Src and androgen receptor synergy. *Cancer Res* 71: 862–872.

Choi N, Zhang B, Zhang L, Ittmann M, Xin L. 2012. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. *Cell* 21: 253–265.

Cunha GR, Lung B. 1978. The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tm) mice. *J Exp Zool* 205: 181–193.

De Marzo AM, Marchi VL, Epstein JI, Nelson WG. 1999. Proliferative inflammatory atrophy of the prostate: Implications for prostate carcinogenesis. *Am J Pathol* 155: 1985–1992.

De Marzo AM, Nakai Y, Nelson WG. 2007a. Inflammation, atrophy, and prostate carcinogenesis. *Urol Oncol* 25: 398–400.

De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG, Nakai Y, Isaacs WB, Nelson WG. 2007b. Inflammation in prostate carcinogenesis. *Nat Rev* 7: 256–269.

Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, Zhang J, Perry SR, Labrot ES, Wu X, Lis R, et al. 2011. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. *Nature* 470: 269–273.

Feldman BJ, Feldman D. 2001. The development of androgen-independent prostate cancer. *Nat Rev* 1: 34–45.

Franco OE, Jiang M, Strand DW, Peacock J, Fernandez S, Jackson RS 2nd, Revelo MP, Bhowmick NA, Hayward SW. 2011. Targeted TGF-β signaling in a subpopulation of human stromal cells promotes prostate carcinogenesis. *Cancer Res* 71: 1278–1287.

Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM. 2012. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. *Science* 338: 1080–1084.

Fuchs E, Horsley V. 2011. Ferreting out stem cells from their niches. *Nat Cell Biol* 13: 513–518.

Garber K. 2010. A tale of two cells: Discovering the origin of prostate cancer. *J Natl Cancer Inst* 102: 1528–1529, 1535.

Goldstein AS, Huang J, Guo C, Garraway LA, Witte ON. 2010. Identification of a cell of origin for human prostate cancer. *Science* 329: 568–571.

Goldstein AS, Drake JM, Burns DL, Finley DS, Zhang H, Reiter RE, Huang J, Witte ON. 2011. Purification and direct transformation of epithelial progenitor cells from primary human prostate. *Nat Proto* 6: 656–667.

Grasso CS, Wu YM, Robinson DR, Cao X, Dhansakar SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, et al. 2012. The mutational landscape of lethal castration-resistant prostate cancer. *Nature* 487: 239–243.

Havik J, Charbonneau B, Cist SA, Meyerholz DK, Cohen MB, Snyder PW, Svensson RU, Henry MD, Wang HH, Ratliff TL. 2011. An inducible model of abacterial prostatitis induces antigen specific inflammatory and proliferative changes in the murine prostate. *Prostate* 71: 1139–1150.

Hellerstedt BA, Pienta KJ. 2002. The current state of hormonal therapy for prostate cancer. *CA Cancer J Clin* 52: 154–179.

Hou Y, DeVoss J, Dao V, Kwek S, Simko JP, McNeel DG, Anderson MS, Fong L. 2009. An aberrant prostate antigen-specific immune response causes prostatitis in mice and is associated with chronic prostatitis in humans. *J Clin Invest* 119: 2031–2041.

Jachetti E, Mazzoleni S, Grioni M, Ricupito A, Brambillasca C, Generoso L, Calcinotto A, Freschi M, Mondino A, Galli R, et al. 2013. Prostate cancer stem cells are targets of both innate and adaptive immunity and elicit tumor-specific immune responses. *OncoImmunology* 2: e24520.

Kazma R, Melford JA, Cheng J, Plummer SJ, Levin AM, Rybicki BA, Casey G, Witte JS. 2012. Association of the innate immunity and inflammation pathway with advanced prostate cancer risk. *PLoS ONE* 7: e15680.

Klotz L. 2013. Prostate cancer overdiagnosis and overtreatment. *Curr Opin Endo Diab Obes* 20: 204–209.

Ko SB, Azuma S, Yokoyama Y, Yamamoto A, Kyokane K, Niida S, Ishiguro H, Ko MS. 2013. Inflammation increases cells expressing ZSCAN4 and progenitor-cell markers in the adult pancreas. *Am J Physiol Gastrointest Liver Physiol* 304: G1103–G1116.

Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. 2008. Recurrent gene fusions in prostate cancer. *Nat Rev* 8: 497–511.

Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H. 1992. Targeted oncogene activation by site-specific recombination in transgenic mice. *Proc Natl Acad Sci* 89: 6232–6236.

Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON. 2010. Basal epithelial stem cells are efficient targets for prostate cancer initiation. *Proc Natl Acad Sci* 107: 2610–2615.

Liao CP, Adisetiyoh H, Liang M, Roy-Burman P. 2010a. Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. *Cancer Res* 70: 7294–7303.

Liao CP, Adisetiyoh H, Liang M, Roy-Burman P. 2010b. Cancer stem cells and microenvironment in prostate cancer progression. *Horm Cancer* 1: 297–305.

Liu K, Jiang M, Lu Y, Chen H, Sun J, Wu S, Ku WY, Nakagawa H, Kita Y, Natsugoe S, et al. 2013. Sox2 cooperates with inflammation-mediated Stat3 activation in the malignant transformation of foresal basal progenitor cells. *Cell Stem Cell* 2: 269–273.

Logothetis CJ, Lin SH. 2005. Osteoblasts in prostate cancer metastasis to bone. *Nat Rev* 5: 21–28.

Lu TL, Huang YF, You LR, Chao NC, Su FY, Chang JL, Chen CM. 2013. Conditionally ablated Pten in prostate basal cells promotes basal-to-luminal differentiation and causes invasive prostate cancer in mice. *Am J Pathol* 182: 975–991.

Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S, Palanisamy N, Chinnaiyan AM. 2009. Induced chromosomal proximity and gene fusions in prostate cancer. *Cell* 138: 715–729.

Memarzadeh S, Xin L, Mulholland DJ, Mansukhani A, Wu H, Teitell MA, Witte ON. 2007. Enhanced paracrine FGFR10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. *Cancer Cell* 12: 572–585.

Mimeault M, Batra SK. 2013. Development of animal models underlining mechanistic connections between prostate inflammation and cancer. *J Clin Oncol* 4: 4–13.

Mulholland DJ, Xin L, Morim A, Lawson D, Witte O, Wu H. 2009. Lin Sca-1CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. *Cancer Res* 69: 8555–8562.

Mulholland DJ, Kohayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, Gleave M, Wu H. 2012. Pten loss and RAS/MAK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. *Cancer Cell* 22: 1878–1889.

Ousset M, Van Keymeulen A, Bouvencourt G, Sharma N, Achouri Y, Simons BD, Blanpain C. 2012. Multipotent and
unipotent progenitors contribute to prostate postnatal development. Nat Cell Biol 14: 1131–1138.

Stiegel R, Naishadham D, Jemal A. 2012. Cancer statistics, 2012. CA Cancer J Clin 62: 10–29.

Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L, Nelson PS. 2012. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 18: 1359–1368.

Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, et al. 2010. Integrative genomic profiling of human prostate cancer. Cancer Cell 18: 11–22.

Taylor RA, Toivanan R, Frydenberg M, Pedersen J, Harewood L, Australian Prostate Cancer Bioresource, Collins AT, Maitland NJ, RischriGDP. 2012. Human epithelial basal cells are cells of origin of prostate cancer, independent of CD133 status. Stem Cells 30: 1087–1096.

Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, et al. 2005. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–648.

Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S, Demichelis F, Helgeson BE, Laxman B, Morris DS, et al. 2008. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell 13: 519–528.

van Leenders GJ, Gage WR, Hicks JL, van Balken B, Aalders TW, Schalken JA, De Marzo AM. 2003. Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am J Pathol 162: 1529–1537.

Visvader JE. 2011. Cells of origin in cancer. Nature 469: 314–322.

Wang Y, Hayward SW, Donjacour AA, Young P, Jacks T, Sage J, Dahiya R, Cardiff RD, Day ML, Cunha GR. 2000. Sex hormone-induced carcinogenesis in Rb-deficient prostate tissue. Cancer Res 60: 6008–6017.

Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Xiao J, Thomas GV, Li G, Roy-Burman P, Nelson PS, et al. 2003. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4: 209–221.

Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, Wu H. 2006. Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci 103: 1480–1485.

Wang X, Kruijthof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, Hu YP, Price SM, Abate-Shen C, Shen MM. 2009. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461: 495–500.

Wang J, Kohayashi T, Floc’h N, Kinkade CW, Aytes A, Dankort D, Lefebvre C, Mitrofanova A, Cardiff RD, McMahon M, et al. 2012. B-Raf activation cooperates with PTEN loss to drive c-Myc expression in advanced prostate cancer. Cancer Res 72: 4765–4776.

Wang ZA, Mitrofanova A, Bergren SK, Abate-Shen C, Cardiff RD, Califano A, Shen MM. 2013. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat Cell Biol 15: 274–283.

Xin L, Ide H, Kim Y, Dubey P, Witte ON. 2003. In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc Natl Acad Sci 100: 11896–11903.

Xin L, Lawson DA, Witte ON. 2005. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci 102: 6942–6947.

Xin L, Teitell MA, Lawson DA, Kwon A, Mellinghoff IK, Witte ON. 2006. Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor. Proc Natl Acad Sci 103: 7789–7794.

Zong Y, Goldstein AS. 2013. Adaptation or selection—mechanisms of castration-resistant prostate cancer. Nat Rev Urol 10: 90–98.

Zong Y, Xin L, Goldstein AS, Lawson DA, Teitell MA, Witte ON. 2009. ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc Natl Acad Sci 106: 12465–12470.

Zong Y, Huang J, Sankarasharma D, Morikawa T, Fukayama M, Epstein JJ, Chada KK, Witte ON. 2012. Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling. Proc Natl Acad Sci 109: E3395–E3404.
Does the microenvironment influence the cell types of origin for prostate cancer?

Andrew S. Goldstein and Owen N. Witte

Genes Dev. 2013, 27:
Access the most recent version at doi:10.1101/gad.222380.113

References

This article cites 64 articles, 21 of which can be accessed free at:
http://genesdev.cshlp.org/content/27/14/1539.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.