Fabrication of Stannate Perovskite Structure as Optoelectronics Material: An Overview

A B Abd Rahman1*, M S Sarjadi1, A Alias2 and M A Ibrahim3
1 Faculty of Science and Natural Resources, Universiti Malaysia Sabah(UMS), 88999, KotaKinabalu, Sabah, Malaysia
2 Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia(UTHM), 86400, Parit Raja, Johor, Malaysia
3 Solar Energy Research Institute, Universiti Kebangsaan Malaysia (UKM),43600 Bangi, Selangor, Malaysia
Email: abubakar.rahman@ums.edu.my

Abstract. This paper presents a review of recent fabrication progress of perovskite-type material suited for the future optoelectronics applications. Wide varieties of optoelectronic devices include solar cell, liquid displays, transparent FETs, etc are becoming the mainstream for future electronics global industry. In June 2015, the major breakthrough of perovskite structure in solar energy harvesting with PCE of 20.1% has achieved. Since then, numerous research has been conducted progressively to further enhance the performance of the perovskite structure as new alternative materials for optoelectronics applications. The perovskite-type oxide is having typical ABO3 crystallized structure. It is one of an important class of materials that have many exceptional physical properties such as superconductivity, colossal magnetoresistance, ferromagnetic, piezoelectric, high-transition-temperature superconductivity, ferroelectricity, piezoelectricity, and photoelectrochemical sensitivity. In this paper, we reviewed development progress one of the major classes of perovskite-type materials namely Stannate-based. Calculated data from simulation results such as DFT and first principle were excluded and only fabricated devices are covered in this paper.

1. Introduction
Wide varieties of optoelectronic devices include solar cell, liquid displays, transparent FETs, etc are becoming the mainstream for future electronics global industry. In June 2015, Woon has created a breakthrough in perovskite structure in solar energy harvesting with PCE of 20.1% [1]. Since then, numerous research has been conducted to further enhance the performance of the perovskite structure as an alternative for optoelectronics materials. The perovskite-type oxide is one of an important class of materials that have many exceptional physical properties such as superconductivity, colossal magnetoresistance, ferromagnetic, piezoelectric, high-transition-temperature superconductivity, ferroelectricity, piezoelectricity, and photoelectrochemical sensitivity [2-3]. Moreover, due to their similar pseudocubic crystal structures and matching lattice hence they can be fabricated into devices with perovskite-type heteroepitaxial structures [2]. The perovskite-type oxides have simple and flexible structures that cater to ionic substitution, carrier doping, and oxygen non-stoichiometry. Therefore, they prominently technologically important materials for a wide variety of industrial optoelectronics [2]. The quest for finding new alternative materials is very much related to the cost issues associated with the scarcity of Indium. Furthermore, the interest in finding alternative materials
that having different properties may be the enabling factor for new technologies advancement soon [4].

For Transparent Conductive Oxide (TCO), obtaining the best performance of highly transparent and low in resistivity is the toughest challenge because in nature the highly transparent materials are prone to become insulators that having very low in conductivity. Most of the current market TCO devices are dominated by Indium based. It has very excellent performance with wide bandgap more than 3 eV, resistivity as low as $10^{-5} \Omega \text{cm}$ and transmittance as high as 90%. However, the shortage of Indium supply has continued pushing the manufacturing cost higher and higher. The plan is to find alternative material which is Indium free n-type transparent conductive. Hence, the developments of new TCO will require modification in low-cost materials properties and fabrication techniques to enhance their optical and electrical characteristics. In which it will cater to the special needs in transparent electronics devices such as transparent conductors, transparent transistors, light-emitting devices, and transparent capacitors. The perovskite-type material is having ABO_3 crystal structure. Both A and B are consists of cations which feasible to be substituted with suitable dopant at either A or B site to improve the optoelectronic performance. One of the challenges is to grow the layer of a thin film with very low densities of grain and domain boundaries which contribute to limit the conductivity performance [4]. The major threat is the intrinsic poor charge carrier mobility of the most perovskite oxides which typically 1~10 cm2 V$^{-1}$ s$^{-1}$ at room temperature [5]. Accordingly, with the substitution of the suited cation usually will lead to the donation of charger carriers to the conduction band [6].

2. Stannate Based Materials

The stannate based perovskite-type is having the general formula of ASnO_3. One of the major class material is falls under the group of alkaline-earth stannate for which the A site to be occupied by either Ba, Sr or Ca with the ionic radius of 135 pm, 118 pm, and 100 pm respectively [7]. Despite they possess wide optical band gaps the electron conductivity is remarkably superior [3]. They are also broadly used in electronic industries due to their incredible dielectric and gas sensing properties [8]. Alkaline earth stannates attract much technological interest due to their applications in transparent conductive is provable. They have been utilized majorly in the fabrication of transparent electrodes for various application particularly in photovoltaic cells and organic light-emitting diodes [9]. This material also has been reported to be used in numerous sensors development [4].

2.1. Barium Stannate Oxide, BaSnO_3 (BSO)

The BSO is an n-type material with having cubic perovskite structure belongs to Pm$\bar{3}$m space group with a lattice constant of $a = 4.139$ Å [10] as illustrated in Figure 1. It is dopable to a highly conductive state using Sb or La [11]. Highest performance for TCO BSO doped La (BLSO) has shown excellent metallic conduction [12] as shown in Table 1. Surprisingly, the BLSO is not only own superior performance for its mobility but it also very stable to sustain at higher thermal condition [13]. In contrast, the epitaxial form of BSO is still having lower mobility. This is due to grain boundaries and dislocation which causes charge traps and scattering hence reducing the carrier density and mobility simultaneously [14]. Thus, mobility in thin films will be improved when dislocation and grain boundary reduced for example by choosing the lattice-matched substrate [15]. A modified MBE technique is introduced by replacing the typical Sn metal source with pre-oxidized SnO_2 so that more precise stoichiometry control in MBE process of La-doped BaSnO_3. The modified MBE technique has successful push the mobilities performance increased twice by any.
other reported method [16].

Table 1. The Barium Stannate Oxide (BSO) Performance.

Dopant	Bandgap [eV]	Resistivity [Ω/cm]	Conductivity [S/cm]	Mobility [cm²V⁻¹s⁻¹]	Trans [%]	Fabrication Method	Ref.
Lantahnum	4.05	5.9x10⁻⁴	1695	103	-	Solid state reaction	[12]
Lantahnum	-	10x10⁻⁴	100	320	-	Solid state reaction (single crystal)	[13]
Lantahnum	-	-	-	70	-	Pulse laser deposition (epitaxial films)	[13]
Lantahnum	-	-	-	-	-	Modified MBE	[16]
Lantahnum	3.95	-	-	150	>80	Sol-gel	[28]

2.2. Strontium Stannate Oxide, SrSnO₃ (SSO)

The SSO has an orthorhombic perovskite structure belongs to Pbnm space group with the pseudocubic lattice constant of \(a = 5.709\ \text{Å}, \ b = 5.703\ \text{Å} \text{ and } c = 8.065\ \text{Å} [17]\ and a wide bandgap of 4.27 eV [6] as illustrated in Figure 2. It was reported to be classified as n-type material [18]. The orthorhombic distortion of the perovskite structure in SSO leads to absorption in the visible as the doping level is increased [18]. The smaller lattice parameters are more compatible with common oxide electronic substrates. The SSO much struggle for its lower mobility performance as compared to BSO perovskite. Nevertheless, the same group Liu [19] has created a big heap of achieving 18.5 cm²V⁻¹s⁻¹ mobility by introducing Ta as dopant [20] as shown in Table 2. As Ta content increases the carrier concentration and ionization efficiency will also increase thus lowering the potential barrier [21]. Because of that, mobility has extremely improved by 50 fold from the previous achievement.

Figure 2. Schematic of SSO Pbnm Orthorhombic Structure [35].
Table 2. The Strontium Stannate Oxide (SSO) Performance.

Dopant	Bandgap [eV]	Resistivity [Ω/cm]	Conductivity [S/cm]	Mobility [cm²V⁻¹s⁻¹]	Trans [%]	Fabrication Method	Ref.
Erbium	-	0.1x10⁻⁵	1x10⁰	-	-	sol–gel	[9]
Stibium	4.53	23x10⁻³	43.48	0.329	>90	pulsed laser deposition	[19]
Neodymium	-	21x10⁻³	47.62	0.104	>90	pulsed laser deposition	[20]
Tantalum	4.63	3.33x10⁻³	300	18.5	>90	pulsed laser deposition	[21]
Ferum	-	400x10⁹	2.5x10⁻¹²	-	-	solid state synthesis	[30]
	4.23	-	-	-	50–90	pulse-laser deposition	[31]
Chromium	3.8	-	-	-	-	chemical precipitation	[32]

2.3. Calcium Stannate Oxide, CaSnO₃ (CSO)

The CSO is having distorted orthorhombic perovskite structures belongs to Pbnm space group with the lattice constant of $a = 5.4941$, $b = 5.6760$, and $c = 7.9280$ [22] as illustrated in Figure 3. It has a very wide direct bandgap of 4.95 eV to 5.38 eV [23] as shown in Table 3. The CSO has been seen predominantly in photoluminescence materials [22, 24]. In fact, the electrical properties of CSO perovskite are not much appeared in the literature. Nonetheless, epitaxial CSO films with various thicknesses were able to grow on LAO(001) single crystal substrates through a pulsed laser deposition method [23]. Most probably the CSO is not much in interest for its electrical properties is due to it exhibits p-type conduction [25].

Table 3. The Calcium Stannate Oxide (CSO) Performance.

Dopant	Bandgap [eV]	Resistivity [Ω/cm]	Conductivity [S/cm]	Mobility [cm²V⁻¹s⁻¹]	Trans [%]	Fabrication Method	Ref.
Europhium	4.10	-	-	-	-	sol–gel	[22]
undoped	4.95-5.38	-	-	-	-	pulsed laser deposition	[23]
Terbium-Magnesium	-	-	-	-	80	RF sputtering method	[24]
Scandium	4.4	-	-	-	-	solid state reaction	[25]

Figure 3. Schematic of CSO Pbnm Orthorhombic Structure [36].
2.4. Zinc Stannate Oxide, ZnSnO$_3$ (ZSO)

Other than alkaline-earth stannate group, the ZSO also has been explored as one of the alternatives for perovskite-type material as shown in Table 4. It has a non-cubic structure belongs to a space group of R3c with the lattice constant of $a=7.758$ Å [26] as illustrated in Figure 4. Despite non-cubic, the ZSO can retain excellent transparency when doped with the right dopant which puts it as one of the potential candidates for transparent conductor [4]. Furthermore, ZSO is also inherited ferroelectric properties from its R3c group and high in dielectric constants thus modifications of it may help to push the mobility higher by doped it with possible dopant [27]. Although the ZSO has been proven as one of good potential transparent conductive material for over two decades [28] only recently it reclaim research interest in the realization of high mobilities field-effect transistors [29].

Table 4. The Zinc Stannate Oxide (ZSO) Performance.

Dopant	Bandgap [eV]	Resistivity [Ω/cm]	Conductivity [S/cm]	Mobility [cm2V$^{-1}$s$^{-1}$]	Trans [%]	Fabrication	Ref.
undoped	3.84~4.64	-	-	-	-	wet chemical synthesis	[26]
undoped	-	-	-	45	-	Molecular beam epitaxy	[28]
undoped	-	4x10$^{-3}$	-	>80	-	Magnetron sputtering	[33]

3. Conclusion

Based on the recent fabrication progress of perovskite-type as an alternative material has shown an optimistic indicator that it can be explored further to enhance its optical and electrical performances. The Barium Stannate doped with Lanthanum (BLSO) has shown able to achieved 320 cm2 V$^{-1}$ s$^{-1}$ for electron mobility despite highly transparent with bandgap more than 4 eV. The resistivity which reflects conductivity of BLSO achieved up to 10^4 Ω/cm as compared to ITO 10^5 Ω/cm. It then followed by SSO doped with Ta which has shown electron mobility up to 18.5 cm2V$^{-1}$s$^{-1}$ and has a very wide bandgap of 4.45 eV. While the CSO possess transparent characteristics, unfortunately, mobility is very poor and prone to p-type conductor characteristics. Even though the ZSO is not classified under alkaline group, it can provide exceptional mobility even at the undoped form with values reaching up to 45 cm2 V$^{-1}$ s$^{-1}$. This also provide another promising alternatives with the help of appropriate doping materials. Overall, the BLSO has shown a remarkable performance as promising alternative material to indium based as perovskite stannate structure for future transparent conductive devices. This supported by the fact that the BLSO is having a proper lattice arrangement with an ideal Pm$\overline{3}$m cubic structure as compared to others in its group.
4. References

[1] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240) 1234–1237

[2] Liu Q, Dai J, Zhang X, Zhu G, Liu Z and Ding G 2011 Perovskite-type transparent and conductive oxide films: Sb- and Nd-doped SrSnO3. Thin Solid Films, 519(18) 6059–6063

[3] Liu H R, Yang J H, Xiang H J, Gong X G and Wei S H 2013 Origin of the superior conductivity of perovskite Ba(Sr)SnO3. Appl. Phys. Lett., 102 112013

[4] Ong K P, Fan X, Subedi A, Sullivan M B and Singh D J 2015 Transparent conducting properties of SrSnO3 and ZnSnO3. APL Materials, 3(6) 062505

[5] Raghavan S, Schumann T, Kim H, Zhang J Y, Cain T A and Stemmer S 2016 High-mobility BaSnO3 grown by oxide molecular beam epitaxy. APL Materials, 4(1) 016106

[6] Lee W J, Kim H J, Kang J, Jang D H, Kim T H, Lee J H and Kim K H 2017 Transparent perovskite barium stannate with high electron mobility and thermal stability. Annual Review of Materials Research, 47 391–423

[7] Shannon R D 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, 32(5) 751–767

[8] Geske L, Lorenz V, Müller T, Jäger L, Beige H, Abicht H P and Mueller V 2005 Dielectric and electromechanical characterisation of fine-grain BaTiO. 95Sn0. 05O3 ceramics sintered from glycolate-precursor powder. Journal of the European Ceramic Society, 25(12) 2537–2542

[9] Liu Q, Li H, Li B, Wang W, Liu Q, Zhang Y and Dai J 2014 Structure and band gap engineering of Fe-doped SrSnO3 epitaxial films. EPL (Europhysics Letters), 108(3) 37003

[10] Zhang Y, Wang J, Sahoo M P K, Shimada T and Kitamura T 2017 Strain-induced ferroelectricity and lattice coupling in BaSnO3 and SrSnO3. Physical Chemistry Chemical Physics, 19(38) 26047–26055

[11] Cava R J, Gammel P, Batlogg B, Krajewski J J, Peck Jr W F, Rupp Jr L W, Felder R and Van Dover R B 1990 Nonsuperconducting BaSn1−xSbxO3: The 5s-orbital analog of BaPb1−xBixO3. Physical Review B, 42(7) 4815

[12] Luo X, Oh Y S, Sirenko A, Gao P, Tyson T A, Char K and Cheong S W 2012. High carrier mobility in transparent Ba1−xLa,xSnO3 crystals with a wide band gap. Applied Physics Letters, 100(17) 172112

[13] Kim H J, Kim U, Kim H M, Kim T H, Mun H S, Jeon B G, Hong K T, Lee W J, Ju C, Kim K H and Char K 2012. High mobility in a stable transparent perovskite oxide. Applied Physics Express, 5(6) 061102

[14] Xing S M, Shan C, Jiang K, Zhu J J, Li Y W, Hu Z G and Chu J H 2015 Optoelectronic properties and interband transition of La-doped BaSnO3 transparent conducting films determined by variable temperature spectral transmittance. Journal of Applied Physics, 117(10) 103107

[15] Kim H J, Kim U, Kim H M, Kim T H, Mun H S, Jeon B G, Hong K T, Lee W J, Ju C, Kim K H and Char K 2012 High mobility in a stable transparent perovskite oxide. Applied Physics Express, 5(6) 061102

[16] Raghavan S, Schumann T, Kim H, Zhang J Y, Cain T A and Stemmer S 2016 High-mobility BaSnO3 grown by oxide molecular beam epitaxy. APL Materials, 4(1) 016106

[17] Green M A, Prassides K, Day P and Neumann D A 2000. Structure of the n= 2 and n=∞ member of the Ruddlesden-Popper series, Srn+1Sn3O3n+1. International Journal of Inorganic Materials, 2(1) 35–41

[18] Ong K P, Fan X, Subedi A, Sullivan M B and Singh D J 2015 Transparent conducting properties of SrSnO3 and ZnSnO3. APL Materials, 3(6) 062505

[19] Liu Q, Dai J, Zhang X, Zhu G, Liu Z and Ding G 2011 Perovskite-type transparent and conductive oxide films: Sb- and Nd-doped SrSnO3. Thin Solid Films, 519(18) 6059–6063
[20] Green M A, Prassides K, Day P and Neumann D A 2000 Structure of the \(n=2 \) and \(n=\infty \) member of the Ruddlesden-Popper series, \(\text{Sr}_{n+1}\text{Sn}_n\text{O}_{3n+1} \). *International Journal of Inorganic Materials*, 2(1) 35–41

[21] Liu Q, Jin F, Gao G and Wang W 2017 Ta doped \(\text{SrSnO}_3 \) epitaxial films as transparent conductive oxide. *Journal of Alloys and Compounds*, 717 62–68

[22] Tsega M and Dejene F B 2017 Synthesis and luminescence in sol–gel auto-combustion-synthesized \(\text{CaSnO}_2;\text{Eu}^{3+} \) phosphor. *Bulletin of Materials Science*, 40(7) 1347–1354

[23] Liu Q, Jin F, Li B and Geng L 2017 Structure and band gap energy of \(\text{CaSnO}_3 \) epitaxial films on \(\text{LaAlO}_3 \) substrate. *Journal of Alloys and Compounds*, 717 55–61

[24] Ueda K and Shimizu Y 2010 Fabrication of \(\text{Tb}–\text{Mg} \) codoped \(\text{CaSnO}_3 \) perovskite thin films and electroluminescence devices. *Thin Solid Films*, 518(11) 3063–3066

[25] Du M H and Singh D J 2010 Enhanced Born charge and proximity to ferroelectricity in thallium halides. *Physical Review B*, 81(14) 144114

[26] Minato H, Fujiwara K and Tsukazaki A 2018 High-mobility field-effect transistor based on crystalline \(\text{ZnSnO}_3 \) thin films. *AIP Advances*, 8(5) 055327

[27] Kaydanov V I, Coutts T J and Young D L 2000 Studies of band structure and free carrier scattering in transparent conducting oxides based on combined measurements of electron transport phenomena (No. NREL/CP-520-29064). *National Renewable Energy Lab., Golden, CO (US)*

[28] Prathiba G, Venkatesh S and Kumar N H 2010 Structural, magnetic and semiconducting properties of Fe doped \(\text{SrSnO}_3 \). *Solid State Communications*, 150(31–32) 1436–1438

[29] Muralidharan M, Anbarasu V, Perumal A E and Sivakumar K 2017 Room temperature ferromagnetism in \(\text{Cr} \) doped \(\text{SrSnO}_3 \) perovskite system. *Journal of Materials Science: Materials in Electronics*, 28(5) 4125–4137

[30] Minami T, Sonohara H, Takata S and Sato H 1994 Highly transparent and conductive zinc-stannate thin films prepared by RF magnetron sputtering. *Japanese journal of applied physics*, 33(12A) L1693

[31] Li J, Ma Z, Sa R and Wu K 2017 Improved thermoelectric power factor and conversion efficiency of perovskite barium stannate. *RSC Advances*, 7(52) 32703–32709

[32] Bohnemann J, Libanori R, Moreira M L and Longo E 2009. High-efficient microwave synthesis and characterisation of \(\text{SrSnO}_3 \). *Chemical Engineering Journal*, 155(3) 905–909

[33] Maul J, Erba A, Santos I M G, Sambrano J R and Dovesi R 2015 In silico infrared and Raman spectroscopy under pressure: The case of \(\text{CaSnO}_3 \) perovskite. *The Journal of chemical physics*, 142(1) 014505

Acknowledgments

This research was funded by Universiti Malaysia Sabah(UMS) under research grant SBK0345-2017.