Effective Field Theory Approach to Pionium

D. EIRAS and J. SOTO

Departament d’Estructura i Constituents de la Matèria
and Institut de Física d’Altes Energies.
Universitat de Barcelona, Diagonal, 647
E-08028 Barcelona, Catalonia, Spain.

e-mails: dolors@ecm.ub.es, soto@ecm.ub.es

March 27, 2022

Abstract

The various dynamical scales below the pion mass involved in $\pi^+\pi^-$ atoms are sequentially integrated out using non-relativistic effective field theory techniques. This allows us to systematically organise the corrections to the energy levels and decay width. We present our results in terms of a single unknown constant which may be obtained by matching to the Chiral Lagrangian with electromagnetic interactions at two loops.

Keywords: Effective Field Theories, Hadronic Atoms, NRQED, Chiral Perturbation Theory.

PACS: 30.10.Gv, 11.10.St, 12.39.Fe, 13.75b

May 1999

UB-ECM-PF 99/10
1 Introduction

Hadronic atoms have attracted much interest since long [1]. Typically there is an interesting interplay between strong and electromagnetic interactions. Whereas the latter are the responsible of the bound state formation, the former produce their decay. Although the treatment of electromagnetic interactions is based on solid theoretical grounds, this is not so for the strong interactions. Traditionally, the latter are modeled by various types of short range potentials [2]. Although this is usually enough to fit the available data, it would be desirable to have a more direct connection with what is believed to be the fundamental theory of strong interactions, namely QCD. This is becoming even more urgent since the current DIRAC experiment at CERN [3], which plans to measure the pionium decay width at 10% accuracy [4], is meant to extract the pure hadronic pion-pion scattering lengths, which may, in principle, be obtained from QCD.

It has become apparent during the last decade, that the most fruitful way to approach low energy strong interaction physics from QCD is not by direct calculations from this theory but going through intermediate effective field theories (EFT), which are equivalent to QCD in a particular range of energies. For instance the Chiral Lagrangian [5] is an EFT for pions, which is equivalent to QCD for energies below the rho mass. The EFTs typically depend on various unknown constants, which in principle may be obtained from the fundamental theory. In practise, this may sometimes be achieved, like for instance in the case of Non-Relativistic QED (NRQED) [6] where the constants can be determined order by order in α, but many times is beyond our current technical abilities, like in the case of the Chiral Lagrangian, which would require large lattice simulations with light dynamical quarks or yet-to-be-discovered alternative non-perturbative techniques with a good control on the mechanism of chiral symmetry breaking. In any case, if the number of constants is small enough, they can be phenomenologically obtained from available data and used later on to predict new results, as it is the case of the Chiral Lagrangian.

Pionium is a $\pi^+\pi^-$ electromagnetic bound state of binding energy $\sim 2keV$ which decays strongly, basically to two π^0, with a width $\Gamma \sim .6eV$ [7]. Clearly a QCD based analysis of this system should better start with the Chiral Lagrangian. However, the Chiral Lagrangian is a relativistic (manifestly Lorentz invariant) theory where electromagnetic bound state problems are difficult to handle (see [8, 9] for direct approaches). Moreover, both the binding energy and the decay width are much smaller than the pion mass $\sim 140MeV$, which suggests that a non-relativistic approach should be appropriated.
It is the aim of this work to present a non-relativistic approach to pionium based on a series of EFTs which are obtained from the Chiral Lagrangian coupled to electromagnetism after sequentially integrating out the various physical scales of the system until we reach the scale of the binding energy $\sim m\alpha^2/4$. The first scale to be integrated out is the pion mass m. This produces a local non-relativistic EFT for pion pairs near threshold, much in the same way as NRQED is obtained from QED [6, 10, 11]. The next relevant scale in the problem is the mass difference between charged and neutral pions $\Delta m \sim 5MeV$. Integrating out this scale produces a local EFT with only charged pion fields in it. The next relevant scale is the typical relative momentum of pions in the bound state $m\alpha/2 \sim 0.5MeV$ (soft). Integrating out this scale is, at lower orders of α, equivalent to calculating the electromagnetic potential between the two charged pions. The calculations in the latter EFT reduce to quantum mechanical ones. The main advantage of this approach is that there are well defined counting rules at any stage of the calculation, so that the size of any neglected term is easy to estimate. This is particularly important in order to extract more accurate values for the parameters of the Chiral Lagrangian from the improved measurement of the pionium decay width in the DIRAC experiment [3].

We distribute the paper as follows. In Section 2 we present the most general non-relativistic effective field theory for pion pairs near threshold. The constrains due to Lorentz invariance are implemented and the lagrangian is reduced to its minimal form by local field redefinitions. In Section 3 the neutral pions are integrated out which gives rise to a non-relativistic theory of charged pions interacting with the electromagnetic field. In Section 4 we integrate out soft photons, which produce the electromagnetic potentials between the charged pions. In Section 5 we present the calculation of the bound state energies and decay widths. Section 6 is devoted to the discussion of our results. In Appendix A we discuss the realisation of Lorentz symmetry in non-relativistic theories. In Appendix B we display the local field redefinitions and the various reshuffling of constants carried out along the paper. In Appendix C we present a new way to regulate the Coulomb propagator in D space dimensions.
2 Non-relativistic lagrangian for pion pairs near threshold

At relative momentum much smaller than the pion mass a non-relativistic description of pion pairs should be appropriated. In order to implement it, we shall write down a lagrangian organised in powers of $1/m$ in which any scale smaller than m is treated perturbatively. For the problem at hand the next relevant energy and momentum scales are Δm and $\sqrt{m\Delta m}$, its associated momentum, respectively. These scales are to be used to estimate the (maximum) size of each term.

The symmetries (exact and approximate) of the fundamental theory, namely the Chiral Lagrangian, must be incorporated. Let us consider first the internal symmetries. The Chiral Lagrangian is approximately invariant under (non-linear) chiral transformations, which are explicitly broken by the pion mass terms. Since the pion mass is a large parameter in the non-relativistic lagrangian, no algebraic constraints from chiral symmetry are expected to survive. All information about chiral symmetry will be hidden in the parameters of the lagrangian. The only remaining approximate internal symmetry will be isospin, which is explicitly broken by $m_u \neq m_d$ and the e.m. interactions both at the quark and at the Chiral Lagrangian level. The size of the explicit breaking may be estimated from $m_{\pi^+} - m_{\pi^0} \sim 5MeV$ which is much smaller than the pion mass. Hence isospin symmetry is a good (approximate) symmetry for the non-relativistic lagrangian. In order to implement it we shall use the vector \(\pi \)

\[
\pi = \left(\frac{\pi^+ + \pi^-}{\sqrt{2}}, \frac{\pi^- - \pi^+}{\sqrt{2}}, \pi_0 \right)
\]

where π^+, π^- and π_0 annihilate positive, negative and neutral pions respectively.

Concerning the space-time symmetries, Poincaré invariance (including the discrete symmetries) must also be implemented in the non-relativistic lagrangian. The translational and rotational part of the Poincaré group as well as the discrete symmetries are implemented in the standard way. The Lorentz subgroup requires the introduction of a non-linear realisation which is equivalent to impose the so called reparametrisation invariance [12]. This is discussed in Appendix A. The outcome is relatively simple for spin zero fields. Consider a composite spin zero field made out of tensor products of $n \pi$ and $m \pi^\dagger$. Define $w = n - m$ the weight of this field. If $w \neq 0$, all derivatives acting on this field must be introduced through the combination
\[D = i \partial_0 - \frac{1}{2 w m} \partial_\mu \partial^\mu \]

(2.2)

If \(w = 0 \), \(\partial_\mu \) on this field can be introduced. The lagrangian must have all the Lorentz indices contracted in a formally Lorentz invariant way and \(D \) must be considered Lorentz invariant itself.

Having in mind the rules above, consider first the limit of exact isospin symmetry. We have

\[
\begin{align*}
L &= L_2 + L_4 \\
L_2 &= L_2^{(0)} + L_2^{(1)} + ... \\
L_4 &= L_4^{(1/2)} + L_2^{(3/2)} + ... \\
L_2^{(0)} &= \pi^\dagger D \pi \\
L_2^{(1)} &= \pi^\dagger A_0 D^2 \pi \\
L_4^{(1/2)} &= B_1(\pi^\dagger \pi)^2 + B_2(\pi \pi)(\pi^\dagger \pi^\dagger) \\
L_4^{(3/2)} &= A_1(\pi D \pi)(\pi^\dagger \pi^\dagger) + h.c. \\
&\quad A_2(\pi^\dagger D \pi)(\pi^\dagger \pi) + h.c. \\
&\quad A_3(\pi^\dagger \pi^\dagger) D(\pi \pi) \\
&\quad A_4 \partial_\mu(\pi^\dagger \pi \pi^\dagger) \partial^\mu(\pi^\dagger \pi) \\
&\quad A_5(\pi^\dagger i \pi^\dagger j) D(\pi^\dagger \pi^\dagger) \\
\end{align*}
\]

(2.3)

Consider next the isospin breaking terms. These may be due to e.m. interactions at the quark level, e.m. interactions in the relativistic Chiral Lagrangian and \(m_u \neq m_d \). The electromagnetic interactions at quark level have an isospin invariant piece which is absorbed in the constants (2.3). The e.m. isospin breaking pieces, both at quark level and in the Chiral Lagrangian, are proportional to \(T^3 \), and so is the isospin breaking piece due to \(m_u \neq m_d \). Hence, in order to incorporate isospin breaking effects in the non-relativistic lagrangian, it is enough to construct further invariants with the vectors \(Q \sim (0, 0, e) \) and \(M \sim (0, 0, m_u - m_d) \), taking into account that \(Q \) must always appear in pairs. Although there is no extra difficulty in taking \(M \) into account, we shall ignore it here since, due to charge conjugation, it appears quadratically and turns out to be very small [13]. Then the e.m. isospin breaking terms read
\[
\Delta L = \Delta L_2 + \Delta L_4 \\
\Delta L_2 = \Delta L_2^{(0)} + \Delta L_2^{(1)} \\
\Delta L_4 = \Delta L_4^{(3/2)} \\
\Delta L_2^{(0)} = \delta_1 (\pi^\dagger Q)(Q \pi) \\
\Delta L_2^{(1)} = \delta_2 (\pi^\dagger Q)D(Q \pi) \\
\Delta L_4^{(3/2)} = C_1(\pi Q)(\pi Q)(\pi^\dagger \pi^\dagger) + h.c. \\
+ C_2(\pi Q)(\pi^\dagger Q)(\pi^\dagger \pi) \\
+ C_3((\pi^\dagger \times \pi) \cdot Q)^2
\] (2.4)

Before going on, let us discuss the general structure of the constants \(A_i, B_i, C_i\) and \(\delta_i\) above. Let us call \(Z\) to any such a constant and \(z\) its dimension. Then the general form of \(Z\) will be

\[
Z = m^z (a_{-1} + a_0 (\frac{m}{4\pi f})^2 + a_1 (\frac{m}{4\pi f})^4 + a_2 (\frac{m}{4\pi f})^6 + ... \\
+ b_1 \alpha + ... \\
+ c_{1,1} \alpha (\frac{m}{4\pi f})^2 + c_{1,2} \alpha (\frac{m}{4\pi f})^4 +)
\] (2.5)

where \(f \sim 93 MeV\) is the pion decay constant. The \(a_i, i = -1, 0, 1, \ldots\) stand for pure strong interaction contributions. It is interesting to notice that spontaneous chiral symmetry breaking implies \(a_{-1} = 0\) for \(Z \neq A_0, \delta_i\). Indeed in the limit \(f \rightarrow \infty\) (keeping \(m\) constant) the pions in the Chiral Lagrangian become free particles as far as the strong interactions is concerned. Hence, in this limit any EFT derived from the Chiral Lagrangian must not contain strong interactions. Then the subscript \(i = 0, 1, \ldots\) coincides with the number of loops at which the term \(a_i\) receives contributions. We stopped at the number of loops which have been calculated so far \([14]\). \(b_i, i = 1, 2, \ldots\) stand for purely electromagnetic contributions and \(c_{i,j}, i, j = 1, 2, \ldots\) for mixed electromagnetic and strong contributions. We stop here at the orders which compare to the two loop purely strong contribution. \(b_1\) may receive contributions from tree level annihilation graphs, \(c_{1,1}\) from one loop graphs \([15]\) and \(c_{1,2}\) from two loop graphs yet to be calculated. For this discussion to apply to the constants \(C_i\) and \(\delta_i\) of the isospin breaking terms \(Q\) must be counted as a dimension one object.

The lagrangian (2.3) and (2.4) contains higher time derivative terms. One can get rid of these terms by local field redefinitions. We can set \(A_0 = \delta_2 = A_1 = A_2 = 0\) by using
local field redefinitions which maintain Lorentz symmetry explicit. However, the new lagrangian still contains time derivatives beyond the expected \(i\partial_0\). We can also get rid of the extra time derivatives by using again local field redefinitions, which cannot maintain Lorentz symmetry explicit anymore. The details of this are displayed in Appendix B. We finally obtain the lagrangian in the so called minimal form

\[
L = L_2 + L_4
\]

\[
L_2 = \pi^{\dagger ij} \left((i\partial_0 + \frac{\nabla^2}{2m} + \frac{\nabla^4}{8m^3})\delta_{ij}
ight) + (1 + \frac{\nabla^2}{2m^2})\Delta m \frac{Q_iQ_j}{Q^2} \pi^i
\]

\[
L_4 = B_1 (\pi^\dagger \pi)^2 + B_2 (\pi \pi)(\pi^\dagger \pi^\dagger) + D_1 (\pi^\dagger \frac{\nabla^2}{2m} \pi + \pi \frac{\nabla^2}{2m} \pi^\dagger)(\pi^\dagger \pi) + D_2 \left((\pi \frac{\nabla^2}{2m} \pi^\dagger + \pi \pi (\pi^\dagger \frac{\nabla^2}{2m} \pi^\dagger) \right) + 2A_4 (\pi^\dagger \pi) \partial^i \pi^\dagger \partial^i \pi + C_1 (\pi Q)(\pi Q)(\pi^\dagger \pi^\dagger) + h.c. + C_2 (\pi Q)(\pi^\dagger Q)(\pi^\dagger \pi) + C_3 \left(\pi^\dagger \times \pi \right) \cdot Q)^2 + A_3 (\pi^\dagger \pi^\dagger) \frac{\nabla^2}{2m} (\pi \pi) + \frac{A_5^2}{2} (\pi^\dagger \pi^\dagger \pi^\dagger \pi^\dagger) \frac{\nabla^2}{2m} (\pi^\dagger \pi^\dagger) (2.6)
\]

The new constants above are defined in formula (B.8) of Appendix B. Lorentz symmetry guarantees that the bilinear terms have the standard form including relativistic corrections. It also relates \(A_3\) and \(A_5\) in the two last terms to the remaining constants (see Appendix B). Unfortunately, the latter relations have no practical consequences because the two last terms are proportional to the center of mass momentum and hence irrelevant to our problem. The zero charge sector in terms of the pion field reads

\[
L_2 = \pi^\dagger_+ (i\partial_0 + \frac{\nabla^2}{2m} + \frac{\nabla^4}{8m^3})\pi_+ + \pi^\dagger_- (i\partial_0 + \frac{\nabla^2}{2m} + \frac{\nabla^4}{8m^3})\pi_-
\]

\[
L_4 = R_{00} \pi^\dagger_0 \pi_0 \pi_0 + R_{cc} \pi^\dagger_+ \pi_- \pi_- + (R_{0c} \pi^\dagger_0 \pi_0 \pi_+ + h.c.) (2.7)
\]
The new constants above are defined in formula (B.9) of Appendix B. Notice that since
the origin of energies appears to be at the two charged pion threshold, the neutral pion
shows a negative energy gap $-\Delta m < 0$. Notice also that the terms in the bilinear neutral
pion lagrangian can be combined into the standard form.

$$
(i\partial_0 + \Delta m + \frac{\nabla^2}{2m} + \Delta m \frac{\nabla^2}{2m^2} + \frac{\nabla^4}{8m^3}) \sim
(i\partial_0 + \Delta m + \frac{\nabla^2}{2(m - \Delta m)} + \frac{\nabla^4}{8(m - \Delta m)^3})
$$

Nevertheless, in order to keep the expansion systematic we shall not use the expression
above.

The coupling to e.m. fields is done by promoting normal derivatives to covariant
derivatives. None of the possible non-minimal couplings contributes at the order we are
interested in and we will ignore them.

Before closing this section let us remark that we have assumed that the lagrangian
(2.3) and (2.4) is hermitian. This is correct at the order we are interesting in. However, in
general the hermiticity constraint must be relaxed. This is due to the fact that the $\pi^+\pi^-$
atom may decay into degrees of freedom which do not appear in the non relativistic la-
grangian, for instance to hard photons or hard electron-positron pairs. The non-hermitian
pieces would be obtained in the matching to the Chiral Lagrangian at the same time as
the hermitian ones, as it happens in NRQED \cite{10, 11, 18}.

3 Integrating out the scale Δm

Since $\Delta m >> m^2/4$ it is appropiated to integrate out this scale before tackling the
e.m. bound state problem. This represents the main advantage of our approach with
respect to previous non-relativistic proposals \cite{2, 16, 17}. The integration of neutral pions
can be easily achieved by matching four point off-shell Green functions of the lagrangian
above to a non-relativistic lagrangian where the neutral pions have been removed.
Figure 1: Diagrams contributing to the matching between L and L' up to corrections $O((\Delta m/m)^2)$. The bullet and triangle insertions in the neutral pion propagator correspond to relativistic corrections due to $\nabla^4/8m^3$ and $\Delta m\nabla^2/2m^2$ respectively.
\[L' = \pi_+^\dagger (iD_0 + \frac{D^2}{2m})\pi_+ \]
\[+ \pi_-^\dagger (iD_0 + \frac{D^2}{2m})\pi_- \]
\[+ R'_{cc}\pi_+^\dagger \pi_-^\dagger \pi_+ \pi_- + P'\pi_+^\dagger \pi_-^\dagger i\partial_0 \pi_+ \pi_- \] (3.1)

Since the \(\pi^0 \) energy gap is negative, the integration will produce imaginary parts in \(R'_{cc} \) and \(P' \). By calculating the diagrams in Fig. 1 in dimensional regularisation (DR) we obtain

\[R'_{cc} = R_{cc} - |R_{0c}|^2 R_{00} \left(\frac{ms}{2\pi} \right)^2 \]
\[+ i|R_{0c}|^2 \frac{ms}{2\pi} \left(1 + \frac{5}{8} \frac{s^2}{m^2} - \frac{3}{4} \frac{s^2}{m^2} - \left(\frac{R_{00}ms}{2\pi} \right)^2 - \frac{2S_{0c}(R_{0c} + R_{0c}^*)s^2}{|R_{0c}|^2} \right) \] (3.2)
\[P' = i|R_{0c}|^2 \frac{m^2}{4\pi s} \] (3.3)

where \(s = \sqrt{2m\Delta m} \). \(R'_{cc} \) and \(P' \) contain the leading corrections in \(\Delta m/m \) and \(m\alpha^2/4\Delta m \) respectively.

The electromagnetic contributions to \(L' \) coming from the energy scale \(\Delta m \) are negligible, as well as the relativistic corrections \(\sim \nabla^4/8m^3 \) to the charge pions and the terms \(P_{cc} \) and \(S_{cc} \) in (2.7).

4 Integrating out the scale \(m\alpha \)

The lagrangian in the previous section is almost identical to NRQED (for spin zero particles) plus small local interactions. In refs. [18] it was shown that we can integrate out next dynamical scale, namely, \(m\alpha/2 \) in NRQED obtaining a further effective theory called potential NRQED (pNRQED) which contains the usual potential terms and only the ultrasoft degrees of freedom (\(\sim m\alpha^2/4 \)) remain dynamical. We shall do the same here. The (maximum) size of each term in (3.1) is obtained by assigning \(m\alpha \) to any scale which is not explicit. In fact, since we are only interested in \(O(\alpha) \) corrections, only the Coulomb potential seems to be important, since the transverse photons give rise to \(O(\alpha^2) \) corrections. However, as pointed out in ref. [13], below the pion threshold there
are further light degrees of freedom apart from the photon. In particular, the electron
mass $m_e \sim m\alpha/2$ and hence it must be integrated out here. This gives rise to a potential
term which is only $O(\alpha)$ suppressed with respect to the Coulomb one. By calculating the
diagrams in Fig. 2 we obtain

$$L'' = \pi^\dagger(x,t)(i\partial_0 + \frac{\nabla^2}{2m})\pi(x,t)$$
$$+ \pi^\dagger_-(x,t)(i\partial_0 + \frac{\nabla^2}{2m})\pi_-(x,t)$$
$$+ R'_{cc}(\pi^\dagger_+\pi^\dagger_+\pi_-)(x,t) + P'(\pi^\dagger_+\pi^\dagger_-)(x,t)i\partial_0(\pi_+\pi_-)(x,t)$$
$$- \int d^3y(\pi^\dagger_+\pi_+)(x,t)(V_0(|x-y|) + V_1(|x-y|))(\pi^-\pi_-)(y,t)$$

$$V_0(|x-y|) = -\frac{\alpha}{|x-y|}, \quad V_1(|x-y|) = \int \frac{d^3k}{(2\pi)^3} V_{vpc}(k)e^{i(x-y)k}$$

where $V_{vpc}(k)$ is given in formula (10) of ref. [19]. The lagrangian above contains no
further degree of freedom than the non relativistic charged pions and hence it is totally
equivalent to standard quantum mechanics. We like better to stay within the lagrangian
formalism and use the $\pi^-\pi^+$ wave function field $\phi(x, X, t)$, where x and X are the relative
and center of mass coordinates respectively, as introduced in [18].

$$L'' = \phi^\dagger(x, X, t)(i\partial_0 + \frac{\nabla^2}{m})$$
$$- V_0(|x|) - V_1(|x|)$$
$$+ R'_{cc}\delta(x) + P'\delta(x)i\partial_0\phi(x, X, t)$$

The center of mass kinetic term has been dropped.

5 Quantum mechanical calculation

In order to calculate the corrections to the energy levels and decay width we shall
consider the propagator of (4.3) and identify its pole. At the order we are interested in
only the diagrams in Fig. 3 contribute.
Figure 2: Diagrams contributing to the matching between L' and L'' up to corrections $O(\alpha^2)$. Dashed lines are longitudinal photon propagators in the Coulomb gauge.

The diagrams in the first line of Fig. 3 correspond to first order perturbation theory and can be easily evaluated. They give rise to

\[
\begin{align*}
\delta R_{cc} E_{n}^{(1)} &= -Re(R_{cc}')|\Psi_n(0)|^2 & \delta R_{cc} \Gamma_{n}^{(1)} &= 2Im(R_{cc}')|\Psi_n(0)|^2 \\
\delta P E_{n}^{(1)} &= 0 & \delta P \Gamma_{n}^{(1)} &= -Im(P')|\Psi_n(0)|^2 \left(\frac{ma^2}{2n^2}\right) \\
\delta V_{1} E_{1}^{(1)} &= \frac{11ma^3}{18\pi} \left(1 - \frac{9\pi}{22}\xi + \frac{12\pi^2}{11}\xi^2 - \frac{6\pi^3}{11}\xi^3\right) - \frac{3(2 - \xi^2 - 4\xi^4)}{11\sqrt{\xi^2 - 1}} \tan^{-1} \sqrt{\xi^2 - 1} \\
\xi &= \frac{2m}{m_{\alpha}} & \delta V_{1} \Gamma_{n}^{(1)} &= 0
\end{align*}
\]

where $\Psi_n(x)$ is the Coulomb wave function.

The diagrams in the second line of Fig. 3 correspond to second order perturbation theory and are not so easily calculated. The second diagram gives a finite contribution $\delta V_{1}' \Gamma_{n}^{(2)}$ which for the ground state has been evaluated numerically in [19]. The first diagram has also been considered before [17]. However, since it is UV divergent a suitable regularisation and renormalisation scheme must be specified. The subtraction point dependence of the result will eventually cancel against the subtraction point dependences in the matching coefficients. The matching coefficients are to be found by matching the Chiral Lagrangian with e.m. interactions with (2.3) and (2.4) which requires a two loop calculation yet to be carried out. The matching calculation is most efficiently done at threshold using DR and MS (or \overline{MS}) scheme for both UV and IR divergences [11]. This requires to use the same regularisation and renormalisation scheme when calculating in the effective theory. We have calculated in Appendix C the first diagram using DR and MS scheme so that our results can be readily applied once the above mentioned matching calculation is carried out. We obtain
Figure 3: Diagrams contributing to the leading order corrections in $\Delta m/m$, α and $m\alpha^2/\Delta m$ to the energy and decay width. The double line is the Coulomb propagator of the $\pi^+\pi^-$ pair.
\[\delta_{R_{cc}} E_n^{(2)} = \text{Re}(R_{cc}^2) \frac{m^2 \alpha \Delta n}{4\pi} |\Psi_n(0)|^2 \]

\[\delta_{R_{cc}} \Gamma_n^{(2)} = -2 \text{Im}(R_{cc}^2) \frac{m^2 \alpha \Delta n}{4\pi} |\Psi_n(0)|^2 \]

(5.5)

where \(\Delta n \) is given in formula (C.12) of Appendix C.

Putting all this together, our final expressions for the energy and the decay width read

\[E_n = \frac{m \alpha^2}{4n^2} - \frac{|\Psi_n(0)|^2}{2f^2} + \delta V_1 E_n^{(1)} \]

(5.6)

\[\Gamma_n = \Gamma_n^{(0)} \left(1 + \Delta \chi_{PT} + \frac{5 \Delta m}{12m} \right) \]

\[- \frac{m \alpha^2}{16 \Delta mn^2} - \frac{m^2 \alpha \Delta n}{4\pi f^2} \right) + \delta V_1 \Gamma_n^{(2)} \]

(5.7)

\[\Gamma_n^{(0)} = \frac{9m \sqrt{2m} \Delta m}{64\pi f^4} |\Psi_n(0)|^2 \]

(5.8)

where we have substituted \(R_{00}, R_{cc}, R_{0c} \) and \(S_{0c} \) by their tree level values in the corrections

\[R_{00} \sim \frac{1}{16f^2} \]

\[R_{0c} \sim \frac{3}{8f^2} \]

\[R_{cc} \sim \frac{1}{2f^2} \]

\[S_{0c} \sim -\frac{1}{32m^2 f^2} \]

(5.9)

and defined

\[|R_{0c}|^2 = \left(\frac{3}{8f^2} \right)^2 \left(1 + \Delta \chi_{PT} \right) \]

(5.10)

We have also dropped terms proportional to \(R_{00} \) in (3.2) because they are suppressed by extra factors of \(m^2/4\pi f^2 \). \(\Delta \chi_{PT} \) summarizes all the contributions to \(|R_{0c}|^2 \) beyond the one at tree level in the isospin symmetric limit, in particular those from pion and photon loops in the Chiral Lagrangian. \(\delta V_1 E_n^{(1)} \) is given for \(n = 1 \) in (5.3) and \(\delta V_1 \Gamma_n^{(2)} \) is only known for \(n = 1 \) [19].

\[\delta V_1 \Gamma_1^{(2)} \sim 0.4298 \alpha \Gamma_1^{(0)} \]

(5.11)
Formulas (5.6) and (5.7) are exact up to next to leading order in α, $\Delta m/m$ and $m\alpha^2/\Delta m$, except for the optional substitutions mentioned above. Notice that only R_{0c} is needed beyond tree level ($\Delta_{\chi PT}$). In $\Delta_{\chi PT}$ there should be a contribution $\sim \log m/\mu$ which cancels the μ dependence in Δ_n. This would arise from a two loop calculation involving photons which has not been carried out yet.

6 Discussion

We have presented an approach to pionium which consists of separating the various dynamical scales involved in the problem by using effective field theory techniques. The main advantage of this approach is, apart from its simplicity, that error estimates can be carried out very easily. A few remarks concerning other approaches are in order. First of all, relativistic approaches [8, 9], apart from being technically more involved, have all the scales in the problem entangled which makes very difficult to estimate errors or to gauge the size of a given diagram. We would like to emphasize that Lorentz symmetry, even though it is not linearly realised, it is implemented in our approach to the required order. Several non-relativistic approaches have appeared in the literature addressing particular aspects of the problem [10, 17, 19]. Our analysis shows that a coupled channel approach to pionium [17] is unnecessary because the Δm is much larger than the bound state energy. It also shows that, although it is technically possible (trivial in fact) to make a resummation of bubble diagrams à la Lipmann-Schwinger, it does not make much sense doing it since there are higher derivative terms in the effective lagrangian, which have been neglected, which would give rise to contributions of the same order. In a way, our approach implements the remark of [16] related to the fact that neutral pion loops give rise to important contributions in the non-relativistic regime. We have supplemented this remark with a full theoretical framework and with relativistic corrections of the same order which had been overlooked.

We have refrained ourselves to write our final results in terms of physical amplitudes because no experimental information is available for them at threshold energies. Simple minded identifications may be dangerous. For instance, one may be tempted to identify R'_{cc} with the strong scattering length. This is correct at leading order but not at the order we are interested in.
On the technical side we have worked out a new method to calculate the Coulomb propagator $G_c(0,0;E)$ in DR. The expressions for $G_c(0,0;E)$ when $E \to E_n$ are easily obtained for any n. Using DR here it is not just a matter of taste. Eventually a two loop matching calculation is to be done in order to extract the parameters of the Chiral Lagrangian from the pionium width. These kind of calculations are only efficiently done in DR. Since the matching coefficients depend on the renormalisation scheme, it is important to have our calculation in DR in order to be able to use the outcome of such a matching calculation straight away.

While this paper was being written up ref. [20] appeared which deals with the same problem by similar techniques.

Acknowledgments

J.S. acknowledges discussions with A. Gall, J. Gasser, V. E. Lyubovitskij and A. Rusetsky. D.E. has benefited from a Spanish MEC FPI fellowship. Financial support from the CICYT (Spain), contract AEN98-0431, and the CIRIT (Catalonia), contract 1998SGR 00026 is also acknowledged.

Appendix A : Lorentz symmetry in non-relativistic effective theories

Consider $\phi(x)$ a relativistic spin zero field and its partition function

$$Z(J) = \int D\phi e^{i(S(\phi)+\int d^4x J(x)\phi(x))}$$ (A.1)

If S is Lorentz invariant then

$$Z(J) = Z(J') , \quad J'(x) = J(\Lambda^{-1}x)$$ (A.2)

In the non-relativistic regime we only need a subset of Js which generate Green functions with the external legs almost on shell. These may be chosen as

$$J(x) = \sqrt{2m}(e^{-imx^0}J_h(x) + e^{imx^0}J_h^\dagger(x))$$ (A.3)
where m is the mass of ϕ and $J_h(x)$ is slowly varying (i.e. contains energy and momentum much smaller than m). From (A.2) and (A.3) one easily finds that for Lorentz transformations close to the identity

$$J_h(x) \rightarrow J'_h(x) = e^{-im(\Lambda^{-1} - 1)x^\mu J_h(\Lambda^{-1}x)}$$

(A.4)

In the non-relativistic regime $Z(J)$ can be approximated to the desired order of accuracy by

$$Z(J) \sim Z_{NR}(J_h, J_h^\dagger) = \int Dhdh^\dagger e^{i(S_{NR}(h,h^\dagger) + \int d^4x(h^\dagger(x)J_h(x) + J_h^\dagger(x)h(x)))}$$

(A.5)

Then $Z_{NR}(J_h, J_h^\dagger)$ must be invariant under the transformation (A.4). Invariance of the terms coupled to the sources implies the following transformations for $h(x)$.

$$h(x) \rightarrow h'(x) = e^{-im(\Lambda^{-1} - 1)x^\mu}h(\Lambda^{-1}x)$$

(A.6)

Hence $S_{NR}(h, h^\dagger)$ must be constructed in such a way that it is invariant under (A.6). In order to do so, notice first of all that $\partial_\mu h(x)$ does not transform in a way similar to $h(x)$. We would like to introduce a kind of covariant derivative. The following operator appears to be a successful candidate

$$D = i\partial_0 - \frac{\partial_\mu \partial^\mu}{2m}$$

(A.7)

We have under Lorentz transformations

$$Dh(x) \rightarrow e^{-im(\Lambda^{-1} - 1)x^\mu} (D + i(\Lambda^{-1} - 1)x^\mu)h(\Lambda^{-1}x)$$

(A.8)

which upon the change $x \rightarrow \Lambda x$ becomes

$$Dh(x) \rightarrow e^{-im(1-\Lambda)x^\mu} Dh(x)$$

(A.9)

Analogously, if we have $C_w(x) = (h^\dagger(x))^m(h(x))^n$, $w = n - m$, we may define for $w \neq 0$ a generalisation of (A.7)

$$D = i\partial_0 - \frac{\partial_\mu \partial^\mu}{2wm}$$

(A.10)

Then $D^kC_w(x)$ has the same transformation properties as $C_w(x)$. We call w the weight of the composite field $C_w(x)$. If $w = 0$ then $\partial_\mu C_0(x)$ transforms as a usual Lorentz vector.

From the discussion above the following rules can be inferred in order to build a Lorentz invariant non-relativistic effective theory for spin zero particles:

(i) Write down all possible terms in the particle sector we are interested in with weight zero and no derivatives up to the desired order.
(ii) For each term, which is not already of the higher relevant order, insert Ds or ∂_μs
in all possible ways. All μ indices coming from the ∂_μ must be contracted in a Lorentz
invariant way.

Applying the rules above we obtain the lagrangians (2.3) and (2.4). Recall also that for
the particular case we are interested in the (minimal) supression of D is $\Delta m/m$ whereas
the (minimal) suppresion of ∂_μ is $\sqrt{\Delta m/m}$.

Finally, let us mention that for practical purposes the rules that we have obtained are
identical to those derived from the so called reparametrisation invariance [12] (see also
[22]). Hence, it should be clear that reparametrisation invariance is nothing but a way to
implement Lorentz symmetry in a non-relativistic theory. We believe that this point is
important and has not been sufficiently stressed in the literature.

Appendix B : Local field redefinitions

The lagrangian given in formulas (2.3) and (2.4) contains higher time derivative terms
whereas the usual non-relativistic lagrangians contain only a time derivative in the bilinear
terms of each field. The latter is known as the minimal form of the lagrangian. In this
Appendix we display the local field redefinitions which bring the lagrangian (2.3) and
(2.4) to its minimal form. Let us only mention that local field redefinitions exploit the
freedom we have in field theory to choose the interpolating field we wish, and refer the
interested reader to the literature on the subject [12, 21, 23, 24, 25]. The price we pay for
having the lagrangian in its minimal form is that Lorentz symmetry (reparametrisation
invariance) will not be explicit anymore. The constraints given by Lorentz symmetry will
reduce to non-trivial relations between the parameters of the lagrangian in its minimal
form.

We are retaining corrections up to the relative order $(\Delta m/m)^3$. In order to reduce
our operator basis, we will take advantadge of the fact that local field redefinitions can
also be organised in powers of $\Delta m/m$. The induced terms beyond the desired order as
well as the terms which do not contribute to the two particle sector (six pion terms and
beyond) will be neglected.

Let us first consider local field redefinitions which keep Lorentz symmetry explicit.
We can get rid of the A_0 and δ_2 terms in (2.3) and (2.4) by
\[\pi^i \mapsto ((1 - \frac{DA_0}{2})\delta^{ij} \pi^j + (\frac{\delta_1 A_0 Q^i Q^j}{2} - \frac{\delta_2 Q^i Q^j}{2}))\pi^j \] (B.1)

The bilinear terms become

\[L_2 + \Delta L_2 = \pi^\dagger D \pi + \pi^i \delta_1 Q^i Q^j (1 + (\delta_1 A_0 - \delta_2)Q^2) \pi^j \] (B.2)

and the following constants of the four pion terms get modified

\[
\begin{align*}
A_1 & \rightarrow A'_1 = A_1 - A_0 B_2 \\
A_2 & \rightarrow A'_2 = A_2 - A_0 B_1 \\
C_1 & \rightarrow C''_1 = C_1 - (\delta_2 - \delta_1 A_0) B_2 \\
C_2 & \rightarrow C''_2 = C_2 - 2(\delta_2 - \delta_1 A_0) B_1
\end{align*}
\] (B.3)

We can also get rid of the \(A'_1 \) and \(A'_2 \) keeping Lorentz invariance by making

\[\pi \mapsto \pi - A'_2^* \pi (\pi^\dagger \pi) - A'_1^* \pi^\dagger (\pi \pi) \] (B.4)

which induces

\[
\begin{align*}
C''_1 & \rightarrow C'''_1 = C''_1 - A'_1 \delta_1 \\
C''_2 & \rightarrow C'''_2 = C''_2 - (A'_2 + A'_2^*) \delta_1
\end{align*}
\] (B.5)

The remaining time derivatives in \(D \) and in the \(A_3 \) and \(A_4 \) terms can only be removed if we give up the explicit realisation of Lorentz symmetry which we have kept so far. Notice that the time derivatives in the \(A_4 \) term are higher order and can be dropped. The following field redefinition gets rid of the higher order time derivatives in the bilinear terms

\[\pi^i \mapsto \left((1 - \frac{i\partial_0}{4m} + \frac{\nabla^2}{8m^2})\delta^{ij} + \frac{\delta_1 Q^i Q^j}{4m} \right)\pi^j \] (B.6)

Finally the time derivatives induced by this redefinition in the four pion terms together with the remaining time derivatives in \(A_3 \) and \(A_4 \) can be removed by

\[\pi \mapsto \pi + \left(\frac{B_1}{2m} - A_5 \right)\pi (\pi^\dagger \pi) + \left(\frac{B_2}{2m} - A_3 \right)\pi^\dagger (\pi \pi) \] (B.7)
Putting all together, we obtain for the constants in the lagrangian (2.6) the following expressions in terms of the original constants

\[
\Delta m = \delta_1 Q^2 \left(1 + \left(\delta_1 A_0 - \delta_2 + \frac{\delta_1}{2m} \right) Q^2 \right)
\]

\[
D_1 = \frac{B_1}{m} - A_5 + 2mA_4
\]

\[
D_2 = \frac{B_2}{m} - A_3
\]

\[
C'_1 = C_1 - B_2 \delta_2 + \left(\frac{B_2}{m} - A_3 - A_1 + 2A_0B_2 \right) \delta_1
\]

\[
C'_2 = C_2 - 2B_1 \delta_2 + \left(\frac{2B_1}{m} - A_2 - A_2^* + 4A_0B_1 - 2A_5 \right) \delta_1
\]

Upon restricting the lagrangian (2.6) to the zero charge sector we obtain the lagrangian (2.7) the constants of which are related to the above ones according to

\[
R_{00} = B_1 + B_2 + e^2(C'_1 + C_1^*) + e^2C'_1
\]

\[
R_{0c} = 2B_2 + 2e^2C'_1^*
\]

\[
R_{cc} = 2B_1 + 4B_2 + 2e^2C_3
\]

\[
S_{00} = \frac{D_1}{2m} + \frac{D_2}{2m}
\]

\[
S_{0c} = \frac{D_2}{2m}
\]

\[
S_{cc} = \frac{D_1}{2m} + \frac{D_2}{m}
\]

\[
P_{00} = 2A_4
\]

\[
P_{cc} = 2A_4
\]

Appendix C : The Coulomb propagator in D space dimensions

We present here a generalisation of the Coulomb propagator to D space dimension which may prove useful in bound state calculations. For the actual Coulomb potential in
$\pi^- \pi^- \pi^+ \pi^+$

Figure 4: Logarithmically divergent diagram which is calculated with the two longitudinal photon propagators (C.5) for the dashed lines.

D dimensions

$$V_c(r) = -\frac{\alpha c_D}{r^{D-2}} ; \quad c_D = \frac{4\pi \Gamma\left(\frac{D}{2}\right)}{(D-2)2\pi^\frac{D}{2}}$$

we have not been able to find an explicit representation. However, a slight modification of it

$$V_c(r) \to V_c'(r) = -\frac{\alpha c'_D}{r} ; \quad c'_D = \frac{4\pi}{\Gamma\left(\frac{D-1}{2}\right)(4\pi)^\frac{D-1}{2}}$$

admits the following exact representation, which is a generalisation of that presented in [26]

$$G_c(x, y, E) = \sum_{l=0}^{\infty} G_l(x, y, E) \sum_{\{m_l\}} Y_l^{\{m_l\}}(x)Y_l^{\{m_l\}}(y)$$

$$G_l(x, y, E) = -m(2k)^{D-2}(2kx)^l(2ky)^l e^{-k(x+y)} \sum_{s=0}^{\infty} \frac{L_s^{2l+D-2}(2kx)L_s^{2l+D-2}(2ky)\Gamma(s+1)}{(s + \frac{2l+D-1}{2} - \frac{m\alpha}{2k c'_D})\Gamma(s + 2l + D - 1)}$$

where $Y_l^{\{m_l\}}$ are the spherical harmonics in D dimensions and $E = -k^2/m$. The potential $V_c'(r)$ corresponds to the following modification of the longitudinal photon propagator in standard DR

$$\frac{1}{k^2} \longrightarrow \left(\frac{1}{k^2}\right)^{\frac{D-1}{2}}$$

The change of regularisation scheme necessary for translating the result of (C.3) to those of standard DR can be obtained by calculating the logarithmically divergent diagram of Fig. 4 with the two propagators in (C.5). Using the MS renormalisation scheme for both regularisations we obtain

$$\log \frac{\mu'}{\mu} = \gamma_E - 1 - \log(4\pi)$$

(C.6)
The calculation of $G_c(0, 0; E)$ can be easily done using the formula 1.4.(1) of ref. [27]

\[
\sum_{n=-\infty}^{\infty} \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)\Gamma(d+n)} = \frac{\pi^2 \Gamma(c + d - a - b - 1)}{\sin(\pi a) \sin(\pi b) \Gamma(c - a) \Gamma(d - a) \Gamma(c - b) \Gamma(d - b)}
\]

(C.7)

We obtain $(D = 3 + 2\epsilon')$

\[
(\mu')^{-2\epsilon'} G_c(0, 0, -\frac{k^2}{m}) = -2mk \frac{2 \pi \frac{D}{2}}{\Gamma(D)} \frac{2k}{\mu'}^{2\epsilon'} \sum_{s=0}^{\infty} \frac{\Gamma(s + D - 1) \Gamma(s + \frac{D-1}{2} - \frac{ma}{2k} c_D)}{\Gamma(s + 1) \Gamma(s + \frac{D+1}{2} - \frac{ma}{2k} c_D) \Gamma^2(D - 1)}
\]

(C.8)

\[
= \frac{mk}{4\pi} \left(1 + \frac{ma}{2k} \left(\frac{1}{\epsilon'} + 2 \log(\frac{2k}{\mu}) + 2\gamma_E - 2 \log(4\pi) - 2 \right) + \frac{ma}{k} \left(\psi(1 + \frac{ma}{2k}) - \psi(1) + \frac{\pi \cos(\frac{ma\pi}{2k})}{\sin(\frac{ma\pi}{2k})} - \frac{2k}{ma} \right) \right)
\]

(C.9) (C.10) (C.11)

(C.9), (C.10) and (C.11) correspond to zero, one and more than one longitudinal photon exchange respectively. For $E \to E_n = m\alpha^2/4n^2$ we have

\[
\lim_{E \to E_n} (\mu')^{-2\epsilon'} G_c(0, 0, -\frac{k^2}{m}) - \frac{\Psi_n(0)\Psi^*_n(0)}{E - E_n} = \frac{m^2\alpha}{8\pi} \left(\frac{1}{n} + \frac{2\log(\frac{ma}{n\mu}) + \gamma_E - \log(4\pi) - 1}{n} + \frac{2\psi(n) + 2\gamma_E - 3}{n} \right)
\]

(C.12)

\[
=: \frac{m^2\alpha \Delta_n}{4\pi}
\]

where we have used the MS renormalisation scheme and changed μ' by μ according to (C.6) so that the results above are in standard DR with MS scheme. Clearly the singular part is local, independent of the principal quantum number n, and can be absorbed in a renormalisation of R_{cc}'. This result is in agreement with a recent DR calculation of the same object carried out in [28]. Finally formula (5.5) is obtained.

References

[1] S.Deser et al., Phys.Rev. 96 (1954) 774; T.L.Trumem, Nucl.Phys. 26 (1961) 57; E.Lambert, Helv.Phys.Acta 42 (1969) 667; H.Pilkuhn and S.Wycech, Phys.Lett. 76B (1978) 29; G.Rasche and W.S.Woolcock, Nucl.Phys. A381 (1982) 405.
[2] A. Gashi, G. Rasche, G. C. Oades and W. S. Woolcock, *Nucl.Phys.* **A628** (1998) 101; G. Rasche and A. Gashi, *Phys.Lett.* **B404** (1997) 375.

[3] B. Adeva et al., *CERN-SPSLC-95-1*; J. Schacher, [hep-ph/9808407](http://arxiv.org/abs/hep-ph/9808407).

[4] L.L. Nemenov, *Yad. Fiz.* **41** (1985) 980.

[5] J. Gasser and H. Leutwyler, *Ann. of Phys.* **158** (1984) 142.

[6] W.E. Caswell and G.P. Lepage, *Phys. Lett.* **B167** (1986) 437.

[7] L. Afanasyev et al., *Phys. Lett.* **B 308** (1993) 200; **B 338** (1994) 478.

[8] H. Jallouli and H. Sazdjian, *Phys.Rev.* **D58** (1998) 014011; Erratum-ibid. **D58** (1998) 099901.

[9] M. A. Ivanov, V. E. Lyubovitskij, E. Z. Lipartia and A. G. Rusetsky, *Phys.Rev.* **D58** (1998) 094024.

[10] T. Kinoshita and M. Nio, *Phys. Rev.* **D53** (1996) 4909; P. Labelle, S.M. Zebarjad and C.P. Burgess, *Phys. Rev.* **D56** (1997) 8053; A.H. Hoang, P. Labelle and S.M. Zebarjad, *Phys.Rev.Lett.* **79** (1997) 3387.

[11] A. V. Manohar, *Phys. Rev.* **D56** (1997) 230; A. Pineda and J. Soto, *Phys.Rev.* **D58** (1998) 114011.

[12] M. Luke and A. V. Manohar, *Phys.Lett.* **B286** (1992) 348.

[13] H. B. O’Connell, K. Maltman, A. W. Thomas and A. G. Williams, [hep-ph/9707404](http://arxiv.org/abs/hep-ph/9707404).

[14] J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M. E. Sainio, *Nucl.Phys.* **B508** (1997) 263; Erratum-ibid. **B517** (1998) 639; *Phys.Lett.* **B374** (1996) 210.

[15] M. Knecht and R. Urech, *Nucl.Phys.* **B519** (1998) 329.

[16] X. Kong and F. Ravndal, [hep-ph/9805357](http://arxiv.org/abs/hep-ph/9805357).

[17] B. R. Holstein, [nucl-th/9901041](http://arxiv.org/abs/nucl-th/9901041).

[18] A. Pineda and J. Soto, *Phys. Lett.* **B420** (1998) 391; *Phys.Rev.* **D59** (1999) 016005.

[19] P. Labelle and K. Buckley, [hep-ph/9804201](http://arxiv.org/abs/hep-ph/9804201).
[20] A. Gall, J. Gasser, V. E. Lyubovitskij and A. Rusetsky, hep-ph/9905309.

[21] Ch. Balzereit, hep-ph/9809226; W. Kilian and T. Ohl, Phys. Rev. D50 (1994) 4649. C. Balzereit and T. Ohl, Phys. Lett. B386 (1996) 335.

[22] R. Sundrum Phys.Rev. D57 (1998) 331; M. Finkemeier, H. Georgi and M. McIrvin Phys.Rev.D55 (1997) 6933; C. L. Lee, hep-ph/9709238.

[23] H. Georgi, Nucl. Phys. B361, 339 (1991).

[24] S. Scherer and H.W. Fearing, Phys. Rev. D52 (1995) 6445.

[25] G. Ecker and M. Mojzis Phys.Lett. B410 (1997) 266, ibid. B438 (1998) 446 (Err.).

[26] M. B. Voloshin, Sov. J. Nucl. Phys. 36 (1982) 143; A. Pineda, Nucl.Phys. B494 (1997) 213.

[27] H. Bateman, Higher Transcendental Functions, Vol. I, McGraw-Hill, 1953.

[28] A. Czarnecki, K. Melnikov, A. Yelkhovsky, hep-ph/9901394.