Comparison of Cyclic Fatigue Resistance of Heat-Treated Nickel-Titanium Reciprocating Instruments at the Intracanal Temperature

SUMMARY

Background/Aim: The aim of the present study was to compare the cyclic fatigue resistance of NiTi files running with reciprocal motion and having different characteristics (RPC Blue, WOG, EndoArt Wise Reciproc Gold, EndoArt Wise Reciproc Blue) at the intracanal temperature (35°C) by using NaOCl irrigation solution.

Material and Methods: Totally 60 WaveOne GOLD (Dentsply-Sirona, Ballaigues, Switzerland), Reciproc Blue (VDW, Munich, Germany), EndoArt Wise Reciproc Gold, and EndoArt Wise Blue (Inci Dental Productions Co, Istanbul, Turkey) (n= 15) files were used. Each of the rotary files were tested at the intracanal temperature (35°C) using a dynamic model in a stainless-steel artificial canal with an inner diameter of 1.5 mm, 60° angle of curvature, and 2mm radius of curvature until fracture occurred. The device automatically stopped at the moment of fracture and the number of cycles to the fracture was calculated as per second. The lengths of fractured parts were measured using a digital microcaliper. The One-Way Analysis of Variance (ANOVA) and Tukey’s post-hoc tests were used for intergroup comparisons.

Results: In 2 mm Radius of curvature, the EndoArt Wise Reciproc Blue group had a significantly higher time to fracture followed by the EndoArt Wise Reciproc Gold, Resiproc Blue, WaveOne Gold. No significant difference was found between EndoArt Wise Reciproc Gold and Resiproc Blue groups (P>0.05). Among the groups, there was no statistically significant difference in the lengths of fractured parts of the instruments (P> 0.05).

Conclusions: EndoArt Wise Reciproc Blue files exhibited significantly higher cyclic fatigue resistance compared with other files tested in a 2-mm radius of curvature and a 60° angle in an artificial canal at the intracanal temperature.

Key words: NiTi, Cyclic Fatigue, EndoArt Wise Reciproc Blue, WaveOne Gold, EndoArt Wise Reciproc Gold

Introduction

Despite the advantages of rotary NiTi file systems, the most important problem experienced with these files is their unexpected failure during clinical use\(^1\). The rotary NiTi file systems’ failure occurs because of either torsional or cyclic fatigue\(^1,3\). The torsional fatigue failure occurs when the drill continues rotating while the tip of file was stuck within the root canal\(^3\). However, the cyclic fatigue failure occurs as a result of repetitive compaction and tensile forces in the maximum curvature area while the file rotates within the curved canal\(^3\).

Various factors such as preparation method, instrument design, size, production method, usage, number, canal shape\(^4\), and rotation direction\(^5\) may cause of failure. For this reason, the innovations are designed for the kinematic, metallurgic, and surface characteristics and designs of NiTi files in order to perform effective and rapid shaping in curved canals and to increase the failure resistance\(^7\). The kinematic movements play a significant role in the cyclic fatigue of files\(^3\). With clockwise and
counterclockwise movements, the reciprocal motion prolongs the lifetime of files by reducing the stress on the file and increasing the cyclic fatigue failure\(^9\). In previous studies, it was reported that the reciprocal motion increases the cyclic fatigue resistance when compared to the continuous rotation motion\(^8\).\(^{10-13}\). Besides that, new file systems with reciprocal motion were developed by altering the metallurgical characteristics of files. The new generation Reciproc Blue (RPC Blue; VDW, Munich, Germany) files are the updated form of Reciproc (RPC; VDW) file system. Moreover, RPC Blue is produced using a new heat treatment causing molecular structure changes in order to increase the cyclic fatigue resistance. Known as blue treatment, this new heat treatment gives the file a blue color\(^\text{14}\). WaveOne Gold (WOG; Dentsply Sirona, Ballaigues, Switzerland) files are the single-file systems introduced by updating the cross-section, diameter, geometry, and metallurgical characteristics of WaveOne (WO; Dentsply Sirona) files. WOG files are produced using heat treatment named Gold treatment\(^\text{15}\).

Thermomechanical treatments applied to NiTi alloys influence transformation behaviors. In previous studies, it was reported that the alloys (gold and blue) containing higher martensite percentage at room temperature are more resistant to cyclic fatigue\(^\text{16,17}\). Nowadays, the EndoArt Wise Reciproc Blue (Inci Dental Productions Co, Istanbul, Turkey) files running with reciprocal motion, having tetragonal shape, and having Controlled Memory and blue treatment features and the EndoArt Wise Reciproc Gold (Inci Dental Productions Co, Istanbul, Turkey) files running with reciprocal motion and gold treatment features are recently introduced to the market. In the literature, there is no study examining the cyclic fatigue resistance of EndoArt Wise files running with reciprocal motion.

The aim of the present study is to compare the cyclic fatigue resistance of NiTi files running with reciprocal motion and having different characteristics (RPC Blue, WOG, EndoArt Wise Reciproc Gold, EndoArt Wise Reciproc Blue) at the intracanal temperature (35°C) by using NaOCl irrigation solution. The null hypothesis of the present study is that there would be no difference between the cyclic fatigue resistances of files having different metallurgical properties.

Material and Methods

In the present study, 60 (\(n = 15\)) rotary NiTi file systems running with reciprocal motion were involved. Group 1: Rpc Blue (25.08); Group 2: WOG (25.07); Group 3: EndoArt Blue (25.07); Group 4: EndoArt Gold (25.07). The sample size was calculated using G*Power v3.1 for Mac (Heinrich Heine, University of Dusseldorf). The presence of any defect on the files was tested under X20 magnification using stereomicroscope (Olympus BX43; Olympus Co, Tokyo, Japan). Since no defect was observed on the files that were used in the present study, all the files were used in the cyclic fatigue tests.

All the files were run in the artificial canals with 60° curvature angle and 2 mm radius\(^6\) until failure. The dynamic cyclic fatigue test was performed at the intracanal temperature (35°C±1) (Figure 1)\(^\text{18}\). The temperature was monitored throughout the experiment by using a digital thermometer. A stone (wire) resistor and thermostat were used to increase the temperature of artificial canal or metal block to 35.5°C and maintain this temperature. Current was passed through a 27 ohm 5W stone resistor by a voltage source, and the stone resistor transferred the waste heat it generated to the metal block in contact with the transmission, causing the temperature of the metal block to increase. After the reach 35.5°C thermostat was used to stop further increases and maintain the temperature. Thermostat work by breaking the circuit when a certain temperature is reached, thus preventing current from passing through the resistor. When the metal block’s temperature drops below the desired value, the circuit become operational again. In order to test the files by fixing them, they were attached to a micro motor with torque and speed adjustment and 6:1 reduction and a drill (VDW Silver Reciproc, VDW Munich, Germany), then connected to a test device and run at torque and speed rates recommended by the manufacturer. 2 ml 5.25% sodium hypochlorite (NaOCl; CanalPro; Coltene-Whaledent, Allstetten, Switzerland) was injected into the canals. The devices fixed on the experimental setting were run with pecking motion at 2 mm/sec. speed in order to mimic the clinical use. At the moment of failure, the device stopped automatically and the Time to Fracture (TTF) was calculated as per second. The lengths of fractured (FL) parts were measured using a digital microcaliper.

![Figure 1. Dynamic cyclic fatigue-testing device](image-url)

Eight pieces of fractured files (two pieces from
Results

The mean and standard deviation of the Time to Fracture (TTF) and Fracture Length (FL) of the groups tested are shown in Table 1 (P < 0.05). At 2 mm radius of curvature, the EndoArt Wise Blue group had a significantly higher mean time to fracture followed by the EndoArt Wise Gold, Reciproc Blue, WaveOne Gold. No significant difference between EndoArt Wise Gold and Reciproc Blue groups was found (P > 0.05). WaveOne Gold was significantly lower than the EndoArt Gold and Reciproc Blue groups (P < 0.05). Among the groups, there was no statistically significant difference in the fracture lengths (P > 0.05).

Table 1. The Mean and Standard Deviation of Time to Fracture (TTF) and Fracture Length (FL) of the Tested Nickel-titanium Instruments in 5.25% NaOCl (Mean ± SD)

Instruments	NCF	FL
Reciproc Blue	2367 ± 760x	3.35 ± 0.1x
WaveOne Gold	1145 ± 112y	3.36 ± 0.2x
EndoArt Wise Blue	5646 ± 166z	3.35 ± 0.3x
EndoArt Wise Gold	2806 ± 609x	3.36 ± 0.1x

Different superscript letters indicate statistically significant differences between groups (P< 0.05) (x,y,z columns)

Discussion

Manufacturers aim to improve the cyclic fatigue resistance of NiTi files by altering the metallurgical structures, heat treatments applied to files, and designs and kinematic characteristics of NiTi files8,19. The clinicians should be aware of the advantages and disadvantages arising from the modifications made on the files20. For this purpose, the present study compares the cyclic fatigue resistances of new EndoArt Wise Reciproc Blue and Gold files with those of WOG and RCP Blue files. According to the results of the present study, the cyclic fatigue resistance of EndoArt Wise Reciproc Blue files was found to be statistically significantly higher than that of other file groups. Thus, the null hypothesis of the present study was rejected.

In order to mimic the clinical conditions and to distribute the stress on the file, the experimental setting was designed according to the dynamic model rather than the static one. Researchers reported that preventing the stress accumulation increases the failure resistance of file21,22. The NiTi rotary file systems contact solutions, which are used for irrigation purposes, during the root canal preparation. The corrosions and deformations develop after this contact and they may cause undesired fractures23. In order to mimic the clinical conditions,
the cyclic fatigue tests were performed by irrigating the artificial canals with 2 ml NaOCl.

When compared to the other files, EndoArt Wise Blue failed after a longer time. EndoArt Wise Blue files may be more flexible since they have controlled memory and blue treatment features. Although EndoArt Wise Blue and RPC files failed after a longer time than WOG files did, the difference was statistically insignificant. These findings are corroborated by previous studies24-29. As RPC does, the RPC Blue file system has an S-shaped transverse cross-section and 2 cutting edges and it is more resistant than RPC file30. WOG, however, has a non-parallel cutting edge and, because of this design, it has an active cutting edge with contact at a single point. There is no consensus on if the difference between the cross-sections of files influences the cyclic fatigue. Some of the studies advocate that the cross-sectional properties influence the cyclic fatigue resistance of files31,32, whereas some others argue the opposite33,34.

The modifications in the crystal structure of files affect their flexibility. During clinical use, the Blue is at the martensitic phase. At this phase, the file becomes softer and more ductile. The temperature of transition between austenitic and martensitic phases is measured just below the body temperature35. Most of the previous studies compared the cyclic fatigue resistances of NiTi files at the room temperature. In previous studies, it was reported that the temperature affected the cyclic fatigue resistance of files8,36-38. Some of the studies argued that the room temperature and intracanal temperature did not affect the cyclic fatigue resistance of files35,39. In the present study, since the intracanal temperature, the devices clinically used at was approx. 35°C, the dynamic test was performed at dynamic test40.

In the clinics, the file failures occur together with the accumulation of torsional stress and cyclic fatigue. Further study methods should be developed in order to test the resistance of NiTi filed in the way representing the clinical conditions.

Conclusions

EndoArt Wise Reciproc Blue files displayed a significantly higher cyclic fatigue resistance and, hence, a superior fracture resistance than Reciproc Blue, Waveone Gold Primary, Endoart Wise Reciproc Gold tested in an artificial canal at intracanal temperature.

References

1. Wei X, Ling J, Jiang J, Huang X, Liu L. Modes of failure of ProTaper nickel-titanium rotary instruments after clinical use. J Endod, 2007;33:276-279.
2. Fishelberg G, Pawluk JW. Nickel-titanium rotary-file canal preparation and intracanal file separation. Compend Contin Educ Dent, 2004;25:17-18.
3. Mounce R. Rotary nickel titanium instrumentation. A literature review. Dent Today, 2004;23:119-120.
4. Peters OA, Barbakow F. Dynamic torque and apical forces of ProFile.04 rotary instruments during preparation of curved canals. Int Endod J, 2002;35:379-389.
5. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod, 2006;32:1031-1043.
6. Pruett JP, Clement DJ, Carnes DL Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod, 1997;23:77-85.
7. Zupane J, Vahdat-Pajohouh N, Schafer E. New thermomechanically treated NiTi alloys - a review. Int Endod J, 2018;51:1088-1103.
8. Ferreira F, Adeodato C, Barbosa I, Aboud L, Scelza P, Zaccaro Scelza M. Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review. Int Endod J, 2017;50:143-152.
9. De-Deus G, Vieir VTL, da Silva EJN, Lopes H, Elias CN, Moreira EJ. Bending resistance and dynamic and static cyclic fatigue life of Reciproc and WaveOne large instruments. J Endod, 2014;40:575-579.
10. You SY, Bae KS, Baek SH, Kum KY, Shon WJ, Lee W. Lifespan of one nickel-titanium rotary file with reciprocating motion in curved root canals. J Endod, 2010;36:1991-1994.
11. Pedullà E, Grande NM, Plotino G, Gambarini G, Rapisarda E. Influence of continuous or reciprocating motion on cyclic fatigue resistance of 4 different nickel-titanium rotary instruments. J Endod, 2013;39:258-261.
12. De-Deus G, Moreira EJL, Lopes HP, Elias CN. Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement. Int Endod J, 2010;43:1063-1068.
13. Ahn SY, Kim HC, Kim E. Kinematic Effects of Nickel-Titanium Instruments with Reciprocating or Continuous Rotation Motion: A Systematic Review of In Vitro Studies. J Endod, 2016;42:1009-1017.
14. Gündoğar M, Özyürek T. Cyclic Fatigue Resistance of OneShape, HyFlex EDM, WaveOne Gold, and Reciproc Blue Nickel-titanium Instruments. J Endod, 2017;43:1192-1196.
15. Özyürek T. Cyclic Fatigue Resistance of Reciproc, WaveOne, and WaveOne Gold Nickel-Titanium Instruments. J Endod, 2016;42:1536-1539.
16. Topcuoglu HS, Durgun S, Akşit A, Topcuoglu G. Laboratory comparison of cyclic fatigue resistance of WaveOne Gold, Reciproc and WaveOne files in canals with a double curvature. Int Endod J, 2017;50:713-717.
17. Elmaghy AM, Elsaka SE. Effect of sodium hypochlorite and saline on cyclic fatigue resistance of WaveOne Gold and Reciproc reciprocating instruments. Int Endod J, 2017;50:991-998.
18. Klymus ME, Alcalde MP, Vivan RR, Só MVR, de Vasconcelos BC, Duarte MAH. Effect of temperature on the cyclic fatigue resistance of thermally treated reciprocating instruments. Clin Oral Investig, 2019;23:3047-3052.
19. Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod, 2013;39:163-172.
20. Gao Y, Gutmann JI, Wilkinson K, Maxwell R, Ammon D. Evaluation of the impact of raw materials on the fatigue and mechanical properties of ProFile Vortex rotary instruments. J Endod, 2012;38:398-401.

21. Lopes HP, Elias CN, Vieira MV, Siqueira Jr JF, Mangelli M, Lopes WS, et al. Fatigue Life of Reciproc and Mtwo instruments subjected to static and dynamic tests. J Endod, 2013;39:693-696.

22. Rodrigues RC, Lopes HP, Elias CN, Amaral G, Vieira VT, De Martin AS. Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instruments. J Endod, 2011;37:1553-1557.

23. Zehnder M. Root canal irrigants. J Endod, 2006;32:389-398.

24. Keskin C, Inan U, Demiral M, Keleș A. Cyclic Fatigue Resistance of Reciproc Blue, Reciproc, and WaveOne Gold Reciprocating Instruments. J Endod, 2017;43:1360-1363.

25. Keleş A, Eymirli A, Uyanık O, Nagas E. Influence of static and dynamic cyclic fatigue tests on the lifespan of four reciprocating systems at different temperatures. Int Endod J, 2019;52:880-886.

26. Al-Obaida MI, Merdag K, Alanazi MS, Altwijrzy H, AlFaraj M, Alkhamis AA, et al. Comparison of Cyclic Fatigue Resistance of 5 Heat-treated Nickel-titanium Reciprocating Systems in Canals with Single and Double Curvatures. J Endod, 2019;45:1237-1241.

27. Keles A, Ozürek EU, Uyanik MO, Nagas E. Effect of Temperature of Sodium Hypochlorite on Cyclic Fatigue Resistance of Heat-treated Reciprocating Files. J Endod, 2019;45:205-208.

28. Silva EJNL, Vieira VTL, Hecksher F, dos Santos Oliveira MRS, dos Santos Antunes H, Moreira EJL. Cyclic fatigue using severely curved canals and torsional resistance of thermally treated reciprocating instruments. Clin Oral Investig, 2018;22:2633-2638.

29. Alcalde MP, Duarte MAH, Bramante CM, de Vasconcelos BC, Tanomaru-Filho M, Guerreiro-Tanomaru JM, et al. Cyclic fatigue and torsional strength of three different thermally treated reciprocating nickel-titanium instruments. Clin Oral Investig, 2018;22:1865-1871.

30. De-Deus G, Silva EJNL, Vieir VTL, Belladonna FG, Elias CN, Plotino G, et al. Blue Thermomechanical Treatment Optimizes Fatigue Resistance and Flexibility of the Reciproc Files. J Endod, 2017;43:462-466.

31. Haïkel Y, Serfati R, Bateman G, Senger B, Allemann C. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod, 1999;25:434-440.

32. Tripi TR, Bonaccorso A, Condorelli GG. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006;102:106-114.

33. Chaves Craveiro de Melo M, Guiomar de Azevedo Bahia M, Lopes Buono VT. Fatigue resistance of engine-driven rotary nickel-titanium endodontic instruments. J Endod, 2002;28:765-769.

34. Cheung GS, Darvell BW. Low-cycle fatigue of NiTi rotary instruments of various cross-sectional shapes. Int Endod J, 2007;40:626-632.

35. Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci, 2005;50:511-678.

36. Grande NM, Plotino G, Silla E, Pedullà E, DeDeus G, Gambarini G, et al. Environmental Temperature Drastically Affects Flexural Fatigue Resistance of Nickel-titanium Rotary Files. J Endod, 2017;43:1157-1160.

37. Jamleh A, Alghaihab A, Alfadley A, Alfawaz H, Alqedairi A, Alfouzan K. Cyclic Fatigue and Torsional Failure of EdgeTaper Platinum Endodontic Files at Simulated Body Temperature. J Endod, 2019;45:611-614.

38. Plotino G, Grande NM, Testarelli L, Gambarini G, Castagnola R, Rossetti A, et al. Cyclic Fatigue of Reciproc and Reciproc Blue Nickel-titanium Reciprocating Files at Different Environmental Temperatures. J Endod, 2018;44:1549-1552.

39. Plotino G, Grande NM, Bellido MM, Testarelli L, Gambarini G. Influence of Temperature on Cyclic Fatigue Resistance of ProTaper Gold and ProTaper Universal Rotary Files. J Endod, 2017;43:200-202.

40. de Hemptinne F, Slaus G, Vandendael M, Jacquet W, De Moor RJ, Bottenberg P. In Vivo Intracanal Temperature Evolution during Endodontic Treatment after the Injection of Room Temperature or Preheated Sodium Hypochlorite. J Endod, 2015;41:1112-1115.

Conflict of Interests: Nothing to declare.

Financial Disclosure Statement: Nothing to declare.

Human Rights Statement: None required.

Animal Rights Statement: None required.

Received on November 3, 2020.
Revised on December 28, 2020.
Accepted on January 20, 2021.

Correspondence: Neslihan Büşra Keskin
Department of Endodontics
Faculty of Dentistry, Yıldırım Beyazıt University
Ankara, Turkey
e-mail: ozerolbkeskin@gmail.com