Hippocampal–prefrontal interactions during spatial decision-making

Lucas C. S. Tavares1,2 | Adriano B. L. Tort1

1Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
2Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, Brazil

Correspondence
Lucas C. S. Tavares, Brain Institute, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho 3000, Natal, RN 59078-900, Brazil.
Email: lucastavares@neuro.ufrn.br
Adriano B. L. Tort, Brain Institute, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho 3000, Natal, RN 59078-900, Brazil.
Email: tort@neuro.ufrn.br

Funding information
Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant/Award Numbers: 308653/2018-1, 408508/2018-3; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Grant/Award Number: 88887.465502/2019-00

Abstract
The hippocampus has been linked to memory encoding and spatial navigation, while the prefrontal cortex is associated with cognitive functions such as decision-making. These regions are hypothesized to communicate in tasks that demand both spatial navigation and decision-making processes. However, the electrophysiological signatures underlying this communication remain to be better elucidated. To investigate the dynamics of the hippocampal–prefrontal interactions, we have analyzed their local field potentials and spiking activity recorded from rats performing a spatial alternation task on a figure eight-shaped maze. We found that the phase coherence of theta peaked around the choice point area of the maze. Moreover, Granger causality revealed a hippocampus → prefrontal cortex directionality of information flow at theta frequency, peaking at starting areas of the maze, and on the reverse direction at delta frequency, peaking near the turn onset. Additionally, the patterns of phase-amplitude cross-frequency coupling within and between the regions also showed spatial selectivity, and hippocampal theta and prefrontal delta modulated not only gamma amplitude but also inter-regional gamma synchrony. Finally, we found that the theta rhythm dynamically modulated neurons in both regions, with the highest modulation at the choice area; interestingly, prefrontal cortex neurons were more strongly modulated by the hippocampal theta rhythm than by their local field rhythm. In all, our results reveal maximum electrophysiological interactions between the hippocampus and the prefrontal cortex near the decision-making period of the spatial alternation task, corroborating the hypothesis that a dynamic interplay between these regions takes place during spatial decisions.

KEYWORDS
coherence, delta, directionality, in vivo electrophysiology, LFP, neuronal oscillations, theta

1 INTRODUCTION

The hippocampus has been extensively linked with memory formation (Squire et al., 1992) and spatial navigation (Moser et al., 2008; O'Keefe, 1991). Regarding the latter, the hippocampus is believed to be part of a system for assessing positional information and the surrounding context, which allows subjects to navigate across space. On the other hand, the prefrontal cortex plays a role in selecting context-specific memories among competing, non-appropriate ones, acting as a control mechanism for the functional discrimination of information (Dobbins et al., 2002; Moscovitch, 1992; Preston & Eichenbaum, 2013; Szczepanski & Knight, 2014). The interplay between these regions is thus expected to take place in tasks or behaviors that demand both navigational data and choice-related memory discrimination.

Several studies have demonstrated a link between animal behavior and connectivity measures (Fell et al., 2001; Varela et al., 2001;
Womelsdorf et al., 2007). Electrophysiological interactions between distant brain regions are usually mediated by low-frequency oscillations (Daume et al., 2017; von Stein & Sarnthein, 2000). Among them, theta oscillations (6–10 Hz) can be detected at the single-cell level (Klausberger et al., 2003) as well as at the population level in a variety of brain regions, such as the hippocampus (Buzsáki, 2002), the neocortex (Sirotta et al., 2008), thalamic, and subthalamic nuclei (Kirk et al., 1996; McNaughton et al., 1995). The hippocampal theta cycle modulates spiking activity from distal neuronal populations (Buzsáki, 2006; Wang, 2010), while theta phase coherence has been suggested as a potential mechanism for the synchronization of the prefrontal–hippocampal network during cognitive tasks (Benchenane et al., 2010; Jones & Wilson, 2005b).

Recent reviews highlight the role of hippocampal–prefrontal interactions across different cognitive domains, such as goal-directed behavior (Womelsdorf et al., 2010), emotion (Jin & Maren, 2015), context-guided memory (Place et al., 2016), episodic memory (Eichenbaum, 2017), decision-making (Tamura et al., 2017), and spatial learning (Maharjan et al., 2018). Here, we sought to revisit and further characterize the electrophysiological signatures of hippocampal–prefrontal interactions during spatial decision. To that end, we have analyzed local field potentials (LFPs) and spiking activity previously recorded from the hippocampus and prefrontal cortex of rats performing an odor-cued alternation task on a figure eight-shaped maze (Fujisawa et al., 2008). We found that changes in cognitive demands accounted for variations in inter-regional synchrony and spike-oscillation coupling. Furthermore, our results add to the literature by showing novel interactions, such as how the directionality of information flow (hippocampus → prefrontal vs. prefrontal → hippocampus) depends on the oscillatory frequency and varies across the task, suggesting feedforward and feedback mechanisms; how the prefrontal cortex displays patterns of increased local organization on the maze region associated with choice as inferred by both phase-amplitude coupling and spike-field coupling metrics; and how prefrontal delta and hippocampal theta—two region-frequency associations that consistently appear throughout this work—modulate mutual synchrony through different gamma sub-bands. Our results thus show that neuronal oscillations provide a framework for the dynamic interplay between the regions during spatial decisions.

2 | MATERIALS AND METHODS

2.1 | Data set

The data used in this work was collected and kindly made available by the Buzsáki Lab through the Collaborative Research in Computational Neuroscience data sharing website crcns.org (Fujisawa et al., 2015). The original descriptions for the surgical and experimental procedures can be found in Fujisawa et al. (2008). Part of their methods is reproduced below for convenience, followed by details of the data analysis performed here.

2.2 | Animals and behavioral task

We analyzed 13 sessions recorded from three adult male Long Evans rats (3–5 months old; Rat EE: 7 sessions; Rat FF: 3 sessions; Rat GG: 3 sessions) performing an odor-cued spatial alternation task in a figure eight-shaped maze, which contained a start area, a center arm, and left and right goal arms (Figure 1a). In the start area, animals were trained to nose-poke to receive an odor sample (chocolate or cheese) indicating the goal arm and associated reward to be found at its end (e.g., right for 300 mg of chocolate, left for 300 mg of cheese). The particular match between odor and arm varied across subjects. The animals underwent surgery after achieving a performance of >85% correct choices in 5 consecutive days. Position in the maze was tracked using two small light-emitting diodes mounted above the head stage and a digital video camera recording at 40 Hz.

2.3 | Data acquisition

Neuronal activity was recorded simultaneously from the medial prefrontal cortex with an 8-shank 64-channel probe and from the intermediate CA1 with a 4-shank 32-channel probe. Data was amplified 1000× and recorded at 20 kHz using a 128-channel DataMax system (16-bit resolution; RC Electronics). LFPs were obtained by low-pass filtering at 625 Hz and down-sampling to 1250 Hz.

2.4 | Spike detection and sorting

Data band-passed filtered from 0.8 to 5 kHz were used for spike detection. A mean RMS was computed using 100 s sections and a value of seven standard deviations from the mean RMS was set as threshold. Spike sorting was done through PCA-derived features and semi-automatically clustered using KlustaKwik (Rossant et al., 2016).

2.5 | Data analysis

All analyses were performed with built-in and custom-written Matlab (Mathworks) routines.

2.6 | Channel selection

For the LFP analyses, we used one channel for each region. For CA1 recordings, we selected the channel with the highest theta/delta ratio, though there was not much variation of this ratio across channels due to the small contact distances (20-μm vertical separation) and the fact that channels targeted the pyramidal cell layer (as opposed to crossing hippocampal layers; no substantial theta phase reversal was observed across channels). We did not use the same maximum theta/delta ratio criterium
for prefrontal recordings since delta oscillations were of interest for this region. At the same time, we also did not select the channel with the highest delta power since some noisy channels exhibiting slow signal drifts had high power in the delta band. The selection was ultimately based on visual inspection of raw traces and power spectra such as to avoid including deviant/noisy/broken channels. Channel selection was performed before running the main analyses detailed below. The list of selected channels is available at https://github.com/tortlab/hpc-pfc-interactions. At any event, we checked a posteriori that the results hold with other channel choices, which is not surprising given the high redundancy among LFP signals from the same region.

2.7 | Spatial spectrograms and coherograms

Temporal spectrograms and coherograms were computed using the spectrogram() and mscohere() MATLAB functions, respectively. For spectrograms, the window size was 500 ms with an overlap of 45%; for coherograms, we used 5 s windows with 97.5% overlap (i.e., step size = 125 ms). Within each window, the coherence spectrum was obtained using 1 s sub-windows with no overlap. Spatial spectrograms and coherograms were obtained as follows: first, for each trial, we computed the temporal spectrogram or coherogram as described above; then, for each bin of space (see below), we average all spectrogram or coherogram columns (i.e., power or coherence spectra) associated with the timestamps the animal spent in that spatial bin; finally, for each spatial bin we averaged all associated spectra across trials in a session. The spatial bins were defined by dividing the mean trajectory into 20 equal parts, called linearized positions, varying from 0 (start of the trial) to 1 (reward consumption). In addition to the average spectra associated with the spatial bins, in Figures 1b and 2a, we also show power and coherence spectra averaged for five 1 s time bins before and after maze runs.

2.8 | Task-event definition

We analyze four unique events in the task: start, choice, turn, and reward. The start event was defined as the timestamp of the nose poke in the initial box; the reward event as the timestamp when the reward started to be consumed; the choice and turn events were defined by the crossing of the linearized positions of 0.3 and 0.45, respectively. In Figure 1d, task-event power was estimated through the pwelch() function using 500 ms windows centered at the event timestamp; for each session, the average power over trials was considered. In Figure 2d, task-event coherence was computed using 500 ms time windows with 100 ms steps around the event timestamp. For each 500-ms window, coherence was computed across all trials in a session (i.e., every trial gives rise to a phase difference vector, and coherence is obtained as the square of the length of the average vector). In terms of implementation, this can be achieved by concatenating the 500 ms windows across trials and employing mscohere() with 500-ms window length and no overlap. In Figure 2e, peak theta coherence was obtained as the mean peak value across the six peri-event windows (centered from −250 ms to +250 ms).

2.9 | Locomotion speed estimation

Instantaneous speed was computed as the animal displacement in the X–Y plane between two video frames (Euclidean distance) divided by the sampling interval of the camera.

2.10 | Granger causality

Granger causality was computed using the Multivariate Granger Causality Matlab Toolbox (Barnett and Seth, 2014). To prevent oversized model orders and amplitude biases, we downsampled the LFP to 125 Hz and z-scored the signal. The Variational Autoregressive (VAR) model order was fixed as 15 for all analyses, estimated using the Bayesian Information Criterion (BIC). The task-event analysis shown in Figure 3a was computed using 500-ms windows centered on the task events concatenated across all trials in a session. The “spatial Grangerogram” in Figure 3b was obtained by computing Granger causality spectra for 10 equally divided linearized position bins from trial start to trial end. To that end, for each position bin, the associated LFP epochs were first concatenated across trials.

2.11 | Cross-frequency coupling

Phase-amplitude coupling (PAC; Figure 4) is computed within and between regions using the Modulation Index method described in Tort et al. (2010) and available at https://github.com/tortlab/phase-amplitude-coupling. Filtering bandwidths were 4 Hz for phase frequencies (0.5 Hz step) and 10 Hz for amplitude frequencies (5 Hz step); the phase time series were binned into 18 equally spaced bins (i.e., 20° per phase bin). In Figure 4a, we computed phase-amplitude comodulograms using data from the whole session excluding the inter-trial periods. To obtain the phase-modulated spatial comodulograms shown in Figure 4b, we first computed five standard comodulograms, one for each position interval (a “spatial bin”). To that end, for each spatial bin, we concatenated the associated filtered LFP epochs across trials (i.e., to avoid edge effects, we first filter the whole signal to obtain the phase and amplitude time series, then we concatenate to compute the comodulogram; see Tort et al., 2008). We then averaged the comodulogram values over the phase frequency range of interest (4–6 Hz for PFC and 6–10 Hz for CA1). In Figure 4c, we further averaged MI values using the amplitude sub-band with the highest comodulation value, which varied across subjects (Rat EE: 60–70 Hz, Rat FF: 45–55 Hz, Rat GG: 65–75 Hz).

2.12 | Phase-synchrony comodulation

Phase-synchrony comodulation is a new screening method proposed by González et al. (2020) for detecting the modulation of gamma synchrony by the instantaneous phase of a slower oscillation. The method uses a combination of the phase-locking value (PLV) and MI metrics to assess
communication—trough—coherence (CTC, measured by the PLV) by means of cross-frequency coupling (CFC, measured by the MI, which in the context of this metric is referred to as MI PLV). In short, gamma PLVs are computed for different phase bins of a slower oscillation (i.e., delta or theta), and the method assesses whether the PLVs vary within the slow oscillation cycle. Matlab codes for computing the MI PLV are available at https://github.com/tortlab/Phase-Locking-Value—Modulation-Index. Here, slow- and fast-frequency LFP components were obtained by band-pass filtering with 2 Hz (1—Hz step) and 20 Hz (5—Hz step) bandwidths, respectively. The slow frequency phase was binned into 18 bins. We analyzed data from the whole session excluding the inter-trial periods, and, as in the CFC analysis, the signals were first filtered before extracting the instantaneous phases to avoid edge effects. Surrogate analysis was performed by randomly circular shifting the phase of slower oscillations between 1 and 10 s. This was done 100 times per session, resulting in a null hypothesis distribution of 1300 surrogate MI PLV samples. To consider the synchrony modulation for a given frequency pair as statistically significant, the mean original MI PLV of that pair (n = 13 sessions) had to be higher than the 95th percentile of the surrogate values. In the phase-synchrony comodulograms of Figure 5a, the nonsignificant MI PLV values were set to zero.

2.13 | Spike-field coupling

The magnitude of spike-phase locking in Figure 6 was estimated by the mean vector length (MVL), also known as mean resultant length (MRL; Sigurdsson et al., 2010). The MVL is obtained by first representing each spike as a vector on the unit circle whose angle is the spike phase; then, the average vector (over all spikes) is computed and its norm (i.e., the MVL) determined. Phase-locked and non-phase-locked cells were defined using Rayleigh’s circular test for non-uniformity with \(\alpha = .05 \). For the spatial analyses, we used five equally divided linearized position bins from trial start to trial end: 0—0.2, 0.2—0.4, 0.4—0.6, 0.6—0.8, and 0.8—1. The epochs associated with each bin were concatenated across the entire session. To prevent imprecise MVL estimations due to low spike counts, we only included phase-locked cells with 10 or more spikes on each spatial bin. This threshold takes into consideration the short amount of time spent by the animals in some spatial bins, with the lowest one averaging 0.85 s of occupancy per trial.

In Figure 7, we compared spike-field coupling between neuronal types (choice-selective and non-choice selective cells) using the pairwise phase consistency (PPC) described in Vinck et al. (2010). We opted for such a metric since it controls for differences in firing rate (Vinck et al., 2010), though we also kept the criterion of only including cells with at least 10 spikes on each spatial bin. Choice-selective neurons were defined as those exhibiting a statistically significant difference in firing rate (assessed by the Mann–Whitney U test) at the linearized position bin of 0.2—0.4 for trials associated with a given choice (odor) compared to the other.

2.14 | Statistical analysis

Data are expressed as either means ± SEM or boxplots and were analyzed by using either t-test, repeated-measures ANOVA followed by the Tukey–Kramer multiple comparison test, two-way ANOVA, or multiple linear regression. Alpha was set as .05.

2.15 | Code and data availability

Matlab codes to reproduce all analyses and figures are available at Github: https://github.com/tortlab/hpc-pfc-interactions. The data analyzed in this work is openly available at the Collaborative Research in Computational Neuroscience data sharing website crcns.org (Fujisawa et al., 2015).

3 | RESULTS

We analyzed 13 sessions from three Long Evans rats performing a spatial task that required them to leave the start area, cross the center arm of the maze, and then choose between the left or right goal arm for reward (Figure 1a). The correct arm and particular reward (300 mg of cheese or chocolate) were instructed by a matched odor sample (i.e., cheese or chocolate scent) delivered at the start area upon a nose poke. Rats were proficient at this task (>85% correct choices) before surgery for implanting multi-shank multi-contact silicon probes in the CA1 region of the hippocampus and medial prefrontal cortex (mPFC).

We started by investigating the LFP power content while animals executed the task. To better visualize the relationship (or lack thereof) of oscillatory activity with the trial space, we divided the maze into 20 equally spaced bins, referred to as linearized positions from 0 to 1, and computed the average spectrogram for each spatial bin. In Figure 1b, we plot the average spectral content for each region as a function of linearized position, along with five 1-s time bins before and after the trial executions (n = 13 sessions).

The results show a prominent theta-band oscillation centered around 9 Hz in the CA1 region during maze runs, which had otherwise low amplitude at moments before and after the trial (Figure 1b, left). Since animals have long periods of immobility during inter-trial intervals, this power dynamics is in agreement with the vast literature correlating hippocampal theta oscillations with locomotion (Buzsáki, 2002; McFarland et al., 1975; Sławińska & Kasicki, 1998; Whishaw & Vanderwolf, 1973).

For the mPFC, the most prominent oscillation occurred in the delta band and was highest during periods of low locomotion before and after the trial, as well as in regions near the curve, where animals slowed down locomotion velocity (Figure 1b, right). Of note, although various behaviors have been associated with delta oscillations in the mPFC (Karalis et al., 2016), we highly suspect that this rhythm...
corresponds to respiration-entrained LFP oscillations, which have recently been shown to be prominent in prefrontal regions (Lockmann & Tort, 2018; Tort, Brankack, & Draguhn, 2018) especially during immobility (Biskamp et al., 2017; Zhong et al., 2017). At any event, since respiration was not concomitantly recorded, we cannot draw a conclusive inference in this regard (but see Section 4).

In Figure 1c, we show schematic representations of the mean CA1 theta power (left) and mean mPFC delta power (right) across 20 space bins, separately for left and right runs. These plots reveal similar spatial power distributions in the center arm irrespective of subsequent arm choice, and virtually symmetric power values between the left and right arms. Moreover, they also show the already mentioned maximum mPFC delta power at maze start and end, as well as the high CA1 theta power at the center arm. Since the analyzed bins encompass only the trial execution space, locomotion is present in all of them and cannot be accounting for the power changes in a binary way. Nevertheless, the changes in oscillatory content seemed to match well the changes in locomotion speed (red curve in Figure 1b panels).

We next employed a second approach for estimating LFP power which loses spatial precision in favor of longer and consistently sized time windows. In specific, in this so-called “task-event approach”, we computed power estimates triggered by time-stamps around events of interest during trial execution, such as when the animals reached a particular position of the maze. We analyzed four task events: “Start,” “Choice,” “Turn,” and “Reward” (see Section 2). We also computed the average locomotion speed for the same event-triggered time windows. Consistent with Figure 1b, locomotion speed greatly increased from the start event (nose poke), peaked at the choice event at the center arm (defined as the crossing of 0.3 linearized position), and subsequently decreased when the animals started the turn (crossing of 0.45), reaching low levels when animals began to reward consumption (Figure 1d, left). The average locomotion speed was statistically significantly higher during choice than in all other task events ($F(3,36) = 94.16, p < 0.001$, repeated-measures ANOVA followed by Tukey–Kramer test; n.s.: not significant). Hippocampal theta power also substantially increased from the start to the choice event ($F(3,36) = 46.31, p < 0.001$, repeated-measures ANOVA followed by Tukey–Kramer test).
Kramer multiple comparison test), but, interestingly, it was not statistically significantly different between the choice and turn events (Figure 1d, middle). Since the turn event would mark choice commitment, the latter result suggests that theta power does not differentiate between periods during decision-making and immediately afterward. Of note, theta power was also not statistically significantly different between the choice and turn events when correcting for speed through a multiple regression analysis using speed and the two task events as independent variables ($t(23) = −0.66, p = .52$). Prefrontal delta power significantly decreased from the start event ($F(3,36) = 9.28, p < .001$, repeated-measures ANOVA followed by Tukey–Kramer test), but also did not differ between the choice and turn events under repeated measures ANOVA (Figure 1d, right) or multiple regression analysis ($t(23) = −1.77, p = .09$). Finally, low and high gamma-band power

\[\text{FIGURE 2} \quad \text{HPC–PFC theta coherence peaks during spatial decision. (a) Average HPC–PFC coherogram (n = 13 sessions). (b) Schematic representation of HPC–PFC theta coherence across spatial bins. Theta coherence peaks before the maze bifurcation. (c) Boxplots of theta power and theta coherence for spatial locations before and after the turn. The top and bottom panels show band average and peak values, respectively. Notice statistically higher theta coherence before maze bifurcation, along with no difference in theta power. *p < .001, paired t-test. (d) Time-resolved HPC–PFC coherogram centered at task events (see Section 2). Notice the highest theta coherence at the choice period. (e) HPC–PFC theta coherence per task event. Error bars denote ±SEM (*p < .01, repeated-measures ANOVA followed by Tukey–Kramer test).} \]

\[\text{FIGURE 3} \quad \text{HPC → PFC and PFC → HPC causality peak at different frequencies and maze regions. (a) Top: spectral Granger causality during task events (average over 13 sessions). In the HPC → PFC direction (blue), causality peaks at theta and is highest at the choice point, while the PFC → HPC causality (red) peaks at delta and is highest at the turn. Bottom: HPC → PFC theta (blue) and PFC → HPC delta (red) Granger causality for each task event (*p < .001, #p < .05, repeated-measures ANOVA followed by Tukey–Kramer test). (b) Average spatial Grangerogs (see Section 2). (c) Schematic representations of mean HPC → PFC theta and PFC → HPC delta (bottom) Granger causality through 10 spatial bins. Note the peak theta causality in early areas of the maze and peak delta causality at turn onset.} \]
We next moved on to analyze inter-regional LFP interactions. We started by computing phase coherence across the frequency spectrum, which measures the stability of phase differences between two signals at the same frequency. We estimated phase coherence throughout trial execution using the same time and spatial bins as described above for the analysis of oscillatory power. Phase coherence between the two regions was most prominent at the theta frequency band (Figure 2a). Interestingly, CA1-mPFC theta coherence peaked at the middle of the center arm, thus before maze bifurcation (Figure 2b), in an area thought to be associated with choice due to its proximity to the spatial decision commitment, as inferred by the separation between the mean locomotion trajectories for left and right choices (Figure 1a). The spatial distribution of inter-regional theta coherence was similar for left and right runs (Figure 2b). Interestingly, we found that the spatial profile of theta coherence differed from the spatial profile of theta power. For instance, Figure 2c shows theta power and coherence for spatial locations before and after maze bifurcation. Notice that while theta power was not different in the two locations (mean band power: $t(12) = 1.18, p = .26$; peak power: $t(12) = -0.032, p = .97$; paired t-tests), theta coherence was statistically significantly higher before the curve (mean band coherence: $t(12) = 5.46, p < .001$; peak coherence: $t(12) = 6.23, p < .0001$; paired t-tests; Figure 2c).

Since the accuracy of coherence estimates depends on the length of the analyzed time (i.e., the number of analyzed cycles), it has an intrinsic tradeoff with spatial resolution (i.e., the higher the spatial resolution, the less time the animal spends in a given spatial bin). We next employed the alternative approach of estimating phase coherence using time windows of equal size centered on the time-stamps of the same task-events as in the power analysis above (see Section 2 for details). Using this approach, we once again observed a peak in theta phase coherence around the choice point event (Figure 2d), which was statistically significantly higher than theta coherence in the other task events, including the spatially adjacent turn event ($F(3,36) = 24.54, p < .01$, repeated-measures ANOVA followed by Tukey–Kramer multiple comparison test; Figure 2e). Therefore, both the spatial- and time-triggered estimates support the conclusion of high mPFC-CA1 theta coherence during spatial decision-making. Of note, multiple regression analysis confirmed a statistically significant influence of task event over theta coherence levels when also considering speed as an independent variable ($t(23) = -2.40, p = .024$).
Hippocampal theta and prefrontal delta modulate inter-regional gamma synchrony at specific sub-bands. (a,b) (Left) Average mPFC-CA1 phase-synchrony comodulation map \(n = 13 \) sessions. The X-axis denotes the modulating phase frequency while the Y-axis represents the fast frequencies analyzed for inter-regional synchrony, as measured by the phase-locking value (PLV). The color denotes the PLV modulation level for the fast frequency \(Y \) by the phase of the slow frequency \(X \) (MIPLV; see González et al., 2020). Only statistically significant MIPLV values are shown (as assessed by a surrogate analysis, see Section 2). The phase frequencies in \(a \) were obtained from the CA1 LFP, and in \(b \) from the mPFC. (Right) Boxplot distributions of actual \(n = 13 \) sessions and surrogate MIPLV values for the relevant frequency pairs (HPC: 6–9 Hz vs. 25–50 Hz; PFC: 1–4 Hz vs. 45–70 Hz). \(p < 10^{-20} \), t-test

Therefore, even though inter-regional theta coherence has been previously shown to depend on locomotion speed (Hinman et al., 2011), the difference in mPFC-CA1 theta coherence between the choice and turn events cannot be accounted for differences in locomotion speed.

The phase coherence analysis performed above does not quantify directional relations between the regions. To address the directional information flow, we next used Granger causality (GC), a metric that calculates the level of prediction a time series has over another. Given that information flow, we next used Granger causality (GC), a metric that calculates the level of prediction a time series has over another. Given that GC occurs in the choice point task event (Fig.3,36) = 4.52, \(p < .05 \); repeated measures ANOVA followed by Tukey-Kramer multiple comparison test). Interestingly, two-way ANOVA revealed not only higher Granger causality for the CA1 \(\rightarrow \) mPFC direction \(F(1,96) = 108.73, p < 10^{-14} \), but also an interaction effect \(F(3,96) = 16.23, p < 10^{-7} \), showing that the changes in causality across task execution depend on flow direction. Consistent results were obtained when characterizing GC throughout space (using 10 equally spaced position bins; see Section 2); the highest CA1 \(\rightarrow \) mPFC GC occurred in initial areas of the center arm, except for the initial box, and the highest delta mPFC \(\rightarrow \) CA1 GC occurred at maze bifurcation (Figure 3b,c). Thus, the LFP oscillatory causality between the regions occurs at direction-specific frequencies and changes dynamically while animals execute the task.

In addition to characterizing power content and functional connectivity at the same frequencies, we also investigated the LFP interactions among oscillations of different frequencies, within and between the regions. These are commonly called CFC or modulation (Jensen & Colgin, 2007; Scheffer-Teixeira & Tort, 2018). Modulation can happen between distinct properties of the oscillations, such as phase, amplitude, and frequency (Jensen & Colgin, 2007; Scheffer-Teixeira & Tort, 2018). Here we focus on PAC, a relationship that has been hypothesized as a mechanism for functional communication between local and global circuits (Canolty & Knight, 2010). Within the CA1 region, we observed the presence of theta-gamma PAC, with amplitude frequencies varying from 40 to 80 Hz (Figure 4a), as largely reported (Colgin, 2015; Scheffer-Teixeira et al., 2012; Scheffer-Teixeira & Tort, 2017). On the other hand, and consistent with recent observations (Andino-Pavlovsky et al., 2017; Zhong et al., 2017), the mPFC exhibited local PAC between LFP phases near delta and faster gamma oscillations from 80 to 100 Hz (Figure 4a). Inter-regionally, we found no evidence of PAC between the amplitude of PFC frequencies and the phase of CA1 frequencies, thus similar to recent reports (Zhang et al., 2016; but see Sirota et al., 2008). Instead, comodulation was apparent in the opposite direction: the phase of PFC theta modulated the amplitude of CA1 gamma (Figure 4a; see also Zhang et al., 2016). It should be noted, however, that such cross-regional coupling is mathematically expected given the high phase coherence at theta between CA1 and mPFC, along with the high theta-gamma coupling in CA1.

We next computed the spatial dynamics of PAC for the relevant frequency ranges mentioned above. Theta-gamma PAC within CA1 was lower for maze areas of low locomotion, and otherwise high when animals crossed the maze (Figure 4b,c; \(F(4,48) = 8.11, p < .05 \), repeated-measures ANOVA followed by Tukey-Kramer multiple comparison test), mPFC delta-gamma coupling exhibited a peak near the maze bifurcation (Figure 4b,c; \(F(4,48) = 5.42, p < .05 \), repeated-measures ANOVA followed by Tukey-Kramer multiple comparison test). Two-way ANOVA confirmed higher levels for CA1 theta-gamma than PFC delta-gamma coupling \(F(1,120) = 26.76, p < 10^{-15} \) and the effect of space \(F(4,120) = 4.56, p = .0008 \), but showed no interaction effect \(F(4,120) = 0.84, p = .505 \). Once again, CA1 phase-mPFC amplitude had low comodulation levels, while the spatial
dynamics of theta–gamma coupling between the mPFC and CA1 was similar to the dynamics for coupling within CA1, though at lower magnitude (Figure 4b,c; \(F(1,120) = 52.96, p < 10^{-20} \)) for the phase region factor, two-way ANOVA).

We then moved on to investigate possible relationships between CFC and communication through coherence (CTC). Here CTC was assessed as the long-distance (i.e., CA1-mPFC) synchrony at gamma frequencies, measured by the PLV (Lachaux et al., 1999; Varela et al., 2001). To study the influence of CFC over CTC, we used a new screening method (González et al., 2020) to assess whether the CA1-mPFC PLV at gamma frequencies (20 Hz bandwidths, see Section 2) depends on the phase of slower oscillations recorded in...
one of the regions. This analysis revealed that the predominant slow oscillation in each region modulated long-range synchrony of different gamma sub-bands (Figure 5). Namely, the phase of hippocampal theta waves modulated inter-regional synchrony at 30–40 Hz, while the phase of prefrontal delta waves modulated synchrony at the 50–60 Hz gamma sub-band ($p < .05$, surrogate analysis; Figure 5). These results thus suggest that different frequency channels may be used in the interaction between CA1 and mPFC depending on flow direction (c.f. Figure 3). However interesting these results are, we note that they could only be obtained when analyzing whole trial epochs, since limitations of the method—which requires long epoch lengths—hindered a spatially resolved analysis.

Finally, in addition to the population-derived signal which is the LFP, we also examined neuronal spike data from all recorded cells in both regions. We investigated local and inter-regional phase-locking of CA1 and mPFC action potentials to the LFP oscillations. When considering all trials (Figure 6a), hippocampal neurons ($n = 442$ units) exhibited higher phase-locking to the LFP theta phase than prefrontal ones ($n = 1136$ units; $t(1576) = 19.17, p < 10^{-73}$, unpaired t-test; only neurons with >10 spikes were taken into account). Moreover, the hippocampal theta oscillation modulated more strongly neurons in both CA1 and mPFC than the theta oscillation recorded in the mPFC (Figure 6a right; CA1 units: $t(441) = 19.23, p < 10^{-59}$; mPFC units: $t(1135) = 9.60, p < 10^{-20}$, paired t-tests). In addition, mPFC neurons were also modulated by delta phase (Figure 6a,b); interestingly, the mPFC LFP exhibited a trend toward modulating its neurons more strongly at delta than theta ($t(1135) = 1.76, p = .08$, paired t-test). Hippocampal theta phase significantly modulated (Rayleigh's circular test) 399 units in CA1 (90%) and 417 units in mPFC (37%), while prefrontal theta phase modulated 305 units in CA1 (69%) and 243 units in mPFC (21%). In addition, mPFC delta phase modulated 262 local units (23%).

Inspection of the spatial dynamics of intra- and inter-regional spike-field coupling corroborated the central role of the theta rhythm in modulating neuronal activity throughout the maze space in all regions (Figure 6b). Figure 6c shows spike-field coupling strength...
across maze runs when only taking into account significantly phase-locked cells with >10 spikes per spatial bin. In all cases, the spike modulation was highest while animals were crossing the choice-related spatial bin (normalized positions from 0.2 to 0.4; \(p < .001 \), repeated-measures ANOVA followed by Tukey–Kramer multiple comparison test). In all, these results are consistent with previous work examining the phase-locking of prefrontal neurons on similar tasks (Benchenane et al., 2010; Hyman et al., 2005, 2010; Jones & Wilson, 2005b).

When looking at neurons phase-modulated by either CA1 theta or mPFC delta in the choice-related spatial bin (CA1: 178 units; mPFC: 156 units), we found that only 7 CA1 units (3.93%; below the alpha value used in the Rayleigh test) coupled to the mPFC delta rhythm alone; in contrast, 144 CA1 units (80.9%) were modulated by the local theta rhythm and 27 units (15.54%) to the local delta rhythm. Interestingly, similar to CA1, a much smaller fraction of the mPFC units was modulated by both rhythms (20 units, 12.82%), suggesting that distinct neuronal populations couple to the different rhythms.

Finally, we examined the spatial dynamics of spike-field coupling separately for choice-selective and non-choice-selective neurons, with the former defined as neurons whose firing rate in the choice-related spatial bin (0.2–0.4) was statistically significantly higher for a given odor-determined choice (e.g., left turn) than the other (Figure 7a). There were 51 choice-selective neurons in CA1 and 185 in mPFC, from which 47 (92%) in CA1 and 98 (53%) in mPFC were modulated by LFP phase during the task. Since these choice-selective cells had higher firing rate than non-choice-selective neurons (Figure 7a), we compared their spike-field coupling dynamics using the pairwise phase-consistency (PPC), which is a metric not-biased by differences in the number of analyzed spikes (Vinck et al., 2010). We found that, during trials of their preferred odor-determined choice, the PPC spatial dynamics of CA1 choice-selective cells differed from that of non-choice-selective cells (Figure 7a). There were 51 choice-selective neurons in CA1 and 185 in mPFC, from which 47 (92%) in CA1 and 98 (53%) in mPFC were modulated by LFP phase during the task. Since these choice-selective cells had higher firing rate than non-choice-selective neurons (Figure 7a), we compared their spike-field coupling dynamics using the pairwise phase-consistency (PPC), which is a metric not-biased by differences in the number of analyzed spikes (Vinck et al., 2010). We found that, during trials of their preferred odor-determined choice, the PPC spatial dynamics of CA1 choice-selective cells differed from that of non-choice-selective cells (Figure 7a). There were 51 choice-selective neurons in CA1 and 185 in mPFC, from which 47 (92%) in CA1 and 98 (53%) in mPFC were modulated by LFP phase during the task. Since these choice-selective cells had higher firing rate than non-choice-selective neurons (Figure 7a), we compared their spike-field coupling dynamics using the pairwise phase-consistency (PPC), which is a metric not-biased by differences in the number of analyzed spikes (Vinck et al., 2010). We found that, during trials of their preferred odor-determined choice, the PPC spatial dynamics of CA1 choice-selective cells differed from that of non-choice-selective cells (Figure 7a). There were 51 choice-selective neurons in CA1 and 185 in mPFC, from which 47 (92%) in CA1 and 98 (53%) in mPFC were modulated by LFP phase during the task. Since these choice-selective cells had higher firing rate than non-choice-selective neurons (Figure 7a), we compared their spike-field coupling dynamics using the pairwise phase-consistency (PPC), which is a metric not-biased by differences in the number of analyzed spikes (Vinck et al., 2010). We found that, during trials of their preferred odor-determined choice, the PPC spatial dynamics of CA1 choice-selective cells differed from that of non-choice-selective cells (Figure 7a). There were 51 choice-selective neurons in CA1 and 185 in mPFC, from which 47 (92%) in CA1 and 98 (53%) in mPFC were modulated by LFP phase during the task. Since these choice-selective cells had higher firing rate than non-choice-selective neurons (Figure 7a), we compared their spike-field coupling dynamics using the pairwise phase-consistency (PPC), which is a metric not-biased by differences in the number of analyzed spikes (Vinck et al., 2010). We found that, during trials of their preferred odor-determined choice, the PPC spatial dynamics of CA1 choice-selective cells differed from that of non-choice-selective cells (Figure 7a). There were 51 choice-selective neurons in CA1 and 185 in mPFC, from which 47 (92%) in CA1 and 98 (53%) in mPFC were modulated by LFP phase during the task. Since these choice-selective cells had higher firing rate than non-choice-selective neurons (Figure 7a), we compared their spike-field coupling dynamics using the pairwise phase-consistency (PPC), which is a metric not-biased by differences in the number of analyzed spikes (Vinck et al., 2010). We found that, during trials of their preferred odor-determined choice, the PPC spatial dynamics of CA1 choice-selective cells differed from that of non-choice-selective cells (Figure 7a).
theta phase; Figure 7b). Intriguingly, the difference in spike-coupling levels occurred not in the choice-related spatial bin, but in a maze region after the turn (position bin 0.6–0.8), that is, after choice commitment. Of note, such a difference in PPC levels was not found for the non-preferred choice runs, nor for the choice-selective neurons in mPFC (Figure 7b).

4 | DISCUSSION

Understanding how different regions of the brain communicate with each other, take part in solving tasks, and perform higher-level executive functions is a fundamental goal in neuroscience. Abnormal functioning of inter-regional connections is linked with various neuropathologies; in particular, activity in the prefrontal–hippocampal pathway can be seen as a marker for disorders such as Alzheimer’s disease and temporal lobe epilepsy when dysfunctional (Broggini et al., 2016; Kitchigina, 2018). The in vivo characterization of neural oscillations performed here can help to uncover the electrical signaling mechanisms of the brain and serve as a basis for further investigations. Our results point to specific oscillations such as delta (1–5 Hz) and theta (6–10 Hz) as possible means of communication between the hippocampus and prefrontal cortex. More importantly, some oscillatory features appear to be selective to task events associated with decision-making. In Figure 8, we summarize the hippocampal–prefrontal interactions reported here through their most representative panels.

Our results show that the spectral power content of LFPs from both the hippocampus and prefrontal cortex varies as the animal progresses through the task. Namely, CA1 theta power increases during maze runs while PFC delta power has the opposite behavior (Figure 1b,c). However interesting the spatial dynamics of theta and delta power may be, we could not confidently associate these power changes to putative differences in cognitive loads across task execution. Rather, we found no differences in theta nor in delta power for spatial regions immediately before and after the maze/trajectory bifurcation (namely, the “choice” and “turn” events in Figure 1d), which are typically assumed to be proxies for periods before and after the spatial decision (Benchenane et al., 2010; Jones & Wilson, 2005b). Nevertheless, the picture was different when we examined metrics evaluating the functional connectivity between the regions. In this case, we found that the inter-regional phase coherence at theta frequency was significantly higher before than after maze bifurcation (Figure 2), and this result held true even for spatial regions in which theta power was similarly high before and after the turn (Figure 2c).

The increase in hippocampal–prefrontal coherence observed here corroborates previous findings from rats subjected to spatial mazes, which pointed to a theta-frequency interplay as a mechanism underlying inter-regional communication and spatial decision-making. Among them, the pioneering work of Jones and Wilson (2005b) showed that CA1-mPFC theta coherence is higher when rats traverse the central arm of the maze prior to performing a left-or-right spatial decision (choice trials) than during trials requiring no decision (forced-turn trials). Moreover, they also showed that theta coherence was higher for central arm runs subsequently associated with correct than error choices (Jones & Wilson, 2005b). Five years later, Benchenane et al. (2010) showed a similar increase in theta coherence between LFPs from the hippocampus and mPFC at the choice point of a Y-maze task that was particularly prominent after animals learned the task rule. Similar increases in hippocampal–prefrontal coherence was also reported for mice recorded during spatial working memory tasks (O’Neill et al., 2013; Sigurdsson et al., 2010). Thus, in a time when scientific reproducibility has been put into question (Collaboration, 2015; Ioannidis, 2005), it is reassuring that the increase in CA1-mPFC theta coherence in rodents performing spatial decision tasks has been replicated by independent studies, including the present one. We note that we could not investigate the relationship between theta coherence and task performance as in previous studies (e.g., Benchenane et al., 2010; Hyman et al., 2010; Jones & Wilson, 2005b) since the animals were already highly proficient in the task (Fujisawa et al., 2008) and moreover, the available data set only comprised correct trials (Fujisawa et al., 2015).

Interestingly, a functional role for theta coherence underlying prefrontal–hippocampal interactions during decision making in a spatial alternation task has been previously suggested by a modeling study (Hasselmo & Eichenbaum, 2005). In that work, retrieval of hippocampal sequences took place within theta cycles, and the retrieved hippocampal activity state at the end of the theta cycle coded for the prior episode experienced at a given location. This theta-dependent hippocampal retrieval was then informed to the prefrontal cortex, responsible for action selection based on previous reinforcement learning (Hasselmo & Eichenbaum, 2005). That model, therefore, assumed that the prefrontal cortex network could rhythmically receive theta-paced information from the hippocampus, implying high theta coherence between the regions.

Directionality is another major aspect that should be taken into account when investigating the interplay between brain regions. Here we computed frequency spectra of Granger causality (GC; Granger, 1969; J. F. Geweke, 1984). These showed that the hippocampus has a causal influence on the prefrontal cortex at theta frequency and, interestingly, that the prefrontal-hippocampal causality is maximum at delta frequency (Figure 3). These results are consistent with the study by Zhan (2015), who also observed causality peaks at either theta or delta frequency depending on flow direction between these regions (e.g., Figure 7 in that study). But perhaps most strikingly, here we found that the magnitude of this directed functional connectivity varied across trial execution (Figure 3), suggesting that it could be related to different cognitive loads. Furthermore, HPC → PFC and PFC → HPC directionality peaked at different regions of the maze. The HPC → PFC GC peak early in the maze suggests that spatial information from the hippocampus is fed through theta oscillations into higher-order areas associated with executive functions at the beginning of the decision-making task, after the animal has left the initial box. On the other hand, the PFC → HPC GC peaked near the curve onset, suggesting that the prefrontal cortex sends feedback signals through delta oscillations shortly after the animal has committed to the spatial choice.

There is still a gap in our understanding of brain oscillations when it comes to the unification of local and inter-regional circuits. Local
circuitstend to generate higher frequency oscillations such as gamma (Atallah & Scanziani, 2009; Buzsáki, 2006; Dickson et al., 2000), while lower frequencies such as the theta and delta tend to be associated with long-range communication (Hyman et al., 2005; Sirotap et al., 2008; von Stein & Sarnthein, 2000). CFC is a suggested mechanism to act as an integrator between both sets of frequencies (Canolty & Knight, 2010). Based on this functional premise, here we investigated the spatial dynamics of local and inter-regional PAC (Figure 4). Intra-regional PAC patterns were characterized by theta–gamma coupling in the hippocampus and delta–gamma coupling in the mPFC. Interestingly, and in accordance with previous findings (Tort, Brankac, & Draguhn, 2018; Zhong et al., 2017), the modulated PAC gamma frequency was faster than the modulated CA1 gamma frequency, suggesting that these regions may use different gamma sub-bands for their local computations. Inter-regionally, hippocampal gamma amplitude coupled to the mPFC theta, whereas mPFC gamma exhibited no meaningful coupling to hippocampal theta. While the latter finding contrasts with an influential previous study (Sirotap et al., 2008), it corroborates a more recent study in mice that also reported no influence of hippocampal theta phase over the amplitude of prefrontal gamma (Zhang et al., 2016; see their Figure 6). Finally, we found that PAC strength varied as a function of space during maze runs (Figure 4). This finding is consistent with previous reports suggesting a role for CFC during spatial decision-making (Schomburg et al., 2014; Tort et al., 2008), and may reflect the computations required for different cognitive and behavioral demands across task execution.

Even though there were no simultaneous recordings of respiration in the analyzed dataset, a note about possible influences of nasal breathing over the observed findings is in order. In particular, since rats often breathe at delta frequency (Dupin et al., 2020; Kay et al., 2009; Rojas-Libano et al., 2014; Tort, Brankac, & Draguhn, 2018), we believe that the prefrontal “delta” oscillations observed here (Figure 1) and in previous studies (Andino-Pavlovsky et al., 2017; Guise & Shapiro, 2017; Place et al., 2016) correspond to respiration-coupled oscillations, which were recently shown to be prominent in the mPFC (Biskamp et al., 2017; Tort, Ponsel, et al., 2018; Zhong et al., 2017). Although the delta activity found here may appear slower than the 4-Hz breathing-entrained activity reported in the mPFC of mice during freezing (Bagur et al., 2021; Moberly et al., 2018), rats tend to have a slower respiration rate (c.f. Dupin et al., 2020). Further consistent with the analyzed delta activity being respiration-coupled oscillations, the pattern of delta–gamma coupling in the mPFC seen here matches the pattern of respiration-gamma coupling previously described for this region (Tort, Brankac, & Draguhn, 2018; Zhong et al., 2017). Of note, whether mPFC delta depends or not on breathing should not interfere with the interpretation of its putative cognitive roles. Indeed, respiration-entrained oscillations have been assumed to play functional roles, similar to what has been proposed to other slow brain rhythms (for reviews, see Heck et al., 2017, 2019; Tort, Brankac, & Draguhn, 2018).

Interestingly, Place et al. (2016) reported theta causality at the HPC → PFC direction while animals explored an arena (consistent with our findings), but also in the reverse direction (PFC → HPC) while animals sampled objects. The latter finding apparently contrasts with ours since here PFC → HPC causality occurred at delta, not theta (Figure 4). However, considering that the objects in Place et al. (2016) were identical terra cotta pots with different odors, animals may have sniffed the pots during object sampling, giving rise to respiration-coupled oscillations at theta frequency (i.e., at the breathing frequency during sniffing). Respiration-coupled oscillations, as theta, have also been suggested to mediate long-range interactions (Tort, Brankac, & Draguhn, 2018). Whether they would be particularly more relevant during odor-guided decisions, as in the task investigated here, remains to be determined. At any event, two recent studies also found that theta activity recorded in the mPFC may lead hippocampal theta during the recall of remote—but not recent—contextual (Wirt & Hyman, 2019) and fear (Makino et al., 2019) memories, suggesting a top-down control for remote memory retrieval through the use of the theta band.

Using a new screening method (González et al., 2020), we were able to analyze the integration of two different mechanisms of long-range neural communication: CTC (Fries, 2005, 2015) and CFC (Canolty & Knight, 2010; Tort et al., 2008). That allowed us to discover a modulation of the inter-regional gamma synchrony by the phase of the slower oscillations, which moreover seemed to be sub-band specific (Figure 5). Namely, we found that the phase of mPFC delta modulates long-range 40–60 Hz synchrony, while the hippocampal theta phase modulates synchrony at the 30–40 Hz gamma sub-band. Unfortunately, we were not able to characterize the dynamics of this modulation along with maze runs due to the method requiring long epoch lengths, hindering an analysis at the level of spatial bins. It remains to be determined whether these synchrony modulations are task-specific or not; at present, there are no other reports examining the phase-modulation of hippocampal–prefrontal CTC in other tasks given the recentness of the method.

We also analyzed spike data from both regions to investigate phase-locking dynamics locally and inter-regionally. Not surprisingly (Foster & Wilson, 2007; Jensen, 2005; Skaggs et al., 1996), hippocampal neurons showed higher levels of entrainment to theta oscillations than prefrontal neurons (Figure 6a), especially from its own LFP given their particular prominence (Buzsáki, 2002; Rawlins et al., 1979; Winson, 1974). Interestingly, PFC cells also showed higher phase-locking to the CA1 rhythm than to the locally recorded theta activity, despite the considerable distance between the regions. When characterizing the dynamics of spike-phase-locking through maze space, we again found a prominent role of theta in all local and cross-regional combinations of field potential and neuronal activity. In addition, high modulation by delta was also observed for the spike-field coupling within the mPFC (Figure 6b). These analyses further revealed that the magnitude of spike-field coupling varied across the maze, with maximal strength at the choice-related area (Figure 6c). These results are consistent with previous reports showing increased modulation of prefrontal cells by the hippocampal theta at the choice-related area in a variety of tasks (Colgin, 2011; Hyman et al., 2005, 2010; Jones & Wilson, 2005a; Siapas et al., 2005).

Our work has built upon previous studies on the hippocampal–prefrontal network interactions during decision-making that directly recorded from these regions (e.g., Benchenane et al., 2010; Jones & Wilson, 2005b). However, even though there is by now abundant evidence showing a bidirectional functional link between these structures
(Eichenbaum, 2017; Jin & Maren, 2015; Preston & Eichenbaum, 2013; Sigurdsson & Duvanci, 2016), it should be noted that the mPFC receives connections from the intermediate hippocampus (Jay & Witter, 1991; Swanson, 1981) while there is not much evidence of direct projections back to it (Vertes et al., 2007; but see below). Anatomical findings point to the thalamic nucleus reuniens as the likely candidate to mediate mPFC signals to the CA1 region (Ito et al., 2015; Vertes et al., 2007). Consistent with these reports, lesioning the nucleus reuniens in rats impairs performance in spatial memory tasks (Hembrook et al., 2012; Hembrook & Mair, 2011), especially those requiring route planning (Cholvin et al., 2013). Interestingly, recent electrophysiological studies have been providing functional evidence for the role of thalamic nuclei in mediating the communication between the hippocampus and the prefrontal cortex in animals performing spatial tasks (Ito et al., 2015, 2018; Hallock et al., 2016; see also Roy et al., 2017). Nevertheless, in contrast to classical anatomical studies (Beckstead, 1979; Hurley et al., 1991; Sesack et al., 1989; Vertes, 2004), Rajaseethupathy et al. (2015) identified direct connections from the mPFC to the dorsal CA1, which moreover were shown to have a role in memory retrieval, suggesting a direct bidirectional communication between both structures in addition to the indirect thalamic route.

In summary, we have here further characterized the electrophysiological signatures of the hippocampal–prefrontal interplay during spatial decision making. Our results add to others by showing dynamic patterns of electrophysiological interactions that can be related to the varying cognitive and behavioral demands of an odor-cued spatial alternation task. In particular, our results suggest that oscillations both at the network and spike levels constitute important mechanisms for inter-regional communication and that different frequency channels may be used depending on flow direction.

ACKNOWLEDGMENTS
This work was supported by the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES; Finance Code 001 and project number 88887.465502/2019-00) and the Brazilian National Council for Scientific and Technological Development (CNPq; project numbers 408508/2018-3 and 308653/2018-1). We thank the Buzsáki laboratory for making the data set publicly available at the data sharing website crcn.org. Shigeysoshi Fujisawa for kindly providing additional data. Wilfredo Blanco Figuerola, Abner Rodrigues, César Rennó-Costa, and Bryan Souza for thoughtful discussions.

CONFLICT OF INTEREST
The authors declare no competing financial interests.

AUTHOR CONTRIBUTIONS
Lucas C. S. Tavares and Adriano B. L. Tort analyzed the data and wrote the paper.

DATA AVAILABILITY STATEMENT
Matlab codes to reproduce all analyses and figures are available at Github: https://github.com/tortlab/hpc-pfc-interactions. The data analyzed in this work is openly available at the Collaborative Research in Computational Neuroscience data sharing website crcn.org (Fujisawa et al., 2015).

ORCID
Lucas C. S. Tavares https://orcid.org/0000-0002-9866-6593
Adriano B. L. Tort https://orcid.org/0000-0002-9877-7816

REFERENCES
Andino-Pavlovsky, V., Souza, A. C., Scheffer-Teixeira, R., Tort, A. B. L., Etchenique, R., & Ribeiro, S. (2017). Dopamine modulates delta-gamma phase-amplitude coupling in the prefrontal cortex of behaving rats. Frontiers in Neural Circuits, 11, 29. https://doi.org/10.3389/fncir.2017.00029
Atallah, B. V., & Scanziani, M. (2009). Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron, 62(4), 566–577. https://doi.org/10.1016/j.neuron.2009.04.027
Bagur, S., Lefort, J. M., Lacroix, M. M., de Lavilleon, G., Herry, C., Chouvauff, M., Billard, C., Geoffroy, H., & Benchenane. K. (2021). Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation. Nature Communications, 12(1), 2605. https://doi.org/10.1038/s41467-021-22798-6
Barnett, L., & Seth, A. K. (2014). The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. Journal of Neuroscience Methods, 223, 50–68. https://doi.org/10.1016/j.jneumeth.2013.10.018
Beckstead, R. M. (1979). An autoradiographic examination of cortico-cortical and subcortical projections of the mediadorsal-projection (prefrontal) cortex in the rat. The Journal of Comparative Neurology, 184(1), 43–62. https://doi.org/10.1002/cne.901840104
Benchenane, K., Peyrache, A., Khamassi, M., Tierney, P. L., Gioanni, Y., Battaglia, F. P., & Wiener, S. I. (2010). Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron, 66(6), 921–936. https://doi.org/10.1016/j.neuron.2010.05.013
Biskamp, J., Bartos, M., & Sauer, J.-F. (2017). Organization of prefrontal network activity by respiration-related oscillations. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/srep45508
Bressler, S. L., & Seth, A. K. (2011). Wiener–Granger causality: A well established methodology. Neurorimag, 58(2), 323–329. https://doi.org/10.1016/j.neuroimage.2010.02.059
Broggini, A. C. S., Esteves, I. M., Romcy-Pereira, R. N., Leite, J. P., & Leão, R. N. (2016). Pre-ictal increase in theta synchrony between the hippocampus and prefrontal cortex in a rat model of temporal lobe epilepsy. Experimental Neurology, 279, 232–242. https://doi.org/10.1016/j.expneurol.2016.03.007
Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33(3), 325–340. https://doi.org/10.1016/S0896-6273(02)00586-X
Buzsáki, G. (2006). Rhythms of the brain. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195301069.001.0001
Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14(11), 506–515. https://doi.org/10.1016/j.tics.2010.09.001
Cholvin, T., Loureiro, M., Cassel, R., Cosquer, B., Geiger, K., Nogueira, D. D. S., Rainpard, H., Robelin, L., Kelche, C., Vasconcelos, A. P. D., & Cassel, J.-C. (2013). The ventral midline thalamus contributes to strategy shifting in a memory task requiring both prefrontal cortical and hippocampal functions. Journal of Neuroscience, 33(20), 8772–8783. https://doi.org/10.1523/JNEUROSCI.0771-13.2013
Colgin, L. L. (2011). Oscillations and hippocampal–prefrontal synchrony. Current Opinion in Neurobiology, 21(3), 467–474. https://doi.org/10.1016/j.conb.2011.04.006
Colgin, L. L. (2015). Theta–gamma coupling in the entorhinal–hippocampal system. Current Opinion in Neurobiology, 31, 45–50. https://doi.org/10.1016/j.conb.2014.08.001
Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. https://doi.org/10.1126/science.aac4716
O'Keefe, J. (1991). An allocentric spatial model for the hippocampal cognitive map. Hippocampus, 1(3), 230–235. https://doi.org/10.1002.hipo.450010303

O'Neill, P.-K., Gordon, J. A., & Sigurdsson, T. (2013). Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. Journal of Neuroscience, 33(35), 14211–14224. https://doi.org/10.1523/JNEUROSCI.2378-13.2013

Place, R., Farovik, A., Brockmann, M., & Eichenbaum, H. (2016). Bidirectional prefrontal-hippocampal interactions support context-guided memory. Nature Neuroscience, 19(8), 992–994. https://doi.org/10.1038/nn.4327

Preston, A. R. & Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in memory. Current Biology, 23(17), R764–R773. https://doi.org/10.1016/j.cub.2013.05.041

Rajasethupathy, P., Sankaran, S., Marshel, J. H., Kim, C. K., Ferenzi, E., Lee, S. Y., Berndt, A., Ramakrishnan, C., Jaffe, A., Lo, M., Liston, C., & Deisseroth, K. (2015). Projections from neocortex mediate top-down control of memory retrieval. Nature, 526(7575), 653–659. https://doi.org/10.1038/nature15389

Rawlins, J. N. P., Feldon, J., & Gray, J. A. (1979). Septo-hippocampal connections and the hippocampal theta rhythm. Experimental Brain Research, 37(1), 49–63. https://doi.org/10.1007/BF01474253

Rojas-Libano, D., Freeman, D. E., Egaña, J. I., & Kay, L. M. (2014). The olfactory bulb theta rhythm follows all frequencies of diaphragmatic respiration in the freely behaving rat. Frontiers in Behavioral Neuroscience, 8, 214. https://doi.org/10.3389/fnbne.2014.00214

Rossant, C., Kadir, S. N., Goodman, D. F. M., Schulman, J., Hunter, M. L. D., Saleem, A. B., Grosmaark, A., Belluscio, M., Denfield, G. H., Ecker, A. S., Tollas, A. S., Solomon, S., Buzsáki, G., Cardanini, M., & Harris, K. D. (2016). Spike sorting for large, dense electrode arrays. Nature Neuroscience, 19(4), 634–641. https://doi.org/10.1038/nn.4268

Roy, A., Svensson, F. P., Mazeh, A., & Kocsis, B. (2017). Prefrontal-hippocampal coupling by theta rhythm and by 2–5 Hz oscillation in the delta band: The role of the nucleus reuniens of the thalamus. Brain Structure and Function, 222(3), 1–3. https://doi.org/10.1007/s00429-017-1573-1

Maharjan, D. M., Dai, Y. Y., Glantz, E. H., & Jadhav, S. P. (2018). Disruption of dorsal hippocampal–prefrontal interactions using chemogenetic inactivation impairs spatial learning. Neurobiology of Learning and Memory, 155, 351–360. https://doi.org/10.1016/j.nlm.2018.08.023

Makino, Y., Polygalov, D., Bolaños, F., Benucci, A., & McHugh, T. J. (2019). Physiological signature of memory age in the prefrontal-hippocampal circuit. Cell Reports, 29(12), 3835–3846.e5. https://doi.org/10.1016/j.celrep.2019.11.075

McFarland, W. L., Teitelbaum, H., & Hedges, E. K. (1979). Relationship between hippocampal theta activity and running speed in the rat. Journal of Comparative and Physiological Psychology, 88(1), 324–328. https://doi.org/10.1037/h0076177

McNaughton, N., Logan, B., Panickar, K. S., Kirk, I. J., Pan, W. X., Brown, N. T., & Heenan, A. (1995). Contribution of synapses in the medial prefrontal cortex to the frequency of hippocampal theta rhythm in freely moving rats. Hippocampus, 5(6), 534–545. https://doi.org/10.1002/hipo.450050605

Moberly, A. H., Schreck, M., Bhattarai, J. P., Zweifel, L. S., Luo, W., & Ma, M. (2018). Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior. Nature Communications, 9(1), 1528. https://doi.org/10.1038/s41467-018-03988-1

Moscovitch, M. (1992). Memory and working-with-memory: A component process model based on modules and central systems. Journal of Cognitive Neuroscience, 4(3), 257–267. https://doi.org/10.1162/jocn.1992.4.3.257

Moser, E. L., Kropff, E., & Moser, M.-B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31(1), 69–89. https://doi.org/10.1146/annurev.neuro.31.061307.090723
