The role of an encapsulin nanocompartment in resisting silver ion stress

CURRENT STATUS: UNDER REVIEW

Chong-Yang Xing
University of the Chinese Academy of Sciences

Teng-Fei Ma
Chongqing University

Jinsong Guo
Chongqing University

Yu Shen
Chongqing Technology and Business University

Peng Yan
Chongqing University

Fang Fang
Chongqing University

You-Peng Chen
Chongqing University

ypchen@cqu.edu.cn

ORCID: 0000-0002-7332-7464

DOI:
10.21203/rs.2.18757/v2

SUBJECT AREAS
Applied & Industrial Microbiology

KEYWORDS
Compartmentalization, Protein cage, Encapsulin nanocompartment, Self-assembly, Synthetic biology, Silver ion, Proteomics
Abstract

Background: Compartmentalization can protect cells from the interference of external toxic substances by sequestering toxic products. We hypothesized that proteinaceous nanocompartments may be a feasible candidate material to be added to genetically modified bacteria for the sequestration of toxic environmental products, which would open up a new biological detoxification pathway.

Results: Here, we identified a new mechanism by which bacteria resist silver ion stress. We showed that the self-assembling nanocompartments helped a model species (E. coli) resist silver ion stress. Transmission electron microscopy and energy dispersive X-ray (TEM-EDX) analysis showed that the nanocompartments combined stably with silver ions in vitro. In addition, when exposed to 30 μM AgNO₃, the survival rate of genetically modified bacteria (with nanocompartments) was 86%, while it was just 59% in the wild-type bacteria (without nanocompartments). Label-free quantitative proteomics indicated that the nanocompartments enhanced bacterial activity by inducing the up-regulation of protein processing and secondary metabolites, and decreased their intracellular silver ion concentration, both of which contributed to their increased resistance to toxic silver ions.

Conclusions: This study on nanocompartments has contributed to a deeper understanding of how bacteria respond to environmental stressors like heavy metal pollutants in water, soil, and sediment. The encapsulin nanocompartment has the potential to be applied in various environments.

Background

As bacteria have evolved, they have developed strict procedures and automatic controls for their metabolic system. Bacteria have a robust molecular regulatory mechanism, which can effectively resist changes in the external environment[1]. Bacteria have also evolved
a set of efficient detoxification mechanisms, which effectively detoxify heavy metal ions, thus limiting the effect of harmful heavy metal ions on their life activities[2, 3]. In addition, bacteria have many interesting biochemical processes and metabolic pathways. For example, magnetotactic bacteria can be used to remove heavy metals and radionuclides from wastewater[4]. Furthermore, toxic high valence state heavy metal ions can be reduced to lower valence states, making them less harmful [5]. For example, a metal-accumulating bacterium can convert Ag⁺ into the less toxic elemental Ag⁰ using the electron-transport system[6]. In this paper, we described a new approach for increasing E. coli (a model species) resistance to silver ion stress.

Compartmentalization can protect cells from the interference of external toxic substances and protect enzymes in cells from proteolysis[7]. Both the lipid-binding organelles of eukaryotes and the protein containers of prokaryotes have these properties[8-12]. Protein cages are a common biocompatibility system that has been found in many fields, especially as a carrier[13, 14]. The addition of similar protein cages in genetically modified microorganisms may result in significant improvements in sequestering toxic environmental products. Therefore, we hypothesized that the proteinaceous compartments may be a feasible candidate material to be added to genetically modified bacteria for the sequestration of toxic environmental products, opening up a new biological detoxification pathway for use in various applications.

There are many examples of compartments in nature, such as lipid-binding organelles in eukaryotes and protein containers in prokaryotes[8-12]. One of the newest types of proteinaceous compartments is the encapsulin nanocompartment, which shows great potential for application in nanobiotechnology. In previous experiments, we used molecular cloning techniques to express the encapsulin proteins of the anammox bacteria “Ca. Brocadia fulgida” in E. coli (Supporting Information Fig. S1)[15]. The encapsulin
protein was able to self-assemble into a nanocompartment within *E. coli*[15]. In preliminary studies, we found that nanocompartments helped the bacteria resist the stress of toxic products, such as hydroxylamine[15]. This agreed with reports that the interior and exterior surfaces of the nanocompartments can be used as toxic attachment points[16, 17]. Therefore, we speculated that the nanocompartments can help bacteria resist the stress of other toxic substances such as toxic silver ions as well. In addition to its characteristics and functions, evidence has shown that nanocompartments can be easily manipulated through genetic engineering, significantly increasing the number of potential applications[18].

To better understand the protective mechanisms of nanocompartments, silver ions were used as a model toxin. Industrial wastewater releases a large number of harmful heavy metals into the environment, including Ag^+, which can cause great harm to the ecosystem and human health, in addition to wasting a valuable resource[19]. Ag^+ can enter the human body through aquatic organisms, which can lead to a variety of diseases as it accumulates[20, 21]. Therefore, finding a suitable method to remove Ag^+ from wastewater is urgently needed, and of great significance for the continued recovery from and treatment of wastewater pollutants.

In this study, transmission electron microscopy and energy dispersive X-ray spectroscopy (TEM-EDX) were used to determine whether the nanocompartments were able to combine with silver ions *in vitro*. Next, we used surface plasmon resonance imaging (SPRi) technology to characterize the kinetic process of the combination of silver ions with the nanocompartments. Lastly, label-free quantitative proteomics was used to reveal the antibacterial mechanisms of silver ions with high resolution at the protein level. This study has increased our understanding of the role that nanocompartments play in reducing
cellular stress caused by silver ions.

Results

Nanocompartments combine with silver ions *in vitro*

A general feature of nanocompartments is their high stability, which enables them to endure in culture supernatants[22, 23]. An encapsulin nanocompartment resembles a virus capsid in terms of its mechanical properties. In order to determine whether the nanocompartments can combine with silver ions, we incubated the purified nanocompartments with silver ions *in vitro*. It was found that the nanocompartments did combine with silver ions, appearing darker than nanocompartments without silver ions when observed by transmission electron microscopy (TEM) (Fig. 1A and B). Energy dispersive X-ray (EDX) analysis also detected silver ions in the nanocompartments (Fig. 1C, D, and E), confirming that a single nanocompartment can stably combine with silver ions *in vitro*.

Agglomeration/dispersion of nanocompartment combined with silver ions

We have shown that nanocompartments can combine with silver ions, but the process of combination cannot be dynamically observed. So we used SPRi, which is an unlabeled in situ detection technique[24-26], to quantify the agglomeration of nanocompartments and silver ions. SPRi was conducted using a high aperture optical objective[27, 28]. Supporting Information Fig. S2 shows that when nanocompartments and silver ions combined, they attached to the coated sensor chip, but the nanocompartments without silver ions did not attach to the surface of the chip (Supporting Information Fig. S3). Fig. 2A and B show the transmission and plasmonic images of the nanocompartment particles with silver ions, it should be noted that the plasma image is V-shape. Different light intensity positions in the image show different colors. The color bar normalized the light intensity, with the display range from 0 to 1.
It has been reported that the stability of a nanocompartment is dependent on the pH of its environment [22]. The nanocompartment particles seemed to be stable at pH 5-9, which is in agreement with the previous reports (Supporting Information Fig. S4) [29, 30]. In our system, the nanocompartment particles were able to attach to the surface, but were also allowed to agglomerate/disperse. So, the buffer pH was reduced from 7 to 4 and the particles were incubated for 750 min. Fig. 2C shows the agglomeration/dispersion information of the nanocompartment particles combined with silver ions. At pH 7, the SPRi signal increased over time, which was likely caused by the combination of the nanocompartments with silver ions. The nanocompartments landed on the surface of the sensor chip, resulting in the increased SPRi signal. When the pH of the solution was changed to 4, the SPRi signal decreased over time, suggesting that the nanocompartment particles were dispersing and the silver ions were being released back into the solution (see the Supporting Information Animation, Additional file 2). In order to provide further evidence supporting our hypothesis, the surface of the sensor chip was analyzed by scanning electron microscopy (SEM-EDX). The measured points included nanocompartment particles as well as other sections of the sensor chip (Fig. 2D and E). Empty encapsulin nanocompartments could not be observed by SEM. It was found that there were silver ions where there were nanocompartment particles, but sections without nanocompartments did not have silver ions.

Nanocompartment centered resistance to silver ion stress in model organism

Our experiments have shown that the nanocompartments were able to combine with silver ions, but it is not known whether they can protect normal bacteria from the effects of silver ions. So, we used *E. coli* as a model organism to explore the functions of nanocompartments in resisting silver ions stress. The process of silver ions binding to *E. coli* BL21 that were immobilized on the surface of the sensor chip was imaged using the
surface plasmon resonance microscope. Supporting Information Fig. S5 shows that the *E. coli* BL21 cells were tethered to the sensor chip. Fig. 3A and B show the transmission and plasmonic images of the bacterial cells. The V-shape formed by a single bacteria matches the position of the bacteria in the optical image[27].

Then the effects of silver ions on *E. coli BL21* were studied by adding AgNO₃ (final concentration 20 µM). To test whether the nanocompartments were effective in bacteria, we established two different types of bacteria, using genetic and molecular techniques. One of them was genetically modified bacteria (GMB, with nanocompartments), and the other was wild-type bacteria (WB, without nanocompartments). Then we passed a solution of AgNO₃ through the bacteria at a rate of 3 µl/s for about 1,000 seconds. With the addition of silver ions, the image intensity of the bacteria increased significantly. The intensity of the image signal was proportional to the mass density of the sensor surface. So, the data showed that silver ions were absorbed by the bacteria cells. Importantly, there was a significant difference between the image intensities of GMB and WB (Fig. 3C) which indicated that the nanocompartments placed in normal bacteria were able to combine with silver ions.

It has been reported that silver ions can damage cell membranes and DNA by producing reactive oxygen species (ROS)[31]. We speculated that nanocompartments would reduce the sensitivity of bacteria to silver ions by reducing ROS production. To verify this, we investigated the effects of nanocompartments on the survival of *E. coli* under ROS stress caused by silver ion exposure. Shown in Fig. 3D, as the concentration of silver ions increased, the bacterial survival rate decreased. When exposed to 30 µM AgNO₃, the survival rate of GMB was 86%, while WB’s survival rate was 59%, which suggested that GMB had a higher resistance to silver ions than WB.
The possible mechanisms by which bacteria resist silver ion stress using nanocompartments

To further explore the protective effects of nanocompartments in bacteria, the effects of nanocompartments on the growth curve of *E. coli* experiencing silver ion-caused ROS stress was investigated. As shown in Fig. 4A, the beginning of Phase I the growth curves of *E. coli* from all groups were similar. However, in Phase II, following dosing with silver ions (WB + 0µM AgNO$_3$ (WB), GMB + 0µM AgNO$_3$ (GMB), WB + 120µM AgNO$_3$ (WB+Ag$^+$), and GMB + 120µM AgNO$_3$ (GMB+Ag$^+$)), the growth rates in WB+Ag$^+$ and GMB+Ag$^+$ were lower than that in WB and GMB (Fig. 4A). The growth curve of GMB is no different from that of WB in the presence of no silver ions. Notably, when both were exposed to silver ions, the growth rate of the genetically modified bacteria was faster than the wild-type bacteria, which is consistent with our previous result (the survival rate of GMB is higher than WB). As predicted, the encapsulin protein (about 42-kDa) was found to be highly expressed in a band from the genetically modified bacteria when analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (Supporting Information Fig. S6). These results support the hypothesis that nanocompartments help bacteria resist silver ion stress.

High-throughput proteomics was used to get a comprehensive picture of the proteomic changes in the WB, WB+Ag$^+$, and GMB+Ag$^+$ groups. As shown in Fig. 4B, a total of 2679, 2680, and 2653 proteins were expressed in WB, WB+Ag$^+$, and GMB+Ag$^+$, respectively. Among them, 2440 proteins were shared by all three groups, suggesting that the majority of the proteins didn't change among the three groups.

In order to clarify the function of differentially expressed proteins in WB, WB+Ag$^+$, and GMB+Ag$^+$, Gene Ontology (GO) annotation analysis was used to analyze the quantified
proteins. GO annotation analysis included biological processes, cellular components, and molecular functions. As shown in Fig. 4C and D, in the biological process category, many of the differentially expressed proteins were involved in cellular processes, metabolic processes, and single-organism processes. It indicated that silver ions can inhibit many catabolic processes and some biosynthetic processes in bacteria. These results suggested that silver ions have intrinsic functions as toxic metals.

In terms of cellular components, a large number of the up-regulated proteins were from cell parts. Intriguingly, up-regulated proteins, not down-regulated proteins, were more commonly associated with cell membrane components. In E. coli, it has been found that silver ions affect membrane proteins, leading to cell lysis[32]. In terms of molecular functions, the up-regulated proteins and down-regulated proteins were mainly concentrated in catalytic activity and binding, suggesting that differentially expressed proteins were involved in protein processing.

We then performed a GO enrichment analysis of up-regulated proteins between specific groups, i.e. ‘WB+Ag⁺ vs WB’ and ‘GMB+Ag⁺ vs WB’. As shown in Fig. 5A and B, we saw that the GO terms “structural constituent of ribosome” and “integral component of plasma membrane” were significantly enriched among the up-regulated proteins in ‘WB+Ag⁺ vs WB’. These results suggested that wild-type bacteria responded to the silver stress by increasing the expression of ribosome-associated proteins and membrane proteins, without success. We then found that the GO terms “single-organism transport” and “integral component of plasma membrane” were significantly enriched among the up-regulated proteins in ‘GMB+Ag⁺ vs WB’. Interestingly, the GO term “single-organism transport” was significantly enriched in ‘GMB+Ag⁺ vs WB’, but not in ‘WB+Ag⁺ vs WB’. These results indicated that genetically modified bacteria likely have other ways of
regulating silver ion stress, ways which have been proven successful. Therefore, we hypothesized that nanocompartments induced the up-regulation of transporter proteins in bacteria, thus helping to transport silver ions out of cells, thereby reducing silver ion stress.

We then subjected the up-regulated proteins identified in ‘WB+Ag\(^+\) vs WB’ and ‘GMB+Ag\(^+\) vs WB’ to KEGG pathway enrichment analyses. Among the enriched KEGG pathways from ‘WB+Ag\(^+\) vs WB’, we identified 5 significantly enriched metabolic pathways (\(P < 0.05\)) including the “ribosome”, “protein export”, “bacterial secretion system”, “phosphotransferase system”, and “oxidative phosphorylation” (Fig. 6A). Of the 12 significantly enriched metabolic pathways from ‘GMB+Ag\(^+\) vs WB’, 5 were shared with ‘WB+Ag\(^+\) vs WB’, and 7 were unique (Fig. 6B). Therefore, those 7 metabolic pathways may be crucial in helping bacteria resist silver ions. Those 7 metabolic pathways were “fatty acid degradation”, “valine, leucine and isoleucine biosynthesis”, “butanoate metabolism”, “starch and sucrose metabolism”, “pantothenate and CoA biosynthesis”, “caprolactam degradation”, and “limonene and pinene degradation”. These results indicated that detoxification was associated with protein processing and secondary metabolites.

Discussion

Silver ions may enter the nanocompartments through pores

In nature, there are several proteins that are able to carry or sequester metal ions and minerals. As reported by N. Dennis Chasteen, a multi-subunit protein shell can store iron[33]. For the protein shell to transport metal ions and small organic molecules, small channels located in the protein shell are required[34]. Sutter reported that the nanocompartment of *Thermotoga maritima* was a thin icosahedral shell that consisted of 60 units[35], and that the interior of the nanocompartment contained conservative binding
sites. In this study, we have shown that nanocompartments do indeed serve as a platform for the absorption of heavy metal ions. The experiments presented in this paper, by transferring nanocompartments into *E. coli* (genetically modified bacteria) and dosing with silver ions, demonstrated that nanocompartments can combine with silver ions *in vitro*. Similar structural analyses of nanocompartments from *Thermotoga maritima* and *Pyrococcus furiosus* have also shown that capsids have multiple pores that can control the exchange of small molecules[35, 36]. These small openings likely serve as a permeability barrier against larger molecules, while permitting the transit of small molecules and ions through the shell[7]. We hypothesized that the silver ions, like the small molecules and ions mentioned above, might have entered the nanocompartments through pores.

Interestingly, we also found that the nanocompartments can combine with other metal ions, such as zinc (Supporting Information Fig. S7). As detoxifiers of nanomaterials, the characteristics of the outer and inner surfaces of nanocompartments must be taken advantage of[16, 17]. Nanocompartments can be easily manipulated by genetic means, resulting in a large number of diverse and complex potential applications[18]. Expanding upon the ability of nanocompartments to combine with metal ions, we speculate that they may be applied as detoxicants, with the potential to be developed into detoxification materials and drug carriers for use in industry and pharmaceuticals.

Nanocompartment can combine with silver ions in bacteria

In this study, we observed that silver ions reduced the growth of *E. coli* bacteria (Fig. 4A). Interestingly, we saw that genetically modified bacteria had higher survival rates than wild-type bacteria, indicating that nanocompartments increased bacterial resistance to silver ion stress. Previous studies have reported that silver ions reduce cell activity by inducing ROS production in cells or by directly destroying cell membranes[32]. Paulsen reported that bacteria may reduce high valence state metal ions to a zero valence state to
alleviate the heavy metal stress[5]. Our results suggested that the nanocompartments combine with the silver ions, effectively reducing the concentration of free silver ions in the cell and protecting the cell. This may be a new way for bacteria to respond to environmental metal ion stress.

Mechanisms by which nanocompartments may increase silver ion stress resistance

Moreover, our study has provided a comprehensive look at cellular responses to silver ion stress in wild-type and genetically modified bacteria at the proteomic level, and we saw changes in the ribosome, protein export system, and the phosphotransferase system, to name a few. In agreement with previous findings[37], some complexes were even able to transport Ag\(^+\) from the inside to the outside of the cell.

Consistent with previous reports[38], we also found that a number of enzymes that metabolize fatty acids were up-regulated only in the genetically modified bacteria. These enzymes included the fatty acid oxidation complex (fadB), 3-ketoacyl-CoA thiolase (fadA, fadI), and long chain fatty acid-CoA ligase (fadD) (Supplementary Excel file, Additional file 3). Interestingly, in contrast with previous findings and the notion that the tricarboxylic acid (TCA) cycle and the adaptive oxalate pathway are suppressed in response to silver ion stress[38], we detected the up-regulation of numerous proteins involved in secondary metabolites and protein processing, but only in the genetically modified bacteria.

So, while silver ion exposure may still increase bacteria ROS production and membrane permeability; in the presence of nanocompartments bacteria may be able to up-regulate protein processing and secondary metabolites, and thereby decrease the intracellular silver ion concentration (Fig. 7). This study of nanocompartments has increased the depth of our understanding of how bacteria adapt to environmental stress, and further helps to understand how bacteria deal with heavy metal pollutants in water, soil, and sediment. In
addition, nanocompartments can be imported into functional bacteria by genetic engineering to remove toxic metal ions and may be applied in many industries.

Conclusions

In conclusion, we have demonstrated that the self-assembled encapsulin nanocompartment can be transferred into *E. coli* to help bacteria resist silver ion stress. However, how silver ions get inside or stick to the surface of the encapsulin nanocompartments remains unclear, and will be the focus of our future work. Our study of self-assembled encapsulin nanocompartments provides a new approach to bacterial responses to environmental stressors like heavy metal pollutants in water, soil, and sediment. The encapsulin nanocompartment has the potential to be applied in different environments.

Methods

Expression and purification of encapsulin proteins

The encapsulin gene (*cEnc* (NCBI: KKO18403.1)) from anammox bacteria "*Ca. Brocadia fulgida*" was cloned into a pET28a. The pET28a-cEnc was transferred into *E. coli BL21* cells by electroporation. Detailed methods regarding protein expression are given in the supplementary information. Proteins were purified based on previously reported methods[39].

SPR imaging

First, the right chip was selected and its surface was functionalized (supplementary information). Cleaned chips were submerged in a 3% solution of APTES in ultrapure water for 1.5 minutes, then rinsed with ultrapure water prior to gentle, dust-free drying in air[40]. The coated chip was then cleaned with deionized water and ethanol and dried with nitrogen. The processed chip was then placed on the microfluidic device as described in
A FlexiPerm reusable well (Su Zhou) was mounted on top of the APTES-functionalized gold chip and filled with 500 µL of 20 µM AgNO₃. The pump and flow rate regulator of the sample cell microchannel were made of polydimethylsiloxane (PDMS) material. The size of the microchannel was 8 × 1 × 0.1 mm. The model of microannotation pump was LSP01 (LTD, China). Image acquisition and experimental details are attached in the supplementary information. For better visualization, images were converted to scaled color images.

SEM-EDX and TEM-EDX

For SEM-EDX, the morphological properties of the surface and elemental distribution of nanocompartment particles (from SPRi chip) were observed using cold-field emission SEM (JSM-7800F, JEOL, Japan) and EDX (Quantax, Bruker, Germany) after gold-plating at an accelerating voltage of 20 kV.

For TEM-EDX, different nanocompartment particles (supplementary information) were measured with the settings: acceleration voltage 300 keV, 5 eV/17l s, spot size 8, dwell time 60 s (Tecnai G2 F30, FEI Company, USA) using ES vision software (Emispec Systems, Inc, Tempe, USA).

Cell survival test

The wild-type bacteria and genetically modified bacteria were inoculated into LB medium. The cultures were grown to an OD600 of 0.6. For genetically modified bacteria, protein production was induced with 0.1 mM IPTG and the cultures were incubated at 37°C and agitated at 180 rpm for 18 h in the dark. The next day, the wild-type bacteria and genetically modified bacteria were seeded in a 96-well plate to 10⁻⁴ CFU/mL and incubated in LB medium with varying concentrations of AgNO₃ (0 µM, 10 µM, 20 µM, and 30 µM) at 37°C for 12 h in the dark. Five replicate wells were used for each treatment, and
experiments were repeated three times. The experimental data was normalized for comparison.

Determination of the cell growth curve

The wild-type bacteria and genetically modified bacteria were inoculated in LB medium. During Phase I, cultures were grown to an OD600 of 0.6. In Phase II, for genetically modified bacteria, protein production was induced with 0.1 mM IPTG. Then 120 µM AgNO₃ was added into the LB medium. For wild-type bacteria, one group had 0 µM AgNO₃ added to the culture medium, and the other group had 120 µM AgNO₃ added. The cultures were incubated (37°C, 180 rpm) for 1.5 h in the dark. The concentrations of the bacterial cultures were measured every half hour. This experiment was repeated three times.

LC-MS/MS proteomic analysis

The total proteins of the *E. coli* were evaluated using SDS-PAGE. Proteins were extracted and digested according to a previously published method[42, 43]. Detailed information is given in the supplementary information.

Additional File Information

Additional file 1: Fig. S1. The express of cEnc *in vitro*. Fig. S2. Setup and principle of plasmonic imaging of nanocompartment particles fell on a gold-coated glass sensor chip. Fig. S3. Brightfield image of nanocompartment particles (with and without silver ion). Fig. S4. TEM images of encapsulin at acidic (pH 5), native (pH 7.5), and basic conditions (pH 9), revealing intact spherical particles under all condition. Fig. S5. Setup and principle of plasmonic imaging of bacterial cells fell on a gold-coated glass sensor chip. Fig. S6. SDS–PAGE gels of bacterial total protein. Fig. S7. Cell survival of *E. coli* with nanocompartment (black line) and without nanocompartment (red line) in the presence of different concentrations of ZnSO₄.
Table. S1. The same protein (42kDa-45kDa) of the three groups samples (WB, WB+Ag+, GMB+Ag+).

Supplementary Experimental Section.

Additional file 2: Supplementary Animation 1. Animation showing dynamic change of agglomeration/dispersion of nanocompartment combined with silver ions by pH.

Additional file 3: Supplementary Excel file. Detailed information of total proteins.

Declarations

Authors’ contributions

CYX, YPC, TFM and JG designed the experiments. CYX and TFM performed the experiments. CYX and TFM analyzed the data and wrote the manuscript. YS, PY and FF were involved in interpretation of results, and figures and table arrangement. All the authors revised the manuscript. All authors read and approved the final manuscript.

List of abbreviations

TEM-EDX: transmission electron microscopy and energy dispersive X-ray spectroscopy; SPRi: surface plasmon resonance imaging; SEM: scanning electron microscopy; GMB: genetically modified bacteria with nanocompartments; WB: wild-type bacteria without nanocompartments; ROS: reactive oxygen species; WB+Ag+: WB+120µM AgNO₃; GMB+Ag+: GMB+120µM AgNO₃; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; GO: Gene Ontology;

Acknowledgements

We thank Meiji biotechnology company for bioinformatics and analysis.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the
article and its additional files.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Conflicts of interest

There are no conflicts to declare.

Funding

The authors gratefully acknowledge the supports from the National Natural Science Foundation of China (21876016 and 51578527), the Chongqing Science and Technology Bureau (cstc2018jcyjAX0366 and cstc2018jcyjAX0638), the Fundamental Research Funds for the Central Universities (2019CDCGHS311), and the National Key Research & Development Program of China (2016YFE0205600).

References

1. Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG: *Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science*. *Trends Biotechnol* 2001, **19**:15-20.

2. Rouch DA, Lee BTO, Morby AP: *Understanding cellular-responses to toxicagents - a model for mechanism-choice in bacterial metal resistance*. *J Ind Microbiol biot* 1995, **14**:132-141.

3. Silver S: *Bacterial resistances to toxic metal ions - A review*. *Gene* 1996, **179**:9-19.

4. Bahaj AS, Croudace IW, James PAB, Moeschler FD, Warwick PE: *Continuous radionuclide recovery from wastewater using magnetotactic bacteria*. *J Magn Magn Mater* 1998, **184**:241-244.
5. Paulsen IT, Saier MH: A novel family of ubiquitous heavy metal ion transport proteins. *J Membrane Biol* 1997, **156**:99-103.

6. Klaus T, Joerger R, Olsson E, Granqvist CG: Silver-based crystalline nanoparticles, microbially fabricated. *P Natl Acad Sci USA* 1999, **96**:13611-13614.

7. Nichols RJ, Cassidy-Amstutz C, Chaijarasphong T, Savage DF: Encapsulins: molecular biology of the shell. *Crit Rev Biochem Mol Biol* 2017, **52**:583-594.

8. Kerfeld CA, Heinhorst S, Cannon GC: Bacterial microcompartments. *Annu Rev Microbiol* 2010, **64**:391-408.

9. Savage DF, Afonso B, Chen AH, Silver PA: Spatially ordered dynamics of the bacterial carbon fixation machinery. *Science* 2010, **327**:1258-1261.

10. Held M, Quin MB, Schmidt-Dannert C: Eut bacterial microcompartments: insights into their function, structure, and bioengineering applications. *J Mol Microbiol Biotech* 2013, **23**:308-320.

11. Martin W: Evolutionary origins of metabolic compartmentalization in eukaryotes. *Philos T R Soc B* 2010, **365**:847-855.

12. Schrader M, Godinho LF, Costello JL, Islinger M: The different facets of organelle interplay-an overview of organelle interactions. *Front cell dev biol* 2015, **3**:56-56.

13. Kramer RM, Li C, Carter DC, Stone MO, Naik RR: Engineered protein cages for nanomaterial synthesis. *J Am Chem Soc* 2004, **126**:13282-13286.

14. Li F, Wang Q: Fabrication of nanoarchitectures templated by virus-based nanoparticles: strategies and applications. *Small* 2014, **10**:230-245.

15. Xing CY, Fan YC, Chen X, Guo JS, Shen Y, Yan P, Fang F, Chen YP: A self-assembled nanocompartment in anammox bacteria for resisting intracellular
hydroxylamine stress. Sci Total Environ 2020, 717:137030.

16. Li F, Chen Y, Chen H, He W, Zhang ZP, Zhang XE, Wang Q: Monofunctionalization of protein nanocages. J Am Chem Soc 2011, 133:20040-20043.

17. Li F, Gao D, Zhai X, Chen Y, Fu T, Wu D, Zhang ZP, Zhang XE, Wang Q: Tunable, discrete, three-dimensional hybrid nanoarchitectures. Angew Chem Int Ed Engl 2011, 50:4202-4205.

18. Pokorski JK, Steinmetz NF: The art of engineering viral nanoparticles. Mol Pharm 2011, 8:29-43.

19. Huang RY, He L, Zhang T, Li DQ, Tang PG, Feng YJ: Novel carbon paper@magnesium silicate composite porous films: design, fabrication, and adsorption behavior for heavy metal ions in aqueous solution. Acs Appl Mater Inter 2018, 10:22776-22785.

20. Cantuaria ML, de Almeida Neto AF, Nascimento ES, Vieira MGA: Adsorption of silver from aqueous solution onto pre-treated bentonite clay: complete batch system evaluation. J Clean Prod 2016, 112:1112-1121.

21. Jesus Munoz A, Espinola F, Ruiz E: Biosorption of Ag(I) from aqueous solutions by Kiebsiella sp 3S1. J Hazard Mater 2017, 329:166-177.

22. Valdesstauber N, Scherer S: Isolation and characterization of linocin M18, a bacteriocin produced by brevibacterium linens. Appl Environ Microb 1994, 60:3809-3814.

23. Rosenkrands I, Rasmussen PB, Carnio M, Jacobsen S, Theisen M, Andersen P: Identification and characterization of a 29-kilodalton protein from Mycobacterium tuberculosis culture filtrate recognized by mouse memory effector cells. Infect Immun 1998, 66:2728-2735.

24. Campbell CT, Kim G: SPR microscopy and its applications to high-throughput
analyses of biomolecular binding events and their kinetics. *Biomaterials* 2007, 28:2380-2392.

25. Yao J, Stewart ME, Maria J, Lee TW, Gray SK, Rogers JA, Nuzzo RG: **Seeing molecules by eye:** surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity. *Angew Chem Int Ed Engl* 2008, 47:5013-5017.

26. Homola J: **Surface plasmon resonance sensors for detection of chemical and biological species.** *Chem Rev* 2008, 108:462-493.

27. Wang S, Shan X, Patel U, Huang X, Lu J, Li J, Tao N: **Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance.** *Proc Natl Acad Sci U S A* 2010, 107:16028-16032.

28. Wang W, Yang Y, Wang S, Nagaraj VJ, Liu Q, Wu J, Tao N: **Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells.** *Nat Chem* 2012, 4:846-853.

29. Putri RM, Allende-Ballestero C, Luque D, Klem R, Rousou KA, Liu A, Traulsen CH, Rurup WF, Koay MST, Caston JR, Cornelissen J: **Structural characterization of native and modified encapsulins as nanoplatforms for in vitro catalysis and cellular uptake.** *ACS Nano* 2017, 11:12796-12804.

30. Rahmanpour R, Bugg TDH: **Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment.** *FEBS Journal* 2013, 280:2097-2104.

31. Said J, Dodoo CC, Walker M, Parsons D, Stapleton P, Beezer AE, Gaisford S: **An in vitro test of the efficacy of silver-containing wound dressings against Staphylococcus aureus and Pseudomonas aeruginosa in simulated wound fluid.** *Int J Pharm* 2014, 462:123-128.
32. Marambio-Jones C, Hoek EMV: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 2010, 12:1531-1551.

33. Chasteen ND, Harrison PM: Mineralization in ferritin: An efficient means of iron storage. J Struct Biol 1999, 126:182-194.

34. Chasteen ND: Ferritin. uptake, storage, and release of iron. Metal ions in biological systems 1998, 35:479-514.

35. Sutter M, Boehringer D, Gutmann S, Günther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, Ban N: Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 2008, 15:939-947.

36. Akita F, Chong KT, Tanaka H, Yamashita E, Miyazaki N, Nakaishi Y, Suzuki M, Namba K, Ono Y, Tsukihara T, Nakagawa A: The crystal structure of a virus-like particle from the hyperthermophilic archaeon Pyrococcus furiosus provides insight into the evolution of viruses. J Mol Biol 2007, 368:1469-1483.

37. Gupta A, Matsui K, Lo JF, Silver S: Molecular basis for resistance to silver cations in Salmonella. Nat Med 1999, 5:183-188.

38. Wang H, Yan A, Liu Z, Yang X, Xu Z, Wang Y, Wang R, Koohi-Moghadam M, Hu L, Xia W, et al: Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli. Plos Biol 2019, 17.

39. Giessen TW, Silver PA: Widespread distribution of encapsulin nanocompartments reveals functional diversity. Nat Microbiol 2017, 2.

40. Howarter JA, Youngblood JP: Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 2006, 22:11142-11147.

41. Shan X, Diez-Perez I, Wang L, Wiktor P, Gu Y, Zhang L, Wang W, Lu J, Wang S, Gong
Q, et al: **Imaging the electrocatalytic activity of single nanoparticles.** *Nat Nanotechnol* 2012, **7**:668-672.

42. Yin X, Zhang Y, Liu X, Chen C, Lu H, Shen H, Yang P: **Systematic comparison between SDS-PAGE/RPLC and high-/low-pH RPLC coupled tandem mass spectrometry strategies in a whole proteome analysis.** *Analyst* 2015, **140**:1314-1322.

43. Peng M-W, Yu X-L, Guan Y, Liu P, Yan P, Fang F, Guo J, Chen Y-P: **Underlying promotion mechanism of high concentration of silver nanoparticles on anammox process.** *ACS nano* 2019, **13**:14500-14510.

Figures

![Image of TEM images and EDS spectra](image-url)
Figure 1

Nanocompartments encapsulating silver ions in vitro. (A) Transmission electron micrographs of a nanocompartment with silver ions. (B) Nanocompartment without silver ions. (C) Nanocompartment particle measurement showing elevated silver peaks by TEM-EDX (red circles). (D) Non-nanocompartment measurement. (E) Empty nanocompartment measurement.
Figure 2

Agglomeration/dispersion of nanocompartment combined with silver ions. (A)

Brightfield image of nanocompartment particles. (B) Plasmonic image of the encapsulin nanocompartment. The color bar normalized the light intensity, with the display range from 0 to 1. (C) Sensorgrams of nanocompartment particles. (D)
SEM-EDX (red circles) measurement of nanocompartment particles on the chip showing an elevated silver peak and (E) measurement of a non-nanocompartment chip section. Scale bars, 100 nm.

Figure 3

Nanocompartments helped bacteria resist silver ion stress. (A) Brightfield image of bacterial cells. (B) Plasmonic image of the bacteria. The color bar normalized the light intensity, with the display range from 0 to 1. (C) Sensorgram of GMB, E. coli with nanocompartments (black line); sensorgram of WB, E. coli without nanocompartments (red line). The number of bacteria in each group was 20. (D) Cell survival of GMB (blue line) and WB (red line) with different concentrations of AgNO₃ (0 μM, 10 μM, 20 μM, and 30 μM).
High-throughput proteomics. (A) Cell growth curve of wild-type bacteria without AgNO3 (WB, black line), wild-type bacteria with 120 µM AgNO3 (WB+Ag+, red line), and genetically modified bacteria with 120 µM AgNO3 (GMB+Ag+, blue line). Each group of samples had three biological replicates. (B) Venn diagram showed that the occurrence of the proteins were detected in the different bacteria groups. (C) and (D), GO annotation analyses (Level 2). (C) Differentially expressed proteins of ‘WB+Ag+ vs WB’. (D) Differentially expressed proteins of ‘GMB+Ag+ vs WB’.
Figure 5

GO enrichment analyses of the up-regulated proteins in ‘WB+Ag+ vs WB’ and ‘GMB+Ag+ vs WB’. The red functional units show up-regulation of proteins.
Figure 6

KEGG enrichment analyses of the up-regulated proteins in ‘WB+Ag+ vs WB’ and ‘GMB+Ag+ vs WB’. P < 0.001 is marked as ***, P < 0.01 is marked as **, and P < 0.05 is marked as *.
Schematic of the mechanisms potentially involved in the nanocompartment protection of E. coli (GMB, E. coli with nanocompartments; WB, E. coli without nanocompartments) against silver ion stress. Silver ions (Ag+) enter the cell, and then produce ROS that break down cell membranes and DNA, leading to cell lysis. Nanocompartments can sequester the silver ions and induce the up-regulation of protein processing and secondary metabolites, thereby protecting the cell from silver ion stress.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Supplementary Files.zip
Additional file 1.docx