Moving the Needle: Association Between a Vaccination Reward Lottery and COVID-19 Vaccination Uptake in Louisiana

Yin Wang, MA1; Julie Hernandez, PhD2; and Charles Stoecker, PhD1

Abstract

Objective: On June 17, 2021, Louisiana launched a lottery campaign to reward residents who received a COVID-19 vaccination. We investigated the association between the lottery and vaccination uptake by characteristics of parishes.

Methods: We constructed an interrupted time series based on daily parish-level data on COVID-19 vaccinations to analyze the association with the lottery. We used recursive partitioning to separate vaccination uptake due to the Delta variant from vaccination uptake due to the lottery and limited our study period to May 25 through July 20, 2021. We performed subanalyses that grouped parishes by political affiliation, hesitancy toward COVID-19 vaccines, race and ethnicity, and socioeconomic status to detect heterogeneous responses to the lottery by these characteristics. We ran models separately for parishes in the top and bottom tertiles of each sociodemographic indicator and used a z test to check for differences.

Results: The lottery was associated with an additional 1.03 (95% CI, 0.61-1.45; P < .001) first doses per parish per day. Comparing lottery impacts between top and bottom tertiles, we found significantly larger associations in parishes with lower vaccine hesitancy rates, higher percentage of Hispanic population, higher median annual household income, and more people with a college degree.

Conclusions: Results suggest that the lottery was associated with increased COVID-19 vaccination uptake in Louisiana. However, larger associations were observed in parishes with an already higher likelihood of accepting vaccines, which raises equity issues about the opportunity created by the lottery and its effectiveness as a long-term behavioral incentive.

Keywords

COVID-19, vaccine uptake, lottery incentive, heterogeneous associations, Louisiana

Despite the widespread availability of safe and effective vaccines in the United States against COVID-19, vaccine uptake continues to lag, especially in the Deep South.1 Just 1 month before the White House goal to have 70% of residents vaccinated by July 4, 2021, the vaccination rates of Mississippi, Louisiana, and Alabama were only 45% and sat at the bottom ranks among all states.2 Vaccination rates also varied across counties according to sociodemographic characteristics. Nationally, low income, low educational attainment, identifying as Black, and conservative political leaning were associated with high levels of vaccine hesitancy,3,5 and vaccination uptake was typically low in rural counties.6 counties with a high proportion of Republican Party (GOP) voters,7 and counties with high poverty rates.6

Sixteen state governors created COVID-19 lottery-based incentives with a jackpot of at least $1 million to increase vaccination rates, including the first vaccination lottery with a million-dollar prize in Ohio in May 2021.8 Following that strategy, Louisiana launched the first and only vaccine lottery campaign in the Deep South on June 17, 2021.9 This 6-week campaign, dubbed “Shot at a Million,” offered one $1-million jackpot and 4 additional $100 000 cash prizes to

1 Department of Health Policy and Management, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
2 Department of International Health and Sustainable Development, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA

Corresponding Author:
Charles Stoecker, PhD, Tulane University School of Public Health and Tropical Medicine, Department of Health Policy and Management, 1440 Canal St, New Orleans, LA 70112, USA.
Email: cfstoecker@tulane.edu
adults who had received at least 1 dose of COVID-19 vaccine and registered for the lottery by July 31, 2021.19

In contrast to smaller, guaranteed rewards, large but uncertain prizes such as cash lotteries are often used to nudge people toward health behaviors they would not spontaneously adopt or are reluctant to adopt. Lottery incentives capitalize on people’s psychology of overestimating small probabilities and have been successfully used to promote onetime behaviors such as vaccination and screening.11 Experimental evidence also suggests that lottery incentives tend to be more effective than guaranteed but smaller bonuses in promoting health interventions.12,13

Evidence of the effects of the first COVID-19 vaccine lottery incentive campaign in Ohio is mixed. Robertson et al14 analyzed 12 state vaccine lotteries, including the Ohio lottery, using cumulative vaccination data. Although they detected an increase in vaccination uptake for Ohio and 9 other states, the impact in Arkansas and California was not significant. In contrast, Walkey et al15 argued that increases in vaccinations in Ohio after the lottery could have resulted from the nearly contemporaneous authorization of the Pfizer vaccine for use in teenagers. In addition to these mixed findings, studies have not examined which attributes of local populations are most likely to be associated with increased lottery effectiveness.

Our work contributes to this existing literature in 2 important ways. First, we examined the association of the Louisiana lottery, the only COVID-19 vaccination reward lottery in the Deep South, with COVID-19 vaccination uptake. Second, we examined heterogeneous associations of the lottery with vaccination uptake by parish (county) attributes.

Methods

We used an interrupted time-series design to measure changes in daily parish-level counts of first-dose vaccinations in Louisiana before and after the launch, on June 17, 2021, of the “Shot at a Million” lottery. Our study did not include human subjects; analysis was limited to publicly available data aggregated to the parish level and, as such, was exempt from institutional review board review.

Data

We collected data for all parishes (N = 64) in Louisiana from several sources. First, we obtained the number of first doses, from any manufacturer, of COVID-19 vaccine administered on each day to working-age adults (people aged 18 to 64 years) from the COVID-19 Data Tracker published by the Centers for Disease Control and Prevention (CDC).16 To control for the severity of the pandemic, we also collected data on the daily COVID-19 death count from the Center for Systems Science and Engineering COVID-19 GitHub Repository of Johns Hopkins University.17 We used COVID-19 death counts instead of COVID-19 cases because we aimed to capture factors that influence vaccination choices and that may be more accurately proxied by a severe outcome such as death than by a less severe outcome (illness).

We analyzed heterogeneous lottery associations across 4 dimensions of parish-level sociodemographic characteristics: (1) political affiliation, (2) level of hesitancy toward COVID-19 vaccine, (3) racial and ethnic distribution, and (4) socioeconomic status. We measured political affiliation with the percentage of votes for the GOP in the 2020 presidential election.18 Vaccine hesitancy was measured by the percentage of the population with strong hesitancy toward the COVID-19 vaccine, data for which were adapted from the federal Household Pulse Survey from May 26–June 7, 2021, by the Office of the Assistant Secretary for Planning and Evaluation.19 We obtained parish-level data on racial and ethnic distribution from the US Census Bureau 2019 release.20 To measure socioeconomic characteristics, we used parish-level median annual household income, unemployment rate, and percentage of the population with ≥bachelor’s degree; data were obtained from the Economic Research Service at the US Department of Agriculture.21

Methodology

We used the following interrupted time-series regression model to evaluate the lottery policy:

\[
\text{Dose}_{i,t} = \alpha + \beta T_i + \gamma D_i + \delta \times D_i \times T_i + \pi \text{CovidDeath}_{c,t} + \tau_i + \epsilon_{i,t}
\]

where \(D_i\) is a dummy indicating the days on and after the lottery announcement date (June 17, 2021), \(T_i\) is the running variable measured in days relative to the lottery announcement date, \(\delta\) measures the change in slope in the postlottery announcement period, and \(\gamma\) measures the discontinuity at the lottery intervention point. We used 7-day moving averages of both counts of first doses administered and COVID-19 deaths as dependent and control variables, respectively, to reduce the noise in the data resulting from fluctuations between weekdays and weekends and different working days of vaccine clinics. We included parish fixed-effect terms (\(\tau_i\)) to absorb time-invariant unobserved differences across parishes. SEs were clustered at the parish level. To examine whether the lottery impact varied among parishes according to characteristics, we ran the model separately for parishes in the top and bottom tertiles of each sociodemographic indicator. We also used z tests to analyze whether \(\delta\), the coefficient indicating the lottery effect, differed significantly between the models limited to the top and bottom tertiles of selected sociodemographic variables. The regression models were conducted in Stata version 16.0 (StataCorp LLC).

To isolate the association with Louisiana’s lottery from other factors that influenced COVID-19 vaccination uptake, we limited the study period to a few weeks before and after...
the lottery announcement. Our analysis window started on May 25, 2021; most COVID-19 restrictions were lifted on that date as COVID-19 hospitalizations in Louisiana dropped to one of their lowest points since the beginning of the pandemic. This start date was 2 weeks after the day the US Food and Drug Administration authorized the Pfizer-BioNTech COVID-19 vaccine for emergency use in adolescents aged 12 to 15 years, on May 10, 2021. We selected this start date to avoid the confounding that may have been present in the analyses of the Ohio lottery.

To remove the effect of the spread of the Delta variant on vaccination uptake, we closed our analysis window before the surge in Delta cases. We used a model-based recursive partitioning method to identify the kink point in the trend in vaccination uptake. This method fits a designated parametric model to subsets of data generated according to a partitioning variable and tests for parameter instability during the recursive process to identify the partition with the highest parameter instability. We applied this recursive partitioning method to our data from June 17 through July 31, 2021, to identify the date after which the coefficient of the running variable T changed the most (ie, the date after which news of the Delta coronavirus variant started to affect vaccine uptake). To perform this analysis, we used the “partykit” package version 1.2-15 in R 4.1.1 (R Core Team). We found a change in trend on July 20, 2021. Thus, we set our final analysis window from May 25 through July 20, 2021.

Finally, we performed a simple calculation to estimate the total number of additional doses associated with the lottery for the 64 parishes during the 34 days after the lottery announcement (from June 17 through July 20). Using the parameters of the regression model, the total additional doses would be $(\gamma \times 34 + \delta \times 34 \times 34/2) \times 64$, where γ is the parish-level discontinuity value and δ is the daily marginal increase in parish-level vaccinations.

Results

Statewide Louisiana vaccinations increased more rapidly after the kink point identified by our recursive partitioning algorithm (July 20) (Figure panel A). The raw mean number of first-dose vaccinations rose from 43.7 doses per parish per day before the lottery announcement to 47.6 doses per parish per day afterward (Table 1). Statewide vaccine uptake also trended upward after the lottery was announced, whereas previously it was trending downward (Figure panel B). The interrupted time-series regression demonstrated a positive association between the lottery and vaccination uptake among working-age adults in Louisiana: the change in slope after the lottery announcement was both positive and significant (change in slope $= 1.03; 95\%$ CI, $0.61-1.45; \ P < .001$) (Table 2).

Using the regression results, we calculated 39,146 (95\% CI, 16,450-61,841) additional doses associated with the lottery for the whole state in the 34 days after the lottery announcement. Based on the 2020 Louisiana population, we calculated an increase of 1.37 (95\% CI, 0.58-2.17) percentage points in first-dose vaccination rate from a baseline rate of 37.5\% (the vaccination rate on June 17, 2021). Given 1.4 million in total lottery prizes, we estimated that the cost per marginal vaccination was $35.76 (95\% CI, $22.64-$85.10).

The response to the lottery differed significantly between parishes in the top and bottom tertiles of vaccine hesitancy (Table 2). Although the association between the lottery and vaccination uptake was nominal in high-hesitancy parishes,
the association was more pronounced in low-hesitancy parishes: in low-hesitancy parishes, the change in slope after the lottery announcement was positive and significant (change in slope = 1.88; 95% CI, 0.79-2.97; \(P = .002 \)). Response to the lottery also differed to different degrees between parishes according to political affiliation but not significantly according to the \(z \) test (Table 2). This result suggests that the parishes in the top tertile of GOP voters also responded to the lottery, although the response was moderate (change in slope = 0.70; 95% CI, 0.05-1.35; \(P = .04 \)) compared with the response in counterpart parishes in the bottom tertile (change in slope = 1.21; 95% CI, 0.28-2.15; \(P = .01 \)).

The association of the lottery with vaccination uptake among parishes according to racial and ethnic structure was mixed (Table 3). We found no significant differences according to percentages of non-Hispanic Black and non-Hispanic White populations based on the \(z \) test. However, we found a significantly larger association (change in slope = 2.13; 95% CI, 1.01-3.24; \(P < .001 \)) in parishes in the top tertile of Hispanic population percentage.

The association between the lottery and COVID-19 vaccination uptake did not differ among parishes according to unemployment rates (Table 4). However, we found a significantly greater response to the lottery in parishes in the top tertile of median annual household income (change in slope = 1.81; 95% CI, 0.88-2.74; \(P < .001 \)) than in the bottom tertile. Parishes in the top tertile of population with a college degree also showed a significantly greater boost in COVID-19 vaccination uptake after the lottery announcement (change in slope = 2.39; 95% CI, 1.40-3.39; \(P < .001 \)) than their counterparts in the bottom tertile.

Discussion

Our analysis suggests a positive association between the COVID-19 vaccination reward lottery and vaccination uptake in Louisiana. The lottery was associated with 1.03 additional first doses per parish per day. This estimate is likely conservative because we excluded the lottery eligibility period that overlapped the Delta variant surge (July 21–July 31, 2021); there may have been additional lottery effects during that time.

Our analysis suggests a cost of $35.76 per marginal COVID-19 vaccine dose for the Louisiana lottery. Studies of other state lotteries found costs per induced dose of $68 or $75 (Ohio), $20.90 (New York), and $769.60 (West Virginia), with the average marginal cost per lottery of $55 across several states. Generally, the lottery in Louisiana had
Table 2. Regression results for all parishes and those in the top tertile and bottom tertile of political affiliation and attitudes toward COVID-19 vaccines, in an analysis of the policy impact of a COVID-19 vaccination reward lottery campaign, Louisiana, May 25 through July 20, 2021.

Item	All	Bottom tertile	Top tertile	Bottom tertile	Top tertile
Postlottery slope change^a	1.03 (0.61 to 1.45) [−0.001]	1.88 (0.79 to 2.97) [0.002]	0.34 (−0.11 to 0.80) [0.13]	1.21 (0.28 to 2.15) [0.01]	0.70 (0.05 to 1.35) [0.04]
Lottery discontinuity^b	0.48 (−2.81 to 3.77) [0.77]	1.10 (−6.62 to 8.81) [0.77]	−0.95 (−5.67 to 4.73) [0.73]	1.15 (−5.51 to 7.81) [0.72]	−0.71 (−5.45 to 4.02) [0.76]
No. of observations	3648	1254	1140	1254	1197
Adjusted R²	0.90	0.88	0.72	0.91	0.89
z test^c	—	2.71 [0.006]	0.93 [0.35]		

Abbreviations: —, not applicable; GOP, the Republican Party.

^aOn June 17, 2021, Louisiana launched a 6-week campaign that offered one $1-million jackpot and 4 additional $100 000 cash prizes to adults who had received ≥1 dose of COVID-19 vaccine and registered for the lottery by July 31, 2021. Vaccination data are from the Centers for Disease Control and Prevention’s COVID-19 Data Tracker¹⁶. All values are coefficient (95% CI) [P value] unless otherwise indicated. Coefficients were gained from interrupted time-series regressions controlled for parish-level fixed effects and the number of COVID-19 deaths. P < .05 was considered significant.

^bVaccine hesitancy data are from the Office of the Assistant Secretary for Planning and Evaluation¹⁹. Percentage of residents with strong hesitancy toward COVID-19 vaccines, in an analysis of the policy impact of a COVID-19 vaccination reward lottery campaign, Louisiana, May 25 through July 20, 2021.

^cA z test was used to compare the coefficients of postlottery slope change between samples limited to the bottom and top tertiles²². Values are z score [P value].

Table 3. Regression results for parishes according to race and ethnicity structures, in an analysis of the policy impact of a COVID-19 vaccination reward lottery campaign, Louisiana, May 25 through July 20, 2021.

Item	Black^b	Hispanic^b	White^b			
Percentage of residents who are non-Hispanic	Bottom tertile	Top tertile	Bottom tertile	Top tertile		
Postlottery slope change^a	0.84 (0.22 to 1.46) [0.01]	1.07 (0.18 to 1.96) [0.02]	0.45 (0.09 to 0.81) [0.02]	2.13 (1.91 to 3.24) [0.001]	1.32 (0.38 to 2.26) [0.08]	0.88 (0.21 to 1.54) [0.01]
Lottery discontinuity^b	1.08 (−3.82 to 5.99) [0.65]	2.18 (−6.65 to 9.00) [0.51]	−0.07 (−3.97 to 3.83) [0.97]	1.82 (−7.11 to 10.76) [0.67]	1.28 (−5.21 to 7.77) [0.69]	1.14 (−4.29 to 6.57) [0.67]
No. of observations	1254	1197	1254	1197	1254	1197
Adjusted R²	0.89	0.89	0.86	0.88	0.91	0.90
z test^c	−0.44 [0.66]	−2.98 [0.003]	−2.98 [0.003]	−2.98 [0.003]	−2.98 [0.003]	−2.98 [0.003]

Abbreviations: —, not applicable; GOP, the Republican Party.

^aOn June 17, 2021, Louisiana launched a 6-week campaign that offered one $1-million jackpot and 4 additional $100 000 cash prizes to adults who had received ≥1 dose of COVID-19 vaccine and registered for the lottery by July 31, 2021. Vaccination data are from the Centers for Disease Control and Prevention’s COVID-19 Data Tracker¹⁶. All values are coefficient (95% CI) [P value] unless otherwise indicated. Coefficients were gained from interrupted time-series regressions controlled for parish-level fixed effects and the number of COVID-19 deaths. P < .05 was considered significant.

^bPercentage of residents who voted for GOP in 2020 presidential election.¹⁸ Percentage of residents who are non-Hispanic Black^b, Hispanic^b, and White^b in the five parishes with the lowest median annual household income, the five parishes with the highest median annual household income, and the counterpart parishes in the bottom tertile, despite the presumed greater need for income in the latter. This finding might be partly explained by the concentration of wealthy

Our research showed an increase of 1.37 (95% CI, 0.58-2.17) percentage points in the first-dose COVID-19 vaccination rate, from a baseline rate of 37.5%. Similar increases, ranging from 1.06 to 4.20 percentage points, were found in studies on text-reminder and small-value voucher incentives^{20,30}. However, for mandate interventions, results varied from no impact to some positive impact³¹⁻³³. Our study provided empirical evidence of the heterogeneous associations between the lottery and COVID-19 vaccination uptake across parishes with various sociodemographic characteristics. Our findings echoed the findings that predominantly Democratic parishes are more likely to show high levels of vaccination uptake^{7,34} and that higher education levels are associated with a higher probability of vaccine acceptance^{35,36}. We expanded on these findings by showing that parishes in the top quartile of education levels also responded to the lottery to a greater extent than parishes in the bottom quartile of education levels. Moreover, we found that parishes with strong antivaccine attitudes, regardless of the determinants of their antivaccine attitudes, were less likely than vaccine-accepting parishes to be nudged by monetary incentives in the form of a lottery.

Our analysis also produced some counterintuitive findings. First, parishes in the top tertile of median annual household income tended to be more responsive to the lottery than the counterpart parishes in the bottom tertile, despite the presumed greater need for income in the latter. This finding might be partly explained by the concentration of wealthy similar economic efficiencies to those of other statewide lotteries.
Table 4. Regression results for parishes with different socioeconomic characteristics, in an analysis of the policy impact of a COVID-19 vaccination reward lottery campaign, Louisiana, May 25 through July 20, 2021a

Item	Median annual household income*	Percentage of residents who are unemployedb	Percentage of residents with < bachelor's degreec			
	Bottom tertile	Top tertile	Bottom tertile	Top tertile	Bottom tertile	Top tertile
Postlottery slope change	0.38 (0.09 to 0.68) [0.01]	1.81 (0.88 to 2.74) [0.001]	1.18 (0.49 to 1.86) [0.002]	1.19 (0.50 to 1.89) [0.002]	0.21 (0.04 to 0.38) [0.02]	2.39 (1.40 to 3.39) [0.001]
Lottery discontinuity	−1.06 (−4.73 to 2.62) [0.56]	−0.68 (−2.82 to 4.66) [0.54]	1.29 (−1.53 to 7.93) [0.49]	0.31 (−3.41 to 3.71) [0.95]	−1.04 (−2.93 to 0.86) [0.98]	5.10 (−9.93 to 23.13) [0.25]
Prelottery slope	−0.27 (−0.34 to 0.00) [0.05]	−1.28 (−1.95 to −0.61) [0.001]	−0.86 (−1.39 to −0.32) [0.003]	−0.79 (−1.26 to −0.32) [0.002]	−0.61 (−1.27 to 0.05) [0.17]	1.29 (−5.35 to 7.93) [0.69]
No. of observations	1254	1197	1368	1197	1254	1197
Adjusted R²	0.88	0.91	0.87	0.90	0.86	0.87
z test	−3.04 (0.002)	−0.86 (0.40)	−1.84 (−1.93 to −1.12) [0.001]	−0.68 (−7.82 to 6.46) [0.84]	−0.11 (−2.56 to 1.10) [0.20]	−1.84 (−4.73 to 2.62) [0.56]

a On June 17, 2021, Louisiana launched a 6-week campaign that offered one $1-million jackpot and 4 additional $100 000 cash prizes to adults who had received ≥1 dose of COVID-19 vaccine and registered for the lottery by July 31, 2021. Vaccination data are from the Centers for Disease Control and Prevention’s COVID-19 Data Tracker. All values are coefficient (95% CI) [P value] unless otherwise indicated. Coefficients were gained from interrupted time-series regressions controlled for parish-level fixed effects.

b Parish-level socioeconomic data are from the Economic Research Service at the US Department of Agriculture.

c Postlottery slope change and lottery discontinuity indicate the impact of the lottery on COVID-19 vaccination uptake. Postlottery period is from June 17 to July 20, 2021.

Conclusions

Our research found a positive association between the COVID-19 vaccination reward lottery and COVID-19 vaccination uptake in Louisiana. We contribute to the current research on vaccine incentive lotteries by identifying heterogeneous associations of the lottery by parish characteristics. Typically, we found larger associations in parishes with higher COVID-19 vaccination uptake before the lottery was launched. This set of circumstances could raise equity issues if the public resources consumed by the lottery did not create equal opportunities across populations. Also, the effectiveness of lottery as a public behavioral incentive in the long run is unclear because it may bring about a spiral of expectations on rewards for socially beneficial behaviors such as vaccination.

Louisiana is the only Deep South state that launched a COVID-19 vaccination reward lottery. The positive association suggested by our research may add support to similar sociodemographic characteristics of the lottery participants or those of people who received the vaccine after the lottery started, thus running the risk of ecological fallacy in our parish-level analysis. Further research is needed to understand the individual-level response to the lottery. Second, the study had no control group, and the pre¬post design of the interrupted time-series method could have led to bias because the 2 segments did not cover the same period. For example, the intensity of vaccine misinformation circulating online may have differed between the periods before and after the lottery announcement, or local vaccination events may have taken place to coincide with the lottery in certain geographies. Either of these factors may have led to bias in our ecological study design. Finally, although we used the recursive partitioning method to identify the kink point (when the Delta variant started to confound our research), it is difficult to completely disentangle the impact of the Delta variant on vaccination uptake, which happened not long after the lottery campaign.

Limitations

Our study had several limitations. First, because of the lack of daily individual-level data, we could not compare the populations in urban areas, where exposure to media could increase both vaccine awareness and information on the lottery, and where the abundance of health resources may have facilitated access to vaccines. However, in the absence of individual-level data, the demographic characteristics of lottery participants are unknown, so some proportion of lottery participants may have come from low-income populations in urban areas. Second, we detected a stronger response to the lottery in parishes in the top tertile (vs bottom tertile) of Hispanic population. Although this finding is veiled by the absence of individual-level data on lottery participants, it may again signal a stronger effect of the lottery on urbanized parishes than on rural parishes in Louisiana, because Hispanic people are highly concentrated in metropolitan areas of the state.

While the heterogeneous effects of the lottery detected in the analysis may reflect differences between urban parishes, which may be wealthier, more educated, and more ethnically diverse than their rural counterparts in Louisiana, they nonetheless point toward the importance of tailoring large lottery-type incentive campaigns to the intended audiences. Our findings indicate that the Louisiana lottery may only have incentivized populations who were predisposed to taking the vaccine but could not nudge residents with deeply entrenched antivaccine attitudes. Furthermore, the lottery may have exacerbated existing differences in vaccination uptake because urban residents—with better exposure and access to health services than rural residents—had a “better shot” at participating in the lottery. Finally, it is impossible to discount the potential counterproductive effects of the incentive campaign; previous research noted that intended beneficiaries might become suspicious of the reasons behind the incentive and may be even less likely to adopt the promoted behavior.
practices in other states with politically conservative populations and relatively low vaccination rates. Although effective on the margin, a lottery alone may not be a particularly strong nudge for people with predisposed vaccine hesitancy. Other nonmonetary interventions targeted to spread vaccine knowledge and ease the vaccination process may need to be considered.

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Yin Wang, MA https://orcid.org/0000-0002-3554-656X

References
1. Mollalo A, Tatar M. Spatial modeling of COVID-19 vaccine hesitancy in the United States. Int J Environ Res Public Health. 2021;18(18):9488. doi:10.3390/ijerph18189488
2. Gamio L, Walker AS. See which states are falling behind Biden’s vaccination goal. The New York Times. Updated June 3, 2021. Accessed August 2, 2021. https://www.nytimes.com/interactive/2021/06/03/us/virus-vaccine-states.html
3. Wright A. Lowest rates, highest hurdles: southern states tackle vaccine gap. Pew Charitable Trusts. June 17, 2021. Accessed August 2, 2021. https://pew.org/3xsSemk
4. Ruiz JB, Bell RA. Predictors of intention to vaccinate against COVID-19: results of a nationwide survey. Vaccine. 2021;39(7):1080-1086. doi:10.1016/j.vaccine.2021.01.010
5. Viswanath K, Bekalu M, Dhawan D, Pinnamaneni R, Lang J, McLeod R. Individual and social determinants of COVID-19 vaccine uptake. BMC Public Health. 2021;21(1):818. doi:10.1186/s12889-021-10862-1
6. Tolbert J, Orgera K, Garfield R, Kates J, Artiga S. Vaccination in 2021. Country-level data sets. Updated June 3, 2022. Accessed July 30, 2021. https://www.census.gov/data/tables/time-series/demo/county-level-data-sets.html
7. Stupar RM, Haisley E, Volpp KG, Pellathy T, Loewenstein G. The impact of alternative incentive schemes on completion of health risk assessments. Am J Health Promot. 2012;26(3):184-188. doi:10.4278/ajhp.100729-arb-257
8. Tolbert J, Orgera K, Garfield R, Kates J, Artiga S. Vaccination in 2021. Country-level data sets. Updated June 3, 2022. Accessed July 30, 2021. https://www.census.gov/data/tables/time-series/demo/county-level-data-sets.html
9. Louisianans vaccinated against COVID-19 by July 31 get a “Shot at a Million” in $2.3 million lottery for cash, scholarship prizes. News release. Office of the Governor, State of Louisiana. June 17, 2021. Accessed June 19, 2021. https://gov.louisiana.gov/index.cfm/newsroom/detail/3216
10. Louisiana Department of Health. Official rules. Accessed August 2, 2021. https://shotatamillion.com/official-rules
11. Vlaev I, King D, Darzi A, Dolan P. Changing health behaviors using financial incentives: a review from behavioral economics. BMC Public Health. 2019;19(1):1059. doi:10.1186/s12889-019-7407-8
12. Haisley E, Volpp KG, Pellathy T, Loewenstein G. The impact of alternative incentive schemes on completion of health risk assessments. Am J Health Promot. 2012;26(3):184-188. doi:10.4278/ajhp.100729-arb-257
13. Kim DG. Vaccination lottery. Econ Lett. 2021;208:110059. doi:10.1016/j.econlet.2021.110059
14. Robertson C, Schaefer KA, Scheitrum D. Are vaccine lotteries worth the money? Econ Lett. 2021;209:110097. doi:10.1016/j.econlet.2021.110097
15. Walkey AJ, Law A, Bosch NA. Lottery-based incentive in Ohio and COVID-19 vaccination rates. JAMA. 2021;326(8):766-767. doi:10.1001/jama.2021.11048
16. Centers for Disease Control and Prevention. COVID-19 vaccination data in the United States. Updated April 29, 2022. Accessed October 21, 2021. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/distributing/reporting-counties.html
17. Johns Hopkins University Center for Systems Science and Engineering. COVID-19 data repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. Accessed August 2, 2021. https://github.com/CSSEGISandData/COVID-19
18. McGovern T, United States general election presidential results by county from 2008 to 2020. Updated October 7, 2021. Accessed July 30, 2021. https://github.com/tommcg/US_County_Level_Election_Results_08-20
19. Office of the Assistant Secretary for Planning Evaluation. Vaccine hesitancy for COVID-19: state, county, and local estimates. June 16, 2021. Accessed July 30, 2021. https://aspe.hhs.gov/reports/vaccine-hesitancy-covid-19-state-county-local-estimates
20. US Census Bureau. County population by characteristics: 2010-2019. Updated October 8, 2021. Accessed July 30, 2021. https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-detail.html
21. US Department of Agriculture, Economic Research Service. County-level data sets. Updated June 3, 2022. Accessed July 30, 2021. https://www.ers.usda.gov/data-products/county-level-data-sets
22. Paternoster R, Brame R, Mazerolle P, Piquero A. Using the correct statistical test for the equality of regression coefficients. Criminology. 1998;36(4):859-866. doi:10.1111/j.1745-9125.1998.tb01268.x
23. With COVID-19 hospitalizations dropping to their lowest point, Gov. Edwards signs updated public health emergency order ending most restrictions. News release. Office of the Governor, State of Louisiana. May 25, 2021. Accessed August 2, 2021. https://gov.louisiana.gov/index.cfm/newsroom/detail/3153
24. US Food and Drug Administration. Coronavirus (COVID-19) update: FDA authorizes Pfizer-BioNTech COVID-19 vaccine for emergency use in adolescents in another important action

Public Health Reports 138(1)
in fight against pandemic. News release. US Food and Drug Administration. May 10, 2021. Accessed August 2, 2021. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-pfizer-biontech-covid-19-vaccine-emergency-use

25. Zeileis A, Hothorn T, Hornik K. Model-based recursive partitioning. *J Comput Graphic Stat*. 2008;17(2):492-514. doi:10.1198/106186008x319331

26. Hothorn T, Zeileis A. partykit: a modular toolkit for recursive partitioning in R. *J Machine Learning Res*. 2015;16(118):3905-3909.

27. Brehm M, Brehm P, Saavedra M. The Ohio vaccine lottery and starting vaccination rates. *Am J Health Econ*. 2022;8(3). Posted online October 13, 2021. doi:10.1086/718512

28. Barber A, West J. Conditional cash lotteries increase COVID-19 vaccination rates. *J Health Econ*. 2022;81:102578. doi:10.1016/j.jhealeco.2021.102578

29. Dai H, Saccardo S, Han MA, et al. Behavioural nudges increase COVID-19 vaccinations. *Nature*. 2021;597(7876):404-409. doi:10.1038/s41586-021-03843-2

30. Campos-Mercade P, Meier AN, Schneider FH, Meier S, Pope D, Wengström E. Monetary incentives increase COVID-19 vaccinations. *Science*. 2021;374(6569):879-882. doi:10.1126/science.abb0475

31. Kreps SE, Krimer DL. How do COVID-19 vaccine mandates affect attitudes toward the vaccine and participation in mandate-affected activities? Evidence from the United States. *Vaccine*. 2022. Posted online March 2, 2022. doi:10.1016/j.vaccine.2022.02.083

32. Sprengholz P, Betsch C, Böhm R. Reactance revisited: consequences of mandatory and scarce vaccination in the case of COVID-19. *Appl Psychol Health Well-Being*. 2021;13(4):986-995. doi:10.1111/aphw.12285

33. Batteux E, Mills F, Jones LF, Symons C, Weston D. The effectiveness of interventions for increasing COVID-19 vaccine uptake: a systematic review. *Vaccines (Basel)*. 2022;10(3):386. doi:10.3390/vaccines10030386

34. Ivory D, Leatherby L, Gebeloff R. Least vaccinated U.S. counties have something in common: Trump voters. *The New York Times*. Updated April 17, 2021. Accessed June 16, 2021. https://www.nytimes.com/interactive/2021/04/17/us/vaccine-hesitancy-politics.html

35. Martinelli M, Veltri GA. Do cognitive styles affect vaccine hesitancy? A dual-process cognitive framework for vaccine hesitancy and the role of risk perceptions. *Soc Sci Med*. 2021;289:114403. doi:10.1016/j.socscimed.2021.114403

36. Galarce EM, Minsky S, Viswanath K. Socioeconomic status, demographics, beliefs and A(H1N1) vaccine uptake in the United States. *Vaccine*. 2011;29(32):5284-5289. doi:10.1016/j.vaccine.2011.05.014

37. Chen W, Stoecker C. Mass media coverage and influenza vaccine uptake. *Vaccine*. 2020;38(2):271-277. doi:10.1016/j.vaccine.2019.10.019

38. Murthy BP, Sterrett N, Weller D, et al. Disparities in COVID-19 vaccination coverage between urban and rural counties—United States, December 14, 2020—April 10, 2021. *MMWR Morb Mortal Wkly Rep*. 2021;70(20):759-764. doi:10.15585/mmwr.mm7020e3

39. US Census Bureau. Racial and ethnic diversity in the United States: 2010 Census and 2020 Census. Accessed October 10, 2021. https://www.census.gov/library/visualizations/interactive/racial-and-ethnic-diversity-in-the-united-states-2010-and-2020-census.html

40. Who lives in New Orleans and metro parishes now? The Data Center. August 12, 2021. Accessed October 10, 2021. https://www.datacenterrsearch.org/data-resources/who-lives-in-new-orleans-now

41. Boxer ML. Improving Underserved Population Health: Attitudes on Medicaid Financial Incentives for Medication Adherence in Asthmatic Children. Dissertation. Medical University of South Carolina; 2018.

42. Roseleur J, Harvey G, Stocks N, Karnon J. Behavioral economic insights to improve medication adherence in adults with chronic conditions: a scoping review. *Patient*. 2019;12(6):571-592. doi:10.1007/s40271-019-00377-8

43. Judah G, Darzi A, Vlaev I, et al. Financial disincentives? A three-armed randomised controlled trial of the effect of financial Incentives in Diabetic Eye Assessment by Screening (IDEAS) trial. *Br J Ophthalmol*. 2018;102(8):1014-1020. doi:10.1136/bjophthalmol-2017-311778