THE CHANDRA LOCAL VOLUME SURVEY: THE X-RAY POINT-SOURCE CATALOG OF NGC 300

B. Binder1, B. F. Williams1, M. Eracleous2, T. J. Gaetz2, P. P. Plucinsky3, E. D. Skillman4, J. J. Dalcanton1, S. F. Anderson1, D. R. Weisz1, and A. K. H. Kong5

1 Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA
2 Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA
3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138, USA
4 Astronomy Department, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455, USA
5 Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan

Received 2012 April 25; accepted 2012 August 7; published 2012 September 20

ABSTRACT

We present the source catalog of a new Chandra ACIS-I observation of NGC 300 obtained as part of the Chandra Local Volume Survey. Our 63 ks exposure covers ~88% of the D25 isophote (R = 6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance to a limiting unabsorbed 0.3−8 keV luminosity of ~1036 erg s−1. Sources were cross-correlated with a previous XMM-Newton catalog, and we find 75 “X-ray transient candidate” sources that were detected by one observatory, but not the other. We derive an X-ray scale length of 1.7 ± 0.2 kpc and a recent star formation rate of 0.12 M⊙ yr−1 in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering ~32% of our Chandra field, was used to search for optical counterparts to the X-ray sources, and we have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background active galactic nucleus candidates. Finally, we present the X-ray luminosity functions (XLFs) at different X-ray energies, and we find the total NGC 300 X-ray point-source population to be consistent with other late-type galaxies hosting young stellar populations (<50 Myr). We find that XLF of sources associated with older stellar populations has a steeper slope than the XLF of X-ray sources coinciding with young stellar populations, consistent with theoretical predictions.

Key words: galaxies: individual: NGC 300 – galaxies: spiral – X-rays: binaries – X-rays: galaxies

Online-only material: color figures, machine-readable tables

1. INTRODUCTION

The X-ray emission from normal, non-active galaxies originates from a mixture of stellar sources and hot, diffuse gas. In spiral galaxies, this X-ray emission is dominated by X-ray binaries (XRBs) comprising either a neutron star (NS) or a black hole (BH) accreting from a stellar companion. The fast evolution timescale of massive stars (~107 years) makes X-ray emission from high-mass XRBs (HMXBs) nearly simultaneous with their formation (Shtykovskiy & Gilfanov 2007), while the emission from high-mass XRBs (HMXBs) nearly simultaneous with their formation (Shtykovskiy & Gilfanov 2007), while the

well-studied disks of M 31 (Kong & Di Stefano 2003) and M 33 (Williams et al. 2008; Plucinsky et al. 2008; Tüllmann et al. 2011), these galaxies contain ~99% of the stellar mass and ~90% of the recent star formation out to a distance of ~3.3 Mpc (Tikhonov et al. 2005; Maíz-Apellániz et al. 2002; Freedman & Madore 1988). Additionally, these galaxies span a representative sample of disk galaxies with a range of masses, metallicities, and morphologies.

In this paper, we present the results of a new Chandra observation of the nearby SA(s)d spiral galaxy NGC 300, located at a distance of 2.0 Mpc (Dalcanton et al. 2009) in the Sculptor Group. NGC 300 is a near-optical twin of the Local Group galaxy M 33, and has a low foreground Galactic absorption of 4.09 × 1020 cm−2 (Kalberla et al. 2005) and is viewed at an inclination angle i = 42°; Table 1 lists some basic properties of NGC 300 as well as M 33 and the Milky Way for direct comparison.

The first X-ray population studies of NGC 300 were performed with ROSAT between 1991 and 1997 (Read & Pietsch 2001), identifying 29 bright X-ray sources including NGC 300 X-1, a highly variable supersoft source, and other bright sources coincident with known supernova remnants (SNRs) and H ii regions. More recently, an XMM-Newton survey of the X-ray source population of NGC 300 was presented by Carpano et al. (2005) down to a limiting luminosity of ~3 × 1035 erg s−1 in the 0.3−6 keV band. A total of 163 sources were detected in the energy range of 0.3–6 keV, and the 86 sources falling within the D25 optical disk were further characterized using hardness ratios (HRs), X-ray fluxes, and the available ground-based optical imaging. A brief summary of previous X-ray NGC 300 studies is provided in Table 2.
Before the publication of the full Chandra X-ray point-source catalog, our collaboration employed this new observation of NGC 300 to study two individual objects of interest: the “supernova impostor” SN 2010da, which we argue is consistent with a Be-X-ray binary (comprised of a young, rapidly rotating B-type star with strong emission lines and a NS) origin (Binder et al. 2011b), and the BH + Wolf–Rayet binary NGC 300 X-1 (Binder et al. 2011a). These sources are included as part of the X-ray source catalog, but are not discussed in detail in this work.

The organization of this paper is as follows. In Section 2 observations and data reduction, we provide the details of our new observation, data reduction procedure, and the technique used to generate the X-ray source catalog. An analysis of the X-ray source catalog, including procedures. Images were created with bin sizes of 1, 2, 3, and 4 pixels for each of the following energy bands: 0.35–8 keV. Exposure maps were constructed using mkinstmap and mkexpmap in CIAO. Exposure-corrected images were generated using our exposure maps and instrument maps. The instrument maps were created assuming spectral weights appropriate for a power-law spectrum typical of XRBs and background AGNs (Γ = 1.9). The average foreground column density N_H was used.

Figure 1 shows an red giant branch (RGB) rendered X-ray image of NGC 300, with numerous X-ray sources visible. Soft X-ray emission (0.35–1 keV) is shown in red, medium X-ray emission (1–2 keV) is shown in green, and hard X-ray emission (2–8 keV) is in blue. The D25 isophote is superimposed in white.

Nine HST fields were used to search for optical counterparts of each of our X-ray point sources. Three HST Advanced Camera for Surveys (ACS; Ford et al. 1998) observations of NGC 300 were taken as part of the ACS Nearby Galaxy Survey Treasury (GO-10915) forming a radial strip from the center of the galaxy into the disk, hereafter referred to as “WIDE1-3.” Six additional archival ACS images scattered across the NGC 300 disk (GO-9492) are also included, and labeled as “NGC 300-1-6.” Detailed descriptions of the HST star catalogs, including photometric measurements and quality cuts, are given in Williams et al. (2009) and Dalcanton et al. (2009), while a thorough discussion of the survey completeness and SFHs of NGC 300 are presented in Gogarten et al. (2010).

Figure 2 shows a ground-based Palomar Observatory Sky Survey (POSS) image of NGC 300, with the locations of the X-ray point sources superimposed. These sources were selected based on their X-ray emission properties, and the associated optical counterparts were identified using optical wavebands.

Table 1
Summary of NGC 300 Properties

Property	NGC 300	M 33	Milky Way
Distance	2.0 Mpc	800 kpc	8.5 kpc
Type	SA(s)d	SA(s)d	SBe
M_B	-17.66	-18.4	-20.3
Scale length (kpc)	1.3	1.4	3.0 ± 0.22
Circular velocity	97 km s^{-1}	130 km s^{-1}	239 ± 5 km s^{-1}
Estimated stellar mass	4.3 × 10^6 M_☉	4.5 × 10^6 M_☉	6.43 ± 0.63 × 10^10 M_☉

Notes.

a Dalcanton et al. (2009).

b Williams et al. (2009).

c NED.

d Vila-Costas & Edmunds (1992).

e Muñoz-Mateos et al. (2007).

f Puche et al. (1990).

g Corbelli & Salucci (2000).

h McMillan (2011).

Table 2
Summary of Prior X-Ray Surveys of NGC 300

Observatory	Number of Detected Sources (within D25)	Limiting Unabsorbed Luminosity (10^{46} erg s^{-1})	References
ROSAT	47 (29)	~4.0 (~7.7)	Read & Pietsch (2001)
XMM-Newton	163 (86)	~0.3 (~0.4)	Carpano et al. (2005)
Chandra	95 (77)	1.5	This work

Notes.

a The limiting unabsorbed luminosities correspond to the 0.1–2.4 keV and 0.3–6.0 keV energy ranges for ROSAT and XMM-Newton, respectively. In parenthesis we provide expected 0.35–8 keV limiting unabsorbed luminosity assuming a power law with Γ = 1.9 and N_H = 4.09 × 10^{20} cm^{-2}.

2. OBSERVATIONS AND DATA REDUCTION

2.1. Observations

NGC 300 was observed on 2010 September 25 for 63 ks using ACIS-I during the Chandra X-Ray Observatory Cycle 12, observation ID 12238. Data reduction was carried out with CIAO v4.3 and CALDB v4.4.2 using standard reduction procedures. Images were created with bin sizes of 1, 2, 3, and 4 pixels for each of the following energy bands: 0.35–8 keV. Exposure maps were constructed using mkinstmap and mkexpmap in CIAO. Exposure-corrected images were generated using our exposure maps and instrument maps. The instrument maps were created assuming spectral weights appropriate for a power-law spectrum typical of XRBs and background AGNs (Γ = 1.9). The average foreground column density N_H was used.

Figure 1 shows an red giant branch (RGB) rendered X-ray image of NGC 300, with numerous X-ray sources visible. Soft X-ray emission (0.35–1 keV) is shown in red, medium X-ray emission (1–2 keV) is shown in green, and hard X-ray emission (2–8 keV) is in blue. The D25 isophote is superimposed in white.

Figure 2 shows a ground-based Palomar Observatory Sky Survey (POSS) image of NGC 300, with the locations of the X-ray point sources superimposed. These sources were selected based on their X-ray emission properties, and the associated optical counterparts were identified using optical wavebands.
To classify optical counterparts to our Chandra X-ray sources, we place both the Chandra and HST frames onto the International Celestial Reference System by finding matches between stars or background galaxies in the Two Micron All Sky Survey (2MASS) Point Source Catalog (Skrutskie et al. 2006). We performed relative astrometry by individually aligning each HST and Chandra field to the same reference image frame and coordinate system.

For our reference image, we retrieved a publicly available ground-based R-band image (see Larsen & Richtler 2000 for more details) of NGC 300 from NED. Foreground 2MASS stars with ground-based R-band counterparts were identified, and we used the IRAF task `ccmap` to compute the plate solution and update the image header with corrected WCS information. By using the 2MASS stars as reference, the astrometric solution yielded root-mean-square (rms) residuals of $0\arcsec.00773$ in right ascension and $0\arcsec.0225$ in declination relative to the 2MASS astrometry for the ground-based R-band image.

We were next able to align each of our HST frames and our Chandra frame to the 2MASS-aligned ground-based R-band image. For each HST field, we identified potential matches between the ground-based R-band image and the $F814W$ frames; we typically were able to match three to eight stars per HST frame. The plate solutions were again computed using `ccmap`, with rms residuals typically less than a few hundredths of an arcsecond in both right ascension and declination. The Chandra field was searched for X-ray sources that matched the positions of foreground stars or background galaxies in 2MASS. Five sources were identified, and we obtained rms residuals of $0\arcsec.13$ in right ascension and $0\arcsec.26$ in declination. The total alignment error for each field was computed by summing...
in quadrature the rms residuals in the individual fields and the ground-based R-band image. The results of our 2MASS astrometry are summarized in Table 3.

2.3. Source Catalog Creation

We employed the same source detection strategy described by Tüllmann et al. (2011) in the *Chandra* ACIS Survey of M33 (ChASeM33) source catalog. We present a summary of the approach here; the reader is referred to ChASeM33 for further details. The CIAO task `wavdetect` (Freeman et al. 2002) was first used to create a list of potential source candidates. The positions of these potential sources were then used as input to ACIS-Extract (`AE`; Broos et al. 2010), a source extraction, and characterization tool. `AE` was used to determine various source properties (source and background count rates, detection significances, etc.) in multiple, user-defined energy bands. Additionally, `AE` extracts spectra (with appropriate response matrices) and examines source light curves for temporal variability (see Broos et al. 2010 for details). The Poisson probability of not being a source (`prob_no_source`; hereafter `pns`) is provided by `AE` for each source (taking the local background uncertainty into account). We use these `pns` values as our source significance threshold criteria when constructing the NGC 300 X-ray point-source catalog.

Our initial source list was deliberately generated with many more sources than we anticipated being statistically significant. We then applied an iterative procedure to remove sources with increasing significance thresholds, until only a small number of false sources remained in the final source list. Each time the source list was filtered, the output was visually examined for potentially lost (real) sources. We used the same images described in Section 2.1 using a variety of binning and energy ranges to create the initial source list: `wavdetect` was run on each energy and bin combination, using `scale` sizes ranging from 1 to 16 in a power-of-two sequence. To generate the initial list of candidate sources, we ran `wavdetect` with the following parameters: the source significance (`sigthresh`) was set to 10^{-4} (to catch all real sources and many false ones), the cleansing threshold (`bkgsigthresh`) was set to 10^{-2} (Freeman et al. 2002), and we used maximum number of cleansing iterations (`maxiter`) of 5. Default values were used for all other `wavdetect` parameters. The resulting candidate lists were merged and culled of duplicate sources, resulting in an initial source list comprised of 799 candidate sources.

Low rates of false detections using the $\ AE$ pns threshold criteria result from values below $\sim 10^{-6}$ (Nandra et al. 2005; Georgakakis et al. 2008; Tüllmann et al. 2011). We adopt a value of $pns = 4 \times 10^{-6}$ as our criteria for selecting those sources that are highly likely to be genuine. However, due to the high number of source candidates in our initial list, source crowding posed a serious issue and made defining background regions problematic. To address this issue, the output from our first $\ AE$ iteration was filtered with $pns = 10^{-2}$. The filtered source list contained revised source properties and improved background estimates. All sources failing to meet this initial pns threshold were visually examined, and any obviously missed sources were added back to the candidate source list. The source list resulting from our first iteration contained 224 sources. We then ran $\ AE$ again on the filtered source list, this time raising the pns threshold to 10^{-3}. Source crowding was again reduced and spurious sources were filtered out, yielding an output list of 129 potential sources. Again, sources failing to meet our new pns criteria were visually examined and returned to the source list if necessary.

$\ AE$ was run a final time on the resulting source list, and the pns value was computed in each of the following nine energy bands (in keV): 0.5–8, 0.5–2, 2–8, 0.5–1, 1–2, 2–4, 4–8, 0.35–1, and 0.35–8. To be included in the final NGC 300 catalog, a source was required to have a pns value less than 4×10^{-6} in any of the nine energy bands; if only the 0.35–8 keV band were considered, $\sim 4\%$ of significant sources would have been lost. The final CLVS source catalog for NGC 300 contains 95 sources. Their positions and properties, such as detection significance (pns value), net counts, and photon flux (in eight different energy bands) are listed in Tables 4–7.

2.4. Sensitivity Maps

$\ AE$ provides an estimate of the photon flux ($\ flux2$) based on the net number of source counts ($\ net cnts$), the exposure time, 6 Source catalogs are available in FITS format at http://www.astro.washington.edu/users/bbinder/CLVS/.

Table 3

Description	Observation ID	R.A. (J2000)	Decl. (J2000)	No. of Sources Used for Alignment	R.A.	Decl.	No. of X-Ray Sources
Chandra	12238	00:54:53.05	−37:38:42.1	4	0′.1332	0′.2580	95
Wide-1	10915	00:54:21.37	−37:37:56.3	5	0′.0518	0′.0400	25
Wide-2	10915	00:54:34.74	−37:39:25.2	4	0′.0171	0′.0342	6
Wide-3	10915	00:54:47.7	−37:40:51.6	4	0′.0171	0′.0535	5
NGC 300-1	9492	00:55:35.66	−37:41:25.2	3	0′.0340	0′.0421	1
NGC 300-2	9492	00:54:52.96	−37:38:59.8	6	0′.0772	0′.0435	2
NGC 300-3	9492	00:54:55.33	−37:42:45.4	5	0′.0179	0′.0263	5
NGC 300-4	9492	00:54:24.42	−37:34:20.8	5	0′.0528	0′.0449	2
NGC 300-5	9492	00:54:26.89	−37:39:01.4	8	0′.0230	0′.0441	9
NGC 300-6	9492	00:54:27.12	−37:44:23.2	4	0′.0253	0′.0400	7

Notes.

a Alignment errors listed show the uncertainties in each individual field and the ground-based R-band image added in quadrature. The error in parentheses is the uncertainty reported by cemap for the individual field.

b Used `rxyscale`.

6 Source catalogs are available in FITS format at http://www.astro.washington.edu/users/bbinder/CLVS/.
Table 4
NGC 300 Source List

Source No.	Source ID	R.A. (J2000)	Decl. (J2000)	Positional Error (")	Total Exp. Map Value (s cm\(^{-2}\))	\(R_{\text{src}}\) (sky pixel)	\(\theta\) (')
1	005411.98–373951.8	13.549937	−37.664408	0.70	1.589 \times 10^7	13.43	8.2
2	005412.31–373359.6	13.551319	−37.566583	0.93	1.434 \times 10^7	16.66	9.3
3	005413.98–373710.5	13.558268	−37.619588	0.36	1.588 \times 10^7	12.14	7.9
4	005415.37–373316.4	13.564907	−37.554563	0.59	1.210 \times 10^7	15.25	9.2
5	005419.92–373744.5	13.583001	−37.629302	0.61	1.711 \times 10^7	8.49	6.6

Notes. Column 2: the source ID also contains the source coordinates (J2000.0). Column 5: the positional uncertainty is a simple error circle (in "') around R.A. and decl. Column 6: sum of mean exposure map values in the source region. Column 7: the average radius of the source extraction region (1 sky pixel = 0.392). Column 8: off-axis angle. Only the first five entries are shown.

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

Table 5
Logarithmic \(p_{\text{ns}}\) Values for Different Energy Bands

Source No.	\(\log(p_{\text{ns}})\) (0.5–8.0 keV)	\(\log(p_{\text{ns}})\) (0.5–2.0 keV)	\(\log(p_{\text{ns}})\) (2.0–8.0 keV)	\(\log(p_{\text{ns}})\) (0.35–8.0 keV)	\(\log(p_{\text{ns}})\) (0.35–1.1 keV)	\(\log(p_{\text{ns}})\) (1.1–2.6 keV)	\(\log(p_{\text{ns}})\) (2.6–8.0 keV)	\(\log(p_{\text{ns}})\) (0.35–2.0 keV)
1	−9.32	−8.60	−3.16	−9.13	<−10	<−10	2.05	2.05
2	−4.54	−3.57	−2.17	−4.81	<−10	<−10	2.80	2.77
3	<−10	<−10	<−10	<−10	<−10	<−10	6.03	6.03
4	<−10	<−10	<−10	<−10	<−10	<−10	4.76	4.76
5	−5.48	−4.58	−2.15	−6.04	<−10	<−10	1.41	1.41

Notes. The (logarithmic) \(p_{\text{ns}}\) value is the Poisson probability of not being a source. \(\log(p_{\text{ns}})\) values smaller than −10 have been replaced by <−10. All these cases are highly significant detections. Only the first five entries are shown.

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

Table 6
Total Net Counts in Different Energy Bands

Source No.	\(\text{net}_{\text{cnts}}\) (0.5–8.0 keV)	\(\text{net}_{\text{cnts}}\) (0.5–2.0 keV)	\(\text{net}_{\text{cnts}}\) (2.0–8.0 keV)	\(\text{net}_{\text{cnts}}\) (0.35–8.0 keV)	\(\text{net}_{\text{cnts}}\) (0.35–1.1 keV)	\(\text{net}_{\text{cnts}}\) (1.1–2.6 keV)	\(\text{net}_{\text{cnts}}\) (2.6–8.0 keV)	\(\text{net}_{\text{cnts}}\) (0.35–2.0 keV)
1	22.9±6.6	13.2±3.0	9.6±3.9	22.8±6.6	<1.1	17.1±5.5	6.4±3.5	13.2±3.8
2	17.3±6.5	8.3±3.3	9.1±3.9	18.2±6.6	<1.3	7.9±3.3	9.9±4.6	9.1±4.6
3	70.9±9.8	45.6±7.9	25.3±6.6	70.8±9.8	16.5±5.2	40.3±7.6	14.0±5.4	45.6±7.9
4	45.3±8.5	25.5±6.3	19.8±6.3	45.1±8.5	6.0±3.8	24.6±6.2	14.5±5.7	25.3±6.3
5	11.2±4.9	6.3±3.8	4.9±3.8	12.1±5.0	3.7±3.2	5.2±3.6	3.2±3.4	7.2±3.0

Notes. Only the first five entries are shown.

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

Table 7
Photon Flux (photons cm\(^{-2}\) s) in Different Energy Bands

Source No.	\(\log(f_{\text{flux}})\) (0.5–8.0 keV)	\(\log(f_{\text{flux}})\) (0.5–2.0 keV)	\(\log(f_{\text{flux}})\) (2.0–8.0 keV)	\(\log(f_{\text{flux}})\) (0.35–8.0 keV)	\(\log(f_{\text{flux}})\) (0.35–1.1 keV)	\(\log(f_{\text{flux}})\) (1.1–2.6 keV)	\(\log(f_{\text{flux}})\) (2.6–8.0 keV)	\(\log(f_{\text{flux}})\) (0.35–2.0 keV)
1	−5.75	−6.11	−6.09	−5.74	−6.07	−6.25	−6.07	−6.07
2	−5.84	−6.28	−6.08	−5.81	−6.83	−6.40	−6.04	−6.20
3	−5.26	−5.57	−5.67	−5.25	−5.54	−5.69	−5.91	−5.54
4	−5.28	−5.65	−5.60	−5.27	−5.77	−5.74	−5.73	−5.61
5	−6.07	−6.45	−6.39	−6.03	−6.23	−6.60	−6.57	−6.35

Notes. Only the first five entries are shown.

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)
and the mean ARF in the given energy band. To convert this photon flux into an energy flux, knowledge of the intrinsic X-ray spectrum is required; however, less than 20% of the NGC 300 X-ray sources have a sufficiently large number of counts that can be used to constrain a spectral model.

To enable a uniform comparison between NGC 300 and M33, we adopt the same approach as employed by Tüllmann et al. (2011): we assume an absorbed power-law spectrum, with \(\Gamma = 1.9 \) and \(N_H = 4.09 \times 10^{20} \) cm\(^{-2} \), to estimate the energy flux for each source. This model is hereafter referred to as the “standard model,” and appears to be reasonable for both XRBs associated with NGC 300 as well as for background AGNs (especially at low flux levels). We note that the energy flux estimate for individual sources may be off by as much as a factor of two if the true spectrum is different from our assumed one, although the net effect of this assumption is not expected to systematically bias the log\(N \)–log\(S \) relation to higher or lower fluxes.

3. THE X-RAY SOURCE CATALOG

Various properties of individual X-ray sources, such as their temporal variability or spectral shape, can be used to constrain the physical origin of the X-ray emission. Additionally, bulk population properties (i.e., radial source distribution and the XLF) allow us to discriminate between those sources associated with NGC 300 and background AGNs in a statistical sense. We expect the observable X-ray point-source population of NGC 300 to be comprised of HMXBs, LMXBs, background AGNs, and a few bright SNRs. To match each point source to its most likely physical origin, we use our catalog to identify time-variable sources, analyze HRs (for faint sources) and spectra (for sufficiently bright sources), and create XLFs. The additional matched HST optical observations allow us to identify candidate optical counterparts and measure correlations between the X-ray emission and the underlying stellar age as a function of radius of NGC 300.

3.1. Comparison with XMM-Newton and Temporal Variability

Some classes of XRBs, as well as background AGNs, exhibit long-term X-ray variability on timescales of months to years, while SNRs and some HMXBs will show persistent X-ray emission. To search for long-term variability, we compared our

Table 8

Energy (keV)	70% \((10^{35} \text{ erg s}^{-1}) \)	90% \((10^{35} \text{ erg s}^{-1}) \)	95% \((10^{35} \text{ erg s}^{-1}) \)
(1)	(2)	(3)	(4)
0.35–8	7.7	15	45
0.5–2	4.5	8.8	27
2–8	21	41	120

Table 9

Source No. CLVS	Source No. XMM-Newton	Positional Offset (″)	\(\xi \)	\(\eta \)	\(\text{flux}_{\text{max}} / \text{flux}_{\text{min}} \)
(1)	(2)	(3)	(4)	(5)	(6)
1	41	0.76	0.7958	0.21	1.41
3	17	1.38	0.9152	0.79	2.49
6	45	0.98	0.5160	0.44	1.69
7	39	0.60	0.5590	2.79	4.30
8	42	1.70	0.2267	0.14	1.26

Notes. Columns 1 and 2 give the CLVS and XMM-Newton source numbers, respectively. Column 3: the difference (in arcseconds) between the CLVS and the XMM-Newton source positions. Sources with positional offsets less than 3′ are considered matches. Column 4 is the K-S probability of the source being constant within our Chandra observation (short-term variability). Sources with K-S probabilities of \(\xi \leq 3.7 \times 10^{-3} \) are likely to show short-term variability and are shown in boldface. Column 5: \(\eta \) is the variability index defined by Tüllmann et al. (2011) and is sensitive to long-term variability; sources with variability indices of \(\eta \geq 5 \) are likely to show long-term variability and are shown in boldface. Column 6: variability factor expressed as the ratio of \(\text{flux}_{\text{max}} / \text{flux}_{\text{min}} \). Only the first five entries are shown.

Chandra X-ray catalog to the XMM-Newton survey conducted by Carpano et al. (2005), which contained 86 sources within the \(D_{25} \) isophote of NGC 300. We consider sources with X-ray positional offsets <3′ to be matches.

To correct for the differences in energy ranges between Chandra (0.35–8 keV) and XMM-Newton (0.3–6 keV), we converted all XMM-Newton fluxes into Chandra fluxes assuming our standard model. Due to the differences in energy resolution, detector efficiencies, etc., we cannot compare Chandra and XMM-Newton HRs to search for changes in spectral shape (see Section 3.2 for further discussion of source HRs). Tüllmann et al. (2011) defined a variability threshold as \(\eta = (\text{flux}_{\text{max}} - \text{flux}_{\text{min}}) / \Delta\text{flux} \), where the flux error \(\Delta\text{flux} \) is calculated using the Gehrels approximation (appropriate for low count data; Gehrels 1986), to identify sources with potential long-term variability. Any source with \(\eta \geq 5 \) is considered potentially variable; according to this criteria, eight sources in the NGC 300 catalog exhibit long-term variability. Table 9 lists the temporal variability measurements for the 52 sources observed by both Chandra and XMM-Newton, with sources showing evidence of variability listed in boldface.

We found a total of 75 X-ray sources that were detected by either Chandra or XMM-Newton, but not both. For these sources, we use the detection limit of the observatory in which the source was not observed to set a lower limit on the long-term source variability. X-ray transients (XRTs) observed in the Milky Way and other nearby galaxies originate in either LMXBs or HMXBs, but in all cases the peak X-ray luminosity exceeds the quiescent X-ray luminosity by more than an order of magnitude. We therefore define XRT candidates in NGC 300 as those sources whose maximum luminosity is at least an order of magnitude above the detection limit for the exposure in which they were not observed. The 25 sources meeting this criteria are listed in Table 9.

We additionally searched the Chandra source catalog for short-term variability in the 0.35–8 keV band (i.e., variability that occurs on timescales less than the exposure time, \(\sim 18 \) hr). We used a Kolmogorov–Smirnov (K-S) test to compare the cumulative photon arrival time distribution for each X-ray source to a uniform count rate model. The K-S test returns a probability that both distributions were drawn from the same
underlying distribution. One source (18) has a K-S probability indicating rapid variability at the 3σ level.

3.2. Hardness Ratios

The X-ray spectrum of a source can provide a key diagnostic for separating different sources. For example, XRBs and AGNs are typically well described with power laws with photon indices $\Gamma = 1.5–2.0$, while soft X-ray sources (such as SNRs) show spectra consistent with a thermal plasma of temperatures of ~0.3–0.8 keV (Long et al. 2010). Still, other sources, such as low-luminosity AGNs, may exhibit an X-ray spectrum consistent with bremsstrahlung emission (Yi & Boughn 1998). However, in order to constrain the fit parameters of these various models to believable values, a sufficiently high signal-to-noise is required. Even in the best case scenario, low signal-to-noise data (less than ~50 counts) can only have a power-law photon index constrained to ~50% accuracy. The majority of the NGC 300 X-ray sources in our catalog fall into this low-count category (see Figure 3).

To assess the X-ray spectral shape for low-count sources, a different approach must be used. HRs, also referred to as X-ray colors, are computed for various energy bands to measure the fraction of soft (S, 0.35–1.1 keV), medium (M, 1.1–2.6 keV), and hard (H, 2.6–8.0 keV) photons emitted by a source. A source comprised of a thermally emitted X-rays, such as an SNR, will show characteristically soft X-ray colors, while an obscured background AGN (having had most of its softer X-rays absorbed) will exhibit a significantly harder X-ray color.

Source No.	R.A. (J2000)	Decl. (J2000)	η	$\text{flux}_{\text{max}}/\text{flux}_{\text{min}}$
CXO-4	13.564907	−37.554563	16.11	21.76
CXO-12	13.605871	−37.546400	11.52	15.84
CXO-24	13.641366	−37.796388	15.37	24.81
CXO-29	13.657195	−37.542294	9.94	12.50
CXO-33	13.669315	−37.534468	32.23	42.53
CXO-44	13.689520	−37.542735	12.91	18.54
CXO-52	13.707457	−37.515847	12.24	17.26
CXO-73	13.770201	−37.695464	13.49	20.47
CXO-76	13.779925	−37.504917	8.33	10.63
CXO-87	13.825446	−37.553972	12.92	18.80
CXO-89	13.837805	−37.488834	41.25	68.58
XMM-2	13.795250	−37.809556	13.80	403.83
XMM-3	13.709708	−37.647083	21.06	594.39
XMM-4	13.795458	−37.648417	11.15	85.26
XMM-5	13.669417	−37.680250	5.39	57.76
XMM-8	13.835292	−37.802833	3.86	35.67
XMM-10	13.835292	−37.643944	6.35	60.56
XMM-16	13.706458	−37.666861	5.55	51.68
XMM-18	13.708292	−37.782611	5.00	43.24
XMM-23	13.583208	−37.652472	4.15	30.07
XMM-25	13.926000	−37.673250	5.91	28.49
XMM-43	13.722000	−37.722000	3.27	18.90
XMM-52	13.566292	−37.566292	2.92	12.68
XMM-53	13.807708	−37.807708	3.27	12.51
XMM-59	13.849958	−37.756694	3.28	12.29

Notes.

a Sources labeled as “CXO” were detected in our Chandra catalog only; sources labeled as “XMM” were detected in the Carpano et al. (2005) XMM-Newton catalog only.

b The long-term variability index η and the variability factor $\text{flux}_{\text{max}}/\text{flux}_{\text{min}}$ listed are lower limits.

We evaluate two HRs for each source using source and background counts determined by AE in the bands listed above. We define a “soft” color,

$$HR1 = \frac{M - S}{H + M + S},$$

and a “hard” color,

$$HR2 = \frac{H - M}{H + M + S}.$$

We use the Bayesian estimation of hardness ratios (BEHR; Park et al. 2006) in an approach described by Tüllmann et al. (2011) (see also Prestwich et al. 2009) to determine the HRs of the NGC 300 X-ray sources. The BEHR code has the advantage of requiring source and background counts to be non-negative (net counts for low-count sources can be negative due to fluctuations in the source and background estimates, resulting in unphysical HRs); however, it cannot directly compute HRs in the form we require. We therefore use the BEHR code to generate 50,000 samples of the probability distribution of source fluxes for each energy band. To do this, we use as input to BEHR the following quantities from the AE output for each source: source and background counts, the AE “backscale” parameter (to account for the ratio of the source and background extraction areas and efficiencies), and a factor converting from counts to flux (i.e., the exposure time multiplied by the mean of the ARF over the extraction region in the appropriate energy band). We then run the BEHR code twice, once for S and M and again for S and H. We combine the results from our two BEHR runs to obtain 50,000 values of HR1 and HR2 for each source. Because the difference of two Poisson distributions does not follow Poisson statistics, we do not use the error estimates directly provided by these BEHR runs. Instead, the HR value is defined as the mean of the distribution, and the credible interval is evaluated based on the 68.2% equal-tail estimates (i.e., 0.682/2 of the samples have values below the lower limit, and 0.682/2 of the samples have values above the upper limit). Our HRs for each source are listed in Table 11.
bands considered in this work, we modify the classification scheme slightly. We simulated spectra for thermal sources of varying temperature (0.1–2 keV) and power-law sources (with $\Gamma = 0.4–3$) with different levels of absorption and calculated HR1 and HR2 for each source to inform our X-ray color cuts. We define six categories: XRBs (which likely also contain a significant fraction of background AGNs), SNRs, absorbed sources (“ABS”), indeterminate soft sources (“SOFT”), indeterminate hard sources (“HARD”), and sources with an indeterminate spectral type (labeled “INDET,” although we do not observe any sources with HRs fitting this criteria). Indeterminate sources are those whose X-ray spectra are ambiguous; for example, “HARD” sources may have exceptionally flat power-law spectra, suffer extreme absorption, have multiple spectral components that cannot be distinguished due to our low number of source counts, or some combination of these effects. The color–color classification scheme is summarized in Table 12, and a plot of the HRs for the NGC 300 X-ray source population is shown in Figure 4.

We find most of the NGC 300 sources fall within the “XRB” category (41%), and an additional ~12% of sources are categorized as SNRs. This is not surprising—X-ray emission from non-active spiral galaxy with recent star formation is expected to be dominated by XRBs and bright SNRs. Nearly one-third of the NGC 300 X-ray sources show evidence for absorption beyond the Galactic column. Two sources exhibit unusually hard X-ray colors, and are likely background AGNs whose soft X-ray emission has suffered a high degree of absorption. Thirteen sources show unusually soft X-ray colors. These may be very soft XRBs, sources with unusual absorption, or foreground objects not associated with NGC 300.

3.3. X-Ray Spectral Analysis

As discussed above, the X-ray spectrum of a source depends on the physical X-ray production mechanism. The value of the spectral fit parameters can reveal further clues as to the nature of the X-ray emission. For example, XRBs containing a NS primary will show a hard power law with $\Gamma \sim 1–1.5$, while BH primaries produce a significantly softer spectrum with $\Gamma \sim 2–2.5$.

Source No.	HR1	HR2	Class
1	0.72 ± 0.25	-0.71 ± 0.32	ABS
2	0.19 ± 0.41	-0.09 ± 0.51	XRB
3	0.36 ± 0.13	-0.56 ± 0.12	SOFT
4	0.50 ± 0.15	-0.47 ± 0.21	ABS
5	-0.07 ± 0.46	-0.15 ± 0.35	XRB

Note. Only the first five entries are shown.
Table 13
Best-fit Spectral Models for Sources with More Than 50 Counts

No.	Best-fit Model	N_H b (cm^{-2})	\(\Gamma \)	\(kT \) (keV)	Norm c	\(dof \) d	C	\(L_X \) (0.5–2.0 keV) (10^{36} erg s^{-1})	\(L_X \) (0.5–8.0 keV) (10^{38} erg s^{-1})	“goodness” e (%)
3	pow	1.7 ± 0.3	...	3.12 × 10^{-6}	1016	576.19	3.3 ± 1.1	8.5^{+3.3}_{-2.1}	45.38	
11	pow	1.5 ± 0.4	...	2.39 × 10^{-6}	1016	625.87	2.6 ± 0.7	8.0^{+2.2}_{-1.8}	82.80	
23	pow	7.0^{+0.6}_{-0.4}	2.4^{+0.9}_{-0.7}	1.10 × 10^{-5}	1016	464.43	2.7^{+1.1}_{-0.9}	10.3^{+4.2}_{-3.3}	32.70	
24	apec	4.8^{+20.7}_{-2.7}	1.22 × 10^{-5}	1016	750.98	3.4^{+10.0}_{-3.1}	7.9^{+1.8}_{-3.8}	98.38
25	pow	<0.4	...	4.42 × 10^{-6}	1016	385.29	3.2^{+1.9}_{-1.0}	6.2^{+1.9}_{-1.9}	55.28	
28	pow	<0.4	...	2.17 × 10^{-6}	1016	438.60	2.4 ± 0.7	8.2^{+2.7}_{-2.0}	44.54	
33	pow	0.2^{+0.5}_{-0.2}	1.8^{+0.9}_{-0.7}	6.99 × 10^{-6}	1015	679.83	7.4^{+26}_{-7.0}	16.7^{+4.2}_{-10.5}	55.04	
35	pow	1^{+1.0}_{-0.5}	3^{+0.7}_{-0.4}	...	6.66 × 10^{-6}	1015	706.75	7.4^{+10.0}_{-7.8}	27.5^{+4.1}_{-10.9}	41.04
39	pow	1.5 ± 0.4	...	2.29 × 10^{-6}	1016	590.38	2.5^{+0.7}_{-0.5}	7.7^{+2.5}_{-1.8}	64.26	
43	apec	0.4 ± 0.1	1.92 × 10^{-5}	1016	456.08	6.8^{+12}_{-1.7}	6.8^{+12.3}_{-1.4}	66.84
50	pow	1.6 ± 0.3	...	4.12 × 10^{-6}	1016	631.44	4.4^{+10.8}_{-4.9}	12.3^{+3.0}_{-2.1}	91.80	
52	pow	0.9^{+0.9}_{-0.6}	2.5^{+1.1}_{-1.0}	...	8.22 × 10^{-6}	1016	390.55	1.6^{+11.1}_{-0.7}	5.7^{+3.9}_{-2.5}	55.88
53	pow	<0.3	...	3.31 × 10^{-6}	1016	380.30	3.5^{+17.2}_{-0.7}	6.7^{+3.2}_{-13}	52.93	
87	pow	<0.2	...	7.31 × 10^{-6}	1016	371.56	2.7^{+8.0}_{-0.8}	5.0^{+7.1}_{-1.5}	72.86	
89	apec	0.3^{+0.4}_{-0.3}	2.4^{+0.8}_{-0.5}	...	1.62 × 10^{-5}	1015	564.66	17.3^{+9.0}_{-1.2}	27.7^{+7.0}_{-12.7}	71.14
95	apec	0.6^{+0.8}_{-0.3}	1.79 × 10^{-6}	...	1016	541.01	0.7^{+0.3}_{-0.3}	0.7^{+0.5}_{-0.6}	98.80	

Notes.

a The best-fit model is either a powerlaw or apec model, depending on which one has the lower C/dof.

b Intrinsic source absorption (in units of 10^{22} cm^{-2}), if beyond the Galactic column was required.

c Normalization constant of the fit, in units of photons keV^{-1} cm^{-2} s^{-1} and cm^{-5} for the power law and thermal plasma models, respectively.

d Degrees of freedom.

e-f Unabsorbed X-ray luminosities, assuming a distance to NGC 300 of 2.0 Mpc (Dalcanton et al. 2009).

50%. In some cases, the goodness command returned values near 50% for multiple models or did not return a reasonable value for any model. In these cases, we checked each spectrum for indications for emission features. In cases where evidence of thermal emission was present, the thermal model (with fixed N_H) was adopted; for all other sources, the power law with fixed N_H was chosen. The best-fit model and parameters for sources in NGC 300 with greater than 50 net counts are listed in Table 13.

3.4. Radial Source Distribution

We assign an inclination-corrected galactocentric distance to each X-ray source assuming the following galaxy parameters for NGC 300, as in Gogarten et al. (2010): \(\alpha_0 = 13^h 722833, \delta_0 = -37^\circ 684389 \) (galaxy center), \(l = 42^\circ \), (inclination), and \(\theta = 111^\circ \) (position angle Kim et al. 2004). The maximum radius we find for an X-ray source in our Chandra field is \(r = 8.06 \) kpc.

We divide the X-ray sources into radial bins based on their inclination-corrected distance from the center of the galaxy. The bins are spaced 0.9 kpc apart in radius so that we can directly compare the X-ray radial distribution to the stellar population analysis presented in Gogarten et al. (2010). We use the cumulative logN-logS distribution of Cappelluti et al. (2009) to estimate the expected contamination by background AGNs, which should be nearly flat with galactocentric radius.

The radial X-ray source distribution is shown in Figure 5, and clearly shows that the number of X-ray sources per square kiloparsec decreases with galactocentric radius. Since NGC 300 does not possess a substantial bulge, we fit the background-subtracted radial X-ray source distribution to a simple exponential profile, and find the best-fit relation to be

\[N_X(r) = (12.8 ± 3.0) e^{-r/(1.7 ± 0.2)} - (0.57 ± 0.85) \]

(3) where \(N_X(r) \) is the number of X-ray sources per kpc^2 expected at a given galactocentric radius, \(r \) (in kpc). The exponential scale...
length is 1.7 ± 0.2 kpc, similar to the 1.3 ± 0.1 kpc scale length found by Gogarten et al. (2010) and in excellent agreement with estimates derived from the \(K \)-band surface brightness (Munoz-Mateos et al. 2007). We additionally find the X-ray scale length to be consistent with multiwavelength measurements. The radial source distribution suggests that the X-ray sources in NGC 300 are the evolutionary end-points of a parent population of disk stars.

For an exponential disk, we expect 90% of stars to be inside of 4 kpc (6.9), suggesting that the majority of sources beyond this radius are not associated with the stellar disk of NGC 300. This suggests that 37 X-ray sources beyond 4 kpc are likely to be AGNs (i.e., 40% of the sample). This interpretation is consistent with the estimated number of background and hard sources identified in our HR analysis.

We use the source classifications determined by our HR analysis to investigate the differences in galactocentric radii among the different types of sources. The results are summarized in Table 14. We find both the preliminary SNR and XRB candidates to have median radii less than 4 kpc, suggesting that many of these are indeed associated with NGC 300. However, XRB-classified sources span a wide range of galactocentric radii (out to 6.7 kpc). Given that background AGNs are anticipated to dominate the X-ray sources at greater than ~4 kpc, the “XRB” class likely suffers from AGN contamination. “SOFT” sources additionally span a wide range in radii, with a median distance of 4 kpc, suggesting that at least some of these sources are likely to be associated with NGC 300. Absorbed and indeterminate hard sources have median galactocentric radii greater than 4 kpc, implying that many of these sources are background or foreground objects.

Table 14

Source Classification	\(r_{\text{min}} \) (kpc)	\(r_{\text{max}} \) (kpc)	\(r_{\text{av}} \) (kpc)
SNR	0.4	6.0	2.5
XRB	1.3	6.7	3.4
ABS	1.2	8.1	4.1
SOFT	2.1	6.2	4.0
HARD	2.8	6.9	4.9

4. SOURCE CLASSIFICATION

4.1. Supernova Remnants

In Section 3.2, we found that 11 X-ray sources in our catalog had HRs consistent with those of SNRs. Of these, only one source (No. 43) had a sufficient number of counts for spectral modeling to be performed. Source 43 was best fit by a thermal plasma model with a temperature \(kT = 0.4 \text{ keV} \), consistent with SNRs observed in M33 (Long et al. 2010). Taking this as our “standard SNR” model, we estimate the unabsorbed 0.5–2 keV luminosities for the remaining 10 SNR candidates and find a range in luminosities of ~5 × 10^{35} \text{ erg s}^{-1}, also consistent with observations of M33 SNRs.

To see if any of our SNR candidates have been previously identified, we cross-correlated our 11 sources with the multiwavelength NGC 300 SNR catalogs of Blair & Long (1997) and Pannuti et al. (2000) and the catalog of NGC 300 H\(\Pi \) regions of Deharveng et al. (1988). We find 7 of our 11 sources are located within 3.5 of an SNR or H\(\Pi \) region, and two of our X-ray sources are coincident with optically confirmed SNRs. Table 15 summarizes our SNR candidates. Figure 6 shows 0.5×0.5 postage stamp images of the H\(\alpha \) emission coincident with each X-ray source, with the soft 0.35–1 keV X-ray contours superimposed.

4.2. Optical Counterparts

We searched for optical counterpart candidates for each X-ray source that was contained within one or more overlapping \(HST \) field. For many of the X-ray sources, we found multiple optical counterpart candidates within the \(Chandra \) X-ray error circle (typically on the order of ~0.5); in these cases, the optical counterpart candidates are labeled “a,” “b,” “c,” etc., in order of increasing distance away from the X-ray source location. We kept only those optical sources that met the quality cuts described in Williams et al. (2009) and Gogarten et al. (2010; i.e., sources with sufficient signal to noise, not flagged as unusable, meeting predetermined crowding and sharpness thresholds, etc.).

For each source, we compute a logarithmic X-ray-to-optical flux ratio \(\log(f_X/f_V) \), where \(f_X \) is the 2–10 keV X-ray flux and \(f_V \) is the optical flux measured in either \(F555W \) or \(F606W \), whichever is available. Although the \(F606W \) has a slightly larger bandpass than the \(F555W \) filter, we estimate that for the majority of stars accessible in our \(HST \) exposures the affect on \(\log(f_X/f_V) \) will be small, ~0.1.

Table 15

Source No.	Counterpart	Separation	0.5–2 keV Unabs. Luminosity (erg s\(^{-1}\))	Notes
7	SNR	2''6	6.9 × 10^{35}	Blair & Long (1997)
15	H\(\Pi \)	3''2	6.4 × 10^{35}	Deharveng et al. (1988)
32	H\(\Pi \)	3''3	1.1 × 10^{06}	
34	SNR	0''6	Blais & Long (1997), opt. identified	Deharveng et al. (1988)
41	SNR	2''8	1.5 × 10^{06}	Pannuti et al. (2000)
43	SNR	3''0	5.6 × 10^{06}	Pannuti et al. (2000)
46	SNR	3''0	1.8 × 10^{06}	
54	SNR	3''0	7.5 × 10^{05}	
81	H\(\Pi \)	3''1	1.5 × 10^{06}	Deharveng et al. (1988)
85	SNR	0''3	2.5 × 10^{06}	Blair & Long (1997), opt. identified
	H\(\Pi \)	3''4		Deharveng et al. (1988)
Table 16 lists the optical and X-ray properties of all the X-ray source candidate optical counterparts. Figure 7 shows RGB-rendered $5'' \times 5''$ finding charts for each of the 32 X-ray sources with overlapping HST fields. The X-ray source position is shown by a white cross, with a white circle indicating the extent of the Chandra error circle. Red lines are used to indicate the likely optical counterpart; in cases of multiple optical counterparts, the optical sources are labeled.

Two of the X-ray sources (four and eight) were coincident with a saturated foreground star and the disk of a background galaxy (with one visible point source nearly coincident with the X-ray position), respectively. Since both of these optical sources failed to meet the HST quality criteria of a stellar object in NGC 300, they were not included in the HST star catalogs. We used the IRAF task imexamine to estimate the magnitudes of the foreground star, the whole background galaxy, and the point source within the X-ray error circle centered on the disk of the background galaxy. The foreground star and background galaxy magnitudes were found to be consistent with those available in SIMBAD. Multi-band photometric measurements for each of the optical counterpart candidates to the X-ray sources are given in Table 16. Source 4 is discussed further in Section 4.3.1.

4.3. X-Ray/Optical Source Classifications

The detection of optical counterpart candidates for each X-ray source with overlapping HST fields allows some sources to be assigned a source classification based on their multiband properties. However, many X-ray sources are faint or do not have optical coverage, making their physical nature ambiguous. We therefore attempt to combine statistical quantities (i.e., using the radial source distribution, location in spiral arms, interarm regions, or background regions) with individual source
Figure 7. Optical RGB-rendered finding charts at the location of each X-ray source, indicated by a cross. White circles show the radius of the 90% Chandra error circle for each source. Candidate optical counterparts are indicated with red lines. X-ray sources with multiple candidate optical counterparts have their optical counterparts labeled “a,” “b,” “c,” etc.

(A color version of this figure is available in the online journal.)
Figure 7. (Continued)

Table 16
Optical Counterparts to Chandra X-Ray Sources

Source Name	da (arcsec)	F435W	F475W	F555W	F606W	F814W	f_X^b (10$^{-15}$ erg s$^{-1}$ cm$^{-2}$)	log(f_X/f_V^c)
4 (galaxy)	1.46	21.9	20.3	18.5	12.0	−0.24		
4 (point source)	0.18	24.7	23.8	23.7	1.17			
5a	0.22	25.45 ± 0.05	25.51 ± 0.03	25.60 ± 0.03	25.53 ± 0.07	25.86 ± 0.08	2.1	1.44
5b	0.27	26.24 ± 0.05	26.14 ± 0.05	26.52 ± 0.18	1.34			
5c	0.62	26.86 ± 0.09	26.17 ± 0.05	25.42 ± 0.05	1.35			
5d	0.70	26.91 ± 0.14	26.65 ± 0.12	26.55 ± 0.14	1.6	1.42		
7a	0.39	27.13 ± 0.18	26.93 ± 0.17	26.13 ± 0.10	1.53			
7b	0.42	24.04 ± 0.02	24.13 ± 0.06	24.25 ± 0.03	0.41			
7c	0.55	24.02 ± 0.15	24.27 ± 0.05	24.58 ± 0.06	1.34			
8	0.04	19.7	18.5	16.6	3.9	−1.44		
9a	0.34	25.98 ± 0.07	25.43 ± 0.03	24.75 ± 0.03	24.40 ± 0.01	23.51 ± 0.04	2.7	1.19 (1.04)
9b	0.39	25.70 ± 0.05	25.80 ± 0.05	25.80 ± 0.02	24.04 ± 0.02	23.98 ± 0.04	1.90 (0.76)	

Notes.

a The positional offset from the Chandra X-ray source location.

b X-ray flux is unabsorbed in the 0.35–8 keV energy band.

c f_V is calculated from either the F555W or F606W magnitude, depending on which is available for a given observation. Only the first five X-ray sources with optical counterpart candidates are listed.
Figure 8. Top row: a sample color–magnitude diagram (CMD; left) and X-ray color–magnitude diagram (XCMD; right). The MS and RGB regions are marked on the CMD, and the HMXB and AGN regions are marked on the XCMD. Bottom row: the locations of our candidate optical counterparts as either MS or RGB stars on a CMD (left), and an XCMD (right) showing the actual values of the X-ray/optical flux ratio for our candidate optical counterparts to each X-ray source.

properties (variability, X-ray spectral shape, and optical colors) to determine the most likely source classification.

We first consider the statistical properties of each X-ray source. For example, an X-ray source with a galactocentric radius less than 4 kpc that is coincident with a spiral arm is likely to be associated with NGC 300, while an X-ray source at a large galactocentric radius that is not obviously associated with NGC 300 is likely to be a background object. As described in Section 3.4, we expect that the majority of X-ray sources at radii beyond 4 kpc are not associated with the stellar disk of NGC 300.

We then examined ground-based, optical R-band and Hα images to identify spiral arms and inter-arm regions in NGC 300, and define background regions not obviously associated with NGC 300. All sources with $r > 4.5$ kpc ($\theta > 7.7'$) were located in “background” regions according to the ground-based imaging, making these sources probable background AGNs.

We next consider the individual X-ray properties of each source. Long-term X-ray variability is observed for both AGNs and XRBs. However, SNRs and some HMXB systems do not show significant X-ray variability (i.e., NGC 300 X-1; see Binder et al. 2011b and references therein). We therefore do not discount the possibility of an XRB nature for non-variable sources. The data on galactocentric radius, location relative to NGC 300, and X-ray variability is then combined with the preliminary source classifications defined using our HR analysis (see Section 3.2). For sources without overlapping HST exposures, we then assign a likely source classification based on our X-ray observations. For example, a source with $r = 1$ kpc, located within a spiral arm, no significant long-term X-ray variability, and a soft X-ray spectral shape is classified as a likely SNR.

To determine a likely source classification for X-ray sources with overlapping HST fields, we generated color–magnitude diagrams (CMDs) of each HST field and candidate optical counterparts were classified as falling either on the main sequence (MS) or RGB. Additionally, we constructed X-ray color–magnitude diagrams (XCMDs), where the optical color was plotted as a function of $\log(f_X/f_V)$. Many authors have utilized optical and X-ray colors in discriminating between XRBs and background AGNs (e.g., Hornschemeier et al. 2001; Shtrykovskiy & Gilfanov 2005); notably, McGowan et al. (2008) found that known pulsars and HMXBs located in the Small Magellanic Cloud occupied a region of the XCMD bounded by $B - V \lesssim 0$ and $f_X/f_V \lesssim 1$.

Optical counterpart candidates were then compared to the XCMD generated for each HST field. Sources with blue optical colors ($F_{435W} - F_{555W}$ or $F_{475W} - F_{606W} \lesssim 0.2$) and $\log(f_X/f_V) < 1$ are likely to match a young massive MS star and are therefore designated as HMXB candidates. Sources falling in the other region of the XCMD are associated with either RGB stars or background galaxies, and are therefore classified as either AGNs or LMXBs. For illustration, Figure 8 presents a sample CMD and XCMD for the field “NGC 300-5” (top panel) as well as a CMD and XCMD of our X-ray/optical source candidates. The sample CMD was generated using the HST F_{435W} and F_{814W} catalog magnitudes for all optical
sources in the “NGC 300-5” field. For illustrative purposes, we have created a sample XCMD using the mean X-ray flux of sources in the NGC 300 catalog (we have created a sample XCMD using the mean X-ray flux sources in the “NGC 300-5” field. For illustrative purposes, using this X-ray flux, we calculate a $\log(\mathcal{L})$ for every optical source in the HST “NGC 300-5” field. The bottom panels show the magnitudes, colors, and X-ray/optical flux ratios for the candidate optical counterparts only. Regions corresponding to likely MS and RGB stars are labeled on the CMD, and the regions defining likely HMXBs and AGNs are labeled on the XCMD.

In order to combine all the relevant X-ray and optical information available from our Chandra and HST observations, we constructed an IDL routine called xclass.pro to automatically process each X-ray source. The routine reads in an input source file containing all X-ray and optical information (if available), and returns a preliminary source classification. The routine additionally tracks which classification channels were utilized by the input sources. The xclass.pro routine is publicly available.\(^\text{7}\)

The source classification reported by the xclass.pro routine was then compared to the classification determined by our HR analysis. In some cases, the multiwavelength and HR classifications disagreed. This was most commonly seen with sources classified as XRBs by our HR analysis but with multwavelength properties consistent with a background AGN. In these cases, we favor the AGN classification. Sources that are initially classified as AGNs but which exhibit a soft X-ray spectrum (i.e., classified as “SOFT” in our HR analysis) may be potential LMXBs. Only one of our HR-classified SNRs shows X-ray and optical characteristics inconsistent with an SNR origin, and may be an unusually soft background AGN or a foreground star. Our final source classification yields 46 background AGN candidates, 26 HMXB candidates, 11 LMXB candidates, 10 SNRs, and 1 foreground star. A summary of all X-ray and optical data and our final source classification is present in Table 17.

We use the Cappelluti et al. (2009) AGN logN−logS distribution to estimate the expected number of AGNs in our X-ray source catalog to be ~ 50. The similarities in both the X-ray and optical properties of AGNs and LMXBs (especially at the distance of NGC 300) is likely to cause confusion in separating these two populations. With 47 AGN and 11 LMXB candidates obtained using our source classification scheme, we estimate our X-ray/optical classified logN−logS distribution to differ from the statistical by less than 10%. Our source classification scheme correctly classifies both NGC 300 X-1 (source 80) and SN 2010da (source 73) as HMXBs, which were previously identified as HMXBs in earlier works (see Binder et al. 2011a, 2011b). We are therefore confident that our source classification scheme provides the most reliable indicator of the physical nature of the NGC 300 X-ray sources possible with the available data.

4.3.1. Source 4: Foreground or Background?

As can be seen in Figure 7, X-ray source 4 is coincident with the disk of a background galaxy. This source was not detected by XMM-Newton, suggesting a large brightening by a factor of $\gtrsim 22$. The source has HRs consistent with those of other XRBs or background AGNs. We consider three possible scenarios for the physical nature of source 4: (1) a background, high-redshift quasar, (2) an ultraluminous X-ray (ULX) source located within the disk of the background galaxy, and (3) a flaring foreground M star.

We first consider the high-redshift quasar interpretation. Source 4 would have a typical quasar X-ray luminosity of 10^{45} erg s$^{-1}$ at a luminosity distance of ~ 26 Gpc, roughly $z \sim 3$. However, high-redshift quasars typically exhibit variations in X-ray luminosity on the order of $\sim 15\%$, and extreme changes (such as seen in source 4) are rare (Gibson & Brandt 2012).

To evaluate the likelihood of this source being a ULX, we assume that the background spiral galaxy has a physical diameter of ~ 22 kpc. We measure the angular diameter of the galaxy to be $\sim 6\arcmin 5$ across, implying that the distance to the host galaxy is ~ 700 Mpc. At this distance, source 4 would have a 0.35–8 keV luminosity of $L_X \sim 7 \times 10^{45}$ erg s$^{-1}$. For a source radiating at the Eddington luminosity, this implies a mass of $\sim 5000 M_\odot$. The factor of ~ 22 brightening observed in this source is not typical of ULXs, with the notable exception of HX-1 in the galaxy ESO 243-49 which has exhibited variations in X-ray luminosity of a factor of $\sim 20–50$ (Lasota et al. 2011). The high luminosity of HX-1 is interpreted as mass accretion via Roche-lobe overflow onto a $\sim 10^4 M_\odot$ BH. We therefore find the ULX interpretation plausible.

Young, active M dwarfs in the Milky Way undergo X-ray flares and may provide a natural explanation for the factor of ~ 22 increase in X-ray luminosity exhibited by source 4. Assuming a typical M-dwarf $L_X \sim 10$ and our estimated

Table 17

Source No.	r^a (kpc)	Locationb in NGC 300	Variabilityc	In HST Footprint?	No. of Optical Counterparts	Location on CMD	Location on XCMD	Prelim. ID	ID from HRs	Final ID
1	5.2	bkg?	none	no				AGN?	ABS	AGN
2	6.7	bkg?	long	no				AGN?	XRB	AGN
3	6.7	bkg?	yes	2	RGB	AGN		AGN?	SOFT	LMXB
4	5.5	bkg?	yes	1		Galaxy		Galaxy/FS?	AGN	AGN
5	10	bkg	yes	10	MS, RGB	HMXB, AGN		HMXB?	XRB	HMXB

Notes.

\(^a\) Inclination-corrected galactocentric radius; the X-ray point-source population at $r > 4$ kpc is expected to be dominated by background AGNs.

\(^b\) Location in NGC 300 was determined by looking at ground-based R band and $H\alpha$ imaging. Locations are described as spiral arm, inter-arm regions, or background. X-ray sources that fall beyond the extent of the optical images are labeled as “background?”

\(^c\) Variability is classified as “long”-term, “rapid,” or “none.”

\(^7\) See http://www.astro.washington.edu/users/bbinder/xclass/.
4.4. Comparison to Other X-Ray Point-source Populations

It is interesting to compare the properties of the NGC 300 point-source population to other galaxies with a range of SFHs, morphologies, and stellar masses (\(M_\star\)). Since HMXBs serve as a tracer of young stellar populations, their numbers should correlate with the recent SFH of their host galaxy (Grimm et al. 2003), while the number of longer-lived LMXBs should correspondingly correlate with the total stellar mass of the host galaxy (Gilfanov 2004). Typically, the ratio \(L_{\text{2–10keV}}/\text{SFR}\) is taken as a measure of the HMXBs in a galaxy, while LMXBs are measured through \(L_{\text{2–10keV}}/M_\star\). Both these ratios are found to correlate with the morphology of the host galaxy (Grimm et al. 2002; Gilfanov 2004).

We estimate the 2–10 keV luminosity for our X-ray/optically classified HMXB candidates to be \(\sim 7 \times 10^{37} \text{ erg s}^{-1}\) and, using Equation (22) of Grimm et al. (2003), we derive a predicted SFR for NGC 300 of 0.12 \(M_\odot \text{ yr}^{-1}\). This predicted SFR is in excellent agreement with the average recent SFR of 0.12 \(M_\odot \text{ yr}^{-1}\) measured by Gogarten et al. (2010). Normalized to the SFR, the HMXBs in NGC 300 emit \(\sim 6 \times 10^{38} \text{ erg s}^{-1}/(M_\odot \text{ yr}^{-1})\) in the 2–10 keV band, consistent with the value measured for the Milky Way by Grimm et al. (2002).

We find luminosity of our LMXB candidates normalized to the stellar mass of NGC 300 to be \(\sim 9 \times 10^{37} \text{ erg s}^{-1} \ M_\odot^{-1}\), a factor of \(\sim 5\) lower than is observed in the Milky Way (Grimm et al. 2002). This value of LMXB luminosity normalized by stellar mass is a lower limit, as our source classification scheme is unable to discriminate very well between LMXBs and background AGNs. We can provide an upper limit to LMXB luminosity per unit stellar mass by assuming all AGN candidates are actually LMXBs—in this case, the luminosity normalized by the stellar mass of NGC 300 is \(\sim 6.5 \times 10^{38} \text{ erg s}^{-1} \ M_\odot^{-1}\). NGC 300 lacks the prominent nuclear bulge present in the Milky Way (where older LMXBs dominate the X-ray source population), and the gas in NGC 300 (from which new HMXBs could be formed) accounts for \(\sim 26\%\) of the baryonic mass of NGC 300 (Westmeier et al. 2011). Only \(\sim 15\%\) of the baryonic mass of the Milky Way (Flynn et al. 2006) consists of gas that could potentially form stars. Given the differences in stellar mass, gas content, morphology, and SFH of NGC 300 and the Milky Way, this observed differences in LMXB populations is not surprising.

When we consider the total XRB population, we find the number of X-ray sources above \(10^{37} \text{ erg s}^{-1}\) (\(N_X\)) and the total X-ray luminosity (\(L_X\), in units of \(10^{38} \text{ erg s}^{-1}\)) normalized by the stellar mass (in units of \(10^{11} M_\odot\)) of NGC 300 to be \(N_X/M_\star = 93 \pm 10\) and \(L_X/M_\star = 0.47 \pm 0.05\), respectively. Gilfanov (2004) reported similar ratios of \(L_X/M_\star\) for other late-type galaxies, although the average value of \(N_X/M_\star\) for the same galaxies was found to be \(\sim 160 \pm 50\). It should be noted that the comparison between the Gilfanov (2004) sample and NGC 300 comes with two significant caveats: first, the limiting X-ray luminosities of the galaxies examined by Gilfanov (2004) were \(\gtrsim 10^{37} \text{ erg s}^{-1}\), and the total number of X-ray sources above \(10^{37} \text{ erg s}^{-1}\) often had to be estimated; second, the stellar masses of the galaxies sampled were significantly larger than NGC 300 (often by more than an order of magnitude). Therefore, the ratios derived by Gilfanov (2004) may require modifications for deeper X-ray data (below \(\sim 10^{37} \text{ erg s}^{-1}\)) and for galaxies with stellar masses comparable to NGC 300.

5. THE logN–logS RELATION AND THE X-RAY LUMINOSITY FUNCTION

Numerous studies have shown a correlation between the shape of the XLF of a point-source population and the SFH of the host galaxy (Grimm et al. 2003; Eracleous et al. 2006). Those galaxies with a high degree of recent star formation (SF) have their X-ray emission dominated by young, luminous HMXBs, while older stellar populations show LMXBs as the dominant source of X-ray emission, although this relationship may not be monotonic over a few hundred Myr (Belczynski et al. 2004). Using the Chandra X-ray point-source catalog and overlapping HST exposures, we aim to directly test the XLF slope–age correlation in NGC 300.

The cumulative number of sources above a given flux \((N(S) > S)\), where \(S\) is in units of \(\text{erg s}^{-1} \text{ cm}^{-2}\)) found in a survey covering a total geometric area \(A\) can be evaluated as

\[
N(S > S) = \sum_{i,S_i > S} \frac{1}{A(S_i)}.
\]

\(N(S > S)\) has units of sources \(\text{deg}^{-2}\) and is weighted by the survey area over which each source could have been detected. The \(A(S)\) factor would account for survey completeness if the sources were distributed uniformly, although we do not expect this to be true for sources associated with NGC 300. We terminate the low flux end of the distribution at the 90% limiting luminosity for each energy band considered. The sensitivity maps calculated in Section 2.4 allow the area function \(A(S)\) (the area over which a source with flux \(S\) would be detectable) to be directly evaluated for each source.

We use two approaches to construct the XLF for the NGC 300 point-source population. First, we calculate the cumulative logN–logS distributions for the soft (0.5–2 keV) and hard (2–8 keV) bands using all 95 X-ray sources detected in our Chandra observation. Using the background AGN distribution of Cappelluti et al. (2009), we then statistically correct for the anticipated background contamination—we hereafter refer to these XLFs as our “statistical XLFs.”

The statistical XLFs are shown in Figure 9. For each energy band, we model the logN–logS distribution as a power law. For the 0.5–2 keV distribution, we find a best-fit power-law index of \(\gamma = 2.03 \pm 0.10\); there is a small bend in the XLF at \(\sim 1.6 \times 10^{36} \text{ erg s}^{-1}\), although it is not statistically significant. Our 2–8 keV logN–logS distribution power-law fit yields an index of \(\gamma = 1.91 \pm 0.05\).

We next compute the cumulative logN–logS distribution for objects classified as XRBs from our X-ray and optical classification scheme, hereafter referred to as our “X-ray/optically classified XLFs.” We find the logN–logS distributions of our X-ray/optically classified XLFs agree with the statistical XLFs,
especially in the 2–8 keV energy range (due to less contamination by soft X-ray emitters such as SNRs). Figure 10 shows the X-ray/optically classified XLFs (red) and our statistical XLFs (black) in both soft and hard bands. Due to their similarity in X-ray spectral shape and optical colors, the classifications are likely to be LMXBs that are incorrectly identified as background AGNs (or vice versa), while our HMXB sample is likely to have significantly fewer misclassifications. The XLFs of X-ray/optically classified AGNs are also consistent with the Cappelluti et al. (2009) AGN distribution.

We fit the X-ray/optically classified XLF in both the soft and hard bands with power laws. The 0.5–2 keV XLF has a slope $\gamma = 2.42 \pm 0.12$, while the 2–8 keV XLF has $\gamma = 1.80 \pm 0.07$. A low-significance kink is observed in the soft XLF, similar to the feature observed in the soft statistical XLF. Our fits are consistent with those derived from the XMM-Newton point-source catalog of NGC 300 above $\sim 1.5 \times 10^{36}$ erg s$^{-1}$ (see Carpano et al. 2005, their Figure 5). All the XLF slopes derived here are typical of spiral galaxies with recent star formation activity (Fabbiano 2006; Colbert et al. 2004; Grimm et al. 2003).

To examine whether the bend in the soft XLF near 3×10^{-15} erg s$^{-1}$ cm$^{-2}$ (equivalent to $\sim 1.6 \times 10^{36}$ erg s$^{-1}$ at the distance of NGC 300) may be due to a specific X-ray population we constructed logN–logS distributions for HMXBs, LMXBs, and SNRs separately. Figure 11 shows the soft logN–logS distributions for each of these three groups, as well as the statistical XLF. We find that the HMXBs (black line) are the only population without a significant number of sources at fainter luminosities. It is possible that there exists a substantial population of lower luminosity, wind-fed HMXBs that would require deeper observations to detect at high significance. Alternatively, the change in the XLF slope may be due to XRTs that are observable only during their more luminous outbursting phase (and fall below our detection threshold during quiescence). Table 18 summarizes our best-fit power-law slopes for each of our XLFs.

LogN–LogS Distribution	0.5–2 keV	2–8 keV
Statistically XLF	2.03 ± 0.10	1.91 ± 0.05
X-ray/optically Classified XLF	2.42 ± 0.12	1.80 ± 0.07
X-ray/optical XLF, $r < 2.7$ kpc	1.68 ± 0.31	1.63 ± 0.18
X-ray/optical XLF, $2.7 < r < 5.4$ kpc	2.65 ± 0.55	1.23 ± 0.07
HMXBs	1.86 ± 0.19	1.56 ± 0.09
LMXBs	2.73 ± 0.30	1.69 ± 0.29
SNRs	1.04 ± 0.01	N/A

Table 18 Power-law Fits to the NGC 300 LogN–LogS Distributions
5.1. Radial logN–logS Distributions

We next searched for radial trends in our NGC 300 X-ray source population. We divided our X-ray/optically classified XRB candidates into two radial bins: an “inner” region \(d < 2.7 \) kpc and “outer” region \(2.7–5.4 \) kpc so that we could directly compare our \(\log N–\log S \) distributions to the radial SFHs measured by Gogarten et al.\(^\text{(2010)}\). Using the SFHs at different epochs (Gogarten et al.\(^\text{2010}\)), we assign an approximate, weighted average age to each radial bin. The radial \(\log N–\log S \) distributions in both the soft and hard bands are shown in Figure 12.

We observe a preliminary correlation toward flatter 2–8 keV XLF slope with increasing galactocentric radius and younger average age of the underlying stellar population. This trend is not observed in the soft band, which may suffer more severely from contamination from SNRs or foreground stars or from obscuration. We therefore consider the 2–8 keV XLF a more reliable diagnostic of the XRB population. In Figure 13, we compare our radial XLF/age data to model predictions (Eracleous et al.\(^\text{2006}\)). X-ray sources detected at smaller galactocentric radii \((d < 2.7 \) kpc\) show an average older age, \(~83 \) Myr, and a steeper XLF slope \((\gamma \sim 1.6) \) than those found in the outer regions of the NGC 300 disk \((59 \) Myr in age with \(\gamma \sim 1.2) \).

Our X-ray/optical data of NGC 300 thus constitutes one of the first tests of such model predictions relating the nature of the X-ray sources to the underlying stellar population of a galaxy; additional XLF–SFH measurements will become available when the remaining four CLVs galaxies (NGC 404, NGC 55, NGC 2403, and NGC 4214) are analyzed in upcoming works.

6. SUMMARY AND CONCLUSIONS

We have presented the X-ray point-source catalog for a new, deep Chandra observation of NGC 300 as part of the Chandra Local Volume Survey. A total of 95 sources were detected in NGC 300 down to a 90% limiting 0.35–8 keV luminosity of...
~1.5 \times 10^{36} \text{ erg s}^{-1}. By comparing our X-ray source catalog to earlier observations of NGC 300 performed by XMM-Newton, we were able to place long-term variability constraints on each source and identify 25 XRT candidates. We fit the radial X-ray source distribution to an exponential profile and were able to derive a scale length of 1.7 \pm 0.2 kpc, in good agreement with measurements taken at other wavelengths. We evaluated HRs for each of our X-ray sources, and performed spectral fitting for those sources with more than 50 counts.

We utilized nine deep HST fields to search for optical counterparts to each of our X-ray sources; 32 of our X-ray sources were observed to be at least in one of the overlapping HST fields. We developed a new source classification method which combined both X-ray and optical data to classify each source as an HMXB, an LMXB, or a background AGN, and have made our IDL routine which automates our source classification technique publicly available. We classified 47 sources as background AGNs, 26 as HMXBs, 11 as LMXBs, 10 as SNRs, and 1 as a foreground star.

The cumulative logN–logS distributions were presented in both 0.5–2 and 2–8 keV bands and found to be consistent with those of other spiral galaxies with a dominant HMXB population. Additionally, we divided our X-ray sources into two radial bins and modeled the radially resolved logN–logS distributions with power laws. Using the SFHs of Gogarten et al. (2010), we were able to assign an average to the underlying distributions with power laws. Using the SFHs of Gogarten et al. (2010), we were able to assign an average to the underlying stellar populations, and we find the measured XLF slopes and stellar population ages to be in good agreement with model predictions. The remaining four CLVS galaxies (NGC 55, NGC 404, NGC 2403, and NGC 4214) will provide additional constraints on XLF–age models with upcoming works.

Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number GO1-12118X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. T.J.G. and P.P.P. acknowledge support under NASA contract NAS8-03060. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.