Synthesis and evaluation of novel spiro derivatives for pyrrolopyrimidines as anti-hyperglycemia promising compounds

Samar Said Fatahala, Shahendra Mahgub, Heba Taha and Rania Helmy Abd-El Hameed

Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt

ABSTRACT

Pyrrolopyrimidin-4-ylidene-malononitriles IIa-d were prepared as important intermediates for preparation of a new series of spiro-pyrrolopyrimidines. These intermediates undergo cyclisation via reaction with acetone, guanidine hydrochloride or hydrazine hydrate. Elemental and spectroscopic evidences for the structures of these compounds are presented. The final compounds have been monitored for in vivo anti-hyperglycemic activity, compared with Amaryl as standard drug. Among 12 tested compounds, both spiro (pyrano IIIb and pyrazlo Va) derivatives exhibit promising anti-hyperglycemic activity.

Introduction

Diabetes mellitus (DM) is a severe metabolic complaint that has a significant influence on the health and feature of patients’ life. In 2013, 382 million adults were diagnosed with diabetes worldwide. This number is expected to grow to 592 million in 2035, of which 90% will have type 2 diabetes (non-insulin-dependent diabetes mellitus; T2D). Patients with T2D are 2–4 times more likely to have fatal or non-fatal coronary events or a stroke. Almost 70–80% of patients die from one of these two conditions. The International Diabetes Federation (IDF) listed Egypt among the world top 10 countries in the number of patients with diabetes. In Egypt, the prevalence of diabetes is around 15.56% among adults (age: 20 and 79 years), with an annual death of 86,478 related to diabetes.

Treatment of diabetic patients has been concentrated on dietary controlling and well-known anti-hyperglycemic like sulfonylureas, metformin and acarbose. Glimepiride (Amaryl®), Sanofi-Aventis, Gentilly, France), a sulfonylurea containing a pyrrole group, acting as anti-hyperglycemic drug. It indicated to treat type 2 diabetes through increase insulin production by the pancreas (Figure 1). Recently, urgent requisite to develop novel anti-hyperglycemic agents was observed.

Numerous adverse effects present anti-hyperglycemic were indicated such as hepatotoxicity, weight gain and hypoglycemia. Administration of dipeptidyl peptidase IV (DPP-IV) inhibitors to diabetic patients results in higher concentrations of endogenous glucagon-like peptide (GLP-1) lead to decrease in plasma glucose. Long-term treatment with a DPP-IV inhibitor reduced HbA1c (glycosylated haemoglobin), offered prospective improvement in insulin producing function of the pancreas.

DPP-IV inhibitors were validated to be active and safe compounds that control blood glucose. Vildagliptin, saxagliptin, DPP-IV inhibitors, (having pyrrole and fused pyrrole ring, are on the market in many countries. Gosogliptin, di-pyrrole containing DPP-IV inhibitors, has been reported in advanced clinical trials. A highly potent DPP-IV inhibitor with pyrrolopyrimidine was also reported (Figure 1).

In 2004, pyrazolopyrimidine APD668 was discovered by Arena pharmaceutics, was found to exhibition high in vivo activity compared to a known DPP-IV inhibitor. APD668 was found to be more potent on delaying the onset of hyperglycemia (Figure 2). Researchers at GlaxoSmithKline replacement of pyrazolopyrimidine ring system in APD668 with a dihydropyrrolopyrimidine scaffold, which were described as having therapeutic value for diabetes and associated conditions, obesity, glucose intolerance, insulin resistance and atherosclerosis (Figure 2).

Spiro-based heterocyclic systems, containing one carbon atom common to two rings, were found to be very motivating. The asymmetric nature of these compounds, due to the spiro carbon, found to be one of the important criteria of the biological activities. Several patents described spiroazetidine and spiroazetidinone derivatives as GPR119 receptor agonists for the treatment of diabetes (Figure 3).

Encouraged by the prominence of spiro containing compounds, and in maintenance of our research efforts, in this research, we are going to spot an aspect on the chemistry of some newly synthesised spiro-pyryllypyrimidine derivatives and estimate them for the anti-diabetic activities. The synthetic pathways approved for the synthesis of these compounds are revealed in Scheme 1.

Materials and methods

Synthesis of lead compounds

All commercial chemicals used as starting materials and reagents in this study were purchased from Merck (Darmstadt, Germany) and were of reagent grade. All melting points were uncorrected and measured using Electro-thermal IA 9100 apparatus (Shimadzu, Japan).
Approved DPP-IV inhibitors as type 2 diabetes medications containing a pyrrole moiety.

Figure 1. Pyrroles and pyrrolopyrimidines as anti-diabetic agents.

A highly potent DPP-IV inhibitor with pyrrolopyrimidine significantly improved metabolic stability

Figure 2. Pyrrolopyrimidines as anti-diabetic agents.

Figure 3. Spiro compounds as biological active scaffolds.
Japan); IR spectra were recorded as potassium bromide pellets on a Perkin-Elmer 1650 spectrophotometer (Waltham, MA, USA), Faculty of Science, Cairo University, Cairo, Egypt. \(^1 \)H NMR spectra were determined on a Varian Mercury (300 MHz) spectrometer (Varian, UK) and chemical shifts were expressed as ppm against TMS as internal reference (Faculty of Science, Cairo University, Cairo, Egypt). Mass spectra were recorded on 70 eV (EI Ms-QP 1000 TMS as internal reference (Faculty of Science, Cairo University, Cairo, Egypt). IR spectra were recorded as potassium bromide pellets on a Perkin-Elmer 1650 spectrophotometer (Waltham, MA, USA), Faculty of Science, Cairo University, Cairo, Egypt. \(^1 \)H NMR spectra were performed on (Merck) Silica gel 60 (particle size 0.06–0.20 mm). Compounds Ia–d were synthesised as reported\(^{32–34}\). The rest of compounds prepared in this paper were new and their structures were confirmed using spectral data.

General procedure for the synthesis of compounds Ila–d

Compounds Ia–d (0.01 mol) and malononitrile (0.06 g, 0.01 mol) were heated under reflux in dry ethanol (30 ml) for 8 h, cooled, poured onto ice-water to give precipitate which was filtered off, dried and recrystallised from methanol to give Ila–d.

2-(7-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-5,6-diphenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylidene)-malononitrile (Ila). Yield: 73%; m.p.: 179–181. \(^1 \)C NMR (DMSO-d6, 300 MHz) \(\delta \) (ppm): 5.4 (s, 2H, Ph–CH3), 6.8–8.0 (m, 15H, Ar–H), 8.18 (s, 1H, C2–H), 8.9 (s, 1H, NH, D2O exchangeable); Anal. Calcd for \(C_{26}H_{19}N_7O \): C, 75.43; H, 5.14; N, 13.33%. Found: C, 75.80; H, 5.02; N, 13.61%.

2-(7-benzyl-5,6-diphenyl-3H-pyrrolo[2,3-d]pyrimidin-4-ylidene)-malononitrile (Iib). Yield: 56%; m.p.: 191–193°C; IR (KBr) \(\nu \) (cm\(^{-1}\)): 3347 (N=–H), 2212 (C=N), 1581 (C=N); MS (EI) \(m/z \): 404 (M\(^+\), 13.5%), 406 (M\(^+\)+2, 8.5%), 408 (M\(^+\)+4, 2.7%) \(^1 \)H NMR (DMSO-d6, 300 MHz) \(\delta \) (ppm): 6.8–7.8 (m, 9H, Ar–H), 8.09 (s, 1H, C2–H), 8.83 (s, 1H, NH, D2O exchangeable); Anal. Calcd for \(C_{25}H_{18}N_6O \): C, 72.38; H, 2.72; N, 17.33%. Found: C, 72.05; H, 2.69; N, 17.71%.

General procedure for the synthesis of compounds Illa–d

A mixture of compounds Ila–d (0.02 mol), acetylacetone (2g, 0.02 mol) and pyridine (68 drops) was heated under reflux in dry ethanol (50 ml) for 8 h, concentrated, cooled and the separated compound was filtered off and recrystallised from methanol to give Illa–d.

5-acetyl-4-amino-7"-benzyl-6-methyl-5"',6'-diphenyl-spiro[3H-pyrrolo[2,3-d]pyrimidine-4',2'-pyran]-3-carbonitrile (Illia). Yield: 72%; m.p.: 187–189°C; IR (KBr) \(\nu \) (cm\(^{-1}\)): 3212–3345 (N=–H), 2199 (C=O), 1667 (C=O), 1598 (C=O), 1260 (C=O); MS (EI) \(m/z \): 525 (M\(^+\), 41%), \(^1 \)H NMR (DMSO-d6, 300 MHz) \(\delta \) (ppm): 2.23 (s, 3H, C6–CH3), 2.27 (s, 3H, COCH3), 5.8(s, 2H, Ph–CH3), 4.7 (brs, 2H, NH2, D2O exchangeable), 6.9–7.7 (m, 15H, Ar–H), 8.3 (s, 1H, C2=–H), 8.8 (s, 1H, NH, D2O exchangeable); Anal. Calcd for \(C_{31}H_{28}N_7O_2 \): C, 75.43; H, 5.14; N, 13.33%. Found: C, 75.80; H, 5.02; N, 13.61%.

5-acetyl-4-amino-7"-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-6-methyl-5"'-diphenyl-spiro[3H-pyrrolo[2,3-d]pyrimidine-4',2'-pyran]-3-carbonitrile (Illib). Yield: 55%; m.p.: 195–197°C; IR (KBr) \(\nu \) (cm\(^{-1}\)): 3250–3387 (N=–H), 2207 (C=C), 1678, 1693.

Scheme 1. Synthetic pathway for preparation of II-V [reagents; i = NC–CH2–CN, ii = (CH3CO)2CH, iii = (NH2)2CCl, iv = NH2NH2, v = Me]
5-acylamino-4-amino-7-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrrol-4-yl)-6-methyl-5-phenyl-spiro[3H-pyrrolo[2,3-dipyrimidine]-4,2-pyran]-3-carbonitrile (IIa). Yield: 65%; m.p.: 188–190 ºC; IR (KBr) v (cm⁻¹): 3145–3149 (N–H, NH2), 2123 (C≡N), 1661, 1688 (C=O), 1602 (C=N), 1305 (C=O); MS (EI) m/z: 717 (M⁺, 60%), 528 (M⁺–1, 31.4%), 1H NMR (DMSO-d₆, 300 MHz) δ (ppm): 2.2 (s, 3H, C₆H), 2.34 (s, 3H, COCH₃), 2.37 (s, 3H, CH₃), 3.48 (s, 3H, NCH₃), 4.82 (brs, 2H, NH₂, D₂O exchangeable), 7.0–7.9 (m, 11H, Ar–H), 8.36 (1H, C=CH₂–H). 8.9 (s, 1H, NH, D₂O exchangeable); Anal. Calcd for C₂₇H₂₂N₉O₅ (504.25): C, 68.26; H, 4.95; N, 17.98%. Found: C, 68.03; H, 5.20; N, 18.22%.

5-acylamino-4-amino-7-(3,4-dichlorophenyl)-6-methyl-5-phenyl-spiro[3H-pyrrolo[2,3-dipyrimidine]-4,2-pyran]-3-carbonitrile (IIId). Yield: 33%; m.p.: 203–205 ºC; IR (KBr) v (cm⁻¹): 3225–3419 (N–H, NH₂), 2222 (C≡N), 1709 (C=O), 1614 (C=O), 1312 (C=O); MS (EI) m/z: 857 (M⁺, 60%), 505 (M⁺–1, 20.3%), 507 (M⁺–3, 8.3%) 1H NMR (DMSO-d₆, 300 MHz) δ (ppm): 2.1 (s, 3H, C₆H), 2.41 (s, 3H, COCH₃), 4.8 (brs, 2H, NH₂, D₂O exchangeable), 6.9–7.8 (m, 9H, Ar–H), 8.4 (s, 1H, C=CH₂–H). 8.9 (s, 1H, NH, D₂O exchangeable); Anal. Calcd for C₃₀H₂₂N₉ClO (535.32): C, 68.26; H, 4.95; N, 17.98%. Found: C, 68.03; H, 5.20; N, 18.22%.

General procedure for the synthesis of compounds IVa–d
A mixture of compounds IIa–d (0.02 mol), guanidine (1.18g, 0.02 mol) and pyridine (6–8 drops) was heated under reflux in dry ethanol (50 ml) for 8 h, concentrated, cooled, and the separated compound was filtered off and recrystallised from methanol to give IVa–d.

2,4-diamino-7-benzyl-5′,6′-diphenyl-spiro[1H-pyrindine-6,4′-3H-pyrrol(2,3-dipyrimidine]-5-carbonitrile (IVA). Yield: 68%; m.p.: 195–197 ºC; IR (KBr) v (cm⁻¹): 3126–3419 (N–H, NH₂), 2221 (C≡N), 1618 (C≡N); MS (EI) m/z: 484 (M⁺, 61%), 1H NMR (DMSO-d₆, 300 MHz) δ (ppm): 2.52 (s, 2H, Ph–CH₂), 4.2–4.6 (brs, 4H, 2NH₂D₂O exchangeable), 6.9–8.1 (m, 16H, Ar–H), 8.33 (1H, C=CH₂–H). 8.9 (s, 1H, NH, D₂O exchangeable); Anal. Calcd for C₂₂H₂₀N₁₀O (484.44): C, 71.90; H, 4.96; N, 23.14%. Found: C, 71.75; H, 4.98; N, 23.42%.

2,4-diamino-7-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrrol-4-yl)-5′,6′-diphenyl-spiro[1H-pyrindine-6,4′-3H-pyrrol(2,3-dipyrimidine]-5-carbonitrile (IVb). Yield: 53%; m.p.: 197–199 ºC; IR (KBr) v (cm⁻¹): 3153–3320 (N–H, NH₂), 2227 (C≡N), 1698 (C=O), 1622 (C=N); MS (EI) m/z: 580 (M⁺, 23.9%), 1H NMR (DMSO-d₆, 300 MHz) δ (ppm): 2.3 (s, 3H, CH₃), 3.41 (3H, NCH₃), 4.2–4.45 (brs, 4H, 2NH₂D₂O exchangeable), 7.0–7.7 (m, 16H, Ar–H), 8.09 (s, 1H, C=CH₂–H). 8.94 (s, 1H, NH, D₂O exchangeable); Anal. Calcd for C₂₆H₂₁N₁₀O₅ (580.04): C, 68.28; H, 4.83; N, 24.14%. Found: C, 68.39; H, 5.09; N, 24.45%.

2,4-diamino-7-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrrol-4-yl)-5′,6′-diphenyl-spiro[1H-pyrindine-6,4′-3H-pyrrol(2,3-dipyrimidine]-5-carbonitrile (IVc). Yield: 43%; m.p.: 194–196 ºC; IR (KBr) v (cm⁻¹): 3239–3485 (N–H, NH₂), 2205 (C≡N), 1682 (C=O), 1598 (C≡N); MS (EI) m/z: 504 (M⁺, 22%), 1H NMR (DMSO-d₆, 300 MHz) δ (ppm): 2.2 (s, 3H, CH₃), 3.5 (s, 3H, NCH₃), 4.05–4.4 (brs, 4H, 2NH₂D₂O exchangeable), 6.8–7.8 (m, 12H, Ar–H), 8.2 (s, 1H, C=CH₂–H), 8.8 (s, 1H, NH, D₂O exchangeable); Anal. Calcd for C₂₉H₂₈N₁₀O₅ (504.25): C, 64.29; H, 4.76; N, 27.78%. Found: C, 63.93; H, 4.65; N, 27.40%.

2,4-diamino-7′-(3,4-dichlorophenyl)-5′-phenyl-spiro[1H-pyrindine-6,4′-3H-pyrrol(2,3-dipyrimidine]-5-carbonitrile (IVd). Yield: 35%; m.p.: 212–214 ºC; IR (KBr) v (cm⁻¹): 3209–3345 (N–H, NH₂), 2218 (C≡N), 1626 (C≡N), MS (EI) m/z: 462 (M⁺, 58%), 464 (M⁺+2, 18.3%), 466 (M⁺+4, 5.7%); 1H NMR (DMSO-d₆, 300 MHz) δ (ppm): 4.1–4.4 (brs, 4H, 2NH₂D₂O exchangeable), 6.9–8.0 (m, 10H, Ar–H), 8.23 (s, 1H, C=CH₂–H), 9.1 (s, 1H, NH, D₂O exchangeable); Anal. Calcd for C₂₉H₂₈N₁₀Cl₂ (462.34): C, 75.14; H, 3.46; N, 24.24%. Found: C, 75.08; H, 3.62; N, 24.53%.

General procedure for the synthesis of compounds Va–d
A mixture of compound IIa–d (0.02 mol), hydrazine hydrate (0.64g, 0.02 mol) and pyridine (6–8 drops) was heated under reflux in dry ethanol (50 ml) for 8 h, concentrated, cooled, and the separated compound was filtered off and recrystallised from methanol to give Va–d.
7-benzyl-4-methylsulfanyl-5,6-diphenyl-pyrrolo[2,3-d]pyrimidine (VIa).

General procedure for the synthesis of compounds VIa–d

A mixture of compounds Ia–d (0.02 mol) and methyl iodide (0.02 mol) was stirred in 10% NaOH solution at room temperature for 8 h, poured onto acidified ice-water to give a precipitate which was filtered off, dried and crystallised from methanol to afford compounds VIa–d.

7-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-4-methylsulfanyl-5,6-diphenyl-pyrrolo[2,3-d]pyrimidine (VIa). Yield: 73%; m.p.: 187–189°C; IR (KBr) v (cm⁻¹): 1583 (C=–N); MS (EI) m/z: 407 (M⁺, 52.3%), 1H NMR (DMSO-d6, 300 MHz) δ (ppm): 3.12 (s, 3H, S–CH3), 3.27 (s, 3H, S–CH3), 6.8–7.8 (m, 9H, Ar–H), 8.4 (s, 1H, C–2H); Anal. Calcd for C21H15N7Cl2 (435.28): C, 57.93%; H, 3.45; N, 10.32%. Found: C, 57.78; H, 3.65; N, 10.70%.

7-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-4-methylsulfanyl-5,6-diphenyl-pyrrolo[2,3-d]pyrimidine (VIIb). Yield: 51%; m.p.: 183–185°C; IR (KBr) v (cm⁻¹): 1708 (C=O), 1618 (C=N); MS (EI) m/z: 503 (M⁺, 73%), 1H NMR (DMSO-d6, 300 MHz) δ (ppm): 2.31 (s, 3H, S–CH3), 3.27 (s, 3H, S–CH3), 3.37 (s, 3H, N–CH3), 7.0–8.1 (m, 15H, Ar–H), 8.4 (s, 1H, C–2H); Anal. Calcd for C26H21N3S (407.32): C, 71.57; H, 4.97; N, 13.92%. Found: C, 71.82; H, 4.66; N, 13.77%.

7-(3,4-dichlorophenyl)-4-methylsulfanyl-5,6-diphenyl-pyrrolo[2,3-d]pyrimidine (VIIc). Yield: 41%; m.p.: 183–185°C; IR (KBr) v (cm⁻¹): 1596 (C=N), MS (EI) m/z: 385 (M⁺, 22%), 387 (M⁺+2, 7.3%), 389 (M⁺+4, 2.6%), 1H NMR (DMSO-d6, 300 MHz) δ (ppm): 3.3 (s, 3H, S–CH3), 6.8–7.8 (m, 9H, Ar–H), 8.3 (s, 1H, C–2H); Anal. Calcd for C19H13N3SCl2 (385.32): C, 59.22; H, 3.38; N, 10.91%. Found: C, 59.61; H, 3.56; N, 11.13%.

Biological screening

Animals

The complete progress of the experiment was conducted using male Wistar albino rats (200–250 g), delivered by the Institutional Breeding House, Egypt, reared and maintained in the animal house of the institution. The animals had free access to food and water ad libitum and maintained in a controlled environment under standard conditions of temperature and humidity with an alternating 12 h light and dark cycle for about a week for acclimatisation. The protocol of the study was approved by the Animal Ethics Committee of the Faculty of Pharmacy, Helwan University on November 2016. The study was conducted in accordance with the EC, directive 86/609/EEC for animal experiments.

Dose determination

Glimepiride (Amaryl) was used as a standard anti-diabetic (4 mg/kg) in 1% of gum acacia and administered orally. Equivalent doses of all derivatives were calculated according to their molecular weight (M.wt).

Assessment of improvement on oral glucose tolerance and blood glucose lowering activity: sucrose loaded normal rats (SLM)

Male albino Wistar rats (200–250 g) were chosen and kept back on an overnight fasting. Next morning, the blood glucose level (0 min) of each animal was stated by glucometer using glucostrips. The animals presenting their fasting blood glucose levels in the range of 60–80 mg/dL were selected and separated into one control group and 13 experimental groups with six animals in each. Each rat of experimental groups was given suspension of the test compounds made in 1% of gum acacia at a dosage of (4 mg/kg) for the standard drug Glimepiride and Equivalent doses of all derivatives.

The animals of the control group received vehicle (1.0% of gum acacia) only. Exactly 30 min post-administration of the test samples/vehicle, an oral sucrose load of 10 g/kg body weight (bw) was given to each animal and the blood glucose level of each animal were measured at 30, 60, 90 and 120 min. The percentages (%) decreased in blood glucose level were calculated conferring to the AUC method.

Streptozotocin-induced diabetic rats

Male albino Wistar rats (200–250 g) were designated for this study. Diabetes was prompted in the rats by intraperitoneally (i.p.) injecting freshly prepared solution of Streptozotocin (STZ) (Sigma–Aldrich, Co., MO; catalogue number: 1001062761) in ice cold 0.1 M citrate buffer (pH 4.5) at a dosage of 50 mg/kg bw. The blood glucose of each animal was tested after 48 h and animals displaying fasting blood glucose level ≥200 mg/dl were elected. These diabetic rats were unsystematically scattered into groups consisting of six animals in each.

Experimental design

Five groups (eight rats each) were used to investigate the antihyperglycemic effect of the derivatives which showed promising antihyperglycemic effect in SLM (compounds IIa, Va and IIb). Group 1: diabetic control and Group 2: diabetic and Glimepiride (Amaryl) (4 mg/kg) served as a reference anti-diabetic drug. Groups 3–5 were given the various pyrrole derivatives (compounds IIa, Va and IIb). The treated groups administered the standard drug (Amaryl) and different derivatives orally. For each group, blood samples were collected by tail nipping and blood glucose level was estimated at 0, 1, 2, 4 and 6 h after oral administration of the tested compounds using glucometer (Gluco Dr Super Sensor, All Medicus Co., Ltd., Anyang, Gyeonggi, Korea).

Statistical analysis

Data were represented as mean area under curve (AUC) ± SD. Significant differences between groups was tested using GraphPad InStat (Graph software Inc., V 3.05, Ralph Stahlman, Purdue University, Lafayette, IN). Appropriate graphs were plotted using Microsoft Excel 2016. p Value less than .05 was considered statistically significant.
Discussion

Chemistry

The synthetic route to compounds Ia–d was reported in our previous work. Amino-cyano-pyrroles 1 were reacted with HCO$_2$H to produce pyrrolopyrimidine-4-ones 2, which on react with POCl$_3$, 4-chloro-pyrrolopyrimidines 3 were obtained in good yield. 4-Chloro derivatives II on react with thiourea adapted to pyrrolopyrimidine-4-thiones I, To date, and to the best of our knowledge, formation of the 4-thione analogues has been reported numerous in literature, but not mechanistically explained. Herein, the proposed mechanism of the reaction was believed to proceed via initial nucleophilic attack by the thiol group of thiourea on C-4 of the pyrimidine ring with proton transfer to N-3 and the formation of the potentially unstable intermediate [A]. This intermediate lose carbodiimide and HCl to give the pyrrolopyrimidine-4-thione, as revealed (Figure 4).

For preparation of spiro-pyrrolopyrimidines III–V; pyrrolopyrimidine-4-ylidene-malononitrile IIa–d was accomplished by the reaction of Ia–d with malononitrile in absolute ethanol using same procedure reported on our previous work. On treat thione derivatives II with acetylacetone guanidine hydrochloride and/or hydrazine hydrate in ethanol, containing catalytic amount of pyridine, the corresponding spiro-pyrrolopyrimidine derivatives of pyrazole, pyrimidine or pyran III–V were afforded in good yield, as revealed in Scheme 1. All novel compounds were confirmed with spectroscopic analysis (MS, IR, 1H NMR and microanalysis).

Biological activities

Twelve of synthesised spiro-pyrrolopyrimidines and pyrrolopyrimidine-4-one were evaluated for their anti-hyperglycemic activity using both sucrose load model and streptozotocin models of diabetes. The synthesised compounds were assessed for their anti-hyperglycemic activity, which is comparable to Glimepiride (Amaryl) the standard anti-hyperglycemic drug, by comparing the mean area under the curve (AUC) for the blood glucose level between the different studied groups.

Among the 12 tested compounds; five compounds showed significant improvement (12.32%, 13.3%, 14.52%, 15.18% and 21.54%, respectively) on oral glucose tolerance post-sucrose-loaded normoglucemic rats compared to the sucrose-loaded untreated control, as revealed in Figure 5. From those active derivatives, treatment of derivatives IIIa, IIlb and Va only to STZ model of diabetes caused lowering on the blood glucose profile to the average

![Figure 4. Synthetic and mechanistic pathway for preparation of Pyrrolopyrimidine-4-thione Ia–d.](image-url)

![Table 1. Assessment of various treatments on oral glucose tolerance and blood glucose lowering activity in sucrose load model and diabetic rats.](table-url)
of (17.49%, 22.48% and 25.92%, respectively) compared to the diabetic control group, as depicted in Table 1.

Comparing the anti-hyperglycemic activity of these compounds to that of the reference anti-diabetic drug (Amaryl), compounds IIIa, Va and IIIb showed significant decrease in the blood glucose level (144.67%, 185.94% and 214.39%, respectively) compared to the activity of Amaryl, as shown in Figure 6. Studying these anti-hyperglycemic derivatives IIIa, Va and IIIb showed that the rats survived and showed no toxicity symptoms, as revealed in Table 1.

Active compounds were classified into two main sets: first, the 4-malononitrile derivative of pyrrolopyrimidines, namely, IIIa.b (Ar = benzyl and anti-pyrine). Also, the spiro derivatives containing pyrane ring IIIa,b, spiro-containing pyrazole ring Va.

Conclusions
We designated a direct and efficient synthesis of novel spiro-pyrrolopyrimidine, and estimated as anti-hyperglycemic agents. The structure activity analysis indicated that the pyrano IIIa,b displayed a significant anti-hyperglycemic activity profile compared to Amaryl. Pyrimidine group in IVa did not enrich the activity. The introduction of pyrazolo group to Va give rise to superior anti-hyperglycemic activity.

Acknowledgements
We like to convey our grateful thanks for Mossad Said Mohamed (Professor of Pharmaceutical Organic Chemistry) and the staff members of Faculty of Pharmacy, Helwan University for their inspiration and support.

Disclosure statement
We wish to declare that there are no recognised conflicts of interest connected with this publication and there has been no remarkable financial funding for this work that could have influenced its outcome. We authorise that the manuscript has been read and approved by all named authors, and that there are no other persons who fulfilled the standards for authorship but are not listed.

References
1. Verspohl EJ. Novel pharmacological approaches to the treatment of schizophrenia. Dan Med Bull 2000;47:151–67.
2. Hegazi R, El-gamal M, Abdel-hady N. Epidemiology of and risk factors for type 2 diabetes in Egypt. Ann Glob Heal 2015;81:814–20. [Internet]. Available from: http://dx.doi.org/10.1016/j.aogh.2015.12.011
3. Bhaskar Kumar T, Sumanth C, Vaishaly S, et al. Pd-mediated functionalization of polysubstituted pyrroles: their evaluation as potential inhibitors of PDE4. Bioorg Med Chem Lett 2012;22:5639–47. [Internet]; [cited 2015 Feb 14]Available from: http://www.ncbi.nlm.nih.gov/pubmed/22871579
4. Zeng S, Xie H, Zeng LL, et al. Discovery of potent dipeptidyl peptidase IV inhibitors through pharmacophore hybridization and hit-to-lead optimization. Bioorganic Med Chem 2013;21:1749–55. [Internet]. Available from: http://dx.doi.org/10.1016/j.bmc.2013.01.062
5. Deng J, Peng L, Zhang G, et al. The highly potent and selective dipeptidyl peptidase IV inhibitors bearing a thienopyrimidine scaffold effectively treat type 2 diabetes. Eur J Med Chem 2011;46:71–6. [Internet]. [cited 2015 Feb 14].
Available from: http://www.ncbi.nlm.nih.gov/pubmed/21106276

6. Jones RB, Dickinson K, Anthony DM, et al. Evaluation of BTS 67 582, a novel antidiabetic agent, in normal and diabetic rats. Br J Pharmacol 1997;120:1135–43.

7. Goel A, Agarwal N, Singh FV, et al. Antihyperglycemic activity of 2-methyl-3,4,5-triaryl-1H-pyrroles in SLM and STZ models. Bioorg Med Chem Lett 2004;14:1089–92.

8. Bhardwaj V, Gumber D, Abbot V, et al. Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv 2015;5:15233–66. [Internet]. Available from: http://xlink.rsc.org/DOI=C4RA15710A

9. Kondo T, Nekado T, Sugimoto I, et al. Design and synthesis of DPP-IV inhibitors lacking the electrophilic nitrile group. Bioorg Med Chem 2008;16:1613–31. [Internet]. [cited 2015 Feb 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18039579

10. Simpkins LM, Bolton S, Pi Z, et al. Potent non-nitrite dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2007;17:6476–80. [Internet]. [cited 2015 Feb 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17937986

11. Han B, Liu JL, Huan Y, et al. Design, synthesis and primary activity of thiomorpholine derivatives as DPP-IV inhibitors. Chinese Chem Lett 2012;23:297–300. [Internet]. [cited 2015 Feb 14]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1001841711003640

12. Nishio Y, Kimura H, Uchiyama K, et al. One-pot synthesis of 5-amino 4-cyano pyrrole derivatives. Tetrahedron Lett 2011;52:2767–70. [Internet]. [cited 2015 Feb 14]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0004040911004692

13. Motoshima K, Sugita K, Hashimoto Y, Ishikawa M. Non-competitive and selective dipeptidyl peptidase IV inhibitors with phenethylphospholinamidic skeleton derived from thalidomide-related a-glucosidase inhibitors and liver X receptor antagonists. Bioorg Med Chem Lett 2011;21:3041–5. [Internet]. [cited 2015 Feb 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21478015

14. Andrews KM, Beebe D, a, Benbow JW, et al. 1-(35,4S)-4-Amino-1-(4-substituted-1,3,5-triazin-2-yl) pyrrolidin-3-yl)-5,5-difluoropiperidin-2-one inhibitors of DPP-4 for the treatment of type 2 diabetes. Bioorganic Med Chem Lett 2011;21:1810–4. [Internet]. Available from: http://dx.doi.org/10.1016/j.bmcl.2011.01.055

15. Zhao G, Kwon C, Wang A, et al. Substituted piperidinyl glycinyl 2-cyano-4,5-methano pyrrolidines as potent and stable dipeptidyl peptidase IV inhibitors. Bioorganic Med Chem Lett 2013;23:1622–5. [Internet]. Available from: http://dx.doi.org/10.1016/j.bmcl.2013.01.104

16. Tsai T-Y, Hsu T, Chen C-T, et al. Rational design and synthesis of potent and long-lasting glutamic acid-based dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2009;19:1908–12. [Internet]. [cited 2015 Feb 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19269819

17. Gao Y-D, Feng D, Sheridan RP, et al. Modeling assisted rational design of novel, potent, and selective pyrolopyrimidine DPP-4 inhibitors. Bioorg Med Chem Lett 2007;17:3877–9. [Internet]. [cited 2015 Feb 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17502141

18. Xie H, Zeng L, Zeng S, et al. Novel pyrolopyrimidine analogues as potent dipeptidyl peptidase IV inhibitors based on pharmacokinetic property-driven optimization. Eur J Med Chem 2012;52:205–12. [Internet]. Available from: http://dx.doi.org/10.1016/j.ejmech.2012.03.015

19. Zhu X, Huang W, Qian H. GPR119 agonists: a novel strategy for type 2 diabetes treatment. Open Sci 2013;11:61–82.

20. Abu-Hashem AA. Synthesis and reaction of novel spiro pyrimidine derivatives. J Heterocycl Chem 2014;51:1020–6.

21. Bárter M, Hammarson M, Remón P, et al. Reversible energy-transfer switching on a DNA scaffold. J Am Chem Soc. 2015;137(7):2444–2447. [Internet]. Available from: http://pubs.acs.org/doi/abs/10.1021/ja512416n

22. Abdel-Hafez SH. Selenium containing heterocycles: synthesis, anti-inflammatory, analgesic and anti-microbial activities of some new 4-cyanopyridazine-3(2H)selene derivatives. Eur J Med Chem 2008;43:1971–7.

23. Khloya P, Kumar P, Mittal A, et al. Synthesis of some novel 4-arylidene pyrazoles as potential antimicrobial agents. Org Med Chem Lett 2013;3:9. [Internet]. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid =376599 36&tool =pmcentrez&rendertype =abstract

24. Karpyak VV, Obushak MD, Ganushchak ML. Synthesis of 2-(2-R1-hydrazone)-5-(R2-benzyl)-2-thiazolines on the basis of Meerweins Arylation products of allyl isocyanate. Molecules 2003;8:263–8.

25. Flefel EM, El-Sayed WA, Mohamed AM, et al. Synthesis and anticancer activity of new 1-thia-4-azaspiro[4,5]decane, their derived thiazolopyrimidine and 1,3,4-thiadiazole thioligo- sides. Molecules 2017;22:1–13.

26. Mohamed MS, Ali S, Abdelaziz DHA, Fathallah SS. Synthesis and evaluation of novel pyrroles and pyrrolopyrimidines as anti-hyperglycemic agents. Biomed Res Int 2014;2014:1–13.

27. Mohamed MS, El-Domany RA, Abd El-Hameed RH, et al. Synthesis of certain pyrrole derivatives as antimicrobial agents. Acta Pharm 2009;59:145–58.

28. Hussein WM, Fatahala SS, Mohamed ZM, et al. Synthesis and kinetic testing of tetrahydropyrimidine-2-thione and pyrrole derivatives as inhibitors of the metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Chem Biol Drug Des 2012;80:500–15. [Internet]. [cited 2015 Feb 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22738437

29. Mohamed MS, Kamel R, Abd El-hameed RH. Evaluation of the anti-inflammatory activity of some pyrrolo[2,3-d]pyrimidine derivatives. Med Chem Res 2012;22:2244–52. [Internet]. [cited 2015 Feb 14]. Available from: http://link.springer.com/10.1007/s00044-012-0217-5

30. Mohamed MS, Kamel R, Fatahala SS. New condensed pyrroles of potential biological interest: syntheses and structure-activity relationship studies. Eur J Med Chem. 2011;46:3022–9. [Internet]. Available from: http://dx.doi.org/10.1016/j.ejmech.2011.04.034

31. Mohamed MS, Kamel R, Fatahala SS. Synthesis and biological evaluation of some thio containing pyrrolo[2,3-d]pyrimidine derivatives for their anti-inflammatory and anti-microbial activities. Eur J Med Chem 2010;45:2994–3004. [Internet]. [cited 2015 Feb 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20399543

32. Mohamed MS, Ali SA, Abdelaziz DHA, Fathallah SS. Synthesis and evaluation of novel pyrroles and pyrrolopyrimidines as antihypoglycemic agents. Biomed Res Int 2014;2014:249780.
34. Mohamed MS, Kamel R, Fathallah SS. Synthesis of new pyrroles of potential anti-inflammatory activity. Arch Pharm (Weinheim) 2011;344:830–9. [Internet]. [cited 2015 Feb 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21956581
35. Mowla A, Alauddin M, Rahman MA, Ahmed K. Antihyperglycemic effect of Trigonella foenum-graecum (fenugreek) seed extract in alloxan-induced diabetic rats and its use in diabetes mellitus: a brief qualitative phytochemical and acute toxicity test on the extract. African J Tradit Complement Altern Med 2009;6:255–61.
36. Singh FV, Parihar A, Chaurasia S, et al. 5,6-Diarylanthranil-1,3-dinitriles as a new class of antihyperglycemic agents. Bioorg Med Chem Lett 2009;19:2158–61. [Internet]. [cited 2015 Feb 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19303291
37. Nagasawa T, Tabata N, Ito Y, et al. Dietary G-rutin suppresses glycation in tissue proteins of streptozotocin-induced diabetic rats. Mol Cell Biochem 2003;252:141–7.
38. Nain P, Saini V, Sharma S, Nain J. Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats. J Ethnopharmacol 2012;142:65–71.
39. Kim NN, Stankovic M, Cushman TT, et al. Streptozotocin-induced diabetes in the rat is associated with changes in vaginal hemodynamics, morphology and biochemical markers. BMC Physiol 2006;6:4.
40. Fatahala S, Shalaby E, Kassab S, Mohamed M. A promising anti-cancer and anti-oxidant agents based on the pyrrole and fused pyrrole: synthesis, docking studies and biological evaluation. Anticancer Agents Med Chem. 2015;15:517–26. [Internet]. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1871-5206&volume=15&issue=4&page=517
41. Fatahala SS, Hasabelnaby S, Goudah A, et al. Pyrrole and fused pyrrole compounds with bioactivity against inflammatory mediators. Molecules 2017;22(426):1–18.
42. Fatahala SS, Mohamed MS, Youns M, Hameed RHA-E. Synthesis and evaluation of cytotoxic activity of some pyrroles and fused pyrroles. Anticancer Agents Med Chem 2017;17:1–12.
43. Abdel-rahman AE, Awad IM, Bakhite E. Synthesis of some new heterocyclic compounds containing thieno[2,3-b]quinoline moiety. Phosphorus Sulfur Silicon Relat Elem 1991;60:189–99. [Internet]. [cited 2015 Feb 14]. Available from: http://www.tandfonline.com/doi/abs/10.1080/10426509108036781
44. Ismail MM, Abass M, Hassan MM. Chemistry of substituted quinolinones: part VI. Synthesis and nucleophilic reactions of 4-chloro-8-methylquinolin-2(1H)-one and its thione analogue. Molecules 2000;5:1224–39.
45. Sayed Mohamed M, Goudah Mostafa A, Helmy Abd Elhameed R. Evaluation of the anti-inflammatory activity of novel synthesized pyrrole, pyrrolopyrimidine and spiropyrimidin derivatives. Pharmacophore 2012;3:44–54. [Internet]. Available from: http://www.pharmacophorejournal.com
46. Uma C, Suganya N, Vanitha P, et al. Antihyperglycemic effect of Codariocalyx motorius modulated carbohydrate metabolic enzyme activities in streptozotocin-induced diabetic rats. J Funct Foods 2014;11:517–27. [Internet]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1756464614002564
47. Sheikh BA, Pari L, Rathinam A, Chandramohan R. Trans-anethole, a terpenoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Biochimie 2015;112:57–65. [Internet]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0300914X15000437
48. Review P. In vitro and in silico antidiabetic activity of pyran ester derivative isolated from Tragia cannabina. Asian Pac J Trop Biomed 2014;4(Suppl 1). [Internet]. Available from: http://www.apjtb.com/zz/2014S1/81.pdf
49. Sivajothi V, Dakappa SS. In vitro and in silico antidiabetic activity of pyran ester derivative isolated from Tragia cannabina. Asian Pac J Trop Biomed 2014;4(Suppl 1):5454–5459.