Current Mode Hysteresis Controlled Multi Input – SEPIC- Re-Boost-System

B. Jagadish Kumar1* and Basavaraja Banakara2
1Department of Electrical Engineering, Kakatiya Institute of Technology and Science, Warangal – 506015, Telangana, India; jagadeesh908@gmail.com
2Department of Electrical Engineering, University UBDT Engineering Colleges, Davanagere – 577004, Karnataka, India; banakara45@ubdtce.org

Abstract
Objectives: To reduce the number of switches, reduce the torque ripples and to improve the dynamic response of closed loop-controlled- SEPIC-Re-Boost-Multi-Converter (SRBMC) system using suitable controller. Methods: This study introduces SRBMC to control speed of DC Motor using hysteresis controller. The utilization of hysteretic controllers for low voltage controllers utilized in PC and correspondence frameworks has been picking up enthusiasm due its different favorable circumstances. Favorable circumstances of this control approach incorporates quick reaction and vigorous with straightforward structure and usage. Findings: It was observed that torque ripple is reduced from 0.24 N-m to 0.003 N-m by using hysteresis-controller. The settling-time was from 4.5 sec to 2.3 sec by utilizing HC. The 'steady-state-error' in the-output-voltage was diminished from 6.3 Rpm to 0.8 Rpm by introducing HC. Application: The applications include the battery charging, Tele communication systems, Electric vehicles and DC motor drives

Keywords: DC Motor, Hysteresis Two Loop, Multi-Converter System (MCS), Photovoltaic Voltage, SEPIC-REBOOST

1. Introduction
Due to the benefits among all the RES’s (Renewable Energy Sources), PV (Photo Voltaic) power generation framework is more considered. Here, Isolated SEPIC (Single Ended Primary Inductance Converter) fed-grid-associated-MLI (Multi Level Inverter) is introduced. SEPIC-converter is a BB (buck-boost) consequential topology provides adjusted yield-voltage with contrasting SE (Solar-Energy) by using single-switch. TP (Three-Phase) modular cascaded H-bridge MLI with entity MPPT for grid-associated PV-framework with synchronization of RBC (Re-Boost-Converter) is explained. Original sunlight-PV-fuel-cell-fed-double-input-double-yield-dc-dc-converter for dc-MGA (Micro-Grid Applications) is introduced. The recommended- converter make certain MPPT-maneuver of PV-source and also standardizes one of the pole-voltages of the dc-bus. Detailed analysis and control of the intended converter are presented.

Based on associating a PWM-dc/dc-SEPIC-converter managed-by MPPT-unit. A variety category of non-separated-DC-DC-converters for the PV-framework is assessed. The MPPT for PV-board utilizing DC-DC-converter is extended without utilizing MC (Micro-Controller). A modular-grid-associated-PV-generation-framework represents a definite performance-model of a grid-associated-PV-framework appropriate for framework stage-analysis. For representing the PV-collection and analyzing an ascent based-MPPT into a uncomplicated standard-model of the PC (power-converter) was extended, and the-model has been tentatively scrutinized. The SEPIC is chosen -because yield-voltage can be elevated or lesser than the input-voltage. Moreover, the input and yield-volt-
Current Mode Hysteresis Controlled Multi Input –SEPIC- Re-Boost-System

age are dc isolated. The separation- afforded by the “SC (Series-Capacitor C), which obstructs the D.C. from-the supply-region to the yield-region”\(^{10}\). This-converter is associated between the load and the PV-panel to keep away from the oscillation\(^{11,12}\). The SEPIC is the only-DC/DC-converter that can fundamentally similar to a BBC (Buck-Boost Converter) with additional benefit of creating a non-inverted-yield. It can be disagreed that BBC (Buck-Boost Converters) is inexpensive as they only need a single-inductor and capacitor, but these-converters also suffer from elevated-input-current-ripple\(^{13-15}\). This investigates the charger-framework executed with the SEPIC\(^{16}\).

While the BC (Boost Converter) usually has elevated effectiveness than the SEPIC, yet, it is only applicable for cases where the battery-voltage is elevated than the PV-module-voltage. The BB (Buck–Boost) aspect of the SEPIC-broadens the applicable-PV-voltage and thus enhances the adopted-PV-module-flexibility. The comparison of various BBC (Buck-Boost Converters) from dissimilar points induction converter (SEPIC)\(^{17}\). The author's in\(^{18,19}\) has suggested that SEPIC topology is highly suitable for multiple-input DC-DC converter because of its non-pulsating input current, grounded switch and non-inverting output voltages. It is chosen for battery-charging-frameworks because the diode situated on the yield-stage operates as a blocking-diode avoiding a reverse-current departing to PV-supply from the-battery\(^{20}\). Moreover, the Electro Magnetic-Interference (EMI) performance of a SEPIC-topology is superior to-step-down or fly-back- topology and avoids the difficulties with leakage-inductance and Snubbers\(^{21}\). SEPIC has additional-benefits such as non-inverted-yield, enhanced-flexibility, availability of enhanced- inductance with diminished-core, decoupling- of input and yield with some-drawbacks like difficult- fourth-order-framework\(^{22,24}\).

2. System-description

The Block-Diagram of Closed-two Loop-MCS with Hysteresis-Controller is exposed in Figure 1. ‘Actual-speed’ is evaluated with the ‘reference-speed’ and the ‘error is applied’ to Hysteresis controller. The output of Hysteresis is specified to a comparator which evaluates saw-tooth with the output of Hysteresis. The Hysteresis system updates the ‘width of pulse’ functional to the MOSFET of SEPIC and RBC. The Block-Diagram of Closed-two Loop-MCS with Hysteresis-Controller is exposed in Figure 2. ‘Actual-speed’ is evaluated with the ‘reference-speed’ and the ‘error is applied’ to HC. The ‘output of HC’ is given to a comparator which evaluates saw-tooth with the ‘output of HC’. The HC system updates the ‘width of pulse’ applied to the MOSFET of SEPIC and RBC.

3. Proposed Methodology

Hysteresis-controller is a computerized non-direct-controller particularly utilized for controlling non-straight-circuits. It is gotten from the variable structure control hypothesis and is appropriate for non-straight-frameworks. The utilization of hysteretic controllers for low voltage controllers utilized in PC and correspondence frameworks has been picking up enthusiasm due its different favorable circumstances. Favorable circumstances of this control approach incorporates quick reaction and vigorous with straightforward structure and usage. They do not require segments for feedback-loop-compensation. This decreases the quan-
tity of segments and size of hypothetical examination for execution. They reaction to unsettling influences and load change directly after the transient happens. Thus they give brilliant transient exhibitions.

Figure 3. Open-loop-MCS system with step-rise in input voltage.

Figure 4. Input-voltage.

Figure 5. Motor-speed.

Figure 6. Torque-response.

Figure 7. Closed-loop MCS with PI-PI controller.

Figure 8. Input-voltage.
Figure 9. Motor-speeds.

Figure 10. Torque-response.

Figure 11. Torque-ripple.

Figure 12. Closed two loops with hysteresis controller.

Figure 13. Input voltage.

Figure 14. Motor speed.

Figure 15. Torque response.

Figure 16. Torque-ripple.
4. Result and Discussions

Multi-level inverter-system with multiple-input-sources of Open-loop system with disturbance is appeared in Figure 3. “The input-voltage’ is delineated in Figure 4 and its value increases from 12 to 18V. The motor-speed is appeared in Figure 5 and its value is 800 RPM. The Torque-Response is appeared in Figure 6. The torque oscillates and settels at 1.9N.m. Multi converter system with multiple input sources of closed-loop-system with PI-PI controller is appeared in Figure 7. The input-voltage is appeared in Figure 8 and its value 18 V. The Motor-speed is appeared in Figure 9 and its value is 600 RPM. The Torque-Response is appeared in Figure 10 and its value is 2.5 N.m. The-Torque-Ripple is delineated in Figure 11 and its-value is 0.3 N.m. Multi converter system with multiple input sources of closed-loop-system with HC-HC controller is appeared in Figure 12. The input-voltage is appeared in Figure 13 and its value 18 V. The Motor-speed of SRBMC with HC-HC controller is appeared in Figure 14 and its value is 600 RPM. The Torque-Response is appeared in Figure 15 and its value is 1.2 N.m. The Torque-Ripple is appeared in Figure 16 and its value is 1.140 N-m.

The comparison of Time-domain-parameters is given in Table 1. By using Hysteresis-controller, the ‘settling-time’ is decreased from 4.5 to 2.3 sec; the steady-state-error’ in speed is decreased from 6.3 to 0.8 Rpm; the ‘rise-time’ is diminished from 2.3Sec to 2.1Sec; the ‘peak-time’ is diminished from 2.7Sec to 2.2 Seconds. Therefore the response with HC-HC-controlled-SRBMC system is superior to PI-PI controlled-SRBMC system. The ‘Comparison of Torque-ripple’ is given in Table 2. The ‘value of torque-ripple’ is diminished from 0.24 to 0.003N-m.

Table 1. Comparison of time domain parameters

Controller	T_s (Sec)	T_a (Sec)	T_p (Sec)	E_{ss} (Rpm)
PI-PI	2.3	4.5	2.7	6.3
HC-HC	2.1	2.3	2.2	0.8

Table 2. Comparison of torque ripple

Controller	T_r (N-m)
PI-PI	0.24
HC-HC	0.003
4.1 Experimental Results

Multi-level inverter system with multiple input sources for hardware-snap shot is exposed to Figure 17. The ‘Output-voltage of-solar’ is appeared in Figure 18. The ‘Output-voltage of-battery’ is revealed in Figure 19. The ‘output voltage of-battery’ is free from ripple. The switching-pulses for Sepic and Re-boost converters are appeared in Figure 20. The output-voltage of Sepic and re-boost-converter is revealed in Figure 21 and it is almost like pure-DC.

5. Conclusion

SRBMC system was successfully designed; modeled and simulated using MATLAB and the results of case studies with and without hysteretic control system were presented. It was observed that torque ripple is reduced from 0.24 to 0.003 N-m by using hysteresis-controller. The settling-time was lessened to 2.3 Sec by utilizing HC. The ‘steady-state-error’ in the output-voltage was diminished from 6.3 RPM to 0.8 R.P.M by introducing HC. The experimental-module is introduced to validate the simulation-results. The benefits of SRBMC system are increased reliability and reduced output-ripple. The disadvantages of SRBMC system is the requirement of two-sources and converters. The ‘scope of this work’ is the modeling and simulation of SRBMC with hysteretic control. The comparison with SMC controlled SRBMC system will be done in near future.

6. Acknowledgement

BJK acknowledges Kakatiya Institute of Technology and Science, Warangal, Telangana State, INDIA for the laboratory facilities extended for this study.

7. References

1. Veerachary M. Two-loop-controlled buck SEPIC converter for input source power management. IEEE Transactions on Industrial Electronics. 2012; 59(11):4075–87. https://doi.org/10.1109/TIE.2011.2174530
2. Mukundan CMN, Jayaprakash PP. Isolated SEPIC converter-fed-trinary-hybrid-cascaded-H-bridge-multilevel-inverter-for-solar-PV-system. IEEE Region 10 Symposium (TENSYMP); 2017. p. 1–5.
3. Xiao B, Hang L, Riley C, Tolbert LM, Ozpineci B. Three-phase modular cascaded H bridge multilevel inverter with individual MPPT for grid-connected photovoltaic systems. Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC); 2013. p. 468–74. https://doi.org/10.1109/APEC.2013.6520251. PMid:23311471
4. Prajof P, Agarwal V. Novel-solar PV-fuel-cell-fed-dual-input-dual-output-dc-dc-converter-for-dc-micro grid-applications. IEEE 42nd Photovoltaic Specialist Conference (PVSC); 2015. p. 1–6.
5. Morales D. Maximum-power-point-tracking- algorithm-for-photovoltaic-applications-thesis-for-the-degree-of-master-of-science. Aalto University; 2010. p. 1–82.
6. Taghvae MH, Radzi MAM, Moosavain SM, Hizam H, Hamiruce Marhaban M. A current-future-study-on-non-isolated-DC-DC-converters-for-photovoltaic-applications. Renewable& Sustainable Energy Reviews. 2013; 17:216–27. https://doi.org/10.1016/j.rser.2012.09.023
7. Safari A, Mekhilef S. Simulation and hardware implementation of incremental conductance MPPT with direct
control method using CUK converter. IEEE Transactions on Industrial Electronics. 2011; 58(4):1154–61. https://doi.org/10.1109/TIE.2010.2048834

8. Zhang L, Sun K, Xing Y, Feng L, Ge H. A modular grid connected photovoltaic generation system based on DC bus. IEEE Transactions on Power Electronics. 2011; 26(2):523–31. https://doi.org/10.1109/TPEL.2010.2064337

9. Ropp ME, Gonzalez S. Development of a MATLAB/ Simulink model of a single phase grid connected photovoltaic system. IEEE Transactions on Energy Conversion. 2009; 24(1):195–202. https://doi.org/10.1109/TEC.2008.2003206

10. Tsang KM, Chan WL. Fast acting regenerative-DC-electronic load based on a SEPIC-converter. IEEE Transactions on Power Electronics. 2012; 27(1):269–75. https://doi.org/10.1109/TPEL.2011.2158446

11. Joshi L, Shah K. Incremental conductance based maximum power-point tracking for PV multi-string power conditioning systems. International Journal of Emerging Technology and Advanced Engineering. 2013; 3(4):645–50.

12. Ravivarman S, Samydurai T. Optimized grid power-injection-with-maximum power point tracking using cascaded SEPIC converter three phase inverter. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. 2015; 4(1):222–30.

13. Maglin JR, Ramesh R, Moorthi V. Design and analysis of SEPIC converter based MPPT for solar PV module with CPWM. Journal of Electrical Engineering and Technology. 2014; 9(4):1269–76. https://doi.org/10.5370/JEET.2014.9.4.1269

14. Naithani V. Simulation of SEPIC converter fed LEO’s. International Journal of Engineering Science and Technology. 2012; 4(3):1015–20.

15. Raj TAB, Maglin JR, Vaigundamoorthi M, Christopher W. Grid connected solar PV system with SEPIC converter compared with parallel boost converter based MPPT. International Journal of Photoenergy. 2014; 1–12.

16. Adar D, Rahav G, Ben-Yaakov S. A unified behavioral average model of SEPIC converters with coupled inductors. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970–71. Power Processing and Electronic Specialists Conference 1972. 1997; 1:441–6. https://doi.org/10.1109/PESC.1997.616761

17. Erickson RW, Kluwers NMA. Fundamental of power-electronics. Springer; 1997. p. 1–883. https://doi.org/10.1007/978-1-4615-7646-4_1

18. Yu SY, Zhao R, Kwasinski A. Design considerations of a multiple input isolated single ended primary inductor converter (SEPIC) for distributed generation sources. Energy Conversion Congress and Exposition (ECCE); 2011. p. 3960–7. PMID:22172879

19. ElShahat A. Standalone PV system simulation for dg applications. Journal of Automation and Systems Engineering. 2012; 6(1):55–72.

20. Zhao R, Kwasinski A. Multiple input Single ended Primary Inductor Converter (SEPIC) converter distributed generation applications. IEEE Energy Conversion Congress and Exposition; 2009. p. 1847–54.

21. Kalja N, Rao SP. SEpic converters solve automotive power needs. Maximum Power Electronic Technology. 2009; 35(4):1–16.

22. Chiang SJ, Shieh HJ, Chen MC. Modeling and control of PV charger system with SEPIC converter. IEEE Transactions on Industrial Electronics. 2009; 56(11):4344–53. https://doi.org/10.1109/TIE.2008.2005144

23. Veerachary M. Power tracking for nonlinear PV sources with coupled inductor SEPIC converter. IEEE Transaction on Aerospace and Electronic Systems. 2005; 41(3):1019–29. https://doi.org/10.1109/TAES.2005.1541446

24. Mamarelis E, Petrone G, Spagnuolo G. Design of a-sliding mode controlled SEPIC for PV MPPT applications. IEEE Transactions on Industrial Electronics. 2014; 61(7):3387–98. https://doi.org/10.1109/TIE.2013.2279361