HIV co-receptors were quite far from our main interests at the end of 1995, and we got involved in this field in a totally unexpected way. Our interest in chemokines was even relatively new at that moment, as we were mostly dealing with the characterization of new G protein-coupled receptors (GPCRs) in various areas such as endocrinology, neuroscience, and olfaction. Candidate receptors for leukocyte chemoattractant factors were part of an expanding repertoire of “orphan” receptors under study. I will essentially describe here a relatively short period of years 1995–1996, which has been one of the most hectic in my scientific career. This period is viewed from our perspective in Brussels, as I do not know for sure what was going on in other laboratories around the world, besides the results of these activities in terms of publications, communications in meetings, or personal contacts. I apologize in advance for the unavoidable bias in this sort of “historical” review.

A few years earlier, in the end of 1980s, our Institute had a strong focus on thyroid research. The most dynamic part of this activity was the cloning of some of the main actors of thyroid hormone biosynthesis, the hormone precursor thyroglobulin and the iodinating enzyme thyroperoxidase. A primary objective at that time was the cloning of the main regulator of thyroid function, the thyrotropin receptor, which was known as coupled to the stimulation of adenylate cyclase through the G₁ protein. It is the search for the thyrotropin receptor that ultimately led, amongst many other unexpected findings, to our contribution to the characterization of CCR5 and its role in HIV infection.

G protein-coupled receptors constitute the largest family of membrane receptors and collectively play a major role in all physiological and pathophysiological processes. GPCRs share a common structural organization with seven transmembrane segments, and a common way of modulating cell functions by regulating effector systems through heterotrimeric G proteins and arrestins. The first GPCR sequences (rhodopsin, β-adrenergic, and M1 muscarinic receptors) were obtained in 1986–1988, following protein purification and peptide sequencing approaches. As a result, the common transmembrane organization and structural relatedness of GPCRs became obvious. Gilbert Vassart, leading the molecular biology group of the Institute, suggested applying the newly developed PCR method to the search of new members of the GPCR family, by using degenerate primers corresponding to the most conserved motifs among the small number of available GPCR sequences. A Ph.D. student in the Institute, Frédéric Libert, set up the procedure very successfully, and cloned within a few weeks, four new members of the GPCR family, that were referred to as “orphan” receptors (1).

These were later characterized as CXCR7, serotonin 5HT1Dₐ, and adenosine A1 and A2a receptors. In the aftermath, a bunch of other orphan receptors were cloned, and we characterized the target of this new cloning strategy, the thyrotropin receptor (2). This PCR cloning approach, used first in Brussels, was applied broadly by other labs afterwards, and contributed significantly to the vigorous reporting of new GPCRs in the early 1990s.

In our hands, the first CCR5 sequences originated from a screen performed by Catherine Mollereau in early 1993 with the aim of identifying subtypes of opioid receptors. This screen led among others to the cloning of ORL1, a fourth member of the opiate receptor family, and the identification of its peptidic ligand nociceptin (3). A number of partial sequences were also similar to the first chemokine receptors, CXCR1, CXCR2, and CCR1, reported by the groups of Phil Murphy and Tom Schall (4, 5). We thus decided to engage into the functional characterization of these candidate chemokine receptors. The cDNA encoding CCR5 was expressed in CHO-K1 cells and tested in a microphysiometer, an ancestor of the “label free” instruments, which measured changes in cell metabolism by monitoring the acidification rate of the culture medium. MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5 were identified by a French post-doc, Michel Samson, as three chemokines able to activate the receptor. The manuscript was first submitted to JBC in early September 1995, but was rejected after a 3-month reviewing process. It was resubmitted to Biochemistry in December (6).

In the meantime, a paper was published in December 1995 by the group of Paolo Lusso and Robert Gallo (7), describing that three chemokines, MIP-1α, MIP-1β, and RANTES, were able to inhibit infection of cells by macrophage-tropic HIV-1 strains. The link between the pharmacology of CCR5 and the profile of HIV inhibitory factors was of course striking. With no tools at hand for studying HIV, we first mailed Robert Gallo in January 1996 to propose some kind of collaboration to study the role of CCR5 in HIV infection. We never got an answer to this letter. It was quite clear at that time that we were not the only group to have CCR5 on hands. There were a bunch of very active groups in the chemokine receptor field, such as those of Philip Murphy, Craig Gerard, and Tom Schall. CCR3 and CCR4 had been published in late 1995 and Phil Murphy had
FIGURE 1 | The transmembrane organization of CCR5 is represented with its seven transmembrane segments, the eighth α-helix parallel to the plasma membrane, the two disulfide bonds, and the palmitoylated cysteines. The position of some of the variants demonstrated to affect CCR5 function is indicated. The Δ32 mutant, with an average allele frequency of about 10% in European populations is the most frequent. Two missense mutations (C20S and C178R) affect one of the disulfide bonds necessary for the correct folding of the receptor. Two other mutations (C101X and the frame shift mutant FS299) result in early termination of translation. None of these mutant receptors is properly expressed at the surface of cells. Besides Δ32, the most frequent mutation is FS299, with an allele frequency of 2.9% in Chinese subpopulations. The allele frequencies of other mutations are well below 1%.

reported the CCR3 sequence with MIP-1α, MIP-1β, and RANTES as agonists. This was later retracted as a result of a clone handling mistake, but it was quite clear that CCR5 and its pharmacology were in other hands as well.

While considering other potential collaborators, our manuscript dealing with CCR5 pharmacology became available, and very rapidly afterwards, I got a mail from Bob Doms in Philadelphia, proposing to join efforts on this topic. We sent to Bob plasmids encoding CCR5 and a set of related receptors we had at that time. Bob was obviously not alone in this game. In the HIV community, the existence of an HIV co-receptor, the orphan GPCR LESTR (and future CXCR4), for T-tropic HIV strains was already well known. The data would appear 1 month later in an April issue of Science (8). Many HIV groups were therefore looking for other GPCRs that would mediate the entry of HIV strains involved in disease transmission. Soon after the first feedback by Bob Doms of the experiments performed in Philadelphia, Gilbert Vassart suggested to check whether variants of CCR5 could be responsible for the variable susceptibility to HIV infection. We first obtained from a clinician of the nearby hospital, Claire Farber, DNA samples from three patients with slow disease progression and a few uninfected controls. Unexpectedly, Frédérick Libert and Michel Samson identified in this small series one slow progressor but also two control individuals as heterozygous for the same mutation of CCR5, a 32-base pair deletion in a region corresponding to the second extracellular loop of the receptor, and resulting in a frame shift and early termination (Figure 1). This mutant form of the CCR5 gene did not explain the slow progression of the patients tested. It was clear however that the resulting CCR5 mutant could not act as a functional receptor, and that the mutant allele was quite frequent. Within days, we sent a plasmid encoding this CCR5 mutant to Bob Doms for testing its function as HIV co-receptor, initiated experiments to demonstrate its deficiency as a chemokine receptor, and started collecting samples to study the frequency of the mutation at a larger scale. There were well-established cohorts of uninfected but multiply exposed individuals, but a few phone calls suggested to us that obtaining the genomic DNA from these cohorts would take ages compared to the pace at which this field was developing. We opted therefore for a more accessible approach. Starting from
our local contacts in the campus hospi-
tal, were gathered within a week from
various hospitals in Belgium and France,
collections of DNA samples from cohorts
of HIV-infected patients and uninfected
controls, reasoning that the frequency of
the mutant CCR5 allele should be dif-
f erent between these two groups if this
allele was protective against HIV infec-
tion. We also collected DNA samples from
about a hundred volunteers in the Insti-
tute’s staff. Testing these samples as they
arrived built progressively what is now
known as the allele frequency of the Δ32
allele, around 10% in Western Europe.
More importantly, while the number of
homzygotes was in the expected range for
Mendelian distribution in the uninfected

group, there was a lack of homozygotes in
the HIV-infected group. When each group
reached over 700 individuals, the p value
was below 0.0005. In the meantime, we
had also found three Δ32 homozygotes
within the institute personnel. We could
rush blood cells to our Philadelphia collab-
orators to check whether these cells were
indeed resistant to macrophage-tropic, but
not T-tropic HIV-1 strains. This was indeed
the case.

The manuscript was submitted to Nature in mid-July 1996. Although there
was a strong interest of the Editor, one of
the referees opposed us the fact that our
cohorts were not constructed according to
the rules. While we quite agreed on this,
we had to fight to convince the editor that
the data were clear enough to overcome
weaknesses in cohort structure, and that
there was no time to be spent on theo-
retical considerations. The final argument
came when we could state that a concur-
rent manuscript had been submitted to Cell
by the Ned Landau group and that it was
being reviewed positively. As a result, we
were requested to respond to the latest ref-
eree comments by correcting the text at the
proof stage, and the two papers appeared
in August 1996 (14, 15).

It was shown later on by various groups
that protection by the Δ32 allele was not
complete, and a few infected Δ32
homozygotes have been reported within
the following years. In the following months and years, we have studied the
structure–function relationships of CCR5
in relation to its role of chemokine recep-
tor and HIV co-receptor, analyzed the
distribution of the Δ32 mutation in var-
i ous populations of the world, and tested
the functional consequences of other, less
frequent, variants and mutants of CCR5
(Figure 1). But somehow, the excitement
was over, and subsequent research became
more “routine.” The characterization of
the CCR5 Δ32 mutation and its conse-
quences on infection rate by HIV had
validated CCR5 as an obvious target for
 the development of drugs targeting CCR5
and the entry of macrophage-tropic HIV
strains. Many pharmaceutical companies,
including Takeda, Pfizer, GSK, and Scher-
 ing Plough, started immediately screening
programs that resulted a few years later
into CCR5 antagonists. While Takeda’s
TAK779, GSK’s aplaviroc, and Schering
Plough’s vicriviroc failed in clinical tri-
 als for toxicity reasons, Pfizer’s maraviroc
went successfully through clinical testing
and was approved in 2007 as the first-
in-class CCR5 antagonist and HIV entry
inhibitor. Overall, this has been a very short
path (11 years altogether) between the dis-
covery of a target and the launch of a small
molecule in the clinics. With the present
availability of fast and efficient mutagen-
esis techniques such as the CRISPR/Cas9
system, gene therapy approaches for inac-
tivating CCR5 in the hematopoietic system
are also being considered actively for the
 treatment of HIV infection.

REFERENCES
1. Libert E, Parmentier M, Lefort A, Dinsart C, Van
 Sande I, Maenhaut C, et al. Selective amplifica-
tion and cloning of four new members of the
G protein-coupled receptor family. Science (1989)
244:569–72. doi:10.1126/science.2541503
2. Parmentier M, Libert F, Maenhaut C, Lefort A,
Girard C, Perret J, et al. Molecular cloning of the
thyrotropin receptor. Science (1989) 246:1620–2.
doi:10.1126/science.2556796
3. Meunier JC, Molleireau C, Toll L, Suaudeau C,
Moissant C, Alvinerie F, et al. Isolation and struc-
ture of the endogenous agonist of opioid receptor-
like ORL1 receptor. Nature (1995) 377:532–5.
doi:10.1038/377532a0
4. Murphy PM, Tiffany HL. Cloning of comple-
mentary DNA encoding a functional human
interleukin-8 receptor. Science (1991) 253:1280–3.
doi:10.1126/science.1891716
5. Noote K, DiGregorio D, Mak JY, Horuk R, Schall TJ.
Molecular cloning, functional expression, and sig-
nalling characteristics of a C-C chemokine recep-
tor. Cell (1993) 72:415–25. doi:10.1016/0092-
8741(93)90118-A
6. Samson M, Labbé O, Molleireau C, Vassart G,
Parmentier M. Molecular cloning and functional
characterization of a new CC-chemokine receptor
gene. Biochemistry (1996) 35:3362–7. doi:10.1021/
bk952950g
7. Cocchi F, DeVico A, Garzino-Demo A, Arzy SK,
Gallo RC, Gusso P. Identification of RANTES, MIP-
1, and MIP-1β as the major HIV suppressive fac-
tors produced by CD8⁷ T cells. Science (1995)
270:1811–5. doi:10.1126/science.270.5245.1811
8. Feng Y, Broder CC, Kennedy EA, Berger EA. HIV-
1 entry cofactor: functional cDNA cloning of a
seven-transmembrane, G protein-coupled recep-
tor. Science (1996) 272:872–7. doi:10.1126/science.272.
526.872
9. Alkilath B, Combsbrie C, Broder CC, Feng Y,
Kennedy PE, Murphy PM, et al. CCR5: a
RANTES, MIP-1α, MIP-1β receptor as a fusion
cofactor for macrophage-tropic HIV-1. Science
(1996) 272:1955–8. doi:10.1126/science.272.5270.
1955
10. Choie H, Farzan M, Sun Y, Sullivan N, Rolinski
B, Ponnath FD, et al. The β-chemokine receptors
CCR3 and CCR5 facilitate infection by primary
HIV-1 isolates. Cell (1996) 85:1135–48. doi:10.1016/0092-
8674(96)81313-6
11. Deng H, Liu R, Ellmeyer W, Choe S, Unutmaz D,
Burbikart M, et al. Identification of a major co-
 receptor for primary isolates of HIV-1. Nature
(1996) 381:661–6. doi:10.1038/381661a0
12. Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M,
Parmentier M, et al. A dual-tropic, primary HIV-1
isolate that uses both fusin and the β-chemokine
receptor CCR5-5 as entry cofactors. Cell (1996)
85:1149–58. doi:10.1016/0092-8674(96)81314-8
13. Dragic T, Litwin V, Allaway GP, Martin SR, Huang X,
Nagashima KA, et al. HIV-1 entry into C14+ cells
is mediated by the chemokine receptor CCR5. Nature
(1996) 381:667–73. doi:10.1038/381667a0
14. Liu R, Paxton WA, Choe S, Ceradini D, Mar-
tin SR, Horuk R, et al. Homozygous defect in
HIV-1 co-receptor accounts for resistance of some
multiply-exposed individuals to HIV-1 infec-
tion. Cell (1996) 86:676–77. doi:10.1016/S0092-
8674(00)80110-5
15. Samson M, Libert E, Doranz BJ, Rucker J, Liesnard
C, Farber CM, et al. Resistance to HIV-1 infection of
Caucasian individuals bearing mutant alleles of
the CCR5 chemokine receptor gene. Nature (1996)
382:722–5. doi:10.1038/382722a0

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any
commercial or financial relationships that could be
 construed as a potential conflict of interest. Received: 03 March 2015; accepted: 21 May 2015;
published online: 08 June 2015. Citation: Parmentier M (2015) CCR5 and HIV infec-
tion, a view from Brussels. Front. Immunol. 6:295. doi:
10.3389/fimmu.2015.00295
This article was submitted to Chemoketransceptors, a section of the journal Frontiers in Immunology. Copyright © 2015 Parmentier. This is an open-access article published under the terms of the Creative Com-
mons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.