Modulation of Quorum Sensing and Biofilms in Less Investigated Gram-Negative ESKAPE Pathogens

Veronica Lazar1,2, Alina Maria Holban1,2, Carmen Curutiu1,2 and Mariana Carmen Chifiriuc1,2

1 Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania, 2 The Research Institute of the University of Bucharest, Bucharest, Romania

Pathogenic bacteria have the ability to sense their versatile environment and adapt by behavioral changes both to the external reservoirs and the infected host, which, in response to microbial colonization, mobilizes equally sophisticated anti-infectious strategies. One of the most important adaptive processes is the ability of pathogenic bacteria to turn from the free, floating, or planktonic state to the adherent one and to develop biofilms on alive and inert substrata; this social lifestyle, based on very complex communication networks, namely, the quorum sensing (QS) and response system, confers them an increased phenotypic or behavioral resistance to different stress factors, including host defense mechanisms and antibiotics. As a consequence, biofilm infections can be difficult to diagnose and treat, requiring complex multidrug therapeutic regimens, which often fail to resolve the infection. One of the most promising avenues for discovering novel and efficient antibiofilm strategies is targeting individual cells and their QS mechanisms. A huge amount of data related to the inhibition of QS and biofilm formation in pathogenic bacteria have been obtained using the well-established gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa models. The purpose of this paper was to revise the progress on the development of antibiofilm and anti-QS strategies in the less investigated gram-negative ESKAPE pathogens Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter sp. and identify promising leads for the therapeutic management of these clinically significant and highly resistant opportunistic pathogens.

Keywords: ESKAPE, microbial biofilms, intercellular communication, quorum sensing inhibitors, quorum quenching, personalized therapy

INTRODUCTION

Many international organizations have declared antibiotic resistance (AR) to be a global public health concern, requiring concerted action plans to tackle this problem and to decrease its huge social, medical, and economic burden (Michael et al., 2014; Spellberg et al., 2016).

The emergence of AR strains is favored by microbiostatic substances, which only inhibit microbial multiplication, but also by the improper administration of microbicidal drugs with respect to dose interval and active concentration (Vrancianu et al., 2020a,c). Some of the multiple negative consequences of AR are the unprecedented increase in infectious disease frequency, illness
duration, morbidity and mortality rates, as well as associated costs and failure of performing medical procedures requiring effective antibiotic prophylaxis and treatment, such as organ transplantation, cancer therapy, major surgery, management of preterm babies, and use of implanted medical devices (Laxminarayan et al., 2013; Weist and Diaz Högberg, 2014).

A pivotal but still underestimated contribution to the dimension of AR problem is brought by microbial biofilms developed on cellular/tissue substrates or medical devices (Lazar and Chifiriuc, 2010; Pircalabioru and Chifiriuc, 2020). These microbial communities or biofilms represent a form of existence with a particular architecture and behavior, different from that of single, free-floating, or planktonic cells living in citadels challenging to conquer (Lazar and Chifiriuc, 2010; Lazar, 2011), which is also more advantageous for bacteria, mainly due to the intercellular communication and sense of their density inside biofilms and exhibiting high phenotypic resistance (or tolerance) to high doses of antimicrobial agents. According to the National Institutes of Health (Bethesda, MD, United States), biofilm-associated infections (BAIs) are involved in the etiology of 70 – 80% of human infections (Bjarnsholt et al., 2005; Lazar, 2011). In 2000, the CDC (Center for Disease Control, United States) stated that BAIs are one of the seven major healthcare safety challenges for the medical community, which has to find solutions for reducing catheter-associated infections as well as hospitalization and mortality from respiratory tract infections that occur in long-term care patients (Thomas et al., 2006; Rice, 2010).

One of the most important traits ensuring the success of pathogenic strains in establishing persistent infections is their intricate and very complex communication systems, involving group-specific or interchangeable signaling molecules, used to coordinate growth, virulence, as well as bacteriocins and antibiotics production (González and Keshavan, 2006; Jayaraman and Wood, 2008; Lazar, 2011; Stoica et al., 2016). The most studied intra-, interspecies, and even interkingdom communication system is the quorum sensing (QS) and response mechanism, mediated by small chemical signals, called autoinducers (AIs). If at the beginning of the 1990s the QS mechanism was known only for Vibrio fischeri and Vibrio harveyi (Fuqua et al., 1994) and is considered an “interesting but esoteric” mechanism of gene regulation, only a few years later, using a lux-based reporter gene screening model, it was described in most gram-negative bacteria (Passador and Iglewsi, 1995). QS metabolites are produced by both prokaryotic and eukaryotic cells for one-way, two-way, or multiway communication (Jayaraman and Wood, 2008; Kendall and Sperandio, 2014), in response to bacterial population changes and environmental cues (e.g., starvation, hypoxia, low iron availability) (Lee and Zhang, 2015; Ha et al., 2018). It has been shown that pathogenic QS molecules could alter the host microbiota and also interfere with host cell signaling pathways (Curutiu et al., 2013; Vogt et al., 2015). Moreover, bacterial pathogens can recognize and utilize various mammalian molecules, such as hormones (epinephrine and norepinephrine), interleukins, and signaling peptides (Freestone et al., 2000; Curutiu et al., 2013). The most common types of AIs used by gram-negative bacteria in intraspecies communication are the N-acyl homoserine lactones (AHLs) (Watson et al., 2002), while gram-positive bacteria use autoinducing peptides (AIPs) (Jayaraman and Wood, 2008).

Among many important advantages offered by QS to bacterial pathogens, there is the ability to colonize and/or invade the host, as well as to develop biofilms on natural tissues (skin, mucosa, endothelial epithelia, and teeth) or medical devices (central venous catheters, peritoneal, urinary catheters, dental materials, cardiac valves, intrauterine contraceptive devices, contact lenses, and other implants) (Lazar and Chifiriuc, 2010) and, thus, to persist in the host.

Quorum sensing signaling is involved in key points of the biofilm development (initiation, matrix formation, maturation, and detachment) and modulates collective phenotypes responsible for biofilm structure, such as surface motility and the production of exopolysaccharides (EPSs) and other adhesins (Hooshdar et al., 2020). Currently investigated approaches for BAI control include (i) bacteriophages (Nguij et al., 2014), (ii) mechanical debridement of biofilms by ultrasound and surgical procedures, (iii) biophysical approaches to facilitate drug penetration and/or delivery inside biofilms (infrared and light pulsing, direct-current electrical stimulation, ultrasound and alternating electric fields, etc.) (Kim, 2016), (iv) drug delivery systems (Kasimanickam et al., 2013), (v) local delivery of antibiotics (including the revived ones, such as colistin) in high concentrations for a long period of time (e.g., catheter locks, intratracheal locks, etc.) (Chauhan et al., 2012), (vi) antipathogenic (antivirulence) molecules, (vii) new types of vaccines using cells with the adhesive phenotype (Lazar, 2011), (viii) matrix dispersing/degrading/stabilizing agents [enzymes, anti-EPS antibodies, nucleic acid binding proteins, and ethylenediaminetetraacetic acid (EDTA)] (Kolderman et al., 2015), (ix) targeting non-growing dormant and persister biofilm cells (Conlon et al., 2013), and (x) development of modified biomedical devices, resistant to microbial adhesion and colonization (Abdelghany et al., 2019).

The disruption of bacterial QS by QS inhibitors (QSIs) represent a promising approach for fighting BAIs (Davies et al., 1998; Chandra Kalia, 2013; Fong et al., 2018). As most of the described QS signaling systems include two-component systems (TCS), namely, the AI (QS molecule) and the receptor, also known as response regulator (RR), which impacts on the transcription of target genes (Pappenfort and Bassler, 2016), the QS modulation strategies follow one of two directions: (i) interference with signal generation and (ii) signal reception (Zhao et al., 2020). Both directions cluster various approaches and are summarized in Table 1. However, in some situations, the AI (i.e., AI-3) can bind to a sensor kinase (SK), instead of an RR (Kim et al., 2020).

Numerous in vitro and in vivo experimental data (Brackman et al., 2011) on biofilm formation and antibiofilm unconventional strategies were reported (Roy et al., 2018), but their efficiency and safety need to be validated in clinical studies. The local delivery of QSI in biofilms seems to be a promising
lead, allowing a quick assessment of therapeutic efficiency. Therefore, developing appropriate local delivery systems and ways would be of most importance in future research. Despite the huge amount of data, only a few of the available QSIs are reaching the stage of clinical studies and, eventually, the bedside, and sometimes they have been approved for other biological activities, such as antimicrobial (e.g., azithromycin, which inhibits the alginicate synthesis; vegetal extracts; natural compounds, which can also act as QSIs in subinhibitory concentrations) or antitumoral agents (Saurav et al., 2016; Rémy et al., 2018). There are also few patents using lactonase or acylase QSIs, proposed mainly as antibiofouling agents (Lee et al., 2013).

From the most challenging resistant species, known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), and then changed to ESCAPE (E. faecium, S. aureus, Clostridium difficile, A. baumannii, P. aeruginosa, and Enterobacteriaceae), the gram-negative bacilli are the most problematic because of the lack of novel classes of antimicrobial agents efficient against these multiple- (MDR), extended (XDR), and pan-drug resistant (PDR) strains. From February 2017, these emerging MDR bacteria are also listed as critical in the WHO (World Health Organization) priority pathogen list for the research and development of new antimicrobials1.

The most known investigated biofilm regulators and their described mechanisms for Klebsiella sp., Acinetobacter sp., and Enterobacter sp., which are less investigated MDR ESKAPE agents, are presented in Table 2.

Biofilm-associated infections often involve ESKAPE pathogens as etiological agents. Therefore, the purpose of this paper is to reveal and discuss the progress on the development of antibiofilm and anti-QS strategies in the less investigated gram-negative ESKAPE pathogens, such as A. baumannii, K. pneumoniae, and Enterobacter sp., and their potential contribution to the personalized control of infections produced by these emerging opportunistic pathogens.

QS SIGNALING AND MICROBIAL BIOFILMS IN ACINETOBACTER SP., KLEBSIELLA SP., AND ENTEROBACTER SP.

Among the most dangerous threats concerning infection control gathered under the acronym ESKAPE, some of them are less investigated than the well-known QS experimental models, such as P. aeruginosa and S. aureus. However, the increasing incidence in the etiology of hospital-acquired infections and BAIs as well as the multiple intrinsic and acquired resistance mechanisms of the gram-negative species from the ESKAPE group, Acinetobacter sp., Klebsiella sp., and Enterobacter sp., justify the urgent need for the development of novel and effective antimicrobial strategies to target them. Table 3 summarizes some of the recent approaches investigated for BAI management in A. baumannii, Klebsiella sp., and Enterobacter sp.

Acinetobacter spp. is one of the hospital “superbugs,” considered today the most important nosocomial pathogen and the first priority on the WHO pathogen list requiring novel antibiotics, mainly due to its tolerance to desiccation, MDR mechanisms, and ability to develop medical device BAIs. Biofilm-forming ability seems to be much higher in clinical strains to form biofilms on abiotic substrata and epithelial cells increases their genetic resistance. Thus, at least 92% of the biofilm-forming nosocomial isolates seem to be MDR (Babapour et al., 2016), while an increased detection rate and expression of the blaPER-1 gene encoding for beta-lactam resistance were recorded in biofilm-forming isolates (Lee et al., 2008; Gaddy and Actis, 2009). It was reported that CarO and OmpA outer membrane proteins are interacting physically with the OXA-23 carbapenemase, leading to an enhanced carbapenem resistance by cumulating non-enzymatic and enzymatic resistance mechanisms (Chopra et al., 2013).

1 https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1

Table 1: Mechanisms of quorum sensing modulation in Gram-negative bacteria.

Main approach	Mechanism	Type/Target	Result	References
Signal generation	**Inhibition of the AI synthesis**	LuxI inhibitor, SAM (S-adenozyl methionine) inhibitor	Inhibition of AHL synthesis, Inhibition of Al-2 synthesis	Chan et al., 2015, Taylor et al., 2009
Signal reception	**Degradation of the AI**	Lactonases	Open the ring of AHLS – inactive AI	See-Too et al., 2018
Receptor antagonists	**Acylases**	Acylases	Cut the lateral acyl chain of AHLS – inactive AI	Utari et al., 2017
Signal trapping	**Clathrate compound**	Structural/functional AI antagonists	Inhibition of receptor activation	Chen et al., 2011
Suppression of LuxI/LuxR production	**Interference RNA**	AI sequestration	Interference with the translation of LuxI/LuxR mRNA by non-coding small RNA	Taylor et al., 2009, Chambers and Sauer, 2013
Recent genomic studies highlight the presence of much greater virulence determinants in *A. baumannii* than previously thought. The virulence genes, including those involved in biofilm formation and the current progress in developing antibiofilm agents in *A. baumannii*-derived infections, are summarized by Eze et al. (2018). The success of *A. baumannii* in host colonization mainly depends on its adherence capacity, but other virulence factors are also incriminated. These include: K1 capsular polysaccharides, surface antigen protein 1, outer membrane porins (which are involved in adhesion, biofilm formation, and drug resistance), Bap (biofilm-associated protein), inflammatory cytokine induction molecules (Eze et al., 2018; Harding et al., 2018), iron transport systems and siderophores (such as acinetobactin), poly-(1-6)-N-acetylglucosamine (PNAG, which is one of the most important structures for biofilm formation correlated with higher resistance), activation of phosphomannomutase/phosphoglucomutase (algC) gene (encoding for alginate and lipopolysaccharide (LPS) during biofilm development and correlated with the MDR level), type 1 chaperone-usher pilus system (Csu pili) regulated by QS (which is critical for the adherence to inert substrata), LHp2_11085 factor involved in adherence to inert and cellular substrata, and A15_0114 regulatory gene of surface proteins and pili-assembly system expression (Shin et al., 2009; Xiang et al., 2020; Colquhoun and Rather, 2020). The enormous adaptability of resistant strains, supported by the acquisition and dissemination of resistance and virulence markers, renders it a dangerous opportunistic pathogen, particularly in the case of immunosuppressed patients from the intensive care units (Vrancianu et al., 2020b,c).

The QS system in *Acinetobacter* sp. has been described as homologous to the LuxR receptor (AbaR) and LuxI synthase (AbaI) system from *V. fischeri*. However, phylogenetic studies indicate that its QS genes (*abai* and *abar*) were acquired horizontally from *Halothiobacillus neapolitanus* (Bhargava et al., 2010, 2015a). More than 63% of the *Acinetobacter* spp. analyzed strains produced more than one AHL (≥C10), including N-3-hydroxydodecanoyl)-l-homoserine lactone (OH-dDHL). The QS mechanism plays an important role in *Acinetobacter* spp. motility, expression of multidrug efflux pumps, and biofilm formation.
TABLE 3 | Recent approaches for BAIs management in A. baumannii, Klebsiella sp., and Enterobacter sp.

Approach	Microorganism	Mechanism/Effect	References
Bacteriophages	Klebsiella sp.	The ZCKP1 phage reduces biofilm biomass via soluble exopolysaccharide depolymerase, that has the ability to disrupt the capsule of Klebsiella, rendering it more susceptible to antibacterial agents	Taha et al., 2018
		Siphoviridae phage Z reduces the biofilm biomass after 24 and 48 h	Jamal et al., 2015
		Phage vB_KpnS_Kp13 drastically reduces the biofilm biomass (by ~73%) after 48 h	Horváth et al., 2020
	Acinetobacter baumannii	The vB_AbaM_JSTD phage (Myoviridae family) reduces planktonic and biofilm-associated viable bacteria in a time-dependent manner	Vukotic et al., 2020
		The bacteriophage vB_AbaM-IME-AB2 infected and disrupted the biofilm	Liu Y. et al., 2016
	E. cloacae/E. asburiae	The highly virulent bacteriophage N5822, isolated from an environmental source, reduced a preformed static host biofilm, and inhibited the formation of new biofilm by up to 90%	Nair et al., 2019
Low-frequency ultrasound (LFU)	K. pneumoniae	The treatment has increased the antimicrobial effect of with antimicrobial agents (meropenem, tigecycline, fosfomycin) in biofilm M-LFU (multiple –LFU) increased the duration of the synergistic effect as compared with S-LFU (single –LFU)	Liu et al., 2020
LFU	A. baumannii	LFU in combination with colistin and vancomycin may be useful in treating pan-resistant infections	Liu X. et al., 2016
Photodynamic inactivation (PDI) combined with chitosan	A. baumannii	A notable decrease of the number of viable biofilm cells	Fekirrad et al., 2021
Cathodic voltage controlled electrical stimulation (CVCES)	A. baumannii	The treatment has significantly reduced the implant-associated colony forming units (CFU) by over 91% and bone-associated CFU by over 88%	Ehrensberger et al., 2016
DNase I Dispersin B	Klebsiella pneumoniae, Acinetobacter baumannii	Biofilm-disrupting activity	Fleming and Rumbaugh, 2017
	A. baumannii	Degradation of the (p)pGpp bacterial stringent response signal	de la Fuente-Núñez et al., 2015; Wang et al., 2015; Wolfmeier et al., 2018
Synthentic, modified antimicrobial peptide 1018	K. pneumoniae, Enterobacter sp.		
DJK-5, DJK-6 synthetic, D-eranitomonic, protease-resistant peptides	A. baumannii	Eradicated biofilms	Hendiani et al., 2015
Formulaion of imipenem and silver NP	Enteroabacter cloacae	Reduced biofilm formation	Zurob et al., 2019
Nanostructured Graphene- and Hexagonal Boron Nitride-Coated Surfaces			

development (Figure 1). However, little is known about the cascade of genes associated with various mechanisms controlled by the QS system in A. baumannii (López et al., 2017). Iron limitation seems to regulate the expression of virulence and QS factors in A. baumannii clinical strains, including the biofilm development capacity (Kim H. W. et al., 2013; Modarresi et al., 2015). In their turn, the QS signaling molecules could chelate iron, inducing the occurrence of the stress response (Minandri et al., 2016). This could explain the persistence of A. baumannii biofilms in iron-depleted environments. Siderophores can chelate iron, zinc, copper, and other metals, interfering thus with the activity of antibiotics and host molecules while modulating the oxidative stress (Figure 1).

Studies related to the inhibition of QS in Acinetobacter are limited. The lack of QSIs for this clinically significant pathogen is a mounting concern, especially with the increasing frequency of MDR strains (Subhadra et al., 2016).

Klebsiella pneumoniae is a versatile opportunistic pathogen, exhibiting many virulence features, allowing it to colonize different inert substrata, including the urinary catheters, such as fimbriae (of type 1 and 3), capsular polysaccharides, factors involved in aggregate adhesion, and siderophores (Stahlhut et al., 2012; Vuotto et al., 2014; Paczosa and Mecsas, 2016). If in the preantibiotic era K. pneumoniae was considered an important etiological agent of community-acquired (CA) infections (such as severe pneumonia in debilitated patients), presently, because of its high resistance to last-resort antibiotics, such as carbapenems and colistin, the spectrum of K. pneumoniae infections has broadened, including CA and healthcare-associated life-threatening infections (Lederman and Crum, 2005). K. pneumoniae is
involved in 5–7% of all healthcare-associated infections (Clegg and Murphy, 2016). *K. pneumoniae* uses QS TCSs to control the host–pathogen interactions and to coordinate the virulence and the AR mechanisms, including the rapid development of biofilms on abiotic surfaces (Balestrino et al., 2005; Srinivasan et al., 2012; Tiwari et al., 2017). The QS system in *K. pneumoniae* is mediated by the AI-2 AI encoded by a homolog of *luxS* from *V. harveyi* (Figure 2), and also by N-octanoyl homoserine lactone (C8-HSL) and N-3-dodecanoyl-1-homoserine lactone (C12-HSL) (Balestrino et al., 2005; Yin et al., 2012). Mutations in *luxS* are correlated with an increased expression of two LPS synthesis-related genes, *wbbM* and *wzm*, also involved in biofilm formation (Sun et al., 2016). Recent data confirm the involvement of the AI-2 QS system in the expression of LPS and PNAG biosynthesis, as well as biofilm development of an extensively drug-resistant *K. pneumoniae* clinical isolate (Chen et al., 2020; Figure 2).

Enterobacter genus, especially through its two most prominent species, *Enterobacter aerogenes* and *Enterobacter cloacae*, is a versatile nosocomial pathogen with serious implications in respiratory and urinary tract infections (Sanders and Sanders, 1997). Unfortunately, little is known about quorum control and pathogenesis in this group of bacteria. Most of the available data come from food-associated studies. It uses C4 and C6-HSLs as QS signaling molecules (Yin et al., 2012; Lau et al., 2013), encoded by a LuxR homolog, which has been found to negatively regulate bacterial adhesion and biofilm formation (Shankar et al., 2013). AI-2-mediated QS has also been suggested to play a role in intercellular communication within *Enterobacter* spp. (Figure 3), as Lsr-type receptors have been found in strains of *Enterobacter cancerogenus*, *E. cloacae*, and *Enterobacter mori* (Rezzonico et al., 2012; Tay and Yew, 2013). The AI-3 activity, initially reported in enterohemorrhagic *E. coli* O157:H7, was also detected in *E. cloacae* isolated from normal microbiota (Reading and Sperandio, 2006).

A recent study documented the cloning and characterization of a transcriptional regulator, luxR homolog from *Enterobacter asburiae*, as well as the functionality and specificity of EasR protein in response to different AHL signaling molecules to activate gene transcription from QS target promoters (Figure 3). However, further genome-wide comparative transcriptomics are needed to elucidate the possible roles of QS, especially in the pathogenicity of different *Enterobacter* spp. (Lau et al., 2020; Figure 3).

BIOFILM AND QS MODULATORS IN Acinetobacter, Klebsiella, AND Enterobacter

As BAIs produced by ESKAPE pathogens are currently very difficult to treat, the modulation of key molecular mechanisms...
of biofilm development, including the QS signaling, represents a very promising alternative in handling such infections (Lazar and Chifiriuc, 2011).

Below, we present the results of different studies that have reported the use of natural and synthetic compounds or other mechanical, physical, or biological strategies to modulate QS and inhibit biofilm development in *Acinetobacter*, *Klebsiella*, and *Enterobacter* species.

Antibiotics and Antiseptics

When used in specific amounts, antibiotics could act as intermicrobial signaling agents, impacting on the biofilm homeostasis, motility, and type three secretion system (TTSS) (Linares et al., 2006). Subinhibitory concentrations of antibiotics modulate the QS mechanism, in contrast to bactericidal effects observed at high concentrations (Rémy et al., 2018). Some antibiotics (i.e., streptomycin, gentamicin, and myomycin), utilized in subinhibitory concentrations, have been found to inhibit QS signaling in *A. baumannii*. Streptomycin can act as an antagonist of AbaR and inhibits QS in *A. baumannii* by downregulating the *abaI* gene, encoding for the AI synthase, resulting in the corresponding decrease in 3-oxo-C12-HSL production (Saroj and Rather, 2013). It has been shown that subinhibitory concentrations of trimethoprim-sulfamethoxazole...
completely inhibit the pilin expression in *A. baumannii*, disrupting the biofilms formed on inert substrata and promoting a planktonic lifestyle, with bacterial cells more susceptible to antimicrobial agents (Harding et al., 2018).

In catheter-associated *A. baumannii* infections, the combination of colistin–levofloxacin [at 400 × minimum inhibitory concentration (MIC) each] or a combination of colistin/tigecycline/levofloxacin at 400 × MIC with clarithromycin (200 mg/ml) and/or with heparin (1,000 U/ml) as lock solutions proved to be therapeutically effective against BAIs (Ozbek and Mataraci, 2013). Tigecycline, imipenem–rifampicin, and colistin–rifampicin (Song et al., 2015), as well as sulfactam–tigecycline and meropenem–sulbactam, proved to be effective against *A. baumannii* biofilms, decreasing the biofilm mass and thickness (Wang et al., 2016).

In associated wound infections, drug-resistant *A. baumannii* forms biofilms, which are very recalcitrant to topical antibacterial agents. However, when associated with ambrroxol, a respiratory mucus secretolytic agent, the topical antibacterial agents proved to be effective against wound-associated BAIs (Huang et al., 2012).

A number of Food and Drug Administration (FDA)-approved drugs with different pharmacological activities, including erythromycin (antibiotic), chloroquine (antimalarial), levamisole (antiparasitic), and propanolol (adrenergic blocker), were recently proven to interfere with QS and virulence in MDR *A. baumannii* clinical isolates. These drugs repressed the expression of *abai* gene *in vitro* and showed significant virulence repression in *A. baumannii*, both *in vitro* and *in vivo*, expressed by improved mice survival rates. In addition, molecular docking studies against Abal and AbaR proteins of QS system in *A. baumannii* revealed the potential inhibition of QS by these drugs (Seleem et al., 2020).

Oxidizing biocides, such as sodium hypochlorite and hydrogen peroxide (Ceni et al., 2020) proved to be more efficient against biofilms than non-oxidizing ones (e.g., sulfathiazole, glutaraldehyde) (Shakeri et al., 2007), with single species *Acinetobacter* biofilms proving to be more susceptible than polymicrobial ones (Runci et al., 2016).

Natural QS Modulators

Quorum sensing inhibition was first observed in natural habitats (Pietschke et al., 2017). The QSIs were synthesized either by other organisms to protect from pathogenic bacteria or by bacteria to gain a survival advantage (Saurav et al., 2017). The concept of QS modulators includes numerous types of natural or synthetic molecules, but also phages and cells, like quorum quenching (QQ) bacteria.

The natural QSIs are used as a backbone to obtain synthetic QSIs. As antipathogenic drugs, the QSIs could be used either to treat or prevent infections and synergize with current antibiotics and anti-infectious immune effectors (Romero et al., 2012; Tang and Zhang, 2014; Pietschke et al., 2017).

QSIs agents are diverse, such as exogenous AI-2, the AIP type I, RNAIII-inhibiting peptide, benzamide–benzimidazole “M64” derivative (Starkey et al., 2014), or plant/microbial-derived compounds, i.e., essential oils (Saviuc et al., 2015), usnic and barbic acids—lichen secondary metabolites (Francolini et al., 2004; Chifiriuc et al., 2007; Grumesescu et al., 2015), 6-gingerol (Kim H. A. et al., 2015; Kim H. S. et al., 2015), solenopsin A, catechin, ellagic acid derivatives, curcumin, diterpenoid lactone 14-alpha-lipoyl and rographolide (Zeng et al., 2011), ajoene (Jakobsen et al., 2012), patulin and penicillic acid isolated from *Penicillium* sp. (Rasmussen et al., 2005a,b), probiotic culture supernatants and purified compounds (Ditu et al., 2011; Cotar et al., 2013), and enzymes (*Bacillus* spp.-derived lactonase) (Kiran et al., 2011). Natural QSIs represent an ecological and intelligent way to fight microbial pathogens efficiently without exhibiting the side effects normally associated with antibiotics.

Microbial metabolites produced by drinking water bacteria proved to inhibit *Acinetobacter calcoaceticus* biofilms (Simões et al., 2008). The 5-episinuleptolide, a natural compound isolated from *Sinularia leptolados* inhibited the *A. baumannii* biofilm development as well as the MDR *A. baumannii* strains by decreasing the poly-PNAG expression (Tseng et al., 2016). There are reports on utilizing several natural compounds as QSIs that interfere with AHL receptors in *A. baumannii*, including patulin, clavacin, vanilillin, and alliin (Cady et al., 2012). Linalool, a major compound *Coriandrum sativum* essential oil, flavonoids from *Glycyrrhiza glabra*, and *Salvia glutinosa* essential oil have been shown to exhibit QSI as well as anti-*A. baumannii* virulence and biofilm activity (Bhargava et al., 2015b; Alves et al., 2016; Tutar, 2016; Shaaban et al., 2019). Vegetal QSIs have also been proposed to be used as natural food preservatives to prevent opportunistic food-borne infections. Petunidin, a dark-red or purple water-soluble pigment found in many red berries (an O-methylated anthocyanidin of the 3-hydroxy type) at sub-MIC values, drastically reduced the EPS production in *K. pneumoniae*, the antibiofilm effect being much enhanced when acting synergistically with conventional antibiotics. Molecular modeling studies predicted that petunidin induces changes in the 3D structure of the LasR receptor protein, suggesting that it acts as an effective competitive inhibitor of QS signaling through the LasR receptor pathway (Gopu et al., 2015). The essential oil from cumin seeds reduced biofilm formation in *K. pneumoniae*, but without any direct connection with QS pathway inhibition.

Lactonases are natural enzymes able to degrade AHL-type AIs. Two clusters of AHL lactonases were described in prokaryotes: AiiA and AttA. The AiiA lactonase has been shown to decrease the number of *E. cloacae* cells during early biofilm formation in continuous biofilm models, while flagellin and outer membrane protein expressions were downregulated (dos Reis Ponce et al., 2012; Kim I. H. et al., 2013). AttA cluster was described in *K. pneumoniae* and regulates the fermentative metabolism and virulence in this bacterium (Sun et al., 2016).

Engineered and natural lactonases (e.g., a thermostable engineered mutant of phosphotriesterase-like lactonase from *Geobacillus kaustophilus*, with enhanced catalytic activity on different AHSs ranging from 6 to 12 carbons) induced a significant decrease in *A. baumannii*-associated biofilm development (Chow et al., 2010, 2013, 2014). The large AHL spectrum of these enzymes proves their promising potential to fight infections associated with various gram-negative bacteria using AHL-mediated QS signaling. It has also been reported
by Zhang et al. (2017) that the recombinant enzyme, MomL, is also able to degrade QS molecules, and thus reducing the biofilm formation and increasing the in vitro susceptibility of biofilm cells to different antibiotics of some *Acinetobacter* sp. strains and of *P. aeruginosa* PAO1. However, the results were strain dependent, and when this enzyme was tested against polymicrobial biofilms and wound-associated biofilm infections, it was ineffective, probably due to the fact that the in vivo conditions could affect the stability of the enzyme and its penetration through the biofilm matrix (Zhang et al., 2017).

Antimicrobial peptides (AMPs) are considered promising candidates for developing antimicrobial and anti-inflammatory agents and an example of how the natural antimicrobial strategies from the living world could be exploited or mimicked to create effective antimicrobial drugs (Aminov, 2010). It was demonstrated that the AMP LL-37 disrupted the structure of *A. baumannii* biofilms at low concentrations of 2.5 µg/ml (Shin et al., 2009). Also, a natural AMP complex (defensin, cecropin, diptericin, and proline-rich peptide families that are produced during bacterial infections) from the blow fly maggot *Calliphora vicina* has been proven to be active both on the cellular and matrix components of *A. baumannii* biofilms, at the same time lacking toxicity toward human immune cells (Gordya et al., 2017). Magainin 2 AMP has been proven to be an effective treatment for *A. baumannii* infections (Kim et al., 2018). Many other AMPs, such as CAMEL (a hybrid AMP consisting of cecropin from *Hyalophora cecropia* and melittin from *Apis mellifera*), pexiganan, cecropins identified in *Musca domestica*, and myxinidin isolated from *Myxine glutinosa*, revealed antibiofilm activity against resistant *A. baumannii* strains (Han et al., 2017). Natural AMPs can be a starting point for the biosynthesis of AMPs with similar functions, being an attractive therapeutic option for preventing and controlling *A. baumannii* BAlIs (Vrancianu et al., 2020a).

Synthetic Modulators

Antagonists of diguanylate cyclase enzyme that synthesize c-di-GMP, a second messenger signal essential for biofilm formation, were proven to inhibit QS and biofilm formation in *A. baumannii* (Sambanthamoorthy et al., 2014). Recently Subhadra et al. (2016) reported the efficacy of virstatin, a small organic molecule, as an inhibitor of biofilm formation and motility in *A. baumannii* and *Acinetobacter nosocomialis*, acting by inhibiting the anor/I signaling pathway (Subhadra et al., 2016). Various non-native AbaR ligands inhibited AHL-mediated QS and, subsequently, *A. baumannii* surface motility and biofilm formation (Stacy et al., 2012). One of the strongest AbaR antagonists (with very low IC50 values less than 20 nM) largely contained aromatic acyl groups, whereas the AbaR agonists closely resembled OH-dDHL (Stacy et al., 2012). A 2-aminoimidazole-based antibiofilm agent proved to effectively decrease biofilm development on indwelling medical devices (Peng et al., 2011). The dihydrofolate reductase inhibitor N2, N4-disubstituted quinazoline-2,4-diamines, has been shown to decrease by 90% the number of biofilm-embedded cells at concentrations similar to MIC, being more effective than tigecycline (Fleeman et al., 2017).

Synthetic AI-2 interferes with QS modulated phenotypes in *K. pneumoniae*, restoring acetoin, ethanol, and acetic acid production in luxS knockout mutant (Sun et al., 2016).

QSI–Antibiotic Synergic Combinations

QSIs often exhibit a synergic antibiofilm activity with antibiotics (Algburi et al., 2017). Scientists suggest using furanone in combination with antibiotics; this approach being more acceptable by patients (Grandclément et al., 2015). The association of antivirulence agents with current antibiotics could be anticipated as efficient against biofilms (Escaich, 2010). The QS-controlled bacterial adherence and colonization could be inhibited using novel inhibitors of pili synthesis, represented by sortases or specific inhibitors of TTSS. Synergic combinations of antibiotics and QSIs are expected to be soon evaluated for QS modulation in *A. baumannii*, *Klebsiella* sp., and *Enterobacter* sp.

Nanomaterials

Nanotechnology offers promising leads for fighting BAIs by developing nanoantimicrobials and antibiofilm materials and by improving the drug loading and the controlled release of antimicrobial agents into biofilms. Numerous nanostructured materials have been developed to target biofilm pathogens, including the less investigated ESKAPE gram-negative species discussed in this study. Liposomes of different compositions proved to be efficient carriers for ciprofloxacin and meropenem against *K. pneumoniae* biofilms (Gubernator et al., 2007) and polymyxin B/clarithromycin against *A. baumannii* and *Acinetobacter lwoffii* biofilms (Khan et al., 2016; Halbus et al., 2017).

Gallium nitrate is a potent inhibitor of *A. baumannii* biofilm formation and a disruptor of mature biofilms developed in human serum, probably also due to iron depletion in the multicellular communities formed by *A. baumannii* (Runci et al., 2016).

Metallic nanoparticles (NPs) have a great potential for antimicrobial applications, exhibiting multiple mechanisms of action, such as membrane lesions induced by direct contact or indirectly, by the release of free metal ions, protein inactivation, nucleic acid damages, and release of reactive oxygen species (ROS) (Grumezescu et al., 2015; Samrot et al., 2020; Tripathy et al., 2020). They could also exhibit synergic action with the host immune effectors. Metallic NPs can also be associated with the current antibiotics or other pharmaceutically active compounds to overcome the resistance threat, particularly in hospital settings (Tudose et al., 2015a,b, 2016). The small size and tailored properties of NPs seem to represent an advantage for penetrating more efficiently the biofilm matrix (Holban et al., 2016; Abdelghany et al., 2020). Silver NPs alone and associated with biocides or antibiotics (imipenem) proved very active on *A. baumannii*, both planktonic and biofilm growth (Hendiani et al., 2015). Zinc oxide NPs were also reported to impact the biofilm formation of different gram-positive and gram-negative pathogens, being considered future nanoantibiotics (Visinescu et al., 2015, 2018; Muzammil et al., 2018). It has also
been shown that *K. pneumoniae* uropathogenic strains isolated from complicated urinary tract infections have shown decreased adherence to silver-treated silicone or latex catheters (Gabriel et al., 1995). Titanium NPs also show promising antibacterial and antiadhesive properties against *A. baumannii* and *K. pneumoniae* strains (Ibrahim et al., 2014).

The medical device-associated infections could be prevented by developing antiadherent materials or coatings. For example, “biospecific polymers” coated with antiadhesive molecules or doped with inhibitory biofilm-associated gene expression could represent an alternative (Pascual, 2002). Urinary catheters coated with nitrofurazone proved to have an enhanced resistance to biofilm development by ESKAPE urinary pathogens (Johnson et al., 2012; Zhu et al., 2019).

Biofilm Dispersal Diffusible Signal Factors

Bacteria can induce dispersal to escape from the biofilm macrostructure in response to a broad range of input signals. The biofilm dispersal process is the starting point of systemic infections since it triggers the release of bacteria into the host (Marks et al., 2013; Guilhen et al., 2017). Therefore, knowledge of the regulation of dispersal factors would help control the development of BAIs and the systemic spread of bacteria. It is known that biofilm dispersal could be triggered by (i) environmental factors [i.e., availability of iron (Musk et al., 2005; Glick et al., 2010), carbon source (Uppuluri et al., 2010; Bonnichsen et al., 2015), presence of heavy metals (Petrova et al., 2015), temperature (Nguyen et al., 2015), pH (Uppuluri et al., 2010), and oxygen limitation (An et al., 2010)] and (ii) bacteria and host-produced signaling molecules [i.e., AHLs, AIPs, diffusible signal factors (DSFs) (Ueda and Wood, 2009; Tao et al., 2010; Periasamy et al., 2012), human intestine epithelial cell signals (Sanchez et al., 2016), and nitric oxide (Li et al., 2013)].

Diffusible signal factors was originally found in *Xanthomonas campestris* and is a new family of widely conserved QS fatty acid signals in gram-negative bacteria, which regulate biofilm formation, motility, virulence, and AR (Deng et al., 2014). Studies showed that DSFs act as interspecies biofilm regulators since, for example, DSF produced by *P. aeruginosa* can disperse biofilms of other gram-negative (i.e., *E. coli, K. pneumoniae*, and *Proteus mirabilis*), gram-positive (i.e., *Streptococcus pyogenes, Bacillus subtilis, S. aureus*), but also yeast (*Candida albicans*) strains (Davies and Marques, 2009). However, little is known regarding DSF regulation in the development and dispersal of *K. pneumoniae*, *A. baumannii*, and *Enterobacter* sp. biofilms. Recent studies showed that DSFs and other fatty acids inhibit key virulence mechanisms, such as planktonic growth, capsule production, and cell adhesion and induce biofilm dispersal in *K. pneumoniae* (Rahmani-Badi et al., 2014; Gupta et al., 2020; Kumar et al., 2020). Chowdhury et al. (2021) reported a cis-2-hexadecenoic acid (c2-HAD) DSF homolog encoding gene (*rpff*) in *Enterobacter* sp. This DSF was proven to control the intestinal invasion of *Salmonella* sp. and control the main virulence regulon in this microorganism (Chowdhury et al., 2021). c2-HAD is supposed to interfere also with the virulence of other intestinal gram-negative bacteria, including *Enterobacter* species. Several mono-unsaturated chain fatty acids that could act as DSFs were demonstrated to affect QS communication and inhibit motility and biofilm formation of *A. baumannii* clinical isolates. These fatty acids decreased the expression of the regulator abaR from the LuxIR-type QS system. Consequently, they reduced the AHL production with a direct impact on biofilm dispersal (Nicol et al., 2018).

All the strategies proposed above are based on the molecular regulation of key phenotypes of virulence and resistance. These approaches are preferred in recent years since researchers believe that signaling modulation could prevent the development of the infectious process and the selection of resistant mutants compared to classical antibiotics. QS and biofilm control by such molecules could not interfere with population fitness but with some social behavior of microorganisms, which are key for their pathogenesis.

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) System

One of the most attractive leads to the fight against bacterial resistance is the CRISPR-Cas system, first described by Ishino et al. (1987). CRISPR-Cas is considered a bacterial immune defense system that could specifically recognize and degrade foreign nucleic acids. The CRISPR platform has been used to achieve rapid genomic editing by deletions, insertions, and point mutations, to investigate the oxidative stress (OxyR) mechanisms, as well as the *abaI* gene role in biofilm formation of *A. baumannii* (Wang et al., 2019; Vrancianu et al., 2020a).

Studies suggested that certain bacteria employ the Cas proteins of CRISPR-Cas3 systems to target their own genes, which also alters the virulence during host invasion. It seems that numerous gram-negative bacteria use QS signaling to control adaptive immunity through the regulation of multiple CRISPR-Cas systems. Such interference has been revealed in *Serratia* sp., *Pseudomonas* sp. (Hoyland-Kroghsbo et al., 2017; Noirot-Gros et al., 2019), and *Salmonella* sp. (Cui et al., 2020), where the tool is currently investigated to understand QS molecular signaling and biofilm formation. Cas3 deletion upregulated the luxS regulated operon related to QS and downregulated biofilm-forming-related genes in *Salmonella* interfering with pathogenicity island 1 genes related to the TTSS (Cui et al., 2020). Figure 4 shows the main phenotypes that impact on biofilm development and could be targeted for the management of ESKAPE infections.

IN VIVO MODELS OF INFECTION

Animal models are crucial to developing new therapeutics and vaccines and play critical roles in the assessment of understanding infection. Over the years, several animal models were developed for *A. baumannii*, *K. pneumoniae*, and *Enterobacter* sp.
Pneumonia mouse models have been most widely developed in *A. baumannii*. However, most of the tested strains do not infect immunocompetent mice or induce only self-limiting pneumonia with no or very limited local and systemic dissemination. Other studies use immunocompromised (i.e., neutropenic) mice or treat mice with mucin or agar to increase host susceptibility to *A. baumannii* and bacterial virulence (van Faassen et al., 2007; Eveillard et al., 2010). Despite their limitation, these mouse models are useful for investigating bacteria virulence and the development of the infectious process. Recently, a mouse model of *A. baumannii*-associated pneumonia using a clinically isolated hypervirulent strain showed reliable reproduction of the most relevant features of human acute pulmonary infection and pathology (Harris et al., 2013). A similar model (Luna et al., 2019) was utilized to analyze the efficiency of antibiotic combinations in MDR *A. baumannii* pneumonia. The study demonstrated the synergistic effects of the combination of colistin with fosfomycin and minocycline, respectively, as therapeutic options in carbapenem-resistant *A. baumannii* mouse infection (Ku et al., 2019). Mouse models are also investigated to reveal *A. baumannii* strains and clones, which are associated with increased risk fatality and are circulating in the human population (Nutman et al., 2020).

Caeorhabditis elegans is another model developed for investigating *A. baumannii* virulence and biofilm development in vivo. The nematode is currently the preferred model for screening the infection, resistance, and virulence correlations in most clinically relevant *Acinetobacter* species (Cosgaya et al., 2019).

Few in vivo models were developed to study *K. pneumoniae* infection. Wax moth *Galleria mellonella* has been utilized to study key virulence mechanisms in *Klebsiella* sp., such as cell death associated with bacterial replication, avoidance of phagocytosis by phagocytes, the attenuation of host defense responses, and the production of antimicrobial factors. Numerous studies support the utility of *G. mellonella* as a surrogate host for assessing infections with *K. pneumoniae* (Insua et al., 2013). However, some research reports the better utility of murine models to investigate *K. pneumoniae* infection and host interaction. Along with their proven utility in the elucidation of pneumonia mechanisms, mouse models were recently used to evaluate *K. pneumoniae* gastrointestinal (GI) colonization and host-to-host transmission. Using an oral route of inoculation and fecal shedding as a marker for GI colonization, authors showed that *K. pneumoniae* can asymptptomatically colonize the GI tract in immunocompetent mice and modifies the host GI microbiota. A hypervirulent *K. pneumoniae* isolate evaluated in that study was able to translocate from the GI tract and cause a hepatic infection that mimicked the route of human infection. Authors claim expression of the capsule is required for colonization. Also, treatment with antibiotics of infected mice led to changes in the host microbiota and the development of a transient supershedder phenotype, which enhanced transmission efficiency. Therefore, mouse model can be used to determine the contribution of host and bacterial factors toward *K. pneumoniae* dissemination (Young et al., 2020).

In *Enterobacter* sp., in vivo models of infection are scarce. *G. mellonella* larvae were recently studied to determine the antibacterial efficacy of various drugs and proved its utility also for the investigation of host–pathogen interactions in *E. cloacae*. The study concluded that *G. mellonella* killing significantly depends on the number of *E. cloacae* cells injected in a dose-dependent manner. Moreover, survival can be reduced by increasing the postinoculation temperature. Also, treatment of lethal *E. cloacae* infection with antibiotics with proven in vitro activity significantly prolonged the survival of larvae, as compared with antibiotics to which the bacteria were resistant.
The therapeutic benefit arising from the administration of antibiotics was also correlated with a reduced burden of *E. cloaca* cells in the hemolymph (Yang et al., 2017).

Our study highlights that *G. mellonella* larvae proved to be the most investigated *in vivo* infection model for *A. baumannii* (Jeon et al., 2019), *K. pneumoniae*, and Enterobacter sp. (Cieślak et al., 2021). However, more models currently applied for other gram-negative bacteria (i.e., *Drosophila melanogaster*, zebrafish, mouse, rat) are expected to emerge in the near future in order to enhance knowledge regarding biofilm infections determined by less investigated emerging ESKAPE pathogens.

CONCLUSION

To the best of our knowledge, this is the first paper focusing on the current progress in developing antibiofilm and anti-QS strategies for fighting the less investigated gram-negative ESKAPE pathogens: *K. pneumoniae*, *A. baumannii*, and Enterobacter sp.

The surveyed literature reveals some promising leads for the development of efficient strategies against these problematic superbugs, such as combinations of QSI s and/or antibiotics administered locally or with improved and controlled targeted delivery by using nanocarriers. Researchers are currently exploiting the great perspectives offered by CRISPR-Cas in the research of BAIs. It will probably soon be applied in the investigation of less analyzed ESKAPE pathogens.

A promising priority lead is represented by natural QSI s that could provide an ecological approach, with great therapeutic and preventive value, and can be used as the backbone to obtain synthetic, non-pollutant QSI s. This approach will foster the development of social microbiology, which will exploit the antagonistic biological relationships for finding attractive and intelligent anti-infectious strategies.

The development of QS modulation strategies for clinically significant biofilm-producing pathogens such as *K. pneumoniae*, *A. baumannii*, and Enterobacter sp. could be of mounting importance for effectively controlling the nosocomial and CA BAIs, especially with the continuing evolution of MDR, XDR, and PDR strains. QS modulators are also less likely to select for resistance and eventually would have fewer side effects and ecotoxicity.

In vivo models are very useful to decipher molecular mechanisms during infection and also the utility of newly developed agents aiming to control virulence, biofilm modulation, and resistance of less investigated ESKAPE bacteria. More and specific infection models are expected to emerge in the next few years.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

We gratefully acknowledge the support of UEFISCDI by the Grant 10 PCCF PN-III-P4-ID-PCCF-2016-0114 (RADAR). This work was also supported by a grant from the Ministry of Research, Innovation and Digitization, CNCS/CCCDI UEFISCDI, project number 505PED/2020, within PNCDI III.

REFERENCES

Abdelghany, A. M., Ayad, D. M., and Mahmoud, S. M. (2020). Antibacterial and energy gap correlation of PVA/SA biofilms doped with selenium nanoparticles. Biointerface Res. Appl. Chem. 10, 6280ñ6288. doi: 10.33263/briac105.62366244

Abdelghany, A. M., Meikhall, M. S., and El-Bana, A. A. (2019). Microbial activity and swelling behavior of chitosan/polyvinyl alcohol/sodium alginate semi-natural terpolymer interface containing amoxicillin for wound dressing applications. Biointerface Res. Appl. Chem. 9, 4368ñ4373. doi: 10.33263/briac95.368373

Ahmad, I., Nygren, E., Khalid, F., Myint, S. L., and Uhlin, B. E. (2020). A Cyclic-di-GMP signalling network regulates biofilm formation and surface associated motility of *Acinetobacter baumannii* ATCC 17978. Sci. Rep. 10:1991. doi: 10.1038/s41598-020-05822-5

Alghuri, A., Comrito, N., Kashanov, D., Dicks, L. M. T., and Chikindas, M. L. (2017). Control of biofilm formation: antibiotics and beyond. Appl. Environ. Microbiol. 83:e02508ñ16. doi: 10.1128/AEM.02508-16

Álvarez-Fraga, L., Rumbo-Feal, S., Pérez, A., Gómez, M. J., Gayoso, C., Vallejo, J. A., et al. (2017). Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in *Acinetobacter baumannii* ATCC 17978. PLoS One 12:e0182084.

Alves, S., Duarte, A., Sousa, S., and Domingues, F. C. (2016). Study of the major essential oil compounds of *Coriandrum sativum* against *Acinetobacter baumannii* and the effect of linalool on adhesion, biofilms and quorum sensing. Biofouling 32, 155ñ165. doi: 10.1080/08927014.2015.1133810

Aminov, R. I. (2010). A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in Microbiology. Antimicrob. Resist. Chimerother. 1:134. doi: 10.3389/fmicb.2010.00134

An, S., Wu, J., and Zhang, L. H. (2010). Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-Di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl. Environ. Microbiol. 76, 8160ñ8173. doi: 10.1128/AEM.01233-10

Babapour, E., Haddadi, A., Mirnejad, R., Angaji, S. A., and Amirmozafari, N. (2016). Biofilm formation in clinical isolates of nosocomial *Acinetobacter baumannii* and its relationship with multidrug resistance. Asian Pac. J. Trop. Biomed. 6, 528ñ533. doi: 10.1016/j.apjb.2016.04.006

Balestrino, D., Haagensen, J. A., Rich, C., and Forestier, C. (2005). Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J. Bacteriol. 187, 2870ñ2880. doi: 10.1128/JB.187.8.2870-2880.2005

Bhargava, N., Sharma, P., and Capalash, N. (2015a). “Quorum sensing in Acinetobacter baumannii,” in *Quorum sensing vs quorum quenching: a battle with no end in sight*, ed. V. C. Kalia (New Delhi: Springer), 101ñ113. doi: 10.1007/978-81-322-1982-8_10

Bhargava, N., Sharma, P., and Capalash, N. (2010). Quorum sensing in Acinetobacter: an emerging pathogen. Crit. Rev. Microbiol. 36, 349ñ360. doi: 10.3109/1040841X.2010.512269

Bhargava, N., Singh, S. P., Sharma, A., Sharma, P., and Capalash, N. (2015b). attenuation of quorum sensing-mediated virulence of *Acinetobacter baumannii* by Glycyrrhiza glabra flavonoids. *Future Microbiol.* 10, 1953ñ1968. doi: 10.2217/fmb.15.107
Chow, J. Y., Yang, Y., Tay, S. B., Chua, K. L., and Yew, W. S. (2014). Disruption of biofilm formation by the human pathogen Acinetobacter baumannii using engineered quorum-quenching lactonases. Antimicrob. Agents Chemother. 58, 1802–1805. doi: 10.1128/AAC.02410-13

Chow, J. Y., Yang, Y., Tay, S. B., Chua, K. L., and Yew, W. S. (2013). Disruption of biofilm formation by the human pathogen Acinetobacter baumannii using engineered quorum-quenching lactonases. Singapore: National University of Singapore.

Chowdhury, R., Pavinski Bitar, P. D., Keresztes, I., Conlon, B., Nakayasu, E., Fleck, L., LaFleur, M. D., Isabella, V. M., Coleman, K. et al. (2013). Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503, 365–370. doi: 10.1038/nature12790

Cosgaya, C., Ratia, C., Mari-Almirall, M., Rubio, L., Higgins, P. G., Seifert, H., et al. (2019). In vitro and in vivo virulence potential of the emergent species of the Acinetobacter baumannii (Ab) Group. Front. Microbiol. 10:2429. doi: 10.3389/fmicb.2019.02429

Cotar, A., Savic, C., Nita, A. R., Bezirtzoglou, E., Lazar, V., and Chifriuc, M. C. (2013). Anti-pathogenic strategies for fighting Pseudomonas aeruginosa infections - probeable solubilizing compounds as inhibitors of quorum sensing genes expression. Curr. Organic Chem. 17:12. doi: 10.2174/13852728113170200101

Cui, L., Wang, X., Huang, D., Zhao, Y., Feng, J., Lu, Q., et al. (2020). CRISPR-cas3 of Salmonella upregulates bacterial biofilm formation and virulence to host cells by targeting quorum-sensing systems. Pathogens 9:53. doi: 10.3390/pathogens9010053

Curutiu, C., Chifriuc, M. C., and Mitache, M. (2013). Pseudomonas aeruginosa - Eukaryotic cell crosstalk: mediators, mechanisms and implications for the antimicrobial therapy. Curr. Organic Chem. 17, 149–154. doi: 10.2174/13852728113170200110

Davis, G. D., and Marques, C. N. (2009). A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 191, 1393–1403. doi: 10.1128/JB.01218-08

de la Fuente-Núñez, C., Reffuveille, F., Mansour, S. C., Reckseidler-Zenteno, S. L., Hernández, D., Brackman, G., et al. (2015). D-Enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem. Biol. 22, 196–205. doi: 10.1016/j.chembio.2015.01.002

de la Fuente-Núñez, C., Reffuveille, F., Mansour, S. C., Reckseidler-Zenteno, S. L., Hernández, D., Brackman, G., et al. (2015). D-Enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem. Biol. 22, 196–205. doi: 10.1016/j.chembio.2015.01.002

Deng, Y., Lim, A., Lee, J., Chen, S., An, S., Dong, Y. H., et al. (2014). Diffusible signal factor (DSF) quorum sensing signal and structurally related molecules enhance the antimicrobial efficacy of antibiotics against some bacterial pathogens. BMC Microbiol. 14:51. doi: 10.1186/1471-2180-14-51

Diu, L. M., Chifriuc, M. C., Bezirtzoglou, E., Voltsi, C., Bleotu, C., Pelinescu, D., et al. (2011). Modulation of virulence and antibiotic susceptibility of enteropathogenic Escherichia coli strains by Enterococcus faecium probiotic strain culture fractions. Anaerobe 17, 448–451. doi: 10.1016/j.anabio.2011.05.019

dos Reis Ponce, A., Martins, M. L., de Araujo, E. F., Mantovani, H. C., and Vanetti, M. C. (2012). AiA quorum-sensing quenching controls proteolytic activity and biofilm formation by Enterobacter cloacae. Curr. Microbiol. 65, 758–763. doi: 10.1007/s00284-012-0226-0

Ehrensberger, M., Nozdo, S., Menachem, T., Hansen, L., Ahn, R., Luke-Marshall, N., et al. (2016). Cathodic voltage controlled electrical stimulation as treatment of device related infection. Front. Bioeng. Biotechnol. 2016.01.0192

Escaich, S. (2010). Novel agents to inhibit microbial virulence and pathogenicity. Expert. Opin. Ther. Pat. 20, 1401–1418. doi: 10.1517/13543776.2010.511767

Eveillard, M., Soltner, C., Kempt, M., Saint-André Lemaire, J. P. C., Randrianarivelo, C., Seifert, H., et al. (2010). The virulence variability of different Acinetobacter baumannii strains in experimental pneumonia. J. Infect. Dis. 60, 154–161. doi: 10.1086/590944

Eze, E. C., Chenia, H. Y., and El Zowalaty, M. E. (2018). Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect. Drug Resist. 11, 2277–2299. doi: 10.2147/IDR.S169894
Fekirad, Z., Darabpour, E., and Kashf, N. (2021). Eradication of Acinetobacter baumannii planktonic and biofilm cells through erythrosine-mediated photodynamic inactivation augmented by acetic acid and chitosan. Curr. Microbiol. 78, 879–886. doi: 10.1007/s00284-021-02350-x

Fleming, D., and Rumbaugh, K. P. (2017). Approaches to dispersing medical biofilms. Microorganisms 5:15. doi: 10.3390/microorganisms5020015

Fong, J., Zhang, C., Yang, R., Boo, Z. Z., Tan, S. K., Nielsen, T. E., et al. (2018). Combination therapy strategy of quorum quenching enzyme and quorum sensing inhibitor in suppressing multiple quorum sensing pathways of P. aeruginosa. Sci. Rep. 8:1155. doi: 10.1038/s41598-018-19504-w

Francolini, I., Norris, P., Pozzoli, A., Donelli, G., and Stoodley, P. (2004). Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob. Agents Chemother. 48, 4360–4365. doi: 10.1128/AAC.48.11.4360-4365.2004

Freestone, P. P., Lyte, M., Neal, C. P., Maggs, A. F., Haigh, R. D., and Williams, P. H. (2017). Approaches to dispersing medical biofilms. Microorganisms 5:15. doi: 10.3390/microorganisms5020015

Fleeman, R., Van Horn, K. S., Barber, M. M., Burda, W. N., Flanigan, D. L., Manetsch, R., et al. (2017). Characterizing the antimicrobial activity of N2,N4-disubstituted quinazoline-2,4-diamines toward multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 61:e0059–17. doi: 10.1128/AAC.00059-17

Fleming, D., and Rumbaugh, K. P. (2017). Approaches to dispersing medical biofilms. Microorganisms 5:15. doi: 10.3390/microorganisms5020015

Gupta, A., Cheepurupalli, L., Vigneswaran, S., Singh Rathore, S., Suman Mohan, S., and Ramakrishnan, J. (2020). In vitro and in silico investigation of caprylic acid effect on multi drug resistant (MDR) Acinetobacter baumannii. Frontiers in Microbiology | www.frontiersin.org 14 July 2021 | Volume 12 | Article 676510

Halbus, A. F., Horozov, T. S., and Vesselin, N. P. (2017). Colloid particle formulations for antimicrobial applications. Adv. Colloid Interface Sci. 249, 134–148. doi: 10.1016/j.cis.2017.05.012

Han, H. M., Ko, S., Cheong, M.-J., Bang, J. K., Seo, C. H., Luchian, T., et al. (2017). Myximisin2 and Myximisin3 suppress inflammatory responses through STAT3 and MAPKs to promote wound healing. Oncotarget 8, 47582–47597. doi: 10.18632/oncotarget.20908

Harding, C. M., Hennon, S. W., and Feldman, M. F. (2018). Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 16, 91–102. doi: 10.1038/nrmicro.2017.148

Harris, G., Kuo Lee, R., Lam, C. K., Kanzaki, G., Patel, G. B., Xu, H. H., et al. (2013). A mouse model of Acinetobacter baumannii-associated pneumonia using a clinically isolated hypervirulent strain. Antimicrob. Agents Chemother. 57, 3601–3613. doi: 10.1128/AAC.00944-13

Hendiani, S., Abdi-Alli, A., Mohammadi, P., and Kharrazi, S. (2015). Synthesis of silver nanoparticles and its synergistic effect in combination with imipenem and two biocides against biofilm producing Acinetobacter baumannii. Nanomed. J. 2, 291–298. doi: 10.7508/nmj.2015.04.007

Holban, A. M., Gestal, M. C., and Grumesescu, A. M. (2016). Control of biofilm-associated infections by signaling molecules and nanoparticles. Int. J. Pharm. 510, 409–418. doi: 10.1016/j.ijpharm.2016.02.044

Hoshoor, S., Kermanshahi, R. K., Ghadam, P., and Khosravi-Darani, K. A. (2020). Review on production of exopolysaccharide and biofilm in probiotics like Lactobacillus and methods of analysis. Bioresources & Appl. Chem. 10, 6658–6670. doi: 10.3326/biac10.6.66586670

Horváth, M., Kovács, T., Koderivalappil, S., Ábrahám, H., Rákely, G., Schneider, G., et al. (2020). Identification of a newly isolated lytic bacteriophage against K24 capsular type, carbapenem resistant Klebsiella pneumoniae isolates. Sci. Rep. 10:5891. doi: 10.1038/s41598-020-62691-8

Hoyland-Krogshø, N. M., Paczkowski, J., Mukherjee, S., Broniewski, J., Westra, E., Bondy-Denomy, J., et al. (2017). Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proc. Natl. Acad. Sci. U S A. 114, 131–135. doi: 10.1073/pnas.1701451113

Huang, X. Q., Xiang, J., Song, F., and Huan, J. N. (2012). Effects of topical agents on Acinetobacter baumannii within biofilm. Zhonghua shou shang za zhi 28, 106–110.

Ibrahim, K. H., Salman, J. A. S., and Ali, F. A. (2014). Effect Of titanium nanoparticles biosynthesis by Lactobacillus crispatus on urease,hemolysin & biofilm forming by some bacteria causing recurrent Uti in iraqi women. Euro. Sci. J. 10, 9–32. doi: 10.19044/esj.2014.10.099

Insua, J. L., Llobet, E., Moranta, D., Pérez-Gutíñez, C., Tomás, A., Garmendia, J., et al. (2013). Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infect. Immun. 81, 3552–3565. doi: 10.1128/IAI.00391-13

Ishino, Y., Shingawaga, H., Makino, K., Amemura, M., and Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433. doi: 10.1128/jb.169.12.5429-5433.1987

Jakobsen, T. H., van Gennip, M., Phipps, R. K., Shanmugham, M. S., Christensen, L. D., Alhede, M., et al. (2012). Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob. Agents Chemother. 56, 2314–2325. doi: 10.1128/AAC.05919-11

Jamal, M., Hussain, T., Das, C. R., and Andleeb, S. (2015). Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. J. Med. Microbiol. 64, 454–462. doi: 10.1099/jmm.0.000040

Jayaraman, A., and Wood, T. (2008). Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu. Rev. Biomed. Eng. 10, 145–167. doi: 10.1146/annurev.bioeng.10.061507.101435

Johnson, J. G., Murphy, C. N., Sippy, J., Johnson, T. J., and Clegg, S. (2011). Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae. J. Bacteriol. 193, 3453–3460. doi: 10.1128/JB.00286-11
Johnson, J. R., Johnston, B., and Kuskowski, M. A. (2012). In vitro comparison of nitrofurazone- and silver alloy-coated foely catheters for contact-dependent and diffusible inhibition of urinary tract infection-associated microorganisms. *Antimicrob. Agents Chemother.* 56, 4969–4972. doi: 10.1128/AAC.00733-12

Kasimanickam, R. K., Ranjan, A., Asokan, G. V., Kasimanickam, V. R., and Kastelic, J. P. (2013). Prevention and treatment of biofilms by hybrid- and nanotechnologies. *Int. J. Nanomed.* 8, 2809–2819. doi: 10.2147/IJN.S41400

Kendall, M., and Sperrando, V. (2014). Cell-to-cell signaling in E. coli and *Salmonella*. *EcoSal Plus*. 6:2013. doi: 10.1128/ecoSalPlus.EP-0002-2013

Khan, S. T., Musarrat, J., and Al-Khedhairy, A. A. (2016). Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status. *Colloids Surf, B Biointerfaces* 146, 70–83. doi: 10.1016/j.colsurfb.2016.05.046

Kim, M. H. (2016). Nanoparticle-based therapies for wound biofilm infection: opportunities and challenges. *IEEE Trans. Nanobiosci.* 15, 294–304. doi: 10.1109/TNB.2015.2527690

Kim, H. W., Oh, H. S., Kim, S. R., Lee, K. B., Yeon, K. M., Lee, C. H., et al. (2013). Microbial population dynamics and proteomics in membrane biofilm systems with enzymatic quorum quenching. *Appl. Microbiol. Biotechnol.* 97, 4665–4675. doi: 10.1007/s00253-012-4272-0

Kim, C. S., Gatsios, A., Cuesta, S., Lam, Y. C., Wei, Z., Chen, H., et al. (2020). *IncA* and *IncF* isolates from *Klebsiella pneumoniae* as a primary pathogen: An emerging disease with unique clinical characteristics. *Am. J. Gastroenterol.* 100, 322–333. doi: 10.1111/ajg.00724-0215.20430.x

Lee, H. W., Koh, Y. M., Kim, J., Lee, J. C., Lee, Y. C., Seol, S. Y., et al. (2008). Capacity of multidrug-resistant clinical isolates of *Acinetobacter baumannii* to form biofilm and adhere to epithelial cell surfaces. *Clin. Microbiol. Infect.* 14, 49–54. doi: 10.1111/j.1469-6997.2007.01842.x

Lee, J., Wu, J., Deng, Y., Wang, J., Wang, C., Wang, J., et al. (2013). A cell-cell communication signal integrates quorum sensing and stress response. *Nat. Chem. Biol.* 9, 339–343. doi: 10.1038/nchembio.1225

Lee, J., and Zhang, L. (2015). The hierarchy quorum sensing network in *Pseudomonas aeruginosa*. *Protein Cell* 6, 26–41. doi: 10.1016/s1323-014-0100-x

Li, Y., Heine, S., Entian, M., Sauer, K., and Frankenfeld-Dinkel, N. (2013). NO-induced biofilm dispersion in *Pseudomonas aeruginosa* is mediated by an MHY7 domain-coupled phosphodiesterase. *J. Bacteriol.* 195, 3351–3352. doi: 10.1128/JB.00115-12

Lin, T. H., Tseng, C. Y., Lai, Y. C., Wu, C. C., Huang, C. F., and Lin, C. T. (2017). IacR regulation of type 3 fimbriae expression in *Klebsiella pneumoniae* CG43. *Front. Microbiol.* 8:1984. doi: 10.3389/fmicb.2017.01984

Linares, F., Gustafsson, I., Baquero, F., and Martinez, J. L. (2006). Antibiotics as intermicrobial signaling agents instead of weapons. *Proc. Natl. Acad. Sci. U.S.A.* 103, 19484–19489. doi: 10.1073/pnas.0608949103

Liu, X., Wang, J., Weng, C. X., Wang, R., and Cai, Y. (2020). Low-frequency ultrasound enhances bacterialic activity of antimicrobial agents against *Klebsiella pneumoniae* biofilm. *BioMed. Res. Int.* 2020, 1–6. doi: 10.1155/2020/5916260

Liu, X., Yin, H., Weng, C. X., and Cai, Y. (2016). Low-frequency ultrasound enhances antimicrobial activity of Colistin–Vancocymcin combination against Pan-Resistant Biofilm of *Acinetobacter baumannii*. *Ultrason. Med. Biol.* 42, 1968–1975. doi: 10.1016/j.ultrasonmedbio.2016.03.016

Liu, Y., Mi, Z., Niu, W., An, X., Yuan, X., Liu, H., et al. (2016). Potential of a lytic bacteriophage to disrupt *Acinetobacter baumannii* biofilms in vitro. *Future Microbiol.* 11, 1383–1393. doi: 10.2217/fmb.16-0014

López, M., Mayer, C., Fernández-García, L., Blasco, L., Muras, A., Ruiz, F. M., et al. (2017). Quorum sensing network in clinical strains of A. baumannii: AIda is a new quorum quenching enzyme. *PLoS One* 12:e0174454. doi: 10.1371/journal.pone.0174454

Luna, B. M., Yan, J., Reyna, Z., Moon, E., Nielsen, T. B., Reza, H., et al. (2019). Natural history of *Acinetobacter baumannii* infection in mice. *PLoS One* 14:e0219824. doi: 10.1371/journal.pone.0219824

Marks, L. R., Davidson, B. A., Knight, P. R., and Hakansson, A. P. (2013). InterKingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. *mbio* 4:e00438–13.

Mezzatesta, M. L., Gona, F., and Stefani, S. (2012). *Enterobacter cloacaes* complex: clinical impact and emerging antibiotic resistance. *Future Microbiol.* 7, 887–902. doi: 10.2217/fmb.12.61

Michael, C. A., Dominey-Howes, D., and Labbate, M. (2014). The antimicrobial resistance crisis: causes, consequences, and management. *Front. Public Health* 2:145. doi: 10.3389/fpubh.2014.00145

Minandri, F., Imperi, F., Frangipani, E., Bonchi, C., Visaggio, D., Facchini, M., et al. (2016). Role of iron uptake systems in *Acinetobacter baumannii* infection in mice. *Infect. Immun.* 84, 2324–2335. doi: 10.1128/IAI.00998-16

Moderresi, F., Azizi, O., Shakibaie, M. R., Motamedifar, M., Mosadegh, E., and Mansouri, S. (2015). Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of *Acinetobacter baumannii*. *Virulence* 6, 152–161. doi: 10.1080/21505594.2014.1003001

Musk, D. J., Banko, D. A., and Hergarten, P. J. (2005). Iron salts perturb biofilm formation and disrupt existing biofilms of *Pseudomonas aeruginosa*. *Chem. Biol.* 12, 789–796. doi: 10.1016/j.chemb.2005.05.007

Muzammil, M., Hayat, S., Fakhar-E-Alam, M., Aslam, B., Siddique, M. H., Nisar, M. A., et al. (2018). Nanoantibiotics: Future nanotechnologies to combat antibiotic resistance. *Front. Biosci.* 10, 352–374. doi: 10.2741/e827
Nair, A., Vyawahare, R., and Khairnar, K. (2019). The Prospects of a Highly Virulent Biofilm Dispersing Bacteriophage Isolated From Environment for Controlling Enterobacter cloacae in Clinical Medicine. Available Online at: https://ssrn.com/abstract=3393721 (accessed December 3, 2020).

Negut, A. C., Sândulescu, O., Popa, M., Streinu-Cercel, A., Alavidez, Z., Berciu, I., et al. (2014). Experimental approach for bacteriophage susceptibility testing of planktonic and sessile bacterial populations - Study protocol. Germs 4, 92–96. doi: 10.1159/germs.2014.1062

Nguyen, T. K., Duong, H., Selvanayagam, R., Boyer, C., and Barraud, N. (2015). Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Sci. Rep. 5:18385. doi: 10.1038/srep18385

Nicol, M., Alexandre, S., Luizet, J. B., Skogman, M., Jouenue, T., Salcedo, S. P., et al. (2018). Ununsaturated fatty acids affect quorum sensing communication system and inhibit motility and biofilm formation of Acinetobacter baumannii. Int. J. Mol. Sci. 19:219. doi: 10.3390/ijms19010214

Noirot-Gros, M. F., Forrester, S., Malato, G., Larsen, P. E., and Noirot, P. (2019). CRISPR interference to interrogate genes that control biofilm formation in Pseudomonas fluorescens. Sci. Rep. 9:15954. doi: 10.1038/s41598-019-25400-5

Nutman, A., Lellouche, J., Lifshitz, Z., Glick, R., and Carmeli, Y. (2020). In vivo fitness of Acinetobacter baumannii strains in murine infection is associated with international lineage II-rep-2 and international lineage III clones showing high case fatality rates in human infections. Microorganisms 8:847. doi: 10.3390/microorganisms8060847

Ozbek, B., and Matraci, E. (2013). In vitro effectiveness of colistin, tigecycline and levofloxacin alone and combined with clarithromycin and/or heparin as lock solutions against embedded Acinetobacter baumannii strains. J. Antimicrob. Chemother. 68, 827–830. doi: 10.1093/jac/dks472

Pacosa, M. K., and Mecas, J. (2016). Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol. Mol. Biol. Rev. 80, 629–661. doi: 10.1128/MMBR.00078-15

Papenfort, K., and Bassler, B. L. (2016). Quorum sensing signal-response systems for fighting microbial biofilms: from bench to bedside. Front. Pharmacol. 7:203. doi: 10.3389/fphar.2016.00203

Pezzonico, F., Smits, T. H., and Duffy, B. (2012). Detection of Al-2 receptors in genomes of Enterobacteriaceae suggests a role of type-2 quorum sensing in closed ecosystems. Sensors 12, 6645–6665. doi: 10.3390/s12066599

Rahmani-Badi, A., Sepehr, S., Mohammadi, P., Soudi, M. R., Babaie-Naiej, H., et al. (2016). Quorum sensing and virulence gene regulation of galF by RcsAB affects capsular polysaccharide formation in Klebsiella pneumoniae. J. Bacteriol. 197, 1749–1765. doi: 10.1128/JB.01563-16. doi: 10.1128/AAC.02161-12

Roy, R., Tiwari, M., Donelli, G., and Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 9, 522–554. doi: 10.1016/j.viru.2017.10.004

Roy, R., Tiwari, M., Donelli, G., and Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 9, 522–554. doi: 10.1016/j.viru.2017.10.004

Runcí, F., Bonchi, C., Frangipani, E., Visaggio, D., and Visca, P. (2016). Acinetobacter baumannii biofilm formation in human serum and disruption by Gallium. Antimicrob. Agents Chemother. 61:e01563–16. doi: 10.1128/AAC.01563–16

Sambanthamoorthy, K., Luo, C., Pattabiraman, N., Feng, X., Koestler, B., Waters, C. M., et al. (2014). Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling 30, 17–28. doi: 10.1080/02680239.2013.832224

Samrot, A. V., Sahitya, C. S., Sruthi, P. D., Selvarani, A. J., Raji, P., Prakash, P., et al. (2020). Itraconazole coated super paramagnetic iron oxide nanoparticles for antimicrobial stewardship. Biosurface Interf. Res. Appl. Chem. 10, 6262–6269. doi: 10.33263/bria105.62186225

Sanchez, L. M., Cheng, A. T., Warner, C. J., Townsley, L., Peach, K. C., Navarro, G., et al. (2016). Biofilm formation and detachment in gram-negative pathogens is modulated by select bile acids. PLoS One 11:e0149603. doi: 10.1371/journal. pone.0149603

Sander, W. E., and Sanders, C. C. (1997). Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin. Microbiol. Rev. 10, 220–241. doi: 10.1128/CMR.10.2.220-241.1997

Saroj, S. N., and Rather, P. N. (2013). Streptomycin inhibits quorum sensing in Acinetobacter baumannii. Antimicrob. Agents Chemother. 57, 1926–1929. doi: 10.1128/AAC.01611-12

Saurav, K., Bar-Shalom, R., Haber, M., Burgdorf, L., Oliviero, G., Costantino, V., et al. (2016). In search of alternative antibiotic drugs: quorum-quenching activity in sponges and their bacterial isolates. Front. Microbiol. 7:416. doi: 10.3389/fmicb.2016.00416

Saurav, K., Costantino, V., Venturi, V., and Steindler, L. (2017). Quorum sensing inhibitors from the sea discovered using bacterial N-acylhomoserine Lactone-Based Biosensors. Mar. Drugs 15:53. doi: 10.3390/md15030053

Savici, C. M., Druvea, V., Oiarzu, L., Chifriuc, M. C., Beirizogloua, E., and Lazár, V. (2015). Essential oils with microbicidal and antibiotic activity. Curr. Pharm. Biotechnol. 16, 137–141. doi: 10.2174/13892010160215011215149

Sec-Too, W. S., Convey, P., Pearce, D. A., and Chan, K. G. (2018). Characterization of a novel N-acylhomoserine lactonase, AsdA, from Antarctic Planctonococcus sp. Microb. Cell Fact. 17:179. doi: 10.1186/s12934-018-0124-6

Selem, N. M., Abd El Latif, H. K., Shaldam, M. A., and El-Ganiny, A. (2020). Drugs with new lease of life as quorum sensing inhibitors for combating MDR Acinetobacter baumannii infections. Euro. J. Clin. Microbiol. Infect. Dis. 39, 1687–1702. doi: 10.1007/s10096-020-03882-z
Shabaan, M., Elgamal, A., and Habib, E. E. (2019). Biotechnological applications of quorum sensing inhibition as novel therapeutic strategies for multidrug resistant pathogens. Microbiol. Pathog. 127, 138–143. doi: 10.1016/j.micpath.2018.11.043

Shakeri, S., Kermanshahi, R. K., Moghaddam, M. M., and Emtiaz, G. (2007). Assessment of biofilm cell removal and killing and bioicide efficacy using the microtiter plate test. Biofouling 23, 79–86. doi: 10.1080/09270010701190011

Shankar, M., Ponraj, P., Illakiam, D., Rajendiran, J., and Gunasekaran, P. (2013). Inactivation of the transcriptional regulator-encoding gene sda enhances rice root colonization and biofilm formation in Enterobacter cloaceae GS1. J. Bacteriol. 195, 39–45. doi: 10.1128/AEM.01236-12

Shin, J. H., Lee, H. W., Kim, S. M., and Kim, J. (2009). Proteomic analysis of Acinetobacter baumannii in biofilm and planktonic growth mode. J. Microbiol. 47, 728–735. doi: 10.1007/s12275-009-0158-y

Simoncini, C. C., Simoes, M., and Vieira, M. J. (2008). Intracellular coaggregation among drinking water bacteria: evidence of a role for Acinetobacter calcoaceticus as a bridging bacterium. J. Appl. Environ. Microbiol. 74, 1259–1263. doi: 10.1128/AEM.01747-07

Soares, G. G., Costa, J. F., Melo, F. B. S., Mora, L., and Leal Balbino, T. C. (2016). Biofilm production and resistance profile of Enterobacter sp. strains isolated from pressure ulcers in Petroína, Pernambuco, Brazil. J. Brasileiro de Patologia e Med. Lab. 52, 293–298. doi: 10.5935/1676-2444.201600605

Song, J. Y., Cheong, H. J., Noh, J. Y., and Kim, W. J. (2015). In vitro comparison of Anti-biofilm effects against carbapenem-resistant Acinetobacter baumannii: Imipenem, colistin, tigecycline, rifampacin and combinations. Infect. Chemother. 47, 27–32. doi: 10.3947/ic.2015.47.1.27

Soria-Bustos, J., Ares, M. A., Gómez-Aldapa, C. A., González-Y-Merchand, J. A., Stacy, D. M., Welsh, M. A., Rather, P. N., and Blackwell, H. E. (2012). Attenuation Frontiers in Microbiology | www.frontiersin.org 18 of 1801

Subhadra, B., Oh, M. H., and Choi, C. C. (2016). Quorum sensing in Acinetobacter: Role in pathogenic properties. J. Inorg. Organomet. Polym. 26, 1043ñ1052. doi: 10.1007/s10904-017-0406-7

Tang, K., and Zhang, X. H. (2014). Quorum quenching agents: resources for antivirulence therapy. Mar. Drugs 12, 3245ñ3282. doi: 10.3390/md12063245

Tao, F., Swarp, S., and Zhang, L. H. (2010). Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environ. Microbiol. 12, 3159ñ3170. doi: 10.1111/j.1462-2920.2010.02288.x

Tay, S. B., and Yew, W. S. (2013). Development of quorum-based anti-virulence therapies targeting gram-negative bacterial pathogens. Int. J. Mol. Sci. 14, 16570–16598. doi: 10.3390/ijms140816570

Taylor, J. C., Bock, C. W., Takusagawa, E., and Markham, G. D. (2009). Discovery of novel types of inhibitors of S-adenosylmethionine synthesis by virtual screening. J. Med. Chem. 52, 5967–5973. doi: 10.1021/jm9006142

Thomas, J. G., Litton, I., and Rinde, H. (2006). “Economic impact of biofilms on treatment costs,” in Biofilms, infection and antimicrobial therapy, eds J. L. Pace, M. Rupp, and R. G. Finch (Boca Raton, FL: Taylor & Francis Group), 21–38. doi: 10.1201/9781420028322.ch2

Tiwari, S., Jamal, S. B., Hassan, S. S., Carvalho, P., Almeida, S., Barh, D., et al. (2017). Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: An overview. Front. Microbiol. 8:1878. doi: 10.3389/fmicb.2017.01878

Tripathy, A., Behera, M., Rout, A. S., Biswal, S. K., and Phule, A. D. (2020). Optical, structural, and antimicrobial study of gold nanoparticles synthesized using aqueous extract of mimusops elengi raw fruits. Biointerface Res. Appl. Chem. 10, 7085ñ7096. doi: 10.3362/biac.106.70857096

Tseng, S. P., Hung, W. C., Huang, C. Y., Lin, Y. S., Chan, M. Y., Lu, P. L., et al. (2016). 6-Episinsulipetolide decreases the expression of the extracellular matrix in early biofilm formation of multi-drug resistant Acinetobacter baumannii. Mar. Drugs 14:1. doi: 10.3390/md140100143

Tudose, M., Cúlita, D. C., Ionița, P., and Chifiriuc, M. C. (2015a). Silver nanoparticles embedded into silica functionalized with vitamins as biological active materials. Ceramics Int. 41, 4460ñ4467. doi: 10.1016/j.ceramint.2014.11.138

Tudose, M., Cúlita, D. C., Munteanu, C., Jeanina, P., Hristea, E. N., Ionița, P., et al. (2015b). Antibacterial activity evaluation of silver nanoparticles entrapped in silica matrix functionalized with antibiotics. J. Inorg. Organomet. Polym. 25, 869ñ878. doi: 10.1007/s10994-015-0176-7

Tudose, M., Cúlita, D. C., Musuc, A. M., Marinescu, G., Somacescu, S., Munteanu, C., et al. (2016). Multifunctional silver nanoparticles-decorated silica functionalized with retinoic acid with anti-proliferative and antimicrobial properties. J. Inorg. Organomet. Polym. 26, 1043ñ1052. doi: 10.1007/s10994-016-0407-6

Tutar, U. (2016). Study of the effect of essential oil of Salvia glutinosa L. on microbial biofilm formation by clinical isolates of Acinetobacter baumannii. Melville, NY: AIP Publishing LLC.

Ueda, A., and Wood, T. K. (2009). Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TphA (PAS3885). PLoS Pathog. 5:e1000483. doi: 10.1371/journal.ppat.1000483

Uppuluri, P., Chaturvedi, A. K., Srivivasan, A., Banerjee, M., Ramosubramaniam, A. K., Köhler, J. R., et al. (2010). Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 6:e1000828. doi: 10.1371/journal.ppat.1000828

Utari, P. D., Vogel, J., and Quax, W. J. (2017). Deciphering physiological functions of AHL quorum sensing acylates. Front. Microbiol. 8:1123. doi: 10.3389/fmicb.2017.01123

van Faassen, H., Kuollee, R., Harris, G., Zhao, X., Conlan, J. W., and Chen, W. (2007). Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in mice. Infect. Immun. 75, 5597ñ5608. doi: 10.1128/IAI.00762-07

Visinescu, D., Husssien, M. D., Moreno, J. C., Negrea, R., Birjega, R., Somacescu, S., et al. (2018). Zinc oxide spherical-shaped nanostructures: investigation of surface reactivity and interactions with microbial and mammalian cells. Langmuir 34, 13638ñ13651. doi: 10.1021/acs.langmuir.8b02528

Visinescu, D., Scurtu, M., Negrea, R., Birjega, R., Cúlita, D. C., Chifiriuc, M. C., et al. (2015). Additive-free, 1-4-butanediol mediated synthesis: a suitable route to obtain nanostructured, mesoporous spherical zinc oxide materials with multifunctional properties. RSC Adv. 5, 99976ñ99989. doi: 10.1039/C5RA02248H

Vogt, S. L., Peña-Díaz, J., and Finlay, B. B. (2015). Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe 34, 106ñ115. doi: 10.1016/j.anaerobe.2015.05.002
