Confirmation for Wielandt’s conjecture*

Wenbin Guo
Department of Mathematics, University of Science and Technology of China,
Hefei 230026, P. R. China
E-mail: wbguo@ustc.edu.cn

D. O. Revin, E. P. Vdovin
Sobolev Institute of Mathematics and Novosibirsk State University,
Novosibirsk 630090, Russia
E-mail: revin@math.nsc.ru, vdovin@math.nsc.ru

Abstract
Let π be a set of primes. By H.Wielandt definition, Sylow π-theorem holds for
a finite group G if all maximal π-subgroups of G are conjugate. In the paper, the
following statement is proven. Assume that π is a union of disjoint subsets σ and τ
and a finite group G possesses a π-Hall subgroup which is a direct product of a σ-
subgroup and a τ-subgroup. Furthermore, assume that both the Sylow σ-theorem
and τ-theorem hold for G. Then the Sylow π-theorem holds for G. This result
confirms a conjecture posed by H. Wielandt in 1959.

Key words: finite group, Hall subgroup, Sylow π-theorem, condition \mathcal{D}_π, Wie-
landt’s conjecture.

MSC2010: 20D20

Introduction
In the paper, the term ‘group’ always means ‘finite group’, p is always supposed to be
a prime, π is a subset of the set of all primes, and π' is its complement in the set of all
primes.

Lagrange’s theorem states that the order $|G|$ of a group G is divisible by the order of
every subgroup of G. This simple statement has extraordinary significance and largely
determines the problems of finite group theory. Lagrange’s theorem shows the extent to
which the order of a group determines its subgroup structure. For example, it turns out
that every group of prime order is cyclic and contains no non-trivial proper subgroups.

It is well-known that the converse of Lagrange theorem is false. However, Sylow’s
theorem states that if p is a prime then

- every group G contains a so-called Sylow p-subgroup, i.e. a subgroup H such that
 $|H|$ is a power of p and the index $|G : H|$ is not divisible by p, and

*Research is supported by a NNSF grant of China (Grant # 11371225) and Wu Wen-Tsun Key
Laboratory of Mathematics, USTC, Chinese Academy of Sciences.
• every p-subgroup of G (i.e. a subgroup whose order is a power of p) is conjugate with a subgroup of H.

Thus, the converse of Lagrange’s theorem holds for certain divisors of the group order. Moreover, it turns out that, in a finite group, the structure and properties of every p-subgroup are determined in many respects by the structure and properties of any Sylow p-subgroup. In fact, Sylow’s theorem is considered by specialists as a cornerstone of finite group theory.

A natural generalization of the concept of a Sylow p-subgroup is that of a π-Hall subgroup.

Recall that a subgroup H of G is called a π-Hall subgroup if

• all prime divisors of $|H|$ lie in π (i.e. H is a π-subgroup) and

• all prime divisors of the index $|G:H|$ of H lie in π'.

According to P.Hall [15], we say that a finite group G satisfies D_π (or is a D_π-group, or briefly $G \in D_\pi$) if G contains a π-Hall subgroup H and every π-subgroup of G is conjugate in G with some subgroup of H. Thus, for a group G the condition D_π means that the complete analog of Sylow’s theorem holds for π-subgroups of G. That is why, together with Hall’s notation, the terminology introduced by H.Wielandt in [47, 48] is used. According to Wielandt, the Sylow π-theorem holds (der π-Sylow-Satz gilt) for a group G if G satisfies D_π. Sylow’s theorem implies that the Sylow π-theorem for G is equivalent to the conjugacy of all maximal π-subgroups of G.

Recall that a group is nilpotent if and only if it is a direct product of its Sylow subgroups. In [46], H.Wielandt proved the following theorem.

Theorem 1. [46, Satz] Assume that a group G possesses a nilpotent π-Hall subgroup for a set π of primes. Then G satisfies D_π.

This result is regarded to be classical. It can be found in well-known textbooks [5, 13, 18, 29, 37, 38]. Wielandt mentioned the result is his talk at the XIII-th International Mathematical Congress in Edinburgh [48].

There are a lot of generalizations and analogs of Wielandt’s theorem which was proved by many specialists (see, for example, [2, 6, 7, 15, 16, 30–34, 39, 41, 45, 50]). Wielandt’s theorem plays an important role in the study of D_π-groups (cf. [8–12, 14, 19, 20, 22–28, 42–44]).

One of the earliest generalizations of Wielandt’s theorem was obtained by Wielandt himself in [47]:

Theorem 2. [47, Satz] Suppose that π is a union of disjoint subsets σ and τ. Assume that a group G possesses a π-Hall subgroup $H = H_\sigma \times H_\tau$, where H_σ is a nilpotent σ-subgroup and H_τ is a τ-subgroup of H, and let G satisfy D_τ. Then G satisfies D_π.

This result also is included in the textbooks [29, 37, 38] and in the talk [49] and has many generalizations and analogs (see [21, 31, 33, 35, 36]).

In the same paper [47], Wielandt asked whether, instead of the nilpotency of H_σ, it is sufficient to assume that G satisfies D_σ? Thus, Wielandt formulated the following conjecture.

Conjecture. (Wielandt, [47]) Suppose that a set of primes π is a union of disjoint subsets σ and τ, and a finite group G possesses a π-Hall subgroup $H = H_\sigma \times H_\tau$, where H_σ and
H_τ are σ- and τ-subgroups of H, respectively. If G satisfies both D_σ and D_τ, then G satisfies D_π.

This conjecture was mentioned in [17, 33, 35, 36] and was investigated in [33, 35, 36]. The main goal of the present paper is to prove the following theorem which, in particular, completely confirms Wielandt’s conjecture.

Theorem 3. (Main Theorem) Let a set π of primes be a union of disjoint subsets σ and τ. Assume that a finite group G possesses a π-Hall subgroup $H = H_\sigma \times H_\tau$, where H_σ and H_τ are σ- and τ-subgroups, respectively. Then G satisfies D_π if and only if G satisfies both D_σ and D_τ.

In view of Theorem 1, one can regard Theorem 3 as generalization of Theorem 2. Moreover, by induction, it is easy to show that Theorem 3 is equivalent to the following statement.

Corollary 1. Suppose a set π of primes is a union of pairwise disjoint subsets π_i, $i = 1, \ldots, n$. Assume a finite group G possesses a π-Hall subgroup

$$H = H_1 \times \cdots \times H_n$$

where H_i is a π_i-subgroup for every $i = 1, \ldots, n$. Then G satisfies D_π if and only if G satisfies D_π_i for every $i = 1, \ldots, n$.

In view of Sylow’s Theorem, Corollary 1 is a generalization of Theorem 1 since the statement of the theorem can be obtained if we assume that $\pi_i = \{p_i\}$ for $i = 1, \ldots, n$, where

$$\{p_1, \ldots, p_n\} = \pi \cap \pi(G).$$

1 Notation and preliminary results

Our notation is standard. Given a group G we denote the set of π-Hall subgroups of G by $\text{Hall}_\pi(G)$. According to [15], the class of groups G with $\text{Hall}_\pi(G) \neq \emptyset$ is denoted by E_π. We denote by Sym_n and Alt_n the symmetric and the alternating groups of degree n, respectively. For sporadic groups we use the notation from [4]. The notation for groups of Lie type agrees with that in [3]. A finite field of cardinality q is denoted by \mathbb{F}_q.

Let r be an odd prime and q be an integer coprime to r. We denote by $e(q, r)$ the minimal natural e such that

$$q^e \equiv 1 \pmod{r},$$

that is, $e(q, r)$ is the multiplicative order of q modulo r.

Lemma 1. [15, Lemma 1] Let A be a normal subgroup and let H be a π-Hall subgroup of a group G. Then

$$H \cap A \in \text{Hall}_\pi(A) \text{ and } HA/A \in \text{Hall}_\pi(G/A).$$

Lemma 2. [22, Theorem 7.7] Let A be a normal subgroup of G. Then

$$G \in D_\pi \text{ if and only if } A \in D_\pi \text{ and } G/A \in D_\pi.$$
We need the criterion obtained in [25] for a simple group satisfying \(\mathcal{D}_\pi \). In order to formulate it, we need, according with [25], to define Conditions I–VII for a pair \((G, \pi)\), where \(G\) is a finite simple group and \(\pi\) is a set of primes.

Condition I. We say that \((G, \pi)\) satisfies Condition I if

either \(\pi(G) \subseteq \pi\) or \(|\pi \cap \pi(G)| \leq 1\).

Condition II. We say that \((G, \pi)\) satisfies Condition II if one of the following cases holds.

1. \(G \simeq M_{11}\) and \(\pi \cap \pi(G) = \{5, 11\}\);
2. \(G \simeq M_{12}\) and \(\pi \cap \pi(G) = \{5, 11\}\);
3. \(G \simeq M_{22}\) and \(\pi \cap \pi(G) = \{5, 11\}\);
4. \(G \simeq M_{23}\) and \(\pi \cap \pi(G)\) coincide with one of the following sets \(\{5, 11\}\) and \(\{11, 23\}\);
5. \(G \simeq M_{24}\) and \(\pi \cap \pi(G)\) coincide with one of the following sets \(\{5, 11\}\) and \(\{11, 23\}\);
6. \(G \simeq J_1\) and \(\pi \cap \pi(G)\) coincide with one of the following sets
 \[
 \{3, 5\}, \{3, 7\}, \{3, 19\}, \text{ and } \{5, 11\};
 \]
7. \(G \simeq J_4\) and \(\pi \cap \pi(G)\) coincide with one of the following sets
 \[
 \{5, 7\}, \{5, 11\}, \{5, 31\}, \{7, 29\}, \text{ and } \{7, 43\};
 \]
8. \(G \simeq O'N\) and \(\pi \cap \pi(G)\) coincide with one of the following sets \(\{5, 11\}\) and \(\{5, 31\}\);
9. \(G \simeq L_y\) and \(\pi \cap \pi(G) = \{11, 67\}\);
10. \(G \simeq Ru\) and \(\pi \cap \pi(G) = \{7, 29\}\);
11. \(G \simeq Co_1\) and \(\pi \cap \pi(G) = \{11, 23\}\);
12. \(G \simeq Co_2\) and \(\pi \cap \pi(G) = \{11, 23\}\);
13. \(G \simeq Co_3\) and \(\pi \cap \pi(G) = \{11, 23\}\);
14. \(G \simeq M(23)\) and \(\pi \cap \pi(G) = \{11, 23\}\);
15. \(G \simeq M(24)'\) and \(\pi \cap \pi(G) = \{11, 23\}\);
16. \(G \simeq B\) and \(\pi \cap \pi(G)\) coincide with one of the following sets \(\{11, 23\}\) and \(\{23, 47\}\);
17. \(G \simeq M\) and \(\pi \cap \pi(G)\) coincide with one of the following sets \(\{23, 47\}\) and \(\{29, 59\}\).

Condition III. Let \(G\) be isomorphic to a group of Lie type over the field \(\mathbb{F}_q\) of characteristic \(p \in \pi\) and let

\[
\tau = (\pi \cap \pi(S)) \setminus \{p\}.
\]

We say that \((G, \pi)\) satisfies Condition III if \(\tau \subseteq \pi(q - 1)\) and every prime in \(\pi\) does not divide the order of the Weyl group of \(G\).
Condition IV. Let G be isomorphic to a group of Lie type with the base field \mathbb{F}_q of characteristic p but not isomorphic to $^2B_2(q)$, $^2F_4(q)$ and $^2G_2(q)$. Let $2, p \not\in \pi$. Denote by r the minimum in $\pi \cap \pi(G)$ and let

$$\tau = (\pi \cap \pi(G)) \setminus \{r\} \text{ and } a = e(q,r).$$

We say that (G, π) satisfies Condition IV if there exists $t \in \tau$ with $b = e(q,t) \neq a$ and one of the following statements holds.

1. $G \simeq A_{n-1}(q),$ $a = r - 1,$ $b = r,$ $(q^{r-1} - 1)_r = r,$ $\left[\frac{n}{r - 1} \right] = \left[\frac{n}{r} \right],$ and $e(q,s) = b$ for every $s \in \tau$;

2. $G \simeq A_{n-1}(q),$ $a = r - 1,$ $b = r,$ $(q^{r-1} - 1)_r = r,$ $\left[\frac{n}{r - 1} \right] = \left[\frac{n}{r} \right] + 1,$ $n \equiv -1 \pmod{r},$ and $e(q,s) = b$ for every $s \in \tau$;

3. $G \simeq ^2A_{n-1}(q),$ $r \equiv 1 \pmod{4},$ $a = r - 1,$ $b = 2r,$ $(q^{r-1} - 1)_r = r,$ $\left[\frac{n}{r - 1} \right] = \left[\frac{n}{r} \right]$ and $e(q,s) = b$ for every $s \in \tau$;

4. $G \simeq ^2A_{n-1}(q),$ $r \equiv 3 \pmod{4},$ $a = \frac{r - 1}{2},$ $b = 2r,$ $(q^{r-1} - 1)_r = r,$ $\left[\frac{n}{r - 1} \right] = \left[\frac{n}{r} \right]$ and $e(q,s) = b$ for every $s \in \tau$;

5. $G \simeq ^2A_{n-1}(q),$ $r \equiv 1 \pmod{4},$ $a = r - 1,$ $b = 2r,$ $(q^{r-1} - 1)_r = r,$ $\left[\frac{n}{r - 1} \right] = \left[\frac{n}{r} \right] + 1,$ $n \equiv -1 \pmod{r}$ and $e(q,s) = b$ for every $s \in \tau$;

6. $G \simeq ^2A_{n-1}(q),$ $r \equiv 3 \pmod{4},$ $a = \frac{r - 1}{2},$ $b = 2r,$ $(q^{r-1} - 1)_r = r,$ $\left[\frac{n}{r - 1} \right] = \left[\frac{n}{r} \right] + 1,$ $n \equiv -1 \pmod{r}$ and $e(q,s) = b$ for every $s \in \tau$;

7. $G \simeq ^2D_n(q),$ $a \equiv 1 \pmod{2},$ $n = b = 2a$ and for every $s \in \tau$ either $e(q,s) = a$ or $e(q,s) = b$;

8. $G \simeq ^2D_n(q),$ $b \equiv 1 \pmod{2},$ $n = a = 2b$ and for every $s \in \tau$ either $e(q,s) = a$ or $e(q,s) = b$.

Condition V. Let G be isomorphic to a group of Lie type with the base field \mathbb{F}_q of characteristic p, and not isomorphic to $^2B_2(q)$, $^2F_4(q)$ and $^2G_2(q)$. Suppose, $2, p \not\in \pi$. Let r be the minimum in $\pi \cap \pi(G)$, let

$$\tau = (\pi \cap \pi(G)) \setminus \{r\} \text{ and } e = e(q,r).$$

We say that (G, π) satisfies Condition V if $e(q,t) = c$ for every $t \in \tau$ and one of the following statements holds.

1. $G \simeq A_{n-1}(q)$ and $n < cs$ for every $s \in \tau$;

2. $G \simeq ^2A_{n-1}(q),$ $c \equiv 0 \pmod{4}$ and $n < cs$ for every $s \in \tau$;

3. $G \simeq ^2A_{n-1}(q),$ $c \equiv 2 \pmod{4}$ and $2n < cs$ for every $s \in \tau$;
(4) $G \simeq A_{n-1}(q)$, $c \equiv 1 \pmod{2}$ and $n < 2cs$ for every $s \in \tau$;

(5) G is isomorphic to one of the groups $B_n(q), C_n(q)$, or $2D_n(q)$, c is odd and $2n < cs$ for every $s \in \tau$;

(6) G is isomorphic to one of the groups $B_n(q), C_n(q)$, or $D_n(q)$, c is even and $n < cs$ for every $s \in \tau$;

(7) $G \simeq D_n(q)$, c is even and $2n \leq cs$ for every $s \in \tau$;

(8) $G \simeq 2D_n(q)$, c is odd and $n \leq cs$ for every $s \in \tau$;

(9) $G \simeq 3D_4(q)$;

(10) $G \simeq E_6(q)$, and if $r = 3$ and $c = 1$ then $5, 13 \notin \tau$;

(11) $G \simeq 2E_6(q)$, and if $r = 3$ and $c = 2$ then $5, 13 \notin \tau$;

(12) $G \simeq E_7(q)$, if $r = 3$ and $c \in \{1, 2\}$ then $5, 7, 13 \notin \tau$, and if $r = 5$ and $c \in \{1, 2\}$ then $7 \notin \tau$;

(13) $G \simeq E_8(q)$, if $r = 3$ and $c \in \{1, 2\}$ then $5, 7, 13 \notin \tau$, and if $r = 5$ and $c \in \{1, 2\}$ then $7, 31 \notin \tau$;

(14) $G \simeq G_2(q)$;

(15) $G \simeq F_4(q)$, and if $r = 3$ and $c = 1$ then $13 \notin \tau$.

Condition VI. We say that (G, π) satisfies Condition VI if one of the following statements holds.

1. G is isomorphic to $2B_2(2^{2m+1})$ and $\pi \cap \pi(G)$ is contained in one of the sets
\[\pi(2^{2m+1} - 1), \quad \pi(2^{2m+1} \pm 2^m + 1) \];

2. G is isomorphic to $2G_2(3^{2m+1})$ and $\pi \cap \pi(G)$ is contained in one of the sets
\[\pi(3^{2m+1} - 1) \setminus \{2\}, \quad \pi(3^{2m+1} \pm 3^m + 1) \setminus \{2\} \];

3. G is isomorphic to $2F_4(2^{2m+1})$ and $\pi \cap \pi(S)$ is contained in one of the sets
\[\pi(2(2^{2m+1}) \pm 1), \quad \pi(2^{2m+1} \pm 2^m + 1), \quad \pi(2(2^{2m+1}) \pm 2^{3m+2} + 2^m - 1), \quad \pi(2(2^{2m+1}) \pm 2^{3m+2} + 2^{2m+1} \pm 2^m - 1). \]

Condition VII. Let G be isomorphic to a group of Lie type with the base field \mathbb{F}_q of characteristic p. Suppose that $2 \in \pi$ and $3, p \notin \pi$, and let
\[\tau = (\pi \cap \pi(G)) \setminus \{2\} \] and
\[\varphi = \{t \in \tau \mid t \text{ is a Fermat number}\}. \]

We say that (G, π) satisfies Condition VII if
\[\tau \subseteq \pi(q - \varepsilon), \]
where the number $\varepsilon = \pm 1$ is such that 4 divides $q - \varepsilon$, and one of the following statements holds.
(1) \(G \) is isomorphic to either \(A_{n-1}(q) \) or \(2A_{n-1}(q) \), \(s > n \) for every \(s \in \tau \), and \(t > n + 1 \) for every \(t \in \varphi \);

(2) \(G \cong B_n(q) \), and \(s > 2n + 1 \) for every \(s \in \tau \);

(3) \(G \cong C_n(q) \), \(s > n \) for every \(s \in \tau \), and \(t > 2n + 1 \) for every \(t \in \varphi \);

(4) \(G \) is isomorphic to either \(D_n(q) \) or \(2D_n(q) \), and \(s > 2n \) for every \(s \in \tau \);

(5) \(G \) is isomorphic to either \(G_2(q) \) or \(2G_2(q) \), and \(7 \not\in \tau \);

(6) \(G \cong F_4(q) \) and \(5, 7 \not\in \tau \);

(7) \(G \) is isomorphic to either \(E_6(q) \) or \(2E_6(q) \), and \(5, 7 \not\in \tau \);

(8) \(G \cong E_7(q) \) and \(5, 7, 11 \not\in \tau \);

(9) \(G \cong E_8(q) \) and \(5, 7, 11, 13 \not\in \tau \);

(10) \(G \cong 3D_4(q) \) and \(7 \not\in \tau \).

Lemma 3. [25, Theorem 3] Let \(\pi \) be a set of primes and \(G \) be a simple group. Then \(G \in \mathcal{D}_\pi \) if and only if \((G, \pi)\) satisfies one of Conditions I–VII.

Lemma 4. Let \(G \) be a simple group and \(\pi \) be such that \(2, 3 \in \pi \cap \pi(G) \). Then

\[
G \in \mathcal{D}_\pi \text{ if and only if } \pi(G) \subseteq \pi.
\]

Proof. If \(\pi(G) \subseteq \pi \), then evidently \(G \in \mathcal{D}_\pi \). Conversely, suppose \(G \in \mathcal{D}_\pi \). Then Lemma 3 implies that \((G, \pi)\) satisfies one of Conditions I–VII. Without loss of generality, we may assume that \(\pi \cap \pi(G) = \pi \).

If Condition I holds, then

either \(|\pi| \leq 1\) or \(\pi = \pi(G) \).

Since \(2, 3 \in \pi \), we have that \(|\pi| \geq 2\) and thus \(\pi = \pi(G) \).

Clearly, \((G, \pi)\) cannot satisfy one of Conditions II and IV–VII since otherwise either \(2 \not\in \pi \) (Conditions II and IV–VI) or \(3 \not\in \pi \) (Condition VII).

Finally, \((G, \pi)\) also cannot satisfy Condition III. Indeed, if Condition III holds, then \(G \) is a group of Lie type over a field of characteristic \(p \in \pi \) and every prime in \(\pi \) (in particular \(2 \)) does not divide the order of the Weyl group of \(G \). But this is impossible since the Weyl group is nontrivial and is generated by involutions (see [3, page 13 and Proposition 13.1.2]).

Lemma 5. Suppose that \(n \geq 5 \) and \(\pi \) is a set of primes with

\[
|\pi \cap \pi(n!)| > 1 \text{ and } \pi(n!) \not\subseteq \pi.
\]

Then

(1) The complete list of possibilities for \(\text{Sym}_n \) containing a \(\pi \)-Hall subgroup \(H \) is given in Table 1.

(2) \(K \in \text{Hall}_\pi(\text{Alt}_n) \) if and only if \(K = H \cap \text{Alt}_n \) for some \(H \in \text{Hall}_\pi(\text{Sym}_n) \).
Table 1:

n	π	$H \in \text{Hall}_π(\text{Sym}_n)$
prime	$\pi((n-1)!)$	Sym_{n-1}
7	$\{2,3\}$	$\text{Sym}_3 \times \text{Sym}_4$
8	$\{2,3\}$	$\text{Sym}_4 \wr \text{Sym}_2$

Table 2:

G	$\pi \cap \pi(G)$	G	$\pi \cap \pi(G)$	G	$\pi \cap \pi(G)$
M_{11}	$\{5,11\}$	M_{12}	$\{5,11\}$	M_{22}	$\{5,11\}$
M_{23}	$\{5,11\}$	M_{24}	$\{5,11\}$	$L_2(11)$	$\{11,67\}$
Ru	$\{7,29\}$	$F_{24}^′$	$\{11,23\}$	$O^∗N$	$\{5,31\}$
$F_{23}^′$	$\{11,23\}$	J_4	$\{5,7\}$	B	$\{11,23\}$
J_1	$\{3,5\}$				$\{23,47\}$
	$\{3,7\}$				$\{29,59\}$
	$\{3,19\}$				$\{29,59\}$
	$\{5,11\}$				$\{29,59\}$
Co_1	$\{11,23\}$	Co_2	$\{11,23\}$	Co_3	$\{11,23\}$

In particular, if either $2 \not\in \pi$ or $3 \not\in \pi$, then $\text{Alt}_n \not\in \mathcal{E}_\pi$.

Proof. See [15, Theorem A4 and the notices after it], [40, Main result], and [22, Theorem 4.3 and Corollary 4.4].

Lemma 6. [8, Corollary 6.13] Let G be either one of 26 sporadic groups or the Tits group. Assume that $2 \not\in \pi$. Then $G \in \mathcal{E}_\pi$ if and only if either $|\pi \cap \pi(G)| \leq 1$ or G and $\pi \cap \pi(G)$ are given in Table 2. In particular, $|\pi \cap \pi(G)| \leq 2$.

Lemma 7. [23, Theorem 4.1] Let G be either a simple sporadic group or the Tits group and π be such that

$2 \in \pi$, $\pi(G) \not\in \pi$, and $|\pi \cap \pi(G)| > 1$.

Then the complete list for G containing a π-Hall subgroup H is given in Table 3. In particular, if $3 \not\in \pi$, then

$G = J_1$ and $\pi \cap \pi(G) = \{2,7\}$.

Table 3:

G	$\pi \cap \pi(G)$	Structure of H
M_{11}	$\{2,3\}$	$3^2 : Q_8 \cdot 2$
	$\{2,3,5\}$	$\text{Alt}_6 \cdot 2$
M_{22}	$\{2,3,5\}$	$2^4 : \text{Alt}_6$
Lemma 8. Let G be a group of Lie type with base field \mathbb{F}_q of characteristic p. Assume that π is such that $p \in \pi$, and either $2 \notin \pi$ or $3 \notin \pi$. Suppose $G \in \mathcal{E}_\pi$ and $H \in \text{Hall}_\pi(G)$. Then one of the following statements holds.

(1) $\pi \cap \pi(G) \subseteq \pi(q-1) \cup \{p\}$, a Sylow p-subgroup P of H is normal in H and H/P is abelian.

(2) $p = 2$, $G \simeq 2^2B_2(2^{2n}+1)$ and $\pi(G) \subseteq \pi$.

Proof. See [8, Theorem 3.2] and [11, Theorem 3.1].

Lemma 9. Let G be a group of Lie type over a field of characteristic p. Assume that π is such that $p \notin \pi$, and either $2 \notin \pi$ or $3 \notin \pi$. Denote by r the minimum in $\pi \cap \pi(G)$. Suppose $G \in \mathcal{E}_\pi$ and $H \in \text{Hall}_\pi(G)$. Then H possesses a normal abelian r'-Hall subgroup.

Proof. See [9, Theorems 4.6 and 4.8, and Corollary 4.7], [43, Theorem 1], and [42, Lemma 5.1 and Theorem 5.2].

Lemma 10. Let G be a simple nonabelian group. Assume that π is such that $\pi(G) \not\subseteq \pi$ and either $2 \notin \pi$ or $3 \notin \pi$. Suppose $G \in \mathcal{E}_\pi$ and $H \in \text{Hall}_\pi(G)$. Then H is solvable and, for any partition

$$\pi \cap \pi(G) = \sigma \cup \tau,$$

where σ and τ are disjoint nonempty sets, either σ-Hall or τ-Hall subgroup of H is nilpotent.

Proof. Consider all possibilities, according to the classification of finite simple groups (see [1, Theorem 0.1.1]).

Case 1: $G \simeq \text{Alt}_n$, $n \geq 5$. By Lemma 5 it follows that $|\pi \cap \pi(G)| = 1$ and a partition $\pi \cap \pi(G) = \sigma \cup \tau$ onto nontrivial disjoint subsets is impossible.

Case 2: G is either a sporadic group or the Tits group. By Lemmas 6 and 7 it follows that either

$$|\pi \cap \pi(G)| = 1,$$

or

$$2 \notin \pi \text{ and } |\pi \cap \pi(G)| = 2,$$

or

$$3 \notin \pi, \, G \simeq J_1 \text{ and } \pi \cap \pi(G) = \{2, 7\}.$$
If $|\pi \cap \pi(G)| = 1$, then a partition
\[\pi \cap \pi(G) = \sigma \cup \tau \]
ononto nonempty disjoint subsets is impossible. If $|\pi \cap \pi(G)| = 2$, then H is solvable by Burnside’s p^aq^b-theorem [5, Ch. I, 2], the orders of its σ-Hall and τ-Hall subgroups are powers of primes, and thus σ-Hall and τ-Hall subgroups of G are nilpotent.

Case 3: G is a group of Lie type over a field of characteristic $p \in \pi$. We may assume, without loss of generality, that $|\pi \cap \pi(G)| > 1$ and $p \in \sigma$. By Lemma 8, H is solvable and its τ-Hall subgroup T is isomorphic to a subgroup of the abelian group H/P, where P is the (normal) Sylow p-subgroup of H. Whence T is abelian and, in particular, is nilpotent.

Case 4: G is a group of Lie type over a field of characteristic $p \notin \pi$. We may assume, without loss of generality, that $|\pi \cap \pi(G)| > 1$. Denote by r the minimum in $\pi \cap \pi(G)$, and assume that $r \in \sigma$. By Lemma 9, it follows that H is solvable and its τ-Hall subgroup T is included in the normal abelian r'-Hall subgroup of H. Thus we again obtain that T is abelian.

Thus in the all cases, Lemma 10 holds.

\[\square \]

2 Proof of the main theorem

Assume that the hypothesis of Theorem 3 holds, i.e. we have a partition
\[\pi = \sigma \cup \tau \]
of π onto disjoint subsets σ and τ, and a group G satisfying condition:

1. G possesses a π-Hall subgroup H such that
\[H = H_\sigma \times H_\tau, \]
where H_σ and H_τ are σ- and τ-subgroups, respectively.

It is easy to see that H_σ and H_τ are, respectively, σ-Hall and τ-Hall subgroups of both H and G. Moreover, H_σ coincides with the set of all σ-elements of H, while H_τ is the set of all τ-elements of H.

We prove first that $G \in \mathcal{D}_\pi$ implies $G \in \mathcal{D}_\sigma \cap \mathcal{D}_\tau$. We need to prove that a σ-subgroup K of G is conjugate to a subgroup of H_σ in order to prove that $G \in \mathcal{D}_\sigma$. Since K is, in particular, a π-subgroup and $G \in \mathcal{D}_\pi$, there exists $g \in G$ such that $K^g \leq H$. Hence $K^g \leq H_\sigma$, since H_σ is the set of all σ-elements of H. Thus we obtain $G \in \mathcal{D}_\sigma$. The same arguments show that $G \in \mathcal{D}_\tau$.

Now we prove the converse statement: if $G \in \mathcal{D}_\sigma \cap \mathcal{D}_\tau$, then $G \in \mathcal{D}_\pi$. Assume that it fails. Without loss of generality we may assume that G satisfies the following conditions:

1. $G \in \mathcal{D}_\sigma \cap \mathcal{D}_\tau$;
2. $G \notin \mathcal{D}_\sigma$;
3. $G \notin \mathcal{D}_\tau$;
4. G has the smallest possible order in the class of groups satisfying conditions (1)–(3).
Now we show that the assumption of existence of such group leads us to a contradiction.

In view of (3) we have $\pi(G) \nsubseteq \pi$ and G is nonabelian.

Note that G must be simple. Indeed, assume that G possesses a nontrivial proper normal subgroup A. Then Lemma 1 implies that A and G/A satisfy (1), and Lemma 2 implies that they both satisfy (2). In view of (4), neither A nor G/A satisfies (3), and thus $A \in \mathcal{D}_\pi$ and $G/A \in \mathcal{D}_\pi$. Hence by Lemma 2, we obtain $G \in \mathcal{D}_\pi$, which contradicts the assumption (3).

Assume that either 2 or 3 does not lie in π. Then by Lemma 10 either H_σ or H_τ is nilpotent. Hence by Theorem 2 we obtain $G \in \mathcal{D}_\pi$, which contradicts (3). Hence $2, 3 \in \pi$.

By Lemma 4 and the condition (2), the numbers 2 and 3 cannot simultaneously lie in the same subset σ or τ. We may, therefore, assume that

$$2 \in \sigma \text{ and } 3 \in \tau.$$

Let S be a Sylow 2-subgroup of H_σ (hence of both H and G), and T be a Sylow 3-subgroup of H_τ (hence of both H and G). Since

$$[S, T] \leq [H_\sigma, H_\tau] = 1,$$

we see that G possesses a nilpotent $\{2, 3\}$-Hall subgroup

$$\langle S, T \rangle \simeq S \times T.$$

It follows from Theorem 1 that $G \in \mathcal{D}_{\{2,3\}}$. Now by Lemma 4 we have

$$\pi(G) = \{2, 3\} \subseteq \pi,$$

which implies that G is solvable by Burnside’s p^aq^b-theorem [5, Ch. I, 2]. This contradiction completes the proof.

Notice that the proof of Theorem 3 implies the following statement.

Corollary 2. Suppose that a set π of primes is a disjoint union of subsets σ and τ. Suppose that a finite simple group G possesses a π-Hall subgroup $H = H_\sigma \times H_\tau$, where H_σ and H_τ are σ- and τ-subgroups, respectively. If G satisfies both \mathcal{D}_σ and \mathcal{D}_τ, then either H_σ or H_τ is nilpotent.

References

[1] M. Aschbacher, R. Lyons, S.D. Smith, R. Solomon, The classification of finite simple groups. Groups of characteristic 2 type. Mathematical Surveys and Monographs, 172. American Mathematical Society, Providence, RI, 2011. xii+347 pp.

[2] R. Baer, Verstreute Untergruppen endlicher Gruppen, Arch. Math. 9:1–2 (1958), 7–17.

[3] R. W. Carter, Simple groups of Lie type, John Wiley and Sons, London, 1972.

[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups (OUP, Oxford 1985).

[5] K. Doerk, T. Hawkes, Finite soluble groups, Berlin, New York, Walter de Gruyter, 1992.
[6] P. A. Gol’berg, On a theorem of Wielandt, Uspehi Mat. Nauk 14:1(85) (1959), 153–156 (Russian).

[7] P. A. Gol’berg, On Wielandt’s theorem II, Algebra and Number Theory. Moskov. Gos. Ped. Inst. Uchen. Zap., No 375 (1971), 21–24 (Russian).

[8] F. Gross, On a conjecture of Philip Hall, Proc. Lond. Math. Soc. (3), 52:3 (1986), 464–494.

[9] F. Gross, Odd order Hall subgroups of the classical linear groups, Math. Z., 220:3 (1995), 317–336.

[10] F. Gross, Conjugacy of odd order Hall subgroups, Bull. Lond. Math. Soc., 19:4 (1987), 311–319.

[11] F. Gross, Hall subgroups of order not divisible by 3, Rocky Mount. J. Math., 23:2 (1993), 569–591.

[12] W. Guo, B. Li, J. Huang, Finite groups in which the normalizers of Sylow subgroups have nilpotent Hall supplements, Siberian Math. J. 50:4 (2009), 667–673.

[13] W. Guo, The theory of classes of groups, Beijing, New York, Kluwer Acad. Publ., 2006.

[14] W. Guo, A. Skiba, On Hall subgroups of a finite group, Cent. Eur. J. Math. 11:7 (2013), 1177–1187.

[15] P. Hall, Theorems like Sylow’s, Proc. Lond. Math. Soc., 6:22 (1956), 286–304.

[16] B. Hartley, A theorem of Sylow type for a finite groups, Math. Z., 122:4 (1971), 223–226.

[17] B. Hartley, Helmut Wielandt on the π-structure of finite groups, Helmut Wielandt. Mathematische Werke = Mathematical Works, V. 1, eds. B. Huppert and H. Schneider, Walter de Gruyter, Berlin; New York, 1994, 511–516.

[18] I.M. Isaacs, Finite group theory. Graduate Studies in Mathematics, 92. American Mathematical Society, Providence, RI, 2008. xii+350 pp.

[19] V. D. Mazurov, D. O. Revin, On the Hall D_π-property for finite groups, Siberian Math. J., 38:1 (1997), 106–113.

[20] A. Moretó, Sylow numbers and nilpotent Hall subgroups, J. Algebra, 379 (2013), 80–84.

[21] G.S. Mikaeljan, D-theorems in some classes of Wielandt groups, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 12:5 (1977) 399–413 (Russian).

[22] D.O.Revin, E.P.Vdovin, Generalizations of the Sylow theorem, Groups St.Andrews 2009 in Bath, Groups St Andrews 2009 (Bath (UK), 1-15 August 2009), London Mathematical Society Lecture Note Series, v. 2, 388, eds. C. M. Campbell, M.R. Quick, E. F. Robertson, C.M. Roney-Dougal, G. C. Smith, G. Traustason, Cambridge Univ. Pres., Cambridge, 2011, 488–519.
[23] D. O. Revin, The D_π-property in a class of finite groups, Algebra and Logic, 41:3 (2002), 187–206.

[24] D. O. Revin, The D_π property of finite groups in the case $2 \not\in \pi$, Proceedings of the Steklov Institute of Mathematics, 257:suppl.1 (2007), S164–S180.

[25] D. O. Revin, The D_π-property in finite simple groups, Algebra and Logic, 47:3 (2008), 210–227.

[26] D. O. Revin, The D_π-property of linear and unitary groups, Siberian Math. J., 49:2 (2008), 353–361.

[27] D. O. Revin, On a relation between the Sylow and Baer–Suzuki theorems, Siberian Math. J., 52:5 (2011), 904–913.

[28] D. O. Revin, On Baer–Suzuki π-theorems, Siberian Math. J., 52:2 (2011), 340–347.

[29] D. J. S. Robinson, A course in the theory of groups, Graduate Texts in Mathematics, 80. Springer-Verlag, New York-Berlin, 1982. xvii+481 pp.

[30] S. A. Rusakov, On the imbedding of subgroups, Dokl. Akad. Nauk SSSR, 147 (1962), 301–302 (Russian).

[31] S. A. Rusakov, Theorems of Sylow type, Dokl. Akad. Nauk SSSR, 141 (1961), 320–321 (Russian).

[32] S. A. Rusakov, Analogues of Sylow’s theorem on inclusion of subgroups, Dokl. Akad. Nauk BSSR, 5 (1961), 139–141 (Russian).

[33] L. A. Shemetkov, Sylow properties of finite groups, Math. USSR-Sb., 5:2 (1968), 261–274 (Russian).

[34] L. A. Shemetkov, On Sylow properties of finite groups, Dokl. Akad. Nauk BSSR, 16:10, 881–883 (1972) (Russian).

[35] L.A. Shemetkov, D-structure of finite groups, Mat. Sb. (N.S.), 67:3 (1965), 384–407 (Russian).

[36] L. A. Shemetkov, On the existence and the embedding of subgroups of finite groups, Uspekhi mat. nauk, 17:6 (1962), 200 (Russian).

[37] L. A. Shemetkov, Formations of Finite Groups (in Russian), Nauka, Moscow (1978).

[38] M. Suzuki, Group Theory II, NY, Springer-Verlag, 1986.

[39] C. M. Tibiletti, Sui prodotti ordinati di gruppi finiti, Boll. Un. Mat. Ital. (3) 13 (1958) 46–57 (Italian).

[40] J. G. Thompson, Hall subgroups of the symmetric groups, J. Comb. Theory, 1:2 (1966), 271–279

[41] R. I. Tyshkevich, A generalization of some theorems on finite groups, Dokl. Akad. Nauk BSSR, 6 (1962), 471–474 (Russian).
[42] E. P. Vdovin, D. O. Revin, Hall subgroups of finite groups, Ischia Group Theory 2004: Proceedings of a Conference in honour of Marcel Herzog, Conference in honour of Marcel Herzog (Naples (Italy), March 31–April 3, 2004), Contemporary mathematics, 402, Amer. Math. Soc., Providence, RI, eds. Z. Arad, M. Bianchi, W. Herfort, P. Longobardi, M. Maj, C. Scoppola, 2006, 229–265.

[43] E. P. Vdovin, D. O. Revin, Hall subgroups of odd order in finite groups, Algebra and Logic, 41:1 (2002), 8–29.

[44] E. P. Vdovin, D. O. Revin, Theorems of Sylow type, Russian Math. Surveys, 66:5 (2011), 829–870.

[45] B. A. F. Wehrfritz, Sylow theorems for periodic linear groups, Proc. London Math. Soc. (3) 18 (1968) 125–140.

[46] H. Wielandt, Zum Satz von Sylow, Math. Z., 60:4, (1954), 407–408.

[47] H. Wielandt, Zum Satz von Sylow II, Math. Z., 71:4, (1959), 461–462.

[48] H. Wielandt, Entwicklungslinien in der Strukturtheorie der endlichen Gruppen, Proc. Intern. Congress Math. (Edinburgh, 1958), Cambridge Univ. Press, New York, 1960, 268–278.

[49] H. Wielandt, B. Huppert, Arithmetical and normal structure of finite groups. 1962 Proc. Sympos. Pure Math., Vol. VI pp. 17–38. American Mathematical Society, Providence, R.I.

[50] G. Zappa, Sopra un’estensione di Wielandt del teorema di Sylow, Boll. Un. Mat. Ital. (3), 9:4 (1954), 349–353.