SYNTHESIS OF *Scylla Serrata* SHELL DERIVED CHITOSAN-COATED MESOPOROUS MAGNETIC NANO ADSORBENT FOR Cr(VI) REMOVAL FROM AQUEOUS SOLUTIONS

T. Ravi and Sathish Sundararaman

Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai-600119, Tamil Nadu, India.

Corresponding Author: sathish.chemical@sathyabama.ac.in

ABSTRACT

Mesoporous magnetic chitosan nano-sorbents (m-MCNS) were synthesized by the co-precipitation reaction of *Scylla serrata* shell-derived chitosan and iron oxide nanoparticles using glutaraldehyde cross-linkers. The prepared m-MCNS were highly crystalline, porous, and spherical with an average size of 21.6 nm and surface area of 28.3 m²/g and exhibiting magnetic saturation of 9.1917 emu/g. The synthesized m-MCNS was tested to determine its adsorptive capacity Cr (VI). An optimized removal of 98.7% was obtained with 0.3 gram of m-MCNS at pH of 5.5 at 303K for an initial concentration 100 mg/L of Cr(VI). Langmuir isotherm fit experimental data better than other models. The adsorptive kinetics agreed well with the pseudo-second-order model. The m-MCNS adsorbent has greater potential to remove Cr (VI) from the wastewater.

Keywords: Nano-sorbents, Adsorption, Kinetics, Isotherm, Chitosan, Mesoporous

INTRODUCTION

The environment, human health, and aquatic life were seriously affected by the industrial exit which contains poisonous substantial metal toxins. Among all these, after Arsenic the Chromium is one of the important and essential heavy metals used in the various sectors which tends to severe threat when it is mixed with water sources and more toxic. Cr³⁺ and Cr⁶⁺ are the significant oxidation types of chromium that exists in wastewater releases. Among these, the Cr (VI) is considered as a harmful metal and makes cancer-causing and poisonous impacts people and displays amphibian life poisonous. Even though the wide assortment of Cr (VI) expulsion strategies, the adsorption is increasingly fit given its selectivity, ease, profoundly effectiveness, simple dealing with, re-usability, and suitability. In recent years, the synthesis of magnetic adsorbents was proved to be more prominent for the exclusion of Cr(VI) by simplifying the practice in recuperating the adsorbed material with an external magnet when compared to coagulation and precipitation. Chitosan is a natural biopolymer available in large quantities in the form of chitin and derived from the shells of shrimp, crab, prawn, and crawfish. The cross-linking of Chitosan remarkably improved in the previous research studies for targeted drug delivery, dye removal, heavy metal removal, and protein adsorption with the prolonged ability with higher crystallinity, hydrophilicity, degradation. In this exploration, the glutaraldehyde crosslinked chitosan which has been separated from *Scylla serrata* shell, deacetylated and was adequately covered on the magnetic iron oxide by ultrasonic bath tailored co-precipitation strategy. The physio-chemical, morphological, surface, porosity, functional bonds, and magnetic properties were characterized. A lot of sorption tests were conducted to analyse the optimal operating conditions.

EXPERIMENTAL

Materials and Methods

All the reagents and chemicals were procured from Sigma-Aldrich, Chennai, India. All the analytical reagents were made with the use of de-ionized water.

Extraction of Chitosan from Crab Shell

The crab shells were collected from the local market in Chennai, India and washed to remove impurities. The dried shells were ground into a fine powder and stored at 4°C. In the demineralization process, 2M of
HCl was added to the powdered shell at 60°C and the mixture was agitated at 200 rpm for 2 hr. The resultant shells were deproteinized by adding it with 3M of NaOH at 80°C with the agitation rate of 200 rpm for 2 h. The organic compounds present in the mixture were treated with a solution that contains an 8:2 weight ratio of 0.1M H$_2$O$_2$ and 10M HCl. The mixture was washed several times with acetone and dried for 2 hr at 30°C to obtain chitin. The deacetylation of the chitin was carried out by treating it with 15M of NaOH at 110°C under vacuum with constant stirring for 5 h and filtered. The resultant chitosan was cooled and rinsed thoroughly with de-ionized water until the solution pH approached neutral. The chitosan was then allowed to dry overnight.

Synthesis of m-MCNS Magnetic Nanoadsorbent

The m-MCNS were prepared by co-precipitation reaction10 aided with ultrasonic bath. FeCl$_3$ and FeSO$_4$.7H$_2$O were taken with 2:1 by weight in 50 ml of H$_2$O at 40°C for 1 hr at a 200rpm agitation rate. 0.35 g of extracted chitosan was added with 15 ml of glutaraldehyde cross-linking agent and thoroughly stirred for 2 hr at 200 rpm. The co-precipitation reaction was initiated by adding a 50 ml drop-wise solution of NH$_4$OH with the reaction mixture which abandoned reddish-brown colored into black. The slurry containing magnetic chitosan particles was several times washed with water and ethanol and dried in an oven at 60°C. The m-MCNS were characterized by XRD, FT-IR, VSM, FESEM and BET.

Adsorption Studies

1,000 mg/L of Cr (VI) was prepared by dissolving 2.857 g of K$_2$Cr$_2$O$_7$ in 1000mL of H$_2$O and kept as a stock solution.11

\[
\%\text{Removal} = \left(1 - \frac{C_f}{C_i}\right) \times 100
\]

Where, C_i is the initial Cr (VI) concentration, C_o and C_t are the initial and final Cr (VI) concentration (mg/L) were analyzed by AAS spectrometer.

Adsorption Isotherms

The batch adsorption data were examined for the equilibrium characteristics.

\[
Q_e = \frac{Q_m K_f C_i}{1 + K_f C_i}
\]

\[
Q_e = K_F C_e^{1/n}
\]

\[
Q_e = B \ln(K_T C_i)
\]

Where, Q_e and Q_m are the equilibrium and highest monolayer adsorption capacity of m-MCNS (mg/g), K_L, K_F, K_T is the Langmuir, Freundlich and Temkin constant respectively.

Chemical Kinetics

The separation time can be computed through kinetics studies using the following equations:12

\[
\log \left(\frac{Q_e - Q_t}{Q_e}\right) = \log Q_e - 0.4342k_1t
\]

\[
\frac{t}{Q_t} = \frac{1}{k_2Q_e} + \frac{t}{Q_e}
\]

Where Q_i is the adsorption capacity of m-MCNS at time t (mg/g), and k_1 and k_2 are kinetic constants.

RESULTS AND DISCUSSION

Characterization of Adsorbent

The XRD pattern of m-MCNS (Fig.-1a) showed the characteristic peaks of 30.36°, 35.72°, 43.48°, 53.83°, 57.39°, and 62.12° corresponding to planes corresponding to the existence of the Fe$_3$O$_4$ nanoparticles. It also shows the absence of the peak at 33.15° for FeO(OH) and 21.22° for Fe$_2$O$_3$ confirmed that the prepared m-MCNS were free from iron-containing impurities. Fig.-1b illustrates the
SEM micrograph image of m-MCNS which proves the spherically shaped nanoparticles with ample void spaces were observed.

The IR absorption peaks (Fig.-2a) at 3,780 cm\(^{-1}\), 3,711 cm\(^{-1}\) and 3,645 cm\(^{-1}\) indicate the presence of intermolecular hydrogen-bonded N-H stretching. Also, the peaks at 2,883 cm\(^{-1}\), 2,341.35 cm\(^{-1}\), 1,597.60 cm\(^{-1}\), 640.07 cm\(^{-1}\), and 573.54 cm\(^{-1}\) correspond to the bending vibrations of -CH\(_2\), stretching vibrations in -CH\(_3\), presence of -NH\(_2\) from glucosamine functional residue, and Fe-O vibration on the surface of Fe\(_3\)O\(_4\), respectively.\(^{13}\) VSM analysis examined the magnetic characteristic of the prepared nano-sorbent by oppressing it in the external magnetic field. The VSM hysteresis produced a magnetization value of 9.1917 emu/g\(^{14}\) (Fig.-2b). Results of the BET analysis of the m-MCNS particles showed a surface area of 28.29 m\(^2\)/g, pore volume of 0.098123 cm\(^3\)/g.

Influence of Operating Parameters

Figure-3a, revealed that with the increment of m-MCNS dosage the % Cr(VI) exclusion was increased and then decreased from 0.3 to 0.6 g. It is because of the sufficient adsorption sites provided by the nano-adsorbent at higher dosages. From Fig.-3(b), it was noted higher removal was attained within 10 min. and the gradual increase of the removal was observed from 10 to 50 min at the agitation rate of 200 rpm. It is because of the more surface area of contact and the mesoporous nanostructure provided by m-MCNS adsorbent. Fig.-3(c), shows that the removal increments with increasing the pH from 3 to 5.5. It is because of the acidic condition inducing the electrostatic interaction between the negative Cr\(_2\)O\(_7^{2-}\) and HCrO\(_4^-\) ions to the positively charged protonated -NH\(^3+\) groups present on the porous surfaces.\(^{15}\) At the lower pH values, the Cr(VI) removal was increased because of the presence of more amino groups in the adsorbent which enables and favors in conducting the desorption experiments.\(^{16}\) Figure-3(d) shows the % Cr (VI)
removal was increased by escalating the concentration from 10 to 100 mg/L, more. It was due to the higher functional groups present in the highly porous structure. It was observed that 98.7% Cr(VI) exclusion was obtained at the optimal conditions such as 100 mg/L, 0.3 g of m-MCNS dosage, acidic pH value of 5.5, and at the contact time of 60 min.

Equilibrium Adsorption Studies and Kinetics

The statistics of Cr(VI) removal by m-MCNS adsorbent fit the Langmuir adsorption isotherm model better (with Q_m (mg/g) value of 98.04, and K_L (L/mg) value of 0.214) which implies that it follows monolayer chemisorptions (Fig.-4a). The pseudo-second-order kinetics in aligned with the experimental values. The experimental adsorption limit of 24.33 mg/g is validated with the trial estimation of 25.73 mg/g (Fig.-4b).

CONCLUSION

The batch adsorption experiments were modelled, and the operating conditions were optimized. 98.7% of maximum Cr (VI) removal efficiency was obtained with the optimal conditions at an adsorbent dosage of 0.3g, contact time of 60 min, initial Cr (VI) concentration of 100 mg/L, and at a pH of 5.5. It has been concluded that the m-MCNS magnetic nano adsorbent is considered as a promising potential adsorbent for Cr (VI) removal from its aqueous mixture.

REFERENCES

1. T. Ravi, and Sathish Sundararaman., Journal of Environmental Chemical Engineering. 8(2), 103877(2020), DOI:10.1016/j.jece.2020.103877
2. R. Rajkumar, S. Sathish, and P. Senthilkumar, Rasayan Journal of Chemistry, 11(1), 13(2018), DOI:10.7324/RJC.2018.1111893
3. Grzegorz Wojcik, Karolina Wieszczycka, Przemyslaw Aksamitowski, and Joanna Zembrzuska., Separation and Purification Technology, 238, 116410(2020), DOI:10.1016/j.seppur.2019.116410
4. A. Bashir, L.A. Malik, and S. Ahad, Environmental Chemistry Letter, 17, 729(2019), DOI:10.1007/s10311-018-00828-y
5. Junkai Gao, Yu Liu, Xuebin Li, Mouyuan Yang, Jinbao Wang and Yan Chen., Scientific Reports, 10, 7473(2020), DOI:10.1038/s41598-020-64191-1
6. J. Aravind Kumar, D. Joshua Amarnath, S. Sathish, S. Anuradha Jabasingh, A. Saravanan, R.V. Hemavathy, K. Vijai Anand, and P.R. Yaashikaa, *Journal of Molecular Liquids*, **279**, 77(2019), DOI:10.1016/j.molliq.2019.01.121
7. U.B.L. Utami, B. Cahyono, and H. Susanto, *Rasayan Journal of Chemistry*, **13(4)**, 2106(2020), DOI:10.31788/RJC.2020.1345508
8. D. Das, and B.K. Nandi, *Transactions of the Indian Institute of Metals*, **73**, 2053(2020), DOI:10.1007/s12666-020-01962-4
9. Yage Xing, Qinglian Xu, Xingchen Li, Cunkun Chen, Li Ma, Shaohua Li, Zhenming Che, and Hongbin Lin, *International Journal of Polymer Science*, **2016**, 1(2016), DOI:10.1155/2016/4851730
10. D. Prabu, P. Senthil Kumar, Kilaru Harsha Vardhan, S. Sathish, John Mathew, and Alan Raju, *Desalination and Water Treatment*, **203(1)**, 366(2020), DOI:10.5004/dwt.2020.26197
11. Dessalew Berihun, *Journal of Material Science Engineering*, **6**, 331(2017), DOI:10.4172/2169-0022.1000331
12. Younes Dehmani, A. Awad Alrashdi, Hassane Lgaz, Taibi Lamhasni, Sadik Abouarnadasse, and Ill-Min Chung, *Arabian Journal of Chemistry*, **13(5)**, 5474(2020), DOI:10.1016/j.arabjc.2020.03.026
13. Fathy, Mahmoud, Selim, Hanaa, Shahawy, E.L. Abeer, *Royal Society of Chemistry Advances*, **10**(39), 23417(2020), DOI:10.1039/D0RA02960B
14. D.W. Astuti, and N.H. Aprilita, *Mudasir, Rasayan Journal of Chemistry*, **13(2)**, 845(2020), DOI:10.31788/RJC.2020.1325537
15. C. Londolani, Maremeni, J. Sekomeng Modise, M. Fanyana Mtunzi, J. Michael Klink and E. Vusumzi Pakade, *Bioinorganic Chemistry and Applications*, **2018**, 1(2018), DOI:10.1155/2018/6171906
16. Yibing Feng, Yi Du, Zhongtao Chen, Minxing Du, Kai Yang, Xingjie Lv, and Zhongfu Li, *Journal of Coating Technology and Research*, **15**(5), 1145(2018), DOI:10.1007/s11998-018-0052-9

[RJC-6220/2020]