Differential responses to salt concentrations of lichen photobiont strains isolated from lichens occurring in different littoral zones

Francisco Gasulla¹, Alfredo Guéra¹, Asunción de los Ríos² & Sergio Pérez-Ortega³*

Abstract. An interesting biota of lichen-forming fungi occurs along rocky seashores of cold and warm-temperate regions in both hemispheres. Most of the species belong to the family Verrucariaceae and form symbioses with an extraordinarily diverse group of photobionts. We isolated the photobionts of three species: *Hydropunctaria maura* and *H. amphibia* from the supralittoral zone, and *Wahlenbergiella striatula* from the upper intertidal zone. We characterized the isolated strains structurally by means of transmission electron microscopy, and molecularly using the nrSSU and nrITS and chloroplast RPL10A regions. Additionally, we studied the response of the strains to different salt concentrations, analyzed the concentration of osmoregulatory solutes, and measured photosynthesis performance by chlorophyll fluorescence and CO₂ assimilation techniques. All strains belong to the recently described species *Halofilum ramosum*, although we found differences in the ITS and RPL10A regions among the strains shared by *H. maura* and *H. amphibia* and the strain isolated from *W. striatula*. Differences were also found in the main osmoregulatory response of the strains growing under high salt concentrations: *W. striatula* accumulated glycerol, while *H. maura* and *H. amphibia* synthetized sucrose. Analyses of photosynthesis performance also indicated differences in physiological behavior between supralittoral-dwelling and intertidal-dwelling species, *W. striatula* showing lower photosynthetic activity under high irradiance. Our results highlight the role of photobionts in determining lichen zonation on rocky seashores.

Key words: *Halofilum*, *Hydropunctaria*, lichen-forming fungi, seashore, Verrucariaceae, *Wahlenbergiella*.

Introduction

Lichens, the symbiotic phenotype of a lichen-forming fungus (the mycobiont) and a eukaryotic alga and/or cyanobacterium (the photobiont), occur in most terrestrial habitats and cover ~8% of the land surface (Nash 2008). Lichens are able to thrive in the most extreme environments such as the hot and cold deserts of continental Antarctica, Chile (Atacama) and southwestern Africa (Namibia) (Green et al. 2012; Maphangwa et al. 2012). Rocky seashores are among the most extreme habitats, since organisms have to cope with highly influential abiotic factors such as fluctuating sun exposure, wave and wind action, daily cycles of desiccation and hydration, contrasting temperature, and salinity levels (Knox 2000). Some lichens have adapted to live not only close to seawater but actually within the intertidal zone (Santesson 1939; Fletcher 1980; Taylor 1982; Brodo & Santesson 1997). On rocky seashores, species of lichen-forming fungi typically occur in more or less narrow bands which correspond to different intertidal zone immersion times or different levels of exposure to saline particles suspended in the air (spray) in the supralittoral zone (Fletcher 1973a, b). Furthermore, the species *Verrucaria serpuloides* from the Southern Hemisphere is known to grow permanently submerged (Lamb 1973).

The lichen biota occurring in the intertidal and supralittoral zones of temperate and cold oceans in both hemispheres is disharmonic as compared to the typical composition of lichen assemblages on rocks not affected by saltwater. Three lineages clearly dominate: (i) members of the order Collemopsidiales (Mohr et al. 2004; Pérez-Ortega et al. 2016), (ii) species of the genus *Lichina*...
(Ortiz-Álvarez et al. 2015; Schultz 2017), and (iii) species from the family Verrucariaceae (Santesson 1939; Fletcher 1980; Taylor 1982; Brodo & Santesson 1997). Species of the recently described genus Wahlenbergiella occur in the intertidal zone of the Northern Hemisphere (Gueidan et al. 2009), whereas species of Hydropunctaria mostly occur in the supralittoral zone (Gueidan et al. 2009; Orange 2012).

Only a limited number of studies have attempted to elucidate the factors influencing the distribution of lichens on rocky seashores. Ortiz-Álvarez et al. (2015) showed that a particular strain of the cyanobacterial photobiont Rivularia was important in determining the distribution of two species of Lichina on rocky seashores of the Atlantic coast of Europe, suggesting that a photobiont switch was associated with speciation in this fungal lineage. Thus, physiological requirements of lichen photobionts could drive the distribution of mycobiont species at the seashore.

Marine species in the family Verrucariaceae show the most extraordinary range of compatible photobionts (Thüs & Schultz 2008), Xanthophyceae (Parra & Redon 1977; Thüs & Schultz 2008), Phaeophyceae (Moe 1997; Sanders et al. 2004), Trebouxiophyceae (Pérez-Ortega et al. 2010; Garrido-Benavent et al. 2017) and Ulvophyceae (Thüs et al. 2011; Darienko & Pröschold 2017; Pérez-Ortega et al. 2018). In contrast, there are no recorded associations between marine species and algal genera such as Trebouxia, Asterochloris or Trentepohlia, the most common taxa found in species from the order Lecanorales. Recent taxonomic work on the Ulvophyceae (Darienko & Pröschold 2017) has shown that filamentous photobionts previously ascribed to the genus Dilabifilum (e.g., Thüs et al. 2011) that were isolated from marine Verrucariaceae actually belong to the newly described lineage Halofilum and the genus Pseudendocelium.

On rocky seashores, salinity is the main factor influencing lichen zonation (Delmail et al. 2013). At low shore levels, lichens are exposed to almost constant immersion in seawater, whereas at higher shore levels they are subjected to a changing osmotic environment that is hyperosmotic when wettet by surf and hypoosmotic during rainfall. The lower and upper shore limits of algae may depend largely on the adaptation of the species to preferred salinity levels and on tolerance to osmotic fluctuations. Furthermore, the presence of brackish water from the mixing of seawater with freshwater, as in river estuaries or tidewater glaciers, usually restricts the occurrence of most marine lichens. Microorganisms have developed several strategies to regulate their internal osmotic pressure to adjust to high or low external solute concentrations in order to avoid water loss and subsequently cell plasmolysis. One osmoadaptation strategy entails reliance on the efflux of inorganic ions from/to the surrounding environment (Pick 2002; Oren et al. 2008). The second strategy involves synthesis of low-molecular-weight organic compatible solutes to balance the external osmotic pressure. It has been observed that microalgae tend to accumulate three different kinds of osmoregulatory solutes, depending on their tolerance to salinity (Batterton & Baalen 1971; Stacey et al 1977; Ben-Amotz & Avron 1981; Ben-Amotz & Grunwald 1981; Joset et al. 1996; Page-Sharp et al. 1999): (i) low-halotolerant algae (less than 0.7 M NaCl) accumulate sugars such as sucrose or trehalose; (ii) medium-halotolerant alga (0.7–1.8 M NaCl) accumulate polyols like glycosylglycerol or mannitol; and (iii) high halotolerant alga (more than 1.8 M NaCl) accumulate amino acid compounds such as glycine, betaine or glutamate and glycerol.

The aim of this study was to determine the possible relation between the intertidal zonation of marine Verrucariaceae species, the halotolerance of their algal partners, and the physiological response to salt concentration. Photobionts of two species characteristically occurring in the supralittoral zone of the Iberian Peninsula’s Atlantic coast (Hydropunctaria maura and H. amphibia) and one species occurring in the middle and lower parts of the intertidal zone (Wahlenbergiella striatula) were isolated and cultured under laboratory conditions. They were characterized by means of molecular and electron microscopy techniques, and their responses to decreasing salinity levels (from seawater to rainwater) were monitored using chlorophyll fluorescence, CO₂ assimilation, and concentration of osmoregulatory solutes.

Material and methods

Lichens studied; isolation and culture of their algal symbionts

Three species of marine Verrucariaceae typically occurring on rocky seashores along the north coast of the Iberian Peninsula were selected for this study. Wahlenbergiella striatula is characterized by a film-like, light to dark green thallus furrowed by numerous black ridges and perithecia (Fig. 1B). It occurs in the middle to upper intertidal zone and is known from Europe, North America, Australia and New Zealand (Santesson 1936; Orange 2013). The two other species, Hydropunctaria amphibia and Hydropunctaria maura, typically occur in the supralittoral zone. Hydropunctaria amphibia, distinguished by its black, more or less thick thallus, with characteristic carbonized linear structures reaching the thallus surface (Fig. 1C), occurs in the lower supralittoral zone, whereas H. maura, with a relatively thick thallus and small spots of carbonized tissue reaching the thallus surface (Fig. 1D), occurs in the upper supralittoral zone, although both species typically can be found growing side by side (Renobales & Noya 1991). All specimens were collected from rocky seashore at Playa del Silencio (Novellana, Asturias, 43°33′59″N; 6°35′62″W) by SPO and AdR (16 May 2010).

Isolation was done a few hours after sample collection. Small rock fragments including lichen thalli were rinsed in sterile water several times and surface-sterilized with alcohol. Afterwards, small fragments of the lichen thalli (~4 mm²) were removed with a scalpel blade, placed in a microcentrifuge tube with 200 ml of sterile water, then ground with a plastic micropestle. The mix was transferred to agar plates with artificial seawater medium (ASM) containing 30% (w/v) NaCl supplemented with vitamins (ASM+V, modified from Starr & Zeikus 1993) and cultivated under constant temperature (22°C) and irradiance...
(PAR 84 mmol photons m$^{-2}$ s$^{-1}$) provided by a combination of Grolux and cool-white fluorescent lamps. Single colonies were sampled after 45 days and transferred to 500 ml ASM30+V liquid medium. After 3 months, 100 ml aliquots were transferred to liquid growth media with contrasting salt (NaCl) concentrations: 30‰ (ASM30+V), 15‰ (ASM15+V) and 0‰ (ASM0+V). Cultures were kept under the same growth conditions for 3 months until they were used for analyses.

DNA extraction and phylogenetic analysis

DNA extraction was carried out using a Soil DNA Isolation Kit (MoBio Laboratories) according to the manufacturer’s instructions and eluted in a final volume of 50 μL of H$_2$O. We amplified a fragment of the nrSSU region using the primer pair SR1 and SR7 (Nakayama et al. 1996), the nrITS region using the primer pair nr-SSU-1780 (Piercey-Normore and Depriest 2001) and ITS4 (White et al. 1990), and the hypervariable RPL10A region which encodes the RPL10 protein required for joining 40S and 60S subunits into a functional 80S ribosome (del Campo et al. 2013), using the primer pair Rf-RLaF and Rf-L10aR (del Campo et al. 2013). PCR reactions for the nrSSU region were performed in a total volume of 25 μL containing 3 μL of DNA template, 3 μL of 10× PCR buffer (Biotools), 6 μL of dNTPs, 0.9 μL of each primer, 0.9 μL of MgCl$_2$, and 1.5 units of DNA polymerase (Biotools), adding distilled water to reach the final volume. PCR reactions for the nrITS and RPL10A regions were performed in a total volume of 25 μL containing Illustra™ PuReTaq RTG PCR Beads (GE Healthcare), 3 μL of DNA template, 1.25 μL of each primer, and 19.5 μL of H$_2$O. PCR amplifications were performed in a Biorad MJMini thermal cycler. The PCR conditions for the nrSSU region

Figure 1. Habitus of isolated strains and lichens. A – Halofitum ramosum isolated from Wahlenbergiella striatula growing in artificial seawater medium containing 30‰ NaCl; B – Wahlenbergiella striatula; C – Hydropunctaria amphibia; D – Hydropunctaria maura. Scales: A = 10 μm; B = 1 mm; C = 5 mm; D = 1 mm.
were as follows: initial 4 min heating phase at 95°C, followed by 35 cycles of 1 min at 94°C, 1 min at 55°C and 2 min at 72°C, and a final extension step of 10 min at 72°C. PCR conditions for the nrITS region were as follows: initial 2 min heating phase at 94°C, followed by 35 cycles of 30 secs at 94°C, 30 secs at 56°C and 45 secs at 72°C, and a final extension step of 10 min at 72°C. The PCR conditions for the RPL10A region followed del Campo et al. (2013). The PCR products were purified using QIAquick PCR purification columns (Qiagen) according to the manufacturer’s instructions and subsequently inspected by eye. Gblocks 0.91b (Castresana 2000) was used to remove ambiguously aligned regions and large gaps, using the least stringent parameters but allowing gaps in 50% of the sequences. Optimal nucleotide substitution models for the Bayesian analysis for each genomic region were established by means of jModelTest v.2 (Darriba et al. 2012) using the Akaike information criterion (nrITS: GTR+I+G; nrSSU: GTR+G). IQ-TREE (Nguyen et al. 2015; Kalyaanamoorthy et al. 2017) through its online version W-IQ-TREE (Trifinopulos et al. 2016) implemented at http://iqtree.cibiv.univie.ac.at, was used for the heuristic search of the maximum likelihood (ML) tree and simultaneous inference of the substitution model for each data partition and the optimal partitioning scheme. Branch support was estimated with the ultrafast bootstrap algorithm (Minh et al. 2013). Bayesian inference of the phylogenetic relationships was carried out in MrBayes v.3.2 (Ronquist et al. 2012). Settings included two parallel runs with four chains over 10M generations, sampling every 1000th step. The first 25% of saved data was discarded as burn-in. Convergence of chains was confirmed by the convergent diagnostic of the potential scale reduction factor (PSRF), which approached 1, and inspected visually in Tracer v. 1.6 (http://tree.bio.ed.ac.uk/software/tracer/). Phylogenetic trees were visualized in FigTree v. 1.4.1 (http://tree.bio.ed.ac.uk/software/figtree/), and Adobe Illustrator CS2® was used for artwork. Strongly supported nodes were defined as those with ultrafast bootstrap values ≥90% and Bayesian posterior probability ≥0.95, shown in bold in Figure 2.

Analysis of osmoregulatory solutes

The concentrations of osmoregulatory solutes (glucose, glycerol, mannitol, sucrose, trehalose) in the algal strains isolated from the three lichens and growing in the three salt concentrations were assessed by means of high performance liquid chromatography (HPLC). Nine samples of 1.4 ml were collected from cultures of each algal strain after one month growing in liquid media and centrifuged for 5 min at 10,000 g. Precipitated cells were frozen until use, when 50 mg of this frozen algal growth was resuspended in 1.5 ml of sterile distilled water and ground with a plastic micropestle. The mixture was subjected to ultrasonic baths for 3 min and later boiled for 5.5 min. Homogenates were centrifuged for 5 min at 10,000 g. Supernatants were decanted, filtered (nylon filter, 0.45 mm) and loaded (50 ml) on a cationic exchange column (Hamilton RCX-10, 4.6 mm × 25 cm) maintained at room temperature. A 0.2% sodium hydroxide solution was used as mobile phase (2 ml/min). Detection was performed with a pulsed amperometric detector.

Ultrastructural characterization of algal strains

Samples for study of algal strain ultrastructure were prepared following de los Ríos & Ascaso (2002). In brief, algal cells were fixed in glutaraldehyde, postfixed in osmium tetroxide and then dehydrated in a graded series of ethanol before embedding in Spurr’s resin. Semi-thin (0.35 mm) and ultrathin (70 nm) sections were prepared with a diamond knife, using a Reichert Ultracut-E ultramicrotome, and post-stained with lead citrate (Reynolds 1963). Sections were observed with a Zeiss EM910 transmission electron microscope.

Photosynthesis and chlorophyll fluorescence measurements

Photobiont cells from all algal strains and salt concentrations were harvested (~200 mg) with nylon filters (5 µm pore-size), transferred to solid media and maintained under the same culturing conditions for 24 h. The response of photobiont net assimilation rate (A) to changing external photosynthetically active radiation (PAR) was measured using a LCpro + Portable Photosynthesis System (ADC Bioscientific Ltd., Hertfordshire, UK). Rates of CO₂ uptake were related to weight. The response of A to changing PAR was assessed following 5 min stepwise increases in PAR from darkness to 1000 µmol photons m⁻² s⁻¹ at a CO₂ concentration of 400 ppm at 20°C.

Chlorophyll a fluorescence was measured at room temperature using a pulse modulation fluorometer (PAM-2000, Walz, Effeltrich, Germany). Algae samples were layered on filter paper that was kept moist with distilled water in order to maintain the cells in a fully hydrated state. The samples were kept in the dark for 30 min, after which the minimal fluorescence yield (F₀) was obtained by exciting the photobionts with a weak measuring beam from a light-emitting diode. The maximum fluorescence yield (Fm) was determined with an 800 ms saturating pulse of white light (8000 µmol m⁻² s⁻¹ PAR). Variable fluorescence in dark-adapted samples (Fv) was calculated as Fm-Fo. The maximum quantum yield of photosystem II (PSII) was calculated as Fv/Fm (Kitajima and Butler 1975). Next, a 90 s stepwise increase in PAR followed by saturating pulses of white light were applied to determine (i) maximum fluorescence yield during actinic illumination (Fm'), (ii) Chl a fluorescence yield during actinic
Table 1. GenBank accession numbers and collection information for the strains included in the phylogenetic analyses. New sequences are bolded.

Strain No.	Taxonomy	Origin	nrSSU Accession Nº	nrITS Accession Nº	RPL10A Accession Nº
CCMP 2158	Cinocladius circinnatus	Italy, Pompei, from ruins	MF034603	MF034603	–
ULVO-16	Cinocladius circinnatus	Ukraine, Kherson Oblast, Azow-Syvash National Park, solonchak (hyperhaline soil)	MF034604	MF034604	–
ULVO-17	Cinocladius circinnatus	Ukraine, Kherson Oblast, Azow-Syvash National Park, solonchak (hyperhaline soil)	MF034605	MF034605	–
ULVO-18	Cinocladius circinnatus	Luxembourg, Casemate 'Petras', Fort Bourbon	MF034606	MF034606	–
ULVO-24	Cinocladius circinnatus	Ukraine, Odesa Oblast, Snake Island, quartz, epilithic	MF034607	MF034607	–
ULVO-25	Cinocladius circinnatus	Ukraine, Odesa Oblast, Kuyalnyk, solod (hyperhaline soil)	MF034608	MF034608	–
SAG 467-2	Pseudendoclonium orthopyreniae	Germany, Wangerooge, photobiont of lichen Arthopyrenia kelpii on snail shell of Littorina littorea	MF034609	MF034609	–
CCAP 415/1	Pseudendoclonium incrustans	Austria, photobiont of lichen Verrucaria aquatilis	MF034610	MF034610	–
SAG 23-92	Paulbroadya prostrata	Antarctica, Ross Island, Cape Royds, green epilithic crusts on rocks	MF034611	MF034611	–
CCAP 415/4	Paulbroadya prostrata	Antarctica, Ross Island, Cape Royds, green epilithic crusts on rocks	MF034612	MF034612	–
SAG 467-1	Cinocladius printzii	Switzerland, Roseau/Basel, bog water	MF034613	MF034613	–
SAG 2038	Lithothrichon pulchrum	Germany, Gledenbacher Bergland, near Dillenburg and Wetzlar, submers from lichen Verrucaria nitrophila	MF034614	MF034614	–
SAG 2050	Halofilum ramosum	United Kingdom, Wales, Anglesey, Porth Trecastell, in stonecracks of coastal rocks, isolated from lichen Wahlenbergiella striatula	MF034615	MF034615	–
SAG 2051	Pseudendoclonium commune	United Kingdom, Wales, Anglesey, Aberfraw, on coastal rocks (Pelvetia-zone)	MF034616	MF034616	–
SAG 2235	Halofilum ramosum	France, North Atlantic, Roscoff, Brittany, photobiont of Verrucaria maura	MF034617	MF034617	–
SAG 2236	Pseudendoclonium commune	France, North Atlantic, Ōland, photobiont of Verrucaria maura	MF034618	MF034618	–
SAG 2237	Pseudendoclonium submarinus	Scotland, North Atlantic, Oban, photobiont of Verrucaria mucosa	MF034619	MF034619	–
SAG 2240	Paulbroadya petrii	France, North Atlantic, Roscoff, Brittany, photobiont of Verrucaria mucosa	MF034620	MF034620	–
ULVO-19	Halofilum ramosum	Tunisia, Carthage, archeological remains, green biofilm on wall	MF034621	MF034621	–
ULVO-21	Pseudendoclonium commune	Ukraine, Odesa Oblast, Snake quartz, epilithic	MF034622	MF034622	–
ULVO-26	Pseudendoclonium submarinus	France, North Atlantic, Roscoff, Brittany, photobiont of Verrucaria maura	MF034623	MF034623	–
ULVO-28	Halofilum ramosum	France, North Atlantic, Roscoff, Brittany, photobiont of Verrucaria maura	MF034624	MF034624	–
ULVO-34	Paulbroadya petrii	Scotland, North Atlantic, Oban, photobiont of Verrucaria mucosa	MF034625	MF034625	–
SAG 1.95	Halofilum salinum	France, Schorre de estuary of the river Orne at Sallenelles, from a piece of wood	MF034634	MF034634	–
SAG 2.95	Halofilum helgolandicum	Germany, Schleswig-Holstein, Helgoland, from an enrichment culture of Rhizoclonium riparium	MF034635	MF034635	–
CCAP 6006/1	Desmochloris halophila	South Africa, Flaminckvlakte, the western Succulent Karoo, in soil crusts	FM882216	FM882216	–
CCAP 6006/2	Desmochloris mollenhaueri	South Africa, Flaminckvlakte, the western Succulent Karoo, in soil crusts	FM882217	FM882217	–
CCAP 6006/3	Desmochloris mollenhaueri	South Africa, Flaminckvlakte, the western Succulent Karoo, in soil crusts	FM882217	FM882217	–
Hr-Ha	Halofilum ramosum	Spain, Novellana, Playa del Silencio, isolated from Hydrodictyon ampibius MA-Lichen 20537	MN545616	MN545870	MN551199
Hr-Ws	Halofilum ramosum	Spain, Novellana, Playa del Silencio, isolated from Wahlenbergiella striatula MA-Lichen 20538	MN545615	MN545869	MN551198
Hr-Hm	Halofilum ramosum	Spain, Novellana, Playa del Silencio, isolated from Hydrodictyon ampibius MA-Lichen 20536	MN545614	MN545868	MN551197
illumination (F_r), and (iii) the level of modulated fluorescence during brief interruption (3 s) of actinic illumination in the presence of 6 µmol photons m^{-2} s^{-1} far-red light (F_r'). The non-photochemical dissipation of absorbed light energy (NPQ) was determined at each saturating pulse according to the equation NPQ = (F_m − F_m')/F_m' (Bilger and Björkman 1991). The quantum efficiency of PSII photochemistry (Φ_{PSII}), closely associated with the quantum yield of non-cyclic electron transport, was estimated from (F_m' − F_s)/F_m' (Genty et al. 1989). The relative electron transport rate (ETR) was calculated as Φ_{PSII} × PAR × 0.84 × 0.5 (Schreiber et al. 1986). Excitation pressure on PSII, which reflects the proportion of the primary quinone electron acceptor of PSII that is in the reduced state, was calculated as 1 − qP (Demmig-Adams et al. 1990), where qP is the coefficient of photochemical quenching (van Kooten & Snel 1990).

Results

Molecular characterization of algal strains

Bayesian and maximum likelihood analyses of the nrSSU-ITS dataset produced similar topologies, and only the Bayesian 50% majority-rule consensus tree is depicted in Figure 2. Recovered phylogenetic relationships among genera in Ulvales mostly agreed with the topology obtained by Darienko & Pröschold (2017). The only difference was that we recovered Desmochloris in a well-supported position as basal to the clade made up of Lithotricon, Pseudendoclonium, Paulbroadya and Halofilum, whereas Darienko and Pröschold (2017) recovered the latter clade as sister to Ctenocladus but not statistically supported. The strains isolated from Hydropunctaria amphibia (hereafter Hr-Ha), H. maura (hereafter Hr-Hm) and Wahlenbergiella striatula (hereafter Hr-Ws) clearly belong to the species Halofilum ramosum (Fig. 2).

All nrSSU sequences obtained from the isolated strains were identical to available sequences of Halofilum ramosum. The nrITS sequences from Hr-Ha and Hr-Hm were identical and differed in four positions from the most similar H. ramosum strains: SAG 2235 (MF034617) and ULVO-28 (MF034624), both isolated from H. maura from northern France. On the other hand, strain Hr-Ws differed in two positions and a 3 bp deletion from strains Hr-Ha and Hr-Hm. The sequence of the hypervariable region RPL10A from Hr-Ws differed in 13 (2.53%) of 513 positions from the sequences of Hr-Ha and Hr-Hm, which were identical in those two strains.

Figure 2. Bayesian 50% majority-rule consensus tree based on the combined nrSSU and nrITS regions, showing phylogenetic relationships among genera in Ulvales and the phylogenetic affinity of the isolated strains in this study with Halofilum ramosum. Posterior probability and ultrafast bootstrap values are indicated close to the nodes. Branches in boldface represent nodes supported by both analyses. For Halofilum ramosum, the source from which the strains were isolated is given after the dash.
Figure 3. TEM images of cultivated photobionts from Wahlenbergiella striatula, Hydropunctaria amphibia and Hydropunctaria maura thalli. A – Photobiont cell from W. striatula, showing parietal chloroplast with pyrenoid (P) surrounded by starch plates (S) and multilayered cell wall (cw) and cytoplasmic osmiophilic structures (asterisks); B – Photobiont cell from H. maura, showing a parietal chloroplast with plastoglobuli situated between lamellas and several mitochondria (m) and multilayered cell wall (cw); C – Photobiont cell from H. amphibia, showing the majority of the cell volume occupied by the chloroplast and numerous plastoglobuli; D – Chloroplast of H. maura photobiont cell, showing a group of plastoglobuli in the central area of the chloroplast; E – Pyrenoid (P) of W. striatula photobiont cell surrounded entirely by starch grains (S) and penetrated by tubules (arrow); F – H. amphibia photobiont cell, showing parietal chloroplast and cytoplasm containing different osmiophilic structures (asterisks).
Ultrastructure of algal strains

The three isolates were morphologically similar and corresponded to uniseriate filaments of more or less roundish cells (Hr-Ws shown in Fig. 1D), although in some cultures elongated cells were also found. They had uninucleate cells and a single parietal chloroplast (Fig. 3A, B). In all of them, the chloroplast occupied much of the algal cell volume and plastoglobuli occurred between lamellas (Fig. 3A–D). In chloroplasts of Hr-Ws cells there was a conspicuous pyrenoid surrounded almost entirely by starch and penetrated by transpyrenoidal membranes (tubules) (Fig. 3A, E). Plastoglobuli were absent from this pyrenoid, and the surrounding starch plates appeared slightly spaced. The presence of numerous osmiophilic globules (Fig. 3A, B, F) and mitochondria (Fig. 3B) was frequent in several cells analysed in all cultures. The cell walls showed a similar distinct layered structure in all three isolates (Fig. 3B, D, F).

Carbohydrate quantification

HPLC analysis showed that *H. ramosum* strains accumulate glycerol and sucrose in high amounts (2–24 mg·g⁻¹ DW). The presence of other carbohydrates such as mannitol, glucose and trehalose was also detected but in much lower concentrations (<1 mg·g⁻¹DW) (data not shown) and was not analysed further. In Hr-Hm and Hr-Ha the amount of sucrose increased with salt concentration. In Hr-Hm, sucrose increased from ~4 mg·g⁻¹ DW in 0‰ medium to 10.4 mg·g⁻¹ DW in 30‰ medium. In Hr-Ha, sucrose increased from ~4 mg·g⁻¹ DW in 0‰ medium to 6.8 mg·g⁻¹ DW in 30‰ medium. In Hr-Ws, sucrose decreased from 9.8 to 2.6 mg·g⁻¹ DW under the same conditions (Fig. 4A). The response of glycerol displayed the opposite behaviour: in Hr-Ws the highest concentrations were found in algae growing in 30‰ medium, while in Hr-Hm and Hr-Ha the lowest concentrations were found in 0‰ medium (Fig. 4B).

Photosynthesis performance

According to F_v/F_m measurements (Fig. 5), photosynthesis in the *Halofilum ramosum* strains seemed not to be affected by growth at different salt concentrations. Hr-Hm showed a gradual increase of F_v/F_m with salt concentration, but the difference between the highest value (0.633) at 30‰ NaCl and the lowest value (0.572) at 0‰ NaCl was less than 10%. For Hr-Ha there was no clear pattern of NaCl effect on F_v/F_m; the F_v/F_m value was highest at 15‰ (0.689) and lowest at 30‰ (0.609). In Hr-Ws, F_v/F_m varied between 0.665 at 0‰ and 0.588 at 15‰.

The relative electron transport rate (ETR) was saturated at 800–1000 µmol photons m⁻² s⁻¹ (PPDF) in all *H. ramosum* strains. The maximum values of ETR in Hr-Hm (Figure 6A) and Hr-Ha (Figure 6B) were higher (50–60) than in Hr-Ws (~40, Figure 6C). As with F_v/F_m, the salinity of the medium did not have significant effects on ETR. Only in the case of Hr-Hm was the electron transport rate slightly lower when it grew in 0‰ NaCl medium. In Hr-Hm and Hr-Ha the increase of NPQ at higher light intensity was small, and was similar for algae grown under the different NaCl concentrations. However, in Hr-Ws the NPQ value increased steeply at higher light intensities, especially for algae grown at 0‰ NaCl (Fig. 6F).

Photosystem II (PSII) excitation pressure, expressed as $1−qP$ (photochemical quenching), increased gradually with light intensity in the three strains, showing similar
values for all samples independently of NaCl content in the growth media (Fig. 6G–I).

CO₂ assimilation light saturation curves (Fig. 7) showed a low light compensation point (~0 µmol CO₂ m⁻² s⁻¹) for all cases studied. The CO₂ assimilation light saturation point was greater for all strains grown without NaCl. In addition, the measurements of CO₂ gas exchange showed that Hr-Hm and Hr-Ha had the highest assimilation rates, reaching values of ~1 µmol CO₂ m⁻² s⁻¹ at 600–800 PPDF (Fig. 7A, B), while in Hr-Wm the assimilation of CO₂ in Hr-Wm was ~50% lower (Fig. 7C).

Discussion

All seashore-dwelling lichens from the northern coast of the Iberian Peninsula studied here had Halofilum ramosum as photobiont. Previous studies (e.g., Thüs et al. 2011) indicated that most marine Verrucariaceae had members of the genus Dilabifilum as photobionts. Darienko & Pröschold (2017) recently reviewed the taxonomy of aquatic members of the order Ulvales and showed that Dilabifilum is a later synonym of Pseudendoaclonium. At least two species of this genus, P. arthropyeaiae and P. commune, are known to be present in lichen symbioses, the latter isolated from Hydropunctaria maura from Sweden (Darienko & Pröschold 2017). Those authors also described Halofilum, a genus characterized by short-branched and easily disintegrating filaments, vegetative cells with a parietal chloroplast containing a pyrenoid, and reproduction occurring by budding or vegetative division (Darienko & Pröschold 2017). Our cultures isolated from Wahlenbergiella striatula, Hydropunctaria maura and H. amphibia fit well with the molecular concept of H. ramosum. The isolated strains, however, differ morphologically from the strain shown in Darienko and Pröschold (2017). Although our strains form clear filaments, the cells are usually not elongated but irregularly rounded. Differences could come from the use of different culture media or from strains at different physiological states. Future studies should compare the morphology of identical strains growing on different culture media.

We found two strains differentiated at the molecular level at the variable nrITS region and the hypervariable RPL10A region, although not at the nrSSU region. Photobiont strains isolated from supralittoral species (Hydropunctaria spp.) shared the same photobiont strain (with identical nrSSU, nrITS and RPL10A sequences), whereas Wahlenbergiella striatula, a species growing in the upper intertidal zone, had a different strain. The ultrastructure of the cells from the three isolates also differed; only W. striatula photobiont cells showed a conspicuous pyrenoid surrounded by starch plates. A similar pyrenoid was
previously inferred for *H. ramosum* by means of light microscopy (Darienko & Pröschold 2017). The presence of this type of pyrenoid could facilitate photosynthetic CO$_2$-fixing activity when *W. striatula* is submerged and low-CO$_2$ conditions prevail (Ramazanov et al. 1994; Zhan et al. 2018). In fact, the pyrenoid is considered to be a plastic organelle which can change in morphology, structure and composition in response to endogenous and external factors (Meyer et al. 2017). These molecular and ultrastructural differences, together with the different ecophysiology (see below), raise questions about the biological meaning of these divergences and about whether they indicate ecotypes or different species. Ortiz-Álvarez et al. (2015) studied the photobionts associated with two sister species of the lichen-forming fungi of the genus *Lichina* occurring in the intertidal zone (*L. pygmaea*) and the supralittoral zone (*L. confinis*). They found that the cyanobacteria associated with each species had diverged at ~170 mya, much earlier than the origin of the genus *Lichina*, suggesting an ecological speciation event mediated by a photobiont switch that allowed invasion of a new ecological niche (Ortiz-Álvarez et al. 2015). Further research is needed to determine whether similar switches occurred in marine Verrucariaceae, but evidence points towards a much more complex scenario, with several lineages of associated photobionts (Moe 1997; Pérez-Ortega et al. 2010; Thüs et al. 2011; Pérez-Ortega et al. 2018) and Verrucariaceae lineages (Gueidan et al. 2007; Pérez-Ortega et al. 2018).

Algae have developed several biochemical strategies to maintain cell homeostasis under hyperosmotic stress; these include the capacity to synthesize and to accumulate compatible organic osmolytes. The presence of different low molecular weight carbohydrates such as arabitol, ribitol, mannitol, sorbitol, glycerol, sucrose, glucose and trehalose has been reported in lichens and their photobionts (Hill & Ahmadjian 1972; Roser et al. 1992; Armstrong & Smith 1994). HPLC analysis showed that glycerol and sucrose were the main osmolytes in all the *H. ramosum* ecotypes; however, their response to salinity was different in each strain. While sucrose was accumulated in *Hr-Hm* and *Hr-Ha* growing under high salinity, glycerol was synthesized in *Hr-Ws*. Several studies have demonstrated that the degree of halotolerance in algae is directly linked to the type of osmolyte that accumulates (Bremautz et al. 2011, and references within). In stenohaline algae, sucrose is more often accumulated in response to osmotic stress, while in euryhaline species, glycerol is more commonly synthesized to adapt to high external salinity (Reed et al. 1984; Warr et al. 1985; Reed 1989). It is not clear what the advantage is for euryhaline algae to accumulate glycerol instead of sucrose. One possibility involves the difference in the energetic cost of accumulation of each osmolyte. Synthesis of the C12 disaccharide sucrose requires 109 ATP equivalents, while the C3 molecule glycerol demands only 30 ATP equivalents for its biosynthesis (Erdmann & Hagemann 2007). Another possibility is that osmolytes have to allow optimum enzymatic activity at high solute concentrations. It has been observed that high concentrations of sucrose can inhibit certain enzymes (Hinton et al. 1969). On the other hand, high concentrations of glycerol (> 4 M) allow normal activity of intracellular enzymes in the euryhaline green algal genus *Dunaliella* (*Volvocales*) (Cowan et al. 1992; Bisson & Kirst 1995). This may explain why glycerol is the main osmolyte in algae growing at high salinity, sometimes approaching saturation (Hellebust 1985). The carbon source for synthesis of glycerol is via starch degradation (Hellebust 1985). In the euryhaline algae *Dunaliella tertiolecta*, the contribution of starch breakdown products to glycerol synthesis increased progressively with increasing salt stress (Goyal 2007). Interestingly, only *Hr-Ws* accumulated starch in the plastids, which might be employed for synthesis of glycerol. Thus, the analysis of organic osmolytes indicates that *Hr-Ws* might behave as an euryhaline alga, whereas *Hr-Ha* and *Hr-Hm* might be steno- or mesohaline species. It has to be noted, though, that the osmolytes produced in culture might be different from those produced by the same algae in symbioses. Future studies should address this question.

![Figure 7](image_url)
Figure 7. PPFD response curves of the net CO$_2$ assimilation rate in the different *Halophilum ramosum* strains from the lichens *Hydropunctaria maura* (A), *H. amphibia* (B) and *Wahlenbergiella striatula* (C) growing in artificial seawater medium containing 0, 15 or 30‰ NaCl. Bars represent means ±SE, n = 4–5.
The maximum quantum yield of primary photochemistry in dark-adapted leaves (F_v/F_m) is the most common parameter used to express the physiological fitness of a plant, as assessed by fluorescence. Healthy plants reach F_v/F_m values around 0.840, but for lichens this parameter ranges between 0.550 and 0.700. The decline in the value of this parameter is generally attributed to photoinhibition of PSII associated with damage of the reaction centers. We found only small differences of F_v/F_m among the different strains and the different treatments. In addition, there were no clear trends in the variation of F_v/F_m in relation to NaCl concentration. Thus, our results indicate that *H. ramosum*, known so far only from marine environments (Darienko & Pröschold 2017), could be able to grow both in freshwater and in seawater. Seepage of freshwater from sea glaciers and river mouths decreases the salt concentration, influencing the distribution of lichens (Ryan 1988). The ability to cope with brackish waters represents a clear advantage for these *Halophilum* strains. Further studies should focus on determining the tolerance of the three phycobionts to higher salinity.

Fluctuation of solar radiation is another important environmental factor that may affect the distribution of marine lichens within the littoral zone (Ryan 1988), since the duration and intensity of irradiation will depend on the flooding altitude. We generated PPFD curves to determine the response of photosynthesis to light intensity. The relative electron transport rate (ETR) was higher in Hr-Hm and Hr-Ha than in Hr-Ws, and the measurements of CO$_2$ gas exchange showed that Hr-Hm and Hr-Ha also had higher assimilation rates. Higgins et al. (2014) observed that photosynthetic yield in *Wahlenbergiella mucosa* was in general lower than in *Hydropunctaria maura*. Both *W. mucosa* and *W. striatula* are lichens that inhabit the intertidal zone, remaining immersed during long periods. They are less exposed to direct sunlight than supralittoral species like *H. amphibia* or *H. maura* (Orange 2013; Higgins et al. 2014). Lichens and plants from shaded habitats generally have lower compensation points and display lower rates of photosynthesis under high irradiance than sun-adapted lichens and plants (Loach 1967; Green et al. 1997; Picotto & Tretiach 2010). Coste et al. (2016) found a relationship between the length of time that freshwater lichen species are submerged and the decay of photosynthesis activity under high irradiation. In their study, the subhydropyloric lichen *Verrucaria praetermissa* increased CO$_2$ assimilation notably when it was exposed to high PPFD (2000 mmol m$^{-2}$ s$^{-1}$, aerial conditions), whereas it became negative in the hyperhydophilous lichen *Verrucaria funckii* and in *Ionaspis lacustris* and *Porpidia hydrophila*, two mesohyrophilous species. Thus, the lowest photosynthetic rates – estimated by ETR and CO$_2$ assimilation – of Hm-Ws under high light is consistent with a less sunny microhabitat.

Non-photochemical quenching (NPQ) plays an important role in protecting vascular plants and lichens against excess radiation. NPQ mechanisms such as the xanthophyll cycle and state-transitions reduce the excitation pressure on reaction centers, thereby decreasing the possibility of photooxidative damage (Papageorgiou & Govindjee 2014). Accordingly, NPQ is generally higher in sun-adapted than in shade-adapted plants and plant species (Demmig-Adams 1998; Picotto & Tretiach 2012). On the other hand, Hm-Ws displayed the most significant NPQ response to light in our comparison with Hm-Ha and Hm-Hm. The lower NPQ levels did not result in an increase in PSII excitation pressure as might be expected. Thus, it cannot be ruled out that energy dissipation in the photobionts of *H. amphibia* and *H. maura* lichens may be performed by alternative mechanisms different from NPQ.

Zonation of organisms’ occurrence on rocky seashores has long attracted the attention of researchers (Knox 2000). Lichens, like other organisms, show distributions restricted to certain belts of the intertidal or supralittoral zones (Fletcher 1973a, b; Ryan 1989; Brodo & Sloan 2004). This distribution is influenced by desiccation tolerance, water temperature, salinity and pH (Fletcher 1976 1980). Recent studies have shown clear physiological differences between species growing in the supralittoral zone (*Hydropunctaria maura*) and middle intertidal zone (*Wahlenbergiella mucosa*) (Higgins et al. 2014). So far, lichen photobionts have received little attention in attempts to explain lichen zonation at the seashore (Thüs et al. 2011; Ortiz-Álvarez et al. 2015). Our results clearly indicate that lichen zonation may be driven by photobiont physiological features and mycobiont specialization (Ortiz-Álvarez et al. 2015).

Conclusions

Lichen-forming fungi occurring along the rocky seashore of the northern Iberian Peninsula have different strains of the recently described algal species *Halophilum ramosum*, which correspond to their positions with respect to the waterline. These algal strains differ in chloroplast ultrastructure and in their physiological responses to salt concentrations. Further research on the species boundaries in lichen photobionts, particularly those associated with aquatic lichens, will be needed to determine whether the ecophysiological differences found in this study correspond to different ecotypes or sibling species. Future studies should investigate the diversity of marine lichen photobionts in a wider range of species and regions to shed light on local and regional spatial variation, as well as on the degree to which photobiont selectivity has affected the evolutionary history of these lichens and their position at the seashore.

Acknowledgements

We dedicate this study to James Lawrey on the occasion of his 70th birthday, in recognition of all his work in the fields of lichenology and microbial ecology. We thank the MNCCN Chromatographic Laboratory (Luis Cuadra and Elena Fernández) and Mª José Malo and Lydia Gonzalez for technical assistance, and Dr. William Sanders (Florida Gulf Coast University) for reviewing the English of the manuscript and for helpful comments on it. The microscopy and HPLC analyses were funded by the Spanish Education Ministry Grant CTM2012-38222-CO2-02. SPO is supported by a Ramón y Cajal contract (RYC-2014-16784) from the Spanish Ministry of Science, Innovation and Universities.
References

Armstrong, R. A. & Smith, S. N. 1994. The levels of ribitol, arabinol and mannitol in individual lobes of the lichen Parmelia conspersa (Ehrl ex Ach) Ach. Environmental and Experimental Botany 34: 253–260.

Batterton, J. & van Baalen, C. 1971. Growth Responses of Blue-Green Algae to Sodium Chloride Concentration. Archives Microbiology 76: 151–155.

Ben-Amotz, A. & Avron, M. 1981. Glycerol and ß-carotene metabolism in the halotolerant alga Dunaliella: a model system for biosolar energy conversion. Trends in Biochemical Sciences 6: 297–299.

Ben-Amotz, A. & Granwald, T. 1981. Osmoregulation in the halotolerant alga Asteromas gracilis. Plant Physiology 67: 613–616.

Bilger, W. & Bjorkman, O. 1990. Role of the xanthophyll cycle in energy conversion. The Lichenologist 5: 386–400.

Batterton, J. & van Baalen, C. 1971. Growth Responses of Blue-Green Algae to Sodium Chloride Concentration. Archives Microbiology 76: 151–155.

Brodo, I. M. & Sloan, N. A. 2004. Lichen zonation on coastal rocks in Gwaii Haanas National Park Reserve, Haida Gwaii (Queen Charlotte Islands), British Columbia. The Canadian Field-Naturalist 118: 405–424.

Bremantz, M., Torres-Bastillos, L., Cahizares-Villanueva, R. & Fernández-Linares, L. 2011. Trehalose and sucrose osmotolysates accumulated by algae as potential raw material for bioethanol. Natural Resources 2: 173–179.

Brodo, I. M. & Santesson, R. 1997. Lichens of the Queen Charlotte Islands, British Columbia, Canada. 3. Marine species of Verrucaria (Verrucariaceae, Ascomycotina). The Journal of the Hattori Botanical Laboratory 82: 27–37.

Brodo, I. M. & Sloan, N. A. 2004. Lichen zonation on coastal rocks in Gwaii Haanas National Park Reserve, Haida Gwaii (Queen Charlotte Islands), British Columbia. The Canadian Field-Naturalist 118: 405–424.

Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552.

Coste, C., Chauvet, E., Griou, F. & Lamaze, T. 2016. Photosynthetic traits of freshwater lichens are consistent with the submergence conditions of their habitat. Annales de Limnologie – International Journal of Limnology 52: 235–242.

Cowan, A. K., Rose, P. D. & Horne, L. G. 1992. Dunaliella salina – a model system for studying the response of plant-cells to stress. Journal Experimental Botany 43: 1535–1547.

Darienko, T. & Pröschold, T. 2017. Toward a monograph of non-marine Ulvophyceae using an integrative approach (Molecular phylogeny and systematics of terrestrial Ulvophyceae II). PhytoTaxa 324: 1–41.

Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.

de los Ríos, A. & Ascaso, C. 2002. Preparative techniques for transmission electron microscopy and confocal laser scanning microscopy of lichens. In: Kranner, I., Beckett, R. P. & Varma, A. K. (eds), Protocols in Lichenology, pp. 87–117. Springer-Verlag, Berlin, Heidelberg.

del Campo, E. M., Casano, L. M., & Barreno, E. 2013. Evolutionary implications of intron–exon distribution and the properties and sequences of the RPL10A gene in eukaryotes. Molecular Phylogenetics and Evolution 66: 857–867.

Delmair, D., Grube, M., Parrot, D., Cook-Moreau, J., Bousset, J., Labrousse, P., & Tomasi, S. Halotolerance in Lichens: Symbiotic Coalition Against Salt Stress. In: Prasad, M. N. V., Azooz, M. M. & Parvaiz Ahmad (eds), Ecophysiology and Responses of Plants under Salt Stress, pp. 115–148. Springer-Verlag New York.

Demmig-Adams, B. 1990. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochimica et Biophysica Acta 1020: 1–24

Demmig-Adams, B. 1998. Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant and Cell Physiology 39: 474–482.

Erdmann, N. & Hagemann, M. 2007. Salt acclimation of algae and cyanobacteria: a comparison. In: Rai, L. C. and Gaur, J. P. (eds) Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms, pp. 322–360. Springer, Berlin.

Fletcher, A. 1973a. The ecology of marine (littoral) lichens on some rocky shores of Anglesey. The Lichenologist 5: 368–400.

Fletcher, A. 1973b. The ecology of marine (supralittoral) lichens on some rocky shores of Anglesey. The Lichenologist 5: 401–422.

Fletcher, A. 1980. Marine and maritime lichens of rocky shores: their ecology, physiological and biological interactions. In: Price, J. H., Irvine, D. E. G. & Farnham, W. F. (eds): The Shore Environment. Volume 2: Ecosystems, pp. 789–842. Academic Press, London & New York.

Garrido-Benavent, I., Pérez-Ortega, S., & de los Ríos, A. 2017. From Alaska to Antarctica: species boundaries and genetic diversity of Prasiola (Trebuexhiophyceae), a foliose chlorophyte associated with the bipolar lichen-forming fungus Mastodia tessellata. Molecular Phylogenetics and Evolution 107: 117–131.

Gentz, B., Brantais J. M. & Baker N. R. 1989. The relationship between the quantum yield of photosynthetic electron-transport and quenching of Chlorophyll fluorescence. Biochimica et Biophysica Acta 990: 87–92.

Goyal, A. 2007. Osmoregulation in Dunaliella, Part II: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiology and Biochemistry 45: 705–710.

Green, T. G. A., Büdel, B., Meyer, A., Zellner, H. & Lange, O. L. 1997. Temperate rainforest lichens in New Zealand: light response of photosynthesis. New Zealand Journal of Botany 35: 493–504.

Green, T. G. A., Brabyn, L., Beard, C. & Sancho, L. G. 2012. Extremely low lichen growth rates in Taylor Valley, Dry Valleys, continental Antarctica. Polar Biology 35: 535–541.

Gueidan, C., Roux, C. & Lutzoni, F. 2007. Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Verruciariales, Ascomycotina). Mycological Research 111: 1145–1168.

Gueidan, C., Savic, S., Thiis, H., Roux, C., Keller, C., Tibell, L., Prieto, M.; Heidmarsson, S., Breuss, O., Orange, A., Fröberg, L., Wynn, A. A., Navarro-Rosinés, P., Krzewicka, B., Pykälä, J., Grube, M. & Lutzoni, F. 2009. Generic classification of the Verrucariaceae (Ascomycotina) based on molecular and morphological evidence: recent progress and remaining challenges. Taxon 58: 184–208.

Hellebust J. A. 1985. Mechanisms of response to salinity in halotolerant microalgae. Plant and Soil 89: 69–81.

Higgins, N. F., Connan, S., & Stengel, D. B. 2015. Factors influencing the distribution of coastal lichens Hydrodictyon morus and Wahlenbergiella mucosa. Marine Ecology 36: 1400–1414.

Hill, D. J. & Ahmadjian, V. 1972. Relationship between carbohydrate movement and the symbiosis in lichens with green algae. Planta 103: 267–277.

Hinton, R. H., Burge, M. L. E. & Hartman, G. C. 1969. Sucrose interference in the assay of enzymes and proteins. Analytical Biochemistry 29: 248–256.

Josef, F., Jeanjean, R. & Hagemann, M. 1996. Dynamics of the response of cyanobacteria to salt-stress: Deciphering the molecular events. Physiologia Plantarum 96: 738–744.

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589.

Kato, K., Asiminos, G. & Toh, H. 2009. Multiple Alignment of DNA Sequences with MAFFT. In: Posada, D. (ed.). Bioinformatics for DNA Sequence Analysis, pp. 39–64. Totowa: Humana Press Inc.
Thüs, H. & Schultz, M. 2008. *Freshwater Flora of Central Europe, Vol. 21/1: Fungi, Part 1: Lichens*. Heidelberg: Spektrum.

Thüs, H., Muggia, L., Pérez-Ortega, S., Favero-Longo, S. E., Joneson, S., O’Brien, H., Nelsen, M. P., Duque-Thüs, R., Grube, M., Friedl, T., Brodie, J., Andrew, C. J., Lücking, R., Lutzoni, F. & Gueidan, C. 2011. Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). *European Journal of Phycology* 46: 399–415.

Trifinopoulos, J., Nguyen, L. T., von Haeseler, A., & Minh, B. Q. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Research* 44: W232–W235.

van Kooten, O. & Snel, J. F. H. 1990. The use of chloroFhl fluorescence nomenclature in plant stress physiology. *Photosynthesis Research* 25: 147–150

Warr, S. C. R., Reed, R. H. & Stewart, W. D. P. 1985. Carbohydrate accumulation in osmotically stressed cyanobacteria (Blue-Green Algae). *New Phytologist* 100: 285–292.

White, T. J., Bruns, T. D., Lee, S. B. & Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal genes for phylogenies. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (eds), *PCR protocols: a guide to methods and applications*, pp. 315–322. Academic Press, San Diego.

Zhan, Y., Marchand, C. H., Maes, A., Mauries, A., Sun, Y., Dhaliwal, J. S., Uniacke, J., Arragain, S., Jiang, H., Gold, N. D., Martin, V. J., Lemaire, S. D., Zerges, W. 2018. Pyrenoid functions revealed by proteomics in *Chlamydomonas reinhardtii*. *PLoS ONE* 13: e0185039.