CoPE: Conditional image generation using Polynomial Expansions

Grigoris G Chrysos 1 Yannis Panagakis 2

Abstract
Generative modeling has evolved to a notable field of machine learning. Deep polynomial neural networks (PNNs) have demonstrated impressive results in unsupervised image generation, where the task is to map an input vector (i.e., noise) to a synthesized image. However, the success of PNNs has not been replicated in conditional generation tasks, such as super-resolution. Existing PNNs focus on single-variable polynomial expansions which do not fare well to two-variable inputs, i.e., the noise variable and the conditional variable. In this work, we introduce a general framework, called CoPE, that enables a polynomial expansion of two input variables and captures their auto- and cross-correlations. We exhibit how CoPE can be trivially augmented to accept an arbitrary number of input variables. CoPE is evaluated in five tasks (class-conditional generation, inverse problems, edges-to-image translation, image-to-image translation, attribute-guided generation) involving eight datasets. The thorough evaluation suggests that CoPE can be useful for tackling diverse conditional generation tasks.

1. Introduction
Modelling high-dimensional distributions and generating samples from complex distributions are fundamental tasks in machine learning. Among prominent generative models, StyleGAN (Karras et al., 2019) has demonstrated unparalleled performance in unsupervised image generation. Its success can be attributed to the higher-order correlations of the input vector \(z \) captured by the generator. As Chrysos et al. (2019) argue, StyleGAN\(^1\) is best explained as a deep polynomial neural network (PNN). PNNs have demonstrated impressive generation results in faces, animals, cars (Karras et al., 2020b), paintings, medical images (Karras et al., 2020a). Nevertheless, PNNs have yet to demonstrate similar performance in conditional generation tasks, such as super-resolution or image-to-image translation.

In contrast to unsupervised generators that require a single-variable input \(z \), in conditional generation (at least) two inputs are required: i) one (or more) conditional variables \(c \), e.g., a low-resolution image, and ii) a noise sample \(z \). A trivial extension of PNNs for conditional generation would be to concatenate all the input variables into a fused variable. The fused variable is then the input to the single-variable polynomial expansion of PNNs. However, the concatenation reduces the flexibility of the model significantly. For instance, concatenating a noise vector and a vectorized low-resolution image results in sub-optimal super-resolution, since the spatial correlations of the input image are lost in the vectorization. Additionally, the concatenation of the vectorized conditional variable \(c \) and \(z \) leads to a huge number of parameters when we use a fully-connected layer as typically done in the input of StyleGAN, especially when \(c \) depicts an image.

Two efforts on conditional generation which can be cast as polynomial expansions are SPADE (Park et al., 2019) and sBN (Chen et al., 2019). SPADE was developed for semantic image synthesis and it accepts i) a noise sample \(z \) and ii) a semantic segmentation image \(c \) as inputs. SPADE can be interpreted as a single-variable polynomial expansion with respect to the conditional variable \(c \). SPADE does not capture the higher-order cross-correlations between the input variables. Similarly, sBN can be interpreted as a polynomial expansion of the two variables for class-conditional generation. However, SPADE and sBN do not use the product of polynomial formulation, which enables high-order expansions without increasing the number of layers (Chrysos et al., 2020). Importantly, SPADE and sBN are constructed for specific applications (i.e., semantic image generation and unsupervised/class-conditional generation respectively) and it remains unclear whether a PNN can effectively tackle a general-purpose conditional generation task.

In this work, we introduce a framework, called CoPE, for conditional data generation. CoPE resorts to multivariate polynomials that capture the higher-order auto- and cross-
Table 1. Comparison of polynomial neural networks (PNNs). Even though the architectures\(^1\) of Karras et al. (2019); Chen et al. (2019); Park et al. (2019) were not posed as polynomial expansions, we believe that their success can be (partly) attributed to the polynomial expansion (please check sec. F for further information). II-Net and StyleGAN are not designed for conditional data generation. In practice, learning complex distributions requires high-order polynomial expansions; this can be effectively achieved with products of polynomials as detailed in sec. 3.2. Only II-Net and CoPE include such a formulation. The columns on discrete and continuous variable refer to the type of conditional variable the method was originally proposed on, e.g., sBN was only tried on class-conditional generation. Additionally, the only work that enables multiple conditional variables (and includes related experiments) is the proposed CoPE.

Model	products of polynomials	discrete cond. variable	continuous cond. variable	multiple cond. variables
II-Net (Chrysos et al., 2020)	✓	x	x	x
StyleGAN (Karras et al., 2019)	x	✓	✓	x
sBN (Chen et al., 2019)	x	✓	✓	x
SPADE (Park et al., 2019)	x	✓	✓	x
CoPE (ours)	✓	✓	✓	✓

correlations between the two input variables. By imposing a tailored structure in the higher-order correlations, we obtain an intuitive, recursive formulation for CoPE. The formulation enables different constraints to be applied to each variable and its associated parameters. In CoPE, different architectures can be defined simply by changing the recursive formulation. Our contributions can be summarized as follows:

- We introduce a framework, called CoPE, that expresses a high-order, multivariate polynomial for conditional data generation. We exhibit how CoPE can be applied on diverse conditional generation tasks.
- We derive two extensions to the core two-variable model: a) we augment the formulation to enable an arbitrary number of conditional input variables, b) we design different architectures that arise by changing the recursive formulation. We also reveal how previous works, such as SPADE (Park et al., 2019), can be interpreted as polynomial expansions.
- CoPE is evaluated on five different tasks (class-conditional generation, inverse problems, edges-to-image translation, image-to-image translation, attribute-guided generation); overall eight datasets are used for the thorough evaluation.

The diverse experiments suggest that CoPE can be useful for a variety of conditional generation tasks, e.g., by defining task-specific recursive formulations. To facilitate the reproducibility, we intend to publish the source code upon the acceptance of the paper.

2. Related work

Below, we review representative works in conditional generation and then we summarize the recent progress in multiplicative interactions (as low-order polynomial expansion).

2.1. Conditional generative models

The literature on conditional generation is vast. We focus on methods developed for Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) that have demonstrated the most impressive results to date. The interested reader can find dedicated surveys on each conditional task (Agnese et al., 2019; Wu et al., 2017). The literature on conditional generative models (Mirza & Osindero, 2014) can be clustered depending on the type of conditional data. Below, we present four representative groups.

The first group is the class-conditional generation (Miyato et al., 2018; Brock et al., 2019; Kaneko et al., 2019), where the data are divided into discrete categories, e.g., a cat or a ship. During training a class label is provided and the generator should synthesize a sample from that category. One popular method of including class-conditional information is through conditional normalization techniques (Dumoulin et al., 2017; De Vries et al., 2017). An alternative way is to directly concatenate the class labels with the input noise; however, as Odena et al. (2017) observe, this model does not scale well to a hundred or a thousand classes.

The second group is inverse problems that have immense interest for both academic and commercial reasons (Sood et al., 2018; You et al., 2019). The idea is to reconstruct a latent signal, when corrupted measurements are provided (Ongie et al., 2020). Well-known inverse problems in imaging include super-resolution, deblurring, inpainting. Before the resurgence of deep neural networks, the problems were tackled with optimization-based techniques (Chan & Chen, 2006; Levin et al., 2009). The recent progress in conditional generation has fostered the interest in inverse problems (Ledig et al., 2017; Pathak et al., 2016; Huang et al., 2017; Grm et al., 2019; Yan & Wang, 2017). A significant challenge that is often overlooked in the literature (Ledig et al., 2017; Yu et al., 2018a) is that there are
The third group is image-to-image translation. The idea is to map an image from one domain to an image to another domain. For instance, map a day-time image to a night-time image of the same scene. The influential work of Isola et al. (2017) has become the reference point for image-to-image translation. The architectures in this category follow a common pattern: i) an encoder is learned to map the input image (i.e., conditional variable) to a low-dimensional vector, and ii) a decoder maps this vector to an image in the target domain. Applications in conditional pose generation (Ma et al., 2017; Siarohin et al., 2018; Liang et al., 2019), representation learning (Tran et al., 2017), conditional video generation (Wang et al., 2018a), generation from semantic labels (Wang et al., 2018b), image blending (Wu et al., 2019; Zhan et al., 2019) have appeared. Despite the success, converting the mapping from one-to-one to one-to-many, i.e., having multiple plausible outputs for a single input image, has required some work (Zhu et al., 2017b; Huang et al., 2018). A more dedicated discussion on diverse generation is deferred to sec. 1.

Another group is the generation using multiple conditional variables, e.g., in attribute-guided generation (Choi et al., 2018; Yu et al., 2018b). These methods include significant engineering (e.g., multiple discriminators (Xu et al., 2017), auxiliary losses). For instance, the influential InfoGAN (Chen et al., 2016) includes both discrete and continuous conditional variables. However, the authors explicitly mention that additional losses are required, otherwise the generator is ‘free to ignore’ the additional variables.

Each technique above is typically applied to a single group of conditional generation tasks, while our goal is to demonstrate that CoPE can be applied to different tasks from a variety of the aforementioned groups.

2.2. Multiplicative interactions

Multiplicative connections have long been adopted in computer vision and machine learning (Shin & Ghosh, 1991; Hochreiter & Schmidhuber, 1997; Bahdanau et al., 2015). The idea is to combine the inputs through elementwise products or other diagonal forms. Even though multiplicative connections have successfully been applied to different tasks, until recently there was no comprehensive study of their expressivity versus the standard feedforward networks. Jayakumar et al. (2020) include the proof that second order multiplicative operators can represent a greater class of functions than classic feed-forward networks. Even though we capitalize on the theoretical argument, our framework can express any higher-order correlations while the frame-work of Jayakumar et al. (2020) is limited to second order interactions.

Higher-order correlations have been studied in the tensor-related literature (Kolda & Bader, 2009; Debals & De Lathauwer, 2017). However, their adaptation in modern deep architectures has been slower. II-Net (Chrysos et al., 2020) resorts to a high-order polynomial expansion for mapping the input z to the output x = G(z). II-Net focuses on a single-variable polynomial expansion; an in-depth difference of our work with II-Net can be found in sec. E in the supplementary. Three additional works that can be thought of as polynomial expansions are Karras et al. (2019); Park et al. (2019); Chen et al. (2019). The three works were originally introduced as (conditional) normalization variants, but we attribute their improvements in the expressiveness of their polynomial expansions. Under the polynomial expansion perspective, they can be expressed as special cases of the proposed CoPE. A detailed discussion is conducted in sec. F. We believe that the proposed framework offers a direction to further extend the results of such works, e.g., by allowing more than one conditional variables.

3. Method

In the following paragraphs we introduce the two-variable polynomial expansion (sec. 3.1), while the detailed derivation, along with additional models are deferred to the supplementary (sec. B). The crucial technical details, including the stability of the polynomial, are developed in sec. 3.2. We emphasize that a multivariate polynomial can approximate any function (Stone, 1948; Nikol’skii, 2013), i.e., a multivariate polynomial is a universal approximator.

Table 2. Symbols

Symbol	Role
N	Expansion order of the polynomial
k	Rank of the decompositions
x_1, x_2	Inputs to the polynomial
n, ρ	Auxiliary variables
Ψ^{[n, ρ]}	Parameter tensor of the polynomial
U_{[n], C, β}	Learnable parameters
*	Hadamard product

Notation: Tensors/matrices/vectors are symbolized by calligraphic/uppercase/lowercase boldface letters e.g., Ψ,W,w. The mode-m vector product of Ψ (of order M) with a vector u ∈ ℝ^m is Ψ ×_m u and results in a tensor of order M − 1. We assume that ∏_a=1^n x_i = 1 when a > b. The core symbols are summarized in Table 2, while a detailed tensor notation is deferred to the supplementary (sec. B.1).
Conditional generation using polynomial expansions

\[\sim Z_I \]
\[\sim Z_{II} \]
\[\beta \cdot G(z_I, z_{II}) \sim BMW, \ldots \]

Figure 1. Abstract schematic for \(N^{th}\) order approximation of \(x = G(z_I, z_{II})\). The inputs \(z_I, z_{II}\) are symmetric in our formulation. We denote with \(z_I\) a noise vector, e.g., a samples from Gaussian distribution, while \(z_{II}\) symbolizes a sample from a conditional input (e.g., a class label or a low-resolution image).

3.1. Two input variables

Given two input variables \(z_I, z_{II} \in \mathbb{K}^d\) where \(\mathbb{K} \subseteq \mathbb{R}\) or \(\mathbb{K} \subseteq \mathbb{N}\), the goal is to learn a function \(G: \mathbb{K}^{d \times d} \to \mathbb{R}^o\) that captures the higher-order correlations between the elements of the two inputs. We can learn such higher-order correlations as polynomials of two input variables. A polynomial expansion of order \(N \in \mathbb{N}\) with output \(x \in \mathbb{R}^o\) (such that \(x = G(z_I, z_{II})\)) has the form:

\[x = \sum_{n=1}^{N} \sum_{\rho=1}^{n+1} \left(\mathcal{W}^{[n,\rho]} \prod_{j=2}^{\rho} jz_I^{n+1} \prod_{\tau=\rho+1}^{n} \tau z_{II} \right) + \beta \tag{1} \]

where \(\beta \in \mathbb{R}^o\) and \(\mathcal{W}^{[n,\rho]} \in \mathbb{R}^{o \times 1} \times_{j=2}^{n+1} \times_{\tau=\rho+1}^{n} \mathbb{R}^d\) for \(n \in [1, N], \rho \in [1, n+1]\) are the learnable parameters. The expansion depends on two (independent) variables, hence we use the \(n\) and \(\rho\) as auxiliary variables. The two products of (1) do not overlap, i.e., the first multiplies the modes \([2, \rho]\) (of \(\mathcal{W}^{[n,\rho]}\)) with \(z_I\) and the other multiplies the modes \([\rho + 1, n+1]\) with \(z_{II}\).

Recursive relationship: The aforementioned derivation can be generalized to an arbitrary expansion order. The recursive formula for an arbitrary order \(N \in \mathbb{N}\) is the following:

\[x_n = x_{n-1} + \left(U^T_{[n, I]} z_I + U^T_{[n, II]} z_{II} \right) \ast x_{n-1} \tag{2} \]

for \(n = 2, \ldots, N\) with \(x_1 = U^T_{[1, I]} z_I + U^T_{[1, II]} z_{II}\) and \(x = Cx_N + \beta\). The parameters \(C \in \mathbb{R}^{o \times k}, U_{[n, \phi]} \in \mathbb{R}^{d \times k}\) for \(n = 1, \ldots, N\) and \(\phi = [I, II]\) are learnable.

The intuition behind this model is the following: An embedding is initially found for each of the two input variables,

\^2To avoid cluttering the notation we use same dimensionality for the two inputs. However, the derivations apply for different dimensionalities, only the dimensionality of the tensors change slightly.

then the two embeddings are added together and they are multiplied elementwise with the previous approximation. The different embeddings for each of the input variables allows us to implement \(U_{[n, I]}\) and \(U_{[n, II]}\) with different constraints, e.g., \(U_{[n, I]}\) to be a dense layer and \(U_{[n, II]}\) to be a convolution.

3.2. Model extensions and technical details

There are three limitations in (2). Those are the following:

a) (2) describes a polynomial expansion of a two-variable input, b) each expansion order requires additional layers, c) high-order polynomials might suffer from unbounded values. Those limitations are addressed below.

Our model can be readily extended beyond two-variable input; an extension with three-variable input is developed in sec. C. The pattern (for each order) is similar to the two-variable input: a) a different embedding is found for each input variable, b) the embeddings are added together, c) the result is multiplied elementwise with the representation of the previous order.

The polynomial expansion of (2) requires \(\Theta(N)\) layers for an \(N^{th}\) order expansion. That is, each new order \(n\) of expansion requires new parameters \(U_{[n, I]}\) and \(U_{[n, II]}\). However, the order of expansion can be increased without increasing the parameters substantially. To that end, we can capitalize on the product of polynomials. Specifically, let \(N_1\) be the order of expansion of the first polynomial. The output of the first polynomial is fed into a second polynomial, which has expansion order of \(N_2\). Then, the output of the second polynomial will have an expansion order of \(N_1 \cdot N_2\). The product of polynomials can be used with arbitrary number of polynomials; it suffices the output of the \(\tau^{th}\) polynomial to be the input to the \((\tau + 1)^{th}\) polynomial. For instance, if we assume a product of \(\Phi \in \mathbb{N}\) polynomials, where each polynomial has an expansion order of two, then the polynomial expansion is of \(2^\Phi\) order. In other words, we need \(\Theta(\log_2(N))\) layers to achieve an \(N^{th}\) order expansion.

In algebra, higher-order polynomials are unbounded and
Conditional generation using polynomial expansions

Figure 2. Synthesized images by CoPE in the class-conditional CIFAR10 (with resnet-based generator): (a) Random samples where each row depicts the same class, (b) Intra-class linear interpolation from a source to the target, (c) inter-class linear interpolation. In inter-class interpolation, the class labels of the leftmost and rightmost images are one-hot vectors, while the rest are interpolated in-between; the resulting images are visualized. In all three cases, CoPE synthesizes realistic images.

...Further text...

4. Experiments

To validate the generality of the proposed formulation, the following diverse conditional generation tasks are considered:

- class-conditional generation trained on CIFAR10, Cars196 and SVHN in sec. 4.1 and sec. H.2.
- attribute-guided generation in sec. H.5.
- inverse problems in imaging, e.g., super-resolution and block-inpainting, trained on Cars196 and CelebA in sec. 4.2.
- edges-to-image translation trained on handbags and shoes in sec. H.4.
- image-to-image translation in sec. H.3.

The details on the datasets and the evaluation metrics are deferred to the supplementary (sec. G) along with additional visualizations and experiments.

Our framework, e.g., (2), does not include any activation functions. To verify the expressivity of our framework, we maintain the same setting for the majority of the experiments below. Particularly, the generator does not have activation functions between the layers; there is only a hyperbolic tangent in the output space for normalization as typically done in GAN generators. Training a generator without activation functions between the layers also emerged in Π-Net (Chrysos et al., 2020), where the authors demonstrate the challenges in such framework. However, we conduct one experiment using a strong baseline with activation functions. That is, a comparison with SNGAN (Miyato & Koyama, 2018) in class-conditional generation is performed (sec. 4.1).

Baselines: ‘Π-Net-SICONC’ implements a polynomial expansion of a single variable by concatenating all the input variables. ‘SPADE’ implements a polynomial expansion with respect to the conditional variable. Also, ‘GAN-CONC’
Figure 3. Synthesized images by CoPE in the (a), (b) class-conditional generation (sec. 4.1) and (c) block-inpainting (sec. 4.2). In class-conditional generation, each row depicts a single class.

and ‘GAN-ADD’ are added as baselines, where we replace the Hadamard products with concatenation and addition respectively. A schematic of the differences between the compared polynomial methods is depicted in Fig. 7, while a detailed description of all methods is deferred to sec. G. Each experiment is conducted five times and the mean and the standard deviation are reported. Throughout the experimental section, we reserve the symbol z_{II} for the conditional input (e.g., a class label).

4.1. Class-conditional generation

In class-conditional generation the conditional input is a class label in the form of one-hot vector. This is a popular task in conditional generation (Miyato et al., 2018). We divide the experiment into two parts, depending on the type of generator used: a) a resnet-based generator (SNGAN), b) a polynomial generator (Π-Net). The former network has exhibited strong performance the last few years, while the latter is a recently proposed PNN.

Resnet-based generator: The experiment is conducted by augmenting the resnet-based generator of SNGAN. All methods are trained using CIFAR10 images; CIFAR10 is a popular benchmark in class-conditional generation. The quantitative results are in Table 3 and synthesized samples are illustrated in Fig. 2(a). SNGAN-CoPE improves upon all the baselines in both the Inception score (IS) (Salimans et al., 2016) and the FID (Heusel et al., 2017). The proposed formulation enables inter-class interpolations. That is, the noise z_{I} is fixed, while the class z_{II} is interpolated. In Fig. 2(b) and Fig. 2(c), intra-class and inter-class linear interpolations are illustrated respectively. Both the quantitative and the qualitative results exhibit the effectiveness of our framework.

Π-Net-based generator: A polynomial expansion is selected as the baseline architecture for the generator. In the original Π-Net conditional batch normalization (CBN) was used in the generator; this is replaced by batch normalization in the rest of the compared methods. The quantitative results in CIFAR10 are summarized in Table 4 (left). SPADE does not utilize the products of polynomials formulation, which explains its poor performance. Additionally, even though Π-Net-SINCONC and Π-Net both express a single-variable polynomial expansion, the inductive bias inserted into the network has a substantial effect in the final performance. Notice that CoPE outperforms all the baselines by a large margin.

We also evaluate class-conditional generation in Cars196 that has 196 classes. Cars196 is selected as a reasonably larger dataset than CIFAR10; it contains 196 classes and yet it can be trained on a single GPU. The compared methods and the training details remain the same. The results in

Table 3. Quantitative evaluation on class-conditional generation with resnet-based generator (i.e., SNGAN). Higher Inception Score (IS) (Salimans et al., 2016) (lower Frechet Inception Distance (FID) (Heusel et al., 2017)) indicates better performance. The baselines improve the IS of SNGAN, however they cannot improve the FID. Nevertheless, SNGAN-CoPE improves upon all the baselines in both the IS and the FID.

Model	IS (↑)	FID (↓)
SNGAN	8.30 ± 0.11	14.70 ± 0.97
SNGAN-CONC	8.50 ± 0.49	30.65 ± 3.55
SNGAN-ADD	8.65 ± 0.11	15.47 ± 0.74
SNGAN-SPADE	8.69 ± 0.19	21.74 ± 0.73
SNGAN-CoPE	**8.77 ± 0.12**	**14.22 ± 0.66**
Table 4. Quantitative evaluation on class-conditional generation with II-Net-based generator. In CIFAR10, there is a considerable improvement on the IS, while in Cars196 FID drops dramatically with CoPE. We hypothesize that the dramatic improvement in Cars196 arises because of the correlations of the classes. For instance, the SUV cars (of different carmakers) share several patterns, which are captured by our high-order interactions, while they might be missed when learning different normalization statistics per class.

Model	IS (↑)	FID (↓)
GAN-CONC	3.73 ± 0.32	294.33 ± 8.16
GAN-ADD	3.74 ± 0.60	298.53 ± 16.54
SPADE	4.00 ± 0.53	294.21 ± 16.33
II-Net-SICONC	6.65 ± 0.60	71.81 ± 33.00
II-Net	7.54 ± 0.16	37.26 ± 1.86
CoPE	7.87 ± 0.21	34.35 ± 2.68

Model	FID (↓)
GAN-CONC	240.45 ± 16.79
GAN-ADD	208.72 ± 12.65
SPADE	168.19 ± 39.71
II-Net-SICONC	153.39 ± 27.93
II-Net	120.40 ± 28.65
CoPE	55.48 ± 3.16

Table 4 (right) demonstrate a substantial difference between CoPE and the compared methods. Namely, the proposed method achieves a 53.9% reduction of the FID over the best-performing baseline. We emphasize that both SPADE and II-Net were not originally built for class-conditional generation, however we have tried to optimize the respective hyperparameters to optimize their performance. The performance gap between SPADE and the rest PNNs can be explained by the lack of products of polynomials. We also verify the experimental results on CIFAR10 that demonstrate how II-Net improves upon II-Net-SICONC. However, even II-Net obtains a substantially higher FID than CoPE; we hypothesize that the improvement arises because of the correlations between the classes. For instance, the SUV cars of different carmakers share several patterns. Such correlations are captured by our framework, while they might be missed when learning different normalization statistics per class. Overall, CoPE synthesizes plausible images (Fig. 3) even in the absence of activation functions.

4.2. Inverse problems in imaging

In the following paragraphs we evaluate the performance of CoPE in inverse problems. We select super-resolution and block-inpainting as two popular tasks. Super-resolution assumes a low-resolution image is available (i.e., the conditional variable). In block inpainting a (rectangular) part of the image is missing.

The core architectures remain as in the experiment above, i.e., CoPE and II-Net-SICONC implement products of polynomials. A single change is made in the structure of the discriminator: Motivated by (Miyato & Koyama, 2018), we include an elementwise product of z_u with the real/fake image in the discriminator. This stabilizes the training and improves the results. Even though architectures specialized for a single task (e.g., Ledig et al. (2017)) perform well in that task, their well-selected inductive biases (e.g., perceptual or ℓ_1 loss) do not generalize well in other domains or different conditional inputs. Our goal is not to demonstrate state-of-the-art results, but rather to scrutinize the effectiveness of the proposed formulation in different conditional generation tasks. To that end, we consider II-Net-SICONC, SPADE and SPADE-CoPE as the baselines.

We experiment with two settings in super-resolution: one that the input image is down-sampled $8 \times$ and one that it is down-sampled $16 \times$. The two settings enable us to test the granularity of CoPE at different scales. In super-resolution $16 \times$, z_u (i.e., the low-resolution input) has 48 dimensions, while in super-resolution $8 \times$, z_u has 192 dimensions. The FID scores in Cars196 for the task of super-resolution are reported in Table 5. Notice that the performance of II-Net-SICONC deteriorates substantially when the dimensionality of the conditional variable increases. That validates our intuition about the concatenation in the input of the generator (sec. E), i.e., that the inductive bias of single-variable PNNs might not fare well in conditional generation tasks. We also report the SPADE-CoPE, which captures higher-order correlations with respect to the first variable as well (further details in sec. G). The proposed SPADE-CoPE outperforms the original SPADE, however it cannot outperform the full two-variable model, i.e., CoPE. The results indicate that CoPE performs well even when the conditional input is an image.

Beyond the quantitative results, qualitative results provide a different perspective on what the mappings learn. Qualitative results on the super-resolution experiments on Cars196 are provided in Fig. 4. We also provide synthesized results on both super-resolution $8 \times$ and block-inpainting on CelebA in Fig. 4 and Fig. 3 respectively. For each conditional image, different noise vectors z_i are sampled. Notice that the corresponding synthesized images differ in the fine details. For instance, changes in the mouth region, the car type or position and even background changes are observed. Thus, CoPE synthesizes realistic images that i) correspond to the conditional input, ii) vary in the fine details. Similar variation has emerged even when the source and the target domains differ substantially, e.g., in the translation of MNIST digits to SVHN digits (sec. H.3). We should men-
Conditional generation using polynomial expansions

Table 5. Quantitative evaluation on super-resolution with Π-Net-based generator on Cars196. The task on the left is super-resolution $16 \times$, while on the right the task is super-resolution $8 \times$. Our variant of SPADE, i.e., SPADE-CoPE (details in sec. G), vastly improves the original SPADE. The full two-variable model, i.e., CoPE, outperforms the compared methods.

Model	FID (\downarrow)
SPADE	111.75 ± 13.41
II-Net-SICONC	80.16 ± 12.42
SPADE-CoPE	72.63 ± 3.18
CoPE	60.42 ± 6.19
Model	FID (\downarrow)
SPADE	119.18 ± 14.82
II-Net-SICONC	186.42 ± 40.84
SPADE-CoPE	64.76 ± 8.26
CoPE	62.76 ± 4.37

Figure 4. Synthesized images for super-resolution by (a), (b) $8 \times$, (c) $16 \times$. The first row depicts the conditional input (i.e., low-resolution image). The rows 2-6 depict outputs of the CoPE when a noise vector is sampled per row. Notice how the noise changes (a) the smile or the pose of the head, (b) the color, car type or even the background, (c) the position of the car.

In conclusion, the aforementioned experiments were conducted only using the adversarial learning loss. In the literature, regularization techniques have been proposed specifically for image-to-image translation, e.g., Yang et al. (2019); Lee et al. (2019). However, such works utilize additional losses and even require additional networks for training, which makes the training computationally demanding and more sensitive to design choices.

5. Conclusion

We have introduced CoPE for conditional data generation. CoPE expresses a polynomial expansion of two input variables, i.e., a noise vector and a conditional variable. We exhibit how previously published methods, such as SPADE and sBN, can be considered as special forms of this two-variable polynomial expansion. Notably, CoPE can be augmented to accept an arbitrary number of conditional variables as inputs. The empirical evaluation confirms that our framework can synthesize realistic images in five diverse tasks, including inverse problems and class-conditional generation. Inverse problems, such as super-resolution, can benefit from the proposed framework; we showcase that sampling different noise vectors results in plausible differences in the synthesized image. We derive two recursive formulations, i.e., (2) and (14), but a new task-specific formulation can be easily defined. We expect this to be useful in learning from different modalities, such as visual question answering (VQA) or text-to-speech synthesis, since CoPE can capture high-order auto- and cross-correlations among the input variables.

References

Agnese, J., Herrera, J., Tao, H., and Zhu, X. A survey and taxonomy of adversarial neural networks for text-to-image synthesis. arXiv preprint arXiv:1910.09399, 2019.

Almahairi, A., Rajeswar, S., Sordoni, A., Bachman, P., and Courville, A. Augmented cyclegan: Learning many-to-many mappings from unpaired data. In International
Conditional generation using polynomial expansions

Conference on Machine Learning (ICML), 2018.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly learning to align and translate. In International Conference on Learning Representations (ICLR), 2015.

Brock, A., Donahue, J., and Simonyan, K. Large scale gan training for high fidelity natural image synthesis. In International Conference on Learning Representations (ICLR), 2019.

Chan, T. F. and Chen, K. An optimization-based multilevel algorithm for total variation image denoising. Multiscale Modeling & Simulation, 5(2):615–645, 2006.

Chen, T., Lucic, M., Houlsby, N., and Gelly, S. On self modulation for generative adversarial networks. In International Conference on Learning Representations (ICLR), 2019.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P. Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In Advances in neural information processing systems (NeurIPS), pp. 2172–2180, 2016.

Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., and Choo, J. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8789–8797, 2018.

Choi, Y., Uh, Y., Yoo, J., and Ha, J.-W. Stargan v2: Diverse image synthesis for multiple domains. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8188–8197, 2020.

Chrysos, G., Moschoglou, S., Panagakis, Y., and Zafeiriou, S. Polymax: High-order polynomial generators. arXiv preprint arXiv:1908.06571, 2019.

Chrysos, G., Moschoglou, S., Bouritsas, G., Panagakis, Y., Deng, J., and Zafeiriou, S. π–nets: Deep polynomial neural networks. In Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and Bharath, A. A. Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1):53–65, 2018.

De Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., and Courville, A. C. Modulating early visual processing by language. In Advances in neural information processing systems (NeurIPS), pp. 6594–6604, 2017.

Debals, O. and De Lathauwer, L. The concept of tensorization. Technical report, Technical Report 17–99, ESAT-STADIUS, KU Leuven, Belgium, 2017.

Dumoulin, V., Shlens, J., and Kudlur, M. A learned representation for artistic style. 2017.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets. In Advances in neural information processing systems (NeurIPS), 2014.

Grm, K., Scheirer, W. J., and Štruc, V. Face hallucination using cascaded super-resolution and identity priors. IEEE Transactions in Image Processing (TIP), 29(1):2150–2165, 2019.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in neural information processing systems (NeurIPS), pp. 6626–6637, 2017.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

Huang, R., Zhang, S., Li, T., He, R., et al. Beyond face rotation: Global and local perception gan for photorealistic and identity preserving frontal view synthesis. In International Conference on Computer Vision (ICCV), 2017.

Huang, X., Liu, M.-Y., Belongie, S., and Kautz, J. Multimodal unsupervised image-to-image translation. In European Conference on Computer Vision (ECCV), pp. 172–189, 2018.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning (ICML), 2015.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-image translation with conditional adversarial networks. In Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Jayakumar, S. M., Czarnecki, W. M., Menick, J., Schwarz, J., Rae, J., Osindero, S., Teh, Y. W., Harley, T., and Pascanu, R. Multiplicative interactions and where to find them. In International Conference on Learning Representations (ICLR), 2020.

Jin, Y., Zhang, J., Li, M., Tian, Y., and Zhu, H. Towards the high-quality anime characters generation with generative adversarial networks. In Proceedings of the Machine Learning for Creativity and Design Workshop at NeurIPS, 2017.
Kaneko, T., Ushiku, Y., and Harada, T. Label-noise robust generative adversarial networks. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2467–2476, 2019.

Karras, T., Laine, S., and Aila, T. A style-based generator architecture for generative adversarial networks. In Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., and Aila, T. Training generative adversarial networks with limited data. In Advances in neural information processing systems (NeurIPS), 2020a.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. Analyzing and improving the image quality of stylegan. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8110–8119, 2020b.

Kolda, T. G. and Bader, B. W. Tensor decompositions and applications. SIAM review, 51(3):455–500, 2009.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3D object representations for fine-grained categorization. In Conference on Computer Vision and Pattern Recognition Workshops (CVPR’W), pp. 554–561, 2013.

Krizhevsky, A., Nair, V., and Hinton, G. The cifar-10 dataset. online: http://www.cs.toronto.edu/kriz/cifar.html, 55, 2014.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al. Photo-realistic single image super-resolution using a generative adversarial network. In Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Lee, H.-Y., Tseng, H.-Y., Mao, Q., Huang, J.-B., Lu, Y.-D., Singh, M., and Yang, M.-H. Drit++: Diverse image-to-image translation via disentangled representations. International Journal of Computer Vision (IJCV), pp. 1–16, 2020.

Lee, S., Ha, J., and Kim, G. Harmonizing maximum likelihood with gans for multimodal conditional generation. In International Conference on Learning Representations (ICLR), 2019.

Levin, A., Weiss, Y., Durand, F., and Freeman, W. T. Understanding and evaluating blind deconvolution algorithms. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1964–1971, 2009.

Liang, D., Wang, R., Tian, X., and Zou, C. Pegan: Partition-controlled human image generation. In AAAI Conference on Artificial Intelligence, volume 33, pp. 8698–8705, 2019.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face attributes in the wild. In International Conference on Computer Vision (ICCV), pp. 3730–3738, 2015.

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bouquet, O. Are gans created equal? a large-scale study. In Advances in neural information processing systems (NeurIPS), pp. 700–709, 2018.

Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., and Van Gool, L. Pose guided person image generation. In Advances in neural information processing systems (NeurIPS), pp. 406–416, 2017.

Mao, Q., Lee, H.-Y., Tseng, H.-Y., Ma, S., and Yang, M.-H. Mode seeking generative adversarial networks for diverse image synthesis. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1429–1437, 2019.

Maximov, M., Elezi, I., and Leal-Taixé, L. Cigan: Conditional identity anonymization generative adversarial networks. In Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Mirza, M. and Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

Miyato, T. and Koyama, M. Cgans with projection discriminator. In International Conference on Learning Representations (ICLR), 2018.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral normalization for generative adversarial networks. In International Conference on Learning Representations (ICLR), 2018.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. Reading digits in natural images with unsupervised feature learning. 2011.

Nikol’skii, S. Analysis III: Spaces of Differentiable Functions. Encyclopaedia of Mathematical Sciences. Springer Berlin Heidelberg, 2013. ISBN 9783662099612.

Odena, A., Olah, C., and Shlens, J. Conditional image synthesis with auxiliary classifier gans. In International Conference on Machine Learning (ICML), pp. 2642–2651. JMLR. org, 2017.

Ongie, G., Jalal, A., Metzler, C. A., Baraniuk, R. G., Dimakis, A. G., and Willett, R. Deep learning techniques for inverse problems in imaging. IEEE Journal on Selected Areas in Information Theory, 1(1):39–56, 2020.
Park, T., Liu, M.-Y., Wang, T.-C., and Zhu, J.-Y. Semantic image synthesis with spatially-adaptive normalization. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2337–2346, 2019.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and Efros, A. A. Context encoders: Feature learning by inpainting. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2536–2544, 2016.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X. Improved techniques for training gans. In *Advances in neural information processing systems (NeurIPS)*, pp. 2234–2242, 2016.

Shin, Y. and Ghosh, J. The pi-sigma network: An efficient higher-order neural network for pattern classification and function approximation. In *International Joint Conference on Neural Networks*, volume 1, pp. 13–18, 1991.

Siarohin, A., Sangineto, E., Lathuiliere, S., and Sebe, N. Deformable gans for pose-based human image generation. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3408–3416, 2018.

Sood, R., Topiwala, B., Choutagunta, K., Sood, R., and Rusu, M. An application of generative adversarial networks for super resolution medical imaging. In *International Conference on Machine Learning and Applications (ICMLA)*, pp. 326–331, 2018.

Stone, M. H. The generalized weierstrass approximation theorem. *Mathematics Magazine*, 21(5):237–254, 1948.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1–9, 2015.

Theis, L., Oord, A. v. d., and Bethge, M. A note on the evaluation of generative models. In *International Conference on Learning Representations (ICLR)*, 2016.

Tran, L., Yin, X., and Liu, X. Disentangled representation learning gan for pose-invariant face recognition. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, volume 3, pp. 7, 2017.

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Liu, G., Tao, A., Kautz, J., and Catanzaro, B. Video-to-video synthesis. In *Advances in neural information processing systems (NeurIPS)*, 2018a.

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., and Catanzaro, B. High-resolution image synthesis and semantic manipulation with conditional gans. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 8798–8807, 2018b.

Wu, H., Zheng, S., Zhang, J., and Huang, K. Gp-gan: Towards realistic high-resolution image blending. In *Proceedings of the 27th ACM International Conference on Multimedia*, pp. 2487–2495, 2019.

Wu, X., Xu, K., and Hall, P. A survey of image synthesis and editing with generative adversarial networks. *Tsinghua Science and Technology*, 22(6):660–674, 2017.

Xie, S. and Tu, Z. Holistically-nested edge detection. In *International Conference on Computer Vision (ICCV)*, 2015.

Xu, X., Sun, D., Pan, J., Zhang, Y., Pfister, H., and Yang, M.-H. Learning to super-resolve blurry face and text images. In *International Conference on Computer Vision (ICCV)*, pp. 251–260, 2017.

Yan, Q. and Wang, W. Dcigans for image super-resolution, denoising and deblurring. In *Advances in neural information processing systems (NeurIPS)*, pp. 487–495, 2017.

Yang, D., Hong, S., Jiang, Y., Zhao, T., and Lee, H. Diversity-sensitive conditional generative adversarial networks. In *International Conference on Learning Representations (ICLR)*, 2019.

You, C., Li, G., Zhang, Y., Zhang, X., Shan, H., Li, M., Ju, S., Zhao, Z., Zhang, Z., Cong, W., et al. Ct super-resolution gan constrained by the identical, residual, and cycle learning ensemble (gan-circle). *IEEE Transactions on Medical Imaging*, 39(1):188–203, 2019.

Yu, A. and Grauman, K. Fine-Grained Visual Comparisons with Local Learning. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2014.

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. S. Generative image inpainting with contextual attention. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5505–5514, 2018a.

Yu, X., Fernando, B., Hartley, R., and Porikli, F. Super-resolving very low-resolution face images with supplementary attributes. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 908–917, 2018b.

Zhan, F., Zhu, H., and Lu, S. Spatial fusion gan for image synthesis. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3653–3662, 2019.

Zhao, S., Ren, H., Yuan, A., Song, J., Goodman, N., and Ermon, S. Bias and generalization in deep generative models: An empirical study. In *Advances in neural information processing systems (NeurIPS)*, pp. 10792–10801, 2018.
Zhu, J.-Y., Krähenbühl, P., Shechtman, E., and Efros, A. A. Generative visual manipulation on the natural image manifold. In European Conference on Computer Vision (ECCV), 2016.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In International Conference on Computer Vision (ICCV), pp. 2223–2232, 2017a.

Zhu, J.-Y., Zhang, R., Pathak, D., Darrell, T., Efros, A. A., Wang, O., and Shechtman, E. Toward multimodal image-to-image translation. In Advances in neural information processing systems (NeurIPS), pp. 465–476, 2017b.
A. Summary of sections in the Appendix

In the following sections, further details and derivations are provided to elaborate the details of the CoPE. Specifically, in sec. B the decomposition and related details on the method are developed. The extension of our method beyond two-input variables is studied in sec. C. A method frequently used in the literature for fusing information is concatenation; we analyze how concatenation captures only additive and not more complex correlations (e.g., multiplicative) in sec. D. The differences from II-Net (Chrysos et al., 2020) are explored in sec. E. In sec. F, some recent (conditional) data generation methods are cast into the polynomial neural network framework and their differences from the proposed framework are analyzed. The experimental details including the evaluation metrics and details on the baselines are developed in sec. G. In sec. H, additional experimental results are included. Lastly, the differences from works that perform diverse generation are explored in sec. I.

B. Method derivations

In this section, we expand on the method details, including the scalar output case or the notation. Specifically, a more detailed notation is determined in sec. B.1; the scalar output case is analyzed in sec. B.2. In sec. B.3 a second order expansion is assumed to illustrate the connection between the polynomial expansion and the recursive formula. Sequentially, we derive an alternative model with different factor sharing. This model, called Nested-CoPE, has a nested factor sharing format (sec. B.4).

B.1. Notation

Our derivations rely on tensors (i.e., multidimensional equivalent of matrices) and (tensor) products. We relay below the core notation used in our work, the interested reader can find further information in the tensor-related literature (Kolda & Bader, 2009; Debals & De Lathauwer, 2017).

Symbols of variables: Tensors/matrices/vectors are symbolized by calligraphic/uppercase/lowercase boldface letters e.g., \mathcal{W}, W, w.

Matrix products: The Hadamard product of $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{I \times N}$ is defined as $\mathbf{A} \times \mathbf{B}$ and is equal to $a_{i,j}b_{i,j}$ for the (i,j) element. The Khatri-Rao product of matrices $\mathbf{A} \in \mathbb{R}^{I \times N}$ and $\mathbf{B} \in \mathbb{R}^{J \times N}$ is denoted by $\mathbf{A} \odot \mathbf{B}$ and yields a matrix of dimensions $(IJ) \times N$. The Khatri-Rao product for a set of matrices $\{\mathbf{A}_m\} \in \mathbb{R}^{I_m \times N}$ is abbreviated by $\mathbf{A}_[1] \odot \mathbf{A}_[2] \odot \cdots \odot \mathbf{A}_[M] = \bigodot_{m=1}^{M} \mathbf{A}_m$.

Tensors: Each element of an Mth order tensor \mathcal{W} is addressed by M indices, i.e., $(\mathcal{W})_{i_1,i_2,...,i_M} \equiv w_{i_1,i_2,...,i_M}$. An Mth-order tensor \mathcal{W} is defined over the tensor space $\mathbb{R}^{I_1 \times I_2 \times \cdots \times I_M}$, where $I_m \in \mathbb{Z}$ for $m = 1, 2, \ldots, M$. The mode-m unfolding of a tensor $\mathcal{W} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_M}$ maps \mathcal{W} to a matrix $\mathcal{W}_{(m)} \in \mathbb{R}^{I_m \times I_1 I_2 \cdots I_{m-1} I_{m+1} \cdots I_M}$ such that the tensor element $w_{i_1,i_2,...,i_M}$ is mapped to the matrix element $w_{i_m,j}$ where $j = 1 + \sum_{k \neq m} (i_k - 1) J_k$ with $J_k = \prod_{m \neq k}^{M} I_m$. The mode-$m$ vector product of \mathcal{W} with a vector $\mathbf{u} \in \mathbb{R}^{I_m}$, denoted by $\mathcal{W} \times_m \mathbf{u} \in \mathbb{R}^{I_1 I_2 \cdots I_{m-1} I_{m+1} \cdots I_M}$, results in a tensor of order $M - 1$:

\[
(\mathcal{W} \times_m \mathbf{u})_{i_1,...,i_{m-1},i_{m+1},...,i_M} = \sum_{i_m=1}^{I_m} w_{i_1,i_2,...,i_M} u_{i_m}, \tag{3}
\]

We denote $\mathcal{W} \times_1 \mathbf{u}^{(1)} \times_2 \mathbf{u}^{(2)} \times_3 \cdots \times_M \mathbf{u}^{(M)} \equiv \mathcal{W} \bigotimes_{m=1}^{M} \mathbf{u}^{(m)}$.

The CP decomposition (Kolda & Bader, 2009) factorizes a tensor into a sum of component rank-one tensors. The rank-R CP decomposition of an Mth-order tensor \mathcal{W} is written as:

\[
\mathcal{W} \doteq \langle U_1, U_2, \ldots, U_M \rangle = \sum_{r=1}^{R} u_r^{(1)} \circ u_r^{(2)} \circ \cdots \circ u_r^{(M)}, \tag{4}
\]

where \circ is the vector outer product. The factor matrices $\{U_m\} = [u_1^{(m)}, u_2^{(m)}, \cdots, u_R^{(m)}] \in \mathbb{R}^{I_m \times R}$ collect the vectors from the rank-one components. By considering the mode-1 unfolding of \mathcal{W}, the CP decomposition can be written in
Figure 5. Schematic for second order expansion with scalar output \(x_\tau \in \mathbb{R} \). The abbreviations \(z_{I,\lambda} \), \(z_{I,\mu} \) are elements of \(z_I \) with \(\lambda, \mu \in [1, d] \). Similarly, \(z_{I,\lambda}, z_{II,\mu} \) are elements of \(z_{II} \). The first two terms (on the right side of the equation) are the first-order correlations; the next two terms are the second order auto-correlations. The last term expresses the second order cross-correlations.

matrix form as:

\[
W_{(1)} = U_{[1]} \left(\begin{array}{ccc}
\hat{2} \\
\vdots \\
\hat{m} = M
\end{array} \right) U_{[m]}^T
\]

(5)

The following lemma is useful in our method:

Lemma 1. For a set of \(N \) matrices \(\{A_{[\nu]} \in \mathbb{R}^{I_\nu \times K}\}_{\nu=1}^N \) and \(\{B_{[\nu]} \in \mathbb{R}^{I_\nu \times L}\}_{\nu=1}^N \), the following equality holds:

\[
\left(\bigotimes_{\nu=1}^N A_{[\nu]} \right)^T \cdot \left(\bigotimes_{\nu=1}^N B_{[\nu]} \right) = \left(A_{[1]}^T \cdot B_{[1]} \right) * \ldots * \left(A_{[N]}^T \cdot B_{[N]} \right)
\]

(6)

An indicative proof can be found in the Appendix of Chrysos et al. (2019).

B.2. Scalar output

The proposed formulation expresses higher-order interactions of the input variables. To elaborate that, we develop the single output case below. That is, we focus on an element \(\tau \) of the output vector, e.g., a single pixel. In the next few paragraphs, we consider the case of a scalar output \(x_\tau \), with \(\tau \in [1, n] \) when the input variables are \(z_i, z_n \in \mathbb{K}^d \). To avoid cluttering the notation we only refer to the scalar output with \(x_\tau \) in the next few paragraphs.

As a reminder, the polynomial of expansion order \(N \in \mathbb{N} \) with output \(x \in \mathbb{R}^d \) has the form:

\[
x = G(z_i, z_n) = \sum_{n=1}^{N} \sum_{\rho=1}^{n+1} \left(W_{[n,\rho]} \prod_{j=2}^{\rho} x_{j} \right) \prod_{\tau=\rho+1}^{n+1} x_{\tau} + \beta
\]

(7)

We assume a second order expansion (\(N = 2 \)) and let \(\tau \) denote an arbitrary scalar output of \(x \). The first order correlations can be expressed through the sums \(\sum_{\lambda=1}^{d} w_{\tau,\lambda}^{[1,1]} z_{\lambda} \) and \(\sum_{\lambda=1}^{d} w_{\tau,\lambda}^{[1,2]} z_{\lambda} \). The second order correlations include both auto- and cross-correlations. The tensors \(W_{[2,1]} \) and \(W_{[2,3]} \) capture the auto-correlations, while the tensor \(W_{[2,2]} \) captures the cross-correlations.

A pictorial representation of the correlations are captured in Fig. 5. Collecting all the terms in an equation, each output is expressed as:

\[
x_\tau = \beta_\tau + \sum_{\lambda=1}^{d} w_{\tau,\lambda}^{[1,1]} z_{\lambda} + \sum_{\mu=1}^{d} w_{\tau,\lambda,\mu}^{[1,2]} z_{\lambda} z_{\mu} + \sum_{\mu=1}^{d} w_{\tau,\lambda,\mu}^{[2,1]} z_{\lambda} z_{\mu} + \sum_{\mu=1}^{d} w_{\tau,\lambda,\mu}^{[2,3]} z_{\lambda,\mu} + \sum_{\mu=1}^{d} w_{\tau,\lambda,\mu}^{[2,2]} z_{\lambda,\mu}
\]

(8)

where \(\beta_\tau \in \mathbb{R} \). Notice that all the correlations of up to second order are captured in (8).
B.3. Second order derivation for two-variable input

In all our derivations, the variables associated with the first input \(z_1 \) have an \(I \) notation, e.g., \(U_{[I,I]} \). Respectively for the second input \(z_II \), the notation \(II \) is used.

Even though (7) enables any order of expansion, the learnable parameters increase exponentially, therefore we can use a coupled factorization to reduce the parameters. Next, we derive the factorization for a second order expansion (i.e., \(N = 2 \)) and then prove the recursive relationship that generalizes it for an arbitrary order.

Second order derivation: For a second order expansion (i.e., \(N = 2 \) in (1)), we factorize each parameter tensor \(\mathcal{W}^{[n,\rho]} \). We assume a coupled CP decomposition for each parameter as follows:

- Let \(\mathcal{W}^{[1,1]} \) and \(\mathcal{W}^{[1,2]} \) the parameters for \(n = 1 \).
- Let \(\mathcal{W}^{[2,1]} = C(U_{[2,I]} \odot U_{[1,II]})^T \) and \(\mathcal{W}^{[2,3]} = C(U_{[2,I]} \odot U_{[1,II]})^T \) capture the second order correlations of a single variable (\(z_II \) and \(z_I \) respectively).
- The cross-terms are expressed in \(\mathcal{W}^{[2,2]} \times_2 z_I \times_3 z_II \). The output of the \(\tau \) element\(^3\) is \(\sum_{\lambda,\mu=1}^{d} w_{\tau,\lambda,\mu} z_I^\lambda z_II^{\mu}. \) The product \(\mathcal{W}^{[2,2]} \times_2 z_I \times_3 z_II \) also results in the same elementwise expression. Hence, to allow for symmetric expression, we factorize the term \(\mathcal{W}^{[2,2]} \) as the sum of the two terms \(C(U_{[2,I]} \odot U_{[1,II]})^T \) and \(C(U_{[2,I]} \odot U_{[1,II]})^T \). For each of the two terms, we assume that the vector-valued inputs are accordingly multiplied.

The parameters \(C \in \mathbb{R}^{d \times k}, U_{[m,\phi]} \in \mathbb{R}^{d \times k} (m = 1, 2 \text{ and } \phi = \{I, II\}) \) are learnable. The aforementioned factorization results in the following equation:

\[
x = CU_{[1,II]}^T z_{II} + CU_{[1,II]}^T z_{I} + C(U_{[2,I]} \odot U_{[1,II]})^T (z_{II} \odot z_{II}) + C(U_{[2,I]} \odot U_{[1,II]})^T (z_{II} \odot z_{I}) + C(U_{[2,I]} \odot U_{[1,I]})^T (z_{I} \odot z_{II}) + C(U_{[2,I]} \odot U_{[1,I]})^T (z_{I} \odot z_{I}) + \beta
\]

This expansion captures the correlations (up to second order) of the two input variables \(z_I, z_{II} \).

To make the proof more complete, we remind the reader that the recursive relationship (i.e., (2) in the main paper) is:

\[
x_n = x_{n-1} + (U_{[n,I]}^T z_I + U_{[n,II]}^T z_{II}) \cdot x_{n-1}
\]

for \(n = 2, \ldots, N \) with \(x_1 = U_{[1,I]}^T z_I + U_{[1,II]}^T z_{II} \) and \(x = Cx_N + \beta. \)

Claim 1. The equation (9) is a special format of a polynomial that is visualized as in Fig. 1 of the main paper. Equivalently, prove that (9) follows the recursive relationship of (10).

Proof. We observe that the first two terms of (9) are equal to \(Cx_1 \) (from (10)). By applying Lemma 1 in the terms that have Khatri-Rao product, we obtain:

\[
x = \beta + Cx_1 + C\left\{ (U_{[2,I]}^T z_{II}) \cdot (U_{[1,II]}^T z_{II}) + (U_{[2,I]}^T z_{I}) \cdot (U_{[1,II]}^T z_{II}) + (U_{[2,I]}^T z_{II}) \cdot (U_{[1,I]}^T z_{II}) + (U_{[2,I]}^T z_{I}) \cdot (U_{[1,I]}^T z_{II}) \right\}
\]

\[
= \beta + Cx_1 + C\left\{ \left[(U_{[2,I]}^T z_{II}) + (U_{[2,I]}^T z_{II}) \right] \cdot x_1 \right\} = Cx_2 + \beta
\]

The last equation is precisely the one that arises from the recursive relationship from (10).

\[\square\]

\(^3\)An elementwise analysis (with a scalar output) is provided on the supplementary (sec. B.2).
To prove the recursive formula for the N^{th} order expansion, a similar pattern as in sec.C of PolyGAN (Chrysos et al., 2019) can be followed. Specifically, the difference here is that because of the two input variables, the auto- and cross-correlation variables should be included. Other than that, the same factor sharing is followed.

B.4. Nested-CoPE model for two-variable input

The model proposed above (i.e., (10)), relies on a single coupled CP decomposition, however a more flexible model can factorize each level with a CP decomposition. To effectively do that, we utilize learnable hyper-parameters $b_{[n]} \in \mathbb{R}^{\omega}$ for $n \in [1, N]$, which act as scaling factors for each parameter tensor. Then, a polynomial of expansion order $N \in \mathbb{N}$ with output $x \in \mathbb{R}^s$ has the form:

$$x = G(z_1, z_2) = \sum_{n=1}^{N} \sum_{\rho=2}^{n+2} W_{[n, \rho-1]} \times_2 b_{[N+1-n]} \prod_{j=3}^{\rho} \times_j z_i \prod_{\tau=\rho+1}^{n+2} \times_{\tau} z_n + \beta \quad (12)$$

To demonstrate the factorization without cluttering the notation, we assume a second order expansion in (12).

Second order derivation: The second order expansion, i.e., $N = 2$, is derived below. We jointly factorize all parameters of (12) with a nested decomposition as follows:

- First order parameters: $W_{[1, 1]} = C(A_{[2, II]} \otimes B_{[2]})^T$ and $W_{[1, 2]} = C(A_{[2, I]} \otimes B_{[2]})^T$.
- Let $W_{[2, 1]}^{[2, 1]} = C \left\{ A_{[2, II]} \otimes \left(A_{[1, I]} \otimes B_{[1]} \right) V_2 \right\}^T$ and $W_{[2, 2]}^{[2, 2]} = C \left\{ A_{[2, I]} \otimes \left(A_{[1, I]} \otimes B_{[1]} \right) V_2 \right\}^T$ capture the second order correlations of a single variable (z_1 and z_2 respectively).
- The cross-terms are included in $W_{[2, 2]}^{[2, 2]} = \times_2 b_{[1]} \times_3 z_1 \times_4 z_2$. The output of the τ element is expressed as $\sum_{\nu=1}^{\omega} \sum_{\mu=1}^{d} w_{\tau, \nu, \mu} b_{[1]} \omega z_1 \omega z_2 \mu$. Similarly, the product $\bar{W}_{[2, 2]}^{[2, 2]} = \times_2 b_{[1]} \times_3 z_1 \times_4 z_2$ has output $\sum_{\nu=1}^{\omega} \sum_{\mu=1}^{d} w_{\nu, \tau, \mu} b_{[1]} \omega z_1 \omega z_2 \mu$ for the τ element. Notice that the only change in the two expressions is the permutation of the third and forth modes of the tensor; the rest of the expression remains the same. Therefore, to account for this symmetry we factorize the term $W_{[2, 2]}^{[2, 2]}$ as the sum of two terms and assume that each term is multiplied by the respective terms. Let $W_{[2, 2]}^{[2, 2]} = C \left\{ A_{[2, II]} \otimes \left(A_{[1, I]} \otimes B_{[1]} \right) V_2 \right\}^T + A_{[2, II]} \otimes \left(A_{[1, I]} \otimes B_{[1]} \right) V_2 \right\}^T$.

The parameters $C \in \mathbb{R}^{o \times k}, A_{[n]} \in \mathbb{R}^{d \times k}, V_{[n]} \in \mathbb{R}^{k \times k}, B_{[n]} \in \mathbb{R}^{w \times k}$ for $n = 1, 2$ and $\phi = \{I, II\}$ are learnable. Collecting all the terms above and extracting C as a common factor (we omit C below to avoid cluttering the notation):

$$\left(A_{[2, II]} \otimes B_{[2]} \right)^T (z_1 \otimes b_{[2]}^T) + \left(A_{[2, I]} \otimes B_{[2]} \right)^T (z_1 \otimes b_{[2]}^T) +$$

$$\left\{ A_{[2, II]} \otimes \left(A_{[1, I]} \otimes B_{[1]} \right) V_2 \right\}^T (z_1 \otimes b_{[1]}^T) +$$

$$\left\{ A_{[2, I]} \otimes \left(A_{[1, I]} \otimes B_{[1]} \right) V_2 \right\}^T (z_1 \otimes b_{[1]}^T) +$$

$$\left\{ A_{[2, II]} \otimes \left(A_{[1, I]} \otimes B_{[1]} \right) V_2 \right\}^T (z_1 \otimes b_{[1]}^T) +$$

$$\left\{ A_{[2, II]} \otimes \left(A_{[1, I]} \otimes B_{[1]} \right) V_2 \right\}^T (z_1 \otimes b_{[1]}^T) =$$

$$(A_{[2, II]}^T z_2 + A_{[2, I]}^T z_1) * \left(B_{[2]}^T b_{[2]} \right) +$$

$$(A_{[2, II]}^T z_2 + A_{[2, II]}^T z_1) * \left(V_{[2]}^T \left(A_{[1, II]}^T z_2 + A_{[1, II]}^T z_1 \right) * \left(B_{[1]}^T b_{[1]} \right) \right)$$
The last equation is precisely a recursive equation that can be expressed with the Fig. 6 or equivalently the generalized recursive relationship below.

\[\sim Z_I \]
\[A_{[1,I]} \]
\[\sim Z_{II} \]
\[A_{[1,II]} \]
\[A_{[2,I]} \]
\[A_{[2,II]} \]
\[A_{[N,I]} \]
\[A_{[N,II]} \]
\[V_{[2]} \]
\[B_{[2]}b_{[2]} \]
\[\cdots \]
\[\vdots \]
\[\vdots \]
\[C \]
\[\beta G(z_I, z_{II}) \]
\[\sim BMW, \ldots \]
or
\[V_{[N]} \]
\[B_{[N]}b_{[N]} \]

Figure 6. Abstract schematic for \(N^{th} \) order approximation of \(x = G(z_I, z_{II}) \) with Nested-CoPE model. The inputs \(z_I, z_{II} \) are symmetric in our formulation. We denote with \(z_I \) a sample from the noise distribution (e.g., Gaussian), while \(z_{II} \) symbolizes a sample from a conditional input (e.g., a class label or a low-resolution image).

Recursive relationship: The recursive formula for the Nested-CoPE model with arbitrary expansion order \(N \in \mathbb{N} \) is the following:

\[
\begin{align*}
x_n &= \left(A_{[n,I]}^T z_I + A_{[n,II]}^T z_{II} \right) \ast \left(V_{[n]}^T x_{n-1} + B_{[n]}^T b_{[n]} \right) \\
&= \left(A_{[n,I]}^T z_I + A_{[n,II]}^T z_{II} \right) \ast \left(V_{[n]}^T x_{n-1} + B_{[n]}^T b_{[n]} \right) \\
&= \left(A_{[n,I]}^T z_I + A_{[n,II]}^T z_{II} \right) \ast \left(V_{[n]}^T x_{n-1} + B_{[n]}^T b_{[n]} \right)
\end{align*}
\]

where \(n \in [2, N] \) and \(x_1 = \left(A_{[1,I]}^T z_I + A_{[1,II]}^T z_{II} \right) \ast \left(B_{[1]}^T b_{[1]} \right) \). The parameters \(C \in \mathbb{R}^{o \times k}, A_{[n,o]} \in \mathbb{R}^{d \times k}, V_{[n]} \in \mathbb{R}^{k \times k}, B_{[n]} \in \mathbb{R}^{\omega \times k} \) for \(\phi = \{ I, II \} \) are learnable. Then, the output \(x = Cx_N + \beta \).

The Nested-CoPE model manifests an alternative network that relies on slightly modified assumptions on the decomposition. Thus, changing the underlying assumptions of the decomposition can modify the resulting network. This can be an important tool for domain-specific applications, e.g., when the domain-knowledge should be inserted in the last layers.

C. Beyond two variables

Frequently, more than one conditional inputs are required (Yu et al., 2018b; Xu et al., 2017; Maximov et al., 2020). In such tasks, the aforementioned framework can be generalized to more than two input variables. We demonstrate how this is possible with three variables; then it can trivially extended to an arbitrary number of input variables.

Let \(z_I, z_{II}, z_{III} \in \mathbb{R}^o \) denote the three input variables. We aim to learn a function that captures the higher-order interactions of the input variables. The polynomial of expansion order \(N \in \mathbb{N} \) with output \(x \in \mathbb{R}^o \) has the form:

\[
x = G(z_I, z_{II}, z_{III}) = \sum_{n=1}^{N} \sum_{\rho=1}^{n+1} \sum_{\delta=\rho}^{n+1} \left(W^{[n,o,\delta]}_{\rho,\delta} \prod_{j=2}^{n+1} z_I^j \prod_{\tau=\rho+1}^{\delta} z_{II} \prod_{\zeta=\delta+1}^{n+1} z_{III} \right) + \beta
\]

where \(\beta \in \mathbb{R}^o \) and \(W^{[n,o,\delta]}_{\rho,\delta} \in \mathbb{R}^{o \times \prod_{m=1}^{n+1} \times d} \) for \(n \in [1, N] \) and \(\rho, \delta \in [1, n+1] \) are the learnable parameters. As in the two-variable input, the unknown parameters increase exponentially. To that end, we utilize a joint factorization with factor sharing. The recursive relationship of such a factorization is:

\[
x_n = x_{n-1} + \left(U_{[n,I]}^T z_I + U_{[n,II]}^T z_{II} + U_{[n,III]}^T z_{III} \right) \ast x_{n-1}
\]

for \(n = 2, \ldots, N \) with \(x_1 = U_{[1,I]}^T z_I + U_{[1,II]}^T z_{II} + U_{[1,III]}^T z_{III} \) and \(x = Cx_N + \beta \).

Notice that the pattern (for each order) is similar to the two-variable input: a) a different embedding is found for each input variable, b) the embeddings are added together, c) the result is multiplied elementwise with the representation of the previous
D. Concatenation of inputs

A popular method used for conditional generation is to concatenate the conditional input with the noise labels. However, as we showcase below, concatenation has two significant drawbacks when compared to our framework. To explain these, we will define a concatenation model.

Let \(z_1 \in \mathbb{K}_1^{d_1}, z_2 \in \mathbb{K}_2^{d_2} \) where \(\mathbb{K}_1, \mathbb{K}_2 \) can be a subset of real or natural numbers. The output of a concatenation layer is
\[
x = P^T \left[z_1; z_2 \right]^T
\]
where the symbol ‘;’ denotes the concatenation and \(P \in \mathbb{R}^{(d_1, d_2) \times o} \) is an affine transformation on the concatenated vector. The \(j^{th} \) output is
\[
x_j = \sum_{\tau=1}^{d_1} p_{\tau,j} z_{1,\tau} + \sum_{\tau=1}^{d_2} p_{\tau+d_1,j} z_{2,\tau}.
\]
Therefore, the two differences from the concatenation case are:

- If the input variables are concatenated together we obtain an additive format, not a multiplicative that can capture cross-term correlations. That is, the multiplicative format does allow achieving higher-order auto- and cross-term correlations.
- The concatenation changes the dimensionality of the embedding space. Specifically, the input space has dimensionality \(d_1 \cdot d_2 \). That has a significant toll on the size of the filters (i.e., it increases the learnable parameters), while still having an additive impact. On the contrary, our framework does not change the dimensionality of the embedding spaces.

E. In-depth differences from \(\Pi\)-Net

In the next few paragraphs, we conduct an in-depth analysis of the differences between \(\Pi\)-Net and CoPE. The analysis assumes knowledge of the proposed model, i.e., (2).

Chrysos et al. (2020) introduce \(\Pi\)-Net as a polynomial expansion of a single input variable. Their goal is to model functions \(x = G(z) \) as high-order polynomial expansions of \(z \). Their focus is towards using a single-input variable \(z \), which can be noise in case of image generation or an image in discriminative experiments. The authors express the StyleGAN architecture (Karras et al., 2019) as a polynomial expansion, while they advocate that the impressive results can be attributed to the polynomial expansion.

To facilitate the in-depth analysis, the recursive relationship that corresponds to (2) is provided below. An \(N^{th} \) order expansion in \(\Pi\)-Net is expressed as:
\[
x_n = \left(\Lambda_n^T [z] \right) \ast x_{n-1} + x_{n-1}
\]
for \(n = 2, \ldots, N \) with \(x_1 = \Lambda_1^T z \) and \(x = \Gamma x_{N} + \beta \). The parameters \(\Lambda, \Gamma \) are learnable.

In this work, we focus on conditional data generation, i.e., there are multiple input variables available as auxiliary information. The trivial application of \(\Pi\)-Net would be to concatenate all the \(M \) input variables \(z_1, z_2, z_3, \ldots \). The input variable \(z \) becomes \(z = [z_1; z_2; z_3; \ldots] \), where the symbol ‘;’ denotes the concatenation. Then, the polynomial expansion of \(\Pi\)-Net can be learned on the concatenated \(z \). However, there are four significant reasons that we believe that this is not as flexible as the proposed CoPE.

When we refer to \(\Pi\)-Net below, we refer to the model with concatenated input. In addition, let \(z_1 \in \mathbb{K}_1^{d_1}, z_2 \in \mathbb{K}_2^{d_2} \) denote the input variables where \(\mathbb{K}_1, \mathbb{K}_2 \) can be a subset of real or natural numbers.

Parameter sharing: CoPE allows additional flexibility in the structure of the architecture, since CoPE utilizes a different projection layer for each input variable. We utilize this flexibility to share the parameters of the conditional input variable; as we detail in (19), we set \(U_{[n,1]}^{[I]} = U_{[1,1]}^{[I]} \) on (2). If we want to perform a similar sharing in \(\Pi\)-Net, the formulation equivalent to (17) would be \(\left(\Lambda_{[n]}^T \right)_i = \left(\Lambda_{[1]}^T \right)_i \) for \(i = d_1, \ldots, d_1 + d_2 \). However, sharing only part of the matrix might be challenging. Additionally, when \(\Lambda \) is a convolution, the sharing pattern is not straightforward to be computed. Therefore, CoPE enables additional flexibility to the model, which is hard to be included in \(\Pi\)-Net.
Inductive bias: The inductive bias is crucial in machine learning (Zhao et al., 2018), however concatenating the variables restricts the flexibility of the model (i.e. II-Net). To illustrate that, let us use the super-resolution experiments as an example. The input variable z_I is the noise vector and z_{II} is the (vectorized) low-resolution image. If we concatenate the two variables, then we should use a fully-connected (dense) layer, which does not model well the spatial correlations. Instead, with CoPE, we use a fully-connected layer for the noise vector and a convolution for z_{II} (low-resolution image). The convolution reduces the number of parameters and captures the spatial correlations in the image. Thus, by concatenating the variables, we reduce the flexibility of the model.

Dimensionality of the inputs: The dimensionality of the inputs might vary orders of magnitude, which might create an imbalance during learning. For instance, in class-conditional generation concatenating the one-hot labels in the input does not scale well when there are hundreds of classes (Odena et al., 2017). We observe a similar phenomenon in class-conditional generation: in Cars196 (with 196 classes) the performance of II-Net deteriorates considerably when compared to its (relative) performance in CIFAR10 (with 10 classes). On the contrary, CoPE does not fuse the elements of the input variables directly, but it projects them into a subspace appropriate for adding them.

Order of expansion with respect to each variable: Frequently, the two inputs do not require the same order of expansion. Without loss of generality, assume that we need correlations up to N_I and N_{II} order (with $N_I < N_{II}$) from z_I and z_{II} respectively. CoPE includes a different transformation for each variable, i.e., $U_{[n,I]}$ for z_I and $U_{[n,II]}$ for z_{II}. Then, we can set $U_{[n,I]} = 0$ for $n > N_I$. On the contrary, the concatenation of inputs (in II-Net) constrains the expansion to have the same order with respect to each variable.

All in all, we can use concatenation to fuse variables and use II-Net, however an inherently multivariate model is more flexible and can better encode the types of inductive bias required for conditional data generation.

F. Differences from other networks cast as polynomial neural networks

A number of networks with impressive results have emerged in (conditional) data generation the last few years. Three such networks that are particularly interesting in our context are Karras et al. (2019); Park et al. (2019); Chen et al. (2019). We analyze below each method and how it relates to polynomial expansions:

- Karras et al. (2019) propose an Adaptive instance normalization (AdaIN) method for unsupervised image generation. An AdaIN layer expresses a second-order interaction\(^4\): $h = (\Lambda^T w) * n(c(h_{in}))$, where n is a normalization, c the convolution operator and w is the transformed noise $w = MLP(z_I)$ (mapping network). The parameters Λ are learnable, while h_{in} is the input to the AdaIN. Stacking AdaIN layers results in a polynomial expansion with a single variable.

- Chen et al. (2019) propose a normalization method, called sBN, to stabilize the GAN training. The method performs a ‘self-modulation’ with respect to the noise variable and optionally the conditional variable in the class-conditional generation setting. Henceforth, we focus on the class-conditional setting that is closer to our work. sBN injects the network layers with a multiplicative interaction of the input variables. Specifically, sBN projects the conditional variable into the space of the variable z_I through an embedding function. Then, the interaction of the two vector-like variables is passed through a fully-connected layer (and a ReLU activation function); the result is injected into the network through the batch normalization parameters. If we cast sBN as a polynomial expansion, it expresses a single polynomial expansion with respect to the input noise and the input conditional variable\(^5\).

- Park et al. (2019) introduce a spatially-adaptive normalization, i.e., SPADE, to improve semantic image synthesis. Their model, referred to as SPADE in the remainder of this work, assumes a semantic layout as a conditional input that facilitates the image generation. We analyze in sec. F.1 how to obtain the formulation of their spatially-adaptive normalization. If we cast SPADE as a polynomial expansion, it expresses a polynomial expansion with respect to the conditional variable.

\(^4\)The formulation is derived from the public implementation of the authors.

\(^5\)In CoPE, we do not learn a single embedding function for the conditional variable. In addition, we do not project the (transformed) conditional variable to the space of the noise-variable. Both of these can be achieved by making simplifying assumptions on the factor matrices of CoPE.
Conditional generation using polynomial expansions

The aforementioned works propose or modify the batch normalization layer to improve the performance or stabilize the training, while in our work we propose the multivariate polynomial as a general function approximation technique for conditional data generation. Nevertheless, given the interpretation of the previous works in the perspective of polynomials, we still can express them as special cases of MVP. Methodologically, there are two significant limitations that none of the aforementioned works tackle:

- The aforementioned architectures focus on no or one conditional variable. Extending the frameworks to multiple conditional variables might not be trivial, while CoPE naturally extends to arbitrarily many conditional variables.

- Even though the aforementioned three architectures use (implicitly) a polynomial expansion, a significant factor is the order of the expansion. In our work, the product of polynomials enables capturing higher-order correlations without increasing the amount of layers substantially (sec. 3.2).

In addition to the aforementioned methodological differences, our work is the only polynomial expansion that conducts experiments on a variety of conditional data generation tasks. Thus, we both demonstrate methodologically and verify experimentally that CoPE can be used for a wide range of conditional data generation tasks.

F.1. In-depth differences from SPADE

In the next few paragraphs, we conduct an in-depth analysis of the differences between SPADE and CoPE.

Park et al. (2019) introduce a spatially-adaptive normalization, i.e., SPADE, to improve semantic image synthesis. Their model, referred to as SPADE in the remainder of this work, assumes a semantic layout as a conditional input that facilitates the image generation.

The n^{th} model block applies a normalization on the representation \mathbf{x}_{n-1} of the previous layer and then it performs an elementwise multiplication with a transformed semantic layout. The transformed semantic layout can be denoted as $A_{[n,1]}^T z_n$ where z_n denotes the conditional input to the generator. The output of this elementwise multiplication is then propagated to the next model block that performs the same operations. Stacking N such blocks results in an N^{th} order polynomial expansion which is expressed as:

$$x_n = \left(A_{[n,1]}^T z_n\right) \ast \left(V_{[n]}^T x_{n-1} + B_{[n]}^T b_{[n]}\right)$$ \hspace{1cm} (18)

where $n \in [2, N]$ and $x_1 = \mathbf{A}_{[1,1]}^T z_1$. The parameters $C \in \mathbb{R}^{o \times k}$, $A_{[n,\phi]} \in \mathbb{R}^{d \times k}$, $V_{[n]} \in \mathbb{R}^{k \times k}$, $B_{[n]} \in \mathbb{R}^{w \times k}$ for $\phi = \{1, \Pi\}$ are learnable. Then, the output $x = Cx_N + \beta$.

SPADE as expressed in (18) resembles one of the proposed models of CoPE (specifically (14)). In particular, it expresses a polynomial with respect to the conditional variable. The parameters $A_{[n,\phi]}$ are set as zero, which means that there are no higher-order correlations with respect to the input variable z_1. Therefore, our work bears the following differences from Park et al. (2019):

- SPADE proposes a normalization scheme that is only applied to semantic image generation. On the contrary, our proposed CoPE can be applied to any conditional data generation task, e.g., class-conditional generation or image-to-image translation.

- SPADE is a special case of CoPE. In particular, by setting i) $A_{[1,1]}$ equal to zero, ii) $A_{[n,\phi]}$ in (14) equal to zero, we obtain SPADE. In addition, CoPE allows different assumptions on the decompositions which lead to an alternative structure, such as (2).

- SPADE proposes a polynomial expansion with respect to a single variable. On the other hand, our model can extend to an arbitrary number of input variables to account for auxiliary labels, e.g., (16).

- Even though SPADE models higher-order correlations of the conditional variable, it still does not leverage the higher-order correlations of the representations (e.g., as in the product of polynomials) and hence without activation functions it might not work as well as the two-variable expansion.
Conditional generation using polynomial expansions

Park et al. (2019) exhibit impressive generation results with large-scale computing (i.e., they report results using NVIDIA DGX with 8 V100 GPUs). Our goal is not to compete in computationally heavy, large-scale experiments, but rather to illustrate the benefits of the generic formulation of CoPE.

SPADE is an important baseline for our work. In particular, we augment SPADE in two ways: a) by extending it to accept both continuous and discrete variables in \(z \) and b) by adding polynomial terms with respect to the input variable \(z \). The latter model is referred to as SPADE-CoPE (details on the next section).

G. Experimental details

Metrics: The two most popular metrics (Lucic et al., 2018; Creswell et al., 2018) for evaluation of the synthesized images are the Inception Score (IS) (Salimans et al., 2016) and the Frechet Inception Distance (FID) (Heusel et al., 2017). The metrics utilize the pretrained Inception network (Szegedy et al., 2015) to extract representations of the synthesized images. FID assumes that the representations extracted follow a Gaussian distribution and matches the statistics (i.e., mean and variance) of the representations between real and synthesized samples. Alternative evaluation metrics have been reported as inaccurate, e.g., in Theis et al. (2016), thus we use the IS and FID. Following the standard practice of the literature, the IS is computed by synthesizing 5,000 samples, while the FID is computed using 10,000 samples.

The IS is used exclusively for images of natural scenes as a metric. The reasoning behind that is that the Inception network has been trained on images of natural scenes. On the contrary, the FID metric relies on the first and second-order moments of the representations, which are considered more robust to different types of images. Hence, we only report IS for the CIFAR10 related experiments, while for the rest the FID is reported.

Dataset details: There are eight datasets used in this work:

- **Large-scale CelebFaces Attributes** (or CelebA for short) (Liu et al., 2015) is a large-scale face attributes dataset with 202,000 celebrity images. We use 160,000 images for training our method.

- **Cars196** (Krause et al., 2013) is a dataset that includes different models of cars in different positions and backgrounds. Cars196 has 16,000 images, while the images have substantially more variation than CelebA faces.

- **CIFAR10** (Krizhevsky et al., 2014) contains 60,000 images of natural scenes. Each image is of resolution \(32 \times 32 \times 3 \) and is classified in one of the 10 classes. CIFAR10 is frequently used as a benchmark for image generation.

- The Street View House Numbers dataset (or SVHN for short) (Netzer et al., 2011) has 100,000 images of digits (73,257 of which for training). SVHN includes color house-number images which are classified in 10 classes; each class corresponds to a digit 0 to 9. SVHN images are diverse (e.g., with respect to background, scale).

- **MNIST** (LeCun et al., 1998) consists of images with handwritten digits. Each images depicts a single digit (annotated from 0 to 9) in a \(28 \times 28 \) resolution. The dataset includes 60,000 images for training.

- **Shoes** (Yu & Grauman, 2014; Xie & Tu, 2015) consists of 50,000 images of shoes, where the edges of each shoe are extracted (Isola et al., 2017).

- **Handbags** (Zhu et al., 2016; Xie & Tu, 2015) consists of more than 130,000 images of handbag items. The edges have been computed for each image and used as conditional input to the generator (Isola et al., 2017).

- **Anime characters** dataset (Jin et al., 2017) consists of anime characters that are generated based on specific attributes, e.g., hair color. The public version used\(^6\) contains annotations on the hair color and the eye color. We consider 7 classes on the hair color and 6 classes on the eye color, with a total of 14,000 training images.

All the images of CelebA, Cars196, Shoes and Handbags are resized to \(64 \times 64 \) resolution.

\(^6\)The version is downloaded following the instructions of https://github.com/bchao1/Anime-Generation.
Conditional generation using polynomial expansions

Architectures: The discriminator structure is left the same for each experiment, we focus only on the generator architecture. All the architectures are based on two different generator schemes, i.e., the SNGAN (Miyato & Koyama, 2018) and the polynomial expansion of Chrysos et al. (2020) that does not include activation functions in the generator.

The variants of the generator of SNGAN are described below:

- **SNGAN** (Miyato & Koyama, 2018): The generator consists of a convolution, followed by three residual blocks. The discriminator is also based on successive residual blocks. The public implementation of SNGAN with conditional batch normalization (CBN) is used as the baseline.

- **SNGAN-CoPE** [proposed]: We convert the resnet-based generator of SNGAN to an CoPE model. To obtain CoPE, the SNGAN is modified in two ways: a) the Conditional Batch Normalization (CBN) is converted into batch normalization (Ioffe & Szegedy, 2015), b) the injections of the two embeddings (from the inputs) are added after each residual block, i.e. the formula of (2). In other words, the generator is converted to a product of two-variable polynomials.

- **SNGAN-CONC**: Based on SNGAN-CoPE, we replace each Hadamard product with a concatenation. This implements the variant mentioned in sec. D.

- **SNGAN-SPADE** (Park et al., 2019): As described in sec. F.1, SPADE is a polynomial with respect to the conditional variable \(z \). The generator of SNGAN-CoPE is modified to perform the Hadamard product with respect to the conditional variable every time.

The variants of the generator of Π-Net are described below:

- **Π-Net** (Chrysos et al., 2020): The generator is based on a product of polynomials. The first polynomials use fully-connected connections, while the next few polynomials use cross-correlations. The discriminator is based on the residual blocks of SNGAN. We stress out that the generator does not include any activation functions apart from a hyperbolic tangent in the output space for normalization. The authors advocate that this exhibits the expressivity of the designed model.

- **Π-Net-SICONC**: The generator structure is based on Π-Net with two modifications: a) the Conditional Batch Normalization is converted into batch normalization (Ioffe & Szegedy, 2015), b) the second-input is concatenated with the first (i.e., the noise) in the input of the generator. Thus, this is a single variable polynomial, i.e., a Π-Net, where the second-input is vectorized and concatenated with the first. This baseline implements the Π-Net described in sec. E.

- **CoPE** [proposed]: The generator of Π-Net is converted to an CoPE model with two modifications: a) the Conditional Batch Normalization is converted into batch normalization (Ioffe & Szegedy, 2015), b) instead of having a Hadamard product with a single variable as in Π-Net, the formula with the two-variable input (e.g., (2)) is followed.

- **GAN-CONC**: Based on CoPE, each Hadamard product is replaced by a concatenation. This implements the variant mentioned in sec. D.

- **GAN-ADD**: Based on CoPE, each Hadamard product is replaced by an addition. This modifies (14) to \(x_n = (A^T_{n,1} z_1 + A^T_{n,II} z_{II}) + (V^T_{n} x_{n-1} + B^T_{n} b_{[n]}) \).

- **SPADE** (Park et al., 2019): As described in sec. F.1, SPADE defines a polynomial with respect to the conditional variable \(z_{n} \). The generator of Π-Net is modified to perform the Hadamard product with respect to the conditional variable every time.

- **SPADE-CoPE** [proposed]: This is a variant we develop to bridge the gap between SPADE and the proposed CoPE. Specifically, we augment the aforementioned SPADE twofold: a) the dense layers in the input space are converted into a polynomial with respect to the variable \(z_{I} \) and b) we also convert the polynomial in the output (i.e., the rightmost polynomial in the Fig. 7 schematics) to a polynomial with respect to the variable \(z_{II} \). This model captures higher-order correlations of the variable \(z_{I} \) that SPADE did not originally include. This model still includes single variable polynomials, however the input in each polynomial varies and is not only the conditional variable.
We should note that StyleGAN is a special case of Π-Net as demonstrated by Chrysos et al. (2020), and converting it into a products of polynomials formulation improves its performance. Hence, we use directly the Π-Net. The two baselines GAN-CONC and GAN-ADD capture only additive correlations, hence they cannot effectively model complex distributions without activation functions. Nevertheless, they are added as a reference point to emphasize the benefits of higher-order polynomial expansions.

An abstract schematic of the generators that are in the form of products of polynomials is depicted in Fig. 7. Notice that the compared methods from the literature use polynomials of a single variable, while we propose a polynomial with an arbitrary number of inputs (e.g., two-input shown in the schematic).

Implementation details of CoPE: Throughout this work, we reserve the symbol z_II for the conditional input (e.g., a class label). In each polynomial, we reduce further the parameters by using the same embedding for the conditional variables. That is expressed as:

$$U_{[n,II]} = U_{[1,II]}$$ \hspace{1cm} (19)

for $n = 2,\ldots,N$. Equivalently, that would be $A_{[n,II]} = A_{[1,II]}$ in (14). Additionally, Nested-CoPE performed better in our preliminary experiments, thus we use (14) to design each polynomial. Given the aforementioned sharing, the N^{th} order expansion is described by:

$$x_n = \left(A_{[n,II]}^T z_I + A_{[1,II]}^T z_{II} \right) * \left(V_{[n]}^T x_{n-1} + B_{[n]}^T b_{[n]} \right)$$ \hspace{1cm} (20)

for $n = 2,\ldots,N$. Lastly, the factor $A_{[1,II]}$ is a convolutional layer when the conditional variable is an image, while it is a fully-connected layer otherwise.

H. Additional experiments

Additional experiments and visualizations are provided in this section. Additional visualizations for class-conditional generation are provided in sec. H.1. An additional experiment with class-conditional generation with SVHN digits is performed in sec. H.2. An experiment that learns the translation of MNIST to SVHN digits is conducted in sec. H.3. To explore further the image-to-image translation, two additional experiments are conducted in sec. H.4. An attribute-guided generation is performed in sec. H.5 to illustrate the benefit of our framework with respect to multiple, discrete conditional inputs. This is further extended in sec. H.6, where an experiment with mixed conditional input is conducted. Finally, an additional diversity-inducing regularization term is used to assess whether it can further boost the diversity the synthesized images in sec. H.7.

H.1. Additional visualizations in class-conditional generation

In Fig. 8 the qualitative results of the compared methods in class-conditional generation on CIFAR10 are shared. Both the generator of SNGAN and ours have activation functions in this experiment.

In Fig. 9 samples from the baseline Π-Net (Chrysos et al., 2020) and our method are depicted for the class-conditional generation on CIFAR10. The images have a substantial difference. Similarly, in Fig. 10 a visual comparison between Π-Net and CoPE is exhibited in Cars196 dataset. To our knowledge, no framework in the past has demonstrated such expressivity; CoPE synthesizes images that approximate the quality of synthesized images from networks with activation functions.

In Fig. 11, an inter-class interpolation of various compared methods in CIFAR10 are visualized. The illustrations of the intermediate images in SNGAN-CONC and SNGAN-ADD are either blurry or not realistic. On the contrary, in SPADE and CoPE the higher-order polynomial expansion results in more realistic intermediate images. Nevertheless, CoPE results in sharper shapes and images even in the intermediate results when compared to SPADE.

H.2. Class-conditional generation on house digits

An experiment on class-conditional generation with SVHN is conducted below. SVHN images include (substantial) blur or other distortions, which insert noise in the distribution to be learned. In addition, some images contain a central digit (i.e., based on which the class is assigned), and partial visibility of other digits. Therefore, the generation of digits of SVHN is challenging for a generator without activation functions between the layers.
Conditional generation using polynomial expansions

![Diagram of different compared generators]

Figure 7. Abstract schematic of the different compared generators. All the generators are products of polynomials. Each colored box represents a different type of polynomial, i.e., the green box symbolizes polynomial(s) with dense layers, the blue box denotes convolutional or cross-correlation layers. The red box includes the up-sampling layers. (a) Π-Net implements a single-variable polynomial for modeling functions \(x = G(z) \). Π-Net enables class-conditional generation by using conditional batch normalization (CBN). (b) An alternative to CBN is to concatenate the conditional variable in the input, as in Π-Net-SICONC. This also enables the non-discrete conditional variables (e.g., low-resolution images) to be concatenated. (c) SPADE implements a single-variable polynomial expansion with respect to the conditional variable \(z_\text{II} \). This is substantially different from the polynomial with multiple-input variables, i.e., CoPE. Two additional differences are that (i) SPADE is motivated as a spatially-adaptive method (i.e., for continuous conditional variables), while CoPE can be used for diverse types of conditional variables, (ii) there is no polynomial in the dense layers in the SPADE. However, as illustrated in Π-Net converting the dense layers into a higher-order polynomial can further boost the performance. (d) The proposed generator structure.

Our framework, e.g., (14), does not include any activation functions. To verify the expressivity of our framework, we maintain the same setting for this experiment. Particularly, the generator does not have activation functions between the layers; there is only a hyperbolic tangent in the output space for normalization. The generator receives a noise sample and a class as input, i.e., it is a class-conditional polynomial generator.

The results in Fig. 12(b) illustrate that despite the noise, CoPE learns the distribution. As mentioned in the main paper, our
Conditional generation using polynomial expansions

(a) Ground-truth samples (b) SNGAN (Miyato et al., 2018) (c) CoPE

Figure 8. Qualitative results on CIFAR10. Each row depicts random samples from a single class.

(a) Π-Net (Chrysos et al., 2020) (b) CoPE

Figure 9. Qualitative results on CIFAR10 when the generator does not include activation functions between the layers. Each row depicts random samples from a single class; the same class is depicted in each pair of images. For instance, the last row corresponds to boats.

The formulation enables both inter-class and intra-class interpolations naturally. In the inter-class interpolation the noise z_I is fixed, while the class z_{II} is interpolated. In Fig. 12(d) several inter-class interpolations are visualized. The visualization exhibits that our framework is able to synthesize realistic images even with inter-class interpolations.

H.3. Translation of MNIST digits to SVHN digits

An experiment on image translation from the domain of binary digits to house numbers is conducted below. The images of MNIST are used as the source domain (i.e., the conditional variable z_{II}), while the images of SVHN are used as the target domain. The correspondence of the source to the target domain is assumed to be many-to-many, i.e., each MNIST digit can synthesize multiple SVHN images. No additional loss is used, the setting of continuous conditional input from sec. 4.2 is
Figure 10. Qualitative results on Cars196 when the generator does not include activation functions between the layers. Each row depicts random samples from a single class; the same class is depicted in each pair of images. The differences between the synthesized images are dramatic.

The images in Fig. 13 illustrate that CoPE can translate MNIST digits into SVHN digits. Additionally, for each source digit, there is a significant variation in the synthesized images.

H.4. Translation of edges to images

An additional experiment on translation is conducted, where the source domain depicts edges and the target domain is the output image. Specifically, the tasks of edges-to-handbags (on Handbags dataset) and edges-to-shoes (on Shoes dataset) have been selected (Isola et al., 2017).

In this experiment, the MVP model of sec. 4.2 is utilized, i.e., a generator without activation functions between the layers. The training is conducted using only the adversarial loss. Visual results for both the case of edges-to-handbags and edges-to-shoes are depicted in Fig. 14. The first row depicts the conditional input z_e, i.e., an edge, while the rows 2-6 depict the synthesized images. Note that in both the case of handbags and shoes there is significant variation in the synthesized images, while they follow the edges provided as input.

H.5. Multiple conditional inputs in attribute-guided generation

Frequently, more than one type of input conditional inputs are available. Our formulation can be extended beyond two input variables (sec. C); we experimentally verify this case. The task selected is attribute-guided generation trained on images of Anime characters. Each image is annotated with respect to the color of the eyes (6 combinations) and the color of the hair (7 combinations).

Since SPADE only accepts a single conditional variable, we should concatenate the two attributes in a single variable. We tried simply concatenating the attributes directly, but this did not work well. Instead, we can use the total number of combinations, which is the product of the individual attribute combinations, i.e., in our case the total number of combinations is 42. Obviously, this causes 'few' images to belong in each unique combination, i.e., there are 340 images on average that belong to each combination. On the contrary, there are 2380 images on average for each eye color.
Conditional generation using polynomial expansions

SPADE and Π-Net are trained by using the two attributes in a single combination, while in our case, we consider the multiple conditional variable setting. In each case, only the generator differs depending on the compared method. In Fig. 15 few indicative images are visualized for each method; each row depicts a single combination of attributes, i.e., hair and eye color. Notice that SPADE results in a single image per combination, while in II-Net-SINCONC there is considerable repetition in each case. The single image in SPADE can be explained by the lack of higher-order correlations with respect to the noise variable z_i.

In addition to the diversity of the images per combination, an image from every combination is visualized in Fig. 16. CoPE synthesizes more realistic images than the compared methods of II-Net-SINCONC and SPADE.

H.6. Multiple conditional inputs in class-conditional super-resolution

We extend the previous experiment with multiple conditional variables to the case of class-conditional super-resolution. The first conditional variable captures the class label, while the second conditional variable captures the low-resolution image.

We use the experimental details of sec. 4.2 in super-resolution $8 \times$. In Fig. 17, we visualize how for each low-resolution image the results differ depending on the randomly sampled class label. The FID in this case is 53.63, which is similar to the previous two cases. Class-conditional super-resolution (or similar tasks with multiple conditional inputs) can be of interest to the community and CoPE results in high-dimensional images with large variance.

H.7. Improve diversity with regularization

As emphasized in sec. I, various methods have been utilized for synthesizing more diverse images in conditional image generation tasks. A reasonable question is whether our method can be used in conjunction with such methods, since it already synthesizes diverse results. Our hypothesis is that when CoPE is used in conjunction with any diversity-inducing technique, it will further improve the diversity of the synthesized images. To test the hypothesis, we conduct an experiment on edges to images that is a popular benchmark in such diverse generation tasks (Zhu et al., 2017b; Yang et al., 2019).

The plug-n-play regularization term of Yang et al. (2019) is selected and added to the GAN loss during the training. The objective of the regularization term L_{reg} is to maximize the following term:

$$L_{\text{reg}} = \min \left(\frac{||G(z_{1,1}, z) - G(z_{1,2}, z)||_1}{||z_{1,1} - z_{1,2}||_1}, \tau \right)$$

(21)

where τ is a predefined constant, $z_{1,1}, z_{1,2}$ are different noise samples. The motivation behind this term lies in encouraging the generator to produce outputs that differ when the input noise samples differ. In our experiments, we follow the implementation of the original paper with $\tau = 10$.

The regularization loss of (21) is added to the GAN loss; the architecture of the generator remains similar to sec. H.4. The translation task is edges-to-handbags (on Handbags dataset) and edges-to-shoes (on Shoes dataset). In Fig. 18 the synthesized images are depicted. The regularization loss causes more diverse images to be synthesized (i.e., when compared to the visualization of Fig. 14 that was trained using only the adversarial loss). For instance, in both the shoes and the handbags, new shades of blue are now synthesized, while yellow handbags can now be synthesized.

The empirical results validate the hypothesis that our model can be used in conjunction with diversity regularization losses in order to improve the results. Nevertheless, the experiment in sec. H.4 indicates that a regularization term is not necessary to synthesize images that do not ignore the noise as feed-forward generators had previously.

I. Diverse generation techniques and its relationship with CoPE

One challenge that often arises in conditional data generation is that one of the variables gets ignored by the generator (Isola et al., 2017). This has been widely acknowledged in the literature, e.g., Zhu et al. (2017b) advocates that it is hard to utilize a simple architecture, like Isola et al. (2017), with noise. A similar conclusion is drawn in InfoGAN (Chen et al., 2016) where the authors explicitly mention that additional losses are required, otherwise the generator is 'free to ignore' the additional variables. To mitigate this, a variety of methods have been developed. We summarize the most prominent methods from the
Conditional generation using polynomial expansions

literature, starting from image-to-image translation methods:

- **BicycleGAN** (Zhu et al., 2017b) proposes a framework that can synthesize diverse images in image-to-image translation. The framework contains 2 encoders, 1 decoder and 2 discriminators. This results in multiple loss terms (e.g., eq.9 of the paper). Interestingly, the authors utilize a separate training scheme for the encoder-decoder and the second encoder as training together ‘hides the information of the latent code without learning meaningful modes’.

- **Almahairi et al. (2018)** augment the deterministic mapping of CycleGAN (Zhu et al., 2017a) with a marginal matching loss. The framework learns diverse mappings utilizing the additional encoders. The framework includes 4 encoders, 2 decoders and 2 discriminators.

- **MUNIT** (Huang et al., 2018) focuses on diverse generation in unpaired image-to-image translation. MUNIT demonstrates impressive translation results, while the inverse translation is also learnt simultaneously. That is, in case of edges-to-shoes, the translation shoes-to-edges is also learnt during the training. The mapping learnt comes at the cost of multiple network modules. Particularly, MUNIT includes 2 encoders, 2 decoders, 2 discriminators for learning. This also results in multiple loss terms (e.g., eq.5 of the paper) along with additional hyper-parameters and network parameters.

- **Drit++** (Lee et al., 2020) extends unpaired image-to-image translation with disentangled representation learning, while they allow multi-domain image-to-image translations. Drit++ uses 4 encoders, 2 decoders, 2 discriminators for learning. Similarly to the previous methods, this results in multiple loss terms (e.g., eq.6-7 of the paper) and additional hyper-parameters.

- **Choi et al. (2020)** introduce a method that supports multiple target domains. The method includes four modules: a generator, a mapping network, a style encoder and a discriminator. All modules (apart from the generator) include domain-specific sub-networks in case of multiple target domains. To ensure diverse generation, Choi et al. (2020) utilize a regularization loss (i.e., eq. 3 of the paper), while their final objective consists of multiple loss terms.

The aforementioned frameworks contain additional network modules for training, which also results in additional hyper-parameters in the loss-function and the network architecture. Furthermore, the frameworks focus exclusively on image-to-image translation and not all conditional generation cases, e.g., they do not tackle class-conditional or attribute-based generation.

Using regularization terms in the loss function has been an alternative way to achieve diverse generation. Mao et al. (2019); Yang et al. (2019) propose simple regularization terms that can be plugged into any architecture to encourage diverse generation. Lee et al. (2019) propose two variants of a regularization term, with the ‘more stable variant’ requiring additional network modules.

Even though our goal is not to propose a framework for diverse generation, the synthesized images of CoPE contain variation when the noise is changed. However, more diverse results can be exhibited through a dedicated diverse generation technique. We emphasize that our method can be used in conjunction with many of the aforementioned techniques to obtain more diverse examples. We demonstrate that this is possible in an experiment in sec. H.7.
Conditional generation using polynomial expansions

Figure 11. Inter-class linear interpolations across different methods. In inter-class interpolation, the class labels of the leftmost and rightmost images are one-hot vectors, while the rest are interpolated in-between; the resulting images are visualized. Many of the intermediate images in SNGAN-CONC and SNGAN-ADD are either blurry or not realistic. On the contrary, in SPADE and CoPE the higher-order polynomial expansion results in more realistic intermediate images. Nevertheless, CoPE results in sharper shapes and images even in the intermediate results when compared to SPADE.
Figure 12. Synthesized images by CoPE in the class-conditional SVHN: (a) Ground-truth samples, (b) Random samples where each row depicts the same class, (c) Intra-class linear interpolation from a source (leftmost image) to the target (rightmost image), (d) inter-class linear interpolation. In inter-class interpolation, the class labels of the leftmost and rightmost images are one-hot vectors, while the rest are interpolated in-between; the resulting images are visualized. In all three cases ((b)-(d)), CoPE synthesizes realistic images.

Figure 13. Qualitative results on MNIST-to-SVHN translation. The first row depicts the conditional input (i.e., a MNIST digit). The rows 2-6 depict outputs of the CoPE when a noise vector is sampled per row. Notice that for each source digit, there is a significant variation in the synthesized images.

Figure 14. Qualitative results on edges-to-image translation. The first row depicts the conditional input (i.e., the edges). The rows 2-6 depict outputs of the CoPE when we vary z_I. Notice that for each edge, there is a significant variation in the synthesized images.
Figure 15. Each row depicts a single combination of attributes, i.e., hair and eye color. Please zoom-in to check the finer details. The method of SPADE synthesizes a single image per combination. II-Net-SINCONC synthesizes few images, but not has many repeated elements, while some combinations result in unrealistic faces, e.g., the 5th or the 7th row. On the contrary, CoPE synthesizes much more diverse images for every combination.

Figure 16. Each row depicts a single hair color, while each column depicts a single eye color. SPADE results in some combinations that violate the geometric structure of the face, e.g., 3rd column in the last row. Similarly, in II-Net-SINCONC some of the synthesized images are unrealistic, e.g., penultimate row. In both SPADE and II-Net-SINCONC, in some cases the eyes do not have the same color. CoPE synthesizes images that resemble faces for every combination.
Figure 18. Qualitative results on edges-to-image translation with regularization loss for diverse generation (sec. H.7). The first row depicts the conditional input (i.e., the edges). The rows 2-6 depict outputs of the CoPE when we vary z_I. Diverse images are synthesized for each edge. The regularization loss results in ‘new’ shades of blue to emerge in the synthesized images in both the shoes and the handbags cases.