A variable ULX and possible IMBH candidate in M51a

Hannah M. Earnshaw1*, Timothy P. Roberts1, Lucy M. Heil2, Mar Mezcua3,4, Dominic J. Walton5, Chris Done1, Fiona A. Harrison5, George B. Lansbury1, Matthew J. Middleton6, Andrew D. Sutton7

1 Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
2 Anton Pannekoek Institute, Science Park 904,1098 XH, Amsterdam, Netherlands
3 University of Montpellier, Pavillon Roger-Gaudry (D-428), 2900 boul. Edouard-Monpetit, Montpellier QC, H3T 1J4, Canada
4 Harvard-Smithsonian Center for Astrophysics (CfA), 60 Garden Street, Cambridge, MA 02138, USA
5 California Institute of Technology, Pasadena, CA 91125, USA
6 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
7 Astrophysics Office, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812, USA

ABSTRACT

ULX-7, in the northern spiral arm of M51, demonstrates unusual behaviour for an ultraluminous X-ray source, with a hard X-ray spectrum but very high short-term variability. This suggests that it is not in a typical ultraluminous state. We analyse the source using archival data from XMM-Newton, Chandra and NuSTAR, and by examining optical and radio data from HST and VLA. Our X-ray spectral analysis shows that the source has a hard power-law spectral shape with a photon index Γ ∼ 1.5, which persists despite the source’s X-ray luminosity varying by over an order of magnitude. The power spectrum of the source features a break at 6.5+0.5−1.1 × 10−3 Hz, from a low-frequency spectral index of α1 = −0.1±0.5 to a high-frequency spectral index of α2 = 0.65±0.05, making it analogous to the low-frequency break found in the power spectra of low/hard state black holes (BHs). We can take a lower frequency limit for a corresponding high-frequency break to calculate a BH mass upper limit of 1.6 × 105 M⊙. Using the X-ray/radio fundamental plane we calculate another upper limit to the BH mass of 3.5 × 104 M⊙ for a BH in the low/hard state. The hard spectrum, high rms variability and mass limits are consistent with ULX-7 being an intermediate-mass BH; however we cannot exclude other interpretations of this source’s interesting behaviour, most notably a neutron star with an extreme accretion rate.

Key words: accretion, accretion discs – black hole physics – galaxies: individual: M51 – X-rays: binaries – X-rays: individual: M51 ULX-7

1 INTRODUCTION

Ultraluminous X-ray sources (ULXs) are point sources that are located away from the centre of their host galaxies and have an X-ray luminosity LX > 10^39 erg s^-1, the Eddington luminosity of a typical stellar-mass black hole (BH) with MBH ∼ 10 M⊙ (Özel et al. 2010; see Feng & Soria 2011 for a review of ULXs). Many of these sources can be explained as stellar-mass BHs accreting at or close to the Eddington limit (e.g. Middleton et al. 2013). However for sources with LX > 3 × 10^39 erg s^-1, this is often not sufficient. Given that their non-nuclear nature rules out the sources being active galactic nuclei (AGNs), and assuming that they are not background sources erroneously associated with the galaxy, they require one of two alternative explanations. Either they are BHs of unusually high mass – that is, intermediate-mass BHs (IMBHs) with 10^2 ≲ MBH ≲ 10^5 M⊙ (Colbert & Mushotzky 1999) – or they exhibit an extreme accretion mechanism beyond the standard thin disc scenario, such as super-Eddington accretion (Poutanen et al. 2007) and/or geometrically beamed emission (King et al. 2001).

The origin of IMBHs requires exotic formation scenarios, such as the collapse of early-universe population III stars (Madau & Rees 2001). This, and the results of studies implying that all but the brightest sources of the ULX population make up the high luminosity tail of the high mass X-ray binary (HMXB) luminosity function in spiral galaxies and the low mass X-ray binary (LMXB) luminosity function in elliptical galaxies (Swartz et al. 2004, 2011; Walton et al. 2011; Mineo, Gilfanov & Sunyaev 2012), points to the majority of ULXs being super-Eddington accreting stellar-mass sources. This is strengthened by results from the spectral analysis of these sources, which exhibit a characteristic two-component spectrum with a soft excess and a high energy downturn at ∼ 3 – 5 keV that is not found in sub-Eddington accretion states (e.g. Stobbart, Roberts...
There are currently a small number of good candidates for IMBHs. These tend to be objects too luminous to be explained by super-Eddington accretion onto stellar-mass BHs, in particular hyper-luminous sources (HLXs; \(\dot{L}_X > 10^{41} \text{erg s}^{-1} \); Gao et al. 2003; Farrell et al. 2009; Sutton et al. 2012), or ULXs with powerful radio jets (e.g. Mezcua et al. 2013, 2015). For example one of the best HLX candidates, ESO 243-49 HLX-1 (henceforth HLX-1), has been observed in different spectral states similar to the hard and thermal dominated states seen in stellar-mass BH binaries (BHBs; Godet et al. 2009; Servillat et al. 2011). This strongly supports the interpretation of HLX-1 as a sub-Eddington accreting source scaled up to higher masses. If IMBHs do exist, then we might expect that some are accreting at lower rates and have a similar luminosity to stellar-mass ULXs, although distinguishing them from stellar-mass ULXs would be difficult and dependent on the spectral and timing properties of the source.

In order to study the properties of ULXs as a population, and to find the most likely candidates for IMBHs, we created a new, clean catalogue of candidate ULXs (Earnshaw, Roberts & Middleton in prep.). This matched the 3XMM-DR4 data release of the XMM-Newton Serendipitous Sky Survey (Rosen et al. 2015) with the Third Reference Catalog of Bright Galaxies (de Vaucouleurs et al. 1991), using a method similar to Walton et al. (2011), with a number of improvements to reduce contamination by camera artefacts and background sources. This catalogue contains 331 candidate ULXs, which we searched for sources of interest on the basis of luminosity or variability. We found a small number of highly variable ULXs, including one particularly interesting source in M51.

The interacting galaxy system M51 (NGC 5194/5, also known as the Whirlpool Galaxy) is a pair of galaxies at a distance of 7.85 Mpc\(^{-1}\), containing the face-on spiral galaxy M51a which has high rates of star formation and a large population of X-ray sources, including nine ULXs (Terashima, Inoue & Wilson 2006). One such ULX located in the northern spiral arm, henceforth referred to as ULX-7, has a hard X-ray spectrum and high levels of variability. Its variability was first investigated by Liu et al. (2002), who found a tentative period of 7620 s. Later studies (e.g Dewangan et al. 2005; Terashima & Wilson 2004; Terashima, Inoue & Wilson 2006) found significant long- and short-term variability, although they did not find a period, suggesting that the variability is instead due to aperiodic noise from stochastic processes. The source is near to a young massive star cluster with age \(T \approx 12 \text{ Myr} \) (Abolmasov et al. 2007) and has previously been found to have a changing spectral shape by Yoshida et al. (2010), ranging from fairly flat (\(\Gamma < 1.5 \)) to soft (\(\Gamma \approx 2 \)) to 3, although any contribution from the host galaxy to the emission was not considered in their study.

While they often demonstrate spectral variability between observations (e.g. Kajava & Poutanen 2009), strong short term variability is not a common feature of ULXs (e.g. Feng & Kaaret 2005; Heil, Vaughan & Roberts 2009). In the broadened disc/hard ultraluminous/soft ultraluminous classification of ULX accretion regimes, high (>10%) fractional variability is predominantly seen in the soft ultraluminous state in which the X-ray spectrum is dominated by soft thermal emission (Sutton, Roberts & Middleton 2013). Furthermore, the variability is limited to the hard component of emission (Middleton et al. 2015a). A proposed mechanism for this is a clumpy wind that would be expected to be driven away from the disc by intense radiation pressure in super-Eddington accretion scenarios, and to intermittently obscure the hard central source in high-inclination systems, causing the spectrum to be dominated by soft thermal emission and variability to be imprinted on the hard emission component (e.g. Middleton et al. 2011, 2015a). However in the case of ULX-7, the spectrum is hard, which suggests that this source does not fit this model and may be in an accretion state more analogous to the low/hard state of stellar-mass BHs – in which case, this object might instead be a candidate IMBH, albeit emitting at a lower luminosity than other candidate IMBHs we are aware of to date.

Here we conduct our own analysis of ULX-7, examining its X-ray spectral and timing properties, as well as optical and radio data, to attempt to better characterise this fascinating source. In Section 2 we detail the reduction of archival data from XMM-Newton, Chandra, NuSTAR, the Hubble Space Telescope (HST) and the Very Large Array (VLA) telescopes. We present the results of our analysis in Section 3, and discuss the possibility of this source being a background AGN, a neutron star or an IMBH in Section 4, before presenting our conclusions in Section 5.

2 REDUCTION OF ARCHIVAL DATA

In this paper we will investigate this object from a multi-wavelength perspective, using archival data from a range of missions. We assume a source position of 13:30:01.0 +47:13:44 (J2000; Kilgard et al. 2005).

2.1 X-ray Observations

There were six observations of M51 by the XMM-Newton observatory over the course of eight years, between 2003 and 2011. The durations of observations with XMM-Newton are limited by visibility due to the position of M51 in the sky and the orbit of the telescope. The longest observation to date is \(\sim 52 \text{ ks} \). Data reduction was performed using v13.5.0 of the XMM-Newton Scientific Analysis System (SAS) and up-to-date calibration files. We used EPPROC and EMPROC to produce calibrated event lists for the pn and MOS detectors. The event lists were filtered for high-energy background flaring in accordance with the standard XMM-Newton SAS threads\(^2\), excluding intervals for which the \(> 10 \text{ keV count rate} \geq 0.35 \text{ ct s}^{-1} \) in the EPIC-MOS data and the 10–12 keV count rate was \(\geq 0.4 \text{ ct s}^{-1} \) in the EPIC-pn data.

XMM-Newton spectra and light curves were extracted using EVSELECT from 20 arcsecond radius regions around the source, filtering for pattern \(\leq 12 \) for the EPIC-MOS camera and pattern \(\leq 4 \) for the EPIC-pn camera. Background counts were extracted from an equally-sized region outside of the galaxy on the same chip, at a similar distance from the readout node. Redistribution matrices and auxiliary response files were generated using RMFGEN and ARFGEN respectively, and spectral data were grouped into bins of at least 25 counts, making sure not to oversample XMM-Newton’s intrinsic energy resolution by a factor more than three. Corrected lightcurves for EPIC-MOS and EPIC-pn were generated using EPICLCORR with a bin size of 50 s and added together, using the same start and

1 The mean distance given by the NASA/IPAC Extragalactic Database (http://ned.ipac.caltech.edu/).

2 See the SAS User Manual at http://xmm.esac.esa.int/sas
end times. All six observations have a quality warning flag due to the source being located within bright extended emission, which we characterise in Section 2.1.

While Chandra does not have the collecting area of XMM-Newton, it is not limited by visibility in the same way, and its orbit allows for far longer observations of M51. There have been eleven Chandra observations of M51 taken over the course of twelve years, between 2000 and 2012, the longest being \(\sim 190 \) ks (see Table 1) during a set of five deep observations in 2012. The Chandra data were reduced using V4.7 of the Chandra Interactive Analysis of Observations (CIAO) software package and reprocessed to produce up-to-date event lists.

Chandra spectra and light curves were extracted using the SPECEXTRACT and DMEXTRACT routines respectively from 3 arcsecond radius regions, with the same binning as the XMM-Newton data. Since ULX-7 is a point source, we set weight=no and correctpsf=yes. Background counts were collected from an annulus around the source between 3 and 20 arcseconds. This same annulus was also used to characterise diffuse emission surrounding the object in order to correct the XMM-Newton spectra – the background region in this case was taken from an equally-sized region outside of the galaxy. Between XMM-Newton and Chandra, we can examine the long-term variability of the source, as well as its short-term properties.

The advent of the NuSTAR mission allows us to probe spectral energies of \(> 10 \) keV for resolved sources. To date there is one observation of M51 using NuSTAR, performed in 2012, in which ULX-7 is detected along with the low-luminosity AGN and one other ULX in the galaxy. We reduced the NuSTAR data using the standard pipeline, NUPipeline, part of the NuSTAR Data Analysis Software (NUSTARDAS, v1.4.1; included in the HEASOFT distribution), with the instrumental calibration files from CALDB V20140414. The unfiltered event files were cleaned with the standard depth correction, significantly reducing the internal high-energy background, and passages through the South Atlantic Anomaly were removed. Source spectra and instrumental responses were produced for each of the two focal plane modules (FPMA/B) using NUPRODUCTS. Source spectra were extracted from a circular region of radius 25 arcseconds in order to avoid contamination from a potential nearby X-ray source, while background was estimated from a much larger region on the same detector as the source, avoiding all the other bright X-ray sources in M51. In order to maximise the good exposure, in addition to the standard (mode 1) data, we also reduce the available mode 6 data; see Walton et al. and Fuerst et al. (in preparation) for a description of NuSTAR mode 6. This provides an additional \(\sim 15\% \) exposure, resulting in a total on-source time of 19 ks per FPM. Finally, owing to the low signal-to-noise, we combined the data from FPMA and FPMB using ADDECASPEC. The resulting NuSTAR spectrum provides a detection up to \(\sim 20–25 \) keV, and is rebinned to a minimum of 20 counts per bin for our spectral analysis.

A list of all X-ray observations is presented in Table 1. We calculate the flux between 0.3–10 keV (3.0–10 keV and 3.0–20 keV for the NuSTAR data) using the best-fitting absorbed power-law model if there are sufficient counts for a spectral fit. In the cases where there are a small number of data points we use WebPIMMS\(^3\) and the count rate to predict the flux, assuming a photon index of \(\Gamma = 1.5 \) (the average photon index of the best-fitting models to the data we were able to fit – see Section 3.1).

\(^{3}\) https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3pimms/w3pimms.pl

\[\begin{align*}
\text{Figure 1. The 1.5 GHz radio image surrounding the source location, which} & \text{ is marked with a 1 arcsecond error circle (red) and does not coincide with} \\
& \text{ a radio detection. The rms is 8.73 } \times 10^{-3} \text{ Jy/beam, therefore the fluctuations shown are all consistent with noise. The beam size is marked in grey.}
\end{align*}\]

In the case of XMM-Newton observation X6, it should be noted that the flux is likely dominated by the surrounding diffuse emission rather than the source itself. The source flux varies between \(3.0 \times 10^{-14} \) erg cm\(^{-2}\) s\(^{-1}\) and \(8.6 \times 10^{-13} \) erg cm\(^{-2}\) s\(^{-1}\) in the 0.3–10 keV energy band over the course of all observations (i.e. its luminosity varies between \(2.2 \times 10^{38} \) erg s\(^{-1}\) and \(5.1 \times 10^{39} \) erg s\(^{-1}\)). This is an unusually high amount of flux variation for a ULX, even if we disregard fluxes calculated using WebPIMMS, in which case we still see variation of over an order of magnitude.

2.2 Radio Observations

In order to search for core radio emission from the ULX, we retrieved archival VLA A-array data at 1.5 GHz (project 11A142, August 2011). The data flagging and calibration was performed following standard procedures with the Common Astronomy Software Applications (CASA) software. The data were calibrated in amplitude using 3C286 as flux calibrator, while delay and phase solutions were derived from the phase calibrator J1327+4326 and interpolated and applied to the target source. The calibrated data were imaged in CASA using the CottonSchwab algorithm and natural weighting. The resulting beam has a size of 1.5 arcseconds \(\times \) 1.4 arcseconds oriented at a position angle of 36.9 deg. No radio emission is detected at the Chandra position of the source with a positional error of 1 arcsec. An upper limit on the 1.5 GHz radio flux density of 87 \(\mu \)Jy beam\(^{-1}\) is derived from the local rms at the Chandra position. The 1.5 GHz radio image is shown in Fig. 1. Other studies of the radio emission in M51 have also not detected a counterpart to ULX-7 (Maddox et al. 2007; Rampadarath et al. 2015).

2.3 Optical Observations

M51 has been well observed by HST over the course of the mission’s lifetime, and was mapped in 2005 with the ACS/WFC camera as part of the Hubble Heritage project. We collected pre-processed data from the Hubble Legacy Archive, made up of exposures combined using the MULTIWEAVE routine. We used images in the F435W (B), F555W (V) and F814W (I) bands to locate possible optical counterparts to ULX-7. The 90% confidence circle
for the Chandra ACIS-S instrument is 0.6 arcseconds, however it is also necessary to align the relative astrometry of the HST and Chandra images. We did this by selecting 2MASS objects within the M51 field and using the IRAF tools CCFIND, CCMAP and CCFSETWCS to find the necessary corrections to the right ascension and declination. We found an offset of 0.1 arcseconds in the right ascension direction and 0.7 arcseconds in declination.

The source is located near to a young star cluster and has a number of possible optical counterparts. We performed photometry on these objects using the DAOPHOT II/ALLSTAR software package (Stetson 1987), a PSF-fitting routine (see Section 3.3), although due to the crowded nature of the field, we were only able to obtain limited constraints on the magnitudes in each band. Where the magnitude of an object was unconstrained, we used the various sources of detector noise to place a lower limit on the magnitude.

3 ANALYSIS & RESULTS

We analysed the archival data described in Section 2 in order to determine the properties of ULX-7. Optical and X-ray images of M51 from the HST, XMM-Newton, Chandra and NuSTAR telescopes, along with the location of ULX-7, are shown in Fig. 2. The source lies within diffuse X-ray emission in the northern spiral arm of its host galaxy.
Figure 2. Images of the M51 system, centred for convenience on 13:29:52.3 +47:12:45.3 (J2000). In all images, the position of the centre of M51a is marked with a cross, and ULX-7 is indicated by a 20 arcsecond radius white circle. Top left, HST true-colour image with the red, green and blue channels corresponding to the F814W, F555W and F435W bands respectively. Top right, XMM-Newton EPIC-pn image in the energy range 0.3–10 keV from observation X4. Bottom left, Chandra ACIS-S image in the energy range 0.3–10 keV from observation C8. Bottom right, NuSTAR image in the energy range 3–24 keV, smoothed with a 14 arcsecond Gaussian and with contours to aid visibility only.
Table 2. The temperature, flux and χ^2 goodness of fit for the two mekal components used to fit the diffuse emission around ULX-7 in the deepest Chandra observations.

ID	kT_1 (keV)	$F_1 \times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$	kT_2 (keV)	$F_2 \times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$	χ^2/dof
C6	$0.25^{+0.08}_{-0.07}$	1.3 ± 0.3	$0.6^{+0.4}_{-0.3}$	1.3 ± 0.3	$54.3/60$
C7	$0.22^{+0.05}_{-0.04}$	1.5 ± 0.4	$0.7^{+0.1}_{-0.1}$	1.0 ± 0.2	$84.2/73$
C8	$0.17^{+0.10}_{-0.09}$	1.0 ± 0.3	$0.4^{+0.2}_{-0.1}$	1.4 ± 0.2	$76.2/71$
C9	$<0.27^{+0.09}_{-0.06}$	2.5 ± 0.4	$<1.0^{+0.7}_{-0.3}$	0.5 ± 0.2	$14.1/21$
C10	$0.24^{+0.05}_{-0.06}$	2.0 ± 0.4	$0.8^{+0.6}_{-0.2}$	0.5 ± 0.3	$34.4/24$
All	$0.26^{+0.03}_{-0.05}$	1.9 ± 0.1	0.8 ± 0.2	0.6 ± 0.1	$279.9/258$

a The short observation ID as defined in Table 1. b The best-fitting parameters when fitting all five observations simultaneously.

3.1 X-Ray Imaging & Spectral Analysis

The XMM-Newton image of the source and its environment (see Fig. 2) shows that it lies within extended diffuse emission. Therefore the XMM-Newton source spectra are likely to be contaminated by a soft thermal component. In order to characterise this component, we first examine archival data from the Chandra observatory, since its high spatial resolving power allows us to separate out the spectra of the source and of the surrounding gas.

To obtain sufficient counts from the Chandra data for analysis, we used only the five observations with exposure time > 50 ks. We extracted diffuse emission spectra from an annulus with an inner radius of 3 arcseconds around the source, and an outer radius of 20 arcseconds to be the same as the XMM-Newton footprint used for source analysis. There are no resolved point sources within the annulus. We took a background spectrum from a 20 arcsecond radius region centred to the north of the galaxy in an area with minimal diffuse emission.

All spectral fitting was performed with v12 of XSPEC (Arnaud 1996), and all Chandra and XMM-Newton observations are fitted in the 0.3–10 keV energy range with errors given at 90% confidence intervals. The data is binned (see Section 2.1) such that fitting can be performed using χ^2 minimisation, and χ^2 statistics used to determine the goodness-of-fit. The abundance tables of Wilms, Allen & McCray (2000) are used throughout.

The diffuse emission spectra were well-fitted using two mekal thermal plasma components: a cooler component at ~ 0.2 keV and a second warmer component at ~ 0.7 keV, consistent with previous studies into the diffuse emission of the galaxy (e.g. Owen & Warwick 2009). We also detected hard emission, requiring an additional hard component in the spectrum since attempting to fit the data without it causes one of the mekal components to take on an unrealistically high temperature. This hard component may be due to unresolved hard sources within the annulus, therefore we fitted it with an absorbed power-law (tbabs*powerlaw), allowing the photon index to vary. We set the hydrogen column density to $N_H = 1 \times 10^{21}$ cm$^{-2}$ since preliminary fits to the ULX-7 source spectrum gave N_H of approximately this value and we would expect absorption by the surrounding interstellar medium (ISM) to be similar in the near vicinity. The power-law has $\Gamma \sim 1$–2 and would contribute $< 0.1\%$ of the total flux when combined with the source spectrum. For this reason, we expect that its effect on the spectrum of ULX-7 is negligible, so we do not include it in our characterisation of the diffuse emission itself.

The fit results for the diffuse emission are given in Table 2. Given that the temperature parameters are all consistent within the errors, and that we do not expect the diffuse emission to vary between observations if it originates in the ISM of M51, we performed a simultaneous fit of all five observations and used the best-fitting parameters (see Table 2) when fitting the XMM-Newton source spectra. An example of the diffuse emission spectrum is shown in Fig. 3.

While six XMM-Newton observations of ULX-7 exist, there is only sufficient data quality for spectral analysis from the first five. We fit the spectra of each of these first five observations with an absorbed power-law model and two additional mekal components to account for contamination from the diffuse emission (mekal+mekal+tbabs*powerlaw). We set the lower bound of N_H for the tbabs component to the Galactic foreground value4 of

4 Foreground N_H was obtained from the HEASARC N_H calculator.
\(N_H = 1.8 \times 10^{20} \, \text{cm}^{-2} \) and fixed the \texttt{mekal} parameters and normalisations to the average values determined from the \texttt{Chandra} results, which we take as a good first-order approximation to the contribution of diffuse emission to the spectrum. Most of the \texttt{XMM-Newton} source spectra are well-fitted by this model and exhibit fairly hard (\(\Gamma \sim 1.5 - 1.6 \)) power-law emission. The exception is observation X3 for which we reject a simple absorbed power-law at \(> 4\sigma \) significance. The fit for X3 undergoes moderate improvement (\(\Delta \chi^2 \sim 17 \) for 2 fewer degrees of freedom) by the addition of a multicolour disc component (\texttt{mekal+mekal+tbabs*(diskBB+powerlaw)}), although it is still rejected at \(\sim 3.5\sigma \) significance. It is unclear from the residuals what a better model might be, so we are unable to find an acceptable fit for the data from this observation. It is possible that ULX-7 exhibits similar soft atomic features to those seen in other ULXs (e.g. Middleton et al. 2015b), however the presence of diffuse emission in the host galaxy complicates more detailed study of the soft end of the spectrum.

We also fit the \texttt{Chandra} source observations of sufficient data quality with an absorbed power-law model to ensure that they are consistent with the \texttt{XMM-Newton} results (we do not include the \texttt{mekal} components as we assume that the contribution from surrounding diffuse emission is negligible in the \texttt{Chandra} source data). As in the case of \texttt{XMM-Newton}, \(N_H \) is given a lower limit of the Galactic foreground value and allowed to vary, except for observation C10 for which we set \(N_H \) to \(1 \times 10^{21} \, \text{cm}^{-2} \) (the average value found from fits to other observations) since there is insufficient data to constrain it further. We find that the spectra are consistent with the same hard (\(\Gamma \sim 1.5 \)) power-law shape as the \texttt{XMM-Newton} observations.

Best fit parameter values for \texttt{XMM-Newton} and \texttt{Chandra} are given in Table 3, and examples of high- and low-flux spectra and their power-law fits are shown in Fig. 4.

ULX-7 is strongly detected in the 8–24 keV band in the \texttt{NuSTAR} observation (Fig. 2), with a good signal found up to...
Table 3. The parameter values and goodness of fit for the XMM-Newton and Chandra source spectra when fitted with an absorbed power-law model (and a power-law with a multicolour accretion disc in the case of X3).

ID	\(N_H\) (\(\times 10^{21}\) cm\(^{-2}\))	\(\Gamma\)	\(T_{in}\) (keV)	\(\chi^2/\text{dof}\)
X1	\(0.6^{+0.6}_{-0.5}\)	1.7 ± 0.2	--	47.9/53
X2	1.1 ± 0.2	1.59 ± 0.06	--	231.2/177
X3	1.1 ± 0.2	1.57^{+0.07}_{-0.06}	260.5/174	
	1.2 ± 0.4	1.2 ± 0.2	0.4 ± 0.1	243.7/172
X4	0.8 ± 0.2	1.45^{+0.06}_{-0.05}	--	172.3/182
X5	\(0.6^{+0.6}_{-0.5}\)	1.5^{+0.2}_{-0.1}	--	30.5/39

Chandra

ID	\(N_H\) (\(\times 10^{21}\) cm\(^{-2}\))	\(\Gamma\)	\(T_{in}\) (keV)	\(\chi^2/\text{dof}\)
C1	1.5^{+0.9}_{-0.2}	1.3 ± 0.2	--	26.2/28
C3	1.4 ± 0.4	1.5 ± 0.1	--	67.2/94
C5	0.4^{+0.4}_{-0.04}	1.3^{+0.05}_{-0.03}	--	13.7/12
C6	1.2 ± 0.2	1.49 ± 0.05	--	244.1/215
C7	1.4 ± 0.2	1.48^{+0.05}_{-0.04}	--	273.1/245
C8	1.6^{+0.3}_{-0.2}	1.54^{+0.06}_{-0.05}	203.6/203	
C9	1.2^{+0.6}_{-0.5}	1.4 ± 0.1	--	65.9/69
C10	1.0^{+0.7}_{-0.2}	1.5 ± 0.2	--	32.4/20
C11	1.0 ± 0.5	1.5 ± 0.2	--	89.3/94

\(a\)The short observation ID as defined in Table 1.

\(b\)\(N_H\) frozen at \(1 \times 10^{21}\) cm\(^{-2}\).

Table 4. Parameter values and goodness of fit for the NuSTAR spectrum fit simultaneously with the closest-flux observations X2 and C6, with both a power-law (top) and a cut-off power-law (bottom) model.

ID	\(N_H\) (\(\times 10^{21}\) cm\(^{-2}\))	\(\Gamma\)	\(E_{\text{cut}}\) (keV)	\(\chi^2/\text{dof}\)
X2	1.4 ± 0.3	1.64 ± 0.06	--	245.0/184
	1.1 ± 0.3	1.5 ± 0.1	18^{+3}_{-2}	239.9/183
C6	1.3 ± 0.2	1.51 ± 0.05	--	264.5/223
	1.1 ± 0.3	1.3 ± 0.1	18^{+3}_{-2}	258.8/222

\(1 \times 10^{21}\) cm\(^{-2}\), the average value found from XMM-Newton and Chandra observations, since the NuSTAR data is too high-energy to constrain it).

The full 3–20 keV NuSTAR data demonstrates a softer spectrum when fitted with a power-law model, with \(\Gamma = 2.1 \pm 0.3\). This suggests that the spectrum turns over at the higher energies we observe with NuSTAR. Therefore we fit the NuSTAR data simultaneously with observations X2 and C6, with an absorbed power-law model (and a background modelled with mekal components for the XMM-Newton observation as before). We also fit a model replacing the powerlaw component with a cutoffpl component to characterise any potential turnover. In both cases we also included a multiplicative constant to the absorbed power-law component of the models, which we allowed to vary freely to account for any difference in normalisation between NuSTAR and the other telescope. The fit parameters with NuSTAR data included are given in Table 4, although it is important to note that neither of these observations are contemporaneous with the NuSTAR observation and so we cannot be certain that the source is in the same spectral state between them.

While both observations are consistent with a cut-off to the energy spectrum at 18 keV, we find that a cut-off-power-law model offers no improvement over a power-law model for either observation X2 or C6. This is not entirely unexpected, as the appearance of a turnover is mainly driven by a single NuSTAR data point. Further observations with NuSTAR simultaneous with observations from XMM-Newton are required to better constrain the high-energy spectral shape of this source.

3.2 Timing Analysis

All observations of ULX-7 with XMM-Newton are flagged as variable in the XMM-Newton Serendipitous Source Catalogue, and all have fractional rms at \(\sim 30\%\)–\(40\%\) according to an initial examination of the light curves using the c\(\text{LCSTATS}\) routine in FTOOLS. Previous studies have attempted to find a period in this variability, with Liu et al. (2002) suggesting a period of 7620 s using EFSEARCH and Dewangan et al. (2005) similarly declaring a period of 5925 s with \(\sim 26\) significance. However, a subsequent study by Terashima, Inoue & Wilson (2006) found no evidence of periodic variation, instead suggesting that the source variability is due to stochastic noise.

The source also undergoes significant long-term variation, with the dynamic range of its flux encompassing well over an order of magnitude, even over the course of a single month when observed using Chandra in 2012. The long-term lightcurve, along with an example of short-term variability from observation X3, is shown in Fig. 7. However, despite this variation in flux there is no

Figure 5. The data spectra of the source from XMM-Newton observation X2 (green – only EPIC-pn data is shown for clarity), Chandra observation C6 (black) and combined FPMA and FPMB data from NuSTAR (blue), along with the NuSTAR background spectrum (blue crosses). We detect a good signal from NuSTAR up to \(\sim 20\) keV.
evidence for a flux-hardness relation, given the consistent shape of the spectrum found in Section 3.1.

We created power spectra for the XMM-Newton and Chandra observations of ULX-7 by taking the periodogram of fixed-length segments in each observation taken from good time intervals and averaging over all segments for each telescope. We used 3200 s segments for the XMM-Newton observations and 12800 s segments for the Chandra observations. The greater length of the Chandra observations allows us to probe down to $\sim 10^{-4}$ Hz, although at higher frequencies the data is dominated by noise, whereas the XMM-Newton data, while not having the low-frequency range, has far less contribution from white noise up to $\sim 8 \times 10^{-3}$ Hz. The two datasets are therefore very complementary and allow us access to two decades of frequency space.

The power spectra are normalised so that the power is given in units of the squared fractional rms per frequency interval. We combined all observations for each telescope, given that the overall shape of the power spectrum remained consistent from observation to observation, except for Chandra observations C4 and C5, which did not have good time intervals long enough for our chosen segment length, and C12, which contributed a lot of noise to the power spectrum due to a very low count rate.

We first rule out a simple power-law shape to the power spectrum by performing a simultaneous fit to the XMM-Newton and Chandra data using the whittle statistic in XSPEC and a powerlaw model, disregarding frequency bins consistent with the white noise level of the power spectrum. The best-fitting power-law has $\alpha = 0.4$ (for $P(\nu) \propto \nu^{-\alpha}$) which has $\chi^2 = 54.8/28$ and we reject at $> 3\sigma$ significance, so we can be confident that the power spectrum shape requires a more complex model to fit it. We next fit the power spectrum with a broken power-law model. This is an excellent fit to the data, with goodness-of-fit $\chi^2 = 23.0/25$, however the fit parameters are not highly constrained. We find that the power spectrum exhibits a break at $\nu_b = 6.5^{+0.5}_{-1.1} \times 10^{-4}$ Hz, with a low-frequency slope of $\alpha_1 = -0.1^{+0.5}_{-1.1}$ and a high-frequency slope of $\alpha_2 = 0.65^{+0.05}_{-0.14}$ (errors were found using a Monte Carlo Markov Chain method with a chain length of 100,000). Since the break is at the overlap of the two power spectra and its frequency can only be constrained with the Chandra data, it is likely that future long observations with XMM-Newton will help to better characterise the break. The power spectra for the two telescopes are shown in Fig. 8.
In order to see how the fractional variability of ULX-7 changes as a function of energy, we created a fractional rms spectrum using five energy bands by integrating over the power spectrum for each energy band, averaging over all XMM-Newton segments. Since the source flux is contaminated by diffuse emission that we do not expect to be variable, we also correct for the flux contribution from the diffuse emission, giving the intrinsic fractional variability of the source. The source exhibits a high amount of variability across all energy bands, especially at low and high energies, although we find the spectrum to be consistent with constant fractional rms at all energies.

The fractional rms spectrum is shown in Fig. 9.

We also checked for an rms-flux relation by ordering intervals by flux and grouping them into bins of at least 10 before creating an unnormalised power spectrum for each bin and integrating over a decade in frequency to find the rms. The data was sufficient to confirm that ULX-7 exhibits a positive linear rms-flux relation as expected for an accreting source (Heil, Vaughan & Uttley 2012), with a significance of > 10σ for a positive slope. The rms-flux relations are shown in Fig. 10. ULX-7 is the third ULX to date for which a positive linear rms-flux relation has been confirmed (Hernández-García et al. 2015).

Finally, we also examine the data from the XMM-Newton EPIC-pn camera, which has a time resolution of 73.4 ms in full-frame mode, for evidence of coherent pulsations such as those produced by pulsars. To do this we use the H-test (de Jager, Raubenheimer & Swanepoel 1989). In brief, the H-test is a test for a periodic signal that is especially useful in the case where there is no a priori information about the shape of the light curve available. The H statistic is based on the Z_m^2 statistic (Buccheri et al. 1983), and defines the optimal number of harmonics, M, such that:

$$H \equiv \max_{1 \leq m \leq 20} (Z_m^2 + 4m + 4) = Z_M^2 + 4M + 4 \geq 0$$

(1)

We apply the H-test to the five longest XMM-Newton observations, examining a range of frequencies from 6.85 Hz (approximately the Nyquist frequency for EPIC-pn data) to 0.1 Hz. We found no evidence of a pulsation period to high significance (that is, the commonly quoted condition of $H > 23$), although we found three marginally significant periods with $H > 17$, equivalent to a
and corrected to discount the contribution from non-variable diffuse emission (grey). The energy bands are: $0.3 - 0.5$ keV, $0.5 - 0.8$ keV, $0.8 - 2.0$ keV, $2.0 - 3.0$ keV and $3.0 - 10.0$ keV. The error bars represent the standard error on the mean across all 19 3200 s segments.

Figure 9. The fractional rms spectrum for ULX-7, both uncorrected (black) and corrected for constant diffuse emission (grey). The energy bands are: $0.3 - 0.5$ keV, $0.5 - 0.8$ keV, $0.8 - 2.0$ keV, $2.0 - 3.0$ keV and $3.0 - 10.0$ keV. The error bars represent the standard error on the mean across all 19 3200 s segments.

The probability of the null hypothesis that there is no periodic signal for this period.

for which we would expect values of M_V of between -7 and -4, and $B - V \sim -0.2$ (Wegner 2006; Roberts, Levan & Goad 2008). This appears to be consistent with previous findings indicating that ULX optical counterparts are often consistent with being OB-type stars (e.g. Gladstone et al. 2013). We might also expect these properties from an X-ray irradiated disc (e.g. Madhusudhan et al. 2008; Tao et al. 2011). The two exceptions are objects 1 and 9, which are significantly brighter and redder than expected for a OB-type star, and too luminous to be red supergiants (for which we would expect $M_V \sim -6$; Heida et al. 2014). Because of this, it is likely that objects 1 and 9 are small, unresolved clusters of multiple stars. This may also be the case for object 2, as it is also unusually bright. While the colours for the rest of the objects are consistent with OB-type stars, we would also expect background quasars at intermediate redshifts to appear blue, and it would be reasonable to detect them at similar apparent magnitudes to these objects. Therefore we also calculated an X-ray/optical ratio for the objects, using the highest $2 – 10$ keV flux recorded from ULX-7 and calculating the optical flux using the formula $F_{\text{opt}} = 8 \times 10^{-6} \times m_{\alpha}/2.5 \text{ erg cm}^{-2} \text{s}^{-1}$ (e.g. Shtykovskiy & Gilfanov 2005).

\begin{table}[h]
\centering
\begin{tabular}{lcc}
\hline
ID & Period a & p_b b \\
\hline
X2 & 0.1833 & 9.62 \\
X2 & 0.3003 & 4.71 \\
X3 & 0.6211 & 2.60 \\
\hline
\end{tabular}
\caption{Periods with $p < 10^{-3}$ found in XMM-Newton EPIC-pn data when using the H-test to search for pulsations.}
\end{table}

\footnotesize
aThe short observation ID as defined in Table 1.

bThe probability of the null hypothesis that there is no periodic signal for this period.

\section{3.3 Optical Counterparts}

We mark the Chandra position of ULX-7 on a true color HST image with a 0.6 arcsecond radius 90% confidence circle in Fig. 11. Using DAOPHOT II, we were able to obtain photometric data for 11 objects within the circle, although visual inspection reveals that there are other possible counterparts that are too faint or unresolved to characterise. A list of objects and their magnitudes as determined by DAOPHOT II is given in Table 6. Given the faint and crowded nature of the field, we do not expect the values we obtain to be more than approximations.

Using the distance modulus for M51, $\mu = 29.45$, we can calculate an absolute magnitude for each object. We plot M_V against the $B - V$ colour in Fig. 12. Most of the objects that we are able to characterise have low absolute magnitudes (that is, high luminosities) and $B - V$ colours consistent with OB supergiants (Roberts, Levan & Goad 2008) – suitable companion stars for a HMXB –
Table 6. The positions, magnitudes and colours of optical counterparts found within a 0.6 arcsecond error circle of 13:30:01.0 +47:13:44, characterised using DAOPHOT II.

ID	R.A. (J200)	Dec. (J200)	m_B^b	m_V^b	m_I^b	M_C	$B - V^c$	$V - R$	F_X/F_{opt}^d
1	13 30 01.05	47 13 43.62	22.1 ± 0.2	21.43 ± 0.09	21.04 ± 0.07	−8.9 ± 0.2	0.8 ± 0.3	0.5 ± 0.2	11.7 ± 0.4
2	13 30 01.03	47 13 43.70	22.2 ± 0.2	22.3 ± 0.2	22.8 ± 0.3	−8.0 ± 0.2	0.0 ± 0.3	−0.4 ± 0.4	27.0 ± 0.9
3	13 30 01.06	47 13 43.80	> 22.8	23.4 ± 0.5	22.6 ± 0.3	−7.0 ± 0.5	> −0.4	0.8 ± 0.6	69 ± 2
4	13 30 00.99	47 13 43.91	> 22.8	> 23.5	23.3 ± 0.4	> −6.9	...	> 0.3	> 76
5	13 30 01.02	47 13 44.03	> 22.8	> 23.5	23.0 ± 0.3	> −6.9	...	> 0.6	> 76
6	13 30 01.06	47 13 44.04	22.2 ± 0.2	23.4 ± 0.5	> 23.9	−6.9 ± 0.5	−1.1 ± 0.5	< −0.4	73 ± 3
7	13 30 01.07	47 13 44.07	> 22.8	> 23.5	22.2 ± 0.2	> −6.9	...	> 1.3	> 76
8	13 30 00.97	47 13 44.12	> 22.8	> 23.5	23.0 ± 0.4	> −6.9	...	> 0.5	> 76
9	13 30 01.07	47 13 44.23	23.2 ± 0.4	21.6 ± 0.1	21.5 ± 0.1	−8.8 ± 0.2	1.7 ± 0.5	0.3 ± 0.3	13.8 ± 0.5
10	13 30 01.05	47 13 44.47	> 22.8	> 23.5	22.7 ± 0.3	> −6.9	...	> 0.8	> 76
11	13 30 01.03	47 13 44.52	22.8 ± 0.3	22.9 ± 0.4	> 23.9	−7.5 ± 0.4	0.0 ± 0.5	< −0.9	45 ± 2

aID for the purposes of reference within this paper only.
bObserved magnitude and estimated standard error from DAOPHOT II results, or lower limits where the source was able to be characterised with DAOPHOT II.
cAbsolute magnitude and colours, corrected for foreground extinction using $E(B - V) = 0.0301 ± 0.0007$, found using the IRSA online calculator for Galactic dust and reddening (http://irsa.ipac.caltech.edu/applications/DUST). Values used are from Schlafl & Finkbeiner (2011).
dX-ray/optical flux ratio based on the highest detected 2–10 keV flux from ULX-7.

Figure 11. HST true-colour image around the position of ULX-7, with the red, green and blue channels corresponding to the F435W, F555W and F814W bands respectively. A 0.6 arcsecond radius circle of 90% confidence is shown around the source position 13:30:01.0 +47:13:44. The numbered objects correspond to those listed in Table 6.

Figure 12. $B - V$ colour against the V-band magnitude for 6 of the 11 potential optical counterparts within 0.6 arcseconds of ULX-7, for which we were able to calculate a magnitude for the B- and/or V-band. Numbers correspond to the ID column of Table 6. Errors are the estimated standard error from DAOPHOT II results.

These ratios are given in Table 6. For any potential counterpart within the error circle that is not characterised by DAOPHOT II, including the faint red objects for which we were unable to determine a B- or V-band magnitude, the optical flux would be lower therefore the ratio will be higher. The same applies to the brightest characterised counterparts, for although they have the lowest ratios, they are likely to be collections of less luminous objects which will all individually have higher ratios.

4 DISCUSSION

The high luminosity of ULX-7 places it firmly into the category of ULXs, albeit at a luminosity that is not particularly remarkable within that class of sources. What makes ULX-7 remarkable is its unusual spectral and timing properties compared with the majority of ULXs. According to the classification of super-Eddington accretion regimes by Sutton, Roberts & Middleton (2013), sources in the hard ultraluminous regime have very low levels of variability if it is present at all, with high variability only featuring in sources in the soft ultraluminous regime. Middleton et al. (2015a) suggests that the observed spectrum and variability of sources in ultraluminous accretion states depend on the inclination and accretion rate of the source, with the main driver of these differences being a radiatively-driven, massive and inhomogeneous wind, that imprints the variability on the hard component of the spectrum if it rises into the line-of-sight.

The energy spectrum of ULX-7 could be argued to be consis-

© RAS, MNRAS 000, 1–16
tent with a hard ultraluminous accretion regime, with the characteristic two-component shape expected in the spectrum smeared out by insufficient data quality, except for a hint of a soft excess from XMM-Newton observation X3 and a putative high energy turnover in the NuSTAR data. However, the source to truly be in this regime, we would not expect the high levels of variability that we observe across all observations. This is furthermore unusual given that variability is high at all observed energies, unlike the observed higher variability above 1 keV in the soft ultraluminous regime. Additionally, the observed luminosity of ULX-7 varies by over an order of magnitude, but we see no evidence of the accretion properties changing. Therefore a soft, clumpy wind is unlikely to be the cause of this variability.

It is possible that our understanding of the hard ultraluminous regime of ULXs is as yet incomplete, and that ULX-7 is an unusually variable specimen of this accretion mode. However, as the data quality is insufficient to prefer a more complex spectral model over a power-law, we have examined other interpretations for the nature of this object that have power-law-like spectra, in particular considering the scenarios of a background AGN, a super-Eddington neutron star and an IMBH.

4.1 Background AGN
An occasional occurrence in studies of ULXs is the discovery that the object is a background AGN (e.g. Dadina et al. 2013; Sutton et al. 2015), rather than located within the galaxy it appears coincident with. The hard power-law spectrum that we observe is not inconsistent with ULX-7 being an AGN (e.g. Reeves & Turner 2000; Mateos et al. 2010), so we need to look to other source properties to confirm its location.

Examining the possible optical counterparts suggests that this source is likely located within the galaxy. The sources that we are able to characterise are consistent either with OB supergiant type stars, or with clusters of cooler stars. While background quasars at intermediate redshifts could be consistent with the $B-V$ colour and magnitude, we find that for the OB-type stars the X-ray/optical ratios are high, with $F_X/F_{opt} > 10$ in all cases. We would expect the majority of AGNs to have optical/X-ray flux ratios between 0.1 and 10 (e.g. Krautter et al. 1999; Hornschemeier et al. 2001), so it is unlikely that any of these potential optical counterparts are background AGNs. We are only able to characterise the very brightest potential optical counterparts of ULX-7, given the limitations of the data, but since the X-ray/optical relationship would be even higher for the fainter objects we cannot characterise, these are even less likely to be a background AGN.

The X-ray/optical relation alone comes with the caveat that we only have one epoch of HST data and assume the same optical flux for the highest X-ray flux observation. If the optical emission also varies over time, this conclusion does not necessarily hold. It is also possible that a very highly obscured QSO would have an extreme X-ray/optical flux ratio. However, the proposal that ULX-7 is not a background AGN is also supported by the X-ray timing properties of the source, since there is a high amount of variability on timescales of ~ 100 s. This is shorter than expected for an AGN, for which noise tends to extend only down to timescales of tens of minutes to hours (e.g. González-Martín & Vaughan 2012). Additionally, the low-frequency break feature we see is also not often seen in AGNs – one exception being Ark 564, which has a break at 7.5×10^{-7} Hz in the 2–8.8 keV band (McHardy et al. 2007), a much lower frequency than the one we see for ULX-7.

4.2 Neutron Star
Given the recent discovery that M82 X-2 is in fact a highly super-Eddington pulsar (Bachetti et al. 2014), another possible interpretation for ULX-7’s unusual behaviour may be that it is a neutron star rather than a BH. To this end, we searched for coherent pulsations within the XMM-Newton data, but found no strong evidence for any between 6.85 Hz and 0.1 Hz with significance comparable to other studies (that is, with $H > 23$). With that said, the absence of pulsations in an H-test do not necessarily mean that there is no stellar surface – using a similar method, Doroshenko, Santangelo & Ducci (2015) were unable to detect pulsations from M82 X-2 in the XMM-Newton data for the source. It could instead mean that that either the pulsation amplitude was too low to be detected, or the spin-down rate and/or orbital modulation of the signal is significant enough to require an accelerated epoch folding search to detect pulsations.

The neutron star equivalent to super-Eddington accreting BHs are Z-sources, the most luminous neutron stars, accreting close to or above their Eddington limit (Hasinger & van der Klis 1989). They can also exhibit high amounts of variability, although at very low frequencies their power spectra exhibit a steep power-law shape with $\alpha \sim 1$–2, inconsistent with the power spectrum of ULX-7, which exhibits a low break and a flatter slope. A comparison with the very luminous extragalactic Z-source LMC X-2 further reveals that its energy spectrum is harder than that of ULX-7 as well (Barnard et al. 2015), so the properties of ULX-7 appear to be inconsistent with what we would expect from Z-sources.

However, the recently-reported spectral properties of M82 X-2 (Brightman et al. 2015) indicate that it is possible for a super-Eddington neutron star ULX to show similar properties to ULX-7. As well as long-term flux variations over two orders of magnitude, examination of the pulsed spectrum in NuSTAR shows that the spectrum of M82 X-2 has a high energy turnover at 14^{+5}_{-3} keV. Further observations using NuSTAR would help to confirm whether ULX-7 exhibits a similar spectral shape at high energies.

4.3 Intermediate Mass Black Hole
Another possible interpretation is that ULX-7 is instead a BH accreting in a hard state analogous to lower luminosity BHs. This would imply an unusually high BH mass due to its high luminosity, despite a low assumed accretion rate, and would manifest a hard power-law shaped spectrum with high variability across all energy bands (e.g. Grinberg et al. 2014) like we see in ULX-7. The irradiated disc of an IMBH would also be consistent with most of the possible optical counterparts we detect (Madhusudhan et al. 2008).

This interpretation is supported by the presence of a break in the power spectrum from a spectral index of $\alpha \sim 0$ to $\alpha \sim -1$, a feature that we would expect from the low-frequency break in the power spectrum of a source in the hard state, which can be modelled by two Lorentzians or, more simply, a doubly-broken power-law (e.g. Done & Gierliński 2005), whose high-frequency break scales with the BH mass. While we see no evidence of a high-frequency break, we can take the lower limit of such a break to be the white noise level of the XMM-Newton power spectrum, at $v_b = 9 \times 10^{-3}$ Hz. We can use the relationship between high-frequency break and BH mass found to apply to BHs of all size scales by McHardy et al. (2006), with the offset for BHs in the hard state from Körding et al. (2007), to calculate an upper limit on the BH mass using the following equation: $\log v_b = 0.98 \log M - 2.1 \log M_{\text{BH}} - 15.38$. We calculate M from $L_{\text{bol}}/\eta c^2$, assuming an
accretion efficiency of $\eta = 0.1$ for the highest-flux observation, and obtain L_{bol} by applying a bolometric correction of 5 to the 2–10 keV luminosity of that observation (Kording, Fender & Migliari 2006). In this way, we find an upper limit of $M_{\text{BH}} < 1.6 \times 10^3 \, M_\odot$, which means that ULX-7 is consistent with being an IMBH.

We would expect an IMBH accreting in the hard state to also exhibit radio emission from a jet. Since there is no radio detection of ULX-7, we can use the calculated flux density upper limit of 87 μJy beam$^{-1}$ to establish an upper limit on the BH mass independent of that calculated from the timing analysis, using the fundamental plane in BH mass, radio, and X-ray luminosity which has been found to apply to BHBs and AGNs as well as intermediate sources (e.g. Mezcua et al. 2015). We use the fundamental plane equation described in Gültekin et al. (2009), which has been calibrated for low mass AGNs in the range 10^7–$10^8 \, M_\odot$ (Gültekin et al. 2014), and assume a flat radio spectral index of $\alpha = 0.15$ to find L_{AGN}. We calculate a mass upper limit of $M_{\text{BH}} < 3.5 \times 10^3 \, M_\odot$, which also allows for an IMBH interpretation.

It is also possible to place a lower limit on the BH mass of an IMBH by taking the maximum observed flux of $8.6 \times 10^{-13} \, \text{erg cm}^{-2} \, \text{s}^{-1}$ and assuming a maximum accretion rate for the low/hard state, given that ULX-7 is a persistent source. The maximum luminosity of a low/hard state tends to be $\sim2\%$ of Eddington5, with the highest Eddington ratios observed being $\sim5\%$ (Maccarone 2003). Therefore we use an Eddington ratio of 5% to place a lower limit on the black hole mass of $M_{\text{BH}} > 1.0 \times 10^3 \, M_\odot$, which is consistent with our previously calculated upper limits and places the source firmly within the IMBH regime.

We can compare our results for ULX-7 with HLX-1, currently the best candidate for an IMBH due to its extreme luminosity and evidence of state transitions. When first discovered, it had a spectrum consistent with an absorbed power-law (Farrell et al. 2009), albeit a softer one than we see in ULX-7. Further studies have revealed it to have a very high dynamic range, as we see for ULX-7, although its spectrum changes shape and it appears to demonstrate state transitions (Godet et al. 2009) whereas ULX-7 appears to remain in a single state. In its third XMM-Newton observation, HLX-1 appeared to enter a hard state, with a lower luminosity and a spectral index of $\Gamma = 1.6 \pm 0.4$ when compensating for the host galaxy’s contribution to the soft emission and fitted alongside an accretion disc (Servillat et al. 2011). No significant intrinsic variability was detected, although since the power was not well constrained, a high fractional variability was not ruled out. Additionally, there have also been radio detections of HLX-1 while in this state (Cseh et al. 2015), making it analogous to the hard state seen in stellar-mass BHBs.

From this, we can conclude that it is reasonable to suggest that ULX-7 could also be an IMBH in a hard state, its large mass being the cause of its high luminosities, although unlike HLX-1, it does not appear to undergo state transitions as it changes luminosity.

The association of ULX-7 with a young stellar population implies that it is a short-lived source if it was formed there (Roberts 2007), and in this respect it bears similarity to the wider ULX population which is found predominantly in star-forming regions. This would be a point in favour of a more standard stellar remnant ULX interpretation. However, there are possible formation scenarios for an IMBH in a young stellar environment. For example, an IMBH could have formed through runaway mergers within a dense stellar cluster and subsequently been ejected, or the cluster dissipated into the disc of the galaxy, leaving the IMBH accreting within a dense molecular cloud (e.g. Miller & Hamilton 2002) or retaining a young stellar population around itself (e.g. Farrell et al. 2012).

This is an unlikely formation scenario for the ULX population as a whole (King 2004), but still a possibility for an individual object, as a very rare occurrence.

Another possibility is a minor merger of a dwarf galaxy with the main galaxy, a mechanism that had been suggested for HLX-1 (Farrell et al. 2012; Mapelli, Zampieri & Mayer 2012) and NGC 2276-3c (Mezcua et al. 2015). A recent minor merger could be identified by evidence of disruption in the spiral arm around the source and increased levels of star formation, however these are seen in the northern spiral of M51 anyway due to M51a’s interaction with M51b. Therefore any evidence for a minor merger that could have formed ULX-7 would likely be eclipsed by the disruption of the current interaction.

5 CONCLUSIONS

We have undertaken a case study of M51 ULX-7, a source with moderate luminosity and very high variability for a ULX, and a consistently hard spectrum. This is in contrast to expected ULX variability behaviour, in which we might expect to see high variability in sources with soft spectra. We find that the source is generally well-fitted by a power-law with a spectral photon index that remains steady at $\Gamma \sim 1.5$ while the source luminosity varies by over an order of magnitude over the course of 12 years. ULX-7 also demonstrates very high fractional variability between 0.3 and 10.0 keV, with a broken power-law shape to its power spectrum analogous to the low-frequency break in the power spectrum of an X-ray binary accreting in the hard state. We find solid evidence for a positive linear rms-flux relation, making ULX-7 the third ULX for which this feature is confirmed. We find no evidence of coherent pulsations, however.

Taken together, these properties are unusual for a ULX, and are suggestive of an alternative explanation to the broadened disc or ultraluminous regimes that describe the majority of ULXs for which we have reasonable data (Gladstone, Roberts & Done 2009; Sutton, Roberts & Middleton 2013). By examining the possible optical counterparts in HST data, we consider it unlikely that this source is a background AGN. The lack of pulsations and dissimilarity to Z-source properties imply that it is not a neutron star either, although it may possibly bear similarities to the properties of the neutron star ULX M82 X-2.

Our results are consistent with ULX-7 being an IMBH accreting in the hard state. Using the absence of a high-frequency break and a radio detection, we can calculate upper limits on the BH mass of $M_{\text{BH}} < 1.55 \times 10^3 \, M_\odot$ and $M_{\text{BH}} > 3.5 \times 10^3 \, M_\odot$ respectively, and by taking the maximum accretion rate to be 5% of the Eddington limit, we can calculate a lower mass limit of $M_{\text{BH}} > 1.0 \times 10^3 \, M_\odot$. All of these limits show the source to be consistent with an IMBH interpretation if we assume it is accreting in the hard state. There remains weak evidence of a possible high energy turnover in the spectrum when considering the NuSTAR data on this source, which would imply that this source may instead be exhibiting some permutation of the ultraluminous state after all, but simultaneous deep observations with $XMM-Newton$
ACKNOWLEDGEMENTS

We gratefully acknowledge support from the Science and Technology Facilities Council (HE through grant ST/K501979/1 and TR as part of consolidated grant ST/L00075X/1) and from NASA (MM through Chandra Grant GO5-16099X). AS is supported by an appointment to the NASA Postdoctoral Program at Marshall Space Flight Center, administered by Oak Ridge Associated Universities, Inc.

REFERENCES

Abolmasov P., Fabrika S., Sholukhova O., Afanasev V., 2007, Astrophysical Bulletin, 62, 36
Arnaud K. A., 1996, in Astronomical Society of the Pacific Conference Series, Vol. 101, Astronomical Data Analysis Software and Systems V, Jacoby G. H., Barnes J., eds., p. 17
Bachetti M., Harrison F. A., Walton D. J., Grefenstette B. W., Chakrabarty D., Fürst F. e a., 2015, Nature, 514, 202
Bachetti M. et al., 2013, ApJ, 778, 163
Barnard R., Primini F., Garcia M. R., Kolb U. C., Murray S. S., 2015, ApJ, 802, 85
Brightman M. et al., 2015, ArXiv e-prints
Buccheri R. et al., 1983, A&A, 128, 245
Colbert E. J. M., Mushotzky R. F., 1999, ApJ, 519, 89
Csh D. et al., 2015, MNRAS, 446, 3268
Dadina M., Masetti N., Cappi M., Malaguti G., Miniutti G., Ponti G., Gandi P., De Marco B., 2013, A&A, 559, A86
de Jager V. C., Raubenheimer B. C., Swanepoel J. W. H., 1989, A&A, 221, 180
de Vaucouleurs G., de Vaucouleurs A., Corwin, Jr. H. G., Buta R. J., Paturel G., Fouqué, P., 1991, Third Reference Catalogue of Bright Galaxies. Volume I: Explanations and references. Volume II: Data for galaxies between 0h and 12h. Volume III: Data for galaxies between 12h and 24h.
Dewangan G. C., Griffiths R. E., Choudhury M., Miyaji T., Schurch N. J., 2005, ApJ, 635, 198
Done C., Gierliński M., 2005, MNRAS, 364, 208
Doroshenko V., Santangelo A.,ucci L., 2015, A&A, 579, A22

Dunn R. J. H., Fender R. P., Körding E. G., Belloni T., Cabanac C., 2010, MNRAS, 403, 61
Earnshaw H. M., Roberts T. P., Middleton M. J., 2016, A New Catalogue of Ultraluminous X-ray Sources, in preparation
Farrell S. A. et al., 2012, ApJL, 747, L13
Farrell S. A., Webb N. A., Barret D., Godet O., Rodrigues J. M., 2009, Nature, 460, 73
Feng H., Kaaret P., 2005, ApJ, 633, 1052
Feng H., Soria R., 2011, NewAR, 55, 166
Gao Y., Wang Q. D., Appleton P. N., Lucas A. D., 2003, ApJL, 596, L171
Gladstone J. C., Copperwheat C., Heinke C. O., Roberts T. P., Cartwright T. F., Levan A. J., Goad M. R., 2013, APJS, 206, 14
Gladstone J. C., Roberts T. P., Done C., 2009, MNRAS, 397, 1836
Godet O., Barret D., Webb N. A., Farrell S. A., Gehrels N., 2009, ApJL, 705, L109
González-Martín O., Vaughan S., 2012, A&A, 544, A80
Grinberg V. et al., 2014, A&A, 565, A1
Gültekin K., Cackett E. M., King A. L., Miller J. M., Pinkney J., 2014, ApJL, 788, L22
Gültekin K., Cackett E. M., Miller J. M., Di Matteo T., Markoff S., Richstone D. O., 2009, ApJ, 706, 404
Hasinger G., van der Klis M., 1989, A&A, 225, 79
Heida M. et al., 2014, MNRAS, 442, 1054
Heil L. M., Vaughan S., Roberts T. P., 2009, MNRAS, 397, 1061
Heil L. M., Vaughan S., Utley P., 2012, MNRAS, 422, 2620
Hernández-García L., Vaughan S., Roberts T. P., Middleton M., 2015, MNRAS, 453, 2877
Hornschemeier A. E. et al., 2001, ApJ, 554, 742
Kajava J. E., Poutanen J., 2009, MNRAS, 398, 1450
Kalberla P. M. W., Burton W. B., Hartmann D., Aarnal E. M., Bajaja E., Morras R., Pöppel W. G. L., 2005, A&A, 440, 775
Kilgard R. E. et al., 2005, APJS, 159, 214
King A. R., 2004, MNRAS, 347, L18
King A. R., Davies M. B., Ward M. J., Fabbiano G., Elvis M., 2001, ApJL, 552, L109
Körding E. G., Fender R. P., Migliari S., 2006, MNRAS, 369, 1451
Körding E. G., Migliari S., Fender R., Belloni T., Knigge C., McHardy I., 2007, MNRAS, 380, 301
Krautter J. et al., 1999, A&A, 350, 743
Liu J.-F., Bregman J. N., Seitzer P., 2002, ApJL, 581, L93
Maccarone T. J., 2003, A&A, 409, 697
Madau P., Rees M. J., 2001, ApJL, 551, L27
Maddox L. A., Cowan J. J., Kilgard R. E., Schinnerer E., Stockdale C. J., 2007, AJ, 133, 2559
Madhusudhan N., Rappaport S., Podsiadlowski P., Nelson L., 2008, ApJ, 688, 1235
Mapelli M., Zampieri L., 2012, MNRAS, 423, 1309
Mateos S. et al., 2010, A&A, 510, A35
McHardy I. M., Arévalo P., Uttley P., Papadakis I. E., Summons R. J., Paturel G., Fouqué P., 1991, Third Reference Catalogue of Ultraluminous X-ray Sources, in preparation
McHardy I. M., Koerding E., Knigge C., Uttley P., Fender R. P., 2006, Nature, 444, 730
Mezcua M., Roberts T. P., Lobanov A. P., Sutton A. D., 2015, MNRAS, 448, 1893
Mezcua M., Roberts T. P., Sutton A. D., Lobanov A. P., 2013, MNRAS, 436, 3128
Middleton M. J., Heil L., Pintore F., Walton D. J., Roberts T. P., 2015a, MNRAS, 447, 3243
Middleton M. J., Miller-Jones J. C. A., Markoff S., et al., 2013, Nature, 493, 187
This paper has been typeset from a \TeX/\LaTeX file prepared by the author.