A note on the parameters of the Kerr–NUT–(anti-) de Sitter spacetime

J B Griffiths1 and J Podolský2

1 Department of Mathematical Sciences, Loughborough University, Loughborough, Leics. LE11 3TU, UK
2 Institute of Theoretical Physics, Charles University in Prague, V Holešovičkách 2, 18000 Prague 8, Czech Republic

E-mail: J.B.Griffiths@lboro.ac.uk and podolsky@mbox.troja.mff.cuni.cz

Received 26 January 2007
Published 6 March 2007
Online at stacks.iop.org/CQG/24/1687

Abstract

Different forms of the metric for the Kerr–NUT–(anti-)de Sitter spacetime are being widely used in its extension to higher dimensions. The purpose of this note is to relate the parameters that are being used to the physical parameters (mass, rotation, NUT and cosmological constant) in the basic four-dimensional situation.

PACS numbers: 04.20.Jb, 04.70.Bw

The important family of Kerr–NUT–(anti-)de Sitter spacetimes has recently been generalized to arbitrary higher numbers of dimensions [1–3]. These spacetimes are being widely investigated, and some of their particular properties have already been found (see [4–7] and references therein). However, in many of these investigations, the physical significance of the parameters employed has not been clarified—even in the standard four-dimensional background. The purpose of this note is simply to identify the parameters of this family of solutions in the four-dimensional case.

The form of the metric for the Kerr–NUT–(anti-)de Sitter family of spacetimes that has been employed reduces in four dimensions to

\[ds^2 = \frac{Q}{r^2 + p^2} (d\tau - p^2 d\sigma)^2 + \frac{P}{r^2 + p^2} (d\tau + r^2 d\sigma)^2 + \frac{r^2 + p^2}{P} dp^2 + \frac{r^2 + p^2}{Q} dr^2, \]

where \(P(p) \) and \(Q(r) \) are quartic functions whose coefficients are related in a specific way. For physically significant (black hole-type) solutions, \(P \) and \(Q \) must have at least two roots. To maintain a Lorentzian signature, it is necessary that \(P > 0 \), and so \(p \) is constrained to the appropriate range between the roots (poles). The roots of \(Q \) correspond to the horizons.
First form

In [4, 5], the metric functions have been expressed in the form

\[P = k + 2np - \epsilon p^2 - \frac{1}{3} \Lambda p^4, \quad Q = k - 2mr + \epsilon r^2 - \frac{1}{3} \Lambda r^4, \quad (2) \]

where \(\Lambda \) is the cosmological constant, and the four parameters \(m, n, k \) and \(\epsilon \) are related to the mass of the source, the rotation parameter \(a \) and the NUT parameter \(l \), with one freedom of scaling.

In fact these solutions are members of the Plebański–Demiański [8] family, which have recently been described in detail in [9]. Taking vacuum, non-accelerating solutions, the expressions (2) are obtained in the notation of [9] by scaling \(\omega = 1 \). In this case, \(m \) represents the mass of the source, and the other parameters are related to the physical parameters \((a, l, \Lambda) \) as

\[\epsilon = a_0 - (a^2 + 6l^2) \frac{1}{2} \Lambda, \quad n = l \left[a_0 + (a^2 - 4l^2) \frac{1}{2} \Lambda \right], \quad k = (a^2 - l^2)(a_0 - l^2 \Lambda), \quad (3) \]

where \(a_0 > 0 \) to ensure that \(P > 0 \) between its appropriate roots. It is then convenient to use the remaining scaling freedom to put \(a_0 = 1 \). This is achieved by putting

\[p = a_0^{1/2} \tilde{p}, \quad r = a_0^{1/2} \tilde{r}, \quad \tau = a_0^{-1/2} \tilde{\tau}, \quad \sigma = a_0^{-3/2} \tilde{\sigma}, \quad (4) \]

and subsequently ignoring the tilde.

With \(a_0 = 1 \), the equations (3) identify the physical meaning of the parameters of (2). Of course, these relations between the parameters of (2) and the ‘genuine’ physical parameters are not unique. But they are correct to the extent that the resulting metric reduces to the Kerr–(anti-)de Sitter metric when \(l = 0 \) and the NUT–(anti-)de Sitter metric when \(a = 0 \). With these identifications, the metric functions (2) take the forms

\[P = [a^2 - (p - l)^2] \left[1 + (p - l)(p + 3l) \frac{1}{2} \Lambda \right], \quad Q = a^2 - l^2 - 2mr + r^2 - [3l^2(a^2 - l^2) + (a^2 + 6l^2)r^2 + r^4] \frac{1}{2} \Lambda. \]

This clearly identifies the required roots of \(P \), and it is appropriate to make the substitutions

\[p = l + a \cos \theta, \quad \tau = t - \frac{(a + l)^2}{a} \phi, \quad \sigma = -\frac{\phi}{a}, \]

where \(\theta \in (0, \pi) \), so that the metric (1) becomes

\[
\begin{align*}
\text{ds}^2 &= -\frac{Q}{\rho^2} \left[dt - \left(a \sin^2 \theta + 4l \sin^2 \theta \frac{\theta}{2} \right) d\phi \right]^2 + \frac{\rho^2}{Q} \text{d}r^2 \\
&\quad + \frac{\tilde{P}}{\rho^2} \sin^2 \theta \left[a \text{dt} - (r^2 + (a + l)^2) d\phi \right]^2 + \frac{Q}{\tilde{P}} \text{d}\theta^2,
\end{align*}
\]

where

\[\rho^2 = r^2 + (l + a \cos \theta)^2, \quad \tilde{P} = 1 + \frac{1}{2} \Lambda al \cos \theta + \frac{1}{2} \Lambda a^2 \cos^2 \theta. \]

This nicely reduces to the familiar forms in all the particular subcases.

Second form

In other recent papers, such as \([1, 2, 6, 7]\) the metric functions (in 4D) have been expressed in the alternative form

\[
P = (A^2 - p^2)(1 + \frac{1}{3} \Lambda p^2) + 2Lp, \quad Q = (A^2 + r^2)(1 - \frac{1}{3} \Lambda r^2) - 2Mr, \quad \tag{6}
\]

where \(M, A\) and \(L\) are different constant parameters. When \(L = 0\) and \(p = A \cos \theta\), this reduces to the Kerr–(anti-)de Sitter solution in which \(M\) is the mass \(m\) of the source and \(A\) is the rotation parameter \(a\). However, these parameters do not generally have this identification.

By comparing coefficients in the quartics (2) and (6), it can be seen that

\[
M = m, \quad A^2 = k, \quad L = n,
\]

with the additional constraint that \(\epsilon = 1 - \frac{1}{3} \Lambda A^2\). In this case, the metric functions (6) have the same number of parameters as physical parameters, so no scaling freedom remains. By inserting the expressions (3) into this additional constraint, we obtain that

\[
a_0 = \frac{1 + (a^2 + 3l^2) \frac{1}{3} \Lambda}{1 + (a^2 - l^2) \frac{1}{3} \Lambda} \left[1 + \frac{1 + (a^2 + 3l^2) \frac{1}{3} \Lambda}{1 + (a^2 - l^2) \frac{1}{3} \Lambda} (a^2 - l^2) \frac{1}{3} \Lambda \right].
\]

This expression is required to be positive, which it generally is. After inserting this into (3), the final expressions for the parameters of (6) are given by

\[
A^2 = (a^2 - l^2) \left(\frac{1 + (a^2 + 3l^2) \frac{1}{3} \Lambda}{1 + (a^2 - l^2) \frac{1}{3} \Lambda} \right), \quad L = l \left[1 + \frac{1 + (a^2 + 3l^2) \frac{1}{3} \Lambda}{1 + (a^2 - l^2) \frac{1}{3} \Lambda} (a^2 - l^2) \frac{1}{3} \Lambda \right].
\]

This gives the correct Kerr–(anti-)Sitter solution when \(l = 0\), but the NUT–(anti-)Sitter solution requires a negative value for \(A^2\). However, as this is just a parameter of (6), there is no reason why it should not take negative values when \(a^2 < l^2\). With this identification of parameters, the metric can be transformed to the form (5) after first applying the rescaling (4).

It has been shown in [10] that the Kerr–NUT family of solutions has to be distinguished into two types. Firstly, there are Kerr-like solutions with a small NUT parameter for \(a^2 > l^2\). These have a curvature singularity at \(r = 0\), \(\cos \theta = -l/a\) so that \(r \in (0, \infty)\). And secondly, there are NUT-like solutions with a small rotation for \(a^2 < l^2\). These have no curvature singularity so that \(r \in (-\infty, \infty)\). The solutions expressed using the notation of (6) represent the first type when \(A^2 > 0\) and the second type when \(A^2 < 0\).

Acknowledgments

This work was partly supported by grants from the EPSRC, by GACR 202/06/0041 and the Czech Centre for Theoretical Astrophysics LC06014.

References

[1] Chen W, Lu H and Pope C N 2006 Class. Quantum Grav. 23 5323–40
[2] Chen W, Lu H and Pope C N 2007 Nucl. Phys. B 762 38–54
[3] Hamamoto N, Huori T, Oota T and Yasari Y 2007 J. Phys. A 40 F177–84
[4] Chong Z-W, Gibbons G W, Lu H and Pope C N 2005 Phys. Lett. B 609 124–32
[5] Kubizňák D and Frolov V P 2007 Class. Quantum Grav. 24 F1–6
[6] Page D N, Kubizňák D, Vasudevan M and Krtouš P 2007 Phys. Rev. Lett. 98 001102
[7] Frolov V P, Krtouš P and Kubizňák D 2007 J. High Energy Phys. 0702 005
[8] Plebański J F and Demiański M 1976 Ann. Phys., NY 98 98–127
[9] Griffiths J B and Podolský J 2006 Int. J. Mod. Phys. D 15 335–69
[10] Griffiths J B and Podolský J 2005 Class. Quantum Grav. 22 3467–79