Reconstruction of symmetric convex bodies from Ehrhart-like data

Tiago Royer

Abstract

In a previous paper [2], we showed how to use the Ehrhart function \(L_P(s) \), defined by
\[
L_P(s) = \#(sP \cap \mathbb{Z}^d)
\]
for reconstruct a polytope \(P \). More specifically, we showed that, for rational polytopes \(P \) and \(Q \), if
\[
L_{P+w}(s) = L_{Q+w}(s)
\]
for all integer vectors \(w \), then \(P = Q \). In this paper we show the same result, but assuming that \(P \) and \(Q \) are symmetric convex bodies instead of rational polytopes.

1 Introduction

Given a polytope \(P \subseteq \mathbb{R}^d \), the classical Ehrhart lattice point enumerator \(L_P(t) \) is defined as
\[
L_P(t) = \#(tP \cap \mathbb{Z}^d), \quad \text{integer } t \geq 0.
\]
Here, \(\#(A) \) is the number of elements in \(A \) and \(tP = \{tx \mid x \in P\} \) is the dilation of \(P \) by \(t \). The above definition may be extended to allow for \(P \) to be an arbitrary convex body, and for \(t \) to be an arbitrary real number.

To minimize confusion, we will denote real dilation parameters with the letter \(s \), so that \(L_P(t) \) denotes the classical Ehrhart function and \(L_P(s) \) denotes the extension considered in this paper. So, for example, \(L_P(t) \) is just the restriction of \(L_P(s) \) to integer values.

It is clear from the definition that the classical Ehrhart function is invariant under integer translations; that is, for every polytope \(P \) and every integer vector \(w \), we have
\[
L_{P+w}(t) = L_P(t)
\]
for all \(t \). This is not true for the real Ehrhart function \(L_P(s) \). In fact, an earlier paper [2] shows that the list of functions \(L_{P+w}(s) \), for integer \(w \), is a complete set of invariants for full-dimensional rational polytopes. More precisely:

Theorem 1. Let \(P \) and \(Q \) be full-dimensional rational polytopes, and suppose that \(L_{P+w}(s) = L_{Q+w}(s) \) for all \(s > 0 \) and all integer \(w \). Then \(P = Q \).

It is also conjectured that the rationality hypothesis may be dropped. In this paper, we will show a special case of this conjecture, where we assume that the polytopes are symmetric (that is, \(x \in P \) if and only if \(-x \in P\)). In fact, we never use the fact that \(P \) and \(Q \) are polytopes; we just need convexity. So we have the following.
Theorem 2. Let \(K \) and \(H \) be symmetric convex bodies, and assume that
\[L_{K+w}(s) = L_{H+w}(s) \]
for all real \(s > 0 \) and all integer \(w \). Then \(K = H \).

2 Notation and basic results

The punchline is Alexandrov’s projection theorem. Let \(K \subseteq \mathbb{R}^d \) be a convex body (that is, a convex, compact set with nonempty interior). For any unit vector \(v \), we will denote by \(V_K(v) \) the \((d-1)\)-dimensional area of the orthogonal projection of \(K \) in \(\{v\}^\perp \).

For example, let \(K = [0,1] \times [0,1] \subseteq \mathbb{R}^2 \), \(v = (0,1) \) and \(v' = (\sqrt{2}/2, \sqrt{2}/2) \). Then \(V_K(v) = 1 \) and \(V_K(v') = \sqrt{2} \).

A convex body \(K \) is said to be symmetric if \(x \in K \) if and only if \(-x \in K \). An important reconstruction theorem for symmetric convex bodies is Aleksandrov’s projection theorem (see e.g. [1, p. 115]).

Theorem 3 (Aleksandrov’s projection theorem). Let \(K \) and \(H \) be two symmetric convex bodies in \(\mathbb{R}^d \) such that
\[V_K(v) = V_H(v) \]
for all unit vectors \(v \). Then \(K = H \).

So, the goal is to compute the function \(V_K \) using the Ehrhart functions \(L_{K+w} \). The two main tools are the Hausdorff distance and pseudopyramids.

For \(\lambda \geq 0 \) and \(x \in \mathbb{R}^d \), denote by \(B_\lambda(x) \) the ball with radius \(\lambda \) centered at \(x \). If \(K \) is a convex body and \(\lambda \geq 0 \), define \(K_\lambda \) by
\[K_\lambda = \bigcup_{x \in K} B_\lambda(x). \]

The Hausdorff distance \(\rho(K,H) \) between two convex bodies \(K \) and \(H \) is defined to be (Figure 1)
\[\rho(K,H) = \inf\{ \lambda \geq 0 \mid K \subseteq H_\lambda \text{ and } H \subseteq K_\lambda \}. \]

It can be shown that the set of convex sets in \(\mathbb{R}^d \) is a metric space under the Hausdorff distance and that the Euclidean volume is continuous in this space (see e.g. [1, p. 9]), but we just need the following special case of this theory.

Lemma 4. Let \(K \) and \(A_1, A_2, \ldots \) be convex bodies. If \(\lim_{i \to \infty} \rho(K, A_i) = 0 \), then \(\lim_{i \to \infty} \text{vol } A_i = \text{vol } K \).

The concept of pseudopyramid was introduced in [2]. If \(K \) is a convex body, the pseudopyramid \(\text{ppyr } K \) is defined to be (Figure 2)
\[\text{ppyr } K = \bigcup_{0 \leq \lambda \leq 1} \lambda K. \]

We will use the following lemma, which is a consequence of Lemma 1 of [2].

Lemma 5. Let \(K \) and \(H \) be convex bodies, and suppose that
\[L_K(s) = L_H(s) \]
for all \(s > 0 \). Then \(\text{vol } \text{ppyr } H = \text{vol } \text{ppyr } K \).
Figure 1: Hausdorff distance between two convex sets. The thick lines are the boundaries of the sets K and H; the thin lines are the boundaries of the sets K_λ and H_λ.

![Figure 1: Hausdorff distance between two convex sets.](image)

Figure 2: Pseudopyramid of a polytope.

![Figure 2: Pseudopyramid of a polytope.](image)

In other words, whenever we know L_K, we may assume we also know $\text{vol ppyr } K$.

Proof. Lemma 1 of [2] states that,\footnote{Tecnically, Lemma 1 of [2] only states this for polytopes, but the proof holds verbatim for convex bodies.} if $L_K(s) = L_H(s)$, then $L_{\text{ppyr } K}(s) = L_{\text{ppyr } H}(s)$. Since

$$\lim_{s \to \infty} \frac{L_{\text{ppyr } K}(s)}{s^d} = \text{vol ppyr } K$$

(and similarly for H), we have $\text{vol ppyr } K = \text{vol ppyr } H$. \qed
3 Pseudopyramid volumes and areas of projections

In this section, we will show how to compute the function V_K in terms of the numbers $\text{vol_pypyr}(P + w)$ for integer w.

Given a convex body K, define its spherical projection $S(K)$ by (Figure 3)

$$S(K) = \left\{ \frac{x}{\|x\|} \mid x \in K \text{ and } x \neq 0 \right\}.$$

The connection between pseudopyramid volumes and areas of projections can be seen in Figure 3. The set $\|v\| S(K + v)$ is a dilation of the projection $S(K + v)$ of K. Note that the shape of $\|v\| S(K + v)$ “looks like” the orthogonal projection of K in $\{v\}^\perp$; that is, the area of $\|v\| S(K + v)$ approximates $V_K(v)$.

If the pseudopyramid were an actual pyramid (with base $\|v\| S(K + v)$), then using the formula $v = \frac{Ah}{d}$ for the volume of a pyramid would allow us to discover what is the area of the projection, which would give an approximation to $V_K(v)$. We will show that this formula is true “in the infinity”; that is, using limits, we can recover the area of the projection using taller and taller pseudopyramids.

3.1 Approximating spherical projections

For convex bodies K, the set $S(K)$ is a manifold\(^2\). If K does not contain the origin in its interior, then $S(K)$ may be parameterized with a single coordinate system; that is, there is a set $U \subseteq \mathbb{R}^{d-1}$ and a continuously differentiable function $\varphi : U \rightarrow S(K)$ which is a bijection between U and $S(K)$. Since we want to

\(^2\) Technically, $S(K)$ will be a manifold-with-corners (see [3, p. 137]). However, their interiors relative to the $(d - 1)$-dimensional sphere S^{d-1} are manifolds, and since we’re dealing with areas there will be no harm in ignoring these boundaries.
Figure 4: The spherical projection $\mu S(K + \mu v)$, when projected orthogonally to the plane $x_d = 0$ (the set K_μ), approaches the volume of the projection K'.

move P towards infinity, this shall always be the case if the translation vector is long enough. In this case, we define its area to be [3, p. 126]

$$\text{area } S(K) = \int_U \|D_1 \varphi \times \cdots \times D_{d-1} \varphi\| = \int_U \left\| \frac{\partial \varphi}{\partial x_1} \times \cdots \times \frac{\partial \varphi}{\partial x_{d-1}} dx_1 \cdots dx_{d-1} \right\|.$$

The following theorem states that the spherical projection approximates, in a sense, the orthogonal projection, for large enough translation vectors.

Theorem 6. Let v be a unit vector and $K \subseteq \mathbb{R}^d$ a convex body. Then

$$\lim_{\mu \to \infty} \mu^{d-1} \text{area } S(P + \mu v) = V_K(v).$$

Proof. By rotating all objects involved if needed, we may assume that $v = (0, \ldots, 0, 1)$. Let N be large enough that $K \subseteq B_N(0)$; we'll assume that $\mu > N$, so that $K + \mu v$ lies strictly above the hyperplane $x_d = 0$.

Let K' be the orthogonal projection of K into $\{v\}^\perp$. We'll think of K' as being a subset of \mathbb{R}^{d-1}. Denote by K_μ the projection of the set $\mu S(K + \mu v)$ on \mathbb{R}^{d-1} (Figure 4); that is, first project $K + \mu v$ to the sphere with radius μ, then discard the last coordinate. Note this is similar to projecting it to the hyperplane $x_d = 0$. We'll show that, as μ goes to infinity, both the Hausdorff distance between K_μ and K' and the difference between the volume of K_μ and the area of $\mu S(K + \mu v)$ tend to zero.

First, let's bound the Hausdorff distance between K' and K_μ. If $x \in K + \mu v$, then x gets projected to a point $x_0 \in K'$ by just discarding the last coordinate;
however, to be projected to a point \(x_1 \in K_\mu \), first we replace \(x \) by \(x' = \frac{\mu}{\|x\|} x \) to get a point \(x' \in \mu S(K + \mu v) \), and then the last coordinate of \(x' \) is discarded. Note that \(x_1 = \frac{\mu}{\|x\|} x_0 \); therefore, the distance between these two points is

\[
\| x_0 - x_1 \| = \left| 1 - \frac{\mu}{\|x\|} \right| \| x_0 \| = \frac{\| x \| - \mu}{\|x\|} \| x_0 \|
\]

We have \(x \in K + \mu v \subseteq B_N(\mu v) \), so \(\mu - N \leq \|x\| \leq \mu + N \). As \(v = (0, \ldots, 0, 1) \) and \(x_0 \) is \(x \) without its last coordinate, we have \(\|x_0\| \leq N \) (because, in \(\mathbb{R}^{d-1} \), we have \(x_0 \in B_N(0) \)). So, the distance between \(x_0 \) and \(x_1 \) is at most \(\frac{N^2}{\mu + N} \).

Every point in \(K' \) and in \(K_\mu \) is obtained through these projections. This means that, given any point \(x_0 \) in one of the sets, we may find another point \(x_1 \) in the other set which is at a distance of at most \(\frac{N^2}{\mu + N} \) from the former, because we can just pick a point \(x \) whose projection is \(x_0 \); then its other projection \(x_1 \) will be close to \(x_0 \). Thus

\[
\rho(K', K_\mu) \leq \frac{N^2}{\mu + N},
\]

so by Theorem 4 the volumes of \(K_\mu \) converges to \(\text{vol} K' \).

Now, let’s relate \(\text{vol} K_\mu \) with \(\mu^{d-1} \text{area} S(K + \mu v) \). If \(y = (y_1, \ldots, y_d) \) is a point in \(\mu S(K + \mu v) \), we know that \(\|y\| = \mu \) and that \(y_d > 0 \) (because we’re assuming \(\mu > N \)). Therefore, if we define \(\varphi : K_\mu \to \mu S(K + \mu v) \) by

\[
\varphi(y_1, \ldots, y_{d-1}) = (y_1, \ldots, y_{d-1}, \sqrt{\mu^2 - y_1^2 - \cdots - y_{d-1}^2}),
\]

then \(\varphi \) will be a differentiable bijection between \(K_\mu \) and \(\mu S(K + \mu v) \), so that \(\varphi \) is a parametrization for \(\mu S(K + \mu v) \).

For the partial derivatives, we have \(\frac{\partial \varphi_d}{\partial y_j} = [i = j] \) if \(i < d \); that is, the partial derivatives behave like the identity. For \(i = d \), we have

\[
\frac{\partial \varphi_d}{\partial y_j} = \frac{y_j}{\sqrt{\mu^2 - y_1^2 - \cdots - y_{d-1}^2}}.
\]

Now, by definition of \(N \), we have

\[
\left| \frac{\partial \varphi_d}{\partial y_j} \right| \leq \frac{N}{\sqrt{\mu^2 - N^2}},
\]

so the vectors \(D_i \varphi \) converge uniformly to \(e_i \) for large \(\mu \). Since the generalized cross product is linear in each entry, the vector \(D_1 \varphi \times \cdots \times D_{d-1} \varphi \) converges uniformly to \(e_d \), and thus the number

\[
|\text{vol} K_\mu - \text{area} \mu S(K + \mu v)| = \left| \int_{K_\mu} 1 - \int_{K_\mu} \|D_1 \varphi \times \cdots \times D_{d-1} \varphi\| \right|
\]

\[
\leq \int_{K_\mu} 1 - \|D_1 \varphi \times \cdots \times D_{d-1} \varphi\|.
\]

6
converges to zero.

Now, since \(\text{area} (\mu S(K + \mu v)) = \mu^{d-1} \text{area} S(K + \mu v) \), combining these two convergence results gives the theorem. \(\square\)

3.2 Limit behavior of pseudopyramids

Now we’ll show how to use the pseudopyramids to compute these projections.

Let \(K \) be a pseudopyramid. Define the outer radius \(R(K) \) of \(K \) to be the smallest number such that the ball of radius \(R(K) \) around the origin contains \(K \). That is,

\[
R(K) = \inf \{ R \geq 0 \mid K \subseteq B_R(0) \}.
\]

Define the front shell of \(K \) to be the set of points in the boundary of \(K \) which are not contained in any facet passing through the origin; that is, the set of points \(x \) in the boundary of \(K \) such that \(\lambda x \) is contained in the interior of \(K \) for all \(0 < \lambda < 1 \). Define, then, the inner radius \(r(K) \) of \(K \) to be the largest number such that the ball of radius \(r(K) \) around the origin contains no points of the front shell of \(K \) (Figure 5). Note that this is equivalent to \(r(K) S(K) \) to be contained in \(K \); that is,

\[
r(K) = \sup \{ r \geq 0 \mid r S(K) \subseteq K \}.
\]

We leave the following lemma to the reader. It relates the inner and outer radii with the area of the spherical projection.

Proposition 7. Let \(K \subseteq \mathbb{R}^d \) be a convex body which does not contain the origin. Then

\[
\frac{\text{vol ppyr } K}{R(\text{ppyr } K)^d} \leq \frac{\text{area } S(K)}{d} \leq \frac{\text{vol ppyr } K}{r(\text{ppyr } K)^d}.
\]

This lemma, combined with Lemma 6, shows how to calculate the volume of the orthogonal projection knowing only the volumes of the pseudopyramids.

Lemma 8. Let \(K \subseteq \mathbb{R}^d \) be a convex body, and \(v \) any unit vector. Then

\[
\lim_{\mu \to \infty} \frac{\text{vol ppyr } (K + \mu v)}{\mu} = \frac{V_K(v)}{d}.
\]
Proof. Let N be large enough so that $K \subseteq B_N(0)$. For any μ, as v is a unit vector, we have $K + \mu v \subseteq B_{N+\mu}(0)$, so

$$R(\text{ppyr}(K + \mu v)) \leq \mu + N.$$

Since all the points in the front shell of $\text{ppyr}(K + \mu v)$ are points of K, all of them must have norm greater or equal to $\mu - N$. Therefore, no origin-centered ball with radius smaller than that can contain these points. Thus,

$$r(\text{ppyr}(K + \mu v)) \geq \mu - N.$$

Using these two inequalities and Proposition 7 gives

$$\frac{\text{vol ppyr}(K + \mu v)}{(\mu + N)^d} \leq \frac{\text{area } S(K + \mu v)}{d} \leq \frac{\text{vol ppyr}(K + \mu v)}{(\mu - N)^d},$$

which may be rewritten as

$$\frac{(\mu - N)^d \mu^{d-1} \text{area } S(K + \mu v)}{\mu^d} \leq \frac{\text{vol ppyr}(K + \mu v)}{\mu} \leq \frac{(\mu + N)^d \mu^{d-1} \text{area } S(K + \mu v)}{\mu^d}.$$

Now Theorem 6 and the squeeze theorem finish the proof. \square

For example, for $K = [0,1]^2$ and $v = (1,0)$, we have $\text{vol ppyr}(K + \mu v) = 1 + \frac{\mu}{2}$, so $\lim_{\mu \to \infty} \frac{\text{vol ppyr}(K + \mu v)}{\mu} = \frac{1}{\pi}$, which is precisely one-half of the area of $[0] \times [0,1]$, the projection K' of K on the y-axis. This highlights that, for large μ, the pseudopyramid $\text{ppyr}(K + \mu v)$ “behaves like” an actual pyramid, with height μ and base K'.

3.3 Piecing everything together

Theorem 2. Let K and H be symmetric convex bodies, and assume that $L_{K+w}(s) = L_{H+w}(s)$ for all real $s > 0$ and all integer w. Then $K = H$.

Proof. By Lemma 5, we have $\text{vol ppyr}(K + w) = \text{vol ppyr}(H + w)$ for all integer w.

If w is a nonzero integer vector, let $v = \frac{w}{\|w\|}$; then, by Lemma 8, we have

$$\frac{V_K(v)}{d} = \lim_{\mu \to \infty} \frac{\text{vol ppyr}(K + \mu v)}{\mu} = \lim_{\mu \to \infty} \frac{\text{vol ppyr}(H + \mu v)}{\mu} = \frac{V_H(v)}{d}.$$

This shows that, whenever v is a multiple of a rational vector, we have $V_K(v) = V_H(v)$. Since the function V_K and V_H are continuous, we have $V_K = V_H$, and thus by Aleksandrov’s projection theorem we conclude that $K = H$. \square
4 Final remarks

Theorems 1 and 2 both assume that $L_{K+w}(s) = L_{H+w}(s)$ for all integer w and real $s > 0$, and both conclude that $K = H$. The first theorem assume that the objects being considered are rational polytopes, but no symmetry condition is imposed; the second theorem assumes that the objects are symmetric, but otherwise permits arbitrary convex bodies.

This suggest the following common generalization of these theorems:

Conjecture 9. Let K and H be any convex bodies, and assume that $L_{K+w}(s) = L_{H+w}(s)$ for all real $s > 0$ and all integer w. Then $K = H$.

References

[1] Richard J. Gardner. *Geometric tomography*, volume 58 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, New York, second edition, 2006.

[2] Tiago Royer. Reconstruction of rational polytopes from the real-parameter Ehrhart function of its translates. 2017. Preprint. URL: https://arxiv.org/abs/1712.01973.

[3] Michael Spivak. *Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus*. W. A. Benjamin, 1965.