Severe hyperbilirubinemia in a neonate with hereditary spherocytosis due to a de novo ankyrin mutation: A case report

Jun-Fang Wang, Li Ma, Xiao-Hui Gong, Cheng Cai, Jing-Jing Sun

Abstract

BACKGROUND

Hereditary spherocytosis (HS) is a common type of hemolytic anemia caused by a red cell membrane disorder. HS type 1 (HS1) is mostly caused by mutations in ankyrin (ANK1). Newborns with HS1 usually only exhibit anemia and mild jaundice. We herein report a case of HS1 and discuss its clinical characteristics.

CASE SUMMARY

A 2-d-old male full-term newborn was admitted to our hospital with severe, intractable neonatal jaundice. Laboratory investigations showed hemolytic anemia and hyperbilirubinemia and excluded immune-mediated hemolysis. The patient underwent two exchange transfusions and one plasmapheresis resulting in significantly reduced serum bilirubin. Hematologic analyses and genomic DNA sequencing studies were performed. The trio clinical exome sequencing revealed a de novo null heterozygous mutation in the patient's ANK1 gene: c.841C > T(p.Arg281Ter). This mutation results in the premature termination of the ANK1 protein.

CONCLUSION

Our case demonstrates that genetic analysis can be an essential method for diagnosing HS when a newborn has severe hyperbilirubinemia.

Key Words: Hereditary spherocytosis; Ankyrin; Neonate; Intractable neonatal jaundice; Case report
Core Tip: Hereditary spherocytosis (HS) is a common type of hemolytic anemia caused by red cell membrane disorder. HS type 1 (HS1) typically results from mutations in ankyrin (ANK1). Newborns with HS1 usually only exhibit anemia and mild jaundice. This paper reports on a Chinese neonate who developed severe, intracranial neonatal jaundice unrelated to immune-mediated hemolysis. The patient underwent two exchange transfusions and one plasmapheresis, which significantly reduced his extreme hyperbilirubinemia. Using trio clinical exome sequencing, we identified a de novo null heterozygous mutation in the patient’s ANK1 gene: c.841C>T(p.Arg281Ter), which resulted in the premature termination of ANK1 protein.

Citation: Wang JF, Ma L, Gong XH, Cai C, Sun JJ. Severe hyperbilirubinemia in a neonate with hereditary spherocytosis due to a de novo ankyrin mutation: A case report. World J Clin Cases 2021; 9(19): 5245-5251
URL: https://www.wjgnet.com/2307-8960/full/v9/i19/5245.htm
DOI: https://dx.doi.org/10.12998/wjcc.v9.i19.5245

INTRODUCTION
Hereditary spherocytosis (HS) is the most common monogenic hemolytic anemia disease and is characterized by spherical-shaped erythrocytes in patients’ peripheral blood. Approximately 75% of HS cases are inherited in an autosomal dominant manner[1]. The clinical manifestations of HS vary widely, ranging from almost asymptomatic to dependence on blood transfusions or severe life-threatening anemia. HS occurs worldwide, particularly in Northern Europe and North America, where the incidence is 1 in 1000 to 2000 births[2]. In China, the epidemiology of HS is poorly understood. A systematic review from China estimated that the prevalence was 1.27 cases per 100000 people in males and 1.49 cases per 100000 people in females between January 1987 and December 2013[3]. However, only one-third of children are diagnosed with HS in the first year of life[4], and HS is rarely diagnosed in the neonatal period. HS is thought to have a high underdiagnosis rate due to limited clinical recognition during the neonatal period. The clinical manifestations of HS include anemia, jaundice, and splenomegaly. More than two-thirds of neonates with HS have near-normal hemoglobin (Hb) values at birth but then develop a dramatic decrease in Hb levels during the first weeks of life[5]. Physiological jaundice is the most common presenting feature of HS in neonates without any treatments[6], and splenomegaly is rarely detected[7]. The characteristic spherocytes are observed less often in the blood smear of neonates[7].

ANK1 mutations (approximately 50%) are the most common cause of HS type 1 (HS1)[8]. The functional defects of ankyrin protein, located in the red blood cell membrane, lead to the loss of membrane cohesion, a loss of surface area, and an increase in the number of peripheral blood cells[9]. ANK1 mutations are associated with both dominant and recessive HS and are frequently mutated de novo[10]. Using exome sequencing to detect pathogenic mutations in ANK1 and other genes would allow an early HS diagnosis.

This report describes a unique case of HS1 in a Chinese neonate with extreme hyperbilirubinemia and anemia, which was treated with two exchange transfusions and one plasmapheresis. Using the trio clinical exome sequencing method, we identified a de novo ANK1 null mutant causing HS1. This report will contribute to the understanding and diagnosis of HS in neonates.

CASE PRESENTATION

Chief complaints
The patient was a 2-d-old male newborn admitted to the Department of Neonatology due to severe jaundice.

History of present illness
He was the first child of healthy, non-consanguineous Chinese parents without any
known family history. He was born via cesarean delivery at a gestational age of 39+6 wk with APGAR scores of 9 at 1 and 5 min after birth. His birth weight was 3125 g (P10-P50), and his length was 48 cm (P10). He developed jaundice within 24 h after birth without apnea, fever, or seizures in the maternity hospital. Laboratory tests revealed serum bilirubin (SBR) of 413.9 µmol/L (direct 21.5) and Hb of 17.9 g/dL. The blood types of both the baby and the mother were B+. Double phototherapy and intravenous infusion of albumin were initiated. However, his bilirubin level did not significantly decrease (413.9 to 395.9 µmol/L) despite ongoing double phototherapy, and he was admitted to our neonatal intensive care unit 2 d after birth.

History of past illness
The patient had been hospitalized in a maternity hospital for 2 d.

Personal and family history
He was the first child of healthy, non-consanguineous Chinese parents without any known family history.

Physical examination
Physical examination showed jaundice with neither pallor nor palpable liver and spleen. No other abnormalities on physical examination, such as poor sucking, decreased alertness/lethargy, high-pitched cry, hypertonia of the extensor muscles, and hypotonia, were detected.

Laboratory examinations
The glucose-6-phosphate dehydrogenase deficiency screen and direct Coombs test were negative. Erythrocyte osmotic fragility was negative. Spherocytes were not observed on the blood smear. For the blood routine examination, the hemoglobin level was 13.2 g/dL (normal range, 15-23 g/dL), the mean corpuscular volume was 96.2 fL (normal range, 99-113 fL), the mean corpuscular hemoglobin was 34.9 pg (normal range, 27-32 pg), the mean corpuscular hemoglobin concentration was 36.2 g/dL (normal range, 31.7-33.0 g/dL), the standard deviation of red cell distribution width was 71.3 fL (37-54 fL), and the coefficient variation of red cell volume distribution width was 20.3% (11.0-16.0%). The SBR was 354.8 µmol/L (direct 37), with a reticulocyte of 12.18%.

Imaging examinations
Axial T1-weighted brain magnetic resonance imaging sequence revealed a bilateral, symmetrical, hyperintense signal in the globus pallidus without a mass effect, which suggested kernicterus (Figure 1B).

FINAL DIAGNOSIS
Genetic analysis revealed a heterozygous null mutation in the patient's ANK1 gene: c.841C > T(p.Arg281Ter). Sanger sequencing results showed that the heterozygous nonsense mutation was not detected in the patient's parents, indicating a de novo mutation (Figure 2). Combined with the above results, the patient was diagnosed with HS1.

TREATMENT
Considering that this child had a rare but severe hyperbilirubinemia and neglected hemolytic disease, an exchange transfusion was performed via a continuous arteriovenous exchange. The SBR began falling, with subsequent measurements of 232.6 µmol/L. One day later, the SBR elevated to 469.7 µmol/L (direct 27.6), with Hb of 11.7 g/dL. The second exchange transfusion was performed, and the SBR decreased to 448 µmol/L. The next day SBR was elevated to 465 µmol/L. After two exchange transfusions without any obvious improvement, therapeutic plasma exchange was provided, which decreased serum bilirubin. The patient experienced a subsequent decrease in total bilirubin from 465 µmol/L to a nadir value of 197.0 µmol/L. No significant increase in bilirubin was observed under phototherapy.
OUTCOME AND FOLLOW-UP

After 4 d without phototherapy, bilirubin fluctuated between 83-130 µmol/L, and Hb was stable between 10.5-11.4 g/dL (Figure 1A). The patient did not have any abnormal neurologic manifestations and was discharged after 11 d of hospitalization. This patient has been followed up regularly. The spherocytes were observed on the blood smear at 6 mo of age (Figure 1C). To date, he has shown mild anemia and jaundice, but he has not experienced splenomegaly. No visual, auditory, or extrapyramidal abnormalities have been observed in this patient.

DISCUSSION

In this report, we describe a Chinese male neonate with HS1, resulting in severe hyperbilirubinemia. A de novo mutation in exon 9: c.841C > T(p.Arg281Ter) caused the premature termination of peptide translation in exon 9 of ANK1, which was found through trio clinical exome sequencing followed by Sanger sequencing.

HS is an inherited membranopathy of red blood cells characterized by phenotypic and genotypic heterogeneity, making it difficult to diagnose during the first year of life [11]. During the perinatal period, the clinical manifestation of HS ranges from severe fetal anemia with hydrops fetalis to no clinical symptoms. HS is characterized by hemolytic anemia, jaundice, splenomegaly, cholelithiasis, and spherocytes, which are observed on the peripheral blood smear. The typical neonatal erythropoiesis response is slow, often making the reticulocyte count relatively low in comparison with anemia. Nevertheless, these symptoms are not typical in the newborn. More than one-half of neonates with HS are anemia-free in the first week of life. Rare cases exhibit splenomegaly, and spherocytes are observed in the blood smear of neonates[7]. Neonate jaundice is the most common and can be the only manifestation of neonatal HS. Our patient’s serum total bilirubin was raised higher than 400 µmol/L within 24 h after birth and was prolonged, suggesting a high risk of kernicterus. Afterwards, his brain MRI results showed symmetrical hyperintensity of globus pallidus on T1-weighted
sequence. Although the symmetric hyperintensity of globus pallidus on T1-weighted in neonates can be seen in "a transient hyperintensity" or other diseases including cerebral injury, hypoproteinemia, premature delivery, apnea, purulent meningitis, sepsis, etc., the patient did not appear to have any of these illnesses. In our case, he exhibited severe and delayed remission of jaundice and anemia without splenomegaly or spherocytes in the neonatal period. Therefore, we have reason to believe that patients with severe jaundice and anemia in the neonatal period should undergo genetic testing to confirm whether they have HS after excluding the possibility of other hemolytic diseases.

ANK1, located at 8p11.21[12], encodes erythroid ankyrin, and its mutations are the most common causes of HS1. ANKI contains 43 exons with a complementary DNA length of 8300 bp. The erythroid ankyrin 1 protein consists of 1880 amino acids with three main structural domains, an N-terminal membrane-binding domain, a central spectrin binding domain, and a C-terminal regulatory domain[13]. All three domains of ANKI are key to maintaining the shape of erythrocytes essential for proper function and assembly of the erythrocyte membranous-cytoskeletal network. Mutations in ANKI can result in spherocytes with high osmotic fragility observed in most HS patients[14]. ANKI mutations, mainly nonsense and frameshift mutations, can significantly affect the function of ANKI[15,16]. In this case, a de novo mutation at c.841C > T (p. Arg281Ter) in the ANKI gene was identified as a nonsense mutation. This mutation led to premature termination of the protein at the spectrin binding domain, thereby forming a truncated protein without normal function, causing an early-onset and severe phenotype.

In the literature, we found a few cases diagnosed with HS1 during the neonatal period and compared their clinical features with our patient (Table 1). Case 2 was a male neonate who developed severe hemolytic anemia 4 wk after his birth and was identified to have a novel de novo nonsense E9X: c.25G > T(p.Glu9Ter) mutant in exon 1 of ANKI[17]. Case 3 was a 31-wk premature infant who received an RBC transfusion 3 d after birth because of severe anemia and jaundice; this patient was clinically diagnosed with HS1 and carried a de novo nonsense mutation (Q109X: c.325C > T(p.Gln109Ter) in exon 4 of ANKI[18]. In these cases, the early phenotype can be attributed to the severely impaired protein function by a nonsense mutation. It is worth highlighting a notable difference between our case and the other two cases, both of whom presented with severe anemia as the first manifestation. Our patient presented with intractable pathological neonatal jaundice resistant to phototherapy
Table 1 Clinical features, laboratory investigations, and genetics analysis results of three cases

Patient	Case 1	Case 2	Case 3	Reference
Gender	Male	Male	Male	
Gestational age	39+6 wk	Term infant	31 wk	
Appearance characteristics				
Time to first onset	Within 24 h after birth	4 wk after birth	3 d after birth	
Pallor	-	+	+	
Jaundice	Severe	Moderate	Moderate	
Laboratory examinations				
Hb (g/L)	130	51	80	150-230
MCV (fL)	96.2	75.8	70.8	55.4-60.2
MCHC (g/dL)	36.2	36.0	33.0	31.7-33.0
RET (%)	12.2	13.4	8.2	0.5-1.5
MCHC/MCV (%)	37.6	47.4	46.6	
Erythrocyte osmotic fragility	Negative	Positive	Positive	
Genetics	De novo heterozygous nonsense mutation in exon 9 of ANK1 (c.841C > T,p.Arg281Ter)	De novo heterozygous nonsense mutation in exon 1 of ANK1 (c.25G > T,p.Glu9Ter)	De novo heterozygous nonsense mutation in exon 4 of ANK1 (c.325C > T,p.Gln109Ter)	

Case 1: The patient in our case; Case 2: The patient reported by Gundel et al[17]; Case 3: The patient reported by Liu et al[18]. Hb: Hemoglobin; MCHC: Mean corpuscular hemoglobin concentration; MCV: Mean corpuscular volume; RET: Reticulocyte.

and exchange transfusion, explaining the different length of retained truncated proteins by other mutations. In short, HS1 caused by nonsense mutations in ANK1 tends to have an early onset and more severe phenotype. Although there are a few HS1 cases caused by other mutation types of ANK1 and have a certain degree of clinical phenotype in the neonatal and infancy period, the diagnosis time is often delayed[19,20]. In summary, the physicians should include HS1 in the differential diagnosis in patients who develop severe jaundice or anemia without any known reason in the neonatal period. Moreover, physicians should consider sequencing of relevant genes, especially for ANK1, which will provide beneficial help for the timely diagnosis of HS1.

CONCLUSION

In conclusion, we report a Chinese neonate diagnosed as HS1 with severe hyperbilirubinemia caused by the heterozygous null mutation in the ANK1 gene: c.841C > T,p.Arg281Ter. It is worth noting that early genetic analysis plays an important role in the diagnosis of HS. Prompt treatment and anticipatory guidance are essential to prevent neonates’ adverse outcomes with HS, so physicians should be more aware of signs of HS in the newborn period.

ACKNOWLEDGEMENTS

We are thankful for the members of the family for their participation and help in the study.

REFERENCES

1 Hao L, Li S, Ma D, Chen S, Zhang B, Xiao D, Zhang J, Jiang N, Jiang S, Ma J. Two novel ANK1 loss-of-function mutations in Chinese families with hereditary spherocytosis. J Cell Mol Med 2019;
Wang JP et al. Hereditary spherocytosis neonate with severe hyperbilirubinemia

23: 4454-4463 [PMID: 31016877 DOI: 10.1111/jcmn.14343]

Da Costa L, Surer L, Galimand J, Bonnel A, Pascreau T, Couque N, Fenneteau O, Mohandas N; Society of Hematology and Pediatric Immunology (SHIP) group; French Society of Hematology (SFH). Diagnostic tool for red blood cell membrane disorders: Assessment of a new generation ektacytometer. Blood Cells Mol Dis 2016; 56: 9-22 [PMID: 26603718 DOI: 10.1016/j.bcmd.2015.09.001]

Wang C, Cui Y, Li Y, Liu X, Han J. A systematic review of hereditary spherocytosis reported in Chinese biomedical journals from 1978 to 2013 and estimation of the prevalence of the disease using a disease model. Intractable Rare Dis Rev 2015; 4: 76-81 [PMID: 25984425 DOI: 10.5582/irdr.2015.01002]

Eber SW, Gonzalez JM, Lux ML, Scarpa AL, Tse WT, Dornwell M, Herbers J, Kugler W, Ozccan R, Pekrun A, Gallagher PG, Schröter W, Forget BG, Lux SE. Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis. Nat Genet 1996; 13: 214-218 [PMID: 8640229 DOI: 10.1038/ng0696-214]

Delhommeau F, Cynober T, Schischmanoff PO, Rohrl ph P, Delaunay J, Mohandas N, Tchernia G. Natural history of hereditary spherocytosis during the first year of life. Blood 2000; 95: 393-397 [PMID: 10627440]

Christensen RD, Henry E. Hereditary spherocytosis in neonates with hyperbilirubinemia. Pediatrics 2010; 125: 120-125 [PMID: 19948573 DOI: 10.1542/peds.2009-0864]

Christensen RD, Yaish HM, Gallagher PG. A pediatrician's practical guide to diagnosing and treating hereditary spherocytosis in neonates. Pediatrics 2015; 135: 1107-1114 [PMID: 26096244 DOI: 10.1542/peds.2014-3516]

An X, Mohandas N. Disorders of red cell membrane. Br J Haematol 2008; 141: 367-375 [PMID: 18341630 DOI: 10.1111/j.1365-2414.2008.07091.x]

Da Costa L, Galimand J, Fenneteau O, Mohandas N. Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. Blood Rev 2013; 27: 167-178 [PMID: 23664421 DOI: 10.1016/j.bre.2013.04.003]

Miraglia del Giudice E, Nobili B, Francesc M, D'Urso L, Iolascon A, Eber S, Perrotta S. Clinical and molecular evaluation of non-dominant hereditary spherocytosis. Br J Haematol 2001; 112: 42-47 [PMID: 11167781 DOI: 10.1046/j.1365-2141.2001.02501.x]

Kar R, Rao S, Srinivas UM, Mishra P, Pati HP. Clinico-hematological profile of hereditary spherocytosis: experience from a tertiary care center in North India. Hematology 2009; 14: 164-167 [PMID: 19490762 DOI: 10.1179/102453309X402278]

Lambert S, Yu H, Prehal JT, Lawler J, Ruff P, Speicher D, Cheung MC, Kan YW, Palek J. cDNA sequence for human erythrocyte ankyrin. Proc Natl Acad Sci U S A 1990; 87: 1730-1734 [PMID: 1689849 DOI: 10.1073/pnas.87.5.1730]

Liu SE, John KM, Bennett V. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 1990; 344: 36-42 [PMID: 2137557 DOI: 10.1038/344036a0]

King MJ, Zanella A. Hereditary red cell membrane disorders and laboratory diagnostic testing. Int J Lab Hematol 2013; 35: 237-243 [PMID: 23480686 DOI: 10.1111/ijlh.12070]

Gallagher PG, Forget BG. Hematologically important mutations: spectrin and ankyrin variants in hereditary spherocytosis. Blood Cells Mol Dis 1998; 24: 539-543 [PMID: 9887280 DOI: 10.1006/bcmd.1998.0217]

Delaunay J. The molecular basis of hereditary red cell membrane disorders. Blood Rev 2007; 21: 1-20 [PMID: 16730867 DOI: 10.1016/j.bre.2006.03.005]

Gundel F, Eber S, Heep A. A new ankyrin mutation (ANK1 E9X) causing severe hereditary spherocytosis in the neonatal period. Ann Hematol 2011; 90: 231-232 [PMID: 20512576 DOI: 10.1007/s00277-010-0989-y]

Liu S, Jiang H, Huang LY, Li DZ. A de novo ankyrin mutation (ANK1 Q109X) causing severe hereditary spherocytosis from preterm neonatal period. Ann Hematol 2017; 96: 1067-1068 [PMID: 28280995 DOI: 10.1007/s00277-017-2966-1]

Huang TL, Sang BH, Lei QL, Song CY, Lin YB, Lv Y, Yang CH, Li N, Yang YH, Zhang XW, Tian X. A de novo ANK1 mutation associated to hereditary spherocytosis: a case report. BMC Pediatr 2019; 19: 62 [PMID: 30777044 DOI: 10.1186/s12887-019-1436-4]

Luo Y, Li Z, Huang L, Tian J, Xiong M, Yang Z. Spectrum of Ankyrin Mutations in Hereditary Spherocytosis: A Case Report and Review of the Literature. Acta Haematol 2018; 140: 77-86 [PMID: 30227413 DOI: 10.1159/000492024]
