Summary: Given $d \in \mathbb{N}$, we establish sum-product estimates for finite, nonempty subsets of \mathbb{R}^d. This is equivalent to a sum-product result for sets of diagonal matrices. In particular, let A be a finite, nonempty set of $d \times d$ diagonal matrices with real entries. Then, for all $\delta_1 < 1/3 + 5/5277$,

$$|A + A| + |A \cdot A| \gg_d |A|^{1+\delta_1/d},$$

which strengthens a result of M.-C. Chang [“Additive and multiplicative structure in matrix spaces”, Combin. Probab. Comput. 16, No. 2, 219–238 (2007; Zbl 1154.15020)] in this setting.

MSC:

11B30 Arithmetic combinatorics; higher degree uniformity
11C20 Matrices, determinants in number theory
15A30 Algebraic systems of matrices

Keywords:
arithmetic combinatorics; sum-product estimates

Full Text: DOI arXiv

References:

[1] Basit, A. and Lund, B., ‘An improved sum-product bound for quaternions’, SIAM J. Discrete Math.33(2) (2019), 1044-1060. · Zbl 1447.11010
[2] Bloom, T. and Jones, T., ‘A sum-product theorem in function fields’, Int. Math. Res. Not. IMRN2014(19) (2014), 5249-5263. · Zbl 1314.11072
[3] Chang, M. C., ‘A sum-product estimate in algebraic division algebras’, Israel J. Math.150 (2005), 369-380. · Zbl 1215.11018
[4] Chang, M. C., ‘Additive and multiplicative structure in matrix spaces’, Combin. Probab. Comput.16(2) (2007), 219-238. · Zbl 1154.15020
[5] Erdős, P. and Szemerédi, E., ‘On sums and products of integers’, in: Studies in Pure Mathematics (Birkhäuser, Basel, 1983), 213-218. · Zbl 0526.10011
[6] Granville, A. and Solymosi, J., ‘Sum-product formulae’, in: Recent Trends in Combinatorics, (Springer, Cham, 2016), 419-451. · Zbl 1407.11043
[7] Konyagin, S. V. and Rudnev, M., ‘On new sum-product-type estimates’, SIAM J. Discrete Math.27(2) (2013), 973-990. · Zbl 1272.68328
[8] Shakan, G., ‘On higher energy decompositions and the sum-product phenomenon’, Math. Proc. Cambridge Philos. Soc.167(3) (2019), 599-617. · Zbl 1468.11036
[9] Solymosi, J., ‘On sum-sets and product-sets of complex numbers’, J. Théor. Nombres Bordeaux17(3) (2005), 921-924. · Zbl 1098.11018
[10] Solymosi, J. and Tao, T., ‘An incidence theorem in higher dimensions’, Discrete Comput. Geom.48(2) (2012), 255-280. · Zbl 1253.51004
[11] Solymosi, J. and Vu, V. H., ‘Sum-product estimates for well-conditioned matrices’, Bull. Lond. Math. Soc.41(5) (2009), 817-822. · Zbl 1216.11050
[12] Solymosi, J. and Wong, C., ‘An application of kissing number in sum-product estimates’, Acta Math. Hungar.155(1) (2018), 47-60. · Zbl 1413.52020
[13] Tao, T., ‘The sum-product phenomenon in arbitrary rings’, Contrib. Discrete Math.4(2) (2009), 59-82. · Zbl 1250.11011

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.