Traditional uses and pharmacological properties of *Clerodendrum* phytochemicals

Jin-Hui Wang, Fei Luan, Xiang-Dong He, Yong Wang, Mao-Xing Li

1. Introduction

Clerodendrum is a genus of flowering plants in the family Lamiaceae and widely distributed throughout the whole world. Up to now, many species of this genus have been described in various indigenous systems of medicine and are used in preparation of folklore medicines for the treatment of various life-threatening diseases, and more than eleven species of the *Clerodendrum* genus have been very well studied for their chemical constituents and biological activities, and 283 compounds, including monoterpenes, sesquiterpenoids, triterpenoids, flavonoids and flavonoid glycosides, phenylethanoid glycosides, steroids and steroid glycosides, cyclohexylethanoids, anthraquinones, cyanogenic glycosides, and others have been isolated and identified. Pharmacological studies have shown that these compounds and extracts from the *Clerodendrum* genus have extensive activities, such as anti-inflammatory and anti-nociceptive, anti-oxidant, anti-hypertensive, anticancer, antimicrobial, anti-diarrheal, hepatoprotective, hypoglycemic and hypolipidemic, memory enhancing and neuroprotective, and other activities. In this review, we attempt to highlight over phytochemical progress and list the phytoconstituents isolated from the genus *Clerodendrum* reported so far. The biological activities of this genus are also covered.

© 2018 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Japan, Thailand, and Africa.5–9 The traditional or ethnomedical claims of the species have also been evaluated. The biological activities of these species described in ancient literature have been reported to be associated with the chemical constituents present in the species.

A variety of constituents have been isolated and characterized from this genus, including: monoterpenes and its derivatives,10 sesquiterpene,5 diterpenoids,12,13 triterpenoids,14,15 flavonoid and flavonoid glycosides,16 phenyllethanoid glycosides,17,18 steroids and steroidal glycosides,19 cyclohexylethanoids,20 anthraquinones,21 cyanogenic glycosides,22 and others. Some of these constituents have been evaluated with a number of biological properties, mainly including anti-inflammatory and anti-nociceptive, anti-oxidant, anti-hypertensive, anticancer, antimicrobial, anti-diarrheal, hepatoprotective, hypoglycemic and hypolipidemic, memory enhancing and neuroprotective, and other activities.

In this review, we will summarize all identified chemical constituents and biological activities from the genus Clerodendrum over the past few decades. It will provide a basis for the development of therapeutic agents and utilization of these plants in forthcoming studies.

2. Phytochemistry

To the best of our knowledge, over 280 chemical constituents have been isolated and identified from different species of the genus Clerodendrum. These compounds could be divided into: \textbf{27} monoterpenes and its derivatives, \textbf{3} sesquiterpenes, \textbf{58} diterpenoids, \textbf{31} triterpenoids, \textbf{43} flavonoid and flavonoid glycosides, \textbf{40} phenylethanoid glycosides, \textbf{43} steroids and steroidal glycosides, \textbf{13} cyclohexylethanoids, \textbf{4} anthraquinones, \textbf{2} cyanogenic glycosides, \textbf{19} and others (Table 1). With respect to isolated phytochemicals of the genus, aerial parts, roots and leaves were the most common targets of investigation for bioactive principles and most of these compounds were reported from \textit{C. serratum}, \textit{C. inerme}, \textit{C. bungei}, \textit{Clerodendrum incisum}, \textit{C. infortunatum}, and \textit{C. trichotomum}. Diterpenoids, flavonoids, phenylethanoid glycosides, and steroids are abundant and major bioactive principles of this genus.

2.1. Monoterpene and its derivatives

Monoterpenes are a class of terpenes that consist of two isoprene units and have the molecular formula C\textsubscript{10}H\textsubscript{16}. Monoterpenes may be linear (acyclic) or contain rings. Most monoterpenes are fragrant and the main composition of essential oil. \textbf{Twenty-seven} monoterpenes and derivatives (1–27) were isolated from the roots, leaves, aerial parts of \textit{C. serratum}, \textit{C. inerme}, \textit{C. chinense}, \textit{C. trichotomum}, \textit{Clerodendrum ugandense}, and \textit{C. chinense}.

2.2. Sesquiterpenes

Sesquiterpenes are bitter substances and a class of terpenes that consist of three isoprene units and have the molecular formula C\textsubscript{15}H\textsubscript{24}. They often contain \textalpha{}-, \beta{}-unsaturated-\gamma{}-lactone as a major structural feature. In recent studies, sesquiterpenes have been associated with anti-tumor, cytotoxic, and anti-microbial activities. But, only \textbf{three} sesquiterpenes (28–30) were obtained from the aerial parts and roots of \textit{C. inerme} and \textit{C. bungei}, respectively.

2.3. Diterpenoids

To date, \textbf{fifty-eight} diterpene compounds (31–88) have been isolated and identified from this genus, and all of them are labdane diterpenoids. These compounds can be sorted to five types based

No.	Phytochemicals	Plant parts	Source
1	Serratulin A	Aerial parts	\textit{C. serratum}
2	Serratoside A	Aerial parts	\textit{C. serratum}
3	Serratoside B	Aerial parts	\textit{C. serratum}
4	7-O-\textalpha{}-coumaroylxyloglucoside	Aerial parts	\textit{C. serratum}
5	Monomelittoside	Aerial parts	\textit{C. inerme}
6	Melitotside	Aerial parts	\textit{C. inerme}
7	Sammangoaside C	Aerial parts	\textit{C. inerme}
8	Inerminosides A	Leaves	\textit{C. inerme}
9	Inerminosides C	Leaves	\textit{C. inerme}
10	Inerminosides D	Leaves	\textit{C. inerme}
11	Inerminoside C	Aerial parts	\textit{C. inerme}
12	Inerminoside A	Aerial parts	\textit{C. inerme}
13	Inerminoside A hexacetate	Aerial parts	\textit{C. inerme}
14	Inerminoside B	Aerial parts	\textit{C. inerme}
15	Inerminoside B heptacetate	Aerial parts	\textit{C. inerme}
16	8-O-galactosylheulephroside	Roots	\textit{C. inerme}
17	2′,8-O-difoliamethylephroside	Roots	\textit{C. inerme}
18	Euphroside	Roots	\textit{C. inerme}
19	Plantarenoside	Roots	\textit{C. inerme}
20	Aucubin	Whole plants	\textit{C. thomsonae}
21	8-O-acetylharpagide	Whole plants	\textit{C. thomsonae}
22	Harpagide	Whole plants	\textit{C. thomsonae}
23	Ajugoside	Leaves	\textit{C. thomsonae}
24	8-O-acetylmioporoside	Whole plants	\textit{C. thomsonae}
25	Reptoside	Whole plants	\textit{C. trichotomum}
26	Ugandoside	Whole plants	\textit{C. trichotomum}
27	5-\beta{}-glucopyranosyl-harpagide	Aerial parts	\textit{C. chinense}

No.	Phytochemicals	Plant parts	Source
28	Sammangoaside A	Aerial parts	\textit{C. inerme}
29	Sammangoaside B	Aerial parts	\textit{C. bungei}
30	2-[(2S,5R)-5-\{1E\}-4-hydroxy-4-methylhexa-1,5-dien-1-yl\}]-propan-2-yl\beta{}-o-glucopyranoside	Aerial parts	\textit{C. trichotomum}

No.	Phytochemicals	Plant parts	Source
31	Mandarone A	Stems	\textit{C. mandarinorum}
32	Mandarone B	Stems	\textit{C. mandarinorum}
33	Mandarone C	Stems	\textit{C. mandarinorum}
34	Clerodendron A	Whole plants	\textit{C. philippinum}
35	Bungone A	Stems	\textit{C. bungei}
36	Bungone B	Stems	\textit{C. bungei}
37	Inermine A	Leaves	\textit{C. inerme}
38	Inermine B	Leaves	\textit{C. inerme}
39	14,15-dihydro-15\beta{}-methoxy-3-epierycypiton	Leaves	\textit{C. inerme}
40	14,15-dihydro-15\beta{}-methoxy-3-epierycypiton	Leaves	\textit{C. inerme}
41	Clerodermic acid	Whole plants	\textit{C. inerme}
42	Cleroerinmorn	Whole plants	\textit{C. inerme}
43	3-epierycypiton	Whole plants	\textit{C. inerme}
44	Clerodin	Whole plants	\textit{C. inerme}
45	Uncinateone	Stems	\textit{C. trichotomum}
46	2-acetoxyclerodendrin B	Whole plants	\textit{C. trichotomum}
47	Clerodendrin A	Whole plants	\textit{C. trichotomum}
48	Clerodendrin B	Whole plants	\textit{C. trichotomum}
49	Clerodendrin C	Whole plants	\textit{C. trichotomum}
50	Clerodendrin D	Whole plants	\textit{C. trichotomum}
51	Clerodendrin E	Whole plants	\textit{C. trichotomum}
52	Clerodendrin F	Whole plants	\textit{C. trichotomum}
53	Clerodendrin G	Whole plants	\textit{C. trichotomum}
54	Clerodendrin H	Whole plants	\textit{C. trichotomum}

(continued on next page)
No.	Phytochemicals	Plant parts	Source	Ref.
55	Trichotomone	Roots	C. trichotomum	43
56	Sugiol	Stems	C. trichotomum	39
57	Teuvinenone A	Stems	C. trichotomum	39
58	Teuvinenone B	Stems	C. trichotomum	39
59	Teuvinenone F	Stems	C. trichotomum	40
60	Teuvinenone H	Stems	C. trichotomum	41
61	Cyrtophyllone B	Stems	C. trichotomum	39
62	Bungnate A	Roots	C. bungei	40
63	Bungnate B	Roots	C. bungei	40
64	15-dehydro-17-	Roots	C. bungei	40
	hydroxycytrophi-			
	llone A			
66	12,16-epoxy-11,14,17-trihydroxy-6-methoxy-17(15→16)-abeo-abiet-5,8,11,13-tetraene-7-one	Roots	C. bungei	40
67	Cyrtophyllone A	Roots	C. bungei	40
68	Villiscin	Roots	C. bungei	40
69	19-hydroxyteuvinencine F	Roots	C. bungei	40
70	Mandaron E	Roots	C. bungei	40
71	12,16-epoxy-11,14-dihydroxy-6-methoxy-17(15→16)-abeo-abiet-5,8,11,13-tetraene-3,7-diene	Roots	C. trichotomum	41
72	12-O-β-D-glucopyranosyl-3,11,16-trihydroxyabiet-8,11,13-triene	Roots	C. bungei	40
73	6-methoxyvilsolin C	Roots	C. trichotomum	41
74	18-hydroxy-6- methoxyvilsolin C	Roots	C. trichotomum	41
75	(10R,16S)-12,16-epoxy-11,14-dihydroxy-6-methoxy-17(15→16)-abeo-abiet-5,8,11,13-tetraene-7-one	Roots	C. trichotomum	41
76	(10R,16S)-12,16-epoxy-11,14-dihydroxy-18-oxo-17(15→16),18(4→3)-diabeno-abiet-3,5,8,11,13-pentaene-7-one	Roots	C. trichotomum	41
77	(10R,16S)-12,16-epoxy-11,14,17-trihydroxy-17(15→16),18(4→3)-diabeno-abiet-3,5,8,11,13-pentaene-2,7-diene	Roots	C. trichotomum	41
78	(35,48,10S)-12,16-diepoxy-11,14-dihydroxy-17(15→16),18(4→3)-diabeno-abiet-5,8,11,13-tetraene-7-one	Roots	C. trichotomum	41
79	(12R,16S)-11,14- dihydroxy-6-methoxy-17(15→16)-abeo-abiet-5,8,11,13,15-pentaene-3,7-diene	Roots	C. trichotomum	41
80	Formidol	Roots	C. trichotomum	41
81	Teuvinenone E	Roots	C. trichotomum	41
82	12,16-epoxy-17(15→16),18(4→3)-diabeno-abiet-3,5,8,12,15-pentaene-7,11,14-triene	Roots	C. trichotomum	41
83	3β-(β-D-glucopyranosyl)-isopimara-7,15-diene-11x,12x-diol	Roots	C. bungei	44
84	16-O-β-D-glucopyranosyl-3β-20-epoxy-3- hydroxyabiet-8,11,13-triene	Roots	C. bungei	44
85	Coleon U	Whole plants	C. canescens	45
86	Coleon U-12-methyl ether	Whole plants	C. canescens	45
Table 1 (continued)

No.	Phytochemicals	Plant parts	Source	Ref.
147	Cynaroside	Aerial parts	C. inerme	48
148	2,4'-trihydroxy-6'-methylchalcone	Aerial parts	C. inerme	13
149	Cirsimaritin	Aerial parts	C. mandarinorum	71
150	Cirsimaritin-4'-glucoside	Aerial parts	C. mandarinorum	71
151	Quercetin-3'-methyl	Aerial parts	C. mandarinorum	71
152	Pectolinarigenin	Roots	C. indicum	49
153	5-hydroxy-6,7,4'-trimethoxyflavone	Aerial parts	C. inerme	53
154	5,7,4'-trihydroxy-flavone	Leaves	C. trichotomum	72
155	5,7,4'-trihydroxy-3'-methylmethoxyflavone	Whole plants	C. serratum	56
156	3,2,3'-trihydroxy-4'-methoxycalcone	Seeds	C. phlomidis	74
157	3,2'-di-hydroxy-4,5'-dimethoxychalcone	Seeds	C. phlomidis	74
158	5-hydroxy-7',7-methoxyflavonone	Seeds	C. phlomidis	74
159	5-hydroxy-7'-methoxyflavonone	Seeds	C. phlomidis	74
160	Kaempferol-3-O-a-L-rhamnopyranoside	Seeds	C. phlomidis	74
161	Hispidulin-7-O-glucopyranoside	Aerial parts	C. infortunatum	63
162	Naringin-4'-O-a-L-rhamnopyranoside	Flowers	C. phlomidis	66

Phenylethanoid glycosides

No.	Phytochemicals	Plant parts	Source	Ref.
163	Decaffeoylverbascoside	Aerial parts	C. inerme	75
164	Dangrodense B	Roots	C. bungei	40
165	Dangrodense E	Aerial parts	C. bungei	25
166	Verbascoside	Roots	C. villosum	49
167	Isoverbacoside	Roots	C. inerme	75
168	Campeoside I	Aerial parts	C. bungei	76
169	Cistanoside E	Aerial parts	C. inerme	75
170	Purpureasis B	Aerial parts	C. inerme	75
171	2-phenylethyl-3-O-(6-demethoxy-3,4-dihydroxyphenyl)-b-D-glucopyranoside	Roots	C. bungei	32
172	Campeoside II	Aerial parts	C. bungei	76
173	Martynoside	Whole plants	C. japonicum	55
174	Jionoside D	Aerial parts	C. trichotomum	75
175	Clerodendronoside	Aerial parts	C. bungei	76
176	Cistanoside C	Aerial parts	C. bungei	76
177	Jionoside C	Aerial parts	C. bungei	76
178	Leucoceptoside A	Roots	C. bungei	40
179	Cistanoside D	Aerial parts	C. bungei	76
180	Cistanoside F	Aerial parts	C. bungei	76
181	Bunegine A	Aerial parts	C. bungei	78
182	Monoaetymartynoside	Whole plants	C. japonicum	55
183	Clerodendoa A	Whole plants	C. japonicum	55
184	3,4'-di-hydroxyphenylethanol	Whole plants	C. indicum	25
185	Isomartynoside	Roots	C. bungei	40
186	Serratunoside A	Aerial parts	C. serratum	79
187	Bunginoside A	Roots	C. bungei	40
188	3'-O-di-O-acetylmartynoside	Roots	C. bungei	40
189	Acetylmartynoside A	Roots	C. bungei	40
190	Acetylmartynoside B	Roots	C. bungei	40
191	3'-O-acetylmartynoside	Roots	C. bungei	40
192	2'-O-acetylmartynoside	Roots	C. bungei	40
193	Martynoside	Roots	C. bungei	40
194	Trichotoside	Roots	C. bungei	40
200	Markhaminoside F	Aerial parts	C. inerme	75
201	Benzylicglycoside	Aerial parts	C. inerme	75
202	Myricoside	Aerial parts	C. serratum	79

Steroids and steroidal glycosides

No.	Phytochemicals	Plant parts	Source	Ref.
203	Stigmasterol	Roots	C. indicum	49
204	2-methylsterol	Leaves	C. trichotomum	47
205	Stigmasterol-3-O-β-D-glucopyranoside	Whole plants	C. serratum	73
206	Serratin	Whole plants	C. serratum	80
207	Clerosterol	Roots	C. indicum	49
208	Bungesterol	Whole plants	C. bungei	51
209	4αβ-methyl-24β,4αβ-stigmasterol	Aerial parts	C. inerme	36
210	4αβ,24,24-trimethyl-5β-cholest-7,25-dien-3β-ol	Whole plants	C. inerme	62
211	4αβ-methyl-5β-cholest-7,25-dien-3β-ol	Whole plants	C. inerme	62
212	Gramsterol	Whole plants	C. inerme	62
213	4αβ-methyl-24α,4β-stigmasterol	Whole plants	C. inerme	62
214	Obtussifolol	Whole plants	C. inerme	62
215	24,24-dimethyl-5β-cholest-7,25-dien-3β-ol	Whole plants	C. inerme	62
216	22,23-dihydrotigmasterol	Whole plants	C. japonicum	55
217	25,26-dehydrotigmasterol	Whole plants	C. inerme	55
218	22-dehydrochlorosterol β-D-(6-O-margaroyl)-glucopyranoside	Leaves	C. trichotomum	82
219	Sitosterol	Leaves	C. trichotomum	47
220	Stigmasterol	Aerial parts	C. inerme	48
221	24β,25-dihydroxycholest-5,22E,25-trien-3β-ol	Whole plants	C. fragrans	83
222	24αβ,25-dihydroxycholest-5,22E,25-trien-3β-ol	Whole plants	C. fragrans	83
223	Colebrin A	Aerial parts	C. colebrookianum	84
224	Colebrin B	Aerial parts	C. colebrookianum	84
225	Colebrin C	Aerial parts	C. colebrookianum	84
226	Colebrin D	Aerial parts	C. colebrookianum	84
227	Colebrin E	Aerial parts	C. colebrookianum	84
228	Dehydroprop-o-ferasterol	Aerial parts	C. splendens	25
229	Campesterol	Stems	C. phlomidis	85
230	Cholestanol	Stems	C. phlomidis	85
231	(22E)-stigmasta-4,22,25-trien-3-one	Roots	C. indicum	49
232	Stigmasta-4,22,25-trien-3-one	Roots	C. indicum	49
233	Stigmasta-4,22,25-trien-3-one	Roots	C. indicum	49
234	22-dehydrocholersterol	Roots	C. indicum	49

(continued on next page)
on the pentacyclic ring on C12: a furan ring, dihydrofuran ring, lactone ring, aβ-undersaturated lactone ring, and tetrahydrofuran ring. Many of these chemical compounds have shown remarkable bioactivities in vivo or in vitro study.

2.4. Triterpenoids

So far, a total of thirty-one triterpenoids (89–119), including 3-O-acetylatedolic acid (89), 3-O-acetylatedolic acid (90), glu- tinol (91), friedelin (92), taraxerol (93), clerodene (94), α-amyrin (95), glocidine (96), glocidionol (97), globichiol (98), lupeol (99), α-amyrin 3-undecanolate (100), lupeol acetate (101), lupeol 3-palmitate (102), melastemic acid (103), β-amyrin acetate (104), betulinic acid (105), magnifoli (106), glutinone (107), etc. have been purified and characterized from the whole plants, roots, leaves, or aerial parts of C. inerme, C. trichotomum, C. indicum, C. bungei, Clerodendrum canescens, Clerodendrum villasum, Clerodendrum wildii, Clerodendrum japonicum, C. serratum, Clerodendrum philippinum, or Clerodendrum glabrum.

2.5. Flavonoid and flavonoid glycosides

Flavonoids, important secondary metabolites, are widespread throughout the plant kingdom. Flavonoids and their derivatives are the main bioactive components of this genus, and receiving extreme attention. Up to now, forty-three flavonoid and flavonoid glycosides (120–162), including astragalin (123), apigenin (124), and tricin (125), hesperidin (126), hesperidin-glucuronide (127), eupafolin (128), scutellarein (130), pectolinigr genin (131), 7-hydroxylavone (132), 7-hydroxyflavanone 7-O-glucoside (133), luteolin (134), chalcone glycoside (135), etc. have been isolated and identified from the roots, leaves, aerial parts of different Clerodendrum species.

2.6. Phenylethanoid glycosides

Phenylethanoid glycosides are another kind of characteristic compounds of the Clerodendrum species with antioxidant activity. To date, forty phenylethanoid glycosides (163–202) have been obtained from this genus and the structure contains three parts: sugar chain, phenylacyl, and coffee-acyl or ferulic-acyl. The sugar chain is often composed of glucose, rhamnose, xylose or arabinose. The phenylacyl is connected with the C4 or C6 of glucose. The coffee-acyl or ferulic-acyl is often connected with the C4 or C6 of glucose.
Total forty-three steroids and steroid glycosides (203–245) have been obtained and identified from Clerodendrum species, mainly from C. trichotomum, Clerodendrum colebrookianum, and C. bungei.

2.8. Cyclohexylethanoids

A series of cyclohexylethanoids (246–258), including two new compounds 1-hydroxy-1-(8-palmitoyloxethyl) cyclohexaneone (246) and 5-O-butyl clerodin D (247), together with four known ones, rengyolone (248), clerodin C (249), clerodin B (250), rengyol (251), were isolated from the leaves of C. trichotomum, and the others (252–258) were obtained and identified from the aerial parts and roots of C. bungei.

2.9. Anthraquinones

Only four anthraquinones (259–262), aloe-emodin (259), emodin (260), chrysophanol (261) and 2,5-dimethoxybenzoquinone (262), have been isolated and identified from the stem of C. trichotomum and C. serratum.

2.10. Cyanogenic glycosides

Two cyanogenic glycosides (263–264), including (R)-lucumin (263) and (R)-prunasin (264) have been obtained and identified from the leaves of C. grayi.

2.11. Others

A range of other compounds (265–283) were isolated and identified from the aerial parts, stems, leaves and roots of C. inerme, C. trichotomum, C. serratum, C. bungei, C. phlomidis, and Clerodendrum kiangsiense.

3. Pharmacological properties

Wide clinical uses of traditional Chinese medicine of the genus Clerodendrum have inspired researchers to investigate its pharmacological properties and to validate the uses of different species as therapeutic remedy. More and more studies showed that extracts or active compounds isolated from Clerodendrum species exhibited a wide range of pharmacological activities (Table 2).

3.1. Anti-inflammatory and anti-nociceptive activities

Many studies have provided data on anti-inflammatory effects of C. phlomidis, C. petasites, Clerodendrum laevifolium, C. inerme, C. bungei, and C. serratum extracts of aerial parts, roots, leaves and stems. Of these, lots of studies have provided data on anti-inflammatory effects of C. serratum (Bharangi) extracts of aerial parts, roots and stems. An aqueous extract of roots reported significant anti-inflammatory effects at high dose (180 mg/kg, p.o.) in granuloma pouch model in rats. Roots in low dose (90 mg/kg, p.o.) and stems in high dose (180 mg/kg, p.o.) showed significant preventive effects in comparison with dexamethasone (a standard anti-inflammatory agent). Thus, it can be postulated that roots are more effective than stems and it would be useful as antiallergic and anti-inflammatory drug for disease like asthma. 50, 56 The methanolic extract of the aerial parts of C. serratum was demonstrated dual inhibitory effects on arachidonic acid metabolism or an inhibitor of phospholipase A2 when studied in ethyl phenylpropionate-induced ear edema and in carrageenan and arachidonic acid induced hind paw edema in rats, and the extract exerted an inhibitory activity on the acute phase of inflammation due to an inhibition of synthesis and inflammatory mediators release through cyclooxygenase and lipooxygenase pathways. 57 In contrast, the alcoholic root extract of C. serratum showed a potent antiinflammatory effect by reducing paw edema (acute) and cotton-pellet granuloma (chronic) in inflammation models. 58 Apigenin-7-glucoside isolated from C. serratum roots has been demonstrated for anti-inflammatory effects in rats. 59 The hydro-alcoholic extract (50, 200 and 500 mg/kg dose) of Bharangyadi preparation showed inhibition of carrageenan induced inflammation due to the inhibition of the enzyme cyclooxygenase and subsequent inhibition of prostaglandin synthesis which rationalizes traditional use of this plant in bronchial asthma and related inflammatory conditions. 60 This anti-inflammatory effect of C. serratum might be observed due to flavonoids and saponins, but other active substances might also be responsible leading to synergistic effects. Prakash et al reported that the monomer compound 3-hydroxy, 2-methoxy-sodium butanoate (HMSB, at doses of 25, 50, 100 mg/kg, i.g.) isolated from the leaves of C. phlomidis displayed anti-inflammatory and anti-arthritic effects on carrageenan-induced inflammation and Freund complete adjuvant (FCA)-induced arthritic rat models. The results showed that HMSB could significantly reduce the paw edema response, decrease lysosomal enzymes, protein-bound carbohydrates, and acute phase protein levels. In addition, HMSB could significantly down-regulate pro-inflammatory cytokines TNF-IL-1 and IL-6 protein levels and mRNA expression in the joints with a dose-dependent manner. 61 These results indicated that the HMSB possess considerable potency in anti-inflammatory action and has a prominent anti-arthritic effect. Panthong et al evaluated the anti-inflammatory and antipyretic activities of the methanol extract (at doses of 1.0, 2.0, 4.0 mg/ear, i.g.) from C. petasites. The results proved that the extract possessed moderate inhibitory activity on acute phase of inflammation in a dose-related manner on ethyl phenylpropiolate-induced ear edema (ED50 = 2.34 mg/ear) as well as carrageenan-induced paw edema (ED50 = 420.41 mg/kg) in rats, and also reduced the alkaline phosphatase activity in serum. Moreover, the extract exhibited an excellent antipyretic effect in yeast-induced hyperthermic rats. 62 The anti-inflammatory and antipyretic effects of the methanol extract may be caused by the inhibition of the prostaglandin synthesis. The ethanol extract from the leaves of C. laevifolium exhibited the greatest anti-inflammatory activity against lipooxygenase with the IC50 of 14.12 μg/ml in vitro study. 63 In addition, the methanolic extract from the aerial parts of C. inerme exhibited anti-inflammatory activity at doses of 50, 100 and 200 mg/kg in formalin induced hind paw edema animals. 63 The anti-inflammatory activity of petroleum ether, chloroform, ethyl acetate, alcohol, and aqueous extracts of fresh leaves from Clerodendrum paniculatum Linn was evaluated by in vitro (human red blood cell membrane stabilization method) and in vivo methods (0.1 ml of 1% w/v carrageenan-induced rat paw edema model). Petroleum ether and chloroform extracts which showed, best in vitro anti-inflammatory activity also showed a dose dependent (200 and 400 mg/kg) significant reduction in paw edema when compared to the control (indomethacin, 10 mg/kg). 64 Srissok et al found that two flavones, hispidulin (126) and acacetin (146) isolated from the ethyl acetate (EA) extracts from the leaves of C. inerme exhibit the most potent inhibitory activity on nitric oxide (NO) production in RAW 264.7 macrophage stimulated with lipopolysaccharide (LPS). Furthermore, IC50 values of hispidulin and acacetin were 43.7 ± 4.0 and 43.5 ± 6.4 μM, respectively. Hispidulin also inhibited prosta glandin E2 (PGE2) production as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 expressions via the blockade of nuclear factor kappa B (NF-κB) DNA binding activity and the c-Jun NH2-terminal protein kinase (JNK) way. 65
Pharmacological activities

Pharmacological activities	Extract/Compound	Types	Testing subjects	Dose	Effects	Ref.
Anti-inflammatory and anti-nociceptive activity	3-Hydroxy, 2-methoxy-sodium	In vivo	Carrageenan-induced inflammation and freund complete adjoint (FCA)-induced arthritic rat models	25, 50, 100 mg/kg, i.g.	Reduced the paw edema response, decrease lysosomal enzymes, protein-bound carbohydrates, and acute phase protein levels	90
	Methanol extract from C. petasites	In vivo	Ethyl phenylpropionate-induced ear edema and carrageenan-induced paw edema in rats	1, 2, 4 mg/ear, i.g.	Inhibited prostaglandin synthesis	91
	Ethanol extract from C. laevifolium	in vitro	lipoxynase	10–1000 µg/ml	Displayed the greatest inhibition capacity with the IC50 value of 14.12 µg/ml	92
	Methanolic extract from C. inerme	In vivo	Formalin induced hind paw edema animals	50, 100, 200 mg/kg, i.g.	Inhibited main inflammatory mediators Showed 57.15% protection and 48.98% protection of HRBC in hypotonic solution, respectively	93
Petroleum ether and chloroform extracts from C. paniculatum	In vitro	Human red blood cell membrane stabilization method	1000 µg/ml		93	
Petroleum ether and chloroform extracts from C. paniculatum	In vivo	Carrageenan-induced rat paw edema model	200 400 mg/kg, i.g.	Inhibited of the cyclooxygenase leading to inhibition of prostaglandin synthesis	93	
Hipsidulin	In vitro	RAW 264.7 macrophage stimulated with LPS	12.5, 25, 50, 100, and 200 µM		94	
Methanolic extract from C. serratum	In vivo	Carrageenan and arachidonic acid induced hind paw edema in rats	50, 100, 200 mg/kg, i.g.	Inhibition of synthesis and inflammatory mediators release prolonged the latency reaction, suppressed the prostaglandin production	97	
n-Butyl extract from C. bungei	In vivo	acetic acid-induced writhing model	1.0 g/kg, i.p.		102	
Aqueous extracts from C. bungei	In vivo	DNF-induced hypersensitivity	10 and 20 g/kg, i.p.	Restrained the phlogistic infiltration, improved the ear edema, reduced the writhes of abdominal cavity and the ear edema	103	
Methanolic extract of C. indicum	In vivo	Carrageenan and arachidonic acid induced hind paw edema in rats	200 and 400 mg/kg, i.g.		104	
Aqueous extract from C. inerme	In vivo	Milk-induced hyperpyrexia in rabbits	100 and 200 mg/kg, p.o.	Raising the pain threshold at different time of observation	105	
Anti-oxidant activity	Ethanol extract from C. infortunatum	In vitro	DPPH-radicals	250 µg/ml	Raising the pain threshold at different time of observation	106
	Phenolic extracts from C. volubile	In vitro	DPPH-radicals, OH radicals	0–100 µg/ml	Inhibited DPPH free radicals and OH radicals	107
	Monoacletylarninioside	In vitro	DPPH-radicals	25 µmol/l	Inhibited DPPH	108
	3',4'-O-acetyltarninioside	In vitro	DPPH-radicals	37 µmol/l	Inhibited DPPH	108
	Acteoside	In vitro	DPPH-radicals	60 µmol/l	Inhibited DPPH	108
	Methanolic extract from C. inerme	In vitro	DPPH-radicals	100 µg/ml	Inhibited DPPH	53
	5-Hydroxy-6,7,4'-trimethoxyflavone	In vitro	DPPH-radicals	20 µM	Inhibited DPPH	53
	Ethanallic extract from C. volubile	In vitro	DPPH-radicals, FRAP, hydrogen peroxide radical DPPH-radicals, FRAP, hydrogen peroxide radical	50–250 µg/ml	Inhibited DPPH, FRAP, hydrogen peroxide radical	109
	Methanolic extract from C. serratum	In vitro	DPPH-radicals, AR f-2-pyrrolidinone radicals, AR f-2-pyrrolidinone radicals	0.125–1.0 mg/ml	Inhibited DPPH	110
	Methanolic extract from C. serratum	In vitro	DPPH-radicals	200–1000 µg/ml	Inhibited DPPH	111
	Phenolic extracts from C. volubile	In vitro, in vivo	DPPH-radicals, lipid peroxidation assay DPPH-radicals, lipid peroxidation assay	0–312.60 µg/ml	Reduced the MDA content	107
	Methanolic extract from C. umbellatum	In vivo	Schistosoma mansoni-infected mice	100, 200, and 400 mg/kg, i.g.	Decreased MDA level, increase CAT activity and GSH level	113
	Methanolic extracts from C. siphananthus	In vitro	Thioyanate method, DPPH-radicals	0–120 mg/ml	Scavenging lipid peroxide (IC50 = 8 mg/ml) and DPPH radicals (IC50 = 7 mg/ml)	114
Anti-cancer activity	In vivo	Carrageenan-induced inflammation and freund complete adjoint (FCA)-induced arthritic rat models	25, 50, 100 mg/kg, i.g.	Reduced the number of writhes with 62.57%, inhibited the acetic acid-induced writhing test with 70.76%, respectively	115,116	
Table 2 (continued)

Pharmacological activities	Extract/Compound	Types	Testing subjects	Dose	Effects	Ref.
Anti-obesity activity	Methanolic extract from C. serratum	In vitro	DMBA-induced skin tumorigenesis in male mice, DLA cell model	300, 600 and 900 mg/kg, i.g., 100 and 200 mg/kg	Curtailed tumor development, Reduced skin papilloma incidence and multiplicity, Exhibited cytotoxicity	117
	Methanolic extract from C. serratum	In vitro	HL-60, SMMC-7721, IA-549, MCF-7 cell lines	1.8–5.0 μM		89
	Cryptopyallonol, fortinu E, 12-methoxy-6,11,14,16-tetrahydroxy-17(15→16)-abeno-5,8,11,13-abietatetraen-3,7-dione	In vitro	BGC-823, Huh-7, KB, KE-97, and Jurkat	0.83–50.99 μM	Exhibited cytotoxicity	41
	Compounds 45, 70, 76, 81, and 82	In vitro	HepG2	0.025–250 μg/ml	Inhibited HepG2 cells proliferation	119
	Total flavonoids from C. Bungei	In vitro	A549, Jurkat, BGC-823 and 293T WT	7.51–19.38 μM	Exhibited cytotoxicity	43
	Compounds 240 and 243	In vitro	Hela cell	28.92–35.67 μg/ml	Exhibited moderate cytotoxicity	82
Anti-bacterial activity	Methanolic extract from C. siphonanthus	In vitro	Klebsiella pneumoniae, Proteus mirabilis, Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Bacillus subtilis	5 μg/disc	The inhibition zones were 30, 16, 12, 11.5 and 10 mm, respectively	114
	n-Butyl extract from C. bungei	In vitro	Staphylococcus aureus and Micrococcus pyogenes	50 μg/ml	The MIC values were 50 mg/ml and 25 mg/ml, respectively	120
	Aqueous extract from C. bungei	In vitro	Rhizoctonia cerealis, Fusarium graminearum, Rhizoctonia solani, and Sclerotinia verticillarum	50–400 μg/ml	Displayed the strong antibacterial action on Fusarium graminearum, and the MIC values 10 mg/ml	121
Anti-fungal activity	Ethyl acetate extract from C. inerme	In vitro	Alternaria, Lasiodiplodia, Pestalotiopsis, Nigrospora, Diaporthe, and Phomopsis	50 μg/disc	Inhibited the growth of most fungi	122
	Ethyl acetate and chloroform extracts from C. infortunatum	In vitro	B. megaterium, S. typhi, K. pneumoniae and to fungi against A. niger and C. albicans	1–512 μg/ml	Inhibited B. subtilis, K. pneumonia, S. aureus and E. coli growth	123
Anti-plasmodial activity	Ethyl acetate, methanol and aqueous extracts from C. rotundifolium	In vitro	NF54 chloroquine sensitive and FCR3 chloroquine-resistant strains of Plasmodium falciparum	5 μg/ml	Inhibited the growth of NF54 and FCR3 strains of Plasmodium falciparum	124
Insecticidal activity	Aqueous extract from C. chinense	In vitro	A. subpictus, A. albopictus, and C. tritaeniorhynchus	647.05–6877.28 μg/ml	Reduced populations of vector mosquitoes without detrimental effects on predation rates of non-target aquatic organisms, such as D. indicus, A. bouvieri and G. affinis	125
Anti-hypertensive activity	Aqueous extract from C. colebrookianum	In vivo, in vitro	Fructose-induced hypertension model in rats and in isolated frog heart.	50–100 mg/ml		126
	Compounds 64, 166, 178, 196	In vitro	ACE and α-glucosidase inhibitory activity assay	0.1–0.7 mM	Inhibited ACE and α-glucosidase.	123
Anti-obesity activity	Methanolic extract from C. phlomidis	In vivo	High fat diet induced obesity in female mice	200–400 mg/kg, i.g.	Decreased food consumption, body weight, adiposity index, pancreatic lipase activity, adiposity diameter, glucose, insulin, SGOT, SGPT, TG, TC and LDL-c levels	40
	Aqueous extract from C. glandulosum	In vivo	High fat diet induced obesity in C57BL/6J mice	0–200 μg/ml	Decreased adipogenesis, TG accumulation, leptin release and GJPH activity	130
Anti-diarrheal activity	Methanolic extract and chloroform fraction from the C. indicum	In vitro	Castor oil-induced diarrhea testing	400 mg/kg	Inhibited defecation	104
	Methanolic extract from C. phlomidis	In vivo	Castor oil induced diarrhea and PGE2 induced enterpooling in rats	600–800 mg/kg, p.o.	Exhibited significant inhibitory activity	131

(continued on next page)
Narayanan et al (1999) studied anti-nociceptive effects of an alcoholic extract of C. serratum roots (50, 100 and 200 mg/kg) in acetic acid induced writhing (200 mg/kg) and hot plate method (100 and 200 mg/kg). A reduction in the number of abdominal constrictions in acetic acid induced writhing in mice indicated the anti-nociceptive effect of C. serratum which has further been supported by the findings of hot plate method where a significant increase in area under curve was observed. However, the response was much less when compared to morphine and exact mechanism remains to be investigated in detail. The authors have also indicated significant antipyretic activity of alcoholic extract (100 and 200 mg/kg) of C. serratum roots in rabbit model through a dose dependent reduction in pyrexia after administration of C. serratum. The ethanolic extract of C. serratum leaves has been found to produce considerable centrally acting analgesic activity in tail flick test at 250 mg/kg dose and peripherally acting analgesic activity in acetic acid induced writhing test at 500 mg/kg dose which was found comparable with diclofenac sodium. Blockade of capillary permeability or release of endogenous substances like prostaglandins might be a postulated mechanism. In another study, the author has established a potent analgesic effect of methanolic extract of the aerial parts of C. serratum when injected subcutaneously into the right dorsal hind paw of the mice via an inhibition of peripherally and centrally mediated nociception in early as well as in late phase.

The n-butyl extract (at dose of 1.0 g/kg, i.p.) from the roots of the C. bungei displayed a significant anti-nociceptive effect in an acetic acid-induced writhing model, prolonged the latency reaction in the hot-plate test in 15, 30, 60 and 90 min in mice. Moreover, the extracts administered in combination with naloxone significantly prolonged the latency reaction, and indicating that naloxone did not revert the action of the extract effect. Also, the extracts notably suppressed the production of prostaglandin (PG) in a dose-dependent manner. The extracts from the roots of C. bungei significantly restrained the phlogistic infiltration, improved the ear edema and reduced the writhes of abdominal cavity and the ear edema induced by 2,4-dinitro-1-fluorobenzene (DNFB)-induced hypersensitivity. The methanolic extract of C. indicum at doses of 200 and 400 mg/kg showed a significant (P < 0.001) and dose-dependent reduction in the number of writhes with 62.57% and 70.76% of inhibition in the acetic acid-induced writhing test, respectively. Thirumal et al reported that the aqueous extract obtained from C. inerme leaves (at doses of 100 and 200 mg/kg, p.o.) displayed significant analgesic effect by raising the pain threshold at different time of observation (0–120 min).

The combination of antiinflammatory, anti-nociceptive and antipyretic effects of the Clerodendrum genus indicated a prospect of intervention with prostaglandin synthesis, as prostaglandins have been established as a common mediator in all these responses. However, this possibility remains to be investigated.

Table 2 (continued)

Pharmacological activities	Extract/Compound	Types	Testing subjects	Dose	Effects	Ref.
Hepatoprotective activity	Ethanol extract of C. inerme	In vivo	CCl4-induced liver damage in rats	200 mg/kg, i.g.	Decreased the serum ALT, AST, ALP, TGL, TC, and increased the GSH level	132
	Alcoholic extract from C. serratum	In vivo	CCl4-induced wistar rats	20 mg/kg, i.g.	Reduced the level of serum bilirubin and liver function marker enzymes	133
	Alcoholic and aqueous extract from C. serratum	In vivo	CCl4-induced liver damage in rats	200 mg/kg, i.g.	Restored AST, ALT, and ALP level	134
	Methanolic extract from C. umbellatum	In vivo	Schistosoma mansoni-infected mice	100, 200 and 400 mg/kg, i.g.	Reduced ALT activity and increase total protein level	113
	Aqueous extract from C. copitatum	In vivo	High fat diet fed rats	100, 400 and 800 mg/kg, i.g.	Reduced the mean fasting plasma glucose concentration, TC, VLDL-c and LDL-c	136
	Aqueous extract from C. glandulosum	In vivo	High fat diet fed rats	200, 400 and 800 mg/kg, i.g.	Suppressed the HMG CoA reductase and cholesterol ester synthase activity, increased the plasma lecithin cholesterol acyl transferase and lipoprotein lipase levels	137
Memory enhancing effects	Methanolic extract from C. infortunatum	In vivo	Rectangular maze and Y maze (interoceptive behavioral models)	100 and 200 mg/kg, i.g.	Inhibited depolarization-evoked glutamate release and cytosolic free Ca\(^{2+}\) in concentration in the hippocampal nerve terminals, inhibited glutamate release	138
Neuroprotective effects	Compound 46	In vivo	Rat hippocampal nerve terminals (synaptosomes)	10 and 50 mg/kg, i.p.	Exhibited significantly tracheal smooth muscle relaxant activity	69
Other activities	Ethanol extract from C. petasites	In vitro	Isolated guinea-pig	2.25–9 mg/ml	Reduced spontaneous activity, decreased exploratory behavioral profiles	9
	Methanolic extract from C phlomidis	In vivo	Phenobarbitone sodium-induced sleeping time	200, 400 and 600 mg/kg, i.g.	Reduced ALT activity and increase total protein level	139
	Ethanol extract from C. inerme	In vivo	Spontaneous locomotor activity or performance in the rotarod test	100 mg/kg, i.p.	Reduced methamphetamine-induced hyperlocomotion in mice	62
thoroughly. Advanced studies can be undertaken in the direction of purification of the chemical constituents of the leaves and investigation of the biochemical pathways for the development of a potent analgesic agent with a low toxicity and better therapeutic index.

3.2. Antioxidant activity

Gouthamchandra et al have demonstrated the antioxidant activity of the ethanol extract of leaves of C. infortunatum with the highest scavenging activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay (IC50 values 250 μg/ml). Moreover, the ethanol extract at 250 μg/ml concentration displayed significantly scavenging activity in hydroxyl, superoxide anion, and nitric oxide radical in vitro, and the scavenging ratio were 68.58%, 62.06%, and 52.65%, respectively.106 Adeyegha et al reported that the phenolic (free and bound) extracts from the leaves of Clerodendrum voluble scavenging DPPH free radicals and OH radicals in a concentration dependent manner. Interestingly, the IC50 values revealed that the free soluble phenolic extract (IC50 = 83.18 μg/ml and 924.90 μg/ml) have a significantly higher scavenging ability against DPPH free radicals and OH radicals than the bound phenolic extract (IC50 = 133.40 μg/ml and 1224.0 μg/ml), respectively.107 Three phenylethanoid glycosides mono-acetylmartinoside (182), 3’4’-O-acetylmartynoside (188) and acetoside (199) isolated from the roots of Clerodendrum lindleyi exhibited significant antioxidant activity in DPPH assay, and the radical scavenging rate were 25, 37, 60 μmol/L, respectively.108 The methanolic extract and 5-hydroxy-6,7,4'-trimethoxyflavone (153) isolated from the aerial parts of C. inerme showed notably scavenging activity with maximum inhibition of 61.84% for the methanolic extract (100 μg/ml) and 371.9% for 5-hydroxy-6,7,4'-trimethoxyflavone (20 μm), respectively, using DPPH assay.53

Bhujbal et al have demonstrated in-vitro antioxidant effects of ethanolic root extract of C. serratum (50–250 μg/ml) at various concentrations in the DPPH radical scavenging assay (IC50 value 175 μg/ml); FRAP (ferric reducing antioxidant power) assay and hydrogen peroxide radical scavenging assay (IC50 value 85 μg/ml) and suggested the role of polyphenols and flavonoids for the observed antioxidant effects in the extract.109 The antioxidant potential of methanolic extract of leaves of C. serratum was found more potent (EC50 value 0.51 μg/ml) due to higher polyphenolic content than other extracts (petroleum ether, chloroform and water) when evaluated in trolox equivalent antioxidant capacity (TEAC) in DPPH and 2,20-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays.110 Antioxidant potential of methanolic extract (200–1000 μg/ml) from the leaves of C. serratum was further supported by additional reports on DPPH assay, reducing power assay and total antioxidant activity assay.111

Feng et al reported that the flavonoid compound from C. bungei exhibited strong scavenging capability on nitrite, superoxide anion free radicals and hydroxyl free radicals, and also showed stronger antioxidant effect on pork fat than vitamin C.112 Also, the phenolic extracts (free and bound) from the C. voluble leaf were able to significantly reduce the MDA content in a dose dependent manner (0–312.60 μg/ml). The free soluble phenolic extract (192.30–779.90%) had a significantly higher concentration dependent inhibition of MDA compared with that of the bound phenolic extract (192.30–91.30%).107 Jatsa et al reported that the methanolic extract (at doses of 100, 200, and 400 mg/kg, i.g.) of Clerodendrum umbellatum significantly decrease malondialdehyde (MDA) level, increase catalase (CAT) activity and glutathione level.113 The methanolic extracts of leaves of Clerodendrum siphoneanthus displayed extremely effective in scavenging lipid peroxide (IC50 = 8 mg/ml) and DPPH radicals (IC50 = 7 mg/ml).114

3.3. Anticancer activity

Chinchali et al reported that administration of methanolic extract of C. serratum leaves significantly reduced tumor development in 7,12-dimethylbenz[a]anthracene (DMBA) induced skin carcinogenicity in testis, liver and kidney of mice.115,116 The researchers have further demonstrated that flavonoids and phenolics can effectively reduce the incidence and multiplicity of skin papilloma, many investigators have confirmed anti-cancer property of C. serratum by various in vivo and in-vitro studies.117,118 The methanolic extract of roots of C. serratum exhibited notably in vivo anticancer activity using DLA cell model at the dose 100 and 200 mg/kg body weight.117 Xu et al reported that diterpenoids cryptopaponin (281), fortunin E (282), 12-methoxy-6,11,14,16-tetrahydroxy-17(15→16)-abero-5,8,11,13-abietatetraen-3,7-dione (283) isolated from the hydroalcoholic extract of the herb of C. kiangsiense exhibited significant cytotoxicity against human myeloid leukemia (HL-60), hepatocellular carcinoma (SMMC-7721), lung cancer (A-549) and breast cancer (MCF-7) cell lines, and the range of IC50 values was 1.8–5.0 μM.109 The results suggested that these compounds might have promising potential to be anticancer agents.

Compounds 45, 70, 76, 78, 81 and 82 isolated and identified from the roots of C. trichotomum displayed remarkable in vitro cytotoxicity activity against five human cancer cell lines (BGC-823, Huh-7, KB, KE-97, and Jurkat) by using the CellTiter Glo™ Luminescent cell viability assay method with the IC50 values ranging from 0.83 to 50.99 μM. Among of them, teuvincenone E (81) exhibited the most potent activity against these five cell lines with the IC50 values of 3.95, 5.37, 1.18, 1.27, and 0.83 μM, respectively.41 The total flavonoids isolated from the C. Bungei significantly inhibited the human hepatoma HepG2 cells proliferation at concentrations of 0.025, 0.25, 2.5, 25, 250 μg/ml in vitro, and the inhibition ratios were 5.5%, 12.73%, 14.84%, 62.44%, and 76.81%, respectively.119 A dimeric diterpene trichotomone (55) isolated from the roots of the C. trichotomum exhibited strong in vitro cytotoxicities against several human cancer cell lines (A549, Jurkat, BGC-823 and 293T WT) with IC50 values ranged from 7.51 to 19.38 μM.115 Two steroids, (20R,22E,24R)-3β-hydroxy-stigmasta-5,22,25-trien-7-one (240), and (20R,22E,24R)-stigmasta-5,22,25-trien-3β,7β-diol (243) isolated from the leaves of C. trichotomum exhibited moderate cytotoxicity against Hela cell with IC50 values at 35.67 and 28.92 μg/ml, respectively.120

3.4. Antimicrobial activity

3.4.1. Antibacterial activity

Arokiyaraj et al reported that the methanolic extract of leaves of C. siphoneanthus exhibited significant antibacterial effect against Klebsiella pneumoniae, Proteus mirabilis, Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Bacillus subtilis, and the inhibition zones were 30, 16, 16, 12, 11.5 and 10 mm, respectively.114 Liu et al reported that the n-butyl extract from the roots of C. bungei displayed prominent antibacterial effect against Staphylococcus aureus and Micrococcus pyogenes, and the minimal inhibitory concentration (MIC) values were 50 mg/ml and 25 mg/ml, respectively.120 Moreover, the aqueous extracts from the roots of C. bungei have notably antibacterial action on Rhizoctonia cerealis, Fusarium graminearum, Rhizoctonia solani, and Sclerotinia turram, especially the aqueous extract exhibited strongest antibacterial action on Fusarium graminearum, and the MIC value is 10 mg/ml.121 The methanolic extract, and chloroform fraction of C. indicum showed a moderate activity against the tested microorganisms in terms of both zones of inhibition (ranged from 9 to 13 mm, 10 to 13 mm and 10 to 13 mm, respectively, at a concentration of 400 μg/disc) and spectrum of activity.104
3.4.2. Antifungal activity

Gong et al firstly found that the crude ethyl acetate extract of endophytes from the stems of C. inerme exhibit broad in vitro antifungal activity against a number of fungal pathogens, including Alternaria, Lasiodiplodia, Pestalotiopsis, Nigrospora, Diaporthe, and Phomopsis, and inhibit the growth of most fungi. The ethyl acetate and chloroform extracts of root, leaf, and stem of the C. infortunatum showed significant inhibitory activity over the bacteria and fungus comparable to the standard drug tetracycline. The maximum average diameter zone of inhibition was recorded to bacterial strains such as Bacillus megaterium, S. typhi, K. pneumoniae and to fungi against Anisops niger and Clerodendrum albicans. The MIC values of ethyl acetate and chloroform root extract were determined as 64 μg/ml to B. subtilis and K. pneumoniae; 8 μg/ml to S. aureus and E. coli for both ethyl acetate and chloroform root extracts but only S. typhi and S. -ß-haemolytics for chloroform extract.123

3.4.3. Antiplasmodial activity

Adia et al revealed that the ethyl acetate, methanol and aqueous extracts from the leaves of Clerodendrum rotundifolium exhibit significantly in vitro antiplasmodial activity against the chloroquine-sensitive and chloroquine resistant Plasmodium falciparum strains with the IC50 < 5 μg/ml for the first time.124

3.4.4. Insecticidal activity

Lots of pharmacological tests and clinical observations have shown that different extract and/ or compound prescriptions derived from C. chinense have significant insecticidal effects against diseases and organisms including schistosomiasis and trichomoniiasis. Govindarajan et al reported that C. chinense-fabricated silver nanoparticles (Ag NPs) display higher toxicity against Anisops subpectis, Anisops albopictus, and Clerodendrum tritaeniorhynchus with the LC50 values of 10.23, 11.10, and 12.38 μg/ml, respectively. Also, C. chinense-fabricated Ag NPs were found safer to non-target organisms Diplonychus indicus, Anisops bouvieri and Gambusia affinis, with respectively LC50 values ranging from 647.05 to 6877.28 μg/ml.125 These results indicated that C. chinense-fabricated Ag NPs are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against non-target aquatic organisms.

3.5. Antihypertensive activity

Lokesh et al evaluated the anti-hypertensive potential of the aqueous extract, and its aqueous, n-butanol, ethyl-acetate and chloroform fractions of C. colebrookianum leaves using fructose-induced hypertension model in rats and isolated frog heart. The results showed that the each fraction display negative inotropic and chronotropic effect on isolated frog heart and significant reduction in systolic blood pressure and heart rate in hypertensive rats. Moreover, each fraction at 100 mg/ml showed calcium antagonism in rat ileum and at 50 mg/ml and 75 mg/ml doses exhibited Rhokinase (ROCK-II) and phosphodiesterase-5 (PDE-5) inhibition, respectively.126 The anti-hypertensive activity of C. colebrookianum may mediate mainly by cholinergic action and following ROCK-II and PDE-5 inhibition. Liu et al demonstrated that four compounds 15-dehydrocyrtophyllone A (64), verbascoside (166), leucosceptoside A (178), and isoacteoside (196), isolated from dried roots of C. bungei showed inhibitory effects against angiotensin converting enzyme (ACE) and α-glucosidase. Among of them, 5-dehydrocyrtophyllone A exhibited an inhibitory effect against ACE with an IC50 value of 42.7 μM, while the three phenylethanoid glycosides, verbascoside, leucosceptoside A, and isoacteoside, exhibited stronger inhibitory effects against α-glucosidase, with IC50 values of 0.5 mM, 0.7 mM, and 0.1 mM, respectively.104

3.6. Anti-diabetic activity

Bachhawat et al reported that the methanolic extract (100 mg/ml) of C. serratum roots was evaluated for alpha-glucosidase inhibitory activity using enzyme assay. The extract was not found significantly effective (32.3% inhibition rate with IC50 value 265 μg/ml) and may require higher dose to produce the effect.127

3.7. Anti-obesity activity

Obesity, initially thought as a problem of the developed world, has now become a worldwide malady because of increasing prevalence in the developing countries as well as developed countries.128 The impact of methanolic extract of C. phlomidis on weight reduction in feeding high fat diet induced obesity in female mice had been investigated. The studies showed that the methanolic extract of C. phlomidis at 200 and 400 mg/kg significantly decrease food consumption, body weight, adiposity index, pancreatic lipase activity, adiposity diameter, glucose, insulin, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), triglycerides (TG), total cholesterol (TC) and low-density lipoprotein (LDL-c) levels induced by feeding high fat diet induced obesity in female mice, and the LD50 value was found to be more than 2000 mg/kg.129 Jadeja et al reported that the aqueous extract from the leaves of Clerodendron glandulosum exhibited significant anti-adipogenic effect by decreasing adipogenesis, TG accumulation, leptin release and glyceroldehyde-3-phosphate dehydrogenase (G3PDH) activity along with higher glicerol release without significantly altering viability of 3T3L1 pre-adipocytes in vitro.130 This study was a profound scrutiny of C. glandulosum extract and its role in preventing adipocyte differentiation and visceral adiposity by down regulation of PPARY-2 related genes and leptin expression. This study validates the traditional therapeutic claim of use of CG extract in controlling obesity.

3.8. Anti-diarrheal activity

Pal et al reported that the methanolic extract and chloroform fraction from the C. indicum at a dose of 400 mg/kg produced 21.74% and 26.96% inhibition of defecation in castor oil-induced diarrhea testing, respectively, which were found to be comparable to that of standard drug loperamide (37.39% inhibition at 50 mg/kg) with regard to the severity of diarrhea. The methanolic extract (at doses of 600 and 800 mg/kg, p.o.) from the leaves of the C. phlomidis showed significant inhibitory activity against castor oil induced diarrhea and PGE2 induced enteropooling in rats. Also, the extract also showed a significant reduction in gastrointestinal motility in charcoal meal test in rats. Anti-diarrheal activity of the plant supported its traditional use in diarrhea by the people of Australia and India.

3.9. Hepatoprotective activity

Gopal et al reported that the ethanol extract of C. inerme leaves exhibit hepatoprotective activity on CCl4-induced (0.5 ml/kg, i.p.) liver damage in rats at a dose of 200 mg/kg. The extract significantly decreases the serum enzyme alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), triglycerides (TGL), total cholesterol (TC), and significantly increased the glutathione level. Udya et al reported that administration of an alcoholic extract from the roots of C. serratum (20 mg/kg) for two
weeks significantly reduced the level of serum bilirubin and liver function marker enzymes in carbon tetrachloride (CCl4) induced wistar rats indicating its potential as a hepatoprotective agent possibly due to the radical scavenging activity of the flavonoids present in the drug.113

Also, Agrawal et al found that the alcoholic (200 mg/kg, p.o.) and aqueous extract (200 mg/kg, p.o.) from the leaves of \textit{C. serratum} possess significant hepatoprotective effects by restoring the normal level of AST, ALT, and ALP with significant reduction in liver weight.113 Reports on the biomarker ursoic acid, isolated from alcoholic root extract suggested restorative effects on the levels of AST, ALT and ALP towards respective normal value, to stabilize the plasma membranes as well as to repair hepatic tissue damage caused by CCl4. Ursolic acid was found to normalize the disturbed antioxidant status by maintaining the levels of glutathione and by inhibiting the production of malondialdehyde or may be due to the inhibition of toxicant activation and the enhancement of body defense system.99

The ethanol extract of the polyherbal composition from the roots of \textit{C. serratum} showed significant protection against acetaminophen-induced hepatotoxicity in rats, and the function may be through DPPH free radical scavenging activity.115 The methanolic extract (at doses of 100, 200 and 400 mg/kg, i.g.) of \textit{C. umbellatum} significantly reduced ALT activity and increase total protein level.113 These findings provided scientific evidence to the ethnomedical reports of \textit{C. serratum} in treating acute jaundice; however investigations are still required to fully explicate the exact mechanisms behind the protection.113

\subsection*{3.10. Hypoglycemic and hypolipidemic activities}

\textit{Adeneye} et al reported that the fresh leaves aqueous extract of \textit{Clerodendrum capitatum} possess obvious hypoglycemic and hypolipidemic activities, the extracts (at doses of 100, 400 and 800 mg/ kg, i.g.) could significantly reduce the mean fasting plasma glucose concentration in a dose-dependent lowering effects. Furthermore, the extracts also could notably decrease the total cholesterol, VLDL-c and LDL-c with a dose-related, but significant elevate the triacylglycerides and HDL-c with a dose-related in plasma.116 Jadeja et al reported that the aqueous extract (200, 400 and 800 mg/kg, i.g.) of \textit{C. glandulosum} leaves significantly prevented increment in plasma and tissue lipid profiles in high fat diet (HFD) rats, suppressed activity levels of HMG CoA reductase (Hepatic) and cholesterol ester synthase (Hepatic and intestinal), and increased the activity levels of plasma lecithin cholesterol acyl transferase and lipoprotein lipase (plasma, hepatic and adipose), and increased excretion of triglycerides, cholesterol and bile acids through faeces.117

\subsection*{3.11. Memory enhancing effects}

\textit{Gupta} et al reported that the methanolic extract of \textit{C. infortunatum} leaves exhibited promising memory enhancing effects at dose of 200 mg/kg (i.g.), and the effects was closely approximated the results for the standard drug Brahim, the higher dose evoking pronounced alteration behavior and better learning assessments.118 The presence of steroids, terpenoids, fats and flavonoids were confirmed in this extract by TLC. The extract is likely to develop a promising nootropic to prevent dementia senilis disease.

\subsection*{3.12. Neuroprotective effects}

One flavonoid acacetin (146) isolated from the \textit{C. inerme} was investigated for neuroprotective activity. It was observed that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca2+ concentration in the hippocampal nerve terminals. Moreover, acacetin (at doses of 10 and 50 mg/kg, i.p.) inhibited glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca2+ entry and effectively prevents kainic acid (KA)-induced in vivo excitotoxicity.69

\subsection*{3.13. Other activities}

Hazeckamp et al found that the ethanolic extract of \textit{C. petasites} leaves exhibited a dose-dependently tracheal smooth muscle relaxant activity on isolated guinea-pig at concentrations from 2.25 to 9 mg/ml, and the active principle was isolated and identified as the flavonoid hispidulin.5 The results indicated that hispidulin may be beneficial in the treatment of asthma related diseases. In additional, the methanolic extract (at doses of 200,400 and 600 mg/kg, i.g.) of \textit{C. phlomidis} leaves was found to cause significant reduction in spontaneous activity, and decreases in exploratory behavioral profiles by the Y-maze and head dip test. Also, the extract exhibit significantly reduction in muscle relaxant activity by rotarod, 30° inclined screen and traction tests, as well as significantly potentiated the phenobarbitone sodium-induced sleeping time.10 Huang et al demonstrated for the very first time that hispidulin isolated from the dichloromethane and the n-hexane fractions of ethanol extract of \textit{C. inerme} significantly reduced methamphetamine-induced hyperlocomotion (MH) in mice at dose of 100 mg/kg (i.p.) that did not affect their spontaneous locomotor activity or performance in the rotarod test, a measure for motor coordination.62 This study suggested that hispidulin may be a good therapeutical potential in hyper-dopaminergic disorders.

\section*{4. Conclusions}

In present review, more than 300 chemical constituents have been isolated and identified from the genus of \textit{Clerodendrum}, and pharmacological studies indicated that the crude extracts and some special monomer compounds of the genus \textit{Clerodendrum} exert various biological activities, such as anti-inflammatory and anti-noiceptive, antioxidant, anticancer, antimicrobial, anti-hypertensive, anti-obesity, anti-diarrheal, hepatoprotective, memory enhancing, and neuroprotective activities. Terpenes, including monoterpene and its derivatives, sesquiterpene, diterpenoids, triterpenoids, as the major characteristic constituents with significant biological activities, have great potential to be developed into new drugs, especially for anti-inflammatory, antioxidant, anticancer, and antimicrobial agents. In addition, important activities, such as anti-hypertensive, anti-obesity, and hepatoprotective activities indicated that \textit{Clerodendrum} genus can be a promising source of biologically active compounds for these diseases.

The genus \textit{Clerodendrum} has gained a wide acceptance for its pharmacological activities against various ailments. Although above 400 species of the genus \textit{Clerodendrum} were distributed all over the world, only a few of them have been investigated and studied so far. From this review, it can be concluded that phytochemical and pharmacology investigations were mainly focused on \textit{C. serratum}, \textit{C. bungei}, \textit{C. inerme}, \textit{C. trichotomum}, \textit{Clerodendrum chinense}, \textit{C. colebrookianum}, \textit{C. phlomidis}, \textit{C. petasites}, \textit{C. grayi}, and \textit{C. indicum}. For some species, such as \textit{C. grayi} was only studied phytochemically, no biological activity was reported up till now. Many other species are totally unknown phytochemically and biologically. Following these species may be of a great importance in discovering new bio-active compounds. On the other hand, few reports have been published concerning the toxic effects of isolated components, and quantitative informations of the genus \textit{Clerodendrum} were also relatively sparse.
All in all, the omnibearing study on this genus Clerodendrum should be performed as soon as possible, which will provide reliable theory evidence for better exploit and utilize the resources of the species in this genus.

Conflict of interest statement

The authors declare no conflict of interest.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81374019), the Special Project of the “Twelfth Five-year Plan” for Medical Science Development of PLA (BWS12012), Project of Traditional Chinese Medicine Administration, Gansu Province (GZK-2015-59), Project of Military Medical and Health Research, PLA (CLZ15JA05), and Project of Military Medical and Health Research, PLA (15ZD021). The authors would also like to express their gratitude to Lanzhou University PhD English writing foreign teacher Mike Carter who thoroughly corrected the English in the paper.

References

1. Harley RM, Atkins S, Budantsev AL, et al. (2008). A New Theory on Aphid Behavior. 3rd ed. UK: Cambridge University Press; 2008. ISBN: 978-0-521-82071-4.

2. Nishida R, Kawai K, Amano T, Kuwahara Y. Pharmacophagous feeding stimulation of the larval midgut epithelium of Earias vitella (Lepidoptera: Nymphalidae): implications for the understanding of the evolution of an intriguing feeding strategy. J Exp Biol. 2010;159:125–133.

3. Mabberley DJ. Mabberley’s Plant-book. 3rd ed. UK: Cambridge University Press; 2008. ISBN: 978-0-521-82071-4.

4. Staples GW, Herbst DR. A Tropical Garden Flora. Honolulu: Bishop Museum Press; 2005.

5. Muthu C, Baskar K, Ignacimuthu S, Ai-Khaliel. Ovicidal and oviposition deterrent activities of the flavonoid pectolinaringenin from Clerodendrum phlomoides against Anas vascula. Phytoparasitica. 2013;41:365–372.

6. Shrivastava N, Patel T. Clerodendrum and healthcare: an overview. Indian J Pharm Sci. 2017;79:123–129.

7. Chethana GS, Hari VKR, Gopinath SM. Review on Clerodendrum trichotomum: an endophytic fungus from Thai medicinal plant Clerodendrum petasitum. J Ethnopharmacol. 2001;78:45–49.

8. Calis I, Hosny M, Yuruker A, Wright AD, Sticher O. Inerminosides A and B, two novel complex iridoid glycosides from Clerodendrum glandulosum. J Nat Prod. 2018;81:494–500.

9. Somwong P, Moriyasu M, Suttisri R. Chemical constituents from the roots of Clerodendrum mandarinorum. Phytochemistry. 1994;39:251–255.

10. Kim KH, Kim S, Min YJ, Ham IH, Wan KW. Anti-inflamatory phyto-constituents from Clerodendrum trichotomum leaves. Arch Pharm Res. 2009;32:7–13.

11. Akinbade T, Gbogbo P, Phaklu S, Nagata H, Tamura T, Matsumoto T. 24, 24-dimethyl-25-dehydroxyphan, a 4α-methylsterol from Clerodendrum phlomoides. Phytochemistry. 1996;46:2583–2586.

12. Xu RL, Wang R, Wei H, Shi YP. New cyclohexylenolactones from the leaves of Clerodendrum trichotomum. Phytochem Lett. 2014;7:111–113.

13. J.-H. Wang et al. / Journal of Traditional and Complementary Medicine 8 (2018) 24–38
83. Akihisa T, Ghosh P, Thakur S, Oshikiri S, Tamura T, Massumoto T. New triterpenoid bearing octa- and dodecacosane from the stems and roots of Clerodendrum philippinum var. simplex (Verbenaceae). Nat Prod Res. 2015;29:1228–1234.

84. Rammohan A, Munikishore R, Gunasekar D, Blond A, Bodo B. Two new flavonoid glycosides from the leaves of Clerodendrum glandulosum (Verbenaceae), and antimicrobial activities of fractions and constituents. Cheminform. 2013;96:193–197.

85. Parveen M, Khanam Z, Ali M, Rahman SZ. A novel lupene-type triterpenic glucoside from the leaves of Clerodendrum infortunatum (L.) Moon. Chin J Exp Tradit Med Formulae. 2010;16:103–104.

86. Zhu HC, Huan LJ, Chen CM, et al. A pair of unprecedented cyclohexyl ethanoid enantiomers containing unusual trioxabicyclo [4.2.1]nonane ring from Clerodendrum inerme. Fitoterapia. 2015;109:244–254.

59. Fan JD, Long QD, Yang J, Luo XC. Studies on the chemical constituents of Clerodendrum phlomidis (L.) Moon. Chin Chem Lett. 2008;19:244–247.

60. Thitilertdecha P, Guy RH, Rowan MG. Characterisation of polyphenolic compounds in the leaves of Clerodendrum glandulosum (Verbenaceae). Chromatographia. 2008;67:269–274.

61. Xu MF, Wang SJ, Yu RJ, Shi LF. Two new triterpenoidal saponins E and F from Clerodendrum kiautschii. Molecules. 2016;21:86–93.

62. Prakash BN, Saravananan S, Pandikumar P, Krishna KB, Raj MK, Ignacimuthu S. Anti-inflammatory and antiarthritic activities of 3-hydroxy, 2-methoxy sodium benzoate from the leaves of Clerodendrum philippinum L. Inflamm Res. 2014;63:127–138.

63. Panthong A, Kanjanapothi D, Taesotikul T, Wongcome T, Teerutkal V. Anti-inflammatory and antipyretic properties of Clerodendrum petasites S. Moore. Acta Pharm Sin. 2003;38:51–56.

64. Phosrithong N, Nuchtavorn N. Antioxidant and anti-inflammatory activities of Clerodendrum leaf extracts collected in Thailand. Eur J Integr Med. 2015;8:281–285.

65. Joseph J, Bindhu AR, Aleykutty NA. In vitro and in vivo antiinflammatory activity of Clerodendrum paniculatum Linn leaves. Indian J Pharm Sci. 2013;75:376–379.

66. Srisook K, Srisook E, Nachaiyawat W, et al. Bioassay-guided isolation and mechanistic action of anti-inflammatory agents from Clerodendrum inerme leaves. J Ethnopharmacol. 2015;165:94–102.

67. Bhangare NK, Bhangare SK. Antioxidant activity of methanolic extract of Clerodendrum neesianum. Fitoterapia. 2011;82:237–241.

68. Bhangare NK, Bhargave VB. Screening for anti-inflammatory activity of Clerodendrum serratum. Indian J Pharmacol. 2008;40:143–197.

69. Lin TY, Huang WJ, Wu CC, Lu CW, Wang SJ. Acacetin inhibits glutamate release in hippocampal CA1 neurons in rat. Neurochem Res. 2014;39:194–199.

70. Zhu M, Phillipson JD, Greengrass PM, Bowery NG. Chemical and biological studies on constituents of Clerodendrum trichotomum J. Asian Nat Prod Res. 2008;10:295–300.

71. Chae S, Kim JS, Kang KA, et al. Anti-oxidant activity of jionoside D from the leaves of Clerodendrum japonicum (Verbenaceae). Biochem Syst Ecol. 2002;30:311–315.

72. Thitilertdecha P, Guy RH, Rowan MG. Characterisation of polyphenolic compounds in the leaves of Clerodendrum glandulosum (Verbenaceae). Chin J Exp Tradit Med Formulae. 2010;16:103–104.

73. Fan JD, Long QD, Yang J, Luo XC. Studies on the chemical constituents of Clerodendrum trichotomum J. Asian Nat Prod Res. 2013;15:347–355.

74. Akihisa T, Ghosh P, Thakur S, Oshikiri S, Tamura T, Massumoto T. New triterpenoid bearing octa- and dodecacosane from the stems and roots of Clerodendrum philippinum var. simplex (Verbenaceae). Nat Prod Res. 2015;29:1228–1234.

75. Rammohan A, Mukunihire R, Gunasekar D, Blond A, Bodo B. Two new chalcones from Clerodendrum philippinum. J Nat Prod Res. 2015;17:343–348.

76. Liu JK, Zhou L, Zhou Q, Lian QS. The study on antioinflammatory effect of Clerodendrum bungei Steud roots n-butyric alcohol extract in mice. Chin J Pain Med. 2007;13(6):345–352.

77. Zhou HL, Liu JX, Zhou L, Zhou Q, Lian QS. Anti-inflammatory, analgesic and anti-hypersensitivity activities of extracts from Clerodendrum bungei. Chin J New Drugs. 2006;15:207–209.

78. Parveen M, Khanam Z, Ali M, Rahman SZ. A novel lupene-type triterpenic glucoside from the leaves of Clerodendrum infortunatum (L.) Moon. Chin J Exp Tradit Med Formulae. 2010;16:103–104.

79. Parveen M, Khanam Z, Ali M, Rahman SZ. A novel lupene-type triterpenic glucoside from the leaves of Clerodendrum infortunatum (L.) Moon. Chin J Exp Tradit Med Formulae. 2010;16:103–104.

80. Liu JK, Zhou L, Zhou Q, Lian QS. The study on antioinflammatory effect of Clerodendrum bungei Steud roots n-butylic alcohol extract in mice. Chin J Pain Med. 2007;13(6):345–352.

81. Zhou HL, Liu JX, Zhou L, Zhou Q, Lian QS. Anti-inflammatory, analgesic and anti-hypersensitivity activities of extracts from Clerodendrum bungei. Chin J New Drugs. 2006;15:207–209.

82. Parveen M, Khanam Z, Ali M, Rahman SZ. A novel lupene-type triterpenic glucoside from the leaves of Clerodendrum infortunatum (L.) Moon. Chin J Exp Tradit Med Formulae. 2010;16:103–104.

83. Akihisa T, Ghosh P, Thakur S, Oshikiri S, Tamura T, Massumoto T. New triterpenoid bearing octa- and dodecacosane from the stems and roots of Clerodendrum philippinum var. simplex (Verbenaceae). Nat Prod Res. 2015;29:1228–1234.
114. Arokiyaraj S, Sripriya N, Bhagya R, Radhika B, Prameela L, Udayaprakash NK. Phytochemical screening, antibacterial and free radical scavenging effects of Artemisia nilagirica, Mimosa pudica and Clerodendrum siphonanthus — an in-vitro study. Asian Pac J Trop Biomed. 2012;2:5601–5604.

115. Chinchali JF, Sanakal RD, Kaliwal BB. Effect of anticarcinogenic activity of Clerodendrum serratum leaf extract on liver and kidney of 7, 12-dimethylbenzo[a]anthraecne (DMBA) induced skin carcinogenesis in mice. Eur J Exp Biol. 2011:1:130–141.

116. Chinchali JF, Sanakal RD, Kaliwal BB. Evaluation of anticarcinogenic activity of Clerodendrum serratum leaf extract on liver and kidney of 7, 12-dimethylbenzo[a]anthraecne induced skin carcinogenesis in Swiss albino mice. Recent Res Sci Technol. 2012;4:8–15.

117. Zalka AS, Kulkarni AV, Shirode DS, Duraiswamy B. In-vivo anticancer activity of Clerodendrum serratum (L) Moon. Res J Pharm Biol Chem Sci. 2010;1:89–98.

118. Nagdeva, Katiyar PK, Singh R. Anticancer activity of leaves of Clerodendrum serratum Spreng. Am J PharmTech Res. 2012;2:452–461.

119. Hu Q, Zhou KJ, Tan XN, Li YM. Experimental study of total flavonoids isolated from Clerodendrum bungei on human hepatoma HepG2 cells proliferative effect. Hunan J Tradit Chin Med. 2015;31:166–168.

120. Liu JX, Li Y, Lian LF, Zhang WP. Antibacterial activity of the n-butyl alcohol extract of Clerodendrum bungei Steud in vitro study. Eishizhen Med Mater Med Res. 2015;26:1849–1850.

121. Lin N, Yin LG, Chen CZ, Wei Q, Li HL. Study on the antimicrobial effect of the extracts of Clerodendrum bungei and antifungal activity. Genet Mol Res. 2010;10:130–133.

122. Gong B, Yao XH, Zhang YQ, Fang HY, Fang TC, Dong QJ. A cultured endophyte community is associated with the plant Clerodendron infortunatum and antifungal activity. Genet Mol Res. 2015;14:6083–6093.

123. Waliullah TM, Yeasmin AM, Alam A, Islam W, Hassan P. Phytochemical screening, antibacterial and free radical scavenging effects of Alternanthera sessilis on the antihypertensive action. J Ethnopharmacol. 2011;135:338–343.

124. Adia MM, Emami SN, Byamukama R, Faye I, Borq-Karlson AK. Antiplasmodial activity and phytochemical analysis of extracts from selected Ugandan medicinal plants. J Ethnopharmacol. 2016;186:14–19.

125. Govindarajan M, Rajeowsky M, Hoti SL, et al. Clerodendron chinense-mediated biofabrication of silver nanoparticles: mosquitoscidal potential and acute toxicity against non-target aquatic organisms. J Asia-Pacific Entomol. 2016;19:51–58.

126. Lokesh D, Amitsankar D. Evaluation of mechanism for antihypertensive action of Clerodendrum colebrookianum wulp, used by folklore healers in north-east India. J Ethnopharmacol. 2012;143:207–212.

127. Bachhawat AJ, Sham MS, Thirumurugan K. Screening of fifteen Indian ayurvedic plants for alpha-glucosidase inhibitory activity and enzyme kinetics. Int J Pharm Pharm Sci. 2011;3:267–274.

128. Hoffman DJ. Obesity in developing countries: causes and implications. Food Nutr Agric. 2001;28:35–42.

129. Chidrawar VR, Patel KN, Chitme HR, Shiromwar SS. Pre-clinical evolutionary study of Clerodendron phlomidis as an antiobesity agent against high fat diet induced C57BL/6j mice. Asian Pac J Trop Biomed. 2012;2:1509–1519.

130. Javeja RN, Thounaojam MC, Ramani UV, Devkar RV, Ramachandran AV. Antiobesity potential of Clerodendron glandulosum Coleb leaf aqueous extract. J Ethnopharmacol. 2011;135:338–343.

131. Rani S, Ahamed N, Rajaram S, Saluja R, Thenmozhi S, Murugesan T. Anti-diarrhoeal evaluation of Clerodendron phlomidis Linn leaf extract in rats. J Ethnopharmacol. 1999;68:315–319.

132. Gopal N, Senguptaulu S. Hepatoprotective activity of Clerodendron inerme against CCL4 induced hepatic injury in rats. Flotropia. 2008;79:24–26.

133. Vidy S, Sharma V, Manjunatha BK, Mainkani KL, Ahmed M, Singh SDJ. Evaluation of hepatoprotective activity of Clerodendrum serratum L. Indian J Exp Biol. 2007;45:538–542.

134. Agrawal SK, Jat RK, Chhipa RC. Pharmacological evaluation of hepaprotective activity of Clerodendrum serratum. Int J Pharmaco Toxicol. 2013;3:67–70.

135. Tulsiyan P, Deshmukh P, Silawat N, Akhtar Z. Protective effect of polyherbal preparation against acetaminophen-induced hepatotoxicity in rats. Drug Invent Today. 2009;1:119–120.

136. Adeneye AA, Adeleke TI, Adeneye AK. Hypoglycemic and hypolipidemic effects of the aqueous fresh leaves extract of Clerodendrum capitanum in wistar rats. J Ethnopharmacol. 2008;116:7–10.

137. Javeja RN, Thounaojam MC, Ansarullah, Devkar RV, Ramachandran AV. Clerodendron glandulosum Coleb, Verbenaceae. ameliorates high fat diet-induced alteration in lipid and cholesterol metabolism in rats. Rev Bras Farmacogn. 2010;20:117–123.

138. Gupta R, Singh HK. Nootropic potential of Alternanthera sessilis and Clerodendrum infortunatum leaves on mice. Asian Pac J Trop Dis. 2012;2:465–470.

139. Murugesan T, Saravanan KS, Lakshmi S, Ramya G, Thennozhi K. Evaluation of psychopharmacological effects of Clerodendrum phlomidis Linn extract. Phytomedicine. 2001;8:472–476.