Statistical mechanics of secondary structures formed by random RNA sequences

Ralf Bundschuh
The Ohio State University

Collaborator: Terence Hwa, University of California at San Diego

Outline:

- Introduction to RNA
- Uniform sequences: the molten phase
- Disorder: glass phase and glass transition
- Bias: the native phase
- Conclusions

supported by DAAD, Beckman foundation, and NSF
- RNA is heteropolymer of four different bases G, C, A, and U

- Primary structure: Sequence, e.g.,
 GCGGAUUUGAGUCAGUGGAGAGGACUCAGUUGGUCCUGUGUUCGAUCCACAGAAUUCGACCA

- Strongest interaction: Watson-Crick base pairing (G–C and A–U) → secondary structure

- Spatial arrangement → tertiary structure
 (looks locally like DNA double helix)
Introduction II

- Secondary structure: Set of base pairs formed
- Pseudo-knots neglected
- Diagramatic representation

Assign energy $E[S]$ to each structure S → partition function

$$Z = \sum_{\{S\}} \exp\left(-\frac{E[S]}{T}\right)$$

- Partition function generated exactly by Hartree equation

→ Electron in disordered medium, meanders
- Handle for analytical treatment
- $O(N^3)$ algorithm for exact partition function (McCaskill, Biopolymers 29, 1990.)
Introduction III

- Two important parameters for generic properties:
 - Temperature
 - Bias for native structure

- Use long hairpin as native (designed) structure

- Create sequences by
 - randomly choosing first half of the sequence
 - assigning exact complement as second half
 - changing bias by mutations with probability p

- Expected phase diagram:
Molten Phase I

- De Gennes (1968) proposed: start with uniform sequences \textsf{AUAAUAAUAU} \ldots or \textsf{GCGCAGCGCGC} \ldots

- Uniform attraction between any two elements of the polymer \longrightarrow only one effective interaction parameter ε_0

- ε_0 contains binding energy and entropic terms relative to unbound RNA

- Most monomers engaged in base pairs

- Main effect in molten phase: branching entropy

- Hartree equation $\Sum_{i,j}^{\mu,i,j} \longrightarrow$ becomes

$$\hat{Z}(\mu)^{-1} = (e^{\mu} - 1) - \hat{\Pi}(\mu) \quad \hat{\Pi}(\mu) = e^{-\varepsilon_0/T} \hat{Z}(\mu)$$

in Laplace domain $\longrightarrow Z(N) \sim N^{-\theta} e^{\mu_0 N}$ with $\theta = \frac{3}{2}$

de Gennes, Biopolymers 6, 1968; Waterman, Adv. Math. Suppl. Studies 1, 1978
Molten Phase II

- **mountain** representation \((N = 18)\)

![Diagram of mountain representation](attachment:image.png)

- **one to one** correspondence: RNA secondary structures ↔ mountains
- all bases attract **equally strong**
 - counting structures ↔ counting mountains
 - free random walk in presence of a hard wall

\[
Z(N) \sim N^{-3/2} e^{\mu_0 N}
\]
\[
\langle h \rangle \sim N^{1/2}
\]
\[
R_g \sim N^{1/4}
\]
→ branched polymer
Glass Transition I

- Is molten phase stable? → perturbative approach
- Interaction energy between base i and base j
 \[\varepsilon_{ij} = \varepsilon_0 + \Delta \varepsilon_{ij} \]
- Assume $\Delta \varepsilon_{ij}$ independent Gaussian variables
 \[\overline{\Delta \varepsilon_{ij}} = 0 \quad \overline{\Delta \varepsilon_{ij} \Delta \varepsilon_{kl}} = \Delta \varepsilon \delta_{ik} \delta_{jl} \]
- First term in free energy expansion in powers of $\Delta \varepsilon$: two-replica system Z^2
 → two replicas which gain energy $\Delta \varepsilon$ for every common bond (●●●)
- exactly solvable → phase transition at finite $\Delta \varepsilon_c$
 - $\Delta \varepsilon < \Delta \varepsilon_c$: 2 replicas fluctuate independently (molten)
 - $\Delta \varepsilon > \Delta \varepsilon_c$: 2 replicas have same configuration (glass)
 ⇒ molten phase perturbatively stable
Glass Transition II

- Is glass phase stable?
- Study pinching excitations

\[Z(T, N) = A(T)N^{-3/2} \exp[-f_0(T)N] \]

Tang and Chaté, PRL 86 (2001)

- Assume molten phase is stable for all temperatures

\[\Delta F(N) = -2T \log(N/2)^{-3/2} + T \log N^{-3/2} \approx \frac{3}{2} T \log N \]
Glass Transition III

- On the other hand: find piece of length \(\log N / \log 2 \) in first half exactly complementary to piece in second half

\[\Rightarrow \text{All pairs in this piece contribute pairing energy } \varepsilon_P \text{ in unpinched configuration} \]

- Estimate for pinching free energy:

\[\Delta F(N) \geq [\varepsilon_P + 2f_0(T)] \log N / \log 2 \]

- Combine two results:

\[\frac{3}{2} T \geq [\varepsilon_P + 2f_0(T)] / \log 2 \]

- \(\varepsilon_P + 2f_0(T \to 0) > 0 \) (for four or more base alphabet \(\to \) next talk)

\[\Rightarrow \text{contradiction for } T < T_* \]

\[\Rightarrow \text{RNA cannot be in molten phase for } T < T_* \]

\[\Rightarrow \text{different (glass) phase at low temperatures} \]
Glass Transition IV

- Properties of the glass phase (important for folding behavior)?
- Probe free energy ΔF of low energy, large scale excitations (droplets)

 $\Delta F(N) \sim N^\theta$

 $\theta > 0$ glass

 $\theta < 0$ no glass

- Pinching provides such excitations
- Just seen: $\Delta F(N) \geq [\epsilon_P + 2f_0(T)] \log N / \log 2$
- Numerically at low temperatures:

 $\Delta F(N) \sim a(T) \log N$

- Glass very weak
- For practical purposes no difference between molten and glass phase
Molten-Native Transition I

- How does native structure appear?
- Start from molten phase
- Add bias towards native structure (hairpin)
- Use simplified model in spirit of molten phase description
- Possible Watson-Crick pairs:

 - only two different interaction energies
 - strong interaction $\varepsilon_0 + U_0$ for native base pairs
 - weak interaction ε_0 for all other base pairs
 - U_0 is an effective measure of the bias

- Model similar to Gō model of protein folding (Gō, J. Stat. Phys. 30, 1983)
Molten-Native Transition II

- Model can be exactly solved by Laplace transform
- Phase transition between molten and native phase at finite critical bias U_c or at critical temperature T_c
- Phase transition is second order with finite jump in specific heat ($\alpha = 0$) but large finite size effects possible
- Calculate fraction of native contacts Q
- Exhibits scaling form and scaling function

$$Q \sim N^{-1/2} g \left(\frac{T - T_c}{T_c} N^{1/2} \right)$$

($\nu = 2$) where

$$g(y) \approx \begin{cases}
-y^1 & y \ll -1 \\
1 & -1 \ll y \ll 1 \\
y^{-1} & y \gg 1
\end{cases}$$

- Can be numerically verified to apply to randomly chosen RNA sequences
RNA shows a large variety of interesting behavior.

RNA secondary structure formation is tractable analytically and numerically by methods of statistical mechanics.

RNA secondary structures offer an alternative approach to studying a variety of issues of general heteropolymer behavior.
Future work:
- Understand glass phase properties analytically
- glass-native transition
- more realistic RNA models, self-avoidance
- interactions between several molecules
- kinetics
- pseudo-knots
- tertiary structure
- biological applications (RNA finding, Huntington’s disease)
Biological function of RNA

- Biological functions:
 - **Structure** \(\rightarrow\) proteins
 - Ribosomal RNA
 - Transfer RNA
 - **Information** \(\rightarrow\) DNA
 - Messenger RNA
 - single-stranded DNA
 * T instead of U
 * more rigid backbone
 - **Interplay** of structure and information
 - Splicing
 - Ribozymes
 - RNA world (origin of life)
Molten Phase in Natural Molecules I

- Application to real sequences
- Use experimentally determined parameters from RNA secondary structure prediction which take all energetic details into account

Uniform sequences AUAUAUAU... and GCGCGCGGC... need very long sequences (≥ 8000 bases, Tsunglin Liu & RB → B9.013)
 - Hairpin loops must contain at least 3 bases
 - Loss in binding energy large in hairpin loops

Hofacker et al., Monatshefte f. Chemie 125, 1994
• Naturally occurring in human DNA: \((\text{CAG})_n\) with large \(n\)

• Connected with Huntington’s disease

• Hereditary neurodegenerative disease
 – \(n < 35\) normal
 – \(n > 35\) Huntington’s disease

• If \(n > 35\), \(n\) usually very large

• CAG codes for Glutamine \(\rightarrow\) repeats appear in protein

• Single-stranded DNA can undergo self-binding during replication

• Biologist’s model: only minimal free energy structure competes with single-stranded configuration
• (CAG)$_n$ can be in molten phase

• Crossover length 7 bases (Tsunglin Liu & RB \rightarrow B9.013)

\Rightarrow Molten phase relevant

• Kinetics possibly important

• (single molecule ?) experiments necessary
Solution of Gō model

- Partition function: order arbitrary structure by number of native contacts
 \[Z(N, U_0) = \mathcal{W} + \mathcal{W} + \cdots + \mathcal{W} + \mathcal{W} + \cdots \]

- \(\mathcal{W} = W(\ell) \) = sum over all ways to place non-native bonds

- \(W \) similar to molten phase partition function \(\longrightarrow \) expect \(W(\ell) \sim \ell^{-3/2} \)

- Relation between bubble (\(W \)) and full (\(Z \)) partition functions

 \[
 \hat{Z}(\mu; U_0) = \hat{W}(\mu) + \hat{W}(\mu) e^{-(\varepsilon_0 + U_0)/T} \hat{W}(\mu)
 + \hat{W}(\mu) e^{-(\varepsilon_\mu + U_0)/T} \hat{W}(\mu) e^{-(\varepsilon_0 + U_0)/T} \hat{W}(\mu) + \ldots
 \]

 (Laplace domain)

 \(\longrightarrow \)

 \[\hat{Z}(\mu; U_0)^{-1} = \hat{W}(\mu)^{-1} - e^{-(\varepsilon_0 + U_0)/T} \]

- Exact expression for \(\hat{Z}(\mu; U_0) \)

- Partition function relation \(\hat{Z}(\mu; U_0)^{-1} = \hat{W}(\mu)^{-1} - e^{-\frac{\varepsilon_0 + U_0}{T}} \)

- Boundary condition \(Z(N, U_0 = 0) = Z_0(2N) \) gives \(\hat{W} \)
Molten-Native Transition III

- Free energy as a function of the number of total contacts \(K \) and the number of native contacts \(Q \)

In the molten phase

At the phase transition

In the native phase
Applicability to heterogeneous sequences

Average numerically over many self-complementary random sequences

Critical temperature found from specific heat

Fraction of native contacts vanishes at phase transition

Scaling plot confirms power laws predicted in the framework of the Gō-like model
DNA Hybridization I

- Same effects play a role in DNA hybridization

- Hybridization is widely used experimental method in molecular biology
 - Homology detection without sequencing
 - PCR
 - DNA chips
 - Sequencing by hybridization
 - Gene expression analysis
 - DNA computer

- Two single stranded DNA can form base pairs
 - with each other
 - with themselves

- Connect ends of the two DNA strands in Gedanken task
 \[\rightarrow \] RNA structure formation

- Different applications need different experimental conditions
Example: detection of weak homologies

- Single stranded DNA in solution form hybrid, if complementary enough
- Not complementary enough → remain single-stranded
- Existence of hybrids detected by enzyme
 - Weak homology: need to reduce stringency (e.g. lower temperature)
- Problem: self-binding instead of hybrid formation
- Experimentalist has to know which phase is present
• RNA in molten phase equivalent to branched polymer

• Possible forms of branched polymers:

Zimm and Stockmeyer, J. Chem. Phys. 17, 1949
Lubensky et al., J. Physique 41, 1981
Lubensky and Isaacson, Phys. Rev. A 20, 1979
Parisi and Sourlas, Phys. Rev. Lett. 49, 1981

• All results without self-avoidance agree with $Z \sim N^{-3/2} e^{\mu_0 N}$ and $R_g \sim N^{1/4}$
 → multiple branching irrelevant
 → pseudo-knots irrelevant
Structure Size Scaling

- Characterize all phases by scaling laws
- Choose random sequences and calculate for each of them their typical size $\langle h \rangle$ numerically
- Different behavior in all three compact phases:

 - native: $\langle h \rangle \sim N^{1}$
 - molten: $\langle h \rangle \sim N^{0.7}$
 - denatured: $\langle h \rangle \sim N^{1/2}$
Denaturation I

- Description of **denaturation**
- Have to include spatial entropy $W(\ell) \sim \ell^{-d/2}$ of loops of ℓ unbound bases

- Hartree equation changes from

$$\hat{Z}(\mu)^{-1} = G_0^{-1}(\mu) - e^{-\varepsilon_0/T} \hat{Z}(\mu)$$

with $G_0^{-1} = e^\mu - 1$ to

$$\hat{Z}(\mu, k)^{-1} = G_0^{-1}(\mu, k) - e^{-\varepsilon_0/T} \int \hat{Z}(\mu, k) dk$$

with $G_0^{-1} = \mu + k^2$

- Studied by de Gennes (1968) for RNA in three dimensional space
 \[\rightarrow \text{no phase transition} \]
Repeat de Gennes calculation for arbitrary d

Changing binding strength ε_0 or temperature T leads to

- no phase transition for $d < 4$
- second order phase transition for $4 < d < 6$
- first order phase transition for $6 < d$

For any dimension we should get transition to self-avoiding walk for repulsive interactions

What is missing to get phase transition in $d = 3$?

- Stacking \longrightarrow arbitrarily sharp pseudo-transition
- Self-avoidance of a single loop: $d/2 \rightarrow \nu d$
 (better but not yet enough)
- Self-avoidance between different loops
- Different description necessary in denatured phase, since contacts of secondary structure do not make sense for repulsive interactions

D. Moroz and T. Hwa
• Ensemble average $\overline{Z^2}$ → two replicas which gain energy $\Delta \varepsilon$ for every common bond (---)

• Order configurations of 2 replica system by configurations of common bonds

• Common bonds (---) form RNA structure themselves

• represents sum over all possible choices of non-common bonds in the two replicas

• 1 replica $\longrightarrow \ell^{-3/2} \Rightarrow 2$ replicas $\longrightarrow (\ell^{-3/2})^2 = \ell^{-6/2}$

• effective picture: single RNA with “6-dimensional” loop entropies
• exactly solvable

• phase transition at finite $\Delta \varepsilon_c$
 – $\Delta \varepsilon < \Delta \varepsilon_c$: 2 replicas fluctuate independently (molten)
 – $\Delta \varepsilon > \Delta \varepsilon_c$: 2 replicas have same contacts (glass)
 – specific heat exponent $\alpha = 1$
 \longrightarrow marginally first order transition

• fraction of common contacts agrees well with Monte Carlo simulations

• “Large” critical disorder $\Delta \varepsilon_c$

• molten phase stable towards disorder
• Direct relation between RNA structure formation

\[\text{RNA} + \text{RNA} + \ldots + \text{RNA} \]

and unbinding of a directed polymer

\[\text{DP} + \text{DP} + \ldots + \text{DP} \]

\[\text{Lipowsky, Europhys. Lett. 15, 1991} \]

• Different sources of entropy:

RNA Binding/branching entropy \[W \sim \ell^{-3/2} \]

DP Spatial entropy \[W \sim \ell^{-d/2} \]

• Same critical behavior as unbinding transition in \(d = 3 \)

• Note: RNA interactions long-ranged, DP interactions local
Typical Bias

- How much bias is needed?

- Numerical result for toy model: a ground state of a random sequence contains 95% Watson-Crick pairs

- A biologically useful structure must beat this threshold

- Numerical results for real RNA hairpins with different mutation rates p

![Graph showing Q vs p with $T=40^\circ C, N=200$](image)

U. Gerland, RB, and T. Hwa

- Has to be compared with natural RNA sequences

- Systematic experiments necessary

- Evolution has to find very small number of good RNA sequences out of a vast amount of molten/glassy sequences
Statistical mechanics of secondary structures formed by random RNA sequences

Ralf Bundschuh
The Ohio State University

Collaborator: Terence Hwa, University of California at San Diego

Outline:

- Introduction to RNA
- RNA phase diagram
- Possible applications

supported by DAAD (RB), Beckman foundation (TH), and NSF (TH)
Introduction I

- RNA is heteropolymer of four different bases G, C, A, and U

- Primary structure: Sequence, e.g.,

 GCGGAUUUAGCUAGGUUGGAGAGCCACUGUGGAAUUCGAGGUGUCUGUUCGAUCCACAGAAUUCGACCA

- Strongest interaction: Watson-Crick base pairing (G–C and A–U)
 → secondary structure

- Spatial arrangement
 → tertiary structure
 (looks locally like DNA double helix)
RNA phase diagram I

- Concentrate on secondary structure

- Questions:
 What are generic properties of structures formed by random sequences?
 What are evolution or human RNA designers up against?

- Depends on external parameters

- C.f., water, ice, and vapor:

![Phase diagram](image.png)

- Three phases with vastly different properties
RNA phase diagram II

- Three important ingredients:
 - thermal fluctuations
 - sequence disorder
 - bias for native structure (biology)

- Possible two parameter phase diagram

- Phases have very different properties
 - native: molecule takes biologically meaningful structure
 - molten: many structures coexist
 - glass: molecule gets stuck in a random configuration
 - denatured: no structure at all
Questions:

- Do all of these phases really exist?
- How do we recognize which phase is present and when we change from one phase to another?

Questions not resolved in spite of

- 50 years of knowledge of DNA structure
- 10 years of computer simulations

Properties of phases for the first time determined mathematically

- Proof of existence of molten-glass phase transition
- Quantitative characterization of molten-native phase transition
Basic research

- **Physics**: basis for understanding of glassy systems in general (spin glasses, structural glasses, protein folding)
- **Biology**: basis for understanding evolution of RNA sequences

Possible practical applications

- **Identification** of RNA sequences in genomes

- **Quantitative modeling** of Huntington’s disease

- **Optimization** of experimental parameters in DNA hybridization