Neospora caninum infection in aborting bovines and lost fetuses: A systematic review and meta-analysis

Tooran Nayeri1,2,3, Mahmood Moosazadeh4, Shahabeddin Sarvi1,2, Ahmad Daryani1,2*
1 Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran, 2 Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran, 3 Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran, 4 Gastrointestinal Cancer Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran

* daryanii@yahoo.com

Abstract

Background

Neospora caninum (N. caninum) is known to be a major cause of reproductive failure in cattle herds around the world. Therefore, the current comprehensive study was performed to estimate the global prevalence of N. caninum infection in bovines that had an abortion and aborted fetuses.

Methods

In this study, PubMed, ScienceDirect, Web of Science, Scopus, and ProQuest databases were systematically searched for relevant studies up until November 4, 2021. Pooled prevalence and corresponding 95% confidence intervals (CI) were estimated using a random effect model. Other analyzes performed on the data of this study include sensitivity analysis, publication bias test, and quality assessment.

Results

The final analyses included 71 studies conducted on 2965 abortive cattle and 4805 aborted fetuses. The overall prevalence rates of N. caninum infection in bovines that had an abortion were 47% and 1% using serological and molecular methods. Furthermore, overall prevalence rates of N. caninum infection in bovine aborted fetuses globally were 35% (95% CI: 8%–62%) and 43% (95% CI: 35%–52%) using serological and molecular methods.

Conclusions

The results of this study showed the high prevalence of N. caninum infection in bovines that had an abortion and aborted fetuses. It is hoped that the results of this study will help prevent abortion in bovines around the world and encourage further studies to determine the impact of this parasite on the occurrence of abortion that may help reduce the economic damage caused by abortion worldwide.
Introduction

Abortion is the delivery of an immature fetus (alive or dead) before the end of pregnancy, which occurs as a result of the failure of pregnancy control mechanisms [1]. Infectious agents such as bacteria, viruses, fungi, and protozoa can play an important role in abortion. Among protozoa, *Neospora caninum* (*N. caninum*) is the most common cause of reproductive failure in bovines [2]. Bovines can become infected horizontally via the ingestion of feed and water contaminated with sporulated oocysts shed by dogs as the definitive hosts or vertically (transplacentally) by the transmission of the parasite from a dam to a fetus, which is considered the main route of infection in cattle [3, 4]. Endogenous transplacental transmission is due to the recrudescence of the infection during pregnancy in a persistently infected dam, whereas, exogenous transplacental transmission occurs after the initial infection of the pregnant dam following the ingestion of sporulated oocysts [5, 6]. Overall, *N. caninum* infection in non-pregnant cattle is latent and asymptomatic. Nevertheless, in pregnant cattle, primary infection or recrudescence may lead to abortion, the birth of a weak calf, or the birth of a clinically normal but chronically infected calf [7, 8]. Various factors such as the virulence of *N. caninum*, routes of parasite transmission (vertical or horizontal), type of infection (primary infection, recrudescence, and reinfection), immunological competence of the mother, and stage of pregnancy in which the dam is infected can play a key role in determining infection outcome [8]. Abortion is the most important clinical sign of neosporosis and the majority of the cases occur sporadically, endemically, or epidemically in the sixth month of pregnancy. The rate of congenital transmission is 50–95% and plays an important role in keeping the parasite within the herds [9, 10]. Despite extensive studies on *N. caninum* infection, the pathogenesis of *N. caninum*-induced abortion is complex and still not well understood. Also, *N. caninum* is one of the main constraints to the livestock industry that can lead causes to calve loss, possible loss of milk yield, male infertility, as well as costs associated with establishing the diagnosis of the disease [11–13]. Therefore, given that abortion in bovines is a serious problem and causes significant economic losses to the dairy industry around the world, the main objective of this study was to provide data about the prevalence of *N. caninum* infection in bovines that had an abortion and aborted fetuses by molecular, serological, immunohistochemical (IHC), and histopathological methods worldwide.

Methods

Study design and protocol registration

This extensive research was reported in accordance with the items reported in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (S1 Checklist) [14]. The details of the protocol were registered in PROSPERO with the registration number CRD42020216694.

Search strategy

To evaluate the global prevalence of *N. caninum* infection in bovines that had an abortion and aborted fetuses, the literature search was conducted for relevant papers in 5 English-language databases (PubMed, ScienceDirect, Web of Science, Scopus, and ProQuest) until November 4, 2021, using a combination of keywords related to (“Neospora caninum” OR neosporosis) AND (abortion OR miscarriage OR “reproductive failure” OR “fetal loss”) AND (livestock OR ruminant OR cattle OR bovine OR cow). The references of all the original articles in this study were reviewed so that a relevant article would not be missed. All the retrieved articles were saved in EndNote (version X9) to manage the references.
Inclusion and exclusion criteria

Studies meeting the following criteria were considered eligible: cross-sectional and short communication studies investigating the prevalence of *N. caninum* infection in bovines that had an abortion and aborted fetuses with different diagnostic methods (serological, molecular, IHC, and histopathological), full-text articles available online in English language without limitations regarding publication date. Articles examining the relationship between abortion and *N. caninum*, studies examining the prevalence of *N. caninum* in bovines with more than one abortion, case-control studies, review articles, systematic review and meta-analysis articles, dissertations, conference papers, book chapters, experimental studies, and papers with unclear result sections were excluded from this systematic review and meta-analysis.

Study selection and data extraction

The initial records obtained during databases searching were imported directly to Endnote X9 software. Following the removal of duplicates, two trained researchers independently evaluated titles, abstracts, and full texts. In the event of a dispute, another author arbitrated and resolved any disagreements. In the next step, the required information was extracted for each study including the name of the first author, publication year, place of study, type of samples, diagnostic methods, sample size (the number of examined animals), results of serological, molecular, IHC, and histopathological methods (number of positive samples). In order to extract data on bovine aborted fetuses, the number of aborted fetuses was included in the study, not the number of samples that were evaluated from different organs of a fetus. To extract data related to the serum of bovines that had an abortion, maternal serum or serum of dam was included in the study, and in cases where both samples were presented in the study, only maternal serum was included and if in one study, maternal serum for half of the samples and serum of dam for the other half was evaluated, the total results of maternal serum and serum of dam were analyzed together. When more than one diagnostic method was used in articles on aborted cattle, the results of the enzyme-linked immunosorbent assay (ELISA) test were analyzed because most studies used the ELISA method. However, in aborted fetuses, because most studies used the indirect immunofluorescence assay (IFA) method, the results of this test were analyzed.

Quality assessment

The quality of articles was assessed using the Newcastle-Ottawa Scale (NOS) [15]. This quality scale ranges from 0 to 9 points, and higher scores indicate better quality studies. As a result, articles of acceptable quality (≥3 for each study) were included in this study.

Statistical analysis

The present meta-analysis was carried out using Stata version 14 (Stata Corp, College Station, TX, USA). Pooled prevalence and 95% confidence intervals (CI) were estimated using the random-effects model. Also, the I-squared test was applied to evaluate the heterogeneity index; I-squared values of lower than 25%, 25–50%, and higher than 50% were considered as low, moderate, and high heterogeneity, respectively [16]. The publication bias was examined by Egger’s test. Furthermore, the current study benefited from sensitivity analyses of articles. In this study, subgroup analysis was conducted based on diagnostic methods.
Results
Identification and selection of studies
Our preliminary search of five databases yielded 2512 articles, 1717 articles remained after duplicate removal. Following an initial screening based on titles and abstracts, 1526 studies were excluded. In the next step, the remaining 191 full-text articles were assessed. Finally, 71 of these articles were entered into the meta-analysis with respect to the inclusion/exclusion criteria (Fig 1). Information and characteristics of the investigated articles are presented in Tables 1 and 2.

General characteristics of the included studies
The publication date of the studied articles was from 1989 to 2021, and all articles were cross-sectional and short communication studies. Overall, there were 26 studies (Spain = 7, Romania = 3, Switzerland = 2, Netherlands = 2, Italy = 2, Denmark = 1, France = 1, New South Wales = 1, Serbia = 1, Czech Republic = 1, Belgium = 1, Germany = 1, and Slovak Republic = 1) in Europe, 29 studies (Iran = 15, China = 5, Turkey = 4, Japan = 2, India = 1, Pakistan = 1, and Korea = 1) in Asia, 2 studies (South Africa = 1 and Algeria = 1) in Africa, 35 studies (USA = 10, Brazil = 9, Mexico = 6, Argentina = 5, Costa Rica = 1, Canada = 1, Chile = 1, and Peru = 1) in America and 4 studies (New Zealand = 2 and Australia = 2) in Australia/Oceania. The most common diagnostic tests of serology and molecular utilized in the studies to examine the serum samples of bovines that had an abortion and serum or brain samples of aborted fetuses were the ELISA and polymerase chain reaction (PCR). Some studies have used more than one diagnostic method for *N. caninum* infection (Tables 1 and 2).

In addition, the quality assessment of studies with the NOS checklist showed that the articles included in this meta-analysis are of acceptable quality. S1 Table shows the quality scores of various eligible studies.

Prevalence of *N. caninum* infection in bovines that had an abortion
A total of 2965 and 103 bovines that had an abortion were evaluated for the prevalence of *N. caninum*, out of which 941 and 13 cases were positive using serological and molecular methods in different geographical locations worldwide. The results indicated that the rate of prevalence of *N. caninum* infection was 47% (95% CI: 37%–56%) and 1% (95% CI: 1%–3%) using serological and molecular methods. Heterogeneity were significant in different studies ($I^2 = 89.35\%, p = 0.000$ and $I^2 = 97.95\%, p = 0.000$) (Fig 2 and S1 Fig). Egger’s regression test showed that publication bias exerted a significant influence on the prevalence of *N. caninum* infection in bovines that had an abortion ($p = 0.001$) (S2 Fig). The pooled prevalence rates of *N. caninum* infection in bovines that had an abortion according to the diagnostic methods of ELISA and IFA were determined to be 47% (95% CI: 35%–58%) and 45% (95% CI: 30%–60%), respectively. One study did not mention the type of serology test and the prevalence was 60% (95% CI: 49%–71%) [47]. The results of the subgroup analysis revealed that the effect of assessment of the detection methods on the heterogeneity of studies was not statistically significant ($p = 0.533$). The results of the sensitivity analysis test showed no significant effect of deleting an article with overall results (S3 Fig).

Prevalence of *N. caninum* infection in bovine aborted fetuses
Among databases searched, a total of 1655 bovine aborted fetuses were examined for the seroprevalence rate of the antibodies against *N. caninum*, out of which 351 cases were seropositive using several serological methods. The overall seroprevalence of the antibodies against *N.*
Neospora caninum infection and abortion

The prevalence of *N. caninum* infection in bovine aborted fetuses based on the random effect model was calculated at 35% (95% CI: 8%–62%). I-squared statistics showed a high heterogeneity among the studies ($I^2 = 99.77\%$, $p = 0.000$) (Fig 3). Egger’s test was used to determine the publication bias and the results showed no publication bias on the overall prevalence estimate ($p = 0.125$) (S4 Fig).

Based on the meta-analysis, the prevalence of *N. caninum* infection in the bovine aborted
The prevalence of *Neospora caninum* in bovines that had an abortion:

Id	First author (Publication year)	Place of study	Sample	Method	Sample size (n)	Serological results n (%)	Cut off	Molecular results n (%)
1	Reichel and Drake, 1996 [17]	New Zealand	Serum	ELISA and IFA	76	27 (35.52)	1: 200	--
2	Buxton *et al*., 1997 [18]	Scotland	Serum	IFA	465	81 (17.4)	1: 512	≤ 31%
3	Campero *et al*., 1998 [19]	Argentina	Serum	IFA	9	8 (88.88)	1: 800	--
4	Cox *et al*., 1998 [20]	New Zealand	Serum	IFA	11	9 (81.81)	--	--
5	Venturini *et al*., 1999 [21]	Argentina	Serum	IFA, NAT, and ELISA	189	122 (64.55)	1: 800	--
6	Pitel *et al*., 2001 [22]	France	Serum	ELISA	163	48 (29.45)	1: 100	--
7	Morales *et al*., 2001 [23]	Mexico	Serum	ELISA	32	29 (90.62)	--	--
8	De Meerschman *et al*., 2002 [24]	Belgium	Serum	IFA	163	33 (20.24)	≥ 1: 25	--
9	Václavek *et al*., 2003 [25]	Czech Republic	Serum	ELISA and IFA	463	18 (3.9)	≥ 1: 640	--
10	Sadrebazzaz *et al*., 2004 [26]	Iran	Serum	IFA	139	27 (19.42)	1: 200	--
11	López-Gatius *et al*., 2004 [27]	Spain	Serum	ELISA	38	29 (76.31)	--	--
12	Hall *et al*., 2005 [28]	Australia	Serum	ELISA	8	2 (25)	--	--
13	Santos *et al*., 2005 [29]	Brazil	Serum	IFA	35	5 (14.28)	≥ 200	--
14	McInnes *et al*., 2006 [30]	Australia	Serum	IFA, ELISA, and nested-PCR	42	37 (88.10)	--	13 (30.95)
15	Sadrebazzaz *et al*., 2007 [31]	Iran	Serum	IFA	12	6 (50)	1: 200	--
16	Zhang *et al*., 2007 [32]	China	Serum	ELISA	16	12 (75)	--	--
17	Yao *et al*., 2009 [33]	China	Serum	ELISA and nested PCR	20	8 (40)	--	0/20 (0)
18	Basso *et al*., 2010 [34]	Germany	Serum	ELISA	43	38 (88.37)	--	--
19	Nematollahi *et al*., 2011 [35]	Iran	Serum	ELISA and dot-ELISA	32	ELISA: 7 (21.87) and dot-ELISA: 5 (15.62)	--	--
20	Shabbir *et al*., 2011 [36]	Pakistan	Serum	ELISA	141	66 (46.8)	--	--
21	Ghalmi *et al*., 2011 [37]	Algeria	Serum	IFA	5	4 (80)	> 1: 200	--
22	Yang *et al*., 2012 [38]	China	Serum	ELISA	80	28 (35)	--	--
23	Nematollahi *et al*., 2013 [39]	Iran	Serum	ELISA	76	14 (18.42)	--	--
24	Razmi *et al*., 2013 [40]	Iran	Serum	ELISA	200	38 (19)	--	--
25	Şuteu *et al*., 2013 [41]	Romania	Serum	ELISA	9	5 (55.55)	1: 100	--
26	Gavrilović *et al*., 2013 [42]	Serbia	Serum	ELISA	27	7 (25.93)	--	--
27	Gharekhani, 2014 [43]	Iran	Serum	ELISA	85	55 (64.70)	--	--
28	Špilovska *et al*., 2015 [44]	Slovak Republic	Serum	ELISA	4	3 (75)	--	--
29	de Macedo *et al*., 2017 [45]	Brazil	Serum	ELISA and PCR	41	21 (51.2)	1: 100	0 (0)
30	Serrano-Martínez *et al*., 2019 [46]	Peru	Serum	ELISA	219	102 (46.6)	--	--
31	Perotta *et al*., 2021 [47]	Brazil	Serum	No data	73	44 (60.27)	--	--
32	Köse *et al*., 2021 [48]	Turkey	Serum	ELISA	49	8 (16.33)	--	--

ELISA: enzyme-linked immunosorbent assay, IFA: indirect immunofluorescence assay, NAT: *N. caninum* agglutination test, PCR: polymerase chain reaction, and Nested-PCR: nested-polymerase chain reaction.

https://doi.org/10.1371/journal.pone.0268903.t001

The prevalence of *Neospora caninum* in bovines that had an abortion was estimated to be 36% (95% CI: 5%-68%) and 20% (95% CI: 8%-31%), respectively. The results of the subgroup analysis showed that the effect of diagnostic methods on the heterogeneity of studies was not

https://doi.org/10.1371/journal.pone.0268903
Table 2. Characteristics of the included studies for prevalence of *N. caninum* in the bovine aborted fetuses.

Id	First author (Publication year)	Place of study	Sample	Methods	Sample size (n)	Serological results n (%)	Molecular results n (%)	Histopathology and IHC results n (%)
1	Thilsted and Dubey, 1989 [49]	USA	Tissue specimens from multiple fetal organs	Histopathology and IHC	9	--	--	Histopathology: 7/9 (77.77) and IHC: 3/9 (33.33)
2	Barr et al., 1991 [50]	USA	Brain	IHC	86	--	--	IHC: 72/86 (83.72)
3	Conrad et al., 1993a [51]	USA	Brain	Histopathology and IHC	2	--	--	Histopathology: 2/2 (100) and IHC: 2/2 (100)
4	Ogino et al., 1993 [52]	USA	Brain	Histopathology and IHC	115	--	--	Histopathology: 3/115 (2.60) and IHC: 2/115 (1.74)
5	Nietfeld et al., 1992 [53]	USA	Brain, heart, lung, liver, kidney, placenta, and skeletal muscle	Histopathology and IHC	664	--	--	Histopathology: 25/664 (3.76) and IHC: 21/664 (3.16)
6	Jardine and Last, 1995 [54]	South Africa	Brain and myocardium	Histopathology and IHC	144	--	--	Histopathology: 2/144 (1.39) and IHC: 2/144 (1.39)
7	Obendorf et al., 1995 [55]	USA	Brain, heart, kidney, liver, and lung	Histopathology and IHC	11	--	--	Histopathology: 11/11 (100) and IHC: 3/11 (27.27)
8	Jamaluddin et al., 1996 [56]	USA	Placenta, fetal tissues, and uterine fluid	Histopathology	595	--	--	Histopathology: 71/595 (11.93)
9	McAllister et al., 1996 [57]	USA	Brain	Histopathology and IHC	8	--	--	Histopathology: 8/8 (100) and IHC: 7/8 (90)
10	Buxton et al., 2002 [7]	Scotland	Serum	IFA	547	87 (15.9)	--	--
11	Campero et al., 1998 [19]	Argentina	Brain, heart, lung, liver, adrenal glands, spleen, kidney, thymus, and skeletal muscle	Histopathology and IHC	2	--	--	Histopathology: 2/2 (100) and IHC: 2/2 (100)
12	Perez et al., 1998 [58]	Costa Rica	Tissue	IHC	6	--	--	IHC: 1/6 (16.66)
13	Gottstein et al., 1998 [59]	Switzerland	Brain and fetal heart blood or body cavity fluid samples	Histopathology, IFA, ELISA, and PCR	83	7 (8.43)	24 (28.91)	Histopathology: 18/24 (75)
14	Moen et al., 1998 [60]	Netherlands	Brain, heart, and liver	Histopathology and IHC	51	--	--	Histopathology: 50/51 (98.03) and IHC: 40/51 (78.43)
15	Hattel et al., 1998 [61]	USA	Brain, heart, placenta, kidney, liver, and skeletal muscle	Histopathology	688	--	--	Histopathology: 34/688 (4.94)
16	Baszler et al., 1999 [62]	USA	Brain, heart, kidney, liver, lung, spleen, and placenta	Histopathology, IHC, and PCR	61	--	30 (49.18)	Histopathology: 34/61 (55.73) and IHC: 26/61 (42.62)
17	Venturini et al., 1999 [21]	Argentina	Brain and serum	Histopathology, IFA, agglutination test, and ELISA	104	21 (20.19)	--	Histopathology: 7/8 (87.5)
18	González et al., 1999 [63]	Spain	Brain and fetal fluids	Histopathology, IHC, and IFA	81	32/63 (50.79)	--	Histopathology: 36/81 (44.44) and IHC: 25/34 (73.53)
19	Sloved et al., 1999 [64]	Denmark	Fetal fluids	Histopathology, IHC, ELISA, and IFA	32	14 (43.75)	--	Histopathology: 14/32 (43.75) and IHC: 14/32 (43.75)
20	Wouda et al., 1999 [65]	Netherlands	Brain, heart, and liver	Histopathology	305	--	--	Histopathology: 221/305 (72.46)

(Continued)
Id	First author (Publication year)	Place of study	Sample	Methods	Sample size (n)	Serological results n (%)	Molecular results n (%)	Histopathology and IHC results n (%)
21	Atkinson et al., 2000 [66]	New South Wales	Fetal tissues	Histopathology	12	--	--	Histopathology: 8/12 (66.66)
22	Pitel et al., 2001 [22]	France	Brain	PCR	104	--	22 (21.15)	--
23	Morales et al., 2001 [67]	Mexico	Brain, myocardium, diaphragmatic muscle, liver, lung, kidney, and spleen	Histopathology and IHC	211	--	--	Histopathology: 73/211 (34.6) and IHC: 41/53 (77.36)
24	Morales et al., 2001 [23]	Mexico	Tissue	Histopathology and IHC	32	--	--	Histopathology: 22/32 (68.75) and IHC: 17/21 (81)
25	Collantes-Fernández et al., 2002 [68]	Spain	Brain	Histopathology, real-time PCR, and nested-PCR	12	--	9 (75)	Histopathology: 6/12 (50)
26	Kim et al., 2002 [69]	Korea	Brain, heart, lung, liver, spleen, kidney, spinal cord, skeletal muscle, stomach, and small and large intestines	Histopathology, IHC, IFA, and PCR	180	38 (21.11)	34/45 (75.55)	Histopathology: 45/180 (25) and IHC: 38/45 (84.44)
27	Corbellini et al., 2002 [70]	Brazil	Brain, heart, lung, kidney, and skeletal muscle	Histopathology and IHC	46	--	--	Histopathology: 22/46 (47.83) and IHC: 18/22 (81.81)
28	De Meerschman et al., 2002 [24]	Belgium	Brain, heart, liver, and serum	Histopathology, IHC, and IFA	224	10/166 (6.02)	--	Histopathology: 17/224 (7.59) and IHC: 12/17 (70.59)
29	Campero et al., 2003 [71]	Argentina	Brain, heart, lung, adrenal glands, spleen, kidney, thymus, and skeletal muscle	Histopathology and IHC	288	--	--	Histopathology: 43/288 (14.93) and IHC: 26/43 (60.46)
30	Pereira-Bueno et al., 2003 [72]	Spain	Brain, heart, and fetal sera or thoracic fluids	Histopathology, IHC, IFA, ELISA, and PCR	80	6/56 (10.7)	9/59 (15.3)	Histopathology: 25/80 (31.3) and IHC: 7/13 (53.8)
31	Boger and Hattel, 2003 [73]	USA	Adrenal gland, brain, heart, intestine, kidney, liver, lung, lymph node, placenta, spleen, skeletal muscle, and thymus	Histopathology and IHC	144	--	--	Histopathology: 65/144 (45.14) and IHC: 12/144 (8.33)
32	Kashiwazaki et al., 2004 [74]	Uruguay	Brain	IHC	2	--	--	IHC: 2/2 (100)
33	López-Gatius et al., 2004 [27]	Spain	Brain	Histopathology, IHC, and PCR	2	--	2 (100)	Histopathology: 2/2 (100) and IHC: 2/2 (100)
34	Habibi et al., 2005 [75]	Iran	Brain	Semi-nested PCR	6	--	4 (66.66)	--
35	Khodakaram-Tafti and Ikede, 2005 [76]	Canada	Brain and heart	Histopathology and IHC	10	--	--	Histopathology: 5/10 (50) and IHC: 5/10 (50)
36	Hall et al., 2005 [28]	Australia	Placenta	Histopathology	7	--	--	Histopathology: 1/7 (14.28)
37	Santos et al., 2005 [29]	Brazil	Fetal tissues	IHC	5	--	--	IHC: 5/5 (100)
38	Collantes-Fernández et al., 2006 [77]	Spain	Brain, heart, liver, kidney, and lung	Nested-PCR	220	--	72 (32.7)	Histopathology: 18/24 (75)
39	Corbellini et al., 2006 [78]	Brazil	Brain and/or muscle (cardiac and skeletal), liver, lung, and kidney	Histopathology and IHC	161	--	--	Histopathology: 37/161 (22.98) and IHC: 34/37 (91.89)

(Continued)
Id	First author (Publication year)	Place of study	Sample	Methods	Sample size (n)	Serological results n (%)	Molecular results n (%)	Histopathology and IHC results n (%)
40	McInnes et al., 2006 [30]	Australia	Fetal tissues and serum	Histopathology, IFA, ELISA, and nested-PCR	42	--	21/42 (50)	Histopathology: 9/19 (47.36)
41	Medina et al., 2006 [79]	Mexico	Brain	Histopathology and nested-PCR	44	--	35 (79.54)	Histopathology: 20/44 (45.45)
42	Razmi et al., 2007 [80]	Iran	Brain	Histopathology, IHC, and PCR	100	--	13 (13)	Histopathology: 12/53 (22.64) and IHC: 3/53 (5.66)
43	Reitt et al., 2007 [81]	Switzerland	Brain	Real-time PCR and IHC	223	--	36/76 (47.36)	IHC: 4/223 (1.79)
44	Sadrebazzaz et al., 2007 [31]	Iran	Fetal sera and fluids and brain	Histopathology, IFA, and semi nested-PCR	12	5 (41.66)	4 (33)	Histopathology: 3/12 (25)
45	Zhang et al., 2007 [32]	China	Brain, liver, kidney, heart, lung, muscle, and spleen	Histology, IHC, and PCR	12	--	4 (33.33)	Histopathology: 1/2 (50) and IHC: 1/2 (50)
46	Pabón et al., 2007 [82]	Spain	Brain	Histopathology and PCR	7	--	6 (85.71)	Histopathology: 6/7 (85.71)
47	Pescador et al., 2007 [83]	Brazil	Brain, heart, lung, kidney, and skeletal muscle	Histopathology and IHC	258	--	--	Histopathology: 89/258 (34.49) and IHC: 55/258 (21.31)
48	Escamilla et al., 2007 [84]	Mexico	Lung, myocardium, liver, and kidney	Histopathology	16	--	--	Histopathology: 10/16 (62.5)
49	Moore et al., 2008 [85]	Argentina	Fetal fluids, brain, heart, liver, muscle, and placenta	Histopathology, IHC, IFA, and nested-PCR	666	31/55 (56.4)	34/70 (48.5)	Histopathology: 70/666 (10.5) and IHC: 49/70 (70)
50	Yao et al., 2009 [33]	China	Brain, heart, lung, spleen, kidney, and skeletal muscle	Nested PCR	26	--	15 (57.7)	--
51	Yildiz et al., 2009 [86]	Turkey	Heart, liver, brain, and lymph nodes	Histopathology and IHC	55	--	--	Histopathology: 6/55 (10.90) and IHC: --
52	Salehi et al., 2009 [87]	Iran	Brain and placenta	Histopathology and nested-PCR	19	--	17 (89.47)	Histopathology: 19/19 (100)
53	Sánchez et al., 2009 [88]	Mexico	Brain	Histopathology, IHC, and PCR	48	--	NC5: 12/29 (41.37) and ITS1: 15/29 (51.72)	Histopathology: 29/48 (60.41) and IHC: 21/29 (72.41)
54	Cabral et al., 2009 [89]	Brazil	Brain, heart, kidney, liver, lung, spleen, thymus, and placenta	Histopathology, IHC, and nested-PCR	105	--	23 (21.90)	Histopathology: 75/105 (71.43) and IHC: 9/105 (8.6)
55	Razmi et al., 2010 [90]	Iran	Brain and fetal fluids	IHC, ELISA, and PCR	151	15 (9.93)	18 (11.92)	IHC: 6/52 (11.54)
56	Basso et al., 2010 [34]	Germany	Brain	PCR	20	--	18 (90)	--
57	Suteu et al., 2010 [91]	Romania	Brain and heart	Histopathology and PCR	9	--	3 (33.33)	Histopathology: 0/9 (0)
58	Ghalmi et al., 2011 [37]	Algeria	Brain	Histopathology, PCR, and real-time PCR	5	--	3 (60)	Histopathology: 1/5 (20)
59	Tramuta et al., 2011 [92]	Italy	Abomasal content, brain, lung, spleen, liver, kidney, and muscle	Multiplex PCR	50	--	7 (14)	--

(Continued)
Id	First author (Publication year)	Place of study	Sample	Methods	Sample size (n)	Serological results n (%)	Molecular results n (%)	Histopathology and IHC results n (%)
60	dos Santos DS, 2011 [93]	Brazil	Central nervous system, heart, skeletal muscle, liver, lung, kidney, spleen, thymus, lymph nodes, ovary, testicle, uterus, and ear skin	Histopathology, IHC, and PCR	24	--	5 (20.83)	Histopathology: 8/24 (33.33) and IHC: 3/24 (12.5)
61	Yang et al., 2012 [38]	China	Brain	Nested-PCR	80	--	25 (31.3)	--
62	Suteu et al., 2012 [34]	Romania	Brain and heart	PCR	21	--	8 (38.09)	--
63	Nematollahi et al., 2013 [39]	Iran	Brain, spinal cord, placenta, liver, and heart	Histopathology and PCR	14	--	6 (42.86)	Histopathology: 14/14 (100)
64	Razmi et al., 2013 [40]	Iran	Brain	PCR	200	--	23 (11.5)	--
65	Suteu et al., 2013 [41]	Romania	Brain and heart	Histopathology, IHC, and PCR	9	--	4 (44.44)	Histopathology: 9/9 (100) and IHC: 2/9 (22.22)
66	Kamali et al., 2014 [95]	Iran	Brain	Histopathology and PCR	395	--	179 (45.31)	Histopathology: 16/56 (28.57)
67	Spilovska et al., 2015 [44]	Slovak Republic	Brain and serum	ELISA and PCR	4	3 (75)	3 (75)	--
68	Salehi et al., 2015 [96]	Iran	Brain	Nested-PCR	16	--	12 (75)	--
69	Medina-Esparza et al., 2016 [97]	Mexico	Brain	Nested-PCR	63	--	27 (42.86)	--
70	Ozkaraca et al., 2017 [98]	Turkey	Brain, myocardium, liver, lung, kidney, spleen, and thymus	IHC and Duplex PCR	102	--	26 (25.49)	IHC: 18/102 (17.64)
71	de Macedo et al., 2017 [45]	Brazil	Blood, intrathoracic fluid, brain, heart, liver, and lung	Histopathology, IHC, ELISA, and PCR	41	8/30 (26.7)	14/36 (38.8)	Histopathology: 29/36 (80.55) and IHC: 9/36 (25)
72	Kaveh et al., 2017 [99]	Iran	Brain, kidney, spleen, liver, and lung	PCR and RT-PCR	128	--	39 (30.47)	--
73	Qian et al., 2017 [100]	China	Brain, heart, lung, spleen, kidney, and skeletal muscle	Nested-PCR	7	--	4 (57.14)	--
74	Diaz Cao et al., 2018 [101]	Spain	Brain	Real-time PCR	25	--	2 (8)	--
75	Tian et al., 2018 [102]	China	Fetal tissues	LF-RPA and nested-PCR	75	--	LF-RPA: 18 (24) and nested PCR: 17 (22.6)	--
76	Snak et al., 2018 [103]	Brazil	Fetal tissues	PCR	17	--	9 (52.94)	--
77	Moroni et al., 2018 [104]	Chile	Brain and optic nerve	Histopathology, IHC, and PCR	296	--	31 (10.5)	Histopathology: 44/296 (14.9) and IHC: 27/44 (61.36)
78	Bartley et al., 2019 [105]	Scotland	Brain, heart, and placenta	Nested-PCR	455	--	82 (18.02)	--
79	Acici et al., 2019 [106]	Turkey	Brain, spleen, liver, lung, amniotic fluid, and fetal membranes	Real-time PCR	88	--	43 (48.9)	--
80	Mahajan et al., 2020 [107]	India	Heart, liver, and brain	Histopathology and IHC	13	--	--	Histopathology: 1/13 (7.69) and IHC: 1/13 (7.69)
81	Amouei et al., 2019 [108]	Iran	Brain	Nested-PCR	9	--	2 (22.2)	--
A total number of 52 eligible studies examined 3888 samples from bovine aborted fetuses, out of which 1219 cases were positive using molecular methods. The global pooled prevalence of *N. caninum* infection in bovine aborted fetuses using molecular methods was estimated at 43% (95% CI: 35%–52%) ($I^2 = 98.01\%$, $p = 0.00$) (Fig 4). The publication bias was significant based on the results of Egger’s test ($p = 0.000$) using molecular methods (S6 Fig). Based on the meta-analysis, the prevalence of *N. caninum* infection in the bovine aborted fetuses based on the diagnostic methods of PCR, nested PCR, and others was estimated to be 41% (95% CI: 31%–51%), 50% (95% CI: 33%–67%), and 31% (95% CI: 20%–42%), respectively. Results of subgroup analysis based on diagnostic methods indicated that the effect of diagnostic methods on the heterogeneity of studies was not statistically significant ($p = 0.336$). In the sensitivity analysis test, the effect of omission of each study on the overall result of the study was evaluated. The findings of this test indicated the stability of the results of the study. In addition, in three articles, 6826 and 2721 samples were examined by histopathology and IHC methods; 1518 and 674 cases were positive for *N. caninum* (22.24% and 24.77% positive for neosporosis) (Table 2).

Discussion

N. caninum was identified as the main cause of abortion in cattle [49], which is one of the most important economic diseases. Hence, in this systematic review and meta-analysis study, the prevalence of *N. caninum* infection in bovines that had an abortion and aborted fetuses was investigated by molecular, serological, IHC, and histopathological methods. Diagnosis of *N. caninum* abortion may be inconclusive for the following reasons: 1) expensive and sometimes
difficult to diagnose, 2) lack of access to fetus and placenta, especially for beef cattle, and 3) using the serology method alone [45]. Identification of compatible histological lesions, detection of parasites in fetal tissues by PCR or IHC, and detection of specific antibodies in fetal fluids and maternal serum are the diagnostic criteria for *N. caninum*–induced abortion [2].

In this systematic review and meta-analysis study, 57 papers performed the histopathological evaluations based on observation of characteristic or compatible lesions with *N. caninum* infection, and no analysis was performed on them. According to the results of the included articles, the prevalence of *N. caninum* infection in bovine aborted fetuses by histopathology

Fig 2. The reported seroprevalence rate of anti-*N. caninum* antibodies in bovines that had an abortion by serological methods.

https://doi.org/10.1371/journal.pone.0268903.g002

Study	ES (95% CI)	% Weight
ELISA		
Kose et al. (2021)	0.16 (0.09, 0.29)	3.30
Gavrilovic et al. (2013)	0.26 (0.13, 0.45)	3.12
Lopez-Gatius et al. (2004)	0.76 (0.61, 0.87)	3.21
Razmi et al. (2013)	0.19 (0.14, 0.25)	3.38
Yang et al. (2012)	0.35 (0.25, 0.46)	3.25
Nematollahi et al. (2013)	0.18 (0.11, 0.29)	3.33
Gharekhani (2014)	0.65 (0.54, 0.74)	3.30
Pitel (2001)	0.29 (0.23, 0.37)	3.36
Suteu et al. (2013)	0.56 (0.27, 0.81)	2.48
Hall et al. (2005)	0.25 (0.07, 0.59)	2.59
Nematollahi et al. (2011)	0.22 (0.11, 0.39)	3.19
de Macedo et al. (2017)	0.51 (0.36, 0.66)	3.16
Spilovska et al. (2015)	0.75 (0.30, 0.95)	2.08
Yao et al. (2009)	0.40 (0.22, 0.61)	2.94
Basso et al. (2010)	0.88 (0.76, 0.95)	3.31
Zhang et al. (2007)	0.75 (0.51, 0.90)	2.95
Serrano-Martinez et al. (2019)	0.47 (0.40, 0.53)	3.37
Zubair Shabbir et al. (2011)	0.47 (0.39, 0.55)	3.34
Morales et al. (2001)	0.91 (0.76, 0.97)	3.30
Subtotal (I² = 95.34%, p = 0.00)	0.47 (0.35, 0.58)	59.62
IFA		
McIntyres et al. (2006)	0.88 (0.75, 0.95)	3.31
De Meerschman et al. (2002)	0.20 (0.15, 0.27)	3.38
Santos et al. (2005)	0.14 (0.06, 0.29)	3.27
Ghami et al. (2011)	0.80 (0.38, 0.96)	2.38
Sadrebazzaz et al. (2004)	0.19 (0.14, 0.27)	3.37
Cox et al. (1998)	0.82 (0.52, 0.95)	2.88
Buxton et al. (1997)	0.17 (0.14, 0.21)	3.41
Sadrebazzaz et al. (2007)	0.50 (0.25, 0.75)	2.66
Venturini et al. (1999)	0.65 (0.58, 0.71)	3.37
Vaclavek et al. (2003)	0.04 (0.02, 0.06)	3.42
Campero et al. (1998)	0.89 (0.57, 0.98)	2.97
Reichel and Drake (1996)	0.36 (0.26, 0.47)	3.28
Subtotal (I² = 98.40%, p = 0.00)	0.45 (0.30, 0.60)	37.70
No data		
Perrota et al. (2021)	0.60 (0.49, 0.71)	3.28
Heterogeneity between groups: p = 0.153		
Overall (I² = 97.95%, p = 0.00);	0.47 (0.37, 0.56)	100.00
was 22.24%. Since many factors can play a role in abortion, determining the cause is often difficult. Abortions usually show no gross lesions or clinical signs in the fetus, and a history of abortion rarely provides convincing clues to the cause [38]. However, histopathological examination of the aborted fetus and isolation or culture of pathogens are common methods for routine diagnostic examination of materials submitted [38]. The cell culture system is laborious, time-consuming, and relatively low sensitive [38]. Histopathological examination of the fetus is essential for a definitive diagnosis. Nevertheless, histological examinations of tissues from autolyzed fetuses are not possible [113]. Ideally, the entire fetus should be sent, but if this is not possible, samples from the brain, heart, and liver should be examined for histopathological changes and body fluids or serum for serological evaluation. The fetal brain is more damaged than other organs, but the heart and liver are also commonly affected [3]. Focal encephalitis is the most significant lesion that is associated with necrosis and nonsuppurative inflammation particularly, especially in the brain and to a lesser extent in the cord [3]. As the lesion progresses, necrotic areas may be replaced by macrophages, and the glial cells that cause the lesion appear as discrete granuloma [114]. In addition, other techniques, such as IHC, are used to show parasites associated with lesions in aborted fetal tissues. IHC is a relatively insensitive
Fig 4. The prevalence of *N. caninum* infection in the bovine aborted fetuses using molecular methods.

https://doi.org/10.1371/journal.pone.0268903.g004
technique for detecting the parasite in host tissues due to the low quality of the fetal tissue (autolyzed, mummified, or macerated) and low parasite numbers that may lead to false negatives [62, 115]. In this study, 2721 samples were evaluated for the presence of *N. caninum* in fetal tissues, of which 674 were positive (24.77% positive for neosporosis) by the IHC method. Serology is another method used to reliably diagnose *N. caninum*-related abortion problems, but it alone is not enough [39]. Tests such as IFA and ELISA are used for serological diagnosis of neosporosis. IFA is the gold standard for the serological diagnosis of *N. caninum* infection and is highly specific. Despite numerous common antigens, there is no evidence of cross-reaction between *N. caninum* and *T. gondii* [116]. However, indirect ELISA indicates the possibility of cross-reactivity between the sera of animals infected with *N. caninum*, *T. gondii*, or *Sarcocystis* species and leads to false-positive results [116]. Positive results of serological tests indicate infection of the animal with *N. caninum*, but in the case of abortion, serological tests cannot provide a definitive diagnosis. To confirm the diagnosis, fetal tissues should be examined for the presence of specific lesions, tissue cysts, and tachyzoites [117]. Overall, this meta-analysis demonstrated that seroprevalence of *N. caninum* infection is 35% in the aborted fetuses of cattle using serological tests. Also, the prevalence of *N. caninum* infection in the bovine aborted fetuses using different molecular tests was obtained at 43%. The use of molecular techniques, such as PCR, is useful for the diagnosis of neosporosis in bovines. PCR is a very specific and sensitive technique for the detection of small numbers of parasites in tissue and the ability to amplify small amounts of *N. caninum* DNA in a larger quantity of tissue [108, 115]. However, DNA detection in aborted fetuses is not sufficient to confirm that *N. caninum* is responsible for reproductive failure because other abortifacient factors may also play a potential role in abortion [106]. Although PCR is one of the most accurate and widely used molecular methods to study the global prevalence of *N. caninum* infection in aborting bovines and lost fetuses, it is best to use PCR and IHC tests simultaneously to increase the success of the definitive diagnosis of neosporosis.

In this study, the pooled prevalence rate of *N. caninum* infection in bovines that had an abortion was 47% and 1% by serological and molecular methods. Given that the seroprevalence of *N. caninum* in cattle is high and the cattle that abort the infected fetus is probably seropositive. Therefore, the maternal serological examination is useful to rule out *N. caninum*-associated abortion [36].

N. caninum causes heavy economic losses in livestock, particularly cattle, which are economically the most important host of natural *N. caninum* infections [105]. One of the major effects of infection in cows is abortion, in some geographical areas up to 42.5% of abortions are caused by *N. caninum*. In general, the economic impact of neosporosis has several aspects, including losses directly caused by the disease, the costs related to disease prevention, and the value of fetuses lost. The main output of a herd is its products, such as calf, milk, and meat. Indirect costs include costs such as professional help, re-breeding of cows, increased lactation time, decreased production of milk and dairy products, and early replacement of infected animals [11, 118]. In one study, costs of the disease in the New Zealand beef industry were estimated at an average of US $1.1 million due to abortion or infection and in the US, it is estimated that neosporosis costs the dairy industry US $546.3 million annually [119].

In this systematic study, heterogeneity was significant ($I^2 > 50$). Geographical factors of each region, differences in the ages of the animals in the different studies, differences in sampling, the study of various tissues to estimate the prevalence in the included studies, and a variety of detection methods can be reasons for high heterogeneity. The lack of evaluation of various associated factors in the eligible studies can be considered a basic gap. The number of bovine aborted fetuses sent to the laboratory was relatively small in some studies, which may limit the ability of the results to generalize. Also, this small number can lead to wide confidence
intervals. Another limitation is that this study used only articles published in English language, and articles related to other languages were excluded and this can be one of the reasons for publication bias. To the best of our knowledge, this is the first review that systematically assesses the studies on the prevalence of *N. caninum* infection in bovines that had an abortion and aborted fetuses. The results of the meta-analysis demonstrated a high prevalence of neosporosis in bovines that had an abortion and aborted fetuses throughout the world. According to the study, *N. caninum* infection could be considered a potential risk factor for reproductive failure in bovines worldwide. These findings provide a better picture of the epidemiology of *N. caninum* among bovines that had an abortion and aborted fetuses and may be useful for improving prevention and control strategies in the future as well as helping to reduce significant economic losses to the livestock industry.

Supporting information

S1 Checklist. PRISMA 2009 checklist. (DOC)

S1 Table. NOS checklist. (DOCX)

S1 Fig. The pooled prevalence of *N. caninum* infection in bovines that had an abortion using molecular methods. (DOCX)

S2 Fig. Funnel plot to detect publication bias in studies showing the seroprevalence of *N. caninum* infection in bovines that had an abortion. (DOCX)

S3 Fig. Sensitivity analysis for assessing the effect of each primary study on the total estimates in studies showing the seroprevalence of *N. caninum* infection in bovines that had an abortion. (DOCX)

S4 Fig. Funnel plot to detect publication bias in studies showing the seroprevalence of *N. caninum* infection in the bovine aborted fetuses. (DOCX)

S5 Fig. Sensitivity analysis for assessing the effect of each primary study on the total estimates in studies showing the seroprevalence of anti-*N. caninum* antibodies in the bovine aborted fetuses. (DOCX)

S6 Fig. Funnel plot to detect publication bias in studies showing the prevalence of *N. caninum* infection in the bovine aborted fetuses by molecular methods. (DOCX)

Acknowledgments

This article is an approved plan from Student Research Committee of Mazandaran University of Medical Sciences, Sari, Iran (number: 8558). The code of ethics of this plan is (IR.MAZUMS.REC.1399.783).
Author Contributions

Conceptualization: Ahmad Daryani.

Data curation: Tooran Nayeri.

Formal analysis: Mahmood Moosazadeh.

Investigation: Tooran Nayeri.

Methodology: Tooran Nayeri, Mahmood Moosazadeh, Shahabeddin Sarvi.

Project administration: Tooran Nayeri.

Software: Mahmood Moosazadeh.

Supervision: Ahmad Daryani.

Validation: Ahmad Daryani.

Writing – original draft: Tooran Nayeri.

Writing – review & editing: Tooran Nayeri, Shahabeddin Sarvi, Ahmad Daryani.

References

1. Shaapan RM. The common zoonotic protozoal diseases causing abortion. J Parasit Dis. 2016; 40(4):1116–29. https://doi.org/10.1007/s12639-015-0661-5 PMID: 27876900

2. Dubey J, Schares G. Diagnosis of bovine neosporosis. Vet Parasitol. 2006; 140(1–2):1–34. https://doi.org/10.1016/j.vetpar.2006.03.035 PMID: 16730126

3. Dubey JP. Review of Neospora caninum and neosporosis in animals. Korean J Parasitol. 2003; 41(1):1. https://doi.org/10.3347/kjp.2003.41.1.1 PMID: 12666725

4. McAllister MM, Björkman C, Anderson-Sprecher R, Rogers DG. Evidence of point-source exposure to Neospora caninum and protective immunity in a herd of beef cows. J Am Vet Med Assoc. 2000; 217(6):881–7. https://doi.org/10.2460/javma.2000.217.881 PMID: 10997162

5. Trees AJ, Williams DJ. Endogenous and exogenous transplacental infection in Neospora caninum and Toxoplasma gondii. Trends Parasitol. 2005; 21(12):558–61. https://doi.org/10.1016/j.pt.2005.09.005 PMID: 16223599

6. Wouda W. Neosporosis: Biology, transmission and clinical signs. Protozoal abortion in farm ruminants Wallingford, England CAB international. 2007:46–53.

7. Buxton D, McAllister MM, Dubey JP. The comparative pathogenesis of neosporosis. Trends Parasitol. 2002; 18(12):546–52. https://doi.org/10.1016/s1471-4922(02)02414-5 PMID: 12482540

8. Innes EA, Andrianarivo AG, Björkman C, Williams DJ, Conrad PA. Immune responses to Neospora caninum and prospects for vaccination. Trends Parasitol. 2002; 18(11):497–504. https://doi.org/10.1016/s1471-4922(02)02372-3 PMID: 12473366

9. Wouda W, Moen AR, Visser IJ, van Knapen F. Bovine fetal neosporosis: a comparison of epizootic and sporadic abortion cases and different age classes with regard to lesion severity and immunohistochemical identification of organisms in brain, heart, and liver. J Vet Diagn Invest. 1997; 9(2):180–5. https://doi.org/10.1177/104063879700900212 PMID: 9211238

10. Schares G, Peters M, Wurm R, Bänwald A, Conraths FJ. The efficiency of vertical transmission of Neospora caninum in dairy cattle analysed by serological techniques. Vet Parasitol. 1998; 80(2):87–98. https://doi.org/10.1016/s0304-4017(98)00195-2 PMID: 9870361

11. Thurmond MC, Hietala SK, Blanchard PC. Herd-based diagnosis of Neospora caninum-induced endemic and epidemic abortion in cows and evidence for congenital and postnatal transmission. J Vet Diagn Invest. 1997; 9(1):44–9. https://doi.org/10.1177/104063879700900108 PMID: 9087924

12. Nasir A, Parveen Z, Shah M, Rashid M. Seroprevalence of brucellosis in animals at government and private livestock farms in Punjab. Pak Vet J. 2004; 24(3):144–6.

13. Asmare K, Asfaw Y, Gelaye E, Ayelet G. Brucellosis in extensive management system of Zebu cattle in Sidama Zone, Southern Ethiopia. Afr J Agric Res. 2010; 5(3):267–63. https://doi.org/10.5897/AJR09.045
14. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097. PMID: 19621072

15. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of non-randomized studies in meta-analyses. Eur J Epidemiol. 2010; 25(9):603–5. https://doi.org/10.1007/s10654-010-9491-z PMID: 20652370

16. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 21(11):1539–58. https://doi.org/10.1002/sim.1186 PMID: 12111919

17. Reichel M, Drake J. The diagnosis of Neospora abortions in cattle. N Z Vet J. 1996; 44(4):151–4. https://doi.org/10.1080/00480169.1996.35960 PMID: 16031920

18. Buxton D, Caldow G, Maley S, Marks J, Innes E. Neosporosis and bovine abortion in Scotland. Vet Rec. 1997; 141(25):649–51. https://doi.org/10.1136/vr.141.25.649 PMID: 9463844

19. Campero CM, Anderson ML, Conosciuto G, Odrozola H, Bretschneider G, Poso MA. Neospora caninum-associated abortion in a dairy herd in Argentina. Vet Rec. 1998; 143(8):228–9. https://doi.org/10.1016/s0014-0514(98)00046-7 PMID: 9770678

20. Cox B, Reichel M, Griffiths L. Serology of a Neospora abortion outbreak on a dairy farm in New Zealand: a case study. N Z Vet J. 1998; 46(1):28–31. https://doi.org/10.1080/00480169.1998.36046 PMID: 16032006

21. Venturini M, Venturini L, Bacigalupo D, Machuca M, Echaide I, Basso W, et al. Neospora caninum infections in bovine foetuses and dairy cows with abortions in Argentina. Int J Parasitol. 1999; 29(10):1705–8. https://doi.org/10.1016/s0020-7519(99)0014-5 PMID: 10608457

22. Pitel P-H, Pronost S, Chatagnon G, Tainturier D, Fortier G, Ballet J-J. Neosporosis in bovine dairy herds from the west of France: detection of Neospora caninum DNA in aborted fetuses, seroepidemiology of N. caninum in cattle and dogs. Vet Parasitol. 2001; 102(4):269–77. https://doi.org/10.1016/s0304-4017(01)00544-1 PMID: 11731070

23. Morales Trigo Francisco, barra Froylan Eduardo Puente, Santacr uz M. Seroprevalence study of bovine neosporosis in Mexico. J Vet Diagn Invest. 2001; 13(5):413–5. https://doi.org/10.1177/104063870101300508 PMID: 11580063

24. De Meerschman F, Speybroeck N, Berkvens D, Rettigner C, Focant C, Leclipteux T, et al. Fetal infection with Neospora caninum in dairy and beef cattle in Belgium. Theriogenology. 2002; 58(5):933–45. https://doi.org/10.1016/s0020-7519(02)00934-2 PMID: 12212893

25. Václavek P, Koudela B, Modry D, Sedláˇık K. Seroprevalence of Neospora caninum in aborting dairy cattle in the Czech Republic. Vet Parasitol. 2003; 115(3):239–45. https://doi.org/10.1016/s0304-4017(03)00215-2 PMID: 12925039

26. Sadrebazzaz A, Haddadzadeh H, Esmailinia K, Habibi G, Vojgani M, Hashemifesharaki R. Serological prevalence of Neospora caninum in healthy and aborted dairy cattle in Mashhad, Iran. Vet Parasitol. 2004; 124(3–4):201–4. https://doi.org/10.1016/j.vetpar.2004.06.027 PMID: 15381300

27. López-Gatius F, López-Béjar M, Murugavel K, Pabón M, Ferrer D, Almería S. Neospora-associated abortion episode over a 1-year period in a dairy herd in north-east Spain. J Vet Med B Infect Dis Vet Public Health. 2004; 51(7):348–52. https://doi.org/10.1111/j.1439-0450.2004.00779.x PMID: 15525363

28. Hall C, Reichel M, Ellis J. Neospora abortions in dairy cattle: diagnosis, mode of transmission and control. Vet Parasitol. 2005; 128(3–4):231–41. https://doi.org/10.1016/j.vetpar.2004.12.012 PMID: 15740860

29. Santos A, Navarro I, Bracarense A, Freire R, Marana E, Ogawa L, et al. Dairy cow abortion associated with Neospora caninum and other infectious agents. Arq Bras Med Vet Zootec. 2005; 57:545–7. https://doi.org/10.1590/S0102-09352005000400017

30. Mclnnes LM, Ryan UM, O’Handley R, Sager H, Forschow D, Palmer DG. Diagnostic significance of Neospora caninum DNA detected by PCR in cattle serum. Vet Parasitol. 2006; 142(3–4):207–13. https://doi.org/10.1016/j.vetpar.2006.07.013 PMID: 16934934

31. Sadrebazzaz A, Habibi G, Haddadzadeh H, Ashrafi J. Evaluation of bovine abortion associated with Neospora caninum by different diagnostic techniques in Mashhad, Iran. Parasitol res. 2007; 100(6):1257–60. https://doi.org/10.1007/s00436-006-0417-3 PMID: 17206503

32. Zhang W, Deng C, Liu Q, Liu J, Wang M, Tian K, et al. First identification of Neospora caninum infection in aborted bovine foetuses in China. Vet Parasitol. 2007; 149(1–2):72–6. https://doi.org/10.1016/j.vetpar.2007.07.013 PMID: 17706874

33. Yao L, Yang N, Liu Q, Wang M, Zhang W, Qian W, et al. Detection of Neospora caninum in aborted bovine fetuses and dam blood samples by nested PCR and ELISA and seroprevalence in Beijing and
Tianjin, China. Parasitology. 2009; 136(11):1251–6. https://doi.org/10.1017/S003118209990813 PMID: 19660160

34. Basso W, Schares S, Minke L, Bánvald A, Maksimov A, Peters M, et al. Microsatellite typing and avidity analysis suggest a common source of infection in herds with epidemic Neospora caninum-associated bovine abortion. Vet Parasitol. 2010; 173(1–2):24–31. https://doi.org/10.1016/j.vetpar.2010.06.009 PMID: 20609521

35. Nematollahi, Jozani J, Neda Z. Adaptation of Dot-ELISA for serodiagnosis of Neospora caninum infection in aborted cows. Glob Vet. 2011; 7(2):149–52.

36. Shabbir MZ, Nazir MM, Maqbool A, Lateef M, Shabbir MAB, Ahmad A, et al. Seroprevalence of Neospora caninum and Brucella abortus in dairy cattle herds with high abortion rates. J Parasitol. 2011; 97(4):740–2. https://doi.org/10.1645/GE-2734.1 PMID: 21506829

37. Ghalmi F, China B, Kaidi R, Losson B. Neospora caninum is associated with abortion in Algerian cattle. J of Parasitol. 2011; 97(6):1121–4. https://doi.org/10.1645/GE-2861.1 PMID: 21728878

38. Yang N, Cui X, Qian W, Yu S, Liu Q. Survey of nine abortifacient infectious agents in aborted bovine fetuses from dairy farms in Beijing, China, by PCR. Acta Vet Hung. 2012; 60(1):83–92. https://doi.org/10.1556/Avet.2012.007 PMID: 22366134

39. Nematollahi A, Moghaddam G, Jaafari R, Helan JA, Norouzi M. Study on outbreak of Neospora caninum-associated abortion in dairy cows in Tabriz (Northwest Iran) by serological, molecular and histopathologic methods. Asian Pac J Trop Med. 2013; 6(12):942–6. https://doi.org/10.1016/S1995-7645(13)60168-6 PMID: 24144024

40. Razmi G, Zarae H, Norbakhsh MF, Naseri Z. Estimating the rate of transplacental transmission of Neospora caninum to aborted fetuses in seropositive dams in Mashhad area, Iran. Iran J Vet Med. 2013; 7(4):253–6.

41. Şuteu O, Paşliu A, Györke A, Borza G, Ardelean A, Cozma V. A survey of Neospora caninum-associated abortion in dairy cattle of Romania. Sci Parasitol. 2013; 14:139–46.

42. Gavrilović P, Žuvić L, Todorović I, Jovanović M, Parunović J. Investigation of importance of Neospora caninum in aetiology of abortion in dairy cows in Serbia. Rev Med Vet. 2013; 164:100–4.

43. Gharekhani J. Seroprevalence of Neospora caninum and Toxoplasma gondii infections in aborted cattle in Hamedan, Iran. J Adv Vet Anim Res. 2014; 1(2):32–5. https://doi.org/10.5455/javar.v1i2p32-35

44. Šipilovská S, Reiterová K, Antolová D. Neospora caninum-associated abortions in Slovak dairy farm. Iran J Parasitol. 2015; 10(1):96. PMID: 25904951

45. de Macedo CAB, Macedo MF, SBd, Miura AC, Taroda A, Cardim ST, Innes EA, et al. Occurrence of abortions induced by Neospora caninum in dairy cattle from Santa Catarina, southern Brazil. Rev Bras Parasitol Vet. 2017; 26:292–8. https://doi.org/10.1590/S1984-29612017051 PMID: 28977243

46. serrano-Martinez ME, Cisterna CAB, Romero RCE, Huacho MAQ, Bermabez AM, Albornoz LAL. Evaluation of abortions spontaneously induced by Neospora caninum and risk factors in dairy cattle from Lima, Peru. Rev Bras Parasitol Vet. 2019; 28:215–20. https://doi.org/10.1590/S1984-29612019026 PMID: 31215607

47. Perotta JH, Freitas BBd, Marcom NN, Pescador CA, Pereira CC, Locatelli-Ditrich Ret al. An abortion storm in dairy cattle associated with neosporosis in southern Brazil. Rev Bras Parasitol Vet. 2021; 30. https://doi.org/10.1590/S1984-296120201045 PMID: 34076048

48. Köse O, Adanir R, Karmacıuftuğlu M, Çetin Y. Investigation of Neospora caninum seroprevalence and association with reproductive problems in cows in Burdur Province of Turkey. Iran J Parasitol. 2021; 16(3):386. https://doi.org/10.18502/lipa.v16i3.7091 PMID: 34630583

49. Thilsted JP, Dubey J. Neosporosis-like abortions in a herd of dairy cattle. J Vet Diagn Invest. 1989; 1(3):205–9. https://doi.org/10.1177/104063878900100301 PMID: 2488345

50. Barr B, Anderson ML, Dubey J, Conrad PA. Neospora-like protozoan infections associated with bovine abortions. Vet Pathol. 1991; 28(2):110–6. https://doi.org/10.1177/030098589100280022 PMID: 2063512

51. Conrad P, Barr B, Sverlow K, Anderson M, Daft B, Kinde H, et al. In vitro isolation and characterization of a Neospora sp. from aborted bovine foetuses. Parasitology. 1993; 106(3):239–49. https://doi.org/10.1017/s0031182000075065 PMID: 8488061

52. Ogino H, Watanabe E, Watanabe S, Agawa H, Narita M, Haritani M, et al. Neosporosis in the aborted fetus and newborn calf. J Comp Pathol. 1992; 107(2):231–7. https://doi.org/10.1016/0021-9975(92)90039-w PMID: 1452816

53. Nietfeld JC, Dubey J, Anderson ML, Libal MC, Yaeger MJ, Neiger RD. Neospora-like protozoan infection as a cause of abortion in dairy cattle. J Vet Diagn Invest. 1992; 4(2):223–6. https://doi.org/10.1177/104063879200400228 PMID: 1616998
54. Jardine J, Last R. The prevalence of neosporosis in aborted bovine foetuses submitted to the Allerton regional veterinary laboratory. Onderstepoort J Vet Res. 1995.

55. Obendorf D, Murray N, Veldhuis G, Munday B, Dubey J. Abortion caused by neosporosis in cattle. Aust Vet J. 1995; 72(3):117–8. https://doi.org/10.1111/j.1751-0813.1995.tb15025.x PMID: 7611985

56. Jamaluddin AA, Case JT, Hird DW, Blanchard PC, Peaurol JR, Anderson ML. Dairy cattle abortion in California: evaluation of diagnostic laboratory data. J Vet Diagn Invest. 1996; 8(2):210–6. https://doi.org/10.1177/104063799600800211 PMID: 8744743

57. McAllister MM, Huffman E, Hietala SK, Conrad PA, Salvador ML, Salman MD. Evidence suggesting a point source exposure in an outbreak of bovine abortion due to neosporosis. J Vet Diagn Invest. 1996; 8(3):355–7. https://doi.org/10.1177/104063799600800313 PMID: 8844580

58. Perez E, Gonzalez O, Dolz G, Morales J, Barr B, Conrad PA. First report of bovine neosporosis in dairy cattle in Costa Rica. Vet Rec. 1998; 142(19):520–1. https://doi.org/10.1136/vr.142.19.520 PMID: 9618881

59. Gottstein B, Hentrich B, Wyss R, Thür B, Busato A, Stärk K, et al. Molecular and immunodiagnostic investigations on bovine neosporosis in Switzerland. Int J Parasitol. 1998; 28(4):679–91. https://doi.org/10.1016/s0020-7519(98)00006-x PMID: 9602392

60. Moen A, Wouda W, Mal M, Graat E, Van Werven T. Increased risk of abortion following *Neospora caninum* abortion outbreaks: a retrospective and prospective cohort study in four dairy herds. Theriogenology. 1998; 49(7):1301–9. https://doi.org/10.1016/s0093-691x(98)00077-6 PMID: 10732067

61. Hattel A, Castro M, Gummo J, Weinstock D, Reed J, Dubey J. Neosporosis-associated bovine abortion in Pennsylvania. Vet parasites. 1998; 74(2–4):307–13. https://doi.org/10.1016/j.vetpar.2001.04.077 PMID: 11437517

62. Baszler TV, Gay LJ, Long MT, Mathison BA. Detection by PCR of *Neospora caninum* in fetal tissues from spontaneous bovine abortions. J Clin Microbiol. 1999; 37(12):4059–64. https://doi.org/10.1128/JCM.37.12.4059-4064.1999 PMID: 10565932

63. González L, Buxton D, Atxaerandio R, Aduriz G, Maley S, Marco J, et al. Bovine abortion associated with *Neospora caninum* in northern Spain. Vet Rec. 1999; 144(6):145–50. https://doi.org/10.1136/vr.144.6.145 PMID: 10074662

64. Slotved H-C, Jensen L, Lind P. Comparison of the IFAT and Iscom-ELISA response in bovine foetuses with *Neospora caninum* infection. Int J Parasitol. 1999; 29(8):1165–74. https://doi.org/10.1016/s0020-7519(99)00095-8 PMID: 10576568

65. Wouda W, Bartels C, Moen A. Characteristics of *Neospora caninum*-associated abortion storms in dairy herds in The Netherlands (1995 to1997). Theriogenology. 1999; 52(2):233–45. https://doi.org/10.1016/s0020-7519(98)00125-9 PMID: 10734391

66. Atkinson R, Cook R, Reddcliff L, Rothwell J, Broady K, Harper P, et al. Seroprevalence of *Neospora caninum* infection following an abortion outbreak in a dairy cattle herd. Aust Vet J. 2000; 78(4):262–6. https://doi.org/10.1111/j.1751-0813.2000.tb11752.x PMID: 10840574

67. Morales E, Trigo F, Ibarra F, Puente E, Santacruz M. Neosporosis in Mexican dairy herds: lesions and immunohistochemical detection of *Neospora caninum* in fetuses. J Comp Pathol. 2001; 125(1):58–63. https://doi.org/10.1053/jcpa.2001.0477 PMID: 11437517

68. Collantes-Fernández E, Zaballos Ál, Álvarez-Garcia G, Ortega-Mora LM. Quantitative detection of *Neospora caninum* in bovine aborted fetuses and experimentally infected mice by real-time PCR. J Clin Microbiol. 2002; 40(4):1194–8. https://doi.org/10.1128/JCM.40.4.1194-1198.2002 PMID: 11923330

69. Kim J-H, Lee J-K, Lee B-C, Park B-K, Yoo H-S, Hwang W-S, et al. Diagnostic survey of bovine abortion in Korea: with special emphasis on *Neospora caninum*. J Vet Med Sci. 2002; 64(12):1123–7. https://doi.org/10.1292/jvms.64.1123 PMID: 12520105

70. Corbellini L, Driemeier D, Cruz C, Gondim LFP, Wald V. Neosporosis as a cause of abortion in dairy cattle in Rio Grande do Sul, southern Brazil. Vet Parasitol. 2002; 103(3):195–202. https://doi.org/10.1016/s0304-4017(01)00600-8 PMID: 11750112

71. Campero CM, Moore D, Odeón AC, Cipolla AL, Odriozola E. Aetiology of bovine abortion in Argentina. Vet Res Commun. 2003; 27(5):359–69. https://doi.org/10.1023/a:1024754003432 PMID: 14509450

72. Pereira-Bueno J, Quintanilla-Gozalo A, Pérez-Pérez V, Espi-Felgueroso A, Alvarez-Garcia G, Collantes-Fernández E, et al. Evaluation by different diagnostic techniques of bovine abortion associated with *Neospora caninum* in Spain. Vet Parasitol. 2003; 111(2–3):143–52. https://doi.org/10.1016/s0304-4017(02)00361-8 PMID: 12531290

73. Boger LA, Hattel AL. Additional evaluation of undiagnosed bovine abortion cases may reveal fetal neosporosis. Vet Parasitol. 2003; 113(1):1–6. https://doi.org/10.1016/s0304-4017(03)00041-4 PMID: 12651213
74. Kashiwazaki Y, Giannecchini RE, Lust M, Gil J. Seropidemiology of neosporosis in dairy cattle in Uruguay. Vet Parasitol. 2004; 120(1–2):139–44. https://doi.org/10.1016/j.vetpar.2004.01.001 PMID: 15019151

75. Habibi GR, Hashemi-Fesharki R, Sadrebashaz A, Bozorgi S, Bordbar N. Seminested PCR for diagnosis of Neospora caninum infection in cattle. Arch Razi Inst. 2005; 59(2):55–64. https://doi.org/10.22092/ari.2005.103813

76. Khodakaram-Tafi A, Ikede BO. A retrospective study of sporadic bovine abortions, stillbirths, and neonatal abnormalities in Atlantic Canada, from 1990 to 2001. Can Vet J. 2005; 46(7):635. PMID: 16152720

77. Collantes-Fernández E, Rodríguez-Bertos A, Arnáiz-Seco I, Moreno B, Aduriz G, Ortega-Mora LM. Influence of the stage of pregnancy on Neospora caninum distribution, parasite loads and lesions in aborted bovine foetuses. Theriogenology. 2006; 65(3):629–41. https://doi.org/10.1016/j.theriogenology.2005.06.003 PMID: 16023188

78. Corbellini LG, Pescador CA, Frantz F, Wunder E, Steffen D, Smith DR, et al. Diagnostic survey of bovine abortion with special reference to Neospora caninum infection: importance, repeated abortion and concurrent infection in aborted fetuses in Southern Brazil. Vet J. 2006; 172(1):114–20. https://doi.org/10.1016/j.tvjl.2005.03.006 PMID: 16772136

79. Medina L, Cruz-Vázquez C, Quezada T, Morales E, García-Vázquez Z. Survey of Neospora caninum infection by nested PCR in aborted fetuses from dairy farms in Aguascalientes, Mexico. Vet Parasitol. 2006; 136(3–4):187–91. https://doi.org/10.1016/j.vetpar.2005.11.003 PMID: 16332413

80. Razmi GR, Maleki M, Farzanen N, Garoussi MT, Fallah A. First report of Neospora caninum-associated bovine abortion in Mashhad area, Iran. Parasitol Res. 2007; 100(4):755–7. https://doi.org/10.1007/s00436-006-0325-6 PMID: 17024355

81. Reitl K, Hilde M, Voegtlin A, Corboz L, Haessig M, Pospischil A. Aetiology of bovine abortion in Switzerland from 1988 to 1995—a retrospective study with emphasis on detection of Neospora caninum and Toxoplasma gondii by PCR. J Vet Med A Physiol Pathol Clin Med. 2007; 54(1):15–22. https://doi.org/10.1111/j.1439-0442.2007.00913.x PMID: 17359449

82. Pabón M, López-Gatius F, García-Ispierito I, Bech-Sator G, Nogareda C, Almería S. Chronic Neospora caninum infection and repeat abortion in dairy cows: a 3-year study. Vet Parasitol. 2007; 147(1–2):40–6. https://doi.org/10.1016/j.vetpar.2007.03.017 PMID: 17467905

83. Pescador C, Corbellini L, Oliveira E, Raymundo D, Driemeier D. Histopathological and immunohistochemical aspects of Neospora caninum diagnosis in bovine aborted fetuses. Vet Parasitol. 2007; 150(1–2):159–63. https://doi.org/10.1016/j.vetpar.2007.08.026 PMID: 17904290

84. Escamilla HP, Martínez MJJ, Medina CM, Morales SE. Frequency and causes of infectious abortion in a dairy herd in Queretaro, Mexico. Can J Vet Res. 2007; 71(4):314. PMID: 17959907

85. Moore D, Regidor-Cerrillo J, Morrell E, Bos MA, Cano DB, Leunda MR, et al. The role of Neospora caninum and Toxoplasma gondii in spontaneous bovine abortion in Argentina. Vet Parasitol. 2008; 156(3–4):163–7. https://doi.org/10.1016/j.vetpar.2008.06.020 PMID: 18691819

86. Yildiz K, Kul O, Babur C, Kilic S, Gazyagcı AN, Celebi B, et al. Seroprevalence of Neospora caninum in dairy cattle ranches with high abortion rate: special emphasis to serologic co-existence with Toxoplasma gondii, Brucella abortus and Listeria monocytogenes. Vet Parasitol. 2009; 164(2–4):306–10. https://doi.org/10.1016/j.vetpar.2009.06.004 PMID: 19592171

87. Salehi N, Haddadzadeh H, Ashrafihelen J, Shayan P, Sadrebashaz A. Molecular and pathological study of bovine aborted fetuses and placenta from Neospora caninum infected dairy cattle. Iran J Parasitol. 2009; 4(3):40–51.

88. Sánchez G, Banda R, Sahagun R, Ledesma M, Morales S. Comparison between immunohistochemistry and two PCR methods for detection of Neospora caninum in formalin-fixed and paraffin-embedded brain tissue of bovine fetuses. Vet Parasitol. 2009; 164(2–4):328–32. https://doi.org/10.1016/j.vetpar.2009.05.007 PMID: 19515495

89. Cabral AD, Camargo CN, Galletti NTC, Okuda LH, Pituco EM, Del Favà C. Diagnosis of Neospora caninum in bovine fetuses by histology, immunohistochemistry, and nested-PCR. Rev Bras Parasitol Vet. 2009; 18(4):14–9. https://doi.org/10.4322/rbpv.01804003 PMID: 20040203

90. Razmi GR, Zarea H, Naseri Z. A survey of Neospora caninum-associated bovine abortion in large dairy farms of Mashhad, Iran. Parasitol Res. 2010; 106(6):1419–23. https://doi.org/10.1007/s00436-010-1820-3 PMID: 20352453

91. Şuteu O, Titilincu A, Modry D, Mihalca A, Mircean V, Cozma V. First identification of Neospora caninum by PCR in aborted bovine foetuses in Romania. Parasitol Res. 2010; 106(3):719–22. https://doi.org/10.1007/s00436-009-1684-6 PMID: 19953273

92. Tramuta C, Lacerenza D, Zoppel S, Goria M, Dondo A, Ferrogiolo E, et al. Development of a set of multiplex standard polymerase chain reaction assays for the identification of infectious agents from aborted...
bovine clinical samples. J Vet Diagn Invest. 2011; 23(4):657–64. https://doi.org/10.1177/1040638711407880 PMID: 21908306

93. dos Santos DS AM, Varaschin MS, Guimarães AM, Hirsch C. Neospora caninum in bovine fetuses of Minas Gerais, Brazil: genetic characteristics of rDNA. Rev Bras Parasitol Vet. 2011; 20:281–8. https://doi.org/10.1590/s1984-29612011000400005 PMID: 22166381

94. Şuteu O, Paşliu A, Gîyörké A, Cozma V. Molecular detection of Neospora caninum abortion in dairy cattle from different historical regions of Romania. Sci Parasitol. 2012; 13(4):159–62.

95. Kamali A, Seifi HA, Movassaghi AR, Razmi GR, Naseri Z. Histopathological and molecular study of Neospora caninum infection in bovine aborted fetuses. Asian Pac J Trop Biomed. 2014; 4(12):990–4. https://doi.org/10.12980/APJTB.4.201414B378

96. Salehi N, Gottstein B, Haddadzadeh H. Genetic diversity of bovine Neospora caninum determined by microsatellite markers. Parasitol Int. 2015; 64(5):357–61. https://doi.org/10.1016/j.parint.2015.05.005 PMID: 25988829

97. Medina-Esparza L, Regidor-Cerrillo J, García-Ramos D, Álvarez-García G, Benavides J, Ortega-Mora LM, et al. Genetic characterization of Neospora caninum from aborted bovine foetuses in Aguascalientes, Mexico. Vet Parasitol. 2016; 228:183–7. https://doi.org/10.1016/j.vetpar.2016.09.009 PMID: 27692324

98. Ozkaraca M, İrehan B, Parmaksız A, Ekinci AI, Comakli S. Determination of Neospora caninum and Toxoplasma gondii in aborted bovine foetuses by duplex PCR, immunohistochemistry and immunofluorescence methods. Med Vet. 2017; 73(06).

99. Kaveh A, Merat E, Samani S, Danandeh R, Soltannezhad S. Infectious causes of bovine abortion in Qazvin Province, Iran. Arch Razi Inst. 2017; 72(4):225–30. https://doi.org/10.22092/ari.2017.113299 PMID: 30315698

100. Qian W, Wang T, Yan W, Zhang M, Han L, Xue R, et al. Seroprevalence and first multilocus microsatellite genotyping of Neospora caninum in dairy cattle in Henan, central China. Vet Parasitol. 2017; 244:81–4. https://doi.org/10.1016/j.vetpar.2017.07.022 PMID: 28917323

101. Díaz Cao JMD, Lago AP, Lorenzo GL, Fernández PD, Sánchez CML, Pelayo MPM, et al. Broadening the diagnosis panel of reproductive pathogens associated with abortion in ruminants. Span J Agric Res. 2018; 16(2):37. https://doi.org/10.5424/sjar/2018162-12180

102. Tian A-L, Elsheikha HM, Zhou D-H, Wu Y-D, Chen M-X, Wang M, et al. A novel recombinase polymerase amplification (RPA) assay for the rapid isothermal detection of Neospora caninum in aborted bovine fetuses. Vet Parasitol. 2018; 258:24–9. https://doi.org/10.1016/j.vetpar.2018.06.004 PMID: 30105974

103. Snak A, García FG, Lara AA, Pena HFJ, Osaki SC. Neospora caninum in properties in the west region of Parana, Brazil: prevalence and risk factors. Rev Bras Parasitol Vet. 2018; 27:51–9. https://doi.org/10.1590/S1984-29612018001 PMID: 29641794

104. Moroni M, Navarro M, Paredes E, Romero A, Alberdi A, Lischinsky T, et al. Identification of Neospora caninum in aborted bovine fetuses of Southern Chile. Braz J Vet Pathol. 2018. https://doi.org/10.24070/bjvp.1983-0246.v11i2p37-41

105. Bartley P, Guido S, Mason C, Stevenson H, Chianini F, Carty H, et al. Detection of Neospora caninum DNA in cases of bovine and ovine abortion in the South-West of Scotland. Parasitology. 2019; 146 (7):979–82. https://doi.org/10.1017/S0031182019000301 PMID: 30975236

106. Acici M, Bolukbas CS, Pekmezci GZ, Gurler H, Genc O, Gurler AT, et al. A diagnostic survey of Neospora caninum infection in aborted fetuses in the Middle Black Sea Region and Sivas Province, Turkey. Turk J Vet Anim Sci. 2019; 43(6):761–6. https://doi.org/10.3906/vet-1908-16

107. Mahajan V, Banga H, Filia G. Patho-epidemiological and risk factor studies for detection of Neospora-associated abortion in cattle and buffaloes in Punjab, India. Rev Sci Tech. 2020; 38(3):801–8. https://doi.org/10.20506/rst.38.3.3027

108. Amouei A, Sharif M, Sarvi S, Nejad RB, Aghayan SA, Hashemi-Soteh MB, et al. Aetiology of livestock fetal mortality in Mazandaran province, Iran. PeerJ. 2019; 6:e5920. eCollection 2019 https://doi.org/10.7717/peerj.5920 PMID: 33388087

109. Villa L, Maksimov P, Luttermann C, Tuschy M, Gazzonis AL, Zanzani SA, et al. Spatial distance between sites of sampling associated with genetic variation among Neospora caninum in aborted bovine foetuses from northern Italy. Parasit Vectors. 2021; 14(1):1–14. https://doi.org/10.1186/s13071-020-04557-6 PMID: 33388087

110. Salehi B, Amouei A, Dodangeh S, Daryani A, Sarvi S, Safari-Kharyeki MR, et al. Molecular identification of Neospora caninum infection in aborted fetuses of sheep, cattle, and goats in Mazandaran Province, Northern Iran. Iran J Parasitol. 2021; 16(3):483. https://doi.org/10.18506/ijpa.v16i3.7102 PMID: 34630594
111. Dorsch MA, Moore DP, Regidor-Cerrillo J, Scioli MV, Morrell EL, Cantón GJ, et al. Morphometric study of encephalic lesions in aborted bovine fetuses naturally infected by two subpopulations of *Neospora caninum*. Parasitol Res. 2021; 120(8):2995–3000. https://doi.org/10.1007/s00436-021-07248-y PMID: 34292375

112. El-Alfy E-S, Ohari Y, Shimoda N, Nishikawa Y. Genetic characterization of *Neospora caninum* from aborted bovine fetuses in Hokkaido, Japan. Infect Genet Evol. 2021; 92:104838. https://doi.org/10.1016/j.meegid.2021.104838 PMID: 33819682

113. Kirkbride CA. Etiologic agents detected in a 10-year study of bovine abortions and stillbirths. J Vet Diagn Invest. 1992; 4(2):175–80. https://doi.org/10.1177/104063879200400210 PMID: 1616982

114. Conrad PA, Sverlow K, Anderson M, Rowe J, BonDurant R, Tuter G, et al. Detection of serum antibody responses in cattle with natural or experimental *Neospora* infections. J Vet Diagn Invest. 1993; 5(4):572–8. https://doi.org/10.1177/104063879300500412 PMID: 8286457

115. Dubey J. Recent advances in *Neospora* and neosporosis. Vet Parasitol. 1999; 84(3–4):349–67. https://doi.org/10.1016/s0304-4017(99)00044-8 PMID: 10456423

116. Dubey J, Lindsay D, Adams D, Gay J, Baszler T, Blagburn B, et al. Serologic responses of cattle and other animals infected with *Neospora caninum*. Am J Vet Res. 1996; 57(3):329–36. PMID: 8669764

117. Georgieva D, Prelezov P, Koinarski V. *Neospora caninum* and neosporosis in animals. A review. Bulg J Vet Med. 2006; 9(1):1–26.

118. Hernandez J, Risco C, Donovan A. Association between exposure to *Neospora caninum* and milk production in dairy cows. J Am Vet Med Assoc. 2001; 219(5):632–5. https://doi.org/10.2460/javma.2001.219.632 PMID: 11549092

119. Reichel MP, Ayanegui-Alcérreca MA, Gondim LF, Ellis JT. What is the global economic impact of *Neospora caninum* in cattle—the billion dollar question. Int J Parasitol. 2013; 43(2):133–42. https://doi.org/10.1016/j.ijpara.2012.10.022 PMID: 23246675