BRIEF REPORT

Subcutaneous Sarilumab in Patients With Rheumatoid Arthritis who Previously Received Subcutaneous Sarilumab or Intravenous Tocilizumab: An Open-Label Extension of a Randomized Clinical Trial

Paul Emery,1 Hubert van Hoogstraten,2 Karthinathan Thangavelu,3 Erin Mangan,4 Gregory St John,4 and Patrick Verschueren5

Objective. This post hoc analysis evaluated the safety and efficacy of open-label sarilumab in patients with rheumatoid arthritis (RA) who completed the phase III double-blind ASCERTAIN study (NCT01768572) and switched from intravenous (IV) tocilizumab to subcutaneous (SC) sarilumab, or who continued SC sarilumab in the open-label extension (OLE) study EXTEND (NCT01146652).

Methods. Patients who completed ASCERTAIN were eligible to enroll in EXTEND to receive sarilumab 200 mg SC every 2 weeks (Q2W). Safety and efficacy were reported through 96 weeks in the OLE in patients who switched from tocilizumab IV to sarilumab 200 mg SC Q2W, who switched from sarilumab 150 mg SC Q2W to sarilumab 200 mg SC Q2W, or who continued sarilumab 200 mg SC Q2W.

Results. Of 175 patients who completed ASCERTAIN, 168 (96%) enrolled in EXTEND, and 38 of these patients (23%) discontinued the OLE. Cumulative sarilumab exposure during follow-up was 273.7 patient-years. No new safety signals were identified, infections occurred at a rate of 59.9/100 patient-years, and there were no cases of grade 4 neutropenia. Efficacy—as assessed by Disease Activity Score (28 joints) based on C-reactive protein, Clinical Disease Activity Index, and Health Assessment Questionnaire-Disability Index scores—was sustained over 96 weeks of follow-up when switching to, or continuing, sarilumab 200 mg SC Q2W.

Conclusion. Switching from IV to SC interleukin-6 receptor inhibitor therapy produced no new safety concerns, and clinical efficacy was sustained over 96 weeks of follow-up. These findings alleviate potential concerns over switching route of administration with interleukin-6 receptor inhibitor therapy for RA.

INTRODUCTION

Sarilumab is a human monoclonal antibody that binds to both the membrane-bound and soluble forms of the interleukin-6 receptor (IL-6R), and functions to inhibit IL-6 signaling (1). It is approved for the treatment of moderately to severely active rheumatoid arthritis (RA) in adult patients who have had an inadequate response to, or intolerance of, one or more disease-modifying...
antirheumatic drugs (DMARDs), and it can be used either as mono-
therapy or concomitantly with methotrexate or other conventional
synthetic DMARDs (csDMARDs) (1). Sarilumab has demonstrated
clinical and radiographic benefits in adult patients with RA in
active-comparator and placebo-controlled phase III trials, both as
a monotherapy and in combination with csDMARDs (2–5). Tocili-
zumab is a humanized recombinant monoclonal antibody that tar-
gets membrane-bound and soluble IL-6R and is approved for the
treatment of RA (6).

The phase III ASCERTAIN study (NCT01768572) was a
24-week, randomized, double-blind, double-dummy, three-arm,
parallel-group safety study in patients with active RA who had an
inadequate response to a prior tumor necrosis factor inhibitor and
were receiving csDMARD treatment (2). The study demonstrated
that sarilumab and tocilizumab were each well tolerated and had
similar safety profiles. Sarilumab was administered by subcutane-
ous (SC) injection, and tocilizumab was administered intravenously
(IV) according to its US product labeling at the time the study was
conducted (6). After the double-blind randomized control phase
(RCT), patients were eligible to enroll in the ongoing open-label
extension (OLE) study, EXTEND (NCT01146652). EXTEND is a
5-year extension study to assess the long-term safety and efficacy
of sarilumab SC in patients with RA who previously participated in
one of several shorter-term sarilumab studies (2,4,7,8). Data pre-
sented here show only those patients in EXTEND who enrolled
from the ASCERTAIN RCT. Patients who received tocilizumab IV
plus placebo SC in the RCT switched to sarilumab SC on enroll-
ment into the OLE. This switch made it possible to investigate the
effects of switching from IV to SC IL-6R inhibition in a clinical trial
setting. The aim of this post hoc analysis was to evaluate the safety
and efficacy of switching from double-blind, double-dummy tocili-
zumab IV or sarilumab SC to open-label sarilumab SC in the OLE.

PATIENTS AND METHODS

Ethics approval. The protocol was approved by the appro-
priate ethics committees/institutional review boards: London -
Brighton & Sussex Research Ethics Committee (approval number
13/LO/0499) and from each of the 85 additional study centers
in Europe (including Russia), North America, and South America.
Each patient gave written informed consent before study partici-
ination. The study was conducted in compliance with institutional
review board regulations, the International Conference on Harmo-
nization Guidelines for Good Clinical Practice, and the Declaration
of Helsinki.

Study design. In ASCERTAIN, patients were randomized
1:1:2 to receive sarilumab 150 mg SC every 2 weeks (Q2W), sari-
lumab 200 mg SC Q2W, or tocilizumab 4 mg/kg IV every 4 weeks
(Q4W) (2). In instances of an insufficient response to tocilizumab
4 mg/kg IV Q4W, the dose could be increased to 8 mg/kg IV
Q4W at the investigator’s discretion, per US label instructions (6).

EXTEND is a multicenter OLE study designed to assess the long-
term safety and efficacy of sarilumab SC in adult patients with RA,
including in patients who completed the ASCERTAIN study. All
patients who completed the parent study were eligible for inclu-
sion in the OLE. Patients entering the OLE received sarilumab
200 mg SC Q2W.

Assessments. OLE baseline was defined as the start of
the OLE (visit 1, week 0). Safety data were reported from patient
visit 1 to visit 14 (OLE week 96) for all patients who entered the
OLE. Visits occurred Q2W until OLE week 12 and every 12 weeks
thereafter until OLE week 96. Assessments included the record-
ing of treatment-emergent adverse events (AEs) and laboratory
investigations, including absolute neutrophil counts and liver func-
tion tests. Samples for laboratory investigations were taken at
each visit. AEs were described using the Medical Dictionary for
Regulatory Activities (version 20.0) preferred terms. AEs of special
interest were collected according to predefined criteria, specific to
scientific and medical concerns of the drugs involved.

Efficacy assessments—using the Disease Activity Score
(28 joints) based on C-reactive protein (DAS28-CRP), Clinical
Disease Activity Index (CDAI), and Health Assessment Question-
naire-Disability Index (HAQ-DI)—were made at each study visit.
Continuous efficacy outcomes are presented as observed cases
(OCs) without imputation of missing data as mean score (±SE).
Disease activity thresholds were DAS28-CRP <2.6 or <3.2, CDAI
≤2.8 or ≤10, and HAQ-DI score improvement of ≥0.3 from score
at RCT baseline. The proportions of patients achieving DAS28-CRP,
CDAI, or HAQ-DI disease activity thresholds at weeks 12 and 96 are
presented in two ways: (a) based on the number of patients assessed
at each visit (OC approach) or (b) based on the intention-to-treat
(ITT) population approach, with patients for whom data were missing
counted as nonresponders (nonresponder imputation).

Data in the OLE were compared according to patients’ origin-
ial treatment groups in the RCT: sarilumab 150 mg SC Q2W, sar-
lumab 200 mg SC Q2W, or tocilizumab 4 mg/kg IV Q4W received
throughout the RCT, or tocilizumab 4 mg/kg IV Q4W increased to
8 mg/kg IV Q4W at week 4 of the RCT and continuing at 8 mg/kg
IV Q4W thereafter (referred to as the tocilizumab 4/8 mg/kg
group). Data from the OLE were also grouped into all sarilumab
patients and all tocilizumab patients. To maintain consistency
within the groups, patients who changed tocilizumab dose after
week 4 were not included in the tocilizumab 4 mg/kg group or the
4/8 mg/kg group, but only in the all-tocilizumab group. Data were
analyzed using descriptive statistics only.

Patient and public involvement. The clinical trial was
recorded on public registry websites prior to the enrollment of the
first patient. This research was done without patient consultation.
At the time that this study was conducted, there were no funds
or time allocated for patient/public involvement in study design or
result-dissemination planning.
RESULTS

Patient population. Of the 175 patients who completed the RCT, 168 (96%) enrolled in the OLE. A similar number of patients enrolled from each RCT treatment group: sarilumab 150 mg (n = 37, 22% of patients in the OLE), sarilumab 200 mg (n = 38, 23%), tocilizumab 4 mg/kg (n = 35, 21%), and tocilizumab 4/8 mg/kg (n = 38, 23%). An additional 20 patients who changed tocilizumab dosage after week 4 of the parent study were included in the all-tocilizumab group, so the tocilizumab 4/8 mg/kg group was consistent in containing only patients who changed dose from 4 to 8 mg/kg IV Q4W at week 4 and remained on tocilizumab 8 mg/kg IV Q4W thereafter. Patient demographic and most disease characteristics were well balanced across all groups, although, compared with other treatment groups, baseline CRP levels were elevated in patients who had received only tocilizumab 4 mg/kg for 24 weeks and were not escalated to 8 mg/kg during the RCT (Table 1).

Safety. Overall, 38 patients (23%) discontinued the OLE study before week 96. Discontinuations due to AEs were reported for 22 patients (13%). Discontinuations for reasons other than safety included 5 patients (3%) due to lack of efficacy and 1 patient (1%) due to poor compliance with the protocol; 14 patients (8%) requested treatment discontinuation (Figure 1). Overall discontinuation rates were similar across the prior treatment groups in the RCT, except in the tocilizumab 4/8 mg/kg group, which had a greater number of discontinuations, mainly due to patient-requested discontinuations (n = 7, 18%). Three deaths of patients

Table 1. Demographics and baseline disease characteristics
Treatment During the RCT, Before Switch to Sarilumab 200 mg SC Q2W in the OLE
Sarilumab 150 mg SC Q2W (n = 37)

Recorded at RCT baseline

Female, n (%) 30 (81.1) 31 (81.6) 29 (82.9) 31 (81.6) 76 (81.7)

Duration of RA since diagnosis (y), mean (SD) 12.9 (7.3) 8.8 (6.0) 9.1 (7.3) 11.5 (7.8) 9.9 (7.9)

ACR RA functional class, n (%) I 6 (16.2) 3 (7.9) 6 (17.1) 3 (7.9) 13 (14.0) II 20 (54.1) 24 (63.2) 24 (68.6) 21 (55.3) 58 (62.4) III 11 (29.7) 11 (28.9) 5 (14.3) 14 (36.8) 22 (23.7) IV 0 0 0 0 0

RF positive, n (%) 29 (80.6) 23 (60.5) 28 (80.0) 30 (81.1) 73 (79.3)

ACPA positive, n (%) 32 (88.9) 30 (78.9) 28 (80.0) 31 (91.2) 76 (86.4)

Recorded at OLE baseline, mean (SD)

Age, y 53.5 (10.8) 52.2 (11.5) 51.2 (13.3) 51.0 (12.0) 50.4 (12.8)

BMI, kg/m² 27.1 (5.1) 29.3 (6.8) 29.2 (4.3) 27.4 (6.1) 28.0 (5.3)

Nonbiologic DMARD use, n (%) 37 (100) 37 (97.4) 35 (100) 37 (97.4) 92 (92.9)

Glucocorticoid use, n (%) 16 (43.2) 15 (39.5) 19 (54.3) 23 (60.5) 49 (52.7)

Disease activity at OLE baseline

Tender joint count (0–68) 7.1 (8.9) 7.2 (8.7) 4.5 (4.8) 7.5 (7.9) 6.3 (7.2)

Swollen joint count (0–66) 3.1 (3.5) 4.5 (6.4) 3.3 (3.4) 3.9 (3.8) 4.0 (4.8)

CRP (mg/L) 5.4 (13.8) 2.2 (5.3) 14.1 (16.4) 3.1 (8.4) 6.7 (12.6)

DAS28-CRP 3.0 (1.2) 3.0 (1.2) 3.3 (1.2) 3.2 (1.1) 3.2 (1.2)

CDAI 11.9 (10.3) 13.0 (11.8) 10.6 (7.5) 13.7 (9.0) 12.4 (9.5)

HAQ-DI (0–3) 1.1 (0.6) 1.2 (0.6) 1.0 (0.8) 1.3 (0.7) 1.2 (0.7)

Abbreviations: ACR, American College of Rheumatology; BMI, body mass index; CDAI, Clinical Disease Activity Index; CRP, C-reactive protein; DAS28-CRP, Disease Activity Score (28 joints) based on CRP; HAQ-DI, Health Assessment Questionnaire-Disability Index; IV, intravenous; OLE, open-label extension; Q2W, every 2 weeks; Q4W, every 4 weeks; RA, rheumatoid arthritis; RCT, double-blind randomized control phase; RF, rheumatoid factor; SC, subcutaneous; SD, standard deviation.

1 Patients received tocilizumab 4 mg/kg IV Q4W at baseline in the RCT and switched at week 4 to tocilizumab 8 mg/kg IV Q4W for the remainder of the study.

2 Included n = 20 patients who changed tocilizumab dose after week 4 of the RCT.

3 n = 36.
4 n = 7.
5 n = 92.
6 n = 34.
7 n = 88.
treated with open-label sarilumab were recorded during the OLE: one in the original sarilumab 150 mg RCT group (cervical cancer), one in the original sarilumab 200 mg RCT group (colorectal cancer), and one in the original tocilizumab 4 mg/kg RCT group (psoas abscess; Table 2).

The overall incidence and exposure-adjusted rates of investigator-reported AEs during the OLE were similar among groups (Table 2). No new safety signals emerged in patients who switched from tocilizumab IV to sarilumab SC, nor during longer-term treatment in those continuing sarilumab. The most common AEs (greatest percentages of patients with at least one event) were neutropenia (19.4/100 patient-years [PY] overall), upper respiratory tract infections (8.8/100 PY), and urinary tract infections (6.5/100 PY). The most common AEs of special interest were infections (59.9/100 PY overall), injection-site reactions (42.4/100 PY), and leukopenia (23.7/100 PY; Supplementary Table 1). Serious infections occurred at a rate of 3.3/100 PY. The incidence of leukopenia was similar across groups. There was one upper gastrointestinal (GI) perforation in the OLE (RCT tocilizumab 4 mg/kg group) but no lower GI perforations. Malignancies occurred in five patients (1.8/100 PY), three of which were nonmelanoma skin cancer, one was cervical cancer, and one was colorectal cancer.

Incidence of investigator-reported neutropenia was generally similar across groups (Table 2). Protocolled laboratory investigations detected absolute neutrophil count (ANC) nadir of ≥500 to 1000 cells/mm³ (grade 3 neutropenia) in 17 patients overall (10.1%; Supplementary Table 2). No patients had ANC < 500 cells/mm³ (grade 4 neutropenia). Liver function test abnormalities were similar across groups, with 10 patients (6.0%) exhibiting alanine aminotransferase (ALT) > 3 × the upper limit of normal and 2 patients (1.2%) exhibiting ALT > 5 × the upper limit of normal (Supplementary Table 3). There were no cases of Hy’s law (drug-induced liver injury). Investigator-reported lipid elevations occurred with an incidence rate of 6.9/100 PY (Supplementary Table 1).

Efficacy. Mean DAS28-CRP, CDAI, and HAQ-DI scores were generally sustained over 96 weeks of follow-up in patients who switched from tocilizumab 4 or 4/8 mg/kg IV Q4W, or who remained on sarilumab SC (Figure 2). In patients with low disease activity (DAS28-CRP < 3.2 or CDAI ≤ 10) at entry into the OLE, low disease activity thresholds were largely maintained through week 96 of the OLE (Figure 3). A small number of patients who did not achieve low disease activity at the end of the RCT achieved low disease activity during the OLE (Supplementary Table 4). Similar results were observed for other disease activity thresholds (Supplementary Figure 1; Supplementary Table 4).

DISCUSSION

In this study, patients who switched from IV to SC administration of IL-6R inhibitors for treatment of RA experienced sustained tolerability and efficacy. No new safety signals emerged during the OLE in patients who switched from tocilizumab IV to sarilumab SC, nor during longer-term treatment in those continuing sarilumab.

Figure 1. Patient disposition through the OLE. Abbreviations: IV, intravenous; OLE, open-label extension; Q2W, every 2 weeks; Q4W, every 4 weeks; RCT, double-blind randomized control phase; SC, subcutaneous.

*Patients requesting discontinuation is not additive with the number of patients who discontinued. [Color figure can be viewed at wileyonlinelibrary.com]
	Treatment During the RCT, Before Switch to Sarilumab 200 mg SC Q2W in the OLE					
	All patients (n = 168)	Sarilumab 150 mg SC Q2W (n = 37)	Sarilumab 200 mg SC Q2W (n = 38)	Tocilizumab 4 mg/kg IV Q4W^a (n = 35)	Tocilizumab 4/8 mg/kg IV Q4W^b (n = 38)	All tocilizumab^c (n = 93)
Cumulative total AE observation period, PY	273.7	61.2	63.6	56.7	57.4	149.0
Summary, n (%) [n/100 PY]						
Any AE	137 (81.5) [276.2]	31 (83.8) [376.0]	30 (78.9) [291.0]	25 (71.4) [195.6]	33 (86.8) [250.8]	76 (81.7) [228.9]
SAE	32 (19.0) [15.7]	11 (29.7) [22.9]	5 (13.2) [3.4]	7 (20.0) [19.4]	7 (18.4) [13.9]	16 (17.2) [15.4]
AE leading to permanent discontinuation^e	21 (12.5) [7.7]	4 (10.8) [6.5]	5 (13.2) [7.9]	5 (14.3) [8.8]	6 (15.8) [10.5]	12 (12.9) [8.1]
AE leading to death	3 (1.8) [1.1]	1 (2.7) [1.6]	1 (2.6) [1.6]	1 (2.9) [1.8]	...	1 (1.1) [0.7]
AEs with incidence ≥ 10% in any group, n (%) [n/100 PY]						
Neutropenia	24 (14.3) [19.4]	3 (8.1) [9.8]	5 (13.2) [12.6]	5 (14.3) [28.2]	7 (18.4) [15.7]	16 (17.2) [26.2]
Upper respiratory tract infection	20 (11.9) [8.8]	6 (16.2) [14.7]	4 (10.5) [6.3]	5 (14.3) [10.6]	4 (10.5) [7.0]	10 (10.8) [7.4]
Urinary tract infection	15 (8.9) [6.6]	5 (13.5) [11.4]	2 (5.3) [3.1]	3 (8.6) [5.3]	5 (13.2) [10.5]	8 (8.6) [6.0]
Injection-site erythema	15 (8.9) [30.3]	4 (10.8) [44.1]	5 (13.2) [59.8]	2 (5.7) [14.1]	3 (79) [15.7]	6 (6.5) [12.1]
Rheumatoid arthritis	15 (8.9) [6.9]	3 (8.1) [4.9]	4 (10.5) [9.4]	2 (5.7) [3.5]	3 (79) [8.7]	8 (8.6) [6.7]
Viral upper respiratory tract infection	14 (8.3) [6.2]	4 (10.8) [9.8]	3 (7.9) [4.7]	1 (2.9) [1.8]	3 (79) [5.2]	7 (7.5) [5.4]
Back pain	11 (6.5) [4.4]	4 (10.8) [6.5]	2 (5.3) [4.7]	...	4 (10.5) [7.0]	5 (5.4) [3.4]
Diarrhea	9 (5.4) [3.3]	2 (5.4) [3.3]	1 (2.6) [1.6]	1 (2.9) [1.8]	4 (10.5) [7.0]	6 (6.5) [4.0]
Fall	6 (3.6) [2.2]	5 (13.5) [8.2]	...	1 (2.6) [1.7]	1 (1.1) [0.7]	1 (1.1) [0.7]
Headache	6 (3.6) [2.2]	4 (10.8) [6.5]	2 (5.3) [3.5]	2 (2.2) [1.3]	2 (2.2) [1.3]	2 (2.2) [1.3]

Table 2. Investigator-reported AEs

Abbreviations: AE, treatment-emergent adverse event; IV, intravenous; n/100 PY, number of events per 100 PY; OLE, open-label extension; PY, patient-years; Q2W, every 2 weeks; Q4W, every 4 weeks; RCT, double-blind randomized controlled phase; SAE, serious adverse event; SC, subcutaneous.

^a Patients received tocilizumab 4 mg/kg IV Q4W at baseline in the RCT and remained at this dose throughout.

^b Patients received tocilizumab 4 mg/kg IV Q4W at baseline in the RCT and switched at week 4 to tocilizumab 8 mg/kg IV Q4W for the remainder of the study.

^c Included n = 20 patients who changed tocilizumab dose after week 4 of the RCT.

^d Incidence rate (n/100 PY) for summary is during time to first event.

^e Excluding one patient (sarilumab + disease-modifying antirheumatic drug group) with pretreatment AEs leading to permanent treatment discontinuation.

^f Incidence rate is over cumulative total AE observation period.
to sarilumab SC, nor during longer-term treatment in those continuing sarilumab. Clinical efficacy was generally sustained after switching to sarilumab SC across the whole patient cohort through 96 weeks of follow-up, regardless of initial treatment in the RCT.

There is a trend for increasing use of SC over IV administration in RA (9,10), and evidence that both physicians and patients prefer SC therapy over IV (11–13). The convenience of home treatment, faster treatment time, lower costs, reduced travel time, and fewer visits to clinics or hospitals were all cited.

Figure 2. Mean (±SE) efficacy scores from OLE baseline to week 96 in overall patient population (observed cases) for DAS28-CRP (A, B), CDAI (C, D), and HAQ-DI (E, F). Abbreviations: CDAI, Clinical Disease Activity Index; DAS28-CRP, Disease Activity Score (28 joints) based on C-reactive protein; HAQ-DI, Health Assessment Questionnaire-Disability Index; IV, intravenous; OLE, open-label extension; Q2W, every 2 weeks; Q4W, every 4 weeks; SC, subcutaneous. [Color figure can be viewed at wileyonlinelibrary.com]
as advantages of SC treatment versus IV, though some patients preferred IV treatment because it meant administration by a medical professional and interaction with other patients during treatment (11,12,14–19). There is also an association between requirements for longer-term treatment and patient preference for SC therapy (13), which is an important consideration for the management of a chronic condition such as RA. In this and other studies of patients with RA, patients who switched from IV to SC therapy generally maintained SC treatment after switching (20,21), which suggests that SC treatment was as satisfactory as IV. The results presented here offer reassurance to physicians and patients considering a switch in route of administration for IL-6R inhibitor therapy for RA and are consistent with evidence of continued efficacy and safety following IV to SC switch with other RA therapies (10,20,22,23).

The safety profile in patients who switched to open-label sarilumab 200 mg Q2W was generally consistent with that observed for sarilumab 200 mg Q2W treatment during the RCT (2), with previous analyses of phase III studies of sarilumab (4,5,7,24), and with the safety profile expected of IL-6 inhibition (25). Incidences of elevated levels of ALT and other markers of liver function were comparable across all groups and consistent with those in previous studies (2,4). The small number of patients who reported injection-site reactions according to the composite AESI term (n = 4-5 in each group) does not support firm conclusions. However, the uniformity of the administration method across groups (“double-dummy, double-blind” SC and IV injections before switch; open-label sarilumab after switch) might explain the relatively uniform proportion of patients reporting injection-site reactions after switch.
The observation that baseline CRP levels were higher after tocilizumab 4 mg/kg IV Q4W compared with patients who received tocilizumab 8 mg/kg IV Q4W, or sarilumab 150 or 200 mg SC (despite similar CRP levels at the start of the randomization) (2), is consistent with other studies that have shown dose-dependent and potential suboptimal suppression of CRP with the lower tocilizumab dose (26).

Efficacy was generally sustained in patients who continued from sarilumab in the RCT to open-label sarilumab in the OLE. There have been concerns that unblinding patients following commencement of open-label treatment may introduce bias due to altered perceptions in patient self-reporting or changes in placebo effects (27). These issues do not seem to have had an effect on the outcomes in the present study, in which clinical assessment scores remained stable in the sarilumab continuation groups after switching to open-label sarilumab. The proportion of patients who achieved disease activity thresholds (DAS28-CRP < 2.6 or < 3.2, CDAI ≤ 2.8 or ≤ 10, or HAQ-DI score improvement ≥ 0.3) at the end of the RCT was also generally stable through 96 weeks of follow-up in the OLE study after switching to open-label sarilumab 200 mg SC Q2W, regardless of initial treatment in the RCT.

A subset of patients who did not achieve disease activity thresholds at the end of the RCT subsequently achieved them following a switch to open-label sarilumab. These improvements in disease activity postswitch may be attributed to a number of reasons, including late response to anti–IL-6R treatment, positive effects resulting from the change to an open-label treatment in the OLE, or unknown mechanistic differences between the two therapies.

Limitations of this study include that it is a post hoc evaluation of a relatively small subgroup of patients from the EXTEND OLE trial, with no formal statistical analysis. The switch to sarilumab was performed in an OLE, which has the potential to introduce bias due to altered perceptions in patient self-reporting or changes in placebo effects (27). These issues do not seem to have had an effect on the outcomes in the present study, in which clinical assessment scores remained stable in the sarilumab continuation groups after switching to open-label sarilumab.

ACKNOWLEDGMENTS

We thank Qunming Dong (a Sanofi employee at the time of the study) and Tejasweeni Rajput (Cytel) for their statistical support. Medical writing support was provided by Joseph Hodgson, PhD (Adelphi Communications Ltd, Macclesfield, UK) and was funded by Sanofi Genzyme (Cambridge, Massachusetts) and Regeneron Pharmaceuticals, Inc. (Tarrytown, New York) in accordance with Good Publication Practice guidelines.

Data in this manuscript expand on those previously presented at the 2018 European League Against Rheumatism Annual Meeting: Verschueren P, Emery P, van Hoogstraten H, Dong Q, Mangan EK, den Broeder A. Efficacy of sarilumab in patients with rheumatoid arthritis with and without previous response to tocilizumab. Proceedings of European League Against Rheumatism Annual Meeting, 2018, June 13-16, Amsterdam; Ann Rheum Dis 2018;77 Suppl 2:327.

AUTHOR CONTRIBUTIONS

All authors contributed to the design of this analysis or to the analysis or interpretation of the data. PE and PV contributed to data acquisition. All authors contributed to manuscript development, approved the final version, and agree to be accountable for all aspects of the work. Qunming Dong, formerly an employee of Sanofi, contributed to the initial design of this analysis and to data analysis/interpretation. No other disclosures relevant to this article were reported.

REFERENCES

1. Kevzara (sarilumab) injection, for subcutaneous use. Initial US approval. Silver Spring (MD): U.S. Food and Drug Administration; 2017. URL: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761037s000lbl.pdf.
2. Emery P, Rondon J, Parrino J, Lin Y, Pena-Rossi C, van Hoogstraten H, et al. Safety and tolerability of subcutaneous sarilumab and intravenous tocilizumab in patients with rheumatoid arthritis. Rheumatology (Oxford) 2019;58:849–58.
3. Burmester GR, Lin Y, Mangan EK, van Hoogstraten H, Kimura T, Vargas JI, et al. Efficacy and safety of sarilumab monotherapy versus adalimumab monotherapy in patients with active rheumatoid arthritis in the phase 3 monarch study, including subpopulations. Ann Rheum Dis 2017;76:849.
4. Fleischmann R, van Adelsberg J, Lin Y, Castelar-Pinheiro GD, Brzezicki J, Hrycaj P, et al. Sarilumab and nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis and inadequate response or intolerance to tumor necrosis factor inhibitors. Arthritis Rheumatol 2017;69:277–90.
5. Genovese MC, Fleischmann R, Kvitl AJ, Reil-Bakalarska M, Martinova R, Fiore S, et al. Sarilumab plus methotrexate in patients with active rheumatoid arthritis and inadequate response to methotrexate: results of a phase III study. Arthritis Rheumatol 2015;67:1424–37.
6. Actemra (tocilizumab) injection for intravenous use injection, for subcutaneous use [package insert]. Silver Spring (MD): U.S. Food and Drug Administration; 2017. URL: www.accessdata.fda.gov/drugsatfda_docs/label/2017/125276s114lbl.pdf.
7. Burmester GR, Lin Y, Patel R, van Adelsberg J, Mangan EK, Graham NM, et al. Efficacy and safety of sarilumab monotherapy versus adalimumab monotherapy for the treatment of patients with active rheumatoid arthritis (MONARCH): a randomised, double-blind, parallel-group phase III trial. Ann Rheum Dis 2017;76:840–7.
8. Wells AF, Parrino J, Mangan EK, Paccaley A, Lin Y, Xu C, et al. Immunogenicity of sarilumab monotherapy in patients with rheumatoid arthritis who were inadequate responders or
intolerant to disease-modifying antirheumatic drugs. Rheumatol Ther 2019;6:339–52.

9. Decision Resources Group. Rheumatoid arthritis: disease landscape & forecast (landscape and forecast series). 2017. URL: https://decisionresourcesgroup.com/report/ds00007-2017-biopharma-rheumatoid-arthritis-disease-landscape-and/.

10. Lauper K, Mongin D, Iannone F, Klami Kristianslund E, Kvien TK, Nordström D, et al. Comparative effectiveness of subcutaneous tocilizumab versus intravenous tocilizumab in a pan-European collaboration of registries. RMD Open 2018;4:e000809.

11. Pivot X, Gligorov J, Muller V, Curigliano G, Knoop A, Verma S, et al. Patients’ preferences for subcutaneous trastuzumab versus conventional intravenous infusion for the adjuvant treatment of her2-positive early breast cancer: final analysis of 488 patients in the international, randomized, two-cohort PrefHer study. Ann Oncol 2014;25:1979–87.

12. Huynh TK, Ostergaard A, Esgmose C, Madsen OR. Preferences of patients and health professionals for route and frequency of administration of biologic agents in the treatment of rheumatoid arthritis. Patient Pref Adherence 2014;8:93–9.

13. Stoner KL, Harder H, Fallowfield LJ, Jenkins VA. Intravenous versus subcutaneous drug administration. Which do patients prefer? A systematic review. Patient 2015;8:145–53.

14. Monti S, Breda S, Grosso V, Todoerti M, Montecucco C, Caporali R. Switching from intravenous to subcutaneous formulation of abatacept: different results in a series of 21 patients. J Rheumatol 2015;42:1993–4.

15. Barton JL. Patient preferences and satisfaction in the treatment of rheumatoid arthritis with biologic therapy. Patient Prefer Adherence 2009;3:335–44.

16. Alten R, Krüger K, Rellecke J, Schiffrin-Rohe J, Behmer O, Schifflhorst G, et al. Examining patient preferences in the treatment of rheumatoid arthritis using a discrete-choice approach. Patient Prefer Adherence 2016;10:2217–28.

17. Jin JF, Zhu LL, Chen M, Xu HM, Wang HF, Feng XQ, et al. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer Adherence 2015;9:923–42.

18. Edwards CJ, Williams EL. Patient preferences in choosing anti-TNF therapies-R1. Rheumatology (Oxford) 2006;45:1575–6.

19. Desplats M, Pascart T, Jelin G, Norberciak L, Philippe P, Houvenagel E, et al. Are abatacept and tocilizumab intravenous users willing to switch for the subcutaneous route of administration? A questionnaire-based study. Clin Rheumatol 2017;36:1395–400.

20. Keystone EC, Kremer JM, Russell A, Box J, Abud-Mendoza C, Elizondo MG, et al. Abatacept in subjects who switch from intravenous to subcutaneous therapy: results from the phase IIIb attrone study. Ann Rheum Dis 2012;71:857–61.

21. Darloy J, Segaud N, Salmon JH, Eschard JP, Goëb V, Deprez X, et al. Tocilizumab effectiveness after switching from intravenous to subcutaneous route in patients with rheumatoid arthritis: the RoSwitch study. Rheumatol Ther 2019;6:61–75.

22. Ogata A, Atsumi T, Fukuda T, Hirabayashi Y, Inaba M, Ishiguro N, et al. Sustainable efficacy of switching from intravenous to subcutaneous tocilizumab monotherapy in patients with rheumatoid arthritis. Arthritis Care Res (Hoboken) 2015;67:1354–62.

23. Mueller RB, Gengenbacher M, Richter S, Dudler J, Möller B, von Kempis J. Change from subcutaneous to intravenous abatacept and back in patients with rheumatoid arthritis as simulation of a vacation: a prospective phase IV, open-label trial (A-BREAK). Arthritis Res Ther 2016;18:88.

24. Fleischmann R, Genovese MC, Lin Y, St John G, van der Heijde D, Wang S, et al. Long-term safety of sarilumab in rheumatoid arthritis: an integrated analysis with up to 7 years’ follow-up. Rheumatology (Oxford) 2020;59:292–302.

25. Kim GW, Lee NR, Ri RH, Lim YS, Lee YM, Lee JM, et al. IL-6 inhibitors for treatment of rheumatoid arthritis: past, present, and future. Arch Pharm Res 2015;38:575–84.

26. Maini RN, Taylor PC, Szczeklik J, Pavelka K, Broil J, Balint G, et al. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum 2006;54:2817–29.

27. Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ 2013;346:e7586.