Saddle point inflation from $f(R)$ theory

Michał Artymowski b,*, Zygmunt Lalak a, Marek Lewicki a,c

A R T I C L E I N F O

Article history:
Received 2 September 2015
Received in revised form 28 September 2015
Accepted 30 September 2015
Available online 3 October 2015
Editor: M. Cvetič

A B S T R A C T

We analyse several saddle point inflationary scenarios based on power-law $f(R)$ models. We investigate inflation resulting from $f(R) = R + \alpha_0 M_2^{(1-n)} R^n + \alpha_{n+1} M^{-2n} R^{n+1}$ and $f(R) = \sum_{n} \alpha_n M_2^{(1-n)} R^n$ as well as $l \rightarrow \infty$ limit of the latter. In all cases we have found relation between α_n coefficients and checked consistency with the PLANCK data as well as constraints coming from the stability of the models in question. Each of the models provides solutions which are both stable and consistent with PLANCK data, however only in parts of the parameter space where inflation starts on the plateau of the potential, some distance from the saddle. And thus all the correct solutions bear some resemblance to the Starobinsky model.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

Cosmic inflation [1–3] is a theory of the early universe which predicts cosmic acceleration and generation of seeds of the large scale structure of the present universe. It solves problems of classical cosmology and it is consistent with current experimental data [4]. The first theory of inflation was the Starobinsky model [5,6], which is an $f(R)$ theory [7] with $R + R^2/6M^2$ Lagrangian density. In such a model the acceleration of space–time is generated by the gravitational interaction itself, without a need to introduce any new particles or fields. The embedding of Starobinsky inflation in no-scale SUGRA has been discussed in Ref. [8]. Recently the whole class of generalisations of the Starobinsky inflation have been discussed in the literature [9–15], also in the context of the higher order terms in Starobinsky Jordan frame potential [16–18].

The typical scale of inflation is set around the GUT scale, which is of the order of $(10^{16} \text{ GeV})^4$. Such a high scale of inflation seems to be a disadvantage of inflationary models. First of all inflationary physics is very far away from scales which can be measured in accelerators and other high-energy experiments. The other issue is, that high scale of inflation enables the production of superheavy particles during the reheating [19]. Those particles could be in principle heavier than the inflaton itself, so particles like magnetic monopoles, which abundant existence is inconsistent with observations, could be produced after inflation. Another argument, which supports low-scale inflation is the Lyth bound [20], which is the relation between variation of the inflaton during inflation in Planck units (denoted as $\Delta \phi$) and tensor-to-scalar ratio r, namely

$$\Delta \phi \approx \frac{N}{\sqrt{8}} \int_0^N \sqrt{\frac{\dot{R}}{V}} dN,$$

which for nearly scale-invariant power spectrum gives $\Delta \phi < M_p$ for $r < 0.002$. Small $\Delta \phi$ seems to be preferable from the point of view of the naturalness principle, since M_p is the cut-off scale of the theory. The value of r determines the scale of inflation, since V/r (where V is the potential of the inflaton) at the scale of inflation is set by the normalisation of CMB anisotropies. Therefore in order to obtain small r one needs a low-scale inflation, which may be provided by a potential with a saddle point.

A separate issue related with $f(R)$ inflation is related with loop corrections to the $f(R)$ function. In order to obtain quasi de Sitter evolution of space–time one needs a range of energies for which the $R^2 M^{-2}$ term dominates the Lagrangian density. This would require all higher order corrections (such as R^4, etc.) [21] to be suppressed by a mass scale much bigger than M. One naturally expects all higher order correction to GR to appear at the same energy scale if one wants to avoid the fine-tuning of coefficients of all higher order terms. From this perspective it would be better to generate inflation in $f(R)$ theory without the Starobinsky plateau, which in principle could be obtained in the saddle point inflation.

* Corresponding author.
E-mail address: michal.artymowski@uj.edu.pl (M. Artymowski).

http://dx.doi.org/10.1016/j.physletb.2015.09.076
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.
The similar case of the inflection point inflation from $f(R)$ theory has been partially analysed in Ref. [22].

In what follows we use the convention $8\pi G = M_p^{-2} = 1$, where $M_p \sim 2 \times 10^{18}$ GeV is the reduced Planck mass.

The outline of the paper is as follows. In Section 2 we give short introduction to $f(R)$ and its description as a Brans–Dicke theory. In Section 3 we discuss three saddle point $f(R)$ scenarios, namely: i) two higher order terms R^n and R^{n+1}, ii) at least 4 higher order terms with powers bigger than 2, iii) infinite number of higher order terms with finite sum at every energy scale. Finally we summarise in Section 4.

2. Introduction to $f(R)$ theory, inflation and primordial inhomogeneities

The $f(R)$ theory is one of the simplest generalisations of general relativity (GR). It is based on Lagrangian density $S = \frac{1}{2} \int d^4\sqrt{-g} f(R)$ (and it can be expressed using the so-called auxiliary field ϕ defined by $f = F(R) := \frac{dF}{dR}$). In such a case the Jordan frame (JF) action is equal to $S = \int \sqrt{-\tilde{g}} \mathcal{L}(\tilde{g})$, where $\mathcal{L}(\tilde{g}) = R - f(\phi)$, and \tilde{g} is the metric tensor of the JF.

In the JF the gravity obtains its canonical form and this is why the EF is usually used for the analysis of inflation and generation of primordial inhomogeneities. The cosmic inflation proceeds when both slow-roll parameters ϵ and η are much smaller than unity. These parameters are, as usual given by

$$
\epsilon = \frac{1}{2} \left(\frac{V_\phi}{V} \right)^2, \quad \eta = \frac{\dot{V}_\phi - V_\phi^2}{V}.
$$

We can assume that V_ϕ and \dot{V}_ϕ are the first and the second derivative of the EF potential with respect to ϕ. During inflation ϵ and η can be interpreted as deviation from the de Sitter solution for FRW universe. During each Hubble time the EF scalar field produces inhomogeneous modes with an amplitude of the order of the Hubble parameter. From them and from the scalar metric perturbations one constructs gauge invariant curvature perturbations, which are directly related to cosmic microwave background anisotropies. Their power spectrum P_R, their spectral index n_s and their tensor to scalar ratio are as follows

$$
P_R \simeq \frac{V}{24\pi^2 \epsilon}, \quad n_s \simeq 1 - 6\epsilon + 2\eta, \quad r \simeq 16\epsilon.
$$

In the low scale inflation one obtains $\epsilon, \eta \ll 1$, which for $\eta < 0$ gives $1 - n_s \simeq 2\eta$.

3. Saddle point inflation in power-law $f(R)$ theory

3.1. Saddle point with vanishing two derivatives

As mentioned in the introduction, the loop corrections to the Starobinsky model are of the form $\sum_{n=2}^{\infty} \alpha_n R^n M_{2(1-n)}$, where M is a mass scale, which suppresses deviations from GR. Therefore, in order to obtain sufficiently long Starobinsky plateau one needs a broad range of energy scales on which R^2 dominates over all higher order corrections. This requires a fine-tuning of infinite number of α_n coefficients. To avoid that we will consider an inflationary scenario in which different higher-order corrections can become relevant at the same energy scale, namely the saddle-point inflation from a power-law $f(R)$ theory. For general form of $f(R)$ one obtains a saddle point of the EF potential for $V_\phi = \dot{V}_\phi = 0$, which corresponds to

$$
RF = \frac{1}{2} f', \quad RF' = F',
$$

where $F = f'$ and prime denotes the derivative with respect to the Ricci scalar. Let us assume the following form of $f(R)$

$$
f(R) = R + \alpha_2 \frac{R^2}{M^2} + \alpha_n \frac{R^n}{M^{2(n-1)}} + \alpha_{n+1} \frac{R^{n+1}}{M^{2n}},
$$

where $n > 2$ is a given number. In such a case the saddle point appears for

$$
R = R_s = M^2 \left(\frac{(n-2)\alpha_n}{n} \right)^{\frac{1}{n}}, \quad \alpha_{n+1} = - \left(\frac{(n-2)\alpha_n}{n} \right)^{\frac{1}{n}}.
$$

Equations above are α_2 independent, because any R^2 can satisfy Eq. (4). In order to keep R_s and α_{n+1} real we need to assume that $\alpha_n > 0$ and $\alpha_{n+1} < 0$. Then for sufficiently big R one finds $F < 0$ and the gravity becomes repulsive. This instability becomes an issue for $R \simeq M^2 \alpha^{\frac{2}{n+1}}_n (\alpha_n(n-2)/m)^{\frac{1}{n+1}}$, which is typically of the same order of magnitude as R_s. By redefining M we can always set one of α_n to be any given constant. For negative α_n one can satisfy Eq. (4) for $n < 2$. Nevertheless the saddle point would lie in the repulsive gravity regime, where $F < 0$. Thus in the following analysis $n < 2$ is excluded. Note that for non-zero value of α_n the value of M grows with α_n. This comes from the fact that for $\alpha_n \gg \alpha_n$ one obtains inflationary plateau followed by the saddle point, due to growing value of R_s, with respect to α_n. The α_n dependence of M is shown in Fig. 1. Big α_n term means that the last 60 e-folds of inflation happen on the Starobinsky plateau, so one does not obtain significant deviations from the R^2 model.

The model described in Eq. (5) can be generalised into $f(R) = R + \alpha_2 R^2 M^{-2} + \alpha_n R^n M^{2(1-n)} + \alpha_m R^m M^{2(1-m)}$. Then, for $\alpha_n = 1$ one finds

$$
R_s = M^2 \left(\frac{(n-2)(m-n)}{m-1} \right)^{-\frac{1}{n}}, \quad \alpha_m = - \frac{(n-1)(n-2)}{(m-1)(m-2)} \left(\frac{(n-2)(m-n)}{m-1} \right)^{\frac{n-m}{n}}.
$$

The EF potential around the saddle point (up to the maximal allowed value of ϕ) for $f(R) = R + \alpha_2 R^2 M^{-2} + \alpha_n R^n M^{2(1-n)} + \alpha_m R^m M^{2(1-m)}$ has been shown in Fig. 1. We have rescaled M to obtain $\alpha_2 = 1$. The R^2 term in not necessary to obtain a saddle point, but we include it to combine the inflation on the Starobinsky plateau with the saddle point inflation. From Eq. (6) one finds the value of α_4, normalisation of inhomogeneities gives M as a function of α_2.}

1 Differences between Einstein and Jordan frame in loop quantum cosmology are described in Ref. [23].

2 Some higher order corrections to Starobinsky inflation discussed here have already been analysed in Refs. [24–26], however not in the context of the saddle-point inflation. In addition, in our analysis we take into account at least 2 higher order terms, which is not the case in papers cited above.
3.2. Saddle point with vanishing k derivatives

In general one can define the saddle point with first k derivatives vanishing, which was analysed in Ref. [27]. In that case $1 - n_s \simeq \frac{2k}{N_{\text{in}}(k-1)}$ when freeze-out of primordial inhomogeneities happens close to the saddle point. Thus, for sufficiently big k one can fit the Planck data. In our case all $\frac{\partial V}{\partial \phi_k} = 0$ at the saddle point are equivalent to $\frac{\partial V}{\partial R_k} = 0$ for $k > 2$. The $f(R)$ model from Eq. (5) cannot satisfy these equations, so in order to obtain a saddle point with vanishing higher order derivatives one needs to introduce more terms to $f(R)$ function (see also Figs. 2–5). Thus let us now consider

$$f(R) = R + \alpha_2 \frac{R^2}{M^2} + \sum_{n=3}^{l} \alpha_n \frac{R^n}{M^{2(n-1)}},$$

(8)

where $l > 4$ is an even natural number. Again, without any loss of generality one can choose α_3 to be any positive constant, so for simplicity we set $\alpha_3 = 1$. Then one can satisfy Eq. (4) and $f^{(n)} = 0$ (for $n = 3, 4, \ldots, l - 2$) and any value of α_2 and the saddle point appears at
Fig. 4. Left panel: Numerical results for the model (11) for \(N_* = 50\) and \(N_* = 60\) (red and blue dots respectively). Right panel: EF potential for the model (11) for \(l = 6, l = 8, l = 10, l = 12\) and \(l = 14\) (orange, green, red, brown and blue lines respectively). The saddle point lies close to the right edge of the potential, beyond which one obtains a second branch of \(V\), which leads to repulsive gravity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Numerical results for the model (11) for \(N_* = 50\) and \(N_* = 60\) (red and blue dots respectively). All values of \(r\) obtained in this analysis are consistent with PLANCK, but \(n_t\) fits the PLANCK data only for \(N_* \approx 60\). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Numerical results for the model (12) for \(N_* = 60\). The \(n_t\) fits the PLANCK data for \(0 < \alpha < 1.4\) and for \(\alpha_2 \gtrsim 34\), when the \(\alpha_2\) term dominates the inflationary evolution.

\[
R = R_s = \sqrt{p} M^2, \quad \text{where} \quad p = \sqrt{(l - 1) \left(\frac{l}{2} - 1\right)}. \tag{9}
\]

The \(\alpha_n\) coefficients satisfy

\[
\alpha_n = (-1)^{n-1} \frac{2(l - 3)!}{(l - n)!(n - 1)!} R^{\frac{n}{2}} \quad \text{for} \quad n = \{3, \ldots, l\}. \tag{10}
\]

Note that Eqs. (9) and (10) are completely independent of \(\alpha_2\). Since \(\alpha_2 < 0\) one obtains \(F < 0\) for sufficiently big \(R\). Also the model from Eq. (5) the biggest allowed value of \(R\) is slightly bigger than \(R_s\). Using Eq. (8) and (10) one obtains

\[
f(R) = R + \frac{\alpha_2}{M^2} R^2 + R \left(\frac{M^2 \sqrt{p} R + 2 M^4 p^2 \left(\left(1 - \frac{R}{M^2 \sqrt{p}} \right)^{l-1} - (l-1) R \right)}{M^4 p - M^2 \sqrt{p} R} \right).
\]

3.3. The \(l \to \infty\) limit

Numerical analysis shows that in order to obtain correct normalisation of primordial inhomogeneities one needs \(M = M(l)\). Nevertheless for \(l \to \infty\) one obtains \(M \to M_0\) (where \(M_0 \sim 10^{-5}\) for \(\alpha_2 = 0\)), which implies \(R_s \to \infty\) for \(l \to \infty\). Hence for \(l \gg 1\) one cannot obtain inflation close to saddle point. For \(l \to \infty\) one obtains
The GR potential is unstable for $R > R_-$ and the auxiliary field equation $\varphi = F(R)$ becomes physical, which leads to the second branch of potential and as a consequence to repulsive gravity. Significant contribution of the R^2 term extends the plateau before the saddle point and pushes away the instability from the inflationary region. For $n \geq 3$ it is impossible to obtain correct n, however for n slightly bigger than 2 one can fit the PLANCK data.

In Subsection 3.2 we investigated the Einstein frame potential with zero value of the first $l - 2$ derivatives at the saddle point, where $l \geq 6$ is an even natural number. To obtain such a saddle point we considered $f(R) = R + \alpha_2 R^2 + \sum_{n=3}^l \alpha_n M^{2(1-n)} R^n$. We found analytical formulae for R_n and for all α_n coefficients, as well as the explicit value of $f(R)$ after summation. Unfortunately the result is slightly disappointing, because the saddle point moves away from the scale of freeze-out of primordial inhomogeneities with growing l. Thus bringing us closer to the Starobinsky case as l gets bigger. We also obtained numerical results for n, r and for the suppression scale M as a function of l. The final result strongly depends on N_* and therefore on the thermal history of the universe. One can fit the PLANCK data for $l \geq 20$ and $N_* \approx 60$ even for $\alpha_2 = 0$ again, for R slightly bigger than R_* one obtains an instability of potential, which for big l is orders of magnitude away from the freeze-out scale.

In Subsection 3.3 we considered the limit $l \rightarrow \infty$, which resulted in $f(R) = R(e^{-\varphi_0/M^2} + (\sqrt{2} + \alpha_2) R/M_0^2)$, which is basically Starobinsky model plus an exponentially suppressed correction. In such a case the saddle point (and therefore the instability for $R > R_*$) moves to infinity and inflation happens far away from the saddle point. The α_2 term is necessary to create the meta-stable minimum of the Einstein frame potential (Fig. 8). One can fit the PLANCK data for $0.7 \lesssim \alpha_2 \lesssim 1.4$ and $\alpha_2 \gtrsim 34$.

Acknowledgements

This work was partially supported by the Foundation for Polish Science International PhD Projects Programme co-financed by the EU European Regional Development Fund and by National Science Centre under research grants DEC-2012/04/A/ST2/00099 and DEC-2014/13/N/ST2/02712. ML was supported by the Polish National Science Centre under doctoral scholarship number 2015/16/T/ST2/00527. MA was supported by National Science Centre grant FUGA UMO-2014/12/S/ST2/00243.
References

[1] D.H. Lyth, A. Riotto, Phys. Rep. 314 (1999) 1, arXiv:hep-ph/9807278.
[2] A.R. Liddle, New Astron. Rev. 45 (2001) 235, arXiv:astro-ph/0009491.
[3] A. Mazumdar, J. Rocher, Phys. Rep. 497 (2011) 85, arXiv:1001.0993 [hep-ph].
[4] P.A.R. Ade, et al., Planck Collaboration, Astron. Astrophys. 571 (2014) A22, arXiv:1303.5082 [astro-ph.CO].
[5] A.A. Starobinsky, Phys. Lett. B 91 (1980) 99.
[6] J.D. Barrow, S. Cotsakis, Phys. Lett. B 214 (1988) 515.
[7] A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13 (2010) 3, arXiv:1002.4928 [gr-qc].
[8] J. Ellis, M.A.G. Garcia, D.V. Nanopoulos, K.A. Olive, arXiv:1507.02308 [hep-ph].
[9] A. Codello, J. Joergensen, F. Sannino, O. Svendsen, arXiv:1404.3558 [hep-ph].
[10] C. van de Bruck, L.E. Paduraru, arXiv:1505.01727 [hep-th].
[11] M. Artymowski, Z. Lalak, M. Lewicki, J. Cosmol. Astropart. Phys. 09 (2014) 036, arXiv:1405.7818 [hep-th].
[12] M. Artymowski, Z. Lalak, M. Lewicki, arXiv:1412.8075 [hep-th].
[13] L. Sebastiani, G. Cognola, R. Myrzakulov, S.D. Odintsov, S. Zerbini, Phys. Rev. D 89 (2014) 023518, arXiv:1311.0744 [gr-qc].
[14] H. Motohashi, arXiv:1411.2972 [astro-ph.CO].
[15] B.J. Broy, D. Roest, A. Westphal, arXiv:1408.5904 [hep-th].
[16] K. Kamada, J. Yokoyama, Phys. Rev. D 90 (10) (2014) 103520, arXiv:1405.6732 [hep-th].
[17] M. Artymowski, Z. Lalak, M. Lewicki, J. Cosmol. Astropart. Phys. 1506 (06) (2015) 032, arXiv:1502.01371 [hep-th].
[18] V. Mukhanov, Univ. Pr., Cambridge, UK, 2005, 421 p.