A distance constrained synaptic plasticity model of C. elegans neuronal network

Rahul Badhwar¹ and Ganesh Bagler¹,²

¹Centre for Biologically Inspired System Science, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India and ²Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, Gujarat, India

Brain research has been driven by inquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans is known to possess complex functions. The neuronal architecture forms an important underlying framework which specifies phenotypic features associated to sensation, movement, conditioning and memory. In this study, with the help of graph theoretical models, we investigated the C. elegans neuronal network to identify network features that are critical for its control. The ‘driver neurons’ are associated with important biological functions such as reproduction, signalling processes and anatomical structural development. We created 1D and 2D network models of C. elegans neuronal system to probe the role of features that confer controllability and small world nature. The simple 1D ring model is critically poised for the number of feed forward motifs, neuronal clustering and characteristic path-length in response to synaptic rewiring, indicating optimal rewiring. Using empirically observed distance constraint in the neuronal network as a guiding principle, we created a distance constrained synaptic plasticity model that simultaneously explains small world nature, saturation of feed forward motifs as well as observed number of driver neurons. Our model suggests optimum long distance synaptic connections as a key feature specifying control of the network.

Keywords: C. elegans, neuronal network, feed forward motifs, synaptic plasticity, brain model.

I. INTRODUCTION

The quest for understanding broad structural organization, functional building blocks and mechanisms of control of nervous systems has been central to neuroscience [1]. Vast knowledge of cellular and molecular mechanisms garnered through reductionist studies over decades, while enriching our understanding of brain mechanisms, have highlighted the need for holistic perspective of neural architecture [2]. This urge to delve into systems properties has propelled efforts into connectome projects that attempt to map neural wirings to the finest detail possible [3–6]. C. elegans connectome is the only complete neuronal wiring diagram available till date [3–7]. Along with the rich understanding available on the biology of this model organism [9–10], its connectome presents an incredible opportunity to learn basic governing principles that drive structure and function of neuronal architecture.

Despite its apparently simple nervous system, C. elegans is known to possess complex functions associated to sensation, movement, conditioning and memory [11–12]. This multi-cellular nematode has been extensively investigated to understand neural mechanisms involved in response to chemicals, temperature, mechanical stimulation as well as mating and egg laying behaviors [11–13]. These biological functions have neuronal basis and are a reflection of emergent properties of signal dynamics over the network. Its nervous system has evolved to confer evolutionary benefits under constant tinkering and is known to undergo synaptic rewiring during the course of its life [14]. Beyond the broad evolutionary architecture, synaptic plasticity offers additional adaptive advantage to respond to the environment and perhaps to achieve better functional efficiency.

The C. elegans neuronal system could be modelled as a network and studied for structural properties of its neuronal architecture as well as for network dynamics (Figure 1). The C. elegans neuronal network (CeNN) has been mapped to a high resolution with details of its neurons, their locations and synaptic connectivity [15]. The network, comprising of 277 neurons that are inter-linked with 2105 synapses, has been studied for its broad structural features as well as towards identification of motifs that potentially contribute to the dynamics over the network. Using graph theoretical measures, CeNN has been observed to have a small world architecture with small path length and high clustering [16]. This has been proposed to be due to processes that leave the network critically poised between absolute order and extreme randomness. The small world nature may render this neural network (as well as other neuronal systems) efficient for information dynamics. When probing for network sub-structures that could form the building block of the CeNN, Milo et al. identified feed forward motifs (FFMs) to be significantly over-represented [17]. Such structural building blocks have been suggested to be of functional relevance to biological systems (in addition to other networked systems). How exactly such building blocks may offer functional advantage to networked systems and whether these entities have evolved to optimize the building blocks is not clearly understood yet.
FIG. 1. Network structure of *C. elegans* nervous system. Functionally relevant driver neurons (34 nodes highlighted in white) were identified with maximum matching criterion. Beyond explaining the small world nature, saturation of feed forward motifs and observed number driver neurons, our distance constrained synaptic plasticity model accurately identifies specific driver neurons.

Control systems approach to complex networks provides a better perspective of dynamics over the network and ability to steer its ‘state’ [18]. Neuronal architecture of CeNN forms an important underlying framework which specifies phenotypic features of *C. elegans*. Important behavioural traits as well as cognitive processes (such as movement, sensation, egg laying, mechanosensation, and memory) are known to have neuronal basis. A network is said to be controllable if it can be reached to a desired state from any initial state by providing inputs to certain nodes [18, 19]. The set of nodes that facilitate such a control are named driver nodes [18].

By studying genotypic and phenotypic aspects of CeNN, in our earlier study we have shown that ‘driver neurons’ are associated with important biological functions such as reproduction, signalling processes and anatomical structural development [20]. Interestingly, randomized controls have no driver neurons as compared to CeNN which presents a sizeable number of driver neurons that are crucial for its control. While earlier studies have shown connectivity of neurons in CeNN partially explains the observed number of driver neurons [18], no model has so far been developed that accounts for its small world architecture, over-representation of FFMs as well as controllability.

In this study, we create one-dimensional (1D) and two-dimensional (2D) network models of *C. elegans* neuronal system to investigate the role of FFMs as building blocks in conferring controllability and small world nature. With the help of a simple 1D ring model we show such a network is critically poised for the number of FFMs, neuronal clustering and characteristic path-length in response to synaptic rewiring, indicating optimal rewiring. We found that synaptic connections between neurons are characterized with a strong distance constraint in CeNN. Using this as a guiding principle, we created a distance constrained synaptic plasticity model that simultaneously explains small world nature, FFM saturation and controllability of the network. This model accounted for the observed number of driver neurons and also accurately identified specific driver neurons. Thus our model presents realistic process of distance constrained synaptic plasticity as a plausible basis of nature of functional sub-structures and controllability observed in CeNN.

II. MATERIALS AND METHODS

A. *C. elegans* neuronal network

The nervous system of *C. elegans* consists of 277 neurons (barring the pharyngeal neurons) which are interconnected via electrical and chemical synapses [3, 15]. We constructed CeNN, a graph theoretic model of *C. elegans* neuronal network, comprising of 277 somatic neurons and 2105 synaptic connections. Multiple synaptic connections between two neurons were merged to yield a simple directed unweighted graph in which neurons represent nodes and synaptic connections are links. A typical neuron in CeNN on an average had 7.59 synaptic connections.

B. Topological properties of CeNN

We calculated following graph theoretical properties of the network embodying clustering, compactness, structural motifs and controllability of the network.

1. Clustering coefficient

Clustering coefficient of a node $C_i$ is defined as ratio of number of triangles (triangle refers to a three node clique) made by a node with its neighbours to the maximum number of triangles that can be formed by them [10]. For a graph $G = (V, E)$ the clustering coefficient of a node $i$ is defined as follows:

$$C_i = \frac{|\{ e_{jk} : v_j, v_k \in N_i, e_{jk} \in E \}|}{k_i(k_i-1)}$$

Here, $N_i$ refers to the neighbourhood of node $i$ and $k_i$ represents its connectivity (degree).

The average clustering coefficient ($\bar{C}$) was calculated by averaging clustering coefficients of all $n$ nodes: $\bar{C} = \frac{1}{n} \sum_{i=1}^{n} C_i$. 
2. Characteristic path-length

Characteristic path-length \( (L) \) enumerates compactness, reflecting ease of information transfer, of the network. It is defined as the average of shortest path-lengths among all pairs of nodes in the network.

\[
L = \frac{1}{n(n-1)} \sum_{i \neq j} d(v_i, v_j)
\]

3. Feed forward motifs

Network motifs are defined as patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks [17]. In a three node digraph 13 different types of three node motifs can exist. Angular motifs are linear three node sub-structures, and triangular motifs comprise of three nodes inter-connected with either unidirectional or bidirectional edges. For our studies, we computed number of feed forward motifs, \( n_{FFM} \), (among unidirectional triangular motifs) that are prevalent in many real world networks including CeNN [17, 21]. Please see Section S1 (Figure S1 and Figure S2) of Supplemental Material for more details. We used the algorithm employed by Milo et al. for identification and enumeration of frequency of occurrence motifs [17]. The Zscore, indicating significance of observed number of FFMs in CeNN, was calculated by comparing it with random controls:

\[
Z_{score} = \frac{n_{FFM(CeNN)} - n_{FFM(ER)}}{\sigma_{ER}}
\]

4. Number of driver neurons

From control systems perspective, driver nodes in a network are those nodes which when controlled by external input can provide full control over the state of the network [18]. Analogously, we term driver nodes in CeNN as driver neurons. Due to their role in control of network, driver neurons are of functional relevance to the neuronal network. We computed minimum number of driver neurons \( (n_D) \) using maximum matching criterion [18]. A node is said to be matching if any matching edge is pointing towards it and is unmatched if no matching edge is directed towards it. We implemented maximum matching algorithm proposed by Pothen et al. to find unique unmatched nodes by augment matching [22].

C. Random controls of CeNN

We constructed two random controls of CeNN viz. Erdős-Rényi random control (ER) and degree distribution conserved control (DD) [23, 24]. In ER control number of nodes and edges were kept the same as that of CeNN but the connectivity was random. In DD control the in-degree and out-degree of each node was also preserved in addition to number of nodes and edges.

D. 1D ring model of CeNN

We constructed a ring graph model of CeNN so as to maximise the number of FFMs while preserving the number of neurons \( (n) \) as well as average neuronal connectivity \( (k) \) of CeNN (Figure 2). Starting with \( n(=277) \) nodes arranged in a circular manner, every node was connected (in anti-clockwise sense) to its next nearest neighbour with a directed edge. The procedure was repeated to connect every node with its nearest neighbour and the next nearest neighbour until the out-degree of every node matched with that of average out-degree of CeNN \( (k = 7.59 \approx 8) \). This strategy maximises the number of FFMs to \( nk(k-1)/2 \) in the regular graph model of CeNN and represents an asymptotic version saturated with FFMs.

![Image](321x369 to 558x448)

FIG. 2. The 1D ring model, with neurons linked for maximising number of feed forward motifs, was rewired with increasing probability of synaptic rewiring. Starting with an asymptotic model (with 277 nodes and 8 out-going edges) saturated with FFMs, synaptic rewiring was emulated with probability \( p \). The model exhibits a spectrum of topological variations between extreme regularity and randomness. The figure shows an illustration for 10 nodes and 2 outgoing edges. See Figure S3 of Supplemental Material for another illustration.

To mimic random synaptic plasticity in this simple 1D model, we rewired every edge in this network with a certain ‘probability of rewiring \( (p) \)’. Every out-going edge connecting a node to its nearest neighbour was chosen and rewired randomly with probability \( p \) by ensuring that there were no duplicate edges or self-edges and that the network is always connected. In the second lap, the process was repeated for the edges made with next-nearest neighbours and so on. All edges are thus exhaustively considered for rewiring in \( k \) laps. For every probability of rewiring 1000 instances of graphs were created for a range of \( p = 10^{-4} \) to \( p = 1 \). Topological properties (\( C, L, n_{FFM} \) and \( n_D \)) were computed for every instance of graph thus generated.
E. Distance constrained models of CeNN

We created 2D distance constrained models that, analogous to distance constraint observed in CeNN, follow a restraint on synaptic connectivity based on distance between two neurons. These 2D models are based on positional data of *C. elegans* neurons, that have been mapped to a high resolution [15]. The probability $P(d)$ that two neurons at a distance $d$ are connected with a synapse approximately follows a power law pattern observed from empirical data:

$$P \propto d^{-\alpha}$$

The distance constraint is modulated by the exponent $0 \leq \alpha \leq \infty$. Here, the distance between neurons $i$ and $j$, $d(i,j)$, was calculated as the Euclidean distance:

$$d(i,j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}.$$  

We created two models of CeNN based on the distance constraint: Distance constrained random (DCR) and Distance constrained synaptic plasticity (DCP).

1. Distance constrained random (DCR) model

The underlying framework for DCR model is that of ER control. Starting with ER (random) control, we rewired every edge to impose distance constraint for specific exponent $\alpha$. Statistics of topological parameters were computed over 100 instances. Response of DCR model was observed by varying the value of exponent between $0 \leq \alpha \leq 3$.

2. Distance constrained synaptic plasticity (DCP) model

In contrast to DCR model, the underlying framework for DCP model is that of DD control which preserves the synaptic connectivity of each neuron. Starting with DD control, every edge was rewired to impose distance constraint for specific exponent $\alpha$ and statistics of topological parameters were computed over 100 instances.

F. Cartesian graph model of CeNN

The deterministic Cartesian graph model of CeNN was created by ensuring that every neuron is connected to its spatially nearest neurons. Beginning with ($n = 277$) neurons placed at cartesian coordinates matching their observed position in the nervous system of *C. elegans* [15], every neuron was connected to ($k = 8$) spatially nearest neurons. This model reflects preferential deterministic connections made by a neuron based on its distance from another neuron.

G. Identification of specific driver neurons

We obtained the set of specific driver neurons using maximum matching algorithm [22]. The success of DCR, DCP models in accurate identification of driver neurons was measured with the help of F1 score. Using the driver neurons set identified from the CeNN (34) as the basis (Details of driver neurons is provided in Table S7 of Supplemental Material), we identified true positives ($TP$) and true negatives ($TN$) (neurons that are correctly classified) as well as false positives ($FP$) and false negatives ($FN$) (neurons that were incorrectly marked as driver neurons, and neurons that were incorrectly marked as non-driver neurons, respectively) for DCR and DCP models across 100 instances. The F1 score, which is used for computing the quality of binary classification is defined as $F1 = \frac{2 \times TP}{2 \times TP + FP + FN}$.

III. RESULTS

A. Topological properties of CeNN

Topological features of network provide insights into its structure and function [25, 26]. Consistent with previous reports, we observed that *C. elegans* neuronal network is a small world network by virtue of high clustering coefficient ($C = 0.172$) and comparable characteristic path length ($L = 4.018$), with respect to its randomized counterpart ($C_{ER} = 0.028$ and $L_{ER} = 2.97$) (Table I) [16]. Beyond these global topological features, CeNN is known to be over represented with feed forward motifs [17] that are functionally associated with mechanisms of memory [27]. We observed that, FFMs were significantly over-represented in CeNN ($Z\text{score} = 151.12$) as compared to those in corresponding random graphs.

| TABLE I. Topological properties of CeNN and its controls |
|-----------------|-----------------|-----------------|
|                | CeNN            | ER              | DD              |
| $C$            | 0.172           | 0.028 ± 0.001   | 0.067 ± 0.003   |
| $L$            | 4.018           | 2.97 ± 0.01     | 2.981 ± 0.018   |
| $n_D$          | 34              | 0.28 ± 0.514    | 22.38 ± 1.153   |
| $n_{FFM}$      | 3776            | 438.3 ± 22.1    | 1699.6 ± 57.5   |

From control systems perspective CeNN can be controlled through a small set of driver neurons (34) to any desired state in finite time [15]. The number of driver neurons in CeNN is significantly higher in comparison to its random counterpart. Driver neurons in CeNN are genotypically and phenotypically associated with biological functions such as reproduction and maintenance of cellular processes [20]. This alludes to the fact that driver neurons serve a critical role in the neuronal architecture of *C. elegans* and the number of driver neurons therefore has functional bearing on its control.

Table I depicts topological features of CeNN that are potentially critical for specifying its function. Other...
than the small world nature, evident from high clustering among neurons, the CeNN is characterized with significantly higher number of driver nodes as well as number of feed forward motifs. While connectivity (degree) of neurons (DD) partially explains the increase in FFMs as well as that in \( n_D \), at the same time it cannot account for observed clustering. No comprehensive model that can explain all of these functionally relevant features is hitherto known.

### B. 1D ring model of CeNN

To investigate for possible mechanisms that could have lead to the observed saturation of FFMs, we created a 1D ring model of CeNN. A directed regular ring graph with \( n \) neurons and \( k \) average synapses can have a maximum of \( nk(k - 1)/2 \) FFMs as shown in (Figure 2). Starting from such a regular ring graph maximally saturated with 7756 FFMs, we simulated random synaptic rewiring to observe its effect on topological features. In addition to FFM saturation, the regular graph had very high average clustering coefficient (\( \overline{C}_{\text{reg}} = 0.35 \)) as well as characteristic path-length (\( L_{\text{reg}} = 17.69 \)). From an analogous undirected Watts and Strogatz model it was anticipated that with increase in synaptic rewiring the clustering as well as path-length would decrease to approach that of random graph asymptotically [16]. This simulation of synaptic rewiring was also expected to provide insights into its impact on number of FFMs and driver neurons. As shown in the Figure 2 with increasing probability of synaptic rewiring the number of FFMs is unaffected up to \( p \approx 0.01 \) before falling sharply. While this result points at a critical threshold for number of FFMs in response to probability of synaptic rewiring, no driver neurons were presented by the model across the simulation (\( n_D = 0 \forall p \leq 1 \)). For 1D ring graph, these results highlight a critical threshold of rewiring for which the network has optimum saturation of FFMs. Such a simple model can only provide topological insights devoid of biological basis. Search for a more realistic model prompted us to look for biological constraints that may dictate synaptic rewiring as well as to build a 2D model that could possibly reveal mechanisms that render observed controllability in CeNN.

### C. CeNN follows distance constrained synaptic connectivity pattern

We measured the connectivity pattern in CeNN by enumerating number of neuron pairs that are synaptically connected and cartesian distance between them. We observed that the synaptic connections were constrained by distance as evident from the nature of their data (Figure 1). The probability of two neurons being connected approximately scales as a power law (\( P(d) \propto d^{-\alpha} \)), with presence of a few exceptional long distance connections.

![FIG. 3](image1.png)

**FIG. 3.** Response of 1D ring model with changing probability of synaptic rewiring was measured in terms of average clustering coefficient (\( \overline{C} \)), characteristic path-length (\( L \)), number of FFMs (\( n_{FFM} \)) and number of driver nodes (\( n_D \)). For intermediate values of \( p \), the model exhibits small world phenomenon as well as FFM saturation, but can not account for controllability (\( n_D = 0 \forall p \)). Error bars represent standard deviation over 100 instances. Please see Section S3 of Supplemental Material (Figure S4, Figure S5 and Figure S6) for non-normalized data.

![FIG. 4](image2.png)

**FIG. 4.** Empirical distance constrained synaptic connectivity pattern observed in *C. elegans* neuronal wiring. The number of synapses that connect neurons at distance \( d \) approximately follows a power law pattern with an exponent of \( \alpha = 1.92 \) \((R^2 = 0.6)\).

To incorporate this empirical distance constrained connectivity pattern we created more realistic 2D models: (1) Distance constrained random (DCR) model that adds distance constraint starting from ER control, and (2) Distance constrained plasticity (DCP) model that overlays the distance constraint starting from the DD control. Along with the ER and DD random controls these models allow us to segregate the contribution of degree (connectivity) vis-à-vis distance constrained synaptic wiring towards conferring observed topological features upon CeNN.
FIG. 5. Response of distance constrained models of CeNN (DCR and DCP) with increasing constraint ($\alpha$) measured in terms of (a) average clustering coefficient ($C$), (b) characteristic path-length ($L$), (c) number of FFMs ($n_{FFM}$), and (d) number of driver nodes ($n_D$). The lower the $\alpha$ more heterogenous are the synaptic lengths (larger proportion of long range synapses). For $\alpha = 0$, DCR and DCP models converge to ER and DD controls, respectively. For asymptotic limits of $\alpha \to \infty$ both the models converge to the Cartesian model, a regular model with saturation of FFMs coupled with high clustering but devoid of driver nodes. While the small world nature (reflected in high clustering and low path-length) and FFM saturation is realized by both DCR and DCP models, DCP model stands out in reproducing all key features of CeNN for $0.6 \leq \alpha \leq 1.8$ (highlighted with gray background). Please see Figure S7, Table S1 and Table S2 of Supplemental Material for details about nature of degree distributions and associated data.

D. Distance constrained random model

The distance constrained random (DCR) model is a 2D model in which the number of neurons, number of synapses and neuronal locations were preserved. Starting from initial random connectivity (ER) every synapse was probabilistically rewired to follow distance constraint with a certain $\alpha$ (Figure 5). The lower asymptotic limit of this model converges to ER model for $\alpha = 0$. With increasing $\alpha$ the probability of long distance synaptic connections decreases. For extremely large values of $\alpha$ this model converges to the Cartesian model in which every neuron is deterministically connected to its spatially nearest neighbours. We varied the value of $\alpha$ between 0 and 3 to assess its impact on the topology of neural network. We found that the average clustering coefficient, characteristic path-length and number of FFMs monotonously increase with increasing $\alpha$. For these parameters the DCR model was closest to actual neuronal network of C. elegans for $\alpha = 0.6$. While this model took us closer to CeNN, it did not reflect controllability measured in terms of $n_D$. The driver neurons vanish for asymptotic limits of $\alpha$ with maximum $n_D = 15.7$ for $\alpha = 0.4$. The fact that DD control, in which number of synapses of every neuron is preserved, matches with CeNN better in controllability (Table I) prompted us to create a more refined ‘distance constrained synaptic plasticity model’.

E. Distance constrained synaptic plasticity model

The distance constrained synaptic plasticity (DCP) model preserves the number of synapses of every neuron over and above the number of neurons and their locations. While following the distance constraint, this model mimics synaptic rewiring that is known to take place in CeNN [14, 28]. We observed the response of topological features for varying extent of distance constraint ($0 \leq \alpha \leq 3$) (Figure 5). In addition to the clustering and characteristic path-length, interestingly, this model successfully realised number of FFMs as well as number of driver neurons. We found that for an intermediate distance constraint of $\alpha = 0.6$ this model is closest to CeNN.
Interestingly, we found that the performance of DCP model was consistently better than that of the DCR model indicating the critical role played by the distance constraint in specifying the control of the neuronal network. For optimum distance constraint ($\alpha = 0.4$) DCP model provides the best match with the reality ($F_1$ score $= 0.77$), better than what could be accounted for by only neuronal connectivity (DD control; indicated with a dashed line). The spectrum of distance constraint regime for which DCP model is closest to CeNN ($0.6 \leq \alpha \leq 1.8$) is highlighted with gray background.

IV. DISCUSSION

*Caenorhabditis elegans* connectome is one of the simplest yet complete neural diagram known to us so far. The neuronal network of this organism is responsible for many essential cognitive functions including learning and memory [12]. CeNN seemingly has evolved as a small world network with high clustering and low characteristic path-length for functional benefits [10]. Other than the small world global architecture CeNN is reported to be enriched with number of feed forward motifs among all possible three and four node motifs [17]. Our results suggest that the heterogeneous composition of motifs dictated by FFMs contributes to increased clustering as well as control of the network.

Analysis of neuronal architecture of CeNN has revealed that the network is optimally wired [7,29] and is dictated by constraints [8,30]. Till date a few simple null models of CeNN have been implemented with network feature constraints [23,24]. These studies suggest that neuronal connectivity plays a key role in rendering clustering as well as presentation of as many driver neurons as observed in CeNN [18,24]. None of these models has been able to explain all network features, especially clustering and number of driver neurons, claimed to be of biological relevance [18,20].

Here, for the first time, we present a distance constrained synaptic plasticity model that accounts for high clustering, FFMs saturation and large number of driver nodes. With a 4D ring model maximized for feed forward motifs, we show that such a model exhibits critical phenomenon in response to increased probability of synaptic rewiring. While this simple model lends interesting insights into the mechanisms of CeNN architecture, it cannot capture the aspect of controllability. Rooted in empirical observation of distance constraint followed in neuronal connections, we built more realistic 2D distance constrained models with random connectivity (DCR) and degree preserved connectivity (DCP). The latter model, that mimics real-world *Caenorhabditis elegans* neuronal wiring and follows a distance constrained synaptic plasticity mechanism, comes closest to the CeNN in presenting small world architecture, dominance of FFMs and nature of controllability within a narrow range of free variable $\alpha$. 

F. Identification of specific driver neurons

While the DCP model successfully reproduces key topological features important for function and control of CeNN (Figure 5), the question is whether it can also capture specific neurons implicated in control of the network and not just the number of driver neurons (Figure 5(d)). We compared specific neurons identified by the minimum driver neurons set obtained from real-world CeNN with that obtained from distance constraint models, for varying extent of distance constraint (Figure 4). Neurons that were consistently identified as driver neurons over 100 random instances of DCP and DCR models were distilled (True Positives). The classification accuracy of these models was assessed using F1 score. Interestingly, we found that the performance of DCP model was significantly better compared to DCR model (the accuracy of which was indistinguishable from that obtained from random sampling) and superior to DD control in the presence of dominant long distance connections ($\alpha \leq 1$). Thus DCP model is not only closer to real-world network in terms of number of driver nodes but also accurately identified specific neurons that can drive the network dynamics. In summary, the DCP model, that embeds empirically observed phenomenon of neuronal rewiring in addition to fixed neuronal connectivity, successfully recreates topological features of functional relevance to *C. elegans*. 

FIG. 6. Accuracy of identification of specific driver neurons with changing distance constraint exponent. The DCR model, with random synaptic connectivity pattern, fared poorly. The performance of DCP model was consistently better than that of the DCR model indicating the critical role played by the distance constraint in specifying the control of the neuronal network. For optimum distance constraint ($\alpha = 0.4$) DCP model provides the best match with the reality ($F_1$ score $= 0.77$), better than what could be accounted for by only neuronal connectivity (DD control; indicated with a dashed line). The spectrum of distance constraint regime for which DCP model is closest to CeNN ($0.6 \leq \alpha \leq 1.8$) is highlighted with gray background.
The DCP model also successfully captures specific driver neurons with impressive accuracy. Our results suggest that the extent of synaptic plasticity in CeNN is optimized so as to acquire key structural and dynamical network features.

[1] E. Kandel, J. Schwartz, and T. Jessel, *Principles of Neural Science*, 4th ed. (McGraw-Hill, New York, 2000).
[2] O. Sporns, *Networks of the Brain* (MIT press, 2011).
[3] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, *Philosophical Transactions of the Royal Society B: Biological Sciences* 314, 1 (1986).
[4] B. Zingg, H. Hintiryan, L. Gou, M. Y. Song, M. Bay, M. S. Bienkowski, N. N. Foster, S. Yamashita, I. Bowman, A. W. Toga, and H.-W. Dong, *Cell* 156, 1096 (2014).
[5] A.-S. Chiang, C.-Y. Lin, C.-C. Chuang, H.-M. Chang, C.-H. Hsieh, C.-W. Yeh, C.-T. Shih, J.-J. Wu, G.-T. Wang, Y.-C. Chen, C.-C. Wu, G.-Y. Chen, Y.-T. Ching, P.-C. Lee, C.-Y. Lin, H.-H. Lin, C.-C. Wu, H.-W. Hsu, Y.-A. Huang, J.-Y. Chen, H.-J. Chiang, C.-F. Lu, R.-F. Ni, C.-Y. Yeh, and J.-K. Hwang, *Current Biology* 21, 1 (2011).
[6] O. Sporns, *NeuroImage* 80, 53 (2013).
[7] B. L. Chen, D. H. Hall, and D. B. Chklovskii, *PNAS* 103, 4723 (2006).
[8] E. K. Towelson, P. E. Vértes, S. E. Ahnert, W. R. Schafer, and E. T. Bullmore, *The Journal of Neuroscience* 33, 6380 (2013).
[9] K. L. Howe, B. J. Bolt, S. Cain, J. Chan, W. J. Chen, P. Davis, J. Done, T. Down, S. Gao, C. Grove, T. W. Harris, R. Kishore, R. Lee, J. Lomax, Y. Li, H.-M. Muller, C. Nakamura, P. Nuin, M. Paulini, D. Raciti, G. Schindelman, E. Stanley, M. A. Tuli, K. Van Aukn, D. Wang, X. Wang, G. Williams, A. Wright, K. Yook, M. Berriman, P. Kersey, T. Schedl, L. Stein, and P. W. Sternberg, *Nature Reviews, Molecular Cell Biology* 16, 303 (2005).
[10] Z. Altun and D. Hall, URL http://www.wormatlas.org (2002).
[11] N. Chatterjee and S. Sinha, *Progress in Brain Research* 168, 145 (2008).
[12] E. L. Ardiel and C. H. Rankin, *Learning & Memory* (Cold Spring Harbor, N.Y.) 17, 191 (2010).
[13] O. Hobert, *Journal of Neurobiology* 54, 203 (2003).
[14] E. R. Kandel, Y. Dudai, and M. R. Mayford, *Cell* 157, 163 (2014).
[15] W. K. Yoonsuck Choe, BH McCormick, *Society of Neuroscience Abstracts* 30 (2004).
[16] D. J. Watts and S. H. Strogatz, *Nature* 393, 440 (1998).
[17] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, *Science* 298, 824 (2002).
[18] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabasi, *Nature* 473, 167 (2011).
[19] C. Lin, *Automatic Control, IEEE Transactions on* 19, 201 (1974).
[20] B. Badhwar and G. Bagler, *PLoS ONE* 10, e0139204 (2015).
[21] U. Alon, *An Introduction to Systems Biology: Design Principles of Biological Circuits* (Chapman and Hall/CRC Press, 2007).
[22] A. Pothen and C.-J. Fan, *ACM Transactions on Mathematical Software* 16, 303 (1990).
[23] P. Erdös and a. Rényi, *Publicationes Mathematicae* 6, 290 (1959).
[24] S. Maslov and K. Sneppen, *Science* 296, 910 (2002).
[25] R. Albert and A. L. Barabasi, *Reviews of Modern Physics* 74, 47 (2002).
[26] S. N. Dorogovtsev, *Lectures on Complex Networks* (Oxford University Press, 2010).
[27] R. Mozzachiodi and J. H. Byrne, *Trends in Neurosciences* 33, 17 (2010).
[28] K. Shen and C. I. Bargmann, *Cell* 112, 619 (2003).
[29] A. Pérez-Escudero and G. G. de Polavieja, *Proceedings of the National Academy of Sciences of the United States of America* 104, 17180 (2007).
[30] R. K. Pan, N. Chatterjee, and S. Sinha, *PLoS ONE* 5, e9240 (2010).
SUPPLEMENTAL MATERIAL

S1. THREE NODE MOTIF CLASSIFICATION

Motifs are patterns of local connectivity among nodes that are present in numbers significantly higher than expected by chance. The pattern of connectivity among 13 three node connected digraphs could be divided into angular motifs and triangular motifs (Figure S1). Angular motifs are linear three node sub-structures, whereas triangular motifs comprise of three nodes subgraphs with either unidirectional or bidirectional edges. For our studies, we computed number of feed forward motifs, \( n_{FFM} \), (among unidirectional triangular motifs) that are prevalent in many real world networks including CeNN. In CeNN, feed forward motifs are most prevalent among all unidirectional motifs as shown in Figure S2.

![Three node motifs diagram](image)

FIG. S1. Classification of three node subgraphs

![Z-score graph](image)

FIG. S2. Statistics for unidirectional three node motifs depicting over-representation of feed forward motifs. The Z-Score was computed in comparison to 100 instances of random controls (ER) of CeNN.
S2. 1D RING MODEL OF CENN

Following is an illustration of 1D ring model with 20 nodes and 4 outgoing synapses for every node \( n = 20 \) and \( k = 4 \) (Figure S3).

S3. RESPONSE OF CENN 1D RING MODEL TO REWIRING

Starting from a 1-D regular ring graph maximally saturated with 7756 FFMs, we simulated random synaptic rewiring to observe its effect on topological features. In addition FFMs saturation, the regular graph had very high average clustering coefficient \( C_{\text{reg}} = 0.35 \) as well as characteristic path-length \( L_{\text{reg}} = 17.69 \). Figure (S4, S5 and S6) shows with increasing probability of synaptic rewiring the number of FFMs is unaffected up to \( p \approx 0.01 \) before falling sharply. These are true value figures from which one can estimate the change in number of each parameter with changing value of \( p \).

FIG. S4. Response of average clustering coefficient to rewiring.
FIG. S5. Response of characteristic path-length to rewiring.

FIG. S6. Response of number of feed forward motifs to rewiring.
S4. DEGREE DISTRIBUTION OF CENN, ITS CONTROLS AND DISTANCE CONSTRAINED MODELS

Figure S7 depicts the degree distribution of CeNN in comparison to its random controls (ER and DD) as well as distance constrained models (DCR and DCP).

FIG. S7. Degree distributions of CeNN, its controls and distance constrained models.
### S5. TOPOLOGICAL FEATURES OF DCR

**TABLE S1.** Differential topological properties of distance constraint random model at different values of $\alpha$ starting from an ER control.

| Exponent | Average clustering coefficient ($C$) | Characteristic path-length ($L$) | Number of driver neurons ($n_D$) | Number of feed forward motifs |
|----------|------------------------------------|---------------------------------|----------------------------------|-------------------------------|
| $\alpha = 0$ (ER) | $0.322 \pm 0.001$ | $2.968 \pm 0.007$ | $0.26 \pm 0.441$ | $610.55 \pm 37.59$ |
| $\alpha = 0.2$ | $0.317 \pm 0.002$ | $3.048 \pm 0.026$ | $13.75 \pm 2.536$ | $563.91 \pm 29.212$ |
| $\alpha = 0.4$ | $0.333 \pm 0.001$ | $3.068 \pm 0.026$ | $15.70 \pm 2.866$ | $612.19 \pm 33.902$ |
| $\alpha = 0.6$ | $0.399 \pm 0.002$ | $3.14 \pm 0.028$ | $15.24 \pm 2.934$ | $721.21 \pm 38.011$ |
| $\alpha = 0.8$ | $0.48 \pm 0.002$ | $3.21 \pm 0.042$ | $14.66 \pm 2.952$ | $875.83 \pm 40.081$ |
| $\alpha = 1.0$ | $0.64 \pm 0.003$ | $3.34 \pm 0.044$ | $13.62 \pm 2.784$ | $1131.84 \pm 53.844$ |
| $\alpha = 1.2$ | $0.85 \pm 0.004$ | $3.49 \pm 0.07$ | $11.82 \pm 2.418$ | $1447.24 \pm 65.112$ |
| $\alpha = 1.4$ | $0.108 \pm 0.004$ | $3.689 \pm 0.099$ | $9.37 \pm 2.299$ | $1816.30 \pm 73.181$ |
| $\alpha = 1.6$ | $0.136 \pm 0.005$ | $3.931 \pm 0.14$ | $8.08 \pm 2.246$ | $2231.32 \pm 87.442$ |
| $\alpha = 1.8$ | $0.169 \pm 0.006$ | $4.185 \pm 0.266$ | $7.23 \pm 2.287$ | $2719.38 \pm 97.224$ |
| $\alpha = 2.0$ | $0.196 \pm 0.007$ | $4.426 \pm 0.408$ | $5.73 \pm 1.89$ | $3114.38 \pm 108.00$ |
| $\alpha = 2.2$ | $0.227 \pm 0.008$ | $4.589 \pm 0.617$ | $5.09 \pm 1.682$ | $3562.71 \pm 121.276$ |
| $\alpha = 2.4$ | $0.256 \pm 0.008$ | $4.744 \pm 0.661$ | $4.98 \pm 1.826$ | $3985.73 \pm 121.322$ |
| $\alpha = 2.6$ | $0.28 \pm 0.008$ | $4.726 \pm 0.709$ | $4.46 \pm 1.72$ | $4364.37 \pm 118.252$ |
| $\alpha = 2.8$ | $0.305 \pm 0.008$ | $4.976 \pm 0.843$ | $4.17 \pm 1.596$ | $4738.90 \pm 124.48$ |
| $\alpha = 3.0$ | $0.326 \pm 0.008$ | $5.138 \pm 0.856$ | $3.93 \pm 1.725$ | $5035.94 \pm 120.082$ |
| $\alpha \to \infty$ | | | | |
| Cartesian | $0.624$ | $10.394$ | $0$ | $10153$ |

### S6. TOPOLOGICAL FEATURES OF DCP

**TABLE S2.** Differential properties of distance constraint synaptic plasticity model at different values of $\alpha$ starting from DD control.

| Exponent | Average clustering coefficient ($C$) | Characteristic path-length ($L$) | Number of driver neurons ($n_D$) | Number of feed forward motifs |
|----------|------------------------------------|---------------------------------|----------------------------------|-------------------------------|
| $\alpha = 0$ (DD) | $0.067 \pm 0.003$ | $2.398 \pm 0.018$ | $22.38 \pm 1.153$ | $1699.56 \pm 57.496$ |
| $\alpha = 0.2$ | $0.047 \pm 0.002$ | $3.116 \pm 0.024$ | $20.37 \pm 2.427$ | $1155.70 \pm 51.703$ |
| $\alpha = 0.4$ | $0.051 \pm 0.002$ | $3.133 \pm 0.034$ | $22.37 \pm 2.863$ | $1379.11 \pm 61.456$ |
| $\alpha = 0.6$ | $0.059 \pm 0.003$ | $3.182 \pm 0.033$ | $23.66 \pm 2.503$ | $1667.59 \pm 66.845$ |
| $\alpha = 0.8$ | $0.069 \pm 0.003$ | $3.286 \pm 0.041$ | $23.07 \pm 2.808$ | $2026.05 \pm 72.395$ |
| $\alpha = 1.0$ | $0.086 \pm 0.004$ | $3.423 \pm 0.055$ | $21.51 \pm 3.422$ | $2402.08 \pm 97.428$ |
| $\alpha = 1.2$ | $0.107 \pm 0.005$ | $3.58 \pm 0.075$ | $19.70 \pm 2.333$ | $2832.55 \pm 89.72$ |
| $\alpha = 1.4$ | $0.131 \pm 0.005$ | $3.79 \pm 0.112$ | $17.62 \pm 2.112$ | $3263.43 \pm 106.606$ |
| $\alpha = 1.6$ | $0.158 \pm 0.006$ | $4.063 \pm 0.16$ | $16.36 \pm 1.784$ | $3726.71 \pm 109.069$ |
| $\alpha = 1.8$ | $0.186 \pm 0.006$ | $4.384 \pm 0.317$ | $15.89 \pm 1.377$ | $4150.42 \pm 106.657$ |
| $\alpha = 2.0$ | $0.215 \pm 0.007$ | $4.615 \pm 0.439$ | $15.67 \pm 1.28$ | $4597.74 \pm 114.656$ |
| $\alpha = 2.2$ | $0.241 \pm 0.007$ | $4.829 \pm 0.576$ | $15.55 \pm 1.167$ | $5025.00 \pm 120.231$ |
| $\alpha = 2.4$ | $0.266 \pm 0.008$ | $4.947 \pm 0.702$ | $15.28 \pm 1.092$ | $5391.46 \pm 114.416$ |
| $\alpha = 2.6$ | $0.288 \pm 0.009$ | $5.256 \pm 0.902$ | $15.05 \pm 0.947$ | $5722.95 \pm 121.129$ |
| $\alpha = 2.8$ | $0.311 \pm 0.008$ | $5.256 \pm 1.046$ | $14.95 \pm 0.925$ | $6084.32 \pm 118.954$ |
| $\alpha = 3.0$ | $0.328 \pm 0.009$ | $5.395 \pm 1.002$ | $15.10 \pm 0.959$ | $6339.36 \pm 131.354$ |
| $\alpha \to \infty$ | | | | |
| Cartesian | $0.624$ | $10.394$ | $0$ | $10153$ |
S7. LIST OF C. ELEGANS DRIVER NEURONS

TABLE S3. Driver neurons of CeNN.

| Driver neurons of CeNN | PDB, PVT, RMEL, RMER, SABVL, SABVR, SIADL, SIADR, SIAVL, SIAVR, SIBDL, SIBDR, SIBVL, SIBVR, VB11, VB3, VB4, VB5, VB6, VB7, VB8, VB9, VC2, VD10, VD11, VD12, VD13, VD3, VD4, VD5, VD6, VD7, VD8, VD9 |
|------------------------|--------------------------------------------------------------------------------------------------|