On a test of normality based on the empirical moment generating function

N. Henze and S. Koch

October 25, 2018

Abstract

We provide the lacking theory for a test of normality based on the empirical moment generating function.

1 Introduction

As evidenced by the recent papers of [11], [13], [19], [34], [14], [3], [6], [27], [25], [18], [26], [22], [15] and [12], [30], there is an ongoing interest in testing of normality. This paper is not devoted to review the multitude of tests suggested and studied for this testing problem (for an account of classical tests, see, e.g., [29] or [5]), but to provide missing mathematical theory for a recent test suggested by [33], which is based on the moment generating function.

To be specific, let X_1, X_2, \ldots be independent and identically distributed (i.i.d.) random variables with an unknown continuous distribution, defined on a common probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Write \mathbb{P}^{X_1} for the distribution of X_1, $N(\mu, \sigma^2)$ for the normal distribution with expectation μ and variance σ^2 and $\mathcal{N} = \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}$ for American Mathematical Society 2000 subject classifications. Primary 62F05 Secondary 62G10

Key words and phrases. Test of normality, Empirical moment generating function, Weighted L^2-statistic Consistency, Contiguous alternatives
the class of (non-degenerate) normal distributions. Based on X_1, \ldots, X_n, proposed to reject the hypothesis

$$H_0 : \mathbb{P}^{X_1} \in \mathcal{N}$$

for large values of the test statistic

$$T_{n,\beta} = n \int_{-\infty}^{\infty} (M_n(t) - M_0(t))^2 \exp(-\beta t^2) \, dt. \quad (1.1)$$

Here, $\beta > 2$ is a fixed parameter, and $M_0(t) = \exp(t^2/2)$, $t \in \mathbb{R}$, is the moment generating function of the standard normal distribution. Moreover,

$$M_n(t) = \frac{1}{n} \sum_{j=1}^{n} \exp(t Y_{n,j}), \quad t \in \mathbb{R},$$

is the empirical moment generating function of the scaled residuals

$$Y_{n,j} = \frac{X_j - \overline{X}_n}{S_n}, \quad j = 1, \ldots, n,$$

where $\overline{X}_n = n^{-1} \sum_{j=1}^{n} X_j$ stands for the sample mean, and

$$S_n^2 = \frac{1}{n} \sum_{j=1}^{n} (X_j - \overline{X}_n)^2$$

denotes the sample variance of X_1, \ldots, X_n.

The rationale for considering $T_{n,\beta}$ as a genuine test statistic for normality is clear-cut: Under H_0, the standardized residuals $Y_{n,1}, \ldots, Y_{n,n}$ should be, at least for large n, approximately standard normally distributed. Hence, M_n should be close to M_0, and some measure of deviation between M_n and M_0 should yield a reasonable test statistic. Notice that $T_{n,\beta}$ is a weighted L^2-type statistic. Such statistics have been employed in numerous goodness-of-fit testing problems (see, e.g., [2]). If, in (1.1), one replaces M_n by the empirical characteristic function of X_1, \ldots, X_n and $M_0(t)$ by $\exp(-t^2/2)$, the characteristic function of the standard normal distribution, one obtains the statistic of [9]. For goodness-of-fit tests based on the empirical moment generating function, see, e.g., [4], [8], [16], [20], and [21].
Straightforward computation of the integral figuring in (1.1) shows that $T_{n,\beta}$ takes the form
\[
T_{n,\beta} = \sqrt{\pi} \left(\frac{n}{\sqrt{\beta - 1}} - \frac{2}{\sqrt{\beta - 2}} \sum_{i=1}^{n} \exp \left(\frac{Y_{n,i}^2}{4\beta - 2} \right) + \frac{1}{n\sqrt{\beta}} \sum_{i,j=1}^{n} \exp \left(\frac{(Y_{n,i} + Y_{n,j})^2}{4\beta} \right) \right),
\]
which is amenable to computational purposes. A simulation study conducted by [33] showed that the test based on $T_{n,\beta}$ is a strong competitor to classical tests of normality, such as the Anderson-Darling test, the Shapiro-Wilk test, the Epps-Pulley test, and the D’Agostino test (for an account of these procedures, see [5]).

The purpose of this paper is to provide some theoretical background for the test of Zghoul. We will prove that $T_{n,\beta}$ has a non-degenerate limit distribution under H_0, and we will show that the test is consistent against general alternatives. Moreover, letting the parameter β tend to infinity, $T_{n,\beta}$ approaches, upon suitable centering and rescaling, squared sample skewness, which is one of the first statistics used for testing for normality.

The rest of the paper is organized as follows. In Section 2 we state a result on the limit null distribution of $T_{n,\beta}$ and derive the expectation and the variance of this limit law. Section 3 is devoted to the behavior of $T_{n,\beta}$ under a fixed alternative to normality, and Section 4 considers the case $\beta \to \infty$. Some technical proofs are deferred to Section 5. The paper concludes with some remarks and open problems.

2 The limit null distribution of $T_{n,\beta}$

In this section, we derive the limit distribution of $T_{n,\beta}$ under H_0. Since $T_{n,\beta}$ is invariant with respect to affine transformations of X_1, \ldots, X_n, the null distribution of $T_{n,\beta}$ does not depend on the true values of μ and σ^2. We thus assume without loss of generality that $\mu = 0$ and $\sigma^2 = 1$ throughout this section. Since $T_{n,\beta}$ is a weighted L^2-statistic, a convenient setting for asymptotics is the separable Hilbert space $\mathcal{H} = L^2(\mathbb{R}, \mathcal{B}, w(t)dt)$ of (equivalence classes of) measurable functions $f : \mathbb{R} \to \mathbb{R}$ such that $\int_{\mathbb{R}} f^2(t)w(t)dt < \infty$. Here, \mathcal{B} is the σ-field of Borel sets of \mathbb{R}, and $w(t) = \exp(-\beta t^2)$. The inner product and
the resulting norm on \mathcal{H} will be denoted by
\[\langle f, g \rangle = \int_{\mathbb{R}} f(t)g(t)w(t)\,dt, \quad \|f\| = \left(\int_{\mathbb{R}} f^2(t)w(t)\,dt \right)^{1/2}, \]
respectively. Putting
\[W_n(t) = \sqrt{n} (M_n(t) - M(t)), \quad t \in \mathbb{R}, \tag{2.3} \]
W_n is a random element of \mathcal{H}, and we have $T_{n,\beta} = \|W_n\|^2$. If we could prove $W_n \xrightarrow{D} W$ in \mathcal{H} for some random element W of \mathcal{H}, where \xrightarrow{D} denotes convergence in distribution in \mathcal{H}, the continuous mapping theorem would yield $T_{n,\beta} \xrightarrow{D} \|W\|^2$. If not stated otherwise, convergence is always meant as $n \to \infty$.

Theorem 2.1 There is a centred Gaussian element W of \mathcal{H} having covariance kernel
\[K(s, t) = e^{(t^2 + s^2)/2} \left(e^{ts} - 1 - ts - \frac{t^2s^2}{2} \right), \quad s, t \in \mathbb{R}, \tag{2.4} \]
such that $W_n \xrightarrow{D} W$.

Corollary 2.1 Under H_0, we have
\[T_{n,\beta} \xrightarrow{D} \|W\|^2 = \int_{\mathbb{R}} W^2(t) e^{-\beta t^2}\,dt, \]
where W is the Gaussian element of \mathcal{H} figuring in Theorem 2.1.

Proof. The main problem in proving Theorem 2.1 is that $nM_n(t) = \sum_{j=1}^n \exp(tY_{n,j})$ is not a sum of i.i.d. random variables. To overcome this drawback, notice that
\[e^{tY_{n,i}} - e^{tX_i} = e^{X_i} (e^{t(Y_{n,i} - X_i)} - 1), \]
where
\[Y_{n,i} - X_i = \frac{X_i(1 - S_n) - \overline{X}_n}{S_n}. \]
Taylor’s theorem yields
\[e^{t(Y_{n,i} - X_i)} - 1 = t(Y_{n,i} - X_i) + \frac{1}{2} t^2(Y_{n,i} - X_i)^2 \exp \left(\Theta_{n,i} t(Y_{n,i} - X_i) \right), \]
Here, \(\Theta_{n,i} = \Theta_{n,i}(t, X_i, X_1, \ldots, X_n) \) are random variables with \(|\Theta_{n,i}| \leq 1 \).

It follows that

\[
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e^{tX_i} - \frac{1}{\sqrt{n}} \sum_{i=1}^{n} e^{tX_i} X_i(1 - S_n) - \bar{X}_n \]

where

\[
R_n(t) := \frac{1}{\sqrt{n}} \sum_{i=1}^{n} e^{tX_i} t X_i(1 - S_n) - \bar{X}_n \exp \left(\Theta_{n,i} t X_i(1 - S_n) - \bar{X}_n \right).
\]

The main part of the proof consists of showing

\[
\|R_n\|^2 = o_P(1).
\]

(2.5)

Since the proof of (2.5) is quite technical due to the unboundedness of the moment generating function over the whole line, it is deferred to Section 3.

Since \(S_n = 1 + o_P(1) \) (remember that \(\mu = 0 \) and \(\sigma^2 = 1 \)), we have

\[
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e^{tX_i} t X_i(1 - S_n) - \bar{X}_n \]

\[
= \frac{(1 - S_n^2)}{(1 + S_n)S_n} \cdot \frac{1}{\sqrt{n}} \sum_{i=1}^{n} t X_i e^{tX_i} - \bar{X}_n \cdot \frac{1}{\sqrt{n}} \sum_{i=1}^{n} t e^{tX_i} + r_{n,1}(t),
\]

where \(r_{n,1} \) is a random element of \(\mathcal{H} \) satisfying \(\|r_{n,1}\| = o_P(1) \). Now, use

\[
\sqrt{n} (S_n^2 - 1) = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} (X_j^2 - 1) + o_P(1)
\]

to show that

\[
\frac{(1 - S_n^2)}{2} \cdot \frac{1}{\sqrt{n}} \sum_{i=1}^{n} t X_i e^{tX_i} = -\frac{1}{2\sqrt{n}} \cdot \frac{1}{n} \sum_{i,j=1}^{n} (X_j^2 - 1) t X_i e^{tX_i} + r_{n,2}(t),
\]

where the random element \(r_{n,2} \) of \(\mathcal{H} \) satisfies \(\|r_{n,2}\| = o_P(1) \). Next, let

\[
E_1(t) := \mathbb{E} [t X_1 e^{tX_1}] = t^2 e^{t^2/2}, \quad E_2(t) := \mathbb{E} [te^{tX_1}] = te^{t^2/2}, \quad t \in \mathbb{R},
\]
and invoke the law of large numbers to end up in

\[
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e^{tX_i} \frac{X_i(1 - S_n) - X_n}{S_n} = - \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left((X_j^2 - 1) \frac{E_1(t)}{2} + X_j E_2(t) \right) + r_{n,3}(t),
\]

where \(r_{n,3} \in \mathcal{H}\) and \(\|r_{n,3}\| = o_p(1)\). Putting

\[
h(x, t) = e^{tx} - e^{t^2/2} - (x^2 - 1) \frac{E_1(t)}{2} - x E_2(t), \quad x, t \in \mathbb{R},
\]

(2.6)

and

\[
\tilde{W}_n(t) := \frac{1}{\sqrt{n}} \sum_{i=1}^{n} h(X_i, t),
\]

(2.7)

the definition of \(W_n\) (see (2.3)), the reasoning given above and (2.5) imply

\[
W_n(t) = \tilde{W}_n(t) + \Delta_n(t),
\]

(2.8)

where \(\Delta_n\) is a random element of \(\mathcal{H}\) satisfying \(\|\Delta_n\| = o_p(1)\).

Now, some algebra yields \(Eh(X_1, t) = 0, t \in \mathbb{R}\), and \(E[h(X_1, s)h(X_1, t)] = K(s, t)\), \(s, t \in \mathbb{R}\), where \(K\) is given in (2.4). Since the random elements \(h(X_j, \cdot), j = 1, \ldots, n,\) of \(\mathcal{H}\) figuring in (2.4) are i.i.d., a Hilbert space central limit theorem (see, e.g., Theorem 1.1. of [17]) gives \(\tilde{W}_n \overset{D}{\rightarrow} W\), where \(W\) is a centred Gaussian element of \(\mathcal{H}\) having covariance kernel \(K\). In view of \(\|W_n - \tilde{W}_n\| = o_p(1)\), it follows that \(W_n \overset{D}{\rightarrow} W\).

It is well-known that the distribution of

\[
T_\infty := \|W\|^2
\]

is that of \(\sum_{j \geq 1} \lambda_j N_j^2\), where \(N_1, N_2, \ldots\) are i.i.d. standard normal random variables, and \(\lambda_1, \lambda_2, \ldots\) are the nonzero eigenvalues corresponding to the orthonormal eigenfunctions of the integral operator \(A : \mathcal{H} \rightarrow \mathcal{H}\), where

\[
(Af)(t) = \int_{\mathbb{R}} K(s, t) f(s) \exp(-\beta s^2) \, ds, \quad f \in \mathcal{H},
\]

and \(K\) is given in (2.4). We did not succeed in solving this integral equation. However, using formulae of [28], p. 213, we obtain the following information on the distribution of \(T_\infty\).
Theorem 2.2 We have

a) \(E(T_\infty) = \frac{\sqrt{\pi}}{\sqrt{\beta-2}} - \frac{\sqrt{\pi}}{\sqrt{\beta-1}} \left(1 + \frac{1}{2(\beta-1)} + \frac{3}{8(\beta-1)^2} \right), \)

b) \(\mathbb{V}(T_\infty) = 2\pi \left(\frac{1}{\sqrt{\beta} \sqrt{\beta-2}} - \frac{4}{\sqrt{\gamma^3}} - \frac{6}{\gamma^{5/2}} + \frac{1}{\beta-1} + \frac{1}{2(\beta-1)^3} + \frac{9}{64(\beta-1)^5} \right), \)

where \(\gamma = 4(\beta-1)^2 - 1. \)

Proof: Since

\[E(T_\infty) = \int_{\mathbb{R}} K(t, t)w(t) \, dt \]

and

\[\mathbb{V}(T_\infty) = 2 \int_{\mathbb{R}^2} K^2(s, t)w(s)w(t) \, ds \, dt, \]

the result follows from tedious but straightforward calculations of integrals.

3 Consistency

In this section we show that the test for normality based on \(T_{n,\beta} \) is consistent against general alternatives. Our main result is as follows.

Theorem 3.3 Assume that \(X_1 \) has a non-degenerate distribution, and that the moment generating function \(M(t) = \mathbb{E}\exp(tX_1) \) exists for each \(t \in \mathbb{R} \). We then have

\[
\liminf_{n \to \infty} \frac{T_{n,\beta}}{n} \geq \int_{\mathbb{R}} (M(t) - M_0(t))^2 e^{-\beta t^2} \, dt \quad \mathbb{P}\text{-a.s..} \tag{3.9}
\]

Proof. Remember that \(X_1, X_2, \ldots \) are defined on the probability space \((\Omega, \mathcal{A}, \mathbb{P})\). In view of affine-invariance, we assume w.l.o.g. \(\mathbb{E}(X_1) = 0 \) and \(\mathbb{V}(X_1) = 1 \). Fix \(\varepsilon \in (0, 1) \). By the Strong Law of Large Numbers there is a set \(\Omega_0 = \Omega_0(\varepsilon) \in \mathcal{A} \) with \(\mathbb{P}(\Omega_0) = 1 \) such that, for each \(\omega \in \Omega_0 \) there is an integer \(n_0 = n_0(\varepsilon) \) and

\[|X_n(\omega)| \leq \varepsilon, \quad |S_n(\omega) - 1| \leq \varepsilon \]
for each $n \geq n_0$. Putting $M_n(t, \omega) := n^{-1} \sum_{i=1}^{n} \exp(tX_i(\omega))$, $\omega \in \Omega$, $t \in \mathbb{R}$, we obtain for each $n \geq n_0(\omega)$ and $t \geq 0$,

$$\frac{1}{n} \sum_{i=1}^{n} \exp\left(\frac{tX_i(\omega) - \varepsilon}{1 + \varepsilon}\right) \leq M_n(t, \omega) \leq \frac{1}{n} \sum_{i=1}^{n} \exp\left(\frac{tX_i(\omega) + \varepsilon}{1 - \varepsilon}\right).$$

Again by the Strong Law of Large Numbers there is a set $\Omega_1 = \Omega_1(\varepsilon, t)$ depending on ε and t with $\mathbb{P}(\Omega_1) = 1$ such that for each $\omega \in \Omega_1$:

$$\mathbb{E}\left[\exp\left(\frac{tX_1 - \varepsilon}{1 + \varepsilon}\right)\right] \leq \lim_{n \to \infty} M_n(t, \omega) \leq \lim_{n \to \infty} M_n(t, \omega) \leq \mathbb{E}\left[\exp\left(\frac{tX_1 + \varepsilon}{1 - \varepsilon}\right)\right].$$

Letting $\varepsilon \downarrow 0$ then yields $M_n(t, \cdot) \to M(t)$ \mathbb{P}-almost surely for fixed $t \geq 0$.

If $t < 0$, we have for each $n \geq n_0(\omega)$

$$\frac{1}{n} \sum_{i=1}^{n} \exp\left(\frac{tX_i(\omega) + \varepsilon}{1 - \varepsilon}\right) \leq M_n(t, \omega) \leq \frac{1}{n} \sum_{i=1}^{n} \exp\left(\frac{tX_i(\omega) - \varepsilon}{1 + \varepsilon}\right),$$

and the same reasoning entails $M_n(t) \to M(t)$ almost surely for each fixed $t \in \mathbb{R}$. In other words, for each $t \in \mathbb{R}$ there is a set $\Omega_2(t) \in \mathcal{A}$ with $\mathbb{P}(\Omega_2(t)) = 1$ and

$$M_n(t, \omega) \to M(t)$$

for each $\omega \in \Omega_2(t)$.

Writing \mathbb{Q} for the set of rational numbers, it follows that

$$M_n(t, \omega) \to M(t) \quad \forall t \in \mathbb{Q}$$

for each $\omega \in \Omega_3 := \bigcap_{t \in \mathbb{Q}} \Omega_2(t)$. Since M_n and M are convex functions and \mathbb{Q} is dense in \mathbb{R}, we have for each $\omega \in \Omega_3$ that $M_n(t, \omega) \to M(t)$, $t \in I$, where I is an arbitrary compact set and thus

$$M_n(t, \omega) \to M(t), \quad t \in \mathbb{R},$$

for each $\omega \in \Omega_3$ (e.g. see [24] C.7, p. 20). Now fix $\omega \in \Omega_3$. By Fatou’s lemma,

$$\lim_{n \to \infty} \frac{T_{n,\beta}(\omega)}{n} = \lim_{n \to \infty} \int_{\mathbb{R}} (M_n(t, \omega) - M_0(t))^2 e^{-\beta t^2} dt \geq \int_{\mathbb{R}} \lim_{n \to \infty} (M_n(t, \omega) - M_0(t))^2 e^{-\beta t^2} dt = \int_{\mathbb{R}} (M(t) - M_0(t))^2 e^{-\beta t^2} dt;$$
as was to be shown.

If the distribution of X_1 is non-normal and satisfies the conditions of Theorem 3.3, the right-hand side of (3.9) is strictly positive, and thus $T_n \to \infty$ \mathbb{P}-a.s. Therefore, due to Corollary 2.1, the test for normality based on $T_{n,\beta}$ is consistent against any such alternative.

4 The case $\beta \to \infty$

In this section we analyse the asymptotic behaviour of the test statistic $T_{n,\beta}$ for fixed n and $\beta \to \infty$. It will be seen that, after a suitable centering and scaling, $T_{n,\beta}$ approaches the square of the first nonzero component of Neyman’s smooth test for normality, which is squared sample skewness. For an account on smooth tests of fit, see [23].

Theorem 4.4 We have

$$\lim_{\beta \to \infty} \frac{96}{5} \beta^{7/2} \left(\frac{T_{n,\beta}}{n^{3/2} \tau(\beta)} - \tau(\beta) \right) = b_{n,1}^2,$$

where

$$\tau(\beta) = \frac{1}{\sqrt{\beta - 1}} - \frac{2}{\sqrt{\beta - \frac{1}{2}}} - \frac{2}{(4\beta - 2)\sqrt{\beta - \frac{1}{2}}} + \frac{1}{\sqrt{\beta}} + \frac{1}{2\beta^{3/2}} + \frac{3}{16\beta^{5/2}}$$

and

$$b_{n,1} = \frac{1}{n} \sum_{i=1}^{n} \frac{(X_i - \bar{X}_n)^3}{S_n^3}$$

(4.10)

denotes sample skewness of X_1, \ldots, X_n.

Proof. We start with (1.2) and notice that the scaled residuals $Y_{n,i}$ satisfy

$$\sum_{i=1}^{n} Y_{n,i} = 0, \quad \sum_{i=1}^{n} Y_{n,i}^2 = 1, \quad \sum_{i=1}^{n} Y_{n,i}^3 = nb_{n,1}, \quad \sum_{i=1}^{n} Y_{n,i}^4 = nb_{n,2},$$

where $b_{n,1}$ is given in (4.10) and

$$b_{n,2} = \frac{1}{n} \sum_{i=1}^{n} \frac{(X_i - \bar{X}_n)^4}{S_n^4}$$
is sample kurtosis of X_1, \ldots, X_n. Expanding the exponential terms figuring in (1.2) we have

$$
\sum_{i=1}^n \exp \left(\frac{Y_{n,i}^2}{4\beta - 2} \right) = \sum_{i=1}^n \left(1 + \frac{Y_{n,i}^2}{4\beta - 2} + \frac{Y_{n,i}^4}{2(4\beta - 2)^2} + \frac{Y_{n,i}^6}{6(4\beta - 2)^3} + O(\beta^{-4}) \right)
$$

$$
= n + \frac{n}{4\beta - 2} + \frac{1}{2(4\beta - 2)^2} nb_{n,2} + \frac{1}{6(4\beta - 2)^3} \sum_{i=1}^n Y_{n,i}^6 + O(\beta^{-4})
$$

and

$$
\sum_{i,j=1}^n \exp \left(\frac{(Y_{n,i} + Y_{n,j})^2}{4\beta} \right) = \sum_{i,j=1}^n \left(1 + \frac{(Y_{n,i} + Y_{n,j})^2}{4\beta} + \frac{(Y_{n,i} + Y_{n,j})^4}{32\beta^2} + \frac{(Y_{n,i} + Y_{n,j})^6}{384\beta^3} \right)
$$

$$
+ O(\beta^{-4})
$$

$$
= n^2 + \frac{n^2}{2\beta} + \frac{n^2}{16\beta^2} b_{n,2} + \frac{3n^2}{16\beta^2} + \frac{n}{192\beta^3} \sum_{i=1}^n Y_{n,i}^6 + \frac{5n^2}{64\beta^3} b_{n,2}
$$

$$
+ \frac{5n^2}{96\beta^3} b_{n,1}^2 + O(\beta^{-4}).
$$

Since

$$
\frac{1}{6(4\beta - 2)^3} = \frac{1}{384\beta^3} + O(\beta^{-4}),
$$

it follows that

$$
\frac{T_{n,\beta}}{\sqrt{\pi} - 1} = \frac{2}{\sqrt{\beta - \frac{1}{2}}} \left(n + \frac{n}{4\beta - 2} + \frac{1}{2(4\beta - 2)^2} nb_{n,2} + \frac{1}{384\beta^3} \sum_{i=1}^n Y_{n,i}^6 \right)
$$

$$
+ \frac{1}{n\sqrt{\beta}} \left(n^2 + \frac{n^2}{2\beta} + \frac{n^2}{16\beta^2} b_{n,2} + \frac{3n^2}{16\beta^2} + \frac{n}{192\beta^3} \sum_{i=1}^n Y_{n,i}^6 + \frac{5n^2}{64\beta^3} b_{n,2}
$$

$$
+ \frac{5n^2}{96\beta^3} b_{n,1}^2 \right) + O(\beta^{-9/2})
$$

and hence

$$
\frac{T_{n,\beta}}{\sqrt{\pi} - 1} = \frac{n}{\sqrt{\beta - \frac{1}{2}}} + \frac{2n}{(4\beta - 2)\sqrt{\beta - \frac{1}{2}}} - \frac{n}{\sqrt{\beta}} - \frac{n}{2\beta^{3/2}} - \frac{3n}{16\beta^{5/2}}
$$

$$
= \left(\frac{1}{192\beta^{3/2}} - \frac{1}{192\beta^3} \sqrt{\beta - \frac{1}{2}} \right) \sum_{i=1}^n Y_{n,i}^6 + \frac{5n}{96\beta^{7/2}} b_{n,1}^2
$$

$$
+ \left(\frac{n}{16\beta^{5/2}} - \frac{n}{(4\beta - 2)^2 \sqrt{\beta - \frac{1}{2}}} \right) b_{n,2} + \frac{5n}{64\beta^{7/2}} b_{n,2} + O(\beta^{-7/2}).
$$
Since
\[
\frac{1}{192 \beta^3 \sqrt{\beta - \frac{1}{2}}} = \frac{1}{192 \beta^{7/2}} + o \left(\beta^{-7/2} \right)
\]
and
\[
\frac{n}{16 \beta^{5/2}} - \frac{n}{(4 \beta - 2)^2 \sqrt{\beta - \frac{1}{2}}} = \frac{n}{16 \beta^{5/2}} - \frac{n}{16 \beta^2 \left(1 - \frac{1}{2\beta}\right)^2 \sqrt{\beta} \sqrt{1 - \frac{1}{2\beta}}} = -\frac{5n}{64 \beta^{7/2}} + o \left(\beta^{-7/2} \right),
\]
the result follows from
\[
\frac{T_{n,\beta}}{\sqrt{\pi}} - \frac{n}{\sqrt{\beta - 1}} + \frac{2n}{\sqrt{\beta - \frac{1}{2}}} + \frac{2n}{(4 \beta - 2) \sqrt{\beta - \frac{1}{2}}} - \frac{n}{\sqrt{\beta}} - \frac{n}{2 \beta^{3/2}} - \frac{3n}{16 \beta^{5/2}} = -\frac{5n}{96 \beta^{7/2}} h_{n,1}^2 + o \left(\beta^{-7/2} \right).
\]

Notice that Theorem 4.4 corresponds to Theorem 3.1 of [1] for the Epps-Pulley test statistic.

5 The proof of (2.5)

Since \(|\Theta_{n,i}| \leq 1\) and \((a + b)^2 \leq 2a^2 + 2b^2\), for \(a, b \in \mathbb{R}\), we have
\[
0 \leq R_n(t) \leq R_{n,1}(t) + R_{n,2}(t),
\]
where
\[
R_{n,1}(t) = \frac{(1 - S_n)^2}{S_n^2} \cdot \frac{1}{\sqrt{n}} \sum_{i=1}^{n} e^{t X_i} t^2 X_i^2 \exp \left(\frac{\left| t \left| X_i(1 - S_n) - X_n \right| \right.}{S_n} \right),
\]
\[
R_{n,2}(t) = \frac{X_n^2}{S_n^2} \cdot \frac{1}{\sqrt{n}} \sum_{i=1}^{n} e^{t X_i} t^2 \exp \left(\left| t \left| X_i(1 - S_n) - X_n \right| \right. \right). \right.
\]

This decomposition yields \(R_n^2(t) \leq 2R_{n,1}^2(t) + 2R_{n,2}^2(t)\) and thus
\[
\|R_n\|^2 \leq 2\|R_{n,1}\|^2 + 2\|R_{n,2}\|^2.
\]
Since

$$\left(\frac{(1 - S_n)^2}{\sqrt{n} S_n^2} \right)^2 = O_P(n^{-3})$$

$$\left(\frac{X_n^2}{\sqrt{n} S_n^2} \right)^2 = O_P(n^{-3})$$

we have

$$\|R_{n,1}\|^2 \leq O_P(n^{-3})$$

$$\cdot \sum_{i,j=1}^n X_i^2 X_j^2 \int_{\mathbb{R}} e^{t(X_i + X_j)} t^4 \exp \left(\frac{|t|}{S_n} \left((|X_i| + |X_j|)|1 - S_n| + 2|X_n| \right) \right) e^{-\beta t^2} dt,$$

$$\|R_{n,2}\|^2 \leq O_P(n^{-3})$$

$$\cdot \sum_{i,j=1}^n \int_{\mathbb{R}} e^{t(X_i + X_j)} t^4 \exp \left(\frac{|t|}{S_n} \left((|X_i| + |X_j|)|1 - S_n| + 2|X_n| \right) \right) e^{-\beta t^2} dt.$$

Putting

$$\alpha_n := \alpha_n(i,j) := \frac{(|X_i| + |X_j|)|1 - S_n| + 2|X_n|}{S_n}$$

and observing that

$$(X_i + X_j \pm \alpha_n)^2 \leq 2(X_i + X_j)^2 + 2\alpha_n^2,$$

$$(X_i + X_j \pm \alpha_n)^4 \leq 4(X_i + X_j)^4 + 4\alpha_n^4,$$
we obtain
\[
\int_{ \mathbb{R} } t^4 \exp \left(- \beta t^2 + t(X_i + X_j) + \alpha_n |t| \right) dt \\
= \int_{0}^{\infty} t^4 \exp \left(- \beta t^2 + t(X_i + X_j) + \alpha_n t \right) dt \\
+ \int_{-\infty}^{0} t^4 \exp \left(- \beta t^2 + t(X_i + X_j) - \alpha_n t \right) dt \\
\leq \int_{ \mathbb{R} } t^4 \exp \left(- \beta t^2 + t(X_i + X_j + \alpha_n) \right) dt \\
+ \int_{ \mathbb{R} } t^4 \exp \left(- \beta t^2 + t(X_i + X_j - \alpha_n) \right) dt \\
= \frac{\sqrt{\pi}((X_i + X_j + \alpha_n)^4 + 12\beta(X_i + X_j + \alpha_n)^2 + 12\beta^2)}{16\beta^{3/2}} \exp \left(\frac{(X_i + X_j + \alpha_n)^2}{4\beta} \right) \\
+ \frac{\sqrt{\pi}((X_i + X_j - \alpha_n)^4 + 12\beta(X_i + X_j - \alpha_n)^2 + 12\beta^2)}{16\beta^{3/2}} \exp \left(\frac{(X_i + X_j - \alpha_n)^2}{4\beta} \right) \\
\leq \frac{\sqrt{\pi}}{4\beta^{3/2}} ((X_i + X_j)^4 + \alpha_n^4 + 6\beta(X_i + X_j)^2 + 6\alpha_n^2 + 3\beta^2) \\
\cdot \left[\exp \left(\frac{(X_i + X_j + \alpha_n)^2}{4\beta} \right) + \exp \left(\frac{(X_i + X_j - \alpha_n)^2}{4\beta} \right) \right].
\]

Defining
\[
C_n := 2 \max_{1 \leq i \leq n} \{|X_i| |1 - S_n| + 2|X_n|, \\
D_n := 2 \max_{1 \leq i \leq n} \{|X_i| \cdot C_n,
\]

it follows that \(\alpha_n(i, j) \leq C_n \) and \(|(X_i + X_j)\alpha_n(i, j)| \leq D_n \) and thus
\[
\exp \left(\frac{(X_i + X_j + \alpha_n(i, j))^2}{4\beta} \right) \\
= \exp \left(\frac{(X_i + X_j)^2}{4\beta} \right) \exp \left(\frac{\alpha_n^2(i, j)}{4\beta} \right) \exp \left(\pm \frac{2(X_i + X_j)\alpha_n(i, j)}{4\beta} \right) \\
\leq \exp \left(\frac{(X_i + X_j)^2}{4\beta} \right) \exp \left(\frac{C_n^2}{4\beta} \right) \exp \left(\frac{2D_n}{4\beta} \right). \]

From extreme value theory (see, e.g. [10], p. 227) we have \(\max_{1 \leq i \leq n} |X_i| = O_p \left(\sqrt{\log(n)} \right) \).

Since \(C_n \) and \(D_n \) do not depend on \(i \) and \(j \), it follows that
\[
C_n = O_p \left(\frac{\sqrt{\log(n)}}{\sqrt{n}} \right) = o_p(1), \quad D_n = O_p \left(\frac{\log(n)}{\sqrt{n}} \right) = o_p(1)
\]
and thus
\[\exp \left(\frac{C^2_n}{4\beta} \right) \exp \left(\frac{2D_n}{4\beta} \right) = 1 + o_P(1). \]

Consequently,
\[
\|R_{n,1}\|^2 \leq O_P \left(n^{-1} \right) \frac{\sqrt{\pi}}{2^{\beta^9/2}} \frac{1}{n^2} \sum_{i,j=1}^{n} \left(X_i^2 X_j^2 \right. \\
\cdot \left. \left((X_i + X_j)^4 + \alpha_n^4 + 6\beta(X_i + X_j)^2 + 6\alpha_n^2 + 3\beta^2 \right) \cdot \exp \left(\frac{(X_i + X_j)^2}{4\beta} \right) \right) \exp \left(\frac{C^2_n}{4\beta} \right) \exp \left(\frac{2D_n}{4\beta} \right) \\
= O_P \left(n^{-1} \right) \frac{\sqrt{\pi}}{2^{\beta^9/2}} \frac{1}{n^2} \sum_{i,j=1}^{n} \left(X_i^2 X_j^2 \left((X_i + X_j)^4 + 6\beta(X_i + X_j)^2 + 3\beta^2 \right) \right) \\
\cdot \exp \left(\frac{(X_i + X_j)^2}{4\beta} \right) (1 + o_P(1)),
\]
and
\[
\|R_{n,2}\|^2 \leq O_P \left(n^{-1} \right) \frac{\sqrt{\pi}}{2^{\beta^9/2}} \frac{1}{n^2} \sum_{i,j=1}^{n} \left((X_i + X_j)^4 + \alpha_n^4 + 6\beta(X_i + X_j)^2 + 6\alpha_n^2 + 3\beta^2 \right) \\
\cdot \exp \left(\frac{(X_i + X_j)^2}{4\beta} \right) \exp \left(\frac{C^2_n}{4\beta} \right) \exp \left(\frac{2D_n}{4\beta} \right) \\
= O_P \left(n^{-1} \right) \frac{\sqrt{\pi}}{2^{\beta^9/2}} \frac{1}{n^2} \sum_{i,j=1}^{n} \left((X_i + X_j)^4 + 6\beta(X_i + X_j)^2 + 3\beta^2 \right) \\
\cdot \exp \left(\frac{(X_i + X_j)^2}{4\beta} \right) (1 + o_P(1)).
\]

Since \(\beta > 2 \) we have
\[
\mathbb{E} \left[X_1^2 X_2^2 \left((X_1 + X_2)^4 + 6\beta(X_1 + X_2)^2 + 3\beta^2 \right) \exp \left(\frac{(X_1 + X_2)^2}{4\beta} \right) \right] < \infty,
\]
\[
\mathbb{E} \left[X_1^4 \left(16X_1^4 + 24\beta X_1^2 + 3\beta^2 \right) \exp \left(\frac{X_1^2}{\beta} \right) \right] < \infty,
\]
\[
\mathbb{E} \left[\left((X_1 + X_2)^4 + 6\beta(X_1 + X_2)^2 + 3\beta^2 \right) \exp \left(\frac{(X_1 + X_2)^2}{4\beta} \right) \right] < \infty,
\]
\[
\mathbb{E} \left[\left(16X_1^4 + 24\beta X_1^2 + 3\beta^2 \right) \exp \left(\frac{X_1^2}{\beta} \right) \right] < \infty,
\]

14
and hence
\[
\frac{1}{n^2} \sum_{i,j=1}^{n} \left(X_i^2 X_j^2 \left((X_i + X_j)^4 + 6\beta(X_i + X_j)^2 + 3\beta^2 \right) \exp \left(\frac{(X_i + X_j)^2}{4\beta} \right) \right) = O_P(1),
\]
\[
\frac{1}{n^2} \sum_{i,j=1}^{n} \left((X_i + X_j)^4 + 6\beta(X_i + X_j)^2 + 3\beta^2 \right) \exp \left(\frac{(X_i + X_j)^2}{4\beta} \right) = O_P(1).
\]
Summarizing, it follows that \(\|R_{n,1}\|^2 \leq O_P(n^{-1}) \) and \(\|R_{n,2}\|^2 \leq O_P(n^{-1}) \) and thus \(\|R_n\|^2 = o_P(1) \), which is (2.5).

6 Remarks and open problems

6.1 Remark (An alternative approach via V-statistics)

Under more restrictive conditions on \(\beta \), the limit null distribution of \(T_{n,\beta} \) may also be obtained using results of [7]. To this end, let \(\vartheta = (\mu, \sigma^2) \in \Theta := \mathbb{R} \times \mathbb{R}_{>0} \) and put
\[
h_{\beta}(x, y; \vartheta) := \sqrt{\pi} \left(\frac{1}{\sqrt{\beta} - 1} - \frac{1}{\sqrt{\beta} - \frac{1}{2}} \left(\exp \left(\frac{(x - \mu)^2}{(4\beta - 2)\sigma^2} \right) + \exp \left(\frac{(y - \mu)^2}{(4\beta - 2)\sigma^2} \right) \right) \right) + \frac{1}{\sqrt{\beta}} \exp \left(\frac{(x + y - 2\mu)^2}{4\beta\sigma^2} \right).
\]
Letting \(\hat{\vartheta}_n = (\bar{X}_n, S_n^2) \), we have
\[
\frac{T_n}{n} = \frac{1}{n^2} \sum_{i,j=1}^{n} h_{\beta}(X_i, X_j; \hat{\vartheta}_n),
\]
which means that \(T_{n,\beta}/n \) is a V-statistic with estimated parameters. Moreover, putting
\[
g(x, t; \vartheta) := \exp \left(\frac{t(x - \mu)}{\sigma} \right) - \exp \left(\frac{t^2}{2} \right), \quad x, t \in \mathbb{R},
\]
we have
\[
h_{\beta}(x, y; \vartheta) = \int_{\mathbb{R}} g(x, t; \vartheta)g(y, t; \vartheta) \exp(-\beta t^2) \, dt,
\]
which shows that \(T_{n,\beta}/n \) is the special type of V-statistic considered in [7].
6.2 Remark (Contiguous alternatives)

Suppose $X_{n,1}, \ldots, X_{n,n}$ are i.i.d. random variables with the density

$$f_n(x) = \varphi(x) \left(1 + \frac{g(x)}{\sqrt{n}}\right),$$

(6.11)

where φ is the density of the standard normal distribution and $g : \mathbb{R} \to \mathbb{R}$ is a bounded measurable function satisfying $\int_{\mathbb{R}} g(x) \varphi(x) \, dx = 0$. We assume that n is sufficiently large to ensure that f_n is nonnegative. Put

$$c(t) := \int_{\mathbb{R}} h(x,t) g(x) \varphi(x) \, dx, \quad t \in \mathbb{R},$$

where $h(x,t)$ is given in \((2.6)\), and let $P_n := \otimes_{j=1}^n (\varphi \lambda^1)$, $Q_n := \otimes_{j=1}^n (f_n \lambda^1)$, where \otimes denotes product measure and λ^1 is Borel Lebesgue measure on \mathcal{B}. Putting $L_n = dQ_n/dP_n$, we have

$$\log L_n = \sum_{j=1}^n \log \left(1 + \frac{g(X_{n,j})}{\sqrt{n}}\right) = \sum_{j=1}^n \left(\frac{g(X_{n,j})}{\sqrt{n}} - \frac{g^2(X_{n,j})}{2n}\right) + o_{P_n}(1)$$

and thus, by the Central Limit Theorem and Slutzki’s Lemma

$$\log L_n \xrightarrow{d} N\left(-\frac{\sigma^2}{2}, \sigma^2\right) \quad \text{under } P_n,$$

where $\sigma^2 = \int_{\mathbb{R}} g^2(x) \varphi(x) \, dx$. Invoking LeCam’s first lemma (see, e.g., [32], p. 311), the sequence Q_n is contiguous to P_n. Straightforward algebra shows that, under P_n,

$$\lim_{n \to \infty} \text{Cov}(\widetilde{W}_n(t), \log L_n) = c(t),$$

where \widetilde{W}_n is the process defined in (2.7). Therefore, for fixed k and $t_1, \ldots, t_k \in \mathbb{R}$, the joint limiting distribution of $\widetilde{W}_n(t_1), \ldots, \widetilde{W}_n(t_k)$ and $\log L_n$ under P_n, as $n \to \infty$, is the $(k + 1)$-variate normal distribution

$$N_{k+1} \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} \Sigma & c \\ c^\top & \sigma^2 \end{pmatrix},$$
where $\Sigma = (K(t_i, t_j))_{1 \leq i, j \leq k}$ with K given in (2.4) and $c = (c(t_1), \ldots, c(t_k))^\top$. By LeCam’s third lemma (see, e.g., [32], p. 329), the finite-dimensional distributions of \tilde{W}_n converge under Q_n to the finite-dimensional distributions of the shifted Gaussian element $W + c$, where W is given in Theorem 2.1. Since tightness of \tilde{W}_n under P_n and the contiguity of Q_n to P_n entail tightness of \tilde{W}_n under Q_n, we have $\tilde{W}_n \overset{d}{\to} W + c$ under Q_n. Since $\|W_n - \tilde{W}_n\| = o_{P_n}(1)$ (see (2.8)) and thus $\|W_n - \tilde{W}_n\| = o_{Q_n}(1)$ by contiguity, we have $W_n \overset{d}{\to} W + c$ under Q_n. The Continuous Mapping Theorem then yields

$$T_{n, \beta} \overset{d}{\to} \int_{\mathbb{R}} (W(t) + c(t))^2 \exp(-\beta t^2) \, dt \quad \text{under } Q_n \text{ as } n \to \infty.$$

Thus, $T_{n, \beta}$ has a limit distribution under contiguous alternatives to H_0 given by (6.11).

6.3 Remark (Two open problems)

Denoting the right-hand side of (3.9) by Δ, we conjecture that

$$\frac{T_{n, \beta}}{n} \to \Delta \quad \text{in probability as } n \to \infty.$$

Such a result would open the ground for tackling asymptotic normality of

$$\sqrt{n} \left(\frac{T_{n, \beta}}{n} - \Delta \right)$$

under fixed alternatives as $n \to \infty$, in the spirit of [2].

Regarding consistency, we conjecture that $\lim_{n \to \infty} T_{n, \beta} = \infty$ \mathbb{P}-almost surely under any fixed alternative distribution. Hence, the test based on $T_{n, \beta}$ would be globally consistent.

References

[1] Baringhaus, L., Gürtler, N., and Henze, N. (2000). Weighted integral test statistics and components of smooth tests of fit. *Austr. New Zeal. J. Statist.*, 42, 179–192.

[2] Baringhaus, L., Ebner, B., and Henze, N. (2016). The limit distribution of weighted L^2-statistics under fixed alternatives, with applications. *Ann. Inst. Stat. Math.*, doi:10.1007/s10463-016-0567-8
[3] Bouzeba, S., Elhattab, I., Keziou, A., and Tewfik, L. (2013). New entropy estimator with an application to test of normality. *Comm. Statist. Theory Meth.*, 42:2245–2270.

[4] Cabaña, A., and Quiroz, A. (2005) Using the empirical moment generating function in testing for the Weibull and the type I extreme value distribution. *TEST*, 14, 417–431.

[5] D’Agostino, R., and Stephens, M. (eds) (1986). Goodness-of-fit techniques. *Statistics: Textbooks and Monographs*, 68, Marcel Dekker, New York.

[6] Desgagné, A., Lafaye de Micheaux, P., and Leblanc, A. (2013). Test of normality against generalized exponential power alternatives. *Comm. Statist. Theory Meth.*, 42, 164–190.

[7] De Wet, T., and Randles, R.H. (1987). On the Effect of Substituting Parameter Estimators in Limiting χ^2 U and V Statistics. *The Annals of Statist.*, 15, 398–412.

[8] Epps, T., Singleton, K., and Pulley, L. (1982). A test of separate families of distributions based on the empirical moment generating function. *Biometrika*, 69, 391–399.

[9] Epps, T., and Pulley, L. (1983). A test for normality based on the empirical characteristic function. *Biometrika*, 70, 723–726.

[10] Galambos, J. (1978). The asymptotic theory of extreme order statistics. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York.

[11] Ghosh, S. (2013). Normality testing for a long-memory sequence using the empirical moment generating function. *J. Statist. Plann. Inf.*, 143, 944–954.

[12] Goia, A., Salinelli, E., and Sarda, P. (2011). Exploiting the statistical applicability of the Poincaré inequality: a test of normality. *TEST*, 20, 334–352.

[13] Goia, A., Salinelli, E., and Sarda, P. (2015). A new powerful version of the BUS test of normality. *Stat. Methods Appl.*, 24, 449–474.

[14] Hanusz, Z., and Tarasińska, J. (2014). Simulation study on improved Shapiro-Wilk tests for normality. *Commun. Statist. Simulation Comp.*, 43, 2093–2105.
[15] Harry, A., and Coble, K. (2011). Normality testing: two new tests using L-moments. *J. Appl. Stat.*, **38**, 1369–1379.

[16] Kallioras, A., Koutrouvelis, I., and Canavos, G. (2006). Testing of fit of Gamma distributions using the empirical moment generating function. *Commun. Statist. - Th. Meth.*, **35**, 527–540.

[17] Kundu, D., Majumdar, S., and Mukherjee, K. (2000). Central Limit theorems revisited. *Statist. Probab. Lett.*, **47**, 265–275.

[18] Lee, T. (2012). A note on Jarque-Bera normality test for ARMA-GARCH innovations. *J. Korean Statist. Soc.*, **41**, 37–48.

[19] Mbah, A.K., and Paothong, A. (2015). Shapiro-Francia test compared to other normality tests using expected p-value. *J. Statist. Comput. Simul.*, **15**, 3002–3016.

[20] Meintanis, S. (2010). Testing skew normality via the moment generating function. *Mathem. Meth. Statist.*, **19**, 64–72.

[21] Meintanis, S. (2007). A Kolmogorov-Smirnov type test for skew normal distributions based on the empirical moment generating function. *J. Statist. Plann. Inf.*, **137**, 2681–2688.

[22] Quessy, J.-F., and Mailhot, M. (2011) Asymptotic power of tests for normality under local alternatives. *J. Statist. Plann. Infer.*, **141**, 2787–2802.

[23] Rayner, J.C.W., and Best, D.J. (1989). Smooth tests of goodness of fit. Clarendon Press, Oxford University Press, New York.

[24] Roberts, A. W. and Varberg, D. E. (1973). Convex Functions. Pure and applied mathematics ; 57. Acad. Press.

[25] Sanqui, J., Nguyen, T., and Gupta, A.K. (2012). Locally optimal test of normality against skew-normality. *J. Stat. Comput. Simul.*, **82**, 359–368.

[26] Schick, A., Wang, Y., and Wefelmeyer, W. (2011). Tests for normality based on density estimators of convolutions. *Statist. Probab. Lett.*, **81**, 337–343.
[27] Shalit, H. (2012). Using OLS to test for normality. *Statist. Probab. Lett.*, **82**, 2050–2058.

[28] Shorack, G. R. and Wellner, J. A. (1986). Empirical processes with applications to statistics. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York.

[29] Thode, H.C., Jr. (2002). Testing for normality. Statistics: Textbooks and Monographs, 164, Marcel Dekker, New York.

[30] Torabi, H., Montazeri, N., and Grané, A. (2016) A test for normality based on the empirical distribution function. *SORT*, **40**, 55–88.

[31] Villaseñor-Alva, J., and González-Estrada, E. (2015). A correlation test for normality based on the Lévy characterization. *Commun. Statist. Simulation Comput.*, **44**, 1225–1238.

[32] Witting, H., and Müllner-Funk, U. (1995). Mathematische Statistik II. B.G. Teubner, Stuttgart.

[33] Zghoul, A.A. (2010). A goodness of fit test for normality based on the empirical moment generating function. *Comm. Statist. Simulation Comput.*, **39**, 1292–1304.

[34] Szynal, D., and Wolyński, W. (2014). On two families of tests for normality with empirical description of their performances. *Discuss. Math. Probab. Stat.*, **34**, 169–185.

N. Henze, Institute of Stochastics, Karlsruhe Institute of Technology (KIT), Englerstr. 2, D-76133 Karlsruhe:
Norbert.Henze@kit.edu

S. Koch, Institute of Mathematics, University of Mannheim, A5 6, D-68159 Mannheim:
stefan.koch@uni-mannheim.de