Aging Simulation of Plastic Products due to Weather Conditions

Petra Machova , Lucie Crhakova , Michal Vejvoda , Michal Kraus

1 Institute of Technology and Business in České Budějovice, Department of Civil Engineering, 370 01, České Budějovice, Czech Republic

petra.machova@mail.vstecb.cz

Abstract. The paper describes the aging of plastic products due to weather conditions. It focuses on the analysis of aging and weathering of plastic products, or parts of building structures. As part of the research, the Xenotest Alfa device was used to simulate the weathering of plastic products. Xenotest Alfa simulates, for example, variable temperature, solar radiation, humidity and different types of climate. Samples of plastic and wood-plastic products were placed in the device, where the test of accelerated degradation and light stability was performed. The motivation for using the device is the effect of UV radiation on the samples, which causes the aging of the material and its gradual degradation, which may in the future cause the product to malfunction or degrade its color, as shown by this research.

1. Introduction

Polymers are substances that simultaneously extend their action through various industries. The reason is the replacement of common materials, such as metal, wood or glass. Polymers are chemically pure macromolecular synthetic or natural substances that are made up of large chains of large molecules [1,2]. The basic building block of polymers is a carbon atom. Macromolecular chains can be formed by different or the same building blocks that are connected by a covalent bond. In addition to the carbon atom, these building blocks can also be hydrogen atoms and, to a lesser extent, oxygen, nitrogen and chlorine atoms.

Polymer plastics offer a wide range of properties such as lightness, durability, color fastness, transparency and ease of processing [3]. Due to the growing use of polymeric materials, initiation is being formed to understand the degradation processes of these substances. The process of polymer degradation is explained as a change in the structure and properties of polymers caused by decomposition reactions. Degradation of the material occurs already during the processing phase, when polymeric substances are exposed to high temperatures, pressures and mechanical stress [4]. During the processing of the molten polymer, for example, the chains are degraded and cleaved, and flue gases are released. Then, when the material is processed or in the solid state, a second degradation step takes place. This degradation is less intense but long-lasting. It is caused mainly by weather influences. The changes are usually manifested by loss of gloss, discoloration, loss of transparency or cracks on the surface [5].
All materials are exposed to long-term exposure to the outdoor environment - specifically to weather conditions, which with their variability create a diverse range of operating conditions. Specifically, weather conditions, which with their variability form a diverse range of operating conditions. These conditions result in lower service life of the material, loss of the original mechanical or physical properties. In order to predict the life and stabilization of a given material, it is first necessary to understand the principles and mechanisms of degradation. The ideal solution would be to verify the polymer properties in real-time, which is often very difficult or even impossible. High demands are placed on materials, mainly for their service life, in some cases up to decades. Given the required operating time and the rapid development of new materials, it is difficult to wait for such a long period of time to verify the properties of these substances. For life prediction, they were thus invented methods that are called methods of accelerated weathering.

2. Materials and methods

The long-term effect of the external environment on the material causes changes that can be described as the weathering of polymers. This process is mainly influenced by light (or sunlight), UV radiation, temperature and its changes, humidity, oxygen and ozone. The sum of these external factors affecting the material is considered to be climatic conditions. There are other factors such as chemicals, the action of microorganisms, dust, air flow or other influences, but they are monitored only in special cases.

The greatest influence on the aging (weathering) of polymers has solar radiation, specifically ultraviolet (UV) radiation, which is part of sunlight. Ultraviolet rays usually break the bond between two atoms in the chain of a macromolecule, and the macromolecule breaks down into smaller units that react easily with atmospheric oxygen. We call this process photooxidation.

With the growing share of plastics in the outdoor environment, especially in the automotive industry, it is necessary to perform weather aging tests. It is with regard to the weather that the aging of polymers can be observed in either a natural or artificial way. In the method of accelerated aging, the main benefit is the fact that the results can be observed in a significantly shorter period of time. However, these results are only close to real natural aging, so they are only approximate. In natural weathering, however, it is necessary to wait a long period of time, which does not correspond to the speed of material development. Evaluation of natural and artificial weathering of polymers is evaluated according to the following Table 1.

Table 1. Evaluation of natural and artificial weathering of polymers.
External appearance of the exposed part
Mass (weight)
Mechanical properties
Dielectric properties
Mechanical properties of the exposed surface
Devices that can create conditions simulating natural weather are so-called veterometers. These devices can be used to simulate, for example, variable temperature, solar radiation, humidity, or various types of climate. The basic criterion according to which the residence time of bodies in the instrument is determined is the equivalent of the amount of light energy incident on an area unit of samples.

As part of the research, the aging of plastic products was simulated and analyzed using the Xenotest Alfa for lightfastness tests and simulation of weather conditions. All samples of plastic and wood-plastic products were placed on holders rotating on a carousel around a xenon lamp, and then an accelerated degradation and light stability test was performed.

The measurement was performed according to the standard CSN EN ISO 4892-2 from 2013 (64 0152). The measurement lasted a total of 1,000 hours. Exposure settings for filters using daylight simulating filters (artificial aging) are illustrated in table 2.

Cycle no.	Exposure time (minutes)	Irradiation intensity (E, W/m²)	Black standard temperature (BST, °C)	Chamber temperature (CHT, °C)	Relative humidity (RH, %)
1	102.00 (drying)	60.00	65.00	38.00	50.00
	18.00 (water spray)	60.00	OFF	38.00	OFF

3. Results and discussions

The research was simulated and analyzed the aging of plastic products using Xenotest Alfa for lightfastness testing and simulation of weather conditions. A total of 17 samples were placed in Xenotest Alfa. The list of samples of tested materials is in table 3. The evaluation of the artificial weathering of the tested polymers is given in table 4.
Table 3. Overview of tested materials.

No.	Manufacturer - product	Material	Application	Lifetime a
1	Lanit plast - Marlon ST IR Blue	Cellular polycarbonate	Roofing and vertical glazing	10-year
2	Woodplastic – Style plus Inox	Wood plastic	Terraces	25-year
3	Rehau - windowsill	PVC	Windowsill	-
4	Inoutic - Adorn plastic window white	PVC	Window frame	-
5	WPC – Legacy Moca	Wood plastic with foil	Terrace, railings, fence	30-year color
6	WPC – Premium forest Pallisander	Wood plastic	Terraces	25-year color
7	WPC – Prémium star Inox	Wood plastic	Terraces	25-year color
8	MAX WPC - terrace board dark brown	Wood plastic	Terraces	25-year color
9	Polycasa Príbram - Elventa polycarbonate	Polycarbonate with UV filter	Translucent strips, roofing	15-year
10	MAX WPC - Lock tile gray	Wood plastic	Terraces	25-year color
11	Lanit plast – Marlon ST Bronze	Cellular polycarbonate	Roofing and vertical glazing	10-year
12	Inoutic - Adorn plastic window black	PVC	Window frame	-
13	Polycasa - Elventa corrugated PVC, profile 76/18	PVC with UV filters	Roofing	-
14	Ecolux – Societe Ondex Cristal Jaune	PVC with UV filters	Roofing	5-year
15	Irpen Group	Polycarbonate	Roofing	-
16	MAX WPC - Anthracite interlocking tiles	Wood plastic	Terraces	25-year
17	Freelite – Corrugated Translucent PVC	PVC	Roofing	-

a Warranty stated by the manufacturer.

Table 4. Evaluation of tested materials.

No.	Loss of shine	External appearance of the exposed part	Weight deviation (g)	Pre-weight	After-weight
1	Yes	Minor	Surface damage	4.12	4.12
2	-	Major	No	63.82	63.14
3	Yes	Medium	No	3.40	3.39
4	No	Minor	No	12.98	12.97
5	No	Minor	No	134.58	134.58
6	Yes	Major	Surface damage	113.55	113.53
7	-	Major	No	47.54	47.53
8	Yes	Major	Significant surface damage	39.2	39.00
9	No	No	No	9.32	9.25
10	-	Major	No	33.83	33.60
11	Yes	Minor	Surface damage	2.41	2.40
12	No	Minor	No	15.12	15.12
13	Yes, Minor	Minor	No	2.79	2.79
14	No	No	No	2.69	2.69
15	No	No	No	12.19	12.19
16	Yes	Medium	No	35.63	35.63
17	Yes	Major	No	3.55	3.55
The appearance of the samples before and after exposure to the weathering simulation can be seen below. The sample is tested on the left after testing and on the right before testing.

Figure 2. Appearance of samples before and after exposure to weather aging simulation.
4. Conclusions

The paper describes the process of polymer degradation. Samples of plastic and wood-plastic products were placed in the device Xenotest Alfa, which can create conditions simulating weather conditions. Thanks to this simulation, the aging of polymers can be observed rapidly. Before and after the simulation, the external appearance of the exposed part and the change in weight are monitored. Evaluation of all tested materials is in the Results chapter. The most significant changes occurred in cellular polycarbonates, polyvinyl chloride (PVC) without UV filters and especially in wood plastics. The manufacturers of the tested wood-plastics guarantee a color fastness of 25 years, while all of them have significantly changed their color and one of them has even significantly damaged the surface. This study contributes information on the aging of plastics and wood plastics. This knowledge is necessary and useful for the development of new materials.

Acknowledgment(s)

The authors gratefully acknowledge the financial support received from the Institute of Technology and Business, under project no SVV202006 Simulation of aging of plastic products due to weather conditions.

References

[1] S. E. Gad, “Polymers,” Encyclopedia of Toxicology (Third Edition), pp. 1045-1050, 2014.
[2] S. Edmonson, and M. Gilbert, “Chapter 2 - The Chemical Nature of Plastics Polymerization,” Brydson’s Plastics Materials, Eighth edition, pp. 19-37, 2017.
[3] A. Shrivastava, “3-Plastic Properties and Testing,” Introduction to Plastic Engineering, Plastic Design Library, pp. 49-11, 2018.
[4] J. Qin, J. Jiang, Y. Tao, S. Zhao, W. Zeng, Y. Shi, T. Lu, L. Guo, S. Wang, X. Zhang, G. Jie, J. Wang, and M. Xiao, “Sunlight tracking and concentrating accelerated weathering test applied in weatherability evaluation and service life prediction of polymeric materials: A review,” Polymer Testing, 106940, 2020.
[5] B. Singh, and N. Sharma, “Mechanistic implications of plastic degradation,” Polymer Degradation and Stability, vol. 93, Issue 2008, pp. 561-583, 2008.