Cysteinyl Leukotrienes and Their Receptors; Emerging Concepts

Yoshihide Kanaoka1,2* Joshua A. Boyce1,2

1 Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA, United States
2 Department of Medicine, Harvard Medical School; Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, United States

INTRODUCTION

Leukotrienes are lipid mediators generated from arachidonic acid through the 5-lipoxygenase (5-LO) pathway. They are named for their cells of origin (leukocytes) and the presence of three positionally conserved double bonds (triens). The 2 classes of leukotrienes, cysteinyl leukotrienes (cys-LTs) and leukotriene B4 (LTB4), have broad array of bioactivities and cellular targets. Both 5-LO inhibitors and cys-LT receptor antagonists are useful for the treatment of asthma and rhinitis.1,2 Recently studies using molecular approaches have demonstrated that cys-LTs possess multiple cell targets and immunologic functions, and act through a receptor system far more complex than previously anticipated. This review highlights these recent studies and will consider their potential pathobiologic and therapeutic implications.

Key Words: Leukotrienes; 5-lipoxygenase; asthma; AERD

Regulation of leukotriene synthesis

Leukotriene synthesis is initiated during the activation of leukocytes, when arachidonic acid is liberated from the membrane phospholipids by a cytosolic phospholipase A2.3 5-LO activating protein presents arachidonic acid to 5-LO, which catalyzes the formation of 5-hydroperoxyeicosatetraenoic acid and then the unstable epoxide LTA4.5 In mast cells, macrophages, eosinophils, and basophils, LTA4 synthase (LTC4S) conjugates LTA4 to reduced glutathione, forming LTC4, the parent of the cys-LTs.6 Once formed, LTC4 is transported to extracellular space via the ATP-binding cassette (ABC) transporters-1 and-4 and then metabolized to LTD4 and LTE4 by γ-glutamyl transpeptidases and dipeptidases, respectively. The rapid extracellular metabolism of LTC4 and LTD4 results in short biologic half-lives relative to the stable mediator LTE4, which is abundant and readily detected in biologic fluids. In neutrophils, LTA4 is hydrolyzed by a cytosolic LTA4 hydrolase enzyme to form LTB4, a dihydroxy leukotriene that is a potent chemoattractant for neutrophils and monocytes.7

5-LO activity is substantially upregulated when granulocytes are exposed ex vivo to hematopoietic cytokines such as GM-CSF or (in the case of eosinophils) IL-5.8,9 In cord blood-derived human mast cells, IL-3 and IL-5 enhance the function of 5-LO by inducing its import from the cytosol to the nucleoplasm, whereas IL-4 potently induces expression and function of LTC4S.10 LTC4S enzymatic function can be inhibited by protein kinase C (PKC)-dependent phosphorylation, which can limit the generation of cys-LTs ex vivo.11 5-LO activity is suppressed by stimuli that induce cyclic adenosine monophosphate (cAMP) accumulation, leading to serine phosphorylation of 5-LO by cAMP-dependent protein kinase A (PKA).12 These in vitro studies suggest that LT production is tightly regulated by
the microenvironment and intracellular phosphorylation events, with mechanisms that can respectively enhance and limit the expression and function of the critical metabolic enzymes dependent on context.

Cysteiny1 leukotriene receptors

Early pharmacologic profiling studies predicted the existence of at least 2 cys-LT receptors in mammalian tissues. The molecular characterization of the classical G protein-coupled receptors (GPCRs) partially reconciled this pharmacology. The type 1 cys-LT receptor, CysLT₁R, is a high-affinity receptor for LTD₄, and the target of antagonists (Montelukast, Zafirlukast, and Pranlukast) that are used for the management of asthma. The cloned human CysLT₁R gene encodes a GPCR of 339 amino acids. Human CysLT₁R mRNA is expressed in bronchial smooth muscle and substantially in myeloid cells, such as macrophages and mast cells. The human CysLT₁R is 38% identical to CysLT₂R in amino acid sequence. CysLT₁R binds LTC₄ and LTD₄ with equal affinity, and binds LTD₄ with affinity one-log less than CysLT₁R. CysLT₂R is resistant to Montelukast, and is expressed both on cells that also express CysLT₁R (e.g., myeloid cells, smooth muscle), as well as endothelial cells, cardiac Purkinje cells, adrenal medulla, and brain. The incompletely overlapping distribution of the 2 classical receptors for cys-LT₁s suggests that they have both complementary and distinct functions.

In contrast to their affinities for LTC₄ and LTD₄, the cloned CysLT₁R and CysLT₂R receptors display trivial binding affinity for the stable metabolite LTE₄. Nonetheless, studies of human tracheal explants and guinea pig tracheal rings had predicted the existence of a third cys-LT receptor with a preference for LTE₄. LTE₄ also was equipotent to its precursors for inducing w heel and flare responses when injected intradermally into humans. Recently GPR99, previously reported as an oxyglutarate receptor, was identified as a potential LTE₄ receptor. LTE₄ binds and activates GPR99 at low nM range concentrations in transfected cells, and resists blockade by MK571, a prototype CysLT₁R antagonist. The ability of LTE₄ to induce cutaneous vascular permeability in mice depends largely on the presence of GPR99. GPR99 mRNA is expressed strongly by kidney and small quantities during acute inflammatory responses, signaling through the cognate P2Y receptors may limit potentially deleterious effects of CysLT₁R signaling in cells that express both classes of receptors (Figure). Moreover, the overlap in the cytokines (IL-4) and protein kinases (PKA, PKC) that respectively enhance and suppress the functions of the synthetic and receptor systems suggest that cys-LT₁ production may be regulated in parallel with end-organ responsiveness.

CysLT₁R functions can also be regulated by direct physical interactions with other GPCRs. CysLT₁R and CysLT₂R heterodimerize in cultured human mast cells. The presence of CysLT₁R limits the levels of membrane expression of CysLT₂R, and dampens the capacity of CysLT₂R to induce phosphorylation of extracellular signal regulated kinase and proliferation in this cell type. GPR17, a GPCR homologous to CysLT₁R and CysLT₂R, was originally "deorphanized" as a dual-specific receptor for cys-LTs and uracil nucleotides. However, we and others could not reproduce GPR17 activation by either ligand type in various assay systems. Instead, GPR17 functions as a negative regulator of LTD₄-mediated CysLT₁R activation, and markedly reduces binding of LTD₄ when the two receptors are co-expressed in cell lines. Accordingly, mice lacking GPR17 (Gpr17−/− mice) showed markedly enhanced CysLT₁R-dependent tis-

Regulation of cysteiny1 leukotriene receptor function

As is the case for the cys-LT₁ synthesis, cellular responsiveness to cys-LT₁s can be modulated both by exogenous stimuli and intracellular phosphorylation events. IL-4 and IL-13 upregulate the expression and function of CysLT₁R by human peripheral blood monocytes and monocyte-derived macrophages, but not IL-4, upregulates CysLT₁R expression as well in human monocytes. IL-13 and transforming growth factor beta induce CysLT₁R expression by human bronchial smooth muscle cells. CysLT₁R can be inducibly expressed by mouse T cells stimulated through the T cell receptor. CysLT₁R signaling is also controlled by PKA or PKC-dependent phosphorylation and desensitization. PKC mediates ligand-induced internalization of CysLT₁R following stimulation with LTD₄. PKC activation by members of the purinergic (P2Y) family of GPCRs, which are homologous to the cys-LT receptors, can induce heterologous, PKC-dependent phosphorylation and desensitization of CysLT₁R without causing its internalization. Since nucleotides, the natural ligands for P2Y receptors, are released in large quantities during acute inflammatory responses, signaling through the cognate P2Y receptors may limit potentially deleterious effects of CysLT₁R signaling in cells that express both classes of receptors (Figure). Moreover, the overlap in the cytokines (IL-4) and protein kinases (PKA, PKC) that respectively enhance and suppress the functions of the synthetic and receptor systems suggest that cys-LT₁ production may be regulated in parallel with end-organ responsiveness.

Figure. Cross-regulation of the cysteiny1 leukotriene receptors. CysLT₁R function is inhibited both by direct physical interactions with CysLT₁R or GPR17, and by heterologous, PKC-dependent phosphorylation by P2Y receptors. The lack of both CysLT₁R and CysLT₂R amplifies cutaneous responses to LTE₄, suggesting that both classical receptors cross-regulate GPR99. The requirement for P2Y₁₂ receptors for the ability of LTE₄ to amplify pulmonary eosinophilia could reflect an interaction with GPR99.
These findings suggest that the administration of CysLT₄(R) (Figure) implies that such limitation is critical for homeostasis of immune and inflammatory responses.

Cys-LTs in human allergic disease

Asthma and rhinitis

Based on their potencies as airway smooth muscle spasmodens and inducers of vascular leak, cys-LTs were considered potential pathogenetic mediators of asthma and rhinitis decades before the cloning of the cys-LT receptors. When administered by inhalation to asthmatic and nonasthmatic human subjects, both LTC₄ and LTD₄ induced bronchoconstriction at doses several log-fold lower than histamine. LTE₄ was a weaker bronchoconstrictor than LTC₄ and LTD₄, but was ~1-log-fold more potent in inducing bronchoconstriction in asthmatic subjects relative to nonasthmatic controls. Additionally, when delivered by inhalation, LTE₄ caused the accumulation of eosinophils and basophils in the bronchial submucosa of mild asthmatic subjects, whereas LTD₄ did not. In retrospective, these findings not only implied that end-organ reactivity to LTE₄ is specifically enhanced in asthma, but also suggested the existence of distinct receptors with a preference for binding and activation by LTE₄.

Cys-LT production increases substantially in association with allergic inflammation and asthma, likely reflecting the activation of mast cells and eosinophils in the lesional tissues. Unfractionated leukocytes from subjects with asthma generate several log-fold higher levels of both LTB₄ and LTC₄ than do leukocytes from the blood of nonasthmatic controls in response to stimulation with calcium ionophore. Urinary levels of LTE₄ increase during spontaneous asthma exacerbations, and correlate with decline in FEV₁. Treatments with either zileuton, a 5-LO inhibitor, or with antagonists of CysLT₄R each reduce the frequency of asthma exacerbations. Intravenous Montelukast increases peak expiratory flow rates in adult asthmatic subjects presenting to the emergency department with airflow obstruction compared with placebo. These findings suggest that cys-LTs contribute substantially to exacerbations of asthma. CysLT₄-R antagonists also attenuate the magnitude of decline in FEV₁ in response to allergen challenge. Cys-LT-generating enzymes are expressed by eosinophils, monocytes, and mast cells in nasal biopsies from subjects with allergic rhinitis, and CysLT₄R and CysLT₁R localize to both hematopoietic and non-hematopoietic cell types in the nasal tissue.

Additionally, CysLT₄R is expressed by human Th2 cells in peripheral blood from atopic subjects. Montelukast, alone or in combination with an H₁ histamine receptor antagonist, is superior to placebo for reducing nasal congestion in the treatment of seasonal allergic rhinitis. The effects of CysLT₄R antagonists on rhinitis may reflect the actions of the cys-LTs on the vasculature as well as resident inflammatory cells.

AERD

AERD is characterized by adult onset asthma, severe rhinosinusitis with nasal polyps, and idiosyncratic respiratory reactions to aspirin and other nonselective inhibitors of cyclooxygenase (COX). Baseline levels of urinary LTE₄ in subjects with AERD exceed the levels seen in aspirin tolerant asthmatic controls by several fold, and increase further and markedly in response to provocative challenge with aspirin. The administration of either Zileuton or CysLT₄-R antagonists attenuates the severity of aspirin-induced bronchoconstriction in AERD. Both classes of drugs were also superior to placebo for improving sinonasal function. Thus, cys-LTs are involved in both the upper and lower respiratory tract pathology typical of AERD.

Eosinophils are the most abundant effector cell in bronchial and nasal biopsies from patients with AERD, and show over-expression of LTC₄,S protein relative to eosinophils in biopsies from aspirin tolerant controls. Platelets, which lack 5-LO, also express LTC₄,S and can convert granulocyte-derived LTA₄ to LTC₄ through a transcellular mechanism. In the blood and nasal polyps from patients with AERD, eosinophils, monocytes, and neutrophils display markedly increased numbers of adherent platelets compared to samples from aspirin tolerant controls. These adherent platelets contribute as much as 60% of the LTC₄,S activity associated with peripheral blood granulocytes obtained from subjects with AERD, and the percentages of blood granulocytes that are platelet-adherent correlated strongly with the levels of urinary LTE₄. Mast cell activation accompanies the responses to aspirin challenge in AERD, and the administration of mast cell stabilizing cromone drugs blocks the rise in urinary LTE₄ that accompanies reactions. Collectively, these studies suggest that the dysregulation of cys-LT production in AERD reflects several cell types. Recently developed models of AERD in mice (see below) may more precisely define the cellular and molecular mechanisms responsible for dysregulated cys-LT production in AERD.

In addition to dysregulated cys-LT generation, subjects with AERD show enhanced end-organ reactivity to cys-LTs. Compared with aspirin tolerant asthmatic controls, individuals with AERD demonstrate bronchoconstriction in response to inhaled LTD₄ at significantly lower doses. The numbers and percentages of CysLT₄-R-positive mast cells, eosinophils, and monocytes in nasal biopsies from patients with AERD exceed those observed in the tissues of aspirin-tolerant asthmatic controls. CysLT₄-R expression on hematopoietic cells decreases following desensitization to aspirin, a procedure that attenuates bronchial reactivity to LTE₄. The numbers and distributions of CysLT₄-R-positive cells do not differ between aspirin tolerant asthmatics and subjects with AERD. Interestingly, bronchial reactivity to inhaled LTD₄ in AERD or aspirin tolerant
asthma does not correlate with the numbers of CysLT1, R- or CysLT2, R-expressing cells in bronchial biopsies.\(^6\) It is tempting to speculate that non-classical receptors, such as GPR99, may account for a component of the end organ responsiveness to cys-LTs (particularly to LTE\(_4\)) observed in AERD.

Understanding functions of the cys-LTs and their receptors in mice

The development of mice lacking LTC4S (Ltc4s\(^{-/-}\)), CysLT1, R (Cysltr1\(^{-/-}\)), CysLT2, R (Cysltr2\(^{-/-}\)), and both receptors (Cysltr1/Cysltr2\(^{-/-}\)) has permitted in-depth studies of the role of cys-LTs in immune and inflammatory responses. These studies have revealed complex and, in some instances, unanticipated functions for cys-LTs and their receptors in a variety of biologic responses detailed below.

Vascular leak

In a mast cell and IgE-dependent model of passive cutaneous anaphylaxis, Ltc4s\(^{-/-}\) mice displayed reductions in ear skin swelling of ~50% compared to wild-type (WT) mice.\(^6\) Intraperitoneal injections of zymosan, a yeast cell wall glycan that elicits LTC4 generation from macrophages, induced vascular leak that was reduced in both the Ltc4s\(^{-/-}\) and Cysltr1\(^{-/-}\) strains by ~50% compared with WT controls.\(^6,16\) The responses of Cysltr2\(^{-/-}\) mice were equivalent to those of WT controls. Thus, CysLT1, R plays a key role in mediating vascular leak in models where cys-LTs are generated in response to antigen- or pathogen-dependent stimuli.

To determine whether additional cys-LT receptors participated in vascular leak, we subjected Cysltr1/Cysltr2\(^{-/-}\) mice to direct intracutaneous challenges with cys-LTs. Surprisingly, LTC4 and LTD4 induced tissue edema in Cysltr1/Cysltr2\(^{-/-}\) mice that was comparable to WT mice, and LTE4 induced marked tissue edema in this strain, with 64-fold enhanced sensitivity to LTE4 compared to WT mice, and LTE4 and LTD4 production was resistant to Montelukast. This study suggests that cys-LTs in the activation of ILC2 cells.

Activation of innate lymphoid cells

Type 2 innate lymphoid cells (ILC2) are innate lymphocytes that release large quantities of IL-5 and IL-13 when activated by cytokines, such as IL-33, IL-25, or thymic stromal lymphopoietin (TSLP), derived from epithelial cells.\(^7\) A recent study implicated the cys-LTs in the activation of ILC2 cells. Intrapulmonary challenge of mice with an extract from the mold Alternaria alternata strongly induced the generation of cys-LTs in the lung, and the recruitment and activation of ILC2.\(^7,1\) ILC2 expressed CysLT1, R, and responded to stimulation in vitro and in vivo with LTD4, by proliferating and releasing cytokines. Interestingly, while both LTD4 and IL-33 caused lung ILC2 to generate IL-5 and IL-13, only LTD4 caused them to generate IL-4. Ex vivo stimulation of lung ILC2 with either LTD4 or LTE4 caused the production of IL-5. While the IL-5 production in response to LTD4 could be blocked by Montelukast, LTE4-induced IL-5 production was resistant to Montelukast. This study suggests that cys-LTs can contribute to Th2 immunity through direct actions at ILC2. These effects reflect cys-LT actions both classical and nonclassical receptors that can induce effector cytokine production.

Platelet-dependent pulmonary eosinophilia

Platelets are essential for the development of pulmonary eosinophilia and airway remodeling in mouse models of ovalbumin (OVA) sensitization and challenge.\(^7,7\) Activated platelets express P-selectin, which permits their adherence to leukocytes and primes leukocytes for directed migration via integrins. Mouse and human platelets express both CysLT1, R and CysLT2, R, as well as the P2Y12 receptor, a homologue of the cys-LT receptors that binds ADP. Stimulation of mouse platelets with LTC4 strongly induces their expression of P-selectin in an entirely CysLT2, R-dependent manner, while LTD4 or LTE4 are inactive. Intratracheal administration of LTC4, but not LTD4, mark-
edly amplifies the recruitment of eosinophils to the airways of sensitized mice challenged with low-dose OVA. This amplification requires platelets, and is attenuated in CysLTR2−/− mice, suggesting a direct stimulatory effect of LTC₄ on platelet-associated CysLT₁R in the lung vasculature.

Although LTC₄ fails to directly activate mouse or human platelets in vitro, intratracheal administration of LTE₄, like that of LTC₄, potentiates OVA-induced eosinophilia in a platelet-dependent manner in WT mice. In this model, LTE₄ is fully active in CysLT₁/CysLTR2−/− mice, suggesting that it acts at a non-classical cys-LT receptor. Both the effects of LTE₄ (in vivo) and of LTC₄ (in vivo and in vitro) depend exclusively on the P2Y₁₂ receptor. A computer modeling study predicted that P2Y₁₂ receptors might recognize LTE₄ as a surrogate ligand, and LTE₄ elicits calcium flux and phosphorylation of extracellular signal regulated kinase in transfected cells over-expressing human P2Y₁₂ receptors. Nonetheless, radiolabeled LTE₄ does not directly bind to microsomal membranes from P2Y₁₂ receptor-expressing transfecteds. It is presently unknown whether the involvement of P2Y₁₂ in LTE₄-dependent signaling responses and airway inflammation reflects a direct interaction between P2Y₁₂ receptors and a bona fide LTE₄ receptor, such as GPR99. The therapeutic potential of drugs that block P2Y₁₂ receptors in asthma or AERD is unexplored.

AERD-like models

Although several cellular abnormalities in eicosanoid synthesis and receptor function have been described in AERD, the lack of a valid model of the disease has restrained progress in defining the key pathogenetic steps. Hirata et al. generated a transgenic mouse strain over expressing LTC₄s and examined the phenotype in OVA-induced pulmonary inflammation with or without treatment with a COX inhibitor, sulpyrine. OVA-challenged LTC₄s-transgenic mice, but not similarly treated WT mice, demonstrated a significant increase in airway resistance by sulphrine treatment. This is associated with increases in LTC₄ and LTB₄ in bronchoalveolar lavage (BAL) fluid in sulphrine-treated OVA-challenged transgenic mice. Importantly, the increase in airway resistance was inhibited by Pranlukast, a CysLT₁,R antagonist. This study demonstrates that the pathogenic feature of aspirin-induced bronchoconstriction can be reproduced in a mouse model, and suggests that the overexpression of LTC₄s described in tissues from patients with AERD has a potentially causal role.

Prostaglandin E₂ (PGE₂) controls cys-LT generation by activating PKA and inducing phosphorylation of 5-LO. Tissue inflammation is typically associated with increased PGE₂ production, reflecting the co-expression of 2 inducible enzymes; COX-2 (a largely aspirin-resistant enzyme) and microsomal PGE₂ synthase-1 (mPGES-1), which isozymes COX-2-derived PGH₂ to PGE₂. Nasal polyps from subjects with AERD contain less PGE₂ than nasal polyps from aspirin tolerant controls, possibly relating to epigenetic modifications of COX-2 and/or mPGE₂-1 expression. Mice lacking mPGE-1 (Ptges−/−) cannot upregulate PGE₂ production with inflammation, and display a remarkably AERD-like phenotype when subjected to a model of Df-induced pulmonary disease. Compared with WT controls, Ptges−/− mice show increased eosinophilic inflammation and levels of cys-LTs in the BAL fluid. Challenge with inhaled lysine aspirin causes marked increases in airway resistance, robust release of cys-LTs, and pulmonary mast cell activation in the Ptges−/− strain, but not in WT controls. Aspirin challenge profoundly depletes lung PGE₂ in the Ptges−/− mice, but not in the WT controls, suggesting that the mPGE₁ is needed to maintain PGE₂ levels when COX-1 is inhibited. Ptges−/− mice also show increased numbers of platelet-adherent granulocytes in both the peripheral blood and lungs compared with WT controls. Importantly, cys-LT production, mast cell activation, and the changes in airway resistance were blocked by depletion of platelets or blockade of the TP receptor for thromboxane A₂. This model may be useful in defining the potential pathogenetic role of GPR99, CysLT₁,R, and P2Y₁₂ receptors in AERD, as well as unraveling the complex interplay between cys-LTs, platelets, and mast cells that lead to the physiologic response to aspirin challenges.

CONCLUSIONS

While the drugs capable of inhibiting cys-LT formation and blocking CysLT₁,R are useful, it is clear that the cys-LT system is far more complex than initially appreciated. The involvement of the cys-LTs in the induction of Th2 immunity and the effector phase of the immune response suggests additional potential applications for currently available pharmacologic agents. However, the recognition that cys-LTs act through at least three receptors and the resistance of 2 of these (CysLT₁,R and GPR99) to the blockade by currently available drugs presents both challenges and opportunities for further therapeutic development. The availability of a broad array of valid animal models should facilitate progress in this area, while continuing to reveal unanticipated biological functions for the cys-LTs and their receptors.

ACKNOWLEDGMENTS

This work was supported by NIH grants AI078908, AI095219, AT002782, AI082369, HL111113, HL117945, and HL36110, and by the Vinik Family.

REFERENCES

1. Israel E, Rubin P, Kemp JP, Grossman J, Pierson W, Siegel SC, Tinkelmann D, Murray JJ, Busse W, Segal AT, Fish J, Kaiser HB, Ledford D, Wenzel S, Rosenthal R, Cohn J, Lanni C, Pearlman H, Karahalios
1. P. Drazen JM. The effect of inhibition of 5-lipoxygenase by zileuton in mild-to-moderate asthma. Ann Intern Med 1993;119:1059-66.

2. Dahlén B, Nizankowska E, Szczeklik A, Zetterström O, Bochenek G, Kumin M, Mastalerz L, Pinsis G, Swanson LJ, Booeloo T, Wright S, Dubé LM, Dahlén SE. Benefits from adding the 5-lipoxygenase inhibitor zileuton to conventional therapy in aspirin-intolerant asthmatics. Am J Respir Crit Care Med 1998;157:1187-94.

3. Meltzer EO, Malmstrom K, Lu S, Prender RM, Wei LX, Weinstein SE; Wolfe JD, Reiss TF. Concomitant montelukast and loratadine as treatment for seasonal allergic rhinitis: a randomized, placebo-controlled clinical trial. J Allergy Clin Immunol 2000;105:917-22.

4. Clark JD, Milona N, Knopf JL. Purification of a 110-kilodalton cytosolic phospholipase A2 from the human mononuclear cell line U937. Proc Natl Acad Sci USA 1990;87:7708-12.

5. Reid GK, Kargman S, Vickers PJ, Mancini JA, Léveillé C, Ethier D, Miller DK, Gillard JW, Dixon RA, Evans JF. Correlation between expression of 5-lipoxygenase-activating protein, 5-lipoxygenase, and cellular leukotriene synthesis. J Biol Chem 1996;261:19818-23.

6. Lam BK, Penrose JE; Freeman GL, Austen KE. Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4. Proc Natl Acad Sci USA 1994;91:7663-7.

7. Palmantier R, Rocheleau H, Laviolette M, Mancini J, Borgert P. Characteristics of leukotriene biosynthesis by human granulocytes in presence of plasma. Biochim Biophys Acta 1998;1389:187-96.

8. Cowburn AS, Holgate ST, Sampson AP. IL-5 increases expression of cysteinyl leukotriene biosynthesis in human neutrophils. Mol Pharmacol 2002;62:250-6.

9. Boyce JA, Lam BK, Penrose JE; Friend DS, Parsons S, Owen WE, Austen KE. Expression of LTC4 synthase during the development of eosinophils in vitro from cord blood progenitors. Blood 1996;88:4338-47.

10. Owen WF Jr, Rothenberg ME, Silberstein DS, Gasson JC, Stevens RL, Austen KE, Soberman RJ. Regulation of human eosinophil viability, density, and function by granulocyte/macrophage colony-stimulating factor in the presence of 3T3 fibroblasts. J Exp Med 1987;168:129-41.

11. Flamand N, Surette ME, Picard S, Bourdon S, Borgeat P. Cyclic AMP-mediated inhibition of 5-lipoxygenase translocation and leukotriene biosynthesis in human neutrophils. Mol Pharmacol 2002;62:250-6.

12. Hsieh FH, Lam BK, Penrose JE, Austen KE, Boyce JA. T helper cell type 2 cytokines coordinately regulate immunoglobulin E-dependent cysteinyl leukotriene production by human cord blood-derived mast cells: profound induction of leukotriene C4 synthase expression by interleukin 4. J Exp Med 2001;193:123-33.

13. Ali A, Ford-Hutchinson AW, Nicholson DW. Activation of protein kinase C down-regulates leukotriene C4 synthase activity and attenuates cysteinyl leukotriene production in an eosinophilic sub-strain of HL-60 cells. J Immunol 1994;153:776-88.

14. Lee TH, Austen KE, Corey EJ, Drazen JM. Leukotriene E4-induced airway hyperresponsiveness of guinea pig tracheal smooth muscle to histamine and evidence for three separate sulfidopeptide leukotriene receptors. Proc Natl Acad Sci USA 1984;81:4922-5.

15. Lynch KR, O’Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, Coulombe N, Abramovitz M, Figueroa DJ, Zeng Z, Connolly BM, Bai C, Austin CP, Chateauantel N, Stocco R, Greig GM, Kargman S, Hooks SB, Hosfield E, Williams DL Jr, Ford-Hutchinson AW, Caskey CT, Evans JF. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 1999;399:789-93.

16. Heise CE, O’Dowd BD, Figueroa DJ, Sawyer N, Nguyen T, Im DS, Stocco R, Bellefouille JN, Abramovitz M, Cheng R, Williams DL Jr, Zeng Z, Liu Q, Ma L, Clemens MK, Coulombe N, Liu Y, Austin CP, George SR, O’Neill GP, Metters KM, Lynch KR, Evans JF. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 2000;275:30531-6.

17. Jacques CA, Spur BW, Johnson M, Lee TH. The mechanism of LTE4-induced histamine hyperresponsiveness in guinea-pig tracheal and human bronchial smooth muscle, in vitro. Br J Pharma 1991;104:859-66.

18. Soter NA, Lewis RA, Corey EJ, Austen KE. Local effects of synthetic leukotrienes (LTC4, LTD4, LTE4, and LTB4) in human skin. J Invest Dermatol 1998;110:115-9.

19. He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H, Ling L. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 2004;429:188-93.

20. Kanaoka Y, Maekawa A, Austen KE. Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligands. J Biol Chem 2013;288:10967-72.

21. Thivierge M, Stanková J, Rola-Pleszczynski M. IL-13 and IL-4 up-regulate cysteinyl leukotriene 1 receptor expression in human monocytes and macrophages. J Immunol 2001;167:2855-60.

22. Shirasaki H, Seki N, Fujita M, Kikuchi M, Kanaizumi E, Watanabe K, Himi T, Aonogi and T(H)2 cytokine-induced-up-regulation of cysteinyl leukotriene receptor messenger RNA in human monocytes. Ann Allergy Asthma Immunol 2007;99:340-7.

23. Espinosa K, Bossé Y, Stanková J, Rola-Pleszczynski M. CysLT1 receptor up-regulation by TGF-beta and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4. J Allergy Clin Immunol 2003;111:1032-40.

24. Prinz I, Gregoire C, Mollenkopf H, Aguado E, Wang Y, Malissen M, Kaufmann SH, Malissen B. The type 1 cysteinyl leukotriene receptor triggers calcium influx and chemotaxis in mouse alpha beta and gamma delta effector T cells. J Immunol 2005;175:713-9.

25. Capra V, Accomazzo MR, Gardoni F, Barbieri S, Rovati GE. A role for inflammatory mediators in heterologous desensitization of CysLT1 receptor in human monocytes. J Lipid Res 2010;51:1075-84.

26. Capra V, Ravasi S, Accomazzo MR, Citro S, Grimoldi M, Abbarchio MP, Rovati GE. CysLT1 receptor is a target for extracellular nucleotide-induced heterologous desensitization: a possible feedback mechanism in inflammation. J Cell Sci 2005;118:5265-36.

27. Naik S, Billington CK, Deshpande DA, Stefano FP, Ko Hout TA, Eckman DM, Benovic JL, Penn RB. Regulation of cysteinyl leukotriene type 1 receptor internalization and signaling. J Biol Chem 2005;280:8722-32.

28. Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MA, Muschens F, Hoogsteden HC, Luttmann W, Ferrari D, Di Virgilio F, Virchow JC Jr. Lambrrecht BN. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. J Allergy Clin Immunol 2007;119:913-9.

29. Jiang Y, Borrelli LA, Kanaoka Y, Bacskai BJ, Boyce JA. CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. Blood 2007;110:3263-70.

30. Maekawa A, Balestrieri B, Austen KE, Kanaoka Y. GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to...
leukotriene D4. Proc Natl Acad Sci U S A 2009;106:11685-90.
31. Giana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, Ferrario S, Parravicini C, Capra V, Gelosa P, Guerini U, Belcredito S, Cimino M, Sironi L, Tremoli E, Rovati GE, Martini C, Abbraccchio MP. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J 2006;25:4615-27.
32. Qi AD, Harden TK, Nicholas RA. Is GPR17 a P2Y/leukotriene receptor? examination of uracil nucleotides, nucleotide sugars, and cysteinyl leukotrienes as agonists of GPR17. J Pharmacol Exp Ther 2013;347:38-46.
33. Hennen S, Wang H, Peters L, Merten N, Simon K, Spinrath A, Blättermann S, Akkari R, Schrage R, Schröder R, Schulz D, Vermeiren C, Zimmermann K, Kehraus S, Dreywe C, Pfeifer A, König GM, Mohr K, Gillard M, Müller CE, Lu QR, Gomeza J, Kostenis E. Decoding signaling and function of the orphan G protein-coupled receptor GPR17 with a small-molecule agonist. Sci Signal 2013;6:ra93.
34. Drazen JM. Comparative contractile responses to sulfidopeptide leukotrienes in normal and asthmatic human subjects. Ann N Y Acad Sci 1988;524:289-97.
35. Weiss JW, Drazen JM, Coles N, McFadden ER Jr, Weller PE, Corey EL, Lewis RA, Austen KE. Bronchoconstrictor effects of leukotriene C in humans. Science 1982;216:196-8.
36. Weiss JW, Drazen JM, McFadden ER Jr, Weller PE, Corey EL, Lewis RA, Austen KE. Comparative bronchoconstrictor effects of histamine, leukotriene C, and leukotriene D in normal human volunteers. Trans Assoc Am Physicians 1982;95:30-5.
37. Davidson AB, Lee TH, Scanlon PD, Solway J, McFadden ER Jr, Ingram RH Jr, Corey EL, Austen KE, Drazen JM. Bronchoconstrictor effects of leukotriene E4 in normal and asthmatic subjects. Am Rev Respir Dis 1987;135:333-7.
38. Gauvreau GM, Parameswaran KN, Watson RM, O’Byrne PM. Indhaled leukotriene E4, but not leukotriene D4, increased airway inflammatory cells in subjects with atopic asthma. Am J Respir Crit Care Med 2001;164:1495-500.
39. Figueroa DJ, Borish L, Baranski D, Philip G, Austin CP, Evans JE. Expression of cysteinyl leukotriene synthetic and signalling proteins in inflammatory cells in active seasonal allergic rhinitis. Clin Exp Allergy 2003;33:1380-8.
40. Sampson AP, Thomas RJ, Costello JF, Piper PJ. Enhanced leukotriene synthesis in leukocytes of atopic and asthmatic subjects. Br J Clin Pharmacol 1992;33:423-30.
41. Drazen JM, O’Brien I, Sparrow D, Weiss ST, Martins MA, Israel E, Fanta CH. Recovery of leukotriene E4 from the urine of patients with airway obstruction. Am Rev Respir Dis 1992;146:104-8.
42. Green SA, Malice MP, Tanaka W, Tozzi CA, Reiss TF. Increase in urinary leukotriene LTE4 levels in acute asthma: correlation with airflow limitation. Thorax 2004;59:100-4.
43. Liu MC, Dubé LM, Lancaster J. Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: a 6-month randomized multicenter trial. Zileuton Study Group. J Allergy Clin Immunol 1996;98:859-71.
44. Israel E, Chervinsky PS, Friedman B, Van Bavel J, Skalicky CS, Ghanam AF, Bird SR, Edelman JM. Effects of montelukast and beclomethasone on airway function and asthma control. J Allergy Clin Immunol 2002;110:847-54.
45. Camargo CA Jr, Gurner DM, Smithline HA, Chapela R, Fabbri LM, Green SA, Malice MP, LeGrand C, Dass SB, Knorr BA, Reiss TF. A randomized placebo-controlled study of intravenous montelukast for the treatment of acute asthma. J Allergy Clin Immunol 2010;125:374-80.
46. Hamilton A, Faiferman I, Stober P, Watson RM, O’Byrne PM. Pranlukast, a cysteinyl leukotriene receptor antagonist, attenuates allergen-induced early- and late-phase bronchoconstriction and airway hyperresponsiveness in asthmatic subjects. J Allergy Clin Immunol 1998;102:177-83.
47. Corrigan C, Mallett K, Ying S, Roberts D, Parikh A, Scadding G, Lee T. Expression of the cysteinyl leukotriene receptors cysLT(1) and cysLT(2) in aspirin-sensitive and aspirin-tolerant chronic rhinosinusitis. J Allergy Clin Immunol 2005;115:316-22.
48. Parmentier CN, Fuerst E, McDonald J, Bowen H, Lee TH, Pease JE, Woszczek G, Cousins DJ. Human T(H)2 cells respond to cysteinyl leukotrienes through selective expression of cysteinyl leukotriene receptor 1. J Allergy Clin Immunol 2012;129:1136-42.
49. Laidlaw TM, Boyce JA. Pathogenesis of aspirin-exacerbated respiratory disease and reactions. Immunol Allergy Clin North Am 2013;33:195-210.
50. Christie PE, Tagari P, Ford-Hutchinson AW, Charlesson S, Chee P, Arm JP, Lee TH. Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. Am Rev Respir Dis 1991;143:1025-9.
51. White A, Ludington E, Mehra P, Stevenson DD, Simon RA. Effect of leukotriene modifier drugs on the safety of oral aspirin challenges. Ann Allergy Asthma Immunol 2006;97:688-93.
52. Dahleen SE, Malmström K, Nizankowska E, Dahleen B, Kuna P, Kowalski M, Lumry WR, Picado C, Stevenson DD, Bouquet J, Paunwels R, Holgate ST, Shahane A, Zhang J, Reiss TF, Szczeklik A. Improvement of aspirin-intolerant asthma by montelukast, a leukotriene antagonist: a randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med 2002;165:9-14.
53. Cowburn AS, Sladek K, Soja I, Adamek L, Nizankowska E, Szczeklik A, Lam BK, Penrose JR, Austen FK, Holgate ST, Sampson AP. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 1998;101:834-46.
54. Adamjee J, Suh YJ, Park HS, Chei JH, Penrose JR, Lam BK, Austen KE, Cazaly AM, Wilson SJ, Sampson AP. Expression of 5-lipoxygenase and cyclooxygenase pathway enzymes in nasal polyps of patients with aspirin-intolerant asthma. J Pathol 2006;209:392-9.
55. Maclouf J, Murphy RC, Henson PM. Transcellular biosynthesis of sulfidopeptide leukotrienes during receptor-mediated stimulation of human neutrophil/platelet mixtures. Blood 1990;76:1838-44.
56. Laidlaw TM, Kidder MS, Bhattacharyya N, Xing W, Shen S, Milne GL, Castells MC, Cihay H, Boyce JA. Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes. Blood 2012;119:3790-8.
57. Fischer AR, Rosenberg MA, Lilly CM, Callery JC, Rubin P, Cohn J, White MV, Igarashi Y, Kaliner MA, Drazen JM, Israel E. Direct evidence for a role of the mast cell in the nasal response to aspirin in aspirin-sensitive asthma. J Allergy Clin Immunol 1994;94:1046-56.
58. Yoshida S, Amayasu H, Sakamoto H, Onuma K, Shoji T, Nakagawa H, Tajima T. Cromolyn sodium prevents bronchoconstriction and urinary LTE4 excretion in aspirin-induced asthma. Ann Allergy Asthma Immunol 1998;80:171-6.
59. Christie PE, Schmitz-Schumann M, Spur BW, Lee TH. Airway responsiveness to leukotriene C4 (LTE4), leukotriene E4 (LTE4) and histamine in aspirin-sensitive asthmatic subjects. Eur Respir J
Cysteinyl Leukotrienes and Their Receptors

Allergy Asthma Immunol Res. 2014 July;6(4):288-295. http://dx.doi.org/10.4168/aair.2014.6.4.288

AAIR

1993;6:1468-73.

60. Corrigan CJ, Napoli RL, Meng Q, Fang C, Wu H, Tochiki K, Reay V, Lee TH, Ying S. Reduced expression of the prostaglandin E2 receptor E-prostanoid 2 on bronchial mucosal leukocytes in patients with aspirin-sensitive asthma. J Allergy Clin Immunol 2012;129:1636-46.

61. Sousa AR, Parikh A, Scadding G, Corrigan CJ, Lee TH. Leukotriene-receptor expression on nasal mucosal inflammatory cells in aspirin-sensitive rhinosinusitis. N Engl J Med 2002;347:1493-9.

62. Arm JP, O’Hickey SP, Spur BW, Lee TH. Airway responsiveness to histamine and leukotriene E4 in subjects with aspirin-induced asthma. Am Rev Respir Dis 1989;140:148-53.

63. Kanaoka Y, Maekawa A, Penrose JF, Austen KF, Lam BK. Attenuated zymosan-induced peritoneal vascular permeability and IgE-dependent passive cutaneous anaphylaxis in mice lacking leukotriene C4 synthase. J Biol Chem 2001;276:22608-13.

64. Maekawa A, Austen KF, Kanaoka Y. Targeted gene disruption reveals the role of cysteinyl leukotriene 1 receptor in the enhanced vascular permeability of mice undergoing acute inflammatory responses. J Biol Chem 2002;277:20820-4.

65. Maekawa A, Kanaoka Y, Xing W, Austen KF. Functional recognition of a distinct receptor preferential for leukotriene E4 in mice lacking the cysteinyl leukotriene 1 and 2 receptors. Proc Natl Acad Sci U S A 2008;105:16695-700.

66. Barrett NA, Rahman OM, Fernandez JM, Parsons MW, Xing W, Austen KF, Kanaoka Y. Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. J Exp Med 2011;208:593-604.

67. Barrett NA, Maekawa A, Rahman OM, Austen KF, Kanaoka Y. Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. J Immunol 2009;182:1119-28.

68. Maekawa A, Xing W, Austen KF, Kanaoka Y. GPR17 regulates immune pulmonary inflammation induced by house dust mites. J Immunol 2010;185:1846-54.

69. Barrett NA, Fernandez JM, Maekawa A, Xing W, Li L, Parsons MW, Austen KF, Kanaoka Y. Cysteinyl leukotriene 2 receptor on dendritic cells negatively regulates ligand-dependent allergic pulmonary inflammation. J Immunol 2012;189:4556-65.

70. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, Powrie F, Vivier E. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol 2013;13:145-9.

71. Doherty TA, Khorrarn N, Lund S, Mehta AK,Croft M, Broide DH. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol 2013;132:205-13.

72. Pitchford SC, Momi S, Giannini S, Casali L, Spina D, Page CP, Gresele P. Platelet P-selectin is required for pulmonary eosinophil and lymphocyte recruitment in a murine model of allergic inflammation. Blood 2005;105:2074-81.

73. Pitchford SC, Riffo-Vasquez Y, Sousa A, Momi S, Gresele P, Spina D, Page CP. Platelets are necessary for airway wall remodeling in a murine model of chronic allergic inflammation. Blood 2004;103:639-47.

74. Hasegawa S, Ichiyama T, Hashimoto K, Suzuki Y, Hirano R, Fukano R, Furukawa S. Functional expression of cysteinyl leukotriene receptors on human platelets. Platelets 2010;21:253-9.

75. Cummings HE, Liu T, Feng C, Laidlaw TM, Conley PB, Kanaoka Y, Boyce JA. Cutting edge: Leukotriene C4 activates mouse platelets in plasma exclusively through the type 2 cysteinyl leukotriene receptor. J Immunol 2013;191:5807-10.

76. Paruchuri S, Tashimo H, Feng C, Maekawa A, Xing W, Jiang Y, Kanaoka Y, Conley P, Boyce JA. Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor. J Exp Med 2009;206:2543-55.

77. Nonaka Y, Hiramoto T, Fujita N. Identification of endogenous surrogate ligands for human P2Y12 receptors by in silico and in vitro methods. Biochem Biophys Res Commun 2005;337:281-8.

78. Hirata H, Arima M, Fukushima Y, Honda K, Sugiyama K, Tokuhisa T, Fukuda T. Over-expression of the LTC4 synthase gene in mice reproduces human aspirin-induced asthma. Clin Exp Allergy 2011;41:1133-42.

79. Luo M, Jones SM, Flamand N, Aronoff DM, Peters-Golden M, Brock TG. Phosphorylation by protein kinase a inhibits nuclear import of 5-lipoxygenase. J Biol Chem 2005;280:40609-16.

80. Murakami M, Naraba H, Tanioka T, Semmyno N, Nakatani Y, Kojima F, Ikeda T, Fueki M, Ueno A, Oh S, Kudo I. Regulation of prostaglandin E2 biosynthesis by inductible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 2000;275:32783-92.

81. Yoshimura T, Yoshikawa M, Otori N, Haruna S, Moriyama H. Correlation between the prostaglandin D(2)/E(2) ratio in nasal polyps and the recalcitrant pathophysiology of chronic rhinosinusitis associated with bronchial asthma. Allergol Int 2008;57:429-36.

82. Picado C, Fernandez-Morata JC, Juan M, Roca-Ferrer J, Fuentes M, Xaubet A, Mullol J. Cyclooxygenase-2 mRNA is downexpressed in nasal polyps from aspirin-sensitive asthmatics. Am J Respir Crit Care Med 1999;160:291-6.

83. Cheong HS, Park SM, Kim MO, Park JS, Lee JY, Byun JY, Park BL, Shin HD, Park CS. Genome-wide methylation profile of nasal polyps: relation to aspirin hypersensitivity in asthmatics. Allergy 2011;66:637-44.

84. Liu T, Laidlaw TM, Katz HR, Boyce JA. Prostaglandin D2 deficiency causes a phenotype of aspirin sensitivity that depends on platelets and cysteinyl leukotrienes. Proc Natl Acad Sci U S A 2013;110:16987-92.