Forefoot Injuries in Sports
Sean HS Lai1, Camelia QY Tang2, Gowreeson Thevendran3

Abstract
Forefoot injuries are common injuries in high-impact sports. The forefoot experiences a large amount of stress during the late stance phase of the gait cycle. Repetitive load applied to the forefoot without adequate rest can lead to tissue breakdown, resulting in injury. Forefoot sporting injuries can deteriorate gait function, sporting performance, and quality of life. In this article, we review the typical presentation, approach, and treatment modalities of the commonest forefoot sporting injuries. These include metatarsal stress fractures, second metatarsophalangeal joint (MTPJ) instability, turf toe injury, sesamoid pathologies, as well as hallux valgus and rigidus. Metatarsal stress fractures are frequent overuse injuries. They can be managed conservatively with activity modification and protected weight-bearing or surgically with open internal fixation. Second MTPJ instability typically involves disruption of the second MTPJ ligamentous joint capsule. Management of this condition includes customized orthotics, physiotherapy, hydrocortisone and lignocaine (H&L) injections, osseous procedures for phalangeal alignment, and plantar plate repairs. Turf toe injury refers to a hyperextension injury of the plantar capsuloligamentous structure of the hallux MTPJ. Plantar plate repairs are typically indicated in grade III injuries or when conservative treatment has failed. Sesamoid injuries include stress fractures, infections, degenerative disease, and osteochondral lesions. Customized orthotics limiting flexion across MTPJ while providing sesamoid stress relief is helpful, while surgical treatment involves fixation with possible bone grafting or partial sometimes complete sesamoidectomy. While hallux valgus and rigidus are not specific to sportsmen, treatment should take into account the patient’s athletic demand. These conditions are typically treated surgically with realignment osteotomies if refractory to conservative treatments such as foot orthoses and physiotherapy.

Keywords: Foot, Foot ankle surgery, Foot injury, Metatarsal, Sesamoid, Sports.

Introduction
Forefoot injuries are common in sportsmen who participate in high-impact activities involving significant amount of running and jumping. Poor management of forefoot injuries can prolong time return to sports and the preinjury level of sporting activities. For the purpose of this review, we define forefoot as the structures in the foot extending from the tarsal-metatarsal joint to the toes. Common forefoot sporting injuries include metatarsal stress fracture, second metatarsophalangeal joint (MTPJ) instability, turf toe injury, and sesamoid pathologies. Other common pathologies include hallux valgus and hallux rigidus. In this article, we will review the diagnosis and management of these forefoot sporting injuries.

Anatomy and Biomechanics of the Forefoot
The forefoot comprises of structures in the foot extending from the tarsal-metatarsal joints to the tip of the toes, namely the 5 metatarsals, 14 phalanges, and 2 sesamoid bones. The first MTPJ is surrounded by a capsular ligamentous complex that contributes significantly to the stability of the first MTPJ. It consists of the medial and lateral collateral ligaments, plantar plate, adductor hallucis, abductor hallucis, and flexor hallucis brevis. The sesamoid bones arise within the tendons of the flexor hallucis brevis and articulate with the plantar aspect of the first metatarsal head. They act as pulleys to transmit forces from the flexor hallucis brevis through the plantar plate to the first proximal phalanx base and elevate the first metatarsal head, thereby providing a moment arm that augments plantar flexion of the first MTPJ.1-4

The forefoot experiences a high amount of stress during locomotion. Biomechanical studies have shown that the peak vertical forces on the foot can increase up to 120% of body weight during walking, and up to 220% of body weight during running.5

Metatarsal Stress Fracture
Presentation
Metatarsal stress fractures are frequent overuse injuries that occur in athletes. They typically present with an insidious onset of pain that occurs during periods of activity and is relieved by rest. The second and third metatarsal bone accounts for 80–90% of metatarsal stress fractures.9-12 Due to the plantar-oriented forces that occur during weight-bearing, the most common area where fractures occur is over the metatarsal neck.13,14 However, notable exceptions are dancer’s fracture (proximal second metatarsal fracture) and Jones fracture (proximal fifth metatarsal fracture).15 Biomechanical alterations that result in repetitive stress over the metatarsals such as gastrocnemius tightness, cavovarus foot, pes

How to cite this article: Lai SHS, Tang CQY, Thevendran G. Forefoot Injuries in Sports. J Foot Ankle Surg (Asia Pacific) 2020;7(2):50–56.
Conflict of interest: None

The center of pressure is shifted under the forefoot during the late stance phase with the first to third metatarsals heads bearing the highest concentration of pressure.5–8 Repetitive load applied to the forefoot in sporting activities without adequate interim period of rest could hence lead to tissue breakdown with concomitant discomfort and time off sports.

Journal of Foot and Ankle Surgery (Asia Pacific) (2020): 10.5005/jp-journals-10040-1124
planus, or other altered foot biomechanics have been implicated in the predisposition to metatarsal stress fractures.16–18

Imaging

Stress fractures can be detected via radiographs when bone reaction such as callus formation has begun (Fig. 1).19,20 In view of its accuracy, earlier diagnosis, and prognostic value, MRI is the modality of choice when working up for metatarsal stress fracture.21,22 When MRI examinations are inconclusive, bone scintigraphy has been recommended by some to aid in the assessment of a stress fracture.23 In patients with multiple stress fractures, laboratory tests are useful in evaluating for any underlying metabolic or endocrine cause.24

Management

Conservative treatment of metatarsal stress fracture comprises of activity modification with protected weight-bearing.25 This involves the use of customized orthotics for shock absorption, cast, or Velcro walking boots.26,27 Return to sports should be started at low-intensity level with gradual increments.28,29 Such delayed return to sports, coupled with high nonunion rates, makes operative treatment a preferred option for athletes whose priority is an early return to sports.18,30

Operative treatment typically involves open surgery with fracture site curettage with or without reaming of the medullary canal and plate stabilization augmented by the autogenous or allogenic bone graft.31–33 Underlying structural abnormalities should also be addressed, for instance, corrective osteotomies for dorsiflexed first ray or cavus foot and gastrocnemius recession for gastrocnemius tightness.34–36 Adjunct treatments to improve bone healing in stress fractures, such as low-intensity pulsed ultrasound (LIPUS) and extracorporeal shockwave therapy (ESWT), have been proposed, though their efficacy still remains a subject of controversy.37–39

Second Metatarsophalangeal Joint Instability

Presentation

The proposed pathogenesis of second MTPJ instability is varied in the current literature but generally involves lateral capsule and collateral ligament disruption together with plantar plate rupture.40–42 Patients typically complain of tenderness over the plantar aspect of MTPJ, tender plantar hyperkeratotic lesions, and toe deformities.40,41 First ray pathologies, such as hallux valgus, excessive second metatarsal length, trauma, improper footwear, tight Achilles tendon, and inflammatory arthropathy, have been implicated second MTPJ instability.14–16 A dorsal drawer test, or Lachman’s test, where increased mobility of the second MTPJ is observed, indicates plantar plate insufficiency.

Imaging

Radiographs and MRI are commonly used in the assessment of second MTPJ instability (Fig. 2). Anteroposterior radiographs of the foot allow for evaluation of the forefoot cascade and shape of the second metatarsal head, while lateral views allow for evaluation of the shape of the foot and relative orientation of the metatarsal heads.59

The MRI is useful in evaluating the integrity of the second MTPJ plantar plate. Signs suggestive of a torn plantar plate include discontinuity of the plantar plate with fluid interposition, presence of pericapsular fibrosis extending from the proximal phalanx base into the intermetatarsal space (pseudoneuroma sign), and increased plantar plate-proximal phalanx distance.50 Yamada et al.51 found that a plantar plate to proximal phalanx distance of greater than 0.275 cm has a sensitivity of 65% and specificity of 90% in diagnosing plantar plate tears.

When imaging investigations are inconclusive, lesser MTPJ arthroscopy is an emerging diagnostic and therapeutic tool for synovectomy, direct plantar plate repair, and loose body removal.50,52,53

Management

Conservative management of second MTPJ instability includes customized orthotics, shoe wear modifications, and physiotherapy for calf stretches.54,55 Pharmacological treatment such as nonsteroidal anti-inflammatory drugs and hydrocortisone and lignocaine (H&L) injections aid in symptom relief, although multiple corticosteroid injections risk compromising MTPJ stability.50,56

Surgical management of second MTPJ instability mainly involves osseous procedures for phalangeal alignment and soft-tissue repairs. Osseous procedures for phalangeal alignment

Figs 1A and B: Radiograph of right second metatarsal stress fracture in a dancer20

Figs 2A to C: Radiograph of forefoot (A) and MRI Forefoot coronal view (B) showing fourth metatarsal head widening and flattening suggestive of dysplasia, secondary to chronic instability. Sagittal view of MRI (C) also show dorsal spurs and cyst formation
include a Weil's recession osteotomy for excessively long second metatarsal, MTPJ synovitis, and Morton's neuroma, as well as a dorsiflexion osteotomy for Freiberg's infraction. Increasingly, there has been a focus on soft-tissue procedures, which include plantar plate reconstruction, collateral ligament repair, and tendon transfers (extensor digitorum brevis, extensor digitorum longus, flexor tendon). Plantar plate reconstruction is an increasingly popular procedure, with direct repair of plantar plate back onto the base of the proximal phalanx of the toe with nonabsorbable sutures or suture anchor devices. No standard postsurgical rehabilitation program has been established but a postoperative anti-extension splint with a forefoot off-loading orthotic for 4 weeks is recommended.

Turf Toe Injury

Presentation

Turf toe injury is recognized as a hyperextension injury to the plantar capsuloligamentous structure of the hallux MTPJ. It was first described in 1976 by Bowers and Martin at the University of West Virginia who documented 5.4 cases of such injuries per season in football players at the university. They attributed the injury to a combination of hard artificial turf and flexible footwear, which were recently introduced to football at that time. Turf toe injury has since been found not to be exclusive to football and has been seen in a number of other sports such as basketball, baseball, soccer, Taekwondo, and sprinting. The classical mechanism of injury involves a combination of a hard artificial turf, flexible footwear, and an axial loading foot in equinus causing hallux hyperextension.

Apart from metatarsalgia, signs of turf toe injury include ecchymosis and tenderness over the hallux MTPJ, weakness with plantarflexion, and a positive dorsoplantar drawer test. Turf toe injury is graded according to the extent of plantar capsuloligamentous structure. The authors have divided turf toe injury into three different grades, ranging from stretching of and partial tears of the plantar complex to complete tears, each with their commonly associated signs and symptoms (Table 1).

Imaging

Radiological evaluations are part of the workup for hyperextension injuries of the toe. Initial investigation includes an AP foot X-ray as well as a forced dorsiflexion lateral foot X-ray. In complete plantar complex tears, proximal retraction of the sesamoid bones can be appreciated on the lateral foot radiographs with the hallux in dorsiflexion. Comparison with the contralateral foot radiographs would aid with detecting this difference.

Magnetic resonance imaging (MRI) remains the imaging modality of choice when evaluating plantar plate injuries. Sprains and partial thickness tear would appear as either thinning or thickening with indistinctness of the plantar plate, while full-thickness tears would appear as focal discontinuity of the plantar plate with retraction and a fluid gap. Nonetheless, plantar plate recesses at the proximal phalangeal attachments can be a normal variant, and caution must be taken to not overcall partial tears. Acute injuries usually demonstrate soft tissue edema, which is absent in chronic injuries. Chronic injury might lead to development of osteophytes at the first metatarsal head, leading to hallux rigidus.

Management

Treatment of turf toe injuries depends on the degree of plantar complex injury. Most turf toe injuries can be treated conservatively with rest, ice, compression, and elevation (RICE) and orthotics. Anti-inflammatories and analgesics can help decrease pain and swelling. A short period in a walking boot or a toe spica extension is beneficial (Fig. 3). Taping the hallux helps to decrease movement at the MTPJ while providing compression. The patient should be kept on a weight-bearing as tolerated regimen.

Surgical interventions are typically indicated only for grade III injuries or when conservative treatment has failed. Typical indications for surgery include large capsular tear with joint instability, sesamoid diastasis, traumatic hallux, loose bodies, or chondral injuries. Reconstruction of turf toe injury classically involves a medial “J” incision, whereby the incision extends along the hallux MTPJ flexion crease. Surgical repair of the plantar plate involves repair with nonabsorbable sutures placed in an interrupted fashion, suture anchors, or a drill hole technique followed by medial capsular imbrication. Alternatively, particularly when there are complete plantar plate ruptures, a dual-incision technique with incisions along the medial and lateral border of the hallux MTPJ can be used to gain access to both the medial and lateral aspects of the plantar capsular ligamentous complex. Postoperatively, the patient is kept nonweight-bearing in a removable toe spica splint, with gradual return to full weight-bearing from the 4th week onward.

Table 1: Classification of turf toe injury

Grade	Description
I	Stretching of plantar complex Localized tenderness, minimal swelling and no ecchymosis over the first MTPJ
II	Partial tears Diffuse tenderness, moderate swelling, ecchymosis and restricted movement with pain.
III	Frank tears Severe tenderness, marked swelling and ecchymosis, limited movement with pain, and positive dorsoplantar test

Clinical classification of turf toe injury as adapted from Anderson RB. Turf toe injuries of the hallux metatarsophalangeal joint. *Techniques in Foot & Ankle Surgery* 2002;1(2):102–111

Fig. 3: Toe spica taping
Sesamoid Pathologies

Presentation
Comprising of 9% of foot and ankle injuries and 1.2% of running injuries, sesamoid pathologies are a significant etiology that should be given due consideration during the workup of forefoot pain. Given their location within the tendons of the flexors, sesamoids aid in transmission of force during gait and are predisposed to repeated stress and trauma, making them susceptible to a range of acute and chronic injuries. These includes sesamoid stress injuries or sesamoiditis that are due to repetitive trauma, sesamoid fractures, infections, degenerative diseases, and osteochondral lesions (Fig. 4). Structural variations such as pes cavus, significantly plantarf lexed first ray, ankle equinus, abnormal sesamoid size or rotations, and absence of metatarsal crista have been implicated as predisposing factors to sesamoid pathologies. Sesamoid pain is classically described as an activity-related pain with localized discomfort on the compression test.

Imaging
While MRI is diagnostic for sesamoid pathologies (Fig. 5), radiographs remain a useful modality in evaluating sesamoid injury. Standard radiographs comparing contralateral foot X-rays are useful, while an additional axial sesamoid view taken for a tangential view of the sesamoids and less metatarsal heads can be very informative (direct beam at forefoot in a tangential manner with forefoot in a dorsiflexed position) (Fig. 6). The existing literature has also suggested a role for CT and image-guided injections targeting a symptomatic sesamoid.

Management
Nonoperative treatment of sesamoid injury includes period of immobilization or enforced rest in walking boots followed by customized orthotics, such as those limiting flexion across MTPJ or providing sesamoid stress relief. However, symptomatic nonunion may persist after nonoperative treatments.

Operative treatment consists of options of surgical fixation with possible bone grafting, as well as partial or complete sesamoidectomy. If surgical fixation is indicated, screws need to be placed perpendicular to the fracture line to prevent fracture displacement and achieve compression, thereby necessitating higher technical expertise. Sesamoidectomy is often advocated as a good alternative, with a recent systematic review by Shimozono et al., demonstrating that sesamoidectomy for hallux sesamoid disorders yielded good clinical outcomes with high rate of return to sports. The surgical approach for sesamoidectomy would depend on the sesamoid to be removed and involves meticulous repair of the plantar capsule and flexor hallucis brevis tendon. As a result, a dedicated postoperative rehabilitation program is often required.

Others
Other common fore foot conditions affecting sportsmen include hallux valgus and hallux rigidus. While they are not specific to sportsmen, treatment for symptomatic hallux valgus and hallux rigidus should take into consideration the patients’ athletic demands. Hallux rigidus is commonly seen in runners and is generally perceived to be secondary to chronic repetitive trauma to the first MTPJ and typically presents with pain during the toe-off phase of the gait cycle. If the condition is refractory to conservative treatment with foot orthoses or taping and physiotherapy, surgical treatment with dorsal first metatarsal cheilectomy may be considered. The Valenti procedure is also advocated as it allows increased postoperative dorsiflexion and range of motion, thereby quicker return to sport. First MTPJ fusion offers good pain relief but should be offered judiciously as it will alter the forefoot loading patterns and the gait of an athlete.
Akin to hallux rigidus, symptomatic hallux valgus should be treated conservatively. Failure of conservative treatment may warrant a corrective osteotomy with debulking and tightening of medial capsule. In the scenario where pain is isolated to a prominent medial eminence with only mild deformity parameters, a minimally invasive hallux valgus correction may be considered.

CONCLUSION

There is a spectrum of forefoot sporting injuries. A careful history, meticulous physical examination, and right imaging modality are key to identifying the underlying pathology. While counseling on the course of treatment, it is critical to touch on time taken to return to sport and the preinjury level of activity. While the role of biologics and treatment adjuncts are being popularized, better training regimes, footwear, and minimally invasive surgical techniques will likely polarize our management of forefoot sports injuries in the future.

REFERENCES

1. Aper RL, Saltzman CL, Brown TD. The effect of hallux sesamoid resection on the effective moment of the flexor hallucis brevis. Foot Ankle Int 1994;15(9):462–470. DOI: 10.1177/107110079401500902.
2. Cohen BE. Hallux sesamoid disorders. Foot Ankle Clin 2009;14(1):91–104. DOI: 10.1016/j.fcl.2008.11.003.
3. Dedmond BT, Cory JW, McBryde Jr A. The hallucal sesamoid complex. J Am Acad Orthop Surg 2006;14(13):745–753. DOI: 10.5435/00124635-200612000-00006.
4. Richardson EG. Injuries to the hallucal sesamoids in the athlete. Foot Ankle. 1987;7(4):229–244. DOI: 10.1177/107110078700700405.
5. Cavanagh PR. The biomechanics of lower extremity action in distance running. Foot Ankle 1987;7(4):197–217. DOI: 10.1177/107110078700700402.
6. Czerniec JM. Foot and ankle biomechanics in walking and running. A review. Am J Phys Med Rehabil 1988;67(6):246–252.
7. Nagel A, Fernholz F, Kibele C, et al. Long distance running increases planter pressures beneath the metatarsal heads: a barefoot walking investigation of 200 marathon runners. Gait Posture 2008;27(1):152–155. DOI: 10.1016/j.gaitpost.2006.12.012.
8. Dhillon S, Dhillon M, Arumugam S, et al. Foot biomechanics and relation to the gait cycle. J Foot Ankle Surg 2018;58:68–72.
9. Iwamoto J, Takeda T. Stress fractures in athletes: Review of 196 cases. J Orthop Sci 2003;8(3):273–278. DOI: 10.1007/s10776-002-0632-5.
10. Fetzer GB, Wright RW. Metatarsal shaft fractures and fractures of the proximal fifth metatarsal. Clin Sports Med 2006;25(1):139–150. DOI: 10.1016/j.csm.2005.08.014.
11. Saunier J, Chapurlat R. Stress fracture in athletes. Joint Bone Spine 2018;85(3):307–310. DOI: 10.1016/j.jbspin.2017.04.013.
12. Weinfield SB, Haddad SL, Myerson MS. Metatarsal stress fractures. Clin Sports Med 1997;16(2):319–338. DOI: 10.1016/s2278-5919(03)70025-9.
13. Anderson LD. Injuries of the forefoot. Clin Orthop Relat Res 1977;122(122):18–27. DOI: 10.1097/00003086-197701000-00004.
14. Gross TS, Bunch RP. A mechanical model of metatarsal stress fracture during distance running. Am J Sports Med 1989;17(5):669–674. DOI: 10.1177/036354658901700514.
15. Welck MJ, Hayes T, Pastides P, et al. Stress fractures of the foot and ankle. Injury 2017;48(8):1722–1726. DOI: 10.1016/j.injury.2015.06.015.
16. Chen WM, Park J, Park SB, et al. Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise - A 3D finite element analysis. J Biomech 2012;45(10):1783–1789. DOI: 10.1016/ j.jbiomech.2012.04.024.
17. Krahenbuhl N, Weinberg MW. Anatomy and biomechanics of cavovarus deformity. Foot Ankle Clin 2019;24(2):173–181. DOI: 10.1016/j.fcl.2019.02.001.
18. Brockwell J, Yeung Y, Griffith JF. Stress fractures of the foot and ankle. Sports Med Arthrosc Rev 2009;17(3):149–159. DOI: 10.1097/JSA.0b013e3181b1277.
19. Greaney RB, Gerber FH, Laughlin RL, et al. Distribution and natural history of stress fractures in U.S. Marine recruits. Radiology 1983;146(2):339–346. DOI: 10.1148/radiology.146.2.6217486.
20. Watson HI, O’Donnell B, Hopper GP, et al. Proximal base stress fracture of the second metatarsal in a highland dancer. BMJ Case Rep 2013;2013:bcr2013010284. DOI: 10.1136/bcr-2013-010284.
21. Matuck Jr GR, Mahanty SR, Skalski MR, et al. Stress fractures: pathophysiology, clinical presentation, imaging features, and treatment options. Emerg Radiol 2016;23(4):365–375. DOI: 10.1007/s10140-016-1390-5.
22. Fredericson M, Jennings F, Beaulieu C, et al. Stress fractures in athletes. Top Magn Reson Imaging 2006;17(5):309–325. DOI: 10.1097/RMR.0b013e3180421c8c.
23. Dobrindt O, Hoffmeyer B, Ruf J, et al. MRI versus bone scintigraphy. Evaluat Diagn Grad Stress Injur Nuklearmed 2012;51(3):88–94. DOI: 10.3413/Nukmed-0448-11-12.
24. Ramponi DR, Hedderick V, Maloney SC. Metatarsal stress fractures. Adv Emerg Nurs J 2017;39(3):168–175. DOI: 10.1097/JEN.0b013e3180421c8c.
25. Greaser MC. Foot and ankle stress fractures in athletes. Orthop Clin North Am 2016;47(4):809–822. DOI: 10.1016/j.jocl.2016.05.016.
Forefoot Injuries in Sports

68. Clanton TO, Butler JE, Eggert A. Injuries to the metatarsophalangeal joints in athletes. Foot Ankle 1986;7(3):162–176. DOI: 10.1177/107110076600700306.

69. Coker TP, Arnold JA, Weber DL. Traumatic lesions of the metatarsophalangeal joint of the great toe in athletes. Am J Sports Med 1978;6(6):326–334. DOI: 10.1177/036354657800600604.

70. VanPelt MD, Saxena A, Allen MA. Turf toe injuries. Int Adv Foot Ankle Surg. London: Springer; 2012: pp. 219–228.

71. Smith K, Waldrop N. Operative outcomes of grade 3 turf toe injuries in competitive football players. Foot Ankle Int 2018;39(9):1076–1081. DOI: 10.1177/1071100718775967.

72. McCormick JJ, Anderson RB. Turf toe: anatomy, diagnosis, and treatment. Sports Health 2010;2(6):487–494. DOI: 10.1177/1941738110386681.

73. McCormick JJ, Anderson RB. The great toe: failed turf toe, chronic turf toe, and complicated sesamoid injuries. Foot Ankle Clin 2009;14(2):135–150. DOI: 10.1016/j.fcl.2009.01.001.

74. Boike A, Schnirring-Judge M, McMillin S. Sesamoid disorders of the first metatarsophalangeal joint. Clin Podiatr Med Surg 2011;28(2):269–285. DOI: 10.1016/j.cpm.2011.03.006.

75. Kadakia AR, Molloy A. Current concepts review: traumatic disorders of the first metatarsophalangeal joint and sesamoid complex. Foot Ankle Int 2011;32(8):834–839. DOI: 10.3113/FAI.2011.0834.

76. Biedert R, Hintzmann B. Stress fractures of the medial great toe sesamoids in athletes. Foot Ankle Int 2003;24(2):137–141. DOI: 10.1177/107110070302400207.

77. Shimozono Y, Hurley ET, Brown AJ, et al. Sesamoidectomy for hallux sesamoid disorders: a systematic review. J Foot Ankle Surg 2018;57(6):1186–1190. DOI: 10.1053/j.jfas.2018.04.003.

78. Taylor JA, Sartoris DJ, Huang GS, et al. Painful conditions affecting the first metatarsal sesamoid bones. Radiographics 1993;13(4):817–830. DOI: 10.1148/radiographics.13.4.8356270.

79. Resnick D, Niwayama G, Feingold ML. The sesamoid bones of the metatarsophalangeal joint and sesamoid complex and plantar capsular structures of the first metatarsophalangeal joint. Radiol Clin North Am 2008;46(6):1079–1092. DOI: 10.1016/j.rcl.2008.09.001.

80. Allen MA, Casillas MM. The passive axial compression (PAC) test: a new adjunctive provocative maneuver for the clinical diagnosis of hallucal sesamoiditis. Foot Ankle Int 2001;22(4):345–346. DOI: 10.1177/107110070102004014.

81. Sanders TG, Rathur SK. Imaging of painful conditions of the hallucal sesamoid complex and plantar capsular structures of the first metatarsophalangeal joint. Radiol Clin North Am 2008;46(6):1079–1092. DOI: 10.1016/j.rcl.2008.09.001.

82. Grace DL. Sesamoid problems. Foot Ankle Clin 2000;5(3):609–627.

83. Chan BY, Markhardt BK, Williams KL, et al. Os conundrum: identifying symptomatic sesamoids and accessory ossicles of the foot. Am J Roentgenol 2019;213(2):417–426. DOI: 10.2214/AJR.18.20761.

84. Hulkkö A, Orava S, Pellinen P, et al. Stress fractures of the sesamoid bones of the first metatarsophalangeal joint in athletes. Arch Orthop Trauma Surg 1985;104(2):113–117. DOI: 10.1007/BF00454250.

85. Axe MJ, Ray RL. Orthotic treatment of sesamoid pain. Am J Sports Med 1988;16(4):411–416. DOI: 10.1177/03635458801600419.

86. Robertson GAJ, Goffin JS, Wood AM. Return to sport following stress fractures of the first metatarsal sesamoids: a systematic review. Br Med Bull 2017;122(1):135–149. DOI: 10.1093/bmb/ldx010.

87. Bichara DA, Henn RF 3rd, Theodore GH. Sesamoidectomy for hallux sesamoid fractures. Foot Ankle Int 2012;33(9):704–706. DOI: 10.3113/FAI.2012.0704.

88. Anderson RB, McBryde Jr AM. Autogenous bone grafting of hallux sesamoid nonunions. Foot Ankle Int 1997;18(5):293–296. DOI: 10.1177/107110079701800509.

89. Blundell CM, Nicholson P, Blackney MW. Percutaneous screw fixation for fractures of the sesamoid bones of the hallux. J Bone Joint Surg Br 2002;84(8):1138–1141. DOI: 10.1302/0301-620x.84b8.13064.

90. Saxena A, Krisdakumtorn T. Return to activity after sesamoidectomy in athletically active individuals. Foot Ankle Int 2003;24(5):415–419. DOI: 10.1177/107110070302400507.

91. Rodrigues Pinto R, Muras J. Medial approach to the fibular sesamoid. Foot Ankle Int 2010;31(10):916–919. DOI: 10.3113/FAI.2010.0916.

92. Taylor CF, Butler M, Parsons SW. Problems associated with the excision of the hallux sesamoids. Foot Ankle Clin 2014;19(3):425–436. DOI: 10.1016/j.fcl.2014.06.014.

93. Coetzee JC, Stone RM, Fritz JE, et al. Functional outcome of sesamoid excision in athletes. Orthop J Sports Med 2016;4(3 suppl 3). DOI: 10.1177/232596716500065.

94. Nihal A, Trepanier E, Nag D. First ray disorders in athletes. Sports Med Arthrosc Rev 2009;17(3):160–166. DOI: 10.1097/JSA.0b013e3181a5c51f.

95. Tregouet P. An assessment of hallux limitus in university basketball players compared with noncompetitive individuals. J Am Podiatr Med Assoc 2014;104(5):468–472. DOI: 10.7547/0003-0538-104.5.468.

96. Mulier T, Steenwercx A, Thiennpont E, et al. Results after cheilectomy in athletes with hallux rigidus. Foot Ankle Int 1999;20(4):232–237. DOI: 10.1177/107110079902000405.

97. Saxena A, Valero DL, Behan SA, et al. Modified valenti arthroplasty for fractures of the sesamoid bones of the hallux. J Bone Joint Surg Br 2002;84(8):1138–1141. DOI: 10.1302/0301-620x.84b8.13064.

98. Muller T, Steenwercx A, Thiennpont E, et al. Results after cheilectomy in athletes with hallux rigidus. Foot Ankle Int 1999;20(4):232–237. DOI: 10.1177/107110079902000405.

99. Fournier M, Saxena A, Maffulli N. Hallux valgus surgery in the athlete: current evidence. J Foot Ankle Surg 2019;58(4):641–643. DOI: 10.1053/j.jfas.2018.04.003.