Sex Differences in The Association Between Socioeconomic Status and Metabolic Syndrome in Rural China: An Updated Cross-Sectional Study

Xuhua Ying
Yuhuan City Center of Disease Prevention and Control

Shuyue Yang
Fudan University

Songtao Li
Yuhuan City Center of Disease Prevention and Control

Meifang Su
Yuhuan City Center of Disease Prevention and Control

Na Wang
Fudan University

Yue Chen
Ottawa University

Qingwu Jiang
Fudan University

Chaowei Fu (fcw@fudan.edu.cn)
Fudan University https://orcid.org/0000-0003-0966-8552

Research article

Keywords: Metabolic syndrome, Socioeconomic status, Sex differences, East China

DOI: https://doi.org/10.21203/rs.3.rs-89500/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The aim of this study was to evaluate the prevalence of metabolic syndrome (MS) and MS components as well as their association with socioeconomic status among rural Chinese adults.

Methods: A cross-sectional study of 26836 participants aged 20 years and older was conducted from June to December 2012 in Yuhuan City, Zhejiang Province, China, which is located on Yuhuan Island. A multivariable logistic regression model was used to identify risk factors for MS and their possible interactions.

Results: Among 26836 subjects with an average age of 53.4±14.0 years, 59% were female. The overall prevalence of MS was 20.5%, and there was a significant sex difference in the prevalence (15.1% for males vs. 24.2% for females, p<0.001). Compared with males, females also showed a significantly higher proportion of most MS components. A significantly higher prevalence of MS was found among subjects who were elderly, had a lower income level, had a lower level of education, or were unemployed. Multiple significant interactions were observed between the prevalence of MS and sex, age or socioeconomic status (p<0.001). The risk of MS increased significantly with age in females but not in males. Additionally, a lower income level and a lower level of education were significantly related to an increased risk only in females, and unemployed males had a higher risk of MS than unemployed females.

Conclusions: The prevalence of MS and its components was relatively high in a rural island Chinese population with rapid urbanization, and sex-specific associations between socioeconomic factors and MS were found. Targeted preventive interventions should be developed and implemented to prevent and control MS among those with a low socioeconomic status, especially females.

Background

With rapid economic growth, an ageing population, a longer life expectancy and lifestyle changes, noncommunicable chronic diseases (NCDs) are a major cause of mortality and an increasing socioeconomic burden globally[1–3]. Metabolic syndrome, defined by various criteria, is characterized by clustering risk factors for NCDs, including central obesity, high blood pressure, raised hyperglycaemia and low high-density lipoprotein cholesterol[4]. The prevalence of MS has increased rapidly in both developed and developing countries and areas in recent years[5–9]. In China, this prevalence increased rapidly from 13.7% in 2005 to 33.9% in 2010 to 24.5% in 2016[10–12]. Findings from previous studies have suggested that MS and its components are risk factors for atrial fibrillation, stroke, cardiovascular disease (CVD), diabetes mellitus (DM) and other NCDs[13, 14]. There are few studies about the status of MS and its possible influencing factors among island residents in rural China[15, 16]. Yuhuan County, located on Yuhuan Island, is one of the most developed areas in China and is experiencing rapid urbanization among rural residents; however, there is a relatively high prevalence of several chronic diseases due to high-salt and high-fat diets[17, 18].
Recent studies have shown that socioeconomic status (SES) is a strong predictor of morbidity and premature mortality both in developing and developed countries [19, 20]. Prior studies reported that lower SES was associated with a higher risk for NCDs such as type 2 diabetes and coronary heart disease, and the severity varied by sex [21, 22]. With the changing socioeconomic environment, few studies have examined the association between SES and MS in rural East China. This study aimed to estimate the prevalence of and risk factors for MS and the association between SES and MS in different sexes in a rural area with rapid urbanization in East China.

Methods

Study site and population

A cross-sectional study was conducted in 3 communities in Yuhuan City, Zhejiang Province, from June to December 2012 using cluster sampling. A total of 26836 participants were included in this research, and the inclusion criteria were as follows: 1) 20 years and older; 2) local permanent resident without migration or travel plans (1 year or longer); 3) provided informed consent; and 4) able to complete the questionnaire and physical examination.

Data collection and quality control

Face-to-face questionnaire interviews were conducted and anthropometric data were collected by trained local health professionals. The following demographic data were collected: age; sex; lifestyle information, including smoking history (non-smoker/former smoker/current smoker), alcohol consumption (Yes/No), and regular physical exercise (Yes/No); socioeconomic status, including years of education (<9 years/≥9 years), monthly household income (<2000 RMB/≥2000 RMB), and occupation status (Manual worker/Mental worker/Unemployed/Other); and health conditions, including disease history of hypertension, diabetes mellitus, stroke, cardiovascular disease or other[23]. Anthropometry data included height, weight, waist and hip circumference, and blood pressure.

Blood samples were collected after an 8-hour fast and analysed in a reference laboratory to assess blood biochemical indexes, including fasting plasma glucose (FPG), 2-hour postprandial blood glucose (2hPG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG).

Definition of metabolic syndrome

The diagnosis of metabolic syndrome was based on IDF criteria as follows:

Central obesity (defined as waist circumference ≥90 cm for males or ≥80 cm for females, or BMI >30 kg/m²) plus any two or more of four additional factors:

(1) triglyceride levels ≥1.7 mmol/L (150 mg/dL);
(2) high blood pressure: systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥85 mmHg or treatment of previously diagnosed hypertension;

(3) high-density lipoprotein cholesterol levels <1.03 mmol/L (40 mg/dL) in males and 1.29 mmol/L (50 mg/dL) in females or specific treatment for lipid abnormalities;

(4) fasting plasma glucose levels ≥5.6 mmol/L (100 mg/dL) or previously diagnosed type 2 diabetes[24].

Statistical analysis

All data were entered into Epidata 3.1 twice. Pearson's chi-square test or Fisher's exact test was applied for categorical variables. Student's t-test or the Wilcoxon test was used for two-group comparisons of normally distributed and nonnormally distributed continuous variables, respectively. Logistic regression analysis was used to calculate crude odds ratios (cORs), adjusted ORs (aORs) and 95% confidence intervals (CIs) to estimate the potential risk factors as well as to explore the possible interactions between sex and socioeconomic factors. All analyses were conducted using SPSS 22.0, and a two-sided p-value of 0.05 or less was defined as significant, missing data were deleted.

Results

Basic characteristics of subjects (Table 1)

Data from 26836 individuals were analysed, including 59% females with an average age of 53.4±14.0 years. Compared with male subjects, females were more likely to have lower levels of education, lower monthly household income levels, and unemployment. Males showed significantly higher proportions of smoking and alcohol consumption. Additionally, MS components, including hypertension, high FPG levels and high TG levels, were more common in males than in females, except for low level of HDL-C. In addition, BMI and waist circumference were significantly higher in males than in females.

Prevalence of MS and its influencing factors (Tables 2&3)

The overall prevalence of MS was 20.1%, and there was a significant sex difference in the prevalence between males and females (15.0% vs. 24.2%, p<0.001). Additionally, participants who were elderly, were unemployed, had a lower monthly household income or had a lower level of education had a significantly higher prevalence of MS; after adjusting for covariates, there were significant interactions between sex and SES (p<0.001). Males who were mental workers and unemployed participants had a higher risk of MS, and females with a lower monthly household income, lower education level and unemployment had a higher risk of MS.

Sex-specific prevalence of MS components (Table 4 & Figure 1)

The prevalence of MS components (except HDL-C) among females increased with age, but only the prevalence of hypertension among males increased with age. It was revealed that females had higher
prevalences of most MS components, especially HDL-C, than males in all age groups, whereas there were higher proportions of triglyceride levels, high blood pressure and FPG levels among males under the age of 70, as shown in Figure 1. As presented in Table 4, females had a higher risk of HDL-C and central obesity components, while males had higher triglyceride levels, higher blood pressure, and higher FPG levels after adjusting for demographic and other MS components.

Discussion

In this study, we found a high prevalence of MS of 20.1% among 26836 participants in Yuhuan County, a coastal area located in developed East China, which was similar to previous studies ranging from 22.0–25.3%, and a higher prevalence for females was observed, which was consistent with previous studies [14, 25, 26]. Compared with the Northwest or other developing areas in China, MS was more prevalent in East China [27, 28]. The prevalence of MS increased with age in females, while in males, it first increased and then decreased, which was similar to the findings of other studies [29]. Furthermore, the prevalence in females was higher than that in males among individuals over the age of 50 years old and among those over the age of 60 years old, which may be associated with menopausal oestrogen deficiency [30, 31]. Another explanation was that the sex hormones affecting skeletal muscle mass were decreased in elderly and female subjects, which resulted in lower muscle mass and a higher risk of NCDs [32, 33]. Such an increase for women may also result from similar age-related trends in all MS components in Fig. 1 except HDL-C.

Another finding from this study was that significant interactions between sex and SES were observed among individuals with MS. In this study, females with a lower SES (especially lower income and lower education level) showed a higher risk for MS, which was consistent with prior studies [36–39]. This finding could be explained by the following potential reasons. First, participants with a lower SES were more likely to be exposed to unhealthy behaviours, psychological distress, lower life expectancy, lower access to health care, lower awareness of disease prevention and control, and a series of NCDs, such as obesity, hypertension, and diabetes mellitides, which are commonly associated with MS [20, 36–38]. Compared with females, lower income was shown to be a protective factor for MS among males; this discrepancy may be due to males being more likely to have a manual occupation, which reduced their risk for MS [39, 40]. Nam’s study reported that office workers had a higher risk of MS than manual workers, which was consistent with the present study [41].

Limitations And Strengths

This study was carried out in the rural Chinese community population with rapid urbanization, and the findings should be helpful to understand the status of MS in other similar areas of China or other countries. Of course, some limitations should be discussed. First, this study population was from the developed area in China, where the socioeconomic and lifestyle factors may be different than those in other rural areas in China. Second, anthropometric and demographic information were collected at a single point, which may lead to data inaccuracy, and it was less feasible for the present study to only use
IDF criteria as a definition without using other new definitions. Third, as a cross-sectional study, it is not possible to draw causal conclusions. More well-designed studies should be conducted to confirm our findings, especially regarding sex differences.

Conclusion

Our study indicated the different distribution of MS prevalence and MS components in males and females as well as sex differences in the association between in SES and MS. This study also updated the prevalence data in the Yuhuan rural area in Zhejiang Province in China. Risk factors for MS were identified to provide a reference for the prevention and management of this disease. More interventions and policies regarding the risk factors for MS need to be applied for people with lower SES, especially in females, to increase access to health care and to reduce health inequalities.

Abbreviations

Metabolic syndrome, MS; International Diabetes Federation, IDF; Odds ratios, ORs; 95% confidence intervals, CIs; Body mass index, BMI; Non-communicable chronic disease, NCDs; Socioeconomic status, SES; Atrial fibrillation, AF; Cardiovascular disease, CVD; Diabetes mellitus, DM; Fasting plasma glucose, FPG; 2-hour postprandial blood glucose, 2hPG; Total cholesterol, TC; Low-density lipoprotein, LDL; High-density lipoprotein cholesterol, HDL-C; Triglyceride, TG; Systolic blood pressure, SBP; Diastolic blood pressure, DBP.

Declarations

Ethics approval and consent to participate

The Institutional Review Board of the Fudan University School of Public Health approved this study, and all participants gave written informed consent.

Availability of data and materials

The datasets generated and/or analysed during the current study are not publicly available owing to local legislation and the written consent forms of participants but are available from the corresponding author on reasonable request.

Competing interests

The authors have no conflicts of interest to declare.

Funding

This work was supported by the National Natural Science Foundation of China (grant number 81473038) and Taizhou City Science Program (grant number 1401KY49). The sponsors had no role in the study
design, survey process, data analysis or manuscript preparation.

Authors’ Contributions

XHY and SYY analysed the data, interpreted the analysis results and drafted the manuscript. YC, QJ and CF designed the study and revised the manuscript. XHY, STL, MFS and NW analysed the data and collected the data. MFS, STL and XHY collected data and supervised the study. All authors read and approved the final manuscript.

Xuhua Ying[1]Δ, Shuyue Yang 2Δ, Songtao Li 1, Meifang Su 1, Na Wang 2, Yue Chen 3*, Qingwu Jiang 2, Chaowei Fu 2*

Acknowledgements

We gratefully acknowledge all the staff who participated in this project, including health workers in Yuhuan City Center for Disease Control and Prevention, from the Fudan School of Public Health, and from local community-based health facilities.

Authors’ information

1Yuhuan City Center of Disease Prevention and Control, Zhejiang Province, China. 2School of Public Health; Key Laboratory of Public Health Safety; NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China 200032. 3School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.

References

1. He Y, Jiang B, Wang J, Feng K, Chang Q, Fan L, et al. Prevalence of the Metabolic Syndrome and its Relation to Cardiovascular Disease in an Elderly Chinese Population. J Am Coll Cardiol. 2006;47:1588–94.
2. Sullivan PW, Ghushchyan V, Wyatt HR, Hill JO. The medical cost of cardiometabolic risk factor clusters in the United States. Obesity. 2007;15:3150–8.
3. Dagenais GR, Leong DP, Rangarajan S, Lanas F, Lopez-Jaramillo P, Gupta R, et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet. 2020;395:785–94. doi:10.1016/S0140-6736(19)32007-0.
4. Eckel RH, Alberti KGMM, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2010;375:181–3.
5. Šoštarič A, Jenko B, Kozjak NR, Ovijač D, Šuput D, Milisav l, et al. Detection of metabolic syndrome burden in healthy young adults may enable timely introduction of disease prevention. Arch Med Sci. 2019;15:1184–94.
6. Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, Caballeria J, et al. Modeling NAFLD
disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for
the period 2016–2030. J Hepatol. 2018;69:896–904. doi:10.1016/j.jhep.2018.05.036.
7. Lim S, Shin H, Song JH, Kwak SH, Kang SM, Yoon JW, et al. Increasing prevalence of metabolic
syndrome in Korea: The Korean National Health and Nutrition Examination Survey for 1998-2007.
Diabetes Care. 2011;34:1323–8.
8. Kaduka LU, Kombe Y, Kenya E, Kuria E, Bore JK, Bukania ZN, et al. Prevalence of Metabolic Syndrome
among an Urban Population in Kenya. Diabetes Care. 2012;35:887–93.
9. Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United
States, 2003-2012. JAMA. 2015;313:1973–4.
10. Gu D, Reynolds K, Wu X, Chen J, Duan X, Reynolds RF, et al. Prevalence of the metabolic syndrome
and overweight among adults in China. Lancet. 2005;365:1398–405.
11. Li R, Li W, Lun Z, Zhang H, Sun Z, Kanu JS, et al. Prevalence of metabolic syndrome in mainland
China: A meta-analysis of published studies. BMC Public Health. 2016;16:1–10.
12. Lu J, Wang L, Li M, Xu Y, Jiang Y, Wang W, et al. Metabolic syndrome among adults in China: The
2010 China Noncommunicable Disease Surveillance. J Clin Endocrinol Metab. 2017;102:507–15.
13. Gu L, Xie J, Long J, Chen Q, Chen Q, Pan R, et al. Epidemiology of Major Depressive Disorder in
Mainland China: A Systematic Review. PLoS One. 2013;8.
14. Cheng L, Yan W, Zhu L, Chen Y, Liu J, Xu Y, et al. Comparative analysis of IDF, ATPIII and CDS in the
diagnosis of metabolic syndrome among adult inhabitants in Jiangxi Province, China. PLoS One.
2017;12:1–13.
15. Guo H, Gao X, Ma R, Liu J, Ding Y, Zhang M, et al. Prevalence of Metabolic Syndrome and its
Associated Factors among Multi-ethnic Adults in Rural Areas in Xinjiang, China. Sci Rep. 2017;7:1–9.
doi:10.1038/s41598-017-17870-5.
16. Xiao J, Shen C, Chu MJ, Gao YX, Xu GF, Huang JP, et al. Physical activity and sedentary behavior
associated with components of metabolic syndrome among people in rural China. PLoS One.
2016;11:1–15.
17. M S, N T, S L, X Y, C F, Q J. Prevalence of Hyperglycemia and Related Factors Among Rural Adults
Aged 35 Years Old and Above in Yuhuan County, Zhejiang Province. J Hyg Res. 2014;43.
18. Su M, Chen X, Xiao T, Li S, Ying X, Jiang Q, et al. Related factors for early-onset type 2 diabetes
mellitus of rural adults in Yuhuan County of Zhejiang Province in 2012. J Hyg Res. 2017;46:749–54.
doi:10.19813/j.cnki.weishengyanjiu.2017.05.012.
19. Silvia Stringhini, MSc; Séverine Sabia, PhD; Martin Shipley, MSc; Eric Brunner, PhD; Hermann Nabi,
PhD; Mika Kivimaki, PhD; Archana Singh-Manoux P. Association of Socioeconomic Position With
Health Behaviors and Mortality. JAMA. 2010;303:1159–66.
20. Stringhini S, Carmeli C, Jokela M, Avendaño M, Muennig P, Guida F, et al. Socioeconomic status and
the 25 × 25 risk factors as determinants of premature mortality: a multicohort study and meta-
analysis of 1.7 million men and women. Lancet. 2017;389:1229–37.
21. Shin D, Man J, Erick T, Park E. Diabetes & Metabolic Syndrome: Clinical Research & Reviews Impact of change in job status on mortality for newly onset type II diabetes patients: 7 years follow-up using cohort data of National Health Insurance, Korea. Diabetes Metab Syndr Clin Res Rev. 2016;10:S1–6. doi:10.1016/j.dsx.2015.08.012.

22. Zhu K, Wang Y, Zhu J, Zhou Q, Wang N. National prevalence of coronary heart disease and its relationship with human development index: A systematic review. Eur J Prev Cardiol. 2016;23:530–43.

23. Su M, Chen X, Chen Y, Wang C, Li S, Ying X, et al. UCP2 and UCP3 variants and gene-environment interaction associated with prediabetes and T2DM in a rural population: A case control study in China. BMC Med Genet. 2018;19:1–9.

24. International Diabetes Federation. The IDF consensus worldwide definition of the metabolic syndrome. 2006;1–23.

25. Zhang WH, Xue P, Yao MY, Chang HM, Wu Y, Zhang L. Prevalence of metabolic syndrome and its relationship with physical activity in suburban Beijing, China. Ann Nutr Metab. 2014;63:298–304.

26. Huang J, Huang JL, Withers M, Chien K-L, Trihandini I, Elcarte E, et al. Prevalence of metabolic syndrome in Chinese women and men: a systematic review and meta-analysis of data from 734 511 individuals. Lancet. 2018;392:S14.

27. Yi Z, Jing J, Xiu-Ying L, Hongxia X, Jianjun Y, Yuhong Z. Prevalence of the metabolic syndrome among rural original adults in NingXia, China. BMC Public Health. 2010;10.

28. Zhao Y, Yan H, Yang R, Li Q, Dang S, Wang Y. Prevalence and determinants of metabolic syndrome among adults in a rural area of northwest China. PLoS One. 2014;9.

29. Jiang B, Zheng Y, Chen Y, Chen Y, Li Q, Zhu C, et al. Age and gender-specific distribution of metabolic syndrome components in East China: Role of hypertriglyceridemia in the SPECT-China study. Lipids Health Dis. 2018;17:1–11.

30. Ebtekar F, Dalvand S, Geshlagh RG. The prevalence of metabolic syndrome in postmenopausal women: A systematic review and meta-analysis in Iran. Diabetes Metab Syndr Clin Res Rev. 2018;12:955–60. doi:10.1016/j.dsx.2018.06.002.

31. Yan H, Zhang M, Zhang X, Xia Y, Shen T, Zhao Z, et al. Study of epidemiological characteristics of metabolic syndrome and influencing factors in elderly people in China. Chinese J Endem. 2019;40:284–9.

32. Kupelian V, Hayes FJ, Link CL, Rosen R, Mckinlay JB. Inverse Association of Testosterone and the Metabolic Syndrome in Men Is Consistent across Race and Ethnic Groups. J Clin Endocrinol Metab. 2008;93:3403–10.

33. Ou Y, Chuang H, Li W, Tzeng I, Chen J. Gender difference in the association between lower muscle mass and metabolic syndrome independent of insulin resistance in a middle-aged and elderly Taiwanese population. Arch Gerontol Geriatr. 2017;72:12–8. doi:10.1016/j.archger.2017.04.006.

34. Yang X, Tao Q, Sun F, Zhan S. The impact of socioeconomic status on the incidence of metabolic syndrome in a Taiwanese health screening population. Int J Public Health. 2012;57:551–9.
35. Dinsa GD, Goryakin Y, Fumagalli E, Suhrcke M. Obesity and socioeconomic status in developing countries: A systematic review. Obes Rev. 2012;13:1067–79.

36. Wu HF, Tam T, Jin L, Bmed XQL, Chung RY, Su XF, et al. Annals of Epidemiology Age , gender , and socioeconomic gradients in metabolic syndrome: biomarker evidence from a large sample in Taiwan , 2005-2013. Ann Epidemiol. 2017;27:315-322.e2. doi:10.1016/j.annepidem.2017.04.003.

37. Linander I, Hammarström A, Johansson K. Which socio-economic measures are associated with psychological distress for men and women? A cohort analysis. Eur J Public Health. 2015;25:231–6.

38. Yang F, Qian D, Liu X. Socioeconomic disparities in prevalence, awareness, treatment, and control of hypertension over the life course in China. Int J Equity Health. 2017;16:10–7.

39. Park HS, Oh SW, Cho S II, Choi WH, Kim YS. The metabolic syndrome and associated lifestyle factors among South Korean adults. Int J Epidemiol. 2004;33:328–36.

40. Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ Res. 2019;124:799–815.

41. Nam JY, Kim J, Cho KH, Choi Y, Choi J, Shin J, et al. Associations of sitting time and occupation with metabolic syndrome in South Korean adults: A cross-sectional study. BMC Public Health. 2016;16:1–10. doi:10.1186/s12889-016-3617-5.

Tables

Table 1. Characteristics of subjects over sex in the rural Chinese population
Characteristics	Male, (n/%) (n=10998)	Female, (n/%) (n=15838)	Total	P value
Age group (years)				0.013
<40	1979(18.5)	2802(17.7)	4781(17.8)	
40-	2582(23.5)	3951(24.9)	6533(24.3)	
50-	2620(23.8)	3840(24.2)	6460(24.1)	
60-	2343(21.3)	3280(20.7)	5623(21.0)	
≥70	1474(13.4)	1965(12.4)	3439(12.8)	
Education year (≥9)	1366(12.4)	1707(10.8)	3073(11.5)	<0.001
Occupation status a				<0.001
Manual worker	3590(32.7)	2873(18.2)	6463(24.1)	
Mental worker	1628(14.8)	1283(8.1)	2911(10.9)	
Unemployed	3117(28.4)	9883(62.5)	13000(48.5)	
Others	2635(24.0)	1773(11.2)	4408(16.5)	
Regular physical exercise (Yes) b	4414(43.5)	7968(56.1)	12382(50.8)	<0.001
Monthly household income				<0.001
<2000 RMB	4039(36.7)	7797(49.2)	11836(44.1)	
≥2000 RMB	6959(63.3)	8041(50.8)	15000(55.9)	
Smoking				<0.001
Non-smoker	5816(52.9)	15760(99.5)	21576(80.4)	
Former smoker	454(4.1)	43(0.3)	497(1.9)	
Current smoker	4728(43.0)	35(0.2)	4763(17.7)	
Alcohol consumption (Yes)	4258(38.7)	48(0.3)	4306(16.0)	<0.001
Hypertension (Yes) c	6509(59.2)	7790(49.2)	14299(53.3)	<0.001
Diabetes mellitus (Yes)	863(7.8)	1170(7.4)	2033(7.6)	<0.001
FPG (>5.6mmol/L) d	3109(28.3)	3724(23.6)	6833(25.5)	<0.001
TG (≥1.7mmol/L)	3662(33.3)	3719(23.5)	7381(27.5)	<0.001
HDL-C (<1.03mmol/L)	908(8.3)	3987(25.2)	4895(18.2)	<0.001
Age(year) (Mean±SD)	53.6±14.3	53.3±13.8	53.4±14.0	0.142
SPB (Mean±SD)	133.7±18.9	129.9±21.2	131.4±20.3	<0.001
---------------	------------	------------	------------	--------
DPB (Mean±SD)	79.4±11.7	75.4±10.9	77.0±11.4	<0.001
BMI (Mean±SD)	24.1±3.8	23.6±3.7	23.8±3.8	<0.001
Waist circumference (Mean±SD)	83.0±9.4	78.5±9.6	80.3±9.8	<0.001
WHR (Mean±SD)	0.90±0.08	0.86±0.09	0.88±0.09	<0.001

Notes: a:54 data loss; b:2484 data loss; c:7 data loss; d:52 data loss.

Table 2. Prevalence and possible risk factors of subjects for metabolic syndrome
Characteristics	Non-MS, n(%) (n=20908)	MS, n(%) (n=5396)	P value	Crude OR (95%CI)	Adjusted OR (95%CI)
Sex			<0.001		
Male	9116(84.9)	1627(15.1)	1.00	1.00	1.00
Female	11792(75.8)	3769(24.2)	1.79	(1.68~1.91)	1.98 (1.79~2.18)
Age group (years)			<0.001		
<40	4358(93.1)	321(6.9)	1.00	1.00	1.00
40-	5478(85.6)	924(14.4)	2.29	(2.00~2.62)	2.22 (1.91~2.57)
50-	4887(77.0)	1459(23.0)	4.05	(3.57~4.60)	3.80 (3.29~4.39)
60-	3879(70.3)	1640(29.7)	5.74	(5.05~6.52)	5.40 (4.64~6.28)
≥70	2306(68.7)	1052(31.3)	6.19	(5.41~7.09)	5.86 (4.97~6.90)
Pinteraction c			<0.001		
Monthly household income			<0.001		
≥2000 RMB	12310(83.7)	2389(16.3)	1.00	1.00	1.00
<2000 RMB	8598(74.1)	3007(25.9)	1.80	(1.70~1.91)	1.07(0.99~1.15)
Pinteraction c			<0.001		
Education year			<0.001		
≥9	2692(89.2)	327(10.8)	1.00	1.00	1.00
<9	18216(78.2)	5069(21.8)	2.29	(2.03~2.58)	1.19 (1.04~1.37)
Pinteraction c			<0.001		
Occupation status b			<0.001		
Manual worker	5478(86.7)	842(13.3)	1.00	1.00	1.00
Mental worker	2427(84.7)	439(15.3)	1.18	(1.04~1.33)	1.64 (1.43~1.89)
Unemployed	9340(73.2)	3411(26.8)	2.38		1.43 (1.30~1.58)
Table 3. Different risk-factors of subjects over sex for metabolic syndrome

	Male	Female	Unadjusted OR (95% CI)	Adjusted OR (95% CI)
Others	3625(84.0)	689(16.0)	1.24 (1.11~1.38)	1.33 (1.18~1.50)
Smoking				<0.001
Non-smoker	16569(78.3)	4593(21.7)	1.00	1.00
Former smoker	417(85.1)	73(14.9)	0.63 (0.49~0.81)	0.91 (0.69~1.19)
Current smoker	3922(84.3)	730(15.7)	0.67 (0.62~0.73)	1.15 (1.02~1.29)
Alcohol consumption			<0.001	
No	17404(78.8)	4696(21.2)	1.00	1.00
Yes	3504(83.3)	700(16.7)	0.74 (0.68~0.81)	1.28 (1.14~1.45)

Notes: a: 532 data loss. b: Adjusted for sex, age group, monthly household income, education year, occupation status, regular physical exercise, smoking, alcohol consumption; c: Interactions between sex and socioeconomic factors, including age group, monthly household income, education year, unemployed. *p<0.05, **p<0.01, ***p<0.001.
Characteristics	OR (95% CI)	Male (n=10998)	Female (n=15838)		
		MS, n(%) a	Adjusted OR (95% CI)	MS, n(%) b	Adjusted OR (95% CI)
Monthly household income					
≥2000 RMB	1.00	1040(15.3)	1.00	1349(17.1)	1.00
<2000 RMB	2.48 (2.15~2.87)***	587(14.9)	0.83 (0.73~0.95)**	2420(31.6)	1.20 (1.10~1.32)***
Education year					
≥9	1.00	185(13.8)	1.00	142(8.4)	1.00
<9	3.48 (2.67~4.53)***	1442(15.3)	0.90 (0.75~1.09)	3627(26.1)	1.56 (1.27~1.93)***
Occupation status b					
Manual worker	1.00	402(11.5)	1.00	440(15.6)	1.00
Mental worker	0.44 (0.33~0.58)***	273(17.1)	1.70 (1.42~2.04)***	166(13.1)	1.17 (0.94~1.46)
Unemployed	1.28 (1.05~1.56)*	544(17.9)	1.70 (1.45~2.00)***	2867(29.5)	1.20 (1.05~1.38)**
Others	0.69 (0.54~0.88)**	404(15.7)	1.37 (1.16~1.61)***	285(16.4)	1.08 (0.89~1.31)

Notes: Adjusted for age group, monthly household income, education year, occupation status, smoking, alcohol consumption, regular physical exercise. a:255 data loss; b:277 data loss. *p<0.05, **p<0.01, ***p<0.001.

Table 4. Associations between sex and metabolic syndrome components among subjects

MS components	Crude OR (95%CI)	P value	Adjusted OR (95%CI)	P value
Raised triglycerides a	0.61(0.58~0.65)	<0.001	0.45(0.41~0.49)	<0.001
High blood pressure b	0.67(0.64~0.70)	<0.001	0.57(0.52~0.62)	<0.001
High FPG c	0.79(0.75~0.83)	<0.001	0.72(0.66~0.78)	<0.001
Low HDL-C d	3.74(3.46~4.04)	<0.001	4.57(4.01~5.22)	<0.001
Central obesity e	2.48(2.35~2.62)	<0.001	2.87(2.63~3.13)	<0.001
Notes: Male were taken as the reference group.

a: Adjusted for age, education level, monthly household income, occupation status, regular physical exercise, smoking, alcohol drinking, BMI, HBP, HDL-C, FPG, Central obesity.

b: Adjusted for age, education level, monthly household income, occupation status, regular physical exercise, smoking, alcohol drinking,

BMI, TG, HDL-C, FPG, Central obesity.

c: Adjusted for age, education level, monthly household income, occupation status, regular physical exercise, smoking, alcohol drinking, BMI, HBP, TG, HDL-C, Central obesity.

d: Adjusted for age, education level, monthly household income, occupation status, regular physical exercise, smoking, alcohol drinking, BMI, HBP, TG, FPG, Central obesity.

e: Adjusted for age, education level, monthly household income, occupation status, regular physical exercise, smoking, alcohol drinking, HBP, TG, HDL-C, FPG.