On Generalized Pre-Continuous Fuzzy Proper Function from a Fuzzy Topological Space to Another Fuzzy Topological Space

Yusra Jarallah Ajeel

Department of Mathematics, College of Science, Al-Mustansiriyah University, Baghdad-Iraq.

E-mail: Ysrajara@yahoo.com

Abstract: The purpose of this paper is to introduce and study the concepts of fuzzy generalized pre-open sets, fuzzy generalized pre-closed sets and generalized pre-continuous fuzzy proper functions. Some of its properties have also been investigated. Relation between continuous fuzzy proper functions and generalized pre-continuous fuzzy proper functions has also been established.

Keywords: Fuzzy generalized pre-closed sets, Fuzzy proper function, Generalized pre-continuous fuzzy proper functions.

Introduction and preliminaries: The concept of fuzzy set and fuzzy set operations were first introduced by Zadeh's [1]. The notion of a fuzzy subsets naturally plays a significant role in the study of fuzzy topology was introduced by Change [2].

Fuzzy pre-semi-closed sets in fuzzy topological spaces (or f.t.s. in short) on X introduced and investigated their properties by Murugesan and Thangavelu [3].

In this paper generalization of fuzzy closed sets are based on topological notions which were introduced and studied by Leving [4], 1970.

In 1997, Balasubramanium and Sundaram [5] introduced the concept fuzzy generalized closed set and spaces. Recently EL-Shafei et al [6], 2007 introduced and study semi generalized continuous function in fuzzy topological space.

Kalaiselvi and Seenivasan [7] defined fuzzy generalized pre-closed set in fuzzy topological space (or f.t.s. in short) on X, I[X] is the collection of all mapping from X in to I=[0,1]. A fuzzy set A in f.t.s (X,T) is said to be quasi-coincident (or q-coincident in short) with a fuzzy set B, denoted by AqB, if there exists x ∈ X such that μ_A(x) + μ_B(x) > 1 [8]. If A,B ∈ I[X], μ_B(x) ≤ μ_A(x) ∀x ∈ X, then B is said to be a fuzzy subset of A and denoted by B ⊆ A [2]. A fuzzy point P_x in a set X is a fuzzy set with membership function μ_{P_x}(x), defined by:

μ_{P_x}(x) = r for x = x_p,

and μ_{P_x}(x) = 0 for x ≠ x_p.

where r ∈ (0,1), x_p is called the support of P_x, and r the value of P_x [9]. A fuzzy point P_x in X is called belong to a fuzzy set A in X (notation: P_x ∈ A) iff r ≤ μ_A(x), a fuzzy set A in X is the union of all its fuzzy points [10].

In the present paper we study the properties of generalized pre-continuous fuzzy proper functions and prove results about this concept.
1. Basic Concept of a Fuzzy Topological Space on Fuzzy Set \tilde{A}:

In this section, we present fuzzy topological space on fuzzy set with fundamental concepts in fuzzy topological space on fuzzy set, such as quasi-coincident, complement of fuzzy set, maximal fuzzy set, etc.

Remark (1.1)[11]: Let $\tilde{A} \in I^X$, $\tilde{C} \in I^Y$, $P(\tilde{A}) = \{ \tilde{B} \in I^X: \tilde{B} \subseteq \tilde{A} \}$ and $P(\tilde{C}) = \{ \tilde{D} \in I^Y: \tilde{D} \subseteq \tilde{C} \}$.

Definition (1.2)[11]: Let \tilde{A}, \tilde{B}, be two fuzzy sets in X with $\tilde{B} \in P(\tilde{A})$ then the complement of \tilde{B} relative to \tilde{A}, denoted by $(\tilde{B})^c$, is defined by:

$$\mu_{(\tilde{B})^c}(x) = \mu_{\tilde{A}}(x) - \mu_{\tilde{B}}(x).$$

Definition (1.3)[10]: Let $P^c_x \subseteq \tilde{A}$ and $\tilde{B} \in P(\tilde{A})$ are said to be q-coincident relative to \tilde{A} [written as $P^c_x q_{\tilde{A}} \tilde{B}$] if there exists $x \in X$, such that $r + \mu_{\tilde{B}}(x) > \mu_{\tilde{A}}(x)$. If P^c_x is not q-coincident with \tilde{B} in \tilde{A}, we denote this $P^c_x \notin q_{\tilde{A}} \tilde{B}$.

Definition (1.4)[12]: If $\tilde{B} \in P(\tilde{A})$ then \tilde{B} is said to be maximal if $\forall x \in X$, $\mu_{\tilde{B}}(x) = 0$, then $\mu_{\tilde{B}}(x) = \mu_{\tilde{A}}(x)$.

Definition (1.5)[13]: A collection \tilde{T} of a fuzzy subsets of \tilde{A} is said to be fuzzy topology on \tilde{A}, if:

(a) $\emptyset, \tilde{A} \in \tilde{T}$.
(b) If $\tilde{B}, \tilde{C} \in \tilde{T}$, then $\tilde{B} \cap \tilde{C} \in \tilde{T}$.
(c) If $\tilde{B}_j \in \tilde{T}, \forall j \in J$, where J is any index set, then $\bigcup_{j \in J} \tilde{B}_j \in \tilde{T}$.

(\tilde{A}, \tilde{T}) is said to be a fuzzy topological space on fuzzy set \tilde{A} (or f.t.s on \tilde{A}) and the members of \tilde{T} are said to be fuzzy open sets of \tilde{A}. We denote \tilde{T}^c the family of fuzzy closed sets of \tilde{A}, that is $\tilde{B} \in \tilde{T}^c$ if and only if $\mu_{\tilde{B}}(x) = \mu_{\tilde{A}}(x) - \mu_{\tilde{B}}(x) \in \tilde{T}$.

Definition (1.6)[13]: Let \tilde{B} be a fuzzy set in a f.t.s (\tilde{A}, \tilde{T}). The closure \tilde{B} (or $\text{cl}(\tilde{B})$) and interior \tilde{B}^o (or $\text{int}(\tilde{B})$) of \tilde{B} are defined, respectively, by:

$$\text{cl}(\tilde{B}) = \cap \{ \tilde{F} : \tilde{B} \subseteq \tilde{F}, \tilde{F} \in \tilde{T} \}$$

$$\text{int}(\tilde{B}) = \cup \{ \tilde{G} : \tilde{G} \subseteq \tilde{B}, \tilde{G} \in \tilde{T} \}$$

2. Fuzzy Generalized pre-Open Set and Fuzzy Generalized pre-Closed Set in a Fuzzy Topological Space on fuzzy set:

In this section, we give definitions fuzzy generalized closed sets, fuzzy generalized open sets and fuzzy proper function with some properties.

Definition (2.1)[13]: A fuzzy set \tilde{B} in a fuzzy topological space (\tilde{A}, \tilde{T}) is said to be

1) Fuzzy pre-open set (in short, f.p.o.s.) if $\tilde{B} \subseteq \text{int}(\text{cl}(\tilde{B}))$
2) Fuzzy pre-closed set (in short, f.p.c.s.) if $\text{cl}(\text{int}(\tilde{B})) \subseteq \tilde{B}$

Definition (2.2)[13]: Let \tilde{B} be a fuzzy set in a f.t.s (\tilde{A}, \tilde{T}). The pre-closure \tilde{B} (or $\text{p-cl}(\tilde{B})$) of \tilde{B} is defined by:

$$\text{p-cl}(\tilde{B}) = \cap \{ \tilde{F} : \tilde{B} \subseteq \tilde{F} \cap \tilde{F} \text{ is a fuzzy pre-closed set in } \tilde{A} \}$$
Definition (2.3)[13]: Let \tilde{B} be a fuzzy set in a f.t.s (\tilde{A}, \tilde{T}). The pre-interior \tilde{B}^p (or p-int(\tilde{B})) of \tilde{B} is defined by:

$$p\text{-int}(\tilde{B}) = \cup \{ \tilde{G} : \tilde{G} \subseteq \tilde{B}, \text{is a fuzzy pre-open set in } \tilde{A} \}$$

Definition (2.4)[14]: A fuzzy set \tilde{B} in a fuzzy topological space (\tilde{A}, \tilde{T}) is said to be fuzzy generalized pre-closed set (in short, f.g.p.c.s.) if p-cl(\tilde{B}) $\subseteq \tilde{G}$, whenever $\tilde{B} \subseteq \tilde{G}$ and \tilde{G} is fuzzy open set in (\tilde{A}, \tilde{T}).

Theorem (2.5)[14]: In a fuzzy topological space (\tilde{A}, \tilde{T}) the complement of a fuzzy generalized pre-closed set is fuzzy generalized pre-open set.

Definition (2.6): Let \tilde{C} be a fuzzy set in a f.t.s (\tilde{A}, \tilde{T}) and P_x^G is a fuzzy point of X. Then \tilde{C} is called:

(a) Fuzzy generalized pre-neighborhood (f.g.p.nbd) (resp. fuzzy neighborhood (f.nbd)) of P_x^G if and only if there exists a fuzzy generalized pre-open set (resp. fuzzy open set) \tilde{B} in (\tilde{A}, \tilde{T}), such that $\tilde{P}_x^G \subseteq \tilde{B} \subseteq \tilde{C}$.

(b) Fuzzy generalized pre-quasi neighborhood (f.g.p.q.nbd)(resp. fuzzy quasi neighborhood (f.q.nbd)) of P_x^G if and only if there exists a fuzzy generalized pre-open set (resp. fuzzy open set) \tilde{B} in (\tilde{A}, \tilde{T}), such that $\tilde{P}_x^G \tilde{q}\tilde{B} \subseteq \tilde{C}$.

Definition (2.7)[9]: A fuzzy subset \tilde{f} of $X \times Y$ is said to be a fuzzy proper function from $\tilde{A} \in \mathcal{X}$ to $\tilde{B} \in \mathcal{Y}$ if

a. $\tilde{f}(x, y) \leq \min(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(y)), \forall (x, y) \in X \times Y$.

b. $\forall x \in X, \exists y^* \in Y$ such that $\tilde{f}(x, y^*) = \mu_{\tilde{A}}(x)$ and $\tilde{f}(x, y) = 0$ if $y \neq y^*$.

Definition (2.8)[9]: Let $\tilde{f}: \tilde{A} \to \tilde{B}$ be a fuzzy proper function, define the correspondent F-proper function $\tilde{f}: P(\tilde{A}) \to P(\tilde{B})$ and its reverse F-proper function $\tilde{f}^{-1}: P(\tilde{B}) \to P(\tilde{A})$ by

i. $\tilde{f}: P(\tilde{A}) \to P(\tilde{B}), \mu_{\tilde{f}(C)}(y) = \sup\{\tilde{f}(x, y) \land \mu_{\tilde{C}}(x) : x \in X\}, \forall y \in Y \text{ and } \forall \tilde{C} \in P(\tilde{A})$.

ii. $\tilde{f}^{-1}: P(\tilde{B}) \to P(\tilde{A}), \mu_{\tilde{f}^{-1}(x)}(y) = \sup\{\tilde{f}(x, y) \land \mu_{\tilde{B}}(y) : y \in Y\}, \forall x \in X \text{ and } \forall \tilde{D} \in P(\tilde{B})$.

Proposition (2.9)[12]: Let $\tilde{f}: \tilde{A} \to \tilde{B}$ be a fuzzy proper function, if $\tilde{G} \in P(\tilde{B})$ is maximal, then $\tilde{f}^{-1}(\tilde{G}^c) = [\tilde{f}^{-1}(\tilde{G})]^c$.

Proposition (2.10)[12]: For fuzzy proper function $\tilde{f}: \tilde{A} \to \tilde{B}$. Then

i. $\tilde{C} \subseteq \tilde{f}^{-1}(\tilde{f}(\tilde{C})), \forall \tilde{C} \in P(\tilde{A})$.

ii. $\tilde{f}(\tilde{f}^{-1}(\tilde{D})) \subseteq \tilde{D}, \forall \tilde{D} \in P(\tilde{B})$.

3. Generalized pre-Continuous Fuzzy Proper Functions:

In this section, a new type of fuzzy continuous functions which are called fuzzy generalized pre-continuous functions are defined and their properties are studied.

Definition (3.1): A fuzzy proper function \tilde{f} from a f.t.s (\tilde{A}, \tilde{T}) to f.t.s (\tilde{B}, \tilde{T}) is said to be generalized pre-continuous if $\tilde{f}^{-1}(\tilde{G})$ is f.g.p.o.s. in \tilde{A}, for each fuzzy open set \tilde{G} in \tilde{B}.

Theorem (3.2): If $\tilde{f}: (\tilde{A}, \tilde{T}_1) \to (\tilde{B}, \tilde{T}_2)$ is fuzzy continuous, then it is fuzzy generalized pre-continuous.

Proof: Let \tilde{G} be a fuzzy open set in \tilde{B}. Since \tilde{f} is fuzzy continuous function, then $\tilde{f}^{-1}(\tilde{G})$ is fuzzy open set in \tilde{A}, this implies $\tilde{f}^{-1}(\tilde{G}) = \text{int}(\tilde{f}^{-1}(\tilde{G}))$(3.1)
Since \(f^{-1}(\bar{G}) \subseteq cl(f^{-1}(\bar{G})) \), then \(int(f^{-1}(\bar{G})) \subseteq int(cl(f^{-1}(\bar{G}))) \).

From (3.1), we have \(f^{-1}(\bar{G}) \subseteq int(cl(f^{-1}(\bar{G}))) \), thus \(f^{-1}(\bar{G}) \) is fuzzy pre-open set.

This implies \(p - int(f^{-1}(\bar{G})) = f^{-1}(\bar{G}) \) ...(3.2)

Let \(\bar{F} \subseteq f^{-1}(\bar{G}) \) such that \(\bar{F} \) is a fuzzy closed set in \(\bar{A} \), from (3.2) we have \(\bar{F} \subseteq p - int(f^{-1}(\bar{G})) \). hence \(f^{-1}(\bar{G}) \) is fuzzy generalized pre-open set in \(\bar{A} \), thus \(\bar{f} \) is fuzzy generalized pre-continuous function.

Theorem (3.3): Let \(\bar{f}: (\bar{A}, \bar{T}_1) \to (\bar{B}, \bar{T}_2) \) be a fuzzy proper function, then if \(\bar{G} \) is maximal fuzzy closed subset of \(\bar{B} \) then \(\bar{f} \) is fuzzy generalized pre-continuous function if and only if \(\bar{f}^{-1}(\bar{G}) \) is f.g.p.c.s., \(\forall \bar{G} \in \bar{T}_2^c \).

Proof: Let \(\bar{G} \) is maximal fuzzy closed set in \(\bar{B} \) with \(P_\bar{y}^r \in \bar{G} \), then \(\bar{G}^c \) is fuzzy open set. Since \(\bar{f} \) is fuzzy generalized pre-continuous function, then \(\bar{f}^{-1}(\bar{G}^c) \) is f.g.p.o.s. in \(\bar{A} \).

Since \(\bar{G} \) is maximal fuzzy set, thus \(\bar{f}^{-1}(\bar{G}^c) = [f^{-1}(\bar{G})]^c \) this implies \([f^{-1}(\bar{G})]^c \) is f.g.p.o.s. in \(\bar{A} \).

Hence \([\bar{f}^{-1}(\bar{G})]^c = f^{-1}(\bar{G}) \) is f.g.p.c.s. in \(\bar{A} \).

Conversely, Let \(\bar{G} \) be a maximal fuzzy closed set in \(\bar{B} \)

Then \(\bar{f}^{-1}(\bar{G}) \) is f.g.p.c.s. in \(\bar{A} \) and \(\bar{G}^c \) is fuzzy open set in \(\bar{B} \).

This implies that \([\bar{f}^{-1}(\bar{G})]^c \) is f.g.p.o.s. in \(\bar{A} \).

But \([\bar{f}^{-1}(\bar{G})]^c = f^{-1}(\bar{G}^c) \), we have \(f^{-1}(\bar{G}^c) \) is f.g.p.o.s. in \(\bar{A} \).

This implies \(\bar{f} \) is fuzzy generalized pre-continuous function.

Theorem (3.4): Let \(\bar{f}: (\bar{A}, \bar{T}_1) \to (\bar{B}, \bar{T}_2) \) be a fuzzy proper function, then the following statements are equivalent:

1. For each fuzzy point \(P_\bar{y}^r \) in \(\bar{A} \), for each \(y \in Y \) and for each fuzzy open set \(\bar{G} \) in \(\bar{B} \) with \(P_\bar{y}^r \in \bar{G} \), there exists f.g.p.o.s. \(\bar{H} \) in \(\bar{A} \), such that \(P_\bar{y}^r \in \bar{H} \) and \(\bar{f}(\bar{H}) \subseteq \bar{G} \).
2. For each fuzzy point \(P_\bar{y}^r \) in \(\bar{A} \), for each \(y \in Y \) and for each fuzzy neighborhood \(\bar{N} \) of \(P_\bar{y}^r \) in \(\bar{B} \), \(f^{-1}(\bar{N}) \) is fuzzy generalized pre-neighborhood of \(P_\bar{y}^r \) in \(\bar{A} \).

Proof: Let \(\bar{G} \) be a fuzzy open set in \(Y \) with \(P_\bar{y}^r \in \bar{G} \).

Let \(\bar{H} \) be f.g.p.o.s. in \(\bar{A} \), such that \(P_\bar{y}^r \in \bar{H} \) and \(\bar{f}(\bar{H}) \subseteq \bar{G} \).

Since \(P_\bar{y}^r \in \bar{G} \) and \(\bar{G} \) fuzzy open set, thus \(\bar{G} \) is f.nbd of \(P_\bar{y}^r \).

Since \(\bar{H} \) is f.g.p.o.s. in \(I^X \) and \(\bar{f}(\bar{H}) \subseteq \bar{G} \), then \(\bar{f}^{-1}(\bar{f}(\bar{H})) \subseteq \bar{f}^{-1}(\bar{G}) \Rightarrow \bar{H} \subseteq \bar{f}^{-1}(\bar{G}) \), hence \(P_\bar{y}^r \in \bar{H} \subseteq \bar{f}^{-1}(\bar{G}) \).

Since \(\bar{H} \) is f.g.p.o.s. in \(\bar{A} \), then \(\bar{f}^{-1}(\bar{G}) \) is f.g.p.nbd of \(P_\bar{y}^r \) in \(\bar{A} \).

(2 \(\Rightarrow \) 1) Suppose that \(\bar{G} \) is a fuzzy open set in \(\bar{B} \) with \(P_\bar{y}^r \in \bar{G} \), then \(\bar{G} \) is f.nbd of \(P_\bar{y}^r \Rightarrow \bar{f}^{-1}(\bar{G}) \) is f.g.p.nbd of \(P_\bar{y}^r \) in \(I^X \), this implies there exists f.g.p.o.s. \(\bar{H} \) in such that \(P_\bar{y}^r \in \bar{H} \subseteq \bar{f}^{-1}(\bar{G}) \).

Since \(\bar{H} \subseteq \bar{f}^{-1}(\bar{G}) \Rightarrow \bar{f}(\bar{H}) \subseteq \bar{G} \).

Theorem (3.5): Let \(\bar{f}: (\bar{A}, \bar{T}_1) \to (\bar{B}, \bar{T}_2) \) be a fuzzy proper function, then the following statements are equivalent:

4
1. For each fuzzy point \(P^r_y \) in \(A \), for each \(y \in Y \) and for each f.nbd \(M \) of \(P^r_y \) in \(B \), \(\tilde{f}^{-1}(M) \) is f.g.p.nbd of \(P^r_x \) in \(A \).

2. For each fuzzy point \(P^r_y \) in \(A \), for each \(y \in Y \) and for each f.nbd \(G \) of \(P^r_y \) in \(B \), there exists f.g.p.nbd \(H \) of \(P^r_x \) in \(A \), such that \(P^r_y \in H \) and \(f(H) \subseteq G \).

Proof: (1) \(\Rightarrow \) 2 Let \(G \) be f.nbd of \(P^r_y \) in \(B \), then \(\tilde{f}^{-1}(G) \) is f.g.p.nbd of \(P^r_x \) in \(A \) by proposition (2.2), \(\tilde{f}(\tilde{f}^{-1}(G)) \subseteq G \).

Let \(H = \tilde{f}^{-1}(G) \) then there exists f.g.p.nbd of \(P^r_x \) in \(A \) such that \(f(H) \subseteq G \).

(2) \(\Rightarrow \) 1 suppose that \(M \) is f.nbd of \(P^r_y \) in \(B \), then there exists f.g.p.nbd \(H \) of \(P^r_x \) in \(A \) such that \(f(H) \subseteq M \) this implies that \(H \subseteq \tilde{f}^{-1}(M) \).

Since \(H \) is f.g.p.nbd of \(P^r_x \) in \(A \), then \(\exists \) f.g.p.o.s. \(G \) in \(A \) such that \(P^r_y \in G \subseteq H \subseteq \tilde{f}^{-1}(M) \), hence \(P^r_x \in G \subseteq \tilde{f}^{-1}(M) \) thus \(\tilde{f}^{-1}(M) \) is f.g.p.nbd of \(P^r_x \) in \(A \).

Theorem (3.6): Let \(\tilde{f}: (\tilde{A}, \tilde{T}_1) \rightarrow (\tilde{B}, \tilde{T}_2) \) be a fuzzy proper function, then the following statements are equivalent:

1. For each fuzzy point \(P^r_x \) in \(\tilde{A} \), for each \(y \in Y \) and for each f.nbd \(G \) of \(P^r_y \) in \(\tilde{B} \), there exists f.g.p.nbd \(H \) of \(P^r_x \) in \(\tilde{A} \), such that \(P^r_Y \in H \) and \(f(H) \subseteq G \).

2. For each fuzzy point \(P^r_y \) in \(\tilde{A} \), for each \(y \in Y \) and for each fuzzy open set \(\tilde{M} \) in \(\tilde{B} \) such that \(P^r_y \in \tilde{M} \), there exists f.g.p.o.s. \(\tilde{N} \) in \(\tilde{A} \), such that \(P^r_y \in \tilde{N} \) and \(\tilde{f}(\tilde{N}) \subseteq \tilde{M} \).

Proof: (1) \(\Rightarrow \) 2 Let \(P^r_x \) be a fuzzy point in \(\tilde{A} \) and \(\tilde{M} \) be a fuzzy open set in \(\tilde{B} \) such that \(P^r_Y \in \tilde{M} \), then \(\mu_{\tilde{M}}(x_i) > \mu_{(P^r_Y)^c}(y) \) this implies \((P^r_Y)^c \subseteq \tilde{M} \).

Since any fuzzy set is the union of all its fuzzy points, then \((P^r_Y)^c = \bigcup_{i \in I} P^{r_{yi}} \)

Such that \(r_i = \mu_{\tilde{B}}(y_i) - r \), thus \(\bigcup_{i \in I} P^{r_{yi}} \subseteq \tilde{M} \subseteq \tilde{M} \), this implies that \(P^{r_{yi}} \subseteq \tilde{M} \), \(\forall i \)

Since \(\tilde{M} \) is a fuzzy open set, then \(\tilde{M} \) is a f.nbd of \(P^{r_{yi}} \) this implies that there exists f.g.p.nbd. \(\tilde{H} \) of \(P^{r_{yi}} \) in \(\tilde{A} \), such that \(P^{r_{yi}} \in \tilde{H} \), \(f(\tilde{H}) \subseteq \tilde{M} \) and \(r_i = \mu_{\tilde{A}}(x_i) - r \).

Since \(\tilde{H} \) is f.g.p.nbd of \(P^{r_{yi}} \), then there exists f.g.p.o.s \(\tilde{N} \) in \(\tilde{A} \) such that \(P^{r_{yi}} \in \tilde{N} \subseteq \tilde{H} \), from \(\tilde{N} \subseteq \tilde{H} \) we have \(\tilde{f}(\tilde{N}) \subseteq f(\tilde{H}) \subseteq \tilde{M} \), thus \(\tilde{f}(\tilde{N}) \subseteq \tilde{M} \), and from \(P^{r_{yi}} \in \tilde{N} \), \(\forall i \) we have \(\bigcup_{i \in I} P^{r_{yi}} \subseteq \tilde{N} \).

Since \(\bigcup_{i \in I} P^{r_{yi}} = (P^r_Y)^c \) this implies that \((P^r_Y)^c \subseteq \tilde{N} \), therefore \(\mu_{\tilde{A}}(x_i) - r \leq \mu_{\tilde{N}}(x) \)

Thus \(P^r_Y \subseteq \tilde{N} \).

(2) \(\Rightarrow \) 1) Let \(\tilde{M} \) be a fuzzy open set in \(\tilde{B} \) such that \(P^r_Y \subseteq \tilde{M} \), then \((P^r_Y)^c = \bigcup_{i \in I} P^{r_{yi}} \subseteq \tilde{M} \subseteq \tilde{M} \) this implies \(\tilde{M} \) is f.nbd of \(P^{r_{yi}} \).

Since \(\tilde{M} \) be a fuzzy open set in \(\tilde{B} \) such that \(P^r_Y \subseteq \tilde{M} \), then there exists f.g.p.o.s. \(\tilde{N} \) of \(P^r_Y \) such that \(P^r_Y \subseteq \tilde{N} \subseteq \tilde{M} \), from \(P^r_Y \subseteq \tilde{M} \) we have \((P^r_Y)^c = \bigcup_{i \in I} P^{r_{yi}} \subseteq \tilde{N} \subseteq \tilde{N} \), hence \(\tilde{N} \) is f.g.p.nbd of \(P^{r_{yi}} \) and \(\tilde{f}(\tilde{N}) \subseteq \tilde{M} \).

Theorem (3.7): Let \(\tilde{f}: (\tilde{A}, \tilde{T}_1) \rightarrow (\tilde{B}, \tilde{T}_2) \) be a fuzzy proper function, then the following statements are
equivalent:

1. For each fuzzy point P_x^f in \tilde{A}, for each $y \in Y$ and for each fuzzy open set \tilde{G} in \tilde{B} such that $P_y^f q \tilde{G}$, there exists f.g.p.o.s. H in \tilde{A} such that $P_x^f q H$ and $f(H) \subseteq \tilde{G}$.

2. For each fuzzy point P_x^f in \tilde{A}, for each $y \in Y$ and for each f.q.nbd. M of P_x^f, $f^{-1}(\tilde{M})$ is f.g.p.q.nbd. of P_x^f.

Proof: (1 \Rightarrow 2) Let P_x^f be a fuzzy point in \tilde{A} and M be a f.q.nbd. of P_y^f in \tilde{B}.

Then there exists a fuzzy open set \tilde{N} in Y such that $P_y^f q \tilde{N} \subseteq \tilde{M}$.

Since \tilde{N} is fuzzy open set in \tilde{B} and $P_y^f q \tilde{N}$, then there exists f.g.p.o.s. H in \tilde{A} such that $P_x^f q H$ and $f(H) \subseteq \tilde{N} \subseteq \tilde{M}$ that is $\bar{f}(\tilde{H}) \subseteq \tilde{M}$ thus $H \subseteq f^{-1}(\tilde{M})$

This implies that $P_x^f q \tilde{H} \subseteq f^{-1}(\tilde{M})$, therefore $f^{-1}(\tilde{M})$ is f.g.p.q.nbd of P_x^f.

(2 \Rightarrow 1) Suppose that \tilde{G} be a fuzzy open set in \tilde{B} such that $P_y^f q \tilde{G}$

Since $P_y^f q \tilde{G} \subseteq \tilde{G}$, then \tilde{G} is f.q.nbd. of P_y^f this implies that $f^{-1}(\tilde{G})$ is f.g.p.q.nbd of P_x^f so \exists f.g.p.o.s. \tilde{H} in \tilde{A} such that $P_x^f q \tilde{H} \subseteq f^{-1}(\tilde{G})$ thus $\bar{f}(\tilde{H}) \subseteq \tilde{G}.$

Theorem (3.8): Let $\tilde{f}: (\tilde{A}, \tilde{T}_1) \rightarrow (\tilde{B}, \tilde{T}_2)$ be a fuzzy proper function, then the following statements are equivalent:

1. For each fuzzy point P_x^f in \tilde{A}, for each $y \in Y$ and for each f.q.nbd. \tilde{G} of P_x^f, $f^{-1}(\tilde{G})$ is f.g.p.q.nbd. of P_x^f.

2. For each fuzzy point P_x^f in \tilde{A}, for each $y \in Y$ and for each f.q.nbd. \tilde{M} of P_x^f, there exists f.g.p.q.nbd. \tilde{N} of P_x^f such that $f(\tilde{N}) \subseteq \tilde{M}$.

Proof: (1 \Rightarrow 2) Let P_x^f be a fuzzy point in \tilde{A} and \tilde{M} be a f.q.nbd. of P_y^f in \tilde{B}.

Then $f^{-1}(\tilde{M})$ is a f.g.p.q.nbd. of P_x^f, let $\tilde{N} = f^{-1}(\tilde{M})$ so $f(\tilde{N}) = f(\tilde{f}^{-1}(\tilde{M})) \subseteq \tilde{M}$.

(2 \Rightarrow 1) Suppose that \tilde{G} is f.q.nbd of P_y^f

Then there exists f.g.p.q.nbd \tilde{H} of P_x^f such that $f(\tilde{H}) \subseteq \tilde{G}$ so $\tilde{H} \subseteq f^{-1}(\tilde{G})$.

Since \tilde{H} is f.g.p.q.nbd of P_x^f, then there exists f.g.p.o.s. \tilde{E} in \tilde{A} such that $P_x^f \tilde{E} \subseteq f^{-1}(\tilde{G})$ thus $f^{-1}(\tilde{G})$ is f.g.p.q.nbd of P_x^f.

Theorem (3.9): If $\tilde{f}: (\tilde{A}, \tilde{T}_1) \rightarrow (\tilde{B}, \tilde{T}_2)$ is fuzzy generalized pre-continuous function and $\tilde{g}: (\tilde{B}, \tilde{T}_2) \rightarrow (\tilde{C}, \tilde{T}_3)$ is fuzzy continuous function, then $\tilde{g} \circ \tilde{f}: (\tilde{A}, \tilde{T}_1) \rightarrow (\tilde{C}, \tilde{T}_3)$ is fuzzy generalized pre-continuous function.

Proof: Let \tilde{G} be a fuzzy open set in \tilde{Z}.

Since \tilde{g} is fuzzy continuous function, then $\tilde{g}^{-1}(\tilde{G})$ is fuzzy open set in Y.

Since \tilde{f} is fuzzy generalized pre-continuous function, then $f^{-1}(\tilde{g}^{-1}(\tilde{G}))$ is f.g.p.o.s. in X, from $(\tilde{g} \circ \tilde{f})^{-1}(\tilde{G}) = f^{-1}(\tilde{g}^{-1}(\tilde{G}))$ we have $\tilde{g} \circ \tilde{f}: X \rightarrow Z$ is fuzzy generalized pre-continuous function.

References

1) Zadeh, L.A., (1965), Fuzzy Sets. Inform. Control, 8: 338-353.
2) Chang, C.L., (1968), Fuzzy Topological Spaces, J. Math. Anal. Appl, 24, 182-190.
3) Murugesan, S., Thangavelu, P., (2008), Fuzzy Pre-Semi-Closed, Bull. Malays Math. Sci. Soc., 31, 223-232.
4) Levine, N., (1970), Generalized closed sets in topology, Rend Circ. Matem. Plermo, (89-96).
5) Balsubramanian, G., and Sundaram, P., (1997), On Some Generalization Of Fuzzy Continuous Functions, Fuzzy Set and System, 86, 93-100.
6) Shafei, E.L.ME., and Zakari, A., (2007), Semi-generalized Continuous Mappings in Fuzzy Topological Spaces, The Journal of Fuzzy Mathematics, 15(10), 109-120.
7) Kalaiselvi, S., and Seenivasan, V., (2014), Fuzzy Generalized Semi Generalized Closed Sets.J. Pure Appl. math., 95, 323-338.
8) Moradi, H.R., Kamali, A., and Singh, (2015), B. Some New Properties Of Fuzzy Strongly g*-Closed Sets And δg*-Closed Sets In Fuzzy Topological Spaces. J.SCMA , 2(2), 13-21.
9) Kalaivani, C., and Roopkumar, R., (2014), Fuzzy Perfect Mappings And Q-Compactness In Smooth Fuzzy Topological Spaces. Fuzzy Inf.Eng., 6, 115-131.
10) Roopkumar, R., and Kalaivani, C., (2011), Continuity Of Fuzzy Proper Functions On Sostak's I-Fuzzy Topological Spaces. Commun.Korean Math.Soc., 26(2), 305-320.
11) Al-Khafaj, M.A., Abdul Hussen, G. (2015), On Some Types Of Fuzzy Separation Axioms In Fuzzy Topological Space On Fuzzy Sets. IOSR Journal of Mathematics., 11: 1-8.
12) Hussan, M.S.M., (2013), Fuzzy δ*:–Continuity and δ***:–Continuity On Fuzzy Topology On Fuzzy Sets. J.APM., 3, 138-141.
13) Al-Khafaj, M.A., and Hasan, M.F., (2015), Some Relations On Fuzzy Pre-Open Set In Fuzzy Topological Space. IOSR Journal of Dental and Medical Sciences., 14, 81-87.
14) Fukutake, T., Saraf, R.K., Caldas, M. and Mishra, S., (2003), Mappings via Fgp-closed sets. Ball of Fukuoka Univ. of Edu. Vol. 52, Part III, 11-20.