3d Ions in Solids and Microscopic Crystal Field Effects: Theoretical Analysis and Relations with Experimental Spectroscopic Data

Mikhail G. Brik¹,²,³

¹ College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, People’s Republic of China
² Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
³ Institute of Physics, Jan Długosz University, Armii Krajowej 13/15, PL-42200 Częstochowa, Poland

mikhail.brik@ut.ee

Abstract. The transition metal ions with unfilled 3d electron shell are important activator ions for solid-state lasing and solid-state lighting. Since their spectroscopic properties depend significantly on the nearest environment, studies of the microscopic crystal field effects (influence of variation of the impurity center geometry) acquire additional importance. In the present paper, methods of calculating the crystal field strength $10Dq$ and its dependence on the interionic distances R are described. Relation between the $10Dq(R)$ functions and experimentally observed quantities such the Stokes shift is highlighted. The results of performed $10Dq(R)$ calculations for several crystals doped with various 3d ions are summarized and discussed.

1. Introduction

It is a well-known fact that the highly degenerated energy levels of free ions with unfilled d- and f-electron shells are split into a number of sublevels, if such ions are placed into crystalline solids. The number of the formed energy levels and their properties are determined by the crystal field created by the crystal lattice ions, whose geometrical arrangement and electrical charges are the most important factors affecting the optical properties of impurity ions [1].

The ions with the unfilled 3d electron shell are excellent probes for the crystal field effects, since their open external 3d shell makes them very sensitive even to small variations of the interionic distances and/or angles between the chemical bonds. In an ideal octahedral crystal field the five-fold degenerated 3d orbitals are split into two sets: three orbitals with the t_{2g} symmetry and two orbitals with the e_g symmetry. The energy interval between them is called the crystal field strength and is denoted by $10Dq$. The value of $10Dq$ increases with shortening interionic separations R and decreases otherwise. The distance dependence of $10Dq$ on R can be written in general as

$$10Dq = \frac{A}{R^n},$$

where A and n are some constants. The value of n if determined from the point charge model (PCM) of crystal field should be 5 [2]. However, numerical estimations of $10Dq$ for real systems with such n value do not yield good agreement with the experimental data because of oversimplified PCM

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
assumptions, which completely neglects the quantum nature of the impurity ions and nearest neighbors, overlap of their wave functions etc. Various quantum chemical calculations allow for theoretical estimations of the \(n \) value; it appears to vary in a wide range from 3.5 to 7.3 for various systems [3-7]. It is also possible to estimate the \(n \) value from the experimental measurements of the absorption peaks shifts with pressure [8, 9].

Knowledge of \(n \) gives a deeper insight into the microscopic structure of the impurity ions and relations between the geometry of the impurity center and its energy level scheme. It also allows to estimate the experimentally observed quantities, such as Stokes shift (difference between the maxima of the absorption and emission bands related to the same electronic transition), thus linking together the microscopic crystal field effects with macroscopic characteristics of impurity centers.

In Section 2 the basic theoretical foundations needed for the microscopic crystal field effects studies are described briefly, and a short summary of the calculated results for a number of crystals containing the ions with unfilled 3d shell is given in Section 3. The paper is concluded with a short summary.

2. Calculations of 10\(Dq \) values: theoretical background

If the values of \(A \) and \(n \) in Eq. (1) are known, then it is possible to evaluate the constants of the electron-vibrational interaction with the \(a_{1g} \) and \(e_g \) normal modes of the octahedral complex as follows:

\[
V_{a_{1g}} = - \frac{nA}{\sqrt{6}R^{n+1}}, \quad V_{e_g} = \frac{V_{a_{1g}}}{\sqrt{2}}. \quad (2)
\]

These estimated constants can be used for calculations of the energetical Stokes’ shift \(E_S(i) \), where \(i \) denoted the \(a_{1g} \) and \(e_g \) normal modes:

\[
E_S(i) = 2S_i \hbar \omega_i = \frac{v_i^2}{M\omega_i^2}, \quad (3)
\]

with \(M \) standing for the mass of a single ligand and \(S_i \) being the non-dimensional Huang-Rhys factor for \(i \)th normal mode with the frequency \(\omega_i \). The total Stokes shift, which is a result of interaction with both \(a_{1g} \) and \(e_g \) normal modes can be taken as a simple sum of the Stokes shifts coming from each mode separately [10, 11]. Moreover, if both pressure and distance dependences of 10\(Dq \) are known, it is possible to evaluate the bulk modulus \(B \) of a considered crystal from the following equation:

\[
\left(\frac{\partial 10Dq}{\partial R} \right)_{R=R_0} = - \left(\frac{\partial 10Dq}{\partial P} \right)_{P=P_0} \frac{3B}{R_0}. \quad (4)
\]

It is possible to use the crystal field theory or various ab initio methods for calculations of the 10\(Dq \) values. In the case of the ions with the \(d^1(d^3) \) electronic configurations the 10\(Dq \) value is simply the separation between the \(t_{2g} \) and \(e_g \) states. If the ions with the \(d^2(d^5) \) electronic configurations are considered, 10\(Dq \) equals to the energy interval between the \(^3A_{2g}\) and \(^3T_{2g}\) states originating from the ground \(^3F\) term. If the ions with the \(d^3(d^7) \) electronic configurations are studied, then 10\(Dq \) is the separation between the \(^4A_{2g}\) and \(^4T_{2g}\) states coming from the ground \(^4F\) term [2].

The method of finding the distance dependence of 10\(Dq \) in Eq. (1) can be formulated as follows:

i) The energy levels of an impurity ion in a given crystal are calculated for different interion distance with a small step (it is sufficient to take an equilibrium “impurity ion – ligand distance” \(R_0 \) and consider the interval from 0.9\(R_0 \) to 1.1\(R_0 \) with a step of 0.01\(R_0 \).

ii) The extracted 10\(Dq \) values are plotted as a function of distance and then are fitted to the power law given by Eq. (1).

iii) Eqs. (2)-(4) can be used to estimate the Stokes shift and the bulk modulus, which then can be compared with the experimental data (if available) to check the validity of the performed calculations.
3. Results and discussion

The results of calculations of the $10Dq$ dependence on distance for a number of solids doped with the 3d transition metal ions are presented in this section. Different calculating techniques have been employed, e.g. discrete variational multielectron method (DVME) [12], exchange charge model (ECM) of crystal field [13], and plane-wave based CASTEP software [14]. The calculations were performed for varying interionic distances and the obtained $10Dq$ numerical values were approximated to the power laws, like in Eq. (1). The calculated $10Dq(R)$ distances are summarized below in Table 1. In all equations the distance R should be taken in Å, then the $10Dq$ value will be in cm$^{-1}$.

Table 1. Distance dependence of the $10Dq$ parameter for various solids and impurity ions.

Crystal and impurity ion	3d ion electron configuration	Calculated $10Dq(R)$ function, cm$^{-1}$	Method	Stokes shift, cm$^{-1}$ (calc./exp.)	Reference
Al$_2$O$_3$::T$^{3+}$	d^1	$861347/R^{4.671}$	CASTEP	-	[7]
Rb$_2$CrF$_6$	d^2	$706048/R^{5.863}$	CASTEP	-	[15]
Cs$_2$NaYF$_6$::Cr$^{3+}$	d^3	$294650/R^{4.463}$	DVME	3652/3721	[5]
Cs$_2$NaYCl$_6$::Cr$^{3+}$	d^3	$557820/R^{4.374}$	DVME	1663/1612	[5]
Cs$_2$NaYBr$_6$::Cr$^{3+}$	d^3	$664190/R^{4.353}$	DVME	2256/2218	[5]
SrTiO$_3$::Cr$^{3+}$	d^3	$430120/R^{4.905}$	ECM	1706/-	[6]
SrTiO$_3$::Mn$^{4+}$	d^3	$880120/R^{5.799}$	ECM	3020/-	[6]
SrTiO$_3$::Fe$^{5+}$	d^3	$1612800/R^{6.550}$	ECM	4737/-	[6]
K(Al(MoO$_4$)$_2$::Cr$^{3+}$	d^3	$477780/R^{5.623}$	ECM	3600/2800	[16]
MgO::Cr$^{3+}$	d^3	$1890500/R^{6.401}$	ECM	5200/4500	[17]
ZnS::V$^{2+}$	d^3	$193830/R^{4.421}$	ECM	667/-	[17]
KZnF$_3$::Ni$^{2+}$	d^8	$541029/R^{6.016}$	CASTEP	1793/1395	[18]

Figure 1. Calculated dependences of $10Dq$ on distance for a number of crystals from Table 1.

Figure 1 illustrates the calculated $10Dq(R)$ dependences for some of systems from Table 1. The decreasing trend of the crystal field strength with increasing interionic separation is clearly seen. The calculated $10Dq$ values are shown by symbols, they were approximated by the power law functions, whose equations can be found in Table 1 as well. The vast majority of the considered systems are the Cr$^{3+}$-bearing materials, which is explained by their importance for many applications (such as solid-state lasers, phosphors for the solid-state lighting etc) and availability of the experimental data on the absorption and emission spectra of these crystals.
The data in Table 1 show considerably wide range of the obtained n values, from about 4.3 to about 6.55. The deviation of n from the point charge value of 5 is explained by the influence of covalent effects, overlap of the wave functions of the impurity ions and ligands, formation of the molecular orbitals (rather than pure atomic states) etc. The distance dependence of $10Dq(R)$ appears to be essentially host- and impurity ion-dependent. It can be also seen from Table 1, that the value of n increases with increased charge of an impurity ion. This fact can be attributed to more pronounced variations of the electron density around highly charged ions, since they stronger attract the electron density of the s- and p-states of ligands.

The calculated Stokes shifts in Table 1 agree well with the experimental data. Additionally, using the $10Dq(R)$ dependence for Cs$_2$NaYCl$_6$:Cr$^{3+}$, its compressibility was estimated to be 9.88×10^{-4} kbar$^{-1}$, that is very close to the experimental value of 9.70×10^{-4} kbar$^{-1}$ [19], which serves as an additional argument confirming validity of the performed analysis of the microscopic field effects.

4. Conclusions

Several examples of calculations of the crystal field strength $10Dq$ for the transition metal ions with the unfilled 3d electron shell are given in the present paper. Importance of knowledge of the $10Dq(R)$ dependence is emphasized by the possibility of extracting the experimentally observed value of the Stokes shift and host’s crystal compressibility. If the experimental and theoretical Stokes shifts are in good agreement, this circumstance can give an opportunity of predicting the Stokes shift for other systems, which may be of high importance for assessing the application perspectives of optical materials.

Acknowledgement

This research was supported by the Programme for the Foreign Experts (Grant No. W2017011) and Wenfeng High-end Talents Project (Grant No. W2016-01) offered by Chongqing University of Posts and Telecommunications (CQUPT), Estonian Research Council grant PUT PRG111, European Regional Development Fund (TK141) and NCN project 2018/31/B/ST4/00924.

References

[1] B. Henderson, R.H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials, Cambridge University Press, (2000).
[2] S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition-Metal Ions in Crystals, Acad. Press, 1970.
[3] M. Moreno, M.T. Barriuso, J.A. Aramburu, “The Huang-Rhys factor $S(a_{1g})$ for transition metal impurities: a microscopic insight,” J. Phys.: Condens. Matter, vol. 4, pp. 9481-9488, 1992.
[4] K. Wissing, J.A. Aramburu, M.T. Barriuso, M. Moreno, “Optical properties due to Cr$^{4+}$ in oxides: density functional study,” Solid State Commun., vol. 108, pp. 1001-1005, 1998.
[5] M.G. Brik, K. Ogasawara, “Microscopic analysis of the crystal field strength and lowest charge-transfer energies in the elpasolite crystals Cs$_2$NaYX$_6$ (X=F, Cl, Br),” Phys. Rev. B, vol. 74, p. 045105, 2006.
[6] M.G. Brik, N.M. Avram, “Microscopic analysis of the crystal field strength and electron-vibrational interaction in cubic SrTiO$_3$ doped with Cr$^{3+}$, Mn$^{3+}$ and Fe$^{3+}$ ions,” J. Phys.: Condens. Matter, vol. 21, p. 155502, 2009.
[7] M.G. Brik, “Ab-initio studies of the electronic and optical properties of Al$_2$O$_3$:Ti$^{3+}$ laser crystals,” Physica B, vol. 532, pp. 178-183, 2018.
[8] M. Grinberg, A. Suchocki, “Pressure-induced changes in the energetic structure of the 3d1 ions in solid matrices,” J. Lumin., vol. 125, pp. 97-103, 2007.
[9] M. Grinberg, “Principles of Energetic Structure and Excitation-Energy Transfer Based on High-Pressure Measurements,” in: Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications, R.-S. Liu (Editor), vol. 1, pp.67-151, 2017.
[10] A.M. Woods, R.S. Sinkovits, J.C. Charpie, W.L. Huang, R.H. Bartram, A.R. Rossi, “Computer modeling of the optical properties of substitutional chromium impurities in halide elpasolites,”
[11] M.T. Barriuso, J.A. Aramburu, M. Moreno, “Coupling with the Jahn-Teller mode for triplet states of MF₆ (M=Mn²⁺, Cr³⁺) complexes: Dependence on the M-F distance and influence on the Stokes shift,” Phys. Status Solidi B, vol. 196, pp. 193-208, 1996.

[12] K. Ogasawara, T. Iwata, Y. Koyama, T. Ishii, I. Tanaka, and H. Adachi, “Relativistic cluster calculation of ligand-field multiplet effects on cation L₂₃ X-ray-absorption edges of SrTiO₃, NiO, and CaF₂,” Phys. Rev. B, vol. 64, p. 115413, 2001.

[13] B.Z. Malkin, in Spectroscopy of solids containing rare-earth ions, A.A. Kaplyanskii, B.M. Macfarlane, Editors, p. 13, North-Holland, Amsterdam, 1987.

[14] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, “First principles methods using CASTEP,” Z. Krist., vol. 220, pp. 567-570, 2005.

[15] M.G. Brik, N.M. Avram, C.-G. Ma, “First-principles calculations of structural, electronic, optical, elastic properties and microscopic crystal field effects in Rb₂CrF₆,” Comput. Mater. Sci., vol. 50, pp. 2482-2487, 2011.

[16] M.G. Brik, C.N. Avram, “Exchange charge model and analysis of the microscopic crystal field effects in KAl(MoO₄)₂:Cr³⁺,” J. Lumin., vol. 131, pp. 2642-2645, 2011.

[17] N.M. Avram, M.G. Brik, I.V. Kityk, “Studies of variation of interionic distances and crystal field effects in ZnS:V²⁺ and MgO:Cr³⁺,” Opt. Mater., vol. 32, pp. 1668-1670, 2010.

[18] M.G. Brik, G.A. Kumar, D.K. Sardar, “Ab initio, crystal field and experimental spectroscopic studies of pure and Ni²⁺-doped KZnF₃ crystals,” Mater. Chem. Phys., vol. 126, pp. 90-102, 2012.

[19] O.S. Wenger, R. Valiente, H.U. Güdel, “Influence of hydrostatic pressure on the Jahn-Teller effect in the 4T₂g excited state of CrCl₆³⁻ doped Cs₂NaScCl₆,” J. Chem. Phys., vol. 115, pp. 3819-3826, 2001.