Helicobacter pylori’s virulence and infection persistence define pre-eclampsia complicated by fetal growth retardation

Simona Cardaropoli, Alessandro Rolfo, Annalisa Piazzese, Antonio Ponzetto, Tullia Todros

Abstract

AIM: To better understand the pathogenic role of *Helicobacter pylori* (*H. pylori*) in pre-eclampsia (PE), and whether it is associated or not with fetal growth retardation (FGR).

METHODS: Maternal blood samples were collected from 62 consecutive pregnant women with a diagnosis of PE and/or FGR, and from 49 women with uneventful pregnancies (controls). Serum samples were evaluated by immunoblot assay for presence of specific antibodies against *H. pylori* antigens [virulence: cytotoxin-associated antigen A (CagA); ureases; heat shock protein B; flagellin A; persistence: vacuolating cytotoxin A (VacA)]. Maternal complete blood count and liver enzymes levels were assessed at delivery by an automated analyzer.

RESULTS: A significantly higher percentage of *H. pylori* seropositive women were found among PE cases (85.7%) compared to controls (42.9%, *P* < 0.001). There were no differences between pregnancies complicated by FGR without maternal hypertension (46.2%) and controls. Importantly, persistent and virulent infections (VacA/CagA seropositive patients, intermediate leukocyte blood count and aspartate aminotransferase levels) were exclusively associated with pre-eclampsia complicated by FGR, while virulent but acute infections (CagA positive/VacA negative patients, highest leukocyte blood count and aspartate aminotransferase levels) specifically correlated with PE without FGR.

CONCLUSION: Our data strongly indicate that persistent and virulent *H. pylori* infections cause or contribute to PE complicated by FGR, but not to PE without feto-placental compromise.

Key words: *Helicobacter pylori*; Virulence factors; Pre-eclampsia; Fetal growth retardation; Cytotoxin-associated antigen A; Vacuolating cytotoxin A

Peer reviewer: Zeinab Nabil Ahmed, Professor of Microbiology, Microbiology and Immunology Department, Faculty of Medicine, Al-Azhar University, Nasr City, 1047 Cairo, Egypt

INTRODUCTION

Pre-eclampsia (PE) is a severe hypertensive pregnancy-re-
lated disorder that affects 5%-8% of women worldwide, thus representing the main cause of feto-maternal morbidity\[^1,2\]. PE is often associated with fetal growth retardation (FGR), defined as failure of the fetus to achieve its genetically determined growth potential\[^3,4\]. FGR is commonly considered a severe complication of PE, but whether or not PE and FGR are manifestations of the same disorder, or two distinct pathologies, still remains unclear.

PE is characterized by excessive maternal inflammatory response, with high circulating levels of pro-inflammatory cytokines and endothelial injury\[^1,2\]. Despite being an object of intense investigation, the etiopathogenetic mechanisms of PE are still poorly understood. Several lines of evidence suggest that subclinical infections could play a role in the onset of PE\[^5,6\].

We previously reported a strong association between *Helicobacter pylori* (*H. pylori*) infection and PE\[^7\]. *H. pylori* is a Gram-negative bacterium responsible for the large majority of peptic ulcers, gastric cancer, and gastric mucosa-associated lymphoid tissue lymphomas\[^9,10\]. It has been demonstrated that this pathogen enhances platelet activation and thrombus formation\[^9,10\], thus inducing endothelial inflammation and injury. Therefore, *H. pylori* could directly cause or intensify the generalized inflammation and endothelial dysfunction typical of PE\[^7\]. Furthermore, it was recently observed that *H. pylori* seropositive PE subjects are characterized by a more severe inflammatory status\[^11\] and lipid peroxidation\[^12\].

The role of cytotoxin-associated antigen A (CagA) in inducing a severe immunogenic response in patients infected by *H. pylori* is now well established\[^13\]. Nevertheless, other virulence factors could be involved in the severe inflammatory response mediated by this bacterium. The vacuolating cytotoxin A (VacA) is a protein produced by *H. pylori* with several effects on vulnerable cells, such as vacuolation with alteration of the endo-lysosomal function and mitochondrial damage accompanied by cytochrome C release and apoptosis\[^14\].

Ureases allow colonization of the gastric mucosa by catalyzing the hydrolysis of urea and help to recruit neutrophils and monocytes in the mucosa, thus inducing pro-inflammatory cytokines production\[^15\].

Heat shock protein B (HspB) has been shown to increase the risk of gastric carcinoma, by directly inducing hyper-proliferation of gastric cells\[^16\]. Moreover, it strongly activates the immune system and stimulates a massive immune response in patients with gastritis and gastric cancer\[^17,18\].

To better understand the pathogenic role of *H. pylori* in pre-eclampsia, we investigated maternal serum positivity for antibodies against CagA, VacA, HspB, ureases A, C, E and H (UreA, UreC, UreE, UreH), and for flagellin A (FlagA). FlagA is the major *H. pylori* flagellin isoform, mainly expressed during lat exponential growth phase and represents a good *H. pylori* virulence index\[^19\].

To correlate *H. pylori* virulence with PE severity, and to detect differences in *H. pylori* profiles between PE and FGR pregnancies, we determined seropositivity for the above mentioned antigens in three populations: PE without FGR, PE complicated by FGR, and FGR without PE.

Finally, we verified the reported association between *H. pylori* infection and elevated leukocyte blood count and serum amino-transferases levels\[^20\].

MATERIALS AND METHODS

Population and samples

The study was approved by our Hospital Ethics Committee “Comitato Etico Interaziendale A.A.OO O.I.R.M./S.Anna di Torino and Ordine Mauriziano di Torino” and written informed consent was obtained from each participating woman.

Maternal blood samples (5 mL) were collected before delivery from 62 consecutive pregnant women with diagnosis of PE and/or FGR, and from 49 women with normotensive pregnancies with normal fetal growth and normal uterine and umbilical Doppler flow velocimetry (FVW).

PE was diagnosed when hypertension (systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg) and proteinuria (≥ 300 mg/24 h) appeared after 20 wk of gestational age in previously normotensive women, according to the American College of Obstetricians and Gynecologists criteria\[^22\]. PE was considered severe when one or more of the following criteria were present: systolic pressure ≥ 160 mmHg or diastolic pressure ≥ 110 mmHg on two occasions at least 6 h apart, or significant proteinuria ($\geq 3 +$ on urine dipstick or > 5 g in a 24-h urine)\[^23\]. Patients with PE were further classified as either having early-onset (≥ 34 wk), or late-onset (≥ 34 wk) disease according to the gestational age of PE diagnosis.

The hemolysis-elevated liver enzymes-low platelets (HELLP) syndrome was defined by the following criteria: hemolysis (characteristic peripheral blood smear and serum lactate dehydrogenase ≥ 600 U/L), elevated liver enzymes (serum aspartate aminotransferase ≥ 70 U/L), and low platelet count ($< 100 000/\mu L$)\[^24\].

The diagnosis of FGR was made according to the following criteria: ultrasound measurement of fetal abdominal circumference below the 10th centile\[^24\] or growth velocity below the 10th percentile\[^25\] and/or birth weight below the 10th centile, according to Italian reference values\[^26\] with abnormal umbilical arteries Doppler FVWs\[^27\] and/or normal uterine artery Doppler FVWs (resistance index of > 0.58)\[^28\]. Exclusion criteria were: multiple pregnancies, congenital malformations, and prenatal or postnatal diagnosis of chromosomal anomalies in number and/or structure.

For all cases and controls, the following data were collected: maternal age at delivery, gestational age at birth, week of PE onset, mode of delivery, neonatal sex, birth weight, placental weight, parity, blood pressure, urinary protein, complete blood count and differentials (count and percentage of neutrophils, lymphocytes, monocytes, eosinophils, and basophils), liver enzymes levels, risk factors for PE (previous pregnancy with PE, autoim-
mune diseases, diabetes, cardiovascular diseases, or other common risk factors for PE), and family history of pre-eclampsia and/or cardiovascular diseases.

Venous blood samples were collected into Vacutainer tubes (Becton Dickinson, Plymouth, United Kingdom) without anticoagulant. Serum was separated by centrifugation immediately after clotting and stored at -30 °C until assayed.

Serology

Serum samples were evaluated for specific antibodies against *Helicobacter pylori* antigens by commercially available Heli-Blot strips (Nurex; Sassari, Italy). A positive test for *H. pylori* infection was considered a positive test for *H. pylori* or the presence of two of the three most specific antigens (Urease C), 54 kDa (HSP), 35 kDa (Flagellin), 30 kDa (Urease E), and 26 kDa (Urease A). The presence of one of the three most specific antigens (CagA, VacA, or flagellin) or the presence of two of the three smallest antigens was considered a positive test for *H. pylori* infection.

Statistical analysis

Data analysis was performed using SPSS version 17.0 (SPSS Inc., Chicago, Illinois, United States). Continuous variables were reported as medians and interquartile ranges (25th-75th percentiles). Medians among groups were analyzed by non-parametric Kruskal-Wallis H test, with post-hoc analysis by Mann-Whitney U test. Categorical variables are presented as frequencies (percentages) and the comparison between different groups was done with a χ² test by means of a 2 × 2 contingency table; Fisher’s exact test was used for small sample sizes. All tests were 2-tailed and results were considered significant for a P value less than 0.05. The odds ratios (OR) and 95% confidence intervals (CI), adjusted for maternal age at delivery, pre-pregnancy body mass index, parity, presence of maternal and family risk factors, were calculated using logistic regression analysis to assess the risk of PE and/or FGR associated with *H. pylori* infection.

RESULTS

Population

A total of 111 serum samples from pregnant women were examined: 49 uneventful pregnancies (Ctrl) and 62 pathological pregnancies complicated by fetal growth retardation (FGR-only, n = 32), pre-eclampsia (PE-only, n = 17), or both (PE-FGR, n = 32). Characteristics of the study population are summarized in Tables 1 and 2.

We found that normotensive women with pregnancy complications by FGR were significantly younger (median of 25 years with an interquartile range of 24-26 years) compared to controls and PE women (both with a median age of 30 years). As expected, pregnancies complicated by PE and/or FGR were delivered more often by caesarean section. Moreover, pathological cases led to lower neonatal and placental weight compared to controls, due to lower gestational age at delivery and reduced fetal growth.

Pre-eclamptic mothers presented higher blood pressure values, and urine protein concentrations. The presence of family risk factors was increased in PE cases without FGR (Table 2), while maternal risk factors for PE did not differ among groups (Table 2). The percentage of nulliparous women was significantly higher in the PE group than in controls. In 45 PE mothers, hypertension and proteinuria appeared early (before 34 wk) and in 32 of them these symptoms were severe; moreover five PE pregnancies were complicated by HELLP syndrome.

Leukocyte blood count, platelet count, and serum amino-transferrases values in normal and pathologic pregnancies

Pre-eclamptic pregnancies were characterized by significantly higher values of total leukocyte count (P = 0.004) and serum amino-transferrases alanine aminotransferase...
TABLE 2 Clinical characteristics of study populations (categorical variables) (%)

Variable	Controls (n = 49)	PE-only (n = 17)	PE FGR (n = 32)	FGR-only (n = 13)	P value1
Cesarean section delivery	15 (30.6)%10,11,12	16 (94.1)% 13	29 (90.6)% 14	9 (69.2)% 15	<0.001; 0.022
Neonatal sex	Male 19 (38.8)% 6	7 (41.2)% 7	20 (62.5)% 8	6 (46.2)% 9	0.043
	Female 30 (61.2)% 6	10 (58.8)% 10	12 (37.5)% 11	7 (53.8)% 7	NS
Nulliparae	31 (63.3)%16,17	16 (94.1)% 18	27 (84.4)% 19	10 (76.9)% 20	0.015; 0.047
Maternal risk factors	4 (8.2)% 21	2 (11.8)% 2	8 (25.0)% 22	1 (7.7)% 23	NS
Autoimmune diseases	1 (2.0)% 24	1 (5.9)% 25	4 (12.5)% 26	0 (0)% 27	NS
Cardiovascular diseases	3 (6.1)% 28	1 (5.9)% 29	4 (12.5)% 30	1 (7.7)% 31	NS
Family risk factors	20 (40.8)% 32	12* (70.6)% 33	13* (40.6)% 34	2 (15.4)% 35	0.049; 0.004
Hypertension	9 (18.4)% 36	8 (47.1)% 37	10 (31.3)% 38	2 (15.4)% 39	NS
Diabetes	10 (20.4)% 40	3 (17.6)% 41	5 (15.6)% 42	0 (0)% 43	NS
Cardiovascular diseases	5 (10.2)% 44	2 (11.8)% 45	3 (9.4)% 46	0 (0)% 47	NS
Other complications:					
FGR	0 (0)% 48	0 (0)% 49	32 (100)% 50	13 (100)% 51	<0.001
Early onset PE	-	16 (94.1)% 52	29 (90.6)% 53	-	NS
Severe PE	-	13 (76.5)% 54	19 (59.4)% 55	-	NS
HELLP syndrome	-	3 (17.6)% 56	2 (6.3)% 57	-	NS

1 One patient presented both maternal risk factors (autoimmune and cardiovascular diseases); 2 Four patients presented two family risk factors (3 hypertension and diabetes; 1 diabetes and cardiovascular disease); 3 One patient presented two family risk factors (hypertension and diabetes); 4 Five patients presented two family risk factors (4 hypertension and diabetes; 1 hypertension and cardiovascular disease). P values were calculated by chi-square test (χ²).

Comparison between controls and PE-only group; 1 Comparison between controls and PE-FGR group; 1 Comparison between controls and FGR-only group; 2 Comparison between PE-only and PE FGR groups; 3 Comparison between PE-only and FGR-only groups. NS: Non significant; PE: Pre-eclampsia; FGR: Fetal growth retardation; HELLP: Hemolysis-elevated liver enzymes-low platelets.

(ALT), aspartate aminotransferase (AST) P = 0.006 and P = 0.029, respectively, while eosinophil count and percentage were significantly lower (P = 0.028 and P = 0.02, respectively) compared to controls. However, if we exclude pathological cases complicated by HELLP syndrome, only ALT levels remained significantly higher in PE (Table 3). Normotensive pregnancies complicated by FGR showed significantly higher leukocyte levels compared to controls (P = 0.045, Table 3). Moreover, the FGR-only lymphocyte percentage was significantly higher relative to PE-only (P = 0.047, Table 3).

H. pylori seropositivity was increased in PE-FGR but not in FGR-only pregnancies

H. pylori seropositivity was significantly more frequent in PE women with or without FGR (85.7%) (P < 0.001; OR 54.97, 95% CI: 9.24-326.88) and PE-only groups (64.7%) (P = 0.038; OR 5.20, 95% CI: 1.09-24.69), relative to controls. VacA seropositivity was significantly higher in PE-FGR cases (87.5%) (P < 0.001; OR 19.64, 95% CI: 3.75-102.98), while there were no differences between PE-only (55.6%) and FGR-only cases (53.8%), relative to controls (40%) (Table 4, Figure 1C).

Seropositivity for both CagA and VacA antibodies was associated with higher risk of PE-FGR (OR 45.44; 95% CI: 7.79-265.18). In fact, 87.5% of PE-FGR pregnancies were CagA and VacA seropositive, compared to 22.4% in Ctrl group (Table 5, Figure 1D). Patients seropositive for VacA, but not for CagA, were nine controls (18.4%), one FGR (7.7%), and no PE women, while seropositivity for CagA only was a specific feature of the PE-only group (Table 5). Seronegative women for both anti-CagA and VacA antibodies were only 9.4% in the PE-FGR group, while they were 59.2%, 35.3% and 53.8% in the Ctrl, PE-only and FGR-only groups, respectively (Table 5, Figure 1D). Importantly, CagA and VacA seronegativity was associated with a lower risk of developing pre-eclampsia complicated by fetal growth retardation (OR 0.04; 95% CI: 0.01-0.22).

CagA and VacA seropositivity was increased in pre-eclamptic but not in FGR-only pregnancies

Similar to **H. pylori** seropositivity, the presence of antibodies against CagA antigen was prevalent only in PE pregnant women (81.6%) relative to controls (22.4%) (P < 0.001; OR 17.66, 95% CI: 5.25-59.49), while there were no differences between FGR-only cases (38.5%) and controls (Table 4, Figure 1B). CagA seropositivity was significantly more frequent in both PE-FGR (90.6%) (P < 0.001; OR 19.64, 95% CI: 3.75-102.98) compared to controls; while in the PE-only group, the percentage of **H. pylori** seropositive women was higher, but not statistically significant (70.6%), relative to controls (Table 4, Figure 1A).

UreC and UreE seropositivity was higher in PE-FGR pregnancies

We found significantly higher UreC and UreE seropositivity in PE-FGR patients (46.9%; P = 0.018 and 56.3%; P = 0.003, respectively) relative to controls (26.5% and 24.5%, respectively) (Figure 2B and C), while there were no differences among groups for HspB, FlagA, UreA, and UreH (Table 4, Figure 2A and D-F). Odds ratios calculation showed higher risk of developing PE-FGR in

Cardaropoli S et al. Helicobacter pylori virulence and pre-eclampsia
Table 3 Leukocytes, platelets and liver enzymes in normal and pathological pregnancies

Variable	Normal values in Italian female population range	Controls (n = 49)	All PE (n = 49)	PE-only (n = 17)	PE FGR (n = 32)	FGR-only (n = 13)	P value1	Odds ratio (95% CI)	
Total leukocyte count (1 × 10⁶/µL)	4.00-11.00	10.56 (9.21-11.65)	12.03 (10.69-14.1)	12.34 (10.71-13.83)	11.80 (10.2-14.51)	12.27 (11.12-14.7)	0.004; 0.045; 0.007; 0.024		
Neutrophils (1 × 10⁹/µL) (%)	45.0-73.0	75.8 (68.1-78.8)	76.7 (68.37-87.1)	80 (72.5-90.1)	72.1 (68.24-83.6)	64.4 (57.3-77.3)	NS		
Lymphocytes (1 × 10⁹/µL) (%)	2.02 (1.68-2.26)	2.08 (1.3-3.06)	1.86 (1.22-2.34)	2.08 (1.31-3.07)	3.15 (2.13-3.79)	NS			
Eosinophils (1 × 10⁹/µL) (%)	3.0-9.0	5.4 (4.5-6)	5.3 (2-7.3)	4.15 (2.15-7.75)	5.4 (3.5-7.3)	6.1 (4.9-7.9)	NS		
Basophils (1 × 10⁹/µL) (%)	0.2-4.4	1.2 (0.5-9)	0.5 (0.2-0.8)	0.35 (0.1-0.8)	0.6 (0.5-0.8)	1.7 (0.5-0.8)	0.020		
Platelets (1 × 10¹²/µL)	150-400	219 (170-240)	187 (126-228)	170 (111-214)	161 (111-234)	235 (177-285)	0.024		
ALT (U/L)	< 34	15 (10-19)	23 (14-46)	26 (19-150)	19.5 (13.5-35)	14 (10-21.5)	0.006; 0.002; 0.026; 0.026		
AST (U/L)	< 34	15 (10-19)	20 (14-31)	25 (15-46)	18 (13-27)	14 (10-21.5)	0.023	1.053; 0.029; 0.018; 0.03; 0.026	
ALP (U/L)	< 34	17.5 (14-19)	21 (16-39)	25 (16-123)	20 (16-123)	14 (12-18)	0.026	0.029; 0.018; 0.031; 0.026	
AST (U/L)	< 34	17.5 (14-19)	19 (15-33)	19 (15-39)	18 (15-32)	14 (12-18)	NS		

1Hemolysis-elevated liver enzymes-low platelets cases excluded; 2P values were calculated by non-parametric Kruskal-Wallis H test, with post-hoc analysis by Mann-Whitney U test; 3Comparison between controls and all PE group; 4Comparison between all PE and FGR-only groups; 5Comparison between controls and PE FGR group; 6Comparison between controls and PE FGR group; 7Comparison between controls and PE FGR group; 8Comparison between controls and PE FGR-only group; 9Comparison between PE-only and FGR-only groups; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; NS: Non significant; PE: Pre-eclampsia; FGR: Fetal growth retardation.

Table 4 Seropositivity against Helicobacter pylori, cytotoxin-associated antigen A, vacuolating cytotoxin A, ureases A, C, E and H, heat shock protein B and flagellin A a (%)

Variable	Controls (n = 49)	All PE (n = 49)	PE-only (n = 17)	PE FGR (n = 32)	FGR-only (n = 13)	P value1	Odds ratio (95% CI)
Helicobacter pylori	21 (42.9)	42 (85.7)	12 (70.6)	30 (93.8)	6 (46.2)	0.001	9.22 (3.83-20.34)
CagA	11 (22.4)	40 (81.6)	11 (64.7)	29 (90.6)	5 (38.5)	0.038	17.66 (5.25-59.49)
VacA	20 (40.8)	37 (75.5)	9 (52.9)	28 (87.5)	6 (46.2)	0.005	5.49 (1.62-14.73)
HspB	15 (30.6)	21 (42.9)	5 (29.4)	16 (50.0)	6 (46.2)	NS	19.64 (3.75-102.98)
FlagA	13 (26.5)	22 (44.9)	6 (35.3)	16 (50.0)	5 (38.5)	NS	5.20 (1.09-24.69)
UreA	10 (20.4)	13 (26.5)	4 (23.5)	9 (28.1)	3 (23.1)	NS	54.97 (9.24-326.88)
UreC	13 (26.5)	19 (38.8)	4 (23.5)	14 (46.9)	4 (30.8)	0.042	2.84 (1.04-7.75)
UreE	12 (24.5)	26 (53.1)	8 (47.1)	18 (56.3)	3 (23.1)	0.004	4.41 (1.59-12.26)
UreH	8 (16.3)	13 (26.5)	5 (29.4)	8 (25.0)	4 (30.8)	NS	0.69 (0.88-21.04)

1Adjusted for maternal age at delivery, pre-pregnancy body mass index, parity, and presence of maternal and family risk factors; 2P values were calculated by y² test; 3Comparison between controls and all PE group; 4Comparison between controls and PE FGR group; CI: Confidence intervals; NS: Non significant; PE: Pre-eclampsia; FGR: Fetal growth retardation; CagA: Cytotoxin-associated antigen A; VacA: Vacuolating cytotoxin A; HspB: Heat shock protein B; FlagA: Flagellin A; Ure: Ureases.
patients seropositive for UreC (OR 4.02, 95% CI: 1.27-12.8) and UreE (OR 6.29, 95% CI: 1.88-21.04) (Table 4).

Association among CagA/VacA seropositivity and leukocyte blood count, platelet count, and serum amino-transferases values

Considering seropositivities for CagA and/or VacA antigens, we found that the total leukocyte count was significantly decreased in VacA only seropositive patients relative to seronegative, CagA+/VacA- and CagA+/VacA+ patients ($P = 0.003$; $P = 0.014$ and $P = 0.012$, respectively, Table 6). Moreover, the basophiles percentage, but not total count, was significantly increased in CagA/VacA double seropositive compared to seronegative patients ($P = 0.002$, Table 6). No differences among groups were found for the other investigated parameters (Table 6). Analyzing amino-transferases levels after HELLP cases exclusion, ALT was significantly increased in CagA only seropositive patients relative to the other groups ($P = 0.02$; $P = 0.025$; $P = 0.023$, respectively, Table 6), while no differences were found for AST levels (Table 6).

DISCUSSION

In the present study, we reported a direct association between *H. pylori* virulence and the onset of pre-eclampsia complicated by FGR. Moreover, by investigating seropositivity for *H. pylori* virulence factors, we were able to

Table 5 Cytotoxin-associated antigen A/vacuolating cytotoxin A dual seropositivity a (%)
CagA+VacA+
11 (22.4)a
CagA-VacA+
CagA+VacA-
CagA-VacA-

1Adjusted for maternal age at delivery, pre-pregnancy body mass index, parity, and presence of maternal and family risk factors; 2P values were calculated by chi-square test (χ^2); 3Comparison between controls and all PE group; 4Comparison between controls and PE FGR group. CI: Confidence intervals; NS: Non significant; CagA: Cytotoxin-associated antigen A; VacA: Vacuolating cytotoxin A; PE: Pre-eclampsia; FGR: Fetal growth retardation.
distinguish pre-eclampsia and FGR without hypertension as different pathologies.

It is accepted that pre-eclamptic pregnancies, complicated or not by FGR, are characterized by severe maternal inflammation \[1\]. Less is known about “pure” FGR pregnancies, probably because of a biased classification system that considers FGR a secondary disease or a complication of pre-eclampsia. We found elevated maternal leukocytes count, typical sign of inflammation, in all pathological pregnancies relative to controls. However, while leukocytosis in PE patients, as previously reported \[29,30\], was mainly due to elevated neutrophils levels, a typical marker of bacterial infection \[31\], in FGR-only mothers, leukocytosis was due to increase in monocytes, eosinophils, and lymphocytes. Moreover, we found significantly higher transaminases levels in the PE group, even after the exclusion of HELLP cases, known to be characterized by elevated hepatic enzymes. The trigger of this exacerbated inflammatory response still remains unknown.

Graham et al \[21\] previously demonstrated a direct association between abnormal total leukocyte count and \textit{H. pylori}-infection in patients with duodenal ulcer disease. They reported a significant fall in total white cell and neutrophils counts in patients successfully treated by \textit{H. pylori} antibiotic therapy \[21\]. Moreover, they observed higher AST levels in CagA-positive patients, even after antibiotic treatment, thus assuming that AST levels are not directly associated with \textit{H. pylori} infection \[21\]. Furthermore, we previously reported a correlation between \textit{H. pylori} infec-

Figure 2 Percentage of Ureases (A-D), HspB (E), and FlagA (F) seropositive women in control, PE, PE FGR, and FGR groups. *P < 0.05 vs controls. HspB: Heat shock protein B; FlagA: Flagellin A; Ure: Urease; PE: Pre-eclampsia; FGR: Fetal growth retardation.
tion and the onset of pre-eclampsia during pregnancy, suggesting that this Gram-negative bacterium could cause or contribute to the etiopathogenesis of pre-eclampsia [3], by inducing the pro-inflammatory state.

In the present study, we further investigated H. pylori and pre-eclampsia association by considering the main markers of H. pylori virulence and infection persistence, which are useful for understanding the severity and characteristics of the infection.

H. pylori strains carrying the CagA antigen are known to be among the most virulent and are associated with increased inflammation [13, 14]. VacA is a H. pylori toxin crucial to promote and maintain bacterial colonization [14]. Importantly, combined seropositivity for both CagA and VacA directly correlates with elevated morbidity [25, 26]. We previously reported a strong association between CagA positive H. pylori infection and the onset of PE in Italian women [7]. In the present study, we also found that CagA/VacA dual seropositivity is specifically associated with pre-eclampsia and, in particular, with PE complications [7]. The rate of seropositivity for UreC, UreD, UreE, and H. pylori urease subunits and for UreC was significantly higher in PE pregnancies complicated by FGR, as we previously showed for CagA/VacA dual-seropositivity. These data suggest that UreE and UreC contribute to the onset of both PE and PE-FGR.

| Variables | Normal values in Italian female population range | CagA+VacA- (n = 45) Median (25th-75th) | CagA+VacA+ (n = 10) Median (25th-75th) | CagA+VacA- (n = 3) Median (25th-75th) | CagA+VacA+ (n = 53) Median (25th-75th) | P value

| Total leukocyte count (1 x 10^9/L) | 4.00-11.00 | 12.02 (10.6-13.13) | 8.95 (7.75-10.5) | 14.1 (12.4-16.34) | 11.27 (9.62-13.64) | 0.003; 0.012; 0.014

| Neutrophils (1 x 10^9/L) (%) | 45.0-73.0 | 70.8 (67.05-88.85) | 71.9 (68.1-77.3) | 83.4 (78.2-88.6) | 72.0 (67.4-80) | NS

| Lymphocytes (1 x 10^9/L) (%) | 19.0-47.0 | 15.3 (8.9-23.2) | 20.6 (17.4-23.5) | 10.95 (5.7-16.2) | 18.75 (14.23) | NS

| Monocytes (1 x 10^9/L) (%) | 3.0-9.0 | 4.75 (2.15-6.85) | 5.2 (4.9-6.4) | 5.1 (4.8-5.4) | 5.6 (4.3-5.7) | NS

| Eosinophils (1 x 10^9/L) (%) | 0.05 (0.02-0.18) | 0.09 (0.03-0.21) | 0.06 (0.02-0.08) | 0.06 (0.03-0.15) | 0.06 (0.03-0.15) | NS

| Basophils (1 x 10^9/L) (%) | 0.2-4.4 | 0.55 (0.1-1.45) | 1.2 (0.2-2) | 0.4 (0.2-0.6) | 0.58 (0.3-1.17) | NS

| Platelets (1 x 10^9/L) | 150-400 | 222 (169-249) | 175 (154-209.5) | 214 (210-228) | 191 (166-242) | NS

| ALT (U/L) | < 34 | 16 (12.5-26) | 11 (9-12) | 32 (30-176) | 17 (11.5-24) | 0.020; 0.025; 0.023

| AST (U/L) | < 31 | 18 (15.5-23.5) | 13 (12-19) | 58 (15-143) | 18 (14.5-26) | NS

1 Hemolysis-elevated liver enzymes-low platelets cases excluded; 2 P values were calculated by non-parametric Kruskal-Wallis H test, with post-hoc analysis by Mann-Whitney U test; 3 Comparison between CagA-VacA- and CagA-VacA+ groups; 4 Comparison between CagA-VacA- and CagA-VacA+ groups; 5 Comparison between CagA-VacA+ and CagA-VacA+ groups; 6 Comparison between CagA-VacA+ and CagA-VacA+ groups. CagA: Cytotoxin-associated antigen A; VacA: Vacuolating cytotoxin A; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; NS: Non significant.
Intrauterine growth retardation: a pivotal role in the onset of PE. Helicobacter pylori virulence factors are required in the case of pregnancy-related diseases, it would be preferable to prevent the exacerbated inflammation typical of PE, thus avoiding pharmacologic therapies during pregnancy. Recently, several clinical trials and animal studies have focused on generating H. pylori recombinant vaccines. They demonstrated the possibility of eliciting an immunological response against H. pylori in humans, and to eradicate and protect against the infection in mice. Experimental H. pylori vaccines have been created using bacterial urease and designed as oral preparations.

In conclusion, our results define pre-eclampsia complicated by FGR and “pure FGR” as different pathologies. Moreover, we demonstrated a direct role for H. pylori CagA/VacA positive strains in the etiopathogenesis of PE-FGR. Our data further emphasize the importance of an accurate classification of the multifactorial and multiform pre-eclampsic disease. It is generally accepted that PE is a syndrome that includes several pathologies with different etiopathogenesis but with similar clinical manifestations. For this reason, PE is usually classified on the basis of symptoms severity (moderate or severe) or of symptoms onset (early- or late-onset PE). We strongly believe that, as demonstrated by the present study, pre-eclampsia should also be classified as placental (with fetoplacental involvement) or maternal (without fetoplacental compromise), both of which may have early or late onset. This classification will lead to a better management of this devastating pregnancy-related disorder. Further studies are required to identify specific H. pylori-related therapeutic targets.

COMMENTS

Background

Pre-eclampsia (PE), a severe hypertensive pregnancy-related syndrome that affects 5%-8% of women worldwide, represents the main cause of fetal-maternal mortality and morbidity. Despite being the object of intense investigation, the etiopathogenesis of PE is still poorly understood, and no effective therapeutic interventions are available in clinical practice.

Research frontiers

Several lines of evidence suggest that maternal sub-clinical infections could play a pivotal role in the onset of PE. Helicobacter pylori (H. pylori) could directly cause or intensify the generalized inflammation and endothelial dysfunction typical of this syndrome.

Innovations and breakthroughs

The data represent a major advance in the understanding of PE etiopathogenesis and add pivotal information for an accurate classification of this multifactorial and multiform syndrome. In fact, the authors clearly demonstrated a direct correlation between severe and persistent H. pylori infection and the onset of PE complicated by fetal growth retardation (FGR).

Applications

The findings open up new, attractive perspectives regarding the design of effective preventive and therapeutic interventions for pre-eclampsia associated with H. pylori infection.

Terminology

FGR is defined as failure of the fetus to achieve its genetically determined growth potential and is commonly considered a severe complication of PE.

Peers review

The work is a contribution to the understanding of H. pylori’s pathogenic role in PE, associated or not with FGR. The association between maternal infection and PE has been evaluated by several researchers and is a good field to study the etiopathogenesis of this critical clinical condition. Authors confirmed that persistent and virulent H. pylori infections cause or contribute to PE complicated by FGR.

REFERENCES

1. Redman CW, Sargent IL. Pre-eclampsia, the placenta and the maternal systemic inflammatory response--a review. *Placenta* 2005; 24 Suppl A: S21-S27
2. Roberts JM, Gammill HS. Preeclampsia: recent insights. *Hypertension* 2005; 46: 1243-1249
3. Conde-Agudelo A, Villar J, Lindheimer M. Maternal infection and risk of preeclampsia: systematic review and meta-analysis. *Am J Obstet Gynecol* 2008; 198: 7-22
4. Rustveld LO, Kelsey SF, Sharma R. Association between maternal infections and preeclampsia: a systematic review of epidemiologic studies. *Matern Child Health J* 2008; 12: 223-242
5. Conde-Agudelo A, Villar J, Lindheimer M. Maternal infection and risk of preeclampsia: systematic review and meta-analysis. *Am J Obstet Gynecol* 2008; 198: 7-22
6. Rustveld LO, Kelsey SF, Sharma R. Association between maternal infections and preeclampsia: a systematic review of epidemiologic studies. *Matern Child Health J* 2008; 12: 223-242
7. Conde-Agudelo A, Villar J, Lindheimer M. Maternal infection and risk of preeclampsia: systematic review and meta-analysis. *Am J Obstet Gynecol* 2008; 198: 7-22
8. Suerbaum S, Michetti P. Helicobacter pylori infection. *N Engl J Med* 2002; 347: 1175-1186
9. Davi G, Neri M, Falco A, Festi D, Taraborelli T, Ciabattoni G, Basili S, Cuccurullo F, Patrono C. Helicobacter pylori infection causes persistent platelet activation in vivo through enhanced lipid peroxidation. *Arterioscler Thromb Vasc Biol* 2005; 25: 246-251
10. Byrne MF, Kerrigan SW, Corcoran PA, Atherton JC, Murray FE, Fitzgerald DJ, Cox DM. Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce platelet aggregation. *Gastroenterology* 2003; 124: 1846-1854
11. Ustun Y, Engin-Ustun Y, Ozkapan E, Otu B, Tekerekoglu MS. Association of Helicobacter pylori infection with systemic inflammation in preeclampsia. *J Matern Fetal Neonatal Med* 2009; 1: 4-12
12. Aksoy H, Ozkan A, Aktas F, Borecki B. Helicobacter pylori seropositivity and its relationship with serum malondialdehyde and lipid profile in preeclampsia. *J Clin Lab Anal* 2009; 23: 219-222
13. Graham DY, Yamaoka Y. Disease-specific Helicobacter pylori virulence factors: the unfulfilled promise. *Helicobacter*
