Identification of two duplicate etiolation genes (py1, py2) in pakchoi (Brassica rapa L. ssp. chinensis)

Kun Zhang
Shenyang Agricultural University

Yu Mu
Shenyang Agricultural University College of Horticulture

Weijia Li
Shenyang Agricultural University College of Horticulture

Xiaofei Shan
Shenyang Agricultural University

Nan Wang
Shenyang Agricultural University

Hui Feng
shenyang agricultural university

Research article

Keywords: Brassica rapa, BSR-Seq, etiolation mutant, genetic mapping

Posted Date: October 7th, 2019

DOI: https://doi.org/10.21203/rs.2.15677/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on February 10th, 2020. See the published version at https://doi.org/10.1186/s12870-020-2271-3.
Abstract

We identified a stably inherited yellow leaf mutant derived from 'Huaguan' pakchoi variety via isolated microspore culture and designated as pylm. This mutant displayed yellow leaves after germination. Its etiolated phenotype was nonlethal and stable during the whole growth period. Its growth was weak and its hypocotyls were markedly elongated. Two recessive nuclear genes named py1 and py2 had a duplicate effect on etiolation. BSR-Seq revealed that py1 and py2 were mapped on chromosomes A09 and A07, respectively. The genes were single Mendelian factors in F3:4 populations based on a 3:1 phenotypic segregation ratio. The py1 was localized to a 258.3-kb interval on a 34-gene genome. The differentially expressed gene BraA09004189 was detected in the py1 mapping region and regulated heme catabolism. One single-nucleotide polymorphism of BraA09004189 occurred in pylm. A candidate gene-specific SNP marker in 1,520 F3:4 yellow-colored individuals co-segregated with py1. For py2, 1,860 recessive homozygous F3:4 individuals were investigated and localized py2 to a 4.4-kb interval. Of the five genes in this region, BraA07001774 was predicted as a candidate for py2. It encoded an embryo defective 1187 and a phosphotransferase related to chlorophyll deficiency and hypocotyl elongation. One single-nucleotide polymorphism of BraA07001774 occurred in pylm. It caused a single amino acid mutation from Asp to Asn. According to qRT-PCR, BraA07001774 was downregulated in pylm. Thus, BraA09004189 and BraA07001774 are candidate genes for py1 and py2. These findings will elucidate the molecular mechanisms of the gene interactions controlling pakchoi etiolation.

Introduction

The photosynthetic pigment chlorophyll (Chl) is ubiquitous in cyanobacteria and the chloroplasts of higher plants. Chl converts the energy of sunlight into bioavailable chemical energy which drives carbohydrate biosynthesis (Fromme et al. 2003). Chl is an essential component of leaf color which influences dry matter accumulation and crop yield. In general, leaves appear green because Chl predominates and has a vital role in them. When the Chl content changes in plants, various leaf color mutant phenotypes result including chlorina, virescent, albino, yellow-green, and stay-green (Kurata et al. 2005). Leaf color mutants develop from the inhibition of genes regulating Chl biosynthesis and chloroplast development. Downregulation of these genes directly or indirectly influences Chl synthesis and degradation and produces the leaf color mutations (Schultes et al. 2000; Motohashi et al. 2003; Song et al. 2018). Thus, leaf color mutants may be ideally suited for the elucidation of the mechanisms of photosynthesis, Chl biosynthesis, chloroplast development, and the expression and regulation of the genes associated with these processes (Stern et al. 2004; Kusaba et al. 2007; Bang et al. 2008; Chen et al. 2018). Leaf color mutants have been characterized in Arabidopsis (Jarvis et al. 2000), rice (Zhang et al. 2006; Moon et al. 2008), wheat (Hui et al. 2012), Brassica napus (Zhu et al. 2014), Brassica oleracea (Liu et al. 2016), barley (Mueller et al. 2012), kale (Zhou et al. 2013), tobacco (Wu et al. 2014), soybean (Fang et al. 2014), cotton (Song et al. 2012), and cucumber (Gao et al. 2016; Song et al. 2018). Much research has been invested in the analysis of the genetics, physiology, and molecular mechanisms of Chl biosynthesis and chloroplast development via leaf color mutants.
Several studies in genetic analysis have categorized leaf color mutation inheritance as nuclear and cytoplasmic. Most leaf color mutations are recessively inherited and conferred by a single nuclear gene (Wang et al. 2010; Ansari et al. 2013; Gao et al. 2016; Wang et al. 2018). Leaf color mutations involving two recessive genes are rare. Moreover, their inheritance is complex and it is difficult to apply genetic analysis and gene mapping on them. Wu et al. (2014) identified the light color mutant *ws1* in *Nicotiana tabacum* and determined that this phenotype was controlled by the recessive nuclear genes *ws1a* and *ws1b* localized by different BC$_1$F$_2$ groups to linkage groups 5 and 24, respectively. *BnChd1–1* and *BnChd1–2* are responsible for the light green leaf mutant phenotype in *Brassica napus*. Fine mapping of *BnChd1–1* was achieved using the BC$_3$F$_1$ population. Candidate gene prediction suggested that *BnChd1–1* encodes a subunit of the NAD(P)H complex in the thylakoid lumen Zhao et al. (2014). Chl-deficient mutant phenotypes in durum wheat (Li et al. 2013) and *Brassica juncea* (Tian et al. 2012) are also controlled by two recessive genes. Cytoplasmic mutants are uncommon compared to nuclear mutants. However, they have been reported for tobacco (Barak et al. 2000), barley (Colombo et al. 2008), and *Brassica campestris* (Tang et al. 2018).

In plants, Chl biosynthesis comprises 15 enzymatic steps regulated by at least 27 genes (Nagata et al. 2005). Inactivation mutations of the Chl biosynthetic genes usually results in Chl-deficient mutants (Frick et al. 2003; Zhang et al. 2006; Wang et al. 2010; Sheng et al. 2017). Mutations in the genes governing Chl degradation metabolism generally produce stay-green mutants which retain their green leaf phenotype even during senescence (Yoo et al. 2007; Morita et al. 2009; Wang et al. 2018). Chl and heme biosynthesis are two types of tetrapyrrole formation and share a common metabolic pathway from 5-aminolevulinic acid (ALA) to protoporphyrin IX (Proto IX) (Weller et al. 1996). Heme is essential for both respiration and photosynthesis. In contrast, excessive heme accumulation inhibits glutamyl-tRNA reductase activity and ALA synthesis, reduces the rate of tetrapyrrole biosynthesis, and affects Chl biosynthesis (Terry and Kendrick 1999). Leaf color mutants arising from abnormal heme metabolism were identified for *Arabidopsis* (Xie et al. 2012), rice (Xu et al. 2012; Chen et al. 2013; Li et al. 2014), pea (Linley et al. 2006), and maize (Shi et al. 2013).

In a previous study, we developed a pakchoi (*Brassica rapa* L. ssp. *chinensis*) yellow leaf mutant (*pylm*) derived from the ‘Huaguan’ pakchoi variety by isolated microspore culture. This strain is a double haploid (DH) with a stable yellow leaf phenotype (Zhang et al. 2017). In the present study, we conducted genetic analysis on *pylm* using BSR-Seq with linkage analysis to map the corresponding genes. Then, the candidate genes associated with the mutant phenotype were predicted. The information derived from this work may help facilitate the cloning of etiolation genes and elucidate the molecular mechanisms of gene interactions.

Materials And Methods

Plant materials and mapping population development
The DH line *pylm* was obtained by isolated microspore culture of the ‘Huaguan’ pakchoi variety introduced from Japan musashino seed company. This strain was characterized by yellow leaves and elongated hypocotyls (Zhang et al. 2017). The *pylm* and the green Chinese cabbage DH line ‘FT’ were used as parents for the segregating population. The *pylm* was reciprocally crossed with ‘FT’ to produce the F₁, F₂, and BC₁ generations. Twenty F₂ individuals with green leaves were self-pollinated to produce F₂:₃ progenies. Eight green F₂:₃ individuals per group were randomly selected from the corresponding populations and self-pollinated to produce the F₃:₄ populations. Those with character segregation were used in linkage analysis and gene mapping. All plants were grown in the greenhouse at Shenyang Agricultural University, China.

Detection of variations by BSR-Seq

One hundred individuals with extreme leaf color phenotype were separately collected from the F₂ progeny and pooled for RNA extraction (RNAprep Pure Plant Kit; Tiangen, China). The RNA concentration and integrity were analyzed with an Agilent 2100 Bioanalyzer (Agilent Technologies, USA). The extreme mixed pools green-leaf (G-pool) and yellow-leaf (Y-pool) were constructed by mixing equal amounts of each RNA sample. RNA-Seq was run on an Illumina HiSeq 2500 by GENEWIZ Suzhou Biological Technology Co., Ltd., China.

The quality of the raw RNA-Seq reads was assessed with FastQC (v. 0.10.1). Adapter sequences and low-quality reads containing N and < 70 were deleted from the raw reads with Cutadapt (v. 1.9.1). Low-quality bases at the 5’ or 3’ end were filtered out. Those with mean quality < 20 were trimmed by the 4-bp sliding window method. Clean data were aligned to the *Brassica* database (http://brassicadb.org/brad/) with Hisat v. 2.0.14 (Kim et al. 2015). Candidate SNPs between the pools were obtained with the Mpileup module in SAM Tools (v. 0.1.18) SNP loci with depth coverage > 3× were screened for differential SNP analysis in the mutant and wild type pools. Euclidean distances (ED) for the differential SNP loci were calculated. The ED for each differential SNP locus was raised to the power five, namely, ED⁵, to eliminate background noise (Su et al. 2016). All ED⁵ were sorted and the differential SNP loci with ED⁵ in the top 1% were screened and mapped to specific chromosome regions based on the SNP locus distributions. Chromosome regions associated with the target traits were predicted according to the distributions of the ED⁵ for the differential SNP loci on the chromosomes.

Differential gene expression analysis

To detect differentially expressed genes (DEGs) between the pools, a gene expression level analysis was performed with Htseq (v. 0.6.1). The reads per kilobases per million mapped reads (RPKM) were calculated (Mortazavi et al. 2008). DEGs were screened using a preset threshold (|log₂ fold change| ≥ 1 and false discovery rate (FDR) ≤ 0.05).
DNA isolation, polymerase chain reaction (PCR), and linkage analysis

A modified CTAB method (Murray and Thompson 1980) was used to extract genomic DNA from young leaves of the parental and F$_{3.4}$ populations with a phenotypic segregation ratio of 3:1. The primers for polymorphism analysis were designed in Primer Premier (v. 5.0). PCR amplifications were performed following the instruction as described by Wang et al. (2018). PCR products were separated on 5% (w/v) denaturing polyacrylamide gels and examined by silver staining. The genetic linkage map was constructed by Join Map v. 4.0 (Van Ooijen 2006) using the segregation data. Map distances were calculated and reported in centimorgans (cM) according to Kosambi’s mapping function (Kosambi 1944).

Candidate gene prediction and qRT-PCR validation

Using the chromosome location of the target gene, all adjacent genes were annotated with the Brassica database (http://brassicadb.org/brad/). Candidate genes were predicted according to gene annotation. PCR primers were designed to span the entire putative gene length between the mutant pylm and wild type ‘CK−51’. Candidate genes were cloned following the method referenced from Huang et al. (2016). Sequences were determined by GENEWIZ Biological Technology Co. Ltd. (Suzhou, China) and aligned with DNAMAN software.

Leaves of pylm and ‘CK−51’ were collected for total RNA extraction as previously described. After confirming its concentration and integrity, the RNA was reverse-transcribed with a FastQuant RT Kit (Tiangen, China). Quantitative real-time (qRT)-PCR was performed with a Bio-Rad IQ5 Real-Time PCR System (Bio-Rad Laboratories, USA) and SYBR Green PCR Master Mix (Tiangen, China). All reactions were run on three biological replicates. Two independent technical replicates per sample were processed to confirm data accuracy. Primers for the candidate genes BraA09004189 (F: 5′-GCTTCCACTTCTGTTTTTCTCT–3′; R: 5′-TCTTTTTCTGCTTCTCTGATGCTG–3′) and BraA07001774 (F: 5′-GGATACGACTGTGATTACCTTCTAC–3′; R: 5′-CCGACTCCACTTCAACCAACG–3′) were used in the qRT-PCR analysis. The Actin gene (F: 5′-CGAAACAACCTTCAAACATCTTTAC–3′; R: 5′-CTCTTTGCTCATAACGGTCA–3′) served as an endogenous control. The qRT-PCR reaction conditions and program were those cited in Huang et al. (2015). The relative expression level was calculated by the $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen 2001). Bio-Rad IQ5 (Bio-Rad Laboratories, USA) analyzed the data.

Results

Phenotypic characterization of mutant pylm

The wild type ‘CK−51’ and pylm were both obtained from isolated microspore culture of the ‘Huaguan’ pakchoi variety. However, the latter displayed yellow leaves at germination and this phenotype was stable throughout its lifetime (Fig. 1). The mutant had a slender phenotype and weak growth. However, its
yellow leaf color was nonlethal. Moreover, relative to ‘CK–51’, pylm displayed an elongated hypocotyl at the seedling stage (Fig. 1c) and early flowering at the bolting stage (Fig. 1b).

Genetic analysis of mutant pylm

F₁ and F₂ populations were constructed from crosses between pylm (Fig. S1a) and the Chinese cabbage DH line ‘FT’ (Fig. S1b). The F₁ individuals from the reciprocal crosses had the same green leaf phenotype as ‘FT’. Therefore, inheritance of the etiolation phenotype in pylm is nuclear rather than cytoplasmic. Segregation statistics data for the green and yellow leaf phenotypes of the F₂ population accorded with the expected Mendelian ratio of 15:1 ($\chi^2 < 2.05 = 3.84$). Thus, the Chl deficiency trait is controlled by two duplicate recessive nuclear genes. The BC₁ progeny was obtained from F₁ separately backcrossed with pylm and ‘FT’. Segregation statistics data for the green and yellow leaf phenotypes of the BC₁F₁ population from the cross of F₁ with pylm fitted the expected Mendelian ratio of 3:1 ($\chi^2 < 2.05 = 3.84$). This finding confirms that the mutant trait is conferred by two duplicate recessive nuclear genes. They were designated as py₁ and py₂. Neither gene alone can induce the yellow leaf phenotype. Phenotypic data for all generations are listed in Table 1.

Segregation of py₁ and py₂

According to the genetic analysis of pylm, the reduced-Chl phenotype is controlled by the recessive nuclear genes py₁ and py₂ with duplicate effects on etiolation. In consequence, the F₂ and BC₁F₁ populations could not be used to map these genes separately. To separate py₁ from py₂, F₂ individuals with green leaves may be randomly selected and self-pollinated to produce F₂:3 progeny. Green-colored F₂:3 plants with a statistical segregation ratio of 3:1 (green-colored:yellow-colored) may be self-pollinated to generate F₃:4 progeny. In theory, ~2/3 of the F₃:4 families should display the expected Mendelian segregation ratio of 3:1. Some of these could map py₁ while the others could map py₂ (Fig. 2).

Twenty green-colored individuals from F₂ were randomly selected and self-pollinated to produce F₂:3. For the twenty F₂:3 families, phenotypic segregations were investigated. There were three distinct groups. Eleven populations showed no yellow-colored plants, five segregated with 15:1, and the other four with 3:1 (Table S1). These results corroborated the theoretical segregation ratio of “all green-colored:(green-colored:yellow-colored = 3:1):(green-colored:yellow-colored = 15:1) = 7:4:4” for F₂:3.

Of the four F₂:3 families segregated with 3:1, eight plants with green leaves per family were selected and self-pollinated to produce F₃:4. Phenotypic segregations revealed that twenty F₃:4 families (Nos. 1–20) segregated with 3:1 while the other twelve showed no yellow-colored individuals (Nos. 21–32). Thus, their F₂:3 genotypes should be Py₁ py₁ py₂ py₂/py₁ py₁ Py₂ py₂ and Py₁ Py₁ py₂ py₂/py₁ py₁ Py₂ Py₂, respectively (Table S2). Phenotypic segregations of the F₃:4 families fitted the theoretical segregation
ratio of "(green-colored:yellow-colored = 3:1):all green-colored = 2:1". Therefore, the F_{3:4} families (Nos. 1–20) could be used to map the *py1* and/or *py2* loci.

BSR-Seq analysis

A total of 47,526,126 and 49,119,466 raw reads (150-bp) were generated from the G-pool and Y-pool, respectively. After quality evaluation and data filtering, 97% of the read pairs (46,456,174 for the G-pool and 47,581,728 for the Y-pool) remained. Clean reads were mapped against the *Brassica* reference genome with Hisat v. 2.0.14. Of these, > 66% were uniquely mapped in both pools.

Relative to the reference genome, 154,863 and 157,022 SNPs were detected in the G-pool and Y-pool, respectively. Differential SNP loci were screened for ED^5_5 calculation and 412 target differential SNP loci were obtained between the pools according to the top 1% ED^5_5 threshold. Two distinct peaks were observed on chromosomes A07 and A09 (Fig. 3). This finding was consistent with the hypothesis that the mutant trait is controlled by two duplicate recessive nuclear genes. Thus, it was predicted that the etiolation genes were located on chromosomes A07 and A09 within five chromosome regions (Table 2).

Identification of differentially expressed genes

RPKM was used to measure gene expression level. By setting RPKM ≥ 0.1, 55,250 genes were detected. These were divided into six RPKM distribution intervals (Table S3). There were 181 DEGs between the G-pool and Y-pool according to the constraint (|log_2 fold change| ≥ 1 and FDR ≤ 0.05). Ninety genes were upregulated and the others were downregulated when the G-pool was compared with the Y-pool (Fig. S2). The DEGs are shown in Table S4.

Fine mapping of *py1*

Ninety-six SSR markers were developed around the three predicted chromosome regions on chromosome A09. They were used to detect polymorphisms between *pylm* and ‘FT’. After screening, thirty-seven SSR markers displayed polymorphisms between parents. They were used to test twelve green-colored and yellow-colored individuals each from the No. 1 F_{3:4} family. SSRzk5 and SSRzk12 were located near the 23,811,435–27,563,122 region on chromosome A09 and showed linkage to *py1* on the opposite side.

A total of 1,520 yellow-colored individuals of the No. 1 F_{3:4} family were selected as the *py1* mapping population. A linkage analysis disclosed that *py1* was located between SSRzk5 and SSRzk12 at estimated genetic distances of 3.2 cM and 1.8 cM, respectively (Fig. 4a). To identify the molecular markers tightly linked to *py1* and narrow the *py1* mapping interval, new SSR and Indel markers were developed between SSRzk5 and SSRzk12. The polymorphic markers SSRzk17, SSRzk28, SSRzk29, SSRzk36, Indelzk72, and Indelzk125 were linked to *py1* (Table S5). SSRzk17, Indelzk72, and Indelzk125
were located on one side of *py1* as SSRzk5 while SSRzk28, SSRzk29, and SSRzk36 were located on the other side of *py1* as SSRzk12. The *py1* was mapped between Indelzk125 and SSRzk36 at 0.13 cM and 0.2 cM, respectively (Fig. 4b). Therefore, *py1* was mapped in a 258.3-kb region between the most tightly linked markers (Fig. 4c).

Candidate *py1* analysis

The target DNA sequences of the 258.3-kb region between Indelzk125 and SSRzk36 were obtained from the *Brassica* database. A genomic sequence analysis revealed that the candidate region contained 34 genes (Fig. 4c, Table S6). Differential gene expression analysis disclosed only *BraA09004189* in the *py1* mapping region. *BraA09004189* is a heme oxygenase (HO1) which participates in heme catabolism. Mutants with yellow leaf phenotype induced by defective HOs were reported in earlier studies (Chen et al. 2013; Li et al. 2014). *BraA09004189* was predicted to be the most probable candidate *py1* gene.

To confirm this hypothesis, two pairs of primers were designed to sequence *BraA09004189* in *pylm* and 'CK–51' (Table S7). The BraA sequence did not differ between parents whereas the BraB sequence in *pylm* presented with one single nucleotide polymorphism (SNP) (Fig. 5). Based on the position of *BraA09004189*, an SNP marker was designed to screen 1,520 yellow-colored individuals from the No. 1 F₃:4 family. The bands of whole mapping individuals co-segregated with *py1*.

A qRT-PCR was performed to determine *BraA09004189* expression in *pylm* and 'CK–51'. In accordance with the differential gene expression analysis, the results indicated that *BraA09004189* expression level was much higher in 'CK–51' than that in *pylm* (Fig. 6). This finding confirms that *BraA09004189* is the candidate gene for *py1*.

Fine mapping of *py2*

Considering the constructed populations size, we screened the Nos. 2–5 F₃:4 families using the same research strategy applied for SSRzk5 and SSRzk12 linked to *py1*. The etiolation gene *py1* was identified in the Nos. 2, 4, and 5 F₃:4 families. In theory, then, the No. 3 F₃:4 family may be used to establish the *py2* locus.

Forty-eight SSR markers were developed around the two predicted regions on chromosome A07 to detect polymorphisms between *pylm* and 'FT'. After screening, eleven SSR markers displayed polymorphisms between the parents. They were used to test twelve green-colored and twelve yellow-colored individuals of the No. 3 F₃:4 family. SSR84 and SSR103 were located around the region 11,166,810–15,034,483 on chromosome A07 and presented with linkages to *py2* on the opposite side (Fig. 7a; Table S8).

There were 1,860 yellow-colored individuals from the No. 3 F₃:4 family selected as the *py2* mapping population. The *py2* was located between SSR11 and SSR15 at estimated genetic distances of 0.24 cM.
and 0.03 cM, respectively (Fig. 7b). To narrow the py2 mapping interval and identify the molecular markers tightly linked to py2, new single-nucleotide variant (SNV) markers were developed between SSR11 and SSR15. Only the polymorphic marker SNV11 was linked to py2. Based on the recombinant individuals, the py2 interval was narrowed to 14,851,951–14,896,902 and contained five genes (Fig. 7c).

Candidate py2 analysis

Annotation data for the five candidate genes in the py2 target region were obtained from the Brassica database (Table S9). Primers were designed to cover the cDNA for each gene and predict the candidate genes (Table S10). There were no differences between pylm and ‘CK–51’ in terms of BraA07001775, BraA07001776, or BraA07001777. After PCR amplification, the BraA07001773 sequence was disordered and the sequence comparisons were inconsistent over serial repetitions. There was SNP variation between parents for the first exon BraA07001774 (Fig. 8). It caused a single amino acid mutation from Asp (GAT) in the wild type to Asn (AAT) in pylm (Fig. 9). Therefore, BraA07001774 was taken as the most probable candidate gene for py2.

BraA07001774 is an embryo defective 1187 (emb 1187) and a phosphotransferase. The albino mutants (pds1, pds2) phenotypes in Arabidopsis thaliana may be caused by emb 71 (Franzmann et al. 1995). For Arabidopsis seeds with silique defects, hypocotyl elongation was characterized during the development of F_2 generation mutant seedlings (Patton et al. 1991). We proposed that the mutant phenotype is determined by mutations in BraA07001774. To validate our prediction, BraA07001774 expression in pylm and ‘CK–51’ was analyzed by qRT-PCR. BraA07001774 was dramatically downregulated in pylm (Fig. 10). Thus, it probably is the candidate gene for py2.

Discussion

Mutations in leaf color are widespread in nature. The main type of leaf color mutation is Chl deficiency. Dwarfism, retarded growth, attenuated photosynthetic capacity, low yield, and death are associated with this defect (Jung et al. 2003; Wu et al. 2007; Zhao et al. 2014). Here, we identified the pakchoi yellow leaf mutant pylm from isolated microspore culture. Unlike previously reported Chl deficient mutants, pylm presented with substantially elongated hypocotyls at the seedling stage and early flowering at the bolting stage. The etiolation phenotype in pylm was nonlethal and stable throughout the growth period. The Chl deficiency in pylm was controlled by two duplicate recessive genes. These characteristics suggested that pylm was of high value for research in revealing the Chl biosynthesis mechanism regulated by gene interactions.

Map-based cloning is an effective gene isolation strategy. It has been extensively used for plant gene function analysis (Jander and Last 2002; Sang et al. 2010; Xie et al. 2018). However, it is contingent upon fine mapping of the target gene. For most leaf color mutants, the traits are recessively inherited and controlled by a single nuclear gene. The F_2 populations are instinctively applied to map the target gene
(Wu et al. 2007; Li et al. 2014; Song et al. 2018). With regard to the character conferred by two recessive nuclear genes, F₂ populations may also be used in preliminary mapping. An efficient way to isolate allele pairs from each other and separately map them is to construct advanced backcrosses and other populations. The recessive white stem (ws) loci in *Nicotiana tabacum* and the Chl deficiency (*Bnchd1*) loci in *Brassica napus* were successfully mapped using constructed BC₁F₂ and BC₃F₁ populations, respectively (Wu et al. 2014; Zhao et al. 2014). In the present study, genetic analysis revealed that the duplicate recessive nuclear genes designated as *py1* and *py2* were responsible for the etiolation trait. We successfully segregated *py1* from *py2* and constructed an inheritance model for the Chl deficiency trait in pakchoi. Twenty F₃:₄ families with a phenotypic segregation ratio of 3:1 were constructed. Various F₃:₄ families were successfully used to map the *py1* and *py2* loci separately. Compared to using advanced backcross populations to map pairs of recessive nuclear genes, creating and using F₂:₃ or F₃:₄ families avoid the selection errors and interference in genetic analysis caused by the incomplete emasculation of *Brassica rapa*.

BSR-Seq efficiently combines the respective superiorities of bulk segregation analysis (BSA) and RNA sequencing (RNA-Seq) for rapid gene mapping (Trick et al. 2012; Lee et al. 2014; Lu et al. 2014; Ramirez-Gonzalez et al. 2015). BSR-Seq is targeted at the mRNA level. It selects phenotypically opposite individuals from segregated populations and constructs two RNA mixing pools to find SNPs at the transcript level. The transcriptome data localize the target genes and detect potentially associated DEGs (Schneeberger and Weigel 2011). BSR-Seq has been extensively applied to map the causal genes linked to a single target trait (Nestler et al. 2014; Tang et al. 2014; Wang et al. 2018). Two independently inherited traits may also be localized by BSR-Seq. Tan et al. (2019) applied BSR-Seq to locate the genes controlling male sterility on chromosome A05 and white petal on chromosome A02. Here, the mutant *pylm* and Chinese cabbage DH ‘FT’ lines were chosen as parents to construct the F₂ separation population. The phenotypes of the wild type and mutant individuals significantly differed. Thus, extreme mixed pools could be accurately and conveniently created for BSR-Seq. Release of *Brassica rapa* genomic data enhanced the reliability of these populations in BSR-Seq applications. Five candidate regions related to the yellow leaf phenotype in *pylm* were identified on chromosomes A07 and A09. Molecular markers were developed according to the locations of the candidate regions. The etiolation genes *py1* and *py2* were separately mapped with different F₃:₄ families. The findings confirmed the feasibility of BSR-Seq for mapping two recessive nuclear genes. They also showed that BSR-Seq simplifies molecular marker development and screening in traditional mapping methods and greatly improves their efficiency.

New molecular markers were developed near the target regions based on preliminary *py1* mapping by BSR-Seq. The *py1* was mapped between the markers Indelzk125 and SSRzk36 on A09 chromosome over a 258.3-kb localization interval containing 34 predicted genes. No new polymorphic SSR or Indel markers were available to limit the localization interval. The gene expression patterns determined by BSR-Seq disclosed only one differentially expressed gene (*BraA09004189*) within the *py1* mapping region. A gene annotation referenced from the *Brassica* database indicated that *BraA09004189* encodes heme.
oxygenase–1 (HO1). This enzyme plays a vital role in phytochrome chromophore metabolism, the photoresponse mechanism, adventitious root formation, and oxidative damage mitigation (Davis et al. 1999; Ortiz de Montellano and Wilks 2001; Quail 2002; Emborg et al. 2006). HO1 stabilizes and maintains the heme content by transforming heme into BV-IXα (Terry et al. 1993). As embranchments of tetrapyrrole biosynthesis, Chl and heme biosynthesis share a common metabolic pathway from ALA to Proto IX. Excessive heme accumulation caused by abnormal heme metabolism leads to feedback inhibition of Chl biosynthesis (Weller et al. 1996). Therefore, a decrease in HO1 activity may influence Chl biosynthesis. The hy1 mutant of Arabidopsis and the yellow-green leaf 2 mutant of rice presented with the reduced-Chl phenotype because of free heme inhibition resulting from HO1 mutations (Davis et al. 1999; Chen et al. 2013). HO1 defects strongly affected thylakoid development in rice (Li et al. 2014). Davis et al. (1999) found that the abnormally elongated hypocotyl phenotype of mutant Arabidopsis seedlings may be associated with HO1 defects. Thus, py1 may encode HO and a mutation thereof may influence Chl biosynthesis and leaf color. In this study, qRT-PCR demonstrated that BraA09004189 was downregulated in pylm. This finding was consistent with those obtained by BSR-Seq. The SNP BraA09004189 was detected between pylm and ‘CK–51’. A candidate gene-specific SNP marker in 1,520 F3:4 yellow-colored individuals co-segregated with py1. Thus, BraA09004189 corresponds to the yellow leaf locus py1 in pylm.

It was already known that certain Chl deficiency traits are controlled by two recessive nuclear genes. However, there was a lack of appropriate mapping populations or reliable molecule markers. Therefore, they were either approximately mapped without definite locations (Li et al. 2013; Wu et al. 2014) or only one of the pair could be localized (Zhao et al. 2014). In previous studies, little progress was made in the simultaneous fine mapping or accurate prediction of the candidate genes. Here, we used the same mapping strategy as that for py1 to accomplish fine mapping for py2. The linkage analysis disclosed that py2 was mapped between SSR11 and SSR15 on chromosome A07. The mapping interval was narrowed to 4.4 kb by the SNV11 marker linked to py2. Sequence analysis of the five genes in the py2 localization interval showed that only BraA07001774 expression significantly differed between pylm and ‘CK–51’. For pylm, BraA07001774 had a SNP missense mutation on the first exon such that the wild type had an Asp residue whereas pylm had an Asn. The qRT-PCR revealed that BraA07001774 was downregulated in the mutant relative to the wild type. Gene annotation in the Brassica database indicated that BraA09004189 encodes embryo defective 1187 (emb 1187) and a phosphotransferase. In Arabidopsis, the emb (embryo defective) genes are essential for seed development (Despres et al. 2001). EMB genes encode various proteins. Thirty percent of them are active in the plastids (Shen et al. 2013). Most emb mutations result in albinism or etiolated seeds and embryos which are secondary effects of mutations in chloroplast biogenesis and function (Li and Thomas 1998). The albino mutants (pds1, pds2) and hypocotyl elongation phenotypes in Arabidopsis may be related to mutations in EMB genes (Patton et al. 1991; Franzmann et al. 1995). Thus, BraA07001774 is a candidate gene for py2. Here, we successfully achieved fine mapping and predictions for the two candidate etiolation genes py1 and py2. These discoveries may help elucidate the molecular mechanisms underlying the trait controlled by two duplicate recessive nuclear genes. In future studies, functional validation will be conducted to clarify the functions
of these candidate genes. In this manner, the molecular mechanism of gene interactions may be better understood.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent to publish
Not applicable.

Availability of data and materials
All data are fully available without restriction.

Competing interests
The authors declare that they have no competing interests.

Funding
This study was funded by grants from the National Natural Science Foundation of China (No. 31672144). The funding played roles in the design of the study and collection, analysis, and interpretation of data.

Authors’ contributions
KZ, YM, XS and NW conducted the experiments and collected the data. KZ and WL analyzed the data and drafted the manuscript. HF designed the experiments and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements
The authors thank Editage for English language editing and GENEWIZ for sequencing.

Authors’ information
Kun Zhang, lecturer, College of Life Sciences, Shanxi Datong University, Datong City, Shanxi Province, People's Republic of China. Yu Mu and Nan Wang are postgraduates from College of Horticulture, Shenyang Agricultural University, Shenyang City, Liaoning Province, People's Republic of China. Weijia Li, lecturer, Institute of Carbon Materials Science, Shanxi Datong University, Datong City, Shanxi Province, People's Republic of China. Xiaofei Shan, laboratory technician, College of Life Sciences, Shanxi Datong University, Datong City, Shanxi Province, People's Republic of China. Hui Feng, professor, College of Horticulture, Shenyang Agricultural University, Shenyang City, Liaoning Province, People's Republic of China.

References

Ansari MJ, Al-Ghamdi A, Kumar R, Usmani S, AL-Attal Y, Nuru A, Mohamed AA, Singh K, Dhaliwal HS (2012) Characterization and gene mapping of a chlorophyll-deficient mutant clm1 of Triticum monococcum L. Biol Plant 57(3):442–448

Bang WY, Jeong IS, Kim DW, Im CH, Ji C, Hwang SM, Kim SW, Son YS, Jeong J, Shiina T, Bahk JD (2008) Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene expression profiling. Plant Cell Physiol 49(9):1350–1363

Barak S, Heimer Y, Nejidat A, Volkita M (2000) The peroxisomal glycolate oxidase gene is differentially expressed in yellow and white sectors of the DP1 variegated tobacco mutant. Physiol Plant 110(1):120–126

Chen H, Cheng Z, Ma X, Wu H, Liu Y, Zhou K, Chen Y, Ma W, Bi J, Zhang X, Guo X, Wang J, Lei C, Wu F, Lin Q, Liu Y, Liu L, Jiang L (2013) A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. Plant Cell Rep 32(12):1855–1867

Chen P, Hu H, Zhang Y, Wang Z, Dong G, Cui Y, Qian Q, Ren D, Guo LB (2018) Genetic analysis and fine-mapping of a new rice mutant, white and lesion mimic leaf1. Plant Growth Regul 85(3):425–435

Colombo N, Emanuel C, Lainez V, Maldonado S, Prina AR, Börner T (2008) The barley plastome mutant CL2 affects expression of nuclear and chloroplast housekeeping genes in a cell-age dependent manner. Mol Gen Genomics 279(4):403–414

Davis SJ, Kurepa J, Vierstra RD (1999) The Arabidopsis thaliana HY1 locus, required for phytochrome chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci 96(11):6541–6546

Despres B, Delseny M, Devic M (2001) Partial complementation of embryo defective mutations: a general strategy to elucidate gene function. Plant J 27(2):149–159

Emborg TJ, Walker JM, Noh B, Vierstra RD (2006) Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. Plant Physiol 140(3):856–868
Fang C, Li C, Li W, Wang Z, Zhou Z, Shen Y, Wu M, Wu Y, Li G, Kong LA, Liu C, Jackson SA, Tian Z (2014) Concerted evolution of $D1$ and $D2$ to regulate chlorophyll degradation in soybean. Plant J 77(5):700–712

Franzmann LH, Yoon ES, Meinke DW (1995) Saturating the genetic map of *Arabidopsis thaliana* with embryonic mutations. Plant J 7(2):341–350

Frick G, Su Q, Apel K, Armstrong GA (2003) An *Arabidopsis porB porC* double mutant lacking light-dependent NADPH: protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested. Plant J 35(2):141–153

Fromme P, Melkozernov A, Jordan P, Krauss N (2003) Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS Lett 555(1):0–44

Gao M, Hu L, Li Y, Weng Y (2016) The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in *CsChlI* for magnesium chelatase I subunit. Theor Appl Genet 129(10):1961–1973

Huang S, Liu Z, Yao R, Li D, Feng H (2015) Comparative transcriptome analysis of the petal degeneration mutant *pdm* in Chinese cabbage (*Brassica campestris* ssp. *pekinensis*) using RNA-Seq. Mol Genet Genomics 290(5):1833–1847

Huang S, Liu Z, Yao R, Li D, Zhang T, Li X, Hou L, Wang Y, Tang X, Feng H (2016) Candidate gene prediction for a petal degeneration mutant, *pdm*, of the Chinese cabbage (*Brassica campestris*, ssp. *pekinensis*) by using fine mapping and transcriptome analysis. Mol Breed 36(3):26–35

Hui Z, Tian FX, Wang GK, Wang GP, Wang W (2012) The antioxidative defense system is involved in the delayed senescence in a wheat mutant *tasg1*. Plant Cell Rep 31(6):1073–1084

Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129(2):440–450

Jarvis P, Dörmannn P, Petto CA, Lutes J, Benning C, Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the *Arabidopsis MGD synthase 1* mutant. Proc Natl Acad Sci 97(14):8175–8179

Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G (2003) Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44(5):463–472

Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–362

Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12(1):172–175
Kurata N, Miyoshi K, Nonomura KI, Yamazaki Y, Ito Y (2005) Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol 46(1):48–62

Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19(4):1362–1375

Lee YP, Cho Y, Kim S (2014) A high-resolution linkage map of the Rfd1, a restorer-of-fertility locus for cytoplasmic male sterility in radish (Raphanus sativus L.) produced by a combination of bulked segregant analysis and RNA-Seq. Theor Appl Genet 127(10):2243–2252

Li N, Jia J, Xia C, Liu X and Kong X (2013) Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat. Breed Sci 63(2):169–175

Li Q, Zhu FY, Gao X, Sun Y, Li S, Tao Y, Lo C, Liu H (2014) Young leaf chlorosis 2, encodes the stroma-localized heme oxygenase 2 which is required for normal tetrapyrrole biosynthesis in rice. Planta 240(4):701–712

Li Z, Thomas LT (1998) PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis. Plant Cell 10(3):383–398

Linley PJ, Landsberger M, Kohchi T, Cooper JB, Terry MJ (2006) The molecular basis of heme oxygenase deficiency in the pcd1 mutant of pea. Febs J 273(12):2594–2606

Liu XP, Yang C, Han FQ, Fang ZY, Yang LM, Zhuang M, Lv HH, Liu YM, Li ZS, Zhang YY (2016) Genetics and fine mapping of a yellow-green leaf gene (ygl–1) in cabbage (Brassica oleracea var. capitata L.). Mol Breed 36(6):82–89

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25(4):402–408

Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127(7):1491–1499

Moon S, Giglione C, Lee DY, An S, Jeong DH, Meinnel T, An G (2008) Rice peptide deformylase PDF1B is crucial for development of chloroplasts. Plant Cell Physiol 49(10):1536–1546

Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M (2009) Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay green phenotype during leaf senescence in rice. Plant J 59(6):940–952

Motohashi K, Koyama F, Nakanishi Y, Ueoka-Nakanishi H, Hisabori T (2003) Chloroplast Cyclophilin is a target protein of thioredoxin THIOL MODULATION OF THE PEPTIDYL-PROLYL CIS-TRANS ISOMERASE ACTIVITY. J Biol Chem 278(34):31848–31852
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

Mueller AH, Dockter C, Gough SP, Lundqvist U, von Wettstein D, Hansson M (2012) Characterization of mutations in barley fch2 encoding chlorophyllide a oxygenase. Plant Cell Physiol 53:1232–1246

Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326

Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus Species. Plant Cell 17(1):233–240

Nestler J, Liu S, Wen TJ, Paschold A, Marcon C, Tang HM, Li D, Li L, Meeley RB, Sakai H, Bruce W, Schnable PS, Hochholdinger F (2014) Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase. Plant J 79(5):729–740

Ortiz de Montellano PR, Wilks A (2000) Heme oxygenase structure and mechanism. Adv Inorg Chem 51(1):359–407

Patton DA, Franzmann LH, Meinke DW (1991) Mapping genes essential for embryo development in Arabidopsis thaliana. Mol Gen Genet 227(3):337–347

Quail P (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3(2):85–93

Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C (2015) RNA-seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13(5):613–624

Sang XC, Fang LK, Vanichpakorn Y, Ling YH, Du P, Zhao FM, Yang ZL, He GH (2010) Physiological character and molecular mapping of leaf-color mutant wyv1 in rice (Oryza sativa L.). Genes Genomics 32(2):123–128

Schneeberger K, Weigel D (2011) Fast-forward genetics enabled by new sequencing technologies. Trends in Plant Sci 16(5):282–288

Schultes NP, Sawers RJH, Brutnell TP, Krueger RW (2000) Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17. Plant J 21(4):317–327

Shen Y, Li C, McCarty DR, Meeley R, Tan BC (2013) Embryo defective12 encodes the plastid initiation factor 3 and is essential for embryogenesis in maize. Plant J 74(5):792–804
Sheng Z, Lv Y, Li W, Luo R, Wei X, Xie L, Jiao G, Shao G, Wang J, Tang S, Hu P (2017) Yellow-Leaf 1 encodes a magnesium-protoporphyrin IX monomethyl ester cyclase, involved in chlorophyll biosynthesis in rice (*Oryza sativa* L.). PLoS ONE 12(5):e0177989

Shi D, Zheng X, Li L, Lin W, Xie W, Yang J, Chen S, Jin W (2013) Chlorophyll deficiency in the maize elongated mesocotyl2 mutant is caused by a defective heme oxygenase and delaying grana stacking. PLoS One 8(11):e80107

Song M, Wei Q, Wang J, Fu W, Qin X, Lu X, Cheng F, Yang K, Zhang L, Yu X, Li J, Chen J, Lou Q (2018) Fine mapping of CsVYL, conferring virescent leaf through the regulation of chloroplast development in cucumber. Front Plant Sci 9:432–443

Song M, Yang Z, Fan S, ZHU H, Pang C, Tian M, Yu S (2012) Cytological and genetic analysis of a virescent mutant in upland cotton (*Gossypium hirsutum* L.). Euphytica 187(2):235–245

Stern DB, Hanson MR, Barkan A (2004) Genetics and genomics of chloroplast biogenesis: Maize as a model system. Trends Plant Sci 9(6):293–301

Su A, Song W, Xing J, Zhao Y, Zhang R, Li C, Duan M, Luo M, Shi Z, Zhao J (2016) Identification of genes potentially associated with the fertility instability of s-type cytoplasmic male sterility in maize via bulked segregant RNA-Seq. Plos One 11(9):e0163489

Tan C, Liu Z, Huang S, Feng H (2019) Mapping of the male sterile mutant gene ftms in *Brassica rapa* L. ssp. pekinensis via BSR-Seq combined with whole-genome resequencing. Theor Appl Genet 132(2):355–370

Tang HM, Liu S, Hill-Skinner S, Wu W, Reed D, Yeh CT, Nettleton D, Schnable PS (2014) The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J 77(3):380–392

Tang X, Wang Y, Zhang Y, Huang S, Liu Z, Fei D, Feng H (2018) A missense mutation of plastid RPS4 is associated with chlorophyll deficiency in Chinese cabbage (*Brassica campestris* ssp. pekinensis). BMC Plant Biol 18(1):130–140

Terry MJ, Kendrick RE (1999) Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient *aurea* and *yellow-green–2* mutants of tomato. Plant Physiol 119(1):143–152

Terry MJ, Maines MD, Lagarias JC (1993) Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase. J Biol Chem 268(35):26099–26106

Tian Y, Huang Q, Liu H, Wang J, An R, Liu X, Hu W (2012) Inheritance of chlorophyll-deficient mutant L638-y in *Brassica juncea* L. and molecular markers for chlorophyll-deficient gene gr1. J Northwest Agric Forest Univ (Nat Sci Ed) 40(12): 90–96 (in Chinese)
Trick M, Adamski NM, Mugford SG, Jiang CC, Febrer M, Uauy C (2012) Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol 12(1):14–30

Van Ooijen J (2006) Joinmap 4.0 software for the calculation of genetic linkage maps in experimental populations. Wageningen, Kyazma BV

Wang N, Liu Z, Zhang Y, Li C, Feng H (2018) Identification and fine mapping of a stay-green gene (Brnye1) in pakchoi (Brassica campestris L. ssp. chinensis). Theor Appl Genet 131(3):673–684

Wang P, Gao J, Wan C, Zhang F, Xu Z, Huang X, Sun X, Deng X (2010) Divinyl chlorophyll (ide) a can be converted to monovinyl chlorophyll (ide) a by a divinyl reductase in rice. Plant Physiol 153(3):994–1003

Weller JL, Terry MJ, Rameau C, Reid JB, Kendrick RE (1996) The phytochrome-deficient pcd1 mutant of pea is unable to convert heme to biliverdin IXα. Plant Cell 8(1):55–67

Wu Q, Wu X, Zhang X, Jiang C, Xiao B, Zhang Y, Wang Y, Liu G (2014) Mapping of two white stem genes in tetraploid common tobacco (Nicotiana tabacum L.). Mol Breed 34(3):1065–1074

Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145(1):29–40

Xie K, Wu S, Li Z, Zhou Y, Zhang D, Dong Z, An X, Zhu T, Zhang S, Liu S, Li J, Wan X (2018) Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol–3-phosphate acyltransferase. Theor Appl Genet 131(6):1363–1378

Xie YJ, Xu DK, Cui WT, Shen WB (2012) Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. J Exp Bot 63(10):3869–3883

Xu S, Wang L, Zhang B, Han B, Xie Y, Yang J, Zhong W, Chen H, Wang R, Wang N, Cui W, Shen W (2012) RNAi knockdown of rice SE5 gene is sensitive to the herbicide methyl viologen by the down-regulation of antioxidant defense. Plant Mol Biol 80(2):219–235

Yoo SC, Cho SH, Zhang H, Paik HC, Lee CH, Li J, Yoo JH, Lee BW, Koh HJ, Seo HS, Paek NC (2007) Quantitative trait loci associated with functional stay green SNU-SG1 in rice. Mol Cells 24(1):83–94

Zhang K, Liu Z, Shan X, Li C, Tang X, Chi M, Feng H (2017) Physiological properties and chlorophyll biosynthesis in a Pak-choi (Brassica rapa, L. ssp. chinensis) yellow leaf mutant, pylm. Acta Physiol Plant 39(1):22–32

Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC (2006) Rice Chlorina–1 and Chlorina–9 encode ChlD and ChlII subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast
development. Plant Mol Biol 62(3):325–337

Zhao H, Yu L, Huai Z, Wang X, Ding G, Chen S, Li P, Xu F (2014) Mapping and candidate gene identification defining *BnChd1–1*, a locus involved in chlorophyll biosynthesis in *Brassica napus*. Acta Physiol Plant 36(4):859–870

Zhou S, Hu Z, Zhu M, Zhang B, Deng L, Pan Y, Chen G (2013) Biochemical and molecular analysis of a temperature-sensitive albino mutant in kale named “White Dove”. Plant Growth Regul 71(3):281–294

Zhu L, Zeng X, Chen Y, Yang Z, Qi L, Pu Y, Yi B, Wen J, Ma C, Shen J, Tu J, Fu T (2014) Genetic characterisation and fine mapping of a chlorophyll-deficient mutant (*BnaC.ygl*) in *Brassica napus*. Mol Breed 34(2):603–614

Tables

Table 1 Genetic analysis of leaf color mutant phenotype

Generation	Total	Green-colored	Yellow-colored	Segregation ratio	χ²
P₁ ('FT')	92	92	0		
P₂ (*pylm*)	120	0	120		
F₁ (P₁ × P₂)	258	258	0		
F₁ (P₂ × P₁)	226	226	0		
BC₁ (F₁ × 'FT')	669	669	0		
BC₁ (F₁ × *pylm*)	720	551	169	3.26:1	0.82
F₂	2,376	2,243	133	16.86:1	1.62

Table 2 Localization of chromosome regions related to etiolation genes

Chromosome	Start position	End position	Number of differential SNV loci	Interval length
A07	9,207,067	10,833,976	19	1,626,909
A07	11,475,098	15,522,445	54	4,047,347
A09	19,610,472	20,763,415	11	1,152,943
A09	23,811,435	27,563,122	33	3,751,687
A09	32,067,464	35,505,463	32	3,437,999
Figures

Figure 1

Phenotypes of mutant pylm and wild type ‘CK-51’. a pylm (left) and ‘CK-51’ (right) at the seedling stage; b ‘CK-51’ (left) and pylm (right) at the bolting stage; c Seedling morphology of 2-wk pylm plants; d Seedling morphology of 2-wk ‘CK-51’ plants
Figure 2
Genetic model for the pylm mutant. G and Y indicate green-colored and yellow-colored plants, respectively.
Figure 3

ED5 distributions on chromosomes. Each color on the X-axis represents different chromosomes of Brassica rapa. Y-axis represents ED5 for each differential SNP locus. Horizontal line is the threshold of the top 1% ED5
Figure 4

Genetic and physical py1 maps and candidate gene analysis. a: Chromosome A09 linkage map was constructed with 1,520 pylm individuals from the No. 1 F3:4 family. The py1 was preliminarily mapped between SSRzk17 and SSRzk28; b: Fine mapping of py1. The py1 was restricted to the region between Indelzk125 and SSRzk36. Number of recombinants between the markers and py1 is shown below the genetic map. The mapping distance above the linkage map is in centimorgan (cM) units; c: Candidate py1 region and the annotated genes in the Brassica database. The py1 locus was narrowed to a 258.3-kb region comprising 34 predicted genes. The numbers 1–34 refer to the candidate genes. The arrows indicate the direction of gene expression. Detailed information on the 34 genes is presented in Table S6.
Figure 5

Sequence alignments of BraA09004189 in ‘CK-51’ and pylm
Figure 6

BraA09004189 expression analyses by qRT-PCR for pylm and ‘CK-51’. Error bars indicate standard errors of the means of three replicates.
Figure 7

Genetic and physical maps of py2 and candidate gene analysis. a: Linkage map of chromosome A07 was constructed with 1,860 individuals bearing the pylm phenotype in the No. 3 F3:4 family. The py2 was preliminarily mapped between SSR133 and SSR103; b: Fine mapping of py2. The py2 was restricted to the region between SSR11 and SSR15. The number of recombinants between the markers and py2 is shown under the genetic map. The distance above the linkage map is in centimorgan (cM) units; c: Candidate py2 region and annotated genes in the Brassica database. The py2 locus was narrowed to a 4.4-kb region containing the five predicted genes BraA07001773–BraA07001777. Arrows indicate the direction of gene expression. Detailed information on these genes is presented in Table S9
Figure 8

Sequence alignments of BraA07001774 in ‘CK-51’ and pylm
Figure 9

Amino acid sequence alignments of BraA07001774 in 'CK-51' and pylm
Figure 10

Expression analysis of BraA07001774 in pylm and ‘CK-51’ by qRT-PCR. Error bars indicate standard errors of the means of three replicates

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- TableS.docx
- Fig.S1.pdf
- Fig.S2.pdf