THE PROGENITORS OF CORE-Collapse SUPERNOVAE SUGGEST THERMONUCLEAR ORIGIN FOR THE EXPLOSIONS

Doron Kushnir
Draft version June 10, 2015

ABSTRACT

Core-collapse supernovae (CCSNe) are the explosions of massive stars following the collapse of the stars’ iron cores. Poznanski (2013) has recently suggested an observational correlation between the ejecta velocities and the inferred masses of the red supergiant progenitors of type II-P explosions, which implies that the kinetic energy of the ejecta \(E_{\text{kin}} \) increases with the mass of the progenitor. I point out that the same conclusion can be reached from the model-free observed correlation between the ejected \(^{56}\text{Ni} \) masses \(M_{\text{Ni}} \) and the luminosities of the progenitors for type II supernovae, which was reported by Fraser et al. (2011). This correlation is in agreement with the predictions of the collapse-induced thermonuclear explosions (CITE) for CCSNe and in a possible contradiction with the predictions of the neutrino mechanism. I show that a correlation between \(M_{\text{Ni}} \) and \(E_{\text{kin}} \) holds for all types of CCSNe (including type Ibc). This correlation suggests a common mechanism for all CCSNe, which is predicted for CITE, but is not produced by current simulations of the neutrino mechanism. Furthermore, the typical values of \(E_{\text{kin}} \) and \(M_{\text{Ni}} \) for type Ibc explosions are larger by an order of a magnitude than the typical values for II-P explosions, a fact which disfavors progenitors with the same initial mass range for these explosions. Instead, the progenitors of type Ibc explosions could be massive Wolf-Rayet stars, which are predicted to yield strong explosions with low ejecta masses (as observed) according to CITE. In this case, there is no deficit of high mass progenitors for CCSNe, which was suggested under the assumption of a similar mass range for the progenitors of types II-P and Ibc supernovae.

Subject headings: supernovae: general

1. INTRODUCTION

There is strong evidence that supernovae of types II and Ibc are explosions of massive stars (e.g. Hirata et al. [1987], Arnett et al. [1989], van Dyk [1992], Smartt [2009]), involving the collapse of the stars’ iron cores and ejection of the outer layers. It is widely thought that the observed \(\sim 10^{51} \text{erg} \) kinetic energy of the ejecta \(E_{\text{kin}} \) is due to the deposition of a small fraction \(1\% \) of the gravitational energy \(\sim 10^{53} \text{erg} \) released in neutrinos (see Bethe [1990], Janka [2012], and reviews). So far, this scenario has not been demonstrated from first principles. In fact, one-dimensional simulations indicate that the neutrinos do not deposit sufficient energy. While some explosions were obtained in multi-dimensional simulations with simplified neutrino transport, the fundamental mechanism would only be satisfactorily demonstrated once accurate three-dimensional simulations, with all relevant physical processes taken into account, become available. Burbidge et al. (1957) suggested a different mechanism for the explosion during core-collapse that does not involve the emitted neutrinos. In this proposed scenario, increased burning rates due to adiabatic heating of the outer shells as they collapse lead to a thermonuclear explosion (see also Hoyle & Fowler [1960], Fowler & Hoyle [1964]). This collapse-induced thermonuclear explosion (CITE) naturally produces \(\sim 10^{51} \text{erg} \) from thermonuclear burning of \(\sim 1 M_{\odot} \) (gain of \(\sim 1 \text{MeV/m}_p \)). Kushnir & Katz (2014) have shown that CITE is possible in some (tuned) one-dimensional initial profiles, which include shells of mixed helium and oxygen, but resulting in weak explosions, \(\lesssim 10^{50} \text{erg} \), and negligible amounts of \(^{56}\text{Ni} \) are ejected. In Kushnir (2015) I have recently used two-dimensional simulations of rotating massive stars to explore the conditions required for CITE to operate successfully. I found out that for stellar cores that include slowly (a few percent of breakup) rotating \(\sim 0.1 - 10 M_{\odot} \) explosive shells of He-O with densities of few \(\times 10^3 \text{g cm}^{-3} \), an ignition of a thermonuclear detonation that unbinds the stars’ outer layers is obtained. With a series of simulations that cover a wide range of the progenitor masses and profiles, I showed that CITE is insensitive to the assumed profiles and thus a robust process that leads to supernova explosions for rotating massive stars. The resulting explosions have \(E_{\text{kin}} \) in the range of \(\sim 10^{50} - 10^{52} \text{erg} \), and ejected \(^{56}\text{Ni} \) masses \(M_{\text{Ni}} \) of up to \(\sim 1 M_{\odot} \), both of which cover the observed ranges of core-collapse supernovae (CCSNe, including types II and Ibc). CITE predicts that stronger explosions (i.e., larger \(E_{\text{kin}} \) and higher \(M_{\text{Ni}} \)) are from progenitors with higher masses. Testing if the required initial conditions for CITE to operate exist in nature is difficult observationally, but here I show observational evidence from CCSNe that are in agreement with the prediction that stronger explosions are from progenitors with higher masses, which implies that CITE may be the dominant mechanism for CCSNe explosions.

In recent years, direct identifications of the progenitors have been made for CCSNe in pre-explosion images, and they provide powerful tests for CCSNe theories (e.g. Smartt [2009], Leonard [2011], Smartt [2013]. Several observed correlations between the properties of the progenitors and the supernova explosion suggest that more massive progenitors lead to stronger explosions. Poznanski (2013) has recently suggested an observational correlation between the ejecta velocities and the inferred masses of the red supergiant progenitors of type II-P explosions. The correlation implies that \(E_{\text{kin}} \) is approximately proportional to the mass of the progenitor cubed. Poznanski (2013) suggested that the same correlation can be also deduced for type II-P supernovae from the observed uni-

1 Institute for Advanced Study, Einstein Drive, Princeton, NJ, 08540, USA, kushnir@ias.edu
formity of the light-curve plateau duration (Poznanski et al. 2009; Arca-Sanz et al. 2012) and the correlation between the light-curve luminosities and ejecta velocities (Hamuy & Pinto 2002; Nugent et al. 2000). In Section 2 I point out that more massive progenitors leading to stronger explosions can be deduced in a model-independent way from the observed correlation between \(M_\text{Ni} \) and the progenitor luminosities. This observed correlation was first reported by Fraser et al. (2011) (see also a closely related correlation between \(M_\text{Ni} \) and the masses of the progenitors, suggested by Smartt et al. 2009). Unlike progenitor masses or \(E_\text{kin} \), whose inferences rely upon models (massive star evolution models or complicated light-curve models, respectively) and thus are subjective to large systematics uncertainties due to model assumptions, both \(M_\text{Ni} \) and progenitor luminosities are model-free and can be directly derived from observations. Furthermore, these two quantities can be deduced for all type II explosions and are not restricted to type II-P supernovae. I reproduce the correlation between \(M_\text{Ni} \) and the progenitor luminosities with an updated data (Section 2.1) and show that it is in agreement with the predictions of CITE (Section 2.2) and in a possible contradiction with the predictions of the neutrino mechanism (Section 2.3).

The use of \(M_\text{Ni} \) as an indicator for \(E_\text{kin} \) is based on an observed correlation between \(M_\text{Ni} \) and \(E_\text{kin} \) shown in Section 3.1. I demonstrate that this correlation holds for all types of CCSNe, including both types II and Ibc (Section 3.1). This universal correlation suggests a common explosion mechanism for all CCSNe, which is predicted for CITE, but it is not produced by current simulations of the neutrino mechanism (Section 3.2). Furthermore, the typical values of \(E_\text{kin} \) and \(M_\text{Ni} \) for type Ibc explosions are larger by an order of a magnitude from the typical values for type II-P explosions. This fact disfavors a similar mass range for the progenitors of these events, and suggests that the progenitors of type Ibc explosions are massive Wolf-Rayet (WR) stars (Section 3.3). Since WR stars have more massive cores and stripped envelopes, CITE predicts that they lead to stronger explosions and relatively low ejecta masses, both of which are consistent with observations.

Progenitor studies that assume a similar mass range for the progenitors of these events, and of the luminosities of the progenitors implies that more massive progenitors lead to stronger explosions, the same qualitative result found by Poznanski (2013). The model-free measurements of \(M_\text{Ni} \) and of the luminosities of the progenitors are more robust than the estimates of the masses of the progenitors (which depend on stellar evolution models) and of \(E_\text{kin} \) (which depend on complicated light-curve modeling). Furthermore, Poznanski (2013) used the Fe II λ5169 absorption feature to estimate the velocity of the ejecta, which limits the analysis for events other than type II-P.

2.2. The prediction of CITE agrees with observations

A primary prediction of CITE is that \(E_\text{kin} \) increases with the mass of the progenitor (Kushnir 2015). This is more apparent by considering the binding energy of the shells to be ejected, \(E_\text{bin} \) (corrected for thermal energy), which is more negative for more massive progenitors. We can write quite generally that \(E_\text{kin} \) is given by

\[
E_\text{kin} \approx E_\text{dep} + E_\text{bin},
\]

where \(E_\text{dep} \) is the energy deposited in the ejecta. For CITE, the deposited energy is thermonuclear, \(E_\text{dep} \sim M_\text{shell} \times \text{MeV}/m_p \), where \(M_\text{shell} \) is the mass of shell of the thermonuclear fuel (the explosive shell). The relevant binding energy in this case is the one exterior to the base of the explosive shell, \(E_\text{bin} \sim \mathcal{G} M_\text{base} M_\text{shell}/r_\text{base} \), where \(M_\text{base} \) and \(r_\text{base} \) are the enclosed mass and the radius at the base of the explosive shell, respectively, \(E_\text{dep} \) and \(E_\text{bin} \) are comparable, since few \(\times \mathcal{G} M_\text{base}/r_\text{base} \approx \text{MeV}/m_p \) (Kushnir & Katz 2014). Therefore, \(E_\text{kin} \) can never exceed significantly \(|E_\text{bin}| \), and in the absence of a tuning between \(E_\text{dep} \) and \(E_\text{bin} \), \(E_\text{kin} \) cannot be much smaller than \(|E_\text{bin}| \). Therefore, \(E_\text{kin} \sim |E_\text{bin}| \) for CITE. This order of magnitude estimate is validated in panel (b) of Figure 1 which shows the results of the CITE simulations that exploded successfully from Kushnir (2015). The conclusion is that the prediction of CITE agrees with the observation that more massive progenitors lead to stronger explosions.

2.3. The prediction of the neutrino mechanism possibly contradicts observations

For the neutrino mechanism, \(E_\text{dep} \) is the energy deposited by neutrinos. Since from basic considerations the iron core is...
similar over a wide range of progenitor masses (the iron core is approximately a Chandrasekhar-mass white dwarf), E_{dep} is roughly constant over a wide progenitor mass range. However, the relevant binding energy in this case, the one exterior to the iron core, changes significantly between different progenitor masses. Therefore, as long as $E_{\text{dep}} \gg |E_{\text{bin}}|$, Equation (1) predicts that $E_{\text{kin}} \approx E_{\text{dep}} \approx$ constant. At some progenitor mass E_{dep} is comparable to $|E_{\text{bin}}|$, such that for higher progenitor masses the explosion fails, since the deposited energy by neutrinos is smaller than the (absolute) binding energy. This behavior should be general for the neutrino mechanism, and probably does not depend on the specific scenario in which the star explodes. In fact, this behavior should hold for every scenario in which the deposited energy is dominated by the stellar core and is not sensitive to the binding energy of the shells to be ejected. So we expect E_{kin} to be constant up to some value of $|E_{\text{bin}}|$ (threshold progenitor mass) and then to rapidly fall to zero (failed explosions).

The results of Ugliano et al. (2012) for the neutrino mechanism are shown in Panel (c) of Figure 1. I use the values of E_{bin}, as reported by Ugliano et al. (2012), which are defined exterior to the iron core (at a mass coordinate of $\approx 1.5 M_{\odot}$), and are approximately the binding energies of the shells that are to be ejected. At low progenitor masses (low $|E_{\text{bin}}|$) the value of E_{kin} is indeed constant. However, instead of a sharp drop for E_{kin} at some value of $|E_{\text{bin}}|$, there is a complicated behavior near $|E_{\text{bin}}| \approx 10^{53}$ erg, which received much attention recently (O’Connor & Ott 2011; Ugliano et al. 2012; Pejcha & Thompson 2013; Ertl et al. 2013). The range of binding energies over which this complicated behavior is obtained is only a factor of ≈ 2 and is of no importance for the current discussion. Another complication in the behavior for the neutrino mechanism is the predicted weak explosions ($\approx 10^{50}$ erg) for the lowest mass progenitors (electron-capture supernova (ECSN); Nomoto 1984; 1987; Kitaura et al. 2006; Janka et al. 2008; Wanajo et al. 2011). However, the combination of two different mechanisms (iron core-collapse at high progenitor masses and electron-capture at low progenitor masses) is not supported by the uniformity of the observed correlations for the entire progenitor mass range (see the discussion at the end of Section 3.2). In summary, the prediction of the neutrino mechanism is a roughly constant E_{kin} for a wide range of progenitor masses and a sharp drop (maybe with a complicated behavior over a small range of progenitor masses) at some progenitor mass. This is in a possible contradiction with the observation that more massive progenitors lead to stronger explosions. It is yet to be seen whether accurate three-dimensional simulations of the neutrino mechanism, with all relevant physical process taken into account, would reproduce this observation.

3. EJECTED 56Ni MASSES VERSUS THE KINETIC ENERGIES OF THE EJECTA

3.1. Observations

Estimates of E_{kin} and M_{Ni} for 70 observed supernovae within comoving radial distance of < 100 Mpc (to exclude rare events) are listed in Table 2 and are shown in Figure 3. This is the same compilation of Kushnir (2013) with a few more events. Note that the distribution of the sample in the E_{kin}–M_{Ni} plane does not represent the relative rates of the events. A clear correlation over two orders of magnitude for both E_{kin} and M_{Ni} is apparent. Stronger explosions eject larger masses of 56Ni. This correlation allowed the use of M_{Ni} as an indicator for E_{kin} in Section 2. The estimates of E_{kin} from observations involve complicated light-curve modeling (which can include large systematic uncertainties). However, unlike the situation in Figure 2, in this case the sample is large and it spans more than two orders of magnitude in M_{Ni} and E_{kin}, such that the large systematic uncertainties are less important.

3.2. A common mechanism for all CCSNe

The correlation between E_{kin} and M_{Ni} holds for all types of CCSNe (types II and Ibc), and spans the entire observed ranges of $E_{\text{kin}} (\sim 10^{50} - 10^{52}$ erg) and $M_{\text{Ni}} (\sim 10^{-3} - 1 M_{\odot})$. This correlation suggests a common mechanism for all CCSNe, from the weakest observed explosions to the strongest ones. Such a common mechanism is predicted for CITE (Kushnir 2013), but seems unlikely for the neutrino mechanism, for two reasons. The first reason is that current simulations of the neutrino mechanism do not produce strong ($\sim 10^{52}$ erg) explosions (see the discussion in Janka 2012). The second reason is that weak ($\sim 10^{50}$ erg) explosions would require an extreme tuning for the neutrino mechanism. In the case that $|E_{\text{bin}}| \sim 10^{51}$ erg, the fraction of the gravitational energy ($\sim 10^{53}$ erg) released in neutrinos that is deposited should be $\approx 2\%$ for moderate ($\sim 10^{51}$ erg) explosions, and should be $\approx 1.1\%$ for weak explosions (a tuning of $\approx 10^{-3}$). In the case that $|E_{\text{bin}}| \sim 10^{50}$ erg, the fraction of the gravitational energy released in neutrinos that is deposited should be $\approx 0.2\%$ for weak explosions (again, a tuning of $\approx 10^{-5}$). The possibility that a different mechanism (ECSN) is operating for the lowest mass progenitors is not supported by the smooth observed correlations, which suggest a common mechanism for all CCSNe. This is demonstrated more robustly by the correlation between M_{Ni} and the V-band plateau luminosities, which suggests a common mechanism for weak and moderate events (Spiro et al. 2014, Figure 16 there).

3.3. The progenitors of type Ibc explosions are massive Wolf-Rayet (WR) stars – no deficit of high mass progenitors for CCSNe

The distribution of the different types of events in the E_{kin}–M_{Ni} plane indicates that the sequence II-P, 87A like, Ibc, Ibc is a sequence of E_{kin} and of M_{Ni} (this sequence is evident even when considering only M_{Ni}, which is more robustly observed).

E_{kin} and M_{Ni} for type Ibc explosions are larger by an order of a magnitude than E_{kin} and M_{Ni} for type II-P explosions, respectively. Let us consider the possibility that the progenitors of types Ibc and type II-P supernovae have a similar mass range, and that the different display of the supernova is solely because of the stripping of the hydrogen envelope for the type Ibc case. One expects that in this case E_{kin} and M_{Ni} would be similar for types II-P and Ibc, since these parameters are determined by the explosion mechanism, which takes place at the interior of the star, and is independent of the hydrogen envelope properties (and whether it exists or not). However, as pointed out above, E_{kin} and M_{Ni} for type Ibc explosions are larger by an order of a magnitude than the typical values for type II-P explosions. Therefore, the possibility that the progenitors of types Ibc and type II-P supernovae have a similar mass range is disfavored by observations.

One caveat is that 56Ni-powered events like type Ibc are hard to find when M_{Ni} is small, while type II events that initially powered by shock cooling can be observed even if
they produce no ^{56}Ni at all. Therefore, the lack of type Ibc events with small values of M_{Ni} may be because of a selection bias. One possible way to check for such a bias is to calculate the (Pearson) partial correlation between $\log_{10}(E_{\text{kin}})$ and $\log_{10}(M_{\text{Ni}})$ given the distances to the events, which is $\rho \simeq 0.73$ with a p-value of $\sim 1.4 \cdot 10^{-13}$, suggesting that such a bias is unlikely.

The second discussed possibility for the progenitors of type Ibc are Wolf-Rayet (WR) stars (see also the suggestion that the observed progenitor of the type Ibc SN PTF13bvn is a WR star: Cao et al. 2013, Groh et al. 2013). Since these stars have more massive cores, CITE predicts that they lead to stronger explosions and larger amounts of ^{56}Ni are ejected. This continues the trend that was established in Section 2 for type II explosions, that more massive progenitors yield stronger explosions. One argument given by Bersten et al. (2014) and by Smartt (2014) against WR stars being the progenitors of type Ibc supernovae is the low estimated mass of the ejecta (typically $\sim 20 M_\odot$) compared to the mass of WR stars (typically $8-20 M_\odot$). However, this is a problem only if one assumes that most of the mass of the progenitor is ejected, as predicted by the neutrino mechanism. For CITE, only the mass exterior to the base of the explosive shell is ejected, and in the case that there is no hydrogen envelope, this mass agrees with the estimated ejected mass from observations (Kushnir 2015). It is further predicted by CITE for WR progenitors that the interior mass to the base of the explosive shell collapses and forms a massive black hole. So, assuming CITE explosions, strong type Ibc explosions with low ejecta masses are consistent with massive WR progenitors. Progenitor studies that assume a similar mass range for the progenitors of types II-P and Ibc supernovae suggest a deficit of high mass progenitors ($\gtrsim 20 M_\odot$) for CCSNe (e.g., see Smartt 2009). However, if massive WR stars are the progenitors of type Ibc supernovae, there is no deficit of high mass progenitors for CCSNe (Smartt 2015).

In summary, the observational evidence suggests that the sequence II-P, 87A like, Iib, Ibc is a progenitor mass sequence, where more massive progenitors lead to stronger explosions.

I thank Subo Dong, Avishay Gal-Yam, Boaz Katz and Eran Ofek for useful discussions and for a thorough reading of the manuscript. D. K. gratefully acknowledges support from the Friends of the Institute for Advanced Study.

REFERENCES

Arcavi, I., Gal-Yam, A., Cenko, S. B., et al. 2012, ApJ, 756, L30

Arnett, W. D., Bahcall, J. N., Kirshner, R. P., & Woosley, S. E. 1989, ARA&A, 27, 629

Bersten, M. C., Benvenuto, O. G., Follatelli, G., et al. 2014, AJ, 148, 68

Bethe, H. A. 1990, Reviews of Modern Physics, 62, 801

Burbridge, E. M., Burbridge, G. R., Fowler, W. A., & Hoyle, F. 1957, Reviews of Modern Physics, 29, 547

Cao, Y., Kasliwal, M. M., Arcavi, I., et al. 2013, ApJ, 775, L7

Dall’Ora, M., Botticella, M. T., Pumo, M. L., et al. 2014, ApJ, 787, L39

Ertl, T., Janka, H.-T., Woosley, S. E., Sukhbold, T., & Ugliano, M. 2015, arXiv:1503.07552

Fowler, W. A., & Hoyle, F. 1964, ApJS, 9, 201

Fraser, M., Ergon, M., Eldridge, J. J., et al. 2011, MNRAS, 417, 1417

Groh, J. H., Georgy, C., & Ekström, S. 2013, A&A, 558, L1

Hamuy, M., & Pinto, P. A. 2002, ApJ, 566, L63

Hamuy, M. 2003, ApJ, 582, 905

Hendry, M. A., Smartt, S. J., Maund, J. R., et al. 2005, MNRAS, 359, 906

Hendry, M. A., Smartt, S. J., Crockett, R. M., et al. 2006, MNRAS, 369, 1303

Hirata, K., Kajita, T., Koshiba, M., Nakahata, M., & Oyama, Y. 1987, Physical Review Letters, 58, 1490

Hoyle, F., & Fowler, W. A. 1960, ApJ, 132, 565

Huang, F., Wang, X., Zhang, J., et al. 2015, arXiv:1504.00446

Inserro, C., Turatto, M., Pastorello, A., et al. 2011, MNRAS, 417, 261

Janka, H.-T., Müller, B., Kitaura, F. S., & Buras, R. 2008, A&A, 485, 199

Janka, H.-T. 2012, Annual Review of Nuclear and Particle Science, 62, 407

Jerkstrand, A., Smartt, S. J., Sollemann, J., et al. 2015, MNRAS, 448, 2482

Kitaura, F. S., Janka, H.-T., & Hillebrandt, W. 2006, A&A, 450, 345

Kushnir, D., & Katz, B. 2014, arXiv:1412.1096

Kushnir, D. 2015, arXiv:1502.03111

Leonard, D. C. 2011, Ap&SS, 336, 117

Lyman, J., Bersier, D., James, P., et al. 2014, arXiv:1406.3667

Maund, J. R., Smartt, S. J., Kudritzki, R. P., Podsiadlowski, P., & Gilmore, G. F. 2004, Nature, 427, 129

Morales-Garoffolo, A., Elias-Rosa, N., Benetti, S., et al. 2014, MNRAS, 445, 1647

Nomoto, K. 1984, ApJ, 277, 791

Nomoto, K. 1987, ApJ, 322, 206

Nomoto, K., Sugimoto, D., ental., et al. 2006, ApJ, 645, 841

O’Connor, E., & Ott, C. D. 2011, ApJ, 730, 70

Pastorello, A., Baron, E., Branch, D., et al. 2005, MNRAS, 360, 950

Pastorello, A., Pumo, M. L., Navasardyan, H., et al. 2012, A&A, 537, AA141

Pejcha, O., & Thompson, T. A. 2015, ApJ, 801, 90

Poznanski, D., Butler, N., Filippenko, A. V., et al. 2009, ApJ, 694, 1067

Poznanski, D. 2013, MNRAS, 436, 3224

Smartt, S. J. 2009, ARA&A, 47, 63

Smartt, S. J., Eldridge, J. J., Crockett, R. M., & Maund, J. R. 2009, MNRAS, 395, 1409

Smartt, S. J. 2015, PASA, 32, e016

Spiro, S., Pastorello, A., Pumo, M. L., et al. 2014, MNRAS, 439, 2873

Taddia, F., Stritzinger, M. D., Sollemann, J., et al. 2012, A&A, 537, AA140

Takáts, K., Pignata, G., Pumo, M. L., et al. 2015, MNRAS, 450, 3137

Tomassella, L., Cappellaro, E., Fraser, M., et al. 2013, MNRAS, 434, 1636

Ugliano, M., Janka, H.-T., Marek, A., & Arcones, A. 2012, ApJ, 757, 69

Utrobin, V. P., & Chugai, N. N. 2014, arXiv:1411.6480

van Dyk, S. D. 1992, AJ, 103, 1788

Wanajo, S., Janka, H.-T., Müller, B. 2011, ApJ, 726, L15
Figure 1. Panel (a): The observed correlation between M_{Ni} and the luminosities of the progenitors for type II supernovae, which was first reported by Fraser et al. (2011), is reproduced here with updated data. The sample includes all supernovae from Smartt (2015), for which an estimate of M_{Ni} is available in the literature, supplemented with SN 1987A and SN 1993J (see Table 1). In the cases that M_{Ni} lacks an error estimate, an error of 50% was assumed (10% for SN 1987A). More luminous progenitors eject larger masses of 56Ni. Since more luminous progenitors are more massive (with more negative binding energy, E_{bin}) and since larger values of M_{Ni} imply larger E_{kin} (see Section 3 and Figure 3), the correlation implies that more massive progenitors lead to stronger explosions. The range of M_{Ni} roughly corresponds to $E_{\text{kin}} \sim \text{few } \times 10^{50} - \text{few } \times 10^{51}$ erg. Panel (b): The kinetic energy of the ejecta as function of E_{bin} at the base of the explosive shell for the CITTE simulations that exploded successfully from Kushnir (2015). Panel (c): The kinetic energy of the ejecta as function of E_{bin} exterior to the iron core for the neutrino mechanism simulations of Ugliano et al. (2012). The points at 10^{49} erg represent failed explosions.
Figure 2. The observed correlation between the estimated E_{kin} and the luminosities of the progenitors. The sample includes all supernovae from Smartt (2015), for which an estimate of E_{kin} is available in the literature, supplemented with SN 1987A and SN 1993J (see Table 1). In the cases that E_{kin} lacks an error estimate, an error of 50% was assumed (10% for SN 1987A). The estimates of E_{kin} from observations involve complicated light-curve modeling (which can include large systematic uncertainties). This is probably the reason for the weak observed correlation that is obtained when using E_{kin} compared to the strong observed correlation that is obtained when using M_{Ni} (panel (a) of Figure 1), which is model-free and can be directly derived from observations.
Figure 3. Estimates of E_{kin} and M_{Ni} from the literature for 70 observed supernovae (see Table 2). This is the same compilation of Kushnir (2015) with a few more events. In the case that E_{kin} or M_{Ni} lack an error estimate, an error of 50% was assumed (10% for SN 1987A). The estimates of E_{kin} from observations involve complicated light-curve modeling (which can include large systematic uncertainties). However, unlike the situation in Figure 2, in this case the sample is large and it spans more than two orders of magnitude in M_{Ni} and E_{kin}, such that the large systematic uncertainties are less important.
The progenitors from the sample of Smartt (2015), for which estimates of M_{Ni} are available in the literature, supplemented with SN 1987A and SN 1993J.

Name	$\log_{10}(L/L_{\odot})$	E_{kin} [1051 erg]	^{56}Ni mass [M_{\odot}]	Type
03gd	$4.3^{+0.2}_{-0.2}$	$1.4^{+0.3}_{-0.3}$	$0.016^{+0.001}_{-0.001}$	IIP
05cs	$4.4^{+0.2}_{-0.2}$	$0.43^{+0.03}_{-0.03}$	$0.008^{+0.001}_{-0.001}$	IIP
09md	$4.5^{+0.2}_{-0.2}$	$-$	$0.005^{+0.001}_{-0.001}$	IIP
06my	$4.7^{+0.2}_{-0.2}$	$-$	$0.03^{+0.015}_{-0.015}$	IIP
12A	$4.7^{+0.1}_{-0.1}$	0.48	$0.016^{+0.002}_{-0.002}$	IIP
13ej	$4.7^{+0.2}_{-0.2}$	$1.4^{+0.7}_{-0.7}$	$0.02^{+0.01}_{-0.01}$	IIP
04et	$4.8^{+0.2}_{-0.2}$	$2.3^{+0.3}_{-0.3}$	$0.06^{+0.009}_{-0.009}$	IIP
04A	$4.9^{+0.3}_{-0.3}$	$-$	$0.046^{+0.017}_{-0.017}$	IIP
12aw	$4.9^{+0.1}_{-0.1}$	1.5	0.06	IIP
12ec	$5.1^{+0.2}_{-0.2}$	$-$	$0.03^{+0.01}_{-0.01}$	IIP
06ov	< 4.7	2.4	$0.12^{+0.01}_{-0.01}$	IIP
99gi	< 4.9	$1.5^{+0.7}_{-0.7}$	$0.018^{+0.013}_{-0.013}$	IIP
99br	< 5	0.6	$0.001^{+0.0008}_{-0.0008}$	IIP
99em	< 5	$1.2^{+0.3}_{-0.3}$	$0.04^{+0.019}_{-0.019}$	IIP
09ib	< 5	0.55	$0.046^{+0.015}_{-0.015}$	IIP
08ax	$5.1^{+0.2}_{-0.2}$	$2.6^{+1.1}_{-1.1}$	$0.16^{+0.04}_{-0.04}$	IIb
11dh	$4.9^{+0.2}_{-0.2}$	$1.5^{+0.5}_{-0.5}$	$0.09^{+0.01}_{-0.01}$	IIb
13df	$4.9^{+0.1}_{-0.1}$	$0.8^{+0.4}_{-0.4}$	$0.11^{+0.015}_{-0.015}$	IIb
87A	$5.1^{+0.1}_{-0.1}$	1.7	$0.07^{+0.02}_{-0.02}$	87A
93J	$5.1^{+0.3}_{-0.3}$	$2.4^{+1.1}_{-1.1}$	$0.13^{+0.01}_{-0.01}$	IIb

Note. The luminosities of the progenitors are from Smartt (2015), except SN 1987A (Smartt et al. 2009) and SN 1993J (Maund et al. 2003). The estimates of E_{kin} and of M_{Ni} are from Table 2 except SN 2009md (Fraser et al. 2011), SN 2006my (Smartt et al. 2009), SN 2004A (Hendry et al. 2006) and SN 2012ec (Jerkstrand et al. 2015).
Table 2

A compilation from the literature of estimated E_{kin} and M_{Ni} from the light-curves.

Name	Kinetic energy [10^{44} erg]	^{56}Ni mass [M_{\odot}]	Type	Reference	Name	Kinetic energy [10^{44} erg]	^{56}Ni mass [M_{\odot}]	Type	Reference
69L	2.3+0.7	0.082+0.034	IIP 3	73R	2.7+1.2	0.084+0.044	IIP 3		
83I	1	0.15	Ibc 3	83N	1.3+0.5	0.034+0.011	IIP 3		
84L	1	0.15	Ibc 3	86L	1.3+0.5	0.034+0.011	IIP 3		
87A	1.7	0.075	87A 3	88A	2.2+1.2	0.062+0.022	IIP 3		
89L	1.2+0.6	0.015+0.008	IIP 3	90E	3.4+1.3	0.129+0.037	IIP 3		
91G	1.2+0.6	0.024+0.006	IIP 3	92H	3.1+1.3	0.130+0.037	IIP 3		
92a	1.2+0.6	0.019+0.007	IIP 3	93J	2.4+1.6	0.129+0.037	IIP 3		
94I	1.2+0.5	0.085+0.01	Ibc 11	96cb	2.1+0.9	0.120+0.037	IIP 3		
97D	0.9	0.006	IIP 3	97ef	8	0.006+0.006	Ibc 3		
98A	5.6	0.11	87A 3	38.2+13	0.11+0.1	0.006+0.006	Ibc 3		
99br	4.6	0.0016+0.0011	IIP 3	99cr	1.9+0.8	0.007+0.007	Ibc 3		
99dn	7.3+3.6	0.12+0.02	Ibc 11	99em	1.3+0.1	0.036+0.009	Ibc 3		
99em	1.2+0.6	0.042+0.019	IIP 3	99ex	3.6+1.5	0.18+0.04	Ibc 3		
99gi	1.5+0.7	0.016+0.013	IIP 3	90cb	4.4+1.3	0.083+0.039	87A 3		
02ap	6.3+2.9	0.090+0.01	Ibc 11	03Z	0.24+0.018	0.0063+0.0007	IIP 3		
03bg	3.8+1.8	0.19+0.03	Ibc 11	04w	6.6+2.3	0.26+0.04	Ibc 3		
03jd	7.4+2.4	0.51+0.09	Ibc 11	04aw	7.3+3.5	0.22+0.04	Ibc 3		
04dk	2.3+2.3	0.27+0.04	IIP 1	04bn	7.1+3.6	0.22+0.04	Ibc 3		
04et	2.3+0.3	0.066+0.009	Ibc 11	04eg	3.6+1.7	0.22+0.04	Ibc 3		
04ff	2.9+1.6	0.22+0.03	Ibc 11	04ej	5.2+2.2	0.22+0.04	Ibc 3		
05az	3.9+1.7	0.33+0.07	Ibc 11	05bf	0.8+0.3	0.09+0.02	Ibc 3		
05cs	0.42+0.03	0.008+0.0016	IIP 1	05cs	0.16+0.03	0.006+0.003	IIP 2		
05bg	2.3+1.2	0.70+0.1	Ibc 11	06T	1.2+0.5	0.15+0.02	Ibc 3		
06au	3.2	0.073	87A 3	06el	6.4+4.1	0.16+0.03	Ibc 3		
06ep	4.1+2.4	0.08+0.02	Ibc 11	06ov	2.4	0.127	87A 3		
07C	3.5+2.3	0.2+0.04	Ibc 11	07y	1.9+0.1	0.05+0.01	Ibc 3		
07gr	2.9+1.1	0.1+0.01	Ibc 11	07ov	0.5	0.02	Ibc 3		
07nu	13.7+4.7	0.52+0.05	Ibc 11	07uy	10.8+3.9	0.34+0.04	Ibc 3		
08D	4.5+1.7	0.1+0.01	Ibc 11	08ax	2.6+1.6	0.16+0.04	Ibc 3		
08in	0.505+0.034	0.015+0.005	IIP 1	08in	0.49+0.098	0.012+0.005	IIP 2		
09E	0.6	0.04	IIP 7	09bb	9.2+3.2	0.31+0.04	Ibc 3		
09bw	0.3	0.022	IIP 10	09b	0.55	0.046+0.015	IIP 12		
09fj	8.9+4.3	0.24+0.02	Ibc 11	11bm	14.7+5.6	0.71+0.09	Ibc 11		
11dh	1.5+0.8	0.09+0.01	Ibc 11	11hs	1.1+0.1	0.04+0.01	Ibc 11		
12A	0.48	0.011	IIP 9	12A	0.52+0.06	0.016+0.002	IIP 1		
12aw	1.5	0.06	IIP 10	13df	0.8+0.4	0.115+0.015	Ibc 13		
13ej	1.4+0.7	0.02+0.01	IIP 14	iPTF13bvn	1.8+0.8	0.07+0.02	Ibc 3		

Note. --- REFERENCES: (1) Utrobin & Chuval (2014); (2) Spio et al. (2014); (3) Hamuy (2003); (4) Hendry et al. (2005); (5) Inserra et al. (2011); (6) Pastorello et al. (2012); (7) Pastorello et al. (2005); (8) Ladda et al. (2012); (9) Tomasella et al. (2013); (10) Dall'Ora et al. (2014); (11) Lyman et al. (2018); (12) Takats et al. (2018); (13) Moraes-Garofolo et al. (2014); (14) Huang et al. (2015).