Microsaccadic eye movements but not pupillary dilation response characterizes the crossmodal freezing effect

Lihan Chen1,2,3,*, Hsin-I Liao4*

1 School of Psychological and Cognitive Sciences, Peking University, Beijing, 100871, China.
2 Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
3 Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
4 NTT Communication Science Laboratories, NTT Corporation, Atsugi, Kanagawa, 243-0198, Japan.

*Correspondence Email: CLH@pku.edu.cn, hsini.liao.pb@hco.ntt.co.jp

Running Title: Electrophysiology of Crossmodal Freezing

© The Author(s) 2020. Published by Oxford University Press.
Abstract

In typical spatial orienting tasks, the perception of crossmodal (e.g. audiovisual) stimuli evokes greater pupil dilation and microsaccade inhibition than unisensory stimuli (e.g. visual). The characteristic pupil dilation and microsaccade inhibition has been observed in response to ‘salient’ events/stimuli. While the ‘saliency’ account is appealing in the spatial domain, whether this occurs in the temporal context remains largely unknown. Here, in a brief temporal scale (within 1 second) and with the working mechanism of involuntary temporal attention, we investigated how eye metric characteristics reflect the temporal dynamics of perceptual organization, with and without multisensory integration. We adopted the crossmodal freezing paradigm using the classical Ternus apparent motion. Results showed that synchronous beeps biased the perceptual report for group motion and triggered the prolonged sound-induced oculomotor inhibition (OMI), whereas the sound-induced OMI was not obvious in a crossmodal task-free scenario (visual localization without audiovisual integration). A general pupil dilation response was observed in the presence of sounds in both visual Ternus motion categorization and visual localization tasks. This study provides the first empirical account of crossmodal integration by capturing microsaccades within a brief temporal scale; OMI but not pupillary dilation response characterizes task-specific audiovisual integration (shown by the crossmodal freezing effect).

Keywords: Audiovisual integration; Microsaccades; Ternus display; Perceptual organization
Introduction

Most events in our daily life consist of perceptual inputs from more than one modality. According to the principle of functional appropriateness and precision associated with each sensory modality (Welch and Warren, 1980), inputs from different sensory modalities integrate and influence each other to maximize performance of the task at hand. Recent behavioral and neurophysiological evidence has shown the inverse effectiveness principle in multisensory integration: in adverse conditions the perceptual discrimination of target events/stimuli will benefit from inputs from another sensory modality (Crosse et al., 2016; Holmes, 2009a; Hou et al., 2019). This benefit—known as multisensory gain—has been observed in the crossmodal freezing effect: an abrupt sound affects the processing of a rapidly presented visual stimulus, which is also known as the ‘freezing phenomenon’. When subjects are shown a rapidly changing visual display, an abrupt sound ‘freezes’ the display with which the sound is synchronized. Perceptually, it appears as though the display is brighter or shown for a longer time (Vroomen and de Gelder, 2000).

The ‘freezing phenomenon’ has been recently robustly observed in a classic visual apparent motion Ternus display. The display triggers mutually exclusive bistable apparent motion percepts of either element (retinotopic) or group (non-retinotopic) motion, depending on the perceived time interval between two fast/transient visual frames (Chen et al, 2010; Harrar and Harris, 2007; Ternus, 1926). With concurrent auditory inputs, observers reported a more dominant percept of ‘group motion’ during a Ternus display, in which the interval between two visual frames paired with beeps had been perceived as longer than when there were no paired auditory inputs (Chen et al., 2018b;
Shi et al., 2010; Wearden, et al., 1998). During a perceptual experience, concurrent auditory inputs render the individual frames more distinctly, resembling a similar ‘freezing’ role as observed by Vroomen and de Gelder (2000). In visual Ternus displays, the illusory prolonged time interval led to more frequent reports of ‘group motion’. Neuroimaging evidence has shown that human middle temporal complex (hMT+) may be the first visual area that encodes non-retinotopic percepts of the Ternus apparent motion, while the blood-oxygen-level dependent activations in V1, V2, and V3 reflect the retinotopic properties of the Ternus display (Thunell et al., 2016). Computational modelling work has developed a neural network model of motion segmentation by the visual cortex, by outlining a Motion Boundary Contour System (Grossberg, 1989).

The parsing of visual Ternus motion requires solving the problem of motion correspondence between two visual frames (Hein and Cavanagh, 2012). The visual elements in a visual frame will favour a within-frame (spatial) perceptual grouping, while the visual elements between two frames will trigger a between-frames (temporal) grouping (Kramer and Yantis, 1997). Within the short temporal scale (around 300 ms), the within-frame grouping corresponds to retinotopic processing, while the between-frames grouping mainly adopts non-retinotopic processing (Lauffs et al., 2019; Thunell et al., 2016). This competition between retinotopic and non-retinotopic processing makes the percept of visual apparent motion less stable.

With auditory inputs, there is perceptual competition (assimilation) between auditory signals and parsing of visual motion. Concurrent auditory inputs have shown to stabilize non-stable visual motion percepts (Freeman and Driver, 2008) and to counteract the otherwise ambiguous percept of visual Ternus apparent motion (Chen et al., 2018a; Shi et al., 2010). In the default state, people rely on retinotopic processing to follow transient visual stimuli (Amit et al., 2019; Betta and Turatto, 2006; Boehnke and Munoz, 2008; Boi et al., 2009; Brien et al., 2009; Dankner et al., 2017; Findlay, 1974; Fried et al., 2014; Hafed et al., 2011; Olmos-Solis et al., 2017; Pastukhov and Braun, 2010a).
On the other hand, human and primates usually had large and frequent fixational eye movements which may lead to non-retinotopic processing. To keep our perceptual world stable, it is surmised that auditory inputs engage predominantly non-retinotopic processing by freezing the individual visual stimuli (Ternus frames), which is reflected in more frequent reports of group motion when participants observe a visual Ternus display with concurrent sounds (Braga et al., 2017; Kong et al., 2014). Therefore, non-retinotopic processing fills in the gaps between the retinal images of each fixational, yet unstable, eye movements during individual Ternus frames (Otaki et al., 2014), which can lead to microsaccadic inhibition (Amit et al., 2019; Denison et al., 2019; Wang et al., 2017).

Perceptual classification of the visual Ternus display (apparent motion), mobilizes the process of oculomotor planning and execution. Eye-tracking techniques have been a valuable tool for capturing the temporal dynamics of audiovisual integration, allowing close investigation of the multisensory integration during the freezing effect. However, this approach has its limitations; Ternus motion takes place in a very narrow spatial range (within 2 degrees in our case), where normal/regular saccades are rarely observed. On the other hand, microsaccades may reveal finer detail during Ternus presentations, though surprisingly, empirical evidence is not well documented.

Microsaccades, as one type of fixational eye movement, can preserve vision by preventing perceptual fading (Beeler, 1967; Engbert and Mergenthaler, 2006; Hafed and Ignashchenkova, 2013; Hafed and Krauzlis, 2010, 2012; Martinez-Conde et al., 2006, 2009, 2013; Park et al., 2019; Zuber and Stark, 1966). Furthermore, microsaccades can drive typical illusory motions, such as in the Enigma illusion (MonWilliams and Wann, 1996; Troncoso et al., 2008). In contrast, the perturbation of microsaccade rate (i.e., suppression) can reduce visual cortex excitability for detecting target events, such as the second target (T2) in the attentional blink task (Pastukhov et al., 2013; Roberts et al., 2019). In the auditory domain, the rate of microsaccades (the fastest component of miniature eye movements), is transiently modulated...
after auditory stimulation and is used to categorize sound identity (80-100 ms after the onset of target beeps) before sound representation is established (N1 component of the auditory evoked potential) (Widmann et al., 2014), favouring a predictive coding model (Friston, 2005, 2010). While it has been shown that microsaccadic eye movements (MS) characterize visual and auditory perception individually, it is unclear how they might play an important role in audio-visual integration, as a way to stabilize the perceptual environment. Recent evidence has shown that the pupil dilates as a response to the appearance of salient auditory and/or visual stimuli, which has been presumed to be based on the neural activation of the superior colliculus (Liao et al., 2016; Liao et al., 2016; Wang et al., 2014, 2015, 2016, 2017). While the superior colliculus is known to serve as a multisensory integration hub (Ursino et al., 2009; Wallace et al., 1996, 1998; Wallace and Stein, 1997), the pupil dilation response may characterize the crossmodal freezing effect and reveal inherent temporal dynamics.

With the two potential candidates of MS and pupil size, we aimed to discover how the crossmodal integration as well as its brief temporal course, could be well described with eye movement metrics. To this end, in the present study we used a Ternus display with concurrent beeps. Enhanced percepts (more frequent reports) of ‘group motion’ can be acquired by boosting the ‘salience’ of each individual visual Ternus frame with the use of auditory inputs, alongside the pupillary dilation response (Wang et al., 2017). Crossmodal integration of audiovisual events can be considered as an attentionally demanding process (Watanabe and Shimojo, 2001), which may suppress MS more effectively (Engbert and Kliegl, 2003) than less attentionally demanding tasks (i.e., unimodal visual Ternus apparent motion). This makes the otherwise ambiguous visual percepts more stable and mobilizes mainly non-retinotopic processing to favour a dominant percept of ‘group motion’. We expect to see subsequent increased frequency (‘rebounds’) of microsaccadic eye movements, which we presume reflects a relaxation of attention while following the targets/crossmodal events (Hafed and Krauzlis, 2010; Pastukhov and Braun, 2010b; Rolfs et al., 2008). Furthermore, we anticipate the delay of
the rebounds to be prolonged in the crossmodal compared with the unimodal condition.

We found that the inputs of concurrent paired beeps counteracted the otherwise unstable/ambiguous retinal slip of visual Ternus frames, with observable oculomotor inhibitions (OMI) and reduced MS rates. The MS rebounds were slower when the visual Ternus frames were presented with concurrent paired beeps than without beeps. The control experiment, which aimed to examine whether the sound per se, without integrating with visual input, modulates MS, did not show this difference in a separate task where audio-visual integration was not required (e.g., a visual localization task). In contrast, we found that although pupils dilated in response to beeps, the amount of dilation was similar regardless of whether or not audio-visual integration was required. Overall, the results suggest that MSs with a temporal attending process characterizes the crossmodal freezing effect.

Materials and Methods

Subjects. A total of 69 participants (17, 16, 18, and 18, in Experiments 1-4, respectively), ages ranging from 19–40 years, participated in the four experiments. All participants had normal or corrected-to-normal vision and reported normal hearing. Among the participants, six subjects took part in Experiments 1 and 4, one subject took part in both Experiments 1 and 2, and one participant took part in three experiments (Experiments 2-4). We predicted a medium effect size ($\phi = 0.40$) for our experimental design. To ensure adequate power, we performed a power calculation in G*power 3 (Faul et al., 2009) with F tests, MANOVA repeated measures, within-between interaction, which determined that with a significance level (α) of 0.05, the sample size needed to achieve a power level of $1-\beta = 0.80$ was 73 individuals for the four experiments.

All experiments were performed in compliance with the institutional guidelines...
set by the Academic Affairs Committee, School of Psychological and Cognitive Sciences, Peking University, China, and according to the Helsinki Declaration of 1975 concerning human and animal rights. All participants provided written informed consent according to institutional guidelines, and were reimbursed for their time with 50 CNY/h.

Apparatus and Stimuli

The experiments were conducted in a dimly lit (luminance: 0.09 cd/m2) testing room. Visual stimuli were presented at the centre of a 22-inch CRT monitor (FD 225P) at a screen resolution of 1024 x 768 pixels and a refresh rate of 100 Hz. The viewing distance was 57 cm, which was maintained using a chin rest.

The Ternus display consisted of two stimulus frames, each containing two black discs (10.24 cd/m2; disc diameter and separation between discs were 1.6° and 3° of visual angle, respectively), which were presented on a grey background (16.3 cd/m2). Both frames shared one element location at the centre of the monitor, while containing two further elements located at horizontally opposite positions relative to the centre (see Figure 1A). Each frame was presented for 30 ms; the inter-stimulus interval (ISI) between both frames was randomly selected from a range of 50-230 ms, with a step size of 30 ms. A blank screen (with the same grey background) was present during the ISI.

Mono sound beeps (1000 Hz, 65 dB, and 30 ms duration) were generated and delivered via an M-Audio card (Delta 1010) to a headset (Philips, SHM1900) worn by the participant. To ensure accurate timing of auditory and visual stimuli, the duration of the visual stimuli and the synchronization between the auditory and visual stimuli were controlled via the vertical synchronization pulses of the monitor. The experimental program was written using Matlab (Mathworks Inc.) and Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).
Experimental Design

Practice

Prior to the formal experiment, participants were trained to become familiar with the Ternus displays. When the spatial configuration is fixed, observers typically report two distinct percepts (element motion and group motion) depending on the ISI. Short ISIs usually give rise to the percept of element motion, where the outer dots are perceived as moving, while the central dot appears to remain static or flashing. In contrast, long ISIs give rise to the perception of group motion, whereby the two dots are perceived to be moving together as a group. During the practice block, only ISIs of 50 ms (typical ‘element motion’) and 260 ms (typical ‘group motion’) were used. Participants were asked to discriminate whether the apparent motion they saw was an element motion or group motion, by pressing the left or the right mouse button, respectively. They pressed left button to indicate the ‘element motion’ response and right button for ‘group motion’ response. When an incorrect response was registered, immediate feedback appeared on the screen that showed the correct response (i.e., element or group motion). This practice session continued until the participant reached a mean accuracy of 95%. All participants achieved this within 120 trials. After the practice, participants went through the formal experiment with the ISI varying between 50 to 230 ms. They performed the same apparent motion discrimination task but were not provided with feedback.

Experiment 1: Fully randomized Ternus task

The trial started with the presentation of a central fixation cross with a size of 1° for 3 to 5 secs. Then, the fixation appeared immediately either on the left or right side of the screen for 200 ms, with an eccentricity of 9.7°. After presentation of a blank screen for 100 ms, the fixation cross returned to the centre of the screen, where it remained for another 200 ms. After 300 ms of a
blank presentation, the Ternus frames were presented, which were either synchronized with the two auditory beeps or without the beeps. After the second Ternus frame, a blank screen was presented for 300 ms, followed by a screen with a question mark (font Arial, size 32, either on the left or right of the screen, with a 10.3° eccentricity to the central fixation). Participants were asked to make a forced-choice of two alternatives, indicating the type of perceived motion (element or group motion). The question mark disappeared when the participants made a response. As mentioned earlier, the ISI between the Ternus frames (i.e., duration between the offset of the first Ternus frame and the onset of the second Ternus frame) was randomly selected from one of the following seven intervals: 50, 80, 110, 140, 170, 200, and 230 ms, during which a blank screen was presented. This procedure led to the stimulus-onset-asynchrony (SOA) of the Ternus frames (i.e., duration between the onsets of the two Ternus visual frames) to be the following intervals: 80, 110, 170, 140, 200, 230, and 260 ms. There were 24 trials for each level of SOA, which were counterbalanced between left- and rightward apparent motion, no-sound, and sound conditions. The order in which trials were presented was randomized for each participant. Participants performed a total of 336 trials, divided into two blocks of 168 trials each. Throughout the experiments, participants were required to fixate the fixation cross and make saccades whenever the fixation cross moved (Figure 1B). This procedure was used to promote/generate a new fixation immediately before the Ternus frames, to decrease the chance for participants to blink and/or make saccades during the Ternus frames and thus allowing better eye movement data acquisition (see eye movement recording and data analyses for details).

**** Figure 1 about here ****

Experiment 2: Ternus motion with block-sound conditions

The stimuli configuration and timelines were identical to Experiment 1, except that the sound conditions (with or without beeps) were separated into different blocks. Specifically, the experimental trials were separated into four blocks:
two blocks consisted of the Ternus display without tones, while the other two blocks had synchronously paired beeps. Each block contained 84 trials. The level of SOA and the left- or rightward apparent motion were counterbalanced and presented in a randomized order. The order of blocks for baseline (no-sound) and sound conditions was randomized using the Latin square protocol.

Experiment 3: Ternus motion with block-SOA conditions

The stimulus configuration and timelines were identical to Experiment 1, except that the seven levels of SOA conditions were conducted in separate blocks each containing 168 trials. However, the SOAs in a given block were fixed. There were 12 consecutive trials for each level of SOA and left- and rightward apparent motion was counterbalanced.

Experiment 4: localization of visual stimulus (control test)

Experiment 4 was the control experiment. The trial structure and time parameters were identical to Experiment 1, except that the critical Ternus frames were replaced by a blank screen (with the same luminance as the background). Upon seeing the question mark, participants were required to discriminate whether the question mark appeared at a left or right location by clicking the left mouse button or right mouse button, respectively, as quickly and as accurately as possible.

Behavioral data analyses

For Experiments 1-3, the proportions of the group-motion responses across seven intervals were fitted to the psychometric curve using a logistic function (see Shi et al., 2010). The transitional threshold, which is the PSE at which the participant was likely to report both motion percepts equally, was calculated by estimating 50% of the reporting of group motion on the fitted curve. The JND, which is an indicator of the sensitivity of apparent motion discrimination, was calculated as 50% of the difference between the lower
(25%) and upper (75%) bounds of the thresholds of the psychometric curve. For Experiment 4, we analysed the RT of visual localizations of the target question mark.

Eye movement recording and data analyses

Eye movement data of the right eye was acquired noninvasively by a video-based infrared camera (Eyelink 1000, SR Research), with a 500-Hz sampling rate. We extracted three eye-tracking measures: gaze duration, OMI (i.e., the MS rate), and pupil diameter change. These three measures aimed to look into different eye characteristics to see how sounds affect crossmodal integration in different time scales. Gaze duration analysis aimed to examine how the fixation/gaze could be maintained during the Ternus display. OMI and pupil diameter change were used to examine these two eye characteristics change over time after the stimulus presentation.

For the analysis of gaze duration, we examined the length of a fixation during the presentations of Ternus visual frames as a function of SOAs and sound conditions. Specifically, each fixation was identified by the Eyelink data viewer software and exported into the non-delimited ASCII format for further analysis (using the data transform function, edf2asc, provided by SR Research). The fixation that was held for the whole Ternus motion presentation was identified as the ‘gaze’ for each trial. That is, the fixation that occurred before the onset of the first Ternus frame and ended after the offset of the second Ternus frame. Data were excluded if a response was registered during the gaze.

For OMI analysis, MS rate changes were time-locked to onsets of both Ternus frames, respectively, to investigate the time course of the sound effect upon visual motion ‘categorization’ within a short time window (~1 sec). Here we defined micro-saccades as “involuntary saccades while the subject is attempting to fixate” (Martinez-Conde, 2006), which could be observed during various viewing tasks including exploration and visual search (Otero-Millan, Troncoso, Macknik, Serrano-Pedraza, & Martinez-Conde, 2008). Specifically, MS were detected using velocity thresholds (Engbert and Kliegl, 2003). We
used a threshold of $\lambda = 8$ times the median-based standard deviation for the horizontal component within each session. The extracted MS were excluded if their duration was shorter than 3 ms, larger than 110 ms, or if the interval to the previous microsaccade was shorter than 20 ms. Figure S1 shows the correlation between the microsaccadic amplitude and peak velocity of all the detected microsaccades in the three main experiments ($r = 0.72$, $p < .001$). As illustrated in Figure S1, the majority of the detected MS was within 1.5 degree of visual angle, which was considered quite small, compared with the normal saccades which could be over 10 degrees (Bahill, Clark, & Stark, 1975). To compute the OMI rate, the sum of MS was normalized by the number of trials and the sampling rate for each condition and each participant. Since it is assumed that a maximum exists, which would degrade the impact of a MS on the MS rate before the respective time point, a causal smoothing kernel $\omega(\tau) = \alpha^2 \tau \exp(-\alpha\tau)$ was applied with a decay parameter of $\alpha = 1/20$ ms (Dayan and Abbott, 2001; Rolfs et al., 2008). The OMI rate was averaged across participants but separated by each condition.

For the pupillary response analysis, the pupil diameter data were time-locked to the onset of the first Ternus visual frame. Data during blinks was linearly interpolated. The Eyelink system outputted arbitrary units [au], which ranged from 175 to 11832 (in the current study) and represented pupil size. To compare the size across conditions and participants, pupil size data was normalized by the mean and variance of the data recorded for each session and also baseline-corrected by the mean of the data 0.1 s before the first visual frame presentation.

Statistical analysis

For the averaged results, data from Experiments 1-3 were collapsed and mean PSE and JND were subjected to a repeated measures analysis of variance (ANOVA), with sound condition (baseline/no-sound vs. sound) as the within-subject factor. Mean reaction times (for Experiment 4) and gaze durations (for all experiments) were subjected to a repeated-measures
ANOVA with sound condition (sound, no-sound) and the 7-levels of SOAs as within-subject factors. For OMI and pupillary responses, nonparametric cluster-based permutation tests (Maris and Oostenveld, 2007) were performed to identify differences between the sound and baseline (no-sound) conditions for both the OMI rate and pupillary responses. This was carried out for SOAs collapsed across all levels as well as for each SOA condition. Cluster-based analyses were computed using the Fieldtrip MATLAB toolbox (Oostenveld et al., 2011) with 1000 iterations and an α-level of 0.05. For between experiment comparisons of MS rates and pupil diameter change, we used time bins of 250-ms time windows between 0 to 1 s in reference to the first/second visual frame. These data were subjected to a mixed-model ANOVA with time window and sound condition as the within-subject factors and experiment as the between-subjects factor.

All data analyses were implemented in Matlab 2018b (Mathworks Inc) and IBM SPSS statistics (version 20).

Results

Psychometric findings and microsaccades

The mean points of subjective equality (PSE; ± standard error [SE]) for Experiment 1 (‘fully randomized trials’), Experiment 2 (‘block-sound’), and Experiment 3 (‘block-SOA’) were 150.0 (±5.7) ms, 140.3 (±5.9) ms, and 130.3 (±5.5) ms, respectively. The main effect of experiment was marginally significant \[F(2,48) = 3.079, p = 0.055, \eta^2 = 0.114]\. PSE in Experiment 1 was slightly higher than in Experiment 3 (p = 0.050). No differences in PSEs were found between Experiment 1 and Experiment 2 (p = 0.725), or between Experiment 2 and Experiment 3 (p = 0.663). The interaction between sound condition and experiment was significant \[F(2,48) = 13.044, p < 0.001, \eta^2 = 0.352]\. The simple effects analysis showed that in the baseline condition, PSE was largest in Experiment 1 (214.2±8.9 ms), ps < 0.01, while no difference
was found between Experiment 2 (160.3±9.2 ms) and Experiment 3(165.8±8.6 ms), $p = 1$. In the sound condition, PSE was smaller in Experiment 1 (85.8 ±7.8 ms) compared with Experiment 2 (120.2 ±8.0 ms; $p < 0.001$). The PSE was slightly smaller in Experiment 3 (94.7 ±7.6 ms) compared with Experiment 2 (120.2 ±8.0 ms; $p = 0.076$). However, no difference was found between Experiment 1 (85.8 ±7.8 ms) and Experiment 3 (94.7 ±7.6 ms; $p = 1$). On the other hand, in all the three experiments, the PSEs in baseline condition were larger than those in sound condition, ps<0.01. Therefore, the trial-by-trial randomized treatment (Experiment 1) magnified the crossmodal freezing effect (Figure 2).

**** Figure 2 about here****

The detailed response proportions of 'group motion' of the three experiments are shown in Figures S2-4. In Experiment 1, the mean PSEs ($±$SE) for the 'baseline' (no-sound) and 'sound' conditions were 214.2 ($±$13.6) ms and 85.8 ($±$11.8). The PSE in the sound condition was significantly smaller than in baseline ($t(16) = 6.629, p < 0.001$). To minimize inter-trial effects due to the unexpected presentation of sounds and unexpected SOAs, in Experiment 2 we presented sound stimuli in blocks (absent vs. present) and randomly selected SOAs from the seven levels (80-260 ms). The block orders were counterbalanced across participants using a Latin-square design. The PSEs ($±$SE) for the baseline and sound conditions were 160.3 ($±$2.6) ms and 120.2 ($±$0.8). The PSE in the sound condition was significantly smaller than in baseline ($t(16) = 15.271, p < 0.001$). Furthermore, Experiment 3 was used to examine how the blockwise presentation of another factor (SOA) would shape the psychometric performance as well as the gaze pattern. The PSEs ($±$SE) for the baseline and sound conditions were 165.8 ($±$6.3) ms and 94.7 ($±$6.1) ms. The PSE in the sound condition was significantly smaller than the one in baseline ($t(17) = 9.079, p < 0.001$).

The just noticeable differences (JND) were 31.4 ($±$3.3) and 38.9 ($±$6.2) for the
baseline and sound conditions, respectively (t(17) = -1.417, p = 0.174). The mean JNDs for Experiment 1, 2, and 3 were 56.5 (±5.1) ms, 29.1 (±5.2) ms, and 35.1 (±4.9) ms, respectively. The main effect of experiment was significant [F(2,48) = 7.943, p = 0.001, η² = 0.249]. Bonferroni-corrected comparisons showed that the mean JND in Experiment 1 were larger than those in Experiment 2 (p = 0.001) and Experiment 3 (p = 0.012); however, no differences were found between the JNDs of Experiment 2 and Experiment 3 (p = 1). The interaction between experiment and condition was not significant [F(2,48) = 2.379, p = 0.103, η² = 0.090]. Therefore, the randomized treatment of experimental trials (Experiment 1) produced larger JNDs, which made the discrimination more difficult.

When time-locked to the first visual frame, sound-induced OMI was significant in Experiment 1 (during the first visual frame presentation until 66 ms, and 738 ms after the first visual frame) and Experiment 3 (from 16 to 122 ms, and 770 to 874 ms after the first visual frame); however, no significant effect was found in Experiment 2 (p > .1) (Figure 3). Importantly, the main effect of experiment was significant in terms of microsaccades. The mean MS rates were 0.161 (±0.046), 0.288 (±0.047) and 0.329 (±0.044) for Experiments 1-3, respectively. The MS rate was the smallest in Experiment 1 [F(2,48) = 3.739, p = 0.031, η² = 0.135] (Experiment 1 vs. Experiment 3, p = 0.033; Experiment 1 vs. Experiment 2, p = 0.177; Experiment 2 vs. Experiment 3, p = 1).

This finding suggests that the fully randomized conditions lead to the largest MS inhibition effect, which obeys the inverse effectiveness principle consistent with the behavioral findings.

**** Figure 3 about here****
Psychometric findings (Average)

The averaged PSEs (± SE) for the baseline and sound conditions were 180.1 (±5.1) ms and 100.2 (±4.5) ms, respectively (data collapsed from Experiments 1-3). The PSE in the sound condition was significantly smaller than baseline \([F(1,48) = 127.31, p < 0.001, \eta^2 = 0.726]\), indicating a dominant percept of ‘group motion’ during the Ternus display with synchronous sounds (Shi et al., 2010). The averaged JNDs (±SE) for the baseline and sound conditions were 37.9 (±3.0) ms and 42.6 (±3.7) ms, respectively. In general, the sounds did not affect the sensitivity of discriminating Ternus motion \([F(1,48) = 1.865, p = 0.178, \eta^2 = 0.037]\) (Figure 4A), but significantly biased the percept to ‘group motion’.

**** Figure 4 about here****

Gaze duration
Overall, gaze duration was longer for the ‘sound’ condition (688.8 ±12.4 ms) than for ‘baseline’ condition (652.6 ±9.9 ms) \([F(1,48) = 22.672, p < 0.001, \eta^2 = 0.321]\). The sound-prolonged gaze duration effect was more pronounced in the short than in long SOA conditions \([F(6,288) = 4.898, p < 0.001, \eta^2 = 0.093]\) (Figure 4B).

Oculomotor inhibition
Clear oculomotor fluctuation was found to correspond to the visual frames: early inhibition started around 400 to 550 ms after the first visual frame, in accordance with the SOAs (Figure 5), where the MS rates were higher for longer SOAs in only the baseline condition and not in the sound condition. After 700 ms (the response phase), there was a delay of the OMI rebound, in which the MS rate was lower for longer SOA conditions in both the baseline and sound conditions. Most importantly, on average, i.e., when collapsing all SOAs from Experiments 1-3, the MS rate was lower in the sound condition.
compared with the baseline condition 764 to 968 ms after the first visual frame, indicating that the MS rate was suppressed for longer in the sound condition (Figure 4C). When segregating the analysis by different SOAs, the sound-induced OMI was constantly observed in most SOA conditions except for the longest 260-ms SOA condition (see supplementary Figure S5).

**** Figure 5 about here****

We calculated the correlation between the sound-induced OMI (500-1000 ms respective to the onset of the first frame) and subjective reports of ‘group motion’ across all participants from Experiments 1-3. The difference in MS rate and ‘group motion’ reports between the sound and baseline conditions represented delta MS rate and delta ‘group motion’ report proportions, respectively. In the later time segment (500-1000 ms) locked to the onset of the first visual frame, we found a significant negative correlation between the two variables (r = -0.280, p < 0.05, Figure 6). Further analysis showed that this correlation pattern was mainly attributed to Experiment 1 (r = -0.537, p = 0.026) and not Experiment 2 (r = -0.392, p = 0.133) or 3 (r = 0.245, p = 0.327). The result indicated that the participants who had stronger OMI tended to report ‘group motion’ in the presence of concurrent sounds.

**** Figure 6 about here****

Pupil diameter change

Pupil size increased more in the sound than in the baseline condition and a significant difference was observed 298 ms after the first visual frame (Figure 4D, data combined for all SOAs and Experiments 1-3). This sound-induced pupil dilation response (PDR) was consistently observed across almost all SOAs (except for 110 ms) and experiments at similar time points (see, Figure 7 and Figure S6).
For the three main Experiments, the potential confounding factor of involuntary blinks or gaze patterns in the baseline and sound conditions were ruled out. Blink rates remained identical for both conditions (Figure S7). In addition, the gaze patterns indicated that participants followed the instructions and no apparent differences were observed between the baseline and sound conditions. This is shown in the heat map of gaze position (Figure S8).

Control experiment (Experiment 4): Non-Ternus visual localization task

Behavioral reaction time
Mean reaction times (RT) for locating targets were shorter in the sound (537 ±36 ms) than in the baseline (no-sound) condition [603 ±38 ms; F(1,102) = 49.769, p < 0.001, η² = 0.745]. The main effect of SOA was not significant [F(6,102) = 0.448, p = 0.845, η² = 0.026]. The interaction between sound condition and SOA was significant [F(6,102) = 3.109, p = 0.008, η² = 0.155]: the effect size was relatively small in the SOA = 230 ms condition. The simple effects analysis did not show differences in RTs for any SOAs in either the sound or baseline conditions (p > 0.1). Therefore, only a general sound facilitation/alerting effect for localization was observed (Figure 8A).

Gaze duration
The mean gaze durations were larger in the sound (630.4 ±13.2 ms) than in the baseline condition [602.2 ±12.8 ms; F(1,17) = 29.676, p < 0.001, η² = 0.636], and increased as a function of SOA [510.2 (±17.3) ms, 543.5 (±19.9) ms, 579.6 (±19.0) ms, 598.4 (±19.7) ms, 650.9 (±15.1) ms, 668.7 (±18.8) ms,
and 693.3 (±20.2) ms for SOAs = 80-260 ms in 30 ms increments $F(6,102) = 112.006, p < 0.001, \eta^2 = 0.868]$. The interaction between sound condition and SOA was not significant $[F(6,102) = 0.653, p = 0.688, \eta^2 = 0.037$] (Figure 8B). In contrast to the main experiment results, sound prolonged gaze duration in general, regardless of SOA.

Oculomotor inhibition

OMI was mostly observed at the later time range (~700 ms after the first beep), and corresponded to the SOA conditions, independent of the sound conditions (Figure S9). Most importantly, sound-induced OMI was observed at a very early time range of 40 to 182 ms after the first beep (Figure 8C). Moreover, sound-induced OMI was most frequently observed in the 200 ms SOA condition (32 to 162 ms) but not in the other SOA conditions (Figure S10). The overall pattern of this result differed considerably from what was observed in the Ternus display experiments.

Pupil diameter change

Similar to the observation during the Ternus display experiments, pupil size increased more in the sound than in the baseline condition and the deviation started 244 ms after the first beep (Figure 8D). This sound-induced pupil dilation response was observed in all SOA conditions: starting at 398 ms for 80 ms SOA, 424 ms for 110 ms SOA, 382 ms for 140 ms SOA, 352 ms for 170 ms SOA, 672 ms for 200 ms SOA, 402 ms for 230 ms SOA, and 396 ms for 260 ms SOA.

Comparison between the Ternus apparent motion tasks (Experiments 1-3) and the visual localization task (Experiment 4)

To investigate whether the sound-induced eye metric characteristics were specific to Ternus apparent motion judgments (which requires audiovisual integration), we conducted between-experiment comparisons of OMI and
pupil diameter change. The MS rate and pupil size change data was segmented into the four following time ranges: 0-250 ms (S1), 250-500 ms (S2), 500-750 ms (S3), and 750-1000 ms (S4), and subjected to a mixed-model ANOVA, with sound condition (sound, baseline) and time segment (S1-S4) as the within-subject factors and task demand (Ternus task, visual localization task) as the between-subject factor.

Oculomotor inhibition

The mean MS rates for both the Ternus and localization tasks were 0.260 (±0.028) and 0.433 (±0.047) \[F(1,67) = 9.985, p = 0.002, \eta^2 = 0.130 \]. The two-way interaction between task and segment was significant \[F(3,201) = 12.737, p < 0.001, \eta^2 = 0.160 \]. The simple effects analysis indicated that for S1 and S2, the MS rates were lower in the Ternus task than in the localization task (both \(p < 0.001 \)), but no differences were found for S3 (\(p = 0.535 \)) or S4 (\(p = 0.953 \)).

The three-way interaction between task, sound conditions, and segment was significant \[F(3,201) = 3.235, p = 0.023, \eta^2 = 0.046 \]. In both sound and baseline conditions, across S1 and S2, the MS rates were lower in the Ternus task than in the localization task (\(ps < 0.001 \)). The two-way interaction between sound condition and segment was significant \[F(3,201) = 5.099, p = 0.002, \eta^2 = 0.071 \]. The simple effects analysis indicated that for S1 and S4, the MS rates in the sound conditions were lower than those in the baseline condition (\(ps < 0.01 \)). However, for S2 and S3, MS rates were not significantly different (all \(p > 0.1 \)). For the Ternus task, the interaction of sound condition and segment was significant \[F(3,150) = 12.871, p < 0.001, \eta^2 = 0.205 \]. The MS rate was larger in the sound (0.213 ± 0.045) than in the baseline condition (0.169 ± 0.038) for S3 (\(p = 0.028 \)), but smaller in the sound (0.535 ± 0.061) than in the baseline condition (0.690 ± 0.069) for S4 (\(p < 0.001 \)). This indicated that the OMI was followed by the rebound of MS. In contrast, for the localization task, the interaction between sound condition and segment was not significant \[F(3,51) = 1.2, p = 0.319, \eta^2 = 0.066 \]. These findings suggest
that the freezing effect in audiovisual integration was driven by OMI, with the critical time course of inhibition and rebound occurring during S3 and S4 of the sound condition.

Pupil diameter change

The data was segmented into four time ranges as in the OMI analysis. The normalized pupil diameters for both baseline and sound conditions were 0.078 (±0.017) and 0.140 (±0.016) \([F(1,67) = 73.617, p < 0.001, \eta^2 = 0.524]\). The three-way interaction between task, sound condition, and segment was not significant \([F(3,201) = 2.182, p = 0.091, \eta^2 = 0.032]\). The main effect of segments was significant \([F(3,201) = 17.519, p < 0.001, \eta^2 = 0.207]\). Bonferroni-corrected comparisons identified the smallest diameter in S1 \((p < 0.01)\), and an increased diameter in S2 (with S2 vs. S1, \(p < 0.001\); S2 vs. S3, \(p < 0.001\)); however, no difference was found between S2 and S4 \((p = 0.313)\) or between S3 and S4 \((p = 1)\).

The mean pupil diameters for the Ternus and localization tasks were 0.144 (±0.016) and 0.074 (±0.027) \([F(1,67) = 4.949, p = 0.029, \eta^2 = 0.069]\). The two-way interaction between task and segment was significant \([F(1,67) = 6.755, p = 0.011, \eta^2 = 0.092]\). Further analysis indicated that the larger pupil size in the Ternus than in the localization task was more prominent during the S2 period \((p = 0.046)\) than during the other segments.

The two-way interaction between sound condition and segment was significant \([F(3,201) = 48.337, p < 0.001, \eta^2 = 0.419]\). The simple effects analysis indicated that across S2-S4, the diameters of sound-present conditions were larger than those of the baseline condition \((p < 0.001)\). However, S1 showed no difference in pupil diameter \((p = 0.089)\). The overall results indicated that pupil size increased by time, regardless of task.

Oculomotor inhibition locked to the onset of the second visual Ternus
As visual flashes heavily influenced MS, one might argue that the result of MS rate time-locked to the 1st Ternus visual flash would be influenced by the 2nd flash, which might interact with the effect of the sound. To clarify the issue, we conducted further analysis of OMI, in which the MS rate data was time-locked to the 2nd Ternus flash (see supplements Figures S11-14). Results showed that the MS rate was higher in the sound condition compared with the baseline condition during 410 to 568 ms and lower in the sound than the baseline condition during 620 to 796 ms after the second visual frame, indicating a clear effect of sound modulation on the MS rate. Results of between-experiments comparison showed that the mean MS rates were 0.275 (±0.056), 0.467 (±0.058) and 0.474 (±0.055) for Experiments 1-3, respectively. The main effect of experiments (Exps 1-3) was significant, \(F(2,48)=4.026, p=0.024, \eta^2 = 0.144 \). The MS was the smallest in Experiment 1 (Exp 1 vs Exp.2, p=0.066; Exp.1 vs Exp.3, p=0.043). Sound induced OMI and this effect was mainly observed at the relatively late stage (S3, 500-750 ms) before it attenuated in the final temporal segment (S4, 750-1000 ms). For the control experiment, when time-locked to the onset of the second beep, no significant sound induced OMI was found in the control experiment (see supplements, Figures S15-17). The cross-experiments analysis indicated the sound induced OMI effect in Ternus task (Exps 1-3) was larger than one in localization task (Exp.4) upon the onset of second visual Ternus (0-250 ms), showing OMI modulation is task-specific.

Discussion

Crossmodal perceptual grouping by eyes and ears: attention and sensory reliability-related microsaccade changes

The Ternus display served as an excellent paradigm to study the neural correlates of nonretinotopic, relative motion perception. This paradigm is demonstrated to be a versatile tool for the study of non-retinotopic processing without eye movements (saccades), since the visual frame elements are located within the central fovea area for observation (Boi et al., 2011;
Pooresmaeili et al., 2012; Thunell et al., 2016). In the present study, the synchronous sound inputs triggered more reports of ‘group motion’ in the Ternus display, replicating previous behavioral results that used the same paradigm (Chen et al., 2018b; Shi et al., 2010).

To the best of our knowledge, the temporal dynamics of perceptual grouping in audiovisual integration have not been studied empirically using an eye tracking approach (in particular within short time ranges of 1 sec), except for a few studies on spatial orienting (Rolfs et al., 2005; Wang et al., 2017). Temporal ventriloquism is an effective paradigm for studying the crossmodal perceptual grouping effect (Chen et al., 2010; Chen and Vroomen, 2013; Freeman and Driver, 2008; Shi et al., 2010; Vroomen and de Gelder, 2000). In temporal ventriloquism, paired beeps or salient sounds (grouped by similar pitch) segregate the corresponding and concurrent visual events. Consequently, the observer easily identifies the visual targets and thus, biases visual motion perception (Chen et al., 2011, 2018a; Freeman and Driver, 2008; Roseboom et al., 2013; Shi et al., 2010).

Previous studies have revealed that saccading to a relevant stimulus can be an overt correlate of the allocation of spatial attention, while precisely timed gaze stabilization can be an overt correlate of the allocation of temporal attention (Denison et al., 2019). The present study contributes to our understanding of the MS mechanism during a covert attention paradigm. We did not overtly direct attention to the spatial directions of the target, as shown in most previous studies (Hafed and Krauzlis, 2010, 2012; Lowet et al., 2018; Wang et al., 2017). In our case, upon receiving the auditory input, with the attentional demands on the visual input, observers employed a nonretinotopic binding of audiovisual events to establish distinctiveness of visual objects (with accompanying sounds) across space and time (Otto et al., 2010), which results in inhibited microsaccades (Krzysztof et al., 2018; Siegenthaler et al., 2014). Typically, this process resulted in a delayed time course of OMI (Figures 2C, S3-4), in response to either attentional selection under a demanding task or the subjective prolonging of visual event durations with
concurrent auditory inputs (Shi et al., 2010; Wearden et al., 1998). The OMI last longer and we observed it existed until S3 (500 ms – 750 ms) after the onset of the second visual Ternus frame, before its rebound in S4 (750 ms – 1000 ms). The OMI pattern is task-specific since we found more deep modulation in Ternus task than the one in control (‘localization’) task. As we have shown, the change magnitude of the microsaccade rates is typically low. Indeed, the low-change signals (in presence of sounds) were generated in advance, and could be used as an optimal (discrete) temporal sampling strategy (Martinez-Conde et al., 2009; Rolfs, 2009), to resolve the perceptual ambiguities as typified in the visual Ternus display. Microsaccades (‘oculomotor freezing’) observed in the present study, go beyond vision and indicate a crossmodal coupling between oculomotor action and temporal attending among different sensory modalities (Badde et al., 2020). In this means, microsaccades, though rare and with low changes in amplitudes, still provide highly sufficient information about the temporal attending and its temporal dynamics during brief audiovisual integration (Pastukhov and Braun, 2010).

We found a coherent link between the behavioral effect-size and the MS rate across different experimental conditions. Specifically, in Experiment 1 we varied the presence of sound and the SOA between the two visual Ternus frames, in a fully randomized manner. This arrangement imposed the largest uncertainty (as well as a high attentional demand) and greatly reduced the expectation of the trial properties. Accordingly, observers showed the largest bias in perceptual classification of Ternus motion (with greatly reduced PSE) as well as the sensitive readout of eye metrics (i.e., greatest inhibition of microsaccades). By recording microsaccades, we demonstrated that during crossmodal integration, the uncertainty of the stimuli presentation affected the OMI as well, resembling the ‘inverse effectiveness” as shown in previous findings (Holmes, 2009b; Hou et al., 2019).
Microsaccades as a temporal trigger

Microsaccades are generated when fixation-related activity at the rostral center of the superior-coliculus map spreads to neighbouring locations due to local excitation (Amit et al., 2019; Engbert and Kliegl, 2003; Laubrock et al., 2008; Rolfs et al., 2008; Yuval-Greenberg et al., 2014). In our case, attention on auditory events could serve as a temporal trigger, shift the balance of oculomotor (spontaneous) maps, and favour or even consolidate the non-retinotopic channel, which binds the audiovisual events and produces the dominant percept of ‘group motion’ (Park et al., 2019). This suggests that, although rare, the occurrence of MS is a sampling strategy (Martinez-Conde et al., 2009; Mergenthaler and Engbert, 2007). This has been shown to be robust in a previous unimodal study, where MS are persistent until a perceptual decision is made (Loughnane et al., 2018; Pastukhov and Braun, 2010; Widmann et al., 2014)

MS rate prevails over pupil dilation in audiovisual integration in brief temporal scale

In our study, the crossmodal integration effect was not contributed to by saliency detection that featured with the PDR, but rather by OMI. The genuine crossmodal freezing effect was specific to the Ternus task, where audiovisual integration is required. In contrast, the control experiment (Experiment 4) with visual localization did not generate a compatible gaze duration pattern as observed in the Ternus tasks (Experiments 1-3). Sound beeps triggered similar pupil dilations in both the Ternus tasks and localization task. A PDR was observed in the presence of sounds across all tasks, and pupil sizes increased more in the sound condition than in the baseline condition. OMI is a sensitive index for the discrimination of task-specific processing. With audiovisual integration, MS rates were lower in the Ternus task than in the localization task and the MS suppression lasted longer.

Our finding that sounds induce stronger PDR is consistent with previous
findings (Liao et al., 2016; Liao et al., 2016; Wang et al., 2014), which likely relates to the superior colliculus (Wang et al., 2012) as the neural substrate for audiovisual integration. Given the very brief duration of the sounds, the changes in pupil size may not have been sensitive enough to indicate the temporal dynamics of crossmodal integration.

In sum, using the paradigm of visual Ternus display and eye movement metrics, we identified coherent behavioral and neuropsychological evidence for the temporal dynamics (within 1 sec) during crossmodal integration: concurrent inputs of beeps “freeze” bi-stable visual apparent motion percepts to be one-way dominant, with characteristic sound-induced OMI.

Acknowledgements

This work was partly funded by the Project Crossmodal Learning of National Natural Science Foundation of China (NSFC) 61621136008, NSFC 61527804, NSFC 31861133012, and the Research Fund from Brain Lab, Tomorrow Advancing Life (TAL) Education Group, China.
References

Amit R, Abeles D, Carrasco M, Yuval-Greenberg S. 2019. Oculomotor inhibition reflects temporal expectations. NeurImage. 184:279-292.

Badde S, Myers CF, Yuval-Greenberg S, Carrasco M. 2020. Oculomotor freezing reflects tactile temporal expectation and aids tactile perception. Nature Communications. 11:3341

Bahill AT, Clark MR, Stark L. 1975. The main sequence, a tool for studying human eye movements. Mathematical Biosciences. 24(3): 191-204.

Beeler, GW. 1967. Visual threshold changes resulting from spontaneous saccadic eye movements. Vision Research, 7(9): 769-775.

Betta E, Turatto M. 2006. Are you ready? I can tell by looking at your microsaccades. Neuroreport. 17(10):1001-1004.

Boehnke SE, Munoz DP. 2008. On the importance of the transient visual response in the superior colliculus. Current Opinion in Neurobiology. 18(6):544-551.

Boi M, Öğmen H, Herzog MH. 2011. Motion and tilt aftereffects occur largely in retinal, not in object, coordinates in the Ternus-Pikler display. Journal of Vision. 11(3).

Boi M, Öğmen H, Krummenacher J, Otto TU, Herzog MH. 2009. A (fascinating) litmus test for human retino- vs. non-retinotopic processing. Journal of Vision. 9(13):5.1–11.

Braga RM, Hellyer PJ, Wise RJ, Leech R. 2017. Auditory and visual connectivity gradients in frontoparietal cortex. Human Brain Mapping. 38(1): 255-270.

Brainard DH. 1997. The psychophysics toolbox. Spatial Vision. 10(4): 433-436.

Brien DC, Corneil BD, Fecteau JH, Bell AH, Munoz DP. 2009. The behavioural and neurophysiological modulation of microsaccades in monkeys. Journal of Eye
Movement Research. 3(2):1-12.

Buetti D, Macaluso E. 2010. Auditory temporal expectations modulate activity in visual cortex. NeuroImage. 51(3): 1168-1183.

Chen L, Shi Z, Müller HJ. 2010. Influences of intra- and crossmodal grouping on visual and tactile Ternus apparent motion. Brain Research, 1354: 152-162.

Chen L, Shi Z, Müller HJ. 2011. Interaction of perceptual grouping and crossmodal temporal capture in tactile apparent-motion. PLoS One. 6(2): e17130.

Chen L, Vroomen J. 2013. Intersensory binding across space and time: a tutorial review. Attention, Perception & Psychophysics. 75(5):790-811.

Chen L, Zhou X, Müller HJ, Shi Z. 2018. What you see depends on what you hear: Temporal averaging and crossmodal integration. Journal of Experimental Psychology-General, 147(12): 1851-1864.

Crosse MJ, Di Liberto GM, Lalor EC. 2016. Eye Can Hear Clearly Now: Inverse Effectiveness in Natural Audiovisual Speech Processing Relies on Long-Term Crossmodal Temporal Integration. Journal of Neuroscience, 36(38):9888-9895.

Dankner Y, Shalev L, Carrasco J, Yuval-Greenberg S. 2017. Prestimulus Inhibition of Saccades in Adults With and Without Attention-Deficit/Hyperactivity Disorder as an Index of Temporal Expectations. Psychological Science, 28(9): 1369-1370.

Dayan P, Abbott L. 2001. Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems. MIT Press, New York.

Denison RN, Yuval-Greenberg S, Carrasco M. 2019. Directing Voluntary Temporal Attention Increases Fixational Stability. Journal of Neuroscience. 39(2): 353-363.

Engbert R, Kliegl R. 2003. Microsaccades uncover the orientation of covert attention. Vision Research. 43(9):1035-1045.

Engbert R, Mergenthaler K. 2006. Microsaccades are triggered by low retinal image slip. Proceedings of the National Academy of Sciences. 103(18):7192-7197.
Faul F, Erdfelder E, Buchner A, Lang AG. 2009. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods. 41(4): 1149-1160.

Findlay JM. 1974. Direction Perception and Human Fixation Eye-Movements. Vision Research. 14(8):703-711.

Freeman E, Driver J. 2008. Direction of visual apparent motion driven solely by timing of a static sound. Current Biology, 18(16): 1262-1266.

Fried M, Tsitsiashvili E, Bonneh YS, Sterkin A, Wygnanski-Jaffe T, Epstein T, Polat U. 2014. ADHD subjects fail to suppress eye blinks and microsaccades while anticipating visual stimuli but recover with medication. Vision Research, 101: 62-72.

Friston K. 2005. A theory of cortical responses. Philosophical Transactions of the Royal Society B. 360(1456): 815-836.

Friston K. 2010. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience. 11(2):127-138.

Grossberg S. 1989. A Neural Architecture for Visual-Motion Perception - Group and Element Apparent Motion. Perception. 18(4): 507-507.

Hafed ZM, Ignashchenkova A. 2013. On the Dissociation between Microsaccade Rate and Direction after Peripheral Cues: Microsaccadic Inhibition Revisited. Journal of Neuroscience. 33(41): 16220-16235.

Hafed ZM, Krauzlis RJ. 2010. Microsaccadic suppression of visual bursts in the primate superior colliculus. Journal of Neuroscience. 30(28): 9542-9547.

Hafed ZM, Krauzlis RJ. 2012. Similarity of superior colliculus involvement in microsaccade and saccade generation. Journal of Neurophysiology. 107(7):1904-1916.

Hafed ZM, Lovejoy LP, Krauzlis RJ. 2011. Modulation of Microsaccades in Monkey during a Covert Visual Attention Task. Journal of Neuroscience. 31(43): 15219-15230.

Harrar V, Harris LR. 2007. Multimodal Ternus: visual, tactile, and visuo-tactile grouping in
apparent motion. Perception. 36(10): 1455-1464.

Hein E, Cavanagh P. 2012. Motion correspondence in the Ternus display shows feature bias in spatiotopic coordinates. Journal of Vision. 12(7).

Holmes NP. 2009. The Principle of Inverse Effectiveness in Multisensory Integration: Some Statistical Considerations. Brain Topography. 21(3-4):168-176.

Hou H, Zheng Q, Zhao Y, Pouget A, Gu Y. 2019. Neural Correlates of Optimal Multisensory Decision Making under Time-Varying Reliabilities with an Invariant Linear Probabilistic Population Code. Neuron. 104(5): 1010-1021.

Kleiner M, Brainard D, Pelli D. 2007. What's new in Psychtoolbox-3? Perception. 36: 14-14.

Kong L, Michalka SW, Rosen ML, Sheremata SL, Swisher JD, Shinn-Cunningham BG, Somers DC. 2014. Auditory spatial attention representations in the human cerebral cortex. Cerebral Cortex. 24(3):773-784.

Kramer P, Yantis S. 1997. Perceptual grouping in space and time: evidence from the Ternus display. Perception & Psychophysics. 59(1): 87-99.

Krzysztof K, Duchowski AT, Niedzielska A, Biele C, Krejtz I. 2018. Eye tracking cognitive load using pupil diameter and microsaccades with fixed gaze. Plos ONE. 13(19): e0203629.

Lauffs MM, Choung OH, Ogmen H, Herzog MH, Kerzel D. 2019. Reference-frames in vision: Contributions of attentional tracking to nonretinotopic perception in the Ternus-Pikler display. Journal of Vision. 19(12):7.

Liao HI, Kidani S, Yoneya M, Kashino M, Furukawa S. 2016. Correspondences among pupillary dilation response, subjective salience of sounds, and loudness. Psychonomic Bulletin Review. 23(2): 412-425.

Liao HI, Yoneya M, Kidani S, Kashino M, Furukawa S. 2016. Human Pupillary Dilation Response to Deviant Auditory Stimuli: Effects of Stimulus Properties and Voluntary Attention. Frontiers in Neuroscience. 10:43.
Maris E, Oostenveld R. 2007. Nonparametric statistical testing of EEG- and MEG-data.
Journal of Neuroscience Methods. 164(1): 177-190.

Martinez-Conde S. 2006. Fixational eye movements in normal and pathological vision.
Progress in Brain Research. 154:151-176.

Martinez-Conde S, Macknik SL, Troncoso XG, Hubel DH. 2009. Microsaccades: a
neurophysiological analysis. Trends in Neurosciences. 32(9):463-475.

Martinez-Conde S, Macknik SL, Troncoso XG, Dyar TA. 2006. Microsaccades counteract
visual fading during fixation. Neuron. 49(2): 297-305.

Martinez-Conde S, Otero-Millan J, Macknik SL. 2013. The impact of microsaccades on vision:
towards a unified theory of saccadic function. Nature Reviews Neurosciences. 14(2),
83-96.

MonWilliams M, Wann JP. 1996. An illusion that avoids focus. Proceedings of the Royal
Society B-Biological Sciences. 263(1370): 573-578.

Olmos-Solis K, van Loon AM, Los SA, Olivers CNL. 2017. Oculomotor measures reveal the
temporal dynamics of preparing for search. Progress in Brain Research. 236:1-23.

Oostenveld R, Fries P, Maris E, Schoffelen JM. 2011. FieldTrip: Open source software for
advanced analysis of MEG, EEG, and invasive electrophysiological data.
Computational Intelligence and Neuroscience. 2011(1):156869.

Otaki, S, Watanabe S, Fujita K. 2014. Differential motion processing between species facing
Ternus-Pikler display: non-retinotopic humans versus retinotopic pigeons. Vision
Research. 103: 32-40.

Otero-Millan J, Troncoso XG, Macknik SL, Serrano-Pedraza I, Martinez-Conde S. 2008.
Saccades and microsaccades during visual fixation, exploration, and search:
foundations for a common saccadic generator. Journal of Vision. 8(14):21.

Otto TU, Öğmen H, Herzog MH. 2010. Attention and non-retinotopic feature integration.
Journal of Vision. 10(12):8.
Park ASY, Metha AB, Bedggood PA, Anderson AJ. (2019). The influence of retinal image motion on the perceptual grouping of temporally asynchronous stimuli. Journal of Vision. 19(4):2.

Pastukhov A, Braun J. 2010. Rare but precious: Microsaccades are highly informative about attentional allocation. Vision Research. 50(12):1173-1184.

Pastukhov A, Vonau V, Stonkute S, Braun J. 2013. Spatial and temporal attention revealed by microsaccades. Vision Research. 85:45-57.

Pelli DG. 1997. The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision. 10(4): 437-442.

Pooresmaeili A, Cicchini GM, Morrone MC, Burr D. 2012. "Non-retinotopic processing" in Ternus motion displays modeled by spatiotemporal filters. Journal of Vision. 12(1).

Roberts MJ, Lange G, Van Der Veen T, Lowet E, De Weerd P. 2019. The Attentional Blink is Related to the Microsaccade Rate Signature. Cerebral Cortex. 29(12).

Rolfs M. 2009. Microsaccades: Small steps on a long way. Vision Research. 49:2415-2441.

Rolfs M, Engbert R, Kliegl R. 2005. Crossmodal coupling of oculomotor control and spatial attention in vision and audition. Experimental Brain Research. 166(3-4): 427-439.

Rolfs M, Kliegl R, Engbert R. 2008. Toward a model of microsaccade generation: The case of microsaccadic inhibition. Journal of Vision. 8(11):5.

Rolfs M, Laubrock J, Kliegl R. 2008. Microsaccade-induced prolongation of saccadic latencies depends on microsaccade amplitude. Journal of Eye Movement Research, 1(3): 1-8.

Roseboom W, Kawabe T, Nishida S. 2013. Direction of visual apparent motion driven by perceptual organization of cross-modal signals. Journal of Vision. 13(1): 6.

Shí Z, Chen L, Müller HJ. 2010. Auditory temporal modulation of the visual Ternus effect: the influence of time interval. Experimental Brain Research. 203(4):723-735.

Siegenthaler E, Costela FM, Mccamy MB, Stasi LLD, Martinez-Conde S. 2014. Task difficulty in mental arithmetic affects microsaccadic rates and magnitudes. European Journal
of Neuroscience. 39(2): 287-294.

Ternus J. 1926. Experimentelle Untersuchungen über phänomenale Identität. Psychol Forsch. 7: 81-136.

Thunell E, van der Zwaag W, Öğmen H, Plomp G, Herzog MH. 2016. Retinotopic encoding of the Ternus-Pikler display reflected in the early visual areas. Journal of Vision. 16(3):26.

Troncoso XG, Macknik SL, Otero-Milian J, Martinez-Conde S. 2008. Microsaccades drive illusory motion in the Enigma illusion. Proceedings of the National Academy of Sciences of the United States of America. 105(41):16033-16038.

Ursino M, Cuppini C, Magosso E, Serino A, di Pellegrino G. 2009. Multisensory integration in the superior colliculus: a neural network model. Journal of Computational Neuroscience. 26(1):55-73.

Vroomen J, de Gelder B. 2000. Sound enhances visual perception: cross-modal effects of auditory organization on vision. Journal of Experimental Psychology: Human Perception and Performance. 26(6): 1583-1590.

Wallace MT, Meredith MA, Stein BE. 1998. Multisensory integration in the superior colliculus of the alert cat. Journal of Neurophysiology. 80(2): 1006-1010.

Wallace MT, Stein BE. 1997. Development of multisensory neurons and multisensory integration in cat superior colliculus. Journal of Neuroscience. 17(7):2429-2444.

Wallace MT, Wilkinson LK, Stein BE. 1996. Representation and integration of multiple sensory inputs in primate superior colliculus. Journal of Neurophysiology. 76(2):1246-1266.

Wang CA, Blohm G, Huang J, Boehnke SE, Munoz DP. 2017. Multisensory integration in orienting behavior: Pupil size, microsaccades, and saccades. Biological Psychology. 129:36-44.

Wang CA, Boehnke SE, Itti L, Munoz DP. 2014. Transient Pupil Response Is Modulated by
Contrast-Based Saliency. Journal of Neuroscience. 34(2): 408-417.

Wang CA, Boehnke SE, White BJ, Munoz DP. 2012. Microstimulation of the Monkey Superior Colliculus Induces Pupil Dilation Without Evoking Saccades. Journal of Neuroscience. 32(11): 3629-3636.

Wang CA, Brien DC, Munoz DP. 2015. Pupil size reveals preparatory processes in the generation of pro-saccades and anti-saccades. European Journal of Neuroscience. 41(8): 1102-1110.

Wang CA, McInnis H, Brien DC, Pari G, Munoz DP. 2016. Disruption of pupil size modulation correlates with voluntary motor preparation deficits in Parkinson’s disease. Neuropsychologia. 80: 176-184.

Watanabe K, Shimojo S. 2001. When sound affects vision: Effects of auditory grouping on visual motion perception. Psychological Science. 12(2): 109-116.

Welch RB, Warren DH. 1980. Immediate perceptual response to intersensory discrepancy. Psychological Bulletin. 88(3): 638-667.

Widmann A, Engbert R, Schröger E. 2014. Microsaccadic responses indicate fast categorization of sounds: a novel approach to study auditory cognition. Journal of Neuroscience. 34(33): 11152-11158.

Zuber BL, Stark L. 1966. Saccadic suppression: elevation of visual threshold associated with saccadic eye movements. Experimental Neurology. 16(1): 65-79.
Figure 1. Ternus display and stimulus configurations. (A) Two alternative motion percepts of the Ternus display. Left: ‘element’ motion for short inter-stimulus intervals (ISI), where the middle dot is perceived as static, while the outer dots are perceived to move from one side to the other. Right: ‘group’ motion for long ISIs, where the two dots are perceived as moving in tandem. (B) Example trial for Experiments 1-3.
Figure 2. Proportions of the dominant percept of “group motion” as a function of different experimental conditions across seven SOAs, parameterized with sound conditions. **E1** (red lines): Experiment 1 used fully randomized trials; **E2** (blue lines): Experiment 2 used blocked baseline and sound trials; **E3** (black lines): Experiment 3 used blocked SOA conditions. **Baseline** (solid lines): visual Ternus stimuli were presented without tones. **Sound** (dashed lines): visual Ternus stimuli were presented synchronously with a pair of tones. The seven SOAs ranged from 80 ms to 260 ms with a step size of 30 ms.
Figure 3. Microsaccades (MS) and their time courses in baseline and sound conditions. The horizontal coloured lines indicate significant differences at $p < 0.05$ in the cluster analysis and correspond to the colour code for each experiment.
Figure 4. Psychometric results, gaze durations, microsaccadic eye movement (MS) rate and normalized pupil dilations for Experiments 1-3 (pooled data). (A) Psychometric curves of observers judging the Ternus display as “group motion” across seven stimulus onset asynchronies (SOAs), parameterized with sound conditions. (B) Mean gaze durations as a function of SOAs, parameterized with sound conditions. (C) MS rate change time-locked to the onset of the first Ternus frame, parameterized with sound conditions. (D) Mean pupil size change time-locked to the onset of the first Ternus frame, parameterized with sound conditions. The error bars in (A) and shaded areas in (B) and (D) represent the standard error of mean across the participants. The black horizontal lines in (C) and (D) indicate significant differences at $p < 0.05$ (cluster analysis).
Figure 5. Microsaccade eye movement (MS) rates time-locked to the 1st flash onset in response to the Ternus display with different SOAs, separated by sound conditions. (A) The raster plots illustrate accumulated MS from all data. Each horizontal line represents one trial. Each dot represents a MS observed at the corresponding time point. Vertical black lines indicate the onset of 2nd flash. Vertical dotted lines indicate the onset of the question mark (for the participant to make a saccade to the peripheral question mark’s location). (B) MS rate change by time. The horizontal colour lines indicate significant clusters (p < 0.05) between each color-coded SOA condition and the SOA = 80 condition.
Figure 6. The delta microsaccade eye movement (MS) rate as a function of delta proportions reporting ‘Group motion’. Each dot represents data from each participant.
Figure 7. Mean pupil sizes in both baseline and sound conditions. The horizontal coloured lines indicate significant differences at $p < 0.05$ in the cluster analysis and correspond to the colour code for each experiment.
Figure 8. Results for the control experiment (visual localization) (A)
Reaction time (RT) as a function of SOAs, parameterized with sound conditions. (B) Mean gaze duration as a function of SOAs, parameterized with sound conditions. (C) Microsaccadic eye movement (MS) rate change, time-locked to the onset of the first Ternus frame, parameterized with sound conditions. (D) Mean pupil size change time-locked to the onset of the first Ternus frame, parameterized with sound conditions. The error bars in (A) and shaded areas in (B) and (D) represent the standard error of mean across the participants. The black horizontal lines in (C) and (D) indicate significant differences at $p < 0.05$ (cluster analysis).