INTRODUCTION

The appearance and subsequent evolution of land plants is among the most important events in the earth system. Plant resulted in a change of earth surface albedo and the hydrological cycle, as well as increased rock weatherability thereby causing a persistent change in atmospheric CO₂ and O₂. Land plants are, however, themselves dependent on O₂ for respiration and long-term survival, something not considered in current geochemical models. In this perspective, we highlight two aspects of land plants’ dependency on O₂ relevant for the geobiological community: (a) fossil root systems can be used as a proxy for minimum levels of past atmospheric O₂ consistent with a given fossil root depth; and (b) by identifying a positive feedback mechanism involving atmospheric O₂, root intensity, terrestrial primary production and organic carbon burial. As an example, we consider archaeopterid fossil root systems, resembling those of modern mature conifers. Our soil–plant model suggest that atmospheric O₂ with 1 SD probably reached pressures of 18.2 ± 1.9 kPa and 16.8 ± 2.1 kPa by the Middle and Late Devonian, respectively, that is 86 ± 9% and 79 ± 10% of the present-day 21.2 kPa.

KEYWORDS
devonian, earth atmosphere, feedback mechanisms, O₂, plants, roots

1 | INTRODUCTION

The appearance and subsequent evolution of land plants (Embryophytes) arguably is among the biggest revolutions of the earth system. Land plants originated as small and bryophyte-like vegetation during the middle Cambrian to Early Ordovician (~515–470 Ma) (Morris et al., 2018; Rubinstein et al., 2010). Trilete spores from the Late Ordovician suggest that vascular plants had evolved by that time; however, vegetation was still small and had limited interaction with the underlying rock due to miniscule rooting systems (Dahl & Arens, 2020 and references therein). It was not until Early Devonian that land plants really increased in height and extended their root systems in depth to more than few centimetres (Algeo & Scheckler, 1998; Dahl & Arens, 2020). In the Middle Devonian Period, trees appear which by the end of the Period (~360 Ma) had evolved into forested ecosystems of modern complexity (Algeo & Scheckler, 1998). By this time, terrestrial vegetation reached deeply into the interior of the continents, and most likely constituted a significant fraction of the global biomass similar to that of today, where land plants are estimated to account for more than 80% by weight (Algeo & Scheckler, 1998; Bar-On et al., 2018). The transition from a barren to a green planet changed earth’s albedo through ground cover and cloud distribution, intensified the hydrological cycle, and increased rock weatherability and net primary productivity (NPP). All of these changes impacted earth’s climate and atmospheric composition (Beerling & Berner, 2005; Dahl & Arens, 2020; Rosing et al., 2010).
Because of land plants significant total mass proportion of the biosphere and impact on the geo- and atmosphere, they have been incorporated into several biogeochemical models through parameterization of various feedback mechanisms (see, e.g. Bar-On et al., 2018; Bergman et al., 2004; D’Antonio et al., 2020; Lenton et al., 2018). In example, a classic hypothesis proposes that increasing atmospheric CO₂ increases the NPP of land plants, resulting in increased organic carbon burial which reduces atmospheric CO₂ (Berner, 1999). The feedback mechanism is negative as it dampens an initial change. Recent treatments suggest that the negative feedback involving land plants and deep rooting systems is more complex resulting in an increase weathering feedback strength, thereby lowering the atmospheric CO₂ needed to achieve a given equilibrium weathering flux (D’Antonio et al., 2020; Ibarra et al., 2019). Another identified negative feedback mechanism involves O₂: where increasing atmospheric O₂ reduces NPP of land plants through increased photorespiration (the Warburg effect), which results in reduced production of O₂ (Lenton & Watson, 2000; Yiotis et al., 2017). Here, we highlight a coupling between atmospheric O₂ and land plants that have not been addressed explicitly in a geological context: Land plants require O₂ for long-term survival where insufficient pO₂ in soils limit plant root respiration and nutrient uptake, thereby limiting primary productivity (Geigenberger, 2014; Päpke et al., 2014; Waisel et al., 2002).

Plants harvest solar energy through photosynthesis, by consuming water and CO₂, and generating carbohydrates and O₂. Although a waste product of this process, O₂ is essential for the energy-rewarding aerobic respiration, which allows plants to utilize the harvested solar energy as ATP. Energy from respiration in the form of ATP is used for biosynthesis (growth), cellular maintenance and active transport of essential elements like N, P and K in the root system (Atkin & Tjoelker, 2003; Waisel et al., 2002). Of the carbohydrates produced each day by plants, it is estimated that ~1/3 is respired in their root systems (Waisel et al., 2002). In contrast to the aerial part of the plant, O₂ can become very scarce in the root system, even under today’s relatively high atmospheric pO₂ of 21.2 kPa, because of the lower gas diffusivity and high rates of respiration in soils by microbes and roots, as well as the low solubility in water (Armstrong & Drew, 2002; Brady, 1990). However, although the pO₂ of the modern, well-mixed atmosphere displays only limited variation over the course of a year to thousands of years, the atmospheric pO₂ can vary considerably over millions of years. On such longer timescales, it is important to consider the effect that O₂ variation may have had on vegetation via the rooting system in the past. Consequently, attempts at modelling the composition of the atmosphere through time, for example Krause et al. (2018), Lenton et al. (2018) and Schachat et al. (2018), should incorporate the effect of low atmospheric pO₂ on plant NPP and long-term survival.

In this perspective, we hope to: (a) illustrate how fossil root systems can be used to provide minimum levels of atmospheric pO₂ in the geological past, which can be used to evaluate existing O₂ models (see, e.g. Krause et al., 2018; Lenton et al., 2018; Schachat et al., 2018); and (b) present a positive feedback mechanism involving pO₂, root intensity (defined here as root respiration per square metre), plant NPP and organic carbon burial. We do this by highlighting present knowledge among biologist and soil scientist on plant root respiration and soil aeration and applying it in a geological context.

2 | METABOLIC PATHWAYS

Plants consume carbohydrates in the mitochondria through several pathways, the most important ones being cytochrome-c oxidase (COX), alternative oxidase (AOX) and anaerobic fermentation. The COX pathway and AOX require O₂, whereas fermentation can function under anaerobic conditions. COX is the preferred pathway and has the largest ATP yield with 36 ATP generated for every glucose molecule (C₆H₁₂O₆) respired (Hopkins, 1999). In addition, it has a very high affinity for O₂, \(K_m^{COX} = 0.01 \text{ kPa} \), meaning that the energy production rate from this pathway is only halved at O₂ pressures of 0.01 kPa (Figure 1a; Armstrong et al., 2009, and references therein). The ATP yield from AOX is much smaller than that from the COX pathway (0–12 ATP generated for every glucose molecule respired), with the majority of the energy being lost as heat (Hopkins, 1999). The AOX affinity for O₂, \(K_m^{AOX} = 0.13 \text{ kPa} \), is also 1 order of magnitude lower than that of COX (Figure 1a; Armstrong et al., 2009, and references therein). Plants can also gain energy through fermentation under anoxic conditions, that is when soils become flooded. The ATP yield from fermentation is, however, very small with only two ATP being generated for every glucose molecule consumed. The energy yield of fermentation is insufficient to power nutrient uptake and growth and can only prolong the period of plant survival under anoxic conditions (Kozlowski, 1985). Furthermore, the anaerobic fermentation process cannot continue for a long time, as the ethanol produced through the reaction is a toxic waste product (Crawford, 1992). Consequently, O₂ is needed for sufficient root respiration and long-term plant survival and growth. The O₂ uptake is mainly secured in two ways: (a) through radial diffusion from the soil air into the root; and (b) through longitudinal diffusion via the intercellular gas space continuum of the cortex (Armstrong & Drew, 2002). Dissolved O₂ entering through water uptake and pressurized gas flow are thought to be of only minor importance, although the latter can be important in specific species (Armstrong & Armstrong, 2009; Armstrong & Drew, 2002). In the archaopterid fossils studied, here the pressurized gas flow is, however, not important as their root systems have been described as woody which effectively inhibits the longitudinal transportation of O₂ (Armstrong & Beckett, 1985). The well-being of plants in relation to O₂ traditionally is monitored in two ways, by the Critical Oxygen Pressure for Respiration, and Critical Oxygen Pressure for Extension.

3 | CRITICAL OXYGEN PRESSURE FOR RESPIRATION

The critical oxygen pressure for respiration (COPR) is the O₂ pressure below which respiration is reduced. Here, focus will be on the
root system, as this is the part most likely to experience anoxia. The value of COPR depends on where the measurement is taking place. At a cellular level, respiration is not significantly affected except at an extremely low O₂ pressure as the major respirational pathway, COX, has a very high affinity for O₂ (Figure 1a). Whole-root respiration will only be seriously impaired when anoxia begins to spread within the root, usually from the centre (Figure 1b). The COPR is usually determined either at the root surface or in the surrounding medium where pO₂ has stabilized—the difference in COPR between these two sites can be quite significant (Figure 1b). In experiments with sterile medium, the difference is due to respiration in root hairs (Armstrong & Drew, 2002). Under natural conditions, the difference also results from microbial respiration which tends to be more pronounced in the rhizosphere surrounding the root than elsewhere in the soil (Armstrong & Drew, 2002). The COPR for roots in natural soils will therefore be larger than the COPR reported in some literature. For several modern plant species, for example Banana, Pea, Corn, Tomato and more, the aerobic respiration is essential for biosynthesis, maintenance and nutrient uptake, which would be affected by even a small decrease in atmospheric pO₂ (Armstrong & Drew, 2002; Armstrong et al., 2009; Ben-Noah & Friedman, 2018; and references therein). With pO₂ declining further below the COPR, energy production can become insufficient to satisfy root extension.

4 | CRITICAL OXYGEN PRESSURE FOR EXTENSION

The critical oxygen pressure for extension (COPE) is the O₂ pressure below which a halt in root extension is observed. The value of COPE depends on the place of measurement (within the root or in the surroundings), as well as on the kind of extension considered (Armstrong et al., 2009). Experiments on apple seedlings have shown that initiation of new roots from an existing root system requires soil-air pO₂ above 12 kPa, whereas the extension rate of existing roots is not affected before the pO₂ decreases below 10 kPa, while limited extension is observed at pressures down to 5 kPa pO₂ (Boynton et al., 1938). Such experiments are supported by observations in nature, where severe reduction in growth has been reported at soil-air pO₂ below 10 kPa for various conifers and for citrus (Kozlowski, 1985, and references therein). The reduction in natural systems is probably due to slowed extension of existing roots and the inability to initiate new roots. In general, tree roots require soil-air pO₂ above 10 kPa for optimal growth in the short term (Kozlowski, 1985), whereas long-term plant survival seems to require soil-air O₂ pressures of at least 12 kPa (Boynton et al., 1938). In summary, emerging plants need to initiate new roots, whereas mature plants need to constantly renew their root systems when old roots are lost to disease or consumed by fauna. How atmospheric pO₂ relates to COPE and long-term plant survival depends on the characteristics of the soil, at least for plants that rely on soil-air O₂ for root respiration.

5 | SOIL-AIR OXYGEN

Well-drained and aerated soils are important for optimal plant growth as most plants obtain O₂ for respiration radially from the soil air (Armstrong & Beckett, 1985). Soils, however, in general experience reduced O₂ and enriched CO₂ levels because of respiration by plant roots and microbes, and because of diffusional resistance between soil and atmosphere (Brady, 1990). Consequently, O₂...
pressures decrease with soil depth, and the resulting O₂ profiles are further influenced by several factors such as lithology (soil type), soil respiration rate and water content (Armstrong & Drew, 2002).

Soil respiration constitutes an O₂ sink caused by respiration of both roots and microbes, including the important symbiotic arbuscular mycorrhiza fungi, which at least dates back to the Early Devonian Period (Quirk et al., 2015; Remy et al., 1994). Root respiration is usually dominant, but its effect decreases rapidly with depth as root intensity and pO₂ decline (Ben-Noah & Friedman, 2018). Additionally, microbial respiration is more pronounced towards the surface where the content of organic matter is higher, but this type of respiration is largely independent of pO₂ and is not affected except at pressures very close to zero (Ben-Noah & Friedman, 2018). Increasing temperatures increases microbial and root respiration resulting in a lower O₂ pressure in the soil (Figure 2). Consequently, soil-air pO₂ may decline with depth to values unsustainable for most plants or for optimal growth if diffusional resistance is too high as well.

Today, water content is the most important factor influencing soil O₂ profiles, because the water displacing soil air contains only 1/30 of the O₂ in air and has diffusivities that are 10,000 times lower (Armstrong & Drew, 2002). The diffusion rate of O₂ is therefore effectively 300,000 times lower in soil water, meaning that soil-air pO₂ can decrease dramatically under heavy rains or become entirely depleted in a matter of hours to days during and after floods (Armstrong & Drew, 2002; Crawford, 1992). The increased diffusional resistance of O₂ in water is why well-drained soils are important for most plants, which in part is controlled by lithology or soil type.

Lithology affects the soil O₂ profile through the effects of porosity and the interconnectivity and tortuosity of pore spaces (cf. Brady, 1990; Breecker et al., 2009; Wynn et al., 2005). The higher the porosity and interconnectivity of the pore spaces, the better the diffusion (as well as the drainage), and with increasing diffusivity, soil-air pO₂ will be higher. For example, the decrease in pO₂ with depth will be more pronounced in a silty clay loam than in a sandy loam which is apparent in one-dimensional soil-O₂ models, and from carbon-isotope measurements of pedogenic carbonates (Figure 2b,c; Bartholomeus et al., 2008; Wynn et al., 2005). Such models build on a long tradition of modelling crop production in the agronomic sciences and have been applied in regional and global models (Bartholomeus et al., 2008; Campbell, 1985; Cook, 1995; Cook & Knight, 2003; Fierer et al., 2006; Jackson et al., 1996; de Willigen & van Noordwijk, 1987). Here, the modelled O₂ profiles are modelled by randomly sampling probability distributions of parameters other than soil type which are poorly known for fossil soils (Table S1).

The three factors mentioned here, that is soil water content, respiration rate and lithology, have a prominent effect on soil O₂
profiles. These controlling factors may locally be ever changing as changes in weather and river paths redistribute sediments and water. However, on a longer time scale, global soil aeration based on these three factors may be considered to be relatively constant and is probably only to some degree affected by major changes in sea-water level and the hydrological cycle.

On a geological time scale, the atmospheric \(p_{O_2} \) becomes an important factor for soil \(O_2 \) profiles. With declining atmospheric \(p_{O_2} \), soil-air \(p_{O_2} \) would decrease globally and soils would eventually become anoxic at shallower depths. Even small changes in atmospheric \(p_{O_2} \) would have consequences for plants whose value of critical \(O_2 \) pressure for respiration (\(COPR \)) is relatively high, thereby affecting root respiration even in well-drained and porous soils. This would result in a decrease in root penetration depth and reduce the amount of soil and rock volume that can be exploited by plants. Consequently, a decrease in atmospheric \(p_{O_2} \) would mean that a larger fraction of soils would become inaccessible to plants requiring high soil-air \(p_{O_2} \), and these would be displaced by plants better adapted to sub- and anoxic soil conditions. Such changes in the floral pattern would impact the influence of terrestrial plants on the earth system, as adaptation to sub- and anoxic soil conditions should decrease primary productivity.

6 | ADAPTATION TO LOW OXYGEN

Two mechanisms allow plants to adapt to low soil-air \(O_2 \) pressures: the reduction of \(O_2 \) consumption through decreased respiration and the enhancement of \(O_2 \) availability through decreased diffusional resistance. Adaptation of the respiratory pathways, COX and AOX, should have little influence. The two enzymatic pathways have a very high affinity for \(O_2 \) meaning that respiration is only affected when \(O_2 \) basically is absent. A higher affinity for \(O_2 \) would therefore not have any significant effect. The former mechanism is still the subject of debate, as it is unclear whether such reductions in respiration rate are due to \(O_2 \) limitations, or whether respiration is being actively down-regulated by the plant itself (Päpke et al., 2014). Regardless of this, reduced respiration results in less ATP being produced and this negatively impacts primary productivity by impeding several essential plant functions such as carbohydrate translocation and nutrient and water uptake (Geigenberger, 2014). As for the latter mechanism (decreased diffusional resistance), plants can enhance the amount of \(O_2 \) available to their roots through adaptations in root porosity and shape, where adaptation strategy differs between non-wetland and wetland plants. Roots of wetland plants cannot obtain \(O_2 \) from the anoxic soil, but transport it from the shoot to the root via aerenchyma (intercellular air canals) (Armstrong & Beckett, 1987). The development of aerenchyma is, however, not an unmitigated benefit. Aerenchymatous roots have remarkably large diameters and low ratios of root surface area to biomass, impairing nutrient uptake per unit biomass (Lambers et al., 2008). Non-wetland plants lack aerenchyma, meaning that \(O_2 \) transport from shoot to root is very limited, and root woodiness (e.g. lignification) may disrupt this path completely (Armstrong & Beckett, 1985). Non-wetland plants therefore require \(O_2 \) from the soil, the availability of which can be enhanced by developing thinner roots with increased porosity, which would decrease the diffusional resistance from root surface to centre (Armstrong & Beckett, 1985). However, such porosity increase would also decrease the plant capability of carbohydrate storage and transportation, thereby limiting root respiration, resulting in a reduced primary productivity overall. Consequently, plants would likely be able to adapt to lower atmospheric \(p_{O_2} \), but such adaptation would negatively impact plant root respiration and primary productivity, and likely be recorded in the fossil record as changes in root morphology.

7 | USING FOSSIL ROOT SYSTEMS TO CONSTRAIN ATMOSPHERIC \(p_{O_2} \)

Fossil root systems can serve as proxies for atmospheric \(p_{O_2} \) levels in the geological past, because the morphology of root systems is dependent on soil-air \(p_{O_2} \) and hence the atmospheric composition. It, however, requires the associated soil type, soil and air temperature, soil respiration, as well as soil moisture content to be taken into account as this affects the drawdown of \(O_2 \) within the soil. Furthermore, it requires the fossil root systems and the palaeosols to be preserved in such a degree that root traces or casts can be tracked, near continuously, from palaeosol surface to root tip (apex). This approach is exemplified in the following by considering the archaeopterid fossils of deeply penetrating root systems found at three different outcrops: The Famennian (372.2–358.9 Ma) Trout Run outcrop and the Givetian (387.7–382.7 Ma) W. Saugerties outcrops 1 and 2 (Driese et al., 1997; Mintz et al., 2010).

The well-studied archaeopterids were some of the most important forest-forming trees during the Devonian Period (Algeo & Scheckler, 1998; Meyer-Berthaud et al., 1999, 2013). They could reach more than 25 m in height and measure more than 1.5 m in diameter at the base (Meyer-Berthaud et al., 2013). Archaeopterids are recognized as the earliest known modern tree, with stems and root systems resembling those of modern conifers (Kenrick & Strululu-Derrien, 2014; Meyer-Berthaud et al., 1999, 2013). Because of their woody root systems, the archaeopterids were restricted to obtain \(O_2 \) from the soil air towards root respiration. Accordingly, the here studied palaeosols have been described as being well-drained to seasonally wet (Driese et al., 1997; Mintz et al., 2010).

The drawdown of \(O_2 \) within the palaeosols at the different outcrops is estimated by applying a one-dimensional soil–root model with a few modification (cf. Table S1–S4; Bartholomeus et al., 2008; Bjerrum, 2021). The soil types, used in the soil–root model, are determined based on palaeosol descriptions and the classification scheme from the U.S. Department of Agriculture (Supplementary Information; Brady, 1990; Driese et al., 1997; Mintz et al., 2010; Wösthen, 1997; Wösthen et al., 2001). The temperature of surface air and soil as well as soil moisture content is obtained from published results of a coarse resolution Devonian climate model-setup.
building on the intermediate complexity coupled Earth System model CLIMBER-3α (Table S5; Brugger et al., 2019; Montoya et al., 2005). Paleogeographical locations are based on the PALEOMAP (Figure S4; Scotese, 2016). Modern day values for the soil respiration dependent on temperature with a Q_{10} of 2. Yapp and Poths (1994) suggest, based on geochemical analysis of Upper Ordovician Goethite, that pre-vascular soil respiration probably reached modern day levels. We have therefore assumed that soil respiration in the Middle and Late Devonian Period could reach similar levels, where the biosphere resembled the present much more. Other poorly known parameters are randomly re-sampled from global representative probability distributions during 2000 model evaluations (Table S2). Because of uncertainty in the position of the continents during the time intervals, two paleogeographical locations were used for each of the outcrops, resulting in two O₂ profiles mostly affected by temperature (Figure 2). The O₂ drawdown between soil and atmosphere was determined from the modelled soil O₂ profiles as the pO₂ difference between the atmosphere and the median of all the model calculations (Table 1; Figure 2).

Based on the observed lithology, Devonian Climate Model data and the fact that the fossilized root systems are analogous to those of modern mature conifers (Driese et al., 1997; Kenrick & Strullu-Derrien, 2014; Meyer-Berthaud & Decomeix, 2007; Meyer-Berthaud et al., 2013), inferences can be made regarding both soil air and atmospheric pO₂ when the trees were living. Adaptation to low O₂ is limited to respirational demand and morphology. We therefore suggest that archaeopterid roots systems of the Middle–Upper Devonian (388–359 Ma) would have required soil-air O₂ pressures of 10 kPa (Kozlowski, 1985). Severely reduced growth is not viable for long-term survival as the trees, like today, would have been supplanted (Crawford, 1992). We can therefor provide a strict minimum for atmospheric pO₂ by adding the drawdown of O₂ between soil and atmosphere to the 10 kPa pO₂ (Table 1; Figure 2). In example, a minimum for atmospheric pO₂ of 11.9 ± 1.1 kPa (1 SD) can be obtained for the Famennian by adding the modelled soil O₂ drawdown of 1.9 ± 1.1 kPa (1 SD) for the paleo root depth of 1 m in loam, to the 10 kPa pO₂ where growth of the archaeopterid with conifer-like root systems will be severely reduced (Table 1; Figure 2a). For the Givetian, a minimum atmospheric pO₂ level of 13.6 ± 2.2 kPa (1 SD) is estimated based on archaeopterid paleo root depth of 1 m in silty clay loam (Table 1; Figure 2c).

The minimum levels of atmospheric pO₂ derived from the minimum O₂ requirement for growth as presented in Table 1 are rather conservative low estimates—probably too conservative. If soil conditions were severely reducing growth of the archaeopterid trees, these would most likely, as today, have been supplanted by other better adapted plants or trees (Crawford, 1992). In that sense, it is more relevant to calculate to what atmospheric pO₂ level optimal growth can occur. The minimum O₂ requirements for optimal growth have here been calculated with the one-dimensional soil–root model where only results fulfilling optimal growth have been accepted where the respiration factor is η = 5 (cf. Table S1–S5; Bartholomeus et al., 2008). These calculations resulted in minimum atmospheric pO₂ requirements for optimal growth at 18.2 ± 1.9 kPa (1 SD) for the Givetian and 16.8 ± 2.1 kPa (1 SD) for the Famennian (Table 1; Figure 3; Figures S1–S3).

Concurrent with the occurrences of fossil archaeopterid roots mentioned above is a so-called charcoal gap, stretching from the Early Devonian through the Early Carboniferous (Figure 3; Glasspool et al., 2015; Scott & Glasspool, 2006). The presence of charcoal in sediments is an independent proxy for the occurrence of fires, which require a certain pressure of atmospheric O₂. Fires cannot persist below 15 kPa pO₂, and the probability of combustion is low at pO₂ levels between 15 and 17 kPa; above 17 kPa, fires spread readily.

TABLE 1 Fossil tree roots’ minimum atmospheric pO₂ requirements for long-term survival and optimal growth

Locality	Age	Root depth (m)	Interpreted soil texture	Paleo Lat. (°S)	Soil temp. (°C)	Drawdown of O₂ (kPa)	Minimum pO₂ (kPa) for	Long-term survival	Optimal growth
Trout Run	Givetian	>1	Loam	Combined	22.4 ± 1.5	1.9 ± 1.1	11.9 ± 1.1	16.8 ± 2.1	
				33.75	21.7 ± 1.6	1.5 ± 0.8	11.5 ± 0.8	16.1 ± 1.9	
				26.25	22.8 ± 1.1	2.0 ± 1.0	12.0 ± 1.0	17.4 ± 1.9	
W. Saugerties OC1	Givetian	1.5	Loam	Combined	21.8 ± 2.6	2.3 ± 1.5	12.3 ± 1.5	17.1 ± 2.2	
				41.25	18.4 ± 2.2	1.5 ± 0.9	11.5 ± 0.9	15.6 ± 2.1	
				33.75	22.6 ± 1.2	2.6 ± 1.5	12.6 ± 1.5	17.1 ± 1.9	
W. Saugerties OC2	Givetian	1	Silty Clay Loam	Combined	21.0 ± 2.6	3.6 ± 2.2	13.6 ± 2.2	18.2 ± 1.9	
				41.25	17.9 ± 2.1	2.3 ± 1.3	12.3 ± 1.3	17.3 ± 1.8	
				33.75	22.1 ± 1.2	3.9 ± 2.1	13.9 ± 2.1	19.0 ± 1.6	

Note: Data are ±SD. Abbreviation: OC, Outcrop.

*Median during maximal soil respiration: October through December in the southern hemisphere.

Based on the severe reduction in growth of modern conifers that experience soil-air O₂ of 10 kPa (Kozlowski, 1985).
Charcoal gaps have therefore been suggested to represent periods where levels of atmospheric pO$_2$ were insufficient to maintain fires (Scott & Glasspool, 2006). The Devonian charcoal gap in fact represents a period of infrequent charcoal deposits (Glasspool et al., 2015), and so the infrequent occurrences of charcoal have been suggested to represent a period with atmospheric O$_2$ pressures between 15 and 17 kPa, which would allow smouldering fires, but not make them extensive (Figure 3; Krause et al., 2018). However, the infrequent charcoal deposits could also be a result of limited fuel load (Glasspool et al., 2015). The diversification and worldwide appearance of the woody archaeopterid trees was not complete until the end-Devonian (Scheckler, 2006), and the vegetation before that is thought to have been patchy as it was confined to water-rich habitats (Algeo & Scheckler, 1998). Glasspool et al. (2015) therefore suggest that the infrequent charcoal deposits of the mid-Devonian are a result of an insufficient fuel load rather than an insufficient O$_2$ pressure, which is also supported by their inertinite-O$_2$ model suggesting atmospheric O$_2$ pressures of 18–19 kPa. This accords well with our observations from archaeopterid root systems, which indicate that atmospheric pO$_2$ levels between 15 and 17 kPa (grading orange) and Chaloner, 1980). Limited combustion between 15 and 17 kPa (grading orange box; Belcher and McElwain, 2008)

Figure 3 Evolution of atmospheric O$_2$ through time. New minimum levels of atmospheric pO$_2$ based on the conifer-like fossil root system of archaeopterids: Bold black bars represent minimum atmospheric pO$_2$ for optimal growth, whereas stippled black bars represent minimum atmospheric pO$_2$ for long-term survival. Infrequent charcoal deposits or “Charcoal Gap” (grey box; Glasspool et al., 2015). Fire window (orange lines; Cope and Chaloner, 1980). Limited combustion between 15 and 17 kPa (grading orange box; Belcher and McElwain, 2008)

8 | An O$_2$ optimum for plant growth

Terrestrial vegetation and atmospheric O$_2$ is coupled through different mechanisms in various feedback mechanisms. Feedback mechanisms that dampen an initial change are negative and those that intensify are positive. Based on the existing literature, we find that the earth system possesses two overlooked positive feedback mechanisms involving atmospheric O$_2$ and root intensity (Figure 4). Firstly, following path A→C→E→F in Figure 4, we get the positive feedback mechanism where increasing atmospheric pO$_2$ increase root intensity, thereby increasing net primary productivity (NPP), carbon burial and atmospheric pO$_2$. Although, it should be mentioned that an increase in atmospheric O$_2$ could decrease the area of anoxic soils and thereby decrease the carbon storage potential. Secondly, by following path A→C→G→H→F in Figure 4, increasing atmospheric pO$_2$ increases root intensity, which increases NPP, thereby increasing plant induced weathering, ocean nutrient availability, marine NPP; carbon burial and finally atmospheric pO$_2$.

Already identified negative feedback mechanisms include the effects of photorespiration and fire. Following path B→D→E→F in Figure 4, an increase in the atmospheric O$_2$:CO$_2$ ratio increases photorespiration which decreases terrestrial NPP, thereby reducing carbon burial and atmospheric pO$_2$, ultimately reducing the O$_2$:CO$_2$ ratio (Beerling et al., 1998; Lenton & Watson, 2000). Fire exerts a negative feedback mechanism through the following path (I→J→E→F;
Figure 4: Increasing atmospheric pO₂ increases widespread fires which reduce the standing terrestrial biomass of plants resulting in a reduced terrestrial NPP, carbon burial and production of O₂, leading to a lower atmospheric pressure of O₂ (Kump, 1988). However, this negative fire feedback mechanism functions only within the ‘fire window’ of 15–30 kPa pO₂. Below 15 kPa, fires cannot persist, and above ~30 kPa, fires spread so readily, even under moist conditions, that extensive forests will not be able to exist (Belcher & McElwain, 2008; Chaloner, 1989; Cope & Chaloner, 1980). Yet another negative feedback mechanism involves rock weathering (Lenton, 1998). Following path (B–D–E–F) or (I–J–E–F) in Figure 4, increasing pO₂ both results in increasing fire frequencies and photorespiration leading to lower plant NPP which reduces weathering and delivery of nutrients to the oceans, thereby reducing organic carbon burial and production of O₂. There exist a large number of other plant feedbacks previously described well (Berner, 1999; D’Antonio et al., 2020; Lenton & Watson, 2000). Here, we highlight a subset relevant for the present focus on oxygen feedback on plants. Our results should therefore be viewed in a grander scheme. However, by combining the positive and negative feedbacks, there may exist an pO₂ optimum for growth of terrestrial vegetation; high enough to secure well aerated conditions within the soils for the roots, but low enough to ensure a reasonable low photorespiration and limited fires.

The pO₂ optimum for growth and NPP is, however, dependent on rooting depth. Growth and NPP is only positively correlated with atmospheric pO₂ until the rooting system and the rhizosphere are sufficiently aerated; hereafter, there will be no benefit of increasing atmospheric pO₂. Therefore, an upper limit of atmospheric pO₂ exists for the positive feedback mechanisms and this upper limit depends on at what point full root aeration is reached. This in turn depends on existing plant species as deeper penetrating and more extensive rooting systems require a higher level of atmospheric pO₂ to be fully aerated. Today, forest ecosystems have the largest NPP per area, being more than double that of grass- and shrublands (Table 2; Melillo et al., 1993). The pO₂ optimum for forest ecosystems can therefore be used as a global pO₂ optimum for NPP. If forest ecosystems in general since the Mid to Late Devonian have had a similar minimum atmospheric pO₂ requirement for optimal growth, as suggested by our model results, there is a good chance that the global pO₂ optimum for NPP the last 400 million years would have been close to 18.2 ± 1.9 kPa (1 SD), although dependent on the mean temperature and intensity of the hydrological cycle (Table 1). Increasing temperatures and intensity of the hydrological cycle would result in a higher pO₂ optimum for NPP, because soil and root respiration would increase and diffusivity of O₂ would decrease.

The pO₂ optimum for NPP would also be dependent on atmospheric CO₂. For optimal NPP conditions, there need to be a balance between the production of carbohydrates in the canopy and consumption in the rooting system and elsewhere. The production of carbohydrates above ground increases with decreasing pO₂:CO₂ ratios (Beerling et al., 1998; Edwards & Walker, 1983; Yiots et al., 2017). On the other hand, root respiration below ground decreases with lower

Vegetation	Boreal		Temperate		Tropical	
	Mean	Range	Mean	Range	Mean	Range
Forests	206	173–238	624	465–741	985	871–1098
Grass- and shrublands	N/A	N/A	255	129–342	368	343–393
Ratio	N/A	N/A	2.45	1.36–5.74	2.68	2.22–3.20

Note: Data from Melillo et al. (1993).
Abbreviation: N/A, Not Available.
levels of soil-air O₂. This means that there for a giving concentration of CO₂ exists a pO₂ optimum for NPP. Low enough pO₂ to ensure a low pO₂:CO₂ ratio and thereby high carbohydrate production above ground, but at the same time high enough pO₂ to ensure that respiration of the translocated carbohydrates in the root system below ground can be met. By simultaneously increasing atmospheric O₂ and CO₂ it is possible to keep the pO₂:CO₂ ratio constant or even lower it while at the same time increasing soil-air pO₂, resulting in a higher production of carbohydrates above ground and a higher respiration capacity below ground. This increases the pO₂ level where the optimum for NPP is being reached while increasing the NPP at the optimum as well—vice versa for decreasing levels of atmospheric CO₂.

9 | CONCLUDING REMARKS

Plants, like nearly all other eukaryotes, need O₂ for long-term survival. O₂ is used for the aerobic respiration that provides plants with the energy needed for biosynthesis, cellular maintenance and nutrient uptake. The respiration rate of plant roots depends on the surrounding pressure of O₂ and the point at which the rate of respiration is negatively affected may be only a few kPa below pre-industrial atmospheric levels (21.2 kPa). If O₂ decreases below a certain threshold, the energy output from root respiration will be insufficient for prolonged plant survival. Previous work on the O₂ cycle has largely overlooked the importance of the O₂-dependent respiration rate and the minimum pO₂ requirements of plants. Nonetheless, these factors are highly relevant for biogeochemical models and can help to constrain atmospheric pO₂ through time. For example, the minimum pO₂ requirement for long-term plant survival can be used to determine minimum levels of atmospheric pO₂ through time: fossil conifer-like archaepoerid root systems from the Middle Devonian (388–383 Ma) may suggest that O₂ pressures exceeded well above 13.6 ± 2.2 (1 SD) kPa during this time, with our root model suggesting atmospheric O₂ minimum levels of 18.2 ± 1.9 kPa (1 SD) for optimal growth. The absence of large and deeply penetrating roots prior to the Middle Devonian may have been related to low atmospheric O₂ pressures, but it is just as likely that the early evolution of roots reflects structural plant evolution rather than available soil O₂. We have proposed a positive feedback mechanism involving atmospheric pO₂, root intensity and plant NPP that can be incorporated into biogeochemical models. Together with the negative feedback mechanisms of fire and the Warburg effect, the positive feedback should result in a pO₂ optimum for global NPP possibly near modern levels. The strength of the positive feedback, however, still needs to be quantified, through months-long physiological growth experiments with different plant groups, preferably at different stages of their life-cycle.

ACKNOWLEDGMENTS

We would like to thank Daniel Mills for initial inspiration and thoughts. FS thanks Andrew H. Knoll at The Harvard Museum of Natural History, Emma Rysgaard Haxen and Martin Sønderholm for useful discussions. Funding was supported by PhD stipend from Department of Geoscience and Natural Resource Management, University of Copenhagen.

CONFICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

Paleo-oxygen soil model parameters and model background is briefly introduced in the supplement, while the model Matlab code is available at https://github.com/cbjerrum/PaleoO2_RootSoil (Bjerrum, 2021).

ORCID

Fredrik Sønderholm https://orcid.org/0000-0002-5861-9549
Christian J. Bjerrum https://orcid.org/0000-0002-7804-1633

REFERENCES

Algeo, T. J., & Scheckler, S. E. (1998). Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1365), 113–130.

Armstrong, J., & Armstrong, W. (2009). Record rates of pressurized gas flow in the great horsetail, Equisetum telmateia. Were Carboniferous Calamites similarly aerated? The New Phytologist, 184(1), 202–215.

Armstrong, W., & Beckett, P. M. (1985). Root aeration in unsaturated soil — A multi-shelled mathematical-model of oxygen diffusion and distribution with and without sectoral wet-soil blocking of the diffusion path. The New Phytologist, 100(3), 293–311.

Armstrong, W., & Beckett, P. M. (1987). Internal aeration and the development of stelar anoxia in submerged roots - A multi-shelled mathematical-model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere. The New Phytologist, 105(2), 221–245.

Armstrong, W., & Drew, M. (2002). Root growth and metabolism under oxygen deficiency. In Y. Waisel, A. Eshel, T. Beeckman, & U. Kafkafi (Eds.), Plant roots: The hidden half (pp. 729–761). Marcel Dekker.

Armstrong, W., Webb, T., Darwent, M., & Beckett, P. M. (2009). Measuring and interpreting respiratory critical oxygen pressures in roots. Annals of Botany, 103(2), 281–293.

Atkin, O. K., & Tjoelker, M. G. (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 8(7), 343–351.

Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences, 115(25), 6506–6511.

Bartholomeus, R. P., Witte, J.-P.-M., van Bodegom, P. M., van Dam, J. C., & Aerts, R. (2008). Critical soil conditions for oxygen stress to plant roots: Substituting the Feddes-function by a process-based model. Journal of Hydrology, 360(1-4), 147-165.

Beerling, D. J., & Berner, R. A. (2005). Feedbacks and the coevolution of plants and atmospheric CO₂. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1302–1305.

Beerling, D. J., Woodward, F. I., Lomas, M. R., Wills, M. A., Quick, W. P., & Valdes, P. J. (1998). The influence of carboniferous palaeoatmospheres on plant function: An experimental and modelling assessment. Philosophical Transactions of the Royal Society B-Biological Sciences, 353(1365), 131–139.

Belcher, C. M., & McElwain, J. C. (2008). Limits for combustion in low O₂ redefine paleoatmospheric predictions for the Mesozoic. Science, 322(5899), 192.
Schachat, S. R., Labandeira, C. C., Saltzman, M. R., Cramer, B. D., Payne, J. L., & Boyce, C. K. (2018). Phanerzoic pO₂ and the early evolution of terrestrial animals. *Proceedings of the Royal Society B*, 285, 1–9.

Scheckler, S. E. (2006). Devonian forest expansion increased land-based trophic capacity and food web connections. Geological Society of America, Abstracts with Programs, 38(S40).

Scotese, C. (2016). *PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program*. PALEOMAP Project.

Scott, A. C., & Glasspool, I. J. (2006). The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. *Proceeding of the National Academy of Sciences of the United States of America*, 103(29), 10861–10865.

Waisel, Y., Eshel, A., Beeckman, T., & Kafkafi, U. (2002). *Plant roots: The hidden half*. Marcel Dekker.

Wösten, J. (1997). *Pedotransfer functions to evaluate soil quality, developments in soil science* (vol. 25, pp. 221–245). Elsevier.

Wösten, J., Veerman, G., de Groot, W., & Stolte, J. (2001). *Water Retention and Conductivity Characteristics of Upper and Deeper Soil Layers in the Netherlands*. Alterra Report, 153.

Wynn, J. G., Bird, M. I., & Wong, V. N. (2005). Rayleigh distillation and the depth profile of 13C/12C ratios of soil organic carbon from soils of disparate texture in Iron Range National Park. *Far North Queensland, Australia: Geochimica Et Cosmochimica Acta*, 69(8), 1961–1973.

Yapp, C. J., & Poths, H. (1994). Productivity of pre-vascular continental biota inferred from the Fe (CO3) OH content of goethite. *Nature*, 368(6466), 49.

Yiotis, C., Gerald, C. E. F., & McElwain, J. C. (2017). Differences in the photosynthetic plasticity of ferns and Ginkgo grown in experimentally controlled low O2: CO2 atmospheres may explain their contrasting ecological fate across the Triassic-Jurassic mass extinction boundary. *Annals of Botany*, 119(8), 1385–1395.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Sønderholm F, Bjerrum CJ. Minimum levels of atmospheric oxygen from fossil tree roots imply new plant–oxygen feedback. *Geobiology*, 2021;19:250–260. https://doi.org/10.1111/gbi.12435