Production of poly(3-hydroxyalkanoate) from benzoate and lignin-derived aromatic compounds using metabolically engineered *Pseudomonas putida* H

José Manuel Borrero-de Acuña¹#, Izabook Gutierrez-Urrutia¹,²#, Cristian Hidalgo-Dumont¹, Carla Aravena-Carrasco¹, Matias Orellana-Saez¹, Nicolas Pacheco¹, Nestor Palominos-Gonzalez¹, Jozef B.J.H. van Duuren², Viktoria Wagner², Judith Becker², Michael Kohlstedt², Flavia C. Zacconi³,⁴, Christoph Wittmann², Ignacio Poblete-Castro¹*

Supplementary Material

Table S1. Oligos employed in this work.

Oligos (5´→3´)	Sequence	Source
catAUpFw	GAATTCGCACCATGCTCGAAGGTT	Fermelo Biotec, Santiago, Chile
catAUpRv	CACAGTGACATAACCTCGAACCCTGTCATTACCTCGATTGGTTC	Fermelo Biotec, Santiago, Chile
catADwFw	GTTCGAGGTTATGCTACTGTG	Fermelo Biotec, Santiago, Chile
catADwRv	GGATCCCTCACAGAAGTTGAGCAAG	Fermelo Biotec, Santiago, Chile
catA2UpFw	GAATTCGTCTACGCCCCTAGCTCCT	Fermelo Biotec, Santiago, Chile
catA2UpRv	AAACAGCCCACTCGGTGAGGGGTTACCTCGTTTGTT	Fermelo Biotec, Santiago, Chile
catA2DwFw	TCCACCGAGTGGGCTGTTT	Fermelo Biotec, Santiago, Chile
catA2DwRv	GGATCCATGCAAGATCTGAGAGGATT	Fermelo Biotec, Santiago, Chile
catAKOFw	CCGTGAATTTCCCACACT	Fermelo Biotec, Santiago, Chile
catAKORv	GGGTCGAATCGAAGTACGAA	Fermelo Biotec, Santiago, Chile
catA2KOFw	CATACTCGCGAGGTACAGCA	Fermelo Biotec, Santiago, Chile
catA2KORv	GTCCCCGACAGGTATCT	Fermelo Biotec, Santiago, Chile
S2. In-silico model of Pseudomonas putida H

Transport Reactions
- **'biomass(c) →**
- **'CAT_ex(e) →**
- **'HMS_ex(e) →**
- **'MUC_ex(e) →**
- **'ATP_maintenance(c) →**
- **'CO2(c) →**

Benzoate uptake and conversion to catechol
- **'BEN(e) → BEN(p)'
- **'BEN(p) → BEN(c)'
- **'BEN(c) + NADH(c) + O2(c) → BENDIO(c) + NAD(c)'
- **'BENDIO(c) + NAD(c) → CAT(c) + CO2(c) + NADH(c)'

Ortho pathway
- **'CAT(c) + O2(c) → MUC(c)'
- **'MUC(c) → MUC_ex(e)'
- **'MUC(c) → MUCLAC(c)'
- **'MUCLAC(c) → KAD(c)'
- **'KAD(c) + SUCC-CoA(c) → KAD-CoA(c) + SUCC(c)'
- **'KAD-CoA(c) → AcCoA(c) + SUCC-CoA(c)'

Meta pathway
- **'CAT(c) + O2(c) → HMS(c)'
- **'HMS(c) + NAD(c) → HM(c) + NADH(c)'
- **'HMS(c) → HMS_ex(e)'
- **'HMS(c) → FOR(c) + 2KPE(c)'
- **'FOR(c) + NAD(c) → CO2(c) + NADH(c)'
- **'HM(c) → 2KHE(c)'
- **'2KHE(c) → 2KPE(c) + CO2(c)'
- **'2KPE(c) → 4KPE(c)'
- **'4KPE(c) → acetA(c) + PYR(c)'
- **'acetA(c) + NAD(c) → AcCoA(c) + NADH(c)'

Pentose phosphate pathway
- **'RIB-5P(c) ↔ XYL-5P(c)'
- **'RIB-5P(c) ↔ RIBO-5P(c)'
- **'S7P(c) + GAP(c) ↔ RIBO-5P(c) + XYL-5P(c)'
- **'S7P(c) + GAP(c) ↔ E4P(c) + F6P(c)'
- **'F6P(c) + GAP(c) ↔ E4P(c) + XYL-5P(c)'

Entner-Doudoroff pathway
- **'6PG(c) → KDPG(c)'
- **'KDPG(c) → GAP(c) + PYR(c)'

Embden-Meyerhof-Parnas pathway
- **'G6P(c) ↔ F6P(c)'
- **'FBP(c) ↔ F6P(c)'
- **'FBP(c) ↔ GAP(c) + DHAP(c)'
- **'DHAP(c) ↔ GAP(c)'
- **'GAP(c) + NAD(c) ↔ 13-PG(c) + NADH(c)'
- **'13-PG(c) ↔ 2-PG(c)'
- **'2-PG(c) ↔ PEP(c)'
- **'PEP(c) + ADP(c) → PYR(c) + ATP(c)'
- **'PYR(c) + NAD(c) → AcCoA(c) + NADH(c) + CO2(c)'
- **'PYR(c) + 2 ATP(c) → 2 ADP(c) + PEP(c)'

TCA cycle
- **'AcCoA(c) + OAA(c) → CIT(c)'
- **'CIT(c) ↔ KIC(c)'
- **'I(c) + NADP(c) → AKG(c) + CO2(c) + NADPH(c)'
- **'AKG(c) + NAD(c) → SUCC-CoA(c) + NADH(c) + CO2(c)'
- **'SUCC-CoA(c) + ADP(c) ↔ SUCC(c) + ATP(c)'
- **'SUCC(c) + Q(c) ↔ FUM(c) + QH2(c)'
- **'FUM(c) → MAL(c)'
- **'MAL(c) + NAD(c) ↔ OAA(c) + NADH(c)'

Glyoxylate metabolism
- **'I(c) + Glyoxy(c) + SUCC(c)'
- **'Glyoxy(c) + AcCoA(c) → MAL(c)'

Amphibolic metabolism
- **'PYR(c) + ATP(c) + CO2(c) → OAA(c) + ADP(c)'
- **'MAL(c) + NADP(c) → PYR(c) + NADPH(c) + CO2(c)'
- **'OAA(c) → PYR(c) + CO2(c)'
- **'PEP(c) + CO2(c) → OAA(c)'

PHA synthesis
- **'[5] AcCoA(c) + (4) ATP(c) + (7) NADPH(c) → PHA(c) + (4) ADP(c) + (7) NADP(c)'
- **'PHA(c) → '
Energy metabolism

\[\text{NADPH}(c) + \text{NAD}(c) \rightarrow \text{NADP}(c) + \text{NADH}(c) \]

\[(3) \text{NADH}(c) + (3) \text{NADP}(c) + \text{ATP}(c) \rightarrow (3) \text{NAD}(c) + (3) \text{NADPH}(c) + \text{ADP}(c) \]

\[(0.5) \text{O}_2(c) + \text{NADH}(c) + (1.33) \text{ADP}(c) \rightarrow \text{NAD}(c) + (1.33) \text{ATP}(c) \]

\[(0.5) \text{O}_2(c) + \text{QH}_2(c) + (0.66) \text{ADP}(c) \rightarrow \text{Q}(c) + (0.66) \text{ATP}(c) \]

\[\text{ATP}(c) \rightarrow \text{ADP}(c) + \text{ATP}_\text{maintenance}(c) \]

\[\text{SO}_4(c) + (3) \text{NADPH}(c) + (4) \text{ATP}(c) \rightarrow \text{H}_2\text{S}(c) + (3) \text{NADP}(c) + (4) \text{ADP}(c) \]

Biomass production

\[(1.481) \text{OAA}(c) + (1.338) \text{PG}(c) + (0.627) \text{RIBO-5P}(c) + (17.821) \text{ATP}(c) + (16.548) \text{NADPH}(c) + (6.965) \text{NH}_3(c) + (3.548) \text{NAD}(c) + (2.930) \text{AcCoA}(c) + (2.861) \text{PYR}(c) + (1.078) \text{AKG}(c) + (0.361) \text{E4P}(c) + (0.72) \text{PEP}(c) + (0.233) \text{H}_2\text{S}(c) + (0.072) \text{F6P}(c) + (0.206) \text{G6P}(c) + (0.129) \text{GAP}(c) \rightarrow \text{biomass}(c) + (16.548) \text{NADP}(c) + (3.548) \text{NADH}(c) + (17.821) \text{ADP}(c) + (1.678) \text{CO}_2(c) \]

S3. Robustness analysis of the catechol branch of *P. putida* H with a benzoate uptake rate set at 2.4 [mmol (gCDW·h)^{-1}].