Jan Christian Rohde

Maximal automorphisms of Calabi-Yau manifolds versus maximally unipotent monodromy

Received: 25 August 2009 / Revised: 23 November 2009
Published online: 22 January 2010

Abstract. Let \(\alpha \) be an automorphism of the local universal deformation of a Calabi-Yau 3-manifold \(X \), which does not act by \(\pm \text{id} \) on \(H^3(X, \mathbb{C}) \). We show that the bundle \(F^2(H^3) \) in the VHS of each maximal family containing \(X \) is constant in this case. Thus \(X \) cannot be a fiber of a maximal family with maximally unipotent monodromy, if such an automorphism \(\alpha \) exists. Moreover we classify the possible actions of \(\alpha \) on \(H^3(X, \mathbb{C}) \), construct examples and show that the period domain is a complex ball containing a dense set of CM points given by a Shimura datum in this case.

1. Introduction

Due to their importance in theoretical physics, we are interested in Calabi-Yau 3-manifolds. We construct some examples of Calabi-Yau 3-manifolds \(X \) with degree 3 automorphisms, which extend to the local universal deformation. Here such automorphisms are called maximal. Our examples of maximal automorphisms do not act by \(\pm 1 \) on \(H^3(X, \mathbb{C}) \). The subbundle \(F^2(H^3) \) of the variation of Hodge structures of the local universal deformation is constant, if a maximal automorphism exists and does not act by \(\pm 1 \) on \(H^3(X, \mathbb{C}) \). Moreover we give an additional example of a Calabi-Yau 3-manifold, which does not necessarily have a maximal automorphism, but satisfies the condition that \(F^2(H^3) \) is constant in the VHS of the local universal deformation. We will see that \(F^2(H^3) \) is constant for each maximal family containing \(X \) as fiber, if this holds true with respect to the local universal deformation of \(X \). This forbids \(X \) to be a fiber of a maximal family with maximally unipotent monodromy. Thus the assumptions of the formulation of the mirror conjecture in [11] cannot be satisfied by \(X \), if \(F^2(H^3) \) is constant in the local universal deformation of \(X \).

Moreover we show that the period domain is a complex ball and the local universal deformation of \(X \) has a dense set of complex multiplication (CM) fibers, if \(X \) has a maximal automorphism, which does not act by \(\pm 1 \) on \(H^3(X, \mathbb{C}) \). Theoretical physicists are interested in Calabi-Yau 3-manifolds with CM—in particular if there exists a mirror pair of Calabi-Yau 3-manifolds with CM (see [10]).

J. C. Rohde (✉): GRK 1463/Institut für Algebraische Geometrie, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany.
e-mail: rohde@math.uni-hannover.de

Mathematics Subject Classification (2000): 14D05, 14D07, 14J32

DOI: 10.1007/s00229-009-0329-5
Moreover we will see that the quotient of the maximal automorphisms of X by the automorphisms acting trivially on $H^3(X, \mathbb{Z})$ is given by

$$\{e\}, \ Z/(2), \ Z/(3), \ Z/(4) \text{ or } Z/(6).$$

2. Examples with maximal automorphisms

Here a Calabi-Yau 3-manifold X is a compact Kähler manifold of dimension 3 such that

$$\omega_X \cong \mathcal{O}_X \text{ and } h^{k,0}(X) = 0 \text{ for } k = 1, 2.$$

Let $\mathcal{X} \to B$ be the local universal deformation of $X = X_0$. We say that a family $f : \mathcal{Y} \to Z$ of Calabi-Yau 3-manifolds is maximal, if for each $z \in Z$ there exists an open neighborhood U of z such that \mathcal{Y}_U is isomorphic to the Kuranishi family of \mathcal{Y}_z. Recall that

$$H^3 := R^3f_* (\mathbb{Q})$$

is a local system and that

$$\mathcal{H}^3 := H^3 \otimes \mathbb{Q} \mathcal{O}_Z$$

is a holomorphic bundle. The variation of Hodge structures of weight 3 is given by the filtration

$$0 \subset F^3(\mathcal{H}^3) \subset F^2(\mathcal{H}^3) \subset F^1(\mathcal{H}^3) \subset \mathcal{H}^3$$

by holomorphic subbundles.

Recall that a marked $K3$ surface is a pair (S, μ) consisting of a $K3$ surface S and a marking μ, that is an isometry $\mu : L \to H^2(S, \mathbb{Z})$ of lattices, where

$$L = U \oplus U \oplus U \oplus -E_8 \oplus -E_8.$$

The marked $K3$ surfaces (S, μ) and (S', μ') are isomorphic, if there exists an isomorphism $f : S \to S'$ such that $\mu = f^* \circ \mu'$. By gluing marked local universal deformations of $K3$ surfaces, we obtain the complex analytic moduli space M of marked $K3$ surfaces with universal family $f : S \to M$. Moreover let ϕ denote an isometry of order 3 on L and $(L_\mathbb{C})_\eta$ denote the eigenspace on $L_\mathbb{C}$ with eigenvalue η with respect to ϕ. For this section we fix

$$\xi = \exp\left(\frac{2\pi i}{3}\right) \text{ and } r = \dim(L\mathbb{C})_\xi - 1.$$