Case report

Coxsackie B5 infection in an adult with fever, truncal rash, diarrhea and splenomegaly with highly elevated ferritin levels

Paul K. Valestra, MD^{a,b}, Scarlet Herrarte Fornos, MD^{a,b}, John Gian, MD^{a,b}, Burke A. Cunha, MD^{a,b}*

^aInfectious Disease Division, Winthrop-University Hospital, Mineola, New York, United States
^bState University of New York, School of Medicine, Stony Brook, New York, United States

ARTICLE INFO

Article history:
Received 22 July 2016
Received in revised form 16 August 2016
Accepted 18 August 2016

Keywords:
Adult Coxsackie B₅ infection
Splenomegaly
Elevated ferritin levels

ABSTRACT

Coxsackie viruses are enteroviruses most common in children. Coxsackie B viral infections often present with biphasic fever, headache, pharyngitis, nausea/vomiting, diarrhea and a maculopapular non-pruritic rash [1–5].

Peak incidence of Coxsackie B infections is during the summer months and often occur in outbreaks. Transmission is via the fecal/oral route usually secondary to contaminated fresh water (lake, river, swimming pool) exposure. Coxsackie B costochondritis is the only distinct syndrome (Devil’s grip, Bornholm’s disease) that can be diagnosed clinically [6–9]. The common disease manifestations of Coxsackie B infections, i.e., fever, aseptic meningitis, sore throat, diarrhea, and rash may be due to other enteroviruses [1,4,7].

The diagnosis of Coxsackie B infections is by viral culture and/or by demonstrating a four fold increase in IgM titers. The recovery of Coxsackie B viruses from rectal swabs/stool specimens is not, of itself, diagnostic of Coxsackie infection [4,7]. Viral throat swabs are usually culture positive earlier, i.e., first three days of illness than rectal swabs, but rectal swabs have a higher culture positivity than throat swabs. Later in Coxsackie B infection, rectal swabs are more likely to be culture positive. In patients with aseptic meningitis, Coxsackie B may be cultured from the CSF in ~30% of cases [2,7]. In viral culture, Coxsackie B show diagnostic cytopathogenic effects (CPEs) in cell culture within 5 days. Viral throat cultures, diagnostic CPEs are positive earlier than rectal/stool cultures [4,7,10].

The laboratory abnormalities associated with Coxsackie B₁₋₅ infections are non-specific. Neither leukopenia nor atypical lymphocytes are present [8]. The ESR is not elevated, serum aminotransferases were normal [2,4,7].

We present an interesting case of Coxsackie B₅ in an adult with high fevers, a diffuse maculopapular rash, splenomegaly and watery diarrhea with mildly increased serum aminotransferases and highly elevated, otherwise unexplained, serum ferritin levels.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Coxsackie B infections are most common in children, but may occur in adults. Clinical manifestations include fever, aseptic meningitis, costochondritis, pharyngitis, myocarditis, splenomegaly, diarrhea, and a maculopapular non-pruritic rash [1–5].

The laboratory abnormalities associated with Coxsackie B₁₋₅ infections are non-specific. Neither leukopenia nor atypical lymphocytes are present [8]. The ESR is not elevated, serum aminotransferases were normal [2,4,7].

We present an interesting case of Coxsackie B₅ in an adult with high fevers, a diffuse maculopapular rash, splenomegaly and watery diarrhea with mildly increased serum aminotransferases and highly elevated, otherwise unexplained, serum ferritin levels.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
was 131 meq/L (normal = 138–145 meq/L) and potassium was 3.0 meq/L (normal = 3.7–5.2 meq/L).

His ALT was 54 IU/L (normal = 4–36 IU/L), AST was 43 IU/L (normal = 13–39 IU/L), and alkaline phosphatase was normal. His procalcitonin (PCT) level was 7.95 mg/ml (normal > 0.5 mg/ml) but his ferritin level was highly elevated at 1965 ng/L. Chest X-ray was unremarkable. Abdominal CT scan showed mild splenomegaly.

Blood cultures, urine cultures, stool studies were negative and a workup for a viral etiology was ordered. He was treated empirically with doxycycline for 5 days. On HD #2, he spiked a fever of 103.8 °F and fevers of 102–103 °F continued. During his hospital stay, his leukocytosis peaked at 15.5 K/ul, on hospital day (HD) # 5 and his thrombocytopenia slowly resolved. EKG was unremarkable. The patient became afebrile on HD #7. After HD #5, the rash began to resolve, and his diarrhea resolved on HD # 8. Ferritin levels decreased but remained elevated (Fig. 1). Stool were negative for ova/parasites and enteric pathogens.

HIV RNA PCR was negative. Hepatitis B, hepatitis A and hepatitis C serologies were all nonreactive. Parvovirus IgM and IgG titers were un Elevated. Adenovirus antibody levels were <1:8 (normal <1:8). Ehrlichia IgM and IgG titers were negative. Monospot test was negative, and EBV VCA IgM was negative and VCA IgG titer was 238 U/ml (normal <18.0 U/ml). HHV-6 IgM titers and CMV IgM were un Elevated. Coxsackie A (A7, A9, A16, A24) IgM titers were negative. On HD #5, repeat Coxsackie A IgM titers remained negative. Coxsackie B IgM titers (B1–B6) were negative on admission, but on HD #5, Coxsackie B IgM titers (normal <1:8) were elevated (B1 = 1:32, B2 = 1:64, B3 = 1:32, B4 = 1:32, B5 = 1:64) and B6 was highly elevated 1: 256. Coxsackie B5 titers showed four-fold increase IgM titers diagnostic of acute infection, and viral stool culture was positive for Coxsackie B.

Discussion

Since Coxsackie B is more common in children, Coxsackie B viruses are often not considered in adults with fever, rash, splenomegaly, and diarrhea. In such cases, the diagnosis usually considered includes enteric fevers, and other infections. In this case, other causes of fever, fatigue, rash, and diarrhea were ruled out and the diagnosis of Coxsackie was confirmed by a four fold increase of B5 IgM titers. Mildly elevated serum aminotransferases have not been previously reported with Coxsackie B infections. Mild aminotransferase elevations may be a non-specific clue to a variety of infectious diseases, e.g., Legionnaire’s disease, Q fever, psittacosis, and their diagnostic significance is often overlooked. Among the enteroviruses, splenomegaly is uniquely associated with Coxsackie B5 (Table 1). Clinical features of Coxsackie B infections not present in this case were biphasic fever, pharyngitis and abdominal pain.

The magnitude of his ferritin elevations were beyond that expected if ferritin was elevated as part of an acute phase response in this case there were no associated disorders to explain his highly elevated serum ferritin levels (Table 2). Fever, fatigue, and elevated serum aminotransferases may accompany a variety of viral infections with a predilection for the liver e.g., EBV, CMV, HHV-6, but watery diarrhea is not usually a feature of these infections, and tests for these viruses were negative [8,10]. We conclude that Coxsackie B infection should be considered the differential diagnosis in febrile adults with a truncal maculopapular rash (sparring the palms/soles) and watery diarrhea, particularly if splenomegaly is present or if otherwise unexplained highly elevated ferritin levels are present. In this case, the diagnosis was confirmed by stool culture, and a four fold rise in IgM Coxsackie B5 titer.

![Graph](https://example.com/graph.png)

Fig. 1. Serial serum ferritin levels in an adult with Coxsackie B5 infection.

Table 1
Clinical Syndromes Associated with Coxsackie B Enteroviruses.

Clinical Manifestations	Entero viral Types
Diarrhea	Coxsackie A9, 6-9
Splenomegaly	Coxsackie B5
Rash	Coxsackie A9, 6-9
(maculopapular)	Coxsackie A2, 4, 5, 9, 16, B5, 3, 4, 5

Adapted from: Drouhet V. Enteroviruses. In: Debra R, Celers J. (Eds). Clinical Virology. Saunders and Company, Philadelphia, 1970.

Table 2
Infectious and Non-Infectious Causes of Highly Elevated Serum Ferritin Levels.

Infectious causes	Noninfectious causes
Acute	Malignancies
Legionnaires disease	Preleukemia
West Nile encephalitis	Lymphoma
Pneumocystis (carinii) jiroveci	Multiple myeloma
Chronic	Hepatomas
HIV infection	Breast cancer
Cyto megalovirus infection	Colon cancer
Active myeloblastosis	Prostate cancer
Tuberculosis	Lung cancer
	Liver/CNS metastases
	Myeloproliferative disorders
	Rheumatoid disorders
	Adult Still’s disease
	Systemic lupus erythematosus
Renal disease	Renal arthritis
Acute renal failure	Chronic renal failure
Chronic renal failure	Liver disease
Acute renal failure	Hemochromatosis
Renal disease	Cirrhosis
Chronic renal failure	Anti-trypsin defciency
Chronic active hepatitis	Chronic active hepatitis
Deterative jaundice	Multiple blood transfusions
Miscellaneous	Sickle cell anemia
	Multiple blood transfusions

Adapted from: Cunha CB. Infectious Disease Differential Diagnosis. In: Cunha CB, Cunha BA (Eds.) Antibiotic Essentials (15th Ed.) JayPee Medical Publishers, New Delhi, 2016; Kroll V, Cunha BA: Diagnostic Significance of Serum Ferritin Levels in Infectious and Non-Infectious Diseases. Infectious Disease Practice 27: 199–200, 2003.
References

[1] Ashkenazi A, Melnick JL. Enteroviruses—a review of their properties and associated diseases. Prog Med Virol 1964;6:27–70.
[2] Brown EH. Enterovirus infections. Br Med J 1973;2:169–71.
[3] Dery P, Marks MI, Shapera R. Clinical manifestations of Coxsackie infections in children. Am J Dis Child 1974;128:464–8.
[4] Melnick JL. Enterovirus. In: Evans AS, editor. Viral Infections of Humans. New York and London: Plenum Medical Book Company; 1978. p. 07–163.
[5] Artension MS, Cadigan Jr. FC, Buescher EL. Epidemic Coxsackie virus infection with mixed manifestations. Ann Intern Med 1964;60:196–103.
[6] Artension MS, Cadigan Jr. FC, Buescher EL. Clinical and epidemic features of Coxsackie Group B virus infections. Ann Intern Med 1965;63:597–503.
[7] Moore M, Kaplan MH, McPhee J, Bregman DJ, Klein SW. Epidemiologic, clinical and laboratory features of Coxsackie B1–B5 infections in the United States, 1970–79. Publ Health Rep 1984;99:515–22.
[8] Cunha CB, Cunha BA. Differential diagnosis in infectious disease. In: Cunha CB, Cunha BA, editors. Antibiotic Therapy. 15th ed. New Delhi: Jay Pee Medical Publishing; 2016. p. 06–475.
[9] Debre R, Celers J. In: Debre R, Celers J, editors. Clinical Virology: The Evaluation and Management of Human Viral Infections. Philadelphia, London, Toronto: WB Saunders Company; 1970. p. 80–1.
[10] Specter S, Hodinka R, Young S, Wiedbrauk D. Primary isolation of viruses. In: Clinical Specter S, Hodinka R, Young S, Wiedbrauk D, editors. Clinical Virology Manual. 4th edition Washington DC: ASM Press; 2009. p. 36–51.