Landscape of IoT Patterns

Hironori Washizaki
Waseda University / NII / eXmotion, Tokyo, Japan
washizaki@waseda.jp

Nobukazu Yoshioka
National Institute of Informatics
Tokyo, Japan

Atsuo Hazeyama
Tokyo Gakugei University
Tokyo, Japan

Takehisa Kato
Toshiba Digital Solutions Corporation
Kanagawa, Japan

Hannhiko Kaiya
Kanagawa University
Kanagawa, Japan

Shinpei Ogata
Shinshu University
Nagano, Japan

Takao Okubo
Institute of Information Security
Kanagawa, Japan

Eduardo B. Fernandez
Florida Atlantic University
Boca Raton, USA

Abstract—Patterns are encapsulations of problems and solutions under specific contexts. As the industry is realizing many successes (and failures) in IoT systems development and operations, many IoT patterns have been published such as IoT design patterns and IoT architecture patterns. Because these patterns are not well classified, their adoption does not live up to their potential. To understand the reasons, this paper analyzes an extensive set of published IoT architecture and design patterns according to several dimensions and outlines directions for improvements in publishing and adopting IoT patterns.

Keywords—Patterns, Internet of Things (IoT), Design, Architecture, Survey, Systematic Literature Review (SLR)

I. INTRODUCTION

The Internet of Things (IoT) aims to bring connectivity to almost every object (i.e., things found in physical space). Although it extends the connectivity to everyday things, such an increase in connectivity creates many challenges [1]. Patterns are encapsulations of reusable common problems and solutions under specific contexts. As the industry is realizing many successes (and failures) in IoT systems development and operations, many IoT patterns have been published such as IoT design patterns and IoT architecture patterns. Although some IoT architecture styles have been studied [36], IoT architecture and design patterns at different abstraction levels are not well classified and studied. Consequently, their adoption does not live up to their potential.

The contributions of this paper are an overview of the current landscape of the IoT architecture and design patterns, identification of shortcomings, and suggestions to improve publishing and adoption of IoT patterns. Here, a complete (to the authors’ knowledge) set of IoT patterns that is available in the literature is analyzed. The authors found 33 papers published from 2014–2018. For each question below, the directions for improvement are outlined constructively.

RQ1. What are the publication trends of IoT patterns? To answer this question, we identified the publication years and venues of the 33 papers surveyed.

RQ2. Are all existing IoT patterns really IoT patterns? To answer this question, we confirmed whether or not each proposed or used pattern the IoT context is actually a pattern addressing specific problems and solutions in IoT.

RQ3. Do the IoT pattern appropriately cover the issues in IoT development and operations? To answer this question, we built a classification scheme for IoT patterns and classified each IoT pattern based on the scheme, which includes abstraction level, domain specificity, and quality characteristics.

The rest of the paper is structured as follows. Section II presents the classification scheme. Section III introduces the main sources and analysis process. Section IV analyzes the literature according to the scheme and process. Finally, Section V presents conclusions and future work.

II. IOT PATTERN CLASSIFICATION

To classify IoT patterns, we identified three dimensions: abstraction level, domain specificity, and quality characteristic.

A. Abstraction Level

In general, the IoT systems development process has several major phases with abstraction levels. From the most to the least abstract level, they are analysis, system and software architecture design, detail design and construction. According to these phases, IoT design patterns can be classified into the following three types in terms of abstraction level.

1) High: Reference architectures are models that specify architectural elements and connections at a very high abstraction level. These are often used at early phases such as analysis and architecture design.

2) Middle: Unlike reference architectures, there are recommended concrete architecture designs of IoT systems and software to address recurrent concrete architectural problems such as ensuring interoperability among heterogeneous devices. These architectures are often documented as architecture patterns that encapsulate contexts, recurrent problems and their corresponding solutions. We regarded the abstraction level of architecture patterns as between high and low.

3) Low: There are recommended detailed designs to address recurrent detailed design problems such as enabling proper communications among software modules while keeping a high extensibility. Since these patterns target specific modules or limited parts of entire system and software, and not the entire software and systems, we regarded the abstraction level of the design patterns as low. These are often used at detail design and construction phases.
B. Domain Specificity

Domain specificity is important to examine the applicability and reusability of each IoT pattern. It is divided into three types: any, general IoT and specific IoT.

1) Any: General systems and software architecture patterns as well as design patterns that can be adopted to design IoT systems and software if their contexts and problems match the patterns’ contexts and problems.

2) General IoT: IoT architecture and design patterns, which are applicable to any IoT systems and software.

3) Specific IoT: IoT architecture and design patterns that address specific problem domains (such as the healthcare) and technical domains (such as the brain-computer interaction).

C. Quality Characteristic

All systems and software design patterns address some quality characteristics. Basically, IoT design patterns should address interoperability, which is defined as a sub-characteristic of compatibility in ISO/IEC 25010:2010 [2]. We use all quality characteristics except for the functional suitability defined in ISO/IEC 25010, which is a well-accepted quality model systems and software engineering. Additionally, there are other emerging characteristics that are not defined in ISO/IEC 25010 but are common in IoT development and operation. Possible candidates are scalability and privacy.

III. Analysis Process

We use a systematic literature review (SLR) to evaluate relevant publications on IoT patterns. A SLR aims to assess scientific papers to group concepts around a topic.

1) Initial Search: We used Scopus (https://www.scopus.com/) as a well-accepted reliable scientific databases and indexing systems. For consistency, we executed the following query on titles, abstracts, and keywords of papers regardless of time and subject area. We found 63 papers published from 2014–2018.

"IoT" AND ("design pattern" OR "architecture pattern")

2) Impurity Removal: Due to the nature of the involved data source, the search results included some elements that are clearly not research papers such as abstracts and international standards. By removing these results, we got 56 papers.

3) Inclusion and Exclusion Criteria: Applying the following criteria reduced the number of papers to 33 [3-35].

- Inclusion: Papers addressing patterns for designing IoT systems and software, and papers written in English
- Exclusion: Papers that focus on IoT but do not explicitly deal with architecture and design patterns, and papers that are duplicates of other studies

4) Data Extraction: The following information was collected from each paper to answer the research questions: Publication title, publication year, publication venue, types of patterns proposed or used, pattern names, domain names in the case of Specific IoT patterns, and quality characteristics addressed.

IV. Result and Discussion

A. Publication (RQ1)

Table 1 presents the distribution of publications over time. The most common publication types are conference papers (17), journals (8), workshops (5), symposiums (2), and refereed book chapter (1). The high numbers of conference papers and journal papers suggest IoT architecture and design patterns are maturing. Since 2016, IoT patterns have become an important and eye-catching aspect of research, and interest has been expanding each year.

Table 1. Primary studies by publication type and year

Year	Workshop	Symposium	Conference	Book chapter	Journal	Total
2014	5	2	17	1	1	33
2015		1	3	2	1	8
2016	4	5	1	3	13	33
2017	1	1	7	3	12	33
2018		1	17	1	8	33
Total	5	2	17	1	8	33

B. IoT Patterns (RQ2)

We identified 136 patterns mentioned in 33 papers. Among them, 75 patterns (55%) are classified as “Any” in terms of domain specificity. There are 8 non-IoT patterns appeared in multiple papers: Publish-Subscribe [6,7,24,33,34], Client-Server [24,33,34], Peer-to-Peer [24,33], Representational State Transfer (REST)[33,34], Service Oriented Architecture (SOA)[24,34], Role Based Access Control (RBAC)[12,15], Model-View-Controller (MVC)[20,28], and Reflection[8,27]. The other 67 non-IoT patterns appear in one paper only. Surprisingly, 14 papers used such non-IoT patterns only. According to these results, we confirmed that IoT systems and software are often designed via conventional architecture and design patterns that are not specific to IoT design.

There are 61 IoT patterns (i.e., 45%) in 19 papers that address specific problems and solutions in IoT. The details are discussed in the subsequent section.

C. IoT Pattern Classification (RQ3)

Table 2 presents the distribution of IoT and non-IoT patterns by abstraction level and domain specificity. Table 3 presents the list of 61 IoT architecture and design patterns.

Surprisingly, only one pattern Operator-Controller-Module (OCM) is mentioned in multiple papers [4,32]. The remaining appear once in different papers. This indicates that IoT patterns are not shared or recognized by different research groups. This may be due to its short history. Potential pattern authors are encouraged to carefully check existing IoT patterns before publishing their own “new” patterns.

In terms of abstraction level, about half of 61 IoT patterns are IoT architecture patterns (i.e., 48%), 27 cover IoT design patterns (44%), and 5 reference architectures (8%). We confirmed that IoT architecture patterns and IoT design patterns are almost equally proposed or used.

In terms of domain specificity, 41 patterns (i.e., 67%) are general IoT, while the remaining 20 patterns (33%) are specific to a problem or technical domain shown in Table 3.
Reviewing the combinations of abstraction level and domain specificity, most of IoT design patterns are applicable to any domain but many IoT architecture patterns exist for specific domains. This implies that the unique nature of IoT adoption in specific domains often appears at the architecture level. Design details seem to be commonly addressed by general IoT design patterns or even non-IoT design patterns. In the future, the number of specific IoT design patterns may increase as more domains adopt IoT.

In terms of quality characteristics, many IoT patterns address performance efficiency, compatibility (including interoperability as a sub-characteristic), usability, reliability, and maintainability. This finding is quite natural since major concerns in IoT adoption revolve around these characteristics. Consequently, other quality characteristics remain to be researched. A few number of IoT patterns address security, portability (including adaptability as a sub-characteristic) and scalability. Privacy is rarely addressed by IoT patterns.

Table 2. Patterns by abstraction level and domain specificity

Abstraction level	Domain specificity	Total
High	Any	25
	General IoT	2
	Specific IoT	3
Middle	Any	43
	General IoT	15
	Specific IoT	14
Low	Any	68
	General IoT	3
	Specific IoT	24
Total	Any	136
	General IoT	41
	Specific IoT	75

D. Limitations

The classification was conducted by all authors except for the last author of this paper and reviewed by the first author. Our classification results may not be completely correct. To mitigate this threat to validity, we will open the classification results to the public and call for comments at our Website.

We used Scopus as the initial database of the SLR. Although it is adopted in other SLRs, relevant papers (such as IoT security pattern papers [37]) may be missed. To mitigate this threat, we plan to use other databases, extend our SLR, and elicit public review of the revised results.

V. CONCLUSION AND FUTURE WORK

To overview the current landscape of IoT architecture and design patterns, we surveyed 136 patterns mentioned in 33 papers. Most of IoT design patterns are applicable to any domain but many IoT architecture patterns exist for specific domains. In the future, the number of specific IoT design patterns may increase as more domains adopt IoT. In terms of quality characteristics, many IoT patterns address performance efficiency, compatibility, usability, reliability, and maintainability. Consequently, other quality characteristics remain to be researched. Our future works include further analysis on IoT patterns using additional dimensions such as relationships among patterns and writing quality of patterns.

REFERENCES

[1] M. Aly, et al., “Is Fragmentation a Threat to the Success of Internet of Things?”, IEEE Internet of Things Journal, 6(1), 2019
[2] ISO/IEC 25010:2011 Systems and software Quality Requirements and Evaluation (SQuaRE) -- System and software quality model
[3] W.T. Lee and P.J. Law, “A case study in applying security design patterns for iot software system,” ICASI 2017
[4] C. Wolff, et al., “A layered software architecture for a flexible and smart organic rankine cycle (orc) turbine - solutions and case study,” Information Technology and Control, 47(2), 2018
[5] M. Syed, et al., “A pattern for fog computing,” VikingPLoP 2016.
[6] L. Roffia, et al., “A semantic publish-subscribe architecture for the internet of things,” IEEE Internet of Things Journal, 3(6), 2016
[7] N. Ntuli and A. Abu-Mahfouz, “A simple security architecture for smart water management system,” IST-AWSN 2016
[8] E. Jung, I. Cho, and S. Kang, “An agent modeling for overcoming the heterogeneity in the iot with design patterns,” MUSIC 2013
[9] C. Pahl, N. Ioini, S. Helmer, and B. Lee, “An architecture pattern for trusted orchestration in iot edge clouds,” FMEC 2018
[10] V. Charpenay, S. Kabisch, D. Anicic, and H. Kosch, “An ontology design pattern for iot device tagging systems,” IoT 2015
[11] S. Pape and K. Rannenberg, “Applying privacy patterns to the internet of things’ (iot) architecture,” Mobile Networks and Applications, 2018
[12] I. Ali and M. Asif, “Applying security patterns for authorization of users in iot based applications,” ICET 2018
[13] S. Mendez and J. Zao, “Bei ontology: A context-based sense and actuation model for braincomputer interactions,” ISWC-SSN 2018
[14] R. Tkaczyk, et al., “Cataloging design patterns for internet of things artifact integration,” ICC Workshops 2018
[15] K. Periyasamy, V. Alagar, and K. Wan, “Dependable design for elderly health care,” FedCSIS 2017
[16] G. Bloom, B. Alsulami, E. Nwafor, and I. Bertolotti, “Design patterns for the industrial internet of things,” WFCS 2018
[17] T. Spieldenner, et al., “Eca2ld: From entity-component-attribute runtimes to linked data applications,” Sweti 2018
[18] S. Chen, B. Liu, X. Chen, Y. Zhang, and G. Huang, “Framework for adaptive computation offloading in iot applications,” Internetware 2017
[19] S. Qanbari, et al., “IoT design patterns: Computational constructs to design, build and engineer edge applications,” IoTDI 2016
[20] M. Shopov, “IoT gateway for smart metering in electrical power systems - software architecture,” MIPro 2017
[21] A. Gill, N. Phennel, D. Lane, and V. Phung, “IoT-enabled emergency information supply chain architecture for elderly people: The australian context,” Information Systems, 58, 2016
[22] S. Vorapojpisut, “Model-based design of iot-based iwsn nodes: Device driver implementation,” ICEST-ICTIES 2018
[23] M. Brambilla, et al., “Model-driven development of user interfaces for iot systems via domain-specific components and patterns,” Journal of Internet Services and Applications, 8(1), 2017
[24] B. Tekinerdogan and O. Koksal, “Pattern based integration of internet of things systems,” ICLOT 2018
[25] M. Walker, et al., “Platiabrt: A platform for transactive iot blockchain applications with repeatable testing,” M4IoT 2017
[26] V. Carlelini, et al., “Qos-based elasticity for service chains in distributed edge cloud environments,” LNCS 10768, 2018
[27] M. Mongiello, G. Boggia, and E. Di Sciascio, “Reios: Reflective architecting in the internet of objects,” MODELSWARD 2016
[28] M. Al-Taei, W. Al-Nuaimy, Z. Muhsin, and A. Al-Ataby, “Robot assistant in management of diabetes in children based on the internet of things,” IEEE Internet of Things Journal, 4(2), 2017
[29] H. Khazaee, H. Bannazadeh, and A. Leon-Garcia, “Savi-iot: A self-managing containerized iot platform,” FiCloud 2017
[30] A. Mazayev, et al., “Semantic web thing architecture,” exp.at 2017
[31] A. Auger, E. Exposito, and E. Lochin, “Sensor observation streams within cloud-based iot platforms: Challenges and directions,” ICIN 2017
[32] C. Wolff, et al., “Software architecture for an orte turbine - case study for an intelligent technical system in the era of the internet of things,” ICIST 2017
[33] P. Jacob and P. Mani, “Software architecture pattern selection model for internet of things based systems,” IET Software, 12(5), 2018
Abstraction	Specificity	Pattern	Domain	Pe	C	U	R	Se	M	Po	Sc	Pr	Paper
High	General	Layered architecture for IoT applications	X	X	X	X	X	X			[29]		
High	General	Lambda-style architecture	X	X	X	X	X	X			[31]		
High	General	Kappa-style architecture	X	X	X	X	X	X			[31]		
High	Specific	Security Architecture (for Smart Water Management)	X	X	X	X	X			[7]			
High	Specific	Machine intelligence layer for industrial IoT	X	X	X	X	X			[25]			
Middle	General	Alignment-based Translation	X	X							[14]		
Middle	General	AS2AS Discovery of IoT Services	X	X							[14]		
Middle	General	AS2AS Flow-based Service Composition	X	X							[14]		
Middle	General	AS2AS Service Orchestration	X	X							[14]		
Middle	General	D2D REST Request/Response	X	X							[14]		
Middle	General	IoT artifact’s Middleware Message Broker	X	X							[14]		
Middle	General	IoT Artifact’s Middleware Message Translator	X	X							[14]		
Middle	General	IoT Artifact’s Middleware Self-contained Message	X								[14]		
Middle	General	IoT Artifact’s Middleware Simple Component	X	X							[14]		
Middle	General	IoT Gateway Event Subscription	X	X							[14]		
Middle	General	Orchestration of SDN Network Elements	X	X							[14]		
Middle	General	IoT SSL CROSS-Layer Secure Access	X	X							[14]		
Middle	General	Translation with Central Ontology	X	X							[14]		
Middle	General	Entity-Component-Attribute	X	X							[17]		
Middle	Specific	Blockchain-based Architecture	Trusted Orchestration Management	X	X	X	X				[9]		
Middle	Specific	Cloud-in-the-Loop: Closed-Loop Control	Industrial IoT	X	X						[16]		
Middle	Specific	Cloud-on-the-Loop: Cloud-configured Control	Industrial IoT	X	X						[16]		
Middle	Specific	Device-to-Device (D2D): Local Coordination	Industrial IoT	X	X						[16]		
Middle	Specific	Open-Loop: Classical Open-Loop Control	Industrial IoT	X	X						[16]		
Middle	Specific	Publisher: Sensor Data Publication	Industrial IoT	X	X						[16]		
Middle	Specific	Design pattern for computation offloading	Computation Offloading	X	X						[18]		
Middle	Specific	Landline Interception	Emergency Information Delivery	X							[21]		
Middle	Specific	SIM Equipped Device	Emergency Information Delivery	X							[21]		
Middle	Specific	SMS to Display over Bluetooth/Wi-Fi	Emergency Information Delivery	X							[21]		
Middle	Specific	SMS to Mobile Application	Emergency Information Delivery	X							[21]		
Middle	Specific	Web System (for Emergency Information Delivery)	Emergency Information Delivery	X							[21]		
Middle	Specific	Actor	Blockchain	X	X						[25]		
Low	General	Edge Code Deployment		X		X					[19]		
Low	General	Edge Diameter of Things (DOT)		X		X					[19]		
Low	General	Edge Orchestration		X	X	X					[19]		
Low	General	Edge Provisioning		X	X						[19]		
Low	General	Frame Buffer		X	X						[22]		
Low	General	Slot Buffer		X	X						[22]		
Low	General	Application launch		X	X						[22]		
Low	General	Get details of a device		X	X						[23]		
Low	General	Get Information for one category		X	X						[23]		
Low	General	Get information from the device		X	X						[23]		
Low	General	Get state of the device		X	X						[23]		
Low	General	More devices more operations		X	X						[23]		
Low	General	More devices one operation		X	X						[23]		
Low	General	Nearby devices		X	X						[23]		
Low	General	One category more operations		X	X						[23]		
Low	General	One device more operations		X	X						[23]		
Low	General	One device one operation		X	X						[23]		
Low	General	One device one program		X	X						[23]		
Low	General	Pull information		X	X						[23]		
Low	General	Push information		X	X						[23]		
Low	General	Search device		X	X						[23]		
Low	General	Action interaction		X							[30]		
Low	General	Event interaction		X							[30]		
Low	General	Property interaction		X							[30]		
Low	Specific	Ontology Design Pattern for IoT Device Tagging Systems	Building Automation	X	X						[10]		
Low	Specific	Actuation-Actuator-Effect (AAE) ontology design	Brain-Computer Interaction	X	X						[13]		
Low	Specific	Stimulus-Sensor-Observation (SSO) ontology design	Brain-Computer Interaction	X	X						[13]		

Number of patterns that address the corresponding quality characteristic: 13 17 20 14 6 31 6 8 1