Resonant Raman scattering from polyacetylene and poly(p-phenylene vinylene) chains included into hydrogenated amorphous carbon

M. Rybachuk¹,³*, A. Hu², J.M. Bell³

¹ Federal Institute for Materials Research and Testing (BAM), Division VI.4 Surface Technology, Unter den Eichen 87, 12205 Berlin, Germany

² Department of Physics, University of Waterloo, 200 Univ. Ave. West, Waterloo, ON, N2L 3G1, Canada

³ Faculty of Built Environment and Engineering, Queensland University of Technology, 2 George St, Brisbane, Qld 4001, Australia

ABSTRACT

The resonant Raman scattering in N-IR – UV range from amorphous hydrogenated carbon (a-C:H) reveal inclusions of trans-polyacetylene (trans-(CH)x) chains with approximate length of up to 120 C=O units and inclusions of poly(p-phenylene vinylene) (PPV) polymer chains. The PPV is evidenced by a strong dispersive mode at ca. 1175 cm⁻¹. It was found that the Raman response from core A_g trans-(CH)x modes incorporated into a-C:H to changing excitation energy is identical to of free-standing chains thus facilitating identification of trans-(CH)x in complex carbonaceous materials spectra.
MAIN TEXT

It is known that diamond-like carbon (DLC) can host a basic polymer, the *trans* isomer of polyacetylene (*trans*-(CH)$_x$) initially reported for CVD grown diamond1 and later found in low temperature grown hydrogenated amorphous carbon (a-C:H) films2. Excellent conductivity of *trans*-(CH)$_x$ due to strong electron-phonon (e-ph) and electron-electron coupling originating from delocalised π electrons and an effective lattice nonlinearity3,4 and the large third-order nonlinear optical susceptibility that allows the chain to withstand high peak pump powers without damage to the sample, ensure considerable interest in this polymer as a non-linear optical material5. Achieving controlled inclusion of *trans*-(CH)$_x$ into host DLC has been difficult and only short (≤ 20 of C=C units) *trans*-(CH)$_x$ segments have been found to date1,6. Recently, Hu *et al.*7,8 demonstrated that variably bonded carbon atoms, including *trans*-(CH)$_x$, can be incorporated on a carbon surface using ultra-short laser pulses. Apart from *trans*-(CH)$_x$ segments DLC can also contain nanoparticles like carbon onions9 or spherical nanocrystallites as reported by Chen *et al.*10. These greatly reduce internal stress and thus are favourable for tribological applications.

We present here a resonant Raman scattering (RRS) investigation of a-C:H films synthesised in a low temperature inductively coupled plasma (ICP) reactor11. Although films are indeed of low stress and host *trans*-(CH)$_x$ chains of significant length (≤ 120 of C=C units), they also contain poly(p-phenylene vinylene) (PPV)
inclusions that have not been reported previously. The RRS technique probes atomic configurations in materials via the vibrational density of states3,6,12 and in this work laser excitation energies, $\hbar\omega_L$ ranging from 1.58 eV (N-IR) to 5.08 eV (UV) are used, ensuring bonding and structural disorder in the great majority of sp^3, sp^2 and sp carbon mixtures are studied. We also demonstrate that the response of trans-(CH)$_n$ segments in a-C:H to changing excitation energy is identical to that of free-standing isolated trans-(CH)$_n$ chains, both empirically and theoretically, using either the bi-modal distribution model proposed by Brivio \textit{et al.}13 or the amplitude mode theory proposed by Ehrenfreund \textit{et al.}3. Our findings exemplify an approach which facilitates the extraction of trans-(CH)$_n$ contributions from the core a-C:H, DLC or carbonaceous materials spectra thus precluding overfitting as in case of Piazza \textit{et al.}2.

\textit{a}-C:H films were deposited on \textit{Si} at the rate of \textasciitilde 30 nm/hour using CH_4/Ar plasma in Helmholtz type ICP reactor11 at temperatures of \leq 400 K as described elsewhere14. The deposition pressure was \sim6\times10$^{-2}$ Pa and the substrate was negatively DC biased at 250-300 V. The fabricated films were of low stress \leq 1 GPa, with hardness of \leq 20 GPa and a friction coefficient of 0.07 at 70 % humidity as measured by nano-mechanical testing (UMIS). Electrical resistivity was \geq 8\times108 Ω cm. Films were \sim140 nm thick with a maximum refractive index of 2.2 in the UV-blue region measured by IR-UV spectroscopic ellipsometry (J.A. Woollam Co.) The hydrogen content was found to be 27.5 (\textpm 2.5) at. % for all films as determined from Fourier Transform infrared (FT-IR) spectroscopy (Nicolet Nexus). Analysis of C_{1s} and valence bands of X-ray photoelectron spectra (Kratos Axis Ultra) determined the sp, sp^2 and sp^3 contents to be 2, 68 and 30 % respectively with the uncertainty of 1.25 %. The sp-hybridised content was verified using Raman and FT-IR, and the sp^3 content using 244 nm Raman results12. Unpolarised Raman spectra (5.08 - 1.58 eV) were
obtained \textit{ex situ} at 293 K using 244, 532, 633 and 785 nm Renishaw instruments and 325 nm and 442 nm Kimmon Raman instruments. All excitation wavelengths excluding 785 nm were pulsed; the 785 nm was a continuous wavelength laser source. The frequency-doubled \textit{Ar} ion laser was used for 244 nm, \textit{He/Cd} for 325 nm and 442 nm, the frequency-doubled YAG laser was used for 532 nm, \textit{He/Ne} gas laser was used for 633 nm and a diode laser source was used for 785 nm excitations. All measurements were taken in dynamic mode where a specimen is moved linearly at speeds of \(\leq 30 \mu \text{m/s} \) and laser power was kept \(< 1 \text{ mW} \) minimizing thermal damage.

Fig. 1 shows RRS spectra of an \textit{a-C:H} film. After a linear background subtraction the spectra were all fitted with Gaussian line-shapes using a nonlinear least squares fitting15. Fitted bands are the common DLC \textit{D} and \textit{G} modes (N-IR and visible) and \textit{T} mode (UV)12 and the two \textit{A} \textit{g} zone center vibrational modes of \textit{trans-} \((\text{CH})_x\)^3,4,13: the \textit{C}-\textit{C} \(\omega_1 \) at \(\sim 1060 \text{ cm}^{-1} \), and the \textit{C}=-\textit{C} backbone stretching \(\omega_3 \) mode at \(\sim 1450 \text{ cm}^{-1} \). The weak \(\omega_2 \) mode at \(\sim 1280 \text{ cm}^{-1} \) was not detectable though its contributions may be obscured by the \textit{D} and \(\omega_1 \) bands. The absorption for bulk \textit{trans-}(\text{CH})\textsubscript{x} occurs at 1.5 - 1.7 eV4,13 and corresponds to positions of the \textit{A} \textit{g} zone centres at 1060, 1280 and 1450 cm-1. This applies for N-IR excitation. As \(\hbar \omega L \) increases moving away from resonance, shoulders appear at the high frequency side of the \(\omega_1 \) and \(\omega_3 \) modes, eventually developing into secondary peaks3,13,16 at excitation energies well above the band gap of 2.71 eV4. The RRS spectra disperse6 and these peaks change in intensity \((I)\) and widths \((\Gamma)\). The complexity of separating intercalated \textit{trans-} \((\text{CH})_x\) from the host DLC modes lead us to analyse a single symmetric band distribution. This proved to be sufficient3 to account for a double peak Raman structure.
FIG. 1. The RRS spectra of examined α-C:H films showing contributions from trans-(CH)_x (ω_1 and ω_2 modes), PPV (1175 cm\(^{-1}\) mode) and DLC (D, G and T modes).

An asymmetric peak visible at N-IR – visible (green) hω_L at ~950 cm\(^{-1}\) is the second order Si.
A peak positioned at 1175 cm\(^{-1}\) at N-IR \(h\omega_L\) we assign to a CC–H bending mode of the ring in neutral poly(\(p\)-phenylene vinylene)\(^{17-19}\). The origin of this mode could be due to introduction of heteroatoms (defects) in \(sp^2\) rings since in single crystals these lead to a relaxation of wave vector \(k=0\) selection rule\(^{6,12}\) thus providing a mechanism for phonons from outside the centre of the Brillouin zone to contribute to the Raman scattering. Introduction of heteroatoms allows delocalisation of \(\pi\) electrons confined to the \(sp^2\) rings and thus dispersion\(^{12,17}\).

Other PPV zone centre vibrational modes should be positioned at higher frequencies in the ranges\(^{18,19}\) 1200 – 1330 and 1540 – 1625 cm\(^{-1}\), but these are certainly obscured by the host D and the G modes. The large width of the 1175 cm\(^{-1}\) mode suggests a combination of a vinylene and a CC–H ring bend modes since the zone mode frequency for vinylene\(^{20}\) is at 1145 cm\(^{-1}\).

As \(h\omega_L\) energy increases all peaks shift to a higher frequency; DLC modes are obeying phonon confinement rules\(^{12}\), Fig. 2 (a) shows peak dispersion, \(\Delta \omega\), the shift in peak position relative to the N-IR excitation peak position. Fig. 2 (b) summarizes changes in \(\Gamma\) for all fitted peaks. The steady \(I(D)/I(G)\) ratio decrease from \(~0.9\) to 0.2, pronounced reduction in \(\Gamma_D\) and \(\Gamma_G\) and the G peak saturation\(^{12}\) at \(~\)1590 for 244 nm excitation are indicative of a highly ordered and symmetric \(sp^2\) phase\(^{12,14}\). The band gap for PPV is 2.2 – 2.3 eV\(^{18}\) and that is selectively probed by a resonance frequency of green 532 nm laser; Fig. 1 shows the elevated intensity, \(I_{1175}\) and Fig. 2 (b) the broadening peak width, \(\Gamma_{1175}\) for the PPV peak. This peak is almost certainly of \(sp^2\) origin since its contributions disappear in UV excitation. There is an increase in \(I(\omega_3)/I(\omega_1)\) intensity ratio (Fig. 1) and in peak widths (Fig. 2 (b)) for \(trans\)-(CH)\(_x\), \(\omega_1\) and \(\omega_3\) peaks that become transformed when the \(h\omega_L\) exceeds the band gap (~1.5 eV\(^{4,13}\)) indicative of resonant probing of an inhomogeneous chain. Our results show
FIG. 2. (a) Peak dispersion, $\Delta \omega$ and (b) peak widths, Γ for all constituent peaks as a function of the laser excitation energy $\hbar \omega_L$.

that inhomogeneity of intercalated trans-(CH)$_x$ chains measured using the distribution of the e-ph coupling constant λ, $p(\lambda)$ of the amplitude mode (AM) theory proposed by Ehrenfreund et al. 3 gives $\lambda \sim 0.17$ for N-IR and ~ 0.24 for UV; in good agreement with the AM model. λ determines the Peierls relation for the energy gap and its distribution arises from finite localisation lengths and bond length disorder. The AM results indicate that trans-(CH)$_x$ chains probed by high $\hbar \omega_L$ are of shorter π-conjugation lengths and of higher bond disorder. The approximate chain lengths for both single C-C and double C=C bonds of trans-(CH)$_x$ segments were determined using the bi-modal distribution model proposed by Brivio et al. 13 and was found to be ~ 120 of bond lengths units (N-IR), at the estimation limit of the model, and with a population
FIG. 3. The intensity ratio of $I(\omega_3)/I(\omega_1)$ vs. the laser excitation energy $\hbar \omega_L$ for trans-(CH)$_x$ inclusions in a-C:H. Solid line is a theoretical calculation performed using the amplitude mode formalism3.

of short chain of approximately 8 (UV). Shorter chains are probed by higher $\hbar \omega_L$. The average chain population is $\sim 25 \pm 5$ bond length units owing to the uncertainties given by the Raman fitting and the bi-modal distribution model13. All trans-(CH)$_x$ chains are highly disordered as evidenced by wide ω_1 and ω_3 Raman peaks reaching their maximum in the blue-green range.

We have extended the $I(\omega_3)/I(\omega_1)$ vs. $\hbar \omega_L$ theoretical AM distribution calculations (independent of chain length) of Ehrenfreund et al.3 for the visible range to include N-IR and UV $\hbar \omega_L$. Fig. 3 shows that our experimental results are in good agreement with the theoretical prediction and with Ehrenfreund's experimental data; clearly both the free-standing and incorporated trans-(CH)$_x$ chains obey the same $I(\omega_3)/I(\omega_1)$ evolution formalism.

Long trans-(CH)$_x$ chains and PPV inclusions are only possible in an ordered sp^2 a-C:H matrix that is achieved via deposition in ICP reactor analogous to used by Chen
et al.10 with high plasma density and low electron temperature compared to conventional DLC deposition systems.

In summary, the RRS investigation of ICP fabricated a-C:H films showed that films host long $\text{trans-}(\text{CH})_x$ chains with up to 120 $\text{C}=\text{C}$ bond length units and also poly(p-phenylene vinylene) as evidenced by the 1175 cm-1 Raman mode. We have postulated the origin of this PPV mode and provided a theoretical basis for arguing the response of $\text{trans-}(\text{CH})_x$ chains in the a-C:H matrix to changing Raman excitation energy is identical to of free-standing chains. The evolution of relative intensity ratio for core $\text{trans-}(\text{CH})_x$ modes will facilitate identification of $\text{trans-}(\text{CH})_x$ modes in other complex carbonaceous materials spectra.

ACKNOLEGEMENTS

This work was supported by the Australian Research Council (LP0235814) and BAM research fellowship funding.
REFERENCES

1. T. López-Rios, É. Sandré, S. Leclercq, and É. Sauvain, Phys. Rev. Lett. 76, 4935 LP (1996).

2. F. Piazza, A. Golanski, S. Schulze, and G. Relihan, Appl. Phys. Lett. 82, 358 (2003).

3. E. Ehrenfreund, Z. Vardeny, O. Brafman, and B. Horovitz, Phys. Rev. B 36, 1535 LP (1987).

4. A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W.-P. Su, Rev. Modern Phys. 60, 781 LP (1988).

5. A. J. Heeger, Rev. Modern Phys. 73, 681 (2001).

6. A. Ferrari and J. Robertson, Phys. Rev. B 63, 121405 (2001).

7. A. Hu, M. Rybachuk, Q. B. Lu, and W. W. Duley, Appl. Phys. Lett. 91, 131906 (2007).

8. A. Hu, Q.-B. Lu, W. W. Duley, and M. Rybachuk, J. Chem. Phys. 126, 154705 (2007).

9. G. A. J. Amaratunga, M. Chhowalla, C. J. Kiely, I. Alexandrou, R Aharonov, and R. M. Devenish, Nature 383, 321 (1996).

10. L.-Y. Chen and F. C.-N. Hong, Appl. Phys. Lett. 82, 3526 (2003).

11. I. K. Varga, J. Vacuum Sci. Tech. A 7, 2639 (1989).

12. A. C. Ferrari and J. Robertson, Phys. Rev. B 64, 075414 (2001).

13. G. P. Brivio and E. Mulazzi, Phys. Rev. B 30, 876 (1984).

14. M. Rybachuk and J. M. Bell, Diamond Rel. Mat. 15, 977 (2006).

15. D. C. Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. Atkins, J. Quant. Spec. Radiat. Transfer 53, 705 (1995).
16 D. B. Fitchen, Molecul. Cryst. Liq. Cryst. 83, 95 (1982).

17 V. Hernandez, C. Castiglioni, M. Del Zoppo, and G. Zerbi, Phys. Rev. B 50, 9815 (1994).

18 M. Tzolov, V. P. Koch, W. Bruetting, and M. Schwoerer, Synth. Metals 109, 85 (2000).

19 I. Orion, J.-P. Buisson, and S. Lefrant, Phys. Rev. B 57, 7050 (1990).

20 M. Baitoul, J. Wery, J.-P. Buisson, G. Arbuckle, H. Shah, S. Lefrant, and M. Hamdoume, Polymer 41, 6955 (2000).