Nesting innovations allow population growth in an invasive population of rose-ringed parakeets

Dailos Hernández-Brito a,*, José L. Tella a, Guillermo Blanco b, and Martina Carrete c

aDepartment of Conservation Biology, Doñana Biological Station (CSIC), Calle Américo Vespucio, 26, Sevilla 41092, Spain, bDepartment of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutiérrez Abascal, 2, Madrid 28006, Spain, and cDepartment of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera, km 1, Sevilla 41013, Spain

*Address correspondence to Dailos Hernández-Brito. E-mail: dailoshb@ebd.csic.es

Handling editor: Zhi-Yun Jia

Received on 27 September 2021; accepted on 16 November 2021

Abstract

Certain traits of recipient environments, such as the availability of limiting resources, strongly determine the establishment success and spread of non-native species. These limitations may be overcome through behavioral plasticity, allowing them to exploit alternative resources. Here, we show how a secondary cavity nester bird, the rose-ringed parakeet Psittacula krameri, innovates its nesting behavior as a response to the shortage of tree cavities for nesting in its invasive range in Tenerife (Canary Islands). We observed that some breeding pairs excavated their own nest cavities in palms, thus becoming primary cavity nester, whereas others occupied nests built with wood sticks by another invasive species, the monk parakeet Myiopsitta monachus. The use of these novel nesting strategies increased the number of breeding pairs by up to 52% over 6 years, contributing to a 128.8% increase of the whole population. Innovative nests were located at greater heights above ground and were more aggregated around conspecifics but did not result in greater breeding success than natural cavities. Occupation of monk parakeet colonies by rose-ringed parakeets also benefited the former species through a protective-nesting association against nest predators. Our results show how an invasive species innovate nesting behaviors and increase nest-site availability in the recipient environment, thus facilitating its population growth and invasion process. Potential behavioral innovations in other invasive rose-ringed parakeet populations may be overlooked, and should be considered for effective management plans.

Key words: antipredator response, behavioral flexibility, biological invasions, cavity nesters, nesting innovation, reproductive success.

Behavioral flexibility is a form of phenotypic plasticity in which individuals change their behavior to adaptively cope with environmental changes (Piersma and Drent 2003; Dingemanse et al. 2010). Flexibility may arise through innovation when an individual develops a new behavior, or through social learning and copying, by adopting the behaviors of others (Fragaszy and Perry 2003). When innovating, individuals can increase the availability of a particular type of resource (Reader and Laland 2003), such that innovations can arise not only as a consequence of opportunity but also by necessity (Morand-Ferron et al. 2011; Lee and Moura 2015). Many examples of innovative behavior focus on the acquisition and transmission of novelty in the context of food rewards (Overington et al. 2011; Ducatez et al. 2015; Johnson-Ulrich et al. 2019; Wang and Liu 2021). However, despite its higher degree of specialization (Hansell 1984), there are also examples of changes in nesting habits in some species, mainly the use of unusual material or sites (Blanco
the native nor the invaded range of the species (Lamba 1966, and are also used permanently as roosting sites. To our knowledge, Myiopsitta monachus ing behaviors in an invasive rose-ringed parakeet population in of suitable cavities. which can be indicative of nesting habitat saturation and a shortage cavities (Herna´ndez-Brito et al. 2014a; Menchetti et al. 2016), Some individuals in invasive and native populations use alternative behaviors, mainly those related to the excavation of cavities (360 h), During censuses, we also devoted 780 h to recording individual behaviors, mainly those related to the excavation of cavities (360 h), During censuses, we also devoted 780 h to recording individual behaviors, mainly those related to the excavation of cavities (360 h), During censuses, we also devoted 780 h to recording individual behaviors, mainly those related to the excavation of cavities (360 h), During censuses, we also devoted 780 h to recording individual behaviors, mainly those related to the excavation of cavities (360 h),

Materials and methods
Study area and species
Most of the natural vegetation of Tenerife (e.g., coastal shrub and thermophilus and laurel forests) has been dramatically altered over the years and, today, most of the island is dominated by rural or urban areas (del Arco Aguilar et al. 2010). In these transformed areas, several non-native avian species of the Orders Galliformes, Columbiformes, Psittaciformes, and Passeriformes have been reported as introduced, with 5 of them (Barbary partridge Alectoris barbara, Barbary dove Streptopelia roseogrisea, Monk parakeet, Rose-ringed parakeet, and Nanday parakeet Nyndamyxenday) showing self-sustaining populations (Garcia-del-Rey 2018). Additionally, an incipient but growing non-congeneric population of hybrids between the non-native orange-winged Amazona amazonica and scaly-headed parrot Pionus maximiliani is present on the island (Hernández-Brito et al. 2021b; Figure 2).

Rose-ringed parakeets were first recorded in Tenerife in the mid-1980s (Martin and Lorenzo 2001), with a large, but unknown, number of individuals deliberately released in 2002 (D. Hernández-Brito, unpublished data). By 2019, we recorded 3 isolated populations summing ca. 550 individuals established in different urban areas of the island (Figure 2), with one of them subjected to a control program since 2017 (Figure 2, Area IV). Our study was focused on the largest rose-ringed parakeet population of the island, located in the municipality of Arona (altitude: 20 m a.s.l.; Figure 2, Area I), with ca. 350 individuals in 2019. Moreover, the largest monk parakeet population of the island is established in the same area (ca. 160 individuals in 2019; Figure 2). This urbanized area is surrounded by volcanic fields covered by coastal shrubs, so ornamental trees such as fig trees (Ficus spp) and palm trees (Phoenix spp and Washingtonia spp) present in the urban area are the only available nesting sites for parakeets. However, these trees are barely mature (Palomino and Carrascal 2005), and there are no primary cavity nesters in these areas (Martin and Lorenzo 2001; Garcia-del-Rey 2018); thus cavities are only formed by tree decay and are expected to be naturally scarce.

Field procedures
During the breeding seasons (from late December to late May) of the period 2014–2019, we censused and located with global positioning system (GPS; ±3 m) all rose-ringed and monk parakeet nests, as well as all tree cavities available in the area. We performed repeated visits to each site to assess its occupation (confirmed when we observed adults in the nests, at least on 10 different days), and record breeding success (i.e., breeding pairs successfully producing at least one fledgling) following Hernández-Brito et al. (2014a). Rose-ringed parakeet nests were classified into 2 categories according to their origin: natural (pre-existing tree cavities), and innovative
These nesting behaviors have not been previously described in
and are also used permanently as roosting sites. To our knowledge,
(Hernández-Brito et al. 2021a). These nests are made of branches
(Myiopsitta monachus) colonial nests of the monk parakeet
cavation of nests (tree cavities) and the use of chambers within
Tenerife (Canary Islands, Spain). These innovations include the ex-



We visually estimated the height above ground (in meters) and the width
of each cavity entrance (in centimeters), which was scored as small
(S; <4 cm), medium (M; 4–8 cm) or large, (L; >8 cm) following
Hernández-Brito et al. (2014a). Using the GPS locations of all cav-
ities and monk parakeet nests, we calculated an annual aggregation
index relative to the spatial distribution of all rose-ringed parakeet
breeding pairs and among breeding pairs using innovative nests
(excavated cavities and chambers within monk parakeet nests). This
index, which reflects conspecific density, was obtained as $\Sigma \exp (-d_{ij})$ (with $i \neq j$), where $d_{ij}$ was the linear distance between cavities $i$
and $j$ (Hernández-Brito et al. 2020).

During censuses, we also devoted 780 h to recording individual
behaviors, mainly those related to the excavation of cavities (360 h),
but also interspecific aggressions between rose-ringed and monk
parakeets and toward nest predators during the occupation of and
establishment in monk parakeet colonies by rose-ringed parakeet
(445 h). Moreover, we assessed these anti-predator responses dis-
played by rose-ringed and monk parakeets in their nests both co-
operatively and separately.

Statistical analysis
We used generalized linear models to relate the annual number of
new innovative nests (response variable; Poisson error distribution;
and log link function) to the number of available (non-used) cavities
(explanatory variable). To ascertain differences in nest site charac-
teristic, we compared their entrance size, height, and conspecific
density (response variables) among used and non-used natural cav-
ities and innovative nesting sites (excavated cavities and chambers
within monk parakeet nests; fixed factor). Thus, we employed an or-
dinal logistic regression for entrance size, a linear model for height
above the ground, and a linear mixed model for aggregation within
the breeding population (including year and nest as random terms),
applying a Tukey post hoc test (package lsmeans; Lenth 2016).
Moreover, we assessed which characteristics of monk parakeet nests
(height above the ground, total number of chambers, and aggrega-
tion index within the rose-ringed parakeet breeding population;
included as explanatory variables) affect their occupancy by rose-
ringed parakeets by modeling the annual occupation of monk para-
keet colonies by rose-ringed parakeets through generalized linear
mixed models (response variable; binomial error distribution, logit
link function; including colony as a random term).

To understand the fitness consequences of this innovative behav-
ior, we first assessed the role played by nest characteristics (entrance
size, height, and conspecific density; included as explanatory vari-
bles) in improving breeding success using generalized linear mixed
models (response variable, binomial error distribution, logit link
function, year and nest included as random terms). Using the same
model structure, we then compared the breeding success of rose-
ringed parakeets using innovative nests with that of breeding pairs
in natural cavities (explanatory variable).

The model selection was performed using the Akaike informa-
tion criterion corrected (AICc) for small sample sizes (Burnham and
Anderson 2002). Within each set of models (which includes the null



Figure 1 Innovative nesting behaviors recorded in an invasive rose-ringed parakeet population established in Tenerife (Canary Islands, Spain). (A–C) Rose-ringed parakeets excavating nesting cavities in the trunks of Canary Island date palms Phoenix canariensis. (E and F) rose-ringed parakeets nesting in monk parakeet nests. Pictures: Daisos Hernández-Brito.
model), we calculated the ΔAICc (as the difference between the AICc of model i and that of the best model) and the Akaike weight (w) of each model. Models within 2 AICc units of the best one were considered as innovative (package gllvmTMB; Magnusson et al. 2017).

Finally, we assessed potential differences in the efficiency of antipredator behavior shown by both parakeet species through a chi-square 2-sample test to compare the frequencies of successful nest predator behavior shown by both parakeet species through a chi-

Results
Characteristics of innovative nests and nesting behavior
During the study period, we recorded 65 events of rose-ringed parakeets excavating cavities (Figures 1A–C and 3B) in the soft parts of the trunk and canopy base of 3 different palm species, namely, the Canary Island date palm Phoenix canariensis, the date palm Phoenix dactylifera and the California fan palm Washingtonia filifera. Female rose-ringed parakeets mainly performed those excavations in the middle of the laying period (late January and February), starting from scratch (i.e., not using previous holes in the surface of the palm trees) and investing from 10 to 90 min/day and 2–5 days to complete them. Most of these cavities (61.1%) were located in the canopy base (Figure 1A, B), where parakeets remove the dry leaf petioles to excavate a short tunnel, although they can also directly dig into the trunks of palm trees, below the canopy base (36.9%; Figure 1C). In only 7 cases (ca. 11%) did individuals abandon excavation without finishing the nest cavity.

We recorded 37 events of rose-ringed parakeets breeding in chambers of 24 different monk parakeet nests, mostly active ones (62.5%; Figures 1D–F and 3B). Monk parakeet colonies were mainly located on Indian laurels Ficus microcarpa and the same palm tree species observed in excavated nests, 48 and 44% of the total, respectively. These nests were occupied between late December and February, despite the active defense of monk parakeets.

Antipredatory behavior
During the first 4–7 days after a rose-ringed parakeet pair began to use a monk parakeet chamber (Figure 1D), we recorded a total of 54 aggressions between the 2 parakeet species (Figure 1E), lasting between 5 and 37 min. Rose-ringed parakeets won most of these fights (61% of the total aggressions), all started by monk parakeets defending their nests. Rose-ringed parakeets ultimately usurped and occupied all these nest chambers. After that, no more aggressive interactions were detected (Figure 1F) but, strikingly, both species cooperated during nest defense against nest predators (i.e., black rats Rattus rattus, European kestrels Falco tinnunculus, and
Mediterranean yellow-legged gulls *Larus michahellis*). This cooperative nest defense allowed the expulsion of the predator in 88% of 25 recorded cases, a value significantly higher ($\chi^2 = 8.69$, $P = 0.003$) than that observed when monk parakeets defended their colonies alone (46.9% of the 32 observations of monk parakeets attacking rats or kestrels resulted in the expulsion of the predator). Although we did not record rose-ringed parakeets defending monk parakeet colonies alone, we recorded nest defense against the same predator species in nests located in tree cavities, of which, 83.7% of 33 events resulted in their expulsion. Thus, differences between whether or not there was cooperative defense were not significant for rose-ringed parakeets ($\chi^2 = 7.01e-31$, $P = 1$), being just as successful in cooperation with monk parakeets as alone.

Population trends and use of innovative nests

From 2014 to 2019, rose-ringed parakeets increased from 31 to 85 breeding pairs in the study area, with a growing percentage of breeding pairs occupying innovative nests (from 13% in 2014 to 52% in 2019; Figure 3A) as the number of available cavities declined (estimate: $-0.09$, Standard error (SE): 0.01, $t = -6.42$, $P < 0.0001$; Figure 3C). Consequently, the rose-ringed parakeet population grew by 128.8% from 153 individuals (2014) to 350 individuals (2019), growing at a rate of 21.5% per year. Innovative nests (87 out of the 135 nesting sites) were occupied for an average of 2.53 years (range: 1–6 years), although we could not assess the identity of breeding individuals. Excavated nests were not abandoned in successive breeding seasons; only their destruction after tree-felling (i.e., by human activity or storms) or physical deterioration prevented their reuse. However, 25% of rose-ringed parakeet nests located in monk parakeet colonies ended their occupation in subsequent breeding seasons even though these chambers were still available.

Innovative nesting sites were the tallest and the most aggregated within the breeding population (Table 1 and Figure 4). Natural cavities used by parakeets were intermediate in height and aggregation, while non-used cavities were located at the lowest height, more isolated in terms of the location of breeding pairs, and had slightly larger entrances (Table 1 and Figure 4). Monk parakeet colonies used by rose-ringed parakeets were the largest (in terms of number of chambers; estimate: 0.45, SE: 0.18, $z = 6.05$, $df = 1$, $P = 0.0139$) and the closest (i.e., more aggregated; estimate: 0.07, SE: 0.03, $z = 4.24$, $P = 0.0396$) to other active rose-ringed parakeet nests. Height was not a significant predictor of colony use by rose-ringed parakeets (estimate: 0.23, SE: 0.16, $z = 2.16$, $P = 0.1418$; Supplementary Tables S1 and S2).

Breeding success

Breeding success was not related to any of the variables considered (i.e., the height above the ground, the entrance size, or the aggregation within the breeding population; Supplementary Table S3), nor when considering whether they bred in innovative nesting-sites or natural cavities (Supplementary Tables S4 and S5).

Discussion

Behavioral innovations can be beneficial for species to adjust to environmental changes (Wang and Liu 2021), as well as to assist the establishment and spread of invasive species in their recipient environments (Sol et al. 2002; Martin and Fitzgerald 2005). Innovativeness is generally assumed to increase fitness through enhanced survival or reproductive

---

**Figure 3** (A) Number of nests of rose-ringed parakeets (solid line), innovative nesting sites used by the species (dotted line), and nonused, available cavities (dashed line) recorded during the study period. (B) Number of natural and innovative nests (excavated nests and chambers within monk parakeet nests) used from 2014 to 2019. (C) Number of cavities available and used by rose-ringed parakeets during the study period in terms of their entrance sizes (small, medium, and large).
success (Sol 2009; Sol et al. 2016). However, direct evidence supporting these assumptions is scarce (Keagy et al. 2009; Cauchard et al. 2013; Preisznner et al. 2017; Wetzel 2017; Yosef et al. 2019) and not always conclusive (Cole et al. 2012; Cole and Quinn 2012; Iden et al. 2013). According to our results, the breeding success of individuals was not affected by the characteristics or the type of nesting site used (innovative nesting sites or natural cavities), suggesting that the main benefit of these innovative behaviors does not arise through a higher success of pairs using them but through increasing the possibility of breeding in the absence of adequate natural cavities. Although different factors can be simultaneously operating, the lack of differences in the breeding success observed among pairs using innovative nests and natural cavities suggests that this behavior is not mostly performed by young individuals that are generally poorer breeders (Clutton-Brock 1988), often delaying reproduction when the population is saturated (van de Pol and Verhulst 2006; Brown 2014). More likely, innovating individuals may have particular behavioral traits (e.g., less neophobic, bolder, or more risk-tolerant; Webster and Lefebvre 2001; Overington et al. 2011; Benson-Amram and Holekamp 2012; Audet et al. 2016; van Horik et al. 2017; Johnson-Ulrich et al. 2018), which may allow them to innovate in their nesting habits when optimal nesting resources are scarce (Quinn et al. 2003; Hernández-Brito et al. 2020).

Innovative behaviors occur primarily when innovators are able to invent novel strategies or copy them by observing conspecifics (Reader and Laland 2003). Because there were no marked individuals in our study, we cannot determine which of these mechanisms is driving all innovator rose-ringed parakeets in the spread of novel nesting strategies in the population. Indeed, the innovative nesting sites were located in areas with the highest densities of conspecific nests, so social transmission of novel behaviors among conspecific would be more likely. Besides, the wide range of movements of rose-ringed parakeets, ca. 6–9 km/day or even up to 24 km (Párraga et al. 2016), together with the fact that they concentrate on communal roosts, which are considered to be centers of social learning and information sharing (Salinas-Melgoza et al. 2013; Hobson et al. 2014; Toft and Wright 2015), may facilitate the diffusion of novel behaviors within the population (Cladire et al. 2013; Kulačić et al. 2016; Lambert et al. 2019). Cultural transmission can be also picked up by nonbreeding parakeets regularly prospecting the vicinity of active nests (Renton et al. 2015), mainly at the small spatial scale of our study population. However, we also recorded 6 excavation attempts in other rose-ringed parakeet populations in Tenerife (Figure 2, Areas III and IV) during the same study period. These populations are isolated from each other and are established in urban areas with similar tree compositions to the study area, but with smaller rose-ringed parakeet populations. Although these excavated cavities were not ultimately occupied by rose-ringed parakeets, the emergence of the same nesting behavior may be an incipient response to the progressive reduction of available cavities by the growing rose-ringed parakeet populations (D. Hernández-Brito, unpublished data). Therefore, this same response may emerge in other rose-ringed parakeet populations, but the spread of these innovative behaviors through the remaining individuals will depend on levels of environmental pressure. Further studies based on marked individuals are needed to delve deeper into differences in behavioral traits among individuals that may promote nesting innovations and their potential cultural transmission during the invasion process of this species.

Despite the benefits associated with increased in resource availability, innovative behaviors, as a form of behavioral flexibility, can entail costs (Snell-Rood 2013). The usurpation of monk parakeet nests could be considered risky due to interspecific aggressions (Grether et al. 2013). Aggressions performed by rose-ringed parakeets can be fatal to the target species (Hernández-Brito et al. 2014b, 2018; Covas et al. 2017). However, we did not record aggressions resulting in death between both parakeet species. Moreover, monk parakeets often show a high tolerance to other species that use their nests (Hernández-Brito et al. 2021a), so negative effects of aggressions are not determinant for innovative rose-ringed parakeets using monk parakeet nests. On the other hand, the excavation of new cavities could be costly expensive in terms of time and energy, so even some primary cavity nesters sometimes reuse tree cavities instead of excavating new ones (Wiebe et al. 2007). However, reuse of nest-site rather than the excavation of new cavities involves risks that may reduce breeding success (Wiebe et al. 2007), such as increased parasite load per breeding season (Johnson 1996), potential detection as a predictable food resource by predators (Nilsson et al. 1991), less tracking of temporal and spatial variability in food resources (Wiebe et al. 2007), and poor microclimate conditions of cavities (Wiebe 2001). Although we were unable to identify whether a same pair occupied an excavated cavity throughout different breeding seasons, the persistence of occupation of these
cavities together with the fact that there were no significant differences in breeding success suggest that negative effects associated with nest-site reuse are minimal. Moreover, innovative nesting strategies seem to largely compensate for their costs as the number of pairs exhibiting these nesting innovations grows annually.

It has been previously reported that invasive rose-ringed parakeets can enlarge previously available holes or excavate them using tree wounds, even burrowing in the remains of old and dry fronds (Czajka et al. 2011; Orchan et al. 2013; Hernández-Brito et al. 2014a; Yosef et al. 2016). However, the excavation of whole holes in healthy palm trees recorded in our study shows that it can solve the problem of cavity shortage through a highly innovative capacity associated with high nesting plasticity. This innovation not only represents a breeding strategy consolidated in the population, but also can have significant impacts on the recipient community. Thus, rose-ringed parakeets function as an ecosystem engineer (Crooks 2002) by taking the role of primary cavity nesters by providing tree cavities to secondary cavity nesters at a larger scale. Although Yosef et al. (2016) have reported that cavities previously enlarged by rose-ringed parakeets were occupied by native bird species after their abandonment, we did not observe this nesting facilitation in our study population, as other cavity nesters present in the area do not breed in trees (Martin and Lorenzo 2001). Nevertheless, the excavated cavities we recorded in other rose-ringed population in Tenerife, which was not ultimately used by rose-ringed parakeets, were later occupied by feral pigeons (Columba livia var. domestica) and African blue tits (Cyanistes teneriffae). Therefore, the facilitation of tree cavities in the study area could assist other species that may not use cavities without cavities, thus enhancing positive interactions between an invasive species that provides limited resources and native species that exploit them (Rodriguez 2006; Hernández-Brito et al. 2021a).

Rose-ringed parakeets can also occupy chambers within the nests of the invasive monk parakeet when nesting sites are scarce. Although the usurpation of active monk parakeet nests can be considered a form of parasitism, the aggressive behavior of rose-ringed parakeets provides an effective anti-predatory behavior (Hernández-Brito et al. 2014a, 2014b) that secondarily benefits monk parakeets, thus leading to the potential establishment of mutualistic or commensalistic relationships. Therefore, the initial costs to monk parakeets associated with nest losses may be offset by the cooperative defense against predators (Blanco and Tella 1997; Lima 2009). Predation pressure is an important factor affecting both species (Hernández-Brito et al. 2020; Mori et al. 2020), so these positive interactions may increase their likelihood of population growth, and thus their impacts (invasive meltdown; Simberloff and Von Holle 1999).

Impacts of invasive species can emerge over long time scales following the effects of evolutionary processes, such as adaptation to a new environment (Colautti and Lau 2015), the acquisition of a new host, or the development of particular adaptive behaviors (Hernández-Brito et al. 2020, 2021b), as shown here. Therefore, the possibility of unexpected behavioral innovations should be considered in the understanding of biological invasions, as well as for effective prevention and management. In our case, the potential spread of this invasive population outside of the study area not only depends on the transference rate of nesting innovations between individuals but also on the availability of palm trees in the novel areas. Palm tree species are abundant both in urbanized and natural environments in Tenerife, especially the Canary Island date palm with ca. 100,000 specimens on the island and located mainly in urban areas (IDE-Canarias 2018; Sosa et al. 2021). Therefore, management actions on this invasive species (e.g., Esteban 2016; SIF 2017; Bunbury et al. 2019; Saavedra and Medina 2020) must consider its potential further expansion helped by innovation in nesting.

**Acknowledgments**

We thank the owners of private gardens from the municipality of Arona for allowing us access to these locations. Logistical and technical support for fieldwork was provided by Doñana ICTS-RBD. Three anonymous reviewers and the Executive Editor greatly helped to improve the manuscript.
Funding
This work was supported by the Severo Ochoa Program (Grant No. SVP-2014-068732) and Action COST “ParrotNet” (Grant No. ES1304).

Supplementary Material
Supplementary material can be found at https://academic.oup.com/ez.

Conflict of Interest Statement
The authors declare that all authors have no conflict of interest.

References
Abellán P, Tella JL, Carrete M, Cardador I, Anadón JD, 2017. Climate matching drives spread rate but not establishment success in recent unintentional bird introductions. Proc Natl Acad Sci USA 114:9385–9390.
Aitken KE, Martin K, 2008. Resource selection plasticity and community responses to experimental reduction of a critical resource. Ecology 89: 971–980.
Audet JN, Ducatez S, Lefebvre L, 2016. The town bird and the country bird: problem solving and immunocompetence vary with urbanization. Behav Ecol 27:637–644.
Banda E, Blanco G, 2009. Implications of nest-site limitation on density-dependent nest predation at variable spatial scales in a cavity-nesting bird. Oikos 118:991–1000.
Benson-Amram S, Holekamp KE, 2012. Innovative problem solving by wild spotted hyenas. Proc Royal Soc B 279:4087–4095.
Blanco G, Fargallo JA, Tella J, Cuevas JA, 1997. Role of buildings as nest-sites in the range expansion and conservation of choughs Pyrrhocorax pyrrhocorax in Spain. Biol Conserv 79:117–122.
Blanco G, Tella JL, 1997. Protective association and breeding advantages of choughs nesting in lesser kestrel colonies. Anim Behav 54:335–342.
Blanco G, Hiraldo F, Tella JL, 2018. Ecological functions of parrots: an integrative perspective from plant life cycle to ecosystem functioning. Emu 118: 36–49.
Brown JL, 2014. Helping Communal Breeding in Birds: Ecology and Evolution. Princeton (NJ): Princeton University Press.
Bunbury N, Haverson P, Page N, Agricole J, Angell G et al., 2019. Five eradications from invasive bird eradications in the Seychelles. Island invasives: the role of ecosystem engineers. Oikos 97:153–166.
Cazaka C, Braun MP, Wink M, 2011. Resource use by non-native ring-necked parakeets Psittacula krameri and native starlings Sturnus vulgaris in central Europe. Open Ornitol J 5:17–22.
DAISIE. 2009. Handbook of Alien Species in Europe. Dordrecht, the Netherlands: Springer.
del Arco Aguilar MJ, González-González R, Garzón-Machado V, Pizarro-Hernández B, 2010. Actual and potential natural vegetation on the Canary Islands and its conservation status. Biodivers Conserv 19:3089–3140.
Dingemanse NJ, Kazem AJ, Ráie D, Wright J, 2010. Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol Evol 25: 81–89.
Ducatez S, Clavel J, Lefebvre L, 2015. Ecological generalism and behavioural innovation in birds: technical intelligence or the simple incorporation of new foods? J Anim Ecol 84:79–89.
Estevez A, 2016. Control de la especie cotorra argentina Myiopsitta monacrus en Zaragoza. Zaragoza: Ayuntamiento de Zaragoza. Available from: https://www.zaragoza.es/contenidos/medioambiente/InformeCotorraArgentina.pdf (Accessed 1 September, 2021).
Fragaszy DM, Perry S, 2003. Towards a biology of traditions. The biology of traditions: Models and evidence. In: Fragastry DM, Perry S, editors. Towards a Biology of Traditions. 1st edn. Cambridge: Cambridge University Press, 1–32.
Garcia-del-Rey E, 2018. Birds of the Canary Islands. London: Bloomsbury Publishing.
Gibbons P, Lindenmayer D, 2002. Tree Hollows and Wildlife Conservation in Australia. Collingwood, Australia: CSIRO publishing.
Grandi G, Mennetti M, Mori F, 2018. Vertical segregation by breeding ring-necked parakeets Psittacula krameri in northern Italy. Urban Ecosyst 21:1011–1017.
Grether GF, Anderson CN, Drury JP, Kirschel AN, Losin N et al., 2013. The evolutionary consequences of interspecific aggression. Ann N Y Acad Sci 1289:48–68.
Hansell MH, 1984. Animal Architecture and Building Behaviour. London: Longman.
Harper MJ, McCarthy MA, van der Ree R, 2005. The use of nest boxes in urban natural vegetation remnants by vertebrate fauna. Wildl Res 32: 509–516.
Hernández-Brito D, Carrete M, Popa-Lisseanu AG, Ibáñez C, Tella JL, 2014a. Crowding in the City: Losing and winning competitors of an invasive bird. PLoS One 9:e100593.
Hernández-Brito D, Luna A, Carrete M, Tella JL, 2014b. Alien rose-ringed parakeets Psittacula krameri attack black rats Rattus rattus sometimes resulting in death. Hystrix 25:121–123.
Hernández-Brito D, Carrete M, Ibáñez C, Juste J, Tella JL, 2018. Nest-site competition and killing by invasive parakeets cause the decline of a threatened bat population. R Soc Open Sci 5:172477.
Hernández-Brito D, Blanco G, Tella JL, Carrete M, 2020. A protective nesting association with native species counteracts biotic resistance for the spread of an invasive parakeet from urban into rural habitats. Front Zool 17:1–13.
Hernández-Brito D, Carrete M, Blanco G, Romero-Vidal P, Senar JC et al., 2021a. The role of monk parakeets as nest-site facilitators in their native and invaded areas. Biology 10:683.
Hernández-Brito D, Tella JL, Carrete M, Blanco G, 2021b. Successful hybridization between non-congeneric parrots in a small introduced population. Ibis 163:1093–1098.
Hobson EA, Avery ML, Wright TF, 2014. The sociocology of monk parakeets: insights into parrot social complexity. Auk 131:756–775.
IDF-Canarias, 2018. Mapa de palmeras canarias. Available from: https://www.idfcanarias.es/listado_servicios/mapa-palmeras-canarias (Accessed 1 September 2021).
Izden J, Panayi C, Dingle C, Madden J, 2013. Performance in cognitive and problem-solving tasks in male spotted bowerbirds does not correlate with mating success. Anim Behav 86:829–838.

Covas L, Senar JC, Roqué Roqué L, Quesada J, 2017. Records of fatal attacks by rose-ringed parakeet Psittacula krameri on native avifauna. Rev Catal D’Ornitol 33:45–49.
Crooks JA, 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166.

Clutton-Brock TH, 1988.
Jackson HA, 2021. Global invasion success of the rose-ringed parakeet. In: Prum RO, editor. Naturalized Parrots of the World. Distribution, Ecology, and Impacts of the World’s Most Colorful Colonizers. 1st edn. Princeton (NJ): Princeton University Press, 159–172.

Johnson LS, 1996. Removal of old nest material from the nesting sites of house wrens: effects on nest site attractiveness and ectoparasitic loads. J Field Ornithol 67:212–221.

Johnson-Ulrich L, Johnson-Ulrich Z, Holekamp K, 2018. Proactive behavior, but not inhibitory control, predicts repeated innovation by spotted hyenas tested with a multi-access box. Anim Cogn 21:379–392.

Johnson-Ulrich L, Benson-Amram S, Holekamp KE, 2019. Fitness consequences of innovation in spotted hyenas. Front Ecol Evol 7:443.

Keagy J, Savard JF, Borgia G, 2009. Male satiny bowerbird problem-solving ability predicts mating success. Anim Behav 78:809–817.

Ketring WD, 2003. European starlings and their effect on native cavity-nesting birds. Conserv Biol 17:1134–1140.

Kulachik IG, Rubenstein DJ, Bugnyar T, Hoppitt W, Mikus N et al., 2016. Social networks predict selective observation and information spread in ravens. R Soc Open Sci 3:160256.

Lamba BS, 1966. Nidification of some common Indian birds: 10. The rose-ringed parakeet, Psittacula krameri Scopoli. Proc Zool Soc (Calcutta) 19:77–85.

Lambert ML, Jacobs I, Osvath M, von Bayern AM, 2019. Birds of a feather? Parrot and corvid cognition compared. Behaviour 156:505–594.

Lee PC, Moura ACA, 2015. Explorations in creativity research, animal creativity and innovation. In: Kaufman AB, Kaufman JC, editors. Necessity, Unpredictability and Opportunity: An Exploration of Ecological and Social Drivers of Behavioral Innovation. London: Academic Press, 317–333, 11.

Lefebvre L, Reader SM, Sol D, 2004. Brains, innovations and evolution in birds and primates. Brain Behav Ecol 63:233–246.

Lenth RV, 2016. Least-squares means: the R package lsmeans. J Stat Softw 69:1–33.

Lim SL, 2009. Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. Biol Rev 84:485–513.

Lindemayer DB, Laurance WF, Franklin JF, Likens GE, Banks SC et al., 2014. New policies for old trees: averting a global crisis in a keystone ecological structure. Conserv Lett 7:61–69.

Magnusson A, Skaug H, Nielsen A, Berg C, Kristensen K, et al., 2017. Package ‘glimmTMB’: generalized linear mixed models using template model builder. Available from: https://cran.r-project.org/web/packages/glimmTMB/index.html. (Accessed 1 September 2021).

Martin KR, Fadie MJ, 1999. Nest webs: a community-wide approach to the management and conservation of cavity-nesting forest birds. For Ecol Manag 115:243–257.

Martín A, Lorenzo JA, 2001. Aves Del Archipiélago Canario. San Cristóbal de La Laguna, Spain: Francisco Lemus.

Martín LB, Fitzgerald L, 2005. A taste for novelty in invading house sparrows Passer domesticus. Behav Ecol 16:702–707.

Menchetti M, Mori E, Angelici FM, 2016. Effects of the recent world invasion by ring-necked parakeets Psittacula krameri. In: Angelici F, editor. Problematic Wildlife. 1st edn. London: Springer International Publishing, 253–266.

Morand-Ferron J, Cole EF, Rawlws JE, Quinn JL, 2011. Who are the innovators? A field experiment with 2 passerine species. Behav Ecol 22:1241–1248.

Mori E, Mallarn L, Le Louarn M, Hernández-Brito D, ten Cate B et al., 2020. ‘Some like it alien’: predation on invasive ring-necked parakeets by the long-eared owl in an urban area. Anim Biodivers Conserv 43:151–158.

Mori E, Menchetti M, 2021. The ecological impacts of introduced parrots. In: Pruett-Jones S, editor. Naturalized Parrots of the World: Distribution, Ecology, and Impacts of the World’s Most Colorful Colonizers. 1st edn. Princeton (NJ): Princeton University Press, 87–101.

Newton I, 1994. The role of nest sites in limiting the numbers of hole-nesting birds: a review. Biol Conserv 70:265–276.

Newton I, 1998. Population Limitation in Birds. London: Academic Press.

Nicolakakis N, Lefebvre L, 2000. Forebrain size and innovation rate in European birds: feeding, nesting and confounding variables. Behaviour 137:1415–1429.

Nilsson SG, Johnsson K, Tjernberg M, 1991. In avoidance by black woodpeckers of old nest holes due to predators? Anim Behav 41:439–441.

Orchan Y, Chiron F, Shwartz A, Kark S, 2013. The complex interaction network among multiple invasive bird species in a cavity-nesting community. Biol Invasions 15:429–445.

Overington CA, Cauchard L, Côté KA, Lefebvre L, 2011. Innovative foraging behaviour in birds: What characterizes an innovator? Behav Proc 87:274–285.

Palomino D, Carrascal LM, 2005. Birds on novel island environments. A case study with the urban avifauna of Tenerife (Canary Islands). Ecol Res 20:611–617.

Párra LG, Shrubb D, Mori E, Menchetti M, Ancillotto L et al., 2016. Rose-ringed parakeet Psittacula krameri populations and numbers in Europe: A complete overview. Open Ornitol 9:1–13.

Peck HL, Pringle HE, Marshall HH, Owens IP, Lord AM, 2014. Experimental evidence of impacts of an invasive parakeet on foraging behavior of native birds. Behav Ecol 25:582–590.

Pell AS, Tidemann CR, 1997. The impact of two exotic hollow-nesting birds on two native parrots in savannah and woodland in eastern Australia. Biol Conserv 79:145–153.

Persma T, Drent J, 2003. Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evol 18:228–233.

Preisser B, Papp S, Pipoly I, Seres G, Vincze E et al., 2017. Problem-solving performance and reproductive success of great tits in urban and forest habitats. Anim Cogn 20:53–63.

Quinn JL, Prop J, Kokorev Y, Black JM, 2003. Predator protection or similar habitat selection in red-breasted goose nesting associations: Extremes along a continuum. Anim Behav 65:297–307.

R Development Core Team, 2020. R: A Language and Environment for Statistical Computing. Vienna (Austria): R Foundation for Statistical Computing.

Reader SM, Laland KN, 2003. Animal Innovation. Vol. 10. Oxford: Oxford University Press.

Renton K, Salinas-Melgoza A, De Labra-Hernández MA, de la Parra-Martínez SM, 2015. Resource requirements of parrots: nest site selectivity and dietary plasticity of Psittaciformes. J Ornitol 156:73–90.

Rodriguez LF, 2006. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol Invasions 8:927–939.

Saavedra S, Medina FM, 2020. Control of invasive ring-necked parakeet Psittacula krameri in an island Biosphere Reserve (La Palma, Canary Islands): combining methods and social engagement. Biol Invasions 22:3653–3667.

Salinas-Melgoza A, Salinas-Melgoza V, Wright TF, 2013. Behavioral plasticity of a threatened parrot in human-modified landscapes. Biol Conserv 159:303–312.

SIF (Seychelles Island Foundation), 2017. Ring-necked parakeet cattled at Morne Blanc. SIF News Lett 56:1–2.

Simberloff D, Von Holle B, 1999. Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32.

Snell-Rood EC, 2013. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim Behav 85:1004–1011.

Sol D, Lefebvre L, 2000. Behavioural flexibility predicts invasion success in birds introduced to New Zealand. Ostrich 90:599–605.

Sol D, Timmermans S, Lefebvre L, 2002. Behavioural flexibility and invasion success in birds. Anim Behav 63:495–502.

Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L, 2005. Big brains, enhanced cognition, and response of birds to novel environments. Proc Natl Acad Sci USA 102:5460–5465.

Sol D, 2009. Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biol Lett 5:130–133.

Sol D, Sayol F, Ducatez S, Lefebvre L, 2016. The life-history basis of behavioural innovations. Philos Trans R Soc B 371:20150187.
Sosa PA, Saro I, Johnson D, Obin C, Alcaraz F et al., 2021. Biodiversity and conservation of Phoenix canariensis: a review. *Biodivers Conserv* 30:275–293.
Stojanovic D, Nee Voogdt JW, Webb M, Cook H, Heinsohn R, 2016. Loss of habitat for a secondary cavity nesting bird after wildfire. *For Ecol Manag* 360: 235–241.
Strubbe D, Matthysen E, 2007. Invasive ring-necked parakeets Psittacula krameri in Belgium: Habitat selection and impact on native birds. *Ecography* 30:578–588.
Strubbe D, Matthysen E, 2009. Experimental evidence for nest-site competition between invasive ring-necked parakeets Psittacula krameri and native nuthatches Sitta europaea. *Biol Conserv* 142:1588–1594.
Strubbe D, Matthysen E, Graham CH, 2010. Assessing the potential impact of invasive ring-necked parakeets Psittacula krameri on native nuthatches Sitta europaea in Belgium. *J Appl Ecol* 47:549–557.
Tagg N, Willie J, Petre CA, Haggis O, 2013. Ground night nesting in chimpanzees: New insights from central chimpanzees Pan troglodytes troglodytes in South-East Cameroon. *Folia Primatol* 84:362–383.
Tella JL, Canale A, Carrete M, Petracci P, Zalba SM, 2014. Anthropogenic nesting sites allow urban breeding in burrowing parrots Cyanoliseus patagonus. *Ardetexa* 61:311–321.
Toft CA, Wright TF, 2015. *Parrots of the Wild: A Natural History of the World’s Most Captivating Birds*. Oakland (CA): University of California Press.
van de Pol M, Verhulst S, 2006. Age-dependent traits: A new statistical model to separate within- and between-individual effects. *Am Nat* 167:766–773.
van Horn JO, Langley EJ, Whiteside MA, Madden JR, 2017. Differential participation in cognitive tests is driven by personality, sex, body condition and experience. *Behav Process* 134:22–30.
Wang D, Liu X, 2021. Behavioral innovation promotes alien bird invasions. *Innovation* 2:100167.
Webster SJ, Lefebvre L, 2001. Problem solving and neophobia in a columbiform–passeriform assemblage in Barbados. *Anim Behav* 62:23–32.
Wetzel DP, 2017. Problem-solving skills are linked to parental care and off- spring survival in wild house sparrows. *Evol biology* 123: 475–483.
Wiebe KL, 2001. Microclimate of tree cavity nests: Is it important for reproductive success in northern flickers? *Auk* 118:412–421.
Wiebe KL, 2003. Delayed timing as a strategy to avoid nest-site competition: Testing a model using data from starlings and flickers. *Oikos* 100:291–298.
Wiebe KL, Koenig WD, Martin K, 2007. Costs and benefits of nest reuse versus excavation in cavity-nesting birds. *Ann Zool Fennici* 44:209–217.
Wright TF, Eberhard JR, Hobson EA, Avery MI, Russello MA, 2010. Behavioral flexibility and species invasions: the adaptive flexibility hypothesis. *Evol Ecol* 22:393–404.
Yosef R, Zduniak P, Zmihorski M, 2016. Invasive ring-necked parakeet negatively affects indigenous Eurasian hoopoe. *Ann Zool Fennici* 53: 281–287.
Yosef R, Zduniak P, Poliakov Y, Fingerman A, 2019. Behavioural and reproductive flexibility of an invasive bird in an arid zone: A case of the Indian house crow Corvus splendens. *J Arid Environ* 168:56–58.