GLOBAL AND EXPONENTIAL ATTRACTORS FOR A NONLINEAR POROUS ELASTIC SYSTEM WITH DELAY TERM

MANOEL J. DOS SANTOS*
Faculty of Exact Sciences and Technology
Federal University of Pará
Manoel de Abreu St., Abaetetuba, Pará, 68440-000, Brazil

BAOWEI FENG
Department of Economic Mathematics
Southwestern University of Finance and Economics
Chengdu, 611130, China

DILBERTO S. ALMEIDA JÚNIOR AND MAURO L. SANTOS
PhD Program in Mathematics
Federal University of Pará
Augusto Corrêa St., 01, 66075-110, Belém - Pará - Brazil

(Communicated by José A. Langa)

Abstract. This paper is concerned with the study on the existence of attractors for a nonlinear porous elastic system subjected to a delay-type damping in the volume fraction equation. The study will be performed, from the point of view of quasi-stability for infinite dimensional dynamical systems and from then on we will have the result of the existence of global and exponential attractors.

1. Introduction. In recent years the study of continuous models of deformable bodies has intensified, in particular we have the elastic solids with voids. Due to its great applicability as for example in soil mechanics, petroleum industry, materials sciences and biomechanics, porous solids now play a prominent role in scientific research (cf. [27]).

Among the various theories dealing with porous material, we can find a linear theory proposed by Cowin and Nunziato [14, 42] which is a generalization of the elastic theory for materials with voids, considering besides the material elasticity property, the volume fraction of the voids in the material. In this theory, the bulk density \(\rho = \rho(x,t) \) is given by the product of matrix density of the material \(\gamma = \gamma(x,t) \) and the volume fraction \(\nu = \nu(x,t) \)

\[
\rho(x,t) = \gamma(x,t)\nu(x,t).
\]

2020 Mathematics Subject Classification. Primary: 35B40, 35B41, 35L53; Secondary: 74K10, 93D20.

Key words and phrases. Nonlinear porous-elastic system · Time delay · Quasi-stability · Global attractor · Exponential attractors.

* Corresponding author: Manoel J. Dos Santos.
They also consider a reference configuration (generally considered as initial configuration)
\[\rho_0(x) = \gamma_0(x) \nu_0(x). \]

Let \(u_i = u_i(x, t) \) denote the components of the displacement vector field and so the components of the infinitesimal strain field are given by
\[e_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}), \]
where the comma after the letter indicates the partial derivative with respect to the indicated coordinate. In addition, \(\phi = \phi(x, t) \) represents the change in volume fraction with respect to reference configuration. In a framework of evolution equations and in a setting of three-dimensional theory, the porous-elastic theory is described as
\[\rho \ddot{u}_i = T_{ij,j} + \rho f_i, \]
\[\rho k \ddot{\phi} = h_{i,i} + g + \rho \ell, \]
which are called balance of linear momento and balance of equilibrated force equations, respectively. In the above system, \(T_{ij} \) are the components of the stress tensor, \(f_i \) is the body force vector, \(h_i \) are the components of the equilibrated stress vector, \(k \) is the equilibrated inertia, \(g \) is the intrinsic equilibrated body force and \(\ell \) is the extrinsic equilibrated body force.

The constitutive equations for homogeneous and isotropic elastic bodies are (cf. [14])
\[T_{ij} = \lambda \delta_{ij} e_{rr} + 2\mu e_{ij} + \beta \phi \delta_{ij}, \]
\[h_i = \alpha \phi_x, \]
\[g = -\omega \dot{\phi} - \xi \phi - \beta e_{rr}, \]
where \(\lambda, \mu, \beta, \alpha, \omega, \xi \) and \(\omega \) are constitutive constants that depend on the reference state \(\nu_0 \) and \(\delta_{ij} \) is Kronecker’s delta. The necessary and sufficient conditions for the internal energy density to be positive definite quadratic form are (cf. [14])
\[\mu > 0, \alpha > 0, \xi > 0, \kappa > 0, \omega > 0, 3\lambda + 2\mu > 0 \text{ and } 3b^2 \leq (3\lambda + 2\mu)\xi. \]

In recent years, a large number of studies have been performed related to the asymptotic behavior of solutions of elastic pore models subject to the most diverse damping mechanisms (cf. [5, 10, 21, 29, 36, 37, 44, 48, 49, 50]).

For long-time dynamics of porous elastic system, there are few results till now, among them we can consider the work of M. Freitas et al. in [22]. In this paper, the authors considered a porous elastic system with nonlinear damping and sources terms
\[
\begin{cases}
\rho u_{tt} - \mu u_{xx} - b \phi_x + g_1(u_t) = f_1(u, \phi), \\
J \phi_{tt} - \delta \phi_{xx} + bu_x + \xi \phi + g_2(\phi_t) = f_2(u, \phi).
\end{cases}
\]
They proved global well-posedness, blow up of solutions and obtained the existence of global attractors and exponential attractors.

Similar to the case of elastic pore systems, in recent years, PDE containing time delay effects has become a very active area of research thanks to its applications in, for example, control theory, biology, economics, physiology, epidemiology and neural networks (see eg [25, 51]). It is well known (see [17, 38]) that terms of delay acting on mechanical systems, for example in the boundary of the wave equation, can cause instability to the system, that is, can lose its robustness. It is worth mentioning that
to stabilize hyperbolic systems containing delay terms it is necessary to introduce additional control terms (cf. [16]).

There are several results of stabilization and instabilization of the wave equation containing internal or boundary delay terms, among them we can cite [1, 9, 16, 17, 38, 39, 41, 54]. Nicaise and Pignotti in [38] consider the following equation of the wave with a term of delayed velocity and mixed boundary conditions of Dirichlet-Neumann

\[u_{tt} + \Delta u + a(x)[\mu_1 u_t + \mu_2 u_t(x, t - \tau)] = 0 \quad \text{in} \quad \Omega \times (0, +\infty) \]

\[u = 0 \quad \text{in} \quad \Gamma_D \times (0, +\infty) \]

\[\frac{\partial u}{\partial n} = 0 \quad \text{in} \quad \Gamma_N \times (0, +\infty) \]

\[u(x, t) = u_0(x), \quad u_t(x, 0) = u_1(x) \quad \text{in} \quad \Omega \]

\[u(x, t - \tau) = f_0(x, t - \tau) \quad \text{in} \quad \Omega \times (0, \tau) \]

where \(a \in L^\infty(\Omega) \) is a function such that \(a(x) \geq 0 \) a.e. in \(\Omega \) and \(a(x) > a_0 > 0 \) in \(\omega \subset \Omega \), where \(\omega \) is an open neighborhood of \(\Gamma_N \). When \(\mu_2 = 0 \), it is a well known fact that the solutions of the system (1)-(5) decay exponentially (cf. [26, 31, 56]). The authors showed that if

\[0 < \mu_2 < \mu_1, \]

then the system is exponentially stable. If (6) does not occur, it is possible to construct some sequence of delays for which the energy of the solution does not tend to zero. The same authors in [39], studied the system (1)-(5) with the term

\[\mu_1 u_t + \int_{\tau_0}^{\tau_1} a(x)\mu_2(s)u_t(t - s)ds, \quad \text{in place of} \quad a(x)[\mu_1 u_t + \mu_2 u_t(x, t - \tau)], \]

where \(\mu_2(s) \geq 0 \), they showed that if

\[\mu_1 > \|a\|_\infty \int_{\tau_0}^{\tau_1} \mu_2(s)ds, \]

then the energy of the system decays exponentially. The relations (6) and (8) were also used to obtain the exponential decay of the respective transmission problems associated with these systems (cf. [9, 30]). As early as [40] they considered the delay \(\tau \) as a function of the time, the so-called time-varying delay.

Kirane and Said-Houari in [28] used the inequality (6) to obtain exponential decay of the system

\[u_{tt} - \Delta u + \int_0^t g(t - s)\Delta u ds + \mu_1 u_t + \mu_2 u_t(x, t - \tau) = 0. \]

W. Liu in [33] improved the result of Kirane and Said-Houari by considering the equation (9) with time-varying delay term and \(\mu_2 \) not necessarily positive. Later, Dai and Yang in [15] established the existence of the global solution to the problem (9) with \(\mu_1 \) and \(\mu_2 \) arbitrary, they obtained exponential decay of the energy for \(\mu_2 = 0 \). Wang et al. in [53] obtains exponential energy decay to the transmission system associated with Dai and Yang work.

There is a lot of work considering the presence of delay term in the Timoshenko system, among them [3, 4, 6, 19, 20, 47, 55]. Feng and Yang in [20], using (6) and the equality of wave velocities

\[\frac{\rho_1}{\kappa} = \frac{\rho_2}{b}, \]
obtained the existence of a global and exponential attractor for the following non-linear Timoshenko system with delay term

$$\rho_1 \varphi_{tt} - \kappa (\varphi_x + \psi)_x = h(x)$$ \hspace{1cm} (11)

$$\rho_2 \psi_{tt} - b \psi_{xx} + \kappa (\varphi_x + \psi) + \mu_1 \phi_t + \mu_2 \psi_t(x, t-\tau) + f(\psi) = g(x).$$ \hspace{1cm} (12)

For $h = g = f = 0$, Said-Houari and Laskri in [47] obtained exponential decay assuming (6) and (10). In [55], J. Zhang et al., by using (6) and (10) they obtained the existence of global solution and exponential attractor for the system (11)-(12) considering time-varying delay, that is, $\tau = \tau(t)$.

There are not many studies considering the elastic pore system with delay mechanisms, among which we can consider [2, 32, 45]. In the references [2, 32] the authors studying the elastic porous system subjected to thermal mechanisms and time-varying delay.

C. Raposo et al. in [45] studied the following dimensional transmission problem for a elastic pore system with delay in the equation of transverse displacement

$$u_{tt} - u_{xx} - b \varphi_x + \mu_1 u_t + \mu_2 u_t(x, t-\tau) = 0 \hspace{1cm} (x, t) \in \Omega \times (0, +\infty),$$ \hspace{1cm} (13)

$$\varphi_{tt} - \varphi_{xx} + bu_x + a \varphi + \xi \varphi_t = 0 \hspace{1cm} (x, t) \in \Omega \times (0, +\infty),$$ \hspace{1cm} (14)

$$v_{tt} - v_{xx} - \beta \phi_x = 0 \hspace{1cm} (x, t) \in (L_1, L_2) \times (0, +\infty),$$ \hspace{1cm} (15)

$$\phi_{tt} - \phi_{xx} + \beta v_x + \alpha \phi + \xi \phi_t = 0 \hspace{1cm} (x, t) \in (L_1, L_2) \times (0, +\infty),$$ \hspace{1cm} (16)

where $0 < L_1 < L_2 < L$ and $\Omega = (0, L_1) \cup (L_2, L)$. By using a method developed by Z. Liu and S. Zheng (cf.[34]) and the inequality (6), they showed that the semigroup associated with the system is analytic and therefore exponentially stable.

In this paper we study a nonlinear porous-elastic system with delay given by

$$\rho u_{tt} - \mu u_{xx} - b \phi_x + u_t + f_1(u, \phi) = h_1(x),$$ \hspace{1cm} (17)

$$J\phi_{tt} - \delta \phi_{xx} + bu_x + \xi \phi + \mu_1 \phi_t + \mu_2 \phi_t(x, t-\tau) + f_2(u, \phi) = h_2(x),$$ \hspace{1cm} (18)

$(x, t) \in (0, 1) \times (0, \infty), \text{subject to the boundary conditions}$

$$u(0, t) = u(1, t) = \phi(0, t) = \phi(1, t) = 0, \hspace{1cm} t > 0,$$ \hspace{1cm} (19)

and initial boundary conditions

$$u(x, 0) = u_0(x), \hspace{0.2cm} u_t(x, 0) = u_1(x), \hspace{0.2cm} \phi(x, 0) = \phi_0(x),$$ \hspace{1cm} (20)

$$\phi_t(x, 0) = \phi_1(x), \hspace{1cm} x \in (0, 1),$$

$$\phi_t(x, t-\tau) = f_0(x, t-\tau), \hspace{0.2cm} (x, t) \in (0, 1) \times (0, \tau).$$ \hspace{1cm} (21)

It is noteworthy that the Timoshenko system when subjected to a single damping of the form

$$\mu_1 \psi_t(x, t) + \mu_2 \psi_t(x, t-\tau)$$ \hspace{1cm} (22)

in the equation of filament rotation, is exponentially stable (or in the case of non-linear systems, there are attractors), if equality of wave velocities is valid, but the equality of speeds for the Timoshenko system is not physically possible. Therefore, in order not to adopt equal velocities for the porous elastic system and of this form to restrict the system, the term u_t was added to equation (17).
2. Well-posedness. In this section, we will establish the existence and uniqueness of global solution for the porous elastic system (17)-(21). In order to obtain the well posedness of the system (17)-(21), we will use a procedure found in [23, 47] to perform a convenient variable change

\[z(x, y, t) = \phi_1(x, t - \tau y), \quad (x, y, t) \in (0, 1) \times (0, 1) \times (0, \infty), \]

(23)

it is easy to verify that

\[\tau z_t(x, y, t) + z_y(x, y, t) = 0 \quad \text{em} \quad (0, 1) \times (0, 1) \times (0, \infty). \]

(24)

Replacing \(z \) in (17)-(21) we get

\[\rho u_{tt} - \mu u_{xx} - b \phi_x + u_t + f_1(u, \phi) = h_1(x), \]

(25)

\[J\phi_{tt} - \delta \phi_{xx} + bu_x + \xi \phi + \mu_1 \phi_t + \mu_2 z(1, \cdot) + f_2(u, \phi) = h_2(x), \]

(26)

\[\tau z_t + z_y = 0, \]

(27)

with initial conditions

\[u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad \phi(x, 0) = \phi_0(x), \quad \phi_t(x, 0) = \phi_1(x), \; x \in (0, 1), \]

(28)

and boundary conditions

\[u(0, t) = u(1, t) = \phi(0, t) = \phi(1, t) = 0, \quad t > 0, \]

\[z(x, 0, t) = \phi_t(x, t), \quad x \in (0, 1), \quad t > 0. \]

(30)

For reasons of economy of notation, we will write \(z_1 = z_1(x, t) \) to represent \(z = z(x, y, t) \) when \(y = 1 \) is constant. In this way, we can write the system (3)-(8) in the form of a semilinear abstract initial value problem, in the unknown \(\Psi \) as follows

\[
\begin{aligned}
\left\{
\begin{array}{l}
\Psi_t(t) = A\Psi(t) + \mathcal{F}(\Psi(t)) \quad t > 0, \\
\Psi(0) = \Psi_0,
\end{array}
\right.
\end{aligned}
\]

(31)

where \(\Psi_0 = (u_0, u_1, \phi_0, \phi_1, f_0) \), \(A : D(A) \subset \mathcal{H} \to \mathcal{H} \) and \(\mathcal{F} : \mathcal{H} \to \mathcal{H} \) are operators given by

\[
AW = \begin{pmatrix}
\frac{\nu}{\rho} v_{xx} + \frac{b}{\rho} \varphi_x - \frac{1}{\rho} w \\
\frac{\delta}{\tau} \varphi_{xx} - \frac{b}{\rho} v_x - \frac{\xi}{\rho} \varphi - \frac{\mu_1}{\rho} \psi - \frac{\mu_2}{\rho} p(x, 1)
\end{pmatrix}, \quad \mathcal{F}(W) = \begin{pmatrix}
\frac{1}{\rho} [h_1 - f_1(\varphi, \psi)] \\
\frac{1}{\tau} [h_2 - f_2(\varphi, \psi)]
\end{pmatrix},
\]

with

\[W \in D(A) = \{(v, w, \varphi, \psi, p) \in \mathcal{H} : \quad p(x, 0) = \psi(x) \in (0, 1)\} \]

(32)

where \(p = p(x, y) \) and

\[\mathcal{H} = (H^2(0, 1) \cap H^1_0(0, 1)) \times H^1_0(0, 1) \times (H^2(0, 1) \cap H^1_0(0, 1)) \times H^1_0(0, 1) \times L^2(0, 1; H^1_0(0, 1)). \]

(33)

The phase space \(\mathcal{H} \) is given by

\[\mathcal{H} = H^1_0(0, 1) \times L^2(0, 1) \times H^1_0(0, 1) \times L^2(0, 1) \times L^2((0, 1) \times (0, 1)). \]

(34)

Consider \(\vartheta \) a positive constant satisfying

\[\tau \mu_2 < \vartheta < \tau (2\mu_1 - \mu_2). \]

(35)
The choice of \(\vartheta \) is possible, since \(\mu_2 < \mu_1 \). In addition, for economy of notation, let us consider
\[
\chi := \mu - \frac{b^2}{\xi} \geq 0. \tag{36}
\]

We define in \(\mathcal{H} \) the following inner product \((\cdot, \cdot)_{\mathcal{H}} \) and norm \(\| \cdot \|_{\mathcal{H}} \),
\[
(W, W)_{\mathcal{H}} = \rho(w, \bar{w})_2 + J(\psi, \dot{\psi})_2 + \delta(\varphi_x, \dot{\varphi}_x)_2 + \chi(v_x, \dot{v}_x)_2 + \vartheta(p, \dot{p})_2,
\]
\[
\|W\|_{\mathcal{H}}^2 = \rho\|w\|_2^2 + J\|\psi\|_2^2 + \delta\|\varphi_x\|_2^2 + \chi\|v_x\|_2^2 + \vartheta\|p\|_2^2,
\]
respectively, for \(W = (v, w, \varphi, \psi, p) \), \(\bar{W} = (\bar{v}, \bar{w}, \bar{\varphi}, \bar{\psi}, \bar{p}) \) in \(\mathcal{H} \), where \((\cdot, \cdot)_2 \) and \(\| \cdot \|_2 \) are inner product and norm in \(L^2(0,1) \) (or in \(L^2((0,1) \times (0,1)) \) in the case of the function \(p \)), respectively.

2.1. **Assumptions.** In order to obtain the results of existence and uniqueness of solution as well as the existence of attractors, consider the following assumptions about the functions present in (17)-(18).

(A1): \(h_i \in L^2(0,1) \) for \(i = 1,2; \)

(A2): The functions \(f_i : \mathbb{R}^2 \to \mathbb{R} \), \(i = 1,2 \) are locally Lipschitz continuous on each of its arguments, namely, there exist a constant \(\gamma_i \geq 1 \) and a continuous function \(\sigma_i : \mathbb{R} \to \mathbb{R}_+ \) such that
\[
|f_i(s_1, r) - f_i(s_2, r)| \leq \sigma_i(|r|)(1 + |s_1|^{\gamma_i} + |s_2|^{\gamma_i})|s_1 - s_2|, \tag{38}
\]
\[
|f_i(s, r_1) - f_i(s, r_2)| \leq \sigma_i(|s|)(1 + |r_1|^{\gamma_i} + |r_2|^{\gamma_i})|r_1 - r_2|, \tag{39}
\]
for every \((s, r), (s_j, r_j) \in \mathbb{R}^2 \), \(j = 1,2. \)

(A3): There is a \(C^2 \) function \(F : \mathbb{R}^2 \to \mathbb{R} \) such that
\[
\nabla F = (f_1, f_2) \tag{40}
\]
and
\[
F(s, r) \geq -\theta_2 - \alpha_1 |r|^2 - \theta_1 |s|^2, \quad \forall (s, r) \in \mathbb{R}^2, \tag{41}
\]
\[
F(s, r) \leq f_1(s, r)s + f_2(s, r)r + \theta_1 |s|^2 + \alpha_1 |r|^2 + \theta_2, \quad \forall (s, r) \in \mathbb{R}^2, \tag{42}
\]
for some constants
\[
0 \leq \theta_1 \leq \frac{\chi}{8}, \quad 0 \leq \alpha_1 \leq \frac{\delta}{8}, \quad \text{and} \quad \theta_2 \geq 0. \tag{43}
\]

2.2. **Strong and mild solutions.**

Lemma 2.1. Assume that \(\mu_2 < \mu_1 \), then the operator \(\mathcal{A} \) defined in (10) is an infinitesimal generator of a \(C_0 \)-semigroup of contractions \(e^{\mathcal{A}t} \) in \(\mathcal{H} \).

Proof. Let us first observe that \(D(A) \) is dense in \(\mathcal{H} \) and for all \(W = (v, w, \varphi, \psi, p) \in D(A) \), we have
\[
(\mathcal{A}W, W)_{\mathcal{H}} = -\|w\|^2 - \left(\mu_1 - \frac{\vartheta}{2\tau} \right) \|\psi\|^2 - \frac{\vartheta}{2\tau} \|p_1\|^2 - \mu_2 \int_0^1 p_1 \psi dx,
\]
where \(p_1(x) = p(x, 1) \) for all \(x \in (0,1) \). From Young’s inequality and (13) we obtain
\[
(\mathcal{A}W, W)_{\mathcal{H}} \leq -\|w\|^2 - \left(\mu_1 - \frac{\vartheta}{2\tau} - \frac{\mu_2}{2} \right) \|\psi\|^2 - \left(\frac{\vartheta}{2\tau} - \frac{\mu_2}{2} \right) \|p_1\|^2 \leq 0,
\]
that is, the operator A is dissipative. Let us now prove that $0 \in g(A)$ where $g(A)$ is the resolvent set of A. In fact, given $F = (g^1, g^2, g^3, g^4, g^5) \in \mathcal{H}$, we must obtain $W = (v, w, \varphi, \psi, p) \in D(A)$ such that

$$-AW = F,$$

in terms of coordinates of the equation (22) we have

$$-w = g^1,$$

$$-\mu v_{xx} - b\varphi_x + w = \rho g^2,$$

$$-\psi = g^3,$$

$$-\delta \varphi_{xx} + bv_x + \xi \varphi + \mu_1 \psi + \mu_2 p(\cdot, 1) = Jg^4,$$

$$p_y = \tau g^5,$$

we get this way

$$w = -g^1, \in H^1_0(0, 1)$$

$$\psi = -g^3, \in H^1_0(0, 1)$$

$$p(x, y) = \tau \int_0^y g^5(x, s)ds + g^3(x) \in L^2(0, 1; H^1_0(0, 1)),$$

replacing (28) in (24) and (29), (30) in (26) we obtain

$$-\mu v_{xx} - b\varphi_x = g^6,$$

$$-\delta \varphi_{xx} + bv_x + \xi \varphi = g^7,$$

where

$$g^6 = \rho g^2 + g^1 \in L^2(0, 1),$$

$$g^7 = Jg^4 + \mu_1 g^3 - \mu_2 \tau \int_0^1 g^5(\cdot, s)ds - \mu_2 g^3 \in L^2(0, 1).$$

Multiplying (31) by $\hat{v} \in H^1_0(0, 1)$, (31) by $\hat{\varphi} \in H^1_0(0, 1)$, integrating over $[0, 1]$ with respect to x and adding the results we obtain

$$a((v, \varphi), (\hat{v}, \hat{\varphi})) = h(\hat{v}, \hat{\varphi}),$$

where $a : H^1_0(0, 1) \times H^1_0(0, 1) \rightarrow \mathbb{R}$ is a bilinear functional and $h : H^1_0(0, 1) \rightarrow \mathbb{R}$ is a linear functional given by

$$a((v, \varphi), (\hat{v}, \hat{\varphi})) = \delta(\varphi_x, \hat{\varphi}_x) + \mu(v_x, \hat{\varphi}_x) + b(v_x, \varphi) + \mu_2 \hat{\varphi}_x + \xi(\varphi, \hat{\varphi})_2$$

$$h(\hat{v}, \hat{\varphi}) = (g^6, \hat{v})_2 + (g^7, \hat{\varphi})_2.$$

It is not difficult to show that a is continuous and coercive and h is continuous. It follows from the Lax-Milgram Theorem that there exists $(v, \varphi) \in H^1_0(0, 1) \times H^1_0(0, 1)$ such that (33) is verified for all $(\hat{v}, \hat{\varphi}) \in H^1_0(0, 1) \times H^1_0(0, 1)$ and from (31)-(32), we obtain

$$\mu v_{xx} = -g^6 - b\varphi_x \in L^2(0, 1),$$

$$\delta \varphi_{xx} = -g^7 + bv_x + \xi \varphi \in L^2(0, 1),$$

this means that $v, \varphi \in H^2(0, 1)$ and thus $(v, w, \varphi, \psi, p) \in D(A)$ is solution of (22), which implies $0 \in g(A)$. It follows from Lumer-Phillips’s Theorem [34, Theorem 1.2.4] that A is the infinitesimal generator of a C_0 semigroup of contractions thus proving the Lemma 2.1.

The proof of the following Lemma can be found in [18].
Lemma 2.2. Assume that (A1)-(A2) are valid, then the operator \mathcal{F} defined in (10) is locally Lipschitz, that is, for all $M > 0$, there exists a constant $L_M > 0$ (depending on M) such that, if $W, \dot{W} \in \mathcal{H}$, with $\|W\|_{\mathcal{H}}, \|\dot{W}\|_{\mathcal{H}} \leq M$ we have
\[
\|\mathcal{F}(W) - \mathcal{F}(\dot{W})\|_{\mathcal{H}} \leq L_M\|W - \dot{W}\|_{\mathcal{H}}.
\] (56)

Consider below the concepts of strong solution and mild solution that will be used in the remainder of this work.

(S1): A function $\Psi : [0, T) \rightarrow \mathcal{H}$, with $T > 0$, is a strong solution of (9), if Ψ is continuous on $[0, T)$, continuously differentiable on $(0, T)$, with $\Psi(t) \in D(\mathcal{A})$ for all $t \in (0, T)$ and satisfying (9) on $[0, T)$ almost everywhere.

(S1i): A function $\Psi \in C([0, T), \mathcal{H})$, $T > 0$, satisfying the integral equation
\[
\Psi(t) = e^{At}\Psi_0 + \int_0^t e^{A(t-s)}\mathcal{F}(\Psi(s))ds, \quad t \in [0, T),
\] (57)

is called mild solution of (9).

Lemma 2.3 (Local solution). Suppose $\mu_2 < \mu_1$, (A1)-(A2) are valid. If $U_0 \in \mathcal{H}$, then there exists $T_{\text{max}} > 0$ such that (9) has a unique mild solution $U : [0, T_{\text{max}}) \rightarrow \mathcal{H}$. In addition, if $U_0 \in D(\mathcal{A})$, then the mild solution is strong solution.

Proof. The result follows directly from Lemmas 2.1, 2.2 and of [43, Chap. 6, Theorems 1.4 and 1.5].

Remark 1. It is worth noting that by density arguments, any mild solution of (3)-(8) can be approximated by strong solutions. The calculations that will be performed in this work will not need regularity better than that of the strong solutions.

2.3. Global solution. In this subsection, we will define the energy associated with the system (3)-(8) as well as prove the existence of an inequality involving this energy that will enable us to obtain a global solution for the system (3)-(8).

Let $U(t) = (u(t), u_t(t), \phi(t), \dot{\phi}(t), z(t))$ be a strong or mild solution of (3)-(8) defined on $[0, T_{\text{max}})$. The energy $E(t)$, associated with $U(t)$ is the functional defined by
\[
E(t) = \frac{\rho}{2}\|u_t(t)\|_2^2 + \frac{J}{2}\|\phi_t(t)\|_2^2 + \frac{\delta}{2}\|\phi_x(t)\|_2^2 + \frac{\chi}{2}\|u_x(t)\|_2^2 + \frac{1}{2}\left(\frac{b}{\sqrt{\xi}}\|u_x(t) + \sqrt{\xi}\phi(t)\|_2^2 + \frac{\vartheta}{2}\|z(t)\|_2^2\right) + \int_0^1 F(u(t), \phi(t))dx + \int_0^1 h_1u_t(t)dx + \int_0^1 h_2\phi(t)dx,
\] (58)

for all $t \in [0, T_{\text{max}})$.

Lemma 2.4. Assume that $\mu_2 < \mu_1$ and (A1)-(A3) are valid. Then the functional energy (36) is non-decreasing, more precisely, for any strong solution $U(t) = (u(t), u_t(t), \phi(t), \dot{\phi}(t), z(t))$ of (3)-(8), defined in $[0, T_{\text{max}})$ we have
\[
\frac{dE(t)}{dt} \leq -\|u_t(t)\|_2^2 - \left(\mu_1 - \frac{\vartheta}{2\tau} - \frac{\mu_2}{2}\right)\|\phi_t(t)\|_2^2 - \left(\frac{\vartheta}{2\tau} - \frac{\mu_2}{2}\right)\|z_1(t)\|_2^2 \leq 0,
\] (59)

t \in [0, T_{\text{max}}). In addition, there exists a constant $K = K(||h_1||_2, ||h_2||_2) > 0$ such that
\[
\|U(t)\|_\mathcal{H}^2 \leq 4E(t) + K, \quad \forall t \in [0, T_{\text{max}}).
\] (60)
Proof. Multiplying (3) by u_t and (4) by ϕ_1, integrating over $[0, 1]$ with respect to x and adding the results and applying the Young’s inequality, we obtain

$$
\frac{d}{dt} \left\{ \frac{\rho}{2} \| u_t(t) \|^2 + \frac{J}{2} \| \phi_1(t) \|^2 + \frac{\delta}{2} \| \phi_x(t) \|^2 + \frac{\chi}{2} \| u_x(t) \|^2 \right\} + \frac{1}{2} \left\| \frac{b}{\sqrt{\xi}} u_x(t) + \sqrt{\xi} \phi(t) \right\|^2 + \int_0^1 F(\varphi(t), \psi(t))dx - \int_0^1 h_1 \varphi(t)dx - \int_0^1 h_2 \psi(t)dx \right\}
$$

$$
\leq -\| u_t(t) \|^2 - \left(\mu_1 - \frac{\mu_2}{2} \right) \| \phi(t) \|^2 + \frac{\mu_2}{2} \| z_1(t) \|^2.
$$

Multiplying (5) by $\frac{\partial}{\partial t} \varphi$ and integrating over $[0, 1] \times [0, 1]$ with respect to y and x we arrive at

$$
\frac{\partial}{\partial t} \int_0^1 \frac{1}{2} \| \varphi(t) \|^2 dydx = \frac{\partial}{\partial t} \| \phi(t) \|^2 - \frac{\partial}{\partial t} \| \phi(t) \|^2.
$$

Combining (39) and (40), we obtain (37). On the other hand, it follows from (15) and (36) that

$$
E(t) = \frac{1}{2} \| U(t) \|_{\mathcal{H}}^2 + \int_0^1 F(\varphi(t), \psi(t))dx - \int_0^1 h_1 \varphi(t)dx - \int_0^1 h_2 \psi(t)dx.
$$

From (19) and Poincaré’s inequality we have

$$
\int_0^1 F(u(t), \phi(t))dx \geq -\theta_2 - \alpha_1 \| \phi(t) \|^2 - \theta_1 \| u(t) \|^2
$$

$$
\geq -\theta_2 - \alpha_1 \| \phi_x(t) \|^2 - \theta_1 \| u_x(t) \|^2.
$$

Using the Young’s and Poincaré’s inequalities, we obtain

$$
\int_0^1 h_1 \varphi(t)dx \leq \frac{1}{2 \varepsilon_1} \| h_1(t) \|^2 + \frac{\varepsilon_1}{2} \| u_x(t) \|^2
$$

$$
\int_0^1 h_2 \psi(t)dx \leq \frac{1}{2 \varepsilon_2} \| h_2(t) \|^2 + \frac{\varepsilon_2}{2} \| \phi_x(t) \|^2.
$$

Combining (41), (42), (43) and (44), we arrive at

$$
\frac{1}{2} \| U(t) \|^2 - \left[\theta_2 + \frac{1}{2 \varepsilon_1} \| h_1(t) \|^2 + \frac{1}{2 \varepsilon_2} \| h_2(t) \|^2 \right] \leq E(t) + \left(\alpha_1 + \frac{\varepsilon_2}{2} \right) \| \phi_x(t) \|^2 + \left(\theta_1 + \frac{\varepsilon_1}{2} \right) \| u_x(t) \|^2.
$$

Taking appropriate $\varepsilon_1, \varepsilon_2 > 0$, we obtain

$$
\frac{1}{2} \| U(t) \|^2 - 2K \leq 2E(t),
$$

which proves (38) thus completing the proof of Lemma 2.4. \qed

Theorem 2.5 (Global Solutions). Suppose $\mu_2 < \mu_1$ and (A1)-(A3) are valid.

(i): The local solutions obtained in Lemma 2.3 are global solutions, that is, $T_{\text{max}} = \infty$;

(ii): If U_1 and U_2 are two mild solutions of the problem (9) and $T > 0$, then there exists a positive constant $C_0 = C_0(\| U_1(0) \|_{\mathcal{H}}, \| U_2(0) \|_{\mathcal{H}})$ such that

$$
\| U_1(t) - U_2(t) \|_{\mathcal{H}} \leq e^{C_0 t} \| U_1(0) - U_2(0) \|_{\mathcal{H}}, \quad \forall t \in [0, T].
$$
Proof. (i) From (37), we have
\[E(t) \leq E(0), \quad \forall t \in [0, T_{\text{max}}) \] (70)
and combining with (46), we obtain
\[\frac{1}{4} \|U(t)\|_H^2 \leq E(0) + K, \quad \forall t \in [0, T_{\text{max}}). \] (71)
Therefore, it follows from [43, Chap. 6, Theorems 1.4] that
\[T_{\text{max}} = +\infty, \]
which proves (i).

(ii) Since \(U_1 \) and \(U_2 \) are mild solutions of (9), we have
\[\|U_1(t) - U_2(t)\|_H = \left\| e^{tA}(U_1(0) - U_2(0)) - \int_0^t e^{(t-s)A}(F(U_1(s)) - F(U_2(s)))ds \right\|_H. \]
Being \(e^{tA} \) a semigroup of contractions, we have
\[\|U_1(t) - U_2(t)\|_H \leq \|U_1(0) - U_2(0)\|_H + \int_0^t \|F(U_1(s)) - F(U_2(s))\|_H ds. \]
From Lemma 2.2 and (49), there exists a positive constant \(C_0 \) depending on \(U_1(0) \) and \(U_2(0) \) such that
\[\|U_1(t) - U_2(t)\|_H \leq \|U_1(0) - U_2(0)\|_H + C_0 \int_0^t \|U_1(s) - U_2(s)\|_H ds, \quad \forall t \in [0, T]. \]
Applying the Gronwall inequality we get (47). This completes the proof of Theorem 2.5.

3. Long-time dynamics. From Theorem 2.5 we can define the dynamical system
\((\mathcal{H}, S(t)) \), associated with the problem (3)-(8), where \(\mathcal{H} \) was defined in (12) and
\(S(t) \) is semigroup (evolution operator) given by
\[S(t)U_0 = U(t), \quad \forall t \geq 0, \quad U_0 = (u_0, u_1, \phi_0, \phi_1, f_0) \in \mathcal{H}, \] (72)
where \(U(t) \) is mild solution of (9). Key concepts as well as main results related to
dynamical systems can be found, among others, in [7, 11, 12, 13, 24, 46, 52]. Here we
exploit some of these preliminary concepts and apply the concept of quasi-stability
given in Chueshov and Lasiecka [12, 13].

3.1. Some concepts and results related to dynamical systems. In this subsection, we will outline some concepts and results related to dynamical systems that
will be important for this work. In the sequence, \(H \) will represent a generic Banach
space and \(S(t) \) a strongly continuous evolution operator.

Definition 3.1. We say that a set \(B \subset H \) is absorbing for \((H, S(t)) \), if for any
bounded set \(D \subset H \), there exists \(t_D \) such that
\[S(t)D \subset B, \quad \text{for all} \quad t > t_D. \] (73)
A dynamical system \((H, S(t)) \) is called dissipative, if it has a bounded absorbing
set.

Definition 3.2. A closed and bounded set \(\mathfrak{A} \subset H \), is a global attractor for \((H, S(t)) \)
if:
\[\text{a):} \quad \mathfrak{A} \text{ is an invariant set, that is} \]
\[S(t)\mathfrak{A} = \mathfrak{A}, \quad \forall t \geq 0; \]
b): The set \mathfrak{A} uniformly attracts bounded sets, that is, for every bounded set $B \subset H$, we have
$$
\lim_{t \to \infty} d_H \{S(t)B|\mathfrak{A}\} = 0,
$$
where $d_H \{A|B\}$ is Hausdorff’s semi-distance between sets A and B, that is
$$
d_H \{A, B\} = \sup_{x \in A} \text{dist}(x, B).
$$

Remark 2. It is clear that if a dynamical system $(H, S(t))$ has a global attractor, then it will be dissipative (cf.[52]), in this case we call radius of dissipativity the value $R > 0$, such that $B \subset \{x \in H; \|x\|_H \leq R\}$ where B is an absorbing bounded set for $(H, S(t))$.

Definition 3.3. A dynamical system $(H, S(t))$ is said asymptotically smooth if for any positively invariant bounded set $D \subset H$, that is, $S(t)D \subset D$ for all $t > 0$, there exists a compact set $K \subset D$, where \overline{D} is the closure of D, such that
$$
\lim_{t \to +\infty} d_H \{S(t)D|K\} = 0,
$$

Definition 3.4. Let \mathcal{N} be the sets of stationary points of $(H, S(t))$, that is
$$
\mathcal{N} = \{h \in H; S(t)h = h, \forall t \geq 0\},
$$
an unstable manifold emanating from \mathcal{N}, represented by $\mathcal{M}^u(\mathcal{N})$, is the set of all $h \in H$ such that there is a full trajectory $\gamma = \{u(t); t \in \mathbb{R}\}$ satisfying
$$
u(0) = h \quad \text{and} \quad \lim_{t \to -\infty} \text{dist}_H(u(t), \mathcal{N}) = 0.
$$
It is clear that $\mathcal{M}^u(\mathcal{N})$ is an invariant set for $(H, S(t))$ and if $\mathfrak{A} \subset H$ is global attractor for $(H, S(t))$, then $\mathcal{M}^u(\mathcal{N}) \subset \mathfrak{A}$ (cf. [7, 13]).

Definition 3.5. The dynamical system $(H, S(t))$ is called gradient, if there exists a strict Lyapunov function on H, that is, there exists a continuous function Φ such that $t \mapsto \Phi(S(t)y)$ is non-increasing for any $y \in H$, and if $\Phi(S(t)y_0) = \Phi(y_0)$ for all $t > 0$ and some $y_0 \in H$, then y_0 is a stationary point of $(H, S(t))$.

The fractal dimension of a compact set M in H is defined by
$$
\dim_H^f M = \lim_{\varepsilon \to 0} \sup \frac{\ln n(M, \varepsilon)}{\ln(1/\varepsilon)},
$$
where $n(M, \varepsilon)$ is the minimal number of closed balls of radius ε which covers M.

The proof of the following Theorem can be found in [13] p. 360.

Theorem 3.6. Let $(H, S(t))$ be a gradient and asymptotically smooth dynamical system. Assume that the Lyapunov function $\Phi(y)$ of $(H, S(t))$ is bounded from above on any bounded subset of H and the set $\Phi_R = \{y; \Phi(y) \leq R\}$ is bounded for every R. If the set \mathcal{N} of stationary points of $(H, S(t))$ is bounded, then $(H, S(t))$ possesses a compact global attractor $\mathfrak{A} = \mathcal{M}^u(\mathcal{N})$.

Let X, Y and Z be reflexives Banach spaces with X compactly embedded in Y. We consider the space $H = X \times Y \times Z$, with norm
$$
\|h\|_H := \|\pi_0\|_X^2 + \|\pi_1\|_Y^2 + \|\eta_0\|_Z^2, \quad h = (\pi_0, \pi_1, \eta_0) \in H,
$$
and the dynamical system $(H, S(t))$ given by an evolution operator
$$
S(t)h_0 = (\pi(t), \pi_t(\eta(t))) \quad t \geq 0, \quad h_0 = (\pi(0), \pi_t(0), \eta(0)) \in H,
$$

(74)
where the functions $\pi(t)$ and $\eta(t)$ possess the properties

$$\pi \in C(\mathbb{R}_+, X) \cap C^1(\mathbb{R}_+, Y), \quad \eta \in C(\mathbb{R}_+, Z). \quad (76)$$

The dynamical system $(H, S(t))$ is called quasi-stable on a set $B \subset H$ if there exist a compact seminorm $\eta_X(\cdot)$ on the space X and nonnegative scalar functions $a(t)$, $b(t)$ and $c(t)$ on \mathbb{R}_+ such that

QS1): $a(t)$ and $c(t)$ are locally bounded on $[0, \infty)$.
QS2): $b(t) \in L^1(\mathbb{R}_+)$ possesses the property

$$\lim_{t \to \infty} b(t) = 0, \quad (77)$$

QS3): for every $h_1, h_2 \in B$ and $t > 0$ the following relations

$$\|S(t)h_1 - S(t)h_2\|_H^2 \leq a(t)\|h_1 - h_2\|_H^2 \quad (78)$$

and

$$\|S(t)h_1 - S(t)h_2\|_H^2 \leq b(t)\|h_1 - h_2\|_H^2 + c(t) \sup_{0 \leq s \leq t} [\eta_X(\pi^1(s) - \pi^2(s))]^2 \quad (79)$$

hold. Here we denote $S(t)h_i = (\pi^i(t), \pi^i_1(t), \pi^i_2(t)), i = 1, 2$.

The following two results can be found in [13, Chapter 7], show us how strong the property of quasi-stability is for a dynamical system. The first, relates the quasi-stability to the asymptotically smooth and the second relates the quasi-stability to the fractal dimension of an attractor.

Theorem 3.7. Let $(H, S(t))$ be a dynamical system with the evolution operator of the form (4). Assume that $(H, S(t))$ is quasi-stable over bounded forward invariant set $B \subset H$. Then, $(H, S(t))$ is asymptotically smooth.

Theorem 3.8. Suppose $(H, S(t))$ be a dynamical system with the evolution operator of the form (4). Assume that $(H, S(t))$ possesses a compact global attractor A and is quasi-stable on A. Then the fractal dimension of A is finite.

Definition 3.9. A compact set $A_{\exp} \subset H$ is called a fractal exponential attractor if it has finite fractal dimension, is positively invariant, and for any bounded set $B \subset H$, there exist constants $t_B, C_B > 0$ and $\gamma_B > 0$ such that for all $t \geq t_B$,

$$\text{dist}_H(S(t)B, A_{\exp}) \leq C_B \exp(-\gamma_B(t-t_B)).$$

In some cases one can prove the existence of an exponential attractor whose dimension is finite in some extended space $\tilde{H} \supset H$ only. We frequently call this exponentially attracting set a generalized exponential attractor.

3.2. Main results. In the following we give our main results on long-time dynamics of the problem.

Theorem 3.10. Suppose that $\mu_2 < \mu_1$ and (A1)-(A3) are valid. we have:

I. The dynamical system $(H, S(t))$ given in (1) is quasi-stable on any bounded positively invariant set $B \subset H$.

II. The dynamical system $(H, S(t))$ possesses a unique compact global attractor $A \subset H$, which is characterized by the unstable manifold $\mathfrak{N} = M^u(N)$, emanating from the set $N = \{U = (u, 0, 0, 0) \in H; AU + F(U) = 0\}$ of stationary solutions.
III. Every trajectory stabilizes to the set \mathcal{N}, namely, for any $U \in \mathcal{H}$ one has
$$\lim_{t \to +\infty} \text{dist}_\mathcal{N}(S(t)U, \mathcal{N}) = 0.$$
In particular, there exists a global minimal attractor $\mathfrak{A}_{\text{min}}$ given by $\mathfrak{A}_{\text{min}} = \mathcal{N}$.

IV. The attractor \mathfrak{A} has finite fractal and Hausdorff dimension $\dim^f \mathfrak{A}$.

V. For any full trajectory
$$\left(u(t), \phi(t), u_t(t), \phi_t(t), z(t)\right) \text{ in } \mathfrak{A}$$
has further regularity
$$\left(u_t, \phi_t, u_{tt}, \phi_{tt}, z_t\right) \in L^\infty(\mathbb{R}, \mathcal{H}).$$
Moreover, there exists $R > 0$ such that
$$\|(u_t(t), \phi_t(t))\|_{(H^2_0(\Omega, L))}^2 + \|(u_{tt}(t), \phi_{tt}(t))\|_{(L^2(\Omega, L))}^2 + \|z_t(t)\|_{L^2((0,1) \times (0,1))}^2 \leq R^2, \quad \forall t \in \mathbb{R}. \quad (82)$$

VI. The dynamical system $(\mathcal{H}, S(t))$ possesses a generalized exponential attractor representing $\mathfrak{A}_{\exp} \subset \mathcal{H}$ with finite dimension in the extended space $\mathcal{H}_{-\delta} := L^2(0,1) \times H^{-1}(0,1) \times L^2(0,1) \times H^{-1}(0,1) \times L^2((0,1) \times (0,1))$, which is isomorphic to space $L^2(0,1) \times L^2(0,1) \times H^{-1}(0,1) \times H^{-1}(0,1) \times L^2((0,1) \times (0,1))$. In addition, from the interpolation theorem, for all $0 < \delta < 1$ there exists a generalized fractal exponential attractor whose fractal dimension is finite in the extended space $\mathcal{H}_{-\delta}$, where $\mathcal{H}_0 := \mathcal{H}$, and $\mathcal{H} \subset \mathcal{H}_{-\delta} \subset \mathcal{H}_{-1}$.

3.3. Proofs of main results.

3.3.1. Technical lemmas. To prove Theorem 3.10, we need the following technical lemmas.

Lemma 3.11. Suppose that $\mu_2 < \mu_1$ and $(A1)-(A3)$ hold. Then the dynamical system $(\mathcal{H}, S(t))$ is gradient. In addition there exists a Lyapunov functional Φ defined in \mathcal{H} such that

a): the Lyapunov functional Φ is bounded from above on any bounded subset of \mathcal{H};

b): the set $\Phi_R = \{U \in \mathcal{H} \mid \Phi(U) \leq R\}$ is bounded in \mathcal{H} for every $R > 0$.

Proof. Let us consider the functional energy defined in (36) as the Lyapunov function, that is, $\Phi \equiv E$. Thus, given $U_0 = (u_0, u_1, \phi_0, \phi_1, z_0) \in \mathcal{H}$, it follows from the Lemma 2.4 that the function $t \mapsto \Phi(S(t)U_0)$ is non-increasing and

$$\Phi(S(t)U_0) + \int_0^t \left[\|u(s)\|_2^2 + \left(\mu_1 - \frac{\mu_2}{2}\right)\|\phi_t(s)\|_2^2\right]ds + \left(\frac{\mu_2}{2}\right)\int_0^t \|z_1(s)\|_2^2 ds \leq \Phi(U_0), \quad \forall t \geq 0, \quad (84)$$

with
$$\mu_1 - \frac{\xi}{2\tau} - \frac{\mu_2}{2} > 0 \quad \text{and} \quad \frac{\xi}{2\tau} - \frac{\mu_2}{2} > 0. \quad (85)$$

If $\Phi(S(t)U_0) = \Phi(U_0)$ for all $t \geq 0$ then, from (13), we have
$$u_t(t) = 0, \quad \phi_t(t) = 0, \quad z_1(t) = 0, \quad \text{a.e. in } (0,1), \forall t \geq 0, \quad (86)$$

...
from (7) we have $f_0 = 0$ and from (1) we obtain

$$z(x, y, t) = \phi_1(x, t - \tau y) = 0, \quad (x, y) \in (0, 1) \times (0, 1), \quad t > 0,$$

(87) that implies

$$u(t) = u_0, \quad \phi(t) = \phi_0, \quad \text{and} \quad z(t) = 0 \quad \forall t \geq 0.$$

(88) This gives us $U(t) = S(t)U_0 = (u_0, 0, \phi_0, 0, 0)$ for all $t \geq 0$, that is, U_0 is a stationary point of $(\mathcal{H}, S(t))$, thus proving that Φ is a strict Lyapunov function of $(\mathcal{H}, S(t))$ and therefore, the dynamical system is gradient.

It is easy to see from (13) that Φ is bounded from above on bounded subsets of \mathcal{H}, which proves (a). Given $W_0 \in \Phi_R$, consider $W(t)$ the mild solution corresponding to W_0, from the inequalities (46) and (13) we have

$$\|W(t)\|_\mathcal{H} \leq 4 \Phi(S(t)W_0) + 4K_{E_1} \leq 4\Phi(W_0) + 4K_{E_1}, \quad t \geq 0,$$

for $t = 0$, we obtain

$$\|W_0\|_\mathcal{H} \leq 4R + 4K_{E_1},$$

showing thus Φ_R is a bounded set of \mathcal{H}, which proves (b) and completes the proof of the Lemma 3.11.

Lemma 3.12. The set $\mathcal{N} = \{U = (u, 0, \phi, 0, 0) \in \mathcal{H}; AU + F(U) = 0\}$ of stationary solutions is bounded in \mathcal{H}.

Proof. We know that u and ϕ satisfy

$$-\mu u_{xx} - b\phi_x + f_1(u, \phi) = h_1 \quad \text{in} \quad (0, 1),$$

(89)

$$-\delta \phi_{xx} + bu_x + \xi \phi + f_2(u, \phi) = h_2 \quad \text{in} \quad (0, 1).$$

(90)

Multiplying (18) by u and (19) by ϕ, integrating over $[0, 1]$ and adding the results, we obtain

$$\delta \|\phi_x\|_2^2 + \chi \|u_x\|_2^2 + \left\| \frac{b}{\sqrt{\xi}} u_x + \sqrt{\xi} \phi \right\|_2^2 + \int_0^1 [f_1(u, \phi)u + f_2(u, \phi)\phi]dx = \int_0^1 [h_1u + h_2\phi]dx.$$

(91)

From (19)-(20), we have

$$\int_0^1 [f_1(u, \phi)u + f_2(u, \phi)\phi]dx \geq -2\theta_2 - 2\theta_1\|u\|_2^2 - 2\alpha_1\|\phi\|_2^2 \geq -2\theta_2 - 2\theta_1\|u_x\|_2^2 - 2\alpha_1\|\phi_x\|_2^2.$$

(92)

By Hölder’s and Poincaré’s inequalities, we have

$$\int_0^1 [h_1u + h_2\phi]dx \leq \|h_1\|_2\|u\|_2 + \|h_2\|_2\|\phi\|_2$$

$$\leq \|h_1\|_2\|u_x\|_2 + \|h_2\|_2\|\phi_x\|_2$$

$$\leq \frac{\alpha}{2}\|u_x\|_2^2 + \frac{\delta}{2}\|\phi_x\|_2^2 + \frac{1}{2\chi}\|h_1\|_2^2 + \frac{1}{2\delta}\|h_2\|_2^2.$$

(93)

From (20)-(22) and (21) we obtain

$$\frac{1}{4}\|U\|_\mathcal{H}^2 = \frac{\delta}{4}\|\phi_x\|_2^2 + \frac{\chi}{4}\|u_x\|_2^2 + \frac{b}{4\sqrt{\xi}} u_x + \sqrt{\xi} \phi \right\|_2^2 \leq \frac{1}{2\chi}\|h_1\|_2^2 + \frac{1}{2\delta}\|h_2\|_2^2 + 2\theta_2,$$

showing that \mathcal{N} is bounded in \mathcal{H}, this completes the proof of the Lemma 3.12. □
The following lemma will be crucial to obtain the existence of a global attractor for the dynamical system \((\mathcal{H}, S(t))\) and its properties. We usually called stabilizability inequality.

Lemma 3.13 (Stabilizability Inequality). Suppose the assumptions of Theorem 3.10 hold. Let \(S(t)U_i = (u^i(t), u^i_1(t), \phi^i(t), \phi^i_1(t), z^i(t)) \ (i = 1, 2)\) be the mild solutions of problem (3)-(8) with initial data \(U_i\) lying in a bounded set \(B \subset \mathcal{H}\). Then there exist positive constants \(\gamma, \zeta\) and \(C_B\) such that for any \(t \geq 0\),

\[
\|S(t)U_1 - S(t)U_2\|_\mathcal{H}^2 \leq \zeta e^{-\gamma t}\|U_1 - U_2\|_\mathcal{H}^2 + C_B\int_0^t e^{-\gamma(t-s)}\left[\|p(s)\|_2^2 + \|q(s)\|_2^2\right]ds,
\]

where \(p = u^1 - u^2\) and \(q = \phi^1 - \phi^2\).

Proof. Consider the representation

\[
U(t) = S(t)U_1 - S(t)U_2 = (p(t), p_1(t), q(t), q_1(t), w(t)), \quad t \geq 0
\]

where \(w = z^1 - z^2\). Thus \(U(t)\), in the sense of mild solution, solves the following system

\[
\rho p_{tt} - \rho p_{xx} - b q_x + p_t + f_1(u^1, \phi^1) - f_1(u^2, \phi^2) = 0,
\]

\[
J q_{tt} - \delta q_{xx} + b p_x + \xi q + \mu_1 q_t + \mu_2 w(x, t) + f_2(u^1, \phi^1) - f_2(u^2, \phi^2) = 0,
\]

\[
\tau w_t + w_y = 0.
\]

Multiplying (24) by \(p_t\) and (25) by \(q_t\), integrating with respect to \(x\) over \([0, 1]\) and adding the results, we obtain

\[
\frac{1}{2} \frac{d}{dt} \left(\rho \|p_t\|_2^2 + J \|q_t\|_2^2 + \delta \|q_x\|_2^2 + \chi \|p_x\|_2^2 + \left(\frac{b}{\sqrt{\xi}} p_x + \sqrt{\xi} q \right)^2 \right) =
\]

\[
- \int_0^1 (\Delta f_1) p_t dx - \int_0^1 (\Delta f_2) q_t dx - \|p_t\|_2^2 - \mu_1 \|q_t\|_2^2 - \mu_2 \int_0^1 w_1 q_t dx,
\]

where \(w_1(x, t) = w(x, 1, t)\) for all \((x, t) \in (0, 1) \times (0, \infty)\) e

\[
\Delta f_i = f_i(u^1, \phi^1) - f_i(u^2, \phi^2)
\]

\[
= [f_i(u^1, \phi^1) - f_i(u^2, \phi^2)] + [f_i(u^1, \phi^1) - f_i(u^2, \phi^2)].
\]

Multiplying (26) by \(\frac{\partial}{\partial y} w\) and integrating with respect to \(x\) and \(y\) over \([0, 1] \times [0, 1]\) we obtain

\[
\frac{\partial}{\partial t} \frac{d}{dt} \int_0^1 \int_0^1 w^2 dy dx = - \frac{\partial}{\partial y} \int_0^1 \int_0^1 \frac{\partial}{\partial y} w^2 dy dx
\]

\[
= - \frac{\partial}{\partial y} \int_0^1 w^2|y=1 dx
\]

\[
= \frac{\partial}{\partial y} \|q_t\|_2^2 - \frac{\xi}{2\tau} \|w_1\|_2^2.
\]

Adding (27) and (29), we get

\[
\frac{1}{2} \frac{d}{dt} \left(\rho \|p_t\|_2^2 + J \|q_t\|_2^2 + \delta \|q_x\|_2^2 + \chi \|p_x\|_2^2 + \left(\frac{b}{\sqrt{\xi}} p_x + \sqrt{\xi} q \right)^2 + \|w\|_2^2 \right) =
\]

\[
- \int_0^1 (\Delta f_1) p_t dx - \int_0^1 (\Delta f_2) q_t dx - \|p_t\|_2^2 - \left(\mu_1 - \frac{\partial}{\partial y} \right) \|q_t\|_2^2 - \mu_2 \int_0^1 w_1 q_t dx - \frac{\partial}{\partial y} \|w_1\|_2^2.
\]
Considering now the functional \mathcal{L} given by

$$
\mathcal{L}(t) := \rho \|p(t)\|_2^2 + J \|q(t)\|_2^2 + \delta \|q_x(t)\|_2^2 + \chi \|p_x(t)\|_2^2 + \frac{b}{\sqrt[k]{t}} |p_x(t) + \sqrt[k]{q(t)}|_2^2 + \vartheta \|w(t)\|_2^2 \equiv \|U(t)\|_{\mathcal{H}}^2
$$

(102)

Let’s now estimate the right side of (31). Since \mathcal{B} is bounded, it follows from (46)-(47) the existence of a constant K_{B_1} depending on \mathcal{B} such that

$$
\|S(t)U_1\|_{\mathcal{H}}, \|S(t)U_2\|_{\mathcal{H}} \leq K_{B_1}, \forall t \geq 0.
$$

(103)

Since σ_i is continuous and $H_0^1(0, 1) \hookrightarrow L^\infty(0, 1)$, there exists a constant $K_{B_2} > 0$ depending on \mathcal{B} such that

$$
\sigma_i(|u^i|), \sigma_i(|\phi^j|) \leq K_{B_2} \text{ a.e in } (0, 1) \times (0, \infty), i, j = 1, 2.
$$

(104)

From (A2), (32)-(33) and Hölder’s inequality we obtain

$$
\left| \int_0^1 (\Delta f_1)p(t) \, dt \right| \leq \int_0^1 \sigma_1(|u^1(t)|)(1 + |\phi^1(t)|^{\gamma_1} + |\phi^2(t)|^{\gamma_1}) \|q(t)\|p(t) \, dt
$$

$$
+ \int_0^1 \sigma_1(|\phi^2(t)|)(1 + |u^1(t)|^{\gamma_1} + |u^2(t)|^{\gamma_1}) \|p(t)\|p(t) \, dt
$$

$$
\leq K_{B_3} (1 + \|\phi^1(t)\|_{X_1}^{\gamma_1} + \|\phi^2(t)\|_{X_2}^{\gamma_1}) \int_0^1 \|q(t)\|p(t) \, dt
$$

$$
+ K_{B_3} (1 + \|u^1(t)\|_{X_1}^{\gamma_1} + \|u^2(t)\|_{X_2}^{\gamma_1}) \int_0^1 \|p(t)\|p(t) \, dt
$$

$$
\leq K_{B_3} \|q(t)\|_2 \|p(t)\|_2 + K_{B_3} \|p(t)\|_2 \|p(t)\|_2,
$$

(105)

for some constant K_{B_3} depending on \mathcal{B}. Applying Young’s inequality with $\varepsilon = \frac{\beta_1}{4} > 0$, there exists a constant $K_{B_4} > 0$ such that

$$
\left| \int_0^1 (\Delta f_1)p(t) \, dt \right| \leq K_{B_4} (\|p(t)\|_2^2 + \|q(t)\|_2^2) + \frac{\beta_1}{2} \|p(t)\|_2^2.
$$

(106)

In a similar way we can obtain a constant $K_{B_5} > 0$ depending on \mathcal{B} such that

$$
\left| \int_0^1 (\Delta f_2)q(t) \, dt \right| \leq K_{B_5} (\|p(t)\|_2^2 + \|q(t)\|_2^2) + \frac{\beta_2}{2} \|q(t)\|_2^2.
$$

(107)

From Young’s inequality, we have

$$
\mu_2 \int_0^1 w_1(t)q(t) \, dt \leq \frac{\mu_2}{2} \|q(t)\|_2^2 + \frac{\mu_2}{2} \|w_1(t)\|_2^2.
$$

(108)

Combining (35)-(37), we arrive at

$$
\frac{1}{2} \frac{d}{dt} \mathcal{L}(t) \leq K_{B_6} (\|p(t)\|_2^2 + \|q(t)\|_2^2) - \left(1 - \frac{\beta_1}{2}\right) \|p(t)\|_2^2
$$

$$
- \left(\mu_1 - \frac{\nu_1}{2\tau} - \frac{\mu_2}{2} - \frac{\beta_2}{2}\right) \|q(t)\|_2^2 - \left(\frac{\vartheta_1}{2\tau} - \frac{\mu_2}{2}\right) \|w_1(t)\|_2^2.
$$

(109)

where $K_{B_6} = K_{B_4} + K_{B_5}$. Considering now

$$
\beta_1 = 1 \quad \text{and} \quad \beta_2 = \mu_1 - \frac{\vartheta_1}{2\tau} - \frac{\mu_2}{2} > 0,
$$

(110)
we obtain
\[
\frac{d}{dt} L(t) \leq 2K_B(\|p(t)\|_2^2 + \|q(t)\|_2^2) - \|p_t(t)\|_2^2 - \left(\mu_1 - \frac{\theta}{2\tau} - \frac{\mu_2}{2}\right)\|q(t)\|_2^2 \tag{111}
\]

We now define the following functional
\[
I(t) = N\mathcal{L}(t) + J(t) + K(t) + MP(t), \tag{112}
\]
where \(N\) and \(M\) are positive constants to be chosen later and
\[
J(t) = \rho \int_0^1 p_t(t)p(t)dx, \quad K(t) = J \int_0^1 q_t(t)q(t)dx \quad \text{and} \quad \mathcal{P}(t) = \tau \int_0^1 \int_0^1 e^{-2\tau y}w(t)dydx. \tag{113}
\]

It is not difficult to check that there exists a constant \(C_{I_1} > 0\) such that
\[
|I(t) - N\mathcal{L}(t)| \leq C_{I_1}\mathcal{L}(t), \quad \forall t \geq 0. \tag{115}
\]

Therefore, for \(N\) large enough, we obtain positive constants \(C_{I_2}\) and \(C_{I_3}\) such that
\[
C_{I_2}\mathcal{L}(t) \leq I(t) \leq C_{I_3}\mathcal{L}(t), \quad \forall t \geq 0. \tag{116}
\]

We will now show that there are positive constants \(N_1\) and \(N_B\), with \(N_B\) depending on \(B\), such that
\[
\frac{d}{dt} I(t) + N_1\mathcal{L}(t) \leq N_B(\|p(t)\|_2^2 + \|q(t)\|_2^2), \quad \forall t > 0. \tag{117}
\]

In fact, taking the derivative of \(J\), we have
\[
\frac{d}{dt} J(t) = \rho \int_0^1 p_t^2(t)dx + \rho \int_0^1 p_{tt}(t)p(t)dx
\]
\[
= \rho\|p(t)\|_2^2 + \int_0^1 [\mu p_{xx}(t) + bq_x(t) - p_t(t) - (\Delta f_1)]p(t)dx
\]
\[
= \rho\|p(t)\|_2^2 - \mu \|p_x(t)\|_2^2 - b \int_0^1 q(t)p_x(t)dx - \int_0^1 p_t(t)p(t)dx
\]
\[
- \int_0^1 (\Delta f_1)p(t)dx. \tag{118}
\]

Now, take derivative of \(K\), we obtain
\[
\frac{d}{dt} K(t) = J \int_0^1 q_t^2(t)dx + J \int_0^1 q_{tt}(t)q(t)dx
\]
\[
= J\|q_t(t)\|_2^2 + \int_0^1 [\delta q_{xx}(t) - bp_x(t) - \xi q(t) - \mu_1 q_t(t) - \mu_2 w(t)]
\]
\[
- \Delta f_2|q(t)dx
\]
\[
= \rho_2\|q(t)\|_2^2 - \delta\|q_x(t)\|_2^2 - b \int_0^1 p_x(t)q(t)dx - \xi\|q^2(t)\|_2
\]
\[
- \mu_1 \int_0^1 q_t(t)q(t)dx - \mu_2 \int_0^1 w(t)q(t)dx - \int_0^1 (\Delta f_2)q(t)dx. \tag{119}
\]
From (47)-(48), we arrived at

\[
\frac{d}{dt}[\mathcal{J}(t) + \mathcal{K}(t)] = \rho \|p(t)\|_2^2 + J \|q(t)\|_2^2 - \delta \|q_x(t)\|_2^2 - \chi \|p_x(t)\|_2^2 \\
- \left\| \frac{b}{\sqrt{\xi}} p_x(t) + \sqrt{\xi} q(t) \right\|_2^2 - \int_0^1 \left[(\Delta f_1)p(t) + (\Delta f_2)q(t) \right] dx
\]

(120)

By analogous arguments to (34), we can conclude the existence of a constant \(K_{\mathcal{B}_t} > 0\) depending on \(\mathcal{B}\), such that

\[
\int_0^1 [(\Delta f_1)p(t) + (\Delta f_2)q(t)] dx \leq K_{\mathcal{B}_t}(\|p(t)\|_2^2 + \|q(t)\|_2^2).
\]

(121)

By using the Young's and Poincaré's inequalities, we have

\[
\left| \int_0^1 [p_t(t)p(t) + \mu_1 q_t(t)q(t)] dx \right| \leq \int_0^1 |p_t(t)p(t)| dx + \mu_1 \int_0^1 |q_t(t)q(t)| dx \\
\leq \|p_t(t)\|_2 \|p_x(t)\|_2 + \mu_1 \|q_x(t)\|_2 \|q_t(t)\|_2 \\
\leq \frac{1}{2\varepsilon_1} \|p_t(t)\|_2^2 + \frac{\varepsilon_1}{2} \|p_x(t)\|_2^2 + \mu_1^2 \|q_t(t)\|_2^2 + \frac{\varepsilon_2}{2} \|q_x(t)\|_2^2
\]

(122)

and

\[
\mu_2 \int_0^1 w_1(t) q dx \leq \frac{\varepsilon_3}{2} \|q_x\|_2^2 + \frac{\mu_2^2}{2\varepsilon_3} \|w_1(t)\|_2^2 dx.
\]

(123)

From (48)-(52) we obtain

\[
\frac{d}{dt}[\mathcal{J}(t) + \mathcal{K}(t)] \leq K_{\mathcal{B}_t}(\|p(t)\|_2^2 + \|q(t)\|_2^2) + \left(\rho + \frac{1}{2\varepsilon_1} \right) \|p_t\|_2^2 + \\
\left(J + \frac{\mu_1^2}{2\varepsilon_2} \right) \|q_t\|_2^2 + \left(-\delta + \frac{\varepsilon_2}{2} + \frac{\varepsilon_3}{2} \right) \|q_x\|_2^2 + \\
\left(-\chi + \frac{\varepsilon_1}{2} \right) \|p_x(t)\|_2^2 - \left\| \frac{b}{\sqrt{\xi}} p_x + \sqrt{\xi} q \right\|_2^2 + \frac{\mu_2^2}{2\varepsilon_3} \|w_1(t)\|_2^2.
\]

(124)
Taking the derivative of P, we have

\[
\frac{d}{dt} P(t) = 2\tau \int_0^1 \left(\int_0^1 e^{-2\tau y} w(t) w_y(t) dx \right) dx
\]

\[
= -2 \int_0^1 \left(\int_0^1 e^{-2\tau y} w(t) w_y(t) dx \right) dx
\]

\[
= -\int_0^1 \left(\int_0^1 e^{-2\tau y} \frac{\partial}{\partial y} w^2(t) dx \right)
\]

\[
= \int_0^1 q^2(t) dx - \int_0^1 w^2_1(t) dx - 2\tau \int_0^1 \left(\int_0^1 e^{-2\tau y} w^2(t) dx \right)
\]

\[
= \|q(t)\|^2 - e^{-2\tau} \|w_1(t)\|^2 - 2\tau \int_0^1 e^{-2\tau y} w^2(t) dx.
\]

Therefore, combining (41), (55) and (54) we arrive at

\[
\frac{d}{dt} I(t) \leq (2NK_{B_0} + K_{B_1})(\|p(t)\|^2 + \|q(t)\|^2) + \left(- N + \rho + \frac{1}{2\varepsilon_1} \right) \|p(t)\|^2 + \left[- N \left(\mu_1 - \frac{\vartheta}{2\tau} - \frac{\mu_2}{2} \right) + \left(J + \frac{\mu_1^2}{2\varepsilon_2} + M \right) \right] \|q(t)\|^2 + \left(- \delta + \frac{\varepsilon_2}{2} + \frac{\varepsilon_1}{2} \right) \|q_x(t)\|^2 + \left(- \chi + \frac{\varepsilon_1}{2} \right) \|p_x(t)\|^2 - \left\| \frac{b}{\sqrt{\varepsilon_2}} p_x(t) + \sqrt{\varepsilon_2} q(t) \right\|_2^2 + \left(-2\tau e^{-2\tau} \|w(t)\|^2 \right) - 2M \tau e^{-2\tau} \|w(t)\|^2.
\]

On the other hand,

\[
N_1 \mathcal{L}(t) := \rho N_1 \|p(t)\|^2 + JN_1 \|q(t)\|^2 + \delta N_1 \|q_x(t)\|^2 + \chi N_1 \|p_x(t)\|^2 +
\]

\[
N_1 \left\| \frac{b}{\sqrt{\varepsilon_2}} p_x(t) + \sqrt{\varepsilon_2} q(t) \right\|_2^2 + N_1 \vartheta \|w(t)\|^2.
\]
Accordingly
\[\frac{d}{dt}L(t) + N_1 L(t) \leq (2NK_{K_{su}} + K_{Kr})(\|u(t)\|_2^2 + \|v(t)\|_2^2) \]
\[- \left(N - \rho - \frac{1}{2\varepsilon_1} - \rho N_1 \right) \|p_l(t)\|_2^2 \]
\[- \left[N \left(\mu_1 - \frac{\sigma}{2\tau} - \frac{\mu_2}{2} \right) - \left(J + \frac{\mu_2}{2\varepsilon_2} - M \right) - JN_1 \right] \|q_l(t)\|_2^2 \]
\[- \left(1 - N_1 \delta - \frac{\varepsilon_2}{2} - \frac{\varepsilon_3}{2} \right) \|q_e(t)\|_2^2 \]
\[- \left(1 - N_1 \chi - \frac{\varepsilon_1}{2} \right) \|p_e(t)\|_2^2 - \left(1 - N_1 \right) \left\| \frac{b}{\sqrt{\xi}} p_x(t) + \sqrt{\xi} q(t) \right\|_2^2 \]
\[- \left[N \left(\frac{\sigma}{\tau} - \mu_2 \right) + \left(Me^{-2\tau} - \frac{\mu_2}{2\varepsilon_3} \right) \right] \|w_1(t)\|_2^2 \]
\[- (2M \tau e^{-2\tau} - N_1 \theta) \|w(t)\|_2^2. \]

We must first consider
\[0 < N_1 < \frac{1}{2}, \quad 0 < \varepsilon_2 + \varepsilon_3 < \delta \quad \text{and} \quad 0 < \varepsilon_1 < \chi \]
and after that
\[M > \max \left\{ \frac{\mu_2 e^{2\tau}}{2\varepsilon_3}, \frac{N_1 \sigma e^{2\tau}}{2\tau} \right\}. \]

Once,
\[\mu_1 - \frac{\xi}{2\tau} - \frac{\mu_2}{2} > 0 \quad \text{and} \quad \frac{\xi}{\tau} - \mu_2 > 0, \]
just take \(N > 0 \) large enough to get (46). Finally, combining (45) and (46) and using Gronwall’s inequality, we arrived at
\[L(t) \leq \zeta e^{-\gamma t} L(0) + C B \int_0^t e^{-\gamma(t-s)} (\|u(s)\|_2^2 + \|v(s)\|_2^2) ds, \quad t \geq 0. \]

Recalling that
\[L(t) = \|U(t)\|_H^2 = \|S(t)U_1 - S(t)U_2\|_H, \quad t \geq 0. \]

The proof of Lemma 3.13 is complete. \(\square \)

Remark 3. Since the embedded \(H_0^1(0, 1) \times H_0^1(0, 1) \to L^2(0, 1) \times L^2(0, 1) \) is compact, in order to obtain the quasi-stability for the dynamical system \((\mathcal{H}, S(t)) \), we will consider the isomorphism \(\mathcal{H} \cong \tilde{\mathcal{H}} \), where
\[\tilde{\mathcal{H}} := (H_0^1(0, 1) \times H_0^1(0, 1)) \times (L^2(0, 1) \times L^2(0, 1)) \times L^2(0, 1) \times (0, 1). \]

We will make the following identification
\[(v, w, \varphi, \psi, p) \in \mathcal{H} \Longleftrightarrow (v, \varphi, w, \psi, p) \in \tilde{\mathcal{H}}. \]

The inner product and norm in \(\tilde{\mathcal{H}} \) are the same as in (15). The trajectory of the solutions will be given by \((u(t), \phi(t), u_\tau(t), \phi_\tau(t), z(t)) \). When there is no danger of confusion, we will write \(\mathcal{H} \) instead of \(\tilde{\mathcal{H}} \).
3.3.2. Proof of Theorem 3.10.

Proof. (I). Let $B \subset H$ be a limited and positively invariant set of $(H, S(t))$ and consider $U_1, U_2 \in B$. As already mentioned, we denote to $i = 1, 2$

\[S(t)U_i = (u^i(t), \phi^i(t), u^i_t(t), \phi^i_t(t), z^i(t)), \quad (p, q) = (u^1 - u^2, \phi^1 - \phi^2). \quad (136) \]

From the Theorem 2.5 (ii), we obtain $a(t) = e^{C_{\text{at}} t} > 0$ which is locally bounded in $[0, \infty)$. We also consider the seminorm $\eta(\cdot)$ in $\mathcal{H} = H^1_0(0, 1) \times H^1_0(0, 1)$ given by

\[\eta(p, q)^2 = \|p\|_2^2 + \|q\|_2^2, \quad (137) \]

which is compact in X, since the embedding $X \hookrightarrow L^2(0, 1) \times L^2(0, 1)$ is compact. It follows from Lemma 3.13 that

\[\|S(t)U_1 - S(t)U_2\|_H^2 \leq b(t)\|U_1 - U_2\|_H^2 + c(t) \sup_{0 \leq s \leq t} \eta(p, q)^2, \quad (138) \]

where

\[b(t) = \zeta e^{-\gamma t} \quad \text{and} \quad c(t) = C_B \int_0^t e^{-\gamma (t-s)} ds, \quad t \geq 0. \quad (139) \]

Thus we have $b(t) \in L^1(\mathbb{R}_+)$, with $\lim_{t \to \infty} b(t) = 0$ and $c(\infty) = \sup_{t \in \mathbb{R}_+} c(t) \leq \frac{C_B}{\zeta} < \infty$. Hence (QS1)-(QS3) are satisfied and the $(H, S(t))$ is quasi-stable over any positively invariant set.

(II). It follows from Lemma 3.11 and Theorem 3.8 and (I) that $(\mathcal{H}, S(t))$ is gradient and asymptotically smooth. Thus, the result is readily established by properties (a) and (b) of Lemma 3.11, Theorem 3.6 and Theorem 3.8.

(III). It is an immediate consequence of (II) and [13, Theorem 7.5.10].

(IV) and (V). From the above, $(\mathcal{H}, S(t))$ is quasi-stable on the attractor \mathfrak{A}. Thus, as a consequence of Theorem 7.9.6 in [13], it follows that \mathfrak{A} has finite fractal dimension $\dim_H \mathfrak{A}$. Since we have shown that $(\mathcal{H}, S(t))$ is quasi-stable on the global attractor \mathfrak{A} with $c(\infty) = \sup_{t \in \mathbb{R}_+} c(t) < \infty$, then the regularity properties (10) and (11) follows by [13, Theorem 7.9.8].

(VI). Let Φ be the functional of Lyapunov considered in Lemma 3.11, let us take

\[\mathfrak{B} = \{ U : \Phi(U) \leq R \}. \]

It is clear that for R large enough, by Remark 2 and Lemma 2.4, the set \mathfrak{B} is absorbing and positively invariant, thus $(\mathcal{H}, S(t))$ is quasi-stable on \mathfrak{B}.

From the invariant positivity of \mathfrak{B}, there exists a constant $C_{\mathfrak{B}} > 0$ such that, for all $T > 0$ and every solution $U(t) = S(t)U_0 = (u(t), u_t(t), \phi(t), \phi_t(t), z(t))$ with initial data $U_0 \in \mathfrak{B}$, we have

\[\|S(t)U_0\|_H \leq C_{\mathfrak{B}}, \quad 0 \leq t \leq T \quad (140) \]

From (69) and (3)-(5), we obtain a constant still represented by $C_{\mathfrak{B}} > 0$ such that

\[\|U_0(t)\|_{L^1} \leq C_{\mathfrak{B}}, \quad 0 \leq t \leq T. \quad (141) \]

Consequently

\[\|S(t_1)U_0 - S(t_2)U_0\|_{H_{-1}} \leq \int_{t_1}^{t_2} \|U_0(s)\|_{H_{-1}} ds \leq C_{\mathfrak{B}}|t_1 - t_2|, \quad (142) \]

for $0 \leq t_1 \leq t_2 \leq T$. Therefore, the application $t \mapsto S(t)U_0$ is H"older continuous on space extending \mathcal{H}_{-1} with exponent $\delta = 1$ for every $U \in \mathfrak{B}$. Thus, based on [13,
Theorem 7.9.9] the system \((H, S(t))\) possesses a generalized exponential attractor with finite fractal dimension in generalized space \(\tilde{H}^{-1}\).

Using an analogous argument to that found in \([8, 35]\) we can show the existence of exponential attractor with finite fractal dimension in the generalized space \(H^{-\delta}\) with \(\delta \in (0, 1)\).

Acknowledgments. The authors are grateful to the referees for valuable comments which greatly improved this work. B. Feng was supported by the National Natural Science Foundation of China (Grant 11701465). D.S. Almeida Júnior thanks the CNPq for financial support through the project "New guidelines for dissipative Timoshenko type systems at light of the second spectrum." (CNPq Grant 310423/2016-3). M. L. Santos has been partially supported by the CNPq Grant 302899/2015-4 and CNPq Grant Universal project 401769/2016-0.

REFERENCES

[1] K. Ammari and S. Gerbi, Interior feedback stabilization of wave equations with dynamic boundary delay, *Z. Anal. Anwend.*, 36 (2017), 297–327.

[2] M. Aouadi, Long-time dynamics for nonlinear porous thermoelasticity with second sound and delay, *Journal of Mathematical Physics*, 59 (2018), 101510, 23pp.

[3] T. Apalara, Well-posedness and exponential stability for a linear damped Timoshenko system with second sound and internal distributed delay, *Elect. J. Diff. Equ.*, 2014 (2014), 1–15. https://ejde.math.txstate.edu/Volumes/2014/254/apalara.pdf

[4] T. Apalara, Asymptotic behavior of weakly dissipative Timoshenko system with internal constant delay feedbacks, *Applicable Analysis*, 95 (2016), 187–202.

[5] T. Apalara, General decay of solutions in one-dimensional porous-elastic system with memory, *Journal of Mathematical Analysis and Applications*, 469 (2019), 457–471.

[6] T. Apalara and S. Messaoudi, An exponential stability result of a Timoshenko system with thermoelasticity with second sound and in the presence of delay, *Applied Mathematics and Optimization*, 71 (2014), 449–472.

[7] A. Babin and M. Vishik, *Attractors of Evolution Equations*, Studies in Mathematics and its Applications, Elsevier Science, 1992.

[8] A. Barbosa and T. Ma, *Long-time dynamics of an extensible plate equation with thermal memory*, *Journal of Mathematical Analysis and Applications*, 416 (2014), 143–165.

[9] A. Benseghir, Existence and exponential decay of solutions for transmission problems with delay, *Elect. J. Diff. Equ.*, 2014 (2014), 1–11. https://ejde.math.txstate.edu/Volumes/2014/212/benseghir.pdf

[10] P. S. Casas and R. Quintanilla, Exponential decay in one-dimensional porous-thermoelasticity, *Mechanics Research Communications*, 32 (2005), 652–658.

[11] I. D. Chueshov, *Introduction to the Theory of Infinite-dimensional Dissipative Systems*, University Lectures in Contemporary Mathematics, AKTA, Kharkiv, 1999, https://www.emis.de/monographs/Chueshov/book.pdf

[12] I. D. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, *Memoirs of the American Mathematical Society*, 195 (2008), viii+183 pp.

[13] I. D. Chueshov and I. Lasiecka, *Von Karman Evolution Equations: Well-posedness and Long Time Dynamics*, Springer Monographs in Mathematics, Springer, 2010.

[14] S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids, *Journal of Elasticity*, 13 (1983), 125–147.

[15] Q. Dai and Z. Yang, Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay, *Angew. Math. Phys.*, 65 (2014), 885–903.

[16] R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, *SIAM Journal on Control and Optimization*, 26 (1988), 697–713.

[17] R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, *SIAM J. Control Optim.*, 24 (1986), 152–156.
[18] L. H. Fatori, M. A. J. Silva and V. Narciso, Quasi-stability property and attractors for a semilinear Timoshenko system, *Discrete & Continuous Dynamical Systems – A*, 36 (2016), 6117–6132.

[19] B. Feng and M. Pelicer, Global existence and exponential stability for a nonlinear Timoshenko system with delay, *Boundary Value Problems*, 2015 (2015), 13pp.

[20] B. Feng and X. Yang, Long-time dynamics for a nonlinear Timoshenko system with delay, *Applicable Analysis*, 96 (2017), 606–625.

[21] B. Feng and M. Yin, Decay of solutions for a one-dimensional porous elasticity system with memory: the case of non-equal wave speeds, *Mathematics and Mechanics of Solids*, 24 (2019), 2361–2373.

[22] M. M. Freitas, M. L. Santos and L. A. Langa, Porous elastic system with nonlinear damping and sources terms, *Journal of Differential Equations*, 264 (2018), 2970–3051.

[23] E. Friedman, S. Nicaise and S. Valein, Stabilization of second order evolution equations with unbounded feedback with time-dependent delay, *SIAM Journal on Control and Optimization*, 48 (2010), 5028–5052.

[24] J. K. Hale, *Asymptotic Behavior of Dissipative Systems*, Mathematical Surveys and Monographs, American Mathematical Society, 1988. https://books.google.com.br/books/about/Asymptotic_Behavior_of_Dissipative_Systems.html?id=3DuNyCB294cC&redir_esc=y

[25] J. K. Hale and S. M. V. Lunel, *Introduction to Functional Differential Equations*, Applied mathematical sciences, Springer-Verlag, 1993. https://books.google.com.br/books?id=DVsZAQAAIAAJ.

[26] A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, *Portugaliae Mathematica*, 46 (1989), 245–258. http://purl.pt/3178

[27] D. Iesan, *Thermoelastic Models of Continua*, Springer Netherlands, 2004.

[28] M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, *Z. Angew. Math. Phys.*, 62 (2011), 1065–1082.

[29] M. C. Leseduarte, A. Magaña and R. Quintanilla, On the time decay of solutions in porous-thermo-elasticity of type II, *Discrete & Continuous Dynamical Systems - B*, 13 (2010), 375–391.

[30] G. Liu, Well-posedness and exponential decay of solutions for a transmission problem with distributed delay, *Elect. J. Diff. Equ.*, 2017 (2017), 1–13. https://ejde.math.tamu.edu/Volumes/2017/174/liu.pdf

[31] K. Liu, Locally distributed control and damping for the conservative systems, *SIAM Journal on Control and Optimization*, 35 (1997), 1574–1590.

[32] W. Liu and M. Chen, Well-posedness and exponential decay for a porous thermoelastic system with second sound and a time-varying delay term in the internal feedback, *Continuum Mech. Thermodyn.*, 29 (2017), 731–746.

[33] W. J. Liu, General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback, *J. Math. Phys.*, 54 (2013), 043504, 9pp.

[34] Z. Liu and S. Zheng, *Semigroups Associated with Dissipative Systems*, Chapman & Hall/CRC, Boca Raton, 1999. https://books.google.com.br/books/about/Semigroups_Associated_with_Dissipative_Systems.html?id=ReG5eHHshpoC&redir_esc=y

[35] T. F. Ma and R. Monteiro, Singular limit and long-time dynamics of bresse systems, *SIAM Journal on Mathematical Analysis*, 49 (2017), 2468–2495.

[36] A. Magaña and R. Quintanilla, On the spatial behavior of solutions for porous elastic solids with quasi-static microvoids, *Mathematical and Computer Modelling*, 44 (2006), 710–716.

[37] J. Muñoz-Rivera and R. Quintanilla, On the time polynomial decay in elastic solids with voids, *Journal of Mathematical Analysis and Applications*, 338 (2008), 1296–1309.

[38] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, *SIAM J. Control Optim.*, 45 (2006), 1561–1585.

[39] S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, *Differ. Int. Equ.*, 21 (2008), 935–958. https://projecteuclid.org/euclid.die/1356038593

[40] S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, *Electron. J. Differ. Equ.*, 2011 (2011), 1–20. https://ejde.math.txstate.edu/Volumes/2011/41/nicaise.pdf

[41] S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, *Discrete and Continuous Dynamical Systems – S*, 2 (2009), 559–581.
[42] J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids, *Archive for Rational Mechanical Analysis*, **72** (1979), 175–201.

[43] H. Pazy, *Semigroups of Linear Operators and Applications to Partial Differential Equations*, Springer, New York, 1983.

[44] R. Quintanilla, Slow decay for one-dimensional porous dissipation elasticity, *Applied Mathematics Letters*, **16** (2003), 487–491.

[45] C. A. Raposo, T. A. Apalara and R. J. Ribeiro, Analyticity to transmission problem with delay in porous-elasticity, *Journal of Mathematical Analysis and Applications*, **466** (2018), 819–834.

[46] J. C. Robinson, *Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors*, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001.

[47] B. Said-Houari and Y. Laskri, A stability result of a Timoshenko system with a delay term in the internal feedback, *Applied Mathematics and Computation*, **217** (2010), 2857–2869.

[48] M. L. Santos and D. S. Almeida Júnior, On the porous-elastic system with kelvin–voigt damping, *Journal of Mathematical Analysis and Applications*, **445** (2017), 498–512.

[49] M. L. Santos, A. D. S. Campelo and D. S. Almeida Júnior, On the decay rates of porous elastic systems, *Journal of Elasticity*, **127** (2017), 79–101.

[50] M. L. Santos, A. D. S. Campelo and M. L. S. Oliveira, On porous-elastic systems with fourier law, *Applicable Analysis*, **98** (2019), 1181–1197.

[51] H. Smith, *An Introduction to Delay Differential Equations with Applications to the Life Sciences*, Texts in Applied Mathematics, Springer New York, 2011.

[52] R. Temam, *Infinite-dimensional Dynamical Systems in Mechanics and Physics*, Springer-Verlag, New York, 1988.

[53] D. Wang, G. Li and B. Zhu, Exponential energy decay of solutions for a transmission problem with viscoelastic term and delay, *Mathematics*, **4** (2016), 42.

[54] C. Q. Xu, S. P. Yung and K. L. Li, Stabilization of the wave system with input delay in the boundary control, *ESAIM Control Optim. Calc. Var.*, **12** (2006), 770–785.

[55] X. Yang, J. Zhang and Y. Lu, *Dynamics of the Nonlinear Timoshenko System with Variable Delay*, Applied Mathematics & Optimization, 2018.

[56] E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, *Communications in Partial Differential Equations*, **15** (1990), 205–235.

Received July 2019; revised May 2020.

E-mail address: jeremias@ufpa.br

E-mail address: bwfeng@swufe.edu.cn

E-mail address: dilberto@ufpa.br

E-mail address: ls@ufpa.br