Co/N-doped hierarchical porous carbon as efficient oxygen electrocatalysis for rechargeable Zn-air battery

Wenshu Zhou, Yanyan Liu, Huan Liu, Dichao Wu, Gaoyue Zhang, Jianchun Jiang

a Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province, 210042, China.

b Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China.

c College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China

* Corresponding Author. E-mail: jiangjc@icifp.cn (J.C. Jiang)
Figure S1. (a-d) SEM images of HPC, NHPC, Co/NHPC-700 and Co/NHPC-900, (e-f) TEM images of Co/NHPC-700 and Co/NHPC-900.
Figure S2. Survey spectrum of Co/NHPC-800

Table S1. The t-Plot report of HPC, NHPC, Co/NHPC-700, Co/NHPC-800 and Co/NHPC-900.

t-Plot report	S_{micro}	S_{external}	V_{micro}	V_{total}
HPC	259	628	0.13	0.59
NHPC	349	622	0.17	0.43
Co/NHPC-700	341	646	0.16	0.50
Co/NHPC-800	367	701	0.18	0.57
Co/NHPC-900	355	706	0.17	0.64
Figure S3. (a-f) CV curves of WC, HPC, NHPC, Co/NHPC-700, Co/NHPC-800 and Co/NHPC-900, respectively.

Figure S4. LSV curves of Co/NHPC-800 with different rotate speed in O$_2$-saturated 0.1 M KOH.
Table S3. The comparison of ORR, OER and dual catalytic performances in this work to some results from literatures.

Sample	E_{ORR}	$E_{\text{ORR}/2}$	Transferre d	E_{OER} [V]	ΔE (E$_{1/2}$) (V)	RZABs	Ref.
Co, N-doped CNTs	0.89	0.79	~4	1.61	0.82	12	S1
Co@Co$_3$O$_4$/NC-1	0.90	0.80	3.78	1.65	0.85	NA	S2
NiCo$_2$O$_4$@N-graphene	0.87	0.75	3.9	1.63	0.88	13	S3
NMC/Co@CNTs	0.90	0.79	3.76-3.98	1.73	0.94	11	S4
Fe/N-CNT	0.96	0.81	3.85-3.90	1.75	0.94	NA	S5
Co/N-C-800	0.88	0.74	3.95	1.60	0.86	76	S6
Co$_3$O$_4$/N-rGO	0.92	0.79	3.90	1.72	0.93	25	S7
Co$_3$O$_4$/Co$_2$MnO$_4$nanocomposite	0.90	0.68	3.51–3.82	1.77	1.09	-	S8
NiCoMnO$_4$/N-rGO	0.92	0.72	3.92	1.77	1.05	-	S9
Co/NHPC-800	0.92	0.82	3.8-4.0	1.71	0.89	364	This work

Figure S5. (a-f) Photographs of the assembly process for the fabrication of a rechargeable...
Zn-air battery.

Figure S6. (a-d) Photographs of the rechargeable Zn-air battery recorded from different directions.

References.

S1. J. Song, C. Zhua, S. Fu, Y. Song, D. Dua, Y. J. Lin, Mater. Chem. A, 2016, 4, 4864-4870.

S2. A. Aijaz, J. Masa, C. Rçsler, W. Xia, P. Weide, A. Botz, R. Fischer, W. Schuhmann, M. Muhler, Angew. Chem. Int. Edit., 2016, 55, 4087-4091.

S3. J. Glatz, L. Chamoreau, A. Flambard, J. Meunier, A. Bouseksoub, R. Lescouëzec, Chem. Comm., 2017, 53, 7836-7839.

S4. S. Cai, R. Wang, W. Guo, H. Tang, Langmuir, 2018, 34, 1992-1998.

S5. Y. Liu, H. Jiang, Y. Zhu, X. Yang, C. J. Li, Mater. Chem. A, 2016, 4, 1694-1701.

S6. Y. Su, Y. Zhu, H. Jiang, J. Shen, X. Yang, W. Zou, J. Chen, C. Li, Nanoscale, 2014, 6, 15080-15089.

S7. Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu, J. Lu, Adv. Mater., 2017, 30,
S8. D. Wang, X. Chen, D. Evans, W. Yang, *Nanoscale*, 2013, 5, 5312-5315.

S9. A. Pendashteh, J. Palma, M. Anderson, R. Marcilla, *Appl. Catal. B-Environ.*, 2017, 201, 241-252.