Ab initio threshold displacement energies in iron

P. Olssona, C. S. Becquartb,c and C. Domainb,d

aReactor Physics, KTH Royal Institute of Technology, Stockholm, Sweden; bLaboratoire commun EDF-CNRS Etude et Modélisation des Microstructures pour le Vieillissement des Matériaux (EM2VM), France; cUnité Matériaux et Transformations (UMET), Villeneuve d’Ascq cédex, France; dEDF-R&D, Département Matériaux et Mécanique des Composants (MMC), Les Renardières, Moret sur Loing, France

ABSTRACT

The threshold displacement energy in iron is determined using \textit{ab initio} molecular dynamics. This is the most fundamental input parameter for radiation damage assessments. The predictions agree well with the available experiments and provide a significantly lower average value for iron than the standard one. This result impacts radiation damage assessments in iron alloys and steels and especially so for dose estimations and conditions close to the threshold. The importance of using an appropriate description of the core and valence electrons is highlighted. Energy loss simulations provide important fitting parameters for improved interatomic potentials.

IMPACT STATEMENT

Ground-breaking \textit{ab initio} calculations of the threshold displacement energies in iron show significant differences in the angular anisotropy and predicted average value with respect to previous literature.

The interaction of energetic particles, such as electrons, ions and neutrons, with matter can damage the crystal structure, if the energy of the particle transmitted to the lattice atoms exceeds a threshold. The most fundamental parameter defining the primary state of radiation damage for a given material is this threshold displacement energy (TDE). It is defined as the minimum kinetic energy needed to displace an atom in a material in order to create a stable Frenkel pair (FP), that is, a vacancy and a self-interstitial (SIA). The TDE has played a key role in radiation damage theory since its first explicit appearance in the literature.\cite{1} The Kinchin–Pease \cite{2} and Norgett–Torrens–Robinson (NRT) \cite{3} models use an average displacement threshold energy as a fundamental material constant to estimate the number of FPs that a given amount of deposited energy will create in a material. It is the key material parameter used to convert the absorbed irradiation dose, or damage energy,\cite{3} into the commonly used unit of displacements per atom (dpa). The estimated number of dpa provides the most convenient correlation parameter for comparing irradiation effects obtained in irradiation environments that produce very different recoil spectra such as fast compared to thermal fission reactors or neutron compared to charged particle irradiation. Therefore, it is of high importance to obtain the best possible description of the TDE to provide a suitable dpa calculation. The TDE has been studied experimentally and computationally for a wide range of materials \cite{4–7} but to the authors’ best knowledge never before with an \textit{ab initio} method in a metal. The TDE

CONTACT P. Olsson polsson@kth.se

Supplemental data for this article can be accessed here. \url{http://dx.doi.org/10.1080/21663831.2016.1181680}

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (\url{http://creativecommons.org/licenses/by/4.0/}), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
has been recently investigated \textit{ab initio} for a few selected semiconductors, such as silicon,[8] SiC,[9] GaN[10] and for some oxides.[11,12] Radiation damage in iron is an intense area of study [13–19] due to the technological interest from the nuclear fission and fusion communities and from steel manufacturing industries.

The reference average TDE in iron according to the ASTM standard is 40 eV.[20] This value is, however, not based on experiments, but on computer simulations using a rather simple short-ranged interaction potential as physical basis,[21] as has been noted in a comprehensive review [22] and as is stated in the ASTM standard.[20] Experiments measuring the TDE for high-symmetry lattice directions in bcc Fe ([100], [110] and [111]) have been performed, but these data are not sufficient in order to determine the average TDE over all directions, which is the parameter of technological interest. Lucasson estimated an average TDE of 24 eV in iron [25] but noted the strong dependence on the choice of damage model and the assumed resistivity of a single FP. This average TDE is conspicuously close to the 23 eV one obtains if applying the analytical model by Jan and Seeger, based only on the measured TDE in the high-symmetry directions.[26] However, these TDE values are not used in a later review by Lucasson,[7] casting doubts on the validity of the estimates which depend intrinsically on the applied damage model. Furthermore, the analytical model is bounded by the energy in the three high-symmetry directions, in disagreement with molecular dynamics simulations.[22]

Modeling short-range interactions between atoms in solids is at the stage that extreme compression is well understood in terms of the Coulomb and the screened Coulomb models, even though the screened Coulomb interaction (ZBL) is empirically fitted.[27] Near equilibrium, where the electronic and chemical interactions dominate the bonding, many, if not most, materials are very well understood. In the range between high compression (either local or global) and near equilibrium, the field is more open. In the construction of semi-empirical interatomic potentials that should be capable of treating high kinetic energy trajectories through a solid, this intermediate range is most often treated by a simple analytical interpolation with four well-defined parameters in order to observe continuity and first-order differentiability at the two knot points. Through full-potential \textit{ab initio} calculations, one can approach this interaction range more explicitly and provide an insight into more reasonable choices for potential construction.

Density functional theory molecular dynamics (DFT-MD) simulations in the Born–Oppenheimer approximation have here been performed over a large range of angles and knock-on energies in the micro-canonical (NVE) ensemble. The projector augmented wave formalism [28,29] has been applied in the generalized gradient approximation.[30] Both the standard potential for Fe with electronic configuration Ar4s\(^4\)3d\(^7\) (from here on denominated Fe\(_{\text{sd}}\)) and the harder semi-core potential with configuration Mg3p\(^6\)4s\(^2\)3d\(^7\) have been used (from here on denominated Fe\(_{\text{psd}}\)). These methods are implemented in the Vienna \textit{Ab initio} Simulation Package (VASP).[31] In order to minimize the image interactions and possible glide recombination, non-cubic supercells of at least 504 bcc sites (7 × 6 × 6) have been used for the dynamic simulations. For verification purposes, 6 different supercell geometries with up to 672 atoms have been used for certain displacement simulations. Furthermore, classical MD simulations of the TDE have been performed using a state-of-the-art embedded atom method (EAM) potential for iron, from here on denominated AM04,[32] with cell sizes up to 431,880 bcc sites (59 × 60 × 61). The short-range interaction in AM04 is determined by ZBL up to 1.0 Å and then by a C1 fourth-order exponential polynomial up to 2.05 Å where the equilibrium part takes over. The time step used in the DFT-MD simulations was set to 3 fs after careful tests were performed with time steps ranging from 0.5 to 5 fs. The trajectories were seen to not change appreciably for time step values up to 3 fs. All results presented were obtained using the gamma point in the Brillouin zone and a cutoff of 250 eV. The convergence of these parameters on the dynamic results was rigorously checked. The initial temperature of the simulation cell was 0 K. Low-temperature thermalization (30 K) was also performed before the impact event, but this had no discernible effect on the results. At higher temperatures, thermal disorder will affect the response and is expected to smear out the directional anisotropy slightly, as has been recently shown using classical MD simulations in iron.[33]

The discretization of the knock-on energy sampling was 1 eV. This sampling resolution is sufficient to encompass the statistical fluctuations of multiple simulations in the same direction. The threshold energy for a given direction is determined by confirming the creation of a stable FP over a sufficient amount of time. In order to determine if a stable FP has been created, a dynamic in the NVE ensemble of 2 ps was simulated, tracing the atomic trajectories after giving an atom an impulse. In the cases where the FP ended up with a possibly athermally activated recombination distance after this time, the simulation was continued up to a maximum of 5 ps.

Due to the image interaction through the periodic boundary conditions, the heat dissipation in the relatively small simulation cells used in the DFT-MD study can bias the results if they are continued for time scales of, typically, more than 5 ps. The shock wave that is
transmitted through the cell then has time to recouple unphysically with the defected region and affect the dynamics. The average simulation time needed to stabilize the FP is 1.7 ps while the minimum is about 0.9 ps and the maximum seen here is 4.4 ps. In the classical MD simulations with large enough simulation boxes and proper heat dissipation, we note that the stability of the created FP is determined by the separation distance of the dynamically created (110) dumbbell and vacancy for all but the close-packed glide directions (111) and (110). This was also confirmed by DFT and MD simulations of the athermal dynamical instability of an FP. The ensuing recombination volume of the standard (110) FP is a quasi-spherical ∼10 a₀³ for DFT (both for Feₚₛₑᵈ and Feₚₛₑᵈ) and 11 a₀³ for AM04, while for the unstable (111) FP it is an anisotropic cigar-shaped volume of ∼22 a₀³ for DFT and 24 a₀³ for AM04, in good agreement with previous MD simulations.[34] The recombination volumes calculated by Nakashima and Stoller at elevated temperatures [35] are larger than this, but they are not directly comparable due to the significant thermal component.

The dissipation of the magnetic degrees of freedom, or spin-lattice coupling,[36,37] could have an impact on the evolution of a damage event. However, since a spin flip event is typically associated with a 0.1 eV change in energy, see the supplementary material, we estimate that the impact is very small in the threshold energy scenario where dissipation phenomena play a smaller role than it does in high-energy cascade events. Even if a few atoms may have magnetic moment inversions during the threshold energy trajectory, most of the compressed atoms simply experience quenching of their magnetic moments.[38]

The average TDE, integrated over all angles, is given by

\[E_{av} = \frac{\int \int E_d(\theta, \varphi) \sin \theta d\theta d\varphi}{\int \int \sin \theta d\theta d\varphi}, \]

where \(E_d(\theta, \varphi) \) is the TDE for a given direction \((\theta, \varphi)\). The directions are here presented in the Miller index convention \((hkl)\).

The DFT-MD simulations using the Feₚₛₑᵈ and Feₚₛₑᵈ potentials provide estimates of the TDE for the high-symmetry directions in good agreement with the available experiments, see Table 1. In addition to the high-symmetry directions, the (135) direction is also included, since it is the most common choice used in the literature for cascade simulations [39–43] and is a reasonable choice of a low-symmetry representative direction. The stiffer Feₚₛₑᵈ generally predicts higher threshold values. Between Feₚₛₑᵈ and Feₚₛₑᵈ, the largest discrepancy is found for the (110) direction, where the experiments are more in line with Feₚₛₑᵈ than with Feₚₛₑᵈ.

Table 1. Threshold displacement energies from DFT-MD, AM04 and experiments.

TDE (eV)	Global minimum	\(E_d(\theta, \varphi) \)				
DFT Feₚₛₑᵈ	15	17	32	15	48	29
DFT Feₚₛₑᵈ	18	21	43	20	49	32
AM04	15	17	33	33	55	39
Experiment⁴	17	17	30–35	20		
Experiment⁵	20	20	30			

⁴Direction specific experiments [24].
⁵Global minimum experiment [25].

The largest discrepancy between DFT and EAM is found for the close-packed (111) direction. There, the DFT-MD results are significantly lower than those of the state-of-the-art EAM potential AM04, which is currently by far the most widely used in defect and cascade simulations in iron.[44] The softness of the close-packed directions is further emphasized in Figure 1 where the full angular distribution of the calculated TDE are shown. The semi-empirical potential agrees rather well with DFT-MD for the lower part of the angular space, notably so for the (100) and (110) directions, but not at all for the close-packed direction (111), where DFT-MD predicts a much lower TDE than AM04 does.

For the purpose of determining an average TDE, no significant difference from the varying box size and geometry using DFT-MD was observed. From the classical MD simulations, the difference in TDE for the selected angles was no larger than 2 eV between the box sizes and for most angles less than 1 eV. The AM04 potential conforms very well to the ASTM standard, by providing an average value close to 40 eV, in agreement with many other semi-empirical potentials.[22] Here it is shown, however, that the DFT-MD calculations provide significantly lower average values, closer to 30 eV, both...
and the Seeger model using experimental high-symmetry TDEs (magenta).

for Fesd and Fepsd potentials. The average TDE for Fepsd (Fesd) is calculated by Equation (1) using 27 (45) different angles uniformly selected in the irreducible solid angle, see Figure 1. A full tabulation is present in the supplementary material.

The difference between Fepsd and Fesd is generally a shift of a few eV in TDE, see Figure 2. The angular space near the ⟨110⟩ direction is hyperbolic according to DFT but a local minimum according to AM04, see Figure 2. The experimental measure [24] is close to AM04 and to Fesd. However, it is not trivial to determine the TDE experimentally for directions where there is no local minimum, since the detection can sample scattering events in adjacent angles. Considering that DFT predicts a hyperbolic TDE surface around ⟨110⟩, this experimental measure may well be an under-estimation with respect to the exact direction, which may explain the difficulty Maury had on determining the TDE in the ⟨110⟩ direction. [24]

For the other high-symmetry directions, this is not an issue since they are local minima. It is clear from Figure 2 that the two DFT potentials describe the same physics and anisotropic character, with Fepsd being stiffer, while AM04 exhibit quite different anisotropy except for some general features.

The DFT-EAM difference is due to a combination of effects. The recombination of a defect that is gliding along a high-symmetry direction occurs either if the crowdion reverses its glide direction, or if the vacancy tracks the crowdion. The degree of localization of the point defects is the major reason for the discrepancy. Both the ⟨111⟩ crowdion and the vacancy are more localized as predicted by DFT than using AM04, see the supplementary material.

The stronger localization of the defects causes the vacancy to remain close to its site of creation while the crowdion glides through the lattice, losing energy through thermal dispersion to its neighbors. In the classical MD simulations the vacancy instead starts to track the crowdion in a recoil wake and thus the FP can recombine at substantially higher energies than in DFT. The dynamic defect creation process is governed by a spring-like force connecting the vacancy and the SIA. If low impact energy is used, then the vacancy is pulled along after the SIA. If enough energy is used, then the spring breaks. A secondary reason for the discrepancy is the difference in instability of the ⟨111⟩ defect. According to DFT the ⟨111⟩ defect is about 0.7 eV less stable than the ground state SIA ⟨110⟩, see Table 2, while the AM04 only has a 0.4 eV difference. The larger instability of the ⟨111⟩ as predicted quantum mechanically increases the probability of transforming to a ⟨110⟩ defect and thus, the recombination through glide vector reversion is more efficiently hindered, leading to a lower TDE.

The issue of possible bias in the results for the close-packed lattice directions due to long ranged 1D defect transport is addressed by performing replacement collision sequence (RCS) simulations. These simulations provide information on how much kinetic energy is lost during defect glide. The energy loss data are used to estimate the supercell size needed in order to avoid image interactions due to glide for TDE simulations in the high-symmetry directions.

RCS are simulated by giving an impulse in a high-symmetry direction to an atom and measuring the kinetic energy loss per collision (∆Ei), by averaging over a statistically representative number of collisions (typically 8–12). The energy has to be high enough to create that many collisions (typically well above the TDE) and low enough not to introduce a significant image interaction in the plane orthogonal to the impulse vector. In order to use the first peak in the energy loss spectrum one has to subtract the FP formation energy. The energy loss was measured by giving an Fe atom a 50 eV impulse in the two most close-packed directions in bcc, ⟨111⟩ and ⟨100⟩. In the former case, a supercell of 576 atoms was used, elongated along the impulse vector (2 × 3 × 16 cells of

Figure 2. TDE predictions along the boundary of the irreducible solid angle, from DFT (Fesd in red, Fepsd in blue), AM04 (green) and the Seeger model using experimental high-symmetry TDEs (magenta).

Table 2. Defect formation energies in iron, using 300 eV cutoff, in 250-atom supercells with 3 × 3 × 3 k-points and 1024-atom supercells with the gamma point only.

Ei [eV]	250 at.	1024 at.	250 at.	1024 at.
Vac	2.16	2.08	2.16	2.09
⟨110⟩	4.05	3.97	4.31	4.25
⟨111⟩	4.79	4.64	5.12	4.98
⟨100⟩	5.18	5.02	5.54	5.42
ΔEi(⟨110⟩−⟨111⟩)	0.74	0.67	0.81	0.73
Table 3. Energy loss in bcc Fe for RCS in ⟨100⟩ and ⟨111⟩ directions, according to interatomic potentials [33,45] and DFT-MD.

ΔE (eV)	F_{sd}	F_{psd}	AM04	FeI	FeII	FeIII
⟨100⟩	3.16	2.47	3.08	1.67	3.05	2.52
⟨111⟩	1.10	1.00	0.70	0.40	1.56	0.75

the ⟨(112), (110), (111)⟩ bcc basis). For the ⟨100⟩ direction, the simulation box was composed of 512 atoms (16 × 4 × 4 cubic bcc cells). The results are presented in Table 3. Comparing energy loss results using semi-empirical interatomic potentials, it is seen that the more recent Fe potential compares rather well with the DFT-MD results. The bias in TDE from the close-packed directions was estimated by performing TDE simulations on the RCS boxes. The results on ⟨111⟩ and ⟨100⟩ TDE were within the 1 eV energy discretization limit and thus indistinguishable from those presented in Table 1.

The charge density difference distributions have been analyzed during the simulations; see Figure 3. The vacancy is inside the left-most isosurface cage (a) and the SIA is located to the far right (d). This snapshot is taken 0.45 ps after the initial impulse. The wake of the passage of the defect can be clearly seen (c). The typical vacancy type isosurface cage is delocalized in the ⟨100⟩ direction (b), while the SIA is continually decelerated by the very short-ranged frontal charge localization. Most of the surrounding lattice is, during the kinetic phase, completely unperturbed. Later, during the thermalization stage, all atoms in this rather small simulation cell will begin to vibrate.

In order to better understand the difference observed between the DFT potentials, we have performed quasi-static drag (QSD) simulations of the initial stage in the defect creation process. The QSD is used to analyze how the different interaction models respond to local compression. An atom is dragged step-wise along a displacement vector and the energy response of the system is recorded, see Figure 4. The two DFT potentials are used, as well as AM04 and ZBL. It is clear that the standard F_{sd} potential is consistently too soft and fails to properly capture the important short-range interactions. However, for energies up to about 10 eV, there is essentially no difference between F_{sd} and F_{psd} and thus near-equilibrium properties and thermal vibrations are expected to be very similar for the two electronic descriptions. For the close-packed directions – ⟨100⟩ and ⟨111⟩ – AM04, ZBL and F_{psd} are in good agreement. For the more crystallographically open directions – ⟨110⟩ and ⟨135⟩ – the divergence is larger between all methods, which can be understood by the significant difference in binding that they exhibit. The ZBL, for instance, is purely repulsive. We propose that QSD simulations can provide crucial, and computationally inexpensive, information for fitting improved interaction potentials, for instance by adjusting the many-body part (electronic density and embedding function) on a QSD isoenergy angular surface.

In conclusion, the DFT-MD simulations of the TDE in bcc Fe performed here agree very well with the available experimental data, but have significant differences with respect to the previous state-of-the-art interatomic potentials. The average value, which is of highest technological interest, is about 20% lower than the accepted standard value from the literature. The reason for this
discrepancy is dominated by the approximation of the interatomic forces that have been previously applied and the importance of an accurate and detailed description of the crowdion structure.

Acknowledgements

This work contributes to the Joint Programme on Nuclear Materials (JPNM) of the European Energy Research Alliance (EERA). The computations have been carried out on the EDF R&D supercomputer systems (PERFECT (FI6O-CT-2003-508840), PERFOM-60 (232612) and SOTERIA (661913) projects), on the Swedish National Infrastructure for Computing (SNIC) centers PDC (Lindgren) and NSC (Trollith) and on the Swiss CSC resource ROSA through the PRACE-2IP project (FP7 RI-283493).

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Seitz F. On the disordering of solids by action of fast massive particles. Disc Faraday Soc. 1949;5:271–282.
[2] Kinchin GH, Pease RS. The displacement of atoms in solids by radiation. Rep Prog Phys. 1955;18:1–51.
[3] Norgett MJ, Robinson MT, Torrens IM. A proposed method of calculating displacement dose rates. Nucl Eng Des. 1975;33:50–54.
[4] Nastasi M, Mayer J, Hirvonen J. Ion–solid interactions – fundamentals and applications. Cambridge: Cambridge University Press; 1996.
[5] Andersen HH. The depth resolution of sputter profiling. Appl Phys. 1979;18:131–140.
[6] Vajda P. Anisotropy of electron radiation damage in metal crystals. Rev Mod Phys. 1977;49:481–521.
[7] Lucasson P. Fundamental aspects of radiation damage in metals. Springfield: ORNL; 1975.
[8] Holmström E, Kuronen A, Nordlund K. Threshold defect production in silicon determined by density functional theory molecular dynamics simulations. Phys Rev B. 2008;78:045202.
[9] Gao F, Xiao X, Zu XT, Posselt M, Weber WJ. Defect-enhanced charge transfer by ion-solid interactions in SiC using large-scale ab initio molecular dynamics simulations. Phys Rev Lett. 2009;103:027405.
[10] Xiao HY, Gao F, Zu XT, Weber WJ. Threshold displacement energy in GaN: Ab initio molecular dynamics study. J Appl Phys. 2009;105:123527.
[11] Xiao HY, Gao F, Weber WJ. Threshold displacement energies and defect formation energies in Y2Ti2O7. J Phys: Condens Matter. 2010;22:415801.
[12] Xiao HY, Zhang Y, Weber WJ. Ab initio molecular dynamics simulations of low-energy recoil events in ThO2, CeO2, and ZrO2. Phys Rev B. 2012;86:054109.
[13] Domain G, Becquart CS. Ab initio calculations of defects in Fe and dilute Fe-Cu alloys. Phys Rev B. 2001;65:024103.
[14] Fu CC, Willaime F, Ordejon P. Stability and mobility of mono- and di-interstitials in α-Fe. Phys Rev Lett. 2004;92:175503.
[15] Fu CC, Dalla Torre J, Willaime F, Bocquet JL, Barbu A. Multiscale modelling of defect kinetics in irradiated iron. Nat Mater. 2005;4:68–74.
[16] Arakawa K, Ono K, Isshiki M, Mimura K, Uchikoshi M, Mori H. Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science. 2007;318:956–959.
[17] Matsukawa Y, Zinkle SJ. One-dimensional fast migration of vacancy clusters in metals. Science. 2007;318:959–962.
[18] Terentyev DA, Klaver TPC, Olsson P, et al. Self-trapped interstitial-type defects in iron. Phys Rev Lett. 2008;100:145503.
[19] Provillle L, Rodney D, Marinica MC. Quantum effect on thermally activated glide of dislocations. Nat Mater. 2012;11:845–849.
[20] ASTM Standard E521-96. Standard practice for neutron radiation damage simulation by charged-particle irradiation; 2009.
[21] Erginsoy C, Vineyard GH, Engler A. Dynamics of radiation damage in a body centered cubic lattice. Phys Rev. 1964;133:A595–A606.
[22] Nordlund K, Wallenius J, Malerba L. Molecular dynamics simulations of threshold displacement energies in Fe. Nucl Instrum Methods Phys Res B. 2006;246:322–323.
[23] Lomer JN, Pepper M. Anisotropy of defect production in electron irradiated iron. Philos Mag. 1967;16:1119–1128.
[24] Maury F, Biget M, Vaida P, Lucasson A, Lucasson P. Anisotropy of defect creation in electron-irradiated iron crystals. Phys Rev B. 1976;14:5303–5313.
[25] Lucasson PG, Walker RM. Production and recovery of electron-induced radiation damage in a number of metals. Phys Rev. 1962;127:485–500.
[26] Jan RV, Seeger A. Zur Deutung der Tieftemperatur-Elektronenbestrahlung von Metallen. Phys Stat Sol. 1963;3:465–472.
[27] Ziegler JF, Biersack JP, Littmark U. Stopping powers and ranges of ions in matter. New York: Pergamon; 1985.
[28] Bölch P. Projector augmented-wave method. Phys Rev B. 1994;50:17953–17979.
[29] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758–1778.
[30] Perdew JP, Chevary JA, Vosko SH, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B. 1992;46:6671–6687.
[31] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47:558–561.
[32] Ackland GJ, Mendelev MI, Srolovitz DJ, Han S, Barashev AV. Development of an interatomic potential for phosphorus impurities in α-iron. J Phys: Condens Matter. 2004;16:S2629–S2642.
[33] Beeler B, Asta M, Hosemann P, Gronbech-Jensen N. Effect of strain and temperature on the threshold displacement energy in body-centered cubic iron. J Nucl Mater. 2016;474:113–119.
[34] Romashka MYu, Yanilkin AV. Simulation of the low-temperature stage of annealing of radiation defects in bcc iron using the molecular dynamics method. Phys Met. 2014;115:965–972.
[35] Nakashima K, Stoller RE, Xu H. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe. J Phys Condens Matter. 2015;27:335401.

[36] Ma PW, Dudarev SL. Langevin spin dynamics. Phys Rev B. 2011;83:134418.

[37] Ma PW, Dudarev SL, Woo CH. Spin-lattice-electron dynamics simulations of magnetic materials. Phys Rev B. 2012;85:184301.

[38] Olsson P, Domain C, Wallenius J. Ab initio study of Cr interactions with point defects in bcc Fe. Phys Rev B. 2007;75:014110.

[39] Calder AF, Bacon DJ. A molecular dynamics study of displacement cascades in 𝛼-iron. J Nucl Mater. 1993;207:25–45.

[40] Stoller RE, Odette GR, Wirth BD. Primary damage formation in bcc iron. J Nucl Mater. 1997;251:49–60.

[41] Stoller RE. Role of cascade energy and temperature in primary defect formation in iron. J Nucl Mater. 2000;276:22–32.

[42] Malerba L. Molecular dynamics simulation of displacement cascades in 𝛼-Fe: a critical review. J Nucl Mater. 2006;351:28–38.

[43] Terentyev DA, Malerba L, Chakarova R, et al. Displacement cascades in Fe-Cr: a molecular dynamics study. J Nucl Mater. 2006;349:119–132.

[44] Malerba L, Ackland GJ, Becquart CS, et al. Ab initio calculations and interatomic potentials for iron and iron alloys: achievements within the Perfect Project. J Nucl Mater. 2010;406:7–18.

[45] Becquart CS, Souidi A, Hou H. Relation between the interaction potential, replacement collision sequences, and collision cascade expansion in iron. Phys Rev B. 2002;66:134104.