Three-dimensional noncompact κ-solutions that are Type I forward and backward

Xiaodong Cao
Department of Mathematics, Cornell University, Ithaca, NY 14853
E-mail address: cao@math.cornell.edu

Bennett Chow
Department of Mathematics, UC-San Diego, La Jolla, CA 92093
E-mail address: chowbennett@gmail.com

Yongjia Zhang
Department of Mathematics, UC-San Diego, La Jolla, CA 92093
E-mail address: yoz020@ucsd.edu

August 21, 2017

As indicated by the third author in [19], there is a gap in the previous version of this paper by the first two authors [5]. We provide in this version an argument to fix the aforementioned gap. The main proposition, whose proof uses Perelman's techniques, is implied by Ding [9] and is covered by [19]. Our approach, however, is different from theirs. In addition, we prove a necessary and sufficient condition for a three-dimensional κ-solution to form a forward singularity. We hope that this condition is helpful in the classification of all three-dimensional κ-solutions. Up to now, the only main progress on such a classification, as conjectured by Perelman, is by Brendle [2].

1 Introduction

A complete solution to the backward Ricci flow $(M^n, g(\tau)), \tau \in (0, \infty)$, is a Type I κ-solution if $|\text{Rm}|(\tau) \leq \frac{C}{\tau}$ for some constant C and each $g(\tau)$ is κ-noncollapsed below all scales. In this definition we do not assume nonnegativity of the curvatures.

As a special case of his result Proposition 0.1 in [16], Lei Ni has classified 3-dimensional closed Type I κ-solutions. In all dimensions Ni first showed that if $(M^n, g(\tau)), \tau \in (0, \infty)$, is a solution to the backward Ricci flow on a compact manifold and satisfies $|\text{Rm}|(\tau) \leq \frac{A}{\tau}$, then there exists a constant $C(n, A)$ such that

$$\text{diam}(g(\tau)) \leq \max\{\text{diam}(g(1)), C(n, A)\} \sqrt{\tau} \quad \text{for} \quad \tau \in (1, \infty).$$

(1)
In particular, by Lemma 8.3(b) in Perelman [17], there exists \(C = C(n, A) \) such that
\[
\frac{\partial}{\partial \tau} d_\tau(x_1, x_2) \leq \frac{C(n, A)}{2\sqrt{\tau}}
\]
for any \(x_1, x_2 \in \mathcal{M} \) with \(d_\tau(x_1, x_2) \geq C(n, A)\sqrt{\tau} \).
Then (1) follows from the consequence that for \(x_1, x_2 \in \mathcal{M} \) and \(\tau \geq 1 \) we have
\[
\frac{d_\tau(x_1, x_2)}{\sqrt{\tau}} < C(n, A) \text{ or } \frac{\partial}{\partial \tau} \frac{d_\tau(x_1, x_2)}{\sqrt{\tau}} \leq 0.
\]

Using this, Ni proved that if \((\mathcal{M}^n, g(\tau))\), \(\tau \in (0, \infty) \), is a closed Type I \(\kappa \)-solution with positive curvature operator (PCO), then \((\mathcal{M}, g(\tau))\) is isometric to a shrinking spherical space form. In particular, since \(g(\tau) \) has PCO and \(\mathcal{M} \) is closed, by Hamilton [11], [12] when \(n = 3, 4 \) and Böhm and Wilking [1] when \(n \geq 5 \), \(g(\tau) \) converges to a constant positive sectional curvature (CPSC) metric \(g_0 \) as \(\tau \to 0 \). By 11.2 in [17], fixing \(\rho \), there exist \(q_\rho \) such that \(\epsilon^\rho(\rho, 0)(q_\rho, i) \leq \frac{n}{2}\) and \((\mathcal{M}^n, \mathcal{i}^{-1} g(\tau), q_i)\) subconverges in the Cheeger–Gromov sense to a complete nonflat shrinking gradient Ricci soliton (GRS) \((\mathcal{M}^n_\infty, g_\infty(\tau), q_\infty)\). By (1), we have
\[
\text{diam} \left(\frac{1}{i} g(\tau) \right) \leq \max \{ \text{diam} (g(-1)), C(n, A) \} \sqrt{\tau} \quad \text{for } \tau \in \left(\frac{1}{i}, \infty \right).
\]
Thus \(\mathcal{M}_\infty \) is compact and diffeomorphic to \(\mathcal{M} \). Since \((\mathcal{M}, g_\infty(\tau))\) is irreducible with nonnegative curvature operator on a topological spherical space form, \(g_\infty(\tau) \) must be a CPSC metric. By all of the above, after rescaling, \(g(\tau) \) converges to a metric which is isometric to a constant multiple of \(g_\infty(1) \) as either \(\tau \to 0 \) or \(\tau \to \infty \). This implies that Perelman’s invariant \(\nu(g(\tau)) \) must be constant, which implies that \(g(\tau) \) is a shrinking GRS and hence a CPSC metric.

As a corollary, any 3-dimensional closed Type I \(\kappa \)-solution must be isometric to a shrinking spherical space form. The reason is as follows. By B.-L. Chen [7], \(\text{Rm} \geq 0 \). If \(\text{Rm} > 0 \), then \(g(\tau) \) is a CPSC metric by Ni’s theorem. On the other hand, if the sectional curvatures are not positive, then \(\mathcal{M}^3 \) is covered by \(S^2 \times \mathbb{R} \). Since any closed such solution is \(\kappa \)-collapsed, we are done.

Observe that, by Brendle and Schoen [3] and Brendle [2] (the latter enabling Perelman’s \(\kappa \)-solution theory to extend), Ni’s theorem holds under Brendle–Schoen positivity of curvature.

In this note we observe that the combined results of Perelman [17], Naber [15], Enders, Müller and Topping [10], and Zhang and the first author [6] yield the following special case of the assertion by Perelman (private communication to Ni) that any 3-dimensional Type I \(\kappa \)-solution with PCO must be a shrinking CPSC metric. As we mentioned in the abstract, this result is implied by the earlier work of Ding [9] and is generalized in the recent work of the third author [19], where the condition of being Type I forward in time is removed.

Proposition 1 Suppose that \((\mathcal{M}^3, g(\tau))\), \(\tau \in (0, \infty) \), is a \(\kappa \)-solution to the backward Ricci flow with PCO forming a singularity at \(\tau = 0 \) and satisfying \(|\text{Rm}|(\tau) \leq \frac{\Delta}{4} \), then \(\mathcal{M} \) is closed and \(g(\tau) \) is a shrinking CPSC metric.

Note that we have assumed that the solution is Type I both forward and backward in time. Applications of this result to the study of shrinking gradient
2 Proof of the proposition

Before we proceed to prove Proposition 1, we prove the following lemma that asserts the existence of a singular point at the forward singular time on a 3-dimensional κ-solution. This is crucial in proving that the blow-up limit is nonflat. The existence of such a point is an issue because of the non compactness of \mathcal{M}; see Remark 1.1 in [10]. We actually prove that every point of \mathcal{M} is a singular point.

Lemma 2 Let $(\mathcal{M}^{3}, g(\tau))$, where $\tau \in (0, \infty)$, be a κ-solution that forms a singularity at $\tau = 0$ in the sense that $\lim_{\tau \to 0^+} \sup_{x \in \mathcal{M}} R(x, \tau) = \infty$, where R denotes the scalar curvature. Then every $p \in \mathcal{M}$ is a singular point in the sense that $\lim_{\tau \to 0^+} R(p, \tau) = \infty$.

Proof. Since 0 is a singular time, by definition we may find a sequence $\{(x_{i}, \tau_{i})\}_{i=1}^{\infty}$, such that $\tau_{i} \searrow 0$ and $R(x_{i}, \tau_{i}) \to \infty$. Suppose $p \in \mathcal{M}$ is not a singular point. Then there exists $C < \infty$ such that $R(p, \tau_{i}) \leq C$ for every $i \in \mathbb{N}$. By Hamilton’s trace Harnack estimate [13], we have $\frac{\partial R}{\partial \tau} \leq 0$. Hence $R(p, \tau_{i}) \in [c, C]$, for all $i \in \mathbb{N}$, where we denote $c = R(p, \tau_{i}) > 0$. Define $g_{i}(\tau) = g(\tau + \tau_{i})$. Then we can use Perelman’s κ-compactness theorem [17] to extract a (not relabelled) subsequence from $\{(\mathcal{M}, g_{i}(\tau), (p, 0))_{\tau \in [0, \infty]}\}_{i=1}^{\infty}$, which converges to a κ-solution $(\mathcal{M}_{\infty}, g_{\infty}(\tau), (p_{\infty}, 0))_{\tau \in [0, \infty]}$. In particular, $(\mathcal{M}_{\infty}, g_{\infty}(0))$ has bounded curvature. Let $A < \infty$ be the curvature bound of $(\mathcal{M}_{\infty}, g_{\infty}(0))$. By the definition of pointed smooth Cheeger–Gromov convergence and by passing to a suitable subsequence, there exists a sequence of open precompact sets $\{U_{i}\}_{i=1}^{\infty}$ exhausting $(\mathcal{M}_{\infty}, g_{\infty}(0))$, where each U_{i} contains p_{∞}, and there exists a sequence of diffeomorphisms

$$
\psi_{i} : U_{i} \to V_{i} \subset (\mathcal{M}, g_{i}(0)),
\psi_{i}(p_{\infty}) = p_{i},
$$

with the following properties. We have $\overline{B_{g_{i}(0)}(p, i)} \subset V_{i}$ and that $\psi_{i}^{*}g_{i}(0)$ is i^{-1}-close to $g_{\infty}(0)$ on U_{i} with respect to the C^{3}-topology. Notice here that we actually have Cheeger–Gromov convergence of the solutions of the backward Ricci flow on the whole time interval $[0, \infty)$, but we need only to use the convergence on the time zero slice. Let $i_{1} \in \mathbb{N}$ be large enough so that $R(x_{i_{1}}, \tau_{i_{1}}) > 100A$, where the existence of i_{1} is guaranteed by the assumption that $R(x_{i_{1}}, \tau_{i_{1}}) \to \infty$. Then we select $i_{2} > i_{1}$ such that $\text{dist}_{g_{i_{1}}(0)}(p, x_{i_{1}}) = \text{dist}_{g(\tau_{i_{1}})}(p, x_{i_{1}}) < 100^{-1}i_{2}$. Since the Ricci flow with nonnegative curvature shrinks distances forward in time, it follows that $\text{dist}_{g(\tau_{i_{2}})}(p, x_{i_{1}}) < 100^{-1}i_{2}$ and hence that $x_{i_{1}} \in \overline{B_{g_{i_{2}}(0)}(p, i_{2})} \subset V_{i_{2}}$. Moreover, by Hamilton’s trace Harnack
estimate we have $R(g_i(0))(x_i) = R(x_i, \tau_i) \geq R(x_i, \tau_i) > 100A$, since $\tau_2 < \tau_1$. This yields a contradiction when i_2 is large enough (say $i_2 > 10000$) since $\psi_i^{-1}(x_i)$ is contained in the set U_i on which $\psi_i^{-1}g_i(0)$ is i_2^{-1}-close to $g(0)$ with respect to the C^{i_2}-topology, while the curvature of $g(0)$ is bounded by A. ■

We now give the proof of our main result.

Proof of Proposition 1. By Ni’s theorem, we may suppose that \mathcal{M} is noncompact, so that \mathcal{M} is diffeomorphic to \mathbb{R}^3. By the first part of Theorem 3.1 in [15], for any $x \in \mathcal{M}$, $\tau_+ \to 0$, and $\tau_- \to \infty$, $(\mathcal{M}, (\tau_+^\pm)^{-1}g(\tau_\pm\tau), (x, 1))$ subconverges to a noncompact shrinking GRS $(\mathcal{M}^\pm, g^\pm(\tau), (x^\pm, 1))$ which does not contain any embedded $\mathbb{R}P^2$. By Theorem 1.1 in [14] and by Lemma 2 above, $(\mathcal{M}^-, g^-(\tau))$ is nonflat since every point is a singular point, whereas by Theorem 4.1 in [6] (see also the statements in its proof), $(\mathcal{M}^+, g^+(\tau))$ is nonflat, since both of these results apply to noncompact manifolds. By Lemma 1.2 in Perelman [18], $g^\pm(\tau)$ cannot have PCO. Thus the $(\mathcal{M}^\pm, g^\pm(\tau))$ are isometric to (shrinking) round cylinders $S^2 \times \mathbb{R}$. By the second part of Theorem 3.1 in [15], we conclude that the same is true for $(\mathcal{M}^3, g(\tau))$, which contradicts $g(\tau)$ having PCO. ■

Remark 3 In [19] by the third author, it shown that there do not exist 3-dimensional noncompact PCO κ-solutions only assuming the solution is Type I backward. This confirms an assertion that Grisha Perelman made to Lei Ni.

3 A criterion for ancient solutions to form forward singularities

In this section we present an application of Lemma 2 which gives a necessary and sufficient condition for a 3-dimensional κ-solution to form a forward singularity.

Corollary 4 A 3-dimensional κ-solution forms a forward singularity if and only if at some time slice $\inf_{\mathcal{M}} R > 0$.

Proof. Let $(\mathcal{M}^3, g(\tau))$, where $\tau \in (0, \infty)$, be a κ-solution to the backward Ricci flow that forms a singularity at $\tau = 0$. By Lemma 2 for every $p \in \mathcal{M}$, $R(p, \tau)$ increases to infinity as $\tau \searrow 0$. By integrating Perelman’s derivative estimate [17]

$$\left| \frac{\partial R}{\partial \tau} \right| \leq \eta R^2,$$

where η depends only on κ, from 0 to τ, we have

$$R(p, \tau) \geq \frac{1}{\eta \tau}.$$
for every \(p \in \mathcal{M} \) and \(\tau \in (0, \infty) \). It follows immediately that \(\inf_{p \in \mathcal{M}} R(p, \tau) > 0 \) for every \(\tau \in (0, \infty) \).

On the other hand, suppose \((\mathcal{M}^3, g(\tau))\), where \(\tau \in [0, \infty) \), is a \(\kappa \)-solution to the backward Ricci flow such that \(\inf_{p \in \mathcal{M}} R(p, T) = c > 0 \) for some \(T > 0 \). We use an idea of Perelman [18] to show that the solution cannot be extended forward to time infinity. Up to scaling the solution by a constant factor, we can find a sequence \(x_i \to \infty \), such that \(\lim_{i \to \infty} R(x_i, T) = 1 \). Applying the \(\kappa \)-compactness theorem [17], we can extract a (not relabelled) subsequence of \(\{(\mathcal{M}, g(\tau + T), (x_i, 0))\}_{i=1}^{\infty} \), converging to a \(\kappa \)-solution \((\mathcal{M}_{\infty}, g_{\infty}(\tau), (x_{\infty}, 0))\), which must be the shrinking cylinder since we have splitting at infinity; see [17]. Moreover, we have \(R_{\infty}(x_{\infty}, 0) = 1 \) and \((\mathcal{M}_{\infty}, g_{\infty}(\tau))\) has unbounded curvature as \(\tau \to -1 \). Then we can conclude that \((\mathcal{M}, g(\tau))\) becomes singular as \(\tau \to T-1 \). For suppose this is not the case. Then there exists an \(\varepsilon > 0 \) such that \(R(g(\tau)) \) is uniformly bounded for \(\tau \in [T-1-\varepsilon, \infty) \). It then follows that the limit flow \((\mathcal{M}_{\infty}, g_{\infty}(\tau))\) exists and has bounded curvature for \(\tau \in [-1-\varepsilon, \infty) \), which is a contradiction. ■

Acknowledgement 5 We would like to thank Peng Lu, Ovidiu Munteanu, Lei Ni, and Jiaping Wang for helpful discussions. X. Cao’s research was partially supported by a grant from the Simons Foundation (#280161).

References

[1] Böhm, Christoph; Wilking, Burkhard. Manifolds with positive curvature operators are space forms. Annals of Math. 167 (2008), 1079–1097.

[2] Brendle, Simon. Rotational symmetry of self-similar solutions to the Ricci flow. Inventiones Math. 194 (2013), 731–764.

[3] Brendle, Simon. A generalization of Hamilton’s differential Harnack inequality for the Ricci flow. Journal of Differential Geometry 82 (2009), 207–227.

[4] Brendle, Simon; Schoen, Richard. Manifolds with 1/4-pinched curvature are space forms. J. Amer. Math. Soc. 22 (2009), 287–307.

[5] Cao, Xiaodong; Chow, Bennett. Three-dimensional noncompact \(\kappa \)-solutions that are Type I forward and backward. arXiv:1606.02698v1.

[6] Cao, Xiaodong; Zhang, Qi S. The conjugate heat equation and ancient solutions of the Ricci flow. Advances in Math. 228 (2011), 2891–2919.

[7] Chen, Bing-Long. Strong uniqueness of the Ricci flow. J. Differential Geom. 82 (2009), 363–382.
[8] Chow, Bennett; Lu, Peng. On kappa-noncollapsed complete noncompact shrinking gradient Ricci solitons which split at infinity. Mathematische Annalen. 366 (2016), 1195–1206.

[9] Ding, Yu. A remark on degenerate singularities in three dimensional Ricci flow. Pacific Journal of Mathematics. 240 (2009), 289-308.

[10] Enders, Joerg; Müller, Reto; Topping, Peter M. On Type I Singularities in Ricci flow. Communications in Analysis and Geometry 19 (2011), 905–922.

[11] Hamilton, Richard S. Three-manifolds with positive Ricci curvature. J. Differential Geom. 17 (1982), 255–306.

[12] Hamilton, Richard S. Four-manifolds with positive curvature operator. J. Differential Geom. 24 (1986), 153–179.

[13] Hamilton, Richard S. The Harnack estimate for the Ricci flow. J. Differential Geom. 37 (1993), 225–243.

[14] Munteanu, Ovidiu; Wang, Jiaping. Structure at infinity for shrinking Ricci solitons. [arXiv:1606.01861]

[15] Naber, Aaron. Noncompact shrinking four solitons with nonnegative curvature. Journal für die Reine und Angewandte Mathematik 645 (2010), 125–153.

[16] Ni, Lei. Closed type-I ancient solutions to Ricci flow. Recent Advances in Geometric Analysis, ALM Vol 11 (2009), 147–150.

[17] Perelman, Grisha. The entropy formula for the Ricci flow and its geometric applications. [arXiv:math.DG/0211159]

[18] Perelman, Grisha. Ricci flow with surgery on three-manifolds. [arXiv:math.DG/0303109]

[19] Zhang, Yongjia. On three-dimensional Type I k-solutions to the Ricci flow. [arXiv:1708.02341]