Hydrodynamic delivery of adiponectin and adiponectin receptor 2 gene blocks high-fat diet-induced obesity and insulin resistance

Y Ma and D Liu

Adiponectin and its receptors are inversely related to the degree of obesity and have been identified as potential therapeutic targets for the treatment of obesity. In this study, we evaluated the effect of hydrodynamic delivery of adiponectin and/or its receptor 2 (adipoR2) genes on controlling the development of obesity and insulin resistance in AKR/J mice fed a high-fat diet. An increase in adiponectin and adipoR2 gene expression by hydrodynamic gene delivery prevented diet-induced weight gain, reduced fat accumulation in liver and adipose tissue, and improved insulin sensitivity. Beneficial effects were seen with reduced gluconeogenesis in the liver and lipogenesis in the liver, white adipose tissue and skeletal muscle. Real-time PCR analysis demonstrated overexpression of adiponectin and adipoR2 significantly suppressed transcription of phosphoenolpyruvate carboxykinase (pepck), glucose-6-phosphatase (g6pase), stearoyl CoA desaturase 1 (scd-1) and fatty acid synthase (fas) gene. Inhibition effects were mediated by activating the AMP-activated protein kinase (AMPK). These results prove that elevation of adiponectin and/or adipoR2 expression via gene transfer is an effective approach in managing obesity epidemics.

INTRODUCTION

Adiponectin (also known as Acrp30, AdipoQ and GBP28) is an adipocytokine secreted from adipocytes and is present abundantly in plasma. Through interacting with its receptors, AdipoR1 and AdipoR2, adiponectin regulates energy homeostasis and glucose metabolism by increasing insulin sensitivity, suppressing inflammation and inhibiting atherogenicity. Previous studies show that adiponectin expression and its plasma concentration were significantly reduced in obese/diabetic mice, monkeys and humans. Decreased serum level of adiponectin also correlates with lowered insulin sensitivity. Similarly, the expression of the adiponectin receptor was also significantly decreased in ob/ob mice and C57BL/6 mice fed a high-fat diet (HFD). In addition, simultaneous disruption of both AdipoR1 and AdipoR2 abolished adiponectin binding and actions, leading to insulin resistance and glucose intolerance. These studies suggest that obesity decreases the expression of adiponectin receptors, and consequently, reduces adiponectin sensitivity and leads to insulin resistance. Therefore, a strategy to enhance expression of adiponectin or the adiponectin receptor gene or in combination should prevent obesity. The aim of this study is to assess such a possibility in AKR/J mice fed a HFD by delivering plasmids containing coding sequences of adiponectin or adipoR2 gene using hydrodynamic delivery. Our data demonstrate that an increase in adiponectin, and adipoR2 gene expression or both through gene delivery blocks HFD-induced weight gain, reduces lipids deposition and maintains glucose homeostasis.

RESULTS

Increase of adiponectin and adipoR2 gene expression in AKR/J mice by hydrodynamic gene delivery

To confirm expression of adiponectin and adipoR2 in AKR/J mice, mRNA and protein levels of these gene products were determined at different times after hydrodynamic delivery of pCMV-Acrp30 or/and pCMV-adipoR2 plasmid DNA. As shown in Figure 1a, a more than a 4000-fold increase in adiponectin mRNA was detected in the livers as early as 2 h after hydrodynamic gene delivery in AKR/J mice. Transcript levels decreased quickly over time. One week after gene delivery, transcript levels in mouse livers were eight-fold higher than that of control animals injected with an empty plasmid (pcDNA3.1). The serum concentration of adiponectin protein was 125 μg ml⁻¹ 24 h after injection and remained at 22 μg ml⁻¹ after 7 days, two-fold higher than background level before gene delivery (Figure 1c, time zero). A similar gene expression pattern was also seen in animals injected with adipoR2 plasmid (Figures 1b and d). The mRNA levels of adipoR2 increased ~ 60-fold 1 day after gene delivery and returned to the background level 7 days later (Figure 1b). Western blot in mouse livers showed a peak level of adipoR2 protein on day 1 and returned to background level in day 7 (Figure 1d). These data prove that adiponectin and adipoR2 are expressed successfully in mice by hydrodynamic gene delivery.

Adiponectin and adipoR2 gene delivery blocks HFD-induced weight gain in AKR/J mice

To explore the effect of adiponectin and adipoR2 gene delivery on diet-induced obesity, 4-week-old male mice were injected with...
Hydrodynamic delivery of adiponectin and adipOR2 genes in AKR/J mice

Y Ma and D Liu

Hydrodynamic delivery of adiponectin and adipOR2 genes improved HFD-induced hyperinsulinemia and hyperglycemia

Obesity is known to induce insulin resistance, a characteristic of type-2 diabetes. To investigate whether reduced weight gain by increasing levels of adiponectin and its receptor improves obesity-associated insulin resistance, glucose homeostasis was assessed. Glucose tolerance tests (Figure 3a) and calculated area under the curve (Figure 3b) showed that mice injected with pCMV-Acrp30 and/or pCMV-adipoR2 exhibited a much quicker clearance rate of glucose comparing to that of control animals. The mRNA and protein levels of adiponectin and adipOR2 were measured. The mRNA level of adiponectin (a) and adipOR2 (b) in mouse liver; adiponectin level in mouse serum (c); and protein level of adipOR2 in mouse liver (d). Data represent mean ± s.d. from three independent experiments.

The expression of adiponectin and adipOR2 in AKR/J mice was examined via tail vein of 1 μg·g⁻¹ of body weight (or lean mass) of pCMV-Acrp30, pCMV-adipoR2, or both and sacrificed at desirable time. The mRNA and protein levels of adiponectin and adipOR2 were measured. The mRNA level of adiponectin (a) and adipOR2 (b) in mouse liver; adiponectin level in mouse serum (c); and protein level of adipOR2 in mouse liver (d). Data represent mean ± s.d. from three independent experiments.

Increase in adiponectin and adipOR2 expression suppressed HFD-induced lipid accumulation in mouse liver and adipose tissue

Excessive deposition of lipids in liver and adipose tissue is one of the major characteristics in obesity. Therefore, we further evaluated the effect of adiponectin and adipOR2 gene delivery on lipid accumulation in hepatic and adipose tissues. Hematoxylin and eosin stained liver sections show extensive hepatocyte vacuolation in control mice, reflecting that severe hepatic steatosis was developed (Figure 4a). However, injection of adiponectin and adipOR2 plasmids significantly attenuated lipid deposition in hepatocytes and resisted the development of hepatic steatosis, especially in animals injected with both types of plasmids (Figures 4b–d). Consistent with reduction of lipids in the liver and an increased expression of adiponectin and/or adipOR2 in AKR/J mice repressed lipid accumulation in white adipose tissue (WAT), which was also observed as evidenced by a unmistakable reduction in adipocyte size in animals injected with adiponectin and/or adipOR2 plasmids (Figures 4e–h). Conversely, an analysis of a brown adipose tissue mass revealed no significant difference in adipocyte size (Figures 4i–l).
Increased adiponectin and adipoR2 expression inhibited lipogenesis in HFD-fed AKR/J mice

To determine how adiponectin and adipoR2 reduce excessive lipid accumulation in HFD-fed animals, we conducted a real-time PCR analysis of mRNA for genes involved in lipogenesis. As shown in Figure 5, adiponectin overexpression significantly lowered mRNA levels of stearoyl CoA desaturase 1 (scd-1) and fatty acid synthase (fas) by 87 and 40% (Figure 5a), respectively. An increase in adipoR2 gene expression did not reduce fas mRNA levels, but did decrease scd-1 transcription in the liver. Significant inhibition of fas and scd-1 gene expression was observed in WAT (Figure 5b) and skeletal muscle (Figure 5c) as compared with control animals injected with empty plasmids. Reduction of acetyl-CoA carboxylase (acc1) was only observed in WAT, no change was observed in skeletal muscle, and only a slight increase in the liver. Taken together, these data show that hydrodynamic delivery of adiponectin and adipoR2 gene prevents lipid accumulation through inhibiting lipogenesis.

Delivery of adiponectin gene activated AMP-activated protein kinase (AMPK)

AMPK has a key role in regulating energy homeostasis and mediating the activity of adiponectin and its receptors. Therefore, we assessed the effect of increased adiponectin expression on AMPK activation by measuring the amount of phosphorylated AMPK (Thr172) and total AMPK protein at different time after plasmid injection. As shown in Figure 6, phosphorylation of AMPK was increased by 1.97-fold as early as 2 h after plasmid injection and reached 2.86-fold higher than control animals 24 h later. Activated AMPK quickly reduced after 1 day, concordant with the expression pattern of adiponectin as shown in Figure 1. These results suggest that activation of AMPK plays a critical role in adiponectin-mediated protection against HFD-induced obesity.

DISCUSSION

The overall objective of this study is to use gene transfer as a way to block HFD-induced obesity and insulin resistance. We demonstrate that increased expression of adiponectin and adipoR2 gene by hydrodynamic delivery prevents the development of HFD-induced obesity and alleviates obesity-related insulin resistance and lipid accumulation (Figures 2–4). Mechanistically, these beneficial effects are achieved by inhibition of lipogenesis and gluconeogenesis through activation of AMPK (Figures 5 and 6).
Hydrodynamic gene delivery is an effective method of gene delivery19,20 and has been widely used for gene expression and functional analysis in whole animals.21 The use of the computer-controlled injection device in recent work has made the hydrodynamics-based procedure more attainable for gene delivery in both small and large animals.22–24 Results in Figure 1 show that hydrodynamic injection of pCMV-Acrp30 plasmid results in a significant production of adiponectin as early as 2 h. Secreted adiponectin levels in plasma reached 125 mg/ml in the first day, much higher than that of viral vector-based gene delivery and nonviral approach using polyethylenimine as a gene carrier.25,26 AdipoR2 also showed a similar expression pattern in the liver, as demonstrated by real-time PCR (Figure 1b) and western blot (Figure 1d).

An increased expression of adiponectin and adipoR2 gene blocked body weight gain in HFD-fed male (Figure 2a) and female (Figure 2e) AKR/J mice and reduced lipid accumulation in the liver and WAT (Figure 4). No difference was observed between animals injected with either pCMV-Acrp30 or pCMV-AdipoR2 plasmids, although animals injected with both plasmids exhibited better hepatic protection as shown by hematoxylin and eosin staining. The results from real-time PCR showed that a reduction in hepatic lipid accumulation involves inhibition of fas and scd-1 gene expression in the liver (Figure 5a), WAT (Figure 5b) and skeletal muscle (Figure 5c). However, elevated expression of adiponectin or adipoR2 gene did not suppress acc1 expression in the liver.

Enhanced phosphorylation of AMPK in pCMV-Acrp30 injected animals (Figure 6) suggests reduced lipogenesis in the liver, which is in accordance with well-known pathways for adiponectin activity.27 The anti-hypoglycemic effect of adiponectin and adipoR2 in animals fed a HFD was mediated by inhibiting the expression of pepck and g6pase genes (Figure 3f), two key enzymes in gluconeogenesis. These results are in agreement with previous reports,25 confirming that AMPK activation represses the transcription of pepck and g6pase through phosphorylation of the CREB-regulated transcription coactivator 2.27,28 A study using adiponectin transgenic mice showed that a reduced expression of

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Hydrodynamic delivery of adiponectin and adipoR2 gene improves HFD-induced hyperinsulinemia and hyperglycemia. At the end of the 8-week treatment, animals were fasted overnight to measure glucose tolerance, or 4 h for insulin sensitivity. Time-dependent blood concentration of glucose upon intraperitoneal injection of glucose (2 g kg-1) (a); area under the curve from glucose tolerance test (b); time-dependent glucose concentration upon intraperitoneal injection of insulin (c); insulin levels measured at the end of the 8-week in male mice (d); HOMA-IR value (e) calculated based on formula: (fasting insulin (mU ml-1)\times fasting glucose (mmol l-1)/ 22.5); and relative mRNA levels of pepck and g6pase in mouse liver (f). Data represent mean ± s.d. (n = 4) in each group. *P < 0.05; **P < 0.01, comparing to the control group.}
\end{figure}
enzymes involved in glucose metabolism is associated with elevated phosphorylation of hepatic AMPK, which may account for inhibition of endogenous glucose production by adiponectin.29 In addition to activation of AMPK, Iwabu et al.30 recently reported that adiponectin induces Ca2+ influx in skeletal muscle via adipoR1 as a mechanism for regulation of mitochondrial biogenesis that reduces oxidative stress and enhances endurance capacity. Whether adiponectin enhances Ca2+ influx in the liver via adipoR2 requires further investigation.

In summary, we demonstrate that increased expression of adiponectin and adipoR2 genes by hydrodynamic gene delivery blocks HFD-induced weight gain, lipid accumulation and insulin resistance in AKR/J mice. The mechanism involves activation of AMPK to suppress expression of genes involved in lipogenesis and gluconeogenesis. Although further studies are needed to confirm that similar effect will be achieved in different animals or under different physiological conditions, these results strongly suggest that management of obesity epidemics through gene transfer.

Figure 4. Increase of adiponectin and adipoR2 expression reduced lipid accumulation in mice fed with a HFD. Hematoxylin and eosin staining of liver sections showing less vacuolation and lipid accumulation in livers of treated animals compared with that of control (100 ×) (a–d); hematoxylin and eosin stain staining of WAT showing a prominent reduction of adipocyte size in treated group (100 ×) (e–h); and hematoxylin and eosin stain staining of brown adipose tissue showing no significant changes among these groups (100 ×) (i–l).

Figure 5. Adiponectin- and adipoR2-overexpression inhibited lipogenesis in HFD-fed AKR/J mice. Expression of genes involved in lipid metabolism in liver (a), WAT (b), and muscle (c) from male mice. Results are expressed as means ± s.d. (n = 4) for each group. *P < 0.05; **P < 0.01, comparing to control.
Materials and methods
Adiponectin and adipor2 genes were from Open Biosystems (Huntsville, AL, USA) and were cloned into a pcDNA3.1 plasmid. DNA plasmids were purified using CsCl–ethidium bromide density-gradient ultracentrifugation and kept in 0.9% sodium chloride. Purity of the plasmids was verified with absorbency at 260 and 280 nm and 1% agarose gel electrophoresis. HFD was purchased from Bio-serv (Frenchtown, NJ, USA, catalog number S3282). The RNeasy Tissue kit was from Qiagen (Valencia, CA, USA). Reagents for real-time PCR were obtained from AB Applied Biosystems (Foster City, CA, USA). Antibodies against mouse adipor2 were from Abcam (Cambridge, MA, USA). Antibodies against mouse AMPK-alpha and phosphor-AMPK-alpha (Thr172) were purchased from Cell Signaling (Danvers, MA, USA). The mouse adiponectin ELISA kit was obtained from Abcam (Cambridge, MA, USA). The mouse adiponectin ELISA kit was obtained from Assaypro (St Charles, MO, USA). The insulin assay kit was from Crystal Chem (Downers Grove, IL, USA). The glucometer and test strips were purchased from LifeScan (Milpitas, CA, USA). The mouse adiponectin ELISA kit was obtained from Abcam (Cambridge, MA, USA). Antibodies against mouse AMPK-alpha and phosphor-AMPK-alpha (Thr172) were purchased from Cell Signaling (Danvers, MA, USA).

Analysis of insulin levels
After the final injection, blood samples were collected from fasted mice. Serum levels of insulin were measured using commercial assay kits according to the manufacturer’s instructions. HOMA-IR was calculated as follows: (fasting insulin (mU ml⁻¹) × fasting glucose (mmol l⁻¹))/22.5.

Glucose tolerance test and insulin tolerance test
For glucose tolerance test, mice were fasted overnight and injected intraperitoneally with glucose at 2 g per kg body weight. Blood samples were taken at different time points and glucose concentrations were measured using a glucometer. For insulin tolerance test, mice were fasted for 4 h and blood glucose levels were measured after an intraperitoneal injection of human insulin (Novolin) from Novo Nordisk (Princeton, NJ, USA) at 1.2 U per kg.

Histology analysis
After mice were sacrificed, the liver, white and brown adipose tissues were removed and fixed in 10% formalin. Tissues were processed, embedded in paraffin, sectioned at a thickness of 5 μm and stained with hemotoxylin and eosin. Microscopic examination was performed and photographed under a regular light microscope.

Gene expression analysis by real-time PCR
Total RNA was isolated from the mouse liver, WAT and muscle tissue using the RNeasy kit. Two micrograms of total RNA were used for first-strand complementary DNA synthesis, as recommended by the manufacturer (Invitrogen, Carlsbad, CA, USA). Real-time PCR was performed using SYBR Green as an indicator on the ABI 7300 Fast Real-Time PCR system. The final reaction mixture contained 10 ng of complementary DNA, 100 nM of each primer, 10 μl of 2 × SYBR Green PCR Master and RNase-free water to complete the reaction mixture volume to 20 μl. All reactions were performed in triplicate. PCR was carried out for 40 cycles of 95°C for 15 s and 60°C for 1 min. Fluorescence was read during the reaction, allowing a continuous monitoring of the amount of PCR product. Data were normalized to internal control GAPDH mRNA. The sequences of primers are as shown in Table 1.

Table 1. Primer sets for real time PCR analysis of gene expression

Name	Forward sequence	Reverse sequence
Adiponectin	AGGCGCTTATGTGATGCTCA	TGGCGCTATTGCTTCGTTG
Adipor2	TAACCAAGAGATTGGAGCCGC	GCCATATAACCCTCTATCCCT
pepck	AGACATTACGCCGAGGCTTCT	GCCCGAGTCTCGAGTTCAAT
g6pase	CGACTCTGCTAATCCCAAGTGA	TGGAAACGAGTCTCCGACCA
acc1	GCCCTCTTCTGACAAACGAG	TGGACGAAACACTCTCCTG
fas	AAGGACTCCCGGAGGCCGTTCT	GCCGCGTGGTCGGCATCTC
scc-1	TCTTACACGACCAACACCACA	CGGAAGAGGACGTTGAGAG
gapdh	AGGTCGAGTCTGAGGAGTATTG	CTTGACAGCTATGTTGAGTCTA

Abbreviations: acc1, acetyl-CoA carboxylase; Adipor2, adiponectin receptor-2 gene; fas, fatty acid synthase gene; g6pase, glucose-6-phosphatase; gapdh, glyceraldehyde 3-phosphate dehydrogenase; pepck, phosphoenolpyruvate carboxikinase; scc-1, stearyl CoA desaturase 1

© 2013 Macmillan Publishers Limited
CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
This work was supported in part by the National Institute of Health (RO1EB007357 and RO1HL098295). The authors would like to thank Ms Ryan Fugett for proofreading the manuscript.

REFERENCES
1 Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to CT1q produced exclusively in adipocytes. J Biol Chem 1995; 270: 26746–26749.
2 Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 1996; 271: 10697–10703.
3 Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K et al. cDNA cloning and expression of a novel adipose-specific collagen-like factor, apm1 (Adipose most abundant gene transcript 1). Biochem Biophys Res Commun 1996; 221: 286–289.
4 Nakano Y, Tobe T, Chomiu RH, Madaa Z, Tomita M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem 1996; 120: 803–812.
5 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257: 79–83.
6 Capeau J. The story of adiponectin and its receptors AdipoR1 and R2: to follow. Biochimie 2002; 84: 293–300.
7 Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006; 117: 1784–1792.
8 Kershaw E, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocr Metab 2004; 89: 2548–2556.
9 Diezand JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 2003; 148: 293–300.
10 Stanick MA, Beavers LS, Conner LJ, Carominola H, Johnson D, Hammond CD et al. Decreased expression of apm1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes. Int J Obes 2007; 2000: 7: 81–88.
11 Arner P. The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones. Trends Endocrinol Metab 2003; 2002: 14: 137–145.
12 Hotta K, Funahashi T, Bodkin NL, Orrmeyer HK, Arta Y, Hansen BC et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rheus monkeys. Diabetes 2001; 50: 1126–1133.
13 Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipaotrophy and obesity. Nat Med 2001; 7: 941–946.
14 Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930–1935.
15 Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S et al. Insulin/Fox01 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem 2004; 279: 30817–30822.
16 Peng YH, Rideout D, Rakita S, Sajan M, Farese R, You M et al. Downregulation of adiponcin/adipor2 is associated with steatohepatitis in obese mice. J Gastrointest Surg 2009; 13: 2043–2049.
17 Yamauchi T, Nio Y, Maki T, Kobyashy M, Takawaka T, Iwabu M et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 2007; 13: 332–339.
18 Hardie DG. The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci 2004; 117: 5479–5487.
19 Liu F, Song YK, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy 1999; 6: 1258–1266.
20 Zhang GF, Budker V, Wollf JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999; 10: 1735–1737.
21 Suda T, Liu D. Hydrodynamic gene delivery: Its principles and applications. Mol Ther 2007; 15: 2063–2069.
22 Suda T, Suda K, Liu D. Computer-assisted hydrodynamic gene delivery. Mol Ther 2008; 16: 1098–1104.
23 Kamimura K, Suda T, Xu W, Zhang GS, Liu D. Image-guided, lobe-specific hydrodynamic gene delivery to swine liver. Mol Ther 2009; 17: 491–499.
24 Kamimura K, Zhang GS, Liu D. Image-guided, Intravascular hydrodynamic gene delivery to skeletal muscle in pigs. Mol Ther 2010; 18: 93–100.
25 Shklyaev S, Ailandis G, Tannant M, Prima V, Kohlbrenner E, Kroutov V et al. Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats. Proc Natl Acad Sci USA 2003; 100: 14217–14222.
26 Park JH, Lee M, Kim SW. Non-viral adiponectin gene therapy into obese 2 type diabetic mice ameliorates insulin resistance. J Control Release 2006; 114: 118–125.
27 Dzamkoand NL, Steinberg GR. AMPK-dependent hormonal regulation of whole-body energy metabolism. Acta Physiol 2009; 196: 115–127.
28 Koo SH, Flechler L, Qi L, Zhang XM, Screaton RA, Jeffries S et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 2005; 437: 1109–1114.
29 Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, Laplante M et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 2004; 145: 367–383.
30 Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca2+ and AMPK/SIRT1. Nature 2010; 464: 1313–1319.