ENHANCEMENT BY ANESTHETIC AND CONVULSANT BARBITURATES OF GABA BINDING TO RAT BRAIN SYNAPTOSOMAL MEMBRANES

MAX WILLOW AND GRAHAM A. R. JOHNSTON

Department of Pharmacology, John Curtin School of Medical Research, Australian National University, Canberra, Australia and
Department of Pharmacology, University of Sydney, Sydney, N.S.W., 2006, Australia

Abstract

All of the anesthetic (amylobarbitone, butobarbitone, pentobarbitone, phenobarbitone, and seco- barbitone) and convulsant (5-ethyl-5-(3'-methylbut-2-enyl)barbituric acid (3M2B) and 5-ethyl-5-(2'- cyclohexylidene-ethyl)barbituric acid (CHEB)) barbiturates tested enhanced the binding of GABA to a carefully prepared P1 membrane fraction from rat brain in a dose-dependent manner. These findings are in agreement with the potentiation of the inhibitory effects of GABA in many neuronal systems by both classes of barbiturates.

Materials and Methods

Crude synaptosomal membranes were prepared according to methods described previously (Willow and Johnston, 1980). Male Wistar rats (250 to 350 gm) were decapitated, and the brains were removed quickly and homogenized in ice cold 0.32 M sucrose using a glass homogenizer fitted with a Teflon pestle (0.22 mm clearance in diameter). The homogenate (10% w/v) was centrifuged at 1000 x g for 10 min and the resultant nuclear pellet was washed once. The combined supernatant was centrifuged at 14,500 x g for 20 min and the mitochondrial/synaptosomal (P2) pellet was washed 8 to 10 times by resuspension in ice cold 50 mM Tris/citrate buffer (pH 7.1) and centrifuged at 20,000 x g for 20 min. GABA binding was studied by incubating the resuspended membrane material (0.5 mg of protein in 2 ml of Tris/citrate buffer, pH 7.1) for 5 min at 4°C with 2.3 nM [3H]GABA (60 Ci/mmol, Radiochemical Centre, Amersham). This was followed by centrifugation for 10 min at 48,000 x g, removal of the supernatant, and superficial rinsing of the pellet twice with 5 ml of ice cold distilled water. Nonspecific binding was assessed as that fraction of bound GABA not displaced by 1 mM unlabeled GABA. Typically, total and nonspecific binding was 3000 and 500 cpm, respectively. Studies using density gradient centrifugation showed that specific GABA binding was highest in the synaptosomal fraction (2600 cpm/0.5 mg) with only a small amount of binding to mitochondria (600 cpm/0.5 mg). Protein was measured according to the method of Lowry et al. (1951). The effects of varying concentrations (0 to 800 µM) of barbiturates (sodium salts) on GABA binding were studied by incubating the resuspended membrane material with 2.3 nM [3H]GABA in the presence of the barbiturate for 5 min at 4°C with 2.3 nM [3H]GABA (60 Ci/mmol, Radiochemical Centre, Amersham).
Results

All anesthetic barbiturates tested enhanced GABA binding in a dose-dependent manner (Fig. 1). Butobarbitone, secobarbitone, and amylobarbitone were all approximately equipotent, with the threshold concentration at 6.25 μM. Pentobarbitone was slightly weaker than these compounds and phenobarbitone was 3 to 4 times less potent than pentobarbitone. All of these compounds produced a maximal enhancement of [3H]-GABA binding of approximately 40%. Sodium chloride, 100 μM, had no effect on GABA binding measured under these conditions. The enhancement of GABA binding by pentobarbitone has been shown to result from an increase in the affinity of a high affinity binding site with no change in the density of binding sites (Willow and Johnston, 1980).

The two convulsant barbiturates tested, 5-ethyl-5-(3'-methylbut-2-ynyl)barbituric acid (3M2B) and 5-ethyl-5-(2'-cyclohexylidene-ethyl)barbituric acid (CHEB), also enhanced GABA binding in a similar manner to the anesthetic barbiturates, both being approximately equipotent to butobarbitone, secobarbitone, and amylobarbitone (Fig. 2). Picrotoxinin at low concentrations (10 μM) completely abolished the enhancement of GABA binding by amylobarbitone, while higher concentrations (100 μM) were required to block completely the enhancement of binding by CHEB (Table I). Picrotoxinin (100 μM) alone did not modify GABA binding.

Discussion

The present study indicates that both anesthetic and convulsant barbiturates enhance [3H]-GABA binding to the crude P2 fraction of rat brain. The effective concentrations of anesthetic barbiturates (6.25 to 100 μM) are within the range of concentrations of these substances found in the brains of laboratory animals during surgical anesthesia (Richards, 1972). The greater potency of pentobarbitone when compared with phenobarbitone is also consistent with the relative potencies of these barbiturates in enhancing the actions of GABA on frog motorneurons (Nicoll and Wojtowicz, 1980) and in prolonging the inhibitory postsynaptic potential recorded in guinea pig olfactory cortex slices in vitro (Scholfield, 1977). The enhancement of GABA binding by the two convulsant barbiturates, CHEB and 3M2B, is in agreement with the finding that 3M2B, like pentobarbitone, enhanced the inhibitory effect of GABA on cat spinal interneurons (Lodge, 1979). Nicoll (1975) also has shown that CHEB depolarizes primary afferent fibers in the isolated frog spinal cord in a similar GABA-mimetic fashion to pentobarbitone.

The finding that picrotoxinin abolished the enhancement of GABA binding by amylobarbitone and CHEB, without altering binding in the absence of barbiturates, suggests that the site of enhancement may be at a picrotoxinin-sensitive ionophore rather than a picrotoxinin-sensitive ionophore.

Figure 1. Effect of pentobarbitone (PB), amylobarbitone (AMY), secobarbitone (SEC), butobarbitone (BUT), and phenobarbitone (PHEN) on GABA binding in crude synaptosomal (P2) membranes. Each point represents the mean of six experiments. The standard error of the mean, omitted for clarity, did not exceed 7%.
insensitive GABA receptor (Andrews and Johnston, 1979). This is in agreement with the observation that barbiturates antagonize the binding of dihydropicrotoxinin to fresh rat cortical P2-P3 membranes (Ticku and Olsen, 1978). While our techniques prevent us from establishing whether the barbiturate enhancement of GABA binding is bicuculline sensitive (since bicuculline antagonizes binding in the absence of barbiturates), it has been shown that pentobarbitone does not influence (+)-bicuculline-methiodide binding to rat cerebellar synaptic membranes (Möller and Okada, 1977). In addition picrotoxinin, but not bicuculline, abolishes the enhancement of GABA-mediated hyperpolarization of frog motoneurons by pentobarbitone (Nicoll and Wojtowicz, 1980). The present study showed that a higher concentration of picrotoxinin (100 μM) was required to block completely the CHEB-mediated enhancement of GABA binding compared to the concentration required to abolish the enhancement seen with amylobarbitone. Consistent with this finding that anesthetic and convulsant barbiturates may differ in their affinity for the picrotoxinin binding site is the observation that convulsant barbiturates are more potent than anesthetic barbiturates in displacing [3H]dihydropicrotoxinin in rat brain P2-P3 membranes (Ticku and Olsen, 1978).

The present findings are in agreement with the observation that anesthetic barbiturates enhance the actions of GABA in the vertebrate central nervous system, a factor which may be of importance to their action as anesthetics. On the other hand, convulsant barbiturates also enhance GABA binding and such an effect seems unlikely to contribute to the convulsant action of these compounds, particularly as 3M2B, like bicuculline and picrotoxinin, reduces GABA-mediated primary afferent depolarization (Lodge, 1979). The effects of convulsant barbiturates on the release of inhibitory and excitatory transmitters at certain synapses may be more important factors in determining their pharmacological actions (Nicoll, 1978), particularly since convulsant and anesthetic barbiturates have differential effects on amino acid release (Willow et al., 1980).

Table I

Drug (μM)	% of control ± SEM
Control	100 ± 4.5 (6)*
Picrotoxinin (100)	103 ± 2.4 (6)
Amylobarbitone (100)	130 ± 2.3 (6)
Amylobarbitone (100) + picrotoxinin (10)	104 ± 4.3 (6)
CHEB (100)	131 ± 7.2 (6)*
CHEB (100) + picrotoxinin (10)	130 ± 1.7 (6)*
CHEB (100) + picrotoxinin (50)	118 ± 7.3 (6)
CHEB (100) + picrotoxinin (100)	101 ± 6.0 (6)

* The number of observations are denoted in parentheses.
* Significantly different from control values at $p < 0.001$ by the Student's t test.
* Significantly different from control values at $p < 0.01$ by the Student's t test.
References

Andrews, P. R., and G. A. R. Johnston (1979) GABA agonists and antagonists. Biochem. Pharmacol. 28: 2697-2702.

Eccles, J. C., D. S. Faber, and H. Taborikova (1971) The action of a parallel fiber volley on the antidromic invasion of Purkinje cells of cat cerebellum. Brain Res. 25: 335-356.

Enna, S. J., and S. H. Snyder (1976) A simple, sensitive and specific radioreceptor assay for endogenous GABA in brain tissue. J. Neurochem. 26: 221-224.

Evans, R. H. (1979) Potentiation of the effects of GABA by pentobarbitone. Brain Res. 171: 113-120.

Lodge, D. (1978) Effect of a convulsant barbiturate on the inhibitory action of GABA in the cat spinal cord. Clin. Exp. Pharmacol. Physiol. 6: 686.

Lodge, D., and D. R. Curtis (1978) Time course of GABA and glycine actions on cat spinal neurones: Effect of pentobarbitone. Neurosci. Lett. 8: 125-129.

Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.

Mohler, H., and T. Okada (1977) GABA receptor binding with 3H(+)bicuculline-methiodide in rat CNS. Nature 267: 65-67.

Nicoll, R. A. (1972) The effects of anaesthetics on synaptic excitation and inhibition in the olfactory bulb. J. Physiol. (Lond.) 223: 803-814.

Nicoll, R. A. (1975) Presynaptic actions of barbiturates in the frog spinal cord. Proc. Natl. Acad. Sci. U. S. A. 72: 1460-1463.

Nicoll, R. A. (1978) Sedative-hypnotics: Animal pharmacology. In Handbook of Psychopharmacology, L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds., Vol. 12, pp. 187-234, Plenum Press, New York.

Nicoll, R. A., and J. M. Wojtowicz (1980) The effects of pentobarbital and related compounds on frog motoneurons. Brain Res. 191: 225-237.

Nicoll, R. A., J. C. Eccles, T. Oshima, and F. Rubia (1975) Prolongation of hippocampal inhibitory postsynaptic potentials by barbiturates. Nature 255: 625-627.

Olsen, R. W., M. K. Ticku, D. Greenlee, and P. Van Ness (1979) GABA receptor and ionophore binding sites: Interactions with various drugs. In GABA-Neurotransmitters, P. Krosggaard-Larsen, J. Scheel-Kruger, and H. Kofod, eds., pp. 165-178, Munksgaard, Copenhagen.

Peck, E. J., A. L. Miller, and B. R. Lester (1976) Pentobarbital and synaptic high-affinity receptive sites for gamma-aminobutyric acid. Brain Res. Bull. 1: 596-597.

Ransom, B. R., and J. L. Barker (1976) Pentobarbital selectively enhances GABA-mediated post-synaptic inhibition in tissue cultured mouse spinal neurones. Brain Res. 114: 530-535.

Richards, C. D. (1972) On the mechanism of barbiturate anaesthesia. J. Physiol. (Lond.) 227: 749-767.

Scholfield, C. N. (1977) Prolongation of post-synaptic inhibition by barbiturates. Br. J. Pharmacol. 59: 507P.

Ticku, M. J., and R. W. Olsen (1978) Interaction of barbiturates with dihydropicrotoxinin binding sites related to the GABA receptor-ionophore system. Life Sci. 22: 1643-1652.

Willow, M., and G. A. R. Johnston (1980) Enhancement of GABA binding by pentobarbitone. Neurosci. Lett. 18: 323-327.

Willow, M., J. C. Bornstein, and G. A. R. Johnston (1980) The effects of anaesthetic and convulsant barbiturates on the efflux of [H]-D-aspartate from brain minislices. Neurosci. Lett. 18: 185-190.