Julián Esteban Gutiérrez Posada

Interfaces Tangíveis e o Design de Ambientes Educacionais para Co-construção de Narrativas

CAMPINAS
2015
Julián Esteban Gutiérrez Posada

Interfaces Tangíveis e o Design de Ambientes Educacionais para Co-construção de Narrativas

Tese apresentada ao Instituto de Computação da Universidade Estadual de Campinas como parte dos requisitos para a obtenção do título de Doutor em Ciência da Computação.

Orientadora: Prof. Dra. Maria Cecilia Calani Baranauskas

Este exemplar corresponde à versão final da Tese defendida por Julián Esteban Gutiérrez Posada e orientada pela Prof. Dra. Maria Cecilia Calani Baranauskas.

CAMPINAS
2015
Gutiérrez Posada, Julián Esteban, 1973-
Interfaces tangíveis e o design de ambientes educacionais para co-construção de narrativas / Julián Esteban Gutiérrez Posada. – Campinas, SP : [s.n.], 2015.

Orientador: Maria Cecília Calani Baranauskas.
Tese (doutorado) – Universidade Estadual de Campinas, Instituto de Computação.

1. Interação humano-computador. 2. Arte de contar histórias. 3. Inclusão digital. 4. Design de interação. 5. Computadores e crianças. 6. Tecnologia educacional. 7. Acessibilidade. I. Baranauskas, Maria Cecília Calani,1954-. II. Universidade Estadual de Campinas. Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Tangible interfaces and the design of educational environments for the co-construction of narratives
Palavras-chave em inglês:
Human-computer interaction
Storytelling
Digital inclusion
Interaction design
Computers and children
Educational technology
Acessibility
Área de concentração: Ciência da Computação
Titulação: Doutor em Ciência da Computação
Banca examinadora:
Maria Cecília Calani Baranauskas [Orientador]
Junia Coutinho Anacleto
Leonardo Cunha de Miranda
André Santanchê
José Armando Valente
Data de defesa: 04-12-2015
Programa de Pós-Graduação: Ciência da Computação
Julián Esteban Gutiérrez Posada

Interfaces Tangíveis e o Design de Ambientes Educacionais para Co-construção de Narrativas

Banca Examinadora:

- Profa. Dra. Maria Cecília Calani Baranauskas
 Universidade Estadual de Campinas (UNICAMP)
- Profa. Dra. Junia Coutinho Anacleto
 Universidade Federal de São Carlos (UFSCar)
- Prof. Dr. Leonardo Cunha Miranda
 Universidade Federal do Rio Grande do Norte (UFRN)
- Prof. Dr. André Santanchê
 Universidade Estadual de Campinas (UNICAMP)
- Prof. Dr. Jose Armando Valente
 Universidade Estadual de Campinas (UNICAMP)

A atá da defesa com as respectivas assinaturas dos membros da banca encontra-se no processo de vida acadêmica do aluno.

Campinas, 4 de dezembro de 2015
Dedicatória

Dedico este trabalho a minha esposa e meus filhos que eu amo com todo meu coração.
Agradecimentos

Muitas pessoas contribuíram de forma direta ou indireta para tornar a conclusão dessa tese possível. Não desejo citar nomes, pois, eu posso esquecer alguém. Entretanto, gostaria de registrar aqui meu agradecimento a todos que, durante esses anos de doutorado, conviveram comigo e me apoiaram quer seja na Unicamp, mais especificamente, no IC, no NIED, no CECI ou no PRODECAAD, quer seja fora da Unicamp, nas horas de dedicação aos estudos, nos trabalhos das disciplinas, nas horas da escrita de artigos, nos eventos onde apresentei artigos e, porque não, nos momentos de descontração dos happy hours comemorativos de cada conquista. Gostaria de agradecer, de maneira muito especial, à querida Professora Cecília, ao Grupo InterHAD e a todos os colegas doutorandos, mestrandos e alunos de iniciação científica com quem tive o prazer de conviver durante todo o período do meu doutorado, principalmente nas reuniões semanais organizadas pela Professora Cecília. Eu aprendi muito. Em especial gostaria de agradecer também a meus pais que me deram todas as condições para que eu chegasse até aqui. Não poderia deixar de agradecer a minha esposa Diana Milena, e aos meus filhos Juan Pablo e Ana Sofia pela paciência, compreensão e apoio durante todo o período do doutorado, assim como o apoio incondicional da minha sogra Melida.
Resumo

No contexto escolar, em particular do Brasil, as tecnologias usualmente são desenvolvidas ou adotadas sem uma consideração efetiva das principais partes interessadas, de sua diversidade, e do que faz sentido para elas.

Contar histórias é uma atividade autêntica e pessoalmente relevante, que tem mostrado ter benefícios para as crianças, como o desenvolvimento da criatividade, a imaginação, a manipulação de conceitos abstratos e, em alguns casos, o desenvolvimento do pensamento lógico. Contar histórias é também uma atividade que pode ser potencializada pelo uso de tecnologia computacional para, por exemplo, estender as capacidades de expressão e comunicação das crianças. Essas características tornam a criação e contação de estórias, uma atividade alinhada a ideias do construcionismo, tornando-se valiosa para contextos de aprendizagem.

Esta tese apresenta uma contribuição ao campo da Interação Humano-Computador (IHC), especificamente no campo do Design da Interação, uma vez que apresenta um modelo para a criação de ambientes computacionais para a criação de narrativas, instanciado em tecnologias tangíveis contemporâneas. Um sistema para co-criação de narrativas foi projetado, desenvolvido e experimentado, utilizando o modelo de Design Semio-Participativo, que envolve a participação de diferentes partes interessadas em práticas realizadas ao longo do processo de desenvolvimento de sistemas interativos.

O modelo proposto é usado para definir um ambiente de computação tangível, de baixo custo, para escolas inclusivas, que segue os princípios do Design para Afetabilidade e do Design Universal. No uso do ambiente, a tecnologia tem papel coadjuvante nas criações das crianças. Neste ambiente as crianças usam objetos físicos, tais como brinquedos e cartões RFID para interagir com o sistema computacional para criar e expressar suas ideias, sentimentos e emoções por meio de uma estória.

A experimentação do ambiente de computação tangível, com professores e crianças durante dois semestres; mostrou resultados positivos em termos de aceitação, motivação, e alegria, com histórias tão diversas em temáticas como em recursos usados para criar as estórias, mostrando assim seu potencial para ser utilizado em espaços educativos.
Abstract

In the school context, particularly in Brazil, the technologies are typically developed or adopted without an effective consideration of the main stakeholders, their diversity, and their sense making.

Storytelling is an authentic and personally relevant activity that has shown benefits for children, such as the development of creativity, imagination, manipulation of abstract concepts, and in some cases, the development of logical thinking. Storytelling is also an activity that can be enhanced by the use of computational systems, for example, extending the capabilities of expression and communication of children. These features make storytelling an activity aligned with the constructionist ideas, making it a valuable for learning contexts.

This thesis presents a contribution in the Human-Computer Interaction field (HCI), specifically in the Interaction Design field as it presents a model for the creation of narratives, instanced in contemporary tangible technologies. A system for the co-creation of narratives was designed, developed and tested using the Semio-Participatory model of Design, which involves the participation of different stakeholders in practices conducted along the interactive system development process.

The proposed model was used to define a low cost tangible computing environment, for inclusive schools, that followed the principles of Design for Affectibility and Universal Design. In the use of the environment, technology has a supported role for the creations to children. In this environment children use physical objects such as toys and RFID cards to interact with the computational system and be able to create and express their ideas, feelings and emotions through a story.

The experimentation of the tangible computing environment with teachers and children during two semesters has shown positive results in terms of acceptance, motivation, and joy, with stories as diverse in theme as in resources used to create the stories, showing its potential to be used in educational spaces.
Lista de Figuras

1.1 Exemplos de contação de histórias na antiguidade
1.2 Visão geral dos referenciais relacionados com o projeto
1.3 Características ou requisitos fundamentais do ambiente - CPES
1.4 Visão geral do Desenvolvimento da Pesquisa

2.1 Example: searching for the term “Design”
2.2 Tagcloud of terms used in the 834 papers since 2007
2.3 Tagcloud of terms used in the Diversity topic
2.4 Tagclouds in the Applications and Services topic
2.5 Tagclouds in the Interaction, Design for All and inclusion topic
2.6 Countries and Institutions with respect to the number of authors

3.1 Processo utilizado no Estudo
3.2 Comportamento da produção de artigos
3.3 Os autores mais frequentes na RBIE (1997-2014)
3.4 Tagcloud dos títulos e dos resumos do RBIE no período (1997-2014)
3.5 Os autores mais frequentes do SBIE (2001-2014)
3.6 Tagcloud dos títulos e dos resumos do SBIE (2001-2014)
3.7 Os autores mais frequentes do WIE (2003, 2004-2014)
3.8 Tagcloud dos títulos e dos resumos do WIE (2003, 2003-2014)
3.9 Os autores mais presentes do CBIE (2012-2014)
3.10 Tagcloud dos títulos e dos resumos do CBIE (2012-2014)
3.11 Porcentagem de redes de coautoria por agrupamento
3.12 Porcentagem de autores por agrupamento
3.13 Conjunto de autores por fonte de pesquisa
3.14 Autores com 20 ou mais publicações (RBIE, SBIE, WIE e CBIE)
3.15 Conjunto de autores por fonte de pesquisa

4.1 Age range of the participants
4.2 The codes to associate objects to interact with the system
4.3 The codes to associate objects to interact with the system
4.4 Motivation feeling
4.5 Joy feeling
4.6 Relationship of the three feelings

5.1 Visão geral do sistema TUI2Scratch
5.2 Esquema da mesa utilizada no estudo de caso
5.3 Escola Municipal de Ensino Fundamental (EMEF) - TUI

6.1 Components of the system – Interaction mode 1: Presenter
6.2 Research team from Human-Digital Artifact Interaction Group

6.3 Teachers in activities at the Children Living Center – CECI of UNICAMP

6.4 Example of a created scene and the system capture process

6.5 Activities executed by the InterHAD group

6.6 Measuring the pleasure, arousal, and dominance dimensions

6.7 Different system installations

6.8 Interaction with the system (Interaction mode 1)

6.9 Self-Assessment Manikin (SAM)

6.10 InterHAD – Box-Whisker Plot and p-value of Kruskal-Wallis Test

6.11 CECI – Box-Whisker Plot and p-value of Kruskal-Wallis Test

7.1 General process of narrative construction using CPES

7.2 CPES Model in its fullest configuration

7.3 An Instance of CPES

7.4 Using the Selection Controls

7.5 Creating characters

7.6 Animating the character in CPES

7.7 Semio-participatory Workshop

7.8 Semiotic Ladder - CPES

7.9 General Process – Teachers of CECI – Mode 1

7.10 Scenes of a story created in Mode 1

7.11 General Process – Children of CECI – Mode 1

7.12 The scenes created for the story “The three little pigs” – Mode 1

7.13 General Process – of narrative construction in CPES Mode 2

7.14 Scenes of a story created by children in Mode 2

7.15 Scenes of a story created by teachers in Mode 2

7.16 Self-Assessment Manikin (SAM)

7.17 SAM instrument results in Mode 1

7.18 SAM instrument results in Mode 2

8.1 General process of narrative construction using CPES

8.2 Interaction Modes of CPES

8.3 Mode 1: Presenter

8.4 Mode 2: Storytelling

8.5 Mode 3: Scriptwriter

8.6 Mode 4: Scriptwriter Plus

8.7 CPES: Collaborative Programmable Environment for Storytelling

8.8 Creating new characters in CPES

8.9 Animating the character in CPES

8.10 SAM (Self-Assessment Manikin) instrument

8.11 General Process - Teachers in – Mode 1 activities

8.12 Scenes of a story created by teachers in Mode 1

8.13 General Process - Children in – Mode 1 activities

8.14 Scenes of a story created in Mode 1

8.15 General Process - Teachers in – Mode 2 activities

8.16 Scenes of a story created by teachers in Mode 2

8.17 General Process - Children in – Mode 2

8.18 Scenes of a story created by children in Mode 2

8.19 Examples of events for Modes 3 and 4
A.38 Segunda tela de “Criar narração / efeito” 175
A.39 Cartão recebendo o som ... 176
A.40 Telas de sucesso ou fracasso do comando 176
A.41 Testando o resultado final ... 176
A.42 Cartões dos comandos para Desabilitar e Habilitar narrações / efeitos .. 177
A.43 Comando “Desvincular narração / efeito” 177
A.44 Cartão sendo desvinculado do som 178
A.45 Telas de sucesso ou fracasso do comando 178
A.46 Cartão com o som antigo ... 178
A.47 Comando “Criar sequência” ... 179
A.48 Cartões que farão parte da sequência 179
A.49 Cartão em branco no leitor .. 179
A.50 Cartão com nova sequência no leitor 179
A.51 Cenas da sequência ... 180
A.52 Imagens para novos palcos ... 180
A.53 Comando “Criar Palco” .. 181
A.54 Fotografias dos demais palcos com a WebCam 181
A.55 Cartões com palcos .. 181
A.56 Pasta de “Importação de Imagens” 182
A.57 Comando “Importar palco” .. 182
A.58 Comando “Criar narração / efeito” 182
A.59 Cartão de “Cancelar / Terminar a ação” 183
A.60 Cartão de “Desvincular narração / efeito” 183
A.61 Cena 1 da história ... 183
A.62 Cena 2 da história ... 184
A.63 Apresentação ao vivo da Cena 3 da história 184
A.64 Cartão do comando “Criar sequência” 185
A.65 Cartões com as cenas da história 185
A.66 Cartão em branco no leitor .. 185
A.67 Cartão do comando “Criar descrição” 186
A.68 Cartão do comando “Desvincular descrição” 186
A.69 Comando “Ouvir descrição” .. 187
A.70 Cartão com descrição ... 187
A.71 Telas de sucesso ou fracasso do comando 187
A.72 Descrição do cartão ... 188
A.73 Cartão do comando “Desvincular o conteúdo” 188
A.74 Cartão do comando “Reattribuir o conteúdo” 188
A.75 Posição dos conteúdos na “Lixeira” 189
A.76 Comando “Copiar conteúdo” ... 189
A.77 Cartão cujo conteúdo será copiado 190
A.78 Cartão em branco no leitor .. 190
A.79 Cartão com conteúdo copiado 190
A.80 Comando “Proteger o conteúdo” 191
A.81 Cartão a ser protegido .. 191
A.82 Sinalização verde e vermelha .. 191
A.83 Cartão protegido ... 192
A.84 Cartão de “Desproteger o conteúdo” 192
A.85 Cartão de “Criar todos os rótulos” 192
A.86 Cartão de “Criar alguns rótulos” .. 193
A.87 Arquivo com imagem dos rótulos ... 193
A.88 Colocando personagens na tela ... 194
A.89 Representação do uso do chroma key 194
A.90 Comando “Criar personagem” .. 194
A.91 Mirando a WebCam ... 195
A.92 Visor da WebCam ... 195
A.93 Cartão em branco no leitor .. 195
A.94 Sinalização verde e vermelha .. 196
A.95 Colocando o personagem no palco .. 196
A.96 Comando “Identificar personagens” .. 196
A.97 Cartão do comando “Identificar personagem” 197
A.98 Comandos de edição de personagem 197
A.99 Comando de “Retetir o personagem” 197
A.100 Comandos de “Bloquear/Desbloquear o personagem” 198
A.101 Objeto tangível .. 198
A.102 Personagem se movimentando na tela 198
A.103 Visão geral do ambiente ... 199
A.104 Cartão do comando “Armazenar o cenário” 199
A.105 Cartão em branco recebendo cenário atual 200
A.106 Testando cartão com cenário .. 200
A.107 Comando de “Inicializar Palco” .. 200
A.108 Cartão armazenando cenário sem palco 200
A.109 Comando de “Criar sequência” .. 201
A.110 Cartão de Palco, Personagem 1 e Edição 201
A.111 Cartão de Personagem 2, Edição, e Branco 201
A.112 Execução do cartão com a nova sequência 202
A.113 Desenho de um Dragão, Cavaleiro, e Bruxa 203
A.114 Mulher fantasiada de princesa .. 203
A.115 Comando “Criar personagem”, Branco, e Focalizar personagem 203
A.116 Novos cartões dos personagens da história 203
A.117 Cartões dos palcos da história .. 204
A.118 Cartão com palco .. 204
A.119 Cartão com cavaleiro ... 205
A.120 Cartão Seleção do segundo personagem 205
A.121 Cartão com bruxa .. 205
A.122 Objetos tangíveis .. 206
A.123 Comando “Armazenar o cenário”, Cena 1, e Cartão em branco 206
A.124 Cartão com dragão e Cartão “Aumentar personagem” 206
A.125 Cartão com Cena 2 ... 206
A.126 Cartões para o cenário da segunda cena da história 207
A.127 Cartão da Cena 1 no leitor ... 207
A.128 Aparecimento do cavaleiro e a bruxa, e Narração ao vivo 207
A.129 Narração ao vivo, e Aparecimento do dragão 208
A.130 Cartão da Cena 3 no leitor .. 208
A.131 Personagens na Cena 3, e Objetos tangíveis 209
A.132 Eventos em CPES ... 209
A.133 Sequência inicial .. 210
A.134 Cartão do comando “Copiar conteúdo” 211
A.135 Atribuir sequência: Combinação personagem & palco 211
A.136 Personagem pulando corda (P1) e Personagem com guarda-chuva (P2) 211
A.137 Palco de parque (F1) e Palco de dia chuvoso (F2) ... 212
A.138 Criando cartões de personagens .. 212
A.139 Cartões com personagens ... 212
A.140 Criando cartões de palcos .. 213
A.141 Cartões com palcos ... 213
A.142 Etapas para criar sequência .. 213
A.143 Sequência 1 e Sequência 2 ... 214
A.144 Cartão “Atribuir sequência: Combinação personagem & palco” 214
A.145 Etapas para criar evento .. 214
A.146 Cartão com o Evento 1 ... 215
A.147 Cartão com Evento 2 ... 215
A.148 Cartões com eventos no leitor ... 216
A.149 Mudança na tela causada pelo primeiro Evento ... 216
A.150 Mudança na tela causada pelo segundo Evento ... 216
A.151 Comando “Reinicialização de sistema” .. 217
A.152 Atribuir sequência: Movimento do personagem ... 217
A.153 Personagens ... 217
A.154 Palco de floresta .. 218
A.155 Controle de animação 1 .. 218
A.156 Cartões com personagens .. 218
A.157 Cartão com fundo de floresta .. 219
A.158 Utilizando o cartão de palco .. 219
A.159 Etapas para criar sequência .. 220
A.160 Cartão com sequência 1 .. 220
A.161 Cartões com sequências .. 220
A.162 Cartão de “Atribuir sequência: Movimento do personagem” 220
A.163 Etapas para criar evento .. 221
A.164 Cartão com o Evento 1 ... 221
A.165 Cartões com Eventos ... 222
A.166 Controle de animação 1 .. 222
A.167 Personagem se movendo na tela .. 222
A.168 Atribuir sequência: Dois personagens batem ... 223
A.169 Personagens ... 223
A.170 Palco de floresta .. 223
A.171 Controles de animação .. 224
A.172 Cartões com personagens .. 224
A.173 Cartão com palco de gramado .. 224
A.174 Utilizando o cartão de palco .. 224
A.175 Etapas para criar sequência .. 225
A.176 Cartões com sequências .. 225
A.177 Cartão com personagem do regador .. 225
A.178 Comando “Selecionar personagem” .. 226
A.179 Cartão “Atribuir sequência: Dois personagens batem” 226
A.180 Etapas para criar Evento 1 .. 226
A.181 Cartões com eventos ... 227
A.182 Controles de animação 1 e 2
A.183 Personagens se tocando
A.184 Atribuir sequência: Personagens na borda
A.185 Personagens
A.186 Fundos em formato físico
A.187 Cartões com personagens
A.188 Cartões com palcos
A.189 Passos para construir uma sequência
A.190 Cartões com sequências
A.191 Cartão “Atribuir sequência: Personagens na borda”
A.192 Personagem posicionado no canto direito da tela
A.193 Passos para criar um evento
A.194 Cartões com eventos
A.195 Cartões com eventos
A.196 Cenas e Eventos
A.197 Simulação de movimento do personagem entre cenas
A.198 Comando “Inicializar palco”
A.199 Atribuir sequência: Som Forte
A.200 Imagem de fundo
A.201 Pessoa interpretando personagens
A.202 Pessoa interpretando personagens
A.203 Cartão com o fundo
A.204 Etapas para criar uma sequência
A.205 Cartões com sequências
A.206 Cartão “Atribuir sequência: Som Forte”
A.207 Passos para criar um evento
A.208 Cartões com eventos
A.209 Teste de eventos
A.210 Comando “Criar um ambiente em Scratch 2.0”
A.211 Tela do Scratch

B.1 Example of the guide for the command copy in CPES

C.1 Estrutura das pastas
C.2 Arquivos da pasta principal “CPES”
C.3 Leitor RFID
C.4 Estrutura das pastas dos cartões RFID
C.5 Hierarquia de cartões RFID
C.6 Arquivos por tipo de cartões RFID
C.7 Estrutura dos arquivos por tipo de cartões RFID
C.8 Estrutura dos arquivos por tipo de cartões RFID
C.9 Textos de comando (strCmd) na seção de Command do Program.xlm
C.10 Tipos de eventos possíveis no arquivo Events.xlm - Parte 1
C.11 Tipos de eventos possíveis no arquivo Events.xlm - Parte 2
C.12 Estrutura geral do funcionamento do CPES
Lista de Tabelas

3.1 Distribuição do total de artigos entre os anos 1997 e 2014 47
3.2 Redes de coautoria do RBIE (1997-2014) ... 48
3.3 Expressões mais frequentes por períodos de anos - RBIE 50
3.4 Redes de coautoria do SBIE (2001-2014) ... 52
3.5 Expressões mais frequentes por períodos de anos - SBIE 52
3.6 Redes de coautoria do WIE (2003, 2005-2014) .. 53
3.7 Expressões mais frequentes por períodos de anos - WIE 55
3.8 Redes de coautoria do CBIE (2012-2014) ... 56
3.9 Quantidade de Autores que Publicaram por Evento 58
3.10 Quantidade de Autores que Publicaram por Evento 59
3.11 Quantidade de palavras por fonte de pesquisa 60
3.12 Quantidade de palavras por fonte de pesquisa 61

4.1 The questionnaire ... 67

6.1 Frequency table of the InterHAD group .. 93
6.2 Frequency table of the CECI teachers ... 94

8.1 Summary of work related .. 118

B.1 BNF Grammar of the language of CPES ... 240
Abreviação	Explicação
ACM	Association for Computing Machinery
AGSAT	Associazione Genitori Soggetti Autistici del Trentino
ASD	Autism Spectrum Disorder
BME	Beginning, Middle and End
BNF	Backus Normal Form
CBIE	Congresso Brasileiro de Informática na Educação
CECI	Centro de Convivência Infantil
CEIE	Comissão Especial de Informática na Educação
CPES	Collaborative Programmable Environment for Storytelling
CSV	Comma-Separated Values
DEDIC	Divisão de Educação Infantil e Complementar da Unicamp
DVD	Digital Versatile/Video Disc
EMEF	Escola Municipal de Ensino Fundamental
EUA	Estados Unidos da América
EVA	Ethyl Vinyl Acetate
GUI	Graphical User Interface
HCI	Human-Computer Interaction
HCI	International Conference on Human-Computer Interaction
HDMI	High-Definition Multimedia Interface
ICT	Information and Communication Technology
InterHAD	Human-Digital Artifact Interaction research group
IEEE	Institute of Electrical and Electronics Engineers
IHC	Interação Humano-Computador
JPG	Joint Photographic Experts Group
KoduP	Project with Kodu
LCD	Liquid-Crystal Display
MIT	Massachusetts Institute of Technology
Myo	Gesture Control Armband
Acronym	Description
---------	-------------
PAD	*Pleasure, Arousal and Dominance*
PDF	*Portable Document Format*
PRODECAD	Programa de Integração e Desenvolvimento da Criança
RBIE	Revista Brasileira de Informática na Educação
RFID	*Radio-Frequency IDentification*
SAM	*Self-Assessment Manikin*
SBC	Sociedade Brasileira de Computação
SBIE	Simpósio Brasileiro de Informática na Educação
ScratchP	*Project with Scratch*
TIC	Tecnologia da Informação e Comunicação
ToPA	*Tool for Publication Analyzes*
TUI	*Tangible User Interface*
UAHCI	*Universal Access in Human-Computer Interaction*
UNESCO	*United Nations Educational, Scientific and Cultural Organization*
UNICAMP	Universidade Estadual de Campinas
WIE	Workshop de Informática na Escola
XML	*eXtensible Markup Language*
Sumário

1 Introdução .. 22
 1.1 Objetivo Principal 24
 1.2 Referencial .. 24
 1.3 Método de Pesquisa 27
 1.4 Organização da Tese 29

2 Universal Access to Interaction 33
 2.1 Introduction ... 33
 2.2 The Study Context, Representation and Method 34
 2.2.1 Data Representation 34
 2.2.2 The Review Process 35
 2.3 Results and Discussion 36
 2.3.1 Analysis by Topics 36
 2.3.2 The UAHCI Worldwide Extent 39
 2.3.3 Synthesis and Discussion 40
 2.4 Conclusion ... 41

3 A informática na educação 42
 3.1 Introdução ... 42
 3.2 Contexto do Estudo e Ferramentas 43
 3.2.1 Visualização dos Dados - Tag Clouds 44
 3.2.2 Ferramenta Customizada - ToPA 44
 3.3 Método .. 45
 3.4 Resultados ... 46
 3.4.1 RBIE (1997-2014) 47
 3.4.2 SBIE (2001-2014) 50
 3.4.3 WIE (2003, 2005-2014) 53
 3.4.4 CBIE (2012-2014) 54
 3.5 Discussão .. 57
 3.6 Conclusão .. 61

4 On Feelings of Comfort, Motivation and Joy 63
 4.1 Introduction .. 63
 4.2 The Study Context and Method 65
 4.2.1 Participants 65
 4.2.2 Method .. 66
 4.2.3 Materials and Procedure 66
 4.3 Results .. 68
 4.3.1 Comfort Feeling 68
Section	Title	Page
4.3.2	Motivation Feeling	69
4.4	Joy Feeling	70
4.5	Summarized Discussion	71
4.6	Conclusion	72
5	Manipulando histórias	74
5.1	Introdução	74
5.2	Storytelling e Interfaces Tangíveis	75
5.3	Um Estudo de Caso Situado	79
5.3.1	Cenário	79
5.3.2	Ambiente Tecnológico	79
5.3.3	Metodologia	82
5.4	Resultados e Discussão	83
5.5	Conclusões	84
6	A TUI-Based Storytelling for Promoting Inclusion	86
6.1	Introduction	86
6.2	The Pilot and Case Studies: Context and Method	87
6.2.1	The TUI Scenario	87
6.2.2	Participants	88
6.2.3	Method	89
6.2.4	Materials and Procedure	91
6.3	Results	92
6.4	Summary and Discussion	94
6.5	Conclusion	96
7	A socio-constructionist environment to create stories	97
7.1	Introduction	97
7.2	The proposed environment	98
7.3	Experimenting the environment - A case study	103
7.3.1	Participants	104
7.3.2	Method	104
7.3.3	Results	104
7.3.4	The Semio-participatory Workshops	105
7.3.5	The Teachers Workshops	106
7.3.6	The Children Workshops	107
7.3.7	CPES in Mode 2: animation and control	109
7.4	The affective quality of the experience	110
7.5	Discussion	112
7.6	Conclusion	113
8	Designing a tangible socio-constructionist	116
8.1	Introduction	116
8.2	Background to the Work	117
8.3	A Collaborative Programmable Environment for Storytelling - CPES	119
8.3.1	The conceptual model	119
8.3.2	The modes of interaction in CPES	121
8.3.3	The Implementation of the model	125
8.4	Experimenting the Environment – A Case Study	128
8.4.1 Participants .. 128
8.4.2 Method .. 128
8.4.3 Workshops .. 129
8.4.4 The affective quality of the experience 134
8.4.5 The Semio-participatory Workshops 137

8.5 Discussion and Conclusion 139

9 Conclusões e Trabalhos Futuros 142

9.1 Sobre a Revisão da Literatura 142
9.2 Cenários Exploratórios ... 143
9.3 Oficinas Semio-Participativas 143
9.4 Contribuições da tese .. 145
9.4.1 Do ponto de vista teórico-metodológico: 145
9.4.2 Do ponto de vista prático: 147
9.4.3 Do ponto de vista de produtos: 149
9.5 Trabalhos Futuros .. 150

Referências Bibliográficas ... 152

A Manual de CPES .. 160

A.1 Introdução ... 160
A.2 Equipamentos .. 161
A.3 Montando os equipamentos 163
A.4 Visão geral ... 165
A.5 Acessando o software ... 166
A.6 Modo 1 - Apresentador ... 168
 A.6.1 Modo 1 - Exemplo prático 180
 A.6.2 Comandos extras ... 184
A.7 Modo 2 - Storytelling .. 193
 A.7.1 Modo 2 - Exemplo prático 202
A.8 Modo 3 - Scriptwriter .. 208

B BNF Grammar of the language of CPES 238

C Aspectos internos do CPES ... 242

C.1 Estrutura das pastas e formato dos arquivos 242
C.2 Estrutura geral de funcionamento do CPES 246

D Autorizações para uso dos artigos 254

D.1 Springer .. 254
 D.1.1 HCI-2013 .. 254
 D.1.2 HCI-2014 .. 257
 D.1.3 HCI-2015 .. 261
D.2 Sociedade Brasileira de Computação SBC 265
 D.2.1 IHC-2014 e IHC-2015 265
Capítulo 1

Introdução

O ser humano é um ser social que depende de processos de comunicação e de expressão. Uma forma de comunicação e de expressão que tem acompanhado a humanidade ao longo do tempo é a contação de histórias (Figura 1.1) (em Inglês, Storytelling).

Figura 1.1: Exemplos de contação de histórias na antiguidade

O ato de contar histórias tem evoluído, a partir da arte rupestre até o uso da tecnologia de ponta para recriar cenas, personagens e eventos das histórias. Assim, contar histórias é uma ação já inserida no dia-a-dia das pessoas, especialmente das crianças, não apenas em seus relacionamentos com outras pessoas, mas também em suas cada vez mais frequentes e intensas interações com a tecnologia. A atividade de contar histórias é então, por definição, uma atividade autêntica e pessoalmente relevante para as crianças [21].

Atualmente, o processo de contar histórias tem muitas aplicações variando desde o entretenimento, a divulgação de fatos, e a educação. Tomando como foco as aplicações em educação, além das histórias propriamente ditas, a atividade de contar histórias traz benefícios às crianças [24], que incluem, por exemplo, o desenvolvimento da criatividade, a representação de eventos em formas de narrativas, a negociação de significados, a exploração de resultados possíveis de diferentes eventos, as manipulações simbólicas e de conceitos abstratos, entre outros.

1 Fotografias de domínio público (publicadas antes de 1928): The Historian, pintado por Eanger Irving Couse em 1902 [39] e Storyteller, Casablanca, 1920 [23].
2 Representações artísticas pré-históricas realizadas principalmente em cavernas.
CAPÍTULO 1. INTRODUÇÃO

O fato de ser uma atividade autêntica e pessoalmente relevante, com benefícios para as crianças, torna esta atividade ideal para a construção de conhecimento, como é indicado pela teoria do Construcionismo de Seymour Papert [54]. Papert acredita que os computadores são ferramentas para pensar, e que devem ser usados para criar ambientes onde as crianças possam explorar e descobrir por si próprias. Contar histórias com o uso da tecnologia, especialmente a computacional, tem a vantagem de ampliar as capacidades de expressão e comunicação das crianças. Se acreditamos que usar a tecnologia pode potencializar o processo de contar histórias em contexto escolar, então é preciso considerar vários elementos no momento da concepção e construção de um ambiente para tal. Em primeiro lugar é importante que qualquer solução concebida faça sentido para todas as partes interessadas (professores, crianças, pais, entre outros), considerando não só seus pontos de vista, mas também suas respostas afetivas. Outro elemento para considerar é a diversidade de pessoas que há em um contexto escolar, especialmente se é considerado o contexto de uma escola inclusiva que acolhe crianças com ou sem deficiências no mesmo ambiente escolar. Um terceiro elemento é a realidade econômica atual, especialmente nas escolas públicas, que exige que as soluções sejam de baixo custo.

Neste contexto, a tecnologia computacional torna-se importante pois permite, entre outras coisas, gerenciar e criar os elementos das histórias (personagens, cenários, cenas, sons, narrações), e a interação entre esses elementos. No entanto, apesar do papel relevante do computador, este deve permanecer “invisível” para que principalmente as crianças, desfrutem e coloquem foco em suas criações e não na tecnologia per se.

Pensar em um ambiente computacional para a criação de histórias e seus elementos de interação, envolve pensar sobre maneiras de criar espaços onde esses elementos sejam definidos e programados pelas crianças e pelos professores. Este requisito adicional pode ser usado na escola para apoiar o desenvolvimento do pensamento lógico e criativo, em particular das crianças. É importante notar que crianças que manipulam seus próprios elementos da história, avançaram suas histórias de forma mais criativa [64].

Dada a importância do processo de contação de histórias em contextos escolares, esta investigação está centrada em como potencializar o processo de contar histórias em contextos escolares, por meio de tecnologia. Em particular visamos o design para contextos de educação inclusiva, onde as crianças, com e sem deficiência, possam participar ativamente da criação e contação de histórias.

No contexto escolar, em particular do Brasil, as tecnologias usualmente são desenvolvidas ou adotadas sem uma consideração efetiva das principais partes interessadas, de sua diversidade, e do que faz sentido para elas.

Ao analisar os trabalhos relacionados obtidos a partir de uma revisão sistemática, e apresentados principalmente nos Capítulos 4 e 8, não foi possível identificar um projeto que satisfaça simultaneamente: consideração das partes interessadas, design para uma escola inclusiva, solução de baixo custo, com tecnologia “invisível” e aberta para criação e manipulação por parte das crianças, somando-se a possibilidade de que as crianças possam programar seus próprios elementos de interação.

Com base nesse cenário, esta tese investiga sobre o potencial de tecnologias contemporâneas para a criação de um ambiente inclusivo de baixo custo para apoiar a co-construção de narrativas, e que considere as principais partes interessadas, e sua diversidade. É im-
portante notar o termo “co-construção”, porque envolve necessariamente a participação ativa de várias pessoas (crianças e/ou professores) no processo de criação de histórias (narrativas) neste caso, em um contexto escolar.

Em relação ao uso da tecnologia para apoiar o processo de contar histórias, a literatura nos fala que as Interfaces de Usuário Tangíveis (TUI) têm um potencial, porque os usuários podem começar imediatamente a contar histórias sem muito treinamento ou conhecimento prévio [72].

Tomando a definição mais geral, para as Interfaces de Usuário Tangíveis (TUI) podemos dizer que as interfaces tangíveis permitem aos usuários interagir com a informação digital através de objetos físicos concretos [37]. Entre os propósitos do desenvolvimento da TUI, está reforçar a colaboração, característica importante para esta pesquisa. Além disso, as TUI são capazes de promover um engajamento mais forte e de longa duração com potencial para envolver as crianças e, portanto, para promover a aprendizagem [78].

A pergunta de pesquisa deste trabalho é, portanto, como potencializar o processo de contar histórias em contextos escolares inclusivos, considerando as partes interessadas, por meio de tecnologias contemporâneas como as Interfaces Tangíveis – TUI?

1.1 Objetivo Principal

Considerando o exposto, o objetivo desta pesquisa é investigar, projetar e construir um ambiente tecnológico baseado em interfaces computacionais tangíveis, que considere as principais partes interessadas, e sua diversidade, para que as crianças de um contexto escolar possam criar, compartilhar e contar histórias de forma colaborativa.

Como o título sugere, esta tese visa propor e experimentar tecnologia necessária para criar um ambiente educacional para a construção colaborativa de narrativas mediante o uso de interfaces tangíveis.

1.2 Referencial

Para atingir o objetivo, utilizamos o modelo de design Semio-Participativo [6], que envolve a participação de diferentes partes interessadas (pesquisadores, professores, estudantes, colaboradores) em práticas sociais (oficinas) como parte do processo de desenvolvimento de sistemas interativos.

O modelo de design Semio-Participativo propõe teorias, métodos e artefatos para o design socialmente responsável, participativo e universal. Para tornar isso possível, o modelo de design é definido em três camadas: Informal (significados, intenções e compromissos são estabelecidos), Formal (formas e regras substituem significados e intenções da camada informal) e Técnico (soluções técnicas são geradas como consequência dos significados das camadas anteriores). Assim, o desenho de uma solução implica pensar articuladamente as três camadas de informação.

3A educação inclusiva acolhe todas as pessoas, sem exceção. É para o estudante com deficiência física, para os que têm comprometimento mental, para superdotados, para as minorias. [http://www.bengalalegal.com/blog/?p=32]
Para poder considerar as respostas afetivas das partes interessadas, tanto durante o processo de criação como no uso final do produto de design, utilizamos os seis princípios do design para Afetibilidade [31] para definir a primeira lista de requisitos chave do ambiente. Os seis princípios envolvem: Permitir a comunicação de estados afetivos; Considerar o contexto social do usuário - valores, cultura; Possibilitar que o usuário possa incluir seu próprio conteúdo (Tailoring); Promover a construção colaborativa; Possibilitar que o usuário possa perceber a presença física ou demais estados de outras pessoas ou personagens (Awareness); Explorar de forma criativa as diferentes mídias.

Entre os requisitos chave do ambiente estão: o usuário deve poder incluir seus próprios elementos da história (personagens, cenários, cenas, sons, narrações), com liberdade suficiente para expressar seus sentimentos, suas emoções, sua realidade, sua cultura; o ambiente deve promover o trabalho colaborativo; o ambiente deve permitir que o usuário possa exibir em qualquer momento um elemento da história para expressar-se livremente e deixar que outros percebam sua mensagem ou emoção a comunicar; o usuário deve ser capaz de usar qualquer elemento físico (desenhos, argila, tecido, papel, massinha, fotografias de lugares, e até uma imagem de si mesmo como personagem) para criar os seus elementos da história.

Outro referencial que utilizamos é o framework BME (Beginning, Middle and End) [47]. O framework BME propõe uma estrutura para a criação da narrativa, que pode ser resumido em seis pontos: Definir o conceito da história como um problema a ser resolvido; Definir a solução do problema em termos gerais (abstrata) para ter um norte da história; Detalhar a solução geral em três atos (início: Introdução e chamando a aventura, meio: problemas / conflitos, e fim: resolução de problemas / conflitos); Definir os símbolos principais da história, como personagens e cenários; Criar micro histórias, dentro de cada ato, quantas vezes sejam desejadas; Criar micro histórias, dentro de cada ato, quantas vezes sejam desejadas; Criar para cada história, sempre que possível, elementos de interação que descrevam como os personagens irão interagir dentro desse cenário (com outros personagens ou com o mesmo cenário).

O framework BME foi adotado por duas razões principais: primeiro para que as crianças pudessem dar uma estrutura dramática às suas próprias histórias, e estas não fossem apenas diálogos entre os personagens, ou simples ações com objetos da cena; segundo, para que definissem os elementos de interação nas histórias, ações a serem executadas quando algo acontece na história (evento). Exemplos de possíveis eventos que uma criança pode considerar: colisão entre dois personagens, a presença de um personagem em uma cena, ou um personagem deixando o cenário atual, entre outros. O conceito de elementos de interação é fundamental para utilizar a programação no contexto de criação de histórias, ampliando as possibilidades da criação das crianças.

Como estamos considerando o contexto da escola inclusiva, devemos considerar os sete princípios do design universal para garantir que o ambiente possa ser acessado, compreendido e usado pela maior extensão possível de pessoas. Os sete princípios do design universal são: Equiparar as possibilidades de uso para pessoas com habilidades diferenciadas; Fazer um uso flexível para atender a uma ampla gama de indivíduos; Definir uma utilização simples e intuitiva, independentemente do usuário; Comunicar eficazmente ao usuário as informações necessárias, independentemente de sua capacidade sensorial ou
de condições ambientais; Minimizar o risco e as consequências de ações involuntárias ou imprevistas; Minimizar o esforço físico para o uso, de forma eficiente e confortável; Dimensicionar o espaço físico para uso e interação apropriados, independentemente de tamanho, postura ou mobilidade do usuário [17]. A Figura 1.2 resume graficamente os elementos que estão relacionados com a pesquisa. No lado esquerdo da figura, temos os principais conceitos envolvidos no trabalho; e do lado direito referenciais teórico-metodológicos.

Figura 1.2: Visão geral dos referenciais relacionados com o projeto

A Figura 1.3 ilustra a maneira como a conjugação dos referenciais apresentados na Figura 1.2 nos permitiram então chegar ao ambiente proposto nesta tese.

Figura 1.3: Características ou requisitos fundamentais do ambiente - CPES

O ambiente criado, chamado CPES, acrônimo de “Collaborative Programmable Environment for Storytelling”, tenta esconder a tecnologia, tornando-a “invisível” para as crianças, para que o foco fique principalmente sobre as criações. No CPES as histórias são preservadas, como seus elementos individuais, para que as crianças possam utilizar e reutilizar por eles mesmos ou por outras crianças em futuras criações. CPES oferece suporte para que as crianças possam criar livremente seus próprios elementos da história (personagens, palcos, cenários, sons, narrações, descrições). Em qualquer momento que

4 CPES - Collaborative Programmable Environment for Storytelling
CAPÍTULO 1. INTRODUÇÃO

precisarem. Pelas vantagens já mencionadas, CPES favorece o uso de interfaces tangíveis sobre as interfaces tradicionais de teclado e mouse (chamadas GUI5).

CPES oferece liberdade para desenhar e criar diferentes tipos de histórias. Se as crianças puderem imaginar e criar os elementos da história, então a história pode ser contada em CPES.

CPES permite que as crianças / adolescentes possam programar as ações a serem executadas quando certos elementos de interação (eventos) ocorrem durante a narração.

CPES tem elementos em seu design e construção que permitem que crianças com e sem deficiências possam participar da atividade de contar histórias. Claro, existem limitações, mas o importante é possibilitar que todas as crianças se sintam parte do processo e participem com suas habilidades e restrições. Evidências dessa participação podem ser vistas no Capítulo 6.

CPES pode ser usado por uma única pessoa, mas existem funções que convidam naturalmente a serem trabalhadas de forma colaborativa. Funções como a criação de personagens, cenas, efeitos de som, entre outras.

Finalmente CPES permite que as crianças e seu ambiente possam ser parte de suas histórias; elas podem, por exemplo, fazer com que um personagem de fantasia (um dinossauro ou um super-herói), os ataque ou os defenda em sua própria escolha; ou podem expressar diferentes emoções na evolução da história.

CPES é o resultado de um método de pesquisa que envolve de forma significativa a participação ativa de professores e crianças de diferentes idades em um contexto real.

1.3 Método de Pesquisa

Metodologicamente a pesquisa se desenvolveu em três tipos de atividades principais: A Revisão da Literatura, Os Cenários Exploratórios e as Oficinas Semio-Participativas. Em cada uma das etapas resultados preliminares foram discutidos e publicados ao longo do desenvolvimento do trabalho. Tais resultados estão detalhados nos próximos capítulos e são apresentados brevemente na próxima seção. A Figura 1.4 ilustra como se deu o desenrolar da pesquisa e seus resultados.

A dinâmica de desenvolvimento das principais atividades pode ser resumida como segue:

- **A Revisão da Literatura:** Iniciamos pelo interesse geral no estado da arte do “Acesso Universal" à tecnologia computacional. Assim, realizamos uma análise de publicações de toda a série de conferências HCII *International Conference on Human-Computer Interaction*, buscando mapear as contribuições científicas em *Universal Access to Interaction* (capítulo 2).

 Enquanto esta análise estava ocorrendo, o tema geral da pesquisa começou a ser mais direcionado à dimensão educativa, e situado no contexto Brasileiro. Neste ponto começou a análise das principais fontes de publicações da comunidade de informática na educação do Brasil: o Simpósio Brasileiro de Informática na Educação (SBIE),

5GUI - *Graphical User Interface*
CAPÍTULO 1. INTRODUÇÃO

Figura 1.4: Visão geral do Desenvolvimento da Pesquisa

o Workshop de Informática na Escola (WIE), o Congresso Brasileiro de Informática na Educação (CBIE), e a revista Brasileira de Informática na Educação (RBIE). Resultados desse levantamento do estado da arte encontram-se no capítulo 3. Assim, esta abordagem permitiu ir do geral (acesso universal) no capítulo 2 para o particular (contexto educacional no Brasil), no capítulo 3.

- **Os Cenários Exploratórios:** Com uma visão do contexto internacional para trabalhos no escopo do acesso universal à tecnologia (dada pela conferência de HCII - International Conference on Human-Computer Interaction) e uma visão do campo de informática educativa no Brasil, alinhamos o tema de pesquisa ao processo relacionado com o contar histórias em uma escola inclusiva (acesso universal) com o uso de interfaces tangíveis. Para aprofundar o estudo no tema, dois cenários exploratórios foram criados: no primeiro queríamos investigar aspectos afetivos (felicidade, conforto e motivação) que poderiam evocar as interfaces tangíveis, comparadas às tradicionais (GUI - Graphical User Interface). Um segundo cenário foi realizado para observar as crianças em contexto escolar frente a uma aplicação que utiliza interfaces tangíveis para criar e contar diferentes versões da história "Chapeuzinho Vermelho". Resultados desses estudos exploratórios estão reportados nos capítulos 4 e 5.

- **Oficinas Semio-Participativas:** Observando os resultados positivos dos cenários exploratórios, continuamos para a próxima etapa da pesquisa, que envolveu a realização das oficinas participativas em contextos escolares reais (DEDIC) para propor, discutir, desenvolver e experimentar com as partes interessadas, em especial os pro-

6 Divisão de Educação Infantil e Complementar da Unicamp
CAPÍTULO 1. INTRODUÇÃO

fessores e as crianças, um ambiente computacional tangível para criar histórias, que pudesse ser usado por uma ampla variedade de usuários, desde crianças com 4 anos de idade, até professores com mais de 50 anos; usuários com deficiências, ou usuários com pouca familiaridade no uso de computadores. Resultados desses estudos exploratórios estão reportados nos capítulos 6, 7 e 8.

1.4 Organização da Tese

Esta tese está organizada em sete capítulos, além desta introdução e das conclusões, que resultam de publicações realizadas ao longo do desenvolvimento da pesquisa, e quatro apêndices, tal como é detalhado a seguir:

- **Capítulo 2.** *Universal Access to Interaction as Revealed by UAHCI Words [1]*, HCII - 15th International Conference on Human-Computer Interaction, Springer – 2013. M. Cecília C. Baranauskas, Julián E. Gutiérrez Posada

>>"The analysis of publications created over time as journal articles and other media is important to emphasize the interests, identity and culture in a certain research area. This paper proposes an analysis on the content of the Universal Access in Human-Computer Interaction (UAHCI) conferences since 2007, based on information from the article titles. We were especially interested in knowing about changes in recent years related to user categories, the technologies used, and the processes associated with the systems engineering or with the human-computer interaction practices. Discussions are situated from the creation and observation of tag-clouds formed with the data. As a contribution, we found what the words reveal about main trends of the area, the profile and the differences between the various editions of the conference, and also the gaps and potential for future research work toward accessibility and design for all."

- **Capítulo 3.** *A informática na educação: o que revelam os trabalhos publicados no Brasil*, Em avaliação, 2015, Julián E. Gutiérrez Posada, Samuel B. Buchdid, M. Cecília C. Baranauskas

>>"A comunidade de informática na educação do Brasil, tem entre seus principais eventos o Simpósio Brasileiro de Informática na Educação (SBIE), o Workshop de Informática na Escola (WIE) e, nos últimos anos, o Congresso Brasileiro de Informática na Educação (CBIE) que atualmente reúne estes dois eventos. Além disso, a revista Brasileira de Informática na Educação (RBIE) tem reunido contribuições da comunidade científica na área ao longo dos anos. Ao analisar essas fontes na Internet, observamos que todos os trabalhos publicados são de livre acesso; no entanto, é difícil construir uma visão geral dos focos de cada uma destas fontes, identificar os autores mais ativos, e determinar a quantidade e o tamanho de suas redes de cooperação. Estas informações podem ser usadas,
por exemplo, para identificar os temas que estão ganhando ou perdendo relevância em cada uma destas fontes ao longo do tempo, o grau de co-operação da comunidade e linhas gerais de seu perfil. Para uma visão geral dos temas presentes nas contribuições, e como ponto de partida de uma análise mais aprofundada, este artigo utiliza o poder expressivo de tagclouds sobre os títulos dos trabalhos, assim como sobre seus resumos. Os resultados permitiram construir um roteiro dentro do campo, que pode informar os pesquisadores e profissionais que estão iniciando trabalho em áreas afins e os especialistas que querem aprofundar conhecimento sobre o tema."

- **Capítulo 4.** On Feelings of Comfort, Motivation and Joy that GUI and TUI Evoke [28], HCI - 16th International, Conference on Human-Computer Interaction, Springer – 2014, Julián E. Gutiérrez Posada, Elaine C.S. Hayashi, M. Cecília C. Baranauskas

 "New ways to interact with technology are gaining ground over the familiar Graphical User Interfaces (GUI). The Tangible User Interfaces (TUI) are one example of this. However, while it may seem intuitive that such interfaces should evoke rather positive responses from users – e.g. feelings associated with pleasure – little has been studied in this sense. In this challenge of understanding the feelings that GUI and TUI have the potential to evoke, we present our findings from a research that involved more than a hundred people. The research question that guided our endeavors was: What are the relations between the feelings of joy, motivation and comfort when using TUI and GUI? We analyze the results and discuss some hypotheses to explain the behavior observed."

- **Capítulo 5.** Manipulando histórias: Uma investigação sobre o uso de interfaces tangíveis e narrativas na escola [27], IHC - XIII Simpósio Brasileiro Sobre Fatores Humanos em Sistemas Computacionais, SBC – 2014, Julián E. Gutiérrez Posada, M. Cecília C. Baranauskas, Vanessa R.M.L. Maikłe

 "As crianças têm uma capacidade genuína de contar histórias que tornam esta uma atividade autêntica e pessoalmente relevante. Tais elementos são fundamentais no processo de construção do conhecimento. Actualmente, existem várias tecnologias que podem enriquecer o envolvimento das crianças no processo de criar e contar histórias. Neste artigo investigamos como aliar tecnologias de interação inovadoras como as TUI (Tangible User Interfaces) aos processos educativos envolvidos na construção de histórias. Iniciamos apresentando uma revisão da literatura que nos permitiu identificar espaços ainda abertos à pesquisa; na sequência apresentamos um estudo de caso, realizado no contexto real de uma escola pública brasileira de ensino fundamental, para explorar cenários de interação de crianças com TUI. Os resultados apontam para a viabilidade
e o potencial da tecnologia envolvida, bem como suas possibilidades de extensão."

Capítulo 6. A TUI-Based Storytelling for Promoting Inclusion in the Preschool Classroom [29], HCII - 17th International Conference on Human-Computer Interaction, Springer – 2015, Julián E. Gutiérrez Posada, Heiko Hornung, M. Cecília Martins, M. Cecília C. Baranauskas

"Technologies such as Tangible User Interfaces (TUI) take advantage of the natural ability of children to tell stories, play and explain their personal and social behavior. TUI technologies can be designed to constitute scenarios of technology use for all and thus benefit inclusive schools. Challenges of designing such scenarios in the classroom include distraction of students, acceptance by teachers, and inclusion of students with disabilities. In this paper we focus on investigating the acceptance of a TUI environment, designed for the educational context of creating, sharing and telling stories collaboratively. We present a system as background for an evaluation of acceptance based on the Self Assessment Manikin model. Two groups of subjects participated in the evaluation: a group of HCI specialists, and a group of teachers working in an inclusive educational context. The pilot study with HCI specialists established a baseline showing that the system potentially has a high acceptance rate. The teachers reported in a subsequent study high levels of Pleasure and Arousal while we detected greater variance in the Dominance dimension. Although we do not see this variance as critical, it requires attention for the more complex modes of the system."

Capítulo 7. A socio-constructionist environment to create stories using tangible interfaces, IHC – XIV Simpósio Brasileiro Sobre Fatores Humanos em Sistemas Computacionais, SBC – 2015, Julián E. Gutiérrez Posada, M. Cecília C. Baranauskas

"Contemporary technologies such as Tangible User Interfaces (TUI) have not been explored in its full potential in educational contexts, to take advantage of the innate ability of children to tell stories. This activity has proven to be authentic and personally relevant for children with benefits to their personal and social development. This paper presents the design and construction of a TUI environment to be used in inclusive educational contexts, allowing children to create, share and participate in the process of constructing narratives. The environment was conceived under the Semio-Participatory Design Model, and was experimented with the active participation of teachers and children in a real educational context. The design rationale of CPES, a Collaborative Programmable Environment for Storytelling, is presented and results of the final product and its use are discussed in the paper."
• Capítulo 8. *Designing a tangible socio-constructionist environment for building narratives*, Em avaliação, 2015, Julián E. Gutiérrez Posada, M. Cecília C. Baranauskas

"The benefits of storytelling, coupled with tangible technologies have proven to be a successful conjugation from the point of view of exploring creativity, accessibility, and emotion. In addition storytelling is a perfect activity to take advantage of the ability of children to create stories. This article presents a computational environment based on tangible interfaces with the purpose of allowing a group of children and / or teachers, to create, share and tell stories. This project has as pillars the Beginning Middle End (BME) framework for narrative structures, the concept of Affectibility, the principles of Universal Design, and the semio-participatory model of design. The article presents a case study in which the proposed environment is experimental within an educational context with 9 years old children and their teachers."

• Apêndice A. Manual de CPES - Collaborative Programmable Environment for Storytelling, Viviane Catini Nishiyama, Julián E. Gutiérrez Posada, M. Cecília C. Baranauskas

"Este manual foi desenvolvido para auxiliar o usuário a utilizar e entender o funcionamento do ambiente CPES (Collaborative Programmable Environment for Storytelling)."

• Apêndice B. BNF (Backus Normal Form) Grammar of the language of CPES, Julián E. Gutiérrez Posada

"Gramática formal em notação BNF (Backus Normal Form) dos comandos suportados pelo ambiente CPES (Collaborative Programmable Environment for Storytelling)."

• Apêndice C. Aspectos internos do CPES e arquitetura

• Apêndice D. Autorizações para uso dos artigos
Chapter 2

Universal Access to Interaction as Revealed by UAHCI Words

2.1 Introduction

Besides important to emphasize the interests, identity and culture in a certain research area over time [73], the analysis of institutional archives, as journal articles and other media, is important for readers, authors, publishers and advertisers to better and more objectively understand their field of interest. Moreover this kind of analysis may provide a glimpse of trends, modes of thought and the potential future for the area.

Accessibility has been considered a major concern of the Computing field, supposedly the most effective discipline for adapting the user interfaces to the varied needs of users, including those that are challenged to interact with computing systems despite their disadvantage physical condition [16].

The design of accessible software applications is considered very hard to achieve, due to several reasons: there is a proliferation of platforms through which people may interact with computer-based services and applications; modalities of interaction are being extended from the keyboard to include speech, gesture, touchscreen, etc.; the users also represent a wide diversity in their abilities usually not known to developers. Thus, it is difficult to anticipate every mode of interaction different people may use, providing accessibility to every platform and application. Moreover, as discussed by Cerf [16], although general purpose tools to cope with specific human condition, such as screen readers for blind users or automatic caption for deaf users may be useful, no automatic adapting tool will make a poorly designed interface accessible.

Given the complexity of the problem, this work investigates the subject by getting a picture of the field, based on an analysis of the content of the Universal Access in Human-Computer Interaction (UAHCI) conferences since 2007. A set of 834 papers was published during this period: 246 in 2011, 248 in 2009, and 340 in 2007. Discussions are situated from the creation and observation of tagclouds formed with the article titles. We were especially interested in knowing about changes in recent years related to user categories, the technologies used, and the processes associated with the engineering of systems or with the human-computer interaction practices.
CHAPTER 2. UNIVERSEAL ACCESS TO INTERACTION

Therefore, this paper aims at providing a roadmap on work in the field, pointing out its trends, and showing the origin of major authors. This information may be helpful for researchers and practitioners who are starting work in the field, and even for experts who want to build on it. The paper is organized with a section situating the context of this research, followed by a description of the systematic review process; a section on the findings is followed by a categorization of results, analysis and discussion to finally conclude.

2.2 The Study Context, Representation and Method

The International Conference on Universal Access in Human-Computer Interaction is currently in its 7th edition, and has been part of the biannual HCI International, the International Conference on Human-Computer Interaction (now in its 15th edition). The HCII gathers other 9 related conferences addressing the thematic areas of Human-Computer Interaction, and Human Interface and the Management of Information. Thus, it represents a wide audience from academia, research institutes, industry and governmental agencies, and comprehensive content in the field, judged to be of high scientific quality. These papers address the latest research and development efforts and highlight the human aspects of design and use of computing systems.

The volumes analyzed in this work [75], [38], and [74] correspond to the 4th, 5th and 6th editions of UAHCI, and contain papers in the thematic area of Universal Access in Human-Computer Interaction, addressing the following major topics: Diversity (116 papers in 2007, 77 in 2009 and 117 in 2011), Applications and Services (109 papers in 2007, 86 in 2009 and 72 in 2011), and Interaction, Design for All and eInclusion (115 papers in 2007, 85 papers in 2009 and 57 papers in 2011).

2.2.1 Data Representation

For an overview of the themes present in the conferences analyzed, we use the expressive power of representations known as tagclouds (tag clouds). A tagcloud is a visual representation of a set of words, typically tags (labels), which gained notoriety when it was used in social software sites such as "del.icio.us" or "flicker". Each word is highlighted within the cloud according to its importance within the set of words, and gain enhancement through manipulation of visual characteristics, such as font size, color, weight, etc. [10]. For Rivadeneira et. al. [61], this format is useful for quickly providing the most prominent terms and relative importance of a specific word within the analyzed set. Also, it provides a general impression of the whole words set and the "essence" of the data represented. For example, in social software sites, the tagclouds can provide an impression about interests or expertise of a person. Depending on the context in which they are used, Rivadeneira et. al. [61] suggest four different tasks that can be performed with tagclouds: search, navigation, impression formation or gisting, recognition or correspondence. Although tagclouds are less accurate and efficient in some specific cases than other forms of visualization, such as tables and wordlist, the tagclouds are advantageous to capture the essence of large amounts of descriptive information by presenting it succinctly [43]. This
scenario of success motivated by the need of a summarized analysis of a large amount of data is one of the reasons for our choice of tagclouds as a representation in this work. For further analysis, tables and graphs were used (e.g. to show the relative frequency of words that stood out in a particular conference).

2.2.2 The Review Process

The review process is composed by 5 steps as briefly described. In the first step, all the papers published in all the conference editions were considered. A general specific strategy was adopted to generate visualizations for the whole set of papers (general level) as well as for specific sub-topics (specific level). In the second step, the conferences were analyzed in isolation, starting from an overview and detailing their respective sections. In a similar way, an analysis was conducted to identify the most active authors in the field during the period, and the origin of the different contributions. In the fourth step, terms were organized into categories of interests: user profiles, technologies, and methods. In order to identify trends, we computed the frequency of appearance for some pre-defined terms. The result was organized by years, sections, and overall (considering the three conferences). Finally in the fifth step, all the information produced in the previous steps were crossed and analyzed. The analysis was supported by a tool that allows, among other things, to identify all papers that have some term of interest in their titles; the tool indicates the amount of papers that satisfy the query and the percentage that such amount represents of the total. An example of this search can be seen in Figure 2.1.

![Figure 2.1: Example: searching for the term “Design”](image)

Observing the number of papers that use the term Design in their titles in Figure 2.1, the percentage remains almost constant in 2007 and 2009 with 15.88% and 14.92%, respectively, and increases in 2011 reaching 21.54%, suggesting an still increasing focus of interest.

Summarizing the adopted process, the tagclouds provided key terms to be searched with the tool, revealing some movements in the conferences focuses.
2.3 Results and Discussion

To get a first impression on the whole UAHCI content, all the editions were taken together generating a general tagcloud covering the titles of the whole set of 834 papers. Figure 2.2 illustrates this gisting.

![Figure 2.2: Tagcloud of terms used in the 834 papers since 2007](image)

The essence of the data represented in the cloud of Figure 2.2 makes clear the contributions focus on Design, much more than on Development or Evaluation; Accessibility is still more frequent than Universal or Usability; The Web and the Mobile seems to be the main System platforms addressed; and the User seems to refer predominantly to Older People. Disabilities, impairments are not in the first levels of salience in the cloud.

To get a more focused view of the Conference main topics along the years, the next sections present results of the analysis centered on the main topics covered along the Conference editions, highlighting the target audience, approaches and technologies addressed by the contributions.

2.3.1 Analysis by Topics

Treating Diversity. Diversity is in the realm of the universal access considerations regarding people’s interaction with technology. The topic has been treated in the UAHCI in every edition of the conference: Coping with Diversity (in 2007), Addressing Diversity (in 2009), and User and Context Diversities (in 2011), with 116, 77 and 117 papers published, respectively.

![Figure 2.3: Tagclouds of terms used in the Diversity topic papers for 2007, 2009 and 2011](image)
The tagclouds in Figure 2.3 reveal that the most salient word in this topic, in all the editions of the conference, is Design representing 30.17%, 24.68% and 27.35% respectively of the total of words (see also Figure 2.2). It is much more present than the word Evaluation, which represents respectively 4.3% in 2007, 5.19% in 2009 and 2.56% in 2011, suggesting more contributions towards design issues than to evaluation issues. Regarding other words reflecting stages of products lifecycle, Development appears in 6.90%, 1.30% and 5.13% respectively in 2007, 2009 and 2011, following the same pattern of the word Evaluation; while Analysis represents 3.45%, 0% and 3.42% respectively, and Modeling represents 0.83%, 2.60% and 0.85% of the words occurrences.

Regarding the user categories and human references addressed, the most salient words are: User, Elderly, Older, Adults (in 2007), Cognitive, Elderly, Older (in 2009) and Older, User, People, Adults (in 2011). The generic term User is still dominant, representing 19.83%, 20.78% and 17.95% of the words in 2007, 2009 and 2011 respectively, while the specific terms individually represent between 5% and 8%. Taking together, the Older and Elderly seem to be the most salient category of users addressed, representing 16.38%, 14.28% and 16.24% of the words. This category is followed by the Adult, with 5.17%, 1.30% and 6.84% of words occurrences in 2007, 2009 and 2011 respectively. It is worth mentioning the low occurrence of the words Children and Child, the last one represented by 1.72%, 1.30% and 0.85% of the words in each edition of the Conference: 2007, 2009, 2011, while the words Teen and Teenager appear only in 2011, representing 0.85% of the words. The generic term Disabled represents 3.45%, 1.30% and 1.71% respectively in the 2007, 2009 and 2011 editions, similarly to the more salient specific disabilities: Blind appears in 3.45%, 0% and 1.71% in 2007, 2009 and 2011 respectively, while Deaf appears 0%, 2.60%, 0%.

Still regarding the target users’ considerations, it seems to have a smooth change in focuses along the editions of the Conference, reflected in the appearance and disappearing of some specific words. The focus seems to go from biometric (3.45%, 0%, 0.85%) and authentication (5.17%, 0%, 0%) technologies for the blind and disabled in 2007, to cognitive (5.7%, 11.69%, 2.56%), mental (2.59%, 5.19%, 1.71%) impairments (e.g. dementia 0%, 5.19%, 0%) in 2009, to aspects related to affective experience (0%, 0%, 4.27%), and culture-specific (0%, 1.30%, 3.42%) issues in 2011. Regarding context diversity, from the generic Home (5.17%, 1.30%, 1.71%), specific domestic environments start to appear along the Conference editions, e.g. Living (0%, 2.60%, 4.27%) and Kitchen (0%, 0%, 1.71%).

Applications. Applications and Services is the topic maintained in the three editions of the Conference, with 109, 86 and 72 contribution papers, respectively.

The tagclouds of Figure 2.4 reveal that Accessibility and Web are the two most frequent words in 2007 and 2009 contributions, showing a decrease in 2011: Accessibility represents 20.18%, 17.44%, and 6.94% of the words in this topic, respectively, while Web represents 14.68%, 20.93% and 6.94%. The most frequent word in the third edition of the Conference is System, growing from 9.17% in 2007 to 13.95% in 2009 and 18.06% in 2011. It is worth noting that the Usability classical word present in the titles of contributions represents 3.67%, 3.49% in 2007, 2009 respectively and disappeared (0%) in 2011.

Learning and Education seem to be the main focuses of applications and services in all
CHAPTER 2. UNIVERSAL ACCESS TO INTERACTION

The 2007 and 2009 tagclouds are quite similar in the words they salient, changing place between the first and second most frequent words. Ambient, Environment, Mobile, Interface and Interaction are around 10% and 19% of the words in both editions of the Conference and are less explicit in the 2011 edition, ranging from zero presence, e.g. for
CHAPTER 2. UNIVERSAL ACCESS TO INTERACTION

Mobile, to 1.75% for Ambient and 5.26% for Environment and Interaction, respectively, to 12.28% for Interface.

Words representing categories of interaction in the 2007, 2009 and 2011 editions are represented by Adaptive (4.35%, 4.71% and 8.77% respectively), Intelligent (4.35%, 4.71%, 1.75% respectively), Visual (4.35%, 2.35%, 8.77% respectively), Multimodal (6.09%, 2.35%, 7.02% respectively), among the most recurrent.

Except for the word Interface, which maintain a high salience in the three editions of the Conference, the 2011 edition topic data suggest a shift in focus from the environment/ambient interaction to the higher level concepts of Design for All and eInclusion, adding to some words in common (e.g. Adaptive, Visual, Multimodal), issues such as [user] experience (0% in 2007 to 5.26% in 2011), [public] policy (0% in 2007 and 2009 to 3.51% in 2011), and cultural issues (0.87% in 2007 to 3.51% in 2011), as well as other devices (e.g. TV from 0% in 2007 and 2009 to 3.51% in 2011) suggesting demands for new ways of interacting.

2.3.2 The UAHCI Worldwide Extent

In this work, we extracted the full list of authors of papers from 2007 to 2011. This list included a total of 2024 authors and then we did the data analysis including only those authors who published two or more papers, so we were left with a total of 340 authors. For each of these, we established the country and institution that they represent. We found that those authors come from 30 countries, 200 institutions and 834 papers contributed to the themes of UAHCI from 2007-2011. This information is resumed as follows.

![Figure 2.6: Countries and Institutions with respect to the number of authors and papers/authors](image)

The three countries with the largest numbers of authors are: Germany, Japan, and Greece, with 39, 37 and 35 authors, respectively. Among the 30 countries involved, those with the largest numbers of papers associated are: Greece, with a total of 154 papers, followed by Germany with 110 and the United Kingdom with 105. Considering the average production of papers of each considered country, we have a distribution as illustrated by Figure 2.6

Considering the average production of papers by author of each country, an interpretation that can be made is that Greece, United Kingdom and Italy have the highest average production by author among countries with more than 15 authors; their averages are 4.4,
CHAPTER 2. UNIVERSAL ACCESS TO INTERACTION

3.3, and 3.1, respectively. Also, countries such as Scotland, Denmark and Chile have average paper’s production by author greater than each of the other countries considered with 7.0, 6.0, and 4.5, respectively.

Analysing the institutions associated, Figure 6 highlights “Life Supporting Technologies E.T.S.I. Telecommunicacion. UPM” (20 papers and 2 authors) with the highest average papers per author, although the Foundation for Research and Technology - Hellas (FORTH) is the institution with the largest number of contributions (72 papers and 10 authors).

2.3.3 Synthesis and Discussion

Looking at the general data of all topics and editions of the Conference, some aspects deserve attention. Regarding conceptual approaches to the research problem, Accessibility is the most emphasized word, (8.27% or 69 papers address it in their titles), followed by Universal (4.32% or 36 papers), suggesting the natural path from the former to the later. Usability still appears (2.88% or 24 papers), and Participatory and Participation are still rare (0.12% or 1 paper and 0.24% or 2 papers) suggesting the traditional approaches to the user involvement. Design is more emphasized (17.27% or 144 papers) than Evaluation (5.40% or 45 papers), and is more addressed in the Diversity topic, while Evaluation is more salient in the Applications topic.

The general data clearly show an aging-centered focus for the human considerations and needs (Older and Elderly together represent 8.28% or 69 papers), with less stress for specific disabilities (Blind and Deaf together represent 3.3% or 28 papers). This result may suggest a trend to blur the frontier between normality and deficiency towards the design for all.

Devices and platforms still appear in generic terms: Mobile represents 6.59% or 55 papers (more salient in the Interaction topic), and Web represents 8.15% or 68 papers (more salient in the Applications topic). Application domains have a clear focus on Education and Learning, which together represent 8.39% or 70 papers; the Health domain is still present in 2.16% or 18 papers, with an important growth in 2011.

The general results also show that the social aspects of system design and use, typical of the contemporary Web applications, although experiencing a growth in the last edition of the Conference, are not still so prominent (Social is present in 1.80% or 15 papers). Moreover, the trends of the HCI domain for future towards elements of affective, emotional, motivational issues, as discussed by [24], are poorly addressed (Affective appears in 0.6% or 5 papers, Emotional and Motivation appear in 0.24% or 2 papers, each), representing open opportunities in the field. Also, It is worth noting the timid appearance of Value (0.24% or 2 papers), and Aesthetics, which is not present.

The worldwide distribution of the authors and their institutions show a predominance of contributions coming from Europe. This fact might suggest the data is reflecting, in some way, the European scenario of needs regarding access to technology. This also leads us to wonder how different the data could be whether situated in different scenarios, as for example of developing countries, where other challenges have to be faced regarding eInclusion, for example illiteracy and social barriers.
2.4 Conclusion

The design of software applications considering the varied needs of users, including those that are challenged to interact with computing systems despite their physical, psychological or social conditions is considered very hard to achieve. The HCI field has accumulated knowledge to cope with the challenges of designing interactive devices. Getting an overview of the main issues that have been addressed in recent years in the field is a way to identify lacking issues and new research opportunities.

This paper shed light on the main focuses of research addressed by the last three editions of the UAHCI Conference and the origin of the contributions. Results show the wide extent of the Conference, having contributions from 2014 authors coming from 30 countries, 200 institutions. Nevertheless, European countries lead the highest average production by author among countries with more than 15 authors. Roughly, Design is the most frequent word in the contributions, the Older, Elderly and Adult are the most addressed categories of target users, the Mobile and the Web are the most present platforms for interaction, although as generic references. There is few allusion to the social issues typical of contemporary Web applications, such as those associated to social software and the related concepts such as values, aesthetics, collaboration, participation, signaling important subjects still open to research in the field.

The analysis used tagclouds as a way to get the accentuation of subjects being discussed in the different topics of the Conference. The results obtained also indicate that the use of tagclouds provided a quick and simultaneously comprehensive overview of the data, considering the volume analyzed. Although paper titles usually are representative of their content, a possible refinement in the study could incorporate keywords and the abstracts, for further analysis. The tool developed for supporting this work also enables further work, to analyze specific classes of contributions.
Capítulo 3

A informática na educação: o que revelam os trabalhos publicados no Brasil

3.1 Introdução

As Tecnologia da Informação e Comunicação (TIC) estão cada vez mais presentes em ambientes públicos (ex. aeroportos e shopping centers) e privados (ex. casas e escritórios). Mais que isso, a tecnologia tem se tornado omnipresente em nosso cotidiano (por exemplo, brinquedos, eletrodomésticos, carros, livros, roupas e móveis) [23]. Há muito tempo os computadores também vêm sendo incorporados ao contexto escolar, em todo o mundo, como instrumento de ensino e aprendizagem para os mais diversos assuntos [3], e também como objeto de estudo por alunos que querem aprender conceitos teóricos e práticos sobre informática e computação [20].

Nesse sentido, apenas para citar alguns exemplos, autores têm desenvolvido jogos educativos para apoiar o processo de alfabetização infantil [1] ou mesmo para introduzir conhecimentos básicos de lógica de programação e fomentar o trabalho em equipe em sala de aula [20]. Em outros casos, como em [30], ambientes virtuais são criados para apoiar o processo de aprendizagem de programação de crianças do ensino fundamental. [31], por sua vez, utilizam recursos da robótica de baixo custo para ensinar movimento retilíneo na área da Física. Com relação a dispositivos móveis, Luz e Fonseca [46] demonstram o uso de uma ferramenta para dispositivos móveis capaz de apoiar a aprendizagem colaborativa, que facilita a transferência de arquivos entre alunos e professores sem o uso da Internet.

Se, por um lado, a inserção das TIC em ambientes educacionais pode trazer benefícios aos alunos, por outro lado, essa inserção gera desafios que impactam diretamente na relação ensino-aprendizagem-tecnologia. Este trabalho procura identificar elementos dessa trílogia nas contribuições da comunidade Brasileira de Informática na Educação.

Para entender os interesses, a identidade e a cultura de um determinado campo de pesquisa, é importante fazer uma análise de arquivos institucionais e publicações criadas ao longo do tempo, tais como revistas, jornais e outros meios de comunicação. Essa análise pode ser utilizada para que leitores, autores, editores e pesquisadores compreendam...
melhor e mais objetivamente uma área de interesse [73]. Assim, este estudo tem como objetivo identificar o território de pesquisa no campo da Informática Aplicada à Educação a partir das expressões que emergem das contribuições em seus principais veículos. O estudo também procura enxergar as redes de cooperação dos autores. Finalmente, esta análise permite a identificação de oportunidades e temas para futuros estudos e pesquisa sobre o campo.

A literatura tem apresentado outras revisões sistemáticas de trabalhos no contexto de tecnologia e educação, mas com focos de pesquisa mais específicos do que o tratado neste artigo. Somente para citar alguns exemplos, [62] fizeram uma revisão sistemática sobre a educação de surdos em ambientes virtuais. [50] fizeram uma revisão sistemática para estudo da interação criança-computador associada a jogos digitais. Com foco em Problem Based Learning, [5] fizeram um mapeamento sistemático sobre o tema aplicado à Ciência da Computação. Ainda, [9] analisaram o uso de computadores no ensino fundamental e médio.

Este trabalho propõe uma análise do domínio de publicações em temas da informática na educação, inicialmente informada pelo uso de Tagclouds. O estudo tem base no conteúdo de quatro fontes de pesquisa promovidas pela Comissão Especial de Informática na Educação (CEIE) da Sociedade Brasileira de Computação (SBC); são elas: i) Revista Brasileira de Informática na Educação (RBIE), ii) Simpósio Brasileiro de Informática na Educação (SBIE), iii) Workshop de Informática na Escola (WIE), e iv) Congresso Brasileiro de Informática na Educação (CBIE). Considerando-se o fato de que geralmente os títulos e resumos dos artigos representam o conteúdo da contribuição (pelo menos essa é uma recomendação aos autores na maioria das revistas e conferências), a discussão baseia-se na criação e análise de Tagclouds geradas a partir de títulos e resumos de artigos encontrados no portal CEIE da SBC. Como contribuição, o documento revela características individuais do SBIE, WIE, CBIE e RBIE, suas semelhanças e diferenças, os principais focos de pesquisa sobre Informática na Educação presentes na comunidade brasileira, e sua rede de autores.

3.2 Contexto do Estudo e Ferramentas

A Revista Brasileira de Informática na Educação [67] divulga desde 1997 trabalhos acadêmicos e científicos da área da Informática na Educação. A partir de 2005 passou a ter três edições por ano. Tem por objetivo disseminar as práticas, ferramentas, e métodos que se utilizam da tecnologia no processo de ensino e aprendizagem. A revista é promovida pela Comissão Especial de Informática na Educação [66] da Sociedade Brasileira de Computação (SBC) [70].

Também mantidos pela CEIE da SBC, o Simpósio Brasileiro de Informática na Educação [68] é um evento que tem como objetivo reunir os principais interessados (ex. profissionais, professores, estudantes e pesquisadores nacionais e estrangeiros) na área de Informática na Educação para promover pesquisa e trocar experiências e ideias sobre o tema. O simpósio teve a sua primeira edição realizada em 1990 na cidade do Rio de Janeiro, e tem acontecido anualmente em vários estados e regiões do Brasil.
O Workshop de Informática na Escola [69] tem como principal objetivo a divulgação de iniciativas nacionais de aplicação das Tecnologias da Informação e da Comunicação nas Escolas. Nesse sentido, tem um foco de pesquisa diferenciado do SBIE, pois inclui resultados de pesquisa e prática da aplicação da tecnologia nas escolas. O evento é promovido anualmente pela Comissão Especial de Informática na Educação desde 1995.

No ano de 2011 foi criado o Congresso Brasileiro de Informática na Educação [65] que agrega diversos eventos, para apresentar resultados de pesquisas e práticas realizadas na área de Informática na Educação. Desde então o SBIE e WIE passaram a ocorrer em conjunto e fazem parte do CBIE.

Os artigos publicados na RBIE (de 1997 até 2014), no SBIE (de 2001 até 2014), no WIE (de 2003, 2005 até 2014), e no CBIE (de 2012 até 2014) serviram como base para o proposto neste trabalho análise do campo da Informática na Educação no contexto nacional.

3.2.1 Visualização dos Dados - Tag Clouds

Tagcloud (ou nuvem de palavras) é uma representação visual para a presença de palavras (tags) em um conjunto. Cada palavra ganha destaque dentro da nuvem de acordo com sua frequência no texto; esse destaque é feito por meio da manipulação de recursos visuais, tais como tamanho da fonte, cor, etc. Dependendo do contexto em que são usados, sugerem quatro tarefas diferentes que podem ser realizadas com Tagclouds: pesquisa, navegação, formação de impressões ou gisting, reconhecimento ou correspondência. Embora as Tagclouds sejam menos precisas e eficientes em alguns casos específicos que outras formas de visualização, tais como tabelas e lista de palavras, as Tagclouds são vantajosas para capturar a essência de grandes quantidades de informação descritiva, apresentadas de forma sucinta [43]. Este cenário de sucesso, motivado pela necessidade de uma análise sintética de uma grande quantidade de dados é uma das razões para a escolha de Tagclouds como mecanismo de visualização de conteúdo neste trabalho.

Outros trabalhos têm utilizado Tagclouds como ferramenta para as análises de conferências e publicações científicas em outros domínios do conhecimento como em [57], [15]. Outros foram realizados com objetivos específicos para, por exemplo: identificar lacunas e oportunidades de pesquisa nas áreas de acesso universal à tecnologia [47] e TV Digital Interativa [13].

3.2.2 Ferramenta Customizada para Análises de Expressões e Pesquisa - ToPA

Uma ferramenta ToPA [34] (do inglês Tool for Publication Analyzes) foi criada para a análise de temas, autores e seções específicas de determinada conferência [31]. Uma vez escolhido o tema, a ferramenta mostra os artigos que estão relacionados ao tema e quais são aos seus respectivos autores. Para cada conferência ToPA apresenta uma síntese dos autores, quantidades de artigos e expressões mais comuns que aparecem nos títulos dos artigos. Também é possível organizar as informações por ano de cada conferência, ou mesmo por vários anos de determinada conferência. Com o auxílio da ferramenta Wordle,
ToPA também é capaz de gerar Tagclouds das palavras e autores mais frequentes.

Entre outros processamentos, por exemplo, para fazer a contagem correta do número de autores, a ferramenta conduz um processo de normalização dos nomes e busca por semelhanças entre os nomes dos autores para padronizar a sua escrita (por exemplo: acentuações, abreviações, espaços). Também é possível escolher filtros que mostram somente autores com pelo menos duas publicações nas Conferências durante os anos alisados.

Outros tipos de dados também podem ser usados e mapeados pela ferramenta (ex. as instituições dos autores e país onde estão essas instituições). A ferramenta foi implementada na web para facilitar uso da comunidade de pesquisa em Informática na Educação está disponível em http://eurydice.nied.unicamp.br/ToPA.

Em complemento, especialmente para as análises feitas neste artigo, uma nova funcionalidade foi incorporada com a finalidade de criar Tagclouds de expressões com mais de uma palavra, de acordo com a frequência com que expressões de “n” palavras aparecem no texto (com “n” configurável). A análise de expressões pode partir de um número mínimo e máximo de palavras. Por exemplo, para expressões com duas palavras, o complemento da ferramenta ToPA faz a busca no texto de duas palavras consecutivas. Cada par de palavras encontrado é colocado em uma tabela, e toda vez que surge uma nova expressão uma nova entrada na tabela é adicionada. Se uma entrada já existe na tabela, a frequência daquela expressão é aumentada em uma unidade. O mesmo ocorre para expressões com mais de duas palavras. O algoritmo ignora as expressões que começam e terminam por preposições ou artigos. Por exemplo, “a educação” ou “educação para” não são registradas como expressões de 2 palavras. Este complemento está disponível em http://eurydice.nied.unicamp.br/ExpressionsAnalyzer.

3.3 Método

![Figura 3.1: Processo utilizado no Estudo](image)

O processo empregado neste estudo está dividido em grandes etapas e envolve extração, qualificação e quantificação dos dados, e análise propriamente dita conforme mostra a Figura 3.1. Na primeira fase, as informações relevantes das 4 fontes foram coletadas no site da CEIE [66]. Para este estudo, entre as diversas informações existentes, usamos os dados referentes aos títulos dos artigos e seus respectivos resumos e autores. Essas
informações foram extraídas de forma semiautomática, isto é, o texto do site da CEIE precisou ser copiado para outro documento e expressões regulares foram utilizadas como filtros para selecionar as informações desejadas. As informações foram organizadas e colocadas em um arquivo texto separadas por ponto e vírgula, no formato de documento CSV (do inglês, Comma-separated values). O arquivo CSV serviu como fonte de criação de um arquivo XML (do inglês, eXtensible Markup Language) compatível com a ferramenta ToPA utilizada para analisar os dados (conforme descrito anteriormente).

Na segunda fase do processo, com as informações de títulos e resumos do artigo criamos tagclouds para vários conjuntos de dados em uma estratégia específica geral, isto é, criamos tagclouds para cada ano, depois para um conjunto de anos, para todos os anos de determinada fonte (conferências e revista) e, por fim, para dados de diferentes fontes. O mesmo foi feito para os autores das publicações. Esta visualização a partir das tagclouds foi apenas um ponto de partida para o processo de análise; as Tagclouds forneceram termos-chave que em seguida foram analisados com a ferramenta ToPA revelando alguns movimentos nos focos das contribuições.

Para discussão, escolhemos as Tagclouds criadas para todos os anos de cada conferência, e todos os trabalhos publicados pelas duas conferências foram mostrados separadamente. Sobre a Tagcloud de autores, esta representa os autores que tiveram mais de dois trabalhos publicados independentemente do ano. Este conjunto de Tagclouds fornece uma visão geral dos temas discutidos nas obras, bem como de autores representativos.

3.4 Resultados

No total foram processados: 2.589 trabalhos distribuídos da seguinte forma: 54,96% (1.423) para SBIE; 23,02% (596) para WIE; 9,66% (250) para CBIE; e 12,36% (320) para RBIE. A Tabela 3.1 mostra a quantidade de publicações anuais por evento.

![Figura 3.2: Comportamento da produção de artigos](image)

A Figura 3.2 mostra o comportamento da produção da comunidade, a partir da quantidade de artigos publicados entre os anos 1997 e 2014. O evento com quantidade maior de
publicações por ano é o SBIE, seguido de CBIE, WIE, e, finalmente, RBIE. Observe que não existe informação de todos os eventos durante este tempo por duas razões principais: ou a informação não está disponível na página da Comissão Especial de Informática na Educação do Brasil (http://www.ceie.org.br/), ou o evento não existia naqueles anos.

Nas subseções seguintes apresentamos informações mais detalhadas sobre cada um dos veículos.

Tabela 3.1: Distribuição do total de artigos entre os anos 1997 e 2014

Ano	RBIE	SBIE	WIE	CBIE
1997	13			
1998	19			
1999	19			
2000	13			
2001	16	58		
2002	13	71		
2003	12	71	62	
2004	11	85	-	
2005	15	73	45	
2006	13	89	48	
2007	15	135	40	
2008	16	84	58	
2009	17	84	44	
2010	18	132	60	
2011	20	138	71	
2012	27	142	48	79
2013	30	109	49	80
2014	33	152	71	91
TOTAL	**320**	**1423**	**596**	**250**

3.4.1 RBIE (1997-2014)

No período de 1997 a 2014, a revista RBIE agrupa 320 trabalhos de 681 autores. Os cinco autores com mais publicações na revista apresentam 8, 7, 7, 6 e 6 trabalhos, respectivamente. Uma imagem mais completa dos autores mais presentes pode ser vista na Figura 3.3 na forma de uma Tagcloud. Aparecem na nuvem autores com pelo menos quatro trabalhos publicados no período analisado.

O passo seguinte na análise envolveu buscar as redes de coautoria, determinar a quantidade, o tamanho, e os membros de cada uma delas.

Uma rede de coautoria é definida como uma rede fechada onde todos os membros estão direta ou indiretamente relacionados através de um ou vários trabalhos. Um autor só pode pertencer a uma rede em um determinado momento. Quando dois coautores de diferentes redes geram um artigo, imediatamente as duas redes a que pertencem, se
CAPÍTULO 3. A INFORMÁTICA NA EDUCAÇÃO

Figura 3.3: Os autores mais frequentes na RBIE (1997-2014)

juntam para criar uma rede maior. O objetivo, no final, é observar o alcance das parcerias da comunidade no evento. Neste sentido, um autor que publicou um ou mais trabalhos sem a participação de coautores pertence a uma “rede” de um só autor.

Para o caso da RBIE no período de tempo definido (1997-2014), existe um total de 165 redes de coautoria; destas redes 21,82% (36) são redes de um só autor. A Tabela 3.2 mostra os agrupamentos de todas as redes. A maior rede na RBIE no período é de 46 autores que representa 6,75% do total de autores.

Se procurarmos a rede a que pertence cada um dos cinco autores mais presentes, podemos afirmar que o primeiro, o terceiro e o quinto autor pertencem à mesma rede (a maior rede), enquanto, o segundo pertence a uma rede de 23 autores; e o quarto autor pertence a uma rede de 16 autores.

É possível consultar a ferramenta ToPA online para realizar esta e outras consultas, como por exemplo exibir as conexões entre dois autores.

Tabela 3.2: Redes de coautoria do RBIE (1997-2014)

Quantidade de Autores	Quantidade de Redes	Porcentagem do total de redes
1 até 5	139	84,24%
6 até 10	16	9,70%
11 até 15	2	1,21%
16 até 20	4	2,42%
21 até 25	2	1,21%
26 ou mais	2	1,21%

Para descobrir o que os títulos e os resumos dos trabalhos revelam, geramos dois tipos de tagclouds: uma que considera apenas as palavras individualmente dos títulos (Figura 3.4-a) e dos resumos (Figura 3.4-b); e outra que considera as expressões mais recorrentes nos títulos (Figura 3.4-c) e nos resumos (Figure 3.4-d).

Nas Figuras 3.4-a e 3.4-b APRENDIZAGEM e ENSINO são as palavras de maior destaque. Para encontrar os contextos de uso delas, buscouos extrair as expressões mais comuns nos títulos (Figura 3.4-c) e nos resumos (Figura 3.4-d).
Figura 3.4: Tagclouds dos títulos e dos resumos do RBIE no período (1997-2014): a) palavras recorrentes nos títulos, b) palavras recorrentes nos resumos; c) expressões recorrentes nos títulos, d) expressões recorrentes nos resumos

As Figuras 3.4-a e 3.4-d mostram um contexto para as palavras mais relevantes; como ilustração, a palavra APRENDIZAGEM aparece como a substância e contraparte do Ensino (ex. Ensino e Aprendizagem, Aprendizagem Colaborativa), e principalmente como qualificador em: Objetos de Aprendizagem, Ambientes Virtuais de Aprendizagem, Processo de Aprendizagem, Ambientes de Aprendizagem. Para o caso da palavra ENSINO, esta qualifica Processo e categoriza os principais focos nos níveis Médio e Fundamental (Ensino Médio, Ensino Fundamental).

Note-se que uma fonte de artigos pode ter uma base bastante diversificada de temas, tão variados que o número de palavras mais frequentes é baixo com relação ao total. Por exemplo, a palavra AVALIAÇÃO aparece em 5.63% dos títulos de trabalhos. Ainda pode, acontecer é que a fonte tem um conjunto pequeno de temas diferentes, de modo que o valor da frequência destas palavras é alto. No caso das palavras APRENDIZAGEM e ENSINO, que aparecem nos títulos de 75 e 61 trabalhos, a porcentagem relativa dos trabalhos é de 23.44% e 19.06%, respectivamente.

A Tabela 3.3 mostra as expressões mais frequentes que aparecem ao longo dos anos para a revista RBIE.

A Tabela 3.3 mostra o movimento dos grandes temas ao longo dos anos: EDUCAÇÃO A DISTÂNCIA com grande frequência até 2006, destacando-se no período, em particular CURSOS ONLINE e os ambientes AULANET e TELEDEC; ainda, OBJETOS DE APRENDIZAGEM surgindo a partir de 2007 e destacando-se ao longo dos dois últimos períodos. Nos anos mais recentes aparecem expressões que fazem menção a tecnologias avançadas (ex. REALIDADE AUGMENTADA) e a computação ubíqua (APRENDIZAGEM UBÍQUA), embora aspectos de tecnologia já tivessem destaque nos anos iniciais (ex. REALIDADE VIRTUAL), o que mostra a preocupação constante da comunidade de pesquisa com os avanços da tecnologia.

Avaliação tem sido um tema constante ao longo dos anos (AVALIAÇÃO PEDAGÓGICA, AVALIAÇÃO FORMATIVA, AVALIAÇÃO DE SOFTWARE EDUCATIVO), além de análises de diversos tipos nos dois últimos períodos (ANÁLISE DA APRENDIZAGEM, ANÁLISE DAS INTERAÇÕES). Enquanto Análise e Avaliação se destacam, o mesmo não ocorre com Design ou Projeto, que são partes do processo de Construção de
Tabela 3.3: Expressões mais frequentes por períodos de anos - RBIE

Período	Educação a Distância	Ambientes de Estudo	Informática na Educação	Realidade Virtual	Ambiente	AulaNet	Ambientes para Estudo	Avaliação	Aprendizagem	Pedagogia	Software	Educação	Realidade
1997-2002	0.4%	0.5%	0.3%	0.3%	0.2%	0.3%	0.2%	0.3%	0.2%	0.3%	0.3%	0.2%	0.2%
2003-2006	0.4%	0.5%	0.3%	0.3%	0.2%	0.3%	0.2%	0.3%	0.2%	0.3%	0.3%	0.2%	0.2%
2007-2010	0.4%	0.5%	0.3%	0.3%	0.2%	0.3%	0.2%	0.3%	0.2%	0.3%	0.3%	0.2%	0.2%
2011-2014	0.4%	0.5%	0.3%	0.3%	0.2%	0.3%	0.2%	0.3%	0.2%	0.3%	0.3%	0.2%	0.2%

Sistemas e ambientes tecnológicos ou educacionais.

Com relação a veículos e representações do conhecimento, destacam-se CONCEITOS VISUAIS, MAPAS CONCEITUAIS, MÍDIAS DIGITAIS, e REDES DE PETRI.

Aspectos metodológicos de pesquisa são mais evidenciados no período 2003-2006 (ESTUDO DE CASO).

Finalmente, mas não menos importante, observam-se os qualificativos para APRENDIZAGEM ao longo dos 4 períodos, passando por: COOPERATIVA, COLABORATIVA, SIGNIFICATIVA, e UBÍQUA.

3.4.2 SBIE (2001-2014)

No período de tempo considerado (2001-2014), o SBIE agrupa 1423 trabalhos de 2933 autores. Os cinco autores com mais publicações no simpósio contribuíram com 58, 32, 24,
CAPÍTULO 3. A INFORMÁTICA NA EDUCAÇÃO

Figura 3.5: Os autores mais frequentes do SBIE (2001-2014)

19 e 18 trabalhos, respectivamente. A Figura 3.5 apresenta a Tag Cloud dos autores com pelo menos quatro trabalhos publicados no período analisado.

Com relação a redes de coautoria, existem 349 redes, das quais 8.31% (29) são de uma só pessoa. A Tabela 3.4 mostra os agrupamentos de todas as redes. Vale a pena observar que entre as 6 redes com mais de 26 autores existe uma rede que agrupa 47.83% (1403) dos autores do SBIE.

Se procurarmos as redes a que pertencem os cinco autores com mais publicações neste evento, descobrimos que todos eles, exceto o quarto, pertencem à rede de maior tamanho (1403 autores). O quarto autor mais presente pertence a uma rede com 82 autores.

Figura 3.6: Tag Cloud dos títulos e dos resumos do SBIE (2001-2014) a) palavras recorrentes nos títulos, b) palavras recorrentes nos resumos; c) expressões recorrentes nos títulos, d) expressões recorrentes nos resumos

Analisando a palavra mais frequente, APRENDIZAGEM (Figuras 3.6-a e 3.6-b), encontramos os contextos de: Objetos de Aprendizagem, Ambientes Virtuais de Aprendizagem, Aprendizagem Colaborativa (Figuras 3.6-c e 3.6-d). São os mesmos contextos encontrados na RBIE.

A Tabela 3.3 mostra o movimento dos grandes temas ao longo dos anos: EDUCAÇÃO À DISTÂNCIA com grande frequência até 2010; diferentemente do ocorrido com a RBIE, menções a plataformas de Educação à Distância, não são frequentes no SBIE. Também diferentemente dos resultados para a RBIE, SISTEMA TUTOR INTELLIGENTE aparece com frequência até 2006. AMBIENTES VIRTUAIS é a expressão frequente ao longo de todos os períodos, que parece denotar as diferentes modalidades de sistemas de apoio ao processo de ensino/aprendizagem.
CAPÍTULO 3. A INFORMÁTICA NA EDUCAÇÃO

52

Tabela 3.4: Redes de coautoria do SBIE (2001-2014)

Quantidade de Autores	Quantidade de Redes	Porcentagem do total de redes
1 até 5	280	80,23%
6 até 10	54	15,47%
11 até 15	4	1,15%
16 até 20	2	0,57%
21 até 25	3	0,86%
26 ou mais	6	1,72%

Tabela 3.5: Expressões mais frequentes por períodos de anos - SBIE

Ano	AMBIENTE VIRTUAIS (6.2%)	AMBIENTE(S) DE VIRTUAIS (5.3%)	OBJETO(S) DE APRENDIZAGEM (11.0%)	OBJETOS DE APRENDIZAGEM (10.4%)
2001-2002	AMBIENTE DE APRENDIZAGEM (3.1%)	APRENDIZAGEM (3.8%)	VIRTUAIS (7.8%)	VIRTUAIS (7.0%)
2003-2006	COOPERATIVA (3.1%)	VIRTUAIS (2.8%)	DISTÂNCIA (2.8%)	ENSEINO (3.0%)
2007-2010	SOFTWARE EDUCACIONAL (3.1%)	DISTÂNCIA (2.5%)	INCLUSÃO (2.3%)	MAPEAMENTO (2.4%)
2011-2014	AMBIENTE DE COOPERATIVO (2.3%)	DE APRENDIZAGEM (2.2%)	REALIDADE (1.8%)	AUMENTADA (2.0%)
	AMBIENTE DE APRENDIZAGEM (2.3%)	COLABORATIVA (2.2%)	REVISÃO (1.6%)	SISTEMÁTICA (1.8%)
	INCLUSÃO (2.2%)	DIGITAL (2.2%)	ESTUDO DE REDES (1.6%)	SOCIAIS (1.7%)
	REALIDADE (2.3%)	VIRUAL (2.2%)	CASO (1.6%)	DISPOSITIVOS (1.7%)
	COLABORATIVA (2.3%)	TUTOR (2.3%)	MAPA (1.9%)	CONCEITUAIS MÓVEIS (1.5%)
	COMUNIDADES (2.3%)	VIRTUAIS INTELIGENTE (2.3%)	CONCEITUAIS (1.9%)	MÓVEIS (1.5%)
	EDUCAÇÃO A DISTÂNCIA (2.3%)	MAPAS CONCEITUAIS (2.2%)	DEFICIENTES ENSEINO (1.6%)	APRENDIZAGEM VISUAIS (1.5%)
	SISTEMA TUTOR (2.3%)	CONCEITUAIS (1.6%)	FORMAÇÃO DE ENSINO (1.1%)	APRENDIZAGEM (1.5%)
	INTELIGENTE (2.3%)	APRENDIZAGEM (1.3%)	PROFESSORES (1.1%)	FUNDAMENTAL (1.5%)

Com relação a veículos e representações do conhecimento, destacam-se no SBIE: OBJETOS DE APRENDIZAGEM (a partir de 2003), MAPAS CONCEITUAIS (2003 a 2010) são as expressões mais frequentes desde 2003.
Aspectos metodológicos de pesquisa são mais evidenciados a partir de 2003 (ESTUDO DE CASO, AVALIAÇÃO E MAPEAMENTO SISTEMÁTICO).

Assim como na RBIE, a expressão REALIDADE AUMENTADA ganha destaque nos últimos anos, ao lado de outras tecnologias (DISPOSITIVOS MÓVEIS e REDES SOCIAIS).

Conceitos como INCLUSÃO DIGITAL e a referência a pessoas com deficiência aparecem com frequência nos anos de 2003 a 2010, e não aparecem com frequência nos títulos dos trabalhos dos anos mais recentes (2011-2014).

Os qualificativos mais frequentes para APRENDIZAGEM são o COOPERATIVO E COLABORATIVO, até 2010.

3.4.3 WIE (2003, 2005-2014)

![Figura 3.7: Os autores mais frequentes do WIE (2003, 2004-2014)](image)

No período de tempo analisado (anos 2003, 2005 a 2014), o WIE agrupa 596 trabalhos de 1402 autores. Os cinco autores com mais publicações no workshop apresentam 35, 11, 10, 10, 8 trabalhos, respectivamente. A Figura 3.7 apresenta a Tagcloud dos autores com pelo menos quatro trabalhos publicados no WIE no período.

Com relação a redes de coautoria, existem 273 redes, das quais 11.72% (32) são de uma só pessoa. A Tabela 3.6 mostra o agrupamento de todas as redes. A maior rede no WIE no período é de 126 autores, que representa 8,99% do total de autores.

Os quatro primeiros autores com mais publicações pertencem à mesma rede, a rede de maior tamanho. O quinto autor pertence a uma rede que agrupa 28 autores.

Analizando o contexto das palavras de maior destaque, encontramos resultados muito similares ao da revista RBIE e aos do evento SBIE, indicando um alinhamento de interesses da comunidade. A Figura 3.6 ilustra as tagclouds dos títulos e dos resumos do WIE.

Quantidade de Autores	Quantidade de Redes	Porcentagem do total de redes
1 até 5	231	84,62%
6 até 10	27	9,89%
11 até 15	3	1,10%
16 até 20	4	1,47%
21 até 25	4	1,47%
26 ou mais	4	1,47%
Por outro lado, podemos observar as especificidades do evento WIE especialmente o foco de interesse na formação; isto se evidencia em expressões como Formação de Professores, Formação Contínua, Relato de experiências, Learning Process, entre outros. Com relação a níveis do ensino, prevalecem Ensino Fundamental e Ensino Médio. As expressões presentes na Tabela 3.7 são as mais frequentes ao longo dos anos para o WIE. Observa-se que INCLUSÃO DIGITAL têm destaque e se mantém frequente em todo o período (2003-2016); expressão (UM) COMPUTADOR POR ALUNO ganha destaque a partir de 2011. Ambas expressões fazem referência a pesquisas voltadas a incentivos governamentais para inclusão digital dos estudantes brasileiros. SALA DE AULA é uma expressão frequente ao longo de todos os períodos, indicando o contexto principal das pesquisas; essa expressão não ocorre entre as mais frequentes na RBIE e no SBIE. ENSINO FUNDAMENTAL E ENSINO MÉDIO caracterizam o foco de interesse ao longo de todo o período. Diferentemente da RBIE e do SBIE, não é possível encontrar, entre as expressões mais recorrentes, tecnologias contemporâneas. Aspectos de tecnologia estão representados em SOFTWARE EDUCATIVO, JOGOS EDUCACIONAIS E EDUCAÇÃO A DISTÂNCIA.

3.4.4 CBIE (2012-2014)

Figura 3.9: Os autores mais presentes do CBIE (2012-2014)
CAPÍTULO 3. A INFORMÁTICA NA EDUCAÇÃO

Tabela 3.7: Expressões mais frequentes por períodos de anos - WIE

Período	OBJETO(S) DE APRENDIZAGEM	OBJETO(S) DE APRENDIZAGEM	ENSINO MÉDIO
2003 - 2006	(5.2%)	(10.4%)	(4.6%)
	GEOMETRIA	INCLUSÃO	FORMAÇÃO DE PROFESSORES
	(3.9%)	(5.4%)	(4.6%)
	AMBIENTE	ENSINO	ENSINO
	VIRTUAL	FUNDAMENTAL	FUNDAMENTAL
	(3.2%)	(5.0%)	(4.2%)
	ENSINO	ESTUDO	ESTUDO
	FUNDAMENTAL	DE CASO	DE CASO
	(2.6%)	(3.5%)	(3.3%)
	ENSINO	EDUCAÇÃO A	COMPUTADOR
	MÉDIO	DISTÂNCIA	POR ALUNO
	(2.6%)	(3.0%)	(2.9%)
	ESTUDO DE CASO	AULA	DIGITAL
	(2.6%)	(3.0%)	(2.9%)
	INCLUSÃO	SOFTWARE	INFORMAÇÃO E COMUNICAÇÃO
	DIGITAL	LIVRE	(2.9%)
	(2.6%)	(3.0%)	
	INFORMAÇÃO	AMBIENTE	INFORMÁTICA
	E COMUNICAÇÃO	VIRTUAL	NA EDUCAÇÃO
	(2.6%)	(2.5%)	(2.9%)
	SALA DE	ENSINO	SALA
	AULA	MÉDIO	DE AULA
	(2.6%)	(2.5%)	(2.9%)
	SOFTWARE	JOGOS	EDUCAÇÃO A
	EDUCATIVO	EDUCACIONAIS	DISTÂNCIA
	(2.6%)	(2.0%)	(2.5%)

Desde sua primeira edição, em 2012 até 2014 inclusive, o CBIE agrupa 250 trabalhos de 814 autores. Os cinco autores com mais publicações no congresso contribuíram com 13, 7, 6, 6, 5 trabalhos, respectivamente. Uma lista dos autores com quatro ou mais publicações no período pode ser vista na Figura 3.9 em forma de uma Tagcloud.

Com relação a redes de coautoria, existem 179 redes, das quais 11.17% (20) são de uma só pessoa. A Tabela 3.8 mostra o agrupamento de todas as redes. A rede maior no CBIE no período é de 27 autores que representa 3,32% do total de autores.

Os cinco autores com um maior número de artigos pertencem a diferentes redes. No entanto, todas têm mais de dez membros, respectivamente: 21, 12, 27, 11, e 11 autores.

As palavras com maior frequência podem ser observadas no contexto em que elas se encontram, conforme Figuras 3.10c e Figura 3.10d; vale notar a presença de destaque para MINERAÇÃO DE DADOS, que ainda não havia aparecido com tal frequência nos veículos anteriores (RBIE, SBIE, WIE).
Figura 3.10: Tagcloud dos títulos e dos resumos do CBIE (2012-2014): a) palavras recorrentes nos títulos, b) palavras recorrentes nos resumos; c) expressões recorrentes nos títulos, d) expressões recorrentes nos resumos

Tabela 3.8: Redes de coautoria do CBIE (2012-2014)

Quantidade de Autores	Quantidade de Redes	Porcentagem do total de redes
1 até 5	138	77,09%
6 até 10	26	14,53%
11 até 15	8	4,47%
16 até 20	3	1,68%
21 até 25	3	1,68%
26 ou mais	1	0,56%

As expressões mais frequentes que aparecem entre 3 anos (2012-2014) do CBIE, são: OBJETOS DE APRENDIZAGEM (9), REALIDADE AUMENTADA (9), AVALIAÇÃO DA APRENDIZAGEM (7), GRUPO DE PESQUISA (7), AMBIENTES VIRTUAIS (6), EDUCAÇÃO A DISTÂNCIA (6), LAPTOP EDUCACIONAL (6), MINERAÇÃO DE DADOS (6), DISPOSITIVOS MÓVEIS (5) e ENSINO MÉDIO (5). Se analisarmos as expressões, percebe-se que existe predomínio de expressões tecnológicas nos títulos e resumos do CBIE (ex. OBJETOS DE APRENDIZAGEM – Figuras 3.10-c e 3.10-d) se comparadas às outras expressões frequentes (ex. AVALIAÇÃO DA APRENDIZAGEM (7)). Assim como RBIE e SBIE o termo REALIDADE AUMENTADA aparece em destaque. Também presente no SBIE, o termo DISPOSITIVOS MÓVEIS aparece em destaque no CBIE. Semelhante ao WIE, que destaca termos como INCLUSÃO DIGITAL e COMPUTADOR POR ALUNO, o termo LAPTOP EDUCACIONAL aparece em destaque no CBIE.
CAPÍTULO 3. A INFORMÁTICA NA EDUCAÇÃO

3.5 Discussão

A seção anterior apresentou os quatro veículos de publicações separadamente ressaltando: os autores mais frequentes, as redes de coautoria de cada evento e sua distribuição por tamanho, as palavras e as expressões mais frequentemente encontradas nos títulos e nos resumos dos trabalhos. Ao observar os dados em conjunto, pode-se ver que a porcentagem de redes por agrupamento por evento (Figura 3.11, resumo das Tabelas 3.2, 3.4, 3.6 e 3.8) é similar em todos os eventos. Assim, por exemplo, a maioria das redes tem tamanho entre 1 e 5 autores, independentemente do evento.

Figura 3.11: Porcentagem de redes de coautoria por agrupamento

Esta informação deve ser completada com a distribuição da porcentagem de autores por agrupamento (Figura 3.12). Esta distribuição permite observar, por exemplo, que no SBIE a maior quantidade de autores está agrupada em redes de tamanho maior,

Figura 3.12: Porcentagem de autores por agrupamento
especificamente 1596 autores, que representa 54,4% dos autores. Este valor inclui a rede de maior tamanho que se mencionou na seção relativa ao SBIE, mais os 193 autores que pertencem às outras redes de 26 ou mais autores. Isto pode ser um indicativo de maior coesão da comunidade do SBIE em torno de interesses em comum. Nos demais veículos, predominam as redes de menor tamanho. A porcentagem de autores em redes de menor tamanho no caso do CBIE pode ser devida ao fato de este ser ainda um evento recente.

A Figura 3.12 também revela que a maior quantidade de autores está em rede de no máximo 5 autores ou em redes de mais de 25 autores principalmente no SBIE, mas também no WIE.

Analisando os autores que tiveram 3 ou mais trabalhos nas 4 fontes de publicações analisadas, temos (ver Tabela 3.9): 1) Somente 3 autores publicaram nas quatro fontes de pesquisa; 2) 320 (81,84%) autores publicaram somente em uma das fontes. 3) Somente 18,16% publicaram em mais de uma fonte de pesquisa.

Tabela 3.9: Quantidade de Autores que Publicaram por Evento

Quantidade de Eventos	Quantidade de Autores	Porcentagem do total de Autores
4	3	0,77%
3	15	3,84%
2	53	13,55%
1	320	81,84%

Figura 3.13: Conjunto de autores por fonte de pesquisa

A Tabela 3.10 e a Figura 3.13 mostram com mais detalhes a relação e porcentagem do número autores presentes na Tabela 3.9 que publicaram nos eventos analisados. Entre estes mais de 65% dos autores publicaram somente no SBIE. Analisando individualmente a Tabela 3.10 e Figura 3.13 temos: 1) entre os 15 autores que publicaram em 3 veículos, 12 (80%) publicaram em sua maioria na RBIE, SBIE e WIE; 2) não temos autores com 3 ou mais publicações conjuntamente no RBIE e CBIE, nem no RBIE, WIE e CBIE; isto pode ser explicado pelo fato de o CBIE ser ainda recente.
CAPÍTULO 3. A INFORMÁTICA NA EDUCAÇÃO

Analisando somente a RBIE na Tabela 3.10 e Figura 3.13, onde temos autores com 3 ou mais publicações inde-pendentemente dos veículos, temos que 10,1% dos autores publicaram na RBIE; entre estes (considerados como 100%): 12,9% publicaram somente na RBIE; 42,6% publicaram na RBIE e também no SBIE; 30,7% publicaram na RBIE e no WIE. Isso quer dizer que os autores que publicaram na RBIE também publicam com maior frequência no SBIE.

Analisando somente a RBIE eventos (SBIE, WIE e CBIE) e os autores com 3 ou mais publicações (Tabela 3.10 e Figura 3.13), temos: 1) somente dois autores publicaram nos três eventos (0,5% dos dados analisados), 2) o evento com o número maior de autores com 3 publicações é o SBIE (82,6%) seguido do WIE (25,6%) e o CBIE (5,4%). 3) a maior intersecção de autores com 3 ou mais publicações entre dois eventos é de 7,4% e se refere às publicações do SBIE e WIE.

Tabela 3.10: Quantidade de Autores que Publicaram por Evento

Eventos	Quantidade de Autores	Porcentagem do total de Autores
RBIE	5	13,00%
SBIE	255	65,20%
CBIE	9	2,3%
WIE	51	13,00%
RBIE SBIE WIE CHIE	3	0,8%
RBIE SBIE CBIE	1	0,3%
RBIE SBIE WIE	12	3,1%
SBIE WIE CBIE	2	0,5%
RBIE SBIE	17	4,30%
RBIE WIE	1	0,3%
SBIE CBIE	4	1,00%
SBIE WIE	29	7,40%
WIE CBIE	2	0,50%
RBIE	5	1,30%
SBIE	255	65,20%
CBIE	9	2,3%
WIE	51	13,00%

Figura 3.14: Autores com 20 ou mais publicações considerando todas as fontes de publicação (RBIE, SBIE, WIE e CBIE)

Se considerarmos os autores com 20 ou mais publicações independentemente do evento, temos um total de 18 autores. A Tagcloud da Figura 3.14 somente 3 desses autores publicaram nas 4 veículos. Outro dado evidenciado é que se analisarmos os autores mais frequentes de cada evento de forma individual (Figuras 3.5, 3.7 e 3.9) existe uma diferença...
muito grande de frequência entre esses autores (representada nos tamanhos das letras). No caso da RBIE este cenário muda, e os autores aparecem com frequência menos diferenciada (Figura 3.3).

A Tabela 3.11 mostra o número de palavras (coluna 2) com frequência maior ou igual a 10 e que aparecem em determinado tipo de publicação (coluna 1). Por exemplo, se considerarmos as quatro fontes de publicação temos um total de 20 palavras (8,93%) que aparecem em todas estas fontes, 26 palavras que aparecem somente em 3 fontes, e assim sucessivamente. Ao todo, 224 palavras com esta frequência foram encontradas, considerando todas as publicações analisadas.

Figura 3.15: Conjunto de autores por fonte de pesquisa

Quantidade de Eventos	Quantidade de Autores	Porcentagem do total de Autores
4	20	8,93%
3	26	11,61%
2	48	21,43%
1	130	58,04%

A Figura 3.15 mostra a Tagcloud com as 20 palavras mais frequentes que aparecem em todos os veículos analisados. Além do foco principal das quatro fontes de publicações estar de forma consistente em: APRENDIZAGEM e ENSINO, outras palavras que têm destaque estão relacionadas a ambientes (virtuais) e ferramentas para a Educação a Distância, seu desenvolvimento e avaliação.

A Tabela 3.12 mostra em detalhes a distribuição destas 224 palavras entre as fontes de publicações analisadas. Além das 20 palavras que aparecem em todas as fontes, as palavras mais frequentes da RBIE estão mais alinhadas às palavras que aparecem no SBIE (18 palavras – soma de 12 palavras da intersecção entre “RBIE SBIE WIE”) com 6 palavras da intersecção entre “RBIE SBIE”) e depois no WIE (12 palavras (“RBIE SBIE WIE” com 12 palavras, e “RBIE WIE” vazia)). As 12 palavras comuns que aparecem entre RBIE, SBIE e WIE são: OBJETOS, WEB, DIGITAL, SOFTWARE, VIRTUAIS, MODELO, ESTUDO, ANÁLISE, MATEMÁTICA, APRENDIZADO, UTILIZAÇÃO, CURSOS. As 6 palavras adicionais que aparecem somente na RBIE e SBIE são: SISTEMAS, SUPORTE, ABORDAGEM, AUTORIA, AGENTES, PROCESSOS. Nos casos que não aparecem na Tabela 3.12 (ex. “RBIE WIE”), a intersecção entre as palavras com frequência maior ou igual a 10 é vazia.
Tabela 3.12: Quantidade de palavras por fonte de pesquisa

Eventos	Quantidade de Autores	Porcentagem do total de Autores
RBIE SBIE WIE CBIE	20	8,93%
RBIE SBIE WIE	12	5,36%
SBIE WIE CBIE	14	6,25%
RBIE SBIE	6	2,68%
SBIE CBIE	3	1,34%
SBIE WIE	38	16,96%
WIE CBIE	1	0,45%
SBIE	116	51,79%
CBIE	1	0,45%
WIE	13	5,80%

Analisando as palavras que aparecem nos eventos analisados temos um maior número de palavras comuns entre SBIE e WIE. Por exemplo: PROCESSO, INCLUSÃO, INTELLIGENTE, SOCIAL, ATIVIDADES, CASO, CONTEXTO, REDE, COLABORATIVA.

As expressões mais comuns às fontes de pesquisa (RBIE, WIE e SBIE) são ESTUDO DE CASO e SOFTWARE EDUCACIONAL. A relação entre SBIE e WIE apresenta-se, com três expressões bastante recorrentes: (INCLUSÃO DIGITAL, VIRTUAL DE APRENDIZAGEM, OBJETO DE APRENDIZAGEM), parece ser maior que a relação entre a revista e os eventos. A relação RBIE e SBIE parece ser um pouco maior, com duas expressões bastante recorrentes (APOIO AO ENSINO e APRENDIZAGEM COLaborativa), do que a relação entre RBIE e WIE com uma única expressão (ENSINO FUNDAMENTAL).

Analisando a frequência de expressões relacionadas a tecnologia e educação nos títulos e resumos dos trabalhos, os resultados sugerem que a frequência de referências à tecnologia (ex. DISPOSITIVOS MÓVEIS) e referências à educação (ex. APRENDIZAGEM COLABORATIVA) é semelhante independente da fonte analisada. Ainda, é possível perceber que determinados assuntos tomaram a atenção da comunidade em determinados momentos (ex. INCLUSÃO DIGITAL), assim como determinadas tecnologias (ex. LAPTOP, DISPOSITIVOS MÓVEIS) evidenciando e possivelmente refletindo mudanças tecnológicas sendo experimentadas.

3.6 Conclusão

A relação entre tecnologias digitais e sua apropriação em contextos educacionais envolve aspectos particulares de contextos acadêmicos e governamentais que impactam na pesquisa e sua prática. Pesquisas em informática na educação no Brasil vem sendo realizadas por comunidades de pesquisadores que usam como meio de divulgação as principais fontes de publicação de seus resultados de pesquisa, entre elas, a RBIE, o SBIE, o WIE e o CBIE. Neste sentido, analisar tais fontes de informação é uma maneira de caracterizar a comunidade identificando também novas oportunidades de ação na área.
Este artigo se utiliza do poder de representação de Tagclouds (nuvens de palavras e expressões), criadas a partir dos títulos e resumos das contribuições, para ilustrar e discutir as principais diferenças e semelhanças entre as diferentes fontes. As Tagclouds também evidenciam os principais autores da área em cada fonte de publicação e as redes de cooperação na comunidade.

De forma geral os resultados mostram, que os atores principais da pesquisa estão distribuídos entre aos temas da educação e da tecnologia de forma equilibrada. No entanto, é possível identificar oportunidades de pesquisa envolvendo tecnologias, especialmente as contemporâneas, no campo de informática na educação, especialmente para a comunidade do WIE.

Os resultados também evidenciam que a proporção de expressões relacionadas com tecnologia e expressões relacionadas à educação se mantém de forma equilibrada ao longo dos anos, indicando não haver uma ênfase maior em um dos lados. Também não existe uma variação muito grande entre os termos mais frequentes independentemente da conferência analisada, indicando um compartilhamento coeso de interesses da comunidade em torno de determinados temas em determinados momentos (ex. INCLUSÃO DIGITAL).

Analisando aos autores em cada fonte pela frequência de seus trabalhos, a RBIE tem uma distribuição mais uniforme de alguns autores em relação aos demais. O mesmo não ocorre para os eventos analisados (SBIE, WIE, CBIE), nos quais há autores com um grande número de publicações se comparados aos demais autores.

Com relação às redes de autores é possível perceber maior coesão do SBIE. Os principais autores de cada fonte analisada encontram-se nas maiores redes de coautoria, mas estas redes não são as mais frequentes do evento. Neste sentido, há espaço para a integração das pequenas redes de coautoria, unindo forças na exploração e pesquisa de diferentes temáticas.

Por fim, este trabalho não esgota o assunto; ao contrário, buscamos realizar um reconhecimento do território da informática na educação em nossa comunidade como uma preparação do terreno para novas contribuições. Em particular, trabalhos futuros poderão aprofundar o conhecimento em tópicos específicos, por exemplo avaliações e métodos de pesquisa, tecnologias específicas, entre outros, a partir do aqui levantado.
Chapter 4

On Feelings of Comfort, Motivation and Joy that GUI and TUI Evoke

4.1 Introduction

Advances in research in Tangible User Interface (TUI) have inspired diverse researchers, who are trying to understand the differences in users’ responses when they interact to TUI and to Graphical User Interface (GUI). While statistics on impacts on productivity and cognitive development are important information, a research opportunity that still offers ground for further investigation is related to the type of feelings that those interfaces can evoke. As Norman [53] argues, “attractive things work better”. Since usability and the efficacy of objects or systems are not always enough to determine their success or appreciation, we must also consider the affectibility - i.e., the affective or emotional aspects of interaction [30]. In this sense, this work reports on our endeavors to understand the feelings of comfort, motivation and joy that the different interface styles TUI and GUI may evoke.

Xie et al. [87] have found that, although children’s self-reports of enjoyment are similar for TUI and GUI, they took longer and had more difficulty completing puzzles when interacting with GUI. As Ishii et al [36] explain, GUI can be powerful, but they are not consistent with our interactions with the rest of the physical world. The study from Patten and Ishii [56] suggest that TUI provides better opportunity, when compared to GUI, for task recall and problem solving.

Besides the work of Xu [88] comparing enjoyment in children when interacting with TUI and GUI, Horn et al. [33] investigated other facets of affectibility aspects. They found that TUI was more inviting, more supportive of active collaboration, and more child-focused than the mouse-based interface. GUI and TUI were equivalently apprehendable and engaging. Those feelings, however, have been treated isolatedly in each separate research. This leads us to the research question that guided our study: what are the relations between the feeling of Joy, Motivation and Comfort when using TUI and GUI?

Historically, the Xerox Company introduced the first generation of Graphical User Interfaces (GUI) in 1981 [37]. The GUI allows the user to view digital information through one or more screens, and interact with it via remote controls such as keyboards, mouse
and more recently through touch screens [36].

Ten years later, in 1991, Mark Weiser, employee of Xerox company, published an article with a new vision entitled “Ubiquitous Computing”; in this vision, he tries to make the computer, as it is traditionally known, hidden from the user, almost invisible. One way to achieve this invisibility of computers is with an interface type called Tangible User Interface (TUI), which has been investigated in deep by authors like Ishii [30], [37] and [35]. The TUI allows users to manipulate physical objects, and through this manipulation the computer is able to change its internal state, subsequently causing a response or feedback to the user [24], [78] and [87]. In other words, TUI makes a connection between physical objects with digital elements, thus providing the possibility of directly manipulating these elements [22].

We agree with the authors Doering et al. [22], who say that the TUI does not fit all situations; however, we also agree with the benefits that this type of interface may have in specific contexts, such as education. This idea is shared by authors such as: Garzotto and Gonella [23], Horn et al. [32], Strawhacker and Sullivan [70], Sylla [73] and Xu [88]. While many agree on the potential of TUI, there is still a great research opportunity on the investigation of the affective responses that GUI and TUI might evoke. In this sense, the research question that we presented and that guides our work should manage this opportunity.

The aspects of affective responses that we cover in our study are related to the feelings of Comfort, Motivation and Joy. Bernstein [11] defines Motivation as “an inner state that energizes an individual toward fulfillment of a goal”. We understand that this should be an important response from users, as it should make the users continue using the application and fulfilling its tasks (e.g. an educational goal). Hence, motivation should not only stimulate users but also should indicate the success or failure of an application or type of application/interaction style.

Some authors (e.g. [12]; [63]) who study emotional responses adopt the PAD emotional state model. PAD stands for Pleasure, Arousal and Dominance. In our context we can associate arousal (excitement in the use of an application) with the Motivation of use. Pleasure could be associated with the feeling of Joy, as Joy is defined by the Oxford Dictionary [82] as “a feeling of great pleasure and happiness”.

Another aspect of Dominance is the feeling of Comfort (e.g., when we dominate/feel powerful over an application, we usually feel comfortable in the use of it). For sake of simplicity, we provided easier definitions for each of these feelings, as we show in the next section.

This work investigates the relations between the feelings of joy, motivation and comfort of different user profiles when using TUI and GUI. The paper is organized as follows: in section 2 we describe the study context and method. In section 3 we present the results and we discuss them in section 4. Section 5 concludes this paper.
4.2 The Study Context and Method

This research was conducted in the context of an HCI discipline in the University of Campinas (UNICAMP), in São Paulo State, Brazil. It occurred during two academic semesters in 2013 as part of the design and development of user interfaces projects, in which the students had the role of designers.

4.2.1 Participants

Besides the students enrolled in the discipline, we managed to include other participants, who contributed as end user evaluators of the projects. In total, we had one hundred and nine people participating.

In the first semester of 2013 (2013A) we had a total of 69 people involved, with an average age of 23 years old (a maximum age of 59 years old and a minimum age of 14). In the second semester of 2013 (2013B) there was a total of 40 people. The average age was of 23 years old (a maximum age of 52 years old and a minimum age of 15). The age distribution of the whole set can be seen in Figure 4.1.

Figure 4.1: Age range of the participants

As can be seen in Figure 4.1, the data of each semester will be treated separately, although shown in the same graph, with the intention to compare and identify any indications of trends.

Figure 4.1 shows the distribution of the age of the participants: for the 2013A is 11 (15.94%) people aged between 14 and 19 years old, 30 (43.48%) people aged between 20 and 21, and 28 (40.58%) people aged between 22 and 59. For the 2013B, there are 14 (35.00%) people aged between 14 and 19 years old, 15 (37.50%) people aged between 20 and 21, and 11 (27.50%) people aged between 22 and 59.
CHAPTER 4. ON FEELINGS OF COMFORT, MOTIVATION AND JOY

4.2.2 Method

In both semesters, the students from the HCI course were asked to choose an existing GUI application and modify it in a way that it would receive external events as inputs. Such external events should be in the form of physical objects being presented to the camera. In other words, their primary task was to take a GUI application and develop its TUI version.

In one semester the students were invited to choose an application among the many available for the Scratch\(^1\) platform. In the other semester, the students chose among the applications available for Kodu\(^2\) platform. Both Scratch and Kodu offers mainly educational solutions and underneath both lays the purpose of bringing programming language closer to children’s world. Our objective was to investigate the affective responses from users towards the GUI and TUI versions of a same application. The platform of the original GUI version should have no or little impact on the results. In order to control also this factor we had the two courses working with a different platform (Scratch and Kodu). After developing the TUI applications, the designers were asked to invite other end users to interact with both GUI and TUI versions. After interacting with both versions, designers and end users answered a questionnaire.

4.2.3 Materials and Procedure

As a result of the method described, for each GUI version of an application (be it from Scratch or Kodu), there was a correspondent TUI version of it.

After interacting with both versions, designers and end users answered a questionnaire composed by three questions (Table 4.1). The central idea of the questionnaire was to determine, if it existed, any difference between the two versions, GUI and TUI, with respect to the feelings that were evoked in relation to Motivation, Comfort and Joy.

In 2013A, the students, divided into 10 groups, had to select a Scratch 1.4 application from the projects repository of SapoScratch\(^3\). In 2013B, the students were divided into 5 groups; they selected an application made in Microsoft Kodu to make the same procedure requested in the 2013A group.

In both semesters, the groups should use the computer vision framework called ReactTIVision\(^4\) to implement the TUI version. ReactTIVision is a framework for, among other things, the fast and robust tracking of Fiducial markers attached onto physical objects. This implies that with the TUI version, the user must use different Fiducial markers to associate objects to interact with the system (the markers must be attached to physical objects). Fiducial marks are figures that represent unique codes that can be identified by the computer.

Figure 4.2 illustrates this activity and depicts students interacting with physical objects to obtain a response from the application (either Kodu or Scratch) via a monitor. Of

1. http://scratch.mit.edu/scratch_1.4/
2. http://research.microsoft.com/en-us/projects/kodu/
3. SapoScratch, is an educational program, product partnerships between “Portugal Telecom” and “Massachusetts Institute of Technology” (MIT) since 2008. http://kids.sapo.pt/scratch/channel/toploved
4. http://reactivision.sourceforge.net/
Table 4.1: The questionnaire

With which version did you feel more Comfortable?
(which application evokes a greater sense of comfort in use)
() GUI () TUI () Indifferent () None

With which version did you feel more Motivated?
(which application evokes a greater desire to continue using it)
() GUI () TUI () Indifferent () None

Which version caused more Joy?
(The application that evokes a greater sense of pleasure in use)
() GUI () TUI () Indifferent () None

Figure 4.2: The codes to associate objects to interact with the system

In 2013A, each group of students had to implement a Java application that communicates ReactTIVision Framework with Scratch 1.4, through the Scratch resource called "Remote Sensor". In 2013B, each group of students received a developed app, which communicated ReactTIVision Framework with Kodu, by sending keyboard events. An open source version of these applications is available on the website of our research group: http://styx.nied.unicamp.br:8080/interhad/products.

In the next section we present the results of answers to the questionnaire and discuss possible interpretation for them. In order to make it clearer to the reader, we will refer to the projects created in 2013A as “ScratchP”, and the projects created in 2013B as “KoduP”.
4.3 Results

The next three subsections present results of the questionnaire regarding the focus on each of the feelings of our interest (Comfort, Motivation, and Joy). For each feeling we present four graphs which show the data: (a) From all participants of that semester; (b), (c), and (d) separated by the different age groups. In the sequence we discuss the relationship observed between these feelings.

4.3.1 Comfort Feeling

For the sake of simplicity, the questionnaire defined to the users the feeling of comfort as: “The application that evokes a greater sense of comfort in use”. Surely it is a simplistic definition for a feeling, but this provides a common basis to all users. Our intention is to align participants’ idea on the feeling of comfort when making a decision regarding the application that best evokes that feeling.

![Comfort feeling](image1)

![The age range of 14-19](image2)

![The age range of 20-21](image3)

![The age range of 22-59](image4)

Figure 4.3: The codes to associate objects to interact with the system

Figure 4.3 shows the percentage values of the number of people who felt more comfortable with each option (GUI, TUI, Indifferent and None) in each project; Figure 4.3a shows the results associated with the feeling of comfort considering all users who participated in the study. In the project with Scratch (ScratchP), 34 (49.28%) users considered the GUI version as the version that evokes a greater sense of comfort. In the project with Kodu (KoduP) 27 (67.50%) users felt more comfortable using the GUI version. That is, the two
groups considered the GUI version as the version that evokes greater sense of comfort. If we analyze the TUI version, we see that 20 (28.99%) and 7 (17.50%) people considered it to be the most comfortable, in the projects with Scratch and Kouda respectively. The reason for this preference may be related to the previous exposition of users to the amount of movement required by GUI, in comparison with the TUI versions, which require different physical interaction.

More important than indicating the percentage values or the number of people for each option, we want to highlight the options movement along the three graphs (Figures 4.3b, 4.3c, and 4.3d). These Figures show the behavior of the “feeling of comfort” for each different age ranges. The three charts are on the same scale in both axes, so it is possible to make some observations visually. It is true that we cannot generalize this behavior; however some aspects are evidenced. The GUI version remains the version that best evokes the feeling of comfort. When we look at the older age groups, we can see that the GUI version loses ground to the TUI version and to Indifference. One possible explanation for this latter behavior is that the younger participants in this research are very familiar with computers and their predominant model of user interaction today is through GUI. In contrast, the older participants seem to feel less comfortable with these versions and begin to see the TUI versions as more natural for them.

4.3.2 Motivation Feeling

The questionnaire defined the feeling of motivation as: “The application that evokes a greater desire to continue using it”, for the sake of simplicity.

As we can see in Figure 4a, the results of motivation presents a different picture compared to the results regarding comfort. The TUI version was selected in the project with Scratch by 44 (63.77%) of the people, and in the project with Kouda by 20 (50.00%) of people. In contrast, the GUI version was selected by 10 (14.49%) and 11 (27.50%) people in the two projects respectively, not far from the results shown by the Indifference option, 7 (10.14%) and 9 (22.50%) respectively.

With respect to the behavior of different age people, we can see that the TUI version was always selected as the version that best evokes the feeling of motivation, for all age ranges. The GUI version seems to lose its ability to motivate groups of older participants. The option of Indifference starts among the least preferred choices (Figure 4b) but gains space and even surpasses the GUI version (Figure 4d). Looking at Figures 4.4b, 4.4c, and 4.4d we can observe the opinion of the different age groups about the feeling of motivation for both ScratchP and KoudaP applications. First consider the x axis, which represents ScratchP: the TUI version remains more or less stable, being the preferred choice for the first two groups (age groups between 14-19 and 20-21).

However, it falls 22.7% for the older group. Regarding the y axis - KoudaP - the percentage value decreases less abruptly, but is still visible in the graphs. The biggest change is between the first age group and the second (10.48%). A possible explanation may be the need of physical activity required by the TUI version, which encourages them to continue using the application while the GUI version does not present novelty. It is worth noticing the decrease in the last three figures, where the GUI version remained the
option that least evokes the feeling of motivation. Regarding the decline of TUI option in the last two figures, one might speculate that this is due to the inability of younger people to be as effective with the required physical activity as they are with the keyboard.

4.4 Joy Feeling

For simplicity, the questionnaire defined the feeling of Joy as: “The application that evokes a greater sense of pleasure in use”. With regard to the feeling of joy, we can observe that the TUI version has shown a greater ability to evoke this feeling, 31 (44.93%) people and 17 (42.50%) in the two projects respectively, selected the TUI version; in contrast with 14 (20.29%) and 7 (17.50%) people who selected the GUI version, in the same two projects. In general terms (Figure 4.5a) the number of people who marked the Indifferent option exceeds the number of people who select the GUI version. People who marked the Indifferent option are 19 (27.54%) and 16 (40.00%) in the two projects respectively.

In the next age group (Figure 4.5c), the Indifference option exceeds the option of TUI version; 46.67% and 33.33% respectively in KodaP. While for KodyP the distance between “Indifference” and TUI is small, for ScratchP the distance between the same two is bigger. Although there are percentage differences, the behavior and the explanation may be similar for the younger group. Finally in the older age group (Figure 4.5d), the situation changed drastically, the TUI version options with 54.55% far exceeds the
other options (Indifference 27.27%, 18.18% GUI version, and None 0.00%) in the project with Kodu, while the option of Indifference (35.71%) narrowly exceeds the other options (28.57% in the TUI version, GUI version 21.43% and None 14.72%) in the project with Scratch. In other words, the result indicates that for the older group - compared to other age groups - the TUI version is the one that least evokes the feeling of joy when using Scratch.

4.5 Summarized Discussion

In the previous section, we examined each of the three feelings separately; now we want to see the relationship between these selections on two or three feelings simultaneously. Figure 6 shows these relationships. The purpose of this figure is to observe the combinations of options that are clearly protruding.

Figure 4.6 shows the combination of options with greater selection with respect to the feelings: Motivation, Comfort and Joy. Note that the order, in which the feelings were cited, should be the order in which the options on each circle in the figure should be interpreted (e.g: TUI-GUI-TUI, The version that best evokes Motivation feeling is TUI, the Comfort feeling is GUI, and the Joy feeling is TUI). Observing this same combination, we have: 15 (21.74%) and 9 (22.50%) of the people involved in projects with Scratch and Kodu, agree on three things: a) TUI version evokes the greatest motivation, b) the GUI version evokes greater comfort, and c) the TUI version causes the greatest joy. As we can
see in Figure 6a, there are no other combinations that stand out from the other options. In Figure 4.6b, we see that there are two other options that attract attention: a) relative only to ScratchP is TUI-TUI, which tells us that 13 (18.84%) of the participants in the first semester agree that the second version that best evokes the feeling of Motivation and Comfort is the TUI version; b) in relation only to Kudup is GUI-GUI, which tells us that 10 (25.00%) of the participants of the second semester agree that the second version that best evokes these feelings is the GUI version. But independent of the application, the best combination is TUI-GUI, with more than 31.00% of the participants in each semester. In Figure 4.6c and 4.6d, we can see the Indifferent option between the combination that is highlighted, and it appears replacing the TUI version (i.e. Figure 6c: the best combination TUI-TUI, the following TUI-Indifferent; Figure 4.6d: the best combination GUI-TUI, the following GUI-Indifferent).

4.6 Conclusion

The research question we wanted to answer was: what are the relations between the feelings of Joy, Motivation and Comfort when using TUI and GUI? In this sense, our objective in this research was to better understand the relationships between the feelings of Comfort, Motivation and Joy evoked in users when interacting with GUI and TUI applications. In order to achieve this objective, we gathered the participation of more than one hundred people over the period of two semesters experimenting applications
developed in educational contexts. The paper investigated affective responses with regard to two different interaction types: GUI and TUI.

The results were analyzed both in a general view and also in the perspective of different age groups. Under the general view, the interaction type to evoke most Comfort was GUI, but TUI seems to be the preferred type in regards to Motivation and Joy (although sometimes Indifference was also chosen in relation to Joy). The analyses among different age groups provide us with some insights on what can be considered as relevant to these groups.

We are aware of the need to extend the study to other contexts; however, the evidence shows a greater sense of motivation and joy related to the TUI versions. This leads us to believe in the potential of TUI to be used in educational contexts. Further work involves a deeper investigation using different TUI architectures (e.g. different sensors, objects) in order to have other combination types of interaction.
Capítulo 5

Manipulando histórias: Uma investigação sobre o uso de interfaces tangíveis e narrativas na escola

5.1 Introdução

A literatura acadêmica tem mostrado que a atividade de contar histórias traz benefícios à criança [64], que incluem, por exemplo: o desenvolvimento da criatividade, a representação de eventos em formas narrativas, a negociação de significados, a exploração de resultados possíveis de diferentes eventos, as manipulações simbólicas e de conceitos abstratos, entre outros. As crianças têm uma capacidade genuína de contar histórias para seus amigos e familiares, tornando esta uma atividade autêntica e pessoalmente relevante [21]. Tais elementos são fundamentais no processo de construção do conhecimento, como expresso pela teoria chamada Construcionismo, de Seymour Papert [54], que insere os meios computacionais como facilitadores do processo de construção de conhecimento pela criança.

Atualmente, existem várias formas e tecnologias que podem enriquecer o envolvimento das crianças no processo de criar e contar histórias. Há trabalhos [64], [72] e [78] que valorizam os benefícios e o potencial das interfaces tangíveis (TUI – Tangible User Interface) para as crianças em ambientes educativos. Tomando a definição mais geral, podemos dizer que as interfaces tangíveis permitem aos usuários interagir com a informação digital através de objetos físicos, concretos [37]. Dessa maneira, os dispositivos de interação convencionais (teclado, mouse, por ex.) e, de certa maneira, o próprio computador, “desaparecem” nesses cenários, dando lugar à manipulação de objetos de interesse da criança.

Alguns autores [72], afirmam que as interfaces tangíveis (TUI) são uma poderosa forma de suprir o processo de contar histórias com affordances e intuição, e que os usuários podem começar imediatamente a contar histórias sem muito treinamento ou conhecimento prévio. Outros autores [78] afirmam que as TUI são capazes de promover um engajamento mais forte e de longa duração com um maior potencial para envolver as crianças e para promover a aprendizagem. Há, ainda, autores [64] que afirmam que o uso de elementos tangíveis e dos próprios desenhos das crianças fazem com que seja mais fácil para elas
brinçarem e construírem suas idéias, avançando no processo de contar suas histórias de maneiras criativas.

Dentro do contexto das TUI, também é importante considerar o aspecto da acessibilidade. Na literatura [55] verificamos que a tecnologia de identificação por radiofrequência (RFID – Radio Frequency Identification) pode fornecer uma interface mais tangível e menos abstrata, além de ajudar a tornar os computadores mais acessíveis. Consideramos este aspecto importante por causa de chamadas que buscam assegurar a inclusão, nas turmas comuns do ensino regular, de alunos com deficiência, transtornos globais do desenvolvimento e altas habilidades ou superdotação [19]. Então, acessibilidade não só é um aspecto essencial em sistemas que utilizam TUI, mas também é tecnologicamente viável.

Considerando, portanto, o que foi exposto neste artigo, apresentamos investigações sobre como aliar tecnologias de interação inovadoras aos processos educativos envolvidos na construção de histórias, de maneira colaborativa, inclusiva e engajadora. Assim, na próxima seção apresentamos uma síntese da revisão sistemática de literatura para entender a relação entre TUI e atividades de contar histórias. Na seção seguinte detalhamos a atividade exploratória realizada no contexto real de uma escola brasileira de ensino fundamental, para explorar cenários de interação de crianças com TUI. Em seguida, apresentamos uma seção com os resultados desta atividade e os discutimos. Por fim, a última seção expõe conclusões e aponta para trabalhos futuros.

5.2 Storytelling e Interfaces Tangíveis

O ato de contar histórias (em Inglês, storytelling), acompanha o ser humano desde a idade da pedra, e serve não apenas ao propósito da comunicação, mas também ao da socialização, da disseminação da cultura e até da manutenção da ordem em uma sociedade [3]. Narrativas (outro termo para a arte de contar histórias) possuem alguns elementos característicos: enredo, personagens e narrador. O enredo diz respeito aos acontecimentos, ordenados da maneira que melhor servir à história e seguindo uma estrutura com três partes principais: introdução (começo), desenvolvimento (meio) e conclusão (fim). Os personagens são as entidades que desempenham algum papel na narrativa, podendo atuar como os protagonistas da história ou apenas como personagens secundários, ajudando a sustentar a trama. Por fim, o narrador é a voz que apresenta e conduz a história, podendo atuar em primeira pessoa (sendo, portanto, um dos personagens participantes da narrativa) ou em terceira pessoa, oferecendo uma visão impessoal dos acontecimentos.

Hoje em dia, o/a storytelling está presente em diversos formatos, desde a oralidade cotidiana, passando pela mídia impressa como livros e revistas, e chegando até o meio digital, como blogs, filmes e jogos eletrônicos [3]. Assim, contar histórias é uma ação já inserida no dia-a-dia das crianças, não apenas em seus relacionamentos com outras pessoas, mas também em suas cada vez mais frequentes e intensas interações com a tecnologia. Tendo em vista os benefícios que o/a storytelling traz às crianças [63], buscamos na literatura pelas maneiras que os meios educacionais tem encontrado para aliar essa prática à evolução tecnológica. Nosso interesse focou especialmente nas interfaces tangíveis, que
CAPÍTULO 5. MANIPULANDO HISTÓRIAS

possibilitam a interação com informações digitais por meio de objetos concretos e que, portanto, oferecem grande valor educacional, especialmente para crianças [38].

Realizamos, então, uma revisão sistemática da literatura, seguindo o processo rigoroso estabelecido pelo protocolo PRISMA [15]. O objetivo principal por trás da escolha deste protocolo está em garantir a sistemática e a reprodutibilidade da revisão da literatura. A pergunta de pesquisa que procuramos responder foi “como as tecnologias atuais, especialmente as TUI, podem ser um aliado para o processo educativo de contar histórias?”. Buscamos por trabalhos, em Inglês ou Português, que tivessem, em seu resumo, uma das seguintes combinações de palavras-chave: (“storytelling” e “tangible”), ou (“narrative” e “tangible”), ou (“narrativa” e “tangível”). A busca foi realizada nas seguintes bibliotecas digitais: ACM (2.245.046 registros), IEEE (3.729.250 registros), ScienceDirect (595.981 registros em Computer Science), Springer (904.637 registros em Computer Science) e no catálogo de artigos técnicos do Simpósio Brasileiro Sobre Fatores Humanos em Sistemas Computacionais (IHC), de 1998 a 2013, que conta com 371 registros. Nestas duas últimas bibliotecas não foi possível criar um filtro para buscar as palavras-chave apenas no resumo; logo, ela passou também pelos conteúdos dos artigos. Obtivemos, então, um total de 127 resultados, dos quais 64 continham as palavras-chave “storytelling” e “tangible”, e 63 continham as palavras-chave “narrative” e “tangible”. Entre estes dois conjuntos de resultados, temos 15 trabalhos repetidos, o que leva a um total de 112 artigos cujo conteúdo foi analisado.

Destes 112 trabalhos, 71 foram eliminados por fugirem do escopo desta pesquisa, pois, apesar de os termos de interesse aparecerem, o foco dos trabalhos era totalmente alheio ao tema da pesquisa. Outros 5 foram removidos por não mostrarem um protótipo ou design de um sistema ou ambiente para contar histórias. Portanto, no final, ficamos com um conjunto de 36 (depois de eliminar os 76 artigos que não são de nosso interesse) artigos relevantes à nossa pergunta de pesquisa. Após leitura apurada desses artigos, notamos que vários deles eram do mesmo projeto e grupo de pesquisadores. Nestes casos, a mudança de um artigo para o outro era na quantidade de informação sobre a mesma pesquisa, apresentada diferentes elementos, ou em alguns casos as versões estendidas, ou resumos. Assim, depois de realizar a classificação dos 36 artigos por projeto, identificamos 24 projetos diferentes.

Destes 24, apenas 11 (em 14 artigos) trabalharam com crianças ou foram projetados para serem usados com elas. Por fim, destes 11, apenas 9 projetos (em 12 artigos) foram desenvolvidos para um contexto escolar.

Esta revisão sistemática não é o foco principal deste artigo; portanto, apresentaremos aqui apenas uma síntese do que foi revelado por 4 destes 9 projetos, e os outros 5 projetos serão apresentados apenas com referência a outros tipos de configurações de TUI com storytelling. A intenção desta síntese é poder resumir os principais resultados, a tecnologia e os contextos aplicação, a fim de ter um quadro de referência mais amplo para o nosso projeto. Desta forma, poderemos destacar as nossas contribuições sobre o tema.

O primeiro projeto encontrado em nossa revisão da literatura é o de Williams [55], que mostra os resultados de uma experimentação com quatro formas diferentes de contar histórias: fala, livros, fantoches, ou uma placa de feltro. O estudo foi conduzido no R. Kirk Landon Early Learning Center, localizado em Atlanta, Georgia (EUA). Participaram
CAPÍTULO 5. MANIPULANDO HISTÓRIAS

dele 12 crianças de 2 anos de idade, de origens multiculturais e, predominantemente, de classe média-alta. O artigo indica que quando as crianças fazem uso de objetos concretos, combinados com a capacidade de agir, elas produzem respostas mais originais. A autora também destaca o benefício no aumento da memória em crianças e o papel fundamental do professor em ajudá-las a superar bloqueios mentais que impeçam o fluxo da história. Além disso, o artigo apresenta uma ideia geral de um sistema computacional para contar histórias, onde os usuários (crianças de 3 a 5 anos de idade) não se tornem apenas atores, mas também dramaturgos, diretores, cenógrafos e público, criando um show de marionetes para todas as pessoas presentes. A autora propõe, portanto, o uso de uma tela de dupla face, um computador, e os personagens (fantoche) e adereços com sensores embutidos. Assim, quando as crianças mexem esses elementos em torno da tela, o computador os identifica e projeta uma imagem que foi associada a eles.

O segundo projeto é dos autores Vaucelle e Jehan [83]. Eles discutem um estudo feito com 12 crianças de 5 anos de idade, em uma escola primária no subúrbio de Boston (EUA), que contavam histórias com a ajuda de dois fantoches (em Inglês, puppets). Estes gravavam as vozes das crianças e, em um momento posterior, as reproduziam em um tom diferente. Assim, as crianças podiam detectar inconsistências em uma história contada por elas próprias. Os autores indicam que, embora as crianças tenham gostado da atividade, elas pareciam precisar de uma audiência, como um objetivo para a história. O ambiente proposto é composto principalmente por dois fantoches com acelerômetros, uma plataforma com sensores (palco), um microfone e uma caixa de som. Além disso, há também um aplicativo para alterar o tom de voz dependendo do personagem que a criança está movendo, ou para fazer a gravação quando os fantoches estão longe do palco. Por fim, o ambiente também conta com um assistente virtual que instrui e motiva as crianças a executar determinadas tarefas.

O terceiro projeto é o de Sylla [77], que descreve um sistema tangível para contar histórias de forma colaborativa, para crianças de quatro a cinco anos de idade. Este sistema foi testado com 14 crianças do Colégio Teresiano de Braga (Portugal). A autora observou que as crianças explicam umas às outras certos elementos da história, discutem determinadas situações dos personagens e concordam em como resolvê-las. Também notou que as crianças se convidam para criar novas histórias de forma colaborativa e que, neste processo, elas compartilham os elementos tangíveis e aprendem novas palavras umas com as outras, aumentando assim seus vocabulários. Neste projeto foi desenvolvido um dispositivo USB, com espaço para até 6 blocos diferentes colocados sobre ele. Cada bloco representa um personagem, um objeto ou um elemento da natureza, que já estão pré-definidos. Uma vez que um bloco é colocado no dispositivo, o computador reconhece e executa a ação correspondente ao bloco. O sistema tem um "motor" (em Inglês, engine) que, de acordo com os blocos utilizados, gera e anima a história.

O quarto e último projeto, dos autores Alessandrini, Cappelletti e Zanconaro [1], relata esforços para trazer a tecnologia das interfaces tangíveis para o contexto de crianças com necessidades especiais; apresentam um protótipo de sistema que permite, entre outras coisas, associar sons a uma folha de papel, ou reproduzir os sons quando a mesma página é mostrada para uma câmera. O protótipo é utilizado para apoiar a terapia de crianças com transtorno do espectro do autismo (ASD) no centro de educação Associazione Genitori
Soggetti Autistici del Trentino (A.G.S.A.T.) em Trento, Itália. Durante um estudo piloto que durou um total de quatro sessões individuais com diferentes crianças (8-12 anos), os três terapeutas usaram o protótipo como uma ajuda para envolver as crianças na terapia. Outro elemento que contribuiu para o engajamento das crianças com o sistema foi permitir que elas gravassem e reproduzissem suas próprias vozes.

Os demais cinco projetos encontrados em nossa revisão da literatura mostram outras abordagens e configurações de equipamentos, para atingir o mesmo objetivo de contar histórias. A seguir, apresentaremos um resumo de cada um. Canu e Gimenez [40] fazem uso da tecnologia de realidade aumentada. Na solução proposta, o usuário vê o ambiente real por uma interface de vídeo (geralmente pequenas telas colocadas diretamente sobre a cabeça do usuário). Quando certos códigos gráficos são apresentados para a câmera, este vídeo é alterado por um computador. Neste projeto, os códigos foram fixados nas faces de um cubo, que o usuário manipula com as mãos e observa, por meio de seu visor, as alterações feitas em como evolui a história e o fim.

Willis, Shiratori e Mahler [86] apresentam um sistema que usa livros físicos com códigos impressos com uma tinta especial (invisível a olho nu, mas visível através de uma câmera de vídeo). Com esta tinta o usuário aproveita-se da capacidade de muitas câmeras de vídeo para perceber a luz infravermelha. Assim, conforme a criança manipula um pequeno projetor com uma câmera e o aponta para diferentes partes de livros, o sistema captura os códigos “invisíveis” e projeta sobre o livro o elemento associado àquele código, de acordo com a inclinação da câmera.

Por sua vez, Vaucelle e Ishii [84] apresentam experimentos com pequenas câmeras de vídeo concebidas como acessórios para duas bonecas. O sistema tem a intenção de convidar as crianças a fazer um filme com os diálogos de seus dois bonecos, criando assim diversas histórias.

Labrune e Mackay [44] propõem um sistema, de nome “Tangicam” (do Inglês, Tangible Camera, ou Câmera Tangível), que permite que as crianças produzam narrativas com base em vídeo e áudio situado em um contexto real. No estudo de caso apresentado, esse contexto é o de uma feira de ciência. O Tangicam é essencialmente uma alça circular grande com duas câmeras embutidas que realiza filmagens simultâneas: da criança e das imagens que a criança está filmando.

Finalmente, Alves et al. [2] propõem uma ferramenta, chamada Reactoon, para a criação colaborativa de histórias por meio de interfaces tangíveis e uma iTable (mesa multitouch). Essa ferramenta permite a criação e edição de curtas de animação 2D por usuários com pouca ou nenhuma experiência na área, como no caso das crianças entre 5 e 9 anos, que é o seu público-alvo. O projeto utiliza pequenos blocos com marcas de referência (marcas fiduciais), e usa um framework de visão computacional chamado ReacTIVision [42], para identificar marcas de blocos localizados sobre a mesa, e projetar nela o elemento associado. Destes 9 projetos apresentados, dois deles [1] e [2] fazem uso de ReacTIVision; um [77] criou um novo dispositivo; dois [10] e [86] usam realidade aumentada, e quatro [40], [84], [83], e [85] usam vários sensores, câmeras e projetores. Até agora, apresentamos uma visão geral de projetos diferentes em diversos contextos, que propõem o uso de tecnologias e novas formas de interação para contar histórias. A seguir, apresentamos a nossa proposta e identificamos contribuições à luz desta revisão.
CAPÍTULO 5. MANIPULANDO HISTÓRIAS

sistemática.

Em síntese, a revisão de literatura realizada nos permite destacar dois elementos importantes: a) não identificamos projetos dentro desta linha de pesquisa, que sejam desenvolvidos em contextos (educacionais, sócio-econômicos e de relação com tecnologia) semelhantes ao de nossas escolas públicas; b) não encontramos um ambiente que ligue os elementos da narrativa à flexibilidade de uma linguagem de programação.

5.3 Um Estudo de Caso Situado

Como uma aproximação ao uso de interfaces tangíveis e criação de histórias em ambiente educacional situado no contexto Brasileiro, foi realizado um estudo exploratório com crianças de uma escola da rede municipal de ensino de Campinas-SP. As subseções a seguir detalham os principais aspectos deste estudo de caso e discutem seus resultados.

5.3.1 Cenário

O estudo de caso foi conduzido na Escola Municipal de Ensino Fundamental (EMEF) Padre Emílio Miotti, localizada na cidade de Campinas, São Paulo. Esta escola foi escolhida por causa da parceria feita entre ela e a Universidade Estadual de Campinas (UNICAMP) por meio do projeto “XO na Escola e Fora Dela: Uma Proposta Semio-Participativa para Tecnologia, Educação e Sociedade” [58]. Resumidamente, este é um projeto piloto que visa estudar e viabilizar a operationalização da inserção de laptops educacionais em escolas públicas Brasileiras. Uma das metodologias de pesquisa aplicadas nesse projeto envolveu a realização de oficinas Semio-participativas, que consistem em práticas com toda a comunidade escolar, com o objetivo de articular soluções para os problemas antecipados e encontrados durante a utilização dos laptops no cotidiano dos principais envolvidos [8].

Assim, o estudo de caso aqui descrito foi realizado durante uma dessas oficinas, na qual excepcionalmente houve a participação de um grande número de alunos das séries iniciais do ensino fundamental. O objetivo imediato desta atividade foi realizar uma primeira aproximação entre a comunidade escolar (em especial, as crianças) e as TUI no contexto de narrativas. Desta maneira, esperava-se observar a receptividade e a motivação dos participantes perante esta tecnologia, bem como promover uma discussão sobre o seu possível uso em sala de aula.

5.3.2 Ambiente Tecnológico

Nosso ambiente tecnológico consiste em vários componentes inter-relacionados. O primeiro deles é o Scratch 1.4 [60], um software de programação que utiliza uma linguagem visual. O Scratch foi escolhido por oferecer uma maneira mais simples de programar histórias interativas do que as linguagens de programação convencionais oferecem. Esta tarefa também é facilitada pela integração nativa que o Scratch provê entre imagem, áudio e animações. O segundo componente do nosso ambiente tecnológico é o framework ReactIVision [42], que oferece o rastreamento de códigos fiduciais anexados a objetos físicos e o desenvolvimento de interfaces tangíveis baseadas em mesas. Foi por causa
dessas duas funcionalidades que o ReactTIVision foi escolhido. Dado que construir interfaces tangíveis é uma tarefa com muitos desafios \[49\], ter um framework que facilita esta tarefa foi essencial para nosso protótipo. O terceiro e último componente foi batizado de “TUI2Scratch”, e trata-se do software que desenvolvemos para fazer a interface entre o Scratch e o ReactTIVision. Integrar estes dois elementos foi essencial para criar um ambiente tecnológico que une as inúmeras possibilidades da programação com Scratch à motivação e à facilidade que as interfaces tangíveis proporcionam a seus usuários.

Figura 5.1: Visão geral do sistema TUI2Scratch

A Figura 5.1 mostra uma visão geral de como o TUI2Scratch interage com outros softwares e tecnologias. É importante notar que a comunicação entre o ReactTIVision e o TUI2Scratch é unidirecional. As informações enviadas pelo ReactTIVision são a respeito dos fiduciais colocados na mesa, como sua posição nos eixos X e Y, e o seu ângulo rotacional. Desta forma, sempre que o usuário move ou gira os objetos físicos sobre a mesa, o ReactTIVision informa essas mudanças ao TUI2Scratch. Este, então, repassa essas informações ao Scratch, que executa as ações adequadas, conforme indicado pelo algoritmo que foi programado nele. Além disso, o Scratch também pode enviar requisições ao TUI2Scratch, como, por exemplo, para converter texto em síntese de voz (áudio). No protótipo utilizado neste estudo de caso, é possível fazer essa conversão para textos em Português, Inglês ou Espanhol. Uma funcionalidade do TUI2Scratch que não foi explorada neste estudo de caso, mas que merece menção é que ele faz a interface entre dispositivos móveis (iOS ou Android) e o Scratch 1.4. Isto permite que, por exemplo, enquanto alguns alunos brincam com a interface tangível, outros alunos ou o professor alterem a programação da história por meio de seus smartphones ou tablets.

A Figura 5.2, por sua vez, esquematiza uma interface tangível baseada em mesa, conforme foi utilizado neste estudo de caso. Em essência, para formar a mesa, uma superfície retangular de acrílico transparente teve suas extremidades colocadas em dois apoios. No chão, debaixo desta mesa e apontando para o acrílico, foi colocada uma câmera comum (webcam) que conseguia captar toda a superfície transparente visível entre os apoios. Desta forma, objetos colocados no acrílico são captados pela câmera. Entretanto, para que o sistema funcione, é necessário que o objeto possua um código fiducial colado nele, e que este código esteja virado para a câmera. Códigos fiduciais nada mais são do que desenhos em preto e branco que carregam informações, semelhante a
um código de barras. A diferença é que os fiduciais, devido ao seu formato, conseguem fornecer informações sobre posicionamento e rotação. Um exemplo de código fiducial está na Figura 5.1 acima do nome “ReactIVision”.

O benefício do TUI2Scratch é que ele possibilita que uma pessoa crie o algoritmo para uma narrativa interativa, o codifique em Scratch e disponibilize o resultado final para que outras pessoas interajam com a história por meio de objetos tangíveis. Por exemplo, neste estudo de caso um pesquisador escreveu uma versão simplificada do conto “Chapeuzinho Vermelho”, pensando em possíveis elementos que poderiam ser mudados, como quem vai visitar quem (em vez de chapeuzinho vai visitar vovô), ou o que essa pessoa carrega (no lugar de uma cesta de doces). Ao passar esta versão do conto para o código em Scratch, esses elementos da narrativa foram deixados como variáveis a serem definidas por quem estivesse interagindo com a mesa. Para isto, foi selecionado um conjunto de códigos fiduciais disponibilizados pelo projeto ReactIVision. A cada um dos fiduciais escolhidos foi associada uma das variáveis do código Scratch, por meio do TUI2Scratch. Além disso, os fiduciais foram impressos e colados, cada um, em apenas uma das faces de um cartão quadrado de cartolina. Na outra face de cada cartão, foi colada uma imagem que representa o elemento do conto ao qual o fiducial foi associado. Assim, se, por exemplo, alguém coloca sobre o acrílico o cartão com a imagem da personagem Chapeuzinho Vermelho virada para cima, a câmera capta o seu código fiducial e o sistema TUI2Scratch reconhece o elemento da história associado àquele código. Ademais, além dos elementos de história também foram criados cartões para comandos como iniciar a narrativa, pausar, retornar e terminar.

Portanto, para o usuário, a mecânica básica do conto interativo utilizado neste estudo de caso é a seguinte. Primeiro, o usuário coloca sobre a mesa o cartão com comando de iniciar a história. O sistema então exibe (neste caso, por meio do projetor da Figura 5.2) o que foi programado por meio do Scratch: a narração do conto por uma voz sintetizada e imagens animadas representando o que o narrador está contando. Isto acontece até que a história atinja um ponto em que o usuário pode fazer uma escolha, dizendo qual elemento...
CAPÍTULO 5. MANIPULANDO HISTÓRIAS

da narrativa ele deseja inserir, por meio dos cartões disponíveis. Por exemplo, o narrador diz: "Era uma vez um(a)..." e pede um personagem. O usuário então escolhe um dos cinco cartões de personagem disponíveis: menina, vovó, mãe, lobo ou lenhador. Depois que o usuário coloca o cartão escolhido sobre a mesa, o narrador prossegue com a história, continuando a fornecer escolhas ao usuário conforme programado no Scratch até chegar ao final da história ou até o usuário usar o comando de parar. Todo o ambiente tecnológico aqui descrito representa o primeiro passo em direção a um sistema que objetiva ajudar professores e alunos a criarem suas próprias histórias, por meio da programação com Scratch, e as façam interativas por interfaces tangíveis. Assim, ao agregar novas possibilidades de interação ao Scratch, como o TUI e a síntese de voz, o TUI2Scratch aumenta as possibilidades de criação desse software que já possui muitas aplicações educacionais.

Futuramente, espera-se que, por exemplo, alunos mais velhos crie suas narrativas interativas com o Scratch e alunos mais jovens brinquem com elas, usando objetos tangíveis. Isto abre também a possibilidade de se criar na escola bibliotecas de narrativas digitais, nas quais alunos poderão interagir com trabalhos de outros alunos. Nesses casos, as histórias interativas poderiam ser não apenas adaptações de contos de fadas, mas também apresentações sintéticas de conteúdos educacionais, ou pontos de vista pessoais de cada aluno sobre determinado assunto visto em sala de aula.

5.3.3 Metodologia

Durante a oficina semio-participativa na qual este estudo de caso foi conduzido, a seguinte metodologia foi adotada. Primeiramente, foram apresentados a todos os participantes (crianças e professores) os conceitos de TUI e as possibilidades de criação que as interfaces tangíveis trazem se aliadas ao software Scratch, com o qual a comunidade escolar presente na oficina já estava familiarizada. Em seguida, foi apresentado o conjunto de artefatos tecnológicos que seriam utilizados na atividade prática, conforme esquematizado na Figura 5.2. Depois que o funcionamento da mesa foi explicado de maneira informal, foi mostrado um resumo do conto "Chapeuzinho Vermelho". Este resumo incluiu uma representação pictórica dos principais elementos dessa história: os personagens, objetos de interesse e ambientes. Depois, foi explicado que, por meio da interface tangível da mesa, seria possível um participante criar a sua própria versão daquela história, alterando alguns desses elementos. Então, as crianças foram convidadas a interagir com o cenário construído, sendo que logo de início várias se voluntariaram para participar. Cada criança voluntária, então, ficou à frente da mesa e do telão no qual a história interativa estava sendo projetada. Ao lado, estavam todos os cartões disponíveis, separados por tipo de elemento (personagens, objetos, ambientes ou comandos). Iniciada a narrativa, nos momentos de decisão um pesquisador orientava a criança sobre quais cartões poderiam ser utilizados naquele momento para alterar a história. Depois das primeiras crianças serem chamadas individualmente, todas as demais foram convidadas a formar uma fila para interagir com a mesa. Nesse momento, enquanto algumas interagiam com a história, outras que acompanhavam pelo telão, comentavam e propunham ideias (ver Figura 5.3).

Todas as etapas descritas anteriormente foram registradas por fotos, e por um vídeo disponível no Youtube e intitulado “15ª Oficina Sémio Participativa do Projeto XO”. Além
Figura 5.3: (a) Cartões com códigos fiduciais; (b) Participantes da oficina; (c) Garoto interagindo com a mesa; (d) Mesa da interface tangível

disso, três pesquisadores realizaram observações e participaram das atividades orientando as crianças e coletando suas impressões sobre a experiência com a mesa.

É importante destacar que na oficina semi-participativa estavam presentes de 20 a 30 professores do ensino fundamental. Também contamos com a presença de cerca de 50 crianças, de faixa etária entre 7 e 12 anos, da 1ª a 4ª série do ensino fundamental. É importante ressaltar que a escola em questão localiza-se em uma comunidade de baixa renda do município de Campinas; portanto, grande parte dessas crianças não tem acesso à tecnologia fora da escola e, em muitos casos, enfrentam sérios problemas familiares e sociais.

5.4 Resultados e Discussão

As crianças que interagiram com a mesa mostraram-se empolgadas e motivadas com aquela tecnologia. Além de a fila para participar da brincadeira ficar bem longa, muitas crianças queriam interagir mais de uma vez. Ademais, o tempo da oficina não foi suficiente para atender a toda a demanda das crianças. Essa reação positiva a um primeiro protótipo de tecnologia com TUI e narrativas nos incentivou a persistir neste caminho e a continuar evoluindo o protótipo. Durante o estudo de caso, também foi possível observar o aspecto da acessibilidade e da inclusão neste trabalho, quando uma criança com defici-
ência mental interagiu com a mesa. Apesar das dificuldades motoras e de comunicação, além de conseguir criar sua própria versão da história essa criança também expressou alegria e satisfação em interagir com a tecnologia apresentada.

Outro momento que se destacou durante a oficina foi quando duas crianças trabalharam juntas na criação de sua versão de “Chapeuzinho Vermelho”. Foi interessante como elas, espontaneamente, se revezaram na colocação dos cartões, sempre se respeitando. Uma não tentou “atropelar” a vez da outra; elas discutiam amigavelmente qual cartão escolher. Isto explicitou o aspecto de colaboração, que é uma das características que almejamos alcançar em nosso cenário. O fato de a colaboração ter surgido naturalmente, sem qualquer sugestão, reforça nossa hipótese sobre o valor educacional da junção de interfaces tangíveis e narrativas.

Em termos de narrativas interativas em contexto educacional, podemos analisar o ambiente tecnológico do estudo de caso aqui apresentado dentro do framework BME *(Be ginning, Midd le and End, ou Começo, Meio e Fim)* [47]. Este tem como objetivo principal ajudar professores e alunos a criarem seus próprios jogos educacionais, baseados em uma estrutura narrativa de três atos: começo, meio e fim. Em primeiro lugar, os elementos de narrativa presentes na adaptação digital ao conto “Chapeuzinho Vermelho” condizem com os símbolos que o BME pede: personagens, ambientes, objetos importantes, eventos e motivações. Esses elementos contextualizam a narrativa e, no contexto de jogos, podem abrir caminhos para a interação com o jogador. No estudo de caso apresentado neste artigo, isto se evidenciou pelo fato de serem esses elementos que permitiram às crianças criarem a sua própria versão do conto “Chapeuzinho Vermelho”. Outro conceito do framework BME que se mostrou presente no estudo de caso, de maneira mais sutil, foi a estruturação da narrativa em forma de micro-histórias. Isto apareceu na maneira como os eventos do conto original foram selecionados e ordenados. Neste âmbito também surgiu a presença dos elementos de interação, visto que em determinados momentos “passava-se a palavra” para as crianças interagirem com a história e apropriarem-se dela. Claro que no protótipo apresentado no estudo de caso não havia grande flexibilidade em termos da ordem das micro-histórias, ou dos elementos de interação. Ainda assim, os traços do framework BME estão presentes, indicando que se o protótipo for evoluído para atender ainda mais as recomendações do framework, ele poderá possibilitar a criação de narrativas interativas cada vez mais robustas e divertidas.

5.5 Conclusões

Este estudo tentou responder a seguinte pergunta de pesquisa: “como as tecnologias atuais, especialmente as TUIs, podem ser um aliado para o processo educativo de contar histórias?”. Foi realizada uma revisão sistemática da literatura que buscou pela resposta a essa pergunta; resultados apontaram para a falta de um ambiente que reúna, ao mesmo tempo, interfaces tangíveis e criação de histórias com alta flexibilidade e autonomia. Estes aspectos, acreditamos, constituem um dos grandes diferenciais da proposta apresentada neste artigo. Além de utilizar tecnologias abertas, como o *RaceTIVision e o Scratch*, a nossa proposta também permite que pessoas com conhecimento prévio na linguagem de
programação visual Scratch consigam codificar suas próprias narrativas. Assim, permitemos que esses usuários não só consumam conteúdos criados por outros, mas também criem os seus próprios, da maneira que desejarem. Em geral, os trabalhos que analisamos impõem um modelo à narrativa, restringindo as possibilidades de criação de histórias. Esta autonomia é essencial no ambiente educacional. Isto se dá porque, para os alunos, o poder da autoria traz mais motivação e engajamento; para os professores, além da motivação há também o fator de conforto com o conteúdo sendo utilizado em sala de aula.

Ademais, a proposta apresentada neste artigo também abre possibilidades de extensão a diversos modos ou níveis de interação. Um primeiro modo, que requer pouca interação do usuário, é ideal para a introdução das crianças menores (eg: 4-7 anos de idade) ao cenário, aos conceitos ou histórias anteriormente desenhadas. Num segundo modo, por exemplo, pode haver um trabalho mais colaborativo dos alunos (o ambiente pode exigir dois papéis: um “animador e contador de histórias ao vivo” e um “especialista em áudio e efeitos visuais”, desempenhados pelos alunos). Um terceiro modo pode requerer maior habilidade, combinando o segundo modo mais a capacidade de “programar” ou definir ações específicas no âmbito da presença de um evento realizado por um dos dois papéis.

Por fim, analisando os resultados do estudo exploratório concluímos que o cenário construído com interfaces tangíveis e narrativas mostrou-se viável em termos de custo dos equipamentos e do envolvimento das crianças. Em especial, este último aspecto foi um grande indício de que o protótipo inicial utilizado no estudo de caso foi um bom primeiro passo na direção de um ambiente flexível e engajador para a criação de histórias em contexto educacional. Portanto, o cenário aqui apresentado mostra indícios de que é possível e que será de grande valia evoluir o ambiente tecnológico para que ele ofereça mais possibilidades e formas de interação que potencializem o processo de criação e construção colaborativa das crianças no espaço educacional.
Chapter 6

A TUI-Based Storytelling for Promoting Inclusion in the Preschool Classroom - Preliminary Results on Acceptance

6.1 Introduction

Using Information and Communication Technology (ICT) in the classroom can be beneficial for education due to motivational factors [18]. Tangible User Interfaces (TUI), which “augment the real physical world by coupling digital information to everyday physical objects and environments” [37], have shown an even stronger effect on engagement and motivation than traditional GUI-based systems, and thus have the potential to promote learning [78].

Challenges of using ICT in the classroom include distraction of students, acceptance by teachers, and inclusion of students with special needs. Regarding distraction, an advantage of a special-purpose TUI over general purpose ICT such as laptops, tablets or smartphones is that special-purpose TUI seems to have a lower potential to distract students from classroom activities due to a lack of applications for browsing, chatting, etc.

Regarding teacher acceptance, when teachers feel that they do not dominate the technology or that their students are more proficient than themselves, teachers are often reluctant to incorporate technology into teaching activities [13]. As to inclusive education, students with certain special needs require assistive technology to be able to use many types of software and hardware.

In this paper we present and describe a storytelling application that uses the TUI paradigm and that can be used in different school subjects. Our application has been designed using a socially aware approach [3], [6], and addresses the challenges of distraction, acceptance and inclusion. Regarding distraction and acceptance, storytelling is seen as favorable to learning by theories such as constructionism [21]. Mediating storytelling with TUI has been described as “a powerful way to supply the storytelling process with affor-
dances and intuition”, promoting engagement and minimizing pre-liminary training and learning [72]. Inclusive aspects are treated by the universal design paradigm we considered in the design solution.

In this work, results of the acceptance for the designed storytelling application are discussed based on pilot and actual case studies; acceptance is investigated using as instrument the Self-Assessment Manikin (SAM) form [12]. The paper is structured as follows: Section 2 describes the context and method used in the pilot and in the case study, Section 3 presents the results of the two studies, Section 4 discusses the results, Section 5 concludes.

6.2 The Pilot and Case Studies: Context and Method

The work reported in this paper is based on one pilot study and one case study. The pilot study was conducted with seven Human-computer Interaction (HCI) specialists from our research team called Human-Digital Artifact Interaction Group1 — InterHAD, and the case study involved eighteen teachers and twenty students of the Children Living Center2 — CECI, a day care center for children from 6 months to 6 years of age, responsible for children’s care and education during the workday or study day of their parents at the University of Campinas (UNICAMP) in São Paulo, Brazil.

6.2.1 The TUI Scenario

Fig. 6.1 shows an outline of the system. The main input components are the RFID reader (Selection Controls) and the webcam with microphone (Creation Devices). Output components are the projector/screen and the speakers (Output Devices). The computer/laptop stays visually “hidden” in order to reduce the perceived complexity of the system. The use of RFID technology is related to accessibility considerations similarly to the way considered by Pastel [53].

This system configuration is called “Interaction mode 1: Presenter” and is one of four interaction modes proposed in the system. The four modes comprise “simple presentation with/without sound” (Interaction mode 1: Presenter), “multimedia presentation with animations and audio” (Interaction mode 2: Storytelling), “scripted multimedia presentation” (Interaction mode 3: Scriptwriter), and a mode that uses scripted multimedia presentation with audience-sensor feedback (Interaction mode 4: Scriptwriter Plus). The four interaction modes are intended to be used by people of different age groups, e.g. children and teachers. In this paper we focus on the presentation mode which has been designed especially for users with low technical skills such as young children from 4 years of age.

Regarding inclusion, the application uses an RFID reader and a webcam as input and a projector as output. Physical objects of interaction include RFID cards that can be customized and labeled by the students as well as any object (sketches, drawings, toys,
Figure 6.1: Components of the system – Interaction mode 1: Presenter

etc.) that can be captured by the webcam. RFID cards might be beneficial to accessibility by enabling a more tangible and less abstract interface [55].

6.2.2 Participants

Fig. 6.2 shows the pilot study with two master students and five doctoral students in computer science, all with thesis projects in the area of HCI and all with intermediate to advanced knowledge regarding accessibility, usability and related topics.

Figure 6.2: Research team from Human-Digital Artifact Interaction Group (InterHAD)

Fig. 6.3 shows the pilot study conducted with teachers of the CECI center, who are working with children between four and five years of age, including a child with special needs. This child requires continuous assistance from an adult, for example regarding locomotion, fine motor movements, and especially regarding communication, because her speaking ability is very limited. The proposed system was used by some of these students (20 in total), including students with special needs sharing the same environment and activities. Although detailed analysis of the activity with the students is out of the scope of this paper, the activities conducted by the teachers presuppose their prospective use with the children; thus, the scope of this article is limited to the InterHAD group evaluation regarding the proposed system and the teachers activities in their preparation for the system use in the CECI center.
CHAPTER 6. A TUI-BASED STORYTELLING FOR PROMOTING INCLUSION

Figure 6.3: Teachers in activities at the Children Living Center – CECI of UNICAMP

Just to illustrate what has happened with the students, we want to share two situations: the first is related to a little girl (almost 4 years) who, according to their teachers, is shy. However, she discussed the part of the story she wanted to create with her classmates and her teacher, designed the image that represents the part of the story using crayons, used the system to insert her drawing (as will be described later), and, most importantly, told her part of the story to the whole group. The second situation happened with a girl who has cerebral palsy which impedes speech and body movement. In order to tell her part of the story, she accepted help from her teacher for making her own drawing and using the system. When it came to telling her story, she made a great effort to do it. During the activity, she expressed happiness and desire for communication. According to her teachers, the final storytelling part was very difficult for her, especially in the presence of a group of strangers as we were at that moment.

6.2.3 Method

In both studies, the participants were divided into small groups of three or four and given the task to tell a story through a sequence of scenes (three or four) created by them using different physical resources (markers, colored pencils, clay, paper sheets ...) (Fig. 6.4a), and capturing them through the system (Fig. 6.4b).

Figure 6.4: Example of a created scene and the system capture process

To complete the task, the participants were asked to execute four sequential activities (Fig. 6.5): define the general topic to be presented with their respective subtopics; create, with different physical resources, each subtopic as if it were a slide; transfer these slides to RFID cards through the system; and finally tell the story for the whole group.
Finally, after completing all activities, we asked the participants to fill in a form for measuring the pleasure, arousal, and dominance dimensions of their experience for each sequential activity. The form is a non-verbal pictorial assessment technique, called Self-Assessment Manikin (SAM; Bradley and Peter, 1994) [12].

Fig. 6.6 shows some participants completing the SAM form and the options that the form offers for measuring pleasure, arousal, and dominance.
6.2.4 Materials and Procedure

The technology involved in the designed scenario occupies several different layouts, maintaining the principle of invisibility in terms of not being intrusive to the process of storytelling.

In some installations, the computer is physically close to the reader and therefore visible to users Fig. 6.7(a), however, the interaction is done through the RFID reader and the webcam, and not with the keyboard or the mouse, so the user is not distracted by the presence of the computer. In other installations, the computer is literally invisible, i.e. hidden for example under a table or in a grocery bag (Fig. 6.7(b)). In still other installations, we made an effort to hide other devices such as a monitor (Fig. 6.7(c)), or the camera within a lamp shade, (Figs. 6.7(a, b)). The intention behind these efforts is to make story and storytelling the focus, placing the technology in the backstage.

Fig. 6.8 shows how to interact with the system in mode 1. The user has a set of RFID cards with associated commands, such as: create a new slide; assign a narration or sound effect to a slide; delete the contents of a card. An example of creating a new slide can be seen in Fig. 6.8. In the first step (Fig. 6.8(a)), the user brings the card with the command to create a slide close to the reader. This action causes the system to turn on the webcam. Then the user places previously created content (e.g. a drawing or small figurines) under the camera (Fig. 6.8(b)). Subsequently (Fig. 6.8(c)), the user brings a card without an associated content close to the reader, and the system takes a picture and assigns the image to the card. Finally (Fig. 6.8(d)), when the user brings this new card
close to the reader, the system displays the picture taken and plays an associated sound, if it has one.

To tell a story in interaction mode 1, it is required to assign different RFID cards to different moments of the history (for example to scenes for the beginning, the middle, and the end of the story) and to use these cards to actually tell the story. The narration can be performed at the same moment of telling the story, or recorded and associated to each card of the scenes.

6.3 Results

In this section we present the results of the participants’ emotional self-assessment according to the SAM. Fig. 6.9 shows the numerical values we assigned to the possible values of the SAM scales.

![Figure 6.9: Self-Assessment Manikin (SAM)](image)

For each activity (Define, Create, Transfer, Tell) we determined the frequencies and the mode for each SAM dimension \((P)leasure, (A)rrousal, (D)ominance\). In this step, we noticed that not all participants completed the SAM form. Tables 6.1 and 6.2 show the result of this step.

The question that we wanted to answer is or not here is a statistically significant difference among the four activities (Define, Create, Transfer, and Tell) regarding each of the three dimensions measured with SAM, that is, whether the \((P)leasure, (A)rrousal\) and \((D)ominance\) remain similar or change during the four activities previously mentioned.

To answer this question, knowing that not all participants completed the form, we applied a variance analysis that supports different sample sizes and that does not assume restrictions on the data, e.g. normality. Specifically, we used the Kruskal–Wallis Test on the original data set for each dimension resulting in three tests.

If applying the Kruskal–Wallis Test on a certain dimension yields a p-value less than 5%, then there is one or more activities that evoke different level of \((P)leasure, (A)rrousal\) or \((D)ominance\) in the participants. Only in this case, we proceed to apply a multi-
CHAPTER 6. A TUI-BASED STORYTELLING FOR PROMOTING INCLUSION 93

Scale	Define	Create	Transfer	Tell								
	(P)	(A)	(D)	(P)	(A)	(D)	(P)	(A)	(D)			
8	1	1	1	4	5	2	1	1	2	1	3	
7	1	0	3	1	0	2	2	1	0	2	3	1
6	3	3	2	2	1	1	2	1	4	0	0	2
5	0	1	1	0	1	2	1	1	0	1	1	0
4	2	0	0	0	0	0	1	1	2	2	1	0
3	0	0	0	0	0	0	0	0	0	0	1	1
2	0	2	0	0	0	0	0	2	1	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
MODE	6	6	7	8	8	7	6	2	6	4	7	8

Table 6.1: Frequency table of the InterHAD group

ple range test (Tukey’s Honestly Significant Difference HSD Test) to determine which activities elicit similar emotions among themselves and which not.

As mentioned in Section 2, this study is based on one pilot study and one case study. In the following, we will present the results obtained in the interHAD group.

It is possible to observe in Table 6.1 that smaller modes occur for (A)rousal and (P)leasure in the activities of Transfer and Tell, respectively. However, looking at Fig. 6.10, we can see that justly these two dimensions present greater variability (larger box).

The (D)ominance of the activity “Define” is the one with the least variability (smaller box), i.e., this is the point at which the members of the InterHAD group agreed more.

Based on the Kruskal–Wallis Test, it is possible to conclude that for the InterHAD group there was no statistically significant difference between the four activities for each of the three SAM dimensions (p-values are presented in the Fig. 6.10 all of them are greater than 0.05). That is, there is no significant difference in the level of emotion that each of the four activities of the SAM dimensions evoked.

Figure 6.10: InterHAD – Box-Whisker Plot and p-value of Kruskal–Wallis Test

The results obtained in the CECI center are presented following the following. In
Table 6.2: Frequency table of the CECI teachers

Scale	Define (P)	Create (P)	Transfer (P)	Tell (P)	Define (A)	Create (A)	Transfer (A)	Tell (A)	Define (D)	Create (D)	Transfer (D)	Tell (D)
8	7	5	0	13	10	4	11	10	5	11	11	2
7	2	4	2	3	4	1	1	4	2	1	1	1
6	4	4	2	1	0	2	3	1	0	4	4	4
5	1	1	1	1	0	0	0	0	2	1	1	0
4	4	2	3	0	1	3	0	0	3	0	0	3
3	0	0	1	0	0	0	0	0	0	0	2	2
2	0	1	3	0	1	0	0	0	1	0	0	1
1	0	0	0	0	0	1	0	0	1	0	0	1
0	0	0	5	0	0	5	0	0	2	0	0	3
MODE	8	8	0	8	8	0	8	8	8	8	8	6

Table 6.2: it is possible to observe that smaller modes occur for (D)ominance in the activities Define and Create. Again, the two dimensions with smaller modes have the greatest variability (smaller box in Fig. 6.11).

There are four combinations of dimension and activity where teachers had a higher level of agreement, namely regarding (P)leasure and (A)rousal to Create and Transfer content (smaller boxes in Fig. 6.11).

Finally, it is also possible to observe in Fig. 6.11 that the teachers did not experience the same (P)leasure and (A)rousal along the four activities. Specifically, we found two similar activities for the dimensions (P)leasure and (A)rousal. In the case of (P)leasure, the first group is formed by the Define activity and the second group is formed by Create, Tell and Transfer. Therefore, it is possible to conclude that the level of (P)leasure evoked during the Define activity is different than the level of (P)leasure evoked during the other activities. Similarly, in terms of (A)rousal, it is possible to observe two groups. The first is formed by the Create and Define activities and the second is formed by Create, Tell and Transfer. Therefore, there exists a difference in terms of (A)rousal when comparing elements of these two groups with exception of the Create activity that belongs to the two groups.

6.4 Summary and Discussion

The discussion is divided into two parts, the first dealing with InterHAD group and the second related to the CECI center. For all four activities in the InterHAD group (Fig. 6.10), we see a greater variability in the dimension (P)leasure and (A)rousal, and a greater degree of agreement in relation to (D)ominance. When analyzing the activities separately, we can see that variability in the response increases with respect to each of the activities in the following order: Create, Define, Tell and Transfer.
CHAPTER 6. A TUI-BASED STORYTELLING FOR PROMOTING INCLUSION

One possible explanation for the \((D) \)ominance dimension may be related to the fact that this group of participants are expert users of technology. Regarding the other two dimensions, the explanation may be related to the fact that we presented all possible interaction modes to this group before conducting the activities. This a priori knowledge could have affected \((A) \)rousal and \((P) \)leasure since interaction modes two to four are more advanced and interactive.

With the group of teachers in the CECI center (Fig. 6.11), we have a slightly different behavior. The greatest variability is in \((D) \)ominance and \((P) \)leasure, leaving \((A) \)rousal as the dimension where the teachers have higher level of agreement. Analyzing the activities separately, we observed that the variability increased in the activities following the order Transfer, Create, Tell and Define.

A similar explanation can be given for the teachers, i.e. assuming more heterogeneous skill levels regarding technology use compared to InterHAD group, the dimension of \((D) \)ominance has greater variability. The interaction mode 1 was a novelty for teachers, and they did not know the most advanced interaction modes of the system, which could explain the results obtained in the \((P) \)leasure and \((A) \)rousal dimensions. The Define activity might evoke different levels of \((P) \)leasure and \((A) \)rousal among teachers, due to the challenge of selecting a unique idea among several proposals. Some people might experience different degrees of pleasure and arousal when working on their own ideas than when working on the ideas of others.

Besides all this, we observed a real desire among the teachers to use the system permanently in the institution with their students. They explicitly expressed the potential of the tool for activities in the context of an inclusive school, and highlighted some elements such as: allow to combine different types of designs and storytelling by the students with varying degrees of skill and physical needs; the use of technology selected for reasons of inclusion, for example the RFID reader that does not require fine motor skills; the “invisibility” of technology, leaving the focus on the story and not the devices; and allow combining of images and sounds created by the students themselves, thus creating a greater degree of motivation among students, and freedom to work all kinds of themes in the stories.

![Figure 6.11: CECI – Box-Whisker Plot and p-value of Kruskal-Wallis Test](image)

Figure 6.11: CECI – Box-Whisker Plot and p-value of Kruskal-Wallis Test
6.5 Conclusion

In this paper we presented a storytelling system that is based on the TUI paradigm and that targets the promotion of inclusion of preschool children in the classroom. The system supports different storytelling interaction modes that enable various levels of complexity of the storytelling process. An important aspect of such a system is teacher's acceptance.

As a preliminary approach to acceptance, we presented the results of a pilot study and a case study and analyzed the results of the study participants' self-reported levels of pleasure, arousal and dominance, using the SAM instrument. The pilot study among graduate students with an HCI research focus established a baseline and showed that the system potentially has a high acceptance rate. Although not explicitly investigated, this study also showed the system's potential for inclusion, since we received positive comments from the (universal) accessibility specialists among the participants.

The actual case study was conducted with 18 teachers of a day care center who teach children between four and five years, including children with special needs. Results provided evidence of a high acceptance rate among these teachers. The participants reported high levels of pleasure and arousal. We detected greater variance in the Dominance dimension. Although we do not see this variance as critical, the Dominance dimension will require more attention during future activities using the more complex interaction modes of the system. We detected differences in Pleasure and Arousal levels along the four activities within the system (Define, Create, Transfer and Tell). Future work includes establishing and testing hypotheses for these differences, as well as their quantification, relating them to the system design elements.

Other future work includes the use of the additional interaction modes and case studies involving preschool children in order to evaluate the acceptance of the more complex modes of storytelling, the acceptance by preschool children (detailed analysis of the activity with the students will be reported in a future article), and more aspects related to inclusion. We will furthermore perform an analysis using different data sources and instruments such as the principles of Design for Affectability [32].
Chapter 7

A socio-constructionist environment to create stories using tangible interfaces

7.1 Introduction

Literature has shown diverse benefits of storytelling for children [64], and its importance as an authentic and personally relevant activity [21]. These qualities create a relationship between storytelling and Seymour Papert’s Constructionism ideas [54], making it ideal for promoting knowledge construction.

We understand as constructionist an environment aligned to the Constructionism theory developed by Seymour Papert. A constructionist environment uses the capacity of children for creation as a strategy for learning; it encourages the user to be active, and provide sufficient freedom to the user so that s/he can create concrete or conceptual objects that are of personal interest to them. This type of environment can be used individually or jointly with others (partners). Constructionist environments that favor working together, sharing a common interest and knowledge construction with others are the environments that we name socio-constructionists.

Tangible user interfaces (TUI) augment the real physical world by coupling digital information to everyday physical objects and environments [37]. By using a tangible interface children can manipulate digital information through the interaction with concrete physical objects.

Reviewing the literature [27] and [7], specifically ACM digital libraries, Springer, IEEE, ScienceDirect, we have identified a set of related work. Some projects provide individual experiences on the interaction with the environment (e.g. [40], [86]). In general, the proposals give children freedom to create different elements of the story (e.g. [1], [44], [84]). Some open the possibility of working with partners ([2], [83], [51]), fundamental characteristic to be considered in a socio-constructionist environment. To our knowledge, none of the projects that were identified as related work, especially the socio-constructionists, provides mechanisms for users to program their own interaction events in their own stories.

In this work we have invested research efforts in designing and building a socio-constructionist environment based on tangible user interfaces (TUI), to allow children...
of inclusive school contexts to create, share and tell stories for themselves and collaboratively.

This article presents and discusses some of the main results of the creation of the environment and its use in an educational context. The paper is organized as follows: the next section presents an overall view of CPES: a Collaborative Programmable Environment for Storytelling; the following sections illustrate its use with a case study conducted in a public educational institution, and discuss results; finally we conclude pointing out further aspects to be investigated.

7.2 The proposed environment

The process of narrative construction with CPES involves the following steps (Figure 7.1): First, children (partners) meet to plan the story; in this stage they use the BME Framework (Beginning, Middle and End) \[47\] for defining the moments of the history as well as its components (characters, backgrounds, sounds, etc) and the elements of interaction. Then, in the second step, the children use CPES to create the story elements, to program the interactions and create the story as a product. Finally, in the third step, they use CPES to (re)present the story to others. During this process of telling the story (third step), the children themselves or the audience can generate interactions causing the execution of actions programmed by the children.

![Figure 7.1: General process of narrative construction using CPES](image)

CPES supports four embedded modes of interaction; each mode supports the lower modes, creating a system which starts from a basic configuration (lowest level of interactivity), but at the same time, ideal for the young and for beginners. The following modes of interaction, for example Modes 2, 3 and 4, increase gradually the levels of interactivity, also requiring increased skill degrees of the user. In what follows, we briefly present each Mode of the environment and its main features. These modes are intended to cover a large diversity of users, especially important in inclusive schools.

In Mode 1 - Presenter[1], the users can create stories / narratives to present them as a slideshow sequence; the user can add sounds and descriptions to each one of the slides. In Mode 2 - Storytelling, the stories can be created in real time as they manipulate

\[1\] Mode 1 was first presented in [29]
the elements of the story, or they may be planned, for example, following a dramatic structure (Framework BME). In any case, the user has various system resources to create elements of her stories such as: characters, sound effects, scenes, and animations of the characters at the time she is telling the story. The Mode 3: Scriptwriter is, in fact, the combination of Mode 2 – Storytelling, with the ability to program commands on CPES to be executed in response to some external action in the environment. The last mode, Mode 4 - Scriptwriter Plus, increases the use of sensors on the audience to use their reactions as a trigger to execute commands on CPES.

The fullest configuration of the CPES environment can be seen in Figure 7.2, instantiated in Figure 7.3. Figure 7.2 shows a number of elements with well-defined functions; most of these elements groups physical devices; one of the elements is the processing unit (computer) with its respective control program; this last element is the “Software (CPES)”. The devices displayed inside the boxes are just examples that can be changed when the model is instantiated. The physical devices used to instantiate the environment model are shown in Figure 7.3. Note that this particular set of physical devices combined with the control program allows having a socio-constructionist environment for constructing narratives. That is, the individual devices do not create the environment, neither the control program, in isolation. It is necessary to combine and orchestrate the parts, as indicated in the configuration illustrated by Figure 7.2, to constitute the CPES environment.

![Figure 7.2: CPES Model in its fullest configuration](image-url)

There are different reasons for the selection and articulation of these particular devices. These reasons are related to some design rationale we established for this environment. Accessibility, important requirement in the context of inclusive schools, which require the use by all children, including those with physical or sensory disabilities; low cost, important for schools with limited financial resources; and our effort to make the technology “invisible”, important for making the creations of the users the focus of attention, not the
For a better understanding of Figures 7.2 and 7.3 we present a brief description of the functions of each of the elements of Figure 7.2 and its relationship with the selected physical devices shown in Figure 7.3.

Selection controls: These controls allow the user to send commands to the control software; 41 commands from CPES system are related to functionalities to create stories through the system and for its administration, besides a number of new commands created by users to the control program. Commands are related to the characters (create, view, resize, rotate, etc.), the scenarios (create, view, associate narratives, etc.), the stories (create, tell a story, etc.), the system administration (copying a character, deleting history, recovering a scenario, etc.), among others. To this instance of CPES, the commands are associated with RFID cards (Figure 7.3c) and they are sent to the control program via the RFID reader (Figure 7.3b).

![Figure 7.3: An Instance of CPES](image)

Figure 7.4 illustrates two examples of the benefits of using this RFID technology from the point of view of accessibility. Figure 7.4 shows two girls (the first very young, and the second with cerebral palsy) interacting via the RFID reader using some RFID cards.

The RFID cards can be used with the metaphor of “Deck of cards”, where users can literally mix or shuffle the cards to create new stories. Beyond the metaphor, there are several reasons to support the decision to use RFID cards. The first is associated with the color; the cards are completely white, allowing full customization with drawings of children, and/or embossed marks, especially useful for people with low vision. The second reason, and perhaps the most important, is that to use a card we only need to put it near the reader without even touching the reader. In this way, people with low vision...
or fine motor problems are able to participate in the narrative construction using CPES.

Besides the two reasons mentioned before, the reader has another feature important from the accessibility point of view; it beeps and flashes a light every time the reader makes a correct reading of a card. This element is an important feedback for all, especially both users, the visually impaired and those with hearing problems.

Output Devices: These devices are responsible for sending visual stimuli to the user (Figure 7.3 - LCD or projector) as scenarios, characters, animations, and auditory stimuli (Figure 7.3 - Speakerphone) as narration and sound effects. Note that the LCD monitor is behind a decoration in the form of a theater with the intention of literally putting the technology in a second plane.

Creation devices: These devices are those that allow the user to create new scenarios, characters, sound effects or voiceovers.

The devices available for creation are the camera and microphone (Figure 7.3a). In addition to these two elements there are devices that provide a green background to handle the size of the real characters, reducing them or increasing them, making them compatible with a toy (Figure 7.3g) or a child (Figure 7.3h). The green color is a technological resource to capture the figure that is automatically deleted by the control program (Chroma key special effects technique).

Figure 7.5 shows examples of creating characters. In this case, smaller characters as the drawings of “Angry Bird” (Figures 7.5c and 7.5d) prepared by the same child and the use of toys as the Tasmanian devil “Taz” (Figure 7.3l) as characters. In addition, there is the case of the two children converted to characters of the story (Figures 7.5a-d).

Animation / Narration controls: These controls allow the user to move the characters in the story by manipulating physical objects (Figures 7.3l and 7.6) under the...
camera (Figure 7.3a – lamp with built-in camera). The objects are identified by special marks (fiducial marks) that are recognized by the camera and translated into movement commands to the characters of the story. The idea behind using fiducial marks is to use a computer vision framework called ReacTVision, which facilitates the tracking of these marks (position, tilt) with a camera. The camera shall have a built-in microphone to capture the telling of the story.

Figure 7.5: Creating characters

Figure 7.6: Animating the character in CPES

Figure 7.6 shows two accessibility features that the animation controls should have. The first feature is a series of embossed marks, which are especially useful for visually impaired users, and the second characteristic refers to the minimum height of the base so that the user can perceive the limits of the characters interaction space.

Programming Events: Users can program events through the selection and animation controls. Events in this context should be understood as user actions that may
trigger a control program’s response. For example, the collision of a character with an edge of the screen, the combination of a particular character with a background image, the collision of two characters while moving around the stage, or movement of a character.

These events have a motive from the perspective of creating stories. The first event, the collision of a character with an edge of the screen is useful to create a navigation between the different scenarios of a story. The second event, the combination character and background, is useful to keep the context of the clothes / accessories of characters with respect to the scene (background image). The collision between the characters event is useful for creating interactivity in the stories; and finally, the motion event is essential for creating animations in the stories.

In addition to the above, any of these events can be used to perform any number and variety of controls of environment. That is, the collision between the characters can be used as an event, for example, to switch between the scenes of history, instead of using the collision with an edge. It might be used also to enable / disable other events when a character is moved.

Monitoring Sensors: There is a fifth type of event associated with monitoring sensors; in this case it is related to the sound level detected by the microphone (Figure 7.2a) at the time of telling the story. The user can program, for example, a character applaud each time a strong sound is detected. The user has full freedom to use this type of event to schedule the execution of any sequence of commands available at the time of programming.

Any of the five types of events programming task does not require prior knowledge of computer programming, and everything is done through the selection and animation controls. The CPES system (control program) makes it possible.

Just as an example to illustrate the simplest operation, let’s see how to create a slide for a story. In the first step, the user brings the card with the command to create a background close to the reader (to be read). This action causes the system to turn on the webcam. Then the user locate the image/object under the camera (it can be a physical construction, such as a scene created with clay). Subsequently, the user brings a card without an associated content close to the reader, and the system takes a picture and assigns the image to the card. Finally, when the user brings this new card close to the reader, the system displays the picture taken and plays an associated sound, if it has one.

7.3 Experimenting the environment - A case study

As our design method involves the active participation of different stakeholders, we had a partnership of a school / division of education, the Division of Child and Supplementary Education DEDIC of University of Campinas (UNICAMP) in Brazil, State of São Paulo. The practice of using Modes 1 and 2 of the environment CPES was then conducted in second half of 2014.
7.3.1 Participants

We worked in the educational unit Children Living Center CECI from DEDIC, with twenty children between 4 and 5 years old, and with eighteen teachers between 26 to 50 years old.

7.3.2 Method

Ten (10) workshops were conducted along the semester, with teachers of the educational unit, and with children and their responsible teacher (in some cases there was more than a teacher with children).

All workshops were filmed with the permission of the institution, the teachers, and adults responsible for each child participating in the project. We recorded about 27 hours of video in all the workshops. Despite having authorizations, all images presented in this article have been manipulated to hide the identity of children and at no time the participants are identified. These videos were used to analyze both the environment and the responses of the participants to find demands for improvements and for new functionalities. The films were also used to record spontaneous comments and suggestions from some of the participants.

Besides the films, after each workshop, teachers completed the SAM (Self-Assessment Manikin) instrument [12]. SAM is a non-verbal instrument of self-assessment of emotions, specifically the level of pleasure, arousal and dominance, associated with the affective reaction of a person to a stimulus, in this case, the environment for storytelling.

In some of the workshops with teachers, parents and managerial people, we also worked with artifacts of the semio-participatory model of design [8] (Figure 7.7), to share a contextual view of CPES. We used the Stakeholders Diagram with which the participants identified everyone direct or indirectly involved in the system (Figure 7.7a). With the Evaluation Frame (Figure 7.7b) the participants could anticipate questions / problems of each stakeholder regarding the use of the system and possible solutions. With the Semiotic Ladder (Figure 7.7c) the participants could discuss different views and implications of the system, from the physical world to social world level.

At the end of semester, we asked teachers to anonymously express their level of acceptance of the environment, indicating whether the environment has helped to motivate children to collaborate in the process of creating and telling stories; and whether they consider that the environment favors the process of knowledge building and developing new personal and social skills.

7.3.3 Results

The results reported in this work, are grouped into three parts: the results related to the semio-participatory workshops, a brief description of some stories created by participants and finally the results of the self-assessment instrument (SAM).
7.3.4 The Semio-participatory Workshops: understanding and situating the system

The main stakeholders raised in the workshop as interested parties range from people operating CPES to ordinary members of the school community. With the collaborative construction of the diagram, we seek to make clear the real scope of the project and its importance not only for those directly involved in its operation.

Among the proposals of stakeholders the teachers brought to discussion, one that surprised us was the gardener; the gardener of that semester CECI was an elderly gentleman with great human qualities that would certainly be a source of information for great stories. Other interesting contribution on the part of teachers to the use of the system was other specialists such as the therapeutic clinics. In the CECI the parents participated with their children in some activities, reason for which teachers added to the diagram the Parents as operators of CPES, imagining storytelling activities conducted by the parents and their children.

Once identified the involved people, the group discussed questions and problems that might appear regarding CPES from the point of view of each of those involved parties. Results of this discussion was essential to clarify requirements regarding each of the involved. To illustrate, some raised questions were: How a cultural institution might benefit from CPES? What interest may have the toy industries? How the Parents may take advantage of CPES?

With the Semiotic Ladder (Figure 7.8), the different levels of abstraction of CPES were clarified ranging from the physical level where all necessary devices were explained, to a level of the social world where e.g. collaborative work promoted by CPES was highlighted.

The first three levels of the Semiotic Ladder are directly related to the IT platform necessary for the CPES environment. The other three upper levels are associated with more human-related functions of CPES.
7.3.5 The Teachers Workshops

Figure 7.9 shows some pictures of the three steps of the general process of using CPES (Figure 7.1) by teachers.

Although the teachers were free to use any type of resource that is in the school to create their story elements, all of them chose to use play dough to create the characters, and some elements in the scenarios, combined with drawings / text, and using sheets of paper to delineate the edges of the scene. At the time of using CPES to create the story, some teachers decided to remove the camera from the base (lamp, “Creating Story” in Figure 7.8) to customize their photos. The end result was much better in terms of images, but the comfort of having a fixed camera was lost; this situation was highlighted by them. Something that called our attention was the motivation and creative and proactive behaviour of the teachers.

Figure 7.10 shows scenes (scenarios with characters) of one of the stories created by the teachers. The story follows a structure of beginning, middle and end. The story begins with a little girl in a wheelchair appearing alone in a park. As a ball comes near the wheelchair, she seeks who is the owner of that ball, because she did not want to be alone in the park. Finally, a boy and a girl come looking for the ball, but as they approached, realized that the girl wanted to play, so they decided to play the three together.

At the time of telling the story, the narration was made with live narration (before the teachers learned to associate the narrative to each scene), with active participation of the audience expressing feelings such joy / acceptance, anger / rejection to certain scenes. In short, all the stories created expressed emotions and values in its content, making the audience feel and express their emotions in response.
7.3.6 The Children Workshops

Figure 7.11 shows the three step of the general process of using CPES (Figure 7.1) by children. As we were working with very young children, the strategy used with them was different from that used with the teachers. We previously selected the theme of three classic stories, then children were asked in which of the three stories they wanted to participate. Once the three groups of partners was formed, they had to decide who would be responsible for creating the beginning, the middle and the end of the story, and how they would proceed.

The interesting was not only the fact that each child was able to create her part, and in the end, all have created the story. The remarkable was that all children added new elements to the story; they expressed emotions and created different endings to the classic versions of the stories. This shows clearly, creativity and motivation for their stories.

At the time of creating the story in CPES, we observed that some of the children (those who had already created their stories in CPES) offered spontaneously to explain and collaborate with new groups to help them create the first elements of the stories.

Figure 7.12 shows elements of one of the three stories, the story of “The three little pigs”. When the time came to tell the story, each child narrated the scene of which he was responsible; in some cases, the teacher questioned certain details of the narrative, yet they managed to explain their line of reasoning. As happened with the teachers, the children
also learned to record the narration and the sound effects in the scenes themselves.

It is noteworthy to see how the children used the image displayed on the screen to support their narratives, even having their own pictures on the table.

Another workshop of Mode 1 that caught our attention was a workshop with few children, but among them a girl with cerebral palsy and another girl very shy. In this workshop the dynamic was different. The group of children should tell a version of the story of “Red Riding Hood” (a story very well known to them).

When using CPES to create the elements of the story, the girl with cerebral palsy expressed happiness and excitement whenever she could interact with the RFID reader, and her happiness was greater when she managed to see her drawing on the screen (Figure 7.4).

At this point it is important to note that the computational technology was made “invisible” for children, except of course for the display and RFID reader. The computer is out of sight of children (in a bag under the table), with the intention that the protagonists continue to be children and focusing on their creations.

All children succeeded in telling part of the story under their responsibility; we all understood and observed the great effort of the girl to communicate and her happiness to be an important part of story. The shy girl told with much effort their part and answered the teacher’s questions. At the end of the workshop, the teacher highlighted the excellent performance of these two girls especially with strangers in the room.
7.3.7 CPES in Mode 2: animation and control

Figure 7.13 shows the three steps in the general process of telling stories (Figure 7.1) in Mode 2.

We highlight in Mode 2, the use of characters and physical objects for animation control. The teachers / children create these characters using the green elements. The physical objects are associated with the characters, for placing them in the correct orientation and position in each scene in the screen. At the time of telling the story, the children and the teachers create animations by moving the characters in the screen using the corresponding physical objects. This is used when they want to indicate which of the characters was speaking at a given time.

All children were able to create and participate in the construction of narratives; all of them managed to be characters in their stories and interacted with characters from children’s stories, characters that they drew, or toys that became characters. Some of the children were disguised to better represent their role in the story. Others changed their size to appear larger peers in the scenes.

Figure 7.14 shows one of the stories created by children in Mode 2 of CPES; this example illustrates some of the elements mentioned above. In this particular story, the girl created five characters (“little red riding hood”, “she herself” as a character, the “aggressive wolf”, the “house”, and the “wolf blowing the house”). It is worth noting, in the example, the variety of resources that she used to create the characters: the “little red riding hood"
and the “wolf blowing the house” are drawings clipped from a print; the “aggressive wolf” is a hand puppet; the “house” is a toy, and “she herself” is a character that interacts with the other characters, even hiding behind the house.

Figure 7.15 shows one of the stories of the teachers in CPES Mode 2. In this story we can also see various resources used as characters: themselves as characters with different accessories (briefcases in the back, bags) and expressing different feelings like fear and happiness; a “stalking wolf” clipped from a print; and a toy (little duck).

7.4 The affective quality of the experience

Once completed the workshops of Modes 1 and 2, the teachers did a self-assessment of their affective responses to the activities using the SAM instrument (Figure 7.16a).

To analyze the instruments, we proceeded to give a numerical value to each of the possible alternatives for each type of feeling (Figure 7.16b), where the value of 8 is used when the feeling of Pleasure, Arousal or Dominance are at its highest value. The numbering of the scale associated to the dominance feeling is in the reverse order as a control.

\[\text{Adapted from Bradley and Peter (1994)}\]
mechanism of the original design of the instrument. Then we determine the frequency for each of the values associated with the alternatives of SAM instrument; thereafter calculate the percentage value of these frequencies to create a bar graph where the X axis represents each of the possible values of the alternatives. In the bar charts, each possible value in the X axis represents the frequency percentage of each of the three self-assessed parameters by the SAM instrument.

Looking at Figure 7.17, we can see that only the options with values 7 and 8 have three bars associated with feelings of: Pleasure, Arousal and Dominance, which indicates that the feelings they evoked were very positive, and observing the height of the bars, we can say that there is a consensus on this point. However, it is also noted that the feeling of control is lower than the others in height, and are found in almost all the options, indicating less consensus regarding dominance. This behaviour is also observed in the results of Mode 2 (Figure 7.18), indicating a positive result, especially if we remember that the workshops were held for several weeks.

This confirms the previous works [28], indicating that TUI evokes strong feelings of joy and motivation.

When going from Mode 1 to Mode 2, and observing only the bars with value of 8, the percentage of the feeling of Pleasure and Dominance fell 6.7% and 23.9% respectively, while the percentage of the feeling of arousal slightly increased 0.4%. A possible explanation for these results may be related to the demand on ability of very young children (less
control, less Dominance) and degree of interactivity required in Mode 2 (more Arousal).

7.5 Discussion

Definitely, and from our experience with this and other projects evolving the prototype of CPES environment, experimenting it with the users was one of the most relevant aspects for achieving a result with a high degree of acceptance. By working side by side with children and teachers and seeing their interaction with the system, the way they made sense of it, we could identify and improve many of the requirements of the initial version of the system. The informal comments after each workshop allowed, for example, directly perceive the feelings that were identified by the SAM instrument and relate them to possible difficulties with concepts in the process of creating narratives through the system. It was also possible to receive suggestions to improve responses: for example, in an early version of the prototype, the control program requested exactly one minute for recording each narration / effect. This time in many cases was not adequate; then a recommendation that was adopted was that the user might stop recording at any time he wanted to. Moreover, it was possible to identify different uses and contexts not imagined before the workshops; for example, creating interactive tutorials for cooking recipes, sports rules, and even the creation of basic melodies.
Our effort to hide the technology was another important point because it allowed a "softer" approach for all users, especially for users with little or no ability with the computer. In addition, the users felt free to imagine, plan and develop creative stories, situating themselves as characters. Finally, our efforts to consider accessibility elements were rewarded with the joy and the efforts of children with disabilities.

7.6 Conclusion

Although literature has shown benefits of storytelling in educational scenarios, we argue that contemporary technologies have not yet been explored in its full potential in educational contexts, to take advantage of the innate ability of children to tell stories. The work reported in this paper has shown it is possible to create a socio-constructionist environment with acceptance of both teachers and children of different age and skills, which produces greater motivation and cooperation among all. With CPES, children could create more complex and rich stories, working their emotional and social aspects.
The teachers can create interactive stories with the children, or for the children, allowing the use of participatory dynamics in the process of planning, creating and telling a story, allowing children to take decisions about the course of the story, creating then a variety of stories. The teachers can also use the environment to motivate other activities such as to build some paper objects (origami) where each scene shows a step in the construction of the object. The children should take the scenes, sort and listen to the explanation to create their own paper object. Moreover, the environment was built with low-cost technologies that can be used by people with few or no knowledge in the use of computers, with a brief explanation on basic resources for storytelling, evolving to more sophisticated use of commands for event programming for example. More important, it can be used as a resource for collaborative construction, including people with disabilities or different skills in the process of storytelling.

Through the active participation of teachers and children it was possible to improve the system response to commands initially proposed, and add others that arose as a direct need in the workshops.

Further work involves the use of other devices to enhance the user experience, such as accelerometers within toys, keyboards to create dialogues between characters, use voice synthesizers to make audible the typed dialogues.
Figure 7.17: SAM instrument results in Mode 1

Figure 7.18: SAM instrument results in Mode 2
Chapter 8

Designing a tangible socio-constructionist environment for building narratives

8.1 Introduction

The benefits of the storytelling activity for children are well known. Moreover, the use of tangible elements such as toys and children’s drawings, make it easier for children to play, build their ideas, and advance their stories in more creative ways [64]. This aspect motivates us to explore the relationship between storytelling and Tangible User Interfaces (TUI), which may be defined as interfaces allowing to augment the real physical world by coupling digital information to everyday physical objects and environments [37].

This alignment between TUI and storytelling is important for several reasons: with TUI the users can immediately start telling stories without much training or prior knowledge on technology [72] and [27]. TUI-based environments have the potential to engage children along learning activities [78] by evoking strong feelings of joy and motivation [28], especially important in learning processes. TUI, particularly those constructed with RFID technology, are an alternative to make computers more accessible as they provide a less abstract interface [55].

There is also a potential of TUI as solutions towards the promotion of an inclusive education. The goal of admitting in the same classroom all the students, including those with disabilities or high skills is being supported by different organizations worldwide such as the UNESCO (United Nations Educational, Scientific and Cultural Organization). In our country, the efforts towards the inclusive education are being conducted by our Ministry of Education [48].

Considering the above, we have invested research efforts in the investigation, design and implementation of a socio-constructionist environment based on tangible computer interfaces, to allow children of school contexts to create, share and tell stories for themselves and collaboratively. This article presents and discusses some of the main results of the creation of the environment and its use in real contexts.

With the idea of facilitating the construction of stories in more creative ways, the
environment makes use of children’s own designs / pictures and sounds, including their self-projection. As these elements (designs, pictures, sounds) alone do not tell a story, a framework called BME (Beginning, Middle and End) \[47\] is used to give a dramatic structure to the stories. Moreover, the BME framework allows the use of interactive elements, which in the environment are translated into some events programmed by the user. In addition to the mentioned requirements, the environment should be affordable by school contexts of lower socio-economic levels. Moreover, we have considered the principles of universal design \[17\] to cope with inclusive environments requirements.

Last but not less important, acknowledging the importance of emotion in the storytelling activities, we applied the principles of design for Affectibility \[31\] in the environment design. The design for Affectibility is explicitly concerned with the affective responses of stakeholders, both during the process of creation as well as in the use of the design product.

The paper is organized as follows: Section 2 introduces the concept of a socio-constructionist environment, and shows some works related to storytelling. In Section 3, we present the proposed environment, starting from its conception to a first implementation. In Section 4 we present results obtained with the experimentation of our environment in a real context with teachers and 9 to 10 years old children.

8.2 Background to the Work

The theory of Constructionism \[54\] was developed by Seymour Papert in the early 70’s, encompassing two aspects of the theory of education science: a view of learning as a reconstruction rather than as a transmission of knowledge, and the idea that learning is most effective when the learner experiences the construction of a product meaningful to him/her. We are naming socio-constructionist the environment which besides encouraging the user to be active, and providing sufficient freedom to the user to create concrete or conceptual objects that are of personal interest to them, also favours working together, sharing a common interest and knowledge construction with others (partners) \[29\].

It is important to observe the difference to the concept of having collaborators in the work; while a collaborator may temporarily help with the construction of a part of the job, he/she does not necessarily feel fully committed to the final product. In the socio-constructionist approach, this commitment is shared by all partners who want to realize their creation. To illustrate this, imagine a group of children organized to create a story about a matter of common interest; in the process of story creation, they need help for creating a story element (e.g. a character) and seek the assistance of another child of other group, who is good at drawing. This last child does not necessarily share commitments regarding the history as a whole, although has a real interest in building its character.

Reviewing the academic literature \[27\] and \[7\], based on the digital libraries of ACM, Springer, IEEE, ScienceDirect we have identified a set of related works, some summarized in Table \[8.1\].

Alessandrini et al. (2014) \[1\] present a TUI-based tool for working with children with autism, which lets the user assign sounds to sheets of paper. This capability is designed
Table 8.1: Summary of work related

Reference	Country	Children	Working with partners	New content by the user	User programming
Alessandrini et al. [1]	Italy	8 - 12		*	*
Alves et al. [2]	Brazil	5 - 9	*	*	*
Juan C. et al. [40]	Spain	6 - 8	5 - 8		*
Labrune & Mackay [44]	France	10 - 12		*	*
Muños et al. [51]	Italy	4 - 10	*	* (full)	*
Sylla et al. [79]	Portugal	4 - 5	*		*
Oi et al. [80]	China	6 - 9		*	*
Vaucelle & Ishii [84]	USA	4 - 10		*	*
Vaucelle & Jehan [83]	USA	5	*		*
Williams [85]	USA	3 - 5	*		*
Willis et al. [86]	USA	-			*
Our proposal	Brazil	4 - ...	*	* (full)	*

To motivate the child to the activity of storytelling. The paper sheets can have designs created by children, images or photographs, becoming a flexible tool that a therapist can easily take ownership.

Alves et al. (2010) [2] as well as Muños et al. (2012) [51], comment about a tool to create stories using a table with tangible objects. The table is used to locate characters and modify some of their properties such as location, inclination and size. By using commands (through buttons, physical objects or cards), the user can create scenes, assign sounds, and more. There are differences between these two proposals mainly in the way different devices are used to increase the possibilities for the user. For example, the second proposal is more open to the user, allowing him/her to create new scenarios and characters, while in the first, these elements are predefined.

Juan C. et al. (2008) [40] present a system that uses augmented reality cubes with different markings on their faces, which are captured by a camera, processed by a computer and replaced by images that overlap the marks. By looking at small screen with a Head-Mounted Display HMD, the user manipulates the cubes; each face indicates, for example, a different ending to the story. This system does not create new elements of the story, but let the user to manipulate the development of it.

Labrune & Mackay (2005) [44] and Vaucelle & Ishii (2008) [84] carried out two different approaches to the problem of storytelling, but in essence the two projects use different cameras to capture the context of a child, either over a wide area (first project) or restricted to the interaction between two toys. The creative part of children’s work is manifested in what and how to film.

Sylla (2013) [77] presents a new device that allows children to combine in many ways, different story elements to create multiple stories. To make this possible, the different
elements of the story are previously associated with physical objects (blocks); the device identifies the blocks and sends the information for the stories engine, which is responsible for taking the combination made by children and generating the final story.

Vaucelle & Jehan (2002) [83] and Williams (2010) [85], used puppets with an embedded electrical device to add new capabilities such as recording and playback of dialogues (first project), or use accelerometers for controlling virtual characters that are projected onto a screen (second project).

Willis et al. (2013) [86] combine a camera and a mobile projector to create a new device to be targeted by the user (not restricted to children). For example, the pages of a book, which has marks made with a special ink (invisible to the human eye) are interpreted, resulting in the projection of a graphical element, of a certain embodied action of a character.

Without ignoring the contribution that each of these proposals present, and their different approaches, the system proposed by Muñoz gives children complete freedom to create different elements of the history, including their image, as well as the possibility of collective construction of the story, fundamental characteristics to be considered in a socio-constructivist environment. The other proposals limit the type of story elements that the child can create to a few or none, or limit the possibilities of work with partners to create stories.

Finally, none of the analysed proposals considered the programming of elements of interactivity by children. This feature, which gives the power to the child, not only to create new elements of the story, but also to program interactivities with them, is the main difference of our proposal to the reported projects. Besides this difference, there are other characteristics that differentiate our proposal, to be presented in the following sections, such as: the design method, the use of low-cost technology, the effort to make inclusive technology and at the same time “invisible”.

8.3 A Collaborative Programmable Environment for Storytelling - CPES

8.3.1 The conceptual model

The proposed TUI storytelling environment is founded on three fundamental pillars: the BME framework for structuring narratives with the use of elements of interactivity, the concept of Affectibility, and the Universal Design principles.

The BME framework [47] aims at organizing the narrative in six steps: 1. Define the concept of history as a problem to be solved; 2. Define the problem solution in general; 3. Describe the general solution in three acts (Beginning: Introduction and call to the adventure, Middle: problems / conflicts, and End: problem / conflict solving); 4. Set the main symbols of the history, as characters and scenarios; 5. Within each act, create micro stories, as many times as desired; 6. Whenever possible, create for each story, interaction elements that describe how the characters will interact in the scenario (with other characters within the same scenario).
The Affectibility concept [31] was used to support considerations regarding the affective states of the users in the proposed environment. It is materialized in six design principles: 1. Allow communication of affective states; 2. Consider the social context of user-values, culture; 3. Allow the user to include his-her content in the story (Tailoring); 4. Promote collaborative construction; 5. Enable the User to perceive the physical presence of others or characters (Awareness); 6. Explore creatively the different media.

Universal design is our background reference for inclusive environment design. It is summarized in seven principles: 1. To equate the use of possibilities for people with different abilities; 2. Make flexible use to meet a wide range of individuals; 3. Set a simple and intuitive use, regardless of the user; 4. Communicate effectively to the user the necessary information, regardless of their sensory capacity or environmental conditions; 5. Minimize the risk and consequences of unintended or unforeseen actions; 6. Minimize physical effort to use efficiently and comfortably; 7. Scale the physical space for appropriate use and interaction, regardless of size, posture or mobility of the user [17].

These 3 conceptual foundations were articulated in the proposition of the Collaborative Programmable Environment for Storytelling CPES. In general terms, the proposed environment is characterized by:

1. Support to multimedia communication, necessary for creating free scenarios, characters, sounds, effects, etc. promoting the use of Tangible Interfaces -TUI;

2. Invisibility of technology. The focus should be in the story, technology should be in the background;

3. Inclusive design. The environment should be accessible, understood and used by the greatest possible extent of people;

4. Diving in the story. The user and his-her own environment might be elements of a story; the users can share a scene with other real or fictional characters;

5. Collaborative construction of narratives. The environment should engage people in creating stories collaboratively with peers, using the BME framework;

6. Memory and Reuse. The environment should preserve the stories and their elements maintaining a memory of the created stories and offering the possibility of reusing elements;

7. Programming of events. The environment should allow the user to create new interaction elements.

Figure 8.1 shows the three steps in the general process of narrative construction using CPES. These steps are: “Planning a story”, “creating the story” and “storytelling”. In the first step the users (partners) will meet to define the different elements of the story, and to plan the beginning, middle and end of the story (the story plan). In this step it is very important to use the BME Framework. In the second step, the users create all elements of the story using the available physical resources, and the CPES to create the story. Finally in the last step “the story is told to an audience with the use of CPES. It is
possible that during this process of telling the story, the users, or the audience, generate interactions causing the execution of commands programmed by the users themselves in CPES.

Figure 8.1: General process of narrative construction using CPES

The theoretical and methodological background for the design of CPES was the semio-participatory design model [8] and [6] involving the participation of different stakeholders (researchers, teachers, students) in social practices, executed in workshops. The Semio-Participatory design model proposes theories, methods and artifacts for socially responsible, participatory and universal design. To make this possible, the design model is defined in three layers: Informal (meanings, intentions and commitments), Formal (forms and rules replace meanings and intentions of the informal layer) and Technical (technical solutions are generated as a result of the meanings of the previous layers). Thus, the design of a solution means pivotally thinking the three layers.

8.3.2 The modes of interaction in CPES

This subsection presents the different modes of interaction that support the students with different skill levels (just to simplify, different ages) in creating and telling the story. This theoretical model is used to define the abstract components of CPES and their general responsibilities as well as the relationship with other components. This model also shows usage scenarios with different levels of the technology use.

CPES supports four modes of interaction (Figure 8.2); each mode supports the lower modes, creating a system which starts from a basic configuration (lowest level of interactivity), which is ideal for users with less skill. The following modes of interaction, for example, a mode 3 and 4 represent the highest level of interactivity of CPES, but also requires a greater degree of skill from the user.

In Mode 1 - Presenter\footnote{Mode 1 was first presented in HCI-2015 [29].} (Figure 8.3), the users can create stories / narratives as a slideshow; if desired, the user can add sounds / narrations to the slides. Within CPES, the slides are always creations own of the user (or users when used collaboratively). The
creations are built with physical elements own of the user environment, such as: plasticised models, drawings, figures made of paper / cloth...

Figure 8.2: Interaction Modes of CPES

Figure 8.3 shows the components of the Mode 1 and their respective relationships. Note that the devices are classified into categories such as Output Devices and Creation Devices. The device displayed inside the boxes are just examples that can change when the model is instantiated. For example, an Output Device can be a TV or an LCD monitor. In this mode, the child uses the Selection Controls to indicate the action s/he wants to execute in the instance of CPES, for example, create a scene, a story or a history. The creation is made with the devices available in the instance of CPES. In this mode the characters are dependent on the stage; they shall be as the drawings of a comic. Note that the audience that is watching the story may express reactions that make the narrator alter the course of the story, or add new details, among others. Depending on the restrictions to instantiate the model, a Selection Control can be a traditional keyboard, a barcode reader, a device specially designed to control or RFID (Radio-Frequency Identification) card reader, among many other alternatives. Of course, there must be a processing unit (Computer) with software control of the instantiated environment.

Note that the stories made in Mode 1 are the least interactive, regarding the technology usage. However, this does not mean that their experience with the environment and the narrative construction is less rich. Children in their everyday life, create several objects with the physical resources available to them (crayons, modeling clay, pieces of cloth or paper, clay, sand, glue, cardboard, among a larger set of resources). All those objects help for the fun, the learning, and the development of skills.

Besides allowing them to express their emotions, their ideas and their dreams. The children can use the Mode 1 for example, to capture each of these objects, and the same children, can use CPES to present their creations to an audience (other children, parents or teachers) in the order they wish to show concepts or ideas that are behind these creations, or to tell a story with them.

Figure 8.4 shows the configuration of Mode 2 - Storytelling. The stories in this mode can be told on the fly while the children use the environment, or planned, for
example, following a dramatic structure (BME Framework). In any case, the user has various resources to create such as: characters, sound effects, scenes, and animations of the characters made at the time he/she is telling the story. To make this feature possible, the Mode 2 adds the Animation / Narration Controls. These controls allow the user to freely animate the characters. In addition to this, the CPES provides the resources to do a live narration (e.g., character amplification and / or sound recording).

The type of stories created in Mode 2 are more interactive than the stories created in Mode 1, due to the new features of animation of characters, and the possibility of making specific changes at any moment. For example, through the Selection Controls the users make changes in the middle of history that relate to the place where the story unfolds, the dress of the characters, among other things. This kind of flexibility allows more interaction with the audience, as they can interact choosing certain aspects of the story, even during the narration itself.

The **Mode 3: Scriptwriter** (Figure 8.5) is, in fact, a combination of Mode 2 -
Storytelling with the ability to program commands on CPES to be executed in response to some external action of the Animations Controls. Some possible actions include: moving a character, collide two characters, collide a character with an edge of the scene. The actions can execute one or more commands available in CPES such as: changing scene, changing clothes of a character, re-playing a sound effect or narration, altering the size of a character, among others.

The types of stories that can be created in this Mode 3 are similar to those created in Mode 2, except by the ability to program certain actions. Programming actions to certain events, aims to help in the development of logical and creative thinking of the child, making richer narratives.

The Mode 3 can be used, if necessary, to introduce children in the use of a programming language such as Scratch2. For example, CPES can do an automatic conversion of a story for the programming language; there, in the Scratch environment, the children can continue the programming process, adding more actions that CPES does not provide.

The last mode, Mode 4 - Scriptwriter Plus3 (Figure 8.6) adds the use of sensors on the audience to use their reactions as a trigger to execute commands on CPES. This mode aims to increase the experience of the audience to become an active participant in the process of telling the story. In addition, we also seek to enrich the programming process, expanding the possibilities that involve having an active audience. Examples of these sensors could be microphones that capture the level of euphoria (applause, shouts ...) of the public, cameras to identify some expressions on the spectators, sensors to determine the movement of participants, or maybe sensors to measure vital signs of the attendees, through smart watches.

The selection controls, and Animation / Narration (modes 2, 3 and 4) are categories with conventional devices such as a keyboard, or “unconventional” as physical objects (tangible interfaces).

Regardless of the devices that are used to instantiate the model, the important thing is

2http://scratch.mit.edu/

3Figure was first presented in HCII-2015 [29].
to define the general responsibilities of the elements and their relationships. In summary, we can say that:

- The software (CPES) is responsible for coordinating all controls and devices, as well as managing the events: programmed or generated by the installed sensors (modes 3 and 4).

- The Output Devices should allow “send” information to the user, which includes visual and auditory information. Other senses might be included such as smell or touch (devices already available experimentally).

- The Creation Devices should allow the user to create new elements for a story, for example, new images, sounds, text.

- The selection of controls should allow the user to activate certain features such as: visual aids and / or sound resources; or can for execute a command or sequence of commands.

8.3.3 The Implementation of the model

Naturally, there are various technologies that could be used to create parts of the CPES model; one possibility is presented here to instantiate the model. The selection criteria for this possibility is related to Universal Design, Design for Affectibility, and maintaining the lowest possible cost, to be economically viable for a larger number of schools.

Having all this in mind, the following technological resources are used: a camera with stand and microphone (Figure 8.7-a), a RFID card reader (Figure 8.7-b), a set of RFID cards (Figure 8.7-c), some physical objects with fiducial marks (Figure 8.7-d), a LCD monitor with a theatre-like decoration (Figure 8.7-e), a computer with speakers and printer (Figure 8.7-f), a small piece of green material (Figure 8.7-g), and a large piece of green cloth (Figure 8.7-h).
Using Figure 8.6 as a reference, we can group the technological resources as follows: **Creation Devices** (camera with stand, small piece of green material, large piece of green cloth, and microphone), **Selection Controls** (RFID card reader with their respective set of cards), **Animation / Narration Controls** (physical objects with fiducial marks, small piece of green material, and microphone), **Output Devices** (LCD monitor, speakers and printer), **Monitoring Sensor** (microphone), **Computer with software** of control of CPES (computer).

Some technological resources in CPES do not require much presentation; others require an explanation, such as: the RFID cards and the reader, the elements of green color, and the physical objects with fiducial marks. Some elements are seemingly decorative, but in fact, have the task of trying to hide the technology (“invisibility of technology”), such as LCD decoration shaped like a theatre, and the lamp with support of the camera.

Figure 8.7: CPES: Collaborative Programmable Environment for Storytelling

The RFID cards allow the use of the “deck of cards” metaphor. Some reasons to support the decision of using RFID cards are: the RFID cards allow full customization with drawings of children, and/or embossed marks, especially useful for people with low vision. Also, to use a RFID card, we only need to put it near the reader without even touching the reader; it enables people with fine motor problems to participate in the narrative construction using CPES. The reader has another important feature regarding accessibility; it beeps and flashes a light every time that the users make a correct reading of a card. This element is important for visually impaired or hearing problems users.

Within each RFID card, there is a chip and an antenna that captures the radio frequency field that the RFID reader produces. By a physical phenomenon of energy transfer from the reader, the chip inside the card is activated, and transmits, for example, its identification number (unique to each card) to the reader, which sends the information to the
computer to be processed. The type of processing depends on the function associated with that particular card.

The green elements (Figure 8.7-g and Figure 8.7-h) are used to create characters. Examples of this use can be seen in Figure 8.8.

Figure 8.8: Creating new characters in CPES

Figure 8.8 shows examples of character creation and can illustrate the collaborative work to create the characters in stories. Figure 8.8-a shows a group of teachers creating one of the characters of their story; in this case, the character is a football player hitting the ball with the head (hence the position of the body in the image capture). Figure 8.8-b shows a group of children creating a character (which consist of two actors). The character is two parents who are looking for their children lost in the snow. Notice how children make the proper position of the character. Furthermore, Figure 8.8-c shows two teachers creating a character from a hand puppet. Note that for this type of smaller character, the user can use the green cloth in the table (Figure 8.7-g).

Figure 8.9: Animating the character in CPES

Figure 8.9 shows the use of the animation controls to locate their characters in the scene. Note that each physical object has associated a character that the user can change at will at any time. The idea behind using fiducial marks, and the ReacTIVision computer vision framework is to facilitate the tracking of these marks with a camera.

In addition to the reference marks (fiducial), the blocks have small “signs” (represented by small circles in relief - Figure 8.9-a) that serve to identify the control of each character, allowing the use of the sense of touch, ideal for people with low vision or blindness.
Another feature of blocks is that they can have physical extensions (such as a small stick) for facilitating action of people with mobility problem.

There is another additional physical element that help with accessibility. This element refers to the base, where the control blocks are located. This base should be the correct size so there is a correspondence between its borders and image limits the camera is able to capture, so if a block is placed in a top right corner of the base, the character associated with the block must be located in the upper right corner of the screen. Furthermore, the base has other characteristic associated with the perception of the screen limits without restricting the movement of the control blocks. This correspondence between the position of the physical object and the position of the character on the screen is especially important for visually impaired people.

8.4 Experimenting the Environment – A Case Study

As our design method involves the active participation of different stakeholders, we counted on a partnership of the Division of Children’s Education and Complementary, which is an educational space inside the University of Campinas (UNICAMP) in Brazil, State of São Paulo aiming at the supplementary education of the child of the university employees. The practice of using the environment occurred in the first half of 2015. In the next subsection, we present the results of the workshops with CPES, with both the teachers, and children between 9-10 years old.

8.4.1 Participants

We worked with nineteen children between 9 and 10 years old, and with fourteen teachers between 30 to 50 years old. The average age of the group of teachers is 42 years.

8.4.2 Method

Seven (7) workshops were conducted along the semester, with teachers of the educational unit, and with children and their responsible teacher. The teachers attended a final workshop to work on semio-participatory practices as a closing activity and conclusion of the proposed work.

We filmed all workshops resulting in 15 hours of recording. All the practices had the written consent of all participants or their respective representatives in the case of children. The videos allow us to observe the behaviour of the system environment, demands for improvements and for new functionalities.

In addition to filming at the end of each workshop, all participants (children and teachers) filled the the SAM (Self-Assessment Manikin) instrument [12]. SAM (Figure 8.10) is a nonverbal instrument of self-assessment of emotions, specifically the level of pleasure, arousal and dominance, associated with the affective reaction of a person to a stimulus, in this case, the CPES environment.
8.4.3 Workshops

Figure 8.11 shows teachers in the three moments of the story creation with CPES. The stories created by the teachers were used as an example for children (Figure 8.11: Storytelling), thus encouraging them to create their own stories. At the end of the presentations, the children had a clearer idea of the possibilities in CPES and showed enthusiasm to make their own stories.

It is worth mentioning how this group of teachers used physical elements of everyday
Figure 8.12: Scenes of a story created by teachers in Mode 1

life: sheets of paper and coloured pencils to create the background of the story, clay to create the characters, colour paper to decorate the characters and the use of two brushes to hold character to simulate frog jumping. Of course, every story and every group uses the free resources available, but independent of it, all groups showed creativity, motivation and collaboration in each stage of the story creation.

With children something similar occurred in the three moments (Figure 8.13). Each group met to plan the story and follow some simple instructions; each group freely defined the main theme of the story and its moments (plan of story) as well as the characters and their interactions (story elements). After planning the children used all available physical resources (as happened with the teachers) to create scenes and characters in stories. And finally, the created stories were socialized among the groups (Storytelling). We did an anonymous voting by children the stories they liked more, to reward with chocolates.

Figure 8.14 shows some of the scenes of one of the children’s stories. This particular story tells about the adventures of a girl who goes in a trip (beginning of the story) to various famous places of the world (middle of history) and eventually returns to school to share their experiences with their friends (the end of the history).

It is worth mentioning how the different abilities of the children and their preferences of material are combined in the same story. Regarding the previous example, images can be seen that there are scenes made with a combination of drawing, modelling clay and characters cut; other scenes are just made of modelling clay, others were made using water paints.

In Mode 2 (Figure 8.15), differently from Mode 1, the characters are independent of the background image and can have position, orientation and size changed using tangible commands (RFID cards and physical objects, in this case cups with fiducial marks). These features can be used at the moment of creating scenes (background characters), or when the story is being told.
Figure 8.13: General Process - Children in Mode 1 activities

Figure 8.14: Scenes of a story created in Mode 1

Regarding the stories created in Mode 2, some teachers used body expressions and different objects like ropes, and spoons in addition to their characters (Figure 8.16), while other group of teachers decided to create characters using puppets (Figure 8.15).

Figure 8.16 shows one of the stories created by the teachers in Mode 2; this particular story narrates the activities carried by two children in their free time at school: playing in the sandbox, playing soccer, and jumping rope in the park. It is worth noting that
Figure 8.15: General Process - Teachers in – Mode 2 activities

Figure 8.16: Scenes of a story created by teachers in Mode 2
each teacher in the scenes are independent characters, and the ball itself is a separate character. Thus, the teachers had to compose scenes using the tangible elements, instead of just taking a photo as happens in Mode 1.

Figure 8.17 shows the children in the three moments of narrative construction in Mode 2. In this particular example, we can see children gathered together for several minutes to plan the whole story (even being near the technology), discussing and organizing themselves to define the scenes, the characters, the accessories, the poses. Once planning is done, they create characters and compose scenes through tangible objects, creating the story. Finally, the end result of all groups is socialized by storytelling, and, as happened in the Mode 1, the groups are awarded with chocolate after voting for the most popular stories.

Figure 8.18 shows the scenes of the story of another group. This story tells two young girls playing in the forest (beginning of the story), when suddenly it started raining and two friends arrived with umbrellas (middle of history); then the snow started to fall and everyone felt very cold hopefully other friends arrived with warm clothing for all and so they could play in the snow (end of story). Also important is the use of proper body positions, and the use of physical objects like pencils to simulate umbrellas. This point was interesting because for them not having the umbrellas was not a problem for creating the scenes they wanted, showing creativity and motivation for the activity.

![Planning Story](image1)

![Creating Story](image2)

![Storytelling](image3)

Figure 8.17: General Process - Children in – Mode 2

For Modes 3 and 4, both teachers and children observed five demonstrations of programmed events as a preparation to later to integrate programming in their stories. With the end of the class activities in that semester, the involvement with event programming was planned for activities with older children in the following semester.
Nevertheless, this group of children and teachers experimented to program, four types of events in Mode 3: combination character-background (Figure 8.19-a) to maintain context between characters and background; moving a character (Figure 8.19-b) to create animations; collision between characters (Figure 8.19-c) to create interaction between the characters; collision between a character and an edge of the screen (Figure 8.19-d) to create navigation between scenarios. The fifth type of event (Mode 4), refers to the capture of a loud sound (Figure 8.19-e) to generate an action, in this example a character can applaud the audience when the audience applauds.

Although Modes 3 and 4 were not used to create their own stories, they could create the examples of the demonstrations and used SAM to self-assess their feelings about it.

Programming of these five events is made using RFID cards and everyday objects. The CPES software provides the configuration of the events. For example, if the user has three active characters on the screen, and execute the command to program the event of collision, then the CPES software generates all the necessary configuration to detect the collision between those characters. Similar situations occur for other events involving characters.

8.4.4 The affective quality of the experience

As already mentioned, to observe the quality of emotional experience with CPES and narrative construction, we have applied SAM (Self-Assessment Manikin) instrument (Figure 8.10). To facilitate the analysis of the instrument responses, we assigned a value scale (0 to 8) for each of the three feelings: Pleasure, Arousal and Dominance, as shown in Figure 8.20. Note that higher values on this scale are always reserved for options representing more positive sentiment. In the feeling of dominance, the scale is inverted as originally
Once we determine the frequency for each option of the scale, we proceeded to calculate the percentage for each frequency, and finally took these percentages to a set of bar graphs (Figures 8.21, 8.22 and 8.23).

In Mode 1, the highest percentages are in the option value 8, with values of: 78.1%, 37.5%, and 40.6% for Pleasure, Arousal and Dominance respectively. Although at first glance some of these percentages seem very low, note that almost all the frequencies (bars) are responses associated with positive scale.

Figure 8.22 shows the results of Mode 2; it is worth noting the percentages regarding choices of value 8: Pleasure with 91.7%, Arousal with 62.5%, and Dominance 45.8%, respectively. This represents an increase of 13.6%, 25.0% and 5.2% respectively compared to Mode 1 results. Although there are a few answers at the bottom of the scale, its value is very small compared with the value of the top of the scale.

Regarding Modes 3 and 4 (Figure 8.23), the situation changes with respect to Mode 2; the levels of satisfaction falls in the three feelings: 7.7%, 10.5%, and 5.8% respectively. Nevertheless, the results remain positive, even better than with Mode 1 for Pleasure and Arousal and slightly lower in the Dominance. Regarding the two first feelings, there is an increase of 5.9% and 14.5%, while the third decreased 0.6%.
This difference between Mode 2 and Modes 3 and 4, may be a consequence of less experience of teachers and children with Mode 3, which demands more on them. In summary, the data indicate that these teachers and children felt more comfortable and
motivated in Mode 2.

At the end of the workshops, the teachers were asked to evaluate their experience with CPES, by writing their opinions on: the overall level of acceptance of CPES, and by accepting or not two statements, using a Likert scale.

As a result, all teachers assigned the highest value for the acceptance of CPES, and agreeded with the following statements: “The use of combined system with a Beginning, Middle, and End (Framework BME) structure, produces greater motivation and cooperation among children, creating more complex and rich stories in emotional and social aspects, when compared to the stories created without the environment”. “It can be said that the system helps in the construction of knowledge and new personal and social skills in school”.

8.4.5 The Semio-participatory Workshops: understanding and situating the system

As a closing activity, we conducted a Semio-participatory workshop [6], using three instruments: Stakeholders Diagram (Figure 8.24), Evaluation Frame, Semiotic Ladder (Figure 8.25).

The Stakeholders Diagram is an instrument used to analyse the impact and scope of the solution for different interested parties. Each layer of the diagram contains a group of stakeholders with specific category of interests. A stakeholder may be located in one or more layers, indicating multiple interests in the project.

The objective of the workshop is to identify the stakeholders, and discuss on which layer or layers they should be located. As an artefact in the workshop, the diagram is printed as a poster, and hung on a wall; the workshop participants identify, discuss, locate and relocate the stakeholders in the diagram using post-its. The outcome of the workshop can be seen in Figure 8.24.

The Operation layer presents stakeholders who directly manipulate the system. The Contribution layer clarifies stakeholders who are directly responsible the solution or are directly affected by the system. The Source layer presents stakeholders who provide information to the problem or its solution, or make use of it. In the Market layer are partners and competitors. In the Community layer are those formal representatives who
might influence the problem solution in the social context.

The teachers emphasized the parents of children and people in daily contact with children as important sources of information. The teachers also added the Church as potential stakeholders in CPES, justifying its addition to possible use of CPES in processes of evangelization by the Church.

The Evaluation Frame extends Stakeholders Diagram, by anticipating questions and problems that each of the parties can be faced in a future situation; also ideas for solving these questions or problems are discussed. All this information is organized with post-its in a table of three columns that is printed as a poster. The first column indicates the layers of the stakeholders diagram; the second column indicates the question or problem of a stakeholder; the third column solution ideas. The rationale of the Evaluation Frame is to identify visions of the future and discuss how those visions can be materialized.

Once the workshop participants have already finished working with the two initial instruments, we continue with the Semiotic Ladder artefact to organize the requirements of the project in six levels of information. These levels are grouped into those relating to the technology platform and those related to the human information system (Figure 8.25).

The level of physical world identifies all the physical elements necessary to use the system, such as camera, RFID tags, the classroom, among others. The empirical level defines the static properties or restrictions on the elements identified in the first level, restrictions such as the size of the classroom, the size of the output device, the type of the computer operating system, among others. The syntactic level defines the relationship between the elements identified; in this particular context, it refers to the different modes of interaction of CPES. The semantic level addresses the meaning of the relationships identified in the different modes of interaction. The pragmatic level refers to intentions of the parties identified by users; in the context of the project, it identifies user abilities to express themselves through CPES. Finally, the last level, social world, discusses the consequences of the use of the elements, in this context collaborative work can be
identified.

For the workshop, an initial version of the semiotics ladder was presented in the workshop, and discussed together. The teachers added new elements to the initial version, for example, in the layer of the physical world: the small piece of green material and a large piece of green cloth to create characters (Modes 2, 3 and 4), electrical extension cords, a physical space to install CPES and work in groups. In the empirical layer, a restriction on the physical space was mentioned; this restriction is related to the size of the physical space for the workshops and more people demanded to coordinate large groups of children.

8.5 Discussion and Conclusion

Literature has shown some works on storytelling supported by computational technology. However, we did not identify evidence of the possibility of allowing children to program their own interactive elements. A possible explanation for this commonality may be related to the difficulty of programming, especially for very young children. We have proposed an environment that allows children to program events, and all programming is done through tangible objects with fiducial marks and RFID cards. Although the workshops did not experience in depth this feature of programming, children and teachers were able to program the examples presented to them as demonstrations.

In this paper, we argued that TUI can be proposed to be a cost effective technology to create an intellectually rich and socially engaging way of involving children in the process of narrative construction. We presented the design of a socio-constructionist environment that also draws on other important concepts like affectibility and universal design.
To meet our goal, we had to devise various modes of interaction so that the system could be used by a wider range of users, balancing user skill with the interactivity level offered by the environment. The system design was a result of semio-participatory practices involving the participation of different stakeholders (researchers, teachers, students) in workshops conducted to reflect on and discuss both the design and the use of the system.

An environment that implements all the modes of interaction of the model, meets the four essential properties of digital environments ideal for creating narratives. According to Murray [52], these properties are: Procedural, Participatory, Spatial and Encyclopaedic. The first property is satisfied with the possibility to program sequences of actions (procedures) associated with the interaction elements of the story (events). The second property is satisfied because the event programming allows the computer to respond to certain actions (events) every time they occur when the story is told; even in mode 2, the child’s ability to animate characters with physical objects, can fulfill this second property. These two features define the environment as interactive. The third characteristic is directly related to the ability to navigate in a space; in this case, the stories are created by scenes, that represent places and situations in stories; the scenes can be freely navigable using the already mentioned collision events. The fourth property is satisfied when we recognize the storage capacity of CPES and power of expression that has the child, having access to all the elements of the story created by him or shared by others.

As Murray says, these four characteristics give the writer the opportunity to tell stories from different points of view and build stories intertwined to form a dense network. At this point we highlight the use of the BME Framework to support children in planning creating micro-stories that maintaining a general structure of Beginning, Middle and End. In turn, each micro-history can be divided into micro-stories forming recursive and complex structures for the general story.

The development of different workshops with teachers and with children along the different versions of the CPES system evolution, allowed us to incorporate extremely valuable contributions of the different participants (teachers and children) regarding their views on design decisions made and on functions that should be offered. The workshops allowed us to reach a product that is accepted by teachers and children, and is used by a variety of users (children from 4 years old, teachers with 50 years old) and is aimed to be used in an inclusive school.

The workshops also allowed observing the creativity of teachers and children, collaboration between partners and between groups of partners. An explanation for this collaboration is that CPES naturally does not restrict users, allowing the use of different resources to create their story elements; the latter feature takes advantage of the ability of children to use the physical elements of classroom and of their daily lives, to create the elements of the story.

We must highlight the importance of using a structure for planning and creating stories (BME Framework), as well as the importance of the having different modes of interaction for different age groups of children (results of SAM).

The designed environment uses low-cost technology easily accessible to public schools in our demanding socio-economic context. In addition, we selected technologies that
allowed to “hide” the formal computer, with the intention of leaving the stories and story elements as the protagonists. Moreover, this invisibility can help face the implicit fear of the computer by some people, allowing the user to enjoy more their creations.

During the activities of narrative construction through the system, we observed that children appropriated of the environment, independently of having some disability, to participate in the process of storytelling. Thus, the CPES environment has shown that people with disabilities or different degrees of computer skills can be important parties in the process of storytelling.
Capítulo 9

Conclusões e Trabalhos Futuros

Acreditamos no potencial da atividade de contar histórias mediada por tecnologias computacionais contemporâneas como ideal para apoiar atividades educacionais. Nós também acreditamos que a tecnologia pode apoiar estes processos “sem dominar a cena” (tornando-se invisível), incentivando a criatividade com o uso de diferentes recursos visuais e sonoros, incentivando o trabalho colaborativo, promovendo a inclusão, entre outros. Mas também acreditamos que as soluções, especificamente as computacionais, devem ser concebidas e construídas com as partes interessadas em um permanente ciclo de discussão, teste e aperfeiçoamento.

Neste trabalho buscou-se: investigar como utilizar o potencial de tecnologias contemporâneas para criar um ambiente inclusivo de baixo custo para apoiar a co-construção de narrativas, de forma a considerar as principais partes interessadas e sua diversidade.

Projetamos e construímos um ambiente tecnológico baseado em interfaces computacionais tangíveis, que considera as principais partes interessadas e sua diversidade, para que as crianças de um contexto escolar pudessem criar, compartilhar e contar histórias de forma colaborativa.

Acreditamos que as contribuições deste trabalho estão principalmente no campo de HCI, especificamente no Design de Interação. As conclusões estão divididas em três seções associadas às etapas de pesquisa, e uma parte final de contribuições.

9.1 Sobre a Revisão da Literatura

Esta etapa identificou os focos de pesquisa abordados pela conferência HCII International Conference on Human-Computer Interaction na área de Universal Access to Interaction, e a origem das contribuições. Os resultados mostram a extensão da conferência, tendo contribuições de 2014 autores provenientes de 30 países, 200 instituições. No entanto, os países europeus levam a maior produção média por autor entre os países com mais de 15 autores. A grosso modo, Design é a palavra mais frequente nas contribuições, Older, Elderly e Adult são as categorias mais abordadas de usuários-alvo, o Mobile e a Web são as plataformas de interação mais presentes. Há pouca alusão às questões sociais típicos de aplicações contemporâneas, como aqueles associados ao software social e os conceitos

\(^{1}\)HCI - Human-computer interaction
relacionados, tais como valores, estética, colaboração, participação, sinalizando assuntos importantes ainda em aberto para a pesquisa no campo.

Com relação às principais fontes de publicação de informática na educação no Brasil (RBIE, o SBIE, o WIE e o CBIE), e seus resultados de pesquisa, de forma geral os resultados mostram que os atores principais da pesquisa estão distribuídos entre aos temas da educação e da tecnologia de forma equilibrada. No entanto, é possível identificar oportunidades de pesquisa envolvendo tecnologias, especialmente as contemporâneas, no campo de informática na educação, especialmente para a comunidade do WIE. Os resultados também evidenciam que a proporção de expressões relacionadas com tecnologia e expressões relacionadas à educação se mantém de forma equilibrada ao longo dos anos, indicando não haver uma ênfase maior em um dos lados. Também não existe uma variação entre os termos mais frequentes independentemente da conferência analisada, indicando um compartilhamento coeso de interesses da comunidade em torno de determinados temas em determinados momentos (ex. inclusão digital). Analisando aos autores em cada fonte pela frequência de seus trabalhos, a RBIE tem uma distribuição mais uniforme de alguns autores em relação aos demais veículos. Com relação às redes de autores é possível perceber maior coesão do SBIE. Os principais autores de cada fonte analisada encontram-se nas maiores redes de coautoria.

9.2 Cenários Exploratórios

No primeiro cenário queríamos responder à pergunta: “quais são as relações entre os sentimentos de Alegria, Motivação e Conforto ao usar TUI e GUI? Sob o ponto de vista geral, o tipo de interação que evoca mais Conforto foi GUI, mas TUI parece ser o tipo preferido em relação à Motivação e Alegria (embora às vezes a indiferença também foi escolhida em relação à Alegria).

No segundo cenário tentou-se responder “como as tecnologias atuais, especialmente as TUI, podem ser um aliado para o processo educativo de contar histórias?” analisando os resultados do estudo exploratório concluímos que o cenário construído com interfaces tangíveis e narrativas mostrou-se viável em termos de custo dos equipamentos e do envolvimento das crianças. Em especial, este último aspecto foi um indício de que o protótipo inicial utilizado no estudo de caso foi um bom primeiro passo na direção de um ambiente flexível e engajador para a criação de histórias em contexto educacional. Portanto, o cenário apresentado mostrou indícios de que era possível e que seria de valia evoluir o ambiente tecnológico para que ele oferecesse mais possibilidades e formas de interação que potencializassem o processo de criação e construção colaborativa das crianças no espaço educacional.

9.3 Oficinas Semio-Participativas

Esta seção apresenta três experiências diferentes: Um estudo piloto e um estudo de caso para determinar a aceitação de um ambiente para contar histórias. Uma segunda experiência no uso do ambiente por parte de professores e algumas crianças de 4 e 5 anos de
idade. Finalmente uma terceira experiência no uso do ambiente por parte de professores e algumas crianças de 9 e 10 anos de idade.

- Apresenta-se um ambiente para contar histórias no paradigma TUI que promove a inclusão de crianças pré-escolares em sala de aula. O ambiente suporta diferentes modos de interação e permite vários níveis de complexidade no processo de contar histórias. Foi feito um estudo piloto e um estudo de caso. O estudo piloto, entre estudantes de pós-graduação com um foco em HCI, estabeleceu uma linha de base e mostrou que o ambiente potencialmente tem uma alta taxa de aceitação (80%). Embora não explicitamente investigados, este estudo também mostrou o potencial do sistema para a inclusão, uma vez que recebemos comentários positivos a partir dos especialistas em acessibilidade entre os participantes. O estudo de caso realizado com 18 professores de uma creche que ensinam crianças entre quatro e cinco anos, incluindo crianças com necessidades especiais, mostrou uma alta taxa de aceitação de mais do 90% entre estes professores.

- As oficinas com vinte crianças entre 4 e 5 anos de idade, e com dezoito professores entre 26 a 50 anos mostrou que o ambiente CPES produz uma maior motivação e cooperação entre todos. Com CPES, as crianças puderam criar histórias mais complexas e ricas, trabalhando os seus aspectos emocionais e sociais. O ambiente foi construído com tecnologias de baixo custo e puderam ser usados por pessoas com pouco, ou nenhum conhecimento no uso de computadores, com só uma breve explicação sobre os recursos básicos para contar histórias, evoluindo para um uso mais sofisticado de comandos para a programação de eventos. Mais importante, ele pode ser usado como um recurso para construção colaborativa, incluindo as pessoas com deficiência ou com diferentes habilidades no processo de contar histórias. Através da participação ativa de professores e crianças, foi possível melhorar a resposta do sistema aos comandos inicialmente propostos, e acrescentar outros que surgiram como uma necessidade direta nas oficinas.

- As oficinas com dezenove crianças entre 9 e 10 anos de idade, e com quatorze professores entre 30 a 50 anos de idade, reaffirmou a aceitação por parte dos professores e crianças do ambiente CPES, e também mostrou como eles se sentiam mais confortáveis no modo de interação intermediário (Modo 2) , enquanto as crianças mais jovens (4-5 anos) estavam mais confortáveis no modo básico (Modo 1) de interação. Os professores indicaram que “O uso do ambiente combinado com a estrutura de começo, meio e fim (Framework BME), produz uma maior motivação e cooperação entre as crianças, criando histórias mais complexas e ricas em aspectos emocionais e sociais, quando comparado com as histórias criadas sem o ambiente CPES”, e “Pode-se dizer que o ambiente CPES ajuda na construção de conhecimentos e novas competências pessoais e sociais na escola".
9.4 Contribuições da tese

9.4.1 Do ponto de vista teórico-metodológico:

A tese oferece um processo geral de construção de narrativas usando CPES (Figura 9.1), dividido em três passos: Planejamento, Criação, e Contação da história. No primeiro passo, as crianças são incentivadas a imaginar a história, são levadas a pensar em lugares onde se passaria a história, os personagens, as interações entre os elementos da história, e são motivados a usar a estrutura definida pelo *framework* BME. Neste mesmo passo, as crianças criam os diferentes elementos da história com os recursos físicos a sua disposição (papel, cores, massinha, argila, etc.). Isto é muito importante porque nós usamos a capacidade natural das crianças para criar com os elementos de sua vida diária.

Uma vez que os elementos da história estão prontos, no próximo passo as crianças usam o ambiente para armazenar no sistema os elementos criados na etapa anterior (personagens, palcos, cenas, programar eventos, ...) e a história como um todo.

Finalmente, uma vez que a história está pronta, as crianças usam o ambiente para contar a história para os outros. A narração pode ser feita no mesmo momento de Contação da história ou deixar pré-armazenada no segundo passo. Neste último passo, as crianças podem programar ações relacionadas a eventos internos na história (por exemplo colisão entre personagens) ou a eventos gerados pelo público (por exemplo sons altos, como bater palmas).

![Figura 9.1: Processo geral de construção de narrativa usando CPES](image)

CPES neste processo é visto como uma caixa fechada com destaque para o fato do papel que têm as crianças e suas criações, e realçar o fato que CPES em realidade é um modelo que pode ser instanciado com diferentes tecnologias, cada uma com vantagens e desvantagens.

Para atender a diversidade que existe em uma escola, especialmente se esta é inclusiva, o modelo CPES define quatro modos de interação (Figura 9.2); cada modo de interação adiciona novas funcionalidades ao modo anterior, mas também requer do usuário uma maior habilidade. É importante ressaltar que os modos definem um único ambiente que oferece diferentes maneiras de criar histórias.
Figura 9.2: Modos de Interação do ambiente CPES

O Modo 1: *Presenter* (Figura 9.3-a), define os seguintes elementos: controles de seleção, dispositivos de criação, dispositivos de saída e o software de controle do ambiente CPES. Neste modo a criança usa os controles de seleção para indicar a ação que deseja executar no ambiente, por exemplo, criar uma cena, uma narração ou uma história. A criação é feita com os dispositivos disponíveis na instância do ambiente. Neste modo não há personagens independentes do palco, eles são fixados como os desenhos de uma revista.

Figura 9.3: Modos de Interação do ambiente CPES

O Modo 2: *Storytelling* (Figura 9.3-b), adiciona a capacidade de ter personagens
separados da cena, e pode ser controlado antes ou durante o momento em que a história é contada, usando os Controles de animação.

O Modo 3: Scriptwriter (Figura 9.3-c), adiciona a capacidade de programar, por parte das crianças, elementos de interação (eventos) da história, sempre que estes sejam internos ao ambiente. Eventos como por exemplo a colisão dos dois personagens, o aparecimento de um personagem em um palco, a ação de um personagem deixar a cena, ou a ação mesma de mover o personagem pela cena.

O Modo 4: Scriptwriter Plus (Figura 9.3-d), adiciona a capacidade de programar, por parte das crianças, eventos externos ao ambiente; por exemplo, o de responder a um som alto como o do público batendo palmas.

Há muitas maneiras de instanciar o modelo, algumas usando diferentes combinações de tecnologias existentes, outras podem ser feitas com novos dispositivos. Novas instâncias do modelo são indicados na seção de trabalhos futuros.

Do ponto de vista metodológico, ilustramos a adequação do design Semio-Participativo e do framework BME ao desenvolvimento do trabalho como um todo. Por definição, o modelo Semio-Participativo nos permitiu trabalhar durante vários semestres com professores e crianças de diferentes idades e habilidades na construção e aperfeiçoamento do ambiente CPES. O framework BME nos permitiu dar estrutura dramática não apenas às histórias, mas ao próprio processo de uso do CPES (planejamento, criação e contação de histórias).

Outra contribuição foi a experimentação do conceito de socio-contrucionismo, embora este ainda deva ser formalizado, como é indicado para trabalho futuro. O sociocontrucionismo amplia o conceito de contrucionismo de Seymour Papert, neste caso para incluir a construção conjunta de estórias por parceiros de autoria.

Outra contribuição foi a experimentação do conceito de sócio-contrucionismo, embora este ainda deva ser formalizado, como é indicado para trabalho futuro. O sócio-contrucionismo amplia o conceito de contrucionismo de Seymour Papert, neste caso para incluir a construção conjunta de estórias por parceiros de autoria. É importante ressaltar que CPES permite que as crianças ou professores possam criar, apagar e recriar (debugging) os diferentes elementos de suas histórias, a qualquer momento, para melhorar o elemento ou para adaptar-se a novas situações ou histórias. Essa possibilidade de debugging é característica essencial em um ambiente construcionista. Ainda, CPES combinado com o uso do framework BME, podem ser usados como uma ferramenta para o desenvolvimento do pensamento computacional.

9.4.2 Do ponto de vista prático:

Uma instância do modelo que satisfaz as exigências do projeto foi desenvolvido: ser de baixo custo e ser um ambiente inclusivo, é apresentado na Figura 9.4-a. Esta instância do ambiente CPES precisa de um computador (f), de preferência escondido da vista das crianças, uma caixa de som (f), uma câmera com microfone (a), escondida dentro da lâmpada, um leitor de cartão RFID (b) com um conjunto de cartões RFID (c), elementos

\(^2\)“Pensamento computacional é o processo que permite formular problemas de modo que as soluções podem ser representadas como sequências de instruções e algoritmos.” Alfred V. Aho
CAPÍTULO 9. CONCLUSÕES E TRABALHOS FUTUROS

148

de cor verde (g) e (h) para criar personagens com técnica de chroma key (Figura 9.4-b), e objetos físicos para mover os personagens (d) por exemplo, copos com marcas fúciais (Figura 9.4-c, -d).

Figura 9.4: Instância de baixo custo do Ambiente CPES

Na Figura 9.4, podem-se observar alguns elementos inseridos na concepção do ambiente CPES (Figura 9.4-a (g)). Além disso, cada objeto físico tem marcas em relevo para ajudar na sua identificação. Note que esses mesmos objetos físicos são usados por crianças sem deficiência para mover os personagens. O rastreamento das marcas fúciais, e o framework Microsoft XNA para a manipulação do ambiente gráfico, e o framework AForge.NET para acessar a câmera, Audiolib para acessar o microfone, e 7za para manipular arquivos zip. Além destes, usamos esta plataforma de desenvolvimento para implementar o algoritmo e chroma key e a gramática BNF (Apêndice B) necessária para poder usar um leitor de cartão RFID como dispositivo de controle do ambiente CPES.

A seleção de um leitor de cartão RFID é devido a razões de acessibilidade; o leitor não exige coordenação motora fina para operar, a criança só precisa trazer o cartão para o container de leitura para que o sistema reconheça a presença do cartão.

Assim, o leitor RFID é um dos componentes do sistema de controle do ambiente CPES. O sistema de controle do ambiente CPES é composto por um leitor RFID, um dispositivo de medição, um dispositivo de acionamento, um computador e um software de controle. O software de controle é o responsável por processar os dados recebidos do dispositivo de medição e acionar o dispositivo de acionamento com base nos dados recebidos. O dispositivo de medição é o responsável por coletar os dados do ambiente, como temperatura, umidade, iluminação, entre outros.

O dispositivo de acionamento é o responsável por controlar os dispositivos externos conectados ao sistema de controle do ambiente CPES, como ventiladores, luzes, entre outros.

O leitor RFID é responsável por receber os dados de identificação do cartão RFID, que contém informações sobre o usuário e o ambiente. O leitor RFID transmite esses dados para o software de controle, que processa os dados e envia comandos para o dispositivo de acionamento, que aciona os dispositivos externos conectados ao sistema de controle do ambiente CPES.

Assim, o sistema de controle do ambiente CPES é capaz de controlar o ambiente de acordo com as necessidades do usuário, permitindo uma melhor qualidade de vida para pessoas com deficiência.

 Além disso, o sistema de controle do ambiente CPES pode ser usado em outros ambientes, como hospitais, escolas, residências, etc., que necessitam de um ambiente controlado.

CAPÍTULO 9. CONCLUSÕES E TRABALHOS FUTUROS

148
leitor de qualquer maneira, e o leitor identifica o cartão, e o ambiente CPES responde de acordo com o estado do atual que é definido pela gramática BNF (CPES responde com uma confirmação visual e verbal para cada comando). Este recurso é ideal para pessoas com problemas de coordenação motora fina.

Esta implementação do ambiente CPES requer 41 cartões RFID para comandos do ambiente. Estes 41 cartões são definidos durante a instalação do software. Além desses cartões, a escola deve ter cartões em branco para que as crianças possam usar para criar suas elementos de histórias, elementos interativos (eventos), e as histórias como um todo.

Entre os 41 comandos existem comandos para: gerenciamento do conteúdo associado aos cartões (copiar, excluir, recuperar, ...), manipulação de personagens (selecionar personagem, ampliar o tamanho, reduzir, ...), para criação de cenas, cenários, narrações, áudio-descrições (especialmente para pessoas com deficiência visual é útil para saber o conteúdo de um cartão), entre outros. Para mais detalhes sobre os comandos, consultar o Apêndice A.

Antes de concluir seção, é importante notar que, dado o uso da visão computacional para o rastreamento dos personagens usando códigos fiduciais, e o uso da câmera para criar personagens (técnica chroma key) e palcos, a iluminação e a qualidade das imagens da câmera, podem gerar problemas no uso de CPES. Entretanto, nos cenários experimentais mostrados neste trabalho tais limitações não chegaram a interferir negativamente nas atividades e seus resultados.

9.4.3 Do ponto de vista de produtos:

Durante o desenvolvimento da tese foi necessário criar outros produtos auxiliares:

- Crion-se uma ferramenta web ToPA (do inglês Tool for Publication Analyzes) criada para a análise de temas, autores e seções específicas de uma determinada conferência. Disponível em http://eurydice.nied.unicamp.br/ToPA/

- Crion-se duas ferramentas de código aberto que permitem interagir com as linguagens Scratch 1.4 do MIT e Kodu da Microsoft com objetos tangíveis usando ReactIVision, disponíveis em:
 - TUI2Scratch14 http://sourceforge.net/projects/tui2scratch14/
 - TUI2Kodu http://sourceforge.net/projects/tui2kodu/

As ferramentas referenciadas no site do grupo InterHad. CPES inclui um componente adicional e independente (programado em Python 2.7), que permite a interação da linguagem Scratch 2.0 (offline) do MIT com objetos tangíveis usando ReactIVision.

- Fo a criado um DVD com resumos das oficinas e das histórias criadas. O DVD foi distribuído entre crianças, professores e pessoal administrativo do DEDIC (Divisão de Educação Infantil e Complementar da Unicamp):
 - CECI (Centro de Convivência Infantil da Unicamp) 59 vídeos com uma duração total de 02:43:26
- PRODECAD (Programa de Integração e Desenvolvimento da Criança e do Adolescente da Unicamp) 59 vídeos de uma duração total de 03:35:26

- Foram criados dois conjuntos completos do ambiente CPES cada um com: 300 cartões RFID, um leitor RFID, uma câmera com microfone, 5 copos com marcas fiduciais, software, elementos de cor verde para criar os personagens, manual do usuário em formato PDF, e PDF com as imagens para os 41 cartões de comando e 9 cartões com exemplos de personagens e palcos.

9.5 Trabalhos Futuros

Os trabalhos futuros podem ser divididos em grupos, a saber: a formalização teórica do conceito do socio-construcionismo, as atividades relacionadas com a melhoria do ambiente CPES, e novos experimentos científicos que podem estender a pesquisa atual.

- O primeiro grupo envolve atividades tais como:
 - Determinar as características de socio-construcionismo com relação ao construcionismo e definir suas bases.
 - Definir estratégias de ensino para ambientes socio-construcionistas e suas práticas.

- Para o segundo grupo, há atividades tais como:
 - Investigar outras formas de instânciação, dos modos interação do ambiente CPES, usando outros tipos de tecnologia, e determinar a melhor combinação de tecnologia para certos contextos particulares. Por exemplo, o uso de:
 - *Smartphone* (como câmera, microfone e unidade de processamento) e um *Chromecast* (como dispositivo de recepção da informação do Smartphone para apresentá-la em uma *TV HDMI*).
 - *Uso de Myo* (*Gesture Control Armband*) ou de *Leap Motion* como dispositivos de animação.
 - Entre um número de combinações possíveis, estudar os elementos de interação e seu potencial para ambientes de contação de estórias.
 - Aumentar o controle de animação sobre os personagens e cenários.
 - Aumentar a possibilidade de exportação de vídeos para Internet, por exemplo, diretamente para o YouTube.
 - Adicionar uma forma para visualizar e editar os eventos já programados em CPES.

- Para o terceiro grupo, há atividades tais como:

\[\text{http://www.google.com/chrome/devices/chromecast/}\]
\[\text{https://www.myo.com/}\]
\[\text{https://www.leapmotion.com/}\]
- Identificar e avaliar as vantagens do ambiente como desenvolvido para criar histórias sobre outros sistemas e tecnologias.

- Identificar e avaliar o grau de influência do ambiente CPES com relação a: criatividade, a profundidade e estrutura das estórias, a cooperação entre os parceiros e entre grupos, a extensão de uso dos recursos do ambiente, usos não antecipados dos recursos, etc.

- Avaliar, em maior profundidade especialmente o modo 4 (que envolve a programação de eventos) com um grupo de adolescentes. Atualmente temos trabalho em andamento fazendo uso do ambiente em seu Modo 4 com um grupo de 5 adolescentes do PRODECAD (Programa de Integração e Desenvolvimento da Criança e do Adolescente).

Antes de terminar, é importante destacar o apoio contínuo de nosso grupo de pesquisa InterHad no desenvolvimento da tese, e especialmente o apoio da Professora M. Cecilia C. Baranauskas, do Professor Heiko Hornung; e dos pesquisadores: Samuel B. Buchdid, Elaine C.S. Hayashi, Vanessa R.M.L. Maike, M. Cecilia Martins, incluindo a aluna de iniciação científica Viviane Catini Nishiyama cujo trabalho no desenvolvimento do manual de CPES (Apêndice A) permitiu aproximá-lo da linguagem dos professores.
Referências Bibliográficas

[1] Andrea Alessandrini, Alessandro Cappelletti, and Massimo Zancanaro. Audio-augmented paper for therapy and educational intervention for children with autistic spectrum disorder. *International Journal of Human-Computer Studies, 72*(4):422–430, 2014.

[2] Alexandra Alves, Roseli Lopes, Patrik Matos, Luiz Velho, and Djalma Silva. Reactoon: Storytelling in a tangible environment. In *Digital Game and Intelligent Toy Enhanced Learning (DIGITEL), 2010 Third IEEE International Conference on*, pages 161–165. IEEE, 2010.

[3] Lynn ALVES, J MARTINS, and IBCN NEVES. A crescente presença da narrativa nos jogos eletrônicos. In *VIII Brazilian Symposium on Games and Digital Entertainment. PUC. Rio de Janeiro*, 2009.

[4] Ding Yih An, Cesar Dick da Silva, Danton Moura G Ribeiro, Perla Batista R da Rocha, Caio Maltinti, Vanessa Battestin Nunes, and Rutinelli Fávero. Digita-um jogo educativo de apoio ao processo de alfabetização infantil. In *Anais do Simpósio Brasileiro de Informática na Educação*, volume 24, 2013.

[5] MC de A Armanda, Rodrigo Lins Rodrigues, and Vinicius C Garcia. Um mapeamento sistemático para problem based learning aplicado à ciência da computação. In *Anais do Workshop de Informática na Escola*, volume 1, 2012.

[6] M Cecilia C Baranauskas. Social awareness in hci. *Interactions, 21*(4):66–69, 2014.

[7] Maria Cecilia Calani Baranauskas and Julián Esteban Gutiérrez Posada. Universal access to interaction as revealed by uahci words. In *Universal Access in Human-Computer Interaction. Design Methods, Tools, and Interaction Techniques for eInclusion*, pages 21–30. Springer, 2013.

[8] Maria Cecilia Calani Baranauskas, Maria Cecília Martins, and Rosangela Assis. XO na escola e fora dela: uma proposta semi-participativa para tecnologia, educação e sociedade. UNICAMP, 2012.

[9] André Covic Barros, Jacques Wainer, Kleucio Claudio, Luiz Renato Ribeiro Ferreira, and Tom Dwyer. Uso de computadores no ensino fundamental e médio e seus resultados empíricos: uma revisão sistemática da literatura. *Revista Brasileira de Informática na Educação, 16*(1):57–68, 2008.
[10] Scott Bateman, Carl Gutwin, and Miguel Nacenta. Seeing things in the clouds: the effect of visual features on tag cloud selections. In Proceedings of the nineteenth ACM conference on Hypertext and hypermedia, pages 193–202. ACM, 2008.

[11] Douglas Bernstein. Essentials of psychology. Cengage Learning, 2013.

[12] Margaret M Bradley and Peter J Lang. Measuring emotion: the self-assessment manikin and the semantic differential. Journal of behavior therapy and experimental psychiatry, 25(1):49–59, 1994.

[13] Charles Buabeng-Andoh. Factors influencing teachers’ adoption and integration of information and communication technology into teaching: A review of the literature. International Journal of Education and Development using Information and Communication Technology, 8(1):136, 2012.

[14] Samuel B Buchdird and Maria Cecília Calani Baranauskas. Is there hci in idtv? In Human-Computer Interaction. Theories, Methods, and Tools, pages 47–57. Springer, 2014.

[15] Samuel Bastos Buchdird and Maria Cecília Calani Baranauskas. Hci in context-what the words reveal about it. In 15th International Conference on Enterprise Information Systems (ICEIS 2013), pages 134–142, 2013.

[16] Vinton G Cerf. Why is accessibility so hard? Communications of the ACM, 55(11):7–7, 2012.

[17] Centre for Excellence in Universal Design CEUD. Ceud -principles - centre for excellence in universal design (2014). http://www.universaldesign.ie/exploreampdiscover/the7principles 2015 (accessed Aug 23, 2015).

[18] Rae Condie and Bob Munro. The impact of ict in schools: Landscape review. 2007.

[19] Ministério da Educação Secretaria de Educação Especial Brazil. Marcos político-legais da educação especial na perspectiva da educação inclusiva. http://pfdc.pgr.mpf.mp.br/atuacao-e-contenudos-de-apoio/publicacoes/educacao/marcos-politico-legais.pdf 2014 (accessed Out 10, 2014).

[20] Sebastião Rogério da Silva Neto, Higor Ricardo M Santos, Anderson Alves de Souza, and Wilk Oliveira dos Santos. Jogos educacionais como ferramenta de auxílio em sala de aula. In Anais do Workshop de Informática na Escola, volume 1, 2013.

[21] Nicoletta Di Blas and Bianca Boretti. Interactive storytelling in pre-school: a case study. In Proceedings of the 8th International Conference on Interaction Design and Children, pages 44–51. ACM, 2009.

[22] Tanja Doering, Steffi Beckhaus, and Albrecht Schmidt. Towards a sensible integration of paper-based tangible user interfaces into creative work processes. In CHI’09 Extended Abstracts on Human Factors in Computing Systems, pages 4627–4632. ACM, 2009.
[23] Daniel Fallman. The new good: exploring the potential of philosophy of technology to contribute to human-computer interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 1051–1060. ACM, 2011.

[24] Kenneth P Fishkin. A taxonomy for and analysis of tangible interfaces. Personal and Ubiquitous Computing, 8(5):347–358, 2004.

[25] Thatcher Freund. Stories in our culture. http://thatcherfreund.com/public-speaking.html 2015 (accessed Aug 3, 2015).

[26] Franca Garzotto and Roberto Gonella. An open-ended tangible environment for disabled children’s learning. In Proceedings of the 10th International Conference on Interaction Design and Children, pages 52–61. ACM, 2011.

[27] Julián Esteban Gutiérrez Posada, M Cecília C Baranauskas, and Vanessa RML Maike. Manipulando histórias: uma investigação sobre o uso de interfaces tangíveis e narrativas na escola. In Proceedings of the 13th Brazilian Symposium on Human Factors in Computing Systems, pages 160–168. Sociedade Brasileira de Computação, 2014.

[28] Julián Esteban Gutiérrez Posada, Elaine CS Hayashi, and M Cecília C Baranauskas. On feelings of comfort, motivation and joy that gui and tui evoke. In Design, User Experience, and Usability. User Experience Design Practice, pages 273–284. Springer, 2014.

[29] Julián Esteban Gutiérrez Posada, Heiko Hornung, Maria Cecília Martins, and Maria Cecília Calani Baranauskas. A tui-based storytelling for promoting inclusion in the preschool classroom. In Universal Access in Human-Computer Interaction. Access to Learning, Health and Well-Being, pages 89–100. Springer, 2015.

[30] Elaine CS Hayashi and M Cecília C Baranauskas. The affectibility concept in systems for learning contexts. International Journal for e-Learning Security (IJeLS), 1(1/2):10–18, 2011.

[31] Elaine CS Hayashi and M Cecília C Baranauskas. Affectibility in educational technologies: A socio-technical perspective for design. Journal of Educational Technology & Society, 16(1):57–68, 2013.

[32] Elaine CS Hayashi, Julián Esteban Gutiérrez Posada, and M Cecília C Baranauskas. Explorando princípios de afetibilidade no redesign de aplicações para contextos educacionais. In Anais do Simpósio Brasileiro de Informática na Educação, volume 24, 2013.

[33] Michael S Horn, Erin Treacy Solovey, R Jordan Crouser, and Robert JK Jacob. Comparing the use of tangible and graphical programming languages for informal science education. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 973–984. ACM, 2009.
REFERÊNCIAS BIBLIOGRÁFICAS

[34] Human-Digital Artifact Interaction Group InterHAD. Topa, tool for publication analyzes. http://eurydice.nied.unicamp.br/Topa, 2015 (accessed Jul 2, 2015).

[35] Hiroshi Ishii. The tangible user interface and its evolution. Communications of the ACM, 51(6):32–36, 2008.

[36] Hiroshi Ishii, Dávid Lakatos, Leonardo Bonanni, and Jean-Baptiste Labrune. Radical atoms: beyond tangible bits, toward transformable materials. Interactions, 19(1):38–51, 2012.

[37] Hiroshi Ishii and Brygg Ullmer. Tangible bits: towards seamless interfaces between people, bits and atoms. In Proceedings of the ACM SIGCHI Conference on Human factors in computing systems, pages 234–241. ACM, 1997.

[38] Julie A Jacko. Human-Computer Interaction. Interacting in Various Application Domains: 13th International Conference, HCI International 2009, San Diego, CA, USA, July 19-24, 2009, Proceedings. Springer Science & Business Media, 2009.

[39] Cesar H Castro Jr. A box of stories. http://storytellingbox.tumblr.com/post/435440263/e-irving-couse-the-historian-1902-the-indian, 2015 (accessed Aug 3, 2015).

[40] Carmen Juan, Raffaela Canu, and Miguelón Gimenez. Augmented reality interactive storytelling systems using tangible cubes for edutainment. In Advanced Learning Technologies, 2008. ICALT’08. Eighth IEEE International Conference on, pages 233–235. IEEE, 2008.

[41] Martin Kaltenbrunner. reactivision and tuio: a tangible tabletop toolkit. In Proceedings of the ACM international Conference on interactive Tabletops and Surfaces, pages 9–16. ACM, 2009.

[42] Martin Kaltenbrunner and Ross Bencina. Homesite reactivision. http://reactivision.sourceforge.net/, 2014 (accessed Out 10, 2014).

[43] Byron YL Kuo, Thomas Hentrich, Benjamin M Good, and Mark D Wilkinson. Tag clouds for summarizing web search results. In Proceedings of the 16th international conference on World Wide Web, pages 1203–1204. ACM, 2007.

[44] Jean-Baptiste Labrune and Wendy Mackay. Tangicam: exploring observation tools for children. In Proceedings of the 2005 conference on Interaction design and children, pages 95–102. ACM, 2005.

[45] Alessandro Liberati, Douglas G Altman, Jennifer Tetzlaff, Cynthia Muhrow, Peter C Gotzsche, John PA Ioannidis, Mike Clarke, PJ Devereaux, Jos Kleijnen, and David Moher. The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Annals of internal medicine, 151(4):W–65, 2009.
[46] José Wilker Pereira Luz and Luís Carlos Costa Fonseca. Educonnect: uma ferramenta de apoio à aprendizagem colaborativa para dispositivos móveis em redes manet. In *Anais do Simpósio Brasileiro de Informática na Educação*, volume 24, 2013.

[47] V. Maïe and M Cecília C Baranauskas. An authoring process for educational role playing games: From the paper to the web. In *Proceedings of the 2013 conference on Computers in Education*. UHAMKA, 2013.

[48] Ministry of Education Department of Special Education MEC. Special education mark political-legal perspective on inclusive education. (2010). http://pfdc.pgr.mpf.mp.br/atuacao-e-conteudos-de-apoio/publicacoes/educacao/marcos-politico-legais.pdf 2015 (accessed Aug 23, 2015).

[49] Gabriel Alves Vasiljevic Mendes, Leonardo Cunha de Miranda, Erica Esteves Cunha de Miranda, and Lyrene Fernandes da Silva. Prototipação de interfaces tangíveis de produtos interativos: estado da arte e desafios da plataforma arduino. In *Proceedings of the 11th Brazilian Symposium on Human Factors in Computing Systems*, pages 249–258. Brazilian Computer Society, 2012.

[50] Fabio Alexandre Caravieri Modesto and Pollyana Notargiacomo Mustaro. Revisão sistemática para estudo de interação criança-computador associada a ra e jogos digitais. In *Anais dos Workshops do Congresso Brasileiro de Informática na Educação*, volume 3, 2014.

[51] Jesús Muñoz, Michele Marchesoni, and Cristina Costa. i-theatre: Tangible interactive storytelling. In *Intelligent Technologies for Interactive Entertainment*, pages 223–228. Springer, 2012.

[52] Janet Horowitz Murray. *Hamlet on the holodeck: The future of narrative in cyberspace*. Simon and Schuster, 1997.

[53] Don Norman. Emotion & design: attractive things work better. *Interactions*, 9(4):36–42, 2002.

[54] Seymour Papert. *Mindstorms: Children, computers, and powerful ideas*. Basic Books, Inc., 1980.

[55] Robert Pastel, Charles Wallace, and Jesse Heines. Rfid cards: a new deal for elderly accessibility. In *Universal Access in Human Computer Interaction. Coping with Diversity*, pages 990–999. Springer, 2007.

[56] James Patten and Hiroshi Ishii. A comparison of spatial organization strategies in graphical and tangible user interfaces. In *Proceedings of DARE 2000 on Designing augmented reality environments*, pages 41–50. ACM, 2000.

[57] Julián Esteban Gutiérrez Posada and María Cecilia Calani Baranauskas. A study on the last 11 years of iceis conference-as revealed by its words. In *16th International Conference on Enterprise Information Systems (ICEIS 2014)*, pages 100–111, 2014.
REFERÊNCIAS BIBLIOGRÁFICAS

[58] XO Projeto. Projeto xo na escola e fora dela: Uma proposta semio-participativa para tecnologia, educação e sociedade. [http://www.nied.unicamp.br/xounicamp], 2010 (accessed Out 10, 2014).

[59] Yunfeng Qi, Danli Wang, Lan Zhang, and Yining Shi. Tanprostory: A tangible programming system for children’s storytelling. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, pages 1001–1006. ACM, 2015.

[60] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silverman, et al. Scratch: programming for all. Communications of the ACM, 52(11):60–67, 2009.

[61] Anna W Rivadeneira, Daniel M Gruen, Michael J Muller, and David R Millen. Getting our head in the clouds: toward evaluation studies of tagclouds. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 995–998. ACM, 2007.

[62] Denys FS Rocha, Ig Ibert Bittencourt, Diego Dermeval, and Seiji Isotani. Uma revisão sistemática sobre a educação do surdo em ambientes virtuais educacionais. In Anais do Simpósio Brasileiro de Informática na Educação, volume 25, pages 1263–1272, 2014.

[63] James A Russell and Albert Mehrabian. Evidence for a three-factor theory of emotions. Journal of research in Personality, 11(3):273–294, 1977.

[64] Kimiko Ryokai, Michael Jongseon Lee, and Jonathan Micah Breitbart. Children’s storytelling and programming with robotic characters. In Proceedings of the seventh ACM conference on Creativity and cognition, pages 19–28. ACM, 2009.

[65] Comissão Especial de Informática na Educação SBC. Cbie, congresso brasileiro de informática na educação. [http://www.br-ie.org/index.php/cbiemenu], 2015 (accessed Jul 2, 2015).

[66] Comissão Especial de Informática na Educação SBC. Ceie comissão especial de informática na educação. [http://www.br-ie.org/index.php/], 2015 (accessed Jul 2, 2015).

[67] Comissão Especial de Informática na Educação SBC. Rbie, revista brasileira de informática na educação. [http://www.br-ie.org/pub/index.php/rbie], 2015 (accessed Jul 2, 2015).

[68] Comissão Especial de Informática na Educação SBC. Sbie, simpósio brasileiro de informática na educação. [http://www.br-ie.org/index.php/anaissbie], 2015 (accessed Jul 2, 2015).

[69] Comissão Especial de Informática na Educação SBC. Wie, workshop de informática na escola. [http://www.br-ie.org/index.php/anaiswie], 2015 (accessed Jul 2, 2015).
[70] Sociedade Brasileira de Computação SBC. Sbc, sociedade brasileira de computação. \url{http://www.sbc.org.br} 2015 (accessed Jul 2, 2015).

[71] Abigail Sellen, Yvonne Rogers, Richard Harper, and TOM Rodden. Reflecting human values in the digital age. *Communications of the ACM*, 52(3):58–66, 2009.

[72] Yang Ting Shen and Ali Mazalek. Puzzletale: A tangible puzzle game for interactive storytelling. *Computers in Entertainment (CIE)*, 8(2):11, 2010.

[73] Daniel S Soper and Ofir Turel. An n-gram analysis of communications 2000–2010. *Communications of the ACM*, 55(5):81–87, 2012.

[74] Constantine Stephanidis. *Universal Access in Human-Computer Interaction. Users Diversity: 6th International Conference, UAHCI 2011, Held as Part of HCI International 2011, Orlando, FL, USA, July 9-14, 2011, Proceedings*, volume 6766. Springer Science & Business Media, 2011.

[75] Constantine Stephanidis et al. *Universal Access in Human-Computer Interaction. Ambient Interaction: 4th International Conference on Universal Access in Human-Computer Interaction, UAHCI 2007 Held as Part of HCI International 2007 Beijing, China, July 22-27, 2007 Proceedings*. Springer-Verlag Berlin Heidelberg, 2007.

[76] Amanda Strawhacker, Amanda Sullivan, and Marina Unasaki Bers. Tui, gui, hui: is a bimodal interface truly worth the sum of its parts? In *Proceedings of the 12th International Conference on Interaction Design and Children*, pages 309–312. ACM, 2013.

[77] Cristina Sylla. Designing a tangible interface for collaborative storytelling to access‘ embodiment and meaning making. In *Proceedings of the 12th International Conference on Interaction Design and Children*, pages 651–654. ACM, 2013.

[78] Cristina Sylla, Pedro Branco, Clara Coutinho, and Eduarda Coquet. Tuis vs. guis: comparing the learning potential with preschoolers. *Personal and Ubiquitous Computing*, 16(4):421–432, 2012.

[79] Cristina Sylla, Clara Coutinho, Pedro Branco, and Wolfgang Müller. Investigating the use of digital manipulatives for storytelling in pre-school. *International Journal of Child-Computer Interaction*, 2015.

[80] Carpegieri Torezani, Lucinéia Barbosa da Costa Chagas, and Orivaldo de Lira Tavares. Newprog-um ambiente online para crianças aprenderem programação de computadores. In *Anais do Workshop de Informática na Escola*, volume 1, 2013.

[81] Marco AS Trentin, Carlos Ariel Samudio Pérez, and Adriano Canabarro Teixeira. A robótica livre no auxílio da aprendizagem do movimento retíneo. In *Anais do Workshop de Informática na Escola*, volume 1, 2013.

[82] Oxford University. Oxford dictionaries language matters. \url{http://www.oxforddictionaries.com} 2014 (accessed May 7, 2014).
[83] Catherine Vaucelle and Tristan Jehan. Dolltalk: a computational toy to enhance children’s creativity. In CHI’02 Extended Abstracts on Human Factors in Computing Systems, pages 776–777. ACM, 2002.

[84] Cati Vaucelle and Hiroshi Ishii. Picture this!: film assembly using toy gestures. In Proceedings of the 10th international conference on Ubiquitous computing, pages 350–359. ACM, 2008.

[85] Jasmine M Williams. Move it!: puppetry for creativity. In Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, pages 323–324. ACM, 2010.

[86] Karl DD Willis, Takaaki Shiratori, and Moshe Mahler. Hideout: mobile projector interaction with tangible objects and surfaces. In Proceedings of the 7th International Conference on Tangible, Embedded and Embodied Interaction, pages 331–338. ACM, 2013.

[87] Lesley Xie, Alissa N Antle, and Nima Motamedi. Are tangibles more fun?: comparing children’s enjoyment and engagement using physical, graphical and tangible user interfaces. In Proceedings of the 2nd international conference on Tangible and embedded interaction, pages 191–198. ACM, 2008.

[88] Diana Xu. Design and evaluation of tangible interfaces for primary school children. In Proceedings of the 6th international conference on Interaction design and children, pages 209–212. ACM, 2007.
Apêndice A

Manual de CPES Collaborative Programmable Environment for Storytelling

A.1 Introdução

Este manual foi desenvolvido para auxiliar o usuário a utilizar e entender o funcionamento do ambiente CPES (Collaborative Programmable Environment for Storytelling). Recomenda-se que sua leitura seja feita respeitando a ordem dos capítulos, pois a ordem desses foi construída em dificuldade crescente e, em vários momentos, os capítulos citam informações ensinadas anteriormente.

Primeiramente, em “Equipamentos”, são apresentados o hardware e outros objetos de que o ambiente necessita, e suas montagens e disposições finais são descritas em “Montando os equipamentos”. Com os aparelhos prontos, apresenta-se ao leitor, em “Visão geral”, uma visão de como o ambiente funciona, sendo que todos os conceitos ali mostrados serão esclarecidos em detalhes ao longo do manual. Finalmente, o usuário aprende os primeiros passos para começar a utilizar o ambiente em “Acessando o software”.

Nos próximos capítulos, serão descritos os Modos de utilização do ambiente. Em “Modo 1 - Apresentador”, são apresentados comandos relacionados a visualização de apresentações do tipo sequência de slides, com ou sem narrações. O leitor aprenderá a criar, modificar ou compartilhar, por exemplo, slides, sons e narrações. O capítulo subsequente, “Comandos extras”, traz outros comandos que serão auxiliares no Modo 1 e também no software inteiro. Em “Modo 2 - Storytelling”, são ensinados comandos relacionados a visualizar, criar e animar personagens, também podendo associar ou não som a esses figurantes. E, em “Modo 3 - Scriptwriter”, será exercitada a capacidade de “programar” ou definir ações específicas no ambiente para serem executadas quando um evento é gerado (movimento de personagem, colisão entre personagens, entre outros).

Ao longo das páginas, o leitor poderá encontrar pequenas dicas ou instruções sinalizadas com uma fonte diferenciada e com setas.
A.2 Equipamentos

Antes de começar a executar o software, você deverá verificar se possui os equipamentos que serão mencionados a seguir. Alguns equipamentos não são essenciais para que o ambiente funcione, porém sua ausência implicará na limitação de alguns comandos e funcionalidades.

- Leitor de RFID USB (Figura A.1) que opere, por exemplo, na frequência de 13.56Mhz

![Figura A.1: Leitores de RFID](http://goo.gl/vYyxRa)

Observe que as frequências do leitor e dos cartões precisam ser iguais!

- Cartões de RFID (Figura A.2) que operem, por exemplo, na frequência de 13.56Mhz

![Figura A.2: Cartões de RFID](http://goo.gl/wDxBnt)

- WebCam com microfone e suporte (Figura A.3)

- Computador (Figura A.4)

O sistema operacional deve ser no mínimo Windows 7, e o computador (Figura A.4) deve possuir um monitor de tamanho suficiente para fazer uma apresentação para um grupo de espectadores. Caso o monitor seja pequeno demais, recomenda-se que seja utilizado outro recurso para exibir a imagem, como uma TV ou um projetor.

- Impressora (Figura A.5).

1 http://goo.gl/vYyxRa / http://goo.gl/4RaBM1 / http://goo.gl/d2WIQC

2 https://goo.gl/wDxBnt

3 http://goo.gl/MxsMiy

4 https://goo.gl/9qWDnI

5 http://goo.gl/q3JSmX
Figura A.3: WebCam

Figura A.4: Computador

Figura A.5: Impressora

Sem a impressora (Figura A.5), não haverá a funcionalidade de imprimir os rótulos, que são as imagens que acompanham os cartões de RFID.

- Caixas de som (Figura A.6)

Figura A.6: Caixas de som

http://goo.gl/BsQhqi
Se o seu computador possuir saída para som (como no caso dos notebooks), as caixas (Figura A.6) podem servir opcionalmente para amplificar o som.

- Objetos com Marcas Fiduciais (Figura A.7)

Figura A.7: Objetos tangíveis

![Objetos tangíveis](image1)

Figura A.8: Marcas fiduciais

Você pode utilizar qualquer objeto, porém é necessário prestar atenção em alguns detalhes. Exemplificando, os objetos mostrados acima são copos (Figura A.7) que possuem uma região onde o usuário pode segurá-los, uma região para colar a marca fiducial (Figura A.8) em cima, e marcas escritas e em relevo que indicam seu número correspondente.

- Chroma Key verde

Você deverá ter um pedaço retangular (um tamanho bom seria de aproximadamente 30x40cm) de EVA verde (Figura A.9) e um pano verde (Figura A.10). Esse pano será utilizado como fundo para fotografias de pessoas, então sua altura deve ultrapassar a altura da pessoa a ser fotografada, e sua largura deve cobrir toda a largura da foto.

A.3 Montando os equipamentos

A disposição final dos equipamentos fica como mostrada na Figura A.11:

- O leitor de RFID (Figura A.1), a WebCam (Figura A.3) e a tela LCD devem ser conectados ao computador (Figura A.4).

[7]http://goo.gl/qfU4ry
[8]http://goo.gl/mNsjbS
O pedaço de EVA verde (Figura A.9) deve estar sobre uma superfície plana, e a WebCam (Figura A.3) deve ser posicionada de forma a mirar para ele.

O pano verde (Figura A.10) deve ser fixado verticalmente, numa parede ou num suporte, sendo importante que haja um pouco de pano cobrindo o chão também.

Durante a execução do software, os copinhos (Figura A.7) deslizaram pelo EVA,
os cartões (Figura A.2) serão passados pelo leitor de RFID (Figura A.1) e a tela (Figura A.4) exibirá a apresentação desejada.

Dois detalhes importantes, que podem ser observados na Figura A.11, são que: o suporte da WebCam foi improvisado com um abajur, o qual pode ser um recurso interessante para esconder a câmera; e foi utilizada uma tela LCD para exibir a imagem, ao invés do monitor do computador.

A.4 Visão geral

![Figura A.12: Cartões de RFID](image)

Este software serve como plataforma para que os usuários contem histórias; e os equipamentos, descritos na seção anterior, são recursos dessa plataforma. Os cartões RFID (Figura A.12), por exemplo, são ferramentas que controlam o software e armazenam informações. Alguns desses cartões estão pré-definidos e contêm personagens e comandos específicos, enquanto em outros serão gravados novos personagens, novos palcos, sons, sequências, cenários e descrições.

![Figura A.13: Recurso para colocar rótulo num cartão](image)
Para que seja possível saber o conteúdo de um cartão, recomenda-se que o mesmo seja posto num pequeno saquinho plástico, onde possam ser inseridos papeis/rótulos com imagens ou escritos sobre o conteúdo (Figura A.13).

Quando um desses cartões for passado próximo ao leitor, o software executará uma determinada tarefa correspondente. Se você escolher um cartão de comando, como ele é uma ferramenta de controle, o software executará uma ação: inicializará o palco, criará personagem, criará palco, armazenará cenário, etc. Por outro lado, se o cartão escolhido for de um personagem ou palco, seu personagem/palco aparecerá na tela. Exemplificando: Ver Figura A.14.

Figura A.14: Colocando um personagem na tela

Os usuários podem criar novos personagens por fotografias de desenhos, de objetos (bonecos feitos de massa de modelar, por exemplo) e de pessoas. De maneira similar, os novos palcos podem ser fotografias de desenhos ou de paisagens, e também podem ser importados de uma pasta específica (o palco recebe um arquivo de imagem). Os sons são gravados, e as sequências, cenários e descrições são montados a partir de combinações entre os recursos audiovisuais anteriormente descritos.

Além dos cartões e do leitor de RFID, outros recursos que serão utilizados ao longo do software são: a WebCam para tirar as fotografias, o microfone para gravações de som, os fundos verdes (pano e EVA) como pano de fundo para as fotografias e os objetos tangíveis para a animação de personagens.

A.5 Acessando o software

Uma vez que os equipamentos estejam prontos e o hardware funcionando, o passo seguinte é abrir o software através de um duplo clique no ícone “CPES” (Figura A.15) no menu de todos os programas na tela inicial do Windows.

A primeira tela que você verá será Figura A.16.
Ao longo do manual, as telas do ambiente serão representadas através de um desenho simbólico (Figura A.17).

Um dos comandos do software se chama “Reinicialização de sistema” (Figura A.18) e pode ser usado a qualquer momento para voltar a essa tela.
Outro comando que merece destaque é “Cancelar / Terminar a ação” (Figura A.19), que interrompe qualquer ação que você estiver executando.

A.6 Modo 1 - Apresentador

Neste modo, você usará o ambiente de contar histórias para visualizar palcos, criá-los e associá-los com sons e narrações também criados por você!

Para visualizar um palco já existente, basta aproximar seu cartão de RFID do leitor e sua imagem aparecerá na tela: Figura A.20.

Por outro lado, para criar um novo palco, você deverá confeccionar um novo cartão com o conteúdo visual desejado. Existem dois modos de criação: através de fotografias tiradas pela WebCam ou através de arquivos de imagem. Primeiramente, vamos nos concentrar no primeiro modo.

Como você estará trabalhando com uma câmera, poderá fotografar qualquer alvo que deseje que se torne o palco da sua história. Exemplificando, é possível tirar foto do mundo!
físico (Figura A.21a), de um desenho (Figura A.21b) ou de uma composição de objetos (Figura A.21c), como palitos, massinha de modelar, bonecos.

Antes de começar a tirar fotos, entretanto, é necessário utilizar o comando “Criar palco”. Para isso, selecione seu cartão de RFID e aproxime-o do leitor (Figura A.22).

Este tipo de tela irá aparecer em muitos dos comandos do software. Ela mostra todos os passos que você deve seguir para executar a tarefa desejada, com o próximo passo em destaque laranja (Figura A.23). No caso de “Criar palco”, esse guia está lhe mostrando que:

- A próxima tela interpretará o visor da WebCam, então é importante posicionar o aparelho de forma a mirar para o objeto do qual se quer tirar a foto.
- Quando o enquadramento da foto estiver do seu agrado, você deve passar um cartão em branco no leitor. Esse cartão receberá a nova foto, o novo palco (Figura A.24).

Ou seja, para o comando em questão especificamente, após a tela introdutória (que talvez só possa ser visualizada por um breve período de tempo), aparecerá automaticamente a tela que interpreta o visor da WebCam.

Supondo que o palco desejado seja um desenho infantil, os próximos passos serão descritos em mais detalhes na próxima página:

- Posicione a WebCam de forma a mirá-la para o desenho, Figura A.25.
Figura A.23: Passos do comando em destaque

Figura A.24: Resultado do Comando

Figura A.25: WebCam mirando o desenho
A tela mostrará o visor da câmera (Figura A.26): um retângulo indicando a área da foto. Você pode enquadrar a foto mexendo ou na posição do desenho, ou na WebCam.

Quando você achar que a foto ficará boa, basta passar um cartão de RFID em branco no leitor (Figura A.27).

A próxima tela terá um sinal verde se o comando foi bem sucedido, ou um sinal vermelho se mal sucedido. Ver Figura A.28.

Se o comando for bem sucedido, o antigo cartão em branco agora está armazenando uma fotografia do desenho.

Para identificar o conteúdo do novo cartão, é importante confeccionar um rótulo, seja por impressão ou escrita/desenho. Ver Figura A.29.

Outro modo de criar um palco é através de um arquivo de imagem. No nosso caso de exemplo, suponha que o desenho da criança foi escaneado, ou que a criança desenhou no Paint. Você deverá colocar o arquivo de imagem na pasta “Importação de imagens” do programa. Para isso, vá em “Computador” (ou “Meu Computador”), escolha o “Disco
Local C” e entre nas pastas “Arquivos de Programas”, “CPES” e “Importação de Imagens” (Figura A.30), nesta ordem.

Na pasta de importação, salve o arquivo de imagem, o qual deve estar no formato JPG ou PNG. Ver Figura A.31.

Após o desenho estar na pasta correta do programa, você deve utilizar o comando “Importar palco” no leitor. Ver Figura A.32.
Acionando esse comando, o sistema irá procurar a primeira imagem da pasta “Importação de Imagens” - neste caso, o arquivo com o desenho da menina e o lobo - para associá-la a um novo cartão em branco. Então:

- Após a primeira tela, passe um cartão em branco no leitor de RFID (Figura A.33). Esse cartão receberá o desenho que estava no arquivo.
A próxima tela terá um sinal verde se o comando foi bem sucedido, ou um sinal vermelho se mal sucedido (Figura A.34).

![Figura A.34: Telas de sucesso ou fracasso do comando](image)

Se o comando foi bem sucedido e você obteve o novo cartão, o software irá deletar o arquivo de imagem que acabou de ser utilizado. Ou seja, supondo que havia três imagens na pasta:

Uma vez que a imagem A tenha sido utilizada, ela será deletada. Caso você utilizasse novamente o comando de “Importar palco”, a imagem que seria associada ao cartão em branco seria a imagem B, pois ela estaria na primeira posição (Figura A.35).

![Figura A.35: Posição das imagens na pasta](image)

Após o novo palco ter sido armazenado em um cartão, você pode criar narrações ou efeitos sonoros através do comando “Criar narração / efeito” (Figura A.36). A ideia é associar um som ao mesmo cartão que contém um palco, de tal forma que quando a imagem for ser exibida, ela será acompanhada de um som.

Nesta tela, o microfone começará a gravar automaticamente qualquer som que você queira produzir, seja uma narração (“Quando a menina entrou na casa, ela encontrou o lobo mau!”), seja um efeito sonoro (canto de passarinhos, uivo do lobo, por exemplo). Também irá aparecer um cronômetro em contagem regressiva, a partir de 60 segundos, que mostra o tempo ainda disponível para gravação.

A gravação se encerra se o tempo disponível acabar ou se você passar o cartão RFID no qual você deseja gravar o som. No primeiro caso, haverá uma próxima tela indicando que você deve passar o cartão. Em ambos os casos, a última tela mostrará se o comando foi bem ou mal sucedido.

Explicando em detalhes:

- Após utilizar o cartão “Criar narração efeito”, o microfone começará a gravar e o cronômetro mostrará o tempo de gravação restante.
Figura A.36: Comando “Criar narração / efeito”

Figura A.37: Gravando som com microfone

- Grave o som no microfone (Figura A.37).

- Se você fizer uma gravação utilizando todo o tempo disponível, quando o cronômetro chegar ao fim, uma nova tela aparecerá (Figura A.38). Ela indica que você deve passar o cartão que contém o desenho no leitor, para que o som seja associado a ele.

Figura A.38: Segunda tela de “Criar narração / efeito”

- Se optar por interromper a gravação antes do cronômetro chegar ao fim (no caso
de seu som ocupar menos que um minuto), você deve passar o cartão que contém o desenho no leitor, para que o som seja gravado nele (Figura A.39).

Figura A.39: Cartão recebendo o som.

• A próxima tela terá um sinal verde se o comando foi bem sucedido, ou um sinal vermelho se mal sucedido (Figura A.40).

Figura A.40: Telas de sucesso ou fracasso do comando.

• Se o comando for bem sucedido, agora o cartão RFID, que tem um desenho, está armazenando também um som associado ao desenho. Para testar o resultado final, passe o cartão no leitor (Figura A.41):

“Quando a menina entrou na casa, ela encontrou o lobo mau!”

Figura A.41: Testando o resultado final.
Caso você queria que os sons dos cartões sejam silenciados, como um efeito de mute, você pode usar o comando “Desabilitar narração / efeitos”. E, para retornar aos sons originais, basta utilizar o comando inverso “Habilitar narrações / efeitos” (Figura A.42).

Figura A.42: Cartões dos comandos para Desabilitar e Habilitar narrações / efeitos

Outro comando importante é “Desvincular narração / efeito”, através do qual você removerá o som de um cartão específico. Por exemplo, no cartão utilizado anteriormente com o desenho da menina e o lobo, suponha que você queira alterar a narração da cena. O primeiro passo é deletar a narração antiga, e isso pode ser feito da seguinte forma (Figura A.43):

Figura A.43: Comando “Desvincular narração / efeito”

- A tela acima indica que você deve passar o cartão, do qual você deseja apagar o som, no leitor (Figura A.44).
- A próxima tela terá um sinal verde se o comando foi bem sucedido, ou um sinal vermelho se mal sucedido (Figura A.45).
- Se o comando for bem sucedido, seu cartão de RFID não possuirá mais um som (Figura A.46).

Para o último comando que será ensinado nesta seção, vamos supor que você tenha construído vários cartões com palcos e sons. Para apresentá-los, você teria que passá-los um a um no leitor de RFID. Outra forma de apresentação seria através da criação de um
Figura A.44: Cartão sendo desvinculado do som

Figura A.45: Telas de sucesso ou fracasso do comando

Figura A.46: Cartão sem o som antigo

Novo cartão que contivesse todos os demais e os apresentasse na ordem desejada. Para isso:

- Utilize o cartão de “Criar sequência” (Figura A.47)

- Passe os cartões na ordem e com o tempo que você gostaria que eles fossem apresentados (Figura A.48). Neste caso, por exemplo, se você passar um cartão logo em seguida do outro, na apresentação a tela mudará rapidamente de um palco para o outro.

- Passe um cartão em branco para armazenar a nova sequência (Figura A.49).

- Para testar, utilize o cartão que você acabou de criar (Figura A.50).
Figura A.47: Comando “Criar sequência”

Figura A.48: Cartões que farão parte da sequência

Figura A.49: Cartão em branco no leitor

Figura A.50: Cartão com nova sequência no leitor
As telas mostrarão o conteúdo dos cartões escolhidos, inclusive com seus sons! (Figura A.51)

Figura A.51: Cenas da sequência

Uma observação é que nesta seção foi apresentada apenas uma possibilidade entre muitas do uso de “Criar sequência”, comando esse que será retomado no exemplo prático do Modo 1 e nos demais modos do ambiente.

A.6.1 Modo 1 - Exemplo prático

Nesta subseção, será mostrado um exemplo prático simples utilizando alguns dos conceitos e comandos explicados ao longo do Modo 1.

Supondo que uma criança queira contar uma história baseada na história da Chapéu-zinho Vermelho. Uma ideia possível é que cada cena da história seja uma palco diferente. Os palcos, como já mencionado anteriormente, podem ser fotografias ou arquivos, e as fotografias podem ser de quaisquer cenários desejados. Vamos supor que a criança tenha feito três desenhos e uma montagem com objetos, e queira tirar uma foto do mundo real, além de pegar uma imagem da Internet (Figura A.52).

Figura A.52: Imagens para novos palcos
Para transformar em palco os desenhos, a montagem e a foto do mundo real, vamos utilizar o comando “Criar Palco” e o recurso de tirar fotografias com a WebCam (Figura A.53).

![Figura A.53: Comando “Criar Palco”](image)

O procedimento deve ser repetido para os quatro demais palcos, apenas mudando o alvo da fotografia do segundo passo (Figura A.54), ou seja:

![Figura A.54: F otografias dos demais palco com a WebCam](image)

Quando você acabar de criar os cinco primeiros palcos, terá cinco cartões associados com tais palcos (Figura A.55).

![Figura A.55: Cartões com palcos](image)

Para criar o último cartão associado a imagem da Internet, vamos utilizar o comando de “Importar palco”. Antes, porém, é necessário colocar o arquivo de imagem na pasta correta do programa (Figura A.56) Em Disco Local C:\Arquivos de Programas\CPES\Importação de Imagens, salve a imagem desejada Figura A.57.
Com todos os cartões prontos, uma possível ideia é associar sons (Figura A.58) a esses cartões! Vale lembrar que as possibilidades de sons são infinitas, abrangendo narrações, canções, músicas, efeitos sonoros, barulhos de animais...

Repita o procedimento acima para os cinco demais cartões, apenas alterando o segundo e o terceiro passo.

Uma situação comum que pode acontecer é você estar, por exemplo, gravando uma
narração e cometer algum erro. Se isso ocorrer, você não precisa dar prosseguimento no comando, basta utilizar o comando “Cancelar / Terminar a ação” (Figura A.59).

Outra possível situação é você perceber um erro no som depois que o cartão ficou pronto. Para corrigir isso, você pode recorrer ao comando “Desvincular narração / efeito” (Figura A.60).

Com todos os cartões prontos, resta fazer a apresentação da história para um público. Quando a criança quiser mostrar uma cena, basta passar o cartão correspondente no leitor, ou seja (Figuras A.61 e A.62):

Figura A.61: Cena 1 da história

Vale lembrar que também é possível fazer uma narração no momento da apresentação (Figura A.63), sem a necessidade de gravá-la e associá-la ao cartão.
Uma última ideia para a apresentação da história seria a possibilidade de criar uma sequência com todas as cenas, para que um único cartão contenha a história. Para isso, é necessário utilizar o comando de “Criar sequência” (Figura A.64) seguido dos cartões das cenas (Figura A.65), respeitando sua ordem e seu tempo, e de um cartão em branco (Figura A.66).

- Utilize o comando de “Criar sequência”
- Passe todos os cartões que contêm as cenas da história
- Passe um cartão em branco para armazenar a sequência

No novo cartão, estará a apresentação completa de sua história!

A.6.2 Comandos extras

Nesta subseção, serão descritos comandos que podem lhe auxiliar no Modo 1 e no software inteiro, de modo geral. Como o processo de executar alguns comandos é muito parecido
com o processo de comandos anteriormente descritos neste manual, sua explicação será feita de uma maneira um pouco mais simplificada.

Dois novos comandos são “Criar descrição” e “Desvincular descrição”, que possuem uma execução igual à execução de “Criar narração / efeito” e “Desvincular narração / efeito”, respectivamente. A descrição de um cartão é uma narração do conteúdo do cartão, que pode ser extremamente útil se o usuário possuir alguma dificuldade de enxergar.

Para criar uma descrição, basta seguir os itens:

- Passe o cartão de “Criar descrição” (Figura A.67).
• Uma gravação começará automaticamente através do microfone, e um cronômetro mostrará o tempo restante. Lembrando que essa gravação é interrompida quando o tempo acabar, ou quando o usuário utilizar o cartão no qual deseja gravar a descrição.

• Passe o cartão no qual você deseja gravar a descrição.

• A próxima tela mostrará se a operação foi bem sucedida ou não.

Para apagar a descrição, o comando “Desvincular descrição” (Figura A.68) pode ser utilizado da seguinte forma:

• Passe o cartão de “Desvincular descrição”.

• Depois, passe o cartão do qual você deseja apagar a descrição, como indicado na tela.

• A próxima tela mostrará se a operação foi bem sucedida ou não.

Uma vez que um cartão tenha uma descrição, você pode ouvi-la através do comando “Ouvir descrição” (Figura A.69).

• Utilize o cartão “Ouvir descrição”.

• Depois, passe o cartão do qual você deseja ouvir a descrição (Figura A.70).
A próxima tela terá um sinal verde se o comando foi bem sucedido, ou um sinal vermelho se mal sucedido (Figura A.71).

Se o comando for bem sucedido, você ouvirá a descrição do cartão (Figura A.72).

Os próximos três comandos “Desvincular o conteúdo”, “Reatribuir o conteúdo” e “Copiar o conteúdo” podem ser utilizados durante o software inteiro, para qualquer tipo de conteúdo (pássos, personagens, sequências, eventos). O primeiro deles, parecido com “Desvincular narração / efeito”, é usado para apagar todo o conteúdo de um cartão. Seus passos de execução são:

- Passe o cartão de “Desvincular o conteúdo” (Figura A.73).
Depois, passe o cartão do qual você deseja apagar o conteúdo, como indicado na tela.

A próxima tela mostrará se a operação foi bem sucedida ou não.

Agora, supondo que você tenha apagado o conteúdo de um cartão, mas precise do conteúdo novamente. Felizmente, essa informação está guardada no software e pode ser recuperada pelo comando “Reatribuir o conteúdo”. Esse comando devolve para o cartão as últimas informações que foram deletadas dele.

- Passe o cartão de “Reatribuir o conteúdo” (Figura A.74).

Depois, passe o cartão no qual você deseja reatribuir o conteúdo.
A próxima tela mostrará se a operação foi bem sucedida ou não.

Uma observação sobre o software é que ele possui um espaço de “Lixeira”, que guarda até três versões do conteúdo que havia num cartão. Exemplificando, supondo que, para um mesmo cartão, você tenha deletado os conteúdos C, B e A, e agora queira recuperar o último conteúdo deletado, o conteúdo A. Se você utilizar o comando de “Reatribuir conteúdo”, o conteúdo A irá para seu cartão de RFID, os conteúdos B e C irão avançar de posição, e o conteúdo que antes estava no seu cartão irá entrar para a fila de conteúdos deletados (Figura A.75). Ou seja:

![Figura A.75: Posição dos conteúdos na “Lixeira”](image)

O terceiro comando relativo ao conteúdo dos cartões serve para copiar o conteúdo de um cartão para o outro (Figura A.76). Para essa operação, siga os passos:

- Utilize o cartão “Copiar conteúdo”.

![Figura A.76: Comando “Copiar conteúdo”](image)

- Depois, passe o cartão do qual você deseja copiar o conteúdo (Figura A.77).
- Passe um cartão em branco (Figura A.78), que receberá o conteúdo do outro cartão.
- A próxima tela terá um sinal verde se o comando foi bem sucedido, ou um sinal vermelho se mal sucedido.
- Se o comando for bem sucedido, você possuirá dois cartões com o mesmo conteúdo (Figura A.79).

Finalmente, caso você queira que o conteúdo de um de seus cartões não possa ser alterado, você pode utilizar o comando “Proteger o conteúdo” (Figura A.80).

- Utilize o cartão “Proteger o conteúdo”.

Cartão RFID

Primeiro conteúdo	Segundo conteúdo	Terceiro conteúdo
Contúdo D	Contúdo B	Contúdo C

Figura A.77: Passe o cartão do qual você deseja copiar o conteúdo
Depois, passe o cartão que você deseja proteger (Figura A.81).

A próxima tela terá um sinal verde se o comando foi bem sucedido, ou um sinal vermelho se mal sucedido (Figura A.82).

Um conteúdo protegido (Figura A.83) não pode ser apagado, acrescido ou diminuído, o que pode ser útil para cartões com informações muito importantes que não podem ter
alterações (como os próprios cartões de comando do software). Porém, se você quiser alterar o conteúdo de algum cartão protegido, basta utilizar o comando “Desproteger o conteúdo” seguindo passos semelhantes aos descritos acima:

- Passe o cartão de “Desproteger o conteúdo” (Figura A.84).
- Passe o cartão cujo conteúdo você deseja poder alterar.
- A próxima tela mostrará se a operação foi bem sucedida ou não.

Os últimos comandos que serão apresentados nesta seção são referentes à criação de rótulos.
Os rótulos são mencionados e representados ao longo do manual inteiro, e, como já dito antes, são importantes para identificar o conteúdo do cartão de RFID. Para imprimir
os rótulos de todos os seus cartões basta passar o cartão “Criar todos os rótulos” (Figura A.85). Já para criar apenas alguns rótulos, você deve seguir os passos:

- Utilize o cartão “Criar alguns rótulos” (Figura A.86).
- Passe novamente o cartão para mudar de tela. Em seguida, passe todos os cartões dos quais você deseja imprimir os rótulos.
- Quando todos os cartões forem passados, utilize o comando “Cancelar / Terminar a ação”.

Figura A.83: Cartão protegido

Figura A.84: Cartão de “Desproteger o conteúdo”

Figura A.85: Cartão de “Criar todos os rótulos”
Ao final de ambos os comandos, o software indicará se o comando foi bem ou mal sucedido. Se for bem sucedido, ele também gerará um arquivo com a imagem dos rótulos desejados (Figura A.87) e imprimirá.

A.7 Modo 2 - Storytelling

Neste modo, você usará o ambiente de contar histórias para visualizar e animar personagens já existentes ou criados por você, com ou sem som.

Personagens são colocados no palco simplesmente passando seu cartão RFID no leitor (Figura A.88):

Personagens já existentes possuem seu próprio cartão, e os personagens que você criar também deverão ser associados a cartões. O processo de criar um personagem é parecido com o processo de criar palcos: você irá tirar uma fotografia do que você deseja que vire um figurante de sua história.

As possibilidades de figurantes são várias, podendo se estender de desenhos ou bonecos de massinha até pessoas. Independente do que você escolha, a ideia essencial é tirar uma foto do "objeto" em fundo verde (chroma key), porque o fundo verde indica para o software qual região da fotografia ele pode desprezar (Figura A.89).

Se seu figurante escolhido for um objeto pequeno, você pode utilizar o EVA verde como fundo. Porém, se for algo maior como uma pessoa, você deve utilizar o pano verde de grandes dimensões.
Os passos para se criar um personagem são:

- Utilize o cartão “Criar personagem” (Figura A.90).

 - Utilize o cartão “Criar personagem”

- Mire a WebCam para o objeto que você deseja transformar num personagem (Figura A.91).

- Perceba que a próxima tela mostra o visor da câmera (Figura A.92), porém já não é possível ver o fundo verde (o software já o removeu). Entorno do seu personagem, aparece um retângulo que pode ficar variando de tamanho: ele indica a área que a figura do seu personagem ocupará.

- Quando esse retângulo estiver o mais próximo de seu personagem, como mostrado na figura, você deve passar um cartão em branco no leitor (Figura A.93).
A próxima tela indicará se o comando foi bem ou mal sucedido (Figura A.94).

Supondo que o comando anterior foi bem sucedido, agora você tem um cartão com o seu personagem! Se você quiser, também é possível associar um som a esse cartão através do comando “Criar narração / efeito” como já foi explicado na seção “Modo 1 - Apresentador”. Dessa forma, quando você utilizar o cartão no leitor, o personagem aparecerá no palco e fará um som ou não.
Figura A.94: Sinalização verde e vermelha

Antes de colocar seu personagem no palco, porém, é importante ressaltar que os personagens no palco estão identificados por um número de 1 a 5. Esses números são importantes tanto para a edição, quanto para a animação, as quais serão comentadas um pouco adiante. Assim, é essencial que você escolha um número para seu personagem através do comando “Selecionar personagem”, ou seja: (Figura A.95)

Se você fosse acrescentar outro personagem na cena, você precisaria passar, por exemplo, o cartão “Selecionar personagem 2”, para que o outro personagem tenha o número 2. Se você não escolhesse outro número, o novo personagem entraria no lugar do antigo! Para saber qual número corresponde a qual personagem, você pode usar o comando “Identificar personagens”, que mostra os números temporariamente (Figura A.96):

Figura A.95: Colocando o personagem no palco

Figura A.96: Comando “Identificar personagens”

Para editar um personagem, ele precisa estar selecionado, e para isso você pode usar
novamente o comando de selecionar personagens (também vale lembrar que o último personagem adicionado é já está selecionado).

Supondo que você queira editar o segundo personagem da figura anterior. Se ele não foi o último personagem adicionado, você deve usar o comando “Selezionar personagem 2” para selecioná-lo (Figura A.97).

Figura A.97: Cartão do comando “Identificar personagem”

Os comandos relativos à edição de personagens são: “Aumentar o personagem”, “Diminuir o personagem”, “Refletir o personagem”, “Esconder personagem” e “Mostrar o personagem” (Figura A.98). Entre eles, “Refletir o personagem”, talvez o menos intuitivo, inverte a figura em torno de um eixo vertical, como mostrado abaixo (Figura A.99).

Figura A.98: Comandos de edição de personagem

Figura A.99: Comando de “Refletir o personagem”

Caso você deseje que um personagem não possa ser editado, você pode utilizar o comando “Bloquear o personagem”, que pode ser revertido com “Desbloquear o personagem” (Figura A.100).
Finalmente, para a parte de animação, cada um dos objetos tangíveis - dos copos, no caso - estará associado a um personagem segundo seu número; ou seja, o personagem 1 estará associado ao copo 1 (lembrando que os copos também são numerados). Dessa forma, quando você mexe num objeto (Figura A.101), seu figurante correspondente também se mexe na tela (Figura A.102). Esta associação ocorre automaticamente quando um personagem é posto na tela.

Lembrando que: o objeto deve estar de preferência sobre o EVA verde e sob a mira da WebCam!

Na prática, seu ambiente deverá estar como na Figura A.103
Figura A.103: Visão geral do ambiente

Supondo agora que você tenha feito uma cena com palco e personagens. É possível guardar tal cena em um cartão de modo que, quando você acionar esse cartão, na tela apareça tanto o palco, quanto os personagens (associados aos objetos tangíveis)! Uma forma de executar tal ação é através do comando que se chama “Armazenar o cenário”:

- Utilize o cartão “Armazenar o cenário” (Figura A.104).

→ Utilize o cartão “Armazenar o cenário”.

Figura A.104: Cartão do comando “Armazenar o cenário”

- Passe um cartão em branco para armazenar o cenário atual (Figura A.105).
- Se o comando for bem sucedido, o cartão em branco conterá personagens e um palco
- Para testar o novo cartão, passe-o no leitor de RFID

Ainda sobre “Armazenar cenário”, no caso de você desejar guardar apenas os personagens atuais sem o palco, é necessário utilizar o recurso de “Inicializar Palco” (Figura A.107).

Dessa forma, se você armazenasse o cenário anterior, mas com o palco verde, seu novo cartão não iria conter palco nenhum (Figura A.108).
Figura A.105: Cartão em branco recebendo cenário atual

Figura A.106: Testando cartão com cenário

Figura A.107: Comando de “Inicializar Palco”

Figura A.108: Cartão armazenando cenário sem palco
Outro comando que pode executar uma ação semelhante às ações descritas acima é “Criar sequência”. Diferentemente de “Armazenar cenário”, você não irá armazenar a tela atual, mas sim comandos e conteúdos de cartões a serem escolhidos e passados no leitor posteriormente. Se quisermos reconstruir um cenário parecido com o cenário acima, começaremos utilizando o comando “Criar sequência” (Figura A.109):

![Figura A.109: Comando de “Criar sequência”](image)

Como a tela mostra, você deve passar todos os cartões a serem executados em sequência. Neste exemplo, vamos começar com um cartão de palco (Figura A.110a), outro de personagem (Figura A.110b) e um comando de edição de personagens (“Diminuir personagem”, Figura A.110c):

![Figura A.110: Cartão de Palco, Personagem 1 e Edição](image)

Em seguida, vamos passar outro cartão de personagem (Figura A.97 e depois Figura A.111a), mais um comando de edição de personagem (“Aumentar o personagem”, Figura A.111b) e, para finalizar, um cartão em branco (Figura A.111c) que armazenará a sequência:

![Figura A.111: Cartão de Personagem 2, Edição, e Branco](image)
O cartão que recebeu a nova sequência “conterá” as seis informações anteriores (palco, personagem, comando de edição, comando de seleção, personagem, comando de edição). Ou seja, quando ele for acionado, indicará para o software quais ações devem ser executadas e em qual ordem.

Neste caso, aparecerá um palco e depois o personagem do homem azul. O comando de “Diminuir personagem” será aplicado sobre o homem azul, fazendo com que seu tamanho se reduza. Então, aparecerá o esquilo e o comando de “Aumentar personagem” será aplicado sobre ele, fazendo com que seu tamanho aumente: (Figura A.112)

Figura A.112: Execução do cartão com a nova sequência

Lembrando que, para editar um personagem, ele deve estar selecionado (ou ele foi adicionado por último, ou deve ser utilizado o comando de “Selecionar personagem”! (No exemplo anterior, assumimos que o personagem 1 está selecionado)

A.7.1 Modo 2 - Exemplo prático

Nesta subseção, será mostrado um exemplo prático simples utilizando alguns dos conceitos e comandos explicados ao longo do Modo 2.

Supondo que uma criança queira contar uma história baseada no final da história da Bela Adormecida. Haverá duas cenas com palco e personagens, entre os quais três serão desenhos (Figura [A.113]) e o quarto será uma foto de uma pessoa (Figura [A.114]).

Tanto para os desenhos, quando para a pessoa, o processo de criar um personagem é o mesmo: utilizar o comando de “Criar um personagem” (Figura [A.115a]), focalizar o personagem através da Webcam (Fig, [A.115b]) e passar um cartão em branco (Figura [A.115c]), o qual será utilizado para armazenar a fotografia.

Após executar o procedimento de criar um personagem para os quatro personagens, você terá quatro novos cartões: (Figura [A.116])

Como palco, vamos utilizar a foto de uma floresta (a mesma utilizada em “Modo 1 - Exemplo prático”) e uma foto de um castelo. Através dessas fotos e do comando “Importar Palco”, teremos dois novos cartões: [A.117]
Figura A.113: Desenho de um Dragão, Cavaleiro, e Bruxa

http://pixabay.com/pt/mulher-loira-dona-%C3%A7a-princesa-quente-160926/

Figura A.114: Mulher fantasiada de princesa

Figura A.115: Comando “Criar personagem”, Branco, e Focalizar personagem

Figura A.116: Novos cartões dos personagens da história
Na primeira cena, o cavaleiro irá encontrar a bruxa e, em seguida, na segunda cena, ela irá se transformar num dragão. Para isso, vamos criar cenários com a floresta, o cavaleiro, a bruxa e o dragão, e usar comandos de edição. Explicando em partes:

- Passe o cartão que contém o palco (Figura A.118)

- Passe o cartão que contém o primeiro personagem escolhido, no caso, o cavaleiro (Figura A.119)

- Passe o cartão de seleção do segundo personagem (Figura A.120).

- Passe o cartão que contém o segundo personagem escolhido, no caso, a bruxa (Figura A.121)

- Use os objetos tangíveis (Figura A.122) para localizar na posição certa os personagens.

Quando o cenário estiver completo, utilize o cartão “Armazenar o cenário” (Figura A.123a) e passe um cartão em branco (Figura A.123b). O novo cartão armazenará a Cena 1 de sua história (Figura A.123c).

- Passe o cartão que contém o dragão (Figura A.124a) e, em seguida, aplique o comando de edição “Aumentar personagem” (Figura A.124b) quantas vezes você desejar que o dragão cresça.
• Armazene o novo cenário “Armazenar o cenário” (Figura A.123).

• Seu novo cartão conterá a Cena 2 de sua história (Figura A.125).

Na terceira cena, o cavaleiro irá encontrar a princesa no castelo. Para isso, você deve montar o cenário a ser armazenado com os cartões do cavaleiro, da princesa e do que é
um castelo; depois, utilize o comando de “Armazenar cenário” da mesma maneira descrita anteriormente (Figura A.123).

Quando a história for ser apresentada, você deve começar com o cartão da Cena 1 (Figura A.127). Quando esse cartão for acionado, a cena que ele armazena será exibida. Ou seja, num primeiro momento, a tela do software irá mostrar o palco da floresta, o cavaleiro e a bruxa (Figura A.128a).

Tanto o cavaleiro, quanto a bruxa estarão automaticamente associados com um objeto tangível, no caso, com o primeiro e com o segundo copo (Figura A.122). Mexendo nos copos, os personagens se mexerão, sendo possível animar a história.
Figura A.126: Cartões para o cenário da segunda cena da história

Figura A.127: Cartão da Cena 1 no leitor

Figura A.128: Aparecimento do cavaleiro e a bruxa, e Narração ao vivo

Conforme as cenas e os movimentos dos personagens, você pode ir criando narrações ao vivo (Figura A.128), ou você pode gravar a narração por cena.

Após um certo tempo, você pode falar “Então a bruxa se transformou num dragão!” (Figura A.129) e ativar a Cena 2. O software irá trocar a bruxa e colocar o dragão em cena (Figura A.129), o qual aumentará de tamanho e deverá ser animado com outro objeto tangível (segundo copo, Figura A.122). A ideia é simular que a bruxa teria se transformado num dragão!!
Para fechar a segunda cena, você poderia anunciar: “Mas, depois de muitas lutas, o cavaleiro matou o dragão” (Figura A.129c).

Depois, utilize o cartão da Cena 3 (Figura A.130). Quando esse cartão for acionado, o cenário armazenado irá aparecer na tela (Figura A.131). Da mesma forma que nas cenas anteriores, os personagens automaticamente estarão associados com o primeiro e com o segundo copo.

A.8 Modo 3 - Scriptwriter

Neste modo, você utilizará o software para programar eventos. Ou seja, você irá criar “regras”, para que o software execute, do tipo: se uma ação A ocorrer, faça uma ação B.

São cinco os possíveis tipos de eventos a serem programados: “Combinação personagem & palco” (Figura A.132a), “Movimento do personagem” (Figura A.132b), “Dois personagens batem” (Figura A.132c), “Personagens na borda” (Figura A.132d) e “Som Forte” (Figura A.132e). Para o primeiro evento, por exemplo, a ação “A” seria o movimento de um personagem e a ação “B” seria a execução de uma sequência, um conjunto de comando... No caso, seria gerada uma regra do tipo “Se um determinado personagem se movimentar, execute determinada sequência”.
Uma vez dada a ordem para programar um evento, o sistema analisa os personagens visíveis e suas posições para configurar o(s) evento(s) automaticamente.

De modo geral, para programar um evento é preciso:

- Criar personagens no sistema (se eles são novos).
• Criar os fundos / palcos no sistema (se eles são novos).
• Criar as sequências no sistema (se eles são novas).
• Associar as sequências aos eventos a programar.
• Ativar os eventos no sistema.

As sequências e os eventos fazem referência a outros cartões (comandos, personagens, fundos), de modo que qualquer alteração desses elementos individuais provoca alteração nas sequências ou eventos que usam esses elementos. Exemplificando, se uma sequência utiliza uma princesa como personagem e um castelo como palco (Figura A.133a), caso você faça alguma alteração na princesa ou no castelo (Figura A.133b), a sequência será alterada (Figura A.133c).

Figura A.133: Sequência inicial, Alteração em um personagem, e Sequência automaticamente

Esta funcionalidade permite uma fácil atualização, sem repetir todos os passos, incluindo a ativação dos eventos.

Vale lembrar que sempre é possível copiar o conteúdo de um cartão em outro (Figura A.134), para poder fazer mudanças ao novo cartão, sem alterar as utilizações anteriores.

A primeira programação de evento que será apresentada será “Atribuir sequência: Combinação personagem & palco” (Figura A.135). Vamos começar supondo que você tenha os seguintes personagens (Figura A.136) e palcos/fundos (Figura A.137) em formato físico (por exemplo, desenhos recortados):
Agora, imagine que você quer ter um único personagem que muda sua imagem automaticamente quando certo fundo é exibido. Por exemplo, se é exibido o fundo do parque (Figura A.137a), o personagem tem a imagem estar brincando (Figura A.136a), mas se você exibe o fundo do dia chuvoso (Figura A.137b), o personagem aparece com a imagem do guarda-chuva (Figura A.136b).

O primeiro passo é transformar as duas imagens do menino em cartões de personagens. Para isso, você deve utilizar o comando “Criar personagem” (como explicado anteriormente no Modo 2):
Você deve repetir o procedimento da Figura A.138 para ambos os personagens, resultando em dois novos cartões de personagens:

O segundo passo é transformar as duas imagens do fundo em cartões de palco. Para isso, você deve utilizar o comando “Criar palco” (como explicado anteriormente no Modo 1):

Novamente, você deve repetir o procedimento da Figura A.138 para ambos os fundos, resultando em dois novos cartões de palcos:

O próximo passo é criar sequências, utilizando o comando “Criar sequência”. Você deve seguir as seguinte etapas (Figura A.142):
Figura A.140: Criando cartões de palcos

Figura A.141: Cartões com palcos

- Utilizar o comando de “Criar sequência”
- Utilizar o comando de “Selecionar personagem 1” (controle de animação 1)
- Utilizar o cartão do personagem P1
- Utilizar um cartão em branco

Figura A.142: Etapas para criar sequência

A sequência que foi criada significa que o personagem P1 aparecerá na tela associado com o controle de animação 1 (Figura A.143a); e o cartão em branco estará associado à tal sequência. Resta repetir o procedimento acima para o outro personagem, ou seja, criar uma sequência que associa o personagem P2 com o mesmo controle de animação, o controle número 1 (Figura A.143b). No final, você terá dois novos cartões de sequências:

O último passo é associar as sequências com os eventos que se deseja programar. Iremos usar o cartão “Atribuir sequência: Combinação personagem & palco” (Figura A.144), as sequências (Figura A.143) e os cartões de fundo (Figura A.141).
Figura A.143: Sequência 1 e Sequência 2

Figura A.144: Cartão “Atribuir sequência: Combinação personagem & palco”

O cartão de combinação entre personagem e palco permite que: uma ação A aconteça se houver uma determinada combinação entre um personagem P e um palco/fundo F; ou, em outras palavras, se houver P e F, então execute uma ação A. No nosso caso, a primeira programação a ser criada será: quando o menino estiver brincando (P1) e o fundo for o dia chuvoso (F2), então o menino deve passar a utilizar o guarda-chuva (trocar P1 por P2).

Para fazer essa regra com o software devemos (Figura A.145):

- Utilizar o cartão da Sequência 1 (que contém P1 associado ao controle de animação 1)
- Utilizar o cartão com o fundo do dia chuvoso (F2)
- Utilizar o cartão “Atribuir sequência: Combinação personagem & palco”
- Utilizar o cartão da Sequência 2
- Utilizar um cartão em branco

Figura A.145: Etapas para criar evento
O cartão em branco agora está associado com o Evento 1 (Figura A.146). Para reforçar o conceito, em outras palavras, o Evento 1 significa que “cada vez que o personagem 1 (Criança jogando) está no fundo 2 (dia chuvoso), então executar Sequência 2 (Criança com guarda-chuva)”.

Finalmente, o procedimento acima deve ser repetido para a criação do Evento 2. A segunda programação a ser criada será: quando o menino estiver com o guarda-chuva (P2) e o fundo for o parque (F1), então o menino deve passar a brincar (trocando P2 por P1).

- Utilizar o cartão da Sequência 2 (que contém P2 associado ao controle de animação 1)
- Utilizar o cartão com o fundo do parque (F1)
- Utilizar o cartão “Atribuir sequência: Combinação personagem & palco”
- Utilizar o cartão da Sequência 1
- Utilizar um cartão em branco

Ao final do segundo procedimento, o cartão em branco agora está associado com o Evento 2 (Figura A.147). Para reforçar o conceito, em outras palavras, o Evento 2 significa que “cada vez que o personagem 2 (Criança com guarda-chuva) estiver no fundo 1 (dia ensolarado) então executar Sequência 1 (Criança jogando)”
Para testar os cartões com os eventos, você deve passá-los no leitor para ativá-los (Figura A.148). Isso significa que apenas quando você passa esses cartões, as regras de programação que eles descrevem passam a valer. Ou seja, é de exclusiva responsabilidade do usuário ativá-los.

![Figura A.148: Cartões com eventos no leitor](image)

Uma vez que os eventos estejam ativados, você pode colocar na tela o menino brincando e o fundo do dia chuvoso, e observar a criança se transformando automaticamente no menino com o guarda-chuva (Figura A.149). Ou você pode colocar na tela o menino com o guarda-chuva e o fundo do dia ensolarado, e observar a criança se transformando automaticamente no menino brincando (Figura A.150).

![Figura A.149: Mudança na tela causada pelo primeiro Evento](image)

![Figura A.150: Mudança na tela causada pelo segundo Evento](image)

Uma última observação é que, caso você queira desativar todos os eventos, você deve recorrer ao comando “Reinicialização de sistema” (Figura A.151).

![Figura A.151: Reinicialização de sistema](image)
Por outro lado, caso você queira desativar apenas um evento, você deve passar novamente o cartão do evento em questão.

![Figura A.151: Comando “Reinicialização de sistema”](image1)

A segunda programação de evento que será apresentada será “Atribuir sequência: Movimento do personagem” (Figura A.152). Vamos começar supondo que você tenha os seguintes personagens (Figura A.153) e palcos/fundos (Figura A.154) em formato físico (por exemplo, desenhos recortados):

![Figura A.152: Atribuir sequência: Movimento do personagem](image2)

![Figura A.153: Personagens](image3)

Agora, imagine que você quer ter um único personagem que, quando você o anima usando o controle de animação 1 (Figura A.155), a imagem do personagem muda para...
a sequência. Ou seja, você quer simular que conforme há movimento, o personagem anda.

O primeiro passo é associar as figuras dos personagens com cartões, utilizando o comando “Criar personagem”. Ao final desse processo, você terá cinco novos cartões: (Figura A.156)

Caso haja dúvidas sobre a criação de personagens, ela foi brevemente retomada no tópico anterior (comando “Atribuir sequência: Combinação personagem & palco”) e explicada em detalhes no Modo 2.

De modo semelhante com o primeiro, o segundo passo é associar a figura do fundo da floresta com um cartão (Figura A.157). Uma vez que o cartão esteja criado, você já pode utilizá-lo para preencher o fundo de sua tela (Figura A.158).
Novamente, caso haja dúvidas sobre a criação de palcos, ela foi brevemente retomada no tópico anterior (comando “Atribuir sequência: Combinação personagem & palco”) e explicada em detalhes no Modo 1.

Figura A.158: Utilizando o cartão de palco

O passo seguinte é criar as sequências. A ideia essencial é associar cada personagem com o mesmo controle de animação, de forma que um personagem substitua o outro quando for aparecer na tela (explicando: quando P2 for aparecer, ele aparecerá no lugar de P1, substituindo-o). Para isso, siga as seguintes etapas (Figura A.159):

- Utilizar o comando de “Criar sequência”
- Utilizar o comando de “Selecionar personagem 1” (controle de animação 1)
- Utilizar o cartão do personagem P1
- Utilizar um cartão em branco

Ao final dessas etapas, o cartão em branco armazenará a sequência que associa o controle de animação 1 com a imagem do personagem P1 (Figura A.160). O procedimento deve ser repetido para os demais personagens, alterando a segunda e a terceira etapa.
Figura A.159: Etapas para criar sequência

Figura A.160: Cartão com sequência 1

Figura A.161: Cartões com sequências

Quando todas as sequências forem criadas, você terá cinco novos cartões (Figura A.160 e A.161).

Finalmente, vamos associar as sequências aos eventos a programar. Iremos usar o cartão “Atribuir sequência: Movimento do personagem” (Figura A.162) e as sequências (Figuras A.160 e A.161).

Figura A.162: Cartão de “Atribuir sequência: Movimento do personagem”

O cartão relativo ao movimento do personagem permite que: uma ação A aconteça se houver algum movimento de um determinado personagem P; ou, em outras palavras, se
houver movimento de P, então execute uma ação A. No nosso caso, a primeira programação a ser criada será: quando o personagem P1 se mover, substitua P1 por P2.

Para fazer essa regra com o software devemos (Figura A.163):

- Utilizar o cartão da Sequência 1 (que contém P1 associado ao controle de animação 1)
- Utilizar o cartão “Atribuir sequência: Movimento do personagem”
- Utilizar o cartão da Sequência 2 (que contém P2 associado ao controle de animação 1)
- Utilizar um cartão em branco

Figura A.163: Etapas para criar evento

Após as etapas acima, o cartão em branco receberá o Evento 1 (Figura A.164): “cada vez que o Personagem 1 mover-se, o sistema deve executar a Sequência 2”. Mas por que colocamos as sequências com personagens, e não os personagens somente? Fizemos isso para garantir que todos os personagens estivessem associados com o mesmo controle de animação! Dessa forma, nunca haverá dois personagens ao mesmo tempo no palco.

Figura A.164: Cartão com o Evento 1

Agora, você deve repetir as etapas da Figura 166 para programar os demais eventos.

Exemplificando, para o segundo evento, queremos que a regra seja “toda vez que o Personagem 2 se mover, substitua o Personagem 2 pelo Personagem 3”. Para isso, troque a primeira e a terceira etapa do procedimento pela S2 e S3, respectivamente. E assim em diante! Após repetir o procedimento para os demais eventos, você terá cinco novos cartões (Figuras A.164 e A.165):

Observe que o Evento 5 descreve a mudança do Personagem 5 para o Personagem 1, completando um ciclo entre os personagens!
Figura A.165: Cartões com Eventos

Para testar os eventos, você deve ativá-los passando-os no leitor. Depois, coloque seu personagem na tela e observe como, conforme você mexe no controle de animação 1 (Figura A.166), seu personagem muda de aparência (simulando que está andando!) (Figura A.167):

Figura A.166: Controle de animação 1

Figura A.167: Personagem se movendo na tela

A terceira programação de evento que será apresentada será “Atribuir sequência: Dois personagens batem” (Figura A.168). Vamos começar supondo que você tenha os seguintes personagens (Figura A.169) e palco/fundo (Figura A.170) em formato físico (por exemplo, desenhos recortados):

Agora imagine que você quer ter só dois personagens (o regador e a planta), e quando você “morrer a planta” (quando o personagem do regador bater no personagem da planta), o personagem da planta mostra a imagem da próxima fase de crescimento da planta.

O primeiro passo é criar cartões com os personagens. Ao final desse processo você terá quatro novos cartões (Figura A.172):

O segundo passo é criar um cartão com o palco de gramado (Figura A.173). O novo cartão já pode ser usado para preencher o fundo da tela (Figura A.174).
Figura A.168: Atribuir sequência: Dois personagens batem

Figura A.169: Personagens

Figura A.170: Palco de floresta

O passo seguinte é criar as sequências. As sequências irão associar cada aparência do personagem planta com o mesmo controle de animação (no caso, o controle número 2), de forma que um personagem substitua o outro quando for aparecer na tela, simulando
que a planta está crescendo. Para isso, siga as seguintes etapas (Figura A.175):

- Utilizar o comando de “Criar sequência”
- Utilizar o comando de “Selecionar personagem 2” (controle de animação 2)
- Utilizar o cartão do personagem P1 - B
• Utilizar um cartão em branco

Figura A.175: Etapas para criar sequência

Repetindo o procedimento acima para as duas outras imagens do personagem planta (basta substituir o terceiro passo por P2 - B e P3 - B), você terá três cartões de sequência (Figura A.176):

Agora, antes de começar a criar os eventos, você já pode adicionar o regador no palco (Figura A.177)! Lembrando que é importante selecionar um número para seu personagem através do comando “Selecionar personagem” (Figura A.178).

Figura A.177: Cartão com personagem do regador

Para os eventos, vamos utilizar o cartão “Atribuir sequência: Dois personagens batem” (Figura A.179). Esse cartão possibilita que você construa regras do tipo: “quando um personagem P bater em outro personagem, faça uma ação A”. No nosso caso, esse personagem P é a planta, e a ação A é trocar a imagem atual da planta por outra.

O primeiro evento será construído pelos seguintes passos (Figura A.180):
Figura A.178: Comando “Selecionar personagem”

Figura A.179: Cartão “Atribuir sequência: Dois personagens batem”

- Utilizar o cartão da Sequência 1
- Utilizar o cartão “Atribuir sequência: Dois personagens batem”
- Utilizar o cartão da Sequência 2
- Utilizar um cartão em branco

Figura A.180: Etapas para criar Evento 1

Ao final do processo, você terá um cartão com o Evento 1. Em seguida, deverá repetir os passos para criar o Evento 2 (basta substituir as etapas 1 e 3 por S2 e S3, respectivamente) e, opcionalmente, o Evento 3 (substituir as etapas 1 e 3 por S3 e S1, respectivamente). O Evento 3 implica que a planta crescida voltará a ficar pequena quando o regador tocá-la.
Para testar os eventos, ative-os no leitor de RFID. Coloque os personagens regador e planta na tela, mova um na direção do outro com os controles 1 e 2 (Figura A.182), e note que o personagem planta irá mudar de aparência (Figura A.183)!

Figura A.182: Controles de animação 1 e 2

Supondo que os Eventos 1 e 2 estejam acionados. Após o regador e a planta se encontrarem, o Evento 1 entrará em ação e a planta mudará de aparência. Como o regador e a planta continuarão perto um do outro, o Evento 2 acontecerá imediatamente, e a planta assumirá sua última aparência. Ou seja, a planta irá da sua primeira para a última fase de crescimento! Caso você queira que a fase intermediária apareça e permaneça por um tempo, uma possível ideia é acionar primeiro o Evento 1, fazer o regador e a planta se tocarem, afastá-los, e, somente depois, acionar o Evento 2. Outra ideia é criar cenários (palco com personagens na posição correta) e usar as cenários como as ações a executar nos eventos.

A quarta programação de evento que será apresentada será “Atribuir sequência: Personagens na borda” (Figura A.184). Vamos começar supondo que você tenha os seguintes
Figura A.184: Atribuir sequência: Personagens na borda

personagens (Figura A.185) e palco/fundo (Figura A.186) em formato físico (por exemplo, desenhos recortados):

Figura A.185: Personagens

Figura A.186: Fundos em formato físico

Agora, imagine que você quer simular uma movimentação do lobo, de tal forma que conforme ele ande para a direita, acesse outros fundos e mude de aparência. Ou seja, quando o lobo amigável (Figura A.187-P1) tocar na borda direita da floresta (Figura A.188-F1), ele se tornará o lobo mau (Figura A.187-P2) em frente da casa de avó (Figura
Novamente, quando o personagem tocar na borda direita da casa da avó, ele ficará disfarçado de vellinha (Figura A.187-P3) no quarto (Figura A.188-F3). Além disso, o lobo também poderá retornar entre as cenas!

Para programar esse evento, primeiramente vamos transformar os personagens e palcos em cartões. Ao todo, você deve ter seis cartões, como mostrado nas figuras abaixo:

Figura A.187: Cartões com personagens

![Cartões com personagens](image1)

Figura A.188: Cartões com palcos

![Cartões com palcos](image2)

Agora, você deve criar sequências. As sequências representam cenas e vão associar um personagem com um controle de animação e um palco. Por exemplo, como mencionado anteriormente, o lobo bonzinho (P1) deverá aparecer em conjunto com o palco floresta (F1); o que pode ser implementado através dos passos (Figura A.189):

- Utilizar o cartão “Criar sequência”
- Utilizar o comando de “Selecionar personagem 1” (controle de animação 1)
- Utilizar o cartão do Personagem 1
- Utilizar o cartão do Fundo 1
- Utilizar um cartão em branco

Repetindo os passos acima outras duas vezes (para P2 e F2, e P3 e F3), você obterá três novos cartões de sequência:

Com os cartões de sequência, você pode começar a criar os eventos. Para isso, vamos utilizar o comando “Atribuir sequência: Personagens na borda” (Figura A.191). Tal comando possibilita que você construa regras do tipo: “quando um personagem P encostar
em uma determinada borda, faça uma ação A". No nosso caso, esse personagem P é o lobo, a borda é a direita e a ação A é trocar a aparência do personagem e o palco.

Para programar o primeiro evento, você deve utilizar a Sequência 1, a qual fará com que a tela exiba o primeiro personagem, associado ao controle de animação 1, e o primeiro fundo. Esse personagem deve ser posicionado na borda direita da tela (Figura A.192). Dessa forma, quando você utilizar o comando de evento, o software reconhecerá que a próxima ação deve acontecer apenas quando o personagem tocar nessa borda específica! Em seguida, você utilizará o cartão da Sequência 2 (que indica a próxima ação a ser executada) e um cartão em branco.

Resumindo os passos (Figura A.193) para criar o primeiro evento, temos:

- Utilizar o cartão da Sequência 1
- Utilizar o cartão "Atribuir sequência: Personagem na borda"
- Utilizar o cartão da Sequência 2
Figura A.192: Personagem posicionado no canto direito da tela

- Utilizar um cartão em branco

Figura A.193: Passos para criar um evento

O segundo evento pode ser feito da mesma maneira, porém substituindo os passos 1 e 3 pelos cartões com a sequência 2 e 3, respectivamente. Ao final, você terá dois cartões:

Figura A.194: Cartões com eventos

Como proposto anteriormente, também devemos simular que o lobo possa voltar entre as cenas. Para isso, basta repetir o procedimento da Figura A.193, porém posicionando os personagens na borda esquerda (como se o lobo estivesse andando para trás!), e substituindo os passos 1 e 3 pelos cartões com as sequências 2 e 1, e 3 e 2. Dessa forma, você terá outros dois cartões de eventos (Figuras A.194 e A.195):

Para testar os quatro eventos (Figura A.196), você deve ativá-los através do leitor de RFID. Depois, coloque a primeira cena na tela (Seqüência 1) e movimente o personagem até a borda direita. De modo geral, a transição entre cenas através dos eventos pode ser conferida abaixo:
Como você deve ter observado e como foi mencionado anteriormente, uma das possibilidades desse tipo de programação é simular o movimento do personagem entre cenas (Figura A.197), como se um palco estivesse na sequência do outro.

Para essa última programação aprendida e para todas as demais, uma observação importante é que: para fazer uma programação de um personagem dissociada de um palco, você deve utilizar o comando “Inicializar palco” (Figura A.198), como ensinado no Modo 2. Esse comando insere uma tela verde ao fundo, simulando um chroma key, de forma que qualquer palco possa ser inserido posteriormente.

A última programação de evento que será apresentada será “Atribuir sequência: Som Forte” (Figura A.199). Vamos começar supondo que você tenha uma imagem de fundo qualquer (Figura A.200) e que uma pessoa interprete os seguintes personagens (Figura A.201):

Esta programação será um pouco diferente das demais apresentadas até então. Imagine que você quer que quando as crianças (as pessoas que estão contando ou ouvindo a história) batam palmas, o sistema mostre um personagem e depois o outro, dando a ideia que o
sistema está batendo palmas também!

Para isso, comece criando os cartões com os personagens P1 e P2 (Figuras A.201 e A.202) e com o fundo. Você também já pode utilizar o cartão com o fundo (Figura A.203).

O próximo passo é criar sequências que associem os personagens com o mesmo controle de animação, no caso, com o primeiro controle. Para isso, siga as etapas (Figura A.204):

- Utilizar o cartão “Criar sequência”
- Utilizar o cartão “Seleccionar personagem 1”
- Utilizar o cartão do Personagem 1
• Utilizar um cartão em branco

Após realizar as etapas acima e repeti-las para P2, você terá dois cartões com sequências:

Agora, vamos começar a criar eventos com o cartão “Atribuir sequência: Som Forte” (Figura A.206). A ideia essencial desses eventos é: se há uma situação A e ocorre um som forte no ambiente, então deve ocorrer uma situação B. No exemplo corrente, queremos que se P1 estiver na tela e ocorrer um som forte, então P2 deve substituir P1.
Resumidamente, para criar o primeiro evento, temos que (Figura A.207):

- Utilizar o cartão da Sequência 1
- Utilizar o cartão “Atribuir sequência: Som Forte”
- Utilizar o cartão da Sequência 2
- Utilizar um cartão em branco

As etapas acima devem ser repetidas para transformar P2 em P1, ou seja, trocando os passos 1 e 2 pelos cartões das Sequências 2 e 1, respectivamente. Feito isso, você terá dois cartões de eventos (Figura A.208).

Para testar esses eventos, ative-os passando seu cartão no leitor de RFID. Depois, coloque uma das sequências na tela, faça algum barulho no ambiente e observe a aparência da personagem se alterando (como se estivesse batendo palmas!):
Após você ter aprendido os cinco tipos de eventos a serem programados, há uma última funcionalidade do programa a ser realizada: as programações podem ser transferidos do CPES para o software Scratch.

Descrevendo brevemente, Scratch é uma linguagem de programação visual, na qual a construção das linhas de comando se baseia no encaixe de bloquinhos respeitando o formato desses (como as peças de um quebra-cabeça). Os bloquinhos - coloridos segundo sua categoria - são comandos e ações utilizados para controlar objetos gráficos em 2D que se movem no pano de fundo do programa.

Retomando a explicação inicial, a transferência da programação entre os softwares pode ser feita através do comando “Criar um ambiente em Scratch 2.0” (Figura A.210). Ou seja, após você ter criado diversos eventos programados no CPES, se você utilizar esse comando, sua programação aparecerá numa página do Scratch (Figura A.211)!
Figura A.210: Comando “Criar um ambiente em Scratch 2.0”

Figura A.211: Tela do Scratch
Appendix B

BNF (Backus Normal Form) Grammar of the language of CPES

This grammar (Table B.1) allows us to describe in a more formal way, the language created to use the RFID reader as interaction device in the CPES system.

Let’s start the explanation saying that any RFID card represents one and only one of the elements found in quotes ("..."). Note that there is "blankCard", which is used when the card used has not, yet, a definite action in CPES. That said, we can say that each time an item appears in quotation marks, it means that CPES is waiting that the user approaches to the reader, the RFID card with those defined function.

The items written between the symbols (<...>) represent the name of a rule in the grammar (<rule name>::=expression) and for understanding its meaning it is necessary to analyze the expression of the rule. In total there are 34 rules in the grammar of CPES, and within the expression of each, we can see two symbols (|) and ("") representing (or) and (nothing) respectively.

Of the first rule we can say, in CPES the commands can be of two types, system commands or user commands. If we continue analyzing the rules, the second rule says that system commands can be of six different types, while the user commands are only four types (third rule).

We want to call attention to the card with the action "cancelFinishCmd", because according to the grammar, this card cannot be copied, deleted, locked, or have other actions. The reason is that this card is used to cancel the running operation. An example of a complete rule we can see in the copy command card. When the user wants to copy a card, s/he must first bring to the reader the card with the copy command ("copyCard"), then bring any card command (<CommandCard>) and finally a blank card (<BlankCard>) where the copied information is assigned. In any of the last two steps, the user can cancel the operation using the card ("cancelFinishCmd"). At every step, the system provides information to help users, showing graphically the next action (Figure B.1) together with as the audio of the sentence, generated by a voice synthesizer or customized by the same user.

All the cards can have an audio-description (ideal for people with visual impairment), which can be consulted any time the user wants ("hearDescription"). The audio-descriptions are the sole responsibility of the users ("createDescription" and "delete...")
Description"; this responsibility has the intention of sensitize them to help others. Moreover, it stimulates the skills associated with the task of describing an object or scene. Furthermore, the system command cards (<SystemCmd>) have an image associated that explains its function; this feature is ideal for people with hearing disability or who are still illiterate. The user command cards (<UserCmd>) may have associated: a narration or a sound effect (ideal to complement a story, or a presentation) ("createNarration", "deleteNarration"), which plays automatically each time the card is used in CPES.

CPES can have up to five characters in use at a time in the screen, but the actions of the characters ("flipCharacter", "increaseCharacter", "reduceCharacter", "lockCharacter", "unlockCharacter", "showCharacter", and "hideCharacter") only run for the character previously activated ("activeCharacter1", ..., "activeCharacter5"). However, the user can have, and create all the characters and backgrounds needed to tell stories ("createCharacter", "createBackground", "importBackground"), this last command is used for importing images of the defined folder, either taken with a smartphone or downloaded from the Internet.

Note that to program one of five possible events ("characterBackgroundEvent", "characterCrashEvent", "characterEdgeEvent", "characterMovingEvent", and "highSoundEvent"), the user need only to indicate the action to be executed when the event occurs, and indicate the blank card containing the new event. This new card with the event, is used to enable or disable the event at any time; it can also be used in response to the execution of another event. In other words, the event of colliding two characters can enable / disable the event of a collision with an edge. This feature is useful for creating complex and richer interactivity scenarios.

Each of these five events have a justification. The first event "characterBackgroundEvent" is executed when certain characters are in the background stage. This event is good for adapting the context of the characters when background changes. A simple example of this event is: a character is playing in a forest; when the user changes the image of the forest by the image of rain, the system can (through the event) change the shape of the character, and if the user goes back to the forest background, the system returns to the image of children playing.

The second event "characterCrashEvent" is executed when two or more characters
collide. This event is useful for adding interactivity between the characters. An example for this event could be as follows: the user has two characters a watering object pouring water, and a seed; when the shower touch the seed, the system changes the image of the seed by a small plant.

The third event is executed "characterEdgeEvent" when a character goes through one of the edges of the screen. This event is important for creating navigation between scenes of a story. An example for this event can be: the user has a character (a wolf) in the forest; when the wolf comes out the right side of the forest, the system changes the background image for a cottage (to the idea that coming from the forest, the cottage was found), and if the wolf comes out the left side of the image of the cottage, the system returns to the image of the forest.

The fourth event "characterMovingEvent" is executed when a character moves around the screen. This event is important for creating animations on the characters. An example for this event can be: the user has a different images (frames of animation) and the system can move from one image to another whenever the user moves the character.

Last event "highSoundEvent" is executed when the system detects a strong sound coming from the microphone. This event is interesting to create a history reaction to the euphoria of the public (Mode 4). An example for this event can be: the user has two images of two separate hands (before clapping) and one with two hands together (clapping), the system can change from one image to another every time that the system detects a loud sound. In other words, at the end of story when the audience applauds, the system also applauds them.

Although the events have a reason for their existence, the system does not oblige users to use them that way. That is, the user can use applause to switch scenes, or whenever a character touches an edge, change the character image by an expression of pain (with its own sound effect).

Table B.1: BNF Grammar of the language of CPES

<Command>	::=	<SystemCmd>	<UserCmd>																
<SystemCmd>	::=	<GeneralCmd>	<CharacterCmd>	<BackgroundCmd>		<CardCmd>	<SoundCmd>	<ProgramCmd>											
<UserCmd>	::=	"background"	"character"	"sequence"	"event"														
<GeneralCmd>	::=	"rebootCPES"	"createAllLabels"	"identifyCharacters"		"disableSound"	"enableSound"	<CreateSomeLabels>	<SaveScene>										
<CharacterCmd>	::=	"activeCharacter1"	"activeCharacter2"		"activeCharacter3"	"activeCharacter4"		"activeCharacter5"	"flipCharacter"		"increaseCharacter"	"reduceCharacter"		"lockCharacter"	"unlockCharacter"	"showCharacter"		"hideCharacter"	<CreateCharacter>
APPENDIX B. BNF GRAMMAR OF THE LANGUAGE OF CPES

```
<BackgroundCmd> ::= "resetStage" | <ImportBackground> | <CreateBackground>
<CardCmd> ::= <DeleteCard> | <UndeleteCard> | <LockCard> | <UnlockCard> | <CopyCard>
<SoundCmd> ::= <CreateDescription> | <HearDescription> | <DeleteDescription> | <CreateNarration> | <DeleteNarration>
<ProgramCmd> ::= "exportScratch" | <EventCmd> <CreateSequence>
>CreateSomeLabels ::= "createSomeLabels" <ListCard> "cancelFinishCmd"
<SaveScene> ::= "saveScene" <BlankCard>
<CreateCharacter> ::= "createCharacter" <BlankCard>
<ImportBackground> ::= "importBackground" <BlankCard>
>CreateBackground ::= "createBackground" <BlankCard>
<DeleteCard> ::= "deleteCard" <CommandCard>
<UndeleteCard> ::= "undeleteCard" <CommandCard>
<LockCard> ::= "lockCard" <CommandCard>
<UnlockCard> ::= "unlockCard" <CommandCard>
<CopyCard> ::= "copyCard" <CommandCard> <BlankCard>
>CreateDescription ::= "createDescription" <CommandCard>
<HearDescription> ::= "hearDescription" <CommandCard>
<DeleteDescription> ::= "deleteDescription" <CommandCard>
>CreateNarration ::= "createNarration" <CommandCard>
>DeleteNarration ::= "deleteNarration" <CommandCard>
<EventCmd> ::= <CharacterBackground> | <CharacterCrashEvent> | <CharacterEdgeEvent> | <CharacterMoveEvent> | <HighSoundEvent>
<ListCard> ::= <Command> | <Command> <ListCard> | ""
<BlankCard> ::= "blankCard" | "cancelFinishCmd"
<CommandCard> ::= <Command> | "cancelFinishCmd"
<CharacterBackground> ::= "characterBackgroundEvent" <CommandCard> <BlankCard>
<CharacterCrashEvent> ::= "characterCrashEvent" <CommandCard> <BlankCard>
<CharacterEdgeEvent> ::= "characterEdgeEvent" <CommandCard> <BlankCard>
<CharacterMoveEvent> ::= "characterMovingEvent" <CommandCard> <BlankCard>
<HighSoundEvent> ::= "highSoundEvent" <CommandCard> <BlankCard>
```
Apêndice C

Aspectos internos do CPES

C.1 Estrutura das pastas e formato dos arquivos

Este apêndice pretende informar sobre a maneira em que foi construída a primeira versão do CPES. Na primeira parte apresenta-se a estrutura de pastas e arquivos que compõem a implementação, na segunda parte é explicada a estrutura geral do CPES do ponto de vista do ciclo de execução.

A Figura C.1 apresenta a estrutura das pastas do CPES. Da pasta principal “CPES” são derivadas as pastas “Content”, “CPES-Scratch2”, e “Doc-Print”. A primeira contém o conteúdo do CPES: Conteúdo dos cartões RFID, texturas das imagens internas da aplicação, a pasta usada para a importação de imagens externas (JPG), a pasta para os Logs (do uso interno para o desenvolvimento e desativada por padrão), os sons da interface (WAV) para que o usuário tenha a possibilidade de customizar a vontade, o framework de visão computacional reacTIVision usado para a animação dos personagens (o uso é transparente para o usuário e é controlado por CPES), as imagens da interface (feedback) que podem ser customizadas pelo usuário, e finalmente a lixeira, pasta onde CPES move o conteúdo dos cartões que o usuário apaga; sua função é ter um lugar para desfazer o comando de apagado (CPES mantém um pequeno histórico do conteúdo de cada cartão que é apagado, o usuário pode usar este histórico para reusar um cartão quando a quantidade de cartões disponíveis é pequena, ver o manual no Apêndice para mais informação).

A segunda pasta, chamada “CPES-Scratch2”, contém um componente independente do CPES que permite o uso do framework de visão computacional (reacTIVision) com Scratch2 em sua versão sem conexão (offline) com um exemplo que ilustra seu uso. Este componente pretende oferecer ao usuário a possibilidade de usar objetos tangíveis tal e como é usado no CPES; o exemplo também ilustra como usar os mesmos eventos disponíveis no CPES, mas no Scratch.

Finalmente na pasta chamada “Doc-Print” podem ser encontrados: o manual do usuário, as marcas fiduciais e as etiquetas para os 41 comandos do CPES com alguns exemplos de personagens e palcos. O usuário deve imprimir o material no momento da configuração inicial do CPES (depois da instalação).

1 O usuário pode apagar o conteúdo da pasta e CPES restaura as imagens originais usando as texturas.
Figura C.1: Estrutura das pastas

Na Figura C.2 podem ser observados os arquivos que compõem a pasta principal do CPES, os arquivos são agrupados em cinco: executáveis da aplicação, imagem da mascote do CPES, arquivos internos do CPES, arquivos das etiquetas criadas pelos usuários, e arquivos de debug com os comandos para a configuração inicial (não deveria ser alterado manualmente). Entre os arquivos executáveis só dois são para uso do usuário CPES.exe (executável principal) e CPES-Config.exe (executável de configuração para: criar os 41 cartões de comando, configuração da câmera e para a impressão do material da pasta “Doc-Print”).

Antes de apresentar como o CPES guarda o conteúdo dos cartões RFID na pasta “CardRFID” da pasta “Content”, é preciso lembrar que dentro de cada cartão RFID existe um chip e uma antena que recebe energia do leitor RFID, uma vez o chip é ativado, ele envia seu número de identificação (ID) ao computador em que o leitor está ligado, ver Figura C.3. Cada cartão RFID tem um único número de identificação de 10 dígitos. Os cartões também têm uma memória de um 1KB que não está sendo utilizada nesta implementação, CPES só usou o ID para encontrar o conteúdo associado ao cartão na pasta “CardRFID”.

Uma vez que o CPES recebe a informação do ID do cartão que está perto do leitor, este procura uma pasta com o nome igual ao ID do cartão na pasta “CardRFID”; se não houver, o CPES identifica o cartão como em branco, ou seja, sem conteúdo associado, em outro caso, o CPES analisa o conteúdo da pasta para identificar o tipo de cartão que o usuário deseja usar (Ver Figura C.5 e C.6); uma vez é identificado o tipo, o CPES usa a gramática BNF para dar ao usuário a resposta (visual e auditiva) apropriada para o cartão usado (Ver Apêndice B para um exemplo).

A Figura C.5 apresenta a hierarquia de cartões RFID, os cartões podem ser: Car-
APÊNDICE C. ASPECTOS INTERNOS DO CPES

Figura C.2: Arquivos da pasta principal “CPES”

- Pastas da aplicação
 - PASTAS, da aplicação
- Executáveis da aplicação
 - Aplicação de apoio para arquivos.zip
 - CPES e configuração inicial do CPES
- Imagem da mascote do CPES

Arquivo Internos do CPES
- configuração da câmera e de reactTIVision
 - bibliotecas (dll) de apoio:
 -- arquivos.zip (7za)
 -- Câmera (AForge)
 -- Microfone (AudioLib)

- Etiquetas criadas pelos usuários
- Arquivos internos de debug e arquivo com os comandos para a configuração inicial

Figura C.3: Leitor RFID

tão de controle (41 comandos do CPES, criados no momento da configuração inicial), Cartão de usuário (definidos pelos usuários em qualquer momento), ou um cartão em branco (sem conteúdo associado). O conteúdo de todos os cartões pode ser copiado, apagado, restaurado da lixeira, modificado e compartilhados com outros usuários do mesmo ambiente.

A Figura C.5 indica que qualquer cartão com conteúdo associado pode ter uma áudio-descrissão (ideal para pessoas com deficiência visual; a criação das áudio-descrissões são de plena responsabilidade dos usuários), apenas os Cartões de controle têm uma descrição visual (são de responsabilidade do CPES mas os usuários podem customizar a vontade as
Figura C.4: Estrutura das pastas dos cartões RFID

Figura C.5: Hierarquia de cartões RFID

imagens, e são ideais para pessoas com deficiência auditiva). Os cartões de usuário podem ter associado um efeito de som ou narração. Os cartões de usuário podem ser: Cartão de personagem (imagem com transparência cuja posição e inclinação pode ser alterada pelos usuários ao manipular objetos físicos como copos com marcas fiduciais), Cartões de cenários (imagem de grande tamanho que fica fixa na tela), Cartão de cena (é um cartão que pode ter associado um cenário e até cinco personagens independentes), Cartões de sequência de comandos (listado de ID de cartões que são executados, é equivalente a que
o usuário execute um a um cada cartão. Pode haver chamadas recursivas, mas CPES tem um limite que apaga a recusa depois de 100 comandos não executados para evitar um bloqueio indefinido do ambiente), Cartões de eventos (programação dos 5 tipos de eventos, Figuras C.10 e C.11).

Na Figura C.6 são apresentados os arquivos que cada tipo de cartão tem na pasta “CardRFID”. Os arquivos “Description.wav”, “Sound-Effect.wav” e “Lock” são opcionais; os dois primeiros só aparecem na pasta se o cartão tem uma áudio descrição ou uma narração como efeito respectivamente, e a existência ou não do arquivo “Lock” indica se o usuário pode alterar ou apagar o conteúdo ou não.

Cada um dos arquivos (XML e (INI) dos tipos de cartões tem uma estrutura definida, ver Figura C.7 mas o usuário não precisa manipular ou compreender a estrutura destes arquivos para operar o CPES. CPES administra automaticamente todos os arquivos.

Na Figura C.8 existem comandos que precisam de parâmetros como é o caso de: ACTIVE-CHARACTER, INCREASE-CHARACTER e REDUCE-CHARACTER. Nos três casos é preciso indicar um valor inteiro que representa o numero do personagem para ativar, a porcentagem para crescer ou diminuir o personagem (Ver exemplo da Figura C.9).

Observe que quando CPES armazena a informação de um personagem na cena, a imagem original permanece sem alteração, só no momento da cotação da história, CPES usa a formação especificada em <Character> para pintar apropriadamente cada personagem na cena, sem perder qualidade quando o personagem é escalado.

As Figuras C.10 e C.11 apresentam o formato como CPES armazena a informação de configuração de cada um dos eventos que o usuário programa em Events.xml (Figura C.7). Embora na lista de eventos programados pelo usuário possa existir qualquer quantidade dos tipos de eventos, todos eles devem ser diferentes na informação de configuração. Cada uma destas estruturas indica o estado esperado para executar um cartão RFID especificado. Quando o usuário utiliza o comando INITIALIZE-SCENE na programação de um evento no CPES, o usuário está indicando que o evento pode ser executado independente da imagem do palco; neste caso, o CPES indica com <backgroundRFID/>; em outro caso, o evento fica fixo a uma imagem específica do palco, como por exemplo <backgroundRFID>1670335592</backgroundRFID>.

C.2 Estrutura geral de funcionamento do CPES

A arquitetura do CPES é basicamente monolítica, e sua estrutura geral de funcionamento pode ser observada na Figura C.12. Na figura pode-se observar que existe um ciclo de execução que verifica: Se há um pedido de execução de um comando (pelo usuário, por a ação de um evento, ou por a execução de uma sequência de comandos), se há um movimento de um personagem, verificação dos estados programados para executar um evento e finalmente verifica se há mudança no público (evento de som forte). Isso é repetido indefinidamente até que o CPES termina sua execução.
Cartão de Personagem	!Character.png !Description.wav !Sound-Effect.wav
Cartão de cenário (palco)	!Background.png !Description.wav !Sound-Effect.wav
Cartão de controle	!Command.png !Lock !Program.xml
Cartão de cena	!Description.wav !Program.xml !ScenarioBackground.png !ScenarioCharacter1.png !ScenarioCharacter2.png !ScenarioCharacter3.png !ScenarioCharacter4.png !Screenshot.png !Sound-Effect.wav
Seqüência de comandos	!Command.png !Sequence.ini
Eventos	!Command.png !Events.xml

Figura C.6: Arquivos por tipo de cartões RFID
Figura C.7: Estrutura dos arquivos por tipo de cartões RFID

Ver Figura A.8 para outros <strCmd>

Ver Figura A.9

Ver Figura A.10
Figura C.8: Estrutura dos arquivos por tipo de cartões RFID
Figura C.9: Textos de comando (strCmd) na seção de Command do Program.xlm
Figura C.10: Tipos de eventos possíveis no arquivo *Events.xlm* - Parte 1
Figura C.11: Tipos de eventos possíveis no arquivo *Events.xdm* - Parte 2
Figura C.12: Estrutura geral do funcionamento do CPES
Apêndice D

Autorizações para uso dos artigos

D.1 Springer

D.1.1 HCII - 2013: International Conference on Human-Computer Interaction

SPRINGER LICENSE
TERMS AND CONDITIONS

Sep 17, 2015

This is a License Agreement between Julian E. Gutierrez Posada (“You”) and Springer (“Springer”) provided by Copyright Clearance Center (“CCC”). The license consists of your order details, the terms and conditions provided by Springer, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

• License Number: 3711460705199
• License date: Sep 17, 2015
• Licensed content publisher: Springer
• Licensed content publication: Springer eBook
• Licensed content title: Universal Access to Interaction as Revealed by UAHCI Words
• Licensed content author: Maria Cecília Calani Baranauskas
• Licensed content date: Jan 1, 2013
• Type of Use: Book/Textbook
• Requestor type: Publisher
APÊNDICE D. AUTORIZAÇÕES PARA USO DOS ARTIGOS 255

- **Publisher:** UNICAMP - Universidade Estadual de Campinas
- **Portion:** Full text
- **Format:** Print and Electronic
- **Will you be translating?:** No
- **Print run:** 20
- **Author of this Springer article:** Yes and you are the sole author of the new work
- **Order reference number:** None
- **Title of new book:** Interfaces Tangíveis e o Design de Ambientes Socio-construcionistas para Construção de Narrativas
- **Author of new book:** Julian Esteban Gutierrez Posada
- **Expected publication date of new book:** Dec 2015
- **Estimated size of new book (pages):** 235
- **Total:** 0.00 USD

Terms and Conditions

Introduction

The publisher for this copyrighted material is Springer Science + Business Media. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. (“CCC”), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

Limited License

Springer Science + Business Media hereby grants to you a non-exclusive license to use this material, for the use as indicated in your inquiry. Licenses are for one-time use only with a maximum distribution equal to the number that you identified in the licensing process.

This License includes use in an electronic form, provided it’s password protected, on intranet, or CD-Rom/E-book. For any other electronic use, please contact Springer at permissions.dordrecht@springer.com or permissions.heidelberg@springer.com

Although Springer holds copyright to the material and is entitled to negotiate on rights, this license is only valid, provided permission is also obtained from the author (address is given with the article/chapter) and provided it concerns original material which does not carry references to other sources (if material in question appears with credit to
another source, authorization from that source is required as well).

Geographic Rights: Scope
 Licenses may be exercised anywhere in the world.

Altering/Modifying Material: Not Permitted
 However figures and illustrations may be altered minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of the author(s) and/or Springer Science + Business Media. (Please contact Springer at permissions.dordrecht@springer.com or permissions.heidelberg@springer.com)

Reservation of Rights
 Springer Science + Business Media reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

License Contingent on Payment
 While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by Springer Science + Business Media or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received by Due Date, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and Springer Science + Business Media reserves the right to take any and all action to protect its copyright in the materials.

Copyright Notice:
 Please include the following copyright citation referencing the publication in which the material was originally published. Where wording is within brackets, please include verbatim.

"With kind permission from Springer Science+Business Media: <book/journal title, chapter/article title, volume, year of publication, page, name(s) of author(s), figure number(s), and any original (first) copyright notice displayed with material>.'"

Warranties
 Springer Science + Business Media makes no representations or warranties with res-
pect to the licensed material.

Indemnity
You hereby indemnify and agree to hold harmless Springer Science + Business Media and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

No Transfer of License
This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without Springer Science + Business Media’s written permission.

No Amendment Except in Writing
This license may not be amended except in a writing signed by both parties (or, in the case of Springer Science + Business Media, by CCC on Springer Science + Business Media’s behalf).

Objection to Contrary Terms
Springer Science + Business Media hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC’s Billing and Payment terms and conditions. These terms and conditions, together with CCC’s Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and Springer Science + Business Media (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC’s Billing and Payment terms and conditions, these terms and conditions shall control.

Jurisdiction
All disputes that may arise in connection with this present License, or the breach thereof, shall be settled exclusively by the country’s law in which the work was originally published.

Other terms and conditions: v1.3

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

D.1.2 HCII - 2014: International Conference on Human-Computer Interaction

SPRINGER LICENSE
TERMS AND CONDITIONS
This is a License Agreement between Julian E. Gutierrez Posada ("You") and Springer ("Springer") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by Springer, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

- **License Number:** 3711480325871
- **License date:** Sep 17, 2015
- **Licensed content publisher:** Springer
- **Licensed content publication:** Springer eBook
- **Licensed content title:** On Feelings of Comfort, Motivation and Joy that GUI and TUI Evoke
- **Licensed content author:** Julián Esteban Gutiérrez Posada
- **Licensed content date:** Jan 1, 2014
- **Type of Use:** Book/Textbook
- **Requestor type:** Publisher
- **Publisher:** UNICAMP - Universidade Estadual de Campinas
- **Portion:** Full text
- **Format:** Print and Electronic
- **Will you be translating?:** No
- **Print run:** 20
- **Author of this Springer article:** Yes and you are the sole author of the new work
- **Order reference number:** None
- **Title of new book:** Interfaces Tangíveis e o Design de Ambientes Socio - construcionistas para Construção de Narrativas
- **Author of new book:** Julian Esteban Gutierrez Posada
- **Expected publication date of new book:** Dec 2015
- **Estimated size of new book (pages):** 235
Terms and Conditions

Introduction
The publisher for this copyrighted material is Springer Science + Business Media. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

Limited License
Springer Science + Business Media hereby grants to you a non-exclusive license to use this material, for the use as indicated in your inquiry. Licenses are for one-time use only with a maximum distribution equal to the number that you identified in the licensing process.

This License includes use in an electronic form, provided it's password protected, on intranet, or CD-Rom/E-book. For any other electronic use, please contact Springer at permissions.dordrecht@springer.com or permissions.heidelberg@springer.com.

Although Springer holds copyright to the material and is entitled to negotiate on rights, this license is only valid, provided permission is also obtained from the author (address is given with the article/chapter) and provided it concerns original material which does not carry references to other sources (if material in question appears with credit to another source, authorization from that source is required as well).

Geographic Rights: Scope
Licenses may be exercised anywhere in the world.

Altering/Modifying Material: Not Permitted
However figures and illustrations may be altered minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of the author(s) and/or Springer Science + Business Media. (Please contact Springer at permissions.dordrecht@springer.com or permissions.heidelberg@springer.com)

Reservation of Rights
Springer Science + Business Media reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC’s Billing and Payment terms and conditions.

License Contingent on Payment
While you may exercise the rights licensed immediately upon issuance of the license
at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by Springer Science + Business Media or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received by Due Date, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC’s Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted.

Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and Springer Science + Business Media reserves the right to take any and all action to protect its copyright in the materials.

Copyright Notice:
Please include the following copyright citation referencing the publication in which the material was originally published. Where wording is within brackets, please include verbatim.

“With kind permission from Springer Science+Business Media: <book/journal title, chapter/article title, volume, year of publication, page, name(s) of author(s), figure number(s), and any original (first) copyright notice displayed with material>.”

Warranties
Springer Science + Business Media makes no representations or warranties with respect to the licensed material.

Indemnity
You hereby indemnify and agree to hold harmless Springer Science + Business Media and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

No Transfer of License
This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without Springer Science + Business Media’s written permission.

No Amendment Except in Writing
This license may not be amended except in a writing signed by both parties (or, in the case of Springer Science + Business Media, by CCC on Springer Science + Business Media’s behalf).

Objection to Contrary Terms
Springer Science + Business Media hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you,
which terms are inconsistent with these terms and conditions or CCC’s Billing and Payment terms and conditions. These terms and conditions, together with CCC’s Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and Springer Science + Business Media (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC’s Billing and Payment terms and conditions, these terms and conditions shall control.

Jurisdiction

All disputes that may arise in connection with this present License, or the breach thereof, shall be settled exclusively by the country’s law in which the work was originally published.

Other terms and conditions: v1.3

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

D.1.3 HCII - 2015: International Conference on Human-Computer Interaction

SPRINGER LICENSE TERMS AND CONDITIONS

Sep 17, 2015

This is a License Agreement between Julian E. Gutierrez Posada ("You") and Springer ("Springer") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by Springer, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

- **License Number:** 3711480554446
- **License date:** Sep 17, 2015
- **Licensed content publisher:** Springer
- **Licensed content publication:** Springer eBook
- **Licensed content title:** A TUI-Based Storytelling for Promoting Inclusion in the Preschool Classroom
- **Licensed content author:** Julián Esteban Gutiérrez Posada
- **Licensed content date:** Jan 1, 2015
Type of Use: Book/Textbook

Requestor type: Publisher

Publisher: UNICAMP - Universidade Estadual de Campinas

Portion: Full text

Format: Print and Electronic

Will you be translating?: No

Print run: 20

Author of this Springer article: Yes and you are the sole author of the new work

Order reference number: None

Title of new book: Interfaces Tangíveis e o Design de Ambientes Socio-construcionistas para Construção de Narrativas

Author of new book: Julian Esteban Gutierrez Posada

Expected publication date of new book: Dec 2015

Estimated size of new book (pages): 235

Total: 0.00 USD

Terms and Conditions

Introduction

The publisher for this copyrighted material is Springer Science + Business Media. By clicking “accept” in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. (“CCC”), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

Limited License

Springer Science + Business Media hereby grants to you a non-exclusive license to use this material, for the use as indicated in your inquiry. Licenses are for one-time use only with a maximum distribution equal to the number that you identified in the licensing process.

This License includes use in an electronic form, provided it’s password protected, on intranet, or CD-Rom/E-book. For any other electronic use, please contact Springer at permissions.dordrecht@springer.com or permissions.heidelberg@springer.com
Although Springer holds copyright to the material and is entitled to negotiate on rights, this license is only valid, provided permission is also obtained from the author (address is given with the article/chapter) and provided it concerns original material which does not carry references to other sources (if material in question appears with credit to another source, authorization from that source is required as well).

Geographic Rights: Scope
Licenses may be exercised anywhere in the world.

Altering/Modifying Material: Not Permitted
However figures and illustrations may be altered minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of the author(s) and/or Springer Science + Business Media. (Please contact Springer at permissions.dordrecht@springer.com or permissions.heidelberg@springer.com)

Reservation of Rights
Springer Science + Business Media reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC’s Billing and Payment terms and conditions.

License Contingent on Payment
While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by Springer Science + Business Media or by CCC) as provided in CCC’s Billing and Payment terms and conditions. If full payment is not received by Due Date, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC’s Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unretracted license, may constitute copyright infringement and Springer Science + Business Media reserves the right to take any and all action to protect its copyright in the materials.

Copyright Notice:
Please include the following copyright citation referencing the publication in which the material was originally published. Where wording is within brackets, please include verbatim.

With kind permission from Springer Science+Business Media: <book/journal title, chapter/article title, volume, year of publication, page, name(s) of author(s), figure number(s), and any original (first) copyright notice displayed
Warranties
Springer Science + Business Media makes no representations or warranties with respect to the licensed material.

Indemnity
You hereby indemnify and agree to hold harmless Springer Science + Business Media and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

No Transfer of License
This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without Springer Science + Business Media’s written permission.

No Amendment Except in Writing
This license may not be amended except in a writing signed by both parties (or, in the case of Springer Science + Business Media, by CCC on Springer Science + Business Media’s behalf).

Objection to Contrary Terms
Springer Science + Business Media hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC’s Billing and Payment terms and conditions. These terms and conditions, together with CCC’s Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and Springer Science + Business Media (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC’s Billing and Payment terms and conditions, these terms and conditions shall control.

Jurisdiction
All disputes that may arise in connection with this present License, or the breach thereof, shall be settled exclusively by the country’s law in which the work was originally published.

Other terms and conditions: v1.3

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.
D.2 Sociedade Brasileira de Computação SBC

D.2.1 IHC-2014 e IHC-2015

Simpósio Brasileiro Sobre Fatores Humanos em Sistemas Computacionais

De: Julián Esteban Guíérrez Posada <jugutier@gmail.com>
Para: sbc@sbc.org.br
cc: jugutier@ic.unicamp.br, eventos@sbc.org.br
Data: 15 de setembro de 2015 17:59
Assunto: Solicitação para uso de artigos publicados em congressos da SBC
Enviado por: gmail.com

Boa tarde

No mês de Novembro do 2015 defenderei o Doutorado em Ciência da Computação no Instituto de Computação da Universidade Estadual de Campinas (IC/UNICAMP). Enviarei este e-mail com o intuito de solicitar autorização da SBC para incorporar artigos que foram publicados nos IHC 2014 e 2015 no corpo de minha Tese de Doutorado.

Os artigos serão publicados na íntegra, sem alterações (com exceção da formatação do texto, numeração das figuras e tabelas, e formato de citações).

A tese será disponibilizada online na biblioteca digital da UNICAMP em 2016.

Os artigos são:

Manipulando histórias: Uma investigação sobre o uso de interfaces tangíveis e narrativas na escola, IHC - XIII Simpósio Brasileiro Sobre Fatores Humanos em Sistemas Computacionais, SBC – 2014, Julián E. Gutiérrez Posada, M. Cecilia C. Baranauskas, Vanessa R.M.L. Maíke.

A socio-constructionist environment to create stories using tangible interfaces, IHC – XIV Simpósio Brasileiro Sobre Fatores Humanos em Sistemas Computacionais, SBC – 2015, Julián E. Gutiérrez Posada, M. Cecilia C. Baranauskas.

Conto com sua compreensão e agradeço a atenção,

Julián Esteban Gutierrez Posada
IC-Unicamp
Bom dia, Julián.

Não há problemas em usar os artigos em sua tese, desde seja citada a fonte.

Atenciosamente,

Annelise Abreu Coutinho
Atendimento aos associados
sbc@sbc.org.br
Sociedade Brasileira de Computação
Av. Bento Gonçalves, 9500 - Prédio 43412 - Sala 219
CEP: 91509-900 - Agronomia - Porto Alegre/RS
Tel.: +55 51 3308-6835 Fax: +55 51 3308-7142

Bom dia

Prezados

Certamente deixarei explícito na tese, para cada capítulo, qual foi o evento onde ele foi originalmente publicado informando a referência completa para cada um.

Muito obrigado pelo pronto retorno.

Saudações

Julián Esteban Guíerrez Posada
IC-Unicamp