Search for leptoquarks coupled to third-generation quarks in proton-proton collisions at \(\sqrt{s} = 13 \text{ TeV} \)

The CMS Collaboration

Abstract

Three of the most significant measured deviations from standard model predictions, the enhanced decay rate for \(B \to D^{(*)}\tau\nu \), hints of lepton universality violation in \(B \to K^{(*)}\ell\ell \) decays, and the anomalous magnetic moment of the muon, can be explained by the existence of leptoquarks (LQs) with large couplings to third-generation quarks and masses at the TeV scale. The existence of these states can be probed at the LHC in high energy proton-proton collisions. A novel search is presented for pair production of LQs coupled to a top quark and a muon using data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb\(^{-1}\), recorded by the CMS experiment. No deviation from the standard model prediction has been observed and scalar LQs decaying exclusively into \(t\mu \) are excluded up to masses of 1420 GeV. The results of this search are combined with those from previous searches for LQ decays into \(t\tau \) and \(b\nu \), which excluded scalar LQs below masses of 900 and 1080 GeV. Vector LQs are excluded up to masses of 1190 GeV for all possible combinations of branching fractions to \(t\mu \), \(t\tau \) and \(b\nu \). With this analysis, all relevant couplings of LQs with an electric charge of \(-1/3\) to third-generation quarks are probed for the first time.

Published in Physical Review Letters as [doi:10.1103/Phys.Rev.Lett.121.241802](https://doi.org/10.1103/Phys.Rev.Lett.121.241802).
The standard model of particle physics has been outstandingly successful in describing most fundamental physical phenomena. However, significant deviations from the predictions of the standard model (SM) have been observed in measurements of rare decays of B mesons. In particular, deviations have been seen in the values of the ratio $R_{D^*(s)}$, defined as the ratio of the $B \rightarrow D^{(*)}\tau\nu$ branching fraction to the $B \rightarrow D^{(*)}\mu\nu$ branching fraction. These deviations from the SM were first reported by the BaBar [1, 2] and Belle [3–5] Collaborations and have been confirmed by the LHCb Collaboration [6, 7] with a combined significance of about four standard deviations [8]. The ratios of the branching fractions of $B \rightarrow K^{(*)}\mu\mu$ to $B \rightarrow K^{(*)}e\mu$, R_K and R_{K^*}, as measured by the LHCb Collaboration [9–12], show departures from lepton universality by 2.6 and 2.4 standard deviations, respectively. The measurement of the muon anomalous magnetic moment a_μ, one of the most precisely measured quantities in particle physics [13], also deviates from the SM prediction by 3.5 standard deviations [14]. These anomalies are among the most significant deviations from the SM observed so far.

The existence of leptoquarks (LQs) with masses at the TeV scale and large couplings to third-generation quarks [15–25] has been proposed as a possible explanation for one, two, or all of these deviations. Leptoquarks are hypothetical particles that can decay to SM quarks and leptons. They are triplets with respect to the strong interaction, have fractional electric charge, and can be either scalar (spin 0) or vector (spin 1) particles. Many extensions to the SM, among them grand unification [26–28], technicolor [29, 30], and compositeness models [31, 32], predict the existence of these particles. The effective Buchmüller–Rückl–Wyler model [33] incorporates the assumption that LQ interactions with SM fermions are renormalizable and gauge invariant, leading to restrictions on the allowed quantum numbers of LQs [34]. Depending on its quantum numbers and the coupling structure, a given LQ can decay to any one of a number of different combinations of SM fermions. The couplings of LQs to leptons and quarks of different generations introduce flavor changing neutral currents that may be observable in precision measurements [35]. While simultaneous couplings to the first and second generations are tightly constrained by experimental data, the bounds are weaker for couplings to the second and third generation, thus allowing the existence of leptoquarks with non-diagonal couplings in the generation matrix [19, 24, 36].

Collider searches for LQs with decays to third-generation quarks have been performed in the decay channels $LQ \rightarrow t\tau$, $LQ \rightarrow b\tau$, and $LQ \rightarrow bv$ at $\sqrt{s} = 8\text{ TeV}$ [37–44] and recently at $\sqrt{s} = 13\text{ TeV}$ [45–49]. We present the first search for the pair production of LQs with decays to a top quark and a muon, $LQ \rightarrow t\mu$, a decay mode that is essential to explain the anomalies in a_μ and R_K [19–25]. This search is combined with previous searches that target other decay modes [48, 49]. The combination provides sensitivity to all relevant couplings of LQs with an electric charge of $-\frac{1}{3}$ to third-generation quarks.

At the CERN LHC, pair production of LQs is possible via gluon-gluon fusion or quark-antiquark annihilation, allowing direct searches to be performed. Single LQ production via quark-gluon scattering is subdominant for LQs coupled to heavy quarks, as it requires a heavy quark in the initial state. The pair production cross section depends on the mass of the scalar LQ and is known at next-to-leading order (NLO) precision [50]. The pair production cross section for vector LQs has been calculated at leading order (LO) [51] and is much larger than the scalar LQ cross section. The cross section for vector LQs depends on an additional parameter κ, which is a dimensionless coupling and takes a value of $\kappa = 1$ in the Yang-Mills case and $\kappa = 0$ in the minimal coupling case.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [52].

This analysis uses data recorded by the CMS detector in pp collisions at a center-of-mass energy of 13 TeV in 2016. Online, potential signal events are required to pass a single-muon trigger that selects isolated muon candidates with transverse momentum $p_T > 24$ GeV [53]. Data recorded by single electron triggers are used in background-enriched control regions (CRs). The data correspond to an integrated luminosity of 35.9 fb$^{-1}$.

Signal events of pair-produced LQs with prompt decays to $t\mu$ are simulated with the PYTHIA 8.205 [54, 55] Monte Carlo program at LO for mass values ranging from 200 to 2000 GeV. The POWHEG [56–63] v1 generator is used to simulate background events resulting from the production of single top quarks in the tW-channel at NLO. The POWHEG v2 generator is used for single top production in the $t\bar{t}$-channel and for simulating $t\bar{t}$ production at NLO. Single top quark production in the s-channel, $t\bar{t}$ production in association with a heavy gauge boson ($t\bar{t} + V$), and the production of a W boson with additional jet radiation are simulated with MADGRAPH5_aMC@NLO (v2.2.2) [64] at NLO. Events from Drell–Yan (DY) production with additional jet radiation are simulated with MADGRAPH5_aMC@NLO at LO and an NLO K factor is applied to the LO DY+jets production cross section. The simulation of the production of two heavy gauge bosons with additional jet radiation is performed at NLO with MADGRAPH5_aMC@NLO and POWHEG v2. Events in which jets are produced through the strong interaction only, referred to as quantum chromodynamic multijet events, are simulated with PYTHIA at LO.

Parton showers in the simulated W boson production events and DY events with additional jet radiation are matched to the matrix element calculation with the FxFx [65] and MLM [66] algorithms, respectively. The parton shower and hadronization process is simulated with PYTHIA. The NNPDF3.0 [67] parton distribution functions (PDFs) at LO and NLO are used for processes simulated at LO and NLO, respectively. The underlying event tune CUETP8M2T4 [68] is used for the simulation of $t\bar{t}$ and single top quark production via the $t\bar{t}$-channel, all other processes are generated using CUETP8M1 [69, 70]. All simulated event samples include the simulation of additional inelastic pp interactions within the same or adjacent bunch crossings (pileup). The detector response is simulated with the GEANT4 package [71, 72]. Simulated events are processed through the software chain used for collision data and are reweighted to match the observed distribution of the number of pileup interactions in data.

The CMS experiment uses a particle-flow (PF) event reconstruction algorithm [73], which makes use of an optimized combination of information from the various elements of the CMS detector. The reconstructed vertex with the largest value of summed physics object p_T^2 is taken to be the primary pp interaction vertex. The physics objects here are the objects returned by a jet finding algorithm [74, 75] applied to all charged tracks associated with the vertex, plus the associated missing transverse momentum, taken as the negative vector p_T sum of those jets. More details are given in Ref. [76]. All detected particles are reconstructed either as electrons, muons, photons, charged hadrons, or neutral hadrons. In this analysis, electrons and muons are required to have $p_T \geq 30$ GeV, $|\eta| \leq 2.4$, and to be isolated. The isolation [77, 78] is defined as the summed p_T of all neutral particles and charged hadrons in a cone with radius $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, ϕ being the azimuthal angle in radians, of 0.4 (for muons) or 0.3 (for electrons) around the lepton.
The sum is corrected for the contribution of neutral pileup inside the cone. Jets are clustered from charged and neutral PF candidates using the anti-k_T jet-clustering algorithm \cite{74, 75} with a distance parameter of 0.4. Charged PF candidates originating from vertices other than the primary vertex are not clustered. A jet energy correction (JEC) is applied \cite{79} to account for remaining contributions arising from a different vertex than the primary one as well as for non-uniformity of the jet response in η and non-linearity in p_T. Finally, a correction is applied to account for the residual differences in the jet response between data and simulated events. The jet energy resolution (JER) in simulated events is smeared to match the wider resolution in data. All jets are required to have $p_T \geq 30$ GeV and $|\eta| \leq 2.4$. The combined secondary vertex v2 \cite{80} algorithm is used to identify jets originating from bottom quarks (b-tagged jets). The loose working point is chosen, which has an efficiency of about 90% and a mistag rate of approximately 10%. The missing transverse momentum, $p_{T\text{miss}}$, is calculated as the magnitude of the negative vectorial p_T sum of all PF candidates in an event. Both the jet energy scale and resolution corrections are propagated to the calculation of $p_{T\text{miss}}$.

Offline, events are required to contain at least two muons and at least two jets, of which at least one must be b-tagged. By requiring the invariant mass of each pair of muons in an event to exceed the Z boson mass by at least 20 GeV, events arising from the production of a Z boson with additional jet radiation are suppressed. As the decay of heavy LQs is expected to produce highly energetic leptons and jets, minimum values of $S_{T\text{lep}}$ and S_T of 200 and 350 GeV are required, respectively. Here, $S_{T\text{lep}}$ is the scalar p_T sum of all selected muons and electrons and S_T is defined as the scalar sum of $S_{T\text{lep}}, p_{T\text{miss}}$, and the p_T of all selected jets. The phase space region resulting from these selection criteria is referred to as the signal region (SR) in the following.

Two categories of events are defined, based on the number of muons or electrons. If at least three such charged leptons are present, of which at least two are muons, and at least one pair of muons with opposite electric charge is found, the event falls into category A. Category B contains all remaining events in the SR. In category A, the LQ mass M_{rec}^{LQ} is reconstructed under the assumption that one of the top quarks decays into the leptonic final state with a muon or an electron (leptonic top) and the other one decays into the hadronic final state (hadronic top). The distribution of M_{rec}^{LQ} is used for the final statistical analysis in this category, while the distribution of S_T is used for this purpose in category B.

For each event, the leptonic top quark candidates are constructed from permutations of one or more of the seven p_T-leading jets, one of the three p_T-leading muons or the p_T-leading electron, and $p_{T\text{miss}}$. The hadronic top quark candidates are constructed using all permutations of jets not assigned to the leptonic top quark. The LQ candidates are assembled from top quark candidates and the two p_T-leading muons that have not been associated to the leptonic top quark. The muon charge is used when assigning it to one of the top quark candidates. In events with more than two muons, all possible permutations of muons are considered. A χ^2 variable that takes into account the invariant mass of each top quark candidate and the relative mass difference between the two LQ candidates is then used to select the best pair of LQ candidates for each event. Events with four leptons, which could originate from dileptonic $t\bar{t}$ decays, are included in category A and contribute to the signal efficiency. In order to provide a more accurate SM background prediction in category A, which contains a minimum of three charged leptons, the misidentification rate of electrons and muons is measured using jets in a DY+jets enriched CR in data. The CR is defined by selecting two muons with an invariant mass close to the Z boson mass, and the misidentification rate is measured on events where a jet is misidentified as a third lepton. The resulting data-to-simulation correction factors are applied to simulation for each misidentified charged lepton in a given event in the SR. The effect of
charge misidentification on the analysis was found to be negligibly small.

The contributions from the dominant SM backgrounds in category B, the production of t\bar{t} and DY+jets events, are estimated simultaneously in a data-driven procedure. A CR similar to the SR is defined by requiring a minimum of two electrons without additional muons. The invariant mass of any pair of electrons must be at least 20 GeV above the Z boson mass and all other SR requirements have to be fulfilled for the selected events. We correct for small differences in the distribution of \(S_T \) between the SR and the CR with an extrapolation function \(\alpha(S_T) \), which is derived from simulated t\bar{t} and DY+jets events by fitting both \(S_T \) distributions with an empirical functional form to obtain smoothed distributions that are then used to compute the ratio. The number of data events in the CR, after all simulated minor backgrounds have been subtracted, is multiplied by \(\alpha(S_T) \) to extrapolate into the SR. Using the ratio of the fitted functions results in a significantly smaller impact of systematic uncertainties on the estimated backgrounds.

Various uncertainties affecting the rate and the shape of the signal and background contributions are taken into account. In general, uncertainties in this analysis are treated similarly to those in Ref. [48]. For the background in category A, the uncertainties in the renormalization and factorization scales as well as the uncertainties in the lepton misidentification rates are dominant. In category B the major backgrounds are derived from data. Lepton efficiencies and the background extrapolation procedure are the most important sources of uncertainties for these backgrounds. Uncertainties in the renormalization and factorization scales and in those associated with the choice of PDFs [67–81] used to simulate the events dominate for the minor backgrounds. The signal in both categories is most affected by the uncertainties in lepton and b-tagging [80] efficiencies. Other uncertainties considered are related to SM cross sections [82–90], the integrated luminosity [91], JEC/JER [79], and the pileup reweighting [92].

The THETA software package [93] is used to perform a maximum-likelihood template fit to the binned \(M_{\text{rec}}^{LQ} \) and \(S_T \) distributions for the background and to extract the cross section of a potential signal. The statistical uncertainties in the SM backgrounds and the signal, as well as all systematic uncertainties, are taken into account as nuisance parameters in the fit. The uncertainty in the luminosity is assigned a log-normal prior distribution, for all other systematic uncertainties a Gaussian prior is used. The statistical uncertainty in the predicted background and the signal is taken into account by defining one additional nuisance parameter with a Gaussian distribution for each bin. A flat prior distribution is assumed for the signal cross section. The data are found to be compatible with the SM prediction in both categories. The distributions of \(M_{\text{rec}}^{LQ} \) and \(S_T \) after the background-only fit are shown in Fig. 1. A Bayesian method [94–95] is used to set upper limits at 95% confidence level (CL) on the cross section for pair production of LQs decaying into a top quark and a muon. Pseudo-experiments are performed to determine the median along with the regions expected to contain 68 and 95% of the distribution of limits under the background-only hypothesis.

Pair-produced scalar LQs decaying exclusively into a top quark and a muon, \(B(LQ \rightarrow t\mu) = 1 \), are excluded at 95% CL for LQ masses up to 1420 GeV, exceeding the best previous limit, obtained from a reinterpretation [36] of a search for supersymmetry [96], by more than 600 GeV. These results are combined with results from the \(LQ \rightarrow t\tau \) [48] and \(LQ \rightarrow b\nu \) [49] decay channels to set exclusions limits in the plane of \(M_{1\text{LQ}} \) and \(B(LQ \rightarrow t\mu) \). Figure 2 presents upper limits on the product of the production cross section and the branching fraction squared for \(B(LQ \rightarrow t\mu) = 1 - B(LQ \rightarrow t\tau) \) (left) and \(B(LQ \rightarrow t\mu) = 1 - B(LQ \rightarrow b\nu) \) (right). The values for \(B(LQ \rightarrow t\mu) = 0 \) correspond to the results of the search for pair-produced LQs in the \(LQ \rightarrow t\tau \) decay channel (left) and the search for pair-produced LQs in the \(LQ \rightarrow b\nu \) channel (right). These analyses excluded pair-produced scalar LQs in the targeted decay channels up
Figure 1: Distributions for M_{LQ}^{rec} (category A, left) and S_T (category B, right) after applying the full selection and estimating the $t\bar{t}$ and DY+jets background contributions from data in category B. All backgrounds are normalized according to the post-fit nuisance parameters based on the corresponding SM cross sections. In the upper panels, the hatched areas correspond to the total uncertainty. In the lower panels, the gray bands indicate the total uncertainty.

Figure 2: The sensitivity is driven by the present analysis for values of $B(LQ \to t\mu) > 0.1 (0.3)$ and by the $LQ \to t\tau (b\nu)$ search for smaller values. Scalar LQs decaying into a top quark and either a muon or a tau lepton are excluded below masses of 900 GeV for all values of $B(LQ \to t\mu)$, whereas LQs decaying either into a top quark and a muon or into a bottom quark and a neutrino are excluded up to $M_{LQ} = 980$ GeV. The simulated samples of scalar LQ pair production are also used to derive mass exclusion limits for pair-produced vector LQs, as the acceptance for both types of LQs is similar. The lower limit of excluded vector LQ masses is shown in Fig. 2 for the two coupling cases $\kappa = 1$ and $\kappa = 0$. Vector LQs are excluded up to masses of 1190 GeV for all values of $B(LQ \to t\mu)$ and κ considered.

In summary, this analysis represents the first search for leptoquarks (LQs) decaying to top quarks and muons, reaching LQ masses of $O(1 \text{ TeV})$ and placing direct constraints on the corresponding LQ coupling, thus probing the region of interest of models including LQs. With this result, all relevant couplings of LQs with an electric charge of $-1/3$ to third-generation quarks are examined for the first time.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia);
Figure 2: Observed upper limits on the production cross section for pair production of LQs decaying into a top quark and a muon or a τ lepton (left) and LQs decaying into a top quark and a muon or into a bottom quark and a neutrino (right) at 95% CL in the $M_{LQ}-B(LQ \rightarrow t\mu)$ plane. The lines show the lower mass exclusion limits for scalar (black) and vector (colored) LQs. They are derived by using the prediction for the scalar and vector LQ signal calculated at NLO [50] and LO [51], respectively.
[6] LHCb Collaboration, “Measurement of the ratio of branching fractions $B(\bar{B}^0 \to D^+ \tau^- \bar{\nu}_{\tau})/B(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$”, Phys. Rev. Lett. 115 (2015) 111803, doi:10.1103/PhysRevLett.115.111803, arXiv:1506.08614 [Erratum: doi:10.1103/PhysRevLett.115.159901].

[7] LHCb Collaboration, “Test of lepton flavor universality by the measurement of the $B^0 \to D^- \tau^+ \nu_{\tau}$ branching fraction using three-prong τ decays”, Phys. Rev. D 97 (2018) 072013, doi:10.1103/PhysRevD.97.072013, arXiv:1711.02505.

[8] HFLAV Collaboration, “Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016”, Eur. Phys. J. C 77 (2017) 895, doi:10.1140/epjc/s10052-017-5058-4, arXiv:1612.07233.

[9] LHCb Collaboration, “Test of lepton universality using $B^+ \to K^+ \ell^+ \ell^- \$decays”, Phys. Rev. Lett. 113 (2014) 151601, doi:10.1103/PhysRevLett.113.151601, arXiv:1406.6482.

[10] LHCb Collaboration, “Differential branching fractions and isospin asymmetries of $B \to K^{(*)} \mu^+ \mu^- \$decays”, JHEP 06 (2014) 133, doi:10.1007/JHEP06(2014)133, arXiv:1403.8044.

[11] LHCb Collaboration, “Angular analysis of the $B^0 \to K^{(*)} \mu^+ \mu^- \$decay using 3fb^{-1} of integrated luminosity”, JHEP 02 (2016) 104, doi:10.1007/JHEP02(2016)104, arXiv:1512.04442.

[12] LHCb Collaboration, “Test of lepton universality with $B^0 \to K^{(*)} \ell^+ \ell^- \$decays”, JHEP 08 (2017) 055, doi:10.1007/JHEP08(2017)055, arXiv:1705.05802.

[13] Muon g-2 Collaboration, “Final report of the muon E821 anomalous magnetic moment measurement at BNL”, Phys. Rev. D 73 (2006) 072003, doi:10.1103/PhysRevD.73.072003.

[14] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “Reevaluation of the hadronic vacuum polarisation contributions to the standard model predictions of the muon $g-2$ and $\alpha(m_Z^2)$ using newest hadronic cross-section data”, Eur. Phys. J. C 77 (2017) 827, doi:10.1140/epjc/s10052-017-5161-6, arXiv:1706.09436.

[15] M. Tanaka and R. Watanabe, “New physics in the weak interaction of $\bar{B} \to D^{(*)} \tau \bar{\nu}$”, Phys. Rev. D 87 (2013) 034028, doi:10.1103/PhysRevD.87.034028, arXiv:1212.1878.

[16] Y. Sakaki, M. Tanaka, A. Tayduganov, and R. Watanabe, “Testing leptoquark models in $B \to D^{(*)} \tau \bar{\nu}$”, Phys. Rev. D 88 (2013) 094012, doi:10.1103/PhysRevD.88.094012, arXiv:1309.0301.

[17] I. Doršner, S. Fajfer, N. Košnik, and I. Nišandžić, “Minimally flavored colored scalar in $\bar{B} \to D^{(*)} \tau \bar{\nu}$ and the mass matrices constraints”, JHEP 11 (2013) 084, doi:10.1007/JHEP11(2013)084, arXiv:1306.6493.

[18] B. Dumont, K. Nishiwaki, and R. Watanabe, “LHC constraints and prospects for S_1 scalar leptoquark explaining the $\bar{B} \to D^{(*)} \tau \bar{\nu}$ anomaly”, Phys. Rev. D 94 (2016) 034001, doi:10.1103/PhysRevD.94.034001, arXiv:1603.05248.

[19] A. Crivellin, D. Müller, and T. Ota, “Simultaneous explanation of $R(D^{(*)})$ and $b \to s \mu^+ \mu^-$: the last scalar leptoquarks standing”, JHEP 09 (2017) 040, doi:10.1007/JHEP09(2017)040, arXiv:1703.09226.
[20] B. Gripaios, M. Nardecchia, and S. A. Renner, “Composite leptoquarks and anomalies in b-meson decays”, JHEP 05 (2015) 006, doi:10.1007/JHEP05(2015)006, arXiv:1412.1791

[21] M. Bauer and M. Neubert, “Minimal leptoquark explanation for the $R_{D^{(*)}}$, R_K, and $(g-2)_\mu$ anomalies”, Phys. Rev. Lett. 116 (2016) 141802, doi:10.1103/PhysRevLett.116.141802, arXiv:1511.01900

[22] E. Coluccio Leskow, G. D’Ambrosio, A. Crivellin, and D. Müller, “$(g-2)_\mu$, lepton flavor violation, and Z decays with leptoquarks: Correlations and future prospects”, Phys. Rev. D 95 (2017) 055018, doi:10.1103/PhysRevD.95.055018, arXiv:1612.06858

[23] D. Bečirević and O. Sumensari, “A leptoquark model to accommodate $R_K^{\text{exp}} < R_K^{\text{SM}}$ and $R_{K^*}^{\text{exp}} < R_{K^*}^{\text{SM}}$”, JHEP 08 (2017) 104, doi:10.1007/JHEP08(2017)104, arXiv:1704.05835

[24] G. Hiller and I. Nišandžić, “R_K and R_{K^*} beyond the standard model”, Phys. Rev. D 96 (2017) 035003, doi:10.1103/PhysRevD.96.035003, arXiv:1704.05444

[25] G. Hiller, D. Loose, and I. Nišandžić, “Flavorful leptoquarks at hadron colliders”, Phys. Rev. D 97 (2018) 075004, doi:10.1103/PhysRevD.97.075004, arXiv:1801.09399

[26] J. C. Pati and A. Salam, “Lepton number as the fourth color”, Phys. Rev. D 10 (1974) 275, doi:10.1103/PhysRevD.10.275 [Erratum: doi:10.1103/PhysRevD.11.703.2].

[27] H. Fritzsch and P. Minkowski, “Unified interactions of leptons and hadrons”, Annals Phys. 93 (1975) 193, doi:10.1016/0003-4916(75)90211-0.

[28] E. Farhi and L. Susskind, “Technicolor”, Phys. Rept. 74 (1981) 277, doi:10.1016/0370-1573(81)90173-3

[29] K. Lane and M. V. Ramana, “Walking technicolor signatures at hadron colliders”, Phys. Rev. D 44 (1991) 2678, doi:10.1103/PhysRevD.44.2678

[30] B. Schrempp and F. Schrempp, “Light leptoquarks”, Phys. Lett. B 153 (1985) 101, doi:10.1016/0370-3693(85)91450-9

[31] B. Gripaios, “Composite leptoquarks at the LHC”, JHEP 02 (2010) 045, doi:10.1007/JHEP02(2010)045, arXiv:0910.1789

[32] W. Buchmüller, R. Rückl, and D. Wyler, “Leptoquarks in lepton - quark collisions”, Phys. Lett. B 191 (1987) 442, doi:10.1016/0370-2693(87)90637-8 [Erratum: doi:10.1016/S0370-2693(99)00014-3].

[33] D. E. Acosta and S. K. Blessing, “Leptoquark searches at HERA and the Tevatron”, Ann. Rev. Nucl. Part. Sci. 49 (1999) 389, doi:10.1146/annurev.nucl.49.1.389

[34] I. Doršner et al., “Physics of leptoquarks in precision experiments and at particle colliders”, Phys. Rept. 641 (2016) 1, doi:10.1016/j.physrep.2016.06.001, arXiv:1603.04993
[36] B. Diaz, M. Schmaltz, and Y.-M. Zhong, “The leptoquark hunter’s guide: Pair production”, *JHEP* **10** (2017) 097, [doi:10.1007/JHEP10(2017)097](https://doi.org/10.1007/JHEP10(2017)097), arXiv:1706.05033.

[37] CMS Collaboration, “Search for third-generation scalar leptoquarks in the $t\tau$ channel in proton-proton collisions at $\sqrt{s} = 8$ TeV”, *JHEP* **07** (2015) 042, [doi:10.1007/JHEP07(2015)042](https://doi.org/10.1007/JHEP07(2015)042), arXiv:1503.09049. [Erratum: doi:10.1007/JHEP11(2016)056].

[38] D0 Collaboration, “Search for third-generation leptoquarks in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV”, *Phys. Rev. Lett.* **99** (2007) 061801, [doi:10.1103/PhysRevLett.99.061801](https://doi.org/10.1103/PhysRevLett.99.061801), arXiv:0705.0812.

[39] CDF Collaboration, “Search for third generation vector leptoquarks in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV”, *Phys. Rev. D* **77** (2008) 091105, [doi:10.1103/PhysRevD.77.091105](https://doi.org/10.1103/PhysRevD.77.091105), arXiv:0706.2832.

[40] ATLAS Collaboration, “Search for third generation scalar leptoquarks in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector”, *JHEP* **06** (2013) 033, [doi:10.1007/JHEP06(2013)033](https://doi.org/10.1007/JHEP06(2013)033), arXiv:1303.0526.

[41] CMS Collaboration, “Search for third-generation leptoquarks and scalar bottom quarks in pp collisions at $\sqrt{s} = 7$ TeV”, *JHEP* **12** (2012) 055, [doi:10.1007/JHEP12(2012)055](https://doi.org/10.1007/JHEP12(2012)055), arXiv:1210.5627.

[42] CMS Collaboration, “Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at $\sqrt{s} = 8$ TeV”, *Phys. Lett. B* **739** (2014) 229, [doi:10.1016/j.physletb.2014.10.063](https://doi.org/10.1016/j.physletb.2014.10.063), arXiv:1408.0806.

[43] CMS Collaboration, “Searches for third-generation squark production in fully hadronic final states in proton-proton collisions at $\sqrt{s} = 8$ TeV”, *JHEP* **06** (2015) 116, [doi:10.1007/JHEP06(2015)116](https://doi.org/10.1007/JHEP06(2015)116), arXiv:1503.08037.

[44] ATLAS Collaboration, “Searches for scalar leptoquarks in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector”, *Eur. Phys. J. C* **76** (2016) 5, [doi:10.1140/epjc/s10052-015-3823-9](https://doi.org/10.1140/epjc/s10052-015-3823-9), arXiv:1508.04735.

[45] CMS Collaboration, “Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying τ leptons and two jets in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* **03** (2017) 077, [doi:10.1007/JHEP03(2017)077](https://doi.org/10.1007/JHEP03(2017)077), arXiv:1612.01190.

[46] CMS Collaboration, “Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* **07** (2017) 121, [doi:10.1007/JHEP07(2017)121](https://doi.org/10.1007/JHEP07(2017)121), arXiv:1703.03995.

[47] CMS Collaboration, “Search for new phenomena with the M_{12} variable in the all-hadronic final state produced in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *Eur. Phys. J. C* **77** (2017) 710, [doi:10.1140/epjc/s10052-017-5267-x](https://doi.org/10.1140/epjc/s10052-017-5267-x), arXiv:1705.04650.

[48] CMS Collaboration, “Search for third-generation scalar leptoquarks decaying to a top quark and a τ lepton at $\sqrt{s} = 13$ TeV”, *Eur. Phys. J. C* **78** (2018) 707, [doi:10.1140/epjc/s10052-018-6143-z](https://doi.org/10.1140/epjc/s10052-018-6143-z), arXiv:1803.02864.
[49] CMS Collaboration, “Constraints on models of scalar and vector leptoquarks decaying to a quark and a neutrino at $\sqrt{s} = 13$ TeV”, Phys. Rev. D 98 (2018) 032005, doi:10.1103/PhysRevD.98.032005, arXiv:1805.10228.

[50] M. Kramer, T. Plehn, M. Spira, and P. M. Zerwas, “Pair production of scalar leptoquarks at the CERN LHC”, Phys. Rev. D 71 (2005) 057503, doi:10.1103/PhysRevD.71.057503, arXiv:hep-ph/0411038.

[51] I. Dorfner and A. Greljo, “Leptoquark toolbox for precision collider studies”, JHEP 05 (2018) 126, doi:10.1007/JHEP05(2018)126, arXiv:1801.07641.

[52] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[53] CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.

[54] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[55] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[56] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, doi:10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.

[57] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092.

[58] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, doi:10.1007/JHEP06(2010)043, arXiv:1002.2581.

[59] S. Frixione, P. Nason, and G. Ridolfi, “A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction”, JHEP 09 (2007) 126, doi:10.1088/1126-6708/2007/09/126, arXiv:0707.3088.

[60] T. Melia, P. Nason, R. Rontsch, and G. Zanderighi, “W^+W^-, WZ and ZZ production in the POWHEG BOX”, JHEP 11 (2011) 078, doi:10.1007/JHEP11(2011)078, arXiv:1107.5051.

[61] P. Nason and G. Zanderighi, “W^+W^-, WZ and ZZ production in the POWHEG-BOX-V2”, Eur. Phys. J. C 74 (2014) 2702, doi:10.1140/epjc/s10052-013-2702-5, arXiv:1311.1365.

[62] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with shower in POWHEG: s- and t-channel contributions”, JHEP 09 (2009) 111, doi:10.1088/1126-6708/2009/09/111, arXiv:0907.4076 [Erratum: doi:10.1007/JHEP02(2010)011].

[63] E. Re, “Single-top Wt-channel production matched with parton showers using the POWHEG method”, Eur. Phys. J. C 71 (2011) 1547, doi:10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450.
11 References

[64] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079 arXiv:1405.0301.

[65] R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, JHEP 12 (2012) 061, doi:10.1007/JHEP12(2012)061 arXiv:1209.6215

[66] J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, doi:10.1140/epjc/s10052-007-0490-5 arXiv:0706.2569.

[67] NNPDF Collaboration, “Parton distributions for the LHC Run II”, JHEP 04 (2015) 040, doi:10.1007/JHEP04(2015)040 arXiv:1410.8849.

[68] CMS Collaboration, “Investigations of the impact of the parton shower tuning in PYTHIA 8 in the modelling of tt at $\sqrt{s} = 8$ and 13 TeV”, CMS Physics Analysis Summary CMS-PAS-TOP-16-021, 2016.

[69] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, doi:10.1140/epjc/s10052-016-3988-x arXiv:1512.00815.

[70] P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, Eur. Phys. J. C 74 (2014) 3024, doi:10.1140/epjc/s10052-014-3024-y arXiv:1404.5630.

[71] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[72] J. Allison et al., “GEANT4 developments and applications”, IEEE Trans. Nucl. Sci. 53 (2006) 270, doi:10.1109/TNS.2006.869826.

[73] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003 arXiv:1706.04965.

[74] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_T jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063 arXiv:0802.1189.

[75] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2 arXiv:1111.6097.

[76] CMS Collaboration, “Technical Proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.

[77] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 13$ TeV”, JINST 13 (2018) P06015, doi:10.1088/1748-0221/13/06/P06015 arXiv:1804.04528.

[78] CMS Collaboration, “Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, JINST 10 (2015) P08010, doi:10.1088/1748-0221/10/08/P08010 arXiv:1502.02702.

[79] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014 arXiv:1607.03663.
[80] CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, *JINST* **13** (2018) P05011, doi:10.1088/1748-0221/13/05/P05011, arXiv:1712.07158

[81] J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, *J. Phys. G* **43** (2016) 023001, doi:10.1088/0954-3899/43/2/023001, arXiv:1510.03865

[82] CMS Collaboration, “Measurement of the $t\bar{t}$ production cross section using events in the $e\mu$ final state in pp collisions at $\sqrt{s} = 13$ TeV”, *Eur. Phys. J. C* **77** (2017) 172, doi:10.1140/epjc/s10052-017-4718-8, arXiv:1611.04040

[83] CMS Collaboration, “Measurement of inclusive W and Z boson production cross sections in pp collisions at $\sqrt{s} = 8$ TeV”, *Phys. Rev. Lett.* **112** (2014) 191802, doi:10.1103/PhysRevLett.112.191802, arXiv:1402.0923

[84] CMS Collaboration, “Cross section measurement of t-channel single top quark production in pp collisions at $\sqrt{s} = 13$ TeV”, *Phys. Lett. B* **772** (2017) 752, doi:10.1016/j.physletb.2017.07.047, arXiv:1610.00678

[85] N. Kidonakis, “NNLL threshold resummation for top-pair and single-top production”, *Phys. Part. Nucl.* **45** (2014) 714, doi:10.1134/S1063779614040091, arXiv:1210.7813

[86] CMS Collaboration, “Observation of the associated production of a single top quark and a W boson in pp collisions at $\sqrt{s} = 8$ TeV”, *Phys. Rev. Lett.* **112** (2014) 231802, doi:10.1103/PhysRevLett.112.231802, arXiv:1401.2942

[87] T. Gehrmann et al., “W^+W^- production at hadron colliders in next to next to leading order QCD”, *Phys. Rev. Lett.* **113** (2014) 212001, doi:10.1103/PhysRevLett.113.212001, arXiv:1408.5243

[88] J. M. Campbell, R. K. Ellis, and C. Williams, “Vector boson pair production at the LHC”, *JHEP* **07** (2011) 018, doi:10.1007/JHEP07(2011)018, arXiv:1105.0020

[89] CMS Collaboration, “Measurement of the WZ production cross section in pp collisions at $\sqrt{s} = 13$ TeV”, *Phys. Lett. B* **766** (2017) 268, doi:10.1016/j.physletb.2017.01.011, arXiv:1607.06943

[90] CMS Collaboration, “Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* **08** (2018) 011, doi:10.1007/JHEP08(2018)011, arXiv:1711.02547

[91] CMS Collaboration, “CMS luminosity measurements for the 2016 data taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2017.

[92] CMS Collaboration, “Measurement of the inelastic proton-proton cross section at $\sqrt{s} = 13$ TeV”, *JHEP* **07** (2018) 161, doi:10.1007/JHEP07(2018)161, arXiv:1802.02613

[93] J. Ott, “THETA — A framework for template-based modeling and inference”, 2010. http://www-ekp.physik.uni-karlsruhe.de/~ott/theta/theta-auto

[94] A. O’Hagan and J. J. Forster, “Kendall’s advanced theory of statistics. Vol. 2B: Bayesian Inference”. Arnold, London, 2004.
[95] G. Cowan, “Statistics”, Ch. 39 in Particle Data Group, “Review of particle physics”, Chin. Phys. C 40 (2016) 100001, doi:10.1088/1674-1137/40/10/100001

[96] CMS Collaboration, “Search for supersymmetry in events with at least three electrons or muons, jets, and missing transverse momentum in proton-proton collisions at $\sqrt{s} = 13$ TeV”, JHEP 02 (2018) 067, doi:10.1007/JHEP02(2018)067, arXiv:1710.09154
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, R. Frühwirth¹, V.M. Ghete, J. Hrubec, M. Jeitler¹, N. Krammer, I. Kräschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad, H. Rohringer, J. Schieck¹, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz¹, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lovette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, Q. Wang

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov², D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, A. Giammanco, G. Krintiras, V. Lemaître, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
F.L. Alves, G.A. Alves, M. Correa Martins Junior, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato³, E. Coelho, E.M. Da Costa, G.G. Da Silveira³, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote³, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahuja a, C.A. Bernardes a, L. Calligaris a, T.R. Fernandez Perez Tomei a, E.M. Gregores b, P.G. Mercadante b, S.F.Novaes a, Sandra S. Padula a

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia,
Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang, X. Gao, L. Yuan

Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Tsinghua University, Beijing, China
Y. Wang

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, M.A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, M. Kolosova, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A. Mahrous, A. Mohamed, E. Salama

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken
Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Havukainen, J.K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mänpää, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam, C. Amendola, I. Antropov, F. Beaudette, P. Busson, C. Charlot, R. Granier de Cassagnac, I. Kucher, A. Lobanov, J. Martin Blanco, C. Martin Perez, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, A. Zabi, A. Zhgiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, V. Cherepanov, C. Collard, E. Conte, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, S. Perries, A. Popov, V. Sordini, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M.P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, D. Duchardt, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, S. Ghosh, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, A. Schmidt, D. Teyssier, S. Thüer
National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali32, F. Mohamad Idris33, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, M.C. Duran-Osuna, I. Heredia-De La Cruz34, R. Lopez-Fernandez, J. Mejia Guisao, R.I. Rabadan-Trejo, M. Ramirez-Garcia, G. Ramirez-Sanchez, R Reyes-Almanza, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
S. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, M.I. Asghar, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk35, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadrucio, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev36,37, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim38, E. Kuznetsova39, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashkenkov, D. Tlisov, A. Toropin
Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, P. Parygin, D. Philippov, S. Polikarpov, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, I. Lokhtin, I. Miagkov, S. Obraztsov, M.Perfilov, S. Petrushanko, V. Savrin

Novosibirsk State University (NSU), Novosibirsk, Russia
A. Barnyakov, V. Blinov, T. Dimova, L. Kardapoltsev, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, T. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, S. Baidali, V. Okhotnikov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, J.A. Brochero Cifuentes, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M.S. Soares, A. Triossi

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, V. Rodriguez Bouza, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, A. García Alonso, J. García-Ferrero, G. Gomez, A. Lopez Virto,
Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, S. Ozkorucuklu, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold, S. Paramesvaran, B. Penning, T. Sakuma, D. Smith, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, D. Colling, P. Dauncey, G. Davies, M. Della Negra, R. Di Maria, Y. Haddad, G. Hall, G. Iles, T. James, M. Komm, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, J. Nash, A. Nikitenko, V. Palladino, M. Pesaressi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, G. Singh, M. Stoye, T. Streble, S. Summers, A. Tapper, K. Uchida, T. Virdee, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
K. Call, J. Dittmann, K. Hatakeyama, H. Liu, C. Madrid, B. Mcmaster, N. Pastika, C. Smith

Catholic University of America, Washington DC, USA
R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
D. Arcaro, T. Bose, D. Gastler, D. Pinna, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA
G. Benelli, X. Coubez, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, S. Sagir, R. Syarif, E. Usai, D. Yu

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok,
J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B.R. Yates

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech68, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, M. Citron, A. Dishaw, V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, S. Wang, J. Yoo

California Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, J.M. Lawhorn, H.B. Newman, T.Q. Nguyen, M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, J. Chaves, Y. Cheng, J. Chu, A. Datta, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, M.J. Kortelainen, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahm, V. O’Dell, K. Pedro, C. Pen, O. Prokofyev, G. Rakness, L. Ristori, A. Savoy-Navarro69, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck
University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, L. Cadamuro, A. Carnes, M. Carver, D. Curry, R.D. Field, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K.H. Lo, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rosenzweig, K. Shi, D. Sperka, J. Wang, S. Wang, X. Zuo

Florida International University, Miami, USA
Y.R. Joshi, S. Linn

Florida State University, Tallahassee, USA
A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, C. Schiber, R. Yohay

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, M. Rahmani, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, C. Mills, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, X. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, USA
M. Alhusseini, B. Bilki, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytymradov, V. Khristenko, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel

Johns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, W.T. Hung, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You

The University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, A. Bylinkin, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak, A. Mohammad, L.K. Saini, N. Skhirtladze

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, S. Nabili, F. Ricci-Tam, Y.H. Shin, A. Skaula, S.C. Tonwar, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, V. Azzolini, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, Z. Demiragili, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mcdonnell, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, G.S.F. Stephens, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch, S. Zhaozhong
University of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, Sh. Jain, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, N. Ruckstuhl, R. Rusack, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USA
A. Godshalk, C. Harrington, I. Iashvili, A. Kharchilava, C. Mclean, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbehani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, A. Hortiangtham, D.M. Morse, T. Orimoto, R. Teixeira De Lima, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, T.Y. Ling, W. Luo, B.L. Winer

Princeton University, Princeton, USA
S. Cooperstein, P. Elmer, J. Hardenbrook, S. Higginbotham, A. Kalogeropoulos, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, J. Salfeld-Nebgen, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, B. Mahakud, D.H. Miller, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA
Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, P. Tan, R. Taus
Rutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J.P. Chou, Y. Gershtein, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
A.G. Delannoy, J. Heideman, G. Riley, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, S. Luo, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, J.D. Ruiz Alvarez, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

University of Wisconsin - Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, L. Dodd, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, K. Long, R. Loveless, T. Ruggles, A. Savin, V. Sharma, N. Smith, W.H. Smith, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5: Also at Université Libre de Bruxelles, Bruxelles, Belgium
6: Also at University of Chinese Academy of Sciences, Beijing, China
7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Now at Helwan University, Cairo, Egypt
10: Also at Zewail City of Science and Technology, Zewail, Egypt
11: Also at British University in Egypt, Cairo, Egypt
12: Now at Ain Shams University, Cairo, Egypt
13: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
16: Also at Tbilisi State University, Tbilisi, Georgia
17: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
19: Also at University of Hamburg, Hamburg, Germany
20: Also at Brandenburg University of Technology, Cottbus, Germany
21: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
22: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
23: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
24: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
25: Also at Institute of Physics, Bhubaneswar, India
26: Also at Shoolini University, Solan, India
27: Also at University of Visva-Bharati, Santiniketan, India
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
30: Also at Università degli Studi di Siena, Siena, Italy
31: Also at Kyunghee University, Seoul, Korea
32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
34: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
39: Also at University of Florida, Gainesville, USA
40: Also at P.N. Lebedev Physical Institute, Moscow, Russia
41: Also at California Institute of Technology, Pasadena, USA
42: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
44: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
45: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
46: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
47: Also at National and Kapodistrian University of Athens, Athens, Greece
48: Also at Riga Technical University, Riga, Latvia
49: Also at Universität Zürich, Zurich, Switzerland
50: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
51: Also at Gaziosmanpasa University, Tokat, Turkey
52: Also at Adiyaman University, Adiyaman, Turkey
53: Also at Istanbul Aydin University, Istanbul, Turkey
54: Also at Mersin University, Mersin, Turkey
55: Also at Piri Reis University, Istanbul, Turkey
56: Also at Ozyegin University, Istanbul, Turkey
57: Also at Izmir Institute of Technology, Izmir, Turkey
58: Also at Marmara University, Istanbul, Turkey
59: Also at Kafkas University, Kars, Turkey
60: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
61: Also at Istanbul Bilgi University, Istanbul, Turkey
62: Also at Hacettepe University, Ankara, Turkey
63: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
64: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
65: Also at Monash University, Faculty of Science, Clayton, Australia
66: Also at Bethel University, St. Paul, USA
67: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
68: Also at Utah Valley University, Orem, USA
69: Also at Purdue University, West Lafayette, USA
70: Also at Beykent University, Istanbul, Turkey
71: Also at Bingol University, Bingol, Turkey
72: Also at Sinop University, Sinop, Turkey
73: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
74: Also at Texas A&M University at Qatar, Doha, Qatar
75: Also at Kyungpook National University, Daegu, Korea