Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels

Jie Chen1,2, Xin Hu1,2, Taotao Shi1,2, Huanran Yin1,2, Dongfa Sun2,*, Yuanfeng Hao3, Xianchun Xia3, Jie Luo1, Alisdair R. Fernie4, Zhonghe He5,* and Wei Chen1,2,6

1National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
2College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
3National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
4Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany

Summary

The marriage of metabolomic approaches with genetic design has proven a powerful tool in dissecting diversity in the metabolome and has additionally enhanced our understanding of complex traits. That said, such studies have rarely been carried out in wheat. In this study, we detected 805 metabolites from wheat kernels and profiled their relative contents among 182 wheat accessions, conducting a metabolite-based genome-wide association study (mGWAS) utilizing 14 646 previously described polymorphic SNP markers. A total of 1098 mGWAS associations were detected with large effects, within which 26 candidate genes were tentatively designated for 42 loci. Enzymatic assay of two candidates indicated they could catalyse glucosylation and subsequent malonylation of various flavonoids and thereby the major flavonoid decoration pathway of wheat kernel was dissected. Moreover, numerous high-confidence genes associated with metabolite contents have been provided, as well as more subdivided metabolite networks which are yet to be explored within our data. These combined efforts presented the first step towards realizing metabolomics-associated breeding of wheat.

Introduction

Plant metabolites play crucial roles in the interaction of plants with their surrounding environments (Saito and Matsuda, 2010; Schwab, 2003) and are necessary for humans in that they directly or indirectly constitute our nutritional supply (De Luca et al., 2012; Keurentjes, 2009; Saito and Matsuda, 2010; Wang et al., 2009). One class of specialized metabolites (also called secondary metabolites), the flavonoids, have been proposed to possess a range of functional roles. For instance, different decorations of the basic flavonoid structure were associated with varied UV tolerance in both rice cultivars and Arabidopsis ecotypes dispersed in various latitudes (Peng et al., 2017; Tohge et al., 2016), and flavonoid metabolites are believed to confer, among other bioactivities, anti-inflammatory activity when provided in the diet (Kang et al., 2016; Martin and Li, 2017; Zhou and Ibrahim, 2009). However, the enormous number of predicted metabolites (Dixon and Strack, 2003) and the severe variation in their abundance between species (Morohashi et al., 2012) mean that vast majority of metabolic pathways remain to be fully unveiled. Indeed, unlike primary metabolites which are similarly present across the plant kingdom, secondary metabolic pathways are highly divergent between species. An elegant recent study revealed that part of the previously known pathway for flavonoid syntheses was reconstructed in rice, in which the naringenin-to-tricin route was redirected bypassing the formation of tricetin (Lam et al., 2015). More recently, the progress in flavonoid biosynthesis pathways in model plants and several crop species has been reviewed (Tohge et al., 2017). These studies demonstrated the essentiality of applying metabolomics as a systematic approach to study specialized plant metabolism. Specifically, metabolomic genome-wide association study (mGWAS) or metabolomic quantitative trait loci mapping (mQTL) has proven highly powerful in understanding the diversification of metabolites (Chen et al., 2014; Gong et al., 2013; Zhu et al., 2018), as well as the association of these metabolites with biotic and abiotic stress defence processes (Chen et al., 2018; Glauser et al., 2011; Peng et al., 2017) or with food quality and flavour (Peng et al., 2016; Sharma et al., 2016; Tieman et al., 2017). However, to date only very few mGWAS or mQTL studies have been conducted in wheat (Hill et al., 2013; Hill et al., 2015; Matros et al., 2017).

Wheat (Triticum aestivum L.) is a leading cereal crop ultimately accounting for approximately 20% of the calories consumed by humans (Simmonds et al., 2016). To secure worldwide food supply, intense selection of high-yield and broad-adaptation wheat cultivars has been the primary breeding target in wheat breeding programmes (Dubcovsky and Dvorak, 2007). However, owing to linkage drag and relatively low recombination frequencies, conventional breeding processes are usually time-consuming and have low efficiency and predictability (Holland, 2007), which renders it necessary to develop and incorporate genomic tools to assist wheat breeding programmes (Simmonds et al., 2016). Indeed, the available genomic information of hexaploid wheat (IWGSC, 2018) and its tetraploid (Avni et al., 2017) and diploid progenitors (Ling et al., 2018; Luo et al., 2017) has greatly facilitated fundamental research in wheat (Cui et al., 2019; Ju et al., 2017).
et al., 2019) and may ultimately aid in resolving the above-mentioned field problems of this crop.

Here, a mGWAS study was conducted on a collection of 182 wheat accessions, with a 90K SNP chip being used for genotyping. A total of 805 metabolites were detected from wheat grains, and 14,646 polymorphic SNPs were subjected to the association study. Consequently, 1098 marker–metabolite associations were detected, and 26 candidate genes for 42 of these loci were tentatively assigned. By enzymatically validating these candidates and testing their specificities on different flavonoid metabolites as substrates, a major flavonoid decoration pathway was representatively unravelled in wheat. By providing numerous high-confidence candidate genes and suggesting the capacity for future metabolic pathway elucidation, the potential of metabolomics-associated breeding in wheat is resident within our data, we propose greater efforts are required towards realizing the full potential of metabolomics-associated breeding in wheat.

Results

Metabolic profiling of wheat mature seeds

Using a previously established widely targeted metabolomics method (Chen et al., 2013), a total of 805 metabolites (including 387 known and 418 unknown metabolites, Table S1) from mature seeds of 182 wheat accessions were detected (Table S2). The relative contents for each metabolite from respective environments were normalized (log2-transformed, Figure S1) before being subjected to downstream data analyses. These metabolites exhibited varied broad-sense heritability (Figure S2a) and normally distributed coefficients of variation (Figure S2b) among the 182 wheat accessions. Correlation analysis of the distribution patterns for the 805 detected metabolites was displayed (Figure 1a), in which the blocks along the diagonal (represented by the coloured rectangles in Figure 1a) suggested the distribution patterns of the included metabolites were highly correlated with one another, and they may share similar chemical structure or be involved in related metabolic pathways. Specifically, the flavonoid derivatives (wheat-coloured cells in Figure S3) included flavonoid glycosides could be roughly separated into two diagonals in the heatmap (violet rectangles in Figure 1a), and the metabolites (violet-ringed IDs in Figure 1b) were situated alongside the backgrounded area, Figure S3a) suggested most of the metabolites, existing knowledge of the pathway architecture and the gene features within the linkage disequilibrium (LD) coverages (Table S6) allowed the tentative assignment of a protein or protein cluster as regulating the metabolic traits (Chen et al., 2014) and testing their specificities on different flavonoid metabolites as substrates. By enzymatically validating these candidates and testing their specificities on different flavonoid metabolites as substrates, a major flavonoid decoration pathway was representatively unravelled in wheat. By providing numerous high-confidence candidate genes and suggesting the capacity for future metabolic pathway elucidation, the potential of metabolomics-associated breeding in wheat is resident within our data, we propose greater efforts are required towards realizing the full potential of metabolomics-associated breeding in wheat.

Identification and functional annotation of candidate genes underlying mGWAS associations

After analysing the attribution of the mGWAS associations, we next went on to probe candidate genes underlying these metabolite–SNP associations. In most cases, the chemical structure of the metabolites, existing knowledge of the pathway architecture and the gene features within the linkage disequilibrium (LD) coverages (Table S6) allowed the tentative assignment of a protein or protein cluster as regulating the metabolic traits (Chen et al., 2014). Using this knowledge allowed possible candidate genes to be assigned. For example, we tentatively assigned the candidate genes TraesCS4B01G371700 (657.17 Mb on chromosome 4B) and TraesCS4D01G365800 (509.66 Mb on...
chromosome 4D), within the LD range (3.31 Mb and 1.12 Mb for chromosomes 4B and 4D, respectively, Table S6), for the mr373 (sucrose) associated with *Excalibur_c29255_366* (657.47 Mb on chromosome 4B) and *Kukri_c49387_1187* (509.83 Mb on chromosome 4D), respectively. The top hit of these candidates (*TraesCS4B01G371700* and *TraesCS4D01G365800*) in Arabidopsis (AT3G19940, also known as SPT10) encodes a high-affinity hexose transporter carrying glucose and other monosaccharides (Paulsen et al., 2019; Rottmann et al., 2016). Similarly, for the mGWAS hit (*P = 1.21 \times 10^8*) of metabolite mr1013 (identified as *N*-feruloylagmatine) with SNP *RAC875_c47743_81* at 712.83 Mb on chromosome 2B, the nearby candidate was putatively designated as *TraesCS2B01G518300* (Table 1 and Table S4). This candidate was annotated as ‘agmatine coumaroyl-transferase’ and shared high sequence similarity with rice gene LOC_Os04g56910 (75.84% amino acid identity), which was previously functionally validated in *E. coli* as an agmatine hydroxycinnamoyl acyltransferase (Chen et al., 2014).

It is beyond the scope of a single study to experimentally check all the candidate genes involved, but we performed functional annotation via analysis of enzymatic activities in order to demonstrate the effectiveness of our candidate designating processes. For the associations between mr1058 (identified as tricin) and SNP *BS000281A46_S1* (P = 9.78 \times 10^3) at 533.45 Mb on chromosome 1A (Figure 3a), five nearby glycosyltransferase-coding genes were assumed as likely candidates (Figure 3b). Among them, we chose to express two genes (*TraesCS1A01G347100* and *TraesCS1A01G347200*) in *E. coli*, since these two candidates have relatively high expression levels in wheat grains (Figure 3c) and closer sequence similarities with the rice ortholog (Figure 3d) that confers flavone 7-O-glucosyltransferase function (Ko et al., 2008; Peng et al., 2016). It turned out that the former gene (i.e. *TraesCS1A01G347100*) was more likely the candidate for this mGWAS hit, the encoding product could catalyse the conversion of tricin to tricin 7-O-glucoside (Fig-
mr1093 with SNPs BobWhite_c1923_407 on chromosome 2A and Tdurum_contig5691_596 on chromosome 2B (Table S4). For the metabolite mr1093 (putatively identified as tricin O-malonylhexoside) with SNP Tdurum_contig5691_596 (668.57 Mb on chromosome 2B) association ($P = 8.18 \times 10^8$, Figure 4a), TraeCS2B01G472300 and TraeCS2B01G472400 (resided at 669.09 Mb and 669.14 Mb on chromosome 2B, respectively) were assigned as possible candidates (Figure 4b). Sequence alignment indicated the candidates’ orthologs from rice, OsMaT-2 and OsMaT-3 (Figure 4c), were previously defined to encode malonyl-transferase products (Gong et al., 2013; Kim et al., 2009). In confirmation, the enzymatic function for the two candidates was tested in vitro, with the results suggesting that only one of them, TraeCS2B01G472400, confers malonyl-transferase activity on tricin 7-O-glucoside (Figures 4d and 5a). Survey on the enzymatic character of TraeCS2B01G472400 in catalysing the conversion of tricin 7-O-glucoside to tricin 7-O-malonylglucoside revealed the reaction constant as $K_m = 20.53 \pm 1.02$ M and $K_{cat} = 81.72 \pm 6.11$ s$^{-1}$. In addition, we encountered the presence/absence sequence variation when amplifying TraeCS2B01G472400 (Figure 4e), and this pattern showed significant correlation with the variation in abundance of metabolite mr1093 (Figure 4f), suggesting the absence of a functional enzyme encoded by TraeCS2B01G472400 in likely responsible for the lower contents of the product metabolite, tricin O-malonylglucoside (i.e. mr1093). For mr1093 associated ($P = 1.41 \times 10^7$) with the SNP BobWhite_c1923_407 (698.83 Mb on chromosome 2A), TraeCS2A01G450700 (700.02 Mb on chromosome 2A), a TraeCS2B01G472400 homoeologue, was tentatively designated as a candidate. However, the enzymatic assay indicated this candidate did not possess malonyltransferase activity on tricin 7-O-glucoside (data not shown), which may result from absent amino acids in the sequences when compared to TraeCS2B01G472400 in the Chinese Spring cultivar (Figure S6). Taken together, these functional annotations (TraeC-S1A01G347100 for tricin and TraeCS2B01G472400 for tricin O-malonylglucoside) have demonstrated that our candidate gene assignment programme is effective, with enzymes encoded by respective candidates alternately being involved in the synthesis or degradation of the associated metabolites. In total, 26 candidate genes were tentatively designated for 42 mGWAS hits (Table S4).

Pathway construction for flavonoid decoration

In the in vitro enzymatic validation of TraeCS1A01G347100, two peaks with different retention time (RT) were obtained (Figure 3e), which corresponded to two different tricin O-glucosides. Tricin has three candidate sites at which it can be O-glycosylated, and respective tricin O-glucoside conjugates (tricin 5-O-glucoside, tricin 7-O-glucoside and tricin 4’-O-glucoside) may be obtained.
The enzymatic assay was performed to determine the activity of flavonoid glycosyltransferases. Considering previous reports on flavonoid glycosyltransferases (Ko et al., 2006; Ko et al., 2008), and the simultaneously generated tricin-7-O-glucoside and tricin-4’-O-glucoside as products from a single enzymatic assay (Figure 3e), we assume TracesCS1A01G347100 could function on various hydroxy groups from numerous flavonoids. In confirmation, the enzymatic activities were tested using apigenin, kaempferol, and naringenin as substrates, which turned out to respectively determine the production of apigenin-7-O-glucoside, two kaempferol-0-glucosides (kaempferol-3-O-glucoside and another kaempferol-0-glucoside) and naringenin-7-O-glucoside (Figure 6a). Again, the unknown kaempferol-0-glucoside (P7 in Figure 6a) was postulated to be kaempferol-7-O-glucoside for the above-stated reason (Figure 3d), rather than kaempferol-4’-O-glucoside since neither apigenin-4’-O-glucoside nor naringenin-4’-O-glucoside were generated (Figure 6a). Collectively, TracesCS1A01G347100 appears to be capable of catalysing 7-O-glycosylation of flavones (e.g. apigenin) and flavanones (represented by naringenin), and 7-O-glycosylation or 3-O-glycosylation on flavonols (such as kaempferol, Figure 6c). This summary is not, however, entirely conclusive since both tricin-7-O-glucoside and tricin-4’-O-glucoside were generated via a single reaction (Figure 3e), whilst no apigenin/kaempferol/naringenin-4’-O-glucosides were obtained (Figure 6a). To probe whether the generation of tricin-4’-O-glucoside was a specific case when tricin is substrate or whether such a glycosylation product could represent a general product pattern when other flavonoids are used as substrates, additional tests of TracesCS1A01G347100 reaction products following supply of chrysoeriol and luteolin as substrates were conducted, in which two chrysoeriol glucosides and three luteolin glucosides (luteolin-7-O-glucoside and another two unknown luteolin glucosides) were obtained (Figure 6b). Combining the comparisons of chemical structures of the tested flavones (i.e. apigenin, chrysoeriol, luteolin, tricin and 3’, 4’, 5’-O-trimethyltricetin), for the respective enzyme activities, and substrate and product information (e.g. no flavonoid 5-O-glucoside conjugates were generated by TracesCS1A01G347100 catalysis), the two chrysoeriol glucosides were believed to be chrysoeriol-7-O-glucoside and chrysoeriol-4’-O-glucoside (Figure 5d), whilst the two unknown luteolin glucosides were assumed to be luteolin-3’-O-glucoside and luteolin-4’-O-glucoside (Figure 5e). Accordingly, the

Metabolite	Lead SNP	P-value	Candidate gene	Description†	Distance (Mb)‡
C-pentosyl-apigenin O-feruloylhexoside	RFL_Contig5637_1008	8.85E-12	TraesCS1A01G021100	Transferase	0.57
C-pentosyl-apigenin O-feruloylhexoside	GEN3-569_500	9.61E-06	TraesCS1A01G032300	CHS	0.59
C-pentosyl-apigenin O-feruloylhexoside	Tdurum_contig91140_467	6.68E-06	TraesCS1A01G037800	PAL	0.04
Tricin	B500028146_51	9.78E-07	TraesCS1A01G347100	Glycosyltransferase	0.19
Tricin-7-O-oxygenyl-O-xylolide	Kukri_c25138_1155	5.84E-15	TraesCS1B01G353950	Glycosyltransferase	0.11
C-pentosyl-apigenin O-feruloylhexoside	Excalibur_c46114_728	1.91E-06	TraesCS1D01G020700	Transferase	0.13
Tricin-7-O-oxygenyl-O-xylolide	RAC875_c49612_102	1.60E-21	TraesCS1D01G319100	Glycosyltransferase	1.21
Tricin-4’-O-malonylhexoside	BobWhite_c1933_407	1.41E-07	TraesCS2A01G450700	Transferase	1.20
3,4-Dihydroxybenzaldehyde	wsnp_Ex_rep_c69692_68647924	6.32E-07	TraesCS2A01G468200	Polyphenol oxidase	0.39
Tricin-4’-O-malonylhexoside	Tdurum_contig9591_596	8.18E-08	TraesCS2B01G472400	Transferase	0.57
3,4-Dihydroxybenzaldehyde	GEN0808_728	9.40E-06	TraesCS2B01G491100	Polyphenol oxidase	0.89
N-Feruloylglutamate	RAC875_c47743_81	1.21E-08	TraesCS2B01G518300	Transferase	0.06
C-hexosyl-chrysoeriol 5-O-hexoside	D_contig21303_418	1.04E-08	TraesCS2D01G043500	Cytochrome P450	0.11
Tricin	RAC875_c17404_1160	6.22E-05	TraesCS3A01G226600	DFR	0.01
Lysine	RAC875_c1022_3059	4.67E-06	TraesCS4A01G294100	Aminopeptidase	0.42
Sucrose	Excalibur_c29525_356	7.92E-07	TraesCS4B01G371700	Sugar transporter	0.30
Caffeic acid	Kukri_c49387_1187	6.74E-07	TraesCS4D01G362500	O-methyltransferase	1.02
Sucrose	Kukri_c49387_1187	1.09E-06	TraesCS4D01G365800	Sugar transporter	0.16
Oleamide	BobWhite_c14689_172	5.94E-06	TraesCS5A01G433100	Lipid transferase	0.10
Phytocassane D	RAC875_c22599_731	1.63E-06	TraesCS5A01G521600	Terpene synthase	0.04
3-O-feruloylquinic acid	wsnp_Ku_c4299_7814936	2.53E-07	TraesCS7A01G023800	Transferase	0.34
3’,4’,5’-Trimethyltritcin-O-rutinoside	BS00084039_51	4.36E-05	TraesCS7A01G041200	Transferase	0.30
Terephthalic acid	RAC875_c35727_269	1.63E-07	TraesCS7A01G041200	Polyphenol oxidase	0.69
MGMT (18:2)	BobWhite_c40479_283	8.70E-06	TraesCS7A01G100600	GDSL lipase	0.95
Leucine	wsnp_BQ160404A_Ta_1_1	6.91E-06	TraesCS7A01G464900	Amino acid transporter	0.83
Arginine	B500022811_51	3.06E-06	TraesCS7A01G531000	Peptide transporter	0.17

†Distance denotes the physical distance between the assigned candidates and respective lead SNPs.

‡CHS, chalcone synthase; DFR, dihydroflavonol 4-reductase; F3’H, flavonoid 3’ hydroxylase; PAL, phenylalanine ammonia-lyase.
Figure 3 Validating that TraesCS1A01G347100 confers glucosyltransferase activity. (a) Manhattan plot displaying the mGWAS result of metabolite mr1058 (tricin), the significantly associated SNPs (above the threshold) are displayed as red dots. (b) A representation of pairwise associations (Figure S9) according to the enzymatic specificity tested on 7-O-glucosyltransferase-coding genes (i.e. TraesCS1A01G347100, TraesCS1A01G347200, TraesCS1A01G347400, TraesCS1A01G347500 and TraesCS1A01G347600) are designated as candidates. Based on the relative expression in wheat grains (c) and the sequence similarity to rice homologs (d), the enzymatic activities of TraesCS1A01G347100 and TraesCS1A01G347200 were tested, turned out only TraesCS1A01G347100 conferred expected glucosyltransferase activity on tricin as substrate (e). The early eluted product was confirmed as tricin 7-O-glucoside compared with commercial standard (e), and the other compound was postulated as tricin 4´-O-glucoside (e) which was supported by further enzymatic assay utilizing 3´, 4´, 5´-trimethyltricetin as substrate (f). The MS spectrums for the predicted products (tricin 4´-O-glucoside and 3´, 4´, 5´-trimethyltricetin 7-O-glucoside) are presented in Figure 5.

Discussion
The plant metabolome contains a vast variety of structurally different chemicals, termed metabolites, the contents of which are under considerable genetic control. It was concluded that metabolite variations within a species are much larger than that had been previously assumed (Fennie and Toehge, 2017). This renders the combination of metabolomics approaches and genetic tools such as QTL and GWAS (termed as mQTL and mGWAS, respectively) an effective path in exploring the genetic control of metabolome also facilitating the delineation of metabolic pathways and the dissection of agronomic traits (Chen et al., 2018; Fang and Luo, 2019; Gong et al., 2013; Shang et al., 2014; Wen et al., 2014; Zhu et al., 2018). Such efforts had also been applied in wheat. Specifically, genetic elements affecting 205 compounds (within which 112 were identified, Hill et al., 2013), 558 mass features (197 were identified, Hill et al., 2015) or 76 metabolites (73 identified, Matros et al., 2017) were investigated, respectively. That said, no candidate genes were provided (Hill et al., 2013; Hill et al., 2015) or validated (Matros et al., 2017) within these wheat mQTL or mGWAS cases. In the current study, we investigated at a greater number of metabolites (805 metabolites, of which 387 were identified), and thanks to the Chinese Spring reference genome information (IWGSC, 2018), candidate genes for the mGWAS hits were identified (Table 1 and Table S4). Furthermore, enzymatic functions for some candidates were validated (Figures 3 and 4) via heterologous overexpression experiments. Finally, a flavonoid decoration pathway was elucidated (Figure S9) according to the enzymatic specificity tested on numerous substrates (Figures 6, 7 and 8). To the best of our knowledge, this work represents the first application of metabolomics for pathway elucidation in wheat, which may shed lights to unveil more metabolic pathways of wheat.

Metabolic pathways are constituted by highly diverse yet coherent genetic modules. The combination of metabolomics and genetics provides a powerful platform to uncover the genetic control of metabolic pathways. The genetic control of flavonoid decoration pathways in wheat was elucidated in the current study, which includes a number of metabolites, namely flavonoids. The identification of key candidate genes and validation of their enzymatic activities provided a foundation for further research in this area. The results of this study represent a significant advancement in our understanding of the genetic control of flavonoid decoration in wheat.
Statistical analysis of such correlation, wherein the samples were grouped based on the absence/presence (16/17 accessions) of amplification results, and presented in several wheat accessions, in which the absence/presence of PCR band corresponded to low/high contents of mapped metabolite (mr1093) (f).

Phylogenetic analysis of the two candidate genes with rice homologs (OsMaT-2 and OsMaT-3). Another rice acyltransferase-coding gene, LOC_Os02g57480, was applied as an outlier. (d) In vitro enzymatic assay of TraesCS2B01G472300 and TraesCS2B01G472400. The tricin 7-O-glucoside was used as substrates for both reactions, and tricin 7-O-malonylglucoside was generated as expected. The MS spectrum of the generated tricin 7-O-malonylglucoside is presented in Figure 5. (e) The consistence between TraesCS2B01G472400 amplifying result with relative contents of mr1093 was presented in several wheat accessions, in which the absence/presence of PCR band corresponded to low/high contents of mapped metabolite (mr1093). (f) Statistical analysis of such correlation, wherein the samples were grouped based on the absence/presence (16/17 accessions) of amplification results, and P-value was generated by Student’s t-test.

Figure 4 Validating that TraesCS2B01G472400 confers malonyl-transferase activity. (a) Manhattan plot displaying the mGWAS result of metabolite mr1093 (tricin O-malonylglucoside), the significantly associated SNPs (above the threshold) are displayed as red dots. (b) A representation of pairwise r^2 value (displayed as percentages) among polymorphic sites of the mGWAS loci, in which the eleven SNPs above the threshold are labelled as red font, the lead SNP is indicated by an asterisk and displayed bold. Triangles indicate relative positions and directions of genes resided adjacent to the SNPs. (c) Phylogenetic analysis of the two candidate genes with rice homologs (OsMaT-2 and OsMaT-3). Another rice acyltransferase-coding gene, LOC_Os02g57480, was applied as an outlier. (d) In vitro enzymatic assay of TraesCS2B01G472300 and TraesCS2B01G472400. The tricin 7-O-glucoside was used as substrates for both reactions, and tricin 7-O-malonylglucoside was generated as expected. The MS spectrum of the generated tricin 7-O-malonylglucoside is presented in Figure 5. (e) The consistence between TraesCS2B01G472400 amplifying result with relative contents of mr1093 was presented in several wheat accessions, in which the absence/presence of PCR band corresponded to low/high contents of mapped metabolite (mr1093). (f) Statistical analysis of such correlation, wherein the samples were grouped based on the absence/presence (16/17 accessions) of amplification results, and P-value was generated by Student’s t-test.

classified as chemical decorations on several core structures (D’Auria and Gershenzon, 2005). Consistent with this theory, we could discriminate the flavonoid glycosides from the total detected metabolites by analysing the distribution patterns among wheat samples (Figures 1 and S3). Meanwhile, the similarly grouped tryptophan metabolism sub-net (Figures 1a, S3a and S4), amino acids or nucleotide derivatives (Figures 1a and S5) also emerged when performing correlation analysis at different stringency of thresholds. Such groupings may facilitate the identification of currently unknown metabolites (Chen et al., 2016), and future studies could thus focus on the genetic architecture of these individual small targeted classes of metabolites (Chan et al., 2010). In Arabidopsis, only a mere 13 flavonoids were initially reported (D’Auria and Gershenzon, 2005). Following this, more than three times the number of flavonoid derivatives were detected (Nakabayashi et al., 2009; Tohge and Fernie, 2010), and recently, another 18 metabolites—the saigonols—have been added into this pathway (Tohge et al., 2016). Thanks to the continuous interest, the flavonoid metabolites have additionally been extensively studied in model plants and crop species (Tohge et al., 2017). This research progress provides promising prospects in exploring the metabolomic profiling data presented here, since it indicates that it may improve our understanding of the subnetworks including flavonoid, tryptophan, amino acid or nucleotide metabolism. Such targeted studies will hopefully be up-scaled to allow determination of the entire Wheat metabolome.

The importance of exploring the realm of the metabolome is evident, given the widely accepted concept that this arsenal of compounds provides an effective means of defence against biotic and abiotic stresses, as well as contributing to the nutritional quality of designated plant species (Martin and Li, 2017; Rai et al., 2017; Weng, 2014). Indeed, species-specific metabolites conferring some of these bioactivities have attracted enormous interests, such as glucosinolates in the Brassicaceae (Grubb and Abel, 2006; Nour-Eldin et al., 2017), steroidal glycoalkaloids in the
Figure 5 The MS spectrums and respective chemical structures of several products generated from the enzymatic assays. Information for tricin 7-O-malonylglucoside (a), 3’, 4’, 5’-O-trimethyltricetin 7-O-glucoside (b), tricin 4’-O-glucoside (c), chrysoeriol 4’-O,7-O-glucosides (d), luteolin 3’-O,4’-O-glucosides (e), kaempferol 7-O-glucoside (f), naringenin 7-O-malonylglucoside (g), apigenin 7-O-malonylglucoside (h), eriodictyol 7-O-malonylglucoside (i) and luteolin 7-O-malonylglucoside (j) are respectively presented.
Solanaeae (Itkin et al., 2013), isoflavones in leguminous species (Tohge et al., 2017; Veitch, 2013) and cucurbitacins in cucurbits (Shang et al., 2014). Such a specifically existed yet physiologically related metabolome route may also be explored in wheat. Tricin, one of the flavonoid metabolites, was firstly isolated in free form from the rust-infected emmer wheat (*Triticum dicoccum*) leaves (Anderson and Perkin, 1931). Tricin and its derivatives were subsequently believed to exist in a taxonomically limited range of species (Lan et al., 2016). However, tricin conjugates are thought to initiate the lignin formation in several monocot grasses including wheat, starting by incorporating tricin-(4`-O-)-ethers into the lignin structures (Lan et al., 2015; Lan et al., 2016; Lan et al., 2018). Interestingly, *TaeCS1A01G347100* could catalyse the conversion of tricin to tricin 4`-O-glucoside (Figure 3e), which may inhibit the generation of tricin-(4`-O-)-ethers. Such a diversion of tricin into lignin renders it important to conduct further investigation of the effect of variation of *TaeCS1A01G347100* on lignification-related traits such as wheat stem lodging (Zhang et al., 2016; Zheng et al., 2017) or response to biotic stresses (Yang et al., 2017). Hence, focusing on tricin 4`-O-decorates may lead to the dissection of wheat-specific metabolic pathways that take part in the lignification processes and are thereby involved in lignin-associated agronomic traits.

It has been well known that enzymes responsible for flavonoid glycosylation usually have relatively poor substrate specificities (i.e. they could recognize multiple flavonoids as substrates), and glycosylation of multiple hydroxy groups may be expected (Hong et al., 2007; Isayenkova et al., 2006; Ko et al., 2006; Ko et al., 2008). Our results confirmed with the general rule (poor substrate specificity and multiple glycosylation products) but differed with regard to the detailed glycosylation patterns (Figure S9). Such differences may help us to discover how and why flavonoids are specifically decorated in wheat, especially when the flavonoid decoration processes have been demonstrated to interact with other plant growth events. For instance, starch synthase activity is inhibited by glycosidic flavonoids, which resulted in slower seed setting rates of rice (Zhan et al., 2017), and differentially glycosylated flavonoids were associated with varied UV tolerance in rice (Peng et al., 2017). Moreover, flavonoid metabolites possess high bioactivities when provided in diet (Martin and Li, 2017; Zhou and Ibrahim, 2009), and their contents are associated with food quality and flavour (Sharma et al., 2016; Tieman et al., 2017). Taken together, these features render further flavonoid pathway dissection of key importance in understanding the complex physiological or agronomical traits of wheat.

Figure 6 Substrate specificity of *TaeCS1A01G347100*. (a) *TaeCS1A01G347100* could function on apigenin (a flavone), kaempferol (a flavanol) and naringenin (a flavanone), generating various glycosylated products. These flavonoids have single hydroxy group on the B-ring. (b) Additional test of *TaeCS1A01G347100* on chrysoeriol, luteolin and quercetin that have more hydroxy or methoxyl groups on the B-ring. (c) Illustration on how various flavonoids were glucosylated by *TaeCS1A01G347100*. This reaction was indicated by red arrows, and the glucosyl groups were represented by G in red. Peaks for each known metabolite were labelled on the right bottom of respective chemical structure, whereas MS spectrum for the postulated flavonoid glucosides is presented in Figure 5.
Flavonoid decoration pathway dissection in wheat

This is reflected in comparisons between the current mGWAS hits and a recently conducted wheat kernel trait GWAS output (Chen et al., 2019). In the mentioned GWAS study (Chen et al., 2019), both the grain protein content (GPC) and wet gluten content (WGC) traits were associated with the SNP RAC875_c3187_873 located at 9.88 Mb on chromosome 7D. Coincidently, two amino acids, isoleucine (mr1326) and asparagine (mr1438), were associated with an adjacent SNP Kukri_c65663_642 residing at 9.30 Mb on chromosome 2D (Table S4), implying that these two amino acids could represent important biomarkers for GPC or WGC. Similarly, flour redness (Fa) mapped by multiple SNPs distributed between 3.30 Mb and 3.39 Mb on chromosome 7D, and flour yellowness (Fb) associated with the Excalibur_rep_c92684_578 SNP (located at 3.39 Mb on chromosome 7D) are co-localized with the QTL for metabolite PS068208 (identified as vitamin C) to SNP trplb0027d07_1388 (4.27 Mb on chromosome 7D, Table S4). This co-localization is quite persuasive since the varied contents of vitamin C (also known as ascorbic acid) in wheat kernels appear to be an efficient metabolic index for wheat flour whiteness (Junqueira et al., 2008; Niu et al., 2014). These examples illustrate that metabolites could potentially act as biomarkers for respective traits. One benefit to establish this connection is that the subsequent assignment and validation of candidates that affecting agronomic traits may be considerably more straightforward. Another impact would be the simplified working load, which was exemplified by discerning the mysterious root–fungi symbiosis status through detecting the blumenol metabolites in leaves (Wang et al., 2018). It is important to mention, however, that a large proportion of the wheat kernel GWAS hits (Chen et al., 2019) did not co-localize with our mGWAS hits. This is most likely owing to the fact that these GWAS-linked SNPs (for instance, RAC875_c3187_873 that associated with GPC and WPC and Kukri_c65663_642, RAC875_c14064_308, Excalibur_c8883_214 and RAC875_c61016_73 that linked to Fa) were considered to be non-polymorphic across our wheat population (Table S3). Hence, a parallel design is preferable for the proposed metabolite-associated agronomic trait investigation.

Collectively, we have presented a comprehensive metabolomic profiling data in wheat kernels and primarily disclosed a flavonoid decoration pathway. Follow-up exploration of this pathway should include probing the interactions of tricin 4′-O-decorates with wheat lignin formation and lignin-associated agronomic traits. Similarly, more metabolite content–agronomic trait connections may be discovered when focusing on other metabolite groups (Figures S4 and S5). These potential connections include, but are not limited to, the auxin-responsive traits with the tryptophan metabolism pathway (Mano and Nemoto, 2012; Zhao, 2012) and amino acids as nutrients in wheat (Peng et al., 2018). Moreover, reverse genetic toolboxes (e.g. transgenic approaches) could be applied to investigate the high-confidence candidate genes (Table 1 and Table S4). For instance, TraesCS1A01G347100 has been postulated to affect the wheat lignin formation, and investigation on this gene may represent a good lead to alter lignin-related agronomic traits (Yang et al., 2017; Zhang et al., 2016; Zheng et al., 2017). Similarly, the homoeologous genes TraesCS4B01G371700 and TraesCS4D01G365800 were believed to encode sugar transporters (Pauslen et al., 2019), and the target metabolite, sucrose, was linked to wheat yield (Weichert et al., 2017). To this end, our data not only provide specific candidate genes as molecular resources to be utilized after validation, but also enlighten exploration of additional metabolite networks. Such efforts will surely greatly facilitate the metabolomics-associated breeding of wheat in the future.

Experimental procedures

Plant materials

A total of 182 Triticum aestivum L. accessions were planted in three different environments: Hebei Province (Gaoyi, E 37˚62´, N 114˚58´) in the 2016–2017 cropping season and Shandong province (Dezhou, E 37˚45´, N 116˚29´) in the 2016–2017 and 2017–2018 cropping seasons. The detailed information for these wheat accessions, along with how they were planted, managed and harvested, was presented previously (Peng et al., 2018).

Metabolic profiling

Mature seeds collected from each of the three biological replicates were pulverized using the Tissuelyser II machine (Qiagen, Germany) at 29 Hz for 1 min. The metabolites were extracted by adding 1000 L of 70% methanol (v/v, with pre-added acetylact at final concentration of 0.1 mg/L as inner control) to 0.1 g of powder; then, the mixture was vortexed, every 10 min, three times before being kept at 4 °C overnight. The supernatant was generated by centrifuging the re-vortexed mixture at 8000 g for 5 min followed by filtering (0.22 μm pore size; ANPEL, Shanghai, China) and was subsequently analysed using an LC–electrospray ionization (ESI)–MS/MS system as previously described (Chen et al., 2013). Briefly, the MS2T library was established using the equant mixture from 50 extractions that were randomly selected from the 182 accessions. The detailed information that contained in the detected metabolite signals (such as the mass-to-charge ratio, fragmentation pattern and retention time) was compared with available commercial standards and with metabolite databases (e.g. METLIN, HMDB and MassBank) to facilitate the annotation of metabolites from wheat kernels. Subsequently, the relative contents of each of these 805 identified metabolites (Tables S1 and S2) were quantified using the scheduled multiple reaction monitoring (sMRM) method described previously (Chen et al., 2014). The sMRM algorithm was used with an MRM detection window of 90 s and a target scan time of 1.0 s using Analyst 1.5 software. Given that biological variance is considerably higher than technical variance, we chose not to carry out technical replication.

Statistical analysis

The broad-sense heritability was estimated to be $H^2 = \frac{\text{Var}_{G}}{\text{Var}_{G} + \text{Var}_{e}}$, in which Var_{G} and Var_{e} are for variations of genotype and environment, respectively (Visscher et al., 2008). Linkage disequilibrium (LD) was estimated using standardized disequilibrium coefficients (D’ and r2) to detect pair of SNP loci using PopLDdecay software (Zhang et al., 2019), with parameters of MAF = 0.05 and MaxDist = 50Mb. LD plots were generated in Haploview (Barrett, 2009) version 4.2 under default parameters, wherein the r^2 values were indicated as percentages and displayed as white (r2 = 0%) shaded to black ($r^2 = 100\%$) colours. Relative contents of metabolites were log2-transformed to fit the normal distribution. The hierarchical clustering analysis (HCA) and the heatmaps were obtained through R software version 3.5.1, and the network construction was achieved using version 3.7.1 of Cytoscape software (Shannon et al., 2003) on the basis of metabolites having strong correlation (Spearman’s correlation coefficients, $P < 0.001$) to one another. Relative expression levels of candidate genes in wheat grains were retrieved from previously published.
data (Borrill et al., 2016; Ramirez-Gonzalez et al., 2018), using the RefSeq 1.0 data set.

Metabolite genome-wide association study (mGWAS)

After genotyping the 182 wheat accessions as previously described (Peng et al., 2018), a total of 14,646 polymorphic markers were retained from the 90K SNP array (Wang et al., 2014). The physical positions of these markers on the wheat reference genome (IWGSC, 2018) were utilized to calculate the LD for each chromosome and were employed to investigate the associations between metabolite contents and SNPs. The mGWAS was implemented by a linear mixed model (LMM) using the FaST-LMM program that provides high-confidence output and acceptable scan speed (Lippert et al., 2011; Listgarten et al., 2013; Listgarten et al., 2012; Widmer et al., 2014), at thresholds of $P = 1/14,646 = 6.83 \times 10^{-5}$ after Bonferroni correction, as carried out in previous studies (Guo et al., 2017; Peng et al., 2016). Among the three biological replicates, mGWAS hits appearing at least twice were retained and subjected to subsequent analysis and functional annotation.

Natural variation of candidate genes among wheat accessions

Primer products used in this study, as listed in Table S7, were designed using the PrimerServer online tool (http://202.194.139.32/Prime rServer/) combined with the oligo 7 software (Rychlik, 2007) version 7.60 set at default parameters. PCR amplifications were conducted using the TransStart FastPfu Fly DNA Polymerase or the TransFast Taq DNA Polymerase (TransGen, Beijing, China) following the manufacturer’s protocol. Briefly, the PCR conditions were set as follows: after denaturation at 95 °C for 2 min, run 35 cycles of 95 °C for 20 s, 72 °C for varied timing (set as 10 s per 1 kb length of amplicon, see manufacturer’s protocol). Finally, the PCR mixtures were kept at 72 °C for 2 min. The single-band amplicons were directly cloned using the pEASY-Blunt Zero Cloning Kit (TransGen, Beijing, China), and positive clones from each primer-sample set were randomly selected and sequenced to acquire the full allelic information of the designated genes from each wheat accession.

Enzymatic validation of candidate genes

PCR products representing each allelic variation of designated genes were re-amplified using respective cloned vectors as templates and were directionally cloned into the pGEX-6p-1 expression vector (Novagen) through enzyme digestion and subsequent ligation reactions. The error-free ligates were used for enzyme digestion and subsequent ligation reactions. The error-free ligates were transformed into the BL21 (DE3) competent cells (TransGen, Beijing, China) and cultured on an LB plate. A single colony was grown in LB media to an OD600 value of between 0.6 and 0.8, and recombinant proteins were expressed after induction by adding isopropyl-D-1-thiogalactopyranoside (IPTG) to a final concentration of 0.1 mM and grown continually for 14 h at 18 °C. Cells were harvested and lysed, and purification of the GST-tagged proteins was performed using the glutathione Sepharose 4B (GE Healthcare, Chicago, America) following the manufacturer’s instructions. The purified proteins were stored at 80 °C until future experiments.

Standard in vitro enzyme assays for the role of enzymes encoded by TraesCS2B01G472400 and TraesCS1A01G347200 were performed in a total of 10 L reaction mixture containing 3.5 L purified protein, 2 L of 1 M Tris-HCl (pH = 7.4) and 1 L of 1 mM substrate. In validating the glycosylation activities, 2 L of 50 mM MgCl2 and 0.5 L of 15 mM UDP-glucose were added into the reaction mixture, with numerous flavonoids utilized as substrates (e.g. apigenin, tricin, kaempferol, quercetin and 3’, 4’, 5’-O-trimethyl-tricetin), whereas the malonylation reaction required 0.3 L of 1 mM malonyl-coenzyme A, using flavonoid O-glucoside conjugates as substrates (including apigenin-O-glucoside, apigenin-O-glucoside, apigenin-O-glucoside, apigenin-8-C-glucoside, eriodictyol-7-O-glucoside, luteolin-7-O-glucoside, naringenin-7-O-glucoside, kaempferol-3-O-glucoside and tricin-7-O-glucoside). After incubating at 37 °C for 30 min, the reaction was stopped by adding 30 L of methanol and used for LC-MS analysis. Each enzyme assay, as well as the ones that utilize expressed protein from pGEX-6p-1 empty vector as negative controls, was conducted in duplicate.

Enzyme kinetics

After validating the enzymatic activity for TraesCS2B01G472400 and TraesCS1A01G347200, kinetic constants for them were further determined. In brief, varied substrates (1 L of 0.2 mM to 500 mM tricin for TraesCS1A01G347100 and 1 L of 1 mM tricin 7-O-glucoside for TraesCS2B01G472400) were supplied into the reaction mixture. Kinetic parameters were calculated using a Michaelis–Menten model (Sigma Plot, version 14.0). All the reactions were run in duplicate, and each experiment was repeated twice.

Phylogenetic analysis

Neighbour-joining phylogenetic trees were constructed from the alignment of the amino acid sequences of the respective genes, using version 7.0.26 of MEGA software (Kumar et al., 2016) set at default parameters. The bootstrap method, based on 1000 replicates, was applied for the functional annotation of the phylogenetic trees.

Acknowledgements

This work was supported by Huazhong Agricultural University Scientific & Technological Innovation Foundation (No. 2017RC006), the National Natural Science Foundation of China (No. 31770328), the China Postdoctoral Science Foundation (No. 2018M642866) and the National Key Research and Development Program of China (2016YFE0108600 and 2016YFD0101802).

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author contributions

W.C. and Z.H. conceived the project. W.C., J. L. and J.C. designed the experiments. J.C. conducted the experiments. J.C. and X.H. performed the main data analysis. T.S., Y.H., X.X. and D.S. worked on the field material management. H.Y. carried out the experiments. J.C. conducted the experiments. J.C. and X.H. performed the main data analysis. T.S., Y.H., X.X. and D.S. worked on the field material management. H.Y. carried out the LC-MS analyses. J.C., W.C. and A.R.F. wrote the article.

References

Anderson, J.A. and Perkin, A.G. (1931) The yellow colouring matter of khapli wheat, *Triticum dicoccum*. *J. Chem. Soc.* 2624–2625.
Matros, A., Liu, G., Hartmann, A., Jiang, Y., Zhao, Y., Wang, H., Ebmeyer, E. et al. (2017) Genome-metabolite associations revealed low heritability, high genetic complexity, and causal relations for leaf metabolites in winter wheat (Triticum aestivum). J. Exp. Bot. 68, 415–428.

Morohashi, M., Casas, M.I., Falcone Ferreyra, M.L., Falcone Ferreyra, L., Mejia- Guerra, M.K., Porecul, L., Yilmaz, A. et al. (2012) A genome-wide regulatory framework identifies maize pericarp color 1 controlled genes. Plant Cell, 24, 2745–2764.

Nakabayashi, R., Kusano, M., Kobayashi, M., Tohge, T., Yonekura-Sakakibara, K., Kogure, N., Yamazaki, M. et al. (2009) Metabolomics-oriented isolation and structure elucidation of 37 compounds including two arachycinans from Arabidopsis thaliana. Phytochemistry, 70, 1017–1029.

Niu, M., Hou, G.G., Li, X., Wang, L. and Chen, Z. (2014) Inhibitory effects of ultrasound combined with ascorbic acid or glutathione on enzymatic darkening of whole-wheat raw noodles. JWT – Food. Sci. Technol. 59, 901–907.

Nour-Eldin, H.H., Madsen, S.R., Engelen, S., Jorgensen, M.E., Olsen, C.E., Morohashi, K., Casas, M.I., Falcone Ferreyra, M.L., Falcone Ferreyra, L., Mejia-Peng, M., Shahzad, R., Gul, A., Subthain, H., Shen, S., Lei, L., Zheng, Z. (2003) Metabolome diversity: too few genes, too many transporters.

Olsen, C.E., Morohashi, K., Casas, M.I., Falcone Ferreyra, M.L., Falcone Ferreyra, L., Mejia-Peng, M., Shahzad, R., Gul, A., Subthain, H., Shen, S., Lei, L., Zheng, Z. (2003) Metabolome diversity: too few genes, too many transporters.

Pachir, P.A., Custudio, T.F. and Pedersen, B.P. (2019) Crystal structure of the plant somptor STP10 illuminates sugar uptake mechanism in monosaccharide transporter superfamily. Nat. Commun. 10, 407.

Peng, M., Gao, Y., Chen, W., Wang, W., Shen, S., Shi, J., Wang, C. et al. (2016) Evolutionarily distinct BAHD N-acetyltransferases are responsible for natural variation of aromatic amine conjugates in rice. Plant Cell, 28, 1533–1550.

Peng, M., Shahzad, R., Gul, A., Subthain, H., Shen, S., Lei, L., Zheng, Z. et al. (2017) Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nat. Commun. 8, 1975.

Peng, Y., Liu, H., Chen, J., Shi, T., Zhang, C., Sun, D., He, Z. et al. (2018) Genome-wide association studies of free amino acid levels by six multi-locus models in bread wheat. Front. Plant. Sci. 9, 1196.

Rai, A., Saito, K. and Yamazaki, M. (2017) Integrated omics analysis of specialized metabolism in medicinal plants. J. Plant. 90, 764–787.

Ramirez-Gonzalez, R.H., Bornil, P., Lang, D., Harrington, S.A., Brinton, J., Venturini, L., Davey, M. et al. (2018) The transcriptional landscape of polyploid wheat. Science, 361, eaar6089.

Rothmann, T., Zierer, W., Subert, C., Sauer, N. and Stadler, R. (2016) STP10 encodes a high-affinity monosaccharide transporter and is induced under low-glucose conditions in pollen tubes of Arabidopsis.

Rychlik, W. (2007) OLIGO 7 primer analysis software.

Saito, K. and Matsuda, F. (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant. Biol., 61, 463–489.

Schwab, W. (2003) Metabolome diversity: too few genes, too many metabolites? Phytochemistry, 62, 837–849.

Shang, Y., Ma, Y.S., Zhou, Y., Zhang, H.M., Duan, L.X., Chen, H.M., Zeng, J.G. et al. (2014) Biosynthesis, regulation, and domestication of bitterness in oilseeds by mutation of genes encoding glucosinolates in Brassica oleracea by mutation of genes encoding transporters. Nat. Biotechnol. 35, 377–382.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N. et al. (2003) Cytoscape: a software environment for integrated models of molecular interaction networks. Genome Res. 13, 2498–2504.

Sharma, M., Sandhir, R., Singh, A., Kumar, P., Mishra, A., Jachak, S., Singh, S.P. et al. (2016) Comparative analysis of phenolic compound characterization and their biosynthetic genes between two diverse bread wheat (Triticum aestivum) varieties differing for charpate (unleavened flat bread) quality. Front. Plant. Sci. 7, 1870.

Simmonds, J., Scott, P., Brinton, J., Mestre, T.C., Bush, M., Del Blanco, A., Dubcovsky, J. et al. (2016) A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor. Appl. Genet. 129, 1099–1112.

Tohge, T., Wang, W.H., Fang, Y.H., Dong, H.B. and Q. X. (2016) Progress in improving stem lodging resistance of Chinese wheat cultivars. Euphytica, 212, 275–286.

Wang, G., Wang, Z., Wang, Z., Yu, H., Zhou, J.M. and Ibrahim, R.K. (2009) Tricin—a potential multifunctional flavonoid. J. Exp. Bot. 60, 1364–1372.

Wang, M., Schaffer, M., Li, D.P., Hallatschke, R., Dong, C.F., McGale, E., Paetz, C. et al. (2018) Anlamenosol as shoot markers of root symbiosis with arbuscular mycorrhizal fungi. eLife, 7, e37093.

Weichert, H., Hogy, P., Mora-Ramirez, I., Fuchs, J., Eggert, K., Koepler, P., Weschke, W. et al. (2017) Grain yield and quality responses of wheat expressing a barley sucrose transporter to combined climate change factors. J. Exp. Bot. 68, 5511–5525.

Wen, W., Li, D., Li, X., Gao, Y., Li, W., Li, H., Liu, J. et al. (2014) Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat. Commun. 5, 3438.

Weng, J.K. (2014) The evolutionary pathways towards complexity: a metabolic perspective. New. Phytol. 201, 1141–1149.

Widmer, C., Lippert, C., Weissbrod, O., Fusi, N., Kadie, C., Davidson, R., Listgarten, J. et al. (2014) Further improvements to linear mixed models for genome-wide association studies. Sci. Rep. 4, 6874.

Yang, Q., He, Y., Kabahuma, M., Chaya, T., Kelly, A., Borrego, E., Bian, Y. et al. (2017) A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat. genet. 49, 1364–1372.

Zhan, X.Q., Shen, Q.W., Wang, X.M. and Hong, Y.Y. (2017) The evolutionary paths towards complexity: a metabolic perspective. New. Phytol. 201, 1141–1149.

Zhao, Y. (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant, 5, 334–338.

Zheng, M., Chen, J., Shi, Y., Li, Y., Yin, Y., Yang, D., Luo, Y. et al. (2017) Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. Sci. Rep. 7, 4685.

Zhang, Y., Xu, W.G., Wang, H.W., Fang, Y.H., Dong, H.B. and Q. X. (2016) Progress in improving stem lodging resistance of Chinese wheat cultivars. Euphytica, 212, 275–286.

Zhu, J.M. and Ibrahim, R.K. (2009) Tricin—a potential multifunctional nutraceutical. Phytochem. Rev. 9, 413–424.

Zhu, G.T., Wang, S.C., Huang, Z.J., Zhang, S.B., Liao, Q.G., Zhang, C.Z., Lin, T. et al. (2018) Rewiring of the fruit metabolome in tomato breeding. Cell, 172, 249–261.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1 Distribution of metabolite contents before and after normalization.
Figure S2 Statistical data of 805 metabolites amongst the 182 wheat accessions.
Figure S3 Correlation network of metabolites.
Figure S4 The indole-ring skeletons contained metabolites shared high correlation with each other.
Figure S5 The identification of amino acids and nucleotides metabolite groups.
Figure S6 Sequence alignments of three candidate genes.
Figure S7 Enzymatic assay of flavonoid glucoside conjugates catalyzed by TraesCS2B01G472400.
Figure S8 TraesCS1A01G347100 and TraesCS2B01G472400 could sequentially glycosylate and then malonylate flavonoids.
Figure S9 The flavonoid pathway dissected in the current study.

Table S1 Detailed information for metabolites detected in the current study.
Table S2 Wheat accessions and corresponding metabolomic data in the current study.
Table S3 The 14,646 polymorphic SNP markers information derived from the 90 K chip.
Table S4 Detailed information for the 1098 mGWAS associations.
Table S5 SNPs and metabolites information for the top 10 mGWAS hotspots.
Table S6 Linkage disequilibrium for each chromosome.
Table S7 Primers used in the current study.