Review: Ca\textsubscript{v}2.3 R-type Voltage-Gated Ca2+ Channels - Functional Implications in Convulsive and Non-convulsive Seizure Activity

Carola Wormuth1, Andreas Lundt1, Christina Henseler1, Ralf Müller2, Karl Broich1, Anna Papazoglou1 and Marco Weiergräber1,*

1Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
2Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine, Cologne, Germany

Received: February 11, 2016 Revised: May 16, 2016 Accepted: June 24, 2016

Abstract:

Background:

Researchers have gained substantial insight into mechanisms of synaptic transmission, hyperexcitability, excitotoxicity and neurodegeneration within the last decades. Voltage-gated Ca2+ channels are of central relevance in these processes. In particular, they are key elements in the etiopathogenesis of numerous seizure types and epilepsies. Earlier studies predominantly targeted on Ca\textsubscript{v}2.1 P/Q-type and Ca\textsubscript{v}3.2 T-type Ca2+ channels relevant for absence epileptogenesis. Recent findings bring other channels entities more into focus such as the Ca\textsubscript{v}2.3 R-type Ca2+ channel which exhibits an intriguing role in ictogenesis and seizure propagation. Ca\textsubscript{v}2.3 R-type voltage gated Ca2+ channels (VGCC) emerged to be important factors in the pathogenesis of absence epilepsy, human juvenile myoclonic epilepsy (JME), and cellular epileptiform activity, e.g. in CA1 neurons. They also serve as potential target for various antiepileptic drugs, such as lamotrigine and topiramate.

Objective:

This review provides a summary of structure, function and pharmacology of VGCCs and their fundamental role in cellular Ca2+ homeostasis. We elaborate the unique modulatory properties of Ca\textsubscript{v}2.3 R-type Ca2+ channels and point to recent findings in the proictogenic and proneuroapoptotic role of Ca\textsubscript{v}2.3 R-type VGCCs in generalized convulsive tonic–clonic and complex-partial hippocampal seizures and its role in non-convulsive absence like seizure activity.

Conclusion:

Development of novel Ca\textsubscript{v}2.3 specific modulators can be effective in the pharmacological treatment of epilepsies and other neurological disorders.

Keywords: Absence epilepsy, Afterdepolarisation, Ictal discharges, Low-threshold Ca2+ spike, Plateau potentials, R-type, Seizure.

STRUCTURE, FUNCTION AND PHARMACOLOGY OF VOLTAGE-GATED Ca2+ CHANNELS

Voltage-gated Ca2+ channels (VGCCs) are of central relevance in mediating Ca2+ influx into living cells. They can trigger numerous physiological processes such as excitation-contraction coupling [1, 2], excitation-secretion coupling [3], hormone and transmitter release [4 - 6] and regulation of gene expression [7, 8]. From a structural point of view, VGCCs are heteromultimeric complexes built up of a central pore-forming, ion-conducting Ca\textsubscript{v}2.x subunit and various

* Address correspondence to this author at the Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; Tel: 0049-228-99307-4358; Fax: 0049-228-99307-3896; E-mail: Marco.Weiergraeb@bfarm.de
auxiliary subunits ($\alpha_2\delta$, β_{1-4} and γ_{1-8}) (Fig. 1). Ten different Ca_v-α_1 subunits have been characterized which can be classified based on their electrophysiological and pharmacological properties into high-voltage activated (HVA) and low-voltage activated (LVA) Ca^{2+} channels. HVA Ca^{2+} channels are further grouped into dihydropyridine (DHP)-sensitive L (“long-lasting”) type Ca_v,1.1–1.4 and non-L-type Ca_v,2.1–2.3 channels which are less DHP-sensitive. The LVA T- (“transient/tinny”) type Ca^{2+} channels include Ca_v,3.1-3.3 [4, 9, 10]. The latter channels are characterized by rather negative membrane potential activation threshold, a fast inactivation, and small single-channel conductance [10]. By contrast, HVA L- and non-L-type channels require much stronger depolarization to reach activation threshold [11], exhibit higher single-channel conductances, and show prolonged-channel opening in comparison to T-type channels [4, 12]. However, Ca_v,1.3 L-type Ca^{2+} channels were reported to exhibit mid-voltage activating characteristics under special physiological and electrophysiological conditions [12 - 15]. Pharmacodynamically, HVA L-type Ca^{2+}-channels are highly sensitive towards DHPS (e.g. nifedipine), phenylalkylamines (e.g. verapamil, gallopamil, devapamil) and benzothiazepines (e.g. diltiazem) [14, 16 - 18]. Recently, ω-TRTX-Cc1a, derived from the venom of the tarantula Citharischius crawshayi (now Pelinobius muticus), turned out to be a potent and selective blocker of Ca_v,1.2 and Ca_v,1.3 Ca^{2+} channels [19]. Experimental activators of L-type channels include BayK8644, FPL64176, PCA50941 and SZ(+)-(S)-202-791, none of which is however used in clinical application settings [20].

Fig. (1). Structural buildup of voltage-gated Ca^{2+} channel complexes. Voltage-gated Ca^{2+} channels are composed of a central pore-forming and ion-conducting α_1 subunit as well a variable subset of auxiliary subunits, including $\alpha_2\delta$, β and γ-subunits. The β-subunit is located intracellularly whereas the γ and δ subunits are placed within the plasma membrane. The α_1 subunit is covalently bound to the δ subunit via a disulfide bond and localized extracellularly. Both the Ca_v-α_1 subunits as well as the auxiliary subunits are important drug targets (reprinted from [68]).

Synaptic transmission throughout the CNS is strongly dependent on presynaptic Ca^{2+} influx through the Ca_v,2.1-Ca_v,2.3 VGCCs. In addition to triggering exocytosis, Ca^{2+} influx also mediates complex patterns of short-term synaptic plasticity. The different Ca_v,2 VGCCs vary in their functional coupling to synaptic transmission over different frequency ranges. This has tremendous impact on the frequency tuning of presynaptic neuromodulation and synaptic dynamics [21]. HVA Ca_v,2 non-L-type Ca^{2+} channels which are predominately engaged in synaptic transmission in the brain are effectively inhibited by various peptide snail and spider toxins. Omega (ω)-agatoxin IVA, derived from the funnel web
spider *Agelenopsis aperta* preferentially targets Ca\(_{\text{2.1}}\) Ca\(^{2+}\) channels. Other Ca\(_{\text{2.1}}\) blockers include \(\omega\)-agatoxin IIIA, \(\omega\)-agatoxin IVB, peptide toxins from the venom of the marine snail *Conus geographus*, *i.e.* \(\omega\)-conotoxin MVIIID, \(\omega\)-conotoxin CVIB, \(\omega\)-conotoxin CVIC, the spider toxin \(\omega\)-phonotoxin IIA derived from *Phoneutria nigriventer*, DW13.3 extracted from the venom of the spider *Filistata hibernalis* and the scorpion venom toxin Kurtoxin [20, 22 - 24]. Though widely used in basic science, none of these blockers has reached clinical application so far. Omega (\(\omega\))-conotoxin GVIA derived from *Conus geographus* preferentially blocks Ca\(_{\text{2.2}}\) Ca\(^{2+}\) channels. Further Ca\(_{\text{2.2}}\) Ca\(^{2+}\) channels blockers are \(\omega\)-conotoxin MVIIA, \(\omega\)-conotoxin CVIA, \(\omega\)-conotoxin CVIB; \(\omega\)-conotoxin CVIC, \(\omega\)-conotoxin CVID, \(\omega\)-conotoxin SO-3, DW 13.3 and Huwentoxin HWTX I [23 - 25]. Omega (\(\omega\))-conotoxin MVIIIC, a toxin from the venom gland of the marine snail *Conus magnus*, targets both Ca\(_{\text{2.1}}\) and Ca\(_{\text{2.2}}\) Ca\(^{2+}\) channels [4, 26 - 30]. In contrary, glycerotoxin from the venom of *Glycera convoluta* was shown to act as an activator of Ca\(_{\text{2.2}}\) Ca\(^{2+}\) channels [31]. Although most naturally derived peptide toxins are predominantly of experimental interest and not yet applicable in humans, Ca\(_{\text{2.1}}\)-2.3 VGCCs turned out to serve more and more as potential targets in epilepsy, pain treatment and other neurological diseases. Gabapentin, for example, inhibits Ca\(_{\text{2.1}}\) Ca\(^{2+}\) channels via interaction with the \(\alpha\),\(\delta\) auxiliary subunits (albeit non-selectively), and it can influence pain and epilepsy in humans [32]. Ziconotide (\(\omega\)-conotoxin MVIIA, *i.e.* SNX-111), a toxin derived from the marine piscivorous snail *Conus geographus*, is likely to inhibit Ca\(_{\text{2.2}}\) Ca\(^{2+}\) channels and is a potent drug in humans who turned out to be refractory or non-tolerant to opioids [29, 30]. The GABA\(_{\text{b}}\) receptor agonist baclofen can strongly inhibit Ca\(_{\text{2.1}}\) and Ca\(_{\text{2.3}}\) whereas \(\epsilon\)-Vc1.1, a cyclized version of the analgesic \(\alpha\)-conotoxin Vc1.1 acting through GABA\(_{\text{b}}\) receptors, did not affect Ca\(_{\text{2.1}}\) but severely inhibited Ca\(_{\text{2.3}}\) Ca\(^{2+}\) channels. These findings support the view that Vc1.1 inhibition of Ca\(_{\text{2.3}}\) VGCCs defines Ca\(_{\text{2.3}}\) Ca\(^{2+}\) channels as a potential target in analgesic treatment [33]. For the LVA Ca\(_{\text{3}}\) Ca\(^{2+}\) channels, a number of potential inhibitors have been evaluated, such as the tetraline derivative mibefradil and the scorpion toxin kurtoxin [34]. Other potential T-type Ca\(^{2+}\) channel blockers include Protoxin-I or \(\beta\)-theraphotoxin-Tp1a (ProTx-I), NNC55-0396, ML-218 and pimozide. Recently, azetidinones and spiro-azetidines have been described as novel potential blockers of the T-type Ca\(^{2+}\) channel Ca\(_{\text{3.2}}\) being of potential relevance for the treatment of neuropathic and inflammatory pain [35]. However, these potential T-type blockers have not reached clinical application so far. Diphenylalkylamine derivatives such as flunarizin or cinnarizin exhibit a non-specific blockade on VGCCs. Recently, new generation state-dependent T-type Ca\(^{2+}\) channel antagonists such as TTA-P2 and TTA-A2 have been described which seem to interfere preferentially with inactivated T-type Ca\(^{2+}\) channels [36]. Both state-dependent blockers exhibit analgesic effects in rodent models of pain. Z123212, a bi-targeting inhibitor of voltage-dependent Na\(^{+}\) channels and T-type Ca\(^{2+}\) channels exerts its analgesic effect by selectively targeting the slow inactivated state of the channels [37]. Notably, phase I clinical trials for the treatment of pain are currently performed for Z944, a state-dependent T-type channel inhibitor. Several pharmaceutical companies have focused their preclinical research on T-type Ca\(^{2+}\) channels inhibitors and activators and the future will reveal if clinical drugs finally emerge from these efforts. Importantly, LVA T-type Ca\(^{2+}\) channels are also sensitive to divalent heavy metal ions, such as Ni\(^{2+}\), Zn\(^{2+}\) or Cu\(^{2+}\) ions [4, 10]. Using a heterologous expression system, Ca\(_{\text{1.2}},\) Ca\(_{\text{2.3}}\) and Ca\(_{\text{3.2}}\) VGCCs were originally reported to be the most Zn\(^{2+}\) sensitive Ca\(^{2+}\) channels with IC\(_{50}\) values of 10.9 ± 3.4 μM, 31.8 ± 12.3 μM and 24.1 ± 1.9 μM, respectively [38]. Recently, it was also shown that Ca\(_{\text{1.2}}\) and Ca\(_{\text{1.3}}\) isoforms can serve as Zn\(^{2+}\) permeation routes mediating Zn\(^{2+}\) flux across the plasma membrane [39]. The functional relevance of this VGCC mediated Zn\(^{2+}\) flux related to Zn\(^{2+}\) transporter protein activity remains unclear.

Importantly, Zn\(^{2+}\) can exert distinct and partially opposite effects on Ca\(_{\text{3.1}}\)-3.3 T-type Ca\(^{2+}\) channels [40]. Whereas Ca\(_{\text{3.2}}\) Ca\(^{2+}\) channels were blocked by submicromolar Zn\(^{2+}\) concentrations (IC\(_{50}\) = 0.78 ± 0.07 μM), Ca\(_{\text{3.1}}\) and Ca\(_{\text{3.3}}\) Ca\(^{2+}\) channels turned out to be less sensitive to Zn\(^{2+}\) (IC\(_{50}\) = 81.7 ± 9.1 μM and IC\(_{50}\) = 158.6 ± 13.2 μM, respectively). Hence, Zn\(^{2+}\) can be used for the pharmacological distinction of different T-type Ca\(^{2+}\) channels. On the electrophysiological level, different Zn\(^{2+}\) effects can be explained by subtype-specific modulation of Zn\(^{2+}\) acting on multiple binding sites of Ca\(_{\text{3.1}}\) and Ca\(_{\text{3.3}}\) channels and altering their gating mechanisms. As a possible allosteric modulator of Ca\(^{2+}\) channels, Zn\(^{2+}\) is responsible for a shift to more negative potentials of the steady-state inactivation curves of Ca\(_{\text{3.1}}\)-3.3 T-type Ca\(^{2+}\) channels and the steady-state activation curve of Ca\(_{\text{3.1}}\) and Ca\(_{\text{3.3}}\) Ca\(^{2+}\) channels [40]. Furthermore, inhibitory effects of Zn\(^{2+}\) are use-dependent and strongly suggest preferential Zn\(^{2+}\) binding to the resting state of T-type Ca\(^{2+}\) channels. Inactivation kinetics for Ca\(_{\text{3.1}}\) and Ca\(_{\text{3.3}}\) were significantly slowed, but not for Ca\(_{\text{3.2}}\) VGCCs. Deactivation kinetics of Ca\(_{\text{3.3}}\) Ca\(^{2+}\) channels were also significantly slowed upon Zn\(^{2+}\) exposure. However, Ca\(_{\text{3.1}}\) and Ca\(_{\text{3.2}}\) tail currents remained affected. An increased Ca\(_{\text{3.3}}\) mediated Ca\(^{2+}\) current was observed after Zn\(^{2+}\) application
and resulted in increased duration of Ca,3.3 mediated action potentials. Consequently, Zn\(^{2+}\) can apparently serve as an opener of Ca,3.3 Ca\(^{2+}\) channel [40].

Within the last decade, Zn\(^{2+}\) emerged to be one of the most important heavy metal ions within the CNS, to the extent that it is was sometimes referred to as “the calcium of the twenty-first century” [41]. Both divalent trace metals, Zn\(^{2+}\) and Cu\(^{2+}\), are implicated in a range of neurological disease states in humans that are characterized by alterations in neuronal excitability and/or neurodegeneration. Importantly, Zn\(^{2+}\) is known to exert significant effects on epileptic activity and excitotoxicity. However, the role of Zn\(^{2+}\) and Cu\(^{2+}\) in epilepsy and excitotoxicity is complex, and partially ambivalent. Whereas a number of studies illustrate that Zn\(^{2+}\) is a potential ionic mediator of selective neuronal injury [42 - 45], others provide strong evidence that Zn\(^{2+}\) is a powerful neuroprotector [41, 46 - 53]. Similarly, Zn\(^{2+}\) was reported to serve as both a proconvulsant [54] and anticonvulsant [55, 56] in humans and various animal models. These findings further support the apparent „Janus“-like behavior of Zn\(^{2+}\) ions in modulating neurodegeneration and seizure susceptibility. However, most of these prima facie contradictory observations described in the literature are based on differences in voltage- and ligand-gated ion channel expression within various neuronal cell types investigated, e.g. hippocampal interneurons versus pyramidal cells. Following KA-induced limbic seizures, hippocampal interneurons exhibit a dramatic increase in cytosolic Zn\(^{2+}\)-concentration and cell death which is supposed to be due to mitochondrial dysfunction [44] and activation of specific Zn\(^{2+}\)-signaling pathways [57]. Hippocampal interneurons were further reported to express Ca\(^{2+}\)-permeable AMPA-receptors [58], and to release Zn\(^{2+}\) from mitochondria and other intracellular stores or metallothioneins [44]. Zn\(^{2+}\)-levels turned out to be higher in interneurons compared to hippocampal pyramidal cells [59] due to differences in Ca\(^{2+}\)-AMPA-receptor expression. Ca\(^{2+}\)-buffering systems and differences in mitochondrial metabolism [60]. Compared to interneurons, CA3 pyramidal cells display only a moderate increase in internal Ca\(^{2+}\)-levels after KA treatment [59]. Findings of Zn\(^{2+}\)-release, intracellular Zn\(^{2+}\)-accumulation and its effects on KA-seizure susceptibility and excitotoxicity are rather divergent as well. Whereas extracellular chelation of Zn\(^{2+}\) in one study neither affected hippocampal excitability nor seizure-induced cell death [61], studies by Takeda et al. illustrated that Zn\(^{2+}\) can clearly attenuate KA-induced limbic seizure activity and concomitant neurodegeneration in the CA3 region, or induce inverse effects, when being chelated extracellularly [46 - 53, 62]. Thus, by complex modulation of the inhibition - excitation balance involving VGCCs, Zn\(^{2+}\)-homeostasis is crucial for both the induction of and the prevention of hyperexcitability-related seizure development and neurodegeneration. Most importantly, Zn\(^{2+}\) ions can exhibit not only different modulatory effects on numerous voltage- and ligand-gated ion channels such as VGCCs, but also enter cells via different channels including VGCCs, AMPA-, NMDA- and KA-receptors, particularly when neurons exhibit repetitive activation or hyperexcitability [41, 45, 63]. Thus, both Ca\(^{2+}\) and Zn\(^{2+}\) can serve as synaptic or transynaptic second messengers with extracellular diffusion, e.g. spillover effects at mossy fibre terminals enabling complex heterosynaptic modulation. In line with these findings, synaptically released Zn\(^{2+}\) can effectively inhibit long-term potentiation (LTP) presynaptically at the mossy fiber synapse [64]. These findings directly corroborate the crucial role of HVA Ca,2.3 R-type Ca\(^{2+}\) channels, serving as a Zn\(^{2+}\) target in presynaptic LTP [38, 65, 66] as will be outlined below (Fig. 2).

In drug research and development there is a strong need for new medical entities, i.e. first-in-class medicines that preferentially target individual Ca\(^{2+}\) channel entities. Arranz-Tagarro et al. [20] provided a summary of 23 patents in the period 2011-2013 claiming selectivity of newly synthesized compounds for HVA L- and N-type and LVA T-type Ca\(^{2+}\) channels. It’s noteworthy that indications of L-type blocker patents are mostly related to treatment of Parkinson’s disease but also cardiovascular and neurodegenerative diseases. However, those blocking N- and T-type Ca\(^{2+}\) channels predominantly address neuropathic pain at the spinal cord, but also intractable pain of peripheral diabetic neuropathy, herpes, cancer, trigeminal neuralgia, migraine, post-surgery and inflammatory pain. Within the Ca,3 T-type subfamily, a specific pharmaceutical focus has been on Ca,3.2 Ca\(^{2+}\) channels. The most often claimed indication, particularly for T-type Ca\(^{2+}\) channels, is epilepsy. Pathophysiologically, some seizures and epilepsy entities share common neuronal circuits with similar pathophysiological dysrhythmics. As outlined below this holds true for the thalamocortical (TC)-corticothalamic circuitry which is essential for the generation of slow-wave-sleep (SWS). Aberrant network activity i.e. hyperoscillation within this circuitry can result in absence epilepsy. Thus, Ca\(^{2+}\) channel modulators targeting absence epilepsy might also be effective in the treatment of sleep disorders for example. A major drawback in the development of Ca\(^{2+}\) channel blockers is the wide distribution of various Ca\(^{2+}\) channel subtypes with similar molecular structure in the brain and peripheral tissues. This may give rise to intolerable side effects. Given the tremendous physiological implications of VGCCs, it is not surprising that numerous voltage-gated Ca\(^{2+}\)-channelopathies have been
identified so far [67, 68] (Table 1).

Table 1. Pharmacology and tissue distribution of VGCCs as well as related channelopathies (reprinted from [68]).

Ca,-αi	Pharmacology	Tissue affected	Syndromes associated
Ca,1.1	Dihydropyridine, Benzoiazepine, Phenyalkylamine, TaCatoxin, Calciseptine Calcinudine, FS-2	skeletal musclesubiquitary	Hypokalemic periodic paralysis type 1 (HypoPP1), malignant hyperthermia type 5 (MHSS) Timothy syndrome (LQT8, epilepsy) Not known
Ca,1.2		ubiquitary	x-linked congenital stationary night blindness 2 (xCSNB2), X-linked cone-rod dystrophy type 3 (CORDX3)
Ca,1.3		retina	
Ca,1.4		CNS/heart	
Ca,2.1	αα-Agatoxin IVA	CNS	Absence-epilepsy, episodic ataxia type 2, spinocerebellar ataxia type 6, familial hemiplegic migraine, Lambert-Eaton myastenia-syndrome
Ca,2.2	αα-Conotoxin GVIA	CNS/PNS	Lambert-Eaton myastenia-syndrome
Ca,2.3	SNX-482, Ni2^+	CNS/PNS	Not known
Ca,3.1		CNS/PNS	Absence-epilepsy (CAE), Autism spectrum disorders (ASD)
Ca,3.2		CNS/heart	Not known
Ca,3.3	Mibebradil, Kurtoxin, Ni2^+	CNS	

Besides the pore-forming αi subunits, it is noteworthy that the auxiliary subunits αδ1,4, β1,4 and γ1,8 can substantially...
influence the basic electrophysiological and pharmacological characteristics as well as the plasma membrane translocation of the Ca\(_{\text{\beta}}\)-\(\alpha\) subunits [6, 69] and might also serve as targets in future drug research and development.

The Ca\(_{\text{\beta}}\) subunit for example determines the plasma membrane density of the pore-forming Ca\(_{\text{\beta}}\)_2.3 \(\alpha\) subunit. Four leucine residues in Ca\(_{\text{\beta}}\) form a hydrophilic pocket surrounding key residues in the Ca\(_{\text{\beta}}\)_2.3 \(\alpha\)-domain. This interaction seems to play an important role in conferring Ca\(_{\text{\beta}}\)-induced modulation of the protein density of Ca\(_{\text{\beta}}\)_2.3 subunits in Ca\(_{\text{2+}}\) channels [70]. In this context, interaction partners of VGCCs turned out to be most relevant in drug discovery and development, particularly in the field of epilepsy. Recently, an exceptional study on quantitative proteomics of Ca\(_{\text{2+}}\) channel nano-environments, using knockout-controlled multiple epitope affinity purifications together with high-resolution quantitative mass spectroscopy was carried out to unravel the molecular players in local subcellular signalling [71]. About 200 proteins have been identified that clearly differ in abundance, stability of assembly and preference for the individual Ca\(_{\text{2+}}\) subunits. These potential interaction partners included kinases and phosphatases, cytoskeleton proteins, enzymes, SNAREs, modulators and small G-protein coupled receptors, ion channels and transporters, adaptors, extracellular matrix proteins, cytomatrix components, protein trafficking components and additional proteins of yet unknown function.

Ca\(_{\text{2+}}\) CHANNELS IN ICTOGENESIS AND EPILEPTOGENESIS

Under physiological conditions, Ca\(_{\text{2+}}\) influx into functional neurons is organized in a complex fashion including amplitude, frequency and space as the spatiotemporally integrated free cytosolic Ca\(_{\text{2+}}\) concentration encodes specific information [72]. In general, cytosolic Ca\(_{\text{2+}}\) increase is mediated via release from intracellular Ca\(_{\text{2+}}\) stores, such as the endoplasmatic and sarcoplasmatic reticulum, via Na\(^+/\)Ca\(_{\text{2+}}\) exchanger, VGCCs and an armamentarium of other, often less-specific voltage- and ligand gated cation channels. VGCCs effectively couple complex neural activation patterns to cytosolic Ca\(_{\text{2+}}\) influx. Until internal Ca\(_{\text{2+}}\) buffering procedures restore the resting intracellular Ca\(_{\text{2+}}\) levels [73, 74], the cytosolic Ca\(_{\text{2+}}\) concentration triggers crucial cellular functions, e.g. channel modulation, release of neurotransmitters and gene transcription. The Ca\(_{\text{2+}}\) influx via VGCCs is supposed to be of central relevance in hyperexcitability and excitotoxicity mediated neurodegeneration. For example, the so called Ca\(_{\text{2+}}\) hypothesis of epileptogenesis proposes that altered cytosolic Ca\(_{\text{2+}}\) levels may play a critical role in icotonogenesis and epileptogenesis [75 - 78]. Both HVA and LVA Ca\(_{\text{2+}}\) channels are predominant mediators of internal Ca\(_{\text{2+}}\) elevation during most epileptiform activity [75, 79]. In hippocampal neurons it has been reported that the density of Ca\(_{\text{2+}}\) current was up-regulated during icotonogenesis / epileptogenesis [80] and inhibition of VGCCs substantially depressed epileptiform activity [81, 82]. On the cellular electrophysiological level, Ca\(_{\text{2+}}\) channels were proven to be of central importance in mediating potential ictiform / epileptiform activity, such as afterdepolarization (ADP), plateau potentials (PP) and exacerbation of low-threshold Ca\(_{\text{2+}}\) spikes (LTCS) / rebound burst firing thus mediating seizure initiation, propagation and kindling [34, 83 - 86]. In addition, VGCCs exert major effects in excitotoxicity and neurodegeneration contributing to the devastating pathophysiology of human neuronal diseases associated with neurodegeneration [87 - 89]. Therefore, pharmacological modulation of VGCCs is a promising approach in functional interference with seizure activity, excitotoxicity and neurodegeneration [90 - 96]. As outlined below, many studies regarding the involvement of VGCCs in icotonogenesis and epileptogenesis were carried out on HVA Ca\(_{\text{2.1}}\) and LVA Ca\(_{\text{3}}\) type Ca\(_{\text{2+}}\) channels. However, within the last years, a specific focus has been on the unexpected role of Ca\(_{\text{2.3}}\) R-type VGCCs in the field of epilepsy.

WHAT MAKES Ca\(_{\text{2.3}}\) R-TYPE Ca\(_{\text{2+}}\) CHANNELS SPECIAL?

The Ca\(_{\text{2.3}}\) R-type Ca\(_{\text{2+}}\) channel exhibits a complex histological and cellular distribution pattern with Ca\(_{\text{2.3}}\) being expressed in the peripheral and central nervous system (CNS), the endocrine [97, 98], cardiovascular [99 - 101], reproductive [102 - 105], and gastrointestinal system [106]. Additionally, Ca\(_{\text{2.3}}\) is of central relevance in the developing lung [107] and sensing organs such as the inner ear and organ of Corti [108]. In the last 15 years researchers have gained tremendous insight into the functional role of Ca\(_{\text{2.3}}\) Ca\(_{\text{2+}}\) channels based on the generation of Ca\(_{\text{2.3}}\) deficient mice. Within the CNS, Ca\(_{\text{2.3}}\) VGCCs are involved in presynaptic / postsynaptic plasticity and neurotransmitter release [65, 66]. Additionally, Ca\(_{\text{2.3}}\) Ca\(_{\text{2+}}\) channels were shown to be engaged in the control of pain behavior [109], the physiology of fear [110] and myelogenesis [111]. Interestingly, Ca\(_{\text{2.3}}\) VGCCs are also involved in the semaphorin 3A mediated conversion of axons to dendrites and the control of neuronal identity during nervous system development [112]. Furthermore, Ca\(_{\text{2.3}}\) Ca\(_{\text{2+}}\) channels seem to exhibit a protective function in ischemic neuronal injury [113] and contribute to vasospasms following subarachnoid hemorrhage in humans [114]. Ca\(_{\text{2.3}}\) R-type
VGCCs were also thought to play a crucial role in mediating analgesic opioid effects and underlying pain pathways. Although it remains unknown to a large extent whether single-nucleotide polymorphisms of the human CACNA1E gene encoding Ca,2.3 VGCCs affect the analgesic effects of opioids, there is increasing evidence of a link between CACNA1E gene polymorphisms and fentanyl sensitivity [115]. Besides Ca,1.2, the Ca,2.3 VGCC is also expressed in colonic primary sensory neurons and was reported to be of major importance in visceral inflammatory hyperalgesia [116]. Inhibition of Ca,2.3 VGCCs by eugenol was also shown to contribute to its analgesic effect [117]. The expression of Ca,2.3e as the main R-type VGCC isoform in nociceptive DRG neurons also points to a potential target for pain treatment, e.g. in the trigeminal and spinal cord system [118, 119]. Furthermore, Ca,2.3 Ca\(^{2+}\) channels were detected in small to medium muscle afferent neurons revealing the following expression pattern: Ca,2.2 > Ca,2.1 ≥ Ca,2.3 > Ca,1.2 channels [120]. Notably, Ca,2.3 VGCC are dominantly expressed presynaptically, e.g. in mossy fibers of the hippocampus [121] and the pallidal globe [122], besides Ca,2.1 [123] and Ca,2.2 [124] and it is also expressed at the neuromuscular junction [125]. At the presynaptic site, a minor fraction of Ca,2.3 VGCCs are localized to the active zone of the vesicle fusion machinery and thus functionally contributes to neurotransmission [123]. A dominant fraction however, is localized more peripheral in the synapse responsible for synaptic plasticity, e.g. long-term potentiation (LTP) [66]. In addition, it should be noted that Ca,2.3 R-type VGCCs are homogenously expressed on the cell soma and the dendritic arbor. The dendritic expression pattern is highly complex and only present in certain CNS nuclei and specific cell types, such as CA1 neurons. The highly organized spatial distribution pattern of Ca,2.3 Ca\(^{2+}\) channels with predominant expression in the proximal or distal dendrites clearly differs from other HVA VGCCs [126]. Functionally, Ca,2.3 was reported to underlie the generation of Ca\(^{2+}\)-dependent APs. The latter are conducted along the ramified dendritic arbor which serves an important entry site of Ca\(^{2+}\) and crucial factor in neural electrogensis [127]. This characteristic somatodendritic function of Ca,2.3 VGCCs is likely to be involved in a number of characteristicictiform / epileptiform electrical phenomena. Ca,2.3 R-type Ca\(^{2+}\) channels were considered to be unique as they turned out to be resistant to most Ca\(^{2+}\) channel blockers. In 1998 however, the spider peptide toxin SNX-482, derived from the venom of the tarantula Hysterocrates gigas (homologous to the spider peptides grammatoxin S1A and hanatoxin), was demonstrated to be a selective Ca,2.3 Ca\(^{2+}\) channel antagonist at low nanomolar concentrations (IC\(_{50}\) = 15-30 nM) [128]. Recently however it turned out that SNX-482 also dramatically reduces A-type K\(^{+}\) currents in mouse dopaminergic neurons from the substantia nigra pars compacta. Patch-clamp studies on K,4.3 stably transfected HEK293 cells revealed an IC\(_{50}\) < 3nM which indicates a substantially higher potency than for SNX-482 inhibition of Ca,2.3 Ca\(^{2+}\) channels [129]. Thus, caution has to be exercised when interpreting SNX-482 antagonistic effects on cells and neural circuits where these channels are actually expressed. Ca,2.3 blocking effects were also reported for DW 13.3, the Phoneutria (Ctenus) nigriventer (Brazil armed spider) toxin ω-CTenitoxin-Pn2a including ω-PnTx3-3, ω-PnTx3-6 and ω-phonetoxin IIA [20]. In addition, Ca,2.3 Ca\(^{2+}\) channels exhibit high sensitivity to divalent heavy metal ion such as Ni\(^{2+}\) (IC\(_{50}\) = 27 μM), a property that they share with Ca,3.2 Ca\(^{2+}\) T-type channels (IC\(_{50}\) = 5-10 μM [130]). Furthermore, in vitro dose-concentration studies using the HEK 293 heterologous expression system and calibrated heavy metal ion concentrations revealed that Ca,2.3 is a most sensitive target of Zn\(^{2+}\) and Cu\(^{2+}\) ions with IC\(_{50}\) values of 1.3 ± 0.2 μM and IC\(_{50}\) = 18.2 ± 3.7 nM, respectively, using voltage steps to -20 mV representative for effects on activation gating. In the same setting IC\(_{50}\) values of 8.1 ± 1.4 μM for Zn\(^{2+}\) and 269 ± 101 nM for Cu\(^{2+}\) representative for action on conductance with voltage steps to +20 mV were obtained [131]. This clearly differs from other ion channels and receptors, e.g. NMDAR (IC\(_{50}\) = 270 nM) and Ca,3.2 (IC\(_{50}\) = 900 nM) [132, 133]. Abolishing the effects on potential binding sites of divalent heavy metal ions by chelation or by substitution of key amino acid residues in the IS1–IS2 (H111) and IS3–IS4 (H179 and H183) loops substantially enhanced Ca,2.3 mediated Ca\(^{2+}\) influx. This is mediated by a shift in the voltage-dependence of activation towards more negative membrane potentials [131]. The authors further demonstrated that Cu\(^{2+}\) modulates the voltage dependence of Ca,2.3 Ca\(^{2+}\) channels by affecting gating charge movements. The presence of Cu\(^{2+}\) ions resulted in a delay in activation gating and a reduction of voltage sensitivity of the channel. It was further shown that neurotransmitters, such as glutamate and glycine can serve as trace metal chelators per se and thus substantially regulate activity of Ca,2.3 VGCCs by modulating their voltage-dependent gating. Interestingly, glutamate substantially potentiated the activity of Ca,2.3 Ca\(^{2+}\) channels at hyperpolarized potentials by shifting their voltage-dependent activation curve towards more negative voltages. Most importantly, the glutamate effect on Ca,2.3 Ca\(^{2+}\) channels was clearly based on the chelating effect and mechanistically distinct from the activation of intracellular signal transduction cascades [134]. Glutamate effects on Ca,2.3 are exerted from the extracellular space and although the trace metal binding character has been documented before [135] it was not considered to be physiologically relevant until now.
Importantly, it has never been mentioned before that trace amounts of divalent heavy metals that often contaminate external solutions [130, 136] can exert tonic antagonistic effects on Ca,2.3 voltage-dependent gating. Due to the observed shifts in IV-curves and changes in current kinetics in the presence of various Zn2+ and Cu2+ concentrations, Ca,2.3 VGCC turned out to be mid-voltage activated in a Zn2+ and Cu2+ low/free environment. It has been estimated that an average HEPES–TEA solution contains about 50 nM Cu2+, which can result in a 17 mV negative shift in the Ca,2.3 Ca2+ activation curve. In addition, trace metal chelation also enhanced Ca,2.3 Ca2+ current inactivation kinetics [131]. These findings are likely to have a severe impact on our view on Ca,2.3 VGCCs and require a thorough re-assessment of previously reported electrophysiological studies on Ca,2.3 VGCCs. Additionally, they demonstrate that basic electrophysiological properties of VGCCs can be modulated by local changes in environmental cell conditions and that a plethora of new (patho) for the Ca,2.3 VGCC entity (Fig. 2). It should further be noted that extracellular acidification can decrease Ca2+ current amplitude and results in a depolarizing shift in the activation potential (V\textsubscript{1/2}) of VGCCs. These effects hold true for all VGCC including Ca,2.3, but differences occur between individual VGCC entities and the underlying molecular mechanisms remain unknown. Alterations of Ca2+ current amplitude effectuated by extracellular acidification or alkalisation were shown to be of higher importance for Ca,2.3 R type VGCCs than for Ca,2.1 P/Q-type channels for example [137].

MODULATION OF Ca,2.3 VGCCS VIA DIFFERENT RECEPTORS AND SIGNALING CASCADES

A number of Ca,2.3 splice variants have been described [138] and this diversity is likely to be potentiated by co-assembly with different auxiliary subunits such as α,δ, β, and γ. The Ca,2.3 VGCC is modulated biochemically by interconversion, i.e., phosphorylation and dephosphorylation. These two processes are of central relevance as they can alter fundamental electrophysiological properties of the channel and are related to the induction and perseveration of epileptiform burst activity in neurons [139] as outlined below. Interestingly, Ca,2.3 VGCCs are automodulated in a bidirectional manner depending on the Ca2+ influx via Ca,2.3 R-type Ca2+ channels. If cytosolic Ca2+ concentrations are low, Ca,2.3 activation via protein kinase C (PKC) slows down the inactivation kinetics and enhances recovery from short-term inactivation [140, 141]. This mechanism represents a positive feedback based on the presence of exon 19 that represents an arginine rich insert 1 in the cytosolic II–III loop [138]. In consequence, Ca,2.3e R-type Ca2+ channels lacking exon 19 encoded insert 1, exhibit only residual phorbol ester mediated stimulation which is however still significant. This view is supported by the observation that coexpression of PKC\textalpha with Ca,2.3e results in similar kinetics of inactivation and recovery as obtained for the full length II–III loop splice variant Ca,2.3d. These findings suggest that the expression pattern of Ca,2.3 splice variants in different brain regions is of significant relevance for neuronal mechanisms underlying neuroprotection, icto-/epileptogenesis and seizure propagation [94]. Importantly, a positive feedback mechanism by Ca2+ influx was also reported for L-type Ca2+ channels and is mediated through Ca2+/calmodulin kinase II [142]. At elevated cytosolic Ca2+ concentrations however, a prominent Ca2+-dependent inactivation renders the channel activity to further increase [143]. PKC-mediated protein phosphorylation is of major physiological relevance, mediating intracellular messengers and hormonal effects. VGCCs serve as effectors in numerous regulatory neurotransmitter and hormonal pathways initiated by G-proteins. This G-protein mediated regulation of VGCCs can either be indirect via second messengers and/or protein kinases or direct via physical interaction between G-protein subunits and the Ca, α\textsubscript{1}-subunit. Functional studies elicited that G-protein interaction reversibly inhibits neuronal non-L type Ca2+-channels. Peak current amplitude is reduced and activation kinetics is slowed. The effects of the heterotrimeric G-proteins on VGCC are well described for the G\textsubscript{i/o} dimer [144, 145], whereas the role of G\textsubscript{i} is yet not well understood. There is strong evidence that G\textsubscript{i/o} directly interacts with the I–II linker of the Ca, α\textsubscript{1}-subunit [146, 147]. Furthermore, the N-terminus of Ca,2 α\textsubscript{1} subunits also seems to be involved in G-protein coupled modulation [148] including Ca,2.3. The G\textsubscript{i/o} interaction site within the I–II linker partially overlaps the AID (α\textsubscript{i}-interacting domain) where β subunits bind. This observation suggests a physical competition between the agonistic β-subunits [148, 149] and the antagonistic effects of G\textsubscript{i/o} [150]. Interestingly, it turned out that G\textsubscript{i/o} exhibits inhibitory effects on LVA Ca,3 T-type Ca2+-channels via interaction with the II–III-loop [151]. There are further hints of a sophisticated interdependence between G-protein pathways and PKC as activation of PKC antagonizes adjacent receptor-mediated G-protein inhibition of VGCC [147, 152]. Accumulation of internal Ca2+ at low concentrations leads to tonic activation of Ca,2.3d resulting in enhanced responses, i.e., slowed inactivation and accelerated recovery from inactivation [140]. It has been reported by Dietrich et al. [66] that Ca,2.3 Ca2+ channels contribute selectively to the so-called residual internal Ca2+ concentration which is essential for various forms of synaptic plasticity, but contributes less to the release of
neurotransmitters. However, this residual internal Ca$^{2+}$ can reach concentration of up to 0.5 mM [153, 154] and is capable of facilitating Ca$^{2+}$ currents through Ca$_{2,3}$d channels [140]. A positive feedback mechanism based on PKC activation might later be attenuated by negative feedback involving the N-lobe calmodulin-dependent modulation [143] and therefore help to maintain physiological internal Ca$^{2+}$ concentrations. The PKC mediated modulation is one final step in the muscarinergic signal transduction cascade. It had been described earlier that Ca$_{2,3}$ Ca$^{2+}$ channels when expressed in HEK cells with M$_t$ muscarinic receptors, exhibit a biphasic modulation [155 - 157]. Muscarinic inhibition of Ca$_{2,3}$ VGCCs is mediated by G$_{b/2y}$ subunits, whereas stimulation is mediated by pertussis toxin-insensitive G$_s$ subunits [158]. These authors compared the modulation of Ca$_{2,3}$ Ca$^{2+}$ channels by the three G$_{a11}$-coupled muscarinic receptors M$_t$, M$_i$ and M$_o$, revealing that these receptors trigger comparable stimulation of Ca$_{2,3}$ channels. The signaling pathway that mediates stimulation was analyzed for M$_t$ receptors in detail indicating that muscarinic stimulation of Ca$_{2,3}$ involves signaling by G$_{a11}$, diacylglycerol (DAC), and a Ca$^{2+}$-independent PKC. In contrast to stimulation, the G$_{b/2y}$ mediated magnitude of Ca$_{2,3}$ inhibition depended on the receptor subtype, with M$_t$ and M$_i$ receptors producing larger Ca$_{2,3}$ inhibition than M$_o$ receptors. Interestingly, muscarinic inhibition of Ca$_{2,3}$ Ca$^{2+}$ channels was notably enhanced during pharmacological suppression of PKC, suggesting the presence of cross-talk between G$_{b/2y}$-mediated inhibition and PKC-mediated stimulation of Ca$_{2,3}$ R-type Ca$^{2+}$ channels similar to what has been described previously for N-type channels. The role of muscarinic modulation of Ca$_{2,3}$ VGCCs in ictogenesis and seizure activity will be discussed below. It should be noted that Ca$_{2,3}$ is also substantially regulated by small GTPase RhoA [159] and it was speculated that this might influence synaptic transmission during brain development and contribute to pathophysiological processes when axon regeneration and growth cone kinetics are impaired [159].

Ca$_{2,3}$ TYPE VGCCS IN CONVULSIVE SEIZURE ACTIVITY

Aberrant burst activity is a typical feature of neuronal epileptiform activity. Each cellular burst is based on a slow, persistent depolarization, the so-called PP [160] which can last up to seconds [161, 162]. A PP is regenerative, spike dependent and is mediated by the summation of depolarizing APs [163, 164]. In addition, internal Ca$^{2+}$ levels attain a plateau that is typically 4200 nM above rest and reached after several seconds of activity. However, the PP generally collapses soon, once the electrical activity has ceased and the membrane repolarizes again [163, 164]. As regards PP termination, it has been suggested that an increase of internal Ca$^{2+}$ and the subsequent activation of a Ca$^{2+}$-dependent K$^+$-mediated afterhyperpolarisation (AHP) might account for this phenomenon [165, 166]. Besides, a shift from Ca$^{2+}$-dependent facilitation to Ca$^{2+}$-dependent inactivation of VGCCs with increased internal Ca$^{2+}$ levels might also be involved. Generally, PPs and ADP are common electrophysiological phenomena in different neuronal cell entities in different brain regions such as spinal and brainstem motor neurons, spinal interneurons, dorsal horn neurons, subicular and entorhinal cortical cells, subthalamic nucleus neurons, suprachiasmatic neurons, striatal cholinergic neurons and hippocampal pyramidal cells [167]. Nevertheless, the entire voltage- and ligand-gated ion channel armamentarium underlying PP and ADP generation is still not fully understood. Recent studies more and more suggest that Ca$_{2,3}$ VGCCs are potent players in PP and ADP generation thus serving an important role in ictogenesis [168 - 175].

Importantly, one has to consider that these data were recorded from various tissue preparations from different species and that dihydropyridines involved in these studies exert complex action on VGCCs. Experimental conditions, such as neuronal membrane potential or penetration depth of various VGCC blockers in CNS slices can severely modulate electrophysiological results [176 - 178].

Various neurological and cardiovascular studies have suggested that Ca$_{1,3}$ could mediate both a low-threshold and low-dihydropyridine sensitive L-type Ca$^{2+}$ current [12, 15]. In consequence, Ca$_{1,3}$ was speculated to be involved in PP generation in different neuronal cell types. Whereas the electrophysiological behavior of LVA Ca$_{1,3}$ Ca$^{2+}$ channels has been described recently [12, 14], Ca$_{2,3}$ had already been known to exhibit low- to mid-voltage activated activity based on both activation and steady-state inactivation kinetics prominent at relatively negative membrane potentials [99, 167, 179 - 183]. In addition, Ca$_{2,3}$ R-type Ca$^{2+}$ channels were shown to contribute to sustained PPs and ADPs in hippocampal CA1 neurons with the latter known to enhance neural excitability and epileptogenicity [85, 184]. Studies by Fraser and MacVicar [185] and Fraser et al. [186] demonstrated that carbachol mediated cholinergic stimulation of CA1 neurons causes slow ADP and long lasting PP both of which resemble epileptiform activity. In general, activation of the cholinergic system is a well-known approach to induce limbic seizures both in vitro and in vivo [187 - 190]. Importantly, PPs are important electrophysiological phenomena in ictogenesis mediated by Ca$^{2+}$ influx through VGCCs. They are modulated upon muscarinic receptor activation and mediate activation of guanylate cyclase activity and
subsequent increase in cGMP [191] (Fig. 3). Ca,2.3 R-type VGCCs were proven to be responsible for Ca\(^{2+}\) influx in dendritic spines, e.g. of CA1 neurons [192] and it was further depicted that a reduction of R-type Ca\(^{2+}\) current reduces the accumulation of postsynaptic [Ca\(^{2+}\)], particularly following recurrent synaptic activation [193, 194]. Notably, stimulation of metabotropic muscarinic receptors via carbachol for example results in inhibition of L-, N-, and P/Q-type VGCCs [195 - 197]. In contrast, R-type Ca\(^{2+}\) current is significantly enhanced [198 - 200]. Topiramate, an AED drug that was shown to block carbachol-induced PPs in subicular bursting cells [201] was used by Kuzmiski et al. [85] to directly prove that topiramate can dampen the generation of PPs by inhibiting R-type VGCCs. Pharmacodynamically, topiramate has a multi-target character interacting with, e.g. voltage-gated sodium channels, VGCCs and AMPA/kainate receptors or GABA(A) receptors [85, 202]. Kuzmiski et al. [85] utilized Ca,2,3 expressing tsA-201 cells that were co-transfected with β\(_{2,3}\) and α\(_{2,3}\) auxiliary subunits to demonstrate that topiramate can block Ca,2,3 mediated Ca\(^{2+}\) currents at therapeutically relevant concentrations. Their studies revealed an IC\(_{50}\) of 50.9 μM and complex alterations in electrophysiological characteristics including a shift of the steady-state inactivation curve to more negative potentials. The Ca\(^{2+}\) spikes that were provoked in this study were transient and high-threshold activated. Following application of TTX and a cocktail of VGCC blockers (i.a. nifedipine 10 μM) to eliminate other current components, the remaining Ca\(^{2+}\) spike was based on R-type mediated Ca\(^{2+}\) current. The latter was increased upon carbachol administration concomitant to an enhanced spike frequency and decreased threshold of Ca,2,3-mediated spiking. As expected, topiramate significantly reduced the R-type Ca\(^{2+}\) spike amplitude. Kuzmiski et al. [85] did not report on experiments to block R-type Ca\(^{2+}\) currents using SNX-482 [128] which serves as a rather selective blocker of Ca,2,3 R-type channels. However, as outlined above the Ca,2,3 Ca\(^{2+}\) channel selectivity of SNX-482 has recently been substantially challenged [129]. Ca,2,3 Ca\(^{2+}\) channels were reported to contribute at around 80% to R-type Ca\(^{2+}\) current in CA1 neurons. Furthermore, the R-type component turned out to be sensitive to low Ni\(^{2+}\) concentrations (50 μM). Taking into account that 10 μM nifedipine can effectively block Ca,2,3 VGCCs [99, 180] one might speculate that a realistic Ca,2,3-mediated topiramate effect on carbachol-enhanced Ca\(^{2+}\) spiking is even more prominent. In the past, detailed studies were carried out to define the signal transduction cascade between muscarinic receptors and Ca,2,3 VGCCs. Melliti et al. [155] and Bannister et al. [158] provided detailed insight how Ca,2,3 VGCCs are modulated upon M\(_1\), M\(_3\) and M\(_4\) muscarinergic receptor stimulation. Importantly, all three muscarinic receptors can exert complex effects on Ca,2,3 VGCCs. Whereas a pertussis toxin-insensitive Ga\(_{o/1}\) subunit, PLCβ, DAG and a Ca\(^{2+}\)-independent PKC signal transduction mechanism mediates stimulation of Ca,2,3, the G\(_{i/o}\) subunits exert inhibitory action on Ca,2,3 VGCCs [203]. Moreover, M\(_1\)/M\(_3\) muscarinic receptor activation was demonstrated to augment R-type, but not LVA T-type Ca\(^{2+}\) currents in rat CA1 pyramidal neurons following selective blockade of N-, P/Q-, and L-type Ca\(^{2+}\) currents [84]. Hippocampal pyramidal neurons are known to highly express postsynaptic M\(_1\) and M\(_3\) receptors [204, 205] which are Ga\(_{o/1}\)-coupled. Activation of M\(_3\)/M\(_3\) and attached G-proteins results in synthesis of DAG and IP3 following PLC activation. DAG can activate Ca\(^{2+}\)-independent group II PKCs, most likely PKC\(\delta\) [84]. This findings goes together with the observation that R-type Ca\(^{2+}\) currents are inhibited upon muscarinic receptor stimulation in CA1 neurons once PKC is inhibited. This phenomenon is due to the activation of pertussis toxin-sensitive G-protein-coupled M\(_1\)/M\(_3\) receptors as well as G\(_{lo}\) subunits [157, 158]. The hippocampal icotigenic potency of Ca,2,3 VGCCs is also confirmed by the observation that mice lacking the M\(_1\) receptor display reduced seizure susceptibility following pilocarpine administration [206]. One should consider that etiopathogenetic mechanisms of icotogenesis and/or epileptogenesis can also include other voltage-dependent Ca\(^{2+}\) conductance as well [207]. During early stages of epileptogenesis, Hendriksen et al. [208] observed a significant increase in Ca,2,1, Ca,1,3- and particularly Ca,2,3 α\(_1\) mRNA levels in the hippocampal compared to control animals in an electrical stimulation model [208].

Within the last decade there has been an increasing number of reports that directly link VGCCs to specific epilepsy entities in humans as well. Indeed, a number of mutations within the ion-conducting Ca\(_{o/1}\) subunits and the auxiliary subunits (β, α\(_{2,3}\), and γ) of VGCCs were shown to be involved in convulsive and non-convulsive seizure activities in humans. These include i.a. childhood absence epilepsy (CAE) or juvenile myoclonus epilepsy (JME). Mutations in the HVA Ca,2,1 VGCC for example were detected in patients suffering from absence epilepsy, episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). LVA T-type Ca\(^{2+}\) channels such as Ca,3,2, were proven to be important in the etiology of CAE. In addition, they are important targets for a number of AEDs, e.g., suxinimides, lamotrigine (LTG) and zonisamide (ZNS). Although Ca,2,3 R-type VGCCs are highly expressed in the central nervous system, Ca,2,3 related epilepsy entities have rarely been reported. In one study, mutations in EFHC1, a C terminal interaction partner of Ca,2,3 VGCCs, were shown to cause JME in humans. EFHC1 is known to induce neuronal
Ca\textsubscript{2.3} Ca2+ Channels and Seizures

The Open Neurology Journal, 2016, Volume 10

apoptosis by functional interdependence with Ca\textsubscript{2.3} and related mutations in EFHC1 were shown to disrupt C-terminal binding. Interestingly, the lack of apoptosis causes increased cell density and hyperexcitable neural circuits in affected patients. More in vivo data on Ca\textsubscript{2.3} VGCCs in epileptogenesis are available on the preclinical level. Electroencephalographic characterization of Ca\textsubscript{2.3} deficient mice exhibited no indications of spontaneous epileptiform graphoelements. However, seizure susceptibility testing proved that Ca\textsubscript{2.3} VGCCs can contribute to seizure initiation, propagation, termination, and kindling [92, 139, 209]. Pentyleneetrazol (PTZ)-seizure susceptibility was reduced and seizure architecture exhibited severe alterations in Ca\textsubscript{2.3} mice compared with control mice, supporting the proconvulsive action of Ca\textsubscript{2.3} VGCC [94, 96]. Similar findings were also obtained in Ca\textsubscript{2.3} deficient mice following kainic acid (KA) and N-methyl-D-aspartate (NMDA) administration [95]. It turned out that Ca\textsubscript{2.3} mice are also less susceptible to hippocampal seizures compared to control animals and that Ca\textsubscript{2.3} Ca2+ channels are not only involved in hippocampal ictogenesis but also complex rhythm generation in the septohippocampal network [210]. It was shown that Ca\textsubscript{2.3} VGCCs contribute to the genesis of atropine-sensitive type II. Urethane-induced atropine-sensitive type II theta oscillations are induced by muscarinic signaling via G\alpha_q, PLC\beta_1, InsP_3, DAG and PKC (Fig. 3) [210]. Unlike PLC \beta_1 deletion, ablation of Ca\textsubscript{2.3} does not result in a total abolishment of type II theta oscillations. However, the temporal characteristics of theta distribution, i.e. theta architecture was significantly altered upon Ca\textsubscript{2.3} deletion [210]. Thus, Ca\textsubscript{2.3} VGCC are also of tremendous in relevance septohippocampal synchronization associated with theta oscillation [210].

![Functional implications of Ca\textsubscript{2.3} R-type VGCC in cellular epileptiform activity, excitotoxicity and thetagenesis.](image)

Ca\textsubscript{2.3} mediated Ca2+ influx triggers varies intracellular cascades. One cascade mediates the activation of cyclic-nucleotide gated channels leading to plateau potentials and superimposed bursting. Associated hyperexcitability and Ca2+ overload can result in excitotoxicity and neuronal apoptosis. Note that Ca\textsubscript{2.3} Ca2+ channels are modulated by muscarinic signaling. The G\alpha_q, DAG and PKC pathway was reported to be associated with thetagenesis as well (reprinted from [260]).

Ca\textsubscript{2.3} VGCCs IN NON-CONVULSIVE SEIZURE ACTIVITY

Behaviorally, typical absence epilepsy is the prototype of non-convulsive seizure activity. It is characterized by a sudden onset and termination of paroxysmal loss of consciousness that is accompanied by bilateral synchronous spike-wave discharges (SWD). The frequency of these SWD turned out to be species-specific [211]. It has been shown several years ago that the TC circuitry, particularly the contribution of the ventrobasal thalamus and the reticular thalamic nucleus (RTN) are functionally involved in the initiation and propagation of absence seizures [212]. In addition, also extrathalamocortical structures, e.g. the reticular formation, the pedunculopontine tegmental nucleus, the laterodorsal tegmental nucleus, the basal nucleus of Meynert, the raphe nuclei, the locus coeruleus and cerebellar structures are functionally connected to the TC circuitry. Interestingly, brain structures like hippocampus or cerebellum that are classically not known to be involved in the generation of absence SWDs in fact also participate in the
development of the absence epilepsy phenotype [213]. On the pathophysiological level, TC dysrhythmia is assumed to be the substrate of SWDs. Electrophysiologically, thalamic relay neurons but also others have the unique capability to shift between different functional states, i.e. the tonic mode, the intermediate mode and the burst firing mode. These different modes strongly regulate transmission of external information to the cortex [214]. The tonic firing mode is typical of stages of high vigilance. When ascending activity originating from deeper brain structures decreases, thalamic relay neurons re- and hyperpolarize. They first exhibit the intermediate mode and finally display rebound burst firing. A number of voltage- and ligand-gated channels involved have been characterized including hyperpolarization and cyclic-nucleotide gated, non-specific cation channels (e.g. HCN2, HCN4) and LVA Ca\(_{\text{2.1-3.3}}\) T-type Ca\(^{2+}\) channels that can trigger LTCSs with superimposed bursts of conventional Na\(^+\)/K\(^+\) APs. Rebound burst firing can be terminated by both voltage- and Ca\(^{2+}\) - activated current entities, e.g., \(I_{\text{A}}\) and \(I_{\text{K(Ca2+)}}\). Rebound burst firing in the TC circuitry is characteristic of low vigilance as holds true for slow wave sleep (SWS). Furthermore, reinforced oscillatory activity accompanied with intensive rebound burst firing of RTN and thalamic relay neurons is of central importance in the etiopathogenesis of absence epilepsy. Within the TC network, oscillatory activity is substantially triggered and sustained by the RTN which helps to control information gating and transfer from the periphery over the thalamus to the cortex. The shell-shaped RTN is strategically placed lateral to the ventrobasal thalamic relay nucleus and exerts inhibitory GABAergic activity on RTN cells themselves as well as on thalamic relay neurons [212]. Interestingly, a number of single-mutation mouse models of absence epilepsy have been described most of which related to genetic ablation of VGCCs. This underlines the critical role of VGCCs in absence epileptogenesis. In particular, HVA Ca\(_{\text{2.1}}\) and Ca\(_{\text{3.2}}\) LVA T-type Ca\(^{2+}\) channels were proven to be of central relevance in this field. For example, the Ca\(_{\text{3.1}}\) VGCC knock-out mouse model was reported to display resistance to absence seizures and a lack of burst firing in TC relay neurons [215]. In addition, Ca\(_{\text{3.1}}\)\(^{-/-}\) mice exhibited altered sleep architecture and a clear lack of delta waves [216]. The Ca\(_{\text{3.1}}\) Ca\(^{2+}\) channel is strongly expressed within thalamic relay neurons. Results obtained from Ca\(_{\text{3.1}}\)\(^{-/-}\) mice strongly indicate that other VGCCs including Ca\(_{\text{2.3}}\) are also of functional relevance within the TC circuitry. In contrast to Ca\(_{\text{3.1}}\)\(^{-/-}\) mice, Ca\(_{\text{2.1}}\) deficient animals are susceptible to absence epilepsy characterized by typical SWDs and motoric arrest [217]. The ablation of the Ca\(_{\text{2.1}}\) P/Q-type VGCCs causes progressive ataxia and altered synaptic transmission in Ca\(_{\text{2.1}}\)\(^{-/-}\) transgenic mice. Amazingly, Ca\(_{\text{3}}\) T-type Ca\(^{2+}\) currents were increased in TC relay neurons obtained from these mice [218]. When Ca\(_{\text{2.1}}\)\(^{-/-}\);Ca\(_{\text{3.1}}\)\(^{-/-}\) double knock-out mice were generated, mice did not exhibit spontaneous SWDs anymore and no T-type Ca\(^{2+}\) current in TC relay neurons could be detected [219]. Besides, Ca\(_{\text{3.1}}\) VGCCs might be involved in movement disorders such as paroxysmal dyskinesia and ataxia [220, 221]. Summing up, enhanced T-type Ca\(^{2+}\) currents in various cellular components of the TC network were shown to be a critical phenomenon in absence epileptogenesis although it does not seem to be a must [219]. Clearly, Ca\(_{\text{3}}\) T- and Ca\(_{\text{2.1}}\) P/Q-type VGCCs are not the only electrophysiological players within the TC circuitry. Gabaergic interneurons of the cortex and the RTN as well as extrathalamocortical structures were proven to express Ca\(_{\text{3.2}}\) VGCCs [96, 179, 222 - 225]. A lot of studies as regards the role of Ca\(_{\text{2.3}}\) VGCCs in absence epileptogenesis were carried out in Wistar Albino Glaxo rats (WAG/Rij) and Genetic Absence Epilepsy Rats from Strasbourg (GAERS). In the latter, increased T-type Ca\(^{2+}\) currents in reticular thalamic neurons have been reported [226] and subsequently also changes in Ca\(_{\text{3.1}}\) and Ca\(_{\text{3.2}}\) Ca\(^{2+}\) channel expression in related thalamic nuclei, i.e. the adult ventroposterior thalamic nuclei and the RTN, respectively [223]. Importantly, de Borman et al. [222] and Lakaye et al. [213] described a prominent decrease of Ca\(_{\text{2.3}}\) VGCC in two extrathalamocortical brain structures in GAERS, the brainstem and the cerebellum both of which project to the TC circuitry, capable of modulating its oscillatory activity [227 - 229]. In addition, the WAG/Rij rat model of absence epilepsy displays altered VGCC expression as well. Development of SWDs in WAG/Rij rats goes together with an enhanced expression of Ca\(_{\text{2.1}}\) VGCC in the RTN. Interestingly, van de de Bovenkamp-Janssen et al. [224, 225] elicited that control rats showed elevated Ca\(_{\text{2.3}}\) VGCC expression in the RTN from 3 to 6 months of age. In contrast, WAG/Rij rats of the same age clearly lacked this increase in Ca\(_{\text{2.3}}\) expression concomitant with the first occurrence of SWDs. These observations are further supported pharmacologically. Lamotrigine is known to inhibit Ca\(_{\text{2.3}}\) VGCCs [230] and effectively suppressed not only SWDs in both GAERS and WAG/Rij rats [211, 231] but also TC burst activity in rat brain slices [232]. Still, the unique electrophysiological features and neuronal implications of Ca\(_{\text{2.3}}\) VGCC expression within RTN cells, GABAergic interneurons and various extrathalamocortical structures on TC oscillatory action are not yet fully understood. Initial investigation of absence seizure susceptibility in Ca\(_{\text{2.3}}\)\(^{-/-}\) mice elicited that Ca\(_{\text{2.3}}\) affects TC hyperoscillation and absence seizure architecture. In accordance to reports on the absence-preventive effect of Bay K8644-enhanced HVA Ca\(^{2+}\) currents, one might expected that HVA Non-L-type Ca\(_{\text{2.3}}\) Ca\(^{2+}\) channels might support the
Ca,2.3 Ca\(^{2+}\) Channels and Seizures

The Open Neurology Journal, 2016, Volume 10

86

In the last decade, the functional involvement of Ca,2.3 T-type VGCCs in mouse sleep architecture has been investigated in detail, finally resulting in the Ca,2.3 channel model of TC rhythmicity. As outlined above, T-type VGCCs are differentially distributed throughout the thalamus. Ca,3.1 T-type VGCCs are dominantly expressed in thalamic relay cells whereas Ca,3.2 and Ca,3.3 VGCCs are localized in RTN neurons. Gene ablation studies on Ca,3.1\(^{-/-}\) mice showed that lack of Ca,3.1 mediated Ca\(^{2+}\) influx in thalamic relay cells results in lack of burst firing activity due to impaired LTCS activity. However, region specific, i.e., cortical, not thalamic Ca,3.1 deletion did not result in altered sleep. These findings resulted in a complex model of Ca,3.1 Ca\(^{2+}\) channels in regulating TC rhythmicity and sleep. Based on this model, ablation of Ca,3.2 and/or Ca,3.3 might result in a phenotype comparable to that of Ca,3.1\(^{-/-}\) mice. However, although effects of Ca,3.3 ablation on sleep spindles have been described, we are still lacking detailed sleep analysis in Ca,3.2 and Ca,3.3 knock-out mice. The model might predict that ablation of Ca,3.2 and Ca,3.3 results in impaired SWS. However, it was recently reported from a patent application that pharmacological blockade of Ca,3.2 VGCCs can result in enhanced rather than impaired sleep, the reason of which remains to be determined. Moreover, transition rates and sleep architecture were altered. The latter findings strongly suggest that interpretation of sleep architecture in transgenic mice cannot be limited to the TC network itself, or thalamic nuclei in specific but also has to include extrathalamocortical structures as well (see below).
Like Ca,3.2 and Ca,3.3, the Ca,2.3 R-type Ca\(^{2+}\) channels are expressed in the RTN, but not thalamic relay neurons. In addition, Ca,2.3 transcripts are present in cortical interneurons. Moreover, Ca,2.3 VGCCs are expressed in a number of extra-thalamic cortical structures, such as the mesopontine REM-NREM modulators (the locus coeruleus, the dorsal raphe nuclei, the pedunculopontine, and the laterodorsal tegmental nuclei), the diencephalic sleep onset controllers (hypothalamic nuclei including the ventrolateral/lateral preoptic region and the tuberomammillary basal forebrain), the cerebellum, the basal ganglia and the hippocampus [94, 96]. These structures are known to project to the TC circuitry and substantially modify its activity via different neuromodulators, e.g., noradrenaline, histamine, serotonin (5-HT), and acetylcholine [92, 211, 241]. Other important Ca,2.3 expressing structures include the suprachiasmatic nucleus involved in the regulation of the circadian rhythm and also sleep architecture [242, 243] and the amygdala which is also involved in sleep regulation. It’s noteworthy that Ca,2.3 Ca\(^{2+}\) channels are of major relevance in the amygdala physiology. Lee et al. [110] intensively studied the molecular and electrophysiological characteristics of R-type Ca\(^{2+}\) channels in central amygdala neurons proving that Ca,2.3 underlies R-type Ca\(^{2+}\) currents in these cells. However, the functional consequences of Ca,2.3 based R-type Ca\(^{2+}\) currents in specialized amygdala neurons, i.e., Wake-ON, REM-ON, and NREM-ON Ace neurons remain largely unknown. However, findings from sleep analysis in Ca,2.3-/- mice clearly point to the fact that a valid model of TC rhythmicity needs to include input also from extrathalamicocortical structures. In conclusion, there is strong evidence that Ca,2.3 VGCCs play a primary role in SWS, the etiology and pathogenesis of absence epilepsy and SWD generation.

Ca,2.3 R-TYPE VGCC CHANNEL MODULATION AND ITS CLINICAL CONSEQUENCES

VGCCs are important targets for numerous AEDs [139, 244, 245]. Most AEDs were shown to inhibit HVA or LVA Ca\(^{2+}\) channels others than Ca,2.3 VGCCs. Based on the findings described above, there is striking evidence that Ca,2.3 VGCCs can serve as targets in convulsive and non-convulsive seizure pharmacotherapy. Lamotrigine (LTG) for example is a multi-target AED for the treatment of typical absence seizures and the Lennox-Gastaut syndrome [246, 247]. Pharmacodynamically, it acts via inhibition of both voltage-gated Na\(^{+}\) and Ca\(^{2+}\) channels [248]. LTG targets Ca,2.1 and Ca,2.2 VGCCs [249, 250], but also Ca,2.3 R-type and Ca,3 T-type channels [230]. Interestingly, LTG inhibits R-type Ca\(^{2+}\) currents stronger than T-type currents. Thus, Ca,2.3 Ca\(^{2+}\) channels seem to be involved in the anti-absence activity of LTG suggesting an important role of Ca,2.3 VGCCs in the etiopathogenesis of absence epilepsy. LTG at a concentration of 10 μM is capable of inhibiting Ca,2.3-α, coexpressed with β, by 30% when applying therapeutically relevant brain concentrations of 4–40 μM [230]. Contrarily, Ca,3.1 and Ca,3.3 T-type Ca\(^{2+}\) channels exhibited only minor sensitivity to LTG.

In addition, Lamotrigine (LTG) was shown to dampen transient cytosolic [Ca\(^{2+}\)] \(\text{in rat pyramidal neurons. This is of relevance as alterations in intracellular Ca}\(^{2+}\) homeostasis are known to play an important role in the genesis of epileptiform discharges. Inhibiting transient elevations in neuronal [Ca\(^{2+}\)], by Lamotrigine (LTG) correlates with its anticonvulsant efficacy and could thus prevent neurons from hypereexcitability and excitotoxicity [79]. Notably, sipatrigine or 202W92 can also inhibit Ca,2.3 VGCCs with IC\(_{50}\) values of 10 μM which is within therapeutically relevant brain concentrations of 20–100 μM for sipatrigine and 56 μM for 202W92. Furthermore, both sipatrigine and 202W92 exhibited neuroprotective effects in various animal models of ischemia [251, 252] and displayed anticonvulsant efficacy in both genetically epilepsy-prone rats and DBA/2 audiogenic mice [230, 253]. Importantly, McNaughton et al. [254] have characterized other potential Ca,2.3 blockers that might be relevant in antiepileptic treatment, i.e. carbonic anhydrase inhibitors. The latter include for example ethoxyzolamide, acetazolamide and dichlorphenamidine. Carbonic anhydrase inhibitors have numerous clinical applications, e.g. induction of diuresis, ocular hypertension relief and treatment of altitude sickness [255, 256]. However, epidemiological approaches also suggest their efficacy in patients suffering from absence epilepsy [255]. Ethoxyzolamide inhibited Ca,2.3 mediated R-type Ca\(^{2+}\) current by 66-74% at 10 μM. On the other hand, dichlorphenamidine (10 μM) which is used for treatment of generalized epilepsies resulted in a 24-76% reduction of R-type current [254]. Importantly, topiramate, a standard AED nowadays shares structural similarities with carbonic anhydrase inhibitors and indeed also exerts remaining inhibitory action on carbonic anhydrases. Topiramate had already been reported to inhibit L-type Ca\(^{2+}\) currents [257]. Recently however, it was also proven [85, 254] that topiramate severely inhibits Ca,2.3 Ca\(^{2+}\) channels by 68-77% when applied at therapeutically relevant concentrations of 10 μM. Furthermore, Kuzmiski et al. [85] showed that topiramate can block PPs in hippocampal CA1 neurons due its inhibitory action on Ca,2.3 Ca\(^{2+}\) channels. As outlined above, PPs are of significant relevance in promoting epileptiform burst activity. Thus, inhibition of Ca,2.3 Ca\(^{2+}\) channels by topiramate is
responsible for a reduction in repetitive neural firing, spontaneous epileptiform burst activity and recurrent seizures [258]. It’s noteworthy that many AEDs, e.g. topiramate or Lamotrigine (LTG) that were proven to block Ca\textsubscript{2.3} Ca2+ channels are multi-target drugs acting on an armamentarium of voltage- and ligand- gated ion channels.

Given the functional involvement of Ca\textsubscript{2.3} VGCCs in the etiopathogenesis of both convulsive and non-convulsive seizures but also sleep (patho)physiology, future development of highly specific Ca\textsubscript{2.3} Ca2+ channels blockers will be of tremendous pharmacotherapeutic relevance and a benefit for patients.

ABBREVIATIONS

Abbreviation	Definition
AED	Anti-epileptic drugs
ADP	Afterdepolarisation
AHP	Afterhyperpolarisation
AP	Action potential
CNS	Central nervous system
DHP	Dihydropyridine
EEG	Electroencephalogram
ECoG	Electrocorticogram
EMG	Electromyogram
GAERS	Genetic Absence Epilepsy Rats from Strasbourg
HEK	Human embryonic kidney
HVA	High-voltage activated
LVA	Low-voltage activated
LTG	Lamotrigine
KA	Kainic acid
LTCS	Low-threshold Ca2+ spike
NMDA	N-methyl-D-aspartat
PKC	Protein kinase C
PP	Plateau potential
RTN	Reticular thalamic nucleus
SK	Small conductance potassium channel
SWD	Spike-wave discharge
SWS	Slow-wave sleep
TC	Thalamocortical
VGCC	Voltage-gated calcium channel

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Christina Ginkel (German Center for Neurodegenerative Diseases, DZNE), Dr. Michaela Möhring (DZNE) and Dr. Robert Stark (DZNE) for assistance in animal breeding and animal health care. This work was financially supported by the Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM, Bonn, Germany).

REFERENCES

[1] Bers DM. Cardiac excitation-contraction coupling. Nature 2002; 415(6868): 198-205. [http://dx.doi.org/10.1038/415198a]
[2] Bers DM. Calcium and cardiac rhythms: physiological and pathophysiological. Circ Res 2002; 90(1): 14-7.
[3] Berggren PO, Yang SN, Murakami M, Efanov AM, Uhles S, Kohler M, et al. Removal of Ca2+ channel beta3 subunit enhances Ca2+ oscillation frequency and insulin exocytosis. Cell 2004; 119(2): 273-84. [http://dx.doi.org/10.1016/j.cell.2004.09.033]
Wormuth et al.

Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005; 57(4): 411-25.

Catterall WA. Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. Ann N Y Acad Sci 1999; 868: 144-59.

Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000; 16: 521-55.

Bito H, Deisseroth K, Tsien RW. Ca2+-dependent regulation in neuronal gene expression. Curr Opin Neurobiol 1997; 7(3): 419-29.

Hofmann F, Lacinova L, Klugbauer N. Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 1999; 139: 33-87.

Ertel EA, Campbell KP, Harpold MM, et al. Nomenclature of voltage-gated calcium channels. Neuron 2000; 25(3): 533-5.

Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 2003; 83(1): 117-61.

Dirksen RT, Beam KG. Single calcium channel behavior in native skeletal muscle. J Gen Physiol 1995; 105(2): 227-47.

Koschak A, Reimer D, Huber I, et al. alpha 1D (Cav1.3) subunits can form l-type Ca2+ channels activating at negative voltages. J Biol Chem 2001; 276(25): 22100-6.

Platzer J, Engel J, Schrott-Fischer A, et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 2000; 102(1): 89-97.

Hockerman GH, Peterson BZ, Johnson BD, Catterall WA. Molecular determinants of drug binding and action on L-type calcium channels. Trends Pharmacol Sci 1998; 19(3): 108-15.

Klint JK, Berecki G, Durek T, et al. Isolation, synthesis and characterization of omega-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type Cav channels. Biochem Pharmacol 2014; 89(2): 276-86.

Arranz-Tagarro JA, de los Rios C, Garcia AG, Padin JF. Recent patents on calcium channel blockers: emphasis on CNS diseases. Expert Opin Ther Pat 2014; 24(9): 959-77.

Ricey UM, Frekking ME. Distinct roles for Cav2.1-2.3 in activity-dependent synaptic dynamics. J Neurophysiol 2014; 111(12): 2404-13.

Sutton KG, Siok C, Stea A, et al. Inhibition of neuronal calcium channels by a novel peptide spider toxin, DW13.3. Mol Pharmacol 1998; 54(2): 407-18.
Ca\textsubscript{2.3} + Channels and Seizures

The Open Neurology Journal, 2016, Volume 10

[26] Hillyard DR, Monje VD, Mintz IM, et al. A new Conus peptide ligand for mammalian presynaptic 2+Ca channels. Neuron 1992; 9(1): 69-77. [http://dx.doi.org/10.1016/0896-6273(92)90221-X]

[27] Mintz IM, Venema VI, Swiderek KM, Lee TD, Bean BP, Adams ME. P-type calcium channels blocked by the spider toxin omega-Aga-IVA. Nature 1992; 355(6363): 827-9. [http://dx.doi.org/10.1038/355827a0]

[28] Boland LM, Morrill JA, Bean BP. +Ca 2 Conotoxin block of N-type calcium channels in frog and rat sympathetic neurons. J Neurosci 1994; 14(8): 5011-27.

[29] Lewis RJ, Nielsen KJ, Craik DJ, et al. Novel omega-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. J Biol Chem 2000; 275(45): 35335-44. [http://dx.doi.org/10.1074/jbc.M002252200]

[30] Lewis RJ. Ion channel toxins and therapeutics: from cone snail venoms to ciguatera. Ther Drug Monit 2000; 22(1): 61-4. [http://dx.doi.org/10.1097/00007691-200002000-00013]

[31] Meunier FA, Feng ZP, Molgo J, Zamponi GW, Schiavo G. Glycerotoxin from Glycera convoluta stimulates neurosecretion by up-regulating N-type Ca2+ channel activity. EMBO J 2002; 21(24): 6733-43. [http://dx.doi.org/10.1093/emboj/cdf677]

[32] Diaz RA, Sancho J, Serratosa J. Antiepileptic drug interactions. Neurologist 2008; 14(6)(Suppl. 1): S55-65. [http://dx.doi.org/10.1097/01.nrl.0000340792.61037.40]

[33] Berecki G, McArthur JR, Cuny H, Clark RJ, Adams DJ. Differential Cav2.1 and Cav2.3 channel inhibition by baclofen and alpha-conotoxin Vc1.1 via GABAB receptor activation. J Gen Physiol 2014; 143(4): 465-79. [http://dx.doi.org/10.1085/jgp.201311104]

[34] Chuang RS, Jaffe H, Cribs L, Perez-Reyes E, Swartz KJ. Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nat Neurosci 1998; 1(8): 668-74. [http://dx.doi.org/10.1038/3669]

[35] Smith EM, Sorota S, Kim HM, et al. T-type calcium channel blockers: spiro-piperidine azetidines and azetidinones-optimization, design and synthesis. Bioorg Med Chem Lett 2010; 20(15): 4602-6. [http://dx.doi.org/10.1016/j.bmcl.2010.06.012]

[36] Francois A, Laffray S, Pizzoccaro A, Eschalier A, Bourinet E. T-type calcium channels in chronic pain: mouse models and specific blockers. Pflugers Arch 2014; 466(4): 707-17. [http://dx.doi.org/10.1007/s00424-014-1484-4]

[37] Hildebrand ME, Smith PL, Bladen C, et al. A novel slow-inactivation-specific ion channel modulator attenuates neuropathic pain. Pain 2011; 152(4): 833-43. [http://dx.doi.org/10.1016/j.pain.2010.12.035]

[38] Sun HS, Hui K, Lee DW, Feng ZP. 2+Zn sensitivity of high and low-voltage activated calcium channels. Biophys J 2007; 93(4): 1175-83. [http://dx.doi.org/10.1529/biophysj.106.103333]

[39] Park SJ, Min SH, Kang HW, Lee JH. Differential zinc permeation and blockade of L-type Ca channel isoforms Ca1.2 and Ca1.3. Biochim Biophys Acta 2015. [http://dx.doi.org/10.1016/j.bbamem.2015.05.021]

[40] Traboulsie A, Chemin J, Chevalier M, Quignard JF, Nargeot J, Lory P. Subunit-specific modulation of T-type calcium channels by zinc. J Physiol 2007; 578(Pt 1): 159-71. [http://dx.doi.org/10.1113/jphysiol.2006.114496]

[41] Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci 2005; 6(6): 449-62. [http://dx.doi.org/10.1038/nrn1671]

[42] Kim YH, Kim EY, Gwag BJ, Sohn S, Koh JY. Zinc-induced cortical neuronal death with features of apoptosis and necrosis: mediation by free radicals. Neuroscience 1999; 89(1): 175-82. [http://dx.doi.org/10.1016/S0306-4522(98)00313-3]

[43] Koh JY, Suh SW, Gwag BJ, Lee DW, Feng ZP. 2+Zn sensitivity of high and low-voltage activated calcium channels. Biophys J 2007; 93(4): 1175-83. [http://dx.doi.org/10.1529/biophysj.106.103333]

[44] Sensi SL, Yin HZ, Weiss JH. AMPA/kainate receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction. Eur J Neurosci 2000; 12(10): 3813-8. [http://dx.doi.org/10.1046/j.1460-9568.2000.00277.x]

[45] Weiss JH, Sensi SL, Koh JY. Zn2+: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 2000; 21(10): 395-401. [http://dx.doi.org/10.1016/S0165-6147(00)01541-8]

[46] Takeda A, Yamada K, Minami A, Nagano T, Oku N. Enhanced excitability of hippocampal mossy fibers and CA3 neurons under dietary zinc deficiency. Epilepsy Res 2005; 63(2-3): 77-84. [http://dx.doi.org/10.1016/j.eplepsyres.2004.11.002]
[47] Takeda A, Tamano H, Tochigi M, Oku N. Zinc homeostasis in the hippocampus of zinc-deficient young adult rats. Neurochem Int 2005; 46(3): 221-5. [http://dx.doi.org/10.1016/j.neuint.2004.10.003]

[48] Takeda A, Tamano H, Oku N. Involvement of unusual glutamate release in kainate-induced seizures in zinc-deficient adult rats. Epilepsy Res 2005; 66(1-3): 137-43. [http://dx.doi.org/10.1016/j.eplepsyres.2005.07.011]

[49] Takeda A, Tamano H, Nagayoshi A, Yamada K, Oku N. Increase in hippocampal cell death after treatment with kainate in zinc deficiency. Neurochem Int 2005; 47(8): 539-44. [http://dx.doi.org/10.1016/j.neuint.2005.07.009]

[50] Takeda A, Nakajima S, Fuke S, Sakurada N, Minami A, Oku N. Zinc release from Schaffer collaterals and its significance. Brain Res Bull 2006; 68(6): 442-7. [http://dx.doi.org/10.1016/j.brainresbull.2005.10.001]

[51] Takeda A, Minami A, Seki Y, Oku N. Inhibitory function of zinc against excitation of hippocampal glutamatergic neurons. Epilepsy Res 2003; 57(2-3): 169-74. [http://dx.doi.org/10.1016/j.eplepsyres.2003.11.003]

[52] Takeda A, Hirate M, Tamano H, Oku N. Zinc movement in the brain under kainate-induced seizures. Epilepsy Res 2003; 54(2-3): 123-9. [http://dx.doi.org/10.1016/S0920-1211(03)00063-9]

[53] Takeda A, Hirate M, Tamano H, Nisibab A, Oku N. Susceptibility to kainate-induced seizures under dietary zinc deficiency. J Neurochem 2003; 85(6): 1575-80. [http://dx.doi.org/10.1046/j.1471-4159.2003.01803.x]

[54] Pei Y, Zhao D, Huang J, Cao L. Zinc-induced seizures: a new experimental model of epilepsy. Epilepsia 1983; 24(2): 169-76. [http://dx.doi.org/10.1111/j.1528-1157.1983.tb04876.x]

[55] Fukahori M, Itoh M. Effects of dietary zinc status on seizure susceptibility and hippocampal zinc content in the El (epilepsy) mouse. Brain Res 1990; 529(1-2): 16-22. [http://dx.doi.org/10.1016/0006-8993(90)90806-M]

[56] Williamson A, Spencer D. Zinc reduces dentate granule cell hyperexcitability in epileptic humans. Neuroreport 1995; 6(11): 1562-4. [http://dx.doi.org/10.1097/00001756-199507310-00024]

[57] Sik A, Hajo S, Gulacsi A, Mody L, Freund TF. The absence of a major Ca2+ signaling pathway in GABAergic neurons of the hippocampus. Proc Natl Acad Sci USA 1998; 95(6): 3245-50. [http://dx.doi.org/10.1073/pnas.95.6.3245]

[58] Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 1994; 12(6): 1281-9. [http://dx.doi.org/10.1016/0896-6273(94)90444-8]

[59] Cote A, Chiasson M, Peralta MR III, Lafortune K, Pellegrini L, Toth K. Cell type-specific action of seizure-induced intracellular zinc accumulation in the rat hippocampus. J Physiol 2005; 566(Pt 3): 821-37. [http://dx.doi.org/10.1113/jphysiol.2005.089458]

[60] Pisani A, Bonsi P, Catania MV, et al. Metabotropic glutamate 2 receptors modulate synaptic inputs and calcium signals in striatal cholinergic interneurons. J Neurosci 2002; 22(14): 6176-85.

[61] Lavoie N, Peralta MR III, Chiasson M, et al. Extracellular chelation of zinc does not affect hippocampal excitability and seizure-induced cell death in rats. J Physiol 2007; 578(Pt 1): 275-89. [http://dx.doi.org/10.1113/jphysiol.2006.121848]

[62] Dominguez MI, Blasco-Ibanez JM, Crespo C, Marques-Mari AI, Martinez-Guijarro FJ. Zinc chelation during non-lesioning overexcitation results in neuronal death in the mouse hippocampus. Neuroscience 2003; 116(3): 791-806. [http://dx.doi.org/10.1016/S0306-4522(02)00731-5]

[63] Kerchner GA, Canzoniero LM, Yu SP, Ling C, Choi DW. Zn2+ current is mediated by voltage-gated Ca2+ channels and enhanced by extracellular acidity in mouse cortical neurons. J Physiol 2000; 528(Pt 1): 39-52. [http://dx.doi.org/10.1111/j.1469-7793.2000.00039.x]

[64] Minami A, Sakurada N, Fuke S, et al. Inhibition of presynaptic activity by zinc released from mossy fiber terminals during tetanic stimulation. J Neurosci Res 2006; 83(1): 167-76. [http://dx.doi.org/10.1002/jnr.20714]

[65] Breustedt J, Vogt KE, Miller RJ, Nicoll RA, Schmitz D. Alpha1E-containing Ca2+ channels are involved in synaptic plasticity. Proc Natl Acad Sci USA 2003; 100(21): 12450-5. [http://dx.doi.org/10.1073/pnas.2035117100]

[66] Dietrich D, Kirschstein T, Kukley M, et al. Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 2003; 39(3): 483-96. [http://dx.doi.org/10.1016/S0896-6273(03)00430-6]

[67] Gambardella A, Labate A. The role of calcium channel mutations in human epilepsy. Prog Brain Res 2014; 213: 87-96. [http://dx.doi.org/10.1016/B978-0-444-63526-2.00004-1]
CaV2.3 Ca2+ Channels and Seizures

Weiergraber M, Hescheler J, Schneider T. Human calcium channelopathies. Voltage-gated Ca2+ channels in etiology, pathogenesis, and pharmacotherapy of neurologic disorders. Nervenarzt 2008; 79(4): 426-36. [http://dx.doi.org/10.1007/s00115-007-2398-6]

Lacinova L. Voltage-dependent calcium channels. Gen Physiol Biophys 2005; 24(Suppl. 1): 1-78.

Weiergraber M, Hescheler J, Schneider T. Human calcium channelopathies. Voltage-gated Ca2+ channels in etiology, pathogenesis, and pharmacotherapy of neurologic disorders. Nervenarzt 2008; 79(4): 426-36. [http://dx.doi.org/10.1007/s00115-007-2398-6]

Shakeri B, Bourdin B, Demero-Giroux PO, Sauve R, Parent L. A quartet of leucine residues in the guanylate kinase domain of CaVbeta determines the plasma membrane density of the CaV2.3 channel. J Biol Chem 2012; 287(39): 32835-47. [http://dx.doi.org/10.1074/jbc.M111.237233]

Muller CS, Haupt A, Bildl W, et al. Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc Natl Acad Sci USA 2010; 107(34): 14950-7. [http://dx.doi.org/10.1073/pnas.1005940107]

Missiaen L, Robberecht W, van den Bosch L, et al. Abnormal intracellular ca2+homeostasis and disease. Cell Calcium 2000; 28(1): 1-21. [http://dx.doi.org/10.1054/ceca.2000.0131]

Gibney GT, Zhang JH, Douglas RM, Haddad GG, Xia Y. Na+/Ca2+ exchanger expression in the developing rat cortex. Neuroscience 2002; 112(1): 65-73. [http://dx.doi.org/10.1016/S0306-4522(02)00059-3]

Kannurpatti SS, Joshi PG, Joshi NB. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel. J Neurophysiol 1997; 77(1): 491-501.

Missiaen L, Robberecht W, van den Bosch L, et al. Abnormal intracellular ca2+homeostasis and disease. Cell Calcium 2000; 28(1): 1-21. [http://dx.doi.org/10.1054/ceca.2000.0131]

DeLorenzo RJ, Pal S, Sombati S. Prolonged activation of the N-methyl-D-aspartate receptor-Ca2+ transduction pathway causes spontaneous recurrent epileptiform discharges in hippocampal neurons in culture. Proc Natl Acad Sci USA 1998; 95(24): 14482-7. [http://dx.doi.org/10.1073/pnas.95.24.14482]

Pisani A, Bonsi P, Martella G, et al. Intracellular calcium increase in epileptiform activity: modulation by levetiracetam and lamotrigine. Epilepsia 2004; 45(7): 719-28. [http://dx.doi.org/10.1111/j.0013-9580.2004.02204.x]

Becker AJ, Pitsch J, Sochivko D, et al. Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci 2008; 28(49): 13341-53. [http://dx.doi.org/10.1523/JNEUROSCI.1421-08.2008]

Tai C, Kuzmiski JB, MacVicar BA. Muscarinic enhancement of R-type calcium currents in hippocampal CA1 pyramidal neurons. J Neurosci 2005; 25(12): 6249-58. [http://dx.doi.org/10.1523/JNEUROSCI.1009-06.2006]

Kuzmiski JB, Barr W, Zamponi GW, MacVicar BA. Topiramate inhibits the initiation of plateau potentials in CA1 neurons by depressing R-type calcium channels. Epilepsia 2005; 46(4): 481-9. [http://dx.doi.org/10.1111/j.0013-9580.2005.35304.x]

Zaman T, Lee K, Park C, et al. Cav2.3 channels are critical for oscillatory burst discharges in the reticular thalamus and absence epilepsy. Neuron 2011; 70(1): 95-108. [http://dx.doi.org/10.1016/j.neuron.2011.02.042]

Besancon E, Guo S, Lok J, Tymanianski M, Lo EH. Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 2008; 29(5): 268-75. [http://dx.doi.org/10.1016/j.tips.2008.02.003]

Villmann C, Becker CM. On the hypes and falls in neuroprotection: targeting the NMDA receptor. Neuroscientist 2007; 13(6): 594-615. [http://dx.doi.org/10.1177/1073858406296259]
Wormuth et al.

Weiergraber M, Henry M, Krieger A, Weiergraber M, Kamp MA, Radhakrishnan K, Hescheler J, Schneider T. The Ca(v)2.3 voltage-gated calcium channel in epileptogenesis.

Saegusa H, Kurihara T, Zong S, Weiergraber M, Henry M, Radhakrishnan K, Hescheler J, Schneider T. Hippocampal seizure resistance and reduced neuronal excitotoxicity in Waka N, Knipper M, Engel J. Localization of the calcium channel subunits Cav1.2 (alpha1C) and Cav2.3 (alpha1E) in the mouse organ of Jing X, Li DQ, Olofsson CS, Goodison WV, Frisardi V, Kehoe PG. Calcium channel blockers and Alzheimer's disease: potential relevance in treatment strategies of Lu ZJ, Pereverzev A, Liu HL, Anekonda TS, Quinn JF. Calcium channel blocking as a therapeutic strategy for Alzheimer's disease: the case for isradipine. Biochim Biophys Acta 2011; 1812(12): 1584-90. [http://dx.doi.org/10.1016/j.bbadis.2011.08.013]

Goodison WV, Frisardi V, Kehoe PG. Calcium channel blockers and Alzheimer's disease: potential relevance in treatment strategies of metabolic syndrome. J Alzheimers Dis 2012; 30(Suppl. 2): S269-82.

Khosravani H, Zamponi GW. Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev 2006; 86(3): 941-66. [http://dx.doi.org/10.1152/physrev.00002.2006]

Kim S, Rhim H. Effects of amyloid-beta peptides on voltage-gated L-type Ca(V)1.2 and Ca(V)1.3 Ca(2+) channels. Mol Cells 2011; 32(3): 289-94. [http://dx.doi.org/10.1007/s10059-011-0075-x]

Weiergraber M, Kamp MA, Radhakrishnan K, Hescheler J, Schneider T. The Ca(v)2.3 voltage-gated calcium channel in epileptogenesis-sheddng new light on an enigmatic channel. Neurosci Biobehav Rev 2006; 30(8): 1122-44. [http://dx.doi.org/10.1016/j.neubiorev.2006.07.004]

Weiergraber M, Henry M, Radhakrishnan K, Hescheler J, Schneider T. Hippocampal seizure resistance and reduced neuronal excitotoxicity in mice lacking the Cav2.3 E/R-type voltage-gated calcium channel. J Neurophysiol 2007; 97(5): 3660-9. [http://dx.doi.org/10.1152/jn.00193.2006]

Weiergraber M, Henry M, Krieger A, et al. Altered seizure susceptibility in mice lacking the Ca(v)2.3 E-type Ca2+ channel. Epilepsia 2006; 47(5): 839-50. [http://dx.doi.org/10.1111/j.1528-1167.2006.00541.x]

Jing X, Li DQ, Olofsson CS, et al. CaV2.3 calcium channels control second-phase insulin release. J Clin Invest 2005; 115(1): 146-54. [http://dx.doi.org/10.1172/JCI200525518]

Pereverzev A, Salehi A, Mikha M, et al. The ablation of the Ca(v)2.3/E-type voltage-gated Ca2+ channel causes a mild phenotype despite an altered glucose induced glucagon response in isolated islets of Langerhans. Eur J Pharmacol 2005; 511(1): 65-72. [http://dx.doi.org/10.1016/j.ejphar.2005.01.044]

Lu ZJ, Pereverzev A, Liu HL, et al. Arrhythmia in isolated prenatal hearts after ablation of the Cav2.3 (alpha1E) subunit of voltage-gated Ca2+ channels. Cell Physiol Biochem 2004; 14(1-2): 11-22. [http://dx.doi.org/10.1159/000076922]

Weiergraber M, Henry M, Sudkamp M, de Vivie ER, Hescheler J, Schneider T. Ablation of Ca(v)2.3 / E-type voltage-gated calcium channel results in cardiac arrhythmia and altered autonomic control within the murine cardiovascular system. Basic Res Cardiol 2005; 100(1): 1-13. [http://dx.doi.org/10.1007/s00395-004-0488-1]

Galetin T, Tevoufouet EE, Sandmeyer J, et al. Pharmacoresistant Cav 2.3 (E-type/R-type) voltage-gated calcium channels influence heart rate dynamics and may contribute to cardiac impulse conduction. Cell Biochem Funct 2013; 31(5): 434-49. [http://dx.doi.org/10.1002/cbf.2918]

Wemmenuth G, Westenbroek RE, Xu T, Hille B, Babcock DF. CaV2.2 and CaV2.3 (N- and R-type) Ca2+ channels in depolarization-evoked entry of Ca2+ into mouse sperm. J Biol Chem 2000; 275(28): 21210-7. [http://dx.doi.org/10.1074/jbc.M002068200]

Sakata Y, Saegusa H, Zong S, et al. Ca(v)2.3 (alpha1E) Ca2+ channel participates in the control of sperm function. FEBS Lett 2002; 516(1-3): 229-33. [http://dx.doi.org/10.1016/S0014-5793(02)02529-2]

Carlson AE, Westenbroek RE, Quill T, et al. CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proc Natl Acad Sci USA 2003; 100(25): 14864-8. [http://dx.doi.org/10.1073/pnas.2536658100]

Cohen R, Buttte DE, Asano A, et al. Lipid modulation of calcium flux through CaV2.3 regulates acrosome exocytosis and fertilization. Dev Cell 2014; 28(3): 310-21. [http://dx.doi.org/10.1016/j.devcel.2014.01.005]

Grabsch H, Pereverzev A, Weiergraber M, et al. Immunohistochemical detection of alpha1E voltage-gated Ca(2+) channel isoforms in cerebellum, INS-1 cells, and neuroendocrine cells of the digestive system. J Histochem Cytochem 1999; 47(8): 981-94. [http://dx.doi.org/10.1172/JCI200522518]

Brennan SC, Finney BA, Lazarou M, et al. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels. PLoS One 2013; 8(11): e80294. [http://dx.doi.org/10.1371/journal.pone.0080294]

Waka N, Knipper M, Engel J. Localization of the calcium channel subunits Cav1.2 (alpha1C) and Cav2.3 (alpha1E) in the mouse organ of Corti. Histol Histopathol 2003; 18(4): 1115-23.

Saegusa H, Kurihara T, Zong S, et al. Altered pain responses in mice lacking alpha 1E subunit of the voltage-dependent Ca2+ channel. Proc Natl Acad Sci USA 2000; 97(11): 6132-7. [http://dx.doi.org/10.1073/pnas.2536658100]
[100] Lee SC, Choi S, Lee T, Kim HL, Chin H, Shin HS. Molecular basis of R-type calcium channels in central amygdala neurons of the mouse. Proc Natl Acad Sci USA 2002; 99(5): 3276-81. [http://dx.doi.org/10.1073/pnas.052697799]

[101] Chen S, Ren YQ, Bing R, Hillman DE. Alpha 1E subunit of the R-type calcium channel is associated with myelinogenesis. J Neurocytol 2000; 29(10): 719-28. [http://dx.doi.org/10.1023/A:1010986303924]

[102] Nishiyama M, Togashi K, von Schimmelmann MJ, et al. Semaphorin 3A induces CaV2.3 channel-dependent conversion of axons to dendrites. Nat Cell Biol 2011; 13(6): 676-85. [http://dx.doi.org/10.1038/ncb2255]

[103] Toriyama H, Wang L, Saegusa H, et al. Role of Ca(v) 2.3 (alpha1E) Ca2+ channel in ischemic neuronal injury. Neuroreport 2002; 13(2): 261-5. [http://dx.doi.org/10.1097/00001756-200202110-00018]

[104] Ishiguro M, Wellman TL, Honda A, Russell SR, Tranmer BI, Wellman GC. Semaphorin 3A induces CaV2.3 channel-dependent conversion of axons to dendrites. Nat Cell Biol 2011; 13(6): 676-85. [http://dx.doi.org/10.1038/ncb2255]

[105] Ide S, Nishizawa D, Fukuda K, et al. Association between genetic polymorphisms in Ca(v)2.3 (R-type) Ca2+ channels and fentanyl sensitivity in patients undergoing painful cosmetic surgery. PLoS One 2013; 8(8): e70694. [http://dx.doi.org/10.1371/journal.pone.0070694]

[106] Qian A, Song D, Li Y, et al. Role of voltage gated Ca2+ channels in rat visceral hypersensitivity change induced by 2,4,6-trinitrobenzene sulfonic acid. Mol Pain 2013; 9: 15. [http://dx.doi.org/10.1186/1744-8069-9-15]

[107] Chung G, Rhee JN, Jung SJ, Kim JS, Oh SB. Modulation of CaV2.3 calcium channel currents by eugenol. J Dent Res 2008; 87(2): 137-41. [http://dx.doi.org/10.1177/154405910808700201]

[108] Fang Z, Hwang JH, Kim JS, Jung SJ, Oh SB. R-type calcium channel isoform in rat dorsal root ganglion neurons. Korean J Physiol Pharmacol 2010; 14(1): 45-9. [http://dx.doi.org/10.4196/kjpp.2010.14.1.45]

[109] Matthews EA, Bee LA, Stephens GJ, Dickenson AH. The Cav2.3 calcium channel antagonist SNX-482 reduces dorsal horn neuronal responses in a rat model of chronic neuropathic pain. Eur J Neurosci 2007; 25(12): 3561-9. [http://dx.doi.org/10.1111/j.1460-9588.2007.05605.x]

[110] Ramachandra R, Hassan B, McGrew SG, et al. Identification of CaV channel types expressed in muscle afferent neurons. J Neurophysiol 2013; 110(7): 1535-43. [http://dx.doi.org/10.1152/jn.00069.2013]

[111] Day NC, Shaw PJ, McCormack AL, et al. Distribution of alpha 1A, alpha 1B and alpha 1E voltage-dependent calcium channel subunits in the human hippocampus and parahippocampal gyrus. Neuroscience 1996; 71(4): 1013-24. [http://dx.doi.org/10.1016/0306-4522(95)00514-5]

[112] Wu LG, Westenbroek RE, Borst JG, Catterall WA, Sakmann B. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 1999; 19(2): 7226-35. [http://dx.doi.org/10.1002/0022-3077(1999)19:2<7226::AID-JNEUROSCI9>3.0.CO;2-E]

[113] Westenbroek RE, Hell JW, Warner C, Dubel SJ, Smutch TP, Catterall WA. Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. J Comp Neurol 2002; 442(2): 89-98. [http://dx.doi.org/10.1002/cne.10075]

[114] Tank DW, Sugimori M, Connor JA, Llinas RR. Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 1988; 242(4879): 773-7. [http://dx.doi.org/10.1126/science.2847315]

[115] Newcomb R, Szoke B, Palma A, et al. Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry 1998; 37(44): 15353-62. [http://dx.doi.org/10.1021/bi981255g]

[116] Kimm T, Bean BP. Inhibition of A-type potassium current by the peptide toxin SNX-482. J Neurosci 2014; 34(28): 9182-9. [http://dx.doi.org/10.1523/JNEUROSCI.0339-14.2014]
Wormuth et al. [130] Kang HW, Park JY, Jeong SW, et al. A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels. J Biol Chem 2006; 281(8): 4823-30. [http://dx.doi.org/10.1074/jbc.M510197200]

[131] Shcheglovitov A, Vitko I, Lazarenko RM, Orestes P, Todorovic SM, Perez-Reyes E. Molecular and biophysical basis of glutamate and trace metal modulation of voltage-gated Ca(v)2.3 calcium channels. J Gen Physiol 2006; 139(3): 219-34. [http://dx.doi.org/10.1085/jgp.20110699]

[132] Vlachova V, Zemkova H, Vyklicky L Jr. Copper modulation of NMDA responses in mouse and rat cultured hippocampal neurons. Eur J Neurosci 1996; 8(11): 2257-64. [http://dx.doi.org/10.1111/j.1460-9568.1996.tb01189.x]

[133] Jeong SW, Park BG, Park JY, Lee JW, Lee JH. Divalent metals differentially block cloned T-type calcium channels. Neuroreport 2003; 14(11): 1537-40. [http://dx.doi.org/10.1097/00001756-200308060-00028]

[134] Stea A, Soong TW, Snutch TP. Determinants of PKC-dependent modulation of a family of neuronal calcium channels. Neuron 1995; 15(4): 929-40. [http://dx.doi.org/10.1016/0896-6273(95)90183-3]

[135] Dawison AP, Cornerford JG, Fulton DV. The effect of GTP on inositol 1,4,5-trisphosphate-stimulated Ca2+ efflux from a rat liver microsomal fraction. Is a GTP-dependent protein phosphorylation involved? Biochem J 1986; 234(2): 311-5. [http://dx.doi.org/10.1042/bj2340311]

[136] Kay AR. Detecting and minimizing zinc contamination in physiological solutions. BMC Physiol 2004; 4: 4. [http://dx.doi.org/10.1186/1472-6793-4-4]

[137] Cens T, Rousset M, Charet P. Two sets of amino acids of the domain I of Cav2.3 Ca(2+) channels contribute to their high sensitivity to extracellular protons. Pflugers Arch 2011; 462(2): 303-14. [http://dx.doi.org/10.1007/s00424-011-0974-x]

[138] Pereverzev A, Mikhna M, Vajna R, et al. Disturbances in glucose-tolerance, insulin-release, and stress-induced hyperglycemia upon disruption of the Ca(v)2.3 (alpha 1E) subunit of voltage-gated Ca(2+) channels. Mol Endocrinol 2002; 16(4): 884-95.

[139] Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain 2006; 129(Pt 1): 18-35. [http://dx.doi.org/10.1093/brain/awh682]

[140] Leroy J, Pereverzev A, Vajna R, et al. Ca2+-sensitive regulation of E-type Ca2+ channel activity depends on an arginine-rich region in the cytosolic II-III loop. Eur J Neurosci 2003; 18(4): 841-55. [http://dx.doi.org/10.1046/j.1460-9568.2003.02819.x]

[141] Klockner U, Pereverzev A, Leroy J, et al. The cytosolic II-III loop of Cav2.3 provides an essential determinant for the phorbol ester-mediated stimulation of E-type Ca2+ channel activity. Eur J Neurosci 2004; 19(10): 2659-68. [http://dx.doi.org/10.1111/j.0953-816X.2004.03375.x]

[142] De Waard DE, Kamp O, Visser FC, Visser CA. Angiotensin-converting enzyme inhibitors following a myocardial infarct: clinical and echographic indications. Ned Tijdschr Geneeskd 1997; 141(2): 84-8.

[143] Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP. Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature 1997; 385(6615): 442-6. [http://dx.doi.org/10.1038/385442a0]

[144] Dolphine AC. G protein modulation of voltage-gated calcium channels. Pharmacol Rev 2003; 55(4): 607-27. [http://dx.doi.org/10.1124/pr.55.4.3]

[145] De Waard M, Campbell KP. Subunit regulation of the neuronal alpha 1A Ca2+ channel expressed in Xenopus oocytes. J Physiol 1995; 485(Pt 3): 619-34. [http://dx.doi.org/10.1113/jphysiol.1995.sp020757]

[146] Sandoz G, Lopez-Gonzalez I, Grunwald D, et al. Cavbeta-subunit displacement is a key step to induce the reluctant state of P/Q calcium channels by direct G protein regulation. Proc Natl Acad Sci USA 2004; 101(16): 6267-72.
CaV2.3 Ca2+ Channels and Seizures

The Open Neurology Journal, 2016, Volume 10

121

[http://dx.doi.org/10.1073/pnas.0306804101]

[151] Wolfe JT, Wang H, Howard J, Garrison JC, Barrett PQ. T-type calcium channel regulation by specific G-protein betagamma subunits. Nature 2003; 424(6945): 209-13. [http://dx.doi.org/10.1038/nature01772]

[152] Doering CJ, Kisilevsky AE, Feng ZP, et al. A single Gbeta subunit locus controls cross-talk between protein kinase C and G protein regulation of N-type calcium channels. J Biol Chem 2004; 279(28): 29709-17. [http://dx.doi.org/10.1074/jbc.M308693200]

[153] Brenowitz SD, Regehr WG. Calcium dependence of retrograde inhibition by endocannabinoids at synapses onto Purkinje cells. J Neurosci 2003; 23(15): 6373-84.

[154] Brenowitz SD, Regehr WG. “Resistant” channels reluctantly reveal their roles. Neuron 2003; 39(3): 391-4. [http://dx.doi.org/10.1016/S0896-6273(03)00470-7]

[155] Melliti K, Meza U, Adams B. Muscarinic stimulation of alpha1E Ca channels is selectively blocked by the effector antagonist function of RGS2 and phospholipase C-beta1. J Neurosci 2000; 20(19): 7167-73.

[156] Meza U, Adams B. G-Protein-dependent facilitation of neuronal alpha1A, alpha1B, and alpha1E Ca channels. J Neurosci 1998; 18(14): 5240-52.

[157] Meza U, Bannister R, Melliti K, Adams B. Biphasic, opposing modulation of cloned neuronal alpha1E Ca channels by distinct signaling pathways coupled to M2 muscarinic acetylcholine receptors. J Neurosci 1999; 19(16): 6806-17.

[158] Bannister RA, Melliti K, Adams BA. Differential modulation of CaV2.3 Ca2+ channels by Galphaq/11-coupled muscarinic receptors. Mol Pharmacol 2004; 65(2): 381-8. [http://dx.doi.org/10.1124/mol.65.2.381]

[159] Rousset M, Cens T, Menard C, et al. Regulation of neuronal high-voltage activated Ca2+ channels by the small GTPase RhoA. Neuropharmacology 2015; 97: 201-9. [http://dx.doi.org/10.1016/j.neuropharm.2015.05.019]

[160] Andrew RD, Dudek FE. Burst discharge in mammalian neuroendocrine cells involves an intrinsic regenerative mechanism. Science 1983; 221(4615): 1050-2. [http://dx.doi.org/10.1126/science.6879204]

[161] Andrew RD. Isoperiodic bursting by magnocellular neuroendocrine cells in the rat hypothalamic slice. J Physiol 1987; 384: 467-77. [http://dx.doi.org/10.1113/jphysiol.1987.sp016464]

[162] Andrew RD. Endogenous bursting by rat supraoptic neuroendocrine cells is calcium dependent. J Physiol 1987; 384: 451-65. [http://dx.doi.org/10.1113/jphysiol.1987.sp016463]

[163] Andrew RD, Dudek FE. Intrinsic inhibition in magnocellular neuroendocrine cells of rat hypothalamus. J Physiol 1984; 353: 171-85. [http://dx.doi.org/10.1113/jphysiol.1984.sp015330]

[164] Andrew RD, Dudek FE. Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. J Neurophysiol 1984; 51(3): 552-66.

[165] Roper P, Callaway J, Shevchenko T, Teruyama R, Armstrong W. AHP's, HAP's and DAP's: how potassium currents regulate the excitability of rat supraoptic neurons. J Comput Neurosci 2003; 15(3): 367-89. [http://dx.doi.org/10.1023/A:102724128972]

[166] Hlubek MD, Cobbett P. Differential effects of K(+) channel blockers on frequency-dependent action potential broadening in supraoptic neurons. Brain Res Bull 2000; 53(2): 203-9. [http://dx.doi.org/10.1016/S0361-9230(00)00335-X]

[167] Pierson PM, Liu X, Raggenbass M. Suppression of potassium channels elicits calcium-dependent plateau potentials in suprachiasmatic neurons of the rat. Brain Res 2005; 1036(1-2): 50-9. [http://dx.doi.org/10.1016/j.brainres.2004.12.020]

[168] Simon M, Perrier JF, Hounsgaard J. Subcellular distribution of L-type Ca2+ channels responsible for plateau potentials in motoneurons from the lumbar spinal cord of the turtle. Eur J Neurosci 2003; 18(2): 258-66. [http://dx.doi.org/10.1046/j.1460-9568.2003.02783.x]

[169] Li Y, Bennett DJ. Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats. J Neurophysiol 2003; 90(2): 857-69. [http://dx.doi.org/10.1152/jn.00236.2003]

[170] Hounsgaard J, Kiehn O. Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. J Physiol 1989; 414: 265-82. [http://dx.doi.org/10.1113/jphysiol.1989.sp017687]

[171] Mills JD, Pitman RM. Electrical properties of a cockroach motor neuron soma depend on different characteristics of individual Ca components. J Neurophysiol 1997; 78(5): 2455-66.

[172] Voisin DL, Nagy F. Sustained L-type calcium currents in dissociated deep dorsal horn neurons of the rat: characteristics and modulation. Neuroscience 2001; 102(2): 461-72.
[http://dx.doi.org/10.1016/S0306-4522(00)00468-1]

[173] Morisset V, Nagy F. Ionic basis for plateau potentials in deep dorsal horn neurons of the rat spinal cord. J Neurosci 1999; 19(17): 7309-16.

[174] Fanelli RJ, McCarthy RT, Chisholm J. Neuropharmacology of nimodipine: from single channels to behavior. Ann N Y Acad Sci 1994; 747: 336-50.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb44421.x]

[175] McCarthy RT. TanPiengco PE. Multiple types of high-threshold calcium channels in rabbit sensory neurons: high-affinity block of neuronal L-type by nimodipine. J Neurosci 1992; 12(6): 2225-34.

[176] Vergara R, Rick C, Hernandez-Lopez S, et al. Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice. J Physiol 2003; 553(Pt 1): 169-82.
[http://dx.doi.org/10.1113/jphysiol.2003.050799]

[177] Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E. D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 1997; 17(9): 3334-42.

[178] Hernandez-Lopez S, Tkatch T, Perez-Garcı́ E, et al. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 2000; 20(24): 8987-95.

[179] Soong TW, Stea A, Hodson CD, Dubel SJ, Vincent SR, Snutch TP. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 1993; 260(5111): 1133-6.
[http://dx.doi.org/10.1126/science.8388125]

[180] Stephens GJ, Page KM, Burley JR, Berrow NS, Dolphin AC. Functional expression of rat brain cloned alpha1E calcium channels in COS-7 cells. Pflugers Arch 1997; 433(4): 523-32.
[http://dx.doi.org/10.1007/s004240050308]

[181] Williams ME, Marubio LM, Deal CR, et al. Structure and functional characterization of neuronal alpha 1E calcium channel subtypes. J Biol Chem 1994; 269(35): 22347-57.

[182] Wakamori M, Niidome T, Furutama D, et al. Distinctive functional properties of the neuronal BII (class E) calcium channel. Receptors Channels 1994; 2(4): 303-14.

[183] Cloues RK, Sather WA. Afterhyperpolarization regulates firing rate in neurons of the suprachiasmatic nucleus. J Neurosci 2003; 23(5): 1593-604.

[184] Metz AE, Jarsky T, Martina M, Spruston N. R-type calcium channels contribute to afterdepolarization and bursting in hippocampal CA1 pyramidal neurons. J Neurosci 2005; 25(24): 5763-73.
[http://dx.doi.org/10.1523/JNEUROSCI.0624-05.2005]

[185] Fraser DD, MacVicar BA. Cholinergic-dependent plateau potential in hippocampal CA1 pyramidal neurons. J Neurosci 1996; 16(13): 4113-28.

[186] Fraser DD, Doll D, MacVicar BA. Serine/threonine protein phosphatases and synaptic inhibition regulate the expression of cholinergic-dependent plateau potentials. J Neurophysiol 2001; 85(3): 1197-205.

[187] Wasterlain CG, Baxter CF, Baldwin RA. GABA metabolism in the substantia nigra, cortex, and hippocampus during status epilepticus. Neurochem Res 1993; 18(4): 527-32.
[http://dx.doi.org/10.1007/BF00967257]

[188] Wasterlain CG, Fujikawa DG, Penix L, Sankar R. Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 1993; 34(Suppl. 1): S37-53.
[http://dx.doi.org/10.1111/j.1528-1157.1993.tb05905.x]

[189] Lothman EW. Functional anatomy: a challenge for the decade of the brain. Epilepsia 1991; 32(Suppl. 5): S3-13.

[190] Lothman EW, Bertram EH III, Stringer JL. Functional anatomy of hippocampal seizures. Prog Neurobiol 1991; 37(1): 1-82.
[http://dx.doi.org/10.1016/0301-0082(91)90011-0]

[191] Kuzmiski JB, MacVicar BA. Cyclic nucleotide-gated channels contribute to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. J Neurosci 2001; 21(22): 8707-14.

[192] Yasuda R, Sabatini BL, Svoboda K. Plasticity of calcium channels in dendritic spines. Nat Neurosci 2003; 6(9): 948-55.
[http://dx.doi.org/10.1038/nn1112]

[193] Qian J, Noebels JL. Presynaptic Ca2+ channels and neurotransmitter release at the terminal of a mouse cortical neuron. J Neurosci 2001; 21(11): 3721-8.

[194] Qian J, Noebels JL. Topiramate alters excitatory synaptic transmission in mouse hippocampus. Epilepsy Res 2003; 55(3): 225-33.
[http://dx.doi.org/10.1016/S0920-1211(03)00120-7]

[195] Toselli M, Lang J, Costa T, Lux HD. Direct modulation of voltage-dependent calcium channels by muscarinic activation of a pertussis toxin-sensitive G-protein in hippocampal neurons. Pflugers Arch 1989; 415(3): 255-61.
[http://dx.doi.org/10.1007/BF00370874]

[196] Gahwiler BH, Brown DA. Muscarine affects calcium-currents in rat hippocampal pyramidal cells in vitro. Neurosci Lett 1987; 76(3): 301-6.
[http://dx.doi.org/10.1016/0304-3940(87)90419-8]
Ca²⁺ Channels and Seizures

Gahwiler BH, Brown DA. Effects of dihydropyridines on calcium currents in CA3 pyramidal cells in slice cultures of rat hippocampus. Neuroscience 1987; 20(3): 731-8.

Westenbroek RE, Ahlijanian MK, Catterall WA. Clustering of L-type Ca²⁺ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 1990; 347(6290): 281-4.

Magee JC, Johnston D. Characterization of single voltage-gated Na⁺ and Ca²⁺ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 1995; 487(Pt 1): 67-90.

Magee JC, Johnston D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 1995; 268(5208): 301-4.

Westenbroek RE, Ahlijanian MK, Catterall WA. Clustering of L-type Ca²⁺ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 1990; 347(6290): 281-4.

Magee JC, Johnston D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 1995; 268(5208): 301-4.

Curia G, Aracri P, Sancini G, Mantegazza M, Avanzini G, Franceschetti S. Protein-kinase C-dependent phosphorylation inhibits the effect of the antiepileptic drug topiramate on the persistent fraction of sodium currents. Neuroscience 2004; 127(1): 63-8.

Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci 1995; 15(5 Pt 2): 4077-92.

Levey MS, Brumwell CL, Dryer SE, Jacob MH. Innervation and target tissue interactions differentially regulate acetylcholine receptor subunit mRNA levels in developing neurons in situ. Neuron 1995; 14(1): 153-62.

Hamilton SE, Loose MD, Qi M, et al. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA 1997; 94(24): 13311-6.

McKeown L, Robinson P, Jones OT. Molecular basis of inherited calcium channelopathies: role of mutations in pore-forming subunits. Acta Pharmacol Sin 2006; 27(7): 799-812.

Kim D, Song I, Keum S, et al. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 2001; 31(1): 35-45.

Lee J, Kim D, Shin HS. Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking alpha1G-subunit of T-type calcium channels. Proc Natl Acad Sci USA 2004; 101(52): 18195-9.

Steriade M. Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci 2005; 28(6): 317-24.
Schulz R, Kirschstein T, Brehme H, Porath K, Mikkat U, Kohling R. Network excitability in a model of chronic temporal lobe epilepsy critically depends on SK channel-mediated AHP currents. Neurobiol Dis 2012; 45(1): 337-47.

Joksovic PM, Weiergraber M, Lee W, Struck H, Schneider T, Todorovic SM. Isoflurane-sensitive presynaptic R-type calcium channels contribute to inhibitory synaptic transmission in the rat thalamus. J Neurosci 2009; 29(5): 1434-45.

Siwek ME, Muller R, Henseler C, Broich K, Papazoglou A, Weiergraber M. The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture. Sleep 2014; 37(5): 881-92.

Merica H, Fortune RD. The neuronal transition probability (NTP) model for the dynamic progression of non-REM sleep EEG: the role of the suprachiasmatic nucleus. PLoS One 2011; 6(8): e23593.

Wurts SW, Edgar DM. Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus. J Neurosci 2000; 20(11): 4300-10.

Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 2002; 3(8): 591-605.

Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci 2004; 5(7): 553-64.

Fumisuke M. Lamotrigine. Epilepsia 1999; 40(Suppl. 5): S30-6.

Wang SJ, Huang CC, Hsu KS, Tsai JJ, Gean PW. Inhibition of N-type calcium currents by lamotrigine in rat amygdalar neurones. Neuroreport 1996; 7(18): 3037-40.

Caputi L, Hainsworth AH, Lavaroni F, et al. Neuroprotective actions in vivo and electrophysiological actions in vitro of 202W92. Brain Res 2001; 919(2): 259-68.

Hainsworth JD. Rituximab as first-line systemic therapy for patients with low-grade lymphoma. Semin Oncol 2000; 27(6)(Suppl. 12): 25-9.

Reddy NL, Fan W, Magar SS, et al. Synthesis and pharmacological evaluation of N,N’-diarylguanidines as potent sodium channel blockers and anticonvulsant agents. J Med Chem 1998; 41(17): 3298-302.

McNaughton NC, Davies CH, Randall A. Inhibition of alpha(1E) Ca(2+) channels by carboxic anhydrase inhibitors. J Pharmacol Sci 2004; 95(2): 240-7.

Sun MK, Alkon DL. Carbonic anhydrase gating of attention: memory therapy and enhancement. Trends Pharmacol Sci 2002; 23(2): 83-9.

Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev 2003; 23(2): 146-89.

Zhang X, Velumian AA, Jones OT, Carlen PL. Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate. Epilepsia 2000; 41(Suppl. 1): S52-60.

DeLorenzo RJ, Sombati S, Coulter DA. Effects of topiramate on sustained repetitive firing and spontaneous recurrent seizure discharges in cultured hippocampal neurons. Epilepsia 2000; 41(Suppl. 1): S40-4.
Siwek ME, Muller R, Henseler C, et al. Altered theta oscillations and aberrant cortical excitatory activity in the 5XFAD model of Alzheimer's disease. Neural Plast 2015;2015:781731.