NONSMOOTH CRITICAL POINT THEOREMS
WITHOUT COMPACTNESS

YOUSSEF JABRI

Abstract. We establish an abstract critical point theorem for locally Lipschitz functionals that does not require any compactness condition of Palais-Smale type. It generalizes and unifies three other critical point theorems established in [10] for C^1-functionals under slightly stronger assumptions. Our approach uses continuous selections of multivalued mappings.

Mathematical Subject Classification: 58E05, 54C60, 49J35

Keywords. Critical point theorem, lack of compactness, quasi-concavity, multivalued mapping, continuous selections, Dolph’s method, locally Lipschitz functionals, Clarke subdifferential.

Abstract critical point theorems from the linking family like the mountain pass theorem of Ambrosetti-Rabinowitz and saddle point theorem of Rabinowitz, (cf. for example [16, 12, 17]) are important tools in nonlinear analysis. They require generally a compactness condition known as Palais-Smale condition, (PS) for short. In applications to nonlinear boundary value problems, verifying if (PS) holds or not is crucial and turns out often to be technical and/or too long.

In [10], the author and Moussaoui proved a critical point theorem (and some variants) with similar conditions to Rabinowitz saddle point theorem without requiring the Palais-Smale condition. They supposed instead a convexity assumption on Φ on a part of the underlying space.

In this paper, we are concerned with a twofold extension of the results of [10]. We will show that they follow easily from a more abstract critical point theorem valid for locally Lipschitz functionals with “less convexity” on Φ. The proof also is easier. A novelty in our approach is that we exploit the notion of continuous selections of multivalued mappings.

The following result is a reliable prototype of our critical point theorem without compactness.

Theorem 1. Let E be a reflexive Banach space such that $E = V \oplus W$ where $\dim V < +\infty$ and $\Phi: E \to \mathbb{R}$ a C^1-functional that satisfies:
The origins of the minimax procedure that appears in Theorem 1 go back to 1949.

1. THE ORIGINS OF THE METHOD

The origins of the minimax procedure that appears in Theorem 1 go back to 1949.
Let Ω be a smooth bounded domain of \mathbb{R}, $f : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ a Carathéodory function. Consider the nonlinear Dirichlet problem

$$\begin{cases}
-\Delta u = f(x, u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.
\end{cases}$$

and denote the potential associated to f by

$$F(x, t) = \int_0^t f(x, s) \, ds.$$

Dolph [8] solved the problem (P) when

$$\lambda_k < \mu_k \leq \liminf_{s \to \pm \infty} \frac{f(x, s)}{s} \leq \limsup_{s \to \pm \infty} \frac{f(x, s)}{s} \leq \mu_{k+1} < \lambda_{k+1}$$

where λ_k and λ_{k+1} are two consecutive eigenvalues of $-\Delta$ in $H_0^1(\Omega)$ (nonresonance between two consecutive eigenvalues of the Laplacian).

A similar condition in terms of the potential F may be expressed as

$$\lambda_k < \mu_k \leq \liminf_{s \to \pm \infty} \frac{2F(x, s)}{s^2} \leq \limsup_{s \to \pm \infty} \frac{2F(x, s)}{s^2} \leq \mu_{k+1} < \lambda_{k+1}$$

In general, variational methods fail to handle the problem (P) when only conditions on the potential, like (1.2), are required (cf. the discussion of [7] for example). This makes it impossible to verify the Palais-Smale condition required in linking theorems.

The first variational attempt to solve (P) under condition (1.2), without requiring any assumption on f, is also due to Dolph. He required the following additional condition

$$\lambda_k < \mu_k \leq \liminf_{s \to \pm \infty} \frac{\Phi(u)}{s^2} \leq \limsup_{s \to \pm \infty} \frac{\Phi(u)}{s^2} \leq \mu_{k+1} < \lambda_{k+1}$$

The spaces $V = \bigoplus_{i \leq k} E(\lambda_i)$ and $W = V^\perp = \bigoplus_{i \geq k+1} E(\lambda_i)$ where $E(\lambda_i)$ is the eigenspace associated to the eigenvalue λ_i of the Laplace operator with Dirichlet boundary data.

Later, Thews [18] treated (P) under condition (1.2) allowing $\mu_k = \lambda_k$ and $\mu_{k+1} = \lambda_{k+1}$ but supposed more restrictive conditions than (DO).

Theorem 1 may be seen as a continuation of the attempt of the author and Moussaoui in [10] to provide an abstract framework to Dolph’s method. In [10], this approach was applied to get a variant of a result proved earlier by Mawhin and Willem in [11] by combining the least dual action of Clarke-Ekeland [6] and an approximation method of Brézis [4].
2. SOME ELEMENTS OF NONSMOOTH CRITICAL POINT THEORY AND MULTIVALUED ANALYSIS

Let $\Phi: X \to \mathbb{R}$ be a locally Lipschitz functional. For each $x, v \in X$, the generalized directional derivative of Φ at x in the direction v is

$$\Phi^o(x; v) = \limsup_{y \to x, t \downarrow 0} \frac{\Phi(y + tv) - \Phi(y)}{t}.$$

It follows by the definition of locally Lipschitz functionals that $\Phi^o(x; v)$ is finite and $|\Phi^o(x; v)| \leq C||v||$.

Moreover, $v \mapsto \Phi^o(x; v)$ is positively homogenous and subadditive and $(x, v) \mapsto \Phi^o(x; v)$ is u.s.c.

The generalized gradient (Clarke subdifferential) of Φ at x is the subset $\partial \Phi(x)$ of X^* defined by

$$\partial \Phi(x) = \left\{ x^* \in X^* ; \Phi^o(x; v) \geq \langle x^*, v \rangle, \text{ for all } v \in X \right\}.$$

It enjoys the following properties:

a) For each $x \in X$, $\partial \Phi(x)$ is non-empty, convex weak-* compact subset of X^*.

b) For each $x, v \in X$, we have

$$\Phi^o(x; v) = \max\{\langle x^*, v \rangle ; x^* \in \partial \Phi(x)\}$$

c) $\partial(\Phi + \Psi)(x) \subset \partial \Phi + \partial \Psi$, where Φ and Ψ are locally Lipschitz at x.

Theorem 2 (Lebourg mean value theorem). If x and y are two distinct points in X, then there exists $z = x + \tau(y - x), 0 < \tau < 1$ such that

$$\Phi(y) - \Phi(x) \in \langle \partial \Phi(z), y - x \rangle.$$

The notion of critical point of a locally Lipschitz functional is the following.

Definition 1. Let $\Phi: X \to \mathbb{R}$ be locally Lipschitz. A point $x \in X$ is a critical point of Φ if $0 \in \partial \Phi(x)$. A real number c is called a critical value of Φ if $\Phi^{-1}(c)$ contains a critical point x.

We recall now some results on multivalued mappings. Let M and N be two topological spaces.

Definition 2. A multivalued mapping $T: M \to 2^N$ is a map which assigns to each point $m \in M$ a subset $T(x)$ in N.

A multivalued mapping $T: M \to 2^N$ is upper semi-continuous if and only if $T^{-1}(A)$ is closed for all closed subsets A of N, where the preimage $T^{-1}(A)$ is defined by

$$T^{-1}(A) = \left\{ m \in M ; T(m) \cap A \neq \emptyset \right\}.$$
The multivalued mapping \(T \) is lower semi-continuous if and only if \(T^{-1}(A) \) is open for all open subsets \(A \) of \(N \).

And \(T \) is continuous if and only if it is both lower and upper semi-continuous.

Remark 1. Notice that when \(T \) is single-valued, the lower semi-continuity (resp. upper semi-continuity) of \(T \) as multivalued coincides with continuity.

Let \(T: M \to 2^N \) be a multivalued mapping. By a selection of \(T \), we mean a single-valued mapping \(s: M \to N \) with

\[s(m) \in T(m), \quad \text{for all } m \in M. \]

Theorem 3 (Michael’s selection theorem). A lower semi-continuous multivalued mapping \(T: M \to 2^N \) has a continuous selection \(s: M \to N \) if the following three conditions are satisfied:

(i) \(M \) is paracompact,
(ii) \(N \) is a Banach space,
(iii) The set \(T(m) \) is nonempty, closed and convex for all \(m \in M \).

Theorem 4 (Minimal selection theorem). Let \(T: M \to 2^N \) be a continuous multivalued mapping, where \(M \) is a metric space and \(N \) is a Hilbert space. Suppose that \(T(m) \) is nonempty, closed and convex for all \(m \in M \). Denote by \(m(T(m)) \) the unique element of the set \(T(m) \) with smallest norm.

Then \(m: M \to N \) is a continuous selection.

3. Continuous Selections of Multivalued Mappings

We give now our main abstract critical point theorem that contains all the subsequent results as special cases.

Theorem 5. Let \(E \) be a Banach space such that \(E = V \oplus W \) and \(\Phi: E \to \mathbb{R} \) a locally Lipschitz functional. Suppose the following assumptions.

(a) \(\forall w \in W, \) the set

\[V(w) = \{ v \in V; \varphi(w) = \Phi(v + w) = \max_{g \in V} \Phi(g + w) \} \neq \emptyset. \]

(b) The functional \(\varphi: W \to \mathbb{R} \) is bounded below and achieves its minimum at some point \(\overline{w} \).

(c) There exists a continuous selection \(s: W \to V \) such that \(s(w) \in V(w) \) for all \(w \in W \).
Then, $\overline{u} = s(\overline{w}) + \overline{w}$ is a critical point such that

$$\Phi(\overline{u}) = \min_{w \in W} \max_{v \in V} \Phi(v + w).$$

Proof. Take $g \in V$, then

$$\Phi(\overline{u} + t(-g)) - \Phi(\overline{u}) \leq 0, \quad \forall t > 0.$$
Divide by t and let t go to infinity to obtain

$$\Phi^o(\overline{u}; -g) = -\Phi^o(\overline{u}; -g) \leq 0.$$
This is true for all g in the linear space V, so

$$\Phi^o(\overline{u}; g) = 0, \quad \text{for all } g \in V.$$

On the other side, we know by Lebourg mean value theorem, that

$$\Phi(\overline{u} + sk) - \Phi(\overline{u}) = \langle \xi, sk \rangle = s \langle \xi, k \rangle \leq s \Phi^o(z; k)$$

where $\xi \in \partial \Phi(z)$ for some $z = \overline{u} + \tau w$, $0 < \tau < 1$ and $k \in X$.

So, for $h \in W$, if we write $w_t = \overline{w} + th$, $0 < t \leq 1$ and $v_t = s(w_t)$.

Consider a sequence $t_n \downarrow 0$ and denote by $\overline{v} = s(\overline{w}) = \lim_{n \to \infty} s(w_{t_n})$.

Since $\Phi(\overline{w} + \overline{v}) \geq \Phi(\overline{w} + s(w_{t_n}))$ because $\overline{v} \in V(\overline{w})$, we have

$$\frac{\Phi(\overline{w} + t_n h + v_{t_n}) - \Phi(\overline{w} + v_{t_n})}{t_n} \geq \frac{\Phi(\overline{w} + t_n h + v_{t_n}) - \Phi(\overline{w} + \overline{v})}{t_n} \geq 0.$$
So,

$$\Phi^o(z_n, h) \geq 0, \quad \text{where } z_n \in \overline{w} + v_{t_n}, \overline{w} + v_{t_n} + t_n h[.$$
At the limit we get by the u.s.c. of $\Phi^o(., .)$,

$$\Phi^o(\overline{u}, h) \geq \limsup_{n \to \infty} \Phi^o(z_n, h) \geq 0.$$
And there too, we get

$$\Phi^o(\overline{u}; h) = 0, \quad \text{for all } h \in W.$$
So, we have finally that

$$0 \in \partial \Phi(\overline{u}).$$

Using this result and Michael’s selection theorem, we obtain the following immediate consequence.

Corollary 6. Suppose that E is as in the former theorem and that Φ is locally Lipschitz on X and satisfies (a) and (b).

Suppose also that the multivalued mapping, $T: X \to 2^V$, $w \mapsto V(w)$ is lower semi-continuous and $T(w)$ is convex for all $w \in W$. Then, the conclusion of Theorem 5 holds true.
Corollary 7. Suppose that E and Φ are as above and satisfy (i), (ii$''$), (iii) and (iv).

Then, the conclusion of Theorem 5 holds true.

This result has been proved in a direct way in [11, page 372].

Proof. To see that it is a consequence of Theorem 5, it suffices to show that the single valued $w \mapsto s(w)$ where $s(w)$ is the unique element in V (by strict quasi-concavity) that achieves that maximum of $v \mapsto \Phi(v+w)$ in V is continuous. Consider a sequence $w_n \to \mathfrak{w} \in W$. There exists $A > 0$, such that $||v|| \geq A$ implies (by (iv)) that

$$\Phi(v + \mathfrak{w}) \leq \Phi(v + \mathfrak{w}) < \inf \Phi \leq \Phi(w_t).$$

So, $||s(w_t)|| \leq A$. Because otherwise we get the following contradiction with the definition $v_\varepsilon(w_t)$:

$$\Phi(\varphi_\varepsilon(w_t) + w_t) < \Phi(w_t).$$

Hence, there is a sequence $t_n \to 0$ such that $\varphi_\varepsilon(w_{t_n}) \to v_0 \in V$.

While by definition of $s(w_n)$, we have

$$\Phi(s(w_n) + w_n) \geq \Phi(v + w_n), \forall v \in V.$$

At the limit, we get

$$\Phi(v_0 + w_0) \geq \Phi(v + w_0), \forall v \in V,$$

that is, $v_0 = s(w_0)$.

Corollary 8. Suppose that E is a Hilbert space and Φ satisfies (i), (ii$''$), (iii) and (iv).

Then, the conclusion of Theorem 5 holds true.

Proof. Consider the single valued mapping $w \in W \mapsto s(w) = \max_{V(w)}(\Phi(v+w) - ||v||)$. It is well defined because, the sets $V(w)$ are convex (by (ii$'$) and closed (they are even compact by (iii) and dim $V < +\infty$). And $s(w)$ is indeed the minimal selection because in $V(w)$, $\Phi(v+w)$ is constant and the element with smallest norm of the closed convex set $V(w)$ in the Hilbert E, is unique. Moreover it realizes the maximum of $v \in V(w) \mapsto \Phi(v+w) - ||v||$.

Let us show that s is continuous in W. Consider $w_n \to \overline{w}$. Then, $s(w_n)$ is bounded. Otherwise, there would be $N > 0$ such that for all $n \geq N$,

$$\Phi(s(w_n) + w_n) - ||s(w_n)|| < \inf_{w} \Phi \leq \Phi(0 + w_n) - ||0|| = \Phi(w_n).$$

A contradiction since $s(w_n)$ achieves the maximum of Φ on $w_n + V$. So, $s(w_n) \to \overline{v}$.

First $\overline{v} \in V(\overline{w})$, indeed

$$\Phi(\overline{v} + \overline{w}) = \lim_n \Phi(w_n + s(w_n)) \\
\geq \lim_n \Phi(w_n + v), \quad \forall v \in V \\
\geq \Phi(\overline{w} + v), \quad \forall v \in V.$$

On the other hand, we have by definition $s(w_n)$,

$$\Phi(s(w_n) + w_n) - ||s(w_n)|| \geq \Phi(v + w_n) - ||v||, \quad \forall v \in V.$$

And at the limit, we get

$$\Phi(v_0 + v_0) - ||v_0|| \geq \Phi(v + v_0), \quad \forall v \in V,$$

and $v_0 = s(w_0)$.

Finally, we come to the proof of Theorem 1 which is in fact also a simple corollary of Theorem 5.

Proof of Theorem 1. The proof of the former corollary applies verbatim except for the justification of the definiteness of “the single valued” mapping s. In the proof of the former corollary (Hilbertian case), we used the fact that $V(w)$ is convex and closed. So, a unique element of minimal norm exists. In our new situation, this follows from the strict quasi-convexity of $v \mapsto \Phi(v + w) - ||v||$ (by (ii) and the strict convexity of the norm in a reflexive Banach space [2]) and from the compactness of $V(w)$ for each $w \in W$.

We can remove the assumption that $\dim V < +\infty$ by requiring that Φ is weakly upper semi-continuous. This improves Theorem 11 in [10] and shows that it is also a particular case of Theorem 5.

Theorem 9. In a Banach reflexive space $X = V \oplus W$ such that (i), (ii), (iii) are satisfied. Suppose moreover that Φ is weakly upper semi-continuous. Then, the conclusion of Theorem 5 holds true.

Proof of Theorem 9. The reflexive character of V with the anti-coerciveness of $v \mapsto \Phi(v + w)$ suffice to guarantee that $V(w)$ is nonempty and bounded. Since it is also closed and convex (by (ii)) it is weakly compact. So, the strict quasi-concave weakly upper semi-continuous functional $v \mapsto \Phi(v + w) - ||v||$ achieves its maximum in a unique point $s(w)$.
Claim 1. The selection \(w \in W \mapsto s(w) \in V(w) \) is continuous.

Consider a sequence \((w_n) \subset W\) such that \(w_n \rightarrow \varpi \). Then, the sequence \(v_n = s(w_n) \) is bounded. Indeed, by (iv), there exists \(A > 0 \) such that
\[
\Phi(v + w_n) - \|v\| < \inf_W \Phi < \Phi(w_n) = \Phi(w_n + 0) - \|0\|, \quad \forall v \in V, \|v\| \geq A.
\]
So, \(\|v_n\| \leq A \), because otherwise we would get the contradiction
\[
\Phi(v_n + w_n) < \Phi(w_n).
\]
Therefore, \(v_n \rightharpoonup \varpi \in V \). This weak limit \(\varpi \) belongs to \(V(\varpi) \). Indeed,
\[
\Phi(\varpi + \varpi) \geq \limsup_n \Phi(v_n + w_n) \\
\geq \limsup_n \Phi(v + w_n), \quad \forall v \in V \\
\geq \Phi(v + \varpi), \quad \forall v \in V.
\]
Moreover, we know that
\[
\Phi(v_n + w_n) - \|v_n\| \geq \Phi(v + w_n) - \|v\|, \quad \forall v \in V.
\]
By the weak upper semi-continuity of \(\Phi \), the weak lower semi-continuity of the norm and since \(w_n + v_n \rightharpoonup \varpi + \varpi \),
\[
\Phi(\varpi + \varpi) - \|\varpi\| \geq \Phi(v + \varpi) - \|v\|, \quad \forall v \in V;
\]
i.e., \(\varpi = s(\varpi) \).

Some applications to nonlinear boundary value problems will be investigated in a forthcoming paper.

References

[1] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. Anal., 14, 349–381, (1973).
[2] E. Asplund, Averaged norms. Israel J. Math., 5, 227–233, (1967).
[3] J.-P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag, (1983).
[4] H. Brézis, Periodic solutions of nonlinear vibrating strings and duality principles. Bull. Amer. Math. Soc. (N.S.), 8, no. 3, 409–426, (1983).
[5] F. Clarke, Optimization and nonsmooth analysis. Canadian Mathematical Series of Monographs and advanced Texts, Wiley-Interscience, 1983. Second edition, SIAM, Philadelphia, PA, 1990.
[6] F.H. Clarke and I. Ekeland, Hamiltonian trajectories having prescribed minimal period. Comm. Pure Appl. Math., 33, no. 2, 103–116, (1980).
[7] D.G. Costa and A.S. Oliveira, Existence of solution for a class of semilinear elliptic problems at double resonance. Bol. Soc. Bras. Mat., 19, no.1, 21–37 (1988).
[8] C.L. Dolph, Nonlinear integral equations of the Hammerstein type. Trans. Amer. Math. Soc., 66, 289–307, (1949).
[9] I. Ekeland and R. Témam, Convex analysis and variational problems. North Holland, (1976).
Y. Jabri and M. Moussaoui, A critical point theorem without compactness and applications. *Nonlinear Anal.*, 32, no. 3, 363–380, (1998).

J. Mawhin and M. Willem, Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 3, no. 6, 431–453, (1986).

J. Mawhin and M. Willem, *Critical point theory and Hamiltonian systems*. Applied Mathematical Sciences, 74, Springer-Verlag, New York, 1989.

E. Michael, Continuous selections. I. *Ann. of Math.*, 63, 361–382, (1956).

E. Michael, Continuous selections. II. *Ann. of Math.*, 64, 562–580, (1956).

E. Michael, Continuous selections. III. *Ann. of Math.*, 65, 375–390, (1957).

P.H. Rabinowitz, *Minimax methods in critical point theory with applications to differential equations*. CBMS Regional Conference Series in Mathematics, 65, Amer. Math. Soc., Providence, RI, (1986).

M. Struwe, *Variational methods, Applications to nonlinear partial differential equations and Hamiltonian systems*. Springer-Verlag, Berlin, 1990.

K. Thews, A reduction method for some nonlinear Dirichlet problems. *Nonlinear Anal.*, 3, no. 6, 795–813, (1979).

University Mohamed I, Department of Mathematics, Faculty of Sciences, Box 524, 60000 Oujda, Morocco

E-mail address: jabri@sciences.univ-oujda.ac.ma