STABILITY OF MINIMISING HARMONIC MAPS UNDER $W^{1,p}$ PERTURBATIONS OF BOUNDARY DATA: $p \geq 2$

SIRAN LI

Abstract. Let $\Omega \subset \mathbb{R}^3$ be a Lipschitz domain. Consider a harmonic map $v : \Omega \rightarrow S^2$ with boundary data $v|\partial \Omega = \varphi$ which minimises the Dirichlet energy. For $p \geq 2$, we show that any energy minimiser u whose boundary map ψ has a small $W^{1,p}$-distance to φ is close to v in Hölder norm modulo bi-Lipschitz homeomorphisms, provided that v is the unique minimiser attaining the boundary data. The index $p = 2$ is sharp: the above stability result fails for $p < 2$ due to the constructions by Almgren–Lieb [2] and Mazowiecka–Strzelecki [15].

1. Introduction

Let $u : \Omega \rightarrow S^2$, where Ω is a Lipschitz domain in \mathbb{R}^3 and S^2 is the unit 2-sphere. We are concerned with the boundary value problem for the harmonic map equation:

$$
\begin{cases}
-\Delta u = |\nabla u|^2 u & \text{in } \Omega, \\
u = \varphi & \text{on } \partial \Omega.
\end{cases}
$$

(1.1)

This is the Euler–Lagrange equation for minimisers of the Dirichlet energy

$$E[u] := \int_{\Omega} |\nabla u(x)|^2 \, dx$$

(1.2)

over the space

$$W^{1,2}(\Omega, S^2) := \{ u \in W^{1,2}(\Omega, S^2) : u|\partial \Omega = \varphi \}.$$

(1.3)

The existence of minimisers are well-known for $\varphi \in W^{1/2,2}(\partial \Omega, S^2)$ in the sense of trace, due to the lower semi-continuity of the functional E. Also, for $\varphi \in W^{1,2}(\partial \Omega, S^2)$ the space $W^{1,2}_\varphi(\Omega, S^2)$ is non-empty, as it contains the degree-0-homogeneous extension $\varphi(x/|x|)$.

The weak solutions to (1.1) are called (weakly) harmonic maps. Minimisers of the Dirichlet integral clearly satisfy (1.1), hence we call them minimising harmonic maps. The singular set of a harmonic map u, denoted by $\text{sing } u$, consists of the points that have an open neighbourhood in Ω in which u is not Hölder continuous — equivalently, not real-analytic ([18], [3], [16]). We remark that there are non-minimising harmonic maps. As a prominent example, Rivière [17] constructed a harmonic map $v : B \rightarrow S^2$ with $\text{sing } v = \overline{B}$, but Schoen–Uhlenbeck [18] proved that minimising harmonic map $u : B \rightarrow S^2$ must have discrete singular sets (\overline{B} is the unit 3-ball).

In this note, we study the stability of the minimising harmonic maps u with respect to the boundary data φ. In a very interesting recent paper [15], by elaborating on Almgren–Lieb’s constructions in [2], Mazowiecka–Strzelecki proved that u is highly non-stable under $W^{1,p}$-perturbations of φ for $p < 2$ and $\Omega = B$.

Date: June 10, 2021.

2010 Mathematics Subject Classification. Primary: 53C43, 58E20.

Key words and phrases. Harmonic Maps; Harmonic Maps into Spheres; Boundary Value Problem; Stability; Singularities; Energy Minimisation.
Proposition 1.1 (Theorem 1.1 in [15]). Let \(\varphi \in C^\infty(\partial B, S^2) \) be a degree-0 boundary map. Let \(1 \leq p < 2 \) and \(N \in \mathbb{N} \) be arbitrary. Then, for each \(\epsilon > 0 \), there exists \(\psi \in C^\infty(\partial B, S^2) \) such that \(\deg \psi = 0 \), \(\|\varphi - \psi\|_{W^{1,p}} < \epsilon \), and the Dirichlet integral has a unique minimiser over \(W^{1,2} \) with at least \(N \) singularities in \(B \).

In contrast, R. Hardt and F.-H. Lin [10] proved that a minimising harmonic map is stable under Lipschitz perturbations of the boundary data, under an additional uniqueness assumption:

Proposition 1.2 (The Stability Theorem in [10]). Let \(\Omega \subset \mathbb{R}^3 \) be a smooth bounded domain and \(\varphi \in \text{Lip}(\partial \Omega, S^2) \). Suppose \(v \) is the unique energy-minimising map from \(\Omega \) to \(S^2 \) with \(v|\partial \Omega = \varphi \). Then there exist a positive number \(\beta > 0 \) and, for any \(\epsilon > 0 \), a positive number \(\delta > 0 \), such that for any \(\psi \in C^{1,\alpha}(\partial \Omega, S^2) \) with \(\|\varphi - \psi\|_{\text{Lip}} \leq \delta \) and any energy-minimising \(u \in W^{1,2}(\Omega, S^2) \) with \(u|\partial \Omega = \psi \), one has \(\|u - v \circ \eta\|_{C^{0,\beta}} \leq \epsilon \) for a bi-Lipschitz map \(\eta : \Omega \to \Omega \) with \(\|\eta - \text{id}_\Omega\|_{\text{Lip}} \leq \epsilon \).

Our main result shows that, under the same assumptions of [10], minimising harmonic maps are stable under \(W^{1,p} \)-perturbations of the boundary data for any \(p \geq 2 \). It demonstrates the sharpness of the index \(p = 2 \) in Proposition 1.1 Proposition 1.2 is the special case \(p = \infty \).

Theorem 1.3. Let \(\Omega \subset \mathbb{R}^3 \) be a bounded Lipschitz domain and \(\varphi \in W^{1,p}(\partial \Omega, S^2) \) for \(p \geq 2 \). Suppose \(v \) is the unique energy-minimising map from \(\Omega \) to \(S^2 \) with \(v|\partial \Omega = \varphi \). Then there exist a positive number \(\beta > 0 \) and, for any \(\epsilon > 0 \), a positive number \(\delta > 0 \), such that for any \(\psi \in C^{1,\alpha}(\partial \Omega, S^2) \) with \(\|\varphi - \psi\|_{W^{1,p}} \leq \delta \) and any energy-minimising \(u \in W^{1,2}(\Omega, S^2) \) with \(u|\partial \Omega = \psi \), one has \(\|u - v \circ \eta\|_{C^{0,\beta}} \leq \epsilon \) for a bi-Lipschitz map \(\eta : \Omega \to \Omega \) with \(\|\eta - \text{id}_\Omega\|_{\text{Lip}} + \|\eta^{-1} - \text{id}_\Omega\|_{\text{Lip}} \leq \epsilon \).

The arguments essentially follow [10] by Hardt–Lin. We remark that the uniqueness of \(v \) is necessary: see §5, [10] for an example of a smooth boundary map that serves as boundary data for two minimisers from \(B \) to \(S^2 \), one with no singularity and the other with two singularities. Moreover, Almgren–Lieb [2] proved that the boundary data with unique minimisers are dense in the \(W^{1,2} \)-topology.

Notations. For embedded surfaces \(\Sigma \subset \mathbb{R}^3 \), we write \(dA \) for the surface measure on \(\Sigma \), and \(\nabla \) for the projection of the Euclidean gradient on \(\mathbb{R}^3 \) to \(T\Sigma \). In the spherical polar coordinates, we write \(x = r \omega \) for \(r = |x|, \omega = x/|x| \in S^2 \), the unit 2-sphere. For an \(m \)-dimensional submanifold \(M \) of \(\mathbb{R}^n \), \(|M| \) denotes the \(m \)-dimensional Hausdorff measure of \(M \). We write \(B(x, \rho) \) for an Euclidean 3-ball with centre \(x \) and radius \(\rho \); \(B_\rho := B(0, \rho) \) and \(B := B_1 \). For sets \(E \) and \(F \), we write \(E \sim F \) for the set difference, and \(1_E \) for the indicator function on \(E \). The norms \(\|\bullet\|_{W^{1,p}}, \|\bullet\|_{\text{Lip}} \) and \(\|\bullet\|_{C^{0,\beta}} \) without explicitly indicating the domains are taken over the whole of \(\Omega, B \) or \(S^2 \), which will be clear from the context. \(O(3) \) is the group of \(3 \times 3 \) orthogonal matrices.

Acknowledgement. This work has been done during Siran Li’s stay as a CRM–ISM postdoctoral fellow at Centre de Recherches Mathématiques, Université de Montréal and Institut des Sciences Mathématiques, and as a G. C. Evans Instructor at Rice University, Houston. The author would like to thank these institutions for providing nice working atmosphere.

We are greatly indebted to Bob Hardt for many insightful discussions and continuous support. We thank Armin Schikorra for kind communications and insightful discussions.

Note added. Upon completion of the paper, the author was informed of the very nice work [14] by Mazowiecka–Miskiewicz–Schikorra, in which a generalisation of Hardt–Lin’s stability theorem
is obtained independently. In [14] the stability in $W^{1,2}$-norm is proved for minimising harmonic maps with trace in $W^{s,p}$ for $s \in [1/2, 1]$, $p \in [2, \infty]$ such that $ps \geq 2$, provided that the traces are $W^{s,p}$-close. This may be compared with Theorem 1.3 above, in which we proved the stability in $C^{0,\beta}$-norm with traces in $C^{1,\alpha}$ being $W^{1,p}$-close. Additionally, in [14] Almgren–Lieb’s linear law on the number of singularities is also extended to the case of $W^{s,p}$-traces.

2. Uniform Boundary Regularity

In this section, we establish the following

Lemma 2.1. There exist constants $0 < e_0, \ell_0 \leq 1$ and $\rho_0 = \rho_0(\ell_0, e_0) > 0$ such that the following holds. Let $g : \mathbb{R}^2 \to \mathbb{R}$ be a Lipschitz map with $g(0) = 0 = |\nabla g(0)|$ and $\|g\|_{W^{1,\infty}} \leq \ell_0$. Denote by $\Omega_g := \{(x_1, x_2, x_3) \in \mathbb{B} : x_3 < g(x_1, x_2)\}$. Assume that $u \in W^{1,2}(\Omega_g, \mathbb{S}^2)$ is an energy-minimising map with $\|u\|_\mathbb{B} \cap \partial \Omega_g \leq e_0$; $2 \leq p \leq \infty$. Then $\|u\|_{W^p,\rho_0} \cap \Omega_g \leq e_0$ for some $0 < \beta < 1$.

The proof of Lemma 2.1 follows from an adaptation of §§5.4, 5.5, Hardt–Kinderlehrer–Lin [6] and §2, Hardt–Lin [10], in both of which the boundary data are assumed to be Lipschitz. On the other hand, if Ω_g is C^∞ additionally, then we recover Corollary 2.5, Almgren–Lieb [2].

We need to modify the arguments in [6] [11] to deal with the lower regularity assumptions for the boundary map and the domain. One useful result is Theorem 5.7, Hardt–Lin [11]:

Lemma 2.2. Let m be a positive integer, let N be a smooth Riemannian manifold, and let $1 < p < \infty$. Denote by $\mathbb{B}^+ := \{(x^1, \ldots, x^m) \in \mathbb{R}^m : \sum_{i=1}^m |x^i|^2 < 1, x^m > 0\}$. If $u_0 \in W^{1,p}(\mathbb{B}^+, N)$ is a degree-0-homogeneous p-minimising harmonic map, and if u_0 is constant on $\partial \mathbb{B}^+ \cap \{x^m = 0\}$, then u_0 is a constant function.

We also recall the monotonicity formula: let u be an energy-minimiser and $0 < \sigma < \rho < \rho_0$ such that $\mathbb{B}(y, \rho_0) \subseteq \mathbb{B}$. Then

$$
\frac{1}{\rho} \int_{\mathbb{B}(y, \rho)} |\nabla u|^2 \, dx - \frac{1}{\sigma} \int_{\mathbb{B}(y, \sigma)} |\nabla u|^2 \, dx = \int_{\mathbb{B}(y, \rho) \cap \mathbb{B}(y, \sigma)} \frac{2}{r} \left| \frac{\partial u}{\partial r} \right|^2 \, dx \geq 0. \tag{2.1}
$$

The proof follows by considering “squeeze deformations” of u; cf. Lemma 2.5, [18]; Lemma 1.3, [19] and §2.4, [21], among others.

Proof of Lemma 2.2. By a standard blowup argument — cf. §5 in Hardt–Kinderlehrer–Lin [6] — it suffices to prove a uniform bound on the rescaled energy: for ρ_0 sufficiently small, there exists $c_0 > 0$ such that

$$
\frac{1}{\rho_0} \int_{\mathbb{B}_{2\rho_0}(0) \cap \Omega_g} |\nabla u|^2 \, dx \leq c_0. \tag{2.2}
$$

(One may conclude by choosing c_0 depending on e_0, and then shrinking ρ_0 if necessary.)

As in [6], (2.2) will follow from an absolute bound

$$
\int_{\mathbb{B}_{1/2}(0) \cap \Omega_g} |\nabla u|^2 \, dx \leq c_1, \tag{2.3}
$$

where c_1 depends only on p and ℓ_0. In particular, the arguments for “energy decay/improvement” in §§5.4, 5.5, [19] can be directly adapted to the case of $W^{1,p}$-boundary data. In the sequel let us exhibit a c_1.

3
For $a.e. \ \sigma \in [1/2, 1]$, choose a bi-Lipschitz map $\Phi_\sigma : B_\sigma \cap \Omega_\sigma \to \Omega_\sigma$. The bi-Lipschitz constant of Φ_σ is universal; let us call it Λ. It depends only on $\|g\|_{W^{1, \infty}} \leq \ell_0$. We claim that there is ω_σ, an extension of $(u \circ \Phi_\sigma^{-1})/\partial B_\sigma$, that satisfies the following inequality:

$$\int_{B_\sigma} |\nabla \omega_\sigma|^2 \, dx \leq c_2 \left\{ \int_{\partial B_\sigma} |\nabla (u \circ \Phi_\sigma^{-1})|^2 \, dA \right\}^{1/2}$$ \hspace{1cm} (2.4)

for $a.e. \ \sigma \in [1/2, 1]$.

To see this, we follow the arguments in §2.3, [10]. Let $\lambda = \lambda(\sigma)$ be the vector $|B_\sigma|^{-1} \int_{B_\sigma} (u \circ \Phi_\sigma^{-1}) \, dx$ in \mathbb{R}^3. By Fubini’s theorem, for $a.e. \ \sigma' \in [\sigma/2, \sigma]$ we have

$$\int_{\partial B_{\sigma'}} |\nabla (u \circ \Phi_\sigma^{-1})|^2 \, dA \leq 8 \int_{B_\sigma} |\nabla (u \circ \Phi_\sigma^{-1})|^2 \, dx,$$ \hspace{1cm} (2.5)

$$\int_{\partial B_{\sigma'}} |(u \circ \Phi_\sigma^{-1}) - \lambda|^2 \, dA \leq 8 \int_{B_\sigma} |(u \circ \Phi_\sigma^{-1}) - \lambda|^2 \, dx.$$ \hspace{1cm} (2.6)

The right-hand sides of (2.5) and (2.6) are finite, thanks to

$$\int_{B_\sigma} |\nabla (u \circ \Phi_\sigma^{-1})|^2 \, dx \leq \Lambda^2 \int_{\Omega_\sigma \cap B_\sigma} |\nabla u|^2 \, dx$$

and the Poincaré inequality.

Let $h : B_{\sigma'} \to \mathbb{R}^3$ be the harmonic function — i.e., $\Delta h = 0$ — with $h|\partial B_{\sigma'} = (u \circ \Phi_\sigma^{-1})|\partial B_{\sigma'}$. By an elementary computation, all harmonic functions fulfil the identity

$$\int_{\partial B_{\sigma'}} |\nabla h|^2 \, dA = \int_{B_{\sigma'}} |\nabla h|^2 \, dx + \sigma' \int_{\partial B_{\sigma'}} \left| \frac{\partial h}{\partial r} \right|^2 \, dA.$$ \hspace{1cm} (2.7)

Thus, using integration by parts, the Cauchy–Schwarz inequality, (2.7), and that $\nabla h = \nabla (u \circ \Phi_\sigma^{-1})$ on $\partial B_{\sigma'}$, we deduce

$$\int_{B_{\sigma'}} |\nabla h|^2 \, dx = \int_{B_{\sigma'}} (h - \lambda) \cdot \frac{\partial (h - \lambda)}{\partial r} \, dA$$

$$\leq \left\{ \int_{\partial B_{\sigma'}} |(u \circ \Phi_\sigma^{-1}) - \lambda|^2 \, dA \right\}^{1/2} \left\{ \int_{\partial B_{\sigma'}} |\nabla (u \circ \Phi_\sigma^{-1})|^2 \, dA \right\}^{1/2}.$$ \hspace{1cm} (2.8)

Now let us modify h to a function with range in S^2 satisfying the same bound as in (2.8). Denote by $\Pi_a : \mathbb{R}^3 \to S^2$ the projection

$$\Pi_a(x) := \frac{x - a}{|x - a|}.$$

By Sard’s theorem, $\Pi_a \circ h \in W^{1, 2}(B_{\sigma'}, S^2)$ for almost every $a \in B_{\sigma'/2}$. We have

$$|\nabla (\Pi_a \circ h)| = \left| \frac{\nabla h}{|h - a|} - \frac{\nabla h \cdot (h - a) \otimes (h - a)}{|h - a|^3} \right| \leq 2 \frac{|\nabla h|}{|h - a|}.$$

Thus

$$\int_{B_{\sigma'/2}} \int_{B_{\sigma'}} \left| \nabla (\Pi_a \circ h(x)) \right|^2 \, dx \, da \leq 4 \int_{B_{\sigma'}} \left| \nabla h(x) \right|^2 \left\{ \int_{B_{\sigma'/2}} |h(x) - a|^{-2} \, da \right\} \, dx$$

$$\leq 4\pi \int_{B_{\sigma'}} \left| \nabla h(x) \right|^2 \, dx.$$
In particular, by Fubini we can choose $a \in B_{\sigma'/2}$ such that

$$
\int_{B_{\sigma'}} |\nabla (\Pi_a \circ h(x))|^2 \, dx \leq 8\pi \int_{B_{\sigma'}} |\nabla h(x)|^2 \, dx.
$$

One thus deduces from (2.8) that

$$
\int_{B_{\sigma'}} |\nabla (\Pi_a \circ h(x))|^2 \, dx \leq 8\pi \left\{ \int_{\partial B_{\sigma'}} \left| (u \circ \Phi^{-1}) - \lambda \right|^2 \, dA \right\}^{1/2} \left\{ \int_{\partial B_{\sigma'}} \left| \nabla (u \circ \Phi^{-1}) \right|^2 \, dA \right\}^{1/2}.
$$

But u takes values in S^2; so

$$
\int_{\partial B_{\sigma'}} \left| (u \circ \Phi^{-1}) - \lambda \right|^2 \, dA
$$

$$
\leq 2 \int_{\partial B_{\sigma'}} \left| (u \circ \Phi^{-1}) \right|^2 \, dA + 2 \int_{\partial B_{\sigma'}} \lambda^2 \, dA \leq 4|\partial B_{\sigma'}| \leq 16\pi;
$$

hence

$$
\int_{B_{\sigma'}} |\nabla (\Pi_a \circ h(x))|^2 \, dx \leq 32\pi^{3/2} \left\{ \int_{\partial B_{\sigma'}} \left| \nabla (u \circ \Phi^{-1}) \right|^2 \, dA \right\}^{1/2}.
$$

(2.9)

Finally, set

$$
w_\sigma := (\Pi_a|\partial B_{\sigma'})^{-1} \circ \Pi_a \circ h.
$$

(2.10)

By construction $w_\sigma|\partial B_{\sigma'} = (u \circ \Phi^{-1})|\partial B_{\sigma'}$. The Lipschitz norm of $(\Pi_a|\partial B_{\sigma'})^{-1}$ can be bounded geometrically as follows. For $a \in B_{\sigma'/2}$ given, set up the polar coordinate centred at a. Then $\|(\Pi_a|\partial B_{\sigma'})^{-1}\|_{\text{Lip}}$ equals the maximal ratio $\ell_{a,\sigma'/\theta_a}$, where θ_a is the angle between two straight lines emanating from a, and $\ell_{a,\sigma'}$ is the length of the arc A on $\partial B_{\sigma'}$ swept out by such straight lines opening at angle θ_a. By elementary Euclidean geometry, the supremum over $a \in B_{\sigma'/2}$ of $\ell_{a,\sigma'/\theta_a}$ is attained only if $a \in \partial B_{\sigma'/2}$ and θ_a is bisected by the straight line through a and 0. In this case, $\ell_{a,\sigma'/\theta_a} = \sigma'\alpha/\theta_a$, where α is the angle formed by arc A and the origin. Clearly $\sigma'\alpha/\theta_a \leq 2\sigma' \leq 2$; hence

$$
\|(\Pi_a|\partial B_{\sigma'})^{-1}\|_{\text{Lip}} \leq 2.
$$

We can thus conclude (2.4) by choosing $c_2 = 128\pi^{3/2}$ (replacing σ' with σ).

Now, define

$$
D(\sigma) := \int_{B_\sigma \cap \Omega_g} |\nabla u|^2 \, dx.
$$

(2.11)

By the minimality of u, we have

$$
D(\sigma) \leq \int_{B_{\sigma'} \cap \Omega_g} |\nabla (\omega_\sigma \circ \Phi_\sigma)|^2 \, dx
$$

$$
\leq \|\nabla \Phi_\sigma\|_{L^\infty}^2 \int_{B_{\sigma'}} |\nabla \omega_\sigma|^2 \, dx
$$

$$
\leq c_2 \|\nabla \Phi_\sigma\|_{L^\infty}^2 \left\{ \int_{\partial B_{\sigma'}} \left| \nabla (u \circ \Phi^{-1}) \right|^2 \, dA \right\}^{1/2}
$$

$$
\leq c_2 \|\nabla \Phi_\sigma\|_{L^\infty}^2 \|\nabla \Phi^{-1}\|_{L^\infty} \left\{ \int_{\partial B_{\sigma'} \cap \Omega_g} |\nabla u|^2 \, dA + \int_{B_{\sigma'} \cap \Omega_g} |\nabla u|^2 \, dA \right\}^{1/2}.
$$

Hölder’s inequality and the assumptions on $\|u|B \cap \partial \Omega_g\|_{W^{1,p}}$ and g give us

$$
\int_{B_{\sigma'} \cap \partial \Omega_g} |\nabla u|^2 \, dA \leq \left\{ \int_{\partial \Omega_g} |\nabla u|^p \, dA \right\}^2 \|B_{\sigma'} \cap \partial \Omega_g\|^{p-2}_{\frac{p}{p}}
$$
\[
\leq 1 \times \left(\int_{\{z \in \mathbb{R}^2 : |z| \leq \sigma \}} \sqrt{1 + |\nabla g|^2} \, dz \right)^{\frac{p-2}{p}} \leq \left(\sqrt{2} \pi \sigma^2 \right)^{\frac{p-2}{p}}. \tag{2.12}
\]

Thus, for a.e. \(\sigma \in [1/2, 1] \), with the previously chosen value of \(c_2 \) we have
\[
D(\sigma) \leq 128 \pi^{3/2} \Lambda^3 \left(D'(\sigma) + \left(\sqrt{2} \pi \sigma^2 \right)^{\frac{p-2}{p}} \right)^{1/2}. \tag{2.13}
\]

To prove (2.13), it is enough to establish \(D(1/2) \leq c_1 \). Let us write \(c_1 = \theta^{-1} \) and assume for contradiction that \(D(1/2) > \theta^{-1} \) for each \(\theta > 0 \). Then
\[
\int_{1/2}^{1} \frac{D'(\sigma)}{D^2(\sigma)} \, d\sigma = \frac{1}{D(1)} - \frac{1}{D(1/2)} > -\theta.
\]

On the other hand, by (2.13) there holds
\[
\frac{D'(\sigma)}{D^2(\sigma)} \geq \left(\frac{1}{128 \pi^{3/2} \Lambda^3} \right)^2 - \left(\frac{1}{D(\sigma)} \right)^{\frac{p-2}{p}} \geq \left(\frac{1}{128 \pi^{3/2} \Lambda^3} \right)^2 - \left(\frac{1}{D(1/2)} \right)^{\frac{p-2}{p}} \theta^2.
\]

Integrating \(\sigma \) over \([1/2, 1]\), we get
\[
\varphi(\theta) := \left(\frac{1}{\sqrt{2} \pi} \right)^{\frac{p-2}{p}} \theta^2 + 2 \theta - \frac{1}{16384 \pi^3 \Lambda^6} > 0.
\]

However, \(\varphi \) has a positive root \(\theta_0 > 0 \), so any \(\theta \in (0, \theta_0] \) would violate the above inequality. To be concrete, we can take \(\theta = \theta_0/2 \), i.e.,
\[
c_1 = 2^{1+\frac{p-2}{p}} \frac{\pi^{\frac{p-2}{p}}}{\pi^{\frac{p-2}{p}}} \left(1 + \left(\frac{16384 \pi^3 \Lambda^6}{\sqrt{2} \pi} - 1 \right)^{-1} \right),
\]

where \(\Lambda \) is the supremum of the bi-Lipschitz constant of \(\Phi_\sigma \) over \(\sigma \in [1/2, 1] \). This gives the desired contradiction and thus concludes (2.3).

Finally, let us establish the bound (2.2). If it were false, for some \(c > 0 \) there would exist sequences of positive numbers \(\{\rho_i\} \searrow 0 \), \(\{\epsilon_i\} \searrow 0 \), and \(\{\ell_i\} \searrow 0 \), Lipschitz maps \(\{g_i\} \) with \(\|g_i\|_{W^{1,\infty}} \leq \ell_i \), and minimisers \(\{u_i\} \subset W^{1,2}(\Omega_{g_i}, S^2) \), such that
\[
\|u_i\|_{\mathbb{B} \cap \partial \Omega_{g_i}} \leq \epsilon_i \quad \text{but} \quad \liminf_{i \to \infty} \frac{1}{\rho_i} \int_{\mathbb{B}_{2\rho_i} \cap \partial \Omega_{g_i}} |\nabla u_i|^2 \, dx \geq c. \tag{2.14}
\]

Denote by
\[
\tilde{u}_i(x) := u_i(2\rho_i x), \quad \tilde{g}_i(x) := g_i(2\rho_i x).
\]

Then \(\|	ilde{g}_i\|_{W^{1,\infty}} \leq 2 \rho_i \ell_i \) and
\[
\frac{1}{2 \rho_i} \int_{\mathbb{B}_{\rho_i} \cap \Omega_{\tilde{g}_i}} |\nabla u_i|^2 \, dx = \int_{\mathbb{B}_{1/2} \cap \Omega_{\tilde{g}_i}} |\nabla \tilde{u}_i|^2 \, dx \leq c_1,
\]

where \(c_1 \) is as in (2.3). As a result, a subsequence of \(\{\tilde{u}_i\} \) converges weakly to \(v \in W^{1,2}(\mathbb{B}^+, S^2) \). By monotonicity identity (2.1), \(v \) is degree-0-homogeneous. Thanks to Theorem 6.4 in Hardt–Lin [11], the convergence \(\tilde{u}_i \to v \) is indeed strong in the \(W^{1,2} \)-topology, and \(v \) is a minimising harmonic map. But the first inequality in (2.14) implies that the limiting map \(v \in W^{1,2}(\mathbb{B}^+, S^2) \) is constant on \(\mathbb{B} \cap \{x_3 = 0\} \), up to the choice of a representative in the Sobolev class. In view of Lemma 2.2, this contradicts the second inequality in (2.14).

Hence the assertion follows. \(\square\)
3. The Model Case: Stability of Hedgehog on $\Omega = \mathbb{B}$

In this section we prove Theorem 1.3 for the model case $\Omega = \mathbb{B}$, $\varphi = \text{id}_{S^2}$ with $p > 2$. The general case shall be obtained by gluing these building blocks together in §4, with modifications for the critical case $p = 2$. Recall from the hypotheses of Theorem 1.3 that the boundary map ψ has $C^{1,\alpha}$-regularity; see [14] for results on ψ with lower regularity.

We shall crucially rely on the result below due to L. Simon (see Theorem 1, [20] and the exposition [21]).

Proposition 3.1. Let Ω be an open subset of \mathbb{R}^n. Let $u \in W^{1,2}(\Omega, S^2)$ be an energy-minimising map. Assume that $\Theta(x/|x|)$ is a tangent map of u at 0, where $\Theta \in \mathcal{O}(3)$ is a rotation. Then such Θ is unique. Moreover, there are uniform constants $\beta_0 \in [0, 1]$ and $c > 0$ depending only on Ω such that for all $r > 0$ sufficiently small, we have

$$A(r) := \left\| \frac{\partial}{\partial r} u(r \cdot) \right\|_{C^1(S^2)} + \| u(r \cdot) - \Theta \|_{C^2(S^2)} \leq cr^{\beta_0} \left\| u - \frac{x}{|x|} \right\|_{C^2(\mathbb{B}_2/\mathbb{B}_{1/1})}.$$

Let us recall the notion of tangent maps (see §3.1, [21] for details). In the setting of Proposition 3.1, take $\mathbb{B}(y, \rho_0) \Subset \Omega$, and for any $\rho \in [0, \rho_0]$ define the blowup maps

$$u_{y,\rho}(x) := u(y + \rho x).$$

Then, by the monotonicity formula (2.1), there holds $\int_{\mathbb{B}} |\nabla u_{y,\rho}|^2 \, dx \leq \rho_0^{-1} \int_{\mathbb{B}(y, \rho_0)} |\nabla u|^2 \, dx$. By [18] [11], for any $\{\rho_j\} \searrow 0$ we can select a subsequence (not relabelled) $\{u_{y,\rho_j}\}$ that converges strongly in $W^{1,2}_{\text{loc}}$ on \mathbb{R}^n to an energy-minimiser u_0. Any u_0 thus obtained is called a tangent map of u at y. The uniqueness of tangent maps remains a major open problem in the large.

Proposition 3.1 is a consequence of Simon’s asymptotic theory of nonlinear evolution equations developed in [20]. Indeed, Theorem 1 and Section 8 therein show that $A(r) \to 0$ as $r \searrow 0$, provided that the target manifold N is real-analytic. When specialising to $N = S^2$, it follows from Brezis–Coron–Lieb [4] that the tangent map in the proposition must be of the form $\Theta(x/|x|)$ for a rotation Θ. In this case, the integrability of Jacobi fields (see Simon, §6 in [21] and Gulliver–White [5]) yields the desired decay estimate of $A(r)$. Similar arguments were used in the proof of convergence to tangent cones of minimal submanifolds by Almgren–Allard in [1].

3.1. Singularity is Unique. Take $\Omega = \mathbb{B}$ and $\varphi = \text{id}_{S^2}$. Then $v : \mathbb{B} \to S^2$, the unique minimising map with $v|\partial \Omega = \text{id}_{S^2}$, is the “hedgehog”

$$v(x) = \frac{x}{|x|},$$

(see Brezis–Coron–Lieb [4]). Assume for contradiction that a sequence $\{u_i\} \subset W^{1,2}(\mathbb{B}, S^2)$ is energy-minimising with boundary data $\psi_i := u_i|\partial \mathbb{B} \in C^{1,\alpha}(\partial \mathbb{B}, S^2)$, so that

$$\delta_i := \| \psi_i - \text{id}_{S^2} \|_{W^{1,p}} \to 0$$

but u_i has more than one singularity for large enough i.

7
First, by the minimality of \(u_i \), we get
\[
\int_{B} |\nabla u_i|^2 \, dx \leq \int_{B} \left| \nabla \left\{ \psi_i \left(\frac{x}{|x|} \right) \right\} \right|^2 \, dx
\]
\[
\leq \int_{S^2} |\nabla \psi_i(x)|^2 \, dA
\]
\[
\leq (1 + \kappa) \int_{S^2} |\nabla \text{id}_{S^2}|^2 \, dA + \left(1 + \frac{1}{\kappa} \right) \int_{S^2} |\nabla (\psi_i - \text{id}_{S^2})|^2 \, dA
\]
for any small \(\kappa > 0 \). In the last line we used the simple inequality \((a+b)^2 \leq (1+\kappa)a^2+(1+\kappa^{-1})b^2\).

Moreover, it is well-known that \(x/|x| \) has the quantized energy \(8\pi \):
\[
\int_{S^2} |\nabla \text{id}_{S^2}|^2 \, dA = \int_{B} \left| \nabla \left(\frac{x}{|x|} \right) \right|^2 \, dx = 8\pi.
\]

In addition,
\[
\int_{S^2} |\nabla (\psi_i - \text{id}_{S^2})|^2 \, dA \leq \|\psi_i - \text{id}_{S^2}\|^2_{W^{1,p}(B)} \leq (4\pi)^{\frac{p-2}{p}} \|\psi_i - \text{id}_{S^2}\|^2_{W^{1,p}}.
\]

Thus
\[
\int_{B} |\nabla u_i|^2 \, dx \leq (1 + \kappa) 8\pi + \left(1 + \frac{1}{\kappa} \right) (4\pi)^{\frac{p-2}{p}} (\delta_i)^2. \tag{3.1}
\]

Thanks to the \(W^{1,2} \)-bound in (3.1), \(\{u_i\} \) has a subsequence (not relabelled) that converges weakly in \(W^{1,2} \). By sending first \(i \nearrow \infty \) and then \(\kappa \searrow 0 \), any such limit function has energy \(\leq 8\pi \) and boundary map \(\text{id}_{S^2} \). Again by Brezis–Coron–Lieb [1], it must be \(x/|x| \). Using the arguments by Schoen–Uhlenbeck [18], also see L. Simon [21] via Luckhaus’ lemma [13], we have
\[
u_i(x) \rightarrow \frac{x}{|x|} \quad \text{strongly in } W^{1,2}. \tag{3.2}
\]

Now, in view of Lemma 2.1, there exists a universal \(\rho_0 > 0 \) such that \(u_i \) are uniformly Hölder continuous with uniformly bounded energy on some neighbourhood of \(\partial(B \sim B_{1-\rho_0}) \). By the definition of \(\delta_i \), \(\deg(\psi_i) \) is equal to 1 for sufficiently large \(i \). So the singular set \(\text{sing} u_i \) is non-empty and lies in \(B_{1-\rho_0} \), i.e., away from the boundary \(\partial B \). As \(x/|x| \) is Hölder continuous away from 0, thanks to (3.2) and the interior regularity result in [18], we may conclude that the diameter of \(\text{sing} u_i \) tends to zero.

For any \(r \in [0, 1/20] \), there is \(i \) large enough such that \(B_{1-|a_i|} \subset B_{1-\rho_0} \), \(|a_i| < r/4 \) for every \(a_i \in \text{sing} u_i \). Consider \(\bar{u}_i(x) := u_i(x + a_i) \) defined on \(B_{1-|a_i|} \). Then we have
\[
\left\| \bar{u}_i \left(\frac{x}{|x|} \right) \right\|_{C^2(B(a_i, 1/2) \sim B_{r_0} \sim B_{r/2})} \leq \left\| u_i \left(\frac{x}{|x|} \right) \right\|_{C^2(B_1 \sim B_{2r_0} \sim B_{1/10})} + \left\| \frac{x - a_i}{|x|} - \frac{x}{|x|} \right\|_{C^2(B_{1-2r_0} \sim B_{1/5})} \rightarrow 0.
\]

The convergence of the first term follows from the interior regularity theory (see Schoen–Uhlenbeck [18]), and the convergence of the second term can be deduced from direct computation. Using the asymptotic theory of Simon (Proposition 5.1), we have \(\text{sing} \bar{u}_i = \{0\} \) for sufficiently large \(i \). This contradicts the assumption that \(u_i \) has more than one singularities.

Therefore, there exists \(\delta > 0 \) such that for any \(\psi \in C^{1,\alpha}(\partial B, S^2) \) with \(\|\psi - \text{id}_{S^2}\|_{W^{1,p}} \leq \delta \), any minimiser \(u \) with \(u|\partial B = \psi \) has a unique singular point.

In the sequel we say \(\text{sing} u = \{a\} \).
3.2. Modulus of Singularity. To estimate the modulus \(|a|\), we pick some \(\rho \in [0, 1]\) and define

\[
w(x) := \begin{cases}
 u(\rho^{-1}x), & 0 \leq |x| < \rho, \\
 z(x)/|z(x)|, & \rho \leq |x| \leq 1,
\end{cases}
\]

where

\[
z(x) := \frac{1}{1 - \rho} \left\{ \left(1 - |x| \right) \psi \left(\frac{x}{|x|} \right) + \left(|x| - \rho \right) \frac{x}{|x|} \right\}.
\]

In \(\mathbb{B}_\rho\) there holds

\[
\int_{\mathbb{B}_\rho} |\nabla w(x)|^2 \, dx = \rho \int_{\mathbb{B}} |\nabla u(y)|^2 \, dy.
\]

For \(x \in \mathbb{B} \sim \mathbb{B}_\rho\), we shall estimate by

\[
\int_{\mathbb{B} \sim \mathbb{B}_\rho} |\nabla w|^2 \, dx = \int_{\mathbb{B} \sim \mathbb{B}_\rho} \left\{ \frac{|z|^2|\nabla z|^2 - |z \cdot \nabla z|^2}{|z|^4} \right\} \, dx \leq \int_{\mathbb{B} \sim \mathbb{B}_\rho} \frac{|\nabla z|^2}{|z|^2} \, dx.
\]

Notice that

\[
z(x) - \frac{x}{|x|} = \frac{1 - |x|}{1 - \rho} \left| \psi - \text{id}_{S^2} \right| \left(\frac{x}{|x|} \right);
\]

so for \(\rho \leq |x| \leq 1\) one has

\[
|z(x)| \geq 1 - \left| \frac{1 - |x|}{1 - \rho} \right| \left| \psi - \text{id}_{S^2} \right|_{L^\infty} \geq 1 - c_5 \delta,
\]

where \(c_5 = c(\rho)\) is the Sobolev constant for \(W^{1,p}(\partial \mathbb{B}, S^2) \mapsto C^0(\partial \mathbb{B}, S^2)\) for \(p > 2\). Hence

\[
\int_{\mathbb{B} \sim \mathbb{B}_\rho} |\nabla w|^2 \, dx \leq \int_{\mathbb{B} \sim \mathbb{B}_\rho} \frac{|\nabla z(x)|^2}{(1 - c_5)^2} \, dx.
\]

But

\[
\nabla z(x) - \nabla \left(\frac{x}{|x|} \right) = \frac{1}{1 - \rho} \left\{ \frac{x}{|x|} \otimes \left(\text{id}_{S^2} - \psi \right) \left(\frac{x}{|x|} \right) + \left(1 - |x| \right) \left[\nabla \psi \left(\frac{x}{|x|} \right) - \nabla \left(\frac{x}{|x|} \right) \right] \right\};
\]

so, computing in spherical polar coordinates using \((a + b)^2 \leq (1 + \kappa)a^2 + (1 + \kappa^{-1})b^2\) and Hölder’s inequality, we get

\[
\int_{\mathbb{B} \sim \mathbb{B}_\rho} |\nabla z|^2 \, dx \leq (1 + \kappa) \int_{\mathbb{B} \sim \mathbb{B}_\rho} \left| \nabla \left(\frac{x}{|x|} \right) \right|^2 \, dx + (1 + \kappa^{-1}) \int_{\mathbb{B} \sim \mathbb{B}_\rho} \left\{ \frac{1 - |x|}{1 - \rho} \left| \nabla \left(\frac{x}{|x|} \right) \right| \right\}^2 \, dx
\]

\[
+ (1 + \kappa^{-1}) \int_{\mathbb{B} \sim \mathbb{B}_\rho} \left\{ \frac{1 - |x|}{1 - \rho} \left| \nabla \left(\frac{x}{|x|} \right) \right| \right\}^2 \, dx
\]

\[
\leq (1 + \kappa) \int_{\mathbb{B} \sim \mathbb{B}_\rho} \left| \nabla \left(\frac{x}{|x|} \right) \right|^2 \, dx + \frac{1 + \kappa^{-1}}{(1 - \rho)^2} \left\| \nabla \left(\frac{x}{|x|} \right) \right\|_{L^{p/2}(\mathbb{B} \sim \mathbb{B}_\rho)}^2
\]

\[
+ \frac{1 + \kappa^{-1}}{(1 - \rho)^2} \left\| \nabla \left(\frac{x}{|x|} \right) - \nabla \left(\frac{x}{|x|} \right) \right\|_{L^{p/2}(\mathbb{B} \sim \mathbb{B}_\rho)}^2 \left\| (1 - |x|)^2 \right\|_{L^{p/2}(\mathbb{B} \sim \mathbb{B}_\rho)}^2
\]

\[
\leq (1 + \kappa) \int_{\mathbb{B} \sim \mathbb{B}_\rho} \left| \nabla \left(\frac{x}{|x|} \right) \right|^2 \, dx + \frac{(1 + \kappa^{-1})(1 - \rho^2)}{3(1 - \rho^2)} \frac{4\pi}{r^2} \delta^2.
\]

Putting the above estimates together, we arrive at

\[
\int_{\mathbb{B}} |\nabla w|^2 \, dx \leq \rho \int_{\mathbb{B}} |\nabla u|^2 \, dx + \frac{1 + \kappa}{(1 - c_5 \delta)^2} \int_{\mathbb{B} \sim \mathbb{B}_\rho} \left| \nabla \left(\frac{x}{|x|} \right) \right|^2 \, dx + c_6 \frac{1 + \kappa^{-1}}{(1 - c_5 \delta)^2} \delta^2,
\]

where \(c_6\) depends only on \(p\) (via the Sobolev constant \(c_5\)) and \(\rho\).
by the area formula. Therefore, using \((3.5)(3.6)\) and the monotonicity formula \((2.1)\), one deduces
\[
C > \kappa > 0 \text{ for each } \delta \leq \pi.
\]
for each \(\delta \leq \pi\), respectively. Combining with \((3.7)\) and \((3.8)\), we get
\[
\int_B |\nabla u|^2 \, dx + 8\pi(1 - \rho) \left\{ \frac{1 + \kappa}{(1 - c_5\delta)^2} - 1 \right\} + c_6 \frac{1 + \kappa^{-1}}{(1 - c_5\delta)^2} \delta^2
\]
for each \(\rho > 2, 0 < \rho < 1, \kappa > 0\) and sufficiently small \(\delta > 0\).

On the other hand, as \(w|\partial B = id_{S^2}\) and \(\text{sing } w = \{a\}\), the estimates by Brezis–Coron–Lieb \([4]\); also see the last inequality on p.117, \([10]\) lead to
\[
\int_B |\nabla u|^2 \, dx \geq 8\pi + c_7|a|^2
\]
with a universal constant \(c_7\). Furthermore, the estimate \((3.11)\) holds with \(u_i, \delta_i\) replaced by \(u\) and \(\delta\), respectively. Combining with \((3.7)\) and \((3.8)\), we get
\[
c_7 |a|^2 \leq 8\pi \kappa + \left(1 + \frac{1}{\kappa}\right) \left(4\pi \right)^{\frac{p-2}{p}} \delta^2
+ 8\pi(1 - \rho) \left\{ \frac{1 + \kappa}{(1 - c_5\delta)^2} - 1 \right\} + c_6 \frac{1 + \kappa^{-1}}{(1 - c_5\delta)^2} \delta^2
\]
(3.9)

For each \(\rho \in]0, 1[\) fixed, the penultimate term on the right-hand side of \((3.9)\) satisfies
\[
c_8 \left\{ \kappa + 2c_5\delta + \mathcal{O}(\delta^2) \right\}
\]
as \(\delta \searrow 0\),
where \(c_8 = 8\pi(1 - \rho)\). Also, for \(0 < \kappa, \delta \ll 1\), there exists \(c_9 = c(\rho, p)\) such that the final term of \((3.9)\) can be bounded as follows:
\[
c_6 \frac{1 + \kappa^{-1}}{(1 - c_5\delta)^2} \delta^2 \leq c_9 \kappa^{-1} \delta^2.
\]
The optimal \(\kappa > 0\) we may choose is of order \(\mathcal{O}(\delta)\). We thus conclude from \((3.9)\) that
\[
|a| \leq c_{10} \sqrt{\delta}
\]
for all \(\delta \leq \delta_0\), where \(\delta_0 = c(\rho, p) > 0\) is sufficiently small and \(c_{10} = c(\rho, p)\).

From now on, let us fix the parameter \(\rho \in]0, 1[\).

3.3. \(W^{1,p}\)-Stability for \(x/|x|\) for \(p > 2\). As proved earlier in this section, \(u\) has a unique singularity \(a\), whose norm is controlled by \(\sqrt{\delta}\) with \(\|\psi - id_{S^2}\|_{W^{1,p}} \leq \delta\) and \(u|\partial B = \psi \in C^{1,\alpha}(\partial B, S^2)\). Here \(u\) satisfies the assumptions of Theorem \([1.3]\) with \(\Omega = B\) and \(\varphi = id_{S^2}\); in particular, it is a minimising harmonic map.

Several consequences can be deduced (see p.118, \([10]\) —
By §3.1 and [4] we have the quantisation of energy:

\[
\limsup_{r \to 0} \frac{1}{r} \int_{B(a,r)} |\nabla u|^2\,dx = 8\pi \tag{3.11}
\]

where \(a\) is the singularity of \(u\).

The tangent map of \(u\) at \(a\) is unique (by Proposition 6.1) and takes the form \(\Theta (x/|x|)\) with \(\Theta \in O(3)\) (by Corollary 7.12, Brezis–Coron–Lieb [4]).

By Proposition 3.1 there are universal constants \(\beta_0 \in [0,1]\) and \(c_{11} > 0\) such that for \(r > 0\) sufficiently small,

\[
\| \frac{\partial}{\partial r} \tilde{u}(r \cdot) \|_{C^1(S^2)} + \| \tilde{u}(r \cdot) - \Theta \|_{C^2(S^2)} \leq c_{11} E r^{\beta_0}. \tag{3.12}
\]

Specifically, for any \(\alpha \in [0,\beta_0]\) one has

\[
\| u - \Theta \left(\frac{x-a}{|x-a|} \right) \|_{C^{0,\alpha}(B_{1/2})} \leq c_{11} E. \tag{3.13}
\]

Here, for \(\tilde{u} : B_{1-|a|} \to S^2\) and \(\tilde{u}(x) := u(x + a)\) we set

\[
\mathcal{E} := \| \tilde{u} - \frac{x}{|x|} \|_{C^2(B_{2/3} \sim B_{1/3})}. \tag{3.14}
\]

By [5] 20 21 there is a universal constant \(c_{12}\) such that

\[
\| \Theta - \text{id}_{\mathbb{R}^3} \| \leq c_{12} \mathcal{E}; \tag{3.15}
\]

Here \(\| \cdot \|\) denotes the matrix norm.

Having summarised (i)–(iv) above, let us proceed as follows.

First, on the boundary \(\partial B\), there holds

\[
\| \psi - \Theta \left(\frac{x-a}{|x-a|} \right) \|_{W^{1,p}(\partial B)} \leq \| \psi - \text{id}_{S^2} \|_{W^{1,p}(\partial B)} + c_{12} \mathcal{E} + \| \frac{x-a}{|x-a|} - \frac{x}{|x|} \|_{W^{1,p}(\partial B)}.
\]

But

\[
\nabla \left(\frac{x-a}{|x-a|} \right) - \nabla \frac{x}{|x|} = \delta_{ij} \left(\frac{1}{|x-a|} - \frac{1}{|x|} \right) + \frac{(x-a) \otimes (x-a)}{|x-a|^3} - \frac{x \otimes x}{|x|^3}, \tag{3.16}
\]

thus a direct computation using \(|x| = 1, |a| \leq c_{10} \sqrt{\delta}\) yields

\[
\| \psi - \Theta \left(\frac{x-a}{|x-a|} \right) \|_{W^{1,p}(\partial B)} \leq \delta + c_{12} \mathcal{E} + c_{13} \sqrt{\delta} \tag{3.17}
\]

for \(c_{13} = c(p)\).

Next, thanks to (3.12) (3.15), we have

\[
\| \psi - \Theta \left(\frac{x-a}{|x-a|} \right) \|_{W^{1,p}(\partial B_{1/2})} \leq c_{14} \mathcal{E} + \| \frac{x-a}{|x-a|} - \frac{x}{|x|} \|_{W^{1,p}(\partial B_{1/2})},
\]

where \(c_{14} = c(\beta_0)\) with the universal constant \(\beta_0\) in (iii). Taking \(|x| = 1/2\) in (3.16), one obtains

\[
\| \psi - \Theta \left(\frac{x-a}{|x-a|} \right) \|_{W^{1,p}(\partial B_{1/2})} \leq c_{14} \mathcal{E} + c_{15} \sqrt{\delta} \tag{3.18}
\]

for a universal constant \(c_{15}\).

In what follows let us bound \(\mathcal{E}\) by a power of \(\delta\). Then, choosing \(\delta_0\) sufficiently small, for any \(\delta \in [0,\delta_0]\) we may apply the interior regularity theory (18) and Lemma 2.1 to deduce from
An application of Hölder’s inequality yields
\[\| u - \Theta \left(\frac{x - a}{|x - a|} \right) \|_{C^{0, \alpha}(\mathbb{B} \sim \mathbb{B}_{1/2})} \leq c_{16}(\mathcal{E} + \sqrt{\delta}). \tag{3.19} \]

Here \(c_{16} = c(p) \) is determined from \(c_{12}, \ldots, c_{15} \) (one may shrink \(\alpha \in [0, \beta_0] \) if necessary to make it smaller than the universal constant \(\beta \) in Lemma 2.1). The desired bound for \(\mathcal{E} \) is achieved by adapting the arguments on pp.119–120, \([10]\).

To this end, we first notice that
\[\mathcal{E} \leq J_1 + J_2 := \| u - \frac{x}{|x|} \|_{C^2(\mathbb{B}_{3/4} \sim \mathbb{B}_{1/4})} + \| \frac{x}{|x|} - \frac{x - a}{|x - a|} \|_{C^2(\mathbb{B}_{2/3} \sim \mathbb{B}_{1/3})}, \tag{3.20} \]
where
\[J_2 \leq c_{17}|a|, \quad J_1 \leq c_{17}B. \tag{3.21} \]

By interior regularity, \(B \) can be chosen as an upper bound for the \(L^2 \)-norm of \((u - x/|x|) \) in the larger annulus \(\mathbb{B} \sim \mathbb{B}_{1/8} \supset \mathbb{B}_{3/4} \sim \mathbb{B}_{1/4} \); the constant \(c_{17} = c(p) \).

Then, write \(x = r\omega \) for \(r = |x| \in [1/8, 1] \), \(\omega = x/|x| \in \mathbb{S}^2 \); we have
\[
\int_{\mathbb{B} \sim \mathbb{B}_{1/8}} |u(x) - \frac{x}{|x|}|^2 \, dx
\leq 2 \int_{1/8}^1 \int_{\mathbb{S}^2} \left\{ |u(r\omega) - \psi(\omega)|^2 + |\psi(\omega) - \omega|^2 \right\} r^2 \, dA(\omega) \, dr =: J_{11} + J_{12}.
\]

An application of Hölder’s inequality yields
\[
J_{12} = 2 \left(\int_{1/8}^1 r^2 \, dr \right) \int_{\mathbb{S}^2} |\psi - i\mathbf{d}\mathbf{g}^2|^2 \, dA
\leq \frac{2}{3} \left(1 - \frac{1}{8^3} \right) \| \psi - i\mathbf{d}\mathbf{g}^2 \|_{L^p}^2 \| \mathbb{S}^2 \|_{L^\infty}^2 \leq c_{18} \delta^2,
\]
and a direct computation gives us
\[
J_{11} = 2 \int_{1/8}^1 \int_{\mathbb{S}^2} \left| \int_r^1 \frac{\partial u}{\partial r}(s\omega) \, ds \right|^2 \, r^2 \, dA(\omega) \, dr
\leq 2 \int_{1/8}^1 \left\| \frac{\partial u}{\partial r} \right\|_{L^2(\mathbb{B} \sim \mathbb{B}_{1/8})}^2 (1 - r) \, dr \leq c_{19} \left\| \frac{\partial u}{\partial r} \right\|_{L^2(\mathbb{B} \sim \mathbb{B}_{1/8})}^2,
\]
where \(c_{18} = c(p) \) and \(c_{19} \) is a universal constant. But \(\| \partial u/\partial r \|_{L^2(\mathbb{B} \sim \mathbb{B}_{1/8})} \) can be controlled by the monotonicity formula \([2.1]\) and the quantisation of energy \([3.11]\):
\[
\left\| \frac{\partial u}{\partial r} \right\|_{L^2(\mathbb{B} \sim \mathbb{B}_{1/8})}^2 \leq \int_{\mathbb{B}} |\nabla u|^2 \, dx - (1 - 8|a|)\delta \pi.
\]
Furthermore, recall from \([3.1]\):
\[
\int_{\mathbb{B}} |\nabla u|^2 \, dx - 8\pi \leq 8\pi \kappa + \left(1 + \frac{1}{\kappa} \right) (4\pi)^{\frac{p-2}{p}} \delta^2.
\]
Putting together the above estimates, one obtains
\[
\int_{\mathbb{B} \sim \mathbb{B}_{1/8}} \left(\frac{x}{|x|} \right)^2 \, dx \leq c_{18} \delta^2 + c_{19} \left\{ 64\pi |a| + 8\pi \kappa + \left(1 + \frac{1}{\kappa} \right) (4\pi)^{\frac{p-2}{p}} \delta^2 \right\}. \tag{3.22}
\]
In view of \([3.10]\), the best decay rate of the right-hand side of \([3.22]\) is \(\mathcal{O}(\sqrt{\delta}) \) — e.g., by choosing \(\kappa = \mathcal{O}(\delta) \).
Therefore, taking the square root of (3.22) and utilising (3.20), (3.21), and (3.10), we can choose \(c_20 > 0 \) sufficiently small such that, for \(0 < \delta \leq \delta_0 \), there holds
\[
\mathcal{E} \leq c_20 \delta^{4/4}.
\]
The constant \(c_20 = c(p) \). Moreover, by (3.19) and (3.13), for any sufficiently small \(\alpha > 0 \) we have
\[
\left\| u - \Theta \left(\frac{x - a}{|x - a|} \right) \right\|_{\mathcal{C}^{0,\alpha}(\mathbb{B})} \leq c_{21} \delta^{4/4} \quad \text{where} \quad c_{21} = c(p).
\] (3.23)

In summary, we obtain the following analogue of the Perturbation Lemma in [10]:

Lemma 3.2. Let \(\psi \in \mathcal{C}^{1,\alpha}(\partial \mathbb{B}, \mathbb{S}^2) \), \(2 < p \leq \infty \) and \(\delta := \| \psi - \text{id}_{\mathbb{S}^2} \|_{W^{1,p}} \). There are positive constants \(\delta_0 \) and \(c \) (depending on \(p \)) and \(\alpha \in [0, 1] \), such that for any \(\delta \in [0, \delta_0] \) and \(u \in W^{1,2}(\mathbb{B}, \mathbb{S}^2) \) minimising the Dirichlet energy with \(u|\partial \mathbb{B} = \psi \), one has
\[
\text{sing} u = \{ a \}, \quad |a| \leq c\sqrt{\delta}, \quad \text{and} \quad \left\| u - \Theta \left(\frac{x - a}{|x - a|} \right) \right\|_{\mathcal{C}^{0,\alpha}(\mathbb{B})} \leq c\delta^{1/4},
\]
where \(\Theta \in \mathcal{O}(3) \) with \(\| \Theta - \text{id}_{\mathbb{S}^2} \| \leq c\delta^{1/4} \).

4. PROOF OF THEOREM 1.3

4.1. The case \(2 < p \leq \infty \). With Lemma 3.2 at hand, Theorem 1.3 follows as in §3 of [10] for the case \(p > 2 \). To be self-contained we sketch the arguments below.

Assume \(u_i : \Omega \to \mathbb{S}^2 \) are energy-minimisers with \(u_i|\partial \Omega = \psi_i \in \mathcal{C}^{1,\alpha}(\partial \mathbb{B}, \mathbb{S}^2) \), such that \(\| \psi_i - \varphi \|_{W^{1,p}(\mathbb{S}^2)} \to 0 \) as \(i \to \infty \), and that \(v : \Omega \to \mathbb{S}^2 \) is the unique minimiser with \(v|\partial \Omega = \varphi \). Then \(\int_\Omega |\nabla u_i|^2 \, dx \) is bounded (e.g., by comparing with the harmonic extensions of \(\psi_i \) and the uniform bound on \(\| \psi_i \|_{W^{1,p}(\mathbb{S}^2)} \), \(p > 2 \)), \(u_i \to v \) strongly in \(W^{1,2} \) (by Theorem 6.4, [11]), and \(\text{sing} v \) is a finite set (by Theorem 2, [18]) — call it \(\{ a_j \}_{j=1}^k \subset \Omega \).

As before, the tangent map of \(v \) at each \(a_j \) is unique and equals \(\Theta_j(x/|x|) \) for \(\Theta_j \in \mathcal{O}(3) \). For \(0 < \tau < \min\{ \text{dist}(a_j, \text{sing} v \cup \text{sing} \Omega) \}/2 \), we have
\[
\| u_i - v \|_{W^{1,p}(\partial \mathbb{B}(a_j, \tau))} \to 0
\] (4.1) thanks to Simon’s asymptotic theory (Proposition 3.1 also see [20, 21]) and a standard compactness argument.

Denote by \(\delta_i \) the larger of \(\| \psi_i - \varphi \|_{W^{1,p}(\mathbb{S}^2)} \) and \(\| u_i - v \|_{W^{1,p}(\partial \mathbb{B}(a_j, \tau))} \). Utilising the interior regularity theory ([18]) and the uniform boundary regularity Lemma 2.1 one may infer that
\[
\| u_i - v \|_{\mathcal{C}^{0,\alpha}(\Omega \setminus \bigcup_{1 \leq j \leq k} \mathbb{B}(a_j, \tau))} \leq c_{22} \delta_i.
\] (4.2)
This gives the desired stability of minimisers away from the singularities of the limiting map.

Now, apply the arguments in §3 to each \(\mathbb{B}(a_j, \tau) \), \(1 \leq j \leq k \) and \(u_i \) for large enough \(i \). For each pair \((i, j) \), there exists a unique point \(a_{ji} \in \mathbb{B}(a_j, \tau) \) such that \(\text{sing} u_i = \{ a_{ji} \} \). Moreover, there are rotations \(\Theta_{ji} \in \mathcal{O}(3) \) so that
\[
\sup_{1 \leq j \leq k} \left\{ |a_{ji} - a_j| + \| \Theta_{ji} - \Theta_j \| + \left\| u_i - \Theta_{ji} \left(\frac{x - a_{ji}}{|x - a_{ji}|} \right) \right\|_{\mathcal{C}^{0,\alpha}(\mathbb{B}(a_j, \tau))} \right\} \leq c_{23} \delta_i^{1/4}.
\] (4.3)
Also, set
\[
\tau_i := \max_{1 \leq j \leq k} |a_{ji} - a_j|^{1/2} \leq c_{24} \delta_i^{1/8}.
\]
Finally, we construct the bi-Lipschitz homeomorphism $\eta : \Omega \to \Omega$ such that some Hölder norm of $(u_i - v \circ \eta)$ and $\|\eta - \text{id}_\Omega\|_{\text{Lip}} + \|\eta^{-1} - \text{id}_\Omega\|_{\text{Lip}}$ are both made arbitrarily small. Define η_i for each i, such that $\eta_i = \text{id}$ away from $\text{sing} v$, and near each a_j, η_i maps a_{ji} (the singularity of u_i) to a_j. In between, η_i is connected by a smooth bump function. Then we take $\eta = \eta_i$ for large enough i. More precisely, as on p.121, we set

$$\eta_i := \begin{cases} \text{id} & \text{on } \Omega \sim \bigcup_{j=1}^k \mathbb{B}(a_j, \tau_i), \\ \lambda_{ji}x + (1 - \lambda_{ji})\text{id} & \text{on } \mathbb{B}(a_j, \tau_i) \text{ for each } 1 \leq j \leq k. \end{cases}$$

Here $\lambda_{ji}(x) = \Theta_{ji}(x - a_{ji}) + a_j$ and $\lambda_{ji} \in C^\infty(\Omega, [0, 1])$, $\lambda_{ji} \equiv 1$ on $\mathbb{B}(a_j, \tau_i/2)$, $\lambda_{ji} \equiv 0$ on $\Omega \sim \mathbb{B}(a_j, \tau_i)$, and $|\nabla \lambda_{ji}| \leq 2\tau_i$. Then, for sufficiently large i and $\alpha' < \alpha/10$, we have

$$\|\eta_i^{-1} - \text{id}_\Omega\|_{\text{Lip}} + \|\eta_i - \text{id}_\Omega\|_{\text{Lip}} \leq c_{24}\delta_i^{1/8}, \quad \|u_i - v \circ \eta_i\|_{C^{0,\alpha'}} \leq c_{24}\delta_i^{1/4}. \quad (4.4)$$

This completes the proof of Theorem 1.3 for $p > 2$.

4.2. The case $p = 2$. Now let us modify the preceding arguments to deal with the critical case $p = 2$. The uniform boundary regularity Lemma 2.1 holds for $p = 2$, and the only place we used $p > 2$ is the Sobolev–Morrey embedding (3.4). So we just need to modify the arguments in §3.

Indeed, as the boundary maps $\psi, \text{id}_{\mathbb{S}^2} : \partial \mathbb{B} \to \mathbb{S}^2$ take values in the unit sphere, for $\psi \in C^{1,\alpha}(\partial \mathbb{B}, \mathbb{S}^2)$ we have $\|\psi - \text{id}_{\mathbb{S}^2}\|_{W^{1,\infty}(\mathbb{S}^2)} \leq c_{25}$, which depends only on the Lipschitz norm of ψ. Thus, applying the interpolation inequality

$$\|f\|_{L^q} \leq \|f\|_{L^2}^{2/q} \|f\|_{L^\infty}^{1-2/q}, \quad q > 2$$

to $f = \psi - \text{id}_{\mathbb{S}^2}$ and $f = \nabla \psi - \nabla \text{id}_{\mathbb{S}^2}$, we can find a constant $c_{26} = c(q, \|\psi\|_{\text{Lip}})$ such that

$$\|\psi - \text{id}_{\mathbb{S}^2}\|_{W^{1,q}(\mathbb{S}^2)} \leq c_{26}\delta^2_q =: \tilde{\delta}, \quad (4.5)$$

whenever $q \in [2, \infty]$ and

$$\|\psi - \text{id}_{\mathbb{S}^2}\|_{L^2(\mathbb{S}^2)} \leq \delta. \quad (4.6)$$

Now, one may repeat the arguments in §3.2, 3.3 with $\tilde{\delta}$ in place of δ. In this way, equations (4.2) become, respectively,

$$\left\|u - \Theta\left(\frac{x - a}{|x - a|}\right)\right\|_{C^{0,\alpha}} \leq c_{27}\delta^{1/2q},$$

$$|a| \leq c_{27}\delta^{1/q},$$

$$\|\Theta - \text{id}_{\mathbb{R}^3}\| \leq c_{27}\delta^{1/2q},$$

where $c_{27} = c(q, \|\psi\|_{\text{Lip}})$. Therefore, a straightforward adaptation of the proof in §4.1 gives us

$$\|\eta_i^{-1} - \text{id}_\Omega\|_{\text{Lip}} + \|\eta_i - \text{id}_\Omega\|_{\text{Lip}} \leq c_{28}\delta_i^{1/2q},$$

$$\|u_i - v \circ \eta_i\|_{C^{0,\alpha'}} \leq c_{28}\delta_i^{1/2q}$$

with $c_{28} = c(q, \|\psi\|_{\text{Lip}})$.

We fix an arbitrary $q \in [2, \infty]$ to conclude the proof of Theorem 1.3 for $p = 2$.

5. Remarks and Prospective Questions

1. It is interesting to investigate the boundary stability of minimising harmonic maps with axial symmetry (cf. Hardt–Lin–Poon [12], Hardt–Kinderlehrer–Lin [13], and Hardt–Li [14]). That
is, the map \(u : \mathbb{B} \rightarrow \mathbb{S}^2 \) is determined by its value on the “orbit space” \(\{(r, z) : 0 \leq r \leq 1, r^2 + z^2 \leq 1\} \), where \(r = \sqrt{x^2 + y^2} \) for \((x, y, z) \in \mathbb{B} \). In this case, the singularities are at most a discrete set on the \(z \)-axis, but the proof of the inequality (2.4) does not hold any more. The obstruction appears in an application of Fubini’s theorem for the projection \(\Pi_a \).

2. We proved the stability of energy-minimisers under \(W^{1,p} \)-perturbations of the boundary maps under suitable uniqueness conditions, \(p \geq 2 \); Hardt–Lin [10] proved for \(p = \infty \). This is in sharp contrast to the \(p < 2 \) case in [15] by Mazowiecka–Strzelecki; also see Almgren–Lieb [2]. In the nice recent work [14], Mazowiecka–Miśkiewicz–Schikorra proved (Theorem 7.1 therein):

Let \(\Omega \subset \mathbb{R}^3 \) be a bounded smooth domain. Let \(s \in]1/2, 1[\) and \(p \in [2, \infty[\). There are constants \(R, \gamma \) depending only on \(\Omega \) such that the following holds. Assume \(v \in W^{1,2}(\Omega; \mathbb{S}^2) \) is the unique minimising harmonic map with \(v|\partial \Omega = \psi \). For any \(\epsilon > 0 \), there is \(\delta = \delta(\Omega, \epsilon, \psi) > 0 \) such that if \(u \in W^{1,2}(\Omega, \mathbb{S}^2) \) is a minimising harmonic map with \(u|\partial \Omega = \varphi \) satisfying

\[
\sup_{\mathbb{B}(y, \rho) \in \Omega, \rho < R} \left\{ \rho^{p-2} |\psi|^{p} |\partial^{\gamma} \psi|_{W^{s,p}(\partial \Omega \cap \mathbb{B}(y, \rho))} \right\} < \gamma
\]

and

\[
|\psi - \varphi|_{W^{s,p}(\partial \Omega)} \leq \delta,
\]

then \(u \) has the same number of singularities as \(v \). Moreover, we have \(\|u - v\|_{W^{1,2}} \leq \epsilon \).

The above result in [14] by Mazowiecka–Miśkiewicz–Schikorra has weaker regularity assumption on the boundary map — \(\psi \in W^{s,p}(\partial \Omega, \mathbb{S}^2) \) — compared to \(\psi \in C^{1,\alpha}(\partial \Omega, \mathbb{S}^2) \) in Theorem [13] above. On the other hand, we bound the distance between \(u \) and \(v \) in a Hölder norm modulo bi-Lipschitz homeomorphisms, in comparison with the \(W^{1,2} \)-norm in [14].

References

[1] F. J. Almgren Jr., W. K. Allard, On the radial behaviour of minimal surfaces and the uniqueness of their tangent cones, Ann. of Math. 113 (1981), 215–265.
[2] F. J. Almgren Jr., E. H. Lieb, Singularities of energy minimizing maps from the ball to the sphere: examples, counterexamples and bounds, Ann. of Math. 128 (1988), 483–530.
[3] H.-J. Borchers, W. D. Garber, Analyticity of solutions of the \(O(N) \) nonlinear \(\sigma \)-model, Commun. Math. Phys. 71 (1980), 299–309.
[4] H. Brezis, J.-M. Coron, E. H. Lieb, Harmonic maps with defects, Commun. Math. Phys. 107, (1986), 649–705.
[5] R. Gulliver, B. White, The rate of convergence of a harmonic map at a singular point, Math. Ann. 283 (1989), 539–549.
[6] R. Hardt, D. Kinderlehrer, F.-H. Lin, Existence and partial regularity of static liquid crystal configurations, Commun. Math. Phys. 105 (1986), 547–570.
[7] R. Hardt, D. Kinderlehrer, F.-H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 297–322.
[8] R. Hardt, D. Kinderlehrer, F.-H. Lin, The variety of configurations of static liquid crystals, in: Variational methods (Paris, 1988), Progr. Nonlinear Differential Equations Appl., 4, pp.115–131, Birkhäuser Boston, Boston, MA, 1990.
[9] R. Hardt, S. Li, General axially symmetric harmonic maps, ongoing manuscript (2018).
[10] R. Hardt, F.-H. Lin, Stability of singularities of minimizing harmonic maps, J. Diff. Geom. 29 (1989), 113–123.
[11] R. Hardt, F.-H. Lin, Mappings minimizing the \(L^p \) norm of the gradient, Comm. Pure Appl. Math. 40 (1987), 555–588.
[12] R. Hardt, F.-H. Lin, C.-C. Poon, Axially symmetric harmonic maps minimizing a relaxed energy, Comm. Pure Appl. Math. 45 (1992), 417–459.
[13] S. Luckhaus, Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, *Indiana Univ. Math. J.* **37** (1988), 349–367.

[14] K. Mazowiecka, M. Miśkiewicz and A. Schikorra, On the size of the singular set of minimizing harmonic maps into the sphere in dimension three, *ArXiv preprint*: 1811.00515.

[15] K. Mazowiecka, P. Strzelecki, The Lavrentiev gap phenomenon for harmonic maps into spheres holds on a dense set of zero degree boundary data, *Adv. Calc. Var.* **10** (2017), 303–314.

[16] R. Moser, *Partial Regularity for Harmonic Maps and Related Problems*, World Scientific Publishing Co. Pte. Otd., Hackensack, NJ, 2005.

[17] T. Rivière, Everywhere discontinuous harmonic maps into spheres, *Acta Math.* **175** (1995), 197–226.

[18] R. Schoen, K. Uhlenbeck, A regularity theory for harmonic maps, *J. Diff. Geom.* **17** (1982), 307–335.

[19] R. Schoen, K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, *J. Diff. Geom.* **18** (1983), 253–268.

[20] L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, *Ann. of Math.* **118** (1983), 525–571.

[21] L. Simon, Isolated singularities of extrema of geometric variational problems, *Lecture Notes in Math.*, Vol. 1161, Springer, Berlin, 1985.

Siran Li: New York University – Shanghai, Office 1146, 1555 Century Avenue, Pudong District, Shanghai, China (200122)

NYU-ECNU Institute of Mathematical Sciences, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai, China (200062)

Current Address†: School of Mathematical Sciences, Shanghai Jiao Tong University, No. 6 Science Buildings, 800 Dongchuan Road, Minhang District, Shanghai, China (200240)

Email address: sl4025@nyu.edu