THERMAL WATERS OF AZERBAIJAN – SOURCES OF RENEWABLE ALTERNATIVE ENERGY

Gadjiev T.S., 1Babaev N.I., 2,3Rustamov Y.İ., 4Karimov V.M.

ABSTRACT. Azerbaijan that is situated in the east of the Caucasian region of the Alpine folding belt is rich in not only oil, gas, and mineral reserves, but in unique mineral water deposits as well.

There is over 1000 mineral and thermal water deposits in Azerbaijan. The majority of these deposits have not been exploited yet. These waters can be used for therapeutic purposes as well as an alternative source of renewable energy. This article is dedicated to ways to solve this problem. There are a high production rate (40-50 lit/sec) aquifers with water temperatures close to 100°C at depth of 3000m in Neogene and Paleogene rocks. Geochemical and hydrogeological properties of the mineral and thermal waters of Azerbaijan have separately been analyzed in the article for various regions and specific proposals on their efficient use have been put forward.

Thermal waters can be used in heating civil and industrial premises (T=40-60°C). Electrical energy can be produced from waters with temperatures above 80°C (Jarli, Precaspian-Guba, etc.). The presence of thermal waters distribution patterns in time and space associated with tectonic faults and magmatic processes has been proven from the scientific point of view.

Keywords: geothermal, debit, energy, mineral content, thermal, reserve, chemical, gradient, structure, regions.

Introduction. Azerbaijan is a country with its picturesque landscape, a curative climate with its mud volcanoes, high mountains, numerous lowlands, unique Naphtalan oil, and golden seaside beaches and countless mineral and thermal water sources.

The resort business in our Republic has recently become one of the major branches of national public health services, for implementation of improvement measures, oriented on the improvement of strengthening of health of the population, sporting and development of tourism.

In ancient times, at the dawn of medicine, Azerbaijan had been using thermal and mineral natural sources for treatment of illnesses - in Istisu, Turshsu, Naphthalan, Surakhani, Asrikderesy, Ibadisu, Meshasu, Gotursu, Chukhouryurd, Elisu and in other ancient bath-houses and primitive tubs, which were directly set up in places of an output of warm and hot mineral waters [1].

Numerous clinical experimental researches, established high balneal efficiency of mineral waters of the Republic (Istisu, Sirab, Turshsu, Surakhani, Shikova, Meshasu, Daridag, Arkevan, Galaalti and many other). Mineral waters with a daily production rate of over 100 mln. liters sensually
erupt around 300ths tons of different salts on a day surface of the Earth, that can be widely utilized in the chemical industry, pharmacology and different branches of economics.

Now scientists from many countries are anxious that the non-renewable fuel resources of our planet steadily exhaust, and in connection with the rapid development of industry and agriculture in the XXI century, consumption of fuel energy will grow extremely with fast paces. Therefore, further fundamental and applied scientific researches on the usage of alternative energy sources - solar, wind and thermal waters - gain today the relevant and prime value.

The Azerbaijan Republic has considerable reserves of thermal waters (fig. 1). Thermal energy of thermal waters, including open ten thousand earlier drilled oil and gas wells, can be successfully utilized in different industries and agriculture. The underground thermal waters are the main storage and carrier means of plutonic heat, due to their mobility and greatest thermal capacity.

MATERIALS AND METHODS. In connection with the continuous growth of the world power consumption and gradual exhaustion of its conventional sources, such as oil, gas, black coal, the attention of scientists is centered upon searching new energy sources. We consider that in Azerbaijan’s circumstances thermal waters, alongside wind and solar energy, are valuable as well.

The advantage of thermal waters is, that their reserves continuously renew, there is a capability to obtain heat, energy directly in place. They are valuable for curative properties and the capabilities of obtaining valuable chemical elements.

These days, in connection with crisis of fuel and energy resources, wider use of the Earth’s plutonic heat for electric power production (Italy, Iceland, New Zealand, USA, Japan, Bulgaria, Czechoslovakia, Hungary and other) in agriculture, municipal services, chemical industry, and for medical purposes as well has started abroad.
DISCUSSION. Today to produce cost-effective electric power it is expedient to use temperature of a heat carrier not below 80°C. The Azerbaijan Republic is rich in thermal waters, which are known in a number of regions of the Greater and Lesser Caucasus, Absheron peninsula, Talish, and the vast Kurlowlandand Precaspian-Guba areas [2]. Several wells had been drilled for oil and gas and no hydrocarbons were discovered. These well could be used for the production of thermal waters within the abovementioned areas. Nowadays negotiations are being conducted with Azerbaijan Agency on Alternative and Renewable Energy for the production of electrical power from high temperature well waters.

The Lesser Caucasus introduces especial concerns regarding a geothermal mode. Ancient thermal water sources have always been well known in its various parts. These waters are mainly associated with Quaternary rocks of magmatic nature.

The known resort zone Istitisu (Kalbajar region) is stretched more than 40 km along the Terter river is characterized by an abnormal thermal environment. The inverse geothermal gradient on the southern slope (health resort Istitisu and Bagirsakh field) is reduced up to 2-5 m, and less, and for the entire resort region is close to 18 m, i.e. much less than the average for the earth crust [3].

The area is complicated by large tectonic faults and numerous carbon dioxide shows are observed therein. According to data obtained from numerous wells drilled in the area, the temperature of thermal waters on Bagirsakh field is fast increasing and reaches 80°C at depth of about 100 m [4].
The total production rate of water in the region of the Upper Istisu is 800-900 thl/day, Lower Istisu – 25ths/l/day. The elemental composition of water is carbon, chloride, sulfide, hydrocarbonate, sodium structure.

The thermal waters in Masalli, Lenkeran, and Astara regions are characterized by a regional fault intersecting the entire mountainous Talish. Waters with 44-65°C temperatures are encountered at depth of 500m in wells drilled in the Arkevan water field in the Masalli region. The temperature of waters in different sources of this region changes from 50°C up to 64°C. The production rate of wells is 10-15 l/sec. Water mineralized (17-18 g/l) chloride-calcium structure. In Lenkeran area (region of Meshasu, Ibadisu, Gavzavua, and Khavtxoni sources) several wells with depth 465-1000m were drilled, which have opened waters with temperature up to 50°C. The temperature of water in sources 30-43°C, production rate up to 10 l/sec. In regions of sources, Astara wells with depth 300-500m opened thermal waters with temperature 35°C-50°C.

Water mineralization reaches 18-29g/l and they are of sodium chloride content. The total production rate of sources in wells in Talish is 23625m³/day. In the Precaspian-Guba zone (southern slope of Greater Caucasus) 8 drilled wells (fig. 2) opened thermal waters with a total production rate of 112360m³/day, temperature 50°C-84°C. In Khacmaz region a single thermal water well only has a production rate 1228m³/day, with temperature 58°C [5].

Thermal waters with temperature 50-81°C, with a total production rate of 30000 m³/day have been obtained from prospecting boreholes in the Precaspian-Guba zone from Mesocenozoic deposits a single well 3 reached thermal waters with temperature 81°C (on the surface), and with a production rate 4500 m³/day. Temperature change as a function of depth in the area is reflected in fig. 3.

On Absherons peninsula thermal waters are encountered in wells at different depths. Thus, the temperature of salt waters to the east of Hovsan village from the drilled wells reaches 100°C. In Bibi-Heybat, which is immediate closesto Baku city, waters with salinity 16.5g/l, with temperature 71°C and production rate 450ths/1/day are of chloride-hydrocarbonate sodium content [6].

There are large artesian basins with the composite distribution of temperature (with high temperature manifestation) and the structure of water in the Kur lowland. These thermal waters are associated with Absherons age deposits, have high pressure and are of sodium content [7].

Also we recommend consider papers [8-21].

The Kur lowland has fair supplies of thermal waters, it is possible to use them completely in a cost-effective way and to heat the civil and industrial facilities, obtain chemically rare elements, and also in the balneal purposes.
Many wells drilled for oil and gas in Babazanan, Neftchala, Khilly, Mishovdag were void and stroke thermal waters, instead.

There is a well 3 in Jarli field (Kurdemir region) with a depth of 3050m and with a production rate of 20000m3/day and temperature reaching 100°C on the surface. Information on mineral and thermal waters for some regions is submitted below in tables 1 through 6:
Table 1
Probable reserves of thermal waters Republic of Azerbaijan

Region	Reserves, m3/day	Temperature, °C
Absheron	2830	17 – 68
Precaspian-Guba	81000	40 – 85
Kur lowland	170000	30 – 100
Talishmountainous area	23400	13.5 - 67.4
Lesser Caucasus	14500	8.5 – 71
Nakhchivan	16800	7.5 – 52
Greater Caucasus	9090	11 – 85

Table 2
Main characteristics of several of high production rate wells of geothermal waters of Azerbaijan

Geothermal regions	Number of oil and gas bearing structures	Temperature0C	Value of flow,W/m^2	Factors that have an impact on the value of heat flow
		3000m deep	4000m deep	Back-ground Abnormal
Precaspian-Guba	15	90	100	Low HF (30mBr/m3) levels are typical for the region. HF reaches 50mBr/m2 towards the south-east of the Siyazan monocline, what’s associated with fragmentation of the basement by deeply rooted faults of N-E direction.
		20	90	Relatively high HF associated with the impact of faults of N-E direction, that supply deep-lying fluids.
Absheron	23	74	88	The thermal background is mainly formed due to the combined effect of conductive well as convective components of HF.
Baku Archipelago	15	66	75	The thermal background is mainly formed due to a conductive component of HF.
Low Kur	10	64	76	High HT is caused by fragmentation of the basement transverse and longitudinal faults.
Shamakhi-Gobustan	6	80	100	
Table 2 continued

	Yevlakh Agjabedi					The thermal background is mainly formed due to convective component of HF
		8	75	97	20	50
Ganja		8	99	129	30	70
						High HT is caused by the presence of pre- Lesser Caucasian deep-seated from N-W to S-E

Probable reserves of thermal waters in Precaspian-Guba zone

Geothermal zones	Probable reserves, m³/day	Heat power potential Q, cal/year	Fuel economy, ton/year
Yalama	3006	87774	17556
Khudat	13500	296935	52662
Begimdag-Tekchay	6918	163966	32793
Telebi	1153	23123	4625
Total	**24576**	**511698**	**107586**
Table 4

General hydrogeological and hydrochemical characteristics of the mineral and thermal waters of the Absheron age aquifer complexes in Precaspian-Guba zone

Well number on a map	Well location	Sampling interval, m	Water temperature, C (surface/depth)	Well flow rate, l/sec	Static level, m	pH	Mineralization, gr/l	Ionic content (mg/l, mg-equ, %mg-equ)	Gas content, %	Microelements, mg/l							
3	Khachmaz region, in a forest slightly aside from the seaside, on Nabran-Yalama road	513-607	29/29	10,2	20,0	7.5	1.2	842	13.80	16.0	0.33	285	482.0	0.41	16	H₂S-1.2	H₂S-1.6
				62.2	1,5	36.3	94.6	20.98	1.8	3.6							
				256	4,19	29.0	84.0	3.65	1.05	30							
				412-442	25/25	8.4	0.3	58.0	1.20	1.05	40						
				70.0	18.0	12.0	54.4	1.05	15.8	30							
				402	15.1	15.8	54.4	1.05	15.8	30							
5	Khachmaz region, east of Baku-Derbend railway, west of the Khanoba village	420-480	24/26	0.5	Gravity flow	-	0.5	878	6.20	74.0	1.54	42.0	180.0	8.82	13	7.4	H₂S-1.2
				69.0	17.8	13.2	83.8	8.8	13	7.4							
				412-442	25/25	8.4	0.3	58.0	1.20	1.05	40						
				70.0	18.0	12.0	54.4	1.05	15.8	30							
				402	15.1	15.8	54.4	1.05	15.8	30							
				412	15.1	15.8	54.4	1.05	15.8	30							
7	Khachmaz region, east of the Lejet village	412-442	25/25	3.0	2.5	8.4	0.3	256	4,19	58.0	1.20	0.81	29.0	84.0	13.0	40	1.0
				70.0	18.0	12.0	54.4	1.05	15.8	30							
				402	15.1	15.8	54.4	1.05	15.8	30							
				412	15.1	15.8	54.4	1.05	15.8	30							
9	Gusar region, on a bank of the Khanarkh channel, 1,5km to the north-east of the Lejet village	338-456	23/28	93.0	40.3	7.4	0.3	322	5.28	52.0	1.08	0.8	11.0	53.0	23.0	50	2.5
				304	16.0	4.0	34.8	1.89	28.6	37							
				402	15.1	15.8	54.4	1.05	15.8	30							
				412	15.1	15.8	54.4	1.05	15.8	30							
				402	15.1	15.8	54.4	1.05	15.8	30							
				412	15.1	15.8	54.4	1.05	15.8	30							
	Location Description	Distance	Temperature	pH	Conductivity	Calcium	Magnesium	Iron	Sodium	Chloride	Bicarbonate	bicarbonate (free)	Silica	O₂-10	CO₂-8		
---	--	----------	-------------	----	--------------	---------	-----------	------	--------	----------	--------------	-------------------	--------	--------	--------		
10	Khudat region, 1,8 km to the south-west from the Khudat station	500-525	7.0	40.5	8.95	0.4	244	120.0	37.0	111.0	12.0	34.0	53.2	2.49	1.05		
12	Gusar region, left bank of the channel, to the south-west of the Lower Lejet village	715-765.5	28.0	40.0	-	0.6	246	205.7	47.1	164.2	1.0	46.8	4.03	4.27	1.33		
14	Khachmaz region, 2 km to the north-west of the Khezri village	479-500	3.0	0.7	8.8	0.8	220	282.0	205.0	302.0	3.0	16.0	3.60	4.82	5.78		
15	Khachmaz region, to the south-west of the Suduroba village	619-679	7.0	51.8	7.6	1.3	342	401.0	274.0	454.0	7.0	27.0	5.60	8.34	7.72		
Table 5
Characteristics of wells drilled for mineral and thermal waters of Precaspian-Guba zone

№	Area	Well No	Welldepth	Welllocation	Testresults	Filter, m	Flow-rate, m³/day	Temperature, ºC	Mineralization degree, gr/l
1	Yalama	110	3003	Yalama settlement of Xachmaz region		2940-2840	80	38	48
						2806-2622	310	48	44
						1940-1755	617	44	32
						1523-1440	300	35	18
						1440-1192	230	34	14
2	Yalama	111	1850	Salimoba village of Xachmaz region	Sukhoy layer//41	1778-1464	210,7	36	44,5
					Sukhoy layer//36,9	1444-1147	200	34	9,9
						1140-946	30	28	4,2
						880-732	117,2	27,5	1,8
3	Nabran	6	1664	Nabran settlement of Xachmaz region		1609-1483	314,2	48	57,1
						1403-1140	254,1	46	4,8
						1124-981	216,6	45	4,1
						880-732	105,4	34	4,1
4	Nabran	7	1845	Nabran settlement of Xachmaz region		1845-1516	34	10,5	56
						1480-1250	157	31	5,1
						1231-943	261,8	45	4,5
						930-753	85	34	4,5
5	Nabran	9	1852	Nabran settlement of Xachmaz region		1810-1785	54	26	16,5
						1676-1480	157	31	12,2
						465-1287	261,8	45	5,1
						1007-808	85	34	4,5

Table 6
The Basic performance of wells of geothermal waters of Azerbaijan

Region	Field	Well	Test	Produce-	Tempe	Age	Pr, MPa
name	№	intervals, m	ion rate, m³/day	rate of water, °C	(P/Pcond.unit)		
----------------	----	--------------	------------------	------------------	----------------		
Yalama	1	3168-3157	5000	87	K₂	1,0	
	22	3216-3285	40	100	J₂	1,1-1,5	
	9	3140-3285	30	100	J₂	"-"	
	-	2370-2965	500	100	J₂	"-"	
	17	3138-3965	500	130	J₂	"-"	
Khudat	10	2461-2940	2000	98	J₂	"-"	
	11	2337-3215	6350	96	J₂	"-"	
	112	2603-2875	2500	97	J₂	28,6(1,04)	
	116	2730-2999	4500	100	J₂	"-"	
	20	2590-3038	2000	92	J₂	"-"	
Precaspi-	113	1895	234,7	50	N₂²ps		
Guba							
Khachmaz	4	3671	5,0	82	K₂		
	115	2500	960	59	N₂²ps		
Nabran	7	1245	304,4	48	N		
	12	1925	549	50	N₂²ps		
	110	3005	456	82			
	111	1140	100,6	41	N₂²ps		
Muradkhanli	50	4171-4367	_	125	P₂	51(1,2)	
	33	4360	100	120	K₂	57,4(1,32)	
	19	4258-4250	144	125	K₂	65,5(1,53)	
	3	3236-3333	720	_	K₂	_	
	44	4093-4061	160	148	K₂	56,08	
	10	3987-3338	3	120	K₂	57,6	
	70	3857-3875	11	145	K₂	61,2	
	68	3903-3900	_	145	K₂	66,8	
	12	4358-4279	_	120	K₂	72,5	
	40	5010-4452	_	124,7	K₂	59,4	
Jafarli	7	3930-4802	_	118,1	P₂	56,0	
	33	4360-4130	_	120	P₂	70,0	
Bozgoubu	1	4991-4884	_	122,2	P₂	70,0	
Amirarkh	6	5387	_	139,4	K₂	75,5	
Zardab	1	4330-4367	430	_	K₂	68,0(1,55)	
Garajallli	1	3005-3483	890	_	K₂	_	
Sorsor	3	3618-3582	700	90	K₂	55,7(1,54)	
	3	4000	20000	101	K₂	46,5(1,16)	
	8	3920-3992	860	_	K₂	_	
Duzdag	6	4163-4270	_	128	K₂	46,2(1,1)	
Agjabedi	6	1771-1676	2000	18	K₂	62,5(1,37)	
Ganja	11	588-576	6000	76	N₂²ps	~1,0	
Delime mmedli	11	588-576	6000	76	N₂²ps	~1,0	
CONCLUSION. The geothermal conditions in the areas mentioned above change under general effect of many factors influential on the density of heat flow. The detected anomaly of a geothermal mode can be explained by the lithological structure of rocks, tectonic faults, mud volcanoes, and dynamics of underground waters.

The deep faults create favorable conditions for heat conduction from internal areas of the earth to its surface, reshaping local thermal anomalies.

The thermal waters of Azerbaijan, as a whole, are not involved in industrial development. They will be used with a primitive application for balneal purposes only. However, there is a positive experience, when at the end of the XX century 10 greenhouses with the use of thermal waters were built in Lenkeran, and crops are yielded 2 times a year in the abovementioned a greenhouses.

2 pilot farms were established at the end of the 60s of the last century in the Astara-Lenkeran-Masalli area, each of which possessed greenhouse with metal pipes of 40-55 mm in diameter, where hot water circulated and heated air and soil. The spacing interval between adjunct pipes was approximately 100 sm.

5 greenhouses with a total area of 700 m² were constructed in the Masalli region. Water from drilled wells with temperature 44-60°C and total production rate of 5-6 l/sec. Cucumber and tomato sprouts were planted in December 1967 and crop was obtained in March 1968.

In Alashin – a region of thermal sources (Astara region) - 4 greenhouses with a total area of 1000 m² were constructed. Water, with temperature 45-58°C and total production rate 15-18 l/sec. Sprouts of tomato and cucumber had been planted in 1968, the crop is obtained at the beginning of May.

The first experience of usage of thermal waters for heating of greenhouses has shown large prospects of the method and also the capability of obtaining 2-3 crops annually at minimum costs.

It is necessary to separately note that there are more 1000 natural outputs of mineral waters in Azerbaijan. More than 50% of these sources have temperatures more than 42°C, which demonstrates
their considerable temperature at depth and mixing of thermal waters with cold waters in the upper horizons.

The usage of underground mineral waters in Azerbaijani resorts play an important role in recovery capacity for people suffering from diseases, such as, to be necessarily noted, atherosclerosis, idiopathic hypertension, coronary failure etc., and several valuable fields of mineral waters have temporarily remained in lands occupied by Armenia.

All the abovementioned giving grounds for a statement on the necessity of acceptance of complex measures on the involvement of huge resources of underground mineral and thermal waters of Azerbaijan in the national economy.

Underground waters, including, mineral and thermal waters, are invaluable in the development of the chemical industry. They can be utilized to obtain a several chemical agents (boric acid, iodine, bromine, strontium, etc.). Some water deposits in Nakhchivan (Sirab, Daridag) already produce carbon dioxide. Taking into account the high concentration of rare chemical elements (arsenic, lithium, antimony, selenium) their production is possible as well.

Thermal waters can be used in heating civil and industrial premises (T=40-60°C). It was put into practice in the Talish-Lenkeran region while heating greenhouses and administrative premises using waters with temperature 40-66°C, production rate 160000 m³/day from the depth of 200-1000m.

These waters can be widely used for curing various diseases. They are currently being used in low volume in Kalbajar (Istisu), Masalli (Yeddigardash), Kurdemir (Jarli), Shamakhi (Chukhur-Yurd). Extraction of I, Br, B, Sr, Mg, and other chemical elements from thermal waters is commercially advantageous. Electrical energy can be produced from waters with temperatures above 80°C (Jarli, Precaspian-Guba, etc.).

The presence of thermal waters distribution patterns in time and space associated with tectonic faults and magmatic processes has been proven from the scientific point of view. These
waters are the source of reliable information in the elaboration of the history of geologic development of the area, which cannot be denied.

Availability of data and materials

The data and materials are authentic and reliable.

Acknowledgements

Thanks to the laboratory staff of A Institute of Mathematics and Mechanics of NAS of Azerbaijan State University of Oil and Industry, Institute of Control Systems of NAS of Azerbaijan

Funding

Not applicable

Author information

Affiliations

1, 4Azerbaijan State University of Oil and Industry, 1Babaev N.I., nibabayev@yandex.ru
2Institute of Control Systems of NAS of Azerbaijan,
3Institute of Mathematics and Mechanics of NAS of Azerbaijan, 2, 3Rustamov Y.İ., terlan56@mail.ru
1, 4Azerbaijan State University of Oil and Industry, 4Karimov V.M. vaqifkerimov68@mail.ru

Corresponding author

Correspondence to prof. T. Gadjiev

Competing interests

There is no dispute of interest with others.

REFERENCE

1. Alizade A, et al.. Geology of Azerbaijan. 2008; 328 p.
2. Tagiyev I.I., Babayev N.I. Azerbaijan thermal water reserves and their rational use. Data of the Intern. Scient. Conf. Dedic. to the 90th Anniv. of the ASOIU. 2010; 5; pp. 621-628.
3. Babayev N. I., Tagiyev I.I., Mehdiyev E.I., Water energy serving the country’s economy. J. Ecol. and Water Econ. 2016; 3; pp. 14-19.
4. Tagiyev I.I., Babayev N.I. Present state of Azerbaijan mineral and thermal waters and concept of development of balneology and energetics. J. Eurasia. Sci. Unity of Theo. and Prac. 2015;12; pp. 81-85.
5. Babayev N.I., Tagiyev I.I. New information on chemical content of mineral and thermal waters of Azerbaijan’s Quba-Khachmaz. - Euros. Union of Sci. 2015; 11.pp. 46-52.
6. Tellam J, Rivett M and Israfilov R, Urban Groundwater Management and Sustainability. J. Works of Geol. Instit. 2006; 146 p.
7. Babayev N. I., Tagiyev I.I. Some geochemical and hydrogeological regularities of formation and distribution of mineral waters of Azerbaijan. Intern.J. Euroasia. 2017; pp. 206-209.
8. Askerov A.G. Prospects for the use of hydrothermal sources in Azerbaijan. Scientific Notes, Azgosun University. Baku; 1962; №2; pp. 13-22.
9. Buachidze I.M. Classification of thermal waters of the Caucasus. Thesis of the report. International Symposium. "Sukhumi." 1985; p.137
10. Brodsky A.A. Basics of hydrogeochemical method of search for sulfide deposits. 1964; Moscow: Nedra; 167 p.
11. Verdiev R.G. Water resources p. Eastern Caucasus in terms of climate change. 2002. Baku; 224 p.
12. Geology of Azerbaijan. Volume VIII. Hydrogeology. 2008; Baku; Izd. Nafta-Press. 380 p.
13. Kengerliinskaya GB Maps of thermal waters of the Azerbaijan SSR. Moscow; 1963, 354p.
14. Krainov S.R. Geochemistry of rare elements in underground waters (in connection with geochemical searches of sites). 1973; Moscow: Nedra; 331 p.
15. Kashkai MA, Tagiev I.I. "Thermal waters". Hydrogeology of the USSR. 1969; Volume XII of Azerbaijan; Moscow "Nedra"; p. 267-277.
16. Tagiev I.I, Babaev N.I. "Modern state and possibility of using mineral and thermal waters of Azerbaijan". Scientist. 3an. NII geotechnological problems. oil, gas and chemicals. 2019; Baku; 253p.
17. Tagiev I.I, Babaev N.I. "Problems of use and protection of mineral water of the Azerbaijan SSR. News of higher technical educational institutions of Azerbaijan. 2016; Baku; № 2; p. 7-13.
18. Tagiev I.I.,Ismailov T.A., AlievF.Sh. "Underground waters of the Republic of Azerbaijan, their resources, state of use and problems of protection from pollution and depletion". Ministry of Science and Technical Committee Ros. Fed. Bseros. Institute of Scientific and Technical Information (VINITI). 1996; Moscow; p. 28-65.
19. Tagiev I.I., Babaev N.I. «Some geochemical and hydrogeological, regularities of formation and distribution of mineral waters of Azerbaijan». XXXIX International scientific-practical conference, «Actual problems in modern science and their solutions». 2017; Moscow; p. 15-19.
20. Tagiev I.I., Babaev N.I. "Some geochemical and hydrogeological laws of formation and distribution of mineral waters of Azerbaijan". Eurasian Scientific Union of Science and Modernity, XXIII International Scientific Conference. 2017; Moscow; 271p.
21. Tagiev I.I, Babaev N.I. "Natural regime of mineral water sources in Azerbaijan". Information of the highest technical educational institutions of Azerbaijan. 2017; Baku; p. 7-13.