Application of silver antibacterial nanolayers for hard contact lenses coating

Krassimir Koev*1,2, Nikolay Donkov1, Nadya Stankova1, Hristo Najdenski3, Timerfayaz Nurgaliev1, Rumen Nikov1, Latchezar Avramov1

1Institute of Electronics, Tzarigradsko shosse 72 blvd, Sofia 1784, Bulgaria, 2Department of ophthalmology, Medical University Sofia, 8 Byalo More str., Sofia, Bulgaria, 3The Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev str., 1113 Sofia, Bulgaria
e-mail address: k00007@abv.bg

Abstract. The antibacterial action of Ag-doped Al2O3 nanolayers, deposited by RF reactive magnetron sputtering on hard contact lenses, was established. Synthesis of Ag/Al2O3 protective coatings is necessary for suppressing the infections caused by pathogenic microorganisms following the placement of hard contact lenses. The chemical composition, morphology and optical properties of the coatings were studied. Microbiological studies conducted of the nanocomposite Ag/Al2O3 layers against Gram-positive and Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus) proved their antibacterial effects. Intense action of the layers was found against Pseudomonas aeruginosa – full inactivation after 2 hours; Escherichia coli - full inactivation after 5 hours; Staphylococcus aureus – full inactivation after 24 hours. Our experimental findings suggest a very promising application of such antibacterial Ag/Al2O3 nanolayers regarding the reduction of eye infections when the hard contact lenses are used.

1. Introduction
Contact lenses are widely used to treat myopia, hyperopia, astigmatism, and presbyopia. Different types of lenses have been applied in the practice: rigid or “hard” contacts - made from polymethyl methacrylate (PMMA); rigid gas-permeable lenses (RGP's) - made from plastics combined with other materials, which allow oxygen in the air to pass directly through the lens; soft contact lenses - made from hydrated polymer, hydroxyl-ethyl methacrylate (HEMA) [1].

Developing eye infections is a potential danger for people wearing contact lenses [2]. Concerning the eye infections, the contact lens are associated with several risk factors such as microbial keratitis and conjunctivitis [2].

Previous studies suggested that patients who do not follow the contact lens hygiene recommendations run greater risk for corneal inflammatory events [3-5].

Although, the hard contact lenses have been used less than the soft lenses, they are the most appropriate choice for some eye diseases like astigmatism and keratokonus. While, the rigid gas permeability lenses have been used to perform ortho-k, a non-surgical procedure designed to improve vision.

It is well known that silver (Ag) particles possess antibacterial properties [5-8]. They act as antioxidants, blocking cellular processes and leading to bacterial cell death. Already, the antibacterial activity of Ag
nanoparticles has been determined against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli and P. aeruginosa bacteria and Candida albicans by many authors [9-11].

The silver nanocomposite layers are a promising tools for preventing eye infection. As a broad-spectrum agent, it kills a wide range of microorganisms in low levels without associated toxicity [11,12]. The antibacterial power of silver nanoparticles has been widely documented [13-20], although the exact mechanism causing it is not known well. It is believed that the silver provokes inactivation of enzymes essential for the respiratory chain of the pathogens, or generates hydroxyl radicals [15,16] that, in turn, would cause damage to the pathogen.

The purpose of this study was to synthesize Ag/Al$_2$O$_3$ nanocomposite layers on hard contact lenses with a broad-spectrum antibacterial effect on Gram-positive and Gram-negative bacteria; and to investigate the chemical composition, optical and morphological properties of the layers as well as their antibacterial activity.

2. Experimental

2.1. Material synthesis and Analytical methods

The nanocomposite thin layers of Ag/Al$_2$O$_3$ were synthesized on hard contact lenses and on glass substrates (to facilitate the analytical analyses) by RF magnetron co-sputtering of Ag and Al under the following conditions: frequency 14 MHz; working pressure in the vacuum system was fixed at \sim 5.5 Pa with optimal mixture of Ar and O$_2$ gasses. The optimal concentration of Ag in the Al$_2$O$_3$ matrix was obtained by precise control of the process parameters during the deposition.

The surface elemental composition of the nanolayers on the glass samples was investigated by X-ray photoelectron spectroscopy (XPS) on an ESCALAB MkII (VG Scientific) electron spectrometer at a base pressure in the analysis chamber of 5×10^{-8} Pa (during the measurement 1×10^{-6} Pa), using an AlKα X-ray source (excitation energy of 1486.6 eV). The thickness and the optical transmission of the layers in UV-Visible spectrum were determined by using a Woollam M2000D rotating compensator spectroscopic ellipsometer and an Ocean Optics HR 4000 spectrophotometer, respectively. Scanning electron microscopy (SEM) (SEM/FIB Lyra/Tescan dual beam system) was used to investigate the coatings’ surface morphology.

2.2. Antibacterial activity assay

Microbiological assay was carried out to examine the antibacterial properties of the coatings in regard to deactivation of Gram-positive and Gram-negative bacteria. The strains used in these experiments were: Staphylococcus aureus strain 29213 and Escherichia coli strain 35218 of the American Collection of Cell Cultures (ATCC); and Pseudomonas aeruginosa strain 1390 of the collection of “Stefan Angeloff” Institute of Microbiology, Bulgarian Academy of Sciences.

500 μL of microbiological suspension of the respective microorganisms in saline with concentration of 1×10^6 CFU/mL (colony-forming units per mL) was plated in 24 wells plate for cell culture. Uncoated hard contact lenses were placed in the control wells and the hard contacts lenses covered with the test coating of Ag/Al$_2$O$_3$ were placed in the sample wells.

Samples and controls were incubated at a temperature of 37 °C and shaken continuously. At predefined intervals of 0, 2, 5, and 24 hours, the samples were taken to determine the number of viable microorganisms. This was performed by seeding ten-fold diluted solutions of the incubation mixtures and plating in 25 μL nutrient medium of Tryptic Soy Agar for microbiology (Sigma-Aldrich). After 24 hours of incubation at 37 °C, the number of bacterial colonies emerged. All the results were expressed in CFU/mL.

2.2.1. Statistics

Each experiment was performed in triplicate and the data were presented as a mean ± standard deviation (SD). The difference between two means was compared by a two-tailed unpaired Student’s test. The values of P<0.05 were considered as significant.
3. Results

3.1 Analytical characterisations

The thickness measured of the Ag/Al₂O₃ layers synthesized and deposited on the substrates was about 18 nm was. All layers were highly transparent in the visible light spectrum with transmittance of about 95%. The optical transparency is great advantage, since it makes the as-obtained layers suitable for application like transparent coatings on eye lenses. The SEM imaging (figure 1) showed a uniform surface morphology without cracks, which determines the possibility for successful applications as coatings on eye lenses. Quasi spherical nanoparticles with average size distribution about 100 nm were formed. This leads to an increase of the active surface area of the layers thus further promoting their antibacterial function as protective coating.

![SEM image](image)

Figure 1. SEM image of the surface morphology of the Ag/Al₂O₃ nanocomposite layer

XPS measurements were performed to assess the surface chemical composition and the corresponding concentration of the Ag in the layers synthesized. The binding energies of peaks in the high resolution XPS spectra are assigned as Ag3d, Al2p, O1s and Si2p shown in Table 1 [21,22]. Based on these values the atomic concentrations are calculated and shown in the Table 1 as well.

Photoelectron peaks	O1s	Al2p	Si2p	Ag3d
Concentration [at.%]	33.20	29.29	28.13	9.38
Binding Energy [eV]	531.7	74.4	103.6	368.7

3.2 Antibacterial test

The antibacterial activity of the layers deposited on hard contact lenses was examined by microbiological tests as described above.

The most effective activity of the layers was found against *Pseudomonas aeruginosa*. Complete elimination of pseudomonads occurred within two hours (figure 2). Reduction of 4 log in bacterial count
of *Escherichia coli* was observed at the 2nd hour. The bacteria were eliminated completely after the fifth hour (figure 3). A ten-fold reduction of the *Staphylococcus aureus* bacterial count was observed at the fifth hour, and complete inactivation of the bacteria was established at the 24th hour (figure 4).

Figure 2. Number of viable *Pseudomonas aeruginosa* cells incubated for 24 hours at temperature of 37 °C with pristine eye lenses (control) and Ag/Al\textsubscript{2}O\textsubscript{3} layers deposited on eye lenses (sample). Complete inactivation at the 2nd hour

Figure 3. Number of viable *Escherichia coli* cells incubated for 24 hours at temperature of 37 °C with pristine eye lenses (control) and Ag/Al\textsubscript{2}O\textsubscript{3} layers deposited on eye lenses (sample). Complete inactivation at the 5th hour
Table 1. Number of viable S. aureus cells (CFU/ml)

Time	Control	Sample
0 h	1000000	100000
2 h	10000	100
5 h	1000	0.1
24 h	100	0.1

Figure 4. Number of viable Staphylococcus aureus cells incubated for 24 hours at temperature of 37 °C with pristine eye lenses (control) and Ag/Al₂O₃ layers deposited on eye lenses (sample). Complete inactivation at the 24th hour.

4. Discussion
The antimicrobial efficiency of silver nanoparticles was reported by Salomoni R. et al. [17,18] on microbial keratitis causing microorganisms. Authors Maryam Shayani et al. [19] explored the effect of monomer composition on silver nanoparticles' (SNPs) binding capacity of hydrogels and evaluated their antibacterial efficacy. They established that SNP-loaded hydrogels demonstrate excellent antimicrobial effects against P. aeruginosa and S. epidermidis after soaking in 10 and 20 ppm SNP suspensions. In their work the SEM images revealed inhibitory effect of SNPs against biofilm formation on the surface of the hydrogels. We obtained similar results for Ag/Al₂O₃ coatings on hard lens surface.

Our research found that the Ag/Al₂O₃ coatings exhibited antibacterial action against Gram-positive and Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus).

5. Conclusions
Optically transparent antibacterial Ag/Al₂O₃ nanocomposite layers were synthesized. The Ag/Al₂O₃ coating were deposited by using RF magnetron sputtering on the hard contact lenses. Antibacterial effects against Pseudomonus aerogginosa, E. Coli, and Staphylocococcus aeroginosa were established. The antimicrobial properties of the surface of Ag doped Al₂O₃ synthesized nanocomposite products are very promising for many biomedical applications.

6. Acknowledgements
The work was supported in part by the Bulgarian National Science Fund under project DFNIB 02/9 “Development of bio-photonics as the basis of oncological theranostics”.

References
[1] Findik F 2011 A case study on the selection of materials for eye lenses ISRN Mechanical Engineering 2011 Article ID 160671
[2] Cope JR, Collier SA, Rao MM, Chalmers R, Mitchell GL, Richdale K, Wagner H, Kinoshita BT, Lam DY, Sorbar L, Zimmerman A, Yoder JS and Beach MJ 2015 Contact lens wearer
demographics and risk behaviors for contact lens-related eye infections - United States, 2014

MMWR 64 (32) 865–70

[3] Stapleton F, Edwards K, Keay L, Naduvilath Th, Dart JKG, Brian G and Holden B 2012 Risk factors for moderate and severe microbial keratitis in daily wear contact lens users Ophthalmology 119 (8) 1516–21

[4] Zimmerman A, Richdale K, Mitchell G, Kinoshita B, Lam D, Wagner H, Sorbara L, Chalmers R, Collier S, Cope J, Rao M, Beach M and Yoder J 2017 Water exposure is a common risk behavior among soft and gas-permeable contact lens wearers Cornea 36 (8) 995–1001

[5] Dart JK, Radford CF, Minassian D, Verma S and Stapleton F 2008 Risk factors for microbial keratitis with contemporary contact lenses: a case-control study Ophthalmology 115 (10) 1647–54

[6] Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ and Nakazato N 2016 Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity Nanotechnology: Nanomedicine, Biology and Medicine 12 (3) 789-99

[7] Kascatan-Nebioglu A, Pannzer MJ, Tessier CA, Cannon CL and Youngs WJ 2007 N-Heterocyclic carbene–silver complexes: A new class of antibiotics Coord. Chem. Rev. 251 884-95

[8] Le Ouay B and Stellacci B 2015 Antibacterial activity of silver nanoparticles: A surface science insight Nano Today 10 339-54

[9] Polívková M, Hubáček T, Staszek M, Švorčík V and Siegel J 2017 Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology Int. J. Mol. Sci. 18 (2) 419

[10] Siegel J, Polivkova M, Staszek M, Kolarova K, Rimpelova S and Svorcik V 2015 Nanostructured silver coatings on polyimide and their antibacterial response Mater. Lett. 145 87-90

[11] Polivkova M, Štrublová V, Hubáček T, Rimpelová S, Švorcik V and Siegel J 2017 Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate Mater. Sci. Eng. C 72 512-18

[12] Chernousova S and Epple M 2013 Silver as antibacterial agent: ion, nanoparticle, and metal Angew. Chem. Int. Ed. 52 (6) 1636-53

[13] Gordon O, Slenters TV, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, Landmann R and Fromm KM 2010 Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction Antimicrob Agents Chemother. 54 (10) 4208-18

[14] Ferraris M, Balagna C, Perero S, Moila M, Ferrari S, Baino F, Battiato A, Manfredotti C, Vittone E and Verne E 2012 Silver nanocluster/silica composite coatings obtained by sputtering for antibacterial applications IOP Conf. Ser.: Mater. Sci. Eng. 40 012037

[15] Hachicho N, Hoffmann P, Ahlert K and Heipieper HJ 2014 Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2 FEMS Microbiol. Lett. 355 71-77

[16] Sotiriou GA and Pratsinis SE 2011 Engineering nanosilver as an antibacterial, biosensor and bioimaging material Curr. Opin. Chem. Eng. 1 (1) 3-10

[17] Salomoni R, Léo P and Rodrigues MFA 2015 Antibacterial activity of silver nanoparticles (AgNPs) in Staphylococcus aureus and cytotoxicity effect in mammalian cells The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs Edition: 1ª Editors: Formatex Research Centre Formatex Microbiol. Series 5 p 851–857

[18] Salomoni R, Léo P, Montemor AF, Rinaldi BG and Rodrigues MFA 2017 Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa Nanotechnol. Sci. Appl. 10 115-21.

[19] Rad MS, Khameneh B, Sabeti Z, Mohajeri ŠA and Bazzaz BSF 2016 Antibacterial activity of silver nanoparticle-loaded soft contact lens materials: the effect of monomer composition Current Eye Research 41 (10) 1286-93
[20] Siegel J, Staszek M, Polivkova M, Reznickova A, Rimpelova S, Svorcik V 2016 Green synthesized noble metals for biological applications Mater. Today Proc. 3 608-16

[21] Pargar F, Kolev H, Koleva DA, and Van Breugel K 2018 Potentiometric response of Ag/AgCl chloride sensors in model alkaline medium Advances in Materials Science and Engineering (Hindawi Publishing Corporation) 2018 Article ID 8135492

[22] V. K. Kaushik VK 1991 XPS core level spectra and Auger parameters for some silver compounds J. Electron Spectros. Relat. Phenomena 56 (3) 273-77