Novel Forms of Lipodystrophy

Why should we care?

Lipodystrophies are a heterogeneous group of conditions in which individuals never develop or progressively lose adipose tissue in parts or all of their bodies (1,2) (Table 1). In this commentary, we will make the case that 1) defining lipodystrophy is a work in progress; 2) not all forms of lipodystrophy are very rare; 3) lipodystrophy and obesity can occur simultaneously and their metabolic consequences are similar and possibly synergistic; 4) leptin treatment can have impressive therapeutic effects; and 5) these conditions provide useful paradigms to explore the role of the adipose tissue on metabolic homeostasis and to investigate pathways leading from distinct genetic mutations to very different clinical phenotypes.

What is lipodystrophy? A recent consensus statement by the American Association of Clinical Endocrinologists acknowledges the difficulty in determining quantitative criteria and concludes that “lipodystrophy is a condition characterized by regional or total loss or absence of subcutaneous fat. This can occur either in the presence or absence of metabolic abnormalities, and with diverse clinical presentations. While generalized forms of lipodystrophy are often diagnosed during childhood or adolescence, some forms of lipodystrophy are often diagnosed during presentations. While generalized forms of lipodystrophy have impressive therapeutic effects; and 5) these conditions provide useful paradigms to explore the role of the adipose tissue on metabolic homeostasis and to investigate pathways leading from distinct genetic mutations to very different clinical phenotypes.

In this issue of Diabetes Care, Strickland et al. (5) describe a novel form termed “partial lipodystrophy of the limbs” (PLL). In comparison with other forms of lipodystrophy, which are extremely rare (e.g., congenital generalized lipodystrophy has an estimated prevalence of 1 in 10 million), this condition (PLL), similar to lipodystrophy associated with antiretroviral treatment of HIV (6), may affect larger numbers of individuals. The BMI of people with PLL is described to cover a wide range from normal to obese. Affected individuals have disproportionately slender forearms with or without slender calves (and at times thighs) compared with the rest of their bodies. Since huge physiological variations in quantity and distribution of body fat exist among healthy humans, it is necessary to provide evidence that a variant is harmful in order to classify it as pathological. Strickland et al. make the case that patients with PLL are more insulin resistant and have worse glycemia than others with similar degrees of obesity or type 2 diabetes, implying that this lipodystrophy has clinical significance. With greater awareness and more detailed clinical studies including laboratory testing and determination of body composition, it will become evident whether this phenotype is a circumscribed entity. Questions to be addressed are whether adipose tissue in the distal extremities is lost or never gained, whether these patients are leptin deficient or have other adipokine abnormalities, and whether affected individuals benefit from early recognition and intervention to lower their risk of developing diabetes or to more aggressively treat their overt diabetes. Thus far, the etiology, heredity, and prevalence of this condition remain to be determined.

The novel description of a presumably more common form of lipodystrophy is contrasted by the recent identification of an exceedingly rare form, part of an auto-inflammatory condition: CANDLE (chronic neutrophilic dermatosis with lipodystrophy and elevated temperature) syndrome (7). Infants as young as 2 weeks of age (and at the latest by 12 months of age) present with skin rashes, accompanied by episodic fevers, anemia, and eventual development of partial lipodystrophy, predominantly affecting the face, wrists, ankles, and distal parts of fingers and toes. Joint contractions may develop early, and affected children fail to thrive. Again, incorrect diagnoses ranging from Lyme disease to cutaneous myelogenous leukemia have led to unnecessary and harmful treatments such as whole-body radiation and prolonged suffering of the affected child. CANDLE syndrome is caused by mutations in the proteasome gene PSMB8, which had been reported earlier by Garg et al. (8) to cause JUMP syndrome (joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced childhood onset lipodystrophy) in adults (8,9). A promising treatment trial (clinical trial reg. no. NCT01724580) is underway at the National Institutes of Health to test whether the Janus kinase 1/2 inhibitor baricitinib is beneficial. Janus kinases phosphatidate activated cytokine receptors,
Lipodystrophy subtype	Genetic cause	Clinical presentation	Metabolic features	Associated conditions	Approximate population frequency	Fat distribution
Congenital generalized lipodystrophy (Berardinelli-Seip syndrome)	Recessive: AGPAT2, BSCL2, CAV1, PTRF	Muscular appearance with or without hepatomegaly and umbilical prominence in infancy	Severe insulin resistance/diabetes, acanthosis, hypertriglyceridemia with or without pancreatitis, PCOS/ hyperandrogenism with infertility (women), steatohepatitis	Cardiomyopathy, bone cysts, proteinuria, focal segmental glomerulosclerosis	<1 per million (1)	![Image](image1.png)
Acquired generalized lipodystrophy (Lawrence syndrome)	None	Gradual loss of subcutaneous fat in childhood or adulthood; may be preceded by panniculitis	Severe insulin resistance/diabetes, acanthosis, hypertriglyceridemia with or without pancreatitis, PCOS/ hyperandrogenism with infertility (women), steatohepatitis	Autoimmune diseases (e.g., hepatitis, type 1 diabetes, juvenile dermatomyositis, Hashimoto thyroiditis), lymphoma, immunodeficiency	250 cases reported (1)	![Image](image2.png)
Familial partial lipodystrophy (Kobberling and Dunnigan syndromes)	Dominant: LMNA, PPARγ, AKT2, PLIN1; recessive: CIDEC	Unusual body fat distribution, insulin resistance, PCOS often noted during adolescence. Men have much milder phenotype and are rarely diagnosed	Insulin resistance/diabetes, acanthosis, hypertriglyceridemia with or without pancreatitis, PCOS/ hyperandrogenism with reduced fertility (women), steatohepatitis	Rarely myopathy, cardiomyopathy, cardiac conduction abnormalities (1)	<1 per million (1)	![Image](image3.png)
Acquired partial lipodystrophy (Barraquer-Simons syndrome)	Not yet determined	Gradual loss of subcutaneous fat progressing in a cephalocaudal direction with variable lower limit with or without increased fat accumulation in lower body	Usually mild or absent	Autoimmune diseases, MPGN type 2, low complement 3 + C3 nephritic factor	<1 per million (1)	![Image](image4.png)

Continued on p. 2144
which subsequently recruit STAT transcription factors known to modulate gene transcription. Thus, it is proposed that the inflammatory cascade is interrupted.

Making the correct diagnosis may have vital consequences for patients with lipodystrophy. For familial forms of lipodystrophy, genetic counseling is essential, and in all cases, patients should be screened for known comorbidities, including but not limited to metabolic abnormalities such as diabetes, hypertriglyceridemia, and steatohepatitis, as well as cardiomyopathy (10) and kidney disease (11). Making a diagnosis of lipodystrophy may also be critical for medical management. Conventional therapies for hyperlipidemia or diabetes are often ineffective, especially in patients with extreme metabolic disturbances. Because patients with lipodystrophy have decreased adipose tissue, they also have low levels of adipokines. Leptin was the first of these adipokines to be discovered in 1994 (12) and is a major regulator of appetite and metabolism. As a result of leptin deficiency, patients with lipodystrophy have hyperphagia, which exacerbates ectopic lipid deposition and insulin resistance. In 2000, the first patient with lipodystrophy received recombinant leptin to correct leptin deficiency. Since then, between 100 and 200 patients with non-HIV-associated lipodystrophy have been treated worldwide with recombinant leptin. Initial clinical trials have assessed leptin’s ability to increase fat mass and improve insulin resistance. In 2004, a large multicenter study demonstrated that leptin treatment resulted in increased total body fat mass and lean body mass in patients with lipodystrophy (13). These findings suggested that leptin treatment may be beneficial for patients with lipodystrophy.

Table 1—Continued

Lipodystrophy subtype	Genetic cause	Clinical presentation	Metabolic features	Associated conditions	Approximate population frequency	Fat distribution
CANDLE/JMP syndrome	Recessive: PSMB8	Loss of subcutaneous fat affecting face, wrists, ankles, and distal parts of fingers and toes	Varying degrees of insulin resistance and hypertriglyceridemia (at times severe), accumulation of visceral fat with disproportionately little hepatic steatosis	Infantile skin rashes (neutrophilic dermatitis), fever, anemia, high inflammatory markers	<100 cases reported (7)	
Partial lipodystrophy of the limbs	None known	Lack of subcutaneous fat affecting predominately forearms or forearms together with calves, occasionally thighs	Type 2 diabetes, insulin resistance, hypertriglyceridemia, elevated transaminases (indicative of hepatic steatosis)	Acanthosis nigricans, PCOS	Unknown but probably “not uncommon” (5)	
HIV/ART-associated lipodystrophy	None	Gradual loss of subcutaneous fat in face, limbs, and buttocks, with increased fat in trunk, abdomen, and dorsocervical area	Insulin resistance/diabetes, dyslipidemia, hypertension	Increased risk with prolonged exposure to stavudine and zidovudine	13–70% of patients with HIV receiving ART (6)	

ART, antiretroviral therapy; MPGN, membranoproliferative glomerulonephritis; PCOS, polycystic ovary syndrome.
been deduced from animal and in vitro model systems and include upregulation of tumor necrosis factor-α (15). To date, leptin replacement has not been shown to promote inflammation in humans, but the number of treated subjects is too small to come to a definite conclusion. Furthermore, leptin has been successfully used in a few patients with quiescent juvenile dermatomyositis without exacerbating the underlying disease. Despite leptin’s beneficial effects on metabolism, some patients express disappointment because leptin treatment does not lead to restoration of adipocytes. Fat cell transplantation and synthetic fillers have become viable options for some individuals, especially for those suffering from severe facial fat loss. Active investigation is also focusing on the potential therapeutic role of adipose stem cells (16).

In summary, greater awareness and correct diagnosis of previously described and novel forms of lipodystrophy may spare patients an arduous voyage through misdiagnoses and unnecessary treatments. Certain lipodystrophy-associated genotypes may in fact be more common in milder clinical conditions, such as metabolic syndrome. A worldwide registry of patients with lipodystrophy and lipodystrophy-related genetic mutations would certainly benefit our concerted efforts in learning about the natural history, developing better diagnostic criteria, and providing safe and effective treatment.

**Kristina I. Rother, MD, MHC
Rebecca J. Brown, MD, MHC**

From the Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.

Corresponding author: Kristina I. Rother, kristina rother@nih.gov.

DOI: 10.2337/dc13-0561

© 2013 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

Acknowledgments—This work was supported by the Intramural Research Program of the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.

No potential conflicts of interest relevant to this article were reported.

References

1. Garg A. Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab 2011;96:3313–3325.
2. Arioglu E, Rother KL, Reitman ML, Premkumar A, Taylor SI. Lipodystrophy syndromes: when ‘too little fat’ is a clinical problem. Pediatr Diabetes 2000;1:155–168.
3. Handelsman Y, Oral EA, Bloomgarden ZT, et al. The clinical approach to the detection of lipodystrophy - an AACE consensus statement. Endocr Pract 2013;19:107–116.
4. Dutour A, Roll P, Gaborit B, et al. High prevalence of lipoapathies among patients with metabolic syndrome. Hum Mol Genet 2011;20:3779–3786.
5. Strickland LR, Guo F, Lok K, Garvey WT. Type 2 diabetes with partial lipodystrophy of the limbs: a new lipodystrophy phenotype. Diabetes Care 2013;36:2247–2253.
6. Domingo P, Estrada V, López-Aldeguer J, Villaroya F, Martínez E. Fat redistribution syndromes associated with HIV-1 infection and combination antiretroviral therapy. AIDS Rev 2012;14:112–123.
7. Liu Y, Ramot Y, Torrela A, et al. Mutations in proteasome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum 2012;64:895–907.
8. Garg A, Hernandez MD, Sousa AB, et al. An autosomal recessive syndrome of joint contractures, muscular atrophy, microcytic anemia, and panniculitis-associated lipodystrophy. J Clin Endocrinol Metab 2010;95:E58–E63.
9. Agarwal AK, Xing C, DeMartino GN, et al. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet 2010;87:866–872.
10. Lupsa BC, Sachdev V, Lungu AO, Rosing DR, Gorden P. Cardiomyopathy in congenital and acquired generalized lipodystrophy: a clinical assessment. Medicine (Baltimore) 2010;89:245–250.
11. Musso C, Javor E, Cochran E, Balow JE, Gorden P. Spectrum of renal diseases associated with extreme forms of insulin resistance. Clin J Am Soc Nephrol 2006;1:616–622.
12. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:453–452.
13. Chong AY, Lupsa BC, Cochran EK, Gorden P. Efficacy of leptin therapy in the different forms of human lipodystrophy. Diabetologica 2010;53:27–35.
14. Bingham A, Mamyrina G, Rother KL, et al.; Childhood Myositis Heterogeneity Study Group. Predictors of acquired lipodystrophy in juvenile-onset dermatomyositis and a gradient of severity. Medicine (Baltimore) 2008;87:70–86.
15. Procaccini C, Jirillo E, Matarese G. Leptin as an immunomodulator. Mol Aspects Med 2012;33:35–45.
16. Zeve D, Tang W, Graff J. Fighting fat with fat: the expanding field of adipose stem cells. Cell Stem Cell 2009;5:472–481.