COMPLETENESS FOR RESTALL’S LOGIC AND AN APPLICATION TO TRUTH THEORY

BEN MIDDLETON
UNIVERSITY OF NOTRE DAME
BMIDDLET@ND.EDU

Abstract. I provide a sound and complete natural deduction system for a logic first defined by Restall [6]. I show that adding a transparent truth predicate to the system does not introduce paradoxes. The proof of non-paradoxicality uses a construction recently introduced by Field, Lederman and Øgaard [1] to generate a class of semantically closed models for Restall’s logic.

1. Introduction

Constant domain basic first-order logic \((\text{BQL}_\text{CD}) \) is the constant domain first-order extension of Visser’s basic propositional logic [7]. The Kripke models for \(\text{BQL}_\text{CD} \) treat \(\rightarrow \) as a strict conditional but do not require that accessibility is reflexive. Consequently, modus ponens is invalid in \(\text{BQL}_\text{CD} \). Restall [6] defined an extension \(\text{BQL}_\text{CD}^R \) of \(\text{BQL}_\text{CD} \) in which modus ponens is valid by only allowing reflexive worlds to serve as counterexamples to logical consequence. However, Restall was unable to prove completeness for \(\text{BQL}_\text{CD}^R \). In this paper, I provide a natural deduction system \(\mathcal{N}\text{BQL}_\text{CD}^R \) for \(\text{BQL}_\text{CD}^R \) and prove soundness and completeness. I then show that adding the rules

\[
[t = t] \quad \frac{ t_1 = t_2 \quad \phi(t_1) }{ \phi(t_2) } \quad [t_1 = t_2 \lor (t_1 = t_2 \rightarrow \bot)] \quad \frac{ \Gamma \phi \equiv \Gamma \psi \equiv }{ \bot } \phi \neq \psi
\]

\[
\frac{ \phi }{ T^\tau \phi \land } \quad \frac{ T^\tau \phi \land }{ \phi }\]

to \(\mathcal{N}\text{BQL}_\text{CD}^R \) results in a logic of truth \(\text{BQL}_\text{CD}^{RT} \) which is transparent, in the sense that \(\phi \) and \(T^\tau \phi \land \) are intersubstitutable everywhere in \(\text{BQL}_\text{CD}^{RT} \), and non-paradoxical, in
the sense that if \((\Gamma, \phi)\) is valid in \(BQL_{CP}^{RT}\) and neither \(\rightarrow\) nor \(T\) occurs in \(\Gamma \cup \{\phi\}\) then every classical model of \(\Gamma\) which interprets \(=\) and \(\lceil\phi\rceil\) correctly is also a model of \(\phi\). The conservativity proof uses a construction recently introduced by Field, Lederman and Øgaard [1] to generate a suitable class of semantically closed \(BQL_{CD}\) models.

2. Restall’s Logic

2.1. Model Theory. Let \(L\) be a first-order language with primitive operators \(\top, \bot, \land, \lor, \rightarrow, \forall, \exists\). The definition of an \(L\)-model \(M\) is given in [4]. We write \(\Gamma \models \phi\) iff for every \(L\)-model \(M\) and every world \(w \in M\): \(w \models \Gamma\) only if \(w \models \phi\). Constant domain basic first-order logic (\(BQL_{CD}\)) is the logic defined by \(\models\). A world \(w \in M\) is called reflexive if \(w < w\). We write \(\Gamma \models_R \phi\) iff for every \(L\)-model \(M\) and every reflexive world \(w \in M\): \(w \models \Gamma\) only if \(w \models \phi\). Restall’s logic (\(BQL_{CD}^R\)) is the logic defined by \(\models_R\). There are two notable differences between \(BQL_{CD}\) and \(BQL_{CD}^R\): (1) unlike in \(BQL_{CD}\), modus ponens is valid in \(BQL_{CD}^R\) and (2) unlike in \(BQL_{CD}^R\), conditional proof is valid in \(BQL_{CD}\). Conditional proof fails in \(BQL_{CD}^R\) due to the fact that a reflexive world may see an irreflexive world. Thus, even though \(\phi \land (\phi \rightarrow \psi) \models_R \psi\), \(\not\models_R \phi \land (\phi \rightarrow \psi) \rightarrow \psi\).

2.2. Proof Theory. A natural deduction system \(\mathcal{N}BQL_{CD}\) for \(BQL_{CD}\) is given in [4]. In order to use methods and results from [4], we suppose \(L\) is countable and work in the extension \(L^+\) of \(L\) obtained by adding \(\omega\)-many new constant symbols \(\{a_i\}_{i \in \omega}\) to \(L\) (\(a_i\) is treated in proofs as the name of an arbitrarily chosen object). Let \(\Pi\) be a proof-tree with root labelled \(\psi\). Suppose \(\Pi\) has a leaf labelled by an undischarged occurrence \(\phi^i\) of \(\phi\). We say \(\phi^i\) is unsafe iff \(\phi^i\) occupies the following position in \(\Pi\):

\[
\begin{array}{c}
\vdots \\
\phi^i \\
\vdots \\
\alpha \rightarrow \beta \\
\vdots \\
\beta \\
\vdots \\
\psi \\
\vdots
\end{array}
\]

The natural deduction system \(\mathcal{N}BQL_{CD}^R\) for \(BQL_{CD}^R\) consists of all trees of (possibly discharged) \(L^+\)-sentences constructed in accordance with the following inference
rules, where no unsafe occurrence of an open assumption may be discharged:

\[
\begin{array}{c}
\frac{\top}{\phi} \quad (\bot\text{-Elim}) \\
\frac{\phi \land \psi}{\phi \land \psi} \quad (\land\text{-Elim}) \\
\frac{[\phi]}{\phi \lor \psi} \quad (\lor\text{-Elim}) \\
\frac{[\phi]}{\phi \lor \psi} \quad (\lor\text{-Elim}) \\
\frac{\phi \lor \psi}{\phi \lor \psi} \quad (\lor\text{-Elim}) \\
\frac{\phi \rightarrow \psi}{\phi \rightarrow \psi} \quad (\rightarrow\text{-Elim}) \\
\end{array}
\]

In \(\forall\text{-Int}\), \(a_i\) does not occur in \(\phi\) or in any open assumption in the main subproof. In \(\exists\text{-Elim}\), \(a_i\) does not occur in \(\phi, \psi\) or in any open assumption besides \(\phi(a_i)\) in the right main subproof. We write \(\Gamma \vdash \phi\) iff there exists a proof of \(\phi\) from \(\Gamma\) in \(\mathcal{N}BQL_{\text{CD}}^R\). \(\mathcal{N}BQL_{\text{CD}}\) is the system which results from removing \(\rightarrow\text{-Elim}\) from \(\mathcal{N}BQL_{\text{CD}}^R\). We write \(\Gamma \vdash \phi\) iff there exists a proof of \(\phi\) from \(\Gamma\) in \(\mathcal{N}BQL_{\text{CD}}\). Since \(\mathcal{N}BQL_{\text{CD}}\) does not contain \(\rightarrow\text{-Elim}\), proofs in \(\mathcal{N}BQL_{\text{CD}}\) do not contain unsafe occurrences of open assumptions. Consequently, the discharge rules are unrestricted in \(\mathcal{N}BQL_{\text{CD}}\). The strategy for proving that \(\vdash_{\mathcal{R}}\) is sound and complete with respect to \(\models_{\mathcal{R}}\) is to first

\footnote{By stipulating that only \textit{sentences} are linked by inference rules, we determine which free variables, if any, a subformula may contain (e.g. \(\phi\) may not contain free variables in Internal \(\forall\text{-Int}\)).}
“reduce” proofs in $\mathcal{N}BQL^R_{CD}$ to proofs in $\mathcal{N}BQL_{CD}$ and then exploit the fact, proved in [4], that \vdash is sound and complete with respect to $|=$. We first list some facts about \vdash needed in the reduction proof.

Lemma 1 (Distribution). $\phi \land (\psi \lor \chi) \vdash (\phi \land \psi) \lor (\phi \land \chi)$.

Lemma 2 (Infinite Distribution). $\phi \land \exists v \psi \vdash \exists v (\phi \land \psi)$.

Lemma 3 (\land-Release). $\phi \land \psi \rightarrow \chi \vdash \phi \rightarrow (\psi \rightarrow \chi)$.

Let $\square \phi$ abbreviate $\top \rightarrow \phi$.

Lemma 4 (\forall-Embedding). $\forall v \square^n \phi \vdash \square^n \forall v \phi$.

Proof. By induction on n. The base case $n = 0$ is trivial. For the induction step we have

\[
\begin{align*}
\forall v \square^{n+1} \phi & \quad \text{(induction hyp.)} \\
\top \rightarrow \forall v \square^n \phi & \quad \text{(Internal \forall-Int)} \\
\square^n \forall v \phi & \quad \text{(\forall-Ints)} \\
\square^{n+1} \forall v \phi & \quad \text{(\forall-Ints)}
\end{align*}
\]

$\square^n \forall v \phi$.

Lemma 5 ($\square \land$-Int). $\square^n \phi_1, ..., \square^n \phi_m \vdash \square^n \bigwedge_i \phi_i$.

Proof. By induction on n. The base case $n = 0$ is trivial. For the induction step we have

\[
\begin{align*}
\bigwedge_i \square^n \phi_i & \quad \text{(\land-Elims)} \\
\square^n \phi_1 & \quad \text{(\land-Elims)} \\
\square^n \phi_m & \quad \text{(\land-Elims)} \\
\square^{n+1} \phi_1, ..., \square^{n+1} \phi_m & \quad \text{(induction hyp.)} \\
\bigwedge_i \square^n \phi_i & \quad \text{(\land-Ints)} \\
\bigwedge_i \square^n \phi_i \rightarrow \square^n \bigwedge_i \phi_i & \quad \text{(\land-Ints)} \\
\square^{n+1} \bigwedge_i \phi_i & \quad \text{(induction hyp.)}
\end{align*}
\]

$\square^{n+1} \bigwedge_i \phi_i$.

Lemma 6 ($\square \land$-Elim). $\square^n \bigwedge_i \phi_i \vdash \square^n \phi_j$.

Proof. By induction on \(n \). The base case \(n = 0 \) is trivial. For the induction step we have

\[
\frac{\Box^n \bigwedge_i \phi_i \quad \Box^n \phi_j}{\Box^{n+1} \phi_j} \quad \text{(Internal Transitivity)}
\]

(\(\Box \wedge \)-Elim)

\[
\frac{\Box^n \bigwedge_i \phi_i \quad \Box^n \phi_j}{\Box^n \psi} \quad \text{(Internal Transitivity)}
\]

Lemma 7 (Boxing). If \(\phi_1, \ldots, \phi_m \vdash \psi \) then \(\Box^n \phi_1, \ldots, \Box^n \phi_m \vdash \Box^n \psi \).

Proof. Suppose \(\phi_1, \ldots, \phi_m \vdash \psi \). We prove the lemma by induction on \(n \). The base case \(n = 0 \) is trivial. For the induction step we have

\[
\frac{\Box^n \bigwedge_i \phi_i \quad \Box^n \bigwedge_i \phi_i \rightarrow \Box^n \phi_j}{\Box^{n+1} \psi} \quad \text{(Internal Transitivity)}
\]

Lemma 8 (Partial Reduction). If \(\Pi \in \mathcal{NBQL}_{CD}(\Sigma[\cdot]) \) has open assumptions in \(\Sigma \) then \(\Pi \in \mathcal{NBQL}_{CD}(\Sigma[n]) \) for some \(n \).

For sentences \(\Sigma \subseteq \mathcal{L}^+ \), let \(\mathcal{NBQL}_{CD}(\Sigma[\cdot]) = \mathcal{NBQL}_{CD} \) and, for \(n \geq 0 \), let \(\mathcal{NBQL}_{CD}(\Sigma[n]) \) denote the natural deduction system obtained by adding the rule

\[
\frac{\Sigma}{\phi \rightarrow \psi}
\]

\(\mathcal{NBQL}_{CD}(\Sigma[\cdot] - 1) \) to \(\mathcal{NBQL}_{CD} \) and keeping the discharge rules unrestricted. An easy induction on \(n \) verifies that \(\mathcal{NBQL}_{CD}(\Sigma[n]) \subseteq \mathcal{NBQL}_{CD}(\Sigma[n+1]) \) for all \(n \). We write \(\Gamma \vdash_{\Sigma[n]} \phi \) iff there exists a proof of \(\phi \) from \(\Gamma \) in \(\mathcal{NBQL}_{CD}(\Sigma[n]) \).

Lemma 8 (Partial Reduction). If \(\Pi \in \mathcal{NBQL}_{CD}^R \) has open assumptions in \(\Sigma \) then \(\Pi \in \mathcal{NBQL}_{CD}(\Sigma[n]) \) for some \(n \).
Proof. By induction on the construction of proofs in \mathcal{NBQL}_{CD}. The base case is easy. The inductions steps are also easy except for \rightarrow-Int, \vee-Elim and \exists-Elim. We do \exists-Elim. \rightarrow-Int and \vee-elim are similar.

\exists-Elim Let Π be a proof of the form

$$
\begin{array}{c}
\Sigma \\
\vdots \\
\vdots \\
\exists v \phi \\
\psi
\end{array}
$$

in \mathcal{NBQL}_{CD}, with open assumptions in Σ. Let Π_L denote the left main subproof and Π_R denote the right main subproof. By the induction hypothesis, there exist n, m such that $\Pi_L \in \mathcal{NBQL}_{CD}(\Sigma[\{n\}])$ and $\Pi_R \in \mathcal{NBQL}_{CD}(\Sigma \cup \{\phi(a_i)\}[m])$. There are two cases to consider.

Case 1 $\phi(a_i) \in \Sigma$. Then $\Pi \in \mathcal{NBQL}_{CD}(\Sigma[\{m\}])$.

Case 2 $\phi(a_i) \notin \Sigma$. Then $\phi(a_i)$ never occurred unsafely in the construction of Π_R. So $\Pi_R \in \mathcal{NBQL}_{CD}(\Sigma[n])$. Hence $\Pi \in \mathcal{NBQL}_{CD}(\Sigma[\{m\}])$. \square

To state the next lemma concisely, let $\bigwedge \emptyset = \top$.

Lemma 9 (Relative Deduction). For $\Sigma' \subseteq \Sigma$, $|\Gamma| < \omega$, $n \geq 0$: if $\Sigma', \Gamma \vdash_{\Sigma[n]} \phi$ then $\Sigma' \vdash \square^n(\bigwedge \Gamma \rightarrow \phi)$.

Proof. Suppose the lemma holds for all $m < n$. We prove by induction on the construction of proofs in $\mathcal{NBQL}_{CD}(\Sigma[n])$ that the lemma holds for n.

Base Cases Suppose we have a one-line proof in $\mathcal{NBQL}_{CD}(\Sigma[n])$ of ϕ from $\Sigma' \cup \Gamma$, where $\Sigma' \subseteq \Sigma$. There are three cases to consider.

Case 1 $\phi = \top$. Then

$$
\begin{array}{c}
[\phi] \\
\vdash_{\text{Ints}} \\
\square^n(\bigwedge \Gamma \rightarrow \phi)
\end{array}
$$

is a proof of $\square^n(\bigwedge \Gamma \rightarrow \phi)$ from Σ' in \mathcal{NBQL}_{CD}.

Case 2 $\phi \in \Sigma'$. Then

$$
\begin{array}{c}
\phi \\
\vdash_{\text{Ints}} \\
\square^n(\bigwedge \Gamma \rightarrow \phi)
\end{array}
$$

is a proof of $\square^n(\bigwedge \Gamma \rightarrow \phi)$ from Σ' in \mathcal{NBQL}_{CD}.
Case 3 $\phi \in \Gamma$. Then

\[
\begin{array}{c}
\frac{[\land \Gamma]}{\land\text{-Elims}} \\
\phi \\
\frac{\land \Gamma \rightarrow \phi}{\rightarrow\text{-Ints}} \\
\square^n(\land \Gamma \rightarrow \phi)
\end{array}
\]

is a proof of $\square^n(\land \Gamma \rightarrow \phi)$ from Σ' in \mathcal{NBQL}_{CD}.

Induction Steps There are seven cases to consider.

Case 1 Suppose we have a proof of the form

\[
\begin{array}{c}
\Sigma', \Gamma \\
\vdots \\
\hat{\alpha} \\
\phi
\end{array}
\]

in $\mathcal{NBQL}_{CD}(\Sigma[n])$, where $\Sigma' \subseteq \Sigma$ and the final inference is $\bot\text{-Elim}$, $\land\text{-Elim}$, $\lor\text{-Int}$, Internal $\forall\text{-Int}$, Internal $\exists\text{-Elim}$, $\forall\text{-Elim}$, CD or $\exists\text{-Int}$. Then, by the induction hypothesis and Boxing applied to Internal Transitivity, we can find a proof of the form

\[
\begin{array}{c}
\Sigma' \\
\vdots \\
\hat{\alpha} \\
\phi
\end{array}
\]

in \mathcal{NBQL}_{CD}.

Case 2 Suppose we have a proof of the form

\[
\begin{array}{c}
\Sigma', \Gamma \\
\vdots \\
\hat{\alpha} \\
\beta \\
\phi
\end{array}
\]

in $\mathcal{NBQL}_{CD}(\Sigma[n])$, where $\Sigma' \subseteq \Sigma$ and the final inference is $\land\text{-Int}$, Internal Transitivity, Internal $\land\text{-Int}$ or Internal $\lor\text{-Elim}$. Then, by the induction hypothesis and Boxing
applied to Internal ∧-Int and Internal Transitivity, we can find a proof of the form

\[
\begin{array}{c}
\Sigma' \\
\vdots \\
\Box^n(\bigwedge \Gamma \rightarrow \alpha) \\
\vdots \\
\Box^n(\bigwedge \Gamma \rightarrow \alpha \land \beta) \\
\vdots \\
\Box^n(\bigwedge \Gamma \rightarrow \phi)
\end{array}
\]

in \(\mathcal{N} \mathcal{B} \mathcal{Q} \mathcal{L}_{\text{CD}} \).

Case 3 Suppose we have a proof of the form

\[
\begin{array}{c}
\Sigma', \Gamma \\
\vdots \\
\phi \lor \psi \\
\vdots \\
\chi \\
\vdots \\
\chi
\end{array}
\]

in \(\mathcal{N} \mathcal{B} \mathcal{Q} \mathcal{L}_{\text{CD}}(\Sigma[n]) \), where \(\Sigma' \subseteq \Sigma \). There are two subcases.

Subcase 1 \(\Gamma = \emptyset \). Then, by the induction hypothesis and Boxing applied to Internal \(\lor \)-Elim and Internal Transitivity, we can find a proof of the form

\[
\begin{array}{c}
\Sigma' \\
\vdots \\
\Box^n(\phi \rightarrow \chi) \\
\vdots \\
\Box^n(\phi \lor \psi \rightarrow \chi) \\
\vdots \\
\Box^n(\top \rightarrow \chi)
\end{array}
\]

in \(\mathcal{N} \mathcal{B} \mathcal{Q} \mathcal{L}_{\text{CD}} \).
Subcase 2 \(\Gamma \neq \emptyset \). Then, by Distribution, the induction hypothesis and Boxing applied to Internal \(\lor \) -Elim and Internal Transitivity, we can find a proof of the form
\[
\Sigma' \quad \Sigma'
\]
\[
\Box^n(\bigwedge \Gamma \land \phi \to \chi) \quad \Box^n(\bigwedge \Gamma \land \psi \to \chi)
\]
\[
\Box^n(\bigwedge \Gamma \land (\phi \lor \psi) \to (\bigwedge \Gamma \land \phi) \lor (\bigwedge \Gamma \land \psi)) \quad \Box^n((\bigwedge \Gamma \land \phi) \lor (\bigwedge \Gamma \land \psi) \to \chi)
\]
\[
\Box^n(\bigwedge \Gamma \land (\phi \lor \psi) \to \chi)
\]
in \(\land \mathbf{BQL}_{CD} \). So, by the induction hypothesis and Boxing applied to Internal \(\land \) -Int and Internal Transitivity, we can find a proof of the form
\[
\Sigma' \quad \Sigma'
\]
\[
\Box^n(\bigwedge \Gamma \to \bigwedge \Gamma) \quad \Box^n(\bigwedge \Gamma \to \phi \lor \psi)
\]
\[
\Box^n(\bigwedge \Gamma \to \bigwedge \Gamma \land (\phi \lor \psi)) \quad \Box^n(\bigwedge \Gamma \land (\phi \lor \psi) \to \chi)
\]
\[
\Box^n(\bigwedge \Gamma \to \chi)
\]
in \(\land \mathbf{BQL}_{CD} \).

Case 4 Suppose we have a proof of the form
\[
\Sigma', \Gamma, [\phi] \quad \psi \quad \phi \to \psi
\]
in \(\land \mathbf{BQL}_{CD}(\Sigma[n]) \), where \(\Sigma' \subseteq \Sigma \). There are two subcases.

Subcase 1 \(\Gamma = \emptyset \). Then, by the induction hypothesis, we can find a proof of the form
\[
\Sigma' \quad \Sigma'
\]
\[
\Box^n(\phi \to \psi)
\]
\[
\Box^n(\top \to (\phi \to \psi)) \quad (\to \text{-Int})
\]
in \(\land \mathbf{BQL}_{CD} \).
Subcase 2 $\Gamma \neq \emptyset$. Then, by the induction hypothesis and Boxing applied to \land-Release, we can find a proof of the form

$$\Sigma'$$

$$\Box^n(\land \Gamma \land \phi \rightarrow \psi)$$

$$\Box^n(\land \Gamma \rightarrow (\phi \rightarrow \psi))$$

in $\mathcal{N}^\mathsf{BQL}_{CD}$.

Case 5 Suppose we have a proof of the form

$$\Sigma', \Gamma \vdash_{\mathcal{N}^\mathsf{BQL}_{CD}(\Sigma[n-1])}^\mathcal{N}^\mathsf{BQL}_{CD}$$

$$\phi \vdash_{\mathcal{N}^\mathsf{BQL}_{CD}(\Sigma[n])}^\mathcal{N}^\mathsf{BQL}_{CD}$$

in $\mathcal{N}^\mathsf{BQL}_{CD}(\Sigma[n])$, where $\Sigma' \subseteq \Sigma$. There are two subcases to consider.

Subcase 1 $n = 0$. Then, by the induction hypothesis, we can find a proof of the form

$$\Sigma', \Gamma \vdash_{\mathcal{N}^\mathsf{BQL}_{CD}}^\mathcal{N}^\mathsf{BQL}_{CD}$$

$$\land \Gamma \rightarrow \phi \vdash_{\mathcal{N}^\mathsf{BQL}_{CD}}^\mathcal{N}^\mathsf{BQL}_{CD}$$

in $\mathcal{N}^\mathsf{BQL}_{CD}$.

Subcase 2 $n > 0$. Then, by the outer induction hypothesis, the induction hypothesis and Boxing applied to Internal Transitivity, we can find a proof of the form

$$\Sigma', \Gamma \vdash_{\mathcal{N}^\mathsf{BQL}_{CD}}^\mathcal{N}^\mathsf{BQL}_{CD}$$

$$\square^n(\land \Gamma \rightarrow \phi) \vdash_{\mathcal{N}^\mathsf{BQL}_{CD}}^\mathcal{N}^\mathsf{BQL}_{CD}$$

in $\mathcal{N}^\mathsf{BQL}_{CD}$.
Case 6 Suppose we have a proof of the form

\[
\Sigma', \Gamma \quad \phi(a_i) \quad \forall v \phi
\]

in \(\mathbf{N'BQL}_{\text{CD}}(\Sigma[n]) \), where \(\Sigma' \subseteq \Sigma \). Let \(\Sigma^* \subseteq \Sigma', \Gamma^* \subseteq \Gamma \) contain exactly the open assumptions in the main subproof. Then \(a_i \) does not occur in \(\Sigma^* \cup \Gamma^* \cup \{\phi\} \). So, by the induction hypothesis, \(\forall \)-Embedding and Boxing applied to Internal \(\forall \)-Int and Internal Transitivity, we can find a proof of the form

\[
\begin{align*}
\Sigma^* \\
\Box^n(\wedge \Gamma^* \rightarrow \phi(a_i)) \\
\forall v \Box^n(\wedge \Gamma^* \rightarrow \phi) \\
\Box^n \forall v(\wedge \Gamma^* \rightarrow \phi) \\
\Box^n(\wedge \Gamma \rightarrow \wedge \Gamma^*) \\
\Box^n(\wedge \Gamma^* \rightarrow \forall v \phi) \\
\Box^n(\wedge \Gamma \rightarrow \forall v \phi)
\end{align*}
\]

in \(\mathbf{N'BQL}_{\text{CD}} \).

Case 7 Suppose we have a proof of the form

\[
\Sigma', \Gamma \quad \Sigma', [\phi(a_i)] \\
\exists v \phi \quad \psi
\]

in \(\mathbf{N'BQL}_{\text{CD}}(\Sigma[n]) \), where \(\Sigma' \subseteq \Sigma \). Let \(\Sigma^* \subseteq \Sigma', \Gamma^* \subseteq \Gamma \) contain exactly the open assumptions in the right main subproof besides \(\phi(a_i) \). Then \(a_i \) does not occur in \(\Sigma^* \cup \Gamma^* \cup \{\phi, \psi\} \). There are two subcases.
Subcase 1. \(\Gamma = \emptyset \). Then, by the induction hypothesis, \(\forall \)-Embedding and Boxing applied to Internal \(\exists \)-Elim and Internal Transitivity, we can find a proof of the form

\[
\begin{align*}
\Sigma^* \\
\Box^n (\phi(a_i) \rightarrow \psi) \\
\forall v \Box^n (\phi \rightarrow \psi)
\end{align*}
\]

\[
\begin{align*}
\Sigma' \\
\Box^n (\exists v \phi) \\
\Box^n (\forall v (\phi \rightarrow \psi))
\end{align*}
\]

in \(\mathcal{N}BQL_{\text{CD}} \).

Subcase 2. \(\Gamma \neq \emptyset \). Then, by the induction hypothesis, Infinite Distribution, \(\forall \)-Embedding and Boxing applied to Internal \(\exists \)-Elim and Internal Transitivity, we can find a proof of the form

\[
\begin{align*}
\Sigma^* \\
\Box^n (\bigwedge^* \land \phi(a_i) \rightarrow \psi) \\
\forall v \Box^n (\bigwedge^* \land \phi \rightarrow \psi) \\
\Box^n (\forall v (\bigwedge^* \land \phi) \rightarrow \psi) \\
\Box^n (\exists v (\bigwedge^* \land \exists v \phi) \rightarrow \psi)
\end{align*}
\]

in \(\mathcal{N}BQL_{\text{CD}} \). So, by Boxing applied to Internal Transitivity, we can find a proof of the form

\[
\begin{align*}
\Sigma^* \\
\Box^n (\bigwedge \Gamma \land \exists v \phi \rightarrow \bigwedge^* \land \exists v \phi) \\
\Box^n (\bigwedge^* \land \exists v \phi \rightarrow \psi)
\end{align*}
\]
in $\mathcal{N}\text{BQL}_{\text{CD}}$. Hence, by the induction hypothesis and Boxing applied to Internal ∀-Int and Internal Transitivity, we can find a proof of the form

$$
\Sigma' \\vdash_n (\bigwedge \Gamma \rightarrow \bigwedge \Gamma) \quad \Sigma' \vdash_n (\bigwedge \Gamma \rightarrow \exists v \phi) \\
\ldots \quad \Sigma' \vdash_n (\bigwedge \Gamma \rightarrow \bigwedge \Gamma \land \exists v \phi) \quad \Sigma' \vdash_n (\bigwedge \Gamma \land \exists v \phi \rightarrow \psi) \\
\ldots \quad \Sigma' \vdash_n (\bigwedge \Gamma \rightarrow \psi)
$$

in $\mathcal{N}\text{BQL}_{\text{CD}}$. □

Lemma 10 (Reduction). If $\Gamma \vdash_R \phi$ then $\Gamma \vdash \Box^n \phi$ for some n.

Proof. Suppose $\Gamma \vdash_R \phi$. By Partial Reduction, $\Gamma \vdash_{[n]} \phi$ for some n. If $n = -1$ then $\Gamma \vdash \phi$ and we're done. Suppose $n \geq 0$. Then, by Relative Deduction, $\Gamma \vdash \Box^{n+1} \phi$. □

So any occurrences of \rightarrow-Elim in a $\mathcal{N}\text{BQL}_{\text{CD}}^R$-proof can be “pushed down” to the bottom of the proof (indeed, the proof of Relative Deduction provides us with an algorithm for doing this).

3. **Soundness**

Theorem 1 (Soundness). If $\Gamma \vdash_R \phi$ then $\Gamma \models_R \phi$.

Proof. Suppose $\Gamma \vdash_R \phi$. By Reduction, $\Gamma \vdash \Box^n \phi$ for some n. Then, since \vdash is sound with respect to $\models [4]$, $\Gamma \models \Box^n \phi$. So for every reflexive $w \in \mathfrak{M}$: $w \models \Gamma$ only if $w \models \phi$. Hence $\Gamma \models_R \phi$. □

4. **Completeness**

The canonical model for BQL_{CD}^R is identical to the canonical model \mathcal{C} for BQL_{CD} (see [4] for the definition of \mathcal{C}). $\text{Sat}(\text{BQL}_{\text{CD}}^R)$, the set of prime saturated BQL_{CD}^R-theories, is defined analogously to $\text{Sat}(\text{BQL})$ (see [4] again).

Lemma 11 (Extension). For Γ such that $|\{i : a_i \not\in \Gamma\}| = \omega$: if $\Gamma \not\vdash_R \phi$ then there exists $\Gamma^* \supseteq \Gamma$ such that $\Gamma^* \in \text{Sat}(\text{BQL}_{\text{CD}}^R)$ and $\phi \not\in \Gamma^*$.
Proof. Similar to the proof of the Belnap Extension Lemma (see e.g Priest [5] §6.2) except we draw witnesses from \(\{a_i\}_{i \in \omega} \) (the assumption that \(|\{i : a_i \not\in \Gamma\}| = \omega\) ensures we never run out of witnesses) and require three additional steps due to the restriction on discharges.

Subclaim 1. Suppose \(\Gamma, \exists v \phi, \phi(a_i) \vdash_R \psi \), where \(a_i \) does not occur in \(\Gamma \cup \{\phi, \psi\} \). Then \(\Gamma, \exists v \phi \vdash_R \psi \).

Proof. By Reduction: \(\Gamma, \exists v \phi, \phi(a_i) \vdash \Box^n \psi \) for some \(n \). So we can construct the following proof in \(\mathcal{N}\text{BQL}^R_{CD} \):

\[
\begin{array}{c}
\Gamma, \exists v \phi, [\phi(a_i)] \\
\mathcal{N}\text{BQL}^R_{CD} \\
\exists v \phi \\
\Box^n \psi \\
\to\text{-Elims} \\
\psi
\end{array}
\]

Subclaim 2. Suppose \(\Gamma \vdash_R \psi \vee \phi \) and \(\Gamma, \phi \vdash_R \psi \). Then \(\Gamma \vdash_R \psi \).

Proof. By Reduction: \(\Gamma, \phi \vdash \Box^n \psi \) for some \(n \). So we can construct the following proof in \(\mathcal{N}\text{BQL}^R_{CD} \):

\[
\begin{array}{c}
\Gamma \\
\psi \vee \phi \\
\to\text{-Ints} \\
\Box^n \psi \\
\to\text{-Elims} \\
\psi
\end{array}
\]

Subclaim 3. Suppose \(\Gamma, \forall v \phi \vdash_R \psi \) and \(\Gamma \vdash_R (\psi \vee \forall v \phi) \vee \phi(a_i) \), where \(a_i \) does not occur in \(\Gamma \cup \{\phi, \psi\} \). Then \(\Gamma \vdash_R \psi \).
Proof. By Reduction: $\Gamma, \forall v \phi \vdash \Box^n \psi$ for some n. So we can construct the following proof in $\mathcal{N}BQL_{CD}^R$:

$$
\begin{array}{c}
\Gamma \\
(\psi \vee \forall v \phi) \vee \phi(a_i) \\
\forall v((\psi \vee \forall v \phi) \vee \phi) \\
(\psi \vee \forall v \phi) \vee \forall v \phi \\
\psi \vee \forall v \phi \\
\end{array}
\Rightarrow
\begin{array}{c}
[\psi] \\
\Gamma, [\forall v \phi] \\
\mathcal{N}BQL_{CD} \\
\square^m \psi \\
\square^n \psi \\
\psi
\end{array}
$$

\hfill \Box

Lemma 12 (\mathcal{L}-Completeness). For $\Gamma \subseteq \mathcal{L}$: if $\Gamma \models \mathcal{L} \phi$ then $\Gamma \vdash \mathcal{L} \phi$.

Proof. Suppose $\Gamma \not\models \mathcal{L} \phi$. Since $\{i : a_i \in \Gamma\} = \emptyset$, Extension gives us $\Gamma^* \supseteq \Gamma$ such that $\Gamma^* \in \text{Sat}(\mathcal{BQL}_{CD}^R)$ and $\phi \notin \Gamma^*$. Since Γ^* is closed under modus ponens, we have by the definition of \prec in \mathcal{C} that $\Gamma^* \prec \Gamma^\star$. Also, by Truth [4]: $\mathcal{C}, \Gamma^\star \models \Gamma$ and $\mathcal{C}, \Gamma^\star \not\models \phi$. So restricting \mathcal{C} to \mathcal{L} gives $\Gamma \not\models \mathcal{L} \phi$. \hfill \Box

Theorem 2 ($\mathcal{L}^+\text{-Completeness}$). If $\Gamma \models \mathcal{L}^+ \phi$ then $\Gamma \vdash \mathcal{L}^+ \phi$.

Proof. Suppose $\Gamma \models \mathcal{L}^+ \phi$. By \mathcal{L}-completeness, if we had started with \mathcal{L}^+ as our base language then we could have constructed a proof of ϕ from some finite $\Gamma_0 \subseteq \Gamma$ in the version of $\mathcal{N}BQL_{CD}^R$ obtained by adding ω-many fresh constant symbols $\{b_i\}_{i \in \omega}$ to \mathcal{L}^+. But then, by soundness, $\Gamma_0 \models \mathcal{L}^+ \phi$. Since $|\{i : a_i \notin \Gamma_0\}| = \omega$, a similar argument to \mathcal{L}-completeness gives $\Gamma_0 \vdash \mathcal{L}^+ \phi$. \hfill \Box

5. Disjunction and Existence Properties

We can use the canonical model to show that, like \mathcal{BQL}_{CD}, \mathcal{BQL}_{CD}^R satisfies the disjunction and existence properties over the base language \mathcal{L}.

Theorem 3 (Disjunction Property). For $\Gamma \subseteq \mathcal{L} \setminus \{\rightarrow, \vee, \exists\}$: if $\models \mathcal{L} \phi \vee \psi$ then $\models \mathcal{L} \phi$ or $\models \mathcal{L} \psi$.

Proof. Similar to the proof of the corresponding theorem in [4]. □

Theorem 4 (Existence Property). Suppose \(\mathcal{L} \) contains at least one constant symbol. Then, for \(\Gamma \subseteq \mathcal{L} \setminus \{\rightarrow, \vee, \exists\} \): \(\Gamma \models \exists \forall \phi \) only if \(\Gamma \models \phi(t) \) for some \(t \in \mathcal{L} \).

Proof. Similar to the proof of the corresponding theorem in [4]. □

6. Classical Logic

In this section we show that we obtain classical logic by adding the rule of excluded middle

\[
[\phi \vee (\phi \rightarrow \bot)] \quad (X)
\]

to \(\mathcal{N}BQL^{RX}_{CD} \). Call the resulting system \(\mathcal{N}BQL^{RX}_{CD} \) and write \(\Gamma \vdash_{RX} \phi \) iff there exists a proof of \(\phi \) from \(\Gamma \) in \(\mathcal{N}BQL^{RX}_{CD} \). Let \(\mathcal{N}BQL^{X}_{CD} \) denote the natural deduction system obtained by removing \(\rightarrow \)-Elim from \(\mathcal{N}BQL^{RX}_{CD} \).

Lemma 13 (Reduction). If \(\Gamma \vdash_{RX} \phi \) then \(\Gamma \vdash_{X} \Box^n \phi \) for some \(n \).

Proof. Similar to the proof of the corresponding lemma for \(\vdash_{R} \). □

Lemma 14 (Box Elimination). \(\phi \vee (\phi \rightarrow \bot), \Box^n \bot \vee (\Box^n \bot \rightarrow \bot) \vdash_{R} \Box^n \phi \rightarrow \phi \).

Proof. Let \(w \in \mathfrak{M} \) be reflexive. Suppose for a reductio that \(w \Vdash \phi \vee (\phi \rightarrow \bot) \), \(w \Vdash \Box^n \bot \vee (\Box^n \bot \rightarrow \bot) \) and \(w \nVdash \Box^n \phi \rightarrow \phi \). Then there exists \(u > w \) such that \(u \Vdash \Box^n \phi \) and \(u \nVdash \phi \). By Persistence [4], \(u \Vdash \phi \vee (\phi \rightarrow \bot) \). So \(u \Vdash \phi \rightarrow \bot \). But then \(u \Vdash \Box^n \bot \). So \(w \nVdash \Box^n \bot \rightarrow \bot \). Hence \(w \Vdash \Box^n \bot \), which contradicts the fact that \(w \prec w \). □

We write \(\Gamma \vdash_{C} \phi \) iff there exists a proof of \(\phi \) from \(\Gamma \) in the natural deduction system \(\mathcal{N}CQL \) for classical logic (the system obtained by adding the rule of excluded middle to the intuitionistic introduction and elimination rules).

Theorem 5 (Classical Collapse). \(\Gamma \vdash_{RX} \phi \) iff \(\Gamma \vdash_{C} \phi \).

Proof. \(\implies \) An easy induction on the construction of proofs in \(\mathcal{N}BQL^{RX}_{CD} \).

\(\impliedby \) By induction on the construction of proofs in \(\mathcal{N}CQL \). The base cases are easy. The induction steps are also easy except for \(\vee \)-Elim, \(\rightarrow \)-Int and \(\exists \)-Elim. We do \(\rightarrow \)-Int. \(\vee \)-Elim and \(\exists \)-Elim are similar.
Suppose we have a proof of the form
\[
\frac{\Gamma, [\phi] \quad \psi}{\phi \to \psi}
\]
in N^CQL. By the induction hypothesis: $\Gamma, \phi \vdash_{RX} \psi$. So, by Reduction: $\Gamma, \phi \vdash_X \Box^n \psi$ for some n. But then, by Box Elimination and completeness, we can find a proof of the form
\[
\frac{\Gamma, [\phi] \quad \psi}{\phi \to \Box^n \psi}
\]
in $N^\text{BQL}_{\text{CD}}^{RX}$.

7. Truth

Suppose L contains the identity predicate \equiv, the truth predicate T and a designated constant symbol $\Downarrow \phi$ for every L-sentence ϕ. $|=\text{RT}$ is the consequence relation obtained by modifying the definition of $|=R$ to range over all and only those L^+-models \mathfrak{M} such that (i) for sentences $\phi, \psi \in L$: if $\phi \neq \psi$ then $|\Downarrow \phi| \neq |\Downarrow \psi|$, (ii) $|=(w) = \{\langle a, a \rangle : a \in \text{dom}(\mathfrak{M})\}$ and (iii) for every sentence $\phi \in L$: $|\Downarrow \phi| \in |T|(w)$ iff $\mathfrak{M}, w \models \phi$. We refer to the logic defined by $|=\text{RT}$ as $\text{BQL}^{RT}_{\text{CD}}$. In this section I prove that $\text{BQL}^{RT}_{\text{CD}}$ is completely axiomatized by the natural deduction system $N^\text{BQL}^{RT}_{\text{CD}}$ obtained by adding the rules
\[
[t = t] \quad t_1 = t_2 \quad \phi(t_1) \quad \phi(t_2) \quad \phi(t_2)
\]

Two points of clarification. (1) We do not require that (i) and (iii) hold for all L^+-sentences because (a) we do not require that L contains names for all L^+-sentences and (b) more importantly, \forall-Int and \exists-Elim would become unsound if we insisted that (iii) — and hence the rules T-Int and T-Elim — apply to sentences containing occurrences of a_i (for example, $T^+ F(a_i)$ would prove $\forall x F(x)$ and $\exists x F(x)$ would prove $T^+ F(a_i)$). (2) It would be preferable to only allow objects denoted by names for L-sentences into $|T|(w)$, since really we are thinking of T as a truth predicate for L. Unfortunately, as pointed out by Kremer [2], this would result in non-compactness, since $\{c = \Downarrow \phi \to \bot : \phi \in L\}$ would entail $T(c) \to \bot$ even though no finite subset of $\{c = \Downarrow \phi \to \bot : \phi \in L\}$ would entail $T(c) \to \bot$.

\[\square\]
\[
[t_1 = t_2 \lor (t_1 = t_2 \rightarrow \bot)] \quad \frac{\phi \land \psi \rightarrow \bot}{\bot} \quad (=-X) \\
\frac{\phi}{T \phi \land} (T\text{-Int}) \\
\frac{T \phi \land}{\phi} (T\text{-Elim})
\]
to \(\mathcal{NBQL}_{CD}^R \), where the sentences \(\phi, \psi \) in \(S \), \(T\text{-Int} \) and \(T\text{-Elim} \) belong to \(\mathcal{L} \). So, in particular, \(\mathcal{BQL}_{CD}^{RT} \) does not satisfy the disjunction property. We write \(\Gamma \vdash_{RT} \phi \) if there exists a proof of \(\phi \) from \(\Gamma \) in \(\mathcal{NBQL}_{CD}^{RT} \). We write \(\Gamma \vdash_{RT, \Sigma} \phi \) if there exists a proof of \(\phi \) from \(\Gamma \cup \Sigma \) in \(\mathcal{NBQL}_{CD}^{RT} \) whose open assumptions with unsafe occurrences all belong to \(\Sigma \).

Lemma 15 (Substitution). If \(\phi \vdash_{RT, \Gamma} \psi \) then \(\chi[\phi] \vdash_{RT, \Gamma} \chi[\psi] \).

Proof. An easy induction on the construction of \(\chi[p] \). \(\square \)

Theorem 6 (Transparency). \(\chi[\phi] \vdash_{RT} \chi[T \phi] \)

Proof. Immediate from \(T\text{-Int} \), \(T\text{-Elim} \) and Substitution. \(\square \)

7.1. Expressive Functions of \(T \)

In ordinary English, “true” is often used to indirectly express disjunctions and conjunctions. For example, “something Shirley said last night is true” is used to express “\(\phi_1 \) or...or \(\phi_n \)”, where \(\phi_1, ..., \phi_n \) are the sentences Shirley said last night. Similarly, “everything Shirley said last night is true” is used to express “\(\phi_1 \) and...and \(\phi_n \)”. The following results demonstrate that \(T \) almost fulfills these functions in \(\mathcal{BQL}_{CD}^{RT} \).

Lemma 16 (Weak \(\exists / \lor \)). \(\exists v (\theta(v) \land T(v)) \vdash_{RT, \forall v(\theta(v) \leftrightarrow \lor_i v \phi_i)} \lor_i \phi_i \)

Proof. The left-right direction:

\[
\frac{\theta(a_k) \land T(a_k)}{\theta(a_k)} \quad \frac{\forall v(\theta(v) \leftrightarrow \lor_i v = \phi_i)}{\lor_i a_k = \phi_i} \\
\frac{\theta(a_k) \rightarrow \lor_i a_k = \phi_i}{\lor_i \phi_i} \quad \frac{T \lor_i \phi_i}{\lor_i \phi_i}
\]

\(\exists v(\theta(v) \land T(v)) \)

\(\lor_i \phi_i \)
The right-left direction:

\[
\begin{align*}
\left[\neg \phi_j \rightarrow \phi_j \right] & \quad \forall v(\theta(v) \leftrightarrow \bigvee_i v = \phi_i) \\
\vdots & \\
\bigvee_i \neg \phi_j = \phi_i & \quad (\bigvee_i \neg \phi_j = \phi_i) \rightarrow \theta^\neg \phi_j \equiv \neg \phi_i \\
\theta^\neg \phi_j \equiv \neg \phi_i & \quad \exists v(\theta(v) \land T(v)) \\

\bigvee_i \phi_i & \\
\exists v(\theta(v) \land T(v)) & \\
\end{align*}
\]

\[\begin{array}{c}
\square
\end{array}\]
So we have:
\[
\forall v (\theta(v) \leftrightarrow \bigvee_i \phi_i) \quad \top \rightarrow \bigwedge_i \phi_i
\]
\[
\vdash \theta(a_k) \rightarrow \bigvee_i \phi_i \quad \theta(a_k) \rightarrow \bigwedge_i \phi_i
\]
\[
\frac{\vdash \theta(a_k) \rightarrow \bigvee_i \phi_i \land \bigwedge_i \phi_i}{\vdash \theta(a_k) \rightarrow \top \rightarrow \bigwedge_i \phi_i}
\]
\[
\frac{\vdash \theta(a_k) \rightarrow \bigvee_i \phi_i \land \bigwedge_i \phi_i}{\vdash \forall v (\theta(v) \rightarrow T(v))}
\]

Theorem 8 \((\forall/\land)\). \(\chi[\forall v (\theta(v) \rightarrow T(v))] \vdash_{\text{RT}} \forall v (\theta(v) \leftrightarrow \bigvee_i \phi_i) \chi[\top \rightarrow \bigwedge_i \phi_i].\)

Proof. Immediate from Weak \(\forall/\land\) and Substitution. \(\square\)

Note that by Weak \(\forall/\land\) we have:

(i) \(\forall v (\theta(v) \rightarrow T(v)), \forall v (\theta(v) \leftrightarrow \bigvee_i \phi_i) \vdash_{\text{RT}} \bigwedge_i \phi_i\)

(ii) \(\bigwedge_i \phi_i, \forall v (\theta(v) \leftrightarrow \bigvee_i \phi_i) \vdash_{\text{RT}} \forall v (\theta(v) \rightarrow T(v))\).

So there is a weaker sense in which “everything Shirley said last night is true” expresses “\(\phi_1\) and...and \(\phi_n\)” in \(\text{BQL}_{CD}^{\text{RT}}\).

7.2. Soundness

\(\mathcal{N}\text{BQL}_{CD}^T\) is the natural deduction system which results from removing \(\rightarrow\)-Elim from \(\mathcal{N}\text{BQL}_{CD}^{\text{RT}}\). We write \(\Gamma \vdash_T \phi\) iff there exists a proof of \(\phi\) from \(\Gamma\) in \(\mathcal{N}\text{BQL}_{CD}^T\). \(\models_T\) is the consequence relation obtained by modifying the definition of \(\models\) to range over the same class of models as \(\models_{\text{RT}}\).

Lemma 18 \((\vdash_T\text{-Soundness})\). If \(\Gamma \vdash_T \phi\) then \(\Gamma \models_T \phi\).

Proof. Similar to the proof in [4] that \(\vdash\) is sound with respect to \(\models\) (in particular, the new inference rules are clearly sound with respect to \(\models_T\)). \(\square\)

Theorem 9 \((\text{Soundness})\). If \(\Gamma \vdash_{\text{RT}} \phi\) then \(\Gamma \models_{\text{RT}} \phi\).

Proof. Similar to the proof that \(\vdash_R\) is sound with respect to \(\models_R\) (in particular, the proof of Relative Deduction for \(\vdash_{\text{RT}}\) introduces no new cases). \(\square\)
7.3. Completeness. Sat(BQL\(^T_{CD}\)), the set of prime saturated BQL\(^T_{CD}\)-theories, is defined analogously to Sat(BQL\(_{CD}\)) (see [4]). For \(\Gamma, \Sigma \in \text{Sat}(\text{BQL}_{CD})\), we let \(\Gamma \prec \Sigma\) iff for all \(\phi, \psi\) defined analogously to \(\text{Sat}\)\(\SIM\) = \(-\text{X}, \text{t}\)\(\text{Lemma 19}\) (Identity Invariance) for all \(\phi, \psi\) defined analogously to \(\text{Sat}\), then \(\psi \in \Sigma\). Let \([t]_\Gamma = \{t' \in L^+: t = t' \in \Gamma\}\).

Lemma 19 (Identity Invariance). For \(\Gamma, \Sigma \in \text{Sat}(\text{BQL}_{CD})\) if \(\Gamma \prec \Sigma\) then \([t]_\Gamma = [t]_\Sigma\).

Proof. Suppose \(\Gamma \prec \Sigma\).

First suppose \(t' \in [t]_\Gamma\). Then \(t = t' \in \Gamma\). By Subset [4], \(\Gamma \subseteq \Sigma\). So \(t = t' \in \Sigma\). Hence, \(t' \in [t]_\Sigma\).

Conversely, suppose \(t' \in [t]_\Sigma\). Then \(t = t' \in \Sigma\). Since \(\bot \notin \Sigma\), \(t = t' \rightarrow \bot \notin \Gamma\). By \(-\text{X}, t = t' \lor (t = t' \rightarrow \bot) \in \Gamma\). So \(t = t' \in \Gamma\). Hence \(t' \in [t]_\Gamma\). \(\square\)

For \(\Gamma \in \text{Sat}(\text{BQL}_{CD})\), let \(\text{Sat}(\text{BQL}_{CD})[\Gamma] = \{\Sigma \in \text{Sat}(\text{BQL}_{CD}) : \Gamma \prec \Sigma\}\). Suppose \(\text{Sat}(\text{BQL}_{CD})[\Gamma] \neq \emptyset\). Then the canonical model \(\mathcal{C}[\Gamma]\) generated by \(\Gamma\) is the \(L^+:\) model

\[
\langle \text{Sat}(\text{BQL}_{CD})[\Gamma], \prec \cap \text{Sat}(\text{BQL}_{CD})[\Gamma], \{[t]_r : t \in L^+\}, \cdot | r \rangle
\]

where

\[
|c|_r = [c]_\Gamma
\]

\[
|f^n|_r([t_1]_\Gamma, \ldots, [t_n]_\Gamma) = [f^n(t_1, \ldots, t_n)]_\Gamma
\]

\[
|R^n|_r(\Sigma) = \{([t_1]_\Gamma, \ldots, [t_n]_\Gamma) : R^n(t_1, \ldots, t_n) \in \Sigma\}.
\]

\(-\text{Int}, \text{=}-\text{Elim} and Identity Invariance ensure that \(\mathcal{C}[\Gamma]\) is well-defined. Furthermore, by Subset [4], if \(\Sigma \prec \Delta\) then \(\Sigma \subseteq \Delta\). Hence \(|R^n|_r(\Sigma) \subseteq |R^n|_r(\Delta)|\) for all \(\Sigma, \Delta \in \text{Sat}(\text{BQL}_{CD})[\Gamma]\) such that \(\Sigma \prec \Delta\). So \(\mathcal{C}[\Gamma]\) is in fact an \(L^+:\) model.

We next verify that \(\Gamma \phi = \text{and} T\) behaves correctly in \(\mathcal{C}[\Gamma]\). The inference rule \(S\) ensures that \(|\Gamma \phi|_r \neq |\Gamma \psi|_r|\) for \(L\)-sentences \(\phi \neq \psi\). An easy induction on the construction of \(L^+:\)formulas gives \(|t|_r = [t]_r\). So we have

\[
([t_1]_r, [t_2]_r) \in |\Sigma| \iff t_1 = t_2 \in \Sigma
\]

\(\iff |t_1|_\Sigma = |t_2|_\Sigma\) \(\text{(-Int, =-Elim)}\)

\(\iff |t_1|_r = |t_2|_r\) \(\text{(Identity Invariance)}\).

In order to show that \(T\) behaves correctly in \(\mathcal{C}[\Gamma]\) we need an additional lemma.

Lemma 20 (Truth). \(\mathcal{C}[\Gamma], \Sigma \models \phi\) iff \(\phi \in \Sigma\).
Proof. Similar to the proof of the corresponding lemma in [4].

So we have

\[|\Gamma \phi \rangle_\Gamma \in |T|_\Gamma(\Sigma) \iff T^\Gamma \phi \in \Sigma \]
\[\iff \phi \in \Sigma \quad (T\text{-Int}, T\text{-Elim}) \]
\[\iff C[\Gamma], \Sigma \models_0 \phi \quad \text{(Truth)}. \]

\(Sat(BQL_{CD}^{RT})\) is defined analogously to \(Sat(BQL_{CD}^T)\).

Lemma 21 (Extension). For \(\Gamma\) such that \(|\{i : a_i \notin \Gamma\}| = \omega\): if \(\Gamma \not\models_{RT} \phi\) then there exists \(\Gamma^* \supseteq \Gamma\) such that \(\Gamma^* \in Sat(BQL_{CD}^{RT})\) and \(\phi \notin \Gamma^*\).

Proof. Similar to the proof of the corresponding lemma for \(\models_R\).

Lemma 22 (\(\mathcal{L}\)-Completeness). For \(\Gamma \cup \{\phi\} \subseteq \mathcal{L}\): if \(\Gamma \models_{RT} \phi\) then \(\Gamma \models_{RT} \phi\).

Proof. Suppose \(\Gamma \not\models_{RT} \phi\). Since \(\{i : a_i \in \Gamma\} = \emptyset\), Extension gives us \(\Gamma^* \supseteq \Gamma\) such that \(\Gamma^* \in Sat(BQL_{CD}^{RT})\) and \(\phi \notin \Gamma^*\). Since \(\Gamma^*\) is closed under modus ponens, we have \(\Gamma^* \prec \Gamma^*\). So \(Sat(BQL_{CD}^{RT})[\Gamma^*] \neq \emptyset\) and hence \(C[\Gamma^*]\) exists. By Truth: \(C[\Gamma^*], \Gamma^* \models \Gamma\) and \(C[\Gamma^*], \Gamma^* \not\models \phi\). So, given that \(\Gamma \phi \rangle, =\) and \(T\) behave correctly in \(C[\Gamma^*]\), restricting \(C[\Gamma^*]\) to \(\mathcal{L}\) gives \(\Gamma \not\models_{RT} \phi\).

Theorem 10 (\(\mathcal{L}^+\)-Completeness). For \(\Gamma \cup \{\phi\} \subseteq \mathcal{L}^+\): if \(\Gamma \models_{RT} \phi\) then \(\Gamma \models_{RT} \phi\).

Proof. Similar to the proof of the corresponding theorem for \(\models_R\).

8. Non-Paradoxicality

Say that a classical \(\mathcal{L}^+ \setminus \{T\}\)-model \(\mathcal{M}\) is a ground model iff (i) \(=^\mathcal{M} = \{(a, a) : a \in \text{dom}(\mathcal{M})\}\) and (ii) for all sentences \(\phi, \psi \in \mathcal{L}\): if \(\phi \neq \psi\) then \(\Gamma \phi \rangle^\mathcal{M} \neq \Gamma \psi \rangle^\mathcal{M}\). For \(\Gamma \cup \{\phi\} \subseteq \mathcal{L}^+ \setminus \{T, \rightarrow\}\), we write \(\Gamma \models_{G} \phi\) iff for every ground model \(\mathcal{M}\): \(\mathcal{M} \models \Gamma\) only if \(\mathcal{M} \models \phi\). In this section we show that \(BQL_{CD}^{RT}\) is non-paradoxical, in the sense that \(BQL_{CD}^{RT}\) conservatively extends \(\models_G\). So, in particular, \(\forall BQL_{CD}^{RT}\) does not contain the liar paradox. This is most easily be seen by observing that the liar paradox contains
the discharge of an unsafe occurrence of an open assumption:

\[
\frac{\vdash T(c) \rightarrow \bot}{c = \vdash T(c) \rightarrow \bot}
\]

It can be shown by a standard Belnap-Henkin argument (see e.g. Priest [5] §6.2) that \(\models G \) is completely axiomatized by the restriction of \(\mathcal{N}BQL_{CD}^{RT} \) to \(\mathcal{L}^+ \setminus \{ \rightarrow, T \} \). Consequently, proving that \(\mathcal{BQL}_{CD}^{RT} \) is conservative over \(\models G \) also establishes that \(\mathcal{N}BQL_{CD}^{RT} \) conservatively extends the restriction of \(\mathcal{N}BQL_{CD}^{RT} \) to \(\mathcal{L}^+ \setminus \{ \rightarrow, T \} \).

8.1. The Conservativity Proof. Let \(\mathcal{M} \) be a ground model. An \(\mathcal{L}^+ \)-model \(\mathfrak{M} \) is called an \(\mathcal{L}^+ \)-expansion of \(\mathcal{M} \) iff (i) \(\text{dom}(\mathfrak{M}) = \text{dom}(\mathcal{M}) \), (ii) \(|c| = c^\mathcal{M} \), (iii) \(|f^n| = (f^n)^\mathcal{M} \) and (iv) \(|R^n|(w) = (R^n)^\mathcal{M} \) for \(R^n \neq T \). To show that \(\models RT \) is conservative over \(\models G \) it suffices to show that every ground model has an \(\mathcal{L}^+ \)-expansion in which \(\models RT \) assigns to each world \(w \) the set of formulas \(\{ |\Gamma \phi \boxdot | : \phi \in \mathcal{L} \text{ and } w \models \phi \} \) and at least one world is reflexive. We do this using a construction recently introduced by Field, Lederman and Øgaard [1] in the context of naive class theory.

Let \(\mathcal{M} \) be an arbitrarily chosen ground model with domain \(M \). We first define a transfinite sequence \(\{ \mathfrak{M}_\alpha \}_{\alpha \in \text{Ord}} \) of \(\mathcal{L}^+ \)-expansions of \(\mathcal{M} \). Each \(\mathfrak{M}_\alpha \) has the form \(\langle \alpha + 1, >, M, | \cdot |_\alpha \rangle \) (so an ordinal \(\beta \) sees all and only those ordinals strictly smaller than \(\beta \)), where \(|c|_\alpha = c^\mathcal{M} \), \(|f^n|_\alpha = (f^n)^\mathcal{M} \) and \(|R^n|_\alpha(\beta) = (R^n)^\mathcal{M} \) for \(R^n \neq T \). Since \(|t|_\alpha = |t|_\beta \) for all \(\beta \), we drop the subscript on \(|t|_\alpha \). We define \(|T|_\alpha \) by transfinite induction on \(\alpha \). Suppose \(|T|_\beta \) has already been defined for every \(\beta < \alpha \). Then, for \(\beta < \alpha \), we let \(|T|_\alpha(\beta) = |T|_\beta(\beta) \). It remains to specify \(|T|_\alpha(\alpha) \). For arbitrary \(X \subseteq M \), let \(\mathfrak{M}_\alpha[X] \) denote the object which would be obtained were we to set \(|T|_\alpha(\alpha) = X \). \(\mathfrak{M}_\alpha[X] \) is not necessarily an \(\mathcal{L}^+ \)-model, since we need not have \(X \subseteq |T|_\alpha(\beta) \) for all \(\beta < \alpha \). Nevertheless, we can still define satisfaction on \(\mathfrak{M}_\alpha[X] \) in the same way as a real \(\mathcal{L}^+ \)-model. Let \(\Phi_\alpha(X) = \{ |\Gamma \phi \boxdot | : \phi \in \mathcal{L} \text{ and } \mathfrak{M}_\alpha[X], \alpha \models \phi \} \).
Lemma 23 (Monotonicity). If $X \subseteq Y$ then $\Phi_\alpha(X) \subseteq \Phi_\alpha(Y)$.

Proof. Suppose $X \subseteq Y$. We show by induction on the construction of \mathcal{L}^+-formulas that $\mathcal{M}_\alpha[X], \alpha \models \phi(\overline{v})$ only if $\mathcal{M}_\alpha[Y], \alpha \models \phi(\overline{v})$.

Base Cases The claim holds trivially for atomic $\phi \neq T(t)$. For $\phi = T(t)$ we have

$$\mathcal{M}_\alpha[X], \alpha \models T(t)(\overline{a}) \implies |t(\overline{v})| \in X \implies |t(\overline{v})| \in Y \implies \mathcal{M}_\alpha[Y], \alpha \models T(t)(\overline{a}).$$

Induction Steps The induction steps are standard except for \rightarrow.

\rightarrow Suppose $\mathcal{M}_\alpha[X], \alpha \models (\phi \rightarrow \psi)(\overline{v})$. Let $\beta < \alpha$. Since $\mathcal{M}_\alpha[X] \upharpoonright \beta = \mathcal{M}_\alpha[Y] \upharpoonright \beta$,

$$\mathcal{M}_\alpha[Y], \beta \models \phi(\overline{v}) \implies \mathcal{M}_\alpha[X], \beta \models \phi(\overline{v}) \implies \mathcal{M}_\alpha[X], \beta \models \psi(\overline{v}) \implies \mathcal{M}_\alpha[Y], \beta \models \psi(\overline{v}).$$

So $\mathcal{M}_\alpha[Y], \alpha \models (\phi \rightarrow \psi)(\overline{v})$. \qed

We can now define an increasing sequence of increasingly better extensions for T at α in the style of Kripke [3]:

$$X_\alpha(0) = \emptyset$$

$$X_\alpha(\beta + 1) = \Phi_\alpha(X_\alpha(\beta))$$

$$X_\alpha(\gamma) = \bigcup_{\beta < \gamma} X_\alpha(\beta) \quad \text{for } \gamma \text{ a limit.}$$

Lemma 24 (Locally Increasing). If $\beta \leq \beta'$ then $X_\alpha(\beta) \subseteq X_\alpha(\beta')$.

Proof. By transfinite induction on β. The base case $\beta = 0$ holds trivially.

Successor Step Suppose $\beta + 1 \leq \beta'$. There are two cases.

Case 1 β' is a successor. Then we have

$$\beta \leq \beta' - 1 \implies X_\alpha(\beta) \subseteq X_\alpha(\beta' - 1) \quad \text{(induction hypothesis)}$$

$$\implies \Phi_\alpha(X_\alpha(\beta)) \subseteq \Phi_\alpha(X_\alpha(\beta' - 1)) \quad \text{(Monotonicity)}$$

$$\implies X_\alpha(\beta + 1) \subseteq X_\alpha(\beta').$$
Case 2 β' is a limit. Then, trivially, $X_\alpha(\beta + 1) \subseteq X_\alpha(\beta')$.

Limit Step Suppose $\beta \leq \beta'$ for β a limit. Suppose $a \in X_\alpha(\beta)$. Then $a \in X_\alpha(\beta_0)$ for some $\beta_0 < \beta$. By the induction hypothesis, $X_\alpha(\beta_0) \subseteq X_\alpha(\beta')$. So $a \in X_\alpha(\beta')$. □

Lemma 25 (Locally Convergent). There exists β such that $X_\alpha(\beta) = X_\alpha(\beta')$ for all $\beta' \geq \beta$.

Proof. Suppose not. Then, by Locally Increasing, for every β there exists $\beta' > \beta$ such that $X_\alpha(\beta) \subset X_\alpha(\beta')$, which contradicts the fact that $\bigcup_{\beta \in \text{Ord}} X_\alpha(\beta)$ is a set. □

We then let $|T|_\alpha(\alpha) = X_\alpha(\alpha^+)$, where α^+ is the least β such that $X_\alpha(\beta) = X_\alpha(\beta')$ for all $\beta' \geq \beta$. This completes the definition of \mathcal{M}_α.

Lemma 26 (Semantic Closure). For $\phi \in \mathcal{L}$: $\mathcal{M}_\alpha, \beta \models \phi$ if and only if $|\phi| \in |T|_\alpha(\beta)$.

Proof. By transfinite induction on α. Suppose the claim holds for all $\alpha_0 < \alpha$. There are two cases.

Case 1 $\beta < \alpha$. Then, since $\mathcal{M}_\alpha \upharpoonright \beta = \mathcal{M}_\beta$, we have

$$
\mathcal{M}_\alpha, \beta \models \phi \iff \mathcal{M}_\beta, \beta \models \phi
\iff \phi \in |T|_\beta(\beta) \quad \text{(induction hypothesis)}
\iff \phi \in |T|_\alpha(\beta).
$$

Case 2 $\beta = \alpha$. Then we have

$$
\mathcal{M}_\alpha, \alpha \models \phi \iff |\phi| \in \Phi_\alpha(|T|_\alpha(\alpha))
\iff |\phi| \in \Phi_\alpha(X_\alpha(\alpha^+))
\iff |\phi| \in X_\alpha(\alpha^+ + 1)
\iff |\phi| \in X_\alpha(\alpha^+)
\iff |\phi| \in |T|_\alpha(\alpha).
$$

□

Lemma 27 (Globally Decreasing). If $\beta_0 \leq \beta \leq \alpha$ then $|T|_\alpha(\beta) \subseteq |T|_\alpha(\beta_0)$.

Proof. Suppose $\beta_0 \leq \beta \leq \alpha$.

Subclaim 4 (Layers). For all $\xi : X_\beta(\xi) \subseteq X_{\beta_0}(\xi)$.
Proof. By transfinite induction on \(\xi \). The base case \(\xi = 0 \) holds trivially.

Successor Step Suppose \(X_\beta(\xi) \subseteq X_{\beta_0}(\xi) \). Then, by a similar argument to Monotonicity, \(M_{\beta}[X_\beta(\xi)], \beta \notmodels \phi(\overline{v}) \) only if \(M_{\beta_0}[X_{\beta_0}(\xi)], \beta_0 \notmodels \phi(\overline{v}) \). So \(X_\beta(\xi + 1) \subseteq X_{\beta_0}(\xi + 1) \).

Limit Step Let \(a \in X_\beta(\gamma) \) for \(\gamma \) a limit. Then \(a \in X_\beta(\xi) \) for some \(\xi < \gamma \). By the induction hypothesis, \(X_\beta(\xi) \subseteq X_{\beta_0}(\xi) \). So \(a \in X_{\beta_0}(\xi) \subseteq X_{\beta_0}(\gamma) \). ■

There are now two cases to consider.

Case 1 \(\beta^+ = \beta_0^+ + \xi \) for some ordinal \(\xi \). Then

\[
|T|_\alpha(\beta) = X_\beta(\beta^+)
\]
\[
= X_\beta(\beta_0^+ + \xi)
\]
\[
\subseteq X_{\beta_0}(\beta_0^+ + \xi) \quad \text{(Layers)}
\]
\[
= X_{\beta_0}(\beta_0^+)
\]
\[
= |T|_\alpha(\beta_0^+).
\]

Case 2 \(\beta_0^+ = \beta^+ + \xi \) for some ordinal \(\xi \). Then

\[
|T|_\alpha(\beta) = X_\beta(\beta^+)
\]
\[
= X_\beta(\beta^+ + \xi)
\]
\[
= X_{\beta_0}(\beta_0^+)
\]
\[
\subseteq X_{\beta_0}(\beta_0^+ + \xi) \quad \text{(Layers)}
\]
\[
= |T|_\alpha(\beta_0).
\]

\(\square \)

It follows from Globally Decreasing that \(\mathcal{M}_\alpha \) is in fact an \(\mathcal{L}^+ \)-model and so \(\mathcal{M}_\alpha \) is in fact an \(\mathcal{L}^+ \)-expansion of \(\mathcal{M} \). Accordingly, \(\mathcal{M}_\alpha \) obeys Persistence [4], which allows us to prove that we eventually reach an ordinal \(\alpha \) such that for all \(\alpha' \geq \alpha \): \(\mathcal{M}_{\alpha'}, \alpha' \models \phi(\overline{v}) \) iff \(\mathcal{M}_\alpha, \alpha \models \phi(\overline{v}) \). Let \(S(\alpha) = \{ \langle \phi(\overline{v}), \langle \overline{v} \rangle \rangle : \mathcal{M}_\alpha, \alpha \models \phi(\overline{v}) \} \).

Lemma 28 (Globally Convergent). Then there exists \(\alpha \) such that for all \(\alpha' \geq \alpha \): \(S(\alpha) = S(\alpha') \).
Lemma 29. \(\neg \). Lemma 30. \(\neg \).

Proof. Suppose not. Then, by Persistence, for every \(\alpha \) there exists \(\alpha' > \alpha \) such that \(S(\alpha') \subset S(\alpha) \), which contradicts the fact that \(S(0) \) is a set.

Let \(\alpha^* \) denote the least \(\alpha \) such that \(S(\alpha) = S(\alpha') \) for all \(\alpha' \geq \alpha \). Let \(\mathcal{M} \) denote the \(\mathcal{L}^{+} \)-model obtained from \(\mathcal{M}_{\alpha^*} \) by letting \(\alpha^* \) but no other ordinal see itself. To establish that \(\mathcal{M} \) is the desired \(\mathcal{L}^{+} \)-expansion of the ground model \(\mathcal{M} \), we need to verify that \(|T|_{\alpha^*}(\alpha) = \{ |\Gamma \phi| : \phi \in \mathcal{L} \text{ and } \mathcal{M}, \alpha \models \phi \} \). By Semantic Closure, it suffices to show that \(\mathcal{M}, \alpha \models \phi \) iff \(\mathcal{M}_{\alpha^*}, \alpha \models \phi \). This holds trivially for \(\alpha < \alpha^* \). The case where \(\alpha = \alpha^* \) is handled by the following lemma.

Lemma 29. \(\mathcal{M}, \alpha^* \models \phi(\overline{a}) \) iff \(\mathcal{M}_{\alpha^*}, \alpha^* \models \phi(\overline{a}) \).

Proof. By induction on the construction of \(\mathcal{L}^{+} \)-formulas. The base cases are easy. The induction steps are also easy except for \(\rightarrow \).

\[\rightarrow \implies \text{Easy.} \]

\[\iff \text{Suppose } \mathcal{M}, \alpha^* \not\models (\phi \rightarrow \psi)(\overline{a}). \text{ Then } \mathcal{M}, \alpha \models \phi(\overline{a}) \text{ and } \mathcal{M}, \alpha \not\models \psi(\overline{a}) \text{ for some } \alpha \leq \alpha^*. \text{ If } \alpha < \alpha^* \text{ then we’re done. Suppose } \alpha = \alpha^*. \text{ Then, by the induction hypothesis, } \mathcal{M}_{\alpha^*}, \alpha^* \models \phi(\overline{a}) \text{ and } \mathcal{M}_{\alpha^*}, \alpha^* \not\models \psi(\overline{a}). \text{ So } \mathcal{M}_{\alpha^*+1}, \alpha^* + 1 \not\models (\phi \rightarrow \psi)(\overline{a}). \text{ Since } S(\alpha^* + 1) = S(\alpha^*), \mathcal{M}_{\alpha^*}, \alpha^* \not\models (\phi \rightarrow \psi)(\overline{a}). \]

Theorem 11 (Conservativity). For \(\Gamma \cup \{ \phi \} \subseteq \mathcal{L}^{+} \setminus \{ \rightarrow \} \): if \(\Gamma \models_{BQL} \phi \) then \(\Gamma \models_{G} \phi \).

Proof. Suppose \(\Gamma \not\models_{G} \phi \). Then there exists a ground model \(\mathcal{M} \) such that \(\mathcal{M} \models \Gamma \) and \(\mathcal{M} \not\models \phi \). Let \(\mathcal{M} \) be the Field-Lederman-Ogaard \(\mathcal{L}^{+} \)-expansion of \(\mathcal{M} \). Then \(\mathcal{M}, \alpha^* \models \Gamma \) and \(\mathcal{M}, \alpha^* \not\models \phi \). Since \(\alpha^* \) is reflexive in \(\mathcal{M} \) and \(\Gamma \phi, =, T \) behave correctly in \(\mathcal{M} \): \(\Gamma \not\models_{RT} \phi \).

9. Failure of Conservativity

The logic \(\mathcal{L}^{+} \) ("quotation logic") is obtained by restricting \(\mathcal{L}^{+} \) to \(\mathcal{L}^{+} \setminus \{ T \} \) (call the resulting system \(\mathcal{L}^{+} \)). We write \(\Gamma \vdash_{BQL} \phi \) iff there exists a proof of \(\phi \) from \(\Gamma \) in \(\mathcal{L}^{+} \). In this section we show that \(\Gamma \vdash_{BQL} \phi \) iff there exists a proof of \(\phi \) from \(\Gamma \) in \(\mathcal{L}^{+} \). Hence, adding \(T \)-Int and \(T \)-Elim to \(\mathcal{L}^{+} \) could force us to revise which non-truth-involving sentences we accept and reject, which suggests \(\mathcal{L}^{+} \) does not support a deflationary conception of truth.

Lemma 30. \(c = T(c) \rightarrow \bot \land (T \rightarrow \bot) \rightarrow \bot \vdash_{RT} \bot \).
Proof. First note:

\[
\frac{
\frac{\top \rightarrow T(c)}{T(c) \rightarrow \bot}
}{\top \rightarrow \bot}
\]

So we have:

\[
c = \top\neg (\top \rightarrow \bot) \rightarrow \bot
\]

Say that an \(\mathcal{L}^+ \setminus \{T\}\)-model \(\mathfrak{M}\) is quotation-acceptable iff (i) \(\top\neg \phi \neq \top\neg \psi\) for \(\mathcal{L}\)-sentences \(\phi \neq \psi\) and (ii) \(\models = \models (w) = \{\langle a, a \rangle : a \in dom(\mathfrak{M})\}\). For \(\Gamma \cup \{\phi\} \subseteq \mathcal{L}^+ \setminus \{T\}\), we write \(\Gamma \models_{RQ} \phi\) iff for every reflexive world \(w\) in every quotation-acceptable \(\mathcal{L}^+ \setminus \{T\}\)-model \(\mathfrak{M}\): \(w \models \Gamma\) only if \(w \models \phi\).

Lemma 31. If \(\Gamma \vdash_{RQ} \phi\) then \(\Gamma \models_{RQ} \phi\).

Proof. Similar to the proof that \(\vdash_{RT}\) is sound with respect to \(\models_{RT}\). \(\square\)

Lemma 32. \(c = \top\neg (\top \rightarrow \bot) \rightarrow \bot \neq_{RQ} \bot\).

Proof. Take an \(\mathcal{L}^+ \setminus \{T\}\)-model \(\mathfrak{M}\) with a single reflexive world \(w\) such that (i) the domain of \(\mathfrak{M}\) is the set of \(\mathcal{L}\)-sentences, (ii) \(\models = \models (w) = \{\langle a, a \rangle : a \in dom(\mathfrak{M})\}\), (iii) \(\top\neg \phi = \phi\) for every \(\phi \in \mathcal{L}\) and (iv) \(\models c = T(c) \rightarrow \bot\).

Theorem 12. \(\vdash_{RT}\) is not conservative over \(\vdash_{RQ}\).

Proof. Immediate from the preceding lemmas. \(\square\)
10. Compositional Laws

Suppose \mathcal{L} contains a unary relation symbol $\text{Sent}(\cdot)$ and binary function symbols \neg, \lor, \to. Suppose $\Gamma \subseteq \mathcal{L} \setminus \{\to, T\}$ has a ground model \mathcal{M} such that (1) $a \in \text{Sent}^\mathcal{M}$ iff $a = \Gamma \phi^{\mathcal{M}}$ for some $\phi \in \mathcal{L}$ and (2) for $\circ \in \{\land, \lor, \to\}$: (i) $\Gamma \phi^{\mathcal{M}} \Gamma \psi^{\mathcal{M}} = \Gamma \phi \circ \psi^{\mathcal{M}}$, (ii) $a \circ^\mathcal{M} b \in \text{Sent}^\mathcal{M}$ only if $a,b \in \text{Sent}^\mathcal{M}$. Let \mathfrak{M} be the Field-Lederman-Øgaard \mathcal{L}^+-expansion of \mathcal{M}. Then both Γ and the following compositional laws are true at α^* in \mathfrak{M}:

\begin{align*}
&\quad \land-C \quad \forall x \forall y (T(x \land y) \iff T(x) \land T(y)) \\
&\quad \lor-C \quad \forall x \forall y (T(x \lor y) \iff \text{Sent}(x) \land \text{Sent}(y) \land (T(x) \lor T(y))) \\
&\quad \to-C \quad \forall x \forall y (T(x \to y) \iff \text{Sent}(x) \land \text{Sent}(y) \land (T(x) \to T(y))).
\end{align*}

So for all $\phi \in \mathcal{L} \setminus \{\to, T\}$: $\Gamma, \land-C, \lor-C, \to-C \vdash_{RT} \phi$ only if $\mathcal{M} \models \phi$. This shows we can safely add the compositional laws to a true theory Γ of the syntax of \mathcal{L} formulated in $\mathcal{L} \setminus \{\to, T\}$.

11. Works Cited

[1] Field, H., Lederman H. & Øgaard T. F. (2017). Prospects for a Naive Theory of Classes. *Notre Dame Journal of Formal Logic*, 58(4), 461–506.

[2] Kremer, M. (1988). Kripke and the Logic of Truth. *Journal of Philosophical Logic*, 17(3), 225–278.

[3] Kripke, S. (1975). Outline of a Theory of Truth. *Journal of Philosophy*, 72(19), 690–716.

[4] Middleton, B. (2019). A Canonical Model for Constant Domain Basic First-Order Logic. Unpublished manuscript. Available at arxiv.org/abs/1907.07013.

[5] Priest, G. (2002). Paraconsistent Logic. In Gabbay D. M. & Guenthner F. editors. *Handbook of Philosophical Logic, 2nd Edition: Volume 6*. Kluwer Academic Publishers, pp. 287–393.

[6] Restall, G. (1994). Subintuitionistic Logics. *Notre Dame Journal of Formal Logic*, 35(1), 116–129.

[7] Visser, A. (1981). A Propositional Logic with Explicit Fixed Points. *Studia Logica*, 40(2), 155 – 175.