Paired correlations in nuclei on the neutron-drip line

K. Hagino1 and H. Sagawa2

1 Department of Physics, Tohoku University, Sendai, 980-8578, Japan
2 Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560, Japan

Paired correlations in weakly bound nuclei on the edge of neutron drip line are studied by using a three-body model. A density-dependent contact interaction is employed to calculate the ground state of halo nuclei 6He and 11Li, as well as a skin nucleus 24O. Dipole excitations in these nuclei are also studied within the same model. We point out that the di-nucleon type correlation plays a dominant role in the halo nuclei 6He and 11Li having the coupled spin of the two neutrons $S=0$, while the correlation similar to the BCS type is important in 24O. Contributions of the spin $S=1$ and $S=0$ configurations are separately discussed in the low energy dipole excitations.

PACS numbers: 21.30.Fe, 21.45.+v, 21.60.Gx, 25.60.Gc

\section{I. INTRODUCTION}

It is now feasible to study the structure of nuclei on the edge of neutron drip line. Such nuclei are expected to have unique properties influenced by the large spatial distribution of weakly bound valence neutrons, for examples, halo, skin, new magic numbers and strong soft dipole excitations.

Two-neutron halo nuclei (sometimes referred to as borromean nuclei when there is no bound state between a valence neutron and a core nucleus) like 6He and 11Li have often been described as three-body systems consisting of two valence neutrons interacting with each other, and with the core [1]. The three-body Hamiltonian with realistic two-body interactions has been solved by the Faddeev method [5]. On the other hand, Bertsch and Esbensen have developed a three-body model with a density-dependent contact interaction among the valence neutrons [8]. They showed that the density-dependent contact force well reproduces the results of Faddeev calculations even though the radial dependence of the adopted interactions are quite different [8]. To date, the most sophisticated many-body calculations of light nuclei include also three-body forces which play an important role in obtaining the correct binding energies of light nuclei [8]. To a large extent, such three-body forces can also be simulated effectively by a density dependent force.

Recently, a Hartree-Fock-Bogoliubov (HFB) model has been applied to study a di-neutron structure of the drip line nuclei. The dipole response has also been studied with the quasi-particle random phase approximation (QRPA) taking into account the continuum effect [2]. Cluster models have also been often used to study the borromean nuclei including the dipole excitations [10].

In this paper, we undertake a detailed discussion on the ground state as well as the dipole response of neutron-rich nuclei using a three-body model with the density-dependent delta force, paying special attention to the di-neutron structure of valence neutrons. We particularly study the borromean nuclei, 6He and 11Li, and also another drip line nucleus 24O as a comparison. Since 23O is bound, 24O is not a borromean nucleus by definition, although the root-mean-square (rms) radius indicates a feature of very extended neutron wave functions. The model we use is essentially the same as that of Bertsch and Esbensen [1], while the interaction is adjusted to fit the separation energy of each drip line nucleus.

The paper is organized as follows. In Sec. II, we discuss the three-body model and the adopted two-body interactions. The results for the borromean nuclei are compared with those for the drip line nucleus 24O in Sec. III. A summary is given in Sec. IV.

\section{II. THREE-BODY MODEL}

We consider a three-body system consisting of two valence neutrons, and an inert core nucleus with the mass number A_c. We use the same three-body Hamiltonian as in Ref. [3]. That is,

\begin{equation}
H = \hat{h}_{nC}(1) + \hat{h}_{nC}(2) + V_{nm} + \frac{p_1 \cdot p_2}{A_cm},
\end{equation}

Here, \hat{h}_{nC} is the single-particle Hamiltonian for a valence neutron interacting with the core and is given by

\begin{equation}
\hat{h}_{nC} = \frac{p^2}{2\mu} + V_{nC}(r),
\end{equation}

where $\mu = mA_c/(A_c + 1)$ is the reduced mass. The reduced mass μ, together with the last term in Eq. (1), originate from the recoil kinetic energy of the core [3]. V_{nm} is the interaction between the valence neutrons given by

\begin{equation}
V_{nm}(r_1, r_2) = \delta(r_1 - r_2) \left(v_0 + \frac{v_p}{1 + \exp[(r_1 - R_p)/a_p]} \right).
\end{equation}

It is well known that the delta force [3] must be supplemented with an energy cutoff E_{cut} in the two-particle spectrum. In terms of the energy cutoff E_{cut} and the
scattering length a_{nn} for nn scattering, the strength for the delta interaction v_0 is given by

$$v_0 = \frac{2\pi^2\hbar^2}{m} \frac{2a_{nn}}{\pi - 2k_c a_{nn}},$$

where $E_{\text{cut}} = \hbar^2 k_c^2 / m$. The parameters for the density dependent part, i.e., ν_p, R_p, and σ_p, are adjusted in order to reproduce the known ground state properties for each nucleus. We specify the value of the parameters below.

We diagonalize the Hamiltonian (11) in the model space of the two-particle states with the energy $\epsilon_1 + \epsilon_2 \leq (A_c + 1)E_{\text{cut}} / A_c$ [3], where ϵ is a single-particle energy of the valence particle. We use a Woods-Saxon potential for V_{NC} to generate the single-particle basis:

$$V_{nC}(r) = V_0 \left(1 - 0.44f_{so}r_0^2(1 - s)\frac{1}{r}\frac{d}{dr}\right) \times \left[1 + \exp \left(\frac{r - R}{a}\right)\right]^{-1},$$

where $R = r_0 A_c^{1/3}$. For 6He, we use the parameter set $a=0.65$ fm, $r_0=1.25$ fm, $V_0 = -47.4$ MeV, and $f_{so}=0.93$, that reproduces the measured low-energy n-α phase shifts [3]. We employ the same parameters for the density-dependent interaction as in the line 5 of Table II in Ref. [3]: $a_{nn} = -15$ fm, $E_{\text{cut}} = 40$ MeV, $\nu_p = -v_0$, $R_p = 2.436$ fm, and $a_p=0.67$ fm. The continuum single-particle spectrum is discretized with a radial box of $R_{\text{box}} = 30$ fm.

For 11Li, we use $a=0.67$ fm, $r_0=1.27$ fm, $f_{so}=1.006$, and $R_{\text{box}} = 40$ fm. For the Woods-Saxon potential, a deep potential $V_0 = -47.5$ MeV is used for the even-parity states, while a shallow potential $V_0 = -35.366$ MeV is adopted for the odd parity states in order to increase the s-wave component of the ground state wave function [3]. Similar potentials are used also in Ref. [4]. For the density dependent force, we use a similar parameter set $a_{nn} = -15$ fm, $E_{\text{cut}} = 30$ MeV, $\nu_p = -v_0$, $R_p = 2.935$ fm, and $a_p=0.67$ fm to that of the line 5 in Table IV in Ref. [3] except the value of the energy cutoff.

For 24O, we use $V_0 = -43.2$ MeV, $a=0.67$ fm, $r_0=1.25$ fm, $f_{so}=0.73$, and $R_{\text{box}} = 30$ fm so that the bound $s_{1/2}$ and $d_{5/2}$ states have empirical single-particle energies -2.739 and -3.806 MeV observed in 23O and 21O, respectively. For the pairing interaction, we use $a_{nn} = -15$ fm, $E_{\text{cut}} = 30$ MeV, $\nu_p = 814.2$ MeV fm3, $R_p = R$, and $a_p=0.67$ fm which reproduce the two neutron separation energy of 24O, $S_{2n}=6.452$ MeV.

The calculated ground state properties are summarized in Table 1, where

$$\langle r_{nn}^2 \rangle = \langle \Psi_{gs} | (r_1 - r_2)^2 | \Psi_{gs} \rangle,$$

is the mean square distance between the valence neutrons, and

$$\langle r_{c-2n}^2 \rangle = \langle \Psi_{gs} | (r_1 + r_2)^2 / 4 | \Psi_{gs} \rangle,$$

is the mean square distance of their center of mass with respect to the core.

nucleus	$\langle r_{nn}^2 \rangle$	$\langle r_{c-2n}^2 \rangle$	dominant configuration (%)		
6He	0.975	21.3	13.2	$(p_3/2)^2$	83.0
11Li	0.295	41.4	26.3	$(p_1/2)^2$	59.1
24O	6.452	35.2	10.97	$(s_1/2)^2$	93.6

III. DISCUSSIONS

A. Ground state properties

Let us now discuss the spatial correlation of the valence neutrons in the ground state, and its influence to the dipole excitations near the neutron threshold. To this end, we first plot the two-particle density. It is given as

$$\rho(r_1, r_2) = \rho_{S=0}(r_1, r_2, \theta_{12}) + \rho_{S=1}(r_1, r_2, \theta_{12}).$$

The explicit expression for the each component is given by [1]

$$\rho_{S=0}(r_1, r_2, \theta_{12}) = \rho_{S=0}(r_1, r_2, \theta_{12}) = \frac{1}{8 \pi} \sum_{L} \sum_{l_1 l_2} \sum_{j_1 j_2} \frac{\hat{L} L}{\sqrt{4 \pi}} (l l' L) (0 0 0)$$

$$\times \Phi_{l_1}(r_1, r_2) \Phi_{l_2}(r_1, r_2) Y_{L,0}(\theta_{12})$$

$$\times (-)^{l_1 + l_2} \sqrt{\frac{2j_1 + 1}{2l_1 + 1}} \sqrt{\frac{2j_2 + 1}{2l_2 + 1}},$$

$$\rho_{S=1}(r_1, r_2, \theta_{12}) = \frac{1}{8 \pi} \sum_{L} \sum_{l_1 l_2} \sum_{j_1 j_2} \frac{\hat{L} L}{\sqrt{4 \pi}} (l l' L) (0 0 0)$$

$$\times \Phi_{l_1}(r_1, r_2) \Phi_{l_2}(r_1, r_2) Y_{L,0}(\theta_{12})$$

$$\times (-)^{l_1 + l_2} \sqrt{\frac{2j_1 + 1}{2l_1 + 1}} \sqrt{\frac{2j_2 + 1}{2l_2 + 1}},$$

where $\hat{L} = \sqrt{2l_1 + 1}$. Here, $\Phi_{l_1}(r_1, r_2)$ is the radial part of the two-particle wave function defined as

$$\Phi_{l_1}(r_1, r_2) = \sum_{n' \leq n} \frac{\alpha_{nn'} l_{l_1}}{\sqrt{2(1 + \delta_{n,n'})}} \times (\phi_{n_1 l_1}(r_1) \phi_{n' l_1}(r_1) + \phi_{n_1 l_1}(r_2) \phi_{n' l_1}(r_2)).$$

where n and n' are the radial quantum numbers and $\alpha_{nn'} l_{l_1}$ is the expansion coefficient. $\phi_{n_1 l_1}(r)$ is the radial
ration has a rather compact radial shape. For a halo structure. In contrast, the cigar-like configuration behaves similarly as a function of r, and do not show a halo structure. Evidently, a large rms radius of 24O is attributed to the dominant s-wave component in the ground state wave function, rather than the halo effect (see below).

We find that the spin structure of the two-particle density is considerably different among the three nuclei studied. In order to see this transparently, we introduce the angular density $\rho(\theta_{12})$ by integrating the radial coordinates in the two-particle density, i.e.,

$$\rho(\theta_{12}) \equiv 4\pi \int_0^\infty r_1^2 dr_1 \int_0^\infty r_2^2 dr_2 \rho_2(r_1, r_2, \theta_{12}). \quad (13)$$

The angular density is normalized to unity as

$$2\pi \int_0^\pi \sin \theta_{12} d\theta_{12} \rho(\theta_{12}) = 1. \quad (14)$$

FIG. 1: (Color online) The two-particle density for 6He as a function of $r_1 = r_2 = r$ and the angle between the valence neutrons, θ_{12}. The two-particle density is weighted with a factor $4\pi r^2 \cdot 2\pi r^2 \sin \theta_{12}$. The top panel shows the total density, while the middle and the bottom panels show the $S=0$ and the $S=1$ components in the LS-coupling scheme, respectively.

FIG. 2: (Color online) Same as fig. 1, but for 11Li.
dominates the di-neutron part of the two-particle density. In contrast, the cigar-like part has a large \(S=1\) part in \(^{11}\text{Li}\), but still the \(S=0\) component dominates in \(^{4}\text{He}\). For the \(^{24}\text{O}\) nucleus, there is no clear separation between the di-neutron and the cigar-like type structures. The wave function shows a strong correlation typical in the BCS type wave function. In fact, the calculated rms radius for \(^{24}\text{O}\), 4.45 fm, is close to that of the bound \(2s_{1/2}\) state, 4.65 fm. A small difference in the rms radii is due to the anti-halo effect, caused by the pairing correlation [13].

The main features of the angular dependence of the two-particle density shown in Fig. 4 can be understood in the following way. From Eqs. (9) and (10), one can obtain by inserting the values of \(3j\)-symbols that

\[
\rho^{S=0}(\theta_{12}) \propto \frac{1}{3} Y_{00}(\theta_{12}) + \frac{2\sqrt{5}}{15} Y_{20}(\theta_{12}) \cos^2 \theta_{12} \tag{15}
\]

\[
\rho^{S=1}(\theta_{12}) \propto \frac{1}{3} Y_{00}(\theta_{12}) - \frac{5}{\sqrt{15}} Y_{20}(\theta_{12}) \sin^2 \theta_{12} \tag{16}
\]

for the configurations \((j, l) = (j', l') = \pi_{z/2}\) or \((j, l) = (j', l') = \pi_{1/2}\). When weighted by \(\sin \theta_{12}\), Eq. (16) has a peak at \(\theta_{12}=35.26\) degree and 144.74 degree, while Eq. (10) has the maximum at \(\theta_{12}=90\) degree. This is indeed the case for the \(^{4}\text{He}\) nucleus. For the \(^{11}\text{Li}\), the admixture of the \((s_{1/2})^2\) and \((d_{5/2})^2\) configurations perturb this picture, and a peak at \(\theta_{12}=144.74\) degree in the \(S=0\) component disappears to a large extent. For the \(^{24}\text{O}\) nucleus, the \(S=1\) component is largely suppressed since the pure \((s_{1/2})^2\) state cannot form the \(S=1\) configuration. Also, the two-particle density for the pure \((s_{1/2})^2\) configuration is proportional to \(|Y_{00}|^2\), and thus has a peak at \(\theta_{12}=90\) degree when it is weighted by \(\sin \theta_{12}\).

\section*{B. Dipole excitations}

We next discuss the response of the ground state to the dipole field,

\[
\hat{D}_M = -\frac{Z}{A} e (r_1 Y_{1M}(\hat{r}_1) + r_2 Y_{1M}(\hat{r}_2)). \tag{17}
\]

Since we obtain the excited \(1^-\) states by the matrix diagonalization, they appear as discrete states. We smear the discrete strength distribution with a smearing function as

\[
B(E1) = \sum_k \frac{\Gamma}{\pi} \frac{1}{(E - E_k)^2 + \Gamma^2} B_k(E1), \tag{18}
\]

where \(B_k(E1)\) is the \(B(E1)\) strength for the \(k\)-th excited state,

\[
B_k(E1) = 3 |\langle \Psi_{gs} | \hat{D}_0 | \Psi_{gs} \rangle|^2. \tag{19}
\]
Fig. 5 shows the $B(E1)$ distributions for the 6He, 11Li, and 24O. The solid and the dashed lines are obtained with a smearing procedure with $\Gamma = 0.2$ and 0.5 MeV, respectively. The discrete distributions are also shown. The total $B(E1)$ strength, $\sum_{k} B_k(E1)$, is 1.31, 1.76 and 0.97 e^2 fm2 for the 6He, 11Li, and 24O, respectively.

We notice that the strong threshold peak appears in the response of 6He and 11Li. In the cluster model within the plane wave approximation, the peak of the strength function appears at $1.6 S_c$, where S_c is the cluster separation energy 14,15,16. The calculated peaks in Fig. 5 are at 1.55 and 0.66 MeV for 6He and 11Li, respectively. These peaks are very close to 1.6 times the two neutron separation energy, $1.6 S_{2n}=1.56$ MeV for 6He and 0.47 MeV for 11Li. This similarity suggests the existence of strong di-neutron correlations in these nuclei. A small difference between the peak energy in Fig. 5 and $1.6 S_{2n}$ for 11Li is due to the large configuration mixing of $s_{1/2}$ state (22.7%) in the ground state. In contrast, for 24O, the peak (4.78 MeV) is below the two neutron separation energy, and is rather close to 1.6 times single particle energy for the $2s_{1/2}$ state, that is, $1.6 \times 2.74 = 4.38$ MeV. Therefore, the di-neutron correlation does not seem to play a major role in the dipole response in this nucleus.

In order to see the threshold effect more clearly, we plot in Fig. 6 the transition density for the strong E1 peaks for each nucleus. As a comparison, we also show the $S=0$ component of the transition density by the dashed line. For 6He and 11Li, the transition density shows a nodal structure and changes its sign, that is typical in the coupling to the continuum spectrum. Also, the $S=0$ component plays a significant role, supporting the importance of the di-neutron correlation in these nuclei. On the other hand, such clear nodal structure is not seen in the transition density of 24O. The transition density seems to consist of a coherent sum of the $S=0$ and the $S=1$ components. The dipole excitation in 24O is therefore interpreted as a coherent superposition of particle-hole excitations, rather than the continuum excitations, as in stable nuclei where the continuum effect is much less important.

We mention that, while the Coulomb breakup for the one-neutron halo 11Be is now well established, that for the two-neutron halo 11Li is still in dispute showing large discrepancies between the experimental data taken by three different groups 17. Recently, Nakamura and his collaborators performed the Coulomb dissociation experiments of 11Li on 208Pb target with much higher statistics and with much less ambiguities caused by cross talk events in detecting two neutrons 18. They observed a sharp peak at $E_{\exp} \sim 0.6$ MeV and the integrated strength $B_{\exp}(E1)=1.5 \pm 0.1 e^2$ fm2 for $E<3.3$ MeV, which are consistent with the present results $E_{\text{peak}}=0.66$ MeV with the calculated strength $B_{\text{cal}}(E1)=1.31 e^2$ fm2 for $E<3.3$ MeV. Similar calculated results were also reported in Ref. 8.

Fig. 5: The $B(E1)$ distribution for 6He, 11Li, and 24O. The solid and the dashed lines are obtained with a smearing procedure with $\Gamma = 0.2$ and 0.5 MeV, respectively.

Fig. 6: The transition density for the state close to the peak in the the $B(E1)$ distribution. The top, middle, and bottom panels are for 6He, 11Li, and 24O, respectively. The solid line indicates the total density, while the $S=0$ component is denoted by the dashed line.
IV. SUMMARY

We have studied the role of di-neutron correlations in weakly bound nuclei on the neutron drip line using a three-body model. The model Hamiltonian consists of a Woods-Saxon potential between a valence neutron and the core, and of a density-dependent pairing interaction among the valence neutrons. We applied this model to the borromean nuclei, 6He and 11Li, as well as a skin nucleus 24O. For the borromean nuclei, 6He and 11Li, we found that the two-particle density has a two peaked structure, one peak at a small opening angle between the valence neutrons and the other at a large angle (the 'di-neutron' and 'cigar-like' configurations, respectively). We found that the former is dominated by the $S=0$ configuration in the LS coupling scheme and has a long tail. On the other hand, the latter has a compact shape, and is dominated by the $S=1$ configuration for 11Li while by the $S=0$ configuration for 6He. For 24O, there is no clear separation between the di-neutron and the cigar-like configurations, and the ground state is dominated by the $S=0$ configuration.

We have also studied the dipole response of these nuclei within the same model. We found strong threshold peaks in the response of 6He and 11Li nuclei, where the transition density shows the importance of the coupling to the continuum. The $S=0$ configuration, thus the di-neutron correlation, was found to have a large contribution to the transition density for these peaks. On the other hand, no clear sign of the continuum coupling was seen in the response of 24O. The transition density for the low energy dipole strength of 24O consists of a coherent sum of the $S=0$ and the $S=1$ components, and therefore the di-neutron correlation plays a much less important role in 24O than in the borromean nuclei.

Recently, a new Coulomb breakup measurement for 11Li has been undertaken at RIKEN [18]. It would be interesting to perform a similar experiment also for the 24O nucleus and see a difference between them as we discussed in this paper.

Acknowledgments

This work was supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology by Grant-in-Aid for Scientific Research under the program numbers (C(2)) 16540259 and 16740139.

[1] G.F. Bertsch and H. Esbensen, Ann. Phys. (N.Y.) 209, 327 (1991).
[2] H. Esbensen and G.F. Bertsch, Nucl. Phys. A542, 310 (1992).
[3] H. Esbensen, G. F. Bertsch and K. Hencken, Phys. Rev. C56, 3054 (1999).
[4] N. Vinh Mau and J.C. Pacheco, Nucl. Phys. A607, 163 (1996).
[5] A. Bonaccorso and N. Vinh Mau, Nucl. Phys. A615, 245 (1997).
[6] M.V. Zhukov et al., Phys. Rep. 231, 151 (1993).
[7] D. V. Fedorov, E. Garrido and A. S. Jensen, Phys. Rev. C51, 3052 (1995).
[8] B. S. Pudliner, V. R. Pandharipande, J. Carlson and R. B. Wiringa, Phys. Rev. Lett. 74, 4396 (1995); S. C. Pieper, V. R. Pandharipande, R. B. Wiringa and J. Carlson, Phys. Rev. C64, 014001 (2001).
[9] M. Matsuo, K. Mizuyama and Y. Serizawa, Phys. Rev. C71, 064326 (2005).
[10] S. Aoyama, K. Kato and K. Ikeda, Prog. Theor. Phys. Suppl. 142, 35 (2001); T. Myo, S. Aoyama, K. Kato and K. Ikeda, Prog. Theor. Phys. 108, 133 (2002).
[11] T. Myo, S. Aoyama, K. Kato, and K. Ikeda, Phys. Lett. B576, 281 (2003); T. Myo, K. Kato, S. Aoyama, and K. Ikeda, Phys. Rev. C63, 054313 (2001).
[12] Yu. Ts. Oganessian, V.I. Zagrebaev, and J.S. Vaagen, Phys. Rev. Lett. 82, 4996 (1999); Phys. Rev. C60, 044605 (1999).
[13] K. Bennaceur, J. Dobaczewski, and M. Ploszajczak, Phys. Lett. B496, 154 (2000).
[14] H. Sagawa, N. Takigawa, and Nguyen Van Giai, Nucl. Phys. A543, 575 (1992).
[15] C.A. Bertulani, G. Baur, and M.S. Hussein, Nucl. Phys. A526, 751 (1991).
[16] K. Hagino, M.S. Hussein, and A.B. Balantekin, Phys. Rev. C68, 048801 (2003).
[17] K. Ieki et al., Phys. Rev. Lett. 70, 730 (1993); S. Shimoura et al., Phys. Lett. B348, 29 (1995); M. Zinser et al., Nucl. Phys. A619, 151 (1997).
[18] T. Nakamura and N. Fukuda, Eur. Phys. J. A, in press (2005).