SOME CHARACTERIZATIONS OF THREE-DIMENSIONAL f-KENMOTSU RICCI SOLITONS

Avijit Sarkar and Pradip Bhakta

Abstract. The aim of the present paper is to give some characterizations of f-Kenmotsu Ricci soliton with a supporting example.

Keywords: f-Kenmotsu manifold; Ricci almost soliton; gradient Ricci soliton.

1. Introduction

The revolutionary concept of Ricci flow was introduced by Hamilton [5] in order to solve Poincare conjecture. The conjecture was fully solved by Perelman [11] using Hamilton’s Ricci flow technique. After the work of Perelman, the study of Ricci flow has become an important topic in differential geometry. A Ricci flow is a weak parabolic heat type partial differential equation of the following form

\[
\frac{\partial g_{ij}}{\partial t} = -2S_{ij},
\]

\[
g(0) = g_0.
\]

Here g_{ij} denotes the components of Riemannian metric g and S_{ij} denotes the components of Ricci tensor S. A Ricci soliton is a solution of the above equation which is constant up to diffeomorphism and scaling. A Ricci soliton on a Riemannian manifold is characterized by the equation

\[
(\mathcal{L}_V g)(X, Y) + 2S(X, Y) + 2\lambda g(X, Y) = 0.
\]

Here λ is a constant, called soliton constant and the vector field V is called soliton vector field. A Ricci soliton is called expanding, shrinking or steady while λ is positive, negative or zero. A Ricci soliton is called Ricci almost soliton if λ is...
A. Sarkar and P. Bhakta considered as a function instead of a constant [12]. A Ricci soliton is called gradient Ricci soliton if the soliton vector field is gradient of a potential function [13]. The study of Ricci solitons on almost contact manifolds was first initiated by Ramesh Sharma [16]. The Ricci solitons on almost contact manifolds have been studied by several authors ([4], [13], [15]). Ricci soliton on \((\kappa, \mu)\) contact metric manifold has been studied by the present authors in [14].

The notion of Kenmotsu manifold was introduced by K. Kenmotsu and was subsequently generalized to \(f\)-Kenmotsu manifolds. For details we refer to [8] and [9]. Ricci solitons on Kenmotsu manifold have been studied in [6]. The notion of \(\phi\)-Ricci symmetric manifolds was introduced by U. C. De and A. Sarkar [2]. The notion of \(\phi\)-symmetric manifolds was introduced by T. Takahashi [17]. Later several authors studied \(\phi\)-symmetric manifolds. Three dimensional quasi-Sasakian manifolds with cyclic parallel and \(\eta\)-parallel Ricci tensor have been studied by U. C. De and A. Sarkar [3].

The objective of the present paper is to give some characterizations of \(f\)-Kenmotsu manifolds with Ricci solitons and hence establish the relations between such manifolds with locally \(\phi\)-symmetric manifolds and manifolds with cyclic parallel and \(\eta\)-parallel Ricci tensors.

The present paper is organised as follows: After the introduction, we give required preliminaries in Section 2. In Section 3, we will study three dimensional \(f\)-Kenmotsu manifolds admitting Ricci soliton. Section 4 contains a supporting example.

2. Preliminaries

An odd dimensional smooth manifold \(M\) is said to be an almost contact metric manifold, if there exists a \((1,1)\) tensor field \(\phi\), a vector field \(\xi\), a 1-form \(\eta\), and a Riemannian metric \(g\) on \(M\) such that [1]

\[
\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad \phi \xi = 0, \quad \eta(\phi(X)) = 0.
\]

\[
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)
\]

for any vector fields \(X, Y \in \chi(M)\). Such a manifold of dimension \((2n+1)\) is denoted by \(M^{2n+1}_n(\phi, \xi, \eta, g)\). Also \(M^{2n+1}(\phi, \xi, \eta, g)\) is called an \(f\)-Kenmotsu manifold if the covariant differentiation of \(\phi\) satisfies

\[
(\nabla_X \phi) Y = f(g(\phi X, Y)\xi - \eta(Y)\phi X),
\]

where \(f \in C^\infty(M)\) is such that \(df \wedge \eta = 0\) ([8], [9]). If \(f = \beta\) is nonzero constant, then the manifold is a \(\beta\)-Kenmotsu manifold [7]. If \(f = 0\), then the manifold is cosymplectic [7]. An \(f\)-Kenmotsu manifold is said to be regular if \(f^2 + f' \neq 0\), where \(f' = \xi f\). For an \(f\)-Kenmotsu manifold, it follows from (2.3)

\[
\nabla_X \xi = f(X - \eta(X)\xi).
\]
The condition $df \wedge \eta = 0$ holds only for $\dim M \geq 5$ [10]. In a three dimensional f-Kenmotsu manifold, we have

\begin{align*}
R(X,Y)Z &= \left(\frac{r}{2} + 2f^2 + 2f' \right)(X \wedge Y)Z \\
&\quad - \left(\frac{r}{2} + 3f^2 + 3f' \right)\{\eta(X)(\xi \wedge Y)Z + \eta(Y)(X \wedge \xi)Z \}, \tag{2.5}
\end{align*}

\begin{align*}
S(X,Y) &= \left(\frac{r}{2} + f^2 + f' \right)g(X,Y) - \left(\frac{r}{2} + 3f^2 + 3f' \right)\eta(X)\eta(Y), \tag{2.6}
\end{align*}

\begin{align*}
QX &= \left(\frac{r}{2} + f^2 + f' \right)X - \left(\frac{r}{2} + 3f^2 + 3f' \right)\eta(X)\xi, \tag{2.7}
\end{align*}

where $(X \wedge Y)Z = g(Y,Z)X - g(X,Z)Y$, also R, S and r are Riemannian curvature tensor, Ricci curvature tensor and scalar curvature on M respectively [9]. From (2.5) and (2.6) we get

\begin{align*}
R(X,Y)\xi &= -(f^2 + f')(\eta(Y)X - \eta(X)Y), \tag{2.8}
\end{align*}

\begin{align*}
S(X,\xi) &= -2(f^2 + f')\eta(X), \tag{2.9}
\end{align*}

\begin{align*}
S(\xi,\xi) &= -2(f^2 + f'), \tag{2.10}
\end{align*}

\begin{align*}
Q\xi &= -2(f^2 + f')\xi. \tag{2.11}
\end{align*}

As a consequence of (2.4), we also have

\begin{align*}
(\nabla_X \eta)(Y) &= fg(\phi X, \phi Y). \tag{2.12}
\end{align*}

Also from (2.9) it follows that

\begin{align*}
S(\phi X, \phi Y) &= S(X,Y) + 2(f^2 + f')\eta(X)\eta(Y), \tag{2.13}
\end{align*}

for all vector fields $X, Y \in \chi(M)$.

An f-Kenmotsu manifold $M^{(2n+1)} (\phi, \xi, \eta, g)$ is said to be ϕ-symmetric if its curvature tensor R bears the condition

\begin{align*}
\phi^2(\nabla_X R)(Y, Z)W = 0, \tag{2.14}
\end{align*}

for all vector fields $X, Y, Z, W \in \chi(M)$ [17]. In particular, if X, Y, Z, W are orthogonal to ξ, then $M^{(2n+1)} (\phi, \xi, \eta, g)$ is said to be locally ϕ-symmetric. An f-Kenmotsu manifold $M^{(2n+1)} (\phi, \xi, \eta, g)$ is said to be ϕ-Ricci symmetric if its Ricci operator Q bears the condition

\begin{align*}
\phi^2(\nabla_X Q)Y = 0 \tag{2.15}
\end{align*}

for all vector fields $X, Y \in \chi(M)$. If X and Y are orthogonal to ξ, then $M^{(2n+1)} (\phi, \xi, \eta, g)$ is said to be locally ϕ-Ricci symmetric. It may be noted that ϕ-symmetric implies ϕ-Ricci symmetric, but the converse is not valid in general.

Ricci tensor S of a Riemannian manifold (M, g) is called η-parallel if

\begin{align*}
g((\nabla_X S)Y, Z) = 0
\end{align*}
for all vector fields X, Y, Z tangent to M and orthogonal to ξ where g and ∇ denote Riemannian metric and Riemannian connection respectively.

Ricci tensor S of a Riemannian manifold (M, g) is called cyclic-parallel if
\begin{equation}
(\nabla_X S)(Y, Z) + (\nabla_Y S)(Z, X) + (\nabla_Z S)(X, Y) = 0
\end{equation}
for all vector fields X, Y, Z tangent to M. Here ∇ denotes Riemannian connection.

3. Three-dimensional f-Kenmotsu manifolds with Ricci soliton

In this section we prove the following:

Theorem 3.1. In a three-dimensional f Kenmotsu Ricci soliton, if f is constant and the soliton vector field is Killing, then the soliton is expanding.

Proof. For a three-dimensional f-Kenmotsu manifold, from (2.7), we get
\begin{equation}
QX = \left(\frac{r}{2} + f^2 + f'\right)X - \left(\frac{r}{2} + 3f^2 + 3f'\right)\eta(X)\xi.
\end{equation}
Differentiating covariantly along Y and using (2.4) and (2.12) we obtain
\begin{align}
(\nabla_Y Q)X &= \left(\frac{dr(Y)}{2} + 2f df(Y) + df'(Y)\right)X + \left(\frac{r}{2} + f^2 + f'\right)\nabla_Y X \\
&- \left(\frac{dr(Y)}{2} + 6f df(Y) + 3df'(Y)\right)\eta(X)\xi \\
&- \left(\frac{r}{2} + 3f^2 + 3f'\right)f g(\phi X, \phi Y)\xi - \left(\frac{r}{2} + 3f^2 + 3f'\right) \eta(X) f(Y - \eta(Y)\xi).
\end{align}
(3.2)
Taking inner product of (3.2) with Y we have
\begin{align}
g((\nabla_Y Q)X, Y) &= \left(\frac{dr(Y)}{2} + 2f df(Y) + df'(Y)\right)g(X, Y) \\
&+ \left(\frac{r}{2} + f^2 + f'\right)g(\nabla_Y X, Y) \\
&- \left(\frac{dr(Y)}{2} + 6f df(Y) + 3df'(Y)\right)\eta(X)\eta(Y) \\
&- \left(\frac{r}{2} + 3f^2 + 3f'\right)f g(\phi X, \phi Y)\eta(Y) \\
&- \left(\frac{r}{2} + 3f^2 + 3f'\right)\eta(X)g(Y, Y) f \\
&+ \left(\frac{r}{2} + 3f^2 + 3f'\right)\eta(X)(\eta(Y))^2 f.
\end{align}
(3.3)
Let $\{e_1, e_2, \xi\}$ be an orthonormal ϕ-basis at any point of a tangent space. It is known that
\begin{equation}
\text{div}(Q)X = g((\nabla_{e_1} Q)X, e_1) + g((\nabla_{e_2} Q)X, e_2) + g((\nabla_{e_3} Q)X, e_3).
\end{equation}
(3.4)
Using (3.3) in (3.4) we get

\[
\text{div}(Q)X = \left(\frac{dr(e_1)}{2} + 2f df(e_1) + df'(e_1) \right)g(X, e_1) + \left(\frac{r}{2} + f^2 + f' \right)g(\nabla_{e_1}X, e_1) - \left(\frac{dr(e_2)}{2} + 6f df(e_2) + 3df'(e_2) \right)g(X, e_2) + \left(\frac{r}{2} + 3f^2 + 3f' \right)g(\nabla_{e_2}X, e_2) + \left(\frac{dr(\xi)}{2} + 2f df(\xi) + df'(\xi) \right)g(X, \xi) + \left(\frac{r}{2} + f^2 + f' \right)g(\nabla_{\xi}X, \xi) - \left(\frac{dr(\xi)}{2} + 2f df(\xi) + df'(\xi) \right)g(X, \xi).
\]

(3.5)

We know that \(\text{div}(Q)X = \frac{1}{2}dr(X). \) Putting \(X = \xi \) in (3.5) we obtain

\[
\frac{1}{2}dr\xi = 2\left(\frac{r}{2} + f^2 + f' \right)f - 4f df(\xi) - 2df'(\xi).
\]

(3.6)

If \(f \)-Kenmotsu manifold admits Ricci soliton then

\[
S(X, Y) = -\frac{1}{2}((\mathcal{L}_V g)(X, Y) - \lambda g(X, Y)).
\]

(3.7)

If \(V \) is a Killing vector field, from (3.7) we get \(r = -3\lambda = \text{constant}. \) Therefore, from (3.6)

\[
\left(\frac{r}{2} + f^2 + f' \right)f = 2f df(\xi) - df'(\xi).
\]

(3.8)

If \(f \) is a non-zero constant then

\[
r = -2f^2.
\]

(3.9)

Consequently, \(\lambda = \frac{2}{3}f^2. \) This completes the proof. \(\square \)

We know from [6] that a three-dimensional non cosymplectic \(f \)-Kenmotsu manifold \(M^3(\phi, \xi, \eta, g) \) with \(f \) being constant, is locally \(\phi \)-Ricci symmetric if and only if the scalar curvature is constant. So we get the following corollary

Corollary 3.1. If a three-dimensional \(f \)-Kenmotsu manifold with constant \(f \) admits a Ricci soliton with Killing soliton vector field, then it is \(\phi \)-Ricci symmetric, and hence \(\phi \)-symmetric.

Again we know from [6] that in a three-dimensional non cosymplectic \(f \)-Kenmotsu manifold \(M^3(\phi, \xi, \eta, g) \) with \(f \) being constant, the Ricci tensor is \(\eta \)-parallel if and only if the scalar curvature is constant. Hence we get
Corollary 3.2. If a three-dimensional f-Kenmotsu manifold with constant f admits Ricci soliton with Killing soliton vector field, then its Ricci tensor is η-parallel.

From [6] we know that a three-dimensional non cosymplectic f-Kenmotsu manifold $M^3(\phi, \xi, \eta, g)$ with f being constant, satisfies cyclic parallel Ricci tensor if and only if the scalar curvature is constant. So, we can state the following:

Corollary 3.3. If a three-dimensional f-Kenmotsu manifold with constant f admits Ricci soliton with Killing soliton vector field, then its Ricci tensor is cyclic parallel.

4. Example

Example 4.1. Let $M = \{(u, v, w) \in R^3 : u, v, w(\neq 0) \in R\}$ be a Riemannian manifold, where (u, v, w) denotes the standard coordinates of a point in R^3. Let us suppose that

\begin{equation}
(\text{4.1})
\begin{align*}
e_1 &= 3w \frac{\partial}{\partial u}, \\
e_2 &= 3w \frac{\partial}{\partial v}, \\
e_3 &= -3w \frac{\partial}{\partial w}
\end{align*}
\end{equation}

are three linearly independent vector fields at each point of M and therefore it forms a basis for the tangent space $\chi(M)$. We also define the Riemannian metric g of the manifold M given by

\begin{equation}
(\text{4.2})
g = \frac{1}{w^2}[du \odot du + dv \odot dv + dw \odot dw].
\end{equation}

Let η be the one form satisfying

\begin{equation}
(\text{4.3})
\eta(U) = g(U, e_3)
\end{equation}

for any $U \in \chi(M)$ and let ϕ be the $(1, 1)$ tensor field defined by $\phi e_1 = -e_2$, $\phi e_2 = e_1$, $\phi e_3 = 0$. By the linear properties of ϕ and g, we can easily verify the following relations

\begin{equation}
(\text{4.4})
\eta(e_3) = 1, \quad \phi^2(U) = -U + \eta(U)e_3
\end{equation}

\begin{equation}
(\text{4.5})
g(\phi U, \phi V) = g(U, V) - \eta(U)\eta(V)
\end{equation}

for arbitrary vector fields $U, V \in \chi(M)$. This shows that $\xi = e_3$ the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M. If ∇ is the Livi-Civita connection with respect to the Riemannian metric g, then with the help of above, we can easily calculate that

\begin{equation}
(\text{4.6})
[e_1, e_2] = 0, \quad [e_1, e_3] = 3e_1, \quad [e_2, e_3] = 3e_2.
\end{equation}

Now we recall Koszul’s formula as

\[2g(\nabla_U V, W) = U(g(V, W)) + V(g(W, X)) - W(g(U, V)) - g(U, [V, W]) - g(V, [U, W]) + g(W, [U, V])\]
for arbitrary vector fields $U, V, W \in \chi(M)$. Making use of Koszul’s formula, we get the following:

\begin{align*}
\nabla_{e_2} e_3 &= 3e_2 & \nabla_{e_2} e_2 &= 3e_3 & \nabla_{e_2} e_1 &= 0 \\
\nabla_{e_3} e_3 &= 0 & \nabla_{e_3} e_2 &= 0 & \nabla_{e_3} e_1 &= 0 \\
\nabla_{e_1} e_3 &= 3e_1 & \nabla_{e_1} e_2 &= 0 & \nabla_{e_1} e_1 &= 3e_3.
\end{align*}

From the above calculation, it is clear that M satisfies the condition $\nabla_U \xi = f\{U - \eta(U)\xi\}$ for $e_3 = \xi$, where $f = 3$ is a non-zero constant. Thus we conclude that M leads to an f-Kenmotsu manifold. Also $f^2 + f'$ is non-zero. This implies that M is a three-dimensional regular f-Kenmotsu manifold. We find the components of curvature tensor and Ricci tensor as follows:

\begin{align*}
R(e_2, e_3)e_3 &= -3e_2, & R(e_3, e_2)e_2 &= -3e_3, \\
R(e_1, e_3)e_3 &= -3e_1, & R(e_3, e_1)e_1 &= -3e_3, \\
R(e_1, e_2)e_2 &= -3e_1, & R(e_1, e_2)e_3 &= 0, \\
R(e_2, e_1)e_1 &= -3e_2, & R(e_3, e_1)e_2 &= 0, \\
S(e_1, e_1) &= -6, & S(e_2, e_2) &= -6, & S(e_3, e_3) &= -6, \\
S(\phi e_1, \phi e_1) &= -6, & S(\phi e_2, \phi e_2) &= -6, & S(\phi e_3, \phi e_3) &= 0,
\end{align*}

$S(\phi e_i, \phi e_j) = 0$ for all $i, j = 1, 2, 3(i \neq j)$. From the above consequence, it is clear that $\phi^2\{\nabla_U Q(V)\} = 0$ for all vector fields $U, V \in \chi(M)$. Hence M is locally ϕ-Ricci symmetric. From above we get $r = -18$, this implies the scalar curvature is constant. Moreover, $(\nabla_X S)(\phi e_i, \phi e_j) = 0$ for $X \in \chi(M)i, j = 1, 2, 3$. So M is η-parallel, cyclic parallel. This example is also satisfying the Ricci soliton equation if $\lambda = 6$. Hence $\lambda = \frac{2}{3}f^2$ is verified. So the soliton is expanding. Thus, Theorem 3.1 and the associated corollaries are verified by this example.
REFERENCES

1. D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509 (1976), Springer-Verlag.
2. U. C. De and A. Sarkar, On ϕ-Ricci symmetric Sasakian manifolds, Proceeding of the Jangjeon Mathematical society, 11 (2008), 47-52.
3. U. C. De and A. Sarkar, On three-dimensional quasi-Sasakian manifolds, SUT Journal of Mathematics, 45 (2009), 59-71.
4. A. Ghosh, Certain contact metric as Ricci almost solitons, Results Math, 65 (2014), 81-94.
5. R. S. Hamilton, Ricci flow on surfaces, Contemp. Math, 71 (1988), 237-261.
6. S. K. Hui, Almost conformal Ricci solitons on f-Kenmotsu manifolds, Khayyam Journal of Mathematics, 5 (2019), 89-104.
7. D. Janssens and L. Vanhecke, Almost cotact structures and curvature tensor, Kodai Math. J, 4 (1981), 1-27.
8. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. Journal, 24 (1972), 93-103.
9. Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), 73-87.
10. Z. Olszak, Rosca, R., Normal locally conformal almost cosymplectic manifolds, Publ. Mathe. Debrecen 39 (1991) 315-323.
11. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv: 0211159 mathDG, (2002)(Preprint).
12. S. Pigola et al., Ricci almost solitons, Ann. Sc. Norm. Sup. Pisa Cl. Sci, 10(2011), 757-799.
13. A. Sarkar, A. Sil and A. K. Paul, Ricci almost soliton on three-dimensional quasi-Sasakian manifold, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci, 89(2019), 705-710.
14. A. Sarkar and P. Bhakta, Ricci almost soliton on (κ, μ) space forms, Acta Universitatis Apulensis, 57(2019), 75-85.
15. A. Sarkar, A. Sil and A. K. Paul, Ricci soliton on three dimensional trans Sasakian manifold and Kagan Subprojective spaces, Eukrainian Math Journal, 72(2020), 488-494.
16. R. Sharma, Almost Ricci solitons and K-contact geometry, Montash Math., 175 (2014), 621-628.
17. T. Takahashi, Sasakian ϕ-symmetric spaces, Tohoku Math. J, 29 (1977), 91-113.

Avijit Sarkar
Department of Mathematics
University of Kalyani
Kalyani 741235
West Bengal
India
avjaj@yahoo.co.in
Some characterizations of Three-dimensional f-Kenmotsu Ricci Solitons

Pradip Bhakta
Department of Mathematics
University of Kalyani
Kalyani 741235
West Bengal
India
pradip020791@gmail.com