Mini Review

β-thalassemia is a monogenic disease that will be caused by β-globin faulty synthesis and represents a global health problem. According to the WHO, the carrier rate of β-thalassemia is around 1.5% of the world population [1]. The usual treatment for patients with β-thalassemia is based on regular blood transfusions and iron chelation therapy. Despite all of the progress made in this field, transfusion therapy is linked with serious complications and requires iron chelation therapy, which causes undesirable effects and scarce compliance. In comparison to traditional methods, therapeutic approaches such as gene therapy have recently drawn more attention for the treatment of β-thalassemia [2]. It was shown that by increasing the level of transcription factors such as Krueppel-like factor 1 (KLF1) and B-cell lymphoma/leukemia 11A (BCL11A) in K562 cells, a prominent increase in β-globin levels with the resultant level equivalent to that of adult cells can be achieved [3]. Experiments in K562 and KU812 cells also proved that stress signals such as heat-shock (HS), UV- and X-irradiation and osmotic shock can increase γ-globin mRNA and fetal hemoglobin (HbF) levels in differentiating primary human erythroid cells, but only after 3-5 days of treatments [4].

Another stimulant like pulsed electromagnetic field (PEMF), a safer approach compared to other mentioned methods showed...
to be a suitable treatment strategy for inflammatory and tissue-
specific gene expression related conditions such as alzheimer;
arthritis, bacterial infection and wound healing in diabetic cases
and its results demonstrated a significant improvement in the
treatment of the patients [5]. The other effects of PEMF are its role
in promoting angiogenesis in bone marrow by the overexpression of
angiopoietin-2 mRNA [6], and up-regulation of osteogenic
factors in human calvarial bone cell cultures which are critical
factors in fracture healing [7,8]. It also can increase tendon-
specific gene transcription scleraxis (SCX) (+95 %) and type I collagen
(COL1A1) (+97 %) in human tendon cells culture model [9].
Angiopoietin-2 up-regulation which caused by PEMF treatment can
promote endothelial cell migration by loosening their intercellular
contacts, and fibroblast growth factor-2 in the mice bone marrow.
These findings suggest that PEMF induces an angiogenesis-prone
environment in the bone marrow without having invasive effects
including the induction of hypoxic conditions or inflammation [6].

Dose-dependent upregulation in the expression of SCX, and
COL1A1 after PEMF treatment of tendon cells (TCs) is particularly
important since PEMF stimulates cell proliferation with a consequent
positive effect on tendon recovery. The other observation after
PEMF treatment is a small, but significant, increase of IL-1β [9]. IL-
1β induces the production of IL-6, a multifunctional Th2 cytokine
which exhibits immunoregulatory functions in tissues and plays an
essential role in tissue healing, as it is involved in cell proliferation
and survival [9,10]. Thus, the increase of IL-6 correlates with the
amount of cell viability and proliferation observed after PEMF
treatment. On the other hand, IL-6 also has a stimulatory effect
on IL-10 production [9]. IL-10 is not only the most effective anti-
inflammatory Th2 cytokine but it also affects connective tissue
cells such as fibroblasts and chondrocytes [11]. In tenocytes,
upregulation of IL-10 correlates with the healing increase in
murine models [12]. The role of IL-10 in tissue repair involves the
regeneration of extracellular matrix, especially in elevating elastin
[13] and a significant increase in the vascular endothelial growth
factor (VEGF). This is in accordance with the observed increase of
IL-6, which is the main vascular endothelial growth factor (VEGF)
promoter [9].

PEMF promotes angiogenesis in bone marrow, by the
overexpression of angiopoietin-2 mRNA [6]. Thus, PEMF positively
influences proliferation, tendon-specific marker expression,
and the release of anti-inflammatory cytokines and angiogenic
factor in a healthy human TCs culture model in a dose-dependent
manner [9]. Diabetic peripheral neuropathy (DPN) studies in
animal models, demonstrated that the restitution of nerve function
induced by PEMF stimulation will lead to down-regulation of VEGF.
This down regulation, in turn, causes less damage to peripheral
nerve fibers. It is suggested that PEMF might have direct corrective
effects in relieving peripheral neuropathic symptoms in diabetic
rats with DPN [14]. PEMF stimulation of human bone marrow
stromal cells (HBMSCs), in lumbar spinal fusion, affects cell cycle
regulation, cell structure, and growth receptors or kinase pathways.
In the differentiation and mineralization stages, PEMF regulated
preosteoblast gene expression, the growth factor-beta (TGF-β)
transformation signaling pathway and microRNA 21 (miR21)
activity are highly regulated.

PEMF can affect bone metabolism by activation of the TGF-β
signaling pathway and stimulation of microRNA 21-5p (miR21-
5p) expression in human bone marrow stromal cells (HBMSCs)
[15]. In the process of bone lesions repair, PEMF stimulation
alone is able to motivate the expression of osteogenic genes that
can lead to the higher expression levels of the osteocalcin (Ocn)
mRNA in mesenchymal stem cells (MSCs) followed by MSCs
proliferation. PEMFs also affect the molecular currents and cause
a specific transmembrane signaling which will promote osteogenic
differentiation [16]. PEMF is able to modulate both microRNA
(miRNAs) that functions in RNA silencing and post-transcriptional
regulation of gene expression and mRNA that is involved in the
Alzheimer’s disease (AD) related pathways, which will lead to the
rebalancing of the pathways’ deregulation occurring in the AD. In
an ex vivo human peripheral blood mononuclear cells (PBMCs)
study, a quantitative reduction of β-secretase, following by PEMF
exposure, confirmed the protective role of the electromagnetic field
whose action would counteract the formation of β-amyloid.

Expression values of miR-107 and miR-335-5p that are the
negative regulator of enzyme beta-secretase 1 (BACE1) and
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptor, respectively decrease after PEMF exposure, and the same
trend can be observed for the expression of miR-26b-5p, which is
involved in brain signaling and synaptic plasticity. This possible
effect of PEMF exposure confirms the capacity of the electromagnetic
field to stimulate both tissue regeneration and brain signaling [17].
According to previous studies, cell stress signals induce γ-globin
gene expression and this induction is a part of physiological stress
response in erythroid cells [4]. It was shown that K562 cells and
erythroid cells from cord blood progenitors in comparison to the
adult cells have absent or lower levels of both KLF1 and BCL11A
that are essential in the β-globin expression. These types of cells
also express predominantly (mainly) γ, with a low level of β-globin.
There are increasing data to show that KLF1 also regulates many
other erythroid genes and hence plays a critical and central role in
erthropoiesis [3].

Since the current conventional drugs and surgical procedures
do not have the ideal combination of efficacy, safety, and ease of use,
PEMF therapy can be a good choice for complementary treatment in
β-Thalassemia because it is a noninvasive, low-cost, non-
cytotoxic treatment which causes significantly lower discomfort
compared to conventional therapy and there are few known
risks associated with the use of PEMF therapy [5]. Regarding the
important role of cell stress in γ-globin gene induction and based
on the ability of PEMF to stimulate specific gene transcription and overexpression, we hypothesize that PEMF exposure can activate cell stress signaling pathways that result in β-globin expression which is a cell stress response gene. For proving this hypothesis, at first the PEMF different dosing parameters has to be studied, such as the intensity, the frequency and the burst width/wait, the pulse width/wait, the pulse rise and the fall time, duration of PEMF application and the distance of magnetic surface from targeted cell or tissue. The obtained information can help to optimize and standardize experimental protocol, to increase KLF1 and BCL11A level, effectively. This increase can elevate the β-globin expression and finally might be effective in the β-Thalassemia treatment. Our remark favors the utility of PEMF as a physical stress to increase β-globin gene expression in erythroid cells for in vitro and or in vivo experiments in the future.

Conclusion

The usual treatment for β-thalassemia that is a combination of blood transfusions and iron chelation therapy has severe side effects that make it necessary for patients to use other medications and procedures like iron chelation therapy. In the pursuit of alternative treatment studies have shown that using heat-shock (HS), UV- and X-irradiation therapy can trigger stress signals that will cause a chain of reaction to activate transcription factors such as KLF1 and BCL11A-XL. These signals can stimulate β-globin production. Other alternatives like pulsed electromagnetic field (PEMF) might provide a better approach. It was shown in multiple studies that PEMF can cause different effects in patients including healing based on promoting angiogenesis in the bone marrow tissue, immunoregulatory functions based on IL-1β, IL-6, and IL-10 production and up-regulation of osteogenic factors and genes like SCX, COL1A.

It also proves to be effective in restitution of nerve function in DPN studies to relieve peripheral neuropathic symptoms and HBMSCs stimulation via TGF-β signaling pathway and miR21 activity. Other studies also showed promising therapeutic effects of this treatment on both tissue regeneration and brain signaling. Since all of these effects were reported without having side effects such as the induction of hypoxic conditions or inflammation and based on its noninvasive, low-cost, non-cytotoxic nature, we hypothesize to use it for activating cell stress signaling pathways to initiate and increase β-globin expression as a cellular stress response gene. This objective will need future studies to evaluate its effectiveness in thalassemic patients and also provide information to optimize and standardize its experimental protocol.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

1. Tyan PI, Radwan AH, Eid A, Haddad AG, Wehbe D, et al. (2014) Novel approach to reactive oxygen species in nontransfusion-dependent thalassemia. BioMed research international pp. 350432.
2. Breda L, Rivella S, Zuccato C, Gambari R (2013) Combining gene therapy and fetal hemoglobin induction for treatment of beta-thalassemia. Expert review of hematology 6(3): 255-264.
3. Trakarnsanga K, Wilton MC, Lau W, Singleton BK, Parsons SF, et al. (2014) Induction of adult levels of beta-globin in human erythroid cells that intrinsically express embryonic or fetal globin by transduction with KLF1 and BCL11A-XL. Haematologica 99(11): 1677-1685.
4. Schaefier EK, West RJ, Conine SJ, Lowrey CH (2014) Multiple physical stresses induce gamma-globin gene expression and fetal hemoglobin production in erythroid cells. Blood cells, molecules & diseases 52(4): 214-224.
5. Ross CL, Harrison BS (2013) The use of magnetic field for the reduction of inflammation: a review of the history and therapeutic results. Alternative therapies in health and medicine 19(2): 47-54.
6. Goto T, Fujimata M, Ishida M, Kuribayashi M, Ueshima K, et al. (2010) Noninvasive up-regulation of angiopoietin-2 and fibroblast growth factor-2 in bone marrow by pulsed electromagnetic field therapy. Journal of orthopaedic science 15(5): 661-665.
7. Clark CC, Wang W, Brighton CT (2014) Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields. Journal of orthop Res 32(7): 894-903.
8. Goodwin TJ (2014) Modifying the genetic regulation of bone and cartilage cells and associated tissue by EMF stimulation fields and uses thereof. USA.
9. De Girolamo L, Stanco D, Galleria E, Vigno M, Colombini A, et al. (2013) Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells. Cell biochemistry and biophysics 66(3): 697-708.
10. Malekshah OM, Lage H, Bahrami AR, Afshari JT, Behravan J (2012) PXR and NF-kappaB correlate with the inducing effects of IL-1beta and TNF-alpha on ABCG2 expression in breast cancer cell lines. European journal of pharmacological sciences 47(2): 474-480.
11. Schulze Tanzil G, Zeiqat H, Sabat R, Kohl B, Halder A, et al. (2009) Interleukin-10 and articular cartilage: experimental therapeutical approaches in cartilage disorders. Current gene therapy 9(4): 306-315.
12. Riccietti ET, Reddy SC, Anorge HL, Zgonis MH, Van Kleunen JP, et al. (2008) Effect of interleukin-10 overexpression on the properties of healing tendon in a murine patellar tendon model. The Journal of hand surgery 33(10): 1843-1852.
13. John T, Lodla D, Kohl B, Ertel W, Jammrath J, et al. (2010) Effect of pro-inflammatory and immunoregulatory cytokines on human tenocytes. Journal of orthopaedic research 28(8): 1071-1077.
14. Lei T, Jing D, Xie K, Jiang M, Li F, et al. (2013) Therapeutic effects of 15 Hz pulsed electromagnetic field on diabetic peripheral neuropathy in streptozotocin-treated rats. PLoS one 8(4): e61414.
15. Selvamurugan N, He Z, Rifkin D, Barchi E, Partridge NC (2017) Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-beta Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation. Stem cells international 2017: 2450327.
16. Jazayeri M, Shoorsazar MA, Haghipur N, Boburi R, Mirahmadi E, et al. (2017) Effects of Electromagnetic Stimulation on Gene Expression of Mesenchymal Stem Cells and Repair of Bone Lesions. Cell journal 19(1): 34-44.
17. Capelli E, Torrini F, Venturini L, Granato M, Fassina L, et al. (2017) Low-Frequency Pulsed Electromagnetic Field Is Able to Modulate miRNAs in an Experimental Cell Model of Alzheimer’s Disease. Journal of Healthcare Engineering 2017: 2590270.
