IMPACT OF GENDER ON PATIENTS HOSPITALIZED FOR SARS-COV-2 INFECTION: A PROSPECTIVE OBSERVATIONAL STUDY

Andrea Giacomelli, Teresa De Falco, Letizia Oreni, Alice Pedrol, Anna Lisa Ridolfo, Elisa Calabrò, Giorgia Carrozzo, Cecilia Bonazzetti, Spinello Antinori, and Antonio Brucato.

1Department of Infectious Diseases, ASST Fatebenefratelli-Sacco, Luigi Sacco University Hospital, Milan, Italy; 2Università di Milano, Luigi Sacco Department of Biomedical and Clinical Sciences DIBIC, Italy; 3Internal Medicine, ASST Fatebenefratelli Sacco, Fatebenefratelli Hospital, Milan, Italy.

Andrea Giacomelli, MD

Università di Milano, Luigi Sacco DIBIC,

III Infectious Diseases Unit, L. Sacco Hospital,

Via G.B. Grassi 74,

20157 Milano,

Italy

Tel. +39.02.50319761; Fax +39.02.50319758; E-mail andrea.giacomelli@unimi.it

ORCID ID: 0000-0003-3685-4289

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jmv.26933.

This article is protected by copyright. All rights reserved.
Key words: COVID-19; female; mortality; disease severity; outcomes.

Running head: Gender impact on COVID-19

Abstract

Biological sex could affect the natural history of SARS-CoV-2 infection. We enrolled all COVID-19 patients admitted to two COVID-19 hospitals in Milan in a prospective observational study. The primary outcome was death during the study period and the secondary outcome was critical disease at hospital admission. The association(s) between clinically relevant, non-collinear variables and the primary outcome was assessed with uni- and multivariable Logistic regression models. Five-hundred and twenty patients were hospitalized of whom 349 (67%) were males with a median age 61 [IQR 50-72]. A higher proportion of males presented critically ill when compared to females (30.1% vs 18.7%, p<0.046). Death occurred in 86 (24.6%) males and 27 (15.8%) females (p=0.024). In multivariable analysis age (per 10 years more) [AOR 1.83 (95% CI 1.42-2.35), p<0.0001], obesity [AOR 2.17 (95% CI 1.10-4.31), p=0.026], critical disease at hospital admission [AOR 6.34 (95% CI 3.50-11.48), p<0.0001] were independently associated to higher odds of death whereas gender was not. In conclusion, a higher proportion of males presented critically ill at hospital admission. Age, critical disease at hospital admission, obesity, anemia, D-dimer, eGFR, LDH and CK predicted death in hospitalized COVID-19 patients.

Introduction

Since the beginning of the COVID-19 pandemic it appeared clearly from the first Chinese reports that a higher proportion of males required hospital admission when compared to females [1]. A similar pattern was also observed in Italy in a significantly older population when compared to the Chinese one [2-4]. In addition, according to the
Italian official reports males accounted for the majority of COVID-19 related death in all age categories except for those aged above 90 years of age [5]. Sero-epidemiological studies conducted in the general population showed how gender does not seem to provide a different susceptibility to SARS-CoV-2 infection, whereas different demographic, cultural and behavioural factors appeared to be the main determinants of SARS-CoV-2 infection [6-8]. Consequently, it could be speculated that gender could affect the natural history of SARS-CoV-2 infection by means of a higher likelihood to progress to severe disease requiring hospitalization in males.

We aimed to assess the impact of gender on disease severity at hospital admission and mortality of COVID-19 hospitalized patients during the first wave of the Italian epidemic.

Materials and methods

This prospective cohort study enrolled COVID-19 patients admitted to two COVID-19 dedicated hospitals in Milan, Italy (Luigi Sacco and Fatebenefratelli Hospitals). The clinical characteristics of all the COVID-19 patients hospitalized between 21 February and 31 May 2020 were recorded upon admission and the observation was censored as of 31 July 2020. A case of COVID-19 was defined according the presence of a positive nasopharyngeal swab for SARS-CoV-2 and the disease severity at hospital admission was categorized according to the WHO criteria into mild/moderate/severe/critical [9].

The primary outcome was death during the study period and the secondary outcome was critical disease at hospital admission, the life status of the patients discharged before the censoring date was ascertained by means of telephone calls made by two physicians.

The descriptive statistics include proportions for categorical variable, and median values and interquartile range (IQR) for continuous variables. The baseline demographic and
clinic-epidemiological characteristics of females and males were compared using χ^2 or Fisher's exact test where necessary for categorical variables and Wilcoxon’s rank-sum test for continuous variables.

Kaplan Meier curves were built to assess the time dependent probability of death in males and females and further stratified by disease severity at hospital admission (critical vs non-critical disease).

The association(s) between clinically relevant, non-collinear variables and the primary and secondary outcome was assessed by means of uni- and multivariable Logistic regression models. The multivariable analysis was made by introducing into the model the variables that found to be significantly associated with outcome in the univariate analysis, as well as potential confounders.

The analysis on the primary outcome (death) was repeated after restricting only to males and females.

All of the statistical analyses were made using SAS software, version 9.4, and differences with P values of <0.05 were considered statistical significant.

Results

Five-hundred and twenty patients were hospitalized of whom 349 (67%) were males with a median age 61 [Inter Quartile Range (IQR) 50-72] (Table 1). No significant difference between males and females were observed regarding age, chronic conditions and influenza vaccination. Males presented more frequently with fever and less frequently complaining gastrointestinal symptoms when compared to females [67.6% vs 51.5% ($p=0.001$) and 11.2% vs 19.3% ($p=0.015$), respectively].

This article is protected by copyright. All rights reserved.
A higher proportion of males presented with a critical disease at hospital admission when compared to females (30.1% vs 18.7%, $p < 0.046$). In multivariable analysis male gender did not result independently associated to critical disease at hospital admission. Time from symptoms onset to hospital admission [Adjusted Odds Ratio (AOR) 1.01 (95% Confidence Interval (CI) 1.01-1.08), $p = 0.010$], C-reactive protein levels ≥50 mg/L [AOR 3.75 (95% CI 2.18-6.46), $p < 0.0001$] and LDH ≥245 IU/L [AOR 6.74 (95% CI 2.44-18.59), $p < 0.001$] were independently associated to higher odds of critical presentation, whereas influenza vaccination in the 2019-2020 season was associated to a lower odds of critical presentation [AOR 0.47 (95% CI 0.24-0.94), $p = 0.032$].

During the time of observation death occurred in 86 (24.6%) males and 27 (15.8%) females ($p = 0.024$) (Supplementary Figure 1A). A trend toward a higher survival probability in critically ill females when compared to males was observed ($p = 0.094$) (Supplementary Figure 1B). In multivariable analysis male gender did not resulted independently associated to death (Table 2). Age (per 10 years more) [AOR 1.83 (95% CI 1.42-2.35), $p < 0.001$], obesity [AOR 2.17 (95% CI 1.10-4.31), $p = 0.026$], critical disease at hospital admission [AOR 6.34 (95% CI 3.50-11.48), $p < 0.0001$], LDH ≥245 IU/L [AOR 3.30 (95% CI 1.12-9.71), $p = 0.034$], anemia [AOR 2.13 (95% CI 1.21-3.76), $p = 0.009$], eGFR <60 ml/minute [AOR 2.79 (95% CI 1.49-5.22), $p = 0.001$] and creatine kinase >185 IU/L [AOR 2.22 (95% CI 1.26-3.90), $p = 0.006$] were independently associated to higher odds of death. Influenza vaccination and time from symptoms onset did not result independently associated with death.

After restricting the analysis only to males (Supplementary Table 1), age (per 10 years more) [AOR 1.63 (95% CI 1.23-2.16), $p = 0.001$], obesity [AOR 2.12 (95% CI 1.01-4.47), $p = 0.048$], critical disease at hospital admission [AOR 5.63 (95% CI 2.90-10.93), $p < 0.0001$], anemia [AOR 1.92 (95% CI 1.01-3.65), $p = 0.045$], eGFR <60 ml/minute
When the same analysis was repeated only on females (Supplementary Table 2), age (per 10 years more) [AOR 2.39 (95% CI 1.45-3.94), p=0.001] and critical disease at hospital admission [AOR 6.42 (95% CI 1.96-21.03), p<0.002] were independently associated to higher odds of death.

Discussion

In our study we observed a male to female ratio of hospitalized COVID-19 patients of 2:1 which is in line with previous reports which suggested a different gender susceptibility in the requirement of hospital care despite a similar between genders infection risk [10, 11]. Moreover, we observed that males more frequently presented with a critical disease. This finding is in line with a recent meta-analysis by Peckham et al of reported global cases showing a higher odds of intensive care requirement for males (OR = 2.84; 95% CI = 2.06, 3.92) [12]. Nevertheless, in our multivariable model male gender did not resulted independently associated to death and other correlated factors were identified such as influenza vaccination and time from symptoms onset to hospital care. The potential association between influenza vaccination and SARS-CoV-2 infection [13] and COVID-19 severity is intriguing and it has been supported by epidemiological [14] and echological studies [15]. In particular, in line with our observation in a study by Fink et al conducted in Brazil a recent inactivated trivalent influenza vaccine shot was associated with a 7% lower odds of needing intensive care treatment and 17% lower odds of requiring invasive respiratory support [14]. This observation seems not to be explained in our cohort by a healthier status of vaccinated subjects which were older than unvaccinated (median years 73 [IQR 61-79] vs 57.06 [IQR 47-68], p<0.001) and more frequently presenting at least one comorbidity (88.1% vs 61.1%, p<0.001). In addition,
in our cohort we observed no between gender differences in influenza vaccine coverage and no between gender difference in the proportion of obesity as comorbidity. Nevertheless, our findings which are observational in nature should be look with caution considering the potential presence of unmeasured confounders not taken into account into the analysis.

In addition to the hospitalization risk, global data indicate also a higher COVID-19 case fatality rates for males when compared to females with a pooled odds of death of 1.39 (95% CI = 1.31, 1.47) [11]. In particular, most countries with available data indicate a male to female case fatality ratio higher than 1, ranging up to 3.5 in some cases [16]. The differences observed in the between gender case fatality rate in different countries are mainly driven by the different socio-demographic characteristics of these countries. In particular, as mentioned above for Italy males accounted for a higher proportion of COVID-19 death until the age of 80 when the demographic prevalence of females aged above 90 years inverts the COVID-19 death trend [5]. This male gender predisposition to a more severe disease is reflected by the high percentage of death occurred in our study in males when compared to females (24.6% vs 15.8%). Nevertheless, in the multivariable model of factors associated to risk of death other expected factors showed an independent association with death. Among these advanced age, obesity and critical disease at hospital admission are well known factors associated to an increase risk of death [3, 10]. In particular, advanced age and critical disease at hospital admission were retained as independently associated with higher risk of death in the restricted sub-analysis both by males and females, whereas obesity resulted independently associated to a higher odds of death only from males in the restricted analysis. Moreover, several intermediate effect modifiers such as estimated glomerular filtration rate, anemia, elevated D-dimer, lactate dehydrogenase and creatine kinase levels were also
independently associated with risk of death suggesting that several other parameters apart from gender should be taken into account at hospital admission to better estimate the prognosis of COVID-19 patients. These findings are in line with previous report suggesting a higher inflammation in males when compared to females with SARS-CoV-2 infection partially explaining the observed worse outcomes in males [17, 18].

Our study accounts for several limitations. First, the study was conducted in a daily evolving scenario with multiple pharmacological intervention often in compassionate use. Nevertheless, no significant differences in pharmacological interventions were observed between males and females. Second, the setting and the characteristics of patients were that of the “first wave” of the Italian pandemic and thus not completely generalizable to that of the current “second pandemic wave”. In the end, the data for influenza vaccination were not retrievable for 17.7% of patients and consequently a chance finding related to bias, such as the presence of unmeasured confounders, could not be definitely excluded. Nevertheless, the models were run also without influenza as a variable and the output was overall comparable with that reported in the present manuscript (data not shown).

In conclusion, a higher proportion of males presented critically ill at hospital admission after SARS-CoV-2 infection. Nevertheless, in our multivariable model male gender did not resulted independently associated to death and other correlated factors were identified such as age, critical disease at hospital admission, obesity, anemia, D-dimer, eGFR, LDH and CK. In addition, influenza vaccination in the 2019-2020 season resulted associated to a lower odds of critical presentation at hospital admission. Although preliminary, our observation of an association between influenza vaccination and COVID-19 severity at hospital admission warrant further investigation in observational studies assessing COVID-19 outcomes.
Funding

FADOI (Italian Federation of Hospital Internists) gave a grant to partially support the study.

Conflicts of interest/Competing interests

None related to this letter. AG has received consultancy fees from Mylan and non-financial educational support from Gilead.

Ethics approval

The study was approved by our local IRB (Comitato Etico Interaziendale Area 1).

Consent to participate

All patients signed a written informed consent.

Consent for publication

Not required.

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Authors' contributions

All of the authors were involved in writing this manuscript, approved the final version as submitted, and have agreed to be accountable for all aspects of it.
Acknowledgement

The authors would like to thank all of the patients and their families and all of the medical staff (paramedics, nurses and physicians) who are making every effort to ensure the best care for patients suffering from COVID-19.

Bibliography

1. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. *N Engl J Med*. 2020;382(18):1708-1720.

2. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. *JAMA*. 2020;323(18):1775–1776.

3. Giacomelli A, Ridolfo AL, Milazzo L, et al. 30-day mortality in patients hospitalized with COVID-19 during the first wave of the Italian epidemic: A prospective cohort study. *Pharmacol Res*. 2020;158:104931.

4. Giacomelli A, Pagani G, Ridolfo AL, et al. Early administration of lopinavir/ritonavir plus hydroxychloroquine does not alter the clinical course of SARS-CoV-2 infection: A retrospective cohort study [published online ahead of print, 2020 Aug 10]. *J Med Virol*. 2020;10.1002/jmv.26407.

5. https://www.epicentro.iss.it/en/coronavirus/bollettino/Report-COVID-2019_16_december_2020.pdf Accessed 31/12/2020

6. Pagani G, Conti F, Giacomelli A, et al. Seroprevalence of SARS-CoV-2 significantly varies with age: Preliminary results from a mass population screening. *J Infect*. 2020;81(6):e10-e12.

7. Adorni F, Prinelli F, Bianchi F, et al. Self-Reported Symptoms of SARS-CoV-2 Infection in a Nonhospitalized Population in Italy: Cross-Sectional Study of the
8. Falahi S, Kenarkooohi A. Sex and gender differences in the outcome of patients with COVID-19 [published online ahead of print, 2020 Jun 30]. J Med Virol. 2020;10.1002/jmv.26243.

9. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance Accessed 19/01/2021

10. Di Domenico, S.L., Coen, D., Bergamaschi, M. et al. Clinical characteristics and respiratory support of 310 COVID-19 patients, diagnosed at the emergency room: a single-center retrospective study. Intern Emerg Med (2020).

11. Wenham C, Smith J, Morgan R; Gender and COVID-19 Working Group. COVID-19: the gendered impacts of the outbreak. Lancet. 2020;S0140-6736(20)30526-2.

12. Peckham, H., de Gruijter, N.M., Raine, C. et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun 11, 6317 (2020).

13. Noale M, Trevisan C, Maggi S, et al. The Association between Influenza and Pneumococcal Vaccinations and SARS-Cov-2 Infection: Data from the EPICOVID19 Web-Based Survey. Vaccines (Basel). 2020;8(3):471.

14. Fink G, Orlova-Fink N, Schindler T, et al. Inactivated trivalent influenza vaccination is associated with lower mortality among patients with COVID-19 in Brazil [published online ahead of print, 2020 Dec 11]. BMJ Evid Based Med. 2020;bmjebm-2020-111549.

15. Amato M, Werba JP, Frigerio B, et al. Relationship between Influenza Vaccination Coverage Rate and COVID-19 Outbreak: An Italian Ecological Study. Vaccines (Basel). 2020;8(3):535.
16. Dehingia N, Raj A. Sex differences in COVID-19 case fatality: do we know enough?. *Lancet Glob Health*. 2021;9(1):e14-e15.

17. Qin L, Li X, Shi J, et al. Gendered effects on inflammation reaction and outcome of COVID-19 patients in Wuhan. *J Med Virol*. 2020;92(11):2684-2692.

18. Mussini C, Cozzi-Lepri A, Menozzi M, et al. Better prognosis in females with severe COVID-19 pneumonia: possible role of inflammation as potential mediator [published online ahead of print, 2020 Dec 21]. *Clin Microbiol Infect*. 2020;S1198-743X(20)30765-5.

Tables

Characteristics	Total (n = 520)	Female: 171 (33%)	Male: 349 (67%)	p-value
Age in years, median (IQR)				0.722
Respiratory Diseases, n (%)	78 (15.0)	29 (17.0)	49 (14.0)	0.433
Cardiovascular Diseases, n (%)	254 (48.8)	79 (46.2)	175 (50.1)	0.403
Diabetes, n (%)	61 (11.7)	16 (9.4)	45 (12.9)	0.310
Kidney Diseases, n (%)	42 (8.1)	11 (6.4)	31 (8.9)	0.394
Oncological Diseases, n (%)	50 (9.6)	20 (11.7)	30 (8.6)	0.270
Immune System Disorders, n (%)	39 (7.5)	16 (9.4)	23 (6.6)	0.289
Liver Diseases, n (%)	11 (2.1)	2 (1.2)	9 (2.6)	0.517

This article is protected by copyright. All rights reserved.
Obesity, n (%)	92 (17.7)	23 (13.5)	69 (19.8)	0.087
Influenza vaccination (%)				
SI	109 (21.0)	36 (21.1)	73 (20.9)	0.427
NO	319 (61.3)	110 (64.3)	209 (59.9)	
nN	92 (17.7)	25 (14.6)	67 (19.2)	
Median time from onset of illness (IQR), days	8 [4, 11]	8 [4, 11]	8 [4, 10]	0.829
Symptoms, n (%)				
Cough (%)	271 (52.1)	91 (53.2)	180 (51.6)	0.779
Dyspnea (%)	225 (43.3)	67 (39.2)	158 (45.3)	0.221
Sore throat (%)	26 (5.0)	11 (6.4)	15 (4.3)	0.292
Arthralgia/Myalgia (%)	29 (5.6)	6 (3.5)	23 (6.6)	0.221
Headache (%)	25 (4.8)	8 (4.7)	17 (4.9)	0.999
Asthenia (%)	62 (11.9)	17 (9.9)	45 (12.9)	0.388
Vomiting and/or diarrhea (%)	72 (13.8)	33 (19.3)	39 (11.2)	0.015
Fever (>37.3 °C) (%)	324 (62.3)	88 (51.5)	236 (67.6)	0.002
Disease severity, n (%)				
Mild	40 (7.7)	14 (8.2)	26 (7.4)	0.046
Moderate	226 (43.5)	80 (46.8)	146 (41.8)	
Severe	117 (22.5)	45 (26.3)	72 (20.6)	
Critically	137 (26.3)	32 (18.7)	105 (30.1)	

Laboratory parameters
Measure	Median [IQR]	P-value
White blood cell count x 10^9/L, median [IQR]	6.4 [4.8, 9.1]	0.384
Anemia* (%)	241 (46.3)	0.040
Platelets x 10^9/L, median [IQR]	199 [152, 256]	0.021
Prothrombin (INR), median [IQR]	1.21 [1.13, 1.31]	<0.001
D-dimer (µg/L), median [IQR]	835 [455, 1772]	0.179
PaO₂ (mmHg), median [IQR]	70.0 [59.8, 82.3]	0.032
C-reactive protein (mg/L), median [IQR]	60.0 [23.2, 143.5]	0.053
Creatinine (mg/dL), median [IQR]	0.93 [0.74, 1.15]	<0.001
eGFR (MDRD), median [IQR]	83.8 [65.9, 101.7]	0.006
Lactate dehydrogenase (U/L), median [IQR]	330 [255, 453]	0.002
Creatine kinase (U/L), median [IQR]	107 [57, 224]	<0.001
Alanine aminotransferase (U/L), median [IQR]	32 [20, 57]	<0.001

Table 1. Characteristics of the study population at hospital admission.

List of abbreviation: n, number; IQR, Inter Quartile Range; nn, not available; eGFR, estimated glomerular filtration rate; MDRD, Modification of Diet in Renal Disease.

*Anemia defined as a haemoglobin value of <12.5 g/dL for females and <14 g/dL for males.
	OR	OR	**p-value**	OR	OR	**p-value**
	Lower bound (95%)	Upper bound (95%)		Lower bound (95%)	Upper bound (95%)	
Male vs Female	1.74	2.81	0.02	1.08	0.39	
Age (per 10 years more)	1.48	2.06	< 0.0001	1.48	0.0001	
Obesity	1.14	3.32	0.01	2.17	0.02	
Cardiovascular diseases	1.70	4.10	< 0.0001	0.85	0.63	
Oncological diseases	0.76	2.81	0.26	-	-	
Flu vaccination for 2019-2020 season	0.91	2.61	0.11	-	-	
Time from symptoms onset (per 1 day more)	0.97	1.03	0.97	-	-	
Critical disease at hospital admission	3.44	8.42	< 0.0001	6.34	0.0001	
Fever yes vs not	0.78	1.84	0.43	-	-	
Condition	Univariable	Multivariable				
-------------------------------	-------------	---------------				
Anemia*	2.161	3.81				
	0.0001					
INR >1.3	0.03	2.59				
	0.0001					
D-dimer ≥500 µg/L	1.91	6.83				
	0.0001					
CRP ≥50 mg/L	1.81	4.58				
	0.0001					
eGFR (MDRD) <60 ml/minute	2.95	7.53				
	0.0001					
LDH >245 IU/L	2.96	18.81				
	0.0001					
CK >185 IU/L	1.70	4.08				
	0.0001					

Table 2. Univariable and multivariable model of factors associated to death in COVID-19 patients requiring hospitalization.

List of abbreviations: OR, Odds Ratio; AOR, Adjusted Odds Ratio; eGFR, estimated glomerular filtration rate; MDRD, Modification of Diet in Renal Disease.

*Anemia defined as a haemoglobin value of <12.5 g/dL for females and <14 g/dL for males.