An Inventory Solution Model for down and up Processing and Profit with Scrap Clearing in Fuzzy Sense

N. Nalini* and E. Chandrasekaran

1 Mathematics Department, Presidency College/University of Madras, Chennai – 600005, Tamil Nadu, India; nrkhome@yahoo.com
2 Vel Tech University, Chennai – 600062, Tamil Nadu, India; e_chandrasekaran@yahoo.com

Abstract

Objectives: To develop fuzzy set theory and the fuzziness in the inventory problem, the purpose is to find the Revenue for defective quantity corresponds to the total cost and the associated cost of selling value of remodeled product also fuzzy. Methods/Statistical Analysis: This approach is to find the quantity which has the minimum cost with maximum profit. When the profit gained from selling one unit of the item with warranty periods and guaranty period Up process cost and other scrap cost must be gives some percentage of profits. Partial profit of planned operation on stock clearing and effective scrap clearing of the last products has to be done. Findings: Mathematical model has been developed in below ways, 1. To find the fuzzy down process with the fuzzy relevant cost, 2. Revenue related with fuzzy production cost and profit of the different lot sizes of various products, 3. To find the fuzzy up process with the fuzzy screening cost of defective quantity with time dependent relevant cost tends to profits with partial loss and 4. Effective scrap clearing and total profit of all the goods. Applications/Improvements: Our aim is to find total cost and profit with fuzzy sense. Numerical examples are given and sensitivity analysis is carried out to conclude the result.

1. Introduction

The manufacturer had developed a new generation gadgets which is different from the older gadgets. Some ideas observed from used items were reusable in future products. This process in which used components must upgraded and modified to satisfy the exactly same quality or higher quality of new generation products in remodeled way. Companies are applying remaking is the ability to attract more customers due to environment and pocket friendly prices.

The defective items with immediate return analyzed and found the solution of ranking method with fuzzified purchase cost and relevant cost with triangular fuzzy number. The trapezoidal fuzzy demand and additional demand pattern with shortages and backlogged condition. Defective items sold after screening process and deep on that, mostly in trade returns goods goes to manufacturing only. But what is the use of that? Relevant cost and sending the defectives are waste of money, but proper planning for defectives will make an additional profit with partial Loss, developed a trade credit model with multivariable demand and the objective of review the procedure with multivariate demand under diminishing conditions has been solved. Mathematical model for Economic Order Quantity model with immediate return of defective items. A classic EOQ model with fixed values and purchase, relevant costs are added with discounts and partial deterioration costs. Ordering, holding cost and safety stock with fuzzy arithmetic operators. Wellknown

*Author for correspondence
An Inventory Solution Model for down and up Processing and Profit with Scrap Clearing in Fuzzy Sense

Indian Journal of Science and Technology

1.1 Up and Down Process

This process is comparison of products with direct profit and reworked products with indirect profit, addition of this two we will get total profit. Formulation of mathematical model, in inventory problems there are generally multiple objectives. The model is to determine the holding, ordering and purchasing in order to keep the total relevant cost as low as possible. Profit is addition of product selling revenue and returned products revenue also. In addition to that well planned scrap clearing section also gives the revenue. Three different processes have to do, one is direct selling products without any complaints and other one is repairable or serviceable products, so we will get two demands, actual demand and company second sale demand. Good products are get ready with earlier way to the market or repairable goods are late to market with some profit. If we are handling two things in a system it is called mixed system with two process, one is Down process it is used for Good Quality First Sale (GQFS) and second one Up process is Defective Quality Second Sale (DQSS) and remaining defective products goes to scrap clearing section.

First section is materials and methods of the findings, second section is two process are depends Up and Down Process. Third is the mathematical models in fuzzy environment has to solve with Up and Down process. Fourth, five and six section explanation of numerical examples for process is comparision of products with direct profit and return of products with indirect profit, addition of this two we will get total profit and actions should be taken for increase the ownership costs scrap clearing cost also included. Finally section seven, conclusion and future research.

2. Notations and Assumptions

Symbol	Description
~	wavy bar indicates fuzzification of parameters.
$\hat{D}P$	is the Down Process.
$\hat{U}P$	is the Up Process.
$\hat{S}P$	is the Scarp Process.
\hat{D}_q	is the Fuzzy Demand quantity.
\hat{H}	is the Holding cost
\hat{O}	is the Ordering or setup cost
\hat{F}	is the Order quantity in Down Process
$\hat{r^x}$	is the Order quantity in Up Process
\bar{L}	is the Length of the plan.
\(\tilde{L}_1 \) is the Length of the plan in Down process (90 days).

\(\tilde{L}_2 \) is the Length of the plan in Up process (30 days).

\(\tilde{L}_3 \) is the Length of the plan in clearing process (30 days).

\(D_f \) is the percentage of defective items.

Let \(\tilde{r} = (1 - D_f)\% \) is the quantity of good items.

\[\tilde{r} = (r_1, r_2, r_3, r_4) \] is the defective quantity.

Let \(b \) is the clearing / scrap quantity.

Assume, \(D_f(\alpha, \beta, \gamma, \delta) = (5, 10, 15, 20)\% \)

R1 is the Testing and dismantling (depreciation cost).

R2 is the Labor cost.

R3 is the Additional Material cost/ Upgrading and quality test cost.

R4 is the Scrap cost.

Cc is the Clearing Charges.

\(SV_1 \) is the Selling value of good items in down process per unit.

\(SV_2 \) is the Selling value of Defective items in Up process per unit.

\(SV_3 \) is the Selling value of Scrap items in clearing section per unit.

\(R_{v_1} \) is the Revenue in Down Process.

\(R_{v_2 UP} \) is the Revenue in Up Process.

\(R_{v_3 RC} \) is the Revenue in Recycling Process.

\(P_{v_1} \) is the gain in Down Process.

\(P_{v_2} \) is the gain in Up Process.

\(P_{v_3} \) is the gain in Recycling scrap Process.

\(TDN \) is the Total Cost in Down Process.

\(TUP \) is the Total cost in Up Process.

\(TRC \) is Total cost of Recycling/scrap Process.

3. Mathematical Model Formulations

3.1 To find Purchase Cost

Let \(F_{uc} = (P_{u_1}, P_{u_2}, P_{u_3}, P_{u_4}) \) and \(\tilde{r} = (r_1, r_2, r_3, r_4) \) are Trapezoidal fuzzy numbers, then

\[
\tilde{PC} = \left(P_{u_1} \otimes r_1, P_{u_2} \otimes r_2, P_{u_3} \otimes r_3, P_{u_4} \otimes r_4 \right)
\]

\[
\tilde{PC} = \left(P_{u_1} \otimes r_1, P_{u_2} \otimes r_2, P_{u_3} \otimes r_3, P_{u_4} \otimes r_4 \right)
\]

Holding Cost in Fuzzy Sense

\[
\tilde{HC} = \tilde{r} \otimes \tilde{L}_1 \quad (2)
\]

Ordering cost in fuzzy sense

\[
\tilde{OC} = \tilde{r} \otimes \tilde{L}_3 \quad (3)
\]

Total cost is addition of holding cost and Setup cost.

3.2 To find Total Cost in Down Process

Let \(D = (\tilde{D}_1, \tilde{D}_2, \tilde{D}_3, \tilde{D}_4) \),

\(H = (\tilde{H}_1, \tilde{H}_2, \tilde{H}_3, \tilde{H}_4) \), \(\tilde{D} = (\tilde{D}_1, \tilde{D}_2, \tilde{D}_3, \tilde{D}_4) \)

are Trapezoidal fuzzy numbers 21, 22, Then, From Equations (1), (2) and (3),

Total cost in fuzzy

\[
\tilde{TC} = \tilde{r} \otimes (\tilde{H} \otimes \tilde{r} \otimes \tilde{L}_1) \otimes (\tilde{D} \otimes \tilde{r}) \quad (4)
\]

3.2 To find Total Cost in Down Process

Let

\(D = (\tilde{D}_1, \tilde{D}_2, \tilde{D}_3, \tilde{D}_4) \),

\(H = (\tilde{H}_1, \tilde{H}_2, \tilde{H}_3, \tilde{H}_4) \), \(\tilde{D} = (\tilde{D}_1, \tilde{D}_2, \tilde{D}_3, \tilde{D}_4) \)

are trapezoidal fuzzy numbers 21, 22, Then,

Total cost in fuzzy

\[
\tilde{TC} = \tilde{r} \otimes (\tilde{H} \otimes \tilde{r} \otimes \tilde{L}_1) \otimes (\tilde{D} \otimes \tilde{r}) \quad (4)
\]

Repairable and recyclable scrap and Up process total cost

\[
\text{Total cost} = \text{Holding cost} + \text{Testing and Dismantling (depreciation cost)} + \text{Labor cost} + \text{Additional Material cost} + \text{Upgrading and quality test cost} + \text{Scrap cost} + \text{Clearing charges}.
\]
3.3 To find Total Cost in Up Process

Total cost in Up process = Holding cost + Testing and Dismantling cost + Labor cost + Additional Material cost/Upgrading and quality test cost

\[\left[\mathcal{TUP} \right] = \left[\mathcal{H} \otimes \mathcal{R} \right] \circ \left[\frac{L}{2} \right] \otimes \left(\mathcal{R}_1 \oplus \mathcal{R}_2 \right) \otimes (r^*) \]

\[\otimes \left[(R_3) \otimes \left(r^* \sim r^{**} \right) \right] \]

\[\left[\mathcal{H} \right] \otimes \left[\frac{L}{2} \right] = \left[\mathcal{H} \right] \otimes \left[\frac{L}{2} \right] \]

\[\oplus \left[(R_1 \otimes R_2) \otimes D_{f_h} \right] \otimes \left[(R_3) \otimes \left(r^* \oplus b \right) \right] \]

\[\left[(H_1) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[2 \right] \otimes \left[(H_2) \right] \]

\[\otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[2 \right] \]

\[\oplus \left[(R_{14} \otimes (r^* \cdot \nu)) \right] \otimes \left[(R_{13}) \otimes (a) \right] \]

\[\mathcal{P} \]

3.4 To find the Total Cost of Recycling/Clearing Scrap Process

\[R_4 \otimes \left(r^{**} \right) \otimes \left(Cc \otimes \left(r^{**} \right) \right) \]

\[\left[(H_1) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

\[\left[(H_2) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

\[\left[(H_3) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

\[\left[(H_4) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

\[\left[(H_{13}) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

\[\left[(R_{14}) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

\[\left[(T_{RC}) \right] = \left[(H_1) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

\[\left[(R_{14}) \otimes (r^* \cdot \nu) \right] \otimes \left[(Cc) \otimes (r^* \cdot \nu) \right] \]

\[\left[(H_{12}) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

\[\left[(R_{14}) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

\[\left[(H_{12}) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

\[\left[(R_{14}) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

\[\left[(H_{12}) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

\[\left[(R_{14}) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

\[\left[(H_{12}) \right] \otimes \left[(r^* \cdot \nu) \right] \otimes \left[(L) \right] \otimes \left[3 \right] \otimes \left[2 \right] \]

3.5 To find the Revenue in Down Process

Let \(V = V_1, V_2, V_3 \) in three revenue periods up, down and Scrap clearing sections,

\[\left[\mathcal{S} \right] = \left[(S_1, S_2, S_3) \right] \]

are trapezoidal Fuzzy numbers then,

\[\left[\mathcal{R}_{ev} \right] = \left[\mathcal{S} \otimes (r) \right] \]

\[\left[\mathcal{R}_{ev} \right] = \left[\mathcal{S} \otimes (r) \right] \]

\[\left[\mathcal{R}_{ev} \right] = \left[\mathcal{S} \otimes (r) \right] \]

3.6 To find the Gain in Down Process

Let \(F = F_1, F_2, F_3 \) are the profit in three places are Down, Up and Scrap clearing sections.

Profit = Revenue - Total Cost

\[\left[\mathcal{P}_{ev} \right] = \left[\mathcal{R}_{ev} \otimes \left(\mathcal{T} \right) \right] \]
3.10 To find the Gain in Recycling/Scrap Process

\[\text{Gain}_{\text{Recycling/Scrap}} = [SV_c \times r^{-1}] \]

\[\text{Gain}_{\text{Recycling/Scrap}} = [(SV_{1c} \times SV_{2c} \times SV_{3c} \times SV_{4c}) \times (r_1^{-1} \times r_2^{-1} \times r_3^{-1} \times r_4^{-1})] \]

3.7 To find the Revenue in Up Process

Let \(r = (r_1, r_2, r_3, r_4) \) and \(ST_D = (SV_{1d}, SV_{2d}, SV_{3d}, SV_{4d}) \)
are trapezoidal Fuzzy numbers then,

\[R_{\text{UP}} = [SV_D \times r] \]

\[R_{\text{UP}} = [(SV_{1d} \times SV_{2d} \times SV_{3d} \times SV_{4d}) \times (r_1, r_2, r_3, r_4)] \]

3.8 To find the Gain in Up Process

\[P_{\text{UP}} = R_{\text{UP}} \]

\[P_{\text{UP}} = [SV_D \times r] \]

\[P_{\text{UP}} = [(SV_{1d} \times SV_{2d} \times SV_{3d} \times SV_{4d}) \times (r_1, r_2, r_3, r_4)] \]

3.9 To find the Revenue in Clearing/Recycling Process

Let \(r = (r_1, r_2, r_3, r_4) \) and \(ST_c = (SV_{1c}, SV_{2c}, SV_{3c}, SV_{4c}) \)
are trapezoidal Fuzzy numbers then,

\[R_{\text{RC}} = [SV_c \times r^{-1}] \]

\[R_{\text{RC}} = [(SV_{1c} \times SV_{2c} \times SV_{3c} \times SV_{4c}) \times (r_1^{-1} \times r_2^{-1} \times r_3^{-1} \times r_4^{-1})] \]

4. Problem Calculations

In a good reputed organization with four fast moving gadgets, Purchase cost is (15,000, 12,000, 9,000,
An Inventory Solution Model for down and up Processing and Profit with Scrap Clearing in Fuzzy Sense

6000), 40% marginal profit and ordering cost is Rs. 0.5 per unit price, holding cost Rs. 2 per unit hold, selling value of four categories are in stages with $D_f(\alpha, \beta, \gamma, \delta) = (5, 10, 15, 20)\%$ for defectives, losing amount of 25% depreciation cost in the repairing process and 93% of losing value in scrap process. 0.53%, 2.7 %, 1.33%, 4% and 2% are the testing, labor, additional materials, scrap and clearing charges respectively. Here, (4000, 3000, 2000, 1000) are the number of gadget and guaranty, warranty and scrap periods are 90, 30 and 30 days respectively. Find the total profit.

4.1 For Down Process Table 1.

F	\bar{F}	\bar{F}_{ct}	\bar{F}_{c}	\bar{D}	\bar{H}	$\bar{T_DN}$	\bar{NPP}	\bar{Sv}_N	\bar{Sv}_{DN}	\bar{F}_{DN}
α	4000	15000	60000000	2000	360000	362000	3800	25000	95000000	34638000
	3000	12000	36000000	1500	270000	271500	2850	20000	57000000	20728500
	2000	9000	18000000	1000	180000	181000	1900	15000	28500000	10319000
	1000	6000	60000000	500	90000	90500	95	10000	95000000	34095000
β	4000	15000	60000000	2000	360000	362000	3600	25000	90000000	29638000
	3000	12000	36000000	1500	270000	271500	2700	20000	54000000	17728500
	2000	9000	18000000	1000	180000	181000	1800	15000	27000000	8819000
	1000	6000	60000000	500	90000	90500	90	10000	90000000	29095000
γ	4000	15000	60000000	2000	360000	362000	3400	25000	85000000	24638000
	3000	12000	36000000	1500	270000	271500	2550	20000	51000000	14728500
	2000	9000	18000000	1000	180000	181000	1700	15000	25500000	7319000
	1000	6000	60000000	500	90000	90500	85	10000	85000000	24095000
δ	4000	15000	60000000	2000	360000	362000	3200	25000	80000000	19638000
	3000	12000	36000000	1500	270000	271500	2400	20000	48000000	11728500
	2000	9000	18000000	1000	180000	181000	1600	15000	24000000	5819000
	1000	6000	60000000	500	90000	90500	800	10000	80000000	19095000

4.2.1 Graphical Representation: 1

$\alpha, \beta, \gamma, \delta$ in Down process

![Graphical Representation](image-url)
5.1 Up Process Table 2.

Table 2. Up process

$\bar{\alpha}$	$N \bar{\alpha}$	\bar{H}	\bar{W}_D	R_1	R_2	R_3	$(R_1 + R_2) \bar{\alpha} + R_3(\alpha)$	$[\bar{R}_{\text{UP}}]$	$[R_{\text{LUP}}]$	$[P_{\text{UP}}]$
200	160	6000	18750	20000	10000	40000	160000	166000	3000000	2834000
150	120	4500	15000	15000	75000	30000	120000	124500	1950000	1825500
100	80	3000	11250	10000	50000	20000	80000	83000	900000	817000
50	40	1500	7500	5000	25000	10000	40000	41500	300000	258500

β	$N \beta$	\bar{H}	\bar{W}_D	R_1	R_2	R_3	$(R_1 + R_2) \bar{\beta} + R_3(\beta)$	$[\bar{R}_{\text{UP}}]$	$[R_{\text{LUP}}]$	$[P_{\text{UP}}]$
400	320	12000	18750	40000	20000	80000	320000	332000	6000000	5884000
300	240	9000	15000	30000	15000	60000	240000	249000	3600000	3351000
200	160	6000	11250	20000	10000	40000	160000	166000	1800000	1634000
100	80	3000	7500	10000	50000	20000	80000	83000	600000	517000

γ	$N \gamma$	\bar{H}	\bar{W}_D	R_1	R_2	R_3	$(R_1 + R_2) \bar{\gamma} + R_3(\gamma)$	$[\bar{R}_{\text{UP}}]$	$[R_{\text{LUP}}]$	$[P_{\text{UP}}]$
600	480	18000	18750	60000	30000	120000	480000	498000	9000000	8502000
450	360	13500	15000	45000	22500	90000	360000	373500	5400000	5026500
300	240	9000	11250	30000	15000	60000	240000	249000	2700000	2451000
150	120	4500	7500	15000	75000	30000	120000	124500	900000	775500

δ	$N \delta$	\bar{H}	\bar{W}_D	R_1	R_2	R_3	$(R_1 + R_2) \bar{\delta} + R_3(\delta)$	$[\bar{R}_{\text{UP}}]$	$[R_{\text{LUP}}]$	$[P_{\text{UP}}]$
800	640	24000	18750	80000	40000	160000	640000	664000	12000000	11336000
600	480	18000	15000	60000	30000	120000	372000	390000	7200000	6702000
400	320	12000	11250	40000	20000	80000	320000	332000	3600000	3448000
200	160	6000	7500	20000	10000	40000	160000	166000	1200000	1034000

5.2 Graphical Representation: 2

$\alpha, \beta, \gamma, \delta$ in Up process

![Graphical Representation](image-url)
6.1 Scrap/Clearing Process Table 3.

Table 3. Scrap/clearing process

γ	H	SV_{st}	R_i	C_i	$[T_{RC}]$	$[R_{ev_{2}}RC]$	$[P_{2RC}]$	
α	40	1200	1250	2000	1000	4200	50000	45800
	30	900	1000	1500	750	3150	30000	26850
	20	600	750	1000	500	2100	15000	12900
	10	300	500	500	250	1050	5000	3950
β	80	2400	1250	4000	2000	8400	100000	91600
	60	1800	1000	3000	1500	6300	60000	53700
	40	1200	750	2000	1000	4200	30000	25800
	20	600	500	1000	500	2100	10000	7900
γ	120	3600	1250	6000	3000	12600	150000	137400
	90	2700	1000	4500	2250	9450	90000	80550
	60	1800	750	3000	1500	6300	45000	38700
	30	900	500	1500	750	3150	15000	11850
δ	160	4800	1250	8000	4000	16800	200000	183200
	120	3600	1000	6000	3000	12600	120000	107400
	80	2400	750	4000	2000	8400	60000	51600
	40	1200	500	2000	1000	4200	20000	15800

6.2 Graphical Representation: 3
6.3 Comparison of Lot Size and Profit with Down, Up and Scrap Process. Table 4.

Table 4. Comparison of lot size and profit with Down, Up and Scrap process

Lot Size	\(D_1 \)	\(\bar{D} \)	\(\bar{U} \)	\(\bar{S} \)	Profit
Lot 1	\(\alpha \) 34638000	3000000	45800	37683800	
	\(\beta \) 29638000	6000000	91600	35729600	
	\(\gamma \) 24638000	9000000	137400	33775400	
	\(\delta \) 19638000	12000000	183200	31821200	
Lot 2	\(\alpha \) 20728500	1950000	26850	22705350	
	\(\beta \) 17728500	3600000	53700	21382200	
	\(\gamma \) 14728500	5400000	80550	20209050	
	\(\delta \) 11728500	7200000	107400	19035900	
Lot 3	\(\alpha \) 10319000	900000	12900	11231900	
	\(\beta \) 8819000	1800000	25800	10644800	
	\(\gamma \) 7319000	2700000	38700	10057700	
	\(\delta \) 5819000	3600000	51600	9470600	
Lot 4	\(\alpha \) 3409500	300000	3950	3713450	
	\(\beta \) 2909500	600000	7900	3517400	
	\(\gamma \) 2409500	900000	11850	3321350	
	\(\delta \) 1909500	1200000	15800	3125300	

6.3.1 Graphical Representation. 4

A fuzzy inventory model for demand with constant selling price, ordering cost and holding cost has been developed with fuzzy sense. Trapezoidal fuzzy models are found for profit/loss. A numerical example is also given in support the theory. A future research is to extend the model under uncertain demand with different profit margins.

7. Conclusion

Loss of money occurs due to defective goods sometimes reaches assumed partial loss while others considered full loss. In real life, all buyers wait or go the next product. Then it is called total loss otherwise all the buyers will left the system however, in certain situations some customers will be able to wait for the next order in order to satisfy their demands during the warranty period (or) guaranty period while others so not wish to or cannot wait hence, they meet their demands from the other sources (partial loss case). From the Table 4 heavy loss can be avoided with Up process and addition to that scrap revenue also filled the gap of the gain percentage. Moreover, graphical representations shows that complete loss reaches to profit percentage.

From the Tables 1, 2, 3 and 4, it can be observed that,

• Revenue decreases when in the Down Process.
• Profit is moderate when in the Down process.
• Good quality lot size decreases when in down process but profit percentage increases.
• Again lot size decreases in the scrap process but total profit percentage increases slightly.
• Selling price is stable when Down process.
• Selling price decreases when in Up process.
• Selling price highly decreases in scrap process.
• Profit increases when in the Up process instead of loss.
• Partial loss increases when in the scrap process instead of full loss.
• Revenue is increases when in Up, Down and scrap process with partial loss.
• Ordering and holding costs are same in all tables with respect to lot size but profit percentage is varies due to defectives and losing the selling price and brand value.

8. Acknowledgements

The authors are indebted to the Professors and the referees for their helpful and constructive comments that improved the presentation of the paper. Research was affiliated by the University of Madras in India, Ph.D.

9. References

1. Hsu WKK. Optimal inventory model with fuzzy effective rate, demand rate and purchasing cost under immediate return for defective items. International Journal of Innovative Computing Information and Control. 2012; 8(4):2583–98.
2. Rajoria YK, Singh SR, Saini S. An inventory model for decaying item with ramp demand pattern under inflation and partial backlogging. Indian Journal of Science and Technology. 2015 Jun; 8(12):1–6.
3. Hsu WKK, Yu HF. Economic order quantity model with immediate return for defective items. ICIC Express Letters. 2011; 5(7):2215–20.
4. Vikram V, Ajay T, Chandra S, Malik AK. A trade credit inventory model with multivariate demand for non-instantaneous decaying products. Indian Journal of Science and Technology. 2016 Apr; 9(15):1–6.
5. Salameh MK, Jaber MY. Economic order quantity model for imperfect quality. International Journal of Production and Economics. 2000; 64(1-3):59–64.
6. Shahraki MR, Shahraki A, Javdan N. Developing an inventory mathematical model with deterioration variables for discounted stochastic goods. Indian Journal of Science and Technology. 2014 Jan; 7(11):1750–5.
7. Hsieh CH. Optimization of fuzzy inventory models under fuzzy demand and fuzzy lead time. Tamsui Oxford Journal of Management Sciences. 2004; 20(10):21–36.
8. Bhagoria M, Sadiwala CM, Khare VK. Multilevel inventory techniques for minimizing cost-a case study. Indian Journal of Science and Technology. 2010 Jun; 3(6):693–5.
9. Dubois D, Prade H. Fuzzy sets and systems: Theory and applications. New York: Academic Press; 1980.
10. Sommer G. Fuzzy inventory scheduling applied systems and cybernetics. Applied Systems and Cybernetics. G. Lasker, editor. Academic Press, New York. 1981; 6:3052–60.
11. Sharma S, Singh SR. An inventory model for decaying items, considering multivariate consumption rate with partial backlogging. Indian Journal of Science and Technology. 2013 Jul; 6(7):4870–80.
12. Tayal S, Singh SR, Sharma R. A multi item inventory model for deteriorating items with expiration date and allowable shortages. Indian Journal of Science and Technology. 2014; 7(4):463–71.
13. Zuikov S. A literature review on models of inventory management under uncertainty. Business systems and Economics. 2015; 5(1):26–35.
14. Aarya DD, Kumar M. Supply chain model with ramp type demand under planning horizon. Indian Journal of Science and Technology. 2015; 8(15):1–8.
15. Roy AR, Dutta P, Chakraborty D. An inventory model for single period products with reordering opportunities under fuzzy demand. An International Journal of Computers and Mathematics with Applications. 2007; 53(10):1502–17.
16. Nalina V, Jeeya M. K-release inventory model in manpower planning. Indian Journal of Science and Technology. 2010 Jul; 3(7):727–32.
17. Dutta D, Kumar P. A partial backlogging inventory model for deteriorating items with time varying demand and holding cost. Croatian Operational Research review. 2015; 6(2):321–34.
18. Chaudhary RR, Sharma V. A model for Weibull deterioration items with price dependent demand rate and inflation. Indian Journal of Science and Technology. 2015 May; 8(10):975–81.
19. Mandal NK. Fuzzy economic order quantity model with ranking fuzzy number cost parameters. Yugoslav Journal of Operations Research. 2012; 22(2):247–64.
20. Nailwal KK, Gupta D, Sharma S. Two stage flow shop scheduling under fuzzy environment. Indian Journal of Science and Technology. 2015; 8(16):1–8.
21. Banerjee S, Roy TK. Arithmetic operations on generalized trapezoidal fuzzy number and its applications. Turkish Journal of Fuzzy Systems. 2012; 3(1):16–44.
22. Gani AN, Mohamed Assarudeen SN. A new operation on triangular fuzzy number for solving fuzzy linear programming problem. Applied Mathematical Sciences. 2012; 6(11):525–32.
23. Mishra N, Soni JK. An EOQ inventory model with fuzzy deterioration rate and finite production rate. IOSR Journal of Mathematics. 2012; 4(4):1–9.
24. Pravin Kumar M, Vijayachitra S. Neuro fuzzy technique for steel process modeling. Indian Journal of Science and Technology. 2015 Sep; 8(24):1–7.
25. Manimaran S, Ananthanarayanan M. A study on comparison between fuzzy assignment problems using trapezoidal fuzzy numbers with average method. Indian Journal of Science and Technology. 2012 Apr; 5(4):2610–3.
26. Karamizadeh F, ZolfaghariFar SA. Using the clustering algorithms and rule-based of data mining to identify affecting factors in the profit and loss of third party insurance, insurance company auto. Indian Journal of Science and Technology. 2016 Feb; 9(7):1–9.
27. Heidarpoor F, Shahrivar FS. Unsystematic risk and internal control quality impact on the earning quality by using volatility profits index in Tehran Stock Exchange. Indian Journal of Science and Technology. 2015 Jun; 8(11):1–6.