A weak dichotomy below $E_1 \times E_3$

Vladimir Kanovei

February 1, 2008

Abstract

We prove that if E is an equivalence relation Borel reducible to $E_1 \times E_3$ then either E is Borel reducible to the equality of countable sets of reals or E_1 is Borel reducible to E. The “either” case admits further strengthening.

Let $\mathbb{R} = 2^\mathbb{N}$. Recall that E_1 and E_3 are the equivalence relations defined on the set $\mathbb{R}^\mathbb{N}$ as follows:

- $x E_1 y$ iff $\exists k_0 \forall k \geq k_0 \ (x(k) = y(k))$
- $x E_3 y$ iff $\forall k \ (x(k) E_0 y(k))$

where E_0 is an equivalence relation defined on \mathbb{R} so that

- $a E_0 b$ iff $\exists n_0 \forall n \geq n_0 \ (a(n) = b(n))$

The equivalence E_3 is often denoted as $(E_0)^\omega$.

Kechris and Louveau in [9] and Kechris and Hjorth in [3, 4] proved that any Borel equivalence relation E satisfying $E <_B E_1$, resp., $E <_B E_3$, also satisfies the non-strict $E \leq_B E_0$. Here $<_B$ and \leq_B are resp. strict and non-strict relations of Borel reducibility. Thus if E is an equivalence relation on a Borel set X and F is an equivalence relation on a Borel set Y then $E \leq_B F$ means that there exists a Borel map $\vartheta : X \to Y$ such that

$x E x' \iff \vartheta(x) F \vartheta(x')$

holds for all $x, x' \in X$. Such a map ϑ is called a (Borel) reduction of E to F. If both $E \leq_B F$ and $F \leq_B E$ then they write $E \sim_B F$ (Borel bi-reducibility), while $E <_B F$ (strict reducibility) means that $E \leq_B F$ but not $F \leq_B E$. See the cited papers [3, 4] or e.g. [2, 8] on various aspects of Borel reducibility in set theory and mathematics in general.

The abovementioned results give a complete description of the \leq_B-structure of Borel equivalence relations below E_1 and below E_3. It is then a natural step
to investigate the \(\leq_B \)-structure below \(E_{13} \), where \(E_{13} = E_1 \times E_3 \) is the product of \(E_1 \) and \(E_3 \), that is, an equivalence on \(\mathbb{R}^N \times \mathbb{R}^N \) defined so that for any points \(\langle x, \xi \rangle \) and \(\langle y, \eta \rangle \) in \(\mathbb{R}^N \times \mathbb{R}^N \), \(\langle x, \xi \rangle E_{13} \langle y, \eta \rangle \) if and only if \(x E_1 y \) and \(\xi E_3 \eta \).

The intended result would be that the \(\leq_B \)-cone below \(E_{13} \) includes the cones determined separately by \(E_1 \) and \(E_3 \), together with the disjoint union of \(E_1 \) and \(E_3 \) (i.e., the union of \(E_1 \) and \(E_3 \) defined on two disjoint copies of \(\mathbb{R}^N \)), \(E_{13} \) itself, and nothing else. This is however a long shot. The following theorem, the main result of this note, can be considered as a small step in this direction.

Theorem 1. Suppose that \(E \) is a Borel equivalence relation and \(E \leq_B E_{13} \). Then either \(E \) is Borel reducible to \(T_2 \) or \(E_1 \leq_B E \).

Recall that the equivalence relation \(T_2 \), known as “the equality of countable sets of reals”, is defined on \(\mathbb{R}^N \) so that \(x T_2 y \) if \(\{ x(n) : n \in \mathbb{N} \} = \{ y(n) : n \in \mathbb{N} \} \). It is known that \(E_3 <_B T_2 \) strictly, and there exist many Borel equivalence relations \(E \) satisfying \(E <_B T_2 \) but incomparable with \(E_3 \) : for instance non-hyperfinite Borel countable ones like \(E_\infty \). The two cases are incompatible because \(E_1 \) is known not to be Borel reducible to orbit equivalence relations of Polish actions (to which class \(T_2 \) belongs).

A rather elementary argument reduces Theorem 1 to the following:

Theorem 2. Suppose that \(P_0 \subseteq \mathbb{R}^N \times \mathbb{R}^N \) is a Borel set. Then either the equivalence \(E_{13} \upharpoonright P_0 \) is Borel reducible to \(T_2 \) or \(E_1 \leq_B E_{13} \upharpoonright P_0 \).

Indeed suppose that \(Z \) (a Borel set) is the domain of \(E \), and \(\vartheta : Z \to \mathbb{R}^N \times \mathbb{R}^N \) is a Borel reduction of \(E \) to \(E_{13} \). Let \(f : Z \to 2^\mathbb{N} = \mathbb{R} \) be an arbitrary Borel injection. Define another reduction \(\vartheta' : Z \to \mathbb{R}^N \times \mathbb{R}^N \) as follows. Suppose that \(z \in Z \) and \(\vartheta(z) = \langle x, \xi \rangle \in \mathbb{R}^N \times \mathbb{R}^N \). Put \(\vartheta'(z) = \langle x', \xi \rangle \), where \(x' \), still a point in \(\mathbb{R}^N \), is related to \(x \) so that \(x'(n) = x(n) \) for all \(n \geq 1 \) but \(x'(0) = f(z) \). Then obviously \(\vartheta(z) \) and \(\vartheta'(z) \) are \(E_{13} \)-equivalent for all \(z \in Z \), and hence \(\vartheta' \) is still a Borel reduction of \(E \) to \(E_{13} \). On the other hand, \(\vartheta' \) is an injection (because so is \(f \)). It follows that its full image \(P_0 = \text{ran} \vartheta' = \{ \vartheta'(z) : z \in Z \} \) is a Borel set in \(\mathbb{R}^N \times \mathbb{R}^N \), and \(E \sim_B E_{13} \upharpoonright P_0 \).

The remainder of the paper contains the proof of Theorem 2. The partition in two cases is described in Section 2. Naturally assuming that \(P_0 \) is a lightface \(\Delta^1_1 \) set, Case 1 is essentially the case when for every element \(\langle x, \xi \rangle \in P_0 \) (note that \(x, \xi \) are points in \(\mathbb{R}^N \)) and every \(n \) we have \(x(n) = F(x|_{>n}, \xi|_{<k}, \xi|_{>k}) \) for some \(k \), where \(F \) is a \(\Delta^1_1 \) function \(E_3 \)-invariant w.r.t. the 3rd argument. It easily follows that then the first projection of the equivalence class \(\langle (x, \xi) \rangle_{E_{13} \cap P_0} \) of every point \(\langle x, \xi \rangle \in P_0 \) is at most countable, leading to the either option of Theorem 2 in Section 4.

The results of theorems 1 and 2 in their either parts can hardly be viewed as satisfactory because one would expect it in the form: \(E \) is Borel reducible to \(E_3 \). Thus it is a challenging problem to replace \(T_2 \) by \(E_3 \) in the theorems. Attempts
to improve the either option, so far rather unsuccessful, lead us to the following theorem established in sections 5 and 6:

Theorem 3. In the either case of Theorem 2 there exist a hyperfinite equivalence relation G on a Borel set $P_0'' \subseteq \mathbb{R}^n \times \mathbb{R}^n$ such that $E_{13} \upharpoonright P_0$ is Borel reducible to the conjunction of G and the equivalence relation E_3 acting on the 2nd factor of $\mathbb{R}^n \times \mathbb{R}^n$. ²

The equivalence G as in the theorem will be induced by a countable group G of homeomorphisms of $\mathbb{R}^n \times \mathbb{R}^n$ preserving the second component. (That is, if $g \in G$ and $g(x, \xi) = (y, \eta)$ then $\eta = \xi$, but y generally speaking depends on both x and ξ.) And G happens to be even a *hyperfinite* group in the sense that it is equal to the union of an increasing chain of its finite sub groups. Recall that E_3 is induced by the product group $H = (\mathcal{P}_{\mathbb{R}_1}(N); \Delta^N_1)$ naturally acting in this case on the second factor in the product $\mathbb{R}^N \times \mathbb{R}^N$. And there are further details here that will be presented in sections 5 and 6.

Case 2 is treated in Sections 7 through 12. The embedding of E_1 in $E_{13} \upharpoonright P_0$ is obtained by approximately the same splitting construction as the one introduced in [9] (in the version closer to [7]).

1 Preliminaries: extension of “invariant” functions

If E is an equivalence relation on a set X then, as usual, $[x]_E = \{y \in X : y E x\}$ is the E-class of an element $x \in X$, and $[Y]_E = \bigcup_{x \in Y} [x]_E$ is the E-saturation of a set $Y \subseteq X$. A set $Y \subseteq X$ is E-invariant if $Y = [Y]_E$.

The following “invariant” Separation theorem will be used below.

Proposition 4 (5.1 in [1]). Assume that E is a Δ^1_1 equivalence relation on a Δ^1_1 set $X \subseteq \mathbb{N}^N$. If $A, C \subseteq X$ are Σ^1_1 sets and $[A]_E \cap [C]_E = \emptyset$ then there exists an E-invariant Δ^1_1 set $B \subseteq X$ such that $[A]_E \subseteq B$ and $[C]_E \cap B = \emptyset$. \hfill \square

Suppose that f is a map defined on a set $Y \subseteq X$. Say that f is E-invariant if $f(x) = f(y)$ for all $x, y \in Y$ satisfying $x E y$.

Corollary 5. Assume that E is a Δ^1_1 equivalence relation on a Δ^1_1 set $A \subseteq \mathbb{N}^N$, and $f : B \to \mathbb{N}^N$ is an E-invariant Σ^1_1 function defined on a Σ^1_1 set $B \subseteq A$. Then there exist an E-invariant Δ^1_1 function $g : A \to \mathbb{N}^N$ such that $f \subseteq g$.

Proof. It obviously suffices to define such a function on an E-invariant Δ^1_1 set Z such that $Y \subseteq Z \subseteq A$. (Indeed then define g to be just a constant on $A \setminus Z$.)

The set

$$P = \{ \langle a, x \rangle \in A \times \mathbb{N}^N : \forall b ((b \in B \wedge a E b) \implies x = f(b)) \}$$

² The conjunction as indicated is equal to the least equivalence relation F on P_0'' which includes G and satisfies $\xi E_3 \eta \implies \langle x, \xi \rangle F \langle y, \eta \rangle$ for all $\langle x, \xi \rangle$ and $\langle y, \eta \rangle$ in P_0''.
is Π^1_1 and $f \subseteq P$. Moreover P is F-invariant, where F is defined on $A \times \mathbb{N}^\mathbb{N}$ so that $\langle a,x \rangle F \langle a',y \rangle$ iff $a \equiv a'$ and $x = y$. Obviously $[f]_F \subseteq P$. Hence by Proposition 4 there exists an F-invariant Δ^1_1 set Q such that $f \subseteq Q \subseteq P$. The set

$$R = \{ \langle a,x \rangle \in Q : \forall y (y \neq x \implies \langle a,y \rangle \notin Q) \}$$

is an F-invariant Π^1_1 set, and in fact a function, satisfying $f \subseteq R$. Applying Proposition 4 once again we end the proof.

\[\square\]

2 An important population of Σ^1_1 functions

Working with elements and subsets of $\mathbb{R}^\mathbb{N} \times \mathbb{R}^\mathbb{N}$ as the domain of the equivalence relation E_{13}, we’ll typically use letters x, y, z to denote points of the first copy of $\mathbb{R}^\mathbb{N}$ (where E_1 lives) and letters ξ, η, ζ to denote points of the second copy of $\mathbb{R}^\mathbb{N}$ (where E_3 lives). Recall that, for $P \subseteq \mathbb{R}^\mathbb{N} \times \mathbb{R}^\mathbb{N}$,

$$\text{dom } P = \{ x : \exists \xi (\langle x, \xi \rangle \in P) \} \quad \text{and} \quad \text{ran } P = \{ \xi : \exists x (\langle x, \xi \rangle \in P) \}. $$

Points of $\mathbb{R} = 2^\mathbb{N}$ will be denoted by a, b, c.

Assume that $x \in \mathbb{R}^\mathbb{N}$. Let $x|_{>n}$, resp., $x|_{\geq n}$ denote the restriction of x (as a map $\mathbb{N} \to \mathbb{R}$) to the domain (n, ∞), resp., $[n, \infty)$. Thus $x|_{>n} \in \mathbb{R}^{>n}$, where $>n$ means the interval (n, ∞), and $x|_{\geq n} \in \mathbb{R}^{\geq n}$, where $\geq n$ means $[n, \infty)$. If $X \subseteq \mathbb{R}^\mathbb{N}$ then put $X|_{>n} = \{ x|_{>n} : x \in X \}$ and $X|_{\geq n} = \{ x|_{\geq n} : x \in X \}$.

The notation connected with $|_{<n}$ and $|_{\leq n}$ is understood similarly.

Let $\xi \equiv_k \eta$ mean that $\xi E_{13} \eta$ and $\xi|_{<k} = \eta|_{<k}$ (that is, $\xi(j) = \eta(j)$ for all $j < k$). This is a Borel equivalence on $\mathbb{R}^\mathbb{N}$. A set $U \subseteq \mathbb{R}^\mathbb{N}$ is \equiv_k-invariant if $U = [U]|_{\equiv_k}$, where $[U]|_{\equiv_k} = \bigcup_{\xi \in U} [\xi]_{\equiv_k}$.

Definition 6. Let \mathcal{F}^k_n denote the set of all Σ^1_1 functions $\varphi : U \to \mathbb{R}$, defined on a Σ^1_1 set $U = \text{dom } \varphi \subseteq \mathbb{R}^{>n} \times \mathbb{R}^\mathbb{N}$, and \equiv_k-invariant in the sense that if $\langle y, \xi \rangle$ and $\langle y, \eta \rangle$ belong to U and $\xi \equiv_k \eta$ then $\varphi(y, \xi) = \varphi(y, \eta)$.

Let \mathcal{F}_n^k denote the set of all total functions in \mathcal{F}^k_n, that is, those defined on the whole set $\mathbb{R}^{>n} \times \mathbb{R}^\mathbb{N}$.

Lemma 7. If $\varphi \in \mathcal{F}_n^k$ then there is a Δ^1_1 function $\psi \in \mathcal{F}_n^k$ with $\varphi \subseteq \psi$.

Proof. Apply Corollary 5. \[\square\]

Definition 8. Let us fix a suitable coding system $\{ W^e \}_{e \in E}$ of all Δ^1_1 sets $W \subseteq \mathbb{R} \times \mathbb{R}^\mathbb{N} \times \mathbb{R}$ (in particular for partial Δ^1_1 functions $\mathbb{R} \times \mathbb{R}^\mathbb{N} \to \mathbb{R}$), where $E \subseteq \mathbb{N}$ is a Π^1_1 set, such that there exist a Σ^1_1 relation Σ and a Π^1_1 relation Π satisfying

$$\langle b, \xi, a \rangle \in W^e \iff \Sigma(e, b, a, \xi) \iff \Pi(e, b, a, \xi)$$

(1)

\[\square\]
whenever \(e \in E \) and \(a, b \in \mathbb{R}, \xi \in \mathbb{R}^\mathbb{N} \).

Let us fix a \(\Delta^1_1 \) sequence of homeomorphisms \(H_n : \mathbb{R} \onto \mathbb{R}^\mathbb{N} \). Put

\[
\begin{align*}
W^e_n &= \{ \langle H_n(b), \xi, a \rangle : \langle b, \xi, a \rangle \in W^e \} \quad \text{for } e \in E \\
T &= \{ \langle e, k \rangle : e \in E \lor W^e \text{ is a total and } \equiv_k \text{-invariant function} \}
\end{align*}
\]

Here the totality means that \(\text{dom} W^e = \mathbb{R} \times \mathbb{R}^\mathbb{N} \) while the invariance means that \(W^e(b, \xi) = W^e(b, \eta) \) for all \(b, \xi, \eta \) satisfying \(\xi \equiv_k \eta \).

Note that if \(\langle e, k \rangle \in T \) then, for any \(n \), \(W^e_n \) is a function in \(\mathcal{T} \mathcal{F}_k^n \), and conversely, every function in \(\mathcal{T} \mathcal{F}_k^n \) has the form \(W^e_n \) for a suitable \(e \in E \).

Proposition 9. \(T \) is a \(\Pi^1_1 \) set.

Proof. Standard evaluation based on the coding of \(\Delta^1_1 \) sets.

Corollary 10. The sets

\[
S^k_n = \{ \langle x, \xi \rangle \in \mathbb{R}^\mathbb{N} \times \mathbb{R}^\mathbb{N} : \exists \varphi \in \mathcal{T} \mathcal{F}_k^n (x(n) = \varphi(x\upharpoonright_n, \xi)) \}
\]

belong to \(\Pi^1_1 \) uniformly on \(n, k \). Therefore the set \(S = \bigcup_m \bigcap_{n \geq m} \bigcup_k S^k_n \) also belongs to \(\Pi^1_1 \).

Proof. The equality of the two definitions follows from Lemma 7. The definability follows from Proposition 9 by standard evaluation.

Beginning the proof of Theorem 2, we can w.l.o.g. assume, as usual, that the Borel set \(P_0 \) in the theorem is a lightface \(\Delta^1_1 \) set.

Case 1: \(P_0 \subseteq S \). We’ll show that in this case \(E_{13} \upharpoonright P_0 \) is Borel reducible to \(T_2 \).

Case 2: \(P_0 \setminus S \neq \emptyset \). We’ll prove that then \(E_1 \leq_{B} E_{13} \upharpoonright P_0 \).

3 Case 1: simplification

From now on and until the end of Section 4 we work under the assumptions of Case 1. The general strategy is to prove that for any \(\langle x, \xi \rangle \in P_0 \) there exist at most countably many points \(y \in \mathbb{R}^\mathbb{N} \) such that, for some \(\eta, \langle y, \eta \rangle \in P_0 \) and \(\langle x, \xi \rangle \in E_{13} \langle y, \eta \rangle \), and that those points can be arranged in countable sequences in a certain controlled way.

Our first goal is to somewhat simplify the picture.

Lemma 11. There exists a \(\Delta^1_1 \) map \(\mu : P_0 \to \mathbb{N} \) such that for any \(\langle x, \xi \rangle \in P_0 \) we have \(\langle x, \xi \rangle \in \bigcap_{n \geq \mu(x, \xi)} \bigcup_k S^k_n \).
Proof. Apply Kreisel Selection to the set

\[\{(x, \xi, m) \in P_0 \times \mathbb{N} : \forall n \geq m \exists k ((x, \xi) \in S^k_n)\}. \]

\[\square \]

Let \(0 = 0^\mathbb{N} \in \mathbb{R} = 2^\mathbb{N} \) be the constant 0 : \(0(k) = 0, \forall k. \) For any \(\langle x, \xi \rangle \in P_0 \) put \(f_\mu(x, \xi) = 0^\mu(x, \xi)^\wedge (x \vDash \mu(x, \xi)) : \) that is, we replace by 0 all values \(x(n) \) with \(n < \mu(x, \xi). \) Then \(P'_0 = \{(f_\mu(x, \xi), \xi) : (x, \xi) \in P_0\} \) is a \(\Sigma_1^1 \) set.

Put \(S' = \bigcap_k S_n^k \) (a \(\Pi_1^1 \) set by Corollary 10).

Corollary 12. There is a \(\Delta_1^1 \) set \(P''_0 \) such that \(P'_0 \subseteq P''_0 \subseteq S'. \) The map \(\langle x, \xi \rangle \mapsto f_\mu(x, \xi, \xi) \) is a reduction of \(E_{13} \upharpoonright P_0 \) to \(E_{13} \upharpoonright P''_0. \)

Proof. Obviously \(P'_0 \) is a subset of the \(\Pi_1^1 \) set \(S'. \) It follows that there is a \(\Delta_1^1 \) set \(P''_0 \) such that \(P'_0 \subseteq P''_0 \subseteq S'. \) To prove the second claim note that \(f_\mu(x, \xi)E_1x \) for all \(\langle x, \xi \rangle \in P_0. \) \[\square \]

Let us fix a \(\Delta_1^1 \) set \(P''_0 \) as indicated. By Corollary 12 to accomplish Case 1 it suffices to get a Borel reduction of \(E_{13} \upharpoonright P''_0 \) to \(T_2. \)

Lemma 13. There exist: a \(\Delta_1^1 \) sequence \(\{\kappa_n\}_{n \in \mathbb{N}} \) of natural numbers, and a \(\Delta_1^1 \) system \(\{F_n^k\}_{i,n \in \mathbb{N}} \) of functions \(F_n^k \in \mathcal{P}^{\kappa_i} \), such that for all \(\langle x, \xi \rangle \in P''_0 \) and \(n \in \mathbb{N} \) there is \(i \in \mathbb{N} \) satisfying \(x(n) = F_n^k(x|_\rangle_{>n}, \xi). \)

Remark 14. Recall that by definition every function \(F \in \mathcal{P}^k \) is invariant in the sense that if \(\langle x, \xi \rangle \) and \(\langle x, \eta \rangle \) belong to \(R \times R, \xi \langle_k \eta = \xi \langle_k \), and \(\xi \in \mathcal{E}_2 \) then \(\varphi(x, \xi) = \varphi(x, \eta). \) This allows us to sometimes use the notation like \(F_n^k(x|_\rangle_{>n}, \xi|_\rangle_{<k}, \xi|_\rangle_{\geq k}) \), where \(k = \kappa_i \), instead of \(F_n^k(x|_\rangle_{>n}, \xi) \), with the understanding that \(F_n^k(x|_\rangle_{>n}, \xi|_\rangle_{<k}, \xi|_\rangle_{\geq k}) \) is \(\mathcal{E}_3 \)-invariant in the 3rd argument.

In these terms, the final equality of the lemma can be re-written as \(x(n) = F_n^k(x|_\rangle_{>n}, \xi|_\rangle_{<k}, \xi|_\rangle_{\geq k}) \), where \(k = \kappa_i. \) \[\square \]

Proof (lemma). By definition \(P''_0 \subseteq S' \) means that for any \(\langle x, \xi \rangle \in P''_0 \) and \(n \) there exists \(k \) such that \(\langle x, \xi \rangle \in S^k_n \). The formula \(\langle x, \xi \rangle \in S^k_n \) takes the form

\[\exists \varphi \in \mathcal{P}^k_n (x(n) = \varphi(x|_\rangle_{>n}, \xi)), \]

and further the form \(\exists (e, k) \in T (x(n) = W^e_n(x|_\rangle_{>n}, \xi)). \) It follows that the \(\Pi_1^1 \) set

\[Z = \{\langle (x, \xi, n), (e, k) \rangle \in (P_0 \times \mathbb{N}) \times T : x(n) = W^e_n(x|_\rangle_{>n}, \xi)\} \]

satisfies \(\text{dom} Z = P_0 \times \mathbb{N}. \) Therefore by Kreisel Selection there is a \(\Delta_1^1 \) map \(\varepsilon : P_0 \times \mathbb{N} \to T \) such that \(x(n) = W^e_n(x|_\rangle_{>n}, \xi) \) holds for any \(\langle x, \xi \rangle \in P_0 \) and \(n, \) where \(\langle e, k \rangle = \varepsilon(x(\xi, n)) \) for some \(k. \)

The range \(R = \text{ran} \varepsilon \) of this function is a \(\Sigma_1^1 \) subset of the \(\Pi_1^1 \) set \(T. \) We conclude that there is a \(\Delta_1^1 \) set \(B \) such that \(R \subseteq B \subseteq T. \) And since \(T \subseteq \mathbb{N} \times \mathbb{N}, \) it follows, by some known theorems of effective descriptive set theory, that the
set \(\hat{E} = \text{dom} B = \{ e : \exists k (\langle e, k \rangle \in B) \} \) is \(\Delta^1_1 \), and in addition there exists a \(\Delta^1_1 \) map \(K : \hat{E} \to \mathbb{N} \) such that \(\langle e, K(e) \rangle \in B \) (and \(\in T \)) for all \(e \in \hat{E} \).

And on the other hand it follows from the construction that

\[
\forall \langle x, \xi \rangle \in P_0 \forall n \exists e \in \hat{E} (x(n) = W^*_{\eta}(x|_{>n}, \xi)).
\]

(3)

Let us fix any \(\Delta^1_1 \) enumeration \(\{ e(i) \}_{i \in \mathbb{N}} \) of elements of \(\hat{E} \). Put \(F_n^i = W^e_{\xi}(i) \). Then the last conclusion of the lemma follows from (3). Note that the functions \(F_n^i \) are uniformly \(\Delta^1_1 \), \(F_n^i \in \mathcal{P}_n^k \) for some \(k \), in particular, for \(k = \kappa_i \), where \(\kappa_i = K(e(i)) \), and \(\{ \kappa_i \}_{i \in \mathbb{N}} \) is a \(\Delta^1_1 \) sequence as well.

Blanket Agreement 15. Below, we assume that the set \(P_0'' \) is chosen as above, that is, \(\Delta^1_1 \) and \(P_0'' \subseteq S' \), while a system of functions \(F_n^i \) and a sequence \(\{ \kappa_i \}_{i \in \mathbb{N}} \) of natural numbers are chosen accordingly to Lemma 13.

4 Case 1: countability of projections of equivalence classes

We prove here that in the assumption of Case 1 the equivalence \(E_{13} \upharpoonright P_0'' \) is Borel reducible to \(T_2 \), the equality of countable sets of reals. The main ingredient of this result will be the countability of the sets

\[
C^*_x = \text{dom}(\{ \langle x, \xi \rangle | E_{13} \cap P_0'' \}) = \{ y \in \mathbb{R}^\mathbb{N} : y E_1 x \land \exists \eta (\xi E_3 \eta \land \langle y, \eta \rangle \in P_0'') \},
\]

where \(\langle x, \xi \rangle \in P_0'' \) — projections of \(E_{13} \)-classes of elements of the set \(P_0'' \).

Lemma 16. If \(\langle x, \xi \rangle \in P_0'' \) then \(C^*_x \subseteq [x]_{E_1} \) and \(C^*_x \) is at most countable.

Proof. That \(C^*_x \subseteq [x]_{E_1} \) is obvious. The proof of countability begins with several definitions. In fact we are going to organize elements of any set of the form \(C^*_x \) in a countable sequence.

Recall that \(\mathbb{R} = 2^{\mathbb{N}} \). If \(u \subseteq \mathbb{N} \) and \(b \in \mathbb{R} \) then define \(u \cdot a \in \mathbb{R} \) so that \((u \cdot a)(j) = a(j) \) whenever \(j \notin u \), and \((u \cdot a)(j) = 1 - a(j) \) otherwise.

If \(f \subseteq \mathbb{N} \times \mathbb{N} \) and \(a \in \mathbb{R}^k \) then define \(f \cdot a \in \mathbb{R}^k \) so that \((f \cdot a)(j) = (f^j \cdot a)(j) \) for all \(j < k \), where \(f^j = \{ m : \langle j, m \rangle \in f \} \). Note that \(f \cdot a \) depends in this case only on the restricted set \(f | k = \{ \langle j, m \rangle \in f : j < k \} \).

Put \(\Phi = \mathcal{P}_{\text{fin}}(\mathbb{N} \times \mathbb{N}) \) and \(D = \bigcup_n D_n \), where for every \(n \):

\[
D_n = \{ (a, \varphi) : a \in \mathbb{N}^n \land \varphi \in \Phi^n \land \forall j < n (\varphi(j) \subseteq \kappa_{a(j)} \times \mathbb{N}) \}. \tag{4}
\]

(The inclusion \(\varphi(j) \subseteq \kappa_{a(j)} \times \mathbb{N} \) here means that the set \(\varphi(j) \subseteq \mathbb{N} \times \mathbb{N} \) satisfies \(\varphi(j) = \varphi(j) | \kappa_{a(j)} \), that is, every pair \(\langle k, l \rangle \in \varphi(j) \) satisfies \(k < \kappa_{a(j)} \).)

If \(\langle a, \varphi \rangle \in D_n \) and \(\langle x, \xi \rangle \in \mathbb{R}^\mathbb{N} \times \mathbb{R}^\mathbb{N} \) then we define \(y = \tau^*_x(a, \varphi) \in \mathbb{R}^\mathbb{N} \) as follows: \(y = \langle b_0, b_1, \ldots, b_{n-1} \rangle^{\langle x \rangle}_{\geq n} \), where the reals \(b_m \in \mathbb{R} \) (\(m < n \)) are defined by inverse so that

\[
b_m = F_m^{a(m)}(\langle b_{m+1}, b_{m+2}, \ldots, b_{n-1} \rangle^{\langle x \rangle}_{\geq n}, \varphi(m) \cdot (\xi |_{<\kappa_{a(m)}}), \xi |_{\geq \kappa_{a(m)}}).
\]

(4)
Proof. The “if” direction is rather easy. If \(\xi \) holds if and only if \(\eta \) holds, then \(\xi = \xi \). Thus \(\xi \xi \), the trace of \(\xi \xi \), is a countable sequence, that is, a function defined on \(D = \bigcup_n D_n \), a countable set, and the set \(\text{ran} \xi \xi \) of all terms of this sequence is at most countable and satisfies \(x = \xi \xi (\Lambda, \Lambda) \in \text{ran} \xi \xi \subseteq |x|_{E_1} \).

Claim 17. Suppose that \(\langle x, \xi \rangle \in P''_0 \). Then \(C^E_0 \subseteq \text{ran} \xi \xi \) and hence \(C^E_0 \) is at most countable. More exactly if \(y \in C^E_0 \) and \(y|_{\geq n} = x|_{\geq n} \) then there is a pair \(\langle a, \varphi \rangle \in D_n \) such that \(y = \xi \xi (a, \varphi) \).

We prove the second, more exact part of the claim. By definition there is \(\eta \in \mathbb{R}^N \) such that \(\langle y, \eta \rangle \in P''_0 \) and \(\xi \in E_3 \eta \). Put \(b_m = y(m), \forall m \). Note that for every \(m < n \) there is a number \(a(m) \) such that

\[
b_m = F_m^a(m)(\langle b_{m+1}, \ldots, b_{n-1} \rangle \wedge (y|_{\geq n}), \eta) = F_m^a(m)(\langle b_{m+1}, \ldots, b_{n-1} \rangle \wedge (y|_{\geq n}), \eta|_{\prec \kappa_a(m)}, \eta|_{\prec \kappa_a(m)})
\]

for all \(m < n \) (see Blanket Agreement 15), and hence

\[
b_m = F_m^a(m)(\langle b_{m+1}, \ldots, b_{n-1} \rangle \wedge (x|_{\geq n}), \eta|_{\prec \kappa_a(m)}, \xi|_{\geq \kappa_a(m)})
\]

by the invariance of functions \(F_m^i \) and because \(x|_{\geq n} = y|_{\geq n} \). On the other hand, it follows from the assumption \(\xi \in E_3 \eta \) that for every \(m < n \) there is a finite set \(\varphi(m) \subseteq \kappa_a(m) \times \mathbb{N} \) such that \(\eta|_{\prec \kappa_a(m)} = \varphi(m) \cdot (\xi|_{\prec \kappa_a(m)}) \). Then

\[
b_m = F_m^a(m)(\langle b_{m+1}, \ldots, b_{n-1} \rangle \wedge (x|_{\geq n}), \varphi(m) \cdot (\xi|_{\prec \kappa_a(m)}), \xi|_{\geq \kappa_a(m)})
\]

for every \(m < n \), that is, \(y = \xi \xi (a, \varphi) \), as required. \(\square \) (Claim and Lemma 16)

The next result reduces the equivalence relation \(E_{13} \parallel P''_0 \) to the equality of sets of the form \(\text{ran} \xi \xi \), that is essentially to the equivalence relation \(T_2 \) of "equality of countable sets of reals".

Corollary 18. Suppose that \(\langle x, \xi \rangle \) and \(\langle y, \eta \rangle \) belong to \(P''_0 \). Then \(\langle x, \xi \rangle E_{13} \langle y, \eta \rangle \) holds if and only if \(\xi \in E_3 \eta \) and \(\text{ran} \xi \xi = \text{ran} \eta \).

Proof. The "if" direction is rather easy. If \(\xi \in E_3 \eta \) and \(\text{ran} \xi \xi = \text{ran} \eta \), then \(x \in E_1 y \) because \(\text{ran} \xi \xi \subseteq [y]_{E_1} \) and \(\text{ran} \xi \xi \subseteq [x]_{E_1} \) by Lemma 16.

To prove the converse suppose that \(\langle x, \xi \rangle E_{13} \langle y, \eta \rangle \). Then \(\xi \in E_3 \eta \), of course. Furthermore, \(x \in E_1 y \), therefore \(x|_{\geq n} = y|_{\geq n} \) for an appropriate \(n \). Let us prove
that $\text{ran } \tau^\xi_y = \text{ran } \tau^\xi_{z}$. First of all, by definition we have $y \in C^\xi_z$, and hence (see the proof of Claim 17) there exists a pair $\langle a, \varphi \rangle \in D_n$ such that $y = \tau^\xi_z(a, \varphi)$.

Now, let us establish $\text{ran } \tau^\xi_z = \text{ran } \tau^\xi_y$ (with one and the same ξ). Suppose that $z \in \text{ran } \tau^\xi_z$, that is, $z = \tau^\xi_z(b, \psi)$ for a pair $\langle b, \psi \rangle \in D_m$ for some m. If $m \geq n$ then obviously $z = \tau^\xi_z(b, \psi) = \tau^\xi_y(b, \psi)$, and hence (as $\langle x \rangle \geq \langle y \rangle \geq \langle m \rangle$) $z \in \text{ran } \tau^\xi_y$. If $m < n$ then $z = \tau^\xi_z(b, \psi) = \tau^\xi_y(a', \varphi')$, where $a' = b \wedge \langle a \rangle \geq \langle m \rangle$ and $\varphi' = \psi \wedge \langle \varphi \rangle \geq \langle m \rangle$, and once again $z \in \text{ran } \tau^\xi_y$. Thus $\text{ran } \tau^\xi_z \subseteq \text{ran } \tau^\xi_y$. The proof of the inverse inclusion $\text{ran } \tau^\xi_y \subseteq \text{ran } \tau^\xi_z$ is similar.

Thus $\text{ran } \tau^\xi_y = \text{ran } \tau^\xi_z$. It remains to prove $\text{ran } \tau^\xi_y = \text{ran } \tau^\xi_y$ for all y, ξ, η such that $\xi E_3 \eta$. Here we need another block of definitions.

Let \mathcal{H} be the set of all sets $\delta \subseteq \mathbb{N} \times \mathbb{N}$ such that $\delta''j = \{m : \langle j, m \rangle \in \delta\}$ is finite for all $j \in \mathbb{N}$. For instance if $\xi, \eta \in \mathbb{R}^\mathbb{N}$ satisfy $\xi E_3 \eta$ then the set

$$\delta_{\xi \eta} = \{\langle j, m \rangle : \xi(j)(m) \neq \eta(j)(m)\}$$

belongs to \mathcal{H}. The operation of symmetric difference Δ converts \mathcal{H} into a Polish group equal to the product group $\langle \mathcal{B}_{21n}(\mathbb{N}) ; \Delta \rangle^\mathbb{N}$.

If $n \in \mathbb{N}$, $\langle a, \varphi \rangle \in D_n$, and $\delta \in \mathcal{H}$ then we define a sequence $\varphi' = H^\delta_{\varphi}(\varphi) \in \Phi^n$ so that $\varphi'(m) = (\delta \upharpoonright \kappa_m) \Delta \varphi(m)$ for every $m < n$. Then the pair $\langle a, H^\delta_{\varphi}(\varphi) \rangle$ obviously still belongs to D_n and $H^\delta_{\varphi}(H^\delta_{\varphi}(\varphi)) = \varphi$.

Coming back to a triple of $y, \xi, \eta \in \mathbb{R}^\mathbb{N}$ such that $\xi E_3 \eta$, let $\delta = \delta_{\xi \eta}$.

A routine verification shows that $\tau^\xi_y(a, \varphi) = \tau^\xi_z(a, H^\delta_{\varphi}(\varphi))$ for all $\langle a, \varphi \rangle \in D$. It follows that $\text{ran } \tau^\xi_y = \text{ran } \tau^\xi_z$, as required. \hfill \Box

Corollary 19. The restricted relation $E_{13} \mid P'_0$ is Borel reducible to T_2.

Proof. Since all τ^ξ_z are countable sequences of reals, the equality $\text{ran } \tau^\xi_y = \text{ran } \tau^\xi_z$ of Corollary 18 is Borel reducible to T_2. Thus $E_{13} \mid P'_0$ is Borel reducible to $E_3 \times T_2$ by Corollary 18. However it is known that E_3 is Borel reducible to T_2, and so does $T_2 \times T_2$. \hfill \Box

\Box (Case 1 of Theorem 2)

5 Case 1: a more elementary (?) transformation group

Here we begin the proof of Theorem 3. Our plan is to define a countable group G of homeomorphisms of $\mathbb{R}^\mathbb{N} \times \mathbb{R}^\mathbb{N}$ such that the induced equivalence relation G satisfies Theorem 3. We continue to argue under the assumptions of Case 1.

First of all let us define the basic domain of transformations,

$$\Pi = \{\langle x, \xi \rangle \in \mathbb{R}^\mathbb{N} \times \mathbb{R}^\mathbb{N} : \forall n \exists \langle a, \varphi \rangle \in D_n (x = \tau^\xi_z(a, \varphi))\}.$$

This is a closed subset of $\mathbb{R}^\mathbb{N} \times \mathbb{R}^\mathbb{N}$. Applying Claim 17 with $y = x$ we obtain

\footnote{Recall that $\delta \upharpoonright k = \{\langle j, i \rangle : j < k\}$.}
Corollary 20. $P''_0 \subseteq \Pi$. \hfill \Box

Suppose that pairs $\langle a, \varphi \rangle$ and $\langle b, \psi \rangle$ belong to D_n for one and the same n, and $\langle x, \xi \rangle \in \mathbb{R}^N \times \mathbb{R}^N$. We define $G_{a,\varphi}^{b,\psi}(x, \xi) = \langle y, \xi \rangle \in \mathbb{R}^N \times \mathbb{R}^N$ so that

$$y = \begin{cases} \tau^\xi_x(b, \psi) & \text{whenever } x = \tau^\xi_x(a, \varphi) \\ \tau^\xi_x(a, \varphi) & \text{whenever } x = \tau^\xi_x(b, \psi) \\ x & \text{whenever } \tau^\xi_x(a, \varphi) \neq x \neq \tau^\xi_x(b, \psi) \end{cases}$$

Note that if $\tau^\xi_x(a, \varphi) = x = \tau^\xi_x(b, \psi)$ then still $y = x$ by either of the two first cases of the definition. And in any case $y|_{\geq n} = x|_{\geq n}$ provided $\langle a, \varphi \rangle \in D_n$.

Lemma 21. Suppose that $n \in \mathbb{N}$ and pairs $\langle a, \varphi \rangle$, $\langle b, \psi \rangle$ belong to D_n. Then $G_{a,\varphi}^{b,\psi}$ is a homeomorphism of $\mathbb{R}^N \times \mathbb{R}^N$ onto itself, and $G_{a,\varphi}^{b,\psi} = G_{b,\psi}^{a,\varphi}$.

In addition, $G_{a,\varphi}^{b,\psi}$ is a homeomorphism of Π onto itself.

Proof. Suppose that $\langle x, \xi \rangle$ belongs to Π and prove that so does $\langle y, \xi \rangle = G_{a,\varphi}^{b,\psi}(x, \xi)$. By definition y coincides with one of $x, \tau^\xi_x(a, \varphi), \tau^\xi_x(b, \psi)$. So assume that $y = \tau^\xi_x(b, \psi)$. Consider any m, we have to show that $y = \tau^\xi_y(b, \psi)$ for some $\langle a', \varphi' \rangle \subseteq D_m$. If $m \leq n$ then the pair of $a' = b \upharpoonright m$ and $\varphi' = \psi \upharpoonright m$ obviously works. If $m > n$ then take the pair of $a' = b^\upharpoonright m \upharpoonright n$ and $\varphi' = \psi^\upharpoonright n$ where $\langle b', \psi' \rangle \subseteq D_m$ is an arbitrary pair satisfying $x = \tau^\xi_x(b', \psi')$. \hfill \Box

Lemma 22. Suppose that $\langle x, \xi \rangle \in \Pi$. Then:

(i) if $\langle a, \varphi \rangle$, $\langle b, \psi \rangle \in D_n$ and $\langle y, \xi \rangle = G_{a,\varphi}^{b,\psi}(x, \xi)$ then $\text{ran } \tau^\xi_{\langle a, \varphi \rangle} \subseteq \text{ran } \tau^\xi_{\langle b, \psi \rangle}$;

(ii) if $y \in \text{ran } \tau^\xi_{\langle b, \psi \rangle}$ then there exist n and pairs $\langle a, \varphi \rangle$, $\langle b, \psi \rangle \in D_n$ such that $\langle y, \xi \rangle = G_{a,\varphi}^{b,\psi}(x, \xi)$.

Proof. (i) Consider an arbitrary $z = \tau^\xi_x(a', \varphi') \in \text{ran } \tau^\xi_x$, where $\langle a', \varphi' \rangle \subseteq D_m$. Once again y coincides with one of $x, \tau^\xi_x(a, \varphi), \tau^\xi_x(b, \psi)$, so assume that $y = \tau^\xi_x(b, \psi)$. If $m \geq n$ then obviously $z = \tau^\xi_y(a', \varphi') \in \text{ran } \tau^\xi_y$. If $m < n$ then we have $z = \tau^\xi_y(b', \psi')$, where $b' = a' \upharpoonright m$ and $\psi' = \varphi' \upharpoonright n$. (ii) If $y \in \text{ran } \tau^\xi_x$ then by definition there is a pair $\langle b, \psi \rangle$ in some D_n such that $y = \tau^\xi_x(b, \psi)$. Then by the way $x|_{\geq n} = y|_{\geq n}$. As $\langle x, \xi \rangle \in \Pi$, there is a pair $\langle a, \varphi \rangle \in D_n$ such that $x = \tau^\xi_x(a, \varphi)$. Then $\langle y, \xi \rangle = G_{a,\varphi}^{b,\psi}(x, \xi)$. \hfill \Box

Let G denote the group of all finite superpositions of maps of the form $G_{a,\varphi}^{b,\psi}$, where $\langle a, \varphi \rangle$, $\langle b, \psi \rangle$ belong to one and the same set D_n as in the lemma. Thus G is a countable group of homeomorphisms of $\mathbb{R}^N \times \mathbb{R}^N$. (We’ll prove that G is even an increasing union of its finite subgroups!) Note that a superposition of the form $G_{a,\varphi}^{b,\psi} \circ G_{a',\varphi'}^{b',\psi'}$ does not necessarily coincide with $G_{a,\varphi}^{b,\psi}$.

10
We are going to prove that the equivalence relation \mathcal{G} induced by \mathcal{G} on \mathcal{H} satisfies Theorem 3. To be more exact, \mathcal{G} is defined on \mathcal{H} so that $\langle x, \xi \rangle \mathcal{G} \langle y, \eta \rangle$ if there exists a homeomorphism $g \in \mathcal{G}$ such that $g(x, \xi) = \langle y, \eta \rangle$. Note that then by definition $\eta = \xi$.

The hyperfiniteness \mathcal{G} will be established in the next Section. Now let us study relations between \mathcal{G} and \mathcal{H}, the other involved group introduced in the proof of Corollary 18. For any $\delta \in \mathcal{H}$ define a homeomorphism H_δ of $\mathbb{R}^N \times \mathbb{R}^N$ so that $H_\delta(x, \xi) = \langle x, \eta \rangle$, where simply $\eta = \delta \Delta \xi$ in the sense that

$$\eta(m, j) = \begin{cases} \xi(m, j) & \text{whenever } \langle m, j \rangle \notin \delta \\ 1 - \xi(m, j) & \text{whenever } \langle m, j \rangle \in \delta \end{cases}$$

(Then obviously $\delta = \delta_{\xi, \eta}$.) If $\gamma, \delta \in \mathcal{H}$ then the superposition $H_\delta \circ H_\gamma$ coincides with $H_{\gamma \Delta \delta}$, where Δ is the symmetric difference, as usual.

Transformations of the form $G_{a,\varphi}$ do not commute with those of the form H_δ, yet there exists a convenient law of commutation:

Lemma 23. Suppose that $n \in \mathbb{N}$ and pairs $\langle a, \varphi \rangle$ and $\langle b, \psi \rangle$ belong to D_n, and $\delta \in \mathcal{H}$. Then the superposition $G_{a,\varphi} \circ H_\delta$ coincides with $H_\delta \circ G_{b,\psi}$, where $\varphi' = H_\delta^g(\varphi)$ and $\psi' = H_\delta^b(\psi)$.

Proof. A routine argument is left for the reader. □

Let us consider the group \mathcal{S} of all homeomorphisms $s : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N \times \mathbb{R}^N$ of the form

$$s = H_\delta \circ g_{t-1} \circ g_{t-2} \cdots \circ g_1 \circ g_0,$$

where $t \in \mathbb{N}$, $\delta \in \mathcal{H}$, and each g_t is a homeomorphism of $\mathbb{R}^N \times \mathbb{R}^N$ of the form G_{a_t,φ_t}, where the pairs $\langle a_t, \varphi_t \rangle$, $\langle b_t, \psi_t \rangle$ belong to one and the same set D_n, $n = n_t$. (It follows that $g_{t-1} \circ g_{t-2} \cdots \circ g_1 \circ g_0 \in \mathcal{G}$.)

Lemma 23 implies that \mathcal{S} is really a group under the operation of superposition. For instance if $g = G_{a,\varphi}$ and g_1 belong to \mathcal{G} (and $\langle a, \varphi \rangle$, $\langle b, \psi \rangle$ belong to one and the same D_n) then the superposition $H_\delta \circ g \circ H_{\delta_1} \circ g_1$ coincides with $H_\delta \circ H_{\delta_1} \circ g' \circ g_1 = H_{\Delta \delta_1} \circ (g' \circ g_1)$, where $g' = G_{a,\varphi'}$ and $\varphi' = H_{\delta_1}(\varphi)$, $\psi' = H_{\delta_1}(\psi)$ as in Lemma 23.

Thus \mathcal{S} seems to be a more complicated group than the direct cartesian product of \mathcal{G} and \mathcal{H}, but on the other hand more elementary than the free product (of all formal superpositions of elements of both groups). A natural action of \mathcal{S} on $\mathbb{R}^N \times \mathbb{R}^N$ is defined as follows: if s is as in (5) then $s \cdot \langle x, \xi \rangle = H_\delta(g_{t-1}(g_{t-2}(\cdots g_1(g_0(x, \xi)) \ldots)))$. Let \mathcal{S} denote the induced orbit equivalence relation. One can easily check that both the group \mathcal{S} and the action are Polish. On the other hand, \mathcal{S} is obviously the conjunction of \mathcal{G} and the equivalence relation E_3 acting on the 2nd factor of $\mathbb{R}^N \times \mathbb{R}^N$, in the sense of Theorem 3 and footnote 2 on page 3. Thus the next lemma, together with the result of Lemma 25 on the hyperfiniteness of \mathcal{G}, accomplish the proof of Theorem 3.
Lemma 24. Suppose that $\langle x, \xi \rangle, \langle y, \eta \rangle \in P'_0$. Then $\langle x, \xi \rangle E_{13} \langle y, \eta \rangle$ if and only if $\langle x, \xi \rangle S \langle y, \eta \rangle$.

Proof. Suppose that $\langle x, \xi \rangle E_{13} \langle y, \eta \rangle$. Then $y \in \text{ran} \tau^\xi_x$ by Corollary 18, and further $\langle x, \xi \rangle S \langle y, \eta \rangle$ by Lemma 22(ii). It remains to note that $\langle y, \xi \rangle S \langle y, \eta \rangle$ by obvious reasons.

Now suppose that $\langle x, \xi \rangle S \langle y, \eta \rangle$. Then $\xi E_3 \eta$, and hence by Corollary 19 it suffices to prove that $\text{ran} \tau^\xi_x = \text{ran} \tau^\eta_y$. This follows from two observations saying that transformations in H and in G preserve $\text{ran} \tau^\xi_x$. First, if $\langle x, \xi \rangle \in \mathbb{R}^N \times \mathbb{R}^N$, $\delta \in H$, and $\langle y, \xi \rangle = H_3(x, \xi)$ then τ^δ_y obviously is a permutation of τ^η_y, and hence $\text{ran} \tau^\xi_x = \text{ran} \tau^\eta_y$. Second, if $\langle x, \xi \rangle \in \mathbb{R}^N \times \mathbb{R}^N$, pairs $\langle a, \varphi \rangle, \langle b, \psi \rangle$ belong to one and the same set D_n, and $\langle y, \xi \rangle = G_{a, \varphi}(x, \xi)$, then $\text{ran} \tau^\xi_x = \text{ran} \tau^\xi_x$ by Lemma 22.

\square (Theorem 3 modulo Lemma 25)

6 Case 1: the “hyperfiniteness” of the countable group G

Lemma 24 reduces further study of Case 1 of Theorem 2 to properties of the group S and its Polish actions. This is an open topic, and maybe the next result, the “hyperfiniteness” of G, one of the two components of S, can lead to a more comprehensive study. One might think that G is a rather complicated countable group, perhaps close to the free group on two (or countably many) generators. The reality is different:

Lemma 25. G is the union of an increasing sequence of finite subgroups, therefore the induced equivalence relation G is hyperfinite.

Proof. Let us show that a finite set of “generators” $G_{a, \varphi}$ produces only finitely many superpositions — this obviously implies the lemma. Suppose that $m \in \mathbb{N}$, and $\langle a_i, \varphi_i \rangle \in D_n(i)$ for all $i < m$. Put $G_{ij} = G_{a_i, \varphi_i}$ provided $n(i) = n(j)$, and let G_{ij} be the identity otherwise. Thus all G_{ij} are homeomorphisms of Π. We are going to prove that the set of all superpositions of the form $f_0 \circ f_1 \circ \cdots \circ f_\ell$, where ℓ is an arbitrary natural number and each of f_k is equal to one of G_{ij} (i,j depend on k) contains only finitely many really different functions.

Note that if $i,j < m$ and $n(i) < n(j)$ then the pair

$\langle a_i, b_{n(i)}, \varphi_i, b_{n(i)} \rangle$

belongs to $D_{n(j)}$. We can w.l.o.g. assume that every such a pair occurs in the list of pairs $\langle a_i, \varphi_i \rangle, i < m$.

Let us associate a pair $q(x, \xi) = \langle u_x, \xi, w_x \rangle$ of finite sets

$u_x = \{ i < m : \tau^\xi_x(a_i, \varphi_i) = x \}$, and

$w_x = \{ (i,j) : i,j < m \land \tau^\xi_x(a_i, \varphi_i) = \tau^\xi_x(a_j, \varphi_j) \}$
with every point \(\langle x, \xi \rangle \in \Pi \). Put \(Q = \mathcal{P}(m) \times \mathcal{P}(m \times m) \), a (finite) set including all possible values of \(q(\pi) \).

Claim 26. For every \(q = \langle u, w \rangle \in Q \) and \(i, j < m \) there exists \(\tilde{q} = \langle \tilde{u}, \tilde{w} \rangle \in Q \) such that \(q(G_{ij}(x, \xi)) = \tilde{q} \) for all \(\langle x, \xi \rangle \in \Pi \) with \(q(x, \xi) = q \).

Proof (Claim). We can assume that \(i \neq j \) and \(n(i) = n(j) \) since otherwise \(G_{ij}(x, \xi) = \langle x, \xi \rangle \), and hence \(\tilde{q} = q \) works. By the same reason we can w.l.o.g. assume that either \(i \in u \land j \notin u \) or \(i \notin u \land j \in u \). Let say \(i \in u \land j \notin u \), that is, \(\tau^\xi_i(a_i, \varphi_i) = x \neq \tau^\xi_j(a_j, \varphi_j) \). Then by definition the element \(\langle y, \xi \rangle = G_{ij}(x, \xi) = \alpha_{ai \varphi_j}(x, \xi) \) coincides with \(\langle \tau^\xi_i(a_i, \varphi_i), \xi \rangle \). Let us compute \(\tilde{q} = q(y, \xi) \).

Consider an arbitrary \(k < m \). To figure out whether \(k \in \bar{u} = u_y \xi \) we have to determine whether \(\tau^\xi_y(a_k, \varphi_k) = y \) holds. If \(n(k) \geq n(i) = n(j) \) then obviously \(\tau^\xi_y(a_k, \varphi_k) = \tau^\xi_y(a_k, \varphi_k) \), and hence \(\tau^\xi_y(a_k, \varphi_k) = y \) iff \(\langle j, k \rangle \in w \). Suppose that \(n(k) < n(i) = n(j) \). Then

\[
\tau^\xi_y(a_k, \varphi_k) = \tau^\xi_y(a_j, \varphi_j)(a_k, \varphi_k) = \tau^\xi_y(b, \psi),
\]

where the pair \(\langle b, \psi \rangle = \langle a_k \land (a_j \mid \geq n(k)) \rangle \) is equal to one of the pairs \(\langle a_{\nu}, \varphi_{\nu} \rangle \), \(\nu < m \) (and then \(n(\nu) = n(i) = n(j) \)). Thus \(\tau^\xi_y(a_k, \varphi_k) = y \) iff \(\tau^\xi_y(a_{\nu}, \varphi_{\nu}) = \tau^\xi_y(a_j, \varphi_j) \) iff \(\langle j, \nu \rangle \in w \).

Now consider arbitrary numbers \(k, k' < m \). To figure out whether \(\langle k, k' \rangle \in \bar{w} = w_{y \xi} \) we have to determine whether \(\tau^\xi_y(a_k, \varphi_k) = \tau^\xi_y(a_{k'}, \varphi_{k'}) \) holds. As above in the first part of the proof of the claim, there exist indices \(\nu, \nu' < m \) (that depend on \(q(\pi) = \langle u, v \rangle \) but not directly on \(\langle x, \xi \rangle \)) such that \(\tau^\xi_y(a_k, \varphi_k) = \tau^\xi_y(a_{\nu}, \varphi_{\nu}) \) and \(\tau^\xi_y(a_{k'}, \varphi_{k'}) = \tau^\xi_y(a_{\nu'}, \varphi_{\nu'}) \). And then the equality \(\tau^\xi_y(a_k, \varphi_k) = \tau^\xi_y(a_{k'}, \varphi_{k'}) \) is equivalent to \(\langle \nu, \nu' \rangle \in w \). \(\Box \) (Claim)

Come back to the proof of Lemma 25.

Consider any \(q = \langle u, w \rangle \in Q \). Then \(\Pi_q = \{ \langle x, \xi \rangle \in \Pi : q(x, \xi) = q \} \) is a Borel subset of \(\Pi \). It follows from the claim that for every superposition of the form \(f = f_0 \circ f_1 \circ \cdots \circ f_\ell \), where each of \(f_k \) is equal to one of \(G_{ij} \) \((i, j \) depend on \(k \) \) there exists a sequence \(k_0, k_1, \ldots, k_\ell \) of numbers \(k_i < m \) such that

\[
\begin{align*}
f(x, \xi) = (g_{a_{k_0}, \varphi_{k_0}} \circ g_{a_{k_1}, \varphi_{k_1}} \circ \cdots \circ g_{a_{k_\ell}, \varphi_{k_\ell}})(x, \xi)
\end{align*}
\]

for all \(\langle x, \xi \rangle \in \Pi_q \), where \(g_{a, \varphi} \) is a map of \(\Pi \to \Pi \) defined so that \(g_{a, \varphi}(x, \xi) = \langle \tau^\xi(a, \varphi), \xi \rangle \) for all \(\langle x, \xi \rangle \in \mathbb{R}^N \times \mathbb{R}^N \). In other words \(f = f_0 \circ \cdots \circ f_\ell \) coincides with the superposition \(g_{a_{k_0}, \varphi_{k_0}} \circ \cdots \circ g_{a_{k_\ell}, \varphi_{k_\ell}} \) on \(\Pi_q \).

Note finally that if \((a, \varphi) \in D_{n_0}, \langle b, \psi \rangle \in D_{n'}, \) and \(n' \leq n \) then \(g_{a, \varphi}(g_{b, \psi}(x, \xi)) = g_{a, \varphi}(x, \xi) \) for all \(\langle x, \xi \rangle \in \Pi \). It follows that the superposition \(g_{a_{k_0}, \varphi_{k_0}} \circ \cdots \circ g_{a_{k_\ell}, \varphi_{k_\ell}} \) will not change as a function if we remove all factors \(g_{a_{k_j}, \varphi_{k_j}} \) such that \(n(k_j) \leq n(k_j) \) for some \(j < i \). The remaining superposition obviously contains at most
$n = \max_{i \leq m} n(i)$ terms, and hence there exist only finitely many superpositions of such a reduced form.

As Q itself is finite, this ends the proof of the lemma. \hfill \Box \quad \text{(Lemma 25)}

\hfill \Box \quad \text{(Theorem 3)}

7 Case 2

Then the Σ^1_1 set $R = P_0 \cap H$, where $H = 2^N \setminus S$ is the chaotic domain, is non-empty. Our goal will be to prove that $E_1 \leq H E_{13} \upharpoonright R$ in this case. The embedding $\vartheta : \mathbb{R}^N \rightarrow R$ will have the property that any two elements $\langle x, \xi \rangle$ and $\langle x', \xi' \rangle$ in the range $\text{ran} \vartheta \subseteq R$ satisfy $\xi E_3 \xi'$, so that the ξ'-component in the range of ϑ is trivial. And as far as the x-component is concerned, the embedding will resemble the embedding defined in Case 1 of the proof of the 1st dichotomy theorem in [9] (see also [6, Ch. 8]).

Recall that sets S^k_n were defined in Corollary 10, and by definition

\begin{equation}
\langle x, \xi \rangle \in H \implies \forall m \exists n \geq m \forall k \left(\langle x, \xi \rangle \notin S^k_n \right)
\end{equation}

\begin{equation}
\implies \forall m \exists n \geq m \forall k \forall \varphi \in \mathcal{F}_n^k \left(x(n) \neq \varphi(x|_{>n}, \xi) \right)
\end{equation}

in Case 2. Prove a couple of related technical lemmas.

Lemma 27. Each set S^k_n is invariant in the following sense: if $\langle x, \xi \rangle \in S^k_n$, $\langle y, \eta \rangle \in \mathbb{R}^N \times \mathbb{R}^N$, $x|_{>n} = y|_{>n}$, and $\xi E_3 \eta$ then $\langle y, \eta \rangle \in S^k_n$.

Proof. Otherwise there is a Δ^1_1 function $\varphi \in \mathcal{F}_n^k$ such that $y(n) = \varphi(y|_{>n}, \eta)$. Then $x(n) = \varphi(x|_{>n}, \eta)$ as well because $x|_{>n} = y|_{>n}$. We put

$$u_j = \xi(j) \Delta \eta(j) = \{ m : \xi(j)(m) \neq \eta(j)(m) \}$$

for every $j < k$, these are finite subsets of \mathbb{N}. If $a \in 2^N$ and $u \subseteq \mathbb{N}$ then define $u \cdot a \in 2^N$ so that $(u \cdot a)(m) = a(m)$ for $m \notin u$, and $(u \cdot a)(m) = a(m)$ for $m \in u$. If $\xi \in \mathbb{R}^N$ then define $f(\xi) \in \mathbb{R}^N$ so that $f(\xi)(j) = u_j \cdot \xi(j)$ for $j < k$, and $f(\xi)(j) = \xi(j)$ for $j \geq k$.

Finally, put $\psi(z, \zeta) = \varphi(z, f(\zeta))$ for every $\langle z, \zeta \rangle \in \mathbb{R}^{\geq n} \times \mathbb{R}^N$. The map ψ obviously belongs to \mathcal{F}_n^k together with φ. Moreover

$$x(n) = \varphi(x|_{>n}, \eta) = \psi(x|_{>n}, f(\eta)) = \psi(x|_{>n}, \xi)$$

because $f(\eta)|_{<k} = \xi|_{<k}$, and this contradicts to the choice of $\langle x, \xi \rangle$. \hfill \Box

The next simple lemma will allow us to split Σ^1_1 sets in $\mathbb{R}^N \times \mathbb{R}^N$.

Lemma 28. If $P \subseteq \mathbb{R}^N \times \mathbb{R}^N$ is a Σ^1_1 set and $P \not\subseteq S^k_n$ then there exist points $\langle x, \xi \rangle$ and $\langle y, \eta \rangle$ in P with

$$y|_{>n} = x|_{>n}, \quad \eta E_3 \xi, \quad \eta|_{<k} = \xi|_{<k}, \quad \text{but} \quad y(n) \neq x(n).$$

Proof. Otherwise $\psi = \{ \langle y|_{>n}, \eta \rangle, y(n) : \langle y, \eta \rangle \in P \}$ is a map in \mathcal{F}_n^k, and hence $P \subseteq S^k_n$, contradiction. \hfill \Box
8 Case 2: splitting system

We apply a splitting construction, developed in [5] for the study of “ill”-founded Sacks iterations. Below, 2^n will typically denote the set of all dyadic sequences of length n, and $2^{<\omega} = \bigcup_n 2^n$ all finite dyadic sequences.

The construction involves a map $\varphi : \mathbb{N} \to \mathbb{N}$ assuming infinitely many values and each its value infinitely many times (but $\text{ran} \varphi$ may be a proper subset of \mathbb{N}), another map $\pi : \mathbb{N} \to \mathbb{N}$, and, for each $u \in 2^{<\omega}$, a non-empty Σ^1_1 subset $P_u \subseteq R = H \cap \mathcal{P}_b$ — which satisfy a quite long list of properties.

First of all, if φ is already defined at least on $[0, n)$ and $u \neq v \in 2^n$ then let $\nu_{\varphi}[u, v] = \max\{\varphi(\ell) : \ell < n \land u(\ell) \neq v(\ell)\}$. And put $\nu_{\varphi}[u, u] = -1$ for any u.

Now we present the list of requirements $1^a - 8^a$.

1^a: if $\varphi(n) \notin \{\varphi(\ell) : \ell < n\}$ then $\varphi(n) > \varphi(\ell)$ for each $\ell < n$;

2^a: if $u \in 2^n$ then $P_u \cap (\bigcup_{k<\omega} S^k_{\varphi(\ell)}) = \emptyset$ for each $\ell < n$;

3^a: every P_u is a non-empty Σ^1_1 subset of $R \cap H$;

4^a: $P_{u \cup i} \subseteq P_u$ for all $u \in 2^{<\omega}$ and $i = 0, 1$;

Two further conditions are related rather to the sets $X_u = \text{dom} P_u$.

5^a: if $u, v \in 2^n$ then $X_u \restriction_{>\nu_{\varphi}[u, v]} = X_v \restriction_{>\nu_{\varphi}[u, v]}$;

6^a: if $u, v \in 2^n$ then $X_u \restriction_{\gtrsim\nu_{\varphi}[u, v]} \cap X_v \restriction_{\gtrsim\nu_{\varphi}[u, v]} = \emptyset$.

The content of the next condition is some sort of genericity in the sense of the Gandy – Harrington forcing in the space $\mathbb{R}^N \times \mathbb{R}^N$, that is, the forcing notion

$$\mathbb{P} = \text{all non-empty } \Sigma^1_1 \text{ subsets of } \mathbb{R}^N \times \mathbb{R}^N.$$

Let us fix a countable transitive model \mathcal{M} of a sufficiently large fragment of ZFC. \footnote{For instance remove the Power Set axiom but add the axiom saying that for any set X there exists the set of all countable subsets of X.} For technical reasons, we assume that \mathcal{M} is an elementary submodel of the universe w.r.t. all analytic formulas. Then simple relations between sets in \mathbb{P} in the universe, like $P = Q$ or $P \subseteq Q$, are adequately reflected as the same relations between their intersections $P \cap \mathcal{M}$, $Q \cap \mathcal{M}$ with the model \mathcal{M}. In this sense \mathbb{P} is a forcing notion in \mathcal{M}.

A set $D \subseteq \mathbb{P}$ is open dense iff, first, for any $P \in \mathbb{P}$ there is $Q \in D$, $Q \subseteq P$, and given sets $P \subseteq Q \in \mathbb{P}$, if Q belongs to D then so does P. A set $D \subseteq \mathbb{P}$ is coded in \mathcal{M}, iff the set $\{P \cap \mathcal{M} : P \in D\}$ belongs to \mathcal{M}. There exists at most countably many such sets because \mathcal{M} is countable. Let us fix an enumeration (not in \mathcal{M}) $\{D_n : n \in \mathbb{N}\}$ of all open dense sets $D \subseteq \mathbb{P}$ coded in \mathcal{M}.

The next condition essentially asserts the \mathbb{P}-genericity of each branch in the splitting construction over \mathcal{M}.
7°: for every \(n \), if \(u \in 2^{n+1} \) then \(P_u \in D_n \).

Remark 29. It follows from 7° that for any \(a \in 2^N \) the sequence \(\{P_{a|n}\}_{n \in \mathbb{N}} \) is generic enough for the intersection \(\bigcap_n P_{a|n} \neq \emptyset \) to consist of a single point, say \(\langle g(a), \gamma(a) \rangle \), and for the maps \(g, \gamma : 2^N \rightarrow \mathbb{R}^N \times \mathbb{R}^N \) to be continuous.

Note that \(g \) is 1 − 1. Indeed if \(a \neq b \) belong to \(2^N \) then \(a(n) \neq b(n) \) for some \(n \), and hence \(\nu_\alpha[a \upharpoonright m, b \upharpoonright m] \geq \varphi(n) \) for all \(m \geq n \). It follows by 6° that \(X_{a|n} \cap X_{b|n} = \emptyset \) for \(m > n \), therefore \(g(a) \neq g(b) \).

Our final requirement involves the \(\xi \)-parts of sets \(P_u \). We’ll need the following definition. Suppose that \(\langle x, \xi \rangle \) and \(\langle y, \eta \rangle \) belong to \(\mathbb{R}^N \times \mathbb{R}^N \), \(p \in \mathbb{N} \), and \(s \in \mathbb{N}^{<\omega} \), \(\mathbf{1} n s = m \) (the length of \(s \)). Define \(\langle x, \xi \rangle \cong_p^s \langle y, \eta \rangle \) iff

\[
\xi \in \mathbb{E}_3 \eta, \quad x \upharpoonright p = y \upharpoonright p, \quad \text{and} \quad (\xi(k) \Delta \eta(k)) \subseteq s(k) \quad \text{for all} \quad k < m = \mathbf{1} n s,
\]

where \(\alpha \Delta \beta = \{ j : \alpha(j) \neq \beta(j) \} \) for \(\alpha, \beta \in 2^N \). If \(P, Q \subseteq \mathbb{R}^N \times \mathbb{R}^N \) are arbitrary sets then under the same circumstances \(P \cong_p^s Q \) will mean that

\[
\forall \langle x, \xi \rangle \in P \exists \langle y, \eta \rangle \in Q \left(\langle x, \xi \rangle \cong_p^s \langle y, \eta \rangle \right) \quad \text{and vice versa}.
\]

Obviously \(\cong_p^s \) is an equivalence relation.

The following is the last condition:

8°: there exists a map \(\pi : \mathbb{N} \rightarrow \mathbb{N} \), such that \(P_u \cong_{\nu_\pi[u,v]} P_v \) holds for every \(n \) and all \(u, v \in 2^n \) (and then \(X_u \upharpoonright_{\nu_\pi[u,v]} = X_v \upharpoonright_{\nu_\pi[u,v]} \) as in 5°).

9 Case 2: splitting system implies the reducibility

Here we prove that any system of sets \(P_u \) and \(X_u = \text{dom} P_u \) and maps \(\varphi, \pi \) satisfying 1° − 8° implies Borel reducibility of \(E_1 \) to \(E_{13} \upharpoonright R \). This completes Case 2. The construction of such a splitting system will follow in the remainder.

Let the maps \(g \) and \(\gamma \) be defined as in Remark 29. Put

\[
W = \{ \langle g(a), \gamma(a) \rangle : a \in 2^N \}.
\]

Lemma 30. \(W \) is a closed set in \(\mathbb{R}^N \times \mathbb{R}^N \) and a function. Moreover if \(\langle x, \xi \rangle \) and \(\langle y, \eta \rangle \) belong to \(W \) then \(\xi \in \mathbb{E}_3 \eta \).

Proof. \(W \) is closed as a continuous image of \(2^N \). That \(W \) is a function follows from the bijectivity of \(g \), see Remark 29. Finally any two \(\xi, \eta \) as inquired satisfy \(\xi(k) \Delta \eta(k) \subseteq \pi(k) \) for all \(k \) by 8°.

Put \(X = \text{dom} W \). Thus \(W \) is a continuous map \(X \rightarrow \mathbb{R}^N \) by the lemma.

Corollary 31. There exists a Borel reduction of \(E_1 \upharpoonright X \) to \(E_{13} \upharpoonright W \).
Proof. As W is a function, we can use the notation $W(x)$ for $x \in X = \text{dom} W$. Put $f(x) = (x, W(x))$. This is a Borel, even a continuous map $X \to W$. It remains to establish the equivalence

$$x \in E_1 y \iff f(x) \in f(y)$$

for all $x, y \in X$. (7)

If $x \in E_1 y$ then $W(x) \in W(y)$ by Lemma 30, and hence easily $f(x) \in f(y)$. If $x \in E_1 y$ fails then obviously $f(x) \in f(y)$ fails, too. \[\square\]

Thus to complete Case 2 it now suffices to define a Borel reduction of E_1 to $E_1 \restriction X$. To get such a reduction consider the set $\Phi = \text{ran} \varphi$, and let $\Phi = \{p_m : m \in \mathbb{N}\}$ in the increasing order; that the set $\Phi \subseteq \mathbb{N}$ is infinite follows from 1°.

Suppose that $n \in \mathbb{N}$. Then $\varphi(n) = p_m$ for some (unique) $m : \text{we put}$ $\psi(n) = m$. Thus $\psi : \mathbb{N} \rightarrow \mathbb{N}$ and the preimage $\psi^{-1}(m) = \varphi^{-1}(p_m)$ is an infinite subset of \mathbb{N} for any m. Define a parallel system of sets $Y_u \subseteq \mathbb{N}$, $u \in 2^\omega$, as follows. Put $Y_A = \mathbb{N}$. Suppose that Y_u has been defined, $u \in 2^n$. Put $p = \varphi(n) = p_{\psi(n)}$. Let K be the number of all indices $\ell < n$ still satisfying $\varphi(\ell) = p$, perhaps $K = 0$. Put $Y_{u \cup i} = \{x \in Y_u : x(p)(K) = i\}$ for $i = 0, 1$.

Each of Y_u is clearly a basic clopen set in \mathbb{N}, and one easily verifies that conditions 4°, 5°, 6° are satisfied for the sets Y_u and the map ψ (instead of φ in 5°, 6°), in particular

6*: if $u, v \in 2^n$ then $Y_u \restriction u \psi[u, v] = Y_v \restriction u \psi[u, v]$

7*: if $u, v \in 2^n$ then $Y_u \restriction \psi[u, v] \cap Y_v \restriction \psi[u, v] = \varnothing$

where $\psi[u, v] = \max\{\psi(\ell) : \ell < n \land u(\ell) \neq v(\ell)\}$ (compare with ν_φ above).

It is clear that for any $a \in 2^n$ the intersection $\bigcap_n Y_a \restriction n = \{f(a)\}$ is a singleton, and the map f is continuous and $1 - 1$. (We can, of course, define f explicitly: $f(a)(p)(K) = a(n)$, where $n \in \mathbb{N}$ is chosen so that $\psi(n) = p$ and there is exactly K numbers $\ell < n$ with $\psi(\ell) = p$.) Note finally that $\{f(a) : a \in 2^n\} = \mathbb{N}$ since by definition $Y_a \cap Y_a = Y_u$ for all u.

We conclude that the map $\vartheta(x) = g(f^{-1}(x))$ is a continuous map (in fact a homeomorphism in this case by compactness) $\mathbb{N} \rightarrow X = \text{dom} W$.

Lemma 32. The map ϑ is a reduction of E_1 to $E_1 \restriction X$, and hence ϑ witnesses $E_1 \leq_\mathbb{N} E_1 \restriction X$ and $E_1 \leq_\mathbb{N} E_{13} \restriction W$ by Corollary 31.

Proof. It suffices to check that the map ϑ satisfies the following requirement: for each $y, y' \in \mathbb{N}$ and m, $y \restriction m = y' \restriction m$ iff $\vartheta(y) \restriction m = \vartheta(y') \restriction m$. \[\text{(8)}\]

To prove (8) suppose that $y = f(a)$ and $x = g(a) = \vartheta(y)$, and similarly $y' = f(a')$ and $x' = g(a') = \vartheta(y')$, where $a, a' \in 2^n$. Suppose that $y \restriction m = y' \restriction m$. \[\square\]
We then have \(m > \nu_\psi | a \upharpoonright n, a' \upharpoonright n \) for any \(n \) by \(7^* \). It follows, by the definition of \(\psi \), that \(p_m > \nu_\psi | a \upharpoonright n, a' \upharpoonright n \) for any \(n \), hence \(X_{a|n} \upharpoonright p_m = X_{a'|n} \upharpoonright p_m \) for any \(n \) by \(5^* \). Therefore \(x \upharpoonright p_m = x' \upharpoonright p_m \) by \(7^* \), that is, the right-hand side of (8). The inverse implication in (8) is proved similarly. \(\square \) (Lemma)

It follows that we can now focus on the construction of a system satisfying \(1^\circ - 8^\circ \). The construction follows in Section 12, after several preliminary lemmas in Sections 10 and 11.

10 Case 2: how to shrink a splitting system

Let us prove some results related to preservation of condition \(8^\circ \) under certain transformations of shrinking type. They will be applied in the construction of a splitting system satisfying conditions \(1^\circ - 8^\circ \) of Section 8.

Lemma 33. Suppose that \(n \in \mathbb{N}, s \in \mathbb{N}^{<\omega} \), and a system of \(\Sigma_1^1 \) sets \(\varnothing \neq P_u \subseteq \mathbb{N} \times \mathbb{N} \), \(u \in 2^n \), satisfies \(P_u \cong_{\nu_\psi[u,v]} P_v \) for all \(u, v \in 2^n \). Assume also that \(w_0 \in 2^n \), and \(\varnothing \neq Q \subseteq P_{w_0} \) is a \(\Sigma_1^1 \) set. Then the system of \(\Sigma_1^1 \) sets

\[
P'_u = \{ (x, y) \in P_u : \exists (z, \zeta) \in Q (\langle x, \xi \rangle \cong_{\nu_\psi[u,v]} \langle z, \zeta \rangle) \}, \quad u \in 2^n,
\]

still satisfies \(P'_u \cong_{\nu_\psi[u,v]} P'_v \) for all \(u, v \in 2^n \), and \(P'_{w_0} = Q \).

Proof. \(P'_{w_0} = Q \) holds because \(\nu_\psi[w_0, w_0] = -1 \). Let us verify \(8^\circ \). Suppose that \(u, v \in 2^n \). Each one of the three numbers \(\nu_\psi[u, w], \nu_\psi[v, w], \nu_\psi[u, v] \) is obviously not bigger than the largest of the two other numbers. This observation leads us to the following three cases.

Case a: \(\nu_\psi[u, w] = \nu_\psi[v, w] \geq \nu_\psi[u, v] \). Consider any \((x, \xi) \in P'_u \). Then by definition there exists \((z, \zeta) \in Q \) with \(\langle x, \xi \rangle \cong_{\nu_\psi[u,v]} \langle z, \zeta \rangle \). Then, as \(P_{w_0} \cong_{\nu_\psi[u,v]} P_v \) is assumed by the lemma, there is \((y, \eta) \in P_v \) such that \(\langle y, \eta \rangle \cong_{\nu_\psi[u,v]} \langle z, \zeta \rangle \). Note that \(\langle z, \zeta \rangle \) witnesses \((y, \eta) \in P'_v \). On the other hand, \(\langle x, \xi \rangle \cong_{\nu_\psi[u,v]} \langle y, \eta \rangle \) because \(\nu_\psi[u, w] = \nu_\psi[u, v] \geq \nu_\psi[v, w] \). Conversely, suppose that \(\langle y, \eta \rangle \in P'_v \). Then there is \((z, \zeta) \in Q \) such that \(\langle y, \eta \rangle \cong_{\nu_\psi[u,v]} \langle z, \zeta \rangle \). Yet \(P_{w_0} \cong_{\nu_\psi[u,v]} P_u \), and hence there exists \((x, \xi) \in P'_u \) with \(\langle x, \xi \rangle \cong_{\nu_\psi[u,v]} \langle y, \eta \rangle \).

Case b: \(\nu_\psi[v, w] = \nu_\psi[u, v] \geq \nu_\psi[u, w] \). Absolutely similar to Case a.

Case c: \(\nu_\psi[u, w] = \nu_\psi[v, w] \geq \nu_\psi[u, v] \). This is a symmetric case, thus it is enough to carry out only the direction \(P'_u \rightarrow P'_v \). Consider any \((x, \xi) \in P'_u \). As above there is \((z, \zeta) \in Q \) such that \(\langle x, \xi \rangle \cong_{\nu_\psi[u,v]} \langle z, \zeta \rangle \). On the other hand, as \(P_u \cong_{\nu_\psi[u,v]} P_v \), there exists a point \((y, \eta) \in P_v \) such that \(\langle y, \eta \rangle \cong_{\nu_\psi[u,v]} \langle x, \xi \rangle \). Note that \(\langle z, \zeta \rangle \) witnesses \((y, \eta) \in P'_v \) : indeed by definition we have \(\langle y, \eta \rangle \cong_{\nu_\psi[u,v]} \langle z, \zeta \rangle \). \(\square \)
Corollary 34. Assume that \(n \in \mathbb{N}, \ s \in \mathbb{N}^{<\omega}, \) and a system of \(\Sigma_1^1 \) sets \(\varnothing \neq P_u \subseteq \mathbb{R}^N \times \mathbb{R}^N, \ u \in 2^n, \) satisfies \(P_u \cong_{\nu_u[u,v]} P_v \) for all \(u, v \in 2^n. \) Assume also that \(\varnothing \neq W \subseteq 2^n, \) and a \(\Sigma_1^1 \) set \(\varnothing \neq Q_w \subseteq P_w \) is defined for every \(w \in W \) so that still \(Q_w \cong_{\nu_w[w,w']} Q_w' \) for all \(w, w' \in W. \) Then the system of \(\Sigma_1^1 \) sets

\[
P'_u = \{ (x, \xi) \in P_u : \forall w \in W \exists \langle y, \eta \rangle \in Q_w \ (\langle x, \xi \rangle \cong_{\nu_w[u,w]} \langle y, \eta \rangle) \}
\]

still satisfies \(P'_u \cong_{\nu_u[u,v]} P'_v \) for all \(u, v \in 2^n, \) and \(P'_u = Q_w \) for all \(w \in W. \)

Proof. Apply the transformation of Lemma 33 consecutively for all \(w_0 \in W \) and the corresponding sets \(Q_{w_0}. \) Note that these transformations do not change the sets \(Q_w \) with \(w \in W \) because \(Q_w \cong_{\nu_w[w,w']} Q_w' \) for all \(w, w' \in W. \) \(\square \)

Remark 35. The sets \(P'_u \) in Corollary 34 can as well be defined by

\[
P'_u = \{ (x, \xi) \in P_u : \exists \langle y, \eta \rangle \in Q_{w_u} \ (\langle x, \xi \rangle \cong_{\nu_w[u,w_u]} \langle y, \eta \rangle) \}
\]

where, for each \(u \in 2^n, \ w_u \) is an element of \(W \) such that the number \(\nu_w[u, w_u] \) is the least of all numbers of the form \(\nu_w[u, w], \ w \in W. \) (If there exist several \(w \in W \) with the minimal \(\nu_w[u, w] \) then take the least of them.) \(\square \)

11 Case 2: how to split a splitting system

Here we consider a different question related to the construction of systems satisfying conditions 1° - 8° of Section 8. Given a system of \(\Sigma_1^1 \) sets satisfying a \(8° \)-like condition, how to shrink the sets so that \(8° \) is preserved and in addition \(6° \) holds. Let us begin with a basic technical question: given a pair of \(\Sigma_1^1 \) sets \(P, Q \) satisfying \(P \cong_{\nu_p} Q \) for some \(p, s, \) how to define a pair of smaller \(\Sigma_1^1 \) sets \(P' \subseteq P, \ Q' \subseteq Q, \) still satisfying the same condition, but as disjoint as it is compatible with this condition.

Recall that \(\text{dom} P = \{ x : \exists \xi (\langle x, \xi \rangle \in P) \} \) for \(P \subseteq \mathbb{R}^N \times \mathbb{R}^N. \)

Lemma 36. If \(P, Q \subseteq \mathbb{R}^N \times \mathbb{R}^N \) are non-empty \(\Sigma_1^1 \) sets, \(p, s \in \mathbb{N}, \ s \in \mathbb{N}^{<\omega}, \) \(P \cong_{\nu_p} Q, \) and \((P \cup Q) \cap \Sigma_p^k = \varnothing, \) where \(k = \| p \| s, \) then there exist non-empty \(\Sigma_1^1 \) sets \(P' \subseteq P, \ Q' \subseteq Q \) such that still \(P' \cong_{\nu_p} Q' \) but in addition \((\text{dom} P') \upharpoonright \geq p \cap (\text{dom} Q') \upharpoonright \geq p = \varnothing. \)

Note that \(P \cong_{\nu_p} Q \) implies \((\text{dom} P) \upharpoonright \geq p = (\text{dom} Q) \upharpoonright \geq p. \)

Proof. It follows from Lemma 28 that there exist points \(\langle x_0, \xi_0 \rangle \) and \(\langle x_1, \xi_1 \rangle \) in \(P \) such that \(\langle x_0, \xi_0 \rangle \cong_{\nu_p} \langle x_1, \xi_1 \rangle \) but \(x_1(p) \neq x_0(p). \) Then there exists a number \(j \) such that, say, \(x_1(p)(j) = 1 \neq 0 = x_0(p)(j). \) On the other hand, there exists \(\langle y_0, \eta_0 \rangle \in Q \) such that \(\langle x_i, \xi_i \rangle \cong_{\nu_p} \langle y_0, \eta_0 \rangle \) for \(i = 0, 1. \) Then \(y_0(p)(j) \neq x_i(p)(j) \) for one of \(i \in \{0, 1\} \). Let say \(y_0(p)(j) = 0 \neq 1 = x_0(p)(j). \) Then the \(\Sigma_1^1 \) sets

\[
P' = \{ (x, \xi) \in P : \exists \langle y, \eta \rangle \in Q \ (x(p)(j) = 1 \land y(p)(j) = 0 \land (x, \xi) \cong_{\nu_p} \langle y, \eta \rangle) \};
\]

\[
Q' = \{ (y, \eta) \in Q : \exists (x, \xi) \in P (x(p)(j) = 1 \land y(p)(j) = 0 \land (x, \xi) \cong_{\nu_p} \langle y, \eta \rangle) \}
\]
are Σ^1_1 and non-empty (contain resp. $\langle x_0, \xi_0 \rangle$ and $\langle y_0, \eta_0 \rangle$), and they satisfy $P' \equiv^s P$, but $(\dom P')\upharpoonright_{\geq 2}(\dom Q')\upharpoonright_{\geq 2} = \emptyset$ because $y(p)(j) = 0 \neq 1 = x(p)(j)$ whenever $\langle x, \xi \rangle \in P'$ and $\langle y, \eta \rangle \in Q'$. □

Corollary 37. Assume that $n \in \mathbb{N}$, $s \in \mathbb{N}^{<\omega}$, and a system of Σ^1_1 sets $\emptyset \neq P_u \subseteq \mathbb{R}_n \times \mathbb{R}_n$, $u \in 2^n$, satisfies $P_u \equiv^s_{\nu_\mathcal{F}[u,v]} P_v$ for all $u, v \in 2^n$. Then there exists a system of Σ^1_1 sets $\emptyset \neq P'_u \subseteq P_u$, $u \in 2^n$, such that still $P'_u \equiv^s_{\nu_\mathcal{F}[u,v]} P_v$, and in addition $(\dom P'_u)\upharpoonright_{\geq 2\nu_\mathcal{F}[u,v]} \cap (\dom Q'_v)\upharpoonright_{\geq 2\nu_\mathcal{F}[u,v]} = \emptyset$, for all $u \neq v \in 2^n$.

Proof. Consider any pair of $u_0 \neq v_0$ in 2^n. Apply Lemma 36 for the sets $P = P_{u_0}$ and $Q = P_{v_0}$ and $p = \nu_\mathcal{F}[u_0, v_0]$. Let P' and Q' be the Σ^1_1 sets obtained, in particular $P' \equiv^s_{\nu_\mathcal{F}[u_0, v_0]} Q'$ and $(\dom P')\upharpoonright_{\geq 2\nu_\mathcal{F}[u_0, v_0]} \cap (\dom Q')\upharpoonright_{\geq 2\nu_\mathcal{F}[u_0, v_0]} = \emptyset$. Then by Corollary 34 there is a system of Σ^1_1 sets $\emptyset \neq P'_u \subseteq P_u$ such that still $P'_u \equiv^s_{\nu_\mathcal{F}[u,v]} P'_v$ for all $u, v \in 2^n$, and $P_{u_0} = P'$, $P_{v_0} = Q'$ — and hence

$$(\dom P'_{u_0})\upharpoonright_{\geq 2\nu_\mathcal{F}[u_0, v_0]} \cap (\dom P'_{v_0})\upharpoonright_{\geq 2\nu_\mathcal{F}[u_0, v_0]} = \emptyset.$$

Take any other pair of $u_1 \neq v_1$ in 2^n and transform the system of sets P'_u the same way. Iterate this construction sufficient (finite) number of steps. □

12 Case 2: the construction of a splitting system

We continue the proof of Theorem 2 – Case 2. Recall that $R = P_0 \cap \mathcal{H}$ is a Σ^1_1 set. By Lemma 32, it suffices to define functions φ and π and a system of Σ^1_1 sets $P_u \subseteq R$ together satisfying conditions $1^0 - 8^2$. The construction of such a system will go on by induction on n. That is, at any step n the sets P_u with $u \in 2^n$, as well as the values of $\varphi(k)$ and $\pi(k)$ with $k < n$, will be defined.

For $n = 0$, we put $P_\Lambda = R$. ($\Lambda \in 2^0$ is the only sequence of length 0.)

Suppose that sets $P_u \subseteq R$ with $u \in 2^n$, and also all values $\varphi(\ell)$, $\ell < n$, and $\pi(k)$, $k < n$, have been defined and satisfy the applicable part of $1^0 - 8^2$. The content of the inductive step $n \mapsto n + 1$ will consist in definition of $\varphi(n)$, $\pi(n)$, and sets $P_{u \wedge i}$ with $u \wedge i \in 2^{n+1}$, that is, $u \in 2^n$ (a dyadic sequence of length n) and $i = 0, 1$. This goes on in four steps A,B,C,D.

12.1 Step A: definition of $\varphi(n)$

Suppose that, in the order of increase,

$$\{\varphi(\ell) : \ell < n\} = \{p_0 < \cdots < p_m\}.$$

For $j \leq m$, let K_j be the number of all $\ell < n$ with $\varphi(\ell) = p_j$.

Case A: $K_j \geq m$ for all $j \leq m$. Then consider any $u_0 \in 2^n$ and an arbitrary point $\langle x_0, \xi_0 \rangle \in P_{u_0}$. Note that by (6) of Section 7 there is a number $p > \max_{\ell < n} \varphi(\ell)$ such that $\langle x_0, \xi_0 \rangle \notin \bigcup_p S_p^k$. Put $\varphi(n) = p$.

20
Lemma 38.

We claim that the sets $P'_u = P_u \setminus \bigcup_k S^k_{\varphi(n)}$ still satisfy condition S^8 (and then S^5 for $X'_u = \text{dom } P'_u$). Indeed suppose that $u, v \in 2^n$ and $(x, \xi) \in P'_u$. Then $(x, \xi) \in S^k_{\varphi(n)}$ and hence there is a point $(\eta, \eta') \in P_v$ such that $(x, \xi) \equiv_{\nu_{v[u, v]}} (y, \eta)$. It remains to show that $(y, \eta) \notin \bigcup_k S^k_{\varphi(n)}$. Suppose towards the contrary that $(y, \eta) \in S^k_{\varphi(n)}$ for some k. By definition $\varphi(n) > \nu_{\varphi(u, v)}$, therefore $x|_{\varphi(n)} = y|_{\varphi(n)}$. It follows that $(x, \xi) \in S^k_{\varphi(n)}$ by Lemma 27, contradiction.

Case B. If some numbers K_j are $< m$ then choose $\varphi(n)$ among p_j with the least K_j, and among them take the least one. Thus $\varphi(n) = \varphi(\ell)$ for some $\ell < n$. It follows that in this case $P_u \cap (\bigcup_k S^k_{\varphi(n)}) = \emptyset$ for all $u \in 2^n$ by the inductive assumption of S^2. Put $P'_u = P_u$.

Note that this manner of choice of $\varphi(n)$ implies $1^*, 2^*$ and also implies that φ takes infinitely many values and takes each value infinitely many times. In addition, the construction given above proves:

Lemma 38. There exists a system of Σ^1_1 sets $\emptyset \neq P'_u \subset P_u$ satisfying S^8 and $P'_u \cap (\bigcup_k S^k_{\varphi(n)}) = \emptyset$ for all $u \in 2^n$.

12.2 Step B: definition of $\pi(n)$

We work with the sets P'_u such as in Lemma 38. The next goal is to prove the following result:

Lemma 39. There exist a number $r \in \mathbb{N}$ and a system of Σ^1_1 sets $\emptyset \neq P''_u \subset P'_u$ satisfying $P''_u \cong_{\nu_{\pi[u,v]}} P''_v$ for all $u, v \in 2^n$.

Proof. Let $2^n = \{u_j : j < K\}$ be an arbitrary enumeration of all dyadic sequences of length n; $K = 2^n$, of course. The method of proof will be to define, for any $k \leq K$, a number $r_k \in \mathbb{N}$ and a system of Σ^1_1 sets $\emptyset \neq Q^k_{u_i} \subset P'_{u_i}$, $j < k$, by induction on k so that

\[(*)\quad Q^k_{u_i} \cong_{\nu_{\pi[u_i,u_j]}} Q^k_{u_j} \quad \text{for all } i < j < k.\] (Where $\langle \pi \upharpoonright n \rangle^r$ is the extension of the finite sequence $\pi \upharpoonright n$ by r as the new rightmost term.)

After this is done, $r = r_K$ and the sets $P''_u = Q^K_{u_0}$ prove the lemma.

We begin with $k = 2$. Then $P'_{u_0} \cong_{\nu_{\pi[u_0,u_1]}} P'_{u_1}$ by S^8, and hence there exist points $(x_0, \xi_0) \in P'_{u_0}$, $(x_1, \xi_1) \in P'_{u_1}$ such that $(x_0, \xi_0) \equiv_{\nu_{\pi[u_0,u_1]}} (x_1, \xi_1)$. Then $\xi_0 \Delta \xi_1$, so that there is a number $r_2 \in \mathbb{N}$ with $\xi_0(n) \Delta \xi_1(n) \subseteq r_2$. Note that for any $p \in \mathbb{N}$ and any points $(x, \xi), (y, \eta) \in \mathbb{R}^n \times \mathbb{R}^n$, $(x, \xi) \equiv_{\nu_{\pi[u_0,u_1]}} (y, \eta)$ is equivalent to the conjunction

\[\langle x, \xi \rangle \equiv_{\nu_{\pi[u_0,u_1]}} \langle y, \eta \rangle \wedge \xi(n) \Delta \eta(n) \subseteq r.\] 21
It follows that the sets
\[S_0 = \{ \langle x, \xi \rangle \in P_{u_0}': \exists (y, \eta) \in P_{u_1}' (\langle x, \xi \rangle \equiv_{\nu_\phi[u_0,u_1]} \langle y, \eta \rangle) \}, \] and
\[S_1 = \{ (y, \eta) \in P_{u_1}' : \exists (x, \xi) \in P_{u_0}' (\langle x, \xi \rangle \equiv_{\nu_\phi[u_0,u_1]} \langle y, \eta \rangle) \} \]
are Σ^1_1 and non-empty (contain resp. $\langle x_0, \xi_0 \rangle$ and $\langle x_1, \xi_1 \rangle$), and they obviously satisfy $S_0 \equiv_{\nu_\phi[u_0,u_1]} S_1$. Therefore by Corollary 34 there exists a system of Σ^1_1 sets $\varnothing \neq Q_r^2 \subseteq P_{u'}$, $u \in 2^\omega$, such that $Q_{u_0}^2 = S_0$, $Q_{u_1}^2 = S_1$, δ^0 still holds, and in addition $Q_{u_0}^2 \equiv_{\nu_\phi[u_0,u_1]} Q_{u_1}^2$. Put $r_2 = r$.

Now let us carry out the step $k \mapsto k + 1$. Suppose that r_k and sets $Q_{u_j}^k$, $j < k$, satisfy (\ast). Of all numbers $\nu_\phi[u_j, u_k]$, $j < k$, consider the least one. Let this be, say, $\nu_\phi[u_\ell, u_k]$, so that $\ell < k$ and $\nu_\phi[u_\ell, u_k] \leq \nu_\phi[u_j, u_k]$ for all $j < k$. As above there exists a number r and a pair of non-empty Σ^1_1 sets $S_\ell \subseteq Q_{u_\ell}^k$ and $S_k \subseteq Q_{u_k}^k$ such that $S_\ell \equiv_{\nu_\phi[u_\ell, u_k]} S_k$. We can assume that $r \geq r_k$. Put
\[Q'_{u_j} = \{ (y, \eta) \in S_{u_j} : \exists (x, \xi) \in S_\ell (\langle x, \xi \rangle \equiv_{\nu_\phi[u_\ell, u_j]} \langle y, \eta \rangle) \} \]
for all $j < k$. The proof of Lemma 33 shows that Q'_{u_j} are non-empty Σ^1_1 sets still satisfying (\ast) in the form of $Q'_{u_j} \equiv_{\nu_\phi[u_\ell, u_j]} Q_{u_j}$ for $i < j < k$ — since $r \geq r_k$, and obviously $Q'_{u_\ell} = S_\ell$. In addition, put $Q'_{u_k} = S_k$. Then still $Q'_{u_i} \equiv_{\nu_\phi[u_\ell, u_k]} Q'_{u_k}$ by the choice of S_ℓ and S_k. We claim that also
\[Q'_{u_j} \equiv_{\nu_\phi[u_\ell, u_k]} Q'_{u_k} \quad \text{for all} \ j < k. \] (9)

Indeed we have $Q'_{u_j} \equiv_{\nu_\phi[u_\ell, u_j]} Q'_{u_\ell}$ and $Q'_{u_\ell} \equiv_{\nu_\phi[u_\ell, u_k]} Q'_{u_k}$ by the above. It follows that $Q'_{u_j} \equiv_{\nu_\phi[u_\ell, u_j]} Q'_{u_k}$, where $p = \max\{\nu_\phi[u_j, u_\ell], \nu_\phi[u_\ell, u_k]\}$. Thus it remains to show that $p \leq \nu_\phi[u_j, u_k]$. That $\nu_\phi[u_\ell, u_k] \leq \nu_\phi[u_j, u_k]$ holds by the choice of ℓ. Prove that $\nu_\phi[u_j, u_\ell] \leq \nu_\phi[u_j, u_k]$. Indeed in any case
\[\nu_\phi[u_j, u_\ell] \leq \max\{\nu_\phi[u_j, u_k], \nu_\phi[u_\ell, u_k]\}. \]
But once again $\nu_\phi[u_\ell, u_k] \leq \nu_\phi[u_j, u_k]$, so $\nu_\phi[u_j, u_\ell] \leq \nu_\phi[u_j, u_k]$ as required.

Thus (9) is established. It follows that $Q'_{u_i} \equiv_{\nu_\phi[u_i, u_j]} Q'_{u_j}$ for all $i < j \leq k$. We end the inductive step of the lemma by putting $r_{k+1} = r$. \qed (Lemma)

12.3 Step C: splitting to the next level

We work with the number r and sets P''_u such as in Lemma 39. Put $\pi(n) = r$. (Recall that $\varphi(n)$ was defined at Step A.) The next step is to split each one of the sets P''_u in order to define sets $P_{u \wedge i}$, $u \wedge i \in 2^{n+1}$, of the next splitting level.
To begin with, put \(Q_u^\iota_j = P_u^j \) for all \(u \in 2^n \) and \(i = 0, 1 \). It is easy to verify that the system of sets \(Q_u^\iota_j \), \(u^\iota_j \in 2^{n+1} \), satisfies conditions \(1^\circ \) – \(8^\circ \) for the level \(n + 1 \), except for \(7^\circ \) and \(6^\circ \). In particular, \(2^\circ \) was fixed at Step A, and \(8^\circ \) in the form that \(Q_u^\iota_j \cong \pi^{(n+1)}_{\nu_\iota_j} Q_{v^\iota_j} \) for all \(u^\iota_j \) and \(v^\iota_j \) in \(2^{n+1} \) (and then \(5^\circ \) as well) at Step B. — because \((\pi \restriction n)^\iota r = \pi \restriction (n + 1) \).

Recall that by definition all sets involved have no common point with \(2^\circ \). Therefore Corollary 37 is applicable. We conclude that there exists a system of non-empty \(\Sigma^1_1 \) sets \(W_u^\iota_j \subseteq Q_u^\iota_j \), \(u^\iota_j \in 2^{n+1} \), still satisfying \(8^\circ \), and also satisfying \(6^\circ \).

12.4 Step D: genericity

We have to further shrink the sets \(W_u^\iota_j \), \(u^\iota_j \in 2^{n+1} \), obtained at Step C, in order to satisfy \(7^\circ \), the last condition not yet fulfilled in the course of the construction. The goal is to define a new system of \(\Sigma^1_1 \) sets \(\emptyset \neq P_u^\iota_j \subseteq W_u^\iota_j \), \(u^\iota_j \in 2^{n+1} \), such that still \(8^\circ \) holds, and in addition \(P_u^\iota_j \in D_n \) for all \(u^\iota_j \in 2^{n+1} \), where \(D_n \) is the \(n \)-th open dense subset of \(\mathbb{P} \) coded in \(\mathcal{M} \).

Take any \(u_0^\iota_0 \in 2^{n+1} \). As \(D_n \) is a dense subset of \(\mathbb{P} \), there exists a set \(W_0 \in D_n \), therefore, a non-empty \(\Sigma^1_1 \) set, such that \(W_0 \subseteq W_{u_0^\iota_0} \). It follows from Lemma 33 that there exists a system of non-empty \(\Sigma^1_1 \) sets \(W'_u^\iota_j \subseteq W_u^\iota_j \), \(u^\iota_j \in 2^{n+1} \), still satisfying \(8^\circ \), and such that \(W'_{u_0^\iota_0} = Q_0 \).

Now take any other \(u_1^\iota_1 \neq u_0^\iota_0 \) in \(2^{n+1} \). The same construction yields a system of non-empty \(\Sigma^1_1 \) sets \(W''_u^\iota_j \subseteq W'_u^\iota_j \), \(u^\iota_j \in 2^{n+1} \), still satisfying \(8^\circ \), and such that \(W''_{u_1^\iota_1} = W_1 \subseteq W'_{u_1^\iota_1} \) is a set in \(D_n \).

Iterating this construction \(2^{n+1} \) times, we obtain a system of sets \(P_u^\iota_j \) satisfying \(7^\circ \) as well as all other conditions in the list \(1^\circ \) – \(8^\circ \), as required.

\[\square \text{(Construction and Case 2 of Theorem 2)} \]

\[\square \text{(Theorems 2 and 1)} \]

References

[1] L. A. Harrington, A. S. Kechris, and A. Louveau. A Glimm-Effros dichotomy for Borel equivalence relations. *J. Amer. Math. Soc.*, 3(4):903–928, 1990.

[2] Greg Hjorth. *Classification and orbit equivalence relations*. American Mathematical Society, Providence, RI, 2000.

[3] Greg Hjorth and Alexander S. Kechris. New dichotomies for Borel equivalence relations. *Bull. Symbolic Logic*, 3(3):329–346, 1997.

[4] Greg Hjorth and Alexander S. Kechris. Recent developments in the theory of Borel reducibility. *Fund. Math.*, 170(1-2):21–52, 2001.

[5] Vladimir Kanovei. On non-wellfounded iterations of the perfect set forcing. *J. Symbolic Logic*, 64(2):551–574, 1999.
[6] Vladimir Kanovei. Varia. Ideals and equivalence relations. Arxiv math.LO/0603506, 2006.

[7] Vladimir Kanovei and Michael Reeken. A theorem on ROD-hypersmooth equivalence relations in the Solovay model. Math. Log. Q., 49(3):299–304, 2003.

[8] Alexander S. Kechris. New directions in descriptive set theory. Bull. Symbolic Logic, 5(2):161–174, 1999.

[9] Alexander S. Kechris and Alain Louveau. The classification of hypersmooth Borel equivalence relations. J. Amer. Math. Soc., 10(1):215–242, 1997.