Improving the lifetime of the NV center ensemble coupled with a superconducting flux qubit by applying magnetic fields

NTT 物性基礎研 1, 阪大基礎工 2, 国立情報学研究所 3, 情報通信研究機構 4
○ 松崎 雄一郎 1, 河野 隆 1, a, 仙場 浩一 1, 田村 亨 1, 田中 良男 1, 田中 克也 1, 田中 隆司 1, 根本 香絵 3
NTT BRL 1, Osaka Univ. 2, NII 3, NICT 4
○ Y. Matsuzaki 1, X. Zhu 1, a, K. Kakuyanagi 1, H. Toida 1, T. Shimo-Oka 2, N. Mizuochi 2,
K. Nemoto 3, K. Semba 4, W. J. Munro 1, H. Yamaguchi, and S. Shiro 1
E-mail: matsuzaki.yuichiro@lab.ntt.co.jp

近年、超伝導磁束子ビットと、N V 中心の集合体との間の真空ラビ振動が観測された [1,2]。しかし、現在の技術では、N V 中心集合体の寿命は単一N V 中心のそれと比べて著しく短いため、この系を量子情報に応用するためには、N V 中心集合体の寿命を改善させる技術が必須である。近年になって、数 mT 程度の領域を印加することで、この系の真空ラビ振動の寿命を数パーセント程度改善できることが実験的に報告された。そこで我々は、ゼロ磁場下と磁場印加時のそれぞれの真空ラビの実験結果を再現できる理論モデルを構築し、磁場の印加が真空ラビ振動の寿命を改善するその物理的由来についての考察を行った。その結果、印加磁場がN V 中心の歪みの不均一広がりを抑え、コヒーレンス時間を改善させていることを定量的に示すことに成功した。

図 1: 外部磁場（2.6mT）印加時の超伝導磁束量子ビットとN V 中心との真空ラビ振動のシミュレーション。時間に対して S Q U I D のスイッチ確率をプロットしている。(a) 磁場の不均一揺らぎを増やすことで、真空ラビの寿命が減少する。一方で、(b) 矢みの不均一揺らぎを増やしても、真空ラビの寿命にほとんど変化が見られず、外部磁場が歪みの不均一揺らぎの影響を抑えることがわかる。

参考文献

[1] Y. Kubo, et al., Phys. Rev. Lett. 105, 140502 (2010).

[2] X. Zhu, et al., Nature, 478, 221 (2011).

[3] X. Zhu, Y. Matsuzaki, et al., Nat. Commun. 5, 3424 (2014).

*Present address: Institute of Physics, Chinese Academy of Sciences, Beijing, China.