Primary Hyperparathyroidism: An Overview

Jessica MacKenzie-Feder, Sandra Sirrs, Donald Anderson, Jibran Sharif, and Aneal Khan

1 Division of Endocrinology and Metabolism, Department of Medicine, University of British Columbia, Vancouver, BC, Canada V5Z 1M9
2 Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC, Canada V5Z 1M9
3 Department of Family Medicine, University of Saskatchewan, Regina, SK, Canada S4P 0W5
4 Alberta Children's Hospital, University of Calgary, 2888 Shaganappi Trail NW, Calgary, AB, Canada T3B 6A8

Correspondence should be addressed to Aneal Khan, aneal.khan@telus.net

Received 21 January 2011; Revised 4 April 2011; Accepted 9 April 2011

Academic Editor: Faustino R. Pérez-López

Primary hyperparathyroidism is a common condition that affects 0.3% of the general population. Primary and tertiary care specialists can encounter patients with primary hyperparathyroidism, and prompt recognition and treatment can greatly reduce morbidity and mortality from this disease. In this paper we will review the basic physiology of calcium homeostasis and then consider genetic associations as well as common etiologies and presentations of primary hyperparathyroidism. We will consider emerging trends in detection and measurement of parathyroid hormone as well as available imaging modalities for the parathyroid glands. Surgical indications and approach will be reviewed as well as medical management of primary hyperparathyroidism with bisphosphonates and calcimimetics.

1. Introduction

Parathyroid hormone is the chief regulator of calcium homeostasis in the human body. Primary hyperparathyroidism (PHPT) results from inappropriate overproduction of parathyroid hormone from one or many parathyroid gland(s) and presents with hypercalcemia. It is the third most common endocrine disorder affecting 0.3% of the general population, 1%–3% of postmenopausal women and a total population incidence of 21.6 cases per 100,000 person-years [1–3]. PHPT usually occurs as the result of sporadic parathyroid adenomas or carcinomas but can also be seen in association with multiple endocrine neoplasias and in rare genetic syndromes and metabolic diseases [4].

In children, primary hyperparathyroidism is rare. The most common cause is parathyroid adenoma, usually due to single gland disease, but severe neonatal hyperparathyroidism can also occur due to biallelic mutations in the calcium sensing receptor gene (CASR) with hypocalciuric hypercalcemia.

It is important to differentiate primary from secondary and tertiary hyperparathyroidism. Secondary hyperparathyroidism occurs as a normal response to hypocalcemia due to diseases affecting the kidney (such as renal tubular acidosis), liver, intestines, and vitamin D deficiency. In newborn infants, maternal hypoparathyroidism with hypocalcemia, maternal pseudohypoparathyroidism, and rare genetic and metabolic syndromes can lead to secondary hyperparathyroidism. Tertiary hyperparathyroidism occurs in patients with long-standing secondary hyperparathyroidism who develop autonomous PTH production with hypercalcemia. The most common situation resulting in tertiary hyperparathyroidism is the patient with secondary hyperparathyroidism with renal failure who then receives a renal allograft [5–13]. This paper will focus on primary hyperparathyroidism.

2. Physiology of Calcium Regulation

Precise regulation of extracellular and intracellular calcium is essential for normal physiological processes such as cell signaling, neural function, muscular function (including cardiac contractility), hormone release and regulation, and bone metabolism [14]. Parathyroid hormone increases receptor-mediated tubular reabsorption of calcium in the kidney,
parathyroid glands [15]. The CaSR responds to the level
receptor (CaSR) found primarily in the chief cells of the
calcium sensing receptor (CASR)) gene [24]. The latter can be
reasonably differentiated from PHPT based on the calcium
to creatinine clearance ratio of less than 0.01 (mmol : mmol)
with 85% sensitivity and 88% specificity [14, 25]. Vitamin
D levels should be obtained in all patients with increased
PTH levels and normal blood calcium levels since vitamin
D deficiency can result in calcium levels which are lower than
expected in patients with primary hyperparathyroidism [26].

5. Etiology/Epidemiology of Primary
Hyperparathyroidism

Most patients with PHPT have a single adenoma (~80% of
cases), but multigland disease can occur in 10%–15% of cases and double adenomas in 4%-5% [27]. Parathyroid
carcinoma is a rare cause (usually less than 1% of patients)
of hyperparathyroidism [28, 29].

Most cases of primary hyperparathyroidism are sporadic,
but there is a higher incidence in patients with a history
of neck irradiation [30], and approximately 5% of cases are
familial as discussed below [27].

6. Genetic Causes of Primary
Hyperparathyroidism

Mutations in a number of genes are responsible for familial
adenomas or carcinomas presenting with hyperparathy-
roidism, but overall, these represent a minority of cases of
PHPT.

Germline mutations leading to loss of heterozygosity in
the tumour suppressor genes MEN1 (menin) and CDC73
(formerly HRPT2) combined with a second mutation in
somatic cells can increase the predisposition to parathyroid
tumours [31, 32]. Mutations in only somatic cells in these
genes have also been found in sporadic adenomas and
carcinomas, respectively [33]. MEN1 is inherited in an
autosomal dominant manner and is the most common cause
of familial parathyroid adenomas and a rare cause of familial
carcinomas [34]. Germline mutations in the CDC73 gene
lead to autosomal dominant familial hyperparathyroidism
tumour-jaw syndrome (HPT-JT), parathyroid carcinomas,
and, in some cases, familial isolated hyperparathyroidism
[32, 35–37]. HPT-JT is an autosomal dominant syndrome
of primary hyperparathyroidism with parathyroid adenomas
(with or without carcinomas), mandibular or maxillary
fibro-osseous tumors, and renal tumours.

Mutations in the RET proto-oncogene, causing a number
of different endocrine tumour syndromes, can be seen
in MEN2A (associated with parathyroid adenomas) [38–
40]. There are a number of rare cases of MEN4 due
to CDKN1B mutations [41]. Two isolated consanguineous
families, one with nephropathy, deafness, and hyperparathy-
roidism and another with hypophosphatemic rickets and
hyperparathyroidism, have been reported but mutations
were not described in either of the families [42, 43].

Mutations in the parathyroid hormone receptor PTH1R
can be seen in skeletal dysplasias such as Marf Jansen meta-
physseal chondrodysplasia [44], Blomstrand chondrodyspla-
sia [45], Eiken skeletal dysplasias [46] and primary failure of
tooth eruption [47] but thus far are not linked to parathyroid
adenomas or carcinomas [48].

7. Clinical Presentation

The availability of the automated serum screening panel
has changed the clinical presentation of PHPT. Whereas
prior to the 1970s, this was a disease of recurrent kidney
stones, osteitis fibrosa cystica, neuromuscular dysfunction
characterized by type II muscle cell atrophy [49] and
symptomatic hypercalcaemia, it has now become an asym-
tomatic or mildly symptomatic disease detected by the
incidental finding of hypercalcaemia [50]. Of the classical
symptoms, nephrolithiasis is the most common and occurs
in 15%–20% of newly diagnosed patients with primary hyperparathyroidism [51].

PHPT affects compact bone more than trabecular bone with particular sensitivity in the cortices of long bones leading to subperiosteal bone resorption (seen as peristeal elevation on plain radiography) [52]. Although the lumbar spine is relatively spared in milder forms, some studies have shown vertebral osteopenia in 15% of patients at diagnosis which improves with parathyroidectomy [20, 51]. In advanced PHPT, the entire skeleton can be involved [51]. It is still unclear if PHPT imposes an independent fracture risk. A review of a large cohort of patients from the Mayo clinic suggested an overall increased fracture risk at all sites except the hip [53]. However, the cortical bone thinning effects may be counterbalanced by increased bone diameter and PTH-mediated peristeal apposition and the preservation of bone microarchitecture [54].

Less specific features of primary hyperparathyroidism include fatigue, muscle weakness, mild cognitive disturbances, hypertension, left ventricular hypertrophy, valvular calcification, and cardiovascular mortality [20, 27], but little data exists on whether these entities are treatable using standard approaches to manage primary hyperparathyroidism.

8. Management of Primary Hyperparathyroidism

8.1. Surgical Management. The only cure for primary hyperparathyroidism due to parathyroid adenomas is surgical resection of the culprit gland or glands. In 2008, The Third International Workshop on Asymptomatic Primary Hyperparathyroidism revised the indications for surgery in asymptomatic patients—those include age less than 50 years, serum calcium 0.25 mmol/L above the upper limit of normal, creatinine clearance <60 mL/min, DXA t-score <=-2.5 at any site, and/or previous fragility fracture [58]. An isolated elevation of 24 hour urine calcium is no longer an indication for surgery although this measurement may be necessary to rule out FHH which, although rare, is most commonly the result of a heterozygous mutation of the CASR gene. This is very different from neonatal severe hyperparathyroidism, due to biallelic mutations in the CASR gene, in which the hypercalcemia is fatal unless recognized early and subtotal parathyroidectomy is undertaken upon diagnosis [59]. Surgical treatment may also be the preferred option to manage pregnant women, children, and adolescents with hyperparathyroidism [6, 60]. Parathyroid carcinomas present with high calcium levels and require en bloc resection of an enlarged gland adherent to adjacent tissue [61].

Bilateral neck exploration with direct visualization and identification of all abnormal parathyroid glands with subsequent removal was previously considered the gold standard of care. Experienced surgeons reported to be able to identify affected glands in 95% of cases [14]. Unilateral neck exploration is also highly effective, because PTH has a short half-life of less than five minutes and can be measured after and before adenoma resection to ensure that the culprit gland has been removed. If levels remain high after resection of the suspected gland, unilateral neck exploration can be converted to bilateral neck exploration for direct visualization and identification of missed hypersecreting parathyroid tissue.

The new standard for most surgeons is preoperative radiologic localization of adenomas to direct a focused parathyroidectomy using unilateral neck exploration and adjunctive intraoperative PTH [65–67]. Intraoperative hand held gamma probe identification of in situ and resected radiolabelled hyperplastic parathyroid glands can be helpful.

In contrast to sporadic primary hyperparathyroidism, familial isolated primary hyperparathyroidism (FIHPT) is characterized by earlier onset disease, higher incidence of multiglandular involvement and a higher recurrence rate. Subtotal parathyroidectomy or total excision with autotransplantation is recommended for multi-glandular disease. There is a risk of permanent hypocalcemia. It is reported that many patients with FIHPT return to normocalcemia after excision of single-gland disease [85]. The use of preoperative localization and an intraoperative parathyroid hormone assay permits limited resection of only hypersecreting glands. Limited parathyroidectomy allows successful single-gland excision in many patients with FIHPT, thus decreasing the risk of hypoparathyroidism.

Familial hyperparathyroidism associated with MEN1 and MEN2A and familial isolated hyperparathyroidism are also managed surgically [62–64]. MEN1-associated hyperparathyroidism patients present earlier than sporadic patients but with similar symptoms. There is an asymmetrical multi-glandular involvement with a greater size difference between glands than in the hyperplasia of sporadic primary hyperparathyroidism [86]. The multiple monoclonal tumors and polyclonal hyperplasias which develop asynchronously are surgically managed. At exploration, all glands should be visualized and those normal glands to remain in situ should be marked for later localization. If one or two normal glands are found, then only the hyperplastic glands should be removed. If all glands are hyperplastic, total parathyroidectomy and immediate autotransplantation will obviate the need to subsequently explore a neck scarred from previous surgery. Generally, the thymus is also removed because of the possible presence of diseased supernumerary glands within it. Because unrecognized MEN1 patients should not be explored, a diagnosis should be obtained before surgical exploration in patients with hyperparathyroidism [87, 88].

A minority of MEN2 patients develop hyperparathyroidism which, when present, is characteristically mild. At total thyroidectomy for medullary carcinoma, only hyperplastic parathyroid glands should be removed after all are identified and marked [89].

Complications from surgery for parathyroidectomy include persistent hyperparathyroidism if insufficient diseasing causing tissue is removed (which can increase the risk of fractures), recurrent laryngeal nerve injury, hematoma, infection, pneumonia, transient or permanent postoperative hypocalcemia, and seizures from hypocalcemia and
hypomagnesemia [68–71]. Preoperative elevation of serum alkaline phosphatase may signal the possibility of future postoperative bone hunger and depressed postoperative serum calcium levels. Minimally invasive techniques and an experienced surgeon can reduce the risk of complications [68, 72].

Hyperparathyroidism is a condition that disproportionately affects older patients who have traditionally been considered a population at higher operative risk, but several recent studies have not shown this assumption to be justified [73, 74]. Parathyroidectomy should, therefore, be considered first-line therapy even for the frail elderly with true symptoms of hyperparathyroidism. This must be a joint decision between the patient, the treating physician, and the surgeon.

8.2. Identification of Suspect Hypersecreting Parathyroid Glands. If a surgeon is planning an open parathyroidectomy, where all 4 glands are directly visualized, no preoperative imaging may be required and the use of preoperative imaging in such circumstances is a matter of personal preference for the surgeon. However, preoperative imaging is needed if the surgeon is planning minimally invasive parathyroidectomy, where only one side of the neck is exposed. Preoperative imaging can also be helpful in patients with previous neck surgery in whom scar tissue can make direct visualization more challenging. Of the available imaging techniques, the most successful modality is the 99technetium-labelled sestamibi-single photon emission CT identifying up to 89% of single parathyroid adenomas [55, 56, 90, 91]. 99Technetium-labelled sestamibi (99mTc MIBI) is taken up by parathyroid and thyroid tissue. Uptake is enhanced and prolonged in adenomatous and hyperplastic parathyroids [91]. Ultrasound is the second most useful modality and when used with 99mTc MIBI preoperatively can enhance adenoma detection rates. Plain computed tomography and magnetic resonance imaging are less useful except in the context of persistent or ectopic production [57].

8.3. Revision Surgery. About 5% of patients undergoing parathyroidectomy will exhibit persistent hypercalcemia because of insufficient removal of disease-causing tissue. The localization of persistent disease can be anticipated based upon verification of the diagnosis, reviewing pathology slides and operative reports, interviewing previous surgeons and by adding localization procedures to those previously mentioned [92]. Gadolinium-enhanced magnetic resonance MRI, CT with intravenous contrast, angiography, and selective venous sampling for PTH can aid with localization. Most missed glands are found in the neck. Some surgeons enter the operative site lateral to the strap muscles but medial to the sternocleidomastoid muscle and great neck vessels to avoid a scarred midline field [93]. Upper mediastinal locations may be approached via an upper-third median sternotomy or by video-assisted thoracic surgery (VATS). If repeat operation is unsuccessful, observation and pulsed localization testing may allow detection as hyperfunctioning parathyroid tissue enlarges.

8.4. Medical Management. Not all cases of primary hyperparathyroidism require surgical management. For primary hyperparathyroidism due to parathyroid adenomas, surgery has a very high long-term success rate and minimal morbidity. In contrast, targeted medical therapy with calcimimetics, such as cinacalcet, is very costly, and both cinacalcet and bisphosphonates can cause unpleasant side effects. When the cause of hyperparathyroidism is not primary pathology in the parathyroid glands, nonsurgical management may be indicated, and treatment should be aimed at treating the underlying cause—this principle will be relevant to some of the neonatal causes and rare syndromes of hyperparathyroidism.

In some situations, however, medical management is a consideration for patients with PHPT who are asymptomatic from their disease or for patients who are not candidates for surgery. The cornerstone of medical management include bone protection with the use of bisphosphonates and lowering of calcium level with calcimetics.

Multiple studies have shown that bisphosphonates improve bone mineral density on DXA scan in patients with primary hyperparathyroidism. Alendronate has been the most well-studied bisphosphonate and has shown increases in bone mineral density of the lumbar spine and the proximal femur when compared to placebo [75–77]. When using bisphosphonates, the risk of potential complications, among them osteonecrosis of the jaw, should be considered [55, 78].

Hormone replacement therapy has also been studied in postmenopausal women with PHPT and it was found to have similar bone protective effects as in normocalcemic postmenopausal women without PHPT [79]. This should only be used as therapy for PHPT in women who are already taking HRT for perimenopausal symptoms.

Calcimimetics, like cinacalcet, are designed to allosterically modify the calcium-sensing receptor, thus sensitizing it to circulating calcium levels and downregulating PTH transcription, secretion, and parathyroid cell proliferation [80, 81]. Studies show that cinacalcet (versus placebo) effectively lowers both calcium levels and PTH levels, thus normalizing the abnormal biochemistry associated with PHPT [82]. There is no significant increase in bone mineral density for patients taking cinacalcet versus placebo as was seen in the trials with bisphosphonates. However, there was no significant loss of bone mineral density in either the placebo or the cinacalcet groups [83]. Specific indications for use of cinacalcet are limited to situations in which symptomatic hypercalcemia needs to be controlled in a patient who cannot undergo surgery. It can sometimes also be used as a trial to see if lowering calcium improves symptoms in someone who is considering parathyroidectomy. If preservation of bone mineral density is the goal of treating asymptomatic PHPT, then the agent of choice is a bisphosphonate [50].

9. Conclusion

Primary hyperparathyroidism is one of the most common endocrinological disorders. In rare circumstances, primary hyperparathyroidism is associated with several familial syndromes. Primary hyperparathyroidism is most frequently
identified incidentally on automated multichannel blood screening panels and is very often asymptomatic at the time of diagnosis. Parathyroidectomy remains the definitive cure for the disease, and some controversy surrounds the optimal surgical technique for the procedure. Medical therapy with the goal of bone preservation is an option for patients without symptoms, and calcimimetics effectively normalize calcium levels but have specific indications for use. Medical therapy may gain popularity for patients with hypercalcemia who cannot undergo surgery.

Abbreviations

CASR: Calcium-sensing receptor
CT: Computed tomography
DXA: Dual X-ray absorptiometry
ELISA: Enzyme-linked immunosorbent assay
FHH: Familial hypercalcemic hyperparathyroidism
FIHPT: Familial isolated primary hyperparathyroidism
HPT: Hyperparathyroidism
MRI: Magnetic resonance imaging
PHPT: Primary hyperparathyroidism
PTH: Parathyroid hormone
SPECT/MIBI: Sestamibi-single photon emission computed tomography
VATS: Video-assisted thoracic surgery.

References

[1] R. A. Wermers, S. Khosla, E. J. Atkinson et al., “Incidence of primary hyperparathyroidism in Rochester, Minnesota, 1993–2001: an update on the changing epidemiology of the disease,” *Journal of Bone and Mineral Research*, vol. 21, no. 1, pp. 171–177, 2006.

[2] R. Mihai, J. A. Wass, and G. P. Sadler, “Asymptomatic hyperparathyroidism—need for multicentre studies,” *Clinical Endocrinology*, vol. 68, no. 2, pp. 155–164, 2008.

[3] L. J. Melton Jr., “The epidemiology of primary hyperparathyroidism in North America,” *Journal of Bone and Mineral Research*, vol. 17, supplement 2, pp. N12–N17, 2002.

[4] S. Unger, D. A. Paul, M. C. Nino et al., “Mucolipidosis II presenting as severe neonatal hyperparathyroidism,” *European Journal of Pediatrics*, vol. 164, no. 4, pp. 236–243, 2005.

[5] J. George, S. V. Acharya, T. R. Bandgar, P. S. Menon, and N. S. Shah, “Primary hyperparathyroidism in children and adolescents,” *Indian Journal of Pediatrics*, vol. 77, no. 2, pp. 175–178, 2010.

[6] E. T. Durkin, P. F. Nichol, D. P. Lund, H. Chen, and R. S. Sippel, “What is the optimal treatment for children with primary hyperparathyroidism?” *Journal of Pediatric Surgery*, vol. 45, no. 6, pp. 1142–1146, 2010.

[7] T. Igarashi, Y. Sekine, H. Kawato, S. Kamoshita, and Y. Saijusa, “Transient neonatal distal renal tubular acidosis with secondary hyperparathyroidism,” *Pediatric Nephrology*, vol. 6, no. 3, pp. 267–269, 1992.

[8] E. J. Glass and D. G. Barr, “Transient neonatal hyperparathyroidism secondary to maternal pseudohypoparathyroidism,” *Archives of Disease in Childhood*, vol. 56, no. 7, pp. 565–568, 1981.

[9] A. Sathasivam, L. Garibaldi, R. Murphy, and J. Ibrahim, “Transient neonatal hyperparathyroidism: a presenting feature of mucolipidosis type II,” *Journal of Pediatric Endocrinology and Metabolism*, vol. 19, no. 6, pp. 859–862, 2006.

[10] M. Minagawa, T. Yasuda, Y. Kobayashi, and H. Niimi, “Transient pseudohypoparathyroidism of the neonate,” *European Journal of Endocrinology*, vol. 133, no. 2, pp. 151–155, 1995.

[11] M. Bai, S. H. Pearce, O. Kifor et al., “In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+-sensing receptor gene: normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcaemia,” *Journal of Clinical Investigation*, vol. 99, no. 1, pp. 88–96, 1997.

[12] J. L. Loughead, Z. Mughal, F. Mimouni, R. C. Tsang, and A. E. Oestreich, “Spectrum and natural history of congenital hyperparathyroidism secondary to maternal hypocalcaemia,” *American Journal of Perinatology*, vol. 7, no. 4, pp. 350–355, 1990.

[13] U. E. Pazzaglia, G. Beluffi, E. Bianchi, A. Castello, A. Coci, and A. Marchi, “Study of the bone pathology in early mucolipidosis II (1-cell disease),” *European Journal of Pediatrics*, vol. 148, no. 6, pp. 553–557, 1989.

[14] W. D. Fraser, “Hyperparathyroidism,” *The Lancet*, vol. 374, no. 9684, pp. 145–158, 2009.

[15] E. M. Brown, “Clinical lessons from the calcium-sensing receptor,” *Nature Clinical Practice Endocrinology and Metabolism*, vol. 3, no. 2, pp. 122–133, 2007.

[16] L. Kantham, S. J. Quinn, O. I. Egbuna et al., “The calcium-sensing receptor (CaSR) defends against hypercalcemia independently of its regulation of parathyroid hormone secretion,” *American Journal of Physiology—Endocrinology and Metabolism*, vol. 297, no. 4, pp. E915–E923, 2009.

[17] D. B. Endres, R. Villanueva, C. F. J. Sharp, and F. R. Singer, “Immunochromatometric and immunoradiometric determinations of intact and total immunoreactive parathyrin: performance in the differential diagnosis of hypercalcemia and hypoparathyroidism,” *Clinical Chemistry*, vol. 37, no. 2, pp. 162–168, 1991.

[18] S. R. Nussbaum, R. J. Zahradnik, J. R. Lavigne et al., “Highly sensitive two-site immunoradiometric assay of parathyrin, and its clinical utility in evaluating patients with hypercalcaemia,” *Clinical Chemistry*, vol. 33, no. 8, pp. 1364–1367, 1987.

[19] P. Gao, S. Scheibel, P. D’Amour et al., “Development of a novel immunoradiometric assay exclusively for biologically active whole parathyroid hormone 1–84: implications for all-cause mortality in incident dialysis patients: the CHOICE study,” *Nephrology Dialysis Transplantation*, vol. 23, no. 5, pp. 1650–1658, 2008.

[20] N. Ljungdahl, M. Haahrus, C. Linder, and P. Magnusson, “Comparison of 3 third-generation assays for bio-intact parathyroid hormone,” *Clinical Chemistry*, vol. 52, no. 5, pp. 903–904, 2006.
[23] J. J. Kazama, S. Yamamoto, S. Kameda et al., “Direct comparison between two 1–84 PTH assays in dialysis patients,” *Nephron Clinical Practice*, vol. 99, no. 1, pp. c8–c12, 2005.

[24] M. R. Pollak, E. M. Brown, Y. H. Chou et al., “Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism,” *Cell*, vol. 75, no. 7, pp. 1297–1303, 1993.

[25] G.-H. Fuleihan, “Familial benign hypocalciuric hypercalcemia,” *Journal of Bone and Mineral Research*, vol. 17, supplement 2, pp. N51–N56, 2002.

[26] R. Eastell, A. Arnold, M. L. Brandi et al., “Diagnosis of asymptomatic primary hyperparathyroidism: proceedings of the third international workshop,” *Journal of Clinical Endocrinology and Metabolism*, vol. 94, no. 2, pp. 340–350, 2009.

[27] E. A. Felger and E. Kandil, “Primary hyperparathyroidism,” *Otolarngologic Clinics of North America*, vol. 43, no. 2, pp. 417–432, 2010.

[28] S. J. Marx, “Hyperparathyroid and hypoparathyroid disorders,” *New England Journal of Medicine*, vol. 343, no. 25, pp. 1863–1875, 2000.

[29] E. Shane, “Clinical review 122: parathyroid carcinoma,” *Journal of Clinical Endocrinology and Metabolism*, vol. 86, no. 2, pp. 485–493, 2001.

[30] A. E. Stephen, K. T. Chen, M. Milas, and A. E. Siperstein, “The coming of age of radiation-induced hyperparathyroidism: evolving patterns of thyroid and parathyroid disease after head and neck irradiation,” *Surgery*, vol. 136, no. 6, pp. 1143–1153, 2004.

[31] B. T. Teh, S. Kyotola, E. Farnebo et al., “Mutation analysis of the MEN1 gene in multiple endocrine neoplasia type 1, familial acromegaly and familial isolated hyperparathyroidism,” *Journal of Clinical Endocrinology and Metabolism*, vol. 83, no. 8, pp. 2621–2626, 1998.

[32] J. D. Carpten, C. M. Robbins, A. Villablanca et al., “HRPT2, encoding parafibromin, is mutated in hyperparathyroidis-maw tumor syndrome,” *Nature Genetics*, vol. 32, no. 4, pp. 676–680, 2002.

[33] C. Tanaka, K. Yoshimoto, S. Yamada et al., “Absence of germ-line mutations of the multiple endocrine neoplasia type 1 (MEN1) gene in familial pituitary adenoma in contrast to MEN1 in Japanese,” *Journal of Clinical Endocrinology and Metabolism*, vol. 83, no. 3, pp. 960–965, 1998.

[34] R. V. Thakker, “Multiple endocrine neoplasia—syndromes of the twentieth century,” *Journal of Clinical Endocrinology and Metabolism*, vol. 83, no. 8, pp. 2617–2620, 1998.

[35] T. M. Shattuck, S. Valimaki, T. Obara et al., “Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma,” *New England Journal of Medicine*, vol. 349, no. 18, pp. 1722–1729, 2003.

[36] V. M. Howell, C. J. Haven, K. Kahnoski et al., “HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours,” *Journal of Medical Genetics*, vol. 40, no. 9, pp. 657–663, 2003.

[37] W. F. Simonds, C. M. Robbins, S. K. Agarwal, G. N. Hendy, J. D. Carpten, and S. J. Marx, “Familial isolated hyperparathyroidism is rarely caused by germline mutation in HRPT2, the gene for the hyperparathyroidism–jaw tumor syndrome,” *Journal of Clinical Endocrinology and Metabolism*, vol. 89, no. 1, pp. 96–102, 2004.

[38] S. Shirahama, K. Ogura, H. Takami et al., “Mutational analysis of the RET proto-oncogene in 71 Japanese patients with medullary thyroid carcinoma,” *Journal of Human Genetics*, vol. 43, no. 2, pp. 101–106, 1998.

[39] R. Elisei, C. Romei, B. Cosci et al., “RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center,” *Journal of Clinical Endocrinology and Metabolism*, vol. 92, no. 12, pp. 4725–4729, 2007.

[40] C. Eng, P. A. Crosse, L. M. Mulligan et al., “Mutations in the RET proto-oncogene and the von Hippel-Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas,” *Journal of Medical Genetics*, vol. 32, no. 12, pp. 934–937, 1995.

[41] N. S. Pellegrata, L. Quintanilla-Martinez, H. Sigkellow et al., “Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 103, no. 42, pp. 15558–15563, 2006.

[42] B. D. Edwards, M. A. Patton, S. A. Dilly, and J. B. Eastwood, “A new syndrome of autosomal recessive nephropathy, deafness, and hyperparathyroidism,” *Journal of Medical Genetics*, vol. 26, no. 5, pp. 289–293, 1989.

[43] C. A. Brownstein, F. Adler, C. Nelson-Williams et al., “A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 105, no. 9, pp. 3453–3460, 2008.

[44] E. Schipani, K. Kruse, and H. Juppner, “A constitutively active mutant PTH–PTHrP receptor in Jansen-type metaphyseal chondrodysplasia,” *Science*, vol. 268, pp. 5207, pp. 98–100, 1995.

[45] A. S. Jobert, P. Zhang, A. Couvaineau et al., “Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia,” *Journal of Clinical Investigation*, vol. 102, no. 1, pp. 34–40, 1998.

[46] M. Eiken, J. Prag, K. E. Petersen, and H. J. Kaufmann, “A new familial skeletal dysplasia with severely retarded ossification and abnormal modeling of bones especially of the epiphyses, the hands, and feet,” *European Journal of Pediatrics*, vol. 141, no. 4, pp. 231–235, 1984.

[47] E. Decker, A. Stellzig-Eisenhauer, B. S. Fiebig et al., “PTH1 loss–of–function mutations in familial, nonsyndromic primary failure of tooth eruption,” *American Journal of Human Genetics*, vol. 83, no. 6, pp. 781–786, 2008.

[48] Mendelian Inheritance in Man, OMIM (TM). Johns Hopkins University, Baltimore, MD. MIM Number: 168468, 2010, http://www.ncbi.nlm.nih.gov/omim.

[49] B. M. Patten and M. Pages, “Severe neurological disease associated with hyperparathyroidism,” *Annals of Neurology*, vol. 15, no. 5, pp. 453–456, 1984.

[50] A. A. Khan, J. P. Bilezikian, and J. T. J. Potts, “The diagnosis and management of asymptomatic primary hyperparathyroidism revisited,” *Journal of Clinical Endocrinology and Metabolism*, vol. 94, no. 2, pp. 333–334, 2009.

[51] J. P. Bilezikian, “Anabolic therapy for osteoporosis,” *International Journal of Fertility and Women’s Medicine*, vol. 50, no. 2, pp. 53–60, 2005.

[52] A. H. J. Khan, A. Pender, X. Wei, and M. Potter, “1-cell disease (maculopapulosis II) presenting as neonatal fractures: a case for continued monitoring of serum parathroid hormone levels,” *Clinical Pediatric Endocrinology*, vol. 17, no. 3, pp. 81–85, 2008.

[53] S. Khola, L. Melton Jr., R. A. Wermers, C. S. Crowson, W. O’Fallon, and B. Biggs, “Primary hyperparathyroidism and the risk of fracture: a population–based study,” *Journal of Bone and Mineral Research*, vol. 14, no. 10, pp. 1700–1707, 1999.
type 1,” *New England Journal of Medicine*, vol. 321, no. 4, pp. 213–218, 1989.

[85] D. M. Carneiro, G. L. R. Irvin, W. B. Inabnet et al., “Limited versus radical parathyroidectomy in familial isolated primary hyperparathyroidism,” *Surgery*, vol. 132, no. 6, pp. 1050–1054, 2002.

[86] D. S. Levine, A. S. Belzberg, and S. M. Wiseman, “Hybrid SPECT/CT imaging for primary hyperparathyroidism: case reports and pictorial review,” *Clinical Nuclear Medicine*, vol. 34, no. 11, pp. 779–784, 2009.

[87] J. A. van Heerden and C. S. Grant, “Surgical treatment of primary hyperparathyroidism: an institutional perspective,” *World Journal of Surgery*, vol. 15, no. 6, pp. 688–692, 1991.

[88] P. Hellman, B. Skogseid, C. Juhlin, G. Akerström, and J. Rastad, “Findings and long-term results of parathyroid surgery in multiple endocrine neoplasia type 1,” *World Journal of Surgery*, vol. 16, no. 4, pp. 718–722, 1992.

[89] K. J. Snow and A. E. R. Boyd, “Management of individual tumor syndromes: medullary thyroid carcinoma and hyperparathyroidism,” *Endocrinology and Metabolism Clinics of North America*, vol. 23, no. 1, pp. 157–166, 1994.

[90] D. S. Levine and S. M. Wiseman, “Fusion imaging for parathyroid localization in primary hyperparathyroidism,” *Expert Review of Anticancer Therapy*, vol. 10, no. 3, pp. 353–363, 2010.

[91] T. W. Swanson, S. K. Chan, S. J. Jones et al., “Determinants of Tc-99m sestamibi SPECT scan sensitivity in primary hyperparathyroidism,” *American Journal of Surgery*, vol. 199, no. 5, pp. 614–620, 2010.

[92] R. D. Gaz, “Revision parathyroid surgery,” in *Surgery of the Thyroid and Parathyroid Glands*, G. W. Randolph, Ed., Saunders, Philadelphia, Pa, USA, 2003.

[93] J. L. Cameron, *Current Surgical Therapy*, Mosby, St. Louis, Mo, USA, 2001.