ASYMMETRY IN Λ_b AND $\bar{\Lambda}_b$ PRODUCTION

Jonathan L. Rosner
Enrico Fermi Institute and Department of Physics
University of Chicago, 5620 S. Ellis Avenue, Chicago, IL 60637

In CMS data at the CERN Large Hadron Collider, the ratio $\sigma(pp \to \bar{\Lambda}_b X)/\sigma(pp \to \Lambda_b X)$ appears to fall as the baryons become more forward. Mechanisms which could give rise to this effect are discussed. It is urged that the same physics be explored in data from the ATLAS and LHCb Detectors at CERN and the Fermilab Tevatron proton-antiproton collider. In the latter, if such leading-baryon effects are present, one expects Λ_b to be preferentially produced in the direction of the proton and $\bar{\Lambda}_b$ to be preferentially produced in the direction of the antiproton.

PACS numbers: 14.20.Mr, 14.65.Fy, 12.38.Aw, 12.38.Qk

I Introduction

The production of heavy baryons and antibaryons in hadronic collisions has posed a theoretical puzzle for a number of years, ever since the observation at the CERN Intersecting Storage Rings (ISR) of the charmed baryon Λ_c [1,2]. Lowest-order QCD involving the subprocesses $q\bar{q} \to c\bar{c}$ and $gg \to c\bar{c}$, where q is a light quark (u,d,s) and g is a gluon, would predict equal cross sections for Λ_c and $\bar{\Lambda}_c$ for each value of x_F and p_T. However, production of Λ_c in proton-proton collisions at the ISR is favored over that of $\bar{\Lambda}_c$, indicating the presence of non-perturbative final-state interactions such as those occurring in a QCD string model like PYTHIA [3,4]. (For an early overview of fragmentation models see [5].)

Asymmetries in the production of bottom quarks at the LHC were investigated some time ago [6] and found to be negligible except in the very forward direction (beyond the reach of LHCb). Methods employed were the Lund string fragmentation model [7] and the intrinsic heavy quark model [8,9].

At $\sqrt{s} = 7$ TeV the LHCb Collaboration [10] finds a production asymmetry $A_P = [\sigma(D_s^+) - \sigma(D_s^-)]/[\sigma(D_s^+) + \sigma(D_s^-)] = (-0.33 \pm 0.22 \pm 0.10)\%$ for $2.0 \leq y \leq 4.5$, exhibiting no preference for a leading-quark effect. Recently the production of Λ_b and $\bar{\Lambda}_b$ has been studied by the CMS Collaboration at the CERN Large Hadron Collider (LHC). While no significant difference between Λ_b and $\bar{\Lambda}_b$ production is seen in the central region with $|y^{\Lambda_b}| \leq 1.5$ [11], the $\bar{\Lambda}_b$ is produced only about 2/3 as frequently as the Λ_b in the most forward rapidity bin $1.5 \leq |y^{\Lambda_b}| \leq 2.0$. The present note calls attention to a simple way of evaluating the string-based fragmentation mechanism leading to an asymmetry, and to urge that this asymmetry be examined in the data of ATLAS and LHCb at the LHC and CDF and D0 at the Fermilab Tevatron.
Figure 1: Ratio of $\bar{\Lambda}_b$ and Λ_b cross sections reported by the CMS Collaboration [11] as a function of rapidity. Only statistical errors are shown; systematic errors for the points are ± 0.09, ± 0.09, ± 0.13, ± 0.12, ± 0.15, ± 0.16, respectively. The dashed line denotes a ratio of 1.

In Section II we review recent data on Λ_b and $\bar{\Lambda}_b$ production at the LHC. We then recall in Section III a “color reconnection” mechanism proposed recently [12] in the context of a forward-backward asymmetry in top quark production at the Tevatron observed by CDF [13–16] and D0 [17–22]. Effects of this mechanism should be contained in any model which seeks to predict the production of Λ_b and $\bar{\Lambda}_b$ at hadron colliders. Questions of p_T and y dependence, and possible polarization effects, are discussed very briefly in Section IV. We close in Section V by urging such studies at ATLAS, LHCb, and the Tevatron.

II Recent data

The production of Λ_b and $\bar{\Lambda}_b$ has been studied at the LHC by the CMS Collaboration [11], based on an integrated luminosity of 1.96 fb$^{-1}$ at $\sqrt{s} = 7$ TeV. The reported ratio of $\bar{\Lambda}_b$ and Λ_b cross sections is illustrated in Fig. 1 as a function of $|y(\Lambda_b)|$, the Λ_b rapidity. Although no significant variation with $|y(\Lambda_b)|$ is claimed in Ref. [11], one can also see a modest decrease in the ratio in the most forward rapidity bin, as pointed out in Ref. [12].

It was noted in Ref. [12] that the LHCb Collaboration was in an ideal position to extend this measurement to larger $|y|$, where a string fragmentation picture would predict a growing predominance of Λ_b over $\bar{\Lambda}_b$. If the trend suggested by CMS continues to higher y, the $\bar{\Lambda}_b$ cross section at LHCb would be no more than 2/3 that of the Λ_b, suggesting that different production mechanisms were at work in the central and forward directions. Some possibilities for these mechanisms are described in the next Section. It is notable that the decreased ratio of cross sections suggested by the CMS data is not reproduced by the POWHEG or PYTHIA Monte Carlo predictions.
We note briefly some other LHC Λ_b data in $\bar{p}p$ collisions at $\sqrt{s} = 7$ TeV, to be discussed in more detail in Section IV. The CMS Collaboration has studied the polarization of Λ_b and $\bar{\Lambda}_b$ with a sample corresponding to 5.1 fb$^{-1}$ of integrated luminosity [23]. The ATLAS Collaboration [24] has published a study of Λ_b and $\bar{\Lambda}_b$ polarization with 4.6 fb$^{-1}$ of data, but without stating the relative production fractions of Λ_b and $\bar{\Lambda}_b$. Finally, the LHCb Collaboration [25] has studied Λ_b and $\bar{\Lambda}_b$ polarization with 1 fb$^{-1}$.

III Production mechanisms

A Mechanisms without asymmetry

The subprocesses $q\bar{q} \to \bar{b}b$ and $gg \to \bar{b}b$, followed by fragmentation of a b quark into Λ_b or a \bar{b} quark into $\bar{\Lambda}_b$, do not lead to an asymmetry between baryon and antibaryon production. One might expect these processes to dominate in production of heavy baryons with small $|y|$ and large p_T. Some additional processes are contributing to Λ_b production at small p_T; its cross section falls off more rapidly with increasing p_T than the cross sections for B-flavored mesons [11].

B Quasi-diffractive excitation

In Fig. 2 we illustrate a mechanism which may be expected to contribute to forward heavy baryon production and will favor production of Λ_b by protons and $\bar{\Lambda}_b$ by antiprotons. The figure suggests that a forward Λ_b often will be accompanied by a forward B^+ or the decay products of an excited B^+. This mechanism has some features in common with the intrinsic heavy quark model [8,9], in the sense that a heavy forward baryon is more likely to contain a b quark rather than a \bar{b}.
Figure 3: Interaction of final-state heavy quark with spectator system, as proposed in Ref. [12]. The pairs of dashed lines denote QCD strings connecting the final-state heavy quarks to the spectator systems.

C Interaction with spectator quark

The final-state interaction of the heavy quark with the proton remnants [6,7] was noted in the case of $t\bar{t}$ production in Ref. [12]. (See also [26].) This mechanism is illustrated in Fig. 3. The effect of this process on the apparent asymmetry in $t\bar{t}$ production at the Tevatron was seen to be too small to account for the asymmetry claimed initially by both Collider collaborations, but in a recent report by D0 the asymmetry no longer conflicts with the standard model [22].

We retrace the argument presented in Ref. [12] for the “drag” exerted by a QCD string on a heavy quark produced through the process illustrated in Fig. 3. We first calculate in the frame where the longitudinal momentum of the heavy quark is zero. A result expressed in terms of rapidity then is invariant under boosts along the z axis.

A QCD string breaks when it reaches a length of about 1.5 fm [27]. If its end attached to the remnant travels with respect to the other end at the speed of light, it acts for a time

$$t = \frac{1.5 \times 10^{-15} \text{ m}}{3 \times 10^8 \text{ (m/s)}} = 5 \times 10^{-24} \text{ s}.$$

During this time it exerts a force due to the string tension $k = 0.18 \text{ GeV}^2$ and hence imparts a momentum

$$\Delta p_z = kt = \frac{(0.18 \text{ GeV}^2)(5 \times 10^{-24} \text{ s})}{6.582 \times 10^{-25} \text{ GeV} \cdot \text{s}} \approx 1.4 \text{ GeV}$$

(2)

to the b quark, pulling it forward in the direction of the proton. Since the average p_T of the Λ_b in the CMS result is $\mathcal{O}(m_b) \approx 5 \text{ GeV}$ (see Fig. 4), this should be a non-negligible effect. Such “string drag” phenomena are taken into account in recent Monte Carlo approaches [28].

To compare with a result of Ref. [6], we note that with $y \equiv -\ln \tan(\theta/2)$, $dy/d\theta = -\cosh y$ which is -1 at $y = 0$. Here θ denotes the polar angle of the b quark. If p_T is its transverse momentum, we have $\Delta \theta \approx -\Delta p_z/p_T$ or, at $y = 0$, $\Delta y = -\Delta \theta \approx 1.4 \text{ GeV}/p_T$. This is approximately of the form found in Ref. [6], but about three times as large. As the result is expressed in terms of boost-invariant quantities, it is now valid for any y.

[Diagram of Figure 3]
IV Other distinguishing measurements

A Transverse momentum and $|y|$

We have mentioned that the string-drag mechanism leads to an effect $\Delta y = -1.4 \text{GeV}/p_T$. It is harder to separate the $|y|$ and p_T dependences of the quasi-diffractive excitation model. One may think of the mechanism of Fig.4 as the effect of diffractive excitation of many $B^+\Lambda_b$ resonances, in which case there are too many unknown variables to permit quantitative estimates. The difficulty of the problem is not unlike that encountered in interpreting fixed-target hyperon production (e.g., [30] and references therein). Nonetheless, one can anticipate that the importance of quasi-diffractive excitation should increase with decreasing p_T and increasing $|y|$. One may be able to gauge its importance by looking for $B^+\Lambda_b$ correlations, as suggested by the picture of Fig.2.

B Λ_b polarization

The fixed-target study of hyperons mentioned above [30] and earlier investigations turned up unexpectedly large transverse polarizations without a clearly understood pattern. In 500 GeV/c π^-N collisions, Λ_c polarization is found to become increasingly negative with increasing p_T [31]. A hybrid perturbative QCD model with polarization transfer from c to Λ_c can account for this effect [32]. In contrast, no Λ_b polarization has been seen by any of the three LHC experiments. CMS [23] finds $P(\Lambda_b) = 0.03 \pm 0.09 \pm 0.03$ and $P(\bar{\Lambda}_b) = 0.02 \pm 0.08 \pm 0.05$; ATLAS [24] finds both $P(\Lambda_b)$ and $P(\bar{\Lambda}_b)$ consistent with zero; and LHCb [25] finds the polarizations of Λ_b and $\bar{\Lambda}_b$ consistent with each other, giving an average of $0.06 \pm 0.07 \pm 0.02$.

Figure 4: Distribution ("Tsallis function" [29]) fitting p_T-dependence of Λ_b production reported by the CMS Collaboration [11] at $\sqrt{s} = 7 \text{TeV}$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{distribution.eps}
\caption{Distribution ("Tsallis function" [29]) fitting p_T-dependence of Λ_b production reported by the CMS Collaboration [11] at $\sqrt{s} = 7 \text{TeV}.}$
\end{figure}
One feature of Λ_b polarization is that in the constituent-quark picture, the spin of the Λ_b is carried entirely by the b quark, as the u and d quarks are coupled up to spin zero. This correlation is largely borne out by explicit QCD calculations $[33,34]$. Standard estimates of Λ_b polarization at the LHC fall in the 10–20% range $[35,36]$.

A relatively recent discussion of the induction of spin-spin forces by exchange of a QCD string has been given in Ref. $[37]$. An interesting feature, which unfortunately prevents a quantitative conclusion, is that the effect behaves as the fourth power of the string thickness, an unknown quantity.

V Conclusions

Mechanisms have been described which favor forward production of heavy baryons in b quark fragmentation. These include quasi-diffractive processes, in which a proton dissociates into a heavy baryon and a meson containing a \bar{b}, and a string-drag effect $[6,7]$ investigated in the context of top quark production $[12]$. While found to be unimportant in generating any forward-backward asymmetry at the Tevatron for top production, the latter mechanism is seen to have greater effect in generating an asymmetry in Λ_b and $\bar{\Lambda}_b$ production. Such an asymmetry is suggested in the highest-y bin studied by the CMS Collaboration $[11]$, where the cross section for $\bar{\Lambda}_b$ production is about $2/3$ that for Λ_b production.

It would be extremely interesting to study these effects at ATLAS, LHCb, and the Fermilab Tevatron, comparing them with available Monte Carlo predictions. In the latter, the quasi-diffractive and string-drag processes should generate a leading baryon effect, in which the Λ_b and $\bar{\Lambda}_b$ tend to follow the direction of the proton and antiproton, respectively. Such an asymmetry is immune to systematic differences in detection efficiencies for particles and antiparticles $[38]$, lending unique urgency to such studies at the Tevatron.

Acknowledgments

I thank Samim Erhan, Jonathan Lewis, Patrick Koppenburg, Patrick Lukens, Brian Meadows, and Sheldon Stone for helpful advice. This work was supported in part by the U. S. Department of Energy under Grant No. DE-FG02-13ER41958.

References

[1] W. S. Lockman, T. Meyer, J. Rander, P. Schlein, R. Webb, S. Erhan, and J. Zsembery (R603 Collaboration), Phys. Lett. B 85, 443 (1979).

[2] P. Chauvat et al. (R608 Collaboration), Phys. Lett. B 199, 304 (1987).

[3] H. -U. Bengtsson and T. Sjöstrand, Comput. Phys. Commun. 46, 43 (1987).

[4] T. Sjöstrand, S. Mrenna, and P. Z. Skands, J. High Energy Phys. 05 (2006) 026 [arXiv:hep-ph/0603175].

[5] T. Sjöstrand, Int. J. Mod. Phys. A 3, 751 (1988).
[6] E. Norrbin and R. Vogt, “Bottom production asymmetries at the LHC,” arXiv:hep-ph/0003056 in Proceedings of the CERN 1999 Workshop on Standard Model Physics (and more) at the LHC.

[7] B. Andersson, G. Gustafson, G. Ingelman and T. Sjostrand, Phys. Rept. 97, 31 (1983).

[8] S. J. Brodsky, P. Hoyer, C. Peterson and N. Sakai, Phys. Lett. B 93, 451 (1980).

[9] S. J. Brodsky, C. Peterson and N. Sakai, Phys. Rev. D 23, 2745 (1981).

[10] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 713, 186 (2012) [arXiv:1205.0897 [hep-ex]].

[11] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 714, 136 (2012) [arXiv:1205.0594 [hep-ex]].

[12] J. L. Rosner, Phys. Rev. D 86, 014011 (2012) [arXiv:1205.1529 [hep-ph]].

[13] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 83, 112003 (2011) [arXiv:1101.0034 [hep-ex]].

[14] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 87, 092002 (2013) [arXiv:1211.1003 [hep-ex]].

[15] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 111, no. 18, 182002 (2013) [arXiv:1306.2357 [hep-ex]].

[16] T. A. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 88, 072003 (2013) [arXiv:1308.1120 [hep-ex]].

[17] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 84, 112005 (2011) [arXiv:1107.4995 [hep-ex]].

[18] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 87, 011103 (2013) [arXiv:1207.0364 [hep-ex]].

[19] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 88, 112002 (2013) [arXiv:1308.6690 [hep-ex]].

[20] V. M. Abazov et al. (D0 Collaboration), [arXiv:1401.5785 [hep-ex]].

[21] V. M. Abazov et al. (D0 Collaboration), [arXiv:1403.1294 [hep-ex]].

[22] V. M. Abazov et al. (D0 Collaboration), [arXiv:1405.0421 [hep-ex]].

[23] M. I. Rikova, Dr. Nat. Sci. thesis, University of Zurich, 2013 (unpublished).

[24] G. Aad et al. ATLAS Collaboration), Phys. Rev. D 89, 092009 (2014) [arXiv:1404.1071 [hep-ex]].

[25] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 724, 27 (2013) [arXiv:1302.5578 [hep-ex]].
[26] S. Brodsky, G. de Teramond and M. Karliner, Ann. Rev. Nucl. Part. Sci. 62, 1 (2012) arXiv:1302.5684 [hep-ph].
[27] J. L. Rosner, Phys. Lett. B 385, 293 (1996).
[28] P. Skands, B. Webber, and J. Winter, J. High Energy Phys. 07 (2012) 151 arXiv:1205.1466 [hep-ph].
[29] C. Tsallis, J. Stat. Phys. 52, 479 (1988).
[30] E. Abouzaid et al. (KTeV Collaboration), Phys. Rev. D 75, 012005 (2007) hep-ex/0608007.
[31] E. M. Aitala et al. (Fermilab E791 Collaboration), Phys. Lett. B 471, 449 (2000).
[32] G. R. Goldstein, arXiv:hep-ph/9907573 (1999); W. G. D. Dharmaratna and G. R. Goldstein, Phys. Rev. D 53, 1073 (1996).
[33] T. Mannel and G. A. Schuler, Phys. Lett. B 279, 194 (1992).
[34] A. Falk and M. E. Peskin, Phys. Rev. D 49, 3320 (1994).
[35] G. Hiller, M. Knecht, F. Legger, and T. Schlietinger, Phys. Lett. B 649, 152 (2007).
[36] Z. Ajaltouni, E. Conte, and O. Leitner, Phys. Lett. B 614, 165 (2005).
[37] V. Vyas, Phys. Rev. D 78, 045003 (2008).
[38] I am indebted to Jonathan Lewis for emphasizing this point.