Spheroidal carbonaceous particles are a defining stratigraphic marker for the Anthropocene

Graeme T. Swindles, Elizabeth Watson, T. Edward Turner, Jennifer M. Galloway, Thomas Hadlari, Jane Wheeler & Karen L. Bacon

There has been recent debate over stratigraphic markers used to demarcate the Anthropocene from the Holocene Epoch. However, many of the proposed markers are found only in limited areas of the world or do not reflect human impacts on the environment. Here we show that spheroidal carbonaceous particles (SCPs), a distinct form of black carbon produced from burning fossil fuels in energy production and heavy industry, provide unambiguous stratigraphic markers of the human activities that have rapidly changed planet Earth over the last century. SCPs are found in terrestrial and marine sediments or ice cores in every continent, including remote areas such as the high Arctic and Antarctica. The rapid increase in SCPs mostly occurs in the mid-twentieth century and is contemporaneous with the ‘Great Acceleration’. It therefore reflects the intensification of fossil fuel usage and can be traced across the globe. We integrate global records of SCPs and propose that the global rapid increase in SCPs in sedimentary records can be used to inform a Global Standard Stratigraphic Age for the Anthropocene. A high-resolution SCP sequence from a lake or peatland may provide the much-needed ‘Golden Spike’ (Global Boundary Stratotype Section and Point).

The Anthropocene has become a term widely adopted by both the scientific community and the media. It reflects the current time of the Earth’s history when human activities have become one of the dominant forces shaping the planet implying that a new geological time division may be required. There has been much debate over the timing of the Anthropocene; some authors have used archaeological evidence to suggest that the rise of human impacts began in the early to mid-Holocene, ~2 millennia ago, or from the time of the industrial revolution. However, mounting evidence suggests that human impacts on the planet at these times were diachronous and highly spatially variable. There is rising support for the base of the Anthropocene to be placed at ca. AD 1950 that approximates the ‘Great Acceleration’, a time of rapidly increasing and globally-widespread anthropogenic impacts on planet Earth. This includes unprecedented burning of fossil fuels leading to a rapid rise in global atmospheric CO₂, deployment of nuclear weapons, and pollution from industrial, agricultural and domestic processes. There is a need for a stratigraphic marker that reflects the significant global impact of humans on Earth and defines the Anthropocene. This stratigraphic marker must represent the onset of the Anthropocene in marine and terrestrial sediments and ice, be present across the globe, and be related to the types of human impacts that characterize the Anthropocene. Anthropogenic soils, chemical tracers, and radionuclides have been proposed as Anthropocene markers. However, many of these are diachronous, regionally variable, occur at the wrong time, or require a complex analytical procedure to decipher. The Tambora 1815 volcanic event has also been proposed as a possible marker for dating the onset of the Anthropocene. This volcanic event is registered in chemical profiles from Greenland and Antarctica ice core records; however, tephra from this eruption is only found in Asia. More importantly, it does not derive from human impacts on the environment that defines the Anthropocene.
Continent	Country	Start of record	Rapid increase	Key references
Asia	China	1950s	1960-70s	Boyle et al. [1999] Water, Air and Soil Pollution 112, 21-40
	Japan	1930s	1960s	Hiranaka et al. [2011] Environmental Earth Sciences 64, 833-840
		1950s	1960s	Hiranaka et al. [2011] Environmental Earth Sciences 64, 833-840
	Morocco	1930s	1960-70s	Musukami and Issac [2004] The Quaternary Research 44, 47-51
		1950s	1960-70s	Musukami and Issac [2004] The Quaternary Research 44, 47-51
	Tunisia	1920s	?	Rose et al. [2003] Atmospheric Environment 37, 1653-1663
		1950s	?	Appley et al. [2001] Aquatic Ecology 35, 347-367
		1980s	?	Appley et al. [2001] Aquatic Ecology 35, 347-367
North America	USA	1860s	1950s	Charles et al. [1999] Journal of Paleolimnology 3, 195-241
		1835	?	Clark and Patterson [1984] Journal of Sedimentary Petrology 56, 125-1265
		1990	1940-1950s	Griffin and Gallop [1981] Geotrichum et Cosmochloris Acta 45, 763-789
		1850 +/- 10 years	?	Lai and Breshin [1999] Journal of Great Lakes Research 25, 445-454
		Early 1800s	?	Parshall et al. [2000] Ecology 84, 736-748
	Canada	Late 19th Century	?	Doubleday et al. [1995] The Science of the Total Environment 160(161), 661-668
South America	Chile	1900s	1980s	Chirinos et al. [2006] Environmental Pollution 141, 247-256
Antarctica	King George Island	?	?	Martens et al. [2010] Environmental Pollution 158, 192-200
Europe	Britain	1830s-1870s	1950s-1960s	?
		1850s-1860s	1950s-1960s	?
		1880s	1940-1970s	Rose et al. [1999] The Holocene 5, 328-335
		1850s-1870s	1950s	?
		Pre-1920s	1950s	?
	Denmark	1900s	1950s	Øijgaard [1993] Journal of Paleolimnology 4, 177-187
	Estonia	1920s	1950s	Alliksaar and Heimaalo [2012] Estonian Journal of Earth Sciences 61, 217-227
	Finland	1910s	1950s	Ruppel et al. [2013] Advances in Meteorology 393926, 15pp
		1870s	1950s	?
		1940s	1960s	?
		1850s	1950s	?
	France	1880s	1950s	Rose et al. [1999] Water, Soil and Air Pollution 113, 1-32
		1930s	1980s	?
	Ireland	1880s	1950s	?
		1930s	1950s	Rose et al. [1995] The Holocene 5, 328-335
	Italy	1930s	1950s	?
		1910s	1950s	?
	Norway	1920s	1950s	Rose et al. [1999] Water, Soil and Air Pollution 113, 1-32
		1860s	1950s	Rose et al. [1999] Water, Soil and Air Pollution 113, 1-32
	Poland	Pre-1845	1950s	Rose et al. [1999] Water, Soil and Air Pollution 113, 1-32
	Portugal	1920s	Early 1970s	Rose et al. [1999] Water, Soil and Air Pollution 113, 1-32
	Slovakia	1920s	1960s	Rose et al. [1999] Water, Soil and Air Pollution 113, 1-32
	Spain	1840-50s	1950s	Rose et al. [1999] Water, Soil and Air Pollution 113, 1-32
		1950s	1980s	?
		1880s	1960s	?
	Svalbard	1960s	1970s	Rose et al. [2004] Journal of Paleolimnology 31, 499-513
		1960s	1970s	?
	Sweden	1850s	1950s	Rennegar and Wik [1985] Ecological Bulletin 37, 51-57
	Russia	1940s	?	Flower et al. [1997] The Holocene 7, 157-173
		1950s	?	Flower et al. [1997] The Holocene 7, 157-173
		1920s-1930s	1960-1970s	Rose et al. [1998] Journal of Paleolimnology 20, 151-162
	Australia	?	1940s	Cameron et al. [1993] Hydrobiologia 269/270, 361-370

Table 1. The global occurrence of spheroidal carbonaceous particles. The reported ages of the first occurrence and rapid increase of SCP concentration are provided with key references.
An unambiguous 'index fossil' of the human activities that have changed the face of planet Earth in recent centuries is therefore needed. Spheroidal carbonaceous particles (SCPs) are a distinct component of black carbon only produced from the high-temperature (>1000 °C) combustion of fossil fuels (coal and oil) (Supplementary file). SCPs are produced as a by-product of energy production as well as heavy industry and have no natural sources in the Quaternary. SCPs are highly abundant in areas close to pollution sources and are also found across the continents of planet Earth (Table 1). Importantly, they have also been recorded in remote areas distal from industrial sources including Greenland, Svalbard, Arctic Canada and Antarctica. Several studies have shown that SCPs are correlated with other types of industrial pollution including sulphur and polycyclic aromatic hydrocarbons (PAHs). SCPs are also well-preserved in lake and marine sediments, peats and glacial ice as they are chemically inert, owing to their composition of elemental carbon.

SCPs are suitable indicators for the Anthropocene for the following reasons:

1. They are present across the globe (Table 1);
2. They are an unambiguous marker of anthropogenic fossil fuel combustion that has changed the composition of our atmosphere and driven recent climate change;
3. They record unprecedented impacts of human activity on the environment;
4. They are documented in ice cores, marine and terrestrial sediments;
5. They are easily extracted and identified by researchers.

Variation in the timing and extent of coal and oil usage are reflected in temporal differences of the first occurrence (First Occurrence Datum) of SCPs in different regions (Table 1). The peak (acme) in SCP concentration is also variable spatially, reflecting proximity to pollution sources. However, the rapid increase in SCPs reflects the rise to dominance of oil as the major fossil fuel source on Earth and mostly occurs in the mid-twentieth century across the globe (Fig. 1) – contemporaneous with the 'Great Acceleration' and rapid increase in global population. The rapid increase in SCPs is thus a key chronostratigraphic marker for the Anthropocene because it is a global signature. We know of only two pre-Holocene occurrences of SCPs in the sedimentary record due to non-anthropogenic phenomena and they both correlate to significant geological timescale boundaries and mass extinctions. SCPs were derived from (I) the combustion of coal by flood basalts at the latest Permian extinction; and (II) the combustion of fossil organic matter from bolide impact at the Cretaceous-Palaeogene boundary. Furthermore, it has been suggested that the Cretaceous-Palaeogene examples are easily distinguished from modern SCPs due to a lower burn temperature resulting in lighter colouration of the particles. We suggest that the appearance of SCPs in Anthropocene sediments will appear geologically instantaneous in the far future.

We propose that lake and/or peatland sequences with detailed SCP records should be used to inform either a Global Standard Stratigraphic Age (GSSA), or used as the Global Boundary Stratotype Section and Point (GSSP) for the Anthropocene. Many lakes and peatlands have continuous sedimentation/accumulation over this time period and deposited an adequate thickness of sediment to capture SCPs. In Britain for example, SCP records commonly begin between AD 1830–1860, somewhat later than the earliest industrialisation. However, the rapid increase in SCPs (AD 1950–1960s) reflects the increased intensity of fossil fuel use in industry and power generation after the second world war that: (I) left an unambiguous expression in sedimentary records; and (II) reflects impact of global significance. The rapid increase in SCPs provides a marker of the point in time when human activities became globally unprecedented, rather than reflecting first intense industrialisation. An exceptional lake or peatland SCP
record would need to be calibrated to a specific year using a marker horizon, such as an ash bed as close as possible to the rapid increase in SCPs. The deposition of the Hekla 1947 ash in Irish peatlands immediately prior to the rapid increase in SCPs may provide such a calibration. There are numerous secondary markers that could be used to mark the onset of the Anthropocene, including chemical signatures of anthropogenic pollution (e.g. PAHs, Pb, Hg), land degradation (e.g. dust from soil erosion), or changes to biodiversity such as extinctions of native biota or introductions of non-native species. However, these signals are not consistent globally. Biostratigraphic evidence of recent climate or human impacts in lakes and peatlands (e.g. microfossils such as chironomids, diatoms, testate amoebae, and non-native pollen) may also be used in some localities. Recent peats and sediments have been dated using radio-isotopes such as 210Pb, 137Cs and high-resolution 14C techniques, permitting precise dating of the rapid increase in SCPs.

To support our argument we provide a reference example from Malham Tarn Moss, a raised bog in the Yorkshire Dales, Northern England (Fig. 2). A high-resolution SCP sequence combined with records of lead pollution and soil erosion (Fe, loss-on-ignition) are illustrated. These reflect increased land-use intensity, direct human impacts on the peatland and peatland response to climate change (water table depth reconstruction based on testate amoebae microfossils). This record illustrates the unprecedented human impacts on the environment in N. England after c. AD1950 which occurs alongside the rapid increase in SCPs. Our example clearly demonstrates the utility of SCPs as a defining stratigraphic marker for the Anthropocene.

Methods
We carried out a detailed analysis of published literature to assess the occurrence of spheroidal carbonaceous particles (SCPs) in sediment and peat profiles and ice cores across the world (Table 1). All sources were compiled by country and continent and the established dates of the first occurrence and the onset of rapid increase of SCPs were noted (based on independent dating methods including 210Pb determinations and tephra). A Kernel density function was used to estimate the probability density function of the date of rapid increase in SCPs. Two adjacent cores from Malham Tarn Moss Yorkshire Dales,

Figure 2. Spheroidal carbonaceous particle record from Malham Tarn Moss, a peat bog in the Yorkshire Dales, Northern England. The first occurrence of SCPs in the mid-19th century reflects the onset of industrial combustion of coal at high temperature. The rapid increase in the 1950s reflects the increase in total energy production after the Second World War. Human impacts on Malham Tarn Moss become unprecedented at this time, including atmospheric deposition of Pb and soil erosion from intensive agricultural practices (reflected in the loss-on-ignition and Fe data from the peat bog) and a rapid increase in SCP deposition. The top of core represents the year of sampling (2009). The Medieval Warm Period (MWP) and Little Ice Age (LIA), marked by drier and wetter bog surface wetness respectively, are shown and the proposed Holocene–Anthropocene boundary of AD 1950 is illustrated by the grey line.
Northern England (54.0975946°, −2.1730828°) were taken using a Russian-type D section corer. One corer was analysed for 21 chemical elements using a Cox Analytical Systems ITRAX X-ray fluorescence core scanner at 500 μm intervals to semi-quantitatively determine Pb and Fe content. The other core was divided into 1-cm contiguous sections for SCP analysis. SCP concentrations were analysed under high-powered microscopy following acid digestion and presented as n g per g dry peat. Calendar ages for the first occurrence, rapid increase, and peak concentration of SCP were assigned to the record. Loss-on-ignition was determined using standard methods. Water table depth reconstruction was carried out on subfossil testate amoebae using a transfer function based on a local training set.

References

1. Crutzen, P. J. Geology of mankind. Nature 415, 23–23, doi:10.1038/413023a (2002).
2. Crutzen, P. J. & Stoermer, E. F. The Anthropocene. Global Change Newsletter 41, 17–18 (2000).
3. Ruddiman, W. F. The anthropogenic greenhouse era began thousands of years ago. Climatic Change 61, 261–293, doi:10.1023/B:CLIM.0000045777.17928.Ea (2003).
4. Certini, G. & Scalenghe, R. Anthropogenic soils are the golden spikes for the Anthropocene. Holocene 21, 1269–1274, doi:10.1177/0959683611408454 (2011).
5. Zalasiewicz, J., Williams, M. & Waters, C. N. Can an Anthropocene Series be defined and recognized? Geol Soc Spec Publ 395, 39–53, doi:10.1144/Sp395.16 (2014).
6. Steffen, W. et al. The Anthropocene: From global change to planetary stewardship. Ambio 40, 739–761, doi:10.1007/s13280-011-0185-x (2011).
7. Dean, J. R., Leng, M. J. & Mackay, A. W. Is there an isotopic signature of the Anthropocene? The Anthropocene Review, 1–12, doi:10.1177/2053019614534402 (2014).
8. Smith, V. C. Volcanic markers for dating the onset of the Anthropocene. A Stratigraphical Basis for the Anthropocene, Geological Society of London Special Publications 395, 283–299 (2013).
9. Kandlbauer, J., Carey, S. N. & Sparks, R. S. J. The 1815 Tambora ash fall: implications for transport and deposition of distal ash on land and in the deep sea. B Volcanol 75, doi:10.1007/s00445-013-0708-3 (2013).
10. Ruppel, M. et al. Comparison of spheroidal carbonaceous particle data with modelled atmospheric black carbon concentration and deposition and air mass sources in Northern Europe, 1850–2010. Adv Meteorol, doi:10.1155/2013/393926 (2013).
11. Wik, M. & Renberg, I. Recent atmospheric deposition in Sweden of carbonaceous particles from fossil-fuel combustion surveyed using lake-sediments. Ambio 20, 289–292 (1991).
12. Wik, M. & Renberg, I. Spherical carbonaceous particles as a marker for recent sediment distribution. Hydrobiologia 214, 85–90, doi:10.1007/BF00050936 (1991).
13. Rose, N. L. & Juggins, S. A spatial relationship between carbonaceous particles in lake-sediments and sulfur deposition. Atmos Environ 28, 177–183, doi:10.1016/1352-2310(94)90092-2 (1994).
14. Bindler, R., Renberg, I., Appleby, P. G., Anderson, N. J. & Rose, N. L. Mercury accumulation rates and spatial patterns in lake sediments from west Greenland: A coast to ice margin transect. Environ Sci Technol 35, 1736–1741, doi:10.1021/Es0002868 (2001).
15. Rose, N. L., Rose, C. L., Boyle, J. F. & Appleby, P. G. Lake-sediment evidence for local and remote sources of atmospherically deposited pollutants on Svallbard. J Palaeolimnol 31, 499–513, doi:10.1023/B:Jopal.0000022548.97476.39 (2004).
16. Doubleday, N. C., Douglas, M. S. V. & Smol, J. P. Paleoenvironmental studies of black carbon deposition in the High Arctic - a case-study from Northern Ellesmere Island. Sci Total Environ 160-61, 661–668, doi:10.1016/S0048-9697(95)04000-U (1995).
17. Doubleday, N. C. & Smol, J. P. Atlas and classification scheme of Arctic combustion particles suitable for paleoenvironmental work. J Palaeolimnol 33, 393–431, doi:10.1007/s10933-005-2516-z (2005).
18. Rose, N. L. et al. Long-range transport of pollutants to the Falkland Islands and Antarctica: Evidence from lake Sediment fly ash particle records. Environ Sci Technol 46, 9881–9889, doi:10.1021/Es3032303 (2012).
19. Broman, D., Naf, C., Wik, M. & Renberg, I. The importance of spheroidal carbonaceous particles (SCPs) for the distribution of Particulate Polycyclic Aromatic-Hydrocarbons (PAHs) in an estuarine-like urban coastal water area. Chemosphere 21, 69–77, doi:10.1016/0045-6535(90)90379-8 (1990).
20. Rose, N. L. & Appleby, P. G. Regional applications of lake sediment dating by spheroidal carbonaceous particle analysis I: United Kingdom. J Palaeolimnol 34, 349–361, doi:10.1007/s10933-005-4925-4 (2005).
21. Yang, H. D., Rose, N. L. & Battarbee, R. W. Dating of recent catchment peats using spheroidal carbonaceous particle (SCP) concentration profiles with particular reference to Lochnagar, Scotland. Holocene 11, 593–597, doi:10.1177/095968360180223549 (2001).
22. Oldfield, F. Can the magnetic signatures from inorganic fly ash be used to mark the onset of the Anthropocene? The Anthropocene Review, 1–11, doi:10.1177/2053019614534402 (2014).
23. Grasby, S. E., Sanei, H. & Beauchamp, B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat Geosci 4, 104–107, doi:10.1038/ngeo1069 (2011).
24. Harvey, M. C., Brassell, S. C., Belcher, C. M. & Montanari, A. Combustion of fossil organic matter at the Cretaceous-Paleogene (K-P) boundary. Geology 36, 335–338, doi:10.1130/G24646A.1 (2008).
25. Rose, N. L., Harlock, S., Appleby, P. G. & Battarbee, R. W. Dating of recent lake-sediments in the United-Kingdom and Ireland using spherical carbonaceous particle (SCP) concentration profiles. Holocene 5, 328–335, doi:10.1177/09596836950050308 (1995).
26. Swindles, G. T. & Roe, H. M. Constraining the age of spheroidal carbonaceous particle (SCP) stratigraphies in peats using tephrochronology. Quaternary Newsletter 110, 2–9 (2006).
27. Swindles, G. T. Dating recent peat profiles using spherical carbonaceous particles (SCPs). Mires and Peat 7, 1–10 (2010).
28. Chambers, F. M., Beilman, D. W. & Yu, Z. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires and Peat 7, 1–10 (2011).
29. Turner, T. E., Swindles, G. T. & Roucoux, K. H. Late Holocene ecohydrological and carbon dynamics of a UK raised bog: impact of human activity and climate change. Quaternary Sci Rev 84, 65–85, doi:10.1016/j.quascirev.2013.10.030 (2014).

Acknowledgements

We acknowledge NERC Training Grants NE/G52398X/1 to Elizabeth Watson and NE/G52398X/1 to Ed Turner. Special thanks go to Henry Lamb of Aberystwyth University for valuable advice on the XRF analysis. We thank Phil Gibbard for constructive comments on an earlier version of the manuscript.
Author Contributions
GTS conceived the idea, carried out data analysis and wrote the first draft of the paper; EW carried out data analysis; TET provided the dataset from Malham; JMG, TH and KLB contributed expertise and text on geological aspects; JW contributed expertise and text on historic context. All authors contributed to and reviewed the final manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Swindles, G. T. et al. Spheroidal carbonaceous particles are a defining stratigraphic marker for the Anthropocene. Sci. Rep. 5, 10264; doi: 10.1038/srep10264 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/