A pharmacological evidence for the presence of antihistaminic and anticholinergic activities in *Equisetum debile* Roxb

Shahrukh Ali, Muhammad Ovais Omer, Mueen Ahmad Chaudhry, Muhammad Ashraf, Allah Bukhsh

Abstract:

Objective: The study was designed to evaluate possible antihistaminic and anticholinergic activities of *Equisetum debile*.

Materials and Methods: Effects of crude ethanolic (Ed.Eth) and effects of crude aqueous (Ed.Aq) extracts of *E. debile* were studied using isolated guinea pig ileum, rabbit jejunum, and rabbit trachea. Tissue responses were recorded using isotonic and isometric transducers, connected with PowerLab data acquisition system.

Results: A dose-dependent (0.1–0.3 mg/ml) rightward shift was demonstrated in histamine concentration-response curves. Whereas a complete relaxation of carbachol (1 μM)-induced contractions in isolated rabbit jejunum (3 mg/ml) and tracheal (10 mg/ml) preparations was observed, similar to dicyclomine at 1 and 3 μM, respectively. However, no significant difference between the effects of Ed.Eth and Ed.Aq was observed.

Conclusion: Study provides pharmacological evidence for the presence of antihistaminic and anticholinergic activities in crude extracts of *E. debile* and also highlight its medicinal significance in the management of airway and gastrointestinal disorders.

Key words: Antiasthmatic, bronchospasm, *Equisetum debile* Roxb, spasmolytic

Equisetum debile Roxb. (Equisetaceae) commonly known as sumbak, distributed widely through South of China, Southeast Asia, and India. *E. debile* has been used traditionally in folk medicine for the treatment of hepatitis, conjunctivitis, urethritis, and diarrhea.[1] Fresh plant juice is used to cure liver disorders and in respiratory disorders. Root paste is used for the treatment of bones dislocation.[2] It has diuretic properties and also used to treat kidney infections,[3] eye inflammation, fever, enteritis influenza, diarrhea, swelling, hepatitis, bloody urine, hemorrhoids, bone fractures, rheumatism, in the removal of kidney and urinary tract stones.[4] Plant decoction is used in nasal polyps, breast, liver, intestine, stomach, kidneys, and tongue cancers.[5]

Despite wide medicinal uses of *E. debile*, a very few scientific evidence are available about the plant that indicate the presence of antihyperlipidemic, cytotoxic, antibacterial, antioxidant, and antifungal properties in *E. debile*.[5] However, currently, no data are available regarding the antihistaminic and anticholinergic activities of *E. debile*. The present study was conducted with an aim to explore pharmacological evidence for the possible presence of antihistaminic and anticholinergic activities in *E. debile* and to unveil its medicinal significance in the management of airway and gastrointestinal disorders.

Materials and Methods

Plant Material and Preparation of Extracts

Fresh whole plant of *E. debile* was collected from Narowal district, Punjab, Pakistan and identified by expert taxonomist Prof. Dr. Zaheer ud din Khan, Department of Botany, GC University, Lahore with the specimen voucher no. Dr. S. A. herb.gcu-9-23. Plants were crushed after shade dried for few days. Aqueous extract of the *E. debile* (effects of crude aqueous [Ed.Aq]) was prepared as described by Ali S. Omer et al.[6]
prepared by soaking crushed material in distilled water for 7 days with occasional shaking and then successively filtered with muslin cloth and Whatman filter paper. Ethanolic extract of *E. debile* (effects of crude ethanolic [Ed.Eth]) was prepared by using soxhlet apparatus. Solvents from both extracts were evaporated separately at reduced temperature (40°C) and pressure (~760 mmHg) to form a thick semi-solid extract, and stored at −20°C until used for the experimental procedure.

Experimental Animals
Guinea pigs (500–600 g) and rabbits (1.25–1.5 Kg) of both sexes and local breed were used for experimental work. Animals were given free access to food and water, and were kept under standard environmental conditions in the animal house of Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, according to the guidelines of the Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council, Washington, DC. Animals were decapitated by cervical dislocation for *in vitro* experiments after overnight fasting but access to water was give *ad libitum*.

In vitro Experiments
All isolated tissues of guinea pig ileum, rabbit jejunum, and trachea were prepared by following Mushtaq *et al.* with minor modifications.

Isolated Guinea Pig Ileum/Isolated Rabbit Jejunum
Guinea pig ileum/rabbit jejunum was dissected out after decapitation and placed in Tyrode’s solution. A small piece of (approximately 2 cm) was taken, and loops were made on both ends, one for hanging in the chamber, tied with the lever and other tied to the isotonic transducer, connected with PowerLab data acquisition system to observe tissue response. Tissue was aerated with carbogen and maintained at 37°C ± 0.5°C temperature. Tissue was equilibrated for half an hour under a load of 1 g.

Dose response curves of histamine dihydrochloride were constructed in the absence and presence of different concentrations of aqueous and ethanolic extracts of *E. debile* to observe antihistaminic activity. Whereas anticholinergic activity was observed by applying different concentrations of aqueous and ethanolic extracts of *E. debile* on carbachol (CCh) (1 μM)-induced precontracted isolated rabbit jejunum.

Isolated Rabbit Trachea
Rabbit trachea was dissected out after decapitation and placed in Kreb’s solution. A small piece of trachea (containing 2 cartilage rings) was hanged in chamber containing Kreb’s solution, aerated with carbogen and maintained at 37°C temperature. Isometric transducer, connected with PowerLab data acquisition system were used to observe anticholinergic activity by applying different concentrations of aqueous and ethanolic extracts of *E. debile* on CCh (1 μM)-induced precontracted isolated rabbit trachea.

Statistical Analysis
The data were analyzed statistically using paired *t*-test and one-way ANOVA followed by Dunnett’s test to determine the significant difference in various doses (*P* < 0.05 were considered statistically significant). All values were expressed as mean ± standard error of mean and the median effective concentrations (EC₅₀) with at 95% of confidence intervals (CI).

Results

Effects on Isolated Guinea Pig Ileum
When tested on isolated guinea pig ileum, ED.Eth and Ed.Aq showed a dose-dependent (0.1–0.3 mg/ml) rightward shift in histamine concentration-response curves (CRCs), as shown in Figure 1.

Effects on Isolated Rabbit Jejunum
When tested on CCh (1 μM)-induced precontracted isolated rabbit jejunum a dose-dependent inhibitory effect was shown by ED.Eth and Ed.Aq and complete relaxation was noted at the same dose of 3 mg/ml with EC₅₀ value 0.53 mg/ml (0.27–1.04, 95% CI, *n* = 3) and 0.6 mg/ml (0.38–0.94, *n* = 3) respectively, similar to dicyclomine (DCM) at 1 μM with EC₅₀ value 0.35 μM (0.31–0.4; *n* = 5), as shown in Figure 2.

Effects on Isolated Rabbit Trachea
When tested on CCh-induced precontracted isolated trachea, a dose-dependent inhibitory effect was shown by ED.Eth and Ed.Aq and complete relaxation was noted at same dose 10 mg/ml with EC₅₀ value 0.89 mg/ml (0.39–2.0, *n* = 3) and 2.49 mg/ml (1.97–3.13, *n* = 3), respectively, similar to DCM at 3 μM with EC₅₀ value 0.56 μM (0.42–0.76; *n* = 4), as shown in Figure 3.

Discussion
Ethanolic (Ed.Eth) and aqueous extracts of *E. debile* (Ed.Aq) were subjected to pharmacological investigations for the possible presence of antihistaminic and anticholinergic activities. To see antihistaminic activity, Ed.Eth and Ed.Aq were tested on CRCs of histamine in isolated guinea pig ileum, and a rightward shift was seen in the presence of extract concentrations (0.1–0.3 mg/ml) and the results are comparable to findings of study previously conducted on *Murriaga koenigii* Linn., in isolated guinea pig tracheal preparations by.[11] Since both Ed.Eth and Ed.Aq showed antihistaminic response, but the effect was more pronounced with ethanolic extract, indicates that antihistaminic effect is more potent in ethanolic extract of *E. debile*.

To evaluate the anticholinergic activity, Ed.Eth and Ed.Aq were tested against CCh (1 μM)-induced precontracted isolated rabbit jejunum and a dose-dependent inhibition of CCh-induced contractions were shown by both extracts at the same dose (0.1–3 mg/ml) in isolated rabbit jejunum, similar to DCM (1 μM), indicates the presence of anticholinergic activity in *E. debile*. The presence of anticholinergic activity in crude extracts of *E. debile* was further strengthened when similar effects were observed (0.1–10 mg/ml) in isolated rabbit tracheal preparations.

Since both extracts dose-dependently relaxed the CCh-induced contractions in isolated rabbit jejunum at lower concentration and in isolated rabbit tracheal preparations at higher concentration, similar to crude extract of *Terminalia arjuna* that relaxed isolated rabbit jejunum at 5.0 mg/ml and...
isolated rabbit trachea at 10.0 mg/ml.[12] Dose-dependent inhibition of CCh-induced contraction with Ed.Eth was found more significant in both jejunum and tracheal preparations, whereas Ed.Aq also showed significant inhibition in isolated jejunum and tracheal preparations but at higher doses, indicates that ethanolic extract contains more potent anticholinergic effect as compared to aqueous extract of *E. debile* as previously shown by methanolic extract of Acacia modest.[13]

Since histamine significantly contributes in bronchial obstruction because it acts as mucus production inducer and bronchoconstrictor.[14] Second, cholinergic stimuli are also observed during respiratory diseases such as asthma and bronchitis[11,15] and gastrointestinal disorders.[6] Hence, the presence of antihistaminic and anticholinergic activities in ethanolic and aqueous extracts of *E. debile* highlights medicinal importance of plant in allergy and airways disorders such as asthma[10] and gastrointestinal disorders like diarrhea.[12]
Further studies with the isolation of the constituents will help define the therapeutic potential better.

Conclusion

Antihistaminic and anticholinergic activities are evident in ethanolic and aqueous extracts of *E. debile* leaves, thus providing a pharmacological basis for the medicinal uses of *E. debile* in the management of airways and gastrointestinal disorders.

Financial Support and Sponsorship
Nil.

Conflicts of Interest
There are no conflicts of interest.

References

1. Xu XH, Tan CH, Jiang SH, Zhu DY. Debilosides A-C: Three new megastigmane glucosides from *Equisetum debile*. Helv Chim Acta 2006;89:1422-6.
2. Singh AG, Gautam LP, Tewari D. Folk uses of some medicinal plants of dobhan VDC of Palpa district, Western Nepal. J Phytol 2011;3:62-7.
3. Abbasi AM, Khan MA, Ahmad M, Zafar M, Khan H, Muhammad N, *et al.* Medicinal plants used for the treatment of jaundice and hepatitis based on socio-economic documentation. Afr J Biotechnol 2009;8:1643-50.
4. Bahaaar SW, Bhat G. Taxocoenosis and distribution of weed flora in the rice field monocultures of Kashmir Valley (J and K) India. Int J Bot 2012;8:73.
5. Sarkar B, Raihan S, Sultana N, Rahman R, Islam ME, Ahmed S, *et al.* Cytotoxic, antibacterial and free radical scavenging activity studies of the solvent extracts of aerial stems of *Equisetum debile roxb.* Int J Chem Sci 2012;10:19-26.
6. Chaudhary MA, Imran I, Bashir S, Mehmood MH, Rehman NU, Gilani AH. Evaluation of gut modulatory and bronchodilator activities of *Amaranthus spinosus* Linn. BMC Complement Altern Med 2012;12:166.
7. Khan MI, Ahmad M, Khan RA, Ullah A, Rehman S, Ullah B. Phytoxic, antioxidiant and antifungal activity of crude methanolic extract of *Equisetum debile*. Int J Biosci 2013;3:30-135.
8. Naz SB, Chaudhry MA, Rahaman SU. Dual receptors blocked mechanism arbitrates smooth muscles relaxant effect of *Polyodium vulgaris*. Bangladesh J Pharmcol 2016;11:414-20.
9. Clark J, Baldwin R, Bayne K, Brown M, Gebhart G, Gonder J, *et al.* Guide for the Care and Use of Laboratory Animals. Washington, DC: Institute of Laboratory Animal Resources, National Research Council; 1996. p. 125.
10. Mushtaq S, Chaudhry MA, Rahman HM. Calcium channels blocked activity: Providing the basis for medicinal use of Abies pindrow in diarrhea and bronchitis. Bangladesh J Pharmcol 2015;10:430-5.
11. Qureshi HM, Omer MO, Ashraf M, Bukhsh A, Chaudhry MA, Imarn M. Evaluation of antihistaminic and anticholinergic activities of *Murraya koenigii* Linn. Pak Vet J 2015;35:242-4.
12. Janbaz K, Hamid I, Mahmood M, Gilani A. Bronchodilator, cardiotonic and spasmyloytic activities of the stem barks of *Terminalia arjuna*. Can J Appl Sci 2011;3:104-20.
13. ur Rahaman MS, Chaudhry MA, Bashir A, Alamgeer A. Rationalization of traditional uses of *Berberis lycium* in gastrointestinal disorders. Br J Med Med Res 2013;3:868.
14. Shioya T, Satake M, Kagaya M, Sano MA, Watanabe A, Fukui S, *et al.* Antitussive effects of the H1-receptor antagonist epinastine in patients with atopic cough (eosinophilic bronchitis). Arzneimittelforschung 2004;54:207-12.
15. Ritz T, Kullowatz A, Goldman MD, Smith HJ, Kanniess F, Dahme B, *et al.* Airway response to emotional stimuli in asthma: The role of the cholinergic pathway. J Appl Physiol 2010;108:1542-9.