Cryptic Species of Parasitoids Attacking the Soybean Aphid (Hemiptera: Aphididae) in Asia: Binodoxys communis and Binodoxys koreanus (Hymenoptera: Braconidae: Aphidiinae)

NICOLAS DESNEUX,1,2 PETR STARY,3 CAMILLE J. DELEBEQUE,1 TARA D. GARIETY,4 RUTH J. BARTA,1 KIM A. HOELMER,5 AND GEORGE E. HEIMPEL1,6

ABSTRACT Collections of parasitoids attacking the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), in South Korea yielded specimens that were originally identified as Binodoxys communis (Gahan) (Hymenoptera: Braconidae). We report here on laboratory studies indicating that this population is actually a previously unknown species of Binodoxys. Four classes of comparisons were made between the Korean population and a Chinese population that also had been identified as B. communis. The comparisons included 1) mating trials coupled with behavioral observations and spermathecal examinations, 2) assessment of nucleotide divergence at two mitochondrial and two nuclear gene loci, 3) patterns of host use, and 4) reassessment of morphological characters. These studies revealed premating reproductive isolation of the two populations and minor nucleotide differences in mitochondrial cytochrome oxidase I sequences and nuclear internal transcribed spacer 1 sequences, providing strong indications that they are different species. Subtle morphological differences also were discovered that confirmed that the Chinese population corresponds to B. communis, whereas the Korean population does not. We propose the name Binodoxys koreanus Stary, sp. n. for the Korean population. The two species exhibited similar host ranges in the laboratory, the most notable exception being that B. koreanus, sp. n. is better able to develop in a population of Aphis craccivora Koch that harbors the bacterial endosymbiont Hamiltonella defensa Moran, which seems to strongly interfere with the development of B. communis. We discuss the implications of our results for biological control introductions against the soybean aphid in North America.

KEY WORDS cryptic species, Binodoxys communis, Binodoxys koreanus, soybean aphid, parasitoids

When two populations are classified as belonging to the same species based upon morphological characters, but are subsequently recognized as separate species, they are often designated as “cryptic species” (Bickford et al. 2007). Despite being morphologically very similar or indistinguishable, cryptic species are genetically divergent and may differ in several behavioral or physiological traits. An understanding of cryptic species relationships is critical for characterization of speciation, biodiversity, and community structure and also has important implications for ecological interactions such as host specialization and interspecific competition (Zhang et al. 2004, Kankare et al. 2005a, Smith et al. 2008, Forbes et al. 2009). Conservation efforts, in particular, depend upon an understanding of cryptic species relationships (Bickford et al. 2007) as does the success and safety of biological control of pest and weed species (De Bach 1969, Rosen 1986, Clarke and Walter 1995, Beard 1999, Stouthamer et al. 2000a, Madeira et al. 2001, Pinto et al. 2003, Meyling and Eilenberg 2007).

Recognition has been growing over the past decade that numerous lineages of insect parasitoids are composed of complexes of cryptic species and also that cryptic parasitoid species often attack different host species (Heimpel et al. 1997; Fernando and Walter 1997; Kankare et al. 2005a; Smith et al. 2006, 2007, 2008; Heraty et al. 2007; Abrahamson and Blair 2008; Bernardo et al. 2008; Kathirithamby 2009). Cryptic speciation also has been found to be associated with host specialization in herbivorous insects (Hebert et al. 2004, Scheffer et al. 2004, Blair et al. 2005, Stireman et al. 2005, Abrahamson and Blair 2008, Thompson 2008). The scale of discovery of new cryptic species in...
these and other studies has been so great that estimates of global species diversity are having to be increased. A particularly important breakthrough has come from studies in which parasitoids were reared from caterpillars collected in Costa Rican rain forests over the past 30 yr. Adult parasitoids were identified morphologically and then genotyped using cytochrome oxidase I (COI) barcode sequences, revealing 15 new cryptic species of the tachinid genus Belbosia beyond 17 original morphological species, and a staggering 142 new cryptic species of microgastrine braconids beyond 171 morphological species (Smith et al. 2006, 2008). Similar upward adjustments in diversity are being made for Cotesia parasitoids of checkerspot and related butterflies (Kankare et al. 2005a,b).

Nucleotide divergences between cryptic species of parasitoids in genes that tend to vary among species range from <1% among some species of Aphelinus, Trichogramma, and Cotesia (Stoutamer et al. 2000b, Kankare et al. 2005b, Heraty et al. 2007) to 10% or more in some Encarsia and Ageniaspis species as well as the strepsipteran genus Caenocholax (Alvarez and Hoy 2002, Monti et al. 2005, Kathirithamby et al. 2007). Reproductive isolation in laboratory mating trials is obviously consistent with separate species, but it is not a requirement for cryptic (or other) species status (Bickford et al. 2007). Allopatric populations may diverge genetically and behaviorally before evolving reproductive isolation, as barriers to gene flow are not under selection in allopatry. For example, some allopatric populations of Aphelinus spp. remain reproductively compatible while differing in host-use patterns, subtle morphological traits and genetic sequences, whereas pairs of sympatric populations prove reproductively incompatible in laboratory mating trials (Wu et al. 2004, Heraty et al. 2007).

Here, we report on a new cryptic species within the aphid parasitoid genus Binodoxys (Hymenoptera: Braconidae: Aphidiinae). Two purported geographic strains of Binodoxys communis (Gahan) (Hymenoptera: Aphidiinae) were collected in China and South Korea as potential biological control agents of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), which invaded North America from Asia in 2000 (Heimpel et al. 2004, Wyckhuys et al. 2007a). Routine laboratory studies of these two populations suggested that they were reproductively incompatible, and we report here on formal studies to determine whether they are, in fact, cryptic species. These studies include mating trials, sequencing of mitochondrial and nuclear DNA of the two populations, a comparison of host-use patterns, and a reexamination of morphological features. Our studies suggest strongly that the Chinese population is B. communis but that the Korean population is a cryptic species closely related to B. communis and we propose the name Binodoxys koreanus Stary, sp. n.

**Materials and Methods**

**Origin of Parasitoids.** Specimens of Binodoxys were reared from parasitized A. glycines collected by K.A.H. in commercial fields and in research plots of soybean, Glycine max (L.) Merr., in Heilongjiang Province, northeastern China, and from several provinces in South Korea. Commercial fields in Heilongjiang were often relatively large, sometimes many hectares, whereas in Korea, the fields were nearly always small plots, often no more than border rows planted alongside other crops. Populations of A. glycines were very low and highly dispersed at all sites at the time of collections in late August 2002 (China) and August 2003 (Korea). The mummies obtained from collections were shipped by express mail to the USDA-ARS Beneficial Insect Introduction Research laboratory in Newark, DE, where laboratory cultures were established from emergent adults. Individuals of Binodoxys composed 74% of the aphidine braconids from Heilongjiang, China, that were alive upon arrival, or subsequently emerged in Newark, and 30% of those from Korean material. Because of the relatively small number of live Binodoxys adults obtained from individual sites, adults from multiple sites were pooled to establish one culture from China in 2002 (from seven males and 33 females) and one culture from Korea in 2003 (from 10 males and 17 females). Both parasitoid cultures were transferred to a quarantine laboratory at the University of Minnesota (Minnesota Department of Agriculture/Minnesota Agricultural Experiment Station Quarantine Facility) in 2003, where they were maintained in continuous culture in separate rooms on A. glycines on soybean (25°C, 75% RH, and a photoperiod of 16:8 [L:D] h) (see Wyckhuys et al. 2008 for general rearing protocol). Individuals from both populations were identified as B. communis based upon the keys found in Stary and Schlinger (1967) and Chen and Shi (2001). We will argue below that the Chinese population is indeed B. communis but that the Korean population is a new species. Until then, we will refer to the entities as the Chinese and Korean Binodoxys populations, respectively.

**Reproductive Compatibility.** We set up reciprocal crosses of the Chinese and Korean populations of Binodoxys by establishing between- and within-population crosses (n = 10 in both cases). We ensured that both males and females were unmated before the experiments by isolating mummies in gelatin capsules (size 00) until emergence of adults. Individuals used in all crosses were between 24 and 48 h old. Males and females were placed into gel capsules as single pairs for 1 h to allow mating, and then introduced into A. glycines–soybean microcosms identical to those used for parasitism assays described below (the cages were kept at 25°C, 75% RH, and a photoperiod of 16:8 [L:D] h). Both females and males were placed into the microcosms to allow mating in the event it did not occur in the gel caps. Female parasitoids were allowed to oviposit for 24 h before being removed from the microcosms. As mummies formed, they were isolated individually in clear gelatin capsules (size 00). We counted the mummies produced per microcosm, and the number of male and female adults emerging. Due to haplodiploid sex determination, production of female offspring is evidence of mating, and the produc-
tion of only male offspring is consistent with virgin oviposition (Heimpel and de Boer 2008). Data were square-root transformed and analysis of variance (ANOVA) was used to assess significance of sex ratio differences among mating treatments. In addition, the numbers of total offspring produced (males + females) per microcosm were square-root-transformed and analyzed using a factorial ANOVA with “Binodoxys population” and “cross type” as factors. This analysis was done to evaluate the possibility that male origin would affect female oviposition behavior.

Although the results of this experiment suggested that B. communis and the Korea population were reproductively isolated (see Results), it was unclear whether isolation occurred before or after mating. To address this, we observed individual mating behavior in the context of the reciprocal and within-population crosses. Matings were established in clear gelatin capsules (size 00) and observed under a dissecting microscope at 10–50×. Based on preliminary observations, four male behaviors were noted and timed: 1) male wing fanning, 2) chase (when a male followed a female), 3) mounting attempt, and 4) copulation (the male bends his abdomen toward the female genitalia and genital contact occurs). In addition, three other male behaviors were timed: walking, grooming, and resting. Depending upon the particular mating combination, 19–26 replicates were used. Observations began when a male and a female were introduced into the gelatin capsule and lasted for 5 min or until copulation occurred. Each female that had close contact with a male during either a mounting attempt or copulation event was dissected and the spermatheca examined under a compound microscope at 1,000× magnification to detect the presence of sperm. Dissections were done 4 h after the presumed sexual contact, a time determined on the basis of preliminary observations to be sufficient for spermatozoa to reach the spermatheca. In a separate experiment, single unmated male and female parasitoids corresponding to the two between-population reciprocal crosses and the two within-population crosses were placed together in a gel capsule for 1 h. After this time, the females were dissected and their spermathecae checked for the presence of sperm as described above (10 replicates per cross).

Comparison of DNA Sequences. 16S rDNA and ITS1. DNA was isolated from parasitoids that were killed by freezing and stored in microcentrifuge tubes at −80°C. DNA was extracted from individual females of each Binodoxys population using the Puregene DNA isolation tissue kit (Gentra Systems, Minneapolis, MN). Polymerase chain reaction (PCR) amplifications were carried out in 50-μl volumes using Gotaq Green mix (Promega, Madison, WI) with 25 μl of Gotaq, 0.5 μl of each primer (20 μM) (forward and reverse), 22 μl of water, and 2 μl of DNA sample. All PCR products were run on 2% agarose gels, stained in ethidium bromide, and visualized with UV light. Bands of ~1000-bp (internal transcriber spacer [ITS1]), 400-bp (16S) were cut from the gel, purified using Ultrafree-DA columns (Micron Bioseparations, Billerica, MA), and sequenced directly. Sequencing of these fragments was performed at the University of Minnesota (BioMedical Genomics Center-DNA Sequencing and Analysis Facility).

COI and D2 Expansion Area. DNA was extracted from parasitoids using a Chelex/Protease K DNA extraction method. Individual parasitoids preserved in 95% ethanol were allowed to dry briefly in a 1.5-ml microcentrifuge tube and were then ground with a sterile pestle in 100 μl of Chelex-100 (Bio-Rad Laboratories, Hercules, CA) and 2 μl of proteinase K (20 mg/ml; Amresco, Solon, OH). Samples were incubated at 55°C for 2–4 h followed by 99°C for 10 min. Tubes were spun at 14,000 rpm for 4 min, and the supernatant was transferred to a new tube and stored at −20°C. PCR amplifications (25 μl) were performed in a MJ Mini Thermocycler (Bio-Rad Laboratories) with 2.5 μl of 10× PCR buffer (Invitrogen, Carlsbad, CA), 2.5 μl of 50 mM MgCl2, 0.25 ml of 25 mM dNTPs (Invitrogen), 1.0 μl of each forward and reverse primer (10 μM), 17.9 μl of double-distilled H2O, and 0.1 μl of Taq DNA polymerase (Invitrogen). PCR products were visualized by gel electrophoresis on 2% agarose gels stained with GelRed (Biotium Inc., Hayward, CA) and purified with ExoSAP-IT (exonuclease i/shrimp alkaline phosphatase method; USB Corp., Cleveland, OH). Purified PCR products were sequenced at the University of Hawaii at Manoa (Advanced Studies of Genomics, Proteomics, and Biotechnology Sequencing Service). Information on primers and PCR conditions are provided in Table 1. Ten individuals per Binodoxys population were sequenced for each region amplified. All PCR reactions included a negative control (mix without DNA).

Parasitoid Host Range. Twenty aphid species were tested as potential hosts for the Korean population in identical manner to tests performed on the Chinese population that were reported previously (Desneux et al. 2009b). The parasitism assays for the Chinese and Korean populations were done over the same period (April 2004–January 2006) and under identical conditions within the quarantine laboratory. The aphids were reared in the quarantine laboratory on their respective host plants at 25°C, 75% RH, and a photoperiod of 16:8 [L:D] h (see Desneux et al. 2009b for details). Table 2 provides the aphid species, host plants, and phylogenetic relationships among the aphid species. These aphid species were chosen in part because they cover a broad phylogenetic range. Four species native to North America were included to estimate the potential risk to native species posed by Binodoxys if introduced to control soybean aphid (Wychus and Heimpel 2007; Wychus et al. 2007a,b, 2009; Desneux et al. 2009b).

In preparation for parasitism assays, mummiﬁed A. glycines were removed from soybean leaves and kept individually in plastic 6-cm-diameter petri dishes until emergence of adults. Females were mated within 24 h of emergence and supplied with a droplet of diluted honey (80%) before use in experiments. Parasitoids used for all experiments were 24–48 h old, naïve with respect to host encounters, and used only once.
Individual female parasitoids were each exposed to aphids for 24 h on their respective host plants, which were potted and covered by plastic cylindrical cages (diameter, 11 cm; height, 21 cm) (see Table 2 for sample sizes). Fifty aphids of mixed instars were placed per plant, and cages were kept in a growth chamber at 25°C, 75% RH, and a photoperiod of 16:8 [L:D] h. Newly developed mummies were isolated individually in clear gelatin capsules (size 00). We counted the mummies produced per plant, and the number of male and female adults emerging. The numbers of parasitoid mummies produced per plant, and the numbers of emergent adults, were square-root transformed to homogenize variances, and then compared among aphid species using ANOVA followed by Tukey’s test to separate means. The proportions of adults emerging from mummies were arcsine-square-root transformed and compared among aphid species using ANOVA (Tukey’s test as post hoc analysis). We used log-likelihood goodness-of-fit tests to evaluate the hypothesis that observed sex ratios for the Korea population on each aphid species differed from 0.5 as in Heimpel and Lundgren (2000).

We compared the numbers of mummies (t-tests), proportional emergence (chi-square tests) and sex ratio (chi-square tests) on each aphid host species in the presence of the Korean population (this study) with those of the same aphids in the presence of the Chinese population (data presented in Desneux et al. 2009b).

Morphological Characterization of the Korean Population.

The original description of B. communis done by Gahan (1926) in Taiwan using material obtained in Table 1. Molecular markers, primers (forward [F], reverse [R]), and PCR conditions used for amplifying the mitochondrial (mt) and nuclear (nuc) sequences of individuals from the Chinese and Korean populations

| Gene   | Primer | PCR condition          |
|--------|--------|------------------------|
| 16S (mt) | F: 5'-TAA CGG TGT TAT CCC TAA-3' | Initial denaturation: 94°C for 4 min |
|        | R: 5'-CCC GGT TTT ATC AAA AAC ATG T-3' | 35 cycles: 94°C for 30 s, 50°C for 1 min, 72°C for 1 min |
|        |        | Final step: 72°C for 2 min |
| COI (mt) | F: 5'-ATACTTCAGGGTGACAAAAAAATCA-3' | Initial denaturation: 94°C for 2 min |
|        | R: 5'-GCGAAGAATCAAAAGATTGG-3' | 35 cycles: 94°C for 15 s, 50°C for 30 s, 72°C for 45 s |
|        |        | Final step: 72°C for 2 min |
| D2 (nuc) | F: 5'-AGT CCT GTG CCT TGA TAG TGC AG-3' | Initial denaturation: 94°C for 3 min |
|        | R: 5'-TTG GTG CTG GTT TCA AGA CGG G-3' | 35 cycles: 94°C for 45 s, 55°C for 30 s, 72°C for 1.5 min |
|        |        | Final step: 72°C for 30 min |
| ITS 1 (nuc) | F: 5'-TAC ACA CGG CCC GTC ACT A-3' | Initial denaturation: 94°C for 4 min |
|        | R: 5'-ATG TTC GCT AAT CAA GTT CTA-3' | 35 cycles: 94°C for 30 s, 60°C for 30 s, 72°C for 1.5 min |
|        |        | Final step: 72°C for 2 min |

| Gene   | Primer | PCR condition          |
|--------|--------|------------------------|
| 16S (mt) | F: 5'-TAA CGG TGT TAT CCC TAA-3' | Initial denaturation: 94°C for 4 min |
|        | R: 5'-CCC GGT TTT ATC AAA AAC ATG T-3' | 35 cycles: 94°C for 30 s, 50°C for 1 min, 72°C for 1 min |
|        |        | Final step: 72°C for 2 min |
| COI (mt) | F: 5'-ATACTTCAGGGTGACAAAAAAATCA-3' | Initial denaturation: 94°C for 2 min |
|        | R: 5'-GCGAAGAATCAAAAGATTGG-3' | 35 cycles: 94°C for 15 s, 50°C for 30 s, 72°C for 45 s |
|        |        | Final step: 72°C for 2 min |
| D2 (nuc) | F: 5'-AGT CCT GTG CCT TGA TAG TGC AG-3' | Initial denaturation: 94°C for 3 min |
|        | R: 5'-TTG GTG CTG GTT TCA AGA CGG G-3' | 35 cycles: 94°C for 45 s, 55°C for 30 s, 72°C for 1.5 min |
|        |        | Final step: 72°C for 30 min |
| ITS 1 (nuc) | F: 5'-TAC ACA CGG CCC GTC ACT A-3' | Initial denaturation: 94°C for 4 min |
|        | R: 5'-ATG TTC GCT AAT CAA GTT CTA-3' | 35 cycles: 94°C for 30 s, 60°C for 30 s, 72°C for 1.5 min |
|        |        | Final step: 72°C for 2 min |

| Genus                          | Species                         | Host plant species | Replications | Tribe           |
|--------------------------------|---------------------------------|--------------------|--------------|-----------------|
| Rhopalosiphum                   | padi                            | Hordeum vulgare    | 12           | Aphidini        |
| Rhopalosiphum                   | maidis                          | Hordeum vulgare    | 10           |                 |
| Schizaphis                      | graminum                        | Hordeum vulgare    | 10           |                 |
| Aphis                           | romicis                         | Rumex altilinis    | 9            |                 |
| Aphis                           | crataeora                       | Victa fibae        | 13           |                 |
| Aphis                           | asclepiadis*                    | Asclepias syriaca  | 10           |                 |
| Aphis                           | glycines                        | Glycine max        | 15           |                 |
| Aphis                           | gossypii                        | Gossypium hirsutum | 14           |                 |
| Aphis                           | mouardae*                       | Monarda fistulosa  | 11           |                 |
| Aphis                           | oestlandei*                     | Oenothera biennis  | 11           |                 |
| Aphis                           | nasturtii                       | Solanum tuberosum | 20           |                 |
| Aphis                           | nerii                           | Asclepias incarnata| 11           |                 |
| Myzus                           | persicae                        | Brassica oleracea  | 11           | Macrosiphini    |
| Dinaraphis                      | novia                           | Hordeum vulgare    | 10           |                 |
| Uroleucon                      | leonardi*                       | Echinacea purpurea | 10           |                 |
| Macrosiphum                     | euphorbiace                      | Solanum tuberosum | 10           |                 |
| Stobion                        | avenue                          | Hordeum vulgare    | 9            |                 |
| Aegropisiphon                   | pisum                           | Vicia fabae        | 11           |                 |
| Lipaphis                        | erysimi                         | Brassica oleracea  | 10           |                 |
| Aulacorthum                     | solani                          | Solanum tuberosum | 10           |                 |

a All aphid species are in the family Aphididae and subfamily Aphidinae Phylogeny is from information in von Dohlen et al. (2006), Coeur d'Acier et al. (2007), and unpublished data.

Asterisks indicate aphid species native to North America. All aphids were field-collected in the vicinity of St. Paul, MN, with the exception of D. novia, and A. gossypii, which were shipped from the USDA-ARS quarantine laboratory at the Beneficial Insect Introductions Research Unit in Newark, DE.
successful copulation occurred only in 36 and 26% of cases for Chinese and Korean populations, respectively. When copulation was observed (in within-population crosses), the mean time that elapsed before a mating attempt was 64.3 ± 22.6 s for the Chinese population and 61.3 ± 42.5 s for the Korean population (t = 0.95, P > 0.05). The spermathecae of all females of the between-population crosses were empty 4 h after the crosses were initiated, whereas spermatozoa were visible in spermathecae of females from the within-population crosses (Fig. 1) for which copulation had been observed.

When males and females from the four possible crosses were placed into gel caps for 1 h, spermatozoans were found in the spermathecae of females from both of the within-population crosses, but neither of the between-population crosses.

**Comparison of Mitochondrial DNA (mtDNA) and rDNA Sequences.** A 417-bp fragment of the mitochondrial 16S rRNA gene was amplified from all individuals from which DNA was isolated. The sequences of these fragments were identical among the individuals within both populations (GenBank accession FJ024082). A 646-bp fragment was obtained for the D2 expansion area of 28S rRNA (GenBank accessions FJ798199 and FJ798200). DNA sequences were similarly identical among all individuals of both populations. The ITS1 region was sequenced in its entirety (765 bp) and differed at position 519 with an insertion of a triplet of nucleotides (GAT) in Korean population. The rest of the ITS1 region was identical between the two populations (Chinese population: GenBank accession FJ811824). For the COI gene, a 709-bp PCR fragment was obtained for all individuals examined and sequences were consistent among individuals of a given population. A single nucleotide substitution was observed between the Chinese (GenBank accession FJ798201) and Korean populations (GenBank accession FJ798202); the Chinese population displayed the nucleotide C, whereas the Korea population displays the nucleotide T at position 489.

**Parasitoid Host Range.** Mummy and adult production differed significantly among aphid species offered to females of the Korean population (Fig. 2A; mummy: F_{1,205} = 15.20, P < 0.001 and adult: F_{1,205} = 14.73, P < 0.001). The Korean population produced the most mummies and adults on A. glycines, Aphis monardaef Oestlund, Aphis gossypii Glover, Aphis oestlundi Gillette, and Aphis nasturtii Kaltenbach. In contrast, relatively few mummies and adults were produced on Aphis rumicis L., Aphis craccivora Koch, Rhopalosiphum maidis (Fitch), Sitobion avenae (F.), and Aphis

### Table 3. Proportions of individuals of the Chinese and Korean Binodoxys populations exhibiting different mating behaviors during the between- and within-population crosses

| Cross          | Male wing fanning | Chase | Mounting attempt | Copulation | Mating success |
|---------------|-------------------|-------|------------------|------------|----------------|
| δ Chinese × ♀ Korean | 0.69ns           | 0.46* | 0.27**           | 0**        | 0**            |
| δ Chinese × ♀ Chinese | 0.82            | 0.82  | 0.77             | 0.36       | 0.36           |
| δ Korean × ♀ Chinese  | 0.79ns           | 0.63 ns| 0.37ns           | 0**        | 0**            |
| δ Korean × ♀ Korean   | 0.84             | 0.79  | 0.63             | 0.26       | 0.26           |

The comparisons between within-strain and between-strain crosses are based on Fisher exact tests (ns, not significant; *P < 0.05, **P < 0.01).
The new species resembles *B. communis* but differs in characters of the petiole. The spiracular tubercles are distinct and acutely pointed and the petiole is distinctly constricted between the spiracular and secondary tubercles (Fig. 3A). In contrast, the petiole in *B. communis* bears poorly distinguishable spiracular tubercles, and dilates slightly and gradually to the secondary tubercles (Fig. 3B).

**Female.** Eyes large; width of malar space equal to one sixths of eye length. Tentorial index (=tentorio-ocular line/inter-tentorial line) equal to one fourth. Maxillary palpi four-segmented, labial palpi two-segmented. Antennae 11-segmented, very slightly thickened toward the apex. F1 is 3 times longer than wide, with no placodes. F2 2.5 times longer than wide with one placode.

Mesonotum smooth, notauli distinct in the fore appendant part, with sparse setae before the prescutellar furrow. Propodeum (Fig. 3C) with complete central pentagonal areola, carinae somewhat irregular with some short adventive carinae. Forewing (Fig. 3D) with triangular pterostigma 3 times longer than wide, metacarps half as long as pterostigma, radial vein as long as pterostigma. Petiole (Fig. 3A) twice as long as its width at the spiracles, spiracular tubercles relatively prominent and distinct, secondary tubercles obtrusely prominent. Petiole distinctly constricted between spiracular and secondary tubercles, slightly wider at the secondary tubercles than at the spiracular tubercles. Genitalia: Ovipositor sheaths (Fig. 3E) narrow, anal procts straight, slightly arcuate apically, with four to five upper marginal setae and five to eight lower marginal setae, upper setae about twice as long as lower, and two apical setae of equal length. Body length between 1.4 and 1.6 mm.

**Coloration.** Head brown, lower border of gena andclypeus yellow. Mouthparts yellow, apices of mandibles brown. Antennae brown, scape, pedicel, and flagellar segments one and two distinctly yellow to

![A](image1.png)  
![B](image2.png)  

**Fig. 1.** Photographs of a spermatozoan-free spermatheca (A) and a spermatheca containing spermatozoans 4 h after mating (B). Magnification, 1,000×. (Online figure in color.)

The Korean population yielded significantly fewer mummies than the Chinese population did on *A. monarda* and *A. asclepiadis*, but significantly more on *A. oestlundi* and *A. craccivora* (Fig. 2). The mummy emergence rates were significantly higher for the Korean population than the Chinese population for *A. glycines*, *A. monarda*, and *A. gossypii*, which were the three species that produced the most mummies for the Korean population. Parasitoid sex ratios differed significantly between the two populations on *A. monarda* and *S. graminum* (less male-biased in the Korean population) as well as on *A. gossypii* (more male-biased in the Korean population).

**Description of *B. koreanus* Starý, n. sp.** Information on reproductive isolation and genetic differentiation led us to conclude that the Chinese and Korean populations should be classified as separate species. Further morphological analysis suggested that the Chinese population indeed belonged to *B. communis*, but that the Korean population represented a new species. The species is named according to its area of distribution, Korea; *Binodoxys koreanus* Starý, n. sp. Deposition: Holotype-female—U.S. National Museum (USNM), Washington, D.C. Paratypes: USNM, University of Minnesota and the National Institute of Agricultural Science and Technology, Suwon, S. Korea, and coll. P. Starý (České Budějovice—17 females: 9-dry mounted, 8 as slides; 28 males).

The new species resembles *B. communis* but differs in characters of the petiole. The spiracular tubercles are distinct and acutely pointed and the petiole is distinctly constricted between the spiracular and secondary tubercles (Fig. 3A). In contrast, the petiole in *B. communis* bears poorly distinguishable spiracular tubercles, and dilates slightly and gradually to the secondary tubercles (Fig. 3B).

**Female.** Eyes large; width of malar space equal to one sixths of eye length. Tentorial index (=tentorioocular line/inter-tentorial line) equal to one fourth. Maxillary palpi four-segmented, labial palpi two-segmented. Antennae 11-segmented, very slightly thickened toward the apex. F1 is 3 times longer than wide, with no placodes. F2 2.5 times longer than wide with one placode.

Mesonotum smooth, notauli distinct in the fore appendant part, with sparse setae before the prescutellar furrow. Propodeum (Fig. 3C) with complete central pentagonal areola, carinae somewhat irregular with some short adventive carinae. Forewing (Fig. 3D) with triangular pterostigma 3 times longer than wide, metacarps half as long as pterostigma, radial vein as long as pterostigma. Petiole (Fig. 3A) twice as long as its width at the spiracles, spiracular tubercles relatively prominent and distinct, secondary tubercles obtrusely prominent. Petiole distinctly constricted between spiracular and secondary tubercles, slightly wider at the secondary tubercles than at the spiracular tubercles. Genitalia: Ovipositor sheaths (Fig. 3E) narrow, anal procts straight, slightly arcuate apically, with four to five upper marginal setae and five to eight lower marginal setae, upper setae about twice as long as lower, and two apical setae of equal length. Body length between 1.4 and 1.6 mm.

**Coloration.** Head brown, lower border of gena andclypeus yellow. Mouthparts yellow, apices of mandibles brown. Antennae brown, scape, pedicel, and flagellar segments one and two distinctly yellow to
yellow brown. Mesosoma brown, propleura and pro-
sternum yellow, propodeum with yellow-brown pat-
terns. Wings hyaline, venation brownish, tegulae
brown. Forelegs yellow, middle legs with femora and
parts of tibiae brownish, hind femora and tibiae brown
except basal margin of hind tibiae. Coxae and trochan-
ters yellow, hind coxae partially brown, apices of all
legs brown. Petiole and the basal spot on tergite 2
yellow, the rest of metasoma brown. Ovipositor
sheaths and prongs dark brown.

**Male.** Similar to females, except antennae 13-seg-
mented, coloration somewhat darker than in the
female (base of antennae brown).

### Discussion

A Korean population of *Binodoxys* that was origi-
nally identified as *B. communis* based upon morpho-
logical keys is reproductively isolated from a popula-
tion of *B. communis* collected in Northeastern China.
We discovered minor differences in nucleotide se-
quences and host use patterns between the popula-
tions and subtle morphological differences as well. In
previous studies, we documented substantial differ-
ences in handling and stinging times of *A. glycines* by
these two species (Desneux et al. 2009a) as well as slight
differences in development times (S. Acheam-
pong, K. Wyckhuys, and G.E.H., unpublished.). Based
upon these lines of evidence, we argue that the Korean
population is actually a separate species and propose
the name *B. koreanus* Stary, sp. n.

As noted in the introduction, there has been an
explosion in the discovery of cryptic species in para-
sitoid lineages (recent examples include Kankare et al.
2005a,b; Smith et al. 2006, 2007, 2008; Heraty et al.
2007; Kathirithamby 2009). Our study represents the stron-
gest data to date in support of cryptic species within
the aphidiine braconids although allozyme evidence
consistent with cryptic species has been reported for
*Aphidius ervi* Haliday and related species (Unruh et al.
1989, Atanassova et al. 1998). Earlier work on
*Trioxys*, a genus closely related to *Binodoxys*, also was sugges-
tive of cryptic species. In this case, two populations
were originally classified as *Trioxys utilis* Muesebeck
until it was discovered that they had quite different
host and habitat ranges, and partial reproductive com-
patibility, which led to further systematic work and the
separation of one population as *Trioxys pallidus* (Hal-
day) (Hall et al. 1962). Thus, our study adds to the

---

**Fig. 2.** (A) Mean numbers adult female and male offspring as well as unemerged mummies produced per aphid species for the Korean population, in descending order of total mummies. Means for total mummies produced by aphid species subtended by lines do not differ ($P > 0.05$; ANOVA with Tukey’s post hoc test). Asterisks indicate deviation from a 0.5 sex ratio: *$P < 0.05$, **$P < 0.01$, and ***$P < 0.001$.* Other species included *A. pisum, L. erysimi, M. persicae, R. padi,* and *U. leonardi.* (B) The same data for the Chinese population, from Desneux et al. (2009b). (C) Statistical analyses for comparison of the two populations. $P$ values below 0.05 are in bold.
burgeonning literature on cryptic species in parasitoids in
general, and aphidine braconids in particular.

Our finding that *B. communis* and *B. koreanus*, sp. n.
are cryptic species comes despite nearly identical se-
queneces at the mitochondrial COI gene. The portion
of the COI sequence that we used is the popular DNA
barcoding region that has been used to identify cryptic
species in other species, including parasites (Smith
et al. 2006, 2007, 2008). Our finding of cryptic species
despite nearly identical barcode sequences may indi-
cate recent divergence of the two species and also
demonstrates that widely used barcoding sequences
are not always sensitive enough to separate cryptic
species. Two cryptic species of leafminer parasitoids
in the encyrtid genus *Ageniaspis* similarly showed
virtually no nucleotide divergence in COI se-
queneces, although three other molecular markers
showed substantial levels of genetic divergence be-
tween the two species (Hoy et al. 2000, Alvarez and
Hoy 2002).

Although cryptic species are by definition morpho-
logically indistinguishable based upon information
available at the time of the initial identification, fur-
ther study often reveals previously-unrecognized
morphological differences (Schlick-Steiner et al.
2007). This has been the case for a number of other
cryptic parasitoid species (Clarke 1993, Woolley et al.
1994, Manzari et al. 2002, Giorgini and Baldanza 2004).
In our case, the new species *B. koreanus*, sp. n. keyed
out to *B. communis* using the taxonomic works of
*Binodoxys* spp. in the Far East (Starý and Schlinger
1967, Chen and Shi 2001), but upon further inspection
the subtle morphological differences that are reported
on here were identified.

We found little evidence that *B. communis* and *B.
koreanus*, sp. n. specialize on different host species,
as has been found in other complexes of cryptic
parasitoid species (Heimpel et al. 1997; Fernando
and Walter 1997; Kankare et al. 2005a,b; Smith et al.
2006, 2007, 2008; Heraty et al. 2007; Abrahamson and

---

**Fig. 3.** (A) Petiole of female *B. koreanus* n. sp. female paratype. (B) Petiole of *B. communis*. (C) Propodeum of *B. koreanus* n. sp., female paratype. (D) Forewing (detail) of *B. koreanus* n. sp. female paratype. (E) Genitalia of *B. koreanus*, n. sp. female paratype.
Blair 2008; Bernardo et al. 2008: Kathirithamby 2009). Both parasitoid species performed best on soybean aphid, which is the host that both were collected and reared on. However, some differences in host-use patterns were found. In particular, B. koreanus, sp. n. produced more mummies on A. craccivora than did B. communis. The colony of A. craccivora used for these assays harbored the bacterial endosymbiont Hamiltonella defensa Moran, and previous studies suggested that these endosymbionts were probably involved in resistance of A. craccivora to B. communis (Desneux et al. 2009b) as is the case for H. defensa in the pea aphid, Acyrthosiphon pisum (Oliver et al. 2003, 2005). That B. koreanus, sp. n. was able to parasitize this host with some success suggests that it is at least partially able to overcome the resistance conferred by this endosymbiont. As is the case for B. communis (Desneux et al. 2009b), B. koreanus, sp. n. offspring production seems to match the phylogenetic proximity of aphid species to A. glycinus, the most suitable host in the host range experiment. All of the most suitable hosts are members of the genus Aphis, including two species that are new associations for B. koreanus—both A. monardae and A. oestlundii are native to North America. Exceptions to the phylogenetic trend involved aphids (A. asclepiadis and A. nerii) on plants with toxic plant compounds implicated in reducing parasitoid fitness (Desneux et al. 2009b).

Bickford et al. (2007) reasoned that cryptic species would be prevalent in taxa with little selection for morphological differentiation, because initial species designations are based upon morphological characters. They discussed two conditions that might lead to a paucity of morphological differentiation: nonvisual mate recognition and morphological stasis. Along these lines, Henry (1994) made a convincing argument that cryptic speciation is particularly likely in insects that use acoustic signaling as mating signals because the subtle differences in sound needed to differentiate one species from another do not necessitate morphological differentiation. We have no evidence that Binodoxys species use acoustic signaling in courtship, but it seems likely that chemical communication is used, which can similarly produce differences among species without visual differentiation. Cryptic species of aphid parasitoids in the genus Aphiellus use female-produced trail pheromones as mating cues (Fauvergue et al. 1995, Kazmer et al. 1996), which could in principle allow the evolution of reproductive isolation without noticeable morphological change. Turning to the second condition of Bickford et al. (2007)—morphological stasis—it has been argued that selection for morphological stasis is expected in parasites that have a particularly intimate relationship with their hosts. Schonrogge et al. (2002) singled out koinobiont parasitoids, along with true parasites and social parasites, as being particularly susceptible to cryptic speciation. Binodoxys species are koinobiont parasitoids, as are many parasitoid groups that have been found to contain cryptic species complexes (Hoy et al. 2000; Kankare et al. 2005a,b; Quicke et al. 2006; Smith et al. 2006, 2007, 2008; Heraty et al. 2007; Kathirithamby 2009). However, cryptic species have been found in idioibiont parasitoid lineages as well (Clarke 1993, Fernando and Walter 1997, Woolley et al. 1994, Heimpel et al. 1997, Pinto et al. 2003, Bernardo et al. 2008), and in members of the genus Eretmocerus (Hymenoptera: Aphelinidae), which are facultative koino/idioibionts (Hunter et al. 1996, Jones and Greenberg 1998).

In conclusion, we have identified a new Binodoxys species attacking soybean aphid in Asia. Releases of B. communis have been ongoing in the North Central United States since 2007 (Wyckhuys et al. 2007a; G.E.H., unpublished). B. koreanus, sp. n. is one of several species currently being held in quarantine that could potentially also be released against soybean aphid (Wyckhuys et al. 2007a; P.S. et al., unpublished). Should B. koreanus, sp. n. be released alongside the closely related B. communis in North America? Because B. koreanus, sp. n. and B. communis exhibit pre-mating reproductive isolation, the production of low-fitness hybrid offspring is very unlikely to occur. It is conceivable, however, that interspecific courtship could occur, and this could entail some time costs and increase the fraction of females that remain unmated. We also found that females exposed to heterospecific males produced fewer total offspring than females exposed to conspecifics males, a result consistent with previous findings that virgin females of other aphidiine braconids produced fewer offspring than mated females (Michaud 1994). The broader questions of whether a release of this second species would result in more effective biological control overall, or whether safety to nontarget organisms would be affected, is beyond the scope of this study.

Acknowledgments

We thank Nancy Fares, Christine Kulhanek, Jon Malepsy, and Laura Stone for help with experiments and insect colony maintenance; Seunghwan Lee (Seoul National University) for assistance with field collections in Korea; Kathryn Lanier and Keith Hopper (USDA–ABS, Newark, DE) for initiating Asian Binodoxys cultures at the Beneficial Insects Introduction Research laboratory in Newark; and J. P. Michaud and an anonymous reviewer for constructive comments on the manuscript. This work was funded in part by a USDA–RAMP award, in part by the North Central Soybean Research Program, and in part by the Minnesota Agricultural Experiment Station. The contribution by P.S. was funded from the Entomology Institute project 250070508 (Academy of Sciences of the Czech Republic), and the contribution of T.D.G. was funded by the Natural Science and Engineering Research Council of Canada.

References Cited

Abrahamson, W. G., and A. C. Blair. 2008. Sequential radiation through host-race formation: herbivore diversity leads to diversity in natural enemies, pp. 188–202. In K. J. Tilmon [ed.], Specialization, speciation and radiation: the evolutionary biology of herbivorous insects. University of California Press, Berkeley, CA.
Alvarez, J. M., and M. A. Hoy. 2002. Evaluation of the ribosomal ITS2 DNA sequences in separating closely related populations of the parasitoid Agniaspis (Hymenoptera: Encyrtidae). Ann. Entomol. Soc. Am. 95: 250–256.

Atanasova, P., C. P. Brookes, H. D. Loxdale, and W. Powell. 1998. Electrophoretic study of five aphid parasitoid species of the genus Aphidius (Hymenoptera: Braconidae), including evidence for reproductively isolated sympatric populations and a cryptic species. Bull. Entomol. Res. 88: 3–13.

Beard, J. J. 1999. Taxonomy and biological control: Neoseiulus cucumeris (Acari: Phytoseiidae), a case study. Austral. J. Entomol. 38: 51–59.

Bernardo, U., M. M. Monti, A. G. Nappo, M. Gebiola, A. Russo, P. A. Pedata, and G. Viggiani. 2008. Species status of two populations of Pnigalia soemius (Hymenoptera: Eulophidae) reared from two different hosts: an integrative approach. Biol. Control 46: 293–303.

Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, P. Pigna, and R. Meier. 2003. Uniparental, sibling and semi-species in Pnigalia soemius (Acari: Phytoseiidae), a case study. Austral. Taxonomy and biological control: Neoseiulus cucumeris (Acari: Phytoseiidae), a case study. Austral. J. Entomol. 38: 51–59.

Blair, C. P., W. G. Abrahamson, J. A. Jackman, and L. Tyrrell. 1998. Electrophoretic study of five aphid parasitoid species of the genus Aphidius (Hymenoptera: Braconidae). Environ. Entomol. 27: 1569–1573.

Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, K. Winker, K. K. Ingram, L. T. Dass, and P. L. Dass. 2007. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22: 148–155.

Blair, C. P., W. G. Abrahamson, J. A. Jackman, and L. Tyrrell. 2005. Cryptic speciation and host-range formation in a purportedly generalist tumbling flower beetle. Evolution 59: 304–316.

Chen, J. H., and Q. X. Shi. 2001. Systematic studies of Aphididae of China (Hymenoptera: Aphidiidae). Fujian Science and Technology Publishing House, Fujian, China.

Chen, Y., H. Xiao, J. Fu, and D. Huang. 2004. A molecular phylogeny of eurytomyid wasps inferred from DNA sequence data of 28S, 18S, 16S, and COI genes. Mol. Phylogenet. Evol. 31: 300–307.

Clarke, A. R. 1993. A new Trissolcus Ashmead species (Hymenoptera: Scelionidae) from Pakistan: species description and its role as a biological control agent. Bull. Entomol. Res. 83: 523–527.

Clarke, A., and G. H. Walter. 1995. “Strains” and the classical biological control of insect pests. Can. J. Zool. 73: 1777–1790.

Coeur d’Acer, A., E. Jousselin, J. F. Martin, and J. Y. Rasplus. 2007. Phylogeny of the genus Aphis Linneaeus, 1758 (Homoptera: Aphididae) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 42: 598–611.

De Bach, P. 1969. Uniparental, sibling and semi-species in relation to taxonomy and biological control. Isr. J. Entomol. 4: 11–29.

Desneux, N., R. J. Barta, C. J. Delebeque, and G. E. Heimpel. 2009a. Transient host paralysis as a means of reducing self-superparasitism in koinobiont endoparasitoids. J. Insect Physiol. 55: 321–327.

Desneux, N., R. J. Barta, K. A. Hoelmer, K. R. Hopper, and G. E. Heimpel. 2009b. Multifaceted determinants of host specificity in an aphid parasitoid. Oecologia (Berl.) 169: 387–398.

Fauvergue, X., K. R. Hopper, and M. F. Antolin. 1995. Mate finding via a trail sex-pheromone by a parasitoid wasp. Proc. Nat. Acad. Sci. U.S.A. 92: 900–904.

Fernando, L.C.P., and C. H. Walter. 1997. Species status of two host-associated populations of Aphytis lingnanensis (Hymenoptera: Aphelinidae) in citrus. Bull. Entomol. Res. 87: 137–144.

Folmer, O., M. Black, W. Hoch, R. Lutz, and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3: 294–299.

Forbes, A. A., T. H. Q. Powell, L. L. Stelinski, J. J. Smith, and J. L. Feder. 2009. Sequential sympatric speciation across trophic levels. Science (Wash., D.C.) 323: 776–779.

Gahan, A. B. 1926. Some braconid and chalcid flies from Formosa parasitic on aphids. Proc. U.S. Natl. Mus. 70: 1–7.

Giorgini, M., and F. Baldanza. 2004. Species status of two populations of Encarsia sophia (Girault and Dodd) (Hymenoptera: Aphelinidae) native to different geographic areas. Biol. Control 30: 25–35.

Hall, J. C., E. I. Schlinger, and R. Van den Bosch. 1962. Evidence for the separation of the “sibling species” Trioxys utilis and Trioxys pallidus (Hymenoptera: Braconidae: Aphidiinae). Ann. Entomol. Soc. Am. 55: 566–568.

Hebert, P. N. D., E. H. Penton, J. M. Burns, D. H. Janzen, and W. Hallwachs. 2004. Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. U.S.A. 101: 14812–14817.

Heimpel, G. E., M. F. Antolin, R. A. Franqui, and M. R. Strand. 1997. Reproductive isolation and genetic variation between two ‘strains’ of Bracon hebetor (Hymenoptera: Braconidae). Biol. Control 9: 149–156.

Heimpel, G. E., and J. G. de Boer. 2008. Sex determination in the Hymenoptera. Annu. Rev. Entomol. 53: 209–230.

Heimpel, G. E., and J. G. Lundgren. 2000. Sex ratios of commercially reared biological control agents. Biol. Control 19: 77–93.

Heimpel, G. E., D. W. Ragsdale, B. C. Venette, K. R. Hopper, R. J. O’Neil, C. E. Buttlede, and Z. Wu. 2004. Prospects for importation biological control of the soybean aphid: anticipating potential costs and benefits. Ann. Entomol. Soc. Am. 97: 249–258.

Henry, C. S. 1994. Singing and cryptic speciation in insects. Trends Ecol. Evol. 9: 388–392.

Heraty, J. M., J. B. Woolley, K. R. Hopper, D. L. Hawks, J. W. Kim, and M. Buffington. 2007. Molecular phylogenetics and reproductive incompatibility in a complex of cryptic species of aphid parasitoids. Mol. Phylogenet. Evol. 45: 490–493.

Hunter, M. S., M. F. Antolin, and M. Rose. 1996. Courtship behavior, reproductive relationships, and allozyme patterns of three North American populations of Eretmocerus nr. californicus (Hymenoptera: Aphelinidae) parasitizing the whitely Bemisia sp. tabaci complex (Homoptera: Aleyrodidae). Proc. Entomol. Soc. Wash. 98: 126–137.

Hoy, M. A., A. Jeyaprakash, R. Morakote, P. K. C. Lo, and R. Nguyen. 2000. Genomic analyses of two populations of Agniaspis citricola (Hymenoptera: Encyrtidae) suggest that a cryptic species may exist. Biol. Control 17: 1–10.

Ji, Y. J., D. X. Zhang, and L. J. He. 2003. Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Mol. Ecol. Notes 3: 581–585.

Jones, W. A., and S. M. Greenberg. 1998. Suitability of Be- misia argentifoli (Hymenoptera: Aleyrodidae) instars for the parasitoid Eretmocerus mundus (Hymenoptera: Aph- elinidae). Environ. Entomol. 27: 1560–1572.

Kambhampati, S., and P. T. Smith. 1995. PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Mol. Biol. 4: 233–236.

Kankare, M., C. Stefanescu, S. Van Nouhuys, and M. R. Shaw. 2005a. Host specialization by Cotesia wasps (Hymenop- tera: Braconidae) parasitizing species-rich Melitaenini (Lepidoptera: Nymphalidae) communities in north-eastern Spain. Biol. J. Linn. Soc. 86: 45–65.
Kankare, M., S. Van Nouhuys, and I. Hanski. 2005b. Genetic divergence among host-specific cryptic species in Cotesia melitaeana aggregate (Hymenoptera: Braconidae), parasitoids of checkerspot butterflies. Ann. Entomol. Soc. Am. 98: 382–394.

Kathirithamby, J. 2009. Host-parasitoid associations in Strepsiptera. Annu. Rev. Entomol. 54: 227–249.

Kathirithamby, J., J. J. Gillespie, E. Jimenez-Guri, A. I. Cogno, and J. S. Johnston. 2007. High nucleotide divergence in a dimorphic parasite with disparate hosts. Zootaxa 1636: 59–68.

Kazmer, D. J., K. Maiden, N. Ramualde, D. Coutinot, and K. R. Hopper. 1996. Reproductive compatibility, mating behavior, and random amplified polymorphic DNA variability in some Aphytis melinus (Hymenoptera: Aphelinidae) derived from the Old World. Ann. Entomol. Soc. Am. 89: 212–220.

Kazmer, D. J., K. Maiden, N. Ramualde, D. Coutinot, and K. R. Hopper. 1996. Reproductive compatibility, mating behavior, and random amplified polymorphic DNA variability in some Aphytis melinus (Hymenoptera: Aphelinidae) derived from the Old World. Ann. Entomol. Soc. Am. 89: 212–220.

Kazmer, D. J., K. Maiden, N. Ramualde, D. Coutinot, and K. R. Hopper. 1996. Reproductive compatibility, mating behavior, and random amplified polymorphic DNA variability in some Aphytis melinus (Hymenoptera: Aphelinidae) derived from the Old World. Ann. Entomol. Soc. Am. 89: 212–220.

Kazmer, D. J., K. Maiden, N. Ramualde, D. Coutinot, and K. R. Hopper. 1996. Reproductive compatibility, mating behavior, and random amplified polymorphic DNA variability in some Aphytis melinus (Hymenoptera: Aphelinidae) derived from the Old World. Ann. Entomol. Soc. Am. 89: 212–220.

Kazmer, D. J., K. Maiden, N. Ramualde, D. Coutinot, and K. R. Hopper. 1996. Reproductive compatibility, mating behavior, and random amplified polymorphic DNA variability in some Aphytis melinus (Hymenoptera: Aphelinidae) derived from the Old World. Ann. Entomol. Soc. Am. 89: 212–220.
Wu, Z., K. R. Hopper, R. J. O’Neil, D. J. Voegtlin, D. R. Prokrym, and G. E. Heimpel. 2004. Reproductive compatibility and genetic variation between two strains of *Aphelinus albipodus* (Hymenoptera: Aphelinidae), a parasitoid of the soybean aphid, *Aphis glycines* (Homoptera: Aphididae). Biol. Control 31: 311–319.

Wyckhuys, K.A.G., and G. E. Heimpel. 2007. Response of the soybean aphid parasitoid *Binodoxys communis* (Gahan) (Hymenoptera: Braconidae) to olfactory cues from target and non-target host-plant complexes. Entomol. Exp. Appl. 123: 149–158.

Wyckhuys, K.A.G., K. R. Hopper, K.-M. Wu, C. Straub, C. Gratton, and G. E. Heimpel. 2007a. Predicting potential ecological impact of soybean aphid biological control introductions. Biocontrol News Inf. 28: 30N–34N.

Wyckhuys, K.A.G., R. L. Koch, and G. E. Heimpel. 2007b. Physical and ant-mediated refuges from parasitism: implications for non-target effects in biological control. Biol. Control 40: 306–313.

Wyckhuys, K.A.G., L. Stone, N. Desneux, K. A. Hoelmer, K. R. Hopper, and G. E. Heimpel. 2008. Parasitism of the soybean aphid, *Aphis glycines*, by *Binodoxys communis* (Hymenoptera: Braconidae): the role of aphid defensive behavior and parasitoid reproductive performance. Bull. Entomol. Res. 98: 361–370.

Wyckhuys, K.A.G., R. L. Koch, R. F. Kula, and G. E. Heimpel. 2009. Potential exposure of a classical biological control agent of the soybean aphid, *Aphis glycines*, on non-target aphids in North America. Biol. Invasions 11: 857–871.

Zhang, D.-Y., K. Lin, and I. Hanski. 2004. Coexistence of cryptic species. Ecol. Lett. 7: 165–169.

Received 19 March 2009; accepted 18 June 2009.