Updated SM calculations of σ_W/σ_Z at the Tevatron and the W boson width

Pete Renton

University of Oxford, UK

Abstract

The central value and theoretical uncertainties on the cross section ratio σ_W/σ_Z at the Tevatron are evaluated using the NNLO calculations and the latest MSTW PDFs.

The partial width, total width and branching ratios of the W boson in the Standard Model, in the light of the latest electroweak calculations, are also updated.

1 Introduction

In this note we consider the theoretical uncertainty on the ratio of leptonic rates for the inclusive production of W and Z bosons at the Tevatron ($\sqrt{s} = 1.96$ GeV), namely,

$$ R = \frac{\sigma \cdot B(p\bar{p} \rightarrow W^\pm \rightarrow \ell^\pm \nu)}{\sigma \cdot B(p\bar{p} \rightarrow Z^0 \rightarrow \ell^+ \ell^-)} $$

from which the W leptonic branching ratio and an indirect determination of the total W width can be extracted.

Published data on R come from Run II measurements from the CDF collaboration [1], together with those from both the CDF [2] and DØ [3] collaborations from Run I. A note is in preparation of a Tevatron combination of these published values.

From the definition of R,

$$ R = \frac{\sigma \cdot B(W^\pm \rightarrow \ell^\pm \nu)}{\sigma \cdot B(Z^0 \rightarrow \ell^+ \ell^-)} = \frac{\sigma_W}{\sigma_Z} \cdot \frac{\Gamma(Z)}{\Gamma(Z^0 \rightarrow \ell^+ \ell^-)} \cdot \frac{\Gamma(W^\pm \rightarrow \ell^\pm \nu)}{\Gamma(W)}, $$

we can extract the branching ratio of $W^\pm \rightarrow \ell^\pm \nu$, $\Gamma(W^\pm \rightarrow \ell^\pm \nu)/\Gamma(W)$, by using a Standard Model calculation for σ_W/σ_Z and the LEP measurement of the $Z^0 \rightarrow \ell^+ \ell^-$.

1p.renton1@physics.ox.ac.uk
Table 1: Values and uncertainties of the CKM matrix elements used and the resulting uncertainty on \(X\). The values are those not constrained by Unitarity.

CKM element	value	uncertainty	\(\Delta X\)
\(V_{ud}\)	0.97377	0.00027	0.0019
\(V_{us}\)	0.2257	0.0021	0.0016
\(V_{ub}\)	0.0043	0.0003	0.0000
\(V_{cd}\)	0.230	0.011	0.0039
\(V_{cs}\)	0.957	0.095	0.0050
\(V_{cb}\)	0.0416	0.0006	0.0000

e\(^+\)e\(^-\) branching ratio, namely \(B(Z^0 \rightarrow e^+e^-) = (3.3658 \pm 0.0023)\%\), assuming lepton universality \([4]\).

In a previous Tevatron combination \([5]\) of preliminary Run II results on \(R\), together with those from Run I, the results of the calculation in Ref. \([6]\) were used to assign a theoretical uncertainty on the ratio \(\sigma_W/\sigma_Z\). In that study a program based on the QCD NNLO expression developed by Van Neerven, \textit{et al.} \([7, 8]\) was used and gave the ratio of cross sections as \(\sigma_W/\sigma_Z = 3.361 \pm 0.024\). However, the calculation was tree-level as far as electroweak vertices are concerned. Consequently, there was an uncertainty in the definition of \(\sin^2 \theta_W\), which was accounted for by an additional uncertainty of \(\pm 0.048\). The value for the cross section ratio used was \(\sigma_W/\sigma_Z = 3.361 \pm 0.054\). Subsequent updates of Ref. \([6]\) in Ref. \([9]\) gave, \(\sigma_W/\sigma_Z = 3.370\) with an uncertainty for the electroweak component alone of \(\pm 0.014\). The CTEQ6.1 and MRST2001E PDF sets were used in these studies.

2 Details of the calculation

Recently updated sets of PDFs from the MSTW Collaboration (formerly MRST) have been made available \([10]\). These new NNLO PDFs are interfaced to the NNLO program \([11]\), used to calculate \(\sigma_W, \sigma_Z\) and \(\sigma_W/\sigma_Z\), which is again based on the results of Van Neerven, \textit{et al.} \([7, 8]\). The results presented here use this program, modified as discussed below.

The couplings of the \(Z\) boson to fermion-pairs have been changed from the Born-level formulation to using the effective couplings derived from fits to LEP and SLD \(Z\) boson data; namely using \(\rho = 1.0050 \pm 0.0010\) and \(\sin^2 \theta_{eff} = 0.23153 \pm 0.00016\) \([4]\).

The Cabibbo-Kobayashi-Maskawa \([12, 13]\) (CKM) matrix elements used are also modified from the default values used in the program. The values used are the unconstrained measured values from \([4]\). These values, rather than the unitarity constrained values are used because the value of \(R\) can be used to give constraints on unitarity of the CKM matrix and also to extract \(V_{cs}\), which is poorly known from direct measurement. The CKM values and uncertainties used are given in Table \([1]\).

The central value obtained is \(X = \sigma_W/\sigma_Z = 3.363\). The uncertainties on this
which have been investigated are from a) PDF variations, b) uncertainties in the Z boson electroweak parameters, and c) uncertainties in the W boson CKM elements.

For the PDF uncertainties the eigenvector method was used. The values of $X = \sigma_W / \sigma_Z$ were computed for the 15 pairs of eigenvectors. This gives 15 pairs of values ΔX_{up} and ΔX_{down}, corresponding to the “up” and “down” components of each pair. The positive uncertainty on X was taken to be ΔX_{up} if $\Delta X_{up} > 0$ and $\Delta X_{down} < 0$. The positive uncertainty on X was taken to be ΔX_{down} if $\Delta X_{down} > 0$ and $\Delta X_{up} < 0$ (and vice versa for the negative uncertainty). In the case where both the “up” and “down” variations are positive (negative) the value $\sqrt{(\Delta X_{up}^2 + \Delta X_{down}^2)/2}$ was taken to be the positive (negative) uncertainty and the other component was set to zero. The positive and negative components are then separately added in quadrature, giving $\Delta X_+ = 0.013$ and $\Delta X_- = 0.010$. We take the uncertainty on X from the PDFs to be ± 0.013.

Note that the uncertainties in $\alpha_s(M_Z)$ and $\alpha_s(M_W)$ are not explicitly taken into account in the eigenvector method. However, these are expected to largely cancel in the ratio considered here \cite{10}. The value of the electromagnetic coupling constant at the M_Z scale, $\alpha(M_Z)$, is not directly used in these computations. Instead the values of G_F and the vector boson masses are used, thus absorbing some of the higher-order electroweak effects. The widths of the W and Z bosons are also not used directly in the cross section ratio calculation. This is, it is a zero-width approximation. Again finite width effects are expected to largely cancel in the ratio, but this has not explicitly been verified.

The uncertainty in the Z boson electroweak parameters $\rho = 1.0050 \pm 0.0010$ and $\sin^2 \theta_{eff} = 0.23153 \pm 0.00016$ were obtained by changing the values of each parameter in turn by $\pm 1 \sigma$ and adding the uncertainties in quadrature. The result is $\Delta X = \pm 0.003$.

For the CKM uncertainties each of the CKM elements in Table 1 was moved by $\pm 1 \sigma$ and adding the uncertainties in quadrature. The result is $\Delta X = \pm 0.050$. The largest uncertainty comes from V_{cs}, which is poorly known from direct measurement. This makes the theory estimate of X significantly larger than previous estimates.

Combining these uncertainties in quadrature gives

$$X = \sigma_W / \sigma_Z = 3.363 \pm 0.052.$$

3 Branching ratios and widths of W boson in SM

The W-boson decays weakly into either a quark-antiquark pair or a lepton and its corresponding neutrino. The partial leptonic decay width is given by \cite{14}

$$\Gamma(W \rightarrow e\nu_e) = \frac{G_F M_W^3}{6\pi \sqrt{2}} (1 + \delta^S_M) = 226.6 \pm 0.2 \text{ MeV}. \quad (1)$$
The values $G_F = (1.16637 \pm 0.00001) \times 10^{-5} \text{ GeV}^{-2}$\footnote{Including the new result from the MuLan Collaboration\cite{15} gives \(G_F = (1.166371 \pm 0.000006) \times 10^{-5} \text{ GeV}^{-2} \). The FAST Collaboration\cite{16} also have a new result, namely \(G_F = (1.166353 \pm 0.000009) \times 10^{-5} \text{ GeV}^{-2} \). Using the updated world average value from \cite{15} gives negligible changes to the results reported here.} and $M_W = 80.398 \pm 0.025$ GeV are used in the calculation. The uncertainty is dominated by that in M_W. Note that by using the values of G_F and M_W to determine the SM value of $\Gamma(W \to e\nu_e)$, the electroweak corrections δ_{SM}^ℓ are small ($\delta_{SM}^\ell = -0.34\%$), because the bulk of the corrections are absorbed in G_F and M_W.

The partial width to $q\bar{q}$ final states, for massless quarks, is given by

$$\Gamma(W \to q\bar{q}) = f_{EW} f_{QCD} \Gamma(W \to e\nu_e) |V_{ij}|^2.$$ \hfill (2)

where $f_{EW} = (1 + \delta_q^{SM})$ and δ_q^{SM} is the electroweak correction, with $\delta_q^{SM} = -0.40\%$ \cite{14}, and $f_{QCD} = 3(1 + \alpha_s(M_W)/\pi + 1.409(\alpha_s(M_W)/\pi)^2 + ...)$ is a QCD colour correction factor and V_{ij} is the CKM matrix element for $i=u,d$ and $j=d,s,b$.

The total width Γ_W in the SM is given approximately by

$$\Gamma_W = (3 + 2f_{QCD}) \Gamma(W \to e\nu_e) = 2.0932 \pm 0.0022 \text{ GeV},$$ \hfill (3)

where the uncertainty from $\alpha_s(M_W) =0.1196 \pm 0.0021$ is 1.0 MeV, and that from M_W is 2.0 MeV. The form in this equation is approximate and neglects the differences in the electroweak radiative corrections for leptons and quarks. This small effect is however included in the numerical value given.

From the above values the W leptonic branching ratio is computed to be

$$B(W \to \ell\nu_\ell) = (10.83 \pm 0.01)\%. \text{ GeV}.\hfill (4)$$

The CKM matrix elements entering into W decay are given in Table 1. The main $q\bar{q}$ decay modes are ud and cs. The $q\bar{q}$ branching ratio thus gives mainly constraints on the matrix elements V_{ud} and V_{cs}. Since the former is well known from other measurements, the $q\bar{q}$ mode can be used to give V_{cs}. Also the W leptonic branching ratio can be used to test the CKM unitarity constraint.

4 Summary

The Standard Model value of X, the ratio of the total W boson to Z boson cross sections, has been estimated using the latest MSTW PDFs. An improved electroweak formalism for the Z boson has been used and, for the W boson production the latest direct CKM measurements have been used. The result is

$$X = \sigma_W/\sigma_Z = 3.363 \pm 0.052.$$

Various properties of the W boson in the Standard Model have also been updated using revised electroweak corrections\cite{14}. The partial leptonic decay width is

$$\Gamma(W \to e\nu_e) = 226.6 \pm 0.2 \text{ MeV}.$$

\hfill (5)
The total width Γ_W is

$$\Gamma_W = 2.0932 \pm 0.0022 \, \text{GeV},$$

and the W leptonic branching ratio is computed to be

$$B(W \rightarrow \ell\bar{\nu}_\ell) = (10.83 \pm 0.01)\% \, \text{GeV}. \quad (7)$$

5 Acknowledgements

I would like to thank W.J. Stirling and R.S. Thorne for providing their latest PDFs and their NNLO program and for discussion on the cross section ratio.

I would also like to thank J. Rosner and T. Takeuchi for updating their Standard Model W boson properties and for valuable discussion.
References

[1] D. Acosta et al., Phys. Rev. Lett. 94 (2005) 091803.
A. Abulencia et al., J. Phys. G: Nucl. Part. Phys. 34 (2007) 2457.
A small correction should be applied to the numbers given in the PRL such that the combined value is $R = 10.837 \pm 0.200$, with statistical and systematic uncertainties of 0.146 and 0.136 respectively.

[2] F. Abe et al. (CDF Collaboration) Phys. Rev. D52, 2624 (1995); Phys. Rev. Lett. 76, 3070 (1996).

[3] B. Abbott et al., (DØ Collaboration) Phys. Rev. D60, 052003 (1999); Phys. Rev. D61, 072001 (2000).

[4] W. M. Yao et al., J. Phys. G 33 1 (2006)

[5] Combining the CDF and DØ R measurements for Summer 2003, CDF note 6566, DØ note 4188, July 2003.

[6] W. K. Sakumoto, “W/Z Cross Section Predictions for $\sqrt{s} = 1.96$ TeV,” CDF note 6341, Feb 2003.

[7] R. Hamburg, W.L. Van Neerven and T. Matsuura, A Complete Calculation of the Order α_s^2 Correction to the Drell—Yan K–Factor. Nucl. Phys. B359, 343 (1991).

[8] W.L. Van Neerven and E.B. Zijlstra, The $O(\alpha_s^2)$ Corrected Drell—Yan K–Factor in the DIS and $\overline{\text{MS}}$ Schemes. Nucl. Phys. B382, 11 (1992).

[9] W. K. Sakumoto, CDF note 6899, Feb 2004 and CDF note 7006, May 2004.

[10] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt “Update of Parton Distributions at NNLO”, IPPP/07/23, DCPT/07/46 (2007); hep-ph/07060459. Plus W.J. Stirling and R.S. Thorne, private communication.

[11] W.J. Stirling, private communication.

[12] N. Cabibbo, (1963) Phys. Rev. Lett. 10 531.

[13] M. Kobayashi and T. Maskawa, (1973) Prog. Th. Phys. 49 652.

[14] J. Rosner, M. Worah, T. Takeuchi, Phys. Rev. D49 1363 (1994). The numbers in this paper have been updated with the latest values of the electroweak parameters and particle masses; J. Rosner and T. Takeuchi, private communication.

[15] D.B. Chitwood et al, Phys. Rev. Lett. 99 (2007) 032001.

[16] A. Barczyk et al, hep-ex/0707390 (2007).