Annexin A2 Promotes the Migration and Invasion of Human Hepatocellular Carcinoma Cells In Vitro by Regulating the Shedding of CD147-Harboring Microvesicles from Tumor Cells

Wei Zhang1,2,* , Pu Zhao3,4,+ , Xi-Li Xu5,6, Lei Cai1, Zhen-Shun Song1, Da-Yong Cao1, Kai-Shan Tao1, Wen-Ping Zhou2,7, Zhi-Nan Chen4,5, Ke-Feng Dou1,8

1 Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China, 2 Department of Hepatobiliary Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning Province, China, 3 College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning Province, China, 4 Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell University, Fourth Military Medical University, Xi’an, Shaanxi Province, China, 5 Center of Clinical Laboratory Medicine of People’s Liberation Army, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China

Abstract

It has been reported that Annexin A2 (ANXA2) is up-regulated in hepatocellular carcinoma (HCC), but the roles of ANXA2 in the migration and invasion of HCC cells have not been determined. In this study, we found that ANXA2-specific siRNA (si-ANXA2) significantly inhibited the migration and invasion of HCC cells co-cultured with fibroblasts in vitro. In addition, the production of MMP-2 by fibroblasts cultured in supernatant collected from si-ANXA2-transfected HCC cells was notably down-regulated. ANXA2 was also found to be co-localized and co-immunoprecipitated with CD147. Further investigation revealed that the expression of ANXA2 in HCC cells affected the shedding of CD147-harboring membrane microvesicles, acting as a vehicle for CD147 in tumor-stromal interactions and thereby regulating the production of MMP-2 by fibroblasts. Together, these results suggest that ANXA2 enhances the migration and invasion potential of HCC cells in vitro by regulating the trafficking of CD147-harboring membrane microvesicles.

Citation: Zhang W, Zhao P, Xu X-L, Cai L, Song Z-S, et al. (2013) Annexin A2 Promotes the Migration and Invasion of Human Hepatocellular Carcinoma Cells In Vitro by Regulating the Shedding of CD147-Harboring Microvesicles from Tumor Cells. PLoS ONE 8(8): e67268. doi:10.1371/journal.pone.0067268

Editor: Jung Weon Lee, Seoul National University, Korea, Republic of

Received January 1, 2013; Accepted May 13, 2013; Published August 12, 2013

Copyright: © 2013 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grant 20121086 from Dr. Start-up Fund of Liaoning Province, China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors declare that no competing interests exist.

* E-mail: zhouchang96@163.com (WPZ); zhinanchen@fmmu.edu.cn (ZNC); gdwkgwx@fmmu.edu.cn (KFD)

† These authors contributed equally to this work.

Introduction

The annexins are a family of Ca2+-dependent phospholipid-binding proteins with various membrane-related functions. The name “annexin” is derived from the Greek “annex,” which means “bring/hold together,” and was chosen to describe the principal property of all, or at least nearly all, annexins— the binding to and possibly holding together of certain biological structures, in particular membranes [1]. At least 20 members of the family have been described to date [2]. Annexin A2 (ANXA2), also called Annexin II, is one of the best characterized of the Annexins. ANXA2 is composed of two main structural domains: the 33-kDa C-terminal conserved core domain, which contains the Ca2+- and membrane-binding sites [1,3]; and the 3-kDa N-terminal variable domain, which contains the protein binding sites and phosphorylation sites. Otherwise, the N-terminus harbors a high affinity hydrophobic interaction site for the EF-hand Ca2+ binding protein S100A10 (p11). Two molecules of ANXA2 and two molecules of p11 form a heterotetrameric complex (A2t) that has been suggested to be involved in exocytosis, endocytosis and membrane vesicle trafficking [4–6]. ANXA2 was first discovered as a substrate of the Rous sarcoma virus-encoded tyrosine protein kinase. Subsequent studies have implicated ANXA2 in several biological functions including mitogenic signal transduction [7], fibrinolysis [8], immune response [9], proliferation [10], carcinogenesis and tumor progression [6,9,11–14]. Large-scale genomic and proteomic studies have begun to accumulate evidence regarding the association and possible involvement of ANXA2 with benign and malignant neoplasms of diverse origins [15]. Increased expression of ANXA2 has been described in a large number of spontaneous neoplasms, including pancreatic cancer, gastric carcinoma, colorectal cancer, breast cancer, high-grade gliomas and kidney cancer (reviewed in [3]) and is positively correlated with tumor invasion and migration [16]. In contrast, the expression of ANXA2 is lost or reduced in prostate cancer, and the role of ANXA2 in prostate cancer appears contradictory [17,18]. The differential expression of ANXA2 in HCC and normal liver tissue has been reported, but a more detailed functional assessment is lacking [19].

Although published data support a crucial role for ANXA2 in tumor progression, the detailed mechanisms underlying this role have yet to be fully elucidated. Breakdown of the extracellular...
matrix (ECM), which is mediated by a variety of proteases, endows malignant cells with the ability to penetrate through tissue barriers and is believed to play a major role in tumor migration and invasion. ANXA2 has been found to be a putative co-receptor for both plasminogen and tissue-type plasminogen activator (tPA) [20]. Cell surface ANXA2 acts as a platform for plasmin activation, where inactive plasminogen is cleaved by tPA to yield the active serine protease, plasmin, thereby facilitating the migration and invasion of malignancies. Studies have also demonstrated that ANXA2 may regulate the production and activation of matrix metalloproteinases (MMPs) [20,21].

CD147 is a widely distributed cell surface glycoprotein that belongs to the immunoglobulin superfamily. It was first identified as a factor shedding from the surface of tumor cells that is responsible for stimulating the production of MMP-1 by fibroblasts [22]. Accumulating evidence indicates that CD147 is a major mediator of the malignant phenotypes of various tumors [23]. CD147 induces angiogenesis by stimulating the production of VEGF, invasiveness by stimulating the production of MMPs and multidrug resistance via hyaluronan-mediated up-regulation of ErbB2 signaling and the activity of cell survival pathways [24]. Induction of MMP production through cell interactions is one of the most important functions of CD147 — thus the derivation of its other name: extracellular matrix metalloproteinase inducer (EMMPRIN) [25]. CD147 may serve as its own counter-receptor in homotypic cancer cell interactions and cancer cell-fibroblast interactions, thereby stimulating the production of MMPs via a homophilic interaction with other CD147 proteins [26,27]. In addition, MT1-MMP, MMP-2, and MMP-9 have been reported to cleave and release a shorter form of soluble CD147 that lacks the C-terminus, thereby modulating the expression of MMPs [26,28]. Interestingly, recent studies have provided evidence that membrane microvesicles shed from tumor cells carry full-length CD147 and play a role in tumor–stromal interactions through the upregulation of the production of MMPs [29,30]. Previous studies have demonstrated that CD147 promotes the invasion and metastasis of human hepatoma cells by stimulating both tumor cells and peritumoral fibroblasts to produce elevated levels of MMPs, although the modulation of fibroblasts is the more critical part of the process [31,32].

Although the overexpression of ANXA2 in HCC has been shown, the role of ANXA2 in the migration and invasion of HCC cells remains obscure [33,34]. In the present study, we knocked down the expression of ANXA2 in HCC cells to explore its role in HCC cell migration and invasion. To further investigate the mechanisms of ANXA2 in tumor progression, we introduced CD147, which has been hypothesized to interact with ANXA2 but which has not yet been shown to do so [24]. Based on the involvement of ANXA2 in exocytosis and membrane vesicle trafficking [4,5] and the role of CD147-harboring membrane microvesicles on tumor progression, we hypothesized that ANXA2 is involved in the shedding of CD147-harboring microvesicles from tumor cells, thereby regulating tumor migration and invasion.

Materials and Methods

Cell lines

Two highly invasive human HCC cell lines, SMMC-7721 and FHCC-98, were cultured in DMEM containing 10% fetal bovine serum (FBS). SMMC-7721 cells were obtained from the Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science [32]. The FHCC-98 cells were purchased from the Cell Engineering Research Centre, Fourth Military Medical University, China [34]. Human embryo pulmonary fibroblast-1 (HPF-1) cells were purchased from the Chinese Academy of Medical Sciences and were cultured as described above [31].

RNA interference

si-ANXA2 was purchased from Santa Cruz Biotechnology, Inc. (sc-29199) [33]. si-CD147 (5'-GUUCUUUGAGAUCUGUCU-3', 3'-dTdTTCAAGAAGACUCUAGG-5') was synthesized by Ambion, Inc [31]. HCC cells were transfected with siRNA using LipofectAMINE 2000 according to the manufacturer’s instructions (Invitrogen, USA). Silencer negative control siRNA (sense-RNA) (Ambion, USA) was used as a negative control under identical conditions.

Reverse transcription-PCR

Forty-eight hours after transfection with siRNA, total RNA was extracted from the cells with TRIzol (Invitrogen, USA) and reverse transcribed into cDNA using a ReverTra Ace-α-TM kit (TOYOBO, Japan). GAPDH was used as an internal control. All primers were synthesized by Shanghai Sangon Co. as follows: ANXA2, forward primer 5'-GAGGATGCCGCTTGTGACATT-3'; reverse primer 5'-CTTGGTATGGCCCTTAGTGTC-3'; GAPDH, 5'-ACCACGTTCCATGCCCATCAC-3' and 5'-TCCACACCCTGTTGCT-3'. The conditions for PCR were one cycle at 94°C for 3 min, 40 cycles at 94°C for 30 s, 60°C for 30 s, and 72°C for 30 s. PCR products were electrophoresed on 1% agarose gels. All PCR reactions were performed in triplicate.

Western blot

Cells were harvested and lysed in lysis buffer. A BCA Protein Assay Kit (Pierce Biotechnology, USA) was employed to determine the concentration of total protein. Equal amounts of protein were separated by SDS-PAGE (12%). Proteins were transferred to a polyvinylidene fluoride (PVDF) microporous membrane (Millipore, USA) and some were not. Twenty-four hours after being transcribed with siRNA, HCC cells were harvested. Equal numbers (5×10⁶) of transfected and HPF-1 cells were then placed in the upper chamber in 300 μL of 0.1% serum medium. Cells transfected with snc-RNA were used as a negative control. The lower chamber was filled with 0.1% fetal bovine serum medium (200 μL) and serum-free conditioned medium collected from HPF-1 cells (200 μL). After 8 h (migration assay) or 24 h (invasion assay) of incubation, the cells in the upper chamber were carefully removed with a cotton swab. The cells on the underside were then fixed in methanol, stained with H&E, and counted under a microscope.

Gelatin Zymography

Serum-free conditioned medium collected from siRNA-transfected SMMC-7721 and FHCC-98 cells was added to HPF-1 cells. Fifteen hours later, the conditioned medium was collected and separated using a 10% acrylamide gel containing 0.1% gelatin. The gels were incubated in a 2.5% Triton X-100 solution at room temperature with gentle agitation and were then soaked in...
Immunocytochemistry and confocal microscopy

SMMC-7721 and FHCC-98 cells were harvested and allowed to attach to pre-coated glass coverslips for 24 hours. They were then fixed in 3.7% formaldehyde in PBS, permeabilized with 0.1% Triton X-100 and blocked with 1% BSA (Fraction V) in PBS for 1 h. Coverslips were incubated with goat anti-CD147 antibody (1:100; Santa Cruz, USA) and ANXA2 mAb (1:100) in PBS overnight at 4°C. The cells were then washed and incubated with Alexa 594-conjugated goat anti-mouse (Invitrogen, USA) or donkey anti-goat IgG-FITC (Santa Cruz, USA) secondary antibody at a dilution of 1:400 for 1 h at room temperature. Cell nuclei were stained with DAPI (Vector, USA). The slides were then washed and mounted onto glass slides. Anti-fade was added to prevent quenching of the fluorophores. The proteins were visualized with a FluoView™ TM FV1000 confocal microscope (Olympus, Japan).

Figure 1. Expression of ANXA2 in HCC cells was effectively down-regulated by specific si-ANXA2. Forty-eight hours after the transfection of SMMC-7721 or FHCC-98 cells with si-ANXA2 or snc-RNA, ANXA2 expression levels were examined using RT-PCR (A) and Western blot (B). Top, representative image; bottom, quantitative gray scale analysis of at least three independent experiments. Columns, mean; bars, SD; p<0.001 vs. corresponding snc-RNA-transfected cells (one-way ANOVA).

doi:10.1371/journal.pone.0067268.g001

Results

Specific siRNA effectively down-regulates ANXA2 expression in HCC cells

To investigate the role of ANXA2 in the invasion and migration of HCC cells, RNA interference was used to downregulate the expression of ANXA2 in SMMC-7721 and FHCC-98 cells. Both cell lines were transfected with si-ANXA2 and snc-RNA. Forty-eight hours after transfection, the expression of ANXA2 mRNA and protein was examined using RT-PCR and Western blot, respectively. RT-PCR showed that si-ANXA2 could effectively downregulate the expression of ANXA2 mRNA in SMMC-7721 and FHCC-98 cells, with an inhibition rate of 64.12±1.46% and 58.80±1.36%, respectively, compared to snc-RNA (p<0.001, Fig. 1A). These results were consistent with Western blot assays. The protein expression of ANXA2 was notably reduced in si-ANXA2 transfected cells, with an inhibition rate of 63.89±3.87% and 62.80±2.98%, respectively, compared to snc-RNA-transfect-
ed cells (p<0.001, Fig. 1B). These data show that ANXA2-specific siRNA can effectively reduce the expression of ANXA2 in HCC cells.

Effects of ANXA2 on the migration and invasion of HCC cells

To mimic in vivo tumor-stroma interactions within local microenvironments, HCC cells were transfected with si-ANXA2 and then co-cultured with an equal number of HPF-1 cells in the upper chamber. The migration assay showed that the number of cells that migrated through the filter was drastically reduced in the SMMC-7721 and FHCC-98 cells transfected with si-ANXA2, with an inhibition rate of 59.22±2.43% and 55.94±2.76%, respectively, compared to snc-RNA-transfected cells (p<0.001, Fig. 2A). Using an in vitro invasion assay, the number of invading cells was also shown to be reduced in si-ANXA2-transfected SMMC-7721 and FHCC-98 cells, with an inhibition rate of

Figure 2. Effects of ANXA2 on the migration and invasion of HCC cells co-cultured with HPF-1 cells. Twenty-four hours after transfection with si-ANXA2 or snc-RNA, HCC cells were co-cultured with an equal number of HPF-1 cells in the upper chamber, which were not coated with Matrigel in the in vitro migration assay (A) but were coated in the in vitro invasion assay (B). Eight (migration assay) or twenty-four (invasion assay) hours later, the cells migrating/invading through the filter were stained and counted. Left, representative images showing the density of cells on the filter. Right, quantitative analyses of the cells migrating/invading through the filter in three independent experiments. Columns, mean; bars, SD. p<0.001 vs. corresponding snc-RNA-transfected cells (one-way ANOVA). (C) Silencing ANXA2 in HCC cells inhibited the cellular secretion of MMP-2 by HPF-1 cells cultured in supernatant collected from si-ANXA2-transfected HCC cells. Serum-free conditioned medium collected from si-ANXA2- or snc-RNA-transfected HCC cells was added to HPF-1 cells. Fifteen hours later, the conditioned medium was collected and analyzed using gelatin zymography. Left, representative image. Right, gray scale analysis of at least three independent experiments. Columns, mean; bars, SD. p<0.01 vs. corresponding snc-RNA-transfected cells (one-way ANOVA).

doi:10.1371/journal.pone.0067268.g002
60.63 ± 1.65% and 59.49 ± 3.19%, respectively, compared to snc-RNA-transfected cells (p < 0.001, Fig. 2B).

Both in vitro and in vivo, increased tumor aggression has been reported to be correlated with high expression levels of MMPs, which are mainly secreted by stromal cells. A critical question that arises from our study is whether the expression level of ANXA2 in HCC cells affects the production of MMPs by peritumoral fibroblasts. To address this issue, we performed a gelatin zymography assay, which indicated that the secretion of MMP-2 was significantly reduced in HPF-1 cells cultured in supernatant collected from si-ANXA2-transfected HCC cells, with an inhibition rate of 46.75 ± 3.29% and 35.60 ± 2.88% in SMMC-7721 cells and FHCC-98 cells, respectively, compared to snc-RNA-transfected cells (p < 0.01, Fig. 2C). These data demonstrate that ANXA2 may facilitate the migration and invasion of HCC cells in vitro by regulating the production of MMP by peritumoral fibroblasts.

ANXA2 and CD147 co-localize on HCC membrane structures

To study the possible interaction between ANXA2 and CD147 and to explore the hypothesis that ANXA2 is involved in the shedding of CD147-harboring microvesicles from tumor cells, we performed immunofluorescent double-labeling on SMMC-7721 and FHCC-98 cell slides. As shown in Fig. 3A, ANXA2 (red) and CD147 (green) were co-localized in both cell lines. We focused on the strong double-staining of the membrane. To further confirm
(tubulin), membrane protein (VEGF-R2), and ANXA2 were detected in whole cell lysates and TMP and cytosol fractions using Western blot (Fig. 3B). We then performed co-immunoprecipitation of the TMP extracted from HCC cells. These results showed that ANXA2 and CD147 co-immunoprecipitated with each other in the TMP extracted from both SMMC-7721 and FHCC-98 cells (Fig. 3C), indicating that ANXA2 and CD147 co-localize on HCC membrane, and there may be interaction effects due to membrane-associated events between the two molecules.

ANXA2 affects the invasiveness of tumor cells by regulating the transportation of CD147-harboring membrane microvesicles

Data have shown that ANXA2 is involved in microvesicle trafficking [4] and that CD147-harboring microvesicles play an important role in tumor-stroma cross-talk by stimulating the production of MMPs [29,30]. The co-localization of ANXA2 and CD147 described above indicated that ANXA2 may be involved in CD147 membrane microvesicle trafficking, and could therefore affect the invasiveness of tumor cells. To address this issue, we isolated microvesicles shed from SMMC-7721 cells and analyzed the harvested pellet using Western blot. Electron microscopy of the ultracentrifuged pellet revealed that SMMC-7721 cells shed spherical or ellipsoid-shaped microvesicles (~200–500 nm), consistent with previous reports on plasma membrane-derived microvesicles [29]. A representative image is shown in Fig. 4A.

The microvesicles were then analyzed using Western blot, which showed that the microvesicles shed from SMMC-7721 cells carried both ANXA2 and CD147 [Fig. 4A].

To further investigate the effect of ANXA2 on the shedding of CD147-harboring microvesicles, SMMC-7721 cells were transfected with si-ANXA2 or si-CD147 and the microvesicles then isolated and analyzed as described above. The results (Fig. 4B) showed that the expression of both ANXA2 and CD147 in the isolated microvesicles was downregulated when SMMC-7721 cells were transfected with si-ANXA2, with an inhibition rate of 64.49±3.56% and 36.16±1.49%, respectively, compared to the snc-RNA-transfected group (p<0.01). However, when SMMC-7721 cells were transfected with si-CD147, only the expression of CD147 in the microvesicles was significantly downregulated, with an inhibition rate of 54.78±0.64% compared to the snc-RNA-transfected group (p<0.01).

We then focused on the effect of the isolated microvesicles on the secretion of MMPs by fibroblasts. HPF-1 cells were treated with microvesicles isolated from untreated or si-RNA-transfected (snc-RNA, si-ANXA2 or si-CD147) SMMC-7721 cells. A gelatin zymography assay (Fig. 4C) indicated that microvesicles isolated from si-ANXA2- or si-CD147-transfected SMMC-7721 cells were less efficient in the induction of MMP-2 compared to microvesicles isolated from untreated or snc-RNA-transfected SMMC-7721 cells (p<0.01). These results suggest that ANXA2 is involved in the trafficking of CD147-harboring microvesicles derived from tumor cells, which regulates the production of MMP-2 by fibroblasts, thereby facilitating the progression of HCC.

Discussion

ANXA2 is thought to be involved in the transduction of cellular signals associated with inflammation, differentiation and proliferation [2]. Emerging evidence indicates that changes in the expression and/or subcellular localization of ANXA2 contribute to the development and progression of a variety of malignancies. Frohlich et al. reported that ANXA2 was up-regulated in HCC [35]. Recently, Mohammad et al. confirmed the upregulation of ANXA2 in HCC and showed that ANXA2 promotes tumor cell invasion, migration, and metastasis.

Figure 4. ANXA2 promoted the invasiveness of HCC cells in vitro by regulating the transportation of CD147-harboring membrane microvesicles. Microvesicles (MV) were isolated from the supernatant of SMMC-7721 cells using ultracentrifugation and subjected to microscopy (A. Top, representative image of isolated microvesicles. Bars, 100 nm) and Western blot (A. Bottom, representative image). (B) Effects of si-ANXA2 and si-CD147 on the expression of ANXA2 and CD147 in the isolated microvesicles. SMMC-7721 cells were transfected with snc-RNA, si-ANXA2, or si-CD147 and microvesicles then isolated from the supernatant and analyzed using Western blot. Top, representative image of Western blot. Bottom, gray scale analysis of at least three independent experiments. Columns, mean; bars, SD. p<0.001 vs. corresponding snc-RNA-transfected cells (one-way ANOVA). (C) Effects of tumor-shed CD147-harboring microvesicles on the production of MMP-2 by fibroblasts. SMMC-7721 cells were transfected with snc-RNA, si-ANXA2, or si-CD147 and microvesicles isolated using ultracentrifugation. HPF-1 cells were treated with diverse isolated microvesicles and the conditioned medium then collected and analyzed using gelatin zymography. Top, representative image. Bottom, gray scale analysis of at least three independent experiments. Columns, mean; bars, SD. p<0.01 vs. corresponding snc-RNA-transfected cells (one-way ANOVA). doi:10.1371/journal.pone.0067268.g004

the results and explore the possibility that ANXA2 is involved in CD147 membrane microvesicle trafficking, we extracted the TMP from SMMC-7721 and FHCC-98 cells. Cytoskeletal protein...
ANXA2 in HCC and provided a more detailed description [19]. They reported that ANXA2 is almost undetectable in normal liver and chronic hepatitis tissue, but the expression of ANXA2 is abundant in non-tumorous cirrhotic tissue at both the transcriptional and translational levels. Furthermore, the expression of ANXA2 is greater in tumorous tissue than in non-tumorous cirrhotic tissue. These data strongly indicate that ANXA2 may be involved in the malignant transformation and progression of hepatocellular carcinoma.

In the present study, we explored the role of ANXA2 in the invasion and migration of HCC cells. Two HCC cell lines, SMMC-7721 and FHCC-98, were co-cultured with HPF-1 cells to mimic the tumor-stroma interaction system in vivo. A migration assay, invasion assay, and gelatin zymography assay were employed. Our results show that knocking down the expression of ANXA2 in HCC cells inhibits the migratory and invasive potential of these tumor cells and significantly attenuates the production of MMPs by fibroblasts, which were previously reported to be involved in human hepatic tumorigenesis and metastasis. All these findings suggest that ANXA2 may play an important role in the progression of HCC, including migration, invasion, and enzyme degradation.

Previous studies have illustrated that ANXA2 functions in the invasion and migration of various tumors. However, the exact molecular mechanisms underlying this function remain largely unknown. Sharma and Sharma proposed a mechanistic cascade for the role of ANXA2 in tumor progression. They suggested that ANXA2 at the cell surface of tumor/endothelial cells provides for the mechanical assembly of plasminogen activator and plasminogen, which locally activates plasminogen to plasmin. Plasmin then induces the degradation of ECM, which in turn facilitates endothelial/tumor cell invasion and migration [6]. In this study, we found that the treatment of HCC cells with ANXA2-specific siRNA significantly reduced the production of MMP-2 by HPF-1 cells cultured in supernatant collected from HCC cells, suggesting that certain factors may exist in the supernatant that regulate the production of MMPs by HPF-1 cells. Accordingly, we focused on CD147, an important molecule responsible for stimulating the production of several MMPs (MMP-1, MMP-2, MMP-3, MMP-9, MMP-14, and MMP-15) by fibroblasts and endothelial cells [24]. Thus, a possible interaction between ANXA2 and CD147 was considered. In this study, CD147 was found to co-localize with ANXA2 in HCC cells. The two molecules were also found to co-immunoprecipitate with each other in TMP extracted from SMMC-7721 and FHCC-98 cells. These results demonstrate that ANXA2 and CD147 are in close proximity, if not directly associated, and most likely interact in HCC cells.

If we assume that CD147 is the bioactive factor hiding in the supernatant, how and in what form is CD147 released by tumor cells? Vesicle shedding has been observed in normal cells under certain physiological conditions [36] and is present at much higher rates in tumor cells [37]. The shedding of tumor surface antigens in membrane vesicles has been implicated as an important feature of malignant transformation. It is likely that vesicle shedding and, more importantly, the factors released by vesicle shedding, are vital to tumor survival and growth because it is by the release of such factors that tumors condition their microenvironment, regulate metastasis and evade immune surveillance [38]. Sidhu provided evidence of a form of tumor-stromal interaction. He showed that the degradation of the ECM by fibroblasts is controlled by the microvesicular release of CD147 from NCI-H460 cells [29]. In addition, ANXA2 has been shown to participate in the aggregation and transportation of membrane microvesicles [1]. Our present data support the possibility of an interaction between ANXA2 and CD147. We then hypothesized that CD147 carried by membrane microvesicles may be the soluble bioactive factor affecting the production of MMPs in the supernatant collected from HCC cells and that ANXA2 may be involved in the trafficking. Our subsequent study confirmed this hypothesis. Membrane microvesicles were successfully isolated from the supernatant of SMMC-7721 cells using ultracentrifugation. Both CD147 and ANXA2 were detected in the isolated microvesicles using Western blot. When HPF-1 cells were treated with microvesicles, the production of MMP-2 was significantly increased. To further investigate the effect of ANXA2 on the shedding of CD147-harboring microvesicles, SMMC-7721 cells were transfected with si-ANXA2 or si-CD147 and microvesicles then isolated. These results indicate that the downregulation of ANXA2 in tumor cells reduces the expression of CD147 in isolated microvesicles, but the expression of ANXA2 in the microvesicles is not affected when cells are transfected with si-CD147. It has been reported that ANXA2 is involved in exocytosis and membrane vesicle trafficking [4,5], which may be the reason why the down-regulation of ANXA2 affects CD147 protein levels. There is no evidence that CD147 regulates the production and release of microvesicles, which is consistent with our result that the down-regulation of CD147 did not affect ANXA2 protein levels. The induction effect of microvesicles on the production of MMP-2 was weakened when SMMC-7721 cells were transfected with either si-ANXA2 or si-CD147. All of these findings show that the shedding of microvesicles from tumor cells acts as an efficient vehicle for CD147 trafficking and that ANXA2 regulates the transportation of CD147-harboring microvesicle, thereby contributing to the progression of HCC, although there may be other molecules in the microvesicles besides CD147.

In conclusion, we report that ANXA2 promotes the migration and invasion of HCC cells co-cultured with fibroblasts in vitro by regulating the shedding of CD147-harboring microvesicles from tumor cells, which contributes to tumor-stroma crosstalk and sheds light on the mechanisms of ANXA2 in tumor progression. ANXA2 may be a potential target for the development of effective therapeutic strategies for the treatment of HCC.

Author Contributions
Conceived and designed the experiments: KFD ZNC WPZ. Performed the experiments: WZ PZ XLX LC DYC. Analyzed the data: KFD WZ PZ. Wrote the paper: KFD WZ PZ.

References
1. Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82: 331–371.
2. Singh P (2007) Role of Annexin-II in GI cancers: interaction with gastrins/progastrins. Cancer Lett 216: 131–140.
3. Musunoor S, Murray G (2008) The role of annexins in tumour development and progression. J Pathol 216: 131–140.
4. Gerke V, Curzio GE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6: 449–461.
5. Lorusso A, Covino C, Priori G, Bachi A, Meldolesi J, et al. (2006) Annexin2 coating the surface of enlargeosomes is needed for their regulated exocytosis. Embo J 25: 3575.
6. Sharma MC, Sharma M (2007) The role of annexin II in angiogenesis and tumor progression: a potential therapeutic target. Curr Pharm Des 13: 3568–3575.
7. Kesturt JC, Hirshcohn RR (1990) The growth-regulated gene 1B6 is identified as the heavy chain of calpactin I. Exp Cell Res 188: 153–159.
Hijazi KA, Guvarca CA, Lev E, Dowling K, Clacko J (1996): Interaction of the fibrinolytic receptor, annexin II, with the endothelial cell surface. Essential role of endonuclease repeat 2. J Biol Chem 271: 21632–21639.

Brichtay FM, Mieck DE, Yim AM, Krause MC, Giordano T, et al. (2001): An immune response manifest by the common occurrence of annexin I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci U S A 98: 9824–9829.

Masaki T, Tokuda M, Fujimura T, Ohmishi M, Tai Y, et al. (1994): Involvement of annexin I and annexin II in hepatocyte proliferation: can annexins I and II be markers for proliferative hepatocytosis? Hepatology 20: 425–435.

Sharma MR, Rothman Y, Tuszynski GP, Sharma MC (2006): Antibody-directed targeting of angiostatin’s receptor annexin II inhibits Lewis Lung Carcinoma tumor growth via blocking of plasminogen activation: possible biochemical mechanism of angiostatin’s action. Exp Mol Pathol 81: 136–145.

Sharma MR, Kolowski L, Owney BT, Tuszynski GP, Sharma MC (2006): Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp Mol Pathol 81: 146–156.

Zimmermann U, Woenschhaus C, Pietzschmann S, Junker H, Maile S, et al. (2004): Expression of annexin II in conventional renal cell carcinoma is correlated with Fuhrman grade and clinical outcome. Virchows Arch 445: 368–374.

Wu W, Tang X, Hu W, Lotan R, Hong WK, et al. (2002): Identification and characterization of HAb18G (CD147), a novel cell adhesion molecule: expression inhibits prostate cancer cell migration. Oncogene 22: 1475–1485.

Zhao P, Tang J, Wu YM, Zhao P, Yang XM, Jiang JL, et al. (2008): Overexpression of HAb18G/CD147 promotes invasion and metastasis via alpha3beta1 integrin-mediated FAK-paxillin and FAK-PI3K-Ca2+ pathways. J Cell Mol Life Sci 65: 2933–2942.

Zhao P, Zhang W, Tang J, Ma XK, Dai JY, et al. (2010): Annexin II promotes invasion and migration of human hepatocellular carcinoma cells in vitro via its interaction with HAb18G/CD147. Cancer Sci 101: 367–395.

Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999): Activated vesicle-associated CD147 modulates the angiogenic capability of endothelial cells. Neoplasia 9: 349–357.

Yi J, Xu HY, Zhang Q, Song F, Jiang JL, et al. (2007): HAb18G/CD147 functions in invasion and metastasis of hepatocellular carcinoma. Mol Cancer Res 5: 605–614.

Masaki T, Tokuda M, Fujimura T, Ohnishi M, Tai Y, et al. (1994): Involvement of annexin I and annexin II in hepatocyte proliferation: can annexins I and II be markers for proliferative hepatocytosis? Hepatology 20: 425–435.

Sharma MR, Rothman Y, Tuszynski GP, Sharma MC (2006): Antibody-directed targeting of angiostatin’s receptor annexin II inhibits Lewis Lung Carcinoma tumor growth via blocking of plasminogen activation: possible biochemical mechanism of angiostatin’s action. Exp Mol Pathol 81: 136–145.

Sharma MR, Kolowski L, Owney BT, Tuszynski GP, Sharma MC (2006): Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp Mol Pathol 81: 146–156.

Zimmermann U, Woenschhaus C, Pietzschmann S, Junker H, Maile S, et al. (2004): Expression of annexin II in conventional renal cell carcinoma is correlated with Fuhrman grade and clinical outcome. Virchows Arch 445: 368–374.

Wu W, Tang X, Hu W, Lotan R, Hong WK, et al. (2002): Identification and characterization of HAb18G (CD147), a novel cell adhesion molecule: expression inhibits prostate cancer cell migration. Oncogene 22: 1475–1485.

Zhao P, Tang J, Wu YM, Zhao P, Yang XM, Jiang JL, et al. (2008): Overexpression of HAb18G/CD147 promotes invasion and metastasis via alpha3beta1 integrin-mediated FAK-paxillin and FAK-PI3K-Ca2+ pathways. J Cell Mol Life Sci 65: 2933–2942.

Zhao P, Zhang W, Tang J, Ma XK, Dai JY, et al. (2010): Annexin II promotes invasion and migration of human hepatocellular carcinoma cells in vitro via its interaction with HAb18G/CD147. Cancer Sci 101: 367–395.

Egawa N, Koshibawa K, Tomari T, Nabeshima K, Isobe T, et al. (2006): Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves and releases a 22-kDa extracellular matrix metalloproteinase inducer (EMMPRIN) fragment from tumor cells. J Biol Chem 281: 37376–37385.

Siddhu SS, Mensikat AT, Taucher AN, LaVail J, Basbaum C (2004): The microvesicle as a vehicle for EMMPRIN in tumor-stromal interactions. Oncogene 23: 956–963.

Millmannaghi D, Marti M, Asencio S, Carosa E, Janmini EA, et al. (2007): Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells. Neoplasia 9: 349–357.

Xu J, Xu HY, Zhang Q, Song F, Jiang JL, et al. (2007): HAb18G/CD147 functions in invasion and metastasis of hepatocellular carcinoma. Mol Cancer Res 5: 605–614.

Tang J, Wu YM, Zhao P, Yang XM, Jiang JL, et al. (2008): Overexpression of HAb18G/CD147 promotes invasion and metastasis via alpha3beta1 integrin-mediated FAK-paxillin and FAK-PI3K-Ca2+ pathways. J Cell Mol Life Sci 65: 2933–2942.

Zhao P, Zhang W, Tang J, Ma XK, Dai JY, et al. (2010): Annexin II promotes invasion and migration of human hepatocellular carcinoma cells in vitro via its interaction with HAb18G/CD147. Cancer Sci 101: 367–395.

Egawa N, Koshibawa K, Tomari T, Nabeshima K, Isobe T, et al. (2006): Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves and releases a 22-kDa extracellular matrix metalloproteinase inducer (EMMPRIN) fragment from tumor cells. J Biol Chem 281: 37376–37385.

Siddhu SS, Mensikat AT, Taucher AN, LaVail J, Basbaum C (2004): The microvesicle as a vehicle for EMMPRIN in tumor-stromal interactions. Oncogene 23: 956–963.

Millmannaghi D, Marti M, Asencio S, Carosa E, Janmini EA, et al. (2007): Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells. Neoplasia 9: 349–357.

Xu J, Xu HY, Zhang Q, Song F, Jiang JL, et al. (2007): HAb18G/CD147 functions in invasion and metastasis of hepatocellular carcinoma. Mol Cancer Res 5: 605–614.

Tang J, Wu YM, Zhao P, Yang XM, Jiang JL, et al. (2008): Overexpression of HAb18G/CD147 promotes invasion and metastasis via alpha3beta1 integrin-mediated FAK-paxillin and FAK-PI3K-Ca2+ pathways. J Cell Mol Life Sci 65: 2933–2942.

Zhao P, Zhang W, Tang J, Ma XK, Dai JY, et al. (2010): Annexin II promotes invasion and migration of human hepatocellular carcinoma cells in vitro via its interaction with HAb18G/CD147. Cancer Sci 101: 367–395.

Egawa N, Koshibawa K, Tomari T, Nabeshima K, Isobe T, et al. (2006): Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves and releases a 22-kDa extracellular matrix metalloproteinase inducer (EMMPRIN) fragment from tumor cells. J Biol Chem 281: 37376–37385.

Siddhu SS, Mensikat AT, Taucher AN, LaVail J, Basbaum C (2004): The microvesicle as a vehicle for EMMPRIN in tumor-stromal interactions. Oncogene 23: 956–963.

Millmannaghi D, Marti M, Asencio S, Carosa E, Janmini EA, et al. (2007): Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells. Neoplasia 9: 349–357.