Dermatophytosis has always been a common superficial mycosis in India. However, the past 6-7 years have seen an unprecedented increase in the number of patients affected by recurrent, chronic, recalcitrant and steroid modified dermatophytosis involving the glabrous skin (tinea corporis, tinea cruris and tinea faciei). Importantly, there has been a notable decrease in clinical responsiveness to commonly used antifungals given in conventional doses and durations resulting in difficult-to-treat infections. Considering that scientific data on the management of the current epidemic of dermatophytosis in India are inadequate, the Indian Association of Dermatologists, Venereologists and Leprologists (IADVL) Task force Against Recalcitrant Tinea (ITART) has formulated a consensus statement on the management of dermatophytosis in India.

Methods: Seventeen dermatologists with a focussed interest in dermatophytosis participated in a Delphi consensus method, conducted in three rounds. They responded as either “agree” or “disagree” to 132 statements prepared by the lead experts and gave their comments. Consensus was defined as an agreement of 80% or higher concurrence. Statements on which there was no consensus were modified based on the comments and were then recirculated. The results were finally analysed in a face-to-face meeting and the responses were further evaluated. A draft of the consensus was circulated among the participants and modified based on their inputs.

Results: Consensus was achieved on 90 of the 132 statements. Direct microscopy using potassium hydroxide mount was recommended in case of diagnostic difficulty on clinical examination. Counselling of patients about strict adherence to general measures and compliance to treatment was strongly recommended as the key to successful management of dermatophytosis. A combination of systemic and topical antifungal drugs was recommended for the treatment of glabrous tinea in the current scenario. Topical corticosteroid use, whether used alone or in combination with other components, was strongly discouraged by all the experts. It was suggested that topical antifungals may be continued for 2 weeks beyond clinical resolution. Itraconazole and terbinafine were recommended to be used as the first line options in systemic therapy, whereas griseofulvin and fluconazole are alternatives. Terbinafine was agreed to be used as a first line systemic agent in treatment naïve and terbinafine naïve patients with glabrous tinea. Regular follow-up of patients to ensure compliance and monitoring of clinical response was recommended by the experts, both during treatment and for at least 4 weeks after apparent clinical cure. Longer duration of treatment was recommended for patients with chronic, recurrent and steroid modified dermatophytosis.

Conclusion: Consensus in the management of dermatophytosis is necessary in the face of conventional regimens proving ineffective and dearth of clinical trials re-evaluating the role of available antifungals in the wake of evolving epidemiology of the infection in the country. It needs to be backed by more research to provide the required level of evidence. It is hoped that this consensus statement improves the quality of care for patients with dermatophytosis, which has emerged as a huge public health problem, imposing considerable financial burden on the country.

Keywords: Dermatophytosis, glabrous tinea, INTACT, recalcitrant, recommendations, resistance, task force

How to cite this article: Rengasamy M, Shenoy MM, Dogra S, Asokan N, Khurana A, Poojary S, et al. Indian Association of dermatologists, venereologists and leprologists (IADVL) task force against recalcitrant tinea (ITART) consensus on the management of glabrous tinea (INTACT). Indian Dermatol Online J 2020;4:502-19.

Received: 12-Apr-2020. Revised: 30-May-2020. Accepted: 22-Jun-2020. Published: 13-Jul-2020.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

© 2020 Indian Dermatology Online Journal | Published by Wolters Kluwer - Medknow
Introduction

Dermatophytosis is the most common superficial mycosis worldwide. In India, it has been a common infection that was easily amenable to treatment with topical and systemic antifungals. However, the past few years have seen a tremendous increase in the number of patients with recalcitrant dermatophytosis across the country. There has been apparently more number of new cases as well as frequent recurrences in those earlier affected. The problem has been worsened and perhaps even caused by the widespread use of creams containing a combination of antifungals, super potent corticosteroids and antibiotics, either by self-medication or due to prescription by misinformed persons.[1-5]

The current scenario of dermatophytosis in India is characterised by many atypical epidemiological, clinical and mycological manifestations compared to yesteryears [Table 1].[1-9] Chronic, recurrent and partially responding infections are increasingly seen. A changing pattern of the dermatophyte isolates has been observed, with *Trichophyton mentagrophytes* complex emerging as the major pathogen.[3,9] A unique clad distinct from *T. mentagrophytes/T. interdigitale* complex with multidrug resistance has recently been identified.[10]

Table 1: Salient clinico-epidemiological features in the current scenario of dermatophytosis in India[1-9]

Parameters	Probable reasons
Epidemiological	
Greater occurrence of dermatophytosis	Highly contagious infection, poor public awareness and inadequate access to healthcare facilities, inadequate/faulty treatments, rampant abuse of topical corticosteroid antifungal combination creams
Increasing frequency of chronic dermatophytosis	Abnormal host cell-mediated immune (CMI) response, inadequate/faulty treatments, fungal species related factors, fomites, rampant abuse of topical corticosteroid antifungal combination creams
Increasing frequency of recurrent dermatophytosis	Inadequate/faulty treatments, fungal species related factors, fomites, lifestyle related host factors
Higher incidence of infection among family members	Highly contagious infection, poor hygiene, sharing of fomites, sharing of prescriptions
Higher incidence among infants and children	Highly contagious infection, poor hygiene, high fomite transmission, inadequate and faulty treatment, topical corticosteroid abuse in the affected family members.
Changing fungal species - emergence of *T. mentagrophytes/T. interdigitale* complex as the predominant or codominant pathogen	Environment-related factors, host immunity related factors, topical high-potency corticosteroid-antibacterial-antifungal combination cream abuse, altered cutaneous flora, virulence of the fungal species
Clinical	
Extensive dermatophytosis	Topical corticosteroid usage, inadequate/faulty treatments, host immunity
Frequent involvement of uncommon sites like face and scalp	Autoinoculation from another site, fomite transmission, topical corticosteroid use on the face, misdiagnosis and faulty treatments
Inflammatory lesions, bullous/pustular lesions	Abnormal host response, fungal virulence, intermittent topical corticosteroid usage
Steroid modified tinea/tinea incognito, Tinea pseudoimbricata, Majocchi granuloma	Topical high potency corticosteroid usage-self-treatment, easy over the counter availability of topical poly-combinations, treatment by unqualified healthcare personnel, lack of awareness and inadequate knowledge of treating physicians
Atypical presentations (resembling psoriasis, eczema, impetigo, lupus, rosacea etc.)	Host immunity related factors, agent-related factors, misdiagnosis, corticosteroid application, trauma, secondary infection
Inadequate/no response to topical/systemic antifungals	Changing fungal species, poor host immunity, poor compliance, poor quality of drugs, antifungal resistance
In 2017, the Indian Association of Dermatologists, Venereologists and Leprologists (IADVL), the largest organization of dermatologists in India, constituted a task force (IADVL Task Force against Recalcitrant Tinea [ITART]) to combat this public health menace. One of ITART’s activities has been the formation of a group of experts to formulate guidelines for the management of dermatophytosis in India since the standard treatment regimens are not particularly effective.\(^\text{11}\) It is well known that guidelines should be backed by good quality research, but there are only a few high quality epidemiological, clinical, mycological and therapeutic studies of the current epidemic of dermatophytosis in India. It was thus decided to evolve a consensus statement based on the available literature and the expertise of the panel. This statement would require periodic evaluation and updating until evidence-based guidelines can be formulated.

Methods

Design

Consensus methods are increasingly being used to solve problems in medicine. While some recommendations are likely to be outdated as new knowledge accumulates, they may help our understanding of past knowledge and identify the research gaps. Of the several methods of consensus development, the Delphi technique is one of the most popular ones in health sciences.\(^\text{12-16}\) It entails the development of a consensus by an expert group on a specific subject through repeated anonymous questionnaire rounds. The experts are provided with an opportunity to reflect on the results of the previous questionnaire round. The process is completed once the defined level of consensus is reached or when the experts do not agree to alter their point of view any more.

To resolve the problem of recalcitrant dermatophytoses in India, we followed the modified Delphi technique and named the consensus statement as the Indian Association of Dermatologists, Venereologists and Leprologists Task Force against Recalcitrant Tinea (ITART) Consensus for the management of glabrous Tinea infections (INTACT) statement.

Experts

Seventeen dermatologists comprising of members from ITART and IADVL Academy (the committee supervising the IADVL’s academic activities) and others with a special interest in dermatophytosis, were selected. Most of them have research interest and publications on dermatophytosis or mycology. There was a reasonable representation from different parts of India. The chairperson and the convener of ITART were the lead experts. All members were briefed about the objectives, methods and the importance of maintaining anonymity. Their services were also utilised to draft the consensus statements.

Literature review

A detailed literature search was carried out on the epidemiology, host factors, diagnosis, etiological agents, treatment, special situations and prevention of dermatophytosis. Special emphasis was laid on published Indian literature.

Rounds

Two rounds of questions were circulated, with anonymity maintained, followed by one round of discussion. One of the lead experts circulated 132 statements and obtained the responses of experts by emails. Statements were divided into 5 parts: general statements (definitions); laboratory diagnosis; general measures in management; topical and systemic therapy and treatment in special situations such as in children, pregnancy, lactation, old age, organ dysfunctions and steroid-modified dermatophytosis [Table 2]. Eighty percent or higher agreement was considered to constitute a consensus. The experts were asked to vote by marking “agree” or “disagree” and add comments, if necessary.\(^\text{16-17}\)

Round 1

A document containing the list of statements was mailed to all members and their responses evaluated and recorded for consensus. Statements for which there was less than 80% agreement were modified based on the comments of the members.

Round 2

The modified statements were circulated again for voting and comments. Responses received were further evaluated. Statements for which there was less than 80% agreement were further modified based on the comments received and again circulated among the members.

Round 3

A meeting was organised to discuss and finalize the statements. It was chaired by the chairperson of ITART

Table 2: Classification of statements used for Delphi process and the detail of consensus by experts after three rounds of discussion

Category of statements	80% agreement (minimum 14 out of 17 experts agreeing with the statement)	
	Yes	No
General (n=9)	7	2
Laboratory Diagnosis (n=18)	13	5
General management (n=19)	16	3
Topical therapy (n=20)	13	7
Systemic therapy (n=47)	27	20
Special situations (n=19)	14	5
Total (n=132)	90	42
and conducted by its convener to validate the results. Those statements, wherein consensus could not be reached, were further discussed, and the relevant comments were recorded.

Using these consensus statements and appropriate review of the literature, a final draft of the consensus statement was prepared and circulated among all the members for final approval.

Results

At the end of 3 rounds, 80% or more of the experts agreed on 90 statements [Table 2] based on the evidence and their experience. The IADVL National Task Force against Recalcitrant Tinea (ITART) Consensus For Management of Glabrous Tinea Infections (INTACT) has been drafted based on these statements and the comments of members. Statements in which consensus could not be reached are also mentioned alongside. In general statements, we have defined some terms commonly related to dermatophytosis and also terms lacking any standard definition.

Definitions

1. **Glabrous tinea:** Dermatophytosis involving the skin of any site, except terminal hair-bearing areas of the scalp and face (tinea capitis/tinea barbae), palms (tinea manuum), soles (tinea pedis) and nails (tinea unguium); notwithstanding the true meaning of glabrous as “without hair”. It constitutes tinea corporis, tinea cruris and tinea faciei, and may also include involvement of hair bearing regions without invasion of hair by fungi.
2. **Chronic dermatophytosis:** Presence of glabrous tinea for a duration of six months or longer, continuous or recurrent, with or without treatment. Duration was earlier considered to be more than one year[1,18]
3. **Recurrent dermatophytosis:** Reoccurrence of the glabrous tinea after 4 weeks of stopping treatment following clinical cure[19]
4. **Resistant dermatophytosis:** Failure to eliminate dermatophytosis despite administration of one or more antifungal agents for an adequate dose and duration, based on clinical judgement due to proven mycological resistance to the drugs[20,21]
5. **Naïve case:** A patient with glabrous tinea who has not received any prior treatment
6. **Recalcitrant dermatophytosis:** Persistent glabrous tinea, generally in settings like chronic, recurrent, corticosteroid-modified and resistant cases, with poor or no response to standard treatment[19,22]
7. **Corticosteroid modified tinea:** Glabrous tinea whose morphology is altered due to topical or systemic corticosteroids, but is still recognisable or diagnosable[11]
8. **Tinea incognito:** Glabrous tinea in which the morphology is markedly altered due to the suppression of inflammation by corticosteroids or other immunosuppressants such that it is not easily recognisable as tinea[3,22-24]
9. **Over-the-counter (OTC) medications:** Medications purchased from a pharmacy without prescription by a qualified healthcare professional
10. **Clinical cure:** Complete resolution of symptoms and signs with or without post-inflammatory changes at the end of treatment
11. **Mycological cure:** Complete subsidence of symptoms and signs with negative mycological reports (direct microscopy and/or culture) at the end of the treatment.

Laboratory diagnosis

Diagnosis of dermatophytosis has lately become more challenging, with atypical morphological variants being more commonly seen, of which many are attributable to topical corticosteroid abuse. When clinical diagnosis is difficult, experts recommended direct microscopic examination as an office procedure with potassium hydroxide (KOH) mount, a test with high sensitivity, to confirm dermatophytosis. The specimen should be obtained by scraping the lesion’s active margin when present or from its scaly region and transported in a sterile, thick dry black sheet of paper to the laboratory, if the facility is not available in the outpatient clinic. Dermatophytes are visualised as hyaline, long, branching, septate hyphae with/without arthrospores. But direct microscopy does not help to identify the species. If feasible, the organism can be isolated by culture in modified Sabouraud’s dextrose agar with antibiotics and cycloheximide, to understand the epidemiological trends in a region and for possible therapeutic implications. Macroscopic appearance of culture colony and microscopic morphology help in the identification of the various species. Laboratory diagnosis may be considered when feasible. However, there was no consensus on mycological confirmation being mandatory in patients in whom, a standard treatment has failed. There was neither consensus on the necessity of histopathology with periodic acid-Schiff (PAS) stain for the confirmation of dermatophytosis nor with regard to the species identification as a requirement for the initiation of treatment.

Antifungal susceptibility testing (AFST) studies to know the local drug susceptibility patterns and molecular diagnostic techniques required for the accurate identification of the dermatophyte species may be considered in research institutes or if reference laboratories are available. However, there was no consensus on the utility of real time polymerase chain reaction (RT-PCR) and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) in the current scenario, since these are relatively new and the clinical implications are not known. The role of laboratory methods in the diagnosis is summarised in Table 3.[25,26]
Rengasamy, et al.: IADVL task force consensus on the management of glabrous tinea (INTACT)

Table 3: Role of various laboratory methods in the diagnosis of dermatophytosis

Principle	Method	Comments
Direct microscopic examination	Direct microscopy using potassium hydroxide mount and its modifications	An office procedure with relatively high sensitivity
Histopathology	Histopathology with special stain with periodic acid Schiff (PAS) stain	Should be done whenever feasible, especially if there is diagnostic difficulty on clinical examination
Isolation by culture and species identification	Fungal culture on Sabouraud’s dextrose agar and other selective media, biochemical tests and hair perforation test	Indicated in suspected Majocchi granuloma or deep dermatophytosis
Identification of species and subspecies by molecular diagnostic methods	Sequencing of the internal transcribed spacer (ITS) region of the ribosomal DNA, Random Amplified Polymorphic DNA (RAPD), Amplified Fragment Length Polymorphism (AFLP), mitochondrial DNA (mt DNA) restriction analysis, Sequencing of protein-encoding genes, polymerase chain reaction (PCR) fingerprinting	Sensitivity is low, but specificity is high; considered as the gold standard in the diagnosis
Identification of species and subspecies by proteomic diagnostic methods	Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry	May be performed whenever feasible for confirmation of clinical diagnosis and to understand the epidemiological trends in a region
Antifungal sensitivity testing (AFST)	Microbroth dilution method	Requires specially equipped laboratory with trained manpower
Identification of mutation causing antifungal resistance	Real Time Polymerase chain reaction (RT PCR), Sequencing of DNA	Currently utilised for research purposes but may find a place in conventional diagnosis in future

Management

General measures

Maintenance of personal hygiene is very important to avoid acquiring dermatophytosis and in preventing its spread and persistence. People living in hot and humid conditions are at greater risk of developing the infection. After every bath, the entire body surface, especially the body folds and toe clefts, should be wiped well. Washing of clothes and bed linen in hot water at 60°C and drying them in sunlight inside out may help prevent persistence of infection. Since direct contact and fomites play a significant role in the spread of infection, patients should not share their soaps, clothes, towels and bed linen. Furthermore, it is also important that the clothes of infected patients be stored and washed separately in order to prevent spread of infection. Regular mopping and cleaning of the house would also help to reduce the persistence of dermatophytes in the environment.

Use of synthetic and tight clothing should be avoided. Wearing bands, threads, drawstrings and rings should be discouraged as they may carry fungal elements and contribute to persistence and recurrence of infection. Comorbidities may predispose to recalcitrant or recurrent infection. Weight loss in obese patients would help prevent recurrence of infection especially in the intertriginous area. Corticosteroids in all forms should be avoided as it results in unusual presentations, diagnostic difficulty and treatment failures. Patients should be advised not to self-medicate or share their prescriptions. Simultaneous treatment of other infected household members and close contacts is necessary.

Counselling points for patients with glabrous tinea infections are summarised in Table 4.

Experts were not in consensus with regard to pets being the source of infection in the current scenario. They did not concur on the role of bathing habits and use of emollients in the management of dermatophytosis.

To conclude, experts agreed that patients should be educated about personal hygiene, clothing, skin care, corticosteroid abuse, adherence to general measures and compliance to treatment to ensure successful outcome.

Topical therapy

The type of topical formulation could be chosen according to the site involved. Lotion and spray formulations were
Table 4: Consensus on points for counselling patients with dermatophytosis

Points for discussion with patients	Expected impact
Current scenario of dermatophytosis in India	Patients will understand the gravity of the situation and follow medical advice accurately
Taking regular bath (at least once a day)	Reduces fungal load due to exfoliation of scales
Wiping the body dry (especially intertriginous area and toe clefts)	Prevents high moisture in those parts, minimizing chances of fungal colonization
Regular washing of clothes in hot water and drying in sunlight inside out	Reduces chances of re-infection from infected clothes
Storing and washing clothes of infected patients separately	Reduces chances of transmission to contacts and family members
Regular washing of bed linen (at least once a week)	Minimizes chances of re-infection from infected linen
Avoidance of sharing of fomites like clothes, towels and soaps with others	Reduces transmission to contacts and family members
Avoidance of synthetic tight garments	Prevents occlusion, maceration, friction and barrier dysfunction
Avoidance of wearing bands, threads, draw strings and rings	Reduces chances of re-infection from such infected materials
Regular mopping and cleaning of the house	Reduces chances of persistence of dermatophytes in the environment
Losing weight in obese patients	Reduces chances of intertriginous fungal infections
Avoidance of contact with pets	May reduce zoophilic infection and transmission
Avoidance of application of topical corticosteroids	Reduces chances of unusual presentations, diagnostic difficulty and treatment failure
Strict adherence to treatment	Enhances chances of complete cure and reduces recurrence
Simultaneous treatment of other infected house members and close contacts (prophylactic treatment is not required)	Reduces chances of transmission to each other and recurrence
Avoidance of self-medication, over the counter (OTC) medications and sharing of prescriptions	Reduces chances of inadequate treatment, topical corticosteroid misuse and treatment failure

There is no role for corticosteroids alone or in combination with antifungals in the management of dermatophytosis of the glabrous skin including inflammatory tinea. Topical antifungals, which have anti-inflammatory property, could be used in patients with inflammatory and corticosteroid modified tinea. There was no consensus on the routine use of combination of two topical antifungals. There are no role for corticosteroids alone or in combination with antifungals in the management of dermatophytosis of the glabrous skin including inflammatory tinea.

Systemic therapy

Patients on systemic antifungals should be regularly followed to ensure adherence to treatment and to monitor the therapeutic response. The first follow up visit should be at the end of 3 weeks to assess the clinical response. If there is partial response (i.e. persistent pruritus and incomplete/minimal resolution of lesions), therapy should be continued while reassessing for contributing factors. If there is no response, change of the antifungal drug should be considered. Regular follow up should be continued both during treatment and at least up to 4 weeks after apparent clinical cure.

Panellists agreed that patients with chronic/recalcitrant dermatophytosis and corticosteroid modified tinea need to be treated for a period longer than that is conventionally recommended. The duration of treatment may be individualised based on clinical response. The end point of treatment for glabrous tinea should be the achievement of clinical cure.

Terbinafine may be used as first line therapy in treatment-naïve and terbinafine-naïve patients with glabrous tinea. If there is an inadequate response at the end of 3 weeks of terbinafine 250 mg once a day, increasing the dose to 250 mg twice daily may be considered in adult patients, albeit with monitoring of liver function.
Itraconazole may be used as a first line option or when there is no response to terbinafine. It should be consumed immediately after food, and may be with an aerated beverage to ensure good absorption. A dose of 200 mg daily given either as two capsules of 100 mg once daily or one capsule of 100 mg twice daily in adults, is generally effective. The experts agreed on not using the unapproved higher dose formulations of itraconazole.

Experts agreed that griseofulvin and fluconazole need to be taken for a longer duration than itraconazole or terbinafine.\[41\]

There was no consensus for statements such as use of systemic antifungals in all cases of tinea faciei, initiation of terbinafine in 250 BD dosage, use of fluconazole and griseofulvin as first line therapy or of ketoconazole as a reserve drug. There was also no consensus on updosing of itraconazole and standard fixed duration of therapy for glabrous tinea infection.

Recommendations for systemic therapy of glabrous tinea infection are given in Table 6 and are summarised in Table 7. These recommendations are based not entirely on evidence but on consensus for the current scenario of recalcitrant dermatophytosis.

Special scenarios

It is known that the presence of comorbidities may predispose an individual to recalcitrant or recurrent infections. Treatment of dermatophytosis in pregnancy, lactating women, infants, children and geriatric patients has certain limitations.

Pregnancy and lactation: Topical antifungals are the mainstay of treatment for dermatophytosis in pregnancy. Though terbinafine is a category B drug and considered safe, experts opined that scarce human data available during the time of formulation of guidelines, precludes its routine use in pregnancy.\[44\] All topical antifungals are safe during lactation, as excretion in breast milk is negligible.

Infants and children: Localised infection may be treated with topical antifungals alone. However, recurrent, chronic or corticosteroid modified tinea, which is being increasingly observed in children, warrants the use of systemic antifungals. Fluconazole is considered a safe option for children under 2 years while above 2 years of age, griseofulvin, terbinafine and itraconazole can also be given.\[45,46\]

Elderly persons and in those with systemic disorders: Before initiating systemic treatment in elderly patients, particularly those with comorbidities, changes in pharmacokinetics and drug interactions should be considered. Patients with hepatic or renal dysfunction on systemic antifungals should undergo appropriate laboratory monitoring. Fluconazole is recommended as a relatively safe option in patients with hepatic dysfunction, albeit with strict monitoring of liver function. Itraconazole is a comparatively safer option in patients with renal dysfunction. In patients with cardiac illness, terbinafine is preferred while itraconazole is better avoided.\[46\]

Discussion

Laboratory diagnosis

While dermatophytosis can usually be diagnosed clinically, in the recent years atypical presentations, often simulating other dermatoses are becoming increasingly common, at times leading to difficulty in diagnosis.\[47,48\] When the
diagnosis is doubtful or the therapeutic response needs to be assessed, a 10-20% KOH wet mount is advocated as a simple and sensitive test whenever feasible. Certain modifications of the technique and counterstaining may improve the diagnostic accuracy. Identification of the dermatophyte species by culture may be attempted when possible. This would help understand the epidemiological trends in the region and may have therapeutic implications too. Skin scrapings collected after wiping with alcohol swabs must be transported in a sterile, thick dry black sheet of paper and inoculated in modified Sabouraud’s dextrose agar media with antibiotics and cycloheximide. The macroscopic appearance of the colony in culture and morphological features of the microconidia, macroconidia and other vegetative structures can help to identify the species. AFSTs help understand the local drug susceptibility patterns but are possible only in research institutes and reference laboratories. There is a dearth of clinically correlated mycological data which impacts the clinical utility of AFST. Histological diagnosis of dermatophytosis is not done routinely but can be useful in diagnosis of unusual clinical presentations like Majocchi granuloma and deep dermatophytosis. Staining with periodic acid Schiff (PAS) stain can ease identification of hyphae in tissue. Molecular diagnostic techniques can accurately identify the dermatophyte species. RT-PCR is a rapid method that enables detection of dermatophytes from clinical specimens. Research laboratories usually rely on sequencing of the internal transcribed spacer (ITS) region of the rDNA for sub-speciation and classification of dermatophytes. Accurate subspecies identification helps understand the clinical and epidemiological implications of the genetic heterogeneity of dermatophytes. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry is a relatively new technique that is increasingly being used to rapidly identify various microorganisms. It has the potential for rapid and accurate identification of different strains of dermatophytes. Molecular biological techniques have also been used to identify the genes responsible for antifungal resistance. There is relative lack of clinically correlated mycological data, which are essential to formulate evidence-based treatment guidelines.

General measures

Global warming has affected the climate in India in the form of increased maximum temperatures, heat waves and less rainfall. Indian Meteorological department data have shown an increase of 0.6°C in the average temperatures between 1901-10 and 2009-18. The number of days with maximum temperature exceeding 35°C in various cities in India has
Table 7: Consensus recommendation for the various facets of treatment of glabrous tinea

Indications	Comments	Recommendation
Glabrous tinea	Most cases in the current scenario require systemic therapy	Involvement of multiple sites
		Extensive disease based on clinical judgement
		Chronic dermatophytosis
		Recurrent dermatophytosis
		Steroid modified dermatophytosis/Tinea incognito
		Failure of topical therapy
		Associated nail and hair involvement
		Immunocompromised states like hematological malignancies and therapy with
		immunosuppressive drugs
Choice of systemic drug		Itraconazole, Terbinafine,
First line		Best option considering overall efficacy and safety
Alternate drugs		Griseofulvin, Fluconazole
Complementary topical therapy		Systemic antifungal therapy should preferably be
Choice and rationale		combined with topical antifungal therapy which may be of same or different class
	Topical antifungal without corticosteroid and antibacterial components.	
	There are limited laboratory/clinical studies on the efficacy and utility	
	of combination antifungals (systemic with topical or two systemic) for	
	dermatophytosis of the glabrous skin	
Response		Assessment of factors responsible for it and if detected to be corrected; if not,
Failure		antifungal therapy to be changed
	No improvement or worsening of symptoms and signs at 3 weeks	Completion of therapy for the stipulated period or as per the individual response
	Complete subsidence of symptoms and signs with or without	
	post-inflammatory changes anytime during the treatment	
	Partial subsidence of symptoms and signs at the end of 3 weeks	
Total response		Extended duration of treatment to be considered with appropriate laboratory
	Complete subsidence of symptoms and signs with or without	monitoring; double dosing of terbinafine may be considered
	post-inflammatory changes anytime during the treatment	
	Follow up must be at 4 weeks after apparent clinical cure to look for	
	Complete subsidence of symptoms and signs with or without	
	post-inflammatory changes at the end of treatment	
	Follow up must be at 4 weeks after apparent clinical cure to look for	
	Complete subsidence of symptoms and signs with negative mycology reports	
	(direct microscopy with/without culture) at the end of the treatment	
	Follow up must be at 4 weeks after apparent clinical cure to look for	
	Mycological cure	
	Complete subsidence of symptoms and signs with negative mycology reports	
	(direct microscopy with/without culture) at the end of the treatment	
	Follow up must be at 4 weeks after apparent clinical cure to look for	
	Mycological cure	
Laboratory monitoring	All systemic antifungals are hepatotoxic	Monitoring hepatic function if the treatment is extended or if the dose is
Hepatotoxicity		doubled
Renal toxicity	Systemic drugs used in the management of dermatophytosis do not commonly	Renal monitoring may be considered if indicated on clinical grounds
	cause renal toxicity	
Follow up	To assess clinical response	At 3 weeks, if inadequate response
First follow up visit		At 4 weeks after apparent clinical cure
Final follow up visit	To assess recurrence	
Special situations		Topical antifungals with established safety
Pregnancy	Teratogenicity of the drugs should be addressed	[Table 8]
Lactating mother	Safety of the infant should be addressed	Oral terbinafine (routine use should be avoided)
		Topical antifungals
		Oral fluconazole

Contd...
Tight, restrictive clothing can trap heat and moisture, leading to a conducive environment for the growth of dermatophytes. Hence, patients should be advised to avoid using synthetic or tight clothing and should preferentially use loose cotton clothes. Washing clothes in water at a temperature of 60°C or above eliminates *Trichophyton rubrum*. Exposure of infected socks to sunlight can reduce fungal contamination as sunlight can act as a good disinfectant. Washing the body surface with soap and water removes fungal elements, emphasizing the need for regular bathing. Use of synthetic tight dresses and occlusive footwear is linked to increased prevalence of dermatophytosis. Tight, restrictive clothing can trap heat and moisture, leading to a conducive environment for the growth of dermatophytes. Hence, patients should be advised to avoid using synthetic or tight clothing and should preferentially use loose cotton clothes.

Washing clothes in water at a temperature of 60°C or above eliminates *Trichophyton rubrum*. Exposure of infected socks to sunlight can reduce fungal contamination as sunlight can act as a good disinfectant. Washing or storing infected and non-infected clothes together can facilitate transmission of infection. Hence the worn clothes of patients should be stored and washed separately in hot water at 60°C and dried inside out in the sun. Similarly, ironing of clothes may also be beneficial. Waistbands, wristbands and threads, which aid the persistence of dermatophytes are better avoided.

Obese patients should be advised to lose weight to prevent recurrence of infection, especially in intertriginous areas like the groin. The nails should be examined in all patients with dermatophytosis as they may act as a focus for recurrent infection. Contact with pets should be avoided as they can be potential sources of infection, although there appears to be no role of pets in the current scenario.

Abuse of oral or topical corticosteroids frequently leads to diagnostic difficulty (due to atypical presentations of dermatophytosis) and treatment failures. Compliance to treatment is essential to achieve cure as patients often use antifungal drugs irregularly or stop them on getting relief from itching and achieving partial resolution. As infection among other family members is very common in the current scenario, treatment of all infected members simultaneously is necessary to avoid recurrences or persistence of infection.

Counselling patients about the course of disease, adherence to treatment and to general measures and avoidance of corticosteroid abuse are essential for treatment to be successful.

Pharmacological therapy

Since dermatophytes usually do not penetrate the deeper layers of the skin, the host does not necessarily develop sufficient immunity to ensure spontaneous healing. Spontaneous remission rarely occurs even when the underlying cause has been eliminated. Therefore, every patient with dermatophytosis requires topical and/or systemic antifungal therapy.

Tinea of the glabrous skin has been easily amenable to short courses of standard antifungal agents, terbinafine and itraconazole since the time these drugs were introduced. However, with increasing incidence of inadequate response to treatment, high recurrence rate and chronic infections, an extended duration of therapy is often needed. To ensure compliance, antifungal therapy should be chosen keeping affordability in mind.

Topical therapy

Topical antifungal therapy is integral to the management of glabrous tinea especially in the setting of localised infection, pregnancy, children and in the presence of some comorbidities when systemic antifungals cannot be used. Topical antifungals can be useful adjuvants to systemic antifungals in the current scenario as they may have an

Table 7: Contd...

Comments	Recommendation
Children under 2 years	Safety with respect to hepatotoxicity, GI intolerance and other adverse effects should be addressed
Children above 2 years	Safety with respect to hepatotoxicity, GI intolerance and other adverse effects should be assessed
Hepatic dysfunction	Monitoring of the hepatic function is mandatory
Renal dysfunction	Renal function monitoring if terbinafine is used (dose reduction if creatinine clearance is <50 ml/ min)
Cardiac dysfunction	Cardiotoxicity of drugs should be addressed
Oral fluconazole	Topical antifungals with established safety
Oral terbinafine, itraconazole, fluconazole and griseofulvin	Oral fluconazole
Oral terbinafine	Topical antifungals
Oral itraconazole	Topical antifungals
Oral terbinafine	Topical antifungals

Also increased. A hot and humid climate favours the growth of dermatophytes, while humidity can enhance penetration of fungi. In a study from Kerala done in 2016, 52% of patients with chronic dermatophytosis were manual labourers. About 64% of patients were exposed to the sun for more than 3 hours a day and 68% had reported excessive sweating. In another study, from Tamil Nadu, chronic infection was associated with sun exposure for more than 3 hours daily.

Patients should be advised to avoid sharing of inanimate objects or fomites (e.g., soaps, towels, clothes and bedding) with others, as these can be responsible for transmission of infection. Washing the body surface with soap and water removes fungal elements, emphasizing the need for regular bathing. Use of synthetic tight dresses and occlusive footwear is linked to increased prevalence of dermatophytosis. Tight, restrictive clothing can trap heat and moisture, leading to a conducive environment for the growth of dermatophytes. Hence, patients should be advised to avoid using synthetic or tight clothing and should preferentially use loose cotton clothes.

Washing clothes in water at a temperature of 60°C or above eliminates *Trichophyton rubrum*. Exposure of infected socks to sunlight can reduce fungal contamination as sunlight can act as a good disinfectant. Washing or storing infected and non-infected clothes together can facilitate transmission of infection. Hence the worn clothes of patients should be stored and washed separately in hot water at 60°C and dried inside out in the sun. Similarly, ironing of clothes may also be beneficial. Waistbands, wristbands and threads, which aid the persistence of dermatophytes are better avoided.

Obese patients should be advised to lose weight to prevent recurrence of infection, especially in intertriginous areas like the groin. The nails should be examined in all patients with dermatophytosis as they may act as a focus for recurrent infection. Contact with pets should be avoided as they can be potential sources of infection, although there appears to be no role of pets in the current scenario.

Abuse of oral or topical corticosteroids frequently leads to diagnostic difficulty (due to atypical presentations of dermatophytosis) and treatment failures. Compliance to treatment is essential to achieve cure as patients often use antifungal drugs irregularly or stop them on getting relief from itching and achieving partial resolution. As infection among other family members is very common in the current scenario, treatment of all infected members simultaneously is necessary to avoid recurrences or persistence of infection.

Counselling patients about the course of disease, adherence to treatment and to general measures and avoidance of corticosteroid abuse are essential for treatment to be successful.
additive effect and achieve high local concentration. Reaction at the site of application is rare and is the only significant adverse effect.

The ideal topical antifungal agent should have a high cure rate, low relapse rate and minimal adverse effects. Extensive infection and high cost, especially of the newer topical antifungals, are limitations to topical therapy. As dermatophytes are keratinophilic, moving radially, current practice of many dermatologists is to advice patients to apply antifungal creams from the active outer border inwards.

Topical agents are available as creams, ointments, lotions, sprays, gels, powders and soaps. Of these, antifungal soaps and powders are not recommended in the management of glabrous tinea. In India, topical antifungal, antibacterial and corticosteroid combination creams containing 3-5 components (viz. a potent corticosteroid like clobetasol propionate, ormidozole, ofloxacin and an antifungal agent) are unfortunately freely available over-the-counter. They are often used for the treatment of tinea corporis, tinea cruris and tinea faciei, leading to a variety of adverse effects. Antifungal without any corticosteroid or antibacterial only should be used for the treatment of glabrous tinea. Topical corticosteroids should never be used for tinea corporis, tinea cruris or tinea faciei. Some classes of topical antifungals such as azoles and allylamines have anti-inflammatory properties due to their inhibitory effects on cytokines and may be useful for treating patients with inflammatory lesions.

Keratolytics have been used for the treatment of dermatophytosis, especially hyperkeratotic tinea pedis. Keratolytics, such as Whitfield’s ointment (3% salicylic acid with 6% benzoic acid), can be used in the treatment of glabrous tinea, but not on the flexures or face or where the lesions are inflamed. Topical antifungal agents available in India are listed in Table 8. Many are relatively new and probably have some advantages over the older ones [Table 9], but are generally more expensive. Since there are very few head-to-head comparison studies there is insufficient evidence to recommend one molecule over the other. Most topical antifungals need to be applied twice daily, but luliconazole and terbinafine may be applied once daily. Clotrimazole, miconazole, oxiconazole and ketoconazole are relatively less expensive.

Topical corticosteroid application adversely affects the epidermal barrier function by increasing transepidermal water loss and decreasing the ceramide content of the stratum corneum. Hence, emollient application should be encouraged, particularly in patients with corticosteroid modified tinea, to enhance the barrier function and provide symptomatic relief. Antihistamines can be used to alleviate pruritus. There are a few reports supporting the use of antifungal powders in tinea pedis, but antifungal powders are not recommended for other forms of tinea.

Systemic therapy

Standard indications for systemic therapy in dermatophytosis are extensive disease, involvement of multiple sites, recurrence, chronicity, failure of topical therapy, nail or hair involvement and immunocompromised status. In India, now a days, most patients require a
Table 9: Specific characteristics of relatively newer select topical antifungals available in India

Drug	Class	Remarks
Terbinafine	Allyamine	Fungicidal antifungal as compared to fungistatic nature of most other antifungals
Butenafine	Benzylamine	Fungicidal antifungal as compared to fungistatic nature of most other antifungals
Bifonazole	Imidazole	Dual mode of action by inhibition of 14α-demethylase and microsomal HMG-CoA-reductase leading to fungicidal effect
Sertaconazole	Imidazole	Anti-inflammatory action. Contains a benzothiophene ring which mimics tryptophan and increases the drug’s ability to form pores in the fungal cell membrane
Eberconazole	Imidazole	Potent anti-inflammatory activity
Luliconazole	Imidazole	Reservoir effect. Highest antifungal activity against Trichophyton spp. among currently available topical antifungal drugs
Fenticonazole	Imidazole	Additional action of blocking cytochrome oxidases and peroxidases
Amorolfine	Morpholine	New class of antifungal with different mechanism of action mediated through inhibition of two different enzymes
Ciclopirox olamine	Hydroxypyridinone	Acts through chelation of metal ions (Fe3+); inhibits cytochrome oxidase, catalase and peroxidase resulting in intracellular degradation of toxic peroxides; inhibits cellular uptake of essential compounds and alters cell permeability

combination of systemic and topical antifungal drugs for a longer duration than that is conventionally recommended. This is particularly true for patients with corticosteroid modified, chronic, recurrent or recalcitrant infection. Persistent papules or nodules in a healing or unresponsive lesion may indicate Majocchi granuloma, which also needs prolonged treatment.

Terbinafine 250 mg daily or itraconazole 200 mg daily in adults for 4-6 weeks have been recommended for treatment of chronic, widespread dermatophytosis. Griseofulvin 500-1000 mg daily taken after fatty meal until cure (3-6 months) has been mentioned as an alternative drug. Itraconazole and terbinafine are especially useful in sebum rich areas, as the skin pharmacokinetics (pK) are determined predominantly by their lipophilicity.

There have been concerns over increasing instances of failure to terbinafine in tinea corporis, tinea cruris and tinea faciei in the country. Resistance to terbinafine due to mutations in the squalene epoxidase (SQLE) gene of Trichophyton interdigitale and T. rubrum has been documented in studies from Chandigarh and New Delhi. High MIC’s (Minimum inhibitory concentration) were observed and a higher dose (250 mg twice daily) or increased duration was found to be more effective in a study, hence the authors concluded that increased exposure to terbinafine, resulting in higher levels of the drug in the stratum corneum, could offset the higher MIC and the effect of SQLE mutation to some degree.

Itraconazole is now the most commonly prescribed oral antifungal agent for dermatophytosis. It should be taken immediately after food or with aerated beverages or acidic juice to improve its bioavailability. While the standard dosage for glabrous tinea is 100 mg once daily for 15 days or 200 mg (as 2 capsules of 100mg taken together or in a BD dose) for 1 week, the current scenario calls for individualisation of the duration based on clinical response and continuation of treatment until achieving cure.

Different brands of itraconazole available in India vary in the pellet morphology and thereby the resultant quality and therapeutic effect. The drug-polymer ratio, polymer type, coating thickness, bead size and number determine the dissolution of a capsule of itraconazole. Morphometric analysis of pellets using dermoscopy is a simple method to quantify the quality of a brand of itraconazole. A recent study stated that a pellet count of ≥560 (100 mg capsule) provides a surface area comparable to the innovator brand and may be taken as a cut off for distinguishing poor quality brands. In a compliant patient whose disease is not responsive, changing to a better brand is justified. Since itraconazole follows non-linear pharmacokinetics, a dose higher than 200 mg daily may result in decreased clearance and eventually toxic levels.

In some parts of India, dermatologists have found good therapeutic response to griseofulvin given for 6-8 weeks although not consistently. Since the levels are high in the stratum corneum, this drug could be especially useful in patients prone to increased sweating. Studies have found that its skin levels are markedly higher with a dose of 100 mg given daily. Notably, fluconazole achieves high levels in stratum corneum, reaching there mainly by way of direct diffusion. Thus, its pathway of reaching the corneum is different from terbinafine and itraconazole which largely depend on sebum secretion and this makes it potentially useful in patients with dry skin and in children who have lesser sebum secretion than adults. However, a disadvantage is that the levels decrease rapidly following treatment discontinuation due to low keratin adherence.
There is paucity of literature with regard to the use of combination of oral antifungals in the treatment of dermatophytosis. Such combinations need to be first assessed in laboratories by checkerboard studies for synergistic activity before considering any clinical utility.[114] Although few studies have proven synergistic effect of combination antifungal therapy against dermatophytes, more evidence is desirable.[115]

Ketoconazole is an imidazole compound with a mechanism of action similar to that of triazoles. It had been used in the management of glabrous tinea in a dose of 200-400 mg daily in adults.[116] It is no longer approved by US FDA for the management of superficial fungal infections because of hepatotoxicity, which may be asymptomatic or can present as acute liver injury.[117,118] Though available in India, it is not recommended for routine use, but is to be used only as a reserve drug with close monitoring of liver function.

Special situations

Dermatophytosis is now the commonest dermatologic condition seen among outpatients in India.[119-121] Comorbidities such as diabetes, anaemia and immunosuppressive diseases or immunosuppressive therapy, may alter the clinical presentation and predispose such patients to recalcitrant or recurrent infections.[18,122,123]

Corticosteroid-modified tinea

Corticosteroid-modified tinea and tinea incognito have become common presentations of dermatophytosis in India. Some patients tend to apply the topical corticosteroid antifungal combination creams continuously or intermittently over weeks to months and present with morphological variants such as tinea pseudoimbricata and breakthrough lesions. Studies have shown that application of more than 50 gm of 0.05% clobetasol propionate per week can result in adrenal suppression.[124] Hence, it is quite understandable that patients may present with Cushingoid features and a low serum cortisol level. Literature states that the recovery of the hypothalamus takes about 14-30 days after cessation of corticosteroids.[125]

This explains the delay in clinical response seen in patients with steroid modified dermatophytosis, who will hence require an extended duration of treatment.[19] Patients with steroid modified dermatophytosis with Majocchi granuloma have been shown to achieve clearance with the use of pulse therapy with itraconazole given as 200 mg BD for 7 days followed by drug free period of 14 days (up to 3 pulses).[19,126]

Pregnancy and lactation

US FDA pregnancy category system was abolished in 2014 and is to be replaced gradually by a new system called Pregnancy and Lactation Labelling Rule (PLLRL) with narrative-based labelling requirements. However, as the same is still in transition; the older category is mentioned here. The ideal management of glabrous tinea during pregnancy is by using only safer topical antifungals [Table 8]. Though oral terbinafine is a FDA pregnancy category B drug, scarce human data precludes its routine use in pregnancy until safety data is available.[44]

Itraconazole and griseofulvin, both belong to category C, while fluconazole is a category D drug (except as a 150 mg single dose).[44] Among the topical antifungals, clotrimazole, oxiconazole, bifonazole, terbinafine and ciclopirox olamine belong to Category B, while the newer azoles such as sertaconazole, eberconazole and luliconazole are category C drugs.[44,127] Systemic absorption is considered to be very low with amorolfine and hence it may be safely used in pregnancy.[44]

All topical antifungals can be used safely during lactation as their secretion in milk is negligible. Cream, gel or liquid products which are water miscible are recommended for application to the skin over the breast because ointments may expose the infant to mineral paraffin while feeding. Data regarding the use of systemic antifungals including terbinafine during lactation is scarce, and therefore they should be avoided as far as possible especially in mothers of preterm infants.[44,128,129]

However, fluconazole has an acceptable safety profile as its secretion in the breast milk is low.[45,130] Experts recommend that the decision on treatment should be based on the given clinical scenario.

Children and elderly

Glabrous tinea infections have become common in children in the recent times. There are differences in epidemiology, host biology, predisposing factors and clinical presentation in children as compared to adults.[131]

Topical antifungals can be given safely in children since their percutaneous absorption is negligible. Use of topical corticosteroid-antifungal combination creams result in early deleterious effects on the skin of children and persistence of infections and thus are to be avoided.[132,133]

When systemic antifungals are needed to be used in children, their dosage should be based on the body weight [Table 8]. Antifungals like griseofulvin, terbinafine and itraconazole can be used in children above 2 years of age to treat glabrous tinea infections.[134-136] Considering the safety aspects, fluconazole may be the preferred systemic antifungal in infants and children below 2 years of age. Secretion and distribution pattern of this drug is not dependent on sebum and directly diffuses into the skin.[110]

Physiological, psychological and socioeconomic factors, comorbidities (renal, hepatic, cardiac) and influence of polypharmacy should be considered while treating elderly patients.[137] A healthy elderly patient may be treated in the same manner as a young adult. Changes in pharmacokinetics must be considered while deciding an appropriate antifungal drug in elderly patients with altered hepatic or renal
functions. It is very important to check for various drug interactions before treating elderly patients on polypharmacy.

Systemic comorbidities

Appropriate laboratory monitoring is mandatory in patients with known hepatic and renal dysfunction while using systemic antifungals. No recommended dose adjustment is available for systemic antifungals in patients with hepatic impairment. Monitoring them regularly is the only option. Fluconazole, as compared to other triazoles, is characterized by high water solubility and the drug is primarily eliminated by the kidneys. Hepatic metabolism does not seem to play an important role in the elimination of the drug. Oral fluconazole with laboratory monitoring can hence be considered as a relatively safer drug in patients with hepatic dysfunction. Itraconazole is eliminated mainly through faeces and in lesser amount through the urine. Oral itraconazole is thus a safer drug in patients with renal dysfunction. Itraconazole has however been associated with congestive cardiac failure and must be avoided in patients predisposed to the same. Oral terbinafine is a relatively safer drug in patients with cardiac dysfunction. However, in patients with renal dysfunction, the dose needs modification if creatinine clearance is <50 ml/minute.

Drug interactions

Systemic antifungals should be used appropriately in patients on polypharmacy after checking for various drug interactions. Table 10 summarises clinically relevant drug interaction of commonly used systemic antifungals for dermatophytosis. Terbinafine has the least drug interactions and is generally the preferred choice of drug in patients on polypharmacy.

Limitations

We could not reach a consensus on some aspects of the management of dermatophytosis such as minimum duration of treatment for naïve cases, updosing of oral antifungals, quality of drugs as a cause of treatment failure and comparative efficacy of topical antifungals. Topic that was not covered in the statement is the management of dermatophytosis in immunosuppressed patients due to comorbidities and concomitant corticosteroids/immunosuppressive therapy.

Conclusion

Treatment of recalcitrant dermatophytosis has evolved into an enormous public health problem imposing immense financial burden. Consensus on the management of dermatophytosis is felt to be the need of the hour. It will definitely help to improve the quality of care to patients with dermatophytosis across the country and ease some concerns of dermatologists related to effective management of the infection in their patients. Inputs from this draft are expected to be of use to medical practitioners of other countries facing a similar situation. We realize that there is need for further studies on dermatophytes with regard to antifungal resistance, clinico-mycological and therapeutic correlation substantiated by genomic approach. Such studies have already been initiated in India. Until further evidence comes in, INTACT would serve as a management guideline and a reference document that addresses most issues related to the management of glabrous tinea.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

Table 10: Clinically relevant drug interactions with antifungals

Antifungal drug	Drug level is decreased by	Decreases level of these drugs	Increases level of these drugs
Griseofulvin	Phenobarbital	Anticoagulants, oral contraceptives, Cyclosporin	Potentiates action of alcohol-Disulfiram like reaction
			Anti-depressants beta blockers, Antiarrhythmics class 1c, selective serotonin reuptake inhibitors.
			Caution when used with anticoagulants.
Terbinafine	Rifampicin	H2 histamine blockers, proton pump inhibitors, rifampicin, rifabutin, INH, ritonavir, nevirapine, nortriptyline, carbamazepine, phenytoin, phenobarbital	Oral contraceptives
			Glibenclamide, phenytoin, warfarin, cyclosporin, tacrolimus, digoxin, lovastatin, midazolam, triazolam, methylprednisolone, Saquinavir
Itraconazole	Rifampicin	Oral contraceptives	Sulfanylurea, nifedipine, theophylline, NSAID, warfarin, cyclosporine
Fluconazole			

Note for readers: "The list of statements with and without consensus is not included in this manuscript due to technical and space constraints. They are readily available on request and readers may contact the corresponding author for the same."
References

1. Dogra S, Upreti S. The menace of chronic and recurrent dermatophytosis in India: Is the problem deeper than we perceive? Indian Dermatol Online J 2016;7:73-6.

2. Panda S, Verma S. The menace of dermatophytosis in India: The evidence that we need. Indian J Dermatol Venereol Leprol 2017;83:281-4.

3. Verma S, Madhu R. The great Indian epidemic of superficial dermatophytosis: An appraisal. Indian J Dermatol 2017;62:227-36.

4. Nagesh TS, Akhilesh A. Topical steroid awareness and abuse: A prospective study among dermatology outpatients. Indian J Dermatol 2016;61:618-21.

5. Kumar S, Goyal A, Gupta YK. Abuse of topical corticosteroids in India: Concerns and the way forward. J Pharmacol Pharmacother 2016;7:1-5.

6. Pathania S, Rudramurthy SM, Narang T, Saikia UN, Dogra S. A prospective study of the epidemiological and clinical patterns of recurrent dermatophytosis at a tertiary care hospital in India. Indian J Dermatol Venereol Leprol 2018;84:678-84.

7. Dogra S, Narang T. Emerging atypical and unusual presentations of dermatophytosis in India. Clin Dermatol Rev 2017;1(Suppl S1):12-8.

8. Rajagopalan M, Inamadar A, Mittal A, Miskeen AK, Srinivas CR, Sardana K, et al. Expert consensus on the management of dermatophytosis in India (ECTODERM India). BMC Dermatol 2018;18:6.

9. Mala MS, Mellow to the malicious: Could Trichophyton mentagrophytes be the malefactor? Clin Dermatol Rev 2017;1(Suppl S1):1-2.

10. Singh A, Masih A, Monroy-Nieto J, Singh PK, Bowers J, Travis J, et al. A unique multidrug-resistant clonal Trichophyton population distinct from Trichophyton mentagrophytes/Trichophyton interdigitale complex causing an ongoing alarming dermatophytosis outbreak in India: Genomic insights and resistance profile. Fungal Genet Biol 2019;133:103266.

11. Available from: https://www.iadvl.org/itart.php. [Last accessed on 2019 Jul 07].

12. Available from: https://consensus.nih.gov/previous.htm. [Last accessed on 2019 Jul 07].

13. Fink A, Kosecoff J, Chassin M, Brook RH. Consensus methods: Characteristics and guidelines for use. Am J Public Health 1984;74:979-83.

14. Wortman PM, Vinokur A, Sechrest L. Do consensus conferences work? A process evaluation of the NIH consensus development program. J Health Polit Policy Law 1988;13:469-98.

15. van Vliet DC, van der Meij E, Bouwsma EV, Vonk Noordegraaf A, van den Heuvel B, Meijerink WJ. A modified Delphi method toward multidisciplinary consensus on functional convalescence recommendations after abdominal surgery. Surg Endosc 2016;30:5583-95.

16. Eubank BH, Moltiadi NG, Lafave MR, Wiley JP, Bois AJ, Boorman RS, et al. Using the modified Delphi method to establish clinical consensus for the diagnosis and treatment of patients with rotator cuff pathology. BMC Med Res Methodol 2016;16:56.

17. Russell D, Atkin L, Betts A, Dowsett C, Fatoye F, Gardner S, et al. Using a modified Delphi methodology to gain consensus on the use of dressings in chronic wounds management. J Wound Care 2018;27:156-65.

18. Sentamilselvi G, Kamalam A, Ajithadas K, Janaki C, Thambiah AS. Scenario of chronic dermatophytosis: An Indian study. Mycopathologia 1997-1998;140:129-35.

19. Sardana K, Khurana A. Overview of causes and treatment of recalcitrant dermatophytosis. In: Sardana K, Khurana A, editors. IADVL Manual on Management of Dermatophytosis. 1st ed. New Delhi: CBS Publishers & Distributors; 2018. p. 90-104.

20. Shivanna R, Inamadar AC. Clinical failure of antifungal therapy of dermatophytoses: Recurrence, resistance, and remedy. Indian J Drugs Dermatol 2017;3:1-3.

21. Sardana K, Kaur R, Arora P, Goyal R, Ghunawat S. Is antifungal resistance a cause for treatment failure in dermatophytosis: A study focused on tinea corporis and cruris from a tertiary centre? Indian Dermatol Online J 2018;9:90-95.

22. Rengasamy M, Chellam J, Ganapati S. Systemic therapy of dermatophytosis: Practical and systematic approach. ClinDermatol Rev 2017;1(Suppl S1):19-23.

23. Yu C, Zhou J, Liu J. Tinea incognito due to Microsporum gypseum. J Biomed Res 2010;24:81-3.

24. Solomon BA, Glass AT, Rabbin PE. Tinea incognito and “over-the-counter” potent topical steroids. Cutis 1996;58:295-6.

25. CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard-Document M38-A2. 2nd ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.

26. Poojary S, Miskeen A, Bagadia J, Jaiswal S, Uppuluri P. A study of in vitro antifungal susceptibility patterns of dermatophytic fungi at a tertiary care center in Western India. Indian J Dermatol 2019;64:277-84.

27. Osowski B, Duchmann U. Effect of domestic laundry processes on mycotic contamination of textiles. Hautarzt 1997;48:397-401.

28. Bloomfield SF, Exner M, Signorelli C, Scott EA. Effectiveness of laundering processes used in domestic (home) settings. 2013. International Scientific forum on home hygiene. Available from: http://www.ifh-homehygiene.org/review/effectiveness-laundering-processes-used-domestic-home-settings-2013. [Last accessed on 2020 May 10].

29. Bockmuhl DP, Schages J, Rehberg L. Laundry and textile hygiene in healthcare and beyond. Microb Cell 2019;6:299-306.

30. Amichai B, Grunwald MH, Davidovici B, Shemer A. “Sunlight is said to be the best of disinfectants.” The efficacy of Sun exposure for reducing fungal contamination in used clothes. IMAJ 2014;16:431-33.

31. Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev 1995;8:240-59.

32. Hammer TR, Mucha H, Hoefler D. Infection risk by dermatophytes during storage and after domestic laundry and their temperature-dependent inactivation. Mycopathologia 2011;171:43-9.

33. Dermatophytosis. Available from: http://www.cfsph.iastate.edu/factsheets-pdfs/dermatophytosis. [Last accessed on 2020 May 10].

34. Lesher JL, Elston D. Tinea corporis-Treatment and Management. Available from: http://www.medscape.com. [Last accessed on 2020 May 10].

35. Chhabra N, Sardana K. Topical therapies for treatment of dermatophytosis. In: Sardana K, Khurana A, editors. IADVL Manual on Management of Dermatophytosis. 1st ed. New Delhi: CBS Publishers & Distributors; 2018. p. 41-50.

36. Tainwala R, Sharma YK. Pathogenesis of dermatophytes.
37. Ellis D, Watson A. Systemic antifungal agents for cutaneous fungal infections. Aust Prescr 1996;19:72-5.
38. Janaki VR. Therapeutic options in mycoses. In: Sentamilselvi G, Janaki VR, Janaki C, editors. The Hand book of Dermatomyology & Colour Atlas. 1st ed. India: Sentamilselvi; 2006. p. 61-82.
39. Thursky KA, Playford EG, Seymour JF, Sorrel TC, Ellis DH, Guy SD, et al. Recommendations for the treatment of established fungal infections. Intern Med J 2008;38:496-520.
40. Khurana A, Masih A, Chowdhary A, Sardana K, Borker S, Gupta A, et al. Correlation of in vitro susceptibility based on MICs and squaleone epoxide mutations with clinical response to terbinafine in patients with tinea corporis/cruris. Antimicrob Agents Chemother 2018;62:e01038-18.
41. Hay RJ, Ashbee HR. Fungal infections. In: Griffiths CE, Barker J, Bleiker T, Chalmers R, Creamer D, editors. Rook’s Textbook of Dermatology. 9th ed., vol 2. West sussex: Wiley Blackwell; 2016. p. 923-1018.
42. Eliewski BE, Hughey LC, Sobera JO, Hay R. Fungal diseases. In: Bologna JL, Jorizzo JL, Schaffer JV, editors. Dermatology. 3rd ed., Vol 2. China: Elsevier Saunders; 2013. p. 1251-84.
43. Schieke SM, Garg A. Superficial fungal infection. In: Goldsmith A, Katz SI, Gilchrist BA, Paller AS, Leffel DJ, Wolff K, editors. Fitzpatrick's dermatology in General Medicine. 8th ed., vol 2. New York: The McGraw-Hill Companies; 2015. p. 2277-97.
44. Pilims B, Jullien V, Sobel J, Lecuit M, Lortholary O, Charlier C. Antifungal drugs during pregnancy: An updated review. J Antimicrob Chemother 2015;70:14-22.
45. Kaplan YC, Koren G, Ito S, Bozzo P. Fluconazole use during breastfeeding. Can Fam Physician 2015;61:875-6.
46. Khurana A. Treatment of fungal infections in special conditions. In: Sardana K, Khurana A, editors. IADVL Manual on management of dermatophytosis. 1st ed. New Delhi: CBS Publishers & distributors; 2018. p. 121-35.
47. Ansar A, Farshchian M, Nazeri H, Ghiasian SA. Clinico-epidemiological and mycological aspects of tinea incognito in Iran: A 16-year study. Med Mycol J 2011;52:25-32.
48. Dutta B, Rasul ES, Boro B. Clinico-epidemiological study of tinea incognito with microbiological correlation. Indian J Dermatol Venereol Leprol 2017;83:326-31.
49. Kurade SM, Amladi SA, Miskeen AK. Skin scraping and calcofluor white stains. Iran J Microbiol 2018;10:433‑40.
50. Madhu R, Janaki, C, Sentamilselvi G. The Changing and rising scenario of dermatophytosis in India. Causes and solutions. In: Rashmi Sarkar, Seema R. Desai, editors. World Clinics of Dermatology. Fungal Infections of the Skin. Vol 3. New Delhi: Jaypee brothers Medical publishers; 2017. p. 220-50.
51. Afshar P, Larijani LV, Rouhanizadeh H. A comparison of conventional rapid methods in diagnosis of superficial and cutaneous mycoses based on KOH, Chicago sky blue and calcofluor white stains. Iran J Microbiol 2018;10:118‑30.
52. Prasad PVS, Priya K, Kaviarasam PK, Anandhi C, Sarayu L. A study of chronic dermatophyte infection in a rural hospital. Indian J Dermatol Venereol Leprol 2005;7:129-30.
53. el Fari M, Gröser Y, Presher W, Tietz HJ. An epidemic of Tinea corporis caused by Trichophyton tonsurans among children (wrestlers) in Germany. Mycoses 2000;43:191‑6.
54. Zacharia M, Kunjukunju BP. Clinical profile of patients with chronic dermatophytosis-A prospective study from a tertiary care centre in Kerala. J Evid Based Med Healthc 2017;4:2863-6.
55. Dienst WL Jr, Dightman L, Dworkin MS. Diagnosis, treatment and pinning down skin Infections: Diagnosis, treatment and prevention in wrestlers. Physician Sports Med 2005;25:12.
56. Hoffmeyer R, Schmitt T, Sorber W, Tietz HJ. Multilocus phylogeny and the application of matrix assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry for the rapid identification of dermatophytes. Mycologia 2018;110:118‑30.
57. Matsumoto SM, Shankarnarayan SA, Dogra S, Shah D, Mushtaq K, Paul RA, et al. Mutation in the squaleone epoxide gene of trichophyton interdigitale and trichophyton rubrum associated with allylamine resistance. Antimicrob Agents Chemother 2018;62:e02522-17.
58. Singh A, Masih A, Khurana A, Singh PK, Gupta M, Hagen F, et al. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squaleone epoxide gene. Mycoses 201861:477-84.
59. Padmanabhan V, Alexander S, Srivastava P. The growing threat of climate changes in India. Updated 21st July. Available from: http://www.livemint.com. [Last accessed 2020 May 10].
60. Madhu R, Janaki, C, Sentamilselvi G. The Changing and rising scenario of dermatophytosis in India. Causes and solutions. In: Rashmi Sarkar, Seema R. Desai, editors. World Clinics of Dermatology. Fungal Infections of the Skin. Vol 3. New Delhi: Jaypee brothers Medical publishers; 2017. p. 220-50.
61. Nweze EI, Eke IE. Dermatophytes and dermatophytosis in the eastern and southern parts of Africa. Med Mycol 2018;56:13-28.
62. Coulibaly O, L’Ollivier C, Parraux R, Ranque S. Epidemiology of human dermatophytes in Africa. Med Mycol 2018;56:145-61.
63. Morishita N, Ninomiya J, Sei Y, Takiuchi I. Effects of temperature, humidity, minor injury and washing on penetration of dermatophytes into human stratum corneum. Nihon Ishinkin Gakkai Zasshi 2003;44:269-71.
64. Sherman S, Goshen M, Treigerman O, Ben-Zion K, Carp MJ, Maisler N, et al. Evaluation of multiplex real-time PCR for identifying dermatophytes in clinical samples-A multicentre study. Mycoses 2018;61:119-26.
65. Jackson CJ, Barton RC, Evans EG. Species identification and strain differentiation of dermatophyte fungi by analysis of ribosomal-DNA intergenic spacer regions. J Clin Microbiol 1999;37:931-6.
66. Ramaraj V, Vijayaraman RS, Elavarashi E, Rangarajan S, Kindo AJ. Molecular strain typing of clinical isolates, trichophyton rubrum using nontranscribed spacer (NTS) region as a molecular marker. J Clin Diagn Res 2017;11:DC04-9.
67. L’Ollivier C, Ranque S. MALDI-TOF-based dermatophyte identification. Mycopathologia 2017;182:183-92.
68. Suh SO, Grosso KM, Carrion ME. Multilocus phylogeny of the trichophyton mentagrophytes species complex and the application of matrix assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry for the rapid identification of dermatophytes. Mycologia 2018;110:118‑30.
Onychomycosis Epidemiology Study Group. Factors influencing coexistence of toe nail onychomycosis with tinea pedis and other dermatomycoses: a survey of 2761 patients. Arch Dermatol 2006;142:1279-84.

73. Atzori L, Aste N, Aste N, Pau M. Tinea faciei due to Microsporum canis in children: A survey of 46 cases in the district of Cagliari (Italy). Pediatr Dermatol 2012;29:409-13.

74. Lakhanji SJ, Bilimoria F, Lakhanji JD. Adverse effects of steroid use in dermatophytic infections: A cross sectional study. J Integr Health Sci 2017;5:63-8.

75. Meinhof W, Girardi RM, Stracke A. Patient noncompliance in dermatomycosis. Results of a survey among dermatologists and general practitioners and patients. Dermatologica 1984;169(Suppl 1):57-66.

76. Singh S, Verma P, Chandra U, Tiwary NK. Risk factors for chronic and chronic-relapsing tinea corporis, tinea cruris and tinea faciei: Results of a case-control study. Indian J Dermatol Venereol Leprol 2019;85:197-200.

77. Shimamura T, Kubota N, Shibuya K. Animal model of dermatophytosis. J Biomed Biotechnol 2012;2012:125384.

78. Peixoto I, Maunique G, Francesconi VA, Francesconi F. Dermatophytosis caused by tricophyton rubrum as an opportunistic infection in patients with Cushing disease. An Bras Dermatol 2010;85:888-90.

79. Poojary SA. Topical antifungals: A review and their role in current management of dermatophytoses. Clin Dermatol Rev 2017;1(Suppl S1):24-9.

80. Gupta AK, Kohli Y. In vitro susceptibility testing of ciclopirox, terbinafine, ketoconazole and itraconazole against dermatophytes and nondermatophytes, and in vitro evaluation of combination antifungal activity. Br J Dermatol 2003;149:296-305.

81. El-Gohary M, van Zuuren EJ, Fedorowicz Z, Burgess H, Doney L, Akhtar MM, et al. Comparative study of efficacy of topical amorolfine, luliconazole, sertaconazole, terbinafine, benzoyl peroxide and 10% urea ointment in hyperkeratotic type tinea pedis. Med Mycol 2013;51(Suppl S1):24‑9.

82. Meena S, Gupta JK, Khare AK, Balai M, Mittal A, Mehta S, et al. Topical corticosteroids abuse: A clinical study of cutaneous adverse effects. Indian J Dermatol 2017;62:675.

83. Shi TW, Zhang JA, Zhang XW, Yu HX, Tang YB, Yu JB. Combination treatment of tinea manum/pedis with topical terbinafine and 10% urea ointment in hyperkeratotic type tinea pedis. Mycoses 2014;57:560-4.

84. Elewski BE, Haley HR, Robbins CM. The use of 40% urea cream in the treatment of moccasin tinea pedis. Cutis 2004;73:355-7.

85. Logan RA, Hay RJ, Whitefield M. Antifungal efficacy of a combination of benzoic and salicylic acids in a novel aqueous vanishing cream formulation. J Am Acad Dermatol 1987;16:136-8.

86. Thaker SJ, Mehta DS, Shah HA, Dave JN, Kikani KM. A comparative study to evaluate efficacy, safety and cost-effectiveness between Whitfield's ointment ‑oral fluconazole versus topical 1% butenafine in tinea infections of skin. Indian J Dermatol 2013;45:622-4.

87. Hazen KC. Fungicidal versus fungistatic activity of terbinafine and itraconazole: An in vitro comparison. J Am Acad Dermatol 1998;38:S37-41.

88. Syed TA, Maibach HI. Butenafine hydrochloride: For the treatment of interdigital tinea pedis. Expert Opin Pharmacother 2000;1:467-73.

89. Berg D, Regel E, Harenberg HE, Plimpel M. Bifonazole and clotrimazole: Their mode of action and the possible reason for the fungicidal behaviour of bifonazole. Arzneimittelforschung 1984;34:139-46.

90. Manian M, Madrasi K, Chaturvedula A, Banga AK. Investigation of the dermal absorption and irritation potential of sertaconazole nitrate anhydrous gel. Pharmaceutics 2016;8:21.

91. Fernández-Torres B, Inza I, Guarro J. In vitro activities of the new antifungal drug ebeconazole and three other topical agents against 200 strains of dermatophytes. J Clin Microbiol 2003;41:5209-11.

92. Gupta AK, Daigle D. A critical appraisal of once‑daily topical luliconazole for the treatment of superficial fungal infections. Infect Drug Resist 2016;9:1-6.

93. Veraldi S, Milani R. Topical fenticonazole in dermatology and gynaecology: Current role in therapy. Drugs 2008;68:2183-94.

94. Haria M, Bryson HM. Amorolfin. A review of its pharmacological properties and therapeutic potential in the treatment of onychomycosis and other superficial fungal infections. Drugs 1995;49:103-20.

95. Agrawal V, Shenyoo MM, Pinto M, Amina AMI, Hegde S. Comparative study of efficacy of topical amorolfine, luliconazole, sertaconazole, terbinafine, benzoyl peroxide and 10% urea ointment in hyperkeratotic type tinea pedis. Indian J Clin Exp Dermatol 2020;5:111-5.

96. Pereda J, Noguer A, Boncompte E, Alguero M, Izquierdo I. Efficacy of fluconazol 1% powder in the treatment of tinea pedis. Mycoses 2003;46:126-31.

97. Wang KY, Li CY, Liang LP. A randomized controlled clinical study of terbinafine powder versus miconazole for the treatment of tinea manum/pedis and tinea corporis/cruris. Chin J Clin Pharmacol 2000;16:265-8.

98. Gupta AK, Chaudhry M, Elewski B. Tinea corporis, tinea cruris, tinea nigra, and piedra. Dermatol Clin 2003;21:395-400.

99. Ilkin M, Durdu M, Karaçay M. Majocchi’s granuloma: A symptom complex caused by fungal pathogens. Med Mycol 2012;50:449-57.

100. Parmar NV, Asir GJ, Rudramurthy SM. Atypical presentation of Majocchi’s granuloma in an immunocompetent host. Am J Trop Med Hyg 2017;96:1-2.

101. Majid I, Sheikh G, Kanth F, Hakak R. Relapse after oral terbinafine therapy in dermatophytosis: A clinical and mycological study. Indian J Dermatol 2016;61:529-33.

102. Majid I, Sheikh G, Kanth F, Hakak R. Relapse after oral terbinafine therapy in dermatophytosis: A clinical and mycological study. Indian J Dermatol 2016;61:529-33.

103. Majid I, Sheikh G, Kanth F, Hakak R. Relapse after oral terbinafine therapy in dermatophytosis: A clinical and mycological study. Indian J Dermatol 2016;61:529-33.

104. Singh S, Shukla P. End of the road for terbinafine? Results of a pragmatic prospective cohort study of 500 patients. Indian J Dermatol Venereol Leprol 2018;84:554-7.

105. Katsambas A, Antoniou C, Frangouli E, Rigopoulos D, Katsambas A, Antoniou C, Frangouli E, Rigopoulos D. Majocchi’s granuloma: Results of a case-control study. Indian J Dermatol Venereol Leprol 2018;84:554‑7.

106. Boonk W, de Geer D, de Kreek E, Remme J, van Huystee B. Comparative study of efficacy of topical amorolfine, luliconazole, sertaconazole, terbinafine, benzoyl peroxide and 10% urea ointment in hyperkeratotic type tinea pedis. Mycoses 1998;41:139-46.

107. Sardana K, Khurana A, Gupta A. Parameters that determine recurrence of tinea pedis: A prospective study. Indian J Dermatol Venereol Leprol 2018;84:554-7.

108. Sardana K, Khurana A, Singh A, Gautam RK. A pilot analysis of morphometric assessment of itraconazole brands using dermatoscopy and its relevance in the current scenario. Indian Dermatol Online J 2018;9:426-31.

109. Sardana K, Khurana A, Panesar S, Singh A. An exploratory
pilot analysis of the optimal pellet number in 100mg of itraconazole capsule to maximize the surface area to satisfy the Noyes-Whitney equation. J Dermatolog Treat 2020;1:7.

(Ahead of print)

110. Arora P, Sardana K. Rationale of use of antifungal drugs based on skin pharmacokinetics. In: Sardana K, Khurana A, editors. IADVL Manual on Management of Dermatophytosis. 1st ed. New Delhi: CBS Publishers & distributors; 2018. p. 65-72.

111. Madhu R, Janaki C, Sentamisile G. Systemic agents for treatment of dermatophytosis. In: Sardana K, Khurana A, editors. IADVL Manual on Management of Dermatophytosis. 1st ed. New Delhi: CBS Publishers & distributors; 2018. p. 52-64.

112. Suchil P, Gei FM, Robles M, Perera-Ramirez A, Welsh O, Male O. Once-weekly oral doses of fluconazole 150 mg in the treatment of tinea corporis/cruris and cutaneous candidiasis. Clin Exp Dermatol 1992;17:397-401.

113. Lesher JL Jr. Oral therapy of common superficial fungal infections of the skin. J Am Acad Dermatol 1999;40:S31-4.

114. Sardana K, Khurana A, Singh A. Scientific rationale of antifungal drug combination, including oral itraconazole and terbinafine, in recalcitrant dermatophytoses. J Dermatolog Treat 2020;31:43-5.

115. Dalla LAJ, Bruna P, Ramos CA, Cougo MR, Samuel K, Gonzalez OG, et al. In vitro additive effect on griseofulvin and terbinafine combinations against multidrug-resistant dermatophytes. Braz J Pharm Sci 2018;54:e17149.

116. Hay RJ, Clayton YM, Griffiths WA, Dowd PM. A comparative double blind study of ketoconazole and griseofulvin in dermatophytosis. Br J Dermatol 1985;112:691-6.

117. Kao WY, Su CW, Huang YS, Chou YC, Chen YC, Chung WH, et al. Risk of oral antifungal agent-induced liver injury in Taiwanese. Br J Clin Pharmacol 2014;10:179-80.

118. US Food and drug administration. FDA Drug Safety Communication: FDA limits usage of Nizoral (ketonazole) oral tablets due to potentially fatal liver injury and risk of drug interactions and adrenal gland problems. 2013. Available from: http://www.fda.gov/Drugs/Drug safety/ucm362415.htm. [Last accessed on 2017 Jan 25].

119. Jain S, Barambh MS, Jain J, Jajoo UN, Pandey N. Prevalence of skin diseases in rural Central India: A community-based, cross-sectional, observational study. J Mahatma Gandhi Inst Med Sci 2016;21:111-5.

120. Kar C, Das S, Roy AK. Pattern of skin diseases in a tertiary institution in Kolkata. Indian J Dermatol 2014;49:209.

121. Dimri D, Reddy BV, Kumar Singh A. Profile of skin disorders in unreachd hilly areas of North India. Dermatol Res Pract 2016;2016:8608534. doi: 10.1155/2016/8608534.

122. Kaviarasan PK, Jaisankar TJ, Thappa D, Sujatha S. Clinical variations in dermatophytosis in HIV infected patients. Indian J Dermatol Venereol Leprol 2002;68:213-6.

123. Kumarasamy N, Solomon S, Madhivanan P, Ravikumar B, Thyagarajan SP, Yesudian P. Dermatologic manifestations among human immunodeficiency virus patients in south India. Int J Dermatol 2000;39:192-5.

124. Allenby CF, Main RA, Marsden RA, Sparkes CG. Effect on adrenal function of topically applied clobetasol propionate (Dermovate). Br Med J 1975;4:619-21.

125. Wolverton SE. Systemic corticosteroids. In: Wolverton SE, editor. Comprehensive Dermatologic Drug Therapy. 3rd ed. China: Elsevier Saunders; 2013. p. 487-504.

126. Gupta AK, Groen K, Woestenborghs R, De Doncker P. Itraconazole pulse therapy is effective in the treatment of Majocchi’s granuloma: A clinical and pharmacokinetic evaluation and implications for possible effectiveness in tinea capitis. Clin Exp Dermatol 1998;23:103-8.

127. Prabhul SS, Sankineni P. Managing dermatophytosis in pregnancy, lactation and children, Clin Dermatol Rev 2017;1:534-7.

128. Drugs and Lactation Database (LactMed) [Internet]. Bethesda (MD): National Library of Medicine (US); 2006. Itraconazole. [Updated 2018 Dec 03]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK500573/.

129. Drugs and Lactation Database (LactMed) [Internet]. Bethesda (MD): National Library of Medicine (US); 2006. Terbinafine. [Updated 2018 Oct 31]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK501397/.

130. Drugs and Lactation Database (LactMed) [Internet]. Bethesda (MD): National Library of Medicine (US); 2006. Fluconazole. [Updated 2018 Oct 31]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK501223/.

131. Groll AH, Tragnanidis A. Update on antifungal agents for paediatric patients. Clin Microbiol Infect 2010;16:1343-53.

132. Alston SJ, Cohen BA, Braun M. Persistent and recurrent tinea corporis in children treated with combination antifungal/ corticosteroid agents. Pediatrics 2003;111:201-3.

133. Gupta AK, Einarson TR, Summerbell RC, Shearn D, Theissen U, et al. The use of itraconazole to treat cutaneous fungous infections in children. Dermatology 1999;199:248-52.

134. Bortolussi R. Antifungal agents for common paediatric infections. Can J Infect Dis Med Microbiol 2008;19:15-8.

135. Shivasra, Rajesh. Management of dermatophytosis in elderly and with systemic comorbidities. Clin Dermatol Rev 2017;1(Suppl S1):38-41.

136. Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017;45:737-79.

137. Spernovasilis N, Koferidis DP. Pre-existing liver disease and toxicity of antifungals. J Fungi (Basel) 2018;4:133.

138. Ahmad SR, Singer SJ, Leissa BG. Congestive heart failure associated with itraconazole. Lancet 2001;357:1766-7.

139. Rieh H, Sauerbrei N. Interaction studies with fluconazole, a new antifungal drug. Drug Saf 1998;19:370-4.

140. Albenorges E, Le Louët H, Tillement JP. Systemic antifungal agents. Drug interactions of clinical significance. Drug Saf 1998;55:645-74.

141. Lehmbecher T. Antifungal prophylaxis in pediatric patients undergoing therapy for cancer: Drugs and dosing. Curr Opin Infect Dis 2015;28:523-31.

142. Bortolussi R. Antifungal agents for common paediatric infections. Can J Infect Dis Med Microbiol 2008;19:15-8.

143. Develoux M. Griseofulvin. Ann Dermatol Venereol 2001;128:1317-25.

144. Dürreck A, Nenoff P. Terbinafine: Relevant drug interactions and their management. Hautarzt 2016;67:718-23.

145. Verma SB, Vasani R, Burmester A, Hipler UC. The current Indian epidemic of superficial dermatomycoses—“It all builds up”. Indian Dermatol Online J 2019;10:441-3.

146. Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017;45:737-79.

147. Spernovasilis N, Koferidis DP. Pre-existing liver disease and toxicity of antifungals. J Fungi (Basel) 2018;4:133.

148. Ahmad SR, Singer SJ, Leissa BG. Congestive heart failure associated with itraconazole. Lancet 2001;357:1766-7.

149. Rieh H, Sauerbrei N. Interaction studies with fluconazole, a new antifungal drug. Drug Saf 1998;19:370-4.

150. Albenorges E, Le Louët H, Tillement JP. Systemic antifungal agents. Drug interactions of clinical significance. Drug Saf 1998;55:645-74.

151. Lehmbecher T. Antifungal prophylaxis in pediatric patients undergoing therapy for cancer: Drugs and dosing. Curr Opin Infect Dis 2015;28:523-31.

152. Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017;45:737-79.