On Lebesgue measure of integral self-affine sets

Ievgen V. Bondarenko, Rostyslav V. Kravchenko

January 19, 2011

Abstract

Let A be an expanding integer $n \times n$ matrix and D be a finite subset of \mathbb{Z}^n. The self-affine set $T = T(A, D)$ is the unique compact set satisfying the equality $A(T) = \bigcup_{d \in D} (T + d)$. We present an effective algorithm to compute the Lebesgue measure of the self-affine set T, the measure of the intersection $T \cap (T + u)$ for $u \in \mathbb{Z}^n$, and the measure of the intersection of self-affine sets $T(A, D_1) \cap T(A, D_2)$ for different sets $D_1, D_2 \subset \mathbb{Z}^n$.

Keywords: self-affine set, tile, graph-directed system, self-similar action.

Mathematics Subject Classification 2000: 28A80, 52C22

Let A be an expanding integer $n \times n$ matrix, where expanding means that every eigenvalue has modulus greater than 1, and let D be a finite subset of \mathbb{Z}^n. There exists a unique nonempty compact set $T = T(A, D) \subset \mathbb{R}^n$, called (integral) self-affine set, satisfying $A(T) = \bigcup_{d \in D} (T + d)$. It can be given explicitly by

$$T = \left\{ \sum_{k=1}^{\infty} A^{-k} d_k : d_k \in D \right\}.$$

The self-affine set T with $|D| = |\text{det} A|$ and of positive Lebesgue measure is called a self-affine tile. Self-affine tiles were intensively studied for the last two decades in the context of self-replicating tilings, radix systems, Haar-type wavelets, etc.

The question of how to find the Lebesgue measure $\lambda(T)$ of the self-affine set T was considered by Lagarias and Wang in [7], where some partial cases were studied. In particular, it was shown that self-affine tiles have integer Lebesgue measure. He, Lau and Rao [4] reduced the problem of finding $\lambda(T)$ to the case when D is a coset transversal for $\mathbb{Z}^n/A(\mathbb{Z}^n)$. The last case was treated by Gabardo and Yu [3] and in more general settings

*The author was partially supported by NSF grant 0503688
by Bondarenko and Kravchenko [1]. The positivity of the Lebesgue measure of self-affine sets was also studied in [3, 4].

In this note, we present a simple method to compute the Lebesgue measure \(\lambda(T) \) of the self-affine set \(T \). We construct a finite labeled graph (automaton) and show that \(\lambda(T) \) is equal to the uniform Bernoulli measure of the left-infinite sequences which can be read along paths in this graph. Similar graphs when \(D \) is a coset transversal were constructed in [3, 10] and other papers. In addition this method allows to find the measure of the intersection \(T \cap (T + u) \) for \(u \in \mathbb{Z}^n \), and the measure of the intersection of self-affine sets \(T(A, D_1) \cap T(A, D_2) \) for different sets \(D_1, D_2 \subseteq \mathbb{Z}^n \). Our construction seems to be very natural and actually works for any contracting self-similar group action (here the self-affine sets correspond to the self-similar actions of \(\mathbb{Z}^n \), see [9, Section 6.2] and [1]).

We proceed as follows. If the set \(D \) does not contain all coset representatives of \(\mathbb{Z}^n / A(\mathbb{Z}^n) \), we extend it to the set \(K \supset D \) which does, and choose a coset transversal \(C \subseteq K \).

Construct a directed labeled graph (automaton) \(\Gamma = \Gamma(A, K) \) with the set of vertices \(\mathbb{Z}^n \), and we put a directed edge from \(u \) to \(v \) for \(u, v \in \mathbb{Z}^n \) labeled by the pair \((x, y) \) for \(x, y \in K \) if \(u + x = y + Av \). The nucleus of the graph \(\Gamma \) is the subgraph (subautomaton) \(\mathcal{N} \) spanned by all cycles of \(\Gamma \) and all vertices that can be reached following directed paths from the cycles. Since the matrix \(A \) is expanding the nucleus \(\mathcal{N} \) is a finite graph and it can be algorithmically computed. Indeed, if \(u + x = y + Av \) then

\[
\|v\| < \|u\| \quad \text{whenever} \quad \|u\| > (1 - \|A^{-1}\|)^{-1} \max_{x,y \in K} \|A^{-1}(x - y)\|,
\]

and the nucleus \(\mathcal{N} \) is contained in the ball centered at the origin of radius given by the right-hand side above. Remove every edge in \(\mathcal{N} \) whose label is not in \(C \times D \), and replace every label \((a, b) \) by \(a \). We get some finite graph \(\mathcal{N}_D \) whose edges are labeled by elements of the set \(C \).

Let \(C^{-\omega} \) be the space of all left-infinite sequences \(\ldots x_2x_1, x_i \in C \), with the product topology of discrete sets. Let \(\mu \) be the uniform Bernoulli measure on \(C^{-\omega} \), i.e. the product measure with \(\mu(x) = 1/|C| \) for every \(x \in C \). For every vertex \(v \) of the graph \(\mathcal{N}_D \) denote by \(F_v \) the set of all left-infinite sequences which can be read along left-infinite paths in \(\mathcal{N}_D \) that end in \(v \). The sets \(F_v \) are closed in \(C^{-\omega} \), thus compact and measurable.

Theorem 1. The Lebesgue measure of the self-affine set \(T \) is equal

\[
\lambda(T) = \sum_{v \in \mathcal{N}_D} \mu(F_v).
\]

Proof. Consider the map \(\Phi : K^{-\omega} \times \mathbb{Z}^n \rightarrow \mathbb{R}^n \) given by the rule

\[
\Phi(\ldots x_2x_1, v) = v + A^{-1}x_1 + A^{-2}x_2 + \ldots,
\]

where \(x_i \in K \) and \(v \in \mathbb{Z}^n \). Since \(\mathbb{Z}^n = K + A(\mathbb{Z}^n) \), the map \(\Phi \) is onto (see [3] or [1, Section 6.2]). Two elements \(\xi = (\ldots x_2x_1, v) \) and \(\zeta = (\ldots y_2y_1, u) \) for \(x_i, y_i \in K \) and
\(v, u \in \mathbb{Z}^n \) represent the same point \(\Phi(\xi) = \Phi(\zeta) \) in \(\mathbb{R}^n \) if and only if there is a finite subset \(B \subset \mathbb{Z}^n \) and a sequence \(\{v_m\}_{m \geq 1} \in B \) such that there exists the path

\[
v_m \xrightarrow{(x_m, y_m)} v_{m-1} \xrightarrow{(x_{m-1}, y_{m-1})} \ldots \xrightarrow{(x_2, y_2)} v_1 \xrightarrow{(x_1, y_1)} u \quad \text{for every } m \geq 1. \tag{1}
\]

in the graph \(\Gamma \) for every \(m \geq 1 \). Indeed, this path implies that

\[
v_m + x_m + Ax_{m-1} + \ldots + A^{m-1}x_1 + A^mv = y_m + Ay_{m-1} + \ldots + A^{m-1}y_1 + A^mu. \tag{2}
\]

Applying \(A^{-m} \) and using the facts that \(A^{-1} \) is contracting and the sequence \(\{v_m\}_{m \geq 1} \) attains a finite number of values, we get the equality \(\Phi(\xi) = \Phi(\zeta) \). For the converse, we choose \(v_m \) such that (2) holds, and using the equality \(\Phi(\xi) = \Phi(\zeta) \) we get that \(\{v_m\}_{m \geq 1} \) attains a finite number of values. Notice that since the set \(B \) is assumed to be finite, every element \(v_m \) lies either on a cycle or there is a directed path from a cycle to \(v_m \). In particular, all elements \(v_m \) should belong to the nucleus \(\mathcal{N} \), and we have that the elements \(\xi \) and \(\zeta \) represent the same point in \(\mathbb{R}^n \) if and only if there exists a left-infinite path in \(\mathcal{N} \) labeled by \((\ldots x_2x_1, \ldots y_2y_1) \) and ending in \(u - v \).

Take the restriction \(\Phi_C : C^{-\omega} \times \mathbb{Z}^n \to \mathbb{R}^n \) of the map \(\Phi \) on the subset \(C^{-\omega} \times \mathbb{Z}^n \). Since \(\mathbb{Z}^n = C + A(\mathbb{Z}^n) \), the map \(\Phi_C \) is also onto, and this gives an encoding of points in \(\mathbb{R}^n \) by elements of \(C^{-\omega} \times \mathbb{Z}^n \). Consider the uniform Bernoulli measure \(\mu \) on the space \(C^{-\omega} \) and the counting measure on the group \(\mathbb{Z}^n \), and put the product measure on the space \(C^{-\omega} \times \mathbb{Z}^n \).

Since the set \(C \) is a coset transversal, the push-forward of this measure under \(\Phi_C \) is the Lebesgue measure on \(\mathbb{R}^n \) (see [1, Proposition 25]). Hence to find the Lebesgue measure of the self-affine set \(T \) it is sufficient to find the measure of its preimage in \(C^{-\omega} \times \mathbb{Z}^n \). However, \(T \) is equal to \(\Phi(D^{-\omega} \times \{0\}) \), and hence the sequence \((\ldots x_2x_1, v) \) for \(x_i \in C \) and \(v \in \mathbb{Z}^n \) represents a point in \(T \) if and only if there exists a left-infinite path in the nucleus \(\mathcal{N} \), which ends in \(-v \) and is labeled by \((\ldots x_2x_1, \ldots y_2y_1) \) for some \(y_i \in D \). Hence

\[
\Phi_{C^{-1}}^{-1}(\Phi(D^{-\omega} \times \{0\})) = \bigcup_{v \in \mathcal{N}D} F_v \times \{-v\}, \tag{3}
\]

and the statement follows.

The Bernoulli measure of the sets \(F_v \) for any finite graph \(\Gamma = (V, E) \) can be effectively computed (see [1, Section 2]). First, we can assume that the graph is left-resolving, i.e. for every vertex \(v \in V \) the incoming edges to \(v \) have different labels. Indeed, for any finite graph \(\Gamma = (V, E) \) there exists a left-resolving graph \(\Gamma' = (V', E') \) with the property that for every \(v \in V \) there exists \(v' \in V' \) such that \(F_v = F_{v'} \), and this graph can be easily constructed (here every vertex \(v' \) corresponds to some subset of \(V \), see [3, Section 2.3]). For a left-resolving graph the vector \((\mu(F_v))_{v \in V} \) (if it is nonzero) is the left eigenvector of the adjacency matrix of the graph for the eigenvalue \(|C| = |\det A| \). This eigenvector is uniquely defined if we know its entries \(\mu(F_v) \) for vertices \(v \) in the strongly connected components without incoming edges. For every such a component \(\Gamma' \), we have \(F_v = C^{-\omega} \) and \(\mu(F_v) = 1 \) for every vertex \(v \) in \(\Gamma' \) if inside this component every vertex has incoming edges labeled by every element of the set \(C \), and \(\mu(F_v) = 0 \) otherwise. In particular, the entries \(\mu(F_v) \) are rational numbers, and we recover the following result of [4].
Corollary 2. Every self-affine set has rational Lebesgue measure.

It is also easy to check when the measure of T is non-zero without calculating its precise value but just looking at the left-resolving graph (not the graph N_D) constructed above. The measure $\lambda(T)$ will be positive if and only if there exists a strongly connected component such that inside this component every vertex has incoming edges labeled by every letter of the alphabet.

Example 1. Let $A = (3)$ and $D = \{0, 1, 5, 6\}$. The self-affine set T is $[0, \frac{4}{3}] \cup [\frac{5}{3}, 3]$, and $\lambda(T) = 8/3$. Choose $K = D$ and the coset transversal $C = \{0, 1, 5\}$. The associated automaton N_D is shown in Figure 1. Here $\mu(F_0) = 1$, $\mu(F_1) = 1/3$, $\mu(F_2) = 1/8$, $\mu(F_{-1}) = 7/12$, $\mu(F_{-2}) = 5/8$, and $\mu(F_{-3}) = \mu(F_3) = 0$.

The above method can be used to find $\lambda(T \cap (T + u))$ for $u \in \mathbb{Z}^n$. The set $T + u$ is the image of the set $D^{-\omega} \times u$, and its preimage under Φ_C can be described as in (3). In particular

$$\lambda(T \cap (T + u)) = \sum_{v_1, v_2 \in N_D} \mu(F_{v_1} \cap F_{v_2}).$$

Similarly, one can find the measure of the intersection of self-affine sets $T_1 = T(A, D_1)$ and $T_2 = T(A, D_2)$ for different sets $D_1, D_2 \subset \mathbb{Z}^n$. We take a set E which contains D_1, D_2, and some coset transversal C, and as above we construct the nucleus N and its subgraphs N_{D_1} and N_{D_2}. Then

$$\lambda(T_1 \cap T_2) = \sum_{v \in N} \mu(F_v^{(1)} \cap F_v^{(2)}).$$
where $F_{v}^{(i)}$ is calculated in the graph $N_{D_{i}}$. Hence these two problems are reduced to the question of how to find the measure of the intersection $F_{v_{1}}^{(1)} \cap F_{v_{2}}^{(2)}$, where each set $F_{v_{i}}^{(i)}$ is defined in some finite graph $\Gamma^{(i)} = (V^{(i)}, E^{(i)})$ with its vertex v_{i}. One can construct a new finite graph Γ (sometimes called the labeled product of graphs $\Gamma^{(i)}$) with the set of vertices $V^{(1)} \times V^{(2)}$, where we put an edge $(u_{1}, u_{2}) \xrightarrow{\tau} (w_{1}, w_{2})$ for every edges $u_{1} \xrightarrow{\tau} w_{1}$ in $\Gamma^{(1)}$ and $u_{2} \xrightarrow{\tau} w_{2}$ in $\Gamma^{(2)}$. Then $F_{(v_{1}, v_{2})} = F_{v_{1}}^{(1)} \cap F_{v_{2}}^{(2)}$ (see [3, Section 3.2]).

References

[1] Bondarenko, I., Kravchenko, R.: Graph-directed systems and self-similar measures on limit spaces of self-similar groups. Adv. Math., 226(3):2169–2191 (2011)
[2] Deng, G.-T., He, X.-G.: Integral self-affine sets with positive Lebesgue measures. Arch. Math., 90(2):150–157 (2008)
[3] Gabardo, J.-P., Yu, X.: Natural tiling, lattice tiling and Lebesgue measure of integral self-affine tiles. J. Lond. Math. Soc., II. Ser., 74(1):184–204 (2006)
[4] He, X.-G., Lau, K.-S., Rao, H.: Self-affine sets and graph-directed systems. Constructive Approximation, 19(3):373–397 (2003)
[5] Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages and computation. Addison-Wesley Publishing Co., Reading, MA (1979)
[6] Kirat, I.: On the Lebesgue measure of self-affine sets. Turk. J. Math., 25(4):535–543 (2001)
[7] Lagarias, J.C., Wang, Y.: Integral self-affine tiles in \mathbb{R}^{n}. I: Standard and nonstandard digit sets. J. Lond. Math. Soc., II. Ser., 54(1):161–179 (1996)
[8] Lagarias, J.C., Wang, Y.: Self-affine tiles in \mathbb{R}^{n}. Adv. Math., 121(1):21–49 (1996)
[9] Nekrashevych, V.: Self-similar groups, volume 117 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2005)
[10] Scheicher, K., Thuswaldner, J.M.: Canonical number systems, counting automata and fractals. Math. Proc. Camb. Philos. Soc., 133(1):163–182 (2002)