A hallmark of bacterial endospore formation is engulfment, during which the membrane of one cell (the mother cell) migrates around the future spore, enclosing it in the mother cell cytoplasm. Bacteria lack proteins required for eukaryotic phagocytosis, and previously proteins required for membrane migration remained unidentified. Here we provide cell biological and genetic evidence that three membrane proteins synthesized in the mother cell are required for membrane migration as well as for earlier steps in engulfment. Biochemical studies demonstrate that one of these proteins, SpoIID, is a cell wall hydrolase, suggesting that membrane migration in bacteria can be driven by membrane-anchored cell wall hydrolases. We propose that the bacterial cell wall plays a role analogous to that of the actin and tubulin network of eukaryotic cells, providing a scaffold along which proteins can move.

[Keywords: Bacillus subtilis; sporulation; membrane movement; peptidoglycan hydrolysis; protein localization]

Supplemental material is available at http://www.genesdev.org.

Received September 9, 2002; revised version accepted October 21, 2002.

The movement and localization of macromolecules within the cell is a conserved and essential feature of both prokaryotic and eukaryotic organisms. In bacteria, such events are essential for chromosome segregation, cell division, and DNA replication, as well as for pathogenesis, chemotaxis, and the development of specialized cell types (Shapiro and Losick 1997; Jensen and Shapiro 2000). However, in contrast to eukaryotic cells, little is known about how macromolecules are moved or localized in bacterial cells. Indeed, the mechanism for the rapid separation of bacterial chromosomes remains unclear. Thus far, neither the distant bacterial homologs of actin (FtsA and MreB) nor that of tubulin (FtsZ) have been implicated in this process, and the only bacterial motor proteins identified so far [Smc/MukA] are instead required to separately condense the segregated chromosomes [Gordon and Wright 2000; Hiraga 2000; Lemon and Grossman 2001]. Thus, the means by which bacteria move essential macromolecules such as DNA within their cell remains a mystery.

One dramatic example of the dynamic capabilities of bacterial cells is the phagocytosis-like process of engulfment [Fig. 1], a key step in the spore formation pathway of the endospore-forming bacteria, such as Bacillus subtilis, B. anthracis, and various Clostridia species (for reviews, see Stragier and Losick 1996; Piggot and Losick 2002). Shortly after an asymmetrically positioned cell division event generates the smaller forespore and larger mother cell, the mother cell membrane migrates around the forespore, until the leading edges of the engulfing membrane meet and fuse, releasing the forespore into the mother cell cytoplasm, where spore assembly is completed. Engulfment thereby mediates a striking reorganization of the sporangium, from two cells that lie side by side, to an endospore in which one cell lies within the cytoplasm of another. Despite the fact that engulfment is essential for sporulation in all endospore-forming bacteria, it remains unclear how bacterial cells are able to mediate this phagocytosis-like process.

Genetic studies of sporulation resulted in the identification of several proteins involved in engulfment, SpoIIβ [Margolis et al. 1993], SpoIIID [Lopez-Diaz et al. 1986], SpoIIIM [Smith et al. 1993], SpoIIIP [Frandsen and Stragier 1995], SpoIIQ [Londoño-Vallejo et al. 1997], and SpoIIIE [Sharp and Pogliano 1999]. It is now clear that mutants lacking either SpoIIβ [Perez et al. 2000] or SpoIIQ [Sun et al. 2000] are able to complete engulfment, albeit more slowly than wild type. Furthermore, although SpoIIIE is required for the membrane fusion event that is the final step of engulfment, it is not required for membrane migration [Sharp and Pogliano 1999]. Thus, the only known proteins essential for the early stages of engulfment are the mother cell-expressed proteins SpoIIID, SpoIIIM, and SpoIIIE.
SpoIID, in keeping with the observation that mother cell-specific, but not forespore-specific, gene expression is required for engulfment (Sun et al. 2000). These three proteins are found in all endospore-forming bacteria whose genomes have been sequenced (Stragier 2002), suggesting that they play conserved and essential roles in sporulation. In addition, SpoIID is homologous to another Bacillus protein, LytB, which is thought to regulate the activity of the major vegetative cell wall hydrolase, LytC (Lopez-Diaz et al. 1986; Kuroda et al. 1992), an N-acetyl-muramoyl-L-alanine amidase involved in cell separation (Blackman et al. 1998).

SpoIID, SpoIIM, and SpoIIP are essential for the first step of engulfment, septal thinning, during which the peptidoglycan within the sporulation septum becomes thinner when viewed by electron microscopy, starting in the middle of the septum and proceeding toward the edges (Piggot et al. 1994; Piggot and Losick 2002). They are also required to mediate the dissolution of partial septa formed when division initiates at the second potential division site within the mother cell (Fig. 1B; Pogliano et al. 1999; Eichenberger et al. 2001). Both activities likely require localized peptidoglycan hydrolysis, although no biochemical studies of these proteins have been performed, and none of the identified B. subtilis hydrolases are essential for engulfment (Foster and Popham 2002). Although dispensable for engulfment, SpoIIB also participates in septal thinning as, in its absence, the septal peptidoglycan appears ragged, as though incomplete septal thinning has occurred throughout the septum (Perez et al. 2000). Despite this defect, the spoIID mutant is able to slowly initiate and complete engulfment, with the engulfing membrane moving around the residual septal peptidoglycan. SpoIIB is therefore likely to be required for the complete dissolution of septal peptidoglycan, but not for membrane migration (Perez et al. 2000).

Thus far, despite the identification of mutants specifically defective in septal thinning or membrane fusion, and specific large-scale screens for engulfment-defective mutants, proteins essential for moving the engulfing membrane around the forespore remain unidentified. However, past studies of the essential mother cell-expressed engulfment proteins SpoIID, SpoIIM, and SpoIIP focused on the phenotypic analysis of null mutants, leaving open the possibility that these proteins are also required for later steps in engulfment. Here we report the isolation of spoIID and spoIIP mutants defective in both septal thinning and membrane migration, supporting a role for SpoIID and SpoIIP throughout engulfment. We also demonstrate that SpoIID, SpoIIM, and SpoIIP initially localize to the septal midpoint, then spread throughout the septum prior to becoming enriched at the leading edge of the engulfing mother cell membrane, where they remain until the completion of engulfment. These results suggest that SpoIID, SpoIIM, and SpoIIP are involved in moving the engulfing membrane around the forespore, as well as in septal thinning. Finally, our biochemical studies indicate that one of these proteins, SpoIID, is a peptidoglycan hydrolase, suggesting that membrane migration in bacteria may be driven by the activity of membrane-anchored cell wall hydrolases that drag the membrane with them as they hydrolyze peptidoglycan.

Results

A genetic screen for membrane migration-defective mutants

We performed a large-scale genetic screen to identify mutants blocked at various stages of engulfment (Sharp and Pogliano 1999). The mutants isolated were visually screened for engulfment defects using the fluorescent membrane stain FM 4-64, which allows clear visualization of the sporulation septum at various stages of engulfment (Fig. 2A,C), and readily identifies mutants blocked at different stages of engulfment (Pogliano et al. 1999, Sharp and Pogliano 1999, Perez et al. 2000; Sun et al. 2000). For example, mutants defective in septal thinning show a characteristic “bulge” phenotype caused when the forespore pushes through the center of the un-thinned septum and into the mother cell (arrows in Fig. 2E,G). The forespores of such sporangia have a central constriction imposed by the septal peptidoglycan (see cartoon, Fig. 2I), and, in strains with null mutations in either spoIID, spoIIM, or spoIIP, membrane migration is completely blocked. In contrast, mutants slow to complete membrane migration, such as the spoIIP mutant, show a smoothly curving septum (Sun et al. 2000; Fig. 2Q, arrow). The failure of such mutants to complete en-
Proteins required for *B. subtilis* engulfment

Figure 2. Engulfment phenotypes of spoIIP mutants. Sporangia were sampled 2 and 3 h after the onset of sporulation (first, second, third, and fourth columns, respectively), and the membranes stained with FM 4-64 (first and third columns) and the DNA stained with 6-diamidino-2-phenylindole (DAPI; second and fourth columns) and visualized with deconvolution microscopy. (A–D) Engulfment in the wild-type strain FY79. (A,B) The sporulation septum is initially flat, and then the mother cell membrane begins to migrate around the forespore (arrows). (C,D) After the completion of membrane migration but prior to membrane fusion, the forespore membranes stain with FM 4-64, which is membrane impermeable (arrows), whereas after membrane fusion (asterisks), the forespore membranes and chromosomes fail to stain with FM 4-64 (C) and DAPI (D). (E–H) Phenotype of a spoIP null strain (KP719), showing the constricted bulge phenotype caused when the forespore breaks through the center of an unthinned septum into the mother cell (arrows). (I) Model of a constricted bulge, based on electron microscopy studies [Frandsen and Stragier 1995; Pogliano et al. 1999; Perez et al. 2000]. The peptidoglycan (gray shading) remains within the sporulation septum, constricting the membrane was able to initiate but not complete membrane migration, and many sporangia have a partial constriction remaining at the original position of the septum (arrows). (J) Constricted bulges (arrowhead) are also seen. (N) Model of an open bulge, whose appearance suggests that the septal peptidoglycan no longer extends completely across the septum, and does not tightly constrict the forespore when a bulge forms. (O–R) Engulfment in the spoIIQ null strain [KP575], in which membrane migration is slow, but septal thinning is normal [Londoño-Vallejo et al. 1997], producing smoothly curving septa with no bulges (arrows). (S) Model of sporangium in which membrane migration but not septal thinning is defective. (R) Bar, 2 µm.

Engulfment can be unambiguously assayed using fluorescence microscopy because the fluorescent membrane stain FM 4-64 is membrane impermeable and so fails to stain the forespore membranes when added to sporangia that have completed membrane fusion [Sharp and Pogliano 1999; Fig. 2C, asterisk]. This screen resulted in the isolation of membrane fusion-defective mutants, as previously reported [spoIIIIE; Sharp and Pogliano 1999]. We also isolated mutants that appeared to be defective in membrane migration. These mutants included one with a point mutation in spoIIISA, a gene that is dispensable for engulfment and lacking from the genomes of most endospore-forming bacteria [Adler et al. 2001]. We also isolated an allele of spoIIIP with a phenotype distinct from that of the spoIIIP null mutant in several respects. First, spoIIIP95-2 sporangia have bulges that appear less constricted by septal peptidoglycan than those produced by spoIIIP null sporangia [Fig. 2J, arrow]. These “open bulges” suggest that the septal peptidoglycan no longer extends completely across the septum; indeed some spoIIIP95-2 sporangia appear to have completed septal thinning because no constriction is noted. Second, the mother cell membrane was able to initiate but not complete membrane migration [Fig. 2L, arrow], in about 26% of all sporangia [Table 1]. We observed sporangia in which the mother cell membrane had moved as far as the forespore pole, but we failed to observe sporangia that had completed the membrane fusion event that is the final step of engulfment. The production of sporangia with open bulges distinguishes the spoIIIP95-2 phenotype from that of a mutation conditionally defective in membrane migration but not in septal thinning [spoIIQ], which produces neither constricted nor open bulges [Fig. 2O,Q]. These observations suggest that the spoIIIP95-2 mutation decreases the rate of both septal thinning and membrane migration, and thus, that SpoIIIP is required for both processes.

Sequencing of spoIIIP95-2 identified a single mutation upstream of the spoIIIP coding region, changing the consensus ribosome binding site from GGAGG to GGAGA. No additional mutations were identified within or downstream of the spoIIIP coding region. Because the mutation changes the ribosome binding site away from the consensus sequence [Shine and Dalgarno 1974; Rocha et al. 1999; Ma et al. 2002], it is predicted to reduce spoIIIP translation, suggesting that the mutant phenotype is a consequence of reduced levels of SpoIIIP protein. Thus, the levels of SpoIIIP appear to be crucial for the rate of both septal thinning and membrane migration.
The engulfment phenotype was scored at t_{30}. Between 117 and 252 sporangia were scored for each strain.

Table 1. Percent sporangia showing the indicated engulfment phenotype

Engagement stage	Bulge	Class	37°C	44°C
Early	None	1	12	5
	Closed	2	1	12
	Open	3	0	23
Late	None	4	16	3
	Closed	5	0	1
	Open	6	0	12
Complete	None	7	70	10

The engulfment phenotype was scored at t_{30}. Between 117 and 252 sporangia were scored for each strain.

Localised mutagenesis of spoIID

We also performed localised mutagenesis of spoIID in an attempt to isolate mutations that block engulfment after septal thinning. A plasmid encoding spoIID was mutagenized by polymerase chain reaction (PCR), and introduced into a spoIID null strain of *B. subtilis*, where it integrated into the nonessential amyE locus by homologous recombination. Alleles that failed to fully complement the spoIID null mutation were isolated and characterized further. We isolated two mutants that were able to proceed past the stage of septal thinning and initiate membrane migration, but which were unable to complete membrane fusion. One of these mutations, spoIID39, is strongly temperature sensitive (Ts) for engulfment: engulfment and spore formation occurs at nearly wild-type levels at the permissive temperature, whereas at the nonpermissive temperature, the mutant appears similar to the spoIID null mutant in terms of both spor production (Table 2) and engulfment phenotype, producing constricted bulges and failing to initiate membrane migration (Supplementary Fig. 1). However, at the semipermissive temperature, the mutant produces an intermediate level of spores, and fluorescence microscopy demonstrated that it produces both open bulges (Fig. 3M, arrow) and closed bulges (Fig. 3O, arrowhead), and initiates but fails to complete membrane migration (Fig. 3Q, arrow). This suggests that under conditions in which SpolIID39 protein is partially active, the rate of both septal thinning and membrane migration are reduced.

The second spoIID mutation, spoIID38, reduced spore formation by twofold at all temperatures. The spoIID38 sporangia showed an engulfment defect similar to that of spoIIP95-2 and spoIID39 at 37°C, producing sporangia with slowed membrane migration (arrows in Fig. 3J,K). The spoIID38 sporangia were able to slowly complete engulfment, as by t_{30}, 10% of sporangia completed membrane fusion [Fig. 3K, asterisk], compared with 70% of wild-type sporangia [Table 1]. DNA sequence analysis revealed that the spoIID38 gene had three mutations, one of which changed an amino acid in the N-terminal hydrophobic segment of SpolIID from leucine to proline (L8 to P), another of which was upstream of the coding region (at nucleotide −50 from the ATG, C to T), and the third of which was a silent mutation changing an arginine codon from AGA to AGG (R111 to R). It seems probable that the L8-to-P mutation causes the mutant phenotype. Although this leucine is not conserved in any SpolIID homolog, the introduction of proline into the hy-
A drophobic core of a membrane-spanning segment or signal sequence is expected to dramatically affect its structure, perhaps inhibiting insertion into the membrane bilayer. The spoIID39 gene had two mutations, one changed a conserved threonine to an aspartate (T107D), and the other changed a nonconserved glutamate to glycine (E247G).

Localization of the mother cell-expressed engulfment proteins

If SpoIID, SpoIIM, and SpoIIP are involved in both membrane migration and septal thinning, then the proteins would be expected to localize to the septum and to the leading edge of the engulfment membrane. To test this prediction, we fused green fluorescent protein of Aequorea victoria (GFP) to the cytoplasmic N terminus of SpoIID, SpoIIM, and SpoIIP, because the C terminus of each is predicted to be extracellular and GFP is not fluorescent when exported from bacterial cells via the general secretory pathway (Feilmeier et al. 2000). The spoIID promoter was used to express the fusion genes, and each fully complemented the respective null mutations, producing wild-type levels of spores (Table 2).

We found that both GFP–SpoIIP and GFP–SpoIIM localized to the sporulation septum (Fig. 4A, arrow 1, B, arrow 4), and to the second division site within the mother cell (Fig. 4B, arrowhead), consistent with a role for these proteins in septal thinning and repressing division within the mother cell. Interestingly, both GFP–SpoIID [data not shown] and GFP–SpoIIM [Fig. 4B, arrow 3] initially localized to the septal midpoint, where septal thinning likely starts. Importantly, both GFP–SpoIIP and GFP–SpoIIM were most concentrated at the leading edge of the engulfing membrane (Fig. 4A, arrow 2, B, arrow 4), where they remained throughout membrane migration. This is in contrast to a protein required only for septal thinning (SpoIIB), which initially localizes to the septum, but delocalizes by the start of membrane migration (Perez et al. 2000). GFP–SpoIIM also localized to the forespore distal pole in later sporangia in which engulfment was more complete (Fig. 4B, arrow 3). This localization pattern might be caused by overexpression of GFP–SpoIIM from the spoIID promoter, which is about fourfold more active than the spoIIM promoter (A. Rubio, pers. comm.). Thus, the localization of SpoIIM and SpoIIP suggests that both proteins are required for membrane migration as well as for septal thinning.

GFP–SpoIID also localized to the sporulation septum [Fig. 4C, arrow 5], although a significant amount of GFP fluorescence was also observed throughout the mother cell cytoplasmic membrane. This diffuse fluorescence may be due to the presence of a potential leader peptidase recognition sequence within SpoIID, which if cleaved would release GFP fused to a signal sequence, which would likely freely diffuse within the mother cell membrane. In addition to this diffuse fluorescence, sporangia that had commenced membrane migration showed a high concentration of GFP–SpoIID at the leading edge of the engulfing membrane, similar to SpoIIP and SpoIIM [Fig. 4C, arrow 6]. Thus, similar to SpoIIP and SpoIIM, SpoIID localizes to the septum and to the mother cell-expressed engulfment proteins
leading edge of the engulfing membrane, consistent with our genetic data implicating SpoIID in membrane migration as well as septal thinning.

SpoIID is a peptidoglycan hydrolase

The previously described roles of SpoIID, SpoIIM, and SpoIIP in the thinning of septal peptidoglycan and in the retraction of partial septa within the mother cell suggested that they might be involved in peptidoglycan degradation (Pogliano et al. 1999). However, although all of these proteins are conserved in all endospore-forming bacteria, none are homologous to enzymes known to hydrolyze peptidoglycan [although SpoIID is homologous to a protein that regulates the activity of one such protein (Lopez-Diaz et al. 1986; Kuroda et al. 1992)]. We were therefore interested in determining if any of these proteins were able to degrade bacterial cell walls. For these biochemical studies, we focused on SpoIID and SpoIIP because each has a large extracellular domain, as do many known peptidoglycan hydrolases (Foster and Popham 2002), whereas SpoIIM is an integral membrane protein and lacks a substantial extracellular domain.

We overexpressed His-tagged SpoIID and SpoIIP in *Escherichia coli*, purified the proteins, and used renaturing polyacrylamide gel electrophoresis to test their ability to hydrolyze bacterial cell walls incorporated into a polyacrylamide gel (Foster 1992). This assay showed that SpoIID was able to degrade both *Micrococcus luteus* (Fig. 5B) and *B. subtilis* cell walls (Fig. 5C), clearing peptidoglycan from the gel at the position of full-length SpoIID and of a larger copurifying protein that might be a SpoIID multimer. Remarkably, less SpoIID than lysozyme was required to solubilize the peptidoglycan to the same extent. SpoIIP did not consistently demonstrate hydrolase activity in these gels (data not shown). Further tests of biochemical activities for SpoIIP, and the more precise description of the precise hydrolytic activity of SpoIID, will require the purification of both proteins in an active and soluble state. However, our biochemical studies to
The leading edge of the engulfing membrane advances adjacent to the cell wall

If movement of the mother cell membrane around the forespore is mediated by the peptidoglycan hydrolase activity of SpoIID, then one would expect that the engulfing membrane would advance most rapidly adjacent to the cell wall. We therefore used ultrathin section transmission electron microscopy to provide a high-resolution image of the leading edge of the engulfing membrane. We consistently observed that during membrane migration, the leading edge of the mother cell membrane is in close contact with the cell wall (Fig. 6, arrow), whereas the lagging portion of the engulfing membrane is away from the cell wall (see also Fig. 4 in Perez et al. 2000). Thus, electron microscopic analysis suggests that the leading edge of the engulfing membrane moves around the forespore immediately adjacent to the cell wall.

Discussion

Here we provide genetic and cell biological evidence that three mother cell-expressed proteins are required for the movement of the mother cell membrane around the forespore during the phagocytosis-like process of engulfment. First, we isolated mutations predicted to reduce the level of active SpoIID and SpoIIP protein, and found that these mutations reduce both the rate of septal thinning and membrane migration. Second, we localized SpoIID, SpoIIM, and SpoIIP, and found that each is enriched at the leading edge of the engulfing membrane, where they remain until the completion of membrane migration. Together, this cell biological and genetic evidence strongly suggests that these three proteins are involved in the movement of the mother cell membrane around the forespore, as well as in thinning of the septal peptidoglycan. SpoIID, SpoIIM, and SpoIIP are likely to be the only essential engulfment proteins that are dispensable for growth, because the genetic screen reported here, and a similar screen in another laboratory, failed to identify any new engulfment proteins [P. Eichenberger and R. Losick, pers. comm.]. Furthermore, we previously demonstrated that only mother cell-specific gene expression is essential for engulfment (Sun et al. 2000), and Eichenberger and Losick have inactivated all ntrB-transcribed genes identified by microarray analysis, yet failed to identify any new engulfment proteins [P. Eichenberger and R. Losick, pers. comm.]. Although it remains possible that other sporulation-specific proteins play subtle or redundant roles in engulfment, and that proteins essential for viability play a crucial role in engulfment, it
seems likely that, of the sporulation-specific proteins, SpoIID, SpoIIM, and SpoIIP comprise the essential engulfment machinery. We have demonstrated that one of these proteins, SpoIID, is a peptidoglycan hydrolase capable of solubilizing both B. subtilis and M. luteus cell peptidoglycan in a renaturing gel electrophoresis assay. This enzymatic activity is consistent with the requirement for SpoIID in septal thinning and is the first direct demonstration that septal thinning requires peptidoglycan hydrolysis. The observation that reducing the level of SpoIID activity also slows membrane migration suggests that peptidoglycan hydrolase activity is required for membrane migration. SpoIID is the founding member of a new class of peptidoglycan hydrolases that includes SpoIID homologs of other endospore-forming bacteria, proteins of unknown function in cyanobacterial genomes, and B. subtilis LytB (Kuroda et al. 1992), which has been previously reported to regulate the activity of a major peptidoglycan hydrolase (LytC). Our results demonstrate that at least certain members of this family of proteins are peptidoglycan hydrolases capable of mediating dynamic events in bacterial cells.

We can imagine two distinct mechanisms by which peptidoglycan hydrolase activity might contribute to membrane migration during engulfment. First, it is possible that peptidoglycan hydrolysis is necessary to remove bridges between the forespore membrane and the cell wall, such as those that might be formed by lipoteichoic acid. Such bonds might impede movement of the mother cell membrane around the forespore. If so, then membrane migration might be expected to occur more slowly immediately adjacent to the cell wall. In contrast, our electron micrographs show that engulfment proceeds most rapidly adjacent to the cell wall, with the cell wall distal portion of the leading edge lagging behind that adjacent to the cell wall. In addition, a previous study suggested that the cell wall was necessary for engulfment because spore formation was blocked if the wall was removed by enzymatic digestion in osmotically buffered medium before, but not after, engulfment (Fitz-James 1964). The second model proposes that peptidoglycan hydrolysis plays a more active role in engulfment because a membrane-anchored protein complex that includes a peptidoglycan hydrolase could drag the mother cell membrane around as it hydrolyzes peptidoglycan surrounding the forespore (Fig. 7). In this model, the energy for membrane movement could be provided by the hydrolysis of a large number of bonds in the peptidoglycan, which might be sufficient to power this relatively slow process (which requires ~45 min to complete). This model suggests that the bacterial cell wall provides an external scaffold along which motor proteins can move, similar to the eukaryotic cytoskeleton.

Previous observations support an analogy between the bacterial cell wall and the eukaryotic cytoskeleton. First, like the eukaryotic cytoskeleton, the bacterial cell wall plays a crucial role in determining and maintaining cell shape (Holtje 1998). Second, both the peptidoglycan biosynthesis machinery and several cell wall hydrolases are processive enzymes that likely move along the peptidoglycan strands as they synthesize or degrade cell wall polymers [Barrett et al. 1984; Holtje 1996, 1998]. Interestingly, biochemical studies of the SpoIID homolog LytB have suggested that it confers processivity on the enzyme with which it interacts [Herbold and Glaser 1975]. We therefore predict that the SpoIID peptidoglycan hydrolase [or a protein complex that includes SpoIID] is a processive enzyme that translocates along the glycan chains, thereby moving the mother cell membrane around the forespore.

Materials and methods

Bacterial strains, genetic manipulations, and growth conditions

B. subtilis strains (Table 3) used in this study are derivatives of wild-type strain PY79 [Youngman et al. 1984]. Mutations and the various plasmid constructs were introduced into PY79 by transformation [Dubnau and Davidoff-Abelson 1971]. *B. subtilis* was grown and sporulated at 37°C unless otherwise specified. Sporulation was induced by the resuspension method [Sterlini and Mandelstam 1969] or by nutrient exhaustion in Difco Sporulation Medium [DSM; Schaeffer et al. 1965]. Sporulation efficiency was determined after heating cultures at 80°C for 20 min at 48 h after induction of sporulation for 30°C cultures, 24 h for 37°C cultures, and 18 h for 44°C cultures. Standard PCR conditions [Qiagen Taq Polymerase Kit and Roche Expand Hi-
Fidelity PCR System] were used. Two E. coli strains were used to propagate the various plasmids used in this study, DH5α and KJ622 (TG1, pcnB uvc24-1). Sequencing of plasmid constructs or of PCR-amplified chromosomal DNA was conducted by the Shared Resource UCSD Cancer Center.

Localized mutagenesis of spoIID

An amyE integrational vector encoding wild-type spoIID was constructed by cloning a 2-kb EcoRI-to-BamHI fragment including the spoIID gene from p16-2 [a gift of A. Decatur and R. Losick] into EcoRI- and BamHI-digested pER82 (Driks et al. 1994). The resulting plasmid (pKP1) was PCR mutagenized with Taq DNA polymerase (Zhou et al. 1991), using the primers KJPO3 [5’-CTCCAGTTCATCAATAC-3’] and KJPO6 [5’-GCCCTCCTGATCCTAG-3’] to amplify an 8.1-kb fragment comprising most of the plasmid backbone and the amyE DNA that flanks both spoIID and the B. subtilis selectable marker kan. The PCR fragments were directly transformed into freshly prepared competent cells of the B. subtilis spoIID null mutant strain KP7. Transformants were selected by plating on DSM plates containing 3 µg/mL kanamycin, and incubated at either room temperature, 30°C, 37°C, or 44°C. The PCR mutagenesis was highly effective, as between 6% and 50% of all transformants failed to complement the spoIID null mutation. Transformants that were either partially or completely colony defective were colony purified and tested for temperature- or cold-sensitivity sporulation defects, and for mutations that only partially complemented the spoIID mutation. The mutations in two such strains, KP38 and KP39 were sequenced following PCR amplification of the spoIID coding region using primers AADO31 (5’-GAGGGATTTTTGACCTCGAAG-3’) and AADO32 (5’-CAAAAGCCTTTTCCCCTGG-3’), which hybridize to the amyE flanking DNA. In the course of these studies, we sequenced the spoIID298 mutation of KP7, and found that it changed codon 145 (normally encoding Gln) to an amber codon (CAG to TAG).

Isolation of spoIIP95-2

Possible peptidoglycan thinning or membrane migration mutants from a screen described previously (Sharp and Pogliano 1999) were introduced into a nonmutagenized background [strain KP555] by transformation as described (Sharp and Pogliano 1999), and microscopically screened to ensure that the original engulfment phenotype had been retained. To identify the mutant gene, we transformed into these strains a plasmid library consisting of B. subtilis genomic fragments cloned into the amyE integration vector pDG1730 [Guérout-Fleury et al. 1996], in which the cat gene was replaced with a spec gene. Transformants were screened for Spo+ colonies on DSM plates containing 80 µg/mL X-gal and 5 µg/mL chloramphenicol. Such transformants contained a DNA fragment that either complemented or marker rescued the original spo mutation. The cloned chromosomal DNA was identified by using ligation-mediated PCR using the Universal Genome Walker Kit (Clontech). In brief, chromosomal DNA was prepared and digested with either Dral or Ksal, and ligated to the GenomeWalker Adapters. Two specific primers were used in the PCR amplification, one hybridized to the amyE region of the plasmid (KXGSP1 5’-TGCGACTGTTAGTTATATGATAGT-3’), the other upstream of the cat gene KXGSP2 (5’-TATAATCAGTATTACGAAACGGGAAATACGC-3’), and two primers to the GenomeWalker Adapter (AP1, 5’-CTGGGCTGCCTATGGAACC-3’ and AP2 5’-ACTATAGGCGACCGCCGGTG-3’) were used to amplify the cloned B. subtilis DNA. The PCR product was sequenced using the second internal primer (KXGSP2) to identify the cloned genomic DNA.

Construction of GFP fusions

N-terminal GFP fusions to SpoIID, SpoIIM, and SpoIIP were constructed by PCR amplification of the respective wild-type genes from PY79 chromosomal DNA, using the following primers: spoIID [AAD03 5’-CTCCAGTTCATCAATAC-3’ and AADO4 5’-CTCCAGTTCATCAATAC-3’], spoIIM [AADO5 5’-GAACACGCGGCCAATCTGTTATATGATAGT-3’], spoIIP [AADO7 5’-CTCCAGTTCATCAATAC-3’], and pcnB (AAD05 5’-GAACACGCGGCCAATCTGTTATATGATAGT-3’), which hybridize to the amyE region of the plasmid (KXGSP1 5’-TGCGACTGTTAGTTATATGATAGT-3’), the other upstream of the cat gene KXGSP2 (5’-TATAATCAGTATTACGAAACGGGAAATACGC-3’), and two primers to the GenomeWalker Adapter (AP1, 5’-CTGGGCTGCCTATGGAACC-3’ and AP2 5’-ACTATAGGCGACCGCCGGTG-3’) were used to amplify the cloned B. subtilis DNA. The PCR product was sequenced using the second internal primer (KXGSP2) to identify the cloned genomic DNA.

Table 3. Bacterial strains used in this study

Strain	Genotype	Reference
Bacillus subtilis		
PY79	Wild type	Youngman et al. 1984
KP7	spoIID298	Lopez-Diaz et al. 1986
KP38	amyE::spoIID38tkan, spoIID298	This study
KP39	amyE::spoIID39tkan, spoIID298	This study
KP519	spoIIM::Tn917	Sandman et al. 1987
KP555	thr::cotD-lacZtkan, cotE-gfp::kan	This study
KP621	spoIIP95-2, thr::cotD-lacZtkan, cotE-gfp::kan	This study
KP718	amyE::spoIIDtkan, spoIID298	This study
KP719	spoIIP::tet	Frandsen and Stragier 1995
KP720	amyE::gfp-spoIIDtkan, spoIID298	This study
KP721	amyE::gfp-spoIIMtkan, spoIIM::Tn917	This study
KP722	amyE::gfp-spoIIPtkan, spoIIP::tet	This study
Escherichia coli		
KJ622	Strain TG1, pcnB uvc24-1	This study

Proteins required for *B. subtilis* engulfment

In brief, chromosomal DNA was prepared and digested with either DraI or KsaI, and ligated to the GenomeWalker Adapters. Two specific primers were used in the PCR amplification, one hybridized to the amyE region of the plasmid (KXGSP1 5’-TGCGACTGTTAGTTATATGATAGT-3’), the other upstream of the cat gene KXGSP2 (5’-TATAATCAGTATTACGAAACGGGAAATACGC-3’), and two primers to the GenomeWalker Adapter (AP1, 5’-CTGGGCTGCCTATGGAACC-3’ and AP2 5’-ACTATAGGCGACCGCCGGTG-3’) were used to amplify the cloned B. subtilis DNA. The PCR product was sequenced using the second internal primer (KXGSP2) to identify the cloned genomic DNA.

Construction of GFP fusions

N-terminal GFP fusions to SpoIID, SpoIIM, and SpoIIP were constructed by PCR amplification of the respective wild-type genes from PY79 chromosomal DNA, using the following primers: spoIID [AAD03 5’-CTCCAGTTCATCAATAC-3’ and AADO4 5’-CTCCAGTTCATCAATAC-3’], spoIIM [AADO5 5’-GAACACGCGGCCAATCTGTTATATGATAGT-3’], spoIIP [AADO7 5’-CTCCAGTTCATCAATAC-3’], and pcnB (AAD05 5’-GAACACGCGGCCAATCTGTTATATGATAGT-3’), which hybridize to the amyE region of the plasmid (KXGSP1 5’-TGCGACTGTTAGTTATATGATAGT-3’), the other upstream of the cat gene KXGSP2 (5’-TATAATCAGTATTACGAAACGGGAAATACGC-3’), and two primers to the GenomeWalker Adapter (AP1, 5’-CTGGGCTGCCTATGGAACC-3’ and AP2 5’-ACTATAGGCGACCGCCGGTG-3’) were used to amplify the cloned B. subtilis DNA. The PCR product was sequenced using the second internal primer (KXGSP2) to identify the cloned genomic DNA.

Isolation of spoIIP95-2

Possible peptidoglycan thinning or membrane migration mutants from a screen described previously (Sharp and Pogliano 1999) were introduced into a nonmutagenized background [strain KP555] by transformation as described (Sharp and Pogliano 1999), and microscopically screened to ensure that the original engulfment phenotype had been retained. To identify the mutant gene, we transformed into these strains a plasmid library consisting of B. subtilis genomic fragments cloned into the amyE integration vector pDG1730 [Guérout-Fleury et al. 1996], in which the cat gene was replaced with a spec gene. Transformants were screened for Spo+ colonies on DSM plates containing 80 µg/mL X-gal and 5 µg/mL chloramphenicol. Such transformants contained a DNA fragment that either complemented or marker rescued the original spo mutation. The cloned chromosomal DNA was identified by using ligation-mediated PCR using the Universal Genome Walker Kit (Clontech). In brief, chromosomal DNA was prepared and digested with either DraI or KsaI, and ligated to the GenomeWalker Adapters. Two specific primers were used in the PCR amplification, one hybridized to the amyE region of the plasmid (KXGSP1 5’-TGCGACTGTTAGTTATATGATAGT-3’), the other upstream of the cat gene KXGSP2 (5’-TATAATCAGTATTACGAAACGGGAAATACGC-3’), and two primers to the GenomeWalker Adapter (AP1, 5’-CTGGGCTGCCTATGGAACC-3’ and AP2 5’-ACTATAGGCGACCGCCGGTG-3’) were used to amplify the cloned B. subtilis DNA. The PCR product was sequenced using the second internal primer (KXGSP2) to identify the cloned genomic DNA.
The resulting plasmids were sequenced, and then transformed into the respective null mutant strains. Each fully complemented the null mutation and supported wild-type levels of spore production.

Microscopy and image analysis

To assess the completion of engulfment, we harvested samples of sporulating bacteria at the appropriate time, and stained them with a final concentration of 5 μg/mL FM 4-64, 0.2 μg/mL 4’, 6-diamidino-2-phenylindole (DAPI), and 30 μg/mL MitoTracker Green FM [MTG; Sharp and Pogliano 1999]. After the completion of the membrane fusion event that is the final step of engulfment, the membrane-impermeable stain FM 4-64 is excluded from the forespore membrane and DAPI is excluded from the forespore nucleoid. When visualizing GFP, live cells were stained with a final concentration of 0.1 μg/mL MitoTracker Red and 0.2 μg/mL DAPI (Sharp and Pogliano 2002). All fluorescent stains were obtained from Molecular Probes. An Applied Precision optical sectioning microscope and Delta Vision software were used to collect and deconvolve the images, as has been previously described (Pogliano et al. 1999). Following deconvolution, images from the medial focal plane were saved as TIF files and imported into Adobe Photoshop.

Overexpression and purification of His-SpoIID and His-SpoIIP

His-tagged SpoIID was constructed by cloning the promoters to EcoRI fragment of SpoIID from p16-2 [a gift of A. Decatur and R. Losick] into pRSETc, fusing the entire coding region of spoIID to the poly-His linker. The resulting plasmid (pKP4) was transformed into E. coli strain BL21. His-tagged SpoIIP was constructed by the PCR amplification of the entire spoIIP coding sequence using the primers 5’TIF files and imported into Adobe Photoshop.

Purification of B. subtilis

One liter of PY79 was grown at 37°C in liquid sporulation medium (DSM). Two hours after the initiation of sporulation, cells were harvested by centrifugation (7000g, 15 min, 4°C). The pellet was washed with 25 mM TrisCl at pH 8.0 for 30 min at 4°C. After spinning the cells at 7000g for 15 min at 4°C in microcentrifuge tubes, pellets were flash-frozen in liquid nitrogen and dried overnight in a speed-vac. One gram of the freeze-dried cells was resuspended in 80 mL of 4% (w/v) SDS. The suspension was shaken for 90 min at 150 rpm on a rotary shaker (RT) and sonicated for 5 min at 4°C (using ten 30-sec cycles of sonication followed by cooling on ice). After sonication, the suspension was incubated at 100°C for 15 min and centrifuged (12,000g, 15 min, RT). To remove the SDS and membranes, the pellet was resuspended in 80 mL of 0.1% (w/v) purified Triton X-100 and incubated for 30 min at RT with gentle shaking. The suspension was centrifuged and the pellet was washed 4× for 30 min in 13 mL of deionized water (dH2O). The final pellet was freeze-dried overnight and resuspended as a 2% (w/v) cell wall suspension in dH2O containing 0.02% (w/v) sodium azide. The suspension was stored at 4°C.

Renaturing gel electrophoresis for cell wall hydrolytic activity

Purified His-SpoIID and His-SpoIIP was subjected to SDS-PAGE, with gels containing 0.1% (w/v) M. luteus cells (Sigma) or 0.1% (w/v) purified B. subtilis cell wall as a substrate (Foster 1992). SDS-PAGE gels were run at 15 mA at room temperature. Following electrophoresis, gels were rinsed in deionized water, transferred to 300 mL of Renaturation solution [25 mM TrisCl at pH 7.2, 1% (w/v) Triton X-100], and incubated at 37°C for 16 h with gentle shaking. Gels were rinsed with deionized water, stained with 0.01% (w/v) methylene blue in 0.01% (w/v) KOH for 3 h, and destained with deionized water. Zones of clearing in the blue background indicated cell wall hydrolytic activity. Lysozyme and bovine serum albumin (BSA) were used as positive and negative controls, respectively, because we noted that overloaded proteins show a small amount of clearing in these assays, even when the protein completely lacks hydrolase activity. This small amount of clearing can be seen for BSA in Figure 5. However, such clearing is always partial and appears only after destaining, indicating that peptidoglycan remains in the region of the band and suggesting that the high concentration of protein somehow reduces the affinity of methylene blue for peptidoglycan. In contrast, peptidoglycan hydrolases such as SpoIID and lysozyme mediate the rapid and complete clearing of peptidoglycan even in the absence of overloading [such as Fig. 5, lanes 1,2, for SpoIID], and this clearing is apparent before destaining.

Electron microscopy

Electron microscopy was performed as described in Perez et al. [2000] using method IV.

Acknowledgments

We thank Joe Pogliano and Marc Sharp for performing the mutagenesis and primary screen from which spoIIDP95-2 was isolated, and Patrick Stragier and Richard Losick for providing strains. We would also like to thank Karen D. Xu for construction of the genomic library and assistance with the genetic screen, Nathalia Cota for characterization of the spoIIS mutant, Charlotte Frank for assistance with construction of the GFP fusions, and Kiyoteru Tokuyasu and C. Lance Washington for their helpful advice and technical assistance with electron microscopy. DNA sequencing was partially funded by the NCI.
Cancer Center Support Grant no. 2 P30 CA23100-18. This work was supported by the National Institutes of Health (GM57045 and GM57045-S1).

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Adler, E., Barak, I., and Stragier, P. 2001. Bacillus subtilis locus encoding a killer protein and its antidote. J. Bacteriol. 183: 3574–3581.

Barrett, J.F., Dolinger, D.L., Schramm, V.L., and Shockman, G.D. 1984. The mechanism of soluble peptidoglycan hydrolysis by an autolytic muramidase. A processive exodisaccharidase. J. Biol. Chem. 259: 11818–11827.

Blackman, S.A., Smith, T.J., and Foster, S.J. 1998. The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiologyology 144: 73–82.

Driks, A., Roels, S., Beall, B., Moran Jr., C.P., and Losick, R. 1994. Subcellular localization of proteins involved in the assembly of the spore coat of Bacillus subtilis. Genes & Dev. 8: 234–244.

Dubnau, D. and Davidoff-Abelson, R. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis. J. Mol. Biol. 56: 209–221.

Eichenberger, P., Fawcett, P., and Losick, R. 2001. A three-protein inhibitor of polar septation during sporulation in Bacillus subtilis. Mol. Microbiol. 42: 1147–1162.

Feilmeier, B.J., Iseminger, G., Schroeder, D., Webber, H., and Phillips, G.J. 2000. Green fluorescent protein functions as a reporter for protein localization in Escherichia coli: J. Bacteriol. 182: 4068–4076.

Fitz-James, P.C. 1964. Sporulation in spheroplasts and its dependence on prior forespore development. J. Bacteriol. 87: 667–675.

Foster, S.J. 1992. Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis. J. Bacteriol. 174: 464–470.

Foster, S.J. and Popham, D.L. 2002. Structure and synthesis of cell wall, spore cortex, teichoic acids, S-layers, and capsules. In Bacillus subtilis and its relatives: From genes to cells (eds. A.L. Sonenshein, J.A. Hoch, and R. Losick), pp. 21–42. American Society for Microbiology, Washington, D.C.

Frandsen, N. and Stragier, P. 1995. Identification and characterization of the Bacillus subtilis spoIIA locus. J. Bacteriol. 177: 716–722.

Gordon, G.S. and Wright, A. 2000. DNA segregation in bacteria. Annu. Rev. Microbiol. 54: 681–708.

Guerout-Fleury, A.M., Frandsen, N., and Stragier, P. 1996. Plasmids for ectopic integration in Bacillus subtilis. Gene 180: 57–61.

Herbold, D.R. and Glaser, L. 1975. Interaction of N-acetylmuramic acid L-alanine amidase with cell wall polymers. J. Biol. Chem. 250: 7231–7238.

Hiraga, S. 2000. Dynamic localization of bacterial and plasmid chromosomes. Annu. Rev. Genet. 34: 21–59.

Holtje, J.V. 1996. Lytic transglycosylases. EXS 75: 425–429.

———. 1998. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62: 181–203.

Jensen, R.B. and Shapiro, L. 2000. Proteins on the move: Dynamic protein localization in prokaryotes. Trends Cell Biol.

10: 483–488.

Kuroda, A., Rashid, M.H., and Sekiguchi, J. 1992. Molecular cloning and sequencing of the upstream region of the major Bacillus subtilis autolysis gene: A modifier protein exhibiting sequence homology to the major autolysin and the spoIID product. J. Gen. Microbiol. 138: 1064–1076.

Lemon, K.P. and Grossman, A.D. 2001. The extrusion-capture model for chromosome partitioning in bacteria. Genes & Dev. 15: 2031–2041.

Londoño-Vallejo, J.-A., Fréhel, C., and Stragier, P. 1997. spoIIQ, a forespore-expressed gene required for engulfment in Bacillus subtilis. Mol. Microbiol. 24: 29–39.

Lopez-Diaz, I., Clarke, S., and Mandelstam, J. 1986. spoIID operon of Bacillus subtilis: cloning and sequence. J. Gen. Microbiol. 132: 341–354.

Lopilato, J., Bortner, S., and Beckwith, J. 1986. Mutations in a new chromosomal gene of Escherichia coli K-12, pcnB, reduce plasmid copy number of pBR322 and its derivatives. Mol. Gen. Genet. 205: 285–290.

Ma, J., Campbell, A., and Karlin, S. 2002. Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. J. Bacteriol. 184: 5733–5745.

Margolis, P.S., Driks, A., and Losick, R. 1993. Sporulation gene spoIID from Bacillus subtilis. J. Bacteriol. 175: 528–540.

Perez, A.R., Abanes-De Mello, A., and Pogliano, K. 2000. SpoIII localizes to active sites of septal biogenesis and spatially regulates septal thinning during engulfment in Bacillus subtilis. J. Bacteriol. 182: 1096–1108.

Piggot, P.J. and Losick, R. 2002. Sporulation genes and inter-compartmental regulation. In Bacillus subtilis and its relatives: From genes to cells (eds. A.L. Sonenshein, J.A. Hoch, and R. Losick), pp. 483–518. American Society for Microbiology, Washington, D.C.

Piggot, P.J., Bylund, J.E., and Higgins, M.L. 1994. Morphogenetic and gene expression during sporulation. In Regulation of bacterial differentiation (eds. P. Piggot, C.P. Moran, and P. Youngman), pp. 113–137. American Society for Microbiology, Washington, D.C.

Pogliano, J., Osborne, N., Sharp, M., Abanes-De Mello, A., Perez, A.R., Sun, Y.-L., and Pogliano, K. 1999. A vital stain for studying membrane dynamics in bacteria: A novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 31: 1149–1159.

Rocha, E.P., Danchin, A., and Viari, A. 1999. Translation in Bacillus subtilis: Roles and trends of initiation and termination, insights from a genome analysis. Nucleic Acids Res. 27: 3567–3576.

Sandman, K., Losick, R., and Youngman, P. 1987. Genetic analysis of Bacillus subtilis spoIIA mutations generated by Tn917-mediated insertional mutagenesis. Genetics 117: 603–617.

Schaeffer, P., Millet, J., and Aubert, J. 1965. Catabolite repression of bacterial sporulation. Proc. Natl. Acad. Sci. 54: 704–711.

Shapiro, L. and Losick, R. 1997. Protein localization and cell fate in bacteria. Science 276: 712–718.

Sharp, M.D. and Pogliano, K. 1999. An in vivo membrane fusion assay implicates SpoIII in the final stages of engulfment during Bacillus subtilis sporulation. Proc. Natl. Acad. Sci. 96: 14553–14558.

———. 2002. Role of cell specific assembly of SpoIII in polarity of DNA transfer. Science 295: 137–139.

Shine, J. and Dalgarno, L. 1974. The 3’ terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites. Proc. Natl.

GENES & DEVELOPMENT 3263
Abanes-De Mello et al.

Acad. Sci. 71: 1342–1346.

Smith, K., Bayer, M.E., and Youngman, P. 1993. Physical and functional characterization of the _Bacillus subtilis_ spoIIM gene. _J. Bacteriol._ 175: 3607–3617.

Sterlini, J.M. and Mandelstam, J. 1969. Commitment to sporulation in _Bacillus subtilis_ and its relationship to development of actinomycin resistance. _Biochem. J._ 113: 29–37.

Stragier, P. 2002. A gene odyssey: Exploring the genomes of endospore-forming bacteria. In _Bacillus subtilis and its relatives: From genes to cells_ (eds. A.L. Sonenshein, J.A. Hoch, and R. Losick), pp. 519–526. American Society for Microbiology, Washington, D.C.

Stragier, P. and Losick, R. 1996. Molecular genetics of sporulation in _Bacillus subtilis_. _Annu. Rev. Genet._ 30: 297–341.

Sun, Y.-L., Sharp, M.D., and Pogliano, K. 2000. A dispensable role for forespore-specific gene expression in engulfment of the forespore during sporulation of _Bacillus subtilis_. _J. Bacteriol._ 182: 2919–2927.

Youngman, P., Perkins, J.B., and Sandman, K. 1984. New genetic methods, molecular cloning strategies, and gene fusion techniques for _Bacillus subtilis_ which take advantage of Tn917 insertional mutagenesis. In _Genetics and biotechnology of bacilli_ (eds. J.A. Hoch and A.T. Ganesan), pp. 103–111. Academic Press, New York.

Zhou, Y., Zhang, X., and Ebright, R.H. 1991. Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymerase. _Nucleic Acids Res._ 19: 6052.
A cytoskeleton-like role for the bacterial cell wall during engulfment of the *Bacillus subtilis* forespore

Angelica Abanes-De Mello, Ya-Lin Sun, Stefan Aung, et al.

Genes Dev. 2002, 16: Access the most recent version at doi:10.1101/gad.1039902

Supplemental Material

http://genesdev.cshlp.org/content/suppl/2002/12/22/16.24.3253.DC1

References

This article cites 38 articles, 22 of which can be accessed free at:

http://genesdev.cshlp.org/content/16/24/3253.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.