Electronic Supplementary Material (ESI) for RSC Advances.

Supporting information

β-Cyclodextrin Functionalized 3D Reduced Graphene Oxide Composite-Based Electrochemical Sensor for the Sensitive Detection of Dopamine

Xuan Chen a, Na Li a, Yanqin Rong c, Yuli Hou b*, Yu Huang c, Wenting Liang c*

a. Department of Neurology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan 030062, China.
b. Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, China. E-mail: houyuli2008@163.com
c. Institute of Environmental Science, Shanxi University, Taiyuan 030006, China. E-mail: liangwt@sxu.edu.cn
Fig. S1. EDS of 3D-rGO/β-CD composites.
Fig. S2 Contact-angle photographs of GO (a), 3D-rGO (b) and 3D-rGO/β-CD (c) modified substrates
Fig. S3 CV curves of various modified electrodes with bare GCE, 3D-rGO/GCE, and 3D-rGO/β-CD/GCE were recorded in the 0.1 M PB solution of contained DA (100.0 μM) (pH 7.0). Scan rate: 0.1 V/s; working potential: −0.2 V - 0.6 V (vs SCE)
Method for calculating of limit of detection (LOD) [1-3].

LOD is calculated using the following relation based on the linear calibration equation according to IUPAC definition, S/N=3 (signal-to-noise ratio). LOD = 3S/b, where S is the standard deviation of the blank experiment (namely, standard deviation of background current at the peak position via running parallel determination for ten times in blank electrolytes at 3D-rGO/β-CD/GCE), and b is slope of calibration plot of DA (0.296 μA μM⁻¹). Putting the values in the above formula gives the LOD.

References

1. Y. Wang, Y. Q. Chen, H. Bian, Y. W. Sun, L. J. Zhu, D. H. Xia, Sens. Actuators B-Chem., 2021, 341, 130044.
2. P. Lei, Y. Zhou, R. Q. Zhu, Y. Liu, C. Dong, S. M. Shuang, Biosens. Bioelectron., 2020, 147, 111735.
3. M. Zheng, Y. Wang, C. Wang, W. Wei, S. Ma, X. Sun, J. He, Spectrochim. Acta A., 2018, 19, 315-321.
Fig. S4 The cartograms of (a) storage stability (b) repeatability and (c) reproducibility of the 3D-rGO/β-CD/GCE sensor.
Fig. S5 (a) DPV responses of bare/GCE (a), 3D-rGO/GCE (c) in 0.1 M PB solution (pH = 7.0) for 1 mM AA, 100 μM DA, 100 μM 5-HT and the mixture of 1 mM AA, 100 μM DA and 100 μM 5-HT. (b) Amperometric responses of the bare/GCE (b), 3D-rGO/GCE (d) for the addition of 100 μM DA and 200 μM glucose, 200 μM KCl and 200 μM NaCl in 0.1 M PB solution (pH = 7.0).
Table S1. Determination of DA in human serum and urine samples by DPV

Samples	Original (µM)	Spiked (µM)	Found (µM)	Recovery (%)	RSD* (%)
Serum samples	5.00	5.12	102.4	2.63	
	10.00	10.05	100.5	2.14	
	20.00	19.88	99.40	1.99	
	30.00	30.09	100.3	1.45	
	50.00	49.89	99.78	2.08	
Serum samples	5.00	5.66	98.8	2.35	
Urine samples	10.00	10.89	101.7	2.71	
	20.00	20.78	100.3	1.98	
	30.00	30.65	99.8	2.51	
	50.00	50.84	100.2	3.39	

* RSD value reported is for n=5.

a Dilute 5 times with PB (0.1 M, pH=7.0).
b Dilute 2 times with PB (0.1 M, pH=7.0).