FORMAL MATHEMATICS STATEMENT CURRICULUM LEARNING

Stanislas Polu
OpenAI

Jesse Michael Han†
Multi Technologies

Kunhao Zheng
École Polytechnique

Mantas Baksys
University of Cambridge

Igor Babuschkin†
DeepMind

Ilya Sutskever
OpenAI

ABSTRACT

We explore the use of expert iteration in the context of language modeling applied to formal mathematics. We show that at same compute budget, expert iteration, by which we mean proof search interleaved with learning, dramatically outperforms proof search only. We also observe that when applied to a collection of formal statements of sufficiently varied difficulty, expert iteration is capable of finding and solving a curriculum of increasingly difficult problems, without the need for associated ground-truth proofs. Finally, by applying this expert iteration to a manually curated set of problem statements, we surpass previous state-of-the-art on the miniF2F benchmark, automatically solving multiple challenging problems drawn from high school olympiads.

1 INTRODUCTION

Deep learning has enjoyed spectacular success in many domains, including language (Brown et al., 2020; Devlin et al., 2019; Wu et al., 2016), vision (Radford et al., 2021; Tan & Le, 2019), and image generation (Ramesh et al., 2021; Karras et al., 2019). One domain where deep learning has not yet enjoyed a comparable success is in tasks that require extensive planning and symbolic reasoning, with the exception of two-player games (Silver et al., 2016; 2017; Berner et al., 2019; Vinyals et al., 2019). In such games, deep learning systems exhibit a considerable degree of reasoning, especially when trained with self-play combined with a search procedure such as Monte Carlo Tree Search (MCTS) (Browne et al., 2012). But the resulting reasoning abilities achieved are limited due to the relatively narrow scope of games.

As such, theorem proving in interactive proof assistants, or formal mathematics, appears as an interesting game-like domain to tackle due to its increased scope. The typical tasks consist of generating a machine-checkable proof given a formal statements. Like games, formal mathematics has an automated way of determining whether a trajectory (i.e. a proof) is successful (i.e. formally correct). But the vast scope of formal mathematics means that any strong reasoning result obtained in it will be more meaningful than comparable results in games (e.g. finding proofs to mathematical conjectures), and could even be applicable to important practical problems (e.g. software verification).

However, tackling formal mathematics involves two main challenges that we must address in order to continue making progress:

Infinite action space Not only does formal mathematics have an extremely large search space (like Go (Silver et al., 2016) for example), it also has an infinite action space. At each step of proof search, the model must choose not from a well-behaved finite set of actions, but a complex and infinite set of tactics, potentially involving exogenous mathematical terms that have to be generated (e.g., generating a mathematical statement to be used as a witness, an object used steps such as “there exists an x...”, or a cut, the introduction and the chaining of a lemma in the middle of a proof).

No direct self-play setup In formal mathematics, a prover is not playing against an opponent but against a set of statements to prove. When faced with a statement that is just too hard, there is no

†Work performed while at OpenAI.
obvious reframing of the formal mathematics setup that will let the prover generate intermediary easier statements to tackle first. This asymmetry prevents naive application of the symmetric self-play algorithms commonly used in 2-player games.

These two differences make a naive application of reinforcement learning to formal mathematics leave a large room for improvement \cite{Whalen2016, Winands2008}. Past work proposed to address the infinite action space problem by sampling from a language model \cite{Polu2020}, while training such language model requires a large dataset of statements with proof. This paper focuses on this second problem and our basis for addressing it is the observation that the key role of self-play is to provide an unsupervised curriculum. We propose instead to supply auxiliary sets of problem statements (without requiring proofs) of varying difficulty. We empirically show that, when the difficulty of these auxiliary problems is varied enough, a simple expert iteration procedure is able to solve a curriculum of increasingly difficult problems, eventually generalizing to our target distribution. We show that this works with both automatically-generated and manually-curated auxiliary distributions of problems and leverage this to achieve state-of-the-art on the miniF2F benchmark. Our results suggest that continuous self-improvement in formal mathematics can potentially be reduced to the problem of generating such sets of formal statements, which we have done in part manually in this work, but could eventually be scaled in the future with more automation (such as more domain-specific statements generator or even informal to formal machine translation).

miniF2F benchmark In this work, we target the miniF2F \cite{Zheng2022} benchmark, which consists of 244 validation and 244 test formalized statements of mathematical problems from various competitions. We believe it to be a better measure of mathematical reasoning compared to a formal library-derived split. Also, the extreme scarcity in formal libraries of this type of problems makes it an ideal test-bed for the expert iteration methodology studied in this paper.

2 Related Work

Our work strongly relies on, and can be seen as a natural continuation of the work presented in the original GPT-f paper \cite{Polu2020}, which studies the use of language models to generate tactics, the PACT paper \cite{Han2022} which applies GPT-f to Lean and studies the benefits from co-training on self-supervised objectives, and the miniF2F benchmark \cite{Zheng2022}. We present additional related work in Appendix A.

3 Formal Environment

We choose Lean \cite{Lea} as our formal environment. Unlike Metamath \cite{Megill2019}, which has been studied in the original GPT-f paper \cite{Polu2020}, Lean benefits from high-level tactics which were shown to be beneficial in the context of the miniF2F benchmark. Also, Lean has recently received a lot of attention from the mathematical community, thanks to projects such as the Perfectoid Spaces \cite{Buzzard2019} and the Liquid Tensor experiment \cite{Scholze2020}, and benefits from a vibrant community of hundreds of contributors to its main mathematical library called mathlib. We refer to the PACT paper’s Background section \cite{Han2022} for a detailed introduction to Lean in the context of neural theorem proving. We refer to Appendix [A] for an illustration of miniF2F input and Lean environment.

lean-gym In the PACT paper \cite{Han2022}, proof search is performed by the Lean runtime using the LEANSTEP environment, with a generic backend interface to models. While easy to use—one just needs to plug in their model—this approach makes it difficult to alter and iterate on the search procedure because it is programmed in Lean (which is not designed or intended for cluster-wide parallelised I/O intensive tasks), and the coupling of the search procedure with the Lean runtime introduces challenges when scaling to a large number of parallel workers.

To solve these issues we implemented lean-gym---a simple REPL interface over the standard input/output implemented in Lean directly. We present lean-gym’s API and discuss some of its advantages and limitations in Appendix [B].

1 https://github.com/openai/lean-gym
Proof extraction We rely on the proof extraction methodology presented in the PACT paper (Han et al., 2022) to extract human tactic proof steps from mathlib (the tactic dataset) as well as the various other proof artifacts (mix1 and mix2 datasets). We also extract mathlib-{train, valid, test}, the set of statements from mathlib along the split proposed in Han et al. (2022) (the validation and test splits of tactic, mix1, mix2 being aligned with mathlib-{valid, test} as the splits are determined by declaration name hashes (across all data sources including proof-term mining) as opposed to individual proof steps or data-points.

4 EXPERIMENTAL IRRATION

Expert iteration was introduced in Silver et al. (2017) and broadly consists in iteratively training models on their previously sampled trajectories, to achieve continuous improvement. In this section we present our expert iteration methodology, including the models and pre-training strategies. We use decoder-only Transformers similar to GPT-3 (Brown et al., 2020). Throughout this paper we focus on a model with 36 layers and 774 million trainable parameters (referred to as the 700m model in the GPT-f paper (Polu & Sutskever, 2020)).

4.1 PRE-TRAINING

We pre-train our models successively on GPT-3’s post-processed version of CommonCrawl (for 300B tokens) and an updated version of WebMath (Polu & Sutskever, 2020) (for 72B tokens) whose mix is presented in Appendix C.

4.2 TRAINING OBJECTIVES

Proofstep objective The proofstep objective, introduced in Polu & Sutskever (2020), consists in generating a PROOFSTEP (a Lean tactic) given a GOAL (a Lean tactic state). We also condition this objective on the current DECLARATION (a Lean theorem name), which remains the same throughout a proof search: DECL <DECLARATION> GOAL <GOAL> PROOFSTEP <PROOFSTEP>.

The rationale for conditioning on the declaration name is to hint our models on the position of the current declaration in the mathlib library. It can be considered as a weak proxy signal for the large amount of information not shown to the model (the full environment consisting of the available imports and currently open declarations such as module names, notations, declared instances, ...). The declaration name lets models at least in principle memorize and then retrieve some of that information, knowing that lean-gym errors if a theorem or definition that is not available in the environment associated with the current declaration is used by tactics generated by our models. Also note that conversely to Polu & Sutskever (2020) and like Han et al. (2022) <GOAL> is not necessarily a single goal but a Lean tactic state, which possibly comprises multiple goals.

Proofsize objective We depart from Polu & Sutskever (2020) and use a proofsize objective to guide our proof searches, which consists in generating one token that represents a proof size estimate bucket for the current goal (Lean tactic state): DECL <DECLARATION> GOAL <GOAL> PROOFSIZE <PROOFSIZE_BUCKET_TOKEN>

For a given goal g, either the goal was proved as part of the proof search and we denote its proof size (the number of tactic applications (compounded Lean tactics counting as one)) as ps(g), or the goal was not proved in which case we assign the goal to a bucket that virtually represents "infinite" proof sizes.

We use 11 buckets $B = 0,...,10$ and compute the proofsize bucket $b(g)$ for a goal g by assigning infinite proof sizes to bucket 0, all proof sizes over 20 to bucket 1 and linearly projecting proof sizes lower than 20 on the remaining buckets 2,...,10 (10 being the bucket for the shortest proof sizes). In practice, when training and sampling from the model, we map B to the tokens ‘A’...’K’.

To value goals as we run proof searches, we sample the proofsize bucket token and record the probability $p_b(g)$ for each viable bucket and use them to get a weighted average with the following formula: $v(g) = \frac{1}{|B|}\sum_{b \in B} p_b(g) \cdot b$. As an example, if the model assigns $p_0 = 1$ (hence $p_0 \neq 0$) then $v(g) = 0$. Conversely if the model assigns $p_{10} = 1$ (10 being the bucket for the shortest proof sizes) then $v(g) = 1$.

3
Table 1: Performance of θ_0 and θ_1 on mathlib-valid and miniF2F-valid compared to PACT Lean GPT-f as reported in Han et al. (2022), Zheng et al. (2022). All models have the same architecture. θ_0 is sampled using cumulative logprob priority best-first search. θ_1 is sampled using best-first search based on the proofsize objective. We report our setup ($d = 512$ expansions and $e = 8$ tactic samples per expansions) as well as the setups used in Han et al. (2022), Zheng et al. (2022) (denoted as θ_0^*) to control for compute. We also report the performance of θ_1^* on mathlib-valid when trained using the outcome objective (denoted as θ_1^*) from Polu & Sutskever (2020) as an ablation of our proposed proofsize objective.

Model	d	e	pass@1	pass@8	Model	d	e	pass@1	pass@8
mathlib-valid					miniF2F-valid				
PACT	512	16	48.4%	57.6%	θ_0^*	128	16	23.9%	29.3%
θ_0	512	16	48.5%	57.6%	θ_0^*	128	16	27.6%	31.8%
θ_1	512	8	46.7%	57.5%	θ_0	512	8	28.4%	33.6%
θ_1^*	512	8	56.3%	66.3%	θ_1	512	8	28.5%	35.5%

The rationale for using this proofsize objective instead of the outcome objective described in Polu & Sutskever (2020) is that (i) it achieves better performance compared to the outcome objective (see Table 1), and (ii) it prioritizes goals that potentially lead to shorter proofs during proof search, creating an intrinsic incentive for the system to converge towards shorter proofs. Similarly to Polu & Sutskever (2020), we favor this token-based approach to the introduction of a separate value head to keep the overall architecture simple. This way the proofsize objective can be implemented by simply augmenting the training dataset and without any architectural change.

4.3 Bootstrapping

Bootstrapping consists in the steps required to train an initial model on both the proofstep objective and the proofsize objective.

Given a pre-trained model on WebMath, we fine-tune it on the tactic dataset extracted from mathlib as well as the proof artifacts dataset mix1 as described in Han et al. (2022). This initial model, which we denote θ_0, is solely trained on the proofstep objective. We use the validation splits of the tactic and mix1 datasets to early-stop training. Note that this is our only use of mathlib-valid to influence the training process throughout this paper.

To generate data for the proofsize objective, we use θ_0 to sample proofs for statements from mathlib-train. For each statement from mathlib-train (25k) we attempt $a = 1$ proof searches using the cumulative logprob priority search described in Polu & Sutskever (2020) (which does not require a trained value function) using $d = 512$ expansions and $e = 8$ samples per expansion. We denote the set of successful proof searches created in this process as S_0.

Using S_0, we generate dataset D_0 by concatenating: (i) the initial tactic dataset (proofstep objective), (ii) a deduplicated set of proofsteps extracted from the proofs in S_0 (proofstep objective) and (iii) a deduplicated set of proofsize tuples (goals and proofsize) extracted from the full proof searches in S_0 (proofsize objective).

Note that the full proof searches in S_0 include goals that are visited but eventually remain unproved, which provides useful negative examples for the trained value function (even if these negatives may include provable goals that simply were not prioritized by the search). Also note that S_0 doesn’t include failed proof searches.

We fine-tune θ_0 on D_0 for exactly one epoch (no use of validation data for early-stopping) to obtain our initial model θ_1 trained on both the proofstep objective and the proofsize objective. θ_0 is used in our expert iteration setup as base model to fine-tune from at each iteration, and θ_1 is our first iterated model or mathlib bootstrapped model trained on both objectives.

We report in Table 1 the pass rates of θ_0 and θ_1 on mathlib-valid and miniF2F-valid and compare with previously reported pass rates for equivalent amounts of compute. As reported in Polu & Sutskever (2020), training a value function to guide search greatly improves the pass rates of θ_1 on mathlib-valid.
Interestingly, the gap between θ_0 and θ_1 on miniF2F-valid is not as significant, demonstrating that training a value function on proofs sampled from mathlib-train has limited transfer to miniF2F-valid. The main differences with Zheng et al. (2022), potentially explaining the gap on miniF2F-valid (27.6% vs 23.9%), consists in the new pre-training described in Section 4.1 as well as the use of a more recent mathlib checkpoint for the mix1, mix2 and tactic datasets.

4.4 Iterated sampling and training

Our expert iteration process takes as input: (i) a set of formal statements S_t, (ii) a function $a : S_t \rightarrow \mathbb{N}$ indicating the number of proof search attempts to run per statement at each iteration, (iii) a base model θ_0 to fine-tune from at each iteration, and (iv) a mathlib bootstrapped model θ_1 trained on both objectives. A high-level illustration of the iterated sampling and training is available in Appendix E.

Each iteration k consists in sampling proof searches for statements in S_t using θ_k, filtering successful proof searches S_k to extract a new dataset D_k, and fine-tuning θ_0 on it to obtain θ_{k+1}, on which we can iterate. To sample proof searches from S_t we use the best-first search described in Polu & Sutskever (2020) with the value function described in Section 4.2. We attempt a proof searches for each statement $s \in S_t$ with $d = 512$ expansions and $e = 8$ samples per expansion. We denote the set of successful proof searches for iteration k as S_k.

Using S_k we generate datasets D_k by concatenating: (i) the initial tactic dataset (proofstep objective), (ii) a deduplicated set of proofsteps extracted from the proofs in $\bigcup_{1 \leq i \leq k} S_k$ (proofstep objective), and (iii) a deduplicated set of proofsize tuples (goals and proofsize) extracted from the full proof searches in $\bigcup_{1 \leq i \leq k} S_k$ (proofsize objective).

We use a global deduplication across iterations for both proofsteps and proofsize tuples which we found to be important to maintain the stability of the expert iteration procedure. This global deduplication is somewhat equivalent for each statement to growing a unique proof tree by aggregating all the proof searches that have been run for it across iterations. This virtual proof tree accumulates a growing number of positive proof paths and visited goals that remain unproven. We use these goals as negative examples for the proofsize objective, labeling them with an infinite proofsize. Positive goals are deduplicated keeping the minimum proof sizes across proof searches.

Finally θ_k is obtained by fine-tuning θ_0 for exactly one epoch on D_k. Note that the initial tactic dataset is included in each D_k, despite θ_0 being already trained on it (along with mix1). We found this repetition to be beneficial overall (as it adds the mathlib extracted proofsteps to our deduplicated per statements virtual proof trees) despite it leading to a slight overfit on the tactic dataset in terms of validation loss.

4.5 Expert iteration on mathlib-train

In this section we propose to set S_t to the statements in mathlib-train, run our expert iteration process with it and report performance on both mathlib-valid and miniF2F-valid. Performance is reported in terms of pass rate (percentage of successful proof searches) as a function of the number of attempts per statement, noted pass@k where k is the number of attempts per statement at test time. To reduce noise in these metrics we run more than k attempts at test time (generally 32 to compute pass@1 and pass@8), averaging across attempts as needed to obtain a smoother pass@k value.

Given the large number of statements in mathlib-train (25k) we uniformly set $a = 1$ and use θ_0 and θ_1 as described in Section 4.5 and report pass@1 and pass@8 across 8 iterations in Figure 1. The pass@1 on mathlib-valid goes from 56.3% for θ_1 to 62.6% for θ_0. The performance steadily improves and follows a clear logarithmic scaling law on mathlib-valid. It is also notable that, initially, transfer to out-of-distribution miniF2F-valid appears limited but eventually kicks in as we reach better performance on mathlib-valid. This demonstrates that the expert iteration process does not just overfit to mathlib but also leads to improved performance on out-of-distribution statements.

We define the cumulative pass rate at iteration k as the pass rate consisting of all proof searches up to iteration k. Since we set $a = 16$ for evaluation on mathlib-valid and miniF2F-valid at each iteration, the cumulative pass rate at iteration k can be seen as a noisy ensembled pass@16k (multiple models (θ_k), no averaging). In Figure 2 we report this cumulative pass rate for two iteration loops, our normal one and a sampling-only loop where we skip re-training the model between iterations.
Published as a conference paper at ICLR 2023

Figure 1: \(\text{pass}@1\) (plain) and \(\text{pass}@8\) (dotted) for \texttt{mathlib-valid} and \texttt{miniF2F-valid} when running 8 expert iterations with \(S_t\) set to be the statements in \texttt{mathlib-train}. The x-axis is log-scaled. It corresponds to the indices of the \(\theta_k\) models and serves as a good proxy to compute (the amount of test-time and train-time compute per iteration being fixed). The y-axis is scaled linearly and simply shifted between the two graphs (spans an equal range).

Figure 2: Cumulative pass rate for our expert iteration loop as well as a sample only loop where we skip re-training the model between iterations. The \textit{adjusted compute} line is computed by fitting the sample only curve and shifting it to approximate a setup where we would focus all the additional compute used by expert iteration (sampling training data from \texttt{mathlib-train} as well as re-training models at each iteration) towards running proof searches against \texttt{mathlib-valid}.

and solely sample from \(\theta_1\). This directly compares test-time compute scaling (scaling proof search attempts) to expert iteration scaling (interleaved training on new data sampled from \texttt{mathlib-train}) and provides a very clear visualization of the gains of expert iteration. For a fair comparison, we also report an \textit{adjusted compute} line which approximates the test-time performance we would get at each iteration if we were to focus all the additional compute used by expert iteration (sampling proofs from \texttt{mathlib-train} as well as re-training models at each iteration) towards solely running proof searches against \texttt{mathlib-valid}.

As shown by Figure 2, the scaling exponent of expert iteration is substantially higher than the scaling exponent associated with solely scaling test-time compute (running more proof searches), demonstrating the clear benefit of expert iteration. We’ll denote the fully iterated model from this section as \(\theta_{\text{mathlib}}^9\).

Even in the presence of ground-truth proofs for each of the statements in \texttt{mathlib-train} (tactic dataset), expert iteration generates data that further improves the performance of the model. The number of statements proved in \texttt{mathlib-train} goes from 17390 (67.8\%) at iteration 1 to 19476 (76.0\%) at iteration 9, while the average proof length of these statements goes from 4.8 to 4.0. We hypothesize that this continuously improving performance through expert iteration stems from two effects: (i) the model finding new original proofs for the same statements and (ii) the model closing marginally harder statements at each iteration – which in turn provides more useful training data for the next iteration. By iteration 9, the model is trained on more than 90\% generated data. We present in Appendix I a few examples of original proofs found by our models on \texttt{mathlib-train} compared with their ground-truth versions.

To verify our hypothesis that expert iteration is capable of closing a curriculum of increasingly difficult problems out of a set of problem statements, and that this capability is independent of having access to ground-truth proofs, we propose in the next section to study expert iteration applied to a synthetically generated set of problems for which we have fine-grained control on the difficulty of each statement.

5 Statement Curriculum Learning

In this section we focus on running expert iteration on synthetic statements generated by an inequality generator. The use of synthetic statements enables us to control the difficulty of each statement to present evidence that expert iteration can hill-climb the intrinsic difficulty gradient of the resulting set
of statements. In particular, we show that, at fixed compute budget, expert iteration eventually closes proofs of hard statements that remain completely out of reach of simply sampling proof searches without interleaved training.

5.1 Synthetic Inequality Generator

We designed a synthetic inequality statement generator for Lean in the spirit of the INT (Wu et al., 2021) generator. The generator consists in generating inequalities from well known inequality theorems (AM-GM, Trivial inequality, Cauchy-Schwarz, Bernoulli, Young, Hölder) and composing them. It is driven by two difficulty parameters: N_D which controls depth of composition of inequalities and N_S which controls the complexity of the input expressions to the composed inequalities. We provide details on its implementation in Appendix F.

Using this generator we generate a curriculum of 5600 inequality statements (for which we don’t have proofs), 100 for each values of $0 \leq N_S \leq 7$ and $0 \leq N_D \leq 6$. We denote this set of statements as synth-ineq. To bootstrap our models capabilities on this specific task, we also generate 100 statements of low difficulty ($N_D = 1$ and $N_S = 5$) and formalize a proof for each of these statements. We refer to this dataset as synth-ineq-train. In the rest of this paper we adjunct this training dataset to the tactic dataset used to train our models.

5.2 Expert Iteration on Synthetic Inequality Statements

In this section we propose to set St to the union of the statements in mathlib-train and synth-ineq. Again, we uniformly set $a = 1$ and use θ_0 and θ_1 as described in Section 4.3, except that they are now also trained on synth-ineq-train.

Similarly to the previous section, we report in Figure 3 the cumulative pass rate for two loops, our standard expert iteration loop, and a proof search only loop where we do not interleave training between iterations. The pass rates are reported split by values of N_D (pooling together $0 \leq N_S \leq 7$) which we found to be the main driver for difficulty.

![Figure 3: Cumulative pass rate for our expert iteration loop as well as a sample only loop where we skip re-training the model between iterations. Pass rates are reported for each value of N_D (pooling together $0 \leq N_S \leq 7$).](image)

Despite the challenging nature of these synthetic inequalities, Figure 3 demonstrates that expert iteration is capable of learning the intrinsic curriculum induced by synth-ineq. In particular, expert iteration is capable of closing 6 problems of difficulty $N_D = 6$ without having been provided with any seed ground-truth proof for this difficulty level. Note that difficulty $N_D = 6$ remains completely out of reach of simply scaling the number of attempts per statements (the sample only loop remaining stuck at 0 for $N_D = 6$).

This confirms on our synthetic statements dataset synth-ineq that not only expert iteration is capable of learning the curricula occurring in a set of statements, but this process also enables the emergence of new capabilities without the need for ground-truth proofs (ability to close, highly challenging, deeply composed inequalities).
6 TARGETING miniF2F

Motivated by the results from Section 5, we curated and manually formalized a set of math exercises denoted as miniF2F-curriculum to target miniF2F. miniF2F-curriculum contains 327 statements from various sources, with their provenance and analysis detailed in Appendix G. miniF2F statements being quite out of distribution compared to mathlib statements (which typically are generic theorems and lemmas), we hypothesized that if the difficulty of miniF2F-curriculum was made varied enough, expert iteration could potentially leverage it to effectively shift our models’ distribution closer to miniF2F’s, and in turn, improve their eventual performance on it.

6.1 TRANSFER TO miniF2F

In this section we propose to set \(S_t \) to the union of the statements in mathlib-train, synth-ineq and miniF2F-curriculum. We uniformly set \(a = 1 \) on mathlib-train and synth-ineq and \(a = 8 \) on miniF2F-curriculum and use \(\theta_0 \) and \(\theta_1 \) as described in Section 5.

Similarly to previous sections, we report in Figure 4 (left) the cumulative pass rate on miniF2F-valid of our full curriculum expert iteration loop and compare them with the mathlib-train only expert iteration from Section 4.5. Since more compute is deployed in our full-curriculum loop (more statements), we also report a mathlib-train only loop taking \(a = 2 \). At the end of the expert iteration, 100 out of the 327 statements from miniF2F-curriculum end up being closed, suggesting a lack of density in our manually formalized set of statement.

We also report in Figure 4 (right) the pass@1 and pass@8 for our full curriculum expert iteration loop. The steady improvement on miniF2F-valid shows that the expert iteration procedure we propose does not overfit on the statements that compose the curriculum it uses. Despite the potential inefficiency of our curriculum, the improved performance associated with its use demonstrates, as hypothesized, an effective transfer between miniF2F-curriculum, synth-ineq and miniF2F-valid through expert iteration. We will denote the fully iterated model from this section as \(\theta_{\text{full}} \).

6.2 RESULTS

We report in Table 2 the pass rates on mathlib-{valid, test} and miniF2F-{valid, test} for the models trained in previous sections, namely \(\theta_1 \), \(\theta_{\text{mathlib}} \), and \(\theta_{\text{full}} \). We achieve a 47.3% pass rate (using \(a = 64 \) attempts) on miniF2F-valid and a 36.6% pass rate on miniF2F-test, substantially improving from the previous state-of-the-art (Zheng et al., 2022).

These results include the resolution of 26 AMC12 problems, 6 AIME problems and 2 IMO-adapted problems. Out of these statements, 4 AMC12 problems (amc12b_2020_p5, amc12a_2009_p9,
Table 2: Performance of θ_1 (value-function based search), $\theta_{\text{mathlib}}^9$ (expert iterated on mathlib-train) and θ_{full}^9 (expert iterated on our full curriculum) on mathlib-{valid, test} and miniF2F-{valid, test}. All proof searches are run with $d = 512$ and $e = 8$.

Model	mathlib-valid						mathlib-test
	pass@1	pass@8	pass@64	pass@1	pass@8	pass@64	
PACT [Han et al. 2022]	48.4%	-	-	-	-	-	
θ_1	56.3%	66.3%	72.0%	56.5%	66.9%	73.7%	
$\theta_{\text{mathlib}}^9$	62.6%	70.7%	75.8%	63.0%	71.5%	77.1%	
θ_{full}^9	61.7%	69.8%	75.3%	62.9%	71.5%	77.1%	
miniF2F-valid							
PACT [Zheng et al. 2022]	23.9%	29.3%	-	24.6%	29.2%	-	
θ_1	28.5%	35.5%	41.2%	25.9%	31.1%	33.6%	
$\theta_{\text{mathlib}}^9$	31.3%	38.3%	44.1%	27.2%	33.0%	35.2%	
θ_{full}^9	33.6%	41.2%	47.3%	29.6%	34.5%	36.6%	

We provide a selection of the proofs found by our models for these statements as well as a qualitative analysis of them in Appendix J. Also, we achieve a new state-of-the-art: higher than 75% pass rate (using $a = 64$ attempts) on mathlib-{valid, test}, suggesting that our models could potentially be effectively leveraged as proof assistants in the formalization efforts associated with mathlib.

7 DISCUSSION AND LIMITATION

Throughout this paper, we used a single model size (774m trainable parameters). We refer readers to Appendix H for more discussion on model size, compute budget and training time. Despite our models’ capability, as discussed in Appendix J.1 to generate cuts and witnesses, we believe that their current main limitation lies in their inability (under our proposed search procedure) to chain more than 2 or 3 non-trivial steps of mathematical reasoning, preventing them from consistently solving challenging olympiad problems. We’ve been repeatedly impressed by the complexity of some of the proofsteps generated by our models. But, proofs requiring many of such reasoning steps remain beyond our current compute horizon. Even if we solved a selection of challenging olympiad problems, our models are still far from being competitive with the brightest students in these competitions.

While our models have demonstrated some capabilities to generate cuts, the cuts they generate are often shallow (they involve only a few proofsteps and don’t necessarily deeply change the structure of the proof–we refer the reader to the Cut-Elimination theorem and [Carbonne & Semmes (1996)] for a discussion of the influence of cuts on proof size). We believe that studying language models’ ability to generate cuts, and designing search procedures that leverage that capability (related ideas can be found in [Czechowski et al. (2021)]), are interesting avenues of research to alleviate this limitation.

8 CONCLUSION

In this paper we presented an expert iteration procedure for $GPT-f$ [Polu & Sutskever 2020], demonstrating that it is capable of solving a curriculum of increasingly difficult problems out of a set of formal statements of sufficiently varied difficulty. Our results suggest that the lack of self-play in the formal mathematics setup can be effectively compensated for by automatically/manual curated sets of formal statements, which are much cheaper to formalize than full proofs. Finally, we hope that the statement curriculum learning methodology we presented in this work will help accelerate progress in automated reasoning, especially if scaled with automated generation and curation of formal statements in the future.

2This IMO-adapted statement from miniF2F-valid is a much weaker version than the original problem (see Appendix J for more context).
References

Lean theorem prover. https://leanprover.github.io/about/

Kshitij Bansal, Sarah M Loos, Markus N Rabe, and Christian Szegedy. Learning to reason in large theories without imitation. arXiv preprint arXiv:1905.10501, 2019a.

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. Holist: An environment for machine learning of higher order logic theorem proving. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, ICML 2019, volume 97 of Proceedings of Machine Learning Research, pp. 454–463. PMLR, 2019b. URL http://proceedings.mlr.press/v97/bansal19a.html.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębik, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012.

Kevin Buzzard, Johan Commelin, and Patrick Massot. Lean perfectoid spaces. https://leanprover-community.github.io/lean-perfectoid-spaces/ 2019.

Alessandra Carbone and S. Semmes. Making proofs without modus ponens: An introduction to the combinatorics and complexity of cut elimination. Bulletin of the American Mathematical Society, 34:131–159, 1996.

Konrad Czechowski, Tomasz Odrygódz, Marek Zbyszński, MichalZawalski, Krzysztof Olejnik, Yuhuai Wu, Ł ukasz Kuciński, and Piotr Mil os. Subgoal search for complex reasoning tasks. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 624–638. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/05d8cccb5f4e50d7f9a05bf514941a-Paper.pdf.

Leonardo de Moura, SooHo Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The lean theorem prover (system description). In International Conference on Automated Deduction, pp. 378–388. Springer, 2015.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, volume 1, pp. 4171–4186. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL https://doi.org/10.18653/v1/n19-1423.

Vlad Firoiu, Eser Aygun, Ankit Anand, Zafarali Ahmed, Xavier Glorot, Laurent Orseau, Lei Zhang, Doina Precup, and Shibl Mourad. Training a first-order theorem prover from synthetic data. arXiv preprint arXiv:2103.03798, 2021.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward Ayers, and Stanislas Polu. Proof artifact co-training for theorem proving with language models. In International Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=rpxJc9j04U.
Markus Norman Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical reasoning via self-supervised skip-tree training. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=YmqAnY0CMEy

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, ICML 2021, volume 139 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 2021. URL http://proceedings.mlr.press/v139/radford21a.html

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, ICML 2019, volume 97 of Proceedings of Machine Learning Research, pp. 6105–6114. PMLR, 2019. URL http://proceedings.mlr.press/v97/tan19a.html

Josef Urban and Jan Jakubuv. First neural conjecturing datasets and experiments. In Christoph Benzmüller and Bruce R. Miller (eds.), Intelligent Computer Mathematics - 13th International Conference, CICM 2020, volume 12236 of Lecture Notes in Computer Science, pp. 315–323. Springer, 2020. doi: 10.1007/978-3-030-53518-6_24. URL https://doi.org/10.1007/978-3-030-53518-6_24

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michäel Mathieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Mark H. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. Monte-carlo tree search solver. In Proceedings of the 6th International Conference on Computers and Games, pp. 25–36. Springer-Verlag, 2008. doi: 10.1007/978-3-540-87608-3_3.
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation. *arXiv preprint arXiv:1609.08144*,
2016.

Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger Baker Grosse. INT: an inequality benchmark for
evaluating generalization in theorem proving. In *International Conference on Learning
Representations*, 2021. URL https://openreview.net/forum?id=O6LPudowNQm

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Norman Rabe, Charles E Staats, Mateja
Jamnik, and Christian Szegedy. Autoformalization with large language models. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information
Processing Systems*, 2022. URL https://openreview.net/forum?id=IUikebJ1Bf0

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International
Conference on Machine Learning*, ICML 2019, volume 97 of *Proceedings of Machine Learning
Research*, pp. 6984–6994. PMLR, 2019. URL http://proceedings.mlr.press/v97/yang19a.html

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for
formal olympiad-level mathematics. In *International Conference on Learning Representations*,
2022. URL https://openreview.net/forum?id=9ZPegFuFTfV
A RELATED WORK

Deep learning applied to premise selection and proof guidance Early applications of deep learning to formal mathematics focused primarily on premise selection and proof guidance. DeepMath (Irving et al., 2016) explored the use of CNNs and RNNs to predict whether a premise is useful to demonstrate a given conjecture. Their results were later improved with FormulaNet (Wang et al., 2017) by the use of graph neural networks, reminiscent of NeuroSAT (Selsam et al., 2019). Proof guidance consists in selecting the next clause to process inside an automated theorem prover. Loos et al. (2017) investigated the use of models similar to DeepMath’s for proof guidance and demonstrated a significant uplift on the Mizar library. More recently Piroi et al. (2021) demonstrated the potential of deep learning techniques to be competitive with E prover’s heuristics when applied to resolution calculus while training on fully synthetic data.

Deep learning applied to automated theorem-proving HOList (Bansal et al., 2019b) proposes a formal environment based on HOL Light. They achieve their best performance (Bansal et al., 2019a) with a GNN model designed for premise selection and the use of exploration. The same team studied the use of a skip-tree objective with Transformers on formal statements (Rabe et al., 2021), demonstrating, along with GPT-J (Polu & Sutskever, 2020), the potential of leveraging Transformers for formal reasoning. GamePad (Huang et al., 2019) and CoqGymn/ASTactic (Yang & Deng, 2019) introduce environments based on the Coq theorem prover. ASTactic generates tactics as programs by sequentially expanding a partial abstract syntax tree. Urban & Jakubuv (2020) studied the capability of GPT-2 to produce useful conjectures for the Mizar library and IsarStep (Li et al., 2021) explored the synthesis of intermediate propositions in declarative proofs for Isabelle/HOL using Transformers.

Targeting miniF2F Lample et al. (2022) designed HyperTree Proof Search (HTPS), an online training procedure targeting Lean, Metamath and hand-crafted environment named Equations. Lample et al. (2022) report 41% pass-rate on miniF2F-test and 42.5% pass-rate on miniF2F-curriculum in Lean (de Moura et al., 2015; lea) setup. Thor (Jiang et al., 2022) combined language model and Sledgehammer (Paulson, 2010) and achieved 29.9% pass-rate on miniF2F-test in Isabelle setup, which is later improved to 35.2% by Wu et al. (2022) leveraging autoformalization and expert iteration.

B LEAN-GYM

lean-gym presents the following API:

- **init-search**: `declaration \rightarrow tactic_state`. Takes a declaration name (a theorem name from the loaded library) and initializes a search while setting the run-time environment at that particular declaration. It returns the initial tactic state along with a fresh `search_id` and `tactic_state_id`.

- **run_tac**: `(tactic_state, tactic) \rightarrow tactic_state`. Takes a `search_id` and a `tactic_state_id` to identify a tactic state, as well as a tactic string to apply to it. It returns a new tactic state and its associated `tactic_state_id`.

Below is an example in-terminal trace demonstrating the use of lean-gym’s REPL interface:

```
$ lean --run src/repl.lean
["init_search", ["int.prime.dvd_mul", "]"]
{
  "error":null,
  "search_id":"0",
  "tactic_state":"\( \forall \{m n : \mathbb{Z}\} \{p : \mathbb{N}\}, \text{nat.prime} p \rightarrow \begin{cases} tp & m * n \rightarrow p \mid m.\text{nat_abs} \lor p \mid n.\text{nat_abs} \\ \end{cases} \)",
  "tactic_state_id":"0"
}
...
["run_tac","1","1","apply (nat.prime.dvd_mul hp).mp"]
{
```
Using `lean-gym` is virtually equivalent to opening a Lean editor at a specific theorem, deleting its proof and interacting with Lean to reconstruct it.

Providing a REPL interface over the standard input/output makes it very easy to integrate `lean-gym` from any programming language. Writing a wrapper in Python, as an example, only takes a few dozen lines of code. Since `lean-gym` is a Lean program, managing the loaded libraries is done directly using Lean’s own infrastructure (using `leanpkg.toml`), making it quite straightforward to have access to both `mathlib` and `miniF2F` statements from the same `lean-gym` instance.

Note that `lean-gym` is stateful, meaning that distributing proof searches on multiple `lean-gym` instances requires to track which instance is associated with which proof search. In practice, we were able to scale the use of `lean-gym` to thousands of cores running thousands of proof searches in parallel. Finally, `lean-gym`’s REPL interface is blocking, preventing inner-proof search parallelization, though this limitation can probably be removed in the future.

C WebMath

Our updated `WebMath` pre-training dataset consists in the mix presented in table 3.

Table 3: Mix and source of data involved in the updated `WebMath` pre-training.

Dataset	Size	Mix
Github Python	179 GB	25%
arXiv Math	10 GB	25%
Math StackExchange	2 GB	25%
PACT mix2	28 GB	17%
Math Overflow	200 M	5%
ProofWiki	30 M	2%
PlanetMath	25 M	1%

As demonstrated in table 3, we empirically up-weighted (compared to their token size) parts of `WebMath` with high-quality mathematical content while making sure they don’t overfit (despite running >1 epochs for some of them). We also included PACT mix2 directly in the `WebMath` pre-training to avoid having to sequence more than two pre-training phases to prepare Lean models.
D Example of miniF2F input, Lean environment and Model output

We illustrate an example of the interaction between Lean environment and our model. In the figure shown below, the model has 1 output for each current goal (corresponding to 1 expand budget). The model could have expand budget bigger than 1, in which case the search procedure becomes a tree.

Figure 5: Input from miniF2F consists of a mathematical statement written in formal language (here the Lean version) without proof. Lean environment parses the statement and exposes to users the goal to be proved. The model outputs a line of code (tactics and corresponding arguments). Lean environment receives the model output and transforms the previous goal to another goal to be proved. This process is repeated till all remaining goals are closed. In this case, the original statement is proved: the final proof is collected by following the trajectory of model’s output.

E Illustration of Expert Iteration

Figure 6: Illustration of expert iteration. The notation in this figure corresponds to Section 4.4 in main text.
F SYNTHETIC INEQUALITIES

F.1 DESIGN

The generator consists of three phases:

Seed expressions generation The first phase consists in generating seed expressions for which we track the sign. We start by initializing an expression set E composed of tuples of expressions and sign constraints, by generating n_v variable names (letters) assumed strictly positive as well as n_n integers (for which we know the sign). For N_S rounds, we compose elements of E using unary ($\log(\cdot), \log(1/\cdot), \sqrt{\cdot}$) or binary operations ($+, -, \times, \div, \land, \max, \min$) for which we can deduce the sign based on the sign condition of the input expression(s) and re-inject the resulting expression and sign constraint in E. This produces a set E of signed seed expressions of size $n_v + n_n + N_S$.

Inequality composition The second phase consists in generating inequalities from well known inequality theorems (AM-GM, Trivial inequality, Cauchy-Schwarz, Bernoulli, Young, Hölder) taking as input to these theorems expressions from E based on the sign constraints required for each theorem. We finally compose these inequalities N_D times using compositions theorems detailed in F.2. The resulting inequality is a composed inequality of depth N_D based on $n_v + n_n + N_S$ seed expressions.

Simplification We finally post-process these inequalities so that they are parsable by Lean and run them through Lean’s simp tactic for a final simplification.

N_D and N_S together control for the difficulty of the resulting inequality. N_D controls depth of composition, while N_S controls for obfuscation as it increases the complexity of the input expressions to the composed inequalities. When sampling inequalities, we $n_n = 4$ and randomly sample $2 \leq n_v \leq 8$ at each generation. We report below examples of generated inequalities for various values of N_D and N_S.

F.2 LIST OF INEQUALITY COMPOSITION THEOREMS

Below is the list of theorem names from mathlib that we use to compose inequalities together. One third of the time, we only transform the current composed inequality with one of the following theorems:

- neg_le_neg
- inv_le_inv
- mul_self_le_mul_self
- div_le_one_of_le

We otherwise compose the current composed inequality with a newly generated inequality using the following theorems:

- mul_le_mul
- add_le_add
- div_le_div
- mul_le_mul_of_nonneg
- le_mul_of_ratio

F.3 EXAMPLES

$N_D = 0 \quad N_S = 0$

$N_D = 0 \quad N_S = 4$
AmGm a b (67:R) ((1:R)/(10:R)) ((1:R)/(10:R))
((8:R)/(10:R))

\[
\text{Compositions}
\]

\[
\text{Statement}
\]

\[
\text{theorem synthetic_ineq_nb_seed_var_0_depth_0_p_1}
(a b : \mathbb{R})
(h0 : 0 < a)
(h1 : 0 < b) :
\]
\[
(67:R) ^ ((8:R) / (10:R)) * b ^ (10:R)^{-1} *
a ^ (10:R)^{-1} * a + b * (10:R)^{-1} := \text{sorry}
\]

\[
\text{Compositions}
\]

\[
\text{Statement}
\]

\[
\text{theorem synthetic_ineq_nb_seed_var_4_depth_0_p_4}
(a b : \mathbb{R})
(h0 : 0 < a)
(h1 : 0 < b) :
\]
\[
(2:R) * (a * (a + -(68:R))) \leq
(a + -(68:R)) ^ 2 + a ^ 2 := \text{sorry}
\]

\[N_D = 4 \quad N_S = 4\]

AddLeAdd
Bernoulli 99 c
AddLeAdd
SelfDivConst ((a) / (f)) 6
LeMulOfRatio
SelfDivConst c 70
DivLeDiv
Cauchy ((a) / (f)) d c (log ((59:R) + f))
Young ((a) / (f)) a ((3:R)/(2:R)) ((3:R)/(2:R))

\[
\text{Compositions}
\]

\[
\text{Statement}
\]

\[
\text{theorem synthetic_ineq_nb_seed_var_4_depth_4_p_13}
(a b c d e f : \mathbb{R})
(h0 : 0 < a)
(h1 : 0 < b)
(h2 : 0 < c)
(h3 : 0 < d)
(h4 : 0 < e)
(h5 : 0 < f) :
\]
\[
(1:R) + (99:R) * c + (a / f / (6:R) + a * (a / f) /
((d ^ 2 + a ^ 2 / f ^ 2) * (real.log ((59:R) + f) ^ 2 + c ^ 2))) \leq
((a / f) ^ ((3:R)/(2:R)) / ((3:R)/(2:R)) +
a ^ 3 / (3:R)) /
(real.log ((59:R) + f) * d + a / f * c) ^ 2 *
(c / (c / (70:R))) + a / f + (c + (1:R)) ^ 99
:= \text{sorry}
\]
G MINI-F2F-CURRICULUM

The 327 statements of miniF2F-curriculum\footnote{https://github.com/openai/miniF2F/tree/statement_curriculum_learning/lean/src/statement_curriculum_learning} are manually formalized from:

- **AOPS Books** (Lehoczky & Rusczyk, a; b): 302 examples and exercises. The books are classic problem solving textbooks for students in grades 7-12 preparing for contests such as AMCs and AIMEs. We skipped problems that were too challenging to formalize due to missing infrastructure in mathlib or non-suitable format for formalization (see section Formalization effort and challenges in Zheng et al. (2022)).

- **MATH** (Hendrycks et al., 2021) dataset: 25 problems. All problems were drawn from the train split of the dataset, focusing on difficulty 5 problems (miniF2F only contains problems from the test split).

We verified (based on problem provenance and manual inspection of statements) that miniF2F-curriculum had an empty intersection with miniF2F-{test, valid}. We refer to Zheng et al. (2022) for more details on the formalization procedure and the typical time needed for it as these problems were formalized in similar conditions.

H MODEL SIZE

Other than the single model size we use in the experiment reported in the main text (774m trainable parameters), we briefly experimented with different model sizes (not reported in this paper) and found that model size scaling is not as straightforward as in the case of unsupervised learning (Kaplan et al., 2020). We found that bigger models are better, in the sense that they consistently exhibit higher pass@1. But, they are also much more expensive to sample from. And despite their pass@1 being higher, it is often the case that for a fixed amount of compute, sampling more attempts from a smaller model leads to a better final performance.

For the compute budget we had available, we estimated the model size we used to be a compelling trade-off. We leave as future work a more thorough study of these dynamics to better understand the different compute frontiers involved. Indicatively, with our 774m parameters model, running a full expert iteration to train θ^full required about 2000 A100 days of compute. Running one full proof search $(a = 1, d = 512, e = 8)$ when properly parallelised, requires on average about 0.1 A100 hour of compute.
I EXAMPLE PROOFS FROM *mathlib-train*

We present in this section original proofs found by our models from *mathlib-train*, compared with their ground-truth version.

comap_eq_of_inverse

Statement	Ground-truth	Model proof
lemma comap_eq_of_inverse \(f : \text{filter } \alpha\) \(g : \text{filter } \beta\) \((\phi : \alpha \to \beta)\) \((\psi : \beta \to \alpha)\) \((\text{eq : } \psi \circ \phi = \text{id})\) \((\text{h}\phi : \text{tendsto } \phi f g)\) \((\text{h}\psi : \text{tendsto } \psi g f)\) : comap \(\phi\) \(g = f :=\)	begin \(\text{refine ((comap_mono } \$ \text{map_le_iff_le_comap.1 } \text{h}\psi).trans } _\text{).antisymm}\) \((\text{map_le_iff_le_comap.1 } \text{h}\phi),\) \(\text{rw [comap_comap, eq, comap_id]},\) \(\text{exact le_rfl}\) end	begin \(\text{refine le_antisymm } __\text{ (filter.map_le_iff_le_comap.1 } \text{h}\phi),\) \(\text{refine } \lambda s hs, _,\) \(\text{rw mem_comap,}\) \(\text{use } [\psi^{-1} s, h\psi hs],\) \(\text{rw [← preimage_comp, eq, preimage_id]}\) end
sum_range_sub_sum_range

Statement

```lean
lemma sum_range_sub_sum_range (α : Type*) {f : N → α} {n m : N} (hnm : n ≤ m) :
∑ k in range m, f k - ∑ k in range n, f k = ∑ k in (range m).filter (λ k, n ≤ k), f k :=
```

Ground-truth

```lean
begin
rw [← sum_sdiff (@filter_subset _ (λ k, n ≤ k) _ (range m)), sub_eq_iff_eq_add, eq_sub_iff_add_eq, add_sub_cancel'],
refine finset.sum_congr
(finset.ext $ λ a, (∀ h, by simp at *; finish,
λ h, have ham : a < m :=
lt_of_lt_of_le (mem_range.1 h) hnm,
  by simp * at *))
(λ _ _, rfl)
end
```

Model proof

```lean
begin
rw [← sum_Ico_eq_sub _ hnm],
congr,
apply finset.ext,
simp [Ico.mem, *],
tauto
end
```
prod_inv_distrib

Statement	lemma prod_inv_distrib : (∏ x in s, (f x)^{-1}) = (∏ x in s, f x)^{-1} :=
Ground-truth	begin
classical,	
by_cases h : ∃ x ∈ s, f x = 0,	
{ simpa [prod_eq_zero_iff.mpr h, prod_eq_zero_iff] using h },	
{ push_neg at h,	
have h' := prod_ne_zero_iff.mpr h,	
have hf : ∀ x ∈ s, (f x)^{-1} * f x = 1 := λ x hx, inv_mul_cancel (h x hx),	
apply mul_right_cancel' h',	
simp [h, h', finset.prod_mul_distrib, prod_congr rfl hf] }	
Model proof	begin
classical; induction s using finset.induction_on with a s has ih,	
{ simp, },	
simp only [has, prod_insert has, mul_inv_rev'],	
finish	
end	
J EXAMPLE PROOFS FROM miniF2F-{test, valid, curriculum}

We present in this section proofs found by our models from miniF2F-{test, valid, curriculum}, demonstrating some of the capabilities emerging from our training procedure.

J.1 QUALITATIVE ANALYSIS OF PROOFS

We provide qualitative insights in the nature of the proofs found by our models, which we believe are useful to build a better intuition of their capabilities beyond pass rate numbers. Throughout this section, we refer to statements and solutions found by our models that are presented in Appendix J along with comments describing the specificity of each proof.

First, we observe that a large number of olympiad problems that are designed to be computationally challenging for humans are rendered trivial for our models through the use of Lean tactics. As an example, mathd_numbertheory_447 which is not necessarily considered straightforward for humans, can be closed in Lean by a simple refl (proof found by our models).

In recent years, Lean’s mathlib community has developed high-powered tactics such as linarith/nlinarith (solves (non)linear inequalities), norm_num (normalizes numerical expressions), simp (simplifies goals and hypotheses) and ring (normalizes expressions in a ring). These tactics can be used with arguments to guide their underlying search procedure. As mentioned in Zheng et al. (2022), we confirm here that our models acquire advanced capabilities to leverage these high-level tactics by providing exogenous arguments which are not present in the current tactic state. The generation of these exogenous arguments through language modeling seems to require a non-trivial amount of mathematical intuition. imo_1964_p2, imo_1961_p1 and aime_1990_p15 are good examples of such uses.

We have also observed a number of proofs that require multiple non-trivial reasoning steps through the use of lower-level tactics such as use, have, or by_cases that generally involve producing a witness or chaining implications, requiring the generation of context specific exogenous terms. These interesting reasoning steps are structurally different from simple normalization, simplification and rewriting of hypotheses or goals because they heavily rely on our models ability to generate meaningful cuts or witnesses. This capability is, in our opinion, the most exciting stepping stone towards solving more challenging mathematical problems. See, aopsbook_v2_c8_ex1, amc12b_2020_p6 and mathd_train_algebra_217 for examples of such proofs.

More generally, we also observe that proofs generated by our models have a distinctive style compared to proofs formalized by humans. This stems in part from the model’s capability to leverage high-level tactics in a way that is challenging for humans as discussed in this section (e.g. one-liners such as nlinarith [sq_nonneg (x - y), sq_nonneg (y - z)] where humans would generally decompose the problem in a less machine-like way). Additionally, as a result of our search procedure and despite the bias towards shorter proofs introduced by our value function, extraneous proofsteps (such as reversion/introduction of hypotheses, or no-op rewrites) are often interleaved with useful ones, which rarely happens in human formalizations.
Natural language

Solve the system of equations:

\[
\begin{align*}
x + y + z &= a \\
x^2 + y^2 + z^2 &= b^2 \\
xy &= z^2
\end{align*}
\]

where \(a\) and \(b\) are constants. Give the conditions that \(a\) and \(b\) must satisfy so that \(x, y, z\) (the solutions of the system) are distinct positive numbers. \textbf{Note:} the formalized statement in \textit{miniF2F} is a weaker problem as it focuses on the second part of the question, providing the actual conditions, and asking for a proof that the requirement entails them.

Model proof

```lean
theorem imo_1961_p1
(x y z a b : ℝ)
\begin{align*}
&(h_0 : 0 < x \land 0 < y \land 0 < z) \\
&(h_1 : x \neq y) \\
&(h_2 : y \neq z) \\
&(h_3 : z \neq x) \\
&(h_4 : x + y + z = a) \\
&(h_5 : x^2 + y^2 + z^2 = b^2) \\
&(h_6 : x \times y = z^2) : \\
&0 < a \land b^2 < a^2 \land a^2 < 3 \times b^2 :=
\end{align*}
begin
revert_all,
intros,
rw mul_comm,
split,
{ nlinarithmetic [sq_nonneg (x - y), sq_nonneg (y - z)], },
split,
{ nlinarithmetic [sq_nonneg (z - 1)], },
revert h_3 h_4,
field_simp [mul_comm a b],
rw [mul_comm, ← h_5],
contrapose!,
rw mul_comm at h_6,
rw mul_comm,
intro h,
nlinarithmetic [sq_nonneg (x - y), sq_nonneg (y - z)]
end
```

Comments

The model is able to close this problem by splitting into cases, contraposing for the last case and using \texttt{nlinarithmetic}. It must be noted that the arguments for the first two \texttt{nlinarithmetic} uses are not necessary, however the \texttt{[sq_nonneg (x - y), sq_nonneg (y - z)]} argument provided on the last line is crucial to close the goal and are completely exogenous (present in no form in the tactic state before).
Suppose a, b, c are the sides of a triangle. Prove that

$$a^2(b + c - a) + b^2(c + a - b) + c^2(a + b - c) \leq 3abc$$

Natural language	Model proof
Suppose a, b, c are the sides of a triangle. Prove that $a^2(b + c - a) + b^2(c + a - b) + c^2(a + b - c) \leq 3abc$	theorem imo_1964_p2
(a b c : ℝ) (h₀ : 0 < a ∧ 0 < b ∧ 0 < c) (h₁ : c < a + b) (h₂ : b < a + c) (h₃ : a < b + c) :
a^2 * (b + c - a) + b^2 * (c + a - b) + c^2 * (a + b - c) ≤ 3 * a * b * c :=
begin
 nlinarith [sq_nonneg (b - a), sq_nonneg (c - b),
 sq_nonneg (a - c), sq_nonneg (c - a)]
end |

Comments
The model is able to close an IMO problem in one-line. It correctly provides exogenous arguments to nlinarith, which are necessary to close the goal. Note that either one of the last two arguments in the sequence [sq_nonneg (b - a), sq_nonneg (c - b), sq_nonneg (a - c), sq_nonneg (c - a)] can be omitted.
Find $ax^5 + by^5$ if the real numbers a, b, x, and y satisfy the equations
\[
ax + by = 3, \\
ax^2 + by^2 = 7, \\
ax^3 + by^3 = 16, \\
ax^4 + by^4 = 42.
\]

Note: the formalized statement in miniF2F provides the answer and asks for a proof of it.

Natural language	Model proof
Find $ax^5 + by^5$ if the real numbers a, b, x, and y satisfy the equations \[
ax + by = 3, \\
ax^2 + by^2 = 7, \\
ax^3 + by^3 = 16, \\
ax^4 + by^4 = 42.
\] | theorem aime_1990_p15
(a b x y : \mathbb{R})
(h₀ : a * x + b * y = 3)
(h₁ : a * x² + b * y² = 7)
(h₂ : a * x³ + b * y³ = 16)
(h₃ : a * x⁴ + b * y⁴ = 42) :
a * x⁵ + b * y⁵ = 20 :=
begin revert_all, intros a b x y h₃ h₁ h₂ h₄, ring_nf at h₁ h₂, rw ← sub_eq_zero at h₁, nlinarith [sq_nonneg (x - y), sq_nonneg (a + b - 2), sq_nonneg (x + y - (2 : \mathbb{R})), sq_nonneg (a - b - 2)] end |

| Comments | The model is able to close a challenging AIME problem by providing crucial exogenous arguments \text{sq_nonneg} (x - y) and \text{sq_nonneg} (x + y - (2 : \mathbb{R})) to \text{nlinarith}, which are required to close the goal (while the other two can be removed). |
Let $f(x) = Ax + B$ and $g(x) = Bx + A$, where $A \neq B$. If $f(g(x)) - g(f(x)) = B - A$, what is $A + B$? **Note:** the formalized statement in our *curriculum* provides the answer and asks for a proof of it.

Natural language	Model proof	Comments
Let $f(x) = Ax + B$ and $g(x) = Bx + A$, where $A \neq B$. If $f(g(x)) - g(f(x)) = B - A$, what is $A + B$? **Note:** the formalized statement in our *curriculum* provides the answer and asks for a proof of it.	```lean	
theorem mathd_train_algebra_217 (a b : ℝ) (f g : ℝ → ℝ) (h₀ : ∀ x, f x = a * x + b) (h₁ : ∀ x, f x = b * x + a) (h₂ : a ≠ b) (h₃ : ∀ x, f (g x) - g (f x) = b - a) : a + b = 0 :=
begin
 revert_all, intros a b, intros f g, contrapose!, rintro ⟨h₀, ⟨h₁, h₂⟩⟩, use (0 : ℝ), simp only [sub_eq_iff_eq_add, h₀, mul_zero] at *, simp only [*, zero_add], norm_num at h₀
end``` | The model is able to close the goal by contraposing, supplying a witness by the use of `use (0 : ℝ)` and finally leveraging the `simp` and `norm_num`. This example demonstrates the model’s ability to chain multiple non-trivial steps of reasoning including the generation of witnesses. |
For all integers \(n \geq 9 \), the value of \[\frac{(n + 2)! - (n + 1)!}{n!} \]
is always which of the following?

- (A) a multiple of 4
- (B) a multiple of 10
- (C) a prime number
- (D) a perfect square
- (E) a perfect cube.

Model proof

```lean
theorem amc12b_2020_p6 (n : \mathbb{N}) (h₀ : 9 \leq n) : 
\exists x : \mathbb{N}, (x : \mathbb{R})^2 = \frac{(\text{n!factorial} (n + 2) - \text{n!factorial} (n + 1))}{\text{n!factorial} n} :=
begin
revert_all,
intros n hn,
use n + 1,
field_simp [\text{n!factorial_ne_zero}, pow_succ'],
ring_exp
end
```

Comments
The model exhibits here its ability to implicitly interpret factorial expressions by guessing the correct answer with the use of \(n + 1 \) and straightforwardly proving its claim right after.
The expression $24x^2 - 19x - 35$ can be written as $(Ax - 5)(2Bx + C)$, where A, B, and C are positive numbers. Find $AB - 3C$. \textbf{Note:} the formalized statement in \texttt{miniF2F} provides the answer and asks for a proof of it.

Natural language	Model proof	Comments
The expression $24x^2 - 19x - 35$ can be written as $(Ax - 5)(2Bx + C)$, where A, B, and C are positive numbers. Find $AB - 3C$. \textbf{Note:} the formalized statement in \texttt{miniF2F} provides the answer and asks for a proof of it.	theorem mathd_algebra_140	
(a b c : \mathbb{R})
(h_0 : 0 < a \land 0 < b \land 0 < c)
(h_1 : \forall x, 24 \times x^2 - 19 \times x - 35 =
(((a \times x) - 5) \times ((2 \times (b \times x)) + c)) :
a \times b - 3 \times c = -9 :=
begin
revert_all,
rintro a b c h_1,
rw mul_comm,
rw +sub_eq_zero,
field_simp,
rw sub_eq_add_neg,
rw +eq_neg_iff_add_eq_zero,
rw [mul_comm, +sub_eq_add_neg, sub_eq_add_neg,
+sub_eq_add_neg],
rw +sub_eq_zero,
simp only [mul_add, neg_mul_eq_neg_mul_symm, mul_comm,
add_left_comm],
norm_num,
simp only [pow_two],
intro h_0,
rw +sub_eq_zero,
linarith [h_1.2, h_1.1, h_0 3, h_0 1, h_0 2]
end | The model mostly "struggles" to make progress up to the last line. There, it presents us with the idea to specialize the statement given in h_1 (which became h_0 in the process of the proof) at three consecutive natural numbers 1, 2, 3 which closes the goal with \texttt{nlinarith}. This proof is interesting as it demonstrates the model's ability to evaluate symbolic expressions implicitly. |
Find the value of $a_2 + a_4 + a_6 + a_8 + \ldots + a_{98}$ if $a_1, a_2, a_3 \ldots$ is an arithmetic progression with common difference 1, and $a_1 + a_2 + a_3 + \ldots + a_{98} = 137$. **Note:** the formalized statement in miniF2F provides the answer and asks for a proof of it.

Natural language	theorem aime_1984_p1
	(u : ℕ → ℚ)
	(h₀ : ∀ n, u (n + 1) = u n + 1)
	(h₁ : \[\sum k \in \text{finset.range} \ 98, u \ k.\text{succ} = 137\]) :
	\[\sum k \in \text{finset.range} \ 49, u \ (2 * k.\text{succ}) = 93\] :=
	begin
	revert_all,
	simp [finset.sum_range_succ],
	ring,
	simp [pow_succ, mul_comm, add_left_comm, add_assoc],
	simp [two_mul],
	rintro p,
	revert p,
	simp [add_comm],
	intros p hp,
	simp [hp], ring_nf,
	intros,
	nlinarith
	end

Comments
The model finds a rather short proof of the statement compared to typical human formalizations (see https://gist.github.com/MantasBaksys/3efd5c8d42f440d16c09076db42822f2).
aopsbook_v2_c8_ex1

Natural language	Consider the sequence \(\{ \frac{n}{n+1} \} = \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots \). Prove that this sequence tends to 1 as \(n \to \infty \)

| Model proof | theorem aopsbook_v2_c8_ex1
(\(u : \mathbb{N} \to \mathbb{R} \))
(\(h_0 : \forall \ n, u n = n / (n + 1) \)) :
filter.tendsto u filter.at_top (\(\mathbb{N} \)) :=
begin
revert_all,
simp [← nnreal.coe_one],
norm_cast,
intros,
revert h0,
assume h,
simp [tendsto_const_nhds, + nnreal.coe_one, h],
revert u,
assume f,
norm_num,
rw tendsto_iff_norm_tendsto_zero,
assume H,
convert tendsto_norm_zero.comp
tendsto_one_div_add_at_top_nhds_0_nat,
funext n,
have h0 : (((n:R) + 1) : R) ≠ 0,
{ norm_cast, exact n.succ_ne_zero, },
rw H,
field_simp [h0, norm_neg],
rw [← sub_eq_zero],
simp [← sub_eq_zero],
simp [sub_eq_add_neg],
end |

| Comments | An interesting example of a generated have statement, denoted by \(h_0 \), which is introduced as a cut in order to simplify the expression containing divisions by using field_simp[\(h_0, \) norm_neg] at a later step. |

mathd_numbertheory_447

Natural language	What is the sum of the units digits of all the multiples of 3 between 0 and 50? Note: the formalized statement in miniF2F provides the answer and asks for a proof of it.

| Model proof | theorem mathd_numbertheory_447 :
\(\sum k \in \text{finset.filter} (\lambda x, 3|x) \)
(\(\text{finset.erase} (\text{finset.range 50} \) 0), (k % 10) = 78 :=
begin
refl
end |

| Comments | Because the predicate \(\lambda x, 3|x \) is registered as decidable over \(\mathbb{N} \), we can state the problem by using finset.filter, which is computable. Hence, refl is able to close the goal. |