RESEARCH ARTICLE

Associations between endogenous sex hormones and FGF-23 among women and men in the Multi-Ethnic Study of Atherosclerosis

Oluseye Ogunmoroti, Olatokunbo Osibogun, Di Zhao, Rupal C. Mehta, Pamela Ouyang, Pamela L. Lutsey, Cassianne Robinson-Cohen, Erin D. Michos

1 Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, 2 Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, 3 Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America, 4 Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America, 5 Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America, 6 The Jesse Brown Veterans Administration Medical Center, Chicago, Illinois, United States of America, 7 Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, United States of America, 8 Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America

☯ These authors contributed equally to this work.
* edonnell@jhmi.edu

Abstract

Elevated levels of testosterone and fibroblast growth factor 23 (FGF-23) are both independently associated with a higher risk of cardiovascular disease (CVD). However, the relationship between sex hormones and FGF-23 is not well established. We explored the association between sex hormones and FGF-23 among middle-aged to older men and women in MESA. We studied 3,052 men and 2,868 postmenopausal women free of CVD at the time of enrollment, with baseline serum sex hormones [total testosterone (T), free T, estradiol (E2) and sex hormone binding globulin (SHBG)] and intact FGF-23. In sex-stratified analyses, we examined the cross-sectional associations between log-transformed sex hormones (per 1 SD) and log-transformed FGF-23 using multiple linear regression adjusted for socio-demographics, CVD risk factors, estimated glomerular filtration rate and mineral metabolites (25-hydroxyvitamin D, calcium, phosphorus and parathyroid hormone). The mean (SD) age of study participants was 64 (10) years. The median (IQR) of FGF-23 was similar in women and men [38 (30–46) vs 38 (31–47) pg/mL]. In adjusted analyses, among women, 1 SD increment in free T was associated with 3% higher FGF-23 while SHBG was associated with 2% lower FGF-23. In men, 1 SD increment in E2 was associated with 6% higher FGF-23 whereas total T/E2 ratio was associated with 7% lower FGF-23. In conclusion, this exploratory analysis found that a more androgenic sex hormone profile was directly associated with FGF-23 in women and inversely associated with FGF-23 in men. Longitudinal studies are required to determine whether FGF-23 mediates the relationship between sex hormones and CVD risk.
Sex hormones levels and FGF-23 among women and men

Introduction

Fibroblast growth factor-23 (FGF-23) is an endocrine hormone, produced by osteocytes, that exerts its effects on the kidneys by stimulating urinary excretion of phosphate in addition to inhibiting the synthesis as well as promoting the degradation of calcitriol (1, 25-dihydroxyvitamin D3) [1, 2]. In chronic kidney disease (CKD), FGF-23 levels increase as a means to maintain normal serum phosphate homeostasis [3–5]. However, elevated levels of FGF-23 are associated with a higher incidence of cardiovascular disease (CVD) and mortality among CKD patients [1, 6]. Moreover, recent studies have reported an association between elevated FGF-23 levels and a higher risk of incident hypertension, CVD and heart failure (HF) events among people with and without CKD [7–15].

Postmenopausal women with a more androgenic sex hormone profile [higher endogenous free testosterone and lower sex hormone binding globulin (SHBG) levels] have a more adverse cardiovascular phenotype [16]. This phenotype may manifest as greater coronary artery calcium (CAC) progression [17], increased risk for concentric left ventricular remodeling over 10-years [18], greater prevalence of endothelial dysfunction [19], increased aortic stiffness [20] and higher N-terminal pro b-type natriuretic peptide (NT-proBNP) levels [21]. In addition, postmenopausal women with a higher total testosterone/estradiol (T/E2) ratio have an increased risk for incident CVD, coronary heart disease (CHD) and HF events, while higher estradiol is associated with a decreased risk for CHD and HF with reduced ejection fraction [16]. In view of the fact that these associations were either not found or attenuated among men [18, 20], sex differences in endogenous sex hormone profiles may explain the observed differences in cardiovascular outcomes among women and men [22].

Observations from prior animal studies suggest a relationship between sex hormones and FGF-23. For example, FGF-23 levels decreased following orchietomy of a male rat model from an acute loss of endogenous testosterone (hypo-androgenic state) and testosterone supplementation restored FGF-23 levels [23]. In the female rat model, estrogen treatment resulted in an increase in FGF-23 levels [24]. Likewise, few human studies have shown an association between sex hormones and FGF-23 [25, 26]. However, whether sex hormones interplay with FGF-23 levels to increase CVD risk is still not well established.

Given the sparsity of research showing the link between these two hormones, the aim of this study was to conduct an exploratory analysis of the relationship between sex hormones and FGF-23 among middle-aged to older men and women from a multi-ethnic population free of clinical CVD at baseline and determine whether this relationship is independent of sociodemographic characteristics, CVD risk factors, and other mineral metabolites. We hypothesized that a more androgenic sex hormone profile will be associated with higher levels of FGF-23 among postmenopausal women but not among men of similar age.

Materials and methods

Transparency and Openness Policy (TOP)

The Multi-Ethnic Study of Atherosclerosis (MESA) participates in the NIH BioLincc Open program and requests for access to MESA data can be submitted to: https://biolincc.nhlbi.nih.gov/studies/mesa/. Additionally, other researchers can apply to the MESA Coordinating Center to become new investigators after signing a Data Use Agreement (DUA); more details are available at https://www.mesa-nhlbi.org/. Upon receipt of the DUA by the MESA Coordinating Center, access to the de-identified MESA databases would be made available to other researchers with approved proposals. The findings of our study should be easily reproducible through the methods described in this paper.
Study population

The Multi-Ethnic Study of Atherosclerosis (MESA) is a prospective cohort study of 6,814 women and men without a history of clinical CVD at time of enrollment. Study participants aged 45 to 84 years were recruited from six field centers in the United States (Baltimore, MD; Chicago, IL; Forsyth County, NC; Los Angeles, CA; New York, NY; and St Paul, MN) between the years 2000 and 2002 [27]. MESA examines the characteristics of subclinical CVD and the risk factors that predict progression to clinically overt CVD [27]. The overall cohort had approximately 38% White, 28% Black, 22% Hispanic and 12% Chinese American participants [27].

Baseline data were used for the present analysis. As shown in the flowchart of study participants in Fig 1, the final analytical sample of this cross-sectional analysis consisted of 5,920 women and men after the exclusion of participants without complete information on sex hormones (n = 641), FGF-23 (n = 262) and premenopausal women (n = 82). We studied only postmenopausal women because sex hormone levels vary between pre- and postmenopausal women. Additionally, the MESA sex hormone ancillary study included only few premenopausal women which limits our ability to properly study this subgroup [19, 21].

Ethical approval statement

The MESA study protocol was approved by the institutional review boards (IRB) at the aforementioned field centers and written informed consent was given by all participants [27]. At Johns Hopkins University, this study was approved by the Johns Hopkins School of Medicine IRB applicant number NA_00030361.
Independent variable: Sex hormones

The measurement of sex hormones as reported in previously published research from MESA is described as follows [28–30]. During the baseline examination, MESA study personnel collected fasting blood samples from participants, which were immediately frozen at minus 70˚C and shipped to the University of Vermont Core Laboratory for long term storage at minus 80˚C. From these stored frozen samples, serum sex hormone levels were later measured at the Steroid Hormone Laboratory of the University of Massachusetts Medical Center (Worcester, MA) as previously described [28]. Total testosterone and dehydroepiandrosterone (DHEA) were measured using radioimmunoassay kits while estradiol was measured using an ultrasensitive radioimmunoassay kit (Diagnostic System Laboratories, Webster, TX) [28]. SHBG was measured with a chemiluminescence enzyme immunometric assay using Immulite kits (Diagnostic Products Corporation, Los Angeles, CA) [28]. Free testosterone was estimated from total testosterone and SHBG using equations derived by Sodergard et al [31]. We calculated the T/E2 ratio by dividing total testosterone by estradiol. The variability of the sex hormone assays was monitored by including approximately 5% blind quality control samples in each batch of samples analyzed [28, 30]. The serum for quality control was obtained from a large pool that was aliquoted into storage vials and assigned labels identical to samples obtained from MESA participants. The intra-assay coefficients of variation for total testosterone, estradiol, DHEA and SHBG were 12.3%, 10.5%, 11.2% and 9.0%, respectively [28].

Dependent variable: Fibroblast growth factor-23

The measurement of FGF-23 has been previously described in prior research from MESA [8, 13, 32, 33]. As mentioned above, blood samples were collected from study participants during the baseline examination (2000–2002) and stored at -80˚C at the University of Vermont Laboratory for Clinical Biochemistry using established methods [34], until they were shipped on dry ice in 2011–2012 to the University of Washington where serum FGF-23 levels were measured using the Kainos Immunoassay [35]. This immunoassay detects the full-length biologically intact FGF-23 molecule via mid molecule and distal epitopes. Quality control was monitored using standardized high and low value FGF-23 controls within each run. The coefficient of variation for singular high and low control samples across 81 plates were 6.7% and 12.4%, respectively [13].

Covariates

MESA study personnel collected data on the covariates included in this study at baseline examination from standardized questionnaires, physical examinations and laboratory testing [27]. We considered sociodemographic factors such as age, race/ethnicity, education and MESA field center. We included CVD risk factors such as smoking (never, former and current), body mass index (BMI) and physical activity (a combination of moderate and vigorous exercises measured in Metabolic Equivalents-minutes per week). Additionally, we included total cholesterol, high-density lipoprotein-cholesterol (HDL-C), systolic blood pressure, diabetes (as defined by the 2003 American Diabetes Association criteria), estimated glomerular filtration rate (eGFR was calculated from the CKD-Epidemiology collaboration equation [36]), use of antihypertensive and lipid-lowering medication. We also considered the related mineral metabolites of 25-hydroxyvitamin D, calcium, phosphorus and parathyroid hormone. For women, we included menopausal variables such as years since menopause and current use of hormone therapy.
Statistical analysis

We stratified all analyses by sex because of the differences in sex hormones between women and men. We reported continuous variables as means with standard deviation (SD) or medians with interquartile range (IQR) for skewed distributions. Additionally, we reported categorical variables as frequencies with percentages. We logarithmically transformed the sex hormones and FGF-23 because of their skewed distributions and modeled both as continuous variables. The sex hormones and T/E2 ratio expressed per 1 SD were the independent variables and FGF-23 was the dependent variable. Using multiple linear regression models, we reported the exponentiated beta-coefficients with 95% confidence intervals of the association between each sex hormone and FGF-23 as well as the association between the T/E2 ratio and FGF-23. We presented four progressively adjusted models. Model 1 was adjusted for age, race/ethnicity and MESA field center. Model 2 was adjusted for education and CVD risk factors such as smoking, BMI and physical activity. In model 3, we adjusted for additional CVD risk factors such as total cholesterol, HDL-C, systolic blood pressure, diabetes, eGFR, use of antihypertensive and lipid-lowering medications. For women, we also adjusted for years since menopause and current use of hormone therapy in model 3. The final model (model 4) was additionally adjusted for the related mineral metabolites of 25-hydroxyvitamin D, calcium, phosphorus and parathyroid hormone.

Furthermore, we used restricted cubic splines adjusted for model 4 covariates to assess for non-linear relationships between logarithmically transformed sex hormones and the differences in logarithmically transformed FGF-23. In separate analysis for women and men, we tested whether race/ethnicity was an effect modifier of the association between sex hormones and FGF-23 by including interaction terms in the fully adjusted model. Where interaction was significant, we performed stratified analysis by subgroups. Lastly, we conducted a sensitivity analysis among women stratified by current use of hormone therapy and we adjusted for model 4 covariates. We performed all our analyses using STATA version 15.0 (StataCorp LP, College Station, Texas). In view of the higher probability of false positive findings from multiple comparisons, a Bonferroni corrected two-sided P-value < 0.0021 [0.05 divided by 24 (6 exposure variables x 1 outcome variable x 4 models)] was considered statistically significant.

Results

The baseline characteristics of study participants (N = 5,920) stratified by sex are presented in Table 1. Women comprised 48% of participants with a mean age (SD) of 65 (9) years compared to 62 (10) years for men. The median (IQR) of FGF-23 was 38 (30–46) in women and 38 (31–47) pg/mL in men. Approximately 32% of women reported current use of hormone therapy. A smaller proportion of women had a bachelor’s degree. Women had higher BMI, systolic blood pressure and total cholesterol. A larger proportion of men were smokers, diabetic and physically active. Total testosterone, free testosterone, DHEA and T/E2 ratio were higher in men but SHBG was higher in women. Estradiol and FGF-23 levels were similar in women and men.

The adjusted cross-sectional associations between sex hormones and FGF-23 in women are shown in Table 2. In women, 1 SD increment in free testosterone was independently associated with 5% higher levels of FGF-23 [Percent difference: 5% (95% CI: 3%, 6%)] but 1 SD increment in SHBG was independently associated with 4% lower levels of FGF-23 [-4% (-5%, -3%)], after adjusting for demographic variables (model 1). These associations were further adjusted for CVD risk factors, years since menopause, current use of hormone therapy and related mineral metabolites of 25-hydroxyvitamin D, calcium, phosphorus and parathyroid hormone in model 4 [free testosterone: 3% (1%, 5%), SHBG: -3% (-4%, -1%)]. In the
sensitivity analysis stratified by women who were currently on hormone therapy and women who were not on hormone therapy, we found no statistically significant associations between sex hormones and FGF-23 (S1 Table).

Table 3 shows the adjusted cross-sectional associations between sex hormones and FGF-23 in men. One SD increment in SHBG and T/E2 ratio were independently associated with 4% and 11% lower levels of FGF-23 in model 1 [-4% (-6%, -2%) and -11% (-14%, -7%),

Table 1. Baseline characteristics of study participants, MESA 2000–2002.

	Total N = 5,920	Women n = 2,868	Men n = 3,052
Age, years	64 (10)	65 (9)	62 (10)
Race/ethnicity			
White	2,304 (39%)	1,096 (38%)	1,208 (40%)
Chinese American	727 (12%)	341 (12%)	386 (13%)
Black	1,583 (27%)	805 (28%)	778 (25%)
Hispanic	1,306 (22%)	626 (22%)	680 (22%)
Education			
≥ bachelor’s degree	2,063 (35%)	804 (28%)	1,259 (41%)
< bachelor’s degree	3,835 (65%)	2,053 (72%)	1,782 (59%)
Smoking status			
Current smoker	742 (13%)	311 (11%)	431 (14%)
Former smoker	2,226 (38%)	862 (30%)	1,364 (45%)
Never smoker	2,931 (50%)	1,684 (59%)	1,247 (41%)
Diabetes mellitus	771 (13%)	352 (12%)	419 (14%)
Use of antihypertensive medication	2,276 (38%)	1,201 (42%)	1,075 (35%)
Use of lipid-lowering medication	1,037 (18%)	537 (19%)	500 (16%)
BMI, kg/m²	28 (5)	29 (6)	28 (4)
Physical activity, MET-minutes/week	3,960 (1,950–7,425)	3,540 (1,740–6,495)	4,470 (2,190–8,475)
Systolic blood pressure, mmHg	128 (22)	130 (23)	126 (19)
eGFR, ml/min per 1.73m²	77 (16)	75 (16)	78 (16)
Total cholesterol, mg/dL	195 (36)	201 (36)	188 (35)
HDL-C, mg/dL	51 (15)	57 (15)	45 (12)
Total testosterone, nmol/L	6.8 (0.9–14.4)	0.9 (0.6–1.3)	14.2 (11.3–17.8)
Free testosterone, percent	1.7 (1.2–2.1)	1.3 (0.9–1.7)	2.0 (1.7–2.3)
Estradiol, nmol/L	0.1 (0.06–0.14)	0.1 (0.05–0.16)	0.1 (0.09–0.14)
DHEA, nmol/L	11 (8–16)	10 (7–15)	13 (9–17)
Sex Hormone Binding Globulin, nmol/L	47 (34–68)	60 (41–95)	41 (31–53)
Total Testosterone: Estradiol ratio	61 (12–132)	12 (5–22)	128 (93–174)
FGF-23, pg/mL	38 (31–47)	38 (30–46)	38 (31–47)
25-hydroxyvitamin D, ng/mL	21 (15–30)	21 (14–29)	22 (15–30)
Calcium, mg/dL	9.6 (9.4–9.9)	9.7 (9.4–9.9)	9.6 (9.4–9.8)
Phosphorus, mg/dL	3.7 (3.3–4.0)	3.9 (3.5–4.2)	3.5 (3.2–3.8)
Parathyroid hormone, pg/mL	41 (31–54)	42 (32–55)	40 (31–52)

Abbreviations: BMI, Body mass index; DHEA, Dehydroepiandrosterone; eGFR, Estimated glomerular filtration rate; FGF-23, Fibroblast growth factor-23; HDL-C, High-density lipoprotein cholesterol; HT, Hormone therapy; MESA, Multi-Ethnic Study of Atherosclerosis; MET, Metabolic equivalent of task. Data were presented as mean (SD) or n (%) or median (IQR).

*Data was collected only in women.

https://doi.org/10.1371/journal.pone.0268759.t001
Table 2. Percent difference with 95% CI of the associations between log-transformed endogenous sex hormones and FGF-23 among women, n = 2,868.

Sex hormones (log-transformed) per 1SD	Percent difference (95% CI) for log (FGF-23)			
	Model 1	Model 2	Model 3	Model 4
Total testosterone (nmol/L)	1.0 (-2.0, 4.0)	0.0 (-3.0, 3.0)	-1.0 (-4.0, 2.0)	-1.0 (-4.0, 2.0)
Free Testosterone (Percent)	5.0 (3.0, 6.0)*	4.0 (2.0, 5.0)*	3.0 (1.0, 5.0)*	3.0 (1.0, 5.0)*
Estradiol (nmol/L)	0.0 (-2.0, 1.0)	-1.0 (-2.0, 0.0)	0.0 (-1.0, 1.0)	1.0 (-1.0, 2.0)
DHEA (nmol/L)	1.0 (-1.0, 2.0)	1.0 (-1.0, 2.0)	0.0 (-1.0, 2.0)	0.0 (-1.0, 2.0)
Sex Hormone Binding Globulin (nmol/L)	-4.0 (-5.0, -3.0)*	-3.0 (-5.0, -2.0)*	-3.0 (-4.0, -1.0)*	-3.0 (-4.0, -1.0)*
Total Testosterone:Estradiol ratio	1.0 (-3.0, 3.0)	1.0 (0.0, 3.0)	-1.0 (-3.0, 2.0)	-1.0 (-3.0, 1.0)

Abbreviation: DHEA, Dehydroepiandrosterone; FGF, Fibroblast growth factor.

Intact FGF-23 was the dependent variable and was log-transformed for the analysis. The sex hormones were the independent variables and were log-transformed and modeled separately per 1 standard deviation.

We presented results as percent difference with 95% confidence interval calculated from \([\text{Exp}(\beta) - 1]\) 100 reflecting the percent difference of the geometric mean of FGF-23.

*Statistically significant results at Bonferroni corrected \(P < 0.0021\) are in bold font.
†Statistically significant results at \(P < 0.05\) are in italics.

Model 1: adjusted for age, race/ethnicity and MESA field center.
Model 2: model 1 plus smoking, body mass index, education and physical activity
Model 3: model 2 plus total cholesterol, high-density lipoprotein cholesterol, use of lipid-lowering medication, systolic blood pressure, use of antihypertensive medication, diabetes and estimated glomerular filtration rate.
In women, we additionally adjusted model 3 for current use of hormone therapy and years since menopause.
Model 4: model 3 plus the related mineral metabolites of 25-hydroxyvitamin D, calcium, phosphorus and parathyroid hormone.

https://doi.org/10.1371/journal.pone.0268759.t002

Table 3. Percent difference with 95% CI of the associations between log-transformed endogenous sex hormones and FGF-23 among men, n = 3,052.

Sex hormones (log-transformed) per 1SD	Percent difference (95% CI) for log (FGF-23)			
	Model 1	Model 2	Model 3	Model 4
Total testosterone (nmol/L)	-4.0 (-8.0, 0.0)†	-1.0 (-5.0, 3.0)	-1.0 (-3.0, 3.0)	1.0 (-3.0, 6.0)
Free Testosterone (Percent)	5.0 (3.0, 8.0)*	4.0 (1.0, 6.0)*	1.0 (-1.0, 3.0)	1.0 (-1.0, 3.0)
Estradiol (nmol/L)	7.0 (5.0, 10.0)*	7.0 (4.0, 9.0)*	6.0 (4.0, 8.0)*	6.0 (4.0, 9.0)*
DHEA (nmol/L)	-2.0 (-3.0, 0.0)†	-1.0 (-3.0, 0.0)	-1.0 (-3.0, 0.0)	-1.0 (-3.0, 0.0)
Sex Hormone Binding Globulin (nmol/L)	-4.0 (-6.0, -3.0)†	-3.0 (-5.0, -1.0)†	-1.0 (-3.0, 1.0)	-1.0 (-3.0, 1.0)
Total Testosterone:Estradiol ratio	-11.0 (-14.0, -7.0)†	-9.0 (-12.0, -6.0)*	-8.0 (-11.0, -4.0)*	-7.0 (-10.0, -3.0)*

Abbreviation: DHEA, Dehydroepiandrosterone; FGF, Fibroblast growth factor.

Intact FGF-23 was the dependent variable and was log-transformed for the analysis. The sex hormones were the independent variables and were log-transformed and modeled separately per 1 standard deviation.

We presented results as percent difference with 95% confidence interval calculated from \([\text{Exp}(\beta) - 1]\) 100 reflecting the percent difference of the geometric mean of FGF-23.

*Statistically significant results at Bonferroni corrected \(P < 0.0021\) are in bold font.
†Statistically significant results at \(P < 0.05\) are in italics.

Model 1: adjusted for age, race/ethnicity and MESA field center.
Model 2: model 1 plus smoking, body mass index, education and physical activity
Model 3: model 2 plus total cholesterol, high-density lipoprotein cholesterol, use of lipid-lowering medication, systolic blood pressure, use of antihypertensive medication, diabetes and estimated glomerular filtration rate.
Model 4: model 3 plus the related mineral metabolites of 25-hydroxyvitamin D, calcium, phosphorus and parathyroid hormone.

https://doi.org/10.1371/journal.pone.0268759.t003
respectively]. Additionally, 1 SD increment in free testosterone and estradiol were associated with 5% and 7% higher levels of FGF-23 [5% (3%, 8%) and 7% (5%, 10%), respectively]. However, in the fully adjusted model (model 4), the associations remained significant for only estradiol and T/E2 ratio [6% (4%, 9%) and -7% (-10%, -3%), respectively]. In the restricted cubic splines (Figs 2 and 3), we found that the relationship between the logarithmically transformed sex hormones and FGF-23 was mostly non-linear in both women and men. We found significant interaction by race/ethnicity at P < 0.05 for only the association between DHEA and FGF-23 in women (P = 0.042). However, the results of the stratified analysis by race/ethnicity did not show any significant associations: White participants, -1 (-3, 1); Chinese-American participants, 2 (-2, 6); Black participants, 1 (-2, 4); Hispanic participants, 1 (-1, 4).

Discussion

In this exploratory analysis of a large multi-ethnic cohort of postmenopausal women and men free of clinical CVD at baseline, we found that among women, higher levels of free testosterone were independently associated with higher FGF-23 and higher levels of SHBG were associated with lower FGF-23. Since free testosterone reflects testosterone that is unbound to SHBG and albumin, the relationships of free testosterone and SHBG with FGF-23 in opposite directions are consistent. In men, higher levels of estradiol were associated with higher FGF-23 and higher levels of T/E2 ratio were associated with lower FGF-23. These aforementioned relationships were all independent of CVD risk factors and other markers of mineral metabolism such
as serum 25-hydroxyvitamin D, calcium and phosphate, which are influenced by FGF-23 levels.

The few studies that have examined the relationship between sex hormones and FGF-23 reported conflicting findings [23–26, 37]. Burnett-Bowie and colleagues in their study on the effects of gonadal steroid withdrawal on serum phosphate and FGF-23 levels in men found that after the administration of goserelin acetate, a gonadotropin releasing hormone (GnRH) analog, mean serum testosterone and estradiol decreased resulting in an increase in serum phosphate levels but no change in FGF-23 levels [25]. In contrast to the results of this study, our findings showed that in men, higher estradiol levels were associated with higher levels of FGF-23. Of note, the molecular mechanisms driving these associations are still under investigation [25]. In another study of the effect of testosterone replacement therapy on vitamin D and FGF-23 levels in congenital hypogonadism, Haymana and colleagues observed that transdermal testosterone replacement therapy increased plasma FGF-23 after approximately 4 months of follow-up in young treatment naive men [26]. However, our study findings do not provide sufficient evidence of a direct or inverse relationship between total testosterone and FGF-23.

Saki and colleagues in an experimental study investigating the effect of testosterone and letrozole on 1, 25-dihydroxyvitamin D and FGF-23 in male rats reported a significant reduction in 1, 25-dihydroxyvitamin D and FGF-23 in orchietomized rats compared to the control group [23]. In addition, they observed a correction of 1, 25-dihydroxyvitamin D and FGF-23 levels after the orchietomized rats were treated with testosterone [23]. Consistent with this
animal model, we found that a more androgenic sex hormone profile (higher free testosterone, lower SHBG) was associated with higher FGF-23 levels in women, but not in men. As postulated by Saki and colleagues, it is likely that testosterone directly increases serum FGF-23 independent of its aromatization to estradiol or indirectly through the upregulation of the FGF-23 gene by 1, 25-dihydroxyvitamin D [23, 38, 39].

Furthermore, an experimental study conducted by Carrillo-Lopez and colleagues to investigate the factors and mechanisms involved in the effect of estrogens on the parathyroid gland found that female rats treated with estrogen had significantly higher serum and bone FGF-23 levels as well as significantly lower serum calcitriol, phosphorus and parathyroid hormone levels [24]. In our study, we found no association between serum estradiol levels and FGF-23 levels in women, although estradiol levels were generally low in these postmenopausal women. However, higher estradiol levels were associated with higher FGF-23 levels in men. In contrast to the findings from Carrillo-Lopez and colleagues, a cross-sectional study conducted by Ix and colleagues [37] to examine the link between exogenous estrogen therapy and FGF-23, reported that FGF-23 levels were significantly higher in older women not on estrogen therapy compared to women on estrogen therapy or men. In our study, FGF-23 levels were only slightly higher in women not currently on hormone therapy [38 (31, 47) pg/mL] compared to the levels for women currently on hormone therapy [36 (29, 45) pg/mL].

Given that the relationship between endogenous sex hormones and FGF-23 from population studies has not been previously well established, we undertook this study to better understand the potential mechanism that might explain why both sex hormone profiles (pro-androgenic pattern in women, hypo-androgenic pattern in men) and FGF-23 are associated with elevated CVD risk [14, 16]. However, the clinical implication of the relationships we describe is unclear. Even if sex hormones did influence CVD risk via elevated FGF-23 levels, it is unclear what the best interventions should be to modify sex hormone levels for risk reduction. Randomized clinical trials have failed to demonstrate a CVD benefit of hormone therapy in post-menopausal women [40–42].

This study has some strengths. We used data from a large, diverse, community-based population of women and men who did not have clinical CVD at the time of study enrollment. The availability of data on a large number of variables with standardized measurements enabled us to examine five different sex hormones and reduce the effect of potential confounding factors. We were also able to account for other important mineral metabolite markers. Nevertheless, our study has some limitations. We cannot prove causality or show whether a temporal relationship exists between sex hormones and FGF-23 because this study was observational with a cross-sectional design. In addition, residual confounding may still be present even though we accounted for numerous confounding factors in our analysis. We used only one baseline measurement of sex hormones to determine the hormonal status of study participants instead of serial measurements, although previous studies suggest a single assessment of sex hormones is reliable [43, 44]. Lastly, sex hormones in MESA were measured by radioimmunoassay and not by mass spectrometry which is the current gold standard. The accuracy of the equations used to estimate free testosterone have been questioned in the literature [45]; therefore we reported results for both measured total testosterone as well as estimated free testosterone. We chose to present the results for free testosterone because it is more strongly linked with cardiovascular risk in women than total testosterone [16, 17, 19–21].

Conclusions

In this exploratory analysis, we found that a more androgenic sex hormone profile was directly associated with FGF-23 in women while inversely associated with FGF-23 in men. In light of
the fact that CVD is the leading cause of morbidity and mortality globally, a thorough understanding of the different biological pathways underlying the incidence of CVD is of considerable importance to facilitate the development of improved prevention and therapeutic options [46]. There is a need for well-designed prospective studies to clarify the conflicting findings from prior studies and determine if a causal relationship exists between sex hormones and FGF-23. In addition, these new studies should investigate whether FGF-23 acts as a mediator in the relationship between sex hormones and CVD risk.

Supporting information

S1 Table. Percent difference with 95% CI of the associations between log-transformed endogenous sex hormone and FGF-23 among women stratified by use of hormone therapy. (DOCX)

Acknowledgments

The authors thank the other investigators, the staff, and the MESA participants for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org.

Author Contributions

Conceptualization: Erin D. Michos.

Data curation: Oluseye Ogunmoroti.

Formal analysis: Oluseye Ogunmoroti.

Funding acquisition: Erin D. Michos.

Methodology: Oluseye Ogunmoroti, Olatokunbo Osibogun, Di Zhao, Rupal C. Mehta, Pamela Ouyang, Pamela L. Lutsey, Cassianne Robinson-Cohen, Erin D. Michos.

Project administration: Erin D. Michos.

Resources: Oluseye Ogunmoroti, Erin D. Michos.

Software: Oluseye Ogunmoroti.

Supervision: Erin D. Michos.

Validation: Oluseye Ogunmoroti, Olatokunbo Osibogun, Di Zhao, Rupal C. Mehta, Pamela Ouyang, Pamela L. Lutsey, Cassianne Robinson-Cohen, Erin D. Michos.

Visualization: Oluseye Ogunmoroti, Olatokunbo Osibogun, Di Zhao, Erin D. Michos.

Writing – original draft: Oluseye Ogunmoroti, Olatokunbo Osibogun, Di Zhao, Rupal C. Mehta, Pamela Ouyang, Pamela L. Lutsey, Cassianne Robinson-Cohen, Erin D. Michos.

Writing – review & editing: Oluseye Ogunmoroti, Olatokunbo Osibogun, Di Zhao, Rupal C. Mehta, Pamela Ouyang, Pamela L. Lutsey, Cassianne Robinson-Cohen, Erin D. Michos.

References

1. Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 2012; 82:737–747. https://doi.org/10.1038/ki.2012.176 PMID: 22622492

2. Batra J, Buttar RS, Kaur P, Kreimerman J, Melamed ML. FGF-23 and cardiovascular disease: review of literature. Curr Opin Endocrinol Diabetes. 2016; 23:423–429. https://doi.org/10.1097/MED.0000000000000294 PMID: 27652999
3. Larsson T, Nisbeth U, Ljunggren O, Juppnner H, Jonsson KB. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. *Kidney Int.* 2003; 64:2272–2279. [https://doi.org/10.1046/j.1523-1755.2003.00328.x PMID: 14633152](https://doi.org/10.1046/j.1523-1755.2003.00328.x)

4. Shigematsu T, Kazama JJ, Yamashita T, Fukumoto S, Hosoya T, Gejyo F, et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. *Am J Kidney Dis.* 2004; 44:250–256. [https://doi.org/10.1053/ajkd.2004.04.029 PMID: 15264182](https://doi.org/10.1053/ajkd.2004.04.029)

5. Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. *J Am Soc Nephrol.* 2005; 16:2205–2215. [https://doi.org/10.1681/ASN.2005010052 PMID: 15917335](https://doi.org/10.1681/ASN.2005010052)

6. Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. *JAMA.* 2011; 305:2432–2439. [https://doi.org/10.1001/jama.2011.286 PMID: 21673295](https://doi.org/10.1001/jama.2011.286)

7. Akhabue E, Montag S, Reis JP, Pool LR, Mehta R, Yancy CW, et al. FGF23 (Fibroblast Growth Factor-23) and Incident Hypertension in Young and Middle-Aged Adults: The CARDIA Study. *Hypertension.* 2018; 72:707–6.

8. Akhabue E, Yu TT, Vaidya A, Michos ED, de Boer IH, Kestenbaum B, et al. Fibroblast Growth Factor-23, Heart Failure Risk, and Renin-Angiotensin-Aldosterone-System Blockade in Hypertension: The Multi-Ethnic Study of Atherosclerosis. *Am J Hypertens.* 2018; 32:18–25.

9. Fyfe-Johnson AL, Alonso A, Selvin E, Bower JK, Pankow JS, Agarwal SK, et al. Serum fibroblast growth factor-23 and incident hypertension: the Atherosclerosis Risk in Communities (ARIC) Study. *J Hypertens.* 2016; 34:1266–1272. [https://doi.org/10.1097/JHJ.0000000000000936 PMID: 27100793](https://doi.org/10.1097/JHJ.0000000000000936)

10. Faull C, Amaral AP, Osksuei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. *J Clin Invest.* 2011; 121:4393–4408. [https://doi.org/10.1172/JCI46122 PMID: 21985788](https://doi.org/10.1172/JCI46122)

11. Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, et al. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. *Cell metab.* 2015; 22:1020–1032. [https://doi.org/doi.org/10.1016/j.cmet.2015.09.002 PMID: 26437603](https://doi.org/10.1016/j.cmet.2015.09.002)

12. Ix JH, Katz R, Kestenbaum BR, de Boer IH, Chonchol M, Mukamal KJ, et al. Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study). *J Am Coll Cardiol.* 2012; 60:200–207. [https://doi.org/10.1016/j.jacc.2012.03.040 PMID: 22709326](https://doi.org/10.1016/j.jacc.2012.03.040)

13. Kestenbaum B, Sachs MC, Hoofnagle AN, Siscovich DS, Ix JH, Robinson-Cohen C, et al. Fibroblast growth factor-23 and cardiovascular disease in the general population: the Multi-Ethnic Study of Atherosclerosis. *Circ Heart Fail.* 2014; 7:408–417. [https://doi.org/10.1161/CIRCHEARTFAILURE.113.000952 PMID: 24668259](https://doi.org/10.1161/CIRCHEARTFAILURE.113.000952)

14. Lutsey PL, Alonso A, Selvin E, Pankow JS, Michos ED, Agarwal SK, et al. Fibroblast growth factor-23 and incident coronary heart disease, heart failure, and cardiovascular mortality: the Atherosclerosis Risk in Communities study. *J Am Heart Assoc.* 2014; 3(3):e000936. [https://doi.org/10.1161/JAHA.114.000936 PMID: 24922628](https://doi.org/10.1161/JAHA.114.000936)

15. Almahmoud MF, Soliman EZ, Bertoni AG, Kestenbaum B, Katz R, Lima JAC, et al. Fibroblast Growth Factor-23 and Heart Failure With Reduced Versus Preserved Ejection Fraction: MESA. *J Am Heart Assoc.* 2018; 7(18):e008334. [https://doi.org/10.1161/JAHA.117.008334 PMID: 30371180](https://doi.org/10.1161/JAHA.117.008334)

16. Zhao D, Guallar E, Ouyang P, Subramanya V, Vaidya D, Ndumele CE, et al. Endogenous Sex Hormones and Incident Cardiovascular Disease in Post-Menopausal Women. *J Am Coll Cardiol.* 2018; 71:2555–2566. [https://doi.org/10.1016/j.jacc.2018.01.083 PMID: 29852978](https://doi.org/10.1016/j.jacc.2018.01.083)

17. Subramanya V, Zhao D, Ouyang P, Ying W, Vaidya D, Ndumele CE, et al. Association of endogenous sex hormone levels with coronary artery calcium progression among post-menopausal women in the Multi-Ethnic Study of Atherosclerosis (MESA). *J Cardiovasc Comput Tomogr.* 2019; 13:41–47.

18. Subramanya V, Zhao D, Ouyang P, Lim J, Vaidya D, Ndumele CE, et al. Sex hormone levels and change in left ventricular structure among men and post-menopausal women: The Multi-Ethnic Study of Atherosclerosis (MESA). *Maturitas.* 2018; 108:37–44. [https://doi.org/10.1016/j.maturitas.2017.11.006 PMID: 29290213](https://doi.org/10.1016/j.maturitas.2017.11.006)

19. Mathews L, Subramanya V, Zhao D, Ouyang P, Vaidya D, Guallar E, et al. Endogenous Sex Hormones and Endothelial Function in Postmenopausal Women and Men: The Multi-Ethnic Study of Atherosclerosis. *J Womens Health.* 2019; 28:900–909. [https://doi.org/10.1089/jwh.2018.27441 PMID: 31170017](https://doi.org/10.1089/jwh.2018.27441)

20. Subramanya V, Ambale-Venkatesh B, Ohyama Y, Zhao D, Nwabuo CC, Post WS, et al. Relation of Sex Hormone Levels With Prevalent and 10-Year Change in Aortic Distensibility Assessed by MRI: The Multi-Ethnic Study of Atherosclerosis. *Am J Hypertens.* 2018; 31:774–783. [https://doi.org/10.1093/ajh/hpy024 PMID: 29471444](https://doi.org/10.1093/ajh/hpy024)
21. Ying W, Zhao D, Ouyang P, Subramanya V, Vaidya D, Ndumele CE, et al. Sex Hormones and Change in N-Terminal Pro-B-Type Natriuretic Peptide Levels: The Multi-Ethnic Study of Atherosclerosis. J Clin Endocrinol. Metab. 2018; 103:4304–4314. https://doi.org/10.1210/jc.2018-01437 PMID: 30137406

22. Vitale C, Mendelsohn ME, Rosano GM. Gender differences in the cardiovascular effect of sex hormones. Nat Rev Cardiol. 2009; 6:532–542. https://doi.org/10.1038/nrccardio.2009.105 PMID: 19568844

23. Saki F, Kasaei SR, Sadeghian F, Koohpeyma F, Omrani GHR. Investigating the effect of testosterone by itself and in combination with letrozole on 1,25-dihydroxy vitamin D and FGF23 in male rats. J Endocrinol Invest. 2019; 42:19–25. https://doi.org/10.1007/s40618-018-0875-3 PMID: 29560610

24. Carrillo-Lopez N, Roman-Garcia P, Rodriguez-Rebollar A, Fernandez-Martín JL, Naves-Díaz M, Can-nata-Andia JB. Indirect regulation of PTH by estrogens may require FGF23. J Am Soc Nephrol. 2009; 20:2009–2017. https://doi.org/10.1681/ASN.2008121258 PMID: 19628670

25. Burnett-Bowie SM, Mendoza N, Leder BZ. Effects of gonadal steroid withdrawal on serum phosphate and FGF-23 levels in men. Bone. 2007; 40:913–918. https://doi.org/10.1016/j.bone.2006.10.016 PMID: 17157753

26. Haymana C, Sonneaz A, Aydogdu A, Tapan S, Basaran Y, Meric C, et al. Effect of testosterone replacement therapy on vitamin D and FGF-23 levels in congenital hypogonadism. Endokrynol Pol. 2017; 68:311–616. https://doi.org/10.5603/EP.a2017.0009 PMID: 28230890

27. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, et al. Multi-Ethnic Study of Atherosclerosis: objectives and design. Am J Epidemiol. 2002; 156:871–881. https://doi.org/10.1093/aje/kwf113 PMID: 12397067

28. Golden SH, Dobs AS, Vaidya D, Szkol M, Gapstur S, Kopp P, et al. Endogenous sex hormones and glucose tolerance status in postmenopausal women. J Clin Endocrinol. Metab. 2007; 92:1289–1295. https://doi.org/10.1210/jc.2006-1895 PMID: 17244779

29. Vaidya D, Dobs A, Gapstur SM, Golden SH, Hankinson A, Liu K, et al. The association of endogenous sex hormones with lipoprotein subfraction profile in the Multi-Ethnic Study of Atherosclerosis. Metab. Clin. Exp. 2008; 57:782–790. https://doi.org/10.1016/j.metabol.2008.01.019 PMID: 18502260

30. Michos ED, Vaidya D, Gapstur SM, Schreiner PJ, Golden SH, Wong ND, et al. Sex hormones, sex hormone binding globulin, and abdominal aortic calcification in women and men in the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis. 2008; 200:432–438. https://doi.org/10.1016/j.atherosclerosis.2007.12.032 PMID: 18262187

31. Sodergard R, Backstrom T, Shanbhag V, Carstensen H. Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J. Steroid Biochem. 1982; 16:801–810. https://doi.org/10.1016/S0022-4731(82)90038-3 PMID: 7202083

32. Mathew JS, Sachs MC, Katz R, Patton KK, Heckbert SR, Hoofnagle AN, et al. Fibroblast growth factor-23 and incident atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS). Circulation. 2014; 130:298–307. https://doi.org/10.1161/CIRCULATIONAHA.113.005499 PMID: 24920722

33. Patel RB, Ning H, de Boer IH, Kestenbaum B, Lima JAC, Mehta R, et al. Fibroblast Growth Factor 23 and Long-Term Cardiac Function: The Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Imaging. 2020; 13(11):e011925. https://doi.org/10.1161/CIRCIMAGING.120.011925 PMID: 33161733

34. Lewis MR, Callas PW, Jenny NS, Tracy RP. Longitudinal stability of coagulation, fibrinolysis, and inflammation factors in stored plasma samples. Thromb Haemost. 2001; 86:1495–500. PMID: 11776319

35. Imel EA, Peacock M, Pituchkeewanont P, Heller HJ, Ward LM, Shulman D, et al. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia. The J Clin Endocrinol. Metab. 2006; 91:2055–2061. https://doi.org/10.1210/jc.2005-2105 PMID: 16551733

36. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009; 150:604–612. https://doi.org/10.1210/jc.2006-1895 PMID: 17244779

37. Ix JH, Chonchol M, Laughlin GA, Shlipak MG, Whooley MA. Relation of sex and estrogen therapy to serum fibroblast growth factor 23, serum phosphorus, and urine phosphorus: the Heart and Soul Study. Am J Kidney Dis. 2011; 58:737–745. https://doi.org/10.1053/j.ajkd.2011.06.011 PMID: 21855188

38. Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiel PR, et al. 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol. 2005; 289:G1036–1042. https://doi.org/10.1152/ajpgi.00243.2005 PMID: 16020653

39. Barthel TK, Mathern DR, Whitfield GK, Hausserla CJ, Hopper HA, Hsieh JC, et al. 1,25-Dihydroxyvi-tamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem. 2011; 127:193–199. https://doi.org/10.1016/j.jsb.2011.09.017 PMID: 21904669

40. Beyhan A, Senel O, Polat O, Ozturk D, Uluiski IH. Estrogen and androgen effects on serum uric acid levels. J Clin Exp. 2009; 57:782–790. https://doi.org/10.1016/j.metabol.2008.01.019 PMID: 18502260

41. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009; 150:604–612. https://doi.org/10.1210/jc.2006-1895 PMID: 17244779

42. Ix JH, Chonchol M, Laughlin GA, Shlipak MG, Whooley MA. Relation of sex and estrogen therapy to serum fibroblast growth factor 23, serum phosphorus, and urine phosphorus: the Heart and Soul Study. Am J Kidney Dis. 2011; 58:737–745. https://doi.org/10.1053/j.ajkd.2011.06.011 PMID: 21855188

43. Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiel PR, et al. 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol. 2005; 289:G1036–1042. https://doi.org/10.1152/ajpgi.00243.2005 PMID: 16020653

44. Barthel TK, Mathern DR, Whitfield GK, Hausserla CJ, Hopper HA, Hsieh JC, et al. 1,25-Dihydroxyvi-tamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem. 2011; 127:193–199. https://doi.org/10.1016/j.jsb.2011.09.017 PMID: 21904669
40. Hulley S, Grady D, Bush T, Furberg C, Herrington D, Riggs B, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA. 1998; 280:605–613. https://doi.org/10.1001/jama.280.7.605 PMID: 9718051

41. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA. 2002; 288:321–333. https://doi.org/10.1001/jama.288.3.321 PMID: 12117397

42. Rossouw JE, Prentice RL, Manson JE, Wu L, Barad D, Barnabei VM, et al. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA. 2007; 297:1465–1477. https://doi.org/10.1001/jama.297.13.1465 PMID: 17405972

43. Oh JY, Barrett-Connor E, Wedick NM, Wingard DL. Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo study. Diabetes care. 2002; 25:55–60. https://doi.org/10.2337/diacare.25.1.55 PMID: 11772901

44. Cauley JA, Gutai JP, Kuller LH, Powell JG. Reliability and interrelations among serum sex hormones in postmenopausal women. Am J Epidemiol. 1991; 133:50–57. https://doi.org/10.1093/oxfordjournals.aje.a115801 PMID: 1983898

45. Hackbarth JS, Hoyne JB, Grebe SK, Singh RJ. Accuracy of calculated free testosterone differs between equations and depends on gender and SHBG concentration. Steroids. 2011; 76:48–55. https://doi.org/10.1016/j.steroids.2010.08.008 PMID: 20816687

46. Wetmore JB. The Link Between Estrogen and Fibroblast Growth Factor 23. Am J Kid Dis. 2011; 58:695–696. https://doi.org/10.1053/j.ajkd.2011.08.012 PMID: 22014635