Two Compact Incremental Prime Sieves

Jonathan P. Sorenson
Butler University, jsorenso@butler.edu

Follow this and additional works at: https://digitalcommons.butler.edu/facsch_papers

Part of the Mathematics Commons, and the Theory and Algorithms Commons

Recommended Citation
Sorenson, Jonathan P., "Two Compact Incremental Prime Sieves" LMS Journal of Computation and Mathematics / (2015): 675-683. Available at https://digitalcommons.butler.edu/facsch_papers/968

This Article is brought to you for free and open access by the College of Liberal Arts & Sciences at Digital Commons @ Butler University. It has been accepted for inclusion in Scholarship and Professional Work - LAS by an authorized administrator of Digital Commons @ Butler University. For more information, please contact digitalscholarship@butler.edu.
TWO COMPACT INCREMENTAL PRIME SIEVES

JONATHAN P. SORENSON

Abstract. A prime sieve is an algorithm that finds the primes up to a bound \(n \). We say that a prime sieve is \emph{incremental}, if it can quickly determine if \(n+1 \) is prime after having found all primes up to \(n \). We say a sieve is \emph{compact} if it uses roughly \(\sqrt{n} \) space or less. In this paper we present two new results:

- We describe the \emph{rolling sieve}, a practical, incremental prime sieve that takes \(O(n \log \log n) \) time and \(O(\sqrt{n} \log n) \) bits of space, and
- We show how to modify the sieve of Atkin and Bernstein [1] to obtain a sieve that is simultaneously sublinear, compact, and incremental.

The second result solves an open problem given by Paul Pritchard in 1994 [19].

1. Introduction and Definitions

A \emph{prime sieve} is an algorithm that finds all prime numbers up to a given bound \(n \). The fastest known algorithms, including Pritchard’s wheel sieve [16] and the Atkin-Bernstein sieve [1], can do this using at most \(O(n/\log \log n) \) arithmetic operations. The easy-to-code sieve of Eratosthenes requires \(O(n \log \log n) \) time, and there are a number of sieves in the literature that require linear time [17, 18].

Normally, running time is the main concern in algorithm design, but in this paper we are also interested in two other properties: \emph{incrementality} and \emph{compactness}.

We say that a sieve is \emph{compact} if it uses at most \(n^{1/2+o(1)} \) space. Bays and Hudson [4] showed how to segment the sieve of Eratosthenes so that only \(O(\sqrt{n}) \) bits of space are needed. (See also [6].) Pritchard [17] showed how to apply a fixed wheel to get a compact sieve that runs in linear time. Atkin and Bernstein [1] gave the first compact sieve that runs in sublinear time. For other sieves that address space issues, see for example [12, 11, 13, 20, 9, 21].

Loosely speaking, a sieve is \emph{incremental} if it can determine the primality of \(n+1 \) after having found all primes up to \(n \) using a small amount of additional work. Bengelloun [5] presented the first prime sieve that needed only a constant amount of additional work to do this, thereby taking a total of \(O(n) \) time to find all primes up to \(n \). Pritchard [19] showed how to improve Bengelloun’s sieve using a dynamic wheel so that in constant time it determines the the primality of all integers from \(n \) to \(n + \Theta(\log \log n) \). In other words, it takes \(O(1 + (p-n)/\log \log n) \) time to find \(p \), if \(p \) is the smallest prime exceeding \(n \). Pritchard’s sieve takes \(O(n/\log \log n) \) time to find all primes up to \(n \).

Received by the editor March 10, 2015.
2000 Mathematics Subject Classification. Primary 11Y16, 68Q25; Secondary 11Y11, 11A51.
Key words and phrases. Prime number sieve, number theoretic algorithms, algorithm analysis, primality testing.
Supported by a grant from the Holcomb Awards Committee.
To clarify, let us define a sieve as $t(n)$-incremental if, in the worst case, it requires $(p - n) \cdot t(n) + O(1)$ operations to find $p = p_{\pi(n)+1}$, the smallest prime exceeding n, after having found all primes up to n. Thus, Bengelloun’s sieve is $O(1)$-incremental, and Pritchard’s sieve is $O(1/\log \log n)$-incremental.

Open Problem. Design a prime sieve that is both compact and $o(1)$-incremental.

[19]

In this paper, we address this problem from two perspectives, one practical, and one theoretical:

- We present a sieve algorithm, with pseudocode, that finds the primes up to n using $O(n \log \log n)$ arithmetic operations and $O(\sqrt{n} \log n)$ bits of space, that is $O(\log n / \log \log n)$-incremental. It is based on the segmented sieve of Eratosthenes, adapting some of the ideas in Bennion’s sieve [11]. Our sieve uses a circular array of stack datastructures and works well in practice.
- We also prove the following:

 Theorem 1.1. There exists a prime sieve that is both compact and $O(1/\log \log n)$-incremental.

 Our proof relies on modifying the sieve of Atkin and Bernstein [1].

After we discuss some preliminaries in §2, we present our rolling sieve in §3 and we prove our theorem in §4.

2. Preliminaries

In this section we discuss our model of computation, review some helpful estimates from elementary number theory, and review the sieve of Eratosthenes.

2.1. Model of Computation

Our model of computation is a RAM with a potentially infinite, direct access memory.

If n is the input, then all arithmetic operations on integers of $O(\log n)$ bits have unit cost. This includes $+,-,\times$, and division with remainder. Comparisons, array indexing, assignment, branching, bit operations, and other basic operations are also assigned unit cost. Memory may be addressed at the bit level or at the word level, where each word has $O(\log n)$ bits.

Space is measured in bits. Thus, it is possible for an algorithm to touch n bits in only $O(n/\log n)$ time if memory is accessed at the word level. The space used by the output of a prime sieve, the list of primes up to n, is not counted against the algorithm.

This is the same model used in [9, 20, 21].

2.2. Some Number Theory

We make use of the following estimates. Here the sums over p are over primes only, and $x > 0$:

\[(2.1) \quad \pi(x) := \sum_{p \leq x} \frac{1}{p} = \frac{x}{\log x} (1 + o(1));\]

\[(2.2) \quad \sum_{p \leq x} \frac{1}{p} = \log \log x + O(1);\]

\[(2.3) \quad \sum_{p \leq x} \log p = x(1 + o(1));\]

For proofs, see Hardy and Wright [14].
2.3. Sieve of Eratosthenes. We present algorithms using a C++ style that should be familiar to most readers. We assume that integer variables can accurately hold any integer represented in standard signed binary notation in $O(\log n)$ bits. In practice, this means 64 bits.

Recall that the sieve of Eratosthenes uses a bit vector to represent the primes up to n. All are assumed to be prime (aside from 0 and 1) and, for each prime p found, its multiples q are enumerated and "crossed off" as not prime, as follows:

```cpp
BitVector S(n+1); // bit vector for 0..n
S.setAll();
S[0]=0; S[1]=0;
for(p=2; p*p<=n; p=p+1)
  if(S[p]==1) // so that p must be prime
    for(q=2*p; q<=n; q=q+p)
      S[q]=0;
```

This requires $\sum_{p \leq \sqrt{n}} n/p = O(n \log \log n)$ arithmetic operations (using (2.2)) and $O(n)$ bits of space.

2.4. Segmented Sieve of Eratosthenes. The main loop of a segmented sieve is simply a loop over each segment. Here Δ is the size of that segment; we choose Δ to be proportional to \sqrt{n}. We assume here the primes below \sqrt{n} have already been found some other way (perhaps with the unsegmented sieve above).

```cpp
for(left=sqrt(n)+1; left<=n; left=left+delta)
{
  right=min(left+delta-1,n);
  sieve(left,right);
}
```

Each segment is then sieved by crossing off multiples of each prime p below \sqrt{n}.

```cpp
Primelist P(sqrt(right)); // list of primes <= sqrt(n)
BitVector S(delta); // bit vector for left..right
S.setAll();
for(i=0; i<P.length; i++)
{
  p=P[i];
  first=left+(p-(left%p))%p; // min. first>=left st. p|first
  for(q=first; q<=right; q=q+p)
    S[q-left]=0;
}
```

Using (2.2), the running time for a single segment is proportional to

$$\sum_{p \leq \sqrt{n}} \left(1 + \frac{\Delta}{p} \right) = O \left(\Delta \log \log n + \frac{\sqrt{n}}{\log n} \right)$$

and summing this cost over n/Δ segments gives $O(n \log \log n)$. The total space used is $O(\sqrt{n})$ bits; this is dominated by space for the list of primes up to \sqrt{n} (using (2.3)), plus Δ bits for the segment bit vector.

Remarks.
Both sieves can readily be modified to completely factor all integers up to \(n \) by replacing the bit vector with an array of lists, and adding \(p \) to the list for each \(q \) generated by the inner loop.

Pritchard\[17\] added a static wheel to the segmented sieve to obtain an \(O(n) \) running time. For a discussion of the static wheel, see [20, §2.4], which gives C++-style pseudocode and a running time analysis.

For a parallel version of the segmented sieve, see [22].

3. Algorithm Description

In this section we present our rolling sieve. It is in many ways similar to the hopping sieve of Bennion [11].

The primary data structure is a circular array of stacks. Each array location corresponds to an integer \(n \), and when \(n \) is reached by the sieve, its stack will contain the prime divisors of \(n \) up to \(\sqrt{n} \). If the stack is empty, then either \(n \) is prime or the square of a prime. In the latter case, we discover a new prime by which to sieve, \(r \), so we push \(r \) onto \(n + r \)'s stack.

When moving from \(n \) to \(n + 1 \), we pop each prime \(p \) from \(n \)'s stack and push it onto the stack for \(n + p \), the next stack position corresponding to an integer divisible by \(p \).

If the position for \(n + p \) is larger than \(\Delta \), the size of the circular array, we simply wrap around to the front.

We are now ready to present pseudocode.

3.1. Precomputation. Let \(\text{start} \) be the value of the first integer we wish to test for primality. To set up, then, we find the primes up to \(\sqrt{\text{start}} \) and push them onto the correct stacks. Note that array position 0 corresponds to \(\text{start} \) as we begin.

\[
\begin{align*}
r & = \text{floor}(\sqrt{\text{start}})+1; \\
s & = r \cdot r; \\
\text{PrimeList} & \; P(r-1); \\
\text{delta} & = r + 2; \\
\text{StackArray} & \; T(\text{delta}); \\
\text{for} & \; (i=0; \; i<P.\text{length}; \; i=i+1) \\
& \{ \\
& \quad p = P[i]; \\
& \quad j = (p - (\text{start}\%p))\%p; \\
& \quad T[j].\text{push}(p); \\
& \}
\end{align*}
\]

We have \(\lfloor \sqrt{n} \rfloor = r - 1 = \Delta - 3 \) so that \(n < s = r^2 \) and \(r + 1 < \Delta \) hold.

3.2. Primality of \(n \). Once the array of stacks is set up, we can check each successive integer \(n \) for primality as shown in the function below, which returns true if \(n \) is prime, and false otherwise. It also sets its state to be ready to handle \(n + 1 \) on the subsequent call.

\[
\begin{align*}
\text{bool} & \quad \text{next}() \\
& \{ \\
& \quad \text{isPrime=true;} \\
& \quad \text{while}(!T[pos].\text{isEmpty}()) \; // \; \text{process prime divisors}
\}
\end{align*}
\]
{
 p = T[pos].pop();
 T[(pos+p) % delta].push(p);
 isPrime = false;
}
if (n == s) // then n is a square
{
 if (isPrime) // then r is in fact prime
 {
 T[(pos+r) % delta].push(r);
 isPrime = false;
 }
 r = r + 1; s = r * r;
}

n = n + 1;
pos = (pos + 1) % delta;
if (pos == 0) { delta = delta + 2; }
return isPrime;
}

- The list of primes stored in stacks includes all primes up to \(\sqrt{n} \), unless \(n \) is, in fact, the square of a prime. If this is the case, we detect that \(r \) is prime and put it into the appropriate stack. This is how we incrementally grow the list of primes up to \(\sqrt{n} \) for sieving.

- We can grow \(\Delta \) and the array of stacks over time by simply adding two to \(\Delta \) when \(\text{pos} \) reaches zero. We make sure no prime stored in the stacks exceeds \(\Delta \), or in other words, \(r < \Delta \) is invariant. The new stacks added to the end of the array are initialized to empty.

 Note that if we start \(\Delta = \lfloor \sqrt{n} \rfloor + 3 \), and then after \(\Delta \) function calls increment by 2, we end up iterating the mapping \((n, \Delta) \rightarrow (n + \Delta, \Delta + 2)\). Iterating \(k \) times gives \((n, \Delta) \Rightarrow (n + k\Delta + k(k - 1), \Delta + 2k)\). Squaring \(\Delta + 2k \) shows that the segment stays larger than \(\sqrt{n} \) over time, and the \(k(k - 1) \) term insures it won’t exceed \(O(\sqrt{n}) \).

 Extending an array of stacks in the RAM model discussed in §2 is straightforward, but in practice it is not so simple. One option is to use a fixed value for \(\Delta \), only use primes up to \(\Delta \) in the stacks, and then numbers that seem prime should be prime tested as an extra step. See, for example, the ideas in [21].

- To find all primes up to a bound \(n \), simply print the primes up to 100, say, then set up using \text{start} = 100, and repeatedly call the \text{next()} function, printing when it returns true.

```c
int nextprime()
{ while(!next()); return n-1; }
```

- The sieve can readily be modified to generate integers in factored form. Simply make a copy of \(n \), and as the primes are popped from the stack, divide them into \(n \). When the stack is empty, what remains is either 1 or prime. We leave the details to the reader.
An early version of this algorithm was used for this purpose in generating data published in [3].

- The array of stacks datastructure used here can easily be viewed as a special-case application of a monotone priority queue. In this view, each prime up to \(\sqrt{n} \) is stored in the queue with its priority set to the next multiple of that prime. See, for example, [7].

3.3. Analysis.

Theorem 3.1. The rolling sieve will find all primes up to a bound \(n \) using \(O(n \log \log n) \) arithmetic operations and \(O(\sqrt{n} \log n) \) bits of space.

Proof. The running time is bounded by the number of times each prime \(p \) up to \(\sqrt{n} \) is popped and pushed. But that happens exactly once for each integer up to \(n \) that is divisible by \(p \), or

\[
\sum_{p \leq \sqrt{n}} \frac{n}{p} = O(n \log \log n).
\]

Assuming a linked list style stack data structure, the total space used is one machine word for the number of stacks, \(\Delta = O(\sqrt{n}) \), plus the number of nodes, \(\pi(\sqrt{n}) \). At \(O(\log n) \) bits per word, we have our result. \(\square \)

Theorem 3.2. The rolling sieve is \(O(\log n / \log \log n) \)-incremental.

Proof. It should be clear that we need to count the total number of prime divisors of the integers from \(n \) to \(p \), where \(p \) is the smallest prime larger than \(n \).

Let \(\ell = p - n \). First we consider primes \(q \leq \ell \). Each such prime \(q \) divides \(O(\ell/q) \) integers in this interval, for a total of \(O(\ell \log \ell) \).

Next we consider primes \(q > \ell \). Each such prime can divide at most one integer between \(n \) and \(p \). Summing up the logarithms of such primes, we have

\[
\sum_{m=n}^{p} \sum_{m \leq q, q \leq \ell} \log q = O(\ell \log n).
\]

The number of such primes \(q \) is maximized when the primes are as small as possible. Again, each prime can only appear once in the sum above, so we solve the following for \(x \):

\[
\sum_{\ell < q \leq x} \log q = O(\ell \log n)
\]

We have \(x = O(\ell \log n) \) by (2.3), and so the number of primes is bounded by \(\pi(x) = O(\ell \log n / (\log \ell + \log \log n)) \).

Dividing through by \(\ell \) completes the proof. \(\square \)

Remarks.

- For the purposes of analysis, and to limit the space used, our stacks are linked-list based. For speed, array-based stacks are better. For 64-bit integers, an array of length 16 is sufficient.
- Although we can only prove the rolling sieve is \(O(\log n / \log \log n) \)-incremental, by the Erdős-Kac theorem, in practice it will behave as if it is \(O(\log \log n) \)-incremental. See, for example, [10].
• One could add a wheel to reduce the overall running time by a factor proportional to $\log \log n$, and similarly improve incremental behavior. We have not tried to code this, and growing the wheel by adding even a single prime, in an incremental way, seems messy at best. From a theoretical perspective, the question is moot as we will see in the next section.

4. The Theoretical Solution

In this section we prove Theorem 1.1.

Our proof makes use of the sieve of Atkin and Bernstein [1]. In particular, we make use of the following properties of this algorithm:

• The sieve works on segments of size Δ, where $\Delta \approx \sqrt{n}$, and has a main loop similar to the segmented sieve of Eratosthenes discussed in §2.4.
• The time to determine the primality of all integers in the interval from n to $n + \Delta$ is $O(\Delta / \log \log n)$ arithmetic operations.
• Each interval can be handled separately, with at most $O(\Delta)$ extra space of data passed from one interval to the next.

Any sieve that had these properties can be used as a basis for our proof.

Proof. We maintain two consecutive intervals of information. The first interval is a simple bit vector and list of primes in the interval n to $n + \Delta$. Calls to the next() function are answered using data from this interval in constant time. We can also handle a nextprime() function that jumps ahead to the next prime in this interval in constant time using the list.

The second interval, for $n + \Delta$ to $n + 2\Delta$, is in process; it is being worked on by the Atkin-Bernstein sieve. We maintain information that allows us to start and stop the sieve computation after any fixed number of instructions. When this interval is finished, it creates a bit vector and list of primes ready for use as the new first interval.

So, when a call to the next() function occurs, after computing its answer from the first interval, a constant amount of additional work time is invested sieving the second interval; enough that after Δ calls to next(), the second interval will be completed.

When a call to the nextprime() function occurs, we compute the distance to that next prime, ℓ, and invest $O(1 + \ell / \log \log n)$ time sieving the second interval after computing the function value.

In this way, by the time the first interval has been used up, the second interval has been completely processed, and we can replace the first interval with the second, and start up the next one. □

Remarks.

• The proof is a bit artificial and of theoretical interest only. Coding this in practice seems daunting.
• Any segmented sieve, more or less, can be used to make this proof work. In particular, if a compact sieve that is faster, or uses less space, can be found, such a sieve immediately implies a version that is also incremental.
• Pritchard has also pointed out that additive sieves, ones that avoid the use of multiplication and division operations, are desirable due to the fact that hardware addition is much faster than multiplication or division. From a theoretical perspective, this is moot since a multiplication table together
with finite-precision multiplication and division routines can reduce all
arithmetic operations on $O(\log n)$-bit integers to additions.
That said, see [19, 16].

References
1. A. O. L. Atkin and D. J. Bernstein, *Prime sieves using binary quadratic forms*, Mathematics of Computation 73 (2004), 1023–1030.
2. Eric Bach and Jeffrey O. Shallit, *Algorithmic number theory*, vol. 1, MIT Press, 1996.
3. Eric Bach and Jonathan P. Sorenson, *Approximately counting semismooth integers*, Proceedings of the 38th International symposium on symbolic and algebraic computation (New York, NY, USA), ISSAC ’13, ACM, 2013, pp. 23–30.
4. C. Bays and R. Hudson, *The segmented sieve of Eratosthenes and primes in arithmetic progressions to 10^{12}*, BIT 17 (1977), 121–127.
5. S. Bengelloun, *An incremental primal sieve*, Acta Informatica 23 (1986), no. 2, 119–125.
6. R. P. Brent, *The first occurrence of large gaps between successive primes*, Mathematics of Computation 27 (1973), no. 124, 959–963.
7. Boris V. Cherkassky, Andrew V. Goldberg, and Craig Silverstein, *Buckets, heaps, lists, and monotone priority queues*, SIAM J. Comput. 28 (1999), no. 4, 1326–1346, http://dx.doi.org/10.1137/S0097539796313490.
8. R. Crandall and C. Pomerance, *Prime numbers, a computational perspective*, Springer, 2001.
9. Brian Dunten, Julie Jones, and Jonathan P. Sorenson, *A space-efficient fast prime number sieve*, Information Processing Letters 59 (1996), 79–84.
10. P. Erdős and M. Kac, *The gaussian law of errors in the theory of additive number theoretic functions*, American Journal of Mathematics 62 (1940), no. 1, 738–742.
11. William F. Galway, *Robert hennon’s “hopping sieve”*, Proceedings of the Third International Symposium on Algorithmic Number Theory (London, UK, UK), ANTS-III, Springer-Verlag, 1998, pp. 169–178.
12. William F. Galway, *Dissecting a sieve to cut its need for space*, Algorithmic number theory (Leiden, 2000), Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 297–312. MR 2002g:11176
13. William F. Galway, *Analytic computation of the prime-counting function*, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2004, Available at http://www.math.uiuc.edu/~galway/PhD_Thesis/.
14. G. H. Hardy and E. M. Wright, *An introduction to the theory of numbers*, 5th ed., Oxford University Press, 1979.
15. D. E. Knuth, *The art of computer programming: Seminumerical algorithms*, 3rd ed., vol. 2, Addison-Wesley, Reading, Mass., 1998.
16. P. Pritchard, *A sublinear additive sieve for finding prime numbers*, Communications of the ACM 24 (1981), no. 1, 18–23,772.
17. P. Pritchard, *Fast compact prime number sieves (among others)*, Journal of Algorithms 4 (1983), 332–344.
18. P. Pritchard, *Linear prime-number sieves: A family tree*, Science of Computer Programming 9 (1987), 17–35.
19. P. Pritchard, *Improved incremental prime number sieves*, First International Algorithmic Number Theory Symposium (ANTS-1) (L. M. Adleman and M.-D. Huang, eds.), May 1994, LNCS 877, pp. 280–288.
20. Jonathan P. Sorenson, *Trading time for space in prime number sieves*, Proceedings of the Third International Algorithmic Number Theory Symposium (ANTS III) (Portland, Oregon) (Joe Buhler, ed.), 1998, LNCS 1423, pp. 179–195.
21. Jonathan P. Sorenson, *The pseudosquares prime sieve*, Proceedings of the 7th International Symposium on Algorithmic Number Theory (ANTS-VII) (Berlin, Germany) (Florian Hess, Sebastian Pauli, and Michael Pohst, eds.), Springer, July 2006, LNCS 4076, ISBN 3-540-36075-1, pp. 193–207.
22. Jonathan P. Sorenson and Ian Parberry, *Two fast parallel prime number sieves*, Information and Computation 144 (1994), no. 1, 115–130.
Computer Science and Software Engineering, Butler University, Indianapolis, IN 46208 USA

E-mail address: sorenson@butler.edu
URL: http://www.butler.edu/~sorenson