Juvenile myelomonocytic leukemia (JMML)

Karen M. Chisholm

Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA; karen.chisholm@seattlechildrens.org

Published in Atlas Database: August 2019

Abstract

Review on juvenile myelomonocytic leukemia, with data on clinics, pathology, and involved genes.

Keywords
Juvenile myelomonocytic Leukemia, Myelodysplastic syndrome, Myeloproliferative disorder, Pediatric

Clinics and pathology

Disease

JMML is a chronic myeloproliferative disorder that typically affects young children: more than 95% of cases are diagnosed before age 4

Phenotype/cell stem origin

JMML arises from pluripotent hematopoietic stem cells (Cooper et al., 2000). Clonal proliferations of myeloid, monocyte-macrophages, erythroid, and sometimes lymphoid progenitor cells are seen.

Note

This current topic of JMML does not include discussion on Ras-associated autoimmune leukoproliferative disorder (RALD), which is a nonmalignant disorder with myelomonocytic hyperplasia and somatic mutations in KRAS or NRAS, often showing clinical overlap with JMML (Calvo et al., 2015)
Juvenile myelomonocytic leukemia (JMML)

Chisholm KM

Epidemiology
The annual incidence of JMML is estimated to be roughly 0.67/million (Passmore et al, 2003). The median age is 1.1-1.8 years with a male to female ratio of 2-3:1. (Hasle et al., 1999; Niemeyer et al., 1997; Passmore et al., 2003). Those with neurofibromatosis type 1 (NF-1) have a 200-fold increased risk of JMML (Stiller et al., 1994)

Clinics
Children with JMML commonly have splenomegaly, lymphadenopathy, and skin rashes (Hess et al., 1996). Involvement of the liver, lung, and GI tract can also occur.
The diagnostic criteria for JMML are:

Clinical and hematologic features (all 4 required)
- Peripheral blood monocyte count ≥1 x 10^9/L
- Peripheral blood and bone marrow blast percentages <20%
- Splenomegaly
- No Philadelphia (Ph) chromosome or BCR-ABL1 fusion

Genetic criteria (1 finding is sufficient)
- Somatic mutation in PTPN11, KRAS, or NRAS
- Clinical diagnosis of neurofibromatosis type 1 or NF1 mutation
- Germine CBL mutation and loss of heterozygosity of CBL

Other criteria*
- Monosomy 7 or any other chromosomal abnormality

or

≥ 2 of the following:
- Increased hemoglobin F (HbF) for age
- Myeloid or erythroid precursors on peripheral blood smear
- Granulocyte-macrophages colony-stimulating factor (GM-CSF) hypersensitivity in colony assay
- Hyperphosphorylation of STAT5

* (those not meeting genetic criteria but having clinical and hematologic criteria must also have).

Cytology
Typical peripheral blood findings include leukocytosis (usually less than 100 x 10^9/L) with variable degree of left shift, monocytosis, and thrombocytopenia. Nucleated red blood cells are often identified in the peripheral blood. Myeloblasts average about 1-5% of total nucleated cells, and by definition, blasts account for <20% of cells. (Hess et al., 1996; Niemeyer et al., 1997)

Pathology
Bone marrow findings are not specific. The marrow is usually hypercellular with a mildly increased M:E ratio (typically 3-5:1), dispersed erythroid elements, and decreased numbers of megakaryocytes. Dysplasia is usually not prominent. Blasts are required to be less than 20%; monocytes are less prominent in the marrow than in the peripheral blood, and are usually enumerated at 5-10% (Hess et al., 1996; Niemeyer et al., 1997).

Treatment
Curative therapy involves an allogeneic hematopoietic stem cell transplant (HSCT). Locatelli and Neimeyer (2015) recommend swift HSCT for those with germline NF1 mutations, somatic PTPN11 mutations, somatic KRAS mutations, and most children with somatic NRAS mutations. Most children with germline CBL mutations demonstrate spontaneous regression, though if there is disease progression, a HSCT should be considered. In children with Noonan syndrome (germline mutations of PTPN11, KRAS, and/or NRAS), the disease may be transient, and hence one can consider a 'watch and wait' scenario, with mild cytoreductive therapy for symptoms, usually 6-mercaptopurine.
In the rare patients with tyrosine kinase fusions, ALK/ROS1 inhibitors, such as crizotinib, may be beneficial (Murakami et al., 2018).

Evolution
As stated above, those with Noonan syndrome with germline mutations in PTPN11, KRAS, and/or NRAS as well as those with germline CBL mutations have disease that may spontaneously regress without therapy (Locatelli and Neimeyer, 2015). However, in other cases, in those who did not receive an allogeneic hematopoietic stem cell transplant (HSCT), the median survival after diagnosis is <12 months (Niemeyer et al., 1997). In those who receive HSCT, the 5-year overall survival rate is 64%, with an event free survival of 52% (Locatelli et al., 2005). The 5-year cumulative incidence of relapse is 35%, while the 5-year cumulative incidence of transplantation-related mortality is 13% (Locatelli et al., 2005).

Prognosis
High risk features include older age (>1.4-4 years), PTPN11 mutation, monosomy 7, HbF >40%, low platelets (20% bone marrow blasts (Dvorak and Loh, 2014; Locatelli et al., 2005; Niemeyer et al., 1997; Novitzky et al., 2000; Passmore et al., 2003). In genetic studies, patients with ≥2 somatic alterations have improved outcomes compared to those with ≥2 alterations (Stiegliz et al., 2015). DNA methylation studies have also been done, showing three clusters of methylation in JMML; those with the highest levels of methylation have been found to have poorer clinical outcomes (Lipka et al., 2017; Stieglitz et al., 2017).

Genetics

Note
Approximately 85-90% of children with JMML have identified mutations, either germline and/or somatic. Somatic, gain-of-function mutations occur in PTPN11, KRAS, and NRAS, in 35-38%, 18%, and 14% of cases respectively. NF1 germline mutations with acquired loss of the normal allele are seen in 5-15% of patients, and CBL germline mutations with acquired loss of the normal allele and duplication of the mutant allele (acquired uniparental disomy) are seen in 9-18% of patients. (Chan et al., 2009; Niemeyer and Flotho, 2019). Rare cases without any of the above mutations have been found to harbor RRAS or RRAS2 somatic mutations (Stieglitz et al., 2015).

Secondary mutations in SETBP1, JAK3, ASXL1, and SH2B3 are also identified and are often subclonal. Additional mutations in the RAS pathway genes are also sometimes detected, coined ‘Ras double mutants’ (Caye et al., 2015; Stieglitz et al., 2015).

A recent study reported receptor tyrosine kinase fusions (DCTN1 /ALK, RANBP2 /ALK, and TBL1XR1 / ROS1) in patients without identified RAS pathway mutations (Murakami et al., 2018).

Cytogenetics
Normal karyotypes are present in most cases of JMML (~68%). Another 16-25% of cases have monosomy 7 or deletion 7q (Aricò et al, 1997; Niemeyer et al., 1997).

Genes involved and proteins

CBL
Location 11q23.3
Note
There is a high rate of spontaneous resolution of disease without stem cell transplant in those with homozygous mutations including a germline mutation (Chang et al., 2014).

DNA/RNA 16 exons.

Protein
This oncogene encodes a RING finger E3 ubiquitin ligase which marks activated receptor and nonreceptor tyrosine kinases and other proteins for degradation by ubiquitination.

Homozygous mutations lead to continuous activation of RAS. (Chang et al., 2014).

Germinal mutations
Germline heterozygous mutations (autosomal dominant) lead to a Noonan syndrome-like disorder. The most common mutation is c.1111T>C (Y371H); other common mutations are missense mutations in exons 8 and 9 or in introns 7 or 8 (Loh et al., 2009).

Somatic mutations
Loss of wild-type allele with duplication of mutant allele.

KRAS
Location 12p12.1
Note
Somatic mutations also occur in RALD (Ras-associated lymphoproliferative disease).

DNA/RNA 6 exons.

Protein
This oncogene encodes a Ras oncogene which encodes a member of the small GTPase superfamily. Mutations lead to activation.

Germinal mutations
Germline heterozygous mutations (autosomal dominant) lead to Noonan syndrome.

Somatic mutations
Somatic mutations are usually point mutations at codons G12, G13, and Q61 (exons 2 and 3) leading to amino acid substitutions (Chan et al., 2009; Chang et al., 2014).

NF1 (neurofibromin 1)

Location 17q11.2

DNA/RNA 57-58 exons (depending on transcript variant).

Protein

GTPase activating protein for Ras. Normally acts as tumor suppressor by inhibiting Ras signaling.

Germinal mutations

Germine mutations cause neurofibromatosis type 1 (NF1) characterized by café-au-lait spots, Lisch nodules, neurofibromas, optic pathway gliomas.

Somatic mutations

Somatic mutations are usually deletions leading to loss of heterozygosity with duplication of the mutated germine allele.

NRAS

Location 1p13.2

Note

Somatic mutations also occur in RALD (Ras-associated lymphoproliferative disease).

DNA/RNA 7 exons.

Protein

A Ras oncogene which encodes a membrane protein with intrinsic GTPase activity that shuttles between the Golgi apparatus and the plasma membrane.

Germinal mutations

Germine heterozygous mutations (autosomal dominant) lead to Noonan syndrome.

Somatic mutations

Somatic mutations are usually point mutations at codons G12, G13, and Q61 (exons 2 and 3) leading to amino acid substitutions (Chan et al., 2009; Chang et al., 2014).

PTPN11

Location 12q24.13

DNA/RNA 16 exons.

Protein

A member of the protein tyrosine phosphatase family which relays signals from activated GM-CSF receptor complexes, regulating proliferation, differentiation, and migration.

Germinal mutations

Germine mutations (autosomal dominant) lead to Noonan syndrome, usually within exons 3, 4, and 13.

Somatic mutations

Somatic mutations usually involve exons 3, 4, and 13, with most common mutations being: c.226G>A (E76K), c.214G>A, c.227A>G, c.1508G>C. (Chan et al., 2009; Chang et al., 2014).

References

Aricò M, Biondi A, Pui CH. Juvenile myelomonocytic leukemia. Blood. 1997 Jul 15;90(2):479-88

Baumann I, Bennett JM, Neimeyer CM, Thiele J. Juvenile myelomonocytic leukemia WHO Classification of Tumours of Haematopoietic and Lymphoid tissues. Editors: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pilier SA, Stein H, Thiele J. International Agency for Research on Cancer, Lyon, 2017. Pgs 89-92

Brotherton J. Biological assay of fungicides against yeasts in vitro using a couler counter Mykosen 1976 Oct;19(10):361-72

Calvo KR, Price S, Braylan RC, Oliveira JB, Lenardo M, Fleisher TA, Rao VK. JMML and RALD (Ras-associated autoimmune leukoproliferative disorder): common genetic etiology yet clinically distinct entities Blood 2015 Apr 30;125(18):2753-6

Caye A, Struuli M, Guizel D, Cassinat B, Gazal S, Fenneteau O, Lainey E, Nouri K, Nakhaei-Rad S, Dvorsky R, Lachenaud J, Pereira S, Vivent J, Verger E, Vidaud D, Galambrun C, Picard C, Petit A, Contet A, Poire M, Sirvent N, Méchouinaud F, Adjajoud D, Paillard C, Nelken B, Reguerre Y, Bertrand Y, Häussinger D, Dalle JH, Ahnadian MR, Baruchel A, Chomienne C, Cavé H. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network Nat Genet 2015 Nov;47(11):1334-40

Chan RJ, Cooper T, Kratz CP, Weiss B, Loh ML. Juvenile myelomonocytic leukemia: a report from the 2nd International JMML Symposium Leuk Res 2009 Mar;33(3):355-62

Chang TY, Dvorak CC, Loh ML. Bedside to bench in juvenile myelomonocytic leukemia: insights into leukemogenesis from a rare pediatric leukemia Blood 2014 Oct 16;124(16):2487-97

Cooper LJ, Shannon KM, Loken MR, Weaver M, Stephens K, Sievers EL. Evidence that juvenile myelomonocytic leukemia can arise from a pluripotential stem cell Blood 2000 Sep 15;96(6):2310-3

Dvorak CC, Loh ML. Juvenile myelomonocytic leukemia: molecular pathogenesis informs current approaches to therapy and hematopoietic cell transplantation Front Pediatr 2014 Mar 28;2:25

Hanke J, Indulski JA. [Immunotoxicology] Med Pr 1988;39(3):186-92

Hasle H, Aricò M, Basso G, Biondi A, Cant Rajnoldi A, Creutzig U, Fenru S, Fonatsch C, Haas OA, Harbott J, Kardos G, Kerndrup G, Mann G, Niemeyer CM, Ptoszkova H, Ritter J, Slater R, Starý J, Stollmann R, van Wering ER, Zimmermann M. Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7 European Working Group on MDS in Childhood (EWOG-MDS) Leukemia

Hess JL, Zutter MM, Castleberry RP, Emanuel PD. Juvenile chronic myelogenous leukemia Am J Clin Pathol 1996 Feb;105(2):238-48

Lipka DB, Witte T, Toth R, Yang J, Wiesenfarth M, Nöllke P, Fischer A, Brocks D, Gu Z, Park J, Strahm B, Wlodarski M, Yoshimi A, Claus R, Lübbert M, Busch H, Boerries M, Hartmann M, Schöning M, Kilik U, Langstein J, Chisholm KM
Wierzbinska JA, Pabst C, Garg S, Catalá A, De Moerloose B, Dworzak M, Hasle H, Locatelli F, Masetti R, Schmugge M, Smith O, Stary J, Ussowicz M, van den Heuvel-Eibrink MM, Assenov Y, Schlesner M, Niemeyer C, Flotho C, Plass C. RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia Nat Commun 2017 Dec 19;8(1):2126

Locatelli F, Niemeyer CM. How I treat juvenile myelomonocytic leukemia Blood 2015 Feb 12;125(7):1083-90

Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S, Mullighan CG, Chen L, Bergsagel E, Bueso-Ramos CE, Emanuel PD, Hasle H, Issa JP, van den Heuvel-Eibrink MM, Locatelli F, Stary J, Trebo M, Wlodarski M, Zecca M, Shannon KM, Niemeyer CM. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia Blood 2009 Aug 27;114(9):1859-63

Maioli MC, Fernandez Tde S, Campos MM, Diamond HR, Veranio-Silva GA, de Souza AM, da Costa ES, Ornellas MH, Thiago LS. Flow cytometry as a diagnostic support tool in juvenile myelomonocytic leukemia Leuk Lymphoma 2016;57(1):233-6

Murakami N, Okuno Y, Yoshida K, Shiraishi Y, Nagae G, Suzuki K, Narita A, Sakaguchi H, Kawashima N, Wang X, Xu Y, Chiba K, Tanaka H, Hama A, Sanada M, Ito M, Hirayama M, Watanabe A, Ueno T, Kojima S, Aburatani H, Mano H, Miyano S, Ogawa S, Takahashi Y, Muramatsu H. Integrated molecular profiling of juvenile myelomonocytic leukemia Blood 2018 Apr 5;131(14):1576-1586

Niemeyer CM, Arico M, Basso G, Biondi A, Cantu Rajonardi A, Creutzig U, Haas O, Harbott J, Hasle H, Kerndrup G, Locatelli F, Mann G, Stollmann-Gibbels B, van’t Veer-Korthof ET, van Wering E, Zimmermann M. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS) Blood

Novitzky N. Myelodysplastic syndromes in children: a critical review of the clinical manifestations and management Am J Hematol

Passmore SJ, Chessells JM, Kempinski H, Hann IM, Brownbill PA, Stiller CA. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival Br J Haematol 2003 Jun;121(5):758-67

Stieglitz E, Mazor T, Olshen AB, Geng H, Gelston LC, Akutagawa J, Lipka DB, Plass C, Flotho C, Chehab FF, Braun BS, Costello JF, Loh ML. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia Nat Commun 2017 Dec 19;8(1):2127

This article should be referenced as such:

Chisholm KM. Juvenile myelomonocytic leukemia (JMML). Atlas Genet Cytogenet Oncol Haematol. 2020; 24(4):180-184.