Improved Budgeted Connected Domination and Budgeted Edge-Vertex Domination*

Ioannis Lamprou, Ioannis Sigalas, and Vassilis Zissimopoulos

Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Greece
{lamprou, sigalasi, vassilis}@di.uoa.gr

Abstract. We consider the Budgeted version of the classical Connected Dominating Set problem (BCDS). Given a graph G and a budget k, we seek a connected subset of at most k vertices maximizing the number of dominated vertices in G. We improve over the previous $(1 - 1/e)/13$ approximation in [Khuller, Purohit, and Sarpatwar, SODA 2014] by introducing a new method for performing tree decompositions in the analysis of the last part of the algorithm. This new approach provides a $(1 - 1/e)/12$ approximation guarantee. By generalizing the analysis of the first part of the algorithm, we are able to modify it appropriately and obtain a further improvement to $(1 - e^{-7/8})/11$. On the other hand, we prove a $(1 - 1/e + \epsilon)$ inapproximability bound, for any $\epsilon > 0$.

We also examine the edge-vertex domination variant, where an edge dominates its endpoints and all vertices neighboring them. In Budgeted Edge-Vertex Domination (BEVD), we are given a graph G and a budget k, and we seek a, not necessarily connected, subset of k edges such that the number of dominated vertices in G is maximized. We prove there exists a $(1 - 1/e)$-approximation algorithm. Also, for any $\epsilon > 0$, we present a $(1 - 1/e + \epsilon)$-inapproximability result by a gap-preserving reduction from the maximum coverage problem. Finally, we examine the “dual” Partial Edge-Vertex Domination (PEVD) problem, where a graph G and a quota n' are given. The goal is to select a minimum-size set of edges to dominate at least n' vertices in G. In this case, we present a $H(n')$-approximation algorithm by a reduction to the partial cover problem.

Keywords: Approximation · Budget · Partial · Connected Domination · Edge-Vertex Domination

1 Introduction

The problem of vertices dominating vertices in a graph is very common and has been extensively studied in graph theory and combinatorial optimization literature. In the classical definition, a dominating set is a subset of vertices such that each vertex is either a member of the subset or adjacent to a member

* This work was partially supported by the Special Account for Research Grants (ELKE) of the National and Kapodistrian University of Athens (NKUA).
of the subset. Intuitively, a dominating set provides a skeleton for the placement
of resources, such that any network node is within immediate reach to them.

However, as it is often the case, there are constraints on the amount of
resources available for placement, e.g., due to financial or other management
reasons. That is, we are limited to a budget of k resources to be placed on network
nodes. The optimization goal is to place the available resources suitably, such
that the number of network nodes they dominate is maximized. This problem is
known in literature as the *Budgeted Dominating Set* problem.

Budgeted domination has applications especially in ad-hoc wireless (sensor)
networks. In this setting, a set of network nodes needs to be identified as the
virtual backbone of the network, that is, the structure responsible for routing
and packet forwarding. To achieve these tasks, nodes in the backbone must be
able to communicate with each other, i.e., form a *connected* set of vertices in
the graph capturing the topology of their communication ranges. The resulting
optimization problem is the *Budgeted Connected Dominating Set* (BCDS) prob-
lem. In this paper, we study BCDS and present an improved guarantee over the
previous state of the art [12].

Besides BCDS, we examine other problems where graph edges are selected
as dominators. The concept of edges dominating adjacent edges has been well-
considered in literature; e.g., see [8,27] for some preliminary results. An example
application is in network tomography where probes need to be placed to monitor
the health of network links [14].

In this paper, we consider cases where resources must be positioned on the
links of a network to dominate network nodes. For instance, consider a power
system where a limited number of static var compensators need to be placed on
transmission lines’ midpoints to locate faults affecting a big proportion of buses
[10]. Another example is to identify a limited-size set of friendships, modeled as
graph edges, having a big impact in terms of neighborhood in a social network.

More formally, the notion in consideration is *edge-vertex domination*, where
an edge dominates its endpoints and any vertices adjacent to its endpoints. We
examine the (in)approximability of *Budgeted Edge-Vertex Domination* (BEVD),
where we seek a, not necessarily connected, set of k (budget) edges dominating
as many vertices as possible. If the edge set is required to be connected, we show
that the problem essentially matches BCDS. Finally, we consider the related
Partial Edge-Vertex Domination (PEVD) problem: a quota of vertices needs to
be dominated by utilizing the minimum number of edges possible.

1.1 Related Work

Finding a minimum-size connected set of vertices dominating the whole graph
is a classical NP-hard problem. In [7], Guha and Khuller proposed a $\ln \Delta + 3$
approximation algorithm, which is (up to constant factors) the best possible,
since the problem is hard to approximate within a factor of $(1 - \epsilon) \log n$ [5]. For
a bigger picture of the research landscape, in [4], many connected domination
results for special graph classes and other applications are surveyed.
In [21], vertex-vertex and edge-edge budgeted domination are considered. For vertex-vertex, matching upper and lower bounds of $(1 - 1/e)$ are given, whereas, for edge-edge, a $(1 - 1/e)$ approximation and a $1303/1304 + \epsilon$ hardness are proved.

In the connected case, budgeted and partial versions of domination have their origins in wireless sensor networking [19,26], where a network backbone with good qualities needs to be determined, which must either be limited in resources and/or cover a big-enough proportion of the network. The first, and thus far state of the art, results for the budgeted and partial cases in general graphs appear in [12], where a $(1 - 1/e)/13$-approximation, respectively an $O(\ln \Delta)$-approximation, is proved for the budgeted, respectively partial, case. Other works have followed in particular settings. For example, in [20], a constant factor approximation algorithm for partial connected domination on a superset of unit disk graphs, namely growth-bounded graphs, is proposed. Their result translates to a 27-approximation guarantee on unit disk graphs.

Regarding edge-vertex domination, the graph-theoretic notion was introduced in [22], together with the complementary case of vertex-edge domination, where a vertex dominates all edges incident to it or to a neighbor of it. Some complexity and algorithmic results about the minimal size of an edge-vertex, respectively vertex-edge, dominating set appear in [18]. More recently, some vertex-edge domination open questions posed in [18] were answered in [2]. In [25], an improved bound on the edge-vertex domination number of trees was proved. Except for the vertex-edge and edge-vertex variants, a mixed domination variant has been introduced [23], where a minimal subset of both vertices and edges need to be selected so that each vertex/edge of the graph is incident/adjacent to a vertex/edge in the subset. Recent example works in this topic study the problem in special graph classes like trees, cacti, and split graphs [17,28].

1.2 Our Results

In Section 2, we present preliminary notions and formally define the problems.

In Section 3, we examine the Budgeted Connected Dominating Set (BCDS) problem, see Definition 1, where a connected subset of budget vertices needs to dominate as many vertices as possible. By introducing a new tree decomposition technique in Subsection 3.2, we prove a $(1 - 1/e)/12 \approx 0.05267$ approximation, in Theorem 2 which improves over the previous best known $(1 - 1/e)/13$ guarantee [12]. (We note the same guarantee has recently been achieved independently in [13].) We further improve the ratio to $(1 - e^{-7/8})/11 \approx 0.05301$ (Theorem 3) by generalizing the first part of the analysis in [12] and then modifying the proposed algorithm accordingly in Subsection 3.3. On the negative side, for any $\epsilon > 0$, we show a first $(1 - 1/e + \epsilon)$ inapproximability bound; see Theorem 5.

In Section 4, we consider edge-vertex domination, where a, not necessarily connected, subset of edges dominates adjacent vertices. If the set of edges is also required to be connected, then the problems essentially reduce to the standard vertex-vertex budgeted/partial dominating set problems; see Proposition 2. In Subsection 4.1, we prove there is a $(1 - 1/e)$-approximation algorithm (Theorem 7). This is the best possible since we prove an $(1 - 1/e + \epsilon)$ inapproximability
lower bound, for any ε > 0, see Theorem 8. In Subsection 4.2 we consider the problem of Partial Edge-Vertex Domination. In Theorem 10 we prove that, in the general case, there exists an H(n′)-approximation, where H(·) is the Harmonic number and n′ is the number of vertices requested to be dominated. To do so, we employ a reduction to a partial version of the classical Set Cover problem.

Finally, in Section 5 we give some concluding remarks.

2 Preliminaries

A graph G is denoted as a pair $(V(G), E(G))$ (or simply (V, E)) of the vertices and edges of G. The graphs considered are simple (neither loops nor multi-edges are allowed), connected and undirected. Besides the aforementioned, no assumptions are made on the topology of the input graphs.

Two vertices $u, v \in V$ connected by an edge, denoted (u, v) or equivalently (v, u), are called adjacent or neighboring. The open neighborhood of a vertex $v \in V$ is defined as $N(v) = \{u \in V : (v, u) \in E\}$, while the closed neighborhood is defined as $N[v] = \{v\} \cup N(v)$. For a subset of vertices $S \subseteq V(G)$, we expand the above definitions to $N(S) = \bigcup_{v \in S} N(v) \setminus S$ and $N[S] = N(S) \cup S$.

The degree of a vertex $v \in V$ is defined as $d(v) = |N(v)|$. The minimum, resp. maximum, degree of G is denoted by $\delta = \min_{v \in V} d(v)$, resp. $\Delta = \max_{v \in V} d(v)$.

Let us now consider the neighborhood of edges in terms of vertices. Given an edge $e = (v, u) \in E$, let $I(e) = \{v, u\}$ stand for the set containing its two incident vertices. We define the neighborhood of an edge e as $N[e] = \bigcup_{v \in I(e)} N[v]$. For a set of edges $E' \subseteq E$, we define $V(E') = \{v \in V \mid \exists e \in E' \text{ such that } v \in I(e)\}$. Then, we define the edge-set neighborhood as $N[E'] = N[V(E')]$. Here, we focus on a closed neighborhood definition, since it captures the number of vertices incident or adjacent to a set of edges in the standard edge-vertex domination paradigm (Definition 8 in [18]; originally introduced in [22]). That is, we say that a set of edges E' dominates $N[E']$.

Let us now proceed to formally define the problems studied in this paper.

Definition 1 (BUDGETED CONNECTED DOMINATING SET). Given a graph $G = (V, E)$ and an integer k, select a subset $S \subseteq V$, where $|S| \leq k$, such that the subgraph induced by S is connected and $|N[S]|$ is maximized.

Definition 2 (BUDGETED EDGE-VERTEX DOMINATION). Given a graph $G = (V, E)$ and an integer k, select a subset $E' \subseteq E$, where $|E'| \leq k$, such that $|N[E']|$ is maximized.

Definition 3 (PARTIAL EDGE-VERTEX DOMINATION). Given a graph $G = (V, E)$ and an integer n', select a subset $E' \subseteq E$ of minimum size such that it holds $|N[E']| \geq n'$.
the state of the art algorithm \cite{12}, which achieves a \((1 - 1/e)/13\) approximation factor. We then show how the analysis can be improved to achieve a \((1 - 1/e)/12\) guarantee via an alternative tree decomposition scheme; see Theorem \ref{thm:improved}. Then, we generalize the analysis of the greedy procedure in order to modify a call within the state of the art algorithm. This modification allows us to increase the approximation factor even further to \((1 - e^{-7/8})/11\); see Corollary \ref{cor:improved}. On the other hand, we conclude this section with a \((1 - 1/e + \epsilon)\), for any \(\epsilon > 0\), inapproximability result; see Theorem \ref{thm:inapprox}.

3.1 Previous Approach

Khuller et al., see Algorithm \ref{alg:gds} (Algorithm 5.1 in \cite{12}), design the first constant factor approximation algorithm for BCDS with an approximation guarantee of \((1 - 1/e)/13\). Their approach comprises three method calls: (i) a call to an algorithm returning a greedy dominating set \(D\) and its corresponding profit function \(p\); see Algorithm \ref{alg:gds} (GDS), (ii) a call to a 2-approximation algorithm, which follows from \cite{6,9}, for the \textit{Quota Steiner Tree} (QST) problem defined below, and (iii) a call to a dynamic programming scheme \textit{Best}_k(\cdot) to determine the maximum-profit subtree of size at most \(k\) within a bigger-size tree.

Algorithm 1: Greedy Dominating Set (GDS) \cite{12}

\begin{algorithm}
\begin{algorithmic}
\State \textbf{Input} : A graph \(G = (V(G), E(G))\)
\State \textbf{Output}: A dominating set \(D \subseteq V(G)\) and a profit function \(p : V(G) \rightarrow \mathbb{N} \cup \{0\}\)
\State \(D \leftarrow \emptyset\)
\State \(U \leftarrow V(G)\)
\Forever{\(U \neq \emptyset\)}
\State \(w \leftarrow \arg \max_{v \in V(G) \setminus D} |N_G(v)| \quad \text{/* } N_G(v) = N[v] \cap U \text{ */}\)
\State \(p(w) \leftarrow |N_G(w)|\)
\State \(U \leftarrow U \setminus N_G(w)\)
\State \(D \leftarrow D \cup \{w\}\)
\EndForever
\State \Return \((D, p)\)
\end{algorithmic}
\end{algorithm}

\textbf{Definition 4 (QUOTA STEINER TREE).} Given a graph \(G\), a vertex profit function \(p : V(G) \rightarrow \mathbb{N} \cup \{0\}\), an edge cost function \(c : E(G) \rightarrow \mathbb{N} \cup \{0\}\) and a quota \(q \in \mathbb{N}\), find a subtree \(T\) that minimizes \(\sum_{e \in E(T)} c(e)\) subject to the condition \(\sum_{v \in V(T)} p(v) \geq q\).

\textbf{Theorem 1 (Follows from results in \cite{6,9}).} There is a 2-approximation algorithm for QUOTA STEINER TREE.
Algorithm 2: Greedy Profit Labeling Algorithm for BCDS [12]

Input: A graph $G = (V(G), E(G))$ and $k \in \mathbb{N}$

Output: A tree \tilde{T} on at most k vertices

1. $(D, p) \leftarrow GDS(G)$
2. $T \leftarrow QST(G, (1 - 1/e) \text{OPT}, p)$
3. $\tilde{T} \leftarrow \text{Best}_k(T, p)$
4. return \tilde{T}

In their analysis, Khuller et al. [12] demonstrate that there exists a set $D' \subseteq D$ of size k which dominates at least $(1 - 1/e) \text{OPT}$ vertices, where OPT is the optimal number of dominated vertices achieved with a budget of k. Furthermore, D' can be connected by adding at most another $2k$ Steiner vertices, so giving a total of $3k$ vertices. Then, it suffices to call the 2-approximation algorithm for QST, see line 2 in Algorithm 2 with profit function p (returned by algorithm GDS at line 1), all edge costs equal to 1 and quota equal to $(1 - 1/e) \text{OPT}$. The value OPT can be guessed via a binary search between k and n. Overall, the returned tree has size at most $6k$ vertices and dominates at least $(1 - 1/e) \text{OPT}$ vertices: a $(6, 1 - 1/e)$ bicriteria approximation is attained (Lemma 5.2 [12]).

As a final step ($\text{Best}_k(\cdot)$ at line 3), a dynamic programming approach is used to identify the best-profit subtree with at most k vertices, such that the budget requirement is satisfied; see paragraph 5.2.2 in [12] for the relevant recurrences. To obtain a true approximation guarantee for the final solution, the following tree decomposition lemma is used recursively to prove that, for a sufficiently large value of k, a tree of size $6k$ can be decomposed into 13 trees; each of size at most k (Lemma 5.4 [12]).

Lemma 1 (Folklore). Given any tree on n vertices, we can decompose it into two trees (by replicating a single vertex) such that the smaller tree has at most \(\lceil \frac{n}{2} \rceil \) vertices and the larger tree has at most $\lceil \frac{2n}{3} \rceil$ vertices.

3.2 Improvement to Previous Approach: Eligible Trees

An improvement to the analysis in [12] can be achieved by utilising a more refined tree decomposition (than the recursive application of Lemma 1) to provide the approximation guarantee at the final step. To do so, we consider a tree decomposition scheme based on the notion of eligible trees as introduced in [3].

Definition 5 ([3]). Given a directed tree $T = (V_T, E_T)$, an eligible subtree T' is a subtree of T rooted at some vertex $i \in V_T$ such that the forest obtained by deleting the edges with both endpoints in T', and then all the remaining vertices of degree 0, consists of a single tree.

Assuming T' is an eligible subtree not identical to T, after deleting all edges with both endpoints in T', the only vertex of T' with degree strictly greater than 0 is the root vertex of T'. That is, like in Lemma 1, a single vertex is replicated
when removing T' from T; see Figure 1. The following lemma suggests that, for any tree, there exists an eligible subtree within some specific size range.

Lemma 2 (Lemma 5 [3]). For each directed tree $T = (V_T, E_T)$, and for each $p \in [1, |V_T|] \cap \mathbb{N}$, there exists an eligible subtree T' of T such that $p/2 \leq |V_{T'}| \leq p$.

![Fig. 1. An example eligible subtree of size 6 (enclosed within the dashed shape). After removing its edges and then all remaining vertices of degree 0 (vertices with lines), a single tree remains (enclosed within the solid shape). A single vertex is replicated in both trees, the black vertex.](image)

We can now proceed to employ the above lemma iteratively toward a decomposition scheme for the tree of size at most $6k$ returned by the Quota Steiner Tree call in Algorithm 2.

Lemma 3. Let k be an integer. Given any tree T on ak vertices, where $a \in \mathbb{N}$ is a constant, and $k \geq 4a - 2$, we can decompose it into $2a$ subtrees each on at most k vertices.

Proof. To make T directed, we orient its edges away from some arbitrary vertex picked as the root. Now, we iteratively apply Lemma 2 with $p = k$, until we are left with a tree on at most k vertices.

First, let us show that after i iterations, the remaining tree has at most $ak - i \cdot (k/2 - 1)$ vertices. At the first iteration, there exists an eligible subtree T_1' such that $k/2 \leq |V_{T_1'}| \leq k$. After removing it from $T_1 := T$ we are left with T_2 of size $|V_{T_1}| - (|V_{T_1'}| - 1)$, since the root of T_1' remains in T_1. Hence, $|V_{T_1}| \leq ak - (k/2 - 1)$, since $k/2 \leq |V_{T_1'}|$. Assume that after i iterations of the above procedure, it holds for the remaining tree T_{i+1} that $k < |V_{T_{i+1}}| \leq ak - i \cdot (k/2 - 1)$.
We inductively apply Lemma \ref{lem:inductive_a} with \(p = k \) and get an eligible subtree \(T'_{i+1} \). Removing \(T'_{i+1} \) from \(T_{i+1} \), we get \(T_{i+2} \), where \(|V_{T_{i+2}}| = |V_{T_{i+1}}| - (|V_{T'_{i+1}}| - 1) \leq ak - i \cdot (k/2 - 1) = ak - (i + 1) \cdot (k/2 - 1) \).

We proved that, after \(i \) removals of eligible subtrees from the original tree, for the remaining tree \(T_{i+1} \) it holds \(|V_{T_{i+1}}| \leq ak - i \cdot (k/2 - 1) \). For \(i = 2a - 1 \), we get \(|V_{T_{2a}}| \leq ak - (2a - 1) \cdot (k/2 - 1) = ak - ak + 2a + k/2 - 1 = k/2 + 2a - 1 \), which is at most \(k \) for a sufficiently large value of \(k \), i.e., \(k \geq 4a - 2 \). Overall, the original tree \(T_1 \) has been decomposed into \(2a \) trees: \(T'_1, T'_2, \ldots, T'_{2a-1} \) and \(T_{2a} \), each of which has at most \(k \) vertices.

\[\square \]

Theorem 2. Algorithm \ref{alg:modified} is a \((1 - 1/e)/12\) approximation for BCDS.

Proof. By Lemma 5.2 in [12], there is a bicriteria \((6k,1 - 1/e)\) approximation for BCDS. That is, line 2 in Algorithm \ref{alg:modified} returns a tree of size at most \(6k \) which dominates at least \((1 - 1/e)\)OPT vertices. By Lemma \ref{lem:main} for \(a = 6 \), a tree on \(6k \) vertices can be decomposed into 12 subtrees on at most \(k \) vertices. To obtain the best subtree on at most \(k \) vertices, we run the dynamic programming procedure (subsection 5.2.2 [12]). Let \(T^* \) be the returned subtree. Then, it holds \(p(T^*) \geq \frac{1}{12} \sum_{i=1}^{12} p(T_i) \geq \frac{1}{12} p(T) \geq \frac{1}{12} (1 - 1/e) \) OPT.

\[\square \]

3.3 An Improved Modified Algorithm

In the following proof, we generalize the analysis given in Lemma 5.1 [12] regarding the existence of a greedily selected set (of at most \(k \) vertices) with a good intersection to the (neighborhood of the) optimal solution. Below, let \(D \) and \(p \) refer to the dominating set and profit function returned by GDS (line 1 in Algorithm \ref{alg:modified}).

Lemma 4. There exists a set \(D' \subseteq D \), \(|D'| \leq \lceil ck \rceil\), for some constant \(0 < c \leq 1 \), such that \(p(D') \geq (1 - e^{-c}) \)OPT. Furthermore, \(D' \) can be connected using at most another \(k + \lceil ck \rceil \) Steiner vertices.

Proof. We define the layers \(L_1, L_2, L_3 \) as follows. \(L_1 \) contains the (at most \(k \)) vertices of an optimal BCDS solution. Let \(L_2 = N(L_1) \), meaning that the optimal number of dominated vertices is OPT = \(|L_1 \cup L_2|\). Also, let \(L_3 = N(L_2) \setminus L_1 \) and \(R = V \setminus (L_1 \cup L_2 \cup L_3) \), where \(R \) denotes the remaining vertices, i.e., those outside the three layers \(L_1, L_2, L_3 \). Let us now consider the intersection of these layers with the greedy dominating set \(D \) returned by GDS (Algorithm \ref{alg:greedy}). Let \(L'_i = D \cap L_i \) for \(i = 1, 2, 3 \) and \(D' = \{ v_1, v_2, \ldots, v_\lambda \} \) denote the first \(\lambda = \lceil ck \rceil \) vertices from \(L'_1 \cup L'_2 \cup L'_3 \) in the order selected by the greedy algorithm. In order to bound the total profit in \(D' \), we define \(g_i = \sum_{\mu=1}^{\lambda} p(v_\mu) \) as the profit we gain from the first \(i \) vertices of \(D' \). For the initial value, let \(g_0 = 0 \).

Proposition 1 (Claim 1 [12]). For \(i = 0, 1, \ldots, k - 1 \), it holds \(g_{i+1} - g_i \geq \frac{1}{k} (\text{OPT} - g_i) \).
Proof (Proposition 4). Consider the iteration of the greedy algorithm, where vertex v_{i+1} is being picked. We first show that at most g_i vertices of $L_1 \cup L_2$ have been already dominated. Note that any vertex $w \in L_1 \cup L_2$ that has been already dominated must have been dominated by a vertex in $\{v_1, v_2, \ldots, v_i\}$. This is because no vertex from R can neighbor w. Since $g_i = \sum_{j=1}^{i} p(v_j)$ is the total profit gained so far, it follows that at most g_i vertices from $L_1 \cup L_2$ have been dominated. Hence, there are at least $\text{OPT} - g_i$ undominated vertices in $L_1 \cup L_2$. Since the k vertices of L_1 together dominate all of these, it follows that there exists at least one vertex $v \in L_1$ which neighbors at least $\frac{1}{k}(\text{OPT} - g_i)$ undominated vertices. Since the greedy algorithm chose to pick v_{i+1} at this stage, instead of the v above, it follows that $p(v_{i+1}) = g_{i+1} - g_i \geq \frac{1}{k}(\text{OPT} - g_i)$. □

By solving the recurrence in Claim 1, we get $g_i \geq (1 - (1 - \frac{1}{k})^i) \text{OPT}$. Then, for the set D', it holds $\sum_{v \in D'} p(v) = g_{\lceil ck \rceil} \geq \left(1 - (1 - \frac{1}{k})^\lceil ck \rceil \right) \text{OPT} \geq \left(1 - (1 - \frac{1}{k})^i \right) \text{OPT} \geq \left(1 - \left(1 - \frac{1}{k}\right)^k \right) \text{OPT} \geq (1 - e^{-c}) \text{OPT}$. Moreover, let us show that an extra $k + \lceil ck \rceil$ vertices are enough to ensure that D' is connected. We select a subset $D'' \subseteq L_2$ of size at most $|L_3 \cap D'| \leq \lceil ck \rceil$ to dominate all vertices of $D' \cap L_3$. Then, we ensure that all vertices are connected by simply adding all the k vertices of L_1. Thus, $\hat{D} = D' \cup D'' \cup L_1$ induces a connected subgraph that contains at most $k + 2\lceil ck \rceil$ vertices.

We can now make use of this generalized analysis and suggest a modified algorithm, parameterized by the parameter c, where the Quota Steiner Tree routine is called with a quota of $(1 - e^{-c}) \text{OPT}$; see Algorithm 3 below.

Algorithm 3: Modified Greedy Profit Labeling Algorithm for BCDS(c)
Input: A graph $G = (V(G), E(G))$, $k \in \mathbb{N}$
Output: A tree \hat{T} on at most k vertices
1 $(D, p) \leftarrow GDS(G)$
2 $T \leftarrow QST(G, (1 - e^{-c}) \text{OPT}, p)$
3 $\hat{T} \leftarrow Best_k(T, p)$
4 return \hat{T}

Theorem 3. For some constant $0 < c \leq 1$, there is a $(1 - e^{-c})/(\lceil 8c \rceil + 4)$ approximation for BCDS.

Proof. By Lemma 4 and Theorem 4, it follows that Algorithm 3 (line 2) returns a tree of size at most $2k + 4\lceil ck \rceil \leq 2k + 4(ck + 1) = (4c + 2)k + 4$ with profit at least $(1 - e^{-c}) \text{OPT}$. For a final solution, it suffices to return a subtree of T, namely T', of size at most k which dominates the maximum number of vertices (call $Best_k(\cdot)$ in line 3 of Algorithm 3). This can be done in polynomial time via dynamic programming; see section 5.2.2 in [12].
To prove a lower bound on the number of vertices \(T' \) dominates, we decompose \(T \) into a set of subtrees via iteratively removing an eligible tree from \(T \). To do so, we apply Lemma 2 with \(p = k \). Like in the proof of Lemma 3, we can prove by induction that after \(i \) such removals of eligible subtrees of size at most \(k \), the remaining tree has at most \(|T| - i \cdot (k/2 - 1) \) vertices. For \(i = \lceil 8c + 3 \rceil \cdot (k/2 - 1) \leq (4c + 2)k + 4 - (8c + 3) \cdot (k/2 - 1) = k/2 + 8c + 7 \), which is at most \(k \) for a sufficiently large choice of \(k \), i.e., \(k \geq 16c + 14 \). Therefore, we can decompose \(T \) into \(\lceil 8c + 3 \rceil + 1 = \lceil 8c \rceil + 4 \) subtrees of size at most \(k \), say \(T_1, T_2, \ldots, T_{\lceil 8c \rceil + 4} \). Then, from pigeonhole principle and our decomposition, it follows \(p(T) \geq \frac{1}{\lceil 8c \rceil + 4} \sum_{i=1}^{\lceil 8c \rceil + 4} p(T_i) \geq \frac{1}{\lceil 8c \rceil + 4} \cdot \frac{1}{(1 - \epsilon)^c} \cdot \text{OPT} \). □

For \(c = 1 \), Theorem 3 matches the approximation ratio already given in Theorem 2. Since the above ratio is a function of the parameter \(c \), we numerically compute its maximum value to 1/11\((1 - e^{-7/8})\) attained for \(c = 7/8 \).

Corollary 1. There is a \(1/11(1 - e^{-7/8}) \)-approximation for BCDS.

3.4 Inapproximability

In this Subsection, we demonstrate a first inapproximability result for BCDS by identifying a reduction from the well known Maximum Coverage problem.

Definition 6 (MAX-\(k \)-COVER). Given a positive integer \(k \) and a collection of sets \(S = \{S_1, S_2, \ldots, S_m\} \), find a set \(S' \subseteq S \), where \(|S'| \leq k \), which maximizes the number of covered elements \(|\bigcup_{S_i \in S} S_i| \).

Theorem 4 ([5, 11]). For any \(\epsilon > 0 \), there is no polynomial time approximation algorithm for MAX-\(k \)-COVER within a ratio of \((1 - 1/e + \epsilon) \) unless \(P = NP \).

Let us now demonstrate a gap-preserving reduction (Definition 10.2 [1]) which transforms an instance of MAX-\(k \)-COVER, namely \(\text{MC}(S, k) \), where \(S = \{S_1, S_2, \ldots, S_m\} \), to an instance of BCDS, namely \(\text{BCDS}(G, k) \), where \(G = (V, E) \). For an example illustration, see Figure 2. For each set \(S_i \in S \), we include a vertex \(s_i \) in \(V \). Let the union of elements in the set system \(\bigcup_{S_i \in S} S_i \) be represented as \(\{x_1, x_2, \ldots, x_n\} \). For each element \(x_j \), we include \(q \) vertices in \(V \), namely \(x_{j,1}, x_{j,2}, \ldots, x_{j,q} \), where \(q \) is a polynomial in \(m (q \geq m^2 \text{ suffices}) \). Overall, \(|V| = m + qn \). In the edge set \(E \), we include edges \((s_i, s_j) \), for each \(i, j = 1, 2, \ldots, m \), \(i \neq j \), and \((s_i, x_{j,z}) \), for each \(i, j \) such that \(x_j \in S_i \) and for each \(z = 1, 2, \ldots, q \). Notice the size is polynomial in the input of \(\text{MC}(S, k) \), since we get \(|E| \leq \binom{m}{2} + mqn \). In Lemma 5, let \(\text{MC}(S, k) \), respectively \(\text{BCDS}(G, k) \), also refer to the optimal solution for the corresponding MAX-\(k \)-COVER, resp. BCDS, instance.

Lemma 5. There is a gap-preserving reduction from MAX-\(k \)-COVER to BCDS so that,

(i) if \(\text{MC}(S, k) \geq \lambda \), then \(\text{BCDS}(G, k) \geq \Lambda \), where \(\Lambda := m + q \lambda \), and
Fig. 2. The graph G constructed for the gap-preserving reduction employed in Lemma 5. Vertices s_i within the dashed ellipse form a clique. Vertex s_i is connected to vertices $x_{i, 1}, x_{i, 2}, \ldots, x_{i, q}$ in G if $S_i \ni x_j$ in $MC(S, k)$.

(ii) if $MC(S, k) < (1 - \frac{1}{c} + \epsilon) \cdot \lambda$, then $BCDS(G, k) < (1 - \frac{1}{\epsilon} + \frac{m}{\epsilon(m + q \lambda)} + \epsilon \cdot \frac{q \lambda}{m + q \lambda}) \cdot \Lambda$.

Proof. If it holds $MC(S, k) \geq \lambda$, then there exists a feasible solution $S' = \{S_{i_1}, S_{i_2}, \ldots, S_{i_l}\}$, $l \leq k$, for which at least λ elements are covered. We form a feasible solution $C = \{s_{i_1}, s_{i_2}, \ldots, s_{i_l}\}$ for $BCDS$. Since vertices s_i form a clique, $\{s_1, s_2, \ldots, s_m\} \subseteq N[C]$. Also, since at least λ elements are covered, it holds that at least $q \lambda$ vertices $x_{j, z}$ are dominated by C; q per each covered element. Overall, it follows $BCDS(G, k) \geq \Lambda$.

For the second part of the proof, consider some feasible solution D for $BCDS$. We construct another feasible solution D' as follows. Initially, D' is an empty set. For each vertex of the form s_i in D, add s_i in D'. For each vertex of the form $x_{j, z}$ in D, add some vertex s_i in D', if s_i does not already exist, such that $x_j \in S_i$ in the max cover instance. By construction $|D'| \leq |D|$. Moreover, since, for $x_j \in S_i$, it holds $N[x_{j, z}] \subseteq \{s_1, s_2, \ldots, s_m\} \subseteq N[s_i]$, it follows $N[D] \subseteq N[D']$. So, for this part of the proof, it suffices to consider solutions for $BCDS$ containing only vertices s_i. Hence, if $MC(S, k) < (1 - \frac{1}{c} + \epsilon) \cdot \lambda$, at most $(1 - \frac{1}{c} + \epsilon) \cdot q \lambda$ vertices $x_{j, z}$ can be dominated, and overall it holds

$$BCDS(G, k) < m + (1 - \frac{1}{c} + \epsilon)q \lambda$$

$$= (m + q \lambda - \frac{1}{c}(m + q \lambda) + \frac{1}{c}m + \epsilon \cdot q \lambda)$$

$$= (1 - \frac{1}{c} + \frac{m}{\epsilon(m + q \lambda)} + \epsilon \cdot \frac{q \lambda}{m + q \lambda}) \cdot (m + q \lambda)$$

$$= (1 - \frac{1}{c} + \frac{m}{\epsilon(m + q \lambda)} + \epsilon \cdot \frac{q \lambda}{m + q \lambda}) \cdot \Lambda$$

□

Theorem 5. For any $\epsilon > 0$, there is no polynomial time approximation algorithm for $BCDS$ within a ratio of $(1 - 1/c + \epsilon)$ unless $P = NP$.

Proof. By the second part of Lemma 5, if $MC(S, k) < (1 - \frac{1}{c} + \epsilon) \cdot \lambda$, then it holds $BCDS(G, k) < (1 - \frac{1}{c} + \frac{m}{\epsilon(m + q \lambda)} + \epsilon \cdot \frac{q \lambda}{m + q \lambda}) \cdot \Lambda$. If we select $q \geq m^\rho$ for some $\rho \geq 2$, for $m \to \infty$, it holds $\frac{m}{\epsilon(m + q \lambda)} \to 0$. Also, we observe $0 \leq \epsilon \cdot \frac{q \lambda}{m + q \lambda} \leq \epsilon$. By combination with Theorem 4, we complete the proof. □
4 Edge-Vertex Domination

We now turn our attention to edge-vertex domination problems, where the goal is to identify a set of edges which dominate vertices of the graph. We consider both budgeted and partial cover cases.

4.1 Budgeted Edge-Vertex Domination

Let us consider the general case of BEVD (Definition 2), where the selected subset of edges does not need to be connected. We identify a strong connection to the classical MAX-\(k\)-COVER problem; see Definition 6 and Theorems 4, 6. On the positive side, in Theorem 7, we prove a \((1 - 1/e)\)-approximation by reducing BEVD to an instance of MAX-\(k\)-COVER. On the negative side, we demonstrate a gap-preserving reduction from MAX-\(k\)-COVER to BEVD and therefore conclude that the above approximation is the best possible (Theorem 8).

Theorem 6 (Proposition 5.1 [5]). There exists a \((1 - 1/e)\)-approximation algorithm in polynomial time for MAX-\(k\)-COVER.

Theorem 7. There exists a \((1 - 1/e)\)-approximation algorithm for BEVD.

Proof. Let a graph \(G = (V,E)\) and an integer \(k\) be the input for BEVD. Moreover, let \(E = \{e_1, e_2, \ldots, e_m\}\). We construct an instance MC(\(S, k\)) for MAX-\(k\)-COVER with input \(S\) and \(k\), where \(S = \{S_1, S_2, \ldots, S_m\}\) and \(S_i = N[e_i]\) for all \(i = 1, 2, \ldots, m\). Given a solution \(S' = \{S_{i_1}, S_{i_2}, \ldots, S_{i_l}\}\) to MAX-\(k\)-COVER, for some \(l \leq k\), we transform it into a solution \(E' = \{e_{i_1}, e_{i_2}, \ldots, e_{i_l}\}\) for BEVD, and vice versa. We observe that the number of dominated vertices in BEVD(\(G, k\)) equals the number of covered elements in MC(\(S, k\)). That is, \(N[E'] = |\bigcup_{e_i \in E'} N[e_i]| = |\bigcup_{S_i \in S'} S_i|\), since by construction \(N[e_i] = S_i\). Applying Theorem 6 completes the proof. \(\square\)

We now proceed and demonstrate a gap-preserving reduction (Definition 10.2 [1]) which transforms an instance of MAX-\(k\)-COVER, namely MC(\(S, k\)), where \(S = \{S_1, S_2, \ldots, S_m\}\) to an instance of BEVD, namely BEVD(\(G, k\)), where \(G = (V, E)\). For an illustration, see Figure 3. The vertex set \(V\) contains a “root” vertex \(v_0\). For each set \(S_i \in S\), we include a vertex \(s_i\) in \(V\). Let the union of elements in the set system \(\bigcup_{S_i \in S} S_i\) be represented as \(\{x_1, x_2, \ldots, x_n\}\). For each element \(x_j\), we include \(q\) vertices in \(V\), namely \(x_{j,1}, x_{j,2}, \ldots, x_{j,q}\), where \(q\) is a polynomial in \(m\) (\(q \geq m^2\) suffices). Overall, we have \(|V| = m + qn\). In the edge set \(E\), we include the edges \((v_0, s_i)\), for each \(i = 1, 2, \ldots, m\), and \((s_i, x_{j,z})\), for each \(i, j\) such that \(x_j \in S_i\) and for each \(z = 1, 2, \ldots, q\). The size is polynomial in the input of MC(\(S, k\)), since we get \(|E| \leq m + qm n\). In Lemma 6, let MC(\(S, k\)), respectively BEVD(\(G, k\)), refer to the optimal solution for the corresponding max cover, resp. BEVD, instance.

Lemma 6. There is a gap-preserving reduction from MAX-\(k\)-COVER to BEVD so that,
(i) if $\text{MC}(S, k) \geq \lambda$, then $\text{BEVD}(G, k) \geq A$, where $A := m + 1 + q\lambda$, and

(ii) if $\text{MC}(S, k) < (1 - \frac{1}{e} + \epsilon) \cdot \lambda$, then $\text{BEVD}(G, k) < (1 - \frac{1}{e} + \frac{m+1}{e(m+1+q\lambda)} + \epsilon \frac{q\lambda}{m+1+q\lambda}) \cdot A$.

Proof. If $\text{MC}(S, k) \geq \lambda$, there exists a feasible solution $S' = \{S_1, S_2, \ldots, S_l\}$, $l \leq k$, for which at least λ elements are covered. We then form a feasible solution E' for BEVD where $E' = \{(v_0, s_1), (v_0, s_2), \ldots, (v_0, s_t)\}$. For each edge (v_0, s_i) in E', it holds $\{v_0, s_1, \ldots, s_m\} \subseteq N[(v_0, s_i)]$. Moreover, since at least λ elements x_j are covered, then at least $q\lambda$ vertices of the form $x_{j,z}$ are dominated; q per each covered element. It follows $\text{BEVD}(G, k) \geq m + 1 + q\lambda$.

For part (ii), consider a feasible solution for BEVD, say E'. We construct another feasible solution E'' as follows. For each edge of the form $(v_0, s_i) \in E'$, include it in E''. For each edge of the form $(s_i, x_{j,z}) \in E'$, for some i, j, z, include the edge $(v_0, s_i) \in E''$, if it has not been included already. Notice that, since at least one edge of the form (v_0, s_i) is a member of E'', then $\{v_0, s_1, s_2, \ldots, s_m\} \subseteq N[(v_0, s_i)]$. Let us consider the differences in the number of dominated element-vertices $x_{j,z}$. Let $X_w = \{x_{w,1}, x_{w,2}, \ldots, x_{w,q}\}$ for $w = 1, 2, \ldots, n$ and $Y_i = X_{i_1} \cup X_{i_2} \cup \ldots \cup X_{i_{|S_i|}}$, where $x_{i_j} \in S_i$, for $j = 1, 2, \ldots, |S_i|$, in instance $\text{MC}(S, k)$. Then, it follows $Y_i \subseteq N[(s_i, x_{j,z})]$, since all vertices in Y_i are adjacent to s_i. For the same reason, it holds $Y_i \subseteq N[(v_0, s_i)]$. Also, by construction, no other vertices $x_{j,z}$ are dominated by $(s_i, x_{j,z})$; the only ones dominated are those adjacent to s_i. The above lead us to the conclusion $N[(s_i, x_{j,z})] \subseteq N[(v_0, s_i)]$. Overall, inductively, we construct a feasible solution E'' for which $|E''| \leq |E'|$ and $\text{BEVD}(G, k) \leq \text{BEVD}(G, k)$.

Given the above, we need only consider one case for a feasible solution of BEVD in G: all selected edges are of the form (v_0, s_i). We select at most k edges only of the form (v_0, s_i). They dominate strictly fewer than $m + 1 + (1 - \frac{1}{e} + \epsilon)q\lambda$ vertices. That is, vertices $v_0, s_1, s_2, \ldots, s_m$ are dominated and, since the selected edges are incident to at most k vertices s_i and by assumption $\text{MC}(S, k) < (1 - \frac{1}{e} + \epsilon) \lambda$, strictly fewer than $(1 - \frac{1}{e} + \epsilon)q\lambda$ element-vertices are dominated; q per each covered element.
We obtain the following bound for the optimal solution:

\[
\text{BEVD}(G, k) < m + 1 + \left(1 - \frac{1}{\epsilon} + \epsilon\right)q\lambda \\
= (m + 1 + q\lambda) - \frac{1}{\epsilon}(m + 1 + q\lambda) + \frac{1}{\epsilon}(m + 1 + q\lambda) \\
= (1 - \frac{1}{\epsilon} + \frac{m+1}{\epsilon(m+1+q\lambda)} + \epsilon \cdot \frac{q\lambda}{m+1+q\lambda}) \cdot (m + 1 + q\lambda) \\
= (1 - \frac{1}{\epsilon} + \frac{m+1}{\epsilon(m+1+q\lambda)} + \epsilon \cdot \frac{q\lambda}{m+1+q\lambda}) \cdot A
\]

\[\square\]

Theorem 8. For any \(\epsilon > 0\), there is no polynomial time approximation algorithm for BEVD within a ratio of \(1 - 1/\epsilon + \epsilon\) unless \(P = NP\).

Proof. Notice that, in Lemma 6(ii), if \(MC(S, k) < (1 - \frac{1}{\epsilon} + \epsilon) \cdot \lambda\), it holds \(\text{BEVD}(G, k) < (1 - \frac{1}{\epsilon} + \frac{m+1}{\epsilon(m+1+q\lambda)} + \epsilon \cdot \frac{q\lambda}{m+1+q\lambda}) \cdot A\). For a large enough value of \(q\), that is, \(q \geq m\rho\) for some \(\rho \geq 2\), we get \(\frac{m+1}{\epsilon(m+1+q\lambda)} \to 0\) as \(m \to \infty\). Moreover, it holds \(0 \leq \epsilon \cdot \frac{q\lambda}{m+1+q\lambda} \leq \epsilon\). Hence, by the combination of Theorem 4 and Lemma 6, we complete the proof. \[\square\]

As a side note, consider the case where the selected edge set is required to be connected. That is, let \(\text{BEVD}_C\) refer to the budgeted edge-vertex connected domination problem. Below, we prove that this problem is equivalent to the budgeted connected dominating set (BCDS) problem researched in Section 3.

Proposition 2. For any \(G = (V, E)\) where \(|V| \geq 2\), and integer \(k \geq 2\), a feasible solution \(S\) to \(\text{BCDS}(G; k)\) can be transformed to a solution \(S_E\) to \(\text{BEVD}_C(G; k-1)\), where \(N[S] = N[S_E]\), and vice versa.

Proof. Assume we are given a feasible solution \(S\) to \(\text{BCDS}\) of size \(|S| = s \leq k\).

Since \(S\) is connected, there exists a set \(S_E \subseteq E\), where \(|S_E| = s - 1 \leq k - 1\), such that \((S, S_E)\) is a tree. Then, it holds \(N[S_E] = \bigcup_{v \in S} N[v] = N[S]\), since all \(v \in S\) are incident to an edge in \(S_E\).

On the contrary, assume we are given a feasible solution \(S_E\) to \(\text{BEVD}_C(G; k-1)\) of size \(|S_E| = s_E \leq k - 1\). Since \(S_E\) is a connected set of edges, in the best case, it is incident to a set \(S\) of at most \(s_E + 1 \leq k\) vertices, when \((S, S_E)\) forms a tree. In terms of neighborhood, \(N[S] = \bigcup_{v \in S} N[v] = N[S_E]\), since all \(v \in S\) are incident to an edge in \(S_E\). \[\square\]

4.2 Partial Edge-Vertex Domination

Herein, we prove an \(O(\log n)\)-approximation for Partial Edge-Vertex Domination (PEVD); refer to Definition 3. Given a graph \(G = (V, E)\) and an integer \(n'\), we need to select a subset \(E' \subseteq E\) of minimum size such that it holds \(|N[E']| \geq n'\). To approximate the problem, we identify a reduction to Partial Cover (PC).

Definition 7 (PARTIAL COVER). Given a universe (set) of elements \(X = \{x_1, x_2, ..., x_n\}\), a collection of subsets of \(X\), \(S = \{S_1, S_2, ..., S_m\}\), and a real \(0 < p \leq 1\), find a minimum-size sub-collection of \(S\), say \(S'\), that covers at least a \(p\)-part of \(X\), i.e., \(|\bigcup_{S_i \in S'} S_i| \geq pn\).
Theorem 9 (Theorems 3, 4 in [24]). PARTIAL COVER is approximable within a factor $\min\{H(\lceil pn \rceil), H(D)\}$, where H is the Harmonic number $H(x) = \sum_{i=1}^{x} \frac{1}{i}$ and D is the maximum size of a set in S.

Theorem 10. There exists a $\min\{H(n'), H(2\Delta)\}$-approximation for PEVD.

Proof. Given an instance $G = (V,E)$ and n' of PEVD, where $|V| = n$ and $|E| = m$, we construct an instance (S,X,p) of PC. Let $X = V$, $S_i = N[e_i]$ for $e_1, e_2, \ldots, e_m \in E$, and $p = n'/n$. A feasible solution for PEVD is a subset of ρ edges $R = \{e_{i_1}, e_{i_2}, \ldots, e_{i_\rho}\}$. Equivalently, for PC, we select the corresponding collection $S_R = \{S_{i_1}, S_{i_2}, \ldots, S_{i_\rho}\}$, where $S_{i_j} = N[e_{i_j}]$. Notice that, for any i_j, it holds $|N[e_{i_j}]| \leq 2(\Delta + 1) - 2 = 2\Delta$, where Δ is the maximum degree in G, since each endpoint of e_{i_j} dominates at most $\Delta + 1$ vertices; minus two overall in order not to double count the endpoints. Also, $N[R] = \bigcup_{e_{i_j} \in R} N[e_{i_j}] = \bigcup_{S_{i_j} \in S_R} S_{i_j}$.

Hence, finding a solution for PEVD, which dominates at least n' vertices, is equivalent to finding a cover for PC, which covers at least a n'/n part of the universe X. Applying Theorem 9 completes the proof. \qed

5 Conclusion

We propose a new technique to obtain tree decompositions, and a generalized analysis, thus improving the approximation guarantee from $(1 - e^{-1})/13$ to $(1 - e^{-7/8})/11$ for BCDS. Furthermore, we prove a $(1 - 1/e + \epsilon)$ upper bound. Also, we introduce BEVD and PEVD, and provide (tight) approximation bounds.

Regarding future work on BCDS, the goal is to design an algorithm with an improved guarantee. Moreover, it would be interesting to capture the difficulty of the problem with a stronger inapproximability result. We believe that a tight bound lies somewhere between our currently established state of the art.

Related to the edge-vertex case, it would be interesting to consider budgeted and partial versions for other dominating set variants, such as mixed domination [28], where both vertices and edges are selected in order to dominate as many vertices and edges as possible, expansion ratio variants such as in [16], or even eternal domination [15], where a set of guards need to dominate the graph perpetually while moving to protect it against attacks on its vertices.

References

1. S. Arora, and C. Lund, Hardness of Approximations, Chapter 10, Approximation Algorithms for NP-hard problems, PWS Publishing Co., pp. 399–446, 1997.
2. R. Boutrig, M. Chellali, T.W. Haynes, and S.T. Hedetniemi, Vertex-edge domination in graphs, Aequationes Mathematicae, vol. 90, pp. 355–366, 2016.
3. J.-C. Bermond, N. Cohen, D. Coudert, D. Letsios, I. Milis, S. Pérennes, and V. Zissimopoulos, Bin Packing with Colocations, 13th International Workshop on Approximation and Online Algorithms (WAOA), Springer, LNCS, vol. 10138, pp. 40–51, 2016.
4. D.Z. Du, and P.J. Wan, Connected Dominating Set: Theory and Applications, Springer Optimization and its Applications, Springer, New York, 2013.
5. U. Feige, A Threshold of \(\ln n \) for Approximating Set Cover, Journal of the ACM, vol. 45(4), pp. 634–652, 1998.
6. N. Garg, Saving an Epsilon: A 2-approximation for the k-MST Problem in Graphs, Proceedings of the thirty-seventh annual ACM Symposium on Theory of Computing (STOC), pp. 396–402, 2005.
7. S. Guha, and S. Khuller, Approximation Algorithms for Connected Dominating Sets, Algorithmica, vol. 20(4), pp. 374–387, 1998.
8. J.D. Horton, and K. Kilakos, Minimum Edge Dominating Sets, SIAM Journal of Discrete Mathematics, vol. 6, no. 3, pp. 375–387, 1993.
9. D.S. Johnson, M. Minkoff, and S. Phillips, The prize collecting Steiner tree problem: theory and practice, Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete algorithms (SODA), pp. 760–769, 2000.
10. N.M. Khoa, and D.D. Tung, Locating Fault on Transmission Line with Static Var Compensator Based on Phasor Measurement Unit, Energies, 11:2380, 2018.
11. S. Khuller A. Moss, and J.S. Naor, The budgeted maximum coverage problem, Information processing letters, vol. 70(1), pp. 39–45, 1999.
12. S. Khuller, M. Purohit, and K.K. Sarpatswar, Analyzing the optimal neighborhood: algorithms for budgeted and partial connected dominating set problems, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1702–1713, 2014.
13. S. Khuller, M. Purohit, and K.K. Sarpatswar, Analyzing the optimal neighborhood: algorithms for budgeted and partial connected dominating set problems, SIAM Journal of Discrete Mathematics, vol. 34, no. 1, pp. 251–270, 2020.
14. R. Kumar, and J. Kaur, Efficient Beacon Placement for Network Tomography, Proceedings of the 4th ACM SIGCOMM conference on Internet measurement, pp. 181–186, 2004.
15. I. Lamprou, R. Martin, S. Schewe, Eternally Dominating Large Grids, Theoretical Computer Science, in press, 2018.
16. I. Lamprou, R. Martin, S. Schewe, I. Sigalas, and V. Zissimopoulous, Maximum Rooted Connected Expansion, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS), LIPIcs, vol. 117, pp. 25:1–25:14, 2018.
17. J.K. Lan, and G.J. Chang, On the mixed domination problem in graphs, Theoretical Computer Science, vol. 476, pp. 84–93, 2013.
18. J. Lewis, Vertex-edge and edge-vertex parameters in graphs, All Dissertations, 103, 2007.
19. Y. Liu, and W. Liang, Approximate Coverage in Wireless Sensor Networks, The IEEE Conference on Local Computer Networks 30th Anniversary (LCN), pp. 68–75, 2005.
20. X. Liu, W. Wang, D. Kim, Z. Yang, A. Tokuta, and Y. Jiang, The first constant factor approximation for minimum partial connected dominating set problem in growth-bounded graphs, Wireless Networks, vol. 22, pp. 553–562, 2016.
21. E. Miyano, and H. Ono, Maximum Domination Problem, Proceedings of the Seventeenth Computing: the Australasian Theory Symposium (CATS), vol. 119, pp. 55–62, 2011.
22. K.W. Peters, Theoretical and Algorithmic Results on Domination and Connectivity, PhD thesis, Clemson University, Clemson, SC, 1986.
23. E. Sampathkumar, and S.S. Kamath, Mixed domination in graphs, Sankhya: The Indian Journal of Statistics, vol. 54, pp. 399–402, 1992.
24. P. Slavík, Improved performance of the greedy algorithm for partial cover, *Information Processing Letters*, vol. 64, pp. 251–254, 1997.
25. Y.B. Venkatakrishnan, and B.Krishnakumari, An improved upper bound of edge-vertex domination number of a tree, *Information Processing Letters*, vol. 134, pp. 14–17, 2018.
26. B. Wang, Coverage Problems in Sensor Networks, *ACM Computing Surveys*, vol. 43(4):32, 2011.
27. M. Yannakakis, and F. Gavril, Edge Dominating Sets in Graphs, *SIAM Journal of Applied Mathematics*, vol. 38, no. 3, pp. 364–372, 1980.
28. Y. Zhao, L. Kang, M.Y. Sohn, The algorithmic complexity of mixed domination in graphs, *Theoretical Computer Science*, vol. 412, pp. 2387–2392, 2011.