Polycyclic Aromatic Hydrocarbons in Ado-Ekiti Roadside Soil, Nigeria: Distribution, Source Identification, Composition Profiles, and Toxic Potential

OLAYINKA ABIDEMI IBIGBAMI*

Department of Chemistry, Ekiti State University, P.M.B 5363, Ado- Ekiti, Nigeria.

Abstract
The study considered the level, origin with toxic potentials of PAHs in soil roadside of Ado-Ekiti, Nigeria. Gas chromatographic technique was employed for the identification of PAHs after extraction and silica gel cleanup. Average concentration of the PAHs ranged from ND – 51.6 ± 46.7µg/kg, while total polycyclic aromatic hydrocarbons (TPAHs) ranged of 61.8±32.3 - 204±28.0 µg/kg with contamination pattern of ADY > AJI > EKSU > NNPC. The percentage distribution of LMW ranged from 17.3 – 54.2%, while the HMW-PAHs showed 46.0 - 82.7%. The PAHs pattern was dominated majorly by 5- and 6- ring with distribution range of 15.1 and 43.2%. The overall diagnostic ratios of the soils suggested pyrogenic, coal/wood/grass/vehicular combustion in most cases. To evaluate the toxicity of the PAHs in the samples, PAHs toxic equivalence factors (TEFs) revealed that carcinogenic PAHs contributed majorly (over 95%) to toxicity of the soil.

Keywords
Carcinogenic; Petrogenic; Pyrogenic; Roadsides; Soil Toxicity.

Introduction
Ubiquitous nature of PAHs in terrestrial and marine environment made them an important. PAHs are concern due to persistent nature. The EU and USEPA have prioritized PAHs due to carcinogenic and mutagenic properties. High and low molecular weight are the two class of PAHs. The 4 to 6 aromatic rings are HMW with less bio-degradable properties, while LMW-PAHs consists 2 to 3 rings with less carcinogen properties than HMW types. US Environment Protection Agency have identified sixteen (16) PAHs as priority pollutants. PAHs often contain elevated level of HMW and fewer LMW-PAHs. PAHs could be transported through the atmosphere to remote areas with increase in general background level of soils and lake sediments where they accumulate due to their stability. Soils and river sediments often becomes environmental burden of these compounds.

In Nig, composeria, and other countries, Australia, Germany, USA, Korea, Brazil, China, 2022
Norway, Malaysia, Czech Republic, India, Slovakia, studies of PAHs in soil have been reported. Their toxicity and widespread distribution have made PAHs important globally. The number of PAHs in city soil and propinquity of the compounds in soil could lead to life exposure. The study, therefore, assesses the distribution, sources, make-up, and toxic potentials of PAHs in soil roadside soil of Ado-Ekiti in Nigeria.

Fig 1: A map showing the position of the sampling locations

Materials and Methods

The Study Area

Soil were sampled from various locations in Ado-Ekiti, capital city of Ekiti State in Nigeria. The State covers an estimated land area of about 6,353 km² (Wikipedia), Ado-Ekiti the capital city covers about 732 km² of this area and lies between latitude 7° 37’16” N and longitude 5° 13’17” E. The city is a major trade center for farm produce. The major means of transportation in Ado-Ekiti is by road. Figure 1, depicts the map of the area indicating the sampling spots.

Sample Collection and Preparation

Samples of roadside soils were taken from various locations within Ado-Ekiti in June, 2017. Locations, where soil samples were collected include Adebayo (ADY), Ajilosun (AJI), Ekiti State University (EKSU) gate and Nigerian National Petroleum Corporation (NNPC) mega station roads. Table 1 showed the coordinates of the sampling sites. Two composite samples were collected at each site with about 40 m between them. Composite soil samples were representative of four different spots within each area. These samples (four) were polled together to form a composite one. Soil samples were taken at 15cm depth. The soil samples collected from each area were placed appropriately in labeled glass sample bottles. Samples were later air-dried in the laboratory, ground in an agate mortar, and sieved with mesh size 2 mm. The sieved samples were later stored in glass bottles.
Extraction of PAHs in the sample with Clean-Up Procedure

Sample extraction and cleanup were done according to USEPA (method 3550C). Thirty gramme each of dried soil sample and anhydrous Na\(_2\)SO\(_4\) (1:1 g/g) was ultrasonically extracted using 50 mL mixture of 1:1 v/v of n-hexane: acetone for 45 min. The supernatants were collected and extraction repeated three times with fresh 50 mL mixture. The supernatants were collected together and concentrated by a rotary evaporator to about 2 mL. The extracts was dissolved in n-hexane (5 mL) and concentrated in rotary evaporator to 2 mL at 40 °C.

Table 1: The coordinates of the sampling area

Sampling area	Geographical locations of the sampling area	Distance between the sampling area (m)
AJI	7° 36' 29'' N 5° 13'17'' E	40
	7° 36. 19'' N 5° 13'21'' E	
ADY	7° 38' 53'' N 5° 13'30'' E	40
	7° 38' 30'' N 5° 13'20'' E	
EKSU	7° 42' 52'' N 5° 15'38'' E	40
	7° 42' 55'' N 5° 15'40'' E	
NNPC	7° 40' 44'' N 5° 14'40'' E	40
	7° 40' 49'' N 5° 14'44'' E	

AJI = Ajilosun Road; ADY = Adebayo Road; EKSU = Ekiti State University Road; NNPC = Nigerian National Petroleum Corporation Road.

Clean-up column was developed by slurring about 10g of activated silica gel (about 100-200 mesh, activated at 200 °C for 16 h) with n-hexane into a chromatography column. About 1g of anhydrous Na\(_2\)SO\(_4\) was added and pre-eluted with 20 mL of n-hexane. The extract were moved quantitatively to the column and eluted using 25 mL of 2:3 v/v of n-hexane/dichloromethane. The hexane/dichloromethane extract was concentrated using rotary evaporator, adjusted to 2 mL with n-hexane for gas chromatographic (GC) analysis. Table 2 depicted the operating conditions of gas chromatography.

Limit of Detection (LOD) and Limit of Quantification (LOQ)

Four concentrations (standard) ranging between 0.2 and 1 mgL\(^{-1}\) were used to prepare calibration graph. Linear calibration curves was gotten in the tested concentration of PAHs standard. The LOD
were based on a signal-to-noise ratio of 3 and the LOQ on the signal-to-noise ratio of 10.

Quality Assurance
Correlation coefficients were determined for analysed compounds. Values with < 0.95 correlation coefficients were rejected while, those > 0.95 were accepted. Values of correlation coefficient were between 0.9993 and 0.9999. They thus met the quality assurance standard and made the results acceptable.

Statistical Analysis
Statistical analysis used includes mean, corresponding standard deviation and coefficient of variation. Data obtained were subjected to Analysis of variance (ANOVA) using Statistical Software (SPSS Version 17).

Table 3: PAHs (µg kg⁻¹) concentrations of roadside soil from the study area

PAHs	AJI	ADY	EKSU	NNPC
Naphthalene	51.6 ± 46.7 (90.7)	11.4±2.37(20.8)	10.3±9.04(90.1)	1.90±2.67(141)
Acenaphthylene	1.11 ± 0.33 (20.70)	8.71±3.00(34.4)	2.12±0.35(15.6)	0.51±0.71(139)
Acenaphthylene	4.06 ± 2.18 (43.7)	5.76± 3.96 (68.8)	4.89±1.86 (38.5)	2.30±1.20 (52.2)
Fluorene	5.05 ± 2.57 (50.9)	7.02±1.14 (16.2)	5.20±1.97 (37.9)	3.10±0.66 (21.3)
Anthracene	1.57 ± 0.51 (32.5)	4.78±1.22 (25.5)	2.03±1.80 (88.7)	2.06±0.16 (7.77)
Phenanthrene	1.61 ± 0.40 (26.1)	3.20±0.42 (13.1)	3.23±1.02 (31.6)	0.80±1.18 (148)
Fluoranthene	1.73 ± 0.60 (34.1)	6.72±2.39 (35.6)	3.28±3.16 (96.3)	0.85±0.16 (18.8)
Pyrene	2.53 ± 2.55 (101)	8.92±1.85 (20.7)	1.33±1.88 (141)	1.35±0.58 (43.0)
Benzo(a)anthracene*	4.07 ± 0.52 (12.8)	1.82±0.30 (16.5)	7.80±3.25 (41.7)	2.23±1.13 (50.7)
Chrysene*	1.14 ± 0.06 (5.30)	5.19±1.10 (21.2)	1.97±0.38 (19.3)	1.56±0.08 (5.13)
Benzo(b)fluoranthene*	5.33 ± 1.25 (23.5)	19.4±4.74 (24.5)	10.1±4.64 (46.0)	6.21±4.80 (77.3)
Benzo(k)fluoranthene*	3.92 ± 1.53 (39.0)	3.79±1.93 (50.9)	6.53±3.79 (50.0)	3.30±0.09 (2.73)
Benzo(a)pyrene*	7.42 ± 1.00 (13.5)	23.6±6.23 (26.4)	13.4±4.20 (31.4)	7.81±4.58 (58.6)
Dibenzo(a,h)anthracene*	1.55 ± 1.10 (71.0)	5.63±3.14 (55.8)	7.43±10.5 (141)	ND
Benzo(g,h,i)perylene	13.8 ± 0.02 (0.20)	46.6±12.7 (27.2)	12.2±8.32 (68.3)	14.5±7.44 (51.3)
Indeno(1,2,3, cd)pyrene*	13.6 ± 22.0 (16.2)	41.5±7.17 (17.3)	12.2±7.28 (34.4)	13.3±7.40 (55.5)
∑PAHs	120 ± 61.6 (51.3)	204±28.0 (13.7)	104±39.2 (39.2)	61.8±32.3 (52.3)
∑7C-PAHs	37.0 ± 5.59 (15.1)	101±20.2 (19.9)	68.3±26.4 (38.7)	34.4±17.9 (52.1)
∑LMW-PAHs	65.0 ± 52.9 (81.4)	40.9±0.54 (1.32)	27.7±16.1 (58.4)	10.6±6.51 (61.2)
∑HMW-PAHs	55.1 ± 8.71 (15.8)	163±28.6 (17.5)	76.2±23.2 (27.2)	51.1±25.8 (50.4)

Mean ± SD (CV%); ND = Not detected; *= Carcinogenic PAHs; ∑7C-PAHs = Total 7 carcinogenic PAHs; ∑LMW-PAHs = Total high molecular PAHs; ∑HMW-PAHs = Total molecular PAHs.

Results and Discussion
Distribution of PAHs in Soil
The PAHs (µg/kg) level in soil from the four selected roadssides in Ado-Ekiti are depicted in Table 3. The average level of PAHs ranged from ND – 51.6 ± 46.7 µg/kg with the highest recorded for naphthalene in Ajilosun. The PAHs concentration (µg/kg) ranged from 1.11±0.33 (acenaphthylene) - 51.6±46.7 (naphthalene) in Ajilosun. 1.82±0.30 (benzo(a)anthracene) - 46.6±12.7 (benzo(g,h,i)perylene) in Adebayo, 1.33±1.88 (pyrene) - 13.4±4.20 (benzo(a) pyrene) in EKSU and ND - 14.5±7.44 (benzo(g,h,i)perylene) in NNPC. The TPAHs ranged from 61.8±32.3 - 204±28.0 µg/kg with contamination pattern of ADY > AJI > EKSU > NNPC. The presence of carcinogenic PAHs was highly observed in the samples. The seven carcinogenic PAHs were between 34.4 ± 17.9 µg/kg (NNPC) and 101 ± 20.2 µg/kg (ADY). The carcinogenic PAHs in the soil was in order: EKSU (60.4%) > NNPC (55.7%) > ADY (49.5%) > AJI (30.8%). A high level of spatial variation was mostly recorded for most PAHs as revealed by the coefficient of variation. Only seven PAHs exhibited low (0.20 - 26.1%) spatial variation in Ajilosun.
Five (Chrysene, fluorene, anthracene, fluoranthene and benzo(k)fluoranthene) in NNPC (2.73-21.3%), three (acenaphthylene, phenanthrene and chrysene) in EKSU, while most PAHs in Adebayo exhibited moderate spatial variations. The level (0.51 – 51.6 µg kg⁻¹) were comparably lower than those reported for soil in Nigeria (5649 µg kg⁻¹), Delhi, India (41.1 – 9145 µg kg⁻¹), USA (58680 µg kg⁻¹), Hong kong, China (2-554 µg kg⁻¹), Malaysia (1450 µg kg⁻¹), Shanghai, China (3780 µg kg⁻¹), Czech Republic (860 -10840 µg kg⁻¹), Australia (3300 µg kg⁻¹), India (4694 ± 3028 µg kg⁻¹), 6962 ± 4823 µg kg⁻¹), Germany (16000µg kg⁻¹), Korea (15800 µg kg⁻¹), China (81820 ± 796200 µg kg⁻¹), while the soil in Brazil (96 µg kg⁻¹) is comparable to the present study. The concentration trends of the carcinogenic PAHs were in order: I_{123}P > BaP > BbF > BaA > BkF > DahA > Chry in Ajilosun; I_{123}P > BaP > BbF > DahA > Chry > BkF > BaA in Adebayo; while BaP > I_{123}P > BbF > BaA > DahA > BkF > Chry in EKSU and I_{123}P > BaP > BbF > BaA > BkF > Chry in NNPC roadside. The percentage distribution of LMW in the study areas ranged from 17.3 – 54.2% with a concentration pattern of Ajilosun > EKSU > Adebayo > NNPC, while the HMW-PAHs ranged from 46.0 – 82.7% with concentration a pattern of NNPC > Adebayo > EKSU > Ajilosun. The percentage distribution of LMW-PAHs showed Ajilosun (54%), EKSU (24.3%), Adebayo (20.0%) and NNPC (17.3%), while the HMW-PAHs reflected NNPC (82.7%), Adebayo (80.0%), EKSU (75.3%) and Ajilosun (46.0%). Based on European classification system of soil contamination, 32 ∑16PAHs ˂ 200µg/kg showed no contamination, 200 - 600 µg/kg corresponds to weak, 600 - 1000 µg/kg revealed moderate, while ˃ 1000 µg/kg shows heavy contamination. All the sampling sites except Adebayo indicate no contamination, where its PAHs concentrations revealed ˃ 200 µg/kg and weak contamination.

Table 4: PAHs guidelines in soil (µg kg⁻¹) in comparison with the present study

	Soil guidelines	Present study	
	NOAA (1999)	CCME (2002)	
Naphthalene	5000	600 – 22000	1.90 – 51.6
Acenaphthylene	-	-	0.51 – 8.71
Acenaphthalene	-	-	2.30 – 5.76
Fluorene	-	-	3.10 – 7.02
Anthracene	-	-	1.57 – 4.78
Phenanthrene	5000	5 x 10⁻³ - 50 x 10⁻³	0.80 – 3.23
Fluoranthene	-	-	0.85 – 6.72
Pyrene	1000	10 x 10⁻³ - 100 x 10⁻³	1.33 – 8.92
Benzo(a)anthracene	1000	-	1.82 – 7.80
Chrysene	-	1000 – 10 x 10⁻³	1.14 – 5.19
Benzo(b)fluoranthene	1000	1000 – 10 x 10⁻³	5.33 – 19.4
Benzo(k)fluoranthene	1000	1000 – 10 x 10⁻³	3.30 – 6.53
Benzo(a)pyrene	1000	700	7.42 – 23.6
Dibenz(a,h)anthracene	1000	-	ND – 7.43
Benzo(g,h,i)perylene	-	1000 – 10 x 10⁻³	12.2 – 46.6
Indeno(1,2,3-cd)pyrene	1000	1000 – 10 x 10⁻³	12.2 – 41.5

One-way analysis of variance (ANOVA) revealed that the p-value = 0.005 (< 0.05 level of significant), this showed enough evidence that the parameters differs. Further analysis also revealed significant variations ($p < 0.05$) in the levels of naphthalene, fluoranthene, pyrene, benzo(a)anthracene, indeno(1,2,3-cd)pyrene, benzo(b)fluoranthene, benzo(a)pyrene, benzo(g,h,i)perylene and acenaphthylene, while the other PAHs showed no significant variations among the sampling locations. The significant variations could be attributed to some factors such as physiochemical properties (soil pH, clay content and
OM) of the soil which could influence the dynamics and fate of both organic and inorganic pollutants in soil. Different accumulation and distribution pattern of some of these PAHs in soil could also contribute to the significant level.

Table 4 showed the recommended guidelines of PAHs in soils. Polycyclic aromatic hydrocarbons level in the study areas was significantly lower than the National Oceanic Atmospheric Administration, NOAA and Canadian Council of Ministers of Environment CCME guidelines for the residential, community, and industrial soils.

The percentage distributions of PAHs compositions are depicted in Table 5. Adebayo, EKSU and NNPC exhibited a greater percentage of high molecular PAHs with a highest amount of 5- and 6- ringed PAHs. Ajilosun showed highest level of 2- and 6- ringed PAHs. Generally, the automobile smoke or exhaust is seen as the major fount or origin of high molecular PAHs.

Table 5: Percentage distribution of PAHs composition in the sampling area

No of ring	AJI	ADY	EKSU	NNPC
2	51.6 (43.0)	11.4 (5.59)	10.3 (9.90)	1.93 (3.12)
3	13.4 (11.2)	14.5 (29.5)	17.5 (16.8)	8.77 (14.2)
4	9.47 (7.89)	22.7 (11.1)	14.4 (13.8)	5.99 (9.69)
5	18.2 (15.1)	52.4 (25.7)	37.5 (26.1)	17.3 (28.0)
6	27.4 (22.8)	88.1 (43.2)	24.4 (23.5)	27.8 (45.0)

Table 6: Diagnostic ratio for PAHs source identification

PAHs ratio	Values	Indication sources	Present study	Reference
BaP/ BghiP	< 0.6	Non traffic source	0.54	41
	> 0.6	Traffic source	0.51	
	< 0.2	Petrogenic	0.49	38
	0.2 - 0.5	Fossil fuel (automobile)	0.47	
	> 0.5	Combustion (grass, coal and wood)	0.50	
	< 0.4	Petrogenic	0.41	38
	≥ 0.4 - 0.5	Pyrogenic (Biomass, coal combustion)	0.43	39
	> 0.5	Pyrogenic (Biomass, coal combustion)	0.71	24
	< 0.1	Petrogenic	0.49	38-39
	> 0.1	Pyrogenic (Combustion)	0.60	
	< 0.2	Petrogenic	0.39	38-39
	0.2 - 0.35	Petroleum combustion	0.81	
	> 0.35	Grass, coal and wood combustion	0.81	
The three and four-ringed PAHs ranged from 11.2% to 16.8% and 7.89% to 13.8% in Ajilosun and EKSU. The ring wise order of their concentration (%) was 6 (43.2% and 45.0%) > 5 (25.7% and 28.0%) > 3 (14.5% and 14.2%) > 4 (11.1% and 9.69%) > 2 (5.50% and 3.12%) in Adebayo and NNPC, while 5 (36.1%) > 6 (23.5%) > 3 (16.8%) > 4 (13.7%) > 2 (9.90%) in Adebayo and 2 (43.0%) > 6 (22.8%) > 5 (15.1%) > 3 (11.2%) > 4 (7.89%) in Ajilosun. This revealed that 5- and 6-ring were mostly predominant from the study areas. Sun et al.37 revealed that PAHs of high molecular weight gives rise by high-temperature combustion, while low molecular weight gives rise low combustion temperature.

Source Identification of PAHs

PAHs ratios have been used to demonstrate source identification.38-40 A high percentage of HMW-PAHs to LMW-PAHs was observed in most cases. Higher proportion of HMW-PAHs was observed in the sampling areas except Ajilosun that showed 54.3% of LMW-PAHs. The results was characterized by the predominance of high molecular weights. The ratios of low molecular weight to high molecular weight were < 1.0 in NNPC, EKSU, and Adebayo, while Ajilosun reflected 1.18. Isomer ratios of IcdP/(IcdP+BghiP), Ant/(Ant+Phe), BaA/(BaA+Chry), Flt/(Flt/Pyr), and BaP/(BaP/BaP+Chr) was used for the source identification. Ratios for PAHs source identification were depicted in Table 6. The PAHs ratio for Ant/(Ant + Phe) and Flt/(Flt/Pyr) showed greater than 0.1 in all the sampling sites and \(\geq 0.4 – 0.5 \) (except EKSU), this indicates pyrogenic (combustion) source of the PAHs in the sampling areas, Flt/(Flt/Pyr) in EKSU indicate combustion of biomass, wood, coal, and grass. The BaA/(BaA+Chry) of Adebayo and EKSU indicated grass, coal and wood combustion in most cases. IcdP/(IcdP+BghiP) were between 0.47 to 0.50, suggesting pyrogenic.38 The overall diagnostic ratios suggested that the PAHs were predominately pyrogenic.

Table 7: TEQ\textsubscript{BaP} (µg/kg) of the soil from the study area

	TEFs	AJI	ADY	EKSU	NNPC
Acenaphthalene	0.001	0.0004	0.006	0.005	0.002
Naphthalene	0.001	0.052	0.011	0.010	0.002
Acenaphthylene	0.001	0.001	0.009	0.002	0.0005
Phenanthrene	0.001	0.002	0.003	0.003	0.0008
Pyrene	0.001	0.003	0.009	0.001	0.001
Fluorene	0.001	0.005	0.007	0.005	0.003
Chrysene*	0.01	0.011	0.052	0.020	0.016
Benzo(b)fluoranthene*	0.1	0.533	1.94	1.01	0.621
Fluoranthenne	0.001	0.002	0.007	0.003	0.0008
Dibenzo(a,h)anthracene*	1	1.55	5.63	7.43	-
Benzo(a)anthracene*	0.1	0.407	0.182	0.780	0.223
Anthracene	0.01	0.016	0.048	0.020	0.021
Indeno (1,2,3-cd)pyrene*	0.1	1.36	4.15	1.22	1.33
Benzo(g,h,i)perylene*	0.01	0.014	0.047	0.012	0.013
Benzo(a)pyrene*	1	7.42	23.6	13.4	7.81
Benzo(k)fluoranthene*	0.1	0.392	0.379	0.653	0.330
\(\sum \text{16-PAHs} \)	2.43	11.8	36.1	24.6	10.4
\(\sum \text{7C-PAHs} \)	1.41	11.6	35.9	24.5	10.3

Assessment of Soil Toxicity

To assess the soil toxicity, benzo(a)pyrene toxicity equivalents were used. Investigators have established value for individuals PAHs Toxic Equivalence Factor.42-43 It's also alluded to as benzo(a)pyrene toxicity.44 Toxic equivalents (TEQs) were used to quantify PAHs toxic potencies of the soil. Total toxic equivalents of PAHs
with respect to BaP (TEQ_{BaP}) was used to establish the carcinogenic potency.

The total benzo(a)pyrene equivalent:

$$\text{TEQ}_{BaP} = \sum (\text{TEF}_i \times C_i)$$

Where $C_i =$ measured individual PAHs for (ith) compound, while $\text{TEF}_i =$ corresponding toxic equivalent factor.

The average sum of TEQ_{BaP} (μg/kg) were 11.8 (Ajilosun), 36.1 (Adebayo), 24.6 (EKSU) and 10.4 (NNPC). The PAHs toxicity level of NNPC is double and thrice of EKSU and Adebayo. The mean TEQ_{BaP} value were lower than 650 μg BaP eq/kg, India^{44}; 542.8 μg BaP eq/kg, India^{27}; 124 μg BaP eq/kg, Spain^{45} and 428 μg BaP eq/kg, China.^{22} The sum of carcinogenic toxic potency of the soils was in the order: Adebayo (35.9) $>$ EKSU (24.5) $>$ Ajilosun (11.6) $>$ NNPC (10.3). The result further revealed that the carcinogenic potency of the roadside soil was the highest in Adebayo and as such contribute majorly to toxicity of the soil.

Conclusion

The study revealed low PAHs contamination and high percentage distribution of HMW-PAHs with a percentage composition of 46.0 – 82.7%. The PAHs composition was also characterized by a high 5- and 6- rings PAHs. The overall diagnostic ratio of PAHs suggested mixed pyrogenic sources. Carcinogenic PAHs level within the city soils could be toxic to human exposure. The research, therefore, suggests that PAHs pollution should be discouraged, most importantly traffic exhaust especially diesel exhaust.

Acknowledgement

The authors acknowledge the technical assistance rendered by the Nigerian Institute of Oceanography and Marine Research (NIOMR) Central Laboratory, Victoria Island, Lagos.

Funding

The author received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest

The author has no conflict of interest including any financial, personal, or other relationships with other people or organizations that can influence the work.

References

1. Bouloubassi I., Mejanelle L., Pete R., Fillaux J., Lorre A., Point V. Transport by Sinking Particles in the Open Mediterranean Sea: A 1 Year Sediment Trap Study. *Marine Pollut Bulletin*. 2006; 52: 560-571.

2. USEPA. *Guidelines of assessing chemical contaminant data for use in fish advisories*, EPA/823/B-00/007, United States Environmental Protection Agency. 2000.

3. Brown J., Peake B. Sources of Heavy Metals and Polycyclic Aromatic Hydrocarbons in Urban Storm Water Runoff. *Sci Total Environ*. 2006; 359: 145-155.

4. United State Environment Protection Agency. *Emission inventory of section 112 @ (6) pollutants: polycyclic organic matter (POM), TCDD, TCDF, PCBs, hexachlorobenzene, mercury, and alkylated lead*, Final Report, 1997.

5. Helfrich J., Armstrong D.E. Polycyclic Aromatic Hydrocarbons in Sediments of the Southern Basin of Lake Michigan. *J Great Lakes Resea.* 1986; 12(3): 192-199.

6. Hartmann R. Polycyclic Aromatic Hydrocarbons (PAHs) in Forest Soils: A Critical Evaluation of a New Analytical Procedure. *Inter J Environ Anal Chem*. 1996; 62: 161-173.

7. Wilcke W., Zech W., Kobza J. PAHs Pools in Soils along PAHs Deposition Gradient. *Environ Pollut*. 1996; 92: 307-313.

8. Simcik M.F., Eisenreich S.J., Golden K.A., Liu S.P., Lipiayou E., Swackhamer D.L., Long D.T. Atmospheric Loading of PolycyclicAromatic Hydrocarbons to Lake Michigan as Recorded in the Sediments. *Environ Sci Technol*. 1996; 30: 3039-3046.

9. Fernandez P., Vilanova R., Grimalt J. O. Sediment Fluxes of Polycyclic Aromatic Hydrocarbons in European High Altitude...
Mountain Lakes. *Environ Sci Technol.* 1999; 33: 3716-3722.

10. Fernandez P., Vilanova R.M., Martinez C., Appleby P., Grimalt J. O. The Historical Record of Atmospheric Pyrolytic Pollution over Europe Registered in Sedimentary PAH from Remote Mountain Lakes. *Environ Sci Technol.* 2000; 34: 1906-1913.

11. Ibigbami O.A., Asaolu S.S., Popoola O.K., Adefemi S.O., Abodunde T.S., Idowu K., Olatoye R.O. Distribution and Source of Polycyclic Aromatic Hydrocarbons in Water and Sediments from Egbe Dam in Southwestern Nigeria. *J ChromatoSepar Tech.* 2000; 11(1): 1-6.

12. Grimalt J.O., van Drooge B.L., Ribes A., Fernandez P., Appleby P. Polycyclic Aromatic Hydrocarbon Composition in Soils and Sediments of High Altitude Lakes. *Environ Pollut.* 2004; 131: 13-24.

13. Adedosu T.A., Adeniyi O.K., Adedosu H.O. Distribution, Sources and Toxicity Potentials of Polycyclic Aromatic Hydrocarbons in Soil around the Vicinity of Balogun-Birro Dumpsite of Oshogbo, Nigeria. *Malaysian J Analyt Sci.* 2015; 19(3): 636-648.

14. Yang S.Y.N., Connell D.W., Hawker D.W., Kayal S.I. Polycyclic Aromatic Hydrocarbons in Air, Soil and Vegetation in the Vicinity of an Urban Roadway. *Sci Total Environ.* 1991; 102: 229-240.

15. Tebaay R.H., Welp G., Brummer, G.W. Gehalt an polycyclischen Aromatischen Kohlen was serst offen (PAK) und Denen Verteilungsmuster in Unterschiedlich Be lasteten Boden. *Z Pflanzenernaehr Bodenkld,* 1993; 156: 1-10.

16. Rogge W.F., Hildemann L.M., Mazurek M.A., Cass G.R., Sinonelt B.R.T. Sources of Fine Organic Aerosol: 2, Road Dust, Tire Debris, Organometalic Brake Lining Dust: Roads as Sources and Sinks. *Environ Sci Technol.* 1993; 27: 636 – 651.

17. Nam J.J., Song B.H., Eom K.C., Lee S.H., Smith A. Distribution of PAHs in Agricultural Soils in South Korea. *Chemosphere.* 2003; 50: 1281-1289.

18. Wilcke W. Polycyclic Aromatic Hydrocarbons (PAHs) in Soil- A Review. *J Plant Nutri Soil Sci.* 2000; 163: 229-248.

19. Chung M.K., Hu R., Cheung K.C., Wong M. H. Pollutants in Hong Kong Soils: Polycyclic Aromatic Hydrocarbons. *Chemosphere.* 2007; 67: 464 - 473.

20. Wang Z., Chen J., Qiao X., Yang P., Tian F., Huang, L. Distribution and Sources of Polycyclic Aromatic Hydrocarbons from Urban to Rural Soils: A Case Study in Dalian, China. *Chemosphere,* 2007;68: 965-971.

21. Jiao W., Lu Y., Li J., Han J., Wang T., Luo W., Shi Y., Wang, G. Identification of Sources of Elevated Concentrations of Polycyclic Aromatic Hydrocarbons in an Industrial Area in Tianjin, China. *Environ Monitor Assess.* 2009; 158: 581-592.

22. Jiang Y.F. Levels, Composition Profiles and Sources of PAHs in Urban Soil of Shanghai, China. *Chemosphere*doi:10.1016/j. chemosphere.2009.01.027.

23. Jensen H., Reimann C., Finne T.E., Ottesen R.T., Arnoldussen A. PAH- concentrations and Compositions in the Top 2 cm of Forest Soils Along a 120 km Long Transect through Agricultural Areas, Forest and the City of Oslo, Norway. *Environ Pollut.* 2007; 145: 829-838.

24. Fadzil M.F., Norhayati M.T., Wan M.K., Wan, M.Z. Concentration and Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in the Town of Kota Bharu, Kelantan Darul Naim. *Malaysian J Analyt Sci.* 2008; 12(3): 609-618.

25. Placha D, Raclavska H, Matysek D, Rummeli M.H. The Polycyclic Aromatic Hydrocarbon Concentrations in Soils in the Region of Valasske Meziriei, the Czech Republic. *Geochem Transaction.* 2009; Doi: 10.1186/1467-4866-10.12.

26. Agarwal T. Concentration Level, Pattern and Toxic Potential of PAHs in Traffic Soils of Delhi. *J Hazard Material.* 2009; 7: 894-900.

27. Singh D.P., Gadi R., Mandal T.K. Levels, Sources and Toxic Potential of Polycyclic Aromatic Hydrocarbons in Urban Soil of Delhi, India. *Human Ecologi Risk Assess: An Inter J.* 2012; 18(2): 393-411.

28. Kumar B., Goel G., Gaur R., Prakash D., Kumar S., Sharma C.S. Distribution, Composition Profile and Source Identification of Polycyclic Aromatic Hydrocarbons in
Roadside Soil of New Delhi, India. *Environ Earth Sci.* 2012;2(1): 10-19.

29. Hiller E., Lachka L., Jurkovic L., Vozar J. Polycyclic Aromatic Hydrocarbons In Urban Soils from Kindergartens and Playgrounds in Bratislava, the Capital City of Slovakia. *Environ Earth Sci.* 2015;73: 7147-7156.

30. Mielke H.W., Wang G., Gonzales C.R., Le B., Quach V.N., Mielke P.W. PAH and Metal Mixtures in New Orleans Soils and Sediments. *Sci Total Environ.* 2001; 281: 217-227.

31. USEPA 2000. SW-846, _test methods for evaluating solid waste_, 3rd edition. Update IVB’ Chapter 4, organic analytes. USEPA, Washington.

32. Maliszewska-kordybach B. Polycyclic Aromatic Hydrocarbons in Agricultural Soils in Poland: Preliminary Proposals for Criteria to Evaluate the Level of Soil Contamination. *Applied Geochem.* 1996;11: 121-127.

33. National Oceanic and Atmospheric Administration, NOAA, 1999. *NOAA screening quick reference tables (SQuiRTs), HAZMAT REPORT 99-1*, and updated Feb. 2004. Coastal Protection and Restoration Division, Seattle, Washington.

34. Canadian Council of Ministers of the Environment (CCME). Summary of Existing Canadian Environmental Quality Guidelines, Summary Table-updated 2002: Winnipeg.

35. Agency for Toxic Substances and Disease Registry(ATSDR), 1995. *Polycyclic aromatic hydrocarbons*. US Department of Health and Human Services, Public Health Service, Atlanta, GA, USA. Available at http://www.atstdr.cdc.gov/toxprofiles/phs69.html

36. Tuhackova J., Cajthaml T., Novak K., Novotny C., Martelik J., Sasek V. Hydrocarbon Deposition and Soil Microflora as Affected by Highway Traffic. *Environ Pollut.* 2001; 113: 255-262.

37. Sun F., Wen D., Kuang Y., Li J., Zuo, W. Concentrations of Heavy Metals and Polycyclic Aromatic Hydrocarbons in Needles of Masson Pine (*Pinus Massoniana* L.) Nearby Different Industrial Sources. *J Environ Sci.* 2010; 22: 1006-1013.

38. Yunker M.B., MacDonald R.W., Vingarzan R., Mitchell R.H., Goyette D., Sylvestre S. PAHs in the Fraser River Basin: A Critical Appraisal of PAH Sources and Composition. *Organic Geochem.* 2002; 33: 489-515.

39. Hwang H.M., Wade T.L., Sericano J.L. Concentrations and Source Characterization of Polycyclic Aromatic Hydrocarbons in Pine Needles from Korea, Mexico, and United States. *Atmosph Environ.* 2003; 37: 2259-2267.

40. Zhang H.B., Luo Y.M., Wong M.H., Zhao Q.G., Zhang G.L. Distribution and Concentrations of PAHs in Hong Kong Soils. *Environ Pollut.* 2006; 141:107-114.

41. Pandey P.K., Patel K.S., Lenicek J. Polycyclic Aromatic Hydrocarbons: Need for Assessment of Health Risks in India, Study of an Urban Industrial Location in India. *Environ Monitor Assess.* 1999; 59: 287-319.

42. Tsai P.J., Shih T.S., Chen H.L., Lee W.J., Lai C.H., Liou S.H. Assessing and Predicting the Exposure of PAHs and their Carcinogenic Potencies from Vehicle Engine Exhausts to Highway Toll Station Workers. *Atmosph Environ.* 2004; 38: 333-343.

43. Nisbet I.C.T., LaGoy P.K. Toxic Equivalency Factors (TEFs) for Poly-Cyclic Aromatic Hydrocarbons (PAHs). *Regulatory Toxicol Pharm.* 1992;16: 290 -300.

44. Masih A., Tanjua A. Polycyclic Aromatic Hydrocarbons (PAHs) Concentrations and Related Carcinogenic Potencies int he Soil at a Semi-Arid Region of India. *Chemosphere.* 2006; 65(3): 449-456.

45. Nadal M., Schuhmacher M., Domingo J.L. Levels of PAHs in Soil and Vegetation Sample from Tarragona Country, Spain. *Environ Pollut.* 2004; 132: 1-11.