NEWTON SLOPES FOR TWISTED ARTIN–SCHREIER–WITT TOWERS

RUFEI REN

ABSTRACT. We fix a monic polynomial \(f(x) \in \mathbb{F}_q[x] \) over a finite field of characteristic \(p \) of degree relatively prime to \(p \). Let \(\alpha \mapsto \omega(\alpha) \) be the Teichmüller lift of \(\mathbb{F}_q \), and let \(\chi : \mathbb{Z} \to \mathbb{C}_p^\times \) be a finite character of \(\mathbb{Z}_p \). The \(L \)-function associated to the polynomial \(f \) and the so-called twisted character \(\omega^m \times \chi \) is denoted by \(L_f(\omega^m, \chi, s) \) (see Definition 1.1). We prove that, when the conductor of the character is large enough, the \(p \)-adic Newton slopes of this \(L \)-function form arithmetic progressions.

Contents

1. Introduction 1
2. Notation 3
3. The \(T \)-adic Dwork’s Trace Formula 5
4. Proof of Theorem 1.4 and Theorem 1.5 9
References 14

1. Introduction

In [DWX], Davis, Wan, and Xiao studied the \(L \)-function \(L_f(\chi, s) \) associated to a polynomial \(f(x) \in \mathbb{F}_q[x] \) and a finite character \(\chi : \mathbb{Z}_p \to \mathbb{C}_p^\times \). They proved that

- If \(\chi_1 \) and \(\chi_2 \) are two finite characters with the same conductor \(p^m \geq \frac{a p(d-1)^2}{8d} \), then \(L_f(\chi_1, s) \) and \(L_f(\chi_2, s) \) have the same Newton polygons.

- Let \(\chi_0 : \mathbb{Z}_p \to \mathbb{C}_p^\times \) be a fixed character with conductor \(p^{\lceil \log p \frac{a p(d-1)^2}{8d} \rceil} \). Then the \(p \)-adic Newton slopes of \(L_f(\chi_1, s) \) (see Definition 1.3) form a disjoint union of arithmetic progressions determined by the \(p \)-adic Newton slopes of \(L_f(\chi_0, s) \).

In [BFZ], Blache, Ferard, and Zhu studied the so-called twisted \(L \)-functions (see Definition 1.1), whose \(p \)-adic Newton polygons satisfy a universal lower bound proved by C.Liu and W.Liu in [LL]. This lower bound is similar to the one given in [DWX]. Therefore, it is of interest to ask if the \(p \)-adic Newton slopes of the twisted \(L \)-functions also form arithmetic progressions. In this paper, we give an upper bound for the twisted \(L \)-function and prove that it coincides with the lower bound at \(x = kd \) for any integer \(k \geq 0 \). As a consequence, we prove that its \(p \)-adic Newton slopes indeed form arithmetic progressions.

We start with introducing some basic setups. We fix a prime number \(p \). Let \(\mathbb{F}_q \) be the finite field of \(q = p^n \) elements. Let

\[
\omega : \mathbb{F}_q \to \mathbb{Z}_q \\
\alpha \mapsto \omega(\alpha) := \hat{\alpha}
\]

Date: April 25, 2017.

2010 Mathematics Subject Classification. 11T23 (primary), 11L07 11F33 13F35 (secondary).

Key words and phrases. Artin–Schreier–Witt towers, \(T \)-adic exponential sums, Slopes of Newton polygon, \(T \)-adic Newton polygon for Artin–Schreier–Witt towers, Eigencurves.
be the Teichmüller lift of \mathbb{F}_q. For any $u \in \{0, 1, \ldots, q - 1\}$, we put
\[\omega^u : \mathbb{F}_q \rightarrow \mathbb{Z}_q, \quad \alpha \mapsto \omega^u(\alpha) = \hat{\alpha}^u. \]

We fix a monic polynomial $f(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_0 \in \mathbb{F}_q[x]$ of degree d which is coprime to p. Set $a_d = 1$ and put $\hat{\alpha}_i := \omega(a_i)$ for $i = 0, \ldots, d$. The Teichmüller lift of the polynomial $f(x)$ is defined by $\hat{f}(x) := x^d + \hat{a}_{d-1}x^{d-1} + \cdots + \hat{a}_0 \in \mathbb{Z}_q[x].$

Let u be an integer in the set $\{0, 1, \ldots, q - 2\}$ and put
\[u = \sum_{i=0}^{a-1} u(i)p^i, \]
where $0 \leq u(i) \leq p - 1$ for any $0 \leq i \leq a - 1$.

Definition 1.1. Let $\chi : \mathbb{Z}_p \rightarrow \mathbb{C}_p^\times$ be a finite character with conductor p^{m_x}. The twisted L-function associated to the characters χ and ω^u is defined by (1.1.1)
\[L_f(\omega^u, \chi, s) = \prod_{x \in \mathbb{G}_{m,\mathbb{F}_q}} \frac{1}{1 - \omega^u \circ \text{Norm}_{\mathbb{F}_q(\hat{x})/\mathbb{F}_q}(x) \cdot \chi \left(\frac{\text{Tr}_{\mathbb{Q}_{\hat{x}}/\mathbb{Q}_p}(\hat{f}(x))}{\text{deg}(x)} \right)^s}, \]
where $\mathbb{G}_{m,\mathbb{F}_q}$ is the one-dimensional torus over \mathbb{F}_q and $\text{deg}(x)$ stands for the degree of x. By [Lin-Wei], the L-function $L_f(\omega^u, \chi, s)$ is a polynomial of degree $dp^{m_x - 1}$.

Notation 1.2. For simplicity of notations, we denote
\[y_u(k) := \frac{ak(k-1)(p-1)}{2d} + \frac{k}{d} \sum_{i=0}^{a-1} u(i). \]

Definition 1.3. We call the slopes of the line segments of the p-adic Newton polygon of $L_f(\omega^u, \chi, s)$ the p-adic Newton slopes of $L_f(\omega^u, \chi, s)$.

In this paper, we prove the following.

Theorem 1.4.

(a) The p-adic Newton polygon of $L_f(\omega^u, \chi, s)$ passes through the points
\[(kd, \frac{y_u(kd)}{p^{m_x - 1}}) \text{ for any } 0 \leq k \leq p^{m_x - 1}. \]

(b) The p-adic Newton polygon of $L_f(\omega^u, \chi, s)$ has slopes (in increasing order)
\[\bigcup_{k=1}^{p^{m_x - 1}} \{ \alpha_{k1}, \alpha_{k2}, \ldots, \alpha_{kd} \}, \]
where
\[\frac{a(k-1)}{p^{m_x - 1}} + \frac{\sum_{i=0}^{a-1} u(i)}{d(p-1)p^{m_x - 1}} \leq \alpha_{kj} \leq \frac{a(k-1)}{p^{m_x - 1}} + \frac{\sum_{i=0}^{a-1} u(i)}{d(p-1)p^{m_x - 1}} + \frac{a(d-1)}{dp^{m_x - 1}} \]
for any $1 \leq j \leq d$.

When the conductor p^{m_x} of $L_f(\omega^u, \chi, s)$ is large enough, the p-adic Newton slopes of $L_f(\omega^u, \chi, s)$ have the following property.
Theorem 1.5 (Main theorem). Let m_0 be the minimal positive integer such that $p^{m_0} > \frac{\text{adp}}{\text{S}(p-1)}$ and let $0 \leq \alpha_1, \alpha_2, \ldots, \alpha_{m_0-1} < a$ denote the slopes of the p-adic Newton polygon of $L_f(\omega^u, \chi_0, s)$ for a finite character $\chi_0 : \mathbb{Z}_p \to \mathbb{C}_p^\times$ with $m_{\chi_0} = m_0$. Then for any finite character $\chi : \mathbb{Z}_p \to \mathbb{C}_p^\times$ with $m_\chi \geq m_0$, the p-adic Newton polygon of $L_f(\omega^u, \chi, s)$ has slopes
\begin{equation}
\bigcup_{i=0}^{p^{m_\chi-m_0}-1} \left\{ \frac{\alpha_1 + ai}{p^{m_\chi-m_0}}, \frac{\alpha_2 + ai}{p^{m_\chi-m_0}}, \ldots, \frac{\alpha_{adp^{m_0-1} + ai}}{p^{m_\chi-m_0}} \right\}.
\end{equation}

Theorem[1.5] says that when m_χ is large enough, the p-adic Newton slopes of $L_f(\omega^u, \chi, s)$ form a disjoint union of arithmetic progressions determined by the p-adic Newton slopes of $L_f(\omega^u, \chi_0, s)$.

This paper is inspired by the p-adic Newton slopes of $L_f(\chi, s)$ in arithmetic progressions (proved in [DWX]), the twisted decomposition of $L_f(x^{q-1})(\chi, s) := \prod_{u=0}^{q-2} L_f(\omega^u, \chi, s)$ in [BEZ], and the lower bound for the Newton polygon of $L_f(\omega^u, \chi, s)$ given in [LL]. Let
$$C_0 \to C_1 \to \cdots \to C_m \to \cdots$$
be the Artin–Schreier–Witt curve tower associated to the polynomial $f(x^{q-1})$, and let $Z(C_m, s)$ be the zeta function of the curve C_m. It is known that
$$\begin{cases}
L_f(\omega^u, \chi, s) & \text{if } u \neq 0 \\
L_f(\omega^0, \chi, s) & \text{if } u = 0
\end{cases}$$
are factors of $Z(C_m, s)$, and the degree of $L_f(\omega^u, \chi_0, s)$ is $\frac{1}{q-1}$ of the degree of $L_f(\chi_0, s)$. Therefore, as a corollary of Theorem [1.5], we give a more precise description of zeros of $Z(C_m, s)$ than the one given in [DWX].

Acknowledgments. The author thanks Dennis A. Eichhorn, Karl Rubin, Daqing Wan and Liang Xiao for many valuable discussions and suggestions.

2. Notation

In this section, we introduce some notations that we will use throughout the paper.

Notation 2.1. We write $v_T(\cdot)$ for the T-adic valuation of elements in $\mathbb{C}_p[T]$ and $v_p(\cdot)$ for the p-adic valuation of elements in \mathbb{C}_p.

Definition 2.2. Given a set $S := \{(k, d_k) \mid 0 \leq k \leq n\}$. The Newton polygon of S, denoted by NP(S), is the lower convex hull of points in S. We call n the length of NP(S).

For a power series $F(s) = \sum_{i=0}^{n} u_i(T)s^i$, we put
$$\text{NP}_T(F) := \text{NP} \left(\left\{ (k, v_T(u_k)) \mid 0 \leq k \leq n \right\} \right),$$
where $n \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$.

Definition 2.3. For a Newton polygon NP, we write $R(\text{NP})$ for the multiset of slopes in NP.

It has an inverse, denoted by R^{-1}, mapping a multiset \mathbb{S} to the lower convex whose slopes coincide with this multiset.

Notation 2.4.
(a) Let S_1 and S_2 be two multisets in \mathbb{Q}. We denote by
$$S_1 \uplus S_2$$
the union of S_1 and S_2 as multisets.

(b) For any two Newton polygons NP_1 and NP_2, we write
$$NP_1 \oplus NP_2$$
for the Newton polygon whose slopes are the union of the slopes of NP_1 and NP_2.

(c) We denote by $NP(i)$ the height of NP at $x = i$.

(d) For any $t \in \mathbb{Q}$, we denote $t + NP$ be the Newton polygon such that
$$(t + NP)(k) = NP(k) + t$$
for any $0 \leq k \leq n$, where n is the length of NP.

Definition 2.5. Let NP_1 and NP_2 be two polygons of same length n. If
$$NP_1(k) \geq NP_2(k)$$
holds for any $0 \leq k \leq n$, then we call that NP_1 is above NP_2 and denote this by $NP_1 \geq NP_2$.

Lemma 2.6. If $\{NP_1,i \mid 1 \leq i \leq m\}$ and $\{NP_2,i \mid 1 \leq i \leq m\}$ are two sets of Newton polygons such that for any $0 \leq i \leq m$,
- NP_1,i and NP_2,i have the same length, and
- $NP_1,i \geq NP_2,i$,
then
$$\bigoplus_{i=1}^{m} NP_1,i \geq \bigoplus_{i=1}^{m} NP_2,i.$$

Proof. It follows directly from the definition of “\oplus”.

Definition 2.7. For any positive integer ℓ, the sum
$$S_{f,\omega,u,\chi}(\ell, s) = \sum_{x \in F_{q^{\ell}}^*} \omega^u \circ \text{Norm}_{F_{q^\ell}/F_q}(x) \cdot (1 + T)^{\left(\text{Tr}_{Q_{q^\ell}/Q_{q^2}}(f(x))\right)} \in \mathbb{Z}_q[T]$$
is called a twisted T-adic exponential sum of $f(x)$.

The L-function $L_f(\omega^u, T, s)$ (see Definition 1.1) satisfies
$$L_f(\omega^u, T, s) = \exp\left(\sum_{\ell=1}^{\infty} S_{f,\omega,u,\chi}(\ell, s) \frac{\ell}{\ell} \right).$$

It is easy to check
$$L_f(\omega^u, T, s)|_{T=\chi(1)-1} = L_f(\omega^u, \chi, s).$$

Lemma 2.8. If we put $g(x) := f(x^{q-1})$, then
$$L_g(\omega^0, T, s) = \prod_{u=0}^{q-2} L_f(\omega^u, T, s).$$

Proof. Put
$$(1 + T)^{\left(\text{Tr}_{Q_{q^\ell}/Q_p}(f(x))\right)} := \sum_{n=0}^{\infty} b_{\ell,n}(T)\hat{x}^n \in \mathbb{Z}_p[T][\hat{x}],$$
where $b_{\ell,n}(T) \in \mathbb{Z}_p[T]$ for all $n \geq 0$ and $\ell \geq 1$.

Notice that for each \(u \in \{0, 1, \ldots, q - 2\} \), we have

\[
S_{f, \omega^u, \chi}(\ell, s) = (q^\ell - 1) \sum_{n=1}^{\infty} b_{\ell, (q^\ell - 1)(n - \frac{u}{q-1})} (T).
\]

Therefore, by taking the sum of \(u \) over the set \(\{0, 1, \ldots, q - 2\} \), we get

\[
\sum_{u=0}^{q-2} S_{f, \omega^u, T}(\ell, s) = (q^\ell - 1) \sum_{u=0}^{q-2} \sum_{n=1}^{\infty} b_{\ell, (q^\ell - 1)(n - \frac{u}{q-1})} (T)
\]

\[
= (q^\ell - 1) \sum_{n=1}^{\infty} b_{\ell, \frac{n(q^\ell - 1)}{q-1}} (T).
\]

On the other hand, by definition, it is easy to check that

\[
S_{g, \omega^0, T}(\ell, s) = (q^\ell - 1) \sum_{n=1}^{\infty} b_{\ell, \frac{n(q^\ell - 1)}{q-1}} (T).
\]

Therefore, we have

\[
S_{g, \omega^u, T}(\ell, s) = \sum_{u=0}^{q-2} S_{f, \omega^u, T}(\ell, s),
\]

for all \(\ell \geq 1 \), which implies

\[
L_g(\omega^0, T, s) = \prod_{u=0}^{q-2} L_f(\omega^u, T, s).
\]

Definition 2.9. The characteristic power series of \(f \) is given by

\[
(2.9.1) \quad C_f(\omega^u, T, s) := \prod_{i=0}^{\infty} L_f(\omega^u, T, q^i s),
\]

which is known as a \(p \)-adic entire power series.

By Lemma 2.8, we know that

\[
C_g(\omega^0, T, s) = \prod_{u=0}^{q-2} C_f(\omega^u, T, s).
\]

Notation 2.10. We denote by \(\text{NP}_f(L, \omega^u, T) \) (resp. \(\text{NP}_f(L, \omega^u, \chi) \)) the \(T \)-adic Newton polygon (resp. \(p \)-adic Newton polygon) of \(L_f(\omega^u, T, s) \) (resp. \(L_f(\omega^u, \chi, s) \)).

Similarly, we write \(\text{NP}_f(C, \omega^u, T) \) and \(\text{NP}_f(C, \omega^u, \chi) \) for the \(T \)-adic Newton polygon (resp. \(p \)-adic Newton polygon) of \(C_f(\omega^u, T, s) \) and \(C_f(\omega^u, \chi, s) \) respectively.

3. The \(T \)-adic Dwork’s Trace Formula

In this section, we recall properties of the \(L \)-function associated to a \(T \)-adic exponential sum as considered by Liu and Wan in [LW]. Its specializations to appropriate values of \(T \) interpolate the \(L \)-functions considered above.

Notation 3.1. We first recall that the Artin–Hasse exponential series is defined by

\[
(3.1.1) \quad E(\pi) = \exp \left(\sum_{i=0}^{\infty} \frac{\pi^p^i}{p^i} \right) = \prod_{p \mid i, i \geq 1} (1 - \pi^i)^{-\mu(i)/i} \in 1 + \pi + \pi^2 \mathbb{Z}_p[\pi].
\]

Setting \(T = E(\pi) - 1 \) defines an isomorphism \(\mathbb{Z}_p[\pi] \cong \mathbb{Z}_p[T] \).
Notation 3.2. For our given polynomial \(f(x) = \sum_{i=0}^{d} a_i x^i \in \mathbb{Z}_q[x] \), we put

\[
E_f(x) := \prod_{i=0}^{d} E(a_i \pi x^i) \in \mathbb{Z}_q[[\pi]][x].
\]

We follow the notation of [LL]. Set

\[
C_u := \{ v \in \mathbb{Z}_{\geq 0} \mid v \equiv u \}
\]

and

\[
B_u := \left\{ \sum_{v \in C_u} b_v T^{\frac{v}{d(q-1)}} x^{\frac{v}{q-1}} \mid b_v \in \mathbb{Z}_q[T^{\frac{1}{q-1}}] \text{ and } v_T(b_v) \to \infty \right\}.
\]

Notation 3.3.

(a) For two integers \(n \) and \(m \), we denote by \(n \% m \) the residue class of \(n \) modulo \(m \) in \(\{0, 1, \ldots, m - 1\} \).

(b) Recall \(u \in \{0, 1, \ldots, q - 2\} \). We write \(b_u | a \) for the minimal positive integer such that \(u^{b_u} \equiv u \pmod{q} \).

(c) Denote

\[
u_i := (up^i)\% (q - 1) \text{ for } i = 0, \ldots, b_u - 1 \]

and put

\[
\tilde{B}_u = \bigoplus_{i=0}^{b_u-1} B_{u_i}
\]

to be the total Banach space associated to \(u \).

(d) Choose a permutation \((i_1, i_2, \ldots, i_{b_u})\) of \(\{1, 2, \ldots, b_u\} \) such that the sequence \(\{u_{i_n}\} \) is non-decreasing. Put

\[
\bigcup_{i=0}^{b_u-1} C_{u_i} := (c_{u,n})_{n \in \mathbb{Z}_{\geq 0}}
\]

to be a non-decreasing sequence.

It is easy to check that

\[
c_{u,n} = (q - 1) \lfloor \frac{n}{b_u} \rfloor + u_{i(n \% b_u)}.
\]

Let \(\psi_p \) denote the operator on \(\tilde{B}_u \) given by

\[
\psi_p \left(\sum_{n \geq 0} d_n(T)x^n \right) := \sum_{n \geq 0} d_{pn}(T)x^n;
\]

and let \(\psi \) be the composite linear operator

\[
\psi := \sigma \circ \psi_p \circ E_f(x) : \tilde{B}_u \longrightarrow \tilde{B}_u,
\]

where \(\sigma \) is the Frobenius automorphism of \(\mathbb{Z}_q \), and \(E_f(x) \) acts on \(g \in \tilde{B}_u \) by

\[
E_f(x)(g) := E_f(x) \cdot g.
\]

By Dwork’s trace formula, we have

Lemma 3.4. The characteristic power series \(C_f(\omega^u, T, s) \) satisfies

\[
C_f(\omega^u, T, s) = \det \left(1 - \psi^a s \mid B_u/\mathbb{Z}_q[T^{\frac{1}{q-1}}] \right).
\]
By [LL] Lemma 4.2, we have

\[C_f(\omega^u, T, s)^b = \det \left(1 - \psi^a s \mid \hat{B}_u / \mathbb{Z}_q[T^{\frac{1}{q-1}}] \right). \]

We write

\[B = (T^{\frac{v}{d(q-1)}} T^{\frac{c_{u,n}}{(q-1)}})_{n \in \mathbb{Z}_{\geq 0}} \]

for a basis of \(\hat{B}_u \) over \(\mathbb{Z}_q[T^{\frac{1}{q-1}}] \) and denote by \(N \) the standard matrix of \(\psi \) associated to the basis \(B \).

It is not hard to check that \(N \) is an infinite dimensional nuclear matrix of the form

\[N = \begin{pmatrix}
T^{\frac{(p-1)c_{u,0}}{d(q-1)}} & T^{\frac{(p-1)c_{u,0}}{d(q-1)}} & \cdots & T^{\frac{(p-1)c_{u,0}}{d(q-1)}} \\
T^{\frac{(p-1)c_{u,1}}{d(q-1)}} & T^{\frac{(p-1)c_{u,1}}{d(q-1)}} & \cdots & T^{\frac{(p-1)c_{u,1}}{d(q-1)}} \\
\vdots & \vdots & \ddots & \vdots \\
T^{\frac{(p-1)c_{u,n}}{d(q-1)}} & T^{\frac{(p-1)c_{u,n}}{d(q-1)}} & \cdots & T^{\frac{(p-1)c_{u,n}}{d(q-1)}}
\end{pmatrix}. \]

By [RWXY] Corollary 3.9, we know

\[\det \left(1 - \psi^a s \mid \hat{B}_u / \mathbb{Z}_q[T^{\frac{1}{q-1}}] \right) = \det \left(I - s\sigma^{-1}(N) \cdots \sigma(N)N \right). \]

Notation 3.5. For a matrix \(M \), we write

\[\begin{pmatrix}
m_1 & m_2 & \cdots & m_k \\
n_1 & n_2 & \cdots & n_k
\end{pmatrix}_M \]

for the \(k \times k \) submatrix formed by elements whose row indices belong to \(\{m_1, \ldots, m_k\} \) and whose column indices belong to \(\{n_1, \ldots, n_k\} \).

Lemma 3.6. Let \((t_{ij})_{j \in \mathbb{Z}_{\geq 0}} \) be \(n \) non-decreasing sequences, and let \(M_1, M_2, \ldots, M_n \) be \(n \) nuclear matrices such that

\[M_i = \text{Diag}(T^{t_{i1}}, T^{t_{i2}}, \ldots) \cdot M'_i \quad \text{for any } 1 \leq i \leq n, \]

where \(M'_i \) are infinite matrix whose entries belong to \(\mathbb{Z}_q[T^{\frac{1}{q-1}}] \). Then the \(T \)-adic Newton polygon

\[\text{NP}_T \left(\det(1 - M_n \cdots M_2 M_1 s) \right) \geq \text{NP} \left(\left\{ (k, \sum_{i=1}^n \sum_{j=1}^k (t_{ij})) \mid k \geq 0 \right\} \right). \]

Proof. Put

\[\det(I - s M_n \cdots M_2 M_1) := \sum_{k=0}^{\infty} (-1)^k \tau_k(T)s^k. \]
From the definition of characteristic power series, we get
\[
r_k(T) = \sum_{0 \leq m_1 < m_2 < \cdots < m_k < \infty} \det \begin{bmatrix} m_1 & m_2 & \cdots & m_k \\
 m_1 & m_2 & \cdots & m_k \\
 \vdots & \vdots & \ddots & \vdots \\
 M_n & M_{n-1} & \cdots & M_1 \end{bmatrix}
\]
\[= \sum_{0 \leq m_1,1 < m_1,2 < \cdots < m_k,k < \infty} \prod_{i=1}^{n} \det \begin{bmatrix} m_{i+1,1} & m_{i+1,2} & \cdots & m_{i+1,k} \\
 m_{i,1} & m_{i,2} & \cdots & m_{i,k} \\
 \vdots & \vdots & \ddots & \vdots \\
 M_{i+1} & M_i & \cdots & M_1 \end{bmatrix} \]
(3.6.1)

\[
\sum_{i=1}^{n} \prod_{i=1}^{n} \det \begin{bmatrix} m_{i+1,1} & m_{i+1,2} & \cdots & m_{i+1,k} \\
 m_{i,1} & m_{i,2} & \cdots & m_{i,k} \\
 \vdots & \vdots & \ddots & \vdots \\
 M_{i+1} & M_i & \cdots & M_1 \end{bmatrix} \]
\]

Here and after, we set \(m_{n+1,i} = m_{1,i} \) for all \(1 \leq i \leq k \). Since
\[
v_T \left(\det \begin{bmatrix} m_{i+1,1} & m_{i+1,2} & \cdots & m_{i+1,k} \\
 m_{i,1} & m_{i,2} & \cdots & m_{i,k} \\
 \vdots & \vdots & \ddots & \vdots \\
 M_{i+1} & M_i & \cdots & M_1 \end{bmatrix} \right) \geq \sum_{j=1}^{k} t_{ij},
\]
we complete the proof. \(\square \)

Definition 3.7. The *Hodge polygon* of \(C_f(\omega^u, T, s) \), denoted by \(\text{HP}(d, \omega^u, T) \), is the lower convex hull of set
\[
\{ \left(k, \frac{a(p-1)}{db_u(q-1)} \sum_{j=0}^{kb_u-1} c_{u,j} \right) \mid k \geq 0 \}.
\]

Lemma 3.8. Each point in \(\{ \left(k, \frac{a(p-1)}{db_u(q-1)} \sum_{j=0}^{kb_u-1} c_{u,j} \right) \} \) is a vertex of \(\text{HP}(d, \omega^u, T) \).

Proof. It follows that sequence \(\left(\frac{a(p-1)}{db_u(q-1)} \sum_{j=(k-1)b_u}^{kb_u-1} c_{u,j} \right)_{k \in \mathbb{Z}_{\geq 0}} \) is strictly increasing in \(k \). \(\square \)

Recall
\[
u = \sum_{j=0}^{a-1} u(j)p^j \quad \text{and} \quad y_u(k) = \frac{ak(k-1)(p-1)}{2d} + \frac{k \sum_{j=0}^{a-1} u(j)}{d}.
\]

Lemma 3.9. We have
\[
y_u(k) = \frac{a(p-1)}{db_u(q-1)} \sum_{j=1}^{kb_u} c_{u,j}.
\]

Proof. From (3.3.1), we know
\[
\sum_{j=0}^{kb_u-1} c_{u,j} = \sum_{j=0}^{k-1} \sum_{\ell=0}^{b_u-1} c_{u,jb_u+\ell}
\]
\[
= \sum_{j=0}^{k-1} [j b_u(q-1) + \sum_{i=0}^{b_u-1} u_i]
\]
\[
= \frac{k(k-1)b_u(q-1)}{2} + k \sum_{i=0}^{b_u-1} u_i.
\]
Since
\[
\sum_{i=0}^{b_u-1} u_i = \frac{b_u}{a} \sum_{i=0}^{a-1} u^i p^{i(q-1)} = \frac{b_u}{a} \sum_{j=0}^{a-1} u(j) p^{j(q-1)}/p-1,
\]
we know
\[
\frac{a(p-1)}{db_u(q-1)} \sum_{j=1}^{k b_u} c_{u,j} = \frac{a(p-1)}{db_u(q-1)} \left(\frac{k(k-1)b_u(q-1)}{2} + \frac{k(q-1)b_u}{a(p-1)} \sum_{i=0}^{b_u-1} u_i \right)
\]
\[
= \frac{ak(k-1)(p-1)}{2d} + \frac{k}{d} \sum_{j=0}^{a-1} u(j) = y_u(k).
\]

Corollary 3.10. The Hodge polygon \(\text{HP}(d, \omega^u, T) \) passes through the points \((k, y_u(k))\) for any \(k \geq 0\).

Proposition 3.11. The polygons \(\text{NP}_f(C, \omega^u, T) \) and \(\text{HP}(d, \omega^u, T) \) satisfy
\[
\text{NP}_f(C, \omega^u, T) \geq \text{HP}(d, \omega^u, T).
\]

Proof. Since matrix \(N \) is nuclear as in (3.4.3), its conjugates \(\sigma^i(N) \) are also nuclear matrices of the same form. Therefore, applying Lemma 3.6 to the product of these matrices yields
\[
\text{NP}_T \left(\det \left(I - s \sigma^{a-1}(N) \cdots \sigma(N)N \right) \right) \geq \text{NP} \left(\left\{ (k, \frac{a(p-1)}{d(q-1)} \sum_{j=1}^{k} c_{u,j}) \mid k \geq 0 \right\} \right).
\]

From (3.4.2) and (3.4.4), we have
\[
\text{NP}_f(C, \omega^u, T) \geq \text{NP} \left(\left\{ (k, \frac{a(p-1)}{d(q-1)} \sum_{j=1}^{k} c_{u,j}) \mid k \geq 0 \right\} \right)
\]
\[
= \text{HP}(d, \omega^u, T).
\]

Corollary 3.12. For any character \(\chi : \mathbb{Z}_p \to \mathbb{C}_p^\times \) with conductor \(p^{m_x} \), we have
\[
\text{NP}_f(C, \omega^u, \chi) \geq \frac{1}{p^{m_x-1}(p-1)} \text{HP}(d, \omega^u, T).
\]

Proof. It simply follows
\[
\text{NP}_f(C, \omega^u, \chi) \geq \frac{1}{p^{m_x-1}(p-1)} \text{NP}_f(C, \omega^u, T)
\]
\[
\geq \frac{1}{p^{m_x-1}(p-1)} \text{HP}(d, \omega^u, T).
\]

4. **Proof of Theorem 1.4 and Theorem 1.5**

In this section, we prove the main theorems.

Proposition 4.1.
(a) The Newton polygon \(\text{NP}_f(C, \omega^u, T) \) passes through the points \((kd, y_u(kd))\) for all \(k \geq 0\).
(b) If we write

\[(4.1.1) \quad C_f(\omega^u, T, s) = \sum_{k=0}^{\infty} r_{u,k}(T)s^k,\]

then for any \(k \geq 0\) and \(0 \leq u \leq q - 2\), the leading term of \(r_{u,kd}\) is of the form

\(*T^{y_u(kd)},\)

where \(*\) represents for a \(p\)-adic unit.

Notation 4.2. We denote by \(\text{UP}(d, \omega^u, T)\) the lower convex hull of the points in

\[\{(kd, y_u(kd)) \mid k \geq 0\}.\]

Corollary 4.3. The polygon \(\text{UP}(d, \omega^u, T)\) forms an upper bound of \(\text{NP}_f(C, \omega^u, T)\).

Proof. This follows directly from Proposition 4.1 (a). \(\Box\)

Corollary 4.4. Any finite character \(\chi : \mathbb{Z}_p \to \mathbb{C}_p^\times\) with conductor \(p^{m_\chi}\) satisfies

\[(4.4.1) \quad \text{NP}_f(C, \omega^u, \chi) \leq \frac{1}{(p - 1)p^{m_\chi} - 1}\text{UP}(d, \omega^u, T).\]

Proof. It follows from Theorem 4.1 (b). \(\Box\)

We will give the proof of Proposition 4.1 later.

Lemma 4.5. Let \(\text{NP}_1, \text{NP}_2, \ldots, \text{NP}_n\) be \(n\) Newton polygons. Assume for each \(1 \leq i \leq n\) there is a rational number \(c\) and a vertex \((k_i, y_i)\) of \(\text{NP}_i\) such that all segments of \(\text{NP}_i\) before this point have slopes strictly less than \(c\), while all segments after that point have slopes greater than \(c\). Then \(\bigoplus_{i=1}^{n} \text{NP}_i\) passes thorough the point

\[\left(\sum_{i=1}^{n} k_i, \sum_{i=1}^{n} y_i\right).\]

Proof. The proof follows from the definition of direct sum “\(\oplus\)” of polygons. \(\Box\)

Lemma 4.6. Any finite character \(\chi\) with conductor \(p^{m_\chi}\) satisfies

\[(4.6.1) \quad (p - 1)p^{m_\chi} \text{NP}_g(C, \omega^0, \chi) \geq \text{NP}_g(C, \omega^0, T).\]

Proof. It is enough to show each monomial \(aT^i \in \mathbb{Z}_q[T]\) satisfy

\[v_p(a(\chi(1) - 1)^i) \geq v_T(aT^i),\]

which follows

\[\begin{align*}
(p - 1)p^{m_\chi}v_p(a(\chi(1) - 1)^i) &= (p - 1)p^{m_\chi}(v_p(a) + iv_p(\chi(1) - 1)) \\
&= (p - 1)p^{m_\chi}v_p(a) + i \\
&\geq v_T(aT^i). \quad \Box
\end{align*}\]

Proof of Proposition 4.1. Proof of (a). Fix a finite character \(\chi_1 : \mathbb{Z}_p \to \mathbb{C}_p^\times\) with conductor \(p\). By Lemma 4.6 we have

\[(4.6.2) \quad (p - 1)\text{NP}_g(C, \omega^0, \chi_1) \geq \text{NP}_g(C, \omega^0, T).\]

By [DWX] Proposition 3.2, the \(p\)-adic Newton polygon \(\text{NP}_g(C, \omega^0, \chi_1)\) passes through the points

\[\left(kd(q - 1), \frac{ak((q - 1)kd - 1)(p - 1)}{2}\right) \quad \text{for any } k \geq 0.\]
Hence, we know that $NP_g(C, \omega^0, T)$ is not above point
\[
\left(kd(q - 1), \frac{ak((q - 1)kd - 1)(p - 1)}{2} \right) \text{ for any } k \geq 0.
\]

On the other hand, by Definition 3.7 and Lemma 3.8 we have

(1) For any $0 \leq u \leq q - 2$ and $k \geq 0$, the point
\[
\left(kd, y_u(kd) \right)
\]
is a vertex of $HP(d, \omega^u, T)$.

(2) All segments of $HP(d, \omega^u, T)$ before this point have slopes strictly less than $ak(p-1)$, while all segments after this point have slopes greater than $ak(p-1)$.

By checking the conditions in Lemma 4.5 we prove $q^{-2} \bigoplus_{u=0}^{q-2} HP(d, \omega^u, T)$ passes through
\[
\left(kd(q - 1), \sum_{u=0}^{q-2} y_u(kd) \right)
\]
for any $k \geq 0$.

Combining it with Proposition 3.11 yields that $NP_g(C, \omega^0, T)$ is not above the points
\[
\left(kd(q - 1), \sum_{u=0}^{q-2} y_u(kd) \right) \text{ for any } k \geq 0.
\]

Thus,
\[
\sum_{u=0}^{q-2} \left(\frac{ak(kd - 1)(p - 1)}{2} + k \sum_{i=0}^{a-1} u(i) \right) = \sum_{u=0}^{q-2} y_u(kd) \leq \frac{ak((q - 1)kd - 1)(p - 1)}{2}. \tag{4.6.3}
\]

Now we show that (4.6.3) is actually an equality.

Consider
\[
\sum_{u=0}^{a-1} \sum_{i=0}^{q-1} u(i) = -a(p - 1) + \sum_{i=0}^{a-1} \sum_{u=0}^{q-1} u(i) = -a(p - 1) + \sum_{i=0}^{a-1} q \frac{p - 1}{2} = \frac{aq(p - 1)}{2} - a(p - 1).
\]

Then we simplify the left-hand side of (4.6.3) by
\[
\sum_{u=0}^{q-2} \left(\frac{ak(kd - 1)(p - 1)}{2} + k \sum_{i=0}^{a-1} u(i) \right) = (p - 1) \left(\frac{aqk}{2} - ak + \frac{(q - 1)ak(kd - 1)}{2} \right) = \frac{ak((q - 1)kd - 1)(p - 1)}{2},
\]
which is equal to its right-hand side. It implies for any $u \in \{0, 1, \ldots, q - 2\}$, the Newton polygon $NP_f(C, \omega^u, T)$ passes through the points
\[
\left(kd, y_u(kd) \right) \text{ for any } k \geq 0.
\]
Proof of (b). From (a), we are able to write
\[(4.6.4)\]
\[r_{u,kd} (T) := \sum_{i = y_u(kd)}^{\infty} r_{u,kd,i} T^i,\]
where \(r_{u,kd,i}\) belongs to \(\mathcal{O}_{C_p}\).

Put \(C_g(\omega^0, T, s) = \sum_{n=0}^{\infty} w_n(T) s^n\). From [DWX], we know that the leading term of \(w_{kd}(T)\) has the form
\[\ast_k T^{\frac{a(k-1)(kd-1)(p-1)}{2}},\]
where \(\ast_k\) is a \(p\)-adic unit. It is easy to show that \(q-2 \prod_{u=0}^{a-2} r_{u,kd,y_u(kd)} = \ast_k\), which implies that \(r_{u,kd,i}\) are all \(p\)-adic units. \(\square\)

Now we are ready to prove our main theorems of this paper.

Proof of Theorem 1.4. (a) From (2.7.1), we obtain
\[C_f(\omega^u, T, s)|_{T=\chi(1)-1} = C_f(\omega^u, \chi, s) = \sum_{k=0}^{\infty} r_{u,k}(\chi(1) - 1)s^k.\]
Therefore, by Proposition 4.1 (b), the Newton polygon \((p - 1)p^{m_\chi - 1} \text{NP}_f(C, \omega^u, \chi)\) is not above point \((kd, y_u(kd))\) for all \(k \geq 0\).

On the other hand, the Hodge polygon \(\text{HP}(d, \omega^u, T)\) forms a lower bound of \((p - 1)p^{m_\chi - 1} \text{NP}_f(C, \omega^u, \chi)\) and for all \(k \geq 0\) the points \((kd, y_u(kd))\) are also vertices of \(\text{HP}(d, \omega^u, T)\).

Therefore, the points \((kd, y_u(kd))\) are forced to be the vertices of \((p - 1)p^{m_\chi - 1} \text{NP}_f(C, \omega^u, \chi)\).

A simple argument about the relation between roots of a power series and its \(p\)-adic Newton polygon completes the proof.

(b) Since the slopes of segments of \(\text{HP}(d, \omega^u, T)\) between \(x = d(k-1)\) and \(x = dk\) are in the interval
\[a(k-1)(p-1) + \frac{1}{d} \sum_{i=0}^{a-1} u(i), a(k-1)(p-1) + \frac{a}{d}(d-1)(p-1) + \frac{1}{d} \sum_{i=0}^{a-1} u(i),\]
by simply applying (a), we know that the slopes of segments of \((p - 1)p^{m_\chi - 1} \text{NP}_f(C, \omega^u, \chi)\) between \(x = d(k-1)\) and \(x = dk\) also in this interval, which completes the proof of (b). \(\square\)

Recall \(\text{UP}(d, \omega^u, T)\) is the upper bound of \(\text{NP}_f(C, \omega^u, T)\) defined in Notation 4.2.

Lemma 4.7. The vertical distance between points in \(\text{UP}(d, \omega^u, T)\) and \(\text{NP}_f(C, \omega^u, T)\) is bounded above by \(\frac{ad(p-1)}{8}\).
Proof. By Corollary 4.3 and Proposition 3.11, we know
\[\text{UP}(d, \omega^u, T) \geq N_{f_j}(C, \omega^u, T) \geq \text{HP}(d, \omega^u, T). \]
By Corollary 3.10 the polygon \(\text{HP}(d, \omega^u, T) \) above the parabola \(P \) defined by
\[P(x) := \frac{ax(x - 1)(p - 1)}{2d} + \frac{x \sum_{i=0}^{a-1} u(i)}{d}. \]
Since all vertices \((kd, y_u(kd))\) of \(\text{UP}(d, \omega^u, T) \) coincide with the parabola \(P \), by simple calculation, the maximal vertical distance of \(\text{UP}(d, \omega^u, T) \) and \(P \) is equal to
\[\max_{k \in \mathbb{Z}_{\geq 0}} \left\{ \frac{P(d(k + 1)) + P(d(k))}{2} - P(d(k + 1/2)) \right\} = \max_{k \in \mathbb{Z}_{\geq 0}} \left\{ \frac{ad(p - 1)}{8} \right\} = \frac{ad(p - 1)}{8}. \]

Proposition 4.8. Let \(\chi \) be a finite character with conductor \(p^{m_x} > \frac{adp}{8} \). Then the Newton polygon \(p^{m_x} \text{NP}_f(C, \omega^u, \chi) \) is independent of \(\chi \).

Proof. Recall in (4.1.1) we denote
\[C_f(\omega^u, T, s) = \sum_{k=0}^{\infty} r_{u,k}(T)s^k. \]
By Proposition 3.11 and Corollary 3.10 we are able to write \(r_{u,k}(T) \) of the form
\[r_{u,k}(T) = \sum_{j=y_u(k)}^{\infty} r_{u,k,i}T^j. \]
Assume that \(i(k) \) is the smallest integer such that
- \(i(k) \leq \text{UP}(d, \omega^u, T)(k) \), where \(\text{UP}(d, \omega^u, T)(k) \) is the height of \(\text{UP}(d, \omega^u, T) \) at \(x = k \).
- The corresponding coefficient \(r_{u,k,i(k)} \) is a \(p \)-adic unit.
If such \(i(k) \) does not exist, we simply put \(i(k) = \infty \).
Then we will show that for any \(\chi \) satisfying
\[p^{m_x} > \frac{adp}{8}, \]
the Newton polygon \(p^{m_x-1}(p - 1) \text{NP}_f(C, \omega^u, \chi) \) is same as \(\text{NP} \left(\left\{ (k, i(k)) \mid k \geq 0 \right\} \right) \).
Since \(C_f(\omega^u, T, s) \in \mathbb{Z}_p[T] \), for any \(\ell < i(k) \) we have
\[v_p \left(r_{u,k,\ell}(\chi(1) - 1)^\ell \right) \geq 1 + \frac{\ell}{p^{m_x-1}(p - 1)} \]
\[= \frac{p^{m_x-1}(p - 1) + \ell - i(k) + i(k)}{p^{m_x-1}(p - 1)}. \]
By Lemma 4.7 and the definition of \(i(k) \), we know that
\[i(k) - \ell \leq \frac{ad(p - 1)}{8}. \]
It follows from the inequalities (4.8.3), (4.8.1) and (4.8.2) that
\[v_p \left(r_{u,k,\ell} \cdot (\chi(1) - 1)^\ell \right) \geq \frac{p^{m_x-1}(p - 1) - \frac{ad(p - 1)}{8} + i(k)}{p^{m_x-1}(p - 1)} \]
\[> \frac{i(k)}{p^{m_x-1}(p - 1)} \]
\[= v_p \left(r_{u,k,i(k)} \cdot (\chi(1) - 1)^{i(k)} \right). \]
The inequality above implies that $v_p(u_{u,k} \cdot (\chi(1) - 1))$ is
- either equal to $\frac{i(k)}{p^{m_\chi-1}(p-1)}$
- or greater than $\frac{1}{(p-1)p^{m_\chi-1}}\text{UP}(d, \omega^u, T)(k)$.

Then this proposition follows directly from Corollary 4.4. □

For a Newton polygon NP and a rational number t recall the definition of Newton polygon $t + NP$ in Notation 2.4 (d).

Lemma 4.9. Let $\chi : \mathbb{Z}_p \to \mathbb{C}_p^\times$ be a finite character with conductor p^{m_χ}. Then we have

\[
\{ \alpha \in R(NP_f(C, \omega^u, \chi)) \mid \alpha < ak \} = \bigcup_{i=0}^{k-1} R\left(ai + NP(L_f(\omega^u, \chi, q^i s)) \right),
\]

where R is defined in Definition 2.3.

Proof. Since

\[
C_f(\omega^u, \chi, s) = \prod_{i=0}^{\infty} L_f(\omega^u, \chi, q^i s)
\]

and $R(NP_f(\omega^u, \chi, s)) \subset [0, a)$, we know that

\[
\{ \alpha \in R(NP_f(C, \omega^u, \chi)) \mid \alpha < ak \} = \bigcup_{i=0}^{k-1} \{ p\text{-adic Newton slopes of } L_f(\omega^u, \chi, q^i s) \}
\]

\[
= \bigcup_{i=0}^{k-1} R\left(ai + NP(L, \omega^u, \chi) \right).
\]

□

Proof of Theorem 1.5. By Proposition 4.8, we have

\[
R\left(\text{NP}(L_f(\omega^u, \chi, s)) \right)
\]

\[
= \left\{ \alpha \in R\left(\text{NP}(C, \omega^u, \chi) \right) \mid \alpha < a \right\}
\]

\[
= \left\{ \frac{\alpha}{p^{m_\chi}} \left| \alpha \in p^{m_\chi}R\left(\text{NP}(C, \omega^u, \chi) \right) \text{ and } \alpha < ap^{m_\chi} \right\} \right.
\]

\[
= \left\{ \frac{\alpha}{p^{m_\chi}} \left| \alpha \in p^{m_0}R\left(\text{NP}(C, \omega^u, \chi) \right) \text{ and } \alpha < ap^{m_\chi} \right\} \right.
\]

\[
= \left\{ \frac{\alpha p^{m_0}}{p^{m_\chi}} \left| \alpha \in R\left(\text{NP}(C, \omega^u, \chi) \right) \text{ and } \alpha < ap^{m_\chi-m_0} \right\} \right.
\]

\[
= \bigcup_{i=0}^{p^{m_\chi-m_0}-1} R\left(\frac{1}{p^{m_\chi-m_0}}(ai + NP(L, \omega^u, \chi)) \right)
\]

\[
= \bigcup_{i=0}^{p^{m_\chi-m_0}-1} \left\{ \frac{\alpha_1 + ai}{p^{m_\chi-m_0}}, \frac{\alpha_2 + ai}{p^{m_\chi-m_0}}, \ldots, \frac{\alpha_{dp^{m_0}-1} + ai}{p^{m_\chi-m_0}} \right\}.
\]

□

References

[BFZ] R. Blache, E. Ferard, and H. Zhu, Hodge–Stickelberger polygons for L-functions of exponential sums of $P(x^s)$, *Math. Res. Lett.* **15** (2008), no. 5, 1053–1071.

[DWX] C. Davis, D. Wan and L. Xiao, Newton slopes for Artin–Schreier–Witt towers, *Math. Ann.*, **364** (2016), no. 3, 1451–1468.

[KW] M. Kosters and D. Wan, On the arithmetic of \mathbb{Z}_p-extensions of function fields, *arXiv:1607.00523*

[Li] X. Li, The stable property of Newton slopes for general Witt towers, *arXiv:1511.04302*

[LW] C. Liu and D. Wan, T-adic exponential sums over finite fields, *Algebra and Number Theory* **3** (2009), no. 5, 489–509.
[LL] C. Liu and W. Liu. Twisted exponential sums of polynomials in one variable, *Science China(Mathematics)* **53** (2010), no. 9, 2395-2404.

[LWX] R. Liu, D. Wan, and L. Xiao, Slopes of eigencurves over the boundary of the weight space, *to appear in Duke Math. J.*, [arXiv:1412.2584](http://arxiv.org/abs/1412.2584).

[Liu-Wei] C. Liu and D. Wei, The L-functions of Witt coverings, *Math. Z.* **255** (2007), 95–115.

[M] D. Mumford, An analytic construction of degenerating curves over complete local fields, *Compos. Math.* **24** (1972), 129–172.

[RWX] R. Ren, D. Wan, L. Xiao, and M. Yu, Slopes for higher rank Artin–Schreier–Witt Towers, *to appear in Trans. Amer. Math. Soc.*, [arXiv:1605.02254](http://arxiv.org/abs/1605.02254).

[W] D. Wan, Meromorphic continuation of L-functions of p-adic representations, *Ann. Math.*, **143** (1996), 469–498.

RUFEREI REN, UNIVERSITY OF CALIFORNIA, IRVINE, DEPARTMENT OF MATHEMATICS, 340 ROWLAND HALL, IRVINE, CA 92697

E-mail address: rufeir@math.uci.edu