Simplifications of the Keiper/Li approach to the Riemann Hypothesis

André Voros
CEA-Institut de Physique Théorique de Saclay (CNRS-URA 2306)
F-91191 Gif-sur-Yvette Cedex (France)
E-mail: andre.voros@cea.fr

February 11, 2016

Abstract

The Keiper/Li constants \(\{\lambda_n\}_{n=1,2,...} \) are asymptotically (\(n \to \infty \)) sensitive to the Riemann Hypothesis, but highly elusive analytically and difficult to compute numerically. We present quite explicit variant sequences that stay within the abstract Keiper–Li frame, and appear simpler to analyze and compute.

The present work develops results that we announced in 2015. [24]

1 Generalities and notations

We use the standard basic notions (e.g., [7, chap. 8]):
\(\zeta(x) \) : the Riemann zeta function (analytic over \(\mathbb{C} \setminus \{+1\} \));
\(2\xi(x) \) : a completed zeta function, with its Riemann’s Functional Equation:

\[
2\xi(x) \overset{\text{def}}{=} x(x-1)\pi^{-x/2}\Gamma(x/2)\zeta(x) \equiv 2\xi(1-x) \quad (1)
\]

(this \textit{doubled} Riemann’s \(\xi \)-function is better normalized: \(2\xi(0) = 2\xi(1) = 1 \)).

\(\{\rho\} \) : the set of zeros of \(\xi \) (i.e., the nontrivial zeros of \(\zeta \), or \textit{Riemann zeros}, counted with multiplicities if any, and grouped in pairs \((\rho,1-\rho)\) in the sums that we write as \(\sum_{(\rho,1-\rho)} \); they all lie in the strip \(\{0 < \text{Re} x < 1\} \).
Riemann Hypothesis (RH): all the Riemann zeros lie on the critical line $L \equiv \{ \text{Re } x = \frac{1}{2} \}$.

$k!!$: the double factorial, to serve here for odd integers k only, in which case

$$k!! \overset{\text{def}}{=} k(k-2)\cdots 1 \quad \text{for odd } k > 0,$$
$$= 2^{(k+1)/2} \Gamma \left(\frac{1}{2} k + 1 \right) / \sqrt{\pi} \quad \text{for odd } k \geq 0 \quad (\text{e.g., } (-1)!! = 1). \quad (2)$$

B_{2m} : the Bernoulli numbers; γ : Euler’s constant.

1.1 The Keiper and Li coefficients

In 1992 Keiper [13] considered a real sequence $\{\lambda_n\}$ of generating function

$$f(z) \overset{\text{def}}{=} \log 2\xi(M(z)) \equiv \sum_{n=1}^{\infty} \lambda^K_n z^n, \quad M(z) \overset{\text{def}}{=} \frac{1}{1-z}, \quad (3)$$

(λ^K_n : our notation for Keiper’s λ_n), deduced that

$$\lambda^K_n \overset{\text{def}}{=} n^{-1} \sum_{(\rho,1-\rho)} [1 - (1 - 1/\rho)^n], \quad (4)$$

and argued that, under RH, $\lambda^K_n > 0 \ (\forall n)$ and moreover “if [...] the zeros are very evenly distributed, we can show that” [this without proof]

$$\lambda^K_n \approx \frac{1}{2} \log n + c, \quad c = \frac{1}{2}(\gamma - \log 2\pi - 1) \approx -1.130330700754. \quad (5)$$

In (3), the conformal mapping $M : x = (1-z)^{-1}$ acts to pull back the critical line L to the unit circle $\{|z| = 1\}$, with the fundamental consequence:

$$\text{RH} \iff f \text{ regular in the whole open unit disk } \{|z| < 1\}. \quad (6)$$

Then, (3) specifies the sequence $\{\lambda_n\}$ as a particular encoding of the germ of $\log 2\xi(x)$ at the “basepoint” $\underline{x} = M(0)$ (here: $\underline{x} = 1$).

In 1997 Li [15] independently introduced another sequence λ_n, through

$$\lambda_L^n = \frac{1}{(n-1)!} \left. \frac{d^n}{dx^n} [x^{n-1} \log 2\xi(x)] \right|_{x=1}, \quad n = 1, 2, \ldots \quad (\lambda_L^n \overset{\text{def}}{=} \text{Li’s } \lambda_n), \quad (7)$$

deduced that

$$\lambda_L^n \overset{\text{def}}{=} \sum_{(\rho,1-\rho)} [1 - (1 - 1/\rho)^n], \quad (8)$$
and proved the sharp equivalence: \(\text{RH} \iff \lambda_n^L > 0 \) for all \(n \) (Li’s criterion).

Actually, by comparing (4) vs (8) for instance,

\[
\lambda_n^L \equiv n \lambda_n^K \quad \text{for all } n = 1, 2, \ldots;
\]

our superscripts \(K \) vs \(L \) will disambiguate \(\lambda_n \) whenever the factor \(n \) matters.

1.2 Probing RH through the Keiper–Li \(\{\lambda_n\} \)

In 2000 Oesterlé proved (but left unpublished) [19] that RH alone implies

\[
\lambda_n^L = n \left(\frac{1}{2} \log n + c \right) + o(n), \quad \text{with } c = \frac{1}{2} (\gamma - \log 2\pi - 1) \text{ as in (5)}. \tag{10}
\]

In 2004–2006, using the saddle-point method on an integral form of \(\lambda_n \), we gave an asymptotic criterion for RH [21][22] in the form of this alternative:

- RH false: \(\lambda_n^L \sim - \sum_{\text{Re } \rho > 1/2} (1 - 1/\rho)^{-n} \pmod{o(r^n)} \forall r > 1); \tag{11}
- RH true: \(\lambda_n^L \sim n \left(\frac{1}{2} \log n + c \right) \pmod{o(n)} \) \tag{12}

(erratum: we had the sign wrong in the case RH false, which did not affect the purely qualitative consequences we drew at the time; correction in [23]).

In 2007 Lagarias [14] strengthened (10) by improving \(o(n) \) to \(O(\sqrt{n} \log n) \).

To assess how the above criteria may advance the testing of RH, one must bring in the height \(T_0 \) up to which RH is confirmed by direct means:

\[
T_0 \approx 2.4 \cdot 10^{12} \text{ currently (since 2004).} \tag{13}
\]

It is then known that: first, no \(\lambda_n \) can go negative as long as \(n < T_0^2 \) [19][3]; and more broadly, if a zero \(\rho = \frac{1}{2} \pm t \pm iT \) violates RH (with \(t > 0, T > T_0 \)), then no effect of that will be detectable upon the \(\lambda_n \) unless [22]

\[
n \gtrsim \frac{T^2}{t} > 2T_0^2 \text{ (since } t < \frac{1}{2}), \text{ currently implying } n \gtrsim 10^{25} \tag{14}
\]

\(n \gtrsim T^2/t \) actually states the uncertainty principle in the relevant geometry.

At the same time, the \(\lambda_n \) are quite elusive analytically [4][6], and also numerically (see Maślanka [16][17] and Coffey [5]) as their evaluation requires a recursive machinery, whose intricacy grows very rapidly with \(n \), and which moreover destroys ca. \(\frac{1}{4} \) decimal place of precision per step \(n \) (if done \(\text{ex nihilo} \) - i.e., using no Riemann zeros as input) [17, fig. 6]. Thus only \(\lambda_n \)-values up to \(n \approx 4000 \) have been accessed \(\text{ex nihilo} \), so that the useful range (14) looks way beyond reach.

2 An explicit variant sequence \(\{ \Lambda_n \} \)

We propose to deform the \(\{ \lambda^K_n \} \) (in Keiper’s normalization (3)) into a simpler sequence \(\{ \Lambda_n \} \) having a totally closed form. The original \(\lambda_n \) appeared rigidly specified, but only inasmuch as the pole \(x = 1 \) of \(\zeta(x) \) was invariably made the basepoint. Now while this choice can make sense, it is by no means compulsory. On the contrary, other conformal mappings than \(M \) in (3) realize the Keiper–Li idea (RH-sensitivity, embodied in (6)) just as well: the key condition is that all Riemann zeros on \(L \) must pull back to \(\{ |z| = 1 \} \), achieving (6), while nothing binds the basepoints \(x \) to which \(z = 0 \) can map; the resulting \(\lambda_n \) will just vary with \(x \) as functions of the derivatives \(\xi^{(m)}(x) \). As such, Sekatskii’s “generalized Li’s sums” [20] have \(x = (1 – a) \in \mathbb{R} \setminus \{ \frac{1}{2} \} \), whereas our “centered” \(\lambda^{(0)}_n \) were tailored to have \(x = \frac{1}{2} \), the symmetry center for \(\xi(x) \) ([23, § 3.4], and Appendix). Our next construction will push this idea of deformation even further, and have no single distinguished basepoint (except, loosely, \(x = \infty ? \)): we will substitute selected finite differences for the derivatives of \(\log \xi \) that enter the original \(\lambda_n \) (and, in the Appendix, our centered \(\lambda^{(0)}_n \)), to attain more explicit sequences.

2.1 Construction of the new sequence

The original definition (3) is equivalent, by the residue theorem, to the contour integral formula

\[
\lambda^K_n = \frac{1}{2\pi i} \oint \frac{dz}{z^{n+1}} f(z), \quad f(z) \equiv \log 2\xi \left(\frac{1}{1-z} \right), \quad (15)
\]

with a positive contour in the unit disk around \(z = 0 \) excluding all other singularities (i.e., those of \(f \)). Derivatives of \(2\xi(x) \) up to order \(n \) occur in \(\lambda_n \) because the denominator \(z^{n+1} \) has all its zeros degenerate (at \(z = 0 \)).

Now at given \(n \), if we split those zeros apart as \(0, z_1, \ldots, z_n \) (all distinct, and still inside the contour), then the so modified integral evaluates to a linear combination of the \(f(z_m) \) : derivatives become finite differences. To split the zeros, instead of plain shifts of the factors \(z \mapsto z – z_m \) which fail to preserve the all-important unit disk, we use hyperbolic translates

\[
z \mapsto B_{z_m}(z) = (z – z_m)/(1 – z_m^*z) \quad (\text{M"obius transformations}). \quad (16)
\]

The point \(z = 0 \) has now lost its special status, hence so does the particular mapping \(M \) (picked for pulling back the pole \(x = 1 \) to \(z = 0 \)), so that the
variable x, natural for the ζ-function, also becomes the simplest to use. Then (15) expresses as
\[\lambda_n^K = \frac{1}{2\pi i} \oint \frac{dx}{x(x-1)} \left(\frac{x}{x-1} \right)^n \log 2\xi(x) \quad (\text{integrated around } x = 1), \]
and the deformations as above read as
\[\frac{1}{2\pi i} \oint_{C_n} \frac{dx}{x(x-1) b_{x_1}(x) \ldots b_{x_n}(x)} \log 2\xi(x), \quad b_x(x) \equiv \frac{\bar{x}^*}{\bar{x}} \frac{x - \bar{x}}{x + \bar{x}^* - 1}, \]
where the contour C_n encircles the points $1, x_1, \ldots, x_n$ positively (and may as well depend on n). Now the integral in (18) readily evaluates to
\[\sum_{m=1}^{n} \frac{1}{x_m(x_m-1)} \left[\frac{1}{b_{x_1} \ldots b_{x_n}(x_m)} \right] \log 2\xi(x_m) \]
by the residue theorem ($x = 1$ contributes zero since $\log 2\xi(1) = 0$).

Finally, for each n we select $x_m \equiv 2m$ for $m = 1, 2, \ldots$ (independently of n) to benefit from the known values $\zeta(2m)$, and a contour C_n just encircling the real interval $[1, 2n]$ positively (encircling the subinterval $[2, 2n]$ would suffice, however here it will always be of interest to dilate, not shrink, C_n).

All that fixes the sequence
\[\Lambda_n \overset{\text{def}}{=} \frac{1}{2\pi i} \oint_{C_n} \frac{dx}{x(x-1)} G_n(x) \log 2\xi(x), \]
\[G_n(x) \overset{\text{def}}{=} \prod_{m=1}^{n} \frac{x + 2m - 1}{x - 2m} \equiv \frac{\Gamma(\frac{1}{2}x - n) \Gamma(\frac{1}{2}(x+1) + n)}{\Gamma(\frac{1}{2}x) \Gamma(\frac{1}{2}(x+1))} \]
\[\overset{\text{def}}{=} g(x)(-1)^n \frac{\Gamma(\frac{1}{2}(x+1) + n)}{\Gamma(1 - \frac{1}{2}x + n)}, \quad g(x) \overset{\text{def}}{=} \frac{\sqrt{\pi} 2^{x-1}}{\sin(\pi x/2) \Gamma(x)}, \]
(by the duplication and reflection formulae for Γ). For this case, (19) yields
\[\Lambda_n \equiv (-1)^n \sum_{m=1}^{n} (-1)^m A_{nm} \log 2\xi(2m), \quad n = 1, 2, \ldots, \]
with
\[A_{nm} = \frac{2^{-2n}}{2m-1} \binom{2(n+m)}{n+m} \binom{n+m}{2m} \equiv \frac{2^{-n}(2(n+m)-1)!!}{(2m-1)(n-m)!(2m)!} \]
\[2\xi(2m) = \frac{|B_{2m}|}{|(2m-3)!!|} (2\pi)^m \equiv \frac{2|B_{2m}|}{|\Gamma(m - \frac{1}{2})|}\pi^{m+1/2} \]

(for \(m = 0, 1, 2, \ldots \)), \hfill (24)

\[2 \xi(2) \equiv \frac{2^2 m \Gamma(n + m + 1/2)}{(2m - 1)(n - m)! (2m)! \sqrt{\pi}} \]

(25)

(the absolute values in the last two denominators only act for \(m = 0 \), resulting in \(\log 2\xi(0) = 0 \) which vanishes thereafter).

So, this particular deformation \(\{\Lambda_n\} \) of Keiper’s \(\{\lambda_n^K\} \) is specified by (23) in a **totally explicit** form (and fairly uniquely dictated as above). With no recursion involved, any single \(\Lambda_n \) can be computed straight away and by itself, in welcome contrast to the original \(\lambda_n \).

Remarks.

1) \[\sum_{m=1}^{n} (-1)^mA_{nm}m \] is computable by the second sum rule (30) below (with \(A_{n0} \equiv -2^{-n}(2n-1)!! / n! \) by (24)); the \(\log 2\pi \)-contributions to (23) from the first expression (25) can thereby be summed, resulting in \(\Lambda_n \equiv \frac{1}{2} \log 2\pi + u_n \) with

\[u_n \defeq (-1)^n \left[\sum_{m=1}^{n} (-1)^m A_{nm} \log \frac{|B_{2m}|}{(2m-3)!!} + \frac{1}{2A_{n0}} \log 2\pi \right] : \]

(26)

it was through this sequence \(\{u_n\} \) that we earlier announced our results [24]. Likewise, the last expression (25) leads to the partially summed form

\[\Lambda_n \equiv \frac{1}{2} \log \pi + (-1)^n \left[\sum_{m=1}^{n} (-1)^m A_{nm} \log \frac{|B_{2m}|}{\Gamma(m - \frac{1}{2})} \right. \]

\[\quad + \left(\frac{1}{A_{n0}} - A_{n0} \right) \log 2 + \left(\frac{1}{A_{n0}} - A_{n0}/2 \right) \log \pi \right] . \]

(27)

2) if in place of (25) we use (1) and the expanded logarithm of the Euler product: \(\log \zeta(x) \equiv \sum_{p \leq r=1}^{\infty} p^{-rx/r} (x > 1) \) where \(p \) runs over the primes, then (23) yields an arithmetic form for \(\Lambda_n \), in analogy with [4, thm 2] for \(\lambda_n^K \).

3) Báez-Duarte’s sequential criterion for RH [1] is similarly explicit in terms of the Bernoulli numbers, but there, any effect of RH-violating zeros seems hopelessly tiny until inordinately large \(n \gtrsim e^{\pi T_0} \) [18, § 4][10, § 7] (the latter quotes \(n \gtrsim 10^{600,000,000} \)).
4) With L-functions for real primitive Dirichlet characters χ in place of ζ, [7, chaps. 5, 6, 9] the whole argument carries over, essentially unchanged for χ even, whereas

$$
\Lambda_{\chi,n} = (-1)^n \sum_{m=1}^{n} (-1)^m \frac{2^{m-n} (2(n+m) + 1)!!}{(2m+1) (n-m)! (2m+1)!} \log \xi_{\chi}(2m+1)
$$

(28)

for χ odd, where $\xi_{\chi}(x)$ is the completed L-function (normalized to $\xi_{\chi}(0) \equiv \xi_{\chi}(1) = 1$, like $2\xi(x)$ for ζ in (1)), whose values at $x = 2m + 1$ are explicit.

2.2 Expression of Λ_n in terms of the Riemann zeros

Let the primitive

$$
F_n(x) \overset{\text{def}}{=} \int_{\infty}^{x} \frac{G_n(y)}{y(y-1)} \, dy
$$

$$
\equiv (-1)^n \left[\frac{1}{A_{n0}} \log(x-1) + \sum_{m=0}^{n} (-1)^m A_{nm} \log(x-2m) \right]
$$

(29)

be defined as single-valued from a neighborhood of $x = \infty$ to the whole x-plane minus the cut $[0, 2n]$. E.g., $F_1(x) = \frac{1}{2} \log \left[x(x-2)^3/(x-1)^4 \right]$; and for general n, (29) follows from, e.g., [12, §2.102] using the A_{nm} from (24).

For $x \to \infty$, $F_n(x) \sim \int_{\infty}^{x} \frac{dy}{y} = -1/x$; the consistency of this with (29) imposes the identities

$$
\sum_{m=0}^{n} (-1)^m A_{nm} \equiv \frac{1}{A_{n0}}, \quad 2 \sum_{m=1}^{n} (-1)^m A_{nm}m \equiv (-1)^n + \frac{1}{A_{n0}}.
$$

(30)

In terms of (29), the Λ_n result by summing the following series over the zeros (converging like $\sum_{(\rho, 1-\rho)} 1/\rho$ for any n):

$$
\Lambda_n \equiv \sum_{(\rho, 1-\rho)} F_n(\rho), \quad n = 1, 2, \ldots.
$$

(31)

(For the original λ_n^K, (29) uses $\left[x/(x-1) \right]^n$ in place of G_n by (17), exceptionally yielding rational functions: $n^{-1}[1 - (1 - 1/(1 - x))^n]$, for which (31) restores (4).)
Figure 1: Deformation of the integration path for the integral (32) against the
meromorphic function ξ'/ξ whose poles are the Riemann zeros, here exemplified-
not on scale - by ρ (on the critical line), and ρ' (off the line, putative, shown with
its partner across the critical line). A symmetrical lower half-plane is implied.

Proof of (31) (condensed, see fig. 1): first stretch the contour C_n in (20)
to C'_n fully enclosing the cut $[0, 2n]$ of F_n (as allowed by $\log 2\xi(0) = 0$). Since
F_n is single-valued on C'_n, the so modified (20) can be integrated by parts,

$$\Lambda_n \overset{\text{def}}{=} -\frac{1}{2\pi i} \oint_{C_n'} F_n(x) \left[\frac{\xi'}{\xi} \right](x)dx,$$

then the contour C'_n can be further deformed into a sum of an outer anti-
clockwise circle C_R centered at $\frac{1}{2}$ of radius $R \to \infty$ (not drawn), and of small
clockwise circles around the poles of the meromorphic function ξ'/ξ inside
C_R; these poles are the Riemann zeros ρ, and each contributes $F_n(\rho)$. By the
Functional Equation (1), the integral on C_R is also $\oint_{C_R} \frac{1}{2}[F_n(x) + F_n(1-x)] [\frac{\xi'}{\xi}](x)dx$,
which tends to 0 if $R \to \infty$ staying far enough from ordinates of Riemann
zeros in a classic way (so that $|\xi'/\xi|(s+iR) < K \log^2 R$ for all $s \in [-1, +2]
[7, p. 108]), hence (31) results. \hfill \square

3 Criterion for RH based on the new sequence

We will sketch why the totally explicit sequence \{Λ_n\} largely shares the
sensitivity to RH of the highly elusive Keiper–Li sequence.
3.1 Asymptotic criterion

We will mainly argue an asymptotic sensitivity to RH as $n \to \infty$, through this alternative for $\{\Lambda_n\}$ which parallels (11)–(12) for $\{\lambda_n\}$:

- RH false: $\Lambda_n \sim \left\{ \sum_{\Re \rho > 1/2} F_n(\rho) \right\}$ (mod $o(n^\varepsilon) \ \forall \varepsilon > 0$),
 \begin{equation}
 \text{and } F_n(\rho) \sim \frac{g(\rho)}{\rho(\rho - 1)} (-1)^n n^{\rho - 1/2} \frac{n^{\log n}}{\log n} \quad (n \to \infty),
 \end{equation}
 \begin{equation}
 \Rightarrow |F_n(\rho)| \approx \frac{1}{|\Im \rho|^2} \log n \frac{2n}{|\Im \rho|} \text{Re } \rho \quad \text{for } n \gg |\Im \rho| \gg 1.
 \end{equation}

- RH true: $\Lambda_n \sim \log n + C, \quad C = \frac{1}{2}(\gamma - \log \pi - 1) \approx -0.783757110474$, (36)

the latter to be compared to (10), with $C = c + \frac{1}{2} \log 2$. As for (33), the summation converges if the terms with ρ and ρ^* are grouped together (as symbolized by the curly brackets), and more caveats are issued in § 3.2.

We give a condensed derivation. Past some common generalities, we will separate the cases RH true/false (short of a unified method as in [21]).

The general idea is nowadays known as large-order perturbative analysis or instanton calculus, but initially we just follow the pioneering Darboux’s theorem [8, §7.2][2] to get the large-order behavior of Taylor series like (3) out of the integral form (15) or more simply, its integration by parts $\lambda_n^L = (2\pi i)^{-1} \oint z^{-n} f'(z) \, dz$ because f' is meromorphic whereas f has branch cuts. Then this integrand has the large-n form $e^{\Phi_n(z)}$ where Φ_n tends to ∞ with n ($\Phi_n(z) \sim -n \log z$), hence the steepest-descent method applies: [9, §2.5] we deform the integration contour C toward decreasing Re Φ_n, i.e. here, into a circle of radius growing toward 1 (fig. 2); then, each of the encountered singularities of f'', here simple poles $M^{-1}(\rho')$ for RH-violating zeros ρ', yields an asymptotic contribution $-z\rho'^{-n}$, all of which add up to (11). [21] If on the other hand RH is true, then the contour can arbitrarily approach the unit circle, (11) stays empty, and only a finer analysis of the limiting integral ([19], recalled in § 3.3.1 below) leads to a definite asymptotic form, as (10).

We then wish to do the same with an $(x$-plane) integral form for Λ_n, be it (20) (with the function $G_n(x)$ defined by (21)–(22)), or (32) (with $F_n(x)$ defined by (29)). Now (22) at once implies

$G_n(x) \sim g(x)(-1)^n n^{x - 1/2} \sim g(x)(-1)^n e^{\log n(x - 1/2)} \quad \text{for } n \to \infty \text{ at fixed } x,$

(37)
hence now the large asymptotic parameter is $\log n$ and the large-n level lines of the integrand are $\{\text{Re } x = \frac{1}{2} + t_0\}$. For the steepest-descent method, $|z| \to 1^-$ in fig. 2 thus becomes $t_0 \to 0^+$. A new complication is that these level lines now all terminate at ∞, an essential singularity. Temporarily ignoring this, we note that the contour deformation on (32) for Λ_n has already yielded (31), so we simply have to extract the asymptotically relevant part of $\sum_{\rho} F_n(\rho)$. For $n \to \infty$, $F_n(\rho)$ is to be expressed using a steepest-descent path [9, §2.5], as

$$F_n(\rho) = \int_{-\infty}^{\rho} \frac{G_n(x)}{x(x-1)} \, dx \sim \int_{-\infty}^{\rho} \frac{g(x)}{x(x-1)} (-1)^n n^{x-1/2} \, dx : \quad (38)$$

a Laplace transform in the variable $\log n$, of asymptotic form [9, eq. 2.2(2)]

$$F_n(\rho) \sim \frac{g(\rho)}{\rho(\rho-1)} (-1)^n n^{\rho-1/2} \frac{1}{\log n}. \quad (39)$$

Consequently, the removal of all $o(n^{t_0+\varepsilon})$ terms from (31) unconditionally leaves us with

$$\Lambda_n = \left\{ \sum_{\text{Re } \rho > t_0} F_n(\rho) \right\} + o(n^{t_1}) \quad \text{for all } t_1 > t_0 \geq 0, \quad (40)$$

where the summation converges if the terms with ρ and ρ^* are grouped together (as symbolized by the curly brackets).
However, in the RH true case, (40) with \(t_0 = 0 \) delivers no better than \(\Lambda_n = o(n^\varepsilon) \) \(\forall \varepsilon > 0 \), and only a finer analysis of the limiting integral on the critical line \(L \) will lead to a definite asymptotic form, in § 3.3.2. Hence we pursue the case RH false first.

3.2 Details for the case RH false

If RH-violating zeros exist, we cannot ensure that they are finitely many, nor that they otherwise can be enumerated according to non-increasing real parts. Then, unlike (11), the series (40) ought not to be directly readable as an explicit asymptotic expansion, to whatever order \(t_0 < \frac{1}{2} \). Instead, any closed-form asymptotic statement on \(\Lambda_n \) would have to involve the detailed \(2D \) distribution of RH-violating zeros toward \(\infty \), currently unknown. Indeed, for no \(t_0 < \frac{1}{2} \) can we perform or describe the sum of the series (40) explicitly (barring the purely hypothetical case of finitely many terms). In particular, it ought to be unlawful to substitute the individual asymptotic forms (39) in bulk into any of the series (40); we can only interpret the latter as a total of individual RH-violating zeros’ contributions to the large-\(n \) behavior of \(\Lambda_n \).

Moreover, any such zero \(\rho = \frac{1}{2} + t \pm iT \) with \(t > 0 \) must have \(T > T_0 \) hence \(T \gg 1 \), which implies

\[
|g(\rho)| \approx \left(\frac{2}{T} \right)^t \implies |F_n(\rho)| \approx \frac{1}{T^2 \log n} \left(\frac{2n}{T} \right)^t.
\]

(41)

All in all, letting \(t_0 = 0 \) we obtain (33)–(35) in the case RH false. \(\square \)

The upshot of (34) is that each RH-violating zero \(\rho \) imparts \(\Lambda_n \) with a growing \(n^{\theta-1/2} \)-like oscillation; one consequence (in view of § 3.4 below) is that it would take improbable cancellations to have \(\Lambda_n > 0 \) forever, if RH was false.

3.3 Details for the case RH true

Here our quickest path is to adapt:

3.3.1 Oesterlé’s argument for \(\lambda_n^K \)

(as reworded by us). We start from this real integral giving \(\lambda_n^K \) : [19][21]

\[
\lambda_n^K = \int_0^\pi 2 \sin n \theta \ N(\frac{1}{2} \cot(\frac{1}{2} \theta)) \, d\theta;
\]

(42)
\(N(T) = \#\{\rho \in [\frac{1}{2}, \frac{1}{2} + iT] \subset L\} \) is the zeros’ staircase counting function; \(T \equiv \frac{1}{2} \cot(\frac{1}{2} \theta) \) where \(\theta \in (0, \pi] \) is the angle subtended by the real segment \([0, 1]\) from the point \(\frac{1}{2} + iT \), \(dT \equiv -(\frac{1}{4} + T^2) d\theta \), and the integrand is actually the reduction of

\[
2 \Im \left(\frac{x}{x - 1} \right)^n \log 2 \zeta(x) \frac{dx}{x(x - 1)} \tag{43}
\]

once the integration path in (20) has reached \(\{x = \frac{1}{2} + 0 + iT\} \) (under RH) and \(\theta \) reparametrizes \(T \).

Then \(\lambda^K_n \mod o(1) \) will stem from the Riemann–von Mangoldt theorem: [7, chaps. 8, 15]

\[
N(T) = \frac{T}{2\pi} \left(\log \frac{T}{2\pi} - 1 \right) + \delta N(T), \quad \delta N(T) = O(\log T) \quad \text{as} \quad T \to +\infty. \tag{44}
\]

Proof: (42) \mod o(1) evaluates as follows:

1) in \(N(\cdot) \), the term \(\delta N(\cdot) \) is integrable up to \(\theta = 0 \) included, then its integral against \(\sin n\theta \) is \(o(1) \) (Riemann–Lebesgue lemma) hence negligible;

2) change to the variable \(\Theta_n \equiv n\theta \); then, change the resulting upper integration bound \(n\pi \) to \(+\infty \) and use \(T \sim 1/\theta = n/\Theta_n \) to get, \mod o(1),

\[
\lambda^K_n \sim \int_0^\infty 2 \sin \Theta_n \frac{n}{2\pi \Theta_n} \left[\log \frac{n}{2\pi \Theta_n} - 1 \right] \frac{d\Theta_n}{n}. \tag{45}
\]

Now the classic formulae \(\int_0^\infty \sin \Theta d\Theta/\Theta = \pi/2 \) and \(\int_0^\infty \sin \Theta \log \Theta d\Theta/\Theta = -\pi \gamma/2 \) [12, eqs. (3.721(1)) and (4.421(1))] yield the result (amounting to (10))

\[
\lambda^K_n = \frac{1}{2} \log n + c + o(1) \quad \text{under RH true.} \tag{46}
\]

3.3.2 Parallel treatment for \(\Lambda_n \)

Basically for \(\Lambda_n \), \(\left(\frac{x}{x - 1} \right)^n \) in (43) is to be replaced by \(G_n(x) \) from (21), hence (42) changes to

\[
\Lambda_n = \int_0^\pi 2 \sin \Theta_n(\theta) \ N(\frac{1}{2} \cot(\frac{1}{2} \theta)) \ d\theta, \tag{47}
\]

where \(\Theta_n \in (0, n\pi] \) (previously \(\equiv n\theta \)) is now the sum of the \(n \) angles subtended by the real segments \([1 - 2m, 2m]\) from the point \(\frac{1}{2} + iT \), for
The two endpoint slopes of the function $\Theta_n(\theta)$ will mainly matter (independently):

\[
\Theta_n'(0) = \sum_{m=1}^{n} (4m - 1) \equiv n(2n + 1), \quad (48)
\]

\[
\Theta_n'(\pi) = \sum_{m=1}^{n} (4m - 1)^{-1} \equiv \frac{1}{4} \left[(\Gamma'/\Gamma)(n + \frac{3}{2}) + \gamma + 3 \log 2 - \pi/2 \right]. \quad (49)
\]

We then follow the same steps as with λ^K_n just above.

1) $\int_0^\pi 2 \sin \Theta_n(\theta) \delta N(\tfrac{1}{2} \cot(\tfrac{1}{2} \theta)) \, d\theta = o(1)$ if a nonstationary-phase principle can apply for the oscillatory function $\sin \Theta_n(\theta)$, i.e., if the minimum slope of $\Theta_n(\theta)$ ($\theta \in [0, \pi]$) goes to ∞ with n: previously (with $\Theta_n \equiv n\theta$) that slope was n, now it is $\Theta_n'(\pi) \sim \frac{1}{4} \log n$ which still diverges for $n \to \infty$ therefore gives the $o(1)$ bound; but due to $\Theta_n'(\pi) \ll n$, this $o(1)$ may decay much slower than the corresponding $o(1)$ for λ^K_n.

2) In this step (i.e., $T \to +\infty$), only $\theta \to 0$ behaviors enter; here $\Theta_n \sim \Theta_n'(0) \theta$, vs $n\theta$ previously, so it suffices to substitute $\Theta_n'(0)$ for n in the asymptotic result (46) for λ^K_n, to get

\[
\Lambda_n \sim \frac{1}{2} \log \Theta_n'(0) + c = \frac{1}{2} \log[n(2n + 1)] + c \sim \log n + (c + \frac{1}{2} \log 2). \quad (50)
\]

\[\square\]

3.4 Asymptotic or full-fledged Li’s criterion?

We do not control well enough the function F_n in (29) or for that matter, the primitive $\int \sin \Theta_n(\theta) \, d\theta$ in (47), to be able to infer that RH implies $\Lambda_n > 0$ for all n, as was the case for λ_n straightforwardly from (4).

On the other hand, our criterion (33)–(36) is synonymous of large-n positivity for Λ_n if and only if RH holds (invoking the last sentence of § 3.2), while low-n positivity is numerically patent (see next §).

All in all, as an aside we then also conjecture that: Li’s criterion works for the sequence Λ_n (RH \iff $\Lambda_n > 0$ for all n).
4 Quantitative aspects

4.1 Numerical data

Low-n calculations of Λ_n (fig. 3) agree very early with the logarithmic behavior (36), just as they agreed for λ_n with its leading behavior under RH [13][16]. The remainder term $\delta\Lambda_n = \Lambda_n - (\log n + C)$ looks compatible with an $o(1)$ bound (fig. 4), albeit much less neatly than $\delta\lambda^K_n$ [13, fig. 1][16, fig. 6b], (note: both of these plot $\delta\lambda^K_n = n \delta\lambda^K_n$). For the record,

$$
\Lambda_1 = \frac{2}{3} \log \frac{\pi}{3} \approx 0.069176395771, \quad \Lambda_2 \approx 0.22745427267, \quad \Lambda_3 \approx 0.4567143349;
$$

$$
\Lambda_{10000} \approx 8.428662659671506 \quad (\delta\Lambda_{10000} \approx +0.0020794),
$$

$$
\Lambda_{20000} \approx 9.120189975922122 \quad (\delta\Lambda_{20000} \approx -0.000485565),
$$

It would be interesting to comprehend the bumpy fine structure of $\delta\Lambda_n$.

4.2 Imprints of putative zeros violating RH

RH-violating zeros ρ (if any) seem to enter the picture just as for the λ_n: their contributions (34) will asymptotically dominate $\log n$, but numerically they will emerge and take over extremely late. For such a zero $\rho = \frac{1}{2} + t + iT$, with $0 < t < \frac{1}{2}$ and $T \gtrsim 2.4 \cdot 10^{12}$ [11], its contribution sizes like $T^{-2}(2n/T)^t/\log n$,
in modulus, by (35). We then get its crossover threshold (in order of magnitude, neglecting logarithms and constants relative to powers) by solving

\[T^{-2}(n/T)^t \approx 1 \]
\[\implies n \gtrsim T^{1/2t} \quad \text{(best case: } O(T^{5+\varepsilon}) \text{ for } t = \frac{1}{2} - 0). \quad (53) \]

This is worse than (14) for \(\lambda_n \), all the more if a negativity test is pursued (the right-hand side of (52) must then be \(\log^2 n \)). There is however room for possible improvement: the core problem is to filter out a weak \(\rho \)-signal from the given background (36), therefore any predictable structure in the latter is liable to boost the gain. For instance, the hyperfine structure of \(\delta \Lambda_n \) is oscillatory of period 2 (fig. 4); this suggests to average over that period, which empirically discloses a rather neat \((1/n)\)-decay trend (fig. 5):

\[\overline{\delta \Lambda}_n \defeq \frac{1}{2} (\delta \Lambda_n + \delta \Lambda_{n-1}) \approx 0.25/n. \quad (54) \]

The same operation on a \(\rho \)-signal \(F_{\rho}(n) \) in (33) roughly applies \(\frac{1}{2} (d/dn) \) to the factor \(n^T \) therein (again neglecting \(t \ll T \) and \(\log n \)), i.e., multiplies it by \(\frac{1}{2}(T/n) \). Thus heuristically, i.e., conjecturing the truth of (54) for \(n \to \infty \) under RH, the crossover condition improves from (52) to

\[(T/n) T^{-2}(n/T)^t \approx \overline{\delta \Lambda}_n \approx 1/n \]
Figure 5: The averaged remainder sequence (54) rescaled by n, namely: $n \delta \Lambda_n$. (Some further values: 0.27027 for $n = 10000$, 0.23970 for $n = 20000$.)

$$\Rightarrow \quad n \gtrsim T^{1+1/t} \quad \text{(best case: } O(T^{3+\varepsilon}) \text{ for } t = \frac{1}{2} - 0).$$

(55)

We can hope that efficient signal-analysis techniques may still lower this detection threshold. And an empirical attitude may suffice here: once a violating zero would be suspected and roughly located, other rigorous algorithms exist to find it accurately (or disprove it). [11]

4.3 The hitch

A major computational issue is that, according to (23), the $(\log n)$-sized values Λ_n result from alternating summations of much faster-growing terms: this entails a loss of precision increasing with n. Thus in our case (sums $\sum s_m$ of order comparable to unity), to reach the slightest end accuracy we must use each summand s_m up to $\approx \log_{10} |s_m|$ significant digits (in base 10 throughout); plus uniformly D more to obtain $\sum s_m$ accurate to D digits.

We quantify the precision loss in (23) at large fixed n by using the Stirling formula, to find that $m_* \approx n/\sqrt{2}$ is where the largest summand occurs and the minimum required precision $\log_{10} |s_m|$ peaks, reaching $\log_{10} |A_{nm_*} \log 2 \xi(2m_*)| \sim \log_{10}(3 + 2\sqrt{2}) n \approx 0.76555 n$ digits, see fig. 6 (vs a precision loss $\approx 0.25 n$ digits for λ_n [17, fig. 6]). Even then, a crude feed of (23), (26) or (27) into a mainstream arbitrary-precision system (Mathematica 10 [25]) suffices to
readily output the Λ_n-values of § 4.1. Computing times varied erratically but could go down to ca. 4 min for Λ_{10000}, 43 min for Λ_{20000} using (27) (CPU times on an Intel Xeon E5-2670 0 @ 2.6 GHz processor).

![Graph](image)

Figure 6: Minimum decimal precisions needed for the summands of Λ_n in (23), as estimated by $\log_{10}|A_{nm} \log 2\xi(2m)|$ which is plotted against m in axes rescaled by $1/n$. Dotted curve: the case $n = 200$; continuous curve: the $n \to \infty$ limiting form $\varpi = -2r \log_{10} r + (1 + r) \log_{10}(1 + r) - (1 - r) \log_{10}(1 - r)$ ($r = m/n$).

Now with $|T| \gtrsim 2.4 \times 10^{12}$ currently, the challenge is to probe $n \gtrsim 2 \times 10^{36}$ (if the more favorable estimate (55) holds, 10^{60} otherwise), which then needs a working precision $\gtrsim 1.6 \times 10^{36}$ decimal places at times. This need for a huge precision already burdened the original λ_n but somewhat less and amidst several steeper complexities, now for the Λ_n the ill-conditioning worsened while the other difficulties waned.

As advantages of $\{\Lambda_n\}$ over $\{\lambda_n\}$, inversely: the Λ_n are fully explicit; their evaluations are recursion-free, thus very few samples (at high enough n, for sure) might suffice to signal that RH is violated somewhere; and the required working precision peaking at $\approx 0.766 n$ stands as the only stumbling block, and as a purely logistic problem, which might still be eased if (23) came to admit better conditioned variants. Thus in (26), a much lower precision (growing like $\frac{1}{2} \log_{10} n$) suffices for $\log 2\pi$ with its factor $(2A_{n0})^{-1} \sim -\sqrt{\pi n}/2$ which

17
grows negligibly, compared to the $A_{nm} \log(|B_{2m}|/(2m - 3)))$: only these simpler expressions demand maximal precision, and only for $m \approx n/\sqrt{2}$.

While other sequences sensitive to RH for large n are known [1][10], not to mention Keiper–Li again, we are unaware of any previous case combining a fully closed form like (23) with a practical sensitivity-threshold of tempered growth $n = O(T^\nu)$.

Appendix: Centered variant

We sketch a treatment parallel to the main text for our Li-type sequences having the alternative basepoint $x = \frac{1}{2}$ (the center for the ξ-function).

We recall that the Functional Equation $\xi(1 - x) \equiv \xi(x)$ allows us, in place of the mapping $z \mapsto x = (1 - z)^{-1}$ within ξ as in (3), to use the double-valued one $y \mapsto x_\tilde{w}(y) = \frac{1}{2} \pm \sqrt{\tilde{w}} y^{1/2}/(1 - y)$ on the unit disk (parametrized by $\tilde{w} > 0$). That still maps the unit circle $\{|y| = 1\}$ to the completed critical line $L \cup \infty$, but now minus its interval $\{|\text{Im } x| < \frac{1}{2}\sqrt{\tilde{w}}\}$. As before, all Riemann zeros on L have to pull back to $\{|y| = 1\}$ which then imposes $\tilde{w} < 4 \min_{\rho} |\text{Im } \rho|^2 \approx 799.1618$. We thus define the sequence $\{\lambda_n^0(\tilde{w})\}$ by

$$\log 2\xi\left(\frac{1}{2} \pm \sqrt{\tilde{w}} \frac{y^{1/2}}{1 - y}\right) \equiv \log 2\xi(\frac{1}{2}) + \sum_{n=1}^{\infty} \frac{\lambda_n^0(\tilde{w})}{n} y^n$$

([23, §3.4], where only the case $\tilde{w} = 1$ is detailed), or

$$\frac{\lambda_n^0(\tilde{w})}{n} \equiv \frac{1}{2\pi i} \int \frac{dy}{y^{n+1}} \log 2\xi(x_\tilde{w}(y)), \quad n = 1, 2, \ldots$$ \hspace{1cm} (57)

We now build an explicit variant for this sequence (57), similar to $\{\Lambda_n\}$ for $\{\lambda_r^K\}$. First, the deformations of (57) analogous to those in §2.1 read as

$$\frac{1}{2\pi i} \int \frac{dy}{B_{y_0}(y) \cdots B_{y_n}(y)} \log 2\xi(x) \quad (\text{here } x \equiv x_\tilde{w}(y)),$$

for which the simplest analytical form we found, similar to (18), is now

$$\frac{1}{2\pi i} \int \frac{2\, dr}{(r + 1)^2} \prod_{m=0}^{n} \frac{r + r_m}{r - r_m} \log 2\xi(x), \quad r_m \overset{\text{def}}{=} \frac{1 + y_m}{1 - y_m},$$

\((59)\)
all in terms of the new variable

\[r \overset{\text{def}}{=} \frac{1 + y}{1 - y} \equiv [1 + (2x - 1)^2/\tilde{w}]^{1/2} \quad (\text{Re } r > 0). \tag{60} \]

Then with \(x_m \equiv 2m \) as before (but now including \(m = 0 \)), the integral (59) evaluated by the residue theorem yields the explicit result (akin to (23)–(25))

\[\Lambda_n^0(\tilde{w}) \overset{\text{def}}{=} \sum_{m=1}^{n} \frac{2}{(r_m + 1)^2} \prod_{k=0}^{n} \prod_{k \neq m} \prod_{k \neq m} (r_m + r_k) \log 2\xi(2m), \quad r_m \equiv \sqrt{1 + (4m-1)^2/\tilde{w}}. \tag{61} \]

This result is, however, algebraically less simple and less analyzable than for \(\Lambda_n \) before. A potential asset is that it openly relies on the Functional Equation, but we saw no practical benefit accruing from that yet.

The corresponding \textit{asymptotic alternative} for RH analogous to (33)–(36) reads as

- RH false: \(\Lambda_n \sim \left\{ \sum_{\text{Re } \rho > 1/2} \Delta_\rho \Lambda_n^0(\tilde{w}) \right\} \pmod{o(n^\varepsilon)} \forall \varepsilon > 0 \) \tag{62}

 with \(\log |\Delta_\rho \Lambda_n^0(\tilde{w})| \sim (\rho - 1/2) \log n, \) \tag{63}

- RH true: \(\Lambda_n \sim \sqrt{\tilde{w}} (\log n + C), \quad C = \frac{1}{2}(\gamma - \log \pi - 1) \approx -0.78375711. \tag{64} \)

The latter is proved by extending Oesterlé’s method just as with \(\Lambda_n \); whereas the former needs large-\(n \) estimations of the product in (59), but the ones we have remain crude compared to the full Stirling formula available for (21); that precludes us from reaching the absolute scales of the \(\Delta_\rho \Lambda_n^0(\tilde{w}) \) and the values of \(n \) from which any such terms might become detectable.

As for numerical tests, all results are very close to those shown above for \(\Lambda_n \), aside from the overall factor \(\sqrt{\tilde{w}} \) in (64) (but nothing about the case RH false can be tested: that is still way beyond numerical reach).

\section*{References}

[1] L. Báez-Duarte, \textit{A sequential Riesz-like criterion for the Riemann Hypothesis}, Int. J. Math. Math. Sci. \textbf{21} (2005) 3527–3537.
[2] R. Balian, G. Parisi and A. Voros, *Quartic oscillator*, in: *Feynman Path Integrals* (Proceedings, Marseille 1978), eds. S. Albeverio *et al.*, Lecture Notes in Physics 106, Springer, Berlin (1979) 337–360.

[3] P. Biane, J. Pitman and M. Yor, *Probability laws related to the Jacobi theta and Riemann zeta functions*, Bull. Amer. Math. Soc. 38 (2001) 435–465 [Sec. 2.3].

[4] E. Bombieri and J.C. Lagarias, *Complements to Li's criterion for the Riemann Hypothesis*, J. Number Theory 77 (1999) 274–287.

[5] M.W. Coffey, *Toward verification of the Riemann Hypothesis: application of the Li criterion*, Math. Phys. Anal. Geom. 8 (2005) 211–255.

[6] M.W. Coffey, *New results concerning power series expansions of the Riemann xi function and the Li/Keiper constants*, Proc. R. Soc. Lond. A 464 (2008) 711–731, and refs. therein.

[7] H. Davenport, *Multiplicative Number Theory*, 3rd ed. revised by H.L. Montgomery, Graduate Texts in Mathematics 74, Springer (2000).

[8] R.B. Dingle, *Asymptotic Expansions: their Derivation and Interpretation*, Academic Press (1973).

[9] A. Erdélyi, *Asymptotic Expansions*, Dover (1956).

[10] Ph. Flajolet and L. Vepstas, *On differences of zeta values*, J. Comput. Appl. Math. 220 (2008) 58–73, and refs. therein.

[11] X. Gourdon, *The 10^{13} first zeros of the Riemann Zeta function, and zeros computation at very large height*, preprint (Oct. 2004), http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf

[12] I.S. Gradshteyn and I.M. Ryzhik, *Table of Integrals, series and products*, 5th ed., A. Jeffrey ed., Academic Press (1994).

[13] J.B. Keiper, *Power series expansions of Riemann’s ξ function*, Math. Comput. 58 (1992) 765–773.

[14] J.C. Lagarias, *Li coefficients for automorphic L-functions*, Ann. Inst. Fourier, Grenoble 57 (2007) 1689–1740.
[15] X.-J. Li, *The positivity of a sequence of numbers and the Riemann Hypothesis*, J. Number Theory 65 (1997) 325–333.

[16] K. Maślanka, *Li’s criterion for the Riemann hypothesis — numerical approach*, Opuscula Math. 24 (2004) 103–114.

[17] K. Maślanka, *Effective method of computing Li’s coefficients and their properties*, preprint (2004), arXiv:math.NT/0402168 v5.

[18] K. Maślanka, *Báez-Duarte’s criterion for the Riemann Hypothesis and Rice’s integrals*, preprint (2006), arXiv:math/0603713 v2 [math.NT].

[19] J. Oesterlé, *Régions sans zéros de la fonction zêta de Riemann*, typescript (2000, revised 2001, unciated).

[20] Sekatskii, S. K., *Generalized Bombieri–Lagarias’ theorem and generalized Li’s criterion with its arithmetic interpretation*, Ukr. Mat. Jh. 66 (2014) 371–383 [Western edition: Ukr. Math. J. 66 (2014) 415–431], and: *Asymptotic of the generalized Li’s sums which non-negativity is equivalent to the Riemann Hypothesis*, ariv:1403.4484.

[21] A. Voros, *A sharpening of Li’s criterion for the Riemann Hypothesis*, preprint (Saclay-T04/040 April 2004, unpublished, arXiv: math.NT/0404213 v2), and *Sharpenings of Li’s criterion for the Riemann Hypothesis*, Math. Phys. Anal. Geom. 9 (2006) 53–63 [erratum: all asymptotic statements for λ_n in the RH false case have wrong sign].

[22] A. Voros, *Zeta functions over zeros of zeta functions*, Lecture Notes of the Unione Matematica Italiana 8, Springer-Verlag (2010) chap. 11 [erratum: same as for [21]]).

[23] A. Voros, *Zeta functions over zeros of Zeta functions and an exponential-asymptotic view of the Riemann Hypothesis* (Proceedings, Kyoto, oct. 2013, ed. Y. Takei), RIMS Kōkyūroku Bessatsu B52 (2014) 147–164, arXiv:1403.4558.

[24] A. Voros, *An asymptotic criterion in an explicit sequence*, preprint IPhT15/106 (June 2015), HAL archive: cea-01166324 (unpublished).

[25] S. Wolfram, *Mathematica*, 3rd ed., Wolfram Media/Cambridge University Press (1996).