Diffeomorphism groups of convex polytopes

Helge Glöckner

Abstract
Let M be a convex polytope in \mathbb{R}^n, with non-empty interior. We turn the group $\text{Diff}(M)$ of all C^∞-diffeomorphisms of M into a regular Lie group.

Keywords and phrases. Polytope, polyhedron, diffeomorphism group, infinite-dimensional Lie group, regularity, manifold with corners, local addition

MSC 2020 Classification. 58D05 (primary); 22E65, 46T05, 46T10, 52B11, 52B15, 52B70 (secondary)

1 Introduction and statement of results

Let E be a finite-dimensional real vector space and $M \subseteq E$ be the convex hull of a finite subset of E, with non-empty interior M°. For each $x \in M$, there exists a smallest face $M(x)$ of M such that $x \in M(x)$; we set $E(x) := \text{span}_\mathbb{R}(M(x) - x) \subseteq E$.

For $k \in \mathbb{N}_0 \cup \{\infty\}$, endow the space $C^k(M,E)$ of all C^k-maps $f : M \to E$ with the compact-open C^k-topology (as in [15, Section 1.7]); then $C^k_\text{str}(M,E) := \{ f \in C^k(M,E) : (\forall x \in M) \ f(x) \in E(x) \}$ is a closed vector subspace (on which the induced topology will be used). We regard the functions $f \in C^k(M,E)$ as C^k-vector fields on M; the elements $f \in C^k_\text{str}(M,E)$ will be called stratified C^k-vector fields (cf. [9]). Let

$$\text{Diff}^k(M) := \{ \phi \in C^k(M,M) : (\exists \psi \in C^k(M,M)) : \phi \circ \psi = \psi \circ \phi = \text{id}_M \}$$

be the set of all C^k-diffeomorphisms $\phi : M \to M$, and abbreviate $\text{Diff}(M) := \text{Diff}^\infty(M)$. Then $\text{Diff}^k(M)$ is a group, using composition of diffeomorphisms as the group multiplication. The neutral element is the identity map id_M. Our main goal is the following result:

Theorem 1.1 The group $\text{Diff}(M)$ admits a smooth manifold structure modeled on $C^\infty_\text{str}(M,E)$ making it a Lie group.

More details concerning the Lie group structure on $\text{Diff}(M)$ are now described. If $P \subseteq E$ is a convex polytope, we call a homeomorphism $\phi : P \to P$ face respecting if $\phi(F) = F$ for each face F of P. Then also ϕ^{-1} is face respecting. For each $k \in \mathbb{N} \cup \{\infty\}$, the set

$$\text{Diff}^k_\text{fr}(M) := \{ \phi \in \text{Diff}^k(M) : \phi \text{ is face respecting} \}$$

is a normal subgroup of finite index in $\text{Diff}^k(M)$ (see Lemma 5.5) and

$$\Omega_k := \text{Diff}^k_\text{fr}(M) - \text{id}_M$$
is an open 0-neighbourhood in $C^k_{\text{str}}(M,E)$ (see Lemma 4.1). We give $\text{Diff}^k_{fr}(M)$ the smooth manifold structure modeled on $C^k_{\text{str}}(M,E)$ making the bijective map

$$\Phi_k: \text{Diff}^k_{fr}(M) \to \Omega_k, \quad \phi \mapsto \phi - \text{id}_M$$

a C^∞-diffeomorphism. Then the following holds, using $C^{k,\ell}$-maps as in [2]:

Proposition 1.2 For all $k \in \mathbb{N} \cup \{\infty\}$ and $\ell \in \mathbb{N}_0 \cup \{\infty\}$, the map

$$c_{k,\ell}: \text{Diff}^{k+\ell}_{fr}(M) \times \text{Diff}^k_{fr}(M) \to \text{Diff}^k_{fr}(M), \quad (\phi, \psi) \mapsto \phi \circ \psi$$

is $C^{\infty,\ell}$ (and thus C^ℓ); moreover, the map

$$\iota_{k,\ell}: \text{Diff}^{k+\ell}_{fr}(M) \to \text{Diff}^k_{fr}(M), \quad \phi \mapsto \phi^{-1}$$

is C^ℓ. Notably, $\text{Diff}^\infty_{fr}(M)$ is a smooth Lie group modeled on $C^\infty_{\text{str}}(M,E)$.

To establish Theorem 1.1 we shall give Diff(M) a smooth Lie group structure modeled on $C^\infty_{\text{str}}(M,E)$ which turns $\text{Diff}^\infty_{fr}(M)$ into an open subgroup.

Remark 1.3 The differentiability properties of the mappings $c_{k,\ell}$ and $\iota_{k,\ell}$ established in Proposition 1.2 show that $\text{Diff}^\infty_{fr}(M)$ fits into the framework of [17]. Thus $\text{Diff}^\infty_{fr}(M)$ (and hence also Diff(M)) is an L^1-regular Lie group in the sense of [13], by [16]. Notably, the Fréchet-Lie group Diff(M) is C^0-regular (as in [12]) and hence regular in the sense of [20].

Remark 1.4 The easiest – but most relevant – case of our construction is the case of a cube $M := [0,1]^n \subseteq \mathbb{R}^n$. The corresponding diffeomorphism group is of interest in numerical mathematics [6]. We mention that $[0,1]^n$ is a prime example of a smooth manifold with corners (as in [7, 8, 19]; cf. [18] for infinite-dimensional generalizations). Michor [19] discussed the diffeomorphism group of a paracompact, smooth manifold M with corners, but his arguments contain a serious flaw: Contrary to claims in the book, local additions in Michor’s sense never exist if $\partial M \neq \emptyset$ (not even for $M = [0,\infty[\text{ or } M = [0,1]$), as we show in an appendix. Yet, Michor’s conclusion is correct that Diff(M) is a Lie group. More generally, Diff(M) can be made a Lie group for each paracompact, locally polyhedral C^∞-manifold M (as in Remark 5.8); details will be given elsewhere.

As before, let E be a finite-dimensional real vector space. If $M \subseteq E$ is any compact convex subset with non-empty interior, then a Lie group structure can be constructed on the group $\text{Diff}_{\partial M}(M)$ of all C^∞-diffeomorphisms $\phi: M \to M$ such that $\phi(x) = x$ for all $x \in \partial M$ (see [14]). In the case that M is a polytope, our discussion of the Lie group structure on $\text{Diff}^\infty_{fr}(M)$ proceeds along similar lines. Then $\text{Diff}_{\partial M}(M)$ is a closed normal subgroup and smooth submanifold of both $\text{Diff}^\infty_{fr}(M)$ and Diff(M) (see Remark 5.9). For numerical applications, it is useful to know a lower bound for the 0-neighbourhoods $\Omega_k \subseteq C^k_{\text{str}}(M,E)$. Fixing any norm $\| \cdot \|$ on E to calculate operator norms, we show:
Proposition 1.5 Let $M \subseteq E$ be a convex polytope with non-empty interior and $k \in \mathbb{N} \cup \{\infty\}$. Let U_k be the set of all $f \in C^k_{\text{str}}(M,E)$ such that
\[\|f\|_{\infty,\text{op}} := \sup_{x \in M} \|f'(x)\|_{\text{op}} < 1. \]
Then U_k is an open 0-neighbourhood in $C^k_{\text{str}}(M,E)$ and $U_k \subseteq \Omega_k$.

For $E = \mathbb{R}^n$ and $M = [0,1]^n$, see already [6]. An analogous result for $\text{Diff}_{\partial M}(M)$ was also established in [6], for compact convex subsets $M \subseteq \mathbb{R}^n$ with non-empty interior.

Remark 1.6 Note that $\|f\|_{\infty,\text{op}}$ is the smallest Lipschitz constant $\text{Lip}(f)$ for f in the situation of Proposition 1.5 (see, e.g., [15, Lemma 1.5.3 (c)]).

2 Preliminaries and basic facts

We write $\mathbb{N} = \{1,2,\ldots\}$ and $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. The term “locally convex space” means a locally convex, Hausdorff topological vector space over the ground field \mathbb{R}. If $(E,\|\cdot\|)$ is a normed space, let $B_E^r(x) := \{y \in E : \|y - x\| < r\}$ and $\overline{B}_E^r(x) := \{y \in E : \|y - x\| \leq r\}$ for $x \in E$ and $r > 0$. For background concerning convex polytopes and their faces, the reader is referred to [5] and [22]. If E is a real vector space and $S \subseteq E$ a subset, we write $\text{aff}(S)$ for the affine subspace of E generated by S. In this article, we are working in the setting of infinite-dimensional calculus known as Keller’s C^k_{c}-theory (going back to [3]). Accordingly, the smooth manifolds and Lie groups we consider are modeled on locally convex spaces which need not have finite dimension; see [10], [15], and [21] for further information.

Let E and F be locally convex spaces. We recall from [15, Chapter 1]:

2.1 A map $f : U \to E$ on an open subset $U \subseteq E$ is called C^1 if f is continuous, the directional derivative
\[df(x,y) := (D_yf)(x) := \lim_{t \to 0} \frac{1}{t} (f(x + ty) - f(x)) \]
extists in F for all $(x,y) \in U \times E$, and the map $df : U \times E \to F$ is continuous. Then $f'(x) := df(x,\cdot) : E \to F$ is linear for each $x \in U$.

2.2 Let $U \subseteq E$ be a subset which is locally convex (in the sense that each $x \in U$ has a convex neighbourhood in U) and whose interior U^0 is dense in U. A map $f : U \to F$ is called C^0 if f is continuous. If f is continuous, $f|_{U^0}$ is C^1 and $d(f|_{U^0}) : U^0 \times E \to F$ has a continuous extension
\[df : U \times E \to F, \]
then f is called C^1. Given $k \in \mathbb{N}$, we say that f is C^k if f is C^1 and df is C^{k-1}. If f is C^k for all $k \in \mathbb{N}_0$, then f is called a C^∞-map or also smooth.
If E and F are locally convex spaces, we write $L(E,F)_b$ for the locally convex space of all continuous linear maps $\alpha : E \to F$, endowed with the topology of uniform convergence on bounded subsets of E. For finite-dimensional domains, the C^k-property can be reformulated in the expected way:

Lemma 2.3 Let E be a finite-dimensional real vector space, $U \subseteq E$ be a locally convex subset with dense interior, F be a locally convex space, and $k \in \mathbb{N}$. Then the following conditions are equivalent for a continuous map $f : U \to F$:

(a) f is C^k;

(b) f is C^1 and $f' : U \to L(E,F)_b$, $x \mapsto f'(x) = df(x,\cdot)$ is C^{k-1}.

Proof. To see that (a) implies (b), we may assume that $E \neq \{0\}$, excluding a trivial case. Let b_1,\ldots,b_n be a basis for E. Then

$$
\psi : L(E,F)_b \to F^n, \quad \alpha \mapsto (\alpha(b_1),\ldots,\alpha(b_n))
$$

is an isomorphism of topological vector spaces. If f is C^k, then f is C^1 and $\psi \circ f' = df(\cdot,b_1),\ldots,df(\cdot,b_n)$ is C^{k-1} (by [15, Lemma 1.4.6 and Proposition 1.4.10]), entailing that $f' = \psi^{-1} \circ (\psi \circ f')$ is C^{k-1}.

Conversely, assume that (b) holds. The projections $pr_1 : U \times E \to U$, $(x,y) \mapsto x$ and $pr_2 : U \times E \to E$, $(x,y) \mapsto y$ are smooth, being restrictions of continuous linear maps $E \times E \to E$. Since E is finite dimensional and thus normable, the evaluation map $\varepsilon : L(E,F)_b \times E \to F$, $(\alpha,y) \mapsto \alpha(y)$ is continuous and thus smooth, being bilinear. Hence $df = \varepsilon \circ (f' \circ pr_1,pr_2)$ is C^{k-1}, using [15, Lemma 1.4.6 and Proposition 1.4.10].

If $f : X \to Y$ is a function between metric spaces (X,d_X) and (Y,d_Y), we define

$$
\text{Lip}(f) := \sup \left\{ \frac{d_Y(f(x),f(y))}{d_X(x,y)} : x,y \in X \text{ with } x \neq y \right\} \in [0,\infty].
$$

Thus f is Lipschitz continuous if and only if $\text{Lip}(f) < \infty$, and $\text{Lip}(f)$ is the smallest Lipschitz constant for f in this case. We shall use a version of the Lipschitz Inverse Function Theorem:

Lemma 2.4 Let $(E,\|\cdot\|)$ be a normed space, $M \subseteq E$ a subset and $f : M \to E$ a Lipschitz continuous mapping such that $\text{Lip}(f) < 1$. Then $\phi := \text{id}_M+f : M \to E$ is injective and $\phi^{-1} : \phi(M) \to M$ is Lipschitz continuous with

$$
\text{Lip}(\phi^{-1}) \leq \frac{1}{1-\text{Lip}(f)}.
$$

If, moreover, $(E,\|\cdot\|)$ is a Banach space and M is open in E, then $\phi(M)$ is open in E.
Proof. For all \(x, y \in M \),
\[
\| \phi(x) - \phi(y) \| \geq \| x - y \| - \| f(x) - f(y) \| \geq (1 - \text{Lip}(f)) \| x - y \|.
\]
Thus \(\phi(x) = \phi(y) \) entails \(x = y \), and also \(^{11}\) follows. If \((E, \| \cdot \|)\) is a Banach space and \(M \) is open in \(E \), then \(\phi \) is an open map, as a consequence of \(^{11}\) Theorem 5.3]; notably, \(\phi(M) \) is open. □

2.5 Let \(E_1, E_2, \) and \(F \) be locally convex spaces, \(U_1 \subseteq E_1 \) as well as \(U_2 \subseteq E_2 \) be locally convex subsets with dense interior, and \(r, s \in \mathbb{N}_0 \cup \{\infty\} \). Following \(^{2}\), we say that a map \(f : U_1 \times U_2 \to F \) is \(C^{r,s} \) if \(f \) is continuous and, for all \(i, j \in \mathbb{N}_0 \) with \(i \leq r \) and \(j \leq s \), there exists a continuous map
\[
d^{(i,j)}f : U_1 \times U_2 \times (E_1)^{i} \times (E_2)^{j} \to F
\]
such that the iterated directional derivatives
\[
(D_{(v_1,0)} \cdots D_{(v_i,0)} D_{(0,w_j)} \cdots D_{(0,w_1)})f)(x,y)
\]
exist for all \(x \in U_1^0, y \in U_2^0, v_1, \ldots, v_i \in E_1, w_1, \ldots, w_j \in E_2 \), and coincide with \(d^{(i,j)}f(x,y,v_1,\ldots,v_i,w_1,\ldots,w_j) \), using the interiors \(U_1^0 \) and \(U_2^0 \) (see also \(^{1}\)).

We mention that \(C^{r,s,t} \)-maps \(f : U_1 \times U_2 \times U_3 \to F \) can be defined analogously \(^{1}\).

3 Proof of Proposition \(^{15}\)

By definition of the compact-open \(C^k \)-topology, the map
\[
C^k_{\text{str}}(M,E) \to C(M \times E,E), \quad f \mapsto df
\]
is continuous if we endow \(C(M \times E,E) \) with the compact-open topology. Hence
\[
U_k = \{ f \in C^k_{\text{str}}(M,E) : df(M \times B^k_E(0)) \subseteq B^k_E(0) \}
\]
is open in \(C^k_{\text{str}}(M,E) \). Moreover, \(0 \in U_k \). We prove the remaining assertion of Proposition \(^{15}\) by induction on the dimension of \(E \). The case \(\dim(E) = 0 \) is trivial, since \(f = 0 \) for all \(f \in C^k_{\text{str}}(M,E) \) in this case and thus \(\text{id}_M + f = \text{id}_M \in \text{Diff}^k(M) \). Let \(\dim(E) > 0 \) now and assume that the assertion has been established for all finite-dimensional vector spaces of dimension \(< \dim(E) \), in place of \(E \). Given \(f \in U_k \), our goal is to show that \(\phi := \text{id}_M + f \) is a face-respecting \(C^k \)-diffeomorphism of \(M \). As a first step, we show that \(\phi(F) = F \) for each face \(F \neq M \) of \(M \). Pick an element \(x \) in the algebraic interior \(\text{algint}(F) \) of \(F \) (called the “relative interior” in \(^{51} 22\)). Then \(F = M(x) \); we endow
\[
E(x) = \text{span}_R(F - x)
\]
with the norm induced by \(\| \cdot \| \). For each \(z \in \text{algint}(F) \), we have \(f(z) \in E(z) = \text{aff}(F) - z = \text{aff}(F) - x = E(x) \). Then \(f(z) \in E(x) \) for all \(z \in F \), as \(f \) is
compact and hence closed in φ. By Lemma 2.4, φ is connected and $\varphi(M)$ is closed in x.

Since x are continuous, after replacing $a \lambda$ by a linear functional g holds, showing that $\lambda(M) \subseteq M$. If this was false, we could find $x \in M$ such that $\lambda(x) \notin M$. Now M being an intersection of half-spaces, we would find a linear functional $\lambda: E \to \mathbb{R}$ and $a \in \mathbb{R}$ such that

$$\lambda(M) \subseteq [-\infty, a] \quad \text{and} \quad \lambda(\phi(x)) > a.$$

Then $\lambda \neq 0$, entailing that λ is an open map. Since M is compact and $\lambda \circ \phi$ is continuous, after replacing x if necessary we may assume that

$$\lambda(\phi(x)) = \max \lambda(\phi(M)).$$

Since $\phi(F) = F \subseteq M$ for each proper face F of M by the first step, we must have $x \in M^0$. Since $\phi(M^0)$ is open in E by Lemma 2.4, $\lambda(\phi(M^0))$ is an open neighbourhood of $\lambda(\phi(x))$ in \mathbb{R}, contradicting the maximality of $\lambda(\phi(x))$. Hence x cannot exist and $\phi(M) \subseteq M$ must hold.

As the third step, we show that $\phi(M) = M$. Since ∂M is the union of all proper faces F of M and $\phi(F) = F$ by Step 1, we have $\phi(\partial M) = \partial M$. Now M being closed in E, we have $M = M^0 \cup \partial M$ with $M^0 \cap \partial M = \emptyset$. We already observed that $\phi(M^0)$ is open in E, by Lemma 2.4, thus $\phi(M^0) \subseteq M^0$. Since $\phi(M)$ is compact and hence closed in M, the intersection

$$\phi(M) \cap M^0 = (\phi(M^0) \cup \phi(\partial M)) \cap M^0 = \phi(M^0)$$

is closed in M^0. But $\phi(M^0)$ is also open in E, and hence open in M^0. Since M^0 is connected and $\phi(M^0) \neq \emptyset$, we deduce that $M^0 = \phi(M^0)$. As a consequence, $\phi(M) = \phi(M^0 \cup \partial M) = M^0 \cup \partial M = M$.

By Lemma 2.4, $\phi: M \to M$ is a homeomorphism. By Steps 1 and 3, $\phi(F) = F$.

6
for each face F of M, whence ϕ is face respecting.

The inversion map $j: \text{GL}(E) \to \text{GL}(E)$, $\alpha \mapsto \alpha^{-1}$ is smooth on the general linear group $\text{GL}(E) := L(E, E)^\times$. For each $x \in M^0$, we have $\phi'(x) - \text{id}_E = f'(x)$ with $\|f'(x)\|_{\text{op}} < 1$, whence $\phi'(x): E \to E$ is invertible (by means of Neumann’s series). Thus $\phi|_{M^0}$ is a local C^k-diffeomorphism at x, by the Inverse Function Theorem. As a consequence, the bijection $\phi|_{M^0}: M^0 \to M^0$ is a C^k-diffeomorphism. Now $\phi^{-1}: M \to E$ is a continuous map and $\phi^{-1}|_{M^0} = (\phi|_{M^0})^{-1}$ is C^1 with

$$(\phi^{-1}|_{M^0})' = ((\phi|_{M^0})^{-1})' = j \circ (\phi|_{M^0})' \circ (\phi|_{M^0})^{-1}.$$

By the preceding, the map

$$g := j \circ \phi \circ \phi^{-1}: M \to L(E, E)_b$$

is a continuous extension of $(\phi^{-1}|_{M^0})': M^0 \to L(E, E)_b$. Then $g^\wedge: U \times E \to E$, $(x, y) \mapsto g(x)(y) = \varepsilon(g(x), y)$ is a continuous extension of $d(\phi^{-1}|_{M^0})$, using that the evaluation map $\varepsilon: L(E, E)_b \times E \to E$ is continuous. Hence ϕ^{-1} is C^1 with $d(\phi^{-1}) = g$ and thus

$$(\phi^{-1})' = j \circ \phi' \circ \phi^{-1}. \quad (2)$$

By induction on $\ell \in \mathbb{N}$ with $\ell \leq k$, we may assume that ϕ^{-1} is $C^{\ell-1}$. Then $(\phi^{-1})'$ is $C^{\ell-1}$, by (2), whence ϕ^{-1} is C^{ℓ}, by Lemma 2.3 Thus ϕ^{-1} is C^k, entailing that $\phi \in \text{Diff}^k_{fr}(M)$ and hence $f = \phi - \text{id}_M \in \Omega_k$. Thus $U_k \subseteq \Omega_k$.

4 Proof of Proposition 1.2

We first show that Ω_k is open.

Lemma 4.1 For each $k \in \mathbb{N} \cup \{\infty\}$, the set $\Omega_k := \{\phi - \text{id}_M : \phi \in \text{Diff}^k_{str}(M, E)\}$ is an open 0-neighbourhood in $C^k_{str}(M, E)$.

Proof. If $\phi \in \text{Diff}^k_{fr}(M)$, then $\phi - \text{id}_M: M \to E$ is a C^k-map. For each $x \in M$, we have $\phi(x) - x \in \phi(M(x)) - x = M(x) - x \subseteq E(x)$, showing that $\phi - \text{id}_M$ is a stratified vector field and thus $\phi - \text{id}_M \in C^k_{str}(M, E)$. By Proposition [Theorem 1.5] Ω_k is a 0-neighbourhood in $C^k_{str}(M, E)$. It remains to show that Ω_k is open. Let $V := C^k(M, E)$. For each $g \in \Omega_k$, the map

$$R_g: C^k(M, E) \to C^k(M, E), \quad f \mapsto f \circ (\text{id}_M + g)$$

is continuous linear, by [Theorem 1.7.11]. Now $h := (\text{id}_M + g)^{-1} - \text{id}_M \in \Omega_k$. Since $\text{id}_M + h = (\text{id}_M + g)^{-1}$, we see that $R_h \circ R_g = R_g \circ R_h = \text{id}_V$. Thus R_g is an isomorphism of topological vector spaces, with $(R_g)^{-1} = R_h$. Also

$$\tau: C^k(M, E) \to C^k(M, E), \quad f \mapsto \text{id}_M + f$$

is a homeomorphism. We deduce that

$$r_g := \tau^{-1} \circ R_g \circ \tau: C^k(M, E) \to C^k(M, E), \quad f \mapsto g + f \circ (\text{id}_M + g)$$

7
is a homeomorphism with \(r_g^{-1} = \tau^{-1} \circ R_h \circ \tau = r_h \). Using that \(\phi := \text{id}_M + g \in \text{Diff}^r_\mathcal{P}(M) \) is face respecting, we now show that

\[
\hat{r}_g(f) \in C^k_{\text{str}}(M, E) \quad \text{for each} \quad f \in C^k(M, E). \tag{3}
\]

To this end, let \(f \in C^k_{\text{str}}(M, E) \). For \(x \in M \), the image \(\phi(M(x)) = M(x) \) is a face containing the element \(\phi(x) \), whence \(M(\phi(x)) \subseteq M(x) \). Replacing \(x \) with \(\phi(x) \) and \(\phi \) with its inverse, the same argument shows that \(M(x) = M(\phi^{-1}(\phi(x))) \subseteq M(\phi(x)) \). Thus \(\phi(M(x)) = M(\phi(x)) \). As a consequence, \(\text{aff} M(x) = \text{aff} M(\phi(x)) \) and hence

\[
E(x) = (\text{aff } M(x)) - x = (\text{aff } M(\phi(x))) - \phi(x) = E(\phi(x)).
\]

Now \(r_g(f)(x) = g(x) + f(x + g(x)) = g(x) + f(\phi(x)) \in E(x) + E(\phi(x)) = E(x) \), establishing \(\text{Proposition 1.2} \). By \(\text{Proposition 1.2} \), the map \(r_g \) restricts to a self-map

\[
\rho_g : C^k_{\text{str}}(M, E) \to C^k_{\text{str}}(M, E)
\]

which is continuous as we endowed \(W := C^k_{\text{str}}(M, E) \) with the topology induced by \(C^k(M, E) \). As \(\rho_g \circ \rho_h = \rho_h \circ \rho_g = \text{id}_W \), we deduce that \(\rho_g \) is a homeomorphism with \((\rho_g)^{-1} = \rho_h \). We claim that

\[
\rho_g(\Omega_k) \subseteq \Omega_k.
\]

If this is true, then \(\Omega_k \) is a \(g \)-neighbourhood in \(C^k_{\text{str}}(M, E) \) (which completes the proof), as \(\Omega_k \) is a 0-neighbourhood, \(\rho_g \) a homeomorphism, and \(\rho_g(0) = g \).

To establish the claim, let \(f \in \Omega_k \). Then \(\text{id}_M + f \in \text{Diff}^r_\mathcal{P}(M) \) and hence \((\text{id}_M + f) \circ (\text{id}_M + g) \in \text{Diff}^r_\mathcal{P}(M) \), the latter being closed under composition. Thus \(\rho_g(f) = g + f \circ (\text{id}_M + g) = (\text{id}_M + f) \circ (\text{id}_M + g) - \text{id}_M \in \Omega_k \). □

We write \(\text{Diff}^r(K) := \{ \phi \in C^r(K, K) : (\exists \psi \in C^r(K, K)) \phi \circ \psi = \psi \circ \phi = \text{id}_K \} \) in the next lemma.

Lemma 4.2 Let \(F \) be a locally convex space, \(U \subseteq F \) be a locally convex subset with dense interior, \(E \) be a finite-dimensional real vector space, \(K \subseteq E \) be a compact convex subset with non-empty interior and \(r \in \mathbb{N}_0 \cup \{ \infty \} \). If a map \(f : U \times K \to K \subseteq E \) is \(C^r \) and \(f_z := f(x, \cdot) \in \text{Diff}^r(K) \) for all \(x \in U \), then also the following map is \(C^r \):

\[
g : U \times K \to K, \quad (x, z) \mapsto (f_z)^{-1}(z).
\]

Proof. If \(r = 0 \), then the graph of \(f \) is closed in \(U \times K \times K \). As a consequence, the graph of \(g \) is closed in \(U \times K \times K \) (being obtained from the former by flipping the second and third component). Since \(K \) is compact, continuity of \(g \) follows (see, e.g., [13] Lemma 2.1). For \(r \in \mathbb{N} \cup \{ \infty \} \), we can repeat the proof of [13] Theorem C] without changes. □

Proof of Proposition 1.2 The evaluation map

\[
\varepsilon_k : C^k(M, E) \times M \to E, \quad (f, x) \mapsto f(x)
\]
Lemma 3.2.7]. By [1, Theorem 3.25], the latter will hold if
\[\text{Diff}_k \]
Lemma 1.3.19]. Then also
\[k \]
For the discussion of the inversion maps, note that, for each
\[k \]
P \subset C \text{C} \text{tor subspace}
\[C \]
C \text{C} \text{tor}
\[\text{Diff}_k \]
Hence
\[\epsilon \]
is \(C^{\infty,k} \) and thus \(C^{\ell,k} \), by [2 Proposition 3.20]. Likewise, the evaluation map
\[\epsilon_{k+\ell}: C^{k+\ell}(M,E) \times M \to E \]
is \(C^{\infty,k+\ell} \). Let us show that the map
\[H_{k,\ell}: C^{k+\ell}(M,E) \times \Omega_k \to C^k(M,E), \quad (f,g) \mapsto g + f \circ (\text{id}_M + g) \]
is \(C^{\ell} \), for all \(k \in \mathbb{N} \cup \{\infty\} \) and \(\ell \in \mathbb{N}_0 \cup \{\infty\} \). It suffices to show that
\[\Gamma_{k,\ell}: C^{k+\ell}(M,E) \times \Omega_k \to C^k(M,E), \quad (f,g) \mapsto f \circ (\text{id}_M + g) \]
is \(C^{\ell} \), since \(H_{k,\ell}(f,g) = g + \Gamma_{k,\ell}(f,g) \). This will hold if we can show that \(\Gamma_{k,\ell} \) is \(C^{\infty,\ell} \) (see [2, Lemma 3.15]). By [1 Theorem 3.20], it suffices to show that
\[\Gamma^\ast_{k,\ell}: C^{k+\ell}(M,E) \times \Omega_k \times M \to E, \quad (f,g,x) \mapsto f(x+g(x)) = \epsilon_{k+\ell}(f,x+\epsilon_k(g,x)) \]
is \(C^{\infty,\ell,k} \). Now \(\Omega_k \times M \to M, (g,x) \mapsto x \) is a smooth map and hence \(C^{\ell,k} \). As also \(\epsilon_k \) is \(C^{\ell,k} \), we find that
\[h_2: \Omega_k \times M \to M, \quad (g,x) \mapsto x + g(x) = x + \epsilon_k(g,x) \]
is \(C^{\ell,k} \). The identity map \(h_1: C^{k+\ell}(M,E) \to C^{k+\ell}(M,E), f \mapsto f \) is \(C^{\infty} \). Since \(\epsilon_{k+\ell} \) is \(C^{\infty,k+\ell} \), the Chain Rule in the form [11 Lemma 3.16] shows that
\[\Gamma^\ast_{k,\ell} = \epsilon_{k+\ell} \circ (h_1 \times h_2) \]
is \(C^{\infty,\ell,k} \). Thus \(H_{k,\ell} \) is \(C^{\ell} \), whence also \(H_{k,\ell}|_{\Omega_{k+\ell} \times \Omega_k} \) is \(C^{\ell} \). Now
\[H_{k,\ell}(f,g) = (\text{id}_M + f) \circ (\text{id}_M + g) - \text{id}_M \in \Omega_k \subseteq C^{k}_{\text{str}}(M,E) \]
for all \(f \in \Omega_{k+\ell} \subseteq \Omega_k \) and \(g \in \Omega_k \), since \(\text{Diff}^k(M) \) is closed under composition. Hence \(H_{k,\ell}|_{\Omega_{k+\ell} \times \Omega_k} \) co-restricts to a map
\[h_{k,\ell}: \Omega_{k+\ell} \times \Omega_k \to \Omega_k \subseteq C^{k}_{\text{str}}(M,E) \]
which is \(C^{\ell} \) as the vector subspace \(C^{k}_{\text{str}}(M,E) \) of \(C^{k}(M,E) \) is closed (see [15, Lemma 1.3.19]). Then also \(\epsilon_{k,\ell} = \Phi^{-1}_{k+\ell} \circ h_{k,\ell} \circ (\Phi_{k+\ell} \times \Phi_k) \) is \(C^{\ell} \).

For the discussion of the inversion maps, note that, for each \(k \in \mathbb{N} \cup \{\infty\} \), \(\text{Diff}^k(M) \) is a smooth submanifold of \(C^{k}(M,E) \) modeled on the closed vector subspace \(C^{k}_{\text{str}}(M,E) \) of \(C^{k}(M,E) \). In fact, since \(\Omega_k \) is an open subset of \(C^{k}_{\text{str}}(M,E) \) whose topology is induced by the compact-open \(C^k \)-topology on \(C^{k}(M,E) \), we find an open subset \(Q \subseteq C^{k}(M,E) \) with \(Q \cap C^{k}_{\text{str}}(M,E) = \Omega_k \). Then \(P := \text{id}_M + Q = \{\text{id}_M + f: f \in Q\} \) is an open subset of \(C^{k}_{\text{str}}(M,E) \) and
\[\kappa: P \to Q, \quad \phi \mapsto \phi - \text{id}_M \]
is a chart for \(C^{k}(M,E) \) such that \(\kappa(P \cap \text{Diff}^k_{\text{str}}(M)) = \Omega_k = Q \cap C^{k}_{\text{str}}(M,E) \). As a consequence, for \(k \in \mathbb{N} \cup \{\infty\} \) and \(\ell \in \mathbb{N}_0 \cup \{\infty\} \), the map \(t_{k,\ell} \) will be \(C^{\ell} \) to \(\text{Diff}^k(M) \) if we can show that \(t_{k,\ell} \) is \(C^{\ell} \) as a map to \(C^{k}(M,E) \) (see [15, Lemma 3.2.7]). By [1, Theorem 3.25], the latter will hold if
\[t^\ast_{k,\ell}: \text{Diff}^{k+\ell}_{\text{str}}(M) \times M \to E, \quad (\phi,z) \mapsto t_{k,\ell}(\phi)(z) = \phi^{-1}(z) \]
is \(C^{\ell,k} \). But \(\iota_{k,\ell}' \) even is \(C^{k+\ell} \); in fact,

\[
f: \text{Diff}^{k+\ell}_r(M) \times M \to E, \quad (\phi, x) \mapsto \phi(x)
\]
is \(C^{\infty,k+\ell} \) (and hence \(C^{k+\ell} \)) as the restriction to a submanifold of the evaluation mapping \(\varepsilon_{k+\ell}: C^{k+\ell}(M, E) \times M \to E \), which is \(C^{\infty,k+\ell} \). Since \(\text{Diff}^{k+\ell}_r(M) \) is \(C^{\infty} \)-diffeomorphic to the open set \(\Omega_{k+\ell} \subseteq C^{k+\ell}_r(M, E) \), the \(C^{k+\ell} \)-property of \(\iota_{k,\ell}'\): \((\phi, z) \mapsto f(\phi, \cdot)^{-1}(z) \) follows from Lemma 4.2.

Note that \(c_{\infty,\infty} \) is the group multiplication of \(\text{Diff}^{\infty}_r(M) \) and \(c_{\infty,\infty} \) the group inversion. As both of these mappings are smooth, \(\text{Diff}^{\infty}_r(M) \) is a Lie group. □

5 Proof of Theorem 1.1

Two lemmas will be useful for the proof of Theorem 1.1.

Lemma 5.1 Let \(E \) be a finite-dimensional real vector space and \(M \subseteq E \) be a convex polytope with non-empty interior. If \(r > 0 \) and \(\gamma: [0, r] \to M \) is a \(C^1 \)-map, then there exists \(\varepsilon > 0 \) such that

\[
\gamma(0) + t\gamma'(0) \in M \quad \text{for all} \quad t \in [0, \varepsilon].
\]

Proof. We may assume \(E \neq \{0\} \), omitting a trivial case. There are a finite set \(\Lambda \neq \emptyset \) of non-zero linear functionals \(\lambda: E \to \mathbb{R} \) and numbers \(a_{\lambda} \in \mathbb{R} \) such that

\[
M = \{ x \in E : (\forall \lambda \in \Lambda) \lambda(x) \leq a_{\lambda} \}.
\]

Let \(\Lambda_0 := \{ \lambda \in \Lambda : \lambda(\gamma(0)) = a_{\lambda} \} \). Then

\[
\lambda(\gamma'(0)) = (\lambda \circ \gamma)'(0) = \lim_{t \to 0^+} \frac{\lambda(\gamma(t)) - \lambda(\gamma(0))}{t} \leq 0
\]

for each \(\lambda \in \Lambda_0 \), as \(\lambda(\gamma(t)) \leq a_{\lambda} \) and \(\lambda(\gamma(0)) = a_{\lambda} \). As a consequence,

\[
\lambda(\gamma(0) + t\gamma'(0)) = a_{\lambda} + t\lambda(\gamma'(0)) \leq a_{\lambda}
\]

for all \(\lambda \in \Lambda_0 \) and \(t \geq 0 \). For all \(\lambda \in \Lambda \setminus \Lambda_0 \), we have \(\lambda(\gamma(0)) < a_{\lambda} \). As \(\Lambda \setminus \Lambda_0 \) is a finite set, we find \(\varepsilon > 0 \) such that \(\lambda(\gamma(0)) + t\lambda(\gamma'(0)) \leq a_{\lambda} \) for all \(t \in [0, \varepsilon] \) and all \(\lambda \in \Lambda \setminus \Lambda_0 \). For all \(t \in [0, \varepsilon] \), we then have \(\lambda(\gamma(0) + t\gamma'(0)) \leq a_{\lambda} \) for all \(\lambda \in \Lambda \). Thus \(\gamma(0) + t\gamma'(0) \in M \), by \(\square \).

Lemma 5.2 Let \(E \) and \(F \) be finite-dimensional real vector spaces, \(M \subseteq E \) and \(N \subseteq F \) be convex polytopes with non-empty interior and \(\phi: U \to V \) be a \(C^1 \)-map between open subsets \(U \subseteq M \) and \(V \subseteq N \). For \(x \in M \), let \(M(x) \) be the face of \(M \) generated by \(x \), and \(E(x) := \text{span}_\mathbb{R}(M(x) - x) \). For \(y \in N \), let \(N(y) \) be the face of \(N \) generated by \(y \), and \(F(y) := \text{span}_\mathbb{R}(N(y) - y) \). For \(x \in U \), we have:

- (a) \(\phi'(x)(E(x)) \subseteq F(\phi(x)) \);
Proof. (a) Let \(w \in E(x) \). Since \(x \in \text{algint } M(x) \), there exists \(r > 0 \) such that \(x + tw \in M(x) \subseteq M \) for all \(t \in [0, r] \). After shrinking \(r \), we may assume that \(x + tw \in U \) for all \(t \in [0, r] \) and thus \(\phi(x + tw) \in N \). Since \(\pm \phi'(x)(w) = \left. \frac{d}{dt} \right|_{t=0} \phi(x + tw) \), Lemma 5.1 provides \(\varepsilon > 0 \) such that

\[
\phi(x) + t\phi'(x)(w) \in N \quad \text{for all } t \in [0, \varepsilon].
\]

Notably, \(v_+ := \phi(x) + \varepsilon\phi'(x)(w) \in N \) and \(v_- := \phi(x) - \varepsilon\phi'(x)(w) \in N \). Since \((1/2)v_+ + (1/2)v_- = \phi(x) \in N(\phi(x)) \) and \(N(\phi(x)) \) is a face of \(N \), we deduce that \(v_+, v_- \in N(\phi(x)) \). Thus \(\varepsilon\phi'(x)(w) = v_+ - \phi(x) \in N(\phi(x)) - \phi(x) \subseteq F(\phi(x)) \), whence also \(\phi'(x)(w) \in F(\phi(x)) \).

(b) is immediate from (a).

(c) Set \(y := \phi(x) \). By (a), we have \(\phi'(x)(E(x)) \subseteq F(y) \) and \((\phi^{-1})'(y)(F(y)) \subseteq E(\phi^{-1}(y)) = E(x) \). Since \((\phi^{-1})'(y) = (\phi'(x))^{-1} \), applying \(\phi'(x) \) to the latter inclusion we get \(F(y) \subseteq \phi'(x)(E(x)) \), whence \(F(y) = \phi'(x)(E(x)) \). \(\Box \)

Lemma 5.2(c) is analogous to the well-known boundary invariance for manifolds with corners (as in [18, Theorem 1.2.12 (a)]).

Definition 5.3 Let \(E \) be a finite-dimensional real vector space of dimension \(n \) and \(M \subseteq E \) be a convex polytope with non-empty interior. The index of \(x \in M \) is defined as

\[
\text{ind}_M(x) := \dim(E/E(x)) = n - \dim E(x) = n - \dim M(x),
\]

where \(M(x) \) is the face of \(M \) generated by \(x \) and \(E(x) := \text{span}_E(M(x) - x) \). For \(i \in \{0, 1, \ldots, n\} \), we define

\[
\partial_i(M) := \{ x \in M : \text{ind}_M(x) = i \}.
\]

In the situation of Definition 5.3 the following holds.

Lemma 5.4 For each \(i \in \{0, 1, \ldots, n\} \), the set \(\partial_i(M) \) is an \((n-i)\)-dimensional smooth submanifold of \(E \). If \(\mathcal{F}_{n-i}(M) \) is the finite set of all faces of \(M \) of dimension \(n-i \), then the topology induced by \(M \) on \(\partial_i(M) \) makes the latter the topological sum of the algebraic interiors \(\text{algint}(F) \) for \(F \in \mathcal{F}_{n-i}(M) \). The connected components of \(\partial_i(M) \) are the sets \(\text{algint}(F) \) for \(F \in \mathcal{F}_{n-i}(M) \); they are open and closed in \(\partial_i(M) \).

Proof. If \(F, G \in \mathcal{F}_{n-i}(M) \) such that \(F \neq G \) and \(F \cap G \neq \emptyset \), then \(F \cap G \) is a face of \(M \) of dimension \(< n - i \) and \(F \cap G \subseteq \text{algint}(F) \) as well as \(F \cap G \subseteq \text{algint}(G) \), entailing that \(\text{algint}(F) \cap \text{algint}(G) = \emptyset \). Thus

\[
\text{algint}(F) \cap \text{algint}(G) = \emptyset \quad \text{for all } F, G \in \mathcal{F}_{n-i}(M) \text{ such that } F \neq G. \quad (5)
\]
Let $F \in \mathcal{F}_{n-1}(M)$. For each $G \in \mathcal{F}_{n-1}(M)$, we have \(\text{algint}(F) \cap G \subseteq F \cap G \subseteq F \setminus \text{algint}(F) \) by the preceding and thus \(\text{algint}(F) \cap G = \emptyset \). Thus

$$K := \bigcup_{G \in \mathcal{F}_{n-1}(M) \setminus \{F\}} G$$

is a compact subset of E such that \(\text{algint}(F) \cap K = \emptyset \). Note that $F = H \cap M$ for some hyperplane H in E (faces of polyhedra being exposed), whence

$$F = M \cap \text{aff}(F).$$

Now \(\text{algint}(F) = U \cap \text{aff}(F) \) for some open subset $U \subseteq E$. After replacing U by its intersection with the open set $E \setminus K$ which contains \(\text{algint}(F) \), we may assume that $U \cap \text{algint}(G) = \emptyset$ for all $G \in \mathcal{F}_{n-1}(M) \setminus \{F\}$ and hence

$$\partial_i(M) \cap U = U \cap \text{algint}(F) = \text{algint}(F),$$

showing that \(\text{algint}(F) \) is open in $\partial_i(M)$. The topology induced by E therefore makes $\partial_i(M)$ the topological sum of the \(\text{algint}(F) \) with $F \in \mathcal{F}_{n-1}(M)$. If we choose $x \in \text{algint}(F)$, then $E(x) = \text{aff}(F) - x$ and

$$\phi: U \to U - x, \quad y \mapsto y - x$$

is a C^∞-diffeomorphism between open subsets of E such that

$$\phi(U \cap \partial_i(M)) = \phi(\text{algint}(F)) = \phi(U \cap \text{aff}(F)) = (U - x) \cap E(x).$$

Thus $\partial_i(M)$ is a submanifold of E of dimension $\dim(E(x)) = n - i$. \hfill \(\square \)

Lemma 5.5 Let E be a finite-dimensional real vector space, $M \subseteq E$ be a convex polytope with non-empty interior, and $k \in \mathbb{N} \cup \{\infty\}$. Then $\text{Diff}^k(M)$ is a normal subgroup of finite index in $\text{Diff}^k(M)$.

Proof. We write $\mathcal{F}(M)$ for the set of all faces of M. Let $n := \dim(E)$ and $\phi \in \text{Diff}^k(M)$. By Lemma 5.2(c), we have $\text{ind}_M(\phi(x)) = \text{ind}_M(x)$ for each $x \in M$, whence $\phi(\partial_i(M)) \subseteq \partial_i(M)$ for each $i \in \{0, 1, \ldots, n\}$ and thus $\phi(\partial_i(M)) = \partial_i(M)$, as M is the disjoint union of $\partial_0(M), \ldots, \partial_n(M)$ and ϕ is surjective. Since $\partial_i(M)$ is a submanifold of E, the inclusion map $\partial_i(M) \to E$ is smooth, and thus also the inclusion map $j_i: \partial_i M \to M$. Thus $\phi|_{\partial_i(M)} = \phi \circ j_i$ is C^k. As this map has image in $\partial_i(M)$, which is a submanifold of E, we deduce that

$$\phi_i := \phi|_{\partial_i(M)}: \partial_i(M) \to \partial_i(M)$$

is C^k. Note that $(\phi^{-1})_i$ is inverse to ϕ_i, whence ϕ_i is a C^k-diffeomorphism and hence a homeomorphism. For each $F \in \mathcal{F}_{n-1}(M)$, the algebraic interior $\text{algint}(F)$ is open and closed in the topological sum $\partial_i(M)$. As a consequence, $\phi(\text{algint}(F)) = \phi_i(\text{algint}(F))$ is both open and closed in $\partial_i(M)$. Being also non-empty and connected, $\phi(\text{algint}(F))$ is a connected component of $\partial_i(M)$ and thus $\phi(\text{algint}(F)) = \text{algint}(G)$ for some $G \in \mathcal{F}_{n-1}(M)$. As a consequence,

$$\phi(F) = \phi(\overline{\text{algint}(F)}) = \overline{\phi(\text{algint}(F))} = \overline{\text{algint}(G)} = G.$$
Thus $\phi_*(F) := \phi(F) \in \mathcal{F}(M)$ for each $F \in \mathcal{F}(M)$. Since $(\text{id}_M)_*$ is the identity map on $\mathcal{F}(M)$ and $(\phi \circ \psi)_* = \phi_* \circ \psi_*$ for all $\phi, \psi \in \text{Diff}^k(M)$, we get a group homomorphism

$$\pi: \text{Diff}^k(M) \to \text{Sym}(\mathcal{F}(M)), \quad \phi \mapsto \phi_*$$

to the group of all permutations of the finite set $\mathcal{F}(M)$. Thus $\text{Diff}^k_{fr}(M) = \ker(\pi)$ is a normal subgroup of $\text{Diff}^k(M)$ of finite index.

Proof of Theorem 1.1. In view of the local description of Lie group structures (analogous to Proposition 18 in [3, Chapter III, §1, no. 9]), we need only show that the group homomorphism

$$I_\psi: \text{Diff}^\infty_{fr}(M) \to \text{Diff}^\infty_{fr}(M), \quad \phi \mapsto \psi \circ \phi \circ \psi^{-1}$$

is smooth for each $\psi \in \text{Diff}(M)$. Since $\text{Diff}^\infty_{fr}(M)$ is a smooth submanifold of $C^\infty(M,E)$, we need only show that I_ψ is smooth as a map to $C^\infty(M,E)$, which will hold if we can show that the map

$$I_\psi^\wedge: \text{Diff}^\infty_{fr}(M) \times M \to E, \quad (\phi, x) \mapsto I_\psi(\phi)(x) = \psi(\phi(\psi^{-1}(x)))$$

is smooth (see [2, Theorem 3.25 and Lemma 3.22]). We know that the evaluation map $\varepsilon: C^\infty(M,E) \times M \to E, (f, x) \mapsto f(x)$ is smooth (see [2, Proposition 3.20 and Lemma 3.22]). Since $\text{Diff}^\infty_{fr}(M)$ is a submanifold of $C^\infty(M,E)$, also the restriction of ε to a map

$$\text{Diff}^\infty_{fr}(M) \times M \to E$$

is smooth. As this map takes its values in M, also its corestriction

$$\theta: \text{Diff}^\infty_{fr}(M) \times M \to M, \quad (\phi, x) \mapsto \phi(x)$$

is smooth. The formula

$$I_\psi^\wedge(\phi, x) = \psi(\theta(\phi, \psi^{-1}(x)))$$

now shows that I_ψ^\wedge is a smooth function of (ϕ, x), as required.

Remark 5.6 If $E = \mathbb{R}^n$ and $M \subseteq E$ is a polytope with non-empty interior, then

$$\text{Diff}_{\partial M}(M) := \{ \phi \in \text{Diff}(M) : \phi(x) = x \text{ for all } x \in \partial M \}$$

is a subgroup of $\text{Diff}^\infty_{fr}(M)$. Since

$$C^\infty_{\partial M}(M,E) := \{ f \in C^\infty(M,E) : f(x) = 0 \text{ for all } x \in \partial M \}$$

is a closed vector subspace of $C^\infty_{str}(M,E)$ and the chart

$$\Phi_{\infty}: \text{Diff}^\infty_{fr}(M) \to \Omega_{\infty} \subseteq C^\infty_{str}(M,E)$$

satisfies $\Phi_{\infty}(\text{Diff}_{\partial M}(M)) = \Omega_{\infty} \cap C^\infty_{\partial M}(M,E)$, we see that $\text{Diff}_{\partial M}(M)$ is a submanifold (and hence a Lie subgroup) of $\text{Diff}^\infty_{fr}(M)$ modeled on $C^\infty_{\partial M}(M,E)$, and thus also of $\text{Diff}(M)$ (in the sense of [15, Definition 3.1.10]).

13
Remark 5.7} Let \(E \) be a finite-dimensional real vector space, \(n := \dim(E) \), \(M \subseteq E \) be a convex polytope with non-empty interior, and \(k \in \mathbb{N}_0 \cup \{ \infty \} \). Using Lemma 5.4, we obtain the following more intuitive characterization: A function \(f \in C^k(M, E) \) is stratified (and thus in \(C^{\infty}_s(M, E) \)) if and only if \((\text{id}_M, f)(\partial_i(M)) \subseteq T(\partial_i(M))\) for each \(i \in \{0, \ldots, n\} \), identifying \(T(\partial_i(M)) \) with a subset of \(TM = M \times \mathbb{R}^n \) as usual. That is, \(f|_{\partial_i(M)} \) can be considered as a \(C^k \)-vector field of the \((n - i)\)-dimensional \(C^\infty \)-manifold \(\partial_i(M) \) for all \(i \in \{0, \ldots, n\} \).

Remark 5.8} Given \(n \in \mathbb{N}_0 \), we define a \emph{locally polyhedral} \(C^\infty \)-manifold of dimension \(n \) as a Hausdorff topological space \(M \), together with a set \(\mathcal{A} \) of homeomorphisms \(\phi: U_\phi \to V_\phi \) from open subsets \(U_\phi \subseteq M \) onto open subsets of a polytope \(P_\phi \subseteq \mathbb{R}^n \) with non-empty interior, such that \(\mathcal{A} \) is a \emph{polyhedral smooth atlas} in the sense that \(\bigcup_{\phi \in \mathcal{A}} U_\phi = M \) and \(\phi \circ \psi^{-1} \) is \(C^\infty \) for all \(\phi, \psi \in \mathcal{A} \), and \(\mathcal{A} \) is maximal among such atlases. Notably, \(\mathcal{A} \) is a rough \(C^\infty \)-atlas in the sense of [15], whence \(M \) can be considered as a smooth manifold with rough boundary in the sense of [15]. By Lemma 5.2 for all \(x \in M \) we have

\[
\text{ind}_{P_\phi}(\phi(x)) = \text{ind}_{P_\psi}(\psi(x))
\]

for all \(\phi, \psi \in \mathcal{A} \) such that \(x \in U_\phi \) and \(x \in U_\psi \), whence

\[
\text{ind}_M(x) := \text{ind}_{P_\phi}(\phi(x))
\]

is a well-defined integer in \(\{0, 1, \ldots, n\} \). If we set

\[
\partial_i(M) := \{x \in M : \text{ind}_M(x) = i\},
\]

then \(\phi(U_\phi \cap \partial_i(M)) = V_\phi \cap \partial_i(P_\phi) \) is an \((n - i)\)-dimensional submanifold of \(\mathbb{R}^n \) for each \(\phi \in \mathcal{A} \), entailing that \(\partial_i(M) \) is an \((n - i)\)-dimensional manifold (and a submanifold of \(M \) in the sense of [15] Definition 3.5.14); cf. also [15] Remark 3.5.16 (a)).

\section{Non-existence of Michor-type local additions}

If \(M \) is a finite-dimensional smooth manifold with corners of dimension \(n \), one can define its tangent bundle \(TM \) with fibre \(\mathbb{R}^n \) and obtains the subset \(^1TM \) of all tangent vectors \(v \) of the form

\[
v = \dot{\gamma}(0) \in T_{\gamma(0)}M
\]

for some smooth curve \(\gamma: [0, 1[\to M \), the so-called \emph{inner} tangent vectors (see [19] p. 20]). If \(M = [0, \infty[^k \times \mathbb{R}^{n-k} \) with \(k \in \{0, \ldots, n\} \), we identify \(TM \) with \(M \times \mathbb{R}^n \) as usual; then

\[
^1TM = \{(x, y) \in M \times \mathbb{R}^n : (\forall j \in \{1, \ldots, k\}) \ x_j = 0 \implies y_j \geq 0\},
\]

writing \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \) in components. Hence \(^1TM \) is a convex subset of \(\mathbb{R}^n \times \mathbb{R}^n \) and its interior \(M^0 \times \mathbb{R}^n \) is dense in \(^1TM \).
Notably, $\mathcal{T}M$ is a locally convex subset of \mathbb{R}^{2n} with dense interior. Since every n-dimensional smooth manifold M with corners locally looks like $[0, \infty)^n$, we see that $\mathcal{T}M$ locally looks like $\mathcal{T}([0, \infty]^n)$, whence $\mathcal{T}M$ is a smooth manifold with rough boundary in the sense of Chapter 3. It therefore makes sense to speak about smooth functions on $\mathcal{T}M$. (A smaller class of modeling sets and corresponding generalized manifolds is proposed in [19, p. 20, Remark]). According to [19, §10.2, p. 90], local additions on a smooth manifold M with corners are defined as follows:

A.1 A local addition τ on M is a smooth mapping $\tau: \mathcal{TM} \to M$ satisfying

(A1) $(\tau, \pi_{\mathcal{TM}}): \mathcal{TM} \to M \times M$ is a diffeomorphism onto an open neighbourhood of the diagonal in $M \times M$;

(A2) $\tau(0_x) = x$ for all $x \in M$.

Here $0_x \in T_xM$ is the 0-vector in the tangent space T_xM for $x \in M$. Michor claims that every smooth manifold with corners admits a local addition (see [19, p. 90, Lemma]). However:

Proposition A.2 $M := [0, \infty[$ does not admit a local addition in the sense defined by Michor, as in A.1.

Proof. We identify TM with $M \times \mathbb{R}$. Thus

$$\mathcal{T}M = (\{0\} \times [0, \infty[) \cup ([0, \infty[\times \mathbb{R}).$$

Suppose that $\tau: \mathcal{T}M \to M$ was a local addition. We shall derive a contradiction. Since $\phi: \mathcal{T}M \to M \times M, (x, y) \mapsto (\tau(x, y), x)$ is a diffeomorphism onto on open neighbourhood of the diagonal, the Jacobi matrix $J_{\phi}(0, 0)$ must be invertible. By (A2), we have $\tau(0, 0) = x$, whence $\frac{\partial \tau}{\partial y}(0, 0) = 1$. Thus

$$J_{\phi}(0, 0) = \begin{pmatrix} 1 & \frac{\partial \tau}{\partial y}(0, 0) \\ 1 & 0 \end{pmatrix},$$

and invertibility implies that $\frac{\partial \tau}{\partial y}(0, 0) \neq 0$. Since $\tau(0, y) \in [0, \infty[$ for all $y \in [0, \infty[$, we have $\tau(0, y) \geq 0$ and thus $\frac{\partial \tau}{\partial y}(0, 0) \geq 0$, using that $\tau(0, 0) = 0$. Thus $\frac{\partial \tau}{\partial y}(0, 0) > 0$. Choose $\theta > 0$ such that

$$\theta \frac{\partial \tau}{\partial y}(0, 0) > 1;$$

thus $\varepsilon := \theta \frac{\partial \tau}{\partial y}(0, 0) - 1 > 0$. Consider the smooth map

$$h: [0, \infty[\to M \subseteq \mathbb{R}, \quad t \mapsto \tau(t, -\theta t).$$

Then

$$h'(0) = \frac{\partial \tau}{\partial x}(0, 0) - \theta \frac{\partial \tau}{\partial y}(0, 0) = -\varepsilon.$$
Since $h(0) = 0$, Taylor’s Theorem yields

$$h(t) = -\varepsilon t + R(t)$$

with $R(t)/t \to 0$ for $t \to 0$. There exists $\delta > 0$ such that $|R(t)|/t < \varepsilon$ for all $t \in (0, \delta]$, whence $R(t) < \varepsilon t$ and thus

$$h(t) < -\varepsilon t + \varepsilon t = 0.$$

This contradicts $h(t) \geq 0$, which holds as $h(t) \in M$. \square

It would not help to assume that, instead, the local addition τ is only defined on an open neighbourhood Ω of the 0-section in $\mathfrak{T}M$. In fact, such a neighbourhood Ω of $[0, \infty[^k \times \{0\}$ in $\mathfrak{T}([0, \infty[) \times \{0\}$ contains $[0, \rho[^k \times [-\rho, \rho[$ for some $\rho > 0$. There exists $\delta \in [0, \rho]$ such that $\theta \delta < \rho$ and thus $(t, -\theta t) \in \Omega$ for all $t \in [0, \delta]$. Hence $h(t) := \tau(t, -\theta t) \in M$. After shrinking δ if necessary, a contradiction is obtained as in the preceding proof.

An analogous remark applies in the following more general situation. We consider smooth manifolds with corners as in [19] here, which are assumed finite-dimensional and paracompact.

Proposition A.3 If M is a smooth manifold with corners such that $\partial M \neq \emptyset$, then M does not admit a smooth local addition in Michor’s sense.

Proof. Suppose we could find a smooth local addition $\tau: \mathfrak{T}M \to M$ in Michor’s sense. We derive a contradiction. Let $n \in \mathbb{N}$ be the dimension of M. For $p \in \partial M$, there exist $k \in \{1, \ldots, n\}$, an open p-neighbourhood $U \subseteq M$ and a C^∞-diffeomorphism $\phi: U \to [0, \infty[^k \times \mathbb{R}^{n-k} =: V$ such that $\phi(p) = 0$. Let

$$F := \mathfrak{T}V \subseteq TV = V \times \mathbb{R}^n$$

be the set of all $(x, y) \in V \times \mathbb{R}^n$ with $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ such that $y_j \geq 0$ for all $j \in \{1, \ldots, k\}$ such that $x_j = 0$. Then F is a convex subset of $\mathbb{R}^n \times \mathbb{R}^n$ with dense interior. Moreover, $\tau^{-1}(U)$ is an open 0_p-neighbourhood in $\mathfrak{T}M$ and

$$Q := T\phi((TU) \cap \tau^{-1}(U))$$

is an open $(0, 0)$-neighbourhood in $F \subseteq V \times \mathbb{R}^n$, whence Q is a locally convex subset of $\mathbb{R}^n \times \mathbb{R}^n$ with dense interior. We obtain a smooth map

$$\sigma := \phi \circ \tau \circ T\phi^{-1}|_Q: Q \to V \subseteq \mathbb{R}^n$$

such that

$$\psi := (\sigma, \text{pr}_1): Q \to V \times V, \quad (x, y) \mapsto (\sigma(x, y), x)$$

is a C^∞-diffeomorphism onto an open neighbourhood of the diagonal in $V \times V$. For some $\rho > 0$, we have $P := [-\rho, \rho[^2 \cap F \subseteq Q$. Write $\sigma|_P = (\sigma_1, \ldots, \sigma_n)$ in terms of the components $\sigma_1, \ldots, \sigma_n: P \to \mathbb{R}$. Using the partial maps $\sigma_0 :=
\(\sigma(0, \cdot) : [0, \infty]^k \times \mathbb{R}^{n-k} \to \mathbb{R}^n \) and \(\sigma^0 := \sigma(\cdot, 0) : [0, \rho]^k \times [0, \rho^{n-k}] \to \mathbb{R}^n \) of \(\sigma|_P \), the Jacobian of \(\psi \) at \((0, 0) \in P \subseteq \mathbb{R}^n \times \mathbb{R}^n \) can be regarded as the block matrix

\[
J_\psi(0, 0) = \begin{pmatrix}
J_{\sigma^0}(0) & J_{\sigma_0}(0) \\
1 & 0
\end{pmatrix}.
\]

The invertibility of the Jacobian implies that the final \(n \) columns must be linearly independent. Notably, we must have \(\partial \sigma_1 \partial y_j(0, 0) \neq 0 \) for some \(j \in \{1, \ldots, n\} \). Let \(e_1, \ldots, e_n \subseteq \mathbb{R}^n \) be the standard basis vectors. For small \(t \geq 0 \), we have \((0, te_j) \in Q\), whence \((0, te_j) \in V\), entailing that \(\sigma_1(0, te_j) \geq 0 \) and thus

\[
\frac{\partial \sigma_1}{\partial y_j}(0, 0) = \lim_{t \to 0^+} \frac{\sigma_1(0, te_j)}{t} \geq 0,
\]

exploiting that \(\sigma_1(0, 0) = 0 \). There exists \(\theta > 0 \) such that

\[
\varepsilon := \theta \frac{\partial \sigma_1}{\partial y_j}(0, 0) - 1 > 0.
\]

There exists \(\delta > 0 \) such that

\[
t(1, \ldots, 1, -\theta e_j) \in Q
\]

for all \(t \in [0, \delta] \) (with 1 in the first \(n \) slots). Then

\[
h : [0, \delta] \to \mathbb{R}, \quad t \mapsto \sigma_1(t(1, \ldots, 1, -\theta e_j))
\]

is a smooth function such that

\[
h'(0) = \sum_{i=1}^{n} \frac{\partial \sigma_1}{\partial x_i}(0, 0) - \theta \frac{\partial \sigma_1}{\partial y_j}(0, 0) = 1 - \theta \frac{\partial \sigma_1}{\partial y_j}(0, 0) = -\varepsilon < 0,
\]

where \(\delta_{1,i} \) denotes Kronecker’s delta. Since \(h(0) = 0 \), after shrinking \(\delta \), we can achieve that \(h(t) < 0 \) for all \(t \in [0, \delta] \). Thus \(\sigma_1(\delta(1, \ldots, 1, -\theta e_j)) = h(\delta) < 0 \), contradicting the fact \(\sigma(Q) \subseteq V \) and thus \(\sigma_1(x, y) \geq 0 \) for all \((x, y) \in Q\). \(\Box \)

References

[1] Alzaareer, H., *Differential calculus on multiple products*, Indag. Math. 30 (2019), 1036–1060.

[2] Alzaareer, H. and A. Schmeding, *Differentiable mappings on products with different degrees of differentiability in the two factors*, Expo. Math. 33 (2015), 184–222.
[3] Bastiani, A., *Applications différentiables et variétés différentiables de dimension infinie*, J. Anal. Math. **13** (1964), 1–114.

[4] Bourbaki, N., “Lie Groups and Lie Algebras,” Chapters 1–3, Springer, Berlin, 1989.

[5] Brøndsted, A., “An Introduction to Convex Polytopes,” Springer, New York, 1983.

[6] Celledoni, E., H. Glöckner, J. Riseth, and A. Schmeding, *Deep learning of diffeomorphisms for optimal reparametrizations of shapes*, in preparation.

[7] Cerf, J., *Topologie de certains espaces de plongements*, Bull. Soc. Math. France **89** (1961), 227–380.

[8] Douady, A., *Variétés à bord anguleux et voisinages tubulaires*, Séminaire Henri Cartan, 1961/62, Exp. 1, 11 pp.

[9] Eyni, J. M., *A Lie group structure on the group of real analytic diffeomorphisms of a compact real analytic manifold with corners*, preprint, arXiv:1512.01506.

[10] Glöckner, H., *Infinite-dimensional Lie groups without completeness restrictions*, pp. 43–59 in: Strasburger, A. et al. (eds.), “Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups” Banach Center Publications, Vol. **55**, Warsaw, 2002.

[11] Glöckner, H., *Finite order differentiability properties, fixed points and implicit functions over valued fields*, preprint, arXiv:math/0511218.

[12] Glöckner, H., *Regularity properties of infinite-dimensional Lie groups, and semiregularity*, preprint, arXiv:1208.0715.

[13] Glöckner, H., *Measurable regularity properties of infinite-dimensional Lie groups*, preprint, arXiv:1601.02568.

[14] Glöckner, H. and K.-H. Neeb, *Diffeomorphism groups of compact convex sets*, Indag. Math. **28** (2017), 760–783.

[15] Glöckner, H. and K.-H. Neeb, “Infinite Dimensional Lie Groups,” book in preparation.

[16] Glöckner, H. and A. Suri, *Strong ILB-Lie groups are L^1-regular*, in preparation.

[17] Hermas, N. and N. Bedida, *On a class of regular Fréchet-Lie groups*, Bull. Iran. Math. Soc. **47** (2021), 627–647.

[18] Margalef-Roig, J. and E. Outerelo Dominguez, “Differential Topology,” North-Holland, Amsterdam, 1992.
[19] Michor, P. W., “Manifolds of Differentiable Mappings,” Shiva, Orpington, 1980.

[20] Milnor, J., Remarks on infinite-dimensional Lie groups, pp. 1007-1057 in: B. S. DeWitt and R. Stora (eds.), “Relativity, Groups, and Topology,” North-Holland, Amsterdam, 1984.

[21] Neeb, K.-H., Towards a Lie theory of locally convex groups, Jpn. J. Math. 1 (2006), 291–468.

[22] Webster, R., “Convexity,” Oxford University Press, Oxford, 1994.

Helge Glöckner, Universität Paderborn, Institut für Mathematik, Warburger Str. 100, 33098 Paderborn, Germany; glockner@math.upb.de