We have obtained the first deuterium NMR spectra of individual types of aromatic amino acids in a defined membrane protein, bacteriorhodopsin, in the photosynthetic purple membrane of *Halobacterium halobium* R1. Isotopic labeling and high field (8.5 Tesla) operation permitted relatively rapid data acquisition at a variety of temperatures. At the temperature of growth (37 °C), we find that all 7 tryptophan residues are rigid on the time scale of the NMR experiment (10^-4 s), except for likely librational motions of \(\approx 10^8 \) amplitude. By contrast, nearly all (9 \(\pm 2 \)) of the 11 tyrosines and (13 \(\pm 2 \)) of 13 phenylalanines undergo rapid (\(> 10^8 \) s^-1) 2-fold rotational flips about C-C, causing formation of line shapes dominated by effectively axially asymmetric (symmetry parameter \(\eta = 0.68 \)) deuteron electric field gradient tensors. On cooling the phenylalanine- and tyrosine-labeled samples to \(-30 \) °C, all such motions are frozen out, i.e., occur at rates \(< 10^{-1} \) s^-1, and axially symmetric (\(\eta \approx 0.05 \)) line shapes are observed. At T \(> 91 \) °C, phenylalanine-, tyrosine-, and tryptophan-labeled membrane spectra undergo dramatic narrowing to an isotropic line of \(\approx 9 \) kHz width. This transition is a reflection of the loss of tertiary structure in the membrane protein with resultant fast unrestricted motion of the aromatic side chains, and is only partly reversible. These results, in conjunction with those obtained using \([\gamma-^2\text{H}]\)valine-labeled bacteriorhodopsin (Kinsey, R. A., Kintanar, A., Tsai, M.-D., Smith, R. L., Janes, N., and Oldfield, E. (1981) J. Biol. Chem., 256, 4146-4149) indicate the rather rigid nature of amino acid side chains in the *H. halobium* purple membrane, the principal fast large amplitude motions being methyl group rotation and discontinuous benzene ring "flipping."

Over the past 10 years there has been considerable experimentation aimed at determining the nature of protein-lipid interactions in model and intact biological membranes. Some early studies (1, 2) emphasized the idea that proteins acted in a manner similar to that of the rigid tetraycyl sterol cholesterol (3, 4), causing an "ordering" of the lipid hydrocarbon chains, a view supported by several more recent theoretical studies (5-8), and experimental work using fluorescence and ESR techniques (9-12). More recently however, deuterium nuclear magnetic resonance spectroscopic techniques, in both model protein-lipid systems (13-16) and in biological membranes themselves (17-19), have given no indication of lipid ordering by protein molecules, which has thus led to a revision by some workers of previous protein-lipid interaction models. A popular view now is that lipids may be "immobilized" or perhaps trapped by proteins, but are not necessarily ordered (16, 20-22), but the crucial point about the protein-lipid interaction problem still remains unprobed, what does lipid "do" to protein? Since lipid phase behavior (23) and the presence of cholesterol (24) apparently have large effects on membrane enzyme activities, we have therefore begun a program aimed at elucidating the dynamic structures of proteins in membranes. As a "benchmark," we have already obtained NMR spectra of individual sites in crystals of some soluble proteins (25, 26) using a new magnetic ordering method which may eventually be applicable to membrane protein studies.

In this publication we report recent results obtained via \(^1H\) NMR spectroscopy at high field which indicate that the motions of individual types of amino acid residues in membrane proteins may now be studied in intact biological membranes. Our results show that protein dynamics in membranes may now be analyzed and compared with solution (27-29), micellar (30), and crystal data (31, 32) to provide a basis for more meaningful studies of protein-lipid interactions in biological membranes.

As with studies of lipid dynamics in model or intact biological membranes (13, 15, 17) or in protein crystals (25, 26), we have chosen to use the \(^1H\) nucleus as our structural probe. In this publication we concentrate on use of \(^1H\) NMR powder pattern line shapes to deduce information about the rates and types of amino acid side chain motion (33, 34).

In this first detailed publication on amino acid dynamics in a "condensed phase" membrane protein, as opposed to the experimentally more accessible solubilized protein systems, we have chosen to investigate the "purple membrane" system of *Halobacterium halobium* R1. This system has the desirable NMR characteristics of only one protein, bacteriorhodopsin, in the purple membrane (35), its sequence is known (36-38), and its three-dimensional structure is becoming available (39, 40). The system may also be enriched biosynthetically with a number of deuterated amino acids (40, 41) without undue label "scrambling." Moreover, the system has been oriented using electric (42) or magnetic (43) fields, or by drying down onto glass or mica surfaces (40), and some preliminary results on formation of microcrystals have been obtained (44), opening up the possibility of obtaining oriented samples for NMR.
spectroscopy, which permits in favorable cases determination of residue orientations (25, 26). Finally, the enzyme has been shown to be susceptible to proteolytic cleavage and reasssembly into an active proton-pumping system (37), which opens up the possibility of making specific NMR resonance assignments and studying the dynamics of individual residues.

EXPERIMENTAL PROCEDURES

Syntheses of 3H-labeled Amino Acids

We have synthesized the following 3H-labeled amino acids: L-[δ, ε, ε'-3H]phenyalanine, L-[ε, ε'-3H]tyrosine, and L-[δ, ε, ε', ε'-3H]tryptophan, the positions of the 3H label incorporation being primarily as shown in Fig. 1. The selectively labeled amino acids were synthesized using modifications of published procedures, as follows.

L-[δ, ε, ε'-3H]Phenyalanine-[3H]Phe was prepared by platinum-catalyzed deuterium exchange using deuterium oxide as the 3H source, by modification of the procedure of Norton and Bradbury (45). Finely divided platinum was prepared by the reductive procedure of Calf and Garnett (46), using NaBH₄, 5 g of l-phenyalanine (Sigma) were added to 1 g of reduced Adams' catalyst in 100 ml of 99.8% H₂O (Merck Sharp & Dohme), followed by refluxing under N₂ gas for 24 h. The H₂O was removed by lyophilization and the [3H]Phe was purified by recrystallization from EtOH/H₂O (1:1, v/v). Adams' catalyst and sodium borohydride were from Alfa Products (Danvers, MA).

NMR spectroscopy in 3 HCl (H at 360 MHz) indicated that ~80% of the aromatic hydrogens were exchanged; 20% 3H intensity was retained at H₂DO, H² and H² retained 100 ± 10% 3H intensity. L-[ε, ε'-3H]Tyr[ε'-3H]Tyr was prepared using a modification of the acid-catalyzed exchange process of Matthews et al. (47). Ten g of L-Tyr (Sigma Chemical Co.) were dissolved in a solution consisting of 150 ml of H₂O and 30 ml of H₂SO₄ (Merck Sharp & Dohme). The mixture was then refluxed under N₂ gas for 24 h, cooled, adjusted to pH 4.5 with 28% NH₄OH, and then kept at 4 °C overnight. The precipitate, collected by filtration was washed with 3 volumes of cold water to remove salts, followed by 1 volume of cold 95% ethanol. After drying overnight at 40 °C, 9 g of [3H]Tyr crystals were recovered. 3H NMR spectroscopy at 90 MHz indicated that the product was 98 ± 2% [ε, ε'-3H]tyrosine.

L-[δ, ε, ε', ε'-3H]Tryptophan-[3H]Trp was prepared by acid-catalyzed exchange in CF₃CO₂H, again using a modification of the procedure of Matthews et al. (47). Trifluoroacetic anhydride (67 ml) (99%, Aldrich) was added dropwise with stirring to 32 ml of cold 99.8% H₂O (Merck Sharp & Dohme) in a 500-ml flask. L-Trp (15 g) (Sigma) was then dissolved in this solution, and the flask was sealed and left to stand at room temperature, in the dark, for 3 days. The solvent was removed by rotary evaporation to give a light brown tar. The exchange was repeated three more times, and the percent deuteration was assayed after each exchange using proton NMR spectroscopy at 220 MHz. After the fourth exchange, the solution was adjusted to pH 6 with 28% NH₄OH, then kept overnight at 4 °C. The precipitate was filtered, redissolved in H₂O/ethanol (1:1, v/v), and decolorized using activated charcoal. The product was finally recrystallized from H₂O/ethanol (3:2, v/v), yielding 9 g of crystals. The product was 92 ± 3% deuterated at positions δ, ε, ε', ε, and ε' as determined by 1H NMR spectroscopy at 220 MHz.

Aromatic Amino Acids in Membranes

Production of Labeled Membranes

H. halobium strain R1 was the kind gift of Professor T. Ebrey, and was grown in a salt medium basically according to Onishi et al. (48) with the addition of 2% malate (49), except that either [3H]Phe or [3H]Trp were substituted for the normal unlabeled amino acids. The growth medium thus typically contained the following amino acids (in g/10 liters): L-alanine, 2.15; L-arginine hydrochloride, 2.0; L-cysteine, 0.5; L-glutamic acid, 13.0; glycine, 0.6; L-isoleucine, 2.2; L-leucine, 8.0; L-lysine hydrochloride, 8.5; L-methionine, 1.85; L-phenylalanine, 1.2; L-proline, 0.5; L-serine, 3.05; L-threonine, 2.5; L-tyrosine, 2.0; and L-valine, 5.0. Note that the growth medium does not normally contain tryptophan, thus, for the Trp-labeled membrane system we incorporated [3H]Trp at a level of 5.0 g/10 liters into the medium.

Purple membranes were isolated according to Becker and Cassim (50) and were then exchanged with 3H-depleted water (Aldrich) to remove some background HO'H. Samples were generally exchanged twice, then finally concentrated by ultracentrifugation for 12 h at 100,000 × g, prior to NMR spectroscopy.

Radiotracer Experiments

To determine the level of deuterated amino acid breakdown and reincorporation into lipid and other amino acids, 1-liter batches of cells were grown and harvested basically as for the 3H-labeled cells, except that 50 μCi of either [14C]Tyr, [14C]Phe, or [14C]Trp (New England Nuclear) were added as radiotracers. Purple membranes were lyophilized, lipid-extracted (3 times with CHCl₃/MeOH, 1:2, v/v), and then hydrolyzed in 6 M HCl (24 h at 110 °C, under vacuum).

The hydrolysates were chromatographed using two-dimensional thin layer chromatography on 160-μm Eastman Kodak cellulose Chromagram plates (Rochester, NY) in 2-propanol, 1 M HCl, 2-butanone (60:25:15, v/v/v; first dimension), then 2-methyl-2-propanol, 2-butanone, acetone, H₂O, 28% NH₄OH, MeOH (40:20:20:14:5:1, v/v/v/v/v/v; second dimension). Individual amino acids were detected using ninhydrin spray, after which the "spots" were removed from the TLC plates and counted on a Tracer Analytic Model 6892 scintillation counter (Elk Grove, IL), using Aqualos-2 (New England Nuclear). Our results indicate that ≤5% of [14C]Phe and ≤0% [14C]Tyr counts "scrambled" into other amino acids, strongly suggesting a similar low level of incorporation into lipid. Similarly, with [14C]Trp, even though there is amino acid breakdown during hydrolysis, comparison of the relative number of counts in the region of the Trp hydrolysis product with those on the rest of the chromatogram indicated little, if any, incorporation of 3H label into any other amino acid. Our results with Phe incorporation are consistent with those of Engleman and Zaccaci (49) who, using [3H]Phe, determined that less than 1% 3H was incorporated into other amino acids and whose neutron diffraction data indicated only small 3H label incorporation into lipid upon [3H]Phe supplementation.

Spectroscopic Aspects

Nuclear magnetic resonance spectra were obtained on a "home-built" Fourier transform NMR spectrometer which consists of an 8.5-Tesla, 3.5-inch bore high resolution superconducting solenoid (Oxford Instruments, Osney Mead, Oxford, United Kingdom), together with a variety of digital and radiofrequency electronics. We used a Nicolet 1180 computer, 299B pulse programmer, and Model NIC-2090 dual channel 50 ns transient recorder (Nicolet Instrument Corp., Madison, Wisconsin).

FIG. 1. Structures of the side chains of [3H]phenyalanine, [3H]tyrosine, and [3H]tryptophan.
Aromatic Amino Acids in Membranes

We shall discuss first the basic background theory to the study of the 1H NMR of amino acid dynamics in membrane proteins, concentrating on a residue that we intuitively expect to be one of the most rigid, or irrotationally bound tryptophan, phenylalanine, and tyrosine. Our results therefore suggest that there is essentially no large amplitude motion of the Trp molecule on the time scale of the 1H NMR experiments (10–20 ps) at 25 °C, since the quadrupole splitting is that expected for a rigid, crystalline, aromatic species.

What motions then, if any, do the Trp residues of bacteriorhodopsin in Halobium purple membranes undergo? We show in Fig. 3 deuterium NMR spectra, obtained by the quadrupole echo Fourier transform method at 55.3 MHz (corresponding to a magnetic field strength of 8.5 Tesla) of $[^1]$H-

$$\Delta V_2' = \frac{3e^2Q}{4} \left[3\cos^2\theta - 1 - \eta \sin^2\theta \cos 2\psi\right] \tag{1}$$

For rigid polycrystalline solids all values of θ are possible and one obtains a so-called "power pattern," Fig. 2A, with a singularity separation ($\Delta V_2'$) corresponding to $\theta = 90°$ and an edge separation (ΔV_2) corresponding to $\theta = 0°$. For solid aliphatic compounds, ΔV values of 127 kHz ($\theta = 90°$) and 254 kHz ($\theta = 0°$), corresponding to an electric quadrupole coupling constant (e^2Q/\hbar) of 168 kHz (56–58), are expected. Spectral simulation of the results of Fig. 2B (solid $[^1]$H-Trp, 25 °C), using the line shape equations of Bloembergen and Rowland (59) and Cohen and Reif (58) show, however, that the best fit to the experimental spectrum (Fig. 2B) is obtained using $e^2Q/\hbar = 183 ± 3$ kHz and an asymmetry parameter $\eta = 0.05 ± 0.02$ (Fig. 2A and Table I). The observed quadrupole coupling constant for $[^1]$H-Trp (Fig. 2B), is therefore considerably in excess of the −168 kHz found in aliphatic C–H systems using NMR methods (56). This result is nevertheless consistent with the increased e^2Q/\hbar values found in a variety of other aromatic compounds (34, 56), the observed trends for the electric field gradient values for C–D bonds being $sp > sp^2 > sp^3$ (60). The average value for naphthalene and anthracene, perhaps the most reasonable published models for $[^1]$H-Trp, is −184 kHz (61–63). Also, in addition to having substantially larger coupling constants, it is well known that C–D bonds in aromatic systems may have non-zero asymmetry parameters, η (64). In those aromatic systems where asymmetry parameters have been investigated, η values = 0.053 ± 0.015 have been determined (56).

Our results therefore suggest that there is essentially no large amplitude motion of the Trp molecule on the time scale of the 1H NMR experiment (10–20 ps) at 25 °C, since the quadrupole splitting is that expected for a rigid, crystalline, aromatic species.

RESULTS AND DISCUSSION

Experimental deuterium quadrupole coupling constants and asymmetry parameters for tryptophan, phenylalanine, and tyrosine

Quasiquadrupole splitting †	$\Delta V_2'$/kHz	η
$[^1]$H-[h, e, e, e, 1H]phenylalanine	183.0	0.05
$[^1]$H-[h, e, e, e, 1H]tyrosine	180.0	0.05
$[^1]$H-[e, e, e, 1H]tryptophan	181.3	0.05

† Obtained from a spectral simulation; error is ±3 kHz.

‡ Obtained from a spectral simulation; error is ±0.02.

* Solid amino acid at 25 ± 2 °C.
Trp-labeled membranes, as a function of temperature, together with, for comparison, the \(^1\)H NMR spectrum of \([^{1}\text{H}]\text{Trp}\) at 25 °C. The results of Fig. 3 indicate that there is essentially no change in the spectrum of \([^{1}\text{H}]\text{Trp}\) labeled purple membranes between ~85 and 75 °C, and in addition, the quadrupole splitting and asymmetry parameter of the \([^{1}\text{H}]\text{Trp}\)-labeled purple membrane are extremely close to those of the solid amino acid (Figs. 2B and 3A). The slight differences in the case of the purple membrane do not necessarily imply differing motions, since the rigid lattice quadrupole coupling constant may have been changed slightly due to peptide bond formation, or there may be slight differences due to “lattice effects,” e.g. hydrogen bonding interactions in the Trp crystal. Please note that the sharp central component in Fig. 3B (37°, 63°, and 75°) arises mainly from HO\(^2\)H, as determined by additional experiments\(^2\) involving lyophilization and resuspension, and the observation that this component is much larger before exchange with H-depleted water. There are almost certainly no isotropically reorienting Trp residues in the purple membrane below ~90 °C, since at least a 14% intensity (1 Trp in 7) would be expected for 1 mobile Trp. The results of Fig. 3 therefore indicate that Trp residues of bacteriorhodopsin in the purple membrane of *H. halobium* undergo no large amplitude motions on a time scale ≤10\(^{-5}\) s below 90 °C. The actual upper limits on estimation of the amplitudes of motion of the Trp ring depend, of course, on our ideas as to what these motions may be, i.e. what models we may use to describe them. Linear extrapolation of the quadrupole coupling constant of \([^{1}\text{H}]\text{Trp}\)-labeled purple membranes to 0 K\(^2\) indicates that there can be no more than a ~5–10-kHz decrease in \(\Delta q\) at ~37 °C from the absolute zero temperature value, due to (presumed) torsional or librational motions of the Trp residue. Assuming a Gaussian distribution of such motions, where in plane and out of plane motions are equally weighted, we may estimate a maximum C\(^-\)H vector motion of ~±2–10° (53). If we assumed a 2-fold jump model, the resulting jump angle would be ~±10–20° (33). We believe that the first model (53) is the more plausible. Tryptophan residues in the purple membrane are therefore properly thought of as being rigid at the temperature of growth (37 °C).

Upon heating the \([^{1}\text{H}]\text{Trp}\)-labeled purple membranes above ~90 °C, there is a dramatic change in the \(^2\)H NMR spectrum, as shown in Fig. 3. The large quadrupole splitting collapses and a relatively narrow “isotropic” line, of ~4-kHz width, is obtained. Assuming isoropic rotational motion, a quadrupole coupling constant \(e^2qQ/h\) = 183 kHz and \(\eta = 0.05\) (Fig. 2), this line width corresponds to a rotational correlation time \(\tau_R\) of ~100 ns (65) and is presumably due to protein denaturation. Upon cooling to 37 °C, there is a reappearance of some ~140-kHz component, although this does not necessarily imply any protein renaturation.

The results obtained with tryptophan were not unexpected and are supported by the observation of essentially irrotationally bound Trp residues in a variety of proteins in solution (27–29, 65–67). With this body of solution NMR data in mind, it is therefore worth asking if the types of motions observed for other aromatic residues, such as phenylalanine and tyrosine (27, 29), carry over into the solid state. In particular, we would like to know if these residues may “flip,” as has been shown in a number of \(^1\)H solution NMR studies (27, 29, 67, 68).

What, therefore, are the manifestations of such large amplitude residue motions in the \(^1\)H NMR spectra of amino acids in membrane proteins in the solid state? We show in Fig. 4 a spectrum of \([^{1}\text{H}]\text{Phe}\) in the crystalline solid state, together with simulated \(^2\)H NMR spectra, for a variety of possible amino acid motions. For the case of no motion we obtain a rigid lattice powder spectrum (Fig. 4A), which as expected is in good agreement with the experimental result obtained with \([^{1}\text{H}]\text{Phe}\) (Fig. 4B). The quadrupole coupling constant \(e^2qQ/h\) is 180 ± 3 kHz and the asymmetry parameter \(\eta = 0.05\) ± 0.02. These results are in good agreement with the median values found for a series of monosubstituted benzenes of \(e^2qQ/h\) ~ 181 kHz and \(\eta = 0.06\) (56, 61, 63, 69). Let us now consider the effects of rapid (≥10\(^{-5}\) s) motions on the observed \(^1\)H NMR spectrum. One possibility would be fast rotational diffusion about C\(^2\)-C\(^1\). In this case the phenyl ring would undergo rapid rotational diffusion about the C\(^1\)-C\(^2\) axis, in which case the C\(^2\)A and C\(^1\)B vectors would be at 60 ± 1° to the axis of motional averaging (70), and it is a simple matter to calculate the observed spectrum. Ignoring for simplicity the small non-zero asymmetry parameter, then we find

\(^2\)R. Kinsey and E. Oldfield, unpublished results.

Fig. 3. Deuterium quadrupole-echo Fourier transform NMR spectra at 55.3 MHz of \([^{1}\text{H}]\text{tryptophan}\) and \([^{1}\text{H}]\text{tryptophan}\)-labeled bacteriorhodopsin in the purple membrane of *H. halobium* RL. All experimental spectra were collected with \(t_1 = t_2 = 50\) μs, 2.7-μs 90° pulse widths, 1-MHz digitization rate, 1,024 real data points, and line broadening = 2,000 Hz. A, crystalline powdered \([^{1}\text{H}]\text{tryptophan}\) at 25 °C, 5 scans, 300-s recycle time. Simulation used DQCC = 183 kHz, \(\eta = 0.05\), 26 = 4,000 Hz. B, temperature dependence of the \(^1\)H NMR spectrum of bacteriorhodopsin in *H. halobium* RL purple membranes containing biosynthetically incorporated \([^{1}\text{H}]\) tryptophan residues. The temperatures are indicated in °C. –85 °C: 1,080 scans, 25-s recycle time, simulation used DQCC = 186.7 kHz, \(\eta = 0.05\), 28 = 4,000 Hz. –30 °C: 9,900 scans, 4-s recycle time, simulation used DQCC = 184 kHz, \(\eta = 0.05\), 23 = 4,000 Hz. 37°C: 15,000 scans, 1-s recycle time, simulation used DQCC = 183 kHz, \(\eta = 0.06\), 25 = 4,000 Hz. 63 °C: 13,000 scans, 1-s recycle time, simulation used DQCC = 180 kHz, \(\eta = 0.06\), 26 = 4,000 Hz. 75 °C: 12,000 scans, 1-s recycle time, simulation used DQCC = 175 kHz, \(\eta = 0.06\), 25 = 4,000 Hz. 95 °C: 16,000 scans, 1-s recycle time, simulation used an isotropic Lorentzian with 28 = 4,000 Hz.
where θ is the angle between the principal axis of the electric field gradient tensor and the axis of motional averaging and β is the angle between the axis of motional averaging and H$_\alpha$. For the case $\beta = 90^\circ$, a quadrupole splitting $\Delta \nu \sim 17.0$ kHz is predicted, having an intensity corresponding to four deuterons. In addition, a 20% intensity contribution from the $^-{''}$H is predicted, having an intensity corresponding to four deuterons. For the case of rapid 180° reorientations as a function of η, the reduced spectral breadths $V_{sl}=V_{1i}$. As expected, η_{eff} is only slightly dependent on η for the very small η's of interest. Using $\beta = 60^\circ$, $\eta = 0.05$, and $e^2qQ/h = 180$ kHz (the best fit spectral simulation parameters from Fig. 4A and B), we calculate for the case of flipping PheCS's $-{''}$H vectors a new effective asymmetry parameter $\eta_{eff} = 0.66$ and a reduced maximum spectral breadth (corresponding to the outer edges of the absorption line shape) of 179 kHz. The spectra now contain a new sharp narrow feature, corresponding to the separation between the singularities in the powder pattern, having $\Delta \nu = 30.3$ kHz (Fig. 4D). This dominant feature is easily detected in some intact membrane spectra, as discussed below. Note that we have not yet considered the 1H. This lies on the axis of motional averaging and its spectrum will therefore be essentially unaffected by the motion ($\beta = 0^\circ$, Fig. 5), except for a second order effect due to an initial non-zero η. The composite spectrum of Fig. 4D therefore contains two components: 75% intensity from 2H having $\eta = 0.66$, $\Delta \nu = 30$ kHz, and a total breadth of ~ 181 kHz, and 25% from 3H having $\eta = 0.05$ and a total breadth of ~ 270 kHz (Fig. 5). It is perhaps worth noting that in general for a 3H powder spectrum, the splittings of the singularity, step, and edge as a function of breadth (ν_{sl}) and asymmetry parameter (η or η_{eff}) are as follows:

\[\nu_{sl} = -\nu_{01}(1 + \eta) \]
\[\nu_{01} = \nu_{01} \]
\[\nu_{02} = \nu_{02}(1 + \eta) \]
\[\nu_{03} = \nu_{03} \]

Shown in Fig. 5 are the new effective asymmetry parameters (η_{eff}) for the case of rapid 180° reorientations as a function of bond angle, β, together with the new maximum effective field gradients, eq. i.e. the reduced spectral breadths $V_{sl}=V_{1i}$. As expected, η_{eff} is only slightly dependent on η for the very small η’s of interest. Using $\beta = 60^\circ$, $\eta = 0.05$, and $e^2qQ/h = 180$ kHz (the best fit spectral simulation parameters from Fig. 4A and B), we calculate for the case of flipping PheCS's $-{''}$H vectors a new effective asymmetry parameter $\eta_{eff} = 0.66$ and a reduced maximum spectral breadth (corresponding to the outer edges of the absorption line shape) of 179 kHz. The spectra now contain a new sharp narrow feature, corresponding to the separation between the singularities in the powder pattern, having $\Delta \nu = 30.3$ kHz (Fig. 4D). This dominant feature is easily detected in some intact membrane spectra, as discussed below. Note that we have not yet considered the 1H. This lies on the axis of motional averaging and its spectrum will therefore be essentially unaffected by the motion ($\beta = 0^\circ$, Fig. 5), except for a second order effect due to an initial non-zero η. The composite spectrum of Fig. 4D therefore contains two components: 75% intensity from 2H having $\eta = 0.66$, $\Delta \nu = 30$ kHz, and a total breadth of ~ 181 kHz, and 25% from 3H having $\eta = 0.05$ and a total breadth of ~ 270 kHz (Fig. 5). It is perhaps worth noting that in general for a 3H powder spectrum, the splittings of the singularity, step, and edge as a function of breadth (ν_{sl}) and asymmetry parameter (η or η_{eff}) are as follows:

\[\nu_{sl} = -\nu_{01}(1 + \eta) \]
\[\nu_{01} = \nu_{01} \]
\[\nu_{02} = \nu_{02}(1 + \eta) \]
\[\nu_{03} = \nu_{03} \]
such that \(q_0 \) and \(\eta \) are fully determined by measurement of any two of the frequency parameters, \(\Delta q_0 \). In practice, however, especially in systems as complex as cell membranes, where different residues of the same chemical type may undergo different motions at any given temperature, and where adventitious \(^1\)H label incorporation may have occurred due to label scrambling, either in synthesis or biosynthesis, such analyses of spectral line shapes will require considerably higher spectral signal-to-noise ratios than those obtained so far.

The above results have concentrated exclusively on the deuteron NMR spectra of flipping phenylalanine rings: such line shape changes as discussed above will also, of course, be manifest in \(^{13}\)C spectra, and similar calculations have been presented by Spiess (71) for the chemical shift tensor, \(\sigma \).

In Fig. 6 we present the first \(^2\)H NMR results on \([\text{H}_2]\)Phe-labeled bacteriorhodopsin in the purple membranes of \(H. \) halobium, together with comparison spectra of \([\text{H}_2]\)Phe in the solid state (Fig. 6A). The deuteron spectra of all "native" membranes (Fig. 6, B--F) are extremely broad and have characteristic line shapes (Fig. 4, A, B, and D). At low temperatures (~85 °C, ~30 °C, Fig. 6, B and C), the spectra of \([\text{H}_2]\)Phe-labeled purple membranes are virtually superimposable on that of the solid amino acid at room temperature (Fig. 6A). The quadrupole splittings of the membrane spectra at low temperatures are, as with the \([\text{H}_2]\)Trp-labeled membranes (Fig. 2), only very slightly temperature-dependent between ~0 and ~85 °C, but in contrast to the Trp sample, upon warming above ~30 °C there is a continuous change in spectral line shape up to ~55 °C, characterized by a loss of the ~130-kHz component and a growth of a ~30-kHz component (Fig. 6, E--G). As will by now be clear, this narrow spectral component (\(\Delta q_0 \), ~31 kHz, \(\eta = 0.66 \) most likely originates from \([\text{H}_2]\)Phe rings undergoing 2-fold flips. At the temperature of growth (Fig. 6F), all (13 ± 2) of the 13 Phe residues appear to be undergoing rapid 2-fold jumps, and as expected at >50 °C, all Phe residues again appear to be undergoing such motions, although our spectral simulation at 55 °C is less satisfying than those obtained at lower temperatures, since adequate agreement between experiment and computer simulation is only achieved using \(\eta_{\text{eff}} = 0.60 \) (rather than \(\eta_{\text{eff}} = 0.66 \)), suggesting that additional motions to those discussed above have begun to occur. Interestingly, the spectra of Fig. 6, D--F, show little evidence of broad line shapes due to flipping at "intermediate exchange" frequencies. One likely explanation for this result is that the \(\text{H}^1 \) NMR spectra of such intermediate exchange residues will be characterized by rather rapid decays of the quadrupole echo intensity in the 90°-τ-90° experiment (72) and we have indeed observed rather rapid and anisotropic quadrupole echo decay rates at 3 °C (in addition to large differential spin-lattice relaxation behavior) in Fig. 6D. Accurate determinations of flipping to nonflipping ratios at intermediate temperatures will thus require considerably higher signal-to-noise ratio spectra than we have obtained so far, in addition to \(\tau \)-dependence studies, the use of slow motional models (73, 74) to accurately simulate the spectra of residues undergoing intermediate rate motions (~10^{-4} ~10^{-2} s^{-1}), computations of echo decay rates in such intermediate exchange situations, together with development of instrumentation having dead times shorter than those currently available. Nevertheless, at ~3 °C our results are quite well simulated using a simple superposition of two individual states and suggest that ~45% of the spectrum of Fig. 6D may be attributed to deuterons having \(\Delta q_0 = 31.0 \).
kiloHz (the singularity separation of a flipping ring) and \(\eta \sim 0.66 \). Taking into account the relative deuterations of \(^2\text{H}^\text{tyrosine} \), this would correspond to 9 (±2) of the 13 Phe rings in bacteriorhodopsin undergoing fast \(C^\text{b}-C^\text{c} \) flips at \(\sim 37 \) °C. Residues which might be expected to be mobile at low temperatures include the chymotrypsin-accessible surface residue Phe-72 and perhaps Phe-229, near the carboxyl terminus.

A second problem that arises in interpretation of the results of Fig. 6 is that we have so far only speculated that the \(\Delta g \) ~ 30-kiloHz component originates from the ortho and meta deuterons undergoing flipping. An alternative possibility is that this signal arises from a second population of \(^2\text{H}^\text{Phe} \) residues undergoing some alternative specialized motion, such as a “rocking” motion about \(C^\text{b}-C^\text{c} \). Fortunately, we have eliminated this possibility by synthesis of \(^2\text{H} \) Phe together with \(^2\text{H}^\text{NMR} \) of \(^2\text{H}^\text{Phe} \)-labeled membranes, in which axially symmetric spectra are obtained at 37 °C. Our results thus suggest that at growth temperature almost all Phe residues are undergoing fast (>10^6 s^-1) 2-fold flipping motions about \(C^\text{b}-C^\text{c} \), while at \(\sim 25 \) °C all residues are undergoing slow motions (<10^5 s^-1).

Upon heating the sample of Fig. 6F to \(\approx 90 \) °C, there is a dramatic change in the \(^2\text{H}^\text{NMR} \) spectrum from a state characterized by having \(\Delta g \sim 31 \) kiloHz and \(\eta = 0.6 \) (Fig. 6F) to a relatively sharp “isotropic” line shape having a width of \(\sim 9 \) kiloHz (Fig. 6G). There seem to be two main possible explanations for this result. First, the protein could simply be denatured, resulting in an isotropic line shape or series of overlapping Lorentzian lines, due to motion of the Phe ring with a correlation time \(\sim 200 \) ns (65). The second possibility is that the Phe rings begin to undergo fast continuous rotational diffusion about \(C^\text{b}-C^\text{c} \) at \(>90 \) °C, resulting in a line having \(\Delta g \sim 17 \) kiloHz (Fig. 4C), the splitting being in addition further reduced by some additional off-axis motions, together with a contribution from \(\text{HO}^\text{2H} \) helping to obscure the quadrupole splitting. However, it seems unlikely that the \(\text{HO}^\text{2H} \) component’s total integrated intensity is sufficiently large to effect this obfuscation. The spectrum of Fig. 6G may be quite well simulated using a \(\sim 10\% \) flipping component (\(\Delta g \sim 31 \) kiloHz) and a \(\sim 90\% \) isotropic component (\(\eta \sim 9 \) kiloHz). We thus favor the notion that the bacteriorhodopsin has become at least partially unfolded by heating above \(90 \) °C. Upon cooling the sample of Fig. 6G to 37 °C, a broad splitting is again observed, superimposed on an isotropic line. Such a spectrum is not observed in the initial heating runs, suggesting that there is a partial refolding of the protein after cooling. Although this spectrum (Fig. 6G) is rather difficult to simulate, we estimate that \(\sim 40\% \) of the Phe residues remain in the mobile, denatured state. Optical absorption spectra indicate loss of the 560 nm chromophore absorption and presumably a non-native protein structure is obtained after such high temperature excursions. It may be worth noting that the collapse of the native membrane type spectrum occurs over a rather narrow range of temperature, between 85 and 90 °C.

The results of Fig. 6 indicate that phenylalanine side chains in bacteriorhodopsin of the purple membrane of \(H. \text{halobium} \) undergo only a limited variety of motions at their growth temperature. In particular, it seems that the vast majority undergo 2-fold flipping motions at 37 °C about \(C^\text{b}-C^\text{c} \), and only between 0 and 2 are rigid. If therefore seems reasonable to ask whether such motions are also seen with the aromatic residue tyrosine, since 2-fold flips have previously been noted in \(^1\text{H}^\text{NMR} \) spectra of several proteins in solution (29, 68).

We show therefore in Fig. 7 \(^1\text{H}^\text{NMR} \) spectra of \(^2\text{H}^\text{tyrosine} \) in the crystalline solid state (Fig. 7A), together with spectra of the membrane, as a function of temperature. At room temperature the amino acid spectrum may best be simulated (Table I, Fig. 7A) using \(e^2 \eta q Q / h = 181.3 \pm 3 \) kiloHz and \(\eta = 0.05 \pm 0.02 \). An essentially identical spectrum is obtained for the \(^2\text{H}^\text{tyrosine} \)-labeled purple membrane at \(\sim 90 \) °C (Fig. 7B), where spectral simulation reveals an observed splitting of \(\sim 124 \) kiloHz and asymmetry parameter \(\eta = 0.05 \), corresponding to a coupling constant \(e^2 \eta q Q / h = 180 \) kiloHz. As with the case of the \(^2\text{H}^\text{Phe} \)-labeled membranes, this slight reduction in coupling in the membrane may be due to peptide bond formation, or to lattice effects, e.g. hydrogen-bonding differences between amino acid crystal and lipoprotein membrane, or more likely due to experimental error. As with the \(^2\text{H}^\text{Phe} \) results (Fig. 6), increasing temperature again results in a decrease of the broad spectral component and an increase in the narrower component having \(\Delta g \sim 27-29 \) kiloHz (Fig. 7). At the temperature of growth (37 °C), the spectrum of the \(^2\text{H}^\text{tyrosine} \)-labeled purple membrane (Fig. 7) is qualitatively quite similar to that of the \(^2\text{H}^\text{Phe} \) membrane at the same temperature (Fig. 6D).

We find that good agreement with the experimental result of Fig. 7 (membranes at 37 °C) is obtained using an 82% spectral contribution (due to flipping) having \(\Delta g \sim 30.0 \) kiloHz, \(\eta = 0.66 \), and an 18% contribution having \(\Delta g \sim 118 \) kiloHz and \(\eta = 0.05 \). Note that all ring deuterons in \(^2\text{H}^\text{tyrosine} \) generate axially symmetric (\(\eta \sim 0.66 \)) powder pattern line shapes in the case of fast 2-fold flipping motion, since there is no \(^2\text{H} \) nucleus present. The spectral simulation results therefore indicate that 9 ± 2 of the 11 Tyr residues in the purple membrane are undergoing fast (>10^6 s^-1) flipping motions at the temperature of growth, i.e., as with the case of \(^2\text{H}^\text{Phe} \)-labeled membranes, essentially all benzene rings are flipping at growth temperature.

Fig. 7. Deuterium quadrupole echo Fourier transform NMR spectra at 55.3 MHz of \(^2\text{H}^\text{tyrosine} \)-labeled bacteriorhodopsin in the purple membrane of \(H. \text{halobium} \) R1, and their spectral simulations. All experimental spectra were collected with \(T_1 = T_2 = 50 \) ms, 2.7-μs 90° pulse widths, 1-MHz digitization rate, 1,024 real data points and line broadening = 2,000 Hz. A, deuterium NMR spectrum of random crystalline powder \(^2\text{H}^\text{tyrosine} \) tyrosine, 26 scans, 200-s recycle time, simulation used DQCC = 181.3 kiloHz, \(\eta = 0.05 \), 25 = 4,000 Hz. B, temperature dependence of the \(^1\text{H}^\text{NMR} \) spectra of \(^2\text{H}^\text{tyrosine} \)-labeled bacteriorhodopsin in \(H. \text{halo-}

Aromatic Amino Acids in Membranes

Upon heating the sample of Fig. 7 to ∼85 °C, there is relatively little change in the 1H NMR spectrum, but between ∼86 and 92 °C the protein again apparently unfolds and a narrow line spectrum is obtained at 95 °C, as seen previously with [1H3]Phe. Upon cooling to 37 °C, the majority of the narrow component remains, indicating little return to the native protein structure.

The results we have presented in this publication represent the first attempt at detailing the motions of aromatic amino acids in a functional biological membrane protein, bacteriorhodopsin in the purple membrane of H. halobium R1. Our results indicate that tryptophan, phenylalanine, and tyrosine residues are rigid at low temperatures (≪30 °C), but phenylalanine and tyrosine residues are both highly mobile at the temperature of growth of the H. halobium purple membrane (37 °C), undergoing fast (>10¹⁰ s⁻¹) 2-fold jumps about Cα-Cγ. Tryptophan residues do not undergo this type of motion even at 85 °C, immediately prior to protein denaturation. Upon denaturation at ∼90 °C “narrow line” spectra (having line widths ∼5-10 kHz) are obtained for all three aromatic amino acids, suggesting fast large amplitude motions.

The above results are to be compared with those reported previously (41) for the aliphatic system [γ-H]valine-labeled bacteriorhodopsin. In all instances, there is no evidence for fast motion about Cα-Cγ at any temperature investigated. In the case of valine-labeled purple membranes, motion about Cβ-Cγ is fast (>10¹⁰ s⁻¹) at all temperatures investigated (down to 120 °K). The increased bulk of the benzenoid rings in Tyr and Phe greatly impede motion of these side chains. When they do begin to move (at about the growth temperature of the organism), rotation is not diffusive but occurs by a 2-fold flipping process, as has been detected previously in solution NMR studies of soluble proteins (27, 29, 67, 68). The additional bulk of the Trp-indole ring prevents even this motion and tryptophan residues do not undergo this type of motion even at 85 °C, immediately prior to protein denaturation.

REFERENCES

1. Hong, K., and Hubbell, W. L. (1972) Proc. Natl. Acad. Sci. U. S. A. 69, 2617-2621
2. Stier, A., and Sackmann, E. (1973) Biochim. Biophys. Acta 311, 400-408
3. Hubbell, W. L., and McConnell, H. M. (1971) J. Am. Chem. Soc. 93, 314-326
4. Oldfield, E., and Chapman, D. (1979) FEBS Lett. 23, 285-297
5. Marcela, S. (1976) Biochim. Biophys. Acta 455, 1-7
6. Schröder, H. (1977) J. Chem. Phys. 67, 1617-1619
7. Scott, H. L., and Cherng, S.-L. (1978) Biochim. Biophys. Acta 510, 209-215
8. Jahnig, F. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 6351-6355
9. Jost, P. C., and Griffith, O. H. (1978) in Biomolecular Structure and Function. A Symposium on Biophysical Approaches to Biological Problems (Agris, P. F., Loepky, R. N. and Sykes, B. D., eds) pp. 25-54, Academic Press, New York
10. Marsh, D., Watts, A., Maschke, W., and Knowles, P. F. (1978) Biochem. Biophys. Res. Commun. 81, 397-402
11. Moore, B. M., Lentz, B. R., and Meissner, G. (1978) Biochemistry 17, 5248-5255
12. Heyn, M. P. (1979) FEBS Lett. 108, 359-364
13. Oldfield, E., Gilmore, R., Glaser, M., Gutowsky, H. S., Huang, J. C., Kang, S. Y., Matsuo, T. E., Meadows, M., and Rice, D. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 4657-4660
14. Seelig, A., and Seelig, J. (1978) Hoppe-Seyler’s Z. Physiol. Chem. 359, 1747-1756
15. Kang, S. Y., Gutowsky, H. S., Huang, J. C., Jacobs, R., King, T. E., Rice, D., and Oldfield, E. (1979) Biochemistry 18, 3257-3267
16. Bloom, M. (1980) in Ninth International Conference on Magnetic Resonance in Biological Systems, Bender, France, Abstr. L22
17. Kang, S. Y., Gutowsky, H. S., and Oldfield, E. (1979) Biochemistry 18, 3293-3272
18. Gally, H. U., Plucke, G., Overath, P., and Seelig, J. (1980) Biochemistry 19, 1638-1643
19. Nichol, C. P., Davis, J. H., Weeks, G., and Bloom, M. (1980) Biochemistry 19, 451-477
20. Chapman, D., Cornell, B. A., Eliaaz, A. W., and Perry, A. (1977) J. Mol. Biol. 113, 517-538
21. Davoust, J., Bienvenu, A., Fellmann, P., and Devaux, P. F. (1980) Biochim. Biophys. Acta 596, 38-42
22. Oldfield, E., Jans, N., Kinsey, R., Kintanar, A., Lee, R. W. K., Rothgeb, T. M., Schramm, S., Skarjune, R., Smith, R., and Tsai, M.-D. (1981) Biochem. Soc. Trans. 59, 150-161
23. Vick, S. B., and Capaldi, R. A. (1977) Biochemistry 16, 5755-5759
24. Kinnunen, G. B., Houssay, M. D., Metcalfe, J. C., and Birdsell, N. J. (1975) Nature 255, 684-687
25. Oldfield, E., and Rothgeb, T. M. (1980) J. Am. Chem. Soc. 102, 3635-3637
26. Rothgeb, T. M., and Oldfield, E. (1981) J. Biol. Chem. 256, 1432-1446
27. Campbell, I. D., Dobson, C. M., and Williams, R. J. P. (1975) Proc. R. Soc. Lond. B. Biol. Sci. 189, 503-509
28. Oldfield, E., Norton, R. S., and Allerhand, A. (1975) J. Biol. Chem. 250, 6398-6300
29. Dobson, C. M., Moore, G. R., and Williams, R. J. P. (1975) FEBS Lett. 51, 60-65
30. Brown, L. R. (1979) Biochim. Biophys. Acta 557, 135-148
31. Frauenfelder, H., Petsko, G. A., and Tsernglow, D. (1979) Nature 280, 558-563
32. Artyymiuk, P. J., Blake, C. C. F., Grace, D. E. P., Oatley, S. J., Phillips, D. C., and Sternberg, M. J. E. (1979) Nature 280, 563-568
33. Soda, G., and Chiba, T. (1989) J. Chem. Phys. 50, 439-455
34. Barnes, R. G. (1974) in Advances in Nuclear Quadrupole Resonance (Smith, J. A., ed) Vol. 1, pp. 335-355, Pergamon Press, New York
35. Oesterhelt, D., and Stocekonnus, W. (1974) Methods Enzymol. 31, 667-677
36. Gerber, G. E., Anderegg, R. J., Herlhy, W. C., Gray, C. F., Biemann, K., and Kharaena, H. G. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 227-231
37. Ostovichik, Y. A., Abdulova, N. G., Feigina, M. Y., Kiselev, A. V., and Lobanov, N. A. (1979) FEBS Lett. 100, 219-224
38. Walker, J. E., Carne, A. P., and Schmitt, H. W. (1979) Nature 280, 653-654
39. Henderson, R., and Unwin, P. N. T. (1975) Nature 257, 28-32
40. Engelmann, D. M., and Zaccani, G. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 5894-5899
41. Kinsey, R. A., Kintanar, A., Tsai, M.-D., Smith, R. L., Jones, N., and Oldfield, E. (1981) J. Biol. Chem. 256, 4146-4149
42. Keszthelyi, L. (1980) Biochim. Biophys. Acta 598, 429-436
43. Neukirchauer, D.-C., Maier, A. W., and Wroblewski, D. (1977) FEBS Lett. 78, 31-35
44. Michel, H., and Oesterhelt, D. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 1283-1285
45. Norton, R. S., and Bradbury, J. H. (1979) J. Catal. 39, 53-56
46. Calf, G. E., and Garnett, J. L. (1964) J. Phys. Chem. 68, 3887-
Aromatic Amino Acids in Membranes

3889
47. Matthews, H. R., Matthews, K. S., and Opella, S. J. (1977) Biochim. Biophys. Acta 497, 1-13
48. Onishi, H., McCance, M. E., and Gibbons, N. E. (1965) Can. J. Microbiol. 11, 365-373
49. Danon, A., and Stoeckenius, W. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 1234-1238
50. Becher, B. M., and Cassim, J. Y. (1975) Prep. Biochem. 5, 161-178
51. Solomon, I. (1958) Phys. Rev. 110, 61-65
52. Davis, J. H., Jeffrey, K. R., Bloom, M., Valic, M. I., and Higgs, T. P. (1976) Chem. Phys. Lett. 42, 390-394
53. Oldfield, E., Meadows, M., Rice, D., and Jacobs, R. (1978) Biochemistry 17, 2727-2740
54. Seelig, J. (1977) Q. Rev. Biophys. 10, 353-418
55. Cohen, M. H., and Redf, F. (1957) in Solid State Physics (Seitz, F., and Turnbull, D., eds) Vol. 5, pp. 321-438, Academic Press, New York
56. Brevard, C., and Kintzinger, J. P. (1978) in NMR and the Periodic Table (Harris, R. K., and Mann, B. E., eds) p. 119, Academic Press, New York
57. Burnett, L. J., and Muller, B. H. (1971) J. Chem. Phys. 55, 5829-5831
58. Derhyshire, W., Gorvin, T. C., and Warner, D. (1969) Mol. Phys. 17, 401-407
59. Bloembergen, N., and Rowland, T. J. (1953) Acta Metall. 1, 731-746
60. Olympia, P. L., Wei, I. Y., and Fung, B. M. (1969) J. Chem. Phys. 51, 1610-1614
61. Rinné, M., Depireux, J., and Duchesne, J. (1967) J. Mol. Struct. 1, 178-180
62. Ellis, D. M., and Bjorkstam, J. L. (1967) J. Chem. Phys. 46, 4460-4463
63. Barnes, R. G., and Bloom, J. W. (1972) J. Chem. Phys. 57, 3082-3086
64. Bersohn, R. (1974) Mol. Phys. 27, 605-609
65. Abragam, A. (1961) The Principles of Nuclear Magnetism, p. 315, Clarendon Press, Oxford, United Kingdom
66. Oldfield, E., and Allerhand, A. (1975) J. Am. Chem. Soc. 97, 221-224
67. Wagner, G., DeMarco, A., and Wuthrich, K. (1976) Biophys. Struct. Mech. 2, 139-158
68. Gurd, F. R. N., and Rothgeb, T. M. (1979) in Advances in Protein Chemistry (Anfinsen, C. B., Edsall, J. T., and Richards, F. M., eds) Vol. 33, pp. 73-165, Academic Press, New York
69. Wei, L. Y., and Fung, B. M. (1970) J. Chem. Phys. 52, 4917-4918
70. Wyckoff, R. W. G. (1963) Crystal Structures, Vol. 6, pp. 74-76, John Wiley & Sons, New York
71. Spiess, H. W. (1974) Chem. Phys. 6, 217-225
72. Rice, D., and Oldfield, E. (1979) Biochemistry 18, 3272-3279
73. Campbell, R. F., Meirovitch, E., and Freed, J. H. (1979) J. Phys. Chem. 83, 525-533
74. Meirovitch, E., and Freed, J. H. (1979) Chem. Phys. Lett. 64, 311-316
75. Gall, C. M., Cross, T. A., DiVerdi, J. A., and Opella, S. J. (1981) in Abstracts of the Twenty-second Experimental NMR Conference, Asilomar, CA, p. A-17
76. Torchia, D. A. (1981) in Abstracts of the Twenty-second Experimental NMR Conference, Asilomar, CA, p. 1-3
77. Rice, D. M., Herzfeld, J., and Griffin, R. G. (1981) Biophys. J. 33, 103a