Tephra Mass Eruption Rate From Ground-Based X-Band and L-Band Microwave Radars During the November 23, 2013, Etna Paroxysm

Frank S. Marzano©, Fellow, IEEE, Luigi Mereu©, Simona Scollo©, Franck Donnadieu, and Costanza Bonadonna©

Abstract—The morning of November 23, 2013, a lava fountain formed from the New South-East Crater (NSEC) of Mt. Etna (Italy), one of the most active volcanoes in Europe. The explosive activity was observed from two ground-based radars, the X-band polarimetric scanning and the L-band Doppler fixed-pointing, as well as from a thermal-infrared camera. Taking advantage of the capability of the microwave radars to probe the volcanic plume and extending the volcanic ash radar retrieval (VARR) methodology, we estimate the mass eruption rate (MER) using three main techniques, namely surface-flux approach (SFA), mass continuity-based approach (MCA), and top-plume approach (TPA), as well as provide a quantitative evaluation of their uncertainty. Estimated exit velocities are between 160 and 230 m/s in the paroxysmal phase. The intercomparison between the SFA, MCA, and TPA methods, in terms of retrieved MER, shows a fairly good consistency with values up to 2.4×10^6 kg/s. The estimated total erupted mass (TEM) is 3.8×10^6, 3.9×10^6, and 4.7×10^6 kg for SFA with L-band, X-band, and thermal-infrared camera, respectively. Estimated TEM is between 1.7×10^6 kg and 4.3×10^6 kg for TPA methods and 3.9×10^6 kg for the MCA technique. The SFA, MCA, and TPA results for TEM are in fairly good agreement with independent evaluations derived from ground collection of tephra deposit and estimated to be between $1.3 \pm 1.1 \times 10^6$ and 5.7×10^6 kg. This article shows that complementary strategies of ground-based remote sensing systems can provide an accurate real-time monitoring of a volcanic explosive activity.

Index Terms—Mass eruption rate (MER), microwave Doppler radar; total erupted mass (TEM), volcanic plumes, weather radar.

I. INTRODUCTION

THE characterization of the source parameters of explosive eruptions is of significant interest due to the environmental, climatic, and socioeconomic impact of tephra dispersal and sedimentation which might cause hardship and damages in areas surrounding volcanoes, including threat to aviation [9]. In particular, real-time monitoring of ash-rich plumes is also crucial for initializing volcanic ash transport and dispersion models [13], [32]. Tephra dispersal from an explosive eruption is a function of multiple factors, including mass eruption rate (MER), degree of magma fragmentation, vent geometry, plume height, particle size distribution, and wind velocity [43].

Mt. Etna, located on the east coast of Sicily (Italy), is one of the most active volcanoes in Europe. The most distinctive phenomena associated with the activity of Etna are represented by the volcanic plumes, sometimes characterized by a significant tephra discharge rate [1], [3], [12]. Volcanic plumes at Etna mostly consist of sustained jets of fluid lava, propelled into the atmosphere from summit craters or lateral vents and driven by expanding gases, which commonly occur at basaltic volcanoes [7]. The fountain gains its momentum by the expansion of gas bubbles that exsolve from the magma as pressure falls while it is rising in the conduit. Height, duration, and erupted volumes of Etna volcanic plumes can greatly vary, with strong lava fountains reaching a height of several hundreds of meters. On November 23, 2013, an intense explosive eruption formed from the NSEC and lasted about an hour. This eruption has been widely analyzed in previous works, focusing on the eruptive processes and tephra volumes [3], integration of observational data [10], tephra fallout characterization [1], plume dynamics [36], and total grain-size distribution retrieval [38]. In this respect, a few instrument-based estimates are available for the time series of the MER, that is, the amount of material erupted per unit time, a key parameter for evaluating hazard assessment and for ash plume dispersion model initialization [4], [33], [34], [45].

Near-real time MER monitoring and estimation can be provided by several techniques: 1) fixed-pointing Doppler microwave radar [16], [20], [24]; 2) optical imaging in clear-air conditions [46], [48]; 3) infrasound sensor network [39]; and 4) electrical probing [6]. All techniques are affected by significant uncertainties, with considerable variations between different estimates of MER [19]. Using a centimeter and millimeter wavelength, ground-based microwave radars represent an important tool for detecting and estimating near-source tephra MER and concentration being their wavelength comparable or larger than size of lapilli and coarse ash particles as well as less affected by two-way extinction with respect to optical sensing [16], [30], [50].
Weather radar scanning systems can be exploited to monitor a volcanic plume, measuring the reflectivity due to small lapilli and coarse ash at a fairly high spatial resolution (less than a few hundred meters) and every few minutes [22], [26]–[28]. Weather radars can provide data for estimating the plume tephra volume, total mass and height, using the volcanic ash radar retrieval (VARR) for single-polarization and dual-polarization systems at S-, C-, and X-band [30], [31], [33].

Doppler fixed-pointing radars at L-band has the antenna boresight typically oriented toward the volcano summit craters and are able to follow the plume column dynamics in near-real time providing both tephra power returns and Doppler velocities mainly due to lapilli and bombs [16], [17].

The aim of this article is to analyze the November 23, 2013, Etna volcanic plume in order to: 1) extend the applicability of the VARR methodology to L-band Doppler radar for the quantification of MER; 2) retrieve the incandescent region height and exit velocity from available polarimetric X-band radar data, Doppler L-band and thermal infrared camera; and 3) formulate MER retrieval techniques in a unified way with their own uncertainty and estimate the MER time series and total erupted mass (TEM). To reach this aim, we explore the application of three different strategies for the calculation of erupted mass based on near-surface flux, plume height, and mass continuity, respectively, and we compare the associated results with those obtained from deposit-based techniques.

This article is organized as follows. Section II briefly describes the available instruments as well as the Etna eruption. Section III discusses the proposed methodology to derive the tephra MER and erupted mass. The radars and camera data set is presented in Section IV together with the discussion of the results. Conclusions are presented in Section V.

II. CASE STUDY AND DATA

The Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etna (INGV-OE) is equipped with a large set of instruments installed for real-time monitoring of the Etna eruptive activities [41]. Various sensors are included at the Etna site such as several seismic and acoustic sensors, two optical lidars, microwave radars, and thermal infrared and visible cameras installed at different times during the INGV-OE instrument site expansion [41], [48]. The Dipartimento della Protezione Civile (DPC) of Italy operates an X-band mobile weather radar installed at the Catania airport [36], [50].

A. Mt. Etna eruption on November 23, 2013

The November 23, 2013, episode represents one of the most explosive events among all the lava fountains that have occurred at Etna from 2011 to 2013 [1], [41]. The eruption started with a Strombolian activity in the afternoon of the day before. The activity moved from Strombolian to volcanic plume after 9:30 UTC and formed an eruption column that grew suddenly and reached a height of 11 km above sea level (asl) during the most intense phase [10]. The thick volcanic plume and cloud spread tephra particles up to several hundreds of kilometers from the summit craters toward the north-east direction [3]. The volcanic plume portion, characterized by the hot jet made of coarse pyroclasts [1], was clearly distinguishable from the higher eruptive column governed by buoyancy. Abundant fallout of bombs and coarse lapilli occurred on the lower north-east flanks of the volcano, whereas fine lapilli dispersed all along the Ionian coast of Sicily. The fallout of clasts of several tens of centimeters caused severe damage to buildings, solar panels, and cars, and injured a few hikers at about 5 km from the crater [1].

This volcanic plume was clearly observed from the X-band polarimetric weather radar and L-band fixed-pointing Doppler radar as well as from a visible and a thermal-infrared camera (TIC) of the INGV-OE surveillance system. For this case study, the map in Fig. 1 shows the location of the remote sensing instruments used in this article, the main characteristics of which are briefly listed here.

1) The X-band microwave weather radar (MWR) is a dual-polarization scanning radar, included in the Italian weather radar network [50]. The dual use of X-band MWR for the detection of both meteorological and volcanic clouds is possible thanks to a combination of several factors: wavelengths of about 3.1 cm (frequency of 9.6 GHz), transmitted peak power of 50 kW, half-power beamwidth of 1.3°, and permittivity factor...
of ash particles (equal to 0.39 with respect to 0.93 of water particles) [29], [35]. The X-band MWR performs a 3-D scan of the surrounding scene as a function of range, azimuth, and elevation with five antenna rounds per minutes. The X-band MWR acquisitions consist of data volumes having an area of about 160 × 160 km2 wide and 20 km height. The data volume cross sections are sampled along 12 elevation angles plus a vertical one, as shown in Fig. 1, and released every 10 min at a distance of about 32 km from the NSEC. The MWR volume, scanned near the NSEC, has a range resolution of 200 m and about 700 × 700 m2 transverse spatial resolution.

2) The ground-based L-band Doppler radar (VOLDORAD-2B or VDR hereinafter), operating at a wavelength of 23.5 cm (frequency of 1.274 GHz) was designed by the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) for the monitoring of explosive activity [16], [17]. It can be deployed near an eruptive vent to measure in real-time the eruptive velocities and backscattered power at high rate up to 20 s$^{-1}$. The VDR signal wavelength allows to sound dense lava jets and ash-laden plumes as well as to avoid attenuation by hydrometeors because of cloudy, foggy, rainy, or snowy conditions. Owing to its modularity and limited weight (about 70 kg) the ensemble is easily transportable and, thus, can be used for short-term scientific campaigns, as well for long-term monitoring. At Etna, VOLDORAD-2B is jointly operated by INGV-OE and OPGC, sounding (fixed pointing) 13 volumes (about 28 × 108 m3) right above the summit craters every 0.23 s. Its capacity to provide first-order MER in real-time, as well as TEM, onset and end of volcanic plumes, and eruptive crater has recently been shown [17]. Processed velocity and echo power data are stored in an open access database made available from the OPGC website and EPOS platform (see the Acknowledgement later on).

3) The TIC is located at ≈15 km southward from the craters and belongs to the INGV-OE network of video-surveillance system. TIC provides a time series database made available from the OPGC website and EPOS platform (see the Acknowledgement later on).

The NSEC crater [3], [7]. The height, width, and area of the volcanic plume can be detected by properly selecting the saturated portion of the measured brightness imagery and adopting the procedure described in [3] and [15].

B. Sensor Data Processing

MWR, VDR, and TIC can be processed to derive useful near-source variables. VDR can provide an estimate of the exit velocity v_{ex}, whereas the incandescent region height can be retrieved from MWR and TIC. From both VDR and MWR an estimate of tephra concentration, mean diameter, and MER can also be derived using the VARR algorithm.

1) MWR Data Processing: The polarimetric MWR is capable of measuring not only the X-band copolar horizontally polarized reflectivity factor Z_{hh} (hereinafter called reflectivity), but also other polarimetric moments such as the differential reflectivity Z_{dr}, differential phase shift K_{dp}, and the copolar correlation coefficient r_{hv} (elsewhere also indicated by ρ_{hv} or ρ_{ee}) [29], [50]. Fig. 2 shows the vertical profiles of X-band Z_{hh}, Z_{dr}, K_{dp}, and r_{hv} along the line connecting the radar antenna with horizontal maximum expansion of the plume (see [36] and [50] for similar plots). It is interesting to note the contrasting trend of X-band Z_{hh} and r_{hv} in the areas immediately above the crater extending vertically for a few kilometers. The X-band Z_{hh} reaches a maximum altitude of 11-km asl, decreasing horizontally more severely after about 20 km from the summit craters, probably due to a faster fallout of large particles, a region identified by values of Z_{hh} ≥ 50 dBZ. The area with low X-band reflectivities (Z_{hh} < 30 dBZ) is associated with outermost edges of the plume suggesting the presence of coarse particles prone to fallout in agreement with the tephra sampling [1]. Since r_{hv} measures the consistency of copolar signal power and phase for each received pulse pair, r_{hv} confirms the Z_{hh} trend, revealing a fairly apparent vertical separation between the incandescent saturated region and the convection eruptive region just above [50]. The Z_{dp} signatures are relatively low, oscillating at around 0.02–0.005 dB, meaning that tephra particles are detected as spherical on average (the material injected from the crater is still very fluid and is characterized by some degree of anisotropy, as noted in [32]). The K_{dp} signature shows an increase in a region, which is slightly displaced with respect to the column above the crater. Positive values of K_{dp} typically indicate slightly horizontal orientation for oblate volcanic particles. The behavior of K_{dp} increment could be due to the presence of falling large lapilli and bombs with a ballistic trajectory.

Fig. 3 shows the maximum values of both X-band MWR Z_{hh} and r_{hv} along the column closest to the NSEC at about 32 km using the fourth elevation angle (see Figs. 1 and 2). This plot can be interpreted by looking at the vertical profile of Fig. 2. In particular, low values of r_{hv} suggest non-spherical shapes and tumbling of volcanic particles [29] so that in Fig. 3 the region with r_{hv} < 0.95 can be divided into two regions where different physical processes probably occur [36]: 1) the region above the NSEC, where the ascending gas and particles form the eruption column that is progressively inclining and thickening as it propagates downwind and 2) the region, aside the NSEC at horizontal distances less than about 5 km from the crater, which can be reasonably associated with the fallout of irregular large lapilli and bombs. The region, having r_{hv} > 0.95, extends over the entire remaining plume, detected by the X-band MWR, thus including both lateral cloud advection by wind and fallout of tephra particles [36].

From Fig. 3 it emerges that a combined thresholding on both X-band MWR Z_{hh} and r_{hv} can be used to detect the incandescent region height H_{IR}. In this case study, by doing an iterative analysis aimed at finding a relatively stable estimate, we have empirically set the combined condition Z_{hh} ≥ 50 dBZ and r_{hv} < 0.95 to retrieve H_{IR}. From C-band polarimetric observations of the 2012 Mount Tongariro, for a tephra plume associated to a more viscous magma than Etna, a transition at r_{hv} around 0.9 has been found corresponding to a stronger
decrease of reflectivity upward of about 1 km above the vent. This limit reflects the upward transition to the buoyancy-dominat ed convective column that rose at about 5 km high.

Indeed, we should have a larger set of explosive eruptions, observed by a polarimetric radar, but so far the paroxysm on November 23, 2013, remains one of the best case studies at Etna where the \(H_{IR} \) signature is quite clean in both \(r_{hv} \) and \(Z_{hh} \) signal. This approach may be probably improved by including the other polarimetric features in a tree-logic approach, but from the case study of November 23, 2013, it seems that the improvement is relatively negligible. The relatively good agreement of the proposed radar-based \(H_{IR} \) retrieval algorithm with the estimates from thermal infrared camera supports the current approach. Note that, due to MWR finite antenna beam width and the distance of 32 km from the summit craters, the spatial cross-resolution along the eruption column is about 700 m (see Fig. 1).

2) VDR Data Processing: The fixed-pointing L-band VDR is measuring both the radial velocities \(v_r \) and the received backscattered power \(P_{RX} \) derived from L-band VDR [16]. From the observation geometry we can convert \(v_r \) into exit velocity \(v_{ex} \) normal to the surface of summit craters (i.e., \(v_{ex} = 3.89 \ v_r \)) [17], whereas from the specifications of the L-band VDR and the radar constant, the backscattered power \(P_{RX} \) can be transformed into the L-band horizontally polarized reflectivity factor \(Z_{hh} \). Fig. 3 shows the VDR \(Z_{hh} \) corresponding to its fourth range bin, smoothed about every 17 s and down-sampled every 10 min in order to reconcile the time sampling with that of MWR. The time trend of \(Z_{hh} \) is related to the VDR range gate closest to the NSEC. The VDR radar reflectivity factor is higher by 15 dBZ with respect to MWR during climax at 10:00 UTC. This may be due to sampling location mismatches, VDR being measuring right above the crater, effects of Mie scattering regime and impacts of particle non-sphericity, affecting the incandescent region above the crater dominated by bombs and lapilli in the proximal fallout region.

3) TIC Data Processing: The TIC measurements can be processed to extract the incandescent region height \(H_{IR} \) from the recorded thermal-infrared brightness temperature imagery over the eruptive time interval [3]. Most techniques are based on imposing a proper threshold to the vertical spatial gradients and/or to edge-contour detection filters [15]. By selecting the TIC frames at time intervals of 1 min, it is possible to derive the incandescent region height \(H_{IR} \) in each image.

4) Tephra Concentration: Starting from \(Z_{hh} \) derived from both X-band and L-band radars, we can apply the VARR methodology, considering the ad hoc physical–electromagnetic
model of non-spherical ash particles in order to derive the mean sphere-equivalent diameter D_n and the tephra mass concentration C_t (also denoted as C_a in [26]; here we prefer the notation C_t dealing with near-source pyroclats). The latter is defined as [26] (see also Table I for the list of main symbols)

$$C_t = \int_0^\infty \pi/6 D^3 \rho_t(D)N_t(D)dD = \rho_t f_N(D_n, \mu, N_n)$$ \hspace{1cm} (1)

where D is the sphere-equivalent diameter (mm), ρ_t is the volcanic particle specific density (kg/m3), $N_t(D)$ is the particle size number distribution (PSD, in m$^{-3}$ mm$^{-1}$), typically characterized by three parameters (i.e., mean diameter D_m, shape parameter μ, and number concentration N_n) [26]. The volcanic particle size distribution is parametrized using field and combined data [38]. Equation (1) holds if ρ_t is constant and introduces the airborne-particle volumetric fraction f_N providing, as a function of PSD parameters, the fraction of tephra particles per unit volume or, more generally, the degree of rarefaction of the ejected material. From (1), percentage values of f_N for tephra are usually less than 0.01% [29]. The extension of VARR to L-band is quite straightforward as the backscattering model is valid for both Rayleigh and Mie regimes and the considered particle sizes range from $64 \mu m$ up to $131.072 \ mm$.

5) VARR Processing: Fig. 4 shows the VARR-based maximum and minimum retrievals of C_t and D_n, obtained from X-band MWR and L-band VDR data in the range gate nearest to the NSEC (see Fig. 3). The mass concentration retrievals can reach values of 18 g/m3 for L-band VDR and 7 g/m3 for X-band MWR, whereas mean-diameter estimates show sizes from about 5 to 12 mm for L-band VDR and from 0.1 to 4 mm for X-band MWR. Interestingly, the modal diameter of proximal lapilli sampled immediately near the cone for the July 2011 Etna paroxysm was between 11 and 16 mm [7]. Consistent with the radar wavelength, L-band VDR is mainly sensitive to lapilli and bombs, whereas X-band MWR response is also influenced by smaller coarse particles [29]. It is worth noting that MWR peaks (around 10:00 UTC) are slightly
anticipated with respect to VDR ones (around 10:10 UTC). Assuming a particle density ρ_t of 2700 kg/m3, airborne-particle volumetric fraction f_N is typically less than 10^{-7}.

III. ESTIMATING MASS ERUPTION RATE

The main goal of this article is to provide an estimate of MER using MWR, VDR, and TIC showing how their retrievals can be processed using a unified approach. Indeed, the capability of ground-based radars to estimate the time-dependent MER, here also indicated by the symbol $Q_M(t)$, is still an open issue [31], [33], [50].

From a methodological point of view, the time-dependent MER $Q_M(t)$ can be related to the plume top height H_{TP} and to incandescent region height H_{IR}. Note that the incandescent region height may be similar or higher than the gas-thrust region height (depending on the eruption style where the fragmented particle momentum is coupled or not with tephra plume jet [43]). In this respect, we can apply three approaches in order to estimate $Q_M(t)$: 1) the surface flux approach (SFA), physically relating $Q_M(t)$ to the eruptive exit velocity v_{ex}, tephra density and the geometry of the crater; 2) top plume approach (TPA), using semiempirical parametric models considering the top plume altitude and environmental parameters; the mass continuity approach (MCA), using the mass continuity equation within the erupted plume above the crater.

A. Methods

1) SFA: The tephra MER $Q_M(t)$ (kg/s) (sometimes also indicated by $M(t)$) through the crater at each instant time t can be written as

$$Q_M^{(SFA)}(t) = \int_{S_0} \rho_x(x,y,t)v_{ex}(x,y,t)dS = \rho_x(t)v_{ex}(t)S_0$$

where the crater has a surface S_0 (m2) in (x,y) coordinates, ρ_x (kg/m3) is the density of the eruptive mixture, and v_{ex} (m/s) is the vertical exit velocity normal to the crater surface. On the right-hand side of (2) we assume that both ρ_x and v_{ex} are constant averaged values within S_0, a reasonable assumption if the crater is relatively small. The objective of the SFA approach, in order to retrieve the time series of $Q_M(t)$, is to provide an estimate of ρ_x, v_{ex}, and S_0 from remote sensing instruments MWR, VDR, and TIC at each instant time t, as will be discussed in the following text.

In order to estimate ρ_x in (2), we can consider that Etna volcanic plumes are typically characterized by gas fractional content f_g between 2% and 3% [8], a gas density ρ_g between 0.10 and 0.20 kg/m3, and a magma density ρ_m between 2500 and 3000 kg/m3 [46]. These values result in a fragmented magma-gas mixture density ρ_x at the vent given by

$$\rho_x = \frac{\rho_m \rho_g}{\rho_m f_g + \rho_g f_m} = \frac{\rho_m \rho_g}{\rho_m f_g + \rho_g (1 - f_g)}$$

from (3) we get $\rho_x = 14.9 \pm 3$ kg/m3. Note that, if $f_g = 0.020$ and $\rho_g = 0.10$ kg/m3 (low gas fraction and density), then $\rho_x = 7$ kg/m3, whereas if $f_g = 0.03$ and $\rho_g = 0.20$ kg/m3 (high gas fraction and density), then $\rho_x = 5$ kg/m3, but if $f_g = 0.02$ and $\rho_g = 0.20$ kg/m3 (low gas fraction with high density), then $\rho_x = 10$ kg/m3.

In order to estimate S_0 in (2), we can adopt the usual assumption of a cylindrical conduit with a circular crater with an area $S_0 = \pi r_o^2$, r_o being the radius [39]. Experimental evidences suggest that the radius can be set to 13.5 m with an uncertainty of \sim10% [7], [8], a value which reinforces the approximation of constant ρ_x. This radius estimate is confirmed by the inspection of the available thermal-infrared imagery evaluating the average size of the detected vertical column. An estimate of S_0 is then about 572.5 ± 57 m2.

In order to estimate v_{ex} in (2), we should distinguish between the three sensors: L-band VDR provides directly v_{ex} as a normal projection of the measured Doppler radial velocity v_r, whereas both X-band MWR and TIC data can provide an estimate of the incandescent region height H_{IR} (see Section II-B). Indeed, X-band MWR is a Doppler radar and velocity profiles can also be estimated from ad hoc data processing [36]. However, as pointed out in [36], radar estimate of the updraft velocity cannot be considered as an exit velocity but rather its proxy. This is the reason why in this article we explore the use of the MWR-based estimate of the incandescent region height. The latter can be used to retrieve v_{ex} based on the ballistic equation, also known as Torricelli’s equation [40], [45]. This equation, also deducible from energy conservation, can provide an estimate of H_{IR} associated to the vertically directed outflow velocity v_{ex} of a pyroclastic constant flow from the volcano crater, and vice versa, at each instant time t through

$$v_{ex}(t) = \sqrt{2gH_{IR}(t)}$$

$$H_{IR}(t) = v_{ex}^2(t)/2g$$

where g (m/s2) is the Earth’s gravity acceleration and the atmospheric density variation and drag effects are considered to be negligible within the incandescent region. This expression is a valid approximation within the incandescent region, when most pyroclasts are sufficiently large to be considered uniformly accelerated projectiles not entering the upper convection region of the plume [45]. This is typically the case for ballistic bombs. Note that, due to the nonlinear relation present in (4), for a H_{IR} of 2000 m, an uncertainty of 20% (400 m) reflects into an uncertainty of 10% on v_{ex} (19.7 m/s).

The use of (4) together with (3) and (2) allows the SFA-based estimate of tephra MER from both X-band MWR and TIC data. The overall fractional uncertainty ε_Q of the approximate MER $Q_M(t)$ in (2) can be estimated using the first-order error propagation theory for independent (maximum) errors, obtaining the following expression:

$$\varepsilon_Q^{(SFA)} = \frac{\delta Q_M^{(SFA)}}{Q_M} = \sqrt{\left(\frac{\delta \rho_x}{\rho_x}\right)^2 + 4 \left(\frac{\delta v_{ex}}{v_{ex}}\right)^2 + \frac{1}{4} \left(\frac{\delta H_{IR}}{H_{IR}}\right)^2}$$

(5)
where δp_x, δv_y, and δH_{IR} are the (maximum) errors on density at the crater, circular radius, and incandescent region height that are causing the overall error δQ_M on the MER. If from previous considerations we assume that $\delta p_x = 0.15 \rho_m$, $\delta v_y = 0.10 v_y$, and $\delta H_{IR} = 0.20 H_{IR}$, the relative percentage error $\varepsilon_{Q(MFA)}^{(MFA)} = 26.9\%$. Note that if the errors are Gaussian distributed, then their standard deviation $\sigma Q_M^{(MFA)}$ is 33% of the maximum error $\delta Q_M^{(MFA)}$.

2) MCA: The mass continuity equation can be applied to estimate the MER [31], [33]. The MER can be decomposed into two terms, the first one provides only a single displacement vector for the detected tephra volume [31], [33]. The contribution to the MER of the advection term $Q_{Madv}(t)$ is generally much less than the other term related to time-derivative of the tephra mass.

To estimate the mass eruption Q_M in (6), the input data is the time series of $Q_{Madv}(t)$ and $Q_{Mdif}(t)$ provided by scanning weather radar such as X-band MWR. As already discussed for SFA uncertainty, the overall percentage uncertainty ε_{Q-MCA} of $Q_M(t)$ in (6) can be estimated by

$$\varepsilon_{Q}^{(MCA)} = \frac{\delta Q_{Madv}^{(MCA)}}{Q_M} = \sqrt{\left(\frac{\delta Q_{Mdif}}{Q_M}\right)^2 + \left(\frac{\delta Q_{Madv}}{Q_M}\right)^2}$$

where δQ_{Mdif} is the MER (maximum) error. If we assume that $\delta Q_{Mdif} = 0.20 Q_{Mdif}$ (due to errors in tephra volume and time undersampling) and $\delta Q_{Madv} = 0.10 Q_{Madv}$ (due to errors in velocity field estimation), the relative percentage error $\varepsilon_{Q(MCA)}^{(MCA)} = 22.3\%$.

3) TPA: Numerical 1-D models, theoretical simplified models and field-based empirical relationships relate the top-plume height H_{TP} to the instantaneous tephra MER $Q_M(t)$ through a generalized power law [43], [45], [51], [52], here expressed in a compact form

$$Q_M^{(TPA)}(t) = a_0 H_{TP}^{b_0} + a_1 H_{TP}^{c_0}$$

where the coefficients a_0, a_1, b, and c are properly set either by experimental fitting or model analyses.

In particular, in this article we have considered the following estimators of MER.

1) The empirical relationship, proposed by [32] and here named TPA-MA09, where in (8) $a_1 = 0$ and $c = 0$, whereas $a_0 = 3.29 \text{kg/s/m}^3$ and $b = 4.15$. Note that TPA-MA09 is indeed proposed in terms of volumetric eruption rate, expressed in m^3/s, and here has been converted into MER by assuming a magma density $\rho_m = 2500 \text{kg/m}^3$ as prescribed in [32].

2) The analytical relationship, proposed by [14] and here named TPA-DB12, where $b = 4$, $c = 3$ and the coefficients $a_0 (\text{kg/s/m}^2)$ and $a_1 (\text{kg/s/m}^3)$ are dependent on the air/plume density and temperature, specific heat capacity, mean buoyancy frequency, radial/wind entrainment, and mean wind velocity across the plume height [14]. In this case study, the considered value of the mean cross-wind along the plume maximum vertical extension is about 20 m/s, using the local model weather forecasts [41].

To estimate the MER Q_M in (8), the input data are the time series of top-plume height $H_{TP}(t)$ which can be provided by visible cameras, satellite data, and a scanning weather radar [10]. As already discussed for SFA uncertainty, the overall percentage uncertainty ε_{Q-TPA} of $Q_M(t)$ in (8) can be estimated by

$$\varepsilon_{Q}^{(TPA)} = \frac{\delta Q_{M}^{(TPA)}}{Q_M} = \sqrt{\left(\frac{\delta a_0}{a_0}\right)^2 + \frac{1}{4} \left(\frac{\delta H_{TP}}{H}\right)^2}$$

where δQ_M is the MER (maximum) error. If for MA09 we assume that $\delta a_0 = 0.20 a_0$ and $\delta H_{TP} = 0.20 H_{TP}$, the relative percentage error $\varepsilon_{Q(TPA)} = (\delta H_{TP}/H_{TP}) = 83\%$.

B. TEM

In summary, the instantaneous MER $Q_M(t)$ is obtained.

1) For SFA, from (2) after deriving $\nu_{ex}(t)$ directly from L-band VDR and through H_{IR} in (4) from X-band MWR and TIC, assuming estimates of $\rho_v = 14.9 \text{kg/m}^3$ and $S_v = 572, 5 \text{m}^2$.

2) For MCA, from (6) the MER can be derived given the time-derivative mass flux and advection-related flux.

3) For TPA, from (8) after deriving h_{TP} from X-band MWR data.

Once knowing the time series of the MER $Q_M(t)$ by means of the SFA and TPA methods and by integrating them along whole time interval t_1 of explosive eruption, we can compute the time-integrated erupted mass $M(t) (\text{kg})$, the TEM $M_T (\text{kg})$ as well as the dense-rock-equivalent (DRE) total erupted volume $V_T (\text{m}^3)$

$$\begin{align*}
M_T & = \int_{\Delta t} M(t) dt \\
M & = \int_{\Delta t} Q_M(t) dt \\
V_T & = \int_{\Delta t} Q_V(t) dt
\end{align*}$$

where $Q_V (\text{m}^3/\text{s})$ is the DRE eruption rate, given by the MER divided by the magma density ρ_m and Δ the event duration. Note that M_T expresses the mass erupted till a given time t starting from the eruption onset, whereas M_T is the total mass erupted during the whole event. The latter M_T is converted
into V_T through magma density ρ_m. The total erupted volume is introduced to allow a straightforward comparison with results available in the literature on the same case study.

As previously discussed, all the methods SFA, MCA, and TPA are affected by uncertainties and so is the TEM M_T. If we assume that the Q_M error fraction ε_f for each method is time invariant, it can be easily shown that the erupted mass fractional error is given by

$$\varepsilon_{TEM} = \frac{\delta M_T}{M_T} = \sqrt{\frac{\left(\sum_i Q_M(t_i)\Delta t\right)^2}{(M_T)^2}} = \sqrt{\frac{\sum_i \varepsilon_f Q_M(t_i)^2}{\sum_i Q_M(t_i)^2}} = \varepsilon_f$$

(11)

where t_i are the sampling time instant and Δt is the time step.

Note that the time series of the MER $Q_M(t)$ and volumetric eruption rate $Q_V(t)$ is sometimes summarized by the time-averaged MER \bar{Q}_M and volumetric eruption rate \bar{Q}_V [1], [3]. In our notation they are defined as

$$\begin{aligned}
\bar{Q}_M &= \frac{1}{\Delta t} \int_{\Delta t} Q_M(t) dt = \frac{M_T}{\Delta t} \\
\bar{Q}_V &= \frac{1}{\Delta t} \int_{\Delta t} Q_V(t) dt = \frac{V_T}{\Delta t}
\end{aligned}$$

(12)

where Δt is the event duration. \bar{Q}_M and \bar{Q}_V are, indeed, the time-average of M_T and V_T, respectively, that is the TEM and volume divided by the event duration Δt.

IV. RESULTS

With the SFA, MCA, and TPA methodologies defined in the previous section, we can apply them to estimate the MER and its derived parameters in (10) and (12) for the case study of the November 23, 2013, Etna volcanic plume.

SFA-based techniques are dependent on the estimate of the tephra exit velocity at the crater, derived from each available sensor. Fig. 5 shows estimates of the exit velocity v_{ex} directly derived from L-band VDR, as well as those derived from X-band MWR and TIC data using H_{IR} and (4). Estimated exit velocity v_{ex} shows a behavior similar to H_{IR} with a maximum at 10:00 UTC with values of around 240 m/s from L-band VDR, 230 m/s from TIC data, and 235 m/s from X-band MWR.

Fig. 5 also shows estimates of H_{IR} directly derived from X-band MWR and TIC data as well as those derived from L-band VDR using v_{ex} and (4). The maximum H_{IR} is reached at 10:00 UTC, which for the L-band VDR is around 2600 m above the crater level (acl), for the TIC data around 2500-m acl and for the X-band MWR around 2550-m acl. These H_{IR} estimates are consistent in terms of both values and trends.

On the left panel (a) of Fig. 6 the time series of the retrieved MER $Q_M(t)$ are shown, sampled every 10 min (the lowest temporal sampling due to the X-band radar), using SFA, TPA, and MCA methods from TIC data, X-band MWR and L-band VDR. The TPA method, based on the DB12 parametric model, uses an average wind velocity of 20 m/s averaging the vertical wind profile inside the eruption column.

MER estimates from all sensors are in fairly good agreement in the paroxysmal time step from 09:50 till 10:20 UTC with maximum values between 1.0×10^6 and 2.3×10^6 kg/s. At the beginning of the eruption L-band VDR and TIC data tend to provide MER estimates higher than X-band MWR ones, the latter probably being affected by the uncertainties in H_{IR} discrimination due to a relatively poor cross-correlation coefficient ρ_{bs} signal as well as to the low transverse resolution of the radar beam. At the climax of the eruptive episode all retrievals methods are in fairly good agreement, the TIC-based MER being the largest. The impact of wind velocity on DB12 model tend to provide an MER which is slightly higher (about 25% more) than the SFA-based ones. On the other hand, the MCA-based approach is very close to the
Fig. 6. Etna explosive event on November 23, 2013, between 09:30 and 10:40 UTC sampled every 10 min (and then linearly interpolated). (a) Estimates of the MER $Q_M(t)$ (kg/s) as a function of time t, derived from: 1) TPA method, i.e., using the top-plume altitude H_{TP} retrieved from the X-band radar within the parametric relationship of Degruyter and Bonadonna (DB12) (setting a mean wind velocity of 20 m/s) and Mastin et al. 2009 (MA09); 2) SFA method, i.e., using the flux equation and the exit velocity estimated from the video TIC, X-band microwave radar (MWR), and L-band VOLDORAD-2 radar (VDR); 3) MCA method, i.e., using the mass continuity equation. Each curve is sampled every 10 min, the minimum common sampling time imposed by the MWR operational schedule. (b) Time-Integrated erupted mass $M_I(t)$ (kg) as a function of time t as derived from the same techniques as listed in (a). The last value of $M_I(t)$ at 10:40 UTC represents the TEM M_T.

TABLE I

LIST OF MAIN SYMBOLS

Name	Symbol	Units
Tephra concentration	C_t	kg/m³
Tephra particle density	ρ_t	kg/m³
Magma density	ρ_m	kg/m³
Eruptive mixture density	ρ_x	kg/m³
Gas density	ρ_g	kg/m³
Gas volumetric fraction	f'_g	adimensional
Airborne particle volumetric fraction	f'_N	adimensional
Vertical exit velocity	v_{ex}	m/s
Vent surface	S_v	m²
Incandescent region top height	H_{IR}	m
Top-plume height	H_{TP}	m
Mass eruption rate at time t	$Q_M(t)$	kg/s
Volumetric eruption rate at time t	$Q_V(t)$	m³/s
Integrated erupted mass at time t	$M_I(t)$	kg
Total erupted mass (TEM)	M_T	kg
Total erupted volume	V_T	m³
Eruption event duration	Δt	s
Time-averaged mass eruption rate (MER)	\bar{Q}_M	kg/s
Time-averaged volumetric eruption rate	\bar{Q}_V	kg/m³

DB12 estimates during the paroxysm climax, probably due to a similar approach based on the erupted plume features such as the plume top height (for TPA) or airborne plume mass (for MCA). As expected for bent-over plumes, the MA09 strategy tends to underestimate the MER with respect to the other methods due to strong wind advection; such an effect is taken into account into DB12 TPA-based method.

MER estimates can be used to evaluate the accumulated erupted mass during the eruption temporal evaluation. The right panel (b) of Fig. 6 also shows the time-integrated erupted mass $M_I(t)$ in (10) using the same methods as shown in Fig. 6(a), i.e., SFA and MCA from X-band MWR, L-band VDR, and TIC data as well as TPA from DB12 and MA09. In this plot, the TEM M_T is represented by value at the last time step at 10:40 UTC, as deducible from (9). Where MER starts to decrease around 10:10 UTC, $M_I(t)$ values tend to saturate. Indeed, from (10), the last value at 10:40 UTC of $M_I(t)$ provide the erupted mass retrieved values between 3.6×10^9 kg/s from VDR up to 4.7×10^9 kg/s from TIC data, except for MA09 (1.7×10^9 kg/s) affected by more
Fig. 7. Estimated MER $Q_M(t)$, similar to Fig. 6(a), but with the representation of their own uncertainty (indicated by vertical bars) for (a) SFA methods, (b) TPA methods, and (c) MCA method. In (d), the total mean of MER estimates, derived from all SFA, TPA, and MCA methods, together with the associated standard deviation, is shown.

The uncertainty of each MER estimation technique, introduced in (5), (7), and (9), can suggest the confidence interval of the obtained results. Fig. 7 shows the trend of the MER estimated value and the respective uncertainty for all methods (SFA, TPA, and MCA) at each sampling time. Between 09:50 and 10:10 UTC, that is, the interval of the largest eruptive activity, the uncertainties (error bars) are, in general, bigger. Estimates using the SFA method show a more significant departure, even if their uncertainty is considered, within the ending tail of the eruption, a feature probably related to the uncertainty in the use of the Torricelli equation (to estimate of incandescent region height or exit velocity, as shown in Fig. 5) and the summit crater which may even change within the eruption itself. The two DB12-based and MA06-based TPA methods show an expected discrepancy which is not accounted for their relative uncertainties. MCA-based values have uncertainties comparable to DB12-based ones. Finally, the average and standard deviation of all-method retrieved MERs show an overall fairly consistent increasing and decreasing trend with a paroxysm MER standard variability between 1.5×10^6 and 2.4×10^6 kg/s.

In most cases the only way to validate MER estimates is to compare the TEM, derived from MER, with available ground deposits. The estimates of the TEM M_T (kg) is shown in Table II for the November 23, 2013, Etna volcanic plume. The results refer to erupted mass derived from the literature data (see rows a, b, $c1$, and $c2$) together with TPA-MA09 and TPA-DB12 estimates (see rows d and e), SFA retrievals from TIC data, X-band MWR, and L-band VDR (see rows f, g, and h) and X-band MWR MCA (see row i), respectively. Uncertainties, estimated by (5), (7), and (9), are also indicated. All retrievals show the same order of magnitude around few kilotons in agreement with the erupted mass derived from satellite data (3×10^9 kg in b and 5.7×10^9 kg in $c1$) as well as from wind-driven TPA-DB12 (4.3×10^9 kg in d). The SFA estimates are interestingly very similar among them with estimates 3.8×10^9 kg (from L-band VDR) and 4.7×10^9 kg (from TIC data). These MER retrievals are within the uncertainty of the November 23, 2013, Etna eruption field values (see rows a and $c1$) providing erupted mass values between $1.3 \pm 1.1 \times 10^9$ kg and 5.7×10^9 kg, obtained by estimating the fallout deposit using the Weibull distribution [1], [38]. Moreover, they are higher than TPA estimates.
TABLE II

Source	Total erupted mass (kg)
a) from Andronico et al., 2015 (field collection)	1.3 ± 1.1×10^9
b) from Corradini et al., 2015 (satellite data)	3.0 ± 1.0×10^9
c1) from Poret et al., 2018 (satellite-radar-model TGSD)	5.7×10^9
c2) from Poret et al., 2018 (field grain size)	1.6×10^9
d) TPA-DB12 using Degruyter-Bonadonna, 2012 (mean vel.=20 m/s)	4.3±1.0×10^9
e) TPA-MA09 using Mastin et al., 2009	1.7±0.4×10^9
f) SFA using TIC data	4.7±1.3×10^9
g) SFA using X-band MWR	3.9±1.0×10^9
h) SFA using L-band VDR	4.2±1.0×10^9
i) MCA using X-band MWR	3.9±0.9×10^9

TABLE III

Method and data source	Time-averaged mass eruption rate (kg/s)	Time-averaged volumetric eruption rate (m^3/s)	Total erupted volume (m^3)
SFA using TIC data	1.1×10^6 – 1.6×10^6	415.0 – 627.4	1.7×10^6 – 1.9×10^6
SFA using X-band MWR	0.9×10^6 – 1.3×10^6	347.6 – 525.6	1.4×10^6 – 1.6×10^6
SFA using L-band VDR	0.9×10^6 – 1.5×10^6	355.5 – 557.1	1.5×10^6 – 1.7×10^6
MCA using X-band MWR	0.9×10^6 – 1.3×10^6	347.7 – 525.6	1.5×10^6 – 1.6×10^6
Andronico et al., 2015 [1]	0.52±0.4×10^6	-	-
Bonaccorso et al., 2014 [3]	-	360.0	1.6×10^6
Freret-Lorgeril et al., 2018 [20]	3.98×10^5 – 3.26×10^6 (climax)	147 – 1207 (climax)	1.7×10^6

from MA09 with a erupted mass of 1.7 × 10^9 kg, but in fairly good agreement with DB12 and MCA ones showing values around 4.3 (with a mean wind velocity of 20 m/s) and 3.9 × 10^9 kg, respectively.

Independent estimates of time-average mass and volumetric eruption rates can also be used for comparison [1], [3]. Using magma density ρ_m = 2700 kg/m^3 [8] and Δ_t = 4200 s (lower value) or ρ_m = 2500 kg/m^3 and Δ_t = 3000 s (larger value), respectively. The last three rows show data available from the literature in [1], [3], and [20].

V. CONCLUSION

Three different approaches have been presented and compared to determine MER from microwave radars at L-band (23.5-cm wavelength) and X-band (3.1-cm wavelength), namely, the SFA, the MCA, and the TPA. These approaches exploit the radar Doppler or polarimetric capabilities as well as fixed-pointing or scanning mode and both radar data have been processed by means of the model-based VARR methodology. We have also discussed the overall formulation and some assumptions behind both SFA and TPA methods, showing how these uncertainties can reflect into the estimate of the TEM as well as time-average discharge rates. As a reference we have taken into account the estimate of the MER from a video TIC, exploiting its capability to detect the incandescent region height in this event and applying the Torricelli equation to estimate the exit velocity. The latter, when estimated from X-band MWR, L-band VDR, and TIC data, are between 160 and 230 m/s in the paroxysmal event within a difference among the various sensor retrievals less than 25%.
The intercomparison between the SFA and TPA methods, in terms of both MER and erupted mass, shows fairly good agreement. Estimated erupted mass is between 3.7×10^9 and 3.8×10^9 kg for SFA applied to L- and X-band radar data, respectively, and between 1.7×10^9 and 4.7×10^9 kg based for TPA, slightly less than the camera-based estimates equal to 4.7×10^9 kg. MCA-based erupted mass estimates are comparable to SFA ones. These SFA, MCA, and TPA results for erupted mass are in good agreement with the tephra fall deposit mass estimates between $1.3 \pm 1.1 \times 10^9$ and 5.7×10^9 kg. Moreover, SFA-based time-averaged MERs and DRE volume eruption rates from the three remote sensors are in agreement with other independent estimates, available in the literature.

The analysis of this case study indicates that ground-based radars can be exploited to provide a self-consistent monitoring of the time-varying activity of explosive volcanic eruptions. Polarimetric weather radars can offer the capability of 3-D scanning instruments thus providing a monitoring of the plume dynamics. By combining radar at different wavelengths (23.5 cm at L-band, 3.1 cm at X-band, and 0.9 cm at Ka-band) together with lidar monitoring at visible near-infrared wavelengths (0.5 and 1.1 μm) to gain a sensitivity to finer particles [34], the total grain size of the tephra plume could be retrieved. Further work is needed to assess the SFA methods, using more explosive eruption cases with a set of instruments at least comparable to the one used in this event and deposit-based volumes. A more robust self-consistent approach to the near-real-time estimates of MER should be able to remove some arbitrary assumptions in the SFA formulation (e.g., crater geometry) by exploiting different methodologies and multiple sensor data.

ACKNOWLEDGMENT

This work was carried out in the framework of the H2020-INFRAIA-2016-2017 EUROVOLC project. The VOLDORAD-2B radar of OPGC on Etna is operated in close collaboration with INGV-OE under the responsibility of M. Coltelli. VOLDORAD-2B processed data are made available by OPGC in the framework of EPOS [17]. The authors would like to thank the Italian Department of Civil Protection (DPC, Italy) for the provision of the X-band radar data and M. Coltelli, M. Prestifilippo, E. Pecora, and E. Biale (INGV-OE, Catania, Italy) for their support in the Voldorad and camera data collection.

REFERENCES

[1] D. Andronico, S. Scocco, and A. Cristaldi, “Unexpected hazards from tephra fallouts at Mt Etna: The 23 November 2013 lava fountain,” J. Volcanol. Geotherm. Res., vol. 304, pp. 118–125, Oct. 2015.

[2] B. Behncke, S. Falsaperla, and E. Pecora, “Complex magma dynamics at Mount Etna revealed by seismic, thermal, and volcanological data,” J. Geophys. Res., vol. 114, Mar. 2009, Art. no. B03211, doi: 10.1029/2008JB005882.

[3] A. Bonaccorso, S. Calvari, A. Linde, and S. Sacks, “Eruptive processes leading to the most explosive lava fountain at Etna volcano: The 23 November 2013 episode,” Geophys. Res. Lett., vol. 41, pp. 4912–4919, Jul. 2019, doi: 10.1002/2014GL060623.

[4] C. Bonadonna et al., “Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations,” J. Geophys. Res., vol. 116, Dec. 2011, Art. no. B12202, doi: 10.1029/2011JB008462.

[5] C. Bonadonna, A. Folch, S. Loughlin, and H. Puempel, “Future developments in monitoring and modelling of volcanic ash clouds: Outcomes from the first INAVCEI-WMO workshop on ash dispersal forecast and civil aviation,” Bull. Volcanol., vol. 74, pp. 1–10, Jan. 2012, doi: 10.1007/s00445-011-0508-6.

[6] R. Büttner, B. Zimanowski, and H. Röder, “Short time electrical effects during volcanic eruptions: Experiments and field measurements,” J. Geophys. Res., vol. 105, pp. 2819–2828, Feb. 2000, doi: 10.1029/1999JB900370.

[7] S. Calvari et al., “An unloading foam model to constrain Etna’s 11–13 January 2011 lava fountaining episode,” J. Geophys. Res., vol. 116, Nov. 2011, Art. no. B11207, doi: 10.1029/2011JB008407.

[8] D. Carbone, L. Zuccarello, A. Messina, S. Scocco, and H. Rymer, “Balancing bulk gas accumulation and gas output before and during lava fountaining episodes at Mt. Etna,” Sci. Rep., vol. 5, Dec. 2015, Art. no. 18049, doi: 10.1038/srep18049.

[9] T. J. Casadevall, “Volcanic ash and aviation safety,” in Proc. 1st Int. Symp. Volcanic Ash Aviation Saf. Seattle, WA, USA: U.S. Geological Survey Bulletin 2047, 1994, pp. 1–6.

[10] M. Coltelli, L. Miraglia, and S. Scocco, “Characterization of shape and terminal velocity of tephra particles erupted during the 2002 eruption of Etna volcano, Italy,” Bull. Volcanol., vol. 70, no. 9, pp. 1103–1112, Sep. 2008, doi: 10.1007/s00445-007-0192-8.

[11] S. Corradini et al., “A multi-sensor approach for volcanic ash cloud retrieval and eruption characterization: The 23 November 2013 Etna lava fountain,” Remote Sens., vol. 8, no. 1, p. 58, Jan. 2016, doi: 10.3390/rs8010058.

[12] R. A. Corsaro et al., “Monitoring the December 2015 summit eruptions of Mt. Etna (Italy): Implications on eruptive dynamics,” J. Volcanol. Geotherm. Res., vol. 341, pp. 53–69, Jul. 2017, doi: 10.1016/j.jvolgeores.2017.04.018.

[13] J. F. Crouch, N. Pardo, and C. A. Miller, “Dual polarisation C-band weather radar imagery of the 6 August 2012 Te Maari Eruption, Mount Tongariro, New Zealand,” J. Geophys. Res., vol. 117, pp. B09206, Feb. 2012, doi: 10.1029/2011JB008407.

[14] W. Degruyter and C. Bonadonna, “Improving on mass flow rate estimates of volcanic eruptions,” Geophys. Res. Lett., vol. 39, no. 16, Aug. 2012, Art. no. L16308.

[15] D. D. Donne and M. Ripepe “High-frame rate thermal imagery of Strombolian explosions: Implications for explosive and infrasonic source dynamics,” J. Geophys. Res., vol. 117, Sep. 2012, Art. no. B09206, doi: 10.1029/2011JB008097.

[16] F. Donnadieu, “Volcanological applications of Doppler radars: A review and examples from a transportable pulse radar in L-band,” in Proc. IntTech, Apr. 2012, pp. 409–446.

[17] F. Donnadieu, P. Frechet, C. Rivet, C. Hervier, and P. Caucalt, “The Volcano Doppler radar data base of Etna (VOLDORAD 2B),” Univ. Clermont Auvergne, Clermont-Ferrand, France, 2015. [Online]. Available: http://voldorad.ingv.fr/bddtr.php, doi: 10.18145/VOLDORAD.ETNA.2009.

[18] F. Donnadieu et al., “Near-source Doppler radar monitoring of tephra plumes at Etna,” J. Volcanol. Geotherm. Res., vol. 312, pp. 26–39, Feb. 2016.

[19] T. Durig et al., “Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust-buoyancy transition—A case study of the 2010 eruption of Eyjafjallajökull, Iceland,” Earth, Planets Space, vol. 67, Nov. 2015, Art. no. 180, doi: 10.1186/s13063-015-0351-7.

[20] V. Fierret-Lorgeril et al., “Mass eruption rates of tephra plumes during the 2011–2015 lava fountain paroxysms at Mt. Etna from Doppler radar retrievals,” Front. Earth Sci., vol. 6, p. 73, Jun. 2018, doi: 10.3389/feart.2018.00073.

[21] A. Gerst, M. Hirt, R. C. Aster, J. B. Johnson, and P. R. Kyle, “The first second of volcanic eruptions from the Erebuse volcano lava lake, Antarctica—Energetics, pressures, seismology, and infrasound,” J. Geophys. Res., vol. 118, pp. 3318–3340, Jul. 2013, doi: 10.1002/jgrb.50234.

[22] M. Gouhier et al., “Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere,” Nature Sci. Rep., vol. 9, Feb. 2019, Art. no. 1449, doi: 10.1038/s41598-019-38595-7.

[23] D. M. Harris and W. I. Rose, Jr., “Estimating particle sizes, concentrations, and total mass of ash in volcanic clouds using weather radar,” J. Geophys. Res., vol. 88, no. C15, pp. 10969–10983, Dec. 1983.
A. E. Parfitt, “A discussion of the mechanisms of explosive basaltic eruptions: The case of the Eyjafjallajökull 2010 eruption,” *J. Geophys. Res.*, vol. 116, no. 9, Sep. 2011, Art. no. B09OC2.

F. S. Marzano, G. Vulpiani, and W. I. Rose, “Microphysical characterization of microwave Radar reflectivity due to volcanic ash clouds,” *IEEE Trans. Geosci. Remote Sens.*, vol. 44, no. 2, pp. 313–327, Feb. 2006.

F. S. Marzano, S. Barbieri, G. Vulpiani, and W. I. Rose, “Volcanic ash cloud detection by ground-based microwave weather radar,” *IEEE Trans. Geosci. Remote Sens.*, vol. 44, no. 11, pp. 3235–3246, Nov. 2006.

F. S. Marzano, S. Marchiottto, C. Textor, and D. J. Schneider, “Model-based weather radar remote sensing of explosive volcanic ash eruption,” *IEEE Trans. Geosci. Remote Sens.*, vol. 48, no. 10, pp. 3591–3607, Oct. 2010.

F. S. Marzano, E. Picciotti, G. Vulpiani, and M. Montopoli, “Synthetic signatures of volcanic ash cloud particles from X-band dual-polarization radar,” *IEEE Trans. Geosci. Rel. Sens.*, vol. 50, no. 1, pp. 193–211, Jan. 2012.

F. S. Marzano, E. Picciotti, G. Vulpiani, and M. Montopoli, “Inside volcanic clouds: Remote sensing of ash plumes using microwave weather radars,” *Bull. Amer. Meteorol. Soc.*, vol. 100, pp. 1567–1586, Oct. 2013.

F. S. Marzano et al., “Near-real-time detection of tephra eruption onset and mass flow rate using microwave weather radar and infrasonic arrays,” *IEEE Trans. Geosci. Remote Sens.*, vol. 54, no. 11, pp. 6292–6306, Nov. 2016, doi: 10.1109/TGRS.2016.2578282.

L. G. Mestin et al. “A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions,” *J. Volcanol. Geotherm. Res.*, vol. 186, nos. 1–2, pp. 10–21, Sep. 2009.

L. Mereu, F. S. Marzano, M. Montopoli, and C. Bonadonna, “Retrieval of tephra size spectra and mass flow rate from C-band radar during the 2010 Eyjafjallajökull eruption, Iceland,” *IEEE Trans. Geosci. Remote Sens.*, vol. 53, no. 10, pp. 5644–5660, Oct. 2015, doi: 10.1109/TGRS.2015.2427032.

L. Mereu, S. Scollo, S. Mori, A. Boselli, G. Leto, and F. S. Marzano, “Maximum-likelihood retrieval of volcanic ash concentration and particle size from ground-based scanning lidar,” *IEEE Trans. Geosci. Remote Sens.*, vol. 56, no. 10, pp. 5824–5842, Oct. 2018, doi: 10.1109/TGRS.2018.2826839.

M. Montopoli et al., “Interpretation of observed microwave signatures from ground-based dual-polarization radar and space multi-frequency radiometer for the 2011 Grimsvötn volcanic eruption,” *Atmos. Meas. Tech.*, vol. 7, pp. 537–552, Feb. 2014.

M. Montopoli, “Velocity profiles inside volcanic clouds from three-dimensional scanning microwave dual-polarization Doppler radars,” *J. Geophys. Res. Atmos.*, vol. 121, no. 13, pp. 7881–7900, Jul. 2016, doi: 10.1002/2015JD023464.

A. E. Parfitt, “A discussion of the mechanisms of explosive basaltic eruptions,” *J. Volcanol. Geotherm. Res.*, vol. 134, pp. 77–107, Jun. 2004.

M. Poret et al., “Reconstructing volcanic plume evolution integrating satellite and ground-based data: Application to the 23 November 2013 Etna eruption,” *Atmos. Chem. Phys.*, vol. 18, pp. 4695–4714, Apr. 2018, doi: 10.5194/acp-18-4695-2018.

M. Ripepe et al., “Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: The 2010 Eyjafjallajökull eruption,” *Earth Planet. Sci. Lett.*, vol. 366, pp. 112–121, Mar. 2013, doi: 10.1016/j.epsl.2013.02.005.

H. C. Saunders, “Equations of motion and ballistic paths of volcanic ejecta,” *Comput. Geosci.*, vol. 34, no. 7, pp. 802–814, Jul. 2008, doi: 10.1016/j.cageo.2007.10.004.

S. Scollo, M. Prestifilippo, G. Spata, M. D’Agostino, and M. Coltelli, “Monitoring and forecasting Etna lava fountains,” *Natural Hazards Earth Syst. Sci.*, vol. 9, pp. 1573–1585, Sep. 2009.

S. Scollo et al., “Eruption column height estimation of the 2011-2013 Etna lava fountains,” *Ann. Geophys.*, vol. 57, no. 2, May 2014, Art. no. S0214, doi: 10.4401/ag-6396.2014.

S. Scollo et al., “Volcanic ash concentration during the 12 August 2011 Etna eruption,” *Geophys. Res. Lett.*, vol. 43, no. 8, pp. 2634–2641, Apr. 2015, doi: 10.1002/2015GL063027.

R. S. J. Sparks, “The dimensions and dynamics of volcanic eruption columns,” *Bull. Volcanol.*, vol. 48, no. 1, pp. 3–15, Feb. 1986.

R. S. J. Sparks et al., *Volcanic plumes*. New York, NY, USA: Wiley, 1997.

R. Stephen, J. Sparks, and H. E. Huppert, “Density changes during the fractional crystallization of basaltic magmas: Fluid dynamic implications,” *Contrib. Mineral. Petrol.*, vol. 85, no. 3, pp. 300–309, Mar. 1984.

J. Taddeucci et al., “High-speed imaging of Strombolian explosions: The ejection velocity of pyroclasts,” *Geophys. Res. Lett.*, vol. 39, no. 2, Jan. 2012, Art. no. L02301, doi: 10.1029/2011GL050404.

G. Uliieri, M. Ripepe, and E. Marchetti, “Infrasound reveals transition to oscillatory discharge regime during lava fountaining: Implication for early warning,” *Geophys. Res. Lett.*, vol. 40, no. 12, pp. 3008–3013, Jun. 2013.

S. A. Valade, A. J. L. Harris, and M. Cerminara, “Plume ascent tracer: Interactive MATLAB software for analysis of ascending plumes in image data,” *Comput. Geosci.*, vol. 66, pp. 132–144, May 2014, doi: 10.1016/j.cageo.2013.12.015.

G. Vulpiani, M. Ripepe, and S. Valade, “Mass discharge rate retrieval combining weather radar and thermal camera observations,” *J. Geophys. Res. Solid Earth*, vol. 121, no. 8, pp. 5679–5695, Aug. 2016, doi: 10.1002/2015JB013191.

L. Wilson, R. S. J. Sparks, T. C. Huang, and N. D. Watkins, “The control of volcanic column heights by eruption energetics and dynamics,” *J. Geophys. Res.*, vol. 83, no. B4, pp. 1829–1836, Apr. 1978.

L. Wilson and G. P. L. Walker, “Explosive volcanic eruptions—VI. Ejecta dispersal in plinian eruptions: The control of eruption conditions and atmospheric properties,” *Geophys. J. Int.*, vol. 89, pp. 657–679, May 1987.
Luigi Mereu received the M.Sc. degree in telecommunications engineering and the Ph.D. degree in remote sensing from the Sapienza University of Rome, Rome, Italy, in 2012 and 2016, respectively. In 2012, he joined the Department of Information Engineering, Sapienza University of Rome, and the Centre of Excellence CETEMPS, L’Aquila, Italy, to cooperate on radar remote sensing of volcanic ash clouds within the ICT Ph.D. Program. He was a Visiting Student with the Icelandic Meteorological Office, Reykjavik, Iceland, in 2014, and with the Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Etneo, Catania, Italy, in 2015. He was involved in the FUTUREVOLC European Project in 2012 and the Aphorism European Project in 2014. He was also involved in the EUROVOLC European Project in 2017. His research interests include the analysis and modeling of eruptive plume using different remote sensing systems.

Dr. Mereu was a recipient of the IEEE GRS South Italy Award for the Best Master Thesis in remote sensing in 2012.

Simona Scollo received the degree (Hons.) in physics from the University of Catania, Catania, Italy, in 2002, and the Ph.D. degree in physical modeling for environmental protection from the Università Alma Mater Studiorum of Bologna, Bologna, Italy.

She is a volcanologist with the Istituto Nazionale di Geofisica e Vulcanologia, Observatorio Etneo, Catania. Her research focuses on the analysis of the dispersal and fallout processes of eruptive plumes during explosive eruptions; calibration, sensitivity analysis and uncertainty estimation of ash dispersal models; laboratory and field experiments; development of a multidisciplinary system for the detection and monitoring of volcanic plumes and analysis of explosive activity using different remote sensing techniques (e.g., radar, lidar, satellites).

Dr. Scollo coordinated several projects and one of them, the VAMOS SEGURO project, was selected in 2012 as a “best practice” among several European Cooperation Projects. In 2011, she obtained the Rittmann Medal for young researchers in volcanology and in 2010 the paper Scollo et al. in 2010 was selected for the AGU Research Spotlight.

Franck Donnadieu received the Ph.D. degree in volcanology from Université Clermont II, Clermont-Ferrand, France, in 2000. He held an NSF Post-Doctoral Fellowship at Penn State University, State College, PA, USA. He then spent one year at the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Université Clermont Auvergne (UCA), Clermont-Ferrand, to specialize in sounding of volcanic explosive eruptions using dedicated transportable radars. Since 2002, he has been a Physician Adjunct with the Laboratory Magmas et Volcans, OPGC, and was awarded the HDR diploma in 2017. As part of the French SNOV (CNRS-INSU), he is in charge of a unique service (VOLDORAD) dedicated to volcanological Doppler radars comprising four instruments (three UHF, one mm-wave) involved in ten campaigns, one radar being permanently monitoring Etna in collaboration with INGV-OE. He has devoted most of his research to better quantifying volcanic jets and plumes dynamics and source parameters from radar remote sensing. He was a Coordinator of the European MED-SUV program from 2013 to 2016 and led the ash plume radar project of the ClerVolc Laboratory of Excellence at UCA from 2015 to 2018. He also teaches courses in geophysics.

Dr. Donnadieu is a member of the French CNAP and SNOV national committees the IAVCEI, the scientific board on Soufrière de Guadeloupe, and the OPGC administration board. He received three PEDR and one UCA awards for scientific excellence.

Costanza Bonadonna received the undergraduate geology degree from the University of Pisa, Pisa, Italy, and the Ph.D. degree from the University of Bristol, Bristol, U.K. She was a Young Investigator with the University of Hawaii, Honolulu, HI, USA, and she was later appointed the position of Assistant Professor with the University of South Florida, Tampa, FL, USA. She is currently a Full Professor with the Department of Earth Sciences, University of Geneva, Geneva, Switzerland, and the Head of the CERG-C Program (http://www.unige.ch/sciences/terre/CERG-C/). She has devoted most of her research to modeling sedimentation from volcanic plumes, exploring new methodologies for the characterization of tephra-fall deposits and developing probabilistic analysis for the assessment of tephra-fall hazards.

Dr. Bonadonna received President’s Award of the Geological Society of London in 2001, the IAVCEI Outstanding Recent Graduate in 2004, the Outstanding Woman in Science Award of the Geological Society of America in 2004, and the USF Outstanding Faculty Research Achievement Award in 2005.