Sequential alterations in catabolic and anabolic gene expression parallel pathological changes during progression of monoiodoacetate-induced arthritis

Jin Nam
Ohio State University - Main Campus

Priyangi Perera
Ohio State University - Main Campus

Jie Liu
Ohio State University - Main Campus

Bjoern Rath
University of Aachen, Germany

James Deschner
University of Köln, Germany

Follow this and additional works at: https://uknowledge.uky.edu/rehabsci_facpub

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation
Nam, Jin; Perera, Priyangi; Liu, Jie; Rath, Bjoern; Deschner, James; Gassner, Robert; Butterfield, Timothy A.; and Agarwal, Sudha, "Sequential alterations in catabolic and anabolic gene expression parallel pathological changes during progression of monoiodoacetate-induced arthritis" (2011). Physical Therapy Faculty Publications. 10.
https://uknowledge.uky.edu/rehabsci_facpub/10

This Article is brought to you for free and open access by the Physical Therapy at UKnowledge. It has been accepted for inclusion in Physical Therapy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Sequential alterations in catabolic and anabolic gene expression parallel pathological changes during progression of monoiodoacetate-induced arthritis

Digital Object Identifier (DOI)
http://dx.doi.org/10.1371/journal.pone.0024320

Notes/Citation Information
Published in PLoS ONE, v. 6, no. 9, e24320.

© 2011 Nam et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Authors
Jin Nam, Priyangi Perera, Jie Liu, Bjoern Rath, James Deschner, Robert Gassner, Timothy A. Butterfield, and Sudha Agarwal

This article is available at UKnowledge: https://uknowledge.uky.edu/rehabsci_facpub/10
Sequential Alterations in Catabolic and Anabolic Gene Expression Parallel Pathological Changes during Progression of Monoiodoacetate-Induced Arthritis

Jin Nam1*, Priyangi Perera1, Jie Liu1, Bjoern Rath2, James Deschner3, Robert Gassner4, Timothy A. Butterfield5, Sudha Agarwal1,6*

1 The Biomechanics and Tissue Engineering Laboratory, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America, 2 Department of Orthopedic Surgery, University of Aachen, Aachen, Germany, 3 Department of Periodontics, University of Köln, Köln, Germany, 4 Department of Oral and Maxillofacial Surgery, University of Innsbruck College of Medicine, Innsbruck, Austria, 5 Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States of America, 6 Department of Orthopedics, The Ohio State University, Columbus, Ohio, United States of America.

Abstract

Chronic inflammation is one of the major causes of cartilage destruction in osteoarthritis. Here, we systematically analyzed the changes in gene expression associated with the progression of cartilage destruction in monoiodoacetate-induced arthritis (MIA) of the rat knee. Sprague Dawley female rats were given intra-articular injection of monoiodoacetate in the knee. The progression of MIA was monitored macroscopically, microscopically and by micro-computed tomography. Grade 1 damage was observed by day 5 post-monoiodoacetate injection, progressively increasing to Grade 2 by day 9, and to Grade 3–3.5 by day 21. Affymetrix GeneChip was utilized to analyze the transcriptome-wide changes in gene expression, and the expression of salient genes was confirmed by real-time-PCR. Functional networks generated by Ingenuity Pathways Analysis (IPA) from the microarray data correlated the macroscopic/histologic findings with molecular interactions of genes/products. Temporal changes in gene expression during the progression of MIA were categorized into five major gene clusters. IPA revealed that Grade 1 damage was associated with upregulation of acute/innate inflammatory responsive genes (Cluster II) and suppression of genes associated with musculoskeletal development and function (Cluster IV). Grade 2 damage was associated with upregulation of chronic inflammatory and immune trafficking genes (Cluster II) and downregulation of genes associated with musculoskeletal disorders (Cluster IV). The Grade 3 to 3.5 cartilage damage was associated with chronic inflammatory and immune adaptation genes (Cluster III). These findings suggest that temporal regulation of discrete gene clusters involving inflammatory mediators, receptors, and proteases may control the progression of cartilage destruction. In this process, IL-1β, TNF-α, IL-15, IL-12, chemokines, and NF-kB act as central nodes of the inflammatory networks, regulating catabolic processes. Simultaneously, upregulation of asporin, and downregulation of TGF-β complex, SOX-9, IGF and CTGF may be central to suppress matrix synthesis and chondrocytic anabolic activities, collectively contributing to the progression of cartilage destruction in MIA.

Introduction

Osteoarthritis (OA) is a debilitating joint disease, causing severe pain and physical disabilities to millions of people worldwide [1,2,3]. The etiopathology of OA is multifactorial. Chronic inflammation, degeneration of the extracellular matrix and abnormal remodeling of the underlying bone, all take part in cartilage destruction [4,5,6,7]. Cartilage matrix is mainly composed of collagens and proteoglycans synthesized by chondrocytes residing in the matrix. Collagens, mainly Type II, type IX and type XI, provide the tensile strength, whereas proteoglycans rich in water act as shock absorbents during cartilage loading.
categorized into various grades according to the extent of damage in the cartilage and bone [8,9].

Chondrocytes take part in cartilage damage by synthesizing catabolic cytokines and enzymes that breakdown the matrix as well as impairing their ability to repair the matrix. Studies focusing on the molecular events in human OA inception and progression by genomic or proteomic profiling of intra-articular lesions have revealed distinct gene profiles in OA specimens as compared to visually unaffected cartilage [10,11,12,13,14,15]. Similarly, gene association studies in large populations have identified a number of genes that might confer susceptibility to OA [16,17,18,19]. However, the knowledge of the discrete molecular events that support the time-dependent progression of OA remains incomplete.

In this study, we aimed to conduct a systematic longitudinal examination of molecules and pathways associated with the progression of cartilage damage. A widely used model of monoiodoacetate-induced arthritis (MIA) of the rat knee was utilized [20,21]. The progression of MIA was analyzed by macroscopic, microscopic and micro-tomographic (μCT) analyses and categorized into various stages of cartilage damage using the grading system of Pritzker et al. [9]. A transcriptome-wide analysis was conducted on the cartilage of temporally well-defined stages of MIA and compared to those of sham control cartilage. Ingenuity Pathways Analysis (IPA) was employed to obtain key insights into molecular relationships and networks/mechanisms during the progression of cartilage destruction. This analysis linked the microarray data to relevant, manually curated information from periodically updated knowledge databases in order to interpret the global impact of differentially regulated molecules during MIA progression. We believe that this study is the first to systematically elucidate the longitudinal time-dependent gene regulation and molecular networks/mechanisms throughout the course of MIA progression and cartilage destruction.

Results
Macroscopic and microscopic changes in cartilage and subchondral bone during the progression of MIA

The progression of MIA was monitored by overall macroscopic and microscopic changes at the distal ends of femurs (Figure 1). The articular surface of Cont femurs exhibited normal cartilage morphology, histology and bone imaging by μCT, typical of Grade 0/healthy cartilage (Figure 1 a–d, Movie S1). The progression of MIA followed the similar pathologies as described by Guzman et al. [22]. Typically, femurs from MIA afflicted knees exhibited greater extent of cartilage damage around the patellar groove than on femoral condyles and intercondylar fossa (Figure 1 e, f, i, j, m, n). The examination of time-dependent progression of knee cartilage damage showed that, on day 5 post MIA induction (MIA5), femurs showed cartilage damage typical of Grade 1, i.e., superficial fibrillation, chondrocyte proliferation, clustering and disorientation, and some loss of tidal ridge demarcation (Figure 1e–i). On day 21 post-monoiodoacetate injection (MIA21), increased cartilage and bone damage in the patellar groove and ridges, full-depth lesions and pits on the femoral condyles were observed (Figure 1m–o). Histology revealed fissuring with matrix loss, fibrocartilage formation within the denuded cartilage and abnormal subchondral bone marrow intrusion typical of Grade 5 to 3.5 damage. Micro-CT imaging showed pitted areas of bone loss on the femoral condyles and patellar groove (Figure 1p, Movie S4).

Transcriptome-wide regulation of gene expression during the progression of MIA

We next determined the changes in transcriptome-wide gene expression profiles during the progression of MIA in the distal end of femoral cartilages in Cont, MIA5, MIA9 and MIA21 rats exhibiting Grade 0, Grade 1, Grade 2 and 3–3.5 cartilage damage, respectively. Principal components analysis (PCA) revealed relatively uniform distribution of overall gene expression among the samples in each group (n = 3) except in MIA9 group, where the overall gene expression was distributed between MIA5 and MIA21 (Figure 2A). Significant differences in gene expression over the course of MIA progression were observed, as evidenced by the average F ratio (signal to noise ratio) of 18.8.

Of the 27,342 transcripts detectable by Affymetrix GeneChips array, 2,034 (7.44%) transcripts were significantly (p<0.05) and differentially up- or downregulated at one or more time points by more than two-fold change. In the hierarchical clustering analysis of the differentially regulated genes (p<0.05, over ±2-fold change), distinct sets of genes were regulated at each stage of MIA progression (Figure 2B). The most interesting information derived from the hierarchical clustering was that: (i) as compared to Cont, the maximal changes in gene expression occurred in MIA5, judging by its furthest distance from Cont (Figure 2B), followed by MIA21 and MIA9; and (ii) distinct individual sets of genes were temporally either upregulated or suppressed during the progression of MIA.

Cluster analysis of major functional genes during the progression of MIA

Among the 2,034 transcripts that were significantly up- or downregulated during the progression of MIA, 1,971 were unique genes annotated by Ensembl. These genes were then analyzed by Davies-Bouldin index [23] to render optimal number of clusters for partition clustering and were assigned to one of the five trends of temporal gene regulation (Figure 3). The graphs represent 10 most regulated genes in each cluster, and were grouped of genes that exhibited: peak-upregulation at day 5 after MIA induction, followed by decrease in gene expression (Cluster I); peak-upregulation at day 9 after MIA induction (Cluster II); gradual increase in gene expression that peaked at day 21 after MIA injection (Cluster III); peak-downregulation at day 5 after MIA injection, followed by relative increase in gene expression (Cluster IV); and peak-downregulation at day 9 after MIA induction (Cluster V). Validation of at least two genes in each cluster by rt-PCR exhibited similar trends in the differences in gene expression as in microarray analysis (Figure 4). However, rt-PCR technique being more sensitive contributed to greater fold changes in gene expression as compared to the microarray analysis.

Among the five distinct biologically functional gene clusters, IPA identified three clusters mainly associated with inflammation.
and immunological disorders (Clusters I, II and III), and the remaining two clusters associated with musculoskeletal function and disorders (Clusters IV and V) (Figure 3, Table 1). To delineate the overall functional relevance, the genes were further categorized into 7 functional sets: (i) Inflammation (cytokines, chemokines, and their receptors); (ii) Inflammation regulators (mediators, transcription factors, and signaling molecules that regulate inflammation); (iii) Cell division/proliferation; (iv) ECM (molecules of the matrix); (v) ECM regulators (molecules that regulate matrix synthesis and degradation); (vi) Growth factors (growth factors and their receptors); (vii) Growth factor regulators (signaling molecules and transcription factors that regulate growth factors) (Figure 5, Tables 2, 3, 4, 5 and 6). Genes including molecules involved in cell metabolism, transporters and ion channels, and those with unknown functions were not included in the present analysis. The genes in these Tables reflect: genes with known function, the degree of gene regulation, and are in proportion to the group of genes regulated in a particular cluster shown in Figure 5.

Figure 1. Progression of MIA at the distal femoral ends by macroscopic, microscopic, and μCT analyses. Right knees of rats were given an intra-articular injection of MIA on day 0, and distal ends of right femurs examined on post-injection days 5 (Grade 1 damage, MIA5), 9 (Grade 2 damage, MIA9) and 21 (Grade 3–3.5 damage, MIA21) and compared to saline-injected sham control (Cont). Macroscopic view of condyles, patellar grooves of cartilage, histology, and subchondral bone imaging by μCT of: (a, b) Cont femur showing smooth surface, (c) normal histology and no bone lesions on the femoral condyles and patellar groove and (d) lack of lesions in the subchondral bone (Movie S1); (e, f) MIA5 cartilage showing superficial abrasions on the condyles (black arrows) and patellar groove (white arrows), (g) superficial fibrillation (black arrow), chondrocyte clustering and disorientation (blue arrow), and (h) no bone lesions in μCT images (Movie S2); (i, j) MIA9 cartilage exhibiting lesions at the apaxes of condyles (black arrow) and ridges of the patellar groove (white arrow), (k) thinning of cartilage, matrix and cell loss above the tidal layer with large disarrayed chondrocytes (black arrow), and some multinucleated chondrocytes (blue arrow), subchondral bone marrow/fibrous tissue extension in the cartilage typical of Grade 2 damage (white arrow), and (l) scattered subchondral bone lesions on the femoral condyles and patellar groove in μCT images (Movie S3); (m, n) MIA21 cartilage exhibiting increased lesions and damage on the condyles (black arrows) and patellar groove and ridges (white arrow), (o) delamination of surface, full depth cartilage lesions and denuded cartilage layer at some places (black arrow), and (p) increased subchondral bone lesions on the femoral condyles and patellar groove in μCT images (Movie S4). Each figure shows representative right femur from separate rats from each group (n = 10). Arrows indicate cartilage damages. The distal ends of femurs showing 360° μCT projection can be found in Movie files S1 to S4.

doi:10.1371/journal.pone.0024320.g001

Cartilage with Grade 1 damage (MIA5) exhibits gene expression associated with innate immunity and cell proliferation.

The cartilage with Grade 1 damage showed upregulation of genes in Cluster I, and downregulation in Cluster IV. According to IPA, the genes in Cluster I were functionally associated with inflammation (116 genes; p-value 9.12E-09 – 1.80E-03) and immunological diseases (103 genes; p-value 2.55E-09 – 1.80E-03) (Table 1). The inflammation associated cytokine, chemokines and their receptors significantly upregulated were Ilb, IL1r1, Thi, Ccr2, and Il-33. The major inflammation regulatory upregulated genes were, C3ar1, Ilg2, -a2, -a4, Pger4, various IgG Fc receptors (Fcrls, Fgcr1a, Fgcr2a, Fgcr2b), molecules of the major histocompatibility complex (Hla-dtb, H2-iaa, cd74, Hla-dma, Rhl-ba) and transcription factors If5, If8 (Table 2, Table S1) [24]. Interestingly, the genes associated with cell cycle/division/differentiation such as Dup3, Anb, Ptc1, Emb, Kif4, Kif23, Dusp6, Van1, Cenb1, Cenb2, Cenb2, Cenf, and Cdk6 were also highly upregulated (Table 2, Figure 5A, Table S1). The expression of
these genes paralleled the chondrocyte proliferation characteristically observed as disoriented clusters of chondrocyte distributed in the cartilage (Figure 1g).

Despite the presence of cytokines like IL-1β and IL-33, genes for several ECM proteins involved in cell-matrix attachment were significantly upregulated in Grade 1 cartilage damage. These genes included Vcan, Fbn2, and Spon1. Additionally, proteases with broad specificity involved in protein/matrix breakdown were upregulated such as Hpsc, Csc, Cts, Arsh, and Plau (Table 2).

Strikingly, asporin, a suppressor of TGF-β/receptor interactions was more than 9 fold upregulated in Cluster I [25]. Additionally, genes for growth factors involved in cell division or immune response such as, Fgf7, Csfh, the regulators of Wnt signaling Sfrp1 and Sfrp2, were dynamically upregulated in cartilage with Grade 1 damage.

Cartilage with Grade 1 damage (MIA5) exhibits suppression of genes associated with matrix synthesis (Cluster IV)

In parallel to marked upregulation of genes in cartilage with Grade 1 damage (MIA5, Cluster I), several genes were significantly downregulated and were assigned to Cluster IV. These genes were associated with genetic disorders (163 genes, \(p \)-value 1.37E-06 – 2.68E-02) and musculoskeletal development and function (95 genes, \(p \)-value 2.10E-07 – 7.3E-02), and consisted of relatively higher proportion of the genes for the extracellular matrix and their regulators (Figures 3D & 5D, Table 3, Table S2). Interestingly, along with genes that induce cell division (Cluster I), genes associated with suppression of cell growth and apoptosis were downregulated such as Seng1 and Cidea in this cluster. Among cytokines, Oxt1 [26], IL23, and the inhibitor of osteoclastogenesis Tnf-c1/1 (osteoprotegerin), were major molecules suppressed, along with several proinflammatory mediators Sox3, Alox12, and Pigs.

More importantly, a significant number of genes responsible for proteoglycan synthesis and assembly were dramatically suppressed. These genes included Cipf (−92 fold) and Cipf2 (−22 fold), Fbn1, Fmod, Hapl63, Sdc4, Fbn1, Ch13, Ch11, Acan, Cipg4, Bln, Spon2, Sfrp, Hvsf12, and Eln. Surprisingly, at Grade 1 cartilage damage, only collagens suppressed were Col27a1 and Col16a1 involved in calcification of cartilage and cell attachment, respectively. In parallel, ECM regulatory genes revealed a significant suppression of peptidase inhibitors and anabolic enzymes such as Pit13, Serpina5a, and Tspan3, likely accelerating cartilage damage.

The scrutiny of global gene expression in cartilage with Grade 1 damage, also showed that several growth factors required for cartilage growth/homeostasis were dramatically downregulated, such as Gdf10, Ieg2, Iegbhp7, Bmp6, Egf61, Spock1, and Vegfa. Among growth factor regulatory proteins the most suppressed genes were Cm1, Iox9, Lihp4, and kna, which may cumulatively retard cartilage repair.

Major genes upregulated in cartilage with Grade 2 damage were associated with chronic inflammation

The Grade 2 cartilage damage showed upregulation of genes in Cluster II, belonging to family of genes prevalent in genetic disorders (116 genes, \(p \)-value 3.21E-10 – 6.79E-04) and inflammatory response and immune trafficking (96 genes, \(p \)-value 4.81E-12 – 1.15E-03) (Table 1).
As compared to Grade 1, significantly fewer genes associated with cell cycle/division were upregulated in Grade 2 cartilage damage (Figures 3B & 5B, Table 4, Table S3). In fact, a number of genes involved in the inhibition of cell division, Dapk1 and Ccng1, were upregulated. The majority of genes significantly upregulated in Grade 2 (Cluster II) were associated with chronic inflammation such as chemokines and their receptor Ccl2, Ccl7, Ccl9, Ccr1, Ccr5, Cx3cr1, and Cxcl16 as well as cytokines involved in amplification of immune response Lif, Il7, Il18, and Ifngr2. More notably, cytokines that induce bone resorption such as Tnfsf11 (RANKL), Tnfsf11a, Tnfsf1b were significantly upregulated explaining the initiation of bone damage observed in m-CT images (Figure 1l). In parallel, genes involved in the regulation of inflammation were upregulated such as those associated with clotting cascade, Tfpi2, Itgam, Itgax, Itga2, and NF-kB signaling cascades Tank, Ripk2, Nrf2, Nfkbia, Map2k3, and enzymes necessary for the regulation of inflammation Pdk3b, Dusp4, Ptpre, and Ptpn22.

Interestingly, the expression of genes for two matrix proteins, Col5a3 and Sdc1 was significantly upregulated. Besides these, the expression of genes associated with cartilage matrix degradation was prevalent in the cartilage with Grade 2 damage (ML19). These genes were matrix metallopeptidase (MMP)-9, Mmp12, Mmp19, Adamts4, Adamts7, Adamts12, Hyal1, Hyal3, Arsb, and Adamo6. Simultaneously, genes for inhibitors of proteases such as Timp1 and Serpine2 were also upregulated.

The major growth factors/receptors upregulated in cartilage with Grade 2 damage were Pdgfb, Csf1r, and Igfbp3, Igfbp4, Tgfbr1 and inhhb. Additionally, several mediators of Wnt and Notch signaling involved in bone formation were upregulated including, Sfrp4, Wnt5a, and Wnt7b. (Table 4, Table S3) [24].

Major genes suppressed in the cartilage with Grade 2 damage were ECM and growth factor associated genes. During the progression of cartilage damage, we also observed that a significant number of genes were downregulated in the cartilage with Grade 2 damage (ML19, Cluster V). Genes in Cluster V, in parallel to Cluster II, were mainly matrix associated and demonstrated maximal suppression on day 9, and associated with genetic disorders (235 genes, p-value 1.87E-12 – 2.88E-02) and skeletal and muscular disorders (134 genes, p-value 1.31E-10 – 2.88E-02) (Figures 3E & 5E, Table 1).

There were several proinflammatory genes suppressed including IL-7, IL-16 and IL-17b involved in amplification of immune response, and Nk in NF-kB signaling cascade (Table 5). Nevertheless, the most dramatically suppressed gene was matrilin 3, a major component of ECM, involved in the formation of filamentous networks [27]. The expression of several collagens integral to cartilage matrix such as collagens type -IIXa1, -IIx1, -IIX2, -IIX3, -XIX1, -XXIVx1, and -V3x3 were significantly downregulated. The expression of other cartilage matrix components involved in cell-matrix and

Figure 3. Partition clustering of significantly regulated genes. Partition clustering analysis of the genes that showed two fold or greater changes in their expression at one or more time points (p<0.05). The graphs represent 10 most regulated genes in each cluster. Identification of five gene clusters that exhibited maximal upregulation on day 5 (Grade 1 damage) followed by their downregulation (Cluster I); upregulation on day 9 (Grade 2 damage) followed by their downregulation (Cluster II); upregulation in a sustained manner showing maximal expression on day 21 (Grade 3–3.5 damage, Cluster III); downregulation of genes on day 5 followed by their upregulation (Cluster IV); and downregulation of genes on day 9 followed by their upregulation (Cluster V). Detailed description of these genes is given in Tables 1, 2, 3, 4, 5, and 6, and in Tables S1, S2, S3, S4, and S5. doi:10.1371/journal.pone.0024320.g003

matrix-matrix adhesion were suppressed such as Chad, Scin, Haplh1, Vf, Mg6, and Fbns5 (Table 5, Table S4) [24]. Additionally, gene expression of several molecules involved in collagen, chondroitin and hyalurun synthesis were suppressed (Adamt13, Adamt16, Chy3, Has2) as well as those involved in mineralization (Alpl).

The growth factors and their receptors and regulatory genes suppressed in the cartilage with Grade 2 damage (MIA9) were Omd, Cigf, Bmp3, Bmp5, Tgfb3, Egf, Igfbp5, Fgfs2, Fgfs3, Ghr, Tgb3, Bmp1a, and Vh. Strikingly, frizzled related protein (Fzrk) was 32.7 fold suppressed along with other Wnt signaling molecules (Wif1, Sfrps5, Fzd9, and Wisp3), and those involved in cartilage/bone development (Pith1, Bsh, Socs6, and Dlx5) (Table 5, Table S4) [24].

Major genes upregulated in cartilage with Grade 3–3.5 damage were associated with immune adaptation and matrix modeling/remodeling

According to IPA, the specimens exhibiting Grade 3–3.5 cartilage damage (MIA21, Cluster III), were associated with those generally found in skeletal and muscular disorders (131 genes, p-value 1.47E-08 – 1.59E-05) and inflammatory diseases (124 genes, p-value 6.71E-08 – 1.81E-03) and showed sustained and successive upregulation in cartilage from Grade 1 to Grade 3–3.5 damage (Figures 3G & 5G, Table 1). Interestingly, at this stage genes that regulate apoptosis or inhibit cell division were upregulated, such as Cika1a, Ceda1, Puer, Bcl2l11, and Rlf10 (Table 6, Table S5).

Among the inflammatory genes, those involved in the regulation of T and B cell functions Cxcl13, IL15, and suppression of inflammation such as Il10rb, Lfib4, Nfkbia, Socs3, and Ptd2 were simultaneously upregulated. Additionally, genes involved in LPS responses and acute inflammation such as Tnfa, Lbp, F3, Alox3, Ipl, and Pegs were upregulated.

In cartilage with Grade 3–3.5 damage, many ECM proteins involved in bone repair/remodeling were upregulated such as Tnn, Postn, and Lum, and collagens frequently associated with soft tissue and wound repair (collagens type XVIIIz1, -IVz1, -IVz2, -IIHz1, -IIHz2, -Vz1, -Vz2, and -Vz3), exhibited increased expression. Additionally, Adam23, Serpin1, Timp2, Mmp14, Mmp2, Csd, and Adamt2 involved in ECM regulation during wound repair were also significantly upregulated. The growth factors and their regulators upregulated were Tgfb2, Ogn, Pdgfb, and Egfr that are all involved in cell growth and differentiation. Additionally, signaling molecules associated with Wnt signaling were upregulated such as Wisp2, Notch3, and Acsl.

Interestingly, we also observed that several of the ECM associated proteins that were suppressed in Grade 2 cartilage damage, were relatively upregulated in cartilage with Grade 3–3.5 damage. For example, Col2a1, 50.3-fold downregulated in cartilage with Grade 2 damage, was only 9.06-fold suppressed in Grade 3–3.5 damage. Similar upregulation of ECM associated genes in Grade 3–3.5 damage relative to lesser damaged cartilage included Mmp3, Col10a1, Col2a1, Col9a3, Col11a2, Col11a3, Col5a3,
Scn, Sdc1, Hapln1, Vit, Pqg4, Mafa1, and Fbha5. The expression of a number of growth factors and signaling molecules markedly suppressed in Grade 2 damage were also relatively upregulated in cartilage with Grade 3–3.5 damage. These growth factors were associated with both cartilage and bone damage such as Omd, Fgfr2, Fgfr3, Cigf, Bmp5, Bmp6, Igfbp5, Egf, Frzb, Pch1, Wgl1, Sfp5, Sox6, Wisp3, and Dlx.

Major molecular networks involved in cartilage damage during the progression of MIA

We next subjected genes in individual clusters to IPA to generate major functional molecular networks (Figures 6, 7, and 8). The significance and specificity of IPA-generated networks were based on the score of each network. The high score numbers signified that gene networks are extremely specific to each cluster. For example, a score of 43 of the molecular network in Cluster I (Figure 6A) indicates that there is only a 1 in 10^{43} chance of getting a network containing the same members of the Network Eligible molecules, when same numbers of molecules are randomly picked from the IPA knowledge base.

The molecular network maximally upregulated in the specimens with Grade 1 cartilage damage (MIA5) were (i) acute inflammation and (ii) cell cycle/cell division-related genes in Cluster I. Genes that typically regulate innate immunity directly or via activation of other mediators formed this network. For example, IL-1β, which auto-regulates its own expression, may also upregulate expression of Ccr2, Trem2 (stimulates production of cytokines and chemokines in macrophages), IL10ra (receptor of IL-10), Pgfr, Cysta and Cystb (phagocytic oxidases that generate superoxide), and Ncf1 and -2 (oxidases that produce superoxides) (Figure 6A). Strikingly, the genes associated with cell cycle including Vav1, Emb, Prl1, Kif4A, Kif23, Kif20A, and Dck2 were also prevalent in this network despite the presence of inflammation (Figure S1).

Interestingly, in parallel to upregulation of genes associated with innate immunity and cell cycle in Cluster I, other pathways were simultaneously suppressed as observed in the major molecular network for the Cluster IV (score 39, Figure 7B). For example, asporin, an inhibitor of TGF-β [25] and a member of Cluster I, was considerably upregulated at this stage of cartilage damage, and may be responsible for preventing activation of TGF-β complex, consequently downregulating matrix proteins and growth factors such as Sox6, alkaline phosphatase, aggrecan, Cilp, Cilp2, and other proteoglycans/collagens, directly or via activating intermediary molecules in Cluster IV (Figure 6B).

The IPA of genes upregulated in cartilage with Grade 2 damage, revealed a molecular network (score 34) involved in chronic inflammation, immune cell trafficking and perpetuation of inflammatory response (Cluster II, Figure 7A). This network appeared to be activated by TNF receptor and may involve the activities of the NF-κB signaling cascade, RIPK2, a potent activator of NF-κB and inducer of apoptosis and chemokines. The activation of NF-κB complex in turn may play a central role in upregulating the expression of MMPs that cleave matrix proteins, chemokines that attract immune cells, and Cdc4 that mediates cell adhesion/migration via hyaluronate/matrix attachment. Similarly, based on the existing role of chemokines, their upregulation may further augment activity/gene expression of chemokines and their receptors, such as Ccl7, Ccl9, Ccl13, Ccr1, Ccr5 and P4 (Cxc4) that are important for amplification of immune response and recruitment of immune cells to the site of inflammation.

Simultaneous with persistent inflammation in the cartilage with Grade 2 damage, the suppression of genes involving matrix synthesis in Cluster V was observed (score 30, Figure 7B). IPA network analysis suggested that the major foci of the molecular network suppressed were TGF-β complex, Lgfbp, Cigf and Egf. Suppression of these genes may have downregulated matrix proteins such as collagens (type II alpha-1, type X alpha1, and type XI alpha-1 and -2), and molecules involved in matrix synthesis such as Adact3 and Hapl1 (stabilizes cartilage matrix). More importantly, a significant suppression of TGF-β complex in this network may have also downregulated many genes associated with bone formation such as Bglap, Dkk3, Alpl, and Bmpr1. The downregulation of these genes during chronic inflammation may result in the failure of matrix repair, thus accelerating the damage.

In the major molecular network in Cluster III (score 29, Figure 8A), related to pathologies observed in Grade 3–3.5 cartilage damage, many of the genes were associated with immune suppression and adaptation such as Socs3, Osmr, Gas7 and B10bh [28]. Interestingly, at this stage, except for IL-15, the upregulation of other inflammation-associated genes such as NF-κB complex, IL-1 complex, IFN alpha and IFN beta complex, MHC complex, and IL-12, was not evident. However, several genes that are associated with B cell, T cell and macrophage proliferation, differentiation, and migration, such as complement cascade (innate immunity and macrophage activation), IL-15 (stimulates T-lymphocyte proliferation), and interferon-induced

Table 1. IPA analysis showing top biological functions of each gene cluster at various stages of cartilage destruction in MIA.
Cartilage damage

Grade 1 (MIA5)
Grade 2–2.5 (MIA9)
Grade 3–3.5 (MIA21)

doi:10.1371/journal.pone.0024320.t001
transmembrane protein 3 (Ifitm3, mediates cellular immunity) were upregulated.

Discussion

To the best of our knowledge, this study documents the first evidence of temporally controlled global gene regulation and identifies the major determining molecular networks that likely control the progression of cartilage damage in a well-established rat model of MIA. We examined changes in the gene expression profiles by transcriptome-wide microarray analysis in relation to the progression of MIA determined by macroscopic, microscopic, and μCT imaging to assess bone involvement [22,29,30,31]. This model of experimental OA was considered useful due to its similarities to the pathogenesis of OA, reproducibility, reasonable duration of the test period, and ability to induce cartilage damage without confounding effects of surgical wounding on the joint tissues [21,22,29]. In this experimental model, the first 3 weeks of MIA progression showed major changes in the cartilage destruction and Grade 6 damage is achieved over a period of 8 weeks (56 days) [22]. After 3 weeks of MIA progression, the cartilage loss is slowly replaced by fibrocartilage and bone. Therefore, we have focused on the initial period of 3 weeks (21 days) where the cartilage damage advanced to Grade 3–3.5. Although the progression of MIA in this model was much faster, it exhibited a sequential progression of cartilage damage observed over a longer period of time in other models of OA. Furthermore, as described earlier, less than 2% cell death was observed due to the monooiodoacetate-induced injury on day 1 after monooiodoacetate injection [32]. Nevertheless, rodent models cannot depict arthritis exactly to humans, as the joint mechanics differ in small quadrupeds [33].

The foremost findings from the transcriptome-wide gene expression profiles are that the MIA afflicted cartilage showed stage specific reproducible changes in gene expression, as demonstrated by the hierarchical and partition clustering analyses. Strikingly, MIA progression involves up- or downregulation of approximately 7.44% of the transcripts by more than two-fold, at one or more time points (p<0.05). Furthermore, discrete sets of genes at each stage of cartilage damage appear to maximally regulate sets of genes associated with inflammation and ECM degradation.

The overall gene expression profiles and the IPA derived from these profiles suggest that Grade 1 cartilage damage is likely associated with upregulation of genes required for: (i) acute inflammation/innate immunity such as superoxides, complement components, integrins, IL-1/IL-1r, chemokines and their receptors, and monocyte activating factors; (ii) chondrocyte-matrix interactions, i.e., versican, fibulin and microfibril; (iii) cleavage of matrix and cell associated proteins such as broad specificity proteases cathepsins and heparanase [34]; and (iv) cell proliferation such as cell cycle/proliferation and mitogenic growth factors (FGF7 and CSF receptor b). The presence of proliferating cells may support increased cell division in the cartilage with Grade 1 damage (Figure 1g). In parallel, suppression of genes essential for: (i) proteoglycan synthesis/assembly, i.e., Cilp and Cilp2, Acan, Bgn, Ebm, Shed2 and cell-matrix adhesion such as Col XVI 1α, and ColXVII 1α; and (ii) inhibitors of peptidases (Timp3, Serpina3, Pi15), may further support increased proteolytic breakdown of cartilage matrix. More importantly, upregulation of asporin that mediates downreg-
ulation of TGF-β activity, and consequently suppression of Sox9 may be responsible for the dramatic suppression of the above proteoglycan-associated genes. Interestingly, genes such as asporin, IL-1β, IL-1 receptor-like 1, cathepsin S, PGE receptor (EP4) and integrins are also upregulated in OA in humans and experimental animals, suggesting their possible role in the early stages of the disease progression [35,36,37,38,39,40,41,42].

The most dramatic matrix breakdown and deficit in ECM synthesis might occur in cartilage with Grade 2 damage. Overall, the gene regulation in cartilage with Grade 2 damage was focused around: (i) Chronic inflammation (chemokines and their receptors) and the NF-κB signaling cascade, which not only regulates inflammation and apoptosis, but also matrix degradation [43]; and (ii) Matrix breakdown, via increased expression of metalloproteases (MMP-9, -12, and -19, ADAMTS4, ADAMTS 7, ADAMTS 12, Hyal1, Hyal3) primarily responsible for cleaving collagens and proteoglycans. In parallel suppression of genes associated with: (i) Chronic inflammation and apoptosis, but also matrix degradation [43]; and (ii) Matrix breakdown, via increased expression of metalloproteases (MMP-9, -12, and -19, ADAMTS4, ADAMTS 7, ADAMTS 12, Hyal1, Hyal3) primarily responsible for cleaving collagens and proteoglycans. In parallel suppression of genes associated with: (i) Chronic inflammation and apoptosis, but also matrix degradation [43]; and (ii) Matrix breakdown, via increased expression of metalloproteases (MMP-9, -12, and -19, ADAMTS4, ADAMTS 7, ADAMTS 12, Hyal1, Hyal3) primarily responsible for cleaving collagens and proteoglycans.
molecules (Frzb, Lect1, Sfpf5, Fzd9, Sox6, Wisp3, Dkk5, Mad3, Smad9) may further suppress cartilage and bone formation in these advanced lesions. Our findings further confirm earlier studies where significant upregulation of MMPs, ADAMTS4, arachidonate-5-lipoxygenase, and IL-18 was observed in both human and experimental OA [10,12,13,15,39,44,45,46,47,48,49,50].

Interestingly, cartilage with Grade 3–3.5 damage showed successive upregulation of genes from Grade 1 to Grade 3–3.5, and those genes were involved in: (i) inflammation and immune adaptation via relative downregulation of proinflammatory molecules IL-1, TNF, NF-kB signaling; (ii) suppression of inflammation (Socs3, H1ob, Libr1, C1s, Nfkb1); (iii) LPS/PGJ2 and inflammation signaling (Cdh1, Ccl18, Cxcl13, Il10, Il10rb) may act as a suppressor of inflammation, and these genes were involved in: (i) downregulation of proinflammatory molecules and IL-18, and (ii) suppression of MMPs, ADAMTS4, arachidonate-5-lipoxygenase, and IL-18 was observed in both human and experimental OA [10,12,13,15,39,44,45,46,47,48,49,50].

Table 3. Suppression of salient genes in cartilage with Grade 1 damage (Cluster IV).

Gene	Description and Function	Group	OA 5	OA 9	OA 21
Sgrc1	stimulator of chondrogenesis; suppresses cell growth but induces chondrogenic differentiation	CD	−61.6	−53.8	−12.2
Cidea	cell death-inducing DFFA-like effector a; activates apoptosis	CD	−2.66	−1.76	−2.01
Cyc1	cytokine-like 1; likely involved in proteoglycan synthesis	Inf	−53.6	−47.5	−49.8
Tnfrf11b	TNFR superfamily, member 11B (OPG); inhibits osteoclastogenesis	Inf	−9.03	−8.75	−4.40
I02r	interleukin 23 receptor; JAK-STAT signaling	Inf	−2.56	−2.12	−1.46
Sod3	superoxide dismutase 3, extracellular; antioxidant enzymes	In2	−7.41	−3.89	−2.42
Alox12	arachidonate 12-lipoxygenase; proliferative, antiapoptotic and proangiogenic	In2	−2.53	−2.27	−2.77
Ptgds	PGD2 synthase; smooth muscle contraction/relaxation, inhibition of platelet aggregation	In2	−2.09	−2.07	−2.00
Clp	cartilage intermediate layer protein; cartilage matrix protein	ECM	−92.3	−66.2	−23.2
Clp2	cartilage intermediate layer protein 2; cartilage matrix protein	ECM	−21.9	−19.2	−3.31
Flbn1	fibulin 7; takes part in cell binding	ECM	−13.3	−9.92	−3.71
Fmod	Fibromodulin; ECM assembly	ECM	−13.1	−11.9	−1.75
Hapln3	Hyaluronan-proteoglycan link protein 3; proteoglycan link protein 3	ECM	−5.50	−6.13	−0.63
Coll2a1	collagen, type XXVII, alpha 1; involved in calcification of cartilage	ECM	−4.57	−3.24	−3.30
Acan	aggregan; major cartilage matrix protein	ECM	−4.12	−3.30	−2.05
Cspg4	chondroitin sulfate proteoglycan 4; cartilage matrix protein	ECM	−3.07	−2.73	−1.71
Spon2	spondin 2; extracellular matrix protein	ECM	−2.89	2.23	1.73
C16a1	collagen, type XVI, alpha 1; cell attachment	ECM	−2.69	−1.53	−1.29
Eln	Elastic; part of ECM	ECM	−2.59	1.05	1.51
Sdc4	syndecan 4; proteoglycan cell interactions	ECM	−2.27	−1.01	−1.36
Bgn	biglycan; cartilage matrix protein	ECM	−2.12	−1.69	1.07
Coll4a1	collagen, type XIV, alpha 1; fibrillar collagen	ECM	−2.07	−1.19	3.92
P15	peptidase inhibitor 15; serine protease inhibitor	ECM	−18.0	−17.9	−4.74
Chst3	chondroitin 6 sulfttransferase 3; chondroitin sulfate biosynthesis	ECM	−10.8	−7.17	−4.65
Serpina3	serpin peptidase inhibitor, clade A mem 3; anti-trypsin activity	ECM	−10.8	−1.85	−1.62
Chst11	Chondroitin-4 sulfttransferase 11; chondroitin sulfation	ECM	−4.71	−4.25	−4.88
Timp3	TIMP metallopeptidase inhibitor 3; inactivates MMPs	ECM	−2.87	1.14	1.31
Sulf2	sulfatase 2; sulfation of proteoglycans	ECM	−2.44	1.06	1.45
Hsulf2	heparan sulfate 6-O-sulfotransferase 2; heparan sulfate synthesis	ECM	−2.07	−1.91	−2.02
Gdf10	growth differentiation factor 10; Growth and differentiation	GF	−22.6	−16.6	−4.89
Igf2	insulin-like growth factor 2; mitogenic	GF	−7.05	−6.48	−4.87
Bmp6	bone morphogenetic protein 6; cartilage and bone formation	GF	−5.96	−5.40	−3.56
Fgfr11	fibroblast growth factor receptor-like 1; cell proliferation	GF	−5.06	−4.63	−3.44
Spock1	sparc/osteonectin; inhibits cell-cycle and influences ECM synthesis	GF	−3.01	−2.76	−3.02
Vegfa	vascular endothelial growth factor A; angiogenesis	GF	−2.57	−1.13	−1.09
Cim1	cyst rich transmembrane BMP regulator 1; BMP regulator 1	GF	−12.7	−10.8	−8.59
Sox9	SRY-box 9; transcription factor for chondrogenesis	GF	−10.2	−9.70	−5.59
Htra4	HtrA serine peptidase 4; suppresses IGF and TGF-β signaling	GF	−10.0	−4.49	2.18
Igfbp7	IGF binding protein 7; stimulates PG12 secretion, and cell adhesion	GF	−3.19	−2.15	−1.10
Fzd8	frizzled homolog 8 (Drosophila); Wnt signaling	GF	−3.15	−2.15	1.10
Latbp4	latent TGF-β binding protein 4; TGF-β regulation	GF	−2.86	−1.68	1.22

Please see Table 2 for group description. A full list of these genes is given in Table S2.

doi:10.1371/journal.pone.0024320.t003
Gene	Description and Function	Group	OA 5	OA 9	OA 21
Dapk1	death-associated protein kinase 1; programmed cell death	CD	2.95	4.06	3.13
Ccrng1	cyclin G1; cell cycle	CD	1.84	2.23	1.67
Ccl9	chemokine (C-C motif) ligand 9; bone resorption	inf	4.65	14.7	5.41
Ccr1	chemokine (C-C motif) receptor 1; immune cell recruitment	inf	4.53	10.7	5.43
Tnfsf11	TNF superfamily, memb 11 (RANKL); bone resorption	inf	1.98	9.52	6.04
Ccl7	chemokine (C-C motif) ligand 7; immune cell recruitment	inf	4.08	6.88	2.30
Lif	leukemia inhibitory factor; acute phase protein synthesis	inf	3.06	5.87	2.84
Ccl2	chemokine (C-C motif) ligand 2; chemoattraction migration of cells	inf	3.09	4.89	3.21
Ii18	interleukin 18 (IFNg-inducing factor); macrophage activation	inf	3.63	4.23	3.69
Tnfrsf11a	TNF receptor mem 11a; NFκB activator, osteoclastogenesis	inf	3.01	3.73	2.71
Ccr5	chemokine (C-C motif) receptor 5; migration of immune cells	inf	3.27	3.59	2.60
Tnfrsf11b	TNF rec fam mem1B; ligand for OPG/RANKL, osteoclastogenesis	inf	2.81	3.30	2.37
Il7	Interleukin-7; amplification of immune response	inf	1.9	2.35	2.00
Ifngr2	Interfero receptor 2; amplification of immune response	inf	1.8	2.25	1.71
Tfp12	tissue factor pathway inhibitor 2; inhibits blood coagulation	inf2	5.68	8.02	3.27
Pik3cb	phosphoinositide-3-kinase, b-polypep; immune cell activation	inf2	4.36	7.04	5.29
Dup4	dual specificity phosphatase 4; negative regulator of cell prolif.	inf2	3.43	6.99	3.27
Itgam	integrin, alpha M (C3 receptor 3); C3 receptor 3	inf2	5.47	5.92	3.82
Itgax	integrin αX (C 3 receptor subunit); C3 receptor4	inf2	3.45	5.68	3.22
Ptprc2	Protein tyrosine phosphatase, receptor E; cell growth and different.	inf2	2.39	5.39	2.80
Ptprc22	Protein typr phosphate; T cell regulation	Inf2	2.51	4.07	2.91
Cxcr1	chemokine (C-X3-C motif) recep 1; immune cell regulation	inf2	2.85	3.84	2.92
Tank	TRAF family member,NFκB activator	inf2	2.50	3.79	3.03
Cxcl16	chemokine (C-X-C motif) ligand 16; immune response	inf2	3.15	3.69	3.01
Ripk3	receptor-interact ser-thr kinase 3; NFκB signaling	inf2	3.33	3.58	2.51
Itgα2	Integrin α2; receptor for collagen, fibronectin and cadherin	inf2	1.74	3.19	2.41
Nfκb2	NFκB polypeptide c; negative regulator of NFκB signaling	inf2	1.83	2.64	1.87
Map2k3	Map Kinase kinase kinase; MAP kinase signaling	Inf2	2.00	2.64	2.00
Nfκb2	NFκB polypeptide 2 (p49/p100); NFκB signaling	inf2	1.32	2.40	1.60
Coilsa3	collagen, type V, alpha 3; fibrillar collagen	ECM	4.42	8.40	5.25
Sdc1	syndecan 1; heparan sulfate proteoglycan	ECM	3.54	5.79	3.19
Mmp12	matrix metalloproteinase 12; elastase	ECM2	13.6	33.4	18.2
Mmp19	matrix metalloproteinase 19; degrades aggrecan and COMP	ECM2	5.03	12.9	8.00
Adams4	ADAMTS 4; degrades proteoglycans	ECM2	2.37	6.21	4.31
Temp1	TIMP metalloproteinase inhibitor 1; known to inhibit MMPs	ECM2	3.58	4.53	3.04
Adams12	ADAMTS 12; degrades COMP and aggrecan	ECM2	3.14	4.24	3.64
Hyal1	hyaluronoglucosaminidase 1; cleaves hyaluronoglucosamines	ECM2	2.24	3.66	2.37
Arsb	asylsulfate B; degrades glycosaminoglycan	ECM2	2.82	3.57	2.44
Adams7	ADAM metalloproteinase; degrades COMP	ECM2	2.46	3.22	2.86
Mmp9	matrix metalloproteinase 9; cleaves Collagen IV and V, fibronecdin	ECM2	1.42	3.16	2.50
Adam8	ADAM metalloproteinase domain 8; may cleave extracellular matrix	ECM2	1.95	2.45	1.35
Hyal3	hyaluronoglucosaminidase 3; hyaluronidase	ECM2	1.38	2.23	1.55
Serpine2	serpin peptidase inhibitor, clade E2; inhibits thrombin, trypsin and urokinase	ECM2	1.52	2.01	1.55
Pdgfb	PDGFβ polypeptide; chondrogenesis	GF	2.15	4.11	2.92
Csf1r	CSF 1 receptor; for CSF and IL-34, macrophage differentiation	GF	2.94	4.09	2.94
Tgfb1	TGF β receptor 1; activates SMAD signaling for bone formation	GF	2.45	3.48	2.56
Sfrp4	secreted frizzled-related protein 4; Wnt signaling	GF2	5.50	8.96	6.26
Wnt5a	Wnt family, member 5A; Wnt signaling	GF2	3.65	8.15	6.47
Inhba	inhibin, beta A; TGF-β signaling	GF2	4.43	7.00	4.56
pathogen/antigen recognition/clearance (Lbp, Tlr4, Cd14) [51,52,53]; (iv) ECM for bone formation (Postn, Ogn, Tnn) likely associated with repair/formation of osteophytes; and (v) antiangiogenic collagens (Col XVIIIα1, -IVα1 -IVα2) and collagens associated with soft tissue and collagen type 1 (Col XIIα1, -IIIα1, -Vα1), suggesting that these genes may be important in the replacing damaged cartilage with bone and fibrous tissue in OA (Figure 10). In fact, collective upregulation of many of these genes (Tnn, Postn, Vegf, Vcam1) has also been reported in later stages of experimental and human OA [10,54,55,56,57,58]. However, it should be noted that these attempts to remodel seemed to occur under the influences of damage-associated molecular patterns (DAMPs) since sustained overexpression of DAMP-related ligand (Vcam), mediators (Cd14 and Ly96), and signaling receptors (Tlr4 and Tlr7) was observed [59].

Interestingly, the expression of many genes for ECM proteins (Col2a1, Col10a1, Col9a2, Col9a3, Col27a1, Matn3, Ch1d, Pelp1, Hapl1, Fbn5, Fbn7, Pdgf, Acan, Sdc1, C1q, Cip2, Ntn1, Spon2, Ebi, Bgpr, Sdc4) was relatively increased in the cartilage with Grade 3–3.5 damage as compared to cartilage with less damage (Grade 1 and 2). At the same time, gene expression of peptidases involved in matrix breakdown (Ptgs2, Ctsz3, Glud3, Mmp12, Mmp19, Adamts4, Adamts12, Mmp9, Hya11, Hya53, Arvb, Gusb) was relatively downregulated in this stage as compared to earlier stages. In this respect, earlier studies have shown that cartilage from later stages of human OA show increased synthesis of certain matrix proteins in comparison to cartilage from early OA [10,11,60]. The basis for this increased expression of matrix associated genes in late stage cartilage degradation (Grade 3–3.5) is as yet not clear. However, it is likely that lesser suppression of Tgf-β1, Cigf, and Sdo as well as anti-inflammatory molecules, may support matrix induction. Additionally, upregulation of gene expression of bone formation related molecules (Tgyb2, Pdgf, Pgfrib, Ogyn, Egfr, Cigf, Igfbp2, Bmp5, Bmp1a, Fgfr2, Fgfr3, and molecules of Wnt signaling cascade) in Grade 3–3.5 cartilage damage may also play a role in the upregulation of matrix genes. Many of these molecules are also upregulated in cartilage from human OA [11,13,39,41,56,61,62,63].

In summary, the present study provides evidences that the progression of cartilage damage is driven by complex but precise regulation of gene clusters that are induced or suppressed during a specific stage of cartilage damage (Figure 9). Cartilage with close to Grade 1 damage exhibited upregulation of genes associated with acute inflammation and innate immunity, broad specificity proteases, and cell cycle/division and suppression of genes for proteoglycan synthesis. Gene expression in cartilage with Grade 2 damage was associated with dynamic upregulation of genes driven by NF-kB such as inflammatory mediators/cytokines, metallo-peptidases, and immune trafficking. Chronic inflammation was paralleled by suppression of growth factors and collagens. Cartilage with Grade 3–3.5 damage exhibited an adaptive response evidenced by upregulation of anti-inflammatory genes. Simultaneously, there is a significant reduction in the suppression of matrix-associated proteins and growth factors as compared to cartilage with Grade 1 or Grade 2 damage. Collectively, the precise modulation of sequential up and down regulation of these genes may support the cartilage damage observed during the progression of MIA. Further elucidation of the key molecules that regulate the expression of catabolic as well as anabolic genes is critical in understanding the mechanisms of cartilage damage in experimental and human OA.

Materials and Methods

Monoiodoacetate-induced arthritis

The work was performed under the protocol number 2009A0138 approved by the Institutional Animal Care and Use Committee, The Ohio State University. Female Sprague-Dawley rats, 12–14 weeks old (Harlan Labs, IN) were randomly assigned to 4 groups (15 rats/group). The right knees of rats were given intra-articular injection of 50 μl saline in sham controls (Cont, n = 15), or monoiodoacetate (2 mg/50 μl saline) in experimental animals to induce MIA (n = 45). Following administration of monoiodoacetate, the cartilage exhibited Grade 1, Grade 2, or Grade 3–3.5 on days 5, 9, and 21, respectively. Therefore, progression of cartilage damage and changes in gene expression profiles were carried out on day 5 (MIA5; n = 15), day 9 (MIA9; n = 15), or day 21 (MIA21; n = 15) post-monoiodoacetate injection. Among them, 5 femurs from each group were snap-frozen in liquid nitrogen for microarray and real-time-Polymerase Chain Reaction (rt-PCR) analyses (n = 5), and the remaining 10 femurs were immediately examined macroscopically using a stereomicroscope and then fixed in 10% buffered formalin for microscopic examination of the cartilage and bone, or μCT imaging to assess the overall subchondral bone loss.

Macroscopic and microscopic examination

Gross morphologies of femurs were recorded photographically under a stereomicroscope. The microscopic examination was performed in paraffin embedded and Hematoxylin-Eosin (H&E) stained femurs. The cartilage damage was graded according to Pritzker et al. [9].

MicroCT analysis

To assess the involvement of subchondral bone in MIA, the femurs were scanned at approximately 19.4 μm resolution on an Inveon microCT from Siemens Preclinical (Knoxville, TN). The scans were run as 220 degree half scans with a theta of 0.5 degrees, with 500 ms exposure, and 700 projections/360 degrees. The source for the acquisition was run at 80 kV and 500 mA with
Table 5. Suppression of salient genes in cartilage with Grade 2 damage (Cluster V).

Gene	Description and Function	Group	OA 5	OA 9	OA 21
Cdknc	CDK inhibitor 1C (p57); negative regulator of cell proliferation	CD	−4.94	−5.79	−3.44
Pdcd4	programmed cell death 4; inhibits proliferation	CD	−2.19	−2.90	−1.74
Il7	interleukin 7; B and T cell development	Inf	−4.40	−5.85	−4.53
Il16	IL 16; chemoattractant for immune cells	Inf	−3.78	−4.52	−1.68
Il17b	interleukin 17B; Induces TNF-a and IL-1b from monocyctic cells	Inf	−2.84	−3.32	−2.93
Nrk	Nik related kinase; NF-kB signaling	Inf2	−16.4	−18.7	−16.2
Matn3	matrillin 3; development and homeostasis of cartilage and bone	ECM	−26.3	−98.1	−74.6
Col10a1	collagen, type X, alpha 1; matrix in hypertrophic cartilage	ECM	−29.0	−83.3	−45.5
Col9a1	collagen, type IX, alpha 1; major cartilage matrix protein	ECM	−15.3	−77.0	−46.1
Col2a1	collagen, type II, alpha 1; major cartilage matrix protein	ECM	−14.9	−50.3	−9.06
Chad	Chondroadherin; chondro & osteoblasts integrin α2β1	ECM	−18.3	−32.6	−7.10
Col9a2	collagen, type IX, alpha 2; major cartilage matrix protein	ECM	−13.5	−27.6	−22.4
Scit	scinderin; cellular protein involved in exocytosis	ECM	−22.2	−24.4	−11.7
Hapln1	hyaluronan and proteoglycan link prot 1; binds to aggregates of proteoglycan monomers with hyaluronic acid	ECM	−11.0	−19.0	−7.54
Col9a3	collagen, type IX, alpha 3; major cartilage matrix protein	ECM	−9.38	−18.9	−12.6
Col11a2	collagen, type XI, alpha 2; major cartilage matrix protein	ECM	−6.29	−16.9	−9.94
Vit	vitrin; promotes matrix assembly and cell adhesiveness	ECM	−13.4	−15.1	−10.9
Prn4	proteoglycan 4; major cartilage matrix protein	ECM	−7.61	−7.65	−3.52
Col11a1	collagen, type XI, alpha 1; major cartilage matrix protein	ECM	−3.77	−5.71	−2.98
Mgp	matrix Gla protein; associated with cartilage and bone matrix	ECM	−4.72	−5.63	−3.28
Matn1	matrillin 1; major cartilage matrix protein	ECM	−3.86	−4.00	−3.97
Fbn5	fibulin 5; promote adhesion of endothelial cells	ECM	−2.54	−3.08	−1.66
Col24a1	collagen, type XXIV, alpha 1; regulate Col type I	ECM	−1.97	−2.51	−1.51
Col9a3	collagen, type V, alpha 3; fibrillar collagen	ECM	−1.82	−2.34	−1.79
Hs3t1	heparan sulfate 3-O-sulfotransferase 1; heparin sulfate synthesis	ECM 2	−6.09	−6.25	−7.69
Adams3	ADAMTS 3; cleavage of propeptide of type II collagen	ECM	−3.32	−3.91	−4.69
Adams6	ADAMTS 6; likely a metalloproteinase	ECM	−2.15	−3.05	−2.36
Alpl	alkaline phosphatase; matrix mineralization	ECM	−2.80	−2.83	−1.26
Chsy3	chondroitin sulfate synthase 3; chondroitin synthesis	ECM	−2.58	−2.61	−2.06
Has2	hyaluronan synthase 2; hyaluran synthesis	ECM	−1.66	−2.29	−3.28
Mmp16	matrix metalloproteinase 16; membrane type MMP-3	ECM	−1.38	−2.20	−1.13
Omd	osteomodulin; likely role in mineralization	GF	−11.5	−13.0	−3.35
Fgfr3	fibroblast growth factor receptor 3; cell growth in wound healing	GF	−5.67	−7.94	−5.77
Fgfr2	fibroblast growth factor receptor 2; cell growth in wound healing	GF	−2.77	−5.61	−3.06
Ctgf	connective tissue growth factor; chondrocyte prolifer and differentia	GF	−2.79	−5.24	−1.68
Bmp5	bone morphogenetic protein 5; cartilage and bone formation	GF	−2.50	−4.75	−2.60
Ghr	growth hormone receptor; bone growth	GF	−3.19	−4.24	−2.37
Tgfb3	transforming growth factor, β receptor III; Smad activation	GF	−2.32	−3.55	−1.74
Bmp3	BMP 3; antagonizes BMPs in bone formation	GF	−1.12	−3.34	−1.36
Igfbp5	insulin-like growth factor binding prot 5; promote growth by IGF	GF	−2.29	−3.04	−1.33
Vdr	vitamin D3 recp; Ca++ homeostasis	GF	−1.21	−2.72	−2.78
Tgfb3	TGFβ3; chondrocyte div and differentiation	GF	−1.75	−2.65	−1.25
Bmpr1a	BMP receptor, type IA; Smad transcriptional activation	GF	−2.01	−2.46	−1.53
Egf	epidermal growth factor (b-urogastrone); mitogenic involved in cell	GF	−2.11	−2.37	−2.04
Tfrb	frizzled-related protein; cartilage and bone development	GF2	−47.4	−52.7	−49.6
Ptch1	patched homolog 1; receptor for Ihh	GF2	−9.85	−16.1	−7.60
Wtf1	WNT inhibitory factor 1; inhibits Wnt proteins	GF2	−13.0	−15.2	−6.43
0.5 mm of Al filtration for beam hardening. Analysis of images was conducted on an Inveon Research Workstation.

RNA extraction and microarray analysis

The cartilage from the distal end of individual femur (10–15 mg/femur) was examined under a stereomicroscope (Zeiss, Germany). Superficial articular cartilage on the patellar and condylar surfaces of the distal ends of femur was chopped off in a frozen state, avoiding the areas immediately around lesions. The cartilage chips from each knee were collected separately, and pulverized into 1 μm fragments in a Mikrodismembrator S (Sartorius, France) at 2500 rpm for 30 seconds [32]. RNA was extracted with Trizol reagent (Invitrogen, CA), and each sample of RNA was analyzed in a 2100 Bioanalyzer (Agilent, CA) to ensure optimal quality of RNA [64].

A total of 300 ng of RNA was used for cDNA synthesis and labeling using Whole Transcript (WT) DNA Synthesis and Amplification Kit, and WT Terminal Labeling Kit (Affymetrix, CA). The labeled samples were hybridized on Affymetrix GeneChip Rat Gene 1.0 ST Array and scanned at the Microarray Shared Resource Facility at the OSU Comprehensive Cancer Center.

The intensity scans from three biologically independent arrays per treatment were subjected to gene expression analysis using Partek Genomic Suite version 6.4 (Partek Inc., MO). The significance among the samples in each condition were examined by principal components analysis (PCA), and subjected to gene expression analysis using Partek Genomic Suite by ANOVA to render significantly regulated transcripts (FDR<0.05) during the progression of MIA at each time point. ANOVA with Tukey’s HSD post hoc test by SPSS v 17, p<0.05 was regarded as significant.

Validation of salient genes differentially expressed in cluster analysis

Expression of selected genes from clustering analysis was confirmed by rt-PCR as previously described [65]. Briefly, extracted RNA was subjected to first strand cDNA synthesis using the Superscript III Reverse Transcriptase Kit (Invitrogen, CA). Gene expression was assessed by amplifying the cDNA with custom-designed primers in the iCycler iQ Real-Time PCR System (Bio-Rad, CA). The primers used were: Bplb: sense 5'-GCGGCGGAAAATAGCCCTTCG-3', anti-sense 5'-GGCCAGTGGTCTTGGTGCTG-3'; Cts: sense 5'-AAATCGAGCTGCACTGTTT-3', anti-sense 5'-TGCCACTGCTCTTTCAGAG-3'; B1-β: sense 5'-TAATGTCTGCGCTGGAGATGCTT-3', anti-sense 5'-TAGCAAGTGTGCTATCATCCACA-3'; Mmp12: sense 5'-CCAGGAAAATGCAAGCGATTTCTT-3', anti-sense 5'-GGCCAGTGGTCTTGGTGCTG-3'; Sox9: sense 5'-GCCGGTCATGGTCAAGTGTTT-3', anti-sense 5'-GCTTCTTTCAGAG-3'.

Statistical Analysis

All time dependent analyses were performed on 15 animals per group. Microarray analyses were performed on cartilage extracted from three separate animals. The significance among the conditions in the microarray data was tested by Partek Genomic suite by ANOVA to render significantly regulated genes (p<0.05) during the progression of MIA at each time point. ANOVA with Tukey’s HSD post hoc test by SPSS v 17 was used to determine the significance levels of rt-PCR data that include two additional independent samples per group to microarray-examined specimens (n = 5). p<0.05 was regarded as significant.

Table 5. Cont.

Cluster V (417 annotated genes, 274 genes in IPA database)	Fold change	Group
Shp5, secreted frizzled-related protein 5; Wnt signaling pathway	-2.52	OA 5
Fzd9, frizzled homolog 9; receptor for Wnt signaling pathway	-2.46	OA 9
Sox6, SRY (sex determining region Y)-box 6; role in skeleton formation	-3.91	OA 21
Ihh, Indian hedgehog; endochondral ossification bone growth and development	-3.69	OA 21
Wisp3, WNT1 inducible signal protein 3; Wnt signaling pathway & different	-3.91	OA 21
Odb5, distal-less homeobox 5; chondrogenesis and osteoblastogenesis	-3.73	OA 21

Please see Table 2 for group description. A full list of these genes is given in Table S4.

doi:10.1371/journal.pone.0024320.t005
Table 6. Induction of salient genes in cartilage with Grade 3–3.5 damage (Cluster III).

Gene	Description and Function	Group	OA 5	OA 9	OA 21
Ccnd1	cyclin D1; cell cycle control	CD	2.28	2.22	2.72
Cdkn1a	cyclin-dependent kinase inhibitor 1A; inhibits cell division	CD	1.10	1.95	2.56
P27	PRKC, apoptosis, WT1, regulator; proapoptotic	CD	1.71	1.98	2.44
Kif10	Kruppel-like factor 10; transcriptional repressor of cell growth	CD	1.36	2.60	2.42
Cxcl13	chemokine (C-X-C motif) ligand 13; chemotactic for B-lymphocytes	Inf	1.64	2.10	2.98
Il10rb	interleukin 10 receptor, beta; anti-inflammatory	Inf	2.14	2.40	2.81
Il15	interleukin 15; proliferation of T-lymphocytes	Inf	1.26	1.48	2.01
Cdh13	cadherin 13, H-cadherin (heart); cell-cell adhesion glycoprotein	Inf	1.46	4.63	8.59
Lirb4	leukocyte IgG-like receptor, subfam B, mem4; controls inflammation	Inf	7.33	6.00	7.00
Lbp	LPS binding protein; binds LPS to present it to TLR4 and CD14	Inf	1.66	3.65	4.45
F3	coagulation factor II; initiates coagulation cascade with Factor VII	Inf	2.05	2.56	3.14
Lpl	lipoprotein lipase; cleaves triglycerides	Inf	1.36	1.58	2.91
Alox5	arachidonate 5-lipoxygenase; catalyzes leukotriene synthesis	Inf	1.82	1.61	2.86
Tlr4	toll-like receptor 4; LPS receptor	Inf	2.14	1.83	2.85
Vcam1	vascular cell adhesion molecule 1; immune response	Inf	2.69	1.82	2.61
Ptges	prostaglandin E synthase; prostaglandin synthesis, inflammatory responses, pain perception	Inf	1.40	2.34	2.60
Phd2	phospholipase D2; cleaves phosphatidyl choline	Inf	1.72	2.32	2.49
Socs3	suppressor of cytokine signaling 3; negative regulator of inflammatory response	Inf	1.69	2.09	2.47
Nfkbia	NF-κB inhibitor, alpha		1.42	2.45	2.17
Tn1	tenascin N; cartilage and bone formation	ECM	15.5	18.8	20.9
Postn	periostin; osteoblast specific factor; cell adhesion, mineralization	ECM	5.88	5.05	7.23
Lum	lumican; collagen fibril organization	ECM	4.09	5.03	5.90
Col18a1	collagen type XVIII a1; a potent antiangiogenic	ECM	2.71	3.92	5.66
Col6a3	collagen type IV a1; inhibits endothelial proliferation/angiogenesis	ECM	3.03	4.33	
Col2a1	collagen type III a1; soft tissue associated with Collagen type 1	ECM	2.02	3.19	3.88
Col12a1	collagen type XII a1; fibrillar collagen	ECM	2.10	3.11	3.42
Col4a2	collagen type IV a2; inhibits endothelial proliferation/angiogenesis	ECM	1.39	2.12	3.13
Col6a3	collagen, type VI, alpha 3; linkage of matrix/cell	ECM	1.30	2.42	2.71
Col5a1	collagen, type V, alpha 1; fibrillar collagen	ECM	1.10	1.73	2.12
Adam23	ADAM metallopeptidase domain 23; nonproteolytic metalloprotease, cell-cell adhesion	ECM	3.97	3.56	5.50
Serpine1	serpin peptidase inhibitor, clade E1; inhibits plasminogen activator	ECM	3.27	3.88	4.81
Timp2	TIMP metalloprotease inhibitor 2; inhibitor of several MMPs	ECM	1.38	2.19	3.07
Mmp14	matrix metalloprotease 14; activates progelatinase	ECM	1.95	3.29	3.01
Mmp2	MMP 2; ECM breakdown in normal physiologic processes	ECM	1.01	1.99	2.84
Mmp11	matrix metalloprotease 11; matrix remodeling, vascular invasion	ECM	1.11	1.47	2.39
Adams2	ADAMTS 2; cleaves tissue propeptides of collagen type I and II	ECM	1.28	1.62	2.37
Ctsd	cathepsin D; intracellular proteinase inhibitor	ECM	1.61	2.3	2.25
Tgfb2	TGF beta 2; cell division and growth differentiation	GF	1.26	2.67	2.63
Pdgfrb	PDGF receptor, β polypeptide; angiogenesis, cell proliferation and differentiation	GF	1.18	1.77	2.46
Osr1	oncostatin M receptor; increases cartilage degradation	GF	1.85	2.41	2.45
Pdgfc	PDGF C; wound healing, proliferation and remodeling	GF	1.04	2.22	2.15
Ogn	osteoglycin; Induces bone formation with TGF-beta1 or TGF-beta2	GF	1.22	1.19	2.06
Egfr	epidermal growth factor receptor; cell growth/differentiation	GF	1.29	1.17	2.05
Wisp2	WNT1 inducible signaling protein 2; bone turnover	GF	2.65	5.71	6.08

Please see Table 2 for group description. A full list of these genes is given in Table S5.

doi:10.1371/journal.pone.0024320.t006
Figure 6. Molecular networks generated from the genes in each cluster by Ingenuity Pathways Analysis. The molecular networks generated from genes in: (A) Cartilage with Grade 1 damage (Cluster I) – Immunological disease network, showing upregulation of genes associated with acute/innate immune response; (B) Cartilage with Grade 1 damage (Clusters IV) – Skeletal & muscular development and function network, showing downregulation of transcription factors and growth factors associated with matrix synthesis. The symbols under individual mediators are defined in Figure 8B. Red, green, and white colors represent upregulation, downregulation and no regulation as compared to cont cartilage, respectively. The shading of each color represents fold change in gene expression; dark, higher changes and light lower changes. doi:10.1371/journal.pone.0024320.g006

Figure 7. Molecular networks generated from the genes in each cluster by Ingenuity Pathways Analysis. The molecular networks generated from genes in: (A) Cartilage with Grade 2 damage (Cluster II) – Inflammatory response/Immune cell trafficking network, showing upregulation of genes associated with chronic inflammation and immune cell trafficking; (B) Cartilage with Grade 2 damage (Clusters V) – Skeletal and muscular disease network showing suppression of genes for growth factors and major matrix proteins. The symbols under individual mediators are defined in Figure 8B. Red, green, and white colors represent upregulation, downregulation and no regulation as compared to cont cartilage, respectively. The shading of each color represents fold change in gene expression; dark, higher changes and light lower changes. doi:10.1371/journal.pone.0024320.g007
Molecular networks generated from genes regulated in Cartilage with Grade 3-3.5 damage

A. Cluster III (Score 29)

B. Symbols on Network maps

- Cytokine/Growth factor
- Phosphatase
- Drug
- Chemical/toxicant
- Enzyme
- Translation factor
- G protein coupled recep
- Transmem receptor
- Ion channel
- Transporter
- Kinase
- MicroRNA
- Complex/Group
- Ligand depend nuc recep
- Other
- Peptidase

Figure 8. Molecular networks generated from the genes in each cluster by Ingenuity Pathways Analysis. The molecular networks generated from genes in: (A) Cartilage with Grade 3–3.5 damage (Cluster III) - Inflammatory disease network showing upregulation of many genes involved in immune suppression and adaptation. Each cluster is based on the genes that were significantly up or downregulated (p<0.05, over ±2-fold change) in articular cartilage from Cont, MIA5, MIA9, and MIA21 specimens. The symbols under individual mediators are defined in (B). Red, green, and white colors represent upregulation, downregulation and no regulation as compared to cont cartilage, respectively. The shading of each color represents fold change in gene expression; dark, higher changes and light lower changes.
doi:10.1371/journal.pone.0024320.g008

Figure 9. Schematic presentation of collective catabolic and anabolic gene regulation during the progression of MIA. Grade 1 damage in the cartilage was associated with induction of genes required for acute inflammation and innate immunity, broad specificity proteases, and cell cycle/division and suppression of genes for proteoglycan synthesis. Grade 2 damage in the cartilage was associated with induction of gene for NF-kB signaling cascade, inflammatory mediators/cytokines, metalloproteases, and immune trafficking, and suppression of growth factors and collagens. Grade 3–3.5 damage in the cartilage exhibited upregulation of anti-inflammatory genes, and simultaneous reduction in the suppression of matrix-associated proteins and growth factors as compared to cartilage with Grade 1 or Grade 2 damage. Collective and sequential up and down regulation of these genes may be important in the cartilage damage during the progression of MIA.
doi:10.1371/journal.pone.0024320.g009
Supporting Information

Figure S1 Cell division associated molecular network in Cluster I by IPA. The molecular network in Cluster I showing expression of significant number of genes associated with cell division in the cartilage with Grade 1 damage.

Table S1 Changes in the expression of genes in Cluster I. CD, genes involved in cell division, proliferation, apoptosis; ECM, extracellular matrix proteins; ECM2, Proteases, regulators of ECM synthesis and breakdown; GF, genes for growth factors and their receptors; GF2, growth factor signaling molecules, transcription factors; Inf, cytokines, chemokines and their receptors; Inf2, inflammatory mediators and their receptors, signaling molecules, transcription factors, and regulators; Meta, genes for metabolism; Others, genes with unknown functions; Transporter, genes involved in transportation of metabolites and ions.

Table S2 Changes in the expression of genes in Cluster IV. Please see Table S1 for group description.

Table S3 Changes in the expression of genes in Cluster II. Please see Table S1 for group description.

Table S4 Changes in the expression of genes in Cluster V. Please see Table S1 for group description.

Table S5 Changes in the expression of genes in Cluster III. Please see Table S1 for group description.

Movie S1 360° μCT projection of the knee of Cont. (MPG)

Movie S2 360° μCT projection of the knee of MIA5. (MPG)

Movie S3 360° μCT projection of the knee of MIA9. (MPG)

Movie S4 360° μCT projection of the knee of MIA21. (MPG)

Author Contributions
Conceived and designed the experiments: JN SA PP. Performed the experiments: JN PP JL BR JD RG TAB. Analyzed the data: JN SA PP. Wrote the paper: JN SA PP JL BR JD RG TAB.

References
1. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, et al. (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58: 26–35.
2. Plein J, Lucas J, Ward B (2009) Summary health statistics for U.S. adults: National Health Interview Survey, 2008. Vital Health Stat 10.
3. Yelin E, Murphy L, Cisternas MG, Foreman AJ, Pasta DJ, et al. (2007) Medical care expenditures and earnings losses among persons with arthritis and other rheumatic conditions in 2003, and comparisons with 1997. Arthritis Rheum 56: 1397–1407.
4. Loeser RF (2008) Translational research in osteoarthritis-from molecules to animals. J Musculoskeletal Neuronal Interact 8: 301–302.
5. Vincent TL, Saklatvala J (2008) Is the response of cartilage to injury relevant to osteoarthritis? Arthritis Rheum 58: 1207–1210.
6. Chen Q, (2008) Mouse models and new therapeutic targets for OA. J Musculoskeletal Neuronal Interact 8: 311–312.
7. Sandell IJ (2007) Modern molecular analysis of a traditional disease: progression in osteoarthritis. Arthritis Rheum 56: 2474–2477.
8. Markin HJ, Lippello L (1970) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritis human hips. J Bone Joint Surg Am 52: 424–434.
9. Fritzker KP, Gay S, Jimenez SA, Oesterkaard G, Pelletier JP, et al. (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14: 13–29.
10. Aigner T, Fundel K, Saaj A, Gehard PM, Haag J, et al. (2006) Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 54: 3533–3544.
11. Aigner T, Zien A, Gehardt A, Gehardt PM, Kuenau L (2003) Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum 44: 2777–2786.
12. Appleton CT, Pietsch V, Henry J, Beier F (2007) Global analyses of gene expression in early experimental osteoarthritis. Rheumatol 56: 1834–1838.
13. Dell’accio F, De Bari C, Eltawil NM, Vanhummelen P, Pirzalis C. (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wit-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 58: 1410–1421.
14. Geyer M, Grassel S, Straub RH, Schett G, Duer R, et al. (2009) Differential transcriptome analysis of intraarticular lesion vs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology. Osteoarthritis Cartilage 17: 321–335.
15. Sato T, Kornoni K, Yamasaki S, Aratani S, Tsuchimochi K, et al. (2006) Comparative analysis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage. Arthritis Rheum 54: 888–897.
16. Garvican ER, Vaughan-Thomas A, Innes JF, Clegg PD (2010) Biomarkers of cartilage turnover. Part 1: Markers of collagen degradation and synthesis. Vet J 185: 36–42.
17. Garvican ER, Vaughan-Thomas A, Clegg PD, Innes JF (2010) Biomarkers of cartilage turnover. Part 2: Non-collagenous markers. Vet J 185: 43–49.
18. Kraus VB, Kepler TB, Stabler T, Remn J, Jordan J (2010) First qualification study of serum biomarkers as indicators of total body burden of osteoarthritis. PLoS One 5: e9739.
19. Kraus VB, Nvitt M, Sandell IJ (2010) Summary of the OA biomarkers workshop 2009—biochemical biomarkers: biology, validation, and clinical studies. Osteoarthritis Cartilage 18: 742–743.
20. Baragi VM, Bocher G, Benedile AM, Biesinger R, Blhum H, et al. (2009) A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: Evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models. Arthritis Rheum 60: 2008–2018.
21. Vermeersch H, Biermans R, Salomons PL, Meert TF (2007) Evaluation of pain behavior and bone destruction in two arthritic models in guinea pig and rat. Pharmacol Biochem Behav 87: 349–359.
22. Guzman RE, Evans MG, Bove S, Morenko B, Kågore K (2003) Monoiodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femoral-tibial joints: An animal model of osteoarthritis. Toxicologic Pathology 31: 619–624.
23. Davies DL, Boulton DW (1979) Cluster separation measure. Ieee Transactions on Pattern Analysis and Machine Intelligence 1: 224–227.
24. Harnois A, Scott AF, Ambergus JB, Bocchini CA, McKusick VA (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33: D514–517.
25. Nakajima M, Kizawa H, Saito M, Kou I, Miyazono K, et al. (2007) Mechanisms for asporin function and regulation in articular cartilage. Journal of Biological Chemistry 282: 32165–32192.
26. Kim JS, Ryu YZ, Chum JS (2007) Cytokine-like 1 (Cycl1) regulates the chondrogenesis of mesenchymal cells. J Biol Chem 282: 29359–29367.
27. van der Weyden L, Wu I, Luo J, Yang X, Birke DE, et al. (2006) Functional knockout of the matrixin-3 gene causes premature chondrocyte maturation to hypertrophy and increases bone mineral density and osteoarthritis. Am J Pathol 160: 315–327.
28. Lenke G, Rohllin CV (2008) Immunobiology of the TAM receptors. Nat Rev Immunol 8: 327–336.
29. Guingamp C, Gsegout-Potte P, Philippe I, Trelain B, Netter P, et al. (1997) Mono-iodoacetate-induced experimental osteoarthritis - A dose-response study of loss of mobility, morphology, and biochemistry. Arthritis and Rheumatism 40: 1670–1679.
30. Dunham J, Hoedschmidt S, Kalben DA (1992) Structural and metabolic changes in articular-cartilage induced by iodoacetate. International Journal of Experimental Pathology 73: 455–461.
31. Bove SE, Calabretta SL, Brooker RM, Huber CM, Guzman RE, et al. (2003) Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis. Osteoarthritis and Cartilage 11: 821–830.
Gene Regulation during MIA Progression

32. Nam J, Perera P, Liu J, Wu LC, Rash B, et al. (2011) Transcriptome-wide gene regulation by gentle treadmill walking during the progression of monosodiumurate induced arthritis. Arthritis Rheum.

33. Fermiough J, Gentry C, Malangoni M, Fox A, Rediske J, et al. (2004) Pain related behaviour in two models of osteoarthritis in the rat knee. Pain 112: 83–93.

34. Pozgun U, Caglic D, Rozman B, Nagase H, Turk V, et al. (2010) Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biol Chem 391: 571–579.

35. Attur MG, Patel IR, Patel RN, Abramson SB, Amin AR (1998) Autocrine stimulation of growth and invasion by transforming growth factor beta 1 in human osteosarcoma cells. Cancer Res 58: 2198–2201.

36. Gruber HE, Ingram JA, Hoelscher GL, Zinchenko N, Hanley EN, Jr., et al. (2009) Asporin, a susceptibility gene in osteoarthritis, is expressed at higher levels in the more degenerate human intervertebral disc. Arthritis Res Ther 11: R47.

37. Li X, Eillman M, Muddasani P, Wang JH, Cs-Szabo G, et al. (2009) Prostaglandin E2 and its cognate EP receptors control human articular cartilage homeostasis and are linked to the pathophysiology of osteoarthritis. Arthritis Rheum 60: 515–523.

38. Nakki A, Kousa ST, Saarelä J, Harilainen A, Tallroth K, et al. (2010) Allelic variants of IL1R1 gene associate with severe hand osteoarthritis. BMC Med Genet 11: 50.

39. Roach HI, Augier T, Soder S, Haag J, Welkerling H (2007) Pathobiology of osteoarthritis: pathomechanisms and potential therapeutic targets. Curr Drug Targets 8: 271–282.

40. Bos SD, Lakenberg N, van der Breggen R, Houwing-Duistermaat JJ, et al. (2005) Identification and location of bone-forming cells within cartilage canals on their course into the secondary ossification centre. Journal of Anatomy 208: 695–707.

41. Min JL, Meulenberg I, Kloppenburg M, van Duijn CM, Slagboom PE. (2007) Mutation analysis of candidate genes within the 2q33.3 linkage area for familial early-onset generalised osteoarthritis. Eur J Hum Genet 15: 791–799.

42. Rothlin CV, Ghoosh S, Zuniga EI, Oldstone MB, Lenke G (2007) TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131: 1124–1136.

43. Brown DP, Jones DC, Anderson KJ, Lapaque N, Buerki RA, et al. (2009) The inhibitory receptor LILRB1 (ILT3) modulates antigen presenting cell phenotype and, along with LILRB2 (ILT4), is upregulated in response to Salmonella infection. BMC Immunol 10: 56.

44. Yang S, Kim J, Ryu JH, Oh H, Chun CH, et al. (2010) Hypoxia-inducible factor-2alpha is a catalytic regulator of osteoarthritic cartilage destruction. Nat Med 16: 687–693.

45. Alaaeddine N, Olee T, Hashimoto S, Creighton-Achermann L, Lotz M (2001) Production of the chemokine RANTES by articular chondrocytes and role in cartilage degradation. Arthritis Rheum 44: 1633–1643.

46. Curtin SL, Blackshear PJ, Binkley N, Atkinson EJ, et al. (2005) Bone mass and microarchitecture at the spine and hip in women with ovariectomy-induced osteoporosis. J Bone Miner Res 20: 1270–1279.

47. Schmitt G, Kischel S, Bonora E, Zwerina J, Mayr A, et al. (2009) Vascular Cell Adhesion Molecule 1 as a Predictor of Severe Osteoarthritis of the Hip and Knee Joints. Arthritis & Rheumatism 60: 2381–2389.

48. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15: 532–534, 536–537.

49. Blumenthal MR, Schwarz A, Perez MT, Konakci KZ, Fritsch H (2006) Identification and location of bone-forming cells within cartilage canals on their course into the secondary ossification centre. Journal of Anatomy 208: 695–707.