Human serine racemase structure/activity relationship studies provide mechanistic insight and point to position 84 as a hot spot for β-elimination function

Received for publication, January 23, 2017, and in revised form, June 26, 2017 Published, Papers in Press, July 10, 2017, DOI 10.1074/jbc.M117.777904

David L. Nelson1, Greg A. Applegate1, Matthew L. Beio, Danielle L. Graham, and David B. Berkowitz2

From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588

Edited by Ruma Banerjee

The discovery of d-serine in the brain and its importance in modulating NMDA receptor activity provided the first bona fide example of a d-amino acid in human biology. The quest to uncover the source of this d-serine led to the identification of mammalian serine racemase (1). Wolosker et al. (1) successfully cloned human serine racemase (hSR)3 at the turn of the millennium. The observation that all d-serine apparently originates in l-serine added another significant branch to the complex metabolic network associated with l-serine and an important new signaling function for the amino acid (Fig. 1).

To be sure, l-serine already was known to possess an array of physiological functions, including serving as both the source of one-carbon equivalents in N^9,N^{10}-methyleneetahydrofolate (utilized for DNA synthesis; i.e. installation of the 5-methyl group in the uracil ring to give the thymine base) and of the neurotransmitter and NMDAR co-agonist, glycine, through the action of a single pyridoxal phosphate (PLP) enzyme, serine hydroxymethyltransferase. l-Serine also serves a central role in maintaining redox homeostasis, because all glutathione equivalents originate in the l-serine backbone, with the sulfur atom from dietary methionine being installed at the β-carbon through the sequential action of two additional PLP-dependent enzymes, cystathionine β-synthase (CBS) and cystathionine eliminase (also known as cystathionine γ-lyase). l-Serine also serves as an important constituent of the phospholipidome and is one of three constituent amino acids of proteins (along with l-threonine and l-tyrosine) that underpin the phosphoproteome, as controlled by the action of protein phosphoserine kinase phosphatases.

From the point of view of neuronal signaling, both d-serine and glycine serve as co-agonists of the NMDA receptor (Fig. 2), binding at the “glycine site” but with the observation that d-serine is a more potent agonist than glycine itself, showing efficacy at several orders of magnitude lower concentration in a seminal study by Ascher and co-workers (2) in a rat hypoglossal motoneuron system (2–4). Whereas it had previously been thought that d-serine is biosynthesized by SR in astroglial cells, more recent evidence indicates that l-serine produced in the astroglia from 3-phosphoglycerate is actively shuttled to the neurons where SR is present and converts the l-serine to d-serine (5, 6).

As is illustrated in Fig. 2A, d-serine generated in the presynaptic neuron serves as stimulatory co-agonist of the postsynap-

This work was supported by American Heart Association Grant-in-Aid 16GRNT133400012. This work was also supported by the IRD (Individual Research and Development) program associated with the appointment of D. B. B. at the National Science Foundation. The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

1 Both authors contributed equally to this work.

2 To whom correspondence should be addressed: Dept. of Chemistry, University of Nebraska, Lincoln, NE 68588-0304. E-mail: dberkowitz1@unl.edu.

The abbreviations used are: hSR, human serine racemase; SR, serine racemase; TEA, triethylammonium; Wat, water molecule; PLP, pyridoxal phosphate; CBS, cystathionine β-synthase; L-SOS, L-serine-O-sulfate; L-THA, L-β-hydroxyaspartate; MBP, maltose-binding protein; L-ABH, L-aspartate β-hydroxamate; L-EHA, L-α-threo-β-hydroxyaspartate; AOAA, amino-oxyacetate; MD, molecular dynamics.
tic NMDA receptor, acting in concert with the primary agonist, L-glutamate. Of particular interest to our laboratory (7–13), the gaseous neurotransmitter, H$_2$S, produced by another PLP enzyme (CBS) in the brain also elicits an NMDA excitatory response (14), potentially via an adenylate cyclase-cAMP-dependent protein kinase–mediated mechanism (15). Indeed, both SR and CBS have emerged as potential targets for ischemic stroke, because there is evidence that both D-serine (16, 17) and H$_2$S (18) promote neuronal infarction following such a stroke event. Elevated D-serine levels have also been associated with Alzheimer’s disease (19) and ALS (20), suggesting that SR may emerge as a potential target for neurodegenerative disease. On the other hand, low D-serine levels (i.e., SR hypo-function) have been correlated with schizophrenia (21–23).

In contrast to these examples of SR dysregulation, in the healthy brain, basal D-serine signaling is essential for synaptic efficiency and long-term potentiation associated with learning and memory (24).

The hSR enzyme is known to be activated allosterically by ATP and requires a divalent cation (Mg$^{2+}$/Mn$^{2+}$) for activity (Fig. 2B) (25–27). The enzyme is reported to be post-translationally modified by phosphorylation (28), palmitoylation (29), and nitrosylation (30). SR levels can be modulated by ubiquitin tagging for proteasomal degradation (31). The C-terminal PDZ domain is important in protein–protein interactions, with PICK-1 (32, 33), GRIP-1 (34), and PSD-95 (35), for example. X-ray crystallographic structures of the Schizosaccharomyces pombe (36), maize (37), mouse (38), and rat and human (39) SR enzymes are available.

Mammalian SR has a type II β-eliminase fold reminiscent of the classical PLP-dependent enzyme, tryptophan synthase. Accordingly, it is perhaps not surprising that the enzyme catalyzes both the β-elimination of L-serine and its racemization to D-serine (Fig. 3). Mechanistically, a dual-base mechanism has been proposed, whereby Lys114 serves as the si-face base (40), α-deprotonating an appropriately oriented external aldimine of L-serine, giving rise to a common, cofactor-stabilized carbamionic intermediate (41). Subsequent re-face protonation by the putative re-face base, Ser84 (42), leads to the D-serine racemization product, whereas expulsion of the (presumably protonated) β-OH leaving group leads to pyruvate, the β-elimination product. L-serine-O-sulfate (L-SOS) and L-threo-β-hydroxyaspartate (L-THA) are known to serve as very efficient alternative substrates for this latter β-elimination manifold (43). This overall mechanism is consistent with recent QM/MM calculations (44).

Results

We set out to examine the mechanism of hSR, with a particular focus on the influence of the putative re-face base upon reactivity. The assignment of Ser84 as the re-face base itself raises a key mechanistic question, namely how can this residue have an appropriately low pK_a to perform this general acid/base function? Careful examination of available structural information suggests that Lys114 may serve to (de)protonate Ser84 through a hydrogen bond network involving an essential water molecule (Fig. 4A). This putative Ser84-Wat372-Lys114 hydrogen bond network appears to resemble the Ser–cis-Ser-Lys catalytic triad (Fig. 4B) (45–48) that is typically seen in the amidase signature enzyme family that includes peptide amidases (49–51) and fatty acid amide hydrolases (52–54) as well as some β-lactamases (55) and a recently described hydrazidase enzyme (56). To our knowledge, this model for serine acidification has not previously been proposed for a PLP enzyme.

To facilitate experimental studies, it was found that improved hSR solubility could be achieved by expressing the protein as an N-terminal maltose-binding protein (MBP) fusion construct (MBP–hSR). Literature reports of heterologous SR expression indicate that these efforts have been plagued with difficulty, leading to low yields of active enzyme, ranging from 1 to 2 mg/liter of culture, as summarized in Fig. 5 (40, 43, 57) and confirmed in our hands with both the N-terminal His- and GST-tagged constructs. However, the MBP–hSR

Figure 1. L-Serine as a central metabolite. L-Serine plays a central role in biology, from one-carbon metabolism to transsulfuration, phospholipid/phosphoprotein function, and D-serine biosynthesis.
construct reproducibly gave ~ 15 mg of purified fusion protein. This is largely attributed to improved solubility. Pixel densitometric gel analysis demonstrates that whereas His–hSR showed only 7% soluble hSR protein, the MBP–hSR fusion is estimated to give 48% of the protein in the supernatant, a nearly 7-fold increase in solubility. The 15 mg of MBP–hSR translates to ~ 6.4 mg of hSR versus the 1–2 mg obtained for His–hSR, a significant improvement. Removal of the tag via factor Xa digestion followed by ATP column purification resulted in a doubling of specific activity, as expected.

Native PAGE experiments are indicative of a dimeric structure for the hSR–MBP fusion protein, consistent with previous reports and crystal structures for the SR (39). Interestingly, gel filtration (Sephacryl S-200) shows an apparent molecular mass of 247 Da for the new construct, suggestive of an oligomeric composition of 3.1. This may be reflective of an equilibrium between a dimeric and tetrameric form of MBP–hSR under the conditions of the gel filtration experiment. This notion would be consistent with a recent observation by Mozzarelli and co-workers (58) that hSR is capable of forming an active tetramer.

Figure 2. hSR: physiological role and 3D structure. A, biosynthesis of the neuromodulators H$_2$S and D-serine and their postulated roles in stimulation of the NMDA receptor (schematic); B, homology model for hSR based upon Protein Data Bank entries 3L6B (recombinant modified human; internal aldimine) and Z8ZU (S. pombe; substrate-modified internal aldimine). Blue, C-terminal PDZ domain (interacts with GRIP-1 and PICK-1); lavender, structural dication (Mg$^{2+}$, Ca$^{2+}$ or Mn$^{2+}$; salmon, palmitoylation site (Thr227); red helical region, putative nitrosylation site (Cys113); green, ATP-binding site; red loop region, putative phosphorylation site (Thr71).
Figure 3. Mechanism of serine racemase. Shown is the racemization manifold versus the β-elimination manifold. Note that both carbanionic and fully delocalized quinonoid intermediate pathways can be considered.
in the presence of ATP and the divalent cation (Ca$^{2+}$ or Mg$^{2+}$) normally associated with the protein.

Active site mutants/kinetic evaluation

We next chose to examine the influence of re-face base on enzyme function. In previous work by Wolosker and co-workers (40), mutagenesis of residues 151–154 led to a reversal of functional preference with L-serine as the substrate. As noted (Fig. 6), normally mammalian serine racemase favors L-serine elimination activity over L-serine racemase activity, in a ratio of ~4:1. Their most notable mutant, Q154D, displayed a dramatic reversal of these activities to a ratio of 1:3.

Focusing on the active site, previous reports had identified Ser84 as the re-face base in homologous enzymes belonging to S. pombe (42) and slime mold (Dictyostelium discoideum) (59). In both cases, the re-face Ser to Ala mutant was constructed and resulted in loss of function for racemization. Utilizing the MBP–hSR platform, we generated the corresponding mammalian SR S84A mutant, in addition to the S84D, S84N, and S84T variants. There had been one earlier report of the former construct, but the activity of this mutant was only studied with the natural substrate, L-serine (60). The rationale was to examine changes in hydrogen bond donor ability, charge, and steric for putative re-face base by studying the behavior of these mutants across four assays: racemization and β-elimination reaction across a battery of three substrates.

The results are summarized in Table 1. Compared with the wild-type hSR, the S84D mutant shows the most dramatic difference in substrate preference as measured by the catalytic efficiency (i.e., measured k_{cat}/K_m value). Whereas the charged substrates L-SOS and L-THA are highly favored in wild-type SR, S84D shows a dramatic reversal of this preference. In the most pronounced case, for L-THA compared with L-serine, this preference changes from 100:1 in the wild-type to 1:50 (see Table 1). This represents a 5000-fold change in substrate preference. A similar ~1200-fold change is observed for L-SOS. It is important to note that this was not a “mutate-and-kill” effect, because the catalytic efficiency of L-serine only decreased ~6-fold in the S84D mutant. That PLP enzymes can exhibit significant catalytic promiscuity even with subtle changes has recently been highlighted by Patrick and co-workers (61) in detailing the promiscuous alanine racemase activity seen with mutant cystathionine-β-lyase, both in *Escherichia coli*.

The S84N mutant shows intermediate behavior, exhibiting neither the strong preference for charged substrates seen in the wild type nor the inverted substrate preference seen in the S84D mutant. Specifically, the S84N mutant shows a modest 2.5:1 preference in L-SOS over L-serine and a 7:1 preference of L-THA over L-serine for β-elimination (Table 2). Although unable to catalyze L-serine racemization, this mutant is also the most fit mutant in catalyzing L-serine elimination, displaying ~75% of the catalytic efficiency of the native enzyme.

The S84A mutant also loses L-Ser racemization completely and has attenuated L-Ser elimination activity (>6-fold drop in catalytic efficiency, almost equally due to k_{cat} and K_m effects), and although this mutant displays quite respectable k_{cat} values for the charged substrates, it pays a significant penalty in K_m for L-THA (34-fold).

Whereas the alterations in substrate profile seen with the S84D mutant were dramatic, the S84T mutant displayed a more nuanced change in substrate preference that is also useful in considering the hSR mechanism. Thus, S84T-hSR retains the native hSR preference for charged substrates, but that preference is now selective for L-SOS over L-THA. In other words, the β-elimination of L-THA is now favored only 35-fold versus the β-elimination of L-serine compared with the original 100-fold, whereas L-SOS is now eliminated some 350-fold more efficiently than L-serine. Expressed differently, but perhaps more succinctly, whereas the k_{cat} for L-SOS elimination is unchanged for the S84T mutant, the corresponding k_{cat} values for L-serine and L-THA elimination suffer a 4–5-fold penalty with this subtle mutation in re-face base structure. Thus, the S84T-hSR is able to discriminate between these two charged substrates, showing an order of magnitude higher catalytic efficiency for processing L-SOS versus L-THA, whereas no such preference is seen in wild-type enzyme.

Molecular dynamics/docking studies

These kinetic results inspired us to employ molecular dynamics simulation and substrate docking experiments with...
the goal of potentially shedding light on the origins of these observations on substrate preference. See “Experimental procedures” for details on how the homology model was constructed and how the molecular dockings were carried out and analyzed. All three elimination substrates were docked to both wild-type hSR and the S84D mutant. Displayed in Fig. 6 is the structure of L-THA-derived external aldimine docked into the wild-type hSR active site. The \(\beta \)-carboxylate of the substrate is engaged in a salt bridge interaction with Arg\(^{135} \). This is somewhat reminiscent of the published crystal structures of SR with bound malonate inhibitor, wherein one carboxylate of the malonate appears to be similarly engaged (39). However, unlike L-THA, malonate is, of course, not covalently engaged with the PLP cofactor at all.

When L-THA is docked into the active site of the S84D-hSR mutant, the results are much different. What we observe is Arg\(^{135} \) now interacting with the newly mutated S84D. The new re-face base, Asp\(^{84} \), has “hijacked” Arg\(^{135} \), forming an intramolecular salt bridge, which effectively renders Arg\(^{135} \) unavailable to assist with the binding and proper positioning of the charged substrates, L-SOS and L-THA. As can be seen in Fig. 6, this leads to a significant distortion of the substrate in the active site. This is illustrated with an overlayed image of the two structures (WT in lavender and S84D mutant in green).

The wild-type hSR enzyme is represented by purple residues, whereas the S84D mutant is shown in green. How might this simple mutation lead to the kinetic differences that we observe for the three hSR elimination substrates, L-SOS and L-THA?

Figure 5. Use of the MBP–hSR construct for expression and purification. A, purification gel comparison of the MBP–hSR and His\(_6\)–hSR constructs by Coomassie Blue staining and Western blotting. B, removal of the MBP tag. C, comparison of kinetic properties of the MBP–hSR with hSR values reported in the literature (40, 43, 57). D, comparison of MBP–hSR specific activity with that of other reported SR constructs (1, 43, 57, 60, 75).
strates, a large difference was observed in the behavior of L-serine compared with that of its charged counterparts. In Fig. 7 (left column), a typical example of the preferred docking orientation of each of the three substrates in the wild-type SR active site is shown. For all three cases, the substrate is aligned with a proper Dunathan orientation of the α-C–H bond to be broken. In other words, for all three cases, the α-C–H is nearly parallel with the π-system of the cofactor imine. In this case, Arg135 is not only important for substrate binding/recognition; it appears to also be vital to substrate positioning for catalysis.

For the mutant S84D, we no longer see proper orientation. Whereas L-serine remains relatively unchanged in position, L-SOS and L-THA exhibit a substantial rotation about the key C_4–N-Cα–H dihedral angle. This non-Dunathan orientation is consistent with the dramatic decrease in β-elimination activity for these substrates with the S84D mutant, in good agreement with the experimental kinetic results. This apparent importance of Arg135 raises interesting questions about the evolutionary history of serine racemase, as will be discussed below.

In an effort to understand the intermediate substrate preferences of the S84N mutant, molecular docking was also undertaken here. In nearly all docked structures, the new asparagine 84 residue was seen to interact with aspartate 238, probably through hydrogen bonding. Perhaps because residue 84 is no longer able to contribute to the α-carboxylate binding site, one sees a major cluster of conformers in which Arg135 is now engaged with the α-carboxylate.

Indeed with the charged substrates, L-SOS and L-THA, whereas in the WT enzyme these substrates appear to be “locked” into position for catalysis through electrostatic pairing with Arg135 (Figs. 6 and 7), in the S84N mutant, molecular docking identifies two nearly equally populated clusters of conformers, the aforementioned Arg135–α-carboxylate cluster (Fig. 8, left) and a second cluster of conformers in which the Arg135–side chain interaction is retained (Fig. 8, right). Inspection of the C_4–N-Cα–H dihedral angle for the individual members of each of these major clusters gives a dihedral angle range of 140–190° for the Arg135–α-carboxylate cluster and of 80–105° for the Arg135–side chain cluster. The latter dihedral angle window appears to be in the stereoelectronically allowed range for Dunathan-compliant α-deprotonation. Representative examples of members of each cluster for both the bound L-SOS-external aldimine (top half) and the bound L-THA-external aldimine are depicted in Fig. 8. Overall, this Arg135-toggle model for
substrate binding for the S84N mutant is consistent with the modest preference for these charged substrates displayed.

Overviewing this set of hSR mutants, then, in light of these docking results, one sees that WT enzyme appears to permit a sort of three-point binding interaction with Ser83, Ser84 (H9251-carboxylate), and Arg135 (charged side chains). Mutation to S84N appears to remove residue Asn84 from the binding pocket as it becomes engaged with Asp238. This appears to drive an Arg135-toggle in binding both anionic groups in the charged substrates. Mutation to S84D removes both residue Asp84 and Arg135 because they are predicted to combine to form a salt bridge. Whereas these in silico models are consistent with the relaxed preference for L-SOS and L-THA seen in the S84N mutant and with the dramatic reversal of substrate preference seen in the S84D mutant, they remain to be tested by structural biology studies in the future.

Probing the active site with inhibitors

That said, we next set out to undertake complementary experiments to provide additional data with which to evaluate this interesting hSR binding model. Namely, given the importance ascribed to Arg135, particularly in binding and positioning the charged substrates, L-SOS and L-THA, in this model, it seemed prudent to challenge this array of hSR active sites with a battery of inhibitors. A set of four inhibitor candidates was chosen: (i) malonate, (ii) L-aspartate/H9252-hydroxamate (L-ABH), (iii) L-erythro/H9252-hydroxyaspartate (L-EHA), and (iv) aminooxyacetate (AOAA). Three of these inhibitors bear anionic side chains that might be expected to engage Arg135, particularly in light of the substrate binding model being put forward here. The H9252-hydroxamate in L-ABH might also be expected to interact with Arg135, although probably not as strongly. Only for malonate is crystal structure information available (39), and indeed such an interaction with Arg135, particularly in light of the substrate binding model being put forward here. The β-hydroxamate in L-ABH might also be expected to interact with Arg135, although probably not as strongly. Only for malonate is crystal structure information available (39), and indeed such an interaction with Arg135 is seen (Fig. 4).

All experiments were conducted in competition with L-serine, the native substrate. The first two hSR inhibitors showed dramatically different behavior with WT-hSR versus the S84N and S84D mutants (Fig. 9 and Table 3). Malonate displayed competitive inhibition with $K_i = 65 \pm 3.2 \, \mu M$ (reported $K_i = 27-71 \, \mu M$ (38, 43, 57)). L-ABH also inhibited WT-hSR competitively, with $K_i = 155 \pm 11.2 \, \mu M$ (reported K_i of 93 μM (63)) but showed no inhibition of either the S84N or the S84D mutant. As
Figure 7. Molecular modeling to examine stereoelectronics in external aldimines for WT- and S84D-hSR. Molecular docking (Autodock version 4) results imply that whereas the L-Ser, L-SOS, and L-THA β-elimination substrates show proper Dunathan alignment in their respective external aldimines for WT-hSR, this alignment is significantly altered in the S84D mutant.

Figure 8. Molecular modeling suggests two types of bound conformations for L-SOS and L-THA in S84N-hSR. Molecular docking (Autodock version 4) results show two clusters of bound external aldimine conformers for the L-SOS and L-THA substrates with the S84N mutant. The conformers on the left exhibit an Arg135-α-carboxylate salt bridge and are non-Dunathan-aligned, whereas in conformers on the right, Arg135 is engaged with the charged side chain, leading to proper alignment for α-deprotonation.
a positive control, the oxime-forming global PLP-dependent enzyme inactivator, AOAA (1), was tested and displayed potent inactivation of WT-hSR as well as the S84N and S84D mutants (Table 3).

L-EHA exhibited competitive inhibition kinetics with $K_i = 31 \pm 1.5 \mu M$ for WT-hSR in our hands (reported K_i of 11–43 μM (43, 57)). Upon mutation of the active-site Ser84 to Asn, however, a pronounced 50-fold decrease in inhibition potency was observed as K_i increased to 1.5 mm. Even more extreme, the S84D mutant showed no inhibition with L-EHA at concentrations up to 20 mM (Fig. 10 and Table 3).

Table 3
Inhibitor profile across the hSR mutant array

Inhibitor Candidate	Structure	wt-hSR K_i (competitive)	S84N-hSR K_i (competitive)	S84D-hSR K_i (competitive)
L-EHA (L-erythro-L-hydroxy-Asp)	![Structure](image)	$K_i = 31 \pm 1.5 \mu M$	$K_i = 5.2 \pm 0.1 \mu M$	none
Malonate	![Structure](image)	$K_i = 65 \pm 3.2 \mu M$	none	none
L-ABH (L-Asp-L-hydroxamate)	![Structure](image)	$K_i = 155 \pm 11.6 \mu M$	none	none
AOAA (aminooxyacetaic acid)	![Structure](image)	$K_i = 1 \pm 0.1 \mu M$	$K_i = 7 \pm 0.4 \mu M$	$K_i = 5 \pm 0.4 \mu M$

Discussion

The effectiveness of all four inhibitors with native hSR and the inability of all but the universal PLP inactivator, AOAA, to inhibit the S84D mutant is a striking contrast and is consistent with the Arg135-charged side chain binding model that emerged from the earlier substrate scan/molecular modeling. Much as in the β-elimination substrate studies, the S84N mutant again displayed behavior that is intermediate between WT-hSR and S84D-hSR in the inhibition studies. Namely, in contrast to the S84D mutant, the S84N mutant is inhibited by L-EHA ($K_i = 1.5 \pm 0.1 \mu M$) but considerably less well than WT-hSR ($K_i = 31 \pm 1.5 \mu M$). These results are in line with the details of the molecular modeling that emerged earlier whereby it was predicted that Arg135 would be fully available for side chain carboxylate binding in WT-hSR (Fig. 6), partially available in the S84N mutant (Fig. 8) and unavailable in the S84D mutant (Fig. 6). Indeed, molecular modeling of the putative L-EHA-external aldimine with both WT-hSR and S84N hSR indicates that these active sites are also capable of engaging the β-carboxylate of L-EHA in a salt bridge with Arg135 (Fig. 11), consistent with the ability of this compound to inhibit both enzymes.

This study also raises interesting questions from the observation of the S84T mutant, particularly its ability to retain all hSR functions and yet to discriminate between the L-SOS (preferred) and L-THA substrates. Recent investigations into the mechanisms of the related PLP-dependent β-eliminases Drosophila CBS (64) and tryptophan synthase (65) may provide...
Both of these enzymes also catalyze the β-elimination of PLP-aldimine–bound L-serine along the normal reaction coordinate, for L-cystathionine and L-tryptophan biosynthesis, respectively. In the Drosophila CBS study (64), the authors claim to observe a carbanionic intermediate that is generated upon L-serine deprotonation. It is argued that this spe-

Figure 10. L-EHA inhibition steady-state kinetic results for WT- and S84N-hSR. A, Lineweaver–Burk plot for WT-hSR inhibition with L-EHA; B, secondary plot for these data. C, Lineweaver–Burk plot for S84N-hSR inhibition with L-EHA; D, secondary plot.

Figure 11. L-EHA inhibition molecular modeling. Shown are docking results (Autodock version 4) for the inhibitor L-erythro-β-hydroxyaspartate (A) in the wild-type hSR active site and in the S84N-hSR active site (B).
cies is an incompletely delocalized, PLP-stabilized α-carbanion, as opposed to a fully delocalized quinonoid intermediate. The authors argue that both the si-face lysine ammonium ion and a re-face serine residue are of central importance in stabilizing this key mechanistic intermediate.

Mueller and Dunn (65) have recently described a similar carbanionic intermediate for the archetypical β-replacement enzyme, tryptophan synthase, utilizing a new biophysical method that combines solid-state NMR, X-ray crystallography, and computational chemistry. Here too, the active site lysine ammonium ion is thought to stabilize the negative charge in this intermediate. It is, of course, possible that a similar carbanionic intermediate forms along the reaction coordinate for hSR. It may be that replacement of a β-H with a β-methyl group (S84T) results in a subtle repositioning of this residue, rendering it less efficient at stabilizing the developing negative charge in the enzyme-bound substrate aldimine upon α-deprotonation.

Indeed, it might well be the case that a stepwise mechanism involving initial rate-limiting substrate deprotonation takes place for the l-serine and l-THA hSR substrates, but not for l-SOS. The latter substrate, by virtue of having a good leaving group in sulfate, could presumably undergo a concerted β-elimination without the need to stabilize a discreet α-carbanionic PLP-substrate intermediate. This explanation is consistent with the observation that the hSR S84T mutant more effectively catalyzes the β-elimination of l-SOS as compared with that of l-THA, in contrast to WT-hSR. However, this is still quite speculative at this juncture. The nature of the PLP-centered intermediate in hSR catalysis has remained elusive heretofore, so future experiments will be needed to evaluate this notion. It may be possible to shed light on this hypothesis, at least indirectly, through the sort of Mueller/Dunn solid-state NMR/X-ray studies described above or through successful co-crystallization of hSR with known inhibitor L-EHA.

Evolutionary considerations

To examine the potential evolutionary implications of the favorable l-THA elimination kinetics observed here, we decided to construct a phylogenetic tree of various type II β-eliminases acting on l-serine (Fig. 12) (66). The blue dots represent enzymes known to racemize serine. What we observe is that only recently do we see serine racemase activity. Furthermore, an apparent ancestor is shared with enzymes that are annotated as l-THA dehydratases from Saccharomyces cerevisiae (67) and Pseudomonas sp. T62 (68). Very recently, such activity has been observed in a Caenorhabditis elegans enzyme as well (69). Looking more closely at the sequences of a range of proteins in this broad β-eliminate family, we observe the following trends. First, Ser84 is conserved in serine racemases and l-THA dehydratases. Perhaps most striking, Arg135 is also conserved among these examples while being absent in all other type II dehydratases (Fig. 13). These results are consistent with the substrate preferences (i.e. l-SOS and l-THA as preferred β-elimination substrates over l-Ser (Tables 1 and 2)) observed for the wild-type serine racemase. This also suggests that perhaps serine racemase is still early on in its evolution of function (see Fig. 12).
Human serine racemase structure/activity relationship studies

		84	135
hSR	hSR	HS£NHG	DESRENV
mSR	mSR	HS£NHG	DESREKV
rSR	rSR	HS£NHG	DESRENV
atSR	atSR	HS£NHKA	M5SSRETI
spSR	spSR	F5S£NHA	KDDREKM
hvSR	hvSR	F5S£NHA	M5SRSRI
paSR	paSR	F5S£NHA	T5EDREQI
piSR	piSR	F5S£NHA	G5EYRE
sTHADH	sTHADH	F5S£NHA	T5EDREQI
pTHADH	pTHADH	F5S£NHA	T5EDREQI
hSDH	hSDH	-SAGNAG	L5DFAFL
mSDH	mSDH	-SAGNAG	L5DIAQV
atTDH	atTDH	-SA£NHA	Y5DQAQAH
ecTDH	ecTDH	A5S£NHA	F5DEAKAK
sOASS	sOASS	-T5H£NTG	K5GM®K12
sTrP5	sTrP5	-G5A£QH	SATLKDA
hCBS	hCBS	-T5S£NTG	ARF®S®FE
mCBS	mCBS	-T5S£NTG	ARF®S®FE

Figure 13. Alignment of fold type II enzymes. Arg^135 is conserved among enzymes showing l-THA eliminase activity consistent with the functional role of this residue postulated herein. h, human; m, mouse; r, rat; at, Arabidopsis thaliana; sp, S. pombe; hv, Hordeum vulgare; pa, Pseudomonas aeruginosa; pi, Pyrobaculum islandicum; sc, S. cerevisiae; p, Pseudomonas T02; ec, E. coli; s, Salmonella.

Conclusions

Since the discovery of D-serine as a potent co-agonist of the NMDA receptor, there has been growing interest in the enzyme responsible for its biosynthesis, serine racemase. Its implication in various disease states has further raised interest in developing selective inhibitors (ischemic stroke and potentially Alzheimer’s disease and ALS) or stimulators (schizophrenia) of this enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme. A new expression construct for hSR is reported here, namely the MBP–hSR fusion protein, that yields higher titers of enzyme.

Experimental procedures

Recombinant His–hSR

Human serine racemase cDNA was purchased from Origene and amplified using the following primers (IDT): 5'-CCT TCT TGCTAGCTG TGC TCA GTA TTG CAT C-3' (forward) and 5'-CAC CGG CTC GAG AAT TCC CAT TTG 3' (reverse) for the NheI and XhoI restriction sites, respectively. Gene Runner software was used to design the primers, and the 10198-0118 PCR Reagent System (Invitrogen) was utilized. The cDNA was inserted into the pGEM-T cloning vector (Promega) and used to transform DH5α-derived E. coli made competent by the calcium chloride method. Plasmids from overnight cultures were extracted using a plasmid miniprep spin kit (Qiagen) and verified by 1% agarose gel as well as sequencing with T7 and T7term primers. After double digestion, the fragment was inserted into the pET-28c plasmid. BL21(DE3)-pLysS E. coli was used for expression.

Starte cultures of 3-ml volume, grown overnight, were used to inoculate 1 liter of Luria–Bertani broth (Difco), supplemented with an additional 5 g/liter yeast extract. Cells were grown at 37 °C and 250 rpm. When the cells reached an A_{600} of 0.8, the temperature was reduced to 25 °C, and the cells were induced with 0.1–0.5 mM isopropyl 1-thio-β-D-galactopuranoside for 18 h at 300 rpm. Cells were pelleted by centrifugation for 15 min at 10,000 × g and stored at −80 °C.

Purification of His–hSR

Cells were resuspended in assay Buffer A (200 mM TEA, 150 mM KCl, 10 mM DTT, 5 mM MgCl2, 2.5 mM ATP, and 50 μM PLP, pH 8.0) at a volume of 1 ml/g of wet cell mass. Cells were disrupted by sonication on ice for 5 cycles (1 min on/1 min off) and centrifuged for 15 min at 15,000 × g. The supernatant contained modest levels of hSR and no visible SDS-PAGE band, whereas the pellet, when solubilized in the same volume of Buffer B (10 mM Tris, 100 mM sodium phosphate, 8 mM urea, pH 7) as the crude supernatant, exhibited a very intense band at ~37 kDa. To verify that this band was insoluble His-tagged hSR protein, the solubilized pellet fraction was applied to a nickel-nitrilotriacetic acid column. The protein did bind and was successfully eluted, with decreasing pH, yielding a single band on SDS-PAGE that matched the expected molecular weight for hSR.

Recombinant GST–hSR

Human serine racemase cDNA was purchased from Origene (catalog no. TC11289) and amplified using the primers (IDT) 5'-CGT TGC GGA TCC ATG TGT GAG TAT GCG TAT GCC TAC TG-3'
Human serine racemase structure/activity relationship studies

Recombinant MBP–hSR

The protein was designed to bear the N-terminal MBP tag present in the pMAL-c2X (New England Biolabs) vector. The following primers were employed in this system (IDT): 5′-CGT TGC GGA TCC ATG TGT GCT CAG TAT TGC (reverse) and 5′-CAC CTA GTC GAC AAT TCC CAC CAT TTC C-3′ (forward), for restriction sites BamHI and SalI, respectively. The cDNA was double-digested and inserted into the pGEX-4T1 expression vector (GE Healthcare) and used to transform DH5α-derived E. coli made competent by the calcium chloride method. Plasmids from overnight cultures were extracted using a plasmid miniprep spin kit (Qiagen) and used to transform BL21(DE3)pLysS E. coli for expression.

Purification of GST–hSR

Cells were resuspended in assay Buffer A at a volume of 1 ml/g of wet cell mass. Cells were disrupted by sonication on ice for five cycles (1 min on/1 min off) and centrifuged for 15 min at 15,000 × g. The supernatant displayed more units of activity per liter of culture compared with the His–hSR construct but did not yield a visible band by SDS-PAGE. When the pellet was solubilized in Buffer B, there did exist a strong band at the expected molecular weight of the GST–hSR construct. SDS-PAGE indicated that most of the expressed protein was relegated to the insoluble pellet, so further purification was not attempted.

Purification of hSR

Cells were resuspended in assay Buffer A at a volume of 1 ml/g of wet cell mass. Cells were disrupted by sonication on ice for five cycles (1 min on/1 min off) and centrifuged for 15 min at 15,000 × g. The supernatant displayed more units of activity per liter of culture compared with the His–hSR construct but did not yield a visible band by SDS-PAGE. When the pellet was solubilized in Buffer B, there did exist a strong band at the expected molecular weight of the GST–hSR construct. SDS-PAGE indicated that most of the expressed protein was relegated to the insoluble pellet, so further purification was not attempted.

Inhibition studies

Wild-type hSR and the S84N and S84D mutants were probed for inhibition by malonate, l-EHA, l-ABH, and AOAA. Utilizing the l-serine elimination assay at various l-serine concentrations (5, 10, 15, and 20 mM) and a battery of inhibitor concentrations, Ki values were determined following standard steady-state kinetic analysis. Wild-type hSR was examined with all inhibitors (except AOAA) at inhibitor concentrations of 65, 125, 312, 625, and 1250 μM. For the S84N mutant (aside from AOAA), inhibition was seen only with L-erythro-β-hydroxyaspartate upon incubation at 2.5, 5, 7.5, and 10 mM concentrations. The S84D mutant showed no inhibition up to 20 mM concentration with malonate, l-EHA, and l-ABH. The WT-
Human serine racemase structure/activity relationship studies

hSR and S84N and S84D mutants were all effectively inhibited by AOAA, which was tested at 1, 2, 3, 4, 5, and 10 μM. Activity was measured by observing the decrease in absorbance at 340 nm associated with the consumption of NADH in the coupled lactate dehydrogenase reaction converting pyruvate to l-lactate.

Oligomeric state determination

Native PAGE and gel filtration analysis were used to determine the oligomeric state of the MBP–hSR construct. For native gels, molecular weight markers from GE Healthcare (High MW) were used. Electrophoresis was run using 4% stacking, 9% resolving discontinuous polyacrylamide minigels at constant current (40 mA) under flow-cooling in a Hoeffer Mighty Small II apparatus. A calibration curve (Rf versus log Mn) was constructed for the standards. The primary MBP–hSR band displayed an Rf value of 0.397, corresponding to an apparent molecular mass of 185 kDa, which corresponds to a dimer (2.3 monomeric units) based on the calculated monomeric molecular mass of 79.6 kDa. A similar analysis of the His6–hSR construct by native PAGE showed an apparent molecular mass of 81.5 kDa, again corresponding to a dimeric structure (2.1 monomeric units). Gel filtration analysis employing a GE Healthcare S-200 High-Prep Sephacryl HS column with BioLogic DuoFlow software was utilized. A calibration curve was constructed using the GE Healthcare high molecular weight gel filtration calibration kit and revealed an apparent molecular mass of 247 Da for the new construct, suggestive of an oligomeric composition of 3.1 (possible dimer–tetramer equilibration (58)).

Homology modeling

To construct a hSR homology model, the 340-amino acid human serine racemase protein sequence (NCBI accession number NP_068766) was BLASTed against the NCBI structural database (70). A multiple-sequence alignment was performed on hSR, 3L6B, 1WTC, and 2ZPU, using the ClustalW algorithm (71). This alignment forms the basis for construction the hSR model by MODELLER (72).

ATP, PLP, Ca2+, and Mg2+ were copied into the homology model from the template structures. PLP is bound to all template structures in a similar orientation. Of these, PLP from 3L6B was chosen for the hSR model. 1WTC contains a bound ATP/Mg2+ analogue that was copied into the hSR model and energy-minimized so as to represent bound ATP.

Molecular dynamics and docking experiments

All MD simulations were performed using the GROMACS software package (73). Before each run, the structure was solvated in a water box using the spc216 water model. Box dimensions were set so that the hSR model was no closer than 1 nm to the edge of the box. Simulations were performed using the GROMOS96 force field, periodic boundary conditions, standard temperature-coupling schemes, and the particle-mesh Ewald method for determining long-range electrostatics. Each MD run was preceded by a 1000-step steepest descent energy minimization and a 20-ps position-restrained MD simulation. Each full MD simulation was performed for 2 ns at 300 K, using 2-fs time steps.

The first simulation contained Ca2+, ATP/Mg2+, and non-covalently bound PLP. This setup was chosen to allow the active-site lysine (Lys56) to reorient itself to a position that would not obstruct external aldime docking. Following the initial 2-ns MD simulation, the hSR structure was energy-minimized and prepared for docking. Autodock version 4 was used to dock the external aldime of l-serine, l-serine-O-sulfate, l-threo-β-hydroxyaspartate, and l-erythro-β-hydroxyaspartate into the hSR active site (74).

Author contributions—D. B. B., D. L. N., G. A. A., M. L. B., and D. L. G. designed the experiments. D. L. N., G. A. A., M. L. B., and D. L. G. performed the experiments. D. B. B., D. L. N., G. A. A., M. L. B., and D. L. G. reviewed and analyzed the results, contributed to writing the manuscript, and approved the final version.

Acknowledgment—Facilities in this work were supported by a Grant-in-Aid from the National Institutes of Health Grant RR016544.

References

1. Wolosker, H., Sheth, K. N., Takahashi, M., Mothet, J. P., Brady, R. O., Jr., Ferris, C. D., and Snyder, S. H. (1999) Purification of serine racemase: Biosynthesis of the neuromodulator d-serine. Proc. Natl. Acad. Sci. U.S.A. 96, 721–725
2. Berger, A. J., Dieudonné, S., and Ascher, P. (1998) Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J. Neurophysiol. 80, 3336–3340
3. Mothet, J.-P., Parent, A. T., Wolosker, H., Brady, R. O., Jr., Linden, D. J., Ferris, C. D., Rogawski, M. A., and Snyder, S. H. (2000) d-Serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc. Natl. Acad. Sci. U.S.A. 97, 4926–4931
4. Wolosker, H. (2007) NMDA receptor regulation by d-serine: New findings and perspectives. Mol. Neurobiol. 36,152–164
5. Ishiwata, S., Umino, A., Balu, D. T., Coyle, J. T., and Nishikawa, T. (2015) Neuronal serine racemase regulates extracellular d-serine levels in the adult mouse hippocampus. J. Neural Transm. 122, 1099–1103
6. Wolosker, H., Balu, D. T., and Coyle, J. T. (2016) The rise and fall of the d-serine-mediated glutamatergic transmission hypothesis. Trends Neurosci. 39, 712–721
7. Berkowitz, D. B., Karukurichi, K. R., de la Salud-Bea, R., Nelson, D. L., and McCune, C. D. (2008) Use of fluorinated functionality in enzyme inhibitor development: mechanistic and analytical advantages. J. Fluor. Chem. 129, 731–742
8. Karukurichi, K. R., de la Salud-Bea, R., Jahng, W. J., and Berkowitz, D. B. (2007) Examination of the new α-(2'-Z-fluoro)vinyl trigger with lysine decarboxylase: the absolute stereochemistry dictates the reaction course. J. Am. Chem. Soc. 129, 258–259
9. Berkowitz, D. B., Wu, B., and Li, H. (2006) A formal [3,3]-sigmatropic rearrangement route to quaternary α-vinyl amino acids: use of allylic N-PMP trifluorocetimides. Org. Lett. 8, 971–974
10. Berkowitz, D. B., de la Salud-Bea, R., and Jahng, W. J. (2004) Synthesis of quaternary amino acids bearing a (2’Z)-fluorovinyl α-branched: potential PLP enzyme inactivators. Org. Lett. 6, 1821–1824
11. Berkowitz, D. B., McFadden, J. M., Chisowa, E., and Semerdaj, C. L. (2000) Organoselenium-based entry into versatile, α-(2-tributylstannyl)vinyl amino acids in scissile form: a new route to vinyl stannanes. J. Am. Chem. Soc. 122, 11031–11032
12. Berkowitz, D. B., and Smith, M. K. (1996) A convenient synthesis of l-α-vinylglycine from l-homoserine lactone. Synthesis 1, 39–41
13. Berkowitz, D. B., Jahng, W.-J., and Pedersen, M. L. (1996) α-Vinyllysine and α-vinylarginine are time-independent inhibitors of their cognate decarboxylases. Bioorg. Med. Chem. Lett. 6, 2515–2516
Human serine racemase structure/activity relationship studies

14. Tan, B. H., Wong, P. T., and Bian, J. S. (2010) Hydrogen sulfide: a novel signaling molecule in the central nervous system. Neurochem. Int. 56, 3–10

15. Kimura, H. (2000) Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem. Biophys. Res. Commun. 267, 129–133

16. Mustafa, A. K., Ahmad, A. S., Zeynalo¨glu, E., Gazi, S. K., Sikka, G., Ehsen, J. T., Barrow, R. K., Coyle, J. T., Snyder, S. H., and Doré, S. (2010) Serine racemase deletion protects against cerebral ischemia and excitotoxicity. J. Neurosci. 30, 1413–1416

17. Abe, T., Suzuki, M., Sasabe, J., Takahashi, S., Unekawa, M., Mashima, K., Iizumi, T., Hamase, K., Konno, R., Aiso, S., and Suzuki, N. (2014) Cellular origin and regulation of N- and L-serine in vitro and in vivo models of cerebral ischemia. J. Cereb. Blood Flow Metab. 34, 1928–1935

18. McCune, C. D., Chan, S. J., Beio, M. L., Shen, W., Chung, W. J., Szczesniak, L. M., Chai, C., Koh, S. Q., Wong, P. T. H., and Berkowitz, D. B. (2016) “Zipped synthesis” by cross-metathesis provides a cystathionine β-synthase inhibitor that attenuates cerebral H₂S levels and reduces neuronal infarction in a rat ischemic stroke model. ACS Cent. Sci. 2, 242–252

19. Madeira, C., Lourenço, M. V., Vargas-Lopes, C., Suemoto, C. K., Brandaño, C. O., Reis, T., Leite, R. E. P., Laks, J., Jacob-Filho, W., Pasqualeu, C. A., Grinberg, L. T., Ferreira, S. T., and Panizzutti, R. (2015) N-serine levels in Alzheimer’s disease: implications for novel biomarker development. Transl. Psychiatry 5, e561

20. Paul, P., and de Belleruche, J. (2014) The role of N-serine and glycine as co-agonists of NMDA receptors in motor neuron degeneration and amyotrophic lateral sclerosis (ALS). Prog. Neuro-Psychopharmacol. Biol. Psychiatry 46, 1507–1515

21. Xia, M., Zhu, S., Shevelkin, A., Ross, C. A., and Pletnikov, M. (2016) Dracostyly and neuronal maturation: a possible mechanistic link with implications for mental disorders. J. Neurochem. 138, 518–524

22. Van der Auwera, S., Teumer, A., Hertel, J., Homuth, G., Volker, U., Lucht, M. J., Degenhardt, F., Schulze, T., Rietschel, M., No¨then, M. M., John, U., Nauck, M., and Grabe, H. J. (2016) The inverse link between genetic variation in ASER and the risk for schizophrenia and bipolar disorder. J. Biol. Chem. 291, 106, 7589–7594

23. Puhl, M. D., Mintzopoulos, D., Jensen, J. E., Gillis, T. E., Konopaske, G. T., Kaufman, M. J., and Coyle, J. T. (2015) In vivo magnetic resonance studies reveal neuroanatomical and neurochemical abnormalities in the serine racemase knockout mouse model of schizophrenia. Neurobiol. Dis. 73, 269–274

24. Panatier, A., Theodossis, D. T., Mothet, J.-P., Touquet, B., Pollegioni, L., Poulain, D. A., and Oliet, S. H. R. (2006) Glia-derived D-serine controls NMDA receptor activation via D-serine. FEBS J. 280, 1754–1763

25. Marchetti, M., Bruno, S., Campanini, B., Peracchi, A., Mai, N., and Mozzarelli, A. (2013) ATP binding to human serine racemase is cooperative and modulated by glycine. FEBS J. 280, 5853–5863

26. Neidle, A., and Dunlop, D. S. (2002) Allosteric modulation of mouse brain serine racemase by pyridoxal 5′-phosphate. Acta Crystallogr. F Struct. Biol. Commun. 72, 165–171

27. Vorlova, B., Nachrigallova, D., Jiraˇskova´-Vanı´cˇkova´, J., Ajani, H., Jansa, P., Rezaˇc, J., Fanfrik, J., Otypsyka, M., Hobza, P., Konvalinka, J., and Leps ˇí´k, M. (2015) Malonate-based inhibitors of mammalian serine racemase: kinetic characterization and structure-based computational study. Eur. J. Med. Chem. 89, 189–197

28. Smith, M. A., Mack, V., Ebneth, A., Moraes, I., Felicetti, B., Wood, M., Shleper, M., Li, P., Toney, M. D., Kartvelishvily, E., and Wolosker, H. (2005) Serine racemase modulates intracellular N-serine levels through an αβ-elimination activity. J. Biol. Chem. 280, 1754–1763

29. Strisovsky, K., Jirásková, J., Barinka, C., Majer, P., Rojas, C., Slusher, B. S., and Konvalinka, J. (2003) Mouse brain serine racemase catalyzes specific elimination of N-serine to pyruvate. FEBS Lett. 535, 44–48

30. Goto, M., Yamauchi, T., Kamiya, N., Miyahara, I., Yoshimura, T., Mihara, H., Kurihara, T., Hirotsu, K., and Esaki, N. (2009) Crystal structure of a homolog of mammalian serine racemase from Schizosaccharomyces pombe. J. Biol. Chem. 284, 25944–25952

31. Strisovsky, K., Jirásková, J., Mikulová, A., Rušek, L., and Konvalinka, J. (2005) Dual substrate and reaction specificity in mouse serine racemase: identification of high-affinity dicarboxylate substrate and inhibitors and analysis of the β-elimination activity. Biochemistry 44, 13091–13100

32. Nitoker, N., and Major, D. T. (2015) Understanding the reaction mechanism and intermediate stabilization in mammalian serine racemase using multiscale quantum-classical simulations. Biochemistry 54, 516–527

33. Cerqueira NMFS, Moorthy, H., Fernandes, P. A., and Ramos, M. J. (2017) The mechanism of the Ser-(cis)-Ser-Lys catalytic triad of peptide amidases. Phys. Chem. Chem. Phys. 19, 12343–12354

34. Valiña, A. L. B., Mazumder-Shivakumar, D., and Bruce, T. C. (2004) Probing the Ser-Lys-catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate. Biochemistry 43, 15657–15672

35. Shin, S., Lee, T.-H., Ha, N.-C., Koo, H. M., Kim, S.-Y., Lee, H.-S., Kim, Y. S., and Oh, B.-H. (2002) Structure of malonamide E2 reveals a novel Ser-cis-Ser-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature. EMBO J. 21, 2509–2516

36. Labahn, J., Neumann, S., Büldt, G., Kula, M.-R., and Granzin, J. (2002) An alternative mechanism for amidease signature enzymes. J. Mol. Biol. 322, 1053–1064

37. Wu, Z.-M., Zheng, R.-C., and Zheng, Y.-G. (2017) Identification and characterization of a novel amidease signature family amidease from Parvicubulum lavamentivorans sibiricus. Protein Expr. Purif. 129, 60–68

38. Lee, S., Park, E.-H., Ko, H.-J., Bang, W. G., Kim, H.-Y., Kim, K. H., and Choi, I.-G. (2015) Crystal structure analysis of a bacterial acyl amidase belonging to the amidease signature enzyme family. Biochem. Biophys. Res. Commun. 467, 268–274
Human serine racemase structure/activity relationship studies

51. Neu, D., Lehmann, T., Elleuche, S., and Pollmann, S. (2007) Arabidopsis amidase 1, a member of the amidase signature family. FEBS J. 274, 3440–3451
52. Mileni, M., Kamekar, S., Wood, D. C., Benson, T. E., Cravatt, B. F., and Stevens, R. C. (2010) Crystal structure of fatty acid amidase bound to the carbamate inhibitor URB597: discovery of a decaying water molecule and insight into enzyme inactivation. J. Mol. Biol. 400, 743–754
53. McKinney, M. K., and Cravatt, B. F. (2005) Structure and function of fatty acid amidase hydrolase. Annu. Rev. Biochem. 74, 411–432
54. McKinney, M. K., and Cravatt, B. F. (2003) Evidence for distinct roles in catalysis for residues of the serine-serine-lysine catalytic triad of fatty acid amidase hydrolase. J. Biol. Chem. 278, 37393–37399
55. Pratt, R. F., and McLeish, M. J. (2010) Structural relationship between the active sites of β-lactam-recognizing and amidase signature enzymes: convergent evolution? Biochemistry 49, 9688–9697
56. Akiyama, T., Ishii, M., Takuwa, A., Oinuma, K.-I., Sasaki, Y., Takaya, N., and Yajima, S. (2017) Structural basis of the substrate recognition of hydrazide isolated from Microbacterium sp. strain hm58-2, which catalyzes acylhydrazide compounds as its sole carbon source. Biochem. Biophys. Res. Commun. 482, 1007–1012
57. Hoffman, H. E., Jirásková, J., Ingr, M., Zvelebil, M., and Konvalinka, J. (2009) Recombinant human serine racemase: enzymologic characterization and comparison with its mouse ortholog. Protein Expr. Purif. 63, 62–67
58. Bruno, S., Margiotta, M., Marchesani, F., Paredi, G., Orlandi, V., Faggiano, S., Ronda, L., Campanini, B., and Mozzarelli, A. (2017) Magnesium and calcium ions differentially affect human serine racemase activity and modulate its quaternary equilibrium toward a tetrameric form. Biochim. Biophys. Acta 1865, 381–387
59. Ito, T., Maekawa, M., Hayashi, S., Goto, M., Hemmi, H., and Yoshimura, T. (2013) Catalytic mechanism of serine racemase from Dictyostelium discoideum. Amino Acids 44, 1073–1084
60. Wang, C.-Y., Ku, S. C., Lee, C.-C., and Wang, A. H. J. (2012) Modulating the function of human serine racemase and human serine dehydratase by protein engineering. Protein Eng. Des. Sel. 25, 741–749
61. Suo, Y. W. C., Yosaattmadja, Y., Squire, C. J., and Patrick, W. M. (2016) Mechanistic and evolutionary insights from the reciprocal promiscuity of two pyridoxal phosphate-dependent enzymes. J. Biol. Chem. 291, 19873–19887
62. Dunathan, H. C. (1966) Conformation and reaction specificity in pyridoxal phosphate enzymes. Proc. Natl. Acad. Sci. U.S.A. 55, 712–716
63. Hoffman, H. E., Jirásková, J., Cigler, P., Sanda, M., Schraml, J., and Konvalinka, J. (2009) Hydroxamic acids as a novel family of serine racemase inhibitors: mechanistic analysis reveals different modes of interaction with the pyridoxal-5’-phosphate cofactor. J. Med. Chem. 52, 6032–6041
64. Koutmos, M., Kabil, O., Smith, J. L., and Banerjee, R. (2010) Structural basis for substrate activation and regulation by cystathionine β-synthase (CBS) domains in cystathionine β-synthase. Proc. Natl. Acad. Sci. U.S.A. 107, 20958–20963
65. Caukkins, B. G., Young, R. P., Kudla, R. A., Yang, C., Bittbauer, T. J., Bastin, B., Hilario, E., Fan, L., Marsella, M. J., Dunn, M. F., and Mueller, L. J. (2016) NMR crystallography of a carbanionic intermediate in tryptophan synthase: chemical structure, autoamidation, and reaction specificity. J. Am. Chem. Soc. 138, 15214–15226
66. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013) Megate: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729
67. Wada, M., Nakamori, S., and Takagi, H. (2003) Serine racemase homologue of Saccharomyces cerevisiae has i-threo-3-hydroxyaspartate dehydratase activity. FEMS Microbiol. Lett. 225, 189–193
68. Murakami, T., Maeda, T., Yokota, A., and Wada, M. (2009) Gene cloning and expression of pyridoxal 5’-phosphate-dependent i-threo-3-hydroxyaspartate dehydratase from Pseudomonas sp. T62, and characterization of the recombinant enzyme. J. Biochem. 145, 661–668
69. Katane, M., Saitoh, Y., Uchiyama, K., Nakayama, K., Saitoh, Y., Miyamoto, T., Sekine, M., Uda, K., and Homma, H. (2016) Characterization of a homologue of mammalian serine racemase from Caenorhabditis elegans: the enzyme is not critical for the metabolism of serine in vivo. Genes Cells 21, 966–977
70. McGinnis, S., and Madden, T. L. (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32, W20–W25
71. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680
72. Sali, A., and Blundell, T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815
73. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447
74. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J. (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791
75. Panizzutti, R., De Miranda, J., Ribeiro, C. S., Engelder, S., and Wolosker, H. (2001) A new strategy to decrease N-methyl-D-aspartate (NMDA) receptor coactivation: inhibition of β-serine synthesis by converting serine racemase into an eliminase. Proc. Natl. Acad. Sci. U.S.A. 98, 5294–5299