We calculate the form of quasiparticle interference patterns in bilayer graphene within a low-energy description, taking into account perturbatively the trigonal warping terms. We introduce four different types of impurities localized on the A and B sublattices of the first and the second layer, and we obtain closed-form analytical expressions both in real and Fourier spaces for the oscillatory corrections to the local density of states generated by the impurities (see Figure 1). Finally, we compare our findings with recent experimental and semi-analytical T-matrix results from arXiv:2104.10620 and we show that there is a very good agreement between our findings and the previous results, as well as with the experimental data.

Figure 1: Analytically calculated and experimentally measured quasiparticle interference patterns are presented in dimensionless momentum space in the left and right panels, respectively.