HAM on MHD Convective Flow of a Third grade Fluid through Porous Medium during Wire Coating Analysis with Hall effects

B.Siva Kumar Reddy¹, K.V.Surya Narayana Rao² and R.Bhuvana Vijaya³

¹,²Department of Mathematics, RGM College of Engineering & Technology (Autonomous) Nandyal, Kurnool, Andhra Pradesh-518501, India
³Department of Mathematics, JNTUA College of Engineering, Anantapuram, Andhra Pradesh – 515002, India

E-mail: sivajasmine707@gmail.com; suryam1968@gmail.com; bhuvanarachamalla@gmail.com

Abstract. In this study, wire coating is performed using MHD convective flow of third grade fluid through porous medium taking Hall current into account. The governing equations are first modelled and then solved analytically by utilizing the Homotopy analysis method (HAM). The convergence of the series solution is established. The effect of pertinent parameters on the velocity field and temperature profile is shown with the help of graphs. It is observed that the velocity profiles increase as the value of visco-elastic third grade fluid parameter β increase and decrease as the Hartmann number M and permeability parameter K increase. It is also observed that the temperature profiles increases as the Brinkman number Br, permeability parameter K, magnetic parameter M and third grade fluid parameter β increase.

Keywords: MHD flow; heat transfer; wire coating; Visco-elastic fluid; porosity; Homotopy analysis method (HAM).

1. Introduction

Wire coating process is a continuous extrusion process for primary insulation of conducting wires with molten polymers for mechanical strength and protection in aggressive environments. Nylon, polysulfide, low/high density polyethylene (LDPE/HDPE) and plastic polyvinyl chloride (PVC) are the common and important plastic resin used for wire coating. Metallic coating is an industrial process for the supply of insulation, environmental safety, mechanical damage and protect against signal attenuation. The simple and appropriate process for wire coating is the coaxial extrusion process that operates at the maximum speed of pressure, temperature and wire drawing. This produces higher pressure in the particular region, resulting in a strong bond and rapid coating. Several studies have been focused on the co-extrusion process in which the fibers or wires are drawn inside the molten polymer filled in a die. In coating of the wire, the rate of wire drawing, temperature and the quality of materials are important parameters. Different types of fluids are used for wire which depends upon the geometry of die, fluid viscosity, the temperature of the wire and that of the molten polymer. Considerable attention has been given to the Newtonian fluids to study the effect of heat transfer analysis. However, less attention has been given to the non-Newtonian fluids [1–4]. A full review of
the literature is beyond the scope of this work. However, some studies are listed here to provide a perspective of the work accomplished so far [5]. The properties of the final product greatly depend on the rate of cooling in the manufacturing processes. The central cooling system is beneficial to facilitate the process for a designed product. An electrically conducting polymeric liquid seems to be a good candidate for some industrial application such as in polymer technology and extrusion processes because the flow can be regulated by external means through a magnetic field as well as a porous matrix. Magneto-hydrodynamics (MHD) addresses the electrically conductive fluid flows in the existence of a magnetic field. Researchers have devoted considerable attention to the study of MHD flow problems focusing on non-Newtonian fluids because of its broad applications in the fields of engineering and industrial manufacturing [6–8]. Some examples of these areas are energy generators MHD, melting of metals by the application of a magnetic field in an electric furnace, the cooling nuclear reactors, plasma studies, the use of non-metallic inclusions in the purification of molten metals and extractions of geothermal energy [9–10]. The applied magnetic field as well as the porous matrix may play an important role in controlling momentum and heat transfer in the boundary layer flow of different fluids in the process of wire coating. In view of this, many authors have explored the effect of transverse magnetic field and porous matrix on Newtonian and non-Newtonian fluids. The effect of the transverse magnetic field as well as porosity was examined by several authors.

In this paper, we examine the effect of MHD and heat transfer on the steady flow of visco-elastic fluid in which the wire has been drawn at higher speed in the presence of the porous medium and taking hall current into account. Although, there are a few studies on the flow and heat transfer of non-Newtonian fluids, careful examination of the literature reveals that a visco-elastic fluid has received very little attention. To the best of our knowledge, no one has studied MHD flow and heat transfer of a visco-elastic fluid for wire coating analysis in the presence of the porous medium. In this context, the constitutive equations for velocity and temperature profiles are solved by the homotopy analysis method.

2. Formulation and Solution of the Problem

We consider an elasto-hydrodynamic coating system in which the continuum enters between the leakage control units that is attached to the melting chamber. The continuum after crossing the melting chamber enters the plasto-hydrodynamic pressure unit. Here, the hydrodynamic pressure helps to deposit a coating on the wire. The bull block after winding a coated wire is driven by a variable speed motor as shown in Figure 1.

![Figure 1: Emblematic wire coating line](image-url)
The schematic diagram of the flow geometry is shown in Figure 2. The wire is extruded along the central line of the die with velocity \(V \) having temperature \(\theta_w \) and radius \(R_w \) in a bath of third grade fluid used as a melt polymer like polyvinyl chloride (PVC) in a porous medium inside a stationary pressure type die of finite length \(L \), radius \(R_d \) and temperature \(\theta_d \). The fluid acts upon a constant pressure gradient in the axial direction and a transverse magnetic field of strength \(B_0 \). The magnetic field is perpendicular to the direction of incompressible flow. The magnetic Reynolds number is taken to be small enough so that the induced magnetic field can be neglected. As a result the Lorentz force comes into play in the present set up which affects the coating process.

![Fig. 2 Physical Configuration of the Problem](image)

The die is filled with an incompressible third grade fluid. The wire and die are concentric and the coordinate system is chosen at the center of the wire in which \(r \) is taken perpendicular to the flow direction and \(z \)-axis is along the flow. The flow is considered steady, laminar and axisymmetric. Furthermore, the design of the coating die is more important because it greatly affects the quality of the final product. For this reason, a pressure type coating die is considered for the wire coating process. With the above mentioned frame of reference and assumptions the fluid velocity, extra stress tensor and temperature fields are considered as:

\[
\vec{w} = \begin{bmatrix} 0, 0, u(r) \end{bmatrix}, S = S(r), \theta = \theta(r)
\]

Boundary conditions are:

\[
u = V, \theta = \theta_w \quad \text{at} \quad r = R_w,
\]

\[
u = 0, \theta = \theta_d \quad \text{at} \quad r = R_d
\]

The extra stress tensor for third grade fluid is defined as:

\[
S = \eta A_1 + \alpha_1 A_2 + \alpha_2 A_1 + \tau_1 A_3 + \tau_2 (A_1 A_2 + A_2 A_1) + \tau_3 (tr A_i) A_i
\]

in which \(\eta \), \(\alpha_1, \alpha_2, \tau_1, \tau_2, \tau_3 \) are constant and \(A_1, A_2, A_3 \) are kinematical tensors:

\[
A_i = L^T + L, A_n = A_{n-1} L^T + L A_{n-1} + \frac{DA_{n-1}}{Dt}, n = 2, 3, \ldots...
\]
in which \(\rho \), is the fluid density, \(\frac{D}{Dt} \) the material derivative, \(\vec{J} \) the current density, \(\vec{B} \) the total magnetic field, \(\eta \) the dynamic viscosity, \(K \) the permeability parameter, \(C_p \) the specific heat, \(k \) the thermal conductivity, \(\phi \) the dissipation function and \(\vec{w} \) is the velocity vector.

In Equation (6), the body force \(\vec{J} \times \vec{B} \) per unit volume of electromagnetic origin appears due to the interaction of the current and the magnetic field. The electrostatic force due to charge density is considered to be negligible. A uniform magnetic field of strength is assumed to be applied in the positive radial direction normal to the wire, i.e., the retarding force per unit volume acting along the z-axis is given by:

\[
\vec{J} \times \vec{B} = (0, 0, -\sigma B_0^2 u)
\] (8)

When the strength of the magnetic field is very large, the generalised ohm’s law is modified to include the Hall current.

If the hall term is retained the current density \(\vec{J} \) is given by [Sutton] (10)

\[
\vec{J} = \varepsilon \left[\vec{V} \times \vec{B}_0 - \beta (\vec{J} \times \vec{B}_0) \right]
\] (9)

Where, \(\varepsilon \) is the electric conductivity of the fluid and \(\beta \) is the hall factor. Equation (9) may be solved in \(\vec{J} \) to obtain the electromagnetic Lorentz’s force in the form

\[
\vec{J} \times \vec{B}_0 = -\frac{\varepsilon B^2_0 u}{1 + m^2} \vec{V} \vec{k}
\] (10)

Where \(m = \varepsilon \beta B_0 \) is the Hall parameter, \(B_0 \) is the magnetic induction, \(\vec{k} \) is the unit vector along the z-direction.

In view of Equations (1)–(8) and assuming that there is no pressure gradient along the axial direction, we have the dimensional governing equation of the form:

\[
2(\tau_2 + \tau_3) \frac{d}{dr} \left(r \left(\frac{du}{dr} \right) \right) + \eta \frac{d}{dr} \left(\frac{du}{dr} \right) - \frac{\sigma B^2_0 u}{1 + m^2} - \eta u = 0
\] (11)

\[
k \left(\frac{d^2 \theta}{dr^2} + \frac{1}{r} \frac{d \theta}{dr} \right) + \eta \left(\frac{du}{dr} \right)^2 + 2(\tau_2 + \tau_3) \left(\frac{du}{dr} \right)^4 = 0
\] (12)

We introduce the following dimensionless parameters:

\[
\frac{r}{R_w}, \frac{u}{V}, \beta = \tau_2 + \tau_3, \frac{R_\delta}{R_w} = \delta > 1, \alpha^* = \frac{\alpha}{\eta \left(\frac{R^2 \varepsilon}{V^2} \right)}, \frac{M^2}{\eta} = \frac{\sigma B^2_0 R_w}{\eta},
\]

\[
K = \frac{R^2_w}{\varepsilon K}, \theta = \frac{\theta - \theta_u}{\theta_u}, Br = \frac{\eta V^2}{k(\theta_u - \theta_w)}, \frac{M^2}{1 + m^2} = Br
\] (13)

In view of Equation (13), the Equations (2), (11) and (12) become:

\[
r \frac{d^2 u}{dr^2} + \frac{du}{dr} + 2\beta \left(3r \frac{d^2 u}{dr^2} \left(\frac{du}{dr} \right)^2 + \left(\frac{du}{dr} \right)^3 \right) - \left(\frac{M^2}{1 + m^2} + Br \right) u = 0
\] (14)

\[
\frac{d^2 \theta}{dr^2} + \frac{1}{r} \frac{d \theta}{dr} + Br \left(\frac{du}{dr} \right)^2 + 2Br \beta \left(\frac{du}{dr} \right)^4 = 0
\] (15)

\[
u(1) = 1, u(\delta) = 0, \theta(1) = 0, \theta(\delta) = 1
\] (16)
3. Solution by Homotopy Asymptotic Method

In order to solve Equations (14) and (15) under the boundary conditions (16) respectively, we use the HAM with the following procedure. The solutions having the auxiliary parameters η regulate and control the convergence of the solutions.

The initial guesses are selected as follows:

$$u_0(r) = \frac{-r + \delta}{1 + \delta} \quad \text{and} \quad \theta_0(r) = \frac{r - 1}{1 + \delta}$$

The linear operators are defined as:

$$L_u(u) = u'' \quad \text{and} \quad L_\theta(\theta) = \theta''$$

Which have the following properties:

$$L_u(c_1 + c_2 r) = 0 \quad \text{and} \quad L_\theta(c_3 + c_4 r) = 0$$

Where $c_i (i = 1 - 4)$ are the constants in general solution:

The resultant non-linear operatives are given as:

$$N_p\left[u(r; p), \theta(r; p)\right] = \left(\frac{\partial^2 \theta(r; p)}{\partial r^2} + \frac{1}{r} \frac{\partial \theta(r; p)}{\partial r}\right) + Br\left(\frac{\partial u(r; p)}{\partial r}\right)^2 + 2Br\beta\left(\frac{\partial u(r; p)}{\partial r}\right)^4$$

The basic idea of HAM is described in [6–8]; from Equations (14) and (15) are:

$$(1 - p)L_u[u(r; p) - u_0(r)] = p\eta N_p\left[u(r; p)\right]$$

$$(1 - p)L_\theta[\theta(r; p) - \theta_0(r)] = p\eta N_\theta\left[u(r; p), \theta(r; p)\right]$$

The boundary conditions are:

$$u(1; p) = 1, \quad \theta(1; p) = 0, \quad u(\delta; p) = 0, \quad \theta(\delta; p) = 1$$

Where $p \in [0, 1]$ is the imbedding parameter, and h_η and h_θ are used to control the convergence of the solution. When $p = 0$ and $p = 1$ we have:

$$u(r; 1) = u(r) \quad \text{and} \quad \theta(r; 1) = \theta(r)$$

Expanding $u(r; p)$ and $\theta(r; p)$ in Taylor’s series about $p = 0$ and 1, we get:

$$u(r; p) = u_0(r) + \sum_{m=1}^{\infty} u_m(r) p^m, \quad \theta(r; p) = \theta_0(r) + \sum_{m=1}^{\infty} \theta_m(r) p^m$$

$$u(r) = u_0(r) + \sum_{m=1}^{\infty} u_m(r), \quad \theta(r) = \theta_0(r) + \sum_{m=1}^{\infty} \theta_m(r)$$

Where,

$$u_m(r) = \frac{1}{m!} \left. \frac{\partial u(r; p)}{\partial r}\right|_{p=0} \quad \text{and} \quad \theta_m(r) = \frac{1}{m!} \left. \frac{\partial \theta(r; p)}{\partial r}\right|_{p=0}$$

The mth-order problem satisfies the following:

$$L_u[u_m(r) - \chi_m u_{m-1}(r)] = h_\eta R^\eta_m(r), \quad L_\theta[\theta_m(r) - \chi_m \theta_{m-1}(r)] = h_\theta R^\theta_m(r)$$

The corresponding boundary conditions are:

$$u_m(1) = u_m(\delta) = 0, \quad \theta_m(1) = \theta_m(\delta) = 0$$

Here:

$$R^\eta_m(r) = r \frac{d^2 u_{m-1}}{dr^2} + du_{m-1} \frac{du_{m-1}}{dr} - (M^2 + K) ru_{m-1} + 6Br \sum_{k=0}^{m-1} \sum_{i=0}^{k} \frac{du_{m-1-k}}{dr} \frac{du_{i-1}}{dr} \left[\frac{d^2 u_{m-1}}{dr^2} \right]$$

$$+ 2\beta \sum_{k=0}^{m-1} \sum_{i=0}^{k} \frac{du_{m-1-k}}{dr} \frac{du_{i-1}}{dr}$$
\[R_m^\theta (r) = r \frac{d^2 \theta_{m-1}}{dr^2} + \frac{d \theta_{m-1}}{dr} + r Br \sum_{k=0}^{m-1} \sum_{i=0}^{k} \sum_{j=0}^{i} \frac{du_{m-1-k}}{dr} \frac{du_{k-j}}{dr} \]
\[+ 2 r \beta Br \sum_{k=0}^{m-1} \sum_{i=0}^{k} \sum_{j=0}^{i} \frac{du_{m-1-k}}{dr} \frac{du_{k-j}}{dr} \]

where, \(\chi_m = 0, \text{if } p \leq 1 \) and \(\chi_m = 1, \text{if } p > 1 \)

The linear non-homogeneous problems (26) can be solved by using computational software MATHEMATICA 9.0.

4. Results and Discussion
The Eqn. 23 give the series solution of the problem. The auxiliary parameter gives the convergence region. According to Liao [9] the appropriate region for the auxiliary parameter is the horizontal line. In Figure 3 h-curve is plotted for 20th order of approximation for velocity and temperature profiles. This clearly shows the range for admissible values are \(-2.0 \leq h_0 \leq -0.2\) and \(-1.9 \leq h_0 \leq -0.2\) respectively.

The results using the pade-approximation are shown in Tables 1 and 2. From these, the pade-approximation accelerates the convergence of the series solutions. The flow governed by the non-dimensional parameters, non-Newtonian parameter of third grade parameter \(\beta \), Hall parameter \(m \), magnetic parameter \(M \), permeability parameter \(K \) and Brinkman number \(Br \) on the velocity and temperature profiles are shown graphically in Figures 5–9 and Figures 10-13.

From Figure 5 the magnetic parameter \(M \) has a decelerating effect on the velocity profile, i.e., increase in magnetic field strength contributes to slow down the velocity in the entire flow domain. It is observed that the magnetic field has a decelerating effect on the velocity field due to resistive Lorentz’s force which comes into play as a result of the interaction of the magnetic field with conducting fluid, used as a coating material. It is also interesting to note that an increase in the non-Newtonian parameter, keeping the magnetic field strength fixed, leads to increase the velocity at all points of the flow domain. Thus, it is concluded that magnetic field contributes to slowing down the velocity whereas the non-Newtonian parameter characterizing the melt polymer (third grade fluid) accelerates it. As the velocity of coating fluid is an important design requirement, magnetic field strength and non-Newtonian characteristics of the fluid may be used as controlling devices for the required quality. Figure 6 shows that it reveals as the permeability parameter increases, the velocity profile decreases. We observed that lesser fluid speed higher the permeability throughout the fluid region. We noticed that, the effect of visco-elastic third grade parameter \(\beta \) and hall parameter \(m \) on the velocity profiles (Figure 7 - 8). It is observed that the velocity of the fluid increases with the increasing third grade parameter \(\beta \) or hall parameter \(m \).

From Figure 9, it is observed that the temperature profile increases throughout the fluid region. This may be attributed to the boundary surface effects which override the effect of the magnetic field. The effect of permeability parameter \(K \) on the temperature profile is shown in Figure 10. It is observed that for values of permeability parameter \(K \), the temperature enhances throughout the fluid region. The effect of non-Newtonian parameter \(\beta \) on the temperature profile is shown in Figure 11. The non-Newtonian parameter enhances the temperature profiles in the presence of porous matrix. Figure 12 shows the effect of Brinkman number \(Br \) on the temperature profile. It is seen that as the Brinkman number increases, the temperature profile increases significantly at all points. Hence, it is observed that in the process of wire coating the Brinkman number, the relative measure of viscous heating with conducted heat, the temperature significantly accelerates at all points. Finally, Figure 13 shows that the hall parameter enhances the temperature profiles in the presence of porous matrix. The results are coincide with results of Zeeshan Khan et al. [10] when \(m \rightarrow 0 \).
Fig. 3 The h-curve of velocity profiles for 20th order approximation

Fig. 4 The h-curve of temperature profiles for 20th order approximation

Fig. 5 The velocity profile for u against M with $m = 1$, $\beta = 0.2$, $K = 0.5$
Fig. 6 The velocity profile for u against M with $m = 1, \beta = 0.2, M = 0.5$

Fig. 7 The velocity profile for u against M with $m = 1, M = 0.5, K = 0.5$

Fig. 8 The velocity profile for u against M with $\beta = 0.2, M = 0.5, K = 0.5$
Fig. 9 The Temperature profile for θ against M with $m = 1, \beta = 0.2, K = 0.5, Br = 1$

Fig. 10 The Temperature profile for θ against K with $m = 1, \beta = 0.2, M = 0.5, Br = 1$

Fig. 11 The Temperature profile for θ against β with $m = 1, M = 0.5, K = 0.5, Br = 1$
Fig. 12 The Temperature profile for θ against Br with $m = 1, \beta = 0.2, M = 0.5, K = 0.5$

Fig. 13 The Temperature profile for θ against m with $\beta = 0.2, M = 0.5, K = 0.5, Br = 1$

r	$u(r)$ ($\delta = 8$)	$\theta(r)$ ($\delta = 5$)
[2/2]	-0.512447	-0.852214
[3/3]	-0.512558	-0.852018
[4/4]	-0.512685	-0.852001
[5/5]	-0.512854	-0.851885
[6/6]	-0.512541	-0.852017
[7/7]	-0.512203	-0.852114

5. Conclusions

The wire coating analysis is performed using visco-elastic third grade fluid as a melt polymer in a pressure type coating die. The expressions for the velocity and temperature profiles are obtained analytically by HAM. The convergence of the series solution is established. The conclusions are made as the following. The velocity increases with the increasing value of visco-elastic third grade fluid, and the temperature decreases with the increasing Brinkman number.
parameter β and hall parameter m and decrease with increasing the magnetic parameter M and permeability parameter K. The temperature increases when the Brinkman number Br, magnetic parameter M permeability parameter K, and decrease with visco-elastic third grade parameter (non-Newtonian parameter) β or hall parameter m increase.

Table 2. Homotopy-pade approximation of $u(r)$ and $\theta(r)$ with $\beta = 0.4, K = 0.5, M = 0.5, m = 1$

r	$u(r) (\delta = 8)$	$\theta(r) (\delta = 5)$
[2/2]	-0.787444	-0.714254
[3/3]	-0.784858	-0.715226
[4/4]	-0.784114	-0.715201
[5/5]	-0.784452	-0.716522
[6/6]	-0.783855	-0.715025
[7/7]	-0.783250	-0.716325

Table 3. Numerical Comparison of results for the velocity with $\beta = 0.2, \delta = 2, K = 0.5, M = 0.5, m = 1$

r	HAM Zeeshan Khan et al. $[10]$	Present Results
1	1	1
2	0.421452	0.421441
4	0.155858	0.155262
6	0.100595	0.100541
7	0.100004	0.100124
8	0	0

References

[1]. Akter, S.; Hashmi, M.S.J. Analysis of polymer flow in a canonical coating unit: Power law approach. Prog. Org. Coat. 1999, 37, 15–22.

[2]. Akter, S.; Hashmi, M.S.J. Plasto-hydrodynamic pressure distribution in a tepered geometry wire coating unit. In Proceedings of the 14th Conference of the Irish manufacturing committee (IMC14), Dublin, Ireland, 3–5 September 1997; pp. 331–340.

[3]. Siddiqui, A.M.; Haroon, T.; Khan, H. Wire coating extrusion in a Pressure-type Die in the flow of a third grade fluid. Int. J. Non-Linear Sci. Numeric. Simul. 2009, 10, 247–257.

[4]. Fenner, R.T.; Williams, J.G. Analytical methods of wire coating die design. Trans. Plast. Inst. 1967, 35, 701–706.

[5]. Hayat, T.; Sajid, M. Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid. Int. J. Non-Linear Sci. Numeric. Simul. 2006, 11, 326–339.

[6]. Liao, S.J. An analytic solution of unsteady boundary layer flows caused by an impulsively stretching plate. Commun. Nonlinear Sci. Numer Simul. 2006, 11, 326–339.

[7]. Liao, S.J. Beyond perturbation: review on the basic ideas of homotopy analysis method and its application. Adv. Mech. 2008, 38, 1–34.

[8]. Abbasbandy, S. The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 2006, 360, 109–113.

[9]. Liao, S.J. A new branch of solutions of boundary layer flows over a permeable stretching plate. Int. J. Nonlinear Mech. 2007, 42, 819–830.

[10]. Sutton, G.W.; Sherman, A. Engineering magneto hydrodynamics. McGraw – Hill, Newyork, 1965.