On divisibility by primes in columns of character tables of symmetric groups

LUCIA MOROTTI

Abstract. For an arbitrary prime p, we prove that the proportion of entries divisible by p in certain columns of the character table of the symmetric group S_n tends to 1 as $n \to \infty$. This is done by finding lower bounds on the number of k-cores for k large enough with respect to n.

Mathematics Subject Classification. 20C30.

Keywords. Symmetric group, Character values, Core partitions.

1. Introduction. In [3], Miller formulated the following conjecture about the character table of symmetric groups:

Conjecture 1. Let p be a prime and $E_p(n)$ be the number of entries divisible by p in the character table of S_n. Then $E_p(n)/(p(n))^2 \to 1$ as $n \to \infty$.

Here, as in the rest of the paper, $p(n)$ is the number of partitions of n.

In [1], Gluck proved that in certain columns of the character table of S_n, the proportion of even entries tends to 1. The main results of this paper extend this to a larger set of columns of the character table of S_n and hold for any prime p. These results however are not sufficient to prove Conjecture 1. In order to state our main results, we need the following notation. Let $P(n)$ be the set of all partitions of n and

$$\Omega_p(n) := \{ \text{partitions of } n \text{ into parts not divisible by } p \}.$$

Further, for any partition μ of n, let $\mu^* \in \Omega_p(n)$ be obtained from $\mu = (\mu_1, \mu_2, \ldots)$ by replacing each part $\mu_i = p^{k_i} a_i$ with $p \nmid a_i$ by p^{k_i} parts a_i. Moreover, for $\lambda \in \Omega_p(n)$, let

$$K_p(\lambda) := \{ \mu \in P(n) : \mu^* = \lambda \}.$$

For $\alpha, \beta \in P(n)$, let χ^α be the irreducible character of S_n indexed by α and χ^α_β be the value that χ^α takes on the conjugacy class with cycle partition β.
Lemma 4. Let p be a prime, $n \geq 2$, $c > \sqrt{3/2} \pi$, and $\lambda = (a_1^1, \ldots, a_h^h) \in \Omega_p(n)$. Assume that for some $1 \leq i \leq h$, there exists s with $p^s - b_i$ and $a_i p^s \geq c \sqrt{n} \log(n)$. Then for any $\mu \in K_p(\lambda)$, we have that
\[
\frac{|\{\alpha \in P(n) : \chi_\mu^\alpha \equiv 0 \mod p\}|}{p(n)} \geq 1 - \frac{c^4 d \log(n)}{n^{c\pi/\sqrt{6} - 1/2}}
\]
for some constant d.

Note that $\frac{1}{n^{c\pi/\sqrt{6} - 1/2}} \to 0$ since $c > \sqrt{3/2} \pi$.

Corollary 3. Let p be a prime, $n \geq 2$, $c > \sqrt{3/2} \pi$, and $\lambda = (a_1^1, \ldots, a_h^h) \in \Omega_p(n)$. If $h \leq \frac{\sqrt{n}}{cp \log(n)}$, then, for any $\mu \in K_p(\lambda)$, we have that
\[
\frac{|\{\alpha \in P(n) : \chi_\mu^\alpha \equiv 0 \mod p\}|}{p(n)} \geq 1 - \frac{c^4 d \log(n)}{n^{c\pi/\sqrt{6} - 1/2}}
\]
for some constant d.

Corollary 3 easily follows from Theorem 2 since under the assumptions of Corollary 3 there exists i with $a_i b_i \geq cp \sqrt{n} \log(n)$ and then the assumptions of Theorem 2 are satisfied.

If $\mu, \nu \in K_p(\lambda)$, then the two columns of the character table of S_n, corresponding to conjugacy classes with cycle partitions μ and ν are congruent modulo p (see [3, Proposition 1]). In particular, the numbers of character values divisible by p in the two columns are equal. This explains why Theorem 2 and Corollary 3 only have assumptions on $\lambda = \mu^*$ and not on μ.

2. Proof of Theorem 2. Given a positive integer k and a partition γ, we say that γ is a k-core if γ has no hook of length divisible by k. For any partition β of n and a positive integer k, one can define its k-core partition γ to be the partition obtained from β by recursively removing as many k-hooks as possible (γ does not depend on which maximal sequence of k-hooks is removed from β), thus $|\beta| = |\gamma| + mk$ for a certain non-negative integer m (see for example [4, Section 3]).

For any integer $m \geq 0$, let $p_k(m)$ be the number of multipartitions of m into k parts. For any non-negative integer m and any k-core partition γ of $n - km$, the number of partitions of n with k-core γ is always equal to $p_k(m)$ (see for example [4, Proposition 3.7]).

We start by finding bounds on the number of k-core partitions of n when k is large enough. To obtain these bounds, we will need bounds on the growth of the number of multipartitions, which will allow us to find lower bounds on $c_k(n)$, the number of k-core partitions of n. These results will then allow us to prove Theorem 2 at the end of this section.

Lemma 4. Let $k \geq 1$ and $m \geq 1$. Then $p_k(m) \leq (k + 1)p_k(m - 1)$.

Proof. For $\lambda = (\lambda^1, \ldots, \lambda^h)$ a multipartition of $m - 1$, let h be maximal such that $|\lambda^h| > 0$ (set $h = 0$ if $m = 1$) and let $A(\lambda)$ be the set of multipartitions of m which can be obtain by adding a node either to λ^h on the last row or
the first column or by adding one node to some \(\lambda^i \) with \(i > h \). Note that \(|A(\lambda)| \leq k + 1 \) for each \(\lambda \) and any multipartition of \(m \) is contained in \(A(\lambda) \) for some multipartition \(\lambda \) of \(m - 1 \). The result follows. \(\square \)

Lemma 5. For any \(1 \leq k \leq n \), we have \(p(n) - c_k(n) \leq (k + 1)p(n - k) \).

Proof. It follows from Lemma 4 and the classification of partitions with the same \(k \)-core (see for example [4, Proposition 3.7]) since

\[
p(n) - c_k(n) = \sum_{m=1}^{\lfloor n/k \rfloor} c_k(n - mk)p_k(m) \leq (k + 1) \sum_{m=1}^{\lfloor n/k \rfloor} c_k(n - k - (m - 1)k)p_k(m - 1) = (k + 1)p(n - k).
\]

\(\square \)

Lemma 6. Let \(n \geq 2 \) and \(c > \sqrt{3/\pi} \). If \(k \geq c \sqrt{n \log(n)} \), then

\[
\frac{c_k(n)}{p(n)} \geq 1 - \frac{c^4d \log(n)}{n^{c \pi / \sqrt{6} - 1/2}}
\]

for some constant \(d \).

Proof. From Lemma 5, we have that

\[
\frac{p(n) - c_k(n)}{p(n)} \leq \frac{(k + 1)p(n - k)}{p(n)}.
\]

Note that there exist constants \(d_1, d_2 > 0 \) such that for any \(m \geq 1 \),

\[
\frac{d_1}{m} e^{\pi \sqrt{2m/3}} \leq p(m) \leq \frac{d_2}{m} e^{\pi \sqrt{2m/3}}
\]

(see [2, (1.41)]). Using the inequalities displayed above, we see that the statement holds for \(k = n \), so we may assume that \(n - k \geq 1 \). Then

\[
\frac{(k + 1)p(n - k)}{p(n)} \leq \frac{d_2(k + 1)n}{d_1(n - k)} e^{-\pi \sqrt{2n/3}} (1 - \sqrt{1 - \frac{k}{n}}) \leq \frac{2d_2 kn}{d_1(n - k)} e^{-\pi \sqrt{6n}}.
\]

If \(k \geq 4c \sqrt{n \log(n)} \), then

\[
\frac{p(n) - c_k(n)}{p(n)} \leq \frac{2d_2 n^2}{d_1} e^{-\frac{4c \pi \log(n)}{\sqrt{6}}} = \frac{2d_2}{d_1 n^{4(\pi / \sqrt{6} - 1/2)}}.
\]

so in this case, the lemma holds since \(\frac{c \pi}{\sqrt{6}} - \frac{1}{2} > 0 \) by assumption on \(c \). If \(k = c \sqrt{n \log(n)} \) with \(c \leq c < 4c \) and \(k \leq n/2 \), then

\[
\frac{p(n) - c_k(n)}{p(n)} \leq \frac{4d_2 c \sqrt{n \log(n)}}{d_1} e^{-\frac{c \pi \log(n)}{\sqrt{6}}} \leq \frac{16d_2 \log(n)}{d_1 n^{c \pi / \sqrt{6} - 1/2}},
\]

so that also in this case, the lemma holds.
If \(k = \bar{c}\sqrt{n}\log(n) \) with \(c \leq \bar{c} < 4c \) and \(k > n/2 \), then \(\bar{c} > \sqrt{n/(2\log(n))} \). Since \(d_3\sqrt{n} > 8(\log(n))^3 \) for \(d_3 \) large enough, there exists a constant \(d_3 \) such that \(n < d_3^3 \). It then follows that

\[
\frac{p(n) - c_k(n)}{p(n)} \leq \frac{2d_2d_3^4\sqrt{n}\log(n)}{d_1} e^{-\frac{\pi\log(n)}{\sqrt{6}}} \leq \frac{512c^4d_2d_3\log(n)}{d_1n^{c\pi/\sqrt{6}-1/2}}.
\]

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let \(\lambda = (a_1^{b_1}, \ldots, a_h^{b_h}) \in \Omega_\mu(n) \) and assume that there exist \(i \) and \(s \) with \(p^s \leq b_i \) and \(a_i p^s \geq c\sqrt{n}\log(n) \). For any \(1 \leq j \leq h \), let \(b_j = f_{j,0}p^0 + \cdots + f_{j,s}p^s \) be the \(p \)-adic decomposition of \(b_j \) and set \(\delta_j := ((p^{s_j})^{f_{j,s_j}}, \ldots, 1^{f_{j,s}}) \) and \(\lambda := a_1\delta_1 \cup \cdots \cup a_h\delta_h \) (if \(\phi = (\phi_1, \ldots, \phi_r) \) and \(\psi = (\psi_1, \ldots, \psi_s) \) are partitions and \(t \) is a non-negative integer, then \(t\phi = (t\phi_1, \ldots, t\phi_r) \) and \(\phi \cup \psi \) is the partition obtained by rearranging the parts of \((\phi_1, \ldots, \phi_r, \psi_1, \ldots, \psi_s) \)). Then \(\lambda \in K_p(\lambda) \) and by assumption \(\lambda_1 \geq c\sqrt{n}\log(n) \).

Note that for any partition \(\mu \in K_p(\lambda) \), we have from [3, Proposition 1] that

\[
\frac{|\{\alpha \in P(n) : \chi_\mu^\alpha \equiv 0 \mod p\}|}{p(n)} = \frac{|\{\alpha \in P(n) : \chi_\lambda^\alpha \equiv 0 \mod p\}|}{p(n)}.
\]

Since \(\lambda_1 \geq c\sqrt{n}\log(n) \), the theorem holds for \(\lambda \) by Lemma 6 and the Murnaghan-Nakayama formula. So the statement of the theorem holds also for \(\mu \).

Acknowledgements. The author thanks Alexander Miller for bringing this problem to her attention and for some discussion. The author was supported by the DFG Grant MO 3377/1-1.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Gluck, D.: Parity in columns of the character table of \(S_n \). Proc. Am. Math. Soc. 147, 1005–1011 (2019)

[2] Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. (2) 17, 75–115 (1918)

[3] Miller, A.R.: On parity and characters of symmetric groups. J. Comb. Theory Ser. A 162, 231–240 (2019)

[4] Olsson, J.B.: Combinatorics and Representations of Finite Groups. Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen, Heft 20 (1993)
Lucia Morotti
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Leibniz Universität Hannover
30167 Hannover
Germany
e-mail: morotti@math.uni-hannover.de

Received: 26 July 2019