INTRODUCTION

Calving in dairy cows is an important event and a requirement for the milk industry and herd renewal to maintain the profitability of a dairy production system [1,2]. Parturition is divided into three distinct stages, namely, preparatory, delivery, and cleaning stages [3–5]. During these stages, cows are vulnerable as they are physically challenging, stressing, and painful processes, especially for first time calving or primiparous and very old cow in parity eight and above [6–8].

The parturition period is associated with hormonal, physiological, and behavioral changes. These include changes in the levels of progesterone, luteinizing hormone, gonadotropin-releasing hormone, and plasma concentrations of stress hormones (cortisol, opioids, and catecholamine); increased heart rate, body temperature, and cervix dilation; and physical changes such as swollen vulva and body conformation and unusual behavior such as ground licking, reduced appetite, and tail raising [9–12]. These changes occur before the first stage of parturition, which is the period when the calf is moving into its appropriate position intended for parturition [10,12].

Around the time of calving, cows become more restless. The increases in restlessness accompany uterine contractions, which increases frequency and intensity as the calving period progresses. These expulsive contractions

Original Article

Primiparous and multiparous Friesland, Jersey, and crossbred cows’ behavior around parturition time at the pasture-based system in South Africa

Mpisana Zuko, Ishmael Festus Jaja
Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, Alice, Republic of South Africa

ABSTRACT

Objective: The objective of the study was to assess the behavioral attributes of primiparous and multiparous Friesland, Jersey, and Crossbred cows around calving time in a pasture-based dairy system.

Material and methods: A total of 120 pregnant cows were used in the study, comprising of 40 cows per genotype in different parities [A-primiparous (n = 10), B-2 to 4 (n = 10), C-5 and 6 (n = 10), and D-7 and 8 (n = 10)] and kept in a maternity paddock. Five observers monitored cows from the onset of parturition until the calves were fully expelled, recording the frequency and duration of lying, standing, and walking bouts, calf licking, and suckling.

Results: There were differences (p < 0.05) observed in the behavioral patterns around the time of calving. Jersey multiparous cows spent (p < 0.05) significantly most of their time (20.50 ± 3.10) in lying position compared to the other genotypes. The Jersey cows also spent most (p < 0.05) of their time (48.00 ± 0.34) in a standing position during the calving period. Friesland cows spent (p < 0.05) most of their time (12.00 ± 1.19) exhibiting either stepping or walking attributes as compared to Jersey and Crossbred cows. The Jersey genotype spent significantly (p < 0.05) more time (123.00 ± 10.43) in expelling their calves compared to the other genotypes. There was a significant (p < 0.05) interaction between genotypes and parity on time spent by cows on licking their calves. There was a significant difference (p < 0.05) observed between the genotypes of the primiparous cow.

Conclusion: The primiparous cows spent most of their time in standing and the least amount of time in other activities throughout the trial due to the lack of maternal experience. The current study revealed that behavioral activities differ according to genotype and parity.
necessitate an increased surveillance of the abdomen [12–
15]. A study by Huzzey et al. [16] also reported a dramatic
increase in the number of positional changes such as lying
and standing bouts from 2 days before calving. This conse-
quently results in a tendency of the calving cow to isolate
itself from the rest of the herd. It was further reported that
the parturient cow tends to be restless due to discomfort
associated with calving and grouping of pregnant cows.
Under normal conditions, water sac or calf feet protruding
outside the vulva are visible, and the calving observers can
identify these signs as early as possible [13,17]. It has been
documented that Friesland multiparous cows spent most
of the time in lying down around and during the time of
calving compared to Jersey. This is attributed to the large
body size in Friesland cows compared to the Jersey cows
[13,14,17]. It is, therefore, significant to carefully appraise
the parturient cows more frequently. Hence, in prac-
tice, this might be difficult for one calving personnel to
closely monitor calving cow at the night and even during
the day, due to high stocking densities in pasture-based
dairy systems [13].

Moreover, there is little information on how primiparous
and multiparous, Friesland, Jersey, and Crossbred cows
behave around the time of calving at the pasture-based
system of South Africa. Therefore, this study sought to
assess the behavioral attributes of primiparous and mul-
tiparous Friesland, Jersey, and Crossbred cows around the
time of calving at the pasture-based dairy system.

Material and Methods

Ethical approval

The University of Fort Hare Research Ethics Committee
approved the research protocol, and an approval certificate
was issued with reference number JA011SMPI01/19/A.

Site description

The current study was conducted at the University of
Fort Hare Dairy Farm, which is situated 120 km inland of
Eastern Cape in South Africa. The farm is 520 m above
the sea level and is located at 32.8°S and 26.9°E. The average
annual rainfall received at the farm is 480 mm and is mostly
received in the summer season. The mean annual tempera-
ture of the farm is 18.7°C, and the farm is situated in the
Bisho Thornveld of Eastern Cape. The total area of the farm
is 200 hectares under Lolium perenne, Lolium multiflorum,
Pennisetum clandestinum, and Trifolium repens. The cold
moist season is characterized by cold weather with the
moist wind coming from Hogsback average temperature
range of 3°C and 20°C. The post-rain season is character-
ized by low rainfall and cold weather.

Experimental design and animal management

The selection of cows was based on the stage of preg-
nancy in different parities. The animal selection was done
purposively to select only pregnant cows. Pregnancy diag-
osis was using rectal palpation on dairy cows and heifers
that were artificially inseminated before the experiment.
This stage of pregnancy (7 months) was determined by
the rectal palpation method, which gives high precision
and accuracy in predicting the expected calving date. The
experimental design was a 3 × 4 factorial design (three
breeds and four parities). A total of 120 pregnant cows
were used in the study, comprising 40 cows per genotype
(Friesland, Jersey, and Friesland × Jersey cross) in different
parities (A-primiparous (n = 10), B-2 to 4 (n = 10), C-5 and
6 (n = 10), and D-7 and 8 (n = 10). The multiparous cows
were in the second parity up to the eighth parity, and the
primiparous animals were between 20 and 24 months of
age and kept at the steam-up camp waiting for calving. The
crossbreds were a mixture of Jersey × Friesland. Ear tags
were used to identify the cows and heifers since these cows
were managed within the usual farm management system.
Each dairy cow and heifer were given 6 kg of silage, and 2
kg of super 18 dairy concentrates per day (6 kg + 2 kg = 8
kg per day) to maintain body weight and body condition
score.

Measurements and data collection

Five well-trained observers monitored visually the behav-
ioral activity patterns shown by dairy primiparous and
multiparous cows from the onset of parturition until the
time when the calf was expelled from the vulva using dig-
tal stopwatches from 0,800 h in the morning to 1,700 h
the same day. Trained observers have used in a training
method for animal-based measures and result in images,
videos, and observers which were not significantly differ-
ent [18]. In this study, the behavioral activity patterns were
recorded in data collection sheets. The behavioral activi-
ties monitored include duration and number of lying bouts
(body in contact with the ground using left side), standing
up, walking bouts (step or steps taken by a cow from one
place to another with head up), calf licking, and suckling
duration. Monitoring sheets and stopwatches were also
used to record the time duration of behaviors shown by
each cow. The time duration recorded for each activity was
expressed in minutes. After a period of between 6 and 12
h from the parturition, the calves were removed from their
dams, and the dams were allowed to join the milking herd.
Thereafter, the cows were given concentrates and minerals
to enhance the milk production. The information about the
parity was recorded at the beginning of the observation.
Statistical analyses

The quantitative data on behavioral attributes from the parturient cows were analyzed using the general linear model of SAS (2003) to determine the effect of genotype, parity, and interaction between genotype and parity on different behavioral activity patterns around the time of parturition. A comparison of means for the behavioral activities was done using the Fisher’ least significant difference method option of SAS (2003). The differences in percentages and individual least of square means and standard errors of the means (LSM ± SEM) reported were considered to be statistically significant at \(p < 0.05 \).

The model is as follows:

\[
Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}
\]

- \(Y_{ijk} \) = time spent on lying down, standing, walking, fetal expulsion, calflicking, and suckling.
- \(\mu \) = overall mean
- \(\alpha_i \) = \(i^{th} \) effect of parity (primiparous, 2–4, 5–6, and 7–8)
- \(\beta_j \) = \(j^{th} \) effect of genotype (Jersey, Friesland, and crossbreds)
- \((\alpha\beta)_{ij} \) = interaction between class and genotype
- \(\epsilon_{ijk} \) = experimental error

Results

Behavioral activity patterns

The results for the behavioral activity between the primiparous and multiparous from the three dairy cattle genotypes around the time of parturition are shown in Table 1. There were distinct differences \((p < 0.05) \) observed on behavioral patterns during parturition. Friesland multiparous cows spent \((30.83 ± 3.13) \) significantly most of the time on lying down compared to Jersey \((17.14 ± 1.66) \) and Crossbred \((20.40 ± 2.77) \) most of their time lying down compared to other genotypes such as Jersey \((17.14 ± 1.66) \) and Crossbred \((14.86 ± 1.66) \) same parity. However, no distinct differences \((p > 0.05) \) were observed between the three genotypes in parity C. Besides, cows in parity D Jersey spent significantly \((20.50 ± 3.10) \) and Friesland \((19.83 ± 2.52) \) most of their time lying down compared to Crossbred \((8.00 ± 1.39) \) cows.

In the second lying bout, Jersey primiparous cows spent significantly \((23.45 ± 2.03) \) the most time on lying down compared to Crossbred \((17.45 ± 2.02) \) and Friesland \((9.90 ± 2.03) \) cows. Besides, Friesland cows in parity B spent \((20.40 ± 2.77) \) most of their time on lying down compared to Jersey \((17.14 ± 1.66) \) and Crossbred \((14.86 ± 1.66) \) in addition. The mean duration spent by Jersey cows in parity C and D was significantly \((p < 0.05) \) higher than other genotypes.

In the third lying bout, Jersey primiparous and parity B spent \((p < 0.05) \) most of their time in lying down compared

Parity	Genotype	1st bout	2nd bout	3rd bout	Total lying time
a	Crossbred	16.45 ± 1.39	17.45 ± 2.02	7.70 ± 1.94	22.95 ± 1.71
	Friesland	12.80 ± 1.39	9.90 ± 2.03	3.05 ± 1.94	27.15 ± 1.71
b	Jersey	13.95 ± 1.39	23.45 ± 2.03	12.95 ± 1.94	21.25 ± 1.71
	Crossbred	14.86 ± 1.66	10.00 ± 2.42	4.21 ± 2.32	19.71 ± 2.05
c	Crossbred	20.40 ± 2.77	16.20 ± 4.05	5.00 ± 3.89	16.71 ± 3.42
	Jersey	17.14 ± 1.66	6.64 ± 2.42	34.20 ± 2.32	21.50 ± 2.05
d	Friesland	20.00 ± 3.10	4.00 ± 4.52	8.75 ± 4.35	5.25 ± 3.83
	Jersey	18.50 ± 2.77	14.25 ± 3.19	5.25 ± 3.07	25.00 ± 2.11
	Crossbred	19.0 ± 4.39	19.50 ± 6.40	5.50 ± 6.15	22.00 ± 5.41
	Jersey	8.00 ± 1.39	7.50 ± 6.40	1.00 ± 6.15	11.50 ± 5.14
	Crossbred	19.83 ± 2.53	16.17 ± 3.69	13.83 ± 3.55	30.83 ± 3.13
	Jersey	20.50 ± 3.10	21.25 ± 4.53	22.00 ± 4.35	22.25 ± 5.41

Means in the same column with different superscripts are statistically different at \(p < 0.05 \).
to Friesland and Crossbred cows. However, no distinct differences ($p > 0.05$) were observed between genotypes in parity C cows. Conversely, cows in parity D Jersey spent significantly ($p < 0.05$) most of their time in lying down compared to Friesland and Crossbred cows.

Total lying, standing, and walking duration between genotypes and parities

The total amount of time spent by primiparous Friesland cows was significantly ($p < 0.05$) higher, compared to Jersey and Crossbred cows. Meanwhile, the time spent by Jersey cows in parity B was significantly ($p < 0.05$) higher than the other two genotypes of the same group. However, there was no significant ($p > 0.05$) difference observed between three genotypes on parity C, whereas multiparous Friesland cows spent significantly ($p < 0.05$) most of their time in lying down compared to Jersey and Crossbred cows.

No distinct differences ($p > 0.05$) were observed between three genotypes in primiparous. Similarly, no significant differences ($p > 0.05$) were observed between genotypes in parities B and C. Meanwhile, there was a significant difference ($p < 0.05$) existing between genotypes, and Jersey (11.75 ± 1.65 min) and Friesland (10.50 ± 2.33 min) most of their time in standing compared to compared to Crossbred cows.

Table 2 shows that there was a significant difference ($p < 0.05$) observed between genotypes, and Jersey (48.00 ± 0.34) and Friesland (39.00 ± 0.34) primiparous cows spent most of their time in standing compared to Crossbred (1.70 ± 0.34) cows. Conversely, cows in parity B crossbred spent significantly (38.20 ± 0.40) most of their time in standing compared to Jersey (12.60 ± 0.40) and Friesland (1.60 ± 0.67). No significant ($p > 0.05$) differences were observed between the cows in parity C across all the genotypes.

Meanwhile, Jersey cows in parity D (11.8 ± 1.65) and Crossbred (10.5 ± 2.33) spent most of their time on standing compared to Friesland (3.2 ± 1.34) cows. No significant differences ($p > 0.05$) were observed between the genotypes from different parities (B, C, and D) of cows.

Table 3 shows that no differences ($p > 0.05$) were observed among parities A, B, and C or across genotypes for the first walking bout. Friesland in parity D (4.50 ± 0.67) spent most of the time on walking during the parturition period. Besides, Friesland in parities B (12.00 ± 1.19) and A (6.00 ± 1.19) spent significantly the most time on walking as compared to other genotypes. Furthermore, Jersey (6.00 ± 3.75) and Friesland (5.75 ± 1.87) cows in parity C spent most of the time on walking as compared to crossbred (0.50 ± 2.65) cows. No significant differences ($p > 0.05$) were observed between the cows in parity D.

The results in Table 4 shows the significant differences in the number of observations that exist between genotypes and parities. Jersey primiparous cows (79.45 ± 4.46 min) spent expelling their fetuses or calves compared to Crossbred (74.80 ± 4.66) and Friesland (59.95 ± 4.66) cows, whereas Friesland cows in parity B ($p < 0.05$) spent most of the time in expelling their calves compared to Jersey and Crossbred cows. There was a significant ($p < 0.05$) difference existing between parity C. Jersey cows spent (74.50 ± 14.75 min) expelling their fetuses, compared to Friesland (71.50 ± 7.35) and Crossbred (54.74 ± 10.75) cows. Besides, Jersey cows in parity D ($p < 0.05$) spent significantly most of their time on expelling their calves, compared to Friesland and Crossbred cows.

There was a significant ($p < 0.05$) difference between parities within genotype. Crossbred primiparous (74.30 ± 4.66) spent more of the time on expelling their fetuses, compared to parities B (54.45 ± 5.75), C (52.14 ± 10.75), and D (55.00 ± 4.66), whereas Friesland in parity D (100.00 ± 4.66) spent most of their time in expelling their calves compared to Friesland and Crossbred cows.

Parity	Genotype	1st bout	2nd bout	3rd bout	Total standing duration
a	Crossbred	1.8 ± 0.74	1.70 ± 0.34	1.40 ± 0.34	1.85 ± 0.45
a	Friesland	1.8 ± 0.74	39.00 ± 0.34	1.00 ± 0.34	1.90 ± 0.45
a	Jersey	2.3 ± 0.74	48.00 ± 0.34	2.30 ± 0.74	2.15 ± 0.45
b	Crossbred	1.6 ± 0.88	38.20 ± 0.04	2.20 ± 0.40	1.71 ± 0.55
b	Friesland	2.8 ± 1.47	1.60 ± 0.67	1.00 ± 0.67	4.00 ± 0.92
c	Jersey	1.6 ± 0.86	12.60 ± 0.40	1.50 ± 0.86	1.43 ± 0.55
c	Crossbred	3.3 ± 1.65	3.00 ± 0.75	2.50 ± 0.75	3.05 ± 1.03
d	Friesland	2.5 ± 1.64	1.75 ± 0.53	1.25 ± 0.53	3.18 ± 0.73
d	Jersey	2.0 ± 2.33	1.00 ± 1.06	2.00 ± 2.3	1.50 ± 1.45
d	Crossbred	10.5 ± 2.33	2.00 ± 1.07	2.00 ± 1.07	5.00 ± 1.45
d	Friesland	3.2 ± 3.14	1.67 ± 0.61	2.00 ± 0.62	3.83 ± 0.84
d	Jersey	11.8 ± 1.65	6.00 ± 0.75	3.00 ± 0.75	4.00 ± 1.03
p value		0.01	0.0004	0.19	0.32

Means in the same column with different superscripts are statistically different at $p < 0.05$.

First, second, and third bouts and total standing time were recorded in minutes.

http://bdvets.org/javar/
± 8.52) spent most of their time on expelling their fetuses as compared to parities A (59.95 ± 4.66), B (71.60 ± 9.33), and C (71.50 ± 7.35). There was significant (p < 0.05) interaction between different parities of Jersey genotype.

Licking behavior

There was a significant (p < 0.05) interaction between genotypes and parity on time spent by licking of cows. Crossbred (18.75 ± 0.98) and Jersey primiparous cows (18.80 ± 0.98) spent significantly more time on licking their calves compared with other parities within the same genotype. However, no distinct difference (p > 0.05) was observed between the parities of Jersey genotype.

Suckling behavior

There was a significant difference (p < 0.05) observed between the genotypes of primiparous cows (parity A). For example, Crossbred cows spent significantly (16.30 ± 1.57) allowing their calves to suckle colostrum compared to Friesland (11.25 ± 1.57) and Jersey (7.25 ± 1.52) cows, whereas no significant difference (p > 0.05) was observed between the genotypes of crossbred cows (parity B) and Jersey (parity C) cows.

Table 3. Least square means (± standard error) of parity and genotype walking bouts and total walking duration.

Parity	Genotype	1st bout (min)	2nd bout (min)	Total walking duration
a	Crossbred	1.85 ± 0.37	1.95 ± 1.18	3.80 ± 0.36
	Friesland	0.75 ± 0.33	6.00 ± 1.19	2.00 ± 0.36
b	Jersey	1.20 ± 0.87	0.20 ± 1.19	2.85 ± 0.36
	Crossbred	1.93 ± 0.44	1.00 ± 1.42	0.64 ± 0.43
c	Friesland	0.40 ± 0.74	12.00 ± 1.19	3.20 ± 0.71
d	Jersey	0.70 ± 0.44	0.64 ± 1.42	2.50 ± 0.43
	Crossbred	1.25 ± 0.83	0.50 ± 2.65	1.50 ± 0.79
	Friesland	1.50 ± 0.59	8.75 ± 1.87	2.07 ± 0.56
	Jersey	0.50 ± 1.18	6.00 ± 3.75	3.50 ± 1.25
	Crossbred	0.50 ± 1.85	1.00 ± 3.75	1.00 ± 1.13
	Friesland	4.50 ± 0.67	0.33 ± 2.17	2.83 ± 0.65
	Jersey	1.75 ± 0.83	1.25 ± 2.65	3.75 ± 0.79

Means in the same column with different superscripts are statistically different at p < 0.05.

Table 4. Least square means (± standard error) of parity and genotype on different activity patterns around the time of calving.

Parity	Genotype	Foetal expulsion (min)	Licking (min)	Suckling (min)
a	Crossbred	74.30 ± 4.66	18.75 ± 0.98	16.30 ± 1.57
b	Friesland	59.95 ± 4.66	13.80 ± 0.98	11.25 ± 1.51
	Jersey	79.45 ± 4.46	18.80 ± 0.98	7.25 ± 1.52
c	Crossbred	54.45 ± 5.75	18.75 ± 1.17	10.28 ± 1.82
d	Friesland	71.60 ± 9.33	22.60 ± 1.97	13.20 ± 3.03
	Jersey	52.14 ± 5.57	17.14 ± 1.17	14.88 ± 1.81
	Crossbred	52.74 ± 10.75	21.50 ± 2.20	20.80 ± 3.38
	Friesland	71.50 ± 7.35	20.85 ± 1.56	22.14 ± 2.56
	Jersey	74.50 ± 14.75	15.00 ± 3.11	18.50 ± 4.79
	Crossbred	55.00 ± 4.66	22.00 ± 3.11	32.50 ± 4.79
	Friesland	100.00 ± 8.52	21.33 ± 1.79	29.33 ± 2.76
	Jersey	123.00 ± 10.43	13.50 ± 2.20	21.75 ± 3.38

Means in the same column with different superscripts are statistically different at p < 0.05.
between genotypes in parity B and C cows. However, there was a significant difference (p < 0.05) observed between genotypes in parity D, and the Crossbred cows spent most of their time on allowing calves to suckle colostrum. There was a significant difference (p < 0.05) observed across the parities within the genotype. Crossbred cows in parity D spent (32.50 ± 4.79 min) most of their time on allowing their calves to consume colostrum, compared to parities A, B, and C. Similarly, Friesland and Jersey genotypes on parity D (p < 0.05) spent most of their time on allowing their calves to suckle, as compared to other parities.

Discussion

The objective of the study was to assess the behavioral activity patterns of primiparous and multiparous of three dairy genotypes around the time of calving at the pasture-based system in South Africa. Calving is divided into three distinct stages [3,4,19], normally characterized by hormonal, physical (enlargement of the vulva and cervix), and behavioral changes such as tail raising, lying, standing and walking bouts, and their duration. These stages gradually continued from one to another [4,6,10–12] and end with fetal or calf expulsion [17].

The changes in behavioral activity patterns in dairy cows as they approach calving regardless of genotype or parity have been documented in the literature [4,10–13,16,20,21]. This study revealed that the mean number of lying bouts was equal, but their durations were significantly different between the genotypes and parities. Crossbred primiparous cows spent most of their time on lying down compared to other primiparous genotypes (such as Jersey and Friesland), and this could suggest that Crossbred cows were more comfortable to be in the company of multiparous cows. Besides, Jersey primiparous and multiparity cows had a longer lying duration in most of the lying bouts. Perhaps, this could be because they were more comfortable during the early stages of calving [3,4,10]. The finding of this study was also similar to a study in the United States of America, where primiparous females spent less time standing during the final 24-h precalving and more recumbent 2-h prepartum compared with multiparous cows [22,23].

Conversely, Friesland cows had longer lying durations compared to Jersey and Crossbred cows. This might be due to the breed dominance, commencement of calving, and comfort [14,24,25]. In the present study, Jersey and Friesland primiparous cows spent the least amount of time on lying down around the parturition time compared to multiparous. Possibly, the cows were discomfort due to environmental conditions. This result is similar to what observed in studies elsewhere [4,10,11,14] The intensity of abdominal contraction around calving could also contribute to animal behavior pericalving [10,26–28]. It is also important to mention that primiparous cows display an array of behaviors because they are calving for the first time. Titler et al. [13] reported that primiparous cows spent least of their time on lying bout duration and suggested that they have not fully conversant with the maternal experience. Rice et al. [22] also reported that both primiparous and multiparous cows had extended durations of lying bouts. The studies elsewhere reported the same finding buttressing the fact that lying bouts may be an excellent tool for the prediction of calving in beef females regardless of parity [14,22,29].

Furthermore, primiparous and parity B cows spent the most time on standing compared to cows in parities C and D, during calving [10,30,31]. Increased standing bouts or standing durations have been associated with discomfort during parturition [10,32,33]. This could also have been due to delivery pain or previous experience [11,12,14]. Titler et al. [13], while observing primiparous and multiparous Holstein cows using activity data loggers, found similar results. Conversely, the mean standing bout duration decreased as parturition progressing from one stage to another stage [34], and this could have been due to calmness as the discomfort decreases as calf protrudes outside the vulva. Friesland cows, on the other hand, spent the least time on standing and were spending most of their time on walking or stepping compared to other genotypes [10,12,15]. Perhaps, this could have been because they were restless during the calving time, as it is highly associated with nest building [3,4,10,15,31,35,36]. This could also mean that they were seeking a proper and quiet place to lie down and continue with the calving process [15,36].

The Jersey cows in parity D, in this study, spent most of their time on expelling their calves compared to Friesland and Crossbred cows of the other parities [17,28,37]. This is probably due to the age or parity factor and energy level to push their calves [38–40]. This could also be associated with the genetic predisposition of the sire used at the farm during insemination although multiparous cows are known to have good calving maternal experience as compared to primiparous cows. This is in contrast to the results by Wehrend et al. [4], who observed that primiparous cows took longer time on expelling their calves compared to multiparous cows. Multiparous cows became muscle tone deteriorated as they grew older (parity 8) [41,42]. This further suggests that old cows were experiencing calving difficulties [5,10,11,13]. The observations agree with the finding in one Indian study, which reported that older cows are prone to experience calving complications compared to primiparous and other groups of cows [43].

Genotypic and parity differences were observed in this study, and Friesland cows in parity B and those in parity D together with multiparous Crossbred cows spent most
of their time on licking their calves as compared to other groups of parities within genotypes [5, 13, 14, 21, 44–46]. This could be probably due to good maternal behavior compared to Jersey cows [47], which can be described as having a poor mothering ability [11, 14, 48, 49]. Similarly, primiparous cows and cows in parities B and C lacked experience [50]. Apart from that, there was a lot of interaction around the time of calving, and the dominant cows in the herd claimed calves as theirs and lick them [51–53].

In this study, Jersey cows had a low mothering ability. The current study contradicts with Campler et al. [54], who observed that Jersey cows lick their calves sooner after calving. This might be attributed to the fact that they were recumbent after a long calving duration [11, 55]. Besides, Crossbred and Friesland multiparous cows spent most of their time on allowing their calves to suckle colostrum [44, 49] as compared to parity (A, B, and C) within genotypes and Jersey cows. This could suggest that these two genotypes have good mothering ability [21, 48]. These observations from the study are similar to the findings of Kaufmann et al. [56], who also confirmed maternal genetic behavior such as increasing good mothering ability as the animal grows older.

Conclusion

There were behavioral differences observed between animals from different parities and genotypes around the time of calving. Primiparous cows of all genotypes spent most of their time standing and less time on other activities throughout the trial due to the lack of maternal experience. Jersey multiparous cows spent most of their time on lying down for longer durations and a longer time expelling their calves as compared to Friesland and Crossbred cows and less time nurturing calves, which may be an indication of lower mothering ability.

Acknowledgment

The authors would like to thank the SA national research foundation/research and technology fund (Grant SFH14080788106) for financially supporting this research.

Conflict of interests

The authors declare that they have no financial or personal relationships, which may have inappropriately influenced them in writing this article.

Authors’ contribution

MP drafted the manuscript submission and conducted the research, and IFJ supervised the project and edited the manuscript.

References

[1] Lucy MC, Garverick HA, Spiers DE. Stress in dairy animal’s management induced stress in dairy cattle: effects on reproduction. 2nd edition, John W. Fuquay, University of Missouri, Columbia, MO, pp 575–81, 2011; https://doi.org/10.1016/B978-0-08-100596-5.21424-8

[2] von Keyserlingk MAG, Martin NP, Kebreab E, Knowles FK, Grant RT, Stephenson M, et al. Invited review: sustainability of the U.S dairy industry. J Dairy Sci 2013; 96:1–21; https://doi.org/10.3168/jds.2012-6354

[3] Noakes DE, Parkinson TJ, England GCW. Dystocia and other disorders associated with parturition. 8th edition, Saunders, Philadelphia, PA, 2001; https://doi.org/10.1016/j.vetj.2007.12.032

[4] Wehrend A, Hofmann E, Failing K, Bostedt H. Behaviour during the first stage of labour in cattle: influence of parity and dystocia. Appl Anim Behav Sci 2006; 100:164–70; https://doi.org/10.1016/j.applanim.2005.11.008

[5] Schuenemann GM, Bas S, Gordon E, Workman JD. Dairy calving management: description and assessment of a training program for dairy personnel. J Dairy Sci 2013; 96:2671–80; https://doi.org/10.3168/jds.2012-5976

[6] Mainau E, Manteca X. Pain and discomfort caused by parturition in cows and sows. Appl Anim Behav Sci 2011; 135:241–51; https://doi.org/10.1016/j.applanim.2011.10.020

[7] Mee JF. The role of microenvironments in bovine periparturient problems. Cattle Pract 2004; 12:95–108.

[8] Mee JF. Prevalence and the risk factors for dystocia in dairy cattle. A review. Vet J 2008; 176:93–101; https://doi.org/10.1016/j.tvjl.2007.12.032

[9] Burbfeind O, Suthar VS, Voigtberger R, Bonk S, Heuwieser W. Validity of prepartum changes in vaginal and rectal temperature to predict calving in dairy cows. J Dairy Sci 2011; 94:5053–67; https://doi.org/10.3168/jds.2011-4484

[10] Miedema H, Cockram M, Dwyer C, Macrae A. Changes in the behaviour of dairy cows during the 24 h before normal calving compared with behaviour during late pregnancy. Appl Anim Behav Sci 2011; 131:8–14; https://doi.org/10.1016/j.applanim.2011.01.012

[11] Barrier AG, Haskell MJ, Macrae AL, Dwyer CM. Parturition progress and behaviours in dairy cows with calving difficulty. Appl Anim Behav Sci 2012; 139:209–17; https://doi.org/10.1016/j.applanim.2012.03.003

[12] Proudfoot KL, Jensen MB, Heegaard PMH, von Keyserlingk MAG. Effect of moving dairy cows at different stages of labour on behaviour during parturition. J Dairy Sci 2013; 96:1635–46; https://doi.org/10.3168/jds.2012-6000

[13] Titler M, Maquivar MG, Bas S, Gordon E, Rajala-Schultz PJ, McCullough K, et al. Effect of parity on daily activity patterns prior to parturition in Holstein dairy cows. J Dairy Sci 2013; 96:431-438; https://doi.org/10.3168/jds.2014-9223

[14] Jensen MB. Behaviour around the time of calving in dairy cows. Appl Anim Behav Sci 2012; 139:195–202; https://doi.org/10.1016/j.applanim.2012.04.002

[15] Proudfoot KL, Jensen MB, Weary DM, von Keyserlingk MAG. Dairy cows seek isolation at calving and when ill. J Dairy Sci 2014; 97:2731–9.

[16] Huzzey JM, von Keyserlingk, MAG, Weary DM. Changes in feeding, drinking, and standing behaviour of dairy cows during the transition period. J Dairy Sci 2005; 88:2454–61; https://doi.org/10.3168/jds.2003-7274

[17] Schuenemann GM, I Nieto L, Bas S, Galvao KN, Workman JD. Assessment of calving progress and reference times for obstetric intervention during dystocia in Holstein dairy cows. J Dairy Sci 2011; 96:2671–80; https://doi.org/10.3168/jds.2011-4456

[18] Coyle SL, Nash CGR, Bauman C, LeBlanc SJ, Hakey DB, Khosa DK, et al. Training method for animal-based measures in dairy cattle.
welfare assessments. J Dairy Sci 2018; 101:9463–71; https://doi.org/10.3168/jds.2018.14469

19. Ball PJ, Peter AR. Reproduction in cattle. Blackwell Publishing, Oxford, UK, 2004.

20. Huzey JM, Velra DM, Weary DM, von Keyserlingk MG. Prepartum behavior and Dry Matter Intake identify dairy cows at risk for metritis. J Dairy Sci 2007; 90: 3220–33; https://doi.org/10.3168/jds.2006-807

21. von Keyserlingk MG, Weary DM. Maternal behaviour in cattle. Horm Behav 2007; 52(1):106–13; https://doi.org/10.1016/j.hormbeh.2007.03.015

22. Duncan NB, Meyer AM. Locomotion behavior changes in peripartum beef cows and heifers. J Anim Sci 2019; 97:509–20; https://doi.org/10.1093/jaas/jay448

23. Rice CA, Eberhart NL, Krawczel PD. Prepartum lying behavior of holstein dairy cows housed on pasture through parturition. Animals, 2017; 7:1–9; https://doi.org/10.3390/ani7040032

24. Koolhaas JM, A. Bartolomucci A, Buwalda B, De Boer SE, Fluge G, Korte SM, et al. Stress revisited: A critical evaluation of the stress concept. Neurosci Bio Behav Rev 2011; 35:1291–301; https://doi.org/10.1016/j.neubiorev.2011.02.003

25. Moberg GP. Biological response to stress: implications for welfare. In: Moberg GP and Mench JAE (ed.). Implications for welfare, CABI, Wallingford, UK, 2000.

26. Neisen G, Essmeyer K, Teitscher MK, Hoedemarker M. Risk factors for perinatal mortality in dairy cattle: cow and fetal factors, calving process. Theriogenology 2009; 71:901–9; https://doi.org/10.1016/j.theriogenology.2008.10.011

27. Eastwood CR, Chapman DF, Paine MS. Networks of practice for construction of agricultural decision support systems. Agr Syst 2012; 108:10–8; https://doi.org/10.1016/j.agsy.2011.12.005

28. Gobbert J, Essmeyer K, Teitscher MK, Hoedemarker M. Risk factors for perinatal mortality in dairy cattle: cow and fetal factors, calving process. Theriogenology 2009; 71:901–9; https://doi.org/10.1016/j.theriogenology.2008.10.011

29. Borchers MR, Chang YM, Proudfoot KL, Wadsworth BA, Stone AE, Bewley JM. Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle. J Dairy Sci 2017; 100: 5664–74; https://doi.org/10.3168/jds.2016-11526

30. Maltz E, Antler A. A practical way to detect approaching calving of the dairy cow by a behaviour sensor 2007; Available via https://www.sciencedirect.com/document/2448939-2164-4c49-9516-1845eb5c4ba08 (Accessed 20 April 2018).

31. Barblinhecht AE, Fairbanks WS, Rogerson JD, Maichak Ej, Scurlock BM, Meadows EL. Elk parturition site selection at local and landscape scales. J Wikl! Manage 2011; 75:646–54; https://doi.org/10.1002/jwmg.100

32. Whitemore D, de Passille AM, Mejdell CM, Bae KE, Grandahl AM, Beaver A, et al. The effect of nursing on the cow–calf bond. Appl Anim Behav Sci 2015; 163:50–7; https://doi.org/10.1016/j.applanim.2014.12.003

33. Fraser AF. Domestic animal behaviour and welfare. 4th edition, CABI, Wallingford, UK, 2010.

34. Broom DM, Fraser AF. Domestic animal behaviour and welfare. 4th edition, CABI, Wallingford, UK, 2010.

35. Chimonyo M, Dzama K, Bhebhe E. Genetic determination of mothering ability and ability growth in indigenous Mukota sows of Zimbabwe. Livest Sci 2008; 113:74–80; https://doi.org/10.1016/j.livsci.2007.02.014

36. Whitemore D. The science and practice of pig production. Longman Scientific and Technical, Essex, UK, 1993; https://doi.org/10.1002/9780470995624

37. Ghasariania Y, Babaice M, Vatenkhan M. Factors affecting calving difficulties on Holstein cattle. Indian J Fundam Appl Life Sci 2014; 4:1148–55.

38. Broom DM, Fraser AF. Domestic animal behaviour and welfare. 4th edition, CABI, Wallingford, UK, 2007.

39. Broom DM, Fraser AF. Domestic animal behaviour and welfare. 4th edition, CABI, Wallingford, UK, 2007.

40. Broom DM, Fraser AF. Domestic animal behaviour and welfare. 4th edition, CABI, Wallingford, UK, 2007.

41. Broom DM, Fraser AF. Domestic animal behaviour and welfare. 4th edition, CABI, Wallingford, UK, 2007.

42. Broom DM, Fraser AF. Domestic animal behaviour and welfare. 4th edition, CABI, Wallingford, UK, 2007.

43. Broom DM, Fraser AF. Domestic animal behaviour and welfare. 4th edition, CABI, Wallingford, UK, 2007.
[55] Lombard JE, Garry FB, Tomlinson, S. M. Garber LP. Impacts of dystocia on health and survival of dairy calves. J Dairy Sci 2007; 90:1751–60; https://doi.org/10.3168/jds.2006-295

[56] Kaufmann D, Hofer A, Bikanel JP, Kunzi N. Genetic parameters for individual birth and weaning weight and for litter size of Large White pigs. J Anim Breed Genet 2000; 117:121–8; https://doi.org/10.1111/j.1439-0388.2000.x.00238.x