2020

Intense mid-infrared emission at 3.9 µm in Ho$^3+$-doped ZBYA glasses for potential use as a fiber laser

Haiyan Zhao
Ruicong Wang
Xin Wang

See next page for additional authors

Follow this and additional works at: https://arrow.tudublin.ie/prcart

Part of the Electrical and Computer Engineering Commons, and the Optics Commons

This Article is brought to you for free and open access by the Photonics Research Centre at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License

Funder: Natural Science Foundation of China; Harbin Engineering University; Heilongjiang Touyan Innovation Team Program; Science Foundation Ireland
Authors
Haiyan Zhao, Ruicong Wang, Xin Wang, Shijie Jia, Yaxian Fan, Elfed Lewis, Gerald Farrell, Shunbin Wang, and Pengfei Wang
Intense mid-infrared emission at 3.9 µm in Ho$^{3+}$-doped ZBYA glasses for potential use as a fiber laser

Haiyan Zhao,1 Ruicong Wang,1 Xin Wang,1 Shijie Jia,1 Yaxian Fan,1,2 Elfed Lewis,3 Gerald Farrell,4 Shunbin Wang1,5,6 and Pengfei Wang1,5,7

1Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
2Academy of Marine Information Technology, Guilin University of Electronic Technology, Beihai, 536000, China
3Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
4Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
5Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
6e-mail: shunbinwang@hrbeu.edu.cn
7e-mail: pengfei.wang@tudublin.ie

Received 14 May 2020; revised 22 June 2020; accepted 24 June 2020; posted 24 June 2020 (Doc. ID 397653); published 28 July 2020

Intense mid-infrared emission at 3.9 µm in Ho$^{3+}$-doped ZBYA glasses with direct upper laser level (Ho$^{3+}$: 3I$_6$) pumping at a wavelength of 888 nm is reported for the first time, to the best of our knowledge. Spectroscopic parameters were determined using the Judd–Ofelt theory and the measured absorption spectrum. The maximum emission cross section of the Ho$^{3+}$-doped ZBYA glass is estimated to be 2.7×10^{-21} cm2 at 3906 nm. Additionally, fluorescence spectra and lifetimes of ZBYA glasses with different Ho$^{3+}$ ion doping concentrations were measured. The results provide theoretical and experimental basis for better selection of rare-earth-doped matrix glasses to achieve a fluorescence output centered on a wavelength of 3.9 µm. © 2020 Optical Society of America

https://doi.org/10.1364/OL.397653

Mid-infrared lasers have found many important application areas with strong potential for use in military, atmospheric communications, biomedical, and other fields due to the compatibility of their output wavelength with these applications and good beam quality [1,2]. Rare-earth-doped mid-infrared fiber lasers have received particular recent attention [3,4]. Generally, due to the characteristic energy level spacing of rare-earth ions such as Er$^{3+}$, Dy$^{3+}$, and Ho$^{3+}$ ions, mid-infrared band lasing in the range from 2.7 µm to 3.9 µm has been achieved in ZBLAN glass fiber [5–7]. Among these rare-earth ions, the transition of Ho$^{3+}$: 3I$_5 \rightarrow ^3$I$_6$ has proved to be an efficient means for obtaining 3.9 µm laser emission [8]. Fluoride glass fibers also have the advantage of being capable of generating 3.9 µm lasers because of their low phonon energy [9]. As early as 1995, Jutta Schneider [7] reported 3.9 µm emission wavelength in a Ho$^{3+}$-doped fluoride fiber laser, which was pumped using 640 and 890 nm lasers. In recent years, Ho$^{3+}$-doped matrix glass with an emission at 3.9 µm has been extensively investigated. Gomes et al. (2016) reported the fundamental spectroscopic properties of fluoroindate glass for prospective application as a gain medium for fiber laser emission at 3.9 µm using a pump laser at 889 nm [10]. 3.9 µm fiber laser emission was generated in Ho$^{3+}$-doped fluoroindate fiber by pumping using an 888 nm multimode laser diode, whose maximum output power reached 200 mW [11]. However, fluoroindate glass fiber still has disadvantages including unstable composition and poor thermal stability [12].

Over the past few decades, the optical properties of ZBYA (ZrF$_4$–BaF$_2$:YF$_3$–AlF$_3$) fluoride glass have been investigated and characterized [13,14]. The results show that ZBYA glass as an ion-doped matrix material is very suitable for use in the near-infrared and mid-infrared region producing a fluorescence output at these wavelengths. ZBYA glass is a fluoride glass material that exhibits ultrahigh transmittance (>90%) over an ultrawide transmission range (500 nm to 6 µm) with low phonon energy [15]. The phonon energy of ZBYA glass (~580 cm$^{-1}$) is slightly higher than that of fluoroindate glass (~510 cm$^{-1}$) [16]. Compared to fluoroindate glass and ZBLAN glass, ZBYA glass shows better stability [13]. There are currently reports of ZBYA lasers that exist in microsphere devices only. In 2019, some of the authors of this current article also reported C-band laser operation in an Er$^{3+}$-doped ZBYA glass microsphere resonator [17]. They also subsequently demonstrated a triple-wavelength laser in a Ho$^{3+}$/Tm$^{3+}$-codoped ZBYA glass microsphere at 1.5 µm, 1.8 µm, and 2.1 µm [18]. Consequently, ZBYA glasses may be considered as a promising candidate for use in mid-infrared laser devices.

In this article, the luminescence spectra at near- and mid-infrared bands and energy level decay properties of different Ho$^{3+}$ ion doping concentrations in ZBYA glasses are investigated, when subjected to direct upper laser level pumping at a wavelength of 888 nm. Spectroscopic measurements were carried out, and spectroscopic parameters were analyzed using
The chemicals used in this investigation were all high-purity raw materials. Powders were fully mixed according to the molar ratio of 50ZrF₄–33BaF₂–(9−x)YF₃–7AlF₃–xHoF₃ (x = 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 7, 9), and ground in an agate mortar. The precursor materials were melted using a conventional melt quenching method in a dry and oxygen-free glove box environment at 850°C for 2 h. After the sample was completely molten, it was quickly transferred to a low-temperature furnace and annealed at 320°C for 3 h to remove residual stress and internal defects. It was naturally cooled to room temperature to obtain base glass samples. They were cut and polished for subsequent optical testing.

The experimental transmission spectra of the glass samples were measured using a Perkin-Elemer Lambda 900 UV spectrophotometer and an FT-IR spectrometer, which were used to record the spectral ranges λ ~ 200 to 10,000 nm and λ ~ 3300 to 10,000 nm, respectively. An 888 nm diode laser, which was built by Changchun Institute of Optics and Fine Mechanics, with an output power of 2.5 W was used to excite the ZBYA glass samples in order to measure the fluorescence properties. The infrared fluorescence spectra were measured using a spectrometer (Zolix Omni-λ3015 monochromator) combined with a SCITEC Model 420 dual-phase lock-in amplifier. For the fluorescence decay lifetime measurements, the samples were excited using a Horizon OPO pulsed laser, whose wavelength was set as λ ~ 880 nm, with pulses of 6 μs duration and a repetition rate of 10 Hz. The test equipment consisted of a spectrometer (Synergy 1000M) and a digital phosphor oscilloscope furnished by TEKTRONIX. All tests were performed at room temperature.

Figure 1 shows the energy transfer processes of Ho³⁺ ions pumped using an 888 nm laser. When the sample is pumped using the 888 nm laser, the Ho³⁺ ions residing in the ¹I₈ ground level state are excited to the ¹I₅ level by ground state absorption (GSA). Ions in the ¹I₅ level decay radiatively to ¹I₆, yielding a ~ 3.9 μm emission (¹I₅ → ¹I₆ transition). The depopulation of the Ho³⁺: ¹I₅ level can occur in a radiative manner via a ~ 2.9 μm (¹I₆ → ¹I₇ transition) and λ ~ 1150 nm (¹I₆ → ¹I₈ transition) emission. Furthermore, ions in the ¹I₇ level transfer to the ³F₄ level by excited state absorption (ESA) following an initial nonradiative decay to the ³I₆ level, and drop to the ground state via a 535 nm emission. The upconversion is shown as a green color when the samples were pumped using the 888 nm laser diode source. In addition, Ho³⁺ ions demote from ³I₇ to ¹I₅ resulting in a ~ 2.0 μm emission. There are also energy transition processes involving cross-relaxation (CR): ¹I₅ + ¹I₅ → ³I₄ + ³I₄ and energy transfer upconversion (ETU): ¹I₅ + ³I₄ → ³I₆ + ³I₉, ³I₆ + ³I₉ → ³F₃ + ³I₈.

Figure 2(a) shows the transmission spectra of ZrF₄–BaF₂–YF₃–AlF₃–HoF₃ glasses in the 200–10,000 nm wavelength band. The glass samples show outstanding transmittance over 500–6000 nm (approximately 90%), and an infrared cutoff wavelength of approximately 9000 nm. Figure 1 clearly shows the absorption bands located at λ ~ 2.0 μm, 1.2 μm, 890 nm, which correspond to the transitions from the ¹I₅ ground level to the upper levels ¹I₇, ³I₁₀, and ¹I₆, respectively. With an increase in Ho³⁺ ion doping concentration, the absorption strength of the corresponding absorption peak becomes greater. From the attenuation spectrum, it can be seen that ZBYA glass exhibits low loss in the 500–4500 nm band. There is evidence of a small OH⁻ absorption dip near λ ~ 3 μm. The αOH of the undoped ZBYA glass block was calculated as ~0.0098 cm⁻¹ from previous reported work [19]. The raw materials used and the weighing process were all conducted in the glove with water excluded, and the sample of molten glass was dehydrated in the glove box for 2 h. Compared with fluoroindate glass (αOH ~ 0.0032 cm⁻¹) [16], the αOH of the undoped ZBYA glass was therefore higher. For the current investigation, an 888 nm laser source was used to excite the Ho³⁺-doped ZBYA glasses, which can directly excite the ions in the ground state to the upper energy level (¹I₅), which ultimately results in the emission at 3.9 μm, thereby improving the efficiency of the 3.9 μm emission.

According to the absorption spectrum of 1 mol.% Ho³⁺-doped ZBYA glass, the Judd–Ofelt intensity parameters (Ωₙ) (n = 2, 4, 6) [20] were calculated as 3.89 × 10⁻²⁰ cm², 2.52 × 10⁻²⁰ cm² and 0.54 × 10⁻²⁰ cm², respectively. Table 1 lists the intensity parameters Ωₙ (n = 2, 4, 6) of Ho³⁺ ions in several typical glass substrates. Generally, the larger the Ω₂ value, the higher the covalency and the lower the symmetry around the rare-earth ion [21].

Table 2 summarizes the data for the radiative parameters for transitions between various energy levels of Ho³⁺ ions including spontaneous radiation transition probabilities (A), fluorescence branching ratio (β), and the radiative lifetime (τrad) as used in the ZBYA glass sample. Compared with Ho³⁺-doped fluoroindate glass, the spontaneous-emission probabilities for the Ho³⁺: ³I₄ → ³I₆ transition in 2.96 s⁻¹, are higher than the corresponding values recorded in fluoroindate glass.
Table 1. Calculated Judd–Ofelt Intensity Parameters \(\Omega_i \) (\(t = 2, 4, 6 \)) of Ho\(^{3+} \) Ions in Several Typical Glass Substrates

Glass	\(\Omega_2 \)	\(\Omega_4 \)	\(\Omega_6 \)
Fluorinate [10]	1	2.8	1.9
ZBLAN [23]	2.30	2.30	1.71
Oxide-fluoride [24]	1.96	0.64	0.11
Tellurite [25]	6.9	2.8	1.4
ZBYA (this work)	3.89	2.52	0.54

Additionally, the radiative lifetime of the Ho\(^{3+} \)\(\rightarrow \)\(5I_5 \rightarrow 5I_6 \), \(\rightarrow \)\(5I_7 \), \(\rightarrow \)\(5I_8 \), \(\rightarrow \)\(5I_6 \rightarrow 5I_7 \), and Ho\(^{3+} \)\(\rightarrow \)\(5I_7 \rightarrow 5I_8 \) energy levels in ZBYA glass were also calculated to be longer than in fluorinate glass.

Table 2. Radiative Property Parameters for Transitions between Various Energy Levels of Ho\(^{3+} \) in ZBYA Glass

Transition	Wavelength (nm)	\(A \) \((s^{-1}) \)	\(\beta \) (\%)	\(\tau_{\text{rad}} \) (ms)
\(\xi_5 \rightarrow \xi_5 \)	3920	2.96	6.48	21.9
\(\rightarrow \)\(5I_7 \)	1640	26	56.95	
\(\rightarrow \)\(5I_8 \)	890	16.7	36.57	
\(5I_6 \rightarrow 5I_5 \)	2860	6.26	9.3	14.8
\(5I_8 \rightarrow 5I_6 \)	1190	61.1	90.7	
\(5I_7 \rightarrow 5I_8 \)	2010	22.76	100	43.9

\((2 s^{-1}) \) [10]. In general, a higher value of spontaneous-emission probability \((A) \) provides greater potential for laser emission. Additionally, the radiative lifetime of the Ho\(^{3+} \)\(\rightarrow \)\(5I_5 \), \(\rightarrow \)\(5I_6 \), \(\rightarrow \)\(5I_7 \), and Ho\(^{3+} \)\(\rightarrow \)\(5I_6 \rightarrow 5I_7 \), and Ho\(^{3+} \)\(\rightarrow \)\(5I_7 \rightarrow 5I_8 \) transitions in ZBYA glass were calculated using the following formulas based on the McCumber theory [22], which is appropriate to the transition from the ground state to the excited state:

\[
\sigma_{\text{abs}} = \frac{\ln[I_0(\lambda)/I(\lambda)]}{Nd} = \frac{2.303 \log[I_0(\lambda)/I(\lambda)]}{Nd} = \frac{2.303 D(\lambda)}{Nd}. \tag{1}
\]

In Eqs. (1) and (2), \(I(\lambda) \) and \(I_0(\lambda) \) represent the optical intensity before and after the light passes through the sample, respectively; \(D(\lambda) \) is the optical absorbance, which can be derived from absorption spectrum of the glass sample; \(N \) is the density of the rare-earth ions; the value used in this investigation was 1.688 \(\times \) 10\(^{20} \) cm\(^{-3} \); and \(d \) is the absorption path length of the light, which is the thickness of the glass (\(\approx 2 \) mm). \(h \) is the Planck constant, \(\nu \) is the frequency, the Boltzmann constant, and \(T \) represent the Planck constant, photon frequency, the Boltzmann constant, and room temperature, respectively. \(\varepsilon \) is the zero-line energy and represents the free energy required to excite an ion from a low energy level to a high energy level at temperature \(T \). The value of \(KT \) used was 0.026 eV.

The cross section values of the transitions Ho\(^{3+} \)\(\rightarrow \)\(5I_5 \rightarrow 5I_6 \) and Ho\(^{3+} \)\(\rightarrow \)\(5I_6 \rightarrow 5I_7 \), which transfer between excited states, were obtained using Fuchbauer–Ladenburger theory [23], for which the formula is expressed as follows:

\[
\sigma_{\text{emi}} = \frac{\lambda^2 A_{\text{rad}}}{8\pi c n^4} \times \frac{\lambda I(\lambda)}{n I(\lambda) d\lambda}. \tag{3}
\]

where \(n \) represents the refractive index of ZBYA glass, which is around 1.5; \(c \) is the speed of light in vacuum; and \(A_{\text{rad}} \) is the spontaneous transition probability. \(I(\lambda) \) represents the optical intensity of 2.9 \(\mu \)m or 3.9 \(\mu \)m emission, and it greatly affects the calculation results. The maximum emission cross section of 2.7 \(\times \) 10\(^{-21} \) cm\(^2 \) occurs at 3.9 \(\mu \)m, and this value is slightly lower than that of fluorinate glass (3.3 \(\times \) 10\(^{-21} \) cm\(^2 \)) [10].

Figures 3(a)–3(e), respectively, present the measured absorption and emission cross section spectra for the optical transitions Ho\(^{3+} \)\(\rightarrow \)\(5I_5 \rightarrow 5I_6 \), Ho\(^{3+} \)\(\rightarrow \)\(5I_6 \rightarrow 5I_7 \), Ho\(^{3+} \)\(\rightarrow \)\(5I_7 \rightarrow 5I_8 \), Ho\(^{3+} \)\(\rightarrow \)\(5I_6 \rightarrow 5I_7 \), and Ho\(^{3+} \)\(\rightarrow \)\(5I_7 \rightarrow 5I_8 \) obtained using the above theoretical formulas.

The fluorescence emissions arising from the transitions Ho\(^{3+} \)\(\rightarrow \)\(5I_5 \rightarrow 5I_6 \), Ho\(^{3+} \)\(\rightarrow \)\(5I_6 \rightarrow 5I_7 \), and Ho\(^{3+} \)\(\rightarrow \)\(5I_7 \rightarrow 5I_8 \) are shown in Fig. 4, with peak wavelengths located at 1190 nm, 2100 nm, 2.9 \(\mu \)m, and 3.9 \(\mu \)m respectively. An increase of Ho\(^{3+} \) ion doping concentration clearly gives rise to an increase of the intensity of each emission. The highest doping concentration of Ho\(^{3+} \) was 9 mol.\% in this work, and no concentration quenching phenomenon was observed for these transitions up to that value.

Figure 5 shows the emission decay curves of the experimentally measured fluorescence decay lifetime of the Ho\(^{3+} \)\(\rightarrow \)\(5I_5 \) and Ho\(^{3+} \)\(\rightarrow \)\(5I_6 \) levels as a function of Ho\(^{3+} \) doping concentration. Emissions at 890 nm and 1150 nm were monitored under excitation from the pump source located at 880 nm. As the Ho\(^{3+} \) concentration increases, the lifetime values of the \(5I_5 \) and \(5I_6 \) levels remained approximately constant at 0.32 ms and 3.3 ms, respectively. Compared with fluorinate glass, the lifetime
of the Ho3+:\textit{5}I\textsubscript{5} level is slightly higher while the Ho3+:\textit{5}I\textsubscript{6} level is slightly lower in ZBYA glass [16]. This is owing to the nonradiative relaxation caused by the inherent phonon energy of the glass and the energy transfer processes between the ions. It is evidence that transition process of \textit{5}I\textsubscript{5} \rightarrow \textit{5}I\textsubscript{6} is a self-terminated process, resulting in the fact that it is difficult to maintain particle number inversion and spontaneously generate lasing at 3.9 \textmu m. Hence, an 888 nm laser was adopted to directly excite the Ho3+ ions in from the ground state to the \textit{5}I\textsubscript{5} level, and the ETU process (\textit{5}I\textsubscript{5} + \textit{5}I\textsubscript{6} \rightarrow \textit{5}F\textsubscript{5} + \textit{5}I\textsubscript{4}) can effectively eliminate the lower energy level population, thereby enhancing the 3.9 \textmu m emission that further produces a high efficiency of the transition, \textit{3}I\textsubscript{5} \rightarrow \textit{5}I\textsubscript{6}. The 3.9 \textmu m emission can therefore be achieved in ZBYA glasses.

A comprehensive experimental investigation on the mid-infrared emission properties of Ho3+-doped ZBYA glasses has been conducted. The maximum emission cross section for the resulting 3.9 \textmu m emission was calculated to be 2.7 \times 10^{-21} \text{ cm}^2. It was experimentally demonstrated that the intensity of the 3.9 \textmu m emission enhances with the increase of Ho3+ ion doping concentration under excitation at 888 nm. The results demonstrate the potential viability of the use of this material as an effective 3.9 \textmu m mid-infrared laser.

Fig. 4. Luminescence spectra of different doping concentration Ho3+-doped ZBYA glass at (a) \lambda \sim 1190 nm, (b) \lambda \sim 2010 nm, (c) \lambda \sim 2.9 \mu m, and (d) \lambda \sim 3.9 \mu m wavelength and pumped at \lambda \sim 888 nm.

Fig. 5. Emission decay curve measured at (a) 890 nm and (b) 1150 nm after laser excitation at 880 nm.

Funding. National Key program of Natural Science Foundation of China (NSFC 61935006); National Natural Science Foundation of China (61805074, NSFC 61905048); Fundamental Research Funds for the Central Universities (3072019CF2504, 3072019CF2506, 3072019CFQ2503, 3072020CFJ2507, 3072020CFQ2501, 3072020CFQ2502, 3072020CFQ2503, 3072020CFQ2504, GK2250260018, HEUCFG201841); the 111 project to the Harbin Engineering University (B13015); Heilongjiang Touyan Innovation Team Program; Science Foundation Ireland under the Centre research programme for the MaREI project (SFI/12/RC/2302_P2).

Disclosures. The authors declare no conflicts of interest.

REFERENCES

1. W. Tianshu, W. Yizhen, H. Kai, Z. Peng, J. Qingsong, and J. Huilin, Microwave Opt. Technol. Lett. 56, 848 (2014).
2. H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, Opt. Express 17, 15350 (2009).
3. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, Opt. Express 18, 26704 (2010).
4. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, Opt. Lett. 39, 493 (2014).
5. B. Dickinson, P. Golding, M. Pollnau, T. King, and S. Jackson, Opt. Commun. 191, 315 (2001).
6. Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, Opt. Express 14, 678 (2006).
7. J. Schneider, Electron. Lett. 31, 1250 (1995).
8. J. Schneider, C. Carbonnier, and U. B. Unrau, Appl. Opt. 36, 8595 (1997).
9. S. D. Jackson, Nat. Photonics 6, 423 (2012).
10. L. Gomes, V. Fortin, M. Bernier, R. Vallée, S. Poulain, M. Poulain, and S. D. Jackson, Opt. Mater. 60, 618 (2016).
11. F. Maes, V. Fortin, S. Poulain, M. Poulain, and R. Vallée, Optica 5, 761 (2018).
12. Y. Messaddeq, A. Delben, M. A. Aegerter, A. Souflane, and M. Poulain, J. Mater. Res. 8, 885 (1993).
13. M. Poulain, J. Non-Cryst. Solids 56, 1 (1983).
14. H. Ebendorff-Heidepriem, I. Szabo, and Z. Plasszovits, Opt. Mater. 14, 127 (2000).
15. H. Zhao, A. Li, Y. Yi, M. Tokurakawa, G. Brambilla, S. Jia, S. Wang, and P. Wang, J. Lumin. 212, 207 (2019).
16. R. Wang, J. Zhang, H. Zhao, X. Wang, S. Jia, H. Guo, S. Dai, P. Zhao, G. Brambilla, S. Wang, and P. Wang, J. Lumin. 225, 117363 (2020).
17. H. Zhao, X. Wang, R. Wang, A. Li, W. Li, E. Lewis, Y. Fan, S. Jia, S. Wang, and P. Wang, IEEE Photon. J. 11, 2403037 (2019).
18. H. Zhao, Y. Yi, X. Wang, A. Li, A. Yang, Z. Yang, Y. Fan, S. Jia, E. Lewis, and G. Brambilla, J. Lumin. 219, 116889 (2020).
19. H. Zhao, S. Jia, X. Wang, R. Wang, X. Lu, Y. Fan, M. Tokurakawa, G. Brambilla, S. Wang, and P. Wang, J. Alloys Compd. 817, 152754 (2019).
20. P. Goldner and F. Auzel, J. Appl. Phys. 79, 7972 (1996).
21. X. Feng, S. Tanabe, and T. Hanada, J. Am. Ceram. Soc. 84, 165 (2001).
22. D. McCumber, Phys. Rev. 136, A954 (1964).
23. M. Shojiya, Y. Kawamoto, and K. Kadono, J. Appl. Phys. 89, 4944 (2001).
24. S. Nishibu, S. Yonezawa, and M. Takashima, J. Non-Cryst. Solids 351, 1239 (2005).
25. R. Reisfeld and J. Hormadaly, J. Chem. Phys. 64, 3207 (1976).