Opposite Thermodynamic Arrows of Time

L. S. Schulman

Physics Department, Clarkson University, Potsdam, New York 13699-5820

(October 11, 2018)

A model in which two weakly coupled systems maintain opposite running thermodynamic arrows of time is exhibited. Each experiences its own retarded electromagnetic interaction and can be seen by the other. The possibility of opposite-arrow systems at stellar distances is explored and a relation to dark matter suggested.

The possibility of simultaneous opposite running thermodynamic arrows of time has been raised on several occasions, for didactic purposes \(^1\), for general interest \(^2\) and to confound by “obvious” counterexample \(^3\). A difficulty in these considerations is the absence of a well-defined framework. For example, one might argue against opposing arrows as follows. Let the systems be A and B. An observer in A will see a succession of small miracles in B as eggs uncrack, etc. It would seem that the tiniest interference by A, the smallest cry of amazement—transmitted to B—would destroy the monumental coordination needed for B’s reversed arrow. That this argument is flawed is apparent when one realizes that it is phrased from A’s perspective, and takes as natural that the images from B do not destroy the coordination that B would attribute to A. But whether the flaw is correctable or whether the conclusion is that both arrows would be destroyed, is less clear.

In \(^3\) a framework for these questions was proposed. Here I use that framework to show that small interaction does not destroy the arrows. The question of whether the systems can communicate will be touched on. Signals are of interest because of causal paradoxes. One aspect of communication is electromagnetic radiation and I will extend the Wheeler-Feynman absorber theory \(^3\) to show that each system has its own retarded interactions, which appear advanced to the other.

Our usual thermodynamic arrow can be phrased as the fact that when macroscopic (coarse grained) information is given it can be used, by averaging over the evolution of all microstates consistent with the macrostate, to estimate the future, but not (in that way) the past. As argued in \(^3\), an unbiased treatment of thermodynamic arrow questions can be had by giving macroscopic information at two times (typically, cosmologically remote). It was found that despite the non-standard conditioning, arrows emerge, consistent with a thesis correlating the thermodynamic arrow with the expansion of the universe \(^3\) (or at least with low entropy states at the remote era \(^3\)).

In \(^3\) it was suggested (p. 179) that the 2-time formulation could be used to study opposing arrows, but the inquiry was dismissed as “science fiction.” However, in a time-symmetric universe this possibility should be considered (in fact this was a complaint in \(^2\), so defense of the arrow-correlation thesis requires this). Moreover, as proposed below there is also the possibility of physical relevance in our present cosmological era.

Given systems A and B (for simplicity taken identical) that interact slightly, conflicting arrows are established through the following boundary conditions. In each system there is a concept of macrostate, defined by coarse grains in phase space. At time-0, A and B are respectively in \(\Delta_{A_0}\) and \(\Delta_{B_0}\) (\(\subset \Gamma \equiv \) phase space energy surface). At time-T they are in \(\Delta_{A_f}\) and \(\Delta_{B_f}\). The entropy, \(S\), of a grain is the logarithm of its volume. The conflict is imposed by starting A in a small grain, and putting little or no constraint on its final state. The opposite is done for B. (“Start” refers to “a,” not to a thermodynamic arrow.) Thus: \(S(\Delta_{A_0}) = S(\Delta_{B_0}) \ll S(\Delta_{A_f}) = S(\Delta_{B_f})\). For convenience we set \(\Delta_{B_0} = \Delta_{A_f} = \Gamma\). The relaxation time for \(\Delta_{A_0}\) to spread within \(\Gamma\) is denoted \(\tau\).

The equation of motion of a particle \(\alpha \in A\) is schematically

\[
\ddot{x}_\alpha = \sum_{\gamma \in A} F_\gamma(x_\alpha) + \sum_{\gamma \in B} F_\gamma(x_\alpha) = F(A) + F(B)
\]

By hypothesis \(F(B)\) is small, but not \textit{ultra}-small. Thus \(F(B)\) is not so weak that it would not destroy an entropy lowering process (such as the time-reverse of a breaking egg) of a macroscopic system \(^4\). Now if this were a normal physical problem one would expect the effect of B on A to shorten the relaxation time: \(F(B)\) would be noise on top of the independent motion of A. But from the B’s perspective we might expect extremely rapid relaxation, because B’s interaction destroys A’s ability to shrink entropy (in the direction of B’s arrow). Alternatively one might expect that there simply would be no solution to the boundary value problem. If indeed shrinking is instantaneous or solutions do not exist, then what was wrong with the argument that suggested a small reduction in \(\tau\)? Presumably correlations in the “noise” would allow the small \(F(B)\) to have large coherent effects.

To decide between these alternatives I have done computer simulations using variations on dynamical systems used to study ergodicity. As will be seen, the effect of one system on the other is not at all traumatic. There is simply a moderate shortening of relaxation times.
Each system, A and B, is an ideal gas of particles evolving under the cat map \([3,2,4,3]\). This is a measure preserving map of the unit square: \(\phi(x, y) = (x + y, x + 2y) \mod 1\). A single such system has been used to illustrate conceptual issues and analytic results are available \([3,2,4,3]\). We also use the map, \(\psi(u, v) \equiv (u + \alpha v, v) \mod 1\). Each point \((x_A, y_A)\) in A has a corresponding one in B, \((x_B, y_B)\). A time step consists of 3 maps: 1) \(\psi_{\alpha/2}\) applied to \((x_A, y_B)\) and \((x_B, y_A)\) separately; 2) \(\phi\) applied to \((x_A, y_A)\) and \((x_B, y_B)\) separately; 3) repeat \#1 \([3,2,4,3]\).

![Entropy as a function of time for systems, A and B, with opposite thermodynamic arrows. There are 100 coarse grains in the unit square and each simulation uses 500 points. In (a), (b) and (c) the coupling is 0, 0.2, and 0.5 respectively.](image)

In Fig. 1 results are shown for a simulation of 500 pairs of points in which the initial state of A was confinement in a particular \(0.1 \times 0.1\) box with the same final state for B \([3,2,4,3]\). Entropies \((S)\) of A and B are shown separately, where \(S = -\sum_k \rho_k \log \rho_k\), \(k\) labels coarse grains, \(N = \) number of points, and \(N/\rho_k = \) number of points in grain-\(k\). Fig. 1a is the 0-coupling result. As expected, the boundary conditions give opposing arrows. Relaxation times are both about 5. In Fig. 1b a coupling \((\alpha)\) of 0.2 is used. This conveys the main result of the simulation, the observation that the two arrows do persist. What A feels from B is noise, and the effect is to hasten relaxation. For this moderate coupling, all that happens is that relaxation takes about 4 time steps rather than 5. Finally, in Fig. 1c \(\alpha = 0.5\), for which the ability of each system to maintain its arrow is clearly compromised.

We next explore whether the entropy changes yield another property of arrows, macroscopic causality. By this I mean that effect follows cause, to be distinguished from microscopic causality, stated, e.g., in terms of field commutators. Defining a test of (macro) causality requires caution. Thus with initial-conditions-only the effect of a perturbation is by definition subsequent. In \([3,2,4,3]\) a consistent test is given by providing macroscopic data (coarse grains) at two times. The system is evolved microscopically from initial to final grains with a particular evolution law, and then again (for the same boundary data) with the same law on all but one time step, at which time some other law is used. With low entropy at both ends there are relatively few phase space points satisfying the boundary conditions. Solution points for perturbed and unperturbed evolutions are in general different. The test of macroscopic causality is whether the macroscopic behavior is different before the perturbation, after it, or perhaps both \([4]\). For our elaborated cat map, perturbation means that on a particular time step, instead of applying \(\phi\) and \(\psi\), another rule is used.

In Fig. 2a an entropic history is shown for uncoupled systems. The perturbation is a faster cat (higher Lyapunov exponent) at time-4 (generated by the matrix \([3,2,4,3]\) (in MATLAB notation)). The entropy, \(S(t)\), in the figure is calculated between \(t\) and \(t + 1\). To better see the effects, in Fig. 2b we show only the entropy change due to the perturbation. For A the major difference occurs at 4, while for B it is at 3, consistent with causality. For uncoupled systems this result is trivial and only shows that our method works. In Fig. 2c, coupling \((0.2)\) is turned on and the same comparison made. Qualitatively causality persists, although the coupling reduces all deviations.

Understanding radiation with opposing-arrows is no less in need of a defining framework than our considerations up to now. The language to be used is time-symmetric electrodynamics and the Wheeler-Feynman absorber theory \([3,2,4,3]\). Classically there is no loss of generality, since differences from the standard representation can be eliminated using free fields. Again consider systems A and B, and write the force on a particle in, say, A in terms of the advanced and retarded fields of all particles: \(\ddot{x}_i = \sum_{k \in A} [F^{(k)}_a(x_i) + F^{(k)}_r(x_i)]/2\), where \(a\) and \(r\) refer to advanced and retarded, respectively, \(k \in A \cup B\), and \(i \in A\). As before, a low entropy macrostate is given for A at small \(t\), high entropy for large \(t\), and contrarily for B. As in the fourth derivation in \([3,2,4,3]\), we rearrange the sum for \(\ddot{x}_i\), but in a new way:

\[
\ddot{x}_i = \sum_{k \in A'} F^{(k)}_r + \frac{1}{2} \sum_{k \in A} [F^{(k)}_a - F^{(k)}_r] + \sum_{k \in B} F^{(k)}_a + \frac{1}{2} \sum_{k \in B} [F^{(k)}_r - F^{(k)}_a] - \frac{1}{2} [F^{(i)}_a - F^{(i)}_r]
\]

(1)

where the prime on \(A'\) means \(k \neq i\). The term \(F^{(i)}_a - F^{(i)}_r)/2\) was found by Dirac to give radiation reaction. We rewrite Eq. (1) in obvious notation

\[
\ddot{x}_i = F^{(A')} + F^{(B)} + f_{\text{rad. react.}} + E_h
\]

(2)
where $E_h \equiv \frac{1}{2} \sum_k \sigma_k (F^{(k)}_a - F^{(k)}_r)$, $\sigma_k = 1 (-1)$ for $k \in A$ (B), and is homogeneous (sourceless). These manipulations reduce to the Wheeler-Feynman calculation when B is empty. They argued that their E_h was zero, based on the randomness of the particles (this is the absorber theory). Their explanation of why one should not reverse the development (to get advanced interactions, etc.) is statistical. In particular they suppose that the source (i) suffers an acceleration. When only retarded fields are used, they “had no particular effect on the acceleration of the source” (p. 170). On the other hand, with a time reversed representation there is coherence in the source, leading to unlikely behavior. In their words: “As the result of chaotic motion going on in the absorber, we see each one of the particles receiving at the proper moment just the right impulse to generate a disturbance which converges upon the source at the precise instant when it is accelerated.” As to choosing a representation, they say “Small a priori probability of the given initial conditions provides our only basis on which to exclude such phenomena.”

In our case, for A the unlikely states come at the beginning, for B at the end. Therefore there should be a different expansion for each. That is just Eq. (2). The key point is that this is still consistent with electrodynamics. The field, E_h, apparently more complicated (because of σ_k) than the one vanishing in \mathcal{F}, is nevertheless sourceless.

So it is mathematically consistent for E_h to vanish. Can arguments like those of Wheeler and Feynman be applied showing that it does in fact vanish? Since A and B are only weakly coupled this is reasonable. But the argument could fail if the weak-in-magnitude forces managed peculiar coherences. It is the point of the numerical simulations reported above that such correlations do not occur. Those simulations dealt with the conceptual issues of opposing arrows and although we now have more complex interactions the conceptual statistical mechanics issues are the same.

Assuming then that E_h vanishes, what would A see when looking at B? A’s images arise from the advanced field coming from his future. Successive images present earlier times, as measured by the causal-entropic arrow of B. Indeed eggs uncrack.

Can this yield causal paradoxes? Can B close the windows and avoid getting the carpet wet because A tells him it’s raining in? In principle such signals could be exchanged and paradoxes avoided as discussed in \mathcal{E}. It is also possible that such an interaction would violate the small coupling assumption. At this stage I draw no conclusion.

![Entropy and entropy difference due to perturbation](image)

FIG. 2. Entropy and entropy difference due to perturbation. Coarse grains, etc. are as in Fig. 1. The solid lines in (a) are (up to statistics) the same as Fig. 1a. For the dashed lines the system is perturbed at $t = 4$. Entropy is calculated between time steps, so for A (S for $t \uparrow$) the fact that entropy is nearly unchanged for $t \leq 4$ means that cause follows effect. For B causality implies that changes should be at $t < 4$, which is confirmed in the figure. For clarity, in (b) only the difference is shown. Part (c) shows differences for coupled systems ($\alpha = 0.2$). Again causality is evident, but because of coupling-induced relaxation the perturbation does not have so marked an effect.

Focusing on situations where the small coupling assumption is valid, we arrive at the real possibility that at some distance from us there are regions of opposite running thermodynamic arrows. The extended absorber theory indicates that we would see them at an era later than our own, later by the time for light travel to them. How could those regions have arisen? One possibility is that our universe has a big crunch in the (our) future and that the other-arrow regions are survivors coming the other way. If the bang-to-crunch time is long, they would be further away from their start, hence less likely to have luminous matter. As such, we would pretty much not see them electromagnetically (but not for the reasons in \mathcal{I}). On the other hand, there would be no suppression of gravity. According to this description, this material has all the properties now attributed to dark matter.

Based on what was learned from the simulations above, there is no bar to such objects being within our galaxy \mathcal{L}. Specifically the radiation from them could be noticeable, but sufficiently weak as not to overwhelm our normal thermodynamics. A dead star at 50 pc should satisfy this \mathcal{L}. However, this conclusion is not firm, since with a signal (which gravitational lensing may be) there arises the issue of whether the small coupling as-
sumption is satisfied (cf. the causal paradoxes).

Although I have refrained from claiming definite answers to some of the important questions it is nevertheless clear that at the conceptual level further progress is possible. In particular, the question of whether signaling is consistent with weak coupling can be approached by simulations analogous to but more complicated than what I report above.

ACKNOWLEDGMENTS

I thank A. Ori for urging me to take these matters seriously and for preliminary discussions, L. J. Schulman for suggestions on dynamical models, and J. Avron, D. ben-Avraham, P. Facchi, S. Fishman, B. Gaveau, S. Pascazio, M. Roncadelli and E. Singer for further helpful discussions. I am grateful to the Inst. for Theor. Phys. and the Petrie Fund of the Technion and to the NSF (PHY 97 21459) for support.

[1] N. Wiener, Cybernetics (M.I.T. Press, Cambridge, Mass., 2nd ed., 1961), p. 34.
[2] R. Flood and M. Lockwood, eds., The Nature of Time (Blackwell, Oxford 1986). M. Dummet (p. 153) considers conflicting arrows a stepping stone to “incoherence,” while R. Penrose (p. 41) uses causal paradoxes to argue against the proposal that the thermodynamic arrow is related to the cosmological one (cf. [3]).
[3] L. S. Schulman, Phys. Rev. D 7, 2868 (1973).
[4] L. S. Schulman, J. Stat. Phys. 16, 217 (1977).
[5] L. S. Schulman, Time’s Arrows and Quantum Measurement (Cambridge University Press, Cambridge, 1997).
[6] The coupling in the model below has significant effect on the motion. It is not “ultra small.”
[7] J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157 (1945); J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21, 425 (1949).
[8] T. Gold, Am. J. Phys. 30, 403 (1962).
[9] V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics (Benjamin, New York, 1968).
[10] The alternation enhances apparent time reversal symmetry. \(\phi \) itself is not time symmetric, but for our purposes this is unimportant. What matters is that Lyapunov exponents for \(\phi \) and \(\phi^{-1} \) are equal (making Fig. 1a symmetric). Thus \(\Phi \) microscopic T violation alone does not provide a thermodynamic arrow.
[11] As in \(\Phi \), solution points were found by giving \(\sim N \times (\# \text{ grains}) \) points the correct initial conditions and discarding all but the \(N \) points that found their way into the desired final grain. This method relies on the lack of interactions within A or B. It yields a random sample of the time-symmetric true solution set (\(\Delta_f \cap \Phi^N \Delta_i \), with \(\Phi \) the combined A-B map, \(\Delta_i = \Delta_{A_i} \otimes \Delta_{B_i} \), etc.).