In Vitro Studies of the Probiotic Properties of Lactic Acid Bacteria Isolated from Akamu – A Nigerian Weaning Food

Onuorah Samuel¹, Okafor Mavis, Odibo Frederick

Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, Nigeria

Received September 9, 2019; Revised Revised October 7, 2019; Accepted October 17, 2019

Abstract Akamu is a popular fermented nutritive porridge made from cereals and is mostly eaten at infancy as a weaning food. Lactic acid bacteria contribute towards the safety, nutritional value, shelf life and acceptability of a wide range of cereal based foods and have been reported to have probiotic potential against gastrointestinal microorganisms, thus in vitro studies of the probiotic properties of lactic acid bacteria isolated from akamu produced with sorghum and maize grains were carried out using standard analytical methods. The pH of the cereal slurries decreased while the titratable acidity and the total lactic acid bacterial counts increased during the period of the studies. The lactic acid bacteria isolated were lactobacillus delbrueckii subsp bulgaricus, L. fermentum, L. brevis, L. plantarum, L. amylovorus, Pediococcus acidilactici acid, P. Pentosaceus. The isolates grew optimally at pH 4.0 and NaCl concentration of 3.0% and survived in fresh bovine bile. The bacteria except Lactobacillus brevis adhered to the intestinal mucosa as shown by the cell surface hydrophobicity assay and were resistant to most of the antibiotics used. This study indicated that the lactic acid bacteria isolated from raw akamu have probiotic characteristics and that raw akamu will be effective in the prevention and treatment of gastrointestinal diseases.

Keywords Kamu, Lactic Acid, Bacteria, Probiotic, Sorghum, Maize

1. Introduction

The fermentation process has developed over the years such that organic substrates are now converted into more desirable substances by Lactobacillus plantarum and Candida tropicalis, the actions of enzymes or other microorganisms under controlled conditions [1]. Lactic acid bacteria are a group of gram positive, non-spore forming rods or cocci which produce lactic acid as the major end product from fermentation of carbohydrates. Majority of microorganisms used as probiotics belong to the lactic acid bacteria and Bifidobacteria.

Lactobacillus species are the most commonly utilized group of microorganisms within the group of lactic acid bacteria as probiotics. The antagonistic activity of such bacteria is known to inhibit a large number of enteric and urinary pathogenic bacteria. Lactic acid bacteria such as Lactobacillus and Bifidobacteria are found throughout the gastrointestinal tract and they have been reported to cause a reduction in lactose intolerance and alleviation of some diarrhoea as well as an increase in immune response [2].

Nigeria is endowed with a wide range of fermentable indigenous staple foods that serve as raw materials for Agro-allied cottage industries. These industries utilize small scale equipment and provide alternatives for rural communities while adding value to such local porridge [3]. One common example of indigenous fermented foods in Nigeria is Akamu which is prepared and consumed by the Ibos and other tribes in Nigeria. This cereal product is common in seemingly poor and impoverished communities across the developing countries and is produced largely from maize and sorghum. Its production is often by small scale enterprise undertaken by unskilled female attendants [4].

Spontaneous fermentation of cereal-based foods is borne out of competitive activities of endogenous or contaminating microorganisms and its initiation may take 24 - 48 hours. At the early stages of fermentation, contaminating microorganisms may increase slowly in number and compete for nutrients in order to produce metabolites [5]. The results are products of variable attributes in terms of quality and safety [6].

Lactic acid bacteria and yeasts occur as part of the
natural microbial population in spontaneously fermented foods and as starter cultures in the food and beverage industry [7]. Amylolytic lactic acid bacteria breakdown starches to simple sugars which are favourable for lactic acid bacteria growth. The simple sugars are then converted to organic acids that create the acid environment which is known to improve product stability and safety.

The antibiosis mediated by lactic acid bacteria has been attributed to the production of acids, hydrogen peroxide and antibiotics. The production of organic acids reduces the pH to below 4.0, making it difficult for some spoilage organisms that are present in cereals to survive [8]. Lactic acid bacteria lack the enzyme catalase to breakdown the hydrogen peroxide generated, therefore it can accumulate and become inhibitory to some microorganisms [9].

Fermented products having lactic acid bacteria also have viricidal and anti tumor effects [10]. This work was therefore aimed at determining the in vitro probiotic properties of lactic acid bacteria isolated from the Nigerian staple food Akamu prepared with sorghum and maize.

2. Materials and Methods

2.1. Collection of Sorghum and Maize Samples

Maize and sorghum grains were purchased at Eke Awka Market in Awka, Anambra State, Nigeria and transported to the laboratory in sterile polythene bags for processing.

2.2. Preparation of Akamu

Akamu was prepared using the traditional method described by Odunfa [11]. The grains were sieved to remove pebbles and dirt and subsequently soaked in water for three days, with the water changed daily after which they were mashed, milled and sieved to obtain the slurries using a sieve and cotton material. The slurries were bagged, dewatered and stored for three days to produce the edible food – Akamu.

2.3. Determination of the pH of the Slurries with Time

The pH was determined as described by Akinrele [12] using a Pye – Unicam pH meter. One gram of the sample was dissolved with 24ml of deionised water to give a 25ml solution. The pH was adjusted using hydrochloric acid. The tubes were incubated at 37°C for 48 hours. 0.1ml inoculum from each tube was inoculated into Mann Rogosa and Sharpe (MRS) agar plate using the spread plate method.

2.4. Determination of the Titratable Acidity of the Slurries with Time

This was determined as described by Omuorah et al. [13]. One gram of the slurry was dissolved with 24ml of deionised water to give a 25ml solution. The solution was titrated with 0.1N NaOH solution using phenolphthalein as the indicator till the colour of the solution changed to pink. The titratable acidity was determined at twenty four hours intervals for 72 hours. Triplicate determinations were made for each sample.

2.5. Determination of the Total Lactic Acid Bacterial Counts of the Slurries with Time

The total lactic acid bacterial counts of the samples were determined as done by Guesh et al. [14]. Aliquots of serially – diluted samples were inoculated into Mann Rogosa Sharpe (MRS) agar plates containing 0.5% nystatin to inhibit the growth of gram negative bacteria and fungi. The plates were incubated in an inverted position at 37°C for 48 hours and the discrete colonies that grew were counted and recorded. The cultures were purified several times on MRS agar plates and stored on MRS agar slants for characterization and identification.

2.6. Characterization and Identification of the Lactic Acid Bacterial Isolates

The morphological and biochemical characteristics of the lactic acid bacterial isolates were determined. Gram staining, catalase test, sugar fermentation test, coagulase test, indole test, methyl red test, spore staining, citrate utilization test, voge proskauer test and motility test were carried out as described by Bonade et al.[15]. The isolates were identified using 16S ribosomal RNA sequencing using the FASTA algorithm.

2.7. Growth of the Isolates at Varying pH Levels

The test was performed as described by Tambekar and Bhutada [16]. The isolates were inoculated into sterile tomato juice broth tubes of varying pH (2.5, 3.0, 4.0 and 5.0). The pH was adjusted using hydrochloric acid. The tubes were inoculated at 37°C for 48 hours. 0.1ml inoculum from each tube was inoculated into Mann Rogosa and Sharpe (MRS) agar plate using the spread plate method. The plate was incubated at 37°C for 48 hours.

2.8. Salt Tolerance of the Lactic Acid Bacteria

This was performed as described by Hyronimus et al. [17]. Isolated lactic acid were inoculated into MRS broth in test tubes containing 3.0%, 6.5% and 10.0% (w/v) of NaCl and incubated at 37°C for 24 hours. The tubes were thereafter examined for turbidity which was a positive reaction.
2.9. Survival of the Lactic Acid Bacteria in Fresh Bovine Bile

This was carried out using the agar well diffusion method as described by Vinderola et al. [18]. Sterile Mann Rogosa Sharpe agar was mixed with 0.2ml of a 24 hour culture of each isolate. Wells of 10mm in diameter were made in each agar plate and 0.2ml of fresh bovine bile was placed in each well. The plates were incubated anaerobically at 37°C for 36 hours. Diameters of zones of inhibition around the wells were measured and recorded.

2.10. Cell Surface Hydrophobicity Assay

The assay was carried out as described by Dunne et al.[19]. Fresh cultures of the isolates were centrifuged at 4000rpm for 10 minutes. The cells were thereafter washed three times with phosphate buffered saline (PBS) and suspended in 1.2ml of PBS. 0.6ml of xylene was added to 3.0ml of the cell suspension. The mixture was thoroughly vortexed for 2 minutes and allowed to stand for the xylene to separate completely. The aqueous phase was carefully removed with a springe and the remnant was transferred to a cuvette and the absorbance values were taken at 560nm using the spectrophotometer.

\[
\% \text{ hydrophobicity} = \left(\frac{A_0 - A}{A_0} \right) \times 100
\]

\[A_0 = \text{Absorbance values of the mixture before the addition of xylene} \]
\[A = \text{Absorbance values of the mixture after the addition and removal of xylene}. \]

2.11. Determination of Antibiotics Susceptibility Profile of the Isolates

The method used by Onuorah et al.[20] was adopted. The isolates were inoculated into tomato juice broth individually and incubated at 37°C for 24hours. 0.1ml of each isolate was thereafter spread evenly on sterile solidified MRS agar plates using sterile glass rods. Antibiotics discs namely Amoxicillin(30μg), Septrin (30μg), Ciprofloxacin (10μg), Gentamycin (10μg), Streptomycin (30μg), Perfloxacitin (10μg), Ampiclox (30μg), Erythromycin (10μg), Zinnacef (20μg) and Rocephin (25μg) were placed upside down on top of the agar plates. The plates were incubated at 37°C for 24hours and examined for zones of inhibition. Inhibition zone diameters were measured using a meter rule.

3. Results

The changes in pH and titratable acidity of the sorghum slurry with time are shown in Table 1. The pH decreased from 4.44 to 3.81 while the titratable acidity increased from 0.7 to 1.6.
Table 4. Morphological and biochemical characteristics of the lactic acid bacteria from the sorghum and maize slurries

Morphological and biochemical characteristics	Lactobacillus delbrueckii subspp bulgaricus	Lactobacillus fermentum	Lactobacillus brevis	Lactobacillus plantarum	Lactobacillus amylovorus	Pediococcus acidilactici	Pediococcus pentosaceus
Appearance	Rod	Rod	Rod	Rod	Rod	Coccus	Coccus
Gram reaction	+	+	+	+	+	+	+
Catalase test	_	_	_	_	_	_	_
Coagulase test	_	_	_	_	_	_	_
Motility test	_	_	_	_	_	_	_
Spore test	_	_	_	_	_	_	_
Indole test	_	_	_	_	_	_	_
Methyl red test	+	_	_	_	_	_	_
Voges proskauer test	_	_	_	_	_	_	_
Citrate utilization test	_	_	_	_	_	_	_
Lactose fermentation test	+	_	_	_	_	_	_
Glucose fermentation test	+	+	+	+	+	+	+
Sucrose fermentation test	_	_	+	+	+	_	+

+=Positive reaction
_=Negative reaction
The distribution of the lactic acid bacteria in the sorghum and maize slurries is shown in Table 5. All the isolates except, P. acidolactici were isolated from the sorghum slurry while all the isolates were isolated from the maize slurry.

Table 5. Distribution of the lactic acid bacteria in the sorghum and maize slurries

Lactic acid bacteria	Sorghum	Maize
Lactobacillus delbrueckii subsp bulgaricus	+	+
Lactobacillus fermentum	+	+
Lactobacillus brevis	+	+
Lactobacillus plantarum	+	+
Lactobacillus amylovorus	+	+
Pedicoccus acidilactici	_	+
Pedicoccus pentosaceus	+	+

+=detected
_=not detected

Table 6 showed the frequency of occurrence of the lactic acid bacteria in the sorghum and maize slurries. *Lactobacillus delbrueckii subsp bulgaricus* occurred most frequently (33.3%) in the sorghum slurry while *Lactobacillus plantarum* had the lowest frequency of occurrence of 6.7%. *L. delbrueckii subsp bulgaricus* also had the highest frequency of occurrence of 26.0% in the maize slurry while *L. amylovorus* had the lowest frequency of occurrence of 9.4%. Generally, *L. delbrueckii subsp bulgaricus* occurred most frequently (29.0%) in the slurries while *P. acidolactici* had the lowest frequency of occurrence of 5.8%.

Table 6. Frequency of occurrence of the lactic acid bacteria in the sorghum and maize slurries

Lactic acid bacteria	Sorghum (n)	Maize (n)	Total (n)
Lactobacillus delbrueckii subsp bulgaricus	100(33.3%)	111(26.0%)	211(29.0%)
Lactobacillus fermentum	55(18.3%)	85(19.9%)	140(19.3%)
Lactobacillus brevis	45(15.0%)	53(12.4%)	98(13.5%)
Lactobacillus plantarum	20(6.7%)	46(10.8%)	66(9.0%)
Lactobacillus amylovorus	38(12.7%)	40(9.4%)	78(10.7%)
Pedicoccus acidilactici	0(0.0%)	42(9.8%)	42(5.8%)
Pedicoccus pentosaceus	42(14.0%)	50(11.7%)	92(12.7%)
Total	300(100.0%)	427(100.0%)	727(100.0%)

n = number of isolates.

The growth of the lactic acid bacteria from the sorghum and maize slurries at varying pH levels is shown in Table 7. The isolates showed growth at the different pH levels but grew optimally at pH 4.0 and minimally at pH 2.5.

Table 7. Growth of the lactic acid bacteria from the sorghum and maize slurries at varying pH levels

Lactic acid bacteria	pH levels			
	2.5	3.0	4.0	5.0
Lactobacillus delbrueckii subsp bulgaricus	++	++	+++	+++
Lactobacillus fermentum	++	++	+++	+++
Lactobacillus brevis	++	++	+++	+++
Lactobacillus plantarum	++	++	+++	+++
Lactobacillus amylovorus	++	++	+++	+++
Pedicoccus acidilactici	++	+++	+++	+++
Pedicoccus pentosaceus	++	+++	+++	+++

+= minimal growth
++=moderate growth
 +++=heavy growth
++++=very heavy growth

Table 8 showed the salt tolerance of the lactic acid bacteria. All the isolates were tolerant to 3.0% concentration while all except lactobacillus brevis and *Pediococcus acidilactici* were tolerant to 6.5% salt concentration. However, all the lactic acid bacteria did not grow at 10.0% salt concentration.

Table 8. Salt tolerance of the lactic acid bacteria

Lactic acid bacteria	Salt tolerance		
	3.0%	6.5%	10.0%
Lactobacillus delbrueckii subsp bulgaricus	+++	++	_
Lactobacillus fermentum	++	+	_
Lactobacillus brevis	++	-	_
Lactobacillus plantarum	++	+	_
Lactobacillus amylovorus	++	+	_
Pedicoccus acidilactici	+	-	_
Pedicoccus pentosaceus	+++	++	_

+= minimal tolerance
++=moderate tolerance
+++=high tolerance
_=No tolerance

The survival of the lactic acid bacteria in fresh bovine bile is presented in Table 9. All the isolates was resistant to the bile, hence there were no zones of inhibition.

Table 9. Survival of the lactic acid bacteria in fresh bovine bile

Lactic acid bacteria	Zone of Inhibition (mm)
Lactobacillus delbrueckii subsp bulgaricus	0.0
Lactobacillus fermentum	0.0
Lactobacillus brevis	0.0
Lactobacillus plantarum	0.0
Lactobacillus amylovorus	0.0
Pedicoccus acidilactici	0.0
Pedicoccus pentosaceus	0.0
Table 10. Cell surface hydrophobicity of the lactic acid bacteria

Lactic acid bacteria	Cell surface hydrophobicity (%)
Lactobacillus delbrueckii subsp bulgaricus	59.34
Lactobacillus fermentum	16.03
Lactobacillus brevis	0.00
Lactobacillus plantarum	13.33
Lactobacillus amylovorus	25.11
Pedicoccus acidilactici	14.00
Pediococcus pentosaceus	56.00

Table 11. Antibiotics susceptibility profile of the lactic acid bacteria from the sorghum and maize slurries

Lactic acid bacteria	Amo (mm)	Sep (mm)	Cip (mm)	Gen (mm)	Str (mm)	Pef (mm)	Amp (mm)	Ery (mm)	Zin (mm)	Roc (mm)
Lactobacillus delbrueckii subsp bulgaricus	0	0	19	0	0	0	20	19	0	
Lactobacillus fermentum	17	17	17	15	14	10	0	18	20	17
Lactobacillus brevis	0	23	23	0	0	11	0	22	18	16
Lactobacillus plantarum	0	0	19	11	0	13	0	20	23	17
Lactobacillus amylovorus	0	18	18	13	18	13	0	18	17	18
Pedicoccus acidilactici	0	12	17	0	0	14	0	18	16	18
Pediococcus pentosaceus	0	11	17	0	14	13	0	19	19	18

Values (mm) = Diameters of zones of inhibition
Amo = Amoxicillin, Sep = Septrin, Cip = Ciprofloxacin, Gen = Gentamycin, Str = Streptomycin, Pef = Perflloxacin, Amp = Ampiclox, Ery = Erythromycin, Zin = Zinnacef, Roc = Rocephin

Table 10 showed the result of cell surface hydrophobicity assay of the lactic acid bacteria which reflects their adherence potential to the intestinal mucosa. The percentage hydrophobicity ranged from 0.00% to 59.34%. Lactobacillus delbrueckii subsp bulgaricus exhibited the highest level of hydrophobicity of 59.34% while Lactobacillus brevis showed no hydrophobicity to the intestinal mucosa.

The antibiotics susceptibility profile of the lactic acid bacteria from the sorghum and maize slurries are presented in Table 11. All the isolates were sensitive to Ciprofloxacin, Erythromycin and Zinnacef while Ampiclox had no inhibitory effect on any of them.

4. Discussion

The pH of the sorghum slurry decreased while the titratable acidity increased during the period of fermentation (Table 1). While the pH ranged from 4.44 to 3.81, the titratable acidity ranged from 0.7 to 1.6 during the fermentation period. Similar results were obtained with the maize slurry. The pH decreased from 4.41 to 3.85 while the titratable acidity increased from 0.6 to 1.2 during the period of fermentation (Table 2). Nwachukwu et al. [21] however reported that there is no significant correlation between the total bacterial counts, pH and titratable acidity.

The total lactic acid bacterial counts of the sorghum and maize slurries increased throughout the period of fermentation (Table 3). This result indicated that the nutrients status and environmental conditions prevalent in the slurreries encouraged the growth of the bacteria. Seven lactic acid bacteria were isolated from the sorghum and maize slurreries. They were lactobacillus delbrueckii subsp bulgaricus, L. fermentum, L. brevis, L. plantarum, L. amylovorus, Pediacoccus acidilactici and P. pentosaceus. More gram positive rods were isolated from the slurreries than the gram positive cocci (Table 4).

More lactic acid bacteria were isolated from the maize slurry than the sorghum slurry. While Pediacoccus acidilactici was not detected from the sorghum slurry, all the isolates were isolated from the maize slurry (Table 5). Lactobacillus delbrueckii subsp bulgaricus occurred most frequently (33.3%) in the sorghum slurry while Lactobacillus plantarum had the lowest frequency of occurrence (6.7%) in the slurry. However, L. delbrueckii subsp bulgaricus also had the highest frequency of occurrence (26.0%) in the maize slurry while lactobacillus amylovorus had the least frequency of occurrence of 9.4% in the maize slurry (Table 6).

Obinna-Echem et al. [22] reported that the lactic acid bacterial population of a selected Nigerian traditional fermented maize food called akamu was found to be dominated by strains of lactobacillus plantarum, L. fermentum, L. delbrueckii subsp bulgaricus and L. Helveticus. The isolates differed in their tolerance to acidity and varying salt concentration (Tables 7 and 8). At pH of 2.5, all the isolates showed minimal growth but their growth increased with increase in acidity, with the optimum growth at pH of 4.0. Several lactobacilli have
been reported to retain viability when exposed to pH values of 2.5 – 4.0 but showed loss of viability at lower pH values [19]. Lactobacilli are usually more resistant to acidic conditions than the other lactic acid bacteria. This property enables them to continue to grow during natural lactic fermentations, when the pH has dropped too low for the other lactic acid bacteria to grow, indicating that the lactobacilli are often responsible for the final stages of many lactic acid fermentations [23,24]. All the lactic acid bacteria grew at 3.0% salt concentration while none grew at 10.0% salt concentration indicating that the high salt concentration was inhibitory to their growth.

All the isolates were resistant to bile (Table 9). The resistance of organisms to bile is a determining factor for probiotic strains given that the liver excretes about 1.0 litre of bile each day into the small intestine. The effect of bile salts on bacterial cultures is more adverse compared to low pH [25]. Unconjugated bile salts even at low concentrations can inhibit the in vitro growth of microorganisms.

Six of the isolates showed cell surface hydrophobicity (Table 10) confirming their abilities to adhere to the intestinal mucosa. However, lactobacillus brevis showed no hydrophobicity. The adhesion of microorganisms to intestinal epithelial cells involves several mechanisms of which cell surface hydrophobicity is one of the physicochemical properties that facilitate the first contact between the microorganisms and the host cells [26]. This initial interaction precedes the subsequent adhesion process mediated by mechanisms involving cell surface proteins and lipoteichoic acids[27,28].

Several reports have been made on lactic acid bacteria surviving the gastrointestinal tract of humans and animals[29,30]. A study comparing the properties of lactic acid bacteria originating in fermented food with those in the gastrointestinal tract showed that strains are able to attach in vitro to human enterocyte – like epithelial cells (Caco-2 cell line) and survive low pH and the presence of bile [31].

The Lactic acid bacteria were resistant to Ampiclox but were inhibited by Ciprofloxacin, Erthromycin and Zinnacef. However, Lactobacillus delbrueckii subsp bulgaricus was more resistant to the antibiotics than the other lactic acid bacteria (Table 11). This result agreed with Halami et al. [32] who reported that lactic acid bacteria are normally more resistant to the principal types of antibiotics. Ammor et al. [33] however reported that the resistance to these antibiotics is usually intrinsic, hence resistance genes are not transferable.

5. Conclusions

This study indicated that the lactic acid bacterial species isolated are the principal bacterial species responsible for the fermentation of sorghum and maize into the weaning food - Akamu, due to the relatively low pH and high acidity of the fermentation process. These properties should be exploited in the preservation of foods leading to increased shelf life and products of good and acceptable quality. In addition, the results of the study showed that these lactic acid bacteria from raw Akamu possess probiotic properties, therefore, raw Akamu can be used for the treatment and prevention of intestinal diseases.

REFERENCES

[1] Towo, E.; Matuschek, E. and Svanberg, U. (2006). Fermentation and enzyme treatment of tannin sorghum gruels: effects on phenolic compounds, phytate and in vitro accessible iron. Food Chemistry. 94(3): 369-376.
[2] Savadogo, A.; Quattara, C.A.T; Bassoile, I.H.N and Traore, S.A. (2006). Bacteriocins and lactic acid bacteria: a mini review. African Journal of Biotechnology. 5(9): 678-683.
[3] Latunde-Dada, G.O. (1997). Fermented foods and cottage industries in Nigeria. Food and Nutrition Bulletin. 18(4): 376-381.
[4] Aminigo, E.R. and Akingbala, J.O. (2004). Nutritive composition and sensory properties of Ogi fortified with Okro seed meal. Journal of Applied Sciences and Environmental Management . 8(2): 23-28.
[5] Holzapfel, W.H. (2002). Appropriate starter culture technologies for small-scale fermentation in developing countries. International Journal of Food Technology. 75(3): 197-212.
[6] Ouoba, L.I.; Diawara, B; Jespersen, L. and Jakobsen, M. (2007). Antimicrobial activity of Bacillus subtilis and Bacillus pumilus during the fermentation of african locust bean (Parkia biglobosa) for soumbala production. Journal of Applied Microbiology. 102(4): 963-970.
[7] Shetty, P. H. and Jespersen, L. (2006). Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends in Food Science and Technology. 17(2): 48-55.
[8] Oyewole, O.B. (1997). Lactic fermented foods in Africa and their benefits. Food Control. 8(5-6): 289-297.
[9] Caplice, E. and Fitzgerald, G.F. (1999). Food fermentations: role of microorganisms in food production and preservation. International Journal of Food Microbiology. 50(1-2): 131-149.
[10] Seo, J., Chang, H., Lee, S. and Kim, J. (1993). Characteristic flavours of Korean Soy bean paste fermented with the same meju. Journal of Microbiology and Biotechnology. 3(4): 277-284.
[11] Odunfa, S.A. (1985). African fermented foods, In: Woods, B.J.B.(Ed.). Microbiology of fermented foods, Vol II, Amsterdam, Elsevier Applied Science Publishers, New York. Pp. 151-191.
[12] Akinrele, I.A. (1970). Fermentation studies on maize during
the preparation of a traditional african starch-cake food. Journal of the Science of Agriculture. 21(12): 619-625.

[13] Onuorah, S.C.; Okolo, Q.E., Egbuonu, A.V. and Onyia, M.C.(2011). Characterization and Identification of microorganisms in palm wine from a felled oil palm tree. Journal of Applied Sciences. 14(2): 9785-9790.

[14] Guesh, M; Tesfaye, S; Diriba, M. and Anteneh, T. (2019). In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented Ethiopian food products. International Journal of Microbiology. 2019: 1-11.

[15] Bonade, A.; Murelli, F; Vescovo, M. and Scolari, G. (2001). Partial characterization of a bacteriocin produced by Lactobacillus helveticus. Letters in Applied Microbiology. 33(2): 153-158.

[16] Tambekar, D.H. and Bhutada, S.A. (2010). An evaluation of probiotic potential of Lactobacillus sp. from milk of domestic animals and commercial available probiotic preparations in prevention of enteric bacterial infections. Recent Research in Science and Technology. 2(10): 82-88.

[17] Hyronimus, B; le Marrec, C; Sassi, A.H. and Deschamps, A. (2000). Acid and bile tolerance of sporeforming lactic acid bacteria. International Journal of Food Microbiology. 61(2-3): 193-197.

[18] Vinderola, G; Capellini, B; Villarreal, F; Suarez, V; Quiberoni, A. and Reinheimer, J. (2008). Usefulness of a set of simple in vitro tests for the screening and identification of probiotic candidate strains for diary use. Food Science and Technology. 41(9): 1678-1688.

[19] Dunne, C; O’Mahony, L; Murphy,L; Thornton, G; Morrissey, D., O’Halloran, S., Fenney, M; Flynn, S; Fitzgerald, G., Daly, C; Kiely, B; O1 Sullivan, G; Shanahan, F. and Collins, J.K. (2001). In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. American Journal of Clinical Nutrition. 73(2): 386S-392S.

[20] Onuorah Samuel, Nwoke John and Odibo Frederick (2019). Diversity of fungi in the Public Hand-pump Borehole water in Onueke, Ezza Local Government Area, Ebonyi State, Nigeria. Advances in Pharmacology and Pharmacy. 7(2): 23-32.

[21] Nwachukwu, E; Achi, O.K. and Ijeoma, I.O. (2010). Lactic acid bacteria in fermentation of cereals for the production of indigenous Nigerian foods. African Journal of Food Science and Technology. 1(2): 21-26.

[22] Obinna-Echem, P.C; Kuri, V. and Beal, J. (2014). Evaluation of the microbial community, acidity and proximate composition of akamu, a fermented maize food. Journal of the Science of Food and Agriculture. 94(2): 331-340.

[23] Holzapfel, W.H; Haberer, P; Geisen, R; Bjorkroth, J. and Schillinger, U. (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. American Journal of Clinical Nutrition. 73(2): 365S-373S.

[24] Soomro, A.H., Masud, T. and Anwaar, K. (2002). Role of lactic acid bacteria (LAB) in food preservation and human health - a review. Pakistan Journal of Nutrition. 1(1): 20-24.

[25] Olejnik, A; Lewandowska, M., Obarska, M. and Grajek, W. (2005). Tolerance of Lactobacillus and Bifidobacterium strains to low pH, bile salts and digestive enzymes. Electronic Journal of Polish Agricultural Universities. 8(1): #05.

[26] Alander, M., Korpela, R., Sazelin, M., Vilpponen-Salmela, T., Mattila-Sandholm, T. and von Wright, A. (1997). Recovery of lactobacillus rhamnosus GG from human colonic biopsies. Letters in Applied Microbiology. 24(5): 361-364.

[27] Rojas, M; Ascencio, F. and Conway, P. L. (2002). Purification and characterization of a surface protein from lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Applied and Environmental Microbiology. 68(5): 2330-2336.

[28] Schillinger, U; Guigas, C. and Holzapfel, W. H. (2005). In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. International Dairy Journal. 15(12): 1289-1297.

[29] Drouault, S; Cortihier, G; Dusko Ehrlich, S. and Renault, P. (1999). Survival, physiology and lysis of Lactococcus lactis in the digestive tract. Applied and Environmental Microbiology. 65(11): 4881-4886.

[30] Yuki, N; Watanabe, K; Mike, A; Tagami, Y; Tanaka, R; Ohwaki,M.and Morotomi,M.(1999). Survival of a probiotic, Lactobacillus casei strain Shiriothe provides physiological adhesion in the gastrointestinal tract:Selective isolation from faeces and identification using monoclonal antibodies. International Journal of Food Microbiology. 48(1): 51-57.

[31] Haller, D; Colbus, H; Ganzle, M. G., Scherenbacher, P., Bode, C. and Hammes, W. P. (2001). Metabolic and functional properties of lactic acid bacteria in the gastrointestinal ecosystem: A comparative in vitro study between bacteria of intestinal and fermented food origin. Systematic and Applied Microbiology. 24(2): 218-226.

[32] Halami, P. M; Chandrashekar, A. and Nand, K. (2000). Lactobacillus farciminis MD, a newer strain with potential for probiotic properties of human origin: Correlation with in vivo findings. American Journal of Clinical Nutrition. 73(2): 386S-392S.

[33] Ammor, M. S., Florez, A. and Mayo, B. (2007). Antibiotic resistance in non-enterococcal lactic acid bacteria and Bifidobacteria. Food Microbiology. 24(6): 559-570.