The roles of activated protein C in experimental trauma models

Satoshi Gando[^a,*], Toshihiko Mayumi[^b], Tomohiko Ukai[^c]

[^a]: Acute and Critical Care Center, Department of Acute and Critical Care Medicine, Sapporo Higashi Tokushukai Hospital, Japan
[^b]: Department of Emergency Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
[^c]: Department of Social Medicine, Graduate School of Medicine, Osaka University, Japan

Abstract

Trauma-induced coagulopathy is classified into primary and secondary coagulopathy, with the former elicited by trauma and traumatic shock itself and the latter being acquired coagulopathy induced by anemia, hypothermia, acidosis, and dilution (Table 1). For more than half a century, primary coagulopathy has been considered to be disseminated intravascular coagulation (DIC); however, in 2007, Brohi et al.[^3,4] created a new disease entity called acute coagulopathy of trauma-shock (ACOTS) and claimed that there has been nothing to suggest the existence of DIC. Interestingly, they recently changed their claims, resulting in ACOTS being regarded as having almost the same pathophysiology as DIC[^5]. In the present review, we tried to clarify the validity of activated protein C hypothesis that constitutes the main pathophysiology of the ACOTS in experimental trauma models.

© 2018 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Trauma-induced coagulopathy has been classified into primary and secondary coagulopathy, with the former being elicited by trauma and traumatic shock itself and the latter being acquired coagulopathy induced by anemia, hypothermia, acidosis, and dilution (Table 1).[^1] For more than half a century, primary coagulopathy has been considered to be disseminated intravascular coagulation (DIC);[^2] however, in 2007, Brohi et al.[^3,4] created a new disease entity called acute coagulopathy of trauma-shock (ACOTS) and claimed that there has been nothing to suggest the existence of DIC.[^5] Interestingly, they recently changed their claims, resulting in ACOTS being regarded as having almost the same pathophysiology as DIC.[^6,^7] In the present review, we tried to clarify the validity of the activated protein C (APC) hypothesis that constitutes the main pathophysiology of ACOTS in experimental trauma models.

Although other terms such as “acute coagulopathy of trauma” or “acute traumatic coagulopathy” etc. are now used to describe ACOTS, the original term created by the advocates, ACOTS, is mostly used in this review.

Pathophysiology of DIC

The main characteristics of DIC are systemic thrombin generation due to the activation of the tissue factor-induced coagulation pathway and insufficient anti-coagulation mechanisms, such as tissue factor pathway inhibitor (TFPI), antithrombin, protein C and endothelial thrombomodulin due to endothelial injury, and suppression of fibrinolysis by plasminogen activator inhibitor-1 (PAI-1).[^1] DIC is usually considered to be the thrombotic disease according to such changes as the activation of coagulation, insufficient anti-coagulation and suppression of fibrinolysis, however, when DIC and such conditions as shock-induced hypoperfusion or systemic ischemia and hypoxia, which enhance systemic fibrin(ogen)olysis, coexist with DIC, then DIC with the fibrinolytic phenotype ensues due to tissue-type plasminogen activator (t-PA) release from Weibel-Palade bodies in the endothelium.[^4,^5]

APC hypothesis

APC plays central roles in the ACOTS, which occurs only in patients with traumatic shock with severe metabolic acidosis. Shock-induced hypoperfusion slows the clearance of thrombin from the circulation. Both newly expressed endothelial thrombomodulin and soluble thrombomodulin generated in the circulation with full domains and activity complex with the thrombin. Thrombin and thrombomodulin complexes then form systemic APC converted...
from protein C. APC inactivates activated Factors Va and FVIIIa (FVa and FVIIIa), thereby leading to the systemic suppression of thrombin generation. Furthermore, APC neutralize PAI-1, which leads to the consumption of prothrombin. In addition, an in vitro study confirmed that elevated APC levels failed to reach a concentration that was high enough to suppress thrombin generation via the inactivation of platelets and plasma FVa. Another in vitro study confirmed that 300–2000 ng/mL of APC was needed to suppress the activities of FV and FVIII, and to prolong both the prothrombin time (PT) and activated partial prothrombin time (APTT). These levels were extremely high compared with those observed in clinical studies (5–65 ng/mL), showing that the APC-mediated suppression of thrombin generation in ACOTS is unlikely.

APC and anticoagulant mechanisms and endothelial injury

Increases in the levels of APC at 2 h after traumatic brain injury and hemorrhagic shock were associated with endothelial activation, confirmed by increases in the levels of syndecan-1, von Willebrand factor and soluble vascular cell adhesion molecule-1. An ovine model

Table 1

The classification of trauma-induced coagulopathy.

Type of Coagulopathy	Conditions	Other Pathologies
Acute Coagulopathy	Hemostasis and wound healing	Endogenously induced primary pathologies
Disseminated Intravascular Coagulation (DIC)	Activation of coagulation	Insufficient anticoagulant mechanisms
	Insufficient fibrin(ogen)olyis	Increased fibrin(ogen)olysis (early phase)
	Insufficient plasminogen activator (PAI-1)	Suppression of fibrinolysis (late phase)
	Insufficient endogenous anticoagulant mechanisms	APC-mediated suppression of coagulation
	Insufficient endogenous fibrinolytic mechanisms	APC-mediated increased fibrinolysis

* ACOTS is referred to by various names including (but not limited to) acute traumatic coagulopathy and acute coagulopathy of trauma, etc. Some researchers refer to ACOTS as trauma-induced coagulopathy. APC: activated protein C.

Fig. 1. The Pathophysiology of DIC with the fibrinolytic phenotype and APC hypothesis in ACOTS. A: normal coagulation and fibrinolysis; B: DIC with the fibrinolytic phenotype; C: ACOTS. TM: thrombomodulin; sTM: soluble TM; TF: tissue factor; PC: protein C; APC: activated protein C; t-PA: tissue-type plasminogen activator.
Table 2
Summary of in vivo experimental studies.

Study (year)	Animal	Experiment	Sampling time (n)	APC	Thrombin (surrogate)	PAI-1	Main results	
Chesebro et al (2009)	Mouse	Control Trauma (laparotomy), T Hemorrhagic shock (MAP, 65 mmHg, 60 min), H Trauma/hemorrhagic shock, TH	After 60 min (1)	Yes	No	No	TH mice had an elevated APTT and increased APC levels. The selective inhibition of the anticoagulant property of APC by monoclonal antibodies prevented the prolongation of APTT in response to TH. The blockade of both the anticoagulant and cytoprotective function of APC caused 100% mortality with histopathological findings of pulmonary thrombosis and perivascular and alveolar hemorrhage.	
Hayakawa et al (2013)	Rat	Control	Tissue factor 4 U/kg infusion, low dose	Immediately 2 h	No	No	No	High-dose tissue factor caused increases in PAP, D-dimer, FDP and FgDP levels, which were associated with decreased s2-plasmin inhibitor and fibrinogen levels. These changes were accompanied by lower platelet counts, prolonged PT, and decreased antithrombin levels.
Sillesen et al (2014)	Swine	Control	Traumatic brain injury and hemorrhagic shock (MAP, 30–35 mmHg, 120 min), TBI/H	Baseline	Yes	No	Yes	The TBI/H group showed immediate increases in PF1-2 and a marker of endothelial activation (syndecan-1), which continued 2 h post-shock. However, increases in APC levels were observed at 2 h after hemorrhagic shock; this was not associated with significant changes in the D-dimer and PAI-1 levels, but was associated with significant increases in the PF1-2 levels.
Howard et al (2015)	Mouse	Sham	Trauma (laparotomy) + hemorrhagic shock (MAP, 35 ± 5 mmHg, 60 min), TH	Immediately after NCD 30 min after NCD (2)	Yes	Yes	No	NCD caused no changes in the APC levels. Trauma 0 and 30 were both associated with increases in soluble fibrin, stM, active t-PA, D-dimer, FDP/D-dimer ratio and FgDP. These changes were accompanied by decreases in platelet counts, fibrinogen, antithrombin, Factors II, V, and VIII activities and the prolongation of PT. Spontaneous thrombin bursts were observed in Trauma0 in a non-stimulated thrombinogram. The peak height/ FII and endogenous thrombin potential/FII ratios were negatively correlated with the antithrombin levels.
Wu et al (2016)	Rat	Poly trauma and hemorrhage	Before trauma 30, 60, 120, and 240 min after trauma (5)	Yes	Yes	Yes	The increases in APC was not significant and the measured levels were at the lower limits of the assay. Thrombin activity was preserved. Antithrombin and s2-macroglobulin fell within 2 h and the stM was elevated for over 4 h. The plasmin activity was elevated for the entire 4 h, however, the t-PA level was elevated at 30 min, then decreased, while the D-dimer levels increased at 4 h. The PAI-1 levels increased at 2–4 h. The APC did not inhibit the increase in PAI-1.	
van Zyl et al (2016)	Ovine	Control	Moderate trauma with 20% volume hemorrhage, M Severe trauma with 30% volume hemorrhage, S	Baseline 30min, 1,3,5 h after injury (5)	Yes	Yes	No	Protein C decreased with elevated levels of both APC and stM from 3 h. Factors V and VIII decreased from 1 h to 3 h, respectively. PAI-1 was reduced from 30 min after injury, but no changes in the D-dimer levels were observed throughout the experiment. These results were obtained only from severe trauma.
Davenport et al (2017)	Mouse	Trauma/hemorrhagic shock (MAP, 25–30 mmHg, 60 min), TH Wild type, WT TM knockin, TMKI Homozygous FV Leiden	Baseline	Yes	No	No	TH increased APC in WT mice but this increase was attenuated in TMKI mice. The increases in the D-dimer levels in WT were reduced in TMKI mice. The study showed no results in relation to the APC-mediated suppression of thrombin generation and degradation of PAI-1.	

APC: activated protein C; APTT: activated partial thromboplastin time; FDP: fibrin/fibrinogen degradation products; FgDP: fibrinogen degradation products; MAP: mean arterial pressure; PAI-1: plasminogen activator inhibitor-1; PAP: plasmin and s2 plasmin inhibitor complex; PF1-2: prothrombin fragment 1+2; PT: prothrombin time; stM: soluble thrombomodulin; TAT, thrombin antithrombin complex; t-PA, tissue-type plasminogen activator. Note: Yes means that the parameter is measured in the studies and No means that the parameter is not measured in the studies.
of trauma and hemorrhage also showed that increases in the levels of APC were associated with increased levels of syndecan-1, hyalur-
anon, and soluble thrombomodulin, suggesting glycolalyx degra-
dation, endothelial activation and injury.19 Furthermore, two rat
trauma models demonstrated significant and immediate decreases
in antithrombin activity and increases in levels of soluble thrombo-
modulin, a direct marker of endothelial injury.10,13 One study further
showed decreases in the levels of α2-macroglobulin.11 A significant
decrease in antithrombin and α2 macroglobulin, two major antico-
gulant factors, suggested their binding to thrombin and the
neutralization of thrombin action. However, glycoalyx degradation
and endothelial injury suppressed the anticoagulant actions of these
factors, leading to systemic thrombin generation, irrespective of APC
dynamics.20,21

Hayakawa et al.13 showed significant negative correlations be-
tween the antithrombin activity and endogenous thrombin poten-
tial/FII and peak height/FII ratios using a thrombin generation assay.
Their findings clearly indicated the insufficient control of thrombin
generation by antithrombin, leading to systemic thrombin genera-
tion measured by soluble fibrin.12 Dunbar et al.11 also demonstrated
significant negative correlations between antithrombin activity and
the tissue factor-stimulated termination time ratio using the same
method, suggesting that reduced antithrombin levels allow for
systemic thrombin generation. They further confirmed the systemic
thrombin generation in patients with acute coagulopathy of
trauma.13

These results indicate that impaired anticoagulant mechanisms
and endothelial injury can induce systemic thrombin generation in
a pathological state that overwhelms the APC-mediated inhibition
of thrombin generation observed in physiological hemostasis at the
injured site.

APC and fibrinolysis

The Noble-Collip drum shock trauma model in rat demonstrated
immediate and significant increases in active t-PA that were unable
to be inactivated by PAI-1 in association with systemic fibrinogen
olysis as confirmed by increases in the levels of fibrinogen/fibrin
degradation products (FDP), D-dimer, and FDP/D-dimer ratios.10 A
Western blot analysis in this experiment showed a clear increase in
fibrinogen degradation products (FgDP) immediately to 30 min
after trauma. Of note, these changes were observed without any
changes in the levels of APC. The same group further demonstrated
that massive amounts of tissue factor induce fibrinolysis and
fibrinogenolysis in parallel with increases in the levels of plasmin
and α2-plasmin inhibitor complex (PAP), a marker of plasmin
generation, without tissue hypoperfusion.13 These changes were
associated with consumption coagulopathy, namely decreases in
the platelet counts, fibrinogen, antithrombin, and α2-plasmin in-
hibitor, and prolonged PT.

Using a rat polytrauma model, Wu et al.13 showed that an early
increase in active t-PA that drives the elevation of plasmin activity with
no changes in the APC levels. A late increase in active PAI-1 with
low t-PA levels suggested the induction and expression of PAI-1
mRNA because this phenomenon usually takes several hours.21,22

The time courses of t-PA and PAI-1 in this experimental model
coincided with a change in DIC with the fibrinolytic to thrombotic
phenotype; in the former type, an extreme imbalance between
high t-PA and low PAI-1 plays an important role in critical bleeding
at the early phase and persistently high PAI-1 levels in the latter
type also play a role in thrombosis at the late phase of trauma.12,22

Significant elevation in the levels of APC at 3-5 h after trauma in
an ovine model of trauma and hemorrhage failed to prove a PAI-1-
mediated increase in fibrinolysis.19 In that experiment, no marked
changes in the D-dimer levels were noted, despite a decrease in the
PAI-1 levels. The authors stated that this phenomenon is consistent
with previously published results, in which APC cannot inhibit
PAI-1 to the levels required to induce clinically relevant fibrino-
lysis.23 This conflicts with the ACOTS theory.

Thrombomodulin-knock-in mice with a reduced capacity to APC
that were subjected to traumatic hemorrhage showed significant
atteuation of both increases in the D-dimer levels and decreases in
the fibrinogen levels.7 This transgenic mouse model also showed an
improved median survival time in compared with wild-type mice
after traumatic hemorrhage. These results may suggest that APC
plays some roles in increased fibrinolysis after trauma; however, its
relationship to PAI-1 and t-PA remains unclear at present.

APC and cytoprotection

Mice with trauma and hemorrhagic shock showed a significant
increase in APC and a greater prolongation of APTT than controls
and simple laparotomy mice.24 Monoclonal antibody 1591 selec-
tively inhibits the anticoagulant function of APC, which improves
the prolongation of APTT; however, no effect on the APC level was
noted in this experiment. Pretreatment with monoclonal antibody
1591 before trauma and hemorrhagic shock did not induce any
pulmonary pathology; however, pretreatment with monoclonal
antibody 1609, which inhibits both the anticoagulant and cyto-
protective functions of APC, induces pulmonary artery thrombosis,
and perivascular and alveolar hemorrhage. The results suggest that
the cytoprotective function of APC may be necessary to inactivate
coagulation systems.

A summary of the in vivo experimental studies cited in this
review is shown in Table 2.

The major limitations of the present review are that it was a
narrative review and that the results obtained were entirely limited
to data from very small experimental studies. In parallel with this
review, we conducted systematic review on the same subject using
clinical studies.25 The conclusion of the systematic review of clinical
studies was that, “APC plays no major roles in the inhibition of coagulation or increased fibrinolysis in ACOTS”. This was similar to
the present review of experimental studies. A systematic review to
investigate the roles of APC in trauma in both experimental and
clinical studies is warranted.

Conclusion

Experimental trauma models described in this review failed to
show direct evidence of APC-operated suppression of thrombin
generation and enhancement of t-PA increase due to PAI-1
neutralization. This indicates that the APC hypothesis in ACOTS is
unlikely in experimental models. Other mechanisms underlying
increase in fibrinolysis due to APC remains to be elucidated.

Ethical approval and consent for publication

Not applicable for this study.

Fund

No funding or financial support was used for this study.

Author’s contributions

All the three authors conducted to conception and design of this
review. Gando S wrote this review and Mayumi T and Ukai T su-
pervised all processes of this review.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cjtee.2018.07.005.

References

1. Gando S, Hayakawa M. Pathophysiology of trauma-induced coagulopathy and management of critical bleeding requiring massive transfusion. Semin Thromb Hemost. 2016;42:155–165. https://doi.org/10.1055/s-0035-1564831.
2. Gando S, Wada H, Thachil J, et al. Differentiating disseminated intravascular coagulation (DIC) with fibrinolytic phenotype from coagulopathy of trauma and acute coagulopathy trauma-shock (COT/ACOTS). J Thromb Haemost. 2013;11:826–835. https://doi.org/10.1111/jth.12190.
3. Brohi K, Cohen MJ, Ganter MT, et al. Acute traumatic coagulopathy: initiated by hyperfusion: modulated through the protein C pathway? Ann Surg. 2007;245:812–818.
4. Brohi K, Cohen MJ, Davenport RA. Acute coagulopathy of trauma: mechanism, identification and effect. Curr Opin Crit Care. 2007;13:680–685.
5. Davenport RA. Pathogenesis of acute traumatic coagulopathy. Transfusion. 2013;53(Suppl. 1):23s–27s. https://doi.org/10.1111/trf.12032.
6. Davenport RA, Brohi K. Cause of trauma-induced coagulopathy. Curr Opin Anesthesiol. 2016;29:212–219. https://doi.org/10.1097/ACO.0000000000000295.
7. Davenport RA, Guerrero M, Frith D, et al. Activated protein C drives the hyperfibrinolysis of acute traumatic coagulopathy. Anesthesiology. 2017;126:115–127.
8. Howard BM, Miyazawa BY, Dong W, et al. The tissue factor pathway mediates both activation of coagulation and coagulopathy after injury. J Trauma Acute Care Surg. 2015;78:1009–1013. https://doi.org/10.1097/TA.0000000000000707, discussion 1014.
9. Sillesen M, Rasmussen LS, Jin G, et al. Assessment of coagulopathy, endothelial injury, and inflammation after traumatic brain injury and hemorrhage in a porcine model. J Trauma Acute Care Surg. 2014;76:12–19. https://doi.org/10.1097/TA.0b013e3182eaa875, discussion 19–20.
10. Hayakawa M, Gando S, Ono Y, et al. Noble-Colip Drum trauma induces disseminated intravascular coagulation but not acute coagulopathy of trauma-shock. Shock. 2015;41:261–267. https://doi.org/10.1097/SHK.0000000000000281.
11. Dunbar NM1, Chandler WL. Thrombin generation in trauma patients. Transfusion. 2009;49:2652–2660. https://doi.org/10.1111/j.1537-2995.2009.02335.x.
12. Chandler WL. Procoagulant activity in trauma patients. Am J Clin Pathol. 2010;134:90–96. https://doi.org/10.1309/AJCP3WPOY5KKB6PE.
13. Wu X, Darlington DN, Cap AP. Procoagulant and fibrinolytic activity after polytrauma in rat. Am J Physiol Regul Integr Comp Physiol. 2016;310:R323–R329. https://doi.org/10.1152/ajpregu.00403.2015.
14. Campbell JE, Meledeo MA, Cap AP. Comparative response of platelet IV and plasma IV to activated protein C and relevance to a model of acute traumatic coagulopathy. PLoS One. 2014;9, e99181. https://doi.org/10.1371/journal.pone.0099181.
15. Howard BM, Kornblith LZ, Cheung CK, et al. Inducing acute traumatic coagulopathy in vitro: the effects of activated protein C on healthy human whole blood. PLoS One. 2016;11, e0150930. https://doi.org/10.1371/journal.pone.0150930.
16. Cohen MJ, Call M, Nelson M, et al. Critical role of activated protein C in early coagulopathy and later organ failure, infection and death in trauma patients. Ann Surg. 2012;255:379–385. https://doi.org/10.1097/SLA.0b013e318235d9e6.
17. Kucher ME, Xu J, Vilardi RF, et al. Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated protein C. J Trauma Acute Care Surg. 2012;73:1389–1394. https://doi.org/10.1097/TA.0b013e318270d595.
18. Cohen MJ, Kucher M, Redick B, et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J Trauma Acute Care Surg. 2013;75(Suppl. 1):S40–S47. https://doi.org/10.1097/TA.0b013e3182643a3d.
19. van Zyl N, Milford EM, Diab S, et al. Activation of the protein C pathway and endothelial glycocalyx shedding is associated with coagulopathy in an ovine model of trauma and hemorrhage. J Trauma Acute Care Surg. 2016;81:674–684. https://doi.org/10.1097/TA.0000000000001190.
20. Hayakawa M, Gando S, Ieko M, et al. Massive amounts of tissue factor induce fibrinogenolysis without tissue hypoperfusion in rats. Shock. 2013;39:514–519. https://doi.org/10.1097/SHK.0b013e318293980d.
21. Suffredini A, Harpel PC, Parillo JE. Promotion and subsequent inhibition of plasminogen activation after administration of intravenous endotoxin to normal subjects. N Engl J Med. 1989;320:1165–1172.
22. Gando S, Levi M, Toh CH. Disseminated intravascular coagulation. Hemost. 2016;42:155. https://doi.org/10.1097/HES.0000000000000329.
23. Lijnen HR. Pleiotropic functions of plasminogen activator inhibitor-1. J Thromb Haemost. 2005;3:35–45.
24. Chesbrough BR, Rahn P, Carles M, et al. Increase in activated protein C mediates acute traumatic coagulopathy in mice. Shock. 2009;32:659–665. https://doi.org/10.1097/SHK.0b013e3182e83e32.
25. Gando S, Mayumi T, Uki T. Activated protein C plays no major roles in the inhibition of coagulation or increased fibrinolysis in acute coagulopathy of trauma-shock: a systematic review. Thromb J. 2018;16:13. https://doi.org/10.1186/s12959-018-0167-3.