DIRECT AND INVERSE THEOREMS IN THE THEORY OF APPROXIMATION BY THE RITZ METHOD

S. M. TORBA, M. L. GORBACHUK, AND YA. I. GRUSHKA

Abstract. For an arbitrary self-adjoint operator \(B \) in a Hilbert space \(\mathcal{H} \), we present direct and inverse theorems establishing the relationship between the degree of smoothness of a vector \(x \in \mathcal{H} \) with respect to the operator \(B \), the rate of convergence to zero of its best approximation by exponential-type entire vectors of the operator \(B \), and the \(k \)-modulus of continuity of the vector \(x \) with respect to the operator \(B \). The results are used for finding a priori estimates for the Ritz approximate solutions of operator equations in a Hilbert space.

1. Introduction

Let \(B \) be a closed linear operator with dense domain of definition \(\mathcal{D}(B) \) in a separable Hilbert space \(\mathcal{H} \) over the field of complex numbers.

Let \(C^\infty(B) \) denote the set of all infinitely differentiable vectors of the operator \(B \), i.e.,

\[
C^\infty(B) = \bigcap_{n \in \mathbb{N}_0} \mathcal{D}(B^n), \quad \mathbb{N}_0 = \{0, 1, 2, \ldots\} = \mathbb{N} \cup \{0\}.
\]

For a number \(\alpha > 0 \), we set

\[
\mathcal{E}^\alpha(B) = \{ x \in C^\infty(B) \mid \exists c = c(x) > 0 \forall k \in \mathbb{N}_0 \|B^k x\| \leq c \alpha^k \}.
\]

The set \(\mathcal{E}^\alpha(B) \) is a Banach space with respect to the norm

\[
\|x\|_{\mathcal{E}^\alpha(B)} = \sup_{n \in \mathbb{N}_0} \frac{\|B^n x\|}{\alpha^n}.
\]

Then \(\mathcal{E}(B) = \bigcup_{\alpha > 0} \mathcal{E}^\alpha(B) \) is a linear locally convex space with respect to the topology of the inductive limit of the Banach spaces \(\mathcal{E}^\alpha(B) \):

\[
\mathcal{E}(B) = \lim_{\alpha \to \infty} \ind \mathcal{E}^\alpha(B).
\]

Elements of the space \(\mathcal{E}(B) \) are called exponential-type entire vectors of the operator \(B \). The type \(\sigma(x, B) \) of a vector \(x \in \mathcal{E}(B) \) is defined as the number

\[
\sigma(x, B) = \inf \{ \alpha > 0 : x \in \mathcal{E}^\alpha(B) \} = \limsup_{n \to \infty} \|B^n x\|^{\frac{1}{n}}.
\]

In what follows, we always assume that the operator \(B \) is self-adjoint in \(\mathcal{H} \), and \(E(\Delta) \) is its spectral measure.

Let \(G(\cdot) \) be an almost everywhere finite measurable function on \(\mathbb{R} \). A function \(G(B) \) of the operator \(B \) is understood as follows:

\[
G(B) := \int_{-\infty}^{\infty} G(\lambda)dE(\lambda).
\]

As shown in [1], one has \(\mathcal{E}^\alpha(B) = E([-\alpha, \alpha])\mathcal{H} \) for every \(\alpha > 0 \).

2000 Mathematics Subject Classification. Primary 41A25, 41A17, 41A65.

Key words and phrases. Direct and inverse theorems, modulo of continuity, Hilbert space, entire vectors of exponential type.
According to [2], we set
\[\omega_k(t, x, B) = \sup_{0 < t \leq t} \| \Delta_k x \|, \quad k \in \mathbb{N}, \]
(1)
where
\[\Delta_k = (U(h) - 1)^k = \sum_{j=0}^{k} (-1)^{k-j} C_k^j U(jh), \quad k \in \mathbb{N}_0, \quad h \in \mathbb{R} \quad (\Delta_0 \equiv 1, \quad h \in \mathbb{R}_+), \]
(2)
and \(U(h) = \exp(ihB) \) is the group of unitary operators in \(\mathfrak{H} \) with generator \(iB \).

The definition of \(\omega_k(t, x, B) \) implies that the following assertions are true \(k \in \mathbb{N} \):

1. \(\omega_k(0, x, B) = 0 \);
2. for fixed \(x \), the function \(\omega_k(t, x, B) \) does not decrease on \(\mathbb{R}_+ = [0, \infty) \);
3. \(\omega_k(\alpha t, x, B) \leq [1 + \alpha]^k \omega_k(t, x, B) \) \((\alpha, t > 0) \);
4. for fixed \(t \in \mathbb{R}_+ \), the function \(\omega_k(t, x, B) \) is continuous in \(x \).

Further, we establish an inequality of the Bernstein Nikolskïi type.

Lemma 1.1. Let \(G(\lambda) \) be a nonnegative even function on \(\mathbb{R} \) that is nondecreasing on \(\mathbb{R}_+ \), let \(x \in \mathcal{E}(B) \) and let \(\sigma(x, B) \leq \alpha \). Then
\[\| \Delta_k G(B)x \| \leq h^k \alpha^k G(\alpha) \| x \|, \quad h > 0, \quad k \in \mathbb{N}_0. \]
(3)

Proof. Since \(\sigma(x, B) \leq \alpha \) and \(|1 - e^{i\lambda h}|^2 = 4^2 \sin^2 \frac{\lambda h}{2} \leq \lambda^2 h^2, \quad \lambda \in \mathbb{R} \), on the basis of operational calculus for the operator \(B \) we get
\[\| \Delta_k G(B)x \|^2 = \int_{-\alpha}^{\alpha} |(1 - e^{i\lambda h})^k|^2 G^2(\lambda) d(E_\lambda x, x) \leq \int_{-\alpha}^{\alpha} \lambda^{2k} G^2(\lambda) d(E_\lambda x, x) \leq h^{2k} \alpha^{2k} G^2(\alpha) \| x \|^2. \]
(4)
\[\square \]

For \(k = 0 \) Lemma 1.1 yields
\[\| G(B)x \| \leq G(\alpha) \| x \|. \]
(5)

Corollary 1.1. Under the conditions of Lemma 1.1 with respect to \(x \) and \(\sigma(x, B) \), the following relation is true:
\[\| \Delta_k x \| \leq h^k \cdot \alpha^k \cdot \| x \|, \quad h \geq 0. \]

Proof. For the proof of this statement, it suffices to take \(G(\cdot) \equiv 1, \lambda \in \mathbb{R} \), in Lemma 1.1. \[\square \]

If \(\mathfrak{H} = L_2([0, 2\pi]) \) and \((Bx)(t) = ix'(t) \),
\[D(B) = \{ x(t) | x \in W_1^2([0, 2\pi]), \quad x(0) = x(2\pi) \}, \]
where \(W_1^2([0, 2\pi]) \) is a Sobolev space, then \(\mathcal{E}(B) \) coincides with the set of all trigonometric polynomials, \(\sigma(x, B) \) is the degree of the polynomial \(x \), \(\mathcal{E}^{\alpha}(B) \) is the set of all trigonometric polynomials whose degrees do not exceed \(\alpha \); \((U(h)x)(t) = \tilde{x}(t + h), \omega_k(t, x, B) \) is the \(k \)th modulus of continuity of the function \(x(t) \), and inequality (3) for \(G(\lambda) = |\lambda^m| \) and \(k = 0 \) turns into a Bernstein-type inequality in the space \(L_2[0, 2\pi] \) (here \(\tilde{x}(t) \) is understood as the \(2\pi \)-periodic extension of the function \(x(t) \)).
For an arbitrary $x \in \mathcal{H}$ following [5, 6], we set
\[
E_r(x, B) = \inf_{y \in \mathcal{E}(B) : \sigma(y, B) \leq r} \|x - y\|, \quad r > 0,
\]
i.e., $E_r(x, B)$ is the best approximation of the element x by exponential-type entire vectors y of the operator B for which $\sigma(y, B) \leq r$. For fixed x, $E_r(x, B)$ does not increase and $E_r(x, B) \to 0$, $r \to \infty$. It is clear that
\[
E_r(x, B) = \|x - E([-r, r])x\| = \|x - F([0, r])x\|,
\]
where $F(\Delta)$ is the spectral measure of the operator $|B| = \sqrt{B^*B}$.

Theorem 1.1. Suppose that $G(\lambda)$ satisfies the conditions of Lemma [7]. Then, for any $x \in \mathcal{D}(G(B))$ the following relation is true:
\[
\forall k \in \mathbb{N} \quad E_r(x, B) \leq \frac{\sqrt{k + 1}}{2^k G(r)} \omega_k \left(\frac{\pi}{r}, G(B)x, B \right), \quad r > 0.
\]

Proof. Using the spectral representation for the operator B and the monotonicity of the function $G(\lambda)$, we obtain
\[
\omega_k^2(t, G(B)x, B) = \sup_{0 < \tau \leq t} \|(e^{i\tau B} - 1)^k G(B)x\|^2 \geq \|(e^{i\tau B} - 1)^k G(B)x\|^2 = \int_{-\infty}^{\infty} |e^{tB} - 1|^2 G^2(\lambda) d(E_\lambda x, x) = 2^k \int_{\mathbb{R}} (1 - \cos \lambda t)^k G^2(\lambda) d(E_\lambda x, x) \geq 2^k G^2(r) \int_{|\lambda| \geq r} (1 - \cos \lambda t)^k d(E_\lambda x, x).
\]
We fix $r > 0$ and take $t : 0 \leq t \leq \frac{\pi}{r}$. Then $\sin rt \geq 0$. We multiply both sides of the above inequality by $\sin rt$ and integrate the result with respect to t from 0 to $\frac{\pi}{r}$. Then
\[
\int_0^{\pi/r} \omega_k^2(t, G(B)x, B) \sin rt dt \geq 2^k G^2(r) \int_0^{\pi/r} \int_{|\lambda| \geq r} (1 - \cos \lambda t)^k \sin rt d(E_\lambda x, x) dt = 2^k G^2(r) \int_{|\lambda| \geq r} \left(\int_0^{\pi/r} (1 - \cos \lambda t)^k \sin rt dt \right) d(E_\lambda x, x).
\]
Since the function $\omega_k^2(t, G(B)x, B)$ is monotonically nondecreasing, we have
\[
\int_0^{\pi/r} \omega_k^2(t, G(B)x, B) \sin rt dt \leq \int_0^{\pi/r} \omega_k^2 \left(\frac{\pi}{r}, G(B)x, B \right) \sin rt dt = \frac{2}{r} \omega_k^2 \left(\frac{\pi}{r}, G(B)x, B \right).
\]
Using the inequality (see [7])
\[
\int_0^{\pi} (1 - \cos \theta t)^k \sin t dt \geq \frac{2^{k+1}}{k+1}, \quad \theta \geq 1, \quad k \in \mathbb{N}
\]
and relations (7) and (8), we get
\[
\frac{2}{r} \omega_k^2 \left(\frac{\pi}{r}, G(B)x, B \right) \geq 2^k G^2(r) \int_{|\lambda| \geq r} \left(\frac{1}{r} \frac{2^{k+1}}{k+1} \right) d(E_\lambda x, x) = \frac{2^{2k+1} G^2(r)}{r(k+1)} E_r^2(x, B),
\]
which is equivalent to (5). □

For $G(\lambda) = |\lambda|^m$, $\lambda \in \mathbb{R}$, $m > 0$ Theorem [1,4] yields the following corollary:
Corollary 1.2. Let \(x \in D(\|B\|^m) , \ m > 0 \). Then, for any \(k \in \mathbb{N} \)
\[
E_r(x, B) \leq \frac{\sqrt{k + 1}}{2^{k+1}} \omega_k \left(\frac{\pi}{r} \|B\|^m x, B \right) , \quad r > 0 .
\] (11)

For the case where \(B \) is the operator of differentiation with periodic boundary conditions in the space \(\mathcal{H} = L_2([0, 2\pi]) \), i.e., \((Bx)(t) = ix'(t) \) and \(D(B) = \{ x(t) \mid x \in W^1_2([0, 2\pi]), x(0) = x(2\pi) \} \), inequality (11) is presented in [8] for \(k = 1 \) and in [7] for arbitrary \(k \in \mathbb{N} \).

We now formulate the inverse theorem in the case of approximation of a vector \(x \) by exponential-type entire vectors of the operator \(B \).

Theorem 1.2. Let \(\omega(t) \) be a function of the type of a modulus of continuity for which the following conditions are satisfied:

1): \(\omega(t) \) is continuous and nondecreasing for \(t \in \mathbb{R}_+ \);
2): \(\omega(0) = 0 \);
3): \(\exists c > 0 \forall t > 0 \) \(\omega(2t) \leq c \omega(t) \);
4): \(\int_0^1 \frac{\omega(t)}{t} dt < \infty \).

Also assume that the function \(G(\lambda) \) is even, nonnegative, and nondecreasing for \(\lambda \geq 0 \), and, furthermore, \(\sup_{\lambda \geq 0} \frac{G(\lambda)}{G(1)} < \infty \).

If, for \(x \in \mathcal{H} \), there exists \(m > 0 \) such that
\[
E_r(x, B) < \frac{m}{G(1)} \omega \left(\frac{1}{r} \right) , \quad r > 0,
\] (12)
then \(x \in D(G(B)) \) and, for every \(k \in \mathbb{N} \), there exists a constant \(m_k > 0 \) such that
\[
\omega_k(t, G(B)x, B) \leq m_k \left[\frac{t^k}{k+1} \int_0^t \frac{\omega(\tau)}{\tau} d\tau + \int_0^t \frac{\omega(\tau)}{\tau} d\tau \right] , \quad 0 < t \leq \frac{1}{2} .
\] (13)

First, we prove the following statement:

Lemma 1.2. Suppose that the function \(\omega(t) \) satisfies conditions 1),2),3) of Theorem 1.2.
If, for \(x \in \mathcal{H} \), there exists \(c > 0 \) such that
\[
E_r(x, B) < m \omega \left(\frac{1}{r} \right) , \quad r > 0
\] (14)
then, for every \(k \in \mathbb{N} \), there exists a constant \(c_k > 0 \) such that
\[
\omega_k(t, x, B) \leq c_k \cdot t^k \int_0^t \frac{\omega(\tau)}{\tau} d\tau , \quad 0 < t \leq \frac{1}{2} .
\] (15)

Proof. It follows from condition (14) that there exists a sequence \(\{ u_{2i} \}_{i=0}^\infty \) of exponential-type entire vectors such that \(\sigma(u_{2i}, B) \leq 2^i \) and
\[
\|x - u_{2i}\| \leq m \cdot \omega \left(\frac{1}{2^i} \right) .
\] (16)

We take an arbitrary \(h \in (0, \frac{1}{4}) \) and choose a number \(N \) so that \(\frac{1}{2^N} < h \leq \frac{1}{2^{N+1}} \). Inequality (14) yields
\[
\Delta_h^k x = \Delta_h^k u_1 + \sum_{j=1}^N \Delta_h^k (u_{2j} - u_{2j-1}) + \Delta_h^k (x - u_{2N})
\] (17)
By virtue of (12) there exists a sequence $u_{2j} - u_{2j-1} \leq \|u_{2j} - u_{2j-1}\| \leq m \cdot \omega \left(\frac{1}{2^j} \right) + m \cdot \omega \left(\frac{1}{2^{j-1}} \right) \leq 2m \cdot \omega \left(\frac{1}{2^j} \right) \leq 2cm \cdot \omega \left(\frac{1}{2^i} \right). \tag{18}

By virtue of the monotonicity of $\omega(t)$, we have

$$2^k \int_{1/2^j}^{1/2^{j-1}} \frac{\omega(u)}{u^{k+1}} du \geq 2^k \omega \left(\frac{1}{2^j} \right) \int_{1/2^j}^{1/2^{j-1}} \frac{1}{u^{k+1}} du = \frac{2^k}{k} \omega \left(\frac{1}{2^j} \right) \left(2^k - 1 \right) \geq 2^k \omega \left(\frac{1}{2^j} \right). \tag{19}$$

Since $\sigma(u_{2j}, B) \leq 2^j$ and $\sigma(u_1, B) \leq 1$, according to Corollary 1.1 we get

$$\|\Delta_h^k u_1\| \leq h^k \cdot \|u_1\|,$$

$$\|\Delta_h^k (u_{2j} - u_{2j-1})\| \leq h^k \cdot (2^j)^k \cdot \|u_{2j} - u_{2j-1}\|.$$

Relations (16), (18) and (19) yield

$$\|\Delta_h^k (u_{2j} - u_{2j-1})\| \leq 2cmh^k \cdot 2^{k^2} \omega \left(\frac{1}{2^j} \right) \leq 2^{k^2+1} cmh^k \int_{1/2^j}^{1/2^{j-1}} \frac{\omega(u)}{u^{k+1}} du$$

and

$$\|\Delta_h^k (x - u_{2N})\| \leq (\|e^{(k+1)x}\| + 1)^k \cdot \|x - u_{2N}\| \leq 2^k \cdot \|x - u_{2N}\| \leq 2^k \cdot \omega \left(\frac{1}{2^N} \right).$$

Using these inequalities, we obtain

$$\|\Delta_h^k x\| = \left| \Delta_h^k u_0 + \sum_{j=1}^{N} \Delta_h^k (u_j - u_{j-1}) + \Delta_h^k (x - u_N) \right| \leq$$

$$\leq h^k \|u_0\| + 2^{k+1} cmh^k \sum_{j=1}^{N} \int_{1/2^j}^{1/2^{j-1}} \frac{\omega(u)}{u^{k+1}} du + 2^k cm \cdot \omega \left(\frac{1}{2^N} \right) \leq$$

$$\leq h^k \|u_0\| + 2^{k+1} cmh^k \int_{1/2}^{1/2} \frac{\omega(u)}{u^{k+1}} du + 2^k cm \cdot \omega(2h) \leq$$

$$\leq h^k \|u_0\| + 2^{k+1} cmh^k \int_{h}^{1} \frac{\omega(u)}{u^{k+1}} du + 2^k cm \cdot \omega(h) =$$

$$= h^k \left(\|u_0\| + 2^{k+1} cm \int_{h}^{1} \frac{\omega(u)}{u^{k+1}} du + 2^k cm \frac{k}{1-h^k} \int_{h}^{1} \frac{\omega(u)}{u^{k+1}} du \right) \leq$$

$$\leq c_k \cdot h^k \int_{h}^{1} \frac{\omega(u)}{u^{k+1}} du,$$

where $c_k = \int_{1/2}^{1} \frac{\omega(u)}{u^{k+1}} du + 2^{k+1} cm + 2^k cm \frac{k}{1-h^k}$. \hfill \Box

Remark 1.1. As follows from the proof, the lemma remains true under somewhat weaker conditions than those formulated in the theorem, namely, it is sufficient that, for an element $x \in \mathcal{F}$, there exist at least one sequence $\{u_{2j}\}_{j=0}^{\infty}$, such that

$$\sigma(u_{2j}, B) \leq 2^j \quad \text{and} \quad \forall j \in \mathbb{N} \quad \|x - u_{2j}\| \leq m \cdot \omega \left(\frac{1}{2^j} \right).$$

Proof of Theorem. By virtue of (12) there exists a sequence $\{u_{2^n}\}_{n=1}^{\infty}$ such that $\sigma(u_{2^n}) \leq 2^n$ and

$$\|x - u_{2^n}\| \leq \frac{c}{G(2^n)} \omega \left(\frac{1}{2^n} \right), \quad n \in \mathbb{N}. \tag{20}$$
It follows from inequality (20) and conditions 1), 2) of the theorem that \(\|x - u_{2n}\| \to 0 \) as \(n \to \infty \), and, therefore, the vector \(x \) can be represented in the form

\[
x = u_1 + \sum_{k=1}^{\infty} (u_{2k} - u_{2k-1}).
\]

Since \(\sigma(u_{2k} - u_{2k-1}, B) \leq 2^k, k \in \mathbb{N} \) taking (5) into account we obtain

\[
\|G(B)u_{2k} - G(B)u_{2k-1}\| \leq G(2^k) \|u_{2k} - u_{2k-1}\| \leq G(2^k) (\|x - u_{2k}\| + \|x - u_{2k-1}\|) \leq
\]

\[
\leq G(2^k) \left(\frac{m}{G(2^k)} \omega \left(\frac{1}{2^k} \right) + \frac{m}{G(2^k-1)} \omega \left(\frac{1}{2^{k-1}} \right) \right) \leq
\]

\[
\leq 2G(2^k) \cdot \frac{m}{G(2^k-1)} \omega \left(\frac{1}{2^k-1} \right) \leq 2cc_1m \cdot \omega \left(\frac{1}{2^k} \right) \leq \frac{2cc_1m}{\ln 2} \int_{2^{-k+1}}^{2^{-k+1}} \frac{\omega(u)}{u} du,
\]

where \(c_1 \) denotes \(\sup \frac{G(2\lambda)}{\lambda} \) for \(\lambda > 0 \). Therefore, the series \(\sum_{k=1}^{\infty} (G(B)u_{2k} - G(B)u_{2k-1}) \) converges. The closedness of the operator \(G(B) \) implies that \(x \in \mathcal{D}(G(B)) \) and

\[
G(B)x = G(B)u_1 + \sum_{k=1}^{\infty} (G(B)u_{2k} - G(B)u_{2k-1}).
\]

This yields

\[
\|G(B)x - G(B)u_2\| \leq \sum_{k=j+1}^{\infty} \|G(B)u_{2k} - G(B)u_{2k-1}\| \leq 2cc_1m \sum_{k=j+1}^{\infty} \omega(2^{-k}) \leq
\]

\[
\leq 2cc_1m \int_0^{2^{-j}} \frac{\omega(u)}{u} du =: \tilde{c} \Omega(2^{-j}), \quad j \in \mathbb{N}
\]

where

\[
\tilde{c} := 2cc_1m \quad \text{and} \quad \Omega(t) := \int_0^t \frac{\omega(u)}{u} du
\]

It is easy to verify that the function \(\Omega(t) \) possesses the following properties:

1: \(\Omega(t) \) is continuous and monotonically nondecreasing;

2: \(\Omega(0) = 0 \);

3: for \(t > 0 \), the following relation is true:

\[
\Omega(2t) = \int_0^{2t} \frac{\omega(u)}{u} du = \int_0^t \frac{\omega(2u)}{u} du \leq c_2 \int_0^t \frac{\omega(u)}{u} du = c_2 \Omega(t).
\]

Therefore, setting \(\omega(t) := \Omega(t) \) in Lemma 1.2 and taking Remark 1.1 into account, we get

\[
\omega_k(G(B)x, t, B) \leq c_k \cdot t^k \int_t^1 \frac{\Omega(u)}{u^{k+1}} du = \frac{c_k \cdot t^k}{k} \left(\Omega(u) \frac{1}{u^k} \right)_1^t + \int_t^1 \frac{\omega(u)}{u^{k+1}} du \leq
\]

\[
\leq m_k \left(t^k \int_t^1 \frac{\omega(u)}{u^{k+1}} du + \int_0^t \frac{\omega(u)}{u} du \right). \quad \square
\]

Theorem 1.2 shows that, in the case where \(\omega(t) = t^\alpha, \ t \geq 0, \ \alpha > 0 \) and \(\mathcal{E}_t(x, B) = O \left(\frac{1}{t^\alpha} \right) \), one has

\[
\omega_k(t, x, B) = \begin{cases} O \left(t^k \right) & k < \alpha \\ O \left(t^k \ln t \right) & k = \alpha \\ O \left(t^\alpha \right) & k > \alpha \end{cases}
\]

2. Consider the equation

\[
Ax = y,
\]

(21)
where A is a positive-definite self-adjoint operator with discrete spectrum, $y \in \mathfrak{F}$, $x \in \mathcal{D}(A)$ is the required solution of Eq. [21]. Let \mathfrak{F}_+ denote the completion of the set $\mathcal{D}(A)$ with respect to the norm $\|\cdot\|_+$, generated by the scalar product

$$(x,y)_+ = (Ax,y).$$

Under the conditions imposed above on the operator A, Eq. [21] has a unique solution $x \in \mathcal{D}(A)$ and, according to the Dirichlet principle [9], the determination of this solution is equivalent to the determination of the vector $u \in \mathcal{D}(A)$, on which the functional

$$F(z) = (Az,z) - 2Re(y,z),$$

defined on $\mathcal{D}(A)$ attains its minimum.

Let $\{e_k\}_{k=1}^\infty$ be a complete linearly independent system of vectors from $\mathcal{D}(A)$ (so-called coordinate system), and let

$$\mathcal{H}_n = \ldots \{e_1, \ldots, e_n\}.$$

By x_n we denote the vector on which $F(z)$ attains its minimum on \mathcal{H}_n. The vector x_n is called the Ritz approximate solution of Eq. [21]. As is known, independently of the choice of a coordinate system, the sequence x_n converges to x in the space \mathfrak{F}_+ (and, hence, in \mathfrak{F}). The residual $R_n = \|Ax_n - y\|$ does not always tend to zero in \mathfrak{F}. However, if the coordinate system $\{e_k\}_{k=1}^\infty$ is chosen so that it forms an orthonormal proper basis of some positive-definite self-adjoint operator B related to A in the sense that $\mathcal{D}(A) = \mathcal{D}(B)$, then $R_n \to 0$ as $n \to \infty$ (see [2]), and, therefore, the quantities $r_n = \|x_n - x\|_+$ also tend to zero as $n \to \infty$. However, the investigation of the behavior of these quantities, which depend on the choice of $\{e_k\}_{k=1}^\infty$ and on the right-hand side of Eq. [21], at infinity turned out to be a rather difficult problem and remains unsolved. Some particular results for operators generated by boundary-value problems for ordinary differential equations were obtained in numerous papers by many authors (see the survey [10]). For the abstract case, some particular situations were considered in [11]). In [6], direct and inverse theorems were established for the first time under the condition that $x \in C^\infty(B)$ and estimates for the quantity R_n were obtained in the case where the smoothness of the vector x is finite, i.e., $x \in \mathcal{D}(B^k)$. Below, we completely characterize the quantity r_n for $x \in \mathcal{D}(B^k)$.

In what follows, we assume that the following conditions are satisfied:

1°: The operator A is self-adjoint and positive definite.

2°: The coordinate system in the Ritz method is an orthonormal basis of a positive-definite self-adjoint operator B with discrete simple spectrum $(Be_k = \lambda_k e_k)$ that is related to A.

Let x_n denote the Ritz approximate solution of Eq. [21] with respect to the coordinate system $\{e_k\}_{k=1}^\infty$. We set

$$\overline{x}_n = \sum_{k=1}^n (x,e_k)e_k.$$

Since the operators A and B are positive definite and self-adjoint and $\mathcal{D}(A) = \mathcal{D}(B)$, it follows from the Heinz inequality [12] that $\mathcal{D}(A^\alpha) = \mathcal{D}(B^\alpha)$ for any $\alpha \in (0,1)$, and, therefore, the operators $B^{\frac{1}{2}}A^{-\frac{1}{2}}$ and $A^{\frac{1}{2}}B^{-\frac{1}{2}}$ are defined and bounded on the entire space \mathfrak{F}, and, for any $x \in \mathcal{D}(A)$, one has

$$c_1^{-1}|||x|||_+ \leq ||x||_+ \leq c_2|||x|||_+, \quad (22)$$

where $|||x|||_+ = \|B^{1/2}x\|$, $c_1 = \|B^{1/2}A^{-1/2}\|$ and $c_2 = \|A^{1/2}B^{-1/2}\|$.

Lemma 1.3. For any $n \in \mathbb{N}$ and $x \in \mathcal{D}(B)$, the following inequality is true:

$$|||x - \overline{x}_n|||_+ \leq |||x - x_n|||_+ \leq c_3|||x - \overline{x}_n|||_+, \quad (23)$$

where $c_3 = \|B^{1/2}A^{-1/2}\| \|A^{1/2}B^{-1/2}\|$.
Proof. Since
\[B^{1/2} \left(\sum_{k=1}^{n} (x, e_k) e_k \right) = \sum_{k=1}^{n} \left(B^{1/2} x, e_k \right) e_k, \]
we have
\[\| x - \tilde{x}_n \|_+ = \left\| B^{1/2} \left(x - \sum_{k=1}^{n} (x, e_k) e_k \right) \right\| = \left\| B^{1/2} x - \sum_{k=1}^{n} \left(B^{1/2} x, e_k \right) e_k \right\| \leq \left\| B^{1/2} x - B^{1/2} x \right\| = \| x - x_n \|_+ \]

Taking into account that the Ritz approximation \(x_n \) is the best approximation of a vector \(x \) in the norm \(\| \cdot \|_+ \), we get
\[\| x - x_n \|_+ = \left\| B^{1/2} (x - x_n) \right\| \leq \left\| B^{1/2} A^{-1/2} \right\| \left\| A^{1/2} (x - x_n) \right\| = c_1 \| x - x_n \|_+ \leq c_1 \| x - \tilde{x}_n \|_+ = c_1 \left\| A^{1/2} (x - \tilde{x}_n) \right\| \leq c_1 c_2 \left\| B^{1/2} (x - \tilde{x}_n) \right\| = c_3 \| x - \tilde{x}_n \|_+ \]

Taking into account the relations
\[E_{\lambda_n}(B^{1/2} x, B) = \| x - \tilde{x}_n \|_+ \]
and
\[E_{\lambda_n}(B^{1/2} x, B) = E_{\lambda_n+\eta}(B^{1/2} x, B), \quad 0 < \eta < \lambda_{n+1} - \lambda_n, \]

inequalities (22) and (23), and Theorem 1.1 with \(G(\lambda) = |\lambda|^{\alpha - \frac{1}{2}}, \alpha \geq 1 \), we establish the following result:

Theorem 1.3. If \(x \in D(B^\alpha) \), \(\alpha \geq 1 \), then the following relation holds for every \(\forall k \in \mathbb{N} \):
\[
\| x - x_n \|_+ \leq c_0 \frac{\sqrt{k + 1}}{2^k \lambda_{n+1}^{\alpha - \frac{1}{2}}} \omega_k \left(\frac{\pi}{\lambda_{n+1}}, B^\alpha x, B \right),
\]
where \(c_0 = c_2 c_3 \), and \(c_2 \) and \(c_3 \) are the constants from inequalities (22) and (23).

Since, for \(x \in D(B^\alpha) \)
\[
\omega_k \left(\frac{\pi}{\lambda_{n+1}}, B^\alpha x, B \right) \to 0, \quad n \to \infty,
\]
we conclude that, for \(x \in D(B^\alpha) \)
\[
\lim_{n \to \infty} \lambda_{n+1}^{\alpha - \frac{1}{2}} \| x - x_n \|_+ = 0 \quad \text{(24)}
\]

We now give examples of operators \(A \) and \(B \) for which equality (24) for \(\alpha > 1 \) does not yield the inclusion \(x \in D(B^\alpha) \). We set
\[
\delta = L_2([0, \pi]), \quad A = B = -\frac{d^2}{dt^2}, \quad D(A) = D(B) = \{ x(t) \mid x \in W^2_2([0, \pi]), x(0) = x(\pi) = 0 \},
\]
\[
\lambda_k(B) = k^2, \quad e_k = \sqrt{\frac{2}{\pi}} \sin kt, \quad x = x(t) = \sqrt{\frac{2}{\pi}} \sum_{k=2}^{\infty} x_k \sin kt,
\]
where \(x_k = \frac{1}{k^{2\alpha + \frac{1}{2}} \ln^{\frac{1}{2}} k}, k \in \mathbb{N}\setminus\{1\} \). The equality
\[
\sum_{k=2}^{\infty} \frac{k^{4\alpha}}{k^{4\alpha + 1} \ln k} = \sum_{k=2}^{\infty} \frac{1}{k \ln k} = \infty
\]
shows that \(x \notin \mathcal{D}(B^\alpha) \). However, since

\[
\|x - x_n\|^2_+ = \|x - \bar{x}_n\|^2_+ = \sum_{k=n+1}^{\infty} \frac{k^2}{k^{4\alpha-1} \ln k} \leq \frac{1}{\ln(n+1)} \int_n^{\infty} \frac{1}{t^{4\alpha-1}} dt = \frac{1}{(4\alpha - 2)n^{4\alpha-2} \ln(n+1)}
\]

we have

\[
\lim_{n \to \infty} \lambda_n^{\frac{\alpha}{2}}(B) \|x - x_n\|_+ \leq \lim_{n \to \infty} n^{2\alpha-1} \frac{1}{\sqrt{4\alpha - 2}} \frac{1}{\sqrt{n^{2\alpha-1}}} = 0
\]

It follows from Theorem 1.3 inequality (22) and Lemma 1.3 that the following statement is true:

Theorem 1.4. Suppose that \(\omega(t) \) satisfies the conditions of Theorem 1.2. If, for \(x \in \mathcal{D}(B), n \in \mathbb{N} \) and \(\alpha > 1 \) one has

\[
\|x - x_n\|_+ \leq \frac{c}{\lambda_{n+1}^{\alpha/2}} \omega\left(\frac{1}{\lambda_{n+1}}\right),
\]

where \(c \equiv \text{const.} \), then \(x \in \mathcal{D}(B^\alpha) \).

Note that, by virtue of inequality (22), \(\|\cdot\|_+ \) in Theorems 1.3 and 1.4 can be replaced by \(\|\cdot\|_+ \).

The same theorem immediately yields the following corollary:

Corollary 1.3. Suppose that the following inequality holds for \(x \in \mathcal{D}(B), n \in \mathbb{N}, \alpha > 1 \) and \(\varepsilon > 0 \)

\[
\|x - x_n\|_+ \leq \frac{c}{\lambda_{n+1}^{\alpha\varepsilon}}.
\]

Then \(x \in \mathcal{D}(B^\alpha) \).

Remark 1.2. If, as the Ritz approximate solution of (21), one takes the vector \(x_n \) on which the functional \(F(z) \) attains its minimum on \(\mathcal{H}_n = \mathcal{H}_\lambda \oplus \mathcal{H}_\lambda \oplus \cdots \oplus \mathcal{H}_\lambda \), where \(\mathcal{H}_\lambda \) is the eigensubspace of the operator \(B \) corresponding to the eigenvalue \(\lambda \), then, under assumption \(\psi \) one can omit the condition of the simplicity of the spectrum.

3. We set \(\mathcal{H} = L_2(0, \pi), \mathcal{D}(A) = \{ x \in W_0^2[0, \pi], x'(0) = x'(\pi) = 0 \} \) and

\[
(Ax)(t) = -x''(t) + q(t)x(t), \quad q(t) > 0, \quad q \in C([0, \pi]).
\]

We define an operator \(B \) as follows:

\[
\mathcal{D}(B) = \mathcal{D}(A), \quad Bx = -x'' + x.
\]

The operators \(A \) and \(B \) are self-adjoint and positive definite in \(L_2(0, \pi) \). The spectrum of \(B \) consists of the eigenvalues \(\lambda_k(B) = k^2 + 1, k \in \mathbb{N} \), corresponding to the eigenfunctions \(\sqrt{\frac{2}{\pi}} \cos(kt) \), which form an orthonormal basis in the space \(L_2(0, \pi) \).

Let \(k \in \mathbb{N} \) and \(q(t) \in C^{2k}[0, 2\pi] \). It is easy to verify that \(\mathcal{D}(A^{k+1}) = \mathcal{D}(B^{k+1}) \) if and only if \(q^{2j+1}(0) = q^{2j+1}(\pi) = 0, j = 0, \ldots, k \). If \(y(t) \in C^{2(k-1)}[0, 2\pi] \) and \(y^{2j+1}(0) = y^{2j+1}(\pi) = 0, j = 0, \ldots, k \), then \(y(t) \in \mathcal{D}(A^k) \). Therefore, the solution of the problem

\[
-x''(t) + q(t)x(t) = y(t) \quad (25)
\]

\[
x'(0) = x'(&) = 0
\]

belongs to the set \(\mathcal{D}(A^{k+1}) = \mathcal{D}(B^{k+1}) \) and relation (24) directly yields the following statement:
Theorem 1.5. If \(g(t) \in C^{2k}[0,\pi], \) \(g^{(2j+1)}(0) = g^{(2j+1)}(\pi) = 0, \) \(j = 0, \ldots, k, \) and \(y(t) \in C^{2(k-1)}[0,2\pi], \) \(y^{(2j+1)}(0) = y^{(2j+1)}(\pi) = 0, \) \(j = 0, \ldots, k-1, \) then the Ritz approximate solution of problem \((23)-(26)\) satisfies the relation
\[
\|x_n - x\|_{W^2_2[0,\pi]} = o\left(\frac{1}{n^{2k+1}}\right).
\]

References

1. M. L. Gorbachuk, On analytic solutions of differential-operator equations, Ukr. Mat. Zh., 52, No. 5, 596607 (2000).
2. N. P. Kuptsov, Direct and inverse theorems of approximation theory and semigroups of operators, Usp. Mat. Nauk., 23, Issue 4, 118178 (1968).
3. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in a Hilbert Space [in Russian], Nauka, Moscow (1966).
4. N. I. Akhiezer, Lectures on Relativity Theory [in Russian], Nauka, Moscow (1965).
5. M. L. Gorbachuk and V. I. Gorbachuk, Spaces of infinitely differentiable vectors of a closed operator and their application to problems of approximation, Usp. Mat. Nauk, 48, Issue 4, 180 (1993).
6. V. I. Gorbachuk and M. L. Gorbachuk, Operator approach to problems of approximation, Algebra Analiz, 9, Issue 6, 90108 (1997).
7. A. I. Stepanets and A. S. Serdyuk, Direct and inverse theorems in the theory of approximation of functions in the space \(S^p, \) Ukr. Mat. Zh., 54, No. 1, 106124 (2002).
8. N. I. Chernykh, On Jackson inequalities in \(L_2, \) Tr. Mat. Inst. Akad. Nauk SSSR, 88, 7174 (1967).
9. S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970).
10. A. Yu. Luchka and G. F. Luchka, Appearance and Development of Direct Methods in Mathematical Physics [in Russian], Naukova Dumka, Kiev (1970).
11. A. V. Dzhishkariani, On the rate of convergence of the Ritz approximation method, Zh. Vychisl. Mat. Mat. Fiz., 3, No. 4, 654663 (1963).
12. M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in a Hilbert Space [in Russian], Leningrad University, Leningrad (1980).
13. Ya. V. Radyno, Spaces of vectors of exponential type, Dokl. Akad. Nauk Bel. SSR, 27, No. 9, 215229 (1983).

E-mail address: sergiy.torba@gmail.com
E-mail address: imath@horbach.kiev.ua
E-mail address: grushka@imath.kiev.ua

Institute of Mathematics, Ukrainian Academy of Sciences, Kyiv.