Unsupervised Representation Learning Meets Pseudo-Label Supervised Self-Distillation: A New Approach to Rare Disease Classification

Jinghan Sun¹,², Dong Wei², Kai Ma², Liansheng Wang¹(✉), and Yefeng Zheng²

¹ Xiamen University, Xiamen, China
jhsun@stu.xmu.edu.cn, lswang@xmu.edu.cn
² Tencent Jarvis Lab, Shenzhen, China
{donwei, kylekma, yefengzheng}@tencent.com

Abstract. Rare diseases are characterized by low prevalence and are often chronically debilitating or life-threatening. Imaging-based classification of rare diseases is challenging due to the severe shortage in training examples. Few-shot learning (FSL) methods tackle this challenge by extracting generalizable prior knowledge from a large base dataset of common diseases and normal controls, and transferring the knowledge to rare diseases. Yet, most existing methods require the base dataset to be labeled and do not make full use of the precious examples of the rare diseases. To this end, we propose in this work a novel hybrid approach to rare disease classification, featuring two key novelties targeted at the above drawbacks. First, we adopt the unsupervised representation learning (URL) based on self-supervising contrastive loss, whereby to eliminate the overhead in labeling the base dataset. Second, we integrate the URL with pseudo-label supervised classification for effective self-distillation of the knowledge about the rare diseases, composing a hybrid approach taking advantages of both unsupervised and (pseudo-) supervised learning on the base dataset. Experimental results on classification of rare skin lesions show that our hybrid approach substantially outperforms existing FSL methods (including those using fully supervised base dataset) for rare disease classification via effective integration of the URL and pseudo-label driven self-distillation, thus establishing a new state of the art.

Keywords: Rare disease classification · Unsupervised representation learning · Pseudo-label supervised self-distillation.

1 Introduction

Rare diseases are a significant public health issue and a challenge to healthcare. On aggregate, the number of people suffering from rare diseases worldwide is

* J. Sun and D. Wei—Contributed equally; J. Sun contributed to this work during an internship at Tencent.
estimated over 400 million, and there are about 5000–7000 rare diseases—with 250 new ones appearing each year [27]. Patients with rare diseases face delayed diagnosis: 10% of patients spent 5–30 years to reach a final diagnosis. Besides, many rare diseases can be misdiagnosed. Therefore, image-based accurate and timely diagnosis of rare diseases can be of great clinical value. In recent years, deep learning (DL) methods have developed into the state of the art (SOTA) for image-based computer-aided diagnosis (CAD) of many diseases [13,19,24]. However, due to the limited number of patients for a specific rare disease, collecting sufficient data for well training of generic DL classification models can be practically difficult or even infeasible for rare diseases.

To cope with the scarcity of training samples, a machine learning paradigm called few-shot learning (FSL) has been proposed [17] and achieved remarkable advances in the natural image domain [5,14,25,31]. In FSL, generalizable prior knowledge is learned on a large dataset of base classes, and subsequently utilized to boost learning of previously unseen novel classes given limited samples (the target task). Earlier approaches [5,14,25,31] to FSL mostly resorted to the concept of meta-learning and involved complicated framework design and task construction. Recently, Tian et al. [29] showed that superior FSL performance could be achieved by simply learning a good representation on the base dataset using basic frameworks, followed by fitting a simple classifier to few examples of the novel classes. Additional performance boosts were achieved through self-distillation [6,8]. How to implement a similar self-distilling strategy on an unsupervised base dataset, though, is not obvious. On the other hand, we are aware of only few methods [34,12,18,21] for FSL of medical image classification, and to the best of our knowledge, all of them relied on heavy labeling of the base dataset, causing a great burden for practical applications. Lastly, the meta-learning process and the target task are often isolated in most existing FSL approaches, and the meta-learner has little knowledge about its end task. For natural images, this setting is consistent with the general purpose of pretraining a classifier that can be quickly adapted for diverse tasks. For the scenario we consider, however, known types of rare diseases are mostly fixed, and their recognition constitutes a definite task. We hypothesize that, by bridging the base dataset and the definite task, the performance can be boosted for the rare disease classification. In this regard, we consider this work a specific and practically meaningful application of the general FSL.

In this work, we propose a novel hybrid approach to rare disease classification, which combines unsupervised representation learning (URL) and pseudo-label supervised self-distillation [6,8]. Motivated by the recent surge of representation learning in FSL [2,29], we first build a simple yet effective baseline model based on URL, where a good representation is learned on a large unlabeled base dataset consisting of common diseases and normal controls (CDNC) using contrastive learning [7], and applied to rare disease classification. So far as we are aware of, this is the first study that explores few-shot medical image classification using an unsupervised base dataset. Then, we further propose to inject knowledge about the rare diseases into representation learning, to exploit the
CDNC data for a more targeted learning of the rare diseases. Specifically, we use the baseline model as a teacher model to generate pseudo labels for instances of CDNC belonging to the rare diseases, to supervise knowledge distillation to the student model. Our rationale is that CDNC and rare diseases often share common characteristics, thus we can steer the representation learning on the former towards characteristics that can better distinguish the latter via supervision by the pseudo labels. In addition, we empirically explore design options for the distillation, and find that a hybrid self-distillation integrating URL and pseudo-label supervised classification yields the best performance. Therefore, our main contributions are two folds: the novel application of URL to rare disease classification, and hybrid distillation combining contrastive and pseudo-label learning. Experimental results on the ISIC 2018 skin lesion classification dataset show that the URL-based baseline model already outperforms previous SOTA FSL methods (including those using fully supervised base dataset), and that further boosts in performance are achieved by the proposed hybrid approach.

2 Methods

Problem Setting. Similar to Li et al. [18], we formulate the task of rare disease classification as a few-shot learning (FSL) problem. Specifically, we model a specific task as \(T = \{S, Q\} \) consisting of a support set \(S = \{(x, y)\} \) and a query set \(Q = \{(x, y)\} \), where \(x \) is an image and \(y \) is its label. An \(N \)-way \(K \)-shot task includes \(N \) rare diseases, each with \(K \) instances in \(S \), where \(K \) is small. Thus \(y \in [1, \ldots, N] \) and \(|S| = N \times K\). The task instance \(T \) is randomly drawn from a distribution \(p(T) \), with \(S \) and \(Q \) randomly sampled from a dataset \(D_{\text{rare}} \) consisting of rare diseases. Only \(S \) is available for training and \(Q \) is solely for testing. In addition, there is a large base dataset \(D_{\text{base}} \) consisting of common diseases and normal controls (CDNC). The target is optimal classification performance on \(Q \).
given S and D_{base}. In this work, we consider D_{base} to be unlabeled for a more generally applicable approach in practice by eliminating the need for annotation.

Method Overview. An overview of our method is shown in Fig. 1. Given D_{base}, we first perform unsupervised representation learning (URL) to train the embedding function f_q (Fig. 1(a)). Next, a simple classifier f_c is appended to the learned f_q (with frozen parameters) to compose a baseline model F (Fig. 1(b)), where f_c is optimized on S. Then, F is employed to assign each CDNC instance in D_{base} a pseudo label of the rare diseases (Fig. 1(c)). Lastly, a self-distillation via hybrid unsupervised and pseudo-label supervised representation learning is performed on D_{base} to produce the final (student) model F' (Fig. 1(d)).

URL on CDNC for Rare Disease Classification. Inspired by the recent success of representation learning in FSL [2,29] and based on the recent advances in URL [1,7], we propose to perform URL on the big yet unlabeled CDNC dataset for rare disease classification. Specifically, we adopt instance discrimination with the contrastive loss [7,20] as our self-supervising task. We employ MoCo_v1 [7], where each image x_i in D_{base} is augmented twice to obtain x^q_i and x^k_i, whose embedded representations are subsequently obtained by $q_i = f_q(x^q_i; \theta_q)$ and $k_i = f_k(x^k_i; \theta_k)$, where f_q and f_k are the query and key encoders parameterized by θ_q and θ_k, respectively. The contrastive loss L_{con} is defined as [20]:

$$L_{\text{con}}(x_i) = -\log \left[\frac{\exp (q_i \cdot k_i / \tau)}{\exp (q_i \cdot k_i / \tau) + \sum_{j=1}^L \exp (q_i \cdot k_j / \tau)} \right],$$

where L is the number of keys stored in the dynamic dictionary implemented as a queue, τ is a temperature hyperparameter. Intuitively, this loss is the log loss of an $(L+1)$-way softmax-based classifier trained to discriminate the (augmented) instance x_i from other images stored in the dictionary queue (represented by their embeddings). Then, θ_q is updated by back-propagation whereas θ_k is updated with a momentum m: $\theta_k \leftarrow m\theta_k + (1-m)\theta_q$, where $m \in [0,1)$. Another notable difference of our work from the prevailing meta-learning based approaches is that we randomly sample mini-batches of training images from D_{base}, instead of iteratively constructing episodic training tasks as in most previous works [18,28,26,14,10]. This back-to-basic training scheme has proven effective despite being simpler [29], especially for an unsupervised D_{base} where category information is missing for episode construction.

After the URL, we freeze θ_q and append a simple classifier f_c to f_q to form a baseline model $F = f_c(f_q)$ for rare disease classification. Like [29], we use logistic regression for f_c, whose parameters θ_c are optimized on the support set S.

Self-Distillation of Rare Disease Knowledge. Despite its decent performance, the baseline model completely ignores the precious knowledge about target rare diseases contained in the support set S during representation learning. We hypothesize that a better representation learning for classification of the
target rare diseases can be achieved by fully exploiting this knowledge while at
the same time utilizing the big unlabeled data in D_{base}. To do so, we propose to
inject target task knowledge extracted from S into the representation learning
process via knowledge distillation [8], which can transfer knowledge embedded
in a teacher model to a student model. In addition, we adopt the born-again
strategy where the teacher and student models have an identical architecture,
for its superior performance demonstrated by Furlanello et al. [6].

The key idea behind our knowledge distillation scheme is that, although
D_{base} and D_{rare} comprise disjoint classes, it is common that certain imaging charac-
teristics (e.g., color, shape and/or texture) of the CDNC data are shared by
the rare diseases. Therefore, it is feasible to learn rare-disease-distinctive repre-
sentations and classifiers by training the networks to classify CDNC instances
as rare diseases of similar characteristics. Mathematically, we use the baseline
model F as the teacher model to predict the probabilities of each image x in
D_{base} belonging to the rare diseases in D_{rare}: $p = F(x) = [p_1, \ldots, p_N]^T$, where
$\sum_{n=1}^{N} p_n = 1$. Next, we define the pseudo label $y = [y_1, \ldots, y_N]^T$ based on p
with two alternative strategies: (i) hard labeling where $y_n = 1$ if $n = \text{argmax}_n p_n$
and 0 otherwise, and (2) soft labeling where $y_n = p_n$. In effect, the first strategy
indicates the rare disease that x resembles most, whereas the second reflects the
extents of resemblance between x and all the rare diseases in D_{rare}. In addition,
we propose a hybrid distilling loss integrating pseudo-label supervised classi-
fication and contrastive instance discrimination. As we will show, the hybrid
distillation scheme is important for preventing overfitting to noise and bias in
the small support set. Then, adopting the born-again [6] strategy, a randomly
initialized student model $F' = f'_c(f'_q)$ parameterized by θ'_c and θ'_q is trained to
minimize the hybrid loss L_{dis}:

$$L_{\text{dis}} = L_{\text{con}}(x; \theta'_q, \theta'_k) + L_{\text{cls}}(y, F'(x; \theta'_q, \theta'_c)),$$

(2)

where θ'_k are parameters of the key encoder f'_k (for computation of L_{con}) and
updated along with θ'_q, and L_{cls} is the pseudo-label supervised classification loss.
For L_{cls}, the cross-entropy and Kullback-Leibler divergence losses are used for
the hard and soft labels, respectively. Lastly, to allow for an end-to-end training,
a fully connected layer (followed by softmax) is used for f'_c.

After distillation, the student model $F' = f'_c(f'_q)$ can be directly used for rare
disease classification. One might argue for an alternative way of usage: discarding f'_c but appending a logistic regression classifier fit to the support set to f'_q, just
like in the baseline model. However, as confirmed by our comparative experiment
(supplement Table S1), direct use of F' performs much better. This is because,
the knowledge about the rare diseases is distilled into not only f'_q but also f'_c, thus discarding the latter results in performance degradation. Lastly, through
preliminary experiments we find that distilling more than once does not bring
further improvement. Therefore, we perform the self-distillation only once.

Adaptive Pseudo Labels. In practice, the pseudo labels defined by F may
not be entirely trustworthy, given the tiny size and potential noise and bias of
the support set. This may adversely affect performance of the student model. To alleviate the adverse effect, we further propose adaptive pseudo labels based on the self-adaptive training strategy. Concretely, given the prediction \(p' \) by the student model and pseudo labels \(y \) defined above, we combine them as our new training target: \(y_{\text{adpt}} = (1 - \alpha) \times y + \alpha \times p' \), where \(\alpha \) is a confidence parameter controlling how much we trust the teacher’s knowledge. \(y_{\text{adpt}} \) is termed adaptive hard/soft labels depending on \(y \) being hard or soft pseudo labels. Many previous works used a constant \(\alpha \) \[11,32\]. In the first few epochs, however, the student model lacks reliability—it gradually develops a better ability of rare disease classification as the training goes on. Therefore, we adopt a linear growth rate \[15\] for \(\alpha \) at the \(t \)th epoch: \(\alpha_t = \alpha_T \times (t/T) \), where \(\alpha_T \) is the last-epoch value and set to 0.7 as in \[15\], and \(T \) is the total number of epochs. As suggested by the comparative experiments (supplement Table S2), the adaptive hard labels work the best, thus are used in our full model for comparison with other methods.

3 Experiments

Dataset and Evaluation Protocol. The ISIC 2018 skin lesion classification dataset \[4,30\] includes 10,015 dermoscopic images from seven disease categories: melanocytic nevus (6,705), benign keratosis (1,099), melanoma (1,113), basal cell carcinoma (514), actinic keratosis (327), dermatofibroma (115), and vascular lesion (142). From that, we simulate the task of rare disease classification as below. Following Li et al. \[18\], we use the four classes with the most cases as the CDNC dataset \(D_{\text{base}} \), and the other three as the rare disease dataset \(D_{\text{rare}} \). \(K \) images are sampled for each class in \(D_{\text{rare}} \) to compose the support set \(S \) for a 3-way \(K \)-shot task. Compared to the binary classification tasks \[18\], the multi-way evaluation protocol more genuinely reflects the practical clinical need where more than two rare diseases are present, albeit more challenging. As to \(K \), we experiment with 1, 3, and 5 shots in this work. All remaining images in \(D_{\text{rare}} \) compose the query set \(Q \) for performance evaluation. Again, this task construction more genuinely reflects the intended scenario of rare disease classification—where only few examples are available for training a classifier to be applied to all future test cases—than the repeated construction of small \(Q \)'s \[18\]. We sample three random tasks \(T \sim p(T) \) and report the mean and standard deviation of these tasks. Besides accuracy, we additionally employ the F1 score as the evaluation metric considering the data imbalance between the rare disease classes.

Implementation. The PyTorch \[26\] framework (1.4.0) is used for experiments. We use the ResNet-12 \[16,29,22\] architecture as backbone network for \(f_q \) and \(f_k \), for its superior performance in the comparative experiments (supplement Table S3). We train the networks for 200 epochs with a mini-batch size of 16 images on 4 Tesla V100 GPUs. We adopt the stochastic gradient descent optimizer with a momentum of 0.9 and a weight decay of 0.0001. The learning rate is initialized

\[3\] https://challenge2018.isic-archive.com/task3/
Table 1. Evaluation results and comparison with SOTA FSL methods with ResNet-12 as backbone network. Data format: mean (standard deviation).

Method	(N, K) = (3, 1)		(N, K) = (3, 3)		(N, K) = (3, 5)	
	Accuracy (%)	F1 score (%)	Accuracy (%)	F1 score (%)	Accuracy (%)	F1 score (%)
Training from scratch	37.74 (1.07)	29.90 (3.65)	39.76 (0.88)	35.60 (1.72)	45.36 (3.76)	38.41 (4.06)
⊥ SML-MAML [5]	47.49 (5.38)	42.33 (6.16)	55.55 (3.12)	40.19 (1.20)	58.94 (2.55)	55.51 (2.16)
RelationNet [28]	46.10 (4.80)	39.98 (6.73)	47.29 (2.77)	43.37 (3.65)	55.71 (3.30)	49.34 (3.57)
ProtoNets [25]	35.18 (3.12)	30.81 (3.09)	38.59 (1.91)	33.11 (2.08)	42.45 (2.45)	34.92 (3.70)
DAML [18]	50.05 (5.18)	41.65 (5.98)	55.57 (3.55)	49.01 (6.62)	59.44 (3.17)	54.66 (2.44)
⊥ UML-UMTRA [14]	57.88 (5.55)	51.61 (5.55)	55.29 (3.34)	54.51 (3.50)	57.53 (3.76)	54.55 (3.96)
CACTUs-MAML [9]	42.98 (2.91)	35.38 (3.08)	44.44 (3.35)	39.94 (3.65)	48.11 (4.20)	44.32 (3.65)
CACTUs-ProtoNets [9]	42.67 (2.43)	39.24 (2.72)	45.00 (3.26)	39.69 (2.66)	47.95 (3.52)	44.08 (2.63)
⊥ SRL-SRL-simple [29]	54.45 (5.82)	57.02 (6.54)	61.34 (6.31)	57.85 (3.36)	70.53 (2.77)	65.58 (3.72)
SRL-distil [29]	55.43 (7.30)	51.18 (5.50)	64.92 (6.69)	59.88 (4.87)	72.78 (1.67)	65.89 (2.54)
⊥ URL-SimCLR [1]	52.47 (5.53)	47.06 (6.24)	65.12 (3.76)	57.53 (5.57)	76.18 (3.76)	62.73 (3.78)
MoCo-v2 [3]	59.95 (4.73)	55.98 (3.81)	70.84 (2.91)	64.77 (3.69)	75.80 (1.85)	70.69 (2.13)
MoCo-v1 (baseline) [7]	61.90 (2.92)	56.30 (1.48)	74.92 (2.96)	69.50 (5.72)	79.01 (2.00)	74.47 (3.03)
Hybrid distil (ours)	64.15 (2.86)	61.01 (1.30)	75.82 (2.47)	73.34 (2.30)	81.16 (2.60)	77.35 (4.21)

Comparison to SOTA Methods. According to the labeling status of the base dataset and genre of the methodologies, all the compared methods are grouped into four quadrants: (i) supervised meta-learning (SML) including MAML [5], Relation Networks [28], Prototypical Networks [25], and DAML [18], (ii) unsupervised meta-learning (UML) including UMTRA [14] and CACTUs [9], (iii) supervised representation learning (SRL; with or without self-distillation) [29], and (iv) URL including SimCLR [1], MoCo-v2 [3], MoCo-v1 [7] (composing the baseline model in our work), and our proposed method. These methods cover a wide range of the latest advances in FSL for image classification. For reference purpose, we also show the results of training a classifier from scratch solely on S. Besides the ResNet-12 backbone, we additionally show the results using the 4 conv blocks [31] as the backbone network considering its prevalent usage in the FSL literature [5,28,25,14,9]. Note that for all compared methods, we optimize their performance via empirical parameter tuning.

The results are shown in Table 1 (ResNet-12) and supplement Table S4 (4 conv blocks), on which we make the following observations. First, the representation learning based methods generally achieve better performance than the meta-learning based irrespective of the labeling status of D_{base}, which is consistent with the findings in the natural image domain [29]. Second, the URL based methods surprisingly outperform the SRL based in most circumstances. A possible explanation may be that the few classes in D_{base} present limited vari-
ations and make the representations overfit to their differentiation, whereas the task of instance discrimination in URL forces the networks to learn more diverse representations that are more generalizable on novel classes. Especially, the baseline model presented in this work (URL with MoCo_v1 [7]) wins over the SRL plus self-distillation [29] by large margins. Third, our proposed hybrid approach brings further improvements upon the baseline model in both accuracy (∼1–2% with ResNet-12) and F1 score (∼3–5% with ResNet-12). Notably, it achieves an accuracy of 81.16% in the 5-shot setting without any label of the base dataset. These results strongly support our hypothesis that, by extracting the knowledge about the rare diseases from the small support set and injecting it into the representation learning process via pseudo-label supervision, we can fully exploit the large CDNC dataset to learn representations and classifiers that can better distinguish the rare diseases. To further investigate whether the improvements sustain higher K values, we conduct extra experiments (with ResNet-12) for the baseline and hybrid models with $K = 10$ and 20. The results confirm that our proposed hybrid approach still wins over the baseline model by ∼1% absolute differences in both metrics and settings, yielding the accuracies and F1 scores of 83.65% and 79.98% when $K = 10$, and of 86.91% and 83.40% when $K = 20$. Lastly, the results using ResNet-12 as backbone are generally better than those using the 4 conv blocks, as expected.

Ablation Study. We probe the effect of the proposed hybrid distillation by comparing performance of distilling with only \mathcal{L}_{cls} and the full model. In addition, we experiment with a variant of \mathcal{L}_{dis} where \mathcal{L}_{cls} is replaced by an L1 loss \mathcal{L}_{reg} to directly regress the output of f_q, to evaluate the effect of injecting knowledge about the rare diseases. Results (Table 2) show that distilling with \mathcal{L}_{cls} alone brings moderate improvement upon the baseline model, suggesting the efficacy of injecting rare disease knowledge into representation learning. Yet, distilling with the proposed hybrid loss achieves further appreciable improvement. We conjecture this is because \mathcal{L}_{con} helps avoid overfitting to the support set of the rare diseases, which may be affected by noise and bias due to its small size. On the other hand, distilling with \mathcal{L}_{reg} (plus \mathcal{L}_{con}) gives performance similar to the baseline model, implying that it is the distilled knowledge about the rare diseases that matters, rather than the distillation procedure. These results confirm the efficacy of the hybrid distillation.

Table 2. Ablation study on the hybrid distillation (with ResNet-12 backbone and adaptive hard labels). Data format: mean (standard deviation).

\mathcal{L}_{dis}	$(N, K) = (3, 1)$	$(N, K) = (3, 3)$	$(N, K) = (3, 5)$			
	Accuracy (%)	F1 score (%)	Accuracy (%)	F1 score (%)	Accuracy (%)	F1 score (%)
N.A.	61.90 (2.92)	56.30 (1.48)	74.92 (2.96)	69.50 (5.72)	79.01 (2.00)	74.47 (3.03)
\mathcal{L}_{cls}	63.70 (3.39)	57.31 (7.73)	74.92 (2.10)	70.28 (3.97)	80.24 (1.61)	77.29 (2.91)
$\mathcal{L}_{\text{con}} + \mathcal{L}_{\text{cls}}$	**64.15** (2.86)	**61.01** (1.30)	**75.82** (2.47)	**73.34** (3.20)	**81.16** (2.60)	**77.35** (4.21)
$\mathcal{L}_{\text{con}} + \mathcal{L}_{\text{reg}}$	62.20 (5.18)	56.19 (4.28)	74.43 (2.88)	69.74 (4.13)	79.14 (2.09)	74.41 (2.65)
4 Conclusion

In this work, we proposed a novel approach to rare disease classification in two steps. First, we built a baseline model on unsupervised representation learning for a simple and label-free (w.r.t. the base dataset of common diseases and normal controls) framework, which achieved superior performance to existing FSL methods on skin lesion classification. Second, we further proposed to utilize the baseline model as the teacher model for a hybrid self-distillation integrating unsupervised contrastive learning and pseudo-label supervised classification. Experimental results suggested that the hybrid approach could effectively inject knowledge about the rare diseases into the representation learning process through the pseudo-labels, and meanwhile resist overfitting to noise and bias in the small support set thanks to the contrastive learning, and that it had set a new state of the art for rare disease classification.

Acknowledgments. This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 20720190012), Key-Area Research and Development Program of Guangdong Province, China (No. 2018B010111001), and Scientific and Technical Innovation 2030 - “New Generation Artificial Intelligence” Project (No. 2020AAA0104100).

References

1. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning. pp. 1597–1607. PMLR (2020)
2. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. In: International Conference on Learning Representations (2019)
3. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)
4. Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., Marchetti, M., et al.: Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge hosted by the International Skin Imaging Collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)
5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning. pp. 1126–1135. PMLR (2017)
6. Furlanello, T., Lipton, Z., Tschannen, M., Itti, L., Anandkumar, A.: Born again neural networks. In: International Conference on Machine Learning. pp. 1607–1616. PMLR (2018)
7. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9729–9738 (2020)
8. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Deep Learning and Representation Learning Workshop (2015)
9. Hsu, K., Levine, S., Finn, C.: Unsupervised learning via meta-learning. In: International Conference on Learning Representations (2018)
10. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
11. Huang, L., Zhang, C., Zhang, H.: Self-adaptive training: Beyond empirical risk minimization. arXiv preprint arXiv:2002.10319 (2020)
12. Jiang, X., Ding, L., Havaei, M., Jesson, A., Matwin, S.: Task adaptive metric space for medium-shot medical image classification. In: International Conference on Medical Image Computing and Computer Assisted Intervention. pp. 147–155. Springer (2019)
13. Ker, J., Wang, L., Rao, J., Lim, T.: Deep learning applications in medical image analysis. IEEE Access 6, 9375–9389 (2018)
14. Khodadadeh, S., Boloni, L., Shah, M.: Unsupervised meta-learning for few-shot image classification. In: Advances in Neural Information Processing Systems. vol. 32. Curran Associates, Inc. (2019)
15. Kim, K., Ji, B., Yoon, D., Hwang, S.: Self-knowledge distillation: A simple way for better generalization. arXiv preprint arXiv:2006.12000 (2020)
16. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10657–10665 (2019)
17. Li, F.F., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(4), 594–611 (2006)
18. Li, X., Yu, L., Jin, Y., Fu, C.W., Xing, L., Heng, P.A.: Difficulty-aware meta-learning for rare disease diagnosis. In: International Conference on Medical Image Computing and Computer Assisted Intervention. pp. 357–366. Springer (2020)
19. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Medical Image Analysis 42, 60–88 (2017)
20. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
21. Paul, A., Tang, Y.X., Shen, T.C., Summers, R.M.: Discriminative ensemble learning for few-shot chest X-ray diagnosis. Medical Image Analysis 68, 101911 (2021)
22. Ravichandran, A., Bhotika, R., Soatto, S.: Few-shot learning with embedded class models and shot-free meta training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 331–339 (2019)
23. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
24. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annual Review of Biomedical Engineering 19(1), 221–248 (2017)
25. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems. pp. 4080–4090 (2017)
26. Steiner, B., DeVito, Z., Chintala, S., Gross, S., Paszke, A., Massa, F., Lerer, A., Chanan, G., Lin, Z., Yang, E., et al.: PyTorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems 32, 8026–8037 (2019)
27. Stolk, P., Willemen, M.J., Leufkens, H.G.: Rare essentials: Drugs for rare diseases as essential medicines. Bulletin of the World Health Organization 84, 745–751 (2006)
28. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (June 2018)

29. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: A good embedding is all you need? In: Proceedings of the European Conference on Computer Vision (2020)

30. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data 5(1), 1–9 (2018)

31. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems. pp. 3637–3645 (2016)

32. Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be your own teacher: Improve the performance of convolutional neural networks via self distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 3713–3722 (2019)

33. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

34. Zhu, W., Liao, H., Li, W., Li, W., Luo, J.: Alleviating the incompatibility between cross entropy loss and episode training for few-shot skin disease classification. In: International Conference on Medical Image Computing and Computer Assisted Intervention. pp. 330–339. Springer (2020)
Supplementary Material: Unsupervised Representation Learning Meets Pseudo-Label Supervised Self-Distillation: A New Approach to Rare Disease Classification

Table S1. Performance comparison of alternative ways of applying the distilled student model (with ResNet-12 backbone and adaptive hard labels). “Direct” means directly using the student model $F' = f'_c(f'_q)$, and “LR” means replacing f'_c with a logistic regression classifier fit to the support set. To validate that the difference in performance is not due to the exact type of the classifier, we also show the results of using a fully connected layer (FC) finetuned on the support set for the baseline model. Data format: mean (standard deviation).

Method	Classifier	$(N, K) = (3, 1)$	Accuracy (%)	F1 score (%)	$(N, K) = (3, 3)$	Accuracy (%)	F1 score (%)	$(N, K) = (3, 5)$	Accuracy (%)	F1 score (%)
MoCo v1 [7]	LR	61.90 (2.92)	56.30 (1.48)	74.92 (2.96)	69.50 (5.72)	79.01 (2.00)	74.47 (3.93)			
(baseline)	FC	60.91 (2.19)	55.21 (1.26)	74.16 (3.77)	68.09 (7.15)	78.20 (3.37)	74.39 (3.90)			
Hybrid-distill (ours)	LR	62.86 (2.70)	56.79 (4.38)	74.45 (2.59)	71.41 (4.14)	80.55 (1.94)	75.45 (1.62)			
	Direct	64.15 (2.86)	61.01 (1.30)	75.82 (2.47)	73.34 (2.30)	81.16 (2.60)	77.35 (4.21)			

Table S2. Accuracy comparison of four alternative designs of the pseudo labels (with ResNet-12 as backbone network). Data format: mean (standard deviation).

Pseudo label design	$(N, K) = (3, 1)$	$(N, K) = (3, 3)$	$(N, K) = (3, 5)$			
	Accuracy (%)	F1 score (%)	Accuracy (%)	F1 score (%)	Accuracy (%)	F1 score (%)
Soft	62.16 (4.23)	56.25 (4.30)	75.17 (3.19)	71.48 (2.92)	79.89 (2.46)	74.61 (4.88)
Hard	63.68 (3.90)	58.69 (4.82)	75.70 (2.90)	71.75 (2.75)	79.76 (1.27)	75.68 (2.42)
Adaptive soft	62.26 (3.01)	57.10 (4.12)	75.45 (2.39)	69.23 (4.26)	79.74 (1.64)	74.41 (3.51)
Adaptive hard	64.15 (2.86)	61.01 (1.30)	75.82 (2.47)	73.34 (2.30)	81.16 (2.60)	77.35 (4.21)
Table S3. Performance comparison of the baseline model using different backbones. Data format: mean (standard deviation).

Backbone	(N, K) = (3, 1)	(N, K) = (3, 3)	(N, K) = (3, 5)			
	Accuracy (%)	F1 score (%)	Accuracy (%)	F1 score (%)	Accuracy (%)	F1 score (%)
4 conv blocks	53.36 (8.89)	46.90 (6.34)	67.48 (6.06)	59.77 (3.80)	69.94 (5.67)	64.31 (3.15)
MoblieNet v2	52.03 (6.40)	44.76 (4.90)	57.21 (7.10)	48.26 (5.83)	61.92 (10.09)	56.85 (7.33)
ShuffleNet	60.91 (2.19)	55.71 (1.26)	74.16 (3.77)	69.59 (7.15)	78.20 (3.37)	75.39 (3.90)
ResNet-12	61.90 (2.92)	56.30 (1.48)	74.92 (2.96)	69.50 (5.72)	79.01 (2.00)	74.47 (3.03)
ResNet-18	56.97 (1.15)	48.27 (4.25)	71.88 (4.83)	65.35 (7.56)	77.27 (4.01)	71.80 (4.16)
ResNet-50	59.90 (1.60)	48.08 (5.20)	70.96 (1.74)	63.10 (4.37)	74.17 (1.99)	68.66 (2.26)
DenseNet-121	50.26 (4.38)	44.03 (4.74)	67.71 (0.71)	59.22 (3.08)	71.53 (1.79)	66.54 (1.89)

Table S4. Evaluation results and comparison with SOTA FSL methods with the 4 conv blocks as backbone network. Data format: mean (standard deviation).

Method	(N, K) = (3, 1)	(N, K) = (3, 3)	(N, K) = (3, 5)			
	Accuracy (%)	F1 score (%)	Accuracy (%)	F1 score (%)	Accuracy (%)	F1 score (%)
Training from scratch	35.91 (4.11)	30.11 (1.73)	38.95 (4.03)	33.24 (2.89)	43.13 (5.50)	37.57 (1.32)
⊥SML MAML	36.20 (4.22)	30.64 (2.53)	31.56 (3.05)	35.38 (2.26)	45.73 (3.62)	40.51 (2.68)
RelationNet	41.11 (4.72)	36.47 (4.60)	42.63 (4.57)	38.49 (4.77)	49.98 (5.81)	42.86 (4.81)
ProtoNets	44.97 (1.69)	38.31 (2.05)	36.38 (1.91)	31.65 (2.73)	37.95 (2.98)	34.04 (2.40)
DAML	46.70 (2.74)	49.96 (5.11)	53.91 (3.23)	44.90 (6.22)	56.11 (2.39)	53.29 (2.42)
⊥URL	54.15 (5.57)	53.88 (0.26)	53.76 (2.78)	50.07 (3.25)	54.16 (2.00)	50.47 (7.56)
CACTUs-MAML	39.45 (3.42)	32.09 (2.60)	42.20 (2.47)	38.70 (3.80)	45.31 (1.69)	39.96 (3.46)
CACTUs-ProtoNets	32.24 (2.12)	29.69 (0.84)	35.08 (1.70)	30.95 (2.69)	36.86 (1.95)	32.76 (3.10)
⊥URL	55.88 (5.57)	57.97 (1.56)	57.90 (3.48)	55.36 (6.62)	60.62 (2.34)	53.98 (3.29)
SRL-distil	50.14 (3.74)	43.76 (2.54)	58.20 (4.15)	52.24 (3.06)	62.07 (5.11)	58.71 (5.64)
⊥URL	54.07 (3.04)	56.07 (7.94)	56.25 (1.38)	55.32 (3.22)	62.65 (3.25)	61.78 (5.25)
MoCo v2	48.88 (8.31)	44.45 (7.16)	59.71 (2.54)	52.68 (3.75)	62.91 (2.04)	57.43 (2.95)
MoCo v1 (baseline)	53.36 (8.89)	46.90 (6.34)	67.48 (6.06)	59.77 (5.86)	69.94 (5.67)	64.31 (3.15)
Hybrid distil (ours)	**54.72** (8.46)	**47.28** (4.45)	**69.14** (3.36)	**62.56** (5.84)	**70.26** (4.97)	**65.89** (4.60)