Distinct moieties underlie biphasic H^+ gating of connexin43 channels, producing a pH optimum for intercellular communication

Carolina D. Garcıăarena,*† Akif Malik,* Pawel Swietach,* Alonso P. Moreno,*†,1,2 and Richard D. Vaughan-Jones*†

*Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, Oxford, United Kingdom; †Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland; and ‡Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA

ABSTRACT: Most mammalian cells can intercommunicate via connexin-assembled, gap-junctional channels. To regulate signal transmission, connexin (Cx) channel permeability must respond dynamically to physiological and pathophysiological stimuli. One key stimulus is intracellular pH (pHi), which is modulated by a tissue’s metabolic and perfusion status. Our understanding of the molecular mechanism of H^+ gating of Cx43 channels—the major isoform in the heart and brain—is incomplete. To interrogate the effects of acidic and alkaline pHi on Cx43 channels, we combined voltage-clamp electrophysiology with pHi imaging and photolytic H^+ uncaging, performed over a range of pHi values. We demonstrate that Cx43 channels expressed in HeLa or N2a cell pairs are gated biphasically by pHi, via a process that consists of activation by H^+ ions at alkaline pHi and inhibition at more acidic pHi. For Cx43 channel–mediated solute/ion transmission, the ensemble of these effects produces a pHi optimum, near resting pHi. By using Cx43 mutants, we demonstrate that alkaline gating involves cysteine residues of the C terminus and is independent of motifs previously implicated in acidic gating. Thus, we present a molecular mechanism by which cytoplasmic acid–base chemistry fine tunes intercellular communication and establishes conditions for the optimal transmission of solutes and signals in tissues, such as the heart and brain.—Garcıăarena, C. D., Malik, A., Swietach, P., Moreno, A. P., Vaughan-Jones, R. D. Distinct moieties underlie biphasic H^+ gating of connexin43 channels, producing a pH optimum for intercellular communication. FASEB J. 32, 1969–1981 (2018). www.fasebj.org

KEY WORDS: gap junctions · acid–base · heart · brain · electrical synapse

Cells of most human tissues—with the notable exception of blood cells and skeletal muscle cells—are electrically and metabolically coupled by means of gap junctional channels, assembled from connexin (Cx) proteins. The hexameric channels permit cell-to-cell solute and ion flow. This function plays a critical signaling role (1) that is particularly important for the spread of electric current in excitable tissues. The biological importance of gap junctional communication necessitates a means of regulating junctional permeability and conductance. Acute Cx channel regulation is typically exercised via post-translational modifications and may involve cellular metabolites and/or electrophysiologic maneuvers. Moreover, aberrant forms of Cx channel regulation have been implicated in pathologic states (2, 3), such as cardiac arrhythmias.

Among solutes that permeate Cx-assembled channels are H^+ ions, the end products of metabolism. H^+ ions are produced at a rate that reflects the tissue’s metabolic activity. They can feedback potently on cellular function via an array of protonation reactions with proteins. Essentially, all cell types are equipped with a molecular apparatus for maintaining favorable intracellular pH (pHi). Excess acid is commonly transferred from cells to the nearest functional blood capillary (4) via membrane transport proteins, such as H^+-monocarboxylate transporters and Na$^+$/H$^+$ exchangers (NHEs). In addition, permeation of H^+ ions through gap junctions allows pHi to equilibrate spatially among cells, such as those of the working myocardium. Channel-facilitated H^+ dissipation

ABBREVIATIONS: βGA, β-pglycurhelic acid; AM, acetoxymethyl ester; Cx, connexin; NHE, Na$^+$/H$^+$ exchanger; P_H2SO4, apparent H^+ ion permeability constant; pHi, intracellular pH; SNARF-1, seminaphtharhodafluor–1; TMA, trimethylamine

1 Correspondence: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112, USA. E-mail: alonso.moreno@utah.edu
2 These authors contributed equally to this work.

This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
doi: 10.1096/fj.201700876R
This article includes supplemental data. Please visit http://www.fasebj.org to obtain this information.
reduces the spatial heterogeneity of pH, thereby helping to unify tissue-level function, such as myocardial contractility. In contrast, some clinical conditions—for example, myocardial ischemia—can trigger abnormally large decreases of tissue pH, permitting a large and localized intracellular acid load to spread into surrounding tissue would risk inflicting undue damage on cells that are co-opted to share the pH disturbance. Instead, gap junctional channels tend to close by sensing low pH.

A 1980s report first described an inhibitory effect of intracellular acidification on cell-to-cell coupling. Subsequent expression studies on Cx43 channels have linked this to an inhibition by H+ ions, which relies on an interaction between the cytoplasmic C terminus of the Cx43 protein (residues 261–300 and 374–382) with its intracellular loop (a protonatable histidine residue) (9). Moreover, these domains are influenced by phosphorylation and interactions with the cytoskeleton (11), which allows for additional fine tuning of Cx43 channel pH sensitivity. More recently, an additional pH control of gap junctional conductance and permeability has been described. Inhibition of electrical and solute coupling between mammalian ventricular myocytes—where Cx43 is the dominantly expressed gap junctional isoform—has been demonstrated at both low and high pH. Ventricular coupling is thus modulated by pH; in a biphasic manner, with peak conductance attained at pH ~6.9, which is mildly acidic relative to normal resting pH (12). The molecular structures that underpin gap junctional block at high pH are currently unknown.

Here, by using heterologously expressed Cx43 channels, we confirm that alkaline—that is, high—pH reversibly and robustly reduces gap junctional communication, probed electrophysiologically and from measurements of cell-to-cell H+ ion permeation down a photolytically evoked gradient of [H+]. Furthermore, by using mutants of Cx43, we show that the C terminus of Cx43 is involved in alkaline gating and that this process is independent of the molecular apparatus responsible for channel closure at acidic—that is, low—pH. We present an updated model of the mechanism of biphasic gating of Cx43 channels by H+ ions. Our model explains the phenomenon of optimal Cx43 channel permeability in terms of the ensemble of inhibitory and activatory effects of H+ ions operating over distinct pH ranges.

MATERIALS AND METHODS

Cx43 expression and cell culture

HeLa (CRM-CCL2; American Type Culture Collection, Manassas, VA, USA) and N2a (CCL-131; American Type Culture Collection) cells were transfected with cDNA for rat Cx43 in pcDNA3.1 vectors (13). Truncated Cx43 (Cx43m257HT) was generated by introducing a stop codon at residue 258 into the cloning site of the bicistronic vector, pRES2 (Clontech, Mountain View, CA, USA) that provides resistance to Geneticin (G418; Mutagenesis Kit; Thermo Fisher Scientific, Waltham, MA, USA) and includes a histidine tag (His). Mutants with ≥1 cysteine-to-alanine mutations at the C tail were generated by PCR using specific primers (Supplemental Fig. 1), and the gene was introduced into a pcDNA vector with hygromycin resistance. Transfected cells were selected with 150 μg/ml hygromycin B or 800 μg/ml G418. Cells were grown in high-glucose DMEM that was supplemented with 10% fetal bovine serum, penicillin, streptomycin, glutamine, and normocin (Thermo Fisher Scientific) at 37°C and 5% CO2. Cell pairs were obtained by allowing for 1 division cycle (8- to 24-h culture for HeLa; 72-h culture for N2a).

Western blot and immunofluorescence

Cell lysates were prepared from confluent monolayers with RIPA buffer that contained protease/phosphatase inhibitors (Roche, Basel, Switzerland). After centrifugation at 5000 g, protein was subject to 12% SDS-PAGE, transferred to PVDF membranes, and probed with primary Abs. Signal was detected by chemiluminescence that was obtained from secondary horse-radish peroxidase-conjugated anti-rabbit, -goat, or -mouse Abs (Thermo Fisher Scientific) and ECL (GE Healthcare, Pittsburgh, PA, USA). For immunofluorescence, cells that were grown on coverslips were fixed with 4% paraformaldehyde for 10 min, permeabilized with 0.1% Triton X-100 for 20 min, blocked with 1% bovine serum albumin (1 h), incubated with primary Abs (1:50; 1 h), and incubated with Alexa Fluor-488/-647–conjugated secondary Abs (1:200; 1 h). Primary Abs were against Cx43 (rabbit polyclonal; EMD Millipore, Billerica, MA, USA), actin (goat polyclonal; Santa Cruz Biotechnology, Dallas, TX, USA), His-Tag (mouse monoclonal; EMD Millipore), and NHE1 (mouse monoclonal; BD Biosciences, San Jose, CA, USA). Coverslips were mounted on slides by using DAPI-containing mounting medium (ProLong; Thermo Fisher Scientific). Images were acquired with an inverted laser-scanning microscope (SP5; Leica Microsystems, Buffalo Grove, IL, USA); excitation/emission wavelengths were 351 nm/400–440 nm (DAPI), 488 nm/500–600 nm (Alexa Fluor-488), and 633 nm/>650 nm (Alexa Fluor-647).

Electrophysiology

Dual whole-cell voltage clamp was performed on cell pairs by using 3- to 5-MΩ pipettes that were filled with intracellular solution (in mM: 143 CsCl, 10 NaCl, 5.5 glucose, 1 MgCl2, 3 HEPES, pH 7.1). Measurements were performed at room temperature. A continuous protocol of 10-mV/10-ms hyperpolarizing pulses was applied sequentially to each cell of the pair at 0.5 Hz by using an analog stimulator (Winston Electronics, St. Louis, MO, USA). For longer-lasting experiments—namely, those that involve studies of Cys-to-Ala mutants—cell triplets were used for double voltage-clamp experiments as these produced more stable recording over many minutes compared with cell pairs. Two voltage-clamp amplifiers (Warner 201A) were used to determine trans-junctional current (Ij). Junctional conductance (Gj) was calculated by dividing Ij by the applied voltage. Signals were acquired at 5 kHz and filtered at 1 kHz. Experiments were conducted at room temperature and results were normalized to the value at the start of the experiment. Single channel-unitary currents were obtained after adding 2 mM halothane to the bathing solution to reduce channel open probability, which makes it possible to record single-channel events from cell pairs. This is critical because junctional plaques will inevitably contain many Cx channels, which would be a confounding factor in measuring single-channel properties. A driving force of 30–60 mV was applied to calculate channel-unitary conductance. Current signals were filtered at 100 Hz, pH was monitored by using an epifluorescence system coupled to a Nikon inverted microscope (Nikon, Tokyo, Japan) using 5-(and-6)-carboxy selenoprenylhodofluor-1 (SNARF-1) (14) loaded into cells as their
membrane transporters, NHE1 and Na+-HCO3-
(bubbling with 5% CO2)
labile, membrane-permeable H+ donor substance (15). Uncaging etenate and 10
pHi was manipulated by superfusion with solutions in which
H+ flux measurement
Fluo3 (10
consisting of 40 s of baseline and the first 54 s of H+ uncaging calculated from the initial time course of H+ permeation
[Ca2+]i was measured in cell pairs that were AM-loaded with
Ca2+ imaging
[Ca2+]i was measured in cell pairs that were AM-loaded with Fluo3 (10 µM; Molecular Probes), excited at 488 nm, and with emitted fluorescence collected at >505 nm. After subtracting background fluorescence, Fluo3 time course signal was normalized to baseline (F/F0).

Statistics
Summarized electrophysiologic results of changes in Gj are expressed as means ± SD. whereas summarized permeability results are expressed as means ± SEM. A paired Student’s t test was used to test the significance between results obtained with each cell pair serving as its own control. An unpaired t test was used to test significance between results that were obtained on different cells pairs. Values of P < 0.05 were considered significant.

RESULTS

Cells transfected with the Cx43 gene become electrically uncoupled at low and high pH

Gja1, the gene that codes for rat Cx43 protein, was stably transfected into HeLa and N2a cells. Cx43 protein was confirmed by Western blot analysis and immunofluorescence (Fig. 1A). Cx43-positive plaques formed at the interface between cells. Junctional conductance (Gj)—calculated from double whole-cell voltage-clamp pulses (Fig. 1B)—was abrogated by the addition of the gap junction blocker, β-glycyrrhetinic acid (βGA; 60 µM). These observations are attributable to the transfected gene because wild-type HeLa and N2a cells lack endogenous Cx43 (Fig. 1A) and have no detectable junctional conductance.

Effects of intracellular acidosis were studied in HeLa and N2a cells that were transfected with Cx43. Superfusion with 80 mM Na+ acetate produced a prompt acidification (fall of pHi), followed by a small degree of recovery (Fig. 1C, middle) that was attributable to acid extrusion by transporters, such as NHE1 (flux analysis in Supplemental Fig. 2). Intracellular acidification first produced a small transient rise in Gj, followed by a delayed and slower decrease that reached a nadir of ~70% of the control value (Fig. 1C, bottom). Withdrawal of acetate alkalinized pHi and evoked a rise in Gj which was indicative of a reversible block (Fig. 1C, bottom). These Gj changes are additionally quantified in Fig. 1D. Of note, the Gj response lagged behind the pHi change by tens of seconds, which indicates a time dependence of acid-evoked block and its subsequent recovery (illustrated as a hysteresis loop in Fig. 1E).

The effect of raising pHi with 20 mM TMA was determined in separate experiments on Cx43-transfected N2a and HeLa cells. Raising pHi produced a monophasic, albeit delayed, fall in Gj to ~40% of control conductance (Fig. 1F, bottom). As with the response to acidosis, the effect of raising pHi was reversible (Fig. 1F) and is additionally quantified in Fig. 1G. The Gj response, again, was delayed relative to the rapidly imposed pHi maneuvers, as illustrated in the hysteresis plot shown in Fig. 1H. Overall, changes of pHi in either direction from the resting value of ~7.1 reduced junctional conductance, but with a significant time delay. One interpretation of this result would be an activatory effect on Gj of Cx43 channel protonation over the alkaline pHi range, but an inhibitory effect of protonation over a more acidic range, with a net transition that occurred near pHi ~6.9—the latter would explain the rise, then fall of Gj upon acidification from pHi ~7.1 (see Fig. 1C).

To explore the mechanism of pHi sensitivity of Gj, Cx43 single-channel conductance was recorded in HeLa cells—in the presence of 2 mM halothane, which rapidly blocks the majority of channels (Fig. 2A). Cx43 channels
acidosis

Typically exhibit one maximal conductance state that corresponds to the dephosphorylated Ser368 open state (o, ~120 pS), and a residual conductance state (r, ~30 pS) observed upon application of a trans-junctional voltage (13). In addition, a number of events are observed near 60 mV voltage clamp on cell pairs. During alternating voltage pulses, junctional currents (Ij) are a readout of cell-to-cell coupling and Ij + Iaj represent the junctional plus transmembrane currents in the stimulated cell. Example experiment showing effect of superfusion with 80 mM Na+ acetate. Junctional currents (increase indicates stronger coupling; top). Time course of pHj measured by using SNARF-1, showing rapid acidification, secondary partial recovery, and a rebound alkalinization upon washout (middle). Low pHj reduced Gj rapidly (bottom). Note the small initial transient increase in Gj, followed by a fast decrease that reached ~70% of initial value. Average data (mean ± SD) for Gj at baseline conditions, reduction after 3 min of acetate, and recovery after 5 min washout (n = 5, HeLa and N2a cell pairs). Example experiment showing effect of superfusion with 20 mM TMA. Example experiment showing effect of superfusion with 20 mM TMA. Ij (top). Time course of pHj showing rapid alkalinization, secondary partial recovery, and a rebound acidification upon washout (middle). Alkaline pHj reduces Gj toward ~50% of the initial Gj value (bottom). Average (mean ± SD) Gj at baseline conditions, after 3 min perfusion of TMA, and recovery after 5 min of washout (n = 5 N2a cell pairs). Representative plot of pHj vs. Gj plot. Arrow indicates net change in Gj and pHj near the steady state. *P < 0.05.

Probing Cx43 channel permeability from measurements of H+ ion permeation between cells

Cx43 channel gating was also interrogated from measurements of cell-to-cell permeability to H+ ions. To drive a net flux of H+ ions through gap junctions, one cell of a pair was acidified by a series of photolytic uncaging reactions that involved the membrane-permeable H+ donor, 2-nitrobenzaldehyde, which was dissolved in superfusates at 1 mM (15) (Fig. 3A, left). The diffusive spread of uncaged H+ ions was then monitored by imaging pHj in the cell pair at intervals between local uncaging events. To obtain an estimate of PH+app, [H+]j, time courses in the source and recipient cells were best fitted to a permeation algorithm. It is well established (12, 17) that H+ ions permeate through connexin channels aboard small, mobile buffer molecules; therefore, calculated PH+app is a dual function of the channels’ permeability state and the availability of permeant buffers for the shuttling of H+ ions through gap junctions.

PH+app measurements were first performed on wild-type or Cx43-transfected N2a cells. Transfected N2a cells had βGA-inhibitable junctional conduction (Fig. 3B), which confirmed the functional expression of Cx43. Uncaging experiments were performed on cells that were superfused with CO2/HCO3~ -free (Hepes) superfusates to measure H+ ion permeation aboard intrinsic mobile buffers (Fig. 3C). Acid extrusion by membrane transporters was blocked with 30 μM dimethylamiloride, an NHE1 inhibitor. In agreement with electrophysiologic recordings, wild-type cells displayed no evidence for H+ ion permeation between cells (Fig. 3D, left), but significant transmission was observed between Cx43-transfected cells (Fig. 3D, middle), which was inhibitable with βGA (Fig. 3D, right). PH+app data are summarized in Fig. 3F. In a second series of experiments, PH+app was probed in the presence of 5% CO2/22 mM HCO3~ buffer, which introduced additional mobile buffering into the

Figure 1. Electrical uncoupling of Cx43 cell pairs at low and high pHj. A) Cx43 protein in HeLa and N2a cells confirmed by Western blot analysis and immunostaining. Wild-type HeLa and N2a lack Cx43 endogenous. Multiple bands correspond to Cx43 transfection. B) Western blot analysis and immunostaining. Wild-type HeLa and N2a lack Cx43 endogenous. Multiple bands correspond to Cx43 transfection. C) Example experiment showing effect of superfusion with 20 mM TMA. Ij (top). Time course of pHj showing rapid alkalinization, secondary partial recovery, and a rebound acidification upon washout (middle). Alkaline pHj reduces Gj toward ~50% of the initial Gj value (bottom). Average (mean ± SD) Gj at baseline conditions, after 3 min perfusion of TMA, and recovery after 5 min of washout (n = 5 N2a cell pairs).
Biphasic regulation of Cx43 channels

Absence of cell-to-cell H+ ion transmission in wild-type cells

Mobile buffers are responsible for shuttling H+ ions buffered superfusates to ensure that only the intrinsic H+ ion permeability by cytoplasmic H+ ions was characterized over a range of pHi values by using electrophysiologic recordings of homotypic channels is not significantly different from previously reported values (120 pS). All-event histograms include peaks from transitions between fully open minus residual state (120–30 = 90 pS), and fully open channel transitions of phosphorylated states (60 pS).

cytoplasm. Acid extrusion was blocked pharmacologically with 30 μM dimethylamiloride and the HCO3− transport inhibitor, 4,4′-disothiocyanato-2,2′-stilbenedisulfonic acid (150 μM; Supplemental Fig. 2). P_H^app was 2-fold higher under this buffering regime (Fig. 3E, Fii), which was consistent with the junctional permeation of additional mobile buffers provided by cytoplasmic CO2/HCO3− (15). Para-cellular diffusion of CO2 was ruled out on the basis of the absence of cell-to-cell H+ ion transmission in wild-type cells and the complete block of transmission by βGA in Cx43-expressing cells (Fig. 3Fii). Similar results were obtained with HeLa cells (Supplemental Fig. 3). H+ ion permeation time courses were analyzed in terms of junctional H+ flux (Supplemental Fig. 4). For an uncaging rate of ~5 mM H+−/min, at pH1 ~6.95, the H+ ion flux through Cx43 channels was 1.0 mM H+−/min in Heps buffer and 1.7 mM H+−/min in CO2/HCO3− buffer (Supplemental Fig. 5).

Biphasic regulation of Cx43 channels’ H+ ion permeability by cytoplasmic H+ ions

In the next series of experiments, Cx43 channel activity was characterized over a range of pH1 values by using the protocol for measuring P_H^app in Cx43-transfected HeLa cells. Experiments were performed in Heps-buffered superfusates to ensure that only the intrinsic mobile buffers are responsible for shuttling H+ ions between cells. Use of weak acids or bases to manipulate pH1—as was done in electrophysiologic recordings (Fig. 1)—was now avoided to eliminate the possibility of exogenous weak acid–base-facilitated H+ ion permeation, which may, in principle, supplement the effect of intrinsic buffers. Instead, pH1 was manipulated by means of a prior solution maneuver that shifted pH1 to a new level (prepulse). Cells were superfused with a weak acid (or base) for 5 min, then returned to normal solution. pH1 then rebounded to an alkaline (or acidic) level. At the displaced level of pH1, measurements of P_H^app could be made with no interference from the exogenous weak acid–base because, at that point, the exogenous substance had been washed away. Superfusion with 30 mM NH4Cl, followed by washout in normal Tyrode-containing 30 μM dimethylamiloride (NHE1 inhibitor), induced a sustained intracellular acid load (Fig. 4A), whereas superfusion with 80 mM acetate, followed by washout with normal Tyrode at pH 8.4, induced an intracellular alkali load (Fig. 4B).

(15) Note: alkaline superfusates block any membrane transporters that might otherwise acidify cytoplasm.) In calculating P_H^app, the slow recovery of pH1 from an acid or alkali load was corrected by extrapolating the trend line that was measured before photolysis. Cell-to-cell H+ ion transmission was reduced substantially at acidic and alkaline pH1, which confirmed biphasic pH1 gating (Fig. 4A, B).

To assess whether the inhibitory effect of acute acidosis and alkalosis on P_H^app was reversible, repeat measurements were made once pH1 had stabilized nearer to resting levels (N2A cells). As expected from a reversible H+−-dependent block, P_H^app was restored to control levels upon pH1 recovery from an acidic (Fig. 4C) or alkaline load (Fig. 4D). In summary, measurements of the pH1 dependence of P_H^app confirm the observations—made using an electrophysiologic approach (Fig. 1)—that Cx43 channels are gated by low and high pH1 within minutes and that this process is fully reversible. A plot of P_H^app vs. pH1−x-coordinate taken as the pH1 in the source cell averaged over a 1-min period of uncaging—demonstrates that acidification from 6.9 to 6.6 decreased Cx43 P_H^app by 80%, whereas

Figure 2. Effect of pH1 on single-channel properties. A) Single-channel current recordings from Cx43-transfected HeLa cells measured in 2 mM halothane. Example time course shows rapid transitions from open to residual or closed states. Point-to-point histogram (middle) shows the fully open conductance (o) of 118 pS and a residual conductance (r) of 30 pS. All-event histogram (right) indicates the number of transitions between states. B) Single-channel recordings during the application of 80 mM acetate. Point-to-point histogram (middle) shows o = 121 pS and r = 30 pS. C) Single-channel recordings during the application of 20 mM TMA. Point-to-point histogram (middle) shows o = 120 pS and r = 30 pS. Unitary conductance measured in homotypic channels is not significantly different from previously reported values (120 pS). All-event histograms include peaks from transitions between fully open minus residual state (120–30 = 90 pS), and fully open channel transitions of phosphorylated states (60 pS).
alkalinization from 6.9 to 7.3 caused P_{H}^{app} to decrease by 60% (Fig. 4E).

To investigate whether changes in the phosphorylation of serine, particularly residue Ser368, underpin the decrease in G_{i} at acidic or alkaline pH, additional experiments were performed on Cx43 mutants [Cx43(S-A)$_{6}$] that had all serine residues of the PKC epitope, including Ser368, substituted by alanine, i.e., a phosho-null variant. This mutant, expressed in HeLa cells, retained the response to acetate and TMA, which argues against a role for phosphorylation changes in pH dependence (Fig. 4E).

At least part of the pH dependence of P_{H}^{app} may be attributed to changes in the availability of mobile buffers—that is, the fraction of buffering capacity held on small molecules ($\Phi = \beta_{\text{mobile}}/\beta_{\text{total}}$, such as CO$_{2}$/HCO$_{3}^{-}$, phosphates, and dipeptides that shuttle H$^{+}$ ions through Cx43 channels (17). Mathematically, P_{H}^{app} can be deconvoluted as the product of Φ and P_{mobile} (pH-gated channel permeability to mobile buffers). In principle, both P_{mobile} and Φ can display pH dependence, but only the former relates to Cx43 channel activity. To confirm that the pH$_{i}$ sensitivity of P_{H}^{app} (Fig. 4E) reflects, at least in part, the H$^{+}$ gating of Cx43 channels, it is necessary to rule out a biphasic pH$_{i}$ sensitivity of Φ. This was evaluated by considering 2 models. In the first, β_{mobile} was assumed to be a constant fraction of β_{total}—that is, Φ would take a pH-independent constant value ($0 < \Phi < 1$) and, consequently, the observed pH$_{i}$ dependence of P_{H}^{app} would purely be a phenomenon of the pH$_{i}$ sensitivity of P_{mobile}. In an alternative model, β_{mobile} and β_{total} are assumed to have opposite pH dependence—that is, Φ is not constant. In most cells, including N2a cells, the pH$_{i}$ dependence of intrinsic β has a negative slope over the physiologic pH$_{i}$ range [Supplemental Fig. 4; in N2a: $\beta_{\text{total}} = 95-11 \times$ pH$_{i}$ (millimolar)]. This negative relationship arises because fixed buffers, mainly proteins, which dominate the intrinsic buffer pool demonstrate peak buffering in the acidic range. In contrast, less abundant mobile buffers typically have a more alkaline pH$_{i}$ optimum (18). Effectively, Φ would be a positive function of pH$_{i}$ thereby eliminating the possibility that alkaline inhibition of P_{H}^{app} is caused by a fall in Φ; however, the reduction in P_{H}^{app} that was observed at low pH$_{i}$ may still relate to a decrease in Φ. This, however, is not quantitatively consistent with experimental observations. A decrease in pH$_{i}$ from 7.3 to 6.6 was associated with an 80% decrease in P_{H}^{app}, which cannot be explained by a decrease in Φ alone because buffering capacity is non-cooperative and, therefore, not associated with a steep pH$_{i}$ dependence. In summary, the biphasic shape of the pH$_{i}$ P_{H}^{app} relationship, at least in part, must be a result of H$^{+}$ gating of Cx43 channels. Furthermore, the alkaline part is wholly attributable to an H$^{+}$ gating of Cx43 channels.

Biphasic H$^{+}$ gating of Cx43 channels is not explained by pH-evoked Ca$^{2+}$ signals

Changes in pH$_{i}$ can displace Ca$^{2+}$ ions from intracellular buffers or subcellular compartments (19). As robust
cytoplasmic Ca$^{2+}$ signals are known to produce Cx43 channel closure (5), the acidic responses of G_{j} and P_{j}^{pp} may, in principle, involve an increase in [Ca$^{2+}$] (20). To investigate whether the pH$_{i}$ sensitivity of Cx43 function had an underlying Ca$^{2+}$-dependent component, pH$_{i}$ gating responses were measured in cells that were preloaded with the Ca$^{2+}$ buffer, BAPTA (AM ester; 100 µM), which minimized any acidosis-evoked changes in [Ca$^{2+}$] (Fluo3 fluorescence). Prepulsing with 30 mM NH$_4$Cl or 80 mM Na$^+$ acetate transiently increased Fluo3 fluorescence, but this response was ablated in cells that were preloaded with BAPTA (Fig. 5A). The effect of BAPTA on the pH$_{i}$ dependence of P_{j}^{pp} was investigated by using the photolytic protocol performed in CO$_2$/HCO$_3^{-}$-free superfusates. H$^+$ uncaging induced an increase in cytoplasmic [Ca$^{2+}$] (Fig. 5B), but cells that were pretreated with BAPTA showed no acid-evoked [Ca$^{2+}$] response, yet retained pH$_{i}$ sensitivity of P_{j}^{pp} (Fig. 5C, E). As additional confirmation for the absence of a meaningful Ca$^{2+}$-dependent component, the inclusion of 5 mM BAPTA in the pipette solution had no effect on G_{j} response to 80 mM Na$^+$ acetate or 40 mM TMA (Fig. 5D).

C tail of Cx43 is linked to the mechanism of alkaline gating of channel activity

Earlier studies have implicated the C tail of the Cx43 protein in the response to low pH$_{i}$ (21, 22). To investigate whether this Cx43 domain is also responsible for alkaline gating, a His-tagged Cx43m257 truncated mutant, referred to as tailless, was transfected into N2a cells (7). Immunostaining using His-tag Abs confirmed the correct targeting to the cell-cell interface (Fig. 6A). The mutant retained its sensitivity to bGA (Fig. 6B), but, unlike the full-length construct, cell-to-cell pair conductance demonstrated no response to alkaline pH$_{i}$ (Fig. 6C, D). Moreover, acidification or alkalinization of N2a cells that were transfected with the mutant did not inhibit H$^+$ ion transmission between coupled cells (Fig. 6E, F). In double whole-cell voltage-clamp experiments under superfusion with 20 mM TMA, tailless mutant channel gating did not demonstrate a residual state, but its main conductance state was preserved (Fig. 6G), as previously reported at resting pH$_{i}$ (13). In summary, the C tail of Cx43 is involved in mediating both acidic and alkaline gating of assembled Cx43 channels (Fig. 6H).

Figure 4. Reversibility of pH$_{i}$ gating. A) Resting pH$_{i}$ in Cx43-transfected N2a cell pairs was preadjusted to acidic before H$^+$ uncaging by 30 mM NH$_4$Cl prepulse (returned to normal Tyrode that contained 30 µM dimethylamiloride to inhibit pH$_{i}$ recovery). pH$_{i}$ time course (bottom) for estimating junctional H$^+$ ion permeability (P_{j}^{pp}) showing reduced transmission. B) Resting pH$_{i}$ preadjusted to alkaline before H$^+$ uncaging by 80 mM Na$^+$ acetate prepulse (returned to normal Tyrode at pH 8.4 to slow pH$_{i}$ recovery). pH$_{i}$ time course (bottom) for estimating P_{j}^{pp} shows significant reduction in transmission. C) Acid block was reversed after allowing 10 min of recovery from acidic pH$_{i}$. D) Alkali block was reversed after allowing 10 min of recovery from alkaline pH$_{i}$. Shaded regions correspond to the period we used to fit data using mathematical models. Purple bands correspond to the uncaging period (flash photolysis). E) Summary of reversibility results were fitted to a bell curve. Added to this data are the results obtained from acidosis and alkalinosis experiments performed by using Cx43 mutants where all serine residues from the PKC epitope at the end of the C tail have been substituted by alanine residues (SA6). Activation and inhibition by H$^+$ ions are highlighted by gray arrows. *Significantly different from 0.
C tail cysteine residues are implicated in the mechanism of Cx43 channel gating by alkaline pH$_i$

Histidine residues of the C tail of Cx43 have been implicated in the gating of channel activity by low pH$_i$ (9), which is consistent with the residue’s pK$_a$ of 7.0. Other residues of the C tail with higher pK$_a$ are plausible candidates for the alkaline gating. Of these, cysteine, arginine, and tyrosine have a pK$_a$ of 8 and are found in the Cx43 protein (Supplemental Fig. 1). A related connexin isoform, Cx45, which demonstrates greatly attenuated alkaline gating (Supplemental Fig. 7), contains no cysteine in its C tail; thus, these residues are plausible candidates for alkaline gating. To assess whether cysteines that are naturally found in the C tail of Cx43 are linked to alkaline gating, residues at positions 298, 271, or 260 were mutated to alanine in various permutations and their effect on G$_j$ and P$_{H_{app}}$ was probed in N2a cells. whereas cysteine, as a free amino acid, has a nominally alkaline pK$_a$, which renders it suitable as an alkaline sensor, it is important to consider how adjacent residues in a motif affect its ionization state. The 3 residues that flank either side of Cys298 form a NSSCRNY motif, which has an alkaline calculated isoelectric point of pK$_a$ = 8.5. In contrast, the sequence that flanks Cys260 and Cys271—AKDCGSQ and FNGCSSP,
respectively—have ensemble isoelectric points of 6.2 and 5.9, respectively. Thus, Cys260 and Cys271 are less likely to be alkaline sensors because the adjacent, negatively charged glutamate greatly shifts the apparent pK_a of the motif toward acidic levels. For this reason, a Cys298Ala substitution was first Cx43 mutant constructed. As shown in Fig. 7Ai, the Cys298Ala mutant was insensitive to alkaline pH_i (TMA superfusion), but retained sensitivity to acidic pH_i (acetate superfusion). To investigate whether if either of the 2 other Cys residues have a supplementary effect, mutants with additive Cys-to-Ala substitutions were expressed. As shown in Fig. 7Aii, iii, these additional Cys substitutions had no additional effect on alkaline or acidic responses, which argues that Cys298 is likely to be the principal alkaline-sensing residue in Cx43 protein. Overall, these results can be interpreted in terms of a 2-site model: an inhibitory domain that, upon protonation, leads to channel closure over the acidic pH_i range, and an activatory domain that, upon protonation, leads to channel opening over the alkaline pH_i range (Fig. 7B).
The results of this study demonstrate that Cx43 channels, transfected into HeLa or N2a cells, replicate the pHi-dependent gating behavior that has been previously described in cardiac myocytes (12), a type of cell with naturally high Cx43 expression. Thus, heterologously expressed Cx43 channels are a good model with which to study the gating mechanism of Cx43 channels by H+ ions. In addition, the similarity in biophysical behavior argues that the biphasic pHi dependence of cell-to-cell coupling demonstrated in cardiac myocytes is not a function of cellular context or molecular components that are unique to the myocardium, but, rather, an intrinsic property of the Cx43 protein. The biophysical properties of heterologously expressed Cx43 channels were interrogated electrophysiologically by measuring junctional conductance and imaging H+ ion transmission to quantify a permeability constant. The former, double patch-clamp technique is a validated and robust method for determining connexin channel gating in response to various biophysical or chemical agents (13). In contrast, H+ ion transmission—assessed by $P_{H\text{,app}}$—is a more recently developed approach (15) that probes connexin activity by using an independent readout and has the advantage of measuring coupling in intact cells that are not impaled by electrodes—for example, without the potential problem of intracellular dialysis.

To map the pHi dependence of Cx43 function, this dual measurement approach was applied for a range of pHi levels that were manipulated by using weak acids or bases. Previously, changes in pHi have typically been induced by

![Figure 7. Involvement of cysteine residues in alkali gating.](image)

(A) Cysteine 298–alanine Cx43 mutants demonstrated no inhibitory effect of alkalosis on G_j (40 mM TMA) under double whole-cell voltage clamp in cell triplets ($n = 4$). Eighty millimolar acetate, which induces acidosis, produced a prompt inhibition of mutant Cx43 channel activity ($n = 3$). Effect of high and low pH on $P_{H\text{,app}}$ as determined by H+ uncaging showing the ablated response to alkaline pHi but an intact inhibition by acidic pHi. (ii) Similar results were obtained by using Cx43 with substituted cysteine residues 270 and 298 ($n = 3$) and (iii) cysteine residues 260, 271, and 298 ($n = 3$). *Significantly different from 0 ($P < 0.05$). B) Schematic representation of H+ activation and H+ inhibition mechanisms on wild-type Cx43 channels. Deprotonated form of Cx43 (lower right) represents the closed state. H+ binding to a low-affinity site activates the Cx43 channel. At higher [H+], protonation at the inhibitory site, with lower apparent H+ affinity, produces H+ block. *Significantly different from 0.
altering CO₂ partial pressure (22), adjusting extracellular pH, or inducing either quasi steady-state pH shifts (21) or shifts of >1 pH unit (7, 9, 23). The major disadvantages of the above-mentioned approaches are the simultaneous modification of pH on either side of the cell membrane and the longer times that are necessary for attaining a target pH change. These factors make it difficult to disentangle the effects on intra- and extracellular pH. Although some early reports have claimed that coupling is insensitive to external acidification (24), increased extracellular pH is now recognized to play a role in regulating Cx function by favoring disulfide bridge formation and Cx docking (25). This effect becomes more relevant in longer-lasting experiments during which pH changes are induced slowly and within the time frame of Cx43 protein turnover (10).

Our approach to clamping pHi involved the addition and within the time frame of Cx43 protein turnover (10). Our approach to clamping pHi involved the addition—or addition followed by washout—of weak acids–bases. In their uncharged forms, these molecules permeate the cell where they dissociate or combine with H⁺ ions, thereby changing pHi without altering extracellular pH. In our protocols, pHi changes were induced in a matter of seconds, and their effects on Cx43 channel gating were examined simultaneously or within a few minutes.

By demonstrating a biphasic pHi sensitivity of Cx43 function (Fig. 4E), the results of this study add to the arguments against the canonical sigmoidal pH4 dependence (21). Although it is widely recognized that profound intracellular acidification closes Cx43 channels (7, 9, 21), less is known about the effect of increasing pHi. Apart from our earlier study that described a dual response of the ventricular gap junction to H⁺ ions (12) as well as some evidence in the literature of an alkali block of Cx43 channels (21), only 2 contradictory observations have been made for Cx43 channel activity at increased pH. One of these reported an 85% Gᵢ decrease at pH 8.1 in Novikoff cells that endogenously expressed Cx43 (26), whereas the other describes a 10% Gᵢ increase at high pH for Cx43 expressed in Xenopus oocytes (23). The reasons for the discrepancy between our work and the latter study are not clear, although the slow induction of alkalinization and high extracellular pH may be relevant. In addition, Xenopus oocytes express Cx38 channels (27) that may contribute to the alkaline-induced increase in coupling.

A noteworthy feature of the Gᵢ response to pHi is its significant time delay (~10 or more), as shown in Fig. 1C, F. This delay was also reported in earlier work (21, 28, 29) and may suggest a pH4-evoked cooperative conformational change that involves all 6 monomers of a Cx channel or the participation of accessory diffusible molecules that are also present in expression systems (30). The time scale of conductance responses cannot, per se, exclude a role for protein internalization in the underlying mechanism. Although fast internalization (seconds) has been described for some membrane proteins, such as synaptic vesicle proteins (31), the internalization of gap junction plaques involves a more complicated process (32). Previous studies have demonstrated that Cx43 internalization can be induced during a 30-min period of acute ischemia (33), but, paradoxically, this occurred with no apparent change in junctional conductance because of a compensatory delivery of new hemichannels to the junctional plaque (34, 35). Moreover, the process of reinsertion—that is, reversal of internalization—is expected to be slower because it has to allow sufficient time for the proper docking of juxtaposed hemichannels. Cx43 recycling has been reported to last 30 min (36), have a half-life of ~2 h in cultured cardiomyocytes (10, 37), or require ~2 h to complete during mitosis (38). In contrast, our data (Fig. 1) show a similar response time for inhibition—TMA or acetate—and subsequent recovery (removal of TMA/acetate), which is not consistent with the time scale of Cx43 internalization and reinsertion. Together with evidence for complete and fast reversibility, our findings point toward a gating mechanism.

Our results provide insight into the molecular mechanism that underpins the biphasic effect of H⁺ ions on Cx43 channels. The absence of an apparent effect of pHi changes on single-channel conductance (Fig. 2)—also shown previously by others (39)—argues against a pH-dependent alteration in the assembly of Cxs around the central pore, one possible form of gating. The small shift toward 60 pS in the single-channel event distribution during alkalosis may suggest an effect of an altered phosphorylation state; however, experimental data presented in Fig. 7 on the alkaline response of phospho-null Cx43 mutants argue against this. In these experiments, HeLa cells expressed mutant Cx43 with all serine residues [Cx43(S-A)6] of the PKC epitope site substituted for alanine—from 364 to 373, including Ser368, which is responsible for the unitary conductance shift by phosphorylation. These mutants reached levels of Gᵢ uncoupling and H⁺ flux that were similar to those of wild-type Cx43, which indicated that changes in phosphorylation state cannot explain the response to alkaline or acidic pHi. Moreover, Western blots presented in Supplemental Fig. 7 indicate that the ratio between phosphorylated and dephosphorylated Cx43 remains unchanged after a period of intracellular alkalosis or acidosis. The persistence of biphasic pH4 gating after loading cells with the Ca²⁺ buffer, BAPTA, argues against the involvement of acido-evoked [Ca²⁺] signals as intermediates of gating (40). Of note, at least a partial involvement of Ca²⁺ ions in the acid-gating mechanism has been proposed to take place in cardiac myocytes and Novikoff hepatoma cell pairs (12, 41), yet this may be a function of cellular context. Previous studies have indicated that changes in Cx43 phosphorylation state at serine residues of the C-terminus can influence Cx assembly, their gating, and half-life (42); however, our results demonstrate that a 5-min treatment of Cx43-transfected N2a cells with 80 mM Na⁺ acetate or 30 mM NH₄Cl did not affect the migration pattern of Cx43 immunoreactivity, which argues against any major shift in phosphorylation state (Supplemental Fig. 7), although certain single-residue changes in Cx43 phosphorylation, such as at Ser368, can occur without detectable migration shifts (42). However, a post-translational change at Ser368 would become apparent from a reduction in unitary conductance (43), which was not observed in our recordings at acid or alkaline pHi (Fig. 2). In summary, Ca²⁺ signals and phosphorylation state do not seem to play a role in rapid, pH4-induced gating behavior. Instead, the gating mechanism is likely to be an inherent property of the Cx43 protein, which is recapitulated when the channel is assembled in expression systems.
Our measurements on cells that were transfected with Cx43 mutants suggest that C-tail cysteine residues are involved with the mechanism of alkaline gating. First, a tailless Cx43 mutant loses its response to alkaline pH. This observation resembles the behavior of the ball-and-chain inactivation that has been observed in many types of ion channel. Second, substituting cysteine, a residue with an alkaline pKₐ, with nontitratable alanine attenuates alkaline gating. This is the first report, to our knowledge, to implicate these C-tail cysteines in Cx channel gating by pHₐ although residues, such as Cys271, have been linked to redox responses (44) and S-nitrosylation by nitric oxide (45). Third, channels formed of Cx45, an isofrom that is related to Cx43 but that lacks these critical cysteine residues, demonstrates an attenuated alkaline response compared with Cx43 channels (Supplemental Fig. 6).

The C-tail domain of Cx43 is also responsible for the inhibitory effect of H⁺ ions, but here, the residue that underlies the inhibitory effect is a histidine that is located at the intracellular loop, with an accordingly lower pKₐ (9, 21, 22). The structural basis for the inhibition involves a stabilizing effect of histidine protonation on the α-helical order of the cytoplasmic loop that then favors intramolecular interactions (9, 46).

The superimposition of an activatory effect of H⁺ ions—titrated from an alkaline pHₐ—and an independent inhibitory effect—occurring at more acid pHₐ—produces an overall pH range that permits physiologic cell-to-cell communication. The finding that peak Cx43 channel function occurs in the range of 6.9–7.0 pHₐ (Fig. 4E) indicates that modest acidification from a resting value of ~7.2 will strengthen cell-to-cell coupling. This response would favor synaptical dissipation of any pH gradients—thereby unifying pH-dependent processes—and facilitate tissue functions that rely on cell-to-cell communication, such as the transmission of electrical signals in the heart. The basis for this response is explained by H⁺ activation, which underlies the alkaline range of the biphasic pH sensitivity of the Cx43 channel. A more profound acidification leads to uncoupling, which can be interpreted as a protective strategy to mitigate for the potential consequences of toxic levels of acid spillover into neighboring cells. In the heart and brain, for instance, this mechanism would help protect cells around ischemic areas and reduce tissue damage propagation (2, 3).

In summary, we demonstrate the phenomena of H⁺ activation and H⁺ inhibition of Cx43 channels as independent channel gating mechanisms. The ensemble of H⁺ activation and inhibition produces a biphasic pH dependence of Cx43 channel function. This bell-shaped pH dependence ensures that gap junctions are responsive to changes in cytoplasmic acid–base chemistry, which produces a physiologic range of pHₐ that permits intercellular communication in tissues, such as the heart and brain.

ACKNOWLEDGMENTS

The authors thank Dr. Ningning Zhuang [Cardiovascular Research and Training Institute (CVRTI)] for contributions to the electrophysiologic data set. The authors appreciate the encouragement and reviews from Dr. Kenneth Spitzer (CVRTI). This work was supported by British Heart Foundation Programme Grants RG/08/016 (to R.D.V.-J.), and RG/15/9/31534 (to R.D.V.-J. and P.S.), the E.P. Abraham Cephalosporin Fund (to R.D.V.-J and C.D.G.), the Nora Eccles Harrison Treadwell Foundation, and U.S. National Institutes of Health, National Heart, Lung, and Blood Institute Grant R01 HL69960 (to A.P.M.), and the Royal Society Fellowship (to P.S.). The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

C. D. Garciaarena performed most of the experimental work and data analysis on cell imaging, and wrote the first draft of the manuscript; A. P. Moreno performed and analyzed electrophysiologic recordings; and A. Malik contributed to the design and analysis of cell imaging data; P. Swietach, A. P. Moreno, and R. D. Vaughan-Jones contributed to the design and analysis of experiments, and wrote the final version of the manuscript.

REFERENCES

1. Kumar, N. M., and Gilula, N. B. (1996) The gap junction communication channel. Cell 84, 381–388
2. Lin, J. H. C., Weigel, H., Cotrina, M. L., Liu, S., Bueno, E., Hansen, A. J., Hansen, T. W., Goldstein, S., and Nedergraad, M. (1998) Gap junction-mediated propagation and amplification of cell injury. Nat. Neurosci. 1, 494–500
3. Peters, N. S., Coromilas, J., Severs, N. J., and Wit, A. L. (1997) Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation 95, 988–996
4. Vaughan-Jones, R. D., Spitzer, K. W., and Swietach, P. (2009) Intracellular pH regulation in heart. J. Mol. Cell. Cardiol. 46, 518–531
5. Noma, A., and Tsuboi, N. (1987) Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea-pig. J. Physiol. 382, 193–211
6. Spray, D. C., Harris, A. L., and Bennett, M. V. (1981) Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211, 712–715
7. Ek-Vitorin, J. F., Calero, G., Morley, G. E., Coombs, W., Taffet, S. M., and Delmar, M. (1996) pH regulation of connexin43: molecular analysis of the gating particle. Biophys. J. 71, 1273–1284
8. Duffy, H. S., Sorgen, P. L., Girvin, M. E., O'Donnell, P., Coombs, W., Taffet, S. M., Delmar, M., and Spray, D. C. (2002) pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains. J. Biol. Chem. 277, 86706–86714
9. Ek, J. F., Delmar, M., Petzova, R., and Taffet, S. M. (1994) Role of histidine 95 on pH gating of the cardiac gap junction protein connexin43. Circ. Res. 74, 1058–1064
10. Laird, D. W., Puranam, K. L., and Revel, J. P. (1991) Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem. J. 273, 67–72
11. Elias, L. A., Wang, D. D., and Kriegstein, A. R. (1996) The gap junction: a basis for spatial regulation of intracellular pH. J. Physiol. 494, 1–10
12. Swietach, P., Rossini, A., Spitzer, K. W., and Vaughan-Jones, R. D. (2007) H⁺ ion activation and inactivation of the ventricular gap junction: a basis for spatial regulation of intracellular pH. Circ. Res. 100, 1045–1054
13. Moreno, A. P., Chanson, M., Elenes, S., Ammonuoj, J., Scerri, J. G., Taffet, S. M., and Delmar, M. (2002) Role of the carboxyl terminal of connexin43 in transjunctional fast voltage gating. Circ. Res. 90, 450–457
14. Leem, C. H., Lagadic-Gossmann, D., and Vaughan-Jones, R. D. (1999) Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte. J. Physiol. 517, 139–180
15. Swietach, P., Spitzer, K. W., and Vaughan-Jones, R. D. (2007) pH-dependence of extrinsic and intrinsic H⁺ ion mobility in the rat
ventricular myocyte, investigated using flash photolysis of a caged-H⁺ compound. Biophys. J. 92, 641–653
16. Dowman, T. H., Saccomano, M., Hulikova, A., Alves, F., and Swietach, P. (2017) Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells. Oncogene 36, 4538–4550
17. Zaniboni, M., Rossini, A., Swietach, P., Banger, N., Spitzer, K. W., and Vaughan-Jones, R. D. (2003) Proton permeation through the myocardial gap junction. Circ. Res. 93, 720–735
18. Swietach, P., and Vaughan-Jones, R. D. (2005) Relationship between intracellular pH and proton mobility in rat and guinea-pig ventricular myocytes. J. Physiol. 566, 795–806
19. Swietach, P., Youm, J.-B., Saegusa, N., Leem, C.-H., Spitzer, K. W., and Vaughan-Jones, R. D. (2013) Coupled Ca²⁺/H⁺ transport by cytoplasmic buffers regulates local Ca²⁺ and H⁺ ion signaling. Proc. Natl. Acad. Sci. USA 110, E2064–E2073
20. Lurtz, M. M., and Louis, C. F. (2007) Intracellular calcium based gap junctional uncouplers. Biophys. J. 94, 1422–1433
21. Liu, S., Taffet, S., Stoner, L., Delmar, M., Vallano, M. L., and Jalife, J. (1999) A structural basis for the unequal sensitivity of the major cardiac and liver gap junctions to intracellular acidification: the carbonyl tail length. Biophys. J. 64, 1692–1433
22. Morley, G. E., Taffet, S. M., and Delmar, M. (1996) Intramolecular interactions mediate pH regulation of connexin 43 channels. Biophys. J. 70, 1289–1302
23. González-Nieto, D., Gómez-Hernández, J. M., Larrosa, B., Gutiérrez, C., Muñoz, M. D., Fasciani, I., O’Brien, J., Zappalà, A., Ciricata, F., and Barrio, L. C. (2008) Regulation of neuronal connexin-36 channels by pH. Proc. Natl. Acad. Sci. USA 105, 17169–17174
24. Turini, L., and Warner, A. (1977) Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature 270, 56–57
25. Dahl, G., Levine, E., Rabadan-Diehl, C., and Werner, R. (1991) Cell/ cell channel formation involves disulfide exchange. Eur. J. Biochem. 197, 141–144
26. Skeberdis, V. A., Rimkute, L., Skeberdyte, A., Paulauskas, N., and Bukauskas, F. F. (2011) pH-dependent modulation of connexin-43 based gap junctional uncouplers. J. Physiol. 589, 2595–2606
27. Ginilich, R. L., Kumar, N. M., and Gilula, N. B. (1988) Sequence and developmental expression of mRNA coding for a gap junction protein in Xenopus. J. Cell Biol. 107, 1065–1073
28. Palacios-Prado, N., Sonntag, S., Skeberdis, V. A., Willecke, K., and Bukauskas, F. F. (2009) Gating, permeselectivity and pH-dependent modulation of channels formed by connexin57, a major connexin of horizontal cells in the mouse retina. J. Physiol. 587, 9251–9260
29. Palacios-Prado, N., Briggs, S. W., Skeberdis, V. A., Pranevicius, M., Bennett, M. V. I., and Bukauskas, F. F. (2010) pH-dependent modulation of voltage gating in connexin56 homotypic and connexin45/connexin43 heterotypic gap junctions. Proc. Natl. Acad. Sci. USA 107, 9987–9992
30. Tredler, E. B., Bukauskas, F. F., Bennett, M. V., Bargiello, T. A., and Verselis, V. K. (1999) Rapid and direct effects of pH on connexins revealed by the connexin46 hemichannel preparation. J. Gen. Physiol. 113, 721–742
31. Hull, C., and von Gersdorff, H. (2004) Fast endocytosis is inhibited by GABA-mediated chloride influx at a presynaptic terminal. Neuron 44, 460–482
32. Thévenin, A. F., Kowal, T. J., Fong, J. T., Kells, R. M., Fisher, C. G., and Falk, M. M. (2013) Proteins and mechanisms regulating gap junction assembly, internalization, and degradation. Physiology (Bethesda) 28, 93–116
33. Smyth, J. W., Zhang, S.-S., Sanchez, J. M., Lamosaille, S., Vogan, J. M., Hesketh, G. G., Hong, T., Tomaselli, G. F., and Shaw, R. M. (2014) A 14-3-3 mode-1 binding motif initiates gap junction internalization during acute cardiac ischemia. Traffic 15, 684–699
34. Xie, H., Cui, Y., Hou, S., Wang, J., Miao, J., Deng, F., and Feng, J. (2017) Evaluation of connexin 43 redistribution and endocytosis in astrocytes subjected to ischemia/reperfusion or oxygen-glucose deprivation and reoxygenation. BioMed Res. Int. 2017, 5064653
35. Gaietta, G., Deerinck, T. J., Adams, S. R., Bouver, J., Tour, O., Laird, D. W., Sosinsky, G. E., Tsien, R. Y., and Ellisman, M. H. (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507
36. Gilleron, J., Carette, D., Fiorini, C., Dompierre, J., Macia, E., Denizot, J.-P., Segretain, D., and Pointis, G. (2011) The large GTPase dynamin2: a new player in connexin 43 gap junction endocytosis, recycling and degradation. Int. J. Biochem. Cell Biol. 43, 1208–1217
37. Darrow, B. J., Laing, J. G., Lampe, P. D., Saffitz, J. E., and Beyer, E. C. (1995) Expression of multiple connexins in cultured neonatal rat ventricular myocytes. Circ. Res. 76, 381–387
38. Bouss, D., Solan, J. L., Papas, A., Thornton, P., Lampe, P. D., and Sosinsky, G. E. (2010) Trafficking and recycling of the connexin43 gap junction protein during mitosis. Traffic 11, 1471–1486
39. Bukauskas, F. F., Bukauskiene, A., Bennett, M. V., and Verselis, V. K. (2001) Gating properties of gap junction channels assembled from connexin43 and connexin43 fused with green fluorescent protein. Biophys. J. 81, 157–192
40. Willoughby, D., Thomas, R., and Schwiening, C. (2001) The effects of intracellular pH changes on resting cytosolic calcium in voltage-clamped snail neurones. J. Physiol. 530, 405–416
41. Lazzak, A., and Peracchia, C. (1993) Gap junction gating sensitivity to physiological internal calcium regardless of pH in Novikoff hepatoma cells. Biophys. J. 65, 2002–2012
42. Solan, J. L., and Lampe, P. D. (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem. J. 419, 261–272
43. Lampe, P. D., Teunbroek, E. M., Burt, J. M., Kurata, W. E., Johnson, R. G., and Lau, A. F. (2000) Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J. Cell Biol. 149, 1503–1512
44. Pogoda, K., Kameritsch, P., Retamal, M. A., and Vega, J. L. (2016) Regulation of gap junction channels and hemichannels by phosphorylation and redox changes: a revision. BMC Cell Biol. 17 (Suppl 1), 11
45. Straub, A. C., Billault, M., Johnstone, S. R., Best, A. K., Yemen, S., Dwyer, S. T., Looft-Wilson, R., Lysiak, J. J., Gaston, B., Palmer, L., and Isakson, B. E. (2011) Compartmentalized connexin 43 s-nitrosylation/denitrosylation regulates heterocellular communication in the vessel wall. Arterioscler. Thromb. Vasc. Biol. 31, 399–407
46. Sorgen, P. L., Duñón, H. S., Cahill, S. M., Coombs, W., Spray, D. C., Delmar, M., and Girvin, M. E. (2002) Sequence-specific resonance assignment of the carboxyl terminal domain of connexin43. J. Biol. Chem. 277, 245–246

Received for publication August 22, 2017. Accepted for publication November 13, 2017.