Limit on the Two-Photon Production of the

Glueball Candidate \(f_J(2220) \) at CLEO

CLEO Collaboration
(March 15, 1997)

Abstract

We use the CLEO detector at the Cornell \(e^+e^- \) storage ring, CESR, to search for the two-photon production of the glueball candidate \(f_J(2220) \) in its decay to \(K_sK_s \). We present a restrictive upper limit on the product of the two-photon partial width and the \(K_sK_s \) branching fraction, \(\Gamma_{\gamma\gamma} B_{K_sK_s} \). We use this limit to calculate a lower limit on the stickiness, which is a measure of the two-gluon coupling relative to the two-photon coupling. This limit on stickiness indicates that the \(f_J(2220) \) has substantial glueball content.

12.39.Mk,13.65.+i,12.38.Gc
3California Institute of Technology, Pasadena, California 91125
4University of California, San Diego, La Jolla, California 92093
5University of California, Santa Barbara, California 93106
6University of Colorado, Boulder, Colorado 80309-0390
7Cornell University, Ithaca, New York 14853
8University of Florida, Gainesville, Florida 32611
9Harvard University, Cambridge, Massachusetts 02138
10University of Hawaii at Manoa, Honolulu, Hawaii 96822
11University of Illinois, Champaign-Urbana, Illinois 61801
12Carleton University, Ottawa, Ontario, Canada K1S 5B6 and the Institute of Particle Physics, Canada
13McGill University, Montréal, Québec, Canada H3A 2T8 and the Institute of Particle Physics, Canada
14Ithaca College, Ithaca, New York 14850
15University of Kansas, Lawrence, Kansas 66045
16University of Minnesota, Minneapolis, Minnesota 55455
17State University of New York at Albany, Albany, New York 12222
18Ohio State University, Columbus, Ohio 43210
19University of Oklahoma, Norman, Oklahoma 73019
20Purdue University, West Lafayette, Indiana 47907
21University of Rochester, Rochester, New York 14627
22Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309
23Southern Methodist University, Dallas, Texas 75275
24Syracuse University, Syracuse, New York 13244
25Vanderbilt University, Nashville, Tennessee 37235
The two-photon width of a resonance is a probe of the electric charge of its constituents, so the magnitude of the two-photon coupling can serve to distinguish quark-dominated resonances from glue-dominated resonances (henceforth simply called “glueballs”). The \(f_J(2220) \), sometimes referred to as the \(\xi(2230) \), was first reported by the Mark III collaboration \[1\]. This resonance is a glueball candidate due to its narrow width \[1,2\], its observation in glue-rich environments \[1–5\], and its proximity in mass to lattice QCD predictions of the tensor glueball \[6,7\].

In this Letter we report on a search for the \(f_J(2220) \) in two-photon interactions at CLEO and set an upper limit on the product of its two-photon partial width and branching fraction to \(K_sK_s \), improving on a previous limit set by ARGUS \[8\] using the \(K^+K^- \) decay mode. Using our measurement, we calculate the stickiness, a useful glueball figure of merit \[9\], of the \(f_J(2220) \) resonance.

CLEO II is a general purpose detector \[10\] using the \(e^+e^- \) storage ring, CESR \[11\], operating at \(\sqrt{s} \sim 10.6 \) GeV. CLEO II contains three concentric wire chambers that detect charged particles over 95% of the solid angle. A superconducting solenoid provides a magnetic field of 1.5 T, giving a momentum resolution of \(\sigma_p/p \approx 0.5\% \) for \(p = 1 \) GeV/c. Outside of the wire chambers and a time of flight system, but inside the solenoid, is a CsI electromagnetic calorimeter, consisting of 7800 crystals arranged as two endcaps and a barrel region. For a 100 MeV electromagnetic shower in the barrel, the calorimeter achieves an energy resolution of \(\sigma_E/E \approx 4\% \).

In two-photon events, the initial state photons are approximately real and tend to have a large fraction of their momenta along the beam line. The electron and positron rarely have enough transverse momentum to be observed. As the two photons generally have unequal momentum, the \(\gamma\gamma \) center of mass tends to be boosted along the beam axis. We detect those events in which the decay products have sufficient transverse momentum to be observed in CLEO.

We search for the two-photon production of \(f_J(2220) \) in its decay to \(KsK_s \) with each \(K_s \) decaying into \(\pi^+\pi^- \):

\[
\gamma\gamma \rightarrow f_J(2220) \rightarrow K_{s1}K_{s2} \rightarrow (\pi^+\pi^-)_{1,2}
\]

In our analysis of 3.0 fb\(^{-1}\) of data, we use the following selection criteria to minimize background. We select events with four tracks. We require that the sum of charges is zero, the event energy is less than 6.0 GeV, and the transverse component of the vector sum of the track momenta is less than 0.2 GeV/c. To suppress \(\gamma\gamma \rightarrow 4\pi \) we require two \(\pi^+\pi^- \) pairs to form \(K_s \) vertices separated in the \(r-\phi \) plane by more than 5 mm. Finally, we evaluate the \(\pi^\pm \) track parameters at the respective vertices, and select events in which \(m(\pi^+\pi^-)_{1,2} \) lies within a circle of radius 10 MeV about the point \(m_{K_s},m_{K_s} \). The detector \(K_s \) mass resolution is 3.3 MeV.

The distribution of \(m(\pi^+\pi^-)_{1} \) versus \(m(\pi^+\pi^-)_{2} \) observed in data is displayed in Figure\[1\] with all selection criteria applied except the mass circle requirement. There is a strong enhancement near the \(m_{K_s},m_{K_s} \) point in the \(m(\pi^+\pi^-)_{1,2} \) mass plane. After applying the 10 MeV mass circle criterion, there is little non-\(K_s \) background.

We use a Monte Carlo simulation to determine our sensitivity to the two-photon production of the \(f_J(2220) \). The two-photon Monte Carlo events were generated using a program based on the BGMS formalism \[12\]. For the simulation we assume the value \(J = 2 \) for the total angular
momentum. We use a mass and width determined by combining the Mark III and BES results, giving $m_{f_J} = 2234 \pm 6$ MeV and $\Gamma_{f_J} = 19 \pm 11$ MeV. The simulation of the transport and decay of the final state particles through the CLEO detector is performed by a GEANT-based detector simulator. From the detector simulation we find a K_sK_s mass resolution, $\sigma_{K_sK_s}$, of 9 MeV for $m_{K_sK_s}$ near 2.23 GeV. The net selection efficiencies are 0.07 and 0.15 for pure helicity 0 and pure helicity 2 respectively.

We construct a K_sK_s mass distribution for those events that satisfy all of the selection criteria. In Figure 2, we display the data for the K_sK_s mass region of interest. No enhancement at the $f_J(2220)$ mass is observed.

To determine the number of $\gamma\gamma \rightarrow f_J(2220)$ events, we count the number of events within a region that has been optimized based on the lineshape of the $f_J(2220)$. In order to eliminate dependence of the result on uncertainties in the mass and width of the $f_J(2220)$, we construct nine limits, varying these resonance parameters by $\pm 1\sigma$. We convolve a detector resolution function with a Breit-Wigner resonance to determine the expected shape. This lineshape is used to determine the signal region size that maximizes ε^2/b, where ε is the fraction of the area under the signal lineshape that falls within the region, and b is the estimated number of background events determined as

4 We average the mass and width measurements for the four different modes reported by BES and the two modes reported by Mark III. We assume that the systematic uncertainties within an experiment are completely correlated and the systematic uncertainties between experiments are uncorrelated.
described below. For $\sigma_{K_sK_s} = 9$ MeV and $\Gamma_{f_J} = 19$ MeV this window is ± 18 MeV, for which $\varepsilon = 70\%$. For $\Gamma_{f_J} = 8$ and 30 MeV, the window sizes are ± 13 and ± 26 MeV, respectively.

To obtain a background shape, we fit the $m_{K_sK_s}$ distribution with a linear function from 2.05 to 2.35 GeV, excluding a ± 40 MeV region centered on the expected mass. From this we extract an average background of 1.8 ± 0.3 events per 10 MeV at $m_{f_J} = 2.234$ GeV. Within the signal region determined for the central values of the resonance parameters, we count four events. Having observed four events while expecting 6.5 from background, we use the standard PDG technique of extracting an upper limit for a Poisson distribution with background [14] to extract an upper limit of 4.9 signal events at the 95% C.L.

![Diagram](3080297-001)

FIG. 2. K_sK_s mass distribution (GeV) observed in data near the $f_J(2220)$ mass. The vertical bars delineate the signal region in which events are counted. The solid line is the sum of a fit to the background and the signal lineshape corresponding to the observed 95% C.L. upper limit of 4.9 signal events.

To determine the value of $(\Gamma_{\gamma\gamma} B_{K_sK_s})_{f_J(2220)}$, we assume that $f_J(2220)$ is produced incoherently with the background. We scale the branching fraction and partial width used in the Monte Carlo generator by the ratio of the upper limit on the number of data events to the number of selected Monte Carlo events, and by the ratio of Monte Carlo to data luminosities,

$$\Gamma_{\gamma\gamma}^{data} B_{K_sK_s}^{data} = \frac{n_{data}^{MC}}{n_{MC}^{data}} \frac{L_{data}^{MC}}{L_{data}} \Gamma_{\gamma\gamma}^{MC} B_{K_sK_s}^{MC}. \quad (1)$$

We repeat the entire analysis chain for nine different sets of resonance parameters.

The two-photon partial width, $\Gamma_{\gamma\gamma}$, can be expressed as the sum of two components, $\Gamma_{\gamma\gamma}^{2,0}$ and $\Gamma_{\gamma\gamma}^{2,2}$, the two-photon partial widths associated with helicity zero and helicity two projections respectively. We must differentiate between the two partial widths because the detection efficiencies
for the two allowed helicity projections are not the same due to their different final state angular distributions. Under the expectation that the ratio of $\Gamma^{2,2}_\gamma : \Gamma^{2,0}_\gamma$ is 6:1 based on Clebsch-Gordon coefficients, we obtain the result,

$$\left(\Gamma_{\gamma\gamma} B_{K_s K_s}\right)_{f_J(2220)} \leq \Gamma_{\text{lim}},\ 95\% \text{ C.L.} \tag{2}$$

In Table I we present Γ_{lim} in eV for $\pm 1\sigma$ variation of the resonance mass and width. The limits include uncertainties associated with systematics which will be discussed later.

Without making any assumption about the ratio of partial widths of the two helicity projections, we can set a 95% C.L. functional limit,

$$(0.52 \Gamma^{2,0}_\gamma + 1.08 \Gamma^{2,2}_\gamma) B_{K_s K_s} \leq \Gamma_{\text{lim}},\ 95\% \text{ C.L.} \tag{3}$$

The ratio of the partial width coefficients in Equation 3 is given by the ratio of efficiencies for helicity zero to helicity two. The overall normalization is set to be consistent with Equation 2.

Systematic uncertainties have been included in determining these upper limits using a Monte Carlo program. We estimate the following systematic uncertainties in the overall detector efficiency: 8% due to triggering, 7% due to tracking, and 7% due to simulation of selection criteria. The total systematic uncertainty associated with efficiency is 13%. We estimate the systematic uncertainty in the background normalization to be 16%.

$m_{f_J(2220)}$ (GeV)	Resonance Width, $\Gamma_{f_J(2220)}$
2.230	1.2 eV 1.2 eV 1.3 eV
2.234	**1.2 eV 1.3 eV 1.5 eV**
2.238	1.4 eV 1.3 eV 1.8 eV

TABLE I. The upper limits, Γ_{lim} (eV), determined for 1σ variations in the resonance parameters. The central values are indicated in boldface.

We have verified our analysis by using the same Monte Carlo simulation and analysis approach to measure the two-photon partial width of the $f'_2(1525)$. The $f'_2(1525)$ measurement is a sound test as the $f'_2(1525)$ produces a prominent peak in the $K_s K_s$ mass distribution and has quantum numbers consistent with those expected for the $f_J(2220)$. We measure a value for the product of the partial width and the $K_s K_s$ branching fraction that is within one standard deviation of the PDG central value [14] of $(\Gamma_{\gamma\gamma} B_{K_s K_s})_{f'_2(1525)} = 22$ eV.

The small value of the $(\Gamma_{\gamma\gamma} B_{K_s K_s})_{f_J(2220)}$ upper limit obtained from this analysis supports the identification of the $f_J(2220)$ as a glueball. We can make a more quantitative statement by calculating the stickiness of the resonance. Stickiness is a useful glueball figure of merit that is a measure of color charge relative to electric charge. The definition of stickiness is [3]:

$$S_X \equiv N_l \left(\frac{m_X}{k_{\psi \to \gamma X}}\right)^{2l+1} \frac{\Gamma(J/\psi \to \gamma X)}{\Gamma(X \to \gamma\gamma)} \sim \frac{|\langle X|gg\rangle|^2}{|\langle X|\gamma\gamma\rangle|^2} \tag{4}$$

7
The parameter $k_{\psi \rightarrow \gamma X} = (m_\psi^2 - m_X^2) / (2m_\psi)$ is the energy of the photon from a radiative J/ψ decay in the J/ψ rest frame. The phase-space term removes the mass dependence. The quantum number l indicates the angular momentum between the initial state gauge bosons. N_l is a normalization parameter defined so that the stickinesses of the $f_2(1270)$ ($l = 0$) is 1. To determine the value of N_l we use the resonance mass, two-photon width, and radiative J/ψ decay branching fraction given by the PDG [14].

To calculate a stickiness lower limit, we combine our upper limit for $(\Gamma_\gamma B_{K_s K_s})_{f_J(2220)} = 1.3 \text{ eV} \ (\text{evaluated at the central values of the resonance parameters})$ with a value for $\Gamma(J/\psi \rightarrow \gamma f_J(2220)) B(f_J(2220) \rightarrow K_s K_s)$ obtained by combining results from Mark III [4] and BES [2]. The $B(J/\psi \rightarrow \gamma f_J(2220)) B(f_J(2220) \rightarrow K_s K_s)$ branching fraction so determined is $(2.2 \pm 0.6) \times 10^{-5}$. From this we calculate a lower limit on stickiness of 82 at the 95% C.L. for the $f_J(2220)$. The statistical and systematic uncertainties of the inputs, including the uncertainty on the J/ψ branching fraction, are incorporated into this limit through a Monte Carlo program. This lower limit is much larger than the value of one expected for a $q\bar{q}$ resonance.

The observation of the $f_J(2220)$’s in “glue rich” environments such as the radiative J/ψ decay has made it a glueball candidate. With the limit on $(\Gamma_\gamma B_{K_s K_s})_{f_J(2220)}$ presented here we are able to make a much stronger statement. In particular, it is difficult to explain how a $q\bar{q}$ meson, even pure $s\bar{s}$, could have such a large stickiness. In general, explanations that give small two-photon partial widths give small radiative J/ψ decay branching fractions. Radial and angular excitations fall into this category. A $J = 4$ resonance is not ruled out experimentally. However, under the assumption $J = 4$, the phase space term to which stickiness is proportional becomes very large. A small two photon width due to a cancelation involving specific values of the singlet-octet mixing and the ratio of matrix elements is possible but unlikely.

In this Letter we have presented the results of the search for $f_J(2220)$ production in two-photon interactions. We have reported a very small upper limit for $(\Gamma_\gamma B_{K_s K_s})_{f_J(2220)}$. The minimum stickiness obtained from the two-photon width upper limit is difficult to understand in the context of a $q\bar{q}$ resonance, and should be considered as strong evidence that the $f_J(2220)$ is a glueball.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent luminosity and running conditions. We would like to thank M. Chanowitz for his thoughtful comments. This work was supported by the National Science Foundation, the U.S. Department of Energy, the Heisenberg Foundation, the Alexander von Humboldt Stiftung, the Natural Sciences and Engineering Research Council of Canada, and the A. P. Sloan Foundation.

5 We form an average $K_s K_s$ branching fraction by combining the $K_s K_s$ with the $K^+ K^-$ measurements. We treat systematic uncertainties as 100% correlated within an experiment and uncorrelated between experiments.
REFERENCES

[1] Mark III Collaboration, R. Baltrusaitis et al., Phys. Rev. Lett. 56, 107 (1986).
[2] BES Collaboration, J.Z. Bai et al., Phys. Rev. Lett. 76, 3502 (1996).
[3] GAMS Collaboration, Alde et al., Phys. Lett. B 177, 120 (1986).
[4] LASS Collaboration, D. Aston et al., Phys. Lett. B 215, 199 (1988).
[5] MSS Collaboration, B.V. Bolonkin et al., Nuc. Phys. B 309, 426 (1988).
[6] C. Michael “Glueballs and Hybrid Mesons” hep-ph/9605243 (1996).
[7] C. Morningstar and M. Peardon, Nucl. Phys. Proc. Suppl. 53, 917 (1997), hep-lat/9608050.
[8] ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48, 183 (1990).
[9] M. Chanowitz “Resonances in Photon-Photon Scattering” Proceedings of the VIth International Workshop on Photon- Photon Collisions (1984).
[10] CLEO Collaboration, Y. Kubota et al., Nucl. Inst. & Meth. A 320, 66 (1992).
[11] D. Rubin Proceedings of the 1995 Particle Accelerator Conference 1, 481 (1995).
[12] V.M.Budnev, I.F.Ginzburg, G.V.Meledin, and V.G.Serbo, Phys. Rep. 15C, 181 (1975).
[13] R.Brun et al., “GEANT3 Users Guide,” CERN DD/EE/84-1 (1987).
[14] Particle Data Group, Phys. Rev. D 54 (1996).
[15] M. Poppe, Int. Jour. Mod. Phys. A1 545 (1986).
[16] H. Kolanoski and P. Zerwas, “Two-Photon Physics” High Energy Electron-Positron Physics, World Scientific, Singapore (1988).