We report the genomic sequences of the poxvirus isolates Warsaw Agricultural University 86 (WAU86) and 88-1 (WAU88-1), isolated between 1986 and 1988 from laboratory mouse outbreaks in animal house facilities in Poland. These viruses were previously described as ectromelia virus (ECTV) isolates based on electron microscopy analysis, neutralization tests, and clinical symptoms in infected outbred white Swiss mice (1). WAU86 and WAU88-1 were obtained from M. Niemialtowski (Faculty of Veterinary Medicine, Warsaw Agricultural University, Warsaw, Poland). The viral particles were semipurified from infected monkey kidney epithelial cells (BSC-1) cells, and the viral genomes were agarose gel extracted before performing multiple displacement amplification with the Illustra GenomiPhi V2 (GE Healthcare) as described previously (2).

The poxviruses Warsaw Agricultural University 86 (WAU86) and 88-1 (WAU88-1) were isolated in 1986 to 1988 from separate outbreaks in laboratory mice in Poland and described as ectromelia virus isolates. The genome sequences of these poxviruses reveal that they are almost identical and represent a novel variant of the vaccinia virus Lister strain.
2. Mavian C, López-Bueno A, Balseiro A, Cassais R, Alcamí A, Alejo A. 2012. The genome sequence of the emerging common midwife toad virus identifies an evolutionary intermediate within ranaviruses. J. Virol. 86:3617–3625. http://dx.doi.org/10.1128/JVI.07108-11.

3. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Ireyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makkihani VB, McDaniel KE, McKenna MP, Myers EW, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JJ, Simpson JW, Snijder M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiher MP, Yu P, Begley RF, Rothberg JM. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380. http://dx.doi.org/10.1038/nature03959.

4. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM. 2007. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 8:R143. http://dx.doi.org/10.1186/gb-2007-8-7-r143.

5. Jacobs BL, Langland JO, Kobler KV, Denzler KL, White SD, Holcerek SA, Wong S, Huynh T, Baskin CR. 2009. Vaccinia virus vaccines: past, present and future. Antiviral Res. 84:1–13. http://dx.doi.org/10.1016/j.antiviral.2009.06.006.

6. Osborne JD, Da Silva M, Fracca AM, Sammons SA, Olsen-Rasmussen M, Upton C, Buller RM, Chen N, Feng Z, Roper RL, Liu J, Pougatcheva S, Chen W, Wohlhueter RM, Esposito JJ. 2007. Genomic differences of vaccinia virus clones from Dryvax smallpox vaccine: the Dryvax-like ACAM2000 and the mouse neurovirulent clone-3. Vaccine 25:8807–8832. http://dx.doi.org/10.1016/j.vaccine.2007.10.040.

7. Garcel A, Crance JM, Drillien R, Garin D, Favier AL. 2007. Genomic sequence of a clonal isolate of the vaccinia virus Lister strain employed for smallpox vaccination in France and its comparison to other orthopoxviruses. J. Gen. Virol. 88:1906–1916. http://dx.doi.org/10.1099/vir.0.82708-0.