Behavioral inhibition in childhood predicts smaller hippocampal volume in adolescent offspring of parents with panic disorder

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Schwartz, C E, P S Kunwar, D R Hirshfeld-Becker, A Henin, M G Vangel, S L Rauch, J Biederman, and J F Rosenbaum. 2015. “Behavioral inhibition in childhood predicts smaller hippocampal volume in adolescent offspring of parents with panic disorder.” Translational Psychiatry 5 (7): e605. doi:10.1038/tp.2015.95. http://dx.doi.org/10.1038/tp.2015.95.

Published Version
doi:10.1038/tp.2015.95

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:29408208

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Behavioral inhibition (BI) is a genetically influenced behavioral profile seen in 15–20% of 2-year-old children. Children with BI are timid with people, objects and situations that are novel or unfamiliar, and are more reactive physiologically to these challenges as evidenced by higher heart rate, pupillary dilation, vocal cord tension and higher levels of cortisol. BI predisposes to the later development of anxiety, depression and substance abuse. Reduced hippocampal volumes have been observed in anxiety disorders, depression and posttraumatic stress disorder. Animal models have demonstrated that chronic stress can damage the hippocampal formation and implicated cortisol in these effects. We, therefore, hypothesized that the hippocampi of late adolescents who had been behaviorally inhibited as children would be smaller compared with those who had not been inhibited. Hippocampal volume was measured with high-resolution structural magnetic resonance imaging in 43 females and 40 males at 17 years of age who were determined to be BI+ or BI− based on behaviors observed in the laboratory as young children. BI in childhood predicted reduced hippocampal volumes in the adolescents who were offspring of parents with panic disorder, or panic disorder with comorbid major depression. We discuss genetic and environmental factors emanating from both child and parent that may explain these findings. To the best of our knowledge, this is the first study to demonstrate a relationship between the most extensively studied form of temperamentally based human trait anxiety, BI, and hippocampal structure. The reduction in hippocampal volume, as reported by us, suggests a role for the hippocampus in human trait anxiety and anxiety disorder that warrants further investigation.

Translational Psychiatry (2015) 5, e605; doi:10.1038/tp.2015.95; published online 21 July 2015

INTRODUCTION

Behavioral inhibition (BI) is a distinctive, genetically influenced behavioral profile that is seen in 15–20% of children in the second year of life.5 Children born with an inhibited temperament (BI+) are timid with people, objects and situations that are novel or unfamiliar.7 More than 25 years before the transdiagnostic and subdiagnostic approaches in RDoC were articulated, a small group of investigators recognized the value of this human phenotype as an important orthogonal approach to those then enshrined in the DSM-III for the understanding of psychiatric disorder.6–7 BI was shown to be a risk factor for the subsequent development of anxiety to the unexpected and some anxiety disorders,5,7 as well as depression,4,7 and substance abuse12 in children, adolescents and adults.

The functional neurocircuitry of BI in humans as a putative intermediate phenotype has become an area of active investigation over the past 10 years. Longitudinal studies have shown that BI observed in childhood, as well as infant high reactivity—a precursor of BI than can be observed at 4 months of age—predict enduring differences in brain function and structure in adults that can be detected after two decades of development.13–19 Although difficult and costly, longitudinal studies remain the gold standard for identifying the developmental trajectory of this phenotype, and require the direct observation of young infants or children and multiple subsequent reassessments. Altered amygdala function in BI subjects, characterized by either increased responses to novel neutral faces and/or sustained responses to neutral faces has been detected in longitudinal samples of subjects classified in infancy or childhood,13,17,19 a finding replicated in studies of adult subjects who retrospectively reported both inhibited behavior in childhood and current high levels of social inhibition.20,21 Investigators of BI have begun to examine aspects of connectivity between the amygdala and other brain regions.22–24 In addition, other longitudinal cohorts that were first characterized in infancy have demonstrated the involvement of striatal structures in this behavioral profile.14,16,18,19

Despite evidence of hippocampal involvement in mood and anxiety disorders, no studies have examined hippocampal structure or function in subjects who were characterized as BI early in life. However, in a study of young adults who respectively identified themselves on questionnaires as both extremely inhibited in childhood and as adults, hippocampal (as well as amygdala) BOLD response failed to habituate to repetitive presentations of neutral faces.21 Reduced hippocampal volumes have been observed in depression25,26 and anxiety disorders,27,28 and most frequently and consistently in posttraumatic stress disorder (PTSD).29–34 Given these volumetric findings, and the demonstration that BI in childhood is a prospective risk factor for mood and anxiety disorders later in life,5,21 it is surprising that there are no previous
studies of hippocampal structure in BI. Animal models provide clear evidence that severe chronic stress can damage the hippocampal formation.35 Cortisol, a stress-related hormone that can be neurotoxic, has been implicated in these effects.36 Behaviorally inhibited children are more reactive physiologically as well as behaviorally to unfamiliar or threatening situations, as evidenced by higher heart rate, pupillary dilation, vocal cord tension and, most salient here, higher levels of cortisol at some ages.3,37 We, therefore, hypothesized that the hippocampi of late adolescents who had been behaviorally inhibited early in life would be smaller compared with those classified as not inhibited.

MATERIALS AND METHODS

The Massachusetts General Hospital institutional review board approved the experimental protocol. Informed consent was obtained after the nature and possible consequences of the study were explained. Hippocampal volumes were examined in 83 late adolescents enrolled in a longitudinal study who had been assessed for BI in the laboratory as young children using standardized batteries as detailed previously.4,8,36,39 Each subject underwent two three-dimensional magnetization-prepared rapid gradient-echo (MPRAGE) structural scans on a 3T Siemens (Malvern, PA, USA) TrioTim scanner (128 sagittal slices; 1.3 x 1.3 x 1 mm; TR = 2530 ms; TE = 3.39 ms; flip angle 7°, bandwidth 190 Hz/Px). The two three-dimensional MPRAGE structural scans from each subject were averaged, after motion correction, to create a single high signal-to-noise volume.40,41 This volume was analyzed using Freesurfer v5.0.0 (www.mgh.harvard.edu/martinos) to calculate left and right hippocampal volume.40,41 This volume was analyzed using Freesurfer v5.0.0 computer code available at https://surfer.nmr.mgh.harvard.edu/fswiki/ReadOnlyCVS. Each scan was manually inspected in simultaneous sagittal, coronal and axial planes by an investigator (PSK) who was masked to the subject’s BI status to ensure accurate segmentation. The effects of both BI and familial loading (parental illness type, PIT) on hippocampal volume were analyzed with mixed models (PROC MIXED with LSMEANS/tdiff; SAS v9.3, SAS Institute, Cary, NC, USA), with left and right hippocampal volumes as intra-subject repeated measures, controlling for age, sex, BI and PIT.

RESULTS

High-resolution structural magnetic resonance imaging was used to determine the volume of the left and right hippocampi in 43 females (mean age 17.7 ± 1.9 years) and 40 males (mean age 17.4 ± 1.7 years) from this longitudinal cohort. Twenty-two of the subjects who were imaged had been categorized as behaviorally inhibited (BI+) and 61 as not behaviorally inhibited (BI−) in childhood. Fourteen females and eight males were BI+; 29 females and 32 males were BI−. These subjects were offspring recruited from three groups of parents (1) parents with either panic disorder, or panic disorder with comorbid major depression (PD); (2) parents with major depression and no history of panic disorder (pure MD); and (3) control parents without any history of major anxiety disorder or mood disorder (CN).35,36,39 The young adult subjects therefore had both a measure of familial loading PIT (offspring of PD, pure MD or CN) and a measure of BI (BI+ or BI−). Table 1 gives the mean age and s.d., and the number of subjects in each cell of this 2 × 3 matrix.

Table 1. Age (mean years ± s.d.) and number of subjects (n) by childhood behavioral inhibition and parental illness type

Childhood behavioral inhibition	Parental illness type (PIT)	All		
	PD	Pure MD	Controls	
BI−	17.68 ± 2.04 (n = 29)	17.71 ± 1.28 (n = 11)	17.24 ± 1.86 (n = 21)	17.54 ± 1.85 (n = 61)
BI+	17.46 ± 1.76 (n = 16)	18.08 ± 2.39 (n = 5)	18.36 (n = 1)	17.64 ± 1.84 (n = 22)

Abbreviations: BI, behavioral inhibition; MD, major depression; PD, panic disorder.

Table 2. Hippocampal volume (mean R/L mm³ ± s.e.m.) at adolescence (n = 83) by childhood behavioral inhibition and parental illness type

Childhood behavioral inhibition	Parental illness type (PIT)	All		
	PD	Pure MD	Controls	
BI−	4346 ± 73	4390 ± 99	4254 ± 84	4330 ± 58
BI+	4080 ± 88	4620 ± 147	4401 ± 332*	4367 ± 126

Abbreviations: BI, behavioral inhibition; MD, major depression; PD, panic disorder. *n = 1 for this cell (Table 1).

DISCUSSION

We believe this is the first study to demonstrate a relationship between a temperamental profile observed and measured in the laboratory in early childhood, BI and hippocampal structure at adolescence. In this 16-year longitudinal study, a behaviorally inhibited temperament in childhood was associated with smaller bilateral hippocampal volumes in late adolescence in the offspring of parents with PD. The reduction in hippocampal volume was not observed unless both childhood BI and parental PD were present. If we had not possessed these data on parental psychopathology, we would have come to the erroneous conclusion that there was no relationship between BI in childhood and hippocampal...
volumes in adulthood. Imaging studies of BI have not typically examined such relationships.

What mechanisms and pathways might lead to the decreased hippocampal volume observed in BI+ offspring of parents with PD, and what is the functional relevance of the small hippocampal volumes to state and trait anxiety, including the vulnerability to develop anxiety disorders? We suggest that the reduced hippocampal volume detected in this subset of young adults who had been behaviorally inhibited as young children reflects the interplay of genetic and environmental factors that might emanate from both child and parent. Inhibited children in the second year typically interrupt ongoing play, cease vocalizing, seek comfort from a familiar person or withdraw when presented with people, objects and situations that are novel or unfamiliar. When presented with such situations in the laboratory, behaviorally inhibited children show enhanced physiological reactivity as evidenced by a higher heart rate, decreased heart rate variability, pupillary dilation, increased vocal cord tension and higher levels of cortisol. The hippocampus is densely populated with receptors for cortisol; stress or glucocorticoids not only cause cell and atrophy but also inhibit adult neurogenesis. Animal studies suggest that impairing neurogenesis in the hippocampi of adults slows the recovery of glucocorticoid levels after stress responses and increases depression-like behaviors in behavioral tests commonly used to assess antidepressant response. Because stress and glucocorticoids regulate the production of new neurons, a positively reinforcing toxic loop could be created for aberrant and pathological responses to stress in the future. Such a mechanism of reduced hippocampal reserve might be important in the genesis and subsequent maintenance of clinical anxiety and mood disorder in humans.

It has been suggested that an impairment in contextual fear discrimination could cause a bias towards encoding potentially ambiguous cues as threatening (the thud of fireworks vs. the thud of a mortar explosion), providing a possible explanation for the overgeneralization seen in PTSD and PD. Neuroimaging studies have implicated the hippocampus in the contextual modulation of both fear-conditioning and fear-extinction recall in healthy adults. Deficient extinction retention and attendant decreases in hippocampal activation have been reported in patients with PTSD when compared with subjects without PTSD who have been exposed to major emotional trauma. Antidepressant medications, which are also anxiolytic, increase adult hippocampal neurogenesis. A genetically induced increase in hippocampal neurogenesis enhances the ability of animals to differentiate between two similar conditioning contexts. Small hippocampal volumes, on the other hand, are associated with a failure to learn to discriminate between conditioned contexts in a contextual fear-conditioning paradigm in humans. A study of autonomic responses and contingency awareness during fear conditioning demonstrated that individuals with smaller hippocampal volumes were less successful in identifying the safety signal represented by the conditioned stimulus that was never followed by a painful electric shock. In people, objects and situations that are novel or unfamiliar. When presented with such situations in the laboratory, behaviorally inhibited children show enhanced physiological reactivity as evidenced by a higher heart rate, decreased heart rate variability, pupillary dilation, increased vocal cord tension and higher levels of cortisol. The hippocampus is densely populated with receptors for cortisol; stress or glucocorticoids not only cause cell and atrophy but also inhibit adult neurogenesis. Animal studies suggest that impairing neurogenesis in the hippocampi of adults slows the recovery of glucocorticoid levels after stress responses and increases depression-like behaviors in behavioral tests commonly used to assess antidepressant response. Because stress and glucocorticoids regulate the production of new neurons, a positively reinforcing toxic loop could be created for aberrant and pathological responses to stress in the future. Such a mechanism of reduced hippocampal reserve might be important in the genesis and subsequent maintenance of clinical anxiety and mood disorder in humans.

It has been suggested that an impairment in contextual fear discrimination could cause a bias towards encoding potentially ambiguous cues as threatening (the thud of fireworks vs. the thud of a mortar explosion), providing a possible explanation for the overgeneralization seen in PTSD and PD. Neuroimaging studies have implicated the hippocampus in the contextual modulation of both fear-conditioning and fear-extinction recall in healthy adults. Deficient extinction retention and attendant decreases in hippocampal activation have been reported in patients with PTSD when compared with subjects without PTSD who have been exposed to major emotional trauma. Antidepressant medications, which are also anxiolytic, increase adult hippocampal neurogenesis. A genetically induced increase in hippocampal neurogenesis enhances the ability of animals to differentiate between two similar conditioning contexts. Small hippocampal volumes, on the other hand, are associated with a failure to learn to discriminate between conditioned contexts in a contextual fear-conditioning paradigm in humans. A study of autonomic responses and contingency awareness during fear conditioning demonstrated that individuals with smaller hippocampal volumes were less successful in identifying the safety signal represented by the conditioned stimulus that was never followed by a painful electric shock. In people, objects and situations that are novel or unfamiliar. When presented with such situations in the laboratory, behaviorally inhibited children show enhanced physiological reactivity as evidenced by a higher heart rate, decreased heart rate variability, pupillary dilation, increased vocal cord tension and higher levels of cortisol. The hippocampus is densely populated with receptors for cortisol; stress or glucocorticoids not only cause cell and atrophy but also inhibit adult neurogenesis. Animal studies suggest that impairing neurogenesis in the hippocampi of adults slows the recovery of glucocorticoid levels after stress responses and increases depression-like behaviors in behavioral tests commonly used to assess antidepressant response. Because stress and glucocorticoids regulate the production of new neurons, a positively reinforcing toxic loop could be created for aberrant and pathological responses to stress in the future. Such a mechanism of reduced hippocampal reserve might be important in the genesis and subsequent maintenance of clinical anxiety and mood disorder in humans.
Given that the reduction in hippocampal volume in our study occurred only in the subset of those BI+ subjects with PD parents, BI and PD might be characterized by partially overlapping polygenetic influences, both of which are required for the observed change in hippocampal structure. Consistent with this notion, and in light of the role, as suggested by us, of cortisol in these findings, it is interesting that an association between BI and a microsatellite marker tightly linked to the corticotropin-releasing hormone gene in 84 families of children assessed for BI was particularly marked in the offspring of parents with PD.81 This marker and multiple single-nucleotide polymorphisms encompassing the corticotropin-releasing hormone gene were subsequently genotyped in an expanded sample of families of children at risk for PD.81 The BI phenotype remained significantly associated with the microsatellite marker and was associated with several single-nucleotide polymorphisms including a single-nucleotide polymorphism in the coding sequence of the corticotropin-releasing hormone gene; haplotype-specific tests revealed an association for a haplotype comprising all the markers.81

Methodological considerations, limitations and directions for future inquiry

The present study cannot definitively disentangle the potential contributions of the genetic, developmental and environmental mechanisms to the behaviorally inhibited phenotype, including the structural differences reported here. New longitudinal studies will be needed to identify and image high-reactive infants, the brain circuitry at the very beginning of the developmental trajectory of this phenotype, while gathering home-based measures of parenting and other environmental variables such as social class and the size of social networks, in concert with genome-wide association studies and studies of gene regulation and expression. Following such a cohort of infants throughout their development into young adults would elucidate both causality and mechanism, and suggest new strategies for early intervention. As the above discussion of the present findings demonstrates, the study of BI has required translational bridges between psychology and psychiatry, with a longitudinal multi-methods developmental approach that could be a fruitful model for the study of other psychiatric symptomatology such as psychosis.

This report demonstrates that data about parental psycho-pathology may reveal relationships between brain circuitry and BI in their children that are otherwise not detectable. The finding that hippocampal volume in the offspring of pure MD parents did not differ significantly on the basis of BI status must be interpreted with caution, given the small number of subjects in the BI+/pure MD cell relative to the other main cells of interest. Although this represents a limitation of this study, one hint that this cell might convey a meaningful biological signal in the opposite direction of that seen in the offspring of PD parents was the fact that the mean hippocampal volume of subjects in this cell (4660 ± 138 mm3) was larger than the hippocampal volume of the BI− offspring of controls (4262 ± 67 mm3; \(t_{185} = -2.60, P = 0.01 \)). Studies in larger samples will be required to clarify this. The fact that there was just one behaviorally inhibited subject among the offspring of the control parents (that is, families without parental PD or major depression) is consistent with reports in larger samples that BI is rare in parents without a history of PD or major depression.32,38

The preponderance of neuroimaging literature on anxiety and anxiety disorders in humans to date has focused on the amygdala, ventromedial prefrontal cortex and anterior cingulate. The reduction in hippocampal volume reported in this longitudinal study in a subset of behaviorally inhibited adolescents, when considered in concert with a previous functional magnetic resonance imaging study showing impaired hippocampal habituation in adults who retrospectively identified themselves as inhibited children21 and recent studies in non-human primate models of anxious temperament,82–85 suggests that the hippocampus has an important role in human trait anxiety and anxiety disorder that warrants further investigation.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

We thank the families and children who have participated in the study over 16 years. This study was supported by the National Institutes of Mental Health RO1MH57484 (CES, SRL, JFR, JB). This research was carried out in part at the Athinoula A. Martinos Center for Biomedical Imaging at the Massachusetts General Hospital, using resources provided by the Center for Functional Neuroimaging Technologies, P41EB015896, a P41 Biotechnology Resource Grant supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health. This work was conducted with support from Harvard Catalyst | The Harvard Clinical and Translational Science Center (National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health Award UL1 TR001102) and financial contributions from Harvard University and its affiliated academic health care centers. The content is solely the responsibility of the authors and does not necessarily represent the official views of Harvard Catalyst, Harvard University and its affiliated academic health care centers or the National Institutes of Health.

REFERENCES

1 Robinson J, Kagan J, Reznick J, Corley R. The heritability of inhibited and uninhibited behavior: a twin study. Dev Psychol 1992; 28: 1030–1037.
2 Dilalla L, Kagan J, Reznick J. Genetic etiology of behavioral inhibition among 2-year-old children. Infant Behav Dev 1994; 17: 405–412.
3 Kagan J, Reznick JS, Snidman N. Biological bases of shyshyness. Science expression; 1988; 240: 167–171.
4 Rosenbaum JF, Biederman J, Gersten M, Hirshfeld DR, Meminger SR, Herman JB et al. Behavioral inhibition in children of parents with panic disorder and agoraphobia. A controlled study. Arch Gen Psychiatry 1988; 45: 463–470.
5 Biederman J, Rosenbaum JF, Hirshfeld DR, Faraone SV, Biederman J, M et al. Psychiatric correlates of behavioral inhibition in young children of parents with and without psychiatric disorders. Arch Gen Psychiatry 1990; 47: 21–26.
6 Caspi A, Moffitt TE, Newman DL, Silva PA. Behavioral observations at age 3 years predict adult psychiatric disorders. Longitudinal evidence from a birth cohort. Arch Gen Psychiatry 1996; 53: 1033–1039.
7 Schwartz CE, Snidman N, Kagan J. Adolescent social anxiety as an outcome of inhibited temperament in childhood. J Am Acad Child Adolesc Psychiatry 1999; 38: 1008–1015.
8 Biederman J, Hirshfeld-Becker DR, Rosenbaum JF, Merikangas SR, Friedman SD, Snidman N et al. Further evidence of association between behavioral inhibition and social anxiety in children. Am J Psychiatry 2001; 158: 1673–1679.
9 Chronis-Tuscano A, Degnan KA, Pine DS, Perez-Edgar K, Henderson HA, Diaz Y et al. Stable early maternal report of behavioral inhibition predicts lifetime social anxiety disorder in adolescence. J Am Acad Child Adolesc Psychiatry 2009; 48: 928–935.
10 Caspi A, Henry B, McGee RO, Moffitt TE, Silva PA. Temperamental origins of child and adolescent behavior problems: from age three to age fifteen. Child Dev 1995; 66: 55–68.
11 Gladstone GL, Parker GB, Mitchell PB, Wilkinson KA, Malhi GS. Relationship between self-reported childhood behavioral inhibition and lifetime anxiety disorders in a clinical sample. Depress Anxiety 2005; 22: 103–113.
12 Lahat A, Perez-Edgar K, Degnan KA, Guyer AE, Lejuez CW, Ernst M et al. Early childhood temperament predicts substance use in young adults. Transl Psychiatry 2012; 2: e157.
13 Schwartz CE, Wright CI, Chin LM, Kagan J, Racus SL. Inhibited and uninhibited infants "grown up": adult amygdalar response to novelty. Science 2003; 300: 1952–1953.
14 Guyer AE, Nelson EE, Perez-Edgar K, Hardin MG, Roberson-Nay R, Monk CS et al. Striatal functional alteration in adolescents characterized by early childhood behavioral inhibition. J Neurosci 2006; 26: 6399–6405.
15 Perez-Edgar K, Roberson-Nay R, Hardin MG, Poeth K, Guyer AE, Nelson EE et al. Attention alters neural responses to evocative faces in behaviorally inhibited adolescents. NeuroImage 2007; 35: 1538–1546.

16 Bar-Haim Y, Fox NA, Benson B, Guyer AE, Williams A, Nelson EE et al. Neural correlates of reward processing in adolescents with a history of inhibited temperament. Psychol Sci 2009; 20: 1009–1018.

17 Schwartz CE, Biederman J, Hirshfeld-Becker DR, Kagan J, Snidman NC, Bloch RB. A phenotype of early infancy predicts reactivity of the amygdala in male adults. Mol Psychiatry 2011.

18 Helfenstein SM, Benson B, Perez-Edgar K, Bar-Haim Y, Detloff A, Pine DS et al. Strial responses to negative monetary outcomes differ between temperamentally inhibited and non-inhibited adolescents. Neuropsychologia 2011; 49: 479–485.

19 Jarcho JM, Fox NA, Pine DS, Etkin A, Leibenluft E, Sheehan T et al. The neural correlates of emotion-based cognitive control in adults with early childhood behavioral inhibition. Biol Psychol 2013; 92: 306–314.

20 Blackford JU, Avery SN, Cowan RL, Shelton RC, Zald DH. Sustained amygdala response to both novel and newly familiar faces characterizes inhibited temperament. Soc Cogn Affect Neurosci 2011; 6: 621–629.

21 Blackford JU, Allen AH, Cowan RL, Avery SN. Amygdala and hippocampus fail to habituate to faces in individuals with an inhibited temperament. Soc Cogn Affect Neurosci 2013; 8: 143–150.

22 Hardee JE, Benson BE, Bar-Haim Y, Mogk K, Bradley BP, Chen G et al. Patterns of neural connectivity during an attention bias task moderates associations between early childhood temperament and internalizing symptoms in young adulthood. Biol Psychiatry 2013.

23 Blackford JU, Clauss JA, Avery SN, Cowan RL, Benningfield MM, VanderKloot RM. Amygdala-cingulate intrinsic connectivity is associated with degree of social inhibition. Biol Psychol 2014; 99C: 15–25.

24 Roy AK, Benson BE, Degnan KA, Perez-Edgar K, Pine DS, Fox NA et al. Alterations in amygdala functional connectivity reflect early temperament. Biol Psychol 2014; 103: 248–254.

25 Savitz J, Drevets WC. Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev 2009; 33: 699–771.

26 Treadway MT, Waskom ML, Dillon DG, Holmes AJ, Park MT, Chakravarty MM et al. Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry 2015; 77: 285–294.

27 Lislek S, Rabin S, Heller RE, Lukenbaugh D, Geraci M, Pine DS et al. Overgeneralization of conditioned fear as a pathogenic marker of panic disorder. Am J Psychiatry 2010; 167: 47–55.

28 Alvare RF, Biggs A, Chen G, Pine DS, Grillon C. Contextual fear conditioning in humans: cortical-hippocampal and amygdala contributions. J Neurosci 2008; 28: 6211–6219.

29 Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry 2007; 62: 446–454.

30 Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry 2009; 66: 1075–1082.

31 Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–9110.

32 Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.

33 Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH, Kernie SG et al. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 2008; 59: 399–412.

34 Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 2011; 472: 466–470.

35 Pohlack ST, Nee S, Liebscher C, Caggiaiola R, Dierer SJ, Riddler S et al. Hippocampal but not amygdalar volume affects contextual fear conditioning in humans. Hum Brain Mapp 2012; 33: 478–488.

36 Caggiaiola R, Pohlack ST, Flor H, Nee S. Dissociable roles for hippocampal and amygdalar volume in human fear conditioning. Brain Struct Funct 2014.

37 Gorka AX, Hanson JL, Radtke SR, Hariri AR. Reduced hippocampal and medial prefrontal gray matter mediate the association between reported childhood maltreatment and trait anxiety in adulthood and predict sensitivity to future life stress. Biol Mood Anxiety Disord 2014; 4: 12.

38 Gilbertson MW, Shenton ME, Cziszewski A, Kasai K, Lasko NB, Orr SP et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci 2002; 5: 1242–1247.

39 Arcus D, McCartney K. When baby makes four: family influences in the stability of behavioral inhibition. In: Reznick JS (ed). Perspectives on Behavioral Inhibition. University of Chicago Press: Chicago, IL, USA, 1989; pp 197–218.

40 Reznick D. Inhibited and uninhibited children. In: Wachs TD, Kohnstamm GA (eds). Developmental-degenerative divide. Nature 2004; 487: 721–731.

41 Kagan J, Reznick JS, Snidman N. The physiology and psychology of behavioral inhibition in children. Child Dev 1987; 58: 1459–1473.

42 Rosenbaan JF, Biederman J, Hirshfeld-Becker DR, Kagan J, Snidman N, Friedman D et al. A controlled study of behavioral inhibition in children of parents with panic disorder and depression. Am J Psychiatry 2000; 157: 2002–2010.

43 Hirshfeld-Becker DR, Biederman J, Henin A, Farace SN, Davis S, Harrington K et al. Behavioral inhibition in preschool children at risk is a specific predictor of middle childhood social anxiety: a five-year follow-up. J Dev Behav Pediatr 2007; 28: 225–233.
BI predicts smaller hippocampi in offspring of parents with panic disorder

CE Schwartz et al

externalizing problems from early childhood through adolescence. J Abnorm Child Psychol 2009; 37: 1063–1075.

67 Degnan KA, Almas AN, Fox NA. Temperament and the environment in the etiology of childhood anxiety. J Child Psychol Psychiatry 2010; 51: 497–517.

68 Kiel E, Buss K. Prospective relations among fearful temperament, protective parenting, and social withdrawal: the role of maternal accuracy in a moderated mediation framework. J Abnorm Child Psychol 2011; 39: 953–966.

69 Rapee RM. The preventative effects of a brief, early intervention for preschool-aged children at risk for internalising: follow-up into middle adolescence. J Child Psychol Psychiatry 2013; 54: 780–788.

70 Rapee RM, Kennedy SJ, Ingram M, Edwards S, Sweeney L. Prevention and early intervention of anxiety disorders in inhibited preschool children. J Consult Clin Psychol 2005; 73: 488–497.

71 Hirshfeld-Becker DR, Masek B, Henin A, Blakely LR, Rettew DC, Dufton L et al. Cognitive-behavioral intervention with young anxious children. Harv Rev Psychiatry 2008; 16: 113–125.

72 Kennedy SJ, Rapee RM, Edwards SL. A selective intervention program for inhibited preschool-aged children of parents with an anxiety disorder: effects on current anxiety disorders and temperament. J Am Acad Child Adolesc Psychiatry 2009; 48: 602–609.

73 Rapee RM, Kennedy SJ, Ingram M, Edwards SL, Sweeney L. Altering the trajectory of anxiety in at-risk young children. Am J Psychiatry 2010; 167: 1518–1525.

74 Eley TC, Bolton D, O’Connor TG, Penin S, Smith P, Plomin R. A twin study of anxiety-related behaviours in pre-school children. J Child Psychol Psychiatry 2003; 44: 945–960.

75 DiLalla L, Kagan J, Reznick J. Genetic etiology of behavioral inhibition among 2-year-old children. Infant Behav Dev 1994; 17: 405–412.

76 Plomin R, Emde R, Braungart J, Campos J, Corley R, Fulker D et al. Genetic change and continuity from fourteen to twenty months: the MacArthur Longitudinal Twin Study. Child Dev 1993; 64: 1354–1376.

77 Matheny AP Jr. Children’s behavioral inhibition over age and across situations: genetic similarity for a trait during change. J Pers 1989; 57: 215–235.

78 Goldsmith HH, Lemerly KS. Linking temperamental fearfulness and anxiety symptoms: a behavior-genetic perspective. Biol Psychiatry 2000; 48: 1199–1209.

79 Lyons DM, Yang C, Sawyer-Glover AM, Moseley ME, Schatzberg AF. Early life stress and inherited variation in monkey hippocampal volumes. Arch Gen Psychiatry 2001; 58: 1145–1151.

80 Smoller J, Rosenbaum J, Biederman J, Kennedy J, Dai D, Racette S et al. Association of a genetic marker at the corticotropin releasing hormone locus with behavioral inhibition. Biol Psychiatry 2003; 54: 1376–1381.

81 Smoller JW, Yamaki LH, Fagerness JA, Biederman J, Racette S, Laird NM et al. The corticotropin-releasing hormone gene and behavioral inhibition in children at risk for panic disorder. Biol Psychiatry 2005; 57: 1485–1492.

82 Oler JA, Fox AS, Shelton SE, Rogers J, Dyer TD, Davidson RJ et al. Amygdalar and hippocampal substrates of anxious temperament differ in their heritability. Nature 2010; 466: 864–868.

83 Fox AS, Oler JA, Shelton SE, Nanda SA, Davidson RJ, Roseboom PH et al. Central amygdala nucleus (Ce) gene expression linked to increased trait-like Ce metabolism and anxious temperament in young primates. Proc Natl Acad Sci USA 2012; 109: 18108–18113.

84 Alisch RS, Chopra P, Fox AS, Chen K, White AT, Roseboom PH et al. Differentially methylated plasticity genes in the amygdala of young primates are linked to anxious temperament, an at risk phenotype for anxiety and depressive disorders. J Neurosci 2014; 34: 15548–15556.

85 Roseboom PH, Nanda SA, Fox AS, Oler JA, Shackman AJ, Shelton SE et al. Neuropeptide Y receptor gene expression in the primate amygdala predicts anxious temperament and brain metabolism. Biol Psychiatry 2014; 76: 850–857.