Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions:
Year 2021 (Volume 61): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY.
New records of Phytoseiidae (Acari: Mesostigmata) from Mauritius

Serge Kreitera, Olivier Fontaineb, Rose-My Payetc

aMontpellier SupAgro, UMR CBGP INRA/IRD/ CIRAD/ SupAgro/ Université de Montpellier, 755 Avenue du Campus Agropolis (Baillarguet), CS 30016, 34988 Montferrier-sur-Lez cedex, France.
bSARL La Coccinelle, 6 Chemin Beaurivage, 97410 Saint-Pierre (La Réunion), France.
cCIRAD, UPR Hortsys, Station de Bassin-Plat, 97410, Saint-Pierre, Réunion, France.

ABSTRACT

Mauritius is one of the three islands constituting Mascareignes Archipelago, with La Réunion and Rodrigues. So far, only three mite species of the family Phytoseiidae are known from Mauritius, namely \textit{Amblyseius caudatus}, \textit{Euseius ovalis} and \textit{Phytoseius coheni}. We report in this paper the results of a brief survey recently conducted on Mauritius Island, in which four additional species were found, namely \textit{Paraphytoseius orientalis}, \textit{Phytoseiulus persimilis}, \textit{Scapulaseius reptans} and \textit{Typhlodromips culmulus}.

Keywords survey; collection; taxonomy; systematics; Mascareignes

Zoobank http://zoobank.org/AFDFBF83-DDCE-4336-A3C1-9398EE412B1E

Introduction

Mites of the family Phytoseiidae are best known for their predatory habits on phytophagous mites and on small insects. Some of them are used for the control of pest organisms in open fields and protected crops all around the world (McMurtry and Croft 1997; McMurtry \textit{et al.} 2013). This family is widespread around the Globe, consisting presently of 2,521 valid species of 94 genera belonging to three sub-families (Demite \textit{et al.} 2018).

Biodiversity surveys in poorly investigated areas might result in the discovery of additional species potentially useful for biological control as well as having more information on the biodiversity of these areas.

Most of the Indian Ocean constitutes one of the world biodiversity hotspots. The concept of biodiversity hotspot was defined by Myers (1988) in order to identify the most immediately important areas for biodiversity conservation. These hotspots hold high endemism levels and have lost at least 70\% of their original natural vegetation (Myers \textit{et al.} 2000). Knowledge of the phytoseiid diversity in these areas may contribute to future establishment of conservation programs.

Located in the Indian Ocean at 1,000 km from the eastern coast of Madagascar, together with La Réunion and Rodrigues, Mauritius is one of the three main islands constituting Mascareignes Archipelago. Only three phytoseiid species have been reported from this island (Moutia 1958, Schicha 1984, Demite \textit{et al.} 2018). The objective of this paper is to present the phytoseiid species found in brief survey recently conducted in Mauritius.

Material and methods

The survey was conducted in September 2017 on cultivated plants of two locations. Mites were directly collected from leaves and transferred to vials with 70 \% ethanol, and later mounted on microscope slides in Hoyer’s medium. They were examined under a phase and DIC (differential interference contrast) microscope (DMLB, Leica Micosystèmes SAS, Nanterre, France). Measurements were done using a graded eyepiece.

How to cite this article Kreiter S. \textit{et al.} (2018), New records of Phytoseiidae (Acari: Mesostigmata) from Mauritius.
\textit{Acarologia} 58(4): 773-785; DOI 10.24349/acarologia/20184273
Chant and McMurtry's (1994, 2007) concepts of Phytoseiidae taxonomy and the world catalogue database of Demite et al. (2018) were used for faunistical and biogeographical aspects. The chaetotaxy terminology used followed that proposed by Lindquist and Evans (1965) as adapted by Rowell et al. (1978) for Phytoseiidae for dorsal and by Chant and Yoshida-Shaul (1991) for ventral idiosomal setae, respectively.

Numbers of teeth on the fixed and movable cheliceral digits do not include the respective apical teeth. Setae not referred to in the Results section should be considered as absent.

All measurements are given in micrometers and presented as the mean in bold followed by the range in parentheses. All mites collected were measured. They were deposited in the mite reference collection of Montpellier SupAgro conserved in UMR CBGP INRA/IRD/CIRAD/SupAgro/Université de Montpellier.

The following abbreviations are used in this paper for morphological characters:

- **dsl** = length of dorsal shield;
- **dsw** = width of dorsal shield width;
- **lis** = length of largest inguinal sigilla (= primary metapodal plate);
- **lisw** = width of largest inguinal sigilla;
- **sis** = length of smallest inguinal sigilla (= secondary or accessory metapodal plate);
- **vsl** = length of ventrianal shield;
- **vsw ZV2 and vsw anus** = width of ventrianal shield at ZV2 level and at anus level;
- **sc** = length of spermathecal cervix;
- **scw** = diameter of spermathecal cervix;
- **fdl** = length of fixed cheliceral digit;
- **mdl** = length of movable cheliceral digit;
- **Nb. pairs pores st. sh** = number of pairs of pores on the sternogenital shield of the male;
- **Shaft of spermadactyl**. = length of the shaft of the spermadactyl.

The following abbreviations are used for institutions:

- **CBGP** = Centre de Biologie pour la Gestion des Populations;
- **CIRAD** = Centre International de Recherche Agronomique pour le Développement;
- **INRA** = Institut National de la Recherche Agronomique;
- **IRD** = Institut de Recherche pour le Développement;
- **MSA** = Montpellier SupAgro, France;
- **UMR** = Unité Mixte de Recherche;
- **UPR** = Unité Propre de Recherche.

Results and discussion

All collected phytoseiid species belong to the subfamily Amblyseiinae are identified as follows.

Subfamily Amblyseiinae Muma

Amblyseiinae Muma, 1961: 273.

Tribe Kampimodromini Kolodochka

Kampimodromini Kolodochka, 1998: 59.

Subtribe Paraphytoseiina Chant & McMurtry 2003

Paraphytoseiina Chant & McMurtry, 2003: 211.

Genus Paraphytoseius Swirski and Shechter

Paraphytoseius Swirski & Shechter, 1961: 113.

Amblyseius (Paraphytoseius) Ehara, 1967: 77.

Amblyseius (Ptenoseius) Pritchard & Baker, 1962: 295.

Proprioseius (Paraphytoseius) Karg, 1983: 302.

Ptenoseius Schuster & Pritchard, 1963: 198.

Paraphytoseius orientalis (Narayanan, Kaur & Ghai)

Typhlodromus (Amblyseius) orientalis Narayanan, Kaur & Ghai, 1960: 394.

Paraphytoseius orientalis Chant & McMurtry, 2003: 220; Moraes *et al.*, 2004: 162.

Paraphytoseius ipomeai El-Banhawy, 1984: 126 (synonym according to Chant & McMurtry 2003).
Paraphytoseius multidentatus Swirski & Shechter, 1961: 114; McMurtry & Moraes, 1984: 27; Moraes et al., 1986: 104 (synonymy according to Chant & McMurtry 2003).

Paraphytoseius narayanami Ehara & Ghai in Ehara, 1967: 77 (synonym according to Chant & McMurtry 2003).

Paraphytoseius parabilis Chaudhri, 1967: 266 (synonym according to Matthysse & Denmark 1981).

Paraphytoseius santurcensis De Leon, 1965: 130 (synonym according to Chant & McMurtry 2003).

Paraphytoseius seychellensis Schicha & Corpuz-Raros, 1985: 71 (synonym according to Chant)

Table 1

Comparison of measurements of an adult female Paraphytoseius orientalis collected in this study with those in previous studies (localities followed by the number of specimens measured between brackets).

Characters	Mauritius (1)	Kenya (5)	Various Countries (5)	Paratype (1)
Dsl	290	250	291 (280–304)	306
Dsw	-	150	159 (149–168)	165
j1	38	40	32 (29–37)	36
j3	83	80	83 (72–90)	81
j4	5	2–3	3 (2–3)	4
j5	-	2–3	3 (2–3)	5
j6	-	2–3	6 (5–6)	6
J5	-	9	4 (3–5)	5
z2	8	9	9 (8–10)	9
z4	10	5	9 (8–10)	11
z5	-	3	5	3
Z1	8	6	7 (6–8)	8
Z4	70	83	72 (67–77)	71
Z5	93	138	96 (90–101)	94
s4	125	127	117 (110–126)	118
r3	55	46	42 (38–46)	45
R1	33	39	28 (26–30)	25
St1-St1	-	-	-	-
St1-St3	65	65	64 (61–66)	66
ST2-ST2	-	60	65 (62–67)	66
ST2-ST3	35	-	-	-
ST5-ST5	-	96	82 (80–85)	79
Lstl	-	-	-	-
Lst1w	-	-	-	-
Sstl	-	-	-	-
Sstl	113	100	99	97
Vsw ZV2	-	55	61 (56–64)	52
Vsw aus	-	-	59 (56–62)	55
Jv5	25	70	-	-
SgeI	8	-	8	6
SgeII	13	10	12 (11–13)	13
SgeII	-	-	13 (11–14)	13
SstII	-	-	13 (11–14)	14
SgeIV	30	28	28 (24–32)	25
SstIV	38	40	34 (33–37)	35
SstIV	45	40	41 (40–42)	43
SstIV	48	-	38 (35–40)	36
SeI	4	5	3	-
SeII	6	-	13 (13–14)	-
Fdl	25	-	26	-
Nb teeth Fd	7	8–9	7–8	-
Mdl	28	-	28	-
Nb teeth Md	2	2	2	-

Sources of measurements - Kenya: El-Banhawy & Knapp (2011); Various countries (Burundi 1, Kenya 2, Rwanda 2) in Africa: Moraes et al. (2007); paratype collected in Hong Kong: Moraes et al. (2007). -: not provided.
Specimens examined — Chamouny (20°28'55.99"S, 57°27'58.00"E, alt. 128 m), 1 ♀ on an unknown host plant, 21-IX-2017.

Previous Records — Widely distributed in all the tropical area of Africa, South America and South-East Asia.

Remarks — Measurements of most setae of the single female collected (Table 1) agree with measurements provided in the literature, except for the longer r3, R1, ventrianal shield, and macrosetae of telotarsus IV. It also has shorter JV5 and Scw than reported for Kenyan specimens. This species belongs to a genus included in the great polyphagous generalist group named type III among phytoseiid mites (McMurtry and Croft 1997; McMurtry et al. 2013). Navasero and Navasero (2016) have studied the life history of P. orientalis on the broad mite as prey [Polyphagotarsonemus latus (Banks)]. The authors reported high predation rates of this predator on eggs of that prey, suggesting its potential for the control of this pest.

Tribe Phytoseiulini Chant & McMurtry

Phytoseiulini Chant & McMurtry, 2006: 7.

Genus Phytoseiulus Evans

Phytoseiulus Evans, 1952: 397.

Phytoseiulus persimilis Athias-Henriot

Phytoseiulus persimilis Athias-Henriot, 1957: 347; Moraes et al., 1986: 109; Moraes et al., 2004: 169; Chant & McMurtry, 2006: 20; 2007: 55. Phytoseiulus riegeli Dosse, 1958: 48 (synonymy according to Chant, 1959: 109).

Typhlodromus persimilis, Hirschmann, 1962: 75.

Phytoseiulus (Phytoseiulus) persimilis, Wainstein, 1962: 17.

Phytoseiulus tardi (Lombardini, 1959): 166 (synonymy according to Kennett & Caltagirone, 1968: 571).

Specimens examined — Cascavelle (20°17'12.98"S, 57°24'25.99"E, alt. 135 m), 14 ?? + 4 ?? + 5 immatures on Solanum lycopersicum L., 28-IX-2017.

Previous Records — Widely distributed in Africa, Australia, Europe, especially Mediterranean countries, South America, and Asia, probably after largely distributed commercial uses in the world, dispersion in the environment in at least some locations and establishment of this species.

Remarks — (tables 2 & 3) — Measurements of the 14 adult females collected in this work (Table 2) agree very well with measurements of the literature, especially with those of Ueckermann et al. (2007) obtained with a great number of specimens (29) from various African countries.

Macrosetae on basitarsus of leg IV are not serrated but macrosetae of genu and tibia are serrated and there is no pre-anal macrosetae on the ventrianal shield. These are key characters of P. persimilis in comparison to the closely related species Phytoseiulus macropilis (Banks) (Okassa et al. 2010).

Only few measurements of adult males are available in the literature and consequently measurements of the four males found in Mauritius are of great interest.

Four males and 14 females in a collected population with a sex ratio of nearly 4 females to one male is not exceptional for that species (Laing 1968).

Phytoseiulus persimilis is a Mediterranean / subtropical predatory mite that is a type I species, i.e. a specialist predator of the urticae species group of the genus Tetranychus (McMurtry and Croft 1997; McMurtry et al. 2013). Considerable research has been conducted on this predator–prey interaction (see review by Kostiainen and Hoy 1996), and numerous
Table 2 Comparison of measurements of adult females of *Phytoseiulus persimilis* collected in this study with those in previous studies (localities followed by the number of specimens measured between brackets).

Characters	Mauritius (14)	Various countries (29)	Various countries (?)	Types (3)
Dsl	349 (325–375)	339 (316–369)	322 (314–330)	300–330
Dsw	217 (178–245)	227 (196–256)	224 (215–232)	-
j1	25 (20–28)	26 (22–32)	28 (25–32)	25–35
j3	42 (37–50)	42 (31–51)	42 (38–46)	45–55
j4	46 (43–50)	52 (39–72)	50 (48–52)	45–55
j5	65 (55–75)	77 (62–92)	69 (65–74)	65–70
j6	145 (128–155)	150 (114–161)	152 (145–160)	145–160
J5	5 (4–6)	5 (4–8)	6 (5–6)	5
z2	14 (13–18)	12 (7–16)	12 (10–13)	10–15
z4	57 (53–63)	58 (39–68)	61 (57–65)	45–55
z5	11 (8–13)	10 (7–15)	9 (8–12)	10–15
Z1	105 (95–115)	107 (94–124)	110 (105–115)	80–90
Z4	129 (122–139)	135 (119–152)	134 (131–138)	115–125
Z5	121 (110–128)	125 (113–137)	126 (120–132)	115–125
s4	165 (150–180)	163 (114–183)	165 (159–172)	145–160
S5	33 (25–40)	29 (20–37)	32 (25–38)	25–35
r3	24 (23–25)	24 (17–29)	23 (21–26)	-
R1	26 (25–31)	29 (22–33)	28 (25–32)	-
St1-St1	53 (45–58)	54 (47–61)	-	-
St1-St3	71 (60–78)	74 (67–82)	-	73
St2-St2	79 (75–88)	80 (69–91)	-	-
St2-St3	33 (30–35)	33 (28–37)	-	32
St3-St3	90 (80–98)	94 (83–104)	-	93
St4-St4	101 (90–115)	99 (82–120)	-	-
St5-St5	82 (75–88)	86 (76–82)	-	86
Lis1	41 (35–50)	-	-	-
Lsiw	4 (3–5)	-	-	-
Sisl	18 (13–20)	-	-	-
Vsl	76 (50–88)	81 (69–90)	93 (89–98)	-
vsv anus	76 (63–88)	77 (63–93)	-	-
JV5	46 (43–50)	45 (32–62)	40 (35–44)	-
SgeIV	84 (75–95)	83 (69–94)	84 (80–91)	90
StIV	43 (30–50)	44 (38–48)	45 (40–48)	50
StIV	134 (125–140)	123 (108–132)	126 (110–135)	125
Sel	31 (25–38)	-	-	-
Scw	9 (7–13)	-	-	-
Fdl	26 (25–33)	-	-	-
Nb teeth Fd	6	-	-	-
Mdl	26 (25–30)	-	-	-
Nb teeth Fd	3	-	-	-
Sources of measurements - Various countries (Spain 7, Italy 4, Syngenta Bioline rearings 11, Tunisia 7) in Europe and Northern Africa: Okassa et al. (2010); various countries (Sicily, Italy; Valparaiso, Chile; California, USA and Sydney, Australia) in the world: Takahashi and Chant (1993); type material collected in Algeria: Athias-Henriot (1957). - not provided.				
biological control programs have used *P. persimilis* against *T. urticae* on a wide range of ornamental and vegetable crops. *Phytoseiulus persimilis* was the first greenhouse biological control agents available commercially and it is one of the most successful biological control agents. It can also be used in temperate climates on open-field crops such as strawberries. Optimum conditions are 20-27 °C and relative humidity of 60-90%. Cooler or warmer temperatures may have a negative effect on reproduction, development and efficiency of this predatory mite. This species is present in Mauritius probably because of its commercial introduction and uses in vegetable and ornamental greenhouses, dispersion of some specimens released and establishment in the environment. This species is actually reared and sold in La Réunion and commercialised in Mascareignes since a long time (Quilici, personal communication).

Table 3 Comparison of measurements of adult males of *Phytoseiulus persimilis* collected in this study with those in previous studies (localities followed by the number of specimens measured between brackets).

Characters	Mauritius (3)	Various countries (?)	Types (1)
Dsl	293 (263–325)	-	265
Dsw	215 (200–250)	-	-
j1	21 (20–25)	-	-
j3	42 (40–45)	-	-
j4	51 (50–55)	-	-
j5	60 (53–68)	-	-
j6	111 (105–113)	-	95–105
J5	5	-	-
z2	19 (18–20)	-	-
z4	58 (54–63)	-	-
z5	12 (10–13)	-	-
Z1	79 (75–85)	-	-
Z4	99 (83–116)	-	95–105
Z5	81 (75–88)	-	95–105
s4	122 (113–130)	-	95–105
S5	32 (30–35)	-	-
r3	20	-	-
R1	28 (25–30)	-	-
St1-St1	53 (50–54)	-	50–55
St1-St5	128	-	-
St2-St2	67 (65–70)	-	70
St2-St3	35 (33–37)	-	-
St3-St3	69 (68–70)	-	70
St4-St4	62 (60–63)	-	60–65
St5-St5	51 (48–54)	-	50–55
Nb. pairs pores st. sh	3	-	-
Vsl	129 (110–150)	122 (118–128)	120
vsw ZY2	137 (110–163)	125 (113–139)	-
vsw anus	75	-	-
JV5	42 (40–43)	-	-
SgeIV	62 (58–65)	-	70
SliIV	35 (33–35)	-	-
SIV	97 (92–100)	-	90
Fdl	20	-	-
Nb teeth Fd	-	-	-
Mdl	21 (20–23)	-	-
Nb teeth Md	-	-	-
Schait of spermatod.	23 (20–25)	34 (32–36)	-

Sources of measurements: Various countries (Sicily, Italy; Valparaiso, Chile; California, USA and Sydney, Australia) in the world: Takahashi and Chant (1993); type material collected in Algeria: Athias-Henriot (1957). -: not provided.
Table 4. Comparison of measurements of adult females of *Scapulaseius reptans* collected in this study with those in previous studies (localities followed by the number of specimens measured between brackets).

Characters	Mauritius (2)	Madagascar (5)
Dsl	303–305	290
Dsw	185–188	190
j1	23	21
j3	20–23	15
j4	8	8
j5	8	7
j6	10	10
J2	8–9	10
J5	8	7
z2	18–20	16
z4	23	16
z5	8	18
Z1	10	10
Z4	56–53	48
Z5	72–75	70
s4	28	25
S2	22–25	18
S4	18–23	15
S5	18–20	14
r3	18	15
R1	13	15
St1-St1	50	-
St1-St3	53–56	-
St2-St2	60	-
St2-St3	20–22	-
St3-St3	65	-
St4-St4	65–78	-
St5-St5	60	-
Lisl	18–23	-
Lsiw	4–5	-
Sisl	10–13	-
Vsl	98–100	98
vsw ZV2	85–87	78
vsw anus	68–70	-
JV5	28	24
SgeI	23	-
SgeII	13–15	-
SgeIII	18	-
STI III	18	-
SgeIV	28	27
StII	23–25	20
StIV	50–53	50
Scl	30–35	45
Scw	2	2
Fdl	25	26
Nb teeth Fd	9	8
Mdl	25	26
Nb teeth Md	3	3

Sources of measurements - Madagascar: Blommers (1974). -: not provided.
Tribe Typhlodromipsini Chant & McMurtry

Typhlodromipsini Chant & McMurtry, 2005: 318.

Genus Scapulaseius Karg & Oomen-Kalsbeek

Scapulaseius Karg & Oomen-Kalsbeek, 1987: 132.

Amblyseius (Scapulaseius) Karg & Oomen-Kalsbeek, 1987: 132.

newsami species group of Typhlodromus (Amblyseius), Chant, 1959: 95.

markwelli species group of Amblyseius, Schicha, 1987: 25.

japonicus species group of Amblyseius, Schicha, 1987: 26.

ogaro species group of Amblyseius, Wu & Ou, 1999: 103.

Scapulaseius, Chant & McMurtry, 2005: 331.

Scapulaseius reptans (Blommers)

Amblyseius (Amblyseius) reptans Blommers, 1974: 145.

Typhlodromips reptans. Moraes et al., 1986: 146; Moraes et al., 2004: 222.

Scapulaseius reptans, Chant & McMurtry, 2005: 335; Chant & McMurtry, 2007: 68.

Specimens examined — Chamouny (20°28′55.99″S, 57°27′58.00″E, alt. 128 m), 2 ?? and 1 ? on an unknown host plant, 21-IX-2017.

Previous Records — La Réunion, Madagascar.

Remarks — Measurements of collected females are consistently longer than reported for the type specimens (Table 4). Measurements of the only male specimen collected (Table 5) are more variable in comparison with the type specimens. In Mauritius specimen, setae s₄, Z₄, Z₅ and macrosetae SgeIV are longer but setae z₂, z₄, S₂, S₄, and S₅ are shorter than type specimens. The rest of the measurements however agree well with the original description of Blommers (1974) and with our own measurements of females and males collected in La Réunion Island (Quilici et al. 2000 and Kreiter et al. in prep.).

Species of this genus Scapulaseius are supposed to be of type III (McMurtry and Croft 1997; McMurtry et al. 2013), i.e. a polyphagous generalist predator. However, the biology of S. reptans remains totally unknown.

Genus Typhlodromips De Leon

Typhlodromips De Leon, 1965: 23; Moraes et al., 2004: 205 (in part); Chant & McMurtry, 2005: 323. Amblyseius (Typhlodromips), Wainstein, 1983: 313.

Typhlodromips culmulus (Van der Merwe)

Amblyseius (Amblyseius) culmulus Van der Merwe, 1968: 132; Ueckermann & Loots, 1988: 157.

Typhlodromips culmulus, Moraes et al., 1986: 139; 2004: 210; Chant & McMurtry, 200: 327; 2007: 61.

Specimens examined — Chamouny (20°28′55.99″S, 57°27′58.00″E, alt. 128 m), 1 ? on an unknown host plant, 21-IX-2017.

Previous Records — Kenya, Lesotho, South Africa.

Remarks — Measurements of the single adult female collected (Table 6) agree with those of the literature, except for the shorter Z₄, JV₅, macrosetae SgeII and StiIV.

Species of this genus are supposed to belong to the type III (McMurtry and Croft 1997; McMurtry et al. 2013), i.e. a polyphagous generalist predator. However, the biology of T. culmulus remains totally unknown.
Table 5 Comparison of measurements of one adult male of *Scapulaseius reptans* collected in this study with those in previous study (localities followed by the number of specimens measured between brackets).

Characters	Mauritius (1)	Madagascar (3)
Dsl	255	230
Dsw	175	170
j1	18	16
j3	25	20
j4	10	7
j5	10	8
j6	10	8
J2	10	8
J5	6	3
z1	13	16
z4	13	16
z5	10	6
Z1	13	9
Z4	33	20
Z5	50	35
s4	25	20
S2	10	20
S4	10	15
S5	9	13
r3	15	14
R1	13	13
St1-St1	47	-
St1-St5	105	-
St2-St2	53	-
St2-St3	25	-
St3-St3	55	-
St4-St4	40	-
St5-St5	35	-
vsl	113	105
vsw ZV2	135	-
vsw anus	60	-
JV5	20	17
Sgel	25	-
SgelII	20	-
SgelIII	25	-
StilIII	20	-
SgelIV	35	19
StilV	20	15
StilV	48	45
Fdl	20	-
Nb teeth Fd	8	8
Mdl	23	-
Nb teeth Md	1	1
Shaft	17	15

Sources of measurements - Madagascar: Blommers (1974). -: not provided.

Discussion

Until now, the only phytoseiid species reported from Mauritius (Demite et al. 2018) were: *Amblyseius caudatus* Berlese, associated with *Polyphagotarsonemus latus* (Banks) on chilli pepper (*Capsicum annuum* L.), with various eriophyid mites on sugarcane (*Saccharum officinarum* L.) and buffalograss (*Panicum maximum* Jacquemin), in undetermined localities (Moutia 1958); *Euseius ovalis* (Evans), associated with *Raoeilla indica* Hirst on coconut (*Cocos nucifera* L.), with *Tetranychus cucurbitae* Rahman and Sapra and *Tetranychus marianae* McGregor on eggplant (*Solanum melongena* L.) and *Solanum nigrum* L., and with *Eotetranychus* sp. on apple (*Malus domestica* L.), in undetermined localities (Moutia 1958); and *Phytoseius coheni*
Table 6 Comparison of measurements of an adult female of *Typhlodromips culmulus* collected in this study with those in previous studies (localities followed by the number of specimens measured between brackets).

Characters	Mauritius (1)	Kenya (2)	South Africa (1)	Types (2)
Dsl	313	300	355	334
Dsw	200	200	235	208
j1	18	18	21	19
j3	20	18	24	22
j4	10	9	11	9
j5	10	9	11	9
j6	10	10	11	13
J2	13	14	11	16
J5	10	7	11	9
z2	13	12	15	13
z3	10	7	11	9
Z1	13	10	11	13–15
Z4	33	35	44	38–39
Z5	75	70	82	69–74
s4	28	25	38	30–32
S2	13	12	11	13
S4	10	8	11	9
S5	8	8	11	9
r3	15	15	19	16
R1	13	12	15	13
St1-St1	50	-	-	-
St1-St3	55	52	65	47
St2-St2	60	58	65	52–54
St2-St3	23	-	-	-
St3-St3	65	-	-	-
St4-St4	60	-	-	-
St5-St5	68	66	85	60–62
Lisl	-	-	-	-
Lsiw	-	-	-	-
Sisl	-	-	-	-
Vsl	113	105	115	110
vsw ZIV2	85	82	90	82–85
vsw anus	63	-	-	-
JV5	33	36	39	-
SgeI	30	-	-	30–32
SgelII	18	28	33	25–28
SgelIII	30	28	33	28
StilIII	28	-	-	22–26
SgelIV	48	46	54	47–49
StilV	30	40	45	41
StlV	58	55	66	63
Scl	-	2,5	3	2
Sew	-	14	12	-
Fdl	25	-	-	22–25
Nb teeth Fd	5–6	7	8	11–12
Mdl	25	-	-	25–26
Nb teeth Fd	3	3	3	3

Sources of measurements – Kenya: El-Banhawy & Knapp (2011); South Africa: Van der Merwe (1968); type material (the holotype and one paratype) collected in South Africa: Moraes et al. (2007a). -: not provided.

Swirski & Shechter, on *Cotoneaster* sp., in Curepipe (20°19’1.5”S, 57°31’35.5”E, alt. 561 m) (Schicha 1984). After a brief survey done in two locations, the number of species known from Mauritius Island increased to seven, of which six belong to Amblyseinae (*A. caudatus*, *E. ovalis*, *P. orientalis*, *P. persimilis*, *S. reptans*, *T. culmulus*) and one to Phytoseiinae (*P. coheni*). No Typhlodrominae was found until now. Two of them are well-known biological control
agents, namely *P. persimilis* and *P. orientalis*, and may have great interest for agriculture of the island. The first species for the history of success in the control of *T. urticae*, and the second has apparently high potential for the control of *P. latus*. The biology of the two other species remains unknown and consequently their potential for biological control. Finding local species potentially useful for biological control purpose is particularly important nowadays because new regulations of many countries of the world makes more difficult the importation of macro-organisms for biological control purposes. Importation permits must be requested, but it is expensive and chances to obtain are generally very low in many countries (Kreiter et al. 2016). Hence, knowledge of the biodiversity, especially of efficient biological control agents becomes progressively more important, not only for conservation, but also for agricultural and economic reasons.

Acknowledgements

To Mauritian institutions for the great help in this survey: Le Vélo Vert Association in Curepipe, the Mauritius Chamber of Agriculture in Port-Louis and The Food and Agricultural Research and Extension Institute (FAREI) in Réduit. To Cyril Festin (Phytoprotech, La Réunion) for the logistical support. To the two anonymous reviewers for the improvement of the first version of this manuscript.

References

Athias-Henriot C. 1957. Phytoseiidae et Acosejidae (Acarina, Gamasina) d’Algérie. I. Genres *Blattoscius* Keegan, *Iphiseius* Berlese, *Amblyseius* Berlese, *Phytoseius* Ribaga, *Phytoseiulus* Evans. Bull. Soc. Hist. Nat. Afr. Nord 48: 319–352.

Athias-Henriot C. 1975. Nouvelles notes sur les Amblysciini. II. Le relevé organotaxique de la face dorsale adulte (Gamasides, Phytoseiidae). Acarologia 27: 20–29.

Blommers L. 1974. Species of the genus *Amblyseius* Berlese, 1914, from Tamatave, east Madagascar (Acarina: Phytoseiidae). Bull. Zool. Mus. Univ. Amst. 3: 143–155.

Chant D.A. 1959. Phytoseiid mites. Part I. Bionomics of seven species in south-eastern England. Part II. A taxonomic review of the family Phytoseiidae, with descriptions of 38 new species. Can. Entomol. 91, suppl. 12: 1–166.

Chant D.A., McMurtry J.A. 1994. A review of the subfamilies Phytoseiinae and Typhlodrominae. Intern. J. Acarol. 20: 223-310. doi:10.1080/01647959408684922

Chant D.A., McMurtry J.A. 2003. A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae): Part II. The tribe Kampimodromini Kolodochka. Intern. J. Acarol. 29(3): 179–224. doi:10.1080/01647950308684331

Chant D.A., McMurtry J.A. 2005. A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae): Part VII. Typhlodromipsini 3. tribe. Intern. J. Acarol. 31(3): 315–340. doi:10.1080/01647950508683973

Chant D.A., McMurtry J.A. 2006. A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae): Part VIII. The tribes Macroseiini Chant, Denmark and Baker, Phytoseiulini n. tribe, Afroseiulini n. tribe and Indoiseiulini Eharu and Amano. Intern. J. Acarol. 32(1): 13–25. doi:10.1080/01647950608684439

Chant D.A., McMurtry J.A. 2007. Illustrated keys and diagnoses for the genera and sub-genera of the Phytoseiidae of the World. Indira Publishing House, West Bloomfield, Michigan, 220 pp.

Chant D.A., Yoshida Shaul E. 1991. Adult ventral setal patterns in the family Phytoseiidae (Acari: Gamasina). Intern. J. Acarol. 17: 187-199. doi:10.1080/01647959108683906

Chaudhri W.M. 1967. Description of a new mite species of *Amblyseius* (sub-genus *Ptenoseius*) (Acarina: Phytoseiidae) from Pakistan. Pakist. J. Agric. Sc. 4: 266–268.

De Leon D. 1965. Phytoseiid mites from Puerto Rico with descriptions of new species (Acari: Mesostigmata)—Fla. Entomol. 48(2): 121–131. doi:10.2307/3493102

Demite P.R., Moraes G.J. de, McMurtry J.A., Denmark H.A., Castilho R.C. 2018. Phytoseiidae Database. Available from: www.lea.esalq.usp.br/phytoseiidae

Dosse G. 1958a. Über einige neue Raubmilbenarten. Pflanz. Berich. 21: 44–61.

El-Harara S. 1967. Phytoseiid mites from Okinawa Island. Musahi 40(6): 67–82.

El-Banhawy E.M. 1984. Description of some phytoseiid mites from Brazil (Acarina: Phytoseiidae). Acarologia 25(2): 125–144.

El-Banhawy E.M., Knapp M. 2011 Mites of the family Phytoseiidae from Kenya (Acari: Mesostigmata). Zootaxa 2945: 1–176.

Evans G.O. 1952. On a new predatory mite of economic importance. Bull. Entomol. Res. 43: 397-401. doi:10.1017/S0007464700000068

Hirschmann W. 1962. Gangsystematik der Parasitiformes. Acarologia Schriftenreihe fur Vergleichende Milbenkunde, Hirschmann-Verlag, Furth/Bay, 5(5–6), 80 pp. + 32 plates.
Karg W. 1983. Systematische untersuchung der Gattungen und Untergattungen der Raubmilbenfamilie Phytoseiidae Berlese, 1916, mit der beschreibung von 8 neuen Arten. Mitt. Zool. Mus. Berlin 59(2): 293–328. doi:10.1002/mmnz.4830590203

Karg W., Oomen-Kalsbeek F. 1987. Neue Raubmilbenarten der Gattung Amblyseius Berlese (Acarina, Parasitiformes, Phytoseiidae) - Antagonisten der unechten Spinmilbe Brevipalpus phoenicus Geijskes. Zool. Jb. Rdb. Syst. 114(1): 131–140.

Kernet C.E., Caltagirone L.E. 1968. Biosystematics of Phytoseius persimilis. Acarologia 10(4): 563–577.

Kolodochka L.A. 1998. Two new tribes and the main results of a revision of Palearctic phytoseiid mites with the family system concept. Vest. Zool. 32(1–2): 51–63 [in Russian].

Kostiainen T., Hoy M.A. 1996. The Phytoseiidae as biological control agents of pest mites and insects. A bibliography. Monograph 17. University of Florida, Agricultural Experiment Station, Institute of Food and Agricultural Sciences, USA, 355 pp.

Kreiter S., Vicente V., Tixier M.-S., Fontaine O. 2016. An unexpected occurrence of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Acarologia 56(2): 175–181. doi:10.1051/aci-20162254

Laing J.E. 1968. Life history and life table of Phytoseius persimilis. Acarologia 10: 578-588.

Lindquist E., Evans G.W. 1965. Taxonomic concepts in the Ascidiae, with a modified setal nomenclature for the idiosoma of the Gamasina Acarina: Mesostigmata. Mem. Entomol. Soc. Can., 47: 1-64. doi:10.4039/entm9747v

Lombardini G. 1959. Acari Nuovi. XXXVII. Boll. Ist. Entomol. Agr. 21: 163–167.

Matthesse J.G., Denmark H.A. 1981. Some phytoseiids of Nigeria (Acarina: Mesostigmata). Fla Entomol. 64: 340–357. doi:10.2307/3494585

McMurtry J.A., Croft B.A. 1997. Life-styles of phytoseiid mites and their roles in biological control. Ann. Rev. Entomol. 42: 291–321. doi:10.1146/annurev.ento.42.1.291

McMurtry J.A., Moraes G.J. 1984. Some phytoseiid mites from the South Pacific, with descriptions of new species and a definition of the Amblyseius largoensis species group. Intern. J. Acarol. 10: 27–37. doi:10.1080/01647958408683347

McMurtry J.A., Moraes G.J. de, Sourasso N.F. 2013. Revision of the life styles of phytoseiid mites and implications for biological control strategies. Syst. Appl. Acarol. 18: 297–320.

Moraes G.J. de, McMurtry J.A., Denmark H.A. 1986. A catalog of the mite family Phytoseiidae. References to taxonomy, synonymy, distribution and habitat. EMBRAPA - DDT, Brasilia, Brazil, 353 pp.

Moraes G.J. de, McMurtry J.A., Campos C.B. 2004b. A revised catalog of the mite family Phytoseiidae. Zootaxa 434: 1–494.

Moraes G.J. de, Zannou I.D., Ueckermann E.A., Oliveira A.R., Yaninek J.S., Hanna R. 2007. Phytoseiid mites of the tribes Afroseiulini, Kampimodromini and Phytoseiulini, and complementary notes on mites of the tribes Euseini and Neoseiulini (Acarina: Phytoseiidae) from sub-Saharan Africa. Zootaxa 1628: 1–22.

Moutia L.A. 1958. Contribution to the study of some phytophagous Acarina and their predators in Mauritius. Bull. Entomol. Res. 49: 59–75. doi:10.1046/j.1365-2338.1958.00097.x

Muma M.H. 1961. Subfamilies, genera, and species of Phytoseiidae (Acarina: Mesostigmata). Fla St. Mus. Bull. 5(7): 267–302.

Myers N. 1988. Threatened biotas: hotspots in tropical forests. Environmentalist 8: 187–208.

Narayanan, M., Narayanan, V.R. 1960. Biology of the broad mite, Polyphagotarsonemus latus (Banks) (Acarina: Phytoseiidae, Tarsonemidae) in the Philippines. Philip. Entomol. 30(1): 21–28.

Narayanan E.S., Kaur R.B.N., Ghai S. 1960. Importance of some taxonomic characters in the family Phytoseiidae Berlese, 1916, with new records and descriptions of species. Proc. Nat. Inst. Sc. India 26B: 384–394.

Navasero M.M., Navasero M.V. 2016. The determination of setal homologies and setal patterns on the dorsal shield in the family Phytoseiidae (Acarina: Mesostigmata). Can. Entomol. 110: 859–876. doi:10.4039/entm9747fv

Pritchard A.E., Baker E.W. 1962. Mites of the family Phytoseiidae from Central Africa, with remarks on genera of the world. Hilgardia 33: 205–309.

Quilici S., Ueckermann E.A., Kreiter S., Vayssières J.-F. 2000. Phytoseiidae (Acari) of La Réunion Island. Acarologia 41(1-2): 97-108.

Rowell H.J., Chant D.A., Hansell R.I.C. 1978. The determination of setal homologies and setal patterns on the dorsal shield in the family Phytoseiidae (Acarina: Mesostigmata). Can. Entomol. 110: 859–876. doi:10.4039/entm9747fv

Schicha E. 1984. Contribution to the knowledge of the genus Phytoseius Ribaga in Australia, the South Pacific and Indian Ocean regions with four new species and records of known species (Acarina: Phytoseiidae). Intern. J. Acarol. 10(2): 117–128. doi:10.1080/01647958408683361

Schicha E. 1987. Phytoseiidae of Australia and neighboring areas. Indira Publishing House, West Bloomfield, Michigan, USA, 187 pp.

Schicha E., Corpuz-Raros L.A. 1985. Contribution to the knowledge of the genus Paraphytoseius Swirski and Shechter (Acarina: Phytoseiidae). Intern. J. Acarol. 11(2): 67–73. doi:10.1080/01647958508683398

Schuster R.O., Pritchard A.E. 1963. Phytoseiid mites of California. Hilgardia 34: 191–285.

Swirski E., Shechter R. 1961. Some phytoseiid mites (Acarina: Phytoseiidae) of Hong-Kong, with a description of a new genus and seven new species —Israel J. Agric. Res. 11: 97–117.

Kreiter S. et al. (2018), Acarologia 58(4): 773-785; DOI 10.24349/acarologia/20184273 784
Takahashi F., Chant D.A. 1993. Phylogenetic relationships in the genus Phytoseiulus Evans (Acari: Phytoseiidae). II. Taxonomic review. Intern. J. Acarol. 19(1): 23–37. doi:10.1080/01647959308683535

Ueckermann E.A., Loots G.C. 1988. The African species of the subgenera Anthoseius De Leon and Amblyseius Berlese (Acari: Phytoseiidae). Entomol. Mem. Dept. Agric. Water Supply 73: 1-168.

Ueckermann E.A., Zannou I.D., Moraes G.J. de, Oliveira A.R. de, Hanna R., Yaninek J.S. 2007. Phytoseiidd mites of the subfamily Phytoseiinae (Acari: Phytoseiidae) from sub-Saharan Africa. Zootaxa 1658, 1–20.

Van der Merwe G.G. 1968. A taxonomic study of the family Phytoseiidae (Acari) in South Africa with contributions to the biology of two species. Entomol. Mem., South Africa Dep. Agric. Techn. Serv. 18: 1–198.

Wainstein B.A. 1962. Révision du genre Typhlodromus Scheuten, 1857 et systématique de la famille des Phytoseiidae (Berlese 1916) (Acarina: Parasitiformes). Acarologia 4: 5–30.

Wainstein B.A. 1983. Predaceous mites of the family Phytoseiidae (Parasitiformes) of Hawaii. Entomol. Rev. 62(1): 181–186.

Wu W.N., Ou J.F. 1999. A new species group of the Amblyseius, with descriptions of two new species (Acari: Phytoseiidae) from China. Syst. Appl. Acarol. 4: 103–110. doi:10.11158/saa.4.1.15