Mod p points on Shimura varieties of parahoric level

Pol van Hoften

King’s College London

May 30 2020
Structure of the talk

Introduction to the Langlands-Rapoport conjecture and a quick survey of previous work

Statement of the main results

Idea of the proof
Structure of the talk

Introduction to the Langlands-Rapoport conjecture and a quick survey of previous work
Structure of the talk

Introduction to the Langlands-Rapoport conjecture and a quick survey of previous work

Statement of the main results
Structure of the talk

Introduction to the Langlands-Rapoport conjecture and a quick survey of previous work

Statement of the main results

Idea of the proof
The Langlands-Rapoport conjecture I

Langlands and Rapoport conjectured the existence of integral models of Shimura varieties with good properties. For example, the modular curve $Y_0(N)$ has a smooth integral model over $\mathbb{Z}(p)$ with $p \nmid N$, using the moduli interpretation in terms of families of elliptic curves. The modular curve $Y_0(Np)$ also has an integral model over $\mathbb{Z}(p)$ with $p \nmid N$, but it is no longer smooth.

Understanding these integral models has interesting applications, e.g., construction of Galois representations (Deligne, Langlands), Ribet's proof of the ϵ-conjecture.
Langlands and Rapoport conjectured the existence of integral models of Shimura varieties with good properties.
Langlands and Rapoport conjectured the existence of integral models of Shimura varieties with good properties.

For example, the modular curve $Y_0(N)$ has a smooth integral model over \mathbb{Z}_p with $p \nmid N$, using the moduli interpretation in terms of families of elliptic curves.
Langlands and Rapoport conjectured the existence of integral models of Shimura varieties with good properties.

For example the the modular curve $Y_0(N)$ has a smooth integral model over \mathbb{Z}_p with $p \nmid N$, using the moduli interpretation in terms of families of elliptic curves.

The modular curve $Y_0(Np)$ also has an integral model over \mathbb{Z}_p with $p \nmid N$, but it is no longer smooth.
Langlands and Rapoport conjectured the existence of integral models of Shimura varieties with good properties.

For example the modular curve $Y_0(N)$ has a smooth integral model over $\mathbb{Z}(p)$ with $p \nmid N$, using the moduli interpretation in terms of families of elliptic curves.

The modular curve $Y_0(Np)$ also has an integral model over $\mathbb{Z}(p)$ with $p \nmid N$, but it is no longer smooth.

Understanding these integral models has interesting applications, e.g. construction of Galois representations (Deligne, Langlands), Ribet’s proof of the ϵ-conjecture.
Let \((G, X)\) be a Shimura datum, i.e., \(G\) is a reductive group over \(\mathbb{Q}\) and \(X\) is a Hermitian symmetric domain with an action of \(G(\mathbb{R})\). Let \(p\) be a prime number, \(K_p \subset G(\mathbb{A}_f)\) be a compact open subgroup and \(K_p \subset G(\mathbb{Q}_p)\) a parahoric subgroup and let \(K = K_p K_p \subset G(\mathbb{A}_f)\).

Let \(\text{Sh} K(G, X)\) be the associated Shimura variety, which is an algebraic variety over a number field \(E\), the reflex field. If \(v|p\) is a place of \(E\), then the conjecture predicts that there should be a 'good' integral model \(\text{S} K(G, X)\) over \(\mathcal{O}_E(v)\).

For example, \(G = \text{GL}_2\), \(X = \mathbb{H}^+\) and \(K_p = \text{GL}_2(\mathbb{Z}_p)\) or \(K_p = \Gamma_0(p)\), then \(E = \mathbb{Q}\) and the integral models from the previous slide are 'good'.

The Langlands-Rapoport conjecture II
Let \((G, X)\) be a Shimura datum, i.e., \(G\) is a reductive group over \(\mathbb{Q}\) and \(X\) is a Hermitian symmetric domain with an action of \(G(\mathbb{R})\).
The Langlands-Rapoport conjecture II

Let \((G, X)\) be a Shimura datum, i.e., \(G\) is a reductive group over \(\mathbb{Q}\) and \(X\) is a Hermitian symmetric domain with an action of \(G(\mathbb{R})\).

Let \(p\) be a prime number, \(K^p \subset G(\mathbb{A}_f^p)\) be a compact open subgroup and \(K_p \subset G(\mathbb{Q}_p)\) a parahoric subgroup and let \(K = K^p K_p \subset G(\mathbb{A}_f)\).
The Langlands-Rapoport conjecture II

Let \((G, X)\) be a Shimura datum, i.e., \(G\) is a reductive group over \(\mathbb{Q}\) and \(X\) is a Hermitian symmetric domain with an action of \(G(\mathbb{R})\).

Let \(p\) be a prime number, \(K^p \subset G(\mathbb{A}^p_f)\) be a compact open subgroup and \(K_p \subset G(\mathbb{Q}_p)\) a parahoric subgroup and let \(K = K^p K_p \subset G(\mathbb{A}_f)\).

Let \(\text{Sh}_K(G, X)\) be the associated Shimura variety, which is an algebraic variety over a number field \(E\), the reflex field.
The Langlands-Rapoport conjecture II

Let \((G, X)\) be a Shimura datum, i.e., \(G\) is a reductive group over \(\mathbb{Q}\) and \(X\) is a Hermitian symmetric domain with an action of \(G(\mathbb{R})\).

Let \(p\) be a prime number, \(K^p \subset G(\mathbb{A}_f^p)\) be a compact open subgroup and \(K_p \subset G(\mathbb{Q}_p)\) a parahoric subgroup and let \(K = K^p K_p \subset G(\mathbb{A}_f)\).

Let \(\text{Sh}_K(G, X)\) be the associated Shimura variety, which is an algebraic variety over a number field \(E\), the reflex field.

If \(\nu \mid p\) is a place of \(E\), then the conjecture predicts that there should be a ‘good’ integral model \(S_K(G, X)\) over \(\mathcal{O}_{E(\nu)}\).
The Langlands-Rapoport conjecture II

Let \((G, X)\) be a Shimura datum, i.e., \(G\) is a reductive group over \(\mathbb{Q}\) and \(X\) is a Hermitian symmetric domain with an action of \(G(\mathbb{R})\).

Let \(p\) be a prime number, \(K^p \subset G(\mathbb{A}_f^p)\) be a compact open subgroup and \(K_p \subset G(\mathbb{Q}_p)\) a parahoric subgroup and let \(K = K^p K_p \subset G(\mathbb{A}_f)\).

Let \(\text{Sh}_K(G, X)\) be the associated Shimura variety, which is an algebraic variety over a number field \(E\), the reflex field.

If \(v | p\) is a place of \(E\), then the conjecture predicts that there should be a ‘good’ integral model \(S_K(G, X)\) over \(\mathcal{O}_{E(v)}\).

For example \(G = \text{GL}_2\), \(X = \mathbb{H}^\pm\) and \(K_p = \text{GL}_2(\mathbb{Z}_p)\) or \(K_p = \Gamma_0(p)\), then \(E = \mathbb{Q}\) and the integral models from the previous slide are ‘good’.
The conjecture then predicts that there is a partition into 'isogeny classes' $S_{K}(G, X)(F_p) \cong \bigoplus_{\phi} S_{\phi}$,\(^{(1)}\) compatible with the action of prime to p Hecke operators.

Moreover, the $S_{\phi} \subset S_{K}(G, X)(F_p)$ have the following description ('Rapoport-Zink uniformisation') $S_{\phi} \cong I_{\phi}(Q) \setminus X_{p}(\phi) \times X_{p}(\phi) / K_{p}$,\(^{(2)}\)

Here $X_{p}(\phi)$ is an affine Deligne-Lusztig variety of level K_{p}.
The conjecture then predicts that there is a partition into ‘isogeny classes’

\[S_K(G, X)(\overline{\mathbb{F}}_p) \simeq \bigsqcup_{\phi} S_{\phi}, \]

(1)

compatible with the action of prime to \(p \) Hecke operators.
The Langlands-Rapoport conjecture III

The conjecture then predicts that there is a partition into ‘isogeny classes’

$$S_K(G, X)(\overline{F}_p) \simeq \bigsqcup \phi S_\phi, \quad (1)$$

compatible with the action of prime to p Hecke operators.

Moreover, the $S_\phi \subset S_K(G, X)(\overline{F}_p)$ have the following description (‘Rapoport-Zink uniformisation’)

$$S_\phi \simeq I_\phi(\mathbb{Q}) \backslash X_p(\phi) \times X^p(\phi)/K^p \quad (2)$$
The conjecture then predicts that there is a partition into ‘isogeny classes’

\[S_K(G, X)(\overline{F}_p) \simeq \bigsqcup_{\phi} S_\phi, \quad (1) \]

compatible with the action of prime to \(p \) Hecke operators.

Moreover, the \(S_\phi \subset S_K(G, X)(\overline{F}_p) \) have the following description (‘Rapoport-Zink uniformisation’)

\[S_\phi \simeq I_\phi(\mathbb{Q}) \backslash X_p(\phi) \times X^p(\phi)/K^p \quad (2) \]

Here \(X_p(\phi) \) is an affine Deligne-Lusztig variety of level \(K_p \).
Previous Work

Kottwitz (1992) proved closely related results for PEL type Shimura varieties of type A and C, at primes $p > 2$ with K_p hyperspecial.
Previous Work

Kottwitz (1992) proved closely related results for PEL type Shimura varieties of type A and C, at primes $p > 2$ with K_p hyperspecial.

Theorem (Kisin, 2008 and 2013)

Let (G, X) be a Shimura datum of abelian type, let $p > 2$ and suppose that $G_{\mathbf{Q}_p}$ is unramified and that K_p is hyperspecial. Then the Langlands-Rapoport conjecture holds for (G, X, p).

Theorem (Zhou, 2017)

Let (G, X) be a Shimura datum of Hodge type, let $p > 2$ and suppose that $G_{\mathbf{Q}_p}$ is residually split, then isogeny classes have Rapoport-Zink uniformisation for arbitrary parahorics K_p.
Kottwitz (1992) proved closely related results for PEL type Shimura varieties of type A and C, at primes $p > 2$ with K_p hyperspecial.

Theorem (Kisin, 2008 and 2013)

Let (G, X) be a Shimura datum of abelian type, let $p > 2$ and suppose that $G_{\mathbb{Q}_p}$ is unramified and that K_p is hyperspecial. Then the Langlands-Rapoport conjecture holds for (G, X, p).

Theorem (Zhou, 2017)

Let (G, X) be a Shimura datum of Hodge type, let $p > 2$ and suppose that $G_{\mathbb{Q}_p}$ is residually split, then isogeny classes have Rapoport-Zink uniformisation for arbitrary parahorics K_p.
Let (G, X) be a Shimura datum of abelian type, let $p > 2$ and suppose that $G_{\mathbb{Q}_p}$ is unramified.
Let \((G, X)\) be a Shimura datum of abelian type, let \(p > 2\) and suppose that \(G\) is unramified. Let \(K^p \subset G(\mathbb{A}_f^p)\) be compact open and let \(K_p \subset G(\mathbb{Q}_p)\) be a parahoric subgroup.
Main Results I

Let \((G, X)\) be a Shimura datum of abelian type, let \(p > 2\) and suppose that \(G_{\mathbb{Q}_p}\) is unramified. Let \(K^p \subset G(\mathbb{A}^P_f)\) be compact open and let \(K_p \subset G(\mathbb{Q}_p)\) be a parahoric subgroup.

Theorem 1 (-)

Suppose that \(G\) has no factors of type \(A\) and that \(\text{Sh}_K(G, X)\) is proper. Then the Langlands-Rapoport conjecture holds for the Kisin-Pappas integral models of \(\text{Sh}_K(G, X)\).
Main Results I

Let \((G, X)\) be a Shimura datum of abelian type, let \(p > 2\) and suppose that \(G_{\mathbb{Q}_p}\) is unramified. Let \(K^p \subset G(\mathbb{A}_f^p)\) be compact open and let \(K_p \subset G(\mathbb{Q}_p)\) be a parahoric subgroup.

Theorem 1 (-)

Suppose that \(G\) has no factors of type \(A\) and that \(\text{Sh}_K(G, X)\) is proper. Then the Langlands-Rapoport conjecture holds for the Kisin-Pappas integral models of \(\text{Sh}_K(G, X)\).

Remarks

The assumption that \(G_{\mathbb{Q}_p}\) is unramified can be removed for most \((G, X)\).
Idea of the proof I

Since we know the results at hyperspecial level, it suffices to understand the fibers of the forgetful map. When $\mathbb{G} = \text{GL}_2$, then the forgetful map has the following description:

$$\mathcal{Y}_0(Np) \{ (E, \alpha_N, H \subset E[p]) \}$$

$$\mathcal{Y}_0(N) \{ (E, \alpha_N) \}$$

Here E is an elliptic curve, α_N is a $\Gamma_0(N)$ level structure and $H \subset E[p]$ is a subgroup of order p. An elliptic curve over \mathbb{F}_p has either one or two choices for H, depending on whether it is supersingular or ordinary. We observe that the fiber only depends on the p-divisible group $E[p]$.
Idea of the proof I

Since we know the results at hyperspecial level, it suffices to understand the fibers of the forgetful map.
Idea of the proof

Since we know the results at hyperspecial level, it suffices to understand the fibers of the forgetful map. When $G = \text{GL}_2$, then the forgetful map has the following description:

$$Y_0(Np) \xrightarrow{\sim} \{ (E, \alpha_N, H \subset E[p]) \}$$

$$\downarrow$$

$$Y_0(N) \xrightarrow{\sim} \{ (E, \alpha_N) \}$$

(3)
Idea of the proof I

Since we know the results at hyperspecial level, it suffices to understand the fibers of the forgetful map. When $G = \text{GL}_2$, then the forgetful map has the following description:

$$
\begin{align*}
Y_0(Np) & \longrightarrow \{(E, \alpha_N, H \subset E[p]\} \\
\downarrow & \\
Y_0(N) & \longrightarrow \{(E, \alpha_N)\}
\end{align*}
$$

(3)

Here E is an elliptic curve, α_N is a $\Gamma_0(N)$ level structure and $H \subset E[p]$ is a subgroup of order p.

An elliptic curve over \mathbb{F}_p has either one or two choices for H, depending on whether it is supersingular or ordinary. We observe that the fiber only depends on the p-divisible group $E[p]$.

Idea of the proof I

Since we know the results at hyperspecial level, it suffices to understand the fibers of the forgetful map. When $G = \text{GL}_2$, then the forgetful map has the following description:

$$
\begin{align*}
Y_0(Np) & \longrightarrow \{(E, \alpha_N, H \subset E[p]\} \\
\downarrow & \quad \downarrow \\
Y_0(N) & \longrightarrow \{(E, \alpha_N)\} \\
\end{align*}
$$

(3)

Here E is an elliptic curve, α_N is a $\Gamma_0(N)$ level structure and $H \subset E[p]$ is a subgroup of order p. An elliptic curve over $\overline{\mathbb{F}}_p$ has either one or two choices for H, depending on whether it is supersingular or ordinary.
Idea of the proof I

Since we know the results at hyperspecial level, it suffices to understand the fibers of the forgetful map. When $G = \text{GL}_2$, then the forgetful map has the following description:

$$
\begin{align*}
Y_0(Np) & \longrightarrow \{(E, \alpha_N, H \subset E[p])\} \\
\downarrow & \quad \downarrow \\
Y_0(N) & \longrightarrow \{(E, \alpha_N)\}
\end{align*}
$$

(3)

Here E is an elliptic curve, α_N is a $\Gamma_0(N)$ level structure and $H \subset E[p]$ is a subgroup of order p. An elliptic curve over \overline{F}_p has either one or two choices for H, depending on whether it is supersingular or ordinary. We observe that the fiber only depends on the p-divisible group $E[p^\infty]$.
Idea of the proof II

For moduli spaces of abelian varieties with extra structures, these fibers are more complicated and usually not finite, for example the fibers can be projective lines. However, it is still true that the fibers only depend on the p-divisible group with extra structures. This means that we can use Dieudonné theory to understand the fibers.

For Hodge type Shimura varieties, the integral models do not have a moduli interpretation, which makes it difficult to make the above strategy work. We can still associate a p-divisible group with extra structures X to an \mathbb{F}_p-point, but it is no longer clear that the fiber only depends on this X.
For moduli spaces of abelian varieties with extra structures, these fibers are more complicated and usually not finite, for example the fibers can be projective lines.
Idea of the proof II

For moduli spaces of abelian varieties with extra structures, these fibers are more complicated and usually not finite, for example the fibers can be projective lines. However, it is still true that the fibers only depend on the p-divisible group with extra structures.
For moduli spaces of abelian varieties with extra structures, these fibers are more complicated and usually not finite, for example the fibers can be projective lines. However, it is still true that the fibers only depend on the p-divisible group with extra structures. This means that we can use Dieudonné theory to understand the fibers.
Idea of the proof II

For moduli spaces of abelian varieties with extra structures, these fibers are more complicated and usually not finite, for example the fibers can be projective lines. However, it is still true that the fibers only depend on the p-divisible group with extra structures. This means that we can use Dieudonné theory to understand the fibers.

For Hodge type Shimura varieties, the integral models do not have a moduli interpretation, which makes it difficult to make the above strategy work.
For moduli spaces of abelian varieties with extra structures, these fibers are more complicated and usually not finite, for example the fibers can be projective lines. However, it is still true that the fibers only depend on the p-divisible group with extra structures. This means that we can use Dieudonné theory to understand the fibers.

For Hodge type Shimura varieties, the integral models do not have a moduli interpretation, which makes it difficult to make the above strategy work. We can still associate a p-divisible group with extra structures X to an $\overline{\mathbb{F}}_p$-point, but it is no longer clear that the fiber only depends on this X.
Idea of the proof III

Let K_p be a hyperspecial parahoric and $K'_p \subset K_p$ another parahoric. Let $S_{K, F_p}(G, X)$ be the special fiber of the Kisin-Pappas integral model, then it has a morphism to the 'moduli space of p-divisible groups with extra structures'. This map fits into a commutative diagram together with its variant for $K'_p S_{K, F_p}(G, X)$.

(4)

Here S_{G, μ, K_p} is the pre-stack of G-shtukas of type μ and parahoric K_p. These were introduced by Xiao-Zhu and generalised by Shen-Yu-Zhang. The LR conjecture holds for the Shimura variety in the top left corner if and only if the diagram is Cartesian.
Idea of the proof III

Let K_p be a hyperspecial parahoric and $K'_p \subseteq K_p$ another parahoric. Let $S_{K_p, \overline{\mathbb{F}}_p}(G, X)$ be the special fiber of the Kisin-Pappas integral model, then it has a morphism to the ‘moduli space of p-divisible groups with extra structures’.
Let K_p be a hyperspecial parahoric and $K'_p \subset K_p$ another parahoric. Let $S_{K,F_p}(G, X)$ be the special fiber of the Kisin-Pappas integral model, then it has a morphism to the ‘moduli space of p-divisible groups with extra structures’. This map fits into a commutative diagram together with its variant for K'.
Let K_p be a hyperspecial parahoric and $K'_p \subset K_p$ another parahoric. Let $S_{K,F_p}(G, X)$ be the special fiber of the Kisin-Pappas integral model, then it has a morphism to the ‘moduli space of p-divisible groups with extra structures’. This map fits into a commutative diagram together with its variant for K'

\[
\begin{align*}
S_{K',F_p}(G, X) & \longrightarrow \text{Sht}_{G,\mu,K'_p} \\
\downarrow & \quad \downarrow \\
S_{K,F_p}(G, X) & \longrightarrow \text{Sht}_{G,\mu,K_p}.
\end{align*}
\]
Idea of the proof III

Let K_p be a hyperspecial parahoric and $K'_p \subset K_p$ another parahoric. Let $S_{K_p, \overline{F}_p}(G, X)$ be the special fiber of the Kisin-Pappas integral model, then it has a morphism to the ‘moduli space of p-divisible groups with extra structures’. This map fits into a commutative diagram together with its variant for K'

$$
\begin{align*}
S_{K_p, \overline{F}_p}(G, X) & \longrightarrow \text{Sht}_{G, \mu, K_p}' \\
\downarrow & \downarrow \\
S_{K', \overline{F}_p}(G, X) & \longrightarrow \text{Sht}_{G, \mu, K_p}.
\end{align*}
$$

(4)

Here Sht_{G, μ, K_p} is the pre-stack of G-shtukas of type μ and parahoric K_p. These were introduced by Xiao-Zhu and generalised by Shen-Yu-Zhang.
Idea of the proof III

Let K_p be a hyperspecial parahoric and $K'_p \subset K_p$ another parahoric. Let $S_{K,\overline{F}_p}(G, X)$ be the special fiber of the Kisin-Pappas integral model, then it has a morphism to the ‘moduli space of p-divisible groups with extra structures’. This map fits into a commutative diagram together with its variant for K'

\[
\begin{array}{ccc}
S_{K',\overline{F}_p}(G, X) & \longrightarrow & \text{Sht}_{G,\mu,K'_p} \\
\downarrow & & \downarrow \\
S_{K,\overline{F}_p}(G, X) & \longrightarrow & \text{Sht}_{G,\mu,K_p}.
\end{array}
\]

(4)

Here Sht_{G,μ,K_p} is the pre-stack of G-shtukas of type μ and parahoric K_p. These were introduced by Xiao-Zhu and generalised by Shen-Yu-Zhang.

The LR conjecture holds for the Shimura variety in the top left corner if and only if the diagram is Cartesian.
Idea of the proof IV

So let Y be the fiber product of the diagram and consider the morphism $i: S_K', F_p(G, X) \to Y$, we will show it is an isomorphism in three steps:

We show that i is a closed immersion.

We show that Y is equidimensional.

We prove that Y has the same number of irreducible components as $S_K', F_p(G, X)$.

We do this by showing that Y has as few irreducible components as possible. This last result is new even for $S_K', F_p(G, X)$!
So let Y be the fiber product of the diagram
Idea of the proof IV

So let Y be the fiber product of the diagram and consider the morphism $i : S_{K', \overline{F}_p}(G, X) \to Y$, we will show it is an isomorphism in three steps:
So let Y be the fiber product of the diagram and consider the morphism $i : S_{K', \overline{\mathbb{F}}_p} (G, X) \to Y$, we will show it is an isomorphism in three steps:

- We show that i is a closed immersion.
- We show that Y is equidimensional.
- We prove that Y has the same number of irreducible components as $S_{K', \overline{\mathbb{F}}_p} (G, X)$.

This last result is new even for $S_{K', \overline{\mathbb{F}}_p} (G, X)$!
Idea of the proof IV

So let Y be the fiber product of the diagram and consider the morphism $i : S_{K', \overline{F}_p} (G, X) \to Y$, we will show it is an isomorphism in three steps:

We show that i is a closed immersion.

We show that Y is equidimensional.

We prove that Y has the same number of irreducible components as $S_{K', \overline{F}_p} (G, X)$.
Idea of the proof IV

So let Y be the fiber product of the diagram and consider the morphism $i : S_{K',\overline{F}_p}(G, X) \to Y$, we will show it is an isomorphism in three steps:

- We show that i is a closed immersion.
- We show that Y is equidimensional.
- We prove that Y has the same number of irreducible components as $S_{K',\overline{F}_p}(G, X)$.
So let Y be the fiber product of the diagram and consider the morphism $i : S_{K', \overline{\mathbb{F}}_p} (G, X) \to Y$, we will show it is an isomorphism in three steps:

- We show that i is a closed immersion.
- We show that Y is equidimensional.
- We prove that Y has the same number of irreducible components as $S_{K', \overline{\mathbb{F}}_p} (G, X)$. We do this by showing that Y has as few irreducible components as possible.
Idea of the proof IV

So let Y be the fiber product of the diagram and consider the morphism $i : S_{K', \overline{\mathbb{F}}_p}(G, X) \to Y$, we will show it is an isomorphism in three steps:

We show that i is a closed immersion.

We show that Y is equidimensional.

We prove that Y has the same number of irreducible components as $S_{K', \overline{\mathbb{F}}_p}(G, X)$. We do this by showing that Y has as few irreducible components as possible.

This last result is new even for $S_{K', \overline{\mathbb{F}}_p}(G, X)$!
The modular curve $\Gamma_0(N)$ comes equipped with the Ekedahl-Oort stratification; the stratum that an $\overline{\mathbb{F}}_p$ point (E, α_n) is in is determined by the p-torsion $E[p]$. More generally, this defines a stratification on the moduli space of abelian varieties. Ekedahl and van der Geer showed that Ekedahl-Oort strata are irreducible precisely when they are not contained in the supersingular locus. Let (G, X) be as above, and let K_p be a hyperspecial subgroup. Theorem 2 (-) Suppose that G has no factors of type A, that $\text{Sh}_{K_p}(G, X)$ is proper and that G_{ad} is \mathbb{Q}-simple. Then Ekedahl-Oort strata that are not contained in the basic locus are 'irreducible'.
The modular curve $\Gamma_0(N)$ comes equipped with the Ekedahl-Oort stratification; the stratum that an $\overline{\mathbb{F}}_p$ point (E, α_n) is in is determined by the p-torsion $E[p]$. More generally, this defines a stratification on the moduli space of abelian varieties.
Main Results II

The modular curve $\Gamma_0(N)$ comes equipped with the Ekedahl-Oort stratification; the stratum that an $\overline{\mathbb{F}}_p$ point (E, α_n) is in is determined by the p-torsion $E[p]$. More generally, this defines a stratification on the moduli space of abelian varieties.

Ekedahl and van der Geer showed that Ekedahl-Oort strata are irreducible precisely when they are not contained in the supersingular locus.
The modular curve $\Gamma_0(N)$ comes equipped with the Ekedahl-Oort stratification; the stratum that an $\overline{\mathbb{F}}_p$ point (E, α_n) is in is determined by the p-torsion $E[p]$. More generally, this defines a stratification on the moduli space of abelian varieties.

Ekedahl and van der Geer showed that Ekedahl-Oort strata are irreducible precisely when they are not contained in the supersingular locus.

Let (G, X) be as above, and let K_p be a hyperspecial subgroup.
Main Results II

The modular curve $\Gamma_0(N)$ comes equipped with the Ekedahl-Oort stratification; the stratum that an $\overline{\mathbb{F}}_p$ point (E, α_n) is in is determined by the p-torsion $E[p]$. More generally, this defines a stratification on the moduli space of abelian varieties.

Ekedahl and van der Geer showed that Ekedahl-Oort strata are irreducible precisely when they are not contained in the supersingular locus.

Let (G, X) be as above, and let K_p be a hyperspecial subgroup.

Theorem 2 (−)

Suppose that G has no factors of type A, that $\text{Sh}_K(G, X)$ is proper and that G^{ad} is \mathbb{Q}-simple. Then Ekedahl-Oort strata that are not contained in the basic locus are ‘irreducible’.
The modular curve $\Gamma_0(N)$ comes equipped with the Ekedahl-Oort stratification; the stratum that an $\overline{\mathbb{F}}_p$ point (E, α_n) is in is determined by the p-torsion $E[p]$. More generally, this defines a stratification on the moduli space of abelian varieties.

Ekedahl and van der Geer showed that Ekedahl-Oort strata are irreducible precisely when they are not contained in the supersingular locus.

Let (G, X) be as above, and let K_p be a hyperspecial subgroup.

Theorem 2 (-)

Suppose that G has no factors of type A, that $\text{Sh}_K(G, X)$ is proper and that G^{ad} is \mathbb{Q}-simple. Then Ekedahl-Oort strata that are not contained in the basic locus are ‘irreducible’.