Optimally tackling covariate shift in RKHS-based nonparametric regression

Cong Ma
Department of Statistics, UChicago

IDEAL Annual Meeting, June 2023
Success of machine learning

Core assumption: $P_{\text{train}} = Q_{\text{test}}$
Our focus: covariate shift

\[P_{\text{train}}(X) \neq Q_{\text{test}}(X), \quad \text{while} \quad P_{\text{train}}(Y \mid X) = Q_{\text{test}}(Y \mid X) \]

due to variability in medical equipment, scanning protocols, subject populations
Key questions

- What is the statistical limit of estimation in the presence of covariate shift? And how does this limit depend on the “amount” of covariate shift?

- Is nonparametric least-squares estimation still optimal under covariate shift? If not, what is the optimal way of tackling covariate shift?
Problem setup
In standard nonparametric regression, one observes n random pairs $\{x_i, y_i\}_{i=1}^n$, where $x_i \sim P$, and

$$y_i = f^*(x_i) + w_i \quad \text{with} \quad w_i \sim \mathcal{N}(0, \sigma^2)$$

We measure performance of estimator \hat{f} by its $L^2(P)$-error:

$$\|\hat{f} - f^*\|_P^2 := \int_X (\hat{f}(x) - f^*(x))^2 p(x) dx$$

Under covariate shift, however, our goal is to find an estimator \hat{f} whose $L^2(Q)$-error is small, where target distribution Q is different from source distribution P.
Reproducing kernel Hilbert spaces (RKHSs)

- We assume throughout that f^* lies in some RKHS \mathcal{H} in $L^2(Q)$

- Eigen-decomposition of kernel $\mathcal{K} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$:

 $$\mathcal{K}(x, x') := \sum_{j=1}^{\infty} \mu_j \phi_j(x) \phi_j(x')$$

 with $\{\mu_j\}_{j \geq 1}$ sequence of non-negative eigenvalues, and $\{\phi_j\}_{j \geq 1}$ orthonormal basis of $L^2(Q)$

- Hilbert norm (measure of smoothness):

 $$\|f\|_{\mathcal{H}}^2 = \sum_{j=1}^{\infty} \theta_j^2 / \mu_j, \quad \text{where } \theta_j := \int_{\mathcal{X}} f(x) \phi_j(x) q(x) dx$$

- Parametrization of \mathcal{H}:

 $$\mathcal{H} := \left\{ f = \sum_{j=1}^{\infty} \theta_j \phi_j \mid \sum_{j=1}^{\infty} \theta_j^2 / \mu_j < \infty \right\}$$

 We assume throughout that $\sup_{x \in \mathcal{X}} \mathcal{K}(x, x) \leq \kappa^2$
Examples of RKHSs

- Linear kernels: \(\mathcal{K}(x, x') = \langle x, x' \rangle \) with \(\mathcal{X} = \mathbb{R}^d \), and \(\mathcal{H} \) all linear functions

- Polynomial kernels: \(\mathcal{K}(x, x') = (1 + \langle x, x' \rangle)^m \) with \(\mathcal{X} = \mathbb{R}^d \), and \(\mathcal{H} \) being polynomials of degree \(m \) or less

- First-order Sobolev space: \(\mathcal{K}(x, x') = \min\{x, x'\} \) with \(\mathcal{X} = [0, 1] \), and

\[
\mathcal{H} = \left\{ f : [0, 1] \to \mathbb{R} \mid f(0) = 0, \int_0^1 |f'(x)|^2 dx < \infty \right\}
\]
Family of source-target pairs

Discrepancy between $L_2(P)$ and $L_2(Q)$ norms are controlled by likelihood ratios (LRs)

$$\rho(x) := \frac{q(x)}{p(x)}$$
Family of source-target pairs

Discrepancy between $L_2(P)$ and $L_2(Q)$ norms are controlled by likelihood ratios (LRs)

$$\rho(x) := \frac{q(x)}{p(x)}$$

We focus on two broad families of covariate shift pairs (P, Q):

- **Uniformly B-bounded families**: $\sup_{x \in X} \rho(x) \leq B$, where $B \geq 1$

 $B = 1$ recovers no-covariate-shift case

- **χ^2-bounded families**: $\mathbb{E}_{X \sim P}[\rho^2(X)] \leq V^2$ for some $V^2 \geq 1$

 more general than (1), and related to $\chi^2(Q\|P) := \mathbb{E}_{X \sim P}[\rho^2(X)] - 1$
Uniformly B-bounded likelihood ratios
Upper bounds

A naive kernel ridge regression estimator (KRR):

\[
\hat{f}_\lambda := \arg \min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|_H^2 \right\}
\]

Theorem 1 (Ma, Pathak, Wainwright, 2022)

Assume \(B \)-bounded likelihood ratios and \(\kappa \)-uniformly bounded kernel. For any \(\lambda \geq 10\kappa^2/n \), w.h.p. KRR \(\hat{f}_\lambda \) satisfies the bound

\[
\| \hat{f}_\lambda - f^* \|_Q^2 \lesssim \lambda B \| f^* \|_H^2 + \frac{\sigma^2 B \log n}{n} \sum_{j=1}^{\infty} \frac{\mu_j}{\mu_j + \lambda B}
\]

with

\[
b_\lambda^2(B) + v_\lambda(B)
\]
Bias-variance trade-off

Upper bound of KRR:

\[\| \hat{f}_\lambda - f^* \|_Q^2 \lesssim \lambda B \| f^* \|_H^2 + b_\lambda^2(B) + \frac{\sigma^2 B \log n}{n} \sum_{j=1}^{\infty} \frac{\mu_j}{\mu_j + \lambda B} \]

- Bias \(\lambda B \| f^* \|_H^2 \): increase as \(\lambda \) increases
- Variance: \(\frac{\sigma^2 B \log n}{n} \sum_{j=1}^{\infty} \frac{\mu_j}{\mu_j + \lambda B} \): decrease as \(\lambda \) increases
Bias-variance trade-off

Upper bound of KRR:

$$\|\hat{f}_\lambda - f^*\|_Q^2 \lesssim \lambda B \|f^*\|_H^2 + \underbrace{b^2_\lambda(B)} + \underbrace{\frac{\sigma^2 B \log n}{n} \sum_{j=1}^{\infty} \frac{\mu_j}{\mu_j + \lambda B}}$$

- Bias $\lambda B \|f^*\|_H^2$: increase as λ increases
- Variance: $\frac{\sigma^2 B \log n}{n} \sum_{j=1}^{\infty} \frac{\mu_j}{\mu_j + \lambda B}$: decrease as λ increases

Familiar! What’s new?
Bias-variance trade-off

\[\mu_j = j^{-2}, \text{ sample size } n = 8000, \text{ and noise variance } \sigma^2 = 1 \]

Optimal \(\lambda^*(B) \) shifts leftwards to smaller values as \(B \) is increased.
Upper bounds for specific kernels

- Finite-rank kernels (i.e., $\mu_j = 0$ for $j > D$) with optimal rate $\sigma^2 B \frac{D}{n}$

- Kernels with α-decaying eigenvalues (i.e., $\mu_j \lesssim j^{-2\alpha}$) with optimal rate $(\sigma^2 B / n)^{\frac{2\alpha}{2\alpha + 1}}$

Unweighted KRR is minimax optimal for these RKHSs
Sub-optimality of constrained estimator

Suppose that $\|f^*\|_\mathcal{H} \leq 1$. A seemingly “equivalent” estimator:

$$\hat{f}_{\text{erm}} := \arg \min_{f \in \mathcal{B}_\mathcal{H}(1)} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

with $\mathcal{B}_\mathcal{H}(1)$ denoting the ball with unit Hilbert norm
Sub-optimality of constrained estimator

Suppose that $\|f^*\|_{\mathcal{H}} \leq 1$. A seemingly “equivalent” estimator:

$$\hat{f}_{\text{erm}} := \arg \min_{f \in \mathcal{B}_{\mathcal{H}}(1)} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

with $\mathcal{B}_{\mathcal{H}}(1)$ denoting the ball with unit Hilbert norm.

- Without covariate shift, constrained least-squares estimator is also rate-optimal.
- However, under covariate shift, \hat{f}_{erm} is provably sub-optimal. One can construct B-bounded pair (P,Q) and RKHS such that optimal rate is $(B/n)^{2/3}$, while $\mathbb{E}\left[\|\hat{f}_{\text{erm}} - f^*\|^2_Q\right] \gtrsim B^3/n^2$
Key observation: $\|\hat{f}_\lambda\|_{L_2}^2$ increases as B increases, where $\lambda = \lambda^*(B)$.
\(\chi^2 \)-bounded likelihood ratios

— going beyond uniform boundedness
A simple example

- Source distribution $P = \mathcal{N}(0, 0.9)$
- Target distribution $Q = \mathcal{N}(0, 1)$
- Unbounded likelihood ratio as $\lim_{|x| \to \infty} \rho(x) \to \infty$
- However, second moment of LRs is bounded
Unweighted KRR?

In the bounded likelihood ratio case, the key to the success of unweighted KRR:

\[\hat{f}_\lambda := \arg \min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|_H^2 \right\} \]

is the following nice relation

\[\Sigma_P \succeq \frac{1}{B} \mathbf{I} \]

\[\Sigma_P := \mathbb{E}_{X \sim P} [\phi(X)\phi(X)\top], \text{ and } \mathbf{I} = \Sigma_Q := \mathbb{E}_{X \sim Q} [\phi(X)\phi(X)\top] \]
In the bounded likelihood ratio case, the key to the success of *unweighted* KRR:

\[
\hat{f}_\lambda := \arg \min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2 \right\}
\]

is the following nice relation

\[
\Sigma_P \succeq \frac{1}{B} I
\]

\[
\Sigma_P := \mathbb{E}_{X \sim P} [\phi(X)\phi(X)^\top], \text{ and } I = \Sigma_Q := \mathbb{E}_{X \sim Q} [\phi(X)\phi(X)^\top]
\]

In contrast, such a nice relationship (with \(B\) replaced by \(V^2\)) does NOT appear to hold with unbounded likelihood ratios
Likelihood-reweighted estimator

It is therefore natural to consider the likelihood-reweighted estimate

\[
\arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \rho(x_i)(f(x_i) - y_i)^2 + \lambda \|f\|_H^2
\]

- The first term is an unbiased estimate of \(\mathbb{E}_Q[(Y - f(X))^2] \)

- However, the variability could be huge due to multiplication by potentially \textit{unbounded} \(\rho(x) \)

Therefore we consider truncated estimator

\[
\hat{f}_{\lambda}^{rw} := \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau_n}(x_i)(f(x_i) - y_i)^2 + \lambda \|f\|_H^2
\]
Importance-reweighted estimator is near-optimal

With properly chosen λ and τ_n, \hat{f}_λ^{TW} is optimal for a range of kernel classes including

- Finite-rank kernels with optimal rate \(\frac{D V^2 \sigma^2}{n} \)

- Kernels with α-decaying eigenvalues with optimal rate
 \[
 \left(\frac{\sigma^2 V^2}{n} \right)^{\frac{2\alpha}{2\alpha+1}}
 \]

 as long as the kernel eigenfunctions are bounded $\sup_{x \in X} |\phi_j(x)| \leq 1$
Conclusions and open questions

- When LRs are uniformly bounded, unweighted KRR is optimal while constrained estimator is sub-optimal
- When LRs are unbounded, likelihood reweighted KRR is optimal

Future directions:
- Prove theoretically unweighted KRR (fails to) achieve optimality
- Remove extra condition on uniformly-bounded eigen-functions
Paper:

“Optimally tackling covariate shift in RKHS-based nonparametric regression,”
C. Ma, R. Pathak, M. J. Wainwright, arXiv:2205.02986, to appear in the Annals of Statistics