The Basic Science of Human Knee Menisci: Structure, Composition, and Function

Alice J. S. Fox, MSc,*† Asheesh Bedi, MD,‡ and Scott A. Rodeo, MD†

Context: Information regarding the structure, composition, and function of the knee menisci has been scattered across multiple sources and fields. This review contains a concise, detailed description of the knee menisci—including anatomy, etymology, phylogeny, ultrastructure and biochemistry, vascular anatomy and neuroanatomy, biomechanical function, maturation and aging, and imaging modalities.

Evidence Acquisition: A literature search was performed by a review of PubMed and OVID articles published from 1858 to 2011.

Results: This study highlights the structural, compositional, and functional characteristics of the menisci, which may be relevant to clinical presentations, diagnosis, and surgical repairs.

Conclusions: An understanding of the normal anatomy and biomechanics of the menisci is a necessary prerequisite to understanding the pathogenesis of disorders involving the knee.

Keywords: knee; meniscus; anatomy; function

Once described as a functionless embryonic remnant, the menisci are now known to be vital for the normal function and long-term health of the knee joint. The menisci increase stability for femorotibial articulation, distribute axial load, absorb shock, and provide lubrication and nutrition to the knee joint. Injuries to the menisci are recognized as a cause of significant musculoskeletal morbidity. The unique and complex structure of menisci makes treatment and repair challenging for the patient, surgeon, and physical therapist. Furthermore, long-term damage may lead to degenerative joint changes such as osteophyte formation, articular cartilage degeneration, joint space narrowing, and symptomatic osteoarthritis. Preservation of the menisci depends on maintaining their distinctive composition and organization.

ANATOMY OF MENISCI

Meniscal Etymology

The word meniscus comes from the Greek word mēniskos, meaning “crescent,” diminutive of mēnē, meaning “moon.”

References 9, 13, 29, 45, 144, 160, 161.

Meniscal Phylogeny and Comparative Anatomy

Hominids exhibit similar anatomic and functional characteristics, including a bicondylar distal femur, intra-articular cruciate ligaments, menisci, and asymmetrical collateral. These similar morphologic characteristics reflect a shared genetic lineage that can be traced back more than 300 million years.

In the primate lineage leading to humans, hominids evolved to bipedal stance approximately 3 to 4 million years ago, and by 1.3 million years ago, the modern patellofemoral joint was established (with a longer lateral patellar facet and matching lateral femoral trochlea). Tardieu investigated the transition from occasional bipedalism to permanent bipedalism and observed that primates contain a medial and lateral fibrocartilaginous meniscus, with the medial meniscus being morphologically similar in all primates (crescent shaped with 2 tibial insertions). By contrast, the lateral meniscus was observed to be more variable in shape. Unique in Homo sapiens is the presence of 2 tibial insertions—1 anterior and 1 posterior—indicating a habitual practice of full extension movements of the knee joint during the stance and swing phases of bipedal walking.
Embryology and Development

The characteristic shape of the lateral and medial menisci is attained between the 8th and 10th week of gestation.53,60 They arise from a condensation of the intermediate layer of mesenchymal tissue to form attachments to the surrounding joint capsule.31,87,110 The developing menisci are highly cellular and vascular, with the blood supply entering from the periphery and extending through the entire width of the menisci.31 As the fetus continues to develop, there is a gradual decrease in the cellularity of the menisci with a concomitant increase in the collagen content in a circumferential arrangement.30,31 Joint motion and the postnatal stress of weightbearing are important factors in determining the orientation of collagen fibers. By adulthood, only the peripheral 10% to 30% have a blood supply.12,31 Despite these histologic changes, the proportion of tibial plateau covered by the corresponding meniscus is relatively constant throughout fetal development, with the medial and lateral menisci covering approximately 60% and 80% of the surface areas, respectively.31

Gross Anatomy

Gross examination of the knee menisci reveals a smooth, lubricated tissue (Figure 1). They are crescent-shaped wedges of fibrocartilage located on the medial and lateral aspects of the knee joint (Figure 2A). The peripheral, vascular border (also known as the \textit{red zone}) of each meniscus is thick, convex, and attached to the joint capsule. The innermost border (also known as the \textit{white zone}) tapers to a thin free edge. The superior surfaces of menisci are concave, enabling effective articulation with their respective convex femoral condyles. The inferior surfaces are flat to accommodate the tibial plateau (Figure 1).28,175

\textbf{Medial meniscus.} The semicircular medial meniscus measures approximately 35 mm in diameter (anterior to posterior) and is significantly broader posteriorly than it is anteriorly.175 The anterior horn is attached to the tibia plateau near the intercondylar fossa anterior to the anterior cruciate ligament (ACL). There is significant variability in the attachment location of the anterior horn of the medial meniscus. The posterior
horn is attached to the posterior intercondylar fossa of the tibia between the lateral meniscus and the posterior cruciate ligament (PCL; Figures 1 and 2B). Johnson et al reexamined the tibial insertion sites of the menisci and their topographic relationships to surrounding anatomic landmarks of the knee. They found that the anterior and posterior horn insertion sites of the medial meniscus were larger than those of the lateral meniscus. The area of the anterior horn insertion site of the medial meniscus was the largest overall, measuring 61.4 mm², whereas the posterior horn of the lateral meniscus was the smallest, at 28.5 mm².

The tibial portion of the capsular attachment is the coronary ligament. At its midpoint, the medial meniscus is more firmly attached to the femur through a condensation in the joint capsule known as the deep medial collateral ligament. The transverse, or “intermeniscal,” ligament is a fibrous band of tissue that connects the anterior horn of the medial meniscus to the anterior horn of the lateral meniscus (Figures 1 and 2A).

Lateral meniscus. The lateral meniscus is almost circular, with an approximately uniform width from anterior to posterior (Figures 1 and 2A). It occupies a larger portion (~80%) of the articular surface than the medial meniscus (~60%) and is more mobile. Both horns of the lateral meniscus are attached to the tibia. The insertion of the anterior horn of the lateral meniscus lies anterior to the intercondylar eminence and adjacent to the broad attachment site of the ACL (Figure 2B). The posterior horn of the lateral meniscus inserts posterior to the lateral tibial spine and just anterior to the insertion of the posterior horn of the medial meniscus (Figure 2B). The lateral meniscus is loosely attached to the capsular ligament; however, these fibers do not attach to the lateral collateral ligament. The posterior horn of the lateral meniscus attaches to the inner aspect of the medial femoral condyle via the anterior and posterior meniscofemoral ligaments of Humphrey and Wrisberg, respectively, which originate near the origin of the PCL (Figures 1 and 2).

Meniscofemoral ligaments. The literature reports significant inconsistencies in the presence and size of meniscofemoral ligaments of the lateral meniscus. There may be none, 1, 2, or 4. When present, these accessory ligaments transverse from the posterior horn of the lateral meniscus to the lateral aspect of the medial femoral condyle. They insert immediately adjacent to the femoral attachment of the PCL (Figures 1 and 2).

In a series of studies, Harner et al measured the cross-sectional area of the ligaments and found that the meniscofemoral ligament averaged 20% of the size of the PCL (range, 7%–35%). However, the size of the insertional area alone without knowledge of the insertional angle or collagen density does not indicate their relative strength. The function of these ligaments remains unknown; they may pull the posterior horn of the lateral meniscus in an anterior direction to increase the congruity of the meniscotibial fossa and the lateral femoral condyle.

ULTRASTRUCTURE AND BIOCHEMISTRY

Extracellular Matrix

The meniscus is a dense extracellular matrix (ECM) composed primarily of water (72%) and collagen (22%), interposed with cells. Proteoglycans, noncollagenous proteins, and glycoproteins account for the remaining dry weight. Meniscal cells synthesize and maintain the ECM, which determines the material properties of the tissue.

The cells of the menisci are referred to as fibrochondrocytes because they appear to be a mixture of fibroblasts and chondrocytes. The cells in the more superficial layer of the meniscus are fusiform or spindle shaped (more fibroblastic), whereas the cells located deeper in the meniscus are ovoid or polygonal (more chondrocytic). Cell morphology does not differ between the peripheral and central locations in the meniscus.

Both cell types contain abundant endoplasmic reticulum and Golgi complex. Mitochondria are only occasionally visualized, suggesting that the major pathway for energy production of fibrochondrocytes in their avascular milieu is probably anaerobic glycolysis.

Water

In normal, healthy menisci, tissue fluid represents 65% to 70% of the total weight. Most of the water is retained within the tissue in the solvent domains of proteoglycans. The water content of meniscal tissue is higher in the posterior areas than in the central or anterior areas; tissue samples from surface and deeper layers had similar contents.

Large hydraulic pressures are required to overcome the drag of frictional resistance of forcing fluid flow through meniscal tissue. Thus, interactions between water and the matrix macromolecular framework significantly influence the viscoelastic properties of the tissue.

Collagens

Collagens are primarily responsible for the tensile strength of menisci; they contribute up to 75% of the dry weight of the ECM. The ECM is composed primarily of type I collagen (90% dry weight) with variable amounts of types II, III, V, and VI. The predominance of type I collagen distinguishes the fibrocartilage of menisci from articular (hyaline) cartilage. The collagens are heavily cross-linked by hydroxylpyridinium alkylides.

The collagen fiber arrangement is ideal for transferring a vertical compressive load into circumferential “hoop” stresses (Figure 3). Type I collagen fibers are oriented circumferentially in the deeper layers of the meniscus, parallel...
to the peripheral border. These fibers blend the ligamentous connections of the meniscal horns to the tibial articular surface (Figure 3).10,27,49,156 In the most superficial region of the menisci, the type I fibers are oriented in a more radial direction. Radially oriented “tie” fibers are also present in the deep zone and are interspersed or woven between the circumferential fibers to provide structural integrity (Figure 3).# There is lipid debris and calcified bodies in the ECM of human menisci.54 The calcified bodies contain long, slender crystals of phosphorous, calcium, and magnesium on electron-probe roentgenographic analysis.54 The function of these crystals in not completely understood, but it is believed that they may play a role in acute joint inflammation and destructive arthropathies.

Noncollagenous matrix proteins, such as fibronectin, contribute 8% to 13% of the organic dry weight. Fibronectin is involved in many cellular processes, including tissue repair, embryogenesis, blood clotting, and cell migration/adhesion. Elastin forms less than 0.6% of the meniscus dry weight; its ultrastructural localization is not clear. It likely interacts directly with collagen to provide resiliency to the tissue.‡

Proteoglycans

Located within a fine meshwork of collagen fibrils, proteoglycans are large, negatively charged hydrophilic molecules, contributing 1% to 2% of dry weight.58 They are formed by a core protein with 1 or more covalently attached glycosaminoglycan chains (Figure 4).122 The size of these molecules is further increased by specific interaction with hyaluronic acid.57,72 The amount of proteoglycans in the meniscus is one-eighth that of articular cartilage,44 and there may be considerable variation depending on the site of the sample and the age of the patient.49

By virtue of their specialized structure, high fixed-charge density, and charge-charge repulsion forces, proteoglycans in the ECM are responsible for hydration and provide the tissue with a high capacity to resist compressive loads.‡ The glycosaminoglycan profile of the normal adult human meniscus consists of chondroitin-6-sulfate (40%), chondroitin-4-sulfate (10% to 20%), dermatan sulfate (20% to 30%), and keratin sulfate (15%; Figure 4).65,77,99,95 The highest glycosaminoglycan concentrations are found in the meniscal horns and the inner half of the menisci in the primary weightbearing areas.65,77

Aggrecan is the major proteoglycan found in the human menisci and is largely responsible for their viscoelastic compressive properties (Figure 5). Smaller proteoglycans, such as decorin, biglycan, and fibromodulin, are found in smaller amounts.124,151

Hexosamine contributes 1% to the dry weight of ECM.57,71 The precise functions of each of these small proteoglycans on the meniscus have yet to be fully elucidated.

Matrix Glycoproteins

Meniscal cartilage contains a range of matrix glycoproteins, the identities and functions of which have yet to be determined. Electrophoresis and subsequent staining of the polyacrylamide gels reveals bands with molecular weights varying from a few kilodaltons to more than 200 kDa.112 These matrix molecules include the link proteins that stabilize proteoglycan–hyaluronic acid aggregates and a 116-kDa protein of unknown function.46 This protein resides in the matrix in the form of disulfide-bonded complex of high molecular weight.16 Immunolocalization studies suggest that it is predominantly located around the collagen bundles in the interterritorial matrix.17

The adhesive glycoproteins constitute a subgroup of the matrix glycoproteins. These macromolecules are partly responsible for binding with other matrix molecules and/or cells. Such intermolecular adhesion molecules are therefore important components in the supramolecular organization of the extracellular molecules of the meniscus.158 Three molecules have been identified within the meniscus: type VI collagen, fibronectin, and thrombospondin.112,118,81

VASCULAR ANATOMY

The meniscus is a relatively avascular structure with a limited peripheral blood supply. The medial, lateral, and middle geniculate arteries (which branch off the popliteal artery) provide the major vascularity to the inferior and superior aspects of each meniscus (Figure 5).12,13,35-38 The middle geniculate artery is a small posterior branch that perforates the oblique popliteal ligament at the posteromedial corner of

*References 13, 14, 21, 27, 49, 59, 114, 156, 171, 182.
“References 13, 49, 73, 78, 80, 112, 131.

‡References 1, 10, 71, 89, 116, 121, 145.
the tibiofemoral joint. A premeniscal capillary network arising from the branches of these arteries originates within the synovial and capsular tissues of the knee along the periphery of the menisci. The peripheral 10% to 30% of the medial meniscus border and 10% to 25% of the lateral meniscus are relatively well vascularized, which has important implications for meniscus healing (Figure 6).12,33,68 Endoligamentous vessels from the anterior and posterior horns travel a short distance into the substance of the menisci and form terminal loops, providing a direct route for nourishment.30 The remaining
portion of each meniscus (65% to 75%) receives nourishment from synovial fluid via diffusion or mechanical pumping (ie, joint motion).106,120

Bird and Sweet examined the menisci of animals and humans using scanning electron and light microscopy.23,24 They observed canal-like structures opening deep into the surface of the menisci. These canals may play a role in the transport of fluid within the meniscus and may carry nutrients from the synovial fluid and blood vessels to the avascular sections of the meniscus.23,24 However, further study is needed to elucidate the exact mechanism by which mechanical motion supplies nutrition to the avascular portion of the menisci.

NEUROANATOMY

The knee joint is innervated by the posterior articular branch of the posterior tibial nerve and the terminal branches of the obturator and femoral nerves. The lateral portion of the capsule is innervated by the recurrent peroneal branch of the common peroneal nerve. These nerve fibers penetrate the capsule and follow the vascular supply to the peripheral portion of the menisci and the anterior and posterior horns, where most of the nerve fibers are concentrated.52,90 The outer third of the body of the meniscus is more densely innervated than the middle third.181,183 During extremes of flexion and extension of the knee, the meniscal horns are stressed, and the afferent input is likely greatest at these extreme positions.183,184

The mechanoreceptors within the meniscus function as transducers, converting the physical stimulus of tension and compression into a specific electrical nerve impulse. Studies of human menisci have identified 3 morphologically distinct mechanoreceptors: Ruffini endings, Pacinian corpuscles, and Golgi tendon organs.32 Type I (Ruffini) mechanoreceptors are low threshold and slowly adapting to the changes in joint deformation and pressure. Type II (Pacinian) mechanoreceptors are low threshold and fast adapting to tension changes.8 Type III (Golgi) are high-threshold mechanoreceptors, which signal when the knee joint approaches the terminal range of motion and are associated with neuromuscular inhibition. These neural elements were found in greater concentration in the meniscal horns, particularly the posterior horn.

The asymmetrical components of the knee act in concert as a type of biological transmission that accepts, transfers, and dissipates loads along the femur, tibia, patella, and femur.41 Ligaments act as an adaptive linkage, with the menisci representing mobile bearings. Several studies have reported that various intra-articular components of the knee are sensitive, capable of generating neurosensory signals that reach spinal, cerebellar, and higher central nervous system levels.111 It is believed that these neurosensory signals result in conscious perception and are important for normal knee joint function and maintenance of tissue homeostasis.112

BIOMECHANICAL FUNCTION

The biomechanical function of the meniscus is a reflection of the gross and ultrastructural anatomy and of its relationship to the surrounding intra-articular and extra-articular structures. The menisci serve many important biomechanical functions. They contribute to load transmission,10 shock absorption,4,10,45,50,152,153,172 stability,51,100,101,109,155 nutrition,23,24,84,141 joint lubrication,102,104,117 and proprioception.5,15,81,88,115,147 They also serve to decrease contact stresses and increase contact area and congruity of the knee.51,172

Meniscal Kinematics

In a study on ligamentous function, Brantigan and Voshell reported the medial meniscus to move an average 2 mm, while the lateral meniscus was markedly more mobile with approximately 10 mm of anterior-posterior displacement during flexion.25 Similarly, DePalma reported that the medial meniscus undergoes 3 mm of anterior-posterior displacement, while the lateral meniscus moves 9 mm during flexion.37 In a study using 5 cadaveric knees, Thompson et al reported the mean medial excursion to be 5.1 mm (average of anterior and posterior horns) and the mean lateral excursion, 11.2 mm, along the tibial articular surface (Figure 7).165 The findings from these studies confirm a significant difference in segmental motion between the medial and lateral meniscus. The anterior and posterior horn lateral meniscus ratio is smaller and indicates that the meniscus moves more as a single unit.165 Alternatively, the medial meniscus (as a whole) moves less than the lateral meniscus, displaying a greater anterior to posterior horn

References 15, 35, 52, 64, 90, 126, 127, 149, 183.

References 15, 52, 90, 126, 127, 149, 183.

References 19, 32, 42, 125, 136, 157, 174.

References 4, 10, 45, 50, 152, 153, 172.
differential excursion. Thompson et al found that the area of least meniscal motion is the posterior medial corner, where the meniscus is constrained by its attachment to the tibial plateau by the meniscotibial portion of the posterior oblique ligament, which has been reported to be more prone to injury.\(^{143,165}\) A reduction in the motion of the posterior horn of the medial meniscus is a potential mechanism for meniscal tears, with a resultant “trapping” of the fibrocartilage between the femoral condyle and the tibial plateau during full flexion. The greater differential between anterior and posterior horn excursion may place the medial meniscus at a greater risk of injury.\(^{155}\)

The differential of anterior horn to posterior horn motion allows the menisci to assume a decreasing radius with flexion, which correlates to the decreased radius of curvature of the posterior femoral condyles.\(^{165}\) This change of radius allows the meniscus to maintain contact with the articulating surface of both the femur and the tibia throughout flexion.

Load Transmission

The function of the menisci has been clinically inferred by the degenerative changes that accompany its removal. Fairbank described the increased incidence and predictable degenerative changes of the articular surfaces in completely meniscectomized knees.\(^{45}\) Since this early work, numerous studies have confirmed these findings and have further established the important role of the meniscus as a protective, load-bearing structure.

Weightbearing produces axial forces across the knee, which compress the menisci, resulting in “hoop” (circumferential) stresses.\(^{170}\) Hoop stresses are generated as axial forces and converted to tensile stresses along the circumferential collagen fibers of the meniscus (Figure 8). Firm attachments by the anterior and posterior insertion ligaments prevent the meniscus from extruding peripherally during load bearing.\(^{54}\) Studies by Seedhom and Hargreaves reported that 70% of the load in the lateral compartment and 50% of the load in the medial compartment is transmitted through the meniscus.\(^{153}\) The meniscus transmit 50% of compressive load through the posterior horns in extension, with 85% transmission at 90° flexion.\(^{72}\) Radin et al demonstrated that these loads are well distributed when the meniscus are intact.\(^{157}\) However, removal of the medial meniscus results in a 50% to 70% reduction in femoral condyle contact area and a 100% increase in contact stress.\(^{45,50,91}\) Total lateral meniscectomy results in a 40% to 50% decrease in contact area and increases contact stress in the lateral component to 200% to 300% of normal.\(^{86,88,91}\) This significantly increases the load per unit area and may contribute to accelerated articular cartilage damage and degeneration.\(^{45,85}\)

Shock Absorption

The menisci play a vital role in attenuating the intermittent shock waves generated by impulse loading of the knee with normal gait.\(^{94,96,155}\) Voloshin and Wosk showed that the normal knee has a shock-absorbing capacity about 20% higher than knees that have undergone meniscectomy.\(^{170}\) As the inability of a joint system to absorb shock has been implicated in the development of osteoarthritis, the meniscus would appear to play an important role in maintaining the health of the knee joint.\(^{138}\)

Joint Stability

The geometric structure of the menisci provides an important role in maintaining joint congruity and stability.\(^{45}\) The superior surface of each meniscus is concave, enabling effective articulation between the convex femoral condyles and flat tibial plateau. When the meniscus is intact, axial loading of the knee has a multidirectional stabilizing function, limiting excess motion in all directions.\(^{9}\)

Markolf and colleagues have addressed the effect of meniscectomy on anterior-posterior and rotational knee laxity. Medial meniscectomy in the ACL-intact knee has little effect on anterior-posterior motion, but in the ACL-deficient knee, it results in an increase in anterior-posterior tibial translation of up to 58% at 90° of flexion.\(^{109}\) Shoemaker and Markolf demonstrated that the posterior horn of the medial meniscus is the most important structure resisting an anterior tibial force in the ACL-deficient knee.\(^{135}\) Allen et al showed that the resultant force in the medial meniscus of the ACL-deficient knee increased by 52% in full extension and by 197% at 60° of flexion under a 134-N anterior tibial load.\(^{7}\) The large changes in kinematics due to medial meniscectomy in the ACL-deficient knee confirm the important role of the medial meniscus in knee stability. Recently, Musahl et al reported that the lateral meniscus plays a role in anterior tibial translation during the pivot-shift maneuver.\(^{123}\)

Joint Nutrition and Lubrication

The menisci may also play a role in the nutrition and lubrication of the knee joint. The mechanics of this lubrication remains unknown; the menisci may compress synovial fluid into the articular cartilage, which reduces frictional forces during weight-bearing.\(^{51}\)

There is a system of microcanals within the meniscus located close to the blood vessels, which communicates with the synovial cavity; these may provide fluid transport for nutrition and joint lubrication.\(^{23,24}\)

Proprioception

The perception of joint motion and position (proprioception) is mediated by mechanoreceptors that transduce mechanical deformation into electric neural signals. Mechanoreceptors have been identified in the anterior and posterior horns of the menisci.\(^{17}\) Quick-adapting mechanoreceptors, such as Pacinian corpuscles, are thought to mediate the sensation of joint motion, and slow-adapting receptors, such as Ruffini...
endings and Golgi tendon organs, are believed to mediate the sensation of joint position. The identification of these neural elements (located mostly in the middle and outer third of the meniscus) indicates that the menisci are capable of detecting proprioceptive information in the knee joint, thus playing an important afferent role in the sensory feedback mechanism of the knee.

MATURATION AND AGING OF THE MENISCUS

The microanatomy of the meniscus is complex and certainly demonstrates senescent changes. With advancing age, the meniscus becomes stiffer, loses elasticity, and becomes yellow. Microscopically, there is a gradual loss of cellular elements with empty spaces and an increase in fibrous tissue in comparison with elastic tissue. These cystic areas can initiate a tear, and with a torsional force by the femoral condyle, the superficial layers of the meniscus may shear off from the deep layer at the interface of the cystic degenerative change, producing a horizontal cleavage tear. Shear between these layers may cause pain. The torn meniscus may directly injure the overlying articular cartilage.

Ghosh and Taylor found that collagen concentration increased from birth to 30 years and remained constant until 80 years of age, after which a decline occurred. The noncollagenous matrix proteins showed the most profound changes, decreasing from 21.9% ± 1.0% (dry weight) in neonates to 8.1% ± 0.8% between the ages of 30 to 70 years. After 70 years of age, the noncollagenous matrix protein levels increased to 11.6% ± 1.3%. Peters and Smillie observed an increase in hexosamine and uronic acid with age.

McNicol and Roughley studied the variation of meniscal proteoglycans in aging, small differences in extractability and hydrodynamic size were observed. The proportions of keratin sulfate relative to chondroitin-6-sulfate increased with aging. Petersen and Tillmann immunohistochemically investigated human menisci (ranging from 22 weeks of gestation to 80 years), observing the differentiation of blood vessels and lymphatics in 20 human cadavers. At the time of birth, nearly the entire meniscus was vascularized. In the second year of life, an avascular area developed in the inner circumference. In the second decade, blood vessels were present in the peripheral third. After 50 years of age, only the peripheral quarter of the meniscal base was vascularized. The dense connective tissue of the insertion was vascularized but not the fibrocartilage of the insertion. Blood vessels were accompanied by lymphatics in all areas.

Arnoczky suggested that body weight and knee joint motion may eliminate blood vessels in the inner and middle aspects of the menisci. Nutrition of meniscal tissue occurs via perfusion from blood vessels and via diffusion from synovial fluid. A requirement for nutrition via diffusion is the intermittent loading and release on the articular surfaces, stressed by body weight and muscle forces. The mechanism is comparable with the nutrition of articular cartilage.

MAGNETIC RESONANCE IMAGING OF THE MENISCUS

Magnetic resonance imaging (MRI) is a noninvasive diagnostic tool used in the evaluation, diagnosis, and monitoring of
the menisci. MRI is widely accepted as the optimal imaging modality because of superior soft tissue contrast.

On cross-sectional MRI, the normal meniscus appears as a uniform low-signal (dark) triangular structure (Figure 9). A meniscal tear is identified by the presence of an increased intrameniscal signal that extends to the surface of this structure.

Several studies have evaluated the clinical utility of MRI for meniscal tears. In general, MRI is highly sensitive and specific for tears of the meniscus. The sensitivity of MRI in detecting meniscal tears ranges from 70% to 98%, and the specificity, for tears of the meniscus. The sensitivity of MRI in detecting clinically significant lesions of the anterior horn of the meniscus in 947 consecutive knee MRI and found a 74% false-positive rate. Increased signal intensity in the anterior horn does not necessarily indicate a clinically significant lesion.

CONCLUSIONS

The menisci of the knee joint are crescent-shaped wedges of fibrocartilage that provide increased stability to the femorotibial articulation, distribute axial load, absorb shock, and provide lubrication to the knee joint. Injuries to the menisci are recognized as a cause of significant musculoskeletal morbidity. Preservation of the meniscus is highly dependent on maintaining its distinctive composition and organization.

ACKNOWLEDGMENT

We wish to thank Tom Cichonski for his assistance in the formatting of this manuscript.

REFERENCES

1. Adams ME, Hukins DWL. The extracellular matrix of the meniscus. In: Mow VC, Arnoczky SP, Jackson DW, eds. Knee Meniscus: Basic and Clinical Foundations. New York, NY: Raven Press; 1992:15-28.
2. Adams ME, McDevitt CA, Ho A, Mui H. Isolation and characterization of high-buoyant-density proteoglycans from semilunar menisci. J Bone Joint Surg Am. 1986;68(6):55-64.
3. Adams ME, Muir H. The glycosaminoglycans of canine menisci. Biochem J. 1981;197:385-393.
4. Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution in synovial joints: part I. Tibial surface of the knee. J Biomech Eng. 1983;105:290-294.
5. Akgun U, Kogaoglu B, Baslo MB, Karahan M. Possible reflex pathway between medial meniscus and semi-membranosus muscle: an experimental study in rabbits. Knee Surg Sports Traumatol Arthrosc. 2000;18(1):109-115.
6. Alberts B, Johnson A, Lewis J, Raff M, Walter K, Walter P. Molecular Biology of the Cell. 4th ed. Bethesda, MD: National Center for Biotechnology Information; 2002.
7. Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res. 2001;19(1):109-115.
8. Arnoczky SP. Building a meniscus: biologic considerations. Clin Orthop Relat Res. 1999;367:214-225.
9. Arnoczky SP. Gross and vascular anatomy of the meniscus and its role in meniscal healing, regeneration and remodeling. In: Mow VC, Arnoczky SP, Jackson DW, eds. Knee Meniscus: Basic and Clinical Foundations. New York, NY: Raven Press; 1992:1-14.
10. Arnoczky SP, Adams ME, DeHaven KE, Eyre DR, Mow VC. The meniscus. In: Woo SL-Y, Buckwalter JA, eds. Injury and Repair of Musculoskeletal Soft Tissues. Park Ridge, IL: American Academy of Orthopaedic Surgeons; 1987:87-97.
11. Arnoczky SP, Warren RF. Anatomy of the cruciate ligaments. In: Feagin JA, ed. The Crucial Ligaments. New York, NY: Churchill Livingstone; 1988:179-195.
12. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10:20-25.
13. Arndt SP, Warren RF, Spivak JM. Meniscal repair using exogenous fibrin clot: an experimental study in dogs. J Bone Joint Surg Am. 1988;70:1209-1217.
14. Aspden RM, Yarker YE, Hukins DWL. Collagen orientations in the meniscus of the knee joint. J Anat. 1989;140:57-1.

Figures 9. A sagittal magnetic resonance (proton-density) image of a healthy knee depicting the medial menisci (arrows). The concave superior meniscal surface improves contact with the femoral epicondyles, and a flat undersurface improves contact with the tibial plateau. The periphery is thicker than the central portion, allowing for firm attachment to the joint capsule.

References 38, 39, 86, 97, 106, 117, 154, 176.
45. Fairbank TJ. Knee joint changes after meniscectomy. J Bone Joint Surg Br. 1948;30:664-670.

46. Fife RS. Identification of the link proteins and a 116,000-dalton matrix protein in canine meniscectomy. Arch Biochem Biophys. 1985;240:682.

47. Fife RS, Hooij GL, Brandt KD. Topographic localization of a 116,000 dalton protein in cartilage. J Histochecy Cytochem. 1985;33:127.

48. Fischer SF, Yee JM, Del Pizzo W, et al. Accuracy of diagnoses from magnetic resonance imaging of the knee: a multi-center analysis of one thousand and fourteen patients. J Bone Joint Surg Am. 1991;73:2-10.

49. Fithian DC, Kelly MA, Mow VC. Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res. 1990;252:19-30.

50. Fukuyuhashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee: a study of normal and osteoarthritic knee joints. Acta Orthop Scand. 1980;51:871-879.

51. Fukuyuhashi T, Torzilli PA, Sherman MF, Warren RF. An in vivo biomechanical analysis of anterior-posterior motion of the knee, tibial displacement rotation and torque. J Bone Joint Surg Am. 1982;64:259-264.

52. Gardner E. The innervations of the knee joint. Anat Rec. 1948;101:189-190.

53. Gardner E. The early development of the knee joint in staged human embryos. J Anat. 1968;102:289-299.

54. Ghaddiali FN, LaLonde JMA. Intramembranous lipidic debris and calcified bodies in human semilunar cartilages. J Anat. 1981;132:481.

55. Ghaddiali FN, LaLonde JMA, Wedge JH. Ultrastructure of normal and torn menisci of the human knee joint. J Anat. 1985;136:774-791.

56. Ghaddiali FN, Thomas I, Yong N, LaLonde JMA. Ultrastructure of rabbit semilunar cartilage. J Anat. 1978;125:499.

57. Ghosh P, Ingman AM, Taylor TK. Variations in collagen, non-collagenous proteins, and hexosamine in menisci derived from osteoarthritic and rheumatoid arthritic knee joints. J Rheumatol. 1975;2:100-107.

58. Ghosh P, Taylor TK. The knee joint meniscus: a fibrocartilage of some distinctiveness. Clin Orthop Relat Res. 1987;224:52-63.

59. Ghosh P, Taylor TK, Pettitt GD, Horsburgh BA, Bellenger CR. Effect of postoperative immobilization on the regrowth of knee joint semilunar cartilage: an experimental study. J Orthop Res. 1985;3:153.

60. Gray DJ, Gardner E. Pre-natal development of the human knee and superior tibial fibula joints. Am J Anat. 1950;86:235-288.

61. Gray JC. Neural and vascular anatomy of the menisci of the human knee. J Orthop Sports Phys Ther. 1999;29(1):23-30.

62. Gray SD, Kaplan PA, Dussault RG. Imaging of the knee: current status. Radiol Clin North Am. 1997;35:545-558.

63. Greis PE, Bardana DD, Holmstrom MC, Burks RT. Meniscal injury. I. Basic science and evaluation. J Am Acad Orthop Surg. 2002;10:168-176.

64. Gronblad M, Korkala O, Liesi P, Karaharju E. Innervation of synovial membranes and synovial fluid. Acta Orthop Scand. 1989;56:484-496.

65. Haines RW. The tetrapod knee joint. J Anat. 1942;74:270-301.

66. Hardingham TE, Mair H. Binding of oligosaccharides of hyaluronic acid to proteoglycans. Biochem J. 1975;155:190-199.

67. Harner CD, Janaushek MA, Kanamori A, Yagi AKM, Vosgin TM, Woo SL. Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med. 2000;28:144-151.

68. Harner CD, Kusayama T, Carlin G, et al. Structural and mechanical properties of the human posterior cruciate ligament and meniscofemoral ligaments. In: Transactions of the 40th Annual Meeting of the Orthopaedic Research Society. 1992.

69. Harner CD, Livesay GA, Choi NY, et al. Evaluation of the sizes and shapes of the human anterior and posterior cruciate ligaments: a comparative study. Trans Orthop Res Soc. 1992;17:125.

70. Haskel VC. Interaction of cartilage proteoglycans with hyaluronic acid. J Supramol Struct. 1977;10:121-129.

71. Haskel VC, Heimgard D. Aggregation of cartilage proteoglycans: I. The role of hyaluronic acid. J Biol Chem. 1974;249(15):4205-4206.

72. Heimgard D, Oldberg A. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J. 1989;3:2042-2051.

73. Hellert LF. Osteoarthrosis of the knee and its early arrest. Instr Course Lect. 1971;20:219-230.

74. Hellert LF, Langman J. The meniscofemoral ligaments of the human knee. J Bone Joint Surg Br. 1964;46:507-513.

75. Henning CE, Lynch MA, Clark JR. Vascularity for healing of meniscal repairs. Arthroscopy. 1987;3:13-18.

76. Herwig J, Egner E, Buddecke E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis. 1984;43:635-640.
