Supporting Information for “Effects of applied voltage on water at a gold electrode interface from ab initio molecular dynamics”

Zachary K. Goldsmith*, Marcos F. Calegari Andrade, and Annabella Selloni*

Department of Chemistry, Princeton University, Princeton, NJ 08544, USA

Corresponding authors: zkg@princeton.edu, aselloni@princeton.edu

Contents

1 Additional electrostatic data S2

2 Water hydrogen bonding and orientations S4

3 Mean square displacements S8

4 Velocity autocorrelation functions S10

5 Additional VDOS spectra and analysis S11

6 Representative input files and initial Cartesian coordinates S17
1 Additional electrostatic data

The computed electrode potentials for each trajectory presented in the main text follow from the solution and metal potentials Φ_S and Φ_M, respectively. The values of these quantities at every \sim48 fs for each trajectory are given in Figs. S1 and S2. As is mentioned in the main text and is visible here, Φ_M was the more volatile quantity of these two and contributed to most of the magnitude of the fluctuations in Φ_c.

![Figure S1: Solution potentials Φ_S as a function of simulation time t for each trajectory, designated by their electrode charges σ.](image)

![Figure S2: Metal potentials Φ_M as a function of simulation time t for each trajectory, designated by their electrode charges σ.](image)

We chose to measure Φ_M as the value of Φ in the back 1 Å of the Au(111) slab because of the stability of this quantity relative to alternatives. To illustrate this, we plotted the value of Φ_M throughout the $\sigma = +0.2$ e trajectory as measured three different ways in
Fig. S3. The relative behaviors of Φ_M measured each way were similar for each trajectory. These values demonstrate that the method utilized for the data in Fig. S2 and in the main text avoided the very large fluctuations likely associated with the sampling of unusual, or far from equilibrium atomic structures during the dynamics. We can further rationalize this choice by the limitation of relatively short trajectories and our interest in water under bias at thermal equilibrium. The fluctuations of Φ_M even with our chosen method were large compared to those of Φ_S, underscoring the trade-off between fluctuations in potential vs. charge in fixed-charge and fixed-potential methodologies, respectively.

![Graph](image)

Figure S3: Values of Φ_M for the $\sigma = +0.2 \, e$ trajectory as computed as the value of Φ at a fixed z near the middle of the slab (black), the value of Φ at the average value of z for all Au atoms (green), and as the average value of Φ in the back 1 Å of the Au slab, within the fixed layer (purple; same as corresponding data in Fig. S2).

The system’s Fermi level E_F exhibits even larger fluctuations than Φ_M, measured any way, during the trajectories, as shown in Fig. S4. While the system’s Fermi energy has been used as a reliable metal potential in static or other applications, it was satisfactory in this work to utilize the more stable Φ_M as measured at the partially-frozen back of the Au(111) slab.
Figure S4: Computed Fermi energies E_F of the system every 100 MD steps (\sim0.48 fs) in each trajectory. Note that the scale on which this quantity is plotted is much larger than that of Φ_M in Fig. S2.

2 Water hydrogen bonding and orientations

The structural properties of water at the Au(111) interface were further quantified by counting the average numbers of hydrogen bonds formed by water as functions of both its layer and the applied voltage vs. PZC, φ. Hydrogen bonds were defined by O atoms being less than 3.5 Å apart with an ODO angle within 30° of colinear. The average numbers of hydrogen bonds formed by water molecules in each layer were further distinguished by whether the hydrogen bond was formed with another water molecule of the same or of a neighboring layer. These values are reflected in Figs. S5-S7.
Figure S5: Average numbers of hydrogen bonds in layer 1 of water as a function of \(\varphi \), delineated by intra- (cyan) and inter-layer (magenta) contributions. Layer 1 water formed fewer hydrogen bonds than water in layers 2 and 3. Water in this layer formed more hydrogen bonds at \(\varphi \geq 0 \) V vs. PZC and the proportion of intra-layer hydrogen bonds generally increased with \(\varphi \).

Figure S6: Average numbers of hydrogen bonds in layer 2 of water as a function of \(\varphi \), delineated by intra- (cyan) and inter-layer (magenta) contributions. Water in layer 2 demonstrated the most overall hydrogen bonds of the three layers studied. The overall number of hydrogen bonds in this layer was not apparently \(\varphi \)-dependent, although the proportion of intra-layer hydrogen bonds generally decreased with \(\varphi \), in opposition to the trend in layer 1.
Figure S7: Average numbers of hydrogen bonds in layer 3 of water as a function of φ, delineated by intra- (cyan) and inter-layer (magenta) contributions. Layer 3 water formed slightly fewer hydrogen bonds on average compared to layer 2, and neither the overall number nor the proportion of intra- to inter-layer hydrogen bonds demonstrated a clear dependence on φ.

From Fig. S5 it is evident that the total average number of hydrogen bonds formed by layer 1 water is lower at negative φ than at PZC and positive φ. Additionally in layer 1, we observed an increase in the number intra-layer hydrogen bonding and a decrease in inter-layer hydrogen bonding when going from negative φ to zero and positive φ. That layer 1 water at $\varphi \geq 0$ V exhibits more overall and intra-layer hydrogen bonds than at $\varphi < 0$ is consistent with the higher densities observed at these potentials. This observation is likely also a consequence of the O atom being more likely than not oriented towards the Au surface at non-negative φ given that the O atom typically participates in two hydrogen bonds compared to one for H atoms. Therefore, when O is oriented towards Au and not towards layer 2, its ability to form inter-layer hydrogen bonds is suppressed. The hydrogen bonding similarities between the system at PZC and at $\varphi > 0$ in layer 1 are consistent with their similarities in density as a function of z as well.

Figs. S6 and S7 demonstrate that layer 2 water participates in the most hydrogen bonds overall of the 3 studied. The average overall numbers of hydrogen bonds formed per water in layers 2 and 3 did not show any clear dependence on φ, consistent with the diminished dependence of D_\parallel and the VDOS spectra on φ in these two layers. In addition, the proportion of intra- and inter-layer hydrogen bonds in layer 2 with respect to φ was
opposite to that in layer 1. In layer 3, the hydrogen bonding data did not seem to depend on φ and the differences with φ were likely within the error of the short simulations.

The effects of φ on water’s orientation persisted beyond layer 1, the data for which is given in the main text. The orientations of the water bisectors and OD bonds with respect to surface normal for all layers and φ are given in Figs. S8 and S9.

Figure S8: Histograms of the cosines of the angles formed between water’s bisector and a unit vector in z for all φ and all layers (1: magenta, 2: red, 3: orange, 4: gray). The inset illustration indicates the relevant angle θ in which the yellow rectangle represents the Au slab, the O atom is red, and the D atoms are white. The effects of φ on water’s orientations relative to surface-normal were strongest in layer 1, but persisted into layers 2 and 3.

Figure S9: Histograms of the cosines of the angles formed between OD bond vectors and a unit vector in z for all φ and all layers (1: magenta, 2: red, 3: orange, 4: gray). The inset illustration indicates the relevant angles θ in which the yellow rectangle represents the Au slab, the O atom is red, and the D atoms are white. The effects of φ on the orientations of water’s OD bonds relative to surface-normal were strongest in layer 1, but persisted into layers 2 and 3.
3 Mean square displacements

The O atom MSDs in \(x \) and \(y \) up to about half of the total trajectory times for each \(\varphi \) and layers 1-3 were computed to determine the values of \(D_\parallel \) shown in the main text. These are depicted here in Figs. S10-S12. The best fit slopes of the \(xy \) MSDs were used in Einstein’s relation to obtain the 2D diffusion coefficients.

Figure S10: Mean-square displacements in \(x \) and \(y \) for water O atoms in layer 1 for each \(\varphi \) as a function of simulation time \(t \) up to about half of the total BOMD trajectory time. The slopes of the best linear fits to these MSDs were related to the parallel diffusion coefficients \(D_\parallel \) shown in the main text. Water in this layer diffused parallel to the surface most at negative \(\varphi \), consistent with their lower densities and the layer’s greater distance from the surface. That the displacements of O atoms in layer 1 were smaller at positive \(\varphi \) is also consistent with the O atom being electrostatically attracted to the surface. Note that deviations from linearity for some trajectories are reflected in the large error bars in Fig. 7.
Figure S11: Mean-square displacements in x and y for water O atoms in layer 2 for each ϕ as a function of simulation time t up to about half of the total BOMD trajectory time. The slopes of the best linear fits to these MSDs were related to the parallel diffusion coefficients D_\parallel shown in the main text. Water in layer 2 diffused parallel to the surface most at small, non-zero ϕ, regardless of sign. At the largest in magnitude values of ϕ, water diffused parallel to the surface more than at PZC. Note that deviations from linearity for some trajectories are reflected in the large error bars in Fig. 7.

Figure S12: Mean-square displacements in x and y for water O atoms in layer 3 for each ϕ as a function of simulation time t up to about half of the total BOMD trajectory time. The slopes of the best linear fits to these MSDs were related to the parallel diffusion coefficients D_\parallel shown in the main text. Water in layer 3 diffused parallel to the surface most at small, non-zero ϕ, regardless of sign. At the largest in magnitude values of ϕ, water diffused parallel to the surface more than at PZC. Note that deviations from linearity for some trajectories are reflected in the large error bars in Fig. 7.
4 Velocity autocorrelation functions

The velocity autocorrelation functions of all water atoms for each φ and layers 1-3 were computed and shown in Figs. S13-S15. The first 1200 fs of each were Fourier transformed to obtain the corresponding VDOS spectra.

Figure S13: Velocity autocorrelation functions $\langle v(0)v(t) \rangle$ of water O and D atoms in layer 1 for each φ. The first 1200 fs were Fourier transformed to obtained the VDOS spectra shown in the main text.

Figure S14: Velocity autocorrelation functions $\langle v(0)v(t) \rangle$ of water O and D atoms in layer 2 for each φ. The first 1200 fs were Fourier transformed to obtained the VDOS spectra shown in the main text.
Figure S15: Velocity autocorrelation functions $\langle v(0)v(t) \rangle$ of water O and D atoms in layer 3 for each ϕ. The first 1200 fs were Fourier transformed to obtained the VDOS spectra shown in the main text.

5 Additional VDOS spectra and analysis

The VDOS spectra shown in the main text were obtained from the Fourier-transformed velocity autocorrelation functions, followed by Gaussian convolution. The resolution of the VDOS spectra that corresponds to the \sim0.48 fs time step was about \sim27 cm$^{-1}$. We further note here that the interpretations of the VDOS spectra are limited to mainly qualitative observations regarding the effects of distance from the surface and ϕ given the relatively short BOMD trajectories.

Figs. S16-S18 show the referenced VDOS spectra for layers 1-3 corresponding to those in the main text, with the $\phi = 0$ V spectrum of each layer as the reference. These referenced spectra are all plotted on the same scale. The referenced spectra highlight shifts and differences in intensity at different ϕ for each of the first three layers of water from the electrode. These spectra are clearly most intense in layer 1, where the effects of the electrode electrification are greatest. The referenced spectra for layer 1 demonstrate that both the δDOD and νOD peaks are blue shifted at non-zero ϕ. The referenced νOD signals in layers 2 and 3 for non-zero ϕ are slightly negative at the lower frequencies characteristic of νOD and slightly positive at the higher frequencies characteristic of νOD. This is consistent of water molecules in layers 2 and 3 being somewhat oriented according to the screened electric field (Figs. S8 and S9).
Figure S16: VDOS spectra at each φ for layer 1 water referenced to PZC (black; zero by construction). Negative intensities at lower frequencies and positive intensities at higher frequencies around both regions of interest are representative of blue shifts of both peaks at non-zero φ.

Figure S17: VDOS spectra at each φ for layer 2 water referenced to PZC (black; zero by construction). The lower intensities relative to layer 1 are indicative of a lesser effect of the electrode potential on the vibrational spectra.
Figure S18: VDOS spectra at each φ for layer 3 water referenced to PZC (black; zero by construction). The lower intensities relative to layer 1 are indicative of a lesser effect of the electrode potential on the vibrational spectra.

For the purposes of measuring the positions and integrating the intensities of the two VDOS peaks of interest despite the ~ 27 cm$^{-1}$ resolution, we interpolated between data points for the appropriate portions of each spectra. The positions of the δDOD peaks were sensitive to both φ and the layer. These data are shown in Fig. S19. In layer 1, the peak occurs at a higher frequency at all non-zero φ, as discussed in the main text. We observed blue shifts of this vibrational mode's frequency in layer 1 was up to about 10 cm$^{-1}$ at modest positive and negative φ. Layer 2 demonstrated very little effect of φ on the δDOD peak position and the δDOD peak position in layer 3 appeared to blue shift with increasing φ. Moreover, the position of the δDOD peak in layer 1 was red-shifted relative to those of layers 2 an 3. This is characteristic of water with a weakened hydrogen bonding network,6 consistent with the observation of the least number of hydrogen bonds formed on average in layer 1 (Figs. S5,7 S7).
Figure S19: Positions of the water δDOD peaks for each φ and layers 1-3 as determined by the maximum values of the interpolating functions in this region of the spectra.

The positions of the water νOD peaks for each φ and layers 1-3 were also determined via interpolation are shown in Fig. S20. We only investigated the global maxima of the interpolating functions for each spectrum despite there likely being several characteristic νOD peaks. These data also demonstrate that in layer 1 the position of the peak was blue-shifted at all non-zero φ, with shifts of the positions of maximum frequency of over 100 cm$^{-1}$. There was no discernible pattern in the νOD peak positions beyond layer 1.

Figure S20: Positions of the water νOD peaks for each φ and layers 1-3 as determined by the maximum values of the interpolating functions in this region of the spectra.

We also integrated the total intensities of the δDOD peaks using the interpolated spectra. These integrated intensities are shown in Fig. S21. For layer 1, we observed a minimum integrated spectral intensity for δDOD at the PZC, which was also observed for SEIRAS spectra of aqueous electrolytes on Au(111). We observed a maximal integrated
δDOD peak intensity at the most negative φ studied. There were no discernible patterns observed among the integrated intensities of the δDOD peaks in layers 2 and 3.

Figure S21: Integrated intensities (arbitrary units) of the water δDOD peaks for each φ and layers 1-3. The integration range was 1000-1400 cm\(^{-1}\).

For comparison, we also computed the VDOS spectra from the velocity autocorrelation functions only in the surface-normal dimension \(z\) given the importance of surface-normal dipoles in many surface-enhanced spectroscopies. These are shown alongside their corresponding 3D VDOS spectra in Figs. S22-S24. For the most part, the \(z\)-only VDOS spectra hew closely to the full VDOS spectra, especially in the second and third layers. In layer 1, the \(z\)-only VDOS spectra demonstrate some subtle differences from the 3D spectra: The δDOD peaks appear slightly red-shifted in the \(z\)-only spectra relative to the full spectra. In addition, the \(z\)-only spectra for layer 1 generally hew to only the second \(\nu\)OD peaks of the full spectra for \(\varphi \neq 0\) V. That this is more evident when there is a non-zero potential is consistent with the observation of water molecules that are more oriented along the surface-normal electric fields associated with the applied biases. This difference between the full and \(z\)-only spectra furthermore suggests that there are more than one characteristic \(\nu\)OD mode in this heterogeneous environment. However, it is likely that all vibrational modes are strongly coupled between the (arbitrary) Cartesian dimensions given the overall similarities between the spectra.
Figure S22: Layer 1 water VDOS spectra obtained from the 3D velocity autocorrelation functions (solid; same as main text) and from the z velocity autocorrelation functions (dashed). The spectra for each φ are shifted arbitrarily for clarity.

Figure S23: Layer 2 water VDOS spectra obtained from the 3D velocity autocorrelation functions (solid; same as main text) and from the z velocity autocorrelation functions (dashed). The spectra for each φ are shifted arbitrarily for clarity.

Figure S24: Layer 3 water VDOS spectra obtained from the 3D velocity autocorrelation functions (solid; same as main text) and from the z velocity autocorrelation functions (dashed). The spectra for each φ are shifted arbitrarily for clarity.
The integrated intensities of the δDOD peaks for the 3D and z-only VDOS spectra for layer 1 water are shown in Fig. S25. These integrals show discrepancies only at positive φ, and for the z-only spectra the integrated intensity is no longer minimal at PZC.

Figure S25: Integrated intensities (arbitrary units) of the water δDOD peaks in the 3D (magenta) and z-only (light pink) VDOS spectra for layer 1 water.

6 Representative input files and initial Cartesian coordinates

Example Quantum-ESPRESSO PWscf input file, including initial coordinates, for the $\sigma = -0.4 e$ trajectory:

```plaintext
&CONTROL
  restart_mode = 'restart',
  calculation = 'md',
  max_seconds = 3520,
  prefix = 'AuH2O',
  outdir = './',
  pseudo_dir = '/home/zkg/ONCV-pseudos/',
  etot_conv_thr = 1.0D-4,
  forcc_conv_thr = 1.0D-3,
  dt = 10.0,
  wf_collect = .TRUE.,
  tefield = .true.,
  dipfield = .true.,
  gate = .true.,
/
&SYSTEM
  ibrav = 0,
  !      celldm(1) = 7.89223,
  nspin = 1,
  tot_charge = -0.4,
```

S17
nat = 216,
ntyp = 3,
ecutwfc = 60,
occupations = 'smearing', smearing = 'cold', degauss = 0.01,
edir = 3,
emaxpos = 0.99,
eopreg = 0.95,
zgate = 0.87,
block = .true.,
block_1 = 0.743665,
block_2 = 0.91,
block_height = 0.25,
/
&ELECTRONS
conv_thr = 1.D-4,
mixing_mode = 'plain',
mixing_beta = 0.5D0,
startingwfc = 'file',
startingpot = 'file',
electron_maxstep = 150,
/
&IONS
ion_dynamics = 'verlet',
pot_extrapolation = 'first_order',
wfc_extrapolation = 'none',
ion_temperature = 'rescaling',
tempw = 330.D0,
tolp = 100.D0,
/
K_POINTS { gamma }

ATOMIC_SPECIES
Au 196.96657 Au_ONCV_PBE-1.0.UPF
H 2.00 H_ONCV_PBE-1.0.UPF
O 15.999 O_ONCV_PBE-1.0.UPF

CELL_PARAMETERS (angstrom)
10.226698060 0.000000000 0.000000000
0.000000000 11.808773755 0.000000000
0.000000000 0.000000000 36.000000000

ATOMIC_POSITIONS (angstrom)
Au 5.113345000 0.000000000 6.410460000 1 1 0
Au 7.670027730 1.476096250 6.410460000 1 1 0
Au 5.113345000 2.952192500 6.410460000 1 1 0
Au 7.670027730 4.428288750 6.410460000 1 1 0
Au 5.113345000 5.904385000 6.410460000 1 1 0
Au 7.670027730 7.380481250 6.410460000 1 1 0
Au 5.113345000 8.856672500 6.410460000 1 1 0
Au 7.670027730 10.32673750 6.410460000 1 1 0
Au 0.000000000 0.000000000 6.410460000 1 1 0
Au 2.556672500 1.476096250 6.410460000 1 1 0
Au 0.000000000 2.952192500 6.410460000 1 1 0
Au 2.556672500 4.428288750 6.410460000 1 1 0
Au 0.000000000 5.904385000 6.410460000 1 1 0
Au 2.556672500 7.380481250 6.410460000 1 1 0
Au 0.000000000 8.856577500 6.410460000 1 1 0
Au 2.556672500 10.332673750 6.410460000 1 1 0
Au 6.817796740 0.000000000 8.820910000
Au 9.374469240 1.476096250 8.820910000
Au 6.817796740 2.952192500 8.820910000
Au 9.374469240 4.428288750 8.820910000
Au 6.817796740 5.904385000 8.820910000
Au 9.374469240 7.380481250 8.820910000
Au 6.817796740 8.856577500 8.820910000
Au 9.374469240 10.332673750 8.820910000
Au 1.704451740 0.000000000 8.820910000
Au 4.261124240 1.476096250 8.820910000
Au 1.704451740 2.952192500 8.820910000
Au 4.261124240 4.428288750 8.820910000
Au 1.704451740 5.904385000 8.820910000
Au 4.261124240 7.380481250 8.820910000
Au 1.704451740 8.856577500 8.820910000
Au 4.261124240 10.332673750 8.820910000
Au 8.522248480 0.000000000 11.231400000
Au 5.965575980 1.476096250 11.231400000
Au 8.522248480 2.952192500 11.231400000
Au 5.965575980 4.428288750 11.231400000
Au 8.522248480 5.904385000 11.231400000
Au 5.965575980 7.380481250 11.231400000
Au 8.522248480 8.856577500 11.231400000
Au 5.965575980 10.332673750 11.231400000
Au 3.408903480 0.000000000 11.231400000
Au 0.852224850 1.476096250 11.231400000
Au 3.408903480 2.952192500 11.231400000
Au 0.852224850 4.428288750 11.231400000
Au 3.408903480 5.904385000 11.231400000
Au 0.852224850 7.380481250 11.231400000
Au 3.408903480 8.856577500 11.231400000
Au 0.852224850 10.332673750 11.231400000
O 3.474117948 8.795442378 23.759914278
H 3.580137747 7.833496774 23.759914278
H 2.541373385 8.908932147 23.759914278
O 4.097545029 4.670815939 20.864088030
H 3.303533920 4.11578906 20.873099898
H 4.764900793 4.050070607 20.505774890
O 2.90912584 8.542762202 17.217268989
H 3.396052387 7.683220980 17.289937227
H 2.312305576 8.508994790 16.416936571
O 0.232576032 4.304660875 21.044962170
H 0.685409235 3.895099936 21.810698945
O 0.571792465 3.830027377 20.266290198
O 2.040303802 9.224822479 21.022950338
H 2.565430742 8.461253552 20.633679016
H 2.440159050 9.357660497 21.894829355
O 3.814232983 7.519272386 14.513869883
H 3.861329045 6.691738014 15.054334810
H 3.740420357 7.178721275 13.597302711
O 8.784266081 8.106721185 22.922853506
H 7.861763259 7.871519202 22.132015071
H 7.702839380 8.357769686 15.292888970
O 1.248163681 7.390322464 14.849388600
H 1.104129925 8.635969590 15.616902938
O 10.082773089 7.106780784 20.737625620
H 0.763857614 7.480847628 20.760174626
H 0.006667415 6.136304498 20.700411653
O 5.340199259 11.240543292 14.919425159
H 5.731463722 10.363702970 14.807367800
H 4.368268790 11.058476767 14.892990557
O 7.187144861 2.890747058 23.681981996
H 8.090164596 2.938478766 24.021221265
H 6.928916285 1.939348005 23.735326136
O 4.777842336 3.950702741 18.053653533
H 5.535400463 9.616309354 18.075493438
H 4.068274911 9.715285417 17.606037243
O 4.643734084 3.357215799 17.488688572
H 4.650260212 2.532359508 16.956464823
H 5.321849959 3.189297114 18.169821351
O 1.357360322 6.196853128 14.571333565
H 0.527620207 5.693428033 14.813738514
H 1.686111298 5.775095878 13.750884539
O 8.701744661 2.890747058 23.681981996
H 7.424519336 7.537135286 15.367479610
H 9.037741243 6.817169423 15.072826007
O 9.696677435 5.427750273 24.025243758
H 10.273246478 4.508601130 23.928956051
H 9.825442120 5.739686861 23.120100759
O 2.188042220 1.037771562 17.156754963
H 2.406764988 0.773520384 16.245266186
H 2.044255473 12.029971974 17.683522319
O 6.108185019 8.772426972 14.332849826
H 6.512706917 7.998699955 13.88221341
H 5.206968795 8.377215444 14.512851591
H 2.406270430 3.237531190 20.368124086
H 1.820377219 1.626642689 20.719900776
O 3.211567483 1.860979536 20.111648467
H 4.710720305 2.125566874 14.820277806
H 5.119816000 1.254770380 14.663086060
H 3.763570969 1.928102807 14.656994079
O 5.928667169 0.732223829 17.371483246
H 6.091221470 12.376808279 16.426037003
H 5.453171943 11.708238437 17.622063179
O 3.915635019 0.708999047 23.001575333
O 2.982259975 0.458710579 23.117278009
H 4.057554913 0.651962033 22.034145573
O 4.187830893 4.866586562 14.830041757
H 4.624640332 4.175668730 15.364559229
H 3.350304101 4.430239194 14.530929367
Accompanying Environ1213 input file for the $\sigma = -0.4 \, e$ trajectory:

\begin{verbatim}
&ENVIRON
 !
 verbose = 2
 environ_thr = 1.d-1
 environ_type = 'input'
 env_electrostatic = .true.
 env_static_permittivity = 78.3D0
 env_dielectric_regions = 1
\end{verbatim}

S22
&BOUNDARY
 solvent_mode = 'electronic'
 solvent_radius = 7.0D0,
/
&ELECTROSTATIC
 !
 pbc_correction = 'none'
 pbc_dim = 2
 pbc_axis = 3
 !
 tol = 1.d-7
 mix = 0.6
 solver = 'iterative'
 auxiliary = 'full'
/
DIELECTRIC_REGIONS {angstrom}
1.0 1.0 5.5 5.5 6.4104 6.4104 0.5 2 3

Initial coordinates of the $\sigma = -0.2$ e trajectory:

Au	5.113345000	0.000000000	6.410460000						
Au	7.670027730	1.476096250	6.410460000						
Au	5.113345000	2.952192500	6.410460000						
Au	7.670027730	4.428288750	6.410460000						
Au	5.113345000	5.904385000	6.410460000						
Au	7.670027730	7.380481250	6.410460000						
Au	5.113345000	8.856577500	6.410460000						
Au	7.670027730	10.332673750	6.410460000						
Au	0.000000000	0.000000000	6.410460000						
Au	2.556672500	1.476096250	6.410460000						
Au	0.000000000	2.952192500	6.410460000						
Au	2.556672500	4.428288750	6.410460000						
Au	0.000000000	5.904385000	6.410460000						
Au	2.556672500	7.380481250	6.410460000						
Au	0.000000000	8.856577500	6.410460000						
Au	2.556672500	10.332673750	6.410460000						
Au	6.817796740	0.000000000	8.820910000						
Au	9.374469240	1.476096250	8.820910000						
Au	6.817796740	2.952192500	8.820910000						
Au	9.374469240	4.428288750	8.820910000						
Au	6.817796740	5.904385000	8.820910000						
Au	9.374469240	7.380481250	8.820910000						
Au	6.817796740	8.856577500	8.820910000						
Au	9.374469240	10.332673750	8.820910000						
Au	1.704451740	0.000000000	8.820910000						
Au	4.261124240	1.476096250	8.820910000						
Au	1.704451740	2.952192500	8.820910000						
Au	4.261124240	4.428288750	8.820910000						
Au	1.704451740	5.904385000	8.820910000						
Au	4.261124240	7.380481250	8.820910000						

S23
	1.704451740	8.856577500	8.820910000
Au	4.261124240	10.332673750	8.820910000
Au	8.522248480	0.000000000	11.231400000
Au	5.965575980	1.476096250	11.231400000
Au	8.522248480	2.952192500	11.231400000
Au	5.965575980	4.428288750	11.231400000
Au	8.522248480	5.904385000	11.231400000
Au	5.965575980	7.380481250	11.231400000
Au	8.522248480	8.856577500	11.231400000
Au	3.408903480	0.000000000	11.231400000
Au	0.852224850	1.476096250	11.231400000
Au	3.408903480	2.952192500	11.231400000
Au	0.852224850	4.428288750	11.231400000
Au	3.408903480	5.904385000	11.231400000
Au	0.852224850	7.380481250	11.231400000
O	3.392863129	8.809062166	23.694277586
H	3.430799695	7.839672957	23.699482202
H	2.626849334	9.025043682	24.247672842
O	4.100611148	6.083639381	20.958175486
H	3.305030210	4.076227276	21.104107817
H	4.720366595	3.941982484	20.572508445
O	2.935248419	8.581025711	17.307817174
H	3.415418403	7.718988414	17.427422307
H	2.313723223	8.502514644	16.541552606
O	0.437671013	4.235117830	21.080796629
H	0.326780003	3.663175735	21.839836725
H	0.446468981	3.846553181	20.283516859
O	2.053216842	9.154859539	21.151462693
H	2.554193247	8.429780061	20.687025652
H	2.403155132	9.145631908	22.070556559
O	3.853716830	7.542815393	14.472981998
H	3.907300409	6.706933215	14.999745493
H	3.781369607	7.217562682	13.550791354
O	6.473315818	0.334455691	23.730797688
H	5.489615292	0.354077254	23.613836238
H	6.88796059	11.284056986	24.128087026
O	4.286365818	-0.170391849	20.270686922
H	4.682366286	10.933117828	20.826425418
H	4.312497523	11.178936379	19.385526174
O	7.524145072	1.010448944	21.159860074
H	7.519535202	12.049643567	20.550862367
H	7.217591943	0.648071430	22.019052206
O	9.650007722	10.857217229	17.519543852
H	8.279748643	9.596753942	17.555849014
H	10.462272859	10.747420244	18.093434563
O	6.963775444	3.437084455	14.019763645
H	7.476723509	2.639431914	14.265397769
H	6.035444876	3.137927626	14.172662914
O	1.329990906	6.008963153	17.708314185
H	1.439540820	5.023047747	17.834839378
H	1.725984397	6.195214516	16.835494068
---	----------	----------	----------
O	6.926793040	5.628968384	18.481327681
H	7.007642900	5.213697184	19.370352132
H	7.613598452	5.135907020	17.970201902
O	1.316216476	0.185395956	21.802899021
H	1.952418702	11.356222185	21.435172873
H	0.474874147	17.970201902	21.948713118
O	5.622012454	2.436962203	19.976765160
H	6.450571807	2.070638301	20.402117659
H	5.126813352	1.600497822	19.851215938
O	-0.008905920	11.608006841	15.053907039
H	9.833822714	10.885075591	14.496058497
H	10.077150175	11.283038586	15.990474517
O	5.528242653	5.116966623	24.070739598
H	6.121384421	4.326029090	23.965343833
H	4.686313923	4.853525377	23.663942226
O	9.255197468	5.103843294	15.195698020
H	9.079881481	4.656453434	16.082406413
H	9.078323586	4.354410241	14.594598157
O	7.596080062	4.635257600	21.011763902
H	8.565895657	4.447180378	20.940339315
O	7.234783876	3.844400687	21.447387692
O	9.357856864	10.691429072	22.278343105
H	8.817783639	10.593623132	21.460746789
H	9.297614336	9.779554327	22.659371911
O	9.824590544	2.516453493	14.447823756
H	9.810996843	2.201957951	13.515122005
H	9.672774004	1.687898062	14.947470257
O	8.268927126	1.491772945	18.164085701
H	8.819579384	0.713024541	17.946563594
H	7.339351085	1.196165445	17.963693050
O	8.724775263	9.698252297	13.752235477
O	7.762307946	9.814977406	13.631640597
O	8.767108227	8.843797781	14.280003116
O	1.764631539	10.526622372	18.679232030
O	2.087374875	9.706718072	18.216716035
O	1.806512004	10.29391924	19.632245159
H	8.853747948	8.069654454	22.951234712
H	7.927049371	7.751061533	22.800270443
H	9.309255230	7.733396344	22.132968847
O	6.989953918	8.365873024	18.116662787
H	6.770824868	7.441304356	18.37843980
H	7.955520514	8.241522690	17.894974801
O	1.053967993	8.645789514	15.382081848
H	1.209663668	7.800699039	14.860895591
O	0.132225488	8.526715978	15.681775221
O	10.139208894	7.116857470	20.782128882
O	0.784326853	7.563713795	20.860579526
O	0.105728238	6.155229322	20.794425456
H	5.277516347	11.160116836	14.952820512
H	5.768883669	10.326974559	14.761892774
H	4.326823362	10.89478025	14.841257633
O	7.151405578	2.944582173	23.794734224
H	8.063446340	3.011237069	24.117787306
H	6.896383048	1.991081299	23.877506162
Element	X	Y	Z
---------	-------	-------	-------
O	6.511785937	6.858680157	22.168856232
H	6.915481590	6.172327444	21.580777368
H	6.080576255	6.296940853	22.866949849
O	7.491547808	10.140862092	20.254360561
H	6.778815182	9.909798768	20.890372087
H	7.368491283	9.491002566	19.510204876
O	6.562176495	6.125539028	14.299793150
H	5.645246329	5.784018822	14.390471858
H	7.082562613	5.291349371	14.285570749
O	1.990671462	3.599797976	13.948932693
H	2.191071726	2.709355297	13.583077951
H	1.146612387	3.398942355	14.428755345
O	4.369673646	6.247919763	17.483694310
H	5.297479272	6.108315818	17.778203041
H	4.606848038	5.329108943	17.358884859
O	1.328804172	3.414979642	18.159122664
H	1.795740487	3.063743493	18.960224625
H	1.538678698	2.672561728	17.536195169
O	7.567350980	0.752360432	14.542420580
H	8.297254609	11.923804937	14.614202639
H	6.768183665	0.222694492	14.341589562
O	8.801305411	3.919271356	17.517617612
H	8.567605006	2.955303556	17.62661670
H	9.798259779	3.880242941	17.866917282

Initial coordinates of the $\sigma = 0$ e trajectory:

Element	X	Y	Z
Au	5.173900970	0.285728353	6.410460002
Au	7.867060373	1.441943922	6.410460002
Au	5.365586323	3.177701420	6.410460002
Au	7.666171977	4.526538966	6.410460002
Au	5.044124624	6.001230585	6.410460002
Au	7.558271223	7.427015362	6.410460002
Au	5.159361938	9.121919196	6.410460002
Au	7.565397734	10.442693153	6.410460002
Au	-0.072087954	0.021347949	6.410460002
Au	2.429646017	1.326647058	6.410460002
Au	0.036836371	3.202833250	6.410460002
Au	2.701797208	4.395996953	6.410460002
Au	-0.107874575	6.001697787	6.410460002
Au	2.599128080	7.433233039	6.410460002
Au	-0.168108525	8.959495892	6.410460002
Au	2.403573037	10.269330105	6.410460002
Au	7.015335516	0.015058390	8.921855987
Au	9.690183836	1.453864232	9.114868978
Au	7.249581800	2.896182233	8.808896377
Au	9.634691706	4.489380036	8.947297284
Au	7.038029855	5.734501999	9.492410842
Au	9.412766271	7.486525446	8.782613508
Au	6.912689379	8.518094413	8.914351224
Au	9.504088221	10.237350958	9.314531462
Au	1.800434634	0.069655412	9.246583933
Au	4.144759654	1.603168820	8.675883287
	X	Y	Z
---	-----------	-----------	-----------
H	5.336033234	0.709336603	14.095992105
O	0.930527190	4.486536465	17.586099790
H	0.144632243	3.935756735	17.493859620
H	1.249701582	4.592671841	16.669398648
O	7.248755798	4.833896080	18.541366465
H	7.603810340	4.694177329	19.465138264
H	7.655471228	4.042749394	18.12447202
O	2.162237841	-0.124970478	21.234109422
H	3.079516317	11.674197624	21.566845018
H	1.522265531	11.833132814	22.011082054
O	5.626374724	1.824307990	19.866219732
H	6.603634288	1.988291140	20.175910812
H	5.571344920	0.825282443	19.942950454
O	0.576069496	11.302009790	17.446648245
H	9.814600797	11.269285691	17.362855364
H	10.788021414	10.725035520	18.303323587
O	6.265158232	6.234045200	22.744571647
H	5.733415717	5.772747134	23.434367591
H	5.708816897	6.312874768	21.941660530
O	8.867423324	4.854729148	14.381319618
H	8.791134829	3.911042169	14.351024350
H	9.247951274	4.956512494	13.495113684
O	8.207059133	5.302567252	20.970701492
H	9.064914871	5.128297697	21.379687459
H	7.633044258	5.573090314	21.732279439
O	10.880352415	12.196561346	23.115128212
H	9.978481759	11.925311307	22.735529358
H	10.937735727	11.452735607	23.714853933
O	8.928654199	2.147204557	14.854833326
O	8.594436062	1.419760898	14.330751146
H	8.631613435	2.222338480	15.805110456
O	8.177048907	-0.871629142	17.690466448
O	8.003558383	-1.134096999	18.635810028
H	7.642658501	-1.514342013	17.224436578
O	9.618764363	9.153628434	15.025097060
H	9.912789032	8.649973173	14.260992399
H	8.694271201	8.682213299	15.212660694
O	1.059487048	9.716508213	19.947634735
H	1.578420125	9.226805432	19.234852193
H	1.638793192	10.363878874	20.465734805
O	10.356059809	8.431276024	25.278778062
H	9.681474000	7.903293959	24.752943046
H	10.871160898	8.791970295	24.548647670
O	8.605127329	7.375965169	18.390586512
H	8.195581540	6.488458101	18.488754845
H	9.505812399	7.170585243	18.113937479
O	0.903902547	7.654699701	17.780457922
H	1.245702437	6.904773061	16.186473285
O	0.430838317	8.318904861	16.141898043
H	12.181140212	6.916444423	22.835605726
O	2.609181937	6.391237108	22.308341142
H	1.199417800	6.294103191	22.825220571
O	5.962666929	9.789913444	14.086203817
H	5.258909737	9.389116261	14.634592212
Initial coordinates of the $\sigma = +0.2 \ e$ trajectory:

Atom	X	Y	Z
Au	5.113345000	0.000000000	6.410460000
Au	7.670027730	1.476096250	6.410460000
Au	5.113345000	2.952192500	6.410460000
Au	7.670027730	4.428288750	6.410460000
Au	5.113345000	5.904385000	6.410460000
Au	7.670027730	7.380481250	6.410460000
Au	5.113345000	8.856577500	6.410460000
Au	7.670027730	10.332673750	6.410460000
Au	0.000000000	0.000000000	6.410460000
Au	2.556672500	1.476096250	6.410460000
Au	0.000000000	2.952192500	6.410460000
Au	2.556672500	4.428288750	6.410460000
Au	0.000000000	5.904385000	6.410460000
Au	2.556672500	7.380481250	6.410460000
Au	0.000000000	8.856577500	6.410460000
Au	2.556672500	10.332673750	6.410460000
Au	6.817796740	0.000000000	8.820910000
Au	9.374469240	1.476096250	8.820910000
Au	6.817796740	2.952192500	8.820910000
Au	9.374469240	4.428288750	8.820910000
Au	6.817796740	5.904385000	8.820910000
Au	9.374469240	7.380481250	8.820910000
Au 6.817796740 8.856577500 8.820910000
Au 9.374469240 10.332673750 8.820910000
Au 1.704451740 0.000000000 8.820910000
Au 4.261124240 1.476096250 8.820910000
Au 1.704451740 2.952192500 8.820910000
Au 4.261124240 4.428288750 8.820910000
Au 1.704451740 5.904385000 8.820910000
Au 4.261124240 7.380481250 8.820910000
Au 1.704451740 8.856577500 8.820910000
Au 4.261124240 10.332673750 8.820910000
Au 8.522248480 0.000000000 11.231400000
Au 5.965575980 1.476096250 11.231400000
Au 8.522248480 2.952192500 11.231400000
Au 5.965575980 4.428288750 11.231400000
Au 8.522248480 5.904385000 11.231400000
Au 5.965575980 7.380481250 11.231400000
Au 8.522248480 8.856577500 11.231400000
Au 3.408903480 0.000000000 11.231400000
Au 0.852224850 1.476096250 11.231400000
Au 3.408903480 2.952192500 11.231400000
Au 0.852224850 4.428288750 11.231400000
Au 3.408903480 5.904385000 11.231400000
Au 0.852224850 7.380481250 11.231400000
Au 3.408903480 8.856577500 11.231400000
Au 0.852224850 10.332673750 11.231400000
H 3.174407839 8.885569710 23.565253910
H 3.342207432 7.952912601 23.744873124
H 2.850875803 9.219891126 24.416345793
O 4.045390418 4.564254159 21.053039948
H 3.254557215 4.024715490 21.053039948
H 3.254557215 4.024715490 21.053039948
O 2.925694174 8.619463630 17.327172869
H 3.361680847 7.745339415 17.481433402
H 2.752734922 8.522864611 16.584907151
O 0.019128389 4.221716935 21.156563057
H 0.351771044 3.673066368 21.923824640
H 0.410792674 3.833135653 20.365612681
O 1.977407831 9.134484178 21.143035037
H 2.587030188 8.499260820 20.703324062
H 2.77561138 9.104801876 22.089138368
O 3.824997750 7.569418352 14.500374096
H 3.974948611 6.849644564 15.155430001
O 3.702137537 7.07723995 13.668288046
H 6.515683450 0.370385412 23.677411977
H 5.52916664 0.364406763 23.62635381
H 6.764180066 11.498704418 24.317034866
O 4.310563661 -0.157887890 20.262897573
H 4.759965008 10.996012409 20.83420226
H 4.34954581 11.167912986 19.398795031
O 7.528682452 1.021536352 21.137073918
H 7.49019261 12.050235265 20.549904112
H 7.269166112 0.662435834 22.013510412
O 9.673971258 10.848214868 17.532034007

S32
Element	X	Y	Z
H	9.32125818	9.945077558	17.607073582
H	10.47486373	10.78524219	18.127586147
O	6.957732802	3.450519383	13.998534942
H	7.492112243	2.674184164	14.255682290
H	6.043641531	3.125019791	14.167297053
O	1.335704574	6.009769557	17.718789636
H	1.431659097	5.021391939	17.854036583
H	1.816532170	6.213858472	16.904873543
O	6.838267138	5.575973705	18.515721058
H	6.942084913	5.178034809	19.411143054
H	7.527098838	5.097472171	18.003501160
O	1.288615077	0.190984759	21.713651255
H	1.934924645	11.297457571	21.536900709
H	0.443725847	11.468438782	21.901141110
O	5.585084079	2.411616137	19.932470532
H	6.443895241	2.114616269	20.339944030
H	5.106228313	1.554559036	19.919411764
O	0.019346633	11.58264213	15.070027473
H	9.093388411	10.845021815	14.519107445
H	10.082371459	11.27732638	16.009421132
O	5.597326039	5.132919383	24.030835780
H	6.140016601	4.306541910	23.916301790
H	4.675640644	4.860097692	23.906682646
O	9.264574830	5.114461995	15.203277648
H	9.102884338	4.678840885	16.103804463
H	9.082638829	4.351941626	14.626945630
O	7.581404963	4.592699974	21.011307029
H	8.555226160	4.433026163	21.008522520
H	7.255621589	3.890792312	21.596221293
O	9.365780827	10.702902811	22.250009159
H	8.821781346	10.624720608	21.440147807
H	9.282095786	9.789102161	22.622029647
O	9.816906301	2.518210398	14.492927706
H	9.754412126	2.130077612	13.599149109
H	9.589143596	1.775713901	15.080089687
O	8.269797391	1.498805887	18.115317078
H	8.803790824	0.697431404	17.956553325
H	7.335577597	1.207934201	17.949628501
O	8.700277747	9.681798407	13.735487521
H	7.736752368	9.757506527	13.587805542
H	8.745984777	8.828006235	14.258965707
O	1.749611932	10.582472458	18.747810174
H	2.076823947	9.758712879	18.300626197
O	1.758904114	10.367762921	19.709599186
H	8.824897452	8.137105161	22.895300690
H	7.914841253	7.785862514	22.767032160
H	9.299424739	7.757277016	22.120336391
H	7.032150474	8.308273733	17.998367847
H	6.746606843	7.419881134	18.307229576
H	8.030252232	8.168247536	17.977772780
O	1.045815637	8.638291708	15.400872936
H	1.232941708	7.862248654	14.806422002
O	0.132835201	8.450380366	15.687744215
H	10.163033710	7.118710243	20.718058394
H 0.792456873 7.589025151 20.861249102
H 0.129096716 6.160232316 20.767730951
O 5.332783408 11.102276394 14.901001969
H 5.812094317 10.250295400 14.787792166
H 4.380664269 10.838330133 14.852984648
O 7.207214834 2.965356359 23.744907436
H 7.973861128 3.056170024 24.327539937
H 6.935164673 2.012627150 23.804727148
O 4.870470756 10.190112669 18.042712518
H 5.612839237 9.547419788 18.052225102
H 4.124986850 9.708303115 17.600159199
O 4.687032156 3.414827361 13.369065580
H 4.763263912 2.530717928 16.965902111
H 5.191545849 3.086585999 18.20599794
O 1.173927458 6.321231247 14.217037180
H 0.452528775 5.761829214 14.609881099
H 1.685054765 5.764072845 13.602147959
O 8.684119020 7.650356264 15.386705986
H 7.819371468 7.768017371 15.819566810
H 8.753705515 6.92633940 15.184828295
O 10.152413133 5.588666682 24.113170035
H 10.172560066 4.655167304 24.333566837
H 9.767236946 5.656858766 23.226861624
O 2.185802519 1.051385528 17.132638144
H 2.463458597 0.768018900 16.247393621
H 2.10238116 12.066835913 17.703563082
O 6.168796242 8.696546776 14.076367758
H 6.10766963 7.808600223 14.102321176
H 5.232799715 8.380120945 14.220661865
O 2.319047149 2.232903354 20.281880578
H 1.768097850 1.53960367 20.732089648
H 3.10399821 1.742540635 19.979218572
O 4.727049532 2.027895630 14.656006505
H 5.010209612 1.097311886 14.738095452
H 3.761894766 1.945450794 14.545021848
O 5.840259714 0.779399620 17.254931795
H 6.167467450 12.379924164 16.362118609
H 5.451400759 11.719201399 15.527330007
O 3.963833758 0.763463592 23.108586635
H 3.124950690 0.474596689 23.490242681
H 3.863836958 0.670892632 22.146349796
O 4.205301977 4.843716105 14.910043337
H 4.530704023 4.321237468 15.671002632
H 3.445303384 4.326797821 14.556975186
H 2.855596229 6.849044051 20.02995751
H 2.349794306 6.649682345 19.207815158
H 3.447633355 6.070800583 20.167221264
H 5.282203406 9.293489016 21.700791721
H 4.675075344 9.358342664 22.467180818
H 5.602133253 8.356070092 21.729516780
O 1.137273384 2.655282159 23.145547520
H 1.199740104 1.754906854 22.757097210
H 0.734668599 2.489619210 24.008083335
O 2.902422400 10.205364531 14.382547280

S34
Initial coordinates of the $\sigma = +0.4\ e$ trajectory:

Element	X	Y	Z
Au	5.799776829	-0.158542157	6.410460017
Au	8.484172050	1.407882777	6.410460017
Au	6.122186702	2.926058435	6.410460017
Au	8.573679878	4.576814038	6.410460017
Au	6.122546608	6.073008003	6.410460017
Au	8.656684160	7.482968567	6.410460017
Au	6.260444383	8.884357166	6.410460017
Au	8.782948805	10.384701912	6.410460017
Au	0.864699091	0.229869785	6.410460017
Au	3.518459656	1.667466093	6.410460017
Au	0.898062719	3.076684134	6.410460017
Au	3.628981003	4.563718576	6.410460017
Au	1.102728579	5.920505115	6.410460017
Au	3.839037014	7.640788576	6.410460017
Au	1.000347462	8.696670428	6.410460017
Au	3.249749737	10.633727989	6.410460017
Au	8.142020248	-0.054556550	8.965861111
Au	10.575515669	1.624901402	9.026385755
Au 7.913313523 2.909946746 9.059004516 8.843276392
Au 10.090753067 5.824733553 8.78613322 8.990134219
Au 7.928759140 8.915124688 9.27166991 8.797772881
Au 10.591282129 10.283552926 8.92734942 8.93380567
Au 2.862533729 0.216037557 8.933880567 8.89472921
Au 5.418968532 1.426741492 9.12462144 8.96240654
Au 2.337246418 3.259453982 8.933724942 8.85173004
Au 5.035318191 4.32954498 8.933724942 8.89472921
Au 2.834098834 3.259453982 8.881573004 8.85173004
Au 5.035318191 6.134843839 8.933724942 8.85173004
Au 2.832263932 4.32954498 8.933724942 8.85173004
Au 5.298765450 10.283552926 8.797772881 8.810888419
Au 9.728466898 0.071866192 11.431029755 11.433997647
Au 6.675029246 1.875058290 11.55751471 11.320144174
Au 9.784118388 3.117898406 11.320144174 11.433997647
Au 7.157275295 4.51286016 11.827056979 11.433997647
Au 9.618127078 6.184731482 11.475463026 11.433997647
Au 7.149007869 7.540630506 11.226378753 11.433997647
Au 9.689022826 9.042710609 11.519900955 11.433997647
Au 7.269678541 10.326953997 11.542049665 11.433997647
Au 4.621129224 -0.146224698 11.433997647 11.433997647
Au 1.883226656 1.510450848 11.433997647 11.433997647
Au 4.172652600 3.250950344 11.433997647 11.433997647
Au 1.830909190 4.612753625 11.433997647 11.433997647
Au 4.535871582 5.974348075 11.433997647 11.433997647
Au 1.958505324 7.457927486 11.433997647 11.433997647
Au 4.632188918 8.963142798 11.433997647 11.433997647
Au 2.012425723 10.557902512 11.433997647 11.433997647
O 1.909546471 9.460504051 22.144395451 22.144395451
H 1.501061692 9.467645863 23.115328772 23.115328772
H 2.763831335 9.986823442 22.177953399 22.177953399
O 3.162031844 3.279639528 17.656298377 17.656298377
H 2.196458902 3.377715755 17.401880805 17.401880805
O 3.478936087 2.386680009 17.745916436 17.745916436
H 1.262437898 6.116699576 17.926863797 17.926863797
O 0.524282468 5.881252683 18.615510426 18.615510426
H 1.93124902 5.263765450 17.33292940 17.33292940
O -5.687484221 1.355968333 26.00832219 26.00832219
H -5.508168764 1.403312599 26.917924249 26.917924249
H -5.896929949 0.433013434 25.999244602 25.999244602
O 7.229642090 7.683588593 20.893980453 20.893980453
H 7.940799740 7.046263729 21.302157794 21.302157794
H 7.789487953 8.358162473 20.44228406 20.44228406
O 2.463193876 5.353481519 14.065129248 14.065129248
H 2.851440983 5.172361625 14.949609685 14.949609685
H 2.924692113 4.710278248 13.537664158 13.537664158
O 5.901669303 2.037906900 20.934024173 20.934024173
H 4.987723797 1.779155106 21.023401674 21.023401674
H 6.495688620 13.223541711 20.684282959 20.684282959
O 4.878358301 -0.873445981 19.471816854 19.471816854
H 4.998362463 10.418970972 20.25727940 20.25727940
H 5.430316184 10.508897084 18.737143623 18.737143623

S36
Atom	X	Y	Z
O	9.181151475	-0.934041110	25.240579928
H	9.383754206	11.697446116	25.667972626
H	8.271202197	-0.899041601	17.329526846
O	10.541375249	8.568836588	16.966303289
H	11.21546304	9.248711067	16.899541435
O	6.371645188	1.766648649	13.779302649
H	7.018727165	0.962117313	14.065310897
H	5.650951453	1.916976121	14.162006540
O	1.955498796	3.788260547	20.20039811
H	2.386715967	3.587138569	19.315216612
O	1.630904938	2.941165938	20.467414165
H	5.989188425	3.541113866	18.424564310
H	6.155976341	4.468091832	18.559306487
O	5.944971630	3.239721239	19.404495698
H	0.911073238	-1.104803402	19.519374445
O	1.404290221	10.572894558	18.692658783
H	0.954849217	9.906827671	20.184418047
O	4.317263222	0.912375909	17.708459151
H	4.659370264	0.610360359	16.848539929
O	4.753610746	0.452105387	18.421135970
O	0.388595640	9.12883681	14.51450051
H	10.066258329	8.635539967	15.358953532
H	9.063124466	8.643920594	14.072093830
O	0.926726310	9.304234589	24.543496710
H	0.130446551	9.833896742	24.854225296
H	1.746790470	9.491957786	25.105295177
O	7.349687574	3.955253659	15.533255439
H	7.807068466	4.721704410	15.961527032
O	6.832094348	4.454106549	14.836886947
H	6.848207273	3.910297339	22.857659949
O	6.016707566	4.406039376	23.064927509
H	6.535099630	3.17542363	22.190310765
O	9.967109682	2.055510707	22.895502302
H	10.724412112	1.973749039	23.515972553
H	9.717312945	2.982667030	22.938795267
O	9.403331882	2.940393554	14.435651355
H	8.523018873	3.314352714	14.870205918
H	9.223544705	2.04510016	14.077440167
O	6.201420155	-2.033425809	17.320280697
H	7.008346475	-2.15322261	17.883229453
H	6.511097726	-1.988074197	16.379823722
O	4.233044088	11.375346694	14.908501743
H	4.620421846	12.182695464	14.566758515
H	4.912742815	10.662338065	14.706270746
O	2.838773744	8.734848978	18.835173735
H	3.237925314	7.888293020	19.164862727
H	3.533682784	9.438748473	19.091701349
O	16.861553888	9.767756195	23.557492063
H	17.482423825	9.085089920	23.317947024
O	16.577716075	9.521392039	24.447119144
H	6.768598981	6.416790851	18.612802678
H	5.852913304	6.576216071	18.454358558
H	6.947151543	6.753200499	19.629224014
Notes and references

[1] G. Kastlunger, P. Lindgren and A. A. Peterson, *J. Phys. Chem. C*, 2018, 122, 12771–12781.

[2] N. G. Hörmann, O. Andreussi and N. Marzari, *J. Chem. Phys.*, 2019, 150, 041730.

[3] S. Sakong and A. Groß, *J. Chem. Phys.*, 2018, 149, 084705.

[4] Z. K. Goldsmith, M. Secor and S. Hammes-Schiffer, *ACS Cent. Sci.*, 2020, 6, 304–311.

[5] A. Luzar and D. Chandler, *Nature*, 1996, 379, 55–57.

S39
[6] T. Seki, K.-Y. Chiang, C.-C. Yu, X. Yu, M. Okuno, J. Hunger, Y. Nagata and M. Bonn, J. Phys. Chem. Lett., 2020, 11, 8459–8469.

[7] K.-i. Ataka, T. Yotsuyanagi and M. Osawa, The Journal of Physical Chemistry, 1996, 100, 10664–10672.

[8] S. Nihonyanagi, S. Ye, K. Uosaki, L. Dreesen, C. Humbert, P. Thiry and A. Peremans, Surf. Sci., 2004, 573, 11 – 16.

[9] J. Le, Q. Fan, L. Perez-Martinez, A. Cuesta and J. Cheng, Phys. Chem. Chem. Phys., 2018, 20, 11554–11558.

[10] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, J. Phys. Condens. Matter, 2009, 21, 395502.

[11] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. V. Nguyen, A. Otero-de-la Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu and S. Baroni, J. Phys. Condens. Matter, 2017, 29, 465901.

[12] O. Andreussi, I. Dabo and N. Marzari, J. Chem. Phys., 2012, 136, 064102.

[13] O. Andreussi and N. Marzari, Phys. Rev. B, 2014, 90, 245101.