RESEARCH ARTICLE

ENHANCER OF ZESTE HOMOLOG 2 AND VASCULAR ENDOTHelial GROWTH FACTOR IMMUNOHistoCHEMICAL EXPRESSION ARE ASSOCIATED WITH ADVERSE CLINICAL OUTCOME IN NON-METASTATIC CLEAR CELL RENAL CELL CARCINOMA.

Mona Mostafa Ahmed¹, Mai M. abdelwahab¹, Safa A. Balata² and Hassan R Ashour³.
1. Department of pathology, Faculty of Medicine, Zagazig University, Egypt.
2. Department of Medical Oncology, Faculty of Medicine, Zagazig University, Egypt.
3. Department of General surgery, Faculty of Medicine, Zagazig University, Egypt.

Abstract

Background: Clear cell renal cell carcinoma (CCRCC) represents the most common malignant adult renal tumor. Its poor prognosis is due to poor response to current treatment options. Identification of new therapeutic targets is a priority. Enhancer of zeste homolog 2 (EZH2) expression is associated with aggressive behavior in different cancers. Vascular endothelial growth factor (VEGF) is strong angiogenic agent that promotes angiogenesis during the growth of tumor. Aim: To assess the significance of immunohistochemical expression of EZH2 and VEGF on tumor behavior, prognosis and patient survival in clear cell renal cell carcinoma. Methods: Immunohistochemical expressions of EZH2, VEGF,Ki-67were evaluated in 25 cases of CCRCC, correlated with each other, with clinicopathological parameters and patients survival. Results: Expression of EZH2 was significantly correlated with tumor grade and stage (p< 0.001), metastasis to lymph node (p=0.016), Ki67 expression (p= 0.014) and with local recurrence of the tumor (p= 0.001) in CCRCC cases. Vascular Endothelial Growth Factor was significantly positively correlated with tumor grade and stage (p< 0.001), Ki67 expression (p= 0.008) and local recurrence of the tumor (p= 0.001) while no correlation was found with lymph node metastasis (p=0.096). Direct correlation was detected between EZH2 and VEGF expression (p< 0.001), and a significant positive correlation was detected between ki-67 and both EZH2 (p= 0.003), and VEGF (p<0.001).High EZH2 and VEGF expression was significantly positively correlated with worse 2-year overall survival (OS) (p < 0.001 and p= 0.009, respectively).Conclusion: EZH2 and VEGF can be considered as independent prognostic markers in CRCC and may be used as a target for therapy in these cases.

Corresponding Author: Mono Mostafa Ahmed.
Address: Department of pathology, Faculty of Medicine, Zagazig University, Egypt.
Introduction:-
Renal cell carcinoma (RCC) represents 85% of primary malignant tumors that originates from the renal parenchyma in adults (Znaor et al., 2015). In Egypt, RCC represents 68.2% of primary kidney tumors (Helal et al., 2015). The most frequently used prognostic factors for this tumor are grade and stage, but these factors are widely considered less than reliable as several researches detected metastatic RCC cases with low grade and stage (Cheng et al., 2014). Enhancer of zeste homolog 2 (EZH2) is a polycomb group protein necessary for the transmission of gene expression patterns to progeny cells during normal development and it is responsible for histone and DNA methylation (Vire et al., 2006). EZH2 overexpression has oncogenic effect by giving cellular growth advantage (Wagener et al., 2010). Von-Hippel Lindau gene inactivation is common in both hereditary and sporadic renal cell carcinomas resulting in hyperactivity of the hypoxia-inducible factor leading to production of factors that stimulates blood vessel formation as vascular endothelial growth factor. VEGF is a potent angiogenic factor that induces angiogenesis during tumorigenesis (Lainakis and Bamias, 2008). Ki-67 is a protein that present in all the phases of cell cycle (G1, S, G2 and mitosis) while it is absent in non-dividing cells (G0) (Gerdes et al., 1984). That is why it is considered as excellent indicator for the proliferating fraction of tumor cells. Instead of relying on multiple parameters, Ki-67 needs only evaluation of nuclear staining for interpretation. Proliferation determined by Ki-67 is known to be of prognostic importance in CCRCC and is known to correlate with tumor grade (Mehdi et al., 2016). The aim of the study is to assess the significance of immunohistochemical expression of EZH2 and VEGF on tumor behavior, prognosis and patient survival in clear renal cell carcinoma.

Patients And Methods:-
This study was conducted in Pathology, Clinical oncology and General surgery departments, Zagazig University, in the period from January 2015 to February 2017. The study was carried out on 25 patients of clear cell renal cell carcinoma (CCRCC). Sections from the involved cases were stained, evaluated by routine H&E stain and were graded according to Fuhrman grading system (Fuhrman et al., 1982), and the stage is evaluated conferring to the American Joint Committee on Cancer staging system (Edge and Compton, 2010). Clinical, radiological and pathological data were abstracted from files of the corresponding departments. Patients with a negative postoperative PET/CT scan were included in this study while those with evidence of metastasis or deficient data were omitted. None of the patients had received chemo or radiotherapy preceding surgery. Clinical follow-up was done every three months to all cases and information concerning follow up was abstracted from hospital records or patient contact.

Immunohistochemistry:-
The immunohistochemical staining procedure was done using streptavidin–biotin immunoperoxidase technique (Dako-Cytomation, Glostrup, Denmark). Sections of 3–5 µm from the formalin-fixed-paraffin-embedded blocks were cut and mounted on positively charged slides then deparaffinized by xylene, and rehydrated in graded alcohol. Thereafter, sections were boiled in buffered citrate (pH 6.0) for about 20 minutes then washed in PBS (pH 7.3). Then, endogenous peroxidase activity was blocked with 6% H2O2 in methanol. The slides were incubated overnight with a mouse monoclonal EZH2 (ab14389; Abcam, Cambridge, UK, 1:100); rabbit polyclonal VEGF (Lab Vision, Fremont, CA, USA, 1:200) and mouse monoclonal Ki-67 (Lab Vision, Fremont, CA, USA, 1:50) antibodies. After rinsing in PBS, the slides were immersed with a biotin-conjugated secondary antibody (Lab Vision Corporation, Fremont, USA). DAB was used as a chromogen and Mayer’s Hematoxylin was used as a counter stain, and then the slides were washed with distilled water and PBS. Positive and negative controls were stained with the same setting of the studied cases. Sections from normal testis were used as positive controls for EZH2 and prostate adenocarcinoma tissues as positive controls for VEGF and Ki-67. The negative controls were done using the same tissue with the omission of the primary antibody.

Immunohistochemistry assessment:-
EZH2 immunostaining: Frequency of nuclear staining was evaluated using a semiquantitative score: 0 = no expression; 1 = positivity in 1 to 5% = low expression; 2 = positivity in >5 to 25% = intermediate expression; 3 = positivity in >25 to 50% = high expression; and 4 = positivity in more than 50% = very high expression (Wagener et al., 2010).

VEGF immunostaining:-
Cells with dark brown cytoplasmic staining were regarded as having positive protein expression. The percentages of VEGF positive tumor cells were scored as 0 (no staining), 1 (1–25% positive cells), 2 (26–50% positive cells) and 3 (>50% positive cells). The VEGF staining intensity was scored as 0 (negative), 1 (weak), 2 (intermediate), and 3

1309
(strong). The sum of the percentage and intensity scores was evaluated. Cases were divided into, group 1 (score 0–3) considered low expression and group 2 considered high expression (score 4–6) (Ebru et al., 2016).

Ki-67 immunostaining: Ki-67 antigen staining was detected in the nucleus and scored as followings: 0- no nuclear staining is observed in tumor cells; 1 - nuclear staining is detected in 1-10% of the tumor cells; 2-11-20%; 3->20% (Kocarslan et al., 2014).

Statistical Analysis:
Continuous variables were expressed as the mean ± SD & median (range), and the categorical variables were expressed as a number (percentage). Continuous variables were checked for normality by using Shapiro-Wilk test. Independent samples Student's t-test was used to compare between two groups of normally distributed variables. Kruskal Wallis H test was used to compare between more than two groups of non-normally distributed variables. Percent of categorical variables were compared using Pearson’s Chi-square test or Fisher's exact test when was appropriate. Strength of relationship between immunohistochemical staining for EZH2, VEGF and Ki-67 were examined using computing Kendall's tau-c correleation coefficient, (+) sign was indicator for direct relationship & (-) sign was indicator for inverse relationship, also values near to 1 was indicator for strong relationship & values near 0 was indicator for weak relationship.

Disease free survival (DFS) was calculated as the time from surgery to reappearance of the disease (local or regional or distant metastasis) or the most recent follow-up in which relapse free. Overall Survival (OS) was calculated as the time from diagnosis to death or the most recent follow-up contact (censored). Stratification of DFS and OS was done according to clinicopathological data and markers score. These time-to-event distributions were estimated using the method of Kaplan-Meier plot, and compared using two-sided exact log-rank test. A p-value <0.05 was considered significant. All statistics were performed using SPSS 22.0 for windows (SPSS Inc., Chicago, IL, USA) and MedCalc windows (MedCalc Software bvba 13, Ostend, Belgium).

Results:

Patients and their clinicopathological parameters:
Our study included 25 patients; 64% of them were males, with an age range from 22 to 81 years (mean: 57.08±14.78). The histologic grades of tumor were as follows: 15 (60%) grade I, 4 (16%) grade II, 5 (20%) grade III and 1 case (4%) grade IV. T1 was the most frequent tumor size (60%) and 16% of cases showed nodal metastasis. Different stages of tumor were detected, stage I (n =13), stage II (n =3), and stage III (n =9) (Table 1).

Immunohistochemical results:

EZH2 immunohistochemical results:
EZH2 was expressed in 88% of our studied cases. There was a statistically significant correlation between its expression and tumor grade ,where most of low grade tumors (GI,II) showed low scores (1 and 2),and none of them showed high scores, in contrast to high grade tumors (GIII,VI) that showed only high scores (3 and 4)(p< 0.001). As regards the relationship between EZH2 and tumor size, there was a gradual increase in its expression with increasing tumor size ,as 6.7% and 25% of T1 and T2 tumors showed score 4 compared to 80% and 100% of T3 and T4 respectively, with a significant statistical difference (p< 0.001).EZH2 was also correlated with nodal metastasis (p< 0.0016).

The relationship between EZH2 score and tumor stage was statistically significant as none of stage I or II tumors showed score 4 ,but 77.8% of stage III tumors showed this score(p< 0.001). However, no significant difference was detected between EZH2 and age or sex of the patient (p= 0.771 & 0.417) respectively (Table 2, Figure 1).

VEGF immunohistochemical results:
VEGF showed low expression in 48% and high expression in 52% of the studied cases. A significant association was observed between VEGF expression and tumor grade, as all grade 1 cases showed low expression ,while all grade III and VI cases showed high expression(p< 0.001). VEGF expression was also correlated with tumor size (p=0.001) and tumor stage,99.3% of stage I showed low expression, while all cases of stage II and III showed high expression(p< 0.001). However, no significant correlation was observed between VEGF and nodal metastasis (p=0.09), age (p= 0.56) or sex (p= 1.00)of the patients (Table 3,Figure2).
Correlation between EZH2, VEGF and Ki-67 immunohistochemical expressions: Using Kendall's tau-b correlation coefficient, a significant correlation was detected between EZH2 and VEGF expression (τ tau correlation coefficient $= +0.941$, $p< 0.001$), and a significant positive correlation was detected between ki-67 and both EZH2 (τ tau correlation coefficient $=+0.414$, $p= 0.003$), and VEGF (τ tau correlation coefficient $=+0.602$, $p<0.001$) (Table 4, Figure 1,2,3).

Survival analysis results:-
During 24 months of follow up, fourteen patients relapsed. Disease Free Survival (DFS) was considered from the time of surgery to confirmation of locoregional recurrence (LRR) or distant metastasis (DM), either radiological or clinical, or death by any cause and patients were censored at the last time known to be disease free and alive. Overall Survival (OS) was calculated from the time of surgery to death from any cause and patients were censored at the date last known to be alive.

Cases with high EZH2 expression were significantly associated with disease progression (both loco-regional recurrence and distant metastasis), disease free survival and a poor overall survival ($p< 0.001$). The expression of VEGF was significantly associated with the progression of disease (both loco-regional recurrence and distant metastasis), disease free survival and a poor overall survival ($p< 0.001$, $p< 0.001$ and $p= 0.009$ respectively) (Table 5,6, Figure 4).

Table 1:-Clinicopathological features, immunohistochemical staining and outcome of in 25 patients with CCRCC

Age (years)	No.	Percent	EZH2	No.	Percent
Mean ± SD	57.08 ±14.78		0	3	12%
Median (Range)	58 (22-81)		1	6	24%
≤ 60 years	14	56%	2	6	24%
≥ 60 years	11	44%	3	3	12%

Sex			VEGF		
Male	16	64%	Low	12	48%
Female	9	36%	High	13	52%

Grade			Ki-67		
Grade I	15	60%	0	2	8%
Grade II	4	16%	1	5	20%
Grade III	5	20%	2	11	44%
Grade IV	1	4%	3	7	28%

Tumor size			Relapse		
T1	15	60%	Absent	11	44%
T2	4	16%	Present	14	56%
T3	5	20%	LRR	5	20%
T4	1	4%	DM	3	12%
LRR+DM	6	24%	Survive		

Lymph node			Follow-up (months)		
N0	21	84%	Mean ± SD	19.48 ±5.47	
N1	4	16%	Median (Range)	24 (8-24)	

Stage				
Stage I	13	52%		
Stage II	3	12%		
Stage III	9	36%		

LRR: Locoregional recurrence; DM: Distant metastasis.
Categorical variables were expressed as number (percentage).
Continuous variables were expressed as mean ± SD & median (range).
Table 2: Correlation between clinicopathological features and immunohistochemical staining for EZH2 in 25 patients with CCRCC.

Characteristics	All (N=25)	0 (N=3)	1 (N=6)	2 (N=6)	3 (N=3)	4 (N=7)	p-value
Age (years)							
Mean ± SD	57.08±14.78	61 ±7.21	57.50 ±14.34	55 ±11.93	64.66 ±21.73	53.57 ±18.82	0.839•
Median (Range)	58 (22-81)	63 (53-67)	50.50 (46-80)	58.50 (33-68)	73 (40-81)	55 (22-75)	
< 60 years	14 (56%)	1 (7.1%)	4 (28.6%)	4 (28.6%)	1 (7.1%)	4 (28.6%)	0.771‡
≥60 years	11 (44%)	2 (18.2%)	2 (18.2%)	2 (18.2%)	2 (18.2%)	3 (27.3%)	
Sex							
Male	16 (64%)	1 (6.3%)	4 (25%)	4 (25%)	1 (6.3%)	6 (37.5%)	0.417†
Female	9 (36%)	2 (22.2%)	2 (22.2%)	2 (22.2%)	2 (22.2%)	1 (11.1%)	
Grade							
Grade I	15 (60%)	3 (33.3%)	5 (55.6%)	1 (11.1%)	0 (0%)	0 (0%)	<0.001§
Grade II	4 (16%)	0 (0%)	1 (16.7%)	5 (83.3%)	0 (0%)	0 (0%)	
Grade III	5 (20%)	0 (0%)	0 (0%)	0 (0%)	3 (75%)	1 (25%)	
Grade IV	1 (4%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	6 (100%)	
Tumor size							
T1	15 (60%)	3 (20%)	6 (40%)	4 (26.7%)	1 (6.7%)	1 (6.7%)	<0.001§
T2	4 (16%)	0 (0%)	0 (0%)	2 (50%)	1 (25%)	1 (25%)	
T3	5 (20%)	0 (0%)	0 (0%)	0 (0%)	1 (20%)	4 (80%)	
T4	1 (4%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	1 (100%)	
Lymph node							
N0	21 (84%)	3 (14.3%)	6 (28.6%)	6 (28.6%)	3 (14.3%)	3 (14.3%)	0.016‡
N1	4 (16%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	4 (100%)	
Stage							
Stage I	13 (52%)	3 (23.1%)	6 (46.2%)	4 (30.8%)	0 (0%)	0 (0%)	<0.001§
Stage II	3 (12%)	0 (0%)	0 (0%)	2 (66.7%)	1 (33.3%)	0 (0%)	
Stage III	9 (36%)	0 (0%)	0 (0%)	0 (0%)	2 (22.2%)	7 (77.8%)	
VEGF							
Low	12 (48%)	3 (25%)	6 (50%)	3 (25%)	0 (0%)	0 (0%)	0.001‡
High	13 (52%)	0 (0%)	0 (0%)	3 (23.1%)	3 (23.1%)	7 (53.8%)	
Ki-67							
0	2 (8%)	1 (50%)	1 (50%)	0 (0%)	0 (0%)	0 (0%)	0.014§
1	5 (20%)	1 (20%)	1 (20%)	1 (20%)	1 (20%)	1 (20%)	
2	11 (44%)	1 (9.1%)	4 (36.4%)	3 (27.3%)	1 (9.1%)	2 (18.2%)	
3	7 (28%)	0 (0%)	0 (0%)	2 (28.6%)	1 (14.3%)	4 (57.1%)	

*Kraskall Wallis H test; † Chi-square test; § Chi-square test
Table 3: Correlation between clinicopathological features and immunohistochemical staining for VEGF in 25 patients with CCRCC.

Characteristics	All (N=25)	Low (N=12)	High (N=13)	p-value
Age (years)				
Mean ± SD	57.08 ±14.78	59.58 ±10.60	54.76 ±17.94	0.428*
Median (Range)	58 (22-81)	59.50 (46-80)	55 (22-81)	
< 60 years	14 (56%)	6 (42.9%)	8 (57.1%)	0.561‡
≥ 60 years	11 (44%)	6 (54.5%)	5 (45.5%)	
Sex				1.000‡
Male	16 (64%)	8 (50%)	8 (50%)	
Female	9 (36%)	4 (44.4%)	5 (55.6%)	
Grade				
Grade I	15 (60%)	9 (100%)	0 (0%)	<0.001§
Grade II	4 (16%)	3 (50%)	4 (100%)	
Grade III	5 (20%)	0 (0%)	4 (100%)	
Grade IV	1 (4%)	0 (0%)	6 (100%)	
Tumor size				
T1	15 (60%)	12 (80%)	3 (20%)	0.001§
T2	4 (16%)	0 (0%)	4 (100%)	
T3	5 (20%)	0 (0%)	5 (100%)	
T4	1 (4%)	0 (0%)	1 (100%)	
Lymph node				
N0	21 (84%)	12 (57.1%)	9 (42.9%)	0.096‡
N1	4 (16%)	0 (0%)	4 (100%)	
Stage				
Stage I	13 (52%)	12 (92.3%)	1 (7.7%)	<0.001§
Stage II	3 (12%)	0 (0%)	3 (100%)	
Stage III	9 (36%)	0 (0%)	9 (100%)	
EZH2				
0	3 (12%)	3 (100%)	0 (0%)	<0.001§
1	6 (24%)	6 (100%)	0 (0%)	
2	6 (24%)	3 (50%)	3 (50%)	
3	3 (12%)	0 (0%)	3 (100%)	
4	7 (28%)	0 (0%)	7 (100%)	
Ki-67				
0	2 (8%)	2 (100%)	0 (0%)	0.008§
1	5 (20%)	3 (60%)	2 (40%)	
2	11 (44%)	7 (63.6%)	4 (36.4%)	
3	7 (28%)	0 (0%)	7 (100%)	

*Independent samples Student's test.
‡ Chi-square test.

Table 4: Correlation between EZH2, VEGF and Ki-67 immunohistochemical staining in 25 patients with CCRCC.

	EZH2	VEGF	Ki-67			
τ	p-value	τ	p-value	τ	p-value	
EZH2	---	---	+0.941	<0.001	+0.414	0.003
VEGF	+0.941	<0.001	---	---	+0.602	<0.001
Ki-67	+0.414	0.003	+0.602	<0.001	---	---
Figure 1: Enhancer of zeste homolog 2 (EZH2) immunohistochemical expression in clear cell renal cell carcinoma (CCRCC):
A: Grade I CCRCC showing positivity in < 5% (Score 1)
B: Grade II CCRCC showing positivity in >5 but < 25% (Score 2)
C: Grade III CCRCC showing positivity in >25 to 50% (Score 3)
D: Grade IV CCRCC showing positivity in more than 50% (Score 4)
(EZH2 immunohistochemistry, original magnification x400).
Figure 2: Vascular Endothelial Growth Factor (VEGF) immunohistochemical expression in CCRCC:
A: Grade II CCRCC showing low VEGF expression
B: Grade III CCRCC showing high VEGF expression
(VEGF immunohistochemistry, original magnification x400).

Figure 3: Ki-67 immunohistochemical expression in CCRCC:
A: Grade II CCRCC showing score 1 Ki-67 nuclear expression
B: Grade III CCRCC showing score 3 Ki-67 nuclear expression
(Ki-67 immunohistochemistry, original magnification x400).
Table 5: Correlation between clinicopathological features/immunohistochemical staining and events in 25 patients with CCRCC.

Characteristics	All (N=25)	Absent (N=11)	Present (N=14)	p-value	Alive (N=14)	Died (N=11)	p-value
Age (years)							
Mean ± SD	57.08 ±14.78	58.81 ±10.76	55.71 ±17.60	0.613**	53.57 ±10.35	61.54 ±18.60	0.222**
Median (Range)	58 (22-81)	59 (46-80)	56.50 (22-81)		52.50 (33-71)	68 (22-81)	
< 60 years	14 (56%)	6 (42.9%)	8 (57.1%)	1.000†	10 (71.4%)	4 (28.6%)	0.116‡
≥ 60 years	11 (44%)	5 (45.5%)	6 (54.5%)		4 (36.4%)	7 (63.6%)	
Sex							
Male	16 (64%)	7 (43.8%)	9 (56.3%)	1.000‡	7 (43.8%)	9 (56.3%)	0.208‡
Female	9 (36%)	4 (44.4%)	5 (55.6%)		7 (77.8%)	2 (22.2%)	
Grade							
Grade I	15 (60%)	9 (100%)	0 (0%)	<0.001§	8 (88.9%)	1 (11.1%)	<0.001§
Grade II	4 (16%)	2 (33.3%)	4 (66.7%)		5 (83.3%)	1 (16.7%)	
Grade III	5 (20%)	0 (0%)	4 (100%)		1 (25%)	3 (75%)	
Grade IV	1 (4%)	0 (0%)	6 (100%)		0 (0%)	6 (100%)	
Tumor size							
T1	15 (60%)	11 (73.3%)	4 (26.7%)	0.001§	11 (73.3%)	4 (26.7%)	0.019§
T2	4 (16%)	0 (0%)	4 (100%)		2 (50%)	2 (50%)	
T3	5 (20%)	0 (0%)	5 (100%)		1 (20%)	4 (80%)	
T4	1 (4%)	0 (0%)	1 (100%)		0 (0%)	1 (100%)	
Lymph node							
N0	21 (84%)	11 (52.4%)	10 (47.6%)	0.105‡	14 (66.7%)	7 (33.3%)	0.026‡
N1	4 (16%)	0 (0%)	4 (100%)		0 (0%)	4 (100%)	
Stage							
Stage I	13 (52%)	11 (84.6%)	2 (15.4%)	<0.001§	11 (84.6%)	2 (15.4%)	0.001§
Stage II	3 (12%)	0 (0%)	3 (100%)		2 (66.7%)	1 (33.3%)	
Stage III	9 (36%)	0 (0%)	9 (100%)		1 (11.1%)	8 (88.9%)	
EZH2							
0	3 (12%)	3 (100%)	0 (0%)	<0.001§	3 (100%)	0 (0%)	<0.001§
1	6 (24%)	6 (100%)	0 (0%)		5 (83.3%)	1 (16.7%)	
2	2 (8%)	2 (33.3%)	4 (66.7%)		5 (83.3%)	1 (16.7%)	
3	3 (12%)	3 (100%)	0 (0%)		1 (33.3%)	2 (66.7%)	
4	7 (28%)	0 (0%)	7 (100%)		0 (0%)	7 (100%)	
VEGF							
Low	12 (48%)	11 (91.7%)	1 (8.3%)	<0.001§	10 (83.3%)	2 (16.7%)	0.008§
High	13 (52%)	0 (0%)	13 (100%)		4 (30.8%)	9 (69.2%)	
Ki-67							
0	2 (8%)	2 (100%)	0 (0%)	0.007§	2 (100%)	0 (0%)	0.405§
1	5 (20%)	3 (60%)	2 (40%)		2 (40%)	3 (60%)	
2	11 (44%)	6 (54.5%)	5 (45.5%)		7 (63.6%)	4 (36.4%)	
3	7 (28%)	0 (0%)	7 (100%)		3 (42.9%)	4 (57.1%)	
Relapse							
Absent	11 (44%)	10 (90.9%)	1 (9.1%)	0.004‡			
Present	14 (56%)	4 (28.6%)	10 (71.4%)				
Table 6: Correlation between clinicopathological features/immunohistochemical staining survival in 25 patients with CCRCC.

Characteristics	All (No=25)	Disease Free Survival (DFS)	p-value‡	Overall Survival (OS)	p-value‡
	No. (%)	Mean DFS (months) 6 month DFS (%) 12 month DFS (%) 24 month DFS (%)	Mean OS (months) 6 month OS (%) 12 month OS (%) 24 month OS (%)	Mean OS (months) 6 month OS (%) 12 month OS (%) 24 month OS (%)	Mean OS (months) 6 month OS (%) 12 month OS (%) 24 month OS (%)
All patients	25 (100%)	17.5 month 84% 60% 42.9%	-----	19.5 month 100% 92% 56%	-----
Age (years)			0.752	20.9 month 100% 92.9% 71.4%	0.095
< 60 years	14 (56%)	19.1 month 85.7% 71.4% 42.9%	13.6 month 81.8% 45.5% 45.5%	17.7 month 100% 90.9% 36.4%	
≥60 years	11 (44%)				
Sex			0.529	18.3 month 100% 87.5% 43.8%	0.132
Male	16 (64%)	15.8 month 75% 50% 42.9%			
Female	9 (36%)	20.7 month 77.8% 77.8% 44.4%			
Grade					
Grade I	15 (60%)	24 month 100% 100% 100%	<0.001	23 month 100% 100% 88.9%	<0.001
Grade II	4 (16%)	22 month 100% 83.3% 33.3%			
Grade III	5 (20%)	11.3 month 50% 25% 0%		15.3 month 100% 75% 25%	
Grade IV	1 (4%)	7.5 month 66.7% ----- -----		13.7 month 100% 83.3% -----	
Tumor size			0.001	21.5 month 100% 93.3% 73.3%	0.115
T1	15 (60%)	21.2 month 100% 80% 72.7%			
T2	4 (16%)	14.3 month 50% 50% 0%		16.8 month 100% 50% 50%	
T3	5 (20%)	10.8 month 60% 60% 0%		16 month 100% 100% 20%	
T4	1 (4%)	9 month 100% ----- -----		17 month 100% 100% -----	
Lymph node					
N0	21 (84%)	19.6 month 90.5% 71.4% 51%	<0.001	20.7 month 100% 95.2% 66.7%	0.002
N1	4 (16%)	6.8 month 50% ----- -----		13 month 100% 75% -----	
Stage					
Stage I	13 (52%)	23.1 month 100% 92.3% 83.9%	<0.001	22.8 month 100% 100% 84.6%	<0.001
Stage II	3 (12%)	18 month 66.7% 66.7% 0%		19.7 month 100% 66.7% 66.7%	
Stage III	9 (36%)	9.3 month 66.7% 11.1% 0%		14.7 month 100% 88.9% 11.1%	
EZH2					
0	3 (12%)	24 month 100% 100% 100%	<0.001	24 month 100% 100% 100%	<0.001
1	6 (24%)	24 month 100% 100% 100%			
2	2 (8%)	22 month 100% 83.3% 33.3%		22.8 month 100% 100% 83.3%	
3	3 (12%)	13 month 66.6% 33.3% 0%		16 month 100% 66.7% 33.3%	
4	7 (28%)	7.3 month 57.1% ----- -----		13.6 month 100% 85.7% -----	
VEGF					
Low	12 (48%)	23 month 100% 91.7% 91.7%	<0.001	22.7 month 100% 100% 83.3%	0.009
High	13 (52%)	12.5 month 69.2% 30.8% 0%		16.5 month 100% 84.6% 30.8%	
Ki-67			0.087	24 month 100% 100% 100%	0.438
0	2 (8%)	24 month 100% 100% 100%			
1	5 (20%)	16.8 month 60% 60% 60%		17.4 month 100% 80% 40%	
2	11 (44%)	18.6 month 90.9% 63.6% 54.6%		20.5 month 100% 100% 63.6%	
3	7 (28%)	14.6 month 85.7% 42.9% 0%		18.1 month 100% 85.7% 42.9%	

‡ Log rank test
Discussion:-
Renal cell carcinoma (RCC) is the third commonest malignancy in the urinary system representing 5% of all cancer diagnoses. Clear cell renal cell cancers (CCRCC) represent about 70% of all renal cancers, and several clinical and histopathologic factors are implicated in the prognosis of renal cancers (Jemal et al., 2011).

This tumor has a poor response to existing treatment options with relapse in 20-30% of cases after complete primary tumor resection. New targeted treatments, as tyrosine kinase inhibitors, showed limited benefit (Wagener et al., 2010). Prognosis and response to treatment are still not sufficiently predictable (Eichelberg et al., 2009). That is why searching for new predictive and prognostic factor for RCC and targets for therapy is a high priority.

Enhancer of zeste homolog 2 (EZH2) protein is part of is polycomb repressive complex (PRC2).It acts as a histone methyltransferase by the addition of 3 methyl groups to lysine 27 of histone 3 (H3K27).The trimethylation of H3K27 leads to chromatin condensation and mediates epigenetic silencing of a large number of genes involved in tumor proliferation, invasion, and angiogenesis (Au et al., 2011).

In this study, significant direct correlation between EZH2 expression and Fuhrman grade (p< 0.001) that acts as independent prognostic factor for CCRCC was detected. Low EZH2 expression was noticed in lower grades renal cancers, while high expression was noticed in higher grades renal cancers. These results were in line with that of Wagener et al. (2010) and Ebru et al. (2016) who found significant correlation between EZH2 expression and grade (p < 0.0001 and p < 0.00001) respectively.

A significant correlation between EZH2 expression and lymph node metastasis was detected (p= 0.016), this was in agreement with the finding of Xu et al. (2015).One possible explanation for this is suppression of cadherin by EZH2 (Lee and Choe, 2012).

Our results revealed direct significant correlation between EZH2 expression and TNM stage (p< 0.001), suggesting its role in the development of renal cancer. This may be explained by finding of Tian et al. (2016) who found that EZH2 modulates epithelial mesenchymal transition (EMT) signaling and promotes cancer cell migration and invasion in CCRCC cells. These results were in line with that of Ebru et al. (2016) who found significant correlation between EZH2 expression and tumor stage (p < 0.0001).
Our findings suggest that high EZH2 expression in CCRCC can predict aggressiveness of the tumor. This is in agreement with the putative role of EZH2 in other tumors as breast cancer (Takawa et al., 2011; Testoni et al., 2011). A cell line study of CCRCC by Wagener et al.(2008), showed that EZH2 contributes to proliferation and apoptotic resistance that supports our results. Different mechanisms of EZH2 overexpression was detected in many malignant tumors. The RB gene pathway regulates EZH2 expression by transcriptional activation leading to tumor proliferation (Bracken et al., 2003). The loss of miRNAs such as miR-26a, miR-101 and miR-214 lead also to EZH2 accumulation (Danget al., 2012). Treatment with EZH2 inhibitor drugs as 3-deazaneplanocin A33, or blocking the effect of EZH2 may provide a major advance in the treatment of CCRCC (Crea et al., 2012).

Ki-67 has an independent prognostic importance in renal cell carcinoma, and also correlates with Fuhrman nuclear grade but is more objective and reproducible and can be used in conjunction with it to determine prognosis in renal cell carcinoma (Mehdi et al., 2016). Significant correlation between Ki-67 and EZH2 expression (p= 0.003) was found. As far as we know, no previous studies tested the relation between EZH2 and Ki67 expression in CCRCC.

According to current work, EZH2 is a negative prognostic marker in patients of CCRCC; that is why the assessment of its expression may improve selection of patient for systemic therapies. EZH2 status integration into current prognostic models may improve survival prediction.

Vascular endothelial growth factor (VEGF) is considered as the most potent endothelial cell-specific angiogenesis factor. It increases vascular permeability leading to endothelial cell proliferation with subsequent tube formation. In addition, CCRCC, a clinically angiogenic activity, has a direct relation with the expression of VEGF. This led to VEGF inhibition-based treatment methods used today against CCRCC (Ebru et al., 2016).

According to our study, VEGF expression was significantly associated with Fuhrman grade (p< 0.001), Ebru et al. (2016) and Xu et al. (2015) reported same results, it was also associated with TNM stage (p< 0.001), this was in line with results of Xu et al. (2015) (p=0.001). Direct correlation between VEGF and both grade and stage prove the relationship between its expression and progression and development of CCRCC.

No significant association was detected between VEGF expression and lymph node metastasis (p= 0.096). This may be explained by results of Baldewijns et al. (2009) that concluded that there is only limited lymphangiogenesis and predominance of haemangiogenesis in CCRCC and this explain why CRCC prefer haematogenous dissemination to lymphatic spread. VEGF-targeted therapies have therefore been implicated in the management of advanced CCRCC where they demonstrated an improvement in survival of these patients (Lampinem et al., 2016).

Direct correlation (p= 0.001) between EZH2 and VEGF was found. These results were in line with Xu et al., (2015), who supported the role of EZH2 on angiogenesis in CCRCC and Tian et al. (2016) who found that EZH2 promotes tumor development by increasing VEGF expression in CCRCC.

EZH2 downregulation inhibits vascularization in different tumors. These results suggest a possible therapeutic potential for EZH2 inhibition in tumors with aberrant vascularization (Kim and Roberts, 2016).

A statistically significant relation was noticed between VEGF and Ki-67 (p< 0.001), this was in agreement with results of Burgesseret al. (2014) who found that VEGF expression is directly related to the proliferation index.

According to our study high expression of EZH2 correlated with advanced stages of CCRCC and poor survival outcomes which were consistent with the results of the studies carried out by Liu et al., (2016) and Wang et al. (2015) who demonstrated that EZH2 represents independent prognostic factor in multivariate analysis for DFS (p = 0.004) and OS (p = 0.017). The results of this study was in concordance with meta-analysis carried out by Tian et al. (2016) who suggested that EZH2 overexpression is associated with a higher risk of RCC and it is also associated with worsened survival of CCRCC patients.

In this work, VEGF expression in CCRCC was significantly related to more progressive disease in correlation with lower survival rates and this in line with results of Osman and Youssef (2015).
Conclusion:-
Compared with early staged tumors, advanced CCRCC had significant detectable EZH2 and VEGF expressions. The expression level of EZH2 correlated positively with that of VEGF in CCRCC. The present study suggests that EZH2 overexpression has a role in the progression, development and angiogenesis in renal cell carcinoma and consequently can be used as an indicator for predicting the prognosis of CCRCC patients. These results suggest that EZH2 targeting might be an attractive therapeutic approach in the treatment of renal cancer.

Conflicts of interest: There are no conflicts of interest.

References:–
1. Au S, Wong C, Lee J, Fan D, Tsang F, Ng L & Wong C. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology. 2012;56(2):622–631.
2. Baldewijns M., Roskams, T., Ballet V., Van den Eynden G., Van Laere S., Van der Auwer I & Van Poppel H. "A low frequency of lymph node metastasis in clear-cell renal cell carcinoma is related to low lymphangiogenic activity." BJU international 103. no. 12 (2009): 1626-1631.
3. Bracken A, Pasini D, Capra M, Prosperi E, Colli E, Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 2003; 22: 5323–35.
4. Bürgesser M, Riva V, Ojeda S, Muñoz Morales D, Calafat P, Diller A. Expression of VEGF-A, HIF-1 A, CD34 and K67 in clear cell renal cell carcinomas and their relationship with conventional prognostic markers. Rev FacCien Med UnivNac Cordoba. 2014;71:7-15.
5. Crea F, Paolicchi E, Marquez VE, Danesi R. Polycombgenesand cancer: Time for clinical application? Crit Rev OncolHematol 2012; 83: 184–93.
6. Dang X, Ma A, Yang L, Het H, Shang T and Luo Y. Micro-RNA-26a regulates tumorigenic properties of EZH2 in human lung carcinoma cells. Cancer Genet 2012; 205: 113–23.
7. Ding L, Erdmann C, Chinnaiyan AM, Merajver SD, Kleer CG. Identification of EZH2 as a molecular marker for a precancerous state in morphologically normal breast tissues. Cancer Res 2006, 66(8):4095-4099.
8. Ebru T, Fulya O, Hakan A, Vuslat Y, Necdet S, Nuray C & Filiz O. Analysis of various potential prognostic markers and survival data in clear cell renal cell carcinoma. International braz j urol: official journal of the Brazilian Society of Urology. (2016).
9. Edge S. and Compton C. "The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM." Annals of surgical oncology 17, no. 6 (2010): 1471-1474.
10. Eichelberg C, Junker K, Ljunberg B, Moch H. Diagnostic and Prognostic Molecular Markers for Renal Cell Carcinoma: A Critical Appraisal of the Current State of Research and Clinical Applicability. EurUrol 2009, 55(4):851-863.
11. Fuhrman S, Lasky L, Limas C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J SurgPathol. 1982 Oct; 6(7):655-63.
12. Gerdes J, Lemke H, Baisch J, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody HI 67. J Immunol 1984;133:1710-5. 20.
13. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277-300. Erratum in: CA Cancer J Clin. 2011;61:133-4.
14. Kim K. and Roberts C. Targeting EZH2 in cancer. Nature medicine, (2016),22(2), 128-134.
15. Lainakis G and Bamias A. "Targeting angiogenesis in renal cell carcinoma." Current cancer drug targets 8, no. 5 (2008): 349-358.
16. Lampinen A, Virman J, Bono P Luukkaala T, Sunela K, Kujala P, Saharinen P, Kellokumpu-Lehtinen P. Novel angiogenesis markers as long term prognostic factors in patients with renal cell cancer. ClinGenitourin Cancer. 2016. doi: 10.1016/j.clgc.2016.07.008.
17. Lee H. and Choe M. Expression of EZH2 in renal cell carcinoma as a novel prognostic marker.Pathology international, 2012.62(11), pp.735-741.
18. Liu L, Xu Z, Zhong L, Wang H, Jiang S, Long Q, Xu J. and Guo J. Enhancer of zeste homolog 2 (EZH2) promotes tumour cell migration and invasion via epigenetic repression of E-cadherin in renal cell carcinoma. BJU Int. 2016; 117(2):351-62.
19. Mehdi M, Nagi A, and Naseem N. "MCM-2 and Ki-67 as proliferation markers in renal cell carcinoma: A quantitative and semi-quantitative analysis." International braz j urol 42, no. 6 (2016): 1121-1128.
20. Osman W and Youssef N. Combined use of COX-1 and VEGF immunohistochemistry refines the histopathologic prognosis of renal cell carcinoma. Int J ClinExpPathol. 2015; 8(7):8165-8177.
21. Kocarslan S, Guldur M, Ekinci T, Ciftci H and Ozardali H. Comparison of clinicopathological parameters with FoxM1 expression in renal cell carcinoma 2014. (10), 1076-1081.
22. Cheng S.H, Jia-Ming L, Qin-Yu L, De-Yi L, Bang-Hua L, Hong L, and Kun-Jie W. "Prognostic role of microvessel density in patients with renal cell carcinoma: a meta-analysis." Int J ClinExpPathol. 2014; 7(9): 5855–5863.
23. Takawa M, Masuda K, Kumizaki M, Takagi K, Iwai Y, Cho H, Toyokawa G, Yamane Y, Maejima K. and Field H. Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci 2011; 102: 1298–305.
24. Testoni B, Schinzari V, Guerrieri F, Gerbal-Chaloin S, Blandino G, Leverro M. p53-paralog DNp73 oncogene is repressed by IFNalpha/STAT2 through the recruitment of the Ezh2 polycomb group transcriptional repressor. Oncogene 2011; 30: 2670–8.
25. Tian Y, Hong M, Guo Q, Chen Z, Jing S, Ma B, and Wang Z. Clinicopathological and prognostic relevance of EZH2 expression in renal cell carcinoma: a meta-analysis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, (2016).9(6), 9714-9724.
26. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Dideot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F: The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006, 439(7078):871-874.
27. Wagener N, Holland D, Bulkescher J, Crnković-Mertens I, Hoppe-Seyler K, Zentgraf H, Pritsch M, Buse S, Pfitzenmaier J, Haferkamp A, and Hohenfellner M. The enhancer of zeste homolog 2 gene contributes to cell proliferation and apoptosis resistance in renal cell carcinoma cells. Int J Cancer 2008; 123: 1545–50.
28. Wagener N, Macher-Goepinger S, Pritsch, M, Hising J, Hoppe-Seyler K., Schirmacher P& Hohenfellner M. Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. BMC cancer, (2010) 10(1), 524.
29. Wang Y, Chen Y, Geng H, Qi C, Liu Y. and Yue D. Overexpression of YB1 and EZH2 are associated with cancer metastasis and poor prognosis in renal cell carcinomas. Tumor Biol. 2015; 36:7159-7166.
30. Xu Z, Zhang B, Gao Y, Wan X, Zhang B., Chen Y., Wang N., Sun, and Fu Y. "EZH2 promotes tumor progression by increasing VEGF expression in clear cell renal cell carcinoma." Clinical and Translational Oncology 17, no. 1 (2015): 41-49.
31. Tian Y, Hong M, Guo Q, Chen Z, Jing S, Ma B.,Wang H, Rodriguez R and Wang Z. Clinicopathological and prognostic relevance of EZH2 expression in renal cell carcinoma: a meta-analysis.Int J ClinExp Med. 2016; 9(6):9714-9724.
32. Znaor A, Lortet-Tieulent J, Laversanne M, Jemal A, and Bray F. "International variations and trends in renal cell carcinoma incidence and mortality." European urology 67, no. 3 (2015): 519-530.