Global database of oceanic particulate organic carbon to ^{234}Th ratios: Improving estimates of the biological carbon pump

Viena Puigcorbé¹, Pere Masqué¹², Frédéric A. C. Le Moigne³

¹ School of Science, Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup WA 6027, Australia.
² Institut de Ciència i Tecnologia Ambientals and Departament de Física, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
³ Mediterranean Institute of Oceanography, UM110 CNRS, Aix-Marseille Université, IRD, 13288 Marseille, France.

Correspondance to: Viena Puigcorbé (viена.puigcorbe@outlook.com)

Abstract

The ocean’s biological carbon pump (BCP) plays a major role in the global carbon cycle. A fraction of the photosynthetically fixed organic carbon produced in surface waters is exported below the sunlit layer as settling particles (e.g. marine snow). Since the seminal works on the BCP, global estimates of the global strength of the BCP have improved but large uncertainties remain (from 5 to 20 Gt C yr⁻¹ exported below the euphotic zone or mixed layer depth). The 234Th technique is widely used to measure the downward export of particulate organic carbon (POC). This technique has the advantage to allow a downward flux to be determined by integrating the deficit of 234Th in the upper water column and coupling it the POC/234Th ratio in sinking particles. However, the factors controlling the regional, temporal and depth variations of POC/234Th ratios are poorly understood. We present a database of 9318 measurements of the POC/234Th ratio in the ocean, from the surface down to >5500 m, sampled on three size fractions (~>0.7 µm, ~1-50 µm, ~>50 µm), collected with in situ pumps and bottles, and also from bulk particles collected with sediment traps. The dataset is archived on the data repository PANGAEÀ® (www.pangaea.de) under https://doi.pangaea.de/10.1594/PANGAEA.911424 (Puigcorbé, 2019). The samples presented in this dataset were collected between 1989 and 2018 and the data have been obtained from published papers and open datasets available online. Unpublished data has also been included. Multiple measurements can be found in most of the open ocean provinces. However, there is an uneven distribution of the data, with some areas highly sampled (e.g, China Sea, Bermuda Atlantic Time Series station) compared to some others that are not well represented, such as the southeastern Atlantic, the south Pacific and the south Indian oceans. Some coastal areas, although in a much smaller number, are also included in this global compilation. Globally, based on different depths horizons and climate zones, the median POC/234Th ratios have a wide range, from 0.6 to 18 µmol dpm⁻¹.

1 Introduction

The vertical export of photosynthetically produced particulate organic carbon, from the surface waters to the deep ocean (i.e. biological carbon pump; Eppley and Peterson, 1979), has a strong impact in the global carbon cycle. Through this process, the ocean stores carbon dioxide (CO₂) away from the atmosphere and buffers the global climate system (Kwon et al., 2009). Indeed, estimates suggest that atmospheric CO₂ levels would be 200 ppm...
higher than current concentrations without the biological carbon pump (Parekh et al., 2006). However, quantifying the magnitude of the biological carbon pump at both the regional and global scales is challenging and current assessments vary widely, with estimates ranging from 5 to 20 GtC y\(^{-1}\) being exported below the euphotic zone or the mixed layer depth (Guidi et al., 2015; Henson et al., 2011; Laws et al., 2011).

Downward export fluxes of organic carbon can be estimated using: (i) indirect approaches derived from nutrient uptake (Le Moigne et al., 2013a; Pondaven et al., 2000; Sanders et al., 2005), radioisotopes (Cochran and Masqué, 2003), satellite empirical algorithms (Dunne et al., 2007; Henson et al., 2011; Laws et al., 2011), underwater video systems (Guidi et al., 2008) or (ii) direct measurements using various designs of sediment traps (Buesseler et al., 2007; Engel et al., 2017; Lampitt et al., 2008; Owens et al., 2013) or marine snow catchers (Cavan et al., 2015; Riley et al., 2012).

Here we focus on the use of radioisotopes, specifically, \(^{234}\)Th. The \(^{234}\)Th approach allows to quantify an export flux from i) a water profile of \(^{234}\)Th to obtain its deficit relative to \(^{238}\)U combined with ii) an estimate of the POC concentration to \(^{234}\)Th activity (POC/Th ratio) in sinking matter (Buesseler et al., 1992). In reviewing POC/Th ratios variability using the data available at the time, (Buesseler et al., 2006) found that the POC/Th ratios i) increase or remain constant with increasing particle size and ii) decrease with depth. Regionally, the POC/Th ratios vary largely between oceanic provinces and regimes (Puigcorbé et al., 2017a). The study of the biogeochemical behavior of \(^{234}\)Th with regards to marine particles has received significant attention (Maiti et al., 2010; Le Moigne et al., 2013b; Puigcorbé et al., 2015; Rosengard et al., 2015; Santschi et al., 2006), and the availability of \(^{234}\)Th related data has been enhanced thanks to international and national programs such as GEOTRACES (Mawji et al., 2015; Schlitzer et al., 2018) JGOFS (Joint Global Ocean Flux Study) (Buesseler et al., 1998, 1995, 2001) or VERTIGO (Buesseler et al., 2008b), yet the factors controlling the variations of the POC/Th ratio as function of region, time, particle size/type and water column depth remain poorly understood.

Assessing the influence of such factors on the POC/Th ratios will contribute to improve our modelling efforts and our capacity to predict the export and fate of the organic carbon produced in the surface layers. Indeed, the necessity to constrain the variability of the POC/Th was discussed and considered a priority at the technical meeting “The Application of Radionuclides in Studies of the Carbon Cycle and the Impact of Ocean Acidification” held at the International Atomic Energy Agency (IAEA) Environment Laboratories in Monaco in October 2016 (Morris et al., 2017).

Therefore, we compiled a database that comprises 9318 POC/Th ratios collected between 1989 to 2018 covering most oceanic provinces at depths ranging from 0 to >5500 m deep. The particles were collected using collection bottles (i.e., Niskin), \textit{in situ} pumps or sediment traps, and include bulk and size fractionated samples. This database increases significantly the pool of POC/Th ratio data available at the time of (Buesseler et al., 2006) and enables to test the influence of various factors on the variability of POC/Th ratios. Among other information, the influence of biogeochemical characteristics of the area (e.g, nutrient concentrations) together with the surface productivity levels, phytoplankton compositions, zooplankton abundance could be examined through satellites products and/or global databases (e.g., Buitenhuis et al., 2013; Moriarty et al., 2013; Moriarty and O’Brien, 2013).
2 Data

2.1 The ^{234}Th approach

The short-lived radionuclide thorium-234 (^{234}Th, $t_{1/2} = 24.1$ d) is widely used to estimate the magnitude of the POC that escapes the upper ocean layers (e.g., the euphotic zone) (Waples et al., 2006). ^{234}Th is the decay product of uranium-238 (^{238}U, $t_{1/2} = 4.47 \cdot 10^8$ y). While uranium is conservative and proportional to salinity in well oxygenated seawater (Chen et al., 1986; Ku et al., 1977; Owens et al., 2011), thorium is not soluble in seawater and it is scavenged by particles as they form and/or sink along the water column. As a consequence, a radioactive disequilibrium between ^{238}U and ^{234}Th can be observed, mainly in the upper layers of the water column, which in first approximation, is proportional to the amount of particles exported and hence can be used to estimate particle and elemental export fluxes.

One-box scavenging model (see review by Savoye et al. (2006) and references therein) is commonly applied to calculate ^{234}Th export rates. Steady state (SS) or non-steady state conditions (NSS) are assumed depending on the conditions at the sampling time and the possibility to reoccupy locations within an adequate timescale. Le Moigne et al. (2013c) reported ^{234}Th fluxes from both types of models in their database with flux integration depths spanning from the surface down to 300 m, although the most common integration depths were between 100 and 150 m. The choice of export depth when using the ^{234}Th technique is not trivial. Rosengard et al. (2015) provide recommendations to the various manners of choosing the export depth in order to integrate the ^{234}Th fluxes. Once the ^{234}Th export flux is estimated it is multiplied by the ratio of POC to particulate ^{234}Th activity in sinking particles to obtain the POC flux. The sinking particles from which the ratio is measured should, ideally, be collected at the depth where the export has been estimated and represent the pool of particles that is driving the export of organic carbon.

2.2 The crux of the ^{234}Th approach: POC/Th ratios of sinking particles

The determination of the POC/Th ratio has been historically attained by assuming that sinking carbon is driven by large particles, generally >50 µm in size (researchers also use 51, 53 or 70 µm, depending on the mesh supplier), whereas organic carbon within small particles is assumed to remain suspended and therefore not contribute to the export flux (Bishop et al., 1977; Fowler and Knauer, 1986). However, recent studies have shown that small particles can be significant players in the particle export and should not be disregarded (Alonso-González et al., 2010; Durkin et al., 2015; Le Gland et al., 2019; Puigcorbé et al., 2015; Richardson, 2019), particularly in oligotrophic regions. The most common methods to obtain the particulate fraction to measure the POC/Th ratio are i) in situ pumps (ISP), which can allow for sampling different particle sizes, ii) collection bottles (CB) such as Niskin bottles, providing bulk particles, i.e., >0.7 or 1 µm particles, iii) sediment traps (ST) and although less common iv) marine snow catchers. In some instance various methods have been used in combination (Cai et al., 2010; Maiti et al., 2016; Puigcorbé et al., 2015).

Different sampling devices have been shown to provide differences in POC/Th ratios, usually within a factor of 2 to 4 (Buesseler et al., 2006). The differences can be related to the collection of different particles pools and/or the enhanced presence of swimmers. ST collect sinking particles and may suffer from hydrodynamic discrimination and undersample slow sinking particles (Gustafsson et al., 2004), while CB sample both, sinking and suspended...
particle, similar to ISP. ISP filter large volumes of water and have been suggested to potentially undersample some of the fast sinking particles (Lepore et al., 2009) and sample neutrally buoyant C-rich aggregates (i.e., non-sinking but with high POC/Th ratios) (Lalande et al., 2008). Biases due to washout of large particles when using ISP (Bishop et al., 2012) or aggregates collapse induced by their high cross-filter pressure (Gardner et al., 2003) may further enhance these differences. The presence of swimmers can also be an important bias of POC/Th ratios when not thoroughly removed, since they skew measurements towards higher values because of their high POC proportion compared to 234Th (Buesseler et al., 1994; Coale, 1990).

2.3 POC/234Th ratio variability

Despite the significant body of literature available on POC/Th ratios, more than 10 years after the review by (Buesseler et al., 2006) we still cannot explain the variability of the POC/Th ratios with depth, time, particle type, size or sinking velocity easily nor at a global level. Changes with size and depth have been the most extensively examined. The relation between POC/Th ratio and particle size have been assessed before with results suggesting that there is not a direct relationship. Previous studies have reported increasing ratios with increasing particle size (Benitez-Nelson et al., 2001; Buesseler et al., 1998; Cochran et al., 2000), which has been interpreted as an effect of the volume to surface area ratio of the particles, due to 234Th being surface bound whereas C would be contained within the particles (Buesseler et al., 2006). Yet, a number of studies have reported the opposite trend (i.e., decreasing ratio with increasing particle size; (Bacon et al., 1996; Hung et al., 2010; Planchon et al., 2013; Puigcorbé et al., 2015) or no clear change with size (Hung and Gong, 2010; Lepore et al., 2009; Speicher et al., 2006). Depth is another factor that has been considered when assessing the variability of POC/Th, since particles are produced in the surface layer and are remineralized on their transit along the water column (Martin et al., 1987). POC/Th ratios have been found to be attenuated with depth (Jacquet et al., 2011; Planchon et al., 2015; Puigcorbé et al., 2015). This is due to (in no order or importance) decreasing autotrophic production with increasing water depth, preferential C loss compared to 234Th through remineralization processes, changes in superficial binding ligands along the water column, and/or scavenging of 234Th during particle sinking resulting in enhanced particulate 234Th activities (Buesseler et al., 2006; Rutgers van der Loeff et al., 2002); leading to significant variability in the attenuation rates. Theoretically, high sinking velocities may limit the variations of POC/Th ratios with depth, owing to shorter residence times limiting the impacts of biotic and abiotic processes.

However, using specifically design ST that segregate particles according to their in situ sinking velocities, (Szlosek et al., 2009) observed no consistent trend between POC/Th ratios and sinking velocities.

The truth is that numerous processes can impact the POC/Th ratios apart from particle size or depth, such as particle composition or aggregation/disaggregation processes mediated by physical or biological activity (Buesseler and Boyd, 2009; Burd et al., 2010; Maiti et al., 2010; Szlosek et al., 2009) which adds a level of complexity to the prediction of their variability in the ocean. Yet, due to the significance of the POC/Th ratios for the accuracy of the 234Th flux method, the effort should be made to constrain the factors that will impact its variability and a number of environmental and biogeochemical parameters can be assessed with that goal at a global scale. Among others, surface productivity, phytoplankton composition, zooplankton abundance, mixed layer depth, dust inputs to the surface ocean and ice cover (Buitenhuis et al., 2013; Mahowald et al., 2009; Moriarty et al., 2013; Moriarty and O’Brien, 2013) are all potential candidates to test their global patterns against POC/Th ratios variability.
3 Results and discussion

3.1 Data classification

Our dataset is archived on the data repository PANGAEA® (www.pangaea.de), https://doi.pangaea.de/10.1594/PANGAEA.911424 (Puigcorbé, 2019). Latitude, longitude and sampling dates are reported. When dates of the individual stations were not reported in the original publications, we allocated the midpoint of the sampling period as the sampling date. The same was done when the specific sampling coordinates were not available (see details in the comments related to the dataset; https://doi.pangaea.de/10.1594/PANGAEA.902103; Puigcorbé, 2019). The database consists of 9318 measurements of POC/Th ratios in the ocean. Particles were collected using in situ pumps (ISP), water collection bottles (CB) and sediment traps (ST). We refer to “bulk” (BU) for particles sampled using CB and ISP with a pore size filter of 0.2-1 µm. For this group of samples, particles >0.7 µm were collected using GFF filters and >1 µm using QMA filters. In some particular cases other types of filters, with a different pore size (e.g., 0.2 µm, 0.45 µm or 0.6 µm) might have been used (see database for details). Hereafter, we use >1 µm for the bulk particles. We refer to “small particles” (SP) for particles usually collected using ISP on a 1-50 µm mesh size and “large particles” (LP) for particles usually collected using ISP on mesh size >50 µm (see details on other size ranges also used in the database). Finally, some POC/Th ratios were measured in sinking particles sampled using sediment traps (ST). Figure 1 shows the global distribution of POC/Th ratios grouped by these four categories: BU, LP, SP and ST. The POC/Th ratios were obtained from particles collected at various depths from surface to >5500 m deep (Figure 2). All the information on locations, dates, depth, size fractions/device (BU, SP, LP and ST) and references are included as metadata in the online database and presented in Table 1.

Our database covers POC/Th measurements sampled between 1989 and 2018, including unpublished data from our laboratories or graciously made available to us by colleagues and data available in online databases. Figure 3 shows the number of POC/Th measurements available per year. In years 1997, 2004, 2005, 2008, 2010, 2011 and 2013, the number of POC/Th measurements was >500. This highlights dedicated carbon export programs such as the Joint Global Ocean Flux Study (JGOFS) (Buesseler et al., 1998, 1992, 1995, 2001; Murray et al., 1996, 2005), the VERTIGO (Vertical Transport in the Global Ocean) voyages in the Pacific Ocean (Buesseler et al., 2008b), and the GEOTRACES program (Mawji et al., 2015; Schlitzer et al., 2018), as well as the maintained effort of the Time Series Stations (Kawakami et al., 2004, 2010, 2015; Kawakami and Honda, 2007). Sampling effort also varied depending on the month of the year (Fig. 3B), with late spring-summer months being the most highly sampled in both hemispheres. The northern hemisphere has been largely sampled in September, May and June (49, 10 and 5 times more data than in the southern hemisphere, respectively), whereas the southern hemisphere has been more sampled in December and February (5 and 4 times more data than the northern hemisphere, respectively), with no data available for the months of July and August and only 5 data points in September (austral winter). For the rest of the months, the northern hemisphere presents 1.4-1.8 times more data than the southern hemisphere. In the equatorial region (taken as the latitudes between -10° and 10° N) major sampling efforts took place in May, with no data collected in January and just 8 data points available from December. The monthly distribution is, therefore, globally biased towards the warmer and more productive seasons, leaving the winter months largely undersampled, particularly in the southern hemisphere.
3.2 Global variability: climate zones and depth horizons

The global variability of POC/Th ratios looking at six different depths horizons (50, 100, 200, 500, 1000 and >1000 m) and grouped by climatic zones (Polar >66.5°, Subpolar 66.5°-50°, Temperate 50°-35°, Subtropical 35°-23.5° and Tropical 23.5°N-23.5°S) is presented in Figure 4. A PERMANOVA analysis was conducted to examine the data and the results indicate that all the depths horizons defined here were significantly different (p<0.05). Significant differences were also found between climatic zones, except between the Temperate and Subtropical zones and between the Subtropical and the Tropical zones, when considering all the data together. Statistical differences between zones within a certain depth range are shown in Figure 4.

In general, we observe a reduction in POC/Th ratios with depth, previously reported by others (Buesseler et al., 2006), and likely mainly due to the remineralization of carbon along the water column. The decrease is particularly marked in the upper 200 m, where biological processes affecting the ratios are more intense, and then it smoothes below that depth horizon as the strength of these processes is more limited below the euphotic zone. It is worth noticing that some studies, particularly in coastal areas, presented extremely large POC/Th ratios (> 100 µmol dpm⁻¹, not included in Figure 4). These high ratios are not always discussed in the publications, but the presence of live zooplankton (Buesseler et al., 2009; Savoye et al., 2008; Trull et al., 2008) especially in BU, ST and LP fractions when not picked out can be the cause for those high values and should be considered with caution.

Regarding the climate zones, there is significant variability but, in general, large POC/Th ratios occur more often in productive and high latitude regions relative to low latitude tropical areas, particularly in the upper 200 m (Figure 4). When looking at the different types of sampling methods, the link between latitude and magnitude of the ratio seems to be clear for ST and BU but quite variable for LP and SP (Figure 5). High POC/Th ratios are usually associated to the presence of large phytoplankton groups, such as diatoms, which are dominant in high latitude areas with no nutrient limitations, or where zooplankton populations are large and there is a significant input of fecal pellets, which should have also high POC/Th ratios. Low ratios, on the other hand, are commonly observed in warm oligotrophic areas where productivity is limited and the main phytoplanktonic groups are picoplankton (Buesseler et al., 2006). Exceptions do exist, but they are usually found in coastal areas where other factors could be influencing the planktonic community (e.g., seasonal upwelling, continental influence, river inputs).

3.3 Contributing to global POC export estimates

The 234Th approach has been used to derive an export model at global scale that uses sea surface temperatures and net primary productivity from satellite products (Henson et al., 2011). The parametrization for this model has large uncertainties in the cold regions (low sea surface temperature), which lead to a reduced estimate of the global biological carbon pump (~5 GtC y⁻¹) compared to other satellite-derived export models (9-13 GtC y⁻¹; (Dunne et al., 2007; Laws et al., 2011). A recent study by (Puigcorbé et al., 2017a) estimated POC export fluxes in the North Atlantic using in situ data for the 234Th method and compared it to three different satellite-derived export models: Dunne et al., 2007; Henson et al., 2011 and Laws et al., 2011. The conclusion was that, overall, the geographical trends were captured by all the approaches, but the absolute values between them could reach important...
discrepancies. In that study, the authors advised for a revision of the parametrization of the models going beyond sea surface temperatures in order to adjust to specific ocean bioregions. This database sets a strong background to develop that parametrization and contribute to similar modeling efforts to constrain the global carbon export fluxes as done by Henson et al., (2011).

3.4 Significant gaps and recommendations

This database provides the global POC/Th ratios sampled from all the oceans up until 2018. The sampling coverage is significant but it is not evenly distributed. Areas such as the China Sea, Arabian Sea, North Western Mediterranean Sea, Central Pacific and high latitudes of the Atlantic Ocean are well represented, whereas other areas, such as the oligotrophic gyres, West Pacific or the Southern Ocean, present important gaps. The data is not evenly distributed between seasons either, with most of the sampling taking place during spring and summer in both hemispheres, which is also when the export fluxes are expected to be larger. High seasonality in undersampled areas could potentially bias our global view of the POC/Th ratios and have an impact on the Th-derived carbon export fluxes estimates.

It would be beneficial for future efforts to obtain data for those undersampled areas with high seasonality to better characterize the expected variability in the ratios within those areas and to cover a larger span of seasons in order to better understand the seasonality of POC/Th and thus be able to translate it more accurately to the global POC export estimates.

4 Conclusion

Here we provide a global database of 9318 estimates of POC/Th ratios collected between 1989 and 2018 at various depths from below the surface to >5500 m deep using in situ pumps, Niskin® bottles and sediment traps. The observed pattern of POC/Th ratios reflects a decrease with depth and a link with the latitude, with higher ratios usually observed in high latitudes areas. Some noteworthy gaps in the dataset are the Benguela system, the Mauritanian upwelling, the western and south Pacific, and the Southern Indian Ocean. The fall-winter months in both hemispheres are also underrepresented. The temporal and spatial undersampling of some areas could bias the global view of the POC/Th ratios. Despite the gaps, this database is the largest compilation POC/Th ratios up to date and could be used to better understand the factors controlling the variation of ratios on a global scale. This will help revising and providing improved estimates of the ocean’s biological carbon pump.
Data availability

Our dataset is archived on the data repository PANGAEA® (www.pangaea.de), under the following doi: https://doi.pangaea.de/10.1594/PANGAEA.911424 (Puigcorbé, 2019).

Authors contribution

VP and FACLM compiled the dataset and prepared and reviewed the manuscript. All the authors contributed to the review of the manuscript.

Competing interests

The authors declare that they have no conflict of interest

Acknowledgements

We are very grateful to all of those that have provided data for this global database, specially to those authors that have provided unpublished data to make this database as complete as possible. We would like to thank also Elena Ceballos and Sian McNamara who helped during the preparation of the database. Also thanks to Daniela Ransby, from the PANGAEA Data Archiving & Publication team, for her support and efficiency during the data submission process. VP received funding from the School of Science at Edith Cowan University to compile the dataset and facilitate the collaboration with FACLM. Funding was provided to PM by the Generalitat de Catalunya (Grant 2017 SGR-1588). This work is contributing to the ICTA ‘Unit of Excellence’ (MinECo, MDM2015-0552). Thanks also to the Radioecology Laboratory of the IAEA for hosting the technical meeting “The Application of Radionuclides in Studies of the Carbon Cycle and the Impact of Ocean Acidification”, in particular to Stephanie Morris and all the participants for the fruitful discussions.

References

Alkalay, R., Zlatkin, O., Katz, T., Herut, B., Halicz, L., Berman-Frank, I. and Weinstein, Y.: Carbon export and drivers in the southeastern Levantine Basin, Deep Sea Res. Part II Top. Stud. Oceanogr., 171, 104713, doi:https://doi.org/10.1016/j.dsr2.2019.104713, 2020.
Alonso-González, I. J., Aristegui, J., Lee, C., Sanchez-Vidal, A., Calafat, A., Fabrés, J., Sangrà, P., Masqué, P., Hernández-Guerra, A. and Benítez-Barrios, V.: Role of slowly settling particles in the ocean carbon cycle, Geophys. Res. Lett., 37(13), L13608, doi:10.1029/2010GL043827, 2010.
Amiel, D. and Cochran, J. K.: Terrestrial and marine POC fluxes derived from 234Th distributions and δ13C measurements on the Mackenzie Shelf, J. Geophys. Res. Ocean., 113(C3), doi:10.1029/2007JC004260, 2008.
Amiel, D., Cochran, J. K. and Hirschberg, D. J.: U disequilibrium as an indicator of the seasonal export flux of particulate organic carbon in the North Water, Deep Sea Res. Part II Top. Stud. Oceanogr., 49(22), 5191–5209, 2002.
Anand, S. S., Rengarajan, R., Sarma, V. V. S. S., Sudheer, A. K., Bhushan, R. and Singh, S. K.: Spatial variability of upper ocean POC export in the Bay of Bengal and the Indian Ocean determined using particle-reactive 234Th, J. Geophys. Res. Ocean., 122(5), 3753–3770, doi:10.1002/2016JC012639, 2017.
Anand, S. S., Rengarajan, R. and Sarma, V. V. S. S.: 234Th-Based Carbon Export Flux Along the Indian GEOTRACES GI02 Section in the Arabian Sea and the Indian Ocean, Global Biogeochem. Cycles, doi:10.1002/2017GB005847, 2018a.
Anand, S. S., Rengarajan, R., Shenoy, D., Gauns, M. and Naqvi, S. W. A.: POC export fluxes in the Arabian Sea and the Bay of Bengal: A simultaneous 234Th/238U and 210Po/210Pb study, Mar. Chem., 198, 70–87,
2005.

Buesseler, K. O., Benitez-Nelson, C. R., Moran, S. B., Burd, A., Charette, M., Cochran, J. K., Coppola, L., Fisher, N. S., Fowler, S. W. and Gardner, W. D.: An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy, Mar. Chem., 100(3–4), 213–233, doi:10.1016/j.marchem.2005.10.013, 2006.

Buesseler, K. O., Antia, A. N., Chen, M., Fowler, S. W., Gardner, W. D., Gustaffson, O., Harada, K., Michaels, A. F., Rutgers van der Loeff, M. and Sarin, M.: An assessment of the use of sediment traps for estimating upper ocean particle fluxes, J. Mar. Res., 65, 345–416, 2007.

Buesseler, K. O., Lamborg, C., Cai, P., Escoube, R., Johnson, R., Pike, S., Masque, P., McGillicuddy, D. and Verdeny, E.: Particle fluxes associated with mesoscale eddies in the Sargasso Sea, Deep Sea Res. Part II Top. Stud. Oceanogr., 55(10–13), 1426–1444, doi:10.1016/j.dsr2.2008.02.007, 2008a.

Buesseler, K. O., Trull, T. W., Steinberg, D. K., Silver, M. W., Siegel, D. A., Saitoh, S.-I., Lamborg, C. H., Lam, P. J., Karl, D. M., Jiao, N. Z., Honda, M. C., Elskens, M., Dehairs, F., Brown, S. L., Boyd, P. W., Bishop, J. K. B. and Bidigare, R. R.: VERTIGO (VERtical Transport In the Global Ocean): A study of particle sources and flux attenuation in the North Pacific, Deep Sea Res. Part II Top. Stud. Oceanogr., 55(14–15), 1522–1539, doi:http://dx.doi.org/10.1016/j.dsr2.2008.04.024, 2008b.

Buesseler, K. O., Pike, S., Maiti, K., Lamborg, C. H., Siegel, D. A. and Trull, T. W.: Thorium-234 as a tracer of spatial, temporal and vertical variability in particle flux in the North Pacific, Deep Res. Part I, Res. Pap., 56(7), 1143–1167, doi:10.1016/j.dsr.2009.04.001, 2009.

Buesseler, K. O., McDonnell, A. M. P., Schofield, O. M. E., Steinberg, D. K. and Ducklow, H. W.: High particle export over the continental shelf of the west Antarctic Peninsula, Geophys. Res. Lett., 37(22), doi:10.1029/2010GL045448, 2010.

Buitenhuis, E., Vogt, M., Moriarty, R., Bednarsek, N., Doney, S. C., Leblanc, K., Le Quéré, C., Luo, Y.-W., O’Brien, C., O’Brien, T., Pelosoquin, J., Schiebel, R. and Swan, C.: MAREDAT: towards a world atlas of MARine Ecosystem DATa, Earth Syst. Sci. Data, 5, 227–239, doi:10.1594/PANGAEA.779970, 2013.

Burd, A. B., Hansell, D. a., Steinberg, D. K., Anderson, T. R., Aristegui, J., Baltar, F., Beaupré, S. R., Buesseler, K. O., DeHairs, F., Jackson, G. a., Kadko, D. C., Koppelmann, R., Lampitt, R. S., Nagata, T., Reithaler, T., Robinson, C., Robison, B. H., Tamburini, C. and Tanaka, T.: Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What is the problem with present calculations of carbon budgets?, Deep Sea Res. Part II Top. Stud. Oceanogr., 57(16), 1557–1571, doi:10.1016/j.dsr2.2010.02.022, 2010.

Cai, P., Huang, Y., Chen, M., Liu, G. and Qiu, Y.: Export of particulate organic carbon estimated from 234Th–238U disequilibria and its temporal variation in the South China Sea, Chinese Sci. Bull., 46(20), 1722–1726, doi:10.1007/BF02900660, 2001.

Cai, P., Dai, M., Chen, W., Tang, T. and Zhou, K.: On the importance of the decay of 234Th in determining size-fractionated C/234Th ratio on marine particles, Geophys. Res. Lett., 33(23), L23602, doi:10.1029/2006GL027792, 2006.

Cai, P., Chen, W., Dai, M., Wan, Z., Wang, D., Li, Q., Tang, T. and Lv, D.: A high-resolution study of particle export in the southern South China Sea based on 234Th:238U disequilibrium, J. Geophys. Res. Ocean., 113(C4), doi:10.1029/2007JC004268, 2008.

Cai, P., Rutgers van der Loeff, M., Stimac, I., Nöthig, E. M., Lepore, K. and Moran, S. B.: Low export flux of particulate organic carbon in the central Arctic Ocean as revealed by 234Th:238U disequilibrium, J. Geophys. Res., 115(C10), C10037, doi:10.1029/2009JC005595, 2010.

Cai, P., Zhao, D., Wang, L., Huang, B. and Dai, M.: Role of particle stock and phytoplankton community structure in regulating particulate organic carbon export in a large marginal sea, J. Geophys. Res. Ocean., 120(3), 2063–2095, doi:10.1002/2014JC010432, 2015.

Cavan, E. L., Le Moigne, F. A. C., Poulton, A. J., Tarling, G. A., Ward, P., Daniels, C. J., Fragoso, G. and Sanders, R. J.: Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets, Geophys. Res. Lett., 42, 821–830, doi:10.1002/2014GL062744, 2015.

Ceballos-Romero, E., Le Moigne, F. A. C., Henson, S., Marsay, C. M., Sanders, R. J., Garcia-Tenorio, R. and Villa-Alfageme, M.: Influence of bloom dynamics on Particle Export Efficiency in the North Atlantic: a comparative study of radioanalytical techniques and sediment traps, Mar. Chem., 186, 198–210, doi:http://dx.doi.org/10.1016/j.marchem.2016.10.001, 2016.

Charette, M. A. and Moran, S. B.: Rates of particle scavenging and particulate organic carbon export estimated using 234Th as a tracer in the subtropical and equatorial Atlantic Ocean, Deep. Res. Part II, 46(5), 885–906, doi:10.1016/S0967-0645(99)00006-5, 1999.
Charette, M. A., Moran, S. B. and Bishop, J. K. B.: 234Th as a tracer of particulate organic carbon export in the subarctic northeast Pacific Ocean, Deep. Res. Part II, 46, 2833–2861, doi:10.1016/S0967-0645(99)00085-5, 1999.

Charette, M. A., Moran, S. B., Pike, S. M. and Smith, J. N.: Investigating the carbon cycle in the Gulf of Maine using the natural tracer thorium 234, J. Geophys. Res. Ocean., 106(C6), 11553–11579, doi:10.1029/1999JC000277, 2001.

Chen, J. H., Lawrence Edwards, R. and Wasserburg, G. J.: 238U, 234U and 232Th in seawater, Earth Planet. Sci. Lett., 80, 241–251, doi:10.1016/0012-821X(86)90108-1, 1986.

Chen, M., Huang, Y., Cai, P. and Guo, L.: Particulate organic carbon export fluxes in the Canada Basin and Bering Sea as derived from 234Th/238U disequilibria, Arctic, 56(1), 32, 2003.

Chen, W., Cai, P., Dai, M. and Wei, J.: 234Th/238U disequilibrium and particulate organic carbon export in the northern South China Sea, J. Oceanogr., 64(3), 417–428, doi:10.1007/s10872-008-0035-z, 2008.

Coale, K. H.: Labyrinth of doom: A device to minimize the “swimmer” component in sediment trap collections, Limnol. Oceanogr., 35, 1376–1381, doi:10.4319/lo.1990.35.6.1376, 1990.

Cochran, J. K. and Masqué, P.: Short-lived U/Th series radionuclides in the ocean: tracers for scavenging rates, export fluxes and particle dynamics, Rev. Mineral. Geochemistry, 52(1), 461–492, doi:10.2113/0520461, 2003.

Cochran, J. K., Barnes, C., Achman, D. and Hirschberg, D. J.: Thorium-234/uranium-238 disequilibrium as an indicator of scavenging rates and participate organic carbon fluxes in the Northeast Water Polynya, Greenland, J. Geophys. Res. Ocean., 100(C3), 4399–4410, doi:10.1029/94JC01954, 1995.

Cochran, J. K., Buesseler, K. O., Bacon, M. P., Wang, H. W., Hirschberg, D. J., Ball, L., Andrews, J., Crossin, G. and Fleer, A.: Short-lived thorium isotopes (234Th, 228Th) as indicators of POC export and particle cycling in the Ross Sea, Southern Ocean, Deep Sea Res. Part II Top. Stud. Oceanogr., 47(15–16), 3451–3490, doi:10.1016/S0967-0645(00)00075-8, 2000.

Coppola, L., Roy-Barmen, M., Wassmann, P., Mulso, S. and Jeandel, C.: Calibration of sediment traps and particulate organic carbon export using 234Th in the Barents Sea, Mar. Chem., 80(1), 11–26, doi:10.1016/S0304-4203(02)00071-3, 2002.

Coppola, L., Roy-Barmen, M., Mulso, S., Povinec, P. and Jeandel, C.: Low particulate organic carbon export in the frontal zone of the Southern Ocean (Indian sector) revealed by 234Th, Deep Sea Res. Part I Oceanogr. Res. Pap., 52(1), 51–68, doi:10.1016/j.dsr.2004.07.020, 2005.

Dai, M. H. and Benitez-Nelson, C. R.: Colloidal organic carbon and 234Th in the Gulf of Maine, Mar. Chem., 74(2–3), 181–196, doi:http://dx.doi.org/10.1016/S0304-4203(01)00123-2, 2000.

Dunne, J. P., Sarmiento, J. L. and Gnanadesikan, A.: A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor, Glob. Biogeochem.Cycles, 21(4), doi:10.1029/2006GB002907, 2007.

Durkin, C. A., Estapa, M. L. and Buesseler, K. O.: Observations of carbon export by small sinking particles in the upper mesopelagic, Mar. Chem., 175, 72–81, doi:10.1016/j.marchem.2015.02.011, 2015.

Engel, A., Wagner, H., Le Moigne, F. A. C. and Wilson, S. T.: Particle export fluxes to the oxygen minimum zone of the eastern tropical North Atlantic, Biogeosciences, 14(7), 1825–1838, doi:10.5194/bg-14-1825-2017, 2017.

Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677–680, doi:10.1038/282677a0, 1979.

Evangelou, N., Florou, H. and Psomiadou, C.: Size-fractionated particulate organic carbon (POC) export fluxes estimated using 234Th-238U disequilibria in the Saronikos Gulf (Greece) during winter bloom, Fresenius Environ. Bull., 22(7a), 1951–1961, 2013.

Foster, J. M. and Shimmield, G. B.: 234Th as a tracer of particle flux and POC export in the northern North Sea during a coccolithophore bloom, Deep Sea Res. Part II Top. Stud. Oceanogr., 49(15), 2965–2977, doi:10.1016/S0967-0645(02)00066-8, 2002.

Fowler, S. W. and Knauer, G. A.: Role of large particles in the transport of elements and organic compounds through the oceanic water column, Prog. Oceanogr., 16(3), 147–194, doi:http://dx.doi.org/10.1016/0079-6611(86)90032-7, 1986.

Friedrich, J. and Rutgers van der Loeff, M.: A two-tracer (210Po-234Th) approach to distinguish organic carbon and biogenic silica export flux in the Antarctic Circumpolar Current, Deep Sea Res. Part I Oceanogr. Res. Pap., 49(1), 101–120, doi:10.1016/S0967-0637(01)00045-0, 2002.

Gardner, W. D., Richardson, M. J., Carlson, C. A., Hansell, D. and Mishonov, A. V.: Determining true particulate organic carbon: bottles, pumps and methodologies, Deep Sea Res. Part II Top. Stud. Oceanogr.,
Kawakami, H.: Scanvenging of 210Po and 234Th by particulate organic carbon in the surfaca layer of the

doi:/10.1016/j.dsr.2011.05.035, 2011.

and polar front zone so

Jacquet, S. H. M., Lam, P. J., Trull, T. W. and Dehairs, F.: Carbon export production in the subantarctic zone

2012.

from the Northwestern Pacific Ocean, Geochim. Cosmochim. Acta, 91, 60

132

oligotro

L. and Long, R. A.: Comparative evaluation of sediment trap and 234Th

Hung, C. C., Xu, C., Santschi, P. H., Zhang, S. J., Schwehr, K. A., Quigg, A., Guo, L., Gong, G. C., Pinckney, J. L. and Long, R. A.: Comparative evaluation of sediment trap and 234Th-derived POCl fluxes from the upper oligotrophic waters of the Gulf of Mexico and the subtropical northwestern Pacific Ocean, Mar. Chem., 121(1), 132–144, doi:10.1016/j.marchem.2010.03.011, 2010.

Hung, C. C., Gong, G. C. and Santschi, P. H.: 234Th in different size classes of sediment trap collected particles from the Northwestern Pacific Ocean, Geochem. Cosmochim. Acta, 91, 60–74, doi:10.1016/j.gca.2012.05.017, 2012.

Jacquet, S. H. M., Lam, P. J., Trull, T. W. and Dehairs, F.: Carbon export production in the subantarctic zone and polar front zone south of Tasmania, Deep Sea Res. Part II Top. Stud. Oceanogr., 58(21–22), 2277–2292, doi:/10.1016/j.dsr.2011.05.035, 2011.

Kawakami, H.: Scanvenging of 210Po and 234Th by particulate organic carbon in the surfaca layer of the
Kawakami, H. and Honda, M. C.: Time-series observation of POC fluxes estimated from 234Th in the northwestern North Pacific, Deep Sea Res. Part I Oceanogr. Res. Pap., 54(7), 1070–1090, doi:10.1016/j.dsr.2007.04.005, 2007.

Kawakami, H., Yang, Y.-L., Honda, M. C. and Kusakabe, M.: Particulate organic carbon fluxes estimated from 234Th deficiency in winters and springs in the northwestern North Pacific, Geochim. J., 38(6), 581–592, doi:10.2343/geochemj.38.581, 2004.

Kawakami, H., Honda, M. C., Matsumoto, K., Fujiki, T. and Watanabe, S.: East-west distribution of POC fluxes estimated from 234Th in the northern North Pacific in autumn, J. Oceanogr., 66(1), 71–83, doi:10.1007/s10872-010-0006-z, 2010.

Kawakami, H., Honda, M. C., Matsumoto, K., Wakita, M., Kitamura, M., Fujiki, T. and Watanabe, S.: POC fluxes estimated from 234Th in late spring–early summer in the western subarctic North Pacific, J. Oceanogr., 71(3), 311–324, doi:10.1007/s10872-015-0290-8, 2015.

Kim, D., Choi, M.-S., Oh, H.-Y., Song, Y.-H., Noh, J.-H. and Kim, K. H.: Seasonal export fluxes of particulate organic carbon from 234Th/238U disequilibrium measurements in the Ulleung Basin1 (Tsushima Basin) of the East Sea1 (Sea of Japan), J. Oceanogr., 67(5), 577, doi:10.1007/s10872-011-0058-8, 2011.

Kim, G. and Church, T. M.: Seasonal biogeochemical fluxes of 234Th and 210Po in the upper Sargasso Sea: Influence from atmospheric iron deposition, Glob. Biogeochem.Cycles, 15(3), 651–661, doi:10.1029/2000GB001313, 2001.

Ku, T.-L., Knauss, K. G. and Mathieu, G. G.: Uranium in open ocean: concentration and isotopic composition, Deep Sea Res., 24(11), 1005–1017, doi:10.1016/0146-6291(77)90571-9, 1977.

Kwon, E. Y., Primeau, F. and Sarmiento, J. L.: The impact of remineralization depth on the air–sea carbon balance, Nat. Geosci., 2, 630, doi:10.1038/NGEO612, 2009.

Lalande, C., Lepore, K., Cooper, L. W., Grebmeier, J. M. and Moran, S. B.: Export fluxes of particulate organic carbon in the Chukchi Sea: A comparative study using ²³⁴Th/²³⁸U disequilibria and drifting sediment traps, Mar. Chem., 103(1), 185–196, 2007.

Lalande, C., Moran, S. B., Wassmann, P., Grebmeier, J. M. and Cooper, L. W.: 234Th-derived particulate organic carbon fluxes in the northern Barents Sea with comparison to drifting sediment trap fluxes, J. Mar. Syst., 73(1), 103–113, doi:10.1016/j.marsys.2007.09.004, 2008.

Lamborg, C. H., Bueseler, K. O., Valdes, J., Bertrand, C. H., Biggigare, R., Manganini, S., Pike, S., Steinberg, D., Trull, T. and Wilson, S.: The flux of bio- and lithogenic material associated with sinking particles in the mesopelagic "twilight zone" of the northwest and North Central Pacific Ocean, Deep Sea Res. Part II Top. Stud. Oceanogr., 55(14–15), 1540–1563, doi:10.1016/j.dsr2.2008.04.011, 2008.

Lampitt, R. S., Boorman, B., Brown, L., Lucas, M., Salter, I., Sanders, R., Saw, K., Seeyave, S., Thomalla, S. J. and Turnewitsch, R.: Particle export from the euphotic zone: Estimates using a novel drifting sediment trap, 234Th and new production, Deep Sea Res. Part I Oceanogr. Res. Pap., 55(11), 1484–1502, doi:10.1016/j.dsr.2008.07.002, 2008.

Laws, E. A., D’Sa, E. and Naik, P.: Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production, Limnol. Oceanogr. Methods, 9(12), 593–601, doi:10.4319/lom.2011.9.593, 2011.

Lemaire, N., Planchon, F., Planquette, H., Dehairs, F., Fonseca-Batista, D., Roukaerts, A., Deman, F., Tang, Y., Mariez, C. and Sarthou, G.: High variability of particulate organic carbon export along the North Atlantic GEOTRACES section GA01 as deduced from S^+234^S/238^U fluxes, Biogeoosciences, 15(21), 6417–6437, doi:10.5194/bg-15-6417-2018, 2018.

Lepore, K., Moran, S. B., Grebmeier, J. M., Cooper, L. W., Lalande, C., Maslowski, W., Hill, V., Bates, N. R., Hansell, D. A., Mathis, J. T. and Kelly, R. P.: Seasonal and interannual changes in particulate organic carbon export and deposition in the Chukchi Sea, J. Geophys. Res. Ocean., 112(C10), doi:10.1029/2006JC003555, 2007.

Lepore, K., Moran, S. B., Burd, A. B., Jackson, G. A., Smith, J. N., Kelly, R. P., Kaberi, H., Stavrakakis, S. and Assimakopoulou, G.: Sediment trap and in-situ pump size-fractionated POC/234Th ratios in the Mediterranean Sea and Northwest Atlantic: Implications for POC export, Deep Sea Res. Part I Oceanogr. Res. Pap., 56(4), 599–613, doi:10.1016/j.dsr.2008.11.004, 2009.

Luo, Y., Miller, L. A., Baere, B. De, Soon, M. and Francois, R.: POC fluxes measured by sediment traps and 234Th:238U disequilibrium in Saanich Inlet, British Columbia, Mar. Chem., 162, 19–29, doi:10.1016/j.marchem.2014.03.001, 2014.
Ma, Q., Chen, M., Qu, Y. and Li, Y.: Regional estimates of POC export flux derived from thorium-234 in the western Arctic Ocean, Acta Oceanol. Sin., 24(6), 97–108, 2005.

Mahowald, N. M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P. Y., Cohen, D. D., Dulac, F., Herut, B., Johansen, A. M., Kubilay, N., Losno, R., Maenhaut, W., Paytan, A., Prospero, J. M., Shank, L. M. and Siefert, R. L.: Atmospheric Iron Deposition: Global Distribution, Variability, and Human Perturbations, Ann. Rev. Mar. Sci., 1(1), 245–278, doi:10.1146/annurev.marine.010908.163727, 2009.

Maiti, K., Benitez-Nelson, C. R., Rii, Y. and Bidigare, R.: The influence of a mature cyclonic eddy on particle export in the lee of Hawaii, Deep Sea Res. Part II Top. Stud. Oceanogr., 55(10), 1445–1460, 2008.

Maiti, K., Benitez-Nelson, C. R., Lomas, M. W. and Krause, J. W.: Biogeochemical responses to late-winter storms in the Sargasso Sea, III—Estimates of export production using 234Th: 238U disequilibria and sediment traps, Deep Sea Res. Part I Oceanogr. Res. Pap., 56(6), 875–891, doi:10.1016/j.dsr.2009.01.008, 2009.

Maiti, K., Benitez-Nelson, C. R. and Buesseler, K. O.: Insights into particle formation and remineralization using the short-lived radionuclide, Thorium-234, Geophys. Res. Lett., 37(15), L15608, doi:10.1029/2010GL044063, 2010.

Maiti, K., Bosu, S., D’Sa, E. J., Adhikari, P. L., Sutor, M. and Longnecker, K.: Export fluxes in northern Gulf of Mexico - Comparative evaluation of direct, indirect and satellite-based estimates, Mar. Chem., 184, 60–77, doi:10.1016/j.marchem.2016.06.001, 2016.

Martin, J. H., Knauer, G. A., Karl, D. M. and Broenkow, W. W.: VERTEX: carbon cycling in the northeast Pacific, Deep Sea Res. Part A. Oceanogr. Res. Pap., 34(2), 267–285, doi:10.1016/0198-0149(87)90086-0, 1987.

Martin, P., Lampitt, R. S., Jane Perry, M., Sanders, R., Lee, C. and D’Asaro, E.: Export and mesopelagic particle flux during a North Atlantic spring diatom bloom, Deep Sea Res. Part I Oceanogr. Res. Pap., 58, 338–349, doi:10.1016/j.dsr.2011.01.006, 2011.

Martin, P., van der Loeff, M. R., Cassar, N., Vandronnemme, P., D’Ovidio, F., Stemmann, L., Rengarajan, R., Soares, M., González, H. E., Ebersbach, F., Lampitt, R. S., Sanders, R., Barnett, B. A., Smetacek, V. and Naqvi, S. W. A.: Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX, Global Biogeochem. Cycles, 27(3), 871–881, doi:10.1002/gbc.20077, 2013.

Mawji, E., Schlitzer, R., Masferrer, E., Abadie, C., Abouchami, W., Anderson, R. F., Baars, O., Bakker, K., Baskaran, M., Bates, N. R., Bluhm, K., Bowie, A., Bown, J., Boye, M., Boyle, E. A., Branekkee, P., Bruiland, K. W., Brzezinski, M. A., Buccionielli, E., Buessler, K., Butler, E., Cai, P., Cardinal, D., Casciotti, K., Chaves, J., Cheng, H., Chever, F., Church, T. M., Colman, A. S., Conway, T. M., Crook, P. L., Cutter, G. A., de Baar, H. J. W., de Souza, G. F., Dehairs, F., Deng, F., Thi Dieu, H., Dulaquais, G., Echegoyen-Sanz, Y., Edwards, R. L., Fahrbach, E., Fitzsimmons, J., Fleisher, M., Frank, M., Friedrich, J., Fripiat, F., Galer, S. J. G., Gamo, T., Garcia-Solsona, E., Gerringa, L. J. A., Godoy, J. M., Gonzalez, S., Grosssteffan, E., Hatta, M., Hayes, C. T., Heller, M. I., Henderson, G., Huang, K.-F., Jeandel, C., Jenkins, W. J., John, S., Kenna, T. C., Klunder, M., Kretschmer, S., Kumamoto, Y., Laan, P., Labatut, M., Lakan, F., Lam, P. J., Lannuzel, D., Le Moigne, F., Lechtenfeld, O., Lohan, M. C., Lu, Y., Masqué, P., McClain, C. R., Measures, C., Middag, R., Moffett, J., Navidad, A., Nishioka, J., Noble, A., Obata, H., Ohnemus, D. C., Owens, S., Planchon, F., Pradoux, C., Puigcorbé, V., Quay, P., Radic, A., Rehkämper, M., Remenyi, T., Rijkenberg, M. J. A., Rintoul, S., Robinson, L. F., Roeske, T., Rosenberg, M., Rutgers van der Loeff, M., Ryabenko, E., et al.: The GEOTRACES Intermediate Data Product 2014, Mar. Chem., (177), 1–8, doi:10.1016/j.marchem.2015.04.005, 2015.

Le Moigne, F. A. C., Sanders, R. J., Villa-Allfageme, M., Martin, A. P., Pabortsava, K., Planquette, H., Morris, P. J. and Thomalla, S. J.: On the proportion of ballast versus non-ballast associated carbon export in the surface ocean, Geophys. Res. Lett., 39(15), L15610, doi:10.1029/2012GL052980, 2012.

Le Moigne, F. A. C., Boye, M., Masson, A., Corvaisier, R., Grosssteffan, E., Guéneugues, A. and Pondaven, P.: Description of the biogeochemical features of the subtropical southeastern Atlantic and the Southern Ocean south of South Africa during the austral summer of the International Polar Year, Biogeosciences, 10(1), 281–295, doi:10.5194/bg-10-281-2013, 2013a.

Le Moigne, F. A. C., Villa-Allfageme, M., Sanders, R. J., Marsay, C., Henson, S. and Garcia-Tenorio, R.: Export of organic carbon and biominerals derived from²³⁴Th and²¹⁰Po at the Porcupine Abyssal Plain, Deep Sea Res. Part I Oceanogr. Res. Pap., 72, 88–101, 2013b.

Le Moigne, F. A. C., Henson, S. A., Sanders, R. J. and Madsen, E.: Global database of surface ocean particulate organic carbon export fluxes diagnosed from the 234Th technique, Earth Syst. Sci. Data, 5(2), 295–304, doi:10.5194/essd-5-295-2013, 2013c.

Le Moigne, F. A. C., Poulton, A. J., Henson, S. A., Daniels, C. J., Fragoso, G. M., Mitchell, E., Richier, S., Russell, B. C., Smith, H. E. K., Tarling, G. A. and Zubkov, M.: Carbon export efficiency and phytoplankton
community composition in the Atlantic sector of the Arctic Ocean, Geophys. Res. Ocean.,
doi:10.1002/2015GC001700, 2015.

Le Moigne, F. A. C., Henson, S. A., Cavan, E., Georges, C., Pabortsava, K., Achterberg, E. P., Ceballos-Romero, E., Zubkov, M. and Sanders, R. J.: What causes the inverse relationship between primary production and export efficiency in the Southern Ocean?, Geophys. Res. Lett., 43(9), 4457–4466,
doi:10.1002/2016GL068480, 2016.

Moran, S. B. and Buesseler, K. O.: Size-fractionated 234Th in continental shelf waters off New England:
Implications for the role of colloids in oceanic tracers metal scavenging, J. Mar. Res., 51(4), 893–922,
doi:10.1357/002240933223936, 1993.

Moran, S. B. and Smith, J. N.: 234Th as a tracer of scavenging and particle export in the Beaufort Sea, Cont.
Shelf Res., 20(2), 153–167, doi:10.1016/S0278-4343(99)00065-5, 2000.

Moran, S. B., Ellis, K. M. and Smith, J. N.: 234Th/238U disequilibrium in the central Arctic Ocean:
implications for particulate organic carbon export, Deep Sea Res. Part II Top. Stud. Oceanogr., 44(8), 1593–
1606, doi:10.1016/S0967-0645(97)00049-0, 1997.

Moran, S. B., Weinstein, S. E., Edmonds, H. N., Smith, J. N., Kelly, R. P., Pilson, M. E. Q. and Harrison, W. G.: Does 234Th/238U disequilibrium provide an accurate record of the export flux of particulate organic carbon from the upper ocean?, Limnol. Oceanogr., 48(3), 1018–1029, doi:10.4319/lo.2003.48.3.1018, 2003.

Moran, S. B., Kelly, R. P., Hagstrom, K., Smith, J. N., Grebmeier, J. M., Cooper, L. W., Cota, G. F., Walsh, J. J., Bates, N. R. and Hansell, D. A.: Seasonal changes in POC export flux in the Chukchi Sea and implications for water column-benthic coupling in Arctic shelves, Deep Sea Res. Part II Top. Stud. Oceanogr., 52(24–26),
3427–3451, doi:10.1016/j.dsr2.2005.09.011, 2005.

Moran, S. B., Lomas, M. W., Kelly, R. P., Gradinger, R., Iken, K. and Mathis, J. T.: Seasonal succession of net primary productivity, particulate organic carbon export, and autotrophic community composition in the eastern Bering Sea, Deep Sea Res. Part II Top. Stud. Oceanogr.,
doi:10.1016/j.dsr2.2012.02.011, 2012.

Moriarty, R. and O’Brien, T. D.: Distribution of mesozooplankton biomass in the global ocean, Earth Syst. Sci. Data, 5(1), 45–55, doi:10.5194/essd-5-45-2013, 2013.

Moriarty, R., Buitenhuis, E. T., Le Quéré, C. and Gosselin, M. -P.: Distribution of known macrozooplankton abundance and biomass in the global ocean, Earth Syst. Sci. Data, 5(2), 241–257, doi:10.5194/essd-5-241-2013, 2013.

Morris, P. J., Sanders, R., Turnewitsch, R. and Thomalla, S.: 234Th-derived particulate organic carbon export from an island-induced phytoplankton bloom in the Southern Ocean, Deep Sea Res. Part II Top. Stud. Oceanogr., 54(18–20), 2208–2232, doi:10.1016/j.dsr2.2007.06.002, 2007.

Morris, S. A., Hansman, R. L. and Miquel, J. -C.: Tracing carbon’s fate in the ocean, Eos (Washington. DC), 98,
doi:10.1029/2017EO076681, 2017.

Murray, J. W., Young, J., Newton, J., Dunne, J., Chapin, T., Paul, B. and McCarthy, J. J.: Export flux of particulate organic carbon from the central equatorial Pacific determined using a combined drifting trap-234Th approach, Deep Sea Res. Part II Top. Stud. Oceanogr., 43(4–6), 1095–1132, doi:10.1016/0967-0645(96)00036-7, 1996.

Murray, J. W., Paul, B., Dunne, J. P. and Chapin, T.: 234Th, 210Pb, 210Po and stable Pb in the central equatorial Pacific: Tracers for particle cycling, Deep Sea Res. Part I Oceanogr. Res. Pap., 52(11), 2109–2139, doi:10.1016/j.dsr2.2005.06.016, 2005.

Owens, S. A., Buesseler, K. O. and Sims, K. W. : Re-evaluating the 238U-salinity relationship in seawater:
Implications for the 238U-234Th disequilibrium method, Mar. Chem., 127, 31–39,
doi:10.1016/j.marchem.2011.07.005, 2011.

Owens, S. A., Buesseler, K. O., Lamborg, C. H., Valdes, J., Lomas, M. W., Johnson, R. J., Steinberg, D. K. and D.A, S.: A new time series of particle export from neutrally buoyant sediments traps at the Bermuda Atlantic Time-series Study site, Deep Sea Res. Part I Oceanogr. Res. Pap., 72(0), 34–47, doi:10.1016/j.dsr.2012.10.011, 2013.

Owens, S. A., Pike, S. and Buesseler, K. O.: Thorium-234 as a tracer of particle dynamics and upper ocean export in the Atlantic Ocean, Deep Sea Res. Part II Top. Stud. Oceanogr., 116, 42–59,
doi:10.1016/j.dsr2.2014.11.010, 2015.

Pabortsava, K.: Downward particle export and sequestration fluxes in the oligotrophic Atlantic Ocean,
University of Southampton. [online] Available from: https://eprints.soton.ac.uk/id/eprint/372493, 2014.

Parekh, P., Dutkiewicz, S., Follows, M. J. and Ito, T.: Atmospheric carbon dioxide in a less dusty world,
Geophys. Res. Lett., 33(3), L03610, doi:10.1029/2005GL025098, 2006.
Planchnon, F., Cavagna, A.-J., Cardinal, D., Andre, L. and Dehairs, F.: Late summer particulate organic carbon export and twilight zone remineralisation in the Atlantic sector of the Southern Ocean, Biogeosciences, 10(2), 803–820, doi:10.5194/bg-10-803-2013, 2013.

Planchnon, F., Ballas, D., Cavagna, A.-J., Bowie, A. R., Davies, D., Trull, T., Laurenceau-Cornee, E. C., Van Der Meerwe, P. and Dehairs, F.: Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach, Biogeosciences, 12(12), 3831–3848, doi:10.5194/bg-12-3831-2015, 2015.

Pondaven, P., Raguenneau, O., Treger, P., Hauvespre, A., Dezileau, L. and Reyss, J. L.: Resolving the ‘opal paradox’ in the Southern Ocean, Nature, 405(6783), 168–172, 2000.

Puigcorbé, V., Benitez-Nelson, C. R., Masqué, P., Verdeny, E., White, A. E., Popp, B. N., Prahl, F. G. and Lam, P. J.: Small phytoplankton drive high summertime carbon and nutrient export in the Gulf of California and Eastern Tropical North Pacific, Global Biogeochem. Cycles, 29(8), 1309–1332, doi:10.1002/2015GB005134, 2015.

Puigcorbé, V., Roca-Martí, M., Masqué, P., Benitez-Nelson, C., Rutgers van der Loeff, M., Bracher, A. and Moreau, S.: Latitudinal distributions of particulate carbon export across the North Western Atlantic Ocean, Deep. Res. Part I Oceanogr. Res. Pap., 129, doi:10.1016/j.dsr.2017.08.016, 2017a.

Puigcorbé, V., Roca-Martí, M., Masqué, P., Benitez-Nelson, C. R., Rutgers van der Loeff, M., Laglera, L. M., Bracher, A., Cheah, W., Strass, V. H., Hoppema, M., Santos-Echeandia, J., Hunt, B. P. V., Pakhomov, E. A. and Klaas, C.: Particulate organic carbon export across the Antarctic Circumpolar Current at 10°E: Differences between north and south of the Antarctic Polar Front, Deep Sea Res. Part II Top. Stud. Oceanogr., 138, 86–101, doi:10.1016/j.dsr2.2016.05.016, 2017b.

Radakovitch, O., Frignani, M., Giuliani, S. and Montanari, R.: Temporal variations of dissolved and particulate carbon export during the slow ice melting in the Weddell Sea, Deep Sea Res. Part II Top. Stud. Oceanogr., 138, 52–61, 2017.

Riley, J. S., Sanders, R., Marsay, C., Le Moigne, F. A. C., Achterberg, E. P. and Poulton, A. J.: The relative contribution of fast and slow sinking particles to ocean carbon export, Global Biogeochem. Cycles, 22(1), n/a–n/a, doi:10.1029/2011GB004085, 2012.

Roca-Martí, M., Puigcorbé, V., Rutgers van der Loeff, M. M., Katlein, C., Fernández-Méndez, M., Peeken, I. and Masqué, P.: Carbon export fluxes and export efficiency in the central Arctic during the record sea-ice minimum in 2012: a joint 234Th/238U and 210Po/210Pb study, J. Geophys. Res. Ocean., 121(7), 5030–5049, doi:10.1002/jgrc.201816, 2016.

Roca-Martí, M., Puigcorbé, V., Iversen, M. H., van der Loeff, M. R., Klaas, C., Cheah, W., Bracher, A. and Masqué, P.: High particulate organic carbon export during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean, Deep Sea Res. Part II Top. Stud. Oceanogr., 138, 102–115, doi:10.1016/j.dsr2.2015.12.007, 2017.

Rodriguez-Baena, Y., Alessia, M., Boudjenoun, R., Fowler, S. W., Miquel, J. C., Masqué, P., Sanchez-Cabeza, J. A. and Warnau, M.: 234Th-based carbon export during an ice-edge bloom: Sea-ice algae as a likely bias in data interpretation, Earth Planet. Sci. Lett., 269, 596–604, doi:10.1016/j.epsl.2008.03.020, 2008.

Rosengard, S. Z., Lam, P. J., Balch, W. M., Auro, M. E., Pike, S., Drapeau, D. and Bowler, B.: Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt, Biogeosciences, 12(13), 3953–3971, doi:10.5194/bg-12-3953-2015, 2015.

Rutgers van der Loeff, M., Cai, P., Stimac, I., Bracher, A., Middag, R., Klunder, M. and van Heuven, S.: 234Th in surface waters: distribution of particle export flux across the Antarctic Circumpolar Current and in the Weddell Sea during the GEOTRACES expedition ZERO and DRAKE, Deep Sea Res. Part II Top. Stud. Oceanogr., 58, 2749–2766, doi:10.1016/j.dsr2.2011.02.004, 2011.

Rutgers van der Loeff, M. M., Friedrich, J. and Bathmann, U. V: Carbon export during the spring bloom at the Antarctic Polar Front, determined with the natural tracer 234Th, Deep Sea Res. Part II Top. Stud. Oceanogr., 44(1–2), 457–478, doi:10.1016/S0967-0645(96)00067-7, 1997.

Rutgers van der Loeff, M. M., Buesseler, K., Bathmann, U., Hense, I. and Andrews, J.: Comparison of carbon and opal export rates between summer and spring bloom periods in the region of the Antarctic Polar Front, SE Atlantic, Deep Sea Res. Part II Top. Stud. Oceanogr., 49(18), 3849–3869, doi:10.1016/S0967-0645(02)00114-5, 2002.

Sanders, R., Brown, L., Henson, S. and Lucas, M.: New production in the Irminger Basin during 2002, J. Mar. Syst., 55(3–4), 291–310, doi:10.1016/j.jmarsys.2004.09.002, 2005.

Sanders, R., Morris, P. J., Poulton, A. J., Stinchcombe, M. C., Charalampopoulos, A., Lucas, M. I. and
Stewart, G., Cochran, J. K., Miquel, J. C., Masqué, P., Szlosek, J., Rodríguez y Baena, A. M., Fowler, S. W., Gasser, B. and Hirschberg, D. J.: Comparing POC export from 234Th/238U and 210Po/210Pb disequilibria with estimates from sediment traps in the northwest Mediterranean Sea, Deep Sea Res. Part I Oceanogr. Res. Pap., 54(9), 1549–1570, doi:10.1016/j.dsr.2007.06.005, 2007.

Stewart, G., Moran, S. B., Lomas, M. W. and Kelly, R. P.: Direct comparison of 210Po, 234Th and POC particle-size distributions and export fluxes at the Bermuda Atlantic Time-series Study (BATS) site, J. Environ. Radioact., 102(5), 479–489, doi:10.1016/j.jenvrad.2010.09.011, 2011.

Stukel, M. R., Landry, M. R., Benitez-Nelson, C. R. and Goericke, R.: Trophic cycling and carbon export relationships in the California Current Ecosystem, Limnol. Oceanogr., 56(5), 1866–1878, doi:10.4319/lo.2011.56.5.1866, 2011.

Stukel, M. R., Kahru, M., Benitez-Nelson, C. R., Décima, M., Goericke, R., Landry, M. R. and Ohman, M. D.: Using Lagrangian-based process studies to test satellite algorithms of vertical carbon flux in the eastern North Pacific Ocean, J. Geophys. Res. Ocean., 120(11), 7208–7222, doi:10.1002/2015JC011264, 2015.

Stukel, M. R., Benitez-Nelson, C. R., Décima, M., Taylor, A. G., Buchwald, C. and Landry, M. R.: The biological pump in the Costa Rica Dome: an open-ocean upwelling system with high new production and low export, J. Plankton Res., 38(2), 348–365, doi:10.1093/plankt/fbv097, 2016.

Stukel, M. R., Aluwihare, L. I., Barbeau, K. A., Chekalyuk, A. M., Goericke, R., Miller, A. J., Ohman, M. D., Ruacho, A., Song, H., Stephens, B. M. and Landry, M. R.: Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction, Proc. Natl. Acad. Sci., 114(6), 1252–1257, doi:10.1073/pnas.1609435114, 2017.

Stukel, M. R., Kelly, T. B., Aluwihare, L. I., Barbeau, K. A., Goericke, R., Krause, J. W., Landry, M. R. and Ohman, M. D.: The Carbon:234Thorium ratios of sinking particles in the California current ecosystem 1: relationships with plankton ecosystem dynamics, Mar. Chem., doi:10.1016/j.marchem.2019.01.003, 2019.

Szlosek, J., Cochran, J. K., Miquel, J. C., Masqué, P., Armstrong, R. A., Fowler, S. W., Gasser, B. and Hirschberg, D. J.: Particulate organic carbon–234Th relationships in particles separated by settling velocity in the northwest Mediterranean Sea, Deep Sea Res. Part II Top. Stud. Oceanogr., 56(18), 1519–1532, doi:10.1016/j.dsr2.2008.12.017, 2009.

Thomalla, S. J., Turnewitsch, R., Lucas, M. and Poulton, A.: Particulate organic carbon export from the North and South Atlantic gyres: The 234Th/238U disequilibrium approach, Deep Sea Res. Part II Top. Stud. Oceanogr., 53(14–16), 1629–1648, doi:10.1016/j.dsr.2006.05.018, 2006.

Trull, T. W., Bray, S. G., Buesseler, K. O., Lamborg, C. H., Manganini, S., Moy, C. and Valdes, J.: In situ measurement of mesopelagic particle sinking rates and the control of carbon transfer to the ocean interior during the Vertical Flux in the Global Ocean (VERTIGO) voyages in the North Pacific, Deep Sea Res. Part II Top. Stud. Oceanogr., 55(14), 1684–1695, doi:10.1016/j.dsr2.2008.04.021, 2008.

Turnewitsch, R., Dumont, M., Kiriakoulakis, K., Legg, S., Mohn, C., Peine, F. and Wolff, G.: Tidal influence on particulate organic carbon export fluxes around a tall seamount, Prog. Oceanogr., 149, 189–213, doi:10.1016/j.proocean.2016.10.009, 2016.

Umhau, B. P., Benitez-Nelson, C. R., Close, H. G., Hannides, C. C. S., Motta, L., Popp, B. N., Blum, J. D. and Drazen, J. C.: Seasonal and spatial changes in carbon and nitrogen fluxes estimated using 234Th:238U disequilibria in the North Pacific tropical and subtropical gyre, Mar. Chem., 217, 103705, doi:10.1016/j.marchem.2019.103705, 2019.

Waples, J. T., Benitez-Nelson, C., Savoye, N., Rutgers van der Loeff, M., Baskaran, M. and Gustafsson, Ö.: An introduction to the application and future use of 234Th in aquatic systems, Mar. Chem., 100(3–4), 166–189, doi:10.1016/j.marchem.2005.10.011, 2006.

Wei, C. L., Chou, L. H., Tsai, J. R., Wen, L. S. and Pai, S. C.: Comparative geochemistry of 234Th, 210Pb, and 210Po: A case study in the Hung-Tsai Trough off southwestern Taiwan, Terr. Atmos. Ocean. Sci., 20(2), 411–423, doi:10.3319/TAS.2008.01.09.01(Oc), 2009.

Wei, C. L., Lin, S. Y., Sheu, D. D. D., Chou, W. C., Yi, M. C., Santschi, P. H. and Wen, L. S.: Particle-reactive radionuclides (234 Th, 210 Pb, 210 Po) as tracers for the estimation of export production in the South China Sea, Biogeosciences, 8(12), 3793–3808, doi:10.5194/bg-8-3793-2011, 2011.

Yu, W., Chen, L., Cheng, J., He, J., Yin, M. and Zeng, Z.: 234Th-derived particulate organic carbon export flux in the western Arctic Ocean, Chinese J. Oceanol. Limnol., 28(6), 1146–1151, doi:10.1007/s00343-010-9933-1, 2010.
Yu, W., He, J., Li, Y., Lin, W. and Chen, L.: Particulate organic carbon export fluxes and validation of steady state model of 234Th export in the Chukchi Sea, Deep Sea Res. Part II Top. Stud. Oceanogr., doi:10.1016/j.dsr2.2012.03.003, 2012.

Zhou, K., Nodder, S. D., Dai, M. and Hall, J. A.: Insignificant enhancement of export flux in the highly productive subtropical front, east of New Zealand: a high resolution study of particle export fluxes based on 234Th: 238U disequilibria, Biogeosciences, 9(3), 973–992, doi:10.5194/bg-9-973-2012, 2012.

Zhou, K., Dai, M., Kao, S.-J., Wang, L., Xiu, P., Chai, F., Tian, J. and Liu, Y.: Apparent enhancement of 234Th-based particle export associated with anticyclonic eddies, Earth Planet. Sci. Lett., 381, 198–209, doi:10.1016/j.epsl.2013.07.039, 2013.

Zhou, K., Maiti, K., Dai, M., Kao, S.-J. and Buesseler, K.: Does adsorption of dissolved organic carbon and thorium onto membrane filters affect the carbon to thorium ratios, a primary parameter in estimating export carbon flux?, Mar. Chem., 184, 1–10, doi:10.1016/j.marchem.2016.06.004, 2016.
Figure 1: Maps showing the distribution of POC/Th ratios measured on (A) bulk particles, (B) large particles, (C) small particles, and (D) particles from sediment traps. See main text for details, section 3.1 Data classification.
Figure 2: Global distribution of the POC/Th ratios (>100 µmol/dpm) (A) in surface, (B) at 50 m, (C) at 100 m, (D) at 200 m, (E) at 500 m and (F) at 1000 m. Circles represent BU, squares represent LP, triangles represent SP and stars represent ST (see main text for details, section 3.1 Data classification). Data corresponds to samples collected at depths at +/- 5 meters the nominal depth for all cases, except for panel F (+/- 50 meters).
Figure 3: A) Histogram of data sampled between 1989 and 2016. See Table 1 for details. B) Number of samples per month of the year grouped as per samples collected in the Northern Hemisphere (NH; grey), Southern Hemisphere (SH; white) or Equator (E; -10° to 10°N; black).

Figure 4: POC/Th ratios variability (box whisker plots) of 90% of the data sorted by climate zones and depth. The values shown on top of each box represent their median. Box plots within the same depth range (e.g. 0-49 m) sharing a letter are not significantly different. Note the different scale used between the 0 to 99 m and the 100 to >1000 m plots.
Figure 5: Latitudinal variability of the POC/Th ratios (<100 µmol/dpm) grouped by large particles (LP), small particles (SP), sediment trap particles (ST) and bulk particles (BU).
Sampling year	Area	LP n	SP n	ST n	BU n	Reference/Investigator
1989	North Atlantic	-	-	6	12	Buesseler et al. (1992)
1991-1992	Buzzards Bay	-	-	7	-	Moran and Buesseler (1993)
1992	Equatorial Pacific	80	-	-	-	Bacon et al. (1996)
1992	Sargasso Sea	-	-	2	-	Buesseler et al. (1994)
1992	Equatorial Pacific	71	78	-	31	Buesseler et al. (1995)
1992	Atlantic sector of the Southern Ocean	-	-	124	-	Friedrich and Rutgers van der Loeff (2002)
1992	Central Equatorial Pacific	-	-	32	-	Murray US JGOFS EqPac (Murray et al., 1996 and Murray et al., 2005)
1992	Atlantic Sector Southern Ocean	-	-	3	-	Rutgers van der Loeff et al. (1997)
1992	Bellingshausen Sea, Antarctica	-	-	3	-	Santchi et al. (1999)
1992-1993	Northeast Water Polynya Greenland	-	-	11	-	Charette et al. (2001)
1993	Middle Atlantic Bight	-	-	80	-	Moran and Smith (2000)
1993-1994	Station BATS, North Atlantic, and Gulf of Maine	-	-	4	-	Schmidt et al. (2002a)
1993-1996	Guaymas Basin	-	-	58	-	Charette and Moran (1999)
1994	Central Arctic Ocean	28	-	-	-	Charette et al. (1999)
1995	Arabian Sea	123	148	-	-	Buesseler JGOFS dataset Arabian Sea
1995	Wilkinson Basin and Jordan Basin	20	20	-	-	Charette et al. (2001)
1995	Beaufort Sea	-	-	22	-	Charette et al. (2001)
1995	Atlantic Sector Southern Ocean	-	-	80	-	Charette et al. (2001)
1995	NW Mediterranean Sea	-	-	3	15	Charette et al. (2001)
1996	Subtropical and tropical Atlantic Ocean	25	22	-	-	Charette et al. (2001)
1996-1997	Northeast Pacific Ocean	-	-	4	144	Charette et al. (2001)
1996-1997	Ross Sea	82	79	-	-	Charette et al. (2001)
1996-1997	Gulf of Maine	-	-	7	-	Charette et al. (2001)
1996-1997	Sargasso Sea	-	-	6	-	Charette et al. (2001)
1996-1998	Ross Sea	291	271	-	-	Charette et al. (2001)
1997	Southwestern Gulf of Maine	-	-	64	-	Charette et al. (2001)
1997	Sargasso Sea	-	-	3	-	Charette et al. (2001)
1997	Gulf of Lions	-	-	33	-	Charette et al. (2001)
1997	Northern Iberian Margin	-	-	22	-	Charette et al. (2001)
1997	Northern Adriatic Sea	-	-	23	-	Charette et al. (2001)
1997-2000, 2002-2008	NW North Pacific	92	-	48	664	Charette et al. (2001)
1998	Arctic Ocean	-	-	19	-	Charette et al. (2001)
1998	Western Iberian Margin	-	-	12	-	Charette et al. (2001)
1998-1999	Polynya North Water	15	-	45	-	Charette et al. (2001)
1999	South China Sea	-	-	20	-	Charette et al. (2001)
1999	Canada Basin, Bering Sea	-	-	27	-	Charette et al. (2001)
1999	Barents Sea	-	-	25	-	Charette et al. (2001)
1999	Crozet Basin	-	-	8	-	Charette et al. (2001)
1999	Northern North Sea	-	-	24	-	Charette et al. (2001)
1999	Labrador Sea	8	3	-	-	Charette et al. (2001)
1999-2000	North Pacific Subtropical Gyre	5	5	9	-	Charette et al. (2001)
2000	Gulf of Mexico	15	15	-	-	Charette et al. (2001)
2000	Canada Basin Arctic Ocean	-	-	25	-	Charette et al. (2001)
2000-2001	Gulf of Mexico	21	21	4	-	Charette et al. (2001)
2000-2002	Northern South China Sea	-	-	44	-	Charette et al. (2001)
2001	Subarctic Pacific	-	-	6	19	Charette et al. (2001)
2001	Gulfmar fjord, Sweden	-	-	7	8	Charette et al. (2001)
2001	Arctic Ocean (Marginal Ice Zone)	-	-	17	46	Charette et al. (2001)
2001	Southern Ocean	38	36	-	-	Charette et al. (2001)
Year	Region/Location Description	Number of Sites	Number of Stations	Reference		
------	--	----------------	-------------------	---		
2002	Southern Ocean/ South of the ACCF	39	40	-		
2002	Chukchi Sea	171	-	-		
2002	Bay of Biscay to Celtic Sea	-	-	24		
2003	Western Arctic Ocean	-	-	18		
2003	Southern Ocean	6	-	-		
2003	NW Mediterranean Sea	4	20	-		
2003	Western Arctic Ocean	-	-	32		
2003	Northern Barents Sea	24	-	-		
2003	Porcupine Abyssal Plain	7	5	-		
2004	Canadian Arctic Shelf	24	-	-		
2004	South China Sea	-	-	169		
2004	Western Arctic Shelf-Basin	38	-	45		
2004	Western Arctic Ocean	206	-	-		
2004	Sargasso Sea	-	2	-		
2004	NW Mediterranean Sea	-	3	-		
2004	Southern Ocean	-	-	-		
2004	Eastern Mediterranean Sea	26	26	-		
2004-2005	Tropical North Pacific (Hawaii)	103	115	8		
2004-2005	North Pacific (ALOHA and K2)	35	97	-		
2004-2005	North Pacific Ocean	-	36	-		
2005	Southern Ocean	20	-	-		
2005	South China Sea	16	15	-		
2005	Mediterranean Sea and NW Atlantic	37	32	15		
2005	Tropical North Pacific (Hawaii)	13	13	2		
2005	Kerguelen Plateau, Southern Ocean	26	-	-		
2005	Ligurian Sea, NW Mediterranean Sea	-	22	-		
2005	Falkland Island and Great Britain	10	10	82		
2005-2009	NW Gulf of Mexico and NW Pacific	35	34	25		
2006	Kuroshio Current	6	6	4		
2006	Hung-Tsai Trough, southwestern Taiwan	-	-	30		
2006-2007	Sargasso Sea	20	20	12		
2006-2007	Sargasso Sea	9	9	9		
2006-2008	Tushima Basin, East Japan Sea	-	-	12		
2006-2008	South China Sea	-	-	17		
2006-09, 2011-12, 2014, 2016	California Current	47	-	60		
2007	Arctic Ocean	14	14	- 36		
2007	Southern Ocean	77	75	- 2		
2007	North Atlantic Ocean	20	-	-		
2007	South China Sea	-	-	85		
2008	Northwest Pacific	-	-	13		
2008	South China Sea	-	-	9		
2008	Ilealand Basin	-	-	9		
2008	Eastern Bering Sea	-	35	-		
2008	Southern Ocean	46	49	- 45		
2008	Gulf of California and Easter Tropical Pacific	83	83	8		
2008	Atlantic Sector Southern Ocean	12	12	- 27		
2008	Chukchi Sea	-	-	79		
2008	Southern Ocean	-	-	146		
2008-2009	West Antarctic Peninsula	1	1	4		
2008-2009	Southern Ocean and Sargasso Sea	-	26	-		
2009	Porcupine Abyssal Plain	20	13	-		
2009	Southern Ocean	-	-	6		
Table 1: Sampling year, area, the number of samples for large particles (LP), small particles (SP), bulk particles (BU) and particles collected with sediment trap (ST) and reference of studies used in the database. Note the following reference refer to data published in several papers: Stukel et al. CCE refers to data published in Stukel et al. (2011, 2015, 2017, 2019); Stukel et al. CRD refers to data from Stukel et al. (2015, 2016). Buesseler JGOFS dataset Arabian Sea refers to data published in (Buesseler et al., 1998) and also available at https://www.bco-dmo.org/project/2043. Buesseler JGOFS dataset Southern Ocean refers to data published in (Buesseler et al., 2001) and also available at https://www.bco-dmo.org/project/2044. Kawakami North Pacific Time Series data is available at http://www.jamstec.go.jp/res/ress/kawakami/234Th.html and has also been published in Kawakami (2009), Kawakami et al. (2004, 2010, 2015), Kawakami and Honda (2007) and Yang et al. (2004). Further details regarding particle size specifications or sampling device can be found in the database file https://doi.pangaea.de/10.1594/PANGAEA.902103