Serological and structural features of *Hafnia alvei* lipopolysaccharides containing D-3-hydroxybutyric acid

Anna Romanowska, Andrzej Gamian, Danuta Witkowska, Ewa Katzenellenbogen and Elżbieta Romanowska *

Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Czerska, 53-114 Wrocław, Poland

(Received 17 August 1993; revision received 12 October 1993; accepted 13 October 1993)

Abstract: The serological heterogeneity of *Hafnia alvei* lipopolysaccharides from strains ATCC 13337, 1187, 1221, 114/60, 1211 and 1216, that contain D-3-hydroxybutyric acid, was analyzed by rocket immunoelectrophoresis, immunoblotting and passive hemagglutination. The significance of D-3-hydroxybutyric acid component for their cross-reactivity has been discussed. The results obtained allowed us to place four *H. alvei* strains (ATCC 13337, 1187, 1221 and 114/60) in one serotype (A) and to consider two other strains (1211 and 1216) as separate serotypes (B and C, respectively).

Key words: *Hafnia alvei* lipopolysaccharide; Serology; D-3-hydroxybutyric acid component

Introduction

The enterobacterial genus *Hafnia alvei* contains only one species *Hafnia alvei*, which was divided by Sakazaki [1] into 68 O-serotypes. Strains of *Hafnia alvei* have been isolated from faeces of men and animals, water, soil and dairy products; however many cases of nosocomial infections with *Hafnia* have also been reported [1].

In our previous paper [2] the preliminary chemical characterization of *H. alvei* lipopolysaccharides (LPS) isolated from 33 strains was described. Among these strains a group of six lipopolysaccharides containing D-3-hydroxybutyric acid was identified. Recently the structures of O-antigens from strains ATCC 13337, 1187 and 1211 have been established [3,4]. The O-specific polysaccharides (PS) of 114/60 and ATCC 13337 lipopolysaccharides proved to be identical [5]; on the other hand the O-specific polysaccharide of strain 1221 has the same structure as the de-O-acetylated form of ATCC 13337 polysaccharide (paper in preparation).

The aim of the present work was the immunochemical characterization of *H. alvei* lipopolysaccharides containing D-3-hydroxybutyric acid and...
the elucidation of the role of this component in the serological cross-reactivity.

Materials and Methods

H. alvei standard strain ATCC 13337 and four strains 1187, 1221, 1211 and 1216 derived from the collection of the Pasteur Institute (Paris) and strain 114/60 received from the National Institute of Hygiene (Warsaw) were used in the studies. The origin of the remaining H. alvei strains was described in paper [2]. The growth of bacteria in liquid medium, isolation and purification of the lipopolysaccharides and preparation of the O-specific polysaccharides were carried out as described elsewhere [6].

Determination of D-3-hydroxybutyric acid was performed using D-3-hydroxybutyrate dehydrogenase [2]. Lipopolysaccharide or polysaccharide samples (1 mg) were hydrolyzed with 4 M HCl at 100°C for 2.5 h.

The antisera were prepared by immunization of rabbits with bacteria suspended in phosphate-buffered saline (PBS). The animals were injected first subcutaneously with a dose of 100 μg dry bacteria ml⁻¹ PBS and then intravenously twice a week with increasing amounts of the bacteria (100–6400 μg ml⁻¹ PBS). One week after the last injection the rabbits were bled and the sera collected.

Rocket immunoelectrophoresis was carried out by the method of Weeke [7] with a 1% agarose gel in 0.02 M barbital buffer, pH 8.6, containing 2% polyethylene glycol 6000. The antibody gel contained 5% of the appropriate antiserum. After electrophoresis, gel was washed to rid excess reagent, dried and photographed directly or after staining with 0.5% amido black 10B.

For immunoblotting the separated lipopolysaccharides were transblotted from the gel into nitrocellulose (Schleicher-Schuell pore size 0.45 μm) [8]. Electrophoretic transfer was carried out in 10 mM Tris-150 mM glycine buffer containing 20% methanol, pH 8.3, at 100 mA for 1 h. After transfer, the nitrocellulose was blocked with 3% gelatin in 20 mM Tris, 50 mM NaCl, pH 7.5 (TBS) for 1 h at 36°C. The transblot was incubated overnight at 36°C with appropriate anti-H. alvei serum (primary antibody) diluted 1:200 in

![Fig. 1. Rocket immunoelectrophoresis. Antigens: lipopolysaccharides from H. alvei strains 1, 2, 1M, 17, 23, 31, 32, 37, 38, 39, 481-L, ATCC 13337, 1187, 1188, 1190, 1191, 1192, 1196, 1199, 1200, 1203, 1204, 1205, 1209, 1211, 1213, 1214, 1216, 1220, 1221, 1224 and 114/60 (5 μg/5 μl barbital buffer) were placed in wells from left to right (1-32); antibody: A, anti-ATCC 13337; B, anti-1187 sera.](https://academic.oup.com/femspd/article-abstract/8/1/83/443978/183443978)
1% gelatin. The nitrocellulose was washed twice for 20 min with TBS buffer, prior to the incubation with horseradish peroxidase conjugate with goat anti-rabbit IgG (second antibody) diluted 1:3000 in TBS-1% gelatin for 1 h at 36°C. After five-fold washing with TBS, the nitrocellulose was stained with 4-chloro-1-napthol solution (horseradish peroxidase colour substrate) in the presence of H₂O₂.

Results and Discussion

D-3-Hydroxybutyric acid was found in lipopolysaccharides isolated from 6 strains of

Fig. 2. Immunoblots of *H. alvei* lipopolysaccharides from strains: 1. ATCC 13337, 2. 1187, 3. 1221, 4. 114/60, 5. 1211 with sera: A, anti-ATCC 13337; B, anti-1187; C, anti-114/60; and D, anti-1211.
Table 1

The content of 3-hydroxybutyric acid in *Hafnia alvei* lipopolysaccharides and their O-specific polysaccharides

Strain	3-hydroxybutyric acid	O-specific polysaccharide
ATCC 13337	1.82	6.40
1187	1.25	8.10
1221	1.05	7.17
114/60	1.09	6.30
1211	1.86	7.40
1216	2.50	5.64

Hafnia alvei [2]. Its content in the LPS preparations and the respective O-specific polysaccharides is given in Table 1.

The serological relationships between the lipopolysaccharides were studied by several methods, like rocket immunoelectrophoresis, immunoblotting and passive hemagglutination.

Rocket immunoelectrophoresis of *H. alvei* lipopolysaccharides isolated from 32 strains with anti-ATCC 13337 and anti-1187 sera is shown in Fig. 1A,B. Only four lipopolysaccharides (ATCC 13337, 1187, 1221, and 114/60) gave precipitin lines. No reaction occurred between LPS preparations of strains 1211 and 1216 and anti-ATCC 13337 or anti-1187 sera.

Immunoblotting experiments confirmed the results obtained in the immunoelectrophoresis. A ladder-like pattern of transblotted lipopolysaccharides of ATCC 13337, 1187, 1221 and 114/60 strains after their reaction with anti-ATCC 13337, anti-1187 and anti-114/60 sera (Fig. 2A,B,C) show evidence that they have a common epitope which is located in their O-specific polysaccharide chain.

Lipopolysaccharide of 1211 strain reacted with the homological serum only (Fig. 2D).

For quantitative evaluation of the cross-reactivity of *H. alvei* lipopolysaccharides a passive hemagglutination test was employed. It is clearly visible from the results presented in Table 2 that the lipopolysaccharides of four strains (ATCC 13337, 1187, 1221 and 114/60) cross-reacted distinctly, whereas no reactivity was shown with lipopolysaccharides of strains 1211 and 1216.

As the serological results showed, the antisera used are directed mainly to the O-specific region of the lipopolysaccharides. In some of the sera a minute portion of anti-core antibodies is also present which could be observed in immunoblotting (Fig. 2B,C,D), but not in rocket immunoelectrophoresis (Fig. 1).

The cross-reactions of the lipopolysaccharides (ATCC 13337, 1187, 1221, 114/60) with the homologous and heterologous sera differed in the intensity in immunoblotting and passive hemagglutination (Fig. 2 and Table 2).

For a better understanding of the serological relations within the group of LPS preparations containing 3-hydroxybutyric acid, the structures of their repeating units are shown in Fig. 3. As can be seen, the base chains of the O-specific polysaccharides of strains ATCC 13337, 1187, 1221 and 114/60 are identical. Additional α-glucosyl and O-acetyl side chains occur in ATCC 13337 and 114/60 strains but only α-glucosyl side chains in the 1221 strain. This is in good agreement with the serological evidence on a common

Table 2

Passive hemagglutination of the lipopolysaccharides isolated from *H. alvei* strains with the homologous and heterologous antisera

Anti-*Hafnia alvei* serum	Lipopolysaccharides	ATCC 13337	1187	1221	114/60	1211	1216
	Passive hemaglutination reciprocal titre						
anti-ATCC 13337	10240	20480	81900	1280	320	10	
anti-1187	10240	20480	81900	640	160	0	
anti-1221	5120	5120	5120	5120	0	0	
anti-114/60	5120	1280	5120	2560	20	80	
anti-1211	160	0	0	0	5120	0	
anti-1216	0	0	0	0	81920	0	
Fig. 3. The structure of O-specific polysaccharides isolated from *H. alvei* strains ATCC 13337, 1187 [3], 114/60 [5], 1211 [4], 1216 (submitted manuscript) and 1221 (paper in preparation). Acyl stands for 3-O-hydroxybutyryl, D-Fuc3NAcyl for 3-amino-N-(3’-O-hydroxybutyryl)-3,6-dideoxy-D-Galp, DQui3NAcyl for 3-amino-N-(3’-O-hydroxybutyryl)-3,6-dideoxy-D-Glcp.

epitope present in the four lipopolysaccharides. The α-glucosyl side chains are not an essential element of the epitope. O-Acetyl groups, however, are a part of the epitope of ATCC 13337 LPS, but they hinder reaction of this LPS with anti-1187 antibodies. D-3-Hydroxybutyryl groups present in the lipopolysaccharides are important for their serological activity [3], but they do not have sufficient power to cause cross-reactivity, e.g. LPS preparations of ATCC 13337 and 1187
strains are not serologically related to 1211 LPS or 1216 LPS although all of them contain D-3-hydroxybutyric acid.

From the results presented above it may be suggested that *H. alvei* strains containing D-3-hydroxybutyric acid in their O-antigens can be divided into 3 serotypes. Four strains (ATCC 13337, 1187, 114/60 and 1221) belong to one serotype (A) and their O-antigens have the common basic structure containing D-3-hydroxybutyric acid. Their antigenic structures are not uniform, however. The differences in the length and density of O-specific chains in the LPS molecules correspond to the serological microheterogeneity within this serotype.

H. alvei strains 1211 and 1216 differ serologically and represent two separate serotypes (B and C, respectively). The structures of *H. alvei* 1211 and 1216 O-specific polysaccharides are unique and very much different from those of the four polysaccharides (serotype A) mentioned above as well as amongst themselves.

References

1. Sakazaki, R. (1984) Serology of *Enterobacter* and *Hafnia*. Methods Microbiol. 14, 165–186.

2. Romanowska, A., Katzenellenbogen, E., Kulałowska, M., Gamian, A., Witkowska, D., Mulczyk, M. and Romanowska, E. (1988) *Hafnia alvei* lipopolysaccharides: isolation, sugar composition and SDS-PAGE analysis. FEMS Microbiol. Immunol. 47, 151–156.

3. Gamian, A., Romanowska, E., Opferkuch, H.J., Hauck, M. and Dabrowski, J. (1989) O-specific polysaccharides of *Hafnia alvei* lipopolysaccharides isolated from two serologically related strains: ATCC 13337 and 1187. Eur. J. Biochem. 186, 611–620.

4. Katzenellenbogen, E., Romanowska, E., Dabrowski, U. and Dabrowski, J. (1991) O-specific polysaccharide of *Hafnia alvei* lipopolysaccharide isolated from strain 1211. Eur. J. Biochem. 200, 401–407.

5. Katzenellenbogen, E., Romanowska, E., Witkowska, D., Bogulska, M. and Dabrowski, J. (1990) Structural studies on *Hafnia alvei* 114/60 O-antigen. Arch. Immunol. Ther. Exp. 38, 347–351.

6. Romanowska, E., Romanowska, A., Lugowski, C. and Katzenellenbogen, E. (1981) Structural and serological analysis of *Citrobacter*-O36-specific polysaccharide, the homopolymer of (β1 → 2)-linked 4-deoxyα-arabinohexopyranosyl units. Eur. J. Biochem. 121, 119–123.

7. Weeke, B. (1973) Rocket immunoelectrophoresis. Scand. J. Immunol. 2 (suppl.), 37–46.

8. Lugowski, C., Kulałowska, M. and Romanowska, E. (1986) Characterization and diagnostic application of a lipopolysaccharide core oligosaccharide-protein conjugate. J. Immunol. Methods 95, 187–194.

9. Romanowska, E. and Mulczyk, M. (1968) Chemical studies on the specific fragment of *Shigella sonnei* phase II. Eur. J. Biochem. 5, 109–113.