The Impact of Blastocyst Grade on Singleton Birthweight in Fresh Transplanted Cycles

Qiongyao Shi
First Affiliated Hospital of Zhengzhou University

Senlin Shi
First Affiliated Hospital of Zhengzhou University

Wenyen Song
First Affiliated Hospital of Zhengzhou University

Feifei Zhao
First Affiliated Hospital of Zhengzhou University

Haixia Jin
First Affiliated Hospital of Zhengzhou University

Hao Shi
First Affiliated Hospital of Zhengzhou University

Guidong Yao
First Affiliated Hospital of Zhengzhou University

Yan Liu
First Affiliated Hospital of Zhengzhou University

Yihong Guo
First Affiliated Hospital of Zhengzhou University

Research Article

Keywords: Blastocyst transplantation, blastocyst grade, birth weight, Fresh transplantation, Pregnancy outcome

DOI: https://doi.org/10.21203/rs.3.rs-726950/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: A retrospectively cohort study was performed to compare the birth weight of different blastocyst grades in fresh transplantation cycle and explore the related factors affecting the birth weight.

Methods: The 1301 fresh cycles of single blastocyst transplantation and single live birth profile were analyzed, four groups were divided according to the grade of transplanted blastocyst. There are 170 cycles in group A with AA blastocyst grade, 312 cycles in group B with AB/BA blastocyst grade, 559 cycles in group C with BB/CA/AC blastocyst grade and 260 cycles in group D with BC/CB blastocyst grade. Comparison were made among four groups of birth weight, general conditions, fertilization rate, embryo rate, cleavage rate and D5, D6 blastocyst formation rate and other laboratory indicators. And then comparison were performed among the birth weight of different groups which were divided by the degree of blastocyst expansion, and the classification of inner cell mass(ICM) and the trophectoderm(TE).

Results: The study shows that the birth weight of group A is significantly higher than that of the other three groups (P < 0.05). And the high quality embryo rate and blastocyst rate of group A are significantly higher than those of the other three groups (P < 0.05). What's more, the clinical pregnancy rate, implantation rate and live birth rate of high grade blastocyst are higher, but there are no significant difference in abortion rate. The birth weight of the degree of blastocyst expansion in grade 3 and below is significantly lower than that of those with grade 3 and above (P < 0.05). The birth weight of grade A of ICM is significantly higher than that of grade B (P < 0.05). The birth weight of grade B of TE is significantly heavier than that of grade C (P < 0.05).

Conclusions: Our results indicate that high grade blastocyst transplantation can achieve better pregnancy outcome. Different blastocyst grades affect birth weight, and low grade blastocyst transplantation is associated with a single birth weight loss.

Background

With the development of assisted reproductive technology(ART), there are more than 5 million babies born by this way. However, in the process of in vitro fertilization and embryo transplantation(IVF-ET), even singletons live births can also increase the risk of adverse perinatal outcomes, including premature delivery, low birth weight and small gestational age problems, compared to their naturally conceived peer(1–3). In previous studies, more attention has been paid to the complications of infants born with ART, such as neonatal asphyxia, respiratory distress syndrome, intracranial hemorrhage, sepsis, etc(4), but there is a lack of information on birth weight around the world. Although the positive correlation between embryo quality and pregnancy outcomes has been well confirmed in many studies(5, 6), few studies research the impact of embryo quality on neonatal weight, especially the fresh transplanted blastocysts. Therefore, this study aims to compare the birth weight of different blastocyst grades in the fresh transplantation cycle of ART to explore the related factors affecting the birth weight of infants.

Methods

1. **Study object**

The patients who received single blastocyst transplantation in the reproductive center of the First Affiliated Hospital of Zhengzhou University from January 2016 to December 2019 were selected as the research subjects, both couples have normal chromosomes; Exclusion of female uterine malformation, endometriosis, ovarian dysfunction and other related factors of female infertility. According to the level of transplanted blastocyst, it was divided into four groups: 170 cycles in group A with AA blastocyst grade, 312 cycles in group B with AB/BA blastocyst grade, 559 cycles in group C with BB/CA/AC blastocyst grade and 260 cycles in group D with BC/CB blastocyst grade. Four groups were compared with laboratory indexes such as birth weight, general conditions, fertilization rate, embryo rate, cleavage rate, D5 blastocyst formation rate and D6 blastocyst formation rate. Then blastocysts were divided into different groups according to the degree of blastocyst expansion, inner cell mass(ICM) development and trophectoderm(TE) appearance to compare the difference in birth weight.

2. **Ovulation induction program and oocyte collection**

Controlled hyperovulation was performed with gonadotropin (GN), then oocyte retrieval was preformed by transvaginal ultrasound-guided puncture 36-37 hours after HCG injection, and the ovum crown-cumulus complex (OCCC) was identified under an autopsy microscope and collected in G-MOPS Plus culture medium (Vitrolife, Sweden). When OCCC of one side ovary were collected, washing three times with G-IVF Plus (Vitrolife, Sweden) medium and placing in a petri dish with G-IVF Plus. Then it was put into a three-gas incubator at 37°C, 6% CO2 and 5% O2 for further cultured and matured.

3. **Blastocyst culture and transplantation**

Petri dishes for blastocyst culture were made the day before, D3 normal fertilized embryos, except for frozen embryos, were transferred to medium containing 50ul of G-2plus (Vitrolife, Sweden) for further culture, one embryo per droplet was cultured in a three-gas incubator until blastocyst stage. The blastocyst formation was observed and recorded at day 5 and 6. Blastocyst score was made according to Gardner scoring system, which was based on the grade of blastocyst expansion, as well as morphology of ICM and TE, the number of trophoblast cells and the density of the structure. Blastocyst grading: grade 1: early blastocyst, that is, blastocyst cavity volume is less than half of the total volume of blastocyst; Grade 2: blastocyst cavity volume is more than half of total blastocyst volume; Grade 3: blastocyst in complete dilated stage, the blastocyst cavity almost occupies the whole blastocyst; Grade 4: the expanded blastocyst, the volume of the blastocyst cavity was significantly larger than that of the early blastocyst, and the zona pellucida was thinner. Grade 5:
Inhatching blastocysts, which are breaking out of the zona pellucida; Grade 6: The blastocyst has completely emerged from the zona pellucida. ICM: A indicates a large number of cells and a close bound; B indicates that the number of cells is small and the combination is loose; C means very few cells. Trophoblast cells: A denotes a large number of cells that distributed around the blastocyst; B refers to a small number of cells and a loose combination of cells; C means very few cells.

4. Blastocyst transfer

Fresh blastocysts were transferred to ET dishes (G-2 plus Vitrolife, Sweden) for transfer within day 5. Before transplantation, blastocysts were transferred to another dish filled with 1ml Embryoglue (Vitrolife, Sweden). On the 35th day after transplantation, B-ultrasonography of the gestational sac was performed to determine whether a clinical pregnancy was possible.

5. Statistical analysis

SPSS 21.0 software was used for statistical analysis. The independent sample t test was used for statistical analysis of the general data of patients, represented by means ± SDs. The laboratory indicators of embryo development and pregnancy outcome were tested by chi-square test, and the data were represented by rate. P<0.05 was considered statistically significant.

Results

1. General situation and birth weight of different grades of blastocyst group

A total of 170,312,559 and 260 infants respectively with the grade of AA/AB/BB/AC/BC/CB blastocysts were transplanted in this study. There were no differences in female age, infertility years, Body mass index (BMI), Follicle-stimulating hormone (FSH), Luteinizing hormone (LH), Anti-Müllerian Hormone (AMH), intimal thickness on transplantation day, gestational age and birth sex among the four groups, but the grade of blastocyst transplant to AA's birth weight of infants is significantly higher than the other three groups, and infants of low birth weight in group A and group B were significantly lower than that of group C and D, the difference is statistically significant. Relevant data are shown in Table 1.

Table 1

Fresh	A	B	C	D	\(\chi^2\)	P
cycle number(n)	170	312	559	260		
Female age(years)	29.14 ± 3.78	29.40 ± 3.36	29.25 ± 3.92	29.43 ± 3.87	1.597	0.188
Infertility duration(years)	3.73 ± 2.78	3.41 ± 2.67	3.53 ± 2.38	3.83 ± 2.85	1.240	0.294
Female BMI(kg/m2)	23.24 ± 3.29	23.25 ± 3.24	23.45 ± 3.31	23.43 ± 3.39	1.060	0.365
Female FSH(mIU/ml)	6.13 ± 1.46	5.77 ± 1.57	6.11 ± 1.57	6.16 ± 1.86	2.508	0.057
Female LH(mIU/ml)	6.57 ± 4.54	6.66 ± 4.79	6.42 ± 4.25	7.68 ± 3.96	2.368	0.069
Female AMH(ng/ml)	5.64 ± 3.37	5.86 ± 3.13	5.48 ± 3.29	5.45 ± 3.50	0.475	0.700
Endometrial thickness(mm)	12.40 ± 2.69	12.54 ± 2.33	12.45 ± 2.55	12.47 ± 2.41	0.120	0.948
Gestational age(weeks)	38.94 ± 1.45	38.82 ± 1.37	38.83 ± 1.33	38.63 ± 1.42	1.976	0.116
Percentage of male births(%)	57.65 (98/170)	59.94 (187/312)	57.96 (324/559)	59.23 (154/260)	0.113	0.990
Birthweight(g)	3512.69 ± 506.76	3401.24 ± 521.99	3395.26 ± 528.62	3343.58 ± 522.09	5.584	0.001
Birthweight<2500g(%)	1.18 (2/170)	1.92 (6/312)	5.90 (33/559)	6.15 (16/260)	13.710	0.003

Note: B,C,D indicate that difference between the two groups is statistically significant, P < 0.05.

2. Comparison of pregnancy outcomes in different grades of blastocyst

The number of embryo transplantation (ET) cycles at AA/AB/BB/AC/BC/CB blastocyst grade are 300,581,1073 and 567 respectively, there are significant difference in clinical pregnancy rate, implant rate, live birth rate among four groups, P < 0.05; while no difference observed on abortion rate between the four groups, P > 0.05. Datas are shown in Table 2. After abortion, Single-nucleotide polymorphism (SNP) detection cycle was counted, a total of 75 cycles, and 42 cycles is abnormal. Statistical analysis showed that there was no significant difference in the distribution of abnormal embryonic karyotype between
different groups. The data showed that 30 cases were trisomy, 2 cases were triploid, 6 cases were monomers and 4 cases were structural abnormality. Details were shown in Table 3.

Table 2
Comparison of pregnancy outcomes between different levels of blastocyst

	A	B	C	D	χ^2	p
ET cycles(n)	300	581	1073	567	-	-
Clinical pregnancy rate[n(%)]	196(65.33)	377(64.89)	675(62.91)	319(56.26)	11.766	0.008
Planting rate[n(\%)]	192(64)	369(63.51)	665(61.98)	313(55.20)	11.117	0.011
Live birth rate[n(\%)]	170(56.67)	312(53.70)	559(52.10)	260(45.86)	11.709	0.008
Abortion rate[n(\%)]	20(10.2)	54(14.32)	89(13.19)	48(15.05)	2.758	0.431

Table 3
Analysis of abnormal SNP of different levels of blastocyst

Abortion	A	B	C	D
cycles[n(\%)]	8	21	30	16
Trisome [n(\%)]	3(37.5)	10(47.6)	12(40.0)	5(31.3)
Triploid[n(\%)]	0(0.0)	1(4.8)	0(0.0)	1(6.3)
Monosome[n(\%)]	1(12.5)	0(0.0)	5(16.7)	0(0.0)

3. Comparison of laboratory conditions of different grades of blastocysts groups

2PN fertilization rate in group A is significantly higher than that in group D (P < 0.000); 2PN cleavage rate in group A is significantly higher than that in group D (P < 0.001); The high quality embryo rate and D6 blastocyst formation rate in group A are significantly higher than those in the other three groups (P < 0.000). The blastocyst formation rate of group A, B and C are significantly higher than that of group D (P < 0.000). The ratio of high quality blastocysts and D5 high quality blastocysts are significantly different between the groups (P < 0.000). Dates are shown in Table 4.
Table 4
Comparison of laboratory conditions of different grades of blastocysts groups

	Fresh	A	B	C	D	χ²	p
Cycle number(n)		170	312	559	260		
2PN fertilization rate [n(%)]	2378(82.54)^D	3972(81.79)	6880(80.94)	2889(78.99)	15.982	0.001	
2PN cleavage rate [n(%)]	2362(99.33)^d	3919(98.67)	6804(98.90)	2841(98.34)	11.921	0.008	
Quality embryo rate [n(%)]	1920(81.29)^{A,B,C,D}	3062(77.09)	5205(75.60)	1948(68.57)	125.528	0.000	
Blastocyst formation rate [n(%)]	1359(71.64)	2188(71.36)	3601(68.37)	1297(61.53)^{A,B,C}	67.774	0.000	
D5 blastocyst formation rate [n(%)]	920(48.50)	1928(62.88)	3138(59.58)	1023(48.53)	125.378	0.000	
D6 blastocyst formation rate [n(%)]	439(23.14)	260(8.48)	463(8.79)	274(13.00)	319.152	0.000	
Quality embryo ratio [n(%)]	756(39.85)	1056(34.44)	1334(25.33)	80(3.80)	841.012	0.000[*]	
D5 quality embryo ratio [n(%)]	715(37.69)	996(32.49)	1255(23.83)	0	156.139	0.000[*]	
D6 quality embryo ratio [n(%)]	41(2.16)	60(1.96)	79(1.50)	80(3.80)^{A,B,C}	38.891	0.000	

Note: *: There were significant differences between groups, after correction P < 0.000; "A","B","C","D" indicate that significant differences were detected between the two groups, after correction P < 0.000; "d" indicate that significant differences were detected between the two groups, after correction P < 0.001;

4. Relationship between the grade of blastocyst expansion, ICM, TE level and birth weight

The birth weight of infants with blastocysts grade 3 and below is significantly lower than that of infants with blastocysts grade 3 and above (P < 0.05), while the former is significantly higher than the later in low birth weight (P < 0.05). The birth weight of infants with level A of ICM is significantly higher than that of blastocysts with level B, and the incidence rate of low birth weight infants of group A is significantly lower than that of group B, with statistical significance (P < 0.05). The birth weight of infants with level B of TE is significantly higher than that of level C, P < 0.05. Seen Table 5.

Table 5
Relationship between cystic cavity expansion, endocytic cell mass, ectodermal trophoblast cell level and birth weight

Fresh	Blastocyst level	χ²	p	ICM	χ²	p	TE			
	≤3	≥3		A	B		A	B		
n	289	1012	-	-	476	825	-	-	153	866
Birthweight(g)	3365.10±571.65	3427.96±533.57	1.738	0.041	3470.21±515.02	3381.37±526.74	8.727	0.003	3402.68±492.13	3441.52±526.13^C
Birthweight<2500g	6.57(19/289)	2.87(29/1010)	8.659	0.003	1.26(6/476)	4.48(37/825)	9.819	0.002	2.61(4/153)	3.0(26/866)

Note: C: There was significant difference between group B and group C. P < 0.05.

Discussion

Our study suggests that the grade of transplanted blastocysts is related to the birth weight of infants, and the birth weight of the grade AA blastocysts is significantly higher than that of other grades, and the incidence of low birth weight infants is significantly lower than that of other grades of blastocysts. At the same time, the grade of blastocyst expansion, ICM development and TE appearance all have a certain influence on the birth weight of infants, especially the blastocyst level above 3, the ICM level of the A blastocyst can better avoid the birth of low birth weight infants, this is consistent with previous research.
results(7). However, Ebner et al. believe that TE is the only relevant parameter that significantly affects the outcome of pregnancy, and is related to the birth weight by affecting the growth and development of the placenta(8). We believe that this difference may be due to the different grouping standards used in different studies, and the differences in the ratings of embryos by operators of different proficiency. In addition, the effect of transplanted blastocyst quality on pregnancy outcomes is different(5, 9). The results of this study suggest that high-grade blastocyst transplantation can obtain better pregnancy outcome, but it has no significant effect on abortion rate.

Previous studies have shown that multiple pregnancy rate was obviously reduced by single blastocyst transplant(5, 10), thereby complications during pregnancy and the negative impacts of perinatal outcome were reduced(11), meanwhile, the clinical pregnancy rate and singletons live birth rate were improved(12), therefore, the proportion of blastocyst embryo transfer is increasing. Many studies have shown that high quality blastocyst transfer can achieve a better clinical pregnancy rate and live birth rate(13). Akamine Kozue et al, however, think that blastocyst quality has no significant effect on neonatal outcome, including birth weight(14). This difference may be related to its small sample size and single. Studies have suggested that the selection of transplanted blastocysts is very important for single blastocyst transplantation without affecting the embryo implantation rate, clinical pregnancy rate, live birth rate and other indicators(15, 16).

The causes of low grade blastocysts leading to birth weight loss are unclear. Some studies believe that the changes in deoxyribonucleic acid(DNA) methylation of poor quality embryos are uncontrollable(17), so epigenetic changes may play an important role. In addition, multiple exposures were involved in the in vitro culture stage of ART, such as changes in DNA methylation caused by embryo operation, culture and implantation, which may also had adverse effects on placenta development and fetal growth(17, 18). Studies have also shown that when embryos are damaged in development, they are more active in metabolism, stress and other aspects than normal embryos, producing more reactive oxygen species and adenosine triphosphate(ATP). Therefore, metabolic disorder and imbalance in vivo may also be the reason why low grade blastocyst transplantation leads to lower birth weight(19). Another cause of birth weight loss due to low grade blastocyst transplantation may be related to maternal uterine factors. In vitro studies have shown that the endometrium has the function of a biosensor to identify embryo quality(20), that is, after embryo implantation, it can actively transmit information to facilitate implantation by improving the internal uterine environment, decuvialized endometrium stromal cells can receive and identify high quality and inferior embryos, and respond to them by producing different growth factors or cytokines, but the response to inferior embryos is greater than that of high quality embryos, more energy is required to participate in the repair of developmental damage. These reactions and changes may have an impact on the uterine environment of embryo implantation, thus affecting placenta formation and subsequent embryo development and fetal growth(21).

Conclusions

this study believes that in the fresh transfer cycle, the blastocyst level has a greater impact on the pregnancy outcome and the birth weight. The blastocyst grade is also related to laboratory indicators such as the rate of high quality embryos and the rate of high quality blastocysts. In the selection process of blastocyst transplant, paying attention to the size of the blastocyst cavity and ICM is beneficial to reduce the birth of low birth weight infants.

Abbreviations

ICM: Inner cell mass
TE: Trophectoderm
ART: Assisted reproductive technology
IVF-ET: In vitro fertilization and embryo transplantation
GN: Gonadotropin
OCCC: Ovum crown-cumulus complex
G-IVF:
CO₂:
O₂:
BMI: body mass index
FSH: Follicle-stimulating hormone
LH: Luteinizing hormone
AMH: Anti-Mullerian Hormone
ET: embryo transplantation
SNP: Single-nucleotide polymorphism
DNA: Deoxyribonucleic acid
ATP: Adenosine triphosphate

Declarations

Ethics approval and content to participate

All study participants gave verbal informed consent, this study was approved by the Ethics Committee of the First Affiliated Hospital of Zhengzhou University as it was a retrospective study and no interventions was given to the participants. Approval Number: 2019-KY-39. This manuscript reported adherence to Declaration of Helsinki.

Consent for publication

All authors gave their consent for publication.

Availability of data and materials

The datasets used during the current study are available from the corresponding author on reasonable request.

Competing Interests

The authors declare that they have no competing interests.

Funding

The study was supported by grants from National Natural Science Foundation of China(81701527 to Senlin Shi, 81571409 to Yihong Guo) and Youth Program of National Natural Science Foundation of China(82001529 to Feifei Zhao).

Author Contributions

SSL and GYH designed the study. SWY, ZFF, JHX, YGD and LY were responsible for the study subjects’ enrollment and the collection of data. SQY, and SH analyzed the data and SQY was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable

References

1. Berntsen S, Soderstrom-Anttila V, Wennerholm U. B, Laivuori H, Loft A, Oldereid N. B. et al. The health of children conceived by ART: ‘the chicken or the egg?’. Hum Reprod Update. 2019;25:137–58. doi:10.1093/humupd/dmz001.
2. Nakashima A, Araki R, Tani H, Ishihara O, Kuwahara A, Irahara M. et al. Implications of assisted reproductive technologies on term singleton birth weight: an analysis of 25,777 children in the national assisted reproduction registry of Japan. Fertil Steril. 2013;99:450–5. doi:10.1016/j.fertnstert.2012.09.027.
3. Wisborg K, Ingerslev H. J, Henriksen T. B. In vitro fertilization and preterm delivery, low birth weight, and admission to the neonatal intensive care unit: a prospective follow-up study. Fertil Steril. 2010;94:2102–6. doi:10.1016/j.fertnstert.2010.01.014.
4. Kaveh M, Ghajarzadeh M, Davari Tanha F, Nayeri F, Keramati Z, Shariat M. et al. Pregnancy Complications and Neonatal Outcomes in Multiple Pregnancies: A Comparison between Assisted Reproductive Techniques and Spontaneous Conception. 2015;8:367–72. doi:10.22074/ijfs.2015.4175.
5. Dobson S. J. A, Lao M. T, Michael E, Varghese A. C, Jayaprakasan K. Effect of transfer of a poor quality embryo along with a top quality embryo on the outcome during fresh and frozen in vitro fertilization cycles. Fertil Steril. 2018;110:655 – 60. doi:10.1016/j.fertnstert.2018.05.010.
6. Zhang J, Huang J, Liu H, Wang B, Yang X, Shen X. et al. The impact of embryo quality on singleton birthweight in vitrified-thawed single blastocyst transfer cycles. Hum Reprod. 2020;35:308–16. doi:10.1093/humrep/dez287.
7. Licciardi F, McCaffrey C, Oh C, Schmidt-Sarosi C, McCulloh D. H. Birth weight is associated with inner cell mass grade of blastocysts. Fertil Steril. 2015;103:382-7. doi:10.1016/j.fertnstert.2014.10.039.
8. Ebner T, Tritscher K, Mayer R. B, Oppelt P, Duba H. C, Maurer M. et al. Quantitative and qualitative trophectoderm grading allows for prediction of live birth and gender. J Assist Reprod Genet. 2016;33:49–57. doi:10.1007/s10815-015-0609-9.
9. Oron G, Son W. Y, Buckett W, Tulandi T, Holzer H. The association between embryo quality and perinatal outcome of singletons born after single embryo transfers: a pilot study. Hum Reprod. 2014;29:1444–51. doi:10.1093/humrep/deu079.
10. Esinler I, Bozdag G, Karakoc Sokmensuer L. Mandatory single embryo transfer policy dramatically decreases multiple pregnancy rates. J Obstet Gynaecol Res. 2014;40: 75–9. doi:10.1111/jog.12124.

11. Wu Y, Chen W, Zhou L, Gao X, Xi X. Single embryo transfer improve the perinatal outcome in singleton pregnancy. The Journal of Maternal-Fetal & Neonatal Medicine. 2019;33:3266–71. doi:10.1080/14767058.2019.1571029.

12. Qing S, Feng X, Guangui L, Caiyun W, Peilin C. Factors Affecting the Clinical Pregnancy and Live Birth Following Single Blastocyst Transfer. 2017;5. doi:10.3969/j.issn.1674-1889.2017.05.020.

13. Zhao Y, Yu Y, Zhang X. W. Overall Blastocyst Quality, Trophectoderm Grade, and Inner Cell Mass Grade Predict Pregnancy Outcome in Euploid Blastocyst Transfer Cycles. Chin Med J (Engl). 2018;131:1261-7. doi:10.4103/0366-6999.232808.

14. Akamine K, Mekaru K, Gibo K, Nagata C, Oishi S, Miyagi M. et al. Comparative study of obstetric and neonatal outcomes of live births between poor- and good-quality embryo transfers. Reprod Med Biol. 2018;17:188–94. doi:10.1002/rmb2.12090.

15. Yiqun J, Dong L, Shanshan W, un C. L, Jianbin S, Ningyuan Z. Influence of overall blastocyst quality on pregnancy and neonate outcome after single frozen blastocyst transfer. Journal of Reproductive Medicine. 2019;8. doi:10.3969/j.issn.1004-3845.2019.08.009.

16. Bakkensen J. B, Brady P, Carusi D, Romanski P, Thomas A. M, Racowsky C. Association between blastocyst morphology and pregnancy and perinatal outcomes following fresh and cryopreserved embryo transfer. J Assist Reprod Genet. 2019;36:2315–24. doi:10.1007/s10815-019-01580-0.

17. Li G, Yu Y, Fan Y, Li C, Xu X, Duan J. et al. Genome wide abnormal DNA methylome of human blastocyst in assisted reproductive technology. Journal of Genetics and Genomics. 2017;44:475–81. doi:10.1016/j.jgg.2017.09.001.

18. Mani S, Ghosh J, Coutifaris C, Sapienza C, Mainigi M. Epigenetic changes and assisted reproductive technologies. Epigenetics. 2020;15:12–25.doi:10.1080/15592294.2019.1646572.

19. Leese H. J, Sturmy R. G, Baumann C. G, McEvoy T. G. Embryo viability and metabolism: obeying the quiet rules. Hum Reprod. 2007;22:3047–50. doi:10.1093/humrep/dem253.

20. Macklon N. S, Brosens J. J. The human endometrium as a sensor of embryo quality. Biol Reprod. 2014;91:98.doi:10.1095/biolreprod.114.122846.

21. Brosens J. J, Salker M. S, Teklenburg G, Nautiyal J, Salter S, Lucas E. S. et al. Uterine selection of human embryos at implantation. Scientific reports. 201; 4:3894. doi:10.1038/srep03894.