Research Article

Research of Robust Trajectory Tracking Control and Attenuated Chattering: Application on Quadrotor

Guangli Zhou, Yongming Yao, Huiying Liu, Xupeng Bai, and Jianbo Liu

School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China

Correspondence should be addressed to Yongming Yao; ymyao@jlu.edu.cn

Received 30 December 2020; Revised 19 April 2021; Accepted 29 May 2021; Published 8 June 2021

Academic Editor: Carlo Renno

Copyright © 2021 Guangli Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we presented a strategy for accurate trajectory tracking control of a quadrotor with unknown disturbances. To guarantee that the tracking errors of all system state variables converge to zero in finite time and eliminate the chattering phenomenon caused by the switching control action, a control strategy that combines linear prediction model of disturbances and fuzzy sliding mode control (SMC) based on logical framework with side conditions (LFSC) was designed. LFSC was applied for both position and attitude tracking of the quadrotor. Firstly, a linear prediction method was devised to minimize the effects of external disturbances. Secondly, a new fuzzy law was implemented to eliminate the chattering phenomenon. In addition, the stabilities of position and attitude were demonstrated by using Lyapunov theory, respectively. Simulation results and comprehensive comparisons demonstrated the superior performance and robustness of the proposed LFSC scheme in the case of external disturbances.

1. Introduction

The quadrotor, a typical unmanned aerial vehicle consisting of four symmetric propellers, has received much attention recently due to its low cost, easy maintenance, and potential for deployment in difficult environments [1]. The quadrotor design is the preferred choice for aerial robots, as quadrotor vehicles have vertical takeoff and landing capabilities and can hover at low speed [2]. As such, the quadrotor has been applied in many fields, including photography, education, transportation, and agriculture [3, 4]. The quadrotor is a highly nonlinear, underactuated, and strongly coupled system; therefore, designing an effective control system for the quadrotor is a challenging task. However, the ability to minimize the effects of external disturbances is a bigger challenge [5].

Over the past several years, a number of advanced control strategies have been proposed to address the quadrotor trajectory tracking control problem [6]. Linear control strategies, including proportional integral derivative [7, 8], proportional derivative [9, 10], and linear quadratic [11] methods, have been applied successfully to improve stability; however, they are only effective over a small range around the operating point. If the quadrotor is subjected to greater external disturbances as it moves away from its control domain, system stability cannot be guaranteed [12]. Nonlinear control strategies can overcome the drawbacks of linear control methods to achieve good performance, even in harsh environments [13].

Sliding mode control (SMC) [14, 15] and backstepping control [16, 17] are the two among most widely used nonlinear control methods. Backstepping control is an efficient method for dealing with the trajectory tracking problem of the quadrotor via a nonlinear adaptive controller. However, backstepping control only provides sufficient stability when the disturbances are relatively constant or vary slowly over time. SMC utilizes a high-frequency switching control signal to enforce the system trajectories on the sliding surface, which has been studied for control of different underactuated systems [18–21]. The main properties of SMC are the proper transient performance and superior robust operation with the presence of model uncertainties and disturbances [22, 23]. Zhang et al. [24] adopted the adaptive recursive integral terminal sliding
mode control to guarantee the convergence performance of the actual angle and the yaw rate with strong robustness and fast convergence rate. Zhou et al. [25] utilized deep learning method to compensate the uncertainties of the system without requirement of their upper bounds, which makes the designed switching gain much smaller. Song et al. [26] proposed a novel nonsingular fast-terminal sliding mode control method to facilitate the stabilization of nonlinear underactuated systems under disturbances. Gu et al. [27] utilized neural networks to approximate the lumped unknown dynamic model and designed a fast-terminal sliding mode control strategy to achieve the finite-time consensus tracking. Chen et al. [28] proposed a nonsingular terminal sliding mode control strategy to achieve the finite-time consensus knowing dynamic model and designed a fast-terminal sliding control method to facilitate the stabilization of nonlinear proposed a novel nonsingular fast-terminal sliding mode method to compensate the uncertainties of the system fast convergence rate. Zhou et al. [25] utilized deep learning the actual angle and the yaw rate with strong robustness and

The traditional SMC has the problem of chattering in the control signal which is undesirable [30]. Wang et al. [31] used adaptive integral SMC, backstepping, and terminal SMC to solve the trajectory problem; however, reducing chattering in the control input \((u_t, u_b, u_q)\) within the context of a hybrid finite-time control strategy is difficult to implement in practice. Mallavalli and Fekih [32] used SMC to solve the fault tolerance problem of the quadrotor; in this case, the gain of the switch function, \(s\), was a constant, resulting in substantial chattering. Fekih [32] proposed a fast-terminal SMC, was a constant, resulting in substantial chattering. s

The traditional SMC has the problem of chattering which makes the SMC method hard to apply in practice. In addition, improving the accuracy and robustness of the control system is very important for the flight of the quadrotor in complex external environment. Considering that chattering phenomenon is caused by the gain of the switch function \(s\), which is generally designed to be a constant, here we propose to replace the constant with a time-varying function. The motivation of this study is to design a fuzzy SMC strategy based on logical framework with side conditions (LFSC) to allow the quadrotor to achieve an accurate trajectory without chattering. The main contributions are summarized as follows:

1. The proposed LFSC scheme can guarantee that the tracking errors of all system state variables converge to zero in finite time.

2. The high-frequency chattering phenomenon caused by the switching control action does not appear using the proposed LFSC scheme.

3. Simulation results demonstrate the superior performance and robustness of the proposed LFSC scheme in the case of external disturbances.

The rest of this paper is organized as follows: in Section 2, a dynamic model of the quadrotor is presented, and the underactuated problem is solved. In Section 3, the proposed control strategy is described in detail. In Section 4, the simulation results and discussion are provided to show the superiority of the proposed control strategy. In Section 5, conclusions are presented.

2. Model

2.1. Description of the Quadrotor Model. A schematic diagram of a quadrotor UAV is shown in Figure 1, the earth-fixed coordinate system is defined as the E-frame \((O_b, X_b, Y_b, Z_b)\), and the body-fixed system is defined as the B-frame \((O_b, X_b, Y_b, Z_b)\). The main frame of the quadrotor is assumed to be a rigid body. The four propellers are installed in two vertical directions: propellers 1 and 3 rotate in the counterclockwise direction, while propellers 2 and 4 rotate in the clockwise direction to generate a lift force and balance the yaw torque as needed. Changing all four rotor speeds by the same amount changes the lift force, thus affecting the altitude of the quadrotor. Pitch rotation can be obtained by varying the speeds of propellers 1 and 3 in opposite directions. Roll rotation can be generated in a similar way by changing the speeds of propellers 2 and 4. The quadrotor has six degrees of freedom, including translational motions and three rotational motions, with only four independent inputs generated by increasing or decreasing the speeds of the four propellers [35]. The thrusts generated by the four rotors are denoted by \(f_i\) \((i = 1, 2, 3, 4)\), respectively.

2.2. Kinematic Model. As shown in Figure 1, two reference frames are defined to describe the quadrotor kinematics model: the E-frame \((O_b, X_b, Y_b, Z_b)\) and the B-frame \((O_b, X_b, Y_b, Z_b)\). In the B-frame \((O_b, X_b, Y_b, Z_b)\), this paper assumes that the origin \(O_b\) of the body coordinate system is located at the center of the quadrotor; \(X_b\) and \(Y_b\) point toward rotors 1 and 2, respectively. Then, according to the right-hand rule, \(Z_b\) points upwards. The E-frame \((O_b, X_b, Y_b, Z_b)\) is used to define the absolute position of the quadrotor according to \(X = [x, y, z]^T\) and Euler angles \(\eta = [\phi, \theta, \psi]^T\), where \(\phi\), \(\theta\), and \(\psi\) denote the roll angle, pitch, and yaw, respectively. \(V = [\mu, v, \omega]^T\) and \(\Omega = [p, q, r]^T\) denote the linear and angular velocities of the quadrotor, respectively. In this context, the quadrotor can be modeled by [36]

\[
\begin{bmatrix}
\dot{X} = R_{t} V, \\
\dot{\eta} = R_{e} \Omega,
\end{bmatrix}
\]

where rotation matrices are given by

\[
R_{t} = \begin{bmatrix}
c_{\phi} c_{\psi} & s_{\theta} s_{\phi} c_{\psi} - c_{\theta} s_{\psi} & c_{\phi} s_{\psi} + s_{\theta} s_{\phi} c_{\psi} \\
-c_{\phi} s_{\psi} & s_{\theta} c_{\phi} c_{\psi} + c_{\theta} s_{\psi} & c_{\phi} s_{\theta} s_{\psi} - s_{\phi} c_{\psi} \\
-s_{\theta} & s_{\phi} c_{\theta} c_{\psi} & c_{\phi} c_{\theta}
\end{bmatrix}
\]

\[
R_{e} = \begin{bmatrix}
1 & 0 & -s_{\psi} \\
0 & c_{\phi} & s_{\phi} s_{\psi} \\
0 & -s_{\phi} & c_{\phi} c_{\psi}
\end{bmatrix}
\]
and where s_* and c_* denote $\sin(*)$ and $\cos(*)$, respectively. Equations (1)–(3) are used to calculate the actual position and attitude of the quadrotor.

2.3. Dynamic Model. The dynamic model is built in consideration of model uncertainties and disturbances. It must be noted that ground and gyro effects were not taken into account because the purpose of this research was to design a control system for the model; therefore, the model was kept as simple as possible, with only the main effects being taken into account [37].

Assumption 1. The main frame of the quadrotor is symmetrical and rigid.

Assumption 2. The origin O_b of the quadrotor’s body coordinate system is located at the center of mass of the quadrotor.

Assumption 3. The aerodynamic parameters of the rotors and propellers are the same.

Assumption 4. Ground and gyro effects can be ignored (in this case, compared to the brushless motor, the propeller is very light; thus, the moment of inertia due to the propeller is ignored here).

According to Newton’s laws of motion and Euler’s formula, a simplified dynamic model of the quadrotor is given below [38, 39]

$$
\begin{align*}
\dot{m}\ddot{x} &= (c_\phi s_\phi \psi + s_\phi s_\psi)u_1 - K_1 \dot{x} + d_1, \\
\dot{m}\ddot{y} &= (c_\phi s_\phi \psi - s_\phi c_\psi)u_1 - K_2 \dot{y} + d_2, \\
\dot{m}\ddot{z} &= (c_\phi c_\psi)u_1 - mg - K_3 \dot{z} + d_3, \\
I_x \ddot{\phi} &= u_2 - K_4 \dot{\phi}, \\
I_y \ddot{\theta} &= u_3 - K_5 \ddot{\theta}, \\
I_z \ddot{\psi} &= u_4 - K_6 \ddot{\psi},
\end{align*}
$$

where m is the mass of the quadrotor, g is the acceleration of gravity, K_i ($i = 1, 2, 3, 4, 5, 6$) are the drag coefficients for the system, and I_x, I_y and I_z are the principal moments of inertia.

When the quadrotor is flying at low speed indoors, the control inputs u_1, u_2, u_3, and u_4 represent the lift torque, roll torque, pitch torque, and yaw torque of the quadrotor, respectively. u_1, u_2, u_3, and u_4 are as follows:

$$
\begin{align*}
&u_1 = \sum_{i=1}^{4} f_i, \\
&u_2 = (f_2 - f_3)l, \\
&u_3 = (f_3 - f_4)l, \\
&u_4 = k_b(f_4 - f_3 + f_2 - f_1),
\end{align*}
$$

Equation (5) can be rearranged in matrix form as follows:

$$
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
 u_4
\end{bmatrix} =
\begin{bmatrix}
 1 & 1 & 1 & 1 \\
 0 & 1 & 0 & 1 \\
 -l & 0 & l & 0 \\
 -k_b & k_b & -k_b & k_b
\end{bmatrix}
\begin{bmatrix}
 f_1 \\
 f_2 \\
 f_3 \\
 f_4
\end{bmatrix},
$$

where l is the linear distance from the center of the rotor to the center of gravity.

$$
\begin{align*}
&f_i = bu_i^2, \quad (i = 1, 2, 3, 4), \\
&k_b = \frac{a}{b}
\end{align*}
$$

where b is the thrust coefficient, which depends on the blade rotor characteristics; a is the force to moment scaling factor [38], and w_i is the angular speed of the ith propeller of the quadrotor.

From equation (4), the quadrotor dynamics presented in E-frame in the presence of external disturbances is given by

$$
\begin{align*}
\dot{m}\ddot{x} &= (c_\phi s_\phi \psi + s_\phi s_\psi)u_1 - K_1 \dot{x} + d_1, \\
\dot{m}\ddot{y} &= (c_\phi s_\phi \psi - s_\phi c_\psi)u_1 - K_2 \dot{y} + d_2, \\
\dot{m}\ddot{z} &= (c_\phi c_\psi)u_1 - mg - K_3 \dot{z} + d_3, \\
\dot{\phi} &= \frac{1}{I_x}u_2 - \frac{K_4}{I_x} \dot{\phi} + d_4, \\
\dot{\theta} &= \frac{1}{I_y}u_3 - \frac{K_5}{I_y} \dot{\theta} + d_5, \\
\dot{\psi} &= \frac{1}{I_z}u_4 - \frac{K_6}{I_z} \dot{\psi} + d_6,
\end{align*}
$$

where d_i ($i = 1, 2, 3, 4, 5, 6$) are the unknown disturbances that contain system uncertainties and other unknowns.

The control objective is to design the input control so that the quadrotor tracks the time-varying desired trajectory.
\[\begin{bmatrix} x_d, y_d, z_d, \phi_d, \theta_d, \psi_d \end{bmatrix}^T \]. However, in the dynamic model of the quadrotor from equation (8), there are only four control inputs, but six outputs \(x, y, z, \phi, \theta, \psi \) to control. To deal with the underactuated problem, we consider three virtual control inputs \((v_1, v_2, v_3)\), as follows [35]:

\[
\begin{align*}
 v_1 &= (c_\phi \dot{\phi} - s_\phi \dot{\psi})u_1, \\
 v_2 &= (c_\phi \dot{\phi} + s_\phi \dot{\psi})u_1, \\
 v_3 &= (c_\phi c_\psi)u_1.
\end{align*}
\]

Applying the three virtual control inputs to (8), the dynamic model can be rewritten as

\[
\begin{align*}
 m\ddot{x} &= v_1 - K_1 \dot{x} + d_1, \\
 m\ddot{y} &= v_2 - K_2 \dot{y} + d_2, \\
 m\ddot{z} &= v_3 - mg - K_3 \dot{z} + d_3, \\
 \ddot{\phi} &= u_2 - K_4 \dot{\phi} + d_4, \\
 \ddot{\theta} &= u_3 - K_5 \dot{\theta} + d_5, \\
 \ddot{\psi} &= u_4 - K_6 \dot{\psi} + d_6.
\end{align*}
\]

(10)

By setting the desired yaw angle \(\psi_d \) and using equation (9), the input control \(u_1, u_2, u_3, u_4 \) are given by

\[
\begin{align*}
 u_1 &= \sqrt{v_1^2 + v_2^2 + v_3^2}, \\
 \phi_d &= \sin^{-1}\left(\frac{v_1 \sin(\psi_d) - v_2 \cos(\psi_d)}{u_1}\right), \\
 \theta_d &= \tan^{-1}\left(\frac{v_1 \cos(\psi_d) + v_2 \sin(\psi_d)}{v_3}\right).
\end{align*}
\]

Therefore, the trajectory tracking control objective can be described as follows: given the desired trajectory \([x_d, y_d, z_d, \psi_d]^T\), the idea is to design the control laws \(v_1, v_2, v_3, u_2, u_3, u_4 \) such that the tracking errors converge to zero asymptotically.

3. Controller Design and Stability Analysis

In this section, the proposed controller was divided into an inner loop (attitude) controller and an outer loop (position) controller. For the inner and outer loops, a novel fuzzy sliding mode controller based on LFSC was first developed. The proposed controller guaranteed that the reference position \((x_d, y_d, z_d)\) and attitude \(\psi_d\) could be accurately tracked. Using equation (10), the reference attitude \((\phi_d, \theta_d)\) could also be accurately tracked. Finally, the entire closed-loop system could quickly track the reference signals. The overall control structure of the quadrotor is shown in Figure 2.

3.1. Outer Loop Controller Design

The position could be extracted from equation (10) as follows:

\[
\dot{X} = \frac{1}{m} v - \frac{K_o}{m} \dot{X} - g\lambda + \frac{1}{m} d_o,
\]

where \(X = (x, y, z)^T, \lambda = [0, 0, 1]^T, v = [v_1, v_2, v_3]^T, K_o = \text{diag}(K_1, K_2, K_3) \), and \(d_o = [d_1, d_2, d_3]^T \). Let \(X_d = (x_d, y_d, z_d)^T \) be the desired trajectory. Defined the position tracking error as

\[
e_X = X_d - X,
\]

(13)

where \(e_X = [x_c, y_c, z_c]^T \). Then, the LFSC manifold was given by

\[
s_X = c_X e_X + C e_X,
\]

(14)

where \(c_X \) and \(C \) were positive constants. Parameter \(c_X \) was related to the rate of approaching the sliding mode surface, the larger the parameter \(c_X \), the faster the approaching rate, while the greater the overshoot. Parameter \(C \) is related to retain the system states on the sliding mode surface. \(s_X = [s_x, s_y, s_z]^T \). Then, the derivative of \(s_X \) with respect to time was

\[
\dot{s}_X = c_X e^T_X + C e^T_X
\]

\[
= c_X e^T_X + C (\dot{X}_d - \dot{X})
\]

\[
= c_X e^T_X + C \left(\frac{1}{m} v - \frac{K_o}{m} \dot{X} - g\lambda + \frac{1}{m} d_o \right)
\]

(15)

Consider the tracking error (13) and the LFSC manifold (14). The virtual control law for the outer loop was as follows:

\[
\begin{align*}
 v_1 &= m \left(\frac{1}{c_\phi} c_\phi e_x + x_d + \frac{K_1}{m} \dot{x} + |H_1(t)| \text{sgn}(s_x) + \xi s_x - \frac{1}{m} d_1(t) \right), \\
 v_2 &= m \left(\frac{1}{c_\phi} c_\phi e_y + y_d + \frac{K_2}{m} \dot{y} + |H_2(t)| \text{sgn}(s_y) + \xi s_y - \frac{1}{m} d_2(t) \right), \\
 v_3 &= m \left(\frac{1}{c_\phi} c_\phi e_z + z_d + \frac{K_3}{m} \dot{z} + |H_3(t)| \text{sgn}(s_z) + \xi s_z - \frac{1}{m} d_3(t) + g \right),
\end{align*}
\]

(16)
where ξ was a positive constant. Parameter ξ was related to retain the control system stability. $H_1(t)$, $H_2(t)$, and $H_3(t)$ were the parameters obtained by the fuzzy controller. To reduce the impact of external disturbances and attenuate chattering, $d_v(t)$ at the next moment must be predicted. $d_v(t) = [d_1(t), d_2(t), d_3(t)]$ was the linear prediction of disturbances d_v and could be obtained based on the value and derivative of d_v at the last moment:

$$
\begin{align*}
 d_1(t - T) &= m\ddot{x}(t - T) + K_1\dot{x}(t - T) - v_1(t - T), \\
 d_2(t - T) &= m\ddot{y}(t - T) + K_2\dot{y}(t - T) - v_2(t - T), \\
 d_3(t - T) &= m\ddot{z}(t - T) + K_3\dot{z}(t - T) - v_3(t - T), \\
 \tilde{d}_1(t) &= d_1(t - T) + \dot{d}_1(t - T) \times T, \\
 \tilde{d}_2(t) &= d_2(t - T) + \dot{d}_2(t - T) \times T, \\
 \tilde{d}_3(t) &= d_3(t - T) + \dot{d}_3(t - T) \times T,
\end{align*}
$$

(17)

where t was time and T was the sampling interval of time.

$$
\text{sgn}(s) = \begin{cases}
 1, & s > 0, \\
 0, & s = 0, \\
 -1 & s < 0.
\end{cases}
$$

(18)

The Lyapunov function was chosen as follows:

$$
V_1 = \frac{1}{2}s_2^2.
$$

(19)

Then, the derivative of V_1 with respect to time was given by

$$
\dot{V}_1 = s_2 s_{2x} = s_x \left(c_x s_{xx} + C e_{xx} \right) = s_x \left(c_x s_{xx} + C \left(\frac{1}{m} \frac{d_1 - \tilde{d}_1(t)}{v_1} \right) \right).
$$

(20)

Substituting the virtual control law (16) into (20), we obtained the derivative of V_1:

$$
\dot{V}_1 = s_c C \left(-H_1(t) \text{sgn}(s_x) - \xi \bar{s}_x - \frac{1}{m} \left(d_1 - \tilde{d}_1(t) \right) \right) \\
= C \left(-\xi \bar{s}_x^2 - \frac{1}{m} (d_1 - \tilde{d}_1(t)) \bar{s}_x \right).
$$

(21)

To guarantee $\dot{V}_1 \leq 0$, the appropriate parameters of $H_1(t)$ must be selected, such that $H_1(t)$ was sufficiently large to balance the error in the prediction of the disturbances, expressed as

$$
|H_1(t)| \geq \frac{1}{m} (d_1 - \tilde{d}_1(t)).
$$

(22)

The combination of (21) and (22) implied that the LFSC manifold designed in (14) was feasible. To ensure that (22) is true, a fuzzy controller could be constructed to obtain $H_1(t)$. The fuzzy controller in this paper has two parameters, s_x, s_{xx}, as the input; $H_1(t)$ was the only output. The fuzzy rules are shown in Table 1. The rules of the controllers are expressed in Table 1, for all possible combinations. Based on the
control experience of the quadrotor, the fuzzy rules were established according to s_x and s_x to adjust parameter $H_1(t)$. The membership function of the fuzzy controller is shown in Figure 3.

From Table 1, there were two cases: (i) When $s_x \leq 0$, the Lyapunov function $V_1 \leq 0$ and parameter $H_1(t)$ would decrease to attenuate chattering in the control input. (ii) When $s_x > 0$, parameter $H_1(t)$ could not eliminate the effects of disturbance d_v. Thus, $H_1(t)$ would increase to the point of eliminating the effect of disturbance d_v, such that $s_x \leq 0$ and the Lyapunov function $V_1 \leq 0$. Based on the Lyapunov method, the system was asymptotically stable:

$$V_2 = s_y \dot{s}_y$$
$$= s_y \left(c_y \dot{e}_y + C \ddot{e}_y \right)$$
$$= s_y \left(c_y \dot{e}_y + C \left(\ddot{y}_d + \frac{K_3}{m} \dot{y} - \frac{1}{m} v_x - \frac{1}{m} d_z \right) \right)$$
$$= s_y C \left(-H_2(t) \text{sgn}(s_y) - \xi s_y - \frac{1}{m} (d_2 - \tilde{a}_2(t)) \right)$$
$$= C \left(-\xi s_y^2 - \left| H_2(t) \right| s_y - \frac{1}{m} (d_2 - \tilde{a}_2(t)) s_y \right).$$

(23)

$$V_3 = s_z \dot{s}_z$$
$$= s_z \left(c_z \dot{e}_z + C \ddot{e}_z \right)$$
$$= s_z \left(c_z \dot{e}_z + C \left(\ddot{z}_d + \frac{K_3}{m} \dot{z} - \frac{1}{m} v_y - \frac{1}{m} d_y \right) \right)$$
$$= s_z C \left(-H_3(t) \text{sgn}(s_z) - \xi s_z - \frac{1}{m} (d_3 - \tilde{a}_3(t)) \right)$$
$$= C \left(-\xi s_z^2 - \left| H_3(t) \right| s_z - \frac{1}{m} (d_3 - \tilde{a}_3(t)) s_z \right).$$

The proof process of $\dot{V}_2 \leq 0$ and $\dot{V}_3 \leq 0$ were similar to that of $\dot{V}_1 \leq 0$. A block diagram of the LFSC method is shown in Figure 4.

Table 1: Fuzzy rules.

$H_1(t)$	NB	NM	NS	s_x	ZO	PS	PM	PB
PB	NS	PS	PM	PM	PM	PS	PM	PB
PM	NS	NS	PS	PS	PM	PM	PM	PB
PS	NM	NS	ZO	ZO	PS	PS	PM	PB
ZO	NM	NS	ZO	ZO	PS	PS	PM	PB
NS	NM	NM	NS	NS	NM	PS	PM	PB
NB	NB	NB	NM	NM	NB	NM	PB	PB

PB: positive big, PM: positive middle, PS: positive small, NB: negative big, NM: negative middle, NS: negative small, and ZO: zero.

3.2. Inner Loop Controller Design. The attitude could be extracted from equation (10) as follows:

$$\dot{\eta} = \frac{1}{J} u - \frac{K_f}{J} \dot{\eta} + d_1,$$

(24)

where $J = (I_x, I_y, I_z)^T$, $\eta = (\phi, \theta, \psi)^T$, $u = (u_x, u_y, u_z)^T$, $K_f = \text{diag}(K_f, K_f, K_f)$, and $d_1 = (d_1, d_2, d_3)^T$. Defined tracking error as

$$e_\eta = \eta_d - \eta.$$

(25)

The LFSC manifold was given by

$$s_\eta = c_\eta e_\eta + C_\eta \ddot{e}_\eta,$$

(26)

where c_η and C_η were positive constants. The meaning of e_η and C_η were similar to c_x and C respectively. Then, the derivative of s_η with respect to time was as follows:

$$\dot{s}_\eta = c_\eta \dot{e}_\eta + C_\eta \ddot{e}_\eta$$
$$= c_\eta \dot{e}_\eta + C_\eta \left(\ddot{\eta}_d - \ddot{\eta} \right)$$
$$= c_\eta \dot{e}_\eta + C_\eta \left(\ddot{\eta}_d - \left(\frac{1}{J} u - \frac{K_f}{J} \dot{\eta} + d_1 \right) \right)$$
$$= c_\eta \dot{e}_\eta + C_\eta \left(\ddot{\eta}_d - \frac{K_f}{J} \dot{\eta} - \frac{1}{J} u - d_1 \right).$$

(27)

Consider the tracking error (25) and the LFSC manifold (26). In this case, control law u was designed as

$$u_2 = f \left(\frac{1}{C_1} c_\eta \dot{e}_\eta + \phi_d + \frac{K_f}{J} \phi + H_4(t) \text{sgn}(s_\phi) + \xi_1 s_\phi - \tilde{a}_4(t) \right),$$

$$u_3 = f \left(\frac{1}{C_1} c_\eta \dot{e}_\eta + \phi_d + \frac{K_2}{J} \dot{\phi} + H_5(t) s_\phi + \xi_1 s_\phi - \tilde{a}_5(t) \right),$$

$$u_4 = f \left(\frac{1}{C_1} c_\eta \dot{e}_\eta + \psi_d + \frac{K_6}{J} \psi + H_6(t) s_\psi + \xi_1 s_\psi - \tilde{a}_6(t) \right).$$

(28)
where ξ_1 was a positive constant, the meaning of ξ_1 was similar to ξ. Then, the meaning of $H_1(t), H_2(t), H_3(t)$ and $\tilde{d}_4(t), \tilde{d}_5(t), \tilde{d}_6(t)$ were similar to $H_1(t)$ and $\tilde{d}_1(t)$ in Section 3.1, respectively.

The Lyapunov function was as follows:

$$V_4 = \frac{1}{2}s^2\phi.$$ \hspace{2cm} (29)
The derivative of V_4 with respect to time was given by

$$V_4 = s_φ s_φ$$

$$= s_φ (c_φ e_φ + C_1 e_φ)$$

$$= s_φ \left(c_φ e_φ + C_1 \left(\frac{\dot{\phi}_d}{1 - \frac{1}{J} u_d} + \frac{K_s}{J} \frac{\dot{\phi}}{\phi} - d_4 \right) \right).$$

(30)

Substitute the control law (28) into (30). Then, the derivative of V_4 was given by

$$V_4 = s_φ (|H_4(t)| \text{sgn}(s_φ) - \xi_1 s_φ - (d_4 - \ddot{d}_4(t)))$$

$$= -\xi_1 s_φ^2 \left(|H_4(t)| \text{sgn}(s_φ) - (d_4 - \ddot{d}_4(t)) s_φ \right).$$

(31)

To guarantee $V_5 \leq 0$, appropriate parameters of $H_4(t)$ must be selected, such that $|H_4(t)|$ is sufficient to balance the error in the prediction of interference, which could be expressed as

$$|H_4(t)| \geq (d_4 - \ddot{d}_4(t)).$$

(32)

The combination of (31) and (32) implied that the sliding manifold design described in (26) was feasible.

The proof process of equation (32) was similar to equation (22) in Section 3.1, in which $s_φ s_θ \leq 0$, and the Lyapunov function $V_4 \leq 0$ could be guaranteed. Based on the Lyapunov method, the system was asymptotically stable:

$$V_5 = s_θ s_θ$$

$$= s_θ \left(c_θ e_θ + C_1 e_θ \right)$$

$$= s_θ \left(c_θ e_θ + C_1 \left(\frac{\ddot{\theta}_d}{1 - \frac{1}{J} u_θ} + \frac{K_s}{J} \ddot{\theta} - d_5 \right) \right)$$

$$= s_θ \left(|H_5(t)| \text{sgn}(s_θ) - \xi_1 s_θ - (d_5 - \ddot{d}_5(t)) \right)$$

$$= -\xi_1 s_θ^2 \left(|H_5(t)| \text{sgn}(s_θ) - (d_5 - \ddot{d}_5(t)) s_θ \right),$$

(33)

$$V_6 = s_φ s_φ$$

$$= s_φ \left(c_φ e_φ + C_1 e_φ \right)$$

$$= s_φ \left(c_φ e_φ + C_1 \left(\frac{\ddot{\phi}_d}{1 - \frac{1}{J} u_d} + \frac{K_s}{J} \frac{\dot{\phi}}{\phi} - d_6 \right) \right)$$

$$= s_φ \left(|H_6(t)| \text{sgn}(s_φ) - \xi_1 s_φ - (d_6 - \ddot{d}_6(t)) \right)$$

$$= -\xi_1 s_φ^2 \left(|H_6(t)| \text{sgn}(s_φ) - (d_6 - \ddot{d}_6(t)) s_φ \right).$$

(34)

4. Results and Discussion

In this section, several trajectory tracking simulation experiments were performed in the MATLAB R2016b/Simulink, which was equipped in a computer consisting of a 2.60 GHz CPU with 8 GB of RAM and a 256 GB solid-state disk drive. The control performance obtained by the proposed LFSC scheme was compared to SMC [40] and fuzzy SMC [41] schemes, to demonstrate the superiority of the proposed LFSC strategy.

The parameters of the quadrotor used in the simulation studies are shown in Table 2. The external disturbances considered in all of the simulation studies, to validate the robustness of the proposed LFSC control strategy, were time-varying.

Case 1. In this case, the desired trajectory of the position and yaw angle was given by

$$\begin{cases}
 x_d = \sin(t) + 2, \\
 y_d = \cos(t) + 2, \\
 z_d = 0.5t + 1, \\
 \psi_d = 0.
\end{cases}$$

(35)

The initial position and yaw angle of the quadrotor $[x_0, y_0, z_0, \psi_0]$ were [1.9, 2.9, 0.5, 0.001]. The Gaussian function and white noise functions which were imposed on the quadrotor were given by

$$d_i = M \cos(t) + 12 \exp \left(-\frac{1}{2} \left(\frac{t - 15}{0.1} \right)^2 \right) \quad (i = 1, 2, 3),$$

$$d_i = M_1 \cos(t) \quad (i = 4, 5, 6).$$

(36)

In order to achieve appropriate control performance, appropriate parameters $c_κ, \xi_1, C_s, \xi_1, C_1$ were designed according to reference [38]. The parameters for the proposed LFSC controllers were shown in Table 3.

Simulation results are shown in Figures 5–11. To demonstrate the superiority of the proposed LFSC scheme, simulation experiments of traditional SMC and fuzzy SMC were conducted, more details of the SMC and the fuzzy SMC methods for a quadrotor UAV have been introduced in [40, 41], respectively. The trajectory tracking results in 3D space are shown in Figure 5. The position tracking errors (e_x, e_y, e_z) are shown in Figure 6. The following results can be observed from Figure 6: (1) It could be seen that starting from an initial position far from the desired trajectory, the proposed LFSC method successfully forces state variables (x, y, z) to their desired trajectory. (2) The proposed LFSC method successfully forces position tracking errors (e_x, e_y, e_z) to converge to zero in finite time, while the SMC and fuzzy SMC methods force position tracking errors (e_x, e_y, e_z) to converge to small bounded fields around zero. (3) Moreover, when disturbed by the wind gust, time is about 15 s, the performance of the proposed LFSC controller was much better than that achieved by SMC or fuzzy SMC.
controllers in terms of settle time, overshoot, and robustness. It was clearly seen that the proposed LFSC method was able to make the quadrotor follow the desired position trajectory with strong robustness and the highest accuracy. Due to the linear prediction and the fuzzy controller, disturbances were well compensated.

The attitude tracking errors \(e_{\phi}, e_{\theta}, e_{\psi} \) are shown in Figure 7. The following results can be observed from Figure 7: (1) The proposed LFSC method successfully forces attitude tracking errors \(e_{\phi}, e_{\theta}, e_{\psi} \) to converge to zero in finite time, while the SMC and fuzzy SMC methods force attitude tracking errors \(e_{\phi}, e_{\theta}, e_{\psi} \) to converge to small bounded fields around zero. (2) The performance of the proposed LFSC method was much better than that achieved by the SMC or fuzzy SMC method in terms of tracking accuracy and robustness. It could be seen that the time-variant disturbances were not well compensated with traditional SMC or fuzzy SMC method. By introducing the linear prediction and new fuzzy controller, the LFSC method achieved good attitude tracking performance.

The response curves of virtual control input \(u_1, u_2, \) and \(u_3 \) under the three control methods are displayed in Figures 8–10, respectively. By observing these figures, the high-frequency chattering phenomenon caused by the switching control action are shown in Figures 8 and 9. While in Figure 10, chattering was considerably reduced by adopting the proposed LFSC control law. In Figure 10, the changes in three LFSC virtual control inputs \(u_1, u_2, u_3 \) were shown, whereby the virtual control input \(u_3 \) was around 19.6 N, which was equal to the gravity force of the quadrotor. In addition, three virtual control inputs \(u_1, u_2, u_3 \) showed huge fluctuations around 15 s, which is caused by the wind gust.

In Figure 11, the changes in four control inputs \((u_{t1}, u_{t2}, u_{t3}, u_{t4}) \) are shown, whereby the control input \(u_{t1} \) was 19.71 N, which was slightly greater than the gravity force of the quadrotor. Compared with the results given in [40, 41], the amplitudes of the proposed LFSC controllers \((u_{t1}, u_{t2}, u_{t3}, u_{t4}) \) were greatly decreased in the presence of external disturbances.

Table 2: Parameters of the model.

Parameter	Description	Value	Unit
\(M \)	Quadrotor mass	2	kg
\(L \)	Plane arm	0.25	m
\(K_i \) (\(i = 1, 2, 3 \))	Disturb value	0.01	N · s/m
\(K_i \) (\(i = 4, 5, 6 \))	Disturb value	0.001	N · m · s/rad
\(G \)	Gravitational acceleration	9.81	m/s²
\(I_x \)	Moment of inertia about X-axis	\(8 \times 10^{-3} \)	kg · m²
\(I_y \)	Moment of inertia about Y-axis	\(8 \times 10^{-3} \)	kg · m²
\(I_z \)	Moment of inertia about Z-axis	\(1.6 \times 10^{-2} \)	kg · m²

Table 3: Parameters of controllers.

Parameter	Unit
\(\xi \)	15
\(M \)	0.5
\(\xi \)	17
\(\xi \)	20
\(M_1 \)	0.2
\(\xi \)	15
\(\xi \)	1

\[
\begin{align*}
\left\{ \begin{array}{l}
x_d = 5 \sin (0.4t), \\
y_d = 5 \cos (0.4t), \\
z_d = 3 - 2 \cos (0.4t), \\
\psi_d = 0.
\end{array} \right.
\end{align*}
\]

The initial position and yaw angle of the quadrotor \([x_0, y_0, z_0, \psi_0]\) were \([0.5, 4.5, 0.5, 0.5]\). The disturbances which were imposed on the quadrotor were given by

\[
\begin{align*}
d_i &= \begin{cases}
2 \sin (2t + 5) & (t \leq 15 \text{s}) \\
25 & \text{(N)} \\
30 & \text{(N \times m)}
\end{cases}
(i = 1, 2, 3), \\
d_i &= \begin{cases}
2 \sin (1.5t + 5) & (t \leq 15 \text{s}) \\
30 & \text{(N \times m)}
\end{cases}
(i = 4, 5, 6).
\end{align*}
\]

Simulation results are shown in Figures 12–18. The trajectory tracking results in 3D space are shown in Figure 12. The position tracking errors \(e_x, e_y, e_z \) are shown in Figure 13. When the disturbance \(d_i \) is introduced at \(t = 15 \text{s} \), the null steady-state error could not be reached with both SMC method and fuzzy SMC method. In contrast, the proposed LFSC control strategy is able to force the quadrotor follow the desired trajectory with the highest accuracy and null steady-state error. Due to the linear prediction and the fuzzy controller, disturbances were well compensated.

The attitude tracking errors \(e_{\phi}, e_{\theta}, e_{\psi} \) are shown in Figure 14. It could be seen that the time-variant disturbances were not well compensated with both SMC method and fuzzy SMC method when the time was up to 15 seconds. By introducing the linear prediction and the fuzzy controller, the LFSC method achieves good attitude tracking performance.
Figure 5: Space diagram of position.

Figure 6: Continued.
Figure 6: Trajectory tracking errors (e_x, e_y, e_z).

Figure 7: Continued.
The response curves of virtual control input v_1, v_2, and v_3 under the three control methods are displayed in Figures 15–18, respectively. By observing these figures, the high-frequency chattering phenomenon caused by the switching control action are shown in Figures 15 and 16. While in Figures 17 and 18, due to the linear prediction and the fuzzy controller, the chattering problems was considerably reduced by adopting the proposed LFSC control law.
Figure 9: Virtual control input v_1, v_2, and v_3 of FSMC.

Figure 10: Continued.
Figure 10: Virtual control input v_1, v_2, and v_3 of LFSC.

Figure 11: Continued.
Figure 11: Control inputs $u_1, u_2, u_3,$ and u_4 of LFSC.

Figure 12: Space diagram of position.

Figure 13: Continued.
Figure 13: Trajectory tracking errors (e_x, e_y, e_z).

Figure 14: Continued.
Figure 14: Trajectory tracking errors (e_ϕ, e_θ, e_ψ).

Figure 15: Continued.
Figure 15: Virtual control input v_1, v_2, and v_3 of SMC.

Figure 16: Virtual control input v_1, v_2, and v_3 of FSMC.
Figure 17: Virtual control input v_1, v_2, and v_3 of LFSC.
5. Conclusions

In this paper, an LFSC scheme was presented to guarantee that the tracking errors of all system state variables converge to zero in finite time and eliminate the chattering phenomenon caused by the switching control action, in the presence of external disturbances and uncertainties. Firstly, a linear prediction method was devised to minimize the effects of external disturbances. Secondly, a new fuzzy law was implemented to eliminate the chattering phenomenon. In addition, the stabilities of position and attitude were demonstrated by Lyapunov theory, respectively. Finally, several quadrotor trajectory tracking simulation examples were presented. The control performances obtained using
traditional SMC and fuzzy SMC schemes were compared to demonstrate the superior performance of the proposed LFSC scheme.

The main conclusions are summarized as follows.

(1) The proposed LFSC scheme can guarantee that the tracking errors of all system state variables converge to zero in finite time.

(2) The high-frequency chattering phenomenon caused by the switching control action does not appear using the proposed LFSC scheme.

(3) Simulation results demonstrate the superior performance and robustness of the proposed LFSC scheme in the case of external disturbances.

(4) Compared with [42, 43], simulations demonstrate the accuracy and superiority of the proposed LFSC method.

The simplicity of the approach, and the use of continuous control signals, makes it readily applicable to a real quadrotor. Advantages of the proposed LFSC method are accuracy, robustness, state variables converge to zero in finite time, and no chattering phenomenon. Therefore, the quadrotor with the LFSC method can be applied to the emergency mission, disaster relief mission, and special military mission. Further work will focus on utilizing the deep learning method to compensate the uncertainties of the system without requirement of their upper bounds and utilizing software ANSYS to research disturbances caused by complex external environments.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by National Key R&D Program of China (Grant no. 2017YFC0602000) and Science and Technology Development Project of Jilin Province (Grant no. 20190303061SF).

References

[1] L. Qian and H. H. T. Liu, "Path-following control of a quadrotor UAV with a cable-suspended payload under wind disturbances," *IEEE Transactions on Industrial Electronics*, vol. 67, no. 3, pp. 2021–2029, 2020.

[2] J. Sanwale, P. Trivedi, M. Kothari, and A. Malagaudanavar, "Quaternion-based position control of a quadrotor unmanned aerial vehicle using robust nonlinear third-order sliding mode control with disturbance cancellation," in *Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering*, vol. 234, pp. 997–1013, Athens, Greece, January 2020.

[3] J. Dong and B. He, "Novel fuzzy PID-type iterative learning control for quadrotor UAV," *Sensors*, vol. 19, no. 1, 2019.

[4] R. Amin, L. Aijun, and S. Shamshirband, "A review of quadrotor UAV: control methodologies and performance evaluation," *International Journal of Automation and Control*, vol. 10, no. 2, pp. 87–103, 2016.

[5] F. Chen, R. Jiang, K. Zhang, B. Jiang, and G. Tao, "Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV," *IEEE Transactions on Industrial Electronics*, vol. 63, pp. 5044–5056, 2016.

[6] F. Kendoul, "Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems," *Journal of Field Robotics*, vol. 29, no. 2, pp. 315–378, 2012.

[7] Y. Q. Fan, J. P. Shao, G. T. Sun, and X. Shao, "Improved beetle antennae search algorithm-based levy flight for tuning of PID controller in force control system," *Mathematical Problems in Engineering*, vol. 2020, Article ID 4287315, 2020.

[8] N. X. Liu, S. Q. Cao, and J. T. Fei, "Fractional-order PID controller for active power filter using active disturbance rejection control," *Mathematical Problems in Engineering*, vol. 2019, Article ID 6907570, 2019.

[9] S. Khatoon, I. Nasiruddin, and M. Shahid, "Design and simulation of a hybrid PD-ANFIS controller for attitude tracking control of a quadrotor UAV," *Arabian Journal for Science and Engineering*, vol. 42, no. 12, pp. 5211–5229, 2017.

[10] Y. Oda and M. Kumon, "Autonomous flight control of quadrotor helicopter by simple adaptive control with inner loop PD controller," *Journal of Robotics and Mechatronics*, vol. 30, no. 3, pp. 380–389, 2018.

[11] F. Rinaldi, S. Chiesa, and F. Quagliotti, "Linear quadratic control for quadrotors UAVs dynamics and formation flight," *Journal of Intelligent & Robotic Systems*, vol. 70, no. 1–4, pp. 203–220, 2013.

[12] P. Castillo, R. Lozano, and A. Dzul, "Stabilization of a mini rotorcraft with four rotors," *IEEE Control Systems*, vol. 25, no. 6, pp. 45–55, 2005.

[13] J.-J. Xiong and G.-B. Zhang, "Global fast dynamic terminal sliding mode control for a quadrotor UAV," *Ijsa Transactions*, vol. 66, pp. 233–240, 2017.

[14] H. Ma and Y. Li, "A novel dead zone reaching law of discrete-time sliding mode control with disturbance compensation," *IEEE Transactions on Industrial Electronics*, vol. 67, no. 6, pp. 4815–4825, 2020.

[15] K. Wang, C. Hua, J. Chen, and M. Cai, "Dual-loop integral sliding mode control for robust trajectory tracking of a quadrotor," *International Journal of Systems Science*, vol. 51, no. 2, pp. 203–216, 2020.

[16] M. Morawiec, K. Blecharz, and A. Lewicki, "Sensorless rotor position estimation of doubly fed induction generator based on backstepping technique," *IEEE Transactions on Industrial Electronics*, vol. 67, no. 7, pp. 5889–5899, 2020.

[17] M. Morawiec and A. Lewicki, "Application of sliding switching functions in backstepping based speed observer of induction machine," *IEEE Transactions on Industrial Electronics*, vol. 67, no. 7, pp. 5843–5853, 2020.

[18] H. Qi, Y. Shi, S. Li, Y. Tian, D.-L. Yu, and J. B. Gomm, "Fault tolerant control for nonlinear systems using sliding mode and adaptive neural network estimator," *Soft Computing*, vol. 24, no. 15, pp. 11535–11544, 2020.

[19] K. Liu, H. Gao, H. Ji, and Z. Hao, "Adaptive sliding mode based disturbance attenuation tracking control for wheeled mobile robots," *International Journal of Control, Automation and Systems*, vol. 18, no. 5, pp. 1288–1298, 2020.
[20] C. Zhang, G. Zhang, and Q. Dong, “Multi-variable finite-time observer-based adaptive-gain sliding mode control for fixed-wing UAV,” *IEEE Transactions on Vehicular Technology*, vol. 69, no. 12, pp. 14713–14726, 2020.

[21] X. Lin, Y. Yu, and C.-y. Sun, “A decoupling control for quadrotor UAV using dynamic surface control and sliding mode disturbance observer,” *IET Control Theory & Applications*, vol. 14, no. 4, pp. 1117–1127, 2016.

[22] T. Yoshimura, “Discrete-time adaptive sliding mode control for uncertain systems based on multi-rate output measurement,” *International Journal of Systems Science*, vol. 44, no. 9, pp. 1733–1744, 2013.

[23] J. Zhang, H. Wang, M. Ma, M. Yu, A. Yazdani, and L. Chen, “Active front steering-based electronic stability control for steer-by-wire vehicles via terminal sliding mode and extreme learning machine,” *IEEE Transactions on Vehicular Technology*, vol. 69, no. 12, pp. 14713–14726, 2020.

[24] M. Zhou, Y. Feng, C. Xue, and F. Han, “Deep convolutional neural network based fractional-order terminal sliding-mode control for robotic manipulators,” *Neurocomputing*, vol. 416, pp. 143–151, 2020.

[25] Y. Song, H. Li, and X. Shi, “Stabilization of a class of nonlinear underactuated robotic systems through nonsingular fast terminal sliding mode control,” *Mathematical Problems in Engineering*, vol. 2020, Article ID 5426087., 2020.

[26] X. Gu, Y. Niu, and B. Chen, “Adaptive non-singular fast terminal sliding mode control for multi-agent systems with unknown non-linear dynamics,” *IET Control Theory & Applications*, vol. 14, no. 16, pp. 2223–2232, 2020.

[27] G. Chen, B. Jin, and Y. Chen, “Accurate and robust body position trajectory tracking of six-legged walking robots with nonsingular terminal sliding mode control method,” *Applied Mathematical Modelling*, vol. 77, pp. 1348–1372, 2020.

[28] J.-J. Xiong, G.-B. Zhang, J.-X. Wang, and T.-H. Yan, “Improved sliding mode control for finite-time synchronization of nonidentical delayed recurrent neural networks,” *IEEE Transactions on Neural Networks and Learning Systems*, vol. 31, no. 6, pp. 2209–2216, 2020.

[29] J. A. González, A. Barreiro, S. Dormido, and A. Baños, “Nonlinear adaptive sliding mode control with fast non-overshooting responses and chattering avoidance,” *Journal of the Franklin Institute*, vol. 354, no. 7, pp. 2788–2815, 2017.

[30] N. Wang, Q. Deng, G. Xie, and X. Pan, “Hybrid trajectory tracking control of a quadrotor,” *Isa Transactions*, vol. 90, pp. 278–286, 2019.

[31] S. Mallavalli and A. Fekih, “An SMC-based fault tolerant control design for a class of underactuated unmanned aerial vehicles,” in *Proceedings of the 2018 4th International Conference on Control, Automation and Robotics (ICCAR)*, pp. 152–155, IEEE, Auckland, New Zealand, April 2018.

[32] H. Wang, X. Ye, Y. Tian, G. Zheng, and N. Christov, “Model-free-based terminal SMC of quadrotor attitude and position,” *IEEE Transactions on Aerospace and Electronic Systems*, vol. 52, no. 5, pp. 2519–2528, 2016.

[33] X. H. Xinghuo Yu and Z. H. Man Zhihong, "Fast terminal sliding-mode control design for nonlinear dynamical systems," *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, vol. 49, no. 2, pp. 261–264, 2002.