Zastosowanie ultrasonografii w ocenie obrąbka stawu ramiennego. Część I: Anatomia ultrasonograficzna i technika badania

The use of ultrasound in the assessment of the glenoid labrum of the glenohumeral joint. Part I: Ultrasound anatomy and examination technique

Wojciech Krzyżanowski

Specjalistyczna Praktyka Lekarska, Lublin, Polska
Adres do korespondencji: Wojciech Krzyżanowski, ul. Głęboka 29, 20-612 Lublin, e-mail: wojtasko@onet.pl

Streszczenie
Staw ramienny jest stawem kulistym o dużym zakresie ruchów w wielu płaszczyznach i zmniejszonej stabilności. Utrzymanie stabilności stawu jest uwarunkowane z jednej strony działaniem specyficznego układu mięśni okolicy barkowej, z drugiej – obecnością złożonego kompleksu więzadłowego wzmacniającego torebkę stawową, a także pogłębianiem panewki stawowej przez obrąbek. Uszkodzenia tych struktur wymagają dokładnej diagnostyki przed podjęciem decyzji o leczeniu operacyjnym. Ultrasonografia należy do metod obrazowych szeroko stosowanych w ocenie różnych patologii okolicy barku. W opinii własnej autora pracy może mieć również zastosowanie w ocenie uszkodzeń obrąbka stawu ramiennego. Przeciwdziałając na obwodzie panewki stawowej, obrąbek tworzy kołnierz pogłębiający panewkę i zwiększający jej pole kontaktu z głową kości ramiennnej. W celach topograficznych obrąbek stawowy dzieli się najczęściej na strefy. Większość z nich jest widoczna w badaniu ultrasonograficznym. Badanie obrąbka w części tylnej przeprowadza się zwykle jednocześnie z oceną mięśnia podguzieniowego i obłego mniejszego. W części przedniej obrąbek wraz z kompleksem torebkowo-więzadłowym jest widoczny przy zarysie panewki stawowej pod mięśniem podłopatowym. Badanie ultrasonograficzne obrąbka w części dolnej wykonuje się z dostępu pachowego. Obrąbek w części górnej jest tylko częściowo dostępny ocenie ultrasonograficznej. Kluczową część oceny ultrasonograficznej stanowi badanie dynamiczne. W pracy przedstawiono zarys prawidłowej anatomicznej ultrasonograficznej oraz techniki badania i oceny ultrasonograficznej obrąbka stawu ramiennego.
The use of ultrasound in the assessment of the glenoid labrum of the glenohumeral joint.
Part I: Ultrasound anatomy and examination technique

Key words
glenoid labrum, glenohumeral joint, ultrasound anatomy, examination technique, glenohumeral joint imaging

Abstract
The glenohumeral joint is a spherical articulation with a remarkable range of motion in several planes and decreased stability. The maintenance of joint stability is influenced by the functioning of specific muscle groups in the shoulder region, a complex system of ligaments reinforcing the joint capsule, and the labrum which augments the glenoid fossa. Lesions of the aforementioned structures require accurate diagnosis prior to a decision for operative treatment. Ultrasound is one of the imaging methods that has been widely used in the assessment of various shoulder pathologies. In the author opinion, this imaging modality may also be applied for the evaluation of labral tears. Being attached along the glenoid rim, the labrum forms a collar deepening the glenoid fossa thus increasing area of its contact with the head of the humerus. To better describe the location of lesions, the glenoid labrum is usually divided into certain zones. Most of them may be visualized sonographically. The US examination of the posterior labrum can be performed during evaluation of the infraspinatus and teres minor muscles. The anterior labrum along with capsulolabral complex is seen at the glenoid edge under the subscapularis tendon. Sonographic examination of the inferior labrum is best performed using axillary approach. The superior labrum is only partially available for US examination. A crucial part of the sonographic assessment of the labrum is the dynamic examination during rotation of the upper extremity. The paper presents normal sonographic anatomy of the glenoid labrum and technique of the examination.

Introduction
The glenohumeral joint (in short referred to as the shoulder joint) is a ball-and-socket joint between the head of the humerus (the ball) and the glenoid fossa of the scapula (the socket). The joint surface area of the humeral head is approximately fourfold greater than that of the glenoid cavity; this is often compared to a golf ball resting upon the tee. Thanks to such morphology, a large range of motion of the shoulder joint is possible in several planes, augmented by the sliding of the scapula with respect to the thoracic wall, as well as rotation within the acromioclavicular and sternoclavicular joints. This tremendous range of movement also makes the shoulder less stable and far more prone for dislocation and injury than other joints. However, during movements in the shoulder under normal circumstances, there exists a dynamic balance between the forces pushing the humeral head onto the glenoid fossa versus those forces pulling it away. The stability of the joint depends upon both active and passive mechanisms. Active stabilization is related to muscle function, most importantly the rotator muscles and the tendon of the long head of the biceps brachii muscle. The tendons of the rotator muscles form a characteristic “cuff” surrounding the joint, along with the rotator cable of the joint capsule. Passive stabilization comes from the shape, size and positioning of the glenoid, as well as the presence of a capsular-ligamentous complex, and the glenoid labrum. The former plays a significant role. Being attached along the glenoid rim, the labrum forms a collar deepening the glenoid fossa and increasing the area of its contact with the head of the humerus (fig. 1). This allows for the maintenance

Wstęp
Staw łopatkowo-ramienny (w skrócie określany jako ramienno) z anatomicznego punktu widzenia jest stawem kulistym, utworzonym między głową kości ramiennej (główka stawowa) a wydrużeniem stawowym łopatki (panewka stawowa). Powierzchnia stawowa głowy kości ramiennej jest mniej więcej czterokrotnie większa niż powierzchnia stawowa wydrużenia stawowego łopatki, dlatego często porównuje się ją do piłeczki golowej (głowa) spo- czywającej na podstawce (panewka). Dzięki takiej budowie możliwy jest duży zakres ruchów w stawie ramiennym w różnych płaszczyznach, zwiększy dodatkowo przez ślizg łopatki względem ściany klatki piersiowej, a także ruch w stawie barkowo-obojczykowym i mostkowo-obojczykowym. Ta wyjątkowa ruchomość stawu ramiennego wiąże się jednak ze zmniejszoną stabilnością i większą podatnością na zwinięcia i urazy od innych stawów. W warunkach prawidłowych podczas ruchu w stawie ramiennym istnieje pewna równowaga dynamiczna pomiędzy siłami dociskającymi głowę kości ramiennej do panewki a siłami odcigającymi. Stabilność stawu ramiennego jest uwarunkowana działaniem mecha- nizmów czynnych i biernych. Stabilizacja czynna wiąże się z funkcją mięśni, z wiodącą rolą mięśni rotatorów (obrotowych) oraz ścięgną głowy długiej mięśni dwugłowego ramienia. ścięgna mięśni ob- rotowych tworzą charakterystyczny „mankiet” osła- niający staw, połączony z torebką stawową („kabel rotatorów”). Stabilizacja bierna wynika z ukształ- towania, wielkości i ustawienia panewki stawowej, a także obecności złożonego układu torebkowo-wię- zadłowego wraz z obrąbkami panewkowym. Obrą-
Bek panewki pełni niebagatelną funkcję. Przyczepiając się na obwodzie panewki stawowej, tworzy pewnego rodzaju kolnierz pogłębiający panewkę i zwiększający jej pole kontaktu z głową kości ramiennnej (ryc. 1). Pozwala tym samym na utrzymanie ujemnego ciśnienia wewnątrz stawu, istotnego dla jego stabilizacji[1,2]. Z histologicznego punktu widzenia obrąbek stawowy jest strukturą włóknisto-chrąstną z różnym przebiegiem włókien kolagenowych, głównie o układzie okrężnym, zasilaną w strefie zewnętrznej włóknami dochodzącymi od strony więzadł obrąbkowo-ramiennych, torebki stawowej i otaczających ścięgien. Liczne włóknka kolagenowe przebiegają w macierzy chrzestnej/chrąstnej, zawierającej drobne lakuny z chondrocytami. W strukturze obrąbka mogą występować także nie liczne włóknka elastyny. Unaczynienie obrąbka pochodzi od rozgałęzień tętnicy nadlopatkowej, tętnicy okalającej lopatku oraz tętnicy tylnej okalającej ramię, dochodzących do obrąbka od strony przyczepu torebkowego oraz od okostnej lopatki. Naczynia te odżywiają głównie obwodową strefę obrąbka, sporadycznie dochodzą do części środkowej. Wraz z wiekiem unaczynienie obrąbka (podobnie jak łąkotek) zmniejsza się[3,4]. W dolnej połowie, zarówno w części przedniej, jak i tylnej, obrąbek stanowi przedłużenie chrząstki stawowej panewki z przejściową strefą chrzęstno-włóknistą. Z tego też względu wykazuje on wyraźnie ograniczoną ruchomość. Zarysy obrąbka w tej części są zwykle leko zaokrąglone, choć istnieje duża zmienność anatomiczna w zakresie kształtu obrąbka[5]. Dlatego nawet nieregularny zarys obrąbka od strony stawu nie powinien być traktowany bezwzględnie jako objaw patologiczny. W górnej połowie obrąbek ma nieco mniej zbitą streszę włóknistą, luźniejszy przypomina wkładowo-pokrowowy i jest wobec tego bardziej mobilny. Na przekroju poprzecznym obrąbek ma kształt przypominający łąkotkę stawu kolanowego. Z obrąbkiem w części górnej łączy się ściśle ścięgno głowy długiej mięśnia dwugłowego ramienia (przyczepiające się, poza obrąbkiem, także do guzka nadłopatkowego łopatki), tworząc wspólny kompleks obrąbkowo-ścięgnowy, stanowiący przepłatające się włóknka kolagenowe obu struktur[5]. Na poziomie fuzji ze ścięgnem głowy długiej mięśnia dwugłowego ramienia między obrąbkiem a brzegiem panewki występuje niewielki zaczynek maziowy (zaczynek podobrąbkowy)[4,5]. Poniżej – w strefie przednio-górnjej – występuje niewielka zupelna połączenia obrąbka z panewką (otrwał podobrąbkowy), z obecną komunikacją stawu z zaczynnikiem podlopatkowym[6]. Może występować także odcinkowy brak obrąbka w połączeniu z obecnością pogrubiałością ścięgien obrąbkowo-ramiennego (kompleks Buforda)[6].

![Ryc. 1. Schemat kompleksu torebkowo-więzadłowo-obrąbkowego ze stożkiem rotatorów stawu ramiennego. GI – panewka, L – obrąbek, LHB – ścięgno głowy długiej mięśnia dwugłowego ramienia, wiązadła obrąbkowo-ramienne (SGHL – górne, MGHL – środkowe, IGHL – dolne), CHL – więzadło kruczo-ramienne, CAL – więzadło kruczo-barkowe, Sub – mięśń podłopatkowy, Sup – mięśnie nadgrzebieniowy, Is – mięśń podgrzebieniowy, TM – mięśnie obły mniejszy (dzieki uprzejmości: Michael Stadnick, Radsource)](image)

of negative intra-articular pressure, which is essential for joint stability[1,2]. Histologically, the glenoid labrum is composed of fibrocartilaginous tissue with a varied course of collagen fibers, mainly in a circular arrangement, reinforced in the external zone by fibers from the glenohumeral ligaments, joint capsule and surrounding tendons. Numerous collagen fibers run through the fibrocartilaginous matrix, containing small lacunae with chondrocytes. There may also appear a few elastin fibers within the glenoid labrum. The labrum is vascularized by branches of the supra-
Obwodowa część obrąbka łączy się z torebką stawową i więzadłami obrąbkowo-ramiennymi, tworząc jednostkę anatomiczno-czynnościową, zwaną kompleksem torebkowo-więzadlowo-obrąbkowym. Przyczep torebki stawowej w części przedniej wykazuje pewną zmienność anatomiczną. Między większą w połowie przypadków przednia torebka stawowa przyczepia się bezpośrednio do obrąbka stawowego i przyległą części panewki. W pozostałych przypadkach przyczep torebki stawowej w części przedniej znajduje się za obrąbkami na szyjce łopatki (najczęściej w odległości do 1 cm od brzegu panewki, rzadko bardziej przyśrodkowo). Torebka w części tylnej jest zwykle zespółona z obrąbkami. Z obrąbkiem stawowym łączą się także więzadła obrąbkowo-ramienne. Więzadło obrąbkowo-ramienne górne (SGHL) przyczepia się zwykle do obrąbka górnego i częściowo do guzka nadpanewkowego łopatki. Więzadło obrąbkowo-ramienne środkowe (MGHL) przyczepia się na poziomie lub tuż poniżej przyczepu więzadła górnego w różny sposób: albo do panewki, albo do obrąbka, ewentualnie może posiadać wspólne odejście z więzadłem górnym. Takie MGHL może być bardzo prominentną strukturą (jak w kompleksie Buforda), zdarzają się też przypadki, w których nie stwierdza się obecności tego więzadła. Więzadło obrąbkowo-ramienne dolne (IGHL) jest utworzone przez dwa pasma – przednie i tylne – posiada wyraźny przyczep obrąbkowy i panewkowy i stanowi istotne wzmocnienie torebki stawowej.

W celach topograficznych obrąbki stawowy dzieli się na pewne strefy. Najczęściej stosuje się dwie alternatywne metody – jedną bazującą na tarczy zegarowej z podziałem na 12 stref obrąbkowych, drugą bardziej uproszczoną i znajdującą zastosowanie do analizy chondrograficznej, detekcji chondroarthropatii, wizualizacji długotrwałych zmian regressywnych i degeneracyjnych w glebokiej części obrąbka. Obrąbka gleboka (IGHL) przyczepia się do dolnej części obrąbka, a obrąbka głęboka (IGHL) do górnej, w zależności od gatunku powierzchni dołączalnej obrąbka. Obie obrąbki stawowe w przekroju kompozytowym obejmują obszary przyległe do obrąbka stawowego i są oddzielone od siebie przestrzenią nabłonkową. W zakończeniu, w celu zapewnienia lepszej wizualizacji obrąbków stawowych, można zastosować skupienie Sonogrammy nieoznaczonego, zatłoczonego płynem lub prześwicie niskiego sprzężenia.
sowanie w codziennej praktyce – z podziałem na 6 stref(9) (ryc. 2). Obie skale są generalnie bardzo zbliżone i wyróżniają (idąc od góry do przodu i do dołu, zgodnie z ruchem wskazówek zegara dla strony prawej i przeciwnie do ruchu wskazówek zegara dla strony lewej):

- strefę obrąbcą górnego (między godziną 11. a 1.);
- przednio-górnego (między godziną 1. a 3. dla strony prawej i 11. a 9. dla strony lewej);
- przednio-dolnego (między godziną 3. a 5. dla strony prawej i 9. a 7. dla strony lewej);
- dolnego (między godziną 5. a 7.);
- tylno-dolnego (między godziną 7. a 9. dla strony prawej i 5. a 3. dla strony lewej);
- tylno-górnego (między godziną 9. a 11. dla strony prawej i 3. a 1. dla strony lewej).

Czasami dzieli się dodatkowo obrąbka w górnej części na: górnoprzedszy oraz górnotynny, a w dolnej części – na dolno-przedszy i dolnolynny. Ma to większe znaczenie w przypadku obrąbka górnego ze względu na jego częstszes uszkodzenia (typu SLAP). Izolowane uszkodzenia obrąbka w części dolnej są niezwykle rzadkie. Można stosować także jeszcze bardziej uproszczony opis topograficzny obrąbka stawu ramiennego z podziałem na cztery strefy (kwadranty): przednio-górną, przednio-dolną, tylno-górną i tylno-dolną(10). Podział ten może być wykorzystywany w diagnostyce niestabilności przedniej i tylnej stawu ramiennego, natomiast nie jest satysfakcjonujący w przypadku klasyfikacji uszkodzeń górnej części obrąbka.

Głównym badaniem obrazowym stosowanym do oceny obrąbka stawu ramiennego oraz więzadł jest rezonans magnetyczny (RM), najlepiej z dowstawowym podaniem środka paramagnetycznego (artrografia RM)(2,5,7,11). Opcjonalnie wykorzystuje się także artrografię tomografi komputerowej (artro-TK)(10). Dane z piśmiennictwa i kilkuletnie osobiste doświadczenia autora wskazują, że także ultrasonografia (USG) może być przydatna w ocenie obrąbka stawowego(10,12-15). Ultrasonografia powszechnie stosuje się w diagnostyce różnych patologii okolicy barku od wielu lat, a jej rola systematycznie wzrasta wraz z ciągłym postępem technologicznym tej metody obrazowania(16-18). Badanie USG ma niekwestionowane znaczenie zwłaszcza w diagnostyce patologii mięśni stózka rotatorów. Włączenie do zakresu rutynowego badania USG barku oceny obrąbka stawu ramiennego uczyniło by zatem całe badanie jeszcze bardziej kompleksowym, ukierunkowującym dalsze postępowanie diagnostyczno-terapeutyczne.

at the level of the SGHL insertion or right below it, either to the glenoid, the labrum, or has a common origin with the SGHL. Sometimes the MGHL may be a very prominent structure (as in the Buford complex), but there are also cases in which this ligament is completely missing(5). The inferior glenohumeral ligament (IGHL) consists of two bands – the anterior and posterior, has distinct attachments to the labrum and the glenoid, and significantly reinforces the joint capsule(1).

To better describe the location of lesions, the glenoid labrum is usually being divided into certain zones. There are two main alternative mapping methods used for this purpose. One is based upon a clock face with 12 zones of the labrum, whereas the simpler and more practical second method, divides the labrum into 6 zones(9) (fig. 2). Both scales are quite similar to each other and both distinguish the following labral zones (going from superior to inferior anteriorly, clockwise for the right side, and counterclockwise for the left):

- the superior labrum (between 11 and 1 o’clock);
- the anterosuperior labrum (between 1 and 3 o’clock for the right shoulder, while between 11 and 9 o’clock for the left one);
- the anteroinferior labrum (between 3 and 5 o’clock for the right shoulder, while between 9 and 7 o’clock for the left one);
- the inferior labrum (between 5 and 7 o’clock);
- the posteroinferior labrum (between 7 and 9 o’clock for the right shoulder, while between 5 and 3 o’clock for the left one);
- the posterosuperior labrum (between 9 and 11 o’clock for the right shoulder, while between 3 and 1 o’clock for the left one).

Sometimes the labrum’s superior half is further divided into superoanterior and supoposterior parts, while the inferior half into inferoanterior and inferoposterior parts. This subdivision has more relevance for the superior labrum which is more frequently injured (SLAP type injuries), whereas injuries to the inferior labrum alone are extremely rare. An even simpler topographical description divides the labrum into 4 zones (quadrants): the anterosuperior, antero-inferior, posteroinferior and posterosuperior ones(10). This classification may be used in diagnosing anterior and posterior instability of the shoulder, but is insufficient when describing injuries of the superior labrum.

The main imaging modality used to assess the glenoid labrum along with glenohumeral ligaments is mag-
Technika badania i anatomia USG obrąbcia stawu ramiennego

Do badania USG obrąbcia w stawie ramiennym stosuje się głowicę liniową pracującą w zakresie częstotliwości 6–12 MHz (najlepiej szerokopasmową), zapewniającą odpowiednią rozdzielczość i penetrację na głębokość kilku centymetrów. U chorych otyłych bądź z większą masą mięśniową można też zastosować głowicę o częstotliwości 5–6 MHz (np. typu convex). Niestety, nie zapewnia ona wystarczającej rozdzielczości do oceny niewielkich zmian powazowych obrąbcia. Obrąbek, będący strukturą włóknistą, podlega zjawisku anizotropii, podobnie jak torebka stawowa. Zarówno w części przedniej, jak i tylnej położony jest na głębokości zwykle nieprzekraczającej 4,0–5,0 cm, czasami nawet mniejszej (w praktyce autora 2,5–3,5 cm). Głębokość jest zmienna indywidualnie i zależy od grubości tkanki podskórnej i „mankietu” mięśniowego. Nie jest prawdą, że obrąbek w części przedniej jest znacznie głębie położony niż w części tylniej, co miałoby go czynić mniej dostępnym dla badania USG, jak sugerują niektóre autorzy. Najczęściej różnica w głębokości położenia nie przekracza kilku milimetrów na niekorzyść obrąbcia przedniego, co zdaniem autora nie ma istotnego znaczenia.

Obrąbek w części tylnej

Badanie USG obrąbcia w części tylniej przeprowadza się zwykle jednocześnie z oceną mięśnia podgrzebieńiowego i oblego mniejszego. Osoba badana siedzi wygodnie na stołku obrotowym, tyłem do osoby badającej. Głowną płaszczynną obrazowania jest płaszczynna prostopadła do długiej osi ramienia (przekroje netic resonance (MRI), especially with intra-articular administration of paramagnetic contrast medium (MR arthrography)\(^2\)\(^5\)\(^7\)\(^{–}\)\(^7\)\(^{–}\)\(^1\(^1\)\(^{–}\)\(^2\)\(^1\)\(^{–}\)\(^3\). Sometimes computed tomography arthrography (CT arthrography) might be an option. Based upon published data, as well as the author’s personal experience of several years, ultrasound (US) may also be valuable in the evaluation of the glenoid labrum\(^{10}\)\(^{–}\)\(^1\(^2\)\(^–\)\(^2\(^1\)\(^{–}\)\(^3\). For many years, ultrasound has been widely used for diagnosing various pathologies of the shoulder, and its role is still increasing with further technological progress of this imaging tool\(^{16}\)\(^–\)\(^1\(^8\). The US study has an indisputable role, particularly in diagnosing rotator cuff pathologies. The addition of an assessment of the glenoid labrum to the routine US imaging of the shoulder would make this examination even more complete, and influence further diagnostic-therapeutic proceedings.

Ultrasound anatomy and examination technique of the glenoid labrum

For the US examination of the glenoid labrum, a linear probe with a frequency of 6–12 MHz (the broadband probes are the best) is used, since it provides an appropriate resolution and penetration to the depth of a few centimeters. In obese patients or those with increased muscle mass, a probe of 5–6 MHz frequency (for example the convex type) may be used. Unfortunately, the latter does not provide enough resolution for the evaluation of small post-traumatic changes of the labrum. The glenoid labrum, being a fibrous structure, exhibits the anisotropy phenomenon, as the joint capsule does. Both the anterior and posterior parts of the labrum are located at a depth usually not exceeding 4.0–5.0 cm, sometimes less (between 2.5 and 3.5 cm in the author’s experience). This depth varies, depending on the thickness of the subcutaneous fat tissue and the muscle “cuff”. Contrary to the suggestions of some authors, it seems not to be true that the anterior part of the labrum is significantly more deeply located than its posterior part, which would make it less accessible for the US study. The difference in depth does not exceed a few millimeters, and has in author’s opinion little practical significance.

The posterior part of the glenoid labrum

The US examination of the posterior part of the labrum is usually carried out with the evaluation of the infraspinatus and teres minor muscles. The patient sits comfortably on a rotating chair, with his/her back to the examiner. The main imaging plane is that
dynamic assessment is a usual feature of the upper extremity (ryc. 3). The bulging joint capsule (arrows) with anechoic fluid filling the posterior recess of the joint (+), above the external outline of the glenoid (Gle) and labrum (*); H – the head of the humerus, ISP – the infraspinatus muscle, D – the deltoid muscle.

The labrum should be scanned as much as possible, from the level right below the scapular spine to the lower edge of the glenoid. The labrum is usually seen as a triangular echogenic structure, located right alongside the edge of the glenoid. It may be slightly rounded from the joint side, or may be flat, which is another anatomic variant. The joint capsule, which lies deep to the tendons of the posterior rotator cuff muscles, attaches to the labrum directly (fig. 4).

The labrum should be scanned as much as possible, from the level right below the scapular spine to the lower edge of the glenoid. The labrum is inaccessible to US imaging at the level of the scapular spine. The dynamic assessment is an important aspect of the US examination, and consists of alternating internal and external rotation of the upper extremity in the abduction position. In internal rotation, the tightening of the joint capsule may be observed, with slight pulling on the glenoid labrum. In external rotation, the joint capsule gets lax, while the labrum becomes slightly flattened and minimally bends in or out. If there is an effusion in the joint, a more or less filled posterior recess of the joint capsule is usually visible during external rotation. It extends medially from the glenoid rim and labrum along the scapular

Obrąbek staramy się zobrazować możliwie w największszym zakresie, tj. od poziomu tuż poniżej grzbietu do samego dołu panewki stawowej. Na poziomie grzbietu lopatki obrąbek nie jest dostępny badaniu USG. Ważnym elementem badania jest ocena dynamiczna, polegająca na naprzemiennym obrotowym spojrzeniu na obraz stawowy w pozycji przewodzenia. Przy obrotowym spojrzeniu na obraz stawowy można zaobserwować wypełnienie obrąbka stawowego z niewielkim pociągnięciem obrąbka stawowego, natomiast przy obrotowym spojrzeniu obrąbka stawowa rozluźni się, zaś obrąbek nieco spłaszcza się i odchyla. W przypadku obecności wysięku w stawie ramiennym podczas rotacji wypełniony zachylek tynny

Obrąbek staramy się zobrazować możliwie w największszym zakresie, tj. od poziomu tuż poniżej grzbietu do samego dołu panewki stawowej. Na poziomie grzbietu lopatki obrąbek nie jest dostępny badaniu USG. Ważnym elementem badania jest ocena dynamiczna, polegająca na naprzemiennym obrotowym spojrzeniu na obraz stawowy w pozycji przewodzenia. Przy obrotowym spojrzeniu na obraz stawowy można zaobserwować wypełnienie obrąbka stawowego z niewielkim pociągnięciem obrąbka stawowego, natomiast przy obrotowym spojrzeniu obrąbka stawowa rozluźni się, zaś obrąbek nieco spłaszcza się i odchyla. W przypadku obecności wysięku w stawie ramiennym podczas rotacji wypełniony zachylek tynny
Obrądek w części przedniej

Badanie USG obrądką w części przedniej jest nieco trudniejsze i wymaga pewnej wprawy. Badanie naj- lepiej wykonać u chorego leżącego na wznak, gdyż zapewnia to lepszą stabilizację sondy, szczególnie podczas oceny dynamicznej. Główną płaszczynną obrazowania jest płaszczynna prostopadła lub lekko skośna do długiej osi ramienia (przekroje osiowe) (ryc. 6). W badaniu należy uwidocznić przednią część głowy kości ramiennej oraz panewki stawowej. Budowa przedniego kompleksu torebkowo-obrądkowego jest bardziej złożona, dlatego obraz ultrasonograficzny różni się nieco w porównaniu ze stroną tylną. Obrądek stawowy jest widoczny przy brzegu panewki jako echogeniczna struktura razem z przyległą od strony przedniej torebką stawową, grubszą niż w części tylnej z powodu obecności przedniego pasma więzadła obrąbkowo-ramiennego dolnego (ryc. 7). Echogeniczność torebki jest zbliżona do echogeniczności obrądki, stąd trudno oddzielić obie struktury, chociaż niekiedy daje się zauważyć w czasie badania dynamicznego niewielki ślizg torebki

echogeniczny róg panewki jako echogeniczna struktura razem z tylną torebką stawową, obecną w okolicach strony przedniej torebki stawowej (ryc. 5). Jest to miejsce of joint capsule is similar to that of the labrum, although sometimes during the dynamic examination the joint capsule may slide against the labrum. The structure of the anterior capsular-labral complex is more complicated than the posterior equivalent, thus their US image differs. The labrum is visible at the edge of the glenoid as an echogenic structure adjacent to the joint capsule, which is thicker than in the posterior part because of the presence of the anterior band of the IGHL (fig. 7). The echogenicity of the joint capsule is similar to that of the labrum, thus it is difficult to differentiate these structures, although sometimes during the dynamic examination the joint capsule may slide against the labrum. Sometimes at the base of the labrum, there may be

This results in the joint capsule being more difficult to distinguish from the labrum, especially during dynamic examination. The echogenicity of the joint capsule is similar to that of the labrum, sometimes during the dynamic examination the joint capsule may slide against the labrum. Sometimes at the base of the labrum, there may be
względem obrąbka. U podstawy obrąbka od strony panewki bywa czasami widoczna niewielka linijna strefa (szerokości <2 mm) o niższej echogeniczności, odpowiadająca przejściowej warstwie chrząstki włóknistej między chrząstką stawową a obrąbiem. Ocenę obrąbka przedniego powinno się zaczynać możliwie od najwyższej strefy dostępnej badaniu (poniżej wyrostka kruczego łopatki) i kontynuować do dolnej części panewki. W części przednio-górnej obrąbek kształtem i echogenicznością przypomina łączotki kolana. W badaniu USG nie jest dostępna jego część przednio-górną na poziomie wyrostka kruczego łopatki, z kolei dolna część strefy obrąbka przednio-górnego – mniej więcej od godziny 2./10. – i cały obrąbek przednio-dolny są zwykle dobrze widoczne. Bardzo ważnym elementem badania USG jest ocena dynamiczna, przeprowadzana pod-

Ryc. 8. Badanie dynamiczne USG obrąbka w części przedniej w pozycji przywiedzenia oraz odwiedzenia kończyny pod kątem 90°, w rotacji zewnętrznej (A, C) i wewnętrznej (B, D)

Fig. 8. The dynamic US examination of the anterior labrum, with the limb in adduction and abduction of 90°, in external rotation (A, C) and internal rotation (B, D), respectively.

recognizable a thin linear area (width <2 mm) of lower echogenicity, which represents the transitional layer of fibrocartilage between the joint cartilage and the labrum. The assessment of the anterior labrum should be started from the highest part visible in the study (just below the level of the coracoid process of the scapula), and continued to the inferior edge of the glenoid. In the anterosuperior part, the labrum’s shape and echogenicity are quite similar to the menisci of the knee. The labrum is inaccessible to US imaging at the level of the coracoid process of the scapula, while the lower portion of the anterosuperior (approximately from 2/10 o’clock) and the entire anteroinferior parts of the labrum are usually well visible. As mentioned previously, the dynamic assessment is an important element of the US examination, and is performed during alternate external and inter-
czas naprzemiennjej roacji zewnętrznej i wewnętrznej kończyny górnej w pozycji przywiedzenia oraz w odwiedzeniu 90° (ryc. 8). Przy roacji wewnętrznej kończyny dochodzi do napięcia torebki stawowej i niewielkiego pociągania obrąbka, zaś przy roacji wewnętrznej torebka ulega rozluźnieniu. Obrąbek w badaniu dynamicznym zmienia nieznacznie swój kształt. Podczas roacji wewnętrznej w warunkach prawidłowych można zaobserwować minimalne odchylenie się obrąbka pod naporem głowy kości ramiennnej z towarzyszącym fałdowaniem się struktur torebkowo-więzadłowych (ryc. 9). Wspomniany efekt „przyparcia” głowy do obrąbka przy rozluźnionej torebce wykorzystywany jest przez autora do oceny stabilności obrąbka po urazach, inaczej niż to jest podawane w piśmiennictwie, gdzie oceny tej dokonuje się podczas roacji wewnętrznej[10,13].

Obrąbek w części dolnej

Badanie USG obrąbka w części dolnej wykonuje się z dostępu pachowego w pozycji leżącej z odwiedzeniem kończyny, obserwując jego obraz w badaniu dynamicznym podczas roacji wewnętrznej i wewnętrznej (ryc. 10). Od strony dołu pachowego obrąbek położony jest najbardziej powierzchownie. Mimo to ocena dynamiczna obrąbka w części dolnej bywa kłopotliwa ze względu na dość grubą część to-

The inferior part of the glenoid labrum

The US examination of the inferior part of the glenoid labrum is performed through the axillary approach with lying patient having the upper limb in abduction. The dynamic component of the study takes place during internal and external rotation (fig. 10). The glenoid labrum is found most superficially from the axillary fossa. Despite this fact, the dynamic assessment of the inferior labrum may be challenging due
to the rather thick capsular part of the capsular-labral complex, and difficulties in obtaining an optimal imaging cross-section (fig. 11). However, isolated injuries to the inferior part of the labrum are very rare. Sometimes it is possible to visualize posttraumatic changes of the IGHL (ex. HAGL type injuries) using axillar approach, as well as the presence of loose bodies in the axillary recess of the glenohumeral joint.

The superior part of the glenoid labrum

The US study of the superior part of the labrum is somewhat problematic due to limited access to the parts of the labrum covered by bony structures (the acromion and the clavicle) as well as difficulties in good stabilizing the probe during the dynamic examination. The examination is performed with the patient sitting. The anterior part of the superior labrum (between 12 and 1 o’clock for the right shoulder, and 11 and 12 o’clock for the left one) is usually accessible for the assessment. The probe is applied where a minor depression of tissues is palpated, anterior to the distal part of the clavicle and medial to the anterior part of the acromion (fig. 12 A). This position of the probe should allow for visualization of the humeral head and the upper part of glenoid with adjacent triangular echogenic structure representing the labral-bicipital complex, consisting of the labrum on the bottom and the overlying tendon of the long head of the biceps. Above this complex the anterior part of the tendon/cord tendon-belly of the supraspinatus muscle is present (fig. 13). In the author’s experience, the labrum is best visualized with the upper limb internally rotated and adducted (ex. the Middle-
Obrąbek w części górnej

Badanie USG obrąbka w części górnej bywa problematyczne, przede wszystkim z uwagi na ograniczony dostęp do tej części obrąbka przesłoniętej przez struktury kostne (wyrostek barkowy łopatki i obojczyk) oraz trudności w ustabilizowaniu pozycji sondy podczas oceny dynamicznej. Badanie wykonuje się w pozycji siedzącej. Ocenie dostępu jest zazwyczaj przednia część obrąbka górnego (pośród godzin 12. a 1. dla prawego stawu i między 11. a 12. dla lewego). Sondę przykłada się na poziomie wyczuwalnie niewielkiego zagłębiań tkanek tuż do przodu od dalszej części obojczyka i przyśrodkowo od przedniej części wyrostka barkowego łopatki (ryc. 12 A). Z takiego przyłożenia głowicy powinno się uwidocznić zarys głowy kości ramiennej oraz górnej części panewki stawowej z echogeniczną strukturą trójkątnego kształtu, odpowiadającą kompleksowi obrąbkowo-ścięgnowiemu – złożonemu z obrąbka od strony dolnej oraz ścięgna głowy długiej mięśnia dwugłowego ramienia od strony górnej. Nad wspomnianym kompleksem powinna być widoczna przednia część ścięgna/rdzenia ścięgnowego – brzuszca mięśnia nadgrzebieniowego (ryc. 13). Z doświadczeń autora wynika, że obrąbek można najlepiej uwidocznić w pozycji rotacji wewnętrznej i przywieszenia kończyny górnej (np. pozycja Middletona/ Crassa stosowana do oceny ścięgna mięśnia nad-
In a favorable configuration of the acromion and in slender subjects, the posterior part of the superior labrum may also be imaged at 11 o’clock (for the right shoulder) and 1 o’clock (for the left). The probe is positioned right behind the clavicle, medial to the acromion of the scapula (Fig. 14 A). The outlines of the superior part of the glenoid and the labrum should be visualized, as well as a small part of the humeral head that is not covered by the acoustic shadow of the acromion. Above these described structures, the supraspinatus muscle is found (Fig. 15). The dynamic examination relies on external and internal rotation of the limb in 90° abduction (Fig. 14 B). The US examination in this region is also used for diagnosing an internal posterosuperior glenoid impingement of the shoulder.

Summation

The diagnostics of injuries to the glenoid labrum and the capsular-ligamentous complex of the glenohumeral joint, aside from the clinical assessment, is mainly based upon the MRI, especially after intra-articular contrast administration (MR arthrography).
starając się cały czas utrzymywać stabilne sondę USG. Przeprowadza się także ocenę podczas bier- nego pociągania kończyny ku dołowi.

Przy korzystnej konfiguracji wyrostka barkowego i u osób o smukłej budowie można zobrazować także tylną część obrąbka górnego na godzinie 11. (dla strony prawej) i 1. (dla strony lewej). Sondę przykłada się tuż za obojęczykiem przyśrodkowo od wyrostka barkowego łopatki (ryc. 14 A). Należy uwidocznić zarys górnej części panewki stawowej z obrąbkiem oraz niewielką część głowy kości ramiennej, nieprzesłoniętą przez cień akustyczny wyrostka barkowego łopatki. Nad opisywanymi strukturami znajduje się mięsień nadgrzebieniowy (ryc. 15). Ocena dynamiczna polega na rotacji zewnętrznej i wewnętrznej kończyny górnej w pozycji odwiedzenia 90º (ryc. 14 B). Badanie w tej okolicy jest wykorzystywane także w diagnostyce ultrasonograficznej wewnętrznego konfliktu tylno-górnego w stawie ramiennym.

Podsumowanie

Diagnostyka uszkodzeń obrąbka oraz kompleksu torebkowo-więzadłowego stawu ramiennoego opiera się w praktyce, poza oceną kliniczną, głównie na badaniu USG, zwłaszcza po dostawowym podaniu środka kontrastowego (artrografia RM). Jak przedstawiono w niniejszej pracy, obrąbek jest w dużym zakresie dostępny do oceny także w badaniu USG. Tym samym może to być wartościowa metoda w diagnostyce jego patologii, co zostanie przedstawione w II części pracy.

Piśmiennictwo/References

1. Di Giacomo G, Pouliart N, Constantini A, De Vita A: Atlas of Functional Shoulder Anatomy. Springer-Verlag, Rzym 2008: 110.
2. Van der Woude HJ, Vanhoenacker FM: MR arthrography in glenohumeral instability. JBR-BTR 2007; 90: 377–383.
3. Cooper DE, Arnoczky SP, O’Brien SJ, Warren RF, DiCarlo E, Allen AA: Anatomy, histology, and vascularity of the glenoid labrum. An anatomical study. J Bone Joint Surg Am 1992; 74: 46–52.
4. Prodromos CC, Ferry JA, Schiller AL, Zarins B: Histological studies of the glenoid labrum from fetal life to old age. J Bone Joint Surg, 1990; 72-A: 1344–1348.
5. Park YH, Lee JY, Moon SH, Mo JH, Yang BK, Hahn SH et al.: MR arthrography of the labral capsular ligamentous complex in the shoulder: imaging variations and pitfalls. AJR Am J Roentgenol 2000; 175: 667–672.
6. Beltran J, Bencardino J, Mellado J, Rosenberg ZS, Irish RD: MR arthrography of the shoulder variants and pitfalls. Radiographics 1997; 17: 1403–1412.
7. Neumann CH, Petersen SA, Jahnke AH: MR imaging of the labral-capsular complex: normal variations. AJR Am J Roentgenol 1991; 157: 1015–1021.
8. Mohana-Borges AV, Chung CB, Resnick D: Superior labral anteroposterior tear: classification and diagnosis on MRI and MR arthrography. AJR Am J Roentgenol 2003; 181: 1449–1462.
9. Taljanovic MS, Carlson KL, Kuhn JE, Jacobson JA, Delaney-Sathy LO, Adler RS: Sonography of the glenoid labrum: a cadaveric study with arthroscopic correlation. AJR Am J Roentgenol 2000; 174: 1717–1722.
10. Lee WH, McCauley TR, Katz LD, Matheny JM, Ruwe PA, Daigneault JP: Superior labral anterior posterior (SLAP) lesions of the glenoid labrum: reliability and accuracy of MR arthrography for diagnosis. Radiology 2001; 218: 127–132.
11. De Maeseneer M, Van Roy F, Lenchik L, Shahabpour M, Jacobson J, Ryu KN et al.: CT and MR arthrography of the normal and pathologic anterosuperior labrum and labral-bicipital complex. Radiographics 2000; 20: 567–581.
12. Schydlowsky P, Strandberg C, Galatius S, Gam A: Ultrasonographic examination of the glenoid labrum of healthy volunteers. Eur J Ultrason 1998; 8: 85–89.
13. Hammar MV, Wintzell GB, Aström KG, Larsson S, Elvin A: Role of us in the preoperative evaluation of patients with anterior shoulder instability. Radiology 2001; 219: 29–34.
14. Sugimoto K: Ultrasonographic evaluation of the Bankart lesion. J Shoulder Elbow Surg 2004; 13: 286–290.
15. Schydlowsky P, Strandberg C, Galbo H, Krosgaard M, Jorgensen U: The value of ultrasonography in the diagnosis of labral lesions in patients with anterior shoulder dislocation. Eur J Ultrason 1998; 8: 107–113.
16. Rutten MJ, Gager GJ, Kiemeney LA: Ultrasound detection of rotator cuff tears: observer agreement related to increasing experience. AJR Am J Roentgenol 2010; 195: W440–W446.
17. Martinoli C, Bianchi S, Prato N, Pugliese F, Zamorani MP, Valle M et al.: US of the shoulder: non-rotator cuff disorders. Radiographics 2003; 23: 381–401.
18. Bianchi S, Martinoli C: Ultrasonography of the Musculoskeletal System. Springer Verlag, Berlin, Heidelberg 2007: 189.

As this article has shown, the glenoid labrum is also visible in the US study. Therefore, this imaging tool may be valuable in the diagnostics of labral pathologies, which will be presented in part II of the article.