Towards An Effective And Efficient Malware Detection System

Chia Tien Dan Lo, Ordenez Pablo, Cepeda Mora Carlos.
Department of Computer Science
Kennesaw State University
Kennesaw, Georgia, USA
dlo2@kennesaw.edu; pordonez@students.kennesaw.edu; ccepedam@students.kennesaw.edu

Abstract— The ubiquitous advance of technology used on the Internet, computers, smart phones and tablets has been conducive to the creation and proliferation of cyber threats resulting in attacks that have grown exponentially. Consequently, anti-virus companies and researchers have developed new approaches for dealing with discovering and classifying malware. Among these, machine learning and big data technologies have been used for feature extraction, detection, and clustering of cyber threats. In this paper a dataset of malware and clean files (goodware) was created and analyzed from the static and dynamic features provided by the online framework VirusTotal. The purpose is to select the smallest number of features that keep classification accuracy as high as possible in order to decrease the use of resources for monitoring as well as extracting features and the time for detection. In this research, it was found that “9” features are enough to distinguish malware from “goodware” files with an accuracy of 99.60%. Selecting the most representative features for malware detection relies on the possibility of creating an embedded program that monitors the processes executed by the operating system (OS) and looks for the characteristics that match malware behavior. In addition, classification algorithms such as Random Forest (RF), Support Vector Machine (SVM) and Neural Networks (NN) were used in a novel combination that not only showed an increase in accuracy, but also in the training speed from hours to just minutes. Finally, the trained model (which was trained with a dataset of malware samples seen before September 2015) was tested on a new dataset of malware samples seen by first time between October 2015 and June 2016 and showed that the model is still effective for detection of unseen malware files.

Keywords— Malware detection; Machine Learning; Big Data Analytics; Feature selection; Random Forest; Support Vector Machine; Neural Networks; improving accuracy.

I. INTRODUCTION (BIG DATA, MACHINE LEARNING AND SECURITY)

Big Data Analytics refers to the process of searching, capturing, storing and processing the data sets in order to extract meaningful information, discover patterns and relations, market and customer trends, and discover abnormal behaviors. At present, security and privacy are two major topics, particularly because of the massive growth of the Internet and the Big Data Era, which have magnified these trends. Additionally, Big Data infrastructures are easily accessible to various organizations or individuals across multiple cloud infrastructures [2]. Moreover, it is known that the Internet has been an infrastructure that has enabled the expansion of cyber-threats and attacks; in fact, the growth of malware attacks alone has been exponential [3], rendering antivirus companies no longer able to analyze and create signatures for these myriad attacks. Big Data Analytics and machine learning could be part of the solution. Utilizing the power of extract patterns and dealing with huge amounts of data, platforms for extracting, analyzing and finding patterns is possible and will identify normal and abnormal behaviors thus preventing the consequences of malware attacks. As a result, Big Data tools for running machine learning algorithms (for example SPARK and Torch), and tools for extracting malware information (VirusTotal) were used to create the Dataset and analyze the information.

II. MALWARE OVERVIEW

There exists different varieties of cyber-attacks: phishing, botnets, searching poisoning, denial of services, spamming, and malware. As mentioned before, cyber-attack growth has increased exponentially and has compromised computers, stolen information and damaged critical structures, which produced significant losses at an average of $345,000 per incident [3]. Internet growth is not the only reason Malware has proliferation increased; the development of new malicious programs has become easier. In fact, “more than 317 million new pieces of Malware were created last year” (2014) [10], which means that “nearly one million new threats were released each day”. As a consequence, Antivirus Companies – AV, are no longer able to process all of them. First, it is not possible to capture all Malware on the network. Furthermore, due to the Malware’s proliferation, it is not possible to generate signatures in a timely manner for all the file- programs collected by AV companies. It is also important to note that as more sophisticated Anti-Virus programs are generated; cyber criminals have also increased the complexity of malicious programs. There are techniques such as

Partially sponsored by National Science Foundation.
Obfuscation/Metamorphism (code substitution, code reordering, register swapping), Noise Insertion (garbage instructions, unused functions) and Packing (Cryptors, Protectors, Packers), which decrease the detection rate from the Anti-Virus programs.

III. BIG DATA TOOLS FOR MALWARE ANALYSIS

Malware is a trend that tends to increase and will remain as the “greatest security threat faced by computer users” [3]. Thus, the necessity for automatic malware detection and classification has allowed for the creation of tools such as: CWSandBox, Cuckoo SandBox, Norman Sand-box; and hybrid platforms as ThreatExpert, ANUBIS, VirusTotal, Metascan®, Payload Security – VxStream and Malwr. These systems execute the suspicious malware files in a virtual or controlled environment in order to monitor and extract static and behavioral information, which is used for analyses, detection and classification. In this article the static and dynamic data extracted from malicious and “good” files was analyzed in order to predict classify a test dataset.

Big Data tools are required to run machine-learning algorithms due to the unwieldy size of the dataset—9448 cases by 682,936 feature vectors (see section VII to detail information of the Dataset). In this case SPARK was used for dealing with the whole dataset to make the initial feature selection and then R Cran and TORCH frameworks were used for other stages of feature selection and classification.

IV. MALWARE ANALYSIS

Two approaches are used to analyze Malware files, Static and Dynamic Analysis. Static Analysis extracts features directly from the byte-code or disassembled instructions, so it is not required to run the program [4]. “Static Analysis includes string signature, byte-sequence n-grams, syntactic library call, control flow graph and opcode (operational code) frequency distribution” [4]. The advantage of this analysis is that it could follow all possible execution paths and is less resource intensive, but is sensitive to packing techniques, encryption, compression, garbage code insertion and code permutation [4], so malware detection based on static features can be bypassed by obfuscation methods. Dynamic Analysis is executed on a virtual or insulated environment in order to monitor the malware behavior (file system, registry monitoring, process monitoring, network monitoring, system change detection, function call monitoring, function parameter analysis, information flow tracking, instruction traces and autostart extensibility points) [4]. The advantage of this method is that it is insensitive to packing/obfuscation techniques, however it is time consuming and sometimes has a limited view of the features that the program could exhibit given different input values.

V. PROBLEM DEFINITION AND PROPOSED SOLUTIONS

In the Malware overview, it is a fact that current antivirus programs, which are based on a signature method, can be bypassed and is no longer able to deal with the malware detection work [12].

Furthermore, the rate of detection of malware using data mining method is twice the amount as compared to signature based method [15]. Analysis from static features is not always possible given that several malicious programs are already packed. Consequently Dynamic analysis is also required and having tools or programs that work on execution time along the antivirus programs will aid in detection of malicious behaviors. Expeditious strategies for analyzing and detecting malware are mandatory. With this in mind, this paper proposes the use of Machine Learning and Big Data tools for selecting the smallest representative number of features that keep the classification accuracy high and allow possible embedded programs to quickly locate characteristics that match malware behavior (It is important to mention that the creation of the embedded program is not the purpose of this paper). Summarily, the work presented on this paper follows four main stages. First, scripts-programs for downloading and parsing the metadata, static and dynamic information given by the VirusTotal platform were created (see section VII). Second, two stages of feature selection for reducing the datasets, removing noise and selecting the smallest number of features keeping accuracy high was accomplished (see section VIII). Finally, the training speed and accuracy on the classification process was improved (see section IX).

VI. RELATED WORK

It is necessary to insert here a brief introduction of the terminology and nomenclature for comparing results on the field of machine learning. True Positives (TP) are the goodware samples classified correctly. True Negative (TN) are the malware samples classified correctly. False Positives (FP) are malware samples classified wrong as goodware. False Negatives (FN) are goodware classified wrong as malware. The True Positive Rate (TPR) is the ratio between True Positives and total number of positives (P), thus TPR = TP/P. The True Negative Rate (TPR) is the ratio between True Negatives and total number of negatives (N), thus TNR = TN/N. Finally, the Accuracy (ACC) is the sum of True positives and True Negatives divided by the total number of samples. ACC = (TP+TN)/(P+N).

6.1 Comparison to malware detection work without feature selection/reduction: When Michał Kruczkowski and Ewa Niewiadomska, 2014 [19] used a dataset of 10746 samples, they determined an overall accuracy (ACC) of 0.958. D. Swathigavaishnave and R. Sarala, 2012 [7], used opcode features on a dataset of 500 malicious and 300 benign files and they acquired a TPR of 0.992 and a FPR of 0.53. Rafiqul Islam, Ronghua Tian, Lynn M. Batten and Steve Versteeg, 2013 [12] obtained an accuracy of 0.971 from a dataset of 2939 samples, using Static and Dynamic features. Igor Santos, Jaime Devesa, Felix Brezo, Javier Nieves, and Pablo G. Bringas 2013 [10], using opcodes and API calls got an accuracy of 96.6% on a dataset of 1000 Malicious and 1000 good files. Finally, Ekta Gandotra, Divya Bansal, Sanjeev Sofat 2014 [4] gave an overview of the state of the art on Malware analysis and Classification. Also, as we can see, all of this research focuses on accuracy but not in feature
selection or reduction, which we believe is important for fast analysis, training and prediction required on real-time detection.

TABLE I. COMPARISON OF RELATED RESEARCHES ON ACCURACY

Reference	Year	Data	Features	Accuracy
Schultz ref [12]	2001	String (printable and not printable)	97.11	
[5]	2006	Byte n-grams	96.8	
[9]	2010	System Call [14]	96.8	
[7]	2012	Opcode sequences	99.2	
[10]	2013	Opcode n-gram + APIs, Function calls	96.22	
[8]	2013	Byte n-grams	96.64	
[12]	2013	FLF + PSP, + API calls	97.055	
[11]	2013	Several static and dynamic	99.58	
[19]	2014	--	95.8	
[13]	2015	API calls and API parameters	97.2	
Our approach	2016	Several static and dynamic	99.60	

6.2 Comparison to malware detection work with feature selection/reduction: Usukhbayar Baldangombo, Nyamjav Jambaljav, and Shi-Jinn Horng, [6] using static features as PE headers, DLLs and API functions, selected the best subset of features consisting on 88 PE headers that had the best performance with their classifiers (accuracy of 0.995). The dataset was 236756 malicious and 10592 clean programs. Despite the applied feature reduction, static features are not convenient to detect malware files given that malware detection based on static features can be bypassed by obfuscation methods. Chih-Ta Lin, Nai-Jian Wang, Han Xiao and Claudia Eckert, [18] created n-grams from static and dynamic features. Using around 790,000 n-grams, they applied feature selection-reduction and they got accuracy near 90% with 10 features and 96% with 100 features. Their dataset was 3899 malware and 389 benign samples. In this study feature selection and reduction was made on the number of n-grams, however it is not strictly related with the number of features that is required to read from the static-dynamic behavior from the files. Also, compared to our results, we can achieve an accuracy of 99.60% with just 9 features. George E. Dahl, Jack W. Stokes, Li Deng and Dong Yu, 2013 [11] used Deep Neural networks with static and dynamic features. In addition, they used mutual information for the selection of 179,000 features from 50 Millions and then Random Projections for reducing to “few” thousand dimensions. The overall accuracy was 0.9958 on a dataset of 2.6 Millions of files. One can see that the accuracy is quite high; however we are looking for real-time applications, so thousands of features could be still considered too many features.

6.3 Real-time malware detection: Micha Moffie, Winnie Cheng and David Kaeli, 2006 [17] developed a security framework as complement to anti-virus programs called HTH. The program is able to extract vast amounts of runtime information in a “faster” manner (System calls, Library calls, Data flow), which is used for malware detection on real time. Regarding this article, we believe that the overhead could be significantly reduced if only the most important features are collected for detection on real time.

TABLE II. COMPARISON OF RELATED RESEARCHES ON FEATURE SELECTION AND ACCURACY

Reference	Year	Data Set	Features	Accuracy	#Selected Features
[6]	2012	247348	DLLs, APIs, PE header (static features)	99.5	80
[18]	2015	4288	Static and Dynamic. N-grams features	~96	100
Our approach	2016	14902	Several static and dynamic	99.60	9

VII. CREATING THE DATASET

In order to get the information from Malware and “good” files, we considered two possibilities: to use the Cuckoo Sandbox software [15], which is a platform for Malware analysis that provides different information after running the file on an isolated environment; or, VIRUSTOTAL [1], which is a free online service for analyzing files or URLs and runs a distributed setup of Cuckoo sandbox, “enabling the identification of viruses, worms, Trojans and other kinds of malicious content detected by antivirus engines and website scanners” [1]. In addition, VIRUSTOTAL provides information such as file version and properties, PE info, file metadata, and behavioral information. VIRUSTOTAL was chosen given that it is possible to save time in regard to the analysis as results are already available from the VIRUSTOTAL website. VIRUSTOTAL allows the public API to scan, submit, and access results. However, information is not public, so it is necessary to get the permission for having access to full scan results. This information was parsed to tables and 7630 Malware and 1818 “Goodware” scan reports were collected. Additionally, due to the unbalanced data (7630 malware files vs 1818 goodware files), oversampling was used (goodware files were duplicated 4 times, and the new amount of observations was 14902). For each scan report, two files on “JSON” format were obtained. Using R CRAN [16], the files were parsed and 57 different type of features were extracted, such as: files opened, copied, deleted, etc.; DLLs, code size, Flags, data size, language-code, file-info, entry-point, PE-info, imports, services, API-info, processes-info, and network-info. The information extracted was stored on matrices and the total number of features was 682,936 with a size of 22 GB (It is important to note that the current total population of malware is nearly to 600 million of samples according to statistics for August 2016 by AVTEST [20], the sample size 9448 correspond approximately to a confidence level of 99% with a margin error of 1.33%).
VIII. Feature Selection

Feature selection is an important aspect of this research. As previously mentioned, one of the objectives is to select the smallest number of features that keep the detection rate as high as possible, and allow the use of a minimum quantity of resources for the malware detection task. Furthermore, feature selection and reduction is already known to reduce noise, improve the accuracy and enhance the speed for training classification algorithms (given that time increased in O (n²) with respect to the number of features as state by Kolter and Maloof) [5]. The following processes used for feature selection is explained.

First Stage: Due to the immense dimensionality, we used SPARK given that this platform can deal with large datasets. The machine-learning library for SPARK - MLlib – was used as first stage for feature selection. In this library, the Feature Selection “ChiSqSelector” was applied and retrieved 10% of the most relevant features. Initially, this reduced matrix contains 68,800 features with 9448 observations at a size of 2.2 GB. Second Stage: Here, it was possible to select the best features running the Random Forest library (randomForest) on R – Cran (Rstudio) (ranking by decrease on accuracy and ranking on decrease on node impurity – see “importance” on randomForest package). In this process, six steps of reduction were developed to determine each step of the algorithms for classification. First, it was reduced from 68,800 features to 10,000 features, next to 5,000, 1,000, 300, 100, 30, 10 and finally 9. Third Stage: In order to validate how well the feature selection was being accomplished, classification algorithms as SVM, RF and NN were used for tracking the classification accuracy. Charts 1, 2, and 3 compare the accuracy as result of the described process.

From the charts above, it is possible to infer that ranking by a decrease in accuracy (RFAcc) performs better that the other. Furthermore, the SVM classifier had better behavior on accuracy than other methods, especially using a smaller quantity of features. However, it is important to mention that Neural Networks were trained with just 100 iterations to save training time, because the objective in this stage was just compare the performance of the feature selection methods (no comparing the performance between classification algorithms).

As an example, the next table shows the selected best “9” features. (Note: CSUM corresponds to the sum of the observation for each feature type, thus row 1 is the total number of “imports” that a specific program makes).

Rank	Feature Type	Feature Name
1	IMPORTS	CSUM
2	NETWORK DNs_HOST	CSUM
3	CALLS ARGUMENTS_NAME	IpFileName
4	IMPORTS	EnumSystemLocalesW
5	PE Overlay Size	512
6	FILE FLAGS MASK	63
7	CALLS CATEGORY	system
8	Language Code	Neutral
9	TRID	Win32 Executable generic

IX. Classification Algorithm Results

A. Preliminary Accuracy Results:
In the first stage, two main algorithms have been used, Random Forest (RF) and Neural Network (NN) in R-Cran (packages “randomForest” and “nnet”). Table IV shows the results for each algorithm. Note: Positive refers to “Goodware” (P). The entire dataset was divided into a training dataset and testing dataset. The testing set consisted of 3724 observations that correspond to the 25% of the original “balanced” dataset. Results showed that Random Forest (RF)
present similar accuracy to Neural Network (NN) for large number of features. However, an RF behaves better for a smaller number of features. Regarding the parameters for RF, the number of trees needed to “grow” was 1000. For NN, the number of iterations was 200 (other parameters as default). The RF had a better True Positive Rate than NN, which implies RF had better performance to classify “goodware” samples. On the other hand, NN was a lower False Positive Rate than RF, so NN classify better the “malware” samples. Finally, in regard to accuracy, a peak was presented near 100 and stayed about the same (in fact decreased) even when the features increase.

![Graph showing accuracy performance for RF and NN through the number of features.](image)

Chart 4. Accuracy performance for RF and NN through the number of features.

B. Improving Neural Network classification performance:

On this stage, we decided to work more on the Neural Network, given that previously we used just 200 iterations. The neural network model used was the nn package on TORCH with one hidden, one Tanh and one LogSoftMax layer. Also, we divided the dataset on 70% for Training and 30% for Testing (Note that previously it was divided 75% - 25%, this is more exigent than previously). Using the dataset with the best 30 features selected by RF-decrease on accuracy, and running the nn based on accuracy, results shows that even with a large number of iterations, the Test accuracy does not increase considerably.

![Graph showing training error and test accuracy for best 30 features dataset.](image)

Chart 5. Training Error and Test Accuracy for best 30 features dataset.

We must ask why SVM has better performance in this case. Simple Neural Networks (with one or some small hidden layers) are based on combinations of sums of their inputs multiplied by weights and some nonlinear functions as Tanh or sigmoid or RELU applied on some layers. On the other hand, SVM uses nonlinear kernels (polynomial, radial basis functions, tanh) to transform its inputs into a hyperplane that is easier to separate. With this in mind, we introduced simple but effective steps to preprocess the dataset in order to improve not only the speed but also the accuracy of the Neural Network algorithm.

First, we need to apply nonlinear functions as the kernels used by the SVM to the dataset. We used the SVM kernel already available on the SVM algorithm and these were applied to each feature vector. After we tried the polynomials and Radial base functions, the last one presented the best results to transform each feature vector into a hyperspace. Once applied, these transformations with SVM were assembled with all of the new feature vectors into another dataset and the Neural Network was trained again. The following charts compare the behavior of the training error – Err (the track of the errors or loss during the training process) and the accuracy – Acc - (received on the test dataset for each iteration) for the Neural Network applied to the original dataset – Base-, and the NN applied to the transformed dataset –withSVM-.

![Graph showing comparison of training errors for best 30 features dataset.](image)

Chart 6. Comparison of Training Errors for best 30 features dataset (75% training – 25% test) (Base dataset and transformed with SVM).

![Graph showing comparison of training errors and test accuracy for best 30 features dataset.](image)

Chart 7. Comparison of Training Errors and Test Accuracy for best 30 features dataset (Base dataset and transformed with SVM. 70% training – 30% test).
From “Chart 6” we can see that the training error after 2000 iterations on the base dataset is reached with just two iterations on the transformed dataset and it is also the double of the error after 200 iterations on the transformed dataset. Even more, from “Chart 7” and “Chart 8”, the accuracy from the test dataset increased around 8% to 17% and errors decreased around 55% to 60% in average. In fact just with one iteration, results are better that the base dataset after 2000 iterations (see Chart 7) or 1000 (see Chart 8) iterations.

The process suggested before sounds simple, but what is this doing? The preprocessing discussed is transforming the feature vectors applying functions to transform to another space easier separable. Even more, we can apply other classification algorithms to each feature and get a dataset that is easier to classify. Next, we show a brief explanation sample.

Suppose you have the dataset in the char 9. Next you can take each feature vector by separate as shown in chart 10. If you apply a quadratic function to the data on char 11 and a sinusoidal function to chart 12, you can transform the original dataset into an easier separable space as shows in chart 13.

On our real dataset we have transformed three feature vectors using Random Forest just for illustrating how it looks like.
In sum, the preprocessing discussed is transforming the feature vectors applying functions to transform to another space easier separable. In conclusion, preprocessing the feature vectors by separation, before training the classification algorithms, will increase accuracy and speed given that with few iterations it is possible to get fewer errors and better accuracy (at least it was valid on our dataset using the Neural Network algorithm). It is also important to mention that the time to transform the features, let say of our 30 best feature dataset, it was around six minutes, which compared with the time that took to train the NN with this dataset (around a couple of hours or more) is small. Note: SVM was also applied after transform the feature vectors with the SVM kernel, but the accuracy remains quite similar and sometimes it decreased.

C. Improving the Test Accuracy on the Best 9 Features Dataset:

In this section we present the process used for improving the current Test Classification Accuracy, which is 99.24% for the 10 best features using the SVM algorithm. First, SVM was used to track the accuracy sequentially adding feature vectors in the ranked order. Next, we used Principal Component Analysis – PCA to transform the original dataset (Best 9 features dataset) and then we applied SVM and RF. From this step, the RF accuracy was increased from 96.78% to 97.6%. In this point, we decided combined all the information gathered, so the original dataset (Best 9 features dataset), the dataset transformed by SVM (SVM kernel applied to each feature vector), the dataset transformed by RF, the dataset after PCA transformation, the results by RF from the original dataset, the results by RF from the dataset transformed by PCA and the results by SVM to the original dataset.

With this new combined dataset, we applied SVM and NN, but preliminary results show that SVM made overfitting and accuracy decreased. However, NN elicited a better behavior, so we decided to use the schema on the chart 16a, where we tried different combinations to create a new dataset, which gives the best result.

Finally, after approximately 40 combinations, we found that the schema on chart 16b gave the best result, which increased the Testing Accuracy up to 99.60% from the best nine features. This schema includes the original dataset, the transformed dataset by SVM kernels applied to each feature, and the results by SVM applied to the original dataset. Note: The total time required for create the dataset and training the schema on Chart 16b was about 16 minutes. The NN required 255 iterations of 13 minutes.
Finally, we decided to build the Receiver Operating Characteristic – ROC curve and then test the newly created model on a new dataset of 253 malware files downloaded from VIRUSTOTAL that were submitted the first time between October-2015 to June-2016. We showed the ROC curve, which illustrates the good performance of our classifier (the area under the curve - AUC was around 0.997). In regard to the new dataset, the accuracy was 98.4%.

![ROC Curve for the Model](chart17.png)

Chart 17. ROC for the model

X. CONCLUSIONS

- Features on this particular dataset can be ranked properly by Random Forest by decrease on accuracy.
- The best classification accuracy can be gotten using the nine first features ranked by Random forest by decrease on accuracy. It will allow on future work to build a monitoring malware detection program with low overhead for the operating System.
- The final accuracy result was 99.60%, which is better than classifications without feature selection with hundreds or thousands of features.
- Preprocessing the dataset by transforming each feature vector using classification algorithms or equivalent transformation functions can increase the accuracy and the speed, given that with few iterations is possible to get lower errors and better accuracy (at least it was valid on our dataset using the Neural Network algorithm).
- The vector feature transformation opens the possibility to explore building new architecture layers on the Neural Network. We believe that structures that allow us to emulate more complex functions as polynomials or exponential functions will help to increase the overall performance of the Neural Networks.
- The model trained with these nine features a show that it is effective for detecting unseen malware files.

REFERENCES

[1] VirusTotal. https://www.virustotal.com/en/
[2] Cloud Security Alliance, “Expanded Top Ten Big Data Security and Privacy Challenges,” April, 2013.
[3] Xin Hu, “Large-Scale Malware Analysis, Detection, and Signature Generation,” The University of Michigan, 2011.
[4] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat, “Malware Analysis and Classification: A Survey,” IPEC University of Technology, Chandigarh, India. Journal of Information Security. April 2014.
[5] J. Zico Kolter, and Marcus A. Maloof, “Learning to Detect and Classify Malicious Executables in the Wild,” Stanford University. Journal of Machine Learning Research 7. 2006.
[6] Usukhbayar Baldangombo, Nyamjav Jambaljav, and Shi-Jinn Horng, “A Static Malware Detection System Using Data Mining Methods,” National University of Mongolia, and University of Science and Technology, Taipei, Taiwan. 2012.
[7] D. Swathigaavashnave, and R. Sarala, “Detection of Malicious Code Injection Attack Using Two Phase Analysis Technique,” Pondicherry Engineering College Puducherry, India. May 2012.
[8] Ohm Sornl (National Institute of Development Administration, Bangkok, Thailand), and Chatchai Liangboonprakong (Suan Sunandha Rajabhat University, Bangkok, Thailand), “Malware Classification Using N-grams Sequential Pattern Features,” International Journal of Information Processing and Management(IJPM) Volume4, Number5. July 2013.
[9] Firdausi, L. Lim, C. and Erwin, Analysis of Machine Learning Techniques Used in Behavior Based Malware Detection, Proceedings of 2nd International Conference on Advances in Computing, Control and Telecommunication Technologies (ACT), Jakarta, 2010, 201-203. 2010
[10] Igor Santos, Jaime Devesa, Felix Brezo, Javier Nieves, and Pablo G. Bringas, “OPEM: A Static-Dynamic Approach for Machine-learning-based Malware Detection,” Deusto Institute of Technology University of Deusto, Bilbao, Spain. Year: --.
[11] George E. Dahl (University of Toronto, Toronto, ON, Canada), and Jack W. Stokes, Li Deng, Dong Yu (Microsoft Research, One Microsoft Way Redmond, WA 98052, USA), “Large-Scale Malware Classification Using Random Projections And Neural Networks,” ICASSP. 2013.
[12] Rafiqul Islam (Charles Sturt University, NSW 2640, Australia), Ronghua Tian (Deakin University, Victoria 3125, Australia), Lynn M. Batten and, Steve Versteeg (CA Labs, Melbourne, Australia), “Classification of malware based on integrated static and dynamic features,” Journal of Network and Computer Applications 36 (2013) 646–656. 2013.
[13] Mariano Graziano, Davide Canali and Davide Balzarotti (Eurecom), Leyla Bilge (Symantec Research Labs), Andrea Lanzi (Universitá degli Studi di Milano), “Needles in a Haystack: Mining Information from Public Dynamic Analysis Sandboxes for Malware Intelligence,”. 2015.
[14] Smita Ranveer, and Swapnajit Hiray, “Comparative Analysis of Feature Extraction Methods of Malware Detection,” Sishhad College of Engineering, Savitribai Phule Pune University, India. International Journal of Computer Applications (0975 8887) Volume 120 - No. 5. June 2015.
[15] Cuckoo-Sandbox. http://www.cuckoosandbox.org/
[16] R Cran. https://cran.r-project.org/index.html
[17] Micha Moffie, avid Kaeli (Northeastern University, Boston, MA) and Winnie Cheng (Massachusetts Institute of Technology Cambridge, MA), “Hunting Trojan Horses”. 2006.
[18] Chih–Ta Lin, Nai-Jian Wang, Han Xiao and Claudia Eckert. “Feature Selection and Extraction for Malware Classification”. National Taiwan University of Science and Technology. Taipei. Taiwan. 2015.
[19] Michal Kruczowski (Research and Academic Computer Network NASR, Warsaw, Poland) and Ewa Niewiadomska (Institute of Control and Computation Engineering, Warsaw University of Technology, Warsaw, Poland), “Comparative Study of Supervised Learning Methods for Malware Analysis”, 2014.