Algebraic Bethe ansatz for the six vertex model with upper triangular K-matrices

R A Pimenta and A Lima-Santos

Universidade Federal de São Carlos, Departamento de Física, Caixa Postal 676, CEP 13569-905, São Carlos, Brasil

E-mail: pimenta@df.ufscar.br and dals@df.ufscar.br

Received 21 August 2013, in final form 27 September 2013
Published 24 October 2013
Online at stacks.iop.org/JPhysA/46/455002

Abstract

We consider a formulation of the algebraic Bethe ansatz for the six vertex model with non-diagonal open boundaries. Specifically, we study the case where both left and right K-matrices have an upper triangular form. We show that the main difficulty entailed by those forms of the K-matrices is the construction of the excited states. However, it is possible to treat this problem with the aid of an auxiliary transfer matrix and by means of a generalized creation operator.

PACS numbers: 05.20.+y, 05.50.+q, 04.20.Jb

1. Introduction

The introduction of non-periodic boundary conditions into the framework of the quantum inverse scattering method was performed by Sklyanin [1] who resorted to a new object called the K-matrix, which satisfies the reflection equations, according to Cherednik’s work [2]. Together with the R-matrix, the solution of the Yang–Baxter equation, the K-matrix can be used to construct families of commuting transfer matrices.

Although the reflection equations admit general solutions, the algebraic Bethe ansatz (ABA) has been applied directly only for diagonal K-matrices. In fact, even multi-state vertex models with diagonal boundaries have since been solved by the ABA [1]. See, for instance, the papers [3–7] and references therein.

In the cases with non-diagonal boundaries, one of the impediments to addressing the ABA is the absence of a simple reference state. For this reason, alternative methods which do not rely on the existence of a reference state have been used frequently. For instance, in [8], exploring functional relations satisfied by the transfer matrix, Nepomechie was able to derive the eigenvalues of the open XXZ chain for special values of the bulk anisotropy, though with a non-standard form of the respective Bethe equations. In subsequent works [9–11], conventional Bethe equations were restored and many situations with constrained and general values of the boundary parameters were studied. See also the recent developments to this approach in [12, 13]. Other methods include the separation of variables [14, 15], the direct use of the Yang–Baxter algebra to derive the eigenvalues [16] and the representation theory of the
so-called q-Onsager algebra [17]. One disadvantage of the functional methods is the lack of information in general regarding the eigenvectors of the transfer matrix.

Moreover, results obtained from the ABA method have also been reported in the literature [18–20]. In [18] and its generalization to the spin-s case [19], convenient local gauge transformations were used in order to find a reference state as well as to transform the left and right K-matrices into diagonal and upper triangular matrices, respectively. In [20], transformations in both auxiliary and quantum spaces also map the original XXX-s spin chain with two full K-matrices into one with one diagonal and one triangular K-matrix. A common feature present in these works is the requirement of constraints in the boundary parameters.

Recently, the rational six vertex model with two upper triangular boundaries was solved by Belliard et al [21]. In this case, the excited states do not have a fixed number of magnons and thus the usual ABA does not apply, although the usual reference state is still an eigenvector. Similar settings were first considered in the coordinate Bethe ansatz setup [22] and also in the vertex operator approach [23].

The purpose of this work is to present a constructive approach to obtain generalized excited states, independent of coordinate Bethe ansatz outcomes. The form of the generalized vertex operator approach [23].

This paper is organized as follows. In section 2 we summarize the definitions and relations needed for the ABA method. Next, in section 3, we apply the ABA presenting detailed calculations for the first, second and third generalized excited states, as well as the nth generalized Bethe vector. We discuss our results in section 4. We reserve the appendices for useful relations used in the main text.

2. Transfer matrix

The Sklyanin monodromy and transfer matrix for an open vertex model are defined by

$$T_a(u) = K_a^{+}(u)T_a(u)K_a^{-}(u)T_a^{-1}(-u),$$

$$t(u) = \text{Tr}_a[T_a(u)],$$

where $K_a^{\pm}(u)$ are the reflection matrices and $T_a(u)$ and $T_a^{-1}(-u)$ are the monodromy matrices associated with a chain of length L given by an ordered product of R-matrices

$$T(u) = R_{a1}(u) \ldots R_{aL}(u), \quad T^{-1}(-u) = R_{aL}(u) \ldots R_{a1}(u).$$

The products in (2.1) and (2.2) are performed in an auxiliary space denoted by a, and $n = 1, 2, \ldots, L$ refers to a quantum vector space at the site n.

The Yang–Baxter equation

$$R_{12}(u - v)R_{13}(u)R_{23}(v) = R_{23}(v)R_{13}(u)R_{12}(u - v),$$

and the reflection equations

$$R_{12}(u - v)K_1^{+}(u)R_{12}(u + v)K_1^{-}(v) = K_2^{+}(v)R_{12}(u + v)K_1^{-}(u)R_{12}(u - v),$$

$$R_{12}(v - u)K_2^{+}(u)vR_{12}(-u - v - 2\eta)K_2^{+}(v)f^2 = K_2^{+}(v)f^2R_{12}(-u - v - 2\eta)K_1^{+}(u)vR_{12}(v - u)$$

guarantee that (2.1) commutes for arbitrary spectral parameters, i.e., $[t(u), t(v)] = 0$.

At least two global relations also follow from (2.3) to (2.5) for the monodromy matrices, namely

$$\hat{R}(u - v)T(u) \otimes T(v) \equiv T(v) \otimes T(u)\hat{R}(u - v)$$

(2.6)
and

\[R_{12}(u - v)U_1(u)R_{12}(u + v)U_2(v) = U_2(v)R_{12}(u + v)U_1(u)R_{12}(u - v), \]

(2.7) where \(R(u) = PR(u) \) and \(U_\alpha(u) = T_\alpha(u)K_\alpha(u)T_\alpha^{-1}(-u). \)

For the six vertex model the \(R \)-matrix has the form

\[
R(u) = \begin{pmatrix}
1 & b(u) & c(u) \\
& c(u) & b(u) \\
& & 1
\end{pmatrix},
\]

(2.8) while the upper triangular \(K \)-matrices \([24, 25]\) can be written as

\[
K^-(u) = \begin{pmatrix}
k_{11}^-(u) & k_{12}^-(u) \\
0 & k_{22}^-(u)
\end{pmatrix}, \quad K^+(u) = \begin{pmatrix}
k_{11}^+(u) & k_{12}^+(u) \\
0 & k_{22}^+(u)
\end{pmatrix}
\]

(2.9) where

\[
b(u) = \frac{\sinh(u)}{\sinh(u + \eta)}, \quad c(u) = \frac{\sinh(\eta)}{\sinh(u + \eta)},
\]

(2.10) and

\[
k_{11}^-(u) = \sinh(u + \xi_-), \quad k_{12}^-(u) = \beta_- \sinh(2u),
\]

\[
k_{22}^-(u) = \sinh(\xi_- - u),
\]

\[
k_{11}^+(u) = \sinh(-u - \eta + \xi_+), \quad k_{12}^+(u) = \beta_+ \sinh(-2u - 2\eta),
\]

\[
k_{22}^+(u) = \sinh(u + \eta + \xi_+).
\]

(2.11) In the rational limit, these functions reduce to

\[
b(u) = \frac{u}{u + \eta}, \quad c(u) = \frac{\eta}{u + \eta},
\]

(2.12) and

\[
k_{11}^-(u) = u + \xi_-, \quad k_{12}^-(u) = 2\beta_- u,
\]

\[
k_{22}^-(u) = \xi_- - u,
\]

\[
k_{11}^+(u) = -u - \eta + \xi_+, \quad k_{12}^+(u) = -2\beta_+ (u + \eta),
\]

\[
k_{22}^+(u) = u + \eta + \xi_+.
\]

(2.13) In addition to the spectral parameter \(u \) we have \(\eta \) which parametrizes the anisotropy, and \(\xi_\pm \) and \(\beta_\pm \) are the four free parameters characterizing the boundaries. By taking the first derivative of the transfer matrix \((3.1)\) we can obtain the corresponding XXZ Hamiltonian with non-diagonal boundary terms \([1, 24]\),

\[
H = \sum_{n=1}^{L-1} \left[\sigma_n^x \sigma_{n+1}^x + \sigma_n^y \sigma_{n+1}^y + \cosh(\eta) \sigma_n^z \sigma_{n+1}^z \right] - \frac{\sinh(\eta)}{\sinh(\xi_+)} \left[\beta_+ (\sigma_1^x + i\sigma_1^y) + \cosh(\xi_+) \sigma_1^z \right]
\]

\[
+ \frac{\sinh(\eta)}{\sinh(\xi_-)} \left[\beta_- (\sigma_L^x + i\sigma_L^y) + \cosh(\xi_-) \sigma_L^z \right],
\]

(2.14) where \(\sigma_n^{x,y,z} \) are the standard Pauli matrices acting on the site \(n \).
The monodromy matrix \(U_a(u) = T_a(u)K_0^-(u)T_a^-(u) \) can be represented by a \(2 \times 2 \) matrix

\[
U_a(u) = \begin{pmatrix} A(u) & B(u) \\ C(u) & D(u) \end{pmatrix},
\]

(2.15)

where \(A(u), B(u), C(u) \) and \(D(u) \) are operators on the Hilbert space \(\bigotimes_{i=1}^L C^2 \). These operators satisfy commutation relations thanks to (2.7). The four relevant relations for this work are

\[
B(u)B(v) = B(v)B(u),
\]

(2.16)

\[
A(u)B(v) = a_1(u, v)B(v)A(u) + a_2(u, v)B(u)A(v) + a_3(u, v)B(u)\tilde{D}(v),
\]

(2.17)

\[
\tilde{D}(u)B(v) = b_1(u, v)B(v)\tilde{D}(u) + b_2(u, v)B(u)\tilde{D}(v) + b_3(u, v)B(u)A(v),
\]

(2.18)

\[
C(u)B(v) = c_1(u, v)B(v)C(u) + c_2(u, v)A(v)A(u) + c_3(u, v)A(u)A(v) + c_4(u, v)A(v)\tilde{D}(u) + c_5(u, v)A(u)\tilde{D}(v) + c_6(u, v)\tilde{D}(u)A(v) + c_7(u, v)\tilde{D}(u)\tilde{D}(v),
\]

(2.19)

where we have used (2.6) to define \(\tilde{D}(u) = D(u) - f(u)A(u) \) with \(f(u) = c(2u) \). The explicit expressions of the coefficients \(a_j(u, v), b_j(u, v) \) and \(c_j(u, v) \) are given in appendix A.

Next, we use these relations in order to diagonalize the transfer matrix (2.1).

3. Bethe ansatz analysis

Taking into account the representation (2.15) as well as the upper triangular form of the left boundary matrix (2.9), the transfer matrix has the form

\[
t(u) = k_{11}^+(u)A(u) + k_{22}^+(u)D(u) + k_{12}^+(u)C(u)
\]

\[
= \omega_1(u)A(u) + \omega_2(u)\tilde{D}(u) + k_{12}^+(u)C(u),
\]

(3.1)

where

\[
\omega_1(u) = k_{11}^+(u) + f(u)k_{22}^+(u),
\]

\[
\omega_2(u) = k_{22}^+(u).
\]

(3.2)

The presence of the annihilation operator \(C(u) \) in (3.1) hinders the usual task of finding its eigenvectors. In fact, the excited states of the periodic or diagonal boundary models are usually constructed by applying the \(B \)-operators to the reference state as a consequence of the commutativity of the transfer matrix and the total spin operator \(\sum_{j=1}^L S_z^j \). For the upper triangular \(K \)-matrices this is no longer true and the excited states have to be constructed in another way.

3.1. The reference state

An important step in the ABA technique is the choice of a reference state from which the excited states are constructed. It turns out that the state

\[
\Psi_0 = \left(\frac{1}{(s_1 \rangle} \right) \otimes \left(\frac{1}{(s_2 \rangle} \right) \otimes \cdots \otimes \left(\frac{1}{(s_L \rangle} \right)
\]

(3.3)
is an eigenstate of \((3.1)\). This is a consequence of the structure of the \(U_0(u)\) matrix elements when the \(K^{-}\) matrix has the form \((2.9)\). In fact, with the help of \((2.6)\), it is not difficult to calculate

\[
\mathcal{A}(u) \Psi_0 = \Delta_1(u) \Psi_0, \quad \tilde{\mathcal{D}}(u) \Psi_0 = \Delta_2(u) \Psi_0, \quad \mathcal{C}(u) \Psi_0 = 0, \quad \mathcal{B}(u) \Psi_0 = *,
\]

where \(*\) denotes a state different from 0 and \(\Psi_0\),

\[
\Delta_1(u) = k_{11}(u),
\]

\[
\Delta_2(u) = [k_{22}(u) - f(u)k_{11}(u)]b(u)^{2L}.
\]

Therefore, we have an eigenvalue problem,

\[
t(u) \Psi_0 = \Lambda_0(u) \Psi_0
\]

where

\[
\Lambda_0(u) = \omega_1(u) \Delta_1(u) + \omega_2(u) \Delta_2(u)
\]

is the corresponding eigenvalue.

3.2. The first excited state

In order to construct the first excited state, we introduce an auxiliary transfer matrix given by

\[
\tilde{t}(u) = \omega_1(u) \mathcal{A}(u) + \omega_2(u) \tilde{\mathcal{D}}(u).
\]

We observe that \(t(u)\) and \(\tilde{t}(u)\) share the same reference state, i.e., \(t(u) \Psi_0 = \tilde{t}(u) \Psi_0 = \Lambda_0(u) \Psi_0\).

The one-particle state of the auxiliary transfer matrix \(\tilde{t}(u)\) can be obtained as usual

\[
\Psi_1(u_1) = \mathcal{B}(u_1) \Psi_0,
\]

and the action of \(\tilde{t}(u)\) on the state \((3.9)\), using the relations \((B.1)\) and \((B.2)\) of appendix B, is given by

\[
\tilde{t}(u) \Psi_1(u_1) = \Lambda_1(u, u_1) \Psi_1(u_1) + [\omega_1(u) \tilde{F}_1(u, u_1) + \omega_2(u) \tilde{G}_1(u, u_1)] \mathcal{B}(u) \Psi_0,
\]

where

\[
\Lambda_1(u, u_1) = \omega_1(u) \Delta_1(u) a_1(u, u_1) + \omega_2(u) \Delta_2(u) b_1(u, u_1).
\]

The form of the upper element of \(T_0(u)\), namely \(k_{11}^{+}(u) \mathcal{B}(u) + k_{12}^{+}(u) \tilde{\mathcal{D}}(u)\), suggests that the first excited state should contain two terms: one is the usual, \(\mathcal{B}(u_1) \Psi_0\), while the other one comes from a diagonal operator acting on \(\Psi_0\). We propose accordingly the following first excited state\(^1\) for \(t(u)\)

\[
\Phi_1(u_1) = \Psi_1(u_1) + g(u_1) \Psi_0
\]

where the function \(g(u_1)\) is to be fixed.

By acting the transfer matrix on \(\Phi_1(u_1)\), we find

\[
t(u) \Phi_1(u_1) = \tilde{t}(u) \Psi_1(u_1) + g(u_1) \tilde{t}(u) \Psi_0 + k_{12}^{+}(u) \mathcal{C}(u) \Psi_1(u_1).
\]

Now, we use the expression \((3.10)\) and also \((B.3)\) to obtain

\[
t(u) \Phi_1(u_1) = \Lambda_1(u, u_1) \Phi_1(u_1) + [\omega_1(u) \tilde{F}_1(u, u_1) + \omega_2(u) \tilde{G}_1(u, u_1)] \mathcal{B}(u) \Psi_0
\]

\[
+ [g(u_1)] \Lambda_0(u) \Phi_1(u_1) + k_{12}^{+}(u) \tilde{H}_1(u, u_1) \Psi_0.
\]

\(^1\) We remark that we use the nomenclature ‘excited states’ for the eigenvectors of \(t(u)\) to distinguish them from the ‘particle states’ of \(\tilde{t}(u)\), which have a fixed number of magnons.
Besides the usual unwanted term found for the auxiliary transfer matrix (3.10) there is an additional state in (3.14). Setting the coefficient of $B(u)\Psi_0$ equal to zero we obtain
\begin{equation}
\frac{\Delta_1(u_1)}{\Delta_2(u_1)} = -a_3(u, u_1)\omega_1(u) + b_2(u, u_1)\omega_2(u) - a_2(u, u_1)\omega_1(u) + b_3(u, u_1)\omega_2(u). \tag{3.15}
\end{equation}

One can verify that the right-hand side of (3.15) depends only on u_1 \cite{1}. Thus, we find the Bethe equation for the first excited state in the form
\begin{equation}
\frac{\Delta_1(u_1)}{\Delta_2(u_1)} = -\Theta(u_1), \tag{3.16}
\end{equation}

where
\begin{equation}
\Theta(u_1) = \frac{\sinh(2u_1 + \eta)\sinh(u_1 + \eta + \xi_+)}{\sinh(2u_1)\sinh(u_1 - \xi_+)}. \tag{3.17}
\end{equation}

On the other hand, the unwanted term proportional to the reference state is used to extract the expression for $g(u_1)$
\begin{equation}
g(u_1) = \frac{k_{12}^+(u_1)H_1(u, u_1)}{\Lambda_1(u, u_1) - \Lambda_0(u)}. \tag{3.18}
\end{equation}

At a first glance, the right-hand side of (3.18) is also dependent on the spectral variable u. However, if we take into account the Bethe equation (3.16), the identities between the coefficients (A.1)–(A.3) and the following relation for the K-matrix elements,
\begin{equation}
\frac{1}{k_{12}^{-1}(u_1)[a_2(u, u_1)\omega_1(u) + b_3(u, u_1)\omega_2(u)]} = \frac{1 - a_1(u, u_1)}{a_3(u, u_1)[c_2(u, u_1) + c_3(u, u_1)] - a_2(u, u_1)c_3(u, u_1)} \tag{3.19}
\end{equation}

the expression (3.18) acquires a simple form
\begin{equation}
g(u_1) = \Delta_2(u_1) \left[k_{11}^+(u_1) \right] \left[k_{12}^+(u_1) + f(u_1)k_{22}^+(u_1) \right] \tag{3.20}
\end{equation}

which depends only on u_1, as expected. The equations (3.16)–(3.20) ensure that $\Phi_1(u_1)$ is an eigenstate of $\bar{t}(u)$ with eigenvalue (3.11).

3.3. The second excited state

We proceed in a similar way for the second excited state. First, we consider the two-particle state of the auxiliary transfer matrix
\begin{equation}
\Psi_2(u_1, u_2) = B(u_1)B(u_2)\Psi_0, \tag{3.21}
\end{equation}
in order to get
\begin{equation}
\bar{t}(u)\Psi_2(u_1, u_2) = \Lambda_2(u, u_1, u_2)\Psi_2(u_1, u_2) + [\omega_1(u)F_2(u, u_1, u_2) + \omega_2(u)G_2(u, u_1, u_2)]B(u)\Psi_0 + [\omega_1(u)F_1(u, u_1, u_2) + \omega_2(u)G_1(u, u_1, u_2)]B(u)B(u_2)\Psi_0 \tag{3.22}
\end{equation}

where
\begin{equation}
\Lambda_2(u, u_1, u_2) = \omega_1(u)\Delta_1(u) \prod_{j=1}^{2} a_1(u, u_j) + \omega_2(u)\Delta_2(u) \prod_{j=1}^{2} b_1(u, u_j). \tag{3.23}
\end{equation}

The ansatz for the full second excited state is guessed from the action of $k_{11}^+(u)B(u) + k_{12}^+(u)D(u)$ on Ψ_0 twice
\[\Phi_2(u_1, u_2) = \Psi_2(u_1, u_2) + g_2^{(1)}(u_1, u_2)\Psi_1(u_1) + g_1^{(1)}(u_1, u_2)\Psi_1(u_2) + g_{12}^{(0)}(u_1, u_2)\Psi_0 \]

(3.24)

with the coefficients \(g_1^{(1)}(u_1, u_2) \) and \(g_{12}^{(0)}(u_1, u_2) \) to be determined \textit{a posteriori}.

The action of \(t(u) \) on the state (3.24), gathering the previous results (3.22), generates many unwanted terms

\[
\begin{align*}
t(u)\Phi_2(u_1, u_2) &= \Lambda_2(u_1, u_2)\Phi_2(u_1, u_2) \\
&+ \left[\omega_1(u)F_2(u_1, u_2) + \omega_2(u)G_2(u_1, u_2)\right]B(u)\Psi_1(u_1) \\
&+ \left[\omega_1(u)F_1(u_1, u_2) + \omega_2(u)G_1(u_1, u_2)\right]B(u)\Psi_1(u_2) \\
&+ \left[g_2^{(1)}(u_1, u_2)\omega_1(u)\right]F_1(u_1, u_2) + \omega_2(u)G_1(u_1, u_2)\right]B(u)\Psi_0 \\
&+ \left[g_2^{(1)}(u_1, u_2)\right]B(u)\Psi_0 \\
&+ \left[g_1^{(1)}(u_1, u_2)\Lambda_1(u) - \Lambda_2(u_1, u_2)\right] + k_{12}^{(1)}(u)H_2(u, u_1, u_2)\Psi_1(u_1) \\
&+ \left[g_1^{(1)}(u_1, u_2)\Lambda_0(u) - \Lambda_2(u_1, u_2)\right] + k_{12}^{(0)}(u)H_1(u, u_2)\Psi_0 \\
&+ k_{12}^{(0)}(u)\left[g_1^{(1)}(u_1, u_2)H_1(u, u_1) + s_{12}^{(1)}(u_1, u_2)H_1(u, u_2)\right]\Psi_0. \\
\end{align*}
\]

(3.25)

The coefficients of \(B(u)\Psi_1(u_1) \) and \(B(u)\Psi_1(u_2) \) lead to the Bethe equations,

\[
\frac{\Delta_0(u_1, u_2)}{\Delta_2(u_1)} = -\Theta(u_1) \frac{b_1(u_1, u_2)}{a_1(u_1, u_2)}, \quad \frac{\Delta_1(u_2)}{\Delta_2(u_2)} = -\Theta(u_2) \frac{b_1(u_2, u_1)}{a_1(u_2, u_1)},
\]

(3.26)

while the coefficients of \(\Psi_1(u_1) \), \(\Psi_1(u_2) \) and \(\Psi_0 \) give us the expressions for \(g_{12}^{(1)}(u_1, u_2) \) and \(g_{12}^{(0)}(u_1, u_2) \). Taking into account the Bethe equations (3.26) we get

\[
\begin{align*}
g_1^{(1)}(u_1, u_2) &= g(u_1)p(u_2, u_1), \\
g_2^{(1)}(u_1, u_2) &= g(u_2)p(u_1, u_2), \\
g_{12}^{(0)}(u_1, u_2) &= g(u_1)g(u_2)q(u_1, u_2)
\end{align*}
\]

(3.27)

where \(g(u_1) \) is given by (3.20) and we have introduced two new functions, namely

\[
p(u, v) = b_1(u, v)\frac{a_1(u, v)}{a_1(v, u)}, \quad q(u, v) = \frac{b_1(u, v)}{a_1(u, v)}.
\]

(3.28)

We can check by direct computation that the other unwanted terms in (3.22) are automatically null if we take into account the Bethe equations (3.26) and the expressions (3.27). Thus, the state

\[
\Phi_2(u_1, u_2) = \Psi_2(u_1, u_2) + g(u_2)p(u_1, u_2)\Psi_1(u_1) + g(u_1)p(u_2, u_1)\Psi_1(u_2) + g(u_1)g(u_2)q(u_1, u_2)\Psi_0
\]

(3.29)

is an eigenstate of the transfer matrix with energy (3.23).

3.4. The third excited state

It is expected from the integrability of the model that the second excited state structure should allow the generalization to find the \(n \)th excited structure. Nevertheless, it was not sufficient to guess the \(n \)th excited state from (3.29). Thus, we also proceed to the third excited state.
Following the previous discussions we propose the following structure for the third excited state
\[
\Phi_3(u_1, u_2, u_3) = \Psi_3(u_1, u_2, u_3) + g_3^{(2)}(u_1, u_2, u_3)\Psi_2(u_1, u_2) + g_3^{(1)}(u_1, u_2, u_3)\Psi_1(u_1) + g_1^{(0)}(u_1, u_2, u_3)\Psi_0
\]
where the coefficients \(g^{(k)}(u_1, u_2, u_3)\) will be determined in what follows.

As before we first apply the auxiliary transfer matrix \(\tilde{t}(u)\) to the three-particle state
\[
\mathcal{B}(u_3)\mathcal{B}(u_2)\mathcal{B}(u_1)\Psi_0,
\]
and, as a result, we obtain
\[
\tilde{t}(u)\Psi_3(u_1, u_2, u_3) = \Lambda_3(u_1, u_2, u_3)\Psi_3(u_1, u_2, u_3)
\]
where \(\Lambda_3(u_1, u_2, u_3)\) is given by
\[
\Lambda_3(u_1, u_2, u_3) = \omega_3(u_1, u_2, u_3) = \frac{\Delta_1(u_3)}{\Delta_2(u_3)} = -\Theta(u_3) \prod_{j=1}^{3} \frac{b_j(u_k, u_j)}{a_j(u_k, u_j)},
\]
with
\[
\Delta_1(u_3) = -\Theta(u_3) \prod_{j=1}^{3} \frac{b_j(u_k, u_j)}{a_j(u_k, u_j)},
\]
and
\[
\Delta_2(u_3) = \prod_{j=1}^{3} \frac{b_j(u_k, u_j)}{a_j(u_k, u_j)}.
\]

The next step consists in the determination of \(\tilde{t}(u)\Phi_3(u_1, u_2, u_3)\). We have a proliferation of cumbersome unwanted terms in this case and for this reason we omit their expressions. Following the last subsections, we impose the vanishing of the unwanted terms to fix relations for the unknowns \(g^{(k)}(u_1, u_2, u_3)\) as well as to obtain the Bethe equations. Three of the unwanted terms in \(\tilde{t}(u)\Phi_3(u_1, u_2, u_3)\) coincide with those in (3.32) and lead to the Bethe equations
\[
\frac{\Delta_1(u_k)}{\Delta_2(u_k)} = -\Theta(u_k) \prod_{j=1, j\neq k}^{3} \frac{b_j(u_k, u_j)}{a_j(u_k, u_j)},
\]
and
\[
\Delta_1(u_3) = -\Theta(u_3) \prod_{j=1}^{3} \frac{b_j(u_k, u_j)}{a_j(u_k, u_j)}.
\]

The \(g^{(k)}(u_1, u_2, u_3)\) are obtained from the coefficients of \(\Psi_2(u_i, u_j)\) \((i < j)\), \(\Psi_1(u_i)\) \((i = 1, 2, 3)\) and \(\Psi_0\). Once again, taking into account the Bethe equations (3.34), we get
\[
g_3^{(2)}(u_1, u_2, u_3) = g(u_3)p(u_1, u_3)p(u_2, u_3)
\]
\[
g_3^{(1)}(u_1, u_2, u_3) = g(u_2)p(u_1, u_2)p(u_3, u_2)
\]
\[
g_3^{(0)}(u_1, u_2, u_3) = g(u_1)p(u_2, u_1)p(u_3, u_1)
\]

as the factors of the three \(\Psi_2\),
\[
g_3^{(1)}(u_1, u_2, u_3) = g(u_3)p(u_1, u_3)p(u_2, u_3)q(u_2, u_3)
\]
\[
g_3^{(1)}(u_1, u_2, u_3) = g(u_1)p(u_2, u_1)p(u_3, u_1)q(u_1, u_3)
\]
\[
g_3^{(1)}(u_1, u_2, u_3) = g(u_2)p(u_1, u_2)p(u_3, u_2)q(u_1, u_2)
\]

as the factors of the three \(\Psi_1\), and
\[
g_3^{(0)}(u_1, u_2, u_3) = g(u_1)g(u_2)g(u_3)q(u_1, u_2)q(u_1, u_3)q(u_2, u_3)
\]

as the factor of \(\Psi_0\). Here we notice that the expressions for \(g^{(k)}(u_1, u_2, u_3)\) are factorized in terms of the previously defined functions \(g(u), p(u, v)\) and \(q(u, v)\).

Therefore, (3.30) is an eigenstate of \(\tilde{t}(u)\) with eigenvalue (3.33) provided equations (3.34) are valid.
3.5. The general excited state

The previous results allow us to write general expressions for the eigenvalue problem of the transfer matrix (3.1): the nth excited eigenstate is given by

$$\Phi_n(u_1, \ldots, u_n) = \Psi_n(u_1, \ldots, u_n) + \sum_{k=0}^{n-1} \sum_{\ell_1 < \cdots < \ell_{n-k} = 1} g^{(k)}_{\ell_1, \ldots, \ell_{n-k}}(u_1, \ldots, u_n) \times \Psi_k(u_1, \ldots, \hat{u}_{\ell_1}, \ldots, \hat{u}_{\ell_{n-k}}, \ldots, u_n),$$

(3.38)

where the functions $g^{(k)}_{\ell_1, \ldots, \ell_{n-k}}(u_1, \ldots, u_n)$ have the following expression

$$g^{(k)}_{\ell_1, \ldots, \ell_{n-k}}(u_1, \ldots, u_n) = \prod_{m \in \hat{\ell}} g(u_m) \prod_{m' \in \ell, m' < m} q(u_{m'}, u_m) \prod_{m'=1, m' \notin \hat{\ell}} p(u_{m'}, u_m)$$

(3.39)

with $\hat{\ell} = \{\ell_1, \ldots, \ell_{n-k}\}$ and the notation \hat{u}_j indicates the absence of the rapidity u_j in the function. The corresponding eigenvalue is given by

$$\Lambda_n(u, u_1, \ldots, u_n) = \omega_1(u) \Delta_1(u) \prod_{j=1}^{n} a_1(u, u_j) + \omega_2(u) \Delta_2(u) \prod_{j=1}^{n} b_1(u, u_j)$$

(3.40)

while the Bethe rapidities are constrained by

$$\frac{\Delta_1(u_k)}{\Delta_2(u_k)} = -\Theta(u_k) \prod_{j=1, j \neq k}^{n} \frac{b_1(u_k, u_j)}{a_1(u_k, u_j)},$$

(3.41)

where $k = 1, \ldots, n$.

4. Conclusion

We have solved the six vertex model for upper triangular reflection K-matrices by means of the algebraic Bethe ansatz. The eigenvalues and the Bethe equations are found to be independent of the upper boundary constants. However, the Bethe states are essentially different. In fact, the wavefunctions of the transfer matrix are a superposition of 2^n Bethe states of an auxiliary diagonal transfer matrix. This fact may indicate, for example, the existence of generalized solutions of the Knizhnik–Zamolodchikov equations, inspired by the semiclassical limit of our solution \[26, 27\].

Finally, we remark that our strategy to deal with transfer matrices possessing annihilation operators in their expression, rather than a particular boundary configuration of the six vertex model, may allow the management of the generic boundary case, for instance, attempting to extend the works \[18–20\]. Further directions of investigation include vertex models based on higher hank algebras, e.g., 15- or 19-vertex models.

Acknowledgments

It is ALS’s pleasure to thank Professor Roland Köberle for interesting discussions. The work of RAP has been supported by São Paulo Research Foundation (FAPESP), grant #2012/13126-0. ALS also thanks Brazilian Research Council (CNPq), grant #304054/2009-7 and FAPESP, grant #2011/18729-1 for financial support.
Appendix A. Coefficients of the commutation relations

The coefficients of the commutation relation (2.17) are given by

\[a_1(u, v) = \frac{\sinh(u + v) \sinh(u - v - \eta)}{\sinh(u - v) \sinh(u + v + \eta)}, \quad a_2(u, v) = \frac{\sinh(2v) \sinh(\eta)}{\sinh(u - v) \sinh(2v + \eta)}, \quad a_3(u, v) = -\frac{\sinh(\eta)}{\sinh(u + v + \eta)}, \]

(A.1)

and the coefficients of (2.18) are

\[b_1(u, v) = \frac{\sinh(u + v + \eta) \sinh(u + v + 2\eta)}{\sinh(u - v) \sinh(u + v + \eta)}, \quad b_2(u, v) = \frac{\sinh(\eta) \sinh(2(u + \eta))}{\sinh(v - u) \sinh(2u + \eta)}, \quad b_3(u, v) = \frac{\sinh(2v) \sinh(\eta) \sinh[2(u + \eta)]}{\sinh(2u + \eta) \sinh(2v + \eta) \sinh(u + v + \eta)}, \]

(A.2)

while the coefficients of (2.19) are given by

\[c_1(u, v) = 1, \quad c_2(u, v) = \frac{\sinh(2u) \sinh(\eta) \sinh(u - v + \eta)}{\sinh(u - v) \sinh(2u + \eta) \sinh(u + v + \eta)}, \quad c_3(u, v) = \frac{\sinh(2u) \sinh(\eta)}{\sinh(v - u) \sinh(2u + \eta)}, \]

\[c_4(u, v) = \frac{\sinh(u + v) \sinh(\eta)}{\sinh(u - v) \sinh(u + v + \eta)}, \quad c_5(u, v) = \frac{\sinh(2u) \sinh(\eta)}{\sinh(2u + \eta)}, \quad c_6(u, v) = -\frac{\sinh(\eta)}{\sinh(u + v + \eta)}, \quad c_7(u, v) = -\frac{\sinh(\eta)}{\sinh(u + v + \eta)}. \]

(A.3)

The respective rational coefficients are obtained by the substitution \(\sinh(x) \to x \) in the above expressions.

Appendix B. Reordered operators

An important point in the ABA analysis is to move the operators \(A(u), \tilde{D}(u) \) and \(C(u) \) over the product \(\prod_{j=1}^{n} B(u_j)\Psi_0 \) and then use (3.4). The repeated use of the commutation relations (2.16) to (2.19) allow us to write

\[
A(u) \prod_{j=1}^{n} B(u_j)\Psi_0 = \left[\Delta_1(u) \prod_{j=1}^{n} a_1(u, u_j) \right] \prod_{j=1}^{n} B(u_j)\Psi_0 + \sum_{k=1}^{n} F_k(u, u_1, \ldots, u_n)B(u) \prod_{j=1,j\neq k}^{n} B(u_j)\Psi_0, \quad (B.1)
\]

\[
\tilde{D}(u) \prod_{j=1}^{n} B(u_j)\Psi_0 = \left[\Delta_2(u) \prod_{j=1}^{n} b_1(u, u_j) \right] \prod_{j=1}^{n} B(u_j)\Psi_0 + \sum_{k=1}^{n} G_k(u, u_1, \ldots, u_n)B(u) \prod_{j=1,j\neq k}^{n} B(u_j)\Psi_0, \quad (B.2)
\]
\[C(u) \prod_{j=1}^{n} B(u_j) \Psi_0 = \sum_{k=1}^{n} H_k(u, u_1, \ldots, u_n) \prod_{j=1, j \neq k}^{n} B(u_j) \Psi_0 \]

\[+ \sum_{\ell = 1}^{n} H_{\ell k}(u, u_1, \ldots, u_n) B(u) \prod_{j=1, j \neq \ell, k}^{n} B(u_j) \Psi_0, \]

(B.3)

where

\[F_k(u, u_1, \ldots, u_n) = \Delta_1(u_k) a_2(u, u_k) \prod_{\ell = 1, \ell \neq k}^{n} a_1(u, u_\ell) + \Delta_2(u_k) a_3(u, u_k) \prod_{\ell = 1, \ell \neq k}^{n} b_1(u_\ell, u_k), \]

(B.4)

\[G_k(u, u_1, \ldots, u_n) = \Delta_1(u_k) b_3(u, u_k) \prod_{\ell = 1, \ell \neq k}^{n} a_1(u_\ell, u_k) + \Delta_2(u_k) b_2(u, u_k) \prod_{\ell = 1, \ell \neq k}^{n} b_1(u_\ell, u_k), \]

(B.5)

\[H_k(u, u_1, \ldots, u_n) = \Delta_1(u_k) \Delta_1(u_k) [c_2(u, u_k) + c_3(u, u_k)] \prod_{\ell = 1, \ell \neq k}^{n} a_1(u, u_\ell) a_1(u_\ell, u_k) \]

\[+ \Delta_2(u_k) \Delta_1(u_k) [c_2(u, u_k) + c_3(u, u_k)] \prod_{\ell = 1, \ell \neq k}^{n} b_1(u_\ell, a_1(u_\ell, u_k)) \]

\[+ \Delta_1(u_k) \Delta_2(u_k) c_5(u, u_k) \prod_{\ell = 1, \ell \neq k}^{n} a_1(u, u_\ell) b_1(u_k, u_\ell) \]

\[+ \Delta_2(u_k) \Delta_2(u_k) c_7(u, u_k) \prod_{\ell = 1, \ell \neq k}^{n} b_1(u, u_\ell) b_1(u_k, u_\ell), \]

(B.6)

\[H_{\ell k}(u, u_1, \ldots, u_n) = \Delta_1(u_k) \Delta_1(u_\ell) \alpha_{11}(u, u_k, u_\ell) \prod_{m=1, m \neq \ell, k}^{n} a_1(u_k, u_m) a_1(u_\ell, u_m) \]

\[+ \Delta_1(u_k) \Delta_2(u_\ell) \alpha_{12}(u, u_k, u_\ell) \prod_{m=1, m \neq \ell, k}^{n} a_1(u_k, u_m) b_1(u_\ell, u_m) \]

\[+ \Delta_1(u_\ell) \Delta_2(u_k) \alpha_{21}(u, u_k, u_\ell) \prod_{m=1, m \neq \ell, k}^{n} a_1(u_\ell, u_m) b_1(u_k, u_m) \]

\[+ \Delta_2(u_k) \Delta_2(u_\ell) \alpha_{22}(u, u_k, u_\ell) \prod_{m=1, m \neq \ell, k}^{n} b_1(u_k, u_m) b_1(u_\ell, u_m), \]

(B.7)

with

\[\alpha_{11}(u, u_k, u_\ell) = a_2(u, u_\ell)[a_1(u_k, u_k) + c_3(u_k, u_k)] \]

\[+ b_3(u, u_\ell)[a_1(u_k, u_\ell) + c_3(u_k, u_k)] \]

\[+ a_2(u_k) [c_3(u_k, u_k) + c_5(u_k, u_k)] \]

\[+ b_3(u_k) [c_3(u_k, u_k) + c_7(u_k, u_k)], \]

(B.8)

\[\alpha_{12}(u, u_k, u_\ell) = a_3(u, u_\ell)[a_1(u_k, u_k) + c_3(u_k, u_k)] \]

\[+ b_2(u, u_\ell)[a_1(u_k, u_\ell) + c_3(u_k, u_k)] \]

\[+ a_2(u_k) [c_3(u_k, u_k) + c_5(u_k, u_k)] \]

\[+ b_3(u_k) [c_3(u_k, u_k) + c_7(u_k, u_k)], \]

(B.9)
\[\alpha_{21}(u, u_k, u_t) = c_5(u, u_k)[a_2(u, u_t)b_1(u_k, u_t) + a_3(u, u_k)b_5(u_k, u_t)] \\
+ c_7(u, u_k)[b_3(u, u_k)b_1(u_k, u_t) + b_2(u, u_k)b_3(u_k, u_t)] \\
+ a_2(u_k, u_t)[a_3(u, u_k)c_3(u, u_k) + 2(b(u, u_k)c_6(u, u_k))]. \tag{B.10} \]

\[\alpha_{22}(u, u_k, u_t) = c_5(u, u_k)[a_3(u, u_t)b_1(u_k, u_t) + a_3(u, u_k)b_3(u_k, u_t)] \\
+ c_7(u, u_k)[b_2(u, u_k)b_1(u_k, u_t) + b_2(u, u_k)b_3(u_k, u_t)] \\
+ a_3(u_k, u_t)[a_3(u, u_k)c_3(u, u_k) + 2(b(u, u_k)c_6(u, u_k))]. \tag{B.11} \]

We note that for diagonal boundaries only the expressions (B.1) and (B.2) are necessary [1], while for the upper triangular \(K \)—matrices case we also need the more involved relation (B.3).

References

[1] Sklyanin E K 1988 Boundary conditions for integrable quantum systems J. Phys. A: Math. Gen. 21 2375

[2] Cherednik I V 1984 Factorizing particles on a half-line and root systems Theor. Math. Phys. 61 977

[3] Pan H 1997 Bethe ansatz for the Izergin–Korepin model Nucl. Phys. B 488 409

[4] Guan X-W 2000 Algebraic Bethe ansatz for the one-dimensional Hubbard model with open boundaries J. Phys. A: Math. Gen. 33 5391

[5] Li G-L, Yue R-H and Hou B-Y 2000 Nested Bethe ansatz for Perk–schultz model with open boundary conditions Nucl. Phys. B 237 711

[6] Kurak V and Lima-Santos A 2004 Algebraic Bethe ansatz for the Zamolodchikov–Fateev and Izergin–Korepin models with open boundary conditions Nucl. Phys. B 699 595

[7] Li G-L and Shi K-J 2007 The algebraic Bethe ansatz for open vertex models J. Stat. Mech. P01018

[8] Nepomechie R I 2002 Solving the open XXZ spin chain with nondiagonal boundary terms at roots of unity Nucl. Phys. B 622 615

[9] Nepomechie R I 2003 Functional relations and Bethe Ansatz for the XXZ chain J. Stat. Phys. 111 1363

[10] Nepomechie R I 2004 Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms J. Phys. A: Math. Gen. 37 433

[11] Murgan R and Nepomechie R I 2005 Bethe Ansatz derived from the functional relations of the open XXZ chain for new special cases J. Stat. Mech. P05007

[12] Murgan R and Nepomechie R I 2005 Generalized T-Q relations and the open XXZ chain J. Stat. Mech. P08002

[13] Yang W-L, Nepomechie R I and Zhang Y-Z 2006 Q-operator and T-q relation from the fusion hierarchy Phys. Lett. B 633 664

[14] Murgan R, Nepomechie R I and Shi C 2006 Exact solution of the open XXZ chain with general integrable boundary terms at roots of unity J. Stat. Mech. P08006

[15] Frappat L, Nepomechie R I and Ragoucy E 2007 A complete Bethe ansatz solution for the open spin-\(s \) XXZ chain with general integrable boundary terms J. Stat. Mech. P09009

[16] Cao J, Yang W-L, Shi K and Wang Y 2013 Off-diagonal Bethe ansatz solution of the XXX spin-chain with arbitrary boundary conditions Nucl. Phys. B 875 152

[17] Cao J, Yang W, Shi K and Wang Y 2013 Off-diagonal Bethe ansatz and exact solution a topological spin ring, arXiv:1305.7328

[18] Cao J, Yang W-L, Shi K and Wang Y 2013 Off-diagonal Bethe ansatz solutions of the anisotropic spin-1/2 chains with arbitrary boundary fields, arXiv:1307.2023

[19] Nepomechie R I 2013 Inhomogeneous T-Q equation for the open XXX chain with general boundary terms: completeness and arbitrary spin, arXiv:1307.5049

[20] Frahm H, Seel A and Wirth T 2008 Separation of variables in the open XXX chain Nucl. Phys. B 802 351

[21] Frahm H, Grelik J H, Seel A and Wirth T 2011 Functional Bethe ansatz methods for the open XXX chain J. Phys. A: Math. Theor. 44 015001

[22] Faldella S, Kitanine N and Niccoli G 2013 Complete spectrum and scalar products for the open spin-1/2 XXZ quantum chains with non-diagonal boundary terms, arXiv:1307.3960
[16] Galleas W 2008 Functional relations from the Yang–Baxter algebra: eigenvalues of the XXZ model with non-diagonal twisted and open boundary conditions Nucl. Phys. B 790 524

[17] Baseilhac P and Koizumi K 2007 Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory J. Stat. Mech. P09006

[18] Cao J, Lin H-Q, Shi K-J and Wang Y 2002 Exact solutions and elementary excitations in the XXZ spin chain with unparallel boundary fields arXiv:cond-mat/0212163

Cao J, Lin H-Q, Shi K-J and Wang Y 2003 Exact solution of XXZ spin chain with unparallel boundary fields Nucl. Phys. B 663 487

[19] Doikou A 2007 A note on the boundary spin s XXZ chain Phys. Lett. A 366 556

[20] Melo C S, Ribeiro G A P and Martins M J 2005 Bethe ansatz for the XXX-s chain with non-diagonal open boundaries Nucl. Phys. B 711 565

[21] Belliard S, Crampé N and Ragoucy E 2013 Algebraic Bethe ansatz for open XXX model with triangular boundary matrices Lett. Math. Phys. 103 493

[22] Crampé N and Ragoucy E 2012 Generalized coordinate Bethe ansatz for non diagonal boundaries Nucl. Phys. B 858 502

[23] Baseilhac P and Belliard S 2013 The half-infinite XXZ chain in Onsager's approach Nucl. Phys. B 873 550

[24] de Vega H J and Ruiz A G 1993 Boundary K-matrices for the six vertex and the n(2n − 1)A_{n−1} vertex models J. Phys. A: Math. Gen. 26 L519

[25] Ghoshal S and Zamolodchikov A 1994 Boundary S-matrix and boundary state in two-dimensional integrable quantum field theory Int. J. Mod. Phys. A 9 3841

[26] Hikami K 1995 Gaudin magnet with boundary and generalized Knizhnik–Zamolodchikov equation J. Phys. A: Math. Gen. 28 4997

[27] Lima-Santos A and Utiel W 2006 Gaudin magnet with impurity and its generalized Knizhnik–Zamolodchikov equation Int. J. Mod. Phys. B 20 2175