IWASAWA DECOMPOSITIONS OF SOME INFINITE-DIMENSIONAL LIE GROUPS

DANIEL BELTIȚĂ

Abstract. We set up an abstract framework that allows the investigation of Iwasawa decompositions for involutive infinite-dimensional Lie groups modeled on Banach spaces. As an application, we construct Iwasawa decompositions for classical real or complex Banach-Lie groups associated with the Schatten ideals $S_p(ℋ)$ on a complex separable Hilbert space $ℋ$ if $1 < p < ∞$.

CONTENTS

1. Introduction 1
2. Iwasawa decompositions for involutive Banach-Lie groups 3
3. Classical Banach-Lie groups and their Lie algebras 8
4. Iwasawa decompositions for groups of type A 12
5. Iwasawa decompositions for groups of type B 17
6. Iwasawa decompositions for groups of type C 20
7. Group decompositions for covering groups 22
Appendix A. Auxiliary facts on operator ideals 22
References 23

1. Introduction

Our aim in this paper is to set up an abstract framework that allows the investigation of Iwasawa decompositions for involutive infinite-dimensional Lie groups modeled on Banach spaces. In particular we address an old conjecture on the existence of such decompositions for the classical Banach-Lie groups of operators associated with the Schatten operator ideals on Hilbert spaces (see subsection 8.4 of Section II.8 in [Ha72] and Section 3 below), and we show that the corresponding question can be answered in the affirmative in many cases, even in the case of the covering groups.

The Iwasawa decompositions of finite-dimensional reductive Lie groups (see e.g., [Iw49], [He01], and [Kn96]) play a crucial role in areas like differential geometry and representation theory. So far as differential geometry is concerned, there exists a recent growth of interest in group decompositions and their implications in various geometric problems in infinite dimensions—see for instance [Tu05], [Tu06], and the references therein. From this point of view it is natural to try to understand the infinite-dimensional versions of Iwasawa decompositions as well; this problem was already addressed in the case of loop groups in [Ke04] and [BD01]. As regards the representation theory, it is well known that decompositions of this kind are particularly important for instance in the construction of principal series representations. And...
there has been a continuous endeavor to extend the ideas of representation theory to the setting of infinite-dimensional Lie groups. Some references related in spirit to the present paper are [Se57], [Ki73], [SV75], [O17S], [Bo80], [Ca85], [Ol88], [Pic90], [Bo93], [Nec98], [N99], [NRW01], [DPW02], [Nec04], [Gru05], [Wo05], [BR07], however this list is very far from being complete. In this connection we wish to highlight the paper [Wo05] devoted to an investigation of direct limits of (Iwasawa decompositions and) principal series representations of reductive Lie groups. The results of the present paper can be thought of as belonging to the same line of investigation, inasmuch as the construction of Iwasawa decompositions should be the very first step toward the construction of principal series representations for the classical Banach-Lie groups and their covering groups.

Another source of interest in obtaining Iwasawa decompositions for infinite-dimensional versions of reductive Lie groups is related to the place held by reductive structures in the geometry of many infinite-dimensional manifolds—see for instance [CG99] and [Nec02]. We refer also to the recent survey [Ga06] which skillfully highlights the special relationship between the reductive structures and the idea of amenability. That relationship also plays an important role in the abstract framework constructed in Section 2 of the present paper. It is noteworthy that reductive structures with a Lie theoretic flavor constitute the background of the papers [Neu99] and [Neu02] as well, concerning convexity theorems (cf. [Ko73], [LR91], [BFR93]) in an infinite-dimensional setting.

Rough decompositions. Here we show a sample of pathological phenomenon one has to avoid in order to obtain smooth Iwasawa decompositions for infinite-dimensional Lie groups.

Proposition 1.1. Let \mathcal{H} be a complex separable Hilbert space with an orthonormal basis $\{\xi_j\}_{0 \leq j < \omega}$, where $\omega \in \mathbb{N} \cup \{\aleph_0\}$. Then consider the Banach-Lie group $G := \text{GL}(\mathcal{H})$ consisting of all invertible bounded linear operators on \mathcal{H}, and its subgroups

$$K := \{ k \in G \mid k^* k = 1 \},$$

$$A := \{ a \in G \mid a \xi_j \in \mathbb{R}^+_\ast \xi_j \ \text{whenever} \ 0 \leq j < \omega \}, \ \text{and}$$

$$N := \{ n \in G \mid n \xi_j \in \xi_j + \text{span} \{ \xi_l \mid l < j \} \ \text{whenever} \ 0 \leq j < \omega \}. $$

In addition, consider the Banach-Lie algebra $\mathfrak{g} = \mathcal{B}(\mathcal{H})$, with its closed Lie subalgebras

$$\mathfrak{k} := \{ X \in \mathfrak{g} \mid X = -X \},$$

$$\mathfrak{a} := \{ Y \in \mathfrak{g} \mid Y \xi_j \in \mathbb{R} \xi_j \ \text{whenever} \ 0 \leq j < \omega \}, \ \text{and}$$

$$\mathfrak{n} := \{ Z \in \mathfrak{g} \mid Z \xi_j \in \text{span} \{ \xi_l \mid l < j \} \ \text{whenever} \ 0 \leq j < \omega \}. $$

Then the following assertions hold:

- K, A, and N are Banach-Lie groups with the corresponding Lie algebras \mathfrak{k}, \mathfrak{a}, and \mathfrak{n}, respectively, and the multiplication map $\mathfrak{m}: K \times A \times N \to G$, $(k, a, n) \mapsto kan$, is smooth and bijective.

- The mapping \mathfrak{m} is a diffeomorphism if and only if $\mathfrak{k} + \mathfrak{a} + \mathfrak{n} = \mathfrak{g}$, and this equality holds if and only if the Hilbert space \mathcal{H} is finite-dimensional.

Proof. It is straightforward to prove that \mathfrak{m} is injective since $K \cap AN = \{1\}$. To prove that \mathfrak{m} is surjective as well, we can use the unital Banach algebra $\mathfrak{B} = \{ b \in \mathcal{B}(\mathcal{H}) \mid b \xi_j \in \text{span} \{ \xi_l \mid 0 \leq l \leq j \} \text{ if } 0 \leq j < \omega \}$. Denote by \mathfrak{B}^\times the group of invertible elements in \mathfrak{B}. It was proved in [Arv75] and [Lar85] that for every $g \in \text{GL}(\mathcal{H})$ there exist $k \in K$ and $b \in \mathfrak{B}^\times$ such that $g = kb$. It is easy to see that $\mathfrak{B}^\times \subseteq KAN$, hence...
$g = kb \in KAN = m(K \times A \times N)$. The fact that K, A, N are Banach-Lie groups with the corresponding Lie algebras \mathfrak{t}, \mathfrak{a}, and \mathfrak{n}, respectively, and follows for instance by Corollary 3.7 in [Ke06], and in addition the inclusion maps of K, A, and N into G are smooth. It then follows that the multiplication map $m : K \times A \times N \to G$ is smooth as well.

In order to prove the second assertion note that the tangent mapping $T_{1,1,1}m : \mathfrak{t} \times \mathfrak{a} \times \mathfrak{n} \to \mathfrak{g}$ is given by $(X,Y,Z) \mapsto Z + Y + Z$, hence m is a local diffeomorphism if and only if $\mathfrak{t} + \mathfrak{a} + \mathfrak{n} = \mathfrak{g}$. Since we have already seen that m is a bijective map, it follows that the latter direct sum decomposition actually holds if and only if \mathfrak{m} is a diffeomorphism. Next note that if $\dim \mathcal{H} < \infty$ then we get $\mathfrak{t} + \mathfrak{a} + \mathfrak{n} = \mathfrak{g}$ by an elementary reasoning (or by the local Iwasawa decomposition for the complex finite-dimensional reductive Lie algebra \mathfrak{g}; see e.g., [Kn99]).

Thus, to complete the proof, it will be enough to show that if the Hilbert space \mathcal{H} is infinite-dimensional, then $\mathfrak{g} \setminus (\mathfrak{t} + \mathfrak{a} + \mathfrak{n}) \neq \emptyset$. In fact, for $j, l \in \mathbb{N}$ denote $h_{jl} = 0$ if $j = l$ and $h_{jl} = 1/(j - l)$ if $j \neq l$. Then there exists $W \in \mathcal{B}(\mathcal{H})$ whose matrix with respect to the orthonormal basis $\{\xi_j\}_{j \in \mathbb{N}}$ is $(h_{jl})_{j,l \in \mathbb{N}}$, and in addition $W^* = -W$ and there exist no operators $Z_1, Z_2 \in \mathfrak{n}$ with $W = Z_1 - Z_2^*$ (see Example 4.1 in [DaSS]). Now it is easy to see that $iW \not\subseteq \mathfrak{t} + \mathfrak{a} + \mathfrak{n}$. In fact, if $iW = X + Y + Z$ with $X \in \mathfrak{t}$, $Y \in \mathfrak{a}$, and $Z \in \mathfrak{n}$, then $iW = (iW)^* = X^* + Y^* + Z^* = -X + Y + Z^*$. Thence $2iW = 2Y + Z + Z^*$. Since the matrix of W has only zeros on the diagonal, we get $Y = 0$, whence $2iW = Z + Z^*$. Then $W = (-(i/2)Z) - (-(i/2)Z)^*$, and this contradicts one of the above mentioned properties of W. Thus $iW \not\subseteq \mathfrak{g} \setminus (\mathfrak{t} + \mathfrak{a} + \mathfrak{n})$, and this completes the proof.

2. Iwasawa decompositions for involutive Banach-Lie groups

In this section we sketch an abstract framework that allows to investigate Iwasawa decompositions for involutive infinite-dimensional Lie groups modeled on Banach spaces. We will apply these abstract statements in Sections 4, 5, and 6 in the case of the classical Banach-Lie groups associated with norm ideals. The central idea of this abstract approach is that the local Iwasawa decompositions can be constructed out of certain special elements of Lie algebras, which we call Iwasawa regular elements (Definition 2.3).

Preliminaries on local spectral theory. Throughout the paper we let \mathbb{R}, \mathbb{C}, and \mathbb{H} stand for the fields of the real, complex, and quaternionic numbers, respectively.

For a real or complex Banach space \mathfrak{X} we denote either by $\mathrm{id}_\mathfrak{X}$ or simply by $\mathbf{1}$ the identity map of \mathfrak{X}, by \mathfrak{X}^* the topological dual of \mathfrak{X}, by $\mathcal{B}(\mathfrak{X})$ the algebra of all bounded linear operators on \mathfrak{X} and, when \mathfrak{X} is a complex Banach space, we denote by $\sigma(D)$ the spectrum of D whenever $D \in \mathcal{B}(\mathfrak{X})$. In this case, for every $x \in \mathfrak{X}$ we denote by $\sigma_D(x)$ the local spectrum of x with respect to D. We recall that $\sigma_D(x)$ is a closed subset of $\sigma(D)$ and $w \in \mathbb{C} \setminus \sigma_D(x)$ if and only if there exists an open neighborhood W of w and a holomorphic function $\xi : W \to \mathfrak{X}$ such that $(\mathrm{id}_\mathfrak{X} - D)\xi(z) = x$ for every $z \in W$. If $F \subseteq \mathbb{C}$ we denote

$$\mathfrak{X}_D(F) = \{x \in \mathfrak{X} \mid \sigma_D(x) \subseteq F\}.$$

We note that, in the case when \mathfrak{X} has finite dimension m, we have

$$\mathfrak{X}_D(F) = \bigoplus_{\lambda \in F \cap \sigma(D)} \ker((D - \lambda \mathrm{id}_\mathfrak{X})^m) \quad \text{for every} \ F \subseteq \mathbb{C},$$

while if \mathfrak{X} is a Hilbert space and D is a normal operator with the spectral measure $E_D(\lambda)$, then

$$\mathfrak{X}_D(F) = \text{Ran} \ E_D(F) \quad \text{whenever} \ F \text{ is a closed subset of} \ \mathbb{C}.$$

See §12 in [BS01] for a review of the few facts needed from the local spectral theory. (More bibliographical details can be found in the Notes to Chapter I in [BS01].)

Projections on kernels of skew-Hermitian operators.

Notation 2.1. The following notation will be used throughout the paper:

- For every complex Banach space \mathfrak{X} we denote $\ell_\infty(\mathfrak{X}) := \{f : \mathbb{R} \to \mathfrak{X} \mid \|f\|_\infty := \sup_{\mathbb{R}} \|f(\cdot)\| < \infty\}$, which is in turn a complex Banach space.
We pick a state $\mu : \ell^\infty_\mathbb{C}(\mathbb{R}) \to \mathbb{C}$ of the commutative unital C^*-algebra $\ell^\infty_\mathbb{C}(\mathbb{R})$ satisfying the translation invariance condition

$$(\forall f \in \ell^\infty_\mathbb{C}(\mathbb{R})) (\forall t \in \mathbb{R}) \quad \mu(f(\cdot)) = \mu(f(\cdot + t))$$

and the symmetry condition

$$(\forall f \in \ell^\infty_\mathbb{C}(\mathbb{R})) \quad \mu(f(\cdot)) = \mu(f(-\cdot)).$$

(See Problem 7 in Chapter 2 of [Pa88].) For every $f \in \ell^\infty_\mathbb{C}(\mathbb{R})$ we denote $\mu(f(\cdot)) = \int f(t) d\mu(t)$.

For every complex Banach space X and every $f \in \ell^\infty_X(\mathbb{R})$ we define $\mu(f) = \int f(t) d\mu(t) \in X^*$ by the formula

$$(\mu(f)) (\varphi) = \int \varphi(f(t)) d\mu(t)$$

whenever $\varphi \in X^*$ (see [BP07]).

Definition 2.2. Let X_0 be a real Banach space with the complexification $X = (X_0) \mathbb{C} = X_0 + iX_0$, which is a complex Banach space with the norm given by $\|y_1 + iy_2\| := \sup_{t \in [0, 2\pi]} \|\cos(t)y_1 + \sin(t)y_2\|$ for all $y_1, y_2 \in X_0$. Assume that $A : X_0 \to X_0$ is a bounded linear operator such that $\sup_{t \in \mathbb{R}} \|\exp(tA)\| < \infty$, and denote by $A : X \to X$ the C-linear extension of $A : X_0 \to X_0$. In this case we define

$$X_A^+ := X_A(i[0, \infty)) = \left\{ y \in X \mid \limsup_{t \to \infty} \frac{1}{t} \|\exp(itA)\| \leq 0 \right\}$$

(see also Remark 1.3 in [Be05]). Now assume that X_0 is a reflexive Banach space. Then X will be a reflexive complex Banach space, and there exists a bounded linear operator $D_{X, A} : X \to X$ such that

$$(\forall y \in X) \quad D_{X, A} y = \int (\exp(tA)) y d\mu(t).$$

It is easy to see that $D_{X, A} X_0 \subseteq X_0$, and we shall define $D_{X_0, A} := D_{X, A} |_{X_0} : X_0 \to X_0$.

In addition, we define $X_A^{0,+} := X_A^+ \cap \ker D_{X, A}$. □

Remark 2.3. In the setting of Definition 2.2 we have $(D_{X, A})^2 = D_{X, A}$, $\operatorname{ran} D_{X, A} = \ker A \subseteq X$, and $\operatorname{ran} D_{X_0, A} = (\ker A) \cap X_0$ (see [BP07]). □

Elliptic involutive Banach-Lie algebras and abstract Iwasawa decompositions.

Definition 2.4. Let g_0 be an involutive real or complex Banach-Lie algebra, that is, g_0 is equipped with a continuous linear mapping $X \to X^*$ such that $(X^*)^* = X$ and $[X, Y]^* = -[X^*, Y^*]$ whenever $X, Y \in g_0$. If g_0 is a complex Banach-Lie algebra, then we assume in addition that $(iX)^* = -iX^*$ for all $X \in g_0$.

We say that g_0 is an elliptic involutive Banach-Lie algebra if $\|\exp(t \cdot \operatorname{ad}_{g_0} X)\| \leq 1$ whenever $t \in \mathbb{R}$ and $X = -X^* \in g_0$. □

Remark 2.5. In the special case of the canonically involutive real Banach-Lie algebras (that is, $X^* = -X$ for all $X \in g_0$) the above Definition 2.4 coincides with Definition IV.3 in [Nee02b] (or Definition 8.24 in [Be06]). □

Definition 2.6. Let g_0 be an elliptic real Banach-Lie algebra with the complexification g, and denote $p_0 := \{ X \in g_0 \mid X^* = X \}$. An Iwasawa decomposition of g_0 is a direct sum decomposition

$$(2.1) \quad g_0 = \ell_0 + a_0 + n_0$$

satisfying the following conditions:

(j) We have $\ell_0 = \{ X \in g_0 \mid X^* = -X \}$.

(jj) The term a_0 is a linear subspace of p_0 such that $[a_0, a_0] = \{0\}$.

(jii) There exists $X_0 \in a_0$ such that $a_0 = a_{X_0}$ and $n_0 = n_{X_0}$, where $a_{X_0} = p_0 \cap \text{Ker} \,(\text{ad} \, X_0)$ and $n_{X_0} = g_0 \cap g_{\text{ad} \, (- \text{ad} \, X_0)}$.

In this case we say that X_0 is an Iwasawa regular element of g_0 and (2.2) is the Iwasawa decomposition of g_0 associated with X_0. In the case when all of the conditions (2.1) and (j)–(jj) are satisfied perhaps except for (jj), we say that X_0 is an Iwasawa quasi-regular element (and (2.1) is still called the Iwasawa decomposition of g_0 associated with X_0).

Now let us assume that G is a connected Banach-Lie group with $L(G) = g_0$ and K, A, and N are the connected Banach-Lie groups which are subgroups of G and correspond to the Lie algebras ξ_0, a_0, and n_0, respectively. If the mapping

$$m: K \times A \times N \rightarrow G, \quad (k, a, n) \mapsto \text{kan}$$

is a diffeomorphism, then we say that this mapping is the global Iwasawa decomposition of G corresponding to (2.1). \hfill \Box

Remark 2.7. In the setting of Definition 2.6 if X_0 is an Iwasawa regular element then it is easy to see that a_{X_0} is a maximal linear subspace of p_0 such that $[a_{X_0}, a_{X_0}] = \{0\}$, while n_{X_0} is a closed subalgebra of g_0 (see also [Be05]). \hfill \Box

Remark 2.8. In the setting of Definition 2.6 it is easy to see that all of the groups K, A, and N are Banach-Lie subgroups of G. (See [Up85] or [Be06] for details on the latter notion.) \hfill \Box

Proposition 2.9. In the setting of Definition 2.6 let us assume that the Banach-Lie algebra g_0 is actually an elliptic involutive complex Banach-Lie algebra. Then for every $X \in p_0$ and every closed subset F of \mathbb{R} we have $g_0 \cap g_{\text{ad} \, X}(F) = (g_0)_{\text{ad} \, X}(F)$.

Proof. Since g_0 is an elliptic Banach-Lie algebra, it follows that $\text{ad} \, g_0 \times g_0 : g_0 \rightarrow g_0$ is a Hermitian operator (see Definition 5.23 in [Be06]). If g stands for the complexification of g_0, then $\text{ad} \, X : g \rightarrow g$ is Hermitian as well. In particular, there exist quasimultiplicative maps $\Psi_{\text{ad} \, g_0} : C^\infty(\mathbb{R}) \rightarrow \mathcal{B}(g_0)$ and $\Psi_{\text{ad} \, X} : C^\infty(\mathbb{R}) \rightarrow \mathcal{B}(g)$ such that $\Psi_{\text{ad} \, g_0}(\text{id}_\mathbb{R}) = \text{ad} \, g_0 \, X$ and $\Psi_{\text{ad} \, X}(\text{id}_\mathbb{R}) = \text{ad} \, X$, respectively. The maps $\Psi_{\text{ad} \, g_0}$ and $\Psi_{\text{ad} \, X}$ can be constructed by the Weyl functional calculus as in Example 5.25 in [Be06].

Now let $\iota : g_0 \hookrightarrow g$ be the inclusion map. Then $\iota(X) = X$, hence Remark 5.19 in [Be06] shows that for every closed subset F of \mathbb{R} we have $\iota((g_0)_{\text{ad} \, g_0}(X)(F)) \subseteq g_{\text{ad} \, X}(F)$, whence $(g_0)_{\text{ad} \, g_0}(X)(F) \subseteq g_0 \cap g_{\text{ad} \, X}(F)$.

To prove the converse inclusion, denote by $\kappa : g \rightarrow g_0$, the conjugation on g whose fixed point set is g_0, and then define $\pi : g \rightarrow g_0$, $\pi(Z) = (Z + \kappa(Z))/2$. Then $\pi(X) = X$, whence $\pi \circ (\text{ad} \, g_0 \, X) = (\text{ad} \, g_0 \, X) \circ \pi$. Now Remark 5.19 in [Be06] again shows that for every closed subset F of \mathbb{R} we have $\pi((g_0)_{\text{ad} \, g_0}(X)(F)) \subseteq g_{\text{ad} \, X}(F)$. Hence $g_0 \cap g_{\text{ad} \, X}(F) \subseteq g_{\text{ad} \, X}(F)$, and we are done. \hfill \Box

Remark 2.10. In the special case when $\dim g_0 < \infty$ and F is a certain finite subset of \mathbb{R}_+, the conclusion of our Proposition 2.9 was obtained in Chapter VI, §6 of [He01] by using the structure theory of finite-dimensional complex semisimple Lie algebras. \hfill \Box

Proposition 2.11. Let \tilde{g} be an elliptic complex Banach-Lie algebra whose underlying Banach space is reflexive, and pick $X_0 = X_0^* \in \tilde{g}$. Assume that we have a bounded linear operator $\tilde{T} \in \mathcal{B}(\tilde{g})$ such that

$$\tilde{T}^2 = \tilde{T},$$

$$\text{Ran} \tilde{T} = \tilde{g}_{\text{ad} \, X_0}(\mathbb{R}_+),$$

$$\text{Ran} (1 - \tilde{T}) \subseteq \tilde{g}_{\text{ad} \, X_0}(-\mathbb{R}_+).$$

Then X_0 is an Iwasawa quasi-regular element of \tilde{g}. Let

$$\tilde{g} = \tilde{r} + \tilde{a} + \tilde{n}$$

be the decomposition of \tilde{g} for \tilde{r}, \tilde{a}, \tilde{n}.
be the Iwasawa decomposition of \(\tilde{g} \) associated with \(X_0 \), and for \(\tilde{s} \in \{ \tilde{f}, \tilde{a}, \tilde{n} \} \), denote by \(p_{\tilde{s}} : \tilde{g} \to \tilde{s} \) the linear projections corresponding to the direct sum decomposition (2.5). Then for all \(X \in \tilde{g} \) we have

\[
p_{\tilde{f}}(X) = (1 - \tilde{T})X - ((1 - \tilde{T})X)^* + \frac{1}{2}(D_{\tilde{g}, \text{ad}(-iX_0)}X - (D_{\tilde{g}, \text{ad}(-iX_0)}X)^*),
\]

\[
p_{\tilde{a}}(X) = \frac{1}{2}(D_{\tilde{g}, \text{ad}(-iX_0)}X + (D_{\tilde{g}, \text{ad}(-iX_0)}X)^*),
\]

and

\[
p_{\tilde{n}}(X) = (\tilde{T} - D_{\tilde{g}, \text{ad}(-iX_0)})X + ((1 - \tilde{T})X)^*.
\]

Proof. To begin with, recall that

\[
\tilde{f} = \{ X \in \tilde{g} | X^* = -X \},
\]

\[
\tilde{a} = \{ X \in \tilde{g} | X^* = X \text{ and } [X_0, X] = 0 \}, \text{ and}
\]

\[
\tilde{n} = \tilde{g}_{\text{ad}(-iX_0)} = \tilde{g}_{\text{ad} X_0(\mathbb{R}^+)} \cap \text{Ker} D_{\tilde{g}, \text{ad}(-iX_0)},
\]

where the latter two equalities follow by Proposition 2.9, Definition 2.2, and Definition 2.6. It is straightforward to check that \(\tilde{f} \cap (\tilde{a} + \tilde{n}) = \tilde{a} \cap \tilde{n} = \{0\} \), whence

\[
\tilde{f} \cap (\tilde{a} + \tilde{n}) = \tilde{n} \cap (\tilde{f} + \tilde{n}) = \tilde{n} \cap (\tilde{f} + \tilde{a}) = \{0\},
\]

and it remains to prove that \(\tilde{f} + \tilde{a} + \tilde{n} = \tilde{g} \).

For this purpose, first note that \(D_{\tilde{g}, \text{ad}(-iX_0)} \) and \(\tilde{T} \) are idempotent operators on \(\tilde{g} \) satisfying

\[
\text{Ran} D_{\tilde{g}, \text{ad}(-iX_0)} \subseteq \text{Ran} \tilde{T},
\]

hence

\[
(2.6) \quad (\tilde{T} D_{\tilde{g}, \text{ad}(-iX_0)} = D_{\tilde{g}, \text{ad}(-iX_0)} \tilde{T} = D_{\tilde{g}, \text{ad}(-iX_0)}.
\]

Now let \(X \in \tilde{g} \) arbitrary and denote by \(X_{\tilde{f}}, X_{\tilde{a}}, \) and \(X_{\tilde{n}} \) the right-hand sides of the wished-for formulas for \(p_{\tilde{f}}(X) \), \(p_{\tilde{a}}(X) \), and \(p_{\tilde{n}}(X) \), respectively. Thus we have to prove that \(p_{\tilde{n}}(X) = X_{\tilde{n}} \) for \(\tilde{s} \in \{ \tilde{f}, \tilde{a}, \tilde{n} \} \). Moreover, it is clear that \(X = X_{\tilde{f}} + X_{\tilde{a}} + X_{\tilde{n}} \), so it will be enough to check that \(X_{\tilde{f}} \in \tilde{f}, X_{\tilde{n}} \in \tilde{n} \), and \(X_{\tilde{a}} \in \tilde{a} \).

It follows at once by (2.6) that \(X_{\tilde{f}} \in \tilde{f} \). To see that \(X_{\tilde{a}} \in \tilde{a} \), first note that \(X_{\tilde{n}}^* = X_n \). On the other hand, we have \([X_0, D_{\tilde{g}, \text{ad}(-iX_0)}X] = 0 \) (see Remark 2.2). Since \(X_0 = X_n^* \), it then follows that \([X_0, (D_{\tilde{g}, \text{ad}(-iX_0)}X)^*] = 0 \), whence \([X_0, X_{\tilde{a}}] = 0 \). Thus \(X_{\tilde{n}} \in \tilde{n} \).

It remains to show that \(X_{\tilde{n}} \in \tilde{n} \). To this end, first note that

\[
D_{\tilde{g}, \text{ad}(-iX_0)}(\tilde{T} - D_{\tilde{g}, \text{ad}(-iX_0)})X = 0 \quad \text{and} \quad D_{\tilde{g}, \text{ad}(-iX_0)}((1 - \tilde{T})X)^* = (D_{\tilde{g}, \text{ad}(-iX_0)}(1 - \tilde{T})X)^* = 0
\]

by (2.4) and the fact that \((D_{\tilde{g}, \text{ad}(-iX_0)}Y)^2 = D_{\tilde{g}, \text{ad}(-iX_0)}Y \). (We also used the fact that \(D_{\tilde{g}, \text{ad}(-iX_0)}Y^* = (D_{\tilde{g}, \text{ad}(-iX_0)}Y)^* \) whenever \(Y \in \tilde{g} \), which is a consequence of Definition 2.2, since \(X_n^* = X_0 \)). It then follows that \(D_{\tilde{g}, \text{ad}(-iX_0)}(X_{\tilde{n}}) = 0 \). Thus, according to (2.3), we still have to prove that \(X_{\tilde{n}} \in \tilde{g}_{\text{ad} (-iX_0)(\mathbb{R}^+)} \).

For this purpose we are going to show that both terms in the expression of \(X_{\tilde{n}} \) belong to \(\tilde{g}_{\text{ad} X_0}(\mathbb{R}^+) \). In fact, by (2.3) and (2.3) we get \((\tilde{T} - D_{\tilde{g}, \text{ad}(-iX_0)})X = \tilde{T} - D_{\tilde{g}, \text{ad}(-iX_0)}X \in \text{Ran} \tilde{T} \subseteq \tilde{g}_{\text{ad} X_0}(\mathbb{R}^+) \).

On the other hand, the mapping \(\kappa : \tilde{g} \to \tilde{g}, Y \mapsto Y^* \) has the property \(\theta \circ \text{ad} X_0 = -\text{ad} X_0 \circ \theta \) since \(X_n^* = X_0 \). Then Proposition 5.22 in [Bed00] shows that \(\kappa(\tilde{g}_{\text{ad} X_0}(\mathbb{R}^+)) \subseteq \tilde{g}_{\text{ad} X_0}(\mathbb{R}^+) \), whence by (2.4) we get \((1 - \tilde{T})X)^* = \kappa((1 - \tilde{T})X) \in \tilde{g}_{\text{ad} X_0}(\mathbb{R}^+) \).

Consequently

\[
X_n = (\tilde{T} - D_{\tilde{g}, \text{ad}(-iX_0)})X + ((1 - \tilde{T})X)^* \in \tilde{g}_{\text{ad} X_0}(\mathbb{R}^+),
\]

and the proof is complete.

\[\square \]

Corollary 2.12. Assume the setting of Proposition 2.11 and let \(\mathfrak{g} \) be a closed involutive complex subalgebra of \(\tilde{g} \) such that

\[
X_0 \in \mathfrak{g} \quad \text{and} \quad \tilde{T}(\mathfrak{g}) \subseteq \mathfrak{g}.
\]

Then \(X_0 \) is an Iwasawa quasi-regular element of \(\mathfrak{g} \) and the Iwasawa decomposition of \(\mathfrak{g} \) associated with \(X_0 \) is \(\mathfrak{g} = (\tilde{f} \cap \mathfrak{g}) + (\tilde{a} \cap \mathfrak{g}) + (\tilde{n} \cap \mathfrak{g}) \).
Proof. Since $\tilde{T}(g) \subseteq g$ and $D_{\text{g,ad}}(-iX_0)(g) \subseteq g$, it follows by Proposition 2.11 that $p_\ell(g) \subseteq g$, $p_\ell'(g) \subseteq g$, and $p_\ell(g) \subseteq g$. It then follows by the direct sum decomposition (2.5) that $g = (\tilde{T} \cap g) + (\tilde{a} \cap g) + (\tilde{n} \cap g)$. Thus, to conclude the proof, it remains to prove that

$$\tilde{a} \cap g = \{X \in g \mid X^* = X \text{ and } [X, X_0] = 0\} \quad \text{and} \quad \tilde{n} \cap g = g_{\text{ad}}^0(-iX_0)$$

(see also Proposition 2.9). The equality involving $\tilde{a} \cap g$ is obvious. To prove the equality involving $\tilde{n} \cap g$, just note that by Proposition 2.9 we have

$$\tilde{n} \cap g = g_{\text{ad}}^0(-iX_0) \cap \tilde{g} = g_{\text{ad}}^0(-iX_0)(\mathbb{R}_+) \cap (\text{Ker} D_{\text{g,ad}}(-iX_0)) \cap g = g_{\text{ad}}^0(-iX_0)(\mathbb{R}_+) \cap (\text{Ker} D_{\text{g,ad}}(-iX_0)) = g_{\text{ad}}^0(-iX_0)$$

and this completes the proof. □

Corollary 2.13. Assume the setting of Proposition 2.11 and let g_0 be a closed involutive real subalgebra of g such that $X_0 \in g_0$, $\tilde{T}(g_0) \subseteq g_0$, and $g_0 \cap ig_0 = \{0\}$. Then X_0 is an Iwasawa quasi-regular element of g and the Iwasawa decomposition of g associated with X_0 is $g_0 = (\tilde{T} \cap g_0) + (\tilde{a} \cap g_0) + (\tilde{n} \cap g_0)$.

Proof. Denote $g := g_0 + ig_0 \subseteq g$. Since $g_0 \cap ig_0 = \{0\}$, it follows that g is isomorphic to the complexification of g_0 (as a complex involutive Banach-Lie algebra).

We have $X_0 \in g_0 \subseteq g$ and $\tilde{T}(g) = \tilde{T}(g_0 + ig_0) \subseteq g_0 + ig_0 = g$, hence Corollary 2.12 shows that X_0 is Iwasawa regular in g and the corresponding Iwasawa decomposition of g is $g = (\tilde{T} \cap g) + (\tilde{a} \cap g) + (\tilde{n} \cap g)$.

In particular we get $g_{\text{ad}}^0(-iX_0) = \tilde{n} \cap g_0$, whence

$$g_0 \cap g_{\text{ad}}^0(-iX_0) = \tilde{n} \cap g_0.$$

On the other hand, it is obvious that

$$\{X \in g_0 \mid X^* = -X\} = \tilde{T} \cap g_0 \quad \text{and} \quad \{X \in g_0 \mid X^* = X \text{ and } [X, X_0] = 0\} = \tilde{a} \cap g_0,$$

hence the wished-for conclusion will follow as soon as we prove that $g_0 = (\tilde{T} \cap g_0) + (\tilde{a} \cap g_0) + (\tilde{n} \cap g_0)$. And this direct sum decomposition can be obtained just as in the proof of Corollary 2.12. Indeed, we have $\tilde{T}(g_0) \subseteq g_0$ and $D_{\text{g,ad}}(-iX_0)(g_0) \subseteq g_0$. Then we can use Proposition 2.11 to show that $p_\ell(g_0) \subseteq g_0$, $p_\ell'(g_0) \subseteq g_0$, and $p_\ell(g_0) \subseteq g_0$. Since $\tilde{g} = \tilde{T} + \tilde{a} + \tilde{n}$ by the hypothesis, it then follows that $g_0 = (\tilde{T} \cap g_0) + (\tilde{a} \cap g_0) + (\tilde{n} \cap g_0)$. □

Inductive limits of Iwasawa decompositions.

Lemma 2.14. Let $\tilde{\Psi}: \tilde{S}_1 \rightarrow \tilde{S}_2$ be an open bijective mapping between two topological spaces. Assume that S_j is a closed subset of \tilde{S}_j for $j = 1, 2$ such that $\tilde{\Psi}(S_1) = S_2$. Then $\tilde{\Psi}(S_1) = S_2$.

Proof. We have to prove that $S_2 \subseteq \tilde{\Psi}(S_1)$. The hypothesis that $\tilde{\Psi}: \tilde{S}_1 \rightarrow \tilde{S}_2$ is an open bijection implies that its inverse $\tilde{\Psi}^{-1}: \tilde{S}_2 \rightarrow \tilde{S}_1$ is continuous. Then by using the other hypothesis, namely $\tilde{\Psi}(S_1) = S_2$, we get $\tilde{\Psi}^{-1}(S_2) = \tilde{\Psi}^{-1}(\tilde{\Psi}(S_1)) \subseteq \tilde{\Psi}^{-1}(\tilde{\Psi}(S_1)) = \tilde{S}_1 = S_1$, which concludes the proof since $\tilde{\Psi}$ is a bijection. □

Proposition 2.15. Let G be a Banach-Lie group and assume that \widehat{K}, \widehat{A}, and \widehat{N} are Banach-Lie subgroups of G such that the multiplication map $\widehat{m}: K \times \widehat{A} \times \widehat{N} \rightarrow G$, $(k, \widehat{a}, \widehat{n}) \mapsto k\widehat{a}\widehat{n}$ is a diffeomorphism.

Then let G, K, A, and N be four connected Lie subgroups of G with $L(G) = g$, $L(K) = \ell$, $L(A) = a$, and $L(N) = n$, and assume that g is an elliptic real Banach-Lie algebra and $X_0 \in g$ is an Iwasawa regular element such that the following conditions are satisfied:

(i) We have $K \subseteq \widehat{K} \cap g$, $A \subseteq \widehat{A} \cap g$, $N \subseteq \widehat{N} \cap g$, and G is a Banach-Lie subgroup of \widehat{G}.

(ii) The Iwasawa decomposition of g with respect to X_0 is $g = \ell + a + n$.

(iii) There exists a family $\{g_i\}_{i \in I}$ consisting of finite-dimensional reductive subalgebras of g such that
there exists a bounded linear map $\mathcal{E}_i: \mathfrak{g} \rightarrow \mathfrak{g}$ such that $\mathcal{E}_i(X^*) = \mathcal{E}_i(X)^*$ for all $X \in \mathfrak{g}$,

$(\mathcal{E}_i)^2 = \mathcal{E}_i$, $\text{Ran} \mathcal{E}_i = \mathfrak{g}_i$, and $|\text{Ran}(1 - \mathcal{E}_i), \mathfrak{g}_i| = \{0\}$,

$\mathcal{E}_i(X_0)$ is an Iwasawa regular element of \mathfrak{g}_i, and

the connected subgroup G_i of G with $L(G_i) = \mathfrak{g}_i$ is a closed subgroup and a finite-dimensional reductive Lie group
for every $i \in I$, and $\bigcup_{i \in I} \mathfrak{g}_i = \mathfrak{g}$.

Then the mapping $\mathfrak{m} := [\mathfrak{m}]_{K \times A \times N}: K \times A \times N \rightarrow G$ is a diffeomorphism, $AN = NA$, and both A and N are simply connected.

Proof. Since $\widetilde{\mathfrak{m}}$ is smooth and G is a Banach-Lie subgroup of \widetilde{G} by hypothesis (j), it follows that \mathfrak{m} is a smooth mapping. Then condition (jj) shows that the tangent map of \mathfrak{m} at any point of $K \times A \times N$ is an invertible continuous linear operator, hence \mathfrak{m} is a local diffeomorphism. On the other hand, \mathfrak{m} is injective since $\widetilde{\mathfrak{m}}$ is so.

It remains to prove that \mathfrak{m} is surjective. To this end let $i \in I$ and denote by $\mathfrak{g}_i = \mathfrak{t}_i + \mathfrak{a}_i + \mathfrak{n}_i$ the Iwasawa decomposition of \mathfrak{g}_i with respect to $\mathcal{E}_i(X_0)$. Also let $G_i = K_iA_iN_i$ be the corresponding global Iwasawa decomposition of the finite-dimensional reductive Lie group G_i (see [Kn96]). We have

$$\mathfrak{t}_i = \{ X \in \mathfrak{g}_i \mid X^* = -X \} = \mathfrak{t} \cap \mathfrak{g}_i.$$

Also

$$\mathfrak{a}_i = \{ X = X^* \in \mathfrak{g}_i \mid [X, \mathcal{E}_i(X_0)] = 0 \} \subseteq \{ X = X^* \in \mathfrak{g}_i \mid [X, X_0] = 0 \} = \mathfrak{a} \cap \mathfrak{g}_i,$$

since $[\mathfrak{g}_i, \text{Ran}(1 - \mathcal{E}_i)] = \{0\}$. Finally, by Definitions $\ref{def:2.2}$ and $\ref{def:2.4}$ we get

$$\mathfrak{n}_i = \mathfrak{g}_i \cap ((\mathfrak{g}_i)_C)^{0+, \text{ad}(-i\mathcal{P}(X_0))} \subseteq \mathfrak{g} \cap (\mathfrak{g}_C)^{0+, \text{ad}(-i)\mathcal{P}(X_0)} \cap \mathfrak{g}_i = \mathfrak{n} \cap \mathfrak{g}_i,$$

where $(\bullet)_C$ stands for the complexification of a Lie algebra. Consequently $K_i \subseteq K \cap G_i$, $A_i \subseteq A \cap G_i$, and $N_i \subseteq N \cap G_i$. (Here we use the fact that each of the groups K_i, A_i, and N_i is connected since G_i is connected and there exists a diffeomorphism $G_i \simeq K_i \times A_i \times N_i$)

Now we are going to use Lemma $\ref{lem:2.13}$ with $S_1 = \bar{K} \times A \times \bar{N}$, $S_2 = \bar{G}$, $S_1 = K \times A \times N$, and $S_2 = G$. The mapping \mathfrak{m} is an open bijection since it is a diffeomorphism. On the other hand,

$$\mathfrak{m}(K \times A \times N) \supseteq \bigcup_{i \in I} \mathfrak{m}(K_i \times A_i \times N_i) = \bigcup_{i \in I} G_i,$$

hence $\mathfrak{m}(K \times A \times N)$ is a dense subset of G. (Note that $\bigcup_{i \in I} G_i$ is dense in G since $\bigcup_{i \in I} \mathfrak{g}_i$ is dense in \mathfrak{g} and G is connected.) Thus Lemma $\ref{lem:2.13}$ applies and shows that $\mathfrak{m}(K \times A \times N) = G$, hence $\mathfrak{m}: K \times A \times N \rightarrow G$ is a diffeomorphism.

To complete the proof, use the inverse diffeomorphism $\mathfrak{m}^{-1}: G \rightarrow K \times A \times N$. Since $\bigcup_{i \in I} G_i$ is dense in G, it follows that $\bigcup_{i \in I} K_i$ is dense in K, $\bigcup_{i \in I} A_i$ is dense in A, and $\bigcup_{i \in I} N_i$ is dense in N. Now the conclusion follows since $A_iN_i = N_iA_i$ and both groups A_i and N_i are simply connected for all $i \in I$.

3. Classical Banach-Lie groups and their Lie algebras

In this section we introduce the Banach-Lie groups and Lie algebras whose Iwasawa decompositions will be investigated in Sections $\ref{sec:4}$, $\ref{sec:5}$, and $\ref{sec:6}$ and we record a few auxiliary results that will be used in those sections.

Definition 3.1. We denote by $GL(\mathcal{H})$ the group of all invertible bounded linear operators on the complex Hilbert space \mathcal{H} and by \mathcal{J} an arbitrary norm ideal of $\mathfrak{B}(\mathcal{H})$. We define the following complex Banach-Lie groups and Banach-Lie algebras:

(A) $GL_2(\mathcal{H}) = GL(\mathcal{H}) \cap (1 + \mathcal{J})$ with the Lie algebra

$$L(GL_2(\mathcal{H})) := \mathfrak{gl}_2(\mathcal{H}) := \mathfrak{J};$$
(B) $O_3(\mathcal{H}) := \{ g \in \text{GL}_3(\mathcal{H}) \mid g^{-1} = J g^* J^{-1} \}$ with the Lie algebra
\[\mathbf{L}(O_3(\mathcal{H})) := \mathfrak{o}_3(\mathcal{H}) := \{ x \in \mathfrak{J} \mid x = -J x^* J^{-1} \}, \]
where $J : \mathcal{H} \to \mathcal{H}$ is a conjugation (i.e., J a conjugate-linear isometry satisfying $J^2 = 1$);

(C) $\text{Sp}_3(\mathcal{H}) := \{ g \in \text{GL}_3(\mathcal{H}) \mid g^{-1} = \tilde{J} g^* \tilde{J}^{-1} \}$ with the Lie algebra
\[\mathbf{L}(\text{Sp}_3(\mathcal{H})) := \mathfrak{sp}_3(\mathcal{H}) := \{ x \in \mathfrak{J} \mid x = -\tilde{J} x^* \tilde{J}^{-1} \}, \]
where $\tilde{J} : \mathcal{H} \to \mathcal{H}$ is an anti-conjugation (i.e., \tilde{J} a conjugate-linear isometry satisfying $\tilde{J}^2 = -1$).

We shall say that $\text{GL}_3(\mathcal{H})$, $O_3(\mathcal{H})$, and $\text{Sp}_3(\mathcal{H})$ are the classical complex Banach-Lie groups associated with the operator ideal \mathfrak{J}. Similarly, the corresponding Lie algebras are called the classical complex Banach-Lie algebras (associated with \mathfrak{J}).

When no confusion can occur, we shall denote the groups $\text{GL}_3(\mathcal{H})$, $O_3(\mathcal{H})$, and $\text{Sp}_3(\mathcal{H})$ simply by GL_3, O_3, and Sp_3, respectively, and we shall proceed similarly for the classical complex Lie algebras.

Definition 3.2. We shall use the notation of Definition 3.1 and define the following real Banach-Lie groups and Banach-Lie algebras:

(AI) $\text{GL}_3(\mathcal{H}; \mathbb{R}) := \{ g \in \text{GL}_3(\mathcal{H}) \mid g J = J g \}$ with the Lie algebra
\[\mathbf{L}(\text{GL}_3(\mathcal{H}; \mathbb{R})) := \mathfrak{gl}_3(\mathcal{H}; \mathbb{R}) := \{ x \in \mathfrak{J} \mid x J = J x \}, \]
where $J : \mathcal{H} \to \mathcal{H}$ is any conjugation on \mathcal{H};

(AII) $\text{GL}_3(\mathcal{H}; \mathbb{H}) := \{ g \in \text{GL}_3(\mathcal{H}) \mid g J = J g \}$ with the Lie algebra
\[\mathbf{L}(\text{GL}_3(\mathcal{H}; \mathbb{H})) := \mathfrak{gl}_3(\mathcal{H}; \mathbb{H}) := \{ x \in \mathfrak{J} \mid x J = J x \}, \]
where $J : \mathcal{H} \to \mathcal{H}$ is any anti-conjugation on \mathcal{H};

(AIII) $U_3(\mathcal{H}_+, \mathcal{H}_-) := \{ g \in \text{GL}_3(\mathcal{H}) \mid g^* V g = V \}$ with the Lie algebra
\[\mathbf{L}(U_3(\mathcal{H}_+, \mathcal{H}_-)) := \mathfrak{u}_3(\mathcal{H}_+, \mathcal{H}_-) := \{ x \in \mathfrak{J} \mid x^* V = -V x \}, \]
where $\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$ and $V = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ with respect to this orthogonal direct sum decomposition of \mathcal{H};

(BI) $O_3(\mathcal{H}_+, \mathcal{H}_-) := \{ g \in \text{GL}_3(\mathcal{H}) \mid g^{-1} = J g^* J^{-1} \}$ and $g^* V g = V$ with the Lie algebra
\[\mathbf{L}(O_3(\mathcal{H}_+, \mathcal{H}_-)) := \mathfrak{o}_3(\mathcal{H}_+, \mathcal{H}_-) := \{ x \in \mathfrak{J} \mid x = -J x^* J^{-1} \} \]
with respect to this orthogonal direct sum decomposition of \mathcal{H}, and $J : \mathcal{H} \to \mathcal{H}$ is a conjugation on \mathcal{H} such that $J(\mathcal{H}_\pm) \subseteq \mathcal{H}_\pm$;

(BII) $O_3^J(\mathcal{H}) := \{ g \in \text{GL}_3(\mathcal{H}) \mid g^{-1} = J g^* J^{-1} \}$ and $g J = J g$ with the Lie algebra
\[\mathbf{L}(O_3^J(\mathcal{H})) := \mathfrak{o}_3^J(\mathcal{H}) := \{ x \in \mathfrak{J} \mid x = -J x^* J^{-1} \} \]
with respect to this orthogonal direct sum decomposition of \mathcal{H}, and $J : \mathcal{H} \to \mathcal{H}$ is a conjugation and $\tilde{J} : \mathcal{H} \to \mathcal{H}$ is an anti-conjugation such that $J \tilde{J} = \tilde{J} J$;

(CI) $\text{Sp}_3(\mathcal{H}; \mathbb{R}) := \{ g \in \text{GL}_3(\mathcal{H}) \mid g^{-1} = \tilde{J} g^* \tilde{J}^{-1} \}$ and $g J = J g$ with the Lie algebra
\[\mathbf{L}(\text{Sp}_3(\mathcal{H}; \mathbb{R})) := \mathfrak{sp}_3(\mathcal{H}; \mathbb{R}) := \{ x \in \mathfrak{J} \mid x = -\tilde{J} x^* \tilde{J}^{-1} \} \]
with respect to this orthogonal direct sum decomposition of \mathcal{H}, and $\tilde{J} : \mathcal{H} \to \mathcal{H}$ is an anti-conjugation on \mathcal{H} such that $\tilde{J}(\mathcal{H}_\pm) \subseteq \mathcal{H}_\pm$.

We say that $\text{GL}_3(\mathcal{H}; \mathbb{R})$, $\text{GL}_3(\mathcal{H}; \mathbb{H})$, $U_3(\mathcal{H}_+, \mathcal{H}_-)$, $O_3(\mathcal{H}_+, \mathcal{H}_-)$, $O_3^J(\mathcal{H})$, $\text{Sp}_3(\mathcal{H}; \mathbb{R})$, $\text{Sp}_3(\mathcal{H}; \mathbb{H})$, and $\text{Sp}_3(\mathcal{H}_+, \mathcal{H}_-)$ are the classical real Banach-Lie groups associated with the operator ideal \mathfrak{J}. Similarly, the corresponding Lie algebras are called the classical real Banach-Lie algebras (associated with \mathfrak{J}).
Remark 3.3. The classical Banach-Lie groups and algebras of Definitions 3.1 and 3.2 associated with the Schatten operator ideals $\mathcal{S}_p(\mathcal{H})$ ($1 \leq p \leq \infty$) were introduced in [Ha72], where it was conjectured that the connected 1-components of these groups have global Iwasawa decompositions in a natural sense (see subsection 8.4 in Section II.8 of [Ha72]).

We also note that as a by-product of the classification of the L^*-algebras (see for instance Theorems 7.18 and 7.19 in [Be06]), every (real or complex) topologically simple L^*-algebra is isomorphic to one of the classical Banach-Lie algebras associated with the Hilbert-Schmidt ideal $\mathfrak{J} = \mathcal{S}_2(\mathcal{H})$.

Problem 3.4. In the setting of Definitions 3.1 and 3.2 the condition that \mathcal{J} should be a norm ideal is necessary in order to make the corresponding groups into smooth manifolds modeled on Banach spaces (see for instance Proposition 9.28 in [Be06] or the beginning of the proof of Proposition 3.9 below). On the other hand, the classical “Lie” groups and Lie algebras can be defined with respect to any operator ideal, irrespective of whether it is endowed with a complete norm or not. And there exist lots of interesting operator ideals which do not support complete norms at all—see [KW02] and [KW06].

Thus it might prove important to study the Lie theoretic aspects of the classical groups and Lie algebras associated with arbitrary operator ideals, and perhaps to establish a bridge between the Lie theory and the commutator structure of operator ideals described in the papers [DFWW04] and [We05].

We shall need the following generalization of Proposition 3 in [Ba69].

Lemma 3.5. Let \mathcal{H} be a complex separable infinite-dimensional Hilbert space, $\tilde{J}: \mathcal{H} \rightarrow \mathcal{H}$ an anti-conjugation, and $\mathbb{K} \in \{\mathbb{R},\mathbb{C}\}$. Also let $Z: \mathcal{H} \rightarrow \mathcal{H}$ be a \mathbb{K}-linear continuous operator such that $Z\tilde{J} = Z\tilde{J}$ and $Z^2 = z_0\mathbf{1}$ for some $z_0 \in (0, \infty)$. Then there exists an orthonormal basis $\{\xi^{(e)}_l\}_{l \in \mathbb{Z}\setminus\{0\}}$ in the Hilbert space \mathcal{H} over \mathbb{K} such that $Z\xi^{(e)}_{\pm l} = \pm \xi^{(e)}_{\pm l}$ and $\tilde{J}\xi^{(e)}_{\pm l} = \mp \xi^{(e)}_{\pm l}$ whenever $\varepsilon \in \{\pm \sqrt{z_0}\}$ and $l = 1, 2, \ldots$.

Proof. Denote $\mathcal{H}(\varepsilon) = \text{Ker}(Z - \varepsilon)$ for $\varepsilon \in \{\pm \sqrt{z_0}\}$. Since $Z^2 = z_0\mathbf{1}$, it follows that $\mathcal{H} = \mathcal{H}(\sqrt{z_0}) \oplus \mathcal{H}(-\sqrt{z_0})$ as an orthogonal direct sum of \mathbb{K}-linear closed subspaces. On the other hand $Z\tilde{J} = Z\tilde{J}$, hence $Z\mathcal{H}(\varepsilon) = Z\mathcal{H}(\varepsilon)$ whenever $\varepsilon \in \{\pm \sqrt{z_0}\}$.

Now let us keep $\varepsilon \in \{\pm \sqrt{z_0}\}$ fixed. We shall say that an orthonormal subset Σ_0 of the Hilbert space $\mathcal{H}(\varepsilon)$ over \mathbb{K} is a \tilde{J}-set if for each $x \in \Sigma_0$ we have $\{\tilde{J}x, -\tilde{J}x\} \cap \Sigma_0 \neq \emptyset$. For every $x \in \mathcal{H}(\varepsilon)$ with $\|x\| = 1$ we have $(x | \tilde{J}x) = -(\tilde{J}^*x | x) = -(x | \tilde{J}x)$, whence $x \perp \tilde{J}x$, so that $\{x, \tilde{J}x\}$ is a \tilde{J}-set. Then Zorn’s lemma applies and shows that there exists a maximal \tilde{J}-set $\Sigma(\varepsilon)$ in the Hilbert space $\mathcal{H}(\varepsilon)$ over \mathbb{K}.

It is easy to see that $\Sigma(\varepsilon)$ is actually an orthonormal basis in the Hilbert space $\mathcal{H}(\varepsilon)$ over \mathbb{K}. In fact, let us assume that this is not the case and consider for instance the case $\mathbb{K} = \mathbb{R}$. Then there exists $x_0 \in \mathcal{H}(\varepsilon)$ such that $\|x_0\| = 1$ and $\text{Re}(x | x_0) = 0$ whenever $x \in \Sigma(\varepsilon)$. Now for every $x \in \Sigma(\varepsilon)$ we have $\text{Re}(x | \tilde{J}x_0) = -\text{Re}(\tilde{J}^*x | x_0) = -\text{Re}(\tilde{J}x | x_0) = 0$ since either $\tilde{J}x \in \Sigma(\varepsilon)$ or $-\tilde{J}x \in \Sigma(\varepsilon)$. It then follows that $\Sigma(\varepsilon) \cup \{x_0, \tilde{J}x_0\}$ is again a \tilde{J}-set, thus contradicting the maximality of the \tilde{J}-set $\Sigma(\varepsilon)$.

Then let $\{\xi^{(e)}_l\}_{l \geq 1}$ be the set of all $x \in \Sigma(\varepsilon)$ such that $-\tilde{J}x \in \Sigma(\varepsilon)$, and denote $\xi^{(e)}_l = -\tilde{J}\xi^{(e)}_l$ for $l = 1, 2, \ldots$. Thus we get an orthonormal basis $\{\xi^{(e)}_{l, 0}\}_{l \in \mathbb{Z}\setminus\{0\}}$ in the Hilbert space \mathcal{H} over \mathbb{K}, satisfying the wished-for properties. □

We shall also need the following version of Proposition 2 in [Ba69].

Lemma 3.6. Let \mathcal{H} be a complex separable infinite-dimensional Hilbert space with a conjugation $J: \mathcal{H} \rightarrow \mathcal{H}$. Then the following assertions hold:

(a) If $Z \in \mathcal{B}(\mathcal{H})$ satisfies the conditions $ZJ = Z\tilde{J}$, $Z = Z^*$, $Z^{-1} = Z$, and $\dim \text{Ker}(Z - 1) = \dim \text{Ker}(Z + 1)$, then there exists an orthonormal basis $\{\xi^{(e)}_l\}_{l \in \mathbb{Z}\setminus\{0\}}$ in the Hilbert space \mathcal{H} such that $Z\xi^{(e)}_l = J\xi^{(e)}_l = \xi^{(e)}_{-l}$ whenever $l \in \mathbb{Z}\setminus\{0\}$.

(b) If $\tilde{J}: \mathcal{H} \rightarrow \mathcal{H}$ is an anti-conjugation such that $\tilde{J}\tilde{J} = \tilde{J}J$, then there exists an orthonormal basis $\{\xi^{(e)}_l\}_{l \in \mathbb{Z}\setminus\{0\}}$ in the Hilbert space \mathcal{H} such that $J\xi^{(e)}_l = \xi^{(e)}_{-l}$ whenever $l \in \mathbb{Z}\setminus\{0\}$, and $J\xi^{(e)}_{2s} = \xi^{(e)}_{2s}$ for $s = 1, 2, \ldots$.
Proof. We shall denote $\mathcal{H}_R := \{ x \in \mathcal{H} \mid Jx = x \}$.

(a) Let $\mathcal{H}_\pm := \text{Ker}(Z \pm 1)$. Since $VJ = JV$, it follows that $\mathcal{H}_R = (\mathcal{H}_R \cap \mathcal{H}_+ \oplus (\mathcal{H}_R \cap \mathcal{H}_-), \mathcal{H}_+ = (\mathcal{H}_R \cap \mathcal{H}_+ \oplus i(\mathcal{H}_R \cap \mathcal{H}_-)$, and dim$_R(\mathcal{H}_R \cap \mathcal{H}_+) = \text{dim}_C(\mathcal{H}_\pm)$ (see for instance Lemma 1 in [Ba69]). Then there exist countable orthonormal bases in the real Hilbert spaces $\mathcal{H}_R \cap \mathcal{H}_k$, which we denote by \(\{ x_{\pm l} \}_{l \geq 1} \), respectively. Now define $\xi_{\pm l} = (x_{\pm l} \pm i x_{-l})/\sqrt{2}$ for $l = 1, 2, \ldots$. Then $\{ \xi_l \}_{l \in \mathbb{Z} \setminus \{0\}}$ is the orthonormal basis in \mathcal{H} which we were looking for.

(b) Since $JJ = J\mathcal{J}$, we can use Lemma 3.5 with $Z = J$ and $\mathbb{K} = \mathbb{R}$ to get an orthonormal basis \(\{ x_{\pm l}^{(e)} \}_{l \in \mathbb{N} \setminus \{0\}} \) in the Hilbert space \mathcal{H} over \mathbb{R} such that $Jx_{\pm l}^{(e)} = \pm i(\mathcal{H}_R \cap \mathcal{H}_-) \oplus (\mathcal{H}_R \cap \mathcal{H}_+)$, and $\text{dim}_R(\mathcal{H}_R \cap \mathcal{H}_+) = \text{dim}_C(\mathcal{H}_\pm)$ (see for instance Lemma 1 in [Ba69]). Then let $H^* = \mathcal{J}_{\mathcal{J}x_{\pm l}^{(e)}} = \mathcal{J}_{x_{\pm l}^{(e)}} = \mathcal{J}_{x_{\pm l}}$ whenever $e \in \{ \pm \}$ and $l = 1, 2, \ldots$. Let us denote $x_l = x_l^{(e)}$ for $l \in \mathbb{N} \setminus \{0\}$. By using a bijection from $\{1, 2, \ldots\}$ onto the set of odd integer numbers, we can re-index the sequence $\{ x_l \}_{l \in \mathbb{N} \setminus \{0\}}$ such that $\mathcal{J}_{x_l} = \mathcal{J}_{x_l^{(e)}} = \mathcal{J}_{x_l}$ whenever $l \in \mathbb{N} \setminus \{0\}$ and $l = 1, 2, \ldots$. Now define just as above $\xi_{\pm l} = (x_{\pm l} \pm i x_{-l})/\sqrt{2}$ for $l = 1, 2, \ldots$, and thus we get an orthonormal basis in \mathcal{H} satisfying the properties we wished for.

It will be convenient to have some special cases of Lemmas 3.5 and 3.6 recorded as follows. (See Propositions 2 and 3 in [Ba69] or [Nee02al].)

Lemma 3.7. Let \mathcal{H} be a complex separable infinite-dimensional Hilbert space.

(a) If $J: \mathcal{H} \to \mathcal{H}$ is a conjugation, then there exists an orthonormal basis $\{ \xi_l \}_{l \in \mathbb{Z} \setminus \{0\}}$ in \mathcal{H} such that $J\xi_l = \xi_{-l}$ whenever $l \in \mathbb{Z} \setminus \{0\}$.

(b) If $J: \mathcal{H} \to \mathcal{H}$ is an anti-conjugation, then there exists an orthonormal basis $\{ \xi_l \}_{l \in \mathbb{Z} \setminus \{0\}}$ in \mathcal{H} such that $J\xi_l = \mp \xi_{\mp l}$ for $l = 1, 2, \ldots$.

Proof. Assertion (a) follows by our Lemma 3.5(a) for a suitable choice of Z, while assertion (b) follows by Lemma 3.5 for $Z = 1$.

Lemma 3.8. Let \mathcal{H} be a complex separable infinite-dimensional Hilbert space with an orthonormal basis $\{ \xi_l \}_{l \in \mathbb{Z} \setminus \{0\}}$. Assume that $\{ a_l \}_{l \in \mathbb{Z} \setminus \{0\}}$ is a bounded family of real numbers and $e \in \mathbb{R}$, and define the self-adjoint operator

$$A = \sum_{l \in \mathbb{Z} \setminus \{0\}} a_l (\cdot \mid \xi_l) \xi_l \in \mathcal{B}(\mathcal{H})$$

(where the sum is convergent in the strong operator topology). Then let $Z: \mathcal{H} \to \mathcal{H}$ be an \mathbb{R}-linear continuous operator such that $||Zx|| = ||x||$ whenever $x \in \mathcal{H}$ and satisfying either of the following conditions:

(a) $Z^2 = 1, Z\xi_l = \xi_{-l}$ whenever $l \in \mathbb{Z} \setminus \{0\}$, and Z is either \mathbb{C}-linear or \mathbb{C}-antilinear;

(b) $Z^2 = -1, Z\xi_{\pm l} = \mp \xi_{\mp l}$ whenever $l = 1, 2, \ldots$, and Z is either \mathbb{C}-linear or \mathbb{C}-antilinear.

Then we have $A = e ZAZ^{-1}$ if and only if $a_{-l} = e a_l$ whenever $l \in \mathbb{Z} \setminus \{0\}$.

Proof. For every $l \in \mathbb{Z} \setminus \{0\}$ define the orthogonal projection $p_l = (\cdot \mid \xi_l) \xi_l$. Now assume that hypothesis (a) is satisfied and Z is antilinear. Then for every vector $\xi \in \mathcal{H}$ we have

$$Z_{p_l} Z^{-1} \xi = Z_{p_l} Z_{\xi} = Z((Z \xi \mid \xi_l) \xi_l) = (\xi_l \mid Z \xi) Z_{\xi} = (Z^2 \xi_l \mid Z \xi) Z_{\xi} = (\xi \mid Z \xi_l) Z_{\xi} = (\xi \mid \xi_l) Z_{\xi} = p_{-l} \xi,$$

so that for all $l \in \mathbb{Z} \setminus \{0\}$ we have $Z_{p_l} Z^{-1} = p_{-l}$. It is easy to see that the same conclusion holds if Z were linear. Then we have

$$ZAZ^{-1} = Z\left(\sum_{l \in \mathbb{Z} \setminus \{0\}} a_l p_l \right) Z^{-1} = \sum_{l \in \mathbb{Z} \setminus \{0\}} a_l p_{-l},$$

so that the equation $ZAZ^{-1} = e A$ is equivalent to the fact that $a_{-l} = e a_l$ whenever $l \in \mathbb{Z} \setminus \{0\}$.

Now assume that hypothesis (b) is satisfied and Z is antilinear. Then for all $l \in \{1, 2, \ldots\}$ and $\xi \in \mathcal{H}$ we have

$$Z_{p_{\pm l}} Z^{-1} \xi = -Z_{p_{\pm l}} Z \xi = -Z((Z \xi \mid \xi_{\pm l}) \xi_{\pm l}) = -(\xi_{\pm l} \mid Z \xi) Z_{\xi} = Z(\xi \mid Z \xi_{\pm l} \mid Z \xi) Z_{\xi} = (\xi \mid Z \xi_{\pm l}) Z_{\xi}.$$

Consequently $Z_{p_l} Z^{-1} = p_{-l}$ for every $l \in \mathbb{Z} \setminus \{0\}$, and we would obtain the same equality if Z were linear. Then the wished-for conclusion follows just as above. □
Lemma 4.2. Let follows by means of equation (4.1). □

Proposition 4.3. \([\text{Er78}], \text{and} [\text{Pit88}]\). A triangular projection associated with its linearly ordered set of spectral projections; see \([\text{GK70}], [\text{EL72}]\).

Proof. The proof is straightforward, using Proposition 4.4 in \([\text{Be06}]\). We omit the details. □

4. Iwasawa decompositions for groups of type A

Throughout this section we let \(\mathcal{H}\) be a complex separable infinite-dimensional Hilbert space, \(\Phi\) a mononormalizing symmetric norming function whose Boyd indices are non-trivial, and denote the corresponding separable norm ideal by \(\mathcal{J} = \mathcal{E}_{\Phi}^{(1)} \subseteq \mathcal{B}(\mathcal{H})\). We are going to apply the abstract methods developed in Section 2 in order to construct global Iwasawa decompositions for classical groups of type A associated with the operator ideal \(\mathcal{J}\) (Definitions 3.1 and 3.2).

Complex groups of type A.

Lemma 4.1. Let \(\mathcal{H}_0\) be a complex Hilbert space and \(S = -S^* \in \mathcal{B}(\mathcal{H}_0)\) with finite spectrum, say \(\sigma(S) = \{\lambda_1, \ldots, \lambda_n\}\). For \(k = 1, \ldots, n\) denote by \(E_k \in \mathcal{B}(\mathcal{H}_0)\) the orthogonal projection onto \(\text{Ker}(S - \lambda_k)\).

Then for every \(Z \in \mathcal{B}(\mathcal{H}_0)\) we have \(\int \text{e}^{t\text{ad}S} Z \text{d}\mu(t) = \sum_{k=1}^n E_k Z E_k\).

Proof. We have \(S = \sum_{k=1}^n \lambda_k E_k\) and \(E_k E_l = 0\) whenever \(k \neq l\), hence \(\text{e}^{tS} = \sum_{k=1}^n \text{e}^{t\lambda_k} E_k\) for arbitrary \(t \in \mathbb{R}\). Hence

\[
\text{e}^{t\text{ad}S} Z = \text{e}^{tS} Z \text{e}^{-tS} = \sum_{k=1}^n \text{e}^{(\lambda_k - \lambda_l)} E_k Z E_l.
\]

Now \(\int \text{e}^{t(\lambda_k - \lambda_l)} \text{d}\mu(t) = \int \text{e}^{(t+1)(\lambda_k - \lambda_l)} \text{d}\mu(t) = \text{e}^{(\lambda_k - \lambda_l)} \int \text{e}^{t(\lambda_k - \lambda_l)} \text{d}\mu(t)\) by the invariance property of \(\mu\) (see Notation 2.1). If \(k \neq l\) then \(\lambda_k \neq \lambda_l\), whence \(\int \text{e}^{t(\lambda_k - \lambda_l)} \text{d}\mu(t) = 0\). Then the wished-for equality follows by means of equation (4.1). □

Lemma 4.2. Let \(\mathcal{H}\) be a separable complex Hilbert space, \(\mathcal{J}\) a separable norm ideal of \(\mathcal{B}(\mathcal{H})\), and \(\{a_n\}_{n \geq 0}\) a sequence of self-adjoint elements of \(\mathcal{B}(\mathcal{H})\) which is convergent to some \(a \in \mathcal{B}(\mathcal{H})\) in the strong operator topology. Then \(\lim_{n \to \infty} ||a_n x - a x||_3 = \lim_{n \to \infty} ||xa_n - xa||_3 = \lim_{n \to \infty} ||a_n xa_n - axa||_3 = 0\) whenever \(x \in \mathcal{J}\).

Proof. See Theorem 3.6 in Chapter III of [GK69]. □

In the following statement, by triangular projection associated with a self-adjoint operator we mean the triangular projection associated with its linearly ordered set of spectral projections; see \([\text{GK70}, \text{EL72}, \text{Er78}], \text{and} [\text{Pit88}]\).

Proposition 4.3. Let \(X_0 = X_0^* \in \mathfrak{gl}_2\) and denote \(\Lambda = \{\lambda \in \mathbb{R} \mid \dim \text{Ker}(X_0 - \lambda) > 0\}\), and for every \(\lambda \in \Lambda\) let \(E_\lambda \in \mathcal{B}(\mathcal{H})\) be the orthogonal projection onto \(\text{Ker}(X_0 - \lambda)\).

Then \(X_0\) is an Iwasawa quasi-regular element of \(\mathfrak{gl}_2\) and the following assertions hold:

1. The set \(\Lambda\) is countable and \(\{E_\lambda\}_{\lambda \in \Lambda}\) is a family of mutually orthogonal finite-rank projections satisfying \(\sum_{\lambda \in \Lambda} E_\lambda = 1\) in the strong operator topology.
If $T_{5,X_0} : \mathfrak{gl}_3 \to \mathfrak{gl}_3$ stands for the triangular projection associated with X_0, then

$$(T_{5,X_0})^2 = T_{5,X_0}$$

$$\text{Ran } T_{5,X_0} = (\mathfrak{gl}_3)_{\text{ad}} X_0 (\mathbb{R}_+),$$

$$\text{Ran } (I - T_{5,X_0}) \subseteq (\mathfrak{gl}_3)_{\text{ad}} X_0 (-\mathbb{R}_+).$$

(3) Assume that we write the linear operators on \mathcal{H} as infinite block matrices with respect to the partition of unity given by $\{E_\lambda\}_{\lambda \in \Lambda}$. Then for every $X \in \mathfrak{gl}_3$ the matrix of $D_{\mathfrak{gl}_3,\text{ad}(-iX_0)} X$ can be constructed out of the matrix of X by replacing all the off-diagonal blocks by zeros.

(4) If we denote $a_{3,X_0} = \{X \in \mathfrak{gl}_3 \mid X^* = X \text{ and } [X_0, X] = 0\}$, then

$$(4.2) \quad (\forall \lambda \in \Lambda) \quad X E_{\beta} \mathcal{H} \subseteq E_{\lambda} \mathcal{H}.$$
Assertion (6) follows by assertions (5) and (3).

By using assertion (2) along with Proposition 2.11 we see that X_0 is an Iwasawa quasi-regular element of gl_3 and assertion (7) holds.

Finally, we prove assertion (8): X_0 is an Iwasawa regular element if and only if $[a_3, X_0, a_3, X_0] = \{0\}$. And, by using assertion (4), we see that the latter condition is equivalent to the fact that each eigenvalue of X_0 has the spectral multiplicity equal to 1, which is precisely condition (1.2).

We shall need the following extension of Lemma 5.2 in Chapter VI of [He01] to an infinite-dimensional setting.

Lemma 4.4. Let U be a real Banach-Lie group with the Lie algebra $L(U) = u$, and assume that m and h are two closed subalgebras of u such that the direct sum decomposition $u = m + h$ holds. Now let $M = \langle \exp_U(m) \rangle$ and $H = \langle \exp_U(h) \rangle$ be the corresponding subgroups of U endowed with their natural structures of connected Banach-Lie groups such that $L(M) = m$ and $L(H) = h$. Then the multiplication map $\alpha: M \times H \to U$, $(m, h) \mapsto mh$, is smooth and has the property that for every $(m, h) \in M \times H$ the corresponding tangent map $T_{(m, h)}(M \times H) \to T_mhU$ is an isomorphism of Banach spaces.

Proof. The statement can be proved just as in the finite-dimensional case, so that we omit the details. □

Theorem 4.5. Let $X_0 = X_0^* \in gl_2$ satisfying condition (1.2). Let $\Lambda = \{\lambda \in \mathbb{R} \mid \dim \ker (X_0 - \lambda) = 1\}$, which is a linearly ordered set with respect to the reverse ordering of the real numbers, and for every $\lambda \in \Lambda$ pick $\xi_\lambda \in \ker (X_0 - \lambda)$ with $\|\xi_\lambda\| = 1$. Now consider the Banach-Lie group

$$G := GL_2(H)$$

and its subgroups

$$K := \{k \in G \mid k^* = k^{-1}\},$$
$$A := \{a \in G \mid (\forall \lambda \in \Lambda) \quad a\xi_\lambda \in \mathbb{R}_+^+\xi_\lambda\},$$
$$N := \{n \in G \mid (\forall \lambda \in \Lambda) \quad n\xi_\lambda \in \xi_\lambda + \text{span}\{\xi_\beta \mid \beta < \lambda\}\}. $$

Then K, A, and N are Banach-Lie subgroups of G, and the multiplication map $m: K \times A \times N \to G$, $(k, a, n) \mapsto kan$, is a diffeomorphism. In addition, both subgroups A and N are simply connected and $AN = NA$.

Proof. For every $\lambda \in \Lambda$ denote by $e_\lambda = (\cdot \mid \xi_\lambda)\xi_\lambda$ the orthogonal projection onto the one-dimensional subspace spanned by ξ_λ. Then it is easy to see that

$$A = \{g \in GL_2 \mid g \geq 0; \quad (\forall \lambda \in \Lambda) \quad e_\lambda g = ge_\lambda\},$$

hence Proposition 3.13 shows that A is a Banach-Lie subgroup of G. Furthermore, the fact that K is a Banach-Lie subgroup of G follows e.g., by Proposition 9.28(ii) in [Be06]. As regards N, let us consider the Banach algebra $\mathcal{B} = \mathbb{C}1 + J$, and note that

$$N = \{n \in \mathcal{B}_\infty \mid (\forall \lambda, \beta \in I, \lambda > \beta) \quad (n\xi_\lambda \mid \xi_\beta) = 0; \quad (\forall \lambda \in \Lambda) \quad (n\xi_\lambda \mid \xi_\lambda) = 1; \quad (\forall \lambda \in \Lambda) \quad np_\lambda = p_\lambda np_\lambda\},$$

hence N is an algebraic subgroup of \mathcal{B}_∞, and thus it is a Banach-Lie subgroup of \mathcal{B}_∞ by the Harris-Kaup theorem (see [HK77] or Theorem 4.13 in [Be06]). Since $N \subseteq G$ and G is a Banach-Lie subgroup of \mathcal{B}_∞, it follows that N is a Banach-Lie subgroup of G as well.

Now note that with the notation of Proposition 4.3 we have $L(G) = gl_2$, $L(K) = u_2$, $L(A) = a_3, X_0$, and $L(N) = n_3, X_0$. By using Proposition 3.13 it is easy to show that $B := AN$ is a Banach-Lie subgroup of G such that the multiplication mapping sets up a diffeomorphism $A \times N \to AN = B$. In addition, the Lie algebra of B decomposes as $L(B) = a_3, X_0 + n_3, X_0$. It then follows by Lemma 4.4 and Proposition 4.3(7) that the multiplication mapping $m: K \times A \times N \to G$, $(k, a, n) \mapsto kan$, is regular, in the sense that its tangent map $T_{(k,a,n)}m: T_{(k,a,n)}(K \times A \times N) \to T_{kan}G$ is an isomorphism of Banach spaces for every $k \in K$, $a \in A$, and $n \in N$.

Now define

$$\psi: [0,1] \times (A \times N) \to A \times N, \quad \psi(t, a, n) = ((1 - t)a + t1, 1 + (1 - t)(n - 1)).$$
To obtain the Iwasawa decomposition asserted for $T_r m H$, the role of the orthonormal basis A (where A is an orthonormal basis associated with x) is straightforward to prove that the mapping $m: K \times A \times N \to G$ is injective. Since we have seen above that the mapping m is an isometry at every point, it then follows that m is a diffeomorphism of $K \times A \times N$ onto some open subset of G.

To prove that the multiplicative mapping m is actually surjective, let $g \in G$ arbitrary and consider the nest $\mathcal{P} = \{p_\lambda\}_{\lambda \in \Lambda}$, where p_λ is the orthogonal projection onto the subspace $\mathcal{H}_\lambda = \text{span} \{\xi_\beta \mid \beta \leq \lambda\}$ of \mathcal{H} whenever $\lambda \in \Lambda$. Then Corollary A.2 shows that there exist a unitary element $w \in 1 + \mathcal{J}$ and an element $b \in \text{Alg} \mathcal{P}_\lambda = \{\lambda \in \mathbb{R} \mid \lambda \leq \lambda\}$ such that $g = wb$. Now for every $\lambda \in \Lambda$ define $b_\lambda := (b\xi_\lambda \mid \xi_\lambda)$. We have $\sup_{\lambda \in \Lambda} |b_\lambda| \leq \|v\| < \infty$, so that there exists an operator $d \in B(\mathcal{H})$ such that

$$(d\xi_\lambda \mid \xi_\beta) = \begin{cases} b_\lambda & \text{if } \lambda = \beta, \\ 0 & \text{if } \lambda \neq \beta. \end{cases}$$

Since $b \in \text{Alg} \mathcal{P}_\lambda = \{\lambda \in \mathbb{R} \mid \lambda \leq \lambda\}$, it follows at once that $d \in \text{Alg} \mathcal{P}_{\lambda} \cap (1 + \mathcal{J})$ as well, and then $d^{-1}b \in N$. Now let $d = u|d|$ be the polar decomposition of d. Then $u, |d| \in G$ by Lemma 5.1 in [BR05] again, so that $g = wb = uw(|d|^{-1}b) \in \mathcal{K} \mathcal{A} \mathcal{N}$, and the proof ends.

Real groups of type AI.

Theorem 4.6. Let $J: \mathcal{H} \to \mathcal{H}$ be a conjugation and $\{\xi_l\}_{l \in \mathbb{Z}\setminus\{0\}}$ an orthonormal basis in \mathcal{H} such that $J\xi_l = \xi_l$ whenever $l \in \mathbb{Z}\setminus\{0\}$. Pick a family of mutually different real numbers $\{\alpha_l\}_{l \in \mathbb{Z}\setminus\{0\}}$ such that $\lim_{l \to \pm \infty} \alpha_l = 0$ and $\Phi(\alpha_l, \alpha_{l-1}, \alpha_{l+1}, \ldots) < \infty$, and define the self-adjoint operator

$$X_0 = \sum_{l \in \mathbb{Z}\setminus\{0\}} \alpha_l (\cdot \mid \xi_l) \xi_l \in B(\mathcal{H}).$$

Then X_0 is an Iwasawa regular element of $\mathfrak{g} \mathfrak{l}_3(\mathcal{H}; \mathbb{R})$ and the Iwasawa decomposition of $\mathfrak{g} \mathfrak{l}_3(\mathcal{H}; \mathbb{R})$ associated with X_0 is

$$(4.3) \quad \mathfrak{g} \mathfrak{l}_3(\mathcal{H}; \mathbb{R}) = (u_3 \cap \mathfrak{g} \mathfrak{l}_3(\mathcal{H}; \mathbb{R})) + (a_3, X_0 \cap \mathfrak{g} \mathfrak{l}_3(\mathcal{H}; \mathbb{R})) + (n_3, X_0 \cap \mathfrak{g} \mathfrak{l}_3(\mathcal{H}; \mathbb{R}))$$

(where u_3, a_3, X_0, and n_3, X_0 are the ones defined in Proposition 4.3).

Moreover, if G stands for the connected 1-component of $\text{GL}_3(\mathcal{H}; \mathbb{R})$, then there exists a global Iwasawa decomposition $m: K \times A \times N \to G$ corresponding to (4.3). In addition we have $AN = NA$, and both groups A and N are simply connected.

Proof. The role of the orthonormal basis $\{\xi_l\}_{l \in \mathbb{Z}\setminus\{0\}}$ as in the statement can be played by any orthonormal basis in the real Hilbert space $\mathcal{H}_\mathbb{R} = \{x \in \mathcal{H} \mid Jx = x\}$. The conditions satisfied by the family $\{\alpha_l\}_{l \in \mathbb{Z}\setminus\{0\}}$ ensure that $X_0 = X_0^* \in J$. In addition, it is straightforward to check that actually $X_0 \in \mathfrak{g} \mathfrak{l}_3(\mathcal{H}; \mathbb{R})$ (see for instance the proof of Lemma 3.3(a)).

On the other hand, it follows by Proposition 4.3 that X_0 is an Iwasawa quasi-regular element of $\mathfrak{g} \mathfrak{l}_3(\mathcal{H}; \mathbb{R})$ and the Iwasawa decomposition of $\mathfrak{g} \mathfrak{l}_3$ associated with X_0 is

$$\mathfrak{g} \mathfrak{l}_3 = u_3 + a_3, X_0 + n_3, X_0.$$
be enough to show that $T_{X_0}(P_r XP_r) \in \mathfrak{gl}_2(\mathbb{H}; \mathbb{R})$ whenever $r \geq 1$. And this follows by the restricted root space decomposition of the finite-dimensional real reductive Lie algebras $\mathfrak{gl}(H_2; \mathbb{R}) \approx \mathfrak{gl}(r, \mathbb{R})$ for $r = 1, 2, \ldots$.

Thus X_0 is an Iwasawa quasi-regular element of $\mathfrak{gl}_3(\mathbb{H}; \mathbb{R})$. Since X_0 satisfies condition (4.2) in Proposition 4.3, it follows that it is actually Iwasawa regular in \mathfrak{gl}_3, hence also in $\mathfrak{gl}_3(\mathbb{H}; \mathbb{R})$.

To obtain the global Iwasawa decomposition, let us denote by G the connected 1-component of $\mathrm{GL}_3(\mathbb{H}; \mathbb{R})$. We are going to apply Proposition 2.15 with $G, K, A,$ and N as in Theorem 4.3. To this end let C be the connected 1-component of $C \cap \mathrm{GL}_3(\mathbb{H}; \mathbb{R})$ for $C \in \{K, A, N\}$. Then C will be a connected Lie subgroup of $\tilde{G} = \mathrm{GL}_3$, since $\tilde{C} \cap \mathrm{GL}_3(\mathbb{H}; \mathbb{R})$ is a Lie subgroup of \tilde{G}. (The latter property follows by the Harris-Kaup theorem if $C = K$ or $C = N$, and from Proposition 3.3 if $C = A$.) It is clear that $L(G) = \mathfrak{gl}_3(\mathbb{H}; \mathbb{R}), L(\tilde{K}) = \mathfrak{u}_3 \cap \mathfrak{gl}_3(\mathbb{H}; \mathbb{R}), L(\tilde{A}) = (\mathfrak{a}_3 \times \mathfrak{x}_0) \cap \mathfrak{gl}_3(\mathbb{H}; \mathbb{R}),$ and $L(\tilde{N}) = (\mathfrak{n}_3 \times \mathfrak{x}_0) \cap \mathfrak{gl}_3(\mathbb{H}; \mathbb{R})$, hence $L(G) = L(\tilde{K}) + L(\tilde{A}) + L(\tilde{N})$. Next define $\tilde{\xi}_r : \mathfrak{gl}_3(\mathbb{H}; \mathbb{R}) \to \mathfrak{gl}_3(\mathbb{H}; \mathbb{R}), X \mapsto P_r X P_r$ for $r = 1, 2, \ldots$. Now it is easy to see that Proposition 2.15 can be applied, and this completes the proof.

Real groups of type AI.

Theorem 4.7. Let $\tilde{J} : \mathcal{H} \to \mathcal{H}$ be an anti-conjugation and $\{\xi_l\}_{l \in \mathbb{Z} \setminus \{0\}}$ an orthonormal basis in \mathcal{H} such that $\tilde{J} \xi_{l+1} = \mp \xi_{l-1}$ for $l = 1, 2, \ldots$. Pick a family of real numbers $\{\alpha_l\}_{l \in \mathbb{Z} \setminus \{0\}}$ such that the numbers $\{\alpha_l\}_{l \geq 1}$ are mutually different and

$$\alpha_{-l} = \alpha_l \text{ for all } l \in \mathbb{Z} \setminus \{0\}, \quad \lim_{l \to \infty} \alpha_l = 0, \quad \text{and} \quad \Phi(\alpha_1, \alpha_{-1}, \alpha_2, \alpha_{-2}, \ldots) < \infty,$$

and define the self-adjoint operator

$$X_0 = \sum_{l \in \mathbb{Z} \setminus \{0\}} \alpha_l \xi_l \xi_l \in \mathcal{B}(\mathcal{H}).$$

Then X_0 is an Iwasawa regular element of $\mathfrak{gl}_3(\mathcal{H}; \mathbb{H})$ and the Iwasawa decomposition of $\mathfrak{gl}_3(\mathcal{H}; \mathbb{H})$ associated with X_0 is

$$\mathfrak{gl}_3(\mathcal{H}; \mathbb{H}) = (\mathfrak{u}_3 \cap \mathfrak{gl}_3(\mathcal{H}; \mathbb{H})) + (\mathfrak{a}_3 \times \mathfrak{x}_0) \cap \mathfrak{gl}_3(\mathcal{H}; \mathbb{H})) + (\mathfrak{n}_3 \times \mathfrak{x}_0) \cap \mathfrak{gl}_3(\mathcal{H}; \mathbb{H}))$$

(where $\mathfrak{a}_3, \mathfrak{a}_3 \times \mathfrak{x}_0,$ and $\mathfrak{n}_3 \times \mathfrak{x}_0$ are the ones defined in Proposition 1.3).

Moreover, there exists a global Iwasawa decomposition $\mathbf{m} : K \times A \times N \to \mathrm{GL}_3(\mathcal{H}; \mathbb{H})$ corresponding to (4.4). In addition we have $AN = NA$, and both groups A and N are simply connected.

Proof. The orthonormal basis $\{\xi_l\}_{l \in \mathbb{Z} \setminus \{0\}}$ as in the statement exists according to Lemma 3.7(a). The hypothesis on $\{\alpha_l\}_{l \in \mathbb{Z} \setminus \{0\}}$ implies that $X_0 = X_0^* \in \mathfrak{J}$, and then $X_0 \in \mathfrak{gl}_3(\mathcal{H}; \mathbb{H})$ by Lemma 3.8(b).

To see that X_0 is an Iwasawa quasi-regular element of $\mathfrak{gl}_3(\mathcal{H}; \mathbb{H})$ and the corresponding Iwasawa decomposition looks as stated, one can proceed just as in the proof of Theorem 4.6, this time using the orthogonal projection $P_r : \mathcal{H} \to \mathcal{H}$ onto the subspace $\mathcal{H}_r = \mathrm{span} \{\xi_1, \xi_{-1}, \xi_2, \xi_{-2}, \ldots, \xi_r, \xi_{-r}\}$ for $r = 1, 2, \ldots$. We omit the details.

It remains to check that X_0 is actually an Iwasawa regular element of $\mathfrak{gl}_6(\mathcal{H}; \mathbb{H})$. To this end denote $\tilde{V}_l = \mathbb{C} \tilde{\xi}_l + \mathbb{C} \xi_{-l}$ for $l = 1, 2, \ldots$, and let $X = X^* \in \mathfrak{gl}_3(\mathcal{H}; \mathbb{H})$ with $[X, X_0] = 0$. Since the real numbers $\{\alpha_l\}_{l \geq 1}$ are mutually different and $[X, X_0] = 0$ it follows that $X \tilde{V}_l \subseteq \tilde{V}_l$ whenever $l \geq 1$. Now, since $X = X^*$, it follows that for each $l \geq 1$ there exists an eigenvector $v_l \in \tilde{V}_l \setminus \{0\}$ of $X|_{\tilde{V}_l}$. Let $\gamma_l \in \mathbb{R}$ be the corresponding eigenvalue, so that $X v_l = \gamma_l v_l$. On the other hand the anti-conjugation \tilde{J} satisfies $\tilde{J} \tilde{V}_l = \tilde{V}_l$, hence \tilde{V}_l has the natural structure of a quaternionic vector space. Since $\dim_{\mathbb{C}} \tilde{V}_l = 2$ it follows that $\dim_{\mathbb{R}} \tilde{V}_l = 1$, hence $\tilde{V}_l \approx \mathbb{H} v_l$. Now the operator $X \in \mathfrak{gl}_3(\mathcal{H}; \mathbb{H})$ is \mathbb{C}-linear and $X \tilde{J} = \tilde{J} X$, hence for every $q \in \mathbb{H}$ we have $X(q v_l) = q X v_l = q \gamma_l v_l = \gamma_l (q v_l)$, so that $X \xi = \gamma_l \xi$ whenever $\xi \in \tilde{V}_l$.

Since $\mathcal{H} = \bigoplus_{l \geq 1} \tilde{V}_l$, it then follows that $[X_1, X_2] = 0$ whenever $X_j = X_j^* \in \mathfrak{gl}_3(\mathcal{H}; \mathbb{H})$ and $[X_j, X_0] = 0$ for $j = 1, 2$.

To prove the assertion on the global Iwasawa decomposition one can use Proposition 2.15 in a fashion similar to the one of the proof of Theorem 4.6. \qed
Real groups of type AIII.

Theorem 4.8. Assume that we have an orthogonal direct sum decomposition \(\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_- \) with \(\dim \mathcal{H}_+ = \dim \mathcal{H}_- \), and let \(\{e_l^\pm\}_{l \geq 1} \) be an orthonormal basis in \(\mathcal{H}_\pm \). Then define \(f_l^\pm = (e_l^+ \pm e_l^-)/\sqrt{2} \) whenever \(l \geq 1 \). Pick a family of real numbers \(\{\lambda_l\}_{l \geq 1} \) such that

\[
\lambda_j \neq \pm \lambda_l \quad \text{if} \quad j \neq l, \quad \lim_{l \to \infty} \lambda_l = 0, \quad \text{and} \quad \Phi(\lambda_1, -\lambda_1, \lambda_2, -\lambda_2, \ldots) < \infty,
\]

and define the self-adjoint operator

\[
X_0 := \sum_{l \geq 1} \lambda_l (\langle \cdot | f_l^+ \rangle f_l^+ - \langle \cdot | f_l^- \rangle f_l^-).
\]

Then \(X_0 \) is an Iwasawa regular element of \(u_3(\mathcal{H}_+, \mathcal{H}_-) \) and the corresponding Iwasawa decomposition is

\[
(4.5) \quad u_3(\mathcal{H}_+, \mathcal{H}_-) = (u_3 \cap u_3(\mathcal{H}_+, \mathcal{H}_-)) + (a_3 \mathcal{X}_0 \cap u_3(\mathcal{H}_+, \mathcal{H}_-)) + (n_3 \mathcal{X}_0 \cap u_3(\mathcal{H}_+, \mathcal{H}_-))
\]

(where \(u_3, a_3, X_0 \), and \(n_3, X_0 \) are the ones defined in Proposition (4.3). Moreover, if \(G \) stands for the connected \(1 \)-component of \(U_3(\mathcal{H}_+, \mathcal{H}_-) \), then there exists a global Iwasawa decomposition \(m : K \times A \times N \to G \) corresponding to (4.3). In addition we have \(AN = NA \), and both groups \(A \) and \(N \) are simply connected.

Proof. To begin with, note that \(\bigcup \{f_l^+, f_l^-\} \) is an orthonormal basis in \(\mathcal{H} \). Then it follows by the hypothesis on \(\{\lambda_l\}_{l \geq 1} \) along with Proposition (4.3) that \(X_0 \) is an Iwasawa regular element of \(\mathfrak{g}_3 \). We now show that actually \(X_0 \in u_3(\mathcal{H}_+, \mathcal{H}_-) \). For this purpose denote \(V = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \) as in Definition (4.2). Then for all \(j \geq 1 \) we have \(V e_j^\pm = \pm e_j^\pm \), whence \(V f_j^\pm = f_j^\mp \). Thus for every \(\xi \in \mathcal{H} \) we have \(\langle \xi | f_j^\pm \rangle f_j^\pm = \langle \xi | V f_j^\mp \rangle f_j^\mp = V(\langle V \xi | f_j^\mp \rangle f_j^\mp) \). It then follows that \(X_0 = -VX_0V \), whence \(X_0V = -VX_0 \), and then \(X_0 \in u_3(\mathcal{H}_+, \mathcal{H}_-) \).

Now the wished-for conclusion will follow by Corollary (4.3) as soon as we will have proved that the triangular projection \(T_3 X_0 : \mathfrak{J} \to \mathfrak{J} \) leaves \(u_3(\mathcal{H}_+, \mathcal{H}_-) \) invariant. To this end, for \(r = 1, 2, \ldots \) denote

\[
\mathcal{H}_r = \text{span} \{e_1^+, e_2^+, \ldots, e_r^+ \}
\]

and let \(P_r : \mathcal{H} \to \mathcal{H} \) be the orthogonal projection onto \(\mathcal{H}_r \). For arbitrary \(X \in u_3(\mathcal{H}_+, \mathcal{H}_-) \subseteq \mathfrak{J} \) we have \(\lim_{r \to \infty} \|P_r X P_r - X\|_2 = 0 \) by Lemma (4.2) hence \(\lim_{r \to \infty} \|T_3 X_0(P_r X P_r) - T_3 X_0(X)\|_2 = 0 \). Thus it will be enough to show that \(T_3 X_0(P_r X P_r) \in u_3(\mathcal{H}_+, \mathcal{H}_-) \) whenever \(r \geq 1 \). And this follows by the restricted-root space decomposition of the finite-dimensional real reductive Lie algebras \(u(\mathcal{H}_r \cap \mathcal{H}_+, \mathcal{H}_r \cap \mathcal{H}_-) \approx u(r, r) \) for \(r = 1, 2, \ldots \).

To prove the assertion on the global Iwasawa decomposition one can use Proposition (2.15) in a fashion similar to the one of the proof of Theorem (4.6) \(\Box \)

5. Iwasawa decompositions for groups of type B

As in Section 4 we let \(\mathcal{H} \) be a complex separable infinite-dimensional Hilbert space, \(\Phi \) a mononormalizing symmetric norming function whose Boyd indices are non-trivial, and denote the corresponding separable norm ideal by \(\mathfrak{J} = \mathcal{S}_\Phi(0) \subseteq B(\mathcal{H}) \). We shall use the methods of Section 2 to get global Iwasawa decompositions for classical groups of type B associated with the operator ideal \(\mathfrak{J} \).

Complex groups of type B.

Theorem 5.1. Let \(J : \mathcal{H} \to \mathcal{H} \) be a conjugation and \(\{\xi_l\}_{l \in \mathbb{Z} \setminus \{0\}} \) an orthonormal basis in \(\mathcal{H} \) such that \(J \xi_l = \xi_{-l} \) whenever \(l \in \mathbb{Z} \setminus \{0\} \). Pick a family of mutually different real numbers \(\{\alpha_l\}_{l \in \mathbb{Z} \setminus \{0\}} \) satisfying the conditions

\[
\alpha_{-l} = -\alpha_l \text{ for all } l \in \mathbb{Z} \setminus \{0\}, \quad \lim_{l \to \infty} \alpha_l = 0, \quad \text{and} \quad \Phi(\alpha_1, \alpha_{-1}, \alpha_2, \alpha_{-2}, \ldots) < \infty,
\]
and define the self-adjoint operator
\[X_0 = \sum_{\ell \in \mathbb{Z} \setminus \{0\}} \alpha_\ell (\cdot | \xi_\ell) \in \mathcal{B}(\mathcal{H}). \]

Then \(X_0 \) is an Iwasawa regular element of \(\mathfrak{o}_3 \) and the Iwasawa decomposition of \(\mathfrak{o}_3 \) associated with \(X_0 \) is
\[(5.1) \quad \mathfrak{o}_3 = (u_3 \cap \mathfrak{o}_3) + (\mathfrak{a}_3, \mathfrak{X}_0 \cap \mathfrak{o}_3) + (\mathfrak{n}_3, \mathfrak{X}_0 \cap \mathfrak{o}_3) \]
(where \(u_3, \mathfrak{a}_3, \mathfrak{X}_0, \mathfrak{n}_3, \mathfrak{X}_0 \) are the ones defined in Proposition 4.3)

Moreover, if \(G \) stands for the connected 1-component of \(O_3 \), then there exists a global Iwasawa decomposition \(m : K \times A \times N \to G \) corresponding to (5.1). In addition we have \(AN = NA \), and both groups \(A \) and \(N \) are simply connected.

Proof. Recall that the existence of the orthonormal basis \(\{ \xi_\ell \}_{\ell \in \mathbb{Z} \setminus \{0\}} \) as in the statement follows by Lemma 3.8(a). The conditions satisfied by the family \(\{ \alpha_\ell \}_{\ell \in \mathbb{Z} \setminus \{0\}} \) ensure that \(X_0 = X'_0 \in \mathfrak{g}_3 \). In addition, it follows by Lemma 3.8(a) that actually \(X_0 \in \mathfrak{o}_3 \).

On the other hand, since the real numbers in the family \(\{ \alpha_\ell \}_{\ell \in \mathbb{Z} \setminus \{0\}} \) are mutually different, it follows by Proposition 4.3 that \(X_0 \subseteq \mathfrak{gl}_3 \) and the Iwasawa decomposition of \(\mathfrak{gl}_3 \) associated with \(X_0 \) is \(\mathfrak{gl}_3 = u_3 + a_3, x_0 + n_3, x_0 \). To obtain the conclusion we are going to use Corollary 2.12 for \(\mathfrak{g} = \mathfrak{gl}_3, \), \(\mathfrak{g} = \mathfrak{o}_3 \), and \(T = T_{3, X_0} : \mathfrak{gl}_3 \to \mathfrak{gl}_3 \). To this end it remains to prove that \(T_{3, X_0}(\mathfrak{o}_3) \subseteq \mathfrak{o}_3 \).

Denote \(H_r = \text{span} \{ \xi_1, \xi_2, \xi_3, \ldots, \xi_r, \xi_{r+1} \} \) for \(r \geq 1 \). Also let \(P_r : H \to H \) be the orthogonal projection onto \(H_r \) for \(r = 1, 2, \ldots \). Then for arbitrary \(X \in \mathfrak{o}_3 \subseteq \mathfrak{g} \) we have \(\lim_{r \to \infty} \| P_r X P_r - X \|_\mathfrak{g} = 0 \) by Lemma 4.2. Hence \(\lim_{r \to \infty} \| T_{3, X_0}(P_r X P_r) - T_{3, X_0}(X) \|_\mathfrak{g} = 0 \). Thus it will be enough to show that \(T_{3, X_0}(P_r X P_r) \in \mathfrak{o}_3 \) whenever \(r \geq 1 \). And this follows by the restricted-root space decomposition of the finite-dimensional complex reductive Lie algebras \(\mathfrak{o}(H_r) \cong \mathfrak{o}(r, \mathbb{C}) \) for \(r = 1, 2, \ldots \).

To prove the assertion on the global Iwasawa decomposition one can use Proposition 2.12 in a fashion similar to the one of the proof of Theorem 1.6.

\(\square \)

Real groups of type BI.

Theorem 5.2. Assume that \(\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_- \) with \(\dim \mathcal{H}_+ = \dim \mathcal{H}_- \) and let \(J : \mathcal{H} \to \mathcal{H} \) be a conjugation such that \(J(\mathcal{H}_\pm) \subseteq \mathcal{H}_\pm \). Also let \(V = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \) with respect to this orthogonal direct sum decomposition of \(\mathcal{H} \). Then let \(\{ \xi_\ell \}_{\ell \in \mathbb{Z} \setminus \{0\}} \) an orthonormal basis in \(\mathcal{H} \) such that \(J \xi_\ell = V \xi_\ell = \xi_{\ell-1} \) whenever \(\ell \in \mathbb{Z} \setminus \{0\} \).

Pick a family of mutually different real numbers \(\{ \alpha_\ell \}_{\ell \in \mathbb{Z} \setminus \{0\}} \) satisfying the conditions
\[\alpha_{-l} = -\alpha_l \quad \text{for all } l \in \mathbb{Z} \setminus \{0\}, \quad \lim_{l \to \infty} \alpha_l = 0, \quad \text{and} \quad \Phi(\alpha_1, \alpha_{-1}, \alpha_2, \alpha_{-2}, \ldots) < \infty, \]
and define the self-adjoint operator
\[X_0 = \sum_{\ell \in \mathbb{Z} \setminus \{0\}} \alpha_\ell (\cdot | \xi_\ell) \in \mathcal{B}(\mathcal{H}). \]

Then \(X_0 \) is an Iwasawa regular element of \(\mathfrak{o}_3(\mathcal{H}_+, \mathcal{H}_-) \) and the corresponding Iwasawa decomposition is
\[(5.2) \quad \mathfrak{o}_3(\mathcal{H}_+, \mathcal{H}_-) = (u_3 \cap \mathfrak{o}_3(\mathcal{H}_+, \mathcal{H}_-)) + (\mathfrak{a}_3, \mathfrak{X}_0 \cap \mathfrak{o}_3(\mathcal{H}_+, \mathcal{H}_-)) + (\mathfrak{n}_3, \mathfrak{X}_0 \cap \mathfrak{o}_3(\mathcal{H}_+, \mathcal{H}_-)) \]
(where \(u_3, \mathfrak{a}_3, \mathfrak{X}_0, \mathfrak{n}_3, \mathfrak{X}_0 \) are the ones defined in Proposition 4.3)

Moreover if \(G \) stands for the connected 1-component of \(O_3(\mathcal{H}_+, \mathcal{H}_-) \), then there exists a global Iwasawa decomposition \(m : K \times A \times N \to G \) corresponding to (5.2). In addition we have \(AN = NA \), and both groups \(A \) and \(N \) are simply connected.

Proof. The existence of the orthonormal basis \(\{ \xi_\ell \}_{\ell \in \mathbb{Z} \setminus \{0\}} \) as in the statement follows by Lemma 3.6. The conditions satisfied by the family \(\{ \alpha_\ell \}_{\ell \in \mathbb{Z} \setminus \{0\}} \) ensure that \(X_0 = X'_0 \in \mathfrak{g}_3 \). In addition, it follows by Lemma 3.8(a) that actually \(X_0 \in \mathfrak{o}_3(\mathcal{H}_+, \mathcal{H}_-) \).

On the other hand, since the real numbers in the family \(\{ \alpha_\ell \}_{\ell \in \mathbb{Z} \setminus \{0\}} \) are mutually different, it follows by Proposition 4.3 that \(X_0 \) is an Iwasawa regular element of \(\mathfrak{gl}_3 \) and the Iwasawa decomposition of \(\mathfrak{gl}_3 \) associated with \(X_0 \) is \(\mathfrak{gl}_3 = u_3 + a_3, x_0 + n_3, x_0 \). Thus the conclusion will follow by applying Corollary 2.13.
for \(\overline{g} = \mathfrak{gl}_2 \), \(g_0 = \mathfrak{o}_3(\mathcal{H}_+, \mathcal{H}_-) \), and \(\overline{T} = T_{\overline{T}, \chi} : \mathfrak{gl}_2 \to \mathfrak{gl}_2 \). To this end it only remains to prove that \(T_{\overline{T}, \chi}(\mathfrak{o}_3(\mathcal{H}_+, \mathcal{H}_-)) \subseteq \mathfrak{o}_3(\mathcal{H}_+, \mathcal{H}_-) \). In order to do so, we denote

\[
\mathcal{H}_r = \text{span} \{ \xi_1, \xi_{-1}, \xi_2, \xi_{-2}, \ldots, \xi_r, \xi_{-r} \}
\]

whenever \(r \geq 1 \).

Also let \(P_r : \mathcal{H} \to \mathcal{H} \) be the orthogonal projection onto \(\mathcal{H}_r \) for \(r = 1, 2, \ldots \). Then for arbitrary \(X \in \mathfrak{o}_3 \subseteq \mathcal{J} \) we have \(\lim_{r \to \infty} \| P_r X P_r - X \|_3 = 0 \) by Lemma 4.2 hence

\[
\lim_{r \to \infty} \| T_{\overline{T}, \chi}(P_r X P_r) - T_{\overline{T}, \chi}(X) \|_3 = 0.
\]

Thus it will be enough to show that \(T_{\overline{T}, \chi}(P_r X P_r) \in \mathfrak{o}_3(\mathcal{H}_+, \mathcal{H}_-) \) whenever \(r \geq 1 \). And this follows by the restricted-root space decomposition of the finite-dimensional real reductive Lie algebras \(\mathfrak{o}(H) \cap \mathcal{H}_+, \mathcal{H}_+ \cap \mathcal{H}_-) \approx \mathfrak{o}(r, r) \) for \(r = 1, 2, \ldots \).

To prove the assertion on the global Iwasawa decomposition one can use Proposition 2.13 in a fashion similar to the one of the proof of Theorem 4.6. \(\square \)

Real groups of type BII.

Theorem 5.3. Let \(J : \mathcal{H} \to \mathcal{H} \) a conjugation and \(\overline{J} : \mathcal{H} \to \mathcal{H} \) an anti-conjugation such that \(JJ = J \overline{J} \). Then let \(\{ \xi_l \}_{l \in \mathbb{Z}} \setminus \{ 0 \} \) be an orthonormal basis in the Hilbert space \(\mathcal{H} \) such that \(J \xi_l = \xi_{-l} \) whenever \(l \in \mathbb{Z} \setminus \{ 0 \} \), and \(J \xi_{l \cdot (2s-1)} = \xi_{2s} \) and \(J \xi_{l \cdot (2s)} = -\xi_{(2s-1)} \) for \(s = 1, 2, \ldots \).

Pick a family of real numbers \(\{ \alpha_l \}_{l \in \mathbb{Z}} \setminus \{ 0 \} \) such that \(\alpha_{-l} = -\alpha_l \) for all \(l \in \mathbb{Z} \setminus \{ 0 \} \), \(\alpha_{2s-1} = \pm \alpha_{2s-1} \) whenever \(s \neq t \) and \(s, t \geq 1 \), \(\alpha_{2s-1} = -\alpha_{2s} \) for \(s = 1, 2, \ldots \), \(\lim_{l \to \infty} \alpha_l = 0 \), and \(\Phi(\alpha_l, \alpha_{-l}, \alpha_{2s-1}, \alpha_{2s}, \ldots) < \infty \), and define the self-adjoint operator

\[
X_0 = \sum_{l \in \mathbb{Z} \setminus \{ 0 \}} \alpha_l (\cdot | \xi_l) \xi_l \in \mathcal{B}(\mathcal{H}).
\]

Then \(X_0 \) is an Iwasawa regular element of \(\mathfrak{o}_3(\mathcal{H}) \) and the corresponding Iwasawa decomposition is

\[
(5.3) \quad \mathfrak{o}_3(\mathcal{H}) = (\mathfrak{u}_3 \cap \mathfrak{o}_3(\mathcal{H})) + (\mathfrak{a}_3, \mathfrak{X}_0 \cap \mathfrak{o}_3(\mathcal{H})) + (\mathfrak{n}_3, \mathfrak{X}_0 \cap \mathfrak{o}_3(\mathcal{H}))
\]

(\text{where } \mathfrak{u}_3, \mathfrak{a}_3, \mathfrak{X}_0, \text{and } \mathfrak{n}_3, \mathfrak{X}_0 \text{ are the ones defined in Proposition 4.3}).

Moreover, if \(G \) stands for the connected 1-component of \(\mathcal{O}_3^2(\mathcal{H}) \), then there exists a global Iwasawa decomposition \(\mathfrak{m} : K \times A \times \mathbf{N} \to G \) corresponding to (5.3). In addition we have \(AN = NA \), and both groups \(A \) and \(\mathbf{N} \) are simply connected.

Proof. The existence of the orthonormal basis \(\{ \xi_l \}_{l \in \mathbb{Z}} \setminus \{ 0 \} \) as in the statement follows by Lemma 3.6. Moreover, by Lemma 3.8 we have \(X_0 \in \mathfrak{o}_3 \). On the other hand, since \(X_0 = \sum_{l \geq 1} \alpha_l (\cdot | \xi_l) \xi_l - (\cdot | \xi_{-l}) \xi_{-l} \), it follows (see the proof of Lemma 3.8 b) that

\[
\overline{J}X_0\overline{J}^{-1} = \sum_{l \geq 1} \alpha_l (\cdot | \xi_l) \overline{J} \xi_l - (\cdot | \xi_{-l}) \overline{J} \xi_{-l}).
\]

Now, since \(\overline{J} \xi_{(2s-1)} = \xi_{2s} \), \(\overline{J} \xi_{(2s)} = -\xi_{(2s-1)} \), and \(\alpha_{2s-1} = -\alpha_{2s} \) for \(s = 1, 2, \ldots \), we see that \(\overline{J}X_0\overline{J}^{-1} = X_0 \). Thus \(X_0 \in \mathfrak{gl}_3(\mathcal{H}; \mathbb{H}) \).

By using the projections onto the subspaces \(\mathcal{H}_s = \text{span} \{ \xi_l, \xi_{-1}, \xi_2, \xi_{-2}, \ldots, \xi_s, \xi_{-s} \} \) and Corollary 2.13 as in the proof of Proposition 5.2 it then follows that \(X_0 \) is an Iwasawa quasi-regular element of \(\mathfrak{o}_3(\mathcal{H}) \) and the corresponding Iwasawa decomposition looks as asserted. It remains to prove that \(X_0 \) is actually an Iwasawa regular element of \(\mathfrak{o}_3(\mathcal{H}) \). And this fact can be obtained as in the proof of Proposition 4.7. Specifically, denote \(\mathcal{V}_s = \mathbb{C} \xi_1 + \mathbb{C} \xi_2 + \mathbb{C} \xi_3 + \mathbb{C} \xi_4 + \mathbb{C} \xi_5 \) and \(\mathcal{V}_s'' = \mathbb{C} \xi_{-2s} + \mathbb{C} \xi_{-2s+1} \), and \(\mathcal{V}_s' = \mathcal{V}_s \setminus \mathcal{V}_s'' \).\(s = 1, 2, \ldots \). Let \(X = X^* \in \mathfrak{o}_3 \) such that \([X, X_0] = 0 \). Since \(\alpha_{2s-1} \neq \pm \alpha_{2s-1} \) whenever \(s \neq t \) and \(s, t \geq 1 \), it follows that \(X \) leaves each of the subspaces \(\mathcal{V}_s \) and \(\mathcal{V}_s'' \) invariant for \(s = 1, 2, \ldots \). Since \(X = X^* \), it follows that \(X \) has eigenvectors \(\nu_s' \in \mathcal{V}_s \setminus \{ 0 \} \) and \(\nu_s'' \in \mathcal{V}_s'' \setminus \{ 0 \} \). Let \(\gamma_s', \gamma_s'' \in \mathbb{R} \) be the corresponding eigenvalues, so that \(X \nu_s' = \gamma_s' \nu_s' \) and \(X \nu_s'' = \gamma_s'' \nu_s'' \). On the other hand the anti-conjugation \(\overline{J} \) satisfies \(\overline{J} \mathcal{V}_s' \subseteq \mathcal{V}_s' \) and \(\overline{J} \mathcal{V}_s'' \subseteq \mathcal{V}_s'' \) hence both \(\mathcal{V}_s' \) and \(\mathcal{V}_s'' \) have natural structures of quaternionic vector space. By counting dimensions, we get \(\mathcal{V}_s' = \mathbb{H} \nu_s' \) and \(\mathcal{V}_s'' = \mathbb{H} \nu_s'' \). The operator \(X \in \mathfrak{gl}_3(\mathcal{H}; \mathbb{H}) \) is \(\mathbb{C} \)-linear and...
$X \tilde{J} = JX$, hence for every $q \in \mathbb{H}$ we have $X(qv') = qXv' = \gamma_s(qv')$, so that $X\xi = \gamma_s'\xi$ whenever $\xi \in \mathcal{V}_s'$. Similarly $X\xi = \gamma_s'\xi$ whenever $\xi \in \mathcal{V}_s''$. Since $\mathcal{H} = \bigoplus_{s \geq 1} (\mathcal{V}_s' \oplus \mathcal{V}_s'')$, it then follows that $[X_1, X_2] = 0$ whenever $X_j = X_j^* \in \mathcal{A}(\mathcal{H})$ and $[X_j, X_0] = 0$ for $j = 1, 2$.

To prove the assertion on the global Iwasawa decomposition one can use Proposition 6.6 in a fashion similar to the one of the proof of Theorem 4.6. \qed

6. IWASAWA DECOMPOSITIONS FOR GROUPS OF TYPE C

Just as in Sections 4 and 5 we let \mathcal{H} be a complex separable infinite-dimensional Hilbert space, Φ a mononormalizing symmetric norming function whose Boyd indices are non-trivial, and denote the corresponding separable norm ideal by $\mathcal{J} = \mathcal{G}^{(0)} \subseteq \mathcal{B}(\mathcal{H})$. As above, we shall use the methods of Section 2 to get global Iwasawa decompositions for classical groups of type C associated with the operator ideal \mathcal{J}.

Complex groups of type C.

Theorem 6.1. Let $\tilde{J} : \mathcal{H} \to \mathcal{H}$ be an anti-conjuation and $\{\tilde{\xi}_l\}_{l \in \mathbb{Z} \setminus \{0\}}$ an orthonormal basis in \mathcal{H} such that $\tilde{J}\tilde{\xi}_{l \pm 1} = \mp \tilde{\xi}_{l \mp 1}$ for $l = 1, 2, \ldots$. Now pick a family of mutually different real numbers $\{\alpha_l\}_{l \in \mathbb{Z} \setminus \{0\}}$ satisfying the conditions

$$\alpha_{-l} = -\alpha_l \text{ for all } l \in \mathbb{Z} \setminus \{0\}, \quad \lim_{l \to \infty} \alpha_l = 0, \quad \text{and} \quad \Phi(\alpha_1, \alpha_2, \ldots) < \infty,$$

and define the self-adjoint operator

$$X_0 = \sum_{l \in \mathbb{Z} \setminus \{0\}} \alpha_l (\cdot | \tilde{\xi}_l) \tilde{\xi}_l \in \mathcal{B}(\mathcal{H}).$$

Then X_0 is an Iwasawa regular element of \mathfrak{sp}_3 and the Iwasawa decomposition of \mathfrak{sp}_3 associated with X_0 is

$$\mathfrak{sp}_3 = (u_3 \cap \mathfrak{sp}_3) + (a_3 \cup x_0 \cap \mathfrak{sp}_3) + (n_3 \cup x_0 \cap \mathfrak{sp}_3)$$

(where u_3, a_3, x_0, and n_3 are the ones defined in Proposition 4.3).

Moreover there exists a global Iwasawa decomposition $m : K \times A \times N \to \mathfrak{sp}_3$ corresponding to (6.1). In addition we have $AN = NA$, and both groups A and N are simply connected.

Proof. One can proceed just as in the proof of Proposition 5.1 now using the orthogonal projection $\tilde{P} : \mathcal{H} \to \mathcal{H}$ onto the subspace $\mathcal{H}_r = \text{span} \{\tilde{\xi}_1, \tilde{\xi}_2, \tilde{\xi}_3, \ldots, \tilde{\xi}_r\}$ for $r = 1, 2, \ldots$. We omit the details.

To prove the assertion on the global Iwasawa decomposition one can use Proposition 6.6 in a fashion similar to the one of the proof of Theorem 4.6. \qed

Real groups of type CI.

Theorem 6.2. Let $\tilde{J} : \mathcal{H} \to \mathcal{H}$ be an anti-conjuation and $J : \mathcal{H} \to \mathcal{H}$ a conjugation such that $J \tilde{J} = \tilde{J} J$. Assume that $\{\xi_l\}_{l \in \mathbb{Z} \setminus \{0\}}$ an orthonormal basis in \mathcal{H} such that $J\xi_{l \pm 1} = \mp \xi_{l \mp 1}$ and $J\xi_{l \mp 1} = \xi_{l \pm 1}$ for $l = 1, 2, \ldots$. Now pick a family of mutually different real numbers $\{\alpha_l\}_{l \in \mathbb{Z} \setminus \{0\}}$ satisfying the conditions

$$\alpha_{-l} = -\alpha_l \text{ for all } l \in \mathbb{Z} \setminus \{0\}, \quad \lim_{l \to \infty} \alpha_l = 0, \quad \text{and} \quad \Phi(\alpha_1, \alpha_2, \ldots) < \infty,$$

and define the self-adjoint operator

$$X_0 = \sum_{l \in \mathbb{Z} \setminus \{0\}} \alpha_l (\cdot | \xi_l) \xi_l \in \mathcal{B}(\mathcal{H}).$$

Then X_0 is an Iwasawa regular element of $\mathfrak{sp}_3(\mathcal{H}; \mathbb{R})$ and the corresponding Iwasawa decomposition is

$$\mathfrak{sp}_3(\mathcal{H}; \mathbb{R}) = (u_3 \cap \mathfrak{sp}_3(\mathcal{H}; \mathbb{R})) + (a_3, x_0 \cap \mathfrak{sp}_3(\mathcal{H}; \mathbb{R})) + (n_3 \cup x_0 \cap \mathfrak{sp}_3(\mathcal{H}; \mathbb{R}))$$

(where u_3, a_3, x_0, and n_3 are the ones defined in Proposition 4.3).
Moreover, if G stands for the connected 1-component of $\text{Sp}_3(\mathbb{H}; \mathbb{R})$, then there exists a global Iwasawa decomposition m: $K \times A \times N \rightarrow G$ corresponding to (6.3). In addition we have $AN = NA$, and both groups A and N are simply connected.

Proof. The existence of an orthonormal basis as in the statement follows at once by Lemma 3.3. Let us prove that $X_0 \in \text{sp}_3(\mathbb{H}; \mathbb{R}) = \mathfrak{sp}_3 \cap \mathfrak{gl}(\mathbb{H}; \mathbb{R})$. In fact $X_0 \in \mathfrak{sp}_3$ by Proposition 6.3. On the other hand, for all $l \in \mathbb{Z} \setminus \{0\}$ and $\eta \in \mathcal{H}$ we have $J(\eta | \xi_j) = (\xi_l | \eta) \xi_l = (J \eta | J \xi_j) \xi_l = (J \eta | \xi_l) \xi_l$, whence $J X_0 = X_0 J$, and thus $J \in \mathfrak{gl}(\mathbb{H}; \mathbb{R})$ as well. Moreover, just as in the proof of Theorem 4.7 it follows that X_0 is an Iwasawa quasi-regular element of $\text{sp}_3(\mathbb{H}; \mathbb{R})$ and the corresponding Iwasawa decomposition looks as asserted. Finally, since X_0 is Iwasawa regular in $\text{sp}_3(\mathbb{H}; \mathbb{R})$ as well. To prove the assertion on the global Iwasawa decomposition one can use Proposition 2.15 in a fashion similar to the one of the proof of Theorem 4.6. □

Real groups of type CII.

Theorem 6.3. Assume that we have an orthogonal direct sum decomposition $\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$ with $\dim \mathcal{H}_+ = \dim \mathcal{H}_-$, and let $J: \mathcal{H} \rightarrow \mathcal{H}$ be an anti-conjugation such that $J(\mathcal{H}_\pm) \subseteq \mathcal{H}_\mp$. Also let $V = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ with respect to this orthogonal direct sum decomposition of \mathcal{H}. Now let $\bigcup_{l \in \mathbb{Z} \setminus \{0\}} \{e_l^+, e_l^-\}$ be an orthonormal basis in \mathcal{H} such that $J e_{-l} = \mp e_l$ and $V e_{\pm l} = \pm e_{\mp l}$ whenever $\varepsilon \in \{+, -\}$ and $l = 1, 2, \ldots$. Then define $f_l^\pm = (e_l^\mp \pm e_l^-)/\sqrt{2}$ for all $l \in \mathbb{Z} \setminus \{0\}$. Pick a family of mutually different real numbers $\{\lambda_l\}_{l \in \mathbb{Z} \setminus \{0\}}$ such that

$$\lambda_{-l} = -\lambda_l$$

whenever $l \in \mathbb{Z} \setminus \{0\}$, $\lim_{l \rightarrow \infty} \lambda_l = 0$, and $\Phi(\lambda_1, -\lambda_1, \lambda_2, -\lambda_2, \ldots) < \infty$,

and define the self-adjoint operator

$$X_0 := \sum_{l \in \mathbb{Z} \setminus \{0\}} \lambda_l ((\cdot | f_l^+) f_l^+ - (\cdot | f_l^-) f_l^-).$$

Then X_0 is an Iwasawa regular element of $\text{sp}_3(\mathcal{H}_+, \mathcal{H}_-)$ and the corresponding Iwasawa decomposition is

(6.3) $\text{sp}_3(\mathcal{H}_+, \mathcal{H}_-) = (u_3 \cap \text{sp}_3(\mathcal{H}_+, \mathcal{H}_-)) + (a_{3, X_0} \cap \text{sp}_3(\mathcal{H}_+, \mathcal{H}_-)) + (n_{3, X_0} \cap \text{sp}_3(\mathcal{H}_+, \mathcal{H}_-))$

(where u_3, a_3, X_0, and n_{3, X_0} are the ones defined in Proposition 4.3).

Moreover, if G stands for the connected 1-component of $\text{Sp}_3(\mathcal{H}_+, \mathcal{H}_-)$, then there exists a global Iwasawa decomposition m: $K \times A \times N \rightarrow G$ corresponding to (6.2). In addition we have $AN = NA$, and both groups A and N are simply connected.

Proof. The existence of the orthonormal basis $\bigcup_{l \in \mathbb{Z} \setminus \{0\}} \{e_l^+, e_l^-\}$ follows by Lemma 3.3. Just as in the proof of Proposition 4.3 we see that $X_0 \in u_3(\mathcal{H}_+, \mathcal{H}_-)$. On the other hand, Lemma 3.3 (b) shows that $X_0 \in \text{sp}_3$, and thus $X_0 \in \text{sp}_3 \cap u_3(\mathcal{H}_+, \mathcal{H}_-) = \text{sp}_3(\mathcal{H}_+, \mathcal{H}_-)$. Then, by using Corollary 2.13 along with the orthogonal projections on the subspaces $\mathcal{H}_r = \text{span} \left(\bigcup_{l \leq r\varepsilon \in \mathbb{R}} \{e_l^+, e_l^-\} \right)$ for $r = 1, 2, \ldots$, one can prove that X_0 is an Iwasawa quasi-regular element of $\text{sp}_3(\mathcal{H}_+, \mathcal{H}_-)$ and the corresponding Iwasawa decomposition looks as asserted. (See the proof of Proposition 4.3 for some more details.)

Now it remains to show that X_0 is actually an Iwasawa regular element of $\text{sp}_3(\mathcal{H}_+, \mathcal{H}_-)$. To this end denote $V_0^0 = \mathcal{C} f_j^0 + \mathcal{C} f_{-j}^0$, $V_1^0 = \mathcal{C} f_j^+ + \mathcal{C} f_{-j}^-$, and $V_j = V_j^0 \oplus V_j^1$ for $j \geq 1$. Then let $X = X^* \in \text{sp}_3(\mathcal{H}_+, \mathcal{H}_-)$ such that $[X, X_0] = 0$. We have $\lambda_{-l} = -\lambda_l$ whenever $l \in \mathbb{Z} \setminus \{0\}$, hence

$$X_0 := \sum_{j \geq 1} \lambda_j ((\cdot | f_j^+) f_j^+ + (\cdot | f_{-j}^-) f_{-j}^-) - \lambda_j ((\cdot | f_j^-) f_j^- + (\cdot | f_{-j}^+) f_{-j}^+).$$

Since the real numbers $\{\lambda_j\}_{j \geq 1}$ are mutually different and $[X, X_0] = 0$, it follows that X leaves both the subspaces V_j^0 and V_j^1 invariant whenever $j = 1, 2, \ldots$. Now let us keep $j \in \{1, 2, \ldots\}$ and $\varepsilon \in \{0, 1\}$ fixed.
Since $X = X^*$, there exist $x_0 \in V_f \setminus \{0\}$ and $t_0 \in \mathbb{R}$ such that $X x_0 = t_0 x_0$. On the other hand, since $V J = J V$, it follows directly that $\tilde{J}_1 := V \tilde{J}$ is an anti-conjugation on \mathcal{H}. In addition, since $V f_{\pm j} = f_{\pm j}$ and $\tilde{J} f_{\pm j} = \mp f_{\pm j}$, it follows that the linear subspace V_f is invariant under the anti-conjugation \tilde{J}_1. Let us now endow V_f with the corresponding quaternionic structure. Since $\dim_{\mathbb{C}} V_f = 2$, it follows that $\dim_{\mathbb{R}} V_f = 1$, and thus $V_f = \mathbb{H} a_0$. On the other hand $X = X^* \in \mathfrak{sp}_3(\mathcal{H}_+,\mathcal{H}_-)$, hence $X V = -VX$ and $\tilde{J} X = -J X$, whence $X \tilde{J} = \tilde{J}_1 X$. Thus X is an \mathbb{H}-linear operator with respect to the quaternionic structure defined by the anti-conjugation \tilde{J}_1. Now, since $V_f = \mathbb{H} a_0$ and $X a_0 = t_0 a_0$, it follows that the restriction of X to V_f is given by the multiplication by the real number t_0. Since $\mathcal{H} = \bigoplus_{j \geq 1} (V_f \oplus V_f)$, it thus follows that the operators in $a_3 \cap \mathfrak{sp}_3(\mathcal{H}_+,\mathcal{H}_-)$ commute pairwise, and this completes the proof.

To prove the assertion on the global Iwasawa decomposition one can use Proposition 2.13 in a fashion similar to the one of the proof of Theorem 4.6.

7. Group decompositions for covering groups

The aim of this short section is to show that the Iwasawa decompositions constructed in Sections 3 and 6 can be lifted to any covering groups. We refer to [Ha72] and [Nec92a] for information on the homotopy groups of the classical Banach-Lie groups associated with the Schatten ideals. It is easy to see that the corresponding description of homotopy groups actually holds true for the classical Banach-Lie groups associated with any separable norm ideal.

Proposition 7.1. Let G be a connected Banach-Lie group, and K, A, and N connected Banach-Lie subgroups of G such that the multiplication map $m: K \times A \times N \to G$ is a diffeomorphism. In addition, assume that A and N are simply connected and $AN = NA$.

Now assume that we have a connected Banach-Lie group \tilde{G} with a covering homomorphism $e: \tilde{G} \to G$, and define $K := e^{-1}(K)$, $A := e^{-1}(A)$, and $N := e^{-1}(N)$. Then K, A, and N are connected Banach-Lie subgroups of \tilde{G} and the multiplication map $\tilde{m}: \tilde{K} \times \tilde{A} \times \tilde{N} \to \tilde{G}$ is a diffeomorphism.

Proof. The proof can be achieved by using straightforward infinite-dimensional versions of some standard ideas from the theory of Iwasawa decompositions of reductive groups (specifically, see the proofs of Theorem 6.31 and 6.46 in [Kn96]). We omit the details.

Corollary 7.2. Let \mathcal{H} be a complex separable infinite-dimensional Hilbert space, Φ a non-normalizing symmetric norming function whose Boyd indices are non-trivial, and denote the corresponding separable norm ideal by $J = \mathcal{H}_p^{(0)} \subseteq B(\mathcal{H})$. Then let $m: K \times A \times N \to G$ be the global Iwasawa decomposition given by any of Theorems 4.5, 4.6, 4.7, 4.8, 5.2, 5.3, 6.1, 6.2, and 6.3 for the connected 1-components of real or complex classical Banach-Lie groups. Now denote by $e: \tilde{G} \to G$ any covering group of G. If we define $\tilde{K} := e^{-1}(K)$, $\tilde{A} := e^{-1}(A)$, and $\tilde{N} := e^{-1}(N)$, then \tilde{K}, \tilde{A}, and \tilde{N} are connected Banach-Lie subgroups of \tilde{G} and the multiplication map $\tilde{m}: \tilde{K} \times \tilde{A} \times \tilde{N} \to \tilde{G}$ is a diffeomorphism.

Proof. Use Proposition 7.1.

Appendix A. Auxiliary facts on operator ideals

In this appendix we record some facts on operator ideals, stating them under versions appropriate for use in the main body of the present paper. We refer to [GK69], [GK70], [EL72], [EL72], [EL78], [KW02], [We05], [DFWW04], [KW06], and [Be06] for various special topics involving symmetric norm ideals related to the circle of ideas discussed here.

Let \mathcal{H} be a complex Hilbert space and \mathfrak{P} a maximal nest in $B(\mathcal{H})$. That is, \mathfrak{P} is a maximal linearly ordered set of orthogonal projections on \mathcal{H}. Then we denote $\text{Alg} \mathfrak{P} := \{ b \in B(\mathcal{H}) \mid \forall p \in \mathfrak{P} \quad bp = pb \}$ (the nest algebra associated with \mathfrak{P}).

In the following statement we need the notion of Boyd indices as used in [Ara78] (see also subsections 2.17–19 in [DFWW04]).
Theorem A.1. Assume that \mathcal{H} is a complex separable Hilbert space and \mathcal{P} is a maximal nest in $\mathcal{B}(\mathcal{H})$. Let Φ be a symmetric norming function whose Boyd indices are nontrivial and denote $\mathcal{J} = \mathcal{J}_{\Phi}^{(0)}$. Then for every $a \in \text{GL}_2(\mathcal{H})$ such that $0 \leq a$ there exist uniquely determined operators $d \in \text{GL}_2(\mathcal{H})$ and $r \in \mathcal{J}$ satisfying the following conditions:

- $0 \leq d \in \text{GL}_2(\mathcal{H}) \cap \text{Alg} \mathcal{P}$;
- $r \in \mathcal{J} \cap \text{Alg} \mathcal{P}$ and the spectrum of r is equal to $\{0\}$;
- $a = (1 + r^*)d(1 + r)$.

Proof. Theorem 4.1 in [Ar78] and Lemma 4.3 in [EL72] show that Theorem 4.2 in [En72] (or Theorem 6.2 in Chapter IV of [GK70]) applies for the operator ideals $\mathcal{J}_1 = \mathcal{J}_H = \mathcal{J}_{\Phi}^{(0)}$.

Corollary A.2. Let \mathcal{P}, Φ, and \mathcal{J} be as in Theorem A.1. Then for every $g \in \text{GL}_2(\mathcal{H})$ there exist the operators $b \in \text{GL}_3 \cap \text{Alg} \mathcal{P}$ and $u \in U_2(\mathcal{H})$ such that $g = ub$.

Proof. By applying Theorem A.1 for $a = g^*g$, we get the operators $d \in \text{GL}_3$ and $r \in \mathcal{J}$ such that $g^*g = (1 + r^*)d(1 + r)$. Now denote $c = 1 + r \in \text{GL}_3 \cap \text{Alg} \mathcal{P}$. Then $g^*g = c^d c^*d, d \geq 0$, and all of the operators g, c, and d are invertible, hence the operator $u := g^d c^{-1}d^{-1}$ is unitary. On the other hand, since $0 \leq d \in \text{GL}_3$, it is straightforward to prove that $d^{1/2} \in \text{GL}_3$, whence $u \in U_2(\mathcal{H})$.

In addition we have $b := d^{1/2} c \in \text{GL}_3 \cap \text{Alg} \mathcal{P}$ and $g = ub$, and this completes the proof.

Example A.3. Theorem A.1 and Corollary A.2 apply in particular for the Schatten ideal $\mathcal{J} = \mathcal{S}_p(\mathcal{H})$ if $1 < p < \infty$.

Acknowledgment

The author wishes to thank Professor Hendrik Grundling and Professor Gary Weiss for kindly drawing his attention to some relevant references, as well as Professor Mihai Şabac for some useful remarks.

This work was partially supported by Grant 2-CEx06-11-34/25.07.06 of the Romanian Government.

References

[Ara78] J. Arazy, Some remarks on interpolation theorems and the boundedness of the triangular projection in unitary matrix spaces, Integral Equations Operator Theory 1 (1978), no. 4, 453–495.

[Arv67] W.B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578–642.

[Arv75] W.B. Arveson, Interpolation problems in nest algebras, J. Functional Analysis 20 (1975), no. 3, 208–233.

[Ba69] V.K. Balachandran, Simple L^*-algebras of classical type, Math. Ann. 180 (1969), 205–219.

[BD01] V. Bălean, J. Dorfmeister, Birkhoff decompositions and Iwasawa decompositions for loop groups, Tohoku Math. J. 53 (2001), 593–615.

[Be05] D. Beltiţă, On Banach-Lie algebras, spectral decompositions and complex polarizations. In: D. Gaspar, I. Goheberg, D. Timotin, F-H. Vasilescu, L. Zsidó (eds.), Recent Advances in Operator Theory, Operator Algebras, and Their Applications. XIXth International Conference on Operator Theory, Timisoara (Romania), 2002. Operator Theory: Advances and Applications, 153. Birkhäuser Verlag Basel, 2005, pp. 13–38.

[Be06] D. Beltiţă, Smooth Homogeneous Structures in Operator Theory, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 137. Chapman & Hall/CRC Press, Boca Raton-London-New York-Singapore, 2006.

[BP07] D. Beltiţă, B. Prunaru, Amenability, completely bounded projections, dynamical systems and smooth orbits, Integral Equations Operator Theory (to appear). (See preprint math.OA/0504313)

[BR05] D. Beltiţă, T.S. Ratiu, Symplectic leaves in real Banach Lie-Poisson spaces, Geom. Funct. Anal. 15 (2005), no. 4, 753–779.

[BR07] D. Beltiţă, T.S. Ratiu, Geometric representation theory for unitary groups of operator algebras, Adv. Math. 208 (2007), no. 1, 299–317.

[BS01] D. Beltiţă, M. Şabac, Lie Algebras of Bounded Operators, Operator Theory: Advances and Applications, 120, Birkhäuser Verlag, Basel, 2001.

[BFR93] A.M. Bloch, H. Flaschka, T.S. Ratiu, A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus, Invent. Math. 113 (1993), no. 3, 511–529.

[Bo80] R.P. Boyer, Representation theory of the Hilbert-Lie group $U(\delta)_2$, Duke Math. J. 47 (1980), no. 2, 325–344.

[Bo93] R.P. Boyer, Representation theory of infinite-dimensional unitary groups, in: Representation theory of groups and algebras, Contemp. Math., 145, Amer. Math. Soc., Providence, RI, 1993, pp. 381–391.
[Neu02] A. Neumann, An infinite dimensional version of the Kostant convexity theorem, *J. Funct. Anal.* 189 (2002), no. 1, 80–131.

[Ol78] G.I. Ol’shanski˘ı, Unitary representations of the infinite-dimensional classical groups U(p, ∞), SO0(p, ∞), Sp(p, ∞), and of the corresponding motion groups. (Russian) *Funktsional. Anal. i Prilozhen.* 12 (1978), no. 3, 32–44, 96.

[Ol88] G.I. Ol’ˇsanski˘ı, The method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups. (Russian) *Funktsional. Anal. i Prilozhen.* 22 (1988), no. 4, 23–37, 96.

[Pa88] A.L.T. Paterson, *Amenability*, Mathematical Surveys and Monographs, 29. American Mathematical Society, Providence, RI, 1988.

[Pic90] D. Pickrell, Separable representations for automorphism groups of infinite symmetric spaces, *J. Funct. Anal.* 90 (1990), no. 1, 1–26.

[Pit88] D.R. Pitts, Factorization problems for nests: factorization methods and characterizations of the universal factorization property, *J. Funct. Anal.* 79 (1988), no. 1, 57–90.

[Po86] S.C. Power, Factorization in analytic operator algebras, *J. Funct. Anal.* 67 (1986), no. 3, 413–432.

[Se57] I.E. Segal, The structure of a class of representations of the unitary group on a Hilbert space, *Proc. Amer. Math. Soc.* 8 (1957), 197–203.

[SV75] Ş. Strătil˘a, D. Voiculescu, Representations of AF-algebras and of the group U(∞), Lecture Notes in Mathematics, Vol. 486. Springer-Verlag, Berlin-New York, 1975.

[Tu05] A.B. Tumpach, *Variétés Kählériennes et Hyperkählériennes de Dimension Infinie*, Ph.D Thesis, École Polytechnique, Paris, 2005.

[Tu06] A.B. Tumpach, Mostow decomposition theorems for L∗-groups and applications to affine coadjoint orbits and stable manifolds, preprint [math-ph/0605039]

[Up85] H. Upmeier, *Symmetric Banach Manifolds and Jordan C* -Algebras*, North-Holland Math. Stud. 104, Notas de Matemática 96, North-Holland, Amsterdam, 1985.

[We05] G. Weiss, B(H)-commutators: a historical survey. In: D. Gaspar, I. Gohberg, D. Timotin, F.-H. Vasilescu, L. Zaido (eds.), Recent Advances in Operator Theory, Operator Algebras, and Their Applications. XIXth International Conference on Operator Theory, Timisoara (Romania), 2002. Operator Theory: Advances and Applications, 153. Birkhäuser Verlag Basel, 2005, pp. 307–320.

[Wo05] J.A. Wolf, Principal series representations of direct limit groups, *Compos. Math.* 141 (2005), no. 6, 1504–1530.

Institute of Mathematics “Simion Stoilow” of the Romanian Academy, RO-014700 Bucharest, Romania

E-mail address: Daniel.Beltita@imar.ro