SUPPLEMENTAL MATERIAL
SUPPLEMENTAL METHODS

Echocardiography

Echocardiograms were obtained by research technicians according to a standardized protocol consisting of 2D, M-mode, color flow Doppler, pulsed and continuous wave Doppler, and Tissue Doppler recordings with use of echo equipment (Vivid E9 with 2.5-3.5 MHz and 4V transducer, GE Vingmed). All recordings were digitally stored and analyzed off-line (EchoPAC PC, version 112) by four researchers blinded to glucose metabolism status and other data.

Measures of left ventricular diastolic function

According to 2016 guidelines average E/e’-ratio and maximum tricuspid regurgitation flow were used as functional measures of left ventricular (LV) diastolic function, and left atrial volume index (LAVI) and left ventricular mass index (LVMI) were used as structural measures of left ventricular diastolic function. In addition, left ventricular diastolic function was classified according to 2016 guidelines into normal, indeterminate or abnormal diastolic function.

Mitral inflow velocities were obtained with pulsed-wave Doppler in the apical four-chamber view with placement of the sample volume at the tips of the mitral leaflets. The peak flow velocity of the passive filling wave (E-wave) and active filling wave (A-wave) were measured. Pulsed Doppler tissue echocardiography was performed in the apical four-chamber view, with placement of the sample volume at the LV lateral and septal segment of the mitral annulus. At each site the peak myocardial systolic (S’), early (e’) and late diastolic (a’) longitudinal velocities were measured. The mitral E/e’ ratio’s (septal, lateral and average) were calculated.

Continuous wave Doppler recordings of the tricuspid flow were obtained in an apical four-chamber view. Maximal tricuspid valve regurgitation velocity was measured and the maximal gradient was calculated with use of the Bernoulli equation.

End-systolic left atrial volume was estimated in the four- and two-chamber view with use of the modified Simpson’s method. Left atrial volume from biplane measurements was indexed to body surface area (BSA) calculated according to Mosteller.

End-diastolic and end-systolic interventricular septum (IVSD, IVSS), posterior wall thickness (PWTD, PWTS), and LV diameters (LVEDD, LVESD) were determined in the parasternal long axis view, between the tip of the mitral leaflets and the chordae level perpendicular to the LV long axis. LV mass (LVM) was then calculated as 0.8*1.04* ((LVEDD+IVSD+PWDT)³−(LVEDD³)+0.6). LVM was indexed (LVMI) by height².4².4³

In addition, left ventricular diastolic function was classified according to current guidelines (i.e. average E/e’>14, septal e’<7 or lateral e’<10, tricuspid regurgitation>2.8,
LAVI>34) into normal, indeterminate or abnormal diastolic function. If ≥2 criteria were missing, diastolic function was classified as not specified.

Other echocardiography variables

End-diastolic and end-systolic LV volumes (LVEDV, LVESV) were determined in the apical four- and two-chamber view with use of the modified Simpson’s method. Systolic function was defined with the use of Simpson’s LV ejection fraction calculated from biplane LVEDV and LVESV measurements. The presence of wall motion abnormalities was evaluated by a trained researcher and checked by a senior cardiologist.

Valve function was investigated in a qualitative and semi-quantitative way. The global severity of valve stenosis and regurgitation was based on valve morphology, color Doppler images, transvalvular (mean) gradient and jet velocity with the criteria specified in current guidelines. Significant valvular dysfunction was defined as any moderate or severe valve stenosis or regurgitation of the aortic, mitral, tricuspid or pulmonary valve or the presence of a valve prosthesis.

From the E-wave and A-wave the E/A ratio was calculated. Furthermore, the deceleration time (DT) of the E-wave was measured.

Pulmonary venous inflow velocities were obtained with pulsed-wave Doppler in the apical four-chamber view with placement of the sample volume into the right upper pulmonary vein. Peak systolic (S) and anterograde diastolic (D) velocities were measured.

Pulsed waved Doppler was obtained in the apical five-chamber view at the level of the LV outflow tract and the mitral inflow for assessment of closure to opening time (CTOT), isovolumetric contraction time (IVCT), ejection time (ET) and isovolumetric relaxation time (IVR).

Reproducibility of the analysis was assessed in 12 individuals (50% women; 57.8±11.5 years; four T2DM, four pre-diabetes) who were analysed by four observers. Intraclass correlation coefficients of observed agreement are described as below.
Sub-maximal cycle ergometer test: cardiorespiratory fitness

The sub-maximal cycle ergometer test to determine cardiorespiratory fitness (CRF) in W_{max} was performed as described previously. The ergometer test and echocardiography were performed at the same clinical visit. As an objective measure of CRF estimated maximum power output adjusted for body mass (W_{max}/kg) was used. W_{max} was estimated from a graded sub-maximal exercise protocol performed on a cycle ergometer system (CASETM version 6.6 in combination with e-bike, GE Healthcare, Milwaukee, WI, USA). Exclusion criteria for the sub-maximal cycle ergometer test were: having suffered from cardiovascular disease three months prior to the ergometer test, having an resting ECG with previously unknown abnormalities, having severe hypertension (SBP \geq180 and/or DBP \geq110), or being in the possession of an ICD/pacemaker. Participants eligible for the test were fitted with a blood pressure cuff on the upper left arm (Suntech Tango+TM, SunTech Medical, Inc. Morisville, NC, USA) and electrodes on the thorax to provide continuously a 12-leads ECG. In addition, (percentage of) predicted W_{max} was calculated by the formula of Jones et al.

As described previously, the protocol consisted of a short warm-up period and at most 7 stages with increasing work load. Participants were instructed to cycle at a cadence of 60-70 rotation per minute (rpm) during a short familiarization period without any external workload. For the first exercise stage, external workload was set at 25 W. Every consecutive 2 minutes external workload was increased with 25 W. At the end of each stage, heart rate (HR) and blood pressure were measured. Further, the participant was asked to provide a rating of perceived exertion (RPE) on the 15-point Borg-scale; an interval scale ranging from 6 („no exertion at all”) up to 20 („maximal exertion”). The exercise protocol was considered as „completed” when HR reached \geq 85% of the estimated maximum HR (220-age) or when a RPE \geq 17 was scored by the participant. If HR $<$ 85% or RPE $<$ 17 by the end of stage 7 (work

Variable	ICC (95% CI)	Variable	ICC (95% CI)	Variable	ICC (95% CI)
LVEDD	0.88 (0.75-0.96)	E peak mitral	0.95 (0.86-0.98)	S' LV septal	0.87 (0.48-0.97)
LVESD	0.94 (0.85-0.98)	A peak mitral	0.83 (0.53-0.95)	e' LV septal	0.96 (0.81-0.99)
IVSD	0.61 (0.29-0.85)	Dec. time E peak	0.86 (0.71-0.95)	a' LV septal	0.87 (0.56-0.96)
PWTD	0.71 (0.45-0.89)	A peak duration	0.92 (0.82-0.98)	S' LV lateral	0.86 (0.48-0.96)
LVEDV	0.59 (0.16-0.85)	S peak	0.86 (0.53-0.96)	e' LV lateral	0.93 (0.66-0.98)
LVESV	0.66 (0.23-0.88)	D peak	0.88 (0.62-0.96)	a' LV lateral	0.61 (0.14-0.87)
Left atrial volume	0.83 (0.59-0.94)	Tricuspid	0.70 (0.44-0.88)		

The data are given in intraclass correlation coefficients (ICC) with their 95% confidence interval (95% CI). For clarification of other abbreviations see previous text.
load of 175 W), the test was also stopped. The test could also be prematurely terminated on medical grounds or when the participant was unwilling to continue.

As described previously, submaximal values of HR and RPE with workload from each stage were extrapolated to 100% of maximum HR or an RPE of 20 and corresponding workload (=W\text{max}) using individual linear regression models. Using RPE to predict W\text{max} overcomes the issue that certain medical conditions, such as autonomous neuropathy and medication use (e.g. beta blockers) may affect the linear association of HR with power output. Consequently, this protocol is suitable for participants who otherwise would have been excluded from exercise testing. A previous substudy of The Maastricht Study demonstrated that estimated W\text{max} using HR (W\text{max} when HR reached 85%) was comparable to W\text{max} based on RPE (W\text{max} when a RPE ≥ 17 was scored).

As described previously, W\text{max} was calculated from HR values if the test was completed based on HR, i.e. HR ≥ 85% of estimated HR\text{max}. W\text{max} was calculated from RPE values if the test was completed based on RPE, i.e. RPE ≥ 17. In addition to completed tests, W\text{max} from uncompleted tests was calculated from HR if ≥ 75% of HR\text{max} was achieved and W\text{max} was calculated from RPE values if an RPE ≥ 15 was scored. A previous sub study of The Maastricht Study demonstrated that estimations of W\text{max} from these lower ranges of HR and RPE were found to be similar to completed tests. Tests where both 75% of HR\text{max} and RPE15 were not achieved were considered as invalid.

Covariates
We assessed fasting glucose, glycated hemoglobin (HbA1c), glucose metabolism status, total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL) cholesterol, total-to-HDL cholesterol ratio, triglycerides, body mass index (BMI), office blood pressure, 24-hour ambulatory blood pressure, medication use (glucose-lowering, antihypertensive and lipid-modifying), smoking status (never, former, current), alcohol consumption (non, low, high), medical cardiovascular history, serum creatinine, serum cystatin C, 24-hour urinary albumin excretion, educational level (low, intermediate, high) and (self-reported) physical activity as described previously. Glucose metabolism status was classified as described previously. For the present study impaired fasting glucose and impaired glucose tolerance were combined into prediabetes. Hypertension was defined as an office systolic pressure ≥ 140 mmHg, an office diastolic pressure ≥ 90 mmHg and(or) the use of antihypertensive medication. Alcohol consumption was classified as non-, low- (≤7 glasses per week for women; ≤14 glasses per week for men), or high-consumers (≥7 glasses per week for women and ≥14 glasses per week for men). Prior cardiovascular disease was defined as a self-reported history of myocardial infarction, cerebrovascular infarction or hemorrhage, and(or) vascular surgery (including percutaneous angioplasty) of the coronary, abdominal, peripheral
or carotid arteries. Prior coronary heart disease was defined as either 12-lead resting ECG signs of prior myocardial infarction (Minnesota code 1-1-1 to 1-2-854) and/or self-reported history of myocardial infarction. Presence of current atrial fibrillation or atrial flutter was classified on the 12-lead resting electrocardiogram by The Minnesota Code Classification System for electrocardiographic findings (code 8-3-1 or 8-3-254). Estimated glomerular filtration rate was calculated with the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation based on both serum creatinine and serum cystatin C.55 Presence of micro- or macro-albuminuria (an urinary albumin excretion of 30-300mg or an urinary albumin excretion of >300mg per 24 hours,56 respectively) was dichotomized. Level of education was assessed during the cognitive assessment and was classified into eight categories commonly used in the Netherlands:57 1) no formal education; 2) primary education; 3) lower vocational education; 4) intermediate general secondary education; 5) intermediate vocational education; 6) higher general secondary education; 7) higher vocational education; and 8) university level of education. For the present study, education level was further classified into low (level 1 to 3), intermediate (level 4 to 6) and high (level 7 to 8).58 Moderate-to-vigorous physical activity in hours per week was assessed with a modified version of the Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire.59
Table S1. Overview of population-based studies of the associations between measures of LV diastolic function and cardiorespiratory fitness.

Reference	Study design	Study population, N	Population characteristics	Echocardiographic measures of diastolic function reported	Measure of cardiorespiratory fitness reported	Adjustments reported	Main results: association of measures of diastolic function with cardiorespiratory fitness
Leite et al. (2017)¹¹	Asymptomatic volunteers from community-based population aged ≥ 18 years without moderate-to-severe valvular disease, pulmonary hypertension, and history of cardiac disease.	20	Mean age 51 years; 13 men / 7 women; 0 with diabetes.	Left atrium function by 2D speckle tracking (LA conduit strain rate); LVEDD, LVMi, LAVI, E/A-ratio, deceleration time, E/e'-ratio, S/D-ratio.	Peak oxygen uptake (VO2) via cardiopulmonary exercise testing by treadmill.	Unadjusted correlation (r); multivariable linear regression (beta) with adjustment for E/e’-ratio and age (only reported for significant associations).	After adjustment only LA conduit strain rate was associated with peak VO2. E/e’-peak VO2: r=-0.72; p<0.01. LA function: LA conduit strain rate – peak VO2: r=-0.82, p<0.01; beta=-0.69, p=0.02. Other measures (unadjusted significantly associated): LVEDD – peak VO2: r=0.47, p=0.04. After adjustment other measures were not associated with peak VO2.
Pellet et al. (2013)¹²	Community-based Louisiana healthy ageing study in individuals aged ≥60 years who underwent echocardiography and performed the CS-PFP-10 test without active atrial fibrillation and a calculated mitral valve area of less than 1.5 cm².	36	Age range 62-101 years; 15 men / 21 women; 6 with diabetes.	LAVI, pulmonary venous atrial reversal velocity, E/A-ratio, mitral a-wave duration, deceleration time, atrial reverse wave duration, E/e’-ratio and LVMi.	10-item continuous scale physical performance test (CS-PFP-10) with domains balance and coordination, endurance, lower body strength, upper body strength, upper body flexibility. 6 minute walking distance (6MWD)	Correlation (r) adjusted for age and sex and after correction for multiple comparisons (p<0.001).	After adjustment only LAVI was associated with total CS-PFP-10 and the endurance domain. LAVI – total CS-PFP-10: r=-0.59, p=0.0005. LAVI – endurance domain: r=-0.63, p=0.0002. After adjustment other measures were not associated with the CS-PFP-10 score (after correction for multiple comparisons).
Perry et al. (2011)¹³	Community-dwelling older adults aged ≥65 years without heart failure, valvular disease and atrial fibrillation.	89	Mean age 74 years (range 65-93); 41 men / 48 women; 6 with diabetes.	Normal diastolic function (E/A-ratio 0.75-1.5 and E/e’-ratio <10); grade I (E/A-ratio <0.75, regardless of E/e’-ratio), II (E/A-ratio 0.75-1.5 and E/e’-ratio >10) and III (E/A-ratio >1.5 and E/e’-ratio >10) dichotomized into LV diastolic dysfunction no/yes (grade I-III).	Normal diastolic function: LA conduit strain rate, LVEDV, LVMi, LAVI, E/A-ratio, deceleration time, E/e’-ratio, S/D-ratio.	Unadjusted correlation (r); multivariable linear regression adjusted for age, cardiovascular morbidity, sex, race, BMI, systolic blood pressure.	After adjustment LV diastolic dysfunction was not associated with 6MWD. LV diastolic dysfunction – 6MWD: 1013 versus 1128 feet; unadjusted r=-0.25 p=0.017; adjusted r=-0.44, p=0.365.
Okura et al. (2000)¹⁰	Healthy individuals who received medical checkup in Kobe Rehabilitation Hospital without atrial fibrillation, long-term use of medication, hypertension, diabetes mellitus, cardiovascular disease, exercise-limiting musculoskeletal, hematologic or pulmonary	160	Mean age 55 years; 101 men / 59 women; 0 with diabetes (excluded).	E-peak, A-peak, E/A-ratio, deceleration time, LVEDV, LV mass. No TDI measurements.	Metabolic equivalent (METs) via exercise testing by treadmill.	Unadjusted correlation (r); multivariable regression (beta (95% CI)) with E/A-ratio, vital capacity, BMI, age, hemoglobin (only reported for significant associations).	After adjustment only E/A ratio was associated with METs. E/A-ratio – METs: r=0.58, p<0.0001; beta=1.385 (0.796:1.975), p<0.001. Other measures (unadjusted significantly associated): E-peak – METs: r=0.24, p=0.0024. A-peak – METs: r=0.51, p=0.0001. Deceleration time – METs: r=0.30, p=0.0002. LVEDV – METs: r=0.19, p=0.0172.
diseases, and who had no positive results for ischemic heart disease by treadmill exercise test. Individuals from Framingham Offspring (Heart) study without coronary artery disease, congestive heart failure, valvular heart disease, atrial fibrillation, bundle branch block, pre-excitation, use of digoxin and beta-blockers.

Lauer et al. (1995)9

Individuals from Framingham Offspring (Heart) study without coronary artery disease, congestive heart failure, valvular heart disease, atrial fibrillation, bundle branch block, pre-excitation, use of digoxin and beta-blockers.

Mean age men 43 years, women 43 years; 1,408 men / 1,618 women; 32 men with diabetes and 14 women with diabetes.

LV mass indexed by height. No TDI measurements.

Metabolic equivalent (METs) via exercise testing by treadmill.

Multivariable linear regression analyses adjusted for age, BMI, cigarette smoking, beta-blocker therapy, hypertension treatment, number of awake sedentary hours spent per day.

Sex-stratified analyses showed that the association between LV mass index and exercise capacity in METs remained significant after adjustment (p=0.0001 for both sexes; numbers not given). Presence of LV hypertrophy was associated with reduced exercise capacity.

Studies in patients without cardiac ischemia referred for exercise testing

Genovesi-Ebert et al. (1994)8

Volunteers from medical and paramedical staff university Pisa and airport staff and borderline to severe essential hypertensive patients.

Mean age 45.8 years; 43 men / 8 women; diabetes status unknown. 20 volunteers and 34 patients.

A-peak, A/E-ratio, early filling fraction (ratio between velocity-time integral under the E-peak and that of the whole diastolic flow).

Exercise time via exercise testing by cycle ergometer.

Multivariable linear regression analyses with diastolic blood pressure, LV mass index, age and either A-peak, E/A-ratio or early filling fraction (only reported for significant associations).

After adjustment only A-peak and early filling fraction were associated with exercise time. A-peak – exercise time: r=0.54, p<0.0001; beta=0.077, p<0.05. Early filling fraction: r=0.51, p<0.001; beta=11.807, p<0.05. Other measures (unadjusted significantly associated): A/E-ratio – exercise time: r=0.46, p<0.001. LV mass – exercise time: r=0.31, p<0.025. LV mass index – exercise time: -0.38, p<0.01. After adjustment the other measures were not associated with exercise time. After adjustment only A/E-ratio and LVESV were associated with VO2. E/A-ratio – VO2: r=0.87; LVESV index – VO2: r=0.51; Other measures (unadjusted significantly associated): E/A-ratio – VO2: r=0.78, p<0.001; A-peak – VO2: r=0.73, p<0.001. LVESV index – VO2: r=0.61, p<0.001. E/A-ratio – VO2: r=0.51, p<0.001. LV mass – VO2: r=0.42, p<0.001. After adjustment the other measures were not associated with VO2.

Vanoverschelde et al. (1985)7

Normal sedentary volunteers and endurance athletes.

Mean age 36 (range 20-76) years, 9 endurance athletes: mean age 37 (range 26-51) years; 40 men / 26 women; diabetes status unknown.

E/A-ratio, E-peak, A-peak, LVESV index, IVRT, LV mass.

Peak oxygen uptake (VO2) via exercise testing by cycle ergometer.

Stepwise multivariable regression analyses with E/A-ratio, E-peak, A-peak, LVESV index, IVRT, systolic blood pressure at maximum exercise, age, LVESV index, heart rate at maximum exercise, LV mass, sex, resting heart rate, resting stroke index, LV ejection fraction, end-systolic wall stress, radius/thickness-ratio and mean velocity of fiber shortening.

After adjustment the other measures were not associated with METs.
Reference	Study design	Study population, N	Population characteristics	Echocardiographic measures of diastolic function reported	Measure of cardiorespiratory fitness reported	Adjustments reported	Main results: association of measures of diastolic function with cardiorespiratory fitness
Otto et al. (2011)	Patients who underwent exercise testing and echocardiography within 30 days with retrospectively low risk for coronary artery disease.	640	Mean age 49 years; 384 men / 256 women; 50 with diabetes.	LV mass index, LVEDD, E-peak, A-peak, E/A-ratio, deceleration time, e'-peak, E/e'-ratio. E/e'-ratio > 10. Presence of diastolic dysfunction: normal (E/A-ratio<0.8, e'<8cm/s, normal LA vol, E/e'-ratio not considered); Abnormal relaxation (E/A-ratio<0.8, e'<8 cm/s, variable LA vol, variable E/e'-ratio'); pseudonormal diastolic dysfunction (E/A-ratio>0.8, e'<8 cm/s, LA volume usually increased, and E/e'-ratio>15), and restrictive diastolic dysfunction (E/A-ratio>1.8, e'/ < 8cm/s, LA volume usually increased, and E/e'-ratio/ >15). Diastolic function categorized in normal, mild (impaired relaxation; E/A-ratio <0.75), moderate (pseudonormal; 0.75≤E/A-ratio<1.5 and LAVI ≥28 mL/m² and E/e'-ratio ≥10), or severe (restrictive; E/A-ratio >1.5 and LAVI ≥28 mL/m² and E/e'-ratio ≥10) dysfunction. Resting E/e'-ratio ≥15. Postexercise E/e'-ratio ≥15. LVEDD, deceleration time, LA volume index.	Metabolic equivalent (METs) < and ≥ 7 via exercise testing by treadmill.	Unadjusted comparisons of group METs < and ≥ 7; multivariable logistic regression (odds ratio (OR)) with adjustment from significant univariate analyses: age, sex, diabetes mellitus, hypertension, obesity, LV mass index, A-peak, E/A-ratio, e'-peak, S-peak, E/e'-ratio.	After adjustment only A-peak was associated with METs <7. A-peak unadjusted difference METs < and ≥ 7; p<0.001; OR 1.03, p<0.004. Other measures unadjusted significantly associated: LV mass index (p=0.011), A-peak (p<0.001), E/A-ratio (p<0.001), e'-peak (p<0.001), E/e'-ratio (p<0.001). After adjustment the other measures were not associated with METs <7. (unadjusted) E/e'-ratio > 10 was significantly higher in the MET <7 group vs MET ≥7 group (41.7% vs 9.4%, p=0.001), as was the presence of any degree of diastolic dysfunction (76.6% vs 34.1%, p=0.001).
Grewal et al. (2009)	Patients who underwent exercise echocardiography according to the Bruce protocol without atrial fibrillation, moderate or severe valvular heart disease, ejection fraction <50% evidence of myocardial ischemia on the test, or had poor image quality.	2,867	Mean age normal diastolic function 53 years, mild dysfunction 67 years, moderate or severe dysfunction 66 years (N=1,784/785/298); 1,569 men / 1,298 women; 290 with diabetes.	Stepwise multivariable regression beta (95% CI) with normal/mild/moderate and severe diastolic function or E/e'-ratio >15, age, sex, pulse pressure, heart rate, BMI, coronary artery disease, diabetes mellitus, hypertension, previous or current smoker; and considered but not significant: ejection fraction, wall motion score index, LVEDD, deceleration time, LA volume index, hyperlipidemia, systolic blood pressure, beta-blocker use, calcium channel blocker use, angiotensin converting enzyme	Metabolic equivalents (METs) via exercise testing by treadmill.	After adjustment mild and moderate diastolic dysfunction and resting and postexercise E/e' ≥15 were associated with lower METs. Mild dysfunction vs normal – METS: beta -0.70 (-0.88;-0.46), p<0.001. Moderate or severe dysfunction vs normal – METS: beta -1.30 (-1.52;-0.99), p<0.001. Resting E/e'-ratio ≥15 – METS: -0.41(-0.70;-0.11), p=0.007. Postexercise E/e'-ratio ≥15 – METS: -0.41 (-0.70;0.11), p=0.007. Other measures unadjusted significantly associated: LVEDD – METS: beta 0.08 (0.06;0.11), p<0.001. Deceleration time per 40 milliseconds – METS: beta -0.34 (-0.44;-0.26), p<0.001. LAVI >30 mL/m² – METS: beta -0.45 (-0.69;-0.26), p<0.001. After adjustment the other measures were not significantly associated with METs.	
Skaluba et al. (2004)15

Patients who underwent exercise echocardiography aged >18 years without pacemaker, severe native valvular disease or prosthetic heart valves and evidence of cardiac ischemia on the test.

Mean age 55 years; 59 men / 62 women; 16 with diabetes.

E-peak, A-peak, e’-peak, a’-peak, e’/a’-ratio, E/e’-ratio, LVEDD, LA area, deceleration time, isovolumetric relaxation time.

Metabolic equivalent (METs) ≤ and >7 via exercise testing by treadmill.

Unadjusted correlation; multivariable logistic and linear regression with adjustment for hypertension, age, coronary artery disease, diabetes, BMI, chronic renal insufficiency, LV hypertrophy, prevalence of outcome.

Of all the echo and clinical parameters assessed, E/Ea had the best correlation with exercise capacity ($r=0.684$, $p<0.001$) and was the strongest independent predictor of exercise capacity \leq 7 METs by multivariate analysis (prevalence-corrected odds ratio=12.6, $p<0.001$).

E/e’-ratio – METs: $r=0.684$, $p<0.001$.

E/e’-ratio \geq10 – METs \leq7: unadjusted OR 18.2(4.8-24.9), $p<0.001$; adjusted OR 12.6(4.2-22.2), $p<0.001$.

E/e’-ratio – METs (continuous): beta -0.441, $p<0.001$.

Other measures unadjusted significantly associated:

A-peak – METs: $r=0.290$, $p=0.001$.

e’-peak – METs: $r=0.482$, $p<0.001$.

e'/a' -ratio – METs: $r=0.450$, $p<0.001$.

After adjustment the other measures were not significantly associated with METs.

Abbreviations: A-peak, mitral late filling velocity peak; BMI, body mass index; CI, confidence interval; E-peak, mitral early filling velocity peak; IVRT, isovolumetric relaxation time; LA, left atrial; LAVI, left atrial volume index; LV, left ventricular; LVEDD, left ventricular end-diastolic diameter; LVEDV, left ventricular end-diastolic volume; S-peak, tissue Doppler imaging. e’-peak, a’-peak, S-peak, E/e’-ratio.
Table S2. General characteristics of the tissue Doppler imaging echocardiography study population according to tertiles of average E/e’-ratio

Average E/e’ ratio	Low [2.8-6.9] (n=213)	Middle [6.9-8.6] (n=213)	High [8.6-17.1] (n=213)	P-value
Demographics				
Men, %	56	56	48	0.081
Age, years	56±9	60±8	62±7	<0.001
Educational level, low/middle/high, %	12.7/32.5/54.7	16.4/44.1/39.4	17.8/46.5/35.7	0.001
Glucose metabolism status, NGM/prediabetes/T2D, %	71.8/14.1/14.1	58.2/17.8/23.9	41.8/20.2/38.0	<0.001
Prior cardiovascular disease, %	8	12	18	0.001
Prior coronary heart disease,%	2	5	8	0.015
Current atrial fibrillation or flutter, %a	0.0	1.0	0.0	0.984
Blood pressure				
Office systolic pressure, mmHg	129±16	134±16	143±19	<0.001
Office diastolic pressure, mmHg	75±9	76±10	78±10	0.001
24-hour systolic pressure, mmHgb	116±11	118±11	121±12	<0.001
Hypertension, %	32	50	72	<0.001
Metabolic variables				
BMI, kg/m²	25.4±3.1	26.4±3.6	27.9±3.8	<0.001
Waist, cm	92.1±10.7	94.7±11.5	97.7±12.2	<0.001
Total cholesterol, mmol/L	5.38±1.04	5.26±1.06	5.23±1.18	0.173
High-density lipoprotein, mmol/L	1.49±0.48	1.40±0.45	1.37±0.42	0.006
Low-density lipoprotein, mmol/L	3.36±0.90	3.23±0.96	3.18±1.04	0.052
Triglycerides, mmol/L	1.03[0.75;1.47]	1.18[0.85;1.73]	1.38[0.96;1.91]	<0.001
Total-to-HDL-cholesterol ratio	3.90±1.23	4.03±1.25	4.04±1.15	0.209
HbA1C, in %c	5.7±0.84	5.9±0.7	6.1±0.7	<0.001
Fasting plasma glucose, mmol/L	5.7±1.5	5.9±1.0	6.3±1.5	<0.001
Kidney function				
eGFR, ml/min 1.73m²	92.3±14.6	87.9±14.1	86.1±15.0	<0.001
Albuminuria, %	3.8	5.2	12.2	0.001
Lifestyle variables				
Smoking status: never/former/current, %	35.7/48.8/15.5	35.2/49.8/15.0	31.9/55.4/12.7	0.885
Alcohol use: no/low/high, %	13.6/58.2/28.2	16.0/56.3/27.7	20.7/46.0/33.3	0.772
Moderate to vigorous physical activity, hours/weekd	4.8[3.0;8.0]	5.0[3.0;8.3]	4.5[2.5;7.5]	0.439
Medication				
Anti-hypertensive medication, %	21	31	51	<0.001
RAS inhibitors, %	16	23	38	<0.001
Beta- blockers, %	7	16	24	<0.001
Diuretics, %	8	8	18	0.001
Calcium antagonists, %	4	4	10	0.005
Oral antidiabetics and/or insulin use	11	19	27	<0.001
Lipid-modifying medication, %	16	37	46	<0.001
Cardiorespiratory fitness (Wmax)	178.7±46.5	166.9±46.1	152.9±44.7	<0.001
Data are presented as mean ± SD, median [interquartile range] or frequencies (in %) as appropriate. Data present the tissue Doppler imaging echocardiography population for regression models 1-5. Linear trend was tested with ANOVA or chi-square test as appropriate. Abbreviations: eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin A1c; HDL, high-density lipoprotein; NGM, normal glucose metabolism; RAS, renin angiotensin system; T2D, type 2 diabetes.

Data Point	Total	NGM	Prediabetes	T2D
Cardiorespiratory fitness adjusted for body mass (W_max/kg)	2.36±0.57	2.15±0.49	1.93±0.49	<0.001
Predicted cardiorespiratory fitness (predicted W_max)	165.2±48.7	153.5±48.5	138.2±49.8	<0.001
Cardiorespiratory fitness (% of predicted W_max)	113.9±30.8	114.8±30.8	119.4±38.7	0.188
Mobility limitation, %*	17	16	24	0.059

Numbers for specific variables (total, NGM/prediabetes/ T2D) are: 610, 200/203/207; b24-hour blood pressure measurements 590, 193/192/205; cHbA1c 638, 212/213/213; dmoderate to vigorous physical activity 554, 190/178/186; eMobility limitation 636, 212/213/211.
Data are presented as mean ± SD, median [interquartile range] or frequencies (in %) as appropriate. Data present the tissue Doppler imaging echocardiography population for regression models 1-5. Linear trend was tested with ANOVA or chi-square test as appropriate. Abbreviations: eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin A1c; HDL, high-density lipoprotein; NGM, normal glucose metabolism; RAS, renin angiotensin system; T2D, type 2 diabetes. Numbers for specific variables (total, NGM/prediabetes/T2D) are:

- Mitral inflow (m/s):
 - Total: 62.9±6.6, 63.0±6.6, 63.1±6.6
 - Men: 61.9±6.4, 62.0±6.5, 62.1±6.6
 - Women: 66.4±6.4, 66.5±6.5, 66.6±6.6

- LA volume index (ml/m^2):
 - Total: 29.8±6.6, 30.0±6.6, 30.4±6.5
 - Men: 29.9±6.7, 31.5±7.1, 30.8±6.5
 - Women: 29.7±6.1, 28.2±5.2, 30.1±6.4

- LV mass index (g/m^2):
 - Total: 28.9±6.4, 29.0±6.5, 31.6±7.0
 - Men: 30.9±7.1, 30.0±7.1, 32.2±7.4
 - Women: 27.4±4.9, 27.8±5.7, 31.1±6.5

- LV mass index (g/m^3):
 - Total: 66.4±13.7, 64.8±12.9, 67.7±15.2
 - Men: 70.3±14.7, 68.6±13.5, 71.4±16.6
 - Women: 61.3±10.2, 60.1±10.3, 64.4±12.9

- LV diastolic function according to 2016 guidelines (normal, indeterminate, abnormal), n (%):
 - Total: 114/86/12 (53.5/40.8/5.6)
 - Men: 78/103/32 (36.6/48.4/15.0)
 - Women: 36/71/4 (15.5/61.5/23.0)

Other measures LV diastolic function:

- Early peak velocity, m/s:
 - Total: 0.60±0.13, 0.67±0.12, 0.75±0.14
 - Men: 0.71±0.13, 0.63±0.12, 0.72±0.14
 - Women: 0.59±0.12, 0.64±0.13, 0.71±0.13
- Active peak velocity, m/s:
 - Total: 0.60±0.12, 0.67±0.13, 0.75±0.14
 - Men: 0.71±0.13, 0.63±0.12, 0.72±0.14
 - Women: 0.60±0.12, 0.67±0.13, 0.75±0.14

- E/A ratio:
 - Total: 0.99[0.82;1.25], 1.02[0.81;1.20], 0.92[0.79;1.13]
 - Men: 1.03[0.84;1.27], 1.00[0.83;1.16], 0.93[0.79;1.09]
 - Women: 0.96[0.80;1.15], 0.99[0.83;1.14], 0.91[0.77;1.07]

- Deceleration time E-peak, msec:
 - Total: 198±40, 190±32, 196±32
 - Men: 201±38, 190±32, 200±32
 - Women: 195±39, 191±31, 198±31
- Isovolumetric relaxation time, msec:
 - Total: 95±20, 96±22, 95±22
 - Men: 97±21, 96±22, 96±22
 - Women: 93±20, 94±21, 94±21
- S/D ratio:
 - Total: 1.39±0.33, 1.41±0.31, 1.44±0.32
 - Men: 1.41±0.31, 1.43±0.32, 1.45±0.33
 - Women: 1.37±0.31, 1.39±0.32, 1.40±0.33

Wall motion abnormalities, n yes (%):
- Total: 3 (1.4), 0 (0.0), 1 (0.5)
- Men: 2 (0.9), 0 (0.0), 1 (0.5)
- Women: 1 (0.5), 0 (0.0), 0 (0.0)

Valvular dysfunction (moderate or severe), n (%):
- Total: 22/13 (13.5), 18 (8.5)
- Men: 20/10 (11.4), 18 (8.5)
- Women: 2/3 (15.4), 0 (0.0)

Data for specific variables (total, NGM/prediabetes/T2D) are:
- Maximum tricuspid regurgitation flow:
 - Total: 1.90±0.42, 1.86±0.45, 1.96±0.52
 - Men: 1.90±0.42, 1.86±0.45, 1.96±0.52
 - Women: 1.90±0.42, 1.86±0.45, 1.96±0.52

- Mitral regurgitation flow:
 - Total: 636, 213/210/212
 - Men: 636, 213/210/212
 - Women: 636, 213/210/212

- LA volume index:
 - Total: 637, 212/212/213
 - Men: 637, 212/212/213
 - Women: 637, 212/212/213

- LV mass index:
 - Total: 634, 212/210/212
 - Men: 634, 212/210/212
 - Women: 634, 212/210/212

- LV diastolic function:
 - Total: 634, 212/211/211
 - Men: 634, 212/211/211
 - Women: 634, 212/211/211
Table S4. Clinical characteristics of the study population with tissue Doppler imaging echocardiography and individuals excluded from analyses due to missing values

Demographics	Normal glucose metabolism	Prediabetes	Type 2 Diabetes													
	Included (N=366)	Excluded (N=192)	P	Included (N=111)	Excluded (N=77)	P	Included (N=162)	Excluded (N=169)	P							
Gender, %	43	0	45	0.673	61	0	57	0.571	70	0	67	0.492	53	0	56	0.448
Age, years	60±8	0	58±9	0.230	62±7	0	61±8	0.403	62±7	0	64±7	0.123	59±8	0	61±9	0.004
Educational level, %	10.7±39.2/17.1±41.3/25.9±42.3/1	1	9.9±39.8/20.8±40.3/3/	0.933	8.7	0	39.0	0.783	0.9	21.3	0.135	43.3	1	37.7	0.094	
Glucose metabolism status, %*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Total cholesterol, mmol/L	91.0±13.7	12	90.7±14.0	0.845	85.1±14.6	1	86.1±13.4	0.845	86.4±16.2	7	82.1±18.6	0.028	88.8±14.7	20	86.5±16.3	0.023
High-density lipoprotein, mmol/L	1.54±0.49	3	1.39±0.35	<0.001	1.38±0.36	0	1.34±0.43	<0.001	1.19±0.32	1	1.10±0.33	0.010	1.42±0.45	4	1.27±0.38	<0.001
Low-density lipoprotein, mmol/L	3.54±0.87	3	3.58±1.00	0.644	3.39±0.99	0	3.42±1.10	0.644	2.53±0.78	1	2.50±0.97	0.728	3.26±0.97	4	3.13±1.12	0.056
Triglycerides, mmol/L	1.01	3	1.05±0.13	0.136	1.27	0	1.47	0.082	1.63	1	1.65	0.344	1.18	4	1.35	<0.001
Total-to-HDL cholesterol ratio	3.95±1.31	3	4.18±1.25	0.055	4.17±1.18	0	4.38±1.35	0.055	3.93±0.94	1	4.24±1.23	0.013	3.99±1.21	4	4.24±1.26	0.001
Gender, %	5.5±0.3	3	5.6±0.3	0.005	5.8±0.4	1	5.8±0.4	0.005	6.7±0.9	0	7.1±1.1	<0.001	5.9±0.7	4	6.2±1.0	<0.001
Fasting plasma glucose, mmol/L	5.2±0.4	1	5.3±0.4	0.043	6.0±0.5	0	5.9±0.6	0.043	7.6±1.7	8	8.2±2.4	0.017	5.9±1.4	2	6.5±2.1	<0.001
Kidney function	91.0±13.7	12	90.7±14.0	0.845	85.1±14.6	1	86.1±13.4	0.845	86.4±16.2	7	82.1±18.6	0.028	88.8±14.7	20	86.5±16.3	0.023
Smoking status	38.9±45.5/21.4	5	30.5±48.1/14.4	0.085	29.7±54.1/16.2	3	28.6±41.3/18.2	0.401	27.8±57.4/14.8	15	19.5±64.3/14.4	0.222	34.3±51.3/14.4	23	26.3±55.2/14.4	0.014
Alcohol use: no/low/high, %	13.2±56.2/30.7	8	14.1±47.3/38.6	0.116	14.4±52.3/31.1	3	10.8±58.1/31.1	0.673	26.5±48.2/16.8	14	34.2±49.0/16.8	0.118	16.7±53.5/14.4	25	21.4±49.9/29.1	0.200
Moderate to vigorous physical activity, hours/week

	5.5	69	5.3	0.425	4.5	25	3.0	0.040	3.6	74	3.0	0.021	4.8	168	4.5	0.001
Medication	Anti-hypertensive															
medication, %	20	0	25	0.169	40	0	53	0.065	63	0	82	<0.001	34	0	52	<0.001
RAS inhibitors, %	13	0	17	0.228	30	0	34	0.558	51	0	68	0.001	26	0	40	<0.001
Beta-blockers, %	6	0	12	0.046	19	0	27	0.176	33	0	37	0.448	15	0	24	<0.001
Diuretics, %	6	0	9	0.211	16	0	21	0.424	19	0	36	0.001	11	0	21	<0.001
Calcium	3	0	3	0.938	6	0	12	0.193	13	0	26	0.003	6	0	14	<0.001
Anticoagulants	-	-	-	-	-	-	-	-	74	0	82	0.072	33	0	45	<0.001
Oral antidiabetics and/or insulin use	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mobility limitation, %	14	0	21	0.019	36	0	35	0.891	75	0	76	0.825	19	0	32	<0.001
Average E/e' ratio	7.6±1.9	106	8.1±2.6	0.055	8.6±2.4	42	8.3±2.3	0.647	8.9±2.3	96	10.0±3.5	0.013	8.1±2.2	244	8.9±3.0	0.001
Diastolic LV function	162/161/42	27/51/11	25/67/19	10/21/6	38/92/32	16/41/18	225/321/93	53/113/35								
(normal, indeterminate, abnormal), n (%)	(44.4/44.1/103)	(30.5/37.3/103)	(22.5/60.4/40)	(27.0/56.8/856)	(23.5/56.8/94)	(21.3/54.7/748)	(35.2/55.2/237)	(26.4/56.2/0.064)								
Cardiorespiratory fitness	168.9±48.6	85	158.7±46.8	0.055	168.8±46.1	42	159.8±57.8	0.055	158.1±42.7	101	156.3±50.6	0.003	166.2±46.9	228	158.1±49.8	0.034
Cardiorespiratory fitness adjusted for body mass	2.28±0.55	85	2.13±0.57	0.012	2.08±0.48	42	2.00±0.72	0.605	1.89±0.49	101	1.73±0.54	0.034	2.15±0.55	228	1.98±0.61	<0.001

Data are presented as mean ± SD, median [interquartile-range] or frequencies (in %) as appropriate. Data present the tissue Doppler imaging echocardiography study population for regression models 1-3. Significant difference between the tissue Doppler imaging echocardiography study population and excluded individuals with missing values in models 1 to 3 was tested by independent t-test or chi-square test as appropriate. Abbreviations: BMI, body mass index; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin A1c; HDL, high-density lipoprotein; MINI, mini-international neuropsychiatric interview; NGM, normal glucose metabolism; PHQ, patient health questionnaire; T2D, type 2 diabetes. *The total number of missing in the study population is listed here. For the covariates included in regression models 1 to 3, the number of individuals available in the excluded group was 192/77/162/438 for respectively normal glucose metabolism, prediabetes, type 2 diabetes and the total study population, minus the number of missing in the study population. For the covariates not included in regression models 1 to 3, the number of individuals available in the study population and in regression models 1 to 3 are indicated with footnotes to it for respectively normal glucose metabolism, prediabetes, type 2 diabetes and the total study population. †=Educational level was available in 365/111/162/638 in the study population and 192/77/169/438 in the excluded group; ‡=Current atrial fibrillation or flutter was available in 350/103/157/610 in the study population and 184/74/161/419 in the excluded group; §=24-hour blood pressure measurements were available in 340/101/149/590 in the study population and 175/68/149/392 in the excluded group; ||=HbA1c was available in 365/110/162/637 in the study population and 190/77/169/436 in the excluded group; ||=Fasting plasma glucose was available in 366/111/162/639 in the study population and in 89/37/75/201 in the excluded group; |||=in the excluded group 107/35/68/210 were excluded due to missing on echocardiographic analyses or covariates.
Table S5. Clinical characteristics of the study population with 2D echocardiography and individuals excluded from analyses due to missing values

Demographics	Normal glucose metabolism	Prediabetes	Type 2 Diabetes	Total study population
Men, %	Included (N=380) 24 0 48	Included (N=115) 59 0 60	Included (N=177) 68 0 70	Included (N=672) 52 0 58
Age, years	Number of missings 0.232	Number of missings 0.876	Number of missings 0.813	Number of missings 0.043
Educational level, %**	Excluded (N=178) 58±9 0.526	Excluded (N=73) 62±8 0.890	Excluded (N=154) 63±7 0.081	Excluded (N=405) 59±8 0.007
Glucose metabolism status, N/CD/pre diabetes/T2D, %	-	-	-	-
Prior cardiovascular disease, %	Included (N=178) 10 16 13	Included (N=73) 15 6 21	Included (N=154) 20 23 41	Included (N=405) 13 45 25
Prior coronary heart disease, %	Included (N=178) 3 1 7	Included (N=73) 6 0 7	Included (N=154) 10 1 16	Included (N=405) 6 2 10
Current atrial fibrillation or flutter, %**	Included (N=178) 0 24 1.8	Included (N=73) 0 11 2.9	Included (N=154) 1.2 13 4.1	Included (N=405) 0.3 48 2.8
Blood pressure				
Office systolic pressure, mmHg	Included (N=380) 130±16 0	Included (N=115) 138±16 1	Included (N=177) 144±17 0	Included (N=672) 135±17 1
Office diastolic pressure, mmHg	Included (N=380) 75±10 0	Included (N=115) 79±10 1	Included (N=177) 79±9 0	Included (N=672) 76±10 1
24-hour systolic pressure, mmHg	Included (N=380) 116±11 43	Included (N=115) 121±13 19	Included (N=177) 122±11 33	Included (N=672) 118±11 95
24-hour diastolic pressure, mmHg	Included (N=380) 73±8 43	Included (N=115) 77±5 20	Included (N=177) 73±7 33	Included (N=672) 74±7 95
Hypertension, %	Included (N=380) 37 0 46	Included (N=115) 61 0 72	Included (N=177) 80 0 94	Included (N=672) 53 1 69
Metabolic variables				
BMI, kg/m²	Included (N=380) 25.6±3.7 0	Included (N=115) 26.3±3.8 0	Included (N=177) 28.1±4.5 0	Included (N=672) 26.9±4.1 1
Waist, cm	Included (N=380) 90.9±10.9 2	Included (N=115) 98.8±11.6 0	Included (N=177) 104.2±11.4 1	Included (N=672) 95.7±12.6 3
Total cholesterol, mmol/L	Included (N=380) 5.59±1.00 3	Included (N=115) 5.47±1.11 0	Included (N=177) 4.49±0.92 1	Included (N=672) 5.28±1.11 4
High-density lipoprotein, mmol/L	Included (N=380) 1.53±0.48 3	Included (N=115) 1.39±0.37 0	Included (N=177) 1.18±0.31 1	Included (N=672) 1.41±0.45 4
Low-density lipoprotein, mmol/L	Included (N=380) 3.54±0.88 3	Included (N=115) 3.39±1.00 0	Included (N=177) 2.54±0.79 1	Included (N=672) 3.25±0.98 4
Triglycerides, mmol/L	Included (N=380) 1.01 [0.76;1.41] 3	Included (N=115) 1.32 [0.90;1.79] 0	Included (N=177) 1.66 [1.17;2.09] 0	Included (N=672) 1.19 [0.85;1.75] 4
Total-to-HDL cholesterol ratio	Included (N=380) 3.96±1.30 3	Included (N=115) 4.15±1.17 0	Included (N=177) 3.95±0.95 1	Included (N=672) 3.99±1.20 4
Hba1C, in %	Included (N=380) 5.52±0.3 3	Included (N=115) 5.90±0.4 1	Included (N=177) 6.8±1.0 0	Included (N=672) 5.9±0.8 4
Fasting plasma glucose, mmol/L	Included (N=380) 5.2±0.4 1	Included (N=115) 5.0±0.4 0	Included (N=177) 7.8±2.0 1	Included (N=672) 6.0±1.5 2
Kidney function	Included (N=380) 91.0±13.9 12	Included (N=115) 85.5±14.1 1	Included (N=177) 86.3±16.3 7	Included (N=672) 88.8±14.8 20
eGFR, ml/min 1.73m²	Included (N=380) 3.2 5	Included (N=115) 5.2 1	Included (N=177) 16.9 7	Included (N=672) 7.1 13
Albuminuria, %	Included (N=380) 38.6/46.2/15.0 5	Included (N=115) 26.8/31.0/4.5 3	Included (N=177) 25.6/31.0/4.5 15	Included (N=672) 25.7/31.0/4.5 15
Smoking status: never/former/current, %	Included (N=380) 39.5/45.5/5.0 3	Included (N=115) 28.7/31.0/4.5 3	Included (N=177) 26.6/59.3/4.5 15	Included (N=672) 34.1/57.8/4.5 23
Alcohol use: no/low/high, %	Included (N=380) 31.8/62.0/6.2 8	Included (N=115) 14.1/49.4/6.5 3	Included (N=177) 32.9/50.7/6.4 14	Included (N=672) 20.8/52.1/7.1 25
Cardiorespiratory fitness
Maximum tricuspid LV mass index, gr/m²

Physical activity, hours/week²	5.4	5.5	4.5	3.0	0.087	3.0	0.048	4.6	0.007
	[3.0, 8.9]	[3.0, 8.6]	[2.3, 8.6]	[1.5, 7.0]	[2.3, 8.5]	[1.4, 5.8]	[3.0, 7.8]	[1.6, 7.5]	

Medication
Anti-hypertensive medication, %
RAS inhibitors, %
Beta-blockers, %
Diuretics, %
Calcium antagonists, %
Oral antidiabetics and/or insulin use
Lipid-modifying medication, %

Mobility limitation, %¹
LA volume index, m²/m³
Total
Men
Women
LV mass index, gr/m²
Total
Men
Women
LV mass index, gr/m²
Total
Men
Women

Data are presented as mean ± SD, [interquartile-range] or frequencies (in %) as appropriate. Data present the two-dimensional echocardiography study population for regression models 1-3. Significant difference between the tissue Doppler imaging echocardiography study population and excluded individuals with missing values in models 1 to 3 was tested by independent t-test or chi-square test as appropriate. Abbreviations: BMI, body mass index; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin A1c; HDL, high-density lipoprotein; MINI, mini-international neuropsychiatric interview; NGM, normal glucose metabolism; PHQ, patient health questionnaire; T2D, type 2 diabetes.

¹Mobility limitation was available in 378/114/176/668 in the study population and 167/68/130/365 in the excluded group; ²Moderate to vigorous physical activity was available in 336/96/151/583 in the study population and in 153/67/106/326 in the excluded group; ³Fasting plasma glucose was available in 380/115/177/672 in the study population and 177/73/153/403 in the excluded group; ⁴Moderate to vigorous physical activity was available in 336/96/151/583 in the study population and in 153/67/106/326 in the excluded group; ⁵=93/31/53/177 were excluded due to missing on echocardiographic analyses or covariate.
Table S6. Interaction effects between measures of LV diastolic function and glucose metabolism status (NGM as reference) in the associations with cardiorespiratory fitness

Measure	Model	B	95% CI	P	B	95% CI	P
Average E/e’-ratio	2	0.022	(-0.021;0.065)	0.310	0.023	(-0.017;0.062)	0.258
e’ average, cm/s	2	0.008	(-0.039;0.055)	0.731	-0.027	(-0.073;0.018)	0.239
Maximum tricuspid regurgitation flow, m/s	2	-0.152	(-0.341;0.037)	0.115	-0.070	(-0.245;0.105)	0.432
LA volume index, ml/m²	2	-0.017	(-0.031;-0.003)	0.016	-0.011	(-0.023;0.001)	0.069
LV mass index, gr/m²²	2	-0.010	(-0.024;0.004)	0.179	-0.012	(-0.024;-0.012)	0.065
LV mass index, gr/m²²	2	-0.005	(-0.011;0.002)	0.179	-0.020	(-0.012;-0.001)	0.021
Diastolic function 2016 guidelines							
Indeterminate	2	-0.163	(-0.337;0.012)	0.131	-0.122	(-0.321;0.077)	0.230
Abnormal	2	-0.183	(-0.493;0.126)	0.246	-0.146	(-0.409;0.117)	0.277

N=672 or 639 for the two-dimensional or tissue Doppler imaging echocardiography study population, respectively. The unstandardized regression coefficients (B) represent the interaction effect between one unit higher level of measure of diastolic function (or for diastolic function according to 2016 guidelines versus normal diastolic function) and (pre)diabetes as compared to normal glucose metabolism, in the association with cardiorespiratory fitness in Wmax/kg. Model 2: adjusted for age, sex, height, prior cardiovascular disease, smoking status, alcohol use, total-to-HDL-cholesterol ratio, triglycerides, use of lipid-modifying medication, estimated glomerular filtration rate, health status, office systolic pressure, use of antihypertensive medication, albuminuria and interaction term between measure of diastolic function and glucose metabolism status.

Abbreviations: CI, confidence interval; LA, left atrial; LV, left ventricular.
Table S7. Associations between measures of LV diastolic function and cardiorespiratory fitness (Wmax/kg) in the total study population

Model	B	95% CI	P
Average E/e’-ratio			
1	-0.048	(-0.066;-0.030)	<0.001
2	-0.037	(-0.055;-0.018)	<0.001
3	-0.025	(-0.043;-0.008)	0.005
e’ average, cm/s			
1	0.033	(-0.013;-0.054)	0.002
2	0.013	(-0.008;0.035)	0.222
3	0.007	(-0.013;0.027)	0.501
Maximum tricuspid regurgitation flow, m/s			
1	0.103	(0.023;0.183)	0.011
2	0.070	(-0.008;0.147)	0.080
3	0.047	(-0.024;0.118)	0.194
LA volume index, ml/m²			
1	0.010	(0.005;0.016)	<0.001
2	0.008	(0.003;0.014)	0.003
3	0.007	(0.002;0.011)	0.009
LV mass index, gr/m²²			
1	0.000	(-0.006;0.005)	0.894
2	0.003	(-0.003;0.009)	0.291
3	0.010	(0.004;0.015)	<0.001
Diastolic function 2016 guidelines			
Indeterminate			
1	-0.056	(-0.142;0.030)	0.202
2	-0.018	(-0.102;0.066)	0.676
3	0.035	(-0.043;0.113)	0.378
Abnormal			
1	0.022	(-0.099;0.144)	0.720
2	0.073	(-0.046;0.192)	0.231
3	0.093	(-0.018;0.203)	0.099

N=672 or 639 for the two-dimensional or tissue Doppler imaging echocardiography study population, respectively. The unstandardized regression coefficients (B) represent the difference in cardiorespiratory fitness in Wmax/kg per one unit higher level of measure of diastolic dysfunction, and for diastolic function according to 2016 guidelines versus normal diastolic function. Model 1: age, sex, height; Model 2: model 1 + prior cardiovascular disease, smoking status, alcohol use, total-to-HDL-cholesterol ratio, triglycerides, use of lipid-modifying medication, estimated glomerular filtration rate, health status, office systolic pressure, use of antihypertensive medication, albuminuria; model 3: model 2 + waist. Abbreviations: CI, confidence interval; LA, left atrial; LV, left ventricular.
Table S8. Associations between measures of LV diastolic function and cardiorespiratory fitness (Wmax/kg) – additional analyses with unindexed or other indexed measures of diastolic function

Model	Normal glucose metabolism (N=380)	Prediabetes (N=115)	Type 2 diabetes (N=177)
	B 95% CI P	B 95% CI P	B 95% CI P
LA volume index, ml/m²			
1	0.017 (0.010;0.025) <0.001	-0.003 (-0.015;0.010) 0.674	0.003 (-0.008;0.014) 0.516
2	0.015 (0.008;0.022) <0.001	-0.007 (-0.021;0.008) 0.357*	0.001 (-0.009;0.012) 0.804*
3	0.014 (0.007;0.021) <0.001	-0.006 (-0.018;0.007) 0.358	-0.002 (-0.011;0.007) 0.618
LA volume, ml			
1	0.003 (-0.001;0.007) 0.088	-0.006 (-0.011;0.000) 0.057	-0.004 (-0.009;0.001) 0.158
2	0.004 (0.000;0.008) 0.063	-0.007 (-0.014;-0.001) 0.026*	-0.004 (-0.009;0.001) 0.145*
3	0.007 (0.010;0.010) <0.001	-0.003 (-0.009;0.002) 0.247	-0.002 (-0.006;0.003) 0.412
LV mass index, gr/m²			
1	0.005 (-0.003;0.013) 0.224	-0.002 (-0.015;0.011) 0.722	-0.009 (-0.020;0.002) 0.097
2	0.009 (0.001;0.017) 0.035	0.001 (-0.013;0.015) 0.857	-0.006 (-0.017;0.005) 0.259*
3	0.015 (0.008;0.023) <0.001	0.009 (-0.004;0.022) 0.166	0.001 (-0.009;0.010) 0.859
LV mass index, gr/m²			
1	0.008 (0.005;0.012) <0.001	0.004 (-0.002;0.011) 0.171	0.001 (-0.004;0.007) 0.567
2	0.009 (0.005;0.012) <0.001	0.006 (-0.001;0.013) 0.904	0.002 (-0.003;0.007) 0.416*
3	0.008 (0.005;0.011) <0.001	0.005 (-0.001;0.011) 0.128	0.001 (-0.003;0.006) 0.587
LV mass, gr			
1	0.001 (0.000;0.003) 0.125	-0.001 (-0.004;0.002) 0.641	-0.002 (-0.004;0.000) 0.885
2	0.002 (0.000;0.004) 0.016	0.000 (-0.003;0.004) 0.939*	-0.001 (-0.004;0.001) 0.236*
3	0.004 (0.002;0.005) <0.001	0.002 (-0.001;0.005) 0.222	0.000 (-0.002;0.002) 0.897

N=672 or 639 for the two-dimensional or tissue Doppler imaging echocardiography study population, respectively. The unstandardized regression coefficients (B) represent the difference in cardiorespiratory fitness in Wmax/kg per one unit higher level of measure of diastolic function. Model 1: age, sex, height; Model 2: model 1 + prior cardiovascular disease, smoking status, alcohol use, total-to-HDL-cholesterol ratio, triglycerides, use of lipid-modifying medication, estimated glomerular filtration rate, health status, office systolic pressure, use of antihypertensive medication, albuminuria; model 3: model 2 + waist.

Abbreviations: CI, confidence interval; LA, left atrial; LV, left ventricular.

*Pinteraction<0.10, represents the P-value of the interaction effect between measures of diastolic function and (pre)diabetes as compared to normal glucose metabolism in the association with cardiorespiratory fitness.
Table S9. Associations between measures of LV diastolic function and cardiorespiratory fitness as % of predicted value Wmax

	Normal glucose metabolism (N=380/366)	Prediabetes (N=115/111)	Type 2 diabetes (N=177/162)						
	B	95% CI	P	B	95% CI	P	B	95% CI	P
Average E/e′-ratio									
1	-1.058	(-2.388;0.271)	0.118	-0.850	(-3.536;1.835)	0.532	-0.497	(-2.397;1.404)	0.607
2	-1.337	(-2.743;0.069)	0.062	0.065	(-3.025;3.155)	0.967	-1.044	(-3.028;0.940)	0.300
3	-1.513	(-2.923;-0.103)	0.035	-0.248	(-3.392;2.897)	0.876	-0.887	(-2.858;1.085)	0.375
e′ average, cm/s									
1	-0.428	(-1.751;0.895)	0.525	0.432	(-2.945;3.809)	0.800	-0.520	(-2.942;1.901)	0.672
2	-0.137	(-1.600;1.327)	0.854	-0.564	(-4.620;3.492)	0.783	-0.485	(-3.085;2.116)	0.713
3	-0.089	(-1.549;1.371)	0.905	-0.337	(-4.416;3.742)	0.870	-0.556	(-3.129;2.017)	0.670
Maximum tricuspid regurgitation flow, m/s									
1	4.710	(-1.014;10.434)	0.107	-5.746	(-16.742;5.251)	0.303	-0.964	(-9.213;7.286)	0.818
2	5.576	(-0.276;11.427)	0.062	-7.754	(-19.869;4.361)	0.207	-2.736	(-11.161;5.688)	0.522
3	6.003	(0.183;11.823)	0.043	-7.679	(-19.878;4.521)	0.215	-2.732	(-11.116;5.652)	0.521
LA volume index, ml/m²									
1	0.556	(0.190;0.923)	0.003	-0.307	(-1.187;0.573)	0.491	-0.091	(-0.664;0.481)	0.753
2	0.609	(0.230;0.989)	0.002	-0.465	(-1.454;0.524)	0.353*	-0.173	(-0.753;0.407)	0.556
3	0.629	(0.253;1.006)	0.001	-0.468	(-1.462;0.526)	0.352	-0.224	(-0.803;0.356)	0.447
LV mass index, gr/m²									
1	0.907	(0.525;1.288)	<0.001	0.526	(-0.369;1.420)	0.247	-0.017	(-0.585;0.551)	0.952
2	0.993	(0.599;1.386)	<0.001	1.012	(0.038;1.986)	0.042*	0.026	(-0.576;0.627)	0.933*
3	0.932	(0.529;1.334)	<0.001	1.031	(0.027;2.034)	0.044	0.125	(-0.485;0.735)	0.686

Diastolic function 2016 guidelines

	Model 1	Model 2	Model 3						
Indeterminate									
1	5.555	(0.164;10.947)	0.043	2.853	(-12.072;17.779)	0.705	-3.819	(-13.840;6.203)	0.453
2	5.056	(-0.469;10.582)	0.073	-1.388	(-17.184;14.408)	0.862	-3.372	(-13.738;6.994)	0.521
Abnormal									
1	4.480	(-1.074;10.033)	0.114	-2.827	(-18.814;13.161)	0.726	-2.430	(-12.725;7.865)	0.641
2	10.191	(1.879;18.504)	0.016	3.278	(-16.501;23.057)	0.743	-7.991	(-20.689;4.706)	0.216
3	10.763	(2.292;19.234)	0.013	5.380	(-15.103;25.864)	0.603	-7.676	(-20.698;5.345)	0.246*
4	10.604	(2.152;19.056)	0.014	4.706	(-15.790;25.203)	0.649	-7.504	(-20.387;5.378)	0.251

N=672 or 639 for the two-dimensional or tissue Doppler imaging echocardiography study population, respectively. The unstandardized regression coefficients (B) represent the difference in cardiorespiratory fitness in Wmax/kg per one unit higher level of measure of diastolic function, and for diastolic function according to 2016 guidelines versus normal diastolic function. Model 1: age, sex, height; Model 2: model 1 + prior cardiovascular disease, smoking status, alcohol use, total-to-HDL-cholesterol ratio, triglycerides, use of lipid-modifying medication, estimated glomerular filtration rate, health status, office systolic pressure, use of antihypertensive medication, albuminuria; model 3: model 2 + waist. Abbreviations: CI, confidence interval; LA, left atrial; LV, left ventricular.

*Pinteraction<0.04, represents the P-value of the interaction effect between measures of diastolic function and (pre)diabetes as compared to normal glucose metabolism in the association with cardiorespiratory fitness.
Model	Normal glucose metabolism (N=380/366)	Prediabetes (N=115/111)	Type 2 diabetes (N=177/162)						
	B	95% CI	P	B	95% CI	P	B	95% CI	P
Average E/e'-ratio									
2	-0.044	(-0.071;-0.016)	0.002	-0.030	(-0.072;0.012)	0.156	-0.037	(-0.072;-0.001)	0.043
2a	-0.039	(-0.067;-0.010)	0.008	-0.025	(-0.070;0.020)	0.280	-0.032	(-0.071;0.006)	0.101
2b	-0.045	(-0.075;-0.016)	0.003	-0.033	(-0.076;0.010)	0.135	-0.048	(-0.087;-0.009)	0.015
2c	-0.042	(-0.070;-0.014)	0.003	-0.028	(-0.070;0.014)	0.185	-0.038	(-0.074;-0.001)	0.041
2d	-0.044	(-0.072;-0.016)	0.002	-0.033	(-0.074;0.009)	0.120	-0.035	(-0.072;0.002)	0.063
2e	-0.037	(-0.066;-0.008)	0.012	-0.026	(-0.070;0.018)	0.242	-0.034	(-0.069;0.001)	0.059
2f	-0.046	(-0.076;-0.017)	0.002	-0.036	(-0.099;0.026)	0.251	-0.023	(-0.062;0.016)	0.246
2g	-0.044	(-0.071;-0.016)	0.002	-0.036	(-0.077;0.005)	0.086	-0.035	(-0.070;0.000)	0.047
2h	-0.049	(-0.079;-0.023)	0.001	-0.038	(-0.078;0.003)	0.066	-0.036	(-0.071;-0.001)	0.041
2i	-0.051	(-0.080;-0.025)	<0.001	-0.029	(-0.075;0.017)	0.218	-0.034	(-0.071;0.004)	0.077
2j	-0.049	(-0.077;-0.021)	<0.001	-0.028	(-0.073;0.018)	0.230	-0.032	(-0.069;0.005)	0.088
2k	-0.044	(-0.071;-0.017)	0.002	-0.031	(-0.073;0.011)	0.148	-0.037	(-0.073;0.001)	0.042
2l	-0.044	(-0.072;-0.016)	0.002	-0.028	(-0.070;0.015)	0.202	-0.037	(-0.073;-0.002)	0.041

3	-0.033	(-0.060;-0.007)	0.014	-0.015	(-0.055;0.025)	0.450	-0.028	(-0.059;0.003)	0.077
3a	-0.029	(-0.055;-0.002)	0.033	-0.016	(-0.056;0.023)	0.409	-0.023	(-0.054;0.009)	0.156
3b	-0.029	(-0.055;-0.002)	0.035	-0.017	(-0.056;0.022)	0.394	-0.020	(-0.052;0.011)	0.207

E' average cm/s
2
2a
2b
2c
2d
2e
2f
2g
2h
2i
2j

Maximum tricuspid regurgitation flow, m/s

	2	2a	2b	2c	2d	2e	2f	2g	2h	2i	2j	2k	2l	3	3a	3b
	0.137	(0.023;0.252)	**0.019**	**-0.054**	(-0.213;0.134)	**0.653**	**-0.021**	(-0.175;0.133)	**0.785**							
	0.141	(0.023;0.259)	0.020	0.044	(-0.146;0.235)	0.645	-0.139	(-0.305;0.027)	0.101							
	0.132	(0.016;0.249)	0.026	-0.059	(-0.238;0.119)	0.513	-0.026	(-0.189;0.138)	0.758							
	0.134	(0.019;0.249)	0.022	-0.077	(-0.252;0.097)	0.382	-0.023	(-0.184;0.138)	0.779							
	0.138	(0.023;0.253)	0.019	-0.060	(-0.235;0.115)	0.499	-0.023	(-0.180;0.134)	0.772							
	0.146	(0.028;0.265)	0.016	-0.017	(-0.192;0.158)	0.847	0.019	(-0.139;0.177)	0.809							
	0.209	(0.084;0.335)	0.001	-0.069	(-0.298;0.161)	0.552	-0.016	(-0.200;0.168)	0.865							
	0.142	(0.027;0.256)	0.016	-0.028	(-0.198;0.143)	0.749	-0.025	(-0.179;0.129)	0.746							
	0.129	(0.015;0.243)	0.027	-0.023	(-0.198;0.151)	0.791	-0.022	(-0.175;0.131)	0.776							
	0.142	(0.021;0.262)	0.022	-0.042	(-0.233;0.149)	0.664	-0.027	(-0.189;0.134)	0.738							
	0.142	(0.021;0.262)	0.021	-0.040	(-0.229;0.149)	0.677	-0.023	(-0.184;0.137)	0.774							
	0.141	(0.027;0.255)	0.016	-0.062	(-0.235;0.110)	0.475	-0.024	(-0.181;0.132)	0.761							
	0.137	(0.022;0.252)	0.019	-0.040	(-0.216;0.135)	0.648	-0.022	(-0.176;0.133)	0.784							
	0.114	(0.007;0.222)	**0.037**	**-0.064**	(-0.218;0.090)	**0.411**	**-0.021**	(-0.153;0.111)	**0.754**							
	0.108	(0.001;0.216)	0.048	-0.044	(-0.198;0.111)	0.578	-0.021	(-0.154;0.112)	0.758							
	0.107	(0.000;0.214)	0.051	-0.048	(-0.202;0.107)	0.542	-0.024	(-0.156;0.107)	0.718							

N=672, 380/115/177 or 639, 366/111/162 for the two-dimensional or tissue Doppler imaging echocardiography study population, respectively. The unstandardized regression coefficients (B) represent the difference in cardiorespiratory fitness in Wmax/kg per one unit higher level of measure of diastolic function, and for diastolic function according to 2016 guidelines versus normal diastolic function. Model 1: age, sex, height; Model 2: model 1 + prior cardiovascular disease, smoking status, alcohol use, total-to-HDL-cholesterol ratio, triglycerides, use of lipid-modifying medication, estimated glomerular filtration rate, health status, office systolic blood pressure, use of antihypertensive medication, albuminuria; Model 2a: additional adjustment for moderate to vigorous physical activity (N=336/96/151 or N=322/94/138); Model 2b: exclusion of individuals with prior coronary heart disease (N=368/96/151 or N=355/104/148); Model 2c: exclusion of individuals with atrial fibrillation (N=364/107/169 or N=350/103/155); Model 2d: exclusion of individuals with wall abnormalities (N=377/114/173 or N=365/110/159); Model 2e: exclusion of individuals with valvular dysfunction (N=356/108/168 or N=343/104/154); Model 2f: exclusion of individuals with mobility limitations (N=332/83/122 or N=320/82/114); Model 2g: replacement of office systolic pressure with office diastolic pressure; Model 2h: replacement of office systolic pressure and antihypertensive medication with presence of hypertension; Model 2i: replacement of office systolic pressure with 24-hour diastolic pressure (N=351/103/163 or N=340/101/149); Model 2j: replacement of office systolic pressure with 24-hour diastolic pressure (N=351/103/163 or N=340/101/149); Model 2k: additional adjustment for renin-angiotensin-system-inhibitors; Model 3: model 2 + waist; Model 3a: replacement of waist with body mass index; Model 3b replacement of waist with weight.

Abbreviations: CI, confidence interval; LA, left atrial; LV, left ventricular.
Table S11. Additional analyses in the associations between measures of LV diastolic function and cardiorespiratory fitness

	Normal glucose metabolism (N=380/366)	Prediabetes (N=115/111)	Type 2 diabetes (N=177/162)							
	Model	B	95% CI	P	B	95% CI	P	B	95% CI	P
LA volume index, ml/m²	2	0.015	(0.008;0.022)	<0.001	-0.007	(-0.021;0.008)	0.357	0.001	(-0.009;0.012)	0.804
	2a	0.014	(0.006;0.022)	<0.001	0.008	(-0.010;0.025)	0.327	-0.002	(-0.014;0.009)	0.662
	2b	0.015	(0.008;0.023)	<0.001	-0.004	(-0.019;0.010)	0.580	0.000	(-0.011;0.012)	0.935
	2c	0.014	(0.007;0.022)	<0.001	-0.006	(-0.021;0.008)	0.384	0.005	(-0.007;0.017)	0.432
	2d	0.015	(0.007;0.022)	<0.001	-0.006	(-0.020;0.009)	0.434	0.003	(-0.008;0.014)	0.580
	2e	0.016	(0.008;0.024)	<0.001	0.000	(-0.016;0.016)	0.982	0.005	(-0.007;0.018)	0.398
	2f	0.016	(0.008;0.023)	<0.001	-0.011	(-0.027;0.006)	0.206	-0.002	(-0.014;0.010)	0.726
	2g	0.014	(0.006;0.021)	<0.001	-0.009	(-0.023;0.005)	0.220	0.001	(-0.010;0.011)	0.881
	2h	0.014	(0.007;0.022)	<0.001	-0.005	(-0.019;0.009)	0.467	0.002	(-0.009;0.012)	0.757
	2i	0.015	(0.007;0.022)	<0.001	-0.001	(-0.015;0.014)	0.901	0.000	(-0.011;0.011)	0.968
	2j	0.015	(0.007;0.023)	<0.001	-0.001	(-0.016;0.013)	0.896	0.000	(-0.011;0.011)	0.988
	2k	0.014	(0.007;0.022)	<0.001	-0.008	(-0.022;0.006)	0.273	0.001	(-0.010;0.012)	0.822
	2l	0.015	(0.007;0.022)	<0.001	-0.007	(-0.021;0.008)	0.361	0.001	(-0.009;0.012)	0.808
	3	0.014	(0.007;0.021)	<0.001	-0.006	(-0.018;0.007)	0.358	-0.002	(-0.011;0.007)	0.618
	3a	0.014	(0.007;0.021)	<0.001	-0.004	(-0.017;0.008)	0.485	0.001	(-0.008;0.010)	0.818
	3b	0.014	(0.007;0.021)	<0.001	-0.005	(-0.017;0.008)	0.476	0.001	(-0.008;0.010)	0.890
LV mass index, gr/m²	2	0.009	(0.001;0.017)	0.035	0.001	(-0.013;0.015)	0.857	-0.006	(-0.017;0.005)	0.259
	2a	0.009	(0.001;0.017)	0.035	0.010	(-0.005;0.024)	0.201	-0.005	(-0.018;0.008)	0.463
	2b	0.009	(0.001;0.017)	0.032	0.003	(-0.012;0.017)	0.728	-0.008	(-0.019;0.004)	0.184
	2c	0.008	(0.000;0.017)	0.042	0.006	(-0.009;0.020)	0.439	-0.007	(-0.019;0.004)	0.210
	2d	0.009	(0.001;0.017)	0.033	0.003	(-0.012;0.017)	0.724	-0.007	(-0.019;0.004)	0.210
	2e	0.009	(0.001;0.018)	0.025	0.004	(-0.012;0.019)	0.652	-0.008	(-0.019;0.004)	0.187
	2f	0.010	(0.002;0.019)	0.021	0.001	(-0.016;0.018)	0.904	-0.004	(-0.016;0.008)	0.469
	2g	0.008	(0.000;0.016)	0.038	0.001	(-0.013;0.015)	0.905	-0.006	(-0.017;0.004)	0.246
	2h	0.007	(-0.001;0.015)	0.079	-0.001	(-0.015;0.014)	0.939	-0.007	(-0.018;0.004)	0.197
	2i	0.006	(-0.002;0.014)	0.141	0.005	(-0.010;0.020)	0.490	-0.006	(-0.019;0.006)	0.286
	2j	0.006	(-0.002;0.014)	0.125	0.005	(-0.010;0.019)	0.532	-0.007	(-0.018;0.005)	0.256
	B	CI	p	B	CI	p	B	CI	p	
---	---------	---------------	-----	---------	---------------	------	---------	---------------	------	
2k	0.008	(0.000;0.016)	0.052	0.001	(-0.013;0.015)	0.872	-0.006	(-0.017;0.005)	0.265	
2l	0.009	(0.001;0.016)	0.035	0.001	(-0.013;0.016)	0.850	-0.006	(-0.017;0.005)	0.262	
3	0.015	(0.008;0.023)	<0.001	0.009	(-0.004;0.022)	0.166	0.001	(-0.009;0.010)	0.859	
3a	0.018	(0.010;0.025)	<0.001	0.011	(-0.002;0.024)	0.095	0.003	(-0.007;0.013)	0.520	
3b	0.018	(0.011;0.026)	<0.001	0.011	(-0.002;0.024)	0.095	0.003	(-0.006;0.013)	0.498	

N=672, 380/115/177 or 639, 366/111/162 for the two-dimensional or tissue Doppler imaging echocardiography study population, respectively. The unstandardized regression coefficients (B) represent the difference in cardiorespiratory fitness in Wmax/kg per one unit higher level of measure of diastolic function, and for diastolic function according to 2016 guidelines versus normal diastolic function. Model 1: age, sex, height; Model 2: model 1 + prior cardiovascular disease, smoking status, alcohol use, total-to-HDL-cholesterol ratio, triglycerides, use of lipid-modifying medication, estimated glomerular filtration rate, health status, office systolic blood pressure, use of antihypertensive medication, albuminuria; Model 2a: additional adjustment for moderate to vigorous physical activity (N=336/96/151 or N=322/94/138); Model 2b: exclusion of individuals with prior coronary heart disease (N=368/96/151 or N=355/104/148); Model 2c: exclusion of individuals with atrial fibrillation (N=364/107/169 or N=350/103/155); Model 2d: exclusion of individuals with wall abnormalities (N=377/114/173 or N=365/110/159); Model 2e: exclusion of individuals with valvular dysfunction (N=356/108/168 or N=343/104/154); Model 2f: exclusion of individuals with mobility limitations (N=332/83/122 or N=320/82/114); Model 2g: replacement of office systolic pressure with office diastolic pressure; Model 2h: replacement of office systolic pressure and antihypertensive medication with presence of hypertension; Model 2i: replacement of office systolic pressure with 24-hour systolic pressure (N=351/103/163 or N=340/101/149); Model 2j: replacement of office systolic pressure with 24-hour diastolic pressure (N=351/103/163 or N=340/101/149); Model 2k: additional adjustment for renin-angiotensin-system-inhibitors; Model 2l: additional adjustment for beta-blockers; Model 3: model 2 + waist; Model 3a: replacement of waist with body mass index; Model 3b replacement of waist with weight.

Abbreviations: CI, confidence interval; LA, left atrial; LV, left ventricular.
Model	Diastolic function 2016 guidelines	Normal glucose metabolism (N=380/366)		Prediabetes (N=115/111)		Type 2 diabetes (N=177/162)			
	Indeterminate	B: 0.050 (0.061;0.160) P: 0.374		B: -0.208 (0.422;0.005) P: 0.055		B: -0.115 (0.302;0.073) P: 0.229			
2a	Normal glucose metabolism	0.068 (0.047;0.183) P: 0.244		-0.208 (0.430;0.014) P: 0.066		-0.073 (0.262;0.117) P: 0.450			
2b	Normal glucose metabolism	0.062 (0.0511;0.175) P: 0.282		-0.223 (0.443;0.004) P: 0.046		-0.089 (0.290;0.111) P: 0.381			
2c	Normal glucose metabolism	0.055 (0.058;0.168) P: 0.340		-0.141 (0.357;0.075) P: 0.199		-0.105 (0.297;0.086) P: 0.279			
2d	Normal glucose metabolism	0.050 (0.061;0.160) P: 0.378		-0.203 (0.412;0.007) P: 0.058		-0.076 (0.267;0.115) P: 0.433			
2e	Normal glucose metabolism	0.056 (0.055;0.168) P: 0.319		-0.238 (0.457;0.019) P: 0.034		-0.183 (0.386;0.020) P: 0.077			
2f	Normal glucose metabolism	0.047 (0.070;0.165) P: 0.429		-0.451 (0.712;0.189) P: 0.001		-0.059 (0.273;0.155) P: 0.586			
2g	Normal glucose metabolism	0.044 (0.065;0.154) P: 0.429		-0.213 (0.426;0.000) P: 0.050		-0.109 (0.297;0.079) P: 0.252			
2h	Normal glucose metabolism	0.033 (0.077;0.143) P: 0.550		-0.192 (0.407;0.022) P: 0.078		-0.119 (0.305;0.067) P: 0.208			
2i	Normal glucose metabolism	0.021 (0.093;0.135) P: 0.718		-0.240 (0.466;0.014) P: 0.038		-0.119 (0.309;0.072) P: 0.219			
2j	Normal glucose metabolism	0.028 (0.085;0.142) P: 0.624		-0.239 (0.466;0.013) P: 0.039		-0.120 (0.309;0.069) P: 0.211			
2k	Normal glucose metabolism	0.043 (0.068;0.153) P: 0.447		-0.210 (0.422;0.003) P: 0.054		-0.118 (0.307;0.071) P: 0.218			
2l	Normal glucose metabolism	0.048 (0.062;0.159) P: 0.390		-0.219 (0.433;0.005) P: 0.045		-0.113 (0.302;0.075) P: 0.237			
3	Normal glucose metabolism	0.095 (0.009;0.199) P: 0.074		-0.144 (0.345;0.057) P: 0.157		-0.064 (0.227;0.100) P: 0.441			
3a	Normal glucose metabolism	0.093 (0.011;0.197) P: 0.080		-0.155 (0.353;0.043) P: 0.123		-0.075 (0.240;0.090) P: 0.369			
3b	Normal glucose metabolism	0.093 (0.0111;0.196) P: 0.080		-0.144 (0.342;0.054) P: 0.151		-0.071 (0.234;0.093) P: 0.393			
	Abnormal	0.165 (0.004;0.335) P: 0.055		0.053 (0.329;0.224) P: 0.706		0.065 (0.301;0.170) P: 0.229			
2a	Abnormal	0.188 (0.009;0.368) P: 0.040		0.088 (0.214;0.389) P: 0.563		-0.041 (0.307;0.225) P: 0.763			
2b	Abnormal	0.169 (0.004;0.343) P: 0.056		0.015 (0.265;0.296) P: 0.914		-0.027 (0.280;0.226) P: 0.835			
2c	Abnormal	0.167 (0.005;0.340) P: 0.057		0.044 (0.238;0.327) P: 0.756		-0.044 (0.284;0.197) P: 0.722			
2d	Abnormal	0.166 (0.004;0.335) P: 0.056		0.008 (0.283;0.267) P: 0.953		-0.028 (0.267;0.211) P: 0.815			
2e	Abnormal	0.207 (0.025;0.390) P: 0.026		-0.026 (0.307;0.251) P: 0.843		-0.004 (0.260;0.252) P: 0.974			
2f	Abnormal	0.184 (0.006;0.362) P: 0.042		-0.262 (0.608;0.084) P: 0.135		0.052 (0.206;0.309) P: 0.692			
2g	Abnormal	0.160 (0.009;0.328) P: 0.063		-0.062 (0.340;0.215) P: 0.657		-0.070 (0.305;0.164) P: 0.554			
2h	Abnormal	0.145 (0.025;0.316) P: 0.095		-0.060 (0.338;0.219) P: 0.672		-0.064 (0.298;0.171) P: 0.592			
2i	Abnormal	0.086 (0.092;0.135) P: 0.718		0.018 (0.264;0.300) P: 0.985		-0.102 (0.343;0.140) P: 0.406			
2j	0.102	(-0.074;0.279)	0.255	-0.018	(-0.266;0.301)	0.902	-0.104	(-0.346;0.138)	0.398
2k	0.144	(-0.026;0.314)	0.097	-0.067	(-0.344;0.210)	0.633	-0.064	(-0.301;0.172)	0.591
2l	0.163	(-0.007;0.332)	0.060	-0.076	(-0.355;0.203)	0.588	-0.066	(-0.302;0.171)	0.583
3	0.178	(0.019;0.337)	0.028	-0.022	(-0.280;0.235)	0.862	-0.056	(-0.260;0.149)	0.590
3a	0.189	(-0.031;0.348)	0.020	-0.007	(-0.262;0.248)	0.956	-0.040	(-0.246;0.167)	0.703
3b	0.189	(0.031;0.347)	0.019	-0.001	(-0.255;0.254)	0.996	-0.045	(-0.249;0.160)	0.393

N=672, 380/115/177 or 639, 366/111/162 for the two-dimensional or tissue Doppler imaging echocardiography study population, respectively. The unstandardized regression coefficients (B) represent the difference in cardiorespiratory fitness in Wmax/kg per one unit higher level of measure of diastolic function, and for diastolic function according to 2016 guidelines versus normal diastolic function. Model 1: age, sex, height; Model 2: model 1 + prior cardiovascular disease, smoking status, alcohol use, total-to-HDL-cholesterol ratio, triglycerides, use of lipid-modifying medication, estimated glomerular filtration rate, health status, office systolic blood pressure, use of antihypertensive medication, albuminuria; Model 2a: additional adjustment for moderate to vigorous physical activity (N=336/96/151 or N=322/94/138); Model 2b: exclusion of individuals with prior coronary heart disease (N=368/96/151 or N=355/104/148); Model 2c: exclusion of individuals with atrial fibrillation (N=364/107/169 or N=350/103/155); Model 2d: exclusion of individuals with wall abnormalities (N=377/114/173 or N=365/110/159); Model 2e: exclusion of individuals with valvular dysfunction (N=356/108/168 or N=343/104/154); Model 2f: exclusion of individuals with mobility limitations (N=332/83/122 or N=320/82/114); Model 2g: replacement of office systolic pressure with office diastolic pressure; Model 2h: replacement of office systolic pressure and antihypertensive medication with presence of hypertension; Model 2i: replacement of office systolic pressure with 24-hour systolic pressure (N=351/103/163 or N=340/101/149); Model 2j: replacement of office systolic pressure with 24-hour diastolic pressure (N=351/103/163 or N=340/101/149); Model 2k: additional adjustment for renin-angiotensin-system-inhibitors; Model 2l: additional adjustment for beta-blockers; Model 3: model 2 + waist; Model 3a: replacement of waist with body mass index; Model 3b replacement of waist with weight.

Abbreviations: CI, confidence interval; LA, left atrial; LV, left ventricular.
Table S13. Interaction effects between measures of diastolic function and sex in the associations with cardiorespiratory fitness

Measure	Model	B	95% CI	P
Average E/e’-ratio	2	0.021	(-0.013;0.055)	0.219
e’ average, cm/s	2	-0.020	(-0.055;0.014)	0.250
Maximum tricuspid regurgitation flow, m/s	2	-0.046	(-0.202;0.109)	0.558
LA volume index, ml/m²	2	0.002	(-0.009;0.013)	0.715
LV mass index, gr/m²	2	-0.008	(-0.019;0.003)	0.175

N=672 or 639 for the two-dimensional or tissue Doppler imaging echocardiography study population, respectively. The unstandardized regression coefficients (B) represent the interaction effect between one unit higher level of measure of diastolic function (or for diastolic function according to 2016 guidelines versus normal diastolic function) and (pre)diabetes as compared to normal glucose metabolism, in the association with cardiorespiratory fitness in Wmax/kg. Model 2: adjusted for age, sex, height, prior cardiovascular disease, smoking status, alcohol use, total-to-HDL-cholesterol ratio, triglycerides, use of lipid-modifying medication, estimated glomerular filtration rate, health status, office systolic pressure, use of antihypertensive medication, albuminuria, interaction term between measure of diastolic function and glucose metabolism status, and interaction term between measure of diastolic function and sex.

Abbreviations: CI, confidence interval; LA, left atrial; LV, left ventricular.
Figure S1. Two-dimensional and tissue Doppler imaging echocardiography study population selection.

Categories of missing data were not mutually exclusive. No data was missing for the covariates sex, age and glucose metabolism status. After selection of the population with echocardiography performed and complete data on the sub-maximal cycle ergometer test no additional data was missing for the covariates height, lipid-modifying medication, office systolic blood pressure, and antihypertensive medication.