High quality draft genomic sequence of *Flavobacterium enshiense* DK69\(^T\) and comparison among *Flavobacterium* genomes

Zhipeng Zeng, Chong Chen, Hailun Du, Gejiao Wang* and Mingshun Li*

Abstract

Flavobacterium enshiense DK69\(^T\) is a Gram-negative, aerobic, rod-shaped, non-motile and non-flagellated bacterium that belongs to the family *Flavobacteriaceae* in the phylum *Bacteroidetes*. The high quality draft genome of strain DK69\(^T\) was obtained and has a 3,375,260 bp genome size with a G + C content of 37.7 mol % and 2848 protein coding genes. In addition, we sequenced five more genomes of *Flavobacterium* type strains and performed a comparative genomic analysis among 12 *Flavobacterium* genomes. The results show some specific genes within the fish pathogenic *Flavobacterium* strains which provide information for further analysis the pathogenicity.

Keywords: *Flavobacterium*, *Flavobacterium enshiense*, Comparative genomics, Genome sequence, Pathogenicity

Introduction

Flavobacterium enshiense DK69\(^T\) (= CCTCC AB2011 144\(^T\) = KCTC 23775\(^T\)) is a type strain that belongs to the genus *Flavobacterium* of the family *Flavobacteriaceae* [1]. In recent years, members of *Flavobacterium* were identified and widely distributed in soil, fresh water, marine water, sediment, microbial mat, and glaciers [2–5]. Some *Flavobacterium* strains are fish pathogens including *Flavobacterium columnare* ATCC 49512\(^T\) causing columnaris disease [6], *Flavobacterium psychrophilum* JIP02/86\(^T\) causing cold-water disease [7] and *Flavobacterium branchiophilum* FL-15\(^T\) causing bacterial gill disease [8].

The common characters of *Flavobacterium* strains are Gram-negative, non-spore-forming, yellow-pigmented, rod-shaped, aerobic and with a low DNA G + C content (30–41 mol %) [2–12]. The *Flavobacterium* strains contained iso-C\(_{15:0}\) as the major fatty acid, phosphatidylethanolamine as the major polar lipid and menaquinone-6 as the major respiratory quinone [9–12].

In order to provide genome information of *Flavobacterium* species, we sequenced six *Flavobacterium* strains including *F. enshiense* DK69\(^T\) [1], *Flavobacterium beibuense* F44-8\(^T\) [13], *Flavobacterium cauense* R2A-7\(^T\) [14], *Flavobacterium rivuli* WB 3.3-2\(^T\) [15], *Flavobacterium subsaxonicum* WB 4.1-42\(^T\) [15] and *Flavobacterium suncheonense* GH29-5\(^T\) [2]. In this study, we compared 12 genomes including the six strains that we sequenced and other six available *Flavobacterium* genomes in the NCBI, *Flavobacterium indicum* GPTSA100-9\(^T\) [16], *Flavobacterium frigoris* PSI\(^T\) [17], *Flavobacterium* sp. F52 [18], *Flavobacterium columnare* ATCC 49512\(^T\), *Flavobacterium psychrophilum* JIP02/86\(^T\) and *Flavobacterium branchiophilum* FL-15\(^T\). Here, we present the description of the non-contiguous finished genomic sequencing of *F. enshiense* DK69\(^T\) and the comparative genome analysis of the 12 *Flavobacterium* genomes.

Organism information

Classification and features

F. enshiense DK69\(^T\) is a Gram-negative, strictly aerobic, yellow-pigmented rod shaped bacterium isolated from soil collected at a pharmaceutical company in Enshi, Hubei province, China. The total soil C, N, P, S and Fe

* Correspondence: gejiao@mail.hzau.edu.cn; mshli7125@mail.hzau.edu.cn
State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China

© 2015 Zeng et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Fig. 1 A NJ phylogenetic tree of the strains within family Flavobacteriaceae based on 16S rRNA gene sequence comparisons. GenBank accession numbers are shown in parentheses. The sequences were aligned using CLUSTALX, and the phylogenetic tree was obtained using MEGA 6 [19] software of neighbor-joining method [39], with the bootstrap values of 500 replicates. *represents the strains sequenced by us.

Fig. 2 A NJ phylogenetic tree of the strains within family Flavobacteriaceae based on core-protein sequence comparisons. GenBank accession numbers are shown in parentheses. *represents the strains sequenced by us.
concentrations were 39.83, 3.34, 0.68, 0.36, 33.80 g kg$^{-1}$, respectively, and the pH was 6.97 [1]. A neighbor-
joining phylogenetic tree based on the 16S rRNA gene
sequences was built using MEGA 6 [19] and showed
that strain DK69T was clustered within a branch con-
taining other species in the genus *Flavobacterium*
(Fig. 1). In addition, the sequence of *F. enshiense*
DK69T was compared with other sequenced strains of
the family *Flavobacteriaceae* use BioLinux [20], and a
total of 24 core protein sequences were obtained with
50 % identity and E-value exponent of e^{-10}. A phylo-
genetic tree based on the 24 core protein sequences
of the core genome (Fig. 2) is similar to the 16S
rRNA gene based tree.

The colonies of *F. enshiense* DK69T are smooth with
regular edges, circular, yellowish and about 1 mm in
diameter after grown on R2A agar at 28 °C for 48 h.

Table 1 Classification and general features of *F. enshiense* DK69T according to the MIGS recommendations [21]

MIGS ID	Property	Term	Evidence code
MIGS-6	Classification	Domain *Bacteria*	TAS [22]
		Phylum *Bacteroidetes*	TAS [23]
		Class *Flavobacteria*	TAS [24]
		Order *Flavobacteriales*	TAS [24]
		Family *Flavobacteriaceae*	TAS [25]
		Genus *Flavobacterium*	TAS [5, 26]
		Species *Flavobacterium enshiense*	TAS [1]
		Type strain: DK69T (=CCTCC AB 2011144T = KCTC 23775T)	TAS [1]
	Gram stain	negative	TAS [1]
	Cell shape	Rod	TAS [1]
	Motility	non-motile	TAS [1]
	Sporulation	non-sporulating	TAS [1]
	Temperature range	4-32 °C	TAS [1]
	Optimum temperature	28 °C	TAS [1]
	pH range; Optimum	6.0-8.0; 7.0	TAS [1]
	Carbon source	casein, gelatin, egg yolk, tyrosine, sucrose, D-mannitol	TAS [1]
	Habitat	soil	TAS [1]
MIGS-6.3	Salinity	0 % NaCl (w/v)	TAS [1]
MIGS-22	Oxygen requirement	aerobic	TAS [1]
MIGS-15	Biotic relationship	free-living	NAS
MIGS-14	Pathogenicity	non-pathogen	NAS
MIGS-4	Geographic location	Enshi city, Hubei Province, China	TAS [1]
MIGS-5	Sample collection	2010	TAS [1]
MIGS-4.1	Latitude	not reported	
MIGS-4.2	Longitude	not reported	
MIGS-4.4	Attitude	not reported	

Evidence codes–IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [27]
Growth occurs at 4–32 °C, pH 6.0–8.0 on R2A and TSA, but not on NA or LB media, and NaCl is not required [1]. Cells are non-flagellated, non-sporo-forming, non-motile, rod-shaped (Fig. 3). Oxidase- and catalase- positive. The DNA G + C content is 34.4 mol% [1]. The general description of this strain is shown in Table 1.

Chemotaxonomic data
The major cellular fatty acids of F. enshiense DK69T were iso-C15:0, iso-C17:1ω9c, C15:0, iso-C17:0 3-OH and iso-C15:0 3-OH. The major polar lipids were phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid. F. enshiense DK69T contained menaquinone 6 as the major quinone [1].

Genome sequencing information
Genome project history
Genome of F. enshiense DK69T was sequenced by Majorbio Bio-pharm Technology Co., Ltd, Shanghai, China. The high-quality draft genome sequence was deposited in the National Center for Biotechnology Information. Contigs less than 200 bp were not included. The GenBank accession number is JRLZ00000000. The summary of the genome sequencing project information is shown in Table 2.

Growth conditions and genomic DNA preparation
F. enshiense DK69T was grown on R2A medium at 28 °C for 2 d with 160 rpm shaking. Cells in late-log-phase growth were harvested and lysed by EDTA, lysozyme, and detergent treatment, followed by proteinase K and RNase digestion. The DNA was extracted and purified using the QiAamp kit according to the manufacturer’s instruction (Qiagen, Germany). The quantity of DNA was measured by the NanoDrop Spectrophotometer to ensure that the DNA concentration is greater than 20 ng/μl, then 5 μg of DNA was sent to Majorbio (Shanghai, China) for sequencing.

Genome sequencing and assembly
The Illumina Hiseq2000 with the Paired-End library strategy was used to determine the whole-genome sequence of F. enshiense DK69T. TruSeq DNA Sample Preparation Kits are used to prepare DNA libraries with insert sizes of 300–500 bp for single, paired-end, and multiplexed sequencing. The protocol used 1 μg of DNA sheared by either sonication or nebulization [28]. The genome raw data of F. enshiense DK69T generated 8,329,997 x 2 reads totaling 1,682,659,394 bp data with an average coverage of 498.4 x. Then SOAPdenovo v1.05 [29] was used to perform the following steps to assemble the sequencing data: (1) removing the adapter sequences in the reads; (2) cutting the 5’ end bases without clear A, T, C and G; (3) trimming the quality read scores lower than 20; (4) removing the reads containing more than 10 % Ns; (5) removing the reads which the length were less than 25 bp. A total of 8,217,761 x 2 high quality reads totaling 1,645,393,073 bp data with an average coverage 487.4 × was generated. The assembled sequence contained 67 scaffolds with a genome size of 3.38 Mbp.

Genome annotation
The annotation of the genomic sequences was completed using the NCBI Prokaryotic Genome Annotation Pipeline

Table 2 Project information of F. enshiense DK69T
MIGS ID
MIGS 31
MIGS-28
MIGS 29
MIGS 31.2
MIGS 30
MIGS 32
MIGS 13

Attribute	Value	% of Total*
Genome size (bp)	3,375,260	100.00
DNA coding (bp)	2,808,588	83.21
DNA G + C (bp)	1,273,385	37.73
DNA scaffolds	67	-
Total genes	3054	100.00
Protein coding genes	2848	93.25
RNA genes	50	1.64
Pseudo genes	156	44.67
Genes in internal clusters	1113	3908
Genes with function prediction	1649	57.90
Genes assigned to COGs	1718	60.32
Genes with Pfam domains	2495	87.61
Genes with signal peptides	735	25.81
Genes with transmembrane helices	651	22.86
CRISPR repeats	0	-

*The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome
which was combined using Best-placed reference protein set and the gene caller GeneMarkS++. SignalP [30] and SOSUI [31] were used to predict signal peptides and transmembrane helices. The predicted CDSs were also used to search against the Pfam protein family database [32]. The GenBank database [33] and the COG databases [34] BLASTP search were used to predict protein sequences.

Genome properties

The genome statistics are provided in Table 3 and Fig. 4. After genome annotation, the genome of *F. enshiense* DK69T was found to have a total length of 3,375,260 bp, a G + C content of 1,273,385 bp (37.7 mol %) and 74 contigs. From a total of 3,054 genes predicted, 2,848 genes are protein-coding genes, 50 are RNA genes, 57.9 % are assigned with putative functions and the remaining are annotated as hypothetical proteins or proteins of unknown functions. The distribution of genes into COGs functional categories is shown in Table 4.

Insights from the genome sequences

Profiles of metabolic network and pathway

The metabolic network and pathways of *F. enshiense* DK69T (Fig. 5) were predicted using the Kyoto Encyclopedia of Genes and Genomes [35]. The metabolic network showed that *F. enshiense* DK69T possesses glycolysis, TCA cycle and pentose phosphate pathway.
Table 4 Number of genes in *F. enshiense* DK69 associated with general COG functional categories

Code	Value	% age	Description
J	142	4.99	Translation, ribosomal structure and biogenesis
A	0	0.00	RNA processing and modification
K	76	2.67	Transcription
L	93	3.27	Replication, recombination and repair
B	1	0.04	Chromatin structure and dynamics
D	20	0.70	Cell cycle control, Cell division, chromosome partitioning
V	56	1.97	Defense mechanisms
T	67	2.35	Signal transduction mechanisms
M	176	6.18	Cell wall/membrane biogenesis
N	4	0.14	Cell motility
U	29	1.02	Intracellular trafficking and secretion
O	75	2.63	Posttranslational modification, protein turnover, chaperones
C	100	3.51	Energy production and conversion
G	54	1.90	Carbohydrate transport and metabolism
E	158	5.55	Amino acid transport and metabolism
F	60	2.11	Nucleotide transport and metabolism
H	108	3.79	Coenzyme transport and metabolism
I	69	2.42	Lipid transport and metabolism
P	81	2.84	Inorganic ion transport and metabolism
Q	39	1.37	Secondary metabolites biosynthesis, transport and catabolism
R	192	6.74	General function prediction only
S	118	4.14	Function unknown
-	1130	39.68	Not in COGs

The total is based on the total number of protein coding genes in the annotated genome.

Fig. 5 Metabolic network and pathways of *Flavobacterium enshiense* DK69 as predicted using KEGG [35]. Green lines indicate pathways that are possessed by this strain.
pathways and could utilize casein, tyrosine, sucrose and D-mannitol. The genome analysis results are in agreement with the phenotypes [1].

Comparison of the 12 Flavobacterium genomes

The genomic information of the 12 Flavobacterium genomes are summarized in Table 5. OrthoMCL [36] analysis was performed to identify the set of orthologs among the 12 Flavobacterium genomes. F. enshiense DK69\(^T\) shared 1,190 genes with the other 11 Flavobacterium strains, and had 437 strain-specific genes which may contribute to the species-specific features (Fig. 6).

Three of the 12 Flavobacterium strains are fish pathogenic bacteria [6–8]. Using OrthoMCL [36] analysis, a total of ten proteins we found to be unique in the three fish-pathogenic species. Three of the putative proteins were reported to be related to the pathogenicity of pathogenic bacteria including polysaccharide deacetylase [37], ABC transporter ATPase and ABC transporter permease [38] (Table 6).

Conclusions

The genomic results of F. enshiense DK69\(^T\) and related strains reveled useful information. (1) The genome based phylogenetic analysis results is in agreement with the 16S rRNA gene based one; (2) The genomic data are correlated with some phenotypes of strain DK69\(^T\); (3) Compared to the three fish pathogenic Flavobacterium

Strains	Size (Mp)	G + C %	Total genes	CDSs	Contigs	References
F. enshiense DK69\(^T\)	3.4	37.7 %	3,054	2,848	74	This study
F. beibuense F44-8\(^T\)	3.8	37.7 %	3,460	3,264	61	This study
F. cauense R2A-7\(^T\)	3.1	38.2 %	2,910	2,723	61	This study
F. rivuli WB 3.3-2\(^T\)	4.5	39.6 %	3,975	3,691	63	This study
F. subsaxonicum WB 4.1-42\(^T\)	4.6	41.6 %	4,052	3,785	80	This study
F. suncheonense GH29-5\(^T\)	2.9	40.5 %	2,769	2,594	105	This study
F. frigoris PS1\(^T\)	3.9	34.4 %	3,640	3,590	52	[17]
Flavobacterium sp. F52	5.3	34.4 %	4,601	4,549	54	[18]
F. indicum GPTSA100-9\(^T\)	3.0	31.4 %	2,787	2,671	1	[16]
F. columnare ATCC 49512\(^T\)	3.2	31.5 %	2,731	2,642	1	[6]
F. psychrophilum JIP02/86\(^T\)	2.9	32.5 %	2,556	2,446	1	[7]
F. branchiophilum FL-15\(^T\)	3.6	32.9 %	3,087	2,872	1	[8]

Table 5 General features of the twelve Flavobacterium genomes

![Fig. 6](image_url) A venn diagram indicates the twelve genomes of Flavobacterium analyzed by OrthoMCL [36] illustrate the number of the unique proteins and the common proteins among them.
no pathogenic related genes was detected in the environmental strain DK69 which indicated its non-pathogenicity; and (4) Some specific genes were found within the three fish pathogenic Flavobacterium strains which provides information for further analysis the pathogenicity.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ZZ performed genome analysis the data and wrote the draft manuscript. CC and HD helped to analyze the data. GW organized the study and revised the manuscript. ML performed the comparative genomics analysis and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (31470226).

Received: 13 November 2014 **Accepted**: 19 October 2015
Published online: 10 November 2015

References
1. Dong K, Chen F, Du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol. 2013;63:886–92. doi:10.1099/ijs.0.039974-0.
2. Kim BY, Weon HY, Cousin S, Yoo SH, Kwon SW, Go SJ, et al. Flavobacterium daejeonense sp. nov. and Flavobacterium suncheonense sp. nov., isolated from greenhouse soils in Korea. Int J Syst Evol Microbiol. 2006;56:1645–9. doi:10.1099/ijs.0.04243-0.

Strains	Accession	Putative protein
F. branchiophilum FL-15 T	WP_014083310.1	SNF2_N, HepA, PLN03142
F. columnare ATCC 49512 T	WP_014165166.1	
F. psychrophilum JIP02/86 T	WP_011962959.1	
F. branchiophilum FL-15 T	WP_014083635.1	hypothetical protein
F. columnare ATCC 49512 T	WP_014164281.1	
F. psychrophilum JIP02/86 T	WP_011962863.1	
F. branchiophilum FL-15 T	WP_014082960.1	Hexameric tyrosine-coordinated heme protein
F. columnare ATCC 49512 T	WP_014165359.1	
F. psychrophilum JIP02/86 T	WP_011963152.1	
F. branchiophilum FL-15 T	WP_014084059.1	polysaccharide deacetylase
F. columnare ATCC 49512 T	WP_014165336.1	
F. psychrophilum JIP02/86 T	WP_011963745.1	
F. branchiophilum FL-15 T	WP_014084057.1	membrane protein
F. columnare ATCC 49512 T	WP_014165338.1	
F. psychrophilum JIP02/86 T	WP_011963747.1	
F. branchiophilum FL-15 T	WP_014084692.1	PepSY-associated TM helix
F. columnare ATCC 49512 T	WP_014166184.1	
F. psychrophilum JIP02/86 T	WP_011963892.1	
F. branchiophilum FL-15 T	WP_014082991.1	S-adenosylmethionine protein
F. columnare ATCC 49512 T	WP_014164416.1	
F. psychrophilum JIP02/86 T	WP_011963983.1	
F. branchiophilum FL-15 T	WP_014082768.1	ABC transporter permease
F. columnare ATCC 49512 T	WP_014165791.1	
F. psychrophilum JIP02/86 T	WP_011964188.1	
F. branchiophilum FL-15 T	WP_014082767.1	ABC transporter ATPase
F. columnare ATCC 49512 T	WP_014165790.1	
F. psychrophilum JIP02/86 T	WP_011964189.1	
F. branchiophilum FL-15 T	WP_014083276.1	Transposase
F. columnare ATCC 49512 T	WP_014165862.1	
F. psychrophilum JIP02/86 T	WP_011964284.1	
3. Yoon JH, Kang SJ, Oh TK. Flavobacterium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol. 2006;56:997–1000. doi:10.1099/ijs.0.064119-0.

4. Yoon JH, Kang SJ, Lee JS, Oh TK. Flavobacterium tremco sp. nov., isolated from soil. Int J Syst Evol Microbiol. 2007;57:947–50. doi:10.1099/ijs.0.64776-0.

5. Bernardet JF, Bowman JP. Genus I. Flavobacterium Bergey et al. 1923. In: W. Whitman, editor. Bergey’s Manual of Systematic Bacteriology. 2nd edn, vol. 4. Baltimore: The Williams & Wilkins Co. Baltimore; 2011. p. 112–54.

6. Teked-HC, Karsl A, Gillaspy AF, Dyer DW, Benton NR, Zaitchik J, et al. Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512. J Bacteriol. 2012;194(10):2763–4. doi:10.1128/JB.02081-12.

7. Duchaud E, Bourbona M, Lous V, Bernardet JF, Michel C, Kerouault B, et al. Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat Biotechnol. 2007;25(7):763–9. doi:10.1038/nbt1313.

8. Touchon M, Barbier P, Bernardet JF, Lous V, Vacherie B, Barbe V, et al. Complete genome sequence of the fish pathogen Flavobacterium branchiphilum. Appl Environ Microbiol. 2011;77(21):7656–62. doi:10.1128/AEM.05625-11.

9. Park M, Lu S, Ryu SH, Chung BS, Park W, Kim CJ, et al. Flavobacterium croceum sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol. 2006;56:2443–7. doi:10.1099/ijs.0.06443-0.

10. Ryu SH, Park JH, Moon JC, Sung Y, Lee SS, Jeon CO. Flavobacterium resinet sp. nov., isolated from stream sediment. Int J Syst Evol Microbiol. 2008;58:2366–70. doi:10.1099/ijs.0.056720-0.

11. Shen SY, Chiu TY, Young CC, Arun AB, Chen WM. Flavobacterium microbrachi sp. nov., isolated from a freshwater shrimp culture pond. Int J Syst Evol Microbiol. 2011;61(3):642–7. doi:10.1099/ijs.0.025403-0.

12. Xu M, Xin Y, Tian J, Dong K, Yu Y, Zhang J, et al. Flavobacterium sinopsychrotolerans sp. nov., isolated from a glacier. Int J Syst Evol Microbiol. 2011;61(2):4. doi:10.1099/ijs.0.014126-0.

13. Fu Y, Tang X, Lai Q, Zhang C, Zhong H, Li W, et al. Flavobacterium belbense sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol. 2011;61(1):205–9. doi:10.1099/ijs.0.018846-0.

14. Qui JH, Yuan HL, Li HF, Deng CP. Flavobacterium cauense sp. nov., isolated from sediment of a eutrophic lake. Int J Syst Evol Microbiol. 2009;59(9):11666–9. doi:10.1099/ijs.0.006688-0.

15. Ali Z, Cousin S, Fröhling A, Brambilla E, Schumann P, Yang Y, et al. Flavobacterium rivuli sp. nov., Flavobacterium subsasonicum sp. nov., Flavobacterium swingii sp. nov. and Flavobacterium reichenbachii sp. nov., isolated from a hard water rivulet. Int J Syst Evol Microbiol. 2009;59(5):10165–70. doi:10.1099/ijs.0.008771-0.

16. Barbier P, Houel A, Lous V, Poujain J, Bernardet JF, Touchon M, et al. Complete genome sequence of Flavobacterium indicum GPSTA100-9 T, isolated from warm spring water. J Bacteriol. 2012;194(11):3024–5. doi:10.1128/JB.02040-12.

17. Van Trappen S, Vandendlaere I, Mergaert J, Swinga J. Flavobacterium degelati sp. nov., Flavobacterium figerii sp. nov. and Flavobacterium micrornati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol. 2004;54(Pt 1):85–92. doi:10.1099/ijs.0.02857-0.

18. Kolton M, Green SJ, Harel YM, Sela N, Blad Y, Cytryn E. Draft genome sequence of Flavobacterium sp. strain F52, isolated from the rhizosphere of Flavobacterium hydatis. Int J Syst Evol Microbiol. 2012;62:2047–50. doi:10.1099/ijs.0.037040-0.

19. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6. doi:10.1093/nar/28.1.33.

20. Ashburner M, Ball CA, Blake JA, Botstein D, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9. doi:10.1038/35555.

21. Illumina official website (www.illumina.com.cn).

22. Park M, Lu S, Ryu SH, Luo R, Patterson J, Liu S, et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30(12):1660–6. doi:10.1093/bioinformatics/btu077.

23. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignAl 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6. doi:10.1038/nmeth1701.

24. Hirokawa T, Boon-Chieng S, Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics. 1998;14:378–9. doi:10.1093/bioinformatics/14.4.378.

25. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. The Pfam protein families database. Nucleic Acids Res. 2014;Database Issue:D22–30.

26. GenBank database. www.ncbi.nlm.nih.gov/genbank. Accessed 2 Oct 2014.

27. Whitman, editor. Bergey’s Manual of Systematic Bacteriology, The. Baltimore: The Williams & Wilkins Co, Baltimore; 1923. p. 1–442.