Data in Brief

Draft genome of *Bordetella pseudohinzii* BH370 isolated from trachea and lung tissues of a laboratory mouse

Shih Keng Loong a, Kim-Kee Tan a,b, Syuhaida Sulaiman a,b, Pooi Fong Wong c,d, Sazaly AbuBakar a,b,⁎

a Tropical Infectious Diseases Research & Education Centre (TIDREC), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
b Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
c Animal Experimental Unit, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
d Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Article history:

Received 2 March 2017
Accepted 19 March 2017
Available online 21 March 2017

Keywords:
Animal pathogen
Bordetella hinzii
ICR mouse
Malaysia
Tropical infectious disease

Abstract

In this study, we present the draft genome sequence of *B. pseudohinzii* BH370 recovered from the trachea and lung tissues of an ICR mouse in Malaysia. The genome consists of 4,474,040 bp with a GC content of 66.4%. Annotation using RAST algorithm displayed 5119 protein encoding and 52 RNA genes. The CRISPR-cas genomic sequences previously reported in *B. pseudohinzii* were identified. The nucleotide sequences of BH370 was deposited into the European Nucleotide Archive under the genome assembly accession number FPJN01000000.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Animal pathogen
Bordetella hinzii
ICR mouse
Malaysia
Tropical infectious disease

Specifications

Organism	*Bordetella pseudohinzii*
Strain	BH370
Sequencer or array type	Ion Torrent
Data format	Analyzed
Experimental factors	Microbial strain
Experimental features	Whole genome analysis of *B. pseudohinzii* BH370
Consent	N/A
Sample source location	Trachea and lung tissues of ICR mouse from the Animal Experimental Unit, Faculty of Medicine, University of Malaya, Malaysia

1. Direct link to deposited data

http://www.ebi.ac.uk/ena/data/view/FPJN01000000

2. Experimental design, materials and methods

Isolate BH370 obtained from the trachea and lung tissues of an apparently healthy ICR mouse was cultured in Mueller-Hinton broth overnight under aerobic condition at 37 °C. Bacterial genomic DNA was extracted using the Nucleospin Tissue Kit (Macherey-Nagel, Germany) according to the manufacturer's protocol. Whole genome sequencing was performed as previously described [1], with minor modifications. Briefly, the genome library preparation was carried out using the Ion Xpress™ Plus Fragment Library Kit (Thermo Fisher Scientific, USA). Genome libraries of 200-base read fragments were prepared using E-Gel® SizeSelect™ Agarose Gel, 2% (Thermo Fisher Scientific, USA). The sequencing template was prepared using Ion OneTouch™ 200 Template Kit V2 DL (Thermo Fisher Scientific, USA) according to the manufacturer's protocol. Amplified Ion Sphere Particles were enriched using IonPGM Enrichment beads (Thermo Fisher Scientific, USA). The raw sequence reads were assembled de novo using SPAdes V3.1.0 [2] as implemented in Torrent Suite V5.0.0. The assembled contigs were functionally annotated with Rapid Annotation using Subsystem Technology (RAST) [3].

3. Genomic analysis

The non-classical *Bordetella* species, *B. hinzii*, has been suggested to cause respiratory infection among laboratory mice [4], and can hence interfere with studies using these animals [5]. Our recent study has suggested that a closely related species could be...
and cas2

BH370, con

BH370 showed antimicrobial resistance, mainly to β

function (Fig. 1). The CRISPR-associated proteins were assigned to subsystem categories according to using RAST. Out of the 5119 protein-coding genes, 54% of the trans-

cidrug resistance protein, MarC.

A total of 5119 protein-coding genes and 52 RNAs were predicted

noted in the genome, including aminoglycoside modifying enzymes

genes (22 genes), to be present in the genome.

This could be in length, comprising 390 contigs with N50 of 20,945 bp (Table 1).

The draft genome of B. pseudohinzii BH370 was 4,474,040 bp in

Bordetella

classified its species identity as B. pseudohinzii. Isolate BH370 showed antimicrobial resistance, mainly to β-lactams [2].

This could be influenced by a number of potential virulence genes noted in the genome, including aminoglycoside modifying enzymes

(3 genes), β-lactamases (2 genes), fluoroquinolone resistant genes

(4 genes), multidrug resistant efflux pumps (8 genes), and the mul-
tidrug resistance protein, MarC. In silico analyses also found bacteri-
ocin (7 genes), invasion genes (9 genes), and heavy metal resistant
genes (22 genes) to be present in the genome.

Table 1

General genome features of Bordetella pseudohinzii BH370.

Attribute	Chromosome
Genome size (bp)	4,474,040
GC content [%]	66.4
Contigs	390
ORFs	5119
Number of RNAs	52

4. Nucleotide accession number

The genome sequences generated in this study are available from the European Nucleotide Archive under the genome assembly accession number FPJN01000000.

Conflict of interest

The authors declare that we have no conflict of interest.

Acknowledgements

The sequencing was made possible using sequencing infrastructures funded by the Ministry of Higher Education - Long Term Research Grant Scheme (LRGS/TD/2011/UM/Penyakit Berjangkit) and the High Impact Research – Ministry of Higher Education Grants (H-20001-00-E000011 and E000013-20001).

References

[1] N. Hayashimoto, M. Yasuda, K. Goto, A. Takakura, T. Itoh, Study of a Bordetella hinzii isolate from a laboratory mouse. Comp. Med. 58 (2008) 440–446.

[2] S.K. Loong, N.H. Mahfodz, H.A. Wall, S.A. Talib, S.A. Nasrah, P.F. Wong, S. AbuBakar, Molecular and antimicrobial analyses of non-classical Bordetella isolated from a laboratory mouse. J. Vet. Med. Sci. 78 (2016) 715–717.

[3] T. Spiker, R. Darrah, J.J. LiPuma, Complete genome sequences of Bordetella flabiliis, Bordetella bronchialis, and “Bordetella pseudohinzii”. Genome Announc. 4 (2016) (e01132–16).

[4] Y.V. Ivanov, N. Shariat, K.R. Register, B. Linz, J. Rivera, K. Hu, E.G. Dudley, E.T. Harvill, A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease. BMC Genomics 16 (2015) 863.

[5] K.K. Tan, Y.C. Tan, L.Y. Chang, K.W. Lee, S.S. Nor’e, W.Y. Yee, M.N. Mat Isra, F.L. Jafar, C.C. Hoh, S. AbuBakar, Full genome SNP-based phylogenetic analysis reveals the origin and global spread of Brucella melitensis. BMC Genomics 16 (2015) 93.

[6] A. Bankevich, S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.A. Kulikov, V.M. Lesin, S.I. Nikolenko, S. Pham, A.D. Pyshkin, A.V. Pyshkin, A.V. Sirotkin, N. Vyahhi, G. Tesler, S.I. Nikolenko, S. Pham, A.D. Pyshkin, A.V. Pyshkin, A.V. Sirotkin, N. Vyahhi, G. Tesler, A.V. Prjibelski, A.V. Pyshkin, A.V. Sirotkin, N. Vyahhi, G. Tesler, S. Nikolenko, S. Pham, A.D. Pyshkin, A.V. Pyshkin, A.V. Sirotkin, N. Vyahhi, G. Tesler, A.V. Prjibelski, A.V. Pyshkin, A.V. Sirotkin, N. Vyahhi, G. Tesler, S. Nikolenko, S. Pham, A.D. Pyshkin, A.V. Pyshkin, A.V. Sirotkin, N. Vyahhi, G. Tesler, A.V. Prjibelski, A.V. Pyshkin, A.V. Sirotkin, N. Vyahhi, G. Tesler, S. Nikolenko, S. Pham, A.D. Pyshkin, A.V. Pyshkin, A.V. Sirotkin, N. Vyahhi, G. Tesler, A.V. Prjibelski, A.V. Pyshkin, A.V. Sirotkin, N. Vyahhi, G. Tesler, S. Nikolenko, S. Ph...