Nonlinear screening in two-dimensional electron gases

E. Zaremba
Department of Physics, Queen’s University, Kingston, Ontario, Canada K7L 3N6 and Donostia International Physics Center, Paseo Manuel de Lardizabal, no. 4, 20018 San Sebastian, Spain

I. Nagy
Department of Theoretical Physics, Institute of Physics, Technical University of Budapest, H-1521 Budapest, Hungary, and Donostia International Physics Center, Paseo Manuel de Lardizabal, no. 4, 20018 San Sebastian, Spain

P. M. Echenique
Departamento de Física de Materiales and Centro Mixto Física Materiales CSIC/UPV, Facultad de Química, Universidad del País Vasco, Apdo 1072, San Sebastian, Spain

(March 22, 2022)

We have performed self-consistent calculations of the nonlinear screening of a point charge Z in a two-dimensional electron gas using a density functional theory method. We find that the screened potential for a $Z = 1$ charge supports a bound state even in the high density limit where one might expect perturbation theory to apply. To explain this behaviour, we prove a theorem to show that the results of linear response theory are in fact correct even though bound states exist.

PACS Numbers: 73.20.-r, 73.20.Hb

Screening is a fundamental property of an electron gas in arbitrary dimensions. The example of two dimensions is of particular interest because of the possible realization of quasi-two-dimensional systems in a variety of contexts: semiconductor heterostructures, image or band-gap surface states at metal surfaces, electrons on the surface of liquid helium, and layered materials. In all of these cases, the interaction of external charges with the two-dimensional electron gas (2DEG) is a problem of both fundamental and practical interest. For example, the transport of electrons in a 2DEG is often limited by charged impurity scattering and a detailed knowledge of the scattering potential is needed for an accurate determination of the electron mobility. Scanning tunnelling microscopy offers an even more direct means of determining the screening response of a quasi-2DEG through the observation of adsorbate-induced Friedel oscillations. Still another class of problems involves the interaction with moving charges as might arise in low-energy electron scattering or tunnelling experiments. In this case, the dynamic response of the 2DEG is important in that electronic excitation, and hence energy loss, will occur.

A charged impurity or projectile typically represents a strong perturbation and a nonlinear screening theory is in general needed to account for the modifications of the local electronic structure. However, in certain situations the screened impurity potential may be relatively weak and therefore amenable to a perturbative treatment. This is usually the method adopted to deal with donor impurities that are spatially removed from the 2DEG within a heterostructure, although it is rare to find quantitative agreement between theory and experimentally measured mobilities. The situation of acceptor impurities within the gas is a much more severe perturbation and quite dramatic effects can arise as a result of the modified electronic structure. In such situations, the screening response has to be determined nonlinearly.

One of our objectives in this Letter is to provide a fully self-consistent description of the nonlinear screening in an ideal 2DEG within the context of density functional theory. A second objective is to use these calculations to establish the range of validity of linear response theory. Somewhat surprisingly, this latter objective is more subtle than anticipated as a result of a peculiarity of potential scattering in 2D, namely the fact that any purely attractive potential always has at least one bound state, in marked contrast to the situation in 3D. For a positively charged impurity we in fact encounter a situation in which the screened potential supports a bound state even in the high density limit where one would intuitively expect a perturbative treatment to be valid. To resolve this apparent paradox, we prove what will be referred to as the high density screening theorem which states that the screening charge can indeed be calculated perturbatively even when bound states exist. In this way we are able to justify the use of perturbation theory when at first sight it would seem inapplicable.

The problem we address is the nonlinear screening of a stationary point charge, Z, located in the plane of a 2DEG. The latter is treated as ideal in the sense that the electrons are confined to the plane. Of course in real applications, such as a heterostructure, a more accurate treatment of the electronic states is required. We ignore these complications in order to focus on those aspects of nonlinear screening which are expected to be independent of these details. To stabilize the system, the electrons move in the presence of a uniform neutralizing positive background. In addition, we assume the electrons to have an isotropic effective mass m^* and to be immersed in an extended dielectric with permittivity ε. We use the ef-
effective Bohr radius, \(a_0 = \varepsilon h^2 / m^* e^2 \), as the unit of length and the effective Hartree, \(H = e^2 / \varepsilon a_0 \), as the unit of energy. The density of the gas, \(n_0 \), is characterized by the density parameter \(r_s = 1/\sqrt{\pi n_0} \).

The static screening response of the 2DEG is determined by solving self-consistently the two-dimensional Kohn-Sham equations

\[-\frac{1}{2} \nabla^2 \psi_i(r) + \Delta v_{\text{eff}}(r) \psi_i(r) = E_i \psi_i(r) \tag{1}\]

where the effective potential is given by

\[\Delta v_{\text{eff}}(r) = v_{\text{ext}}(r) + \Delta v_H(r) + \Delta v_{\text{xc}}(r). \tag{2}\]

Here, \(v_{\text{ext}} = -Z/r \) is the external potential and \(\Delta v_H \) is the Hartree potential due to the electronic screening density, \(\Delta n(r) = n(r) - n_0 \). The change in the exchange-correlation potential, \(\Delta v_{\text{xc}}(r) = v_{\text{xc}}[n(r)] - v_{\text{xc}}[n_0] \), is defined in the local density approximation (LDA) using the parameterization of the 2D exchange-correlation energy given in Ref. [12].

The total screening charge is given by

\[\Delta n(r) = \sum_b |\psi_b(r)|^2 + \sum_i \left[|\psi_i(r)|^2 - |\psi_i^0(r)|^2 \right] \tag{3}\]

where the first sum extends over all bound states of the effective potential, and the second extends over all occupied continuum states up to the Fermi level \(E_F \). We assume that each spatial orbital is doubly-occupied for spin. The scattering states \(\psi_i(r) \) are shifted asymptotically relative to the free-particle solutions \(\psi_i^0(r) \) by a phase \(\eta_i(E) \). These scattering phase shifts are related to the total screening charge according to the 2D Friedel sum rule (FSR) [13]

\[Z_{\text{FSR}} = \frac{2}{\pi} \sum_{m = -\infty}^{\infty} \eta_m(E_F). \tag{4}\]

Details of the self-consistent solution of Eqs. (1) and (2) will be presented elsewhere.

We begin by considering the case of a negatively charged impurity (\(Z = -1 \)), such as an antiproton or acceptor state in a semiconductor. Fig. 1 presents the self-consistent effective potential \(\Delta v_{\text{eff}} \) for \(r_s = 4 \) (solid curve) as a function of the distance from the impurity. This potential repels electrons almost completely from the impurity’s vicinity, leaving exposed a positively charged disc of radius \(R \approx r_s \) which neutralizes the impurity charge.

As is the case in 3D, this behaviour cannot be reproduced in a linear theory. The screened \(Z = -1 \) potential does not support bound states for any \(r_s \) value, as might have been expected. We mention this since it has been claimed [14] that the introduction of a negative test charge into a 2D gas can give rise to a potential which is sufficiently strong to bind an electron.

To make contact with this earlier work we compare in Fig. 1 the nonlinearly screened potentials with those obtained on the basis of linear response theory. The chain curve shows the linear response Hartree potential \(\Delta v_H \) as obtained when local field corrections (LFC) are included in the determination of the electron screening density [14]. This potential has a large attractive region in real space and supports a bound state for a unit negative test charge of one electron mass. This observation led to the suggestion of a possible pairing mechanism that could be responsible for a correlation-induced instability at low densities [14]. Such a conclusion, however, is invalid on two counts. First, the screening of the impurity is strongly nonlinear. The dashed curve in Fig. 1 shows the corresponding Hartree potential when the nonlinear screening density is used. It has a much shallower attractive region. But more importantly, an electron, as opposed to a negative test charge, also feels the effect of the induced xc potential. With this contribution included in the full nonlinear potential \(\Delta v_{\text{eff}} \) (solid curve), there is no tendency for bound state formation, as confirmed numerically.

![FIG. 1. Comparison of nonlinear and linear screened potentials: nonlinear with exchange-correlation (solid), nonlinear Hartree potential (short-dashed), linear Hartree potential with LFC (chain); Z = −1, r_s = 4.](image_url)

The results for a positive impurity are quite different in that the attractive screened potential supports bound states for all densities of physical interest (including \(r_s \to 0 \)). For \(Z = 1 \) there is one \(m = 0 \) bound state that is doubly occupied. Since the total screening density integrates to unity to satisfy the FSR, the continuum screening density must itself contribute a total charge of \(+1\) in order to compensate for the overscreening provided by the bound states. In other words, the \(Z = 1 \) impurity with 2 bound electrons can be viewed as an \(H^- \) ion which acts as a \(Z = -1 \) impurity. This was confirmed by comparing the \(Z = 1 \) and \(Z = -1 \) continuum screening densities. For \(r_s = 10 \), the two are virtually the same.

In Fig. 3 we show the \(Z = 1 \) bound state energy as a function of \(r_s \). The behaviour seen is surprising in view of the corresponding behaviour in 3D. There, the bound state energy increases with decreasing \(r_s \) since the impu-
rity potential is screened more effectively with increasing density and, as a result, the bound state eventually ceases to exist [13]. Beyond this point, the accuracy of perturbation theory improves with increasing density. The contrary behaviour exhibited in Fig. 3 calls into question the applicability of perturbation theory in the 2D case.

To address this question, we now prove a theorem regarding electronic screening in the high density limit. We consider the introduction of an external potential $\lambda V(r)$ into a uniform noninteracting Fermi gas for arbitrary dimension D. The parameter λ is a coupling constant whose physical value is unity. The problem is to determine the induced density $\Delta n(r)$ due to the introduction of $\lambda V(r)$; the effect of interactions will be dealt with afterwards. By making use of Dyson’s equation, $G_{\lambda+\delta\lambda} = G_{\lambda} + \delta\lambda G_{\lambda} V G_{\lambda+\delta\lambda}$, for the single particle Green function $G_{\lambda}(r, r', z)$, one can show that the screening density satisfies

$$\frac{\partial \Delta n(r; \lambda)}{\partial \lambda} = -\frac{1}{\pi} \int dr' V(r') \int_{-\infty}^{E_F} dE \times \text{Im} [G_{\lambda}(r, r', E+i\epsilon)G_{\lambda}(r', r, E+i\epsilon)] . \quad (5)$$

The crucial next step in the argument is to use the analytic properties of the Green functions to change the energy integral from $(\int_{-\infty}^{E_F})$ to $(\int_{-\infty}^{E_F})$. In the $E_F \to \infty$ limit it is then permissible to replace G_{λ} by the free-particle Green function G_0 since the energy E can now be assumed to be much larger than the strength of the (bounded) potential $|V(r)|$. Once this is done, the energy integration can be changed back to its original range, and after integrating with respect to the coupling constant, we obtain

$$\Delta n(r) \simeq -\frac{1}{\pi} \int dr' V(r') \lim_{E_F \to \infty} \int_{-\infty}^{E_F} dE \times \text{Im} [G_0(r', E+i\epsilon)G_0(r', r, E+i\epsilon)] . \quad (6)$$

This asymptotic result is valid for any D and applies even when the potential $V(r)$ supports bound states.

An alternative expression for (6) is

$$\Delta n(r) \simeq -\lim_{E_F \to \infty} \frac{1}{\pi^D} \sum_q \chi_0(q)V(q)e^{iq\cdot r} \quad (7)$$

which is the result of linear response theory. Here, $\chi_0(q)$ is the noninteracting static density response function of the system. In the high density limit, $q \ll k_F$ for all wavevectors for which $V(q)$ is finite, and we have $\Delta n(r) \simeq -\chi_0(0)V(r)$. In 2D, $\chi_0(0) = \pi^{-1}$ and

$$\Delta n(r) \simeq -\frac{1}{\pi} V(r) . \quad (8)$$

Thus we arrive at the interesting conclusion that in 2D the screening density takes on a density-independent form in the high density limit, and is simply proportional to the perturbing potential.

This result can easily be checked numerically. In Fig. 3 we show $\Delta n(r)$ for a 2D gas with $r_s = 0.5$ for a model potential $V(r) = -V_0 \sin^2(2\pi r/r_0)\theta(r_0 - r)$ which is an axially symmetric, double-well potential. With $r_0 = 5$ a.u. and $V_0 = 0.125$ H the potential has a single $m = 0$ bound state while for $V_0 = 0.25$ H there are two $m = 0$ bound states. In both cases we see that the total screening density is well-approximated by the asymptotic result in Eq. (8).

To include the effect of interactions, we identify Δv_{eff} in Eq. (3) with $V(r)$ and make use of Eq. (8). In the high-density limit we then find

$$\Delta v_{\text{eff}}(q) = -\frac{2\pi Z}{q + 2} , \quad (9)$$

which in real space gives the Thomas-Fermi potential [13]. This potential is purely attractive and has a bound
state eigenvalue of $E_0 = -0.2862 \, \text{H}$ which is the $r_s \to 0$ limit of the curves in Fig. 3. This explains why a bound state exists in the high density limit and why, in spite of this, the result is not in conflict with the applicability of linear response theory. It should be emphasized that the same argument in 3D leads to the conclusion that no bound state can exist in this case.

As a final practical application we present results of the calculation of the energy loss per unit length (or stopping power, S) for a projectile of charge Z moving with velocity v in the plane of the 2DEG. Within the so-called kinetic theory framework, the stopping power is given by the expression

$$S = n_0 v v_F \sigma_{tr}(E_F),$$

(10)

where $\sigma_{tr}(E_F)$ is the momentum-transfer cross section defined in terms of the scattering phase shifts by

$$\sigma_{tr}(E_F) = \frac{4}{v_F} \sum_{m=0}^{\infty} \sin^2[\eta_m(E_F) - \eta_{m+1}(E_F)].$$

(11)

To leading order in the velocity, it is sufficient to determine the scattering phase shifts using the static nonlinearly screened potentials calculated in the present paper.

In Fig. 4 we show the stopping power as a function of the projectile charge Z. For small Z, S has the expansion $S = S_1 Z^2 + S_2 Z^3 + \ldots$ where the first two terms are the linear and quadratic response results, respectively. To emphasize the deviations from linear response, we present the results in the form $S/(vZ^2)$. In this representation, the stopping power including the quadratic response correction appears as a straight line with slope S_2/v. This correction was previously calculated within the quadratic random phase approximation \[7\] and is shown in Fig. 4 as the straight line. We can see that corrections beyond quadratic response theory are large, especially for positive charges. Furthermore, the inclusion of xc is seen to enhance the stopping power considerably in the range $-1 \leq Z \leq 1$, even to a greater extent than found in 3D \[18\]. Finally, comparison with earlier calculations \[19\] demonstrates that important differences arise when the self-consistently determined nonlinear screening potentials are used to evaluate the momentum scattering cross-sections.

In summary, we have performed self-consistent calculations of the nonlinear screening of a point charge in a 2DEG using density functional theory. We have also proved a screening theorem which clarifies the behaviour of the screening in the high density limit. These results find application in a variety of problems, such as charged impurity scattering and the stopping power of charged projectiles.

The work of I.N. has been supported by the OTKA (Grant Nos. T025019 and T029813), and that of E.Z. by a grant from the Natural Sciences and Engineering Research Council of Canada. P.M.E. thanks the University of the Basque Country, the Basque Hezkuntza, Unibertsitate eta Ikerketa Saila and the Spanish MCyT for support.

\[1\] T. Ando, A. B. Fowler and F. Stern, Rev. Mod. Phys. 54, 437 (1982).
\[2\] P. M. Echenique \textit{et al.}, Chem. Phys. 251, 1 (1999).
\[3\] \textit{Two-Dimensional Electrons on Cryogenic Substrates}, ed. by E. Andrei (Kluwer Academic Press, Dordrecht, 1997).
\[4\] M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002); J. Singleton and C. Mielke, Contemp. Phys. 43, 63 (2002).
\[5\] M. F. Crommie \textit{et al.}, Nature 363, 524 (1993); P. A. Avouris \textit{et al.}, J. Vac. Sci. Tech. B12, 1447 (1994); P. T. Sprunger \textit{et al.}, Science 275, 1764 (1997).
\[6\] T. Nagao \textit{et al.}, Phys. Rev. Lett. 86, 5747 (2001).
\[7\] S. Q. Murphy \textit{et al.}, Phys. Rev. B 52, 14825 (1995).
\[8\] R. Fletcher \textit{et al.}, Phys. Rev. B 41, 10649 (1990).
\[9\] J. Richter \textit{et al.}, Phys. Rev. B 39, 6268 (1989).
\[10\] E. Zaremba, Phys. Rev. B 44, 1379 (1991).
\[11\] B. Simon, Ann. Phys. (N.Y.) 97, 279 (1976).
\[12\] B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).
\[13\] F. Stern and W. E. Howard, Phys. Rev. 163, 816 (1967).
\[14\] A. Ghazali and A. Gold, Phys. Rev. B 52, 16634 (1995).
\[15\] E. Zaremba \textit{et al.}, J. Phys. F 7, 1763 (1977).
\[16\] L. Böning and K. Schönhammer, Phys. Rev. B 39, 7413 (1989).
\[17\] A. Bergara \textit{et al.}, Phys. Rev. B 59, 10145 (1999).
\[18\] P.M. Echenique \textit{et al.}, Nucl. Instrum. Methods Phys. Res. B 56/57, 345 (1991).
\[19\] A. Bret and C. Deutsch, Phys. Rev. E 48, 2994 (1993); A. Krakovsky and J. K. Percus, Phys. Rev. B 52, R2305 (1995); Y.-N. Wang and T.-C. Ma, Phys. Rev. A 55, 2087 (1997).