Breast Cancer in Togolese Women: Imaging and Clinicopathological Findings

Tchin Darré1,2, Mazamaesso Tchaou3, Toukilnan Djiva1, Baguiane Douagube4, Akila Bassowa3, Solange Adani-Ifé5, Ayikóé Kossi Amavi6, Bidamin N’Timon3, Abdoulatif Amadou3, Panakinao Simban1, Bingo K N’Bortche4, Koffi Amégbor1, Abdoul-Samadou Aboubakari6 and Gado Napo-Koura1

1Department of Pathology, University Teaching Hospital of Lomé, Lomé, Togo. 2Faculty of Health Sciences, University of Lomé, Lomé, Togo. 3Department of Imaging, University Teaching Hospital of Lomé and Kara, Kara, Togo. 4Department Obstetrics and Gynecology, University Teaching Hospital of Lomé and Kara, Kara, Togo. 5Department of Clinical Oncology, University Teaching Hospital of Lomé, Lomé, Togo. 6Department of Surgery, University Teaching Hospital of Lomé, Lomé, Togo.

ABSTRACT

BACKGROUND: Breast cancer is the most common cancer in women, and its incidence and mortality rates are expected to increase significantly over the next few years, particularly in developing countries. The aim of this study was to describe the epidemiological, clinical, radiological, histopathological, and prognostic aspects of breast cancer in Togo.

MATERIALS AND METHODS: We retrospectively analyzed at our Department of Pathology of Lomé all cases of breast cancer in women confirmed by histology over a period of 20 years (2000-2019).

RESULTS: We collected 804 cases of breast cancer in women. The median age was 46.7 years (range, 12-86 years). Patients aged <40 years represented 48.38% of cases, and the left breast was more affected (51.24%). Most women were sexually active (71.52%) and resided in urban areas (66.29%). Carcinomas represented the predominant histological group (796 cases, 99.00%) with a predominance of invasive nonspecific type carcinoma (92.34%). These cancers were diagnosed at late stage III using Nottingham grading (55.10%). The TNM classification showed a predominance of grades T2N0M0 (72.45) and T4N1Mx (17.76%). The luminal B profile (40.85%) was found mostly, and the mutation of BRCA2 and BRCA1 genes was found in 2.61% of cases. Mastectomy was performed in 7.59%, radiotherapy in 3.61%, and chemotherapy in 18.66%.

CONCLUSION: Breast cancer is a frequent pathology in Togolese women, predominant in young adults, often diagnosed at a late stage with limited possibilities of treatment. The establishment of early care programs is essential.

KEYWORDS: Breast cancer, female, carcinoma, Togo, sub-Saharan Africa

Introduction

Breast cancer is the most frequently diagnosed cancer in women worldwide.1,2 In 2018, more than 2 million new cases of breast cancer were diagnosed worldwide, representing 11.6% of all cancers.3 In sub-Saharan Africa, diagnosis of breast cancer is often made at late stages, involving the life-threatening prognosis of patients.5-6 Overall, in these countries, there are no structured breast cancer screening programs that have significantly reduced the incidence of breast cancer in developed countries.7,8 The narrowness of the technical platform, in particular the means of exploration, screening, and diagnosis that are often concentrated in the capitals of its countries, complicates the problem of access to cancer care. Female breast cancer is expected to increase in incidence in its sub-Saharan countries, reaching more than 19.3 million women.2 In addition, despite the immense progress in the treatment, the difficulty in the availability of anticancer molecules and their high costs compromise and darken the prognosis, leading to a high mortality linked to breast cancer in women.9,10 The main risk factors linked to breast cancer are hormonal factors linked to premenopausal estrogen impregnation and genetic, behavioral, and environmental factors.11,12 In Togo, a study carried out in 2016 on the epidemiology of cancers showed that breast cancer occupied the first rank.13 In fact, breast cancer was reported in 21.2% of cancers in women and 10% of all cancers in Togo.13 Therefore, breast cancer tends to become a major public health concern that requires special attention from the health ministry. The burden of diseases caused by breast cancer is significant. This study was carried out to reinforce the limited data available and to update epidemiological data on breast cancer,
given the absence of a cancer control plan and the absence of a support structure as well as of the national registry. The objective of this study was to examine the epidemiological, clinical, diagnostic, therapeutic, and prognostic aspects of breast cancer in Togolese women.

Materials and Methods
This is a retrospective analysis of all cases of breast cancer in women diagnosed histologically at the Pathological Anatomy and Imaging Laboratory of the Sylvanus Olympio University Hospital in Lomé, from January 1, 2000, to December 31, 2019 (20 years). Togo is a small country of 56,600 km², with an estimated population of 7,200,000, located between Ghana in the west and Benin in the east. The data were collected from the registers of the said laboratory. The data collected concerned sociodemographic data (frequency, age, location, marital status, family history, circumstances of discovery) and anatomopathological data (nature of the sample, histological group, histological type, Nottingham grade, TNM stage, molecular profile, and existence of mutations in the BRCA2 and BRCA1 genes).14 Imaging data observed during ultrasound and mammography in patients with an imaging record were taken into account. Size, American College of Radiology (ACR) classification, and axillary lymphadenopathy have been studied.15 We collected clinical, therapeutic, and prognostic data from patient medical records. Histological examination was performed on samples from the gynecological, surgical, and imaging departments. These samples are fixed with 10% formalin, embedded in paraffin, and stained with hematoxylin–eosin–safron.

The immunohistochemical profile of the tumors was carried out based on anatomobiological results and based on the evaluation of estrogen and progesterone receptors, the overexpression of HER2, and the proliferation index Ki 67. The labeling of these receptors is considered positive when more than 10% of the cells are labeled, the HER2 receptor has a score of 3+, and when more than 14% of the cells are labeled in the proliferation index. According to the different phenotypes obtained, 5 immunohistochemical phenotype subtypes were defined: luminal A (ER+ and/or PR+, HER2− and Ki-67 <14); luminal B (ER+ and/or PR+, HER2− and Ki-67 >14 or ER+ and/or PR+, HER2+); HER2-positive (ER-, PR-, HER2+); triple-negative or basal-like (ER-, PR-, HER2-); and unclassified (the absence of overexpression of 1 of 3 molecules).16,17

Results
Sociodemographic data
Table 1 summarizes the epidemiological data. We collected 804 cases of breast cancer in women. The annual frequency was 40.20 cases. The median age was 46.7 (12–86) years. Patients aged less than 40 years represented 48.38% (n = 389), 307 (38.19%) were between the ages of 41 and 60 years, and 108 patients (13.43%) were aged >60 years. Regarding the location, the left breast was affected in 412 cases (51.24%), the

Table 1. Sociodemographic characteristics of women.
NO. OF CASES
Age, y
>40
40-60
<60
Minimum
Maximum
Median
Occupation
Employer
Housewife
Pupils and students
Economic status
Poor
Moderate
Good
Excellent
Education level
None
Primary
Secondary
University
Residence
Urban
Rural
Marital status
Unmarried
Married
Divorced
Parity
≤1
>1
Menopausal
No
Yes
Location
Left breast
Right breast
Both breast
right in 369 cases (45.90%), and 23 cases (2.86%) were of bilateral location. The profession was known in 518 (64.43%) patients, of whom 223 (43.05%) were employees, 201 (38.80%) housewives, and 94 (18.15%) pupils and students. The socioeconomic level was low in 202 women and moderate in 344 women (Table 1). The level of education was mentioned in 603 cases. Women with primary (n = 154) and secondary (n = 184) education were the most represented. The rest were university level (105) and uneducated (160). Five hundred thirty-three (66.29%) women resided in towns and 271 (33.71%) in rural areas. Marital status was noted in 714 cases. They were single in 456 cases, married in 208 cases, and divorced in 50 cases. Most women (n = 575; 71.52%) were premenopausal and 529 (65.80) had at least 1 child. The family pathological history was known in 93 women (11.57%). There is a family history of breast cancer in 69 women, ovarian cancer in 13 women, and a combination of ovarian and breast cancer in 11 women. The other risk factors are summarized in Table 2.

Clinical data

The circumstances of discovery were dominated by the discovery of a palpable breast mass in 710 cases (88.31%). The mass was isolated in 547 cases, associated with clinical signs in 130 cases, and lymphadenopathy in 33 cases. The clinical signs observed were an “orange peel” appearance in 92 cases and skin ulceration in 38 cases. The other circumstances of discovery were clinical signs with an orange peel appearance (35 cases), ulcerations (8 cases), a bloody nipple discharge (21 cases), and fortuitously in 30 cases.

Imaging data

Breast imaging reports of only 670 (83.33%) patients were found. Overall, 155 (23.13%) patients performed a breast ultrasound only and 515 patients (76.87%) performed the ultrasound and mammography combination. From imaging examinations, lesions were classified as breast imaging reporting and data system (BI-RADS) 3 (probably benign) in 1.34%, as BI-RADS 4 (probably malignant) in 52.54% and as BI-RADS 5 (highly suspicious of malignity) in 46.12%. There were no BI-RADS 1 and 2.

Histopathological data

The samples received by the laboratory consisted of 209 biopsy fragments and 595 surgical specimens, including 534 nodulectomy pieces and 61 mastectomy specimens including axillary dissection. The nodulectomy pieces had a size varying between 1 and 12 cm, were poorly defined, were of firm consistency, and presented hemorrhagic foci. The mastectomy specimens often presented necrotic and hemorrhagic foci. Most of the dredging pieces had more than 3 lymph nodes (75%). Three histological groups were found: carcinomas (n = 796 cases, 99.00%), sarcomas (n = 6 cases, 0.75%), and lymphomas (n = 2 cases, 0.25%).

The 6 sarcomas diagnosed consisted of 3 cases of primary angiosarcoma of the breast (3/6), Kaposi sarcoma (2/6) and fibrosarcoma (1/6). Nonspecific invasive carcinoma represented 92.34% (735 cases) of all carcinomas, followed by lobular carcinoma with 29 cases (3.64%) (Table 3). The other types of carcinoma were ductal-type carcinoma in situ in 22 cases (10%), neuroendocrine carcinoma (5 cases), papillary carcinoma (4 cases), and adenoid cystic carcinoma (1 case). Nonspecific invasive carcinoma was diagnosed in 556 surgical specimens, including 55 mastectomy specimens and 179 biopsy fragments. The Nottingham histopronostic classification of these invasive carcinomas corresponded to grade II in 405 cases (55.10%) and to grade III in 215 cases (29.25%). The TNM classification was made for 490 invasive carcinomas and showed the predominance of the T2NxMx (355 cases, 72.45%) and T4N1Mx (87 cases, 17.76%) grades (Table 3). The 6 cases of mammary sarcoma were diagnosed on nodulectomy specimens. The

Table 2. Risk factors for women.	NO. OF CASES	PERCENTAGE (%)
Family history	93	93/804
Breast cancer	69	69/93
Ovarian cancer	13	13/93
Associated breast and ovarian cancers	11	11/93
Oral or injectable contraceptives	88	88/804
Lack of physical activity	86	86/804
Obesity	56	56/804
Alcoholism	44	44/804
Smoking	38	38/804
Exposure to ionizing radiation	21	21/804
sarcomas were all grade 2 according to the French Federation of Cancer Centers Sarcoma Group (FNCLCC) classification. Immunohistochemistry was performed in 78 cases of carcinoma, and 71 cases expressed hormone receptors. The molecular classification gives a predominance of the luminal B profile (29 cases, 40.85%) followed by the enriched her2 profile (18 cases, 25.35%). The others were luminal profile A (14 cases, 19.72%) and triple-negative (10 cases, 14.08%). The search for

Nature of the sample	NUMBER OF CASES	PERCENTAGE (%)
Nodulectomy	534	66.42
Biopsy	209	26.00
Mastectomy with axillary dissection	61	7.58
Histological types		
Invasive ductal carcinoma, NOS	735	91.42
Lobular carcinoma	29	3.60
Ductal intraepithelial neoplasia	22	2.74
Neuroendocrine carcinoma	5	0.62
Papillary Carcinoma	4	0.50
Cystic adenoid carcinoma	1	0.13
Angiosarcoma	3	0.37
Kaposi sarcoma	2	0.25
Fibrosarcoma	1	0.12
Lymphoma	2	0.25
Elston and Ellis classification (Nottingham)	620	
Grade I	00	00.00
Grade II	405	65.32
Grade III	215	34.68
TNM classification	490	
T2NxMx	355	72.45
T4N1Mx	87	17.76
T3NxMx	28	5.71
T2N2Mx	20	4.08
Molecular classification	71	
Luminal B	29	40.85
Her2 enriched	18	25.35
Luminal A	14	19.72
Triple-negative	10	14.08
BRCA gene mutations	21	
BRCA2	15	71.43
BRCA1	6	28.57

Abbreviation: NOS, not otherwise specified.
mutations in the BRCA2 and BRCA1 genes was performed in 21 (2.61%) patients. The search for mutations in the BRCA2 and BRCA1 genes was carried out in 21 women. These were mutations in the BRCA2 gene in 15 cases (10.97%) and in the BRCA1 gene in 6 cases (3.66%). Table 3 summarizes the main histopathological data.

Therapeutic and prognostic data

Sixty-one patients (7.59%) underwent mastectomy with lymph node dissection. Radiotherapy was delivered to 29 patients (3.61%) at a dose of 50 Gy on the wall. Acute radiation therapy toxicity such as radiodermatitis was found in 20% of cases. Sequential chemotherapy was administered as a neoadjuvant in 88 patients (10.95%) and as an adjuvant in 62 patients (7.71%). The main side effects of chemotherapy were nausea and vomiting (77% of cases). Data after a median follow-up of 36 months reported 606 patients were lost to follow-up. For the other patients, the result was characterized by complete remission in 69 patients (8.59%), local relapse in 46 patients (7.12%), metastatic relapse in 38 patients (4.73%), and death in 45 patients (5.60%). The lungs were the main site of metastases in 60.53% of cases (23/38), followed by bone in 31.58% of cases (12/38) and liver in 7.89% (3/38). The 5- and 10-year overall survival was 45.96% and 20.20%, respectively.

Discussion

We collected a total of 804 cases of breast cancer diagnosed, with an average frequency of 40.20 new cases per year. This frequency is comparable to sub-Saharan African series, but remains significantly lower than that of Western studies. The underestimation of frequencies in sub-Saharan Africa may be linked to an inefficient and limited health care system with few pathologists and oncologists, ignorance of patients, and lack of effective cancer registries. These factors maintain the burden of this disease in African countries where the diagnosis of breast cancer is often made at a late stage. Indeed, an increased awareness favors the early diagnosis of the pathology with a better prognosis. In developed countries, the mortality rate of breast cancer follows an inverse trend with an average decrease of −1.3% per year between 1990 and 2018. The average age of women in our series was 46.70 years, similar to the average age (48.13 years) reported in Cameroon. In Europe and the United States, women with 46.70 years, similar to the average age (48.13 years) reported in has been low and steady for 20 years. We observe in our series a decrease in the incidence of breast cancer in women under 40 in France which corresponds to the period of genital activity. The increase in the incidence of breast cancer in women under 40 in France has been low and steady for 20 years. We observe in our series a decrease in breast cancer after 50 years, which may be linked, on the one hand, to the fact that certain habits such as breastfeeding are respected and, on the other hand, to the absence or low prevalence of certain risk factors such as hormonal treatments observed in this population. Short life expectancy also reduces the onset of cancer, so information and awareness about breast cancer screening are higher in this proportion of the population. All these observations corroborate the hormonal character linked to breast cancer.

The radio-histological correlation in our series shows that more than half of the breast lesions classified as BI-RADS 4 (52.54%) by imaging were cancers on histology. This result is approximately identical to the 52.7% cancer rate found by Zonderland et al in their prospective series where they assessed the diagnostic performance of mammography and ultrasound for breast cancer diagnosis using the BI-RADS final assessment categories by 12-month follow-up and histocytopathology correlation in the Netherlands. Our results are superior to those of Guennoun et al in Morocco who had found a proportion of 29% of cancer in lesions classified BI-RADS 4. This difference is precisely the origin of the clarifications made in the fourth editions of the BI-RADS classification of the ACR which specifies subtypes 4a, 4b, and 4c.

We observed a predominance of invasive nonspecific carcinoma of 87.5%. Engbang et al and Edmund et al in Cameroon and Ghana, respectively, each found a predominance of invasive ductal carcinoma. However, the low rate of carcinomas in situ could be justified by the unavailability of effective screening tools in all health structures. Most invasive carcinomas corresponding to grade III of the Nottingham classification (55.10%). Our results are similar to those of Lin et al. Breast cancer is often diagnosed at a late stage in sub-Saharan countries, explaining the high rates of death from female breast cancer. Luminal molecular subtype B (51.6%) was the most frequent subtype in our study, corroborating with the results found in the literature. The proportion of triple-negative in our series is similar to the series in Saharan Africa, varying from 13.3% to 38%. The mastectomy with lymph node dissection is most often performed because most tumors are diagnosed at a stage with lymph node invasion. Surgery must necessarily be combined with other treatment methods, including chemotherapy, radiotherapy, and hormone therapy; this is for the control of cancerous disease in general. Postoperative radiotherapy improves local control and progression-free survival but has no impact on overall survival. Fifteen (18.3%) of our patients received radiotherapy. The molecular stratification of breast cancer has prognostic and therapeutic implications. Patients with luminal A submolecular type cancer have a better prognosis and benefit from hormone therapy; those with luminal B submolecular type cancer have a better prognosis for chemotherapy. Triple-negative molecular subtype cancers have a very poor prognosis according to the literature and are most often diagnosed in young women. Given the young age of our patients, it is imperative to initiate other prospective studies to determine the risk factors associated with breast cancer to implement strategies to better manage and reduce the burden of this pathology in Togo. Togo has neither a radiotherapy center nor a subsidy policy for chemotherapy or hormone...
therapy molecules, making the management of these cancers extremely complicated.

Conclusion
Breast cancer is a major public health concern and affects mainly young Togolese women. It is often diagnosed at advanced stages and poses a real problem of therapeutic management in most sub-Saharan countries. Invasive nonspecific carcinoma is the most diagnosed histological type. In Togo, there is not yet a real structured health policy for breast cancer screening to reduce breast cancer mortality, where resources to implement and maintain population-based screening programs are limited. It is therefore imperative that cancers are included in national health policies, by prioritizing health education for the early diagnosis of breast cancer and thus improving the prognosis. This requires the implementation of a real policy of capacity building for women in health care in Togo.

Author Contributions
T. Darré was responsible for the conception of the study; participated in the study design, undertook the field study; conducted the data collection, analysis, and interpretation; and wrote the manuscript. M.T., T. Djiwa, B.D., A.B., S.A.I., A.K.A., B.N., A.A., P.S., B.K.N., K.A., and A.S.B. were involved in the data collection, analysis, and interpretation. They wrote and finalized the manuscript. G.N.K. is responsible for the overall scientific management of the study, for analysis and interpretation, and for the preparation of the final manuscript. All authors have read and approved the final manuscript for submission for publication.

Availability of Data and Materials
Extracted data are with the authors and available for sharing on request.

Ethics Approval and Consent to Participate
This study received approval from the head of the laboratory department where the study was to be conducted. As it related to counting records, patient consent was not required. However, during the counting and data collection, patient names were not collected to preserve confidentiality. This study was approved by the "Comité de Bioéthique pour la Recherche en Santé (CBRS)" (Bioethics Committee for Health Research) from the Togo Ministry of Health, Ref No. 0101/2016/MS/CAB/DGS/DPLET/CBRS). The study has been carried out in accordance with relevant guidelines and regulations.

REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424.
2. Adeloye D, Sowunmi OY, Jacobs W, et al. Estimating the incidence of breast cancer in Africa: a systematic review and meta-analysis. J Glob Health. 2018;8:0100419. doi:10.7189/jogh.08.0100419.
3. Lanta Q, Arveux P, Arselain B. Epidemiology and socio-cultural specificities of young women with breast cancer. Bull Cancer. 2019;106:54-59.
4. Hélène SG, Marc C. Breast cancer epidemiology. Presse Med. 2019;48:1076-1084.
5. Brinton LA, Figueroa JD, Awuah B, et al. Breast cancer in sub-Saharan Africa: opportunities for prevention. Breast Cancer Res Treat. 2014;144:467-478.
6. Jako-Fru MY, Miranda-Filho A, Soerjomataram I, et al. Breast cancer survival in sub-Saharan Africa by age, stage at diagnosis and human development index: a population-based registry study. Int J Cancer. 2020;146:1208-1218.
7. Darré T, Tchaou M, Folligan K, et al. Breast cancer cases of female patients under 35 years of age in Togo: a series of 158 cases. Mol Clin Oncol. 2017;11:226-1139.
8. Bray F, Ren JS, Masuyer E, Ferlay J. Global estimates of cancer prevalence for 36 cancers in 185 countries. CA Cancer J Clin. 2011;51:797-806.
9. Ly M, Antoine M, André F, Callard P, Bernaudin JF, Diallo DA. Breast cancer in sub-Saharan African women: review. Bull Cancer. 2011;98:797-806.
10. Gennoun A, Krimou Y, Bouchikhi C, Mamouni N, Errayah S, Banani A. Correlation radio-histologique des lésions mammaires ACR4: à propos de 181 cas et revue de la littérature [Radio-histological correlation of ACR4 microcalcifications in breast lesions: about 181 cases and literature review. Pan Afr Med J. 2018;29:140. doi:10.1186/s12995-018-0373-4.
11. Qian F, Ongudiran T, Hou N, et al. Alcohol consumption and breast cancer risk among women in three sub-Saharan African countries. PLoS ONE. 2014;9:e106908.
12. Pace Shulman LN. Breast cancer in sub-Saharan Africa: challenges and opportunities to reduce mortality. Oncology. 2016;21:739-744.
13. Darre T, Kpatcha TM, Nguny A, et al. Descriptive epidemiology of cancers in Togo from 2009 to 2016. Asian Pac J Clin Oncol. 2017;34:307-341.
14. Harris L, Fritsche H, Mennel R, et al. American Society of Clinical Oncology 2007 update of recommendation for use tumor markers in breast cancer. J Clin Oncol. 2007;25:5287-5212.
15. Zonderland HM, Pope TI, Jr, Nieborg AJ. The positive predictive value of the breast imaging reporting and data system (BIRADS) as a method of quality assessment in breast imaging in a hospital population. Eur Radiol. 2004;14:1743-1750. doi:10.1007/s00330-004-2373-6.
16. Blows FM, Driver KE, Schmidt MK, et al. Subtyping of breast cancer by immuno-histochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 2010;7:e1000279. doi:10.1371/journal.pmed.1000279.
17. Patrice CA, Baur K, Brown MM, Caggiano V. Breast cancer subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) among women with invasive breast cancer in California, 1999-2004. Breast J. 2009;15:593-602.
18. Balekouzou A, Yin P, Bekolo CE, et al. Histo-epidemiological profile of breast cancers among women in the Central African Republic: about 174 cases. BMC Cancer. 2018;18:387. doi:10.1186/s12885-018-4256.
19. Fitzpatrick MB, Rendi MH, Kivist NB, et al. Pathology of Senegalese breast cancers. Pan Afr Med J. 2019;34:67. doi:10.11604/pamj.2019.34.67.17993.
20. da Costa Vieira RA, Biller G, Uemura G, Alberto Ruiz C, Paula Curado M. Breast cancer screening in developing countries. Clinics (Sao Paulo). 2017;72:244-253.
21. Kemo ADD, Nkengou B, Nangue C, Djuikwou F, Bira a LB, Tebeu PM. Histo-epidemiological aspects of gynecological and breast cancers at the University Teaching Hospital of Yaoundé. Pan Afr Med J. 2019;33:130. doi:10.11604/pamj.2019.33.130.18874.
22. Lowery AJ, Miller N, Devaney A, et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res. 2009;11:R27. doi:10.1186/bcr2257.
23. Kurian AW, Fish K, Shema SJ, Clarke CA. Lifetimes risks of specific breast cancer subtypes among women in four racial/ethnic groups. Breast Cancer Res. 2010;12:R89. doi:10.1186/bcr2780.
24. Colonna M, Delafosse P, Ubey Z, et al. Is breast cancer incidence increasing among young women? An analysis of the trend in France for the period 1983-2002. Breast. 2008;17:289-292.
25. Sutton T, Reilly P, Johnson N, Garreau J. Breast cancer in women under 50: most are not high risk. Ann Fam Surg. 2018;25:848-851.
26. Soerjomataram I, Loriot-Toulet J, Parkin DM, et al. Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet. 2012;380:1840-1850.
27. Engbang JP, Koh VM, Tchente CN, Fewou A. Histo-epidemiological aspects of genital cancers in women in the Littoral Region, Cameroon. Pan Afr Med J. 2015;21:116. doi:10.11604/pamj.2015.21.116.6755.
28. Edmund DM, Nauder SB, Tettey Y, Gyasi RK. Breast cancer in Ghanaian women: what has changed? Afr J Clin Pathol. 2013;140:97-102.
29. Obene-Yeboah M, Adjei E. Breast cancer in Kumasi, Ghana. Ghana Med J. 2012;46:8-13.
30. Lin W, Cen YL, Lin Y, et al. Joint effects between urinary selenium and polymorphisms in methylation related genes on breast cancer risk. *Neoplasma*. 2015;62:491-499.

31. Darre T, Tchaou M, Djiwa T, et al. Male breast cancer in Togo: imaging and clinicopathological findings. *Int J Breast Cancer*. 2020;2020:3056067. doi:10.1155/2020/3056067.

32. Effi AB, Aman NA, Koui BS, Koffi KD, Traoré ZC, Kouyate M. Immunohistochemical determination of estrogen and progesterone receptors in breast cancer: relationship with clinicopathologic factors in 302 patients in Ivory Coast. *BMC Cancer*. 2017;17:115. doi:10.1186/s12885-017-3105-z.

33. Ginsburg O, Bray F, Coleman MP, et al. The global burden of women’s cancers: a grand challenge in global health. *Lancet*. 2017;389:847-860.

34. Lukong KE, Ogunbolade Y, Kamdem JP. Breast cancer in Africa: prevalence, treatment options, herbal medicines, and socioeconomic determinants. *Breast Cancer Res Treat*. 2017;166:351-365.

35. Frandsen J, Cannon G, Kokeny KE, et al. Post-mastectomy radiotherapy for pT3N0 breast cancers: a retrospective, multi-institution review. *Breast J*. 2017;23:452-455.

36. Vuong D, Simpson PT, Green B, Cummings MC, Lakhani SR. Molecular classification of breast cancer. *Virchows Arch*. 2014;465:1-14.