Phytoplankton diversity and its relation to the physicochemical parameters in main water bodies of Vinh Long province, Vietnam

Dao dang thuc vat phu du va moi lien quan cuu noi vo cac thong so hoa ly o cac thuy vu chinh tren dia ban tinh Vinh Long, Viet Nam

LE, Thi Trang*; PHAN, Doan Dang; HUYNH, Bao Dang Khoa; LE, Van Tho; NGUYEN, Van Tu

Institute of Tropical Biology, Vietnam Academy of Science and Technology, 85 Tran Quoc Toan street, District 3, Ho Chi Minh City, Vietnam

Phytoplankton samples were collected in 2016 during the dry and rainy seasons at nine sampling sites in Vinh Long province, Vietnam. Some basic environment parameters such as temperature, pH, dissolved oxygen, nitrate and phosphate were measured and a total of 209 phytoplankton species (six phyla, 96 genera) were identified. The phytoplankton density ranged from 4,128 to 123,029 cells/liter. The dominant algae recorded in the study area include Microcystis aeruginosa, Merismopedia glauca, Oscillatoria perornata, Jaaginema sp., Planktothrix agardhii, Coscinodiscus subtilis, Melosira granulata. In particular, Microcystis aeruginosa was the most density dominant species in the total number of sampling sites during the dry season survey, and this species was classified as a group producing toxins harmful to the environment. Surface water quality, according to QCVN 08: 2015/BTNMT was classified into Column A1 for pH, nitrate and Column B1 for dissolved oxygen, and Column B2 for phosphate. Phytoplankton community structure and environmental factors changed substantially between dry and rainy seasons. A Pearson (r) correlation coefficient was used for the relative analysis. The results indicated that the number of phytoplankton species were a significantly positive correlation with pH, dissolved oxygen and nitrate in the rainy season. The phytoplankton abundance was uncorrelated with environmental factors in both seasons.

Keywords: correlation coefficient of Pearson (r), diversity, phytoplankton, physicochemical factors

1. Introduction

Vinh Long province is located in the downstream of Mekong river, Vietnam. It is situated between the Tien and Hau rivers, in the center of the Mekong Delta, 136 km far from Ho Chi Minh City to the north, 40 km from Can Tho city to the south with geographic coordinates from 9°5′45″ to 10°19′50″ N and 104°41′25″ to 106°17′00″ E. The area includes not only dense river networks but also a complex natural water distribution system with abundant water resources, which are favorable for the distribution and development of many aquatic species.

Phytoplankton was the primary producer and held a significant role in an aquatic food chain, playing an essential role in retaining the stability and integrity of the aquatic ecological system (Long et al., 2013). Phytoplankton is one of the important biological tools used for the assessment of the

* Corresponding author
Email: letrangenvi@gmail.com

ISSN 2193-6471
http://dx.doi.org/10.13141/JVE

83
biological water quality status in water bodies due to its sensitivity to any change in the environment (Salman et al., 2013; Luong and Phan, 2014).

In this study, we investigated the phytoplankton composition, abundance, and dominant species of phytoplankton communities in both dry and rainy seasons of 2016 in the main water bodies of Vinh Long province, Vietnam. Additionally, the relationship between phytoplankton community and environmental factors is also discussed.

2. Materials and methods

The current study was carried out in dry (March) and rainy (September) seasons of 2016. The samples were collected at nine sites in main water bodies of Vinh Long province (Figure 1).

The water temperature, pH and dissolved oxygen were measured in situ by HANA HI9828/4 multi-indicator machine. The nitrate and phosphate were analyzed in the laboratory according to APHA methods (2005). The water quality assessment by QCVN 08:2015/BTNMT is used to indicate the overall water quality conditions.

Phytoplankton samples were collected at nine sites using plankton net and preserved in 5% neutralized formalin. The samples were studied under microscope at 100 – 400X magnification (Olympus BX51 microscope). The identification was based on morphology following the identification books of Desikachary (1959) and Nguyen et al. (2007) for Cyanophyta; Shirota (1966), and Truong (1993) for Bacillariophyta; Duong and Vo (1997), Thompson (1959) for Chlorophyta and other taxonomy books for Chrysophyta, Euglenophyta, and Dinophyta. A Sedgewick Rafter counting chamber was used to determine the phytoplankton density. The phytoplankton classification system is arranged according to the AlgaeBase taxonomic system (Guiry & Guiry, 2016).

The correlation between the physicochemical parameters and the phytoplankton population was estimated using the Pearson correlation coefficient method and also tested for statistical significance at 5% level. The one-way analysis of variance (ANOVA) was used to analyze the differences of species’ composition as well as the phytoplankton density among sampling sites and between two seasons. This statistical analysis was performed using Excel 2010 software.

3. Results

3.1. Environmental characteristics

The average physicochemical concentrations of water in the dry and wet seasons is showed in Table 1. The seasonal fluctuations in the temperature varied from 26.8 to 31.3°C.
with the minimum achieved during the rainy season and the maximum during the dry season. The mean seasonal pH values ranged from 7.1 to 8.2. The concentration of dissolved oxygen in surface water was from 3.1 to 5.3 mg/L. The nitrate concentration varied between 0.18 and 0.48 mg/L, phosphate fluctuated from 0.59 to 1.14 mg/L with minimum during dry and maximum during rainy seasons.

Table 1. Physical-chemical water parameters measured in the studied area during the dry and rainy seasons of 2016

Parameters	Dry season	Rainy season				
	Min	Max	Mean ± SD	Min	Max	Mean ± SD
Temperature (°C)	28.9	31.3	29.9 ± 0.7	26.8	29.6	28.5 ± 0.9
pH	7.2	7.9	7.6 ± 0.2	7.1	8.2	7.6 ± 0.3
Dissolved oxygen (mg/L)	3.5	5.2	4.3 ± 0.6	3.1	5.3	4.2 ± 0.6
Nitrate (mg/L)	0.18	0.48	0.28 ± 0.09	0.19	0.46	0.29 ± 0.07
Phosphate (mg/L)	0.59	1.06	0.851 ± 0.165	0.64	1.14	0.86 ± 0.16

3.2. The characteristics of phytoplankton communities

3.2.1. The structure of phytoplankton community

A total of 209 phytoplankton species belonging to six divisions, 13 classes, 34 orders, 61 families and 96 genera were recorded. Among the phytoplankton groups, 82 species belonging to 33 genera in Bacillariophyta represented approximately 39.2% of the total species, 61 species belonging to 32 genera in Chlorophyta represented 29.2% and 39 species belonging to 21 genera in Cyanophyta represented 18.7%. In addition, the samples included 21 species belonging to five genera in Euglenophyta, three species belonging to three genera in Chrysophyta and three species belonging to two genera in Dinophyta. The number of phytoplankton species was greater in the wet season. An increase in Euglenophyta and Chlorophyta species occurred in the rainy season, when 12 and 25 species were found, respectively. In contrast, a decrease in Bacillariophyta was found, when four species disappeared. The phytoplankton composition in Vinh Long is shown in Table 2.

Most of the algal species and genera recorded in Vinh Long (such as Microcystis, Anabaena, Oscillatoria, Cyclotella, Navicula, Eunotia, Pediastrum, Pandorina, Closterium, Scenedesmus, Staurastrum, Euglena, Phacus, Trachelomonas, Strombomonas etc.) characterize freshwater bodies. In addition, some of the species like Coscinodiscus, Biddulphia, Surirella, Chaetoceros, Gyrosigma originated from the estuary or coastal regions. This proves that the aquatic environment in the studied area was co-affected by freshwater from inland and by seawater via the tide.

No.	Taxa	Dry season	Rainy season	No.	Taxa	Dry season	Rainy season
1	Anabaena affinis	+	+	106	Pleurosigma angulatum	+	+
2	Anabaena circinalis	+	+	107	Rhizosolenia setigera	+	+
3	Anabaena sp.	+	+	108	Skeletonema costatum	+	+
4	Anabaenopsis raciborskii	+	+	109	Stauronella aniceps	+	+
5	Arthospira sp.	+	+	110	Synedra ulna	+	+
6	Aphanizomenon aphanizomenoides	+	+	111	Surirella biseriata	+	+
7	Aphanocapsa sp.	+	+	112	Surirella elegans	+	+
8	Chroococcus sp.	+	+	113	Surirella gemma	+	+
9	Jaaginema sp.	+	+	114	Surirella minuta	+	+
10	Geitlerinema splendidum	+	+	115	Surirella robusta	+	+
11	Gomphosphaeria lacustris	+	+	116	Surirella ovata	+	+
12	Kriyophorion schmidlei	+	+	117	Surirella tenera	+	+
13	Lyngbya birgei	+	+	118	Trachyneis debyi	+	+
14	Lyngbya martensiana	+	+	119	Thalassionema nitidus	+	+
15	Lyngbya sp.	+	+	120	Triceratium alternans	+	+
16	Merismopedia glauca	+	+	121	Triceratium fava	+	+
17	Merismopedia punctata	+	+	122	Trieres mobiliniensis	+	+
18	Microcoleus lacinus	+	+	123	Trieres regia	+	+
19	Microcystis aeruginosa	+	+	124	Vanheurckia lewisiiana	+	+
20	Microcystis botrys	+	+	125	Actinastrum hantzschii	+	+

Table 2. Composition of phytoplankton species collected in Vinh Long

Phylum Cyanophyta

Phylum Chlorophyta
No.	Taxa	Dry season	Rainy season	No.	Taxa	Dry season	Rainy season
21	Microcystis flos - aquae	+	+	126	Ankistrodesmus arcuatus	+	
22	Microcystis pinniformis	+	+	127	Ankistrodesmus gracilis	+	
23	Microcystis protoystis	+	+	128	Ankistrodesmus longissimus	+	
24	Microcystis weisenbergii	+	+	129	Coelastrum reticulatum	+	
25	Oscillatoria acuta	+	+	130	Coelastrum microporum	+	
26	Oscillatoria curviceps	+	131		Closterium gracile	+	
27	Oscillatoria limosa	+	132		Closterium macilentum	+	
28	Oscillatoria perornata	+	133		Closterium intermedium	+	
29	Oscillatoria princeps	+	134		Closterium monilferum	+	
30	Oscillatoria tenuis	+	135		Closterium kuetzingii	+	
31	Oscillatoria sp.	+	136		Closterium sp.	+	
32	Planktothrix agardhii	+	137		Cosmarium debaryi	+	
33	Phormidium chalybeum	+	138		Cosmarium obsolete	+	
34	Phormidium sp.	+	139		Cosmarium sp.	+	
35	Pseudanabaena mucicola	+	140		Crucigenia femestrata	+	
36	Raphidioseps curvata	+	141		Crucigeniella rectangulus 4	+	
37	Snowella rosea	+	142		Crucigenia lauternbornii	+	
38	Spirulina major	+	143		Desmidium baileyi	+	
39	Spirulina princeps	+	144		Desmidium sp.	+	
	Phylum Chrysophyta			145	Dictyosphaerium pulchellum	+	
40	Dinobryon sertularia	+	146		Eudorina elegans	+	
41	Mallomonas sp.	+	147		Euasteras spinulosum	+	
42	Synura adamsii	+	148		Euasteras sp.	+	
	Phylum Bacillariophyta			149	Gonatozygon aculeatum	+	
43	Achnanthes brevipes	+	150		Gonium pectorale	+	
44	Actinothyplus annullatus	+	151		Hyalotheca dissiliens	+	
45	Actinothyplus trilingulatus	+	152		Kirchneriella obesa	+	
46	Amphipleura sp.	+	153		Micrasterias foliacea	+	
47	Aulacoseira granulata	+	154		Mougeotia sp.	+	
48	Bacteriustrum halinum	+	155		Scenedesmus acuminatus	+	
49	Bacillaria pacillifera	+	156		Scenedesmus arbus	+	
50	Biddulphia biddulphiana	+	157		Scenedesmus denticulatus	+	
51	Campylocidiscus daemelianus	+	158		Scenedesmus quadricauda	+	
52	Campylocidiscus undulatus	+	159		Tetrastrum elegans	+	
53	Climatosphaera monilgerea	+	160		Oedogonium crispatum	+	
54	Chaetoceros lozenzianus	+	161		Oocystis borgei	+	
55	Chaetoceros diversus	+	162		Pandorina morum	+	
56	Coscinodiscus astromphalus	+	163		Pediastrum boryanum	+	
57	Coscinodiscus concinus	+	164		Pediastrum simplex	+	
58	Coscinodiscus excentricus	+	165		Pediastrum duplex	+	
59	Coscinodiscus gigas	+	166		Pediastrum tetras	+	
60	Coscinodiscus jonesianus	+	167		Planktosphaeria gelatinosa	+	
61	Coscinodiscus lineatus	+	168		Pleurotaenium coronatum	+	
62	Coscinodiscus marginatus	+	169		Pleurotaenium nodosum	+	
63	Coscinodiscus radiatus	+	170		Pleodorina californica	+	
64	Coscinodiscus rothii	+	171		Spirogyra ionia	+	
65	Coscinodiscus subtillis	+	172		Spirogyra protecta	+	
66	Cyclotella comta	+	173		Spirogyra sp.	+	
67	Cyclotella meneghiniana	+	174		Sphaerocystis schroeteri +		
68	Cylindrotheca closterium	+	175		Stigeoclonium tenue	+	
69	Cymbella cistula	+	176		Staurastrum arcticson	+	
70	Cymbella lanceolata	+	177		Staurastrum indentatum	+	
71	Cymbella tumida	+	178		Staurastrum gracile	+	
72	Cymbella sp.	+	179		Staurastrum leptocladum	+	
73	Cymatopleura elliptica	+	180		Staurastrum natator	+	
3.2.2. Phytoplankton densities

Phytoplankton density fluctuated from 4,128 to 123,029 cells/L, with maximum measured at the M4 site in the dry season and minimum at the M3 site in the rainy season (Figure 2). The average algal cell densities in Vinh Long were 33,526 cells/L in dry and 12,823 cells/L in wet season. The distribution of algal cell densities in the dry season was higher than in the rainy season. In both seasons, the Cyanophyta group was dominant in terms of cell density (80%), followed by Bacillariophyta and Chlorophyta. The phytoplankton density was high, being a rich food source for the larvae, crustaceans, zooplankton, shrimp, fish, and bivalve.

The dominant species in the surveyed area were *Microcystis aeruginosa*, *Merismopedia glauca*, *Oscillatoria perornata*, *Jaaginema sp.*, *Planktothrix agardhii* (belonging to Cyanophyta), *Coscinodiscus subtillus*, *Melosira granulata* (belonging to Bacillariophyta), *Microcystis aeruginosa* contributed the most to phytoplankton abundance during the dry season.

No.	Taxa	Dry season	Rainy season	No.	Taxa	Dry season	Rainy season
74	Diploneis elliptica	+	+	181	Staurastrum sp.	+	+
75	Ditylum brightwellii	+	+	182	Tetraedron incus	+	+
76	Eunotia rabenhorstianum	+	+	183	Tetraedron gracile	+	+
77	Eunotia pectinalis	+	+	184	Volvox aureus	+	+
78	Eunotia sp.	+	+	185	Ulothrix zonata	+	+
79	Fragilaria sp.	+	+	80	Gomphonema angustatum	+	+
81	Gyrosigma acuminatum	+	+	186	Euglena acus	+	+
82	Gyrosigma balticum	+	+	187	Euglena deses	+	+
83	Gyrosigma sinensis	+	+	188	Euglena gracilis	+	+
84	Gyrosigma wormleyi	+	+	189	Euglena oxyuris	+	+
85	Gyrosigma sp.	+	+	190	Euglena viridis	+	+
86	Hydrosera triquetra	+	+	191	Euglena sp.	+	+
87	Melosira moniliformis	+	+	192	Lepocinclis ovum	+	+
88	Melosira varians	+	+	193	Lepocinclis salina	+	+
89	Melosira sp.	+	+	194	Phacus anomalous	+	+
90	Navicula cryptocephala	+	+	195	Phacus hamatus	+	+
91	Navicula plagellata	+	+	196	Phacus helikoides	+	+
92	Navicula radiosa	+	+	197	Phacus longicauda	+	+
93	Navicula sp.	+	+	198	Phacus ovalis	+	+
94	Nitzschia longissima	+	+	199	Phacus pleuronectes	+	+
95	Nitzschia lorentiana	+	+	200	Phacus trapezoides	+	+
96	Nitzschia parvula	+	+	201	Phacus tortus	+	+
97	Nitzschia palea	+	+	202	Phacus sp.	+	+
98	Nitzschia plana	+	+	203	Strombomonas sp.	+	+
99	Nitzschia sigma	+	+	204	Trachelomonas hispida	+	+
100	Nitzschia sigmoidea	+	+	205	Trachelomonas sp.	+	+
101	Paralia sulcata	+	+	206	Trachelomonas sp.	+	+
102	Odontella aurita	+	+	107	Ceratium hirundinella	+	+
103	Pinnularia braunii	+	+	208	Peridinium cinctum	+	+
104	Pinnularia gibba	+	+	209	Peridinium sp.	+	+
105	Pinnularia major	+	+	210	Total species	141	177
3.2.3. The phytoplankton communities in relation to environmental factors in main water bodies, Vinh Long province

The relation between phytoplankton communities and the environmental factors is showed in Table 3.

Variables	Dry season	Rain season						
	Species number	Abundance	Species number	Abundance				
Temperature	0.261	0.498	0.211	0.586	-0.473	0.198	0.035	0.992
pH	0.224	0.561	0.095	0.808	0.859	0.002*	0.23	0.551
DO	-0.386	0.304	-0.166	0.669	0.694	0.037*	0.3	0.432
N-NO₃⁻	0.025	0.948	0.174	0.653	0.683	0.042*	0.578	0.102
P-PO₄³⁻	-0.262	0.494	0.05	0.897	-0.228	0.553	-0.555	0.120

*Correlation is significant at the 0.05 level

Table 3. Correlation between phytoplankton (species number, abundance) and environmental parameters in Vinh Long based on Pearson correlation test.

The statistical data treatment indicated that species number of phytoplankton were in significantly positive correlation with pH (r = 0.859, p<0.05), dissolved oxygen (r = 0.694, p<0.05), and nitrate (r = 0.683, p<0.05) in the rainy season. Contrary to our expectation, the number of species in the dry season and the number of individuals in both of the seasons were not correlated with any monitored environmental factors.

4. Discussion

The average temperature of the main water bodies in Vinh Long province ranged from 28.5 to 29.9°C which was similar to the water temperature of some other water bodies in Southern Vietnam. This temperature offered favorable conditions for the development of phytoplankton (Dao & Bui, 2016). The environmental parameters of such as pH, dissolved oxygen, nitrate, phosphate were investigated and compared to the National technical regulation on surface water quality QCVN 08:2015/BTNMT. The values of pH and nitrate were lower than the standard of column A1 for residential use and other purposes like A2, B1, and B2. Usually, the nitrate concentration in surface water is normally low and varied less than 18 mg/L; however, it can also reach high levels because of the agricultural runoff, contamination with human or animal wastes. The concentration often fluctuates following the season and it can increase if the river is fed by nitrate-rich aquifers (WHO, 2011). The dissolved oxygen values of water matching the column B1 in QCVN 08:2015/BTNMT for irrigation or other purposes requiring the similar quality of water or other purposes like B2. The dissolved oxygen plays an important role to maintain the river’s life process and must have a minimum value of about 2 mg/L to maintain higher life forms (Hach et al., 1997). The phosphate concentration was very high (> 0.5 mg/L) and over the standard of column B2 for waterway transport and other purposes with low-quality water requirements. This brings evidence about the presents of pollution in Vinh Long. One-way ANOVA test showed that the value of temperature was significantly different (p<0.05) between dry and rainy seasons, while the other environmental factors were not a significant difference between the two seasons.
In Vietnam, several investigations and publications are available about the presence of phytoplankton in rivers. Huynh et al. (2011) recorded 128 species of phytoplankton belonging to six divisions of Hau river of which Bacillariophyta contributed the highest species number to phytoplankton composition structure. In a study of phytoplankton composition at Bach Dang river, 116 phytoplankton species were reported wherein Bacillariophyta was also dominant in species number (Nguyen & Pham, 2011). Some other studies of phytoplankton in Dong Nai river (Pham, 2017), Ba Lai river (Pham et al., 2017), and Vam Co river (Dao & Bui, 2016) recorded 139, 104, and 290 species, respectively, and Bacillariophyta provided the greatest contributions to phytoplankton composition. According to this, phytoplankton in Vinh Long showed higher species diversity as compared to Hau river, Bach Dang river, Dong Nai river, Ba Lai river, but lower than Vam Co river. However, phytoplankton communities in the mentioned rivers and Vinh Long’s water bodies shared the same main phytoplankton groups of Cyanophyta, Bacillariophyta, Chlorophyta, Euglenophyta, with Bacillariophyta being dominant.

In general, the phytoplankton composition in the rainy season was higher than that in the dry season. In contrast, the algal cell density in the wet season was lower than that in the dry season. A one-way ANOVA test showed that the phytoplankton compositions were significantly different (p<0.05) between the dry and rainy seasons, while phytoplankton densities were not a significant difference between the two seasons. The dominant species at these sites in the seasons were Microcystis aeruginosa, Merismopedia glauca, Oscillatoria perornata, Jaaginema sp., Planktothrix agardhi, and Melosira granulata which live in freshwater whereas Coscinodiscus subtilis species originated from the estuary and coastal region. Besides, Microcystis aeruginosa were recorded belonging to toxic algae group which is probably harmful to the aquatic organisms (Nguyen et al., 2007).

There are many studies on the correlation between physicochemical factors and phytoplankton. Pandey et al. (1995) showed a positive correlation between pH, dissolved oxygen, bicarbonate, phosphate, and transparency. Bhat & Pandit (2005) found a close relationship between physicochemical characters of water and growth and abundance of phytoplankton. They observed the high growth of phytoplankton during summer and very low growth during winter. Salman et al. (2013) and Ishaq et al. (2013) showed a significant positive correlation between phytoplankton with pH, dissolved oxygen, nitrate and significant negative correlation among phytoplankton with BOD. Mousavi et al. (2014), showed a significant correlation between biotic and abiotic factors. In the current study, phytoplankton showed a positive relationship with pH, dissolved oxygen, nitrate in the wet season.

5. Conclusion

In the present study, the physicochemical factors and phytoplankton community were seasonally surveyed. The results indicate that the concentration of pH and nitrate matched the Vietnamese surface water quality national standard (Column A1) whereas the content of dissolved oxygen has reached the value of B1. The average concentration of phosphate exceeded the column B2 of the standard). There are 209 species in the studied areas belonging to six divisions of Bacillariophyta, Chlorophyta, Cyanophyta, Euglenophyta, Chrysophyta, and Dinophyta, of which Bacillariophyta was dominant in species number. The species number of phytoplankton positively correlated with pH, dissolved oxygen and nitrate in the rainy season. The results of this study contribute with essential information on phytoplankton composition and abundance, their correlation with environmental parameters and environmental characteristics in Vinh Long.

Acknowledgments

We would like to thank Department of Ecology, Institute of Tropical Biology for providing all the necessary facilities for conducting this research work.

6. References

[1] APHA. 2005. Standard methods for the examination of water and wastewater. American Public Health Association. Washington DC., USA.

[2] Bhat, S. A., Pandit, A. K., 2005. Phytoplankton Dynamics in Anchar Lake, Kashmir. In: Ecology of Planktons, Ed. Arvind Kumar Daya. Publishing House, Delhi, 190-208.

[3] Dao, T. S., & Bui, T. N. P., 2016. Phytoplankton from Vam Co River in Southern Vietnam. Environmental Management and Sustainable Development, 5(1), 113-125.

[4] Desikachary, T. V., 1959. Cyanophyta. University of Madras. Published by Indian Council of Agricultural Research - New Delhi.

[5] Duong, D. T., & Vo, H., 1997. Vietnam Fresh Algae. Taxonomy of order Chlorococcale. Agriculture publishing Publishing houseHouse, Hanoi, 503 pp.

[6] Guiry, M. D., & Guiry, G. M., 2016. AlgaeBase. World Wide Electronic Publication. National University of Ireland, Galwa. Available: http://www.algaebase.org.

[7] Hach C. C., Klein R. L., Jr., and Gibbs C. R., 1997. Introduction to Biochemical Oxygen Demand. Technical Information Series. Booklet No. 7. Hach Company, U.S.A

[8] Huynh, V. N. Q., Do, T. B. L., & Pham, T. L., 2011. Biodiversity of phytoplankton in Can Tho bridge area.
of Hau river from 2009 to 2010. In: “Proceedings of the 4th National Scientific Conference on Ecology and Biological Resources”, 832-840. Hanoi, Vietnam, October 21, 2011

[9] Ishaq F., Khanna D. R., Khan A., 2013. Physico-chemical and phytoplanktonic characteristics of river Tons at Dehradun (Uttarakhand), India. Journal of Applied and Natural Science, 5(2), 465-474.

[10] Long, S. X., Chen, C., Liu, Z. W., & Ye, X. Y., 2013. Relationship between phytoplankton and environment factors in Lake Hongfeng. Journal of Environmental Biology, 34(2), 445-449.

[11] Luong, Q. D., & Phan, T. T. H., 2014. Phytoplankton indices for assessment of trophic status and pollution in Huong river system, Thua Thien Hue province. Journal of Science and Technology, Hue University of Science, 2(1), 93-102.

[12] Mousavi S.A., Soltani M., Kamali A., Shamsaei M., 2014. Phytoplankton diversity and its relation to season and some physicochemical parameters in Karoon 4 Reservoir (Iran). Bulletin of Environment, Pharmacology and Life Sciences, 3(3), 193-200.

[13] Nguyen, L. T. T., Cronberg, G., Annadotter, H., & Larsen, J. (2007). Planktic cyanobacteria from freshwater localities in Thua Thien-Hue province, Vietnam. II. Algal biomass and microcystin production. Nova Hedwigia, 85(1-2), 35-49.

[14] Nguyen, L. T. T., Cronberg, G., Larsen, J., & Moestrup, Ø. (2007). Planktic cyanobacteria from freshwater localities in Thua Thien-Hue province, Vietnam. I. Morphology and distribution. Nova Hedwigia, 85(1-2), 1-34.

[15] Nguyen, T. L., Pham, T. N., 2011. Phytoplankton composition at Bach Dang river, Thuy Nguyen district, Hai Phong city from 2006 to 2010. VNU Journal of Science: Natural Sciences and Technology, 27(4), 233-238.

[16] Pandey, B. N., Mishra, A. K., Das, P. K. L., and Jha, A. K., 1995. Studies on hydrological conditions of river Saura in relation to its impact on Biological health. In: Recent Research in aquatic environment. Ed. V.B. Ashutosh Goutam and N.K. Aggarwal. Daya Publishing house.

[17] Pham, T. L., 2017. The seasonal and spatial variations of phytoplankton communities in correlations with environmental factors in the Dong Nai river, Vietnam. Journal of Science-Ho Chi Minh University of Education, 14(3), 149-161.

[18] Pham, T. L., Tran, T. N. D., Tran, T. T, Nguyen, T.M.Y, & Ngo, X. Q., 2017. Seasonal variations of phytoplankton community structure in relation to physico-chemical factors in Ba Lai river, Ben Tre province. Vietnam J. Agri. Sci., 15(5), 631-641 (in Vietnamese).

[19] Salman, J. M., Jawad, H. J., Nassar, A. J., & Hassan, F. M., 2013. A study of phytoplankton communities and related environmental factors in Euphrates River (between two cities: Al-Musayyab and Hindiya), Iraq. Journal of Environmental protection Protection, 4(10), 1071-1079.

[20] Shirota, A., 1966. The plankton of South Vietnam-fresh water and marine plankton. Overseas Technical Cooperation Agency, Japan. 462 pp.

[21] Thompson, R.H., 1959. Algae. In: Fresh Water Biology, Ed. Edmondson W.T., University of Washington, Seattle, 115 – 170.

[22] Truong, N. A., 1993. Taxonomy of Bacillariophyta plankton in marine water of Vietnam, Science and Technics Publishing House, Hanoi, 314 pp.

[23] Vietnam Ministry of Natural Resources and Environment, 2015. QCVN 08:2015/BTNMT: National technical regulation on surface water quality, Hanoi.

[24] World Health Organization, 2011. Nitrate and nitrite in drinking-water. WHO Press, Geneva, Switzerland.