Abstract. We identified a *Saccharomyces cerevisiae* peroxisomal membrane protein, Pex13p, that is essential for protein import. A point mutation in the COOH-terminal Src homology 3 (SH3) domain of Pex13p inactivated the protein but did not affect its membrane targeting. A two-hybrid screen with the SH3 domain of Pex13p identified Pex5p, a receptor for proteins with a type I peroxisomal targeting signal (PTS1), as its ligand. Pex13p SH3 interacted specifically with Pex5p in vitro. We determined, furthermore, that Pex5p was mainly present in the cytosol and only a small fraction was associated with peroxisomes. We therefore propose that Pex13p is a component of the peroxisomal protein import machinery onto which the mobile Pex5p receptor docks for the delivery of the selected PTS1 protein.

Selective protein sorting in eukaryotic cells requires (a) specific signals in the transported proteins, (b) cellular components that recognize and bind these signals, and (c) membrane-associated protein complexes to carry out the actual translocation step. Two types of targeting signals have been described that function in protein sorting to peroxisomes. The peroxisomal targeting signal type 1 (PTS1), which is present in the majority of the peroxisomal matrix proteins, consists of a tripeptide at the extreme carboxy terminus of a protein and was first identified in luciferase (Gould et al., 1987; Keller et al., 1987). The second peroxisomal targeting signal (PTS2) resides at the NH2 terminus of a protein, and was first delineated in thiolase (Osumi et al., 1991; Swinkels et al., 1991). Only a limited number of peroxisomal matrix proteins is imported via this signal.

To identify components involved in peroxisomal protein import several groups have set out to isolate peroxisome assembly mutants in various yeast species (Erdmann et al., 1989; Cregg et al., 1990; Gould et al., 1992; Liu et al., 1992; Van der Leij et al., 1992; Elgersma et al., 1993; Dodt et al., 1995; Fransen et al., 1995; Terlecky et al., 1995). Among the 15 complementation groups of *pex* mutants in *Saccharomyces cerevisiae*, the phenotypes of the *pex*7 (*pas7*) and *pex*5 (*pas10*) mutants are very informative since they display selective protein import defects. The *pex*7 mutant is specifically disturbed in the import of PTS2-containing proteins, whereas *pex*5 does not import PTS1-containing proteins (Van der Leij et al., 1992, 1993; Marzioch et al., 1994; Zhang and Lazarow, 1995). The *PEX5* gene encodes a 69-kD protein with multiple degenerate repeats of a 34-amino acid motif (tetratricopeptide repeat, TPR), linking it to the family of TPR proteins (Goebl and Yanagida, 1991; Van der Leij et al., 1993). In a two-hybrid assay Pex5p specifically interacts with PTS1-containing proteins such as luciferase and peroxisomal malate dehydrogenase (Tabak et al., 1995). A possible homologue of the *PEX5* gene has been cloned from *Pichia pastoris* and more recently from man (McCollum et al., 1993; Dodt et al., 1995; Fransen et al., 1995; Terlecky et al., 1995; Wiemer et al., 1995). Both the human and the *P. pastoris* proteins exhibit binding of PTS1-containing peptides in vitro. Together these results suggest that the *PEX5* gene encodes the receptor for PTS1-containing proteins.

Besides *pex*7 and *pex*5, 13 additional *pex* (*pas*) mutants have been isolated in *S. cerevisiae*. The phenotype of most of these mutants is absence of morphologically distinguishable peroxisomes and cytosolic localization of all peroxisomal matrix proteins, which does not reveal any details of the function of the gene product in question, other than that it is essential for peroxisome biogenesis. However, several of the PEX proteins, collectively called peroxins,
contain domains which are known to be involved in protein–protein interaction, such as Zn-fingers (Pas4p, Pas5p, [Erdmann and Kunau, 1992]), tetratricopeptide repeats (Pex5p [Van der Jeug et al., 1993]), or WD-40 (β-transducin) repeats (Pex7p [Marzioch et al., 1994; Zhang and Laz-awor, 1995]). Further analysis of these domains could therefore, shed light on protein–protein interactions between components of the peroxisomal protein import machinery and help to identify novel partners of peroxins.

In this paper, we report the cloning of the PEX13 (PA520) gene and show that it encodes a peroxisomal membrane protein with an Src-homology 3 (SH3) domain in its carboxy-terminal region. SH3 domains are composed of ~60 amino acids and form structurally independent modules allowing their incorporation in various regions of the protein (Musacchio et al., 1992). The presence of these domains in a wide variety of unrelated proteins, many of which are involved in signal transduction, led to the proposal that this motif plays an important role in protein–protein interactions (Musacchio et al., 1994; Cohen et al., 1995; Panson, 1995). The small size of the SH3 domain and its ability to fold independently allowed the determination of its three-dimensional structure, both by solution NMR and X-ray crystallography (for review see Kuriyan and Cowburn, 1993; Musacchio et al., 1994). This revealed that SH3 domains form a hydrophobic binding pocket, consisting of 5–6 β sheets arranged in anti-parallel configuration. Screening of random peptide libraries led to the identification of proline-rich peptides as ligands for SH3 domains (for review see Musacchio et al., 1994). However, the natural partners of most SH3 domain–containing proteins remain to be discovered. Here we report the identification of Pex5p as a ligand for the SH3 domain of Pex13p and show that the SH3-Pex5p interaction is direct. We also show that Pex5p is mainly a cytosolic protein and we discuss a model for PTS1 protein import.

Materials and Methods

Strains and Culture Conditions

Strains used in this study were S. cerevisiae: BJ1991 (MAT a, leu2, trp1, ura3-52, pbr1-1122, ppe4-3); H13 (MAT a, leu2, his4, URA3::TRP1) (used for back-crossing of pex13Δ; pex13Δ (PEX13::LEU2; MAT a, leu2, trp1, ura3-52, pbr1-1122, ppe4-3); pex13Δ (YS5)(pex13, MAT a, leu2, trp1, ura3-52, pbr1-1122, ppe4-3); pex13Δ (YS6)(pex13::YEpE3K, MAT a, leu2, trp1, ura3-52, pbr1-1122, ppe4-3); pex13Δ (YS7)(pex13::YEpE3K, MAT a, leu2, trp1, ura3-52, pbr1-1122, ppe4-3); pex13Δ (YS3)(pex13, MAT a, his4, leu2, trp1) (used for cloning of the wild-type gene); pex13Δ (pex13, MAT a, his4, ura3, leu2) (used for crossing with pex13Δ); HFc (MATa, ura3-52, his3-200, ade2-101, lys2-801, trp1-901, leu2-3,112, gal4-542, gal80-538, LYS2::GAL1::GAL10::TATA::HIS3 URA3::GAL4::MC8474::CYC1::TATA::lacZ) (for 2-hybrid screen); PCY2 (MATa aag4, dgo80, URA3::GAL1::lacZ, lys2-801, his3-1200, trp1-635, leu2, ade2-101) (for 2-hybrid assays); and Escherichia coli DH5α (recA1, hisD2, supF, endA1, gyrA96, thi-1, relA1, lacZ) All media and growth conditions for S. cerevisiae are described by Elgersma et al. (1993).

Cloning Procedures

Pex13Δ-3a was used for transformation with a genomic single-copy library (YCp50) and a genomic multi-copy library (YEp13) (Nasmyth and Tatchell, 1980; Rose et al., 1987). From each library one clone was isolated that grew on oleate. Restriction analysis of the complementing plasmids of these clones revealed that the inserts of the YCp50-based plasmid (p20.4) and the YEp13-based plasmid (p20.2) were ~12 kb and the inserts almost entirely overlapped. A Sau3A subclone (p20.7) of p20.4 with a 1.775 bp insert was still able to complement pex13Δ-3a. Both strands of this insert were entirely sequenced using the T7 DNA polymerase sequencing kit (Pharmacia Biotech, Uppsala, Sweden).

The insert of p20.7 was cloned between the EcoRI and HindIII sites of pUC19 from which the Ndel and NruI sites had been removed. A Sau3A subclone (p20.4) with a 1,775 bp insert was entirely overlapped. A Sau3A subclone (p20.7) with the oligonucleotides 5'-TTTGATCAGTACCTCAACATCATCAGTTGCTGTCGTTTACATTACA-TCATC-3' as primers. This PCR fragment was cut with BamHI and cloned between the BamHI and PstI sites of pUC19 (p20.18) and by ligation this fragment in the BamHI–SphI (blunt) sites of the CTA1 promoter expression plasmids. This resulted in the replacement of the COOH-terminal 28 amino acids by the dipeptide Gin-Ala. For expression in mammalian cells, NH-PEX13 was subcloned in pcDNA (Invitrogen, San Diego, CA), under the control of the CMV promoter.

The pex13Δ.2 allele was rescued by the gap-repair method (Rothstein, 1991). Two gaps were introduced into the PEX13 gene by cutting plasmid p20.11 (containing a 1,950-bp insert with the PEX13 gene) with PstI–SalI (bp –362 to +429) or with PstI (bp +204 to +739). The vector bands were gel purified and transformed to the pex13Δ mutant. 85% of the Ura+ transformants obtained with the PstI–SalI-digested plasmid were able to grow on oleate, whereas only 55% of the transformants obtained with the KpnI-digested plasmid grew on oleate. From this we concluded that the actual mutation was further downstream of base +739. Therefore, the plasmids of two transformants that were unable to grow on oleate, were rescued and sequenced from the 5’ end until the BstBI site. The remainder of the gene was replaced by the authentic wild-type PEX13 gene.

Antibodies

The SH3 domain of PEX13 (amino acids 284-386) was obtained by PCR using the oligonucleotides 5’-TTTGATCAGTACCTCAACATCATCAGTTGCTGTCGTTTACATTACA-TCATC-3’ and 5’-TTTCTGACAGTGTGACGTCCTACTACATC-3’ as primers. The PCR product was cloned in frame with the DHFR gene of pQE13 (Qiagen, Inc., Chatsworth, CA) (p20.24). The resulting 6x His-tagged DHFR-PEX13 fusion protein was subsequently expressed in E. coli SG3100 and purified by Ni-chelating chromatography under denaturing conditions according to the manual provided by Qiagen. The partially purified protein was subjected to SDS-PAGE; the DHFR-PEX13 band was excised, eluted, and used to immunize rabbits.

Similarly, thiolase (amino acids 17-215) was fused in-frame to the 6x His-tag and expressed in E. coli. Purification and immunization was done as described above.

The antibody raised against Pex5p (amino acids 45-525) and Patlp (peroxisomal ABC transporter) will be described elsewhere. The NH-antibody was kindly provided by P. van der Sluijs (University of Utrecht, Utrecht, The Netherlands), and ISP42-antibody was a kind gift of M. Meijer (University of Amsterdam, Amsterdam, The Netherlands).

Western Blot Analysis

Proteins separated by SDS-PAGE were transferred to nitrocellulose filters and probed as described by Distel et al. (1992), except that 2% nonfat dry milk was used as a blocking agent. Antigen-antibody complexes were visualized with goat anti-rabbit IgGs conjugated to alkaline phosphatase as recommended by the manufacturer (Boehringer Mannheim GmbH, FRG).

Ligand Blot Assay

The PEX3 coding sequence was cloned into pBlueScriptII KS and transcripts were generated from linearized DNA using the T7 RNA poly-
merase (Promega, Madison, WI). Radioactively labeled Pex5p was produced in vitro in a reticulocyte lysate translation reaction (Promega) using a mixture of 35S-labeled methionine and cysteine (Amersham International, Little Chalfont, UK). The 6x His-tagged DHFR-SH3 fusion protein was purified as described above. As a control we purified the nonfused 6xHis-tagged DHFR protein using the empty pQE13 vector. The different His-tagged proteins were separated on a 12% SDS-polyacrylamide gel and blotted onto a PVDF membrane (BioRad Laboratories, Richmond, CA). One part of the membrane was stained with Ponceau S to confirm proper transfer of the proteins, the other part of the membrane was blocked in TBST (10 mM Tris-HCl [pH 8.0], 150 mM NaCl, 0.1% Tween-20) with 10% nonfat dry milk, 100 mM methionine, and 0.02% NaN 3 for 2 h and blotted onto a PVDF membrane (BioRad Laboratories, Richmond, CA). One part of the membrane was stained with Ponceau S to confirm proper transfer of the proteins, the other part of the membrane was blocked in TBST (10 mM Tris-HCl [pH 8.0], 150 mM NaCl, 0.1% Tween-20) with 10% nonfat dry milk, 100 mM methionine, and 0.02% NaN 3 for 2 h at 4°C. The blocked membrane was then incubated overnight at 4°C in 3X diluted blocking mixture containing 100 µl of in vitro translation product, washed once in TBS, and exposed to XAR-5 film (Eastman Kodak, Rochester, NY) to visualize bound Pex5p.

Subcellular Fractionation and Nycodenz Gradient Analysis

Subcellular fractions of oleate-grown cells and Nycodenz gradients were performed as described by Elgersma et al. (1995). Gradient fractions were used for enzyme measurements. The remainder of the fractions was precipitated with 2 vol of 10% trichloric acetic acid (TCA) in the presence of 10 µg/ml of cytochrome C oxidase as carrier, and analyzed by SDS-PAGE and Western blotting.

Carbonate Extraction

An organellar pellet (25,000 g) prepared from wild-type cells was resuspended in 100 mM Tris-buffer (pH 8.0). After freezing and centrifugation (233,000 g for 60 min), the pellet was extracted with 100 mM Tris-buffer (pH 8.0), 1 M NaCl. After another centrifugation step, the pellet was extracted with 100 mM sodium carbonate (pH 11.5). This was centrifuged once more and equivalent portions of pellet (P) and supernatant fractions (S) were layered on an SDS-polyacrylamide gel, blotted onto nitrocellulose, and probed with different antibodies. All extraction steps were performed at 4°C, in the presence of protease inhibitors (1 mM phenylmethylsulfonylfluoride [PMSF] and 2 µg/ml of chymostatin, leupeptin, antipain, and pepstatin).

Alternatively, a freshly prepared organellar pellet was directly used for carbonate extraction, and further treated as described above. This procedure gave the same result with respect to the distribution of the membrane proteins.

Digitonin Titration

Cells grown on oleate were converted to spheroplasts and progressively permabilized with digitonin according to Zhang and Lazarow (1995), except that digitonin incubations were performed at 30°C for 10 min. After quickly cooling the samples on ice-water, they were spun for 5 min at 11,000 g at 4°C. The supernatants were collected and used for SDS-PAGE or enzyme measurements.

Microinjection and Immunofluorescence

Cultured, primary skin fibroblasts used for microinjection experiments were derived from a control subject HENG90AD. Cells were grown and microinjected essentially as described (Motley et al., 1994), except that the DNA was injected at a concentration of 0.25 mg/ml. Cells were fixed in 4% (wt/vol) paraformaldehyde in PBS (pH 7.5) for 20 min at room temperature and further processed as described by Motley et al. (1994). Mouse anti-peroxidase (DAKO, London, UK), and rabbit polyclonal anti-SH3 was visualized with FITC-conjugated goat anti-rabbit IgG (Sigma Chemical Co., Poole, UK).

The NH2-terminal part (amino acids 69-142) of the protein contained an acidic type gene by functional complementation with a genomic library. Nucleotide sequencing of the smallest complementing insert (1,775 bp) revealed an open reading frame of 1,158 bp encoding a protein with a calculated mass of 42.7 kD (Fig. 1 A). More recently, this gene has also been sequenced in the Genome Sequencing Project of S. cerevisiae (accession number L94701).

Two-Hybrid Methodologies

To construct the GAL4(DB)-DHFR-SH3 fusion protein, p20.24 was digested with BamHI and the ends were filled in with Klenow polymerase followed by SpeI digestion. The fragment encompassing DHFR-SH3 was then inserted in the Sall site, the ends of which were made blunt with Klenow polymerase, and the SpeI site of pPC86DB. pPC86DB was made by inserting the KpnI-SacI fragment of pPC97 (Chevray and Nathans, 1992) encompassing the AUC1 gene promoter and GAL4 DNA-binding (DB) domain in pPC86 digested with KpnI and SacI. The GAL4(DB)-DHFR-SH3 was constructed by cutting p20.24 with BamHI and SpeI, filling the ends with Klenow polymerase and ligating this fragment between the blunted Sall and SpeI sites of pCP86DB. The GAL4(TA) fusion library contains genomic fragments (mean insert size ~1 kb) fused to the GAL4 transcription activation (TA) domain in plasmid pACT (Durfee et al., 1993; kindly provided by S. Elledge, Baylor College of Medicine, Houston, TX). Strain H76 expressing the GAL4(DB)-DHFR-SH3 fusion protein was transformed with the genomic library according to the method of Schiestl and Gietz (1989). Approximately 6.107 transformants were plated on minimal glucose medium lacking tryptophan, leucine, and histidine, and His+ colonies were picked after 3 d of incubation at 30°C. The library plasmids of these colonies were rescued, transformed to strain PCY2 expressing GAL4(DB)-DHFR-SH3, and scored for lacZ expression using a filter assay for β-galactosidase activity (Breeden and Nasmyth, 1985). Clones that activated both reporter genes were further analyzed to determine whether the library encoded proteins interacted specifically with SH3 portion of the GAL4(DB)-DHFR-SH3 fusion protein.

Enzyme Assays

Published procedures were used for measuring 3-hydroxyacyl-CoA dehydrogenase activity (an activity of multifunctional enzyme) (Wanders et al., 1990), succinate dehydrogenase activity (Munujo et al., 1993), catalase activity, (Lucie, 1963), and PGI activity (Bergmeyer et al., 1983).

Electron Microscopy

Oleate-induced cells were fixed with 2% paraformaldehyde and 0.5% glutaraldehyde. Ultra-thin sections were prepared as described by Gould et al. (1990).

Results

Cloning of the PEX13 Gene and Analysis of the Protein Sequence

The pex13.1 (pas20.1) mutant which was previously isolated using a positive selection procedure (Elgersma et al., 1993), was used to clone the corresponding PEX13 wild-type gene by functional complementation with a genomic library. Nucleotide sequencing of the smallest complementing insert (1,775 bp) revealed an open reading frame of 1,158 bp encoding a protein with a calculated mass of 42.7 kD (Fig. 1 A). More recently, this gene has also been sequenced in the Genome Sequencing Project of S. cerevisiae (accession number L94701).

To construct a pex13 disruption mutant (pex13Δ), we replaced the PEX13 gene by the LEU2 gene. The pex13Δ mutant was crossed with the original (back-crossed) pex13Δ mutant. The resulting diploids were unable to grow on oleate, indicating that the authentic PEX13 gene, and not a suppressor, had been cloned and deleted. Furthermore, pex13Δ regained its ability to grow on oleate when transformed with the PEX13 gene, indicating that the growth defect of the pex13Δ mutant on oleate is reversible.

Examination of the deduced amino acid sequence of Pex13p revealed that it contained three distinct domains. The NH2-terminal part (amino acids 69-142) of the protein was rich in glycine, tyrosine, asparagine, and serine. A similar type of domain was present in proteins of the nuclear pore complex, some of which participate directly in nuclear transport (Rout and Wente, 1994). The glycine/tyrosine stretch was followed by three rather hydrophobic...
The pex13Δ Mutant Is Disturbed in Import of PTS1- and PTS2-containing Proteins

The phenotype of pex13Δ was studied by subcellular fractionation. We found that the import of matrix enzymes containing a PTS1 or PTS2 was disturbed in pex13Δ (Fig. 2). In addition, no peroxisomes were found in the pex13Δ mutant. The PEX13 gene encodes an SH3 domain-containing protein. (A) Sequence of the PEX13 gene and protein. The start codon is underlined, and the stop codon is marked by an asterisk.

Figure 1. PEX13 encodes an SH3 domain-containing protein. (A) Sequence of the PEX13 gene and protein. The start codon is underlined, and the stop codon is marked by an asterisk. Putative transmembrane segments in Pex13p are also underlined, and the SH3 domain is highlighted by boldface type. These sequences are data available from GenBank/EMBL/DDJB under accession number U17246. (B) Alignment of SH3 domain amino acid sequences. The positions of the RT, N-Src, and distal loops are indicated. Symbols used for the consensus are h, hydrophobic amino acid; a, aromatic amino acid. Residues that fit the consensus are highlighted by boldface type. The Pex13p SH3 is shown in the top line. The SH3 domain in the carboxy terminus of the protein. The SH3 domain of Pex13p differs from most other SH3 domains by the presence of an additional amino acid in the RT loop.
Figure 2. Distribution of peroxisomal matrix enzymes in wild-type (WT), pex13Δ, and pex13.2 cells. The organellar pellet (P) and cytosol (S) fraction obtained after subcellular fractionation of oleic-acid induced strains were assayed for different marker enzymes. Catalase and 3-hydroxyacyl-CoA dehydrogenase (3-HAD) (an activity of multi-functional enzyme) as markers for PTS1-mediated protein import, thiolase as marker for PTS2-mediated protein import. Thiolase was quantified after Western blotting. The bars indicate the average of at least two experiments. The recoveries of the enzymes varied between 80 and 120%.

Hettema et al., 1996) and Pas21p (Elgersma, Y., unpublished data) was present in the organellar pellet fraction obtained from pex13Δ cells, suggesting that peroxisomal remnants might still be present in these cells (data not shown).

Subcellular fractionation studies revealed a difference between pex13Δ and one of the two isolated pex13 mutants: in pex13Δ 5–15% of PTS1- or PTS2-containing proteins was associated with the organellar pellet fraction, whereas in pex13.2, these numbers were consistently higher (15–35%) (Fig. 2). Occasionally, we observed small peroxisomes in pex13.2 by electron microscopy, that could be immunocytochemically labeled using anti-thiolase antibodies (Fig. 4 C). These results indicate that pex13.2 has a residual level of peroxisomal protein import suggesting the presence of a missense mutation in the PEX13.2 gene. We therefore mapped the position of the pex13.2 mutation, using the gap-repair method (Rothstein, 1991; see Materials and Methods). This procedure indicated that the mutation was in the 3' end of the mutant gene. The plasmids bearing the pex13.2 allele were rescued and the 3' end of the mutant gene was sequenced. We found a single mutation, resulting in the Glu320-Lys substitution in the RT loop of the SH3 domain (see Fig. 1 B). To confirm that this mutation was responsible for inactivation of the PEX13.2 gene, we replaced the unsequenced 5' section of the PEX13.2 gene with the corresponding part of the wild-type gene. This “hybrid” gene could not complement the pex13Δ mutant, indicating that the Glu320-Lys mutation indeed inactivated the Pex13p.

Pex13p Is a Peroxisomal Membrane Protein

The COOH terminus of Pex13p (residues 284-386) was expressed in Escherichia coli and used to raise rabbit antibodies. This antibody reacted with only one polypeptide of the predicted size in immunoblots of extracts of wild-type cells which was not present in extracts of pex13Δ cells (Fig. 3 A).

The localization of Pex13p was studied by subcellular fractionation. Western blot analysis of the fractions revealed that Pex13p was exclusively present in the organellar pellet obtained from wild-type cells (Fig. 3 B). Further fractionation of this pellet on a Nycodenz gradient showed that Pex13p colocalized with a peroxisomal marker enzyme (multifunctional enzyme), indicating that Pex13p is associated with peroxisomes (Fig. 3 C).

The subcellular localization of Pex13p was also analyzed by electron microscopy using a tagged (NH epitope) version of Pex13p, expressed under the control of the PEX13 promoter. This NH-tagged protein could fully restore the growth defect of the pex13Δ mutant on oleate, indicating that the tag did not interfere with protein function (data not shown). However, expression was too low to detect the protein by immunoelectron microscopy. Therefore, we placed NH-PEX13 under the control of the catalase (CTA1) promoter. This plasmid could partially restore the growth defect of pex13Δ on oleate, and normal peroxisomes were present as judged by electron microscopy (Fig. 4 B). In these cells Pex13p could easily be detected with both the NH antibodies and the antibodies against Pex13p. We observed specific labeling of peroxisomal membranes (Fig. 4, A and B).
membrane protein Isp42p (used as a control) was present in all the nonextractable pellet fractions. These results strongly suggest that Pex13p is an integral peroxisomal membrane protein.

SH3 domains are often involved in targeting proteins to specific subcellular locations, either to membranes by binding to integral membrane proteins, or to the cytoskeleton by binding to cytoskeletal proteins. The results obtained with the carbonate-extraction procedure already indicated that the SH3 domain of Pex13p is probably not responsible for membrane targeting. This was further substantiated by expressing the PEX13.2 open reading frame (Pex13p-SH3E29K) tagged at its NH2 terminus with the NH epitope in wild-type cells. Immunoelectron microscopic analysis of the transformed cells showed that targeting of the mutant protein was unaffected, since the observed labeling was similar to the labeling obtained with cells expressing wild-type NH-Pex13p (compare Fig. 4, A and D). These results indicate that the SH3 domain is required for Pex13p function, but not for directing Pex13p to the peroxisomal membrane. They also support the conclusion that Pex15p is itself an integral membrane protein.

The SH3 Domain of Pex13p Faces the Cytosol

We expressed NH-tagged Pex13p in human fibroblasts to study both the targeting and the topology of Pex13p. A clear, punctate immunofluorescence pattern was detected with antibodies directed against the SH3 domain (Fig. 5 A). The pattern coincided with the pattern obtained using anti-catalase antibodies (Fig. 5, A and B). No signal was observed with anti-SH3 antibodies in control cells, indicating that these antibodies do not cross react with human proteins (Fig. 5 A). These results indicate that NH-Pex13p is targeted to peroxisomes in higher eukaryotic cells.

The proper targeting of Pex13p in human fibroblasts and the availability of antibodies directed against the SH3 domain enabled us to determine the topology of this domain using the differential permeabilization procedure described by Motley et al. (1994). The plasma membrane of cells expressing NH-Pex13p was selectively permeabilized with low concentrations of digitonin. With anti-SH3 antibodies, a punctate staining was observed (Fig. 5 C), whereas only diffuse background labeling was manifest with antibodies directed against catalase (a peroxisomal matrix protein) (Fig. 5 D). When Triton X-100 was included in the permeabilization buffer, both the plasma membrane and the peroxisomal membrane were permeabilized. Under these conditions particulate catalase could be detected (Fig. 5 B). The fact that punctate labeling could be detected after permeabilization of only the plasma membrane but not the peroxisomal membrane indicates that the SH3 domain faces the cytosol. Considering the proper targeting of yeast Pex13p in fibroblasts, we interpret the data as support for the cytosolic orientation of the SH3 domain in yeast. The NH2 terminus of Pex13p either sticks into the peroxisomal matrix or faces the cytosol depending on the number of transmembrane domains present in the protein.

Isolation and Characterization of Proteins Interacting with the SH3 Domain

To identify proteins that are capable of interacting with

The Journal of Cell Biology, Volume 135, 1996
Figure 4. Pex13p is tightly associated with peroxisomal membranes. Electron microscopic analysis of the intracellular localization of Pex13p in: (A) Wild-type cells expressing NH-PEX13 from the CTA1 promoter (anti-NH), (B) pex13A cells expressing NH-PEX13 from the CTA1 promoter (anti-NH), (C) pex13.2 cells (anti-thiolase) and (D) wild-type cells expressing NH-PEX13.2 from the CTA1 promoter (anti-NH). All cells were induced on oleate. (E) Resistance of Pex13p to carbonate extraction. A portion of the organelar pellet was extracted with Tris-buffer (pH 8.0). After centrifugation the pellet was extracted with Tris-buffer (pH 8.0)/1 M NaCl, and after centrifugation, the resulting pellet was extracted with 100 mM sodium carbonate (pH 11.5). This was centrifuged once more, and equivalent portions of pellet (P) and supernatant (S) were layered on an SDS polyacrylamide gel, blotted onto nitrocellulose, and probed with the antibodies indicated. O is start material of the organelar pellet. The arrow indicates the full-length Pex13p. The faster migrating bands are breakdown products of Pex13p. Bar, 0.2 μm.

The SH3 domain of Pex13p, we applied the yeast two-hybrid screen (Fields and Song, 1989). A fusion protein consisting of the GAL4 DNA-binding (DB) domain (residues 1-147) and the PEX13 SH3 domain (residues 284-386), separated by mouse dihydrofolate reductase (DHFR) as a spacer, was used as "bait" in this screen.

The GAL4(DB)-DHFR-SH3 fusion protein was unable to activate transcription in a yeast reporter strain expressing only the GAL4 transcriptional activation (TA) domain (Table I). To identify proteins that interact with the SH3 domain of Pex13p, we transformed the reporter strain expressing the GAL4(DB)-DHFR-SH3 fusion protein with a DNA library in which yeast genomic DNA fragments were fused to the GAL4(TA) domain (Durfee et al., 1993). From approximately 6×10^5 double transformants (representing five times the genome size), 19 colonies both grew in media lacking histidine and activated the lacZ reporter. For additional controls, the recovered plasmids of these 19 clones were transformed to strains expressing either GAL4(DB) or GAL4(DB)-DHFRΔSH3 in which the last
nine amino acids of the SH3 domain were deleted. This deletion inactivated Pex13p, since a construct with the same deletion in the PEX13 gene (PEX13ΔSH3) was unable to complement the pex13Δ mutant (data not shown). 5 of the 19 clones were unable to activate the lacZ gene with either of the above fusion proteins, suggesting that these library-encoded proteins interacted specifically with the SH3 domain (Table I). Sequence analysis revealed that four of the five clones encoded Pex5p. All four PEX5 clones were fused in-frame to GAL4(TA) at their NH2 termini (one clone at amino acid residue 11, three clones at residue 43) and contained the rest of the Pex5p open reading frame. Pex5p was previously identified as a protein required for import of PTS1-containing proteins and belongs to the tetratricopeptide repeat (TPR) family of proteins (Van der Leij et al., 1992, 1993). More recently, we have demonstrated that this protein is able to bind PTS1-containing proteins, suggesting that Pex5p is the PTS1-binding receptor (Tabak et al., 1995). Together, these results indicate that interaction between Pex5p and the SH3 domain of Pex13p is required for import of peroxisomal matrix enzymes.

To test whether the interaction between Pex13p SH3 and Pex5p was direct or mediated by a third protein, we examined their association in vitro using a ligand blot assay. In this assay E. coli purified DHFR-SH3 fusion protein and wild-type DHFR were separated by SDS-PAGE and transferred to a PVDF membrane. One part of the membrane was stained for protein (Fig. 6 A), whereas the other part was incubated in blocking buffer to allow rea-

Table I. Reconstitution of GAL4 Activity by Hybrid GAL4 Proteins

GAL4(DB) fusion	GAL4(TA) fusion	Colony color
--	--	white
DHFR-SH3	--	white
DHFR-SH3	PEX5	white
DHFR-ΔSH3	PEX5	blue

β-Galactosidase activity was determined by a filter assay for yeast strains containing the indicated plasmids.
Figure 6. In vitro binding of Pex5p to the Pex13p SH3 domain. Purified protein (lanes 1 and 3) and whole bacterial lysates (lanes 2) were separated by SDS-PAGE and transferred to PVDF membrane. One part of the membrane was stained for protein (A), the other part was probed with 35S-labeled Pex5p (B) (see Materials and Methods). Lane 1, 6xHis DHFR-SH3 (+ 5 μg); lane 2, 6xHis DHFR-SH3 (lysat); lane 3, 6xHis DHFR (+ 10 μg).

Figure 7. Subcellular localization of Pex5p. (A) Subcellular fractionation of oleate-induced wild-type cells resulting in an homogenate fraction (H), an organellar pellet fraction (P), and a supernatant fraction (S) containing cytosolic proteins. Comparable volumes of the fractions were used for Western blotting with anti-Pex5p and anti-thiolase antibodies. The arrow indicates the size of the full-length Pex5p. (B) Density gradient centrifugation on Nycodenz of the crude organellar pellet. The obtained fractions were used both to measure the peroxisomal marker 3-hydroxyacyl-CoA dehydrogenase (3-HAD) and the mitochondrial marker enzyme succinate dehydrogenase (SUC.DH), and for Western blotting to detect Pex5p. The first two lanes are TCA-lysates of wild-type and pex5Δ cells grown on oleate. (C) Release of proteins by digitonin titration of oleate grown wild-type cells. The spheroplasts were incubated for 10 min at 30°C with increasing amounts of digitonin. After quickly cooling the samples, the spheroplasts were pelleted and the supernatants were used for enzyme assays or for Western blotting. Phosphoglucose isomerase (PGI) was used as cytosolic marker enzyme, catalase (CTA) was used as marker enzyme for peroxisomal matrix proteins, whereas Pas21p was used as marker for peroxisomal membrane proteins. Pex5p and Pas21p were quantified after Western blotting.
the cytoplasm. The localization of Pex5p was also studied by immunoelectron microscopy using an NH-tagged Pex5p version and NH-antibodies. The results obtained confirmed the biochemical data: almost exclusive cytosolic labeling was observed (data not shown).

Discussion

Pex13p Is an SH3-containing Membrane Protein

We report here the molecular characterization of a novel SH3-containing protein, Pex13p, that is essential for peroxisomal protein import in *S. cerevisiae*. Biochemical and immuno-electronmicroscopic analysis showed that Pex13p is a peroxisomal membrane protein. A two-hybrid screen with the SH3 domain of Pex13p identified Pex5p, the PTS1 receptor, as a partner of Pex13p. Pex5p bound directly to Pex13p SH3 in a ligand blot assay, which identified Pex5p as a bona fide SH3 ligand. In addition, we showed that Pex5p is predominantly a cytosolic protein.

Several independent lines of evidence proved that the SH3 domain is essential for Pex13p function and for the interaction with Pex5p. First, a point mutation in the RT loop of the SH3 domain (Pex13pSH3E320K) resulted in a nonfunctional protein. Second, the PEX13ΔSH3 gene (lacking the carboxy-terminal 28 amino acids, including at least 9 amino acids of the SH3 domain) could not complement the pex13Δ mutant. Third, the small COOH-terminal deletion in the SH3 domain (Pex13pΔSH3) abrogated the two-hybrid interaction with Pex5p. Interestingly, the SH3 domain of Pex13p is not required for localization of Pex13p itself, since neither the peroxisomal targeting of the nonfunctional SH3-domain mutant Pex13p-SH3E320K in yeast nor that of the SH3 deletion mutant (Pex13pΔSH3) in human fibroblasts (data not shown) was affected. Many SH3-containing proteins are found in the proximity of membranes or the cytoskeleton. For a number of these proteins it has been demonstrated that the SH3 domains mediate localization to these regions (Bar-Sagi et al., 1993; De Mendez et al., 1994; Rotin et al., 1994). The SH3 domain of Pex13p does not determine its subcellular location, but it is probably involved in recruiting another protein, Pex5p, to the peroxisomal membrane. A similar function was proposed for the transmembrane protein Sholp, which binds with its SH3 domain to a proline-rich sequence in Pbs2p, a mitogen-activated protein kinase kinase (Maeda et al., 1995). A function in localizing proteins to specific sites in the cell is found for many other SH3-containing proteins, although in most cases the SH3 domain is present on the cytosolic and not on the membrane-associated protein.

Only a few natural SH3-binding proteins have been identified so far and the binding sites in these proteins have been mapped to proline-rich sequences (Ren et al., 1993; Finan et al., 1994; Musacchio et al., 1994). Other SH3-binding sequences have been delineated by screening of combinatorial peptide (Yu et al., 1994) and phage display libraries (Rickles et al., 1994). From these experiments, a PxxP motif has evolved as a consensus for SH3-binding sequences. So far, only the epithelial Na+ channel, αENaC, appears to contain an SH3-binding site which does not conform to the PxxP consensus (Rotin et al., 1994). A PxxP motif is also not present in the Pex5p primary sequence, but the protein contains one "proline-rich" sequence (PSSGRLPP, residues 88 to 95) with a spacing of the prolines identical to that of the SH3-binding sequence in αENaC. Whether this sequence motif is indeed involved in Pex13p SH3-binding remains to be tested. It is noteworthy that only near full-length *PEX5* genes (~2 kb inserts) were isolated in the two-hybrid screen, since the average insert length of this library is only 1 kb. Deletion analysis of *PEX5* confirmed that indeed nearly full-length Pex5p was required for interaction with Pex13p SH3 in a two-hybrid assay (data not shown). Recently, a similar finding has been reported for the interaction between the human immunodeficiency virus type 1 (HIV-1) Nef protein and the SH3 domain of Hck, a member of the Src family of protein kinases (Lee et al., 1995). High-affinity binding to the Hck SH3 was only observed for the intact Nef protein, but not for peptides containing the Nef SH3-binding motif. These observations suggest that SH3-binding motifs may be presented in a distinct conformation in the context of the intact protein. Alternatively, additional contacts between the ligand and the SH3 domain may contribute to the affinity and the specificity of the interaction.

A Role for Pex13p and Pex5p in Peroxisomal Protein Import

We showed previously that the pex5Δ mutant is specifically deficient in the import of proteins with a type I peroxisomal targeting signal (PTS1) (Van der Leij et al., 1993). In a yeast two-hybrid assay Pex5p interacts with the PTS1-containing protein luciferase (Tabak et al., 1995). A single amino acid substitution in the PTS1 that abrogates the import of the mutant luciferase in vivo also prevents interaction with Pex5p in a two-hybrid assay (Distel et al., 1992; Elgersma et al., 1993; Tabak et al., 1995). In this respect, Pex5p conforms to the definition of a receptor, with a PTS1 as a ligand. Interestingly, our subcellular fractionation result indicates that the majority of Pex5p (~85%) was located in the cytosol. Only a small amount of Pex5p is associated with peroxisomes and copurified with the organelles upon equilibrium density centrifugation in a Nycodenz gradient. An independent biochemical method, based on the release of proteins after differential permeabilization of yeast spheroplasts, confirmed the predominant cytosolic localization of the protein. The absence of membrane-spanning regions in the primary sequence of Pex5p is in line with these observations. Based on these results we propose that Pex5p selects PTS1-containing proteins in the cytosol and delivers them to the peroxisomal membrane for further transport into the matrix space (Fig. 8). Our two-hybrid analysis and the observed direct interaction between Pex5p and Pex13p SH3 suggest that Pex13p is the membrane protein involved in peroxisome-specific docking of PTS1-loaded receptor. To be able to function as a docking protein for a cytosolic receptor complex, the COOH terminus of Pex13p containing the SH3 domain must be accessible from the cytosol. We obtained evidence for this by targeting Pex13p to peroxisomes in human fibroblasts. When the plasma membrane of Pex13p-expressing cells was selectively permeabilized with digitonin, the
Pex5p binds PTSl-containing proteins in the cytosol, which is followed by docking at the peroxisomal membrane by binding the SH3 domain of Pex13p. After release and import of the PTS1-containing protein, Pex5p is able to recycle to do other rounds of binding and delivery.

SH3 domain was labeled by the anti-SH3 antibody, indicating that it is facing the cytosol. Although we still lack data such as pulse-chase experiments to formulate a more dynamic model, the predominantly cytosolic localization of Pex5p suggests that the protein shuttles between the cytosol and the peroxisomal membrane as escort of PTS1-binding and delivery. Dynamic model, the predominantly cytosolic localization that it is facing the cytosol. Although we still lack data such as pulse-chase experiments to formulate a more dynamic model, the predominantly cytosolic localization of Pex5p suggests that the protein shuttles between the cytosol and the peroxisomal membrane as escort of PTS1-binding and delivery.

Surprisingly, different subcellular locations have been reported for homologues of S. cerevisiae Pex5p in other species: primarily cytosolic (human Pex5p[PxR1p] (Dodt et al., 1995; Wiemer et al., 1995)), exclusively associated with peroxisomes and firmly attached to the cytosolic face of the membrane (human Pex5p [Fransen et al., 1995]; Pichia pastoris Pex5p[Pas8p] [McCollum et al., 1993; Terlecky et al., 1995]), and intraperoxisomal (Hansenula polymorpha Pex5p[Per3p] [Van der Klei et al., 1995]; Yarrowia lipolytica Pex5p[Pay32p] [Szilard et al., 1995]). Why the PTS1 receptors are found in such different locations is still a matter of debate (see also Rachubinski and Subramani, 1995). One possible explanation is that the PTS1 receptors not only shuttle between the cytosol and the peroxisomal membrane, but that, under certain physiological conditions, they can be coimported with the selected PTS1 proteins. A prerequisite for coimport is that protein complexes can pass the membrane. Indeed, oligomeric forms of proteins and even gold particles coated with PTS1 peptides can be translocated into peroxisomes (Glover et al., 1994; McNew and Goodman, 1994; Walton et al., 1995). Alternatively, the PTS1 receptors do not perform the same function. Despite extensive sequence similarity, PTS1 receptor genes fail to functionally complement PTS1 receptor mutants in other species (Dodt et al., 1995; Szilard et al., 1995; Van der Klei et al., 1995). Some of the PTS1-binding proteins, therefore, might not shuttle but only function inside peroxisomes as components of the protein translocation machinery (Szilard et al., 1995). Further analysis is required to distinguish between these possibilities.

Our subcellular fractionation studies showed that pex13Δ is disturbed in import of both PTS1- and PTS2-containing proteins. This is a puzzling observation since only the PTS1 receptor was found in a two-hybrid screen. Pex13p is able to bind the PTS2 receptor (Pex7p), but that this interaction has gone undetected in our two-hybrid screen. Alternatively, Pex13p is not just a docking protein for Pex5p, but rather a structural component of a translocation complex common to PTS1- and PTS2-containing proteins. Further investigation is required to resolve this issue.

The use of a cytosolic receptor and a membrane-associated docking protein is a recurring theme in protein targeting to cellular compartments. Most proteins destined for the ER are first bound in the cytosol by the signal recognition particle (SRP) before associating with the ER membrane-located docking proteins (Walter and Johnson, 1994). Protein import into the nucleus also begins in the cytosol with binding of the import substrate by a receptor complex consisting of two subunits, importin-α (karyopherin-α) and importin-β (karyopherin-β). This is followed by docking of receptor-substrate complexes at the cytoplasmic face of the nuclear pore complex (NPC) (Sweet and Gerace, 1995). Similarly, the initial step of mitochondrial protein import is mediated by a cytosolic factor MSF (mitochondrial import simulating factor) that selectively binds the amino-terminal targeting sequence of (most) mitochondrial precursors (Hachiya et al., 1995). Subsequently, the precursors are handed over to the mitochondrial outer membrane complex for translocation across the mitochondrial membranes (Lithgow et al., 1995). Our results show that the mechanistic principles used in targeting to ER, nucleus, and mitochondria also apply to peroxisomal protein import: a cytosolic receptor recognizes the protein to be imported and directs it to the organelar membrane.

We are grateful to E. Hettema and A. Vos for technical assistance and helpful suggestions, and to C. Ruigrok, M. Groot Koerkamp, and A. Motley for assisting with the microinjection assays. We thank R. Benne, I. Braakman, and P. Borst for critical reading of the manuscript and their interest in our work. We thank S. Gould and D. Crane for communicating their unpublished results. Finally, we thank M. Meijer and P. van der Sluijs for providing us with the ISP42 and NH antibodies, and P. Chevray and S. Elledge for providing us with the two-hybrid reagents.

This work was supported by The Netherlands Foundation for Chemical Research with financial aid from The Netherlands Foundation for Scientific Research and the Biotechnology Centre (Amsterdam).

Received for publication 7 March 1996 and in revised form 28 June 1996.

References

Bar-Sagi, D., D. Rotin, A. Batzer, V. Mandlyan, and J. Schlessinger. 1995. SH3 domains direct cellular localization of signaling molecules. Cell. 74:83-91.

Bergmeyer, H.U., M. Grassl, and H.E. Walter. 1983. Enzymes. In Methods of Enzymatic Analysis. H. U. Bergmeyer, editor. Verlag Chemie, Weinheim. pp. 279-280.

Breden, L., and K. Nasmyth. 1985. Regulation of the yeast HO gene. Cold Spring Harbor Symp. Quant. Biol. 50:643-650.

Chevray, P.M., and D. Nathans. 1992. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc. Natl. Acad. Sci. USA. 89:5789-5793.

Cohen, G.B., R. Ren, and D. Baltimore. 1995. Modular binding domains in signal transduction. Cell. 80:237-248.

Creel, J.M., J. Van der Klei, G.J. Sutler, M. Veenhuis, and W. Harder. 1990. Peroxisome-deficient mutants of Hansenula polymorpha. Yeast. 6:87-97.

De Mendez, I., M.C. Garrett, A.G. Adams, and T.L. Leto. 1994. Role of p67phox SH3 domains in assembly of the NADPH oxidase system. J. Biol. Chem. 269:16326-16332.

Elgersma, Y., P. Braakman, and P. Borst for critical reading of the manuscript and their interest in our work. We thank S. Gould and D. Crane for communicating their unpublished results. Finally, we thank M. Meijer and P. van der Sluijs for providing us with the ISP42 and NH antibodies, and P. Chevray and S. Elledge for providing us with the two-hybrid reagents.

This work was supported by The Netherlands Foundation for Chemical Research with financial aid from The Netherlands Foundation for Scientific Research and the Biotechnology Centre (Amsterdam).

Received for publication 7 March 1996 and in revised form 28 June 1996.
Marzioch, M., R. Erdmann, M. Veenhuis, and W.-H. Kunau. 1994. PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. J. Cell Biol. 125:745–757.

Munro, P., J. Coll-Canti, F. Gonzalez-Sastre, and F.J. Gella. 1993. Assay of succinate dehydrogenase activity by a colorimetric-continuous method using iodonitrotetrazolium chloride as electron acceptor. Anal. Biochem. 212:506–509.

Musacchio, A., T. Gibson, V.P. Lehto, and M. Saraste. 1992. SH3-an abundant protein domain in the search of a functional SH3 domain. Prog. Biophys. Mol. Biol. 58:283–297.

Nasmyth, K.A., and K. Tatchell. 1980. The structure of transferrin宜 using monoclonal antibodies of varying specificity. Cell 19:753–764.

Nuttley, W.M., A.M. Brade, C. Gallardin, G.A. Eizet, J.R. Glover, J.D. Atkinson, and R.A. Rachubinski. 1993. Rapid identification and characterization of peroxisomal assembly mutants in Yarrowia lipolytica. Yeast 9:507–517.

Osumi, T., T. Tsukamoto, S. Hata, S. Yokota, S. Miura, Y. Fujiki, M. Hikijata, S. Miyaizawa, and T. Hashimoto. 1991. Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem. Biophys. Res. Commun. 181:947–954.

Pawson, T. 1995. Protein modules and signalling networks. Nature (London). 373:573–580.

Rachubinski, R.A., and S. Subramani. 1995. How proteins penetrate peroxisomes. Cell. 83:525–528.

Rao, M.J.K., and P. Argos. 1986. A conformational preference parameter to predict helices in integral membrane proteins. Biochim. Biophys. Acta 869:212–214.

Ren, R., B.J. Mayer, P. Cicchetti, and D. Baltimore. 1993. Identification of a ten-amino acid proline-rich SH3 binding site. Science (Wash. DC). 259:1157–1161.

Richards, R.J., M.C. Bottfield, Z. Weng, J.A. Taylor, O.M. Green, J.S. Brugge, and M.J. Zoller. 1994. Identification of Src, Fyn, Lyn, Fynoz and Abl SH3 domain ligands using phage display libraries. EMBO (Eur. Mol. Biol. Organ.) 13:5998–6004.

Rickles, R.J., M.C. Bottfield, Z. Weng, J.A. Taylor, O.M. Green, J.S. Brugge, and M.J. Zoller. 1994. Identification of Src, Fyn, Lyn, Fynoz and Abl SH3 domain ligands using phage display libraries. EMBO (Eur. Mol. Biol. Organ.) 13:5998–6004.

Rothstein, R. 1991. Targeting, disruption, replacement and allele rescue: integrative transformation in yeast. In Methods in Enzymology. Vol. 194. C. Guthrie and G.R. Fink, editors. Academic Press Inc., San Diego, CA. pp. 281–301.

Rotin, D., D. Bar-Sagi, H. O’Broadovich, J. Merilainen, V.P. Letho, C.M. Canessa, B.C. Rossier, and G.P. Downey. 1994. An SH3 binding region in the epidermal growth factor receptor recruits the SH3 domain of the 90-kDa src homologue pp60^{src}. Science (Wash. DC). 264:326–328.

Schiestl, B.W., and R.D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as carrier. Curr. Genet. 16:437–446.

Sweet, D.J., and L. Gerace. 1995. Taking from the cytoplasm and giving to the plasma: soluble transport factors in nuclear protein import. Trends Cell Biol. 5:44–47.

Swinkels, B.W., S.J. Gould, A.G. Bodnar, R.A. Rachubinski, and S. Subramani. 1995. A novel, cleavable peroxisomal targeting signal at the carboxy terminus of the rat 3-ketoacyl-CoA thiolase. EMBO (Eur. Mol. Biol. Organ.) J. 10:3255–3262.

Szielard, R.K., V.I. Titorenko, M. Veenhuis, and R.A. Rachubinski. 1995. Pat3p, a yeast Yarrowia lipolytica is an integral component of the matrix protein translocation machinery. J. Cell Biol. 131:1453–1469.

Tabak, H.F., Y. Eilersma, E. Hettema, M.M. Franse, T. Voorn-Brouwer, and B. Distel. 1996. Transport of proteins and metabolites across the impermeable membrane of peroxisomes. Cold Spring Harbor Symp. Quant. Biol. 61:237–240.
targeting to the endoplasmic reticulum membrane. *Annu. Rev. Cell Biol.* 10: 87–119.

Walton, P.A., P.E. Hill, and S. Subramani. 1995. Import of stably folded proteins into peroxisomes. *Mol. Biol. Cell.* 6:675–683.

Wanders, R.J., L. IJlst, A.H. Van Giessen, C. Jacobs, J.P. De Jager, L. Dorland, and M. Duran. 1990. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of a new inborn error of mitochondrial fatty acid β-oxidation. *J. Inher. Metab. Dis.* 13:311–314.

Wiemer, E.A.C., W.M. Nutley, B.L. Bertolaet, X. Li, U. Francke, M.J. Wheelock, U.K. Anne, K.R. Johnson, and S. Subramani. 1995. Human peroxisomal targeting signal-I receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. *J. Cell Biol.* 130:51–65.

Yu, H., J.K. Chen, S. Feng, D.C. Dalgaro, A.W. Brauer, and S.L. Schreiber. 1994. Structural basis for the binding of proline-rich peptides to SH3 domains. *Cell.* 76:933–945.

Zhang, J.W., and P.B. Lazarow. 1995. PEB1 (PAS7) in *Saccharomyces cerevisiae* encodes a hydrophilic, intra-peroxisomal protein that is a member of the WD repeat family and is essential for the import of thiolase into peroxisomes. *J. Cell Biol.* 129:65–80.