Polymer Reptation in Disordered Media

Dinko Cule and Terence Hwa

Department of Physics, University of California at San Diego, La Jolla, CA 92093-0319

(February 8, 2020)

The effect of ambient disorders and sequence heterogeneities on the reptation of a long polymer is studied with the aid of a disordered tube model. The dynamics of a random heteropolymer is found to be much slower than that of a homopolymer due to collective pinning effects. The asymptotic properties belong to the universality class of a directed path in (1+1)-dimensional random media.

PACS: 83.20.Fk, 83.10.Nn, 05.60.+j, 36.20.Ey

The stochastic motion of a polymer chain entangled in a disordered medium such as a gel is of much scientific and technological interest. A convenient starting point for understanding the polymer dynamics is de Gennes’ reptation model, which describes the polymer’s wormlike motion along a fictitious tube threaded through an array of fixed obstacles [1,2]. In the original reptation model, the polymer was assumed to be homogeneous, and effects due to randomness in the medium (e.g., spatial variations in the pore size of a gel) were neglected. A later argument by Harris [3] showed that the static configurations in the pore size of a gel) were neglected. Then the statistical properties belong to the universality class of a directed path in random media. In this case, the reptation tube model [3] is the best way to describe the problem of a polymer chain in a disordered medium.

Consider first a long, flexible homopolymer entangled in a covalently-crosslinked gel matrix, characterized by a typical pore size a. We shall take $a > \xi \gg b$, ξ being the persistence length of the polymer and b being the monomer size. (E.g., double-stranded DNA in agarose gel has $a \sim 5000\text{Å}$, $\xi \approx 500\text{Å}$ and $b = 3.4\text{Å}$ [4]; pore sizes are typically much smaller in polyacrylamide gels [4,5].) Since the equilibrium configuration of the polymer is that of a self-avoiding walk, described by the size exponent $\nu > 1/2$ even in the presence of disorders [4,5], we shall describe the dynamics of the polymer by the reptation tube model [3]. In this model, the polymer is confined to a tube of diameter $a\approx a$, and modeled as “beads” linearly connected by (entropic) springs of spring constant $K = \frac{1}{2}k_B T/\xi^2$. Configurational entropy associated with the exponential number of (self-avoiding) tube trajectories results in an effective tensile force acting on the two ends of the bead-spring chain as in the disordered-free case [1]. This effect is incorporated into the model by letting the springs acquire a finite equilibrium length of the order a [3]. Each link of this bead-spring chain therefore represents an elementary “blob” of $M_{blob} \sim a^2/(b\xi)$ monomers whose physical size is $\sim O(a)$. Confinement of the polymer to the tube costs a free energy (per blob) of the order $\overline{\mathcal{V}} = k_B T \cdot (\xi/a)^2$ [3]. Since the diameter of the reptation tube embedded in the disordered gel matrix is non-uniform along its length, we describe the variable confinement entropy by a “random potential” $V(s)$, where s denotes the curvilinear coordinate along the tube. For a typical self-avoiding tube trajectory, V may be modeled by a short-range correlated random variable, characterized by the variance $\overline{\mathcal{V}}(s)\delta V(s') = \Delta_V \delta_a(s-s')$, where $\delta V(s) \equiv V(s) - \overline{\mathcal{V}}$, $\delta_a(s)$ is an exponentially damped function of range a, and the overline denotes average over the ensemble of tubes. Assuming that the fractional variance in tube diameter variation is $O(1)$, we have $\Delta_V \sim \overline{\mathcal{V}}^2$.

A key advantage of the original tube model [3] is that the nonlocal excluded-volume interaction between the beads can be neglected. This results from the entropy-generated stretching forces, which makes the chain extended in the tube, i.e., the contour length of the chain being linearly proportional to the number of beads. Consequently, the large scale dynamics of the polymer is obtained simply as the 1d Rouse dynamics of the beads. Let us assume that the nonlocal interaction between the beads (confined in the self-avoiding tube) can be neglected also for the disordered case. Then the statis-
cal mechanics of a long polymer with degree of polymerization $M \gg M_{\text{blob}}$ is given by a bead-spring chain of $N \simeq M/M_{\text{blob}} \gg 1$ links, with the “Hamiltonian”

$$\mathcal{H}_0 = \sum_{n=0}^{N} \left\{ \frac{K}{2} (s_{n+1} - s_n - a)^2 + V(s_n) \right\}, \quad (1)$$

where s_n denotes the coordinate of the nth bead along the tube.

The legitimacy of neglecting the nonlocal bead-bead interaction certainly deserves scrutiny: As in the disorder-free case, the approximation is justified provided the chain is in an extended conformation. On the other hand, a Gaussian chain in a tube can in principle collapse to a region where ΔV is large and negative, corresponding to a section of the tube with wider openings. If the chain described by (1) collapses, then the tube model would not be self-consistent. What opposes the collapse of the Gaussian chain is again the tensile stretchings forces generated by the configurational entropy of the self-avoiding tube. This physics is reflected in the model (1) as a competition between the “elastic energy” cost against chain collapse, of the order $\frac{1}{2} a^2$ per spring, and the disorder energy gain, of the order $\sqrt{\Delta V}$. The outcome of this competition has been obtained recently in the context of “non-Hermitian quantum mechanics” [16]: A discontinuous phase transition between the collapsed and the extended state is found at a certain critical point given by the condition $\frac{1}{2} a^2 \sim \sqrt{\Delta V}$. Using the expressions given above for K and ΔV for the polymer problem at hand, we find that the extended state is always preferred under the presumed condition $a \gtrsim \xi$. Thus, the disordered tube model (1) is justified self-consistently. It will be used from here on to generate the large scale dynamics of self-avoiding polymers in random media.

Classical reptation dynamics is characterized by the reptation time $\tau_{R,0} \sim N^3$, which is the time it takes for the polymer to reptate from a given tube to a completely different tube in the adjacent neighborhood. For time scales much exceeding $\tau_{R,0}$, the polymer behaves as a point particle undergoing Brownian motion. This leads to a diffusion coefficient $D_0(N) \sim N^{2\nu}/\tau_{R,0}(N)$. In the presence of randomness, the reptation time τ_{R} is modified (see below); but more significantly, the large scale motion becomes one of thermally-activated barrier hopping, since adjacent tubes may be narrower and hence higher in energy [11]. The typical barrier height $E_b(N)$ can be taken as the free energy variation of a polymer confined to cells of size $\sim N^\nu$. This variation is bounded to be within the order of $\pm N^{1/2}$ and is found numerically [17] to scale as $N^{2\nu}$, with $\omega \approx 0.15$ in 3d and $\omega \approx 0.28$ in 2d. Thus the overall diffusion coefficient is reduced drastically to $D \sim [N^{2\nu}/\tau_R(N)]e^{-E_b(N)/k_BT}$ for large N.

To estimate the reptation time $\tau_R(N)$ itself for the random system, it is necessary to separate the sliding motion of a polymer along its prescribed tube from the thermally-activated barrier hopping. This can be accomplished within the disordered tube model (1) by artificially imposing a periodic boundary condition on the random potential V, i.e., $V(s) = V(s + Na)$. With this simplification, the extended state of the chain can be obtained straightforwardly, by observing a discrete translational symmetry $s_n \rightarrow s_{n+1}$ which the model (1) possesses even in the presence of disorder: The polymer can move along the tube by the propagation of a longitudinal “defect” or “kink” (e.g., a configuration with $s_n = s_{n+1}$) much like what was proposed in the original reptation model [1]. Thus, the random potential is irrelevant in the extended state (1), and the scaling properties in the sliding regime are the same as those in the disorder-free case. For example, $\tau_R \sim \tau_{R,0}$, accompanied by a contour length fluctuation $\delta L_0(N) \approx (k_BT/K)N^{1/2}$.

The above analysis clarifies the role of entropic trapping for a homopolymer: The very slow motion of a long homopolymer in random media is dominated by the exponentially long waiting time $\sim \tau_{R,0} e^{-N^\nu/k_BT}$ needed to overcome large spatial variations in the mean confinement potential. It is not a result of local “bottlenecks” which impedes the reptational motion along the tube. To study this behavior experimentally or numerically, it is necessary to have sufficiently long polymers such that each polymer threads through many local bottlenecks.

We next consider a heteropolymer which may carry side groups of vastly different sizes, or may have different degrees of partial charges, hydrophobicities, etc. Following de Gennes [12], we model the coarse-grained effect of the side groups by assigning a “charge” $q_n \in \{\pm Q\}$ to each bead n. Then the interaction energy V in Eq. (1) becomes explicitly n-dependent, with the form

$$V(s_n, n) = V_0(s_n) + q_n V_1(s_n), \quad (2)$$

where $V_0(s) \pm QV_1(s)$ is respectively the free energy cost of placing a bead of \pm charge at the coordinate s along the tube. We will take the random potentials V_0 and V_1 to be short-range correlated, with variances of the order ΔV. To model a heteropolymer, we choose the charges $\{q_n\}$ randomly, with probability p for $q = +Q$ and $1 - p$ for $q = -Q$, such that $[Q] = (2p - 1)Q$, and $\langle \delta q_m \delta q_n \rangle = \Delta_q \delta_{m,n}$, $\Delta_q = 4p(1 - p)Q^2$. (Here, [...] denotes average over the ensemble of random sequences.) The magnitude of Q depends on the coarse-graining scale a and variations of the monomer-tube interaction. Let the latter be characterized by a fractional variance σ, then we have $Q^2 = \sigma M_{\text{blob}}$.

As in the homopolymer case, a Gaussian chain described by the Hamiltonian (1) with the interaction (2) may be in either the collapsed or the extended state depending on the magnitude of the elastic energy $1/2 a^2$. However for a RHP, different monomers tend to prefer different sections of the tube. Hence the extended state is even more preferred, and we are again justified to neglect the non-local bead-bead interaction.
Let us consider now the reptational motion of an extended RHP, again by imposing periodic boundary condition on the \(V\)'s. Heterogeneity in sequence composition has profound effects on the dynamics, as the random \(q_n\)’s remove the translational symmetry \(s_n \rightarrow s_{n+1}\) described above for the homopolymer. Thus, larger beads prefer to occupy segments of the tube with wider cavities, etc. De Gennes demonstrated the existence of such a heteropolymeric effect by considering a singular limit of the RHP model \([12]\), where the longitudinal elasticity of the polymer is suppressed by taking \(K \rightarrow \infty\). Below, we will show that a significant heteropolymer effect can exist generally for an elastic RHP.

To proceed, we introduce a longitudinal displacement field, \(u_n = s_n - n a\), and write the Hamiltonian as

\[
\mathcal{H} = \sum_{n=1}^{N} \left\{ \frac{K}{2} (u_{n+1} - u_n)^2 + W(u_n, n) \right\},
\]

where \(W(u_n, n) = \delta q_n \cdot \delta V_1(u_n + na, n)\). [There are actually two additional terms in \(\mathcal{H}\): \(\sum_n q_n V_1\) and \(\sum (V_0(s_n) + [q])V_1(s_n)\). The first term is simply an overall energy shift and does not affect the motion of the polymer along the tube. The second term is just like the random potential of the homopolymer problem \([1]\); it is irrelevant as discussed above.] The Hamiltonian \([1]\) then describes a fictitious “directed path” with “transverse” coordinates \(\{u_n\}\), embedded in a 1 + 1 dimensional random medium \(W(u, n)\) \([13]\). The randomness results from a combination of sequence heterogeneities and medium disorder. To elucidate the properties of this system, we first perform a naive perturbative analysis for small randomness \(\Delta \equiv \Delta_q \Delta_V\). We find the randomness to have a negligible effect on the classical reptation results for chains below a crossover scale \(N_x \approx (k_B T)^{5/(K \Delta^2 a^4)}\). The perturbative analysis fails for long chains with \(N > N_x\), indicating that the asymptotic reptation properties are qualitatively affected by arbitrarily weak sequence heterogeneities. Note the dependence of the polymer’s crossover length \(N_x \equiv N_x M_{\text{blob}}\) on the tube size \(a\): Using expressions for \(K\) and \(\Delta\) given above for the simple RHP model, we find \(N_x \sim a^8 b/\alpha^2 \xi^5\), which increases quickly with increasing \(a/\xi\) as suggested in Ref. \([2]\), but is nevertheless accessible for sufficiently heterogeneous polymers in typical gels.

To obtain the asymptotic behavior of the polymer with \(M \gg M_x\), regime, let us examine more closely the effective random potential \(W(u, n)\): The statistics of \(W\) is easily obtained in terms of the statistics of \(q_n\) and \(V_1(s)\), with \(\langle W \rangle = 0\) and

\[
\langle W(u, n)W(u', n') \rangle = \Delta \delta_{a}(u - u') \delta_{n, n'}.
\]

The correlator \([4]\) indicates that an effective two-dimensional random “point” potential is generated, even though \(W\) itself, being a product of two one-dimensional random variables, must contain long-range correlations. The latter is manifested in the higher moments of \(W\). For instance, \(W^2(u, n)\) contains a term \(\left[(\delta q)^2 \right] \delta V_1^2(u_n + na)\) which is correlated along the direction \(u_n = -na\). But such terms are just like the random potential \(V(s)\) of the homopolymer case and are irrelevant. Thus, we conjecture that the system \([4]\) belongs to the universality class of a directed path in \((1+1)\)-dimensional uncorrelated Gaussian random potential.

This universality class is well known \([13]\). In the asymptotic regime, the polymer exhibits glassy dynamics which is characterized by two exact scaling laws: The sample-to-sample free energy variation scales as \(\delta F(N) \approx k_B T \cdot (N/N_x)^{1/3}\), and the contour length fluctuation scales as \(\delta L(N) \approx s_x \cdot (N/N_x)^{2/3}\), where \(s_x = \delta L_0(N_x) = (k_B T)^3/(K \Delta a)\). The conjectured equivalence between RHP reptation and the directed path problem were tested, by numerically computing \(\delta F(N)\) and \(\delta L(N)\) from the model \([4]\) and the interaction \([2]\), treating \(K, \Delta\) as arbitrary parameters. We used the transfer matrix method \([13]\) and examined particularly the “zero-temperature” limit of the model, whose small crossover length \(N_x\) enables us to access the asymptotic scaling regime. The zero-temperature problem is an optimization problem. It is necessary to place the bead-spring chain on a discrete lattice. To simplify the numerics, we restrict the displacement of beads such that \(s_{n+1} - s_n\) can only take on the values \(\{a, a \pm 1\}\) at each step \(n\) of the transfer matrix. A random potential \(V_1(s)\) of zero mean and unit variance is assigned to each lattice point, and a charge \(q_n\) is assigned independently to each bead. The numerical results for the disorder-averaged contour length fluctuation \(\delta L = \left\langle (u_N^2)^{1/2} \right\rangle\) of the optimal configuration \(u_N^{*}\) (with the \(n = 0\) end fixed at the origin) and the sample-to-sample variation \(\delta E^*(N)\) of the total energy of the optimal configuration \(E^*(N)\) \([9]\) are shown in Fig. 1(a). It is seen that fluctuations rapidly approach those expected of the directed path, \(\delta L \sim N^{2/3}\) and \(\delta E^* \sim N^{1/3}\), suggesting that the RHP is indeed in

![FIG. 1. Heteropolymers confined in a tube: (a) Scaling of the contour length fluctuation \(\delta L\), and the sample-to-sample minimal energy variation \(\delta E^*\), for bead-spring chains of \(N = 4000, \alpha = 4, K = 1\), and \([q] = 0.1\), averaged over 1500 samples. (b) Auto-correlation of the energy landscape \(E(s, N)\); the straight line has slope 1.](image)
the same universality class as the 1+1 dimensional directed path. Similar behaviors have recently been found in a number of related studies [22] [23].

Another useful quantity to examine is variation in the polymer’s “energy landscape”, which we obtain by fixing the $n = 0$ end of the polymer to an arbitrary coordinate s, and then computing the energy $E(s,N)$ of the optimal configuration (of the constrained polymer) for each s. The landscape is characterized by the correlation function $C_E(s-s',N) = \left(E(s,N) - E(s',N) \right)^2$, which is expected [13] to have the scaling form $C_E(s,N) = N^{2/3}g(|s/N|^{3/2})$, with the scaling function $g(x \lesssim 1) \sim x$ and $g(x \gtrsim 1) \sim x^{1/2}$. This scaling form is verified by our numerics as shown in Fig. 1(b).

The zero-temperature behavior described here corresponds to the asymptotic regime of the RHP, beyond the crossover scale N_χ. For the finite temperature problem at hand, the RHP dynamics along the tube is governed by variations in the free-energy landscape $F(s,N)$, whose form is obtained easily from $E(s,N)$. It is described by the correlation function $C_F(s-s',N) = \langle k_B T \rangle^2 |s - s'|/s_\chi$, for $s_\chi < |s - s'| < \delta L(N)$, saturating to $C_F \sim (\delta F)^2 = (k_B T)^2(N/N_\chi)^{2/3}$ for larger displacements $|s - s'|$.

Dynamics of the chain in such a rough free energy landscape cannot proceed by the propagation of a few isolated kinks. It requires instead collective movement of large pieces of the chain such that the chain always remains in local optimal configurations [22]. The resulting “collective creep” dynamics can be modeled by the motion of one of the chain ends in the 1d Brownian random potential $F(s,N)$ [23]. The latter is a well-studied classic problem [24]. The time it takes for the particle to move by a distance $s > s_\chi$ along the tube is $\tau_{R,0}(N_\chi) \cdot \exp \left(C_F(s)/\langle k_B T \rangle^3 \right) \sim e^{s/s_\chi}$. Since $C_F(s)/\langle k_B T \rangle^2$ saturates at $(N/N_\chi)^{2/3}$ for $\delta L < s < L$, the reptation time is

$$\tau_R(N) \approx \tau_{R,0}(N_\chi) \exp \left((N/N_\chi)^{2/3} \right),$$

which greatly exceeds the classical reptation time $\tau_{R,0}(N)$ if the polymer is sufficiently long. Note that τ_R also exceeds the waiting time $\sim e^{N^{2/\eta}/k_B T}$ needed for the activated barrier hopping by the homopolymer. Hence we conclude that the dynamics of a long random heteropolymer is much slower than that of a homopolymer.

The extraordinary slow dynamics of the RHP is a collective phenomenon resulting from a global “resonance” of the randomness in the polymer composition with the randomness in the tube structure; it is not a local effect, say, an increase of the microscopic friction. This can be tested by comparing an RHP with a ABAB copolymer consisted of the same monomers. Upon coarse-graining by a finite scale, the copolymer becomes equivalent to a homopolymer, while heterogeneities of an RHP cannot be coarse-grained away. Thus we expect a long RHP to exhibit much slower dynamics than a periodic copolymer of the same length and monomer content.

We are grateful to David R. Nelson and Bruno H. Zimm for helpful discussions. We are particularly indebted to Prof. Nelson for an English translation of Ref. [14]. This work is supported by an ONR Young Investigator Award, and the Petroleum Research Fund through grant ACS-PRF # 32517-G7. TH also acknowledges the support of an A.P. Sloan research fellowship.

[1] P.-G. de Gennes, J. Chem. Phys. 55, 572 (1971).
[2] P.-G. de Gennes, Scaling Concepts in Polymer Physics, (Cornell University Press, 1979).
[3] M. Doi and S.F. Edwards, The Theory of Polymer Dynamics, (Oxford University Press, 1986).
[4] A.B. Harris, Z. Phys. B 49, 347 (1983).
[5] S.B. Lee and H. Nakanishi, Phys. Rev. Lett. 61, 2022 (1988).
[6] M. Muthukumar and A. Baumgärtner, Macromolecules 22, 1941 (1989); 1937 (1989).
[7] B.H. Zimm and O. Lampkin, Macromolecules, 26, 226 (1993).
[8] G.W. Slater and S.Y. Wu, Phys. Rev. Lett. 75, 164 (1995).
[9] E. Arvanitidou and D. Hoagland, Phys. Rev. Lett. 67, 1170 (1991); D.A. Hoagland and M. Muthukumar, Macromolecules 25, 6696 (1992).
[10] J. Rousseau, G. Drouin, and G. W. Slater, Phys. Rev. Lett. 79, 1945 (1997).
[11] J. Machta, Phys. Rev. A 40, 1720 (1989).
[12] P.-G. de Gennes, J. Physique Lett. 44, L-225 (1983).
[13] See, e.g., T. Halpin-Healy and Y.-C. Zhang, Phys. Rep. 254, 215 (1995), and references therein.
[14] B. Tinland, N. Pernodet and G. Weill, Electrophoresis, 17 1046 (1996).
[15] A. Baumgärtner and M. Muthukumar, J. Chem. Phys. 87, 3082 (1987).
[16] N. Hatano and D.R. Nelson, Phys. Rev. Lett. 77, 570 (1996); Phys. Rev. B 56, 8651 (1997).
[17] I. Smiali, J. Machta, and S. Redner, Phys. Rev. E 47, 262 (1993).
[18] Note that de Gennes’s restricted model [12] corresponds to a directed path in $(0+1)$ dimension.
[19] For convenience, we monitor the energy difference between $N(N)$ and the energy of the optimal configuration with the other $(n = N)$ end also fixed at $u_N = 0$.
[20] T. Hwa and M. Lässig, Phys. Rev. Lett. 76, 2591 (1996).
[21] D. Cule and T. Hwa, Phys. Rev. Lett. 77, 278 (1996); and Phys. Rev. B (in press).
[22] L. Mikheev, B. Drossel and M. Kardar, Phys. Rev. Lett. 75, 1170 (1995).
[23] P. le Doussal and V.M. Vinokur, Physica C 254, 63 (1995).
[24] Ya. G. Sinai, Theor. Prob. Appl. 27, 256 (1982).