Identification of two recessive etiolation genes (py1, py2) in pakchoi (Brassica rapa L. ssp. chinensis)

Kun Zhang, Yu Mu, Weijia Li, Xiaofei Shan, Nan Wang and Hui Feng*

Abstract

Background: Leaf color is a major agronomic trait, which has a strong influence on crop yields. Isolating leaf color mutants can represent valuable materials for research in chlorophyll (Chl) biosynthesis and metabolism regulation.

Results: In this study, we identified a stably inherited yellow leaf mutant derived from 'Huaguan' pakchoi variety via isolated microspore culture and designated as pylm. This mutant displayed yellow leaves after germination. Its etiolated phenotype was nonlethal and stable during the whole growth period. Its growth was weak and its hypocotyls were markedly elongated. Genetic analysis revealed that two recessive nuclear genes, named py1 and py2, are responsible for the etiolation phenotype. Bulked segregant RNA sequencing (BSR-Seq) showed that py1 and py2 were mapped on chromosomes A09 and A07, respectively. The genes were single Mendelian factors in F_3:4 populations based on a 3:1 phenotypic segregation ratio. The py1 was localized to a 258.3-kb interval on a 34-gene genome. The differentially expressed gene BraA09004189 was detected in the py1 mapping region and regulated heme catabolism. One single-nucleotide polymorphism (SNP) of BraA09004189 occurred in pylm. A candidate gene-specific SNP marker in 1520 F_3:4 yellow-colored individuals co-segregated with py1. For py2, 1860 recessive homozygous F_3:4 individuals were investigated and localized py2 to a 4.4-kb interval. Of the five genes in this region, BraA07001774 was predicted as a candidate for py2. It encoded an embryo defective 1187 and a phosphotransferase related to chlorophyll deficiency and hypocotyl elongation. One SNP of BraA07001774 occurred in pylm. It caused a single amino acid mutation from Asp to Asn. According to quantitative real-time polymerase chain reaction (qRT-PCR), BraA07001774 was downregulated in pylm.

Conclusions: Our study identified a Chl deficiency mutant pylm in pakchoi. Two recessive nuclear genes named py1 and py2 had a significant effect on etiolation. Candidate genes regulating etiolation were identified as BraA09004189 and BraA07001774, respectively. These findings will elucidate chlorophyll metabolism and the molecular mechanisms of the gene interactions controlling pakchoi etiolation.

Keywords: Brassica rapa, BSR-Seq, Etiolation mutant, Genetic mapping

Background

The photosynthetic pigment chlorophyll (Chl) is ubiquitous in cyanobacteria and the chloroplasts of higher plants. Chl converts the energy of sunlight into bioavailable chemical energy which drives carbohydrate biosynthesis [1]. Chl is an essential component of leaf color which influences dry matter accumulation and crop yield. In general, leaves appear green because Chl predominates and has a vital role in them. When the Chl content changes in plants, various leaf color mutant phenotypes result including chlorina, virescent, albino, yellow-green, and stay-green [2]. Leaf color mutants develop from the inhibition of genes regulating Chl synthesis and degradation and produces the leaf color mutations [3–5]. Thus, leaf color mutants may be ideally suited for the elucidation of the mechanisms of
photosynthesis, Chl biosynthesis, chloroplast development, and the expression and regulation of the genes associated with these processes [6–9]. Leaf color mutants have been characterized in Arabidopsis [10], rice [11, 12], wheat [13], Brassica napus [14], Brassica oleracea [15], barley [16], kale [17], tobacco [18], soybean [19], cotton [20], and cucumber [5, 21]. Much research has been invested in the analysis of the genetics, physiology, and molecular mechanisms of Chl biosynthesis and chloroplast development via leaf color mutants.

Several studies in genetic analysis have categorized leaf color mutation inheritance as nuclear and cytoplasmic. Most leaf color mutations are recessively inherited and conferred by a single nuclear gene [21–24]. Leaf color mutations involving two recessive genes are rare. Moreover, their inheritance is complex and it is difficult to apply genetic analysis and gene mapping on them. Wu et al. identified the light color mutant ws1 in Nicotiana tabacum and determined that this phenotype was controlled by the recessive nuclear genes ws1a and ws1b localized by different BC1F2 groups to linkage groups 5 and 24, respectively [18]. BnChd1–1 and BnChd1–2 are responsible for the light green leaf mutant phenotype in Brassica napus. Fine mapping of BnChd1–1 was achieved using the BC1F1 population. Candidate gene prediction suggested that BnChd1 encodes a subunit of the nicotinamide adenine dinucleotide phosphate (NADPH) complex in the thylakoid lumen [25]. Chl-deficient mutant phenotypes in durum wheat [26] and Brassica juncea [27] are also controlled by two recessive genes. Cytoplasmic mutants are uncommon compared to nuclear mutants. However, they have been reported for tobacco [28], barley [29], and Brassica campestris [30].

In plants, Chl biosynthesis comprises 15 enzymatic steps regulated by at least 27 genes [31]. Inactivation mutations of the Chl biosynthetic genes usually result in Chl-deficient mutants [11, 22, 32, 33]. Mutations in the genes governing Chl degradation metabolism generally produce stay-green mutants which retain their green leaf phenotype even during senescence [24, 34, 35]. Chl and heme biosynthesis are two types of tetrapyrrole formation and share a common metabolic pathway from 5-aminolevulinic acid (ALA) to protoporphyrin IX (Proto IX) [36]. Heme is essential for both respiration and photosynthesis. In contrast, excessive heme accumulation inhibits glutamyl-tRNA reductase activity and ALA synthesis, reduces the rate of tetrapyrrole biosynthesis, and affects Chl biosynthesis [37]. Leaf color mutants arising from abnormal heme metabolism were identified for Arabidopsis [38], rice [39–41], pea [42], and maize [43].

In a previous study, we developed a pakchoi (Brassica rapa L. ssp. chinensis) yellow leaf mutant (pylm) derived from the ‘Huaguan’ pakchoi variety by isolated microspore culture. This strain is a double haploid (DH) with a stable yellow leaf phenotype [44]. In the present study, we conducted genetic analysis on pylm using bulked segregant RNA sequencing (BSR-Seq) with linkage analysis to map the corresponding genes. Then, the candidate genes associated with the mutant phenotype were predicted. The information derived from this work may help facilitate the cloning of etiolation genes and elucidate the molecular mechanisms of gene interactions.

Results

Phenotypic characterization of mutant pylm

The wild type ‘CK-51’ and pylm were both obtained from isolated microspore culture of the ‘Huaguan’ pakchoi variety. However, the latter displayed yellow leaves at germination and this phenotype was stable throughout its lifetime (Fig. 1). The mutant had a slender phenotype and weak growth. However, its yellow leaf color was nonlethal. Moreover, relative to ‘CK-51’, pylm displayed an elongated hypocotyl at the seedling stage (Fig. 1c) and early flowering at the bolting stage (Fig. 1b).

Genetic analysis of mutant pylm

F1 and F2 populations were constructed from crosses between pylm and the Chinese cabbage DH line ‘FT’ (Additional file 1: Figure S1). The F1 individuals from the reciprocal crosses had the same green leaf phenotype as ‘FT’. Therefore, inheritance of the etiolation phenotype in pylm is nuclear rather than cytoplasmic. Segregation statistics data for the green and yellow leaf phenotypes of the F2 population accorded with the expected Mendelian ratio of 15:1 ($X^2 < X^2_{0.05} = 3.84$). Thus, the Chl deficiency trait is controlled by two recessive nuclear genes. The BC1 progeny was obtained from F1 separately backcrossed with pylm and ‘FT’. Segregation statistics data for the green and yellow leaf phenotypes of the BC1F1 population from the cross of F1 with pylm fitted the expected Mendelian ratio of 3:1 ($X^2 < X^2_{0.05} = 3.84$). This finding confirms that the mutant trait is conferred by two recessive nuclear genes. They were designated as pyl1 and pyl2. Neither gene alone can induce the yellow leaf phenotype. Phenotypic data for all generations are listed in Table 1.

Segregation of pyl1 and pyl2

According to the genetic analysis of pylm, the reduced-Chl phenotype is controlled by the recessive nuclear genes pyl1 and pyl2. In consequence, the F2 and BC1F1 populations could not be used to map these genes separately. To separate pyl1 from pyl2, F2 individuals with green leaves may be randomly selected and self-pollinated to produce F2:3 progeny. Green-colored F2:3 plants with a statistical segregation ratio of 3:1 (green-colored:yellow-colored) may be self-pollinated to generate F3:4 progeny. In theory, ~2/3 of the F3:4 families
should display the expected Mendelian segregation ratio of 3:1. Some of these could map \textit{py1} while the others could map \textit{py2} (Fig. 2).

Twenty green-colored individuals from F$_2$ were randomly selected and self-pollinated to produce F$_2$:3. For the twenty F$_2$:3 families, phenotypic segregations were investigated. There were three distinct groups. Eleven populations showed no yellow-colored plants, five segregated with 15:1, and the other four with 3:1 (Additional file 3: Table S1). These results corroborated the theoretical segregation ratio of “all green-colored: (green-colored:yellow-colored = 3:1):(green-colored:yellow-colored = 15:1) = 7:4:4” for F$_2$:3.

Of the four F$_2$:3 families segregated with 3:1, eight plants with green leaves per family were selected and self-pollinated to produce F$_3$:4. Phenotypic segregations revealed that twenty F$_3$:4 families (Nos. 1–20) segregated with 3:1 while the other twelve showed no yellow-colored individuals (Nos. 21–32). Thus, their F$_2$:3 genotypes should be \textit{Py1 py1 py2 py2/Py1 py1 py2 py2} and \textit{Py1 Py1 py2/py1 py1 Py2 Py2}, respectively (Additional file 3: Table S2). Phenotypic segregations of the F$_3$:4 families fitted the theoretical segregation ratio of “(green-colored:yellow-colored = 3:1):all green-colored = 2:1”. Therefore, the F$_3$:4 families (Nos. 1–20) could be used to map the \textit{py1} and/or \textit{py2} loci.

Table 1 Genetic analysis of leaf color mutant phenotype

Generation	Total	Green-colored	Yellow-colored	Segregation ratio	χ^2
P$_1$ (FT)	92	92	0		
P$_2$ (pylm)	120	0	120		
F$_1$ (P$_1 \times$ P$_2$)	258	258	0		
F$_1$ (P$_2 \times$ P$_1$)	226	226	0		
BC$_1$ (F$_1 \times$ FT)	669	669	0		
BC$_1$ (F$_1 \times$ pylm)	720	551	169	3.26:1	0.82
F$_2$	2376	2243	133	16.86:1	1.62

BSR-Seq analysis

A total of 47,526,126 and 49,119,466 raw reads (150-bp) were generated from the G-pool and Y-pool, respectively. After quality evaluation and data filtering, 97% of the read pairs (46,456,174 for the G-pool and 47,581,728 for the Y-pool) remained. Clean reads were mapped against the *Brassica* reference genome with Hisat v. 2.0.14. Of these, > 66% were uniquely mapped in both pools.
Relative to the reference genome, 154,863 and 157,022 SNPs were detected in the G-pool and Y-pool, respectively. Differential SNP loci were screened for ED^5 calculation and 412 target differential SNP loci were obtained between the pools according to the top 1% ED^5 threshold. Two distinct peaks were observed on chromosomes A07 and A09 (Fig. 3). This finding was consistent with the hypothesis that the mutant trait is controlled by two recessive nuclear genes. Thus, it was predicted that the etiolation genes were located on chromosomes A07 and A09 within five chromosome regions (Table 2).

Identification of differentially expressed genes
RPKM was used to measure gene expression level. By setting RPKM ≥0.1, 55,250 genes were detected. These were divided into six RPKM distribution intervals (Additional file 3: Table S3). There were 181 DEGs between the G-pool and Y-pool according to the constraint (|log_2 fold change| ≥ 1 and FDR ≤ 0.05). Ninety genes were upregulated and the others were downregulated when the G-pool was compared with the Y-pool (Additional file 2: Figure S2). The DEGs are shown in Additional file 3: Table S4.

Fine mapping of py1
Ninety-six SSR markers were developed around the three predicted chromosome regions on chromosome A09. They were used to detect polymorphisms between pylm and ‘FT’. After screening, thirty-seven SSR markers displayed polymorphisms between parents. They were used to test twelve green-colored and yellow-colored individuals each from the No. 1 F_3:4 family. SSRzk5 and SSRzk12 were located near the 23,811,435-27,563,122 region on chromosome A09 and showed linkage to pyl1 on the opposite side.

A total of 1520 yellow-colored individuals of the No. 1 F_{3:4} family were selected as the pyl1 mapping population. A linkage analysis disclosed that pyl1 was located between SSRzk5 and SSRzk12 at estimated genetic distances of 3.2 cM and 1.8 cM, respectively (Fig. 4a). To identify the molecular markers tightly linked to pyl1 and narrow the pyl1 mapping interval, new SSR and Indel markers were developed between SSRzk5 and SSRzk12. The polymorphic markers SSRzk17, SSRzk28, SSRzk29, SSRzk36, Indelzk72, and Indelzk125 were linked to pyl1 (Additional file 3: Table S5). SSRzk17, Indelzk72, and Indelzk125 were located on one side of pyl1 as SSRzk5 while SSRzk28, SSRzk29, and SSRzk36 were located on the other side of pyl1 as SSRzk12. The pyl1 was mapped between Indelzk125 and SSRzk36 at 0.13 cM and 0.2 cM, respectively (Fig. 4b). Therefore, pyl1 was mapped in a 258.3-kb region between the most tightly linked markers (Fig. 4c).
Candidate py1 analysis

The target DNA sequences of the 258.3-kb region between Indelzk125 and SSRzk36 were obtained from the Brassica database. A genomic sequence analysis revealed that the candidate region contained 34 genes (Fig. 4c, Additional file 3: Table S6). Differential gene expression analysis disclosed only BraA09004189 in the py1 mapping region. BraA09004189 is a heme oxygenase (HO1) which participates in heme catabolism. Mutants with yellow leaf phenotype induced by defective HO1s were reported in earlier studies [40, 41]. BraA09004189 was predicted to be the most probable candidate py1 gene.

To confirm this hypothesis, two pairs of primers were designed to sequence BraA09004189 in pylm and ‘CK-51’ (Additional file 3: Table S7). The BraA sequence did not differ between parents whereas the BraB sequence in pylm presented with one SNP (Fig. 5). Based on the position of BraA09004189, an SNP marker was designed to screen 1520 yellow-colored individuals from the No. 1 F3:4 family. The bands of whole mapping individuals co-segregated with py1.

A qRT-PCR was performed to determine BraA09004189 expression in pylm and ‘CK-51’. In accordance with the differential gene expression analysis, the results indicated that BraA09004189 expression level was much higher in ‘CK-51’ than that in pylm (Fig. 6). This finding further supports the likelihood that BraA09004189 is the candidate for py1.

Fine mapping of py2

Considering the constructed populations size, we screened the Nos. 2–5 F3:4 families using the same research strategy applied for SSRzk5 and SSRzk12 linked to py1. The etiolation gene py1 was identified in the Nos. 2, 4, and 5 F3:4 families. In theory, then, the No. 3 F3:4 family may be used to establish the py2 locus.

Forty-eight SSR markers were developed around the two predicted regions on chromosome A07 to detect polymorphisms between pylm and ‘FT’. After screening, eleven SSR markers displayed polymorphisms between the parents. They were used to test twelve green-colored and twelve yellow-colored individuals of the No. 3 F3:4 family. SSR84 and SSR103 were located around the

Chromosome	Start position	End position	Number of differential SNP loci	Interval length
A07	9,207,067	10,833,976	19	1,626,909
A07	11,475,098	15,522,445	54	4,047,347
A09	19,610,472	20,763,415	11	1,152,943
A09	23,811,435	27,563,122	33	3,751,687
A09	32,067,464	35,505,463	32	3,437,999

Table 2 Localization of chromosome regions related to etiolation genes
region 11,166,810–15,034,483 on chromosome A07 and presented with linkages to py2 on the opposite side (Fig. 7a; Additional file 3: Table S8).

There were 1860 yellow-colored individuals from the No. 3 F3:4 family selected as the py2 mapping population. The py2 was located between SSR11 and SSR15 at estimated genetic distances of 0.24 cM and 0.02 cM, respectively (Fig. 7b). To narrow the py2 mapping interval and identify the molecular markers tightly linked to py2, new SNP markers were developed between SSR11 and SSR15. Only the polymorphic marker SNP11 was linked to py2. Based on the recombinant individuals, the py2 interval was narrowed to 14,851,951–14,896,902 and contained five genes (Fig. 7c).

Candidate py2 analysis

Annotation data for the five candidate genes in the py2 target region were obtained from the *Brassica* database (Additional file 3: Table S9). Primers were designed to cover the cDNA for each gene and predict the candidate genes (Additional file 3: Table S10). There were no differences between pylm and ‘CK-51’ in terms of BraA07001775, BraA07001776, or BraA07001777. After PCR amplification, the BraA07001773 sequence was disordered and the sequence comparisons were inconsistent over serial repetitions. There was SNP variation between parents for the first exon in BraA07001774 (Fig. 8). It caused a single amino acid mutation from Asp (GAT) in the wild type to Asn (AAT) in pylm (Fig. 9). Therefore, BraA07001774 was taken as the most probable candidate gene for py2.

BraA07001774 is an *embryo defective 1187* (emb 1187) and a phosphotransferase. The albino mutants (*pds1, pds2*) phenotypes in *Arabidopsis thaliana* may be caused by *emb 71* [45]. For *Arabidopsis* seeds with silique defects, hypocotyl elongation was characterized during the development of F2 generation mutant seedlings [46]. We proposed that the mutant phenotype is determined by mutations in *BraA07001774*. To validate our prediction, *BraA07001774* expression in pylm and ‘CK-51’ was analyzed by qRT-PCR. *BraA07001774* was dramatically

![Fig. 4 Genetic and physical py1 maps and candidate gene analysis.](image-url)
downregulated in pylm (Fig. 10). Thus, it probably is the candidate gene for py2.

Discussion

Mutations in leaf color are widespread in nature. The main type of leaf color mutation is Chl deficiency. Dwarfism, retarded growth, attenuated photosynthetic capacity, low yield, and death are associated with this defect [25, 47, 48]. Here, we identified the pakchoi yellow leaf mutant pylm from isolated microspore culture. Unlike previously reported Chl deficient mutants, pylm presented with substantially elongated hypocotyls at the seedling stage and early flowering at the bolting stage. The etiolation phenotype in pylm was nonlethal and stable throughout the growth period. The Chl deficiency in pylm was controlled by two recessive genes. These characteristics suggested that pylm was of high value for
research in revealing the Chl biosynthesis mechanism regulated by gene interactions.

Map-based cloning is an effective gene isolation strategy. It has been extensively used for plant gene function analysis [49–51]. However, it is contingent upon fine mapping of the target gene. For most leaf color mutants, the traits are recessively inherited and controlled by a single nuclear gene. The F2 populations are instinctively applied to map the target gene [5, 41, 48]. With regard to the character conferred by two recessive nuclear genes, F2 populations may also be used in preliminary mapping. An efficient way to isolate allele pairs from each other and separately map them is to construct advanced backcrosses and other populations. The recessive white stem (ws) loci in Nicotiana tabacum and the Chl deficiency (Bnchd1) loci in Brassica napus were successfully mapped using constructed BC1F2 and BC3F1 populations, respectively [18, 25]. In the present study, genetic analysis revealed that the recessive nuclear genes designated as py1 and py2 were responsible for the etiolation trait. We successfully segregated py1 from py2 and constructed an inheritance model for the Chl deficiency trait in pakchoi. Twenty F3:4 families with a phenotypic segregation ratio of 3:1 were constructed. Various F3:4 families were successfully used to map the py1 and py2 loci separately. Compared to using advanced backcross populations to map pairs of recessive nuclear genes, creating and using F2:3 or F3:4 families avoid the selection errors and interference in genetic analysis caused by the incomplete emasculation of Brassica rapa.

BSR-Seq efficiently combines the respective superiorities of bulk segregation analysis (BSA) and RNA sequencing (RNA-Seq) for rapid gene mapping [52–55]. BSR-Seq is targeted at the mRNA level. It selects phenotypically opposite individuals from segregated populations and constructs two RNA mixing pools to find SNPs at the transcript level. The transcriptome data localize the target genes and detect potentially associated DEGs [56]. BSR-Seq has been extensively applied to map the causal genes linked to a single target trait [24, 57, 58]. Two independently inherited traits may also be localized by BSR-Seq. Tan et al. applied BSR-Seq to locate the genes controlling male sterility on chromosome A05 and white petal on chromosome A02 [59]. Here, the mutant pylm and Chinese cabbage DH ‘FT’ lines were chosen as parents to construct the F2 separation population. The phenotypes of the wild type and mutant individuals significantly differed. Thus, extreme mixed pools could be accurately and conveniently created for BSR-Seq. Release of Brassica rapa genomic data enhanced the reliability of these populations in BSR-Seq.
applications. Five candidate regions related to the yellow leaf phenotype in pylm were identified on chromosomes A07 and A09. Molecular markers were developed according to the locations of the candidate regions. The etiolation genes pyl1 and pyl2 were separately mapped with different F3 generation families. The findings confirmed the feasibility of BSR-Seq for mapping two recessive nuclear genes. They also showed that BSR-Seq simplifies molecular marker development and screening in traditional mapping methods and greatly improves their efficiency.

New molecular markers were developed near the target regions based on preliminary pyl1 mapping by BSR-Seq. The pyl1 was mapped between the markers Indelzk125 and SSRzk36 on A09 chromosome over a 258.3-kb localization interval containing 34 predicted genes. No new polymorphic SSR or Indel markers were available to limit the localization interval. The gene expression patterns determined by BSR-Seq disclosed only one differentially expressed gene (BraA09004189) within the pyl1 mapping region. A gene annotation referenced from the Brassica database indicated that BraA09004189
encodes heme oxygenase-1 (HO1). This enzyme plays a vital role in phytochrome chromophore metabolism, the photoresponse mechanism, adventitious root formation, and oxidative damage mitigation [60–63]. HO1 stabilizes and maintains the heme content by transforming heme into BV-IXα [64]. As embranchments of tetrapyrrole biosynthesis, Chl and heme biosynthesis share a common metabolic pathway from ALA to Proto IX. Excessive heme accumulation caused by abnormal heme metabolism leads to feedback inhibition of Chl biosynthesis [36]. Therefore, a decrease in HO1 activity may influence Chl biosynthesis. The hy1 mutant of Arabidopsis and the yellow-green leaf 2 mutant of rice presented with the reduced-Chl phenotype because of free heme inhibition resulting from HO1 mutations [40, 60]. HO1 defects strongly affected thylakoid development in rice [41]. Davis et al. found that the abnormally elongated hypocotyl phenotype of mutant Arabidopsis seedlings may be associated with HO1 defects [60]. Thus, py1 may encode HO and a mutation thereof may influence Chl biosynthesis and leaf color. In this study, qRT-PCR demonstrated that BraA09004189 was downregulated in pylm. This finding was consistent with those obtained by BSR-Seq. The SNP BraA09004189 was detected between pylm and ‘CK-51’. A candidate gene-specific SNP marker in 1520 F3:4 yellow-colored individuals co-segregated with py1. Thus, BraA09004189 corresponds to the yellow leaf locus py1 in pylm.

It was already known that certain Chl deficiency traits are controlled by two recessive nuclear genes. However, there was a lack of appropriate mapping populations or reliable molecule markers. Therefore, they were either approximately mapped without definite locations [18, 26] or only one of the pair could be localized [25]. In previous studies, little progress was made in the simultaneous fine mapping or accurate prediction of the candidate genes. Here, we used the same mapping strategy as that for py1 to accomplish fine mapping for py2. The linkage analysis disclosed that py2 was mapped between SSR11 and SSR15 on chromosome A07. The mapping interval was narrowed to 4.4 kb by the SNP11 marker
linked to py2. Sequence analysis of the five genes in the py2 localization interval showed that only BraA07001774 expression significantly differed between pylm and ‘CK-51’. For pylm, BraA07001774 had a SNP missense mutation on the first exon such that the wild type had an Asp residue whereas pylm had an Asn. The qRT-PCR revealed that BraA07001774 was downregulated in the mutant relative to the wild type. Gene annotation in the Brassica database indicated that BraA09004189 encodes emb 1187 and a phosphotransferase. In Arabidopsis, the emb genes are essential for seed development [65]. EMB genes encode various proteins. Thirty percent of them are active in the plastids [66]. Most emb mutations result in albimism or etiolated seeds and embryos which are secondary effects of mutations in chloroplast biogenesis and function [67]. The albino mutants (pds1, pds2) and hypocotyl elongation phenotypes in Arabidopsis may be related to mutations in EMB genes [45, 46]. Thus, BraA07001774 is a candidate gene for py2.

Conclusions
We reported the identification of a Chl deficiency mutant pylm in pakchoi in this study. The etiolation trait was controlled by two recessive nuclear genes py1 and py2. We successfully segregated py1 from py2 by constructing F3,4 families and achieved fine mapping and predictions for the two etiolation genes. Candidate genes regulating etiolation were identified as BraA09004189 and BraA07001774, respectively. These discoveries may help elucidate the molecular mechanisms underlying the trait controlled by two recessive nuclear genes. In future studies, functional validation will be conducted to clarify the functions of these candidate genes. In this manner, the molecular mechanism of gene interactions may be better understood.

Methods
Plant materials and mapping population development
The DH line pylm was obtained by isolated microspore culture of the ‘Huaguan’ pakchoi variety introduced from Japan musashino seed company. This strain was characterized by yellow leaves and elongated hypocotyls [44]. The parent used for the segregating population development with pylm in this study was ‘FT’, a DH line derived from Chinese cabbage variety ‘Fukuda 50’ screened by Shenyang greenstar Chinese cabbage research institute (Shenyang, China), which exhibits folded green leaves [68]. The pylm was reciprocally crossed with ‘FT’ to produce the F1, F2, and BC1 generations. Twenty F2 individuals with green leaves were self-pollinated to produce F2,3 progenies. Eight green F2,3 individuals per group were randomly selected from the corresponding populations and self-pollinated to produce the F3,4 populations. Those with character segregation were used in linkage analysis and gene mapping. All plants were grown in the greenhouse at Shenyang Agricultural University, China.

Detection of variations by BSR-Seq
One hundred individuals with extreme leaf color phenotype at three-leaf stage were separately collected from the F2 progeny and pooled for RNA extraction. Total RNA of each sample was extracted using TRIzol Reagent (Invitrogen, USA). The RNA concentration and integrity were analyzed with an Agilent 2100 Bioanalyzer (Agilent Technologies, USA). The extreme mixed pools green-leaf (G-pool) and yellow-leaf (Y-pool) were constructed by mixing equal amounts of each RNA sample. RNA-Seq library preparations were constructed according to the manufacturer’s protocol (NEBNext® Ultra™ RNA Library Prep Kit for Illumina®). Sequencing was run on an Illumina HiSeq 2500 by GENEWIZ Suzhou Biological Technology Co., Ltd., China.

The quality of the raw RNA-Seq reads was assessed with FastQC (v. 0.10.1). Adapter sequences and low-quality reads containing N and < 70 were deleted from the raw reads with Cutadapt (v. 1.9.1). Low-quality bases at the 5’ or 3’ end were filtered out. Those with mean quality < 20 were trimmed by the 4-bp sliding window method. Clean data were aligned to the Brassica database (http://brassicadb.org/brad/) with Hisat v. 2.0.14 [69]. Candidate single nucleotide polymorphisms (SNPs) between the pools were obtained with the Mpileup module in SAM Tools (v. 0.1.18) SNP loci with depth coverage > 3× were screened for differential SNP analysis in the mutant and wild type pools. Euclidean distances (ED) for the differential SNP loci were calculated. The ED for each differential SNP locus was raised to the power five, namely, ED5, to eliminate background noise [70]. All ED5 were sorted and the differential SNP locus with ED5 in the top 1% were screened and mapped to specific chromosome regions based on the SNP locus distributions. Chromosome regions associated with the target traits were predicted according to the distributions of the ED5 for the differential SNP loci on the chromosomes.

Differential gene expression analysis
To detect differentially expressed genes (DEGs) between the pools, a gene expression level analysis was performed with Htsseq (v. 0.6.1). The reads per kilobases per million mapped reads (RPKM) were calculated [71]. DEGs were screened using a preset threshold ([log2 fold change] ≥ 1 and false discovery rate (FDR) ≤ 0.05).
DNA isolation, polymerase chain reaction (PCR), and linkage analysis
A modified cetyltrimethylammonium bromide (CTAB) method [72] was used to extract genomic DNA from young leaves of the parental and F_{3:4} populations with a phenotypic segregation ratio of 3:1. The primers for polymorphism analysis were designed in Primer Premier (v. 5.0). PCR amplifications were performed following the instruction as described by Wang et al. [24]. PCR products were separated on 5% (w/v) denaturing polyacrylamide gels and examined by silver staining. The genetic linkage map was constructed by Join Map v. 4.0 [73] using the segregation data. Map distances were calculated and reported in centimorgans (cM) according to Kosambi’s mapping function [74].

Candidate gene prediction and quantitative real-time PCR (qRT-PCR) validation
Using the chromosome location of the target gene, all adjacent genes were annotated with the Brassica database (http://brassicadb.org/brad/). Candidate genes were predicted according to gene annotation. PCR primers were designed to span the entire putative gene length predicted according to gene annotation. PCR primers (http://brassicadb.org/brad/) were designed to span the entire putative gene length predicted according to gene annotation. PCR primers (http://brassicadb.org/brad/) were designed to span the entire putative gene length predicted according to gene annotation. PCR amplifications were performed following the instruction as described by Wang et al. [24]. PCR products were separated on 5% (w/v) denaturing polyacrylamide gels and examined by silver staining. The genetic linkage map was constructed by Join Map v. 4.0 [73] using the segregation data. Map distances were calculated and reported in centimorgans (cM) according to Kosambi’s mapping function [74].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12870-020-2271-3.

Additional file 1: Figure S1. Phenotypic segregation ratios of the F_{2:3} populations and their F_{2:3} genotypes from the cross ‘FT’ × pylm. Table S1. Phenotypic segregation ratios of the F_{3:4} populations and their F_{3:4} genotypes from the cross ‘FT’ × pylm. Table S2. RPKM interval distribution of the 55,250 genes identified in the G-pool and Y-pool via BS-Seq. Table S3. Gene identification and expression data for the DEGs in the Y-pool vs. the G-pool. Table S4. Primer sequences for the SSR and Indel markers tightly linked with pylm. Table S5. Prediction of candidate genes within the gene-mapped region on chromosome A07. Table S6. Sequences of the primers used to clone the full-length and CDS sequences of BraA07001774. Table S7. Sequences of the primers used to clone the full-length and CDS sequences of BraA09004189. Table S8. Primer sequences for the SSR markers tightly linked with py2. Table S9. Prediction of candidate genes within the gene-mapped region on chromosome A07. Table S10. Sequences of the primers used to clone the full-length and CDS sequences of the candidate genes for py2.

Abbreviations
‘FT’: Fukuda 50; ‘ALA’: 5-Aminolevulinic acid; ‘BSA’: Bulk segregation analysis; ‘BSR-Seq’: Bulked segregant RNA sequencing; ‘Chl’: Chlorophyll; ‘cm’: Centimorgans; ‘CTAB’: Cetyltrimethylammonium bromide; ‘DEGs’: Differentially expressed genes; ‘DH’: Double haploid; ‘ED’: Euclidean distances; ‘emb’: embryo defective; ‘FDR’: False discovery rate; ‘H01’: Heme oxygenase-1; ‘NADPH’: Nicotinamide adenine dinucleotide phosphate; ‘PCR’: Polymerase chain reaction; ‘Proto IX’: Protoporphyrin IX; ‘pylm’: Pakchoi (Brassica rapa L. ssp. chinensis) yellow leaf mutant; ‘qRT-PCR’: quantitative real-time PCR; ‘RNA-Seq’: RNA sequencing; ‘RPKM’: Reads per kilobases per million mapped reads; ‘SNP’: Single-nucleotide polymorphism

Acknowledgements
The authors thank Editage for English language editing and GENEWIZ for sequencing.

Authors’ contributions
KZ and FH conceived the study and designed the experiments. KZ, YM, XS and NW conducted the experiments and collected the data. KZ and WL analyzed the data and drafted the manuscript. All authors read and approved the final manuscript.

Authors’ information
KZ, lecturer, College of Life Sciences, Shanxi Datong University, Datong City, Shanxi Province, People’s Republic of China. YM and XS were postgraduate students from College of Horticulture, Shenyang Agricultural University, Shenyang City, Liaoning Province, People’s Republic of China. WS, laboratory technician, College of Life Sciences, Shanxi Datong University, Datong City, Shanxi Province, People’s Republic of China. KZ, professor, College of Horticulture, Shenyang Agricultural University, Shenyang City, Liaoning Province, People’s Republic of China. HF, professor, College of Horticulture, Shenyang Agricultural University, Shenyang City, Liaoning Province, People’s Republic of China.

Funding
This study was funded by grants from the National Natural Science Foundation of China (No. 31672144). The funding played roles in the design of the study and collection, analysis, and interpretation of data.

Availability of data and materials
The datasets analysed during the current study are available in the Brassica database (http://brassicadb.org/brad/). All data used and/or analyzed are available upon request.
Zhang et al. BMC Plant Biology (2020) 20:68

Page 13 of 14

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 31 August 2019 Accepted: 29 January 2020

Published online: 10 February 2020

References

1. Fromme P, Melkozernov A, Jordan P, Krauss N. Structure and function of photosystem I interaction with its soluble electron carriers and external antenna systems. FEBS Lett. 2003;535(1-3):10-44.

2. Kurata N, Miyoshi K, Nonomura K, Yamazaki Y, Ito Y. Rice mutants and system is involved in the delayed senescence in a wheat mutant. Plant Physiol. 2005;139(1):48-62.

3. Schultes NP, Sawers RH, Brutnell TP, Krueger RW, Krueger JW, Krueger RW. Maize can be converted to monovinyl chlorophyll (ide) a by a divinyl reductase in rice. Plant Physiol. 2010;153(3):994-1003.

4. Aniari MJ, Al-Ghamdi A, Kumar R, Ursani S, Al-Attal Y, Nuru A, Mohamed AA, Singh K, Dhauliwal HS. Characterization and gene mapping of a chlorophyll-deficient mutant clh1 of Triticeae monococcomosum L. Biol Plant. 2012;57(3):442-8.

5. Zhang H. Rice YG7 and YG8 nucleotide substitution in cotton. FEBS Lett 2003;555(1):0-2.

6. Schultes NP, Sawers RH, Brutnell TP, Krueger RW. Maize can be converted to monovinyl chlorophyll (ide) a by a divinyl reductase in rice. Plant Physiol. 2010;153(3):994-1003.

7. Mol Biol. 2006;62(3):325–36.

8. Liu XP, Feng C, Li C, Liu W, Wang Z, Zhou Z, Shao Y, Wu M, Wu Y, Li G, Kong LA, Liu C, Jackson SA, Tian Z. Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. Plant J. 2014;77(3):700–12.

9. Song M, Yang Z, Fan S, Zhu H, Pang C, Tian M, Yu S. Cytological and genetic analysis of a virescent mutant in upland cotton (Gossypium hirsutum L.). Euphytica. 2012;187(2):235–45.

10. Gao M, Liu H, Li Y, Wang Y. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in the Clh1 gene for chlorophyll biosynthesis in Brassica napus. Acta Plant Physiol. 2014;36(4):959–70.

11. Li H, Jia J, Xia C, Liu X, Kong X. Characterization and mapping of novel chlorophyll-deficient mutants in durum wheat. Breed Sci. 2013;63(2):169–75.

12. Tian Y, Huang Q, Liu H, Wang J, An R, Liu X, Hu W. Inheritance of chlorophyll-deficient mutant clh2 in Brassica juncea L. and molecular markers for chlorophyll-deficient gene g1. N. Journal Agric Forest Univ (Nat Sci Ed). 2012;40(12):96–9 (in Chinese).

13. Babik S, Heimer Y, Nejadat A, Volkta M. The peroxisomal glycine oxidase gene is differentially expressed in yellow and white sectors of the DP1 variant tobacco mutant. Physiol Plant. 2000;110(1):120–6.

14. Colombo M, Emanuel C, Lainez V, Maldonado S, Prina AR, Borner T. The barley plastome mutant cl2 affects expression of nuclear and plastid housekeeping genes in a cell-age dependent manner. Mol Gen Genomics. 2008;279(4):403–14.

15. Tang X, Wang Y, Zhang Y, Huang S, Liu Z, Lei F, Feng H. A missense mutation of plastid RPS4 is associated with chlorophyll deficiency in Chinese cabbage (Brassica campestris ssp. pekinensis). BMC Plant Biol. 2018;18(1):130–40.

16. Nagata N, Tanaka R, Sato S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell. 2005;17(1):233–40.

17. Frick G, Su Q, Apel K, Armstrong GA. An Arabidopsis porB porC double-mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductase B and C is highly chlorophyll-deficient and developmentally arrested. Plant J. 2003;35(2):169–75.

18. Sheng Z, Lu Y, Li W, Luo R, Wei X, Xie L, Jiao G, Shao G, Wang J, Tang S, Hu P. Yellow-Leaf 7 encodes a magnesium-protoporphyrin IX monomethyl ester cyclase, involved in chlorophyll biosynthesis in rice (Oryza sativa L.). PLoS ONE. 2017;12(5):e0177980.

19. Yoo SC, Cho SH, Zhang H, Park HC, Lee CH, Li J, Yoo JH, Lee BW, Koh HJ, Seo HS, Paek NC. Quantitative trait loci associated with functional stay green SNU-SGT1 in rice. Mol Cells. 2007;24(1):83–94.

20. Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay green phenotype during leaf senescence in rice. Plant J. 2009;59(6):940–52.

21. Weller JL, Terry MJ, Rameau C, Reid JB, Kendrick RE. The phytochrome-deficient pfr* mutant of pea is unable to convert hemi to biliverdin IXa. Plant Cell. 1996;8(1):55–67.

22. Terry MJ, Kendrick RE. Feedback inhibition of chlorophyll synthesis in the phytochrome chronophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol. 1999;119(1):143–52.

23. Xie YJ, Xu D, Cui WT, Sheng WB. Mutation of Arabidopsis HCY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. J Exp Bot. 2012;63(10):3869–83.

24. Xu S, Wang L, Zhang B, Han B, Xie Y, Yang J, Zhong W, Chen H, Wang R, Wang N, Cui W, Shen W. RNA knockdown of rice SES gene is sensitive to the herbicide methyl viologen by the down-regulation of antioxidant defense. Plant Mol Biol. 2017;94(2):219–35.
