Supplementary Methods, Tables and Figures

Multilocus species trees and species delimitation in a temporal context: application to the water shrews of the genus *Neomys*

Javier Igea, Pere Aymerich, Anna A. Bannikova, Joaquim Gosálbez and Jose Castresana

Supplementary Methods

Bayesian phylogenetic analyses of cytochrome *b*

Using BEAST version 1.8, the Markov chain was run for 50 million generations and 10% of the generations were discarded as burn-in. The program Tracer of the BEAST package was used to check that the effective sample sizes of all the parameters of interest were above 200 and convergence had been reached. TreeAnnotator of the same package was used to obtain the maximum clade credibility tree and the corresponding posterior probabilities of each clade.

Tree based on average genomic divergence

We calculated pairwise distances between all specimens using the formula 8.2 in Freedman et al. [1]. Basically, for each position, the average of the four possible matches between two individuals (one with nucleotides a and b and the other with nucleotides c and d) is computed as: $1 - (\delta_{ac} + \delta_{bd} + \delta_{ad} + \delta_{bc})/4$, where δ equals 1 if both nucleotides in the comparison are identical and 0 otherwise. Using a custom-made Perl script, this value was computed for all positions of all concatenated introns, summed, and divided by the total length to obtain the
distance between two individuals. A similar tree was obtained from distances calculated with formula 8.1 in Freedman et al. [1], where a more conservative estimate of the differences at each position is computed (not shown).

Structurama MCMC chain parameters

In each run, the Markov chain was run for 10 million generations, sampling every 100th cycle and with the initial 10,000 samples discarded as burn-in. Population assignment of each specimen was based on the mean partition or partition that minimizes the squared distance to all of the sampled partitions.

BEAST priors and MCMC chain parameters

Several mammalian fossil dates were used as hard bound minimum and soft bound maximum constraints in key nodes in order to calibrate the phylogenetic tree (Table S6). Specifically, we set lognormal prior distributions as follows: the offset was defined by the hard minimum, the mean in real space was adjusted so that the upper 95th percentile of the probability density distribution was coincident with the soft maximum, and the standard deviation parameter was set to 1 (Table S6). All calibrated nodes were older than 10 Myr, and therefore well above the time at which the difference between estimated gene tree and species tree divergences is minimal for nuclear genes [2]. A Yule speciation model was used as tree prior. 75 million generations were run and 10% of the generations were discarded as burn-in. The program Tracer of the BEAST package was used to check that the effective sample sizes of all the parameters of interest were above 200 and convergence had been reached.

For the soricid mitochondrial DNA analysis, the tree was calibrated using a set of fossil constraints available for soricids (Table S7), setting lognormal prior distributions as before.
All calibrated nodes were older than 3 Myr, and therefore well above the time at which the difference between estimated gene tree and species tree divergences is minimal for mitochondrial genes; this time is smaller than for nuclear genes due the reduced population size of mitochondrial genes [2]. To improve convergence, the priors of the substitution rate parameters of the GTR model and relative rate parameters of the codon positions were changed to uniform distribution between 0 and 100. 50 million generations were run, 10% of the generations were discarded as burn-in, and convergence was checked with Tracer.

BEAST priors and MCMC chain parameters

For each partition, HKY was selected as the substitution model. This model was used to match the model available in the program IMa2, which was used in a subsequent step to estimate additional parameters. However, it was checked that the use of more complex substitution models did not affect the results (not shown). The corresponding ploidy type of each marker (nuclear or mitochondrial) was set. In addition, a strict molecular clock was used for all partitions, a Yule process was set as species tree prior and the population size model was set as piecewise constant. All analyses were run for 50 million generations, 10% samples were discarded as burn-in and convergence was checked as before. The maximum clade credibility tree was constructed using median node heights.

IMa2 priors and MCMC chain parameters

The HKY model was used as substitution model. Maximum split time priors were set to 8, population size priors to 15 and migration rate priors to 2. Similar results were obtained when setting exponential migration rate priors with mean = 1 (not shown). When using cytochrome b, the heredity scalar for this locus was set as 0.25. Heating parameters were set as: hfg, hn15, ha0.96 and hb0.9. The final analyses consisted of a total of 50,000 sampled genealogies after
100,000 burn-in steps. As summary statistics of the posterior distributions, the bin with the highest value (after smoothing when this value was available in the IM output) and 95% confidence intervals were taken.

In IMa2, absolute mutation rates are not sampled in the MCMC chain. Rather, mutation rate scalars (the relative values of mutation rates) are estimated. The geometric mean of the externally estimated mutation rate of all loci is then used to scale demographic parameters, including divergence time. Therefore, unlike in *BEAST, it is not possible to introduce the variability of the rates that had been previously calculated in the mammalian multilocus analysis. However, it is possible to set ranges on mutation rates. The ratios of these limits are used as limits on the ratios of the mutation rate scalars. In order to test the effect of these limits, we used as mutation rate ranges the 95% confidence intervals of the mutation rates estimated in the previous mammalian multilocus analysis. In the introns-only analysis, the means and 95% confidence limits of the divergence times estimated by IMa2 were very similar than in the main analysis. When cytochrome b was included, the results with mutation rate ranges were more altered. However, these estimations were very similar again when the upper range of the cytochrome b was increased (10 times the estimated upper limit) to account for the possibility that the mutation rate previously calculated was saturated, similarly as we did in *BEAST (not shown).

BPP priors, MCMC chain parameters and additional tests

Mutation rates were set to be variable among loci and relative rates were generated from a Dirichlet distribution. When using cytochrome b, the heredity scalar for this locus was set as 0.25. As priors for \(\theta \) (population size parameter) and \(\tau \) (age of the root) we initially used values estimated from IMa2, after scaling them to reflect mutations per site. Two different
Gamma distributions were constructed for each of these parameters with \(\alpha = 2 \) (fairly diffused) and \(\alpha = 20 \) (more informative), respectively. The \(\beta \) of the Gamma distribution for \(\theta \) and \(\tau \) was obtained by dividing the \(\alpha \) value by the corresponding mean of the parameter.

Other divergence time parameters were assigned a Dirichlet prior. Additionally, we ran BPP with \(\theta \) and \(\tau \) priors that were respectively one order of magnitude lower and higher than the initial ones. Each prior set was analyzed using the two described reversible-jump Markov Chain Monte Carlo algorithms (rjMCMC) using default options. Each analysis consisted of 20,000 samples taken after 2000 burn-in steps.

References

1. Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E, Silva PM, Galaverni M, Fan Z, Marx P, Lorente-Galdos B, Beale H, Ramirez O, Hormozdiari F, Alkan C, Vilà C, Squire K, Geffen E, Kusak J, Boyko AR, Parker HG, Lee C, Tadigotla V, Siepel A, Bustamante CD, Harkins TT, Nelson SF, Ostrander EA, Marques-Bonet T, Wayne RK, Novembre J: Genome sequencing highlights the dynamic early history of dogs. *PLOS Genet* 2014, 10:e1004016.

2. Sánchez-Gracia A, Castresana J: Impact of deep coalescence on the reliability of species tree inference from different types of DNA markers in mammals. *PLOS ONE* 2012, 7:e30239.
Table S1. *Neomys* specimens used, locations and number of genes sequenced for the species tree.

Specimen Code	Species	Subspecies	Sample type	Locality (and map number)	Country	Lat.	Long.	Genes used in the species tree
IBE-C1529	*N. anomalus*	anomalus	Tissue (a)	Tielve (1)	Spain	43.3	-4.8	14
IBE-C1789	*N. anomalus*	anomalus	Tissue (b)	Navalgujo (2)	Spain	40.3	-5.5	14
IBE-C2895	*N. anomalus*	anomalus	Tissue (c)	Picos de Europa (3)	Spain	43.2	-4.9	14
IBE-C1435	*N. anomalus*	anomalus	Skull	Peñaflor de Hornija (4)	Spain	41.7	-5.0	1
IBE-C1683	*N. anomalus*	anomalus	Faeces	Trefacio (5)	Spain	42.2	-6.7	1
IBE-C1662	*N. anomalus*	anomalus	Faeces	Molinos de Razón (6)	Spain	42.0	-2.6	1
IBE-C1144	*N. anomalus*	anomalus	Faeces	Vega de Hórreo (7)	Spain	43.1	-6.6	1
IBE-C2664	*N. anomalus*	anomalus	Faeces	Bergantes (8)	Spain	40.7	-0.2	1
IBE-C1808	*N. anomalus*	milleri	Tissue (b)	La Pobla de Segur (9)	Spain	42.3	1.0	14
IBE-C3786	*N. anomalus*	milleri	Tissue (d)	Guardiola de Berguedà (10)	Spain	42.3	1.9	14
IBE-C4115	*N. anomalus*	milleri	Tissue (e)	Vitebsk (11)	Belarus	55.2	30.2	9
IBE-C4116	*N. anomalus*	milleri	Tissue (e)	Belgorod (12)	Russia	50.6	36.6	14
IBE-S1926	*N. anomalus*	milleri	Faeces	Osor (13)	Spain	41.9	2.5	1
IBE-C4120	*N. teres*		Tissue (e)	North Caucasus (14)	Russia	43.9	40.1	14
IBE-C4122	*N. teres*		Tissue (e)	North Caucasus (14)	Russia	43.9	40.1	14
IBE-C1914	*N. fodiens*		Tissue (f)	Coll	Spain	42.5	0.8	14
IBE-C101	*N. fodiens*		Tissue (b)	Queralbs	Spain	42.4	2.1	14
IBE-S1915	*N. fodiens*		Faeces	Zalduondo	Spain	42.9	-2.3	1

a, Capture permit CO/09/0004/2010, National Park Picos de Europa
b, Found dead in the field
c, Collection National Park Picos de Europa
d, Capture permit SF/209 (2012), Generalitat de Catalunya
e, Previous work [1]
f, Capture permit SF/238 (2010), Generalitat de Catalunya
[1] Bannikova, A. A., and D. A. Kramerov. 2005. Molecular phylogeny of Palearctic shrews inferred from RFLP and IS-PCR data. Advances in the biology of shrews II (eds. J. F. Merritt, S. Churchfield, R. Hutterer, and B. I. Sheftel). Special Publication of the International Society of Shrew Biologists 87–98.
Table S2. Cytochrome b sequences downloaded from GenBank.

GenBank Accession and reference	Species	Subspecies	Country (and map number)	Genes used in the species tree
DQ991052 [1]	*Neomys anomalus*	milleri	Italy (15)	1
DQ991049 [1]	*Neomys anomalus*	milleri	Italy (16)	1
DQ630409 [2]	*Neomys anomalus*	milleri	Macedonia (17)	
AF182182 [3]	*Neomys anomalus*	milleri	Turkey (18)	
AB175099 [4]	*Neomys anomalus*	milleri	Switzerland (19)	1
HQ621861 [6]	*Neomys teres*		Armenia (20)	1
HQ621860 [6]	*Neomys teres*		Armenia (20)	1
HQ621859 [6]	*Neomys teres*		Armenia (20)	1
HQ621858 [6]	*Neomys teres*		Armenia (20)	1
DQ991062 [1]	*Neomys fodiens*		Italy	1
AB175098 [4]	*Neomys fodiens*		Switzerland	1
AB175097 [4]	*Neomys fodiens*		Finland	1
AB175096 [4]	*Neomys fodiens*		Russia	1
AB175071 [5]	*Neomys fodiens*		China	1
GU981264 [7]	*Chimarrogale himalayica*		China	
GU981263 [7]	*Chimarrogale himalayica*		China	
AB108768 [8]	*Chimarrogale platycephala		Japan	
AB108766 [8]	*Chimarrogale platycephala		Japan	

References

1. Castiglia, R., Annesi, F., Aloise, G. & Amori, G. 2007 Mitochondrial DNA reveals different phylogeographic structures in the water shrews *Neomys anomalus* and *N. fodiens* (Insectivora: Soricidae) in Europe. *J. Zoolog. Syst. Evol. Res.* **45**, 255–262.

2. Dubey, S., Salamin, N., Ohdachi, S. D., Barrière, P. & Vogel, P. 2007 Molecular phylogenetics of shrews (Mammalia: Soricidae) reveal timing of transcontinental colonizations. *Mol. Phylogenet. Evol.* **44**, 126–137.

3. Kryštufek, B., Davison, A. & Griffiths, H. 2000 Evolutionary biogeography of water shrews (*Neomys* spp.) in the western Palaearctic Region. *Can. J. Zool.* **78**, 1616–1625.
4. Ohdachi, S. D., Hasegawa, M., Iwasa, M. A., Vogel, P., Oshida, T., Lin, L.-K. & Abe, H. 2006 Molecular phylogenetics of soricid shrews (Mammalia) based on mitochondrial cytochrome \(b \) gene sequences: with special reference to the Soricinae. *J. Zool.* **270**, 177–191.

5. Ohdachi, S. D., Vogel, P. & Ablimit, A. 2004 Mitochondrial cytochrome \(b \) sequence of *Neomys fodiens* from Xinjiang, China. *Unpublished*

6. Gajewska, M., Yavrouyan, E., Hayrapetian, W., Djavadian, R., Grigorian, M. & Turlejski, K. 2010 Low level of genetic polymorphism of shrews in Armenia and Nagorno-Karabakh. *Unpublished*

7. He, K., Li, Y.-J., Brandley, M. C., Lin, L.-K., Wang, Y.-X., Zhang, Y.-P. & Jiang, X.-L. 2010 A multi-locus phylogeny of Neotogalini shrews and influences of the paleoclimate on speciation and evolution. *Mol. Phylogen. Evol.* **56**, 734–746.

8. Iwasa, M. A. & Abe, H. 2006 Colonization history of the Japanese water shrew *Chimarrogale platycephala*, in the Japanese Islands. *Acta Theriologica* **51**, 29–38.
Table S3. Primers used for the amplification of three overlapping fragments of the mitochondrial cytochrome b gene.

Primer	Sequence	Fragment
Neomys_tRNA{Glu}	ATCGTTGTTATTCAACTATAAGAAC	First
Neomys_cy{b}403R	YCCYCARAAATGATATTTGYCCTCA	First
Neomys_cy{b}389F	GTTATAGCCACTGCTTTTATAG	Second
Neomys_cy{b}746R	TAATTGTCGGGTCTCCGAGTA	Second
Neomys_cy{b}614F	TWTTCCTYCATGAAACAGGATC	Third
Neomys_tRNA{Thr}	TTTGTTTACAAGACCAGTGAT	Third
Table S4. Nuclear intron markers and primers used in this study. TD: touchdown PCR in which the annealing temperature was lowered from 65 °C to 50 °C at 1 °C decrease per cycle.

Marker	Primer sequences	T (°C)	Length
ALAD-10	AGAGTTYGCRYATGYTGATGGCA / GGYGTGATGAGGRATGATGA	TD	455
ASB6-2	TGYTGAAGATGGCYAGCTG / TCCACATGTCAAGCTGGTT	TD	319
CSF2-2	RAAACAGTARAWGRGCTCTTCTG / TNCAGACNGTCTGAGGA	TD	673
CST6-1	RYTACACATGGGAGCAACA / KGCMAGSGGGGCGAGRGTGA	65	267
GALNT5-4	ATYTTAGATTCTCAYGTGGAATG / ACRTCYGGAATKGTCTGC	60	727
GDAP1-1	ACDCAATTTCATCASYCBAAGAATTCGGACTTC	TD	688
HIF1AN-5	TACGAGAGGTTYCCYATTTCCA / CTCTACCAGAAAGTGTTCTC	TD	389
JMJD-2	ACCABTGGCVTGCATGMAGARGT / TGATGAATCRYTGACCGTACAGTGAT	TD	450
MCM3-2	GGAATTTATCAGAGCAAGGTC / RTAGAAYTCTCRTACTGCTT	TD	335
MYCBPAP-11	AAYAAYGGCAGVGTGYYCATTT / CAGCATYCRVAGAYTTRAAGAA	TD	341
PRPF31-3	GTCTYGTRGAGYCAACAAC / BTTSACNGTGCAGTGAATC	TD	481
SLA-2	AGGTGGCTGTGGC	685	
Table S5. GenBank accession numbers

Specimen Code	Species	Subspecies	Cytochrome b	ALAD-10	ASBD-2	CSF2-2	CST6-1	GALNTS-4	GAPA1-1	HIF1AN-5	JMDD-2	MCM3-2	MYCBPAP-11	PRPF31-3	SLA-2	TRAK-8	
BE-C1529	Neomys anomalus	milleri	LK936659	LK936777	LK936778	LK936898	LK936870	LK936872	LK936741	LK936742	LK936761	LK936762	LK936781	LK936782	LK936801	LK936802	
BE-C1789	Neomys anomalus	milleri	LK936860	LK936979	LK936980	LK936977	LK936972	LK936974	LK936974	LK936974	LK936975	LK936974	LK936974	LK936974	LK936974	LK936974	
BE-C2895	Neomys anomalus	milleri	LK936861	LK936901	LK936902	LK936870	LK936874										
BE-C1445	Neomys anomalus	milleri	LK936863	LK936901	LK936902	LK936870	LK936874										
BE-C1982	Neomys anomalus	milleri	LK936864	LK936901	LK936902	LK936870	LK936874										
BE-C1983	Neomys anomalus	milleri	LK936865	LK936901	LK936902	LK936870	LK936874										
BE-C2964	Neomys anomalus	milleri	LK936866	LK936901	LK936902	LK936870	LK936874										
BE-C3909	Neomys anomalus	milleri	LK936867	LK936901	LK936902	LK936870	LK936874										
BE-C7996	Neomys anomalus	milleri	LK936868	LK936901	LK936902	LK936870	LK936874										
BE-C1155	Neomys anomalus	milleri	LK936869	LK936901	LK936902	LK936870	LK936874										
BE-C4116	Neomys anomalus	milleri	LK936870	LK936901	LK936902	LK936870	LK936874										
BE-D1026	Neomys anomalus	milleri	LK936871	LK936901	LK936902	LK936870	LK936874										
BE-C1911	Neomys fletcheri	milleri	LK936872	LK936901	LK936902	LK936870	LK936874										
BE-C1914	Neomys fletcheri	milleri	LK936873	LK936901	LK936902	LK936870	LK936874										
BE-D1015	Neomys fletcheri	milleri	LK936874	LK936901	LK936902	LK936870	LK936874										
BE-C1220	Neomys fletcheri	milleri	LK936875	LK936901	LK936902	LK936870	LK936874										
BE-C1232	Neomys fletcheri	milleri	LK936876	LK936901	LK936902	LK936870	LK936874										
BE-C1233	Crocidura russula	milleri	LK936854	LK936865	LK936858	LK936860	LK936862	LK936864	LK936866	LK936867	LK936868	LK936869	LK936870	LK936871	LK936872	LK936873	LK936874
Table S6. Calibration constraints (in Myr) used as priors in the BEAST analysis of mammalian introns. Node numbers correspond to numbers in figure 4.

Clade (Node number)	Minimum hard bound	Maximum soft bound	Lognormal parameters	
			Mean	Offset
Boreoeutheria (1)	61.50	131.50	22.28	61.50
Laurasiatheria (2)	62.50	131.50	21.95	62.50
Eulipotyphla (3)	61.50	131.50	22.28	61.50
Ferungulata (4)	62.50	131.50	21.95	62.50
Zooamata (5)	62.50	131.50	21.95	62.50
Cetartiodactyla (6)	52.40	65.80	4.27	52.40
Carnivora (7)	39.68	65.80	8.28	39.68
Catarrhini (8)	23.5	34.00	3.35	23.50
Table S7. Calibration constraints (in Myr) used as priors in the BEAST analysis of cytochrome b of soricids. Node numbers correspond to numbers in figure S1.

Clade (Node number)	Minimum hard bound	Maximum soft bound	Lognormal parameters
Soricinae–Crocidurinae (1)	20	25	1.59
Blarinini (2)	15	20	1.59
Otisorex (3)	3.5	5	0.48

Node numbers correspond to numbers in figure S1.
Figure S1. Maximum-likelihood trees reconstructed from each individual intron of Neomys. The two alleles of each specimen are indicated with the letters A and B. The trees were rooted at the midpoint. The scale is in substitutions/site.
Figure S2. Maximum-likelihood trees reconstructed from different concatenations of *Neomys* introns. In each concatenation, the order of each allele pair was randomly changed. Names include specimen code and locality data. The trees were rooted at the midpoint. The scale bar represents 0.002 substitutions/site in all trees.
Figure S3. Species tree obtained by *BEAST* with branch lengths in relative units.
Figure S4. Bayesian relaxed clock tree reconstructed with cytochrome b sequences of soricids. Calibration nodes are shown with a white circle and the corresponding constraints are given in Table S7. The *Neomys fodiens* branch from which the mutations rate was estimated is shown with a thicker line.