A SPECIAL CONIC ASSOCIATED WITH THE REULEAUX NEGATIVE PEDAL CURVE

LILIANA GABRIELA GHEORGHE AND DAN REZNIK

Abstract. The Negative Pedal Curve of the Reuleaux Triangle w.r. to a point M on its boundary consists of two elliptic arcs and a point P_0. Interestingly, the conic passing through the four arc endpoints and by P_0 has a remarkable property: one of its foci is M. We provide a synthetic proof based on Poncelet’s polar duality and inversive techniques. Additional intriguing properties of Reuleaux negative pedal are proved using straightforward techniques.

1. Introduction

The Reuleaux triangle R, is the (convex) curve formed by the arcs of three circles of equal radius r, centered on the vertices V_1, V_2, V_3 of an equilateral triangle and that mutually intercepts in these vertices. This triangle is mostly known due to its constant width propriety [3, Reuleaux Triangle].

Here, we study some proprieties of the negative pedal curve \mathcal{N} of R w.r. to a pedal point M lying on one of its sides. This curve is the envelope of lines passing through points $P \in R$ and perpendicular to PM, [3, Negative Pedal Curve].

Let V_3 denote the center of the circular arc where M lies, and let V_1, V_2 the endpoints of said side. Let the arc A_1A_2 (resp. B_1B_2) be the negative pedal image of the Reuleaux side V_1V_3 (resp. V_2V_3) where A_1 is the image of V_1, and B_1 the image of V_2. The endpoints of \mathcal{N}, whose preimage is V_3 are respectively A_2, when V_3 is regarded as a point of the side V_1V_3 and B_2, when V_3 is regarded as a point of the side V_2V_3 of the Reuleaux triangle. The negative pedal of arc V_1V_2 reduces to a point, P_0.

Keywords and phrases: Conic, inversion, pole, polar, dual curve, negative pedal curve.

(2010)Mathematics Subject Classification: 51P99, 60A99.

Main Result. Our main result (Theorem 1, Section 2) is a synthetic proof, based on polar duality and inversive techniques, for a instigating property of the conic C^* that passes through the endpoints A_1, A_2, B_1, B_2 of the negative pedal curve, \mathcal{N}, and through P_0 : that one of its foci is precisely the pedal point, M; (see Figure 1).

We also give full description of its other geometric elements (axes, directrix and vertices) and criterion identify its type, according to the location of the pedal point M.

Date: August, 2020.
A review of polar reciprocity and other concepts is postponed in Appendix including a definition of the negative pedal curve as a loci, as well as an alternative description as an envelope of lines (Proposition 12).

Further Results. In Section 3 we prove other properties of the Reuleaux and its negative pedal curve, involving tangencies, collinearities and homotheties.

2. **Main Result: The Endpoint Conic**

In this section we prove our main result (Theorem 1), that the conic which passes through the five endpoints A_1, A_2, B_1, B_2 and P_0 of the negative pedal curve of the Reuleaux w.r. to a point M on its boundary has a focus which coincides with M.

The proof will require some additional steps which repeatedly use an inversive approach, based on polar duality. Therefore, the reader not familiar with this topic may find useful the details in Appendix, and the references therein.
Perform a polar transform (or a polar duality) w.r. to an inversion circle centered in \(M \) (see Figure 2). Thus, points on the end conic transform into their polars w.r. to the inversion circle, tangent to the dual curve.

By polar duality, the dual of a conic is a circle iff the center of the inversion circle (w.r. to whom the duality is performed) is at the focus of the conic.

Thus, instead of attempting to prove directly that the focus of the end conic is \(M \), we perform a dual transform w.r. to an inversion circle centered on \(M \) and show that there exists a circle to whom the five polars of \(A_1, A_2, B_1, B_2 \) and \(P_0 \) are tangent. Therefore, we need to prove the following.

Proposition 1. Let \(R \) be a Reuleaux triangle with vertices \(V_1, V_2, V_3 \). Let \(M \) be a point on the arc \(V_1V_2 \) and fix an inversion circle centered on \(M \). Let \(V_1', V_2', V_3' \) be the inverses of \(V_1, V_2, V_3 \) w.r. to the inversion circle; finally, let \(C \) be the exinscribed circle in \(\triangle V_1'V_2'V_3' \), externally-tangent to side \(V_1'V_2' \). Then the polars of \(A_1, A_2, B_1, B_2 \), and \(P_0 \) are tangent to \(C \).

This indirect approach is feasible since the polars of \(A_1, A_2, B_1, B_2 \), and \(P_0 \) are traceable. We find convenient to state it explicitly.

Referring to Figure 2.

Lemma 1. Using the above notation:
i) The polars of \(A_1 \) and \(B_1 \) are the tangents at \(V_1' \) and \(V_2' \) to circular arcs \(V_1'V_3' \) and \(V_2'V_3' \), the inverses of arcs \(V_1V_3 \) and \(V_2V_3 \) of the Reuleaux, respectively.

The poles of the tangents at \(V_1' \) and \(V_2' \) to the arcs \(V_1'V_3' \) and \(V_2'V_3' \), respectively, are the points \(A_1, B_1 \).

ii) The polars of the points \(A_2, B_2 \) are the tangents in \(V_3' \) to arcs \(V_1'V_3' \) and \(V_2'V_3' \), respectively.

The poles of the tangents at \(V_3' \) to arcs \(V_1'V_3' \) and \(V_2'V_3' \), respectively, are the points \(A_2, B_2 \).

iii) The polar of \(P_0 \) is the line \(V_1'V_2' \).

Proof. (see Figure 2) Inversion w.r. to a circle maps circles to either circles or lines: thus, the inverse of arcs \(V_1V_3 \) and \(V_2V_3 \) are the two circular arcs \(V_1'V_3' \) and \(V_2'V_3' \), respectively. On the other hand, since the arc \(V_1V_2 \) passes through the inversion center, its image is a union of two half-lines: the line \(V_1'V_2' \) excluding segment \([V_1'V_2']\).

All the other statements are straightforward consequences of the description of the negative pedal curve as a locus, shown in Proposition 13.

Finally, the fact that the negative pedal is the dual of its inverse, (see Appendix, Proposition 12) completes the proof.

Using the same notation as in the previous Lemma:

Lemma 2. i) the angles at \(V_1', V_2', \) and \(V_3' \) between arcs \(V_1'V_2', V_1'V_3', \) and \(V_2'V_3' \), respectively (these are the inverses of the sides of the Reuleaux \(R \)), are \(120^\circ \).

ii) \(\triangle V_1'O'V_2' \) determined by the tangents at \(V_1', V_2' \) to said arcs and the line \(V_1'V_2' \), is equilateral.

Proof. This is a direct consequence of the fact that inversion preserves angles between curves.

Figure 2. The Reuleaux \mathcal{R} triangle and its inverse: (i) the arcs $V'_1V'_3$ (green) and $V'_2V'_3$ (blue) are the inverses of sides V_1V_3 and V_2V_3 of \mathcal{R} while line $V'_1V'_2$ except for the segment $[V'_1V'_2]$ itself (violet) is the image of arc V_1V_2; (ii) the polars of A_1 and B_1 are the tangents in V'_1 and V'_2 to arcs $V'_1V'_3$ and $V'_2V'_3$; (iii) the polars of A_2 and B_2 are the tangents in V'_3 to arcs $V'_1V'_3$ and $V'_2V'_3$; (iv) line $V'_1V'_2$ is the polar of P_0. (v) all five polars are tangent to the exinscribed circle of $\triangle V'_1O'V'_2$ (purple). The angle between circles c_0 (green) and C_0 (blue) in V'_3 is 120° iff V'_3 is on the circle centered in O passing through V'_1 and V'_2; in this case the tangents at V'_3 (dashed green and blue) to circles c_0 and C_0, are also tangent to the exinscribed circle c (purple) of $\triangle V'_1O'V'_2$.

Proposition 1, hence the assertion that the focus of C^* coincides with the pedal point M is therefore proved, once it is shown that the two tangents at V'_3 to arcs $V'_1V'_3$ and $V'_2V'_3$ respectively, also tangent the excircle of triangle $V'_1O'V'_2$. This can be restated as follow.

Lemma 3 (a scalene lemma). Let $\triangle V'_1O'V'_2$ be an equilateral triangle and let O be the center of its exinscribed triangle, c, externally-tangent to side $[V'_1V'_2]$. Let C be a circle (also) centered on O that passes through V'_1 and V'_2.

Finally, let c_0 and C_0, be the two circles tangent to the sides $[OV'_1]$ and $[OV'_2]$ at V'_1 and V'_2, respectively. Then

i) c_0 and C_0 intersect at an angle of 120° iff the three circles c_0, C_0, and C pass through one common point.

ii) if the condition above is fulfilled, then the two tangents at the common point V'_3 to circles c_0 and C_0 are also tangent to the exinscribed circle c.
A SPECIAL CONIC ASSOCIATED WITH THE REULEAUX NEGATIVE PEDAL CURVES

See Figure 2

Assertion (i) is fulfilled if we identify circles c_0 and C_0 with inverses of the sides of the Reuleaux triangle. Assertion (ii) is not obvious and require some additional steps. We shall give a symmetric proof to this apparently scalene result, based on a rudimentary (yet useful) form of Poncelet’s porism for regular hexagons.

Lemma 4 (a poristic fact). Let $[A_0A_1\ldots A_5]$ a regular hexagon with inscribed circle c and circumcircle C. Let P_0 be a point on arc A_0A_1 of C and let P_0P_1, P_1P_2, \ldots, P_5P_0 be the tangents from P_0, P_1, \ldots, P_5 to c.

Let c_0 be the circle tangent to the side $[A_0A_5]$ of the hexagon at A_0 and intersecting C at P_0 (and A_0). Then:

i) Points P_6 and P_0 coincide and hexagon $[P_0P_1\ldots P_5]$ is regular and congruent with hexagon $[A_0A_1\ldots A_5]$. Both hexagons share the same incircle and circumcircle.

ii) The line P_0P_1, from P_0 to c, also tangents circle c_0.

Proof. i) When we perform the construction of the tangent lines P_0P_1, \ldots, P_5P_6 the process will end in five steps thanks to Poncelet’s porism, since c and

![Figure 3. The angle between circles c_0 (green) and C_0 (blue) in P_0 is 120° iff P_0 is on the circumcircle of the hexagon $[A_0A_1\ldots A_5]$.](image)
\textbf{C} are the incircle and the circumcircle of a hexagon. The regularity of this hexagon is due to the fact that its inscribed and circumscribed circles are concentric.

In fact, a straightforward proof, whose details we omit, can also be used to show that segment \(P_0P_1 \) has the same length as \(A_0A_1 \), hence it is the side of another regular hexagon inscribed in \(\textbf{C} \) and circumscribed to \(\textbf{c} \).

ii) Let \(T_0 \) be the intersection of the perpendicular bisector of segment \([A_0P_0]\) and line \(A_0A_5 \). We shall prove that \(T_0P_0 \) is tangent at \(P_0 \) to circle \(\textbf{c}_0 \) and that points \(T_0, P_0, P_1 \) are collinear.

Let \(\textbf{c}_0 \) be the center of circle \(\textbf{c}_0 \); since \(T_0 \) is a point on the perpendicular bisector of \([A_0P_0]\), and since \(A_0 \) and \(P_0 \) are the two intersections of circles \(\textbf{c}_0 \) and \(\textbf{c} \), then points \(O, \textbf{c}_0 \) and \(T_0 \) are collinear.

Next, \(\triangle T_0A_0c_0 = \triangle T_0P_0c_0 \) as they have respectively-congruent sides, hence

\[
\angle T_0P_0c_0 = \angle T_0A_0c_0 = 90^\circ
\]

which proves that line \(T_0P_0 \) is tangent at \(P_0 \) to circle \(\textbf{c}_0 \).

Furthermore, \(\triangle T_0A_0O = \triangle T_0P_0O \) as they have respectively-congruent sides, hence

\[
\angle T_0P_0O = \angle T_0A_0O
\]

By hypothesis, \(T_0, A_0 \), and \(A_5 \) are collinear, and \(\triangle A_0A_5O \) is equilateral, hence the external angle \(\angle T_0A_0O = 120^\circ \); hence \(\angle T_0P_0O = 120^\circ \) as well.

Since \(\triangle P_0P_1O \) is equilateral then \(\angle OP_0P_1 = 60^\circ \) and \(\angle T_0P_0P_1 = 180^\circ \), proving that points \(T_0, P_0, P_1 \) are collinear.

\[\Box\]

The following fact is a convenient reformulation of Lemma 3. Thus its proof ends the proof of the referred lemma, hence the proof of Proposition 1.

\textbf{Lemma 5} (The key Lemma). Let \([A_0A_1 \ldots A_5]\) be a regular hexagon whose incircle is \(\textbf{c} \) and circumscribed \(\textbf{C} \).

Let \(\textbf{c}_0 \) be the circle tangent to the side \([A_0A_5]\) of the hexagon at \(A_0 \) and let \(\textbf{C}_0 \), be the circle tangents to side \([A_1A_2]\) at \(A_1 \). Then the angle between circles \(\textbf{c}_0 \) and \(\textbf{C}_0 \) is \(120^\circ \) iff the three circles: \(\textbf{c}_0, \textbf{C}_0 \) and \(\textbf{C} \) have one common point.

\textit{Proof.} \(\iff \) First assume circles \(\textbf{c}_0 \) and \(\textbf{C}_0 \) intersect at a point \(P_0 \) on circumcircle \(\textbf{C} \). Referring to Figure 3, if \(P_0 \) is on arc \(A_0A_1 \) of \(\textbf{C} \) then by Lemma 4, \(P_0P_1 \) is a common tangent to circles \(\textbf{c}_0 \) and \(\textbf{c} \). In particular, \(P_0P_1 \) is the tangent at \(P_0 \) to circle \(\textbf{c}_0 \).

Next, let \(P_0P'_0 \) be the tangent from \(P_0 \) to the incircle \(\textbf{c} \) (distinct from \(P_0P_1 \)). Similarly, let \(P'_0P'_1, P'_1P'_2, \ldots, P'_1P'_t \) be the tangents from points \(P'_0, P'_1, \ldots, P'_t \in \textbf{C} \) to the incircle \(\textbf{c} \).

Then, as above, points \(P'_0 \) and \(P_0 \) coincide and hexagon \([P'_0P'_1 \ldots P'_t]\) is regular; but since the two hexagons \([P_0P_1 \ldots P_5]\) and \([P'_0P'_1 \ldots P'_t]\) have one common point and both are regular, and inscribed in \(\textbf{C} \) they must coincide.

Once again, Lemma 4 guarantees that \(P_0P_3 \) is a common tangent to circles \(\textbf{C}_0 \) and \(\textbf{c} \). In particular, line \(P_0P_3 \) is the tangent at \(P_0 \), to circle \(\textbf{C}_0 \).
Since hexagon \([P_0P_1 \ldots P_5]\) is regular, \(\angle P_1P_0P_5 = 120^\circ\). This guarantees that the angle between circles \(c_0\) and \(C_0\), which is the angle between their tangents at \(P_0\), is also \(120^\circ\).

\(\Rightarrow\) By hypothesis, circles \(c_0\) and \(C_0\) intersect at an angle of \(120^\circ\). We shall prove that, necessarily, point \(P_0\) must be on the circumcircle \(C\).

Let \(P_0\) be the "real" intersection point between circle \(c_0\) and arc \(A_0A_1\) of circle \(C\). We shall prove that \(P_0\) and \(P'_0\) coincide.

Now let \(C'_0\) be the circle tangent at \(A_1\) to line \(A_1A_2\) that passes through \(P'_0\). Then, by the first part of the proof, circles \(c_0\) and \(C'_0\) intersect at an angle of \(120^\circ\). So circles \(C_0\) and \(C'_0\) are both tangent at \(A_1\) to line \(A_1A_2\) and intersect circle \(c_0\) at the same angle. Hence circles \(C_0\) and \(C'_0\) coincide, as do points \(P_0\) and \(P'_0\).

Finally, we state our main result. Refering to Figure 4.

Theorem 1 (The endpoint conic). The conic \(C^*\) that passes through the endpoints \(A_1, A_2, B_1, B_2\) and \(P_0\) of the negative pedal curve of \(R\) has one focus on \(M\); furthermore its main axis is the line joining the pedal point \(M\) with the Reuleaux center \(G\).

Proof. The above lemmas and propositions prove that the focus of the end-point conic coincides with \(M\). We end the proof by showing that the axis of the endpoint conic passes through \(G\), the center-of-mass of the Reuleaux (or equivalently, it passes through the circumcenter of \(\triangle V_1V_2V_3\)).

Once again to prove that the directrix of conic \(C^*\) is perpendicular to the line that joins points \(M\) and \(G\), we employ an inversive argument.

As reminded in Prop 10 the directrix of a conic whose polar-dual is some circle, is precisely the polar of the center of that circle (w.r. to the inversion circle). Therefore, the directrix of the endpoint conic is the polar of point \(O\).

Since points \(V_1', V_2',\) and \(V_3'\) are, respectively, the inverses of \(V_1, V_2, V_3\) w.r. to a circle centered on \(M\), this guarantees that points (i) \(M\), (ii) the circumcenter of \(\triangle V_1'V_2'V_3'\), and (iii) the circumcenter of \(\triangle V_1V_2V_3\) are collinear, i.e., \(G, M, O\) are collinear. In turn, this implies that the polar of \(O\) (that, by definition, is perpendicular to \(OM\)), will be also perpendicular to \(GM\).

Thus, the axis of the endpoint conic and line \(MO\) are parallel. Since \(M\) is the focus of the endpoint conic, this means that the axis is \(MO\) and passes through \(G\).

The above results reveal another interesting fact: the endpoint conic of a Reuleaux is the polar-dual of a special circle which depends on the vertices of the Reuleaux and on the location of \(M\).

Corollary 1. The endpoint conic of a Reuleaux is the polar-dual of the circle centered on the circumcenter \(O\) of triangle \(\triangle V_1'V_2'V_3'\) whose radius is the distance from point \(O\) to line \(V_1'V_2'\).

A closer look at the dual circle of the endpoint conic allows one to diagnose its type: (i) ellipse if \(M\) is inside the dual circle of the endpoint conic; (ii) parabola if it is on said circle; (iii) hyperbola when outside.

Therefore one can construct a Reuleaux triangle when a specific endpoint conic is prescribed.
Corollary 2. Let V_1V_2' be a side of a regular hexagon and C and c be its circumscribed and inscribed circles; let C' and c' be the inverses of C and c w.r. to the line $V_1'V_2'$; let D_1, D_2 (resp D_1', D_2') be the intersection of circles C' and c' (C and c', respectively). Let V_3' be a point on the arc $V_1'V_2'$ of C and c_0 and C_0 be the circles tangent at V_1' and V_2' to sides OV_1' and OV_2' of $\triangle V_1'OV_2'$.

Let M be the inverse of V_3' w.r. to $V_1'V_2'$. Choose an inversion circle I centered on M.

Then the inverses of arcs $V_1'V_3'$, $V_2'V_3'$, and of line $V_1'V_2'$ w.r. to I determine a Reuleaux triangle, whose endpoint conic will be an ellipse, hyperbola or parabola iff M is on arc D_1D_2, outside this arc, or coincides with either D_1 or D_2, respectively.

Figure 4. The endpoint conic C^* (purple) is the dual of circle c (dashed purple) w.r. to the inversion circle centered on M (dashed black); one of its focus is on M, its directrix is the polar of O, its focal axis passes through G, and its vertices L_1 and L_2 are the inversions of the antipodal points N_1 and N_2, the intersection of the diameter of c passing through M. (N_1 lies outside the figure.
Figure 5. When the point M is outside the arc $D_1 D_2$, the endpoint conic C^* is a hyperbola (purple): shown its two branches and directrices.

Figure 6. The endpoint conic C^* (dark green) is a parabola iff the point M coincides with either D_1 or D_2; its directrix (dark green) is the polar of the center O of the Reuleaux.

3. Some Elementary Properties

3.1. Collinearity and Tangencies. Referring to Figure 7:
Proposition 2. The negative pedal \mathcal{N} of a Reuleaux consists of two elliptic arcs \mathcal{E}_A and \mathcal{E}_B and a point P_0, which is the antipode of M w.r. to the center of the circle where M is located.

\mathcal{E}_A, \mathcal{E}_B are centered on V_1 and V_2, respectively, have one common focus at M, and their semi-axes are of length equal to r.

Proof. By hypothesis M belongs to the arc V_1V_2 of the circle centered in V_3 that passes through V_2 and V_3. Hence, if P is any point on this arc and we draw the perpendicular p, through P, on PM, all these lines will pass through a fixed point, P_0, which is the antipode of M w.r. to the center V_3.

The second part is a direct consequence of the general construction of a negative pedal of a circle. See Proposition 12 of Appendix.

Proposition 3. The minor axis of either \mathcal{E}_A and \mathcal{E}_B passes through P_0.

Proof. By the definition of an antipedal curve, if we regard V_1 as a point on the arc V_1V_2 of the circle centered on V_3 on which M lies, then P_0V_1 will be perpendicular to MV_1. Since V_1 is the center of \mathcal{E}_A, and line MV_1 is its focal axis, its minor axis will be along P_0V_1. Similarly, the minor axis of \mathcal{E}_B will be along P_0V_2.

Proposition 4. The points A_2 and B_2 and V_3 are collinear. The line A_2B_2 is tangent to both \mathcal{E}_A and \mathcal{E}_B.

Proof. By construction, the negative pedal of the arc V_2V_3 is the elliptic arc \mathcal{E}_{A_f} delimited by A_1 and A_2. This implies that lines MV_3 and A_2V_3 are perpendicular, as are MV_3 and B_2V_3. Thus A_2, V_3, and B_2 must be collinear.

Also by construction, the perpendicular to MV_3 at V_3 is tangent to \mathcal{N} at A_2 (resp. B_2) when V_3 is regarded as a point in the V_2V_3 (resp. V_1V_3) arc. Hence the points A_2, V_3, and B_2 are collinear ($\angle A_2V_3B_2 = 180^\circ$) and A_2B_2 is the common tangent to \mathcal{E}_A and \mathcal{E}_B, in A_2 and B_2, respectively.

Proposition 5. The point A_1 is on P_0V_2 and B_1 is on P_0V_1.

Proof. If we regard V_1 as a point on the arc V_1V_2 of the circle centered on V_3 whose negative pedal reduces to P_0, then, necessarily, $V_1P_0 \perp MV_1$.

Similarly, if we regard V_1 as a point on the arc V_1V_3 of the circle centered on V_2 whose negative pedal is \mathcal{E}_B, then by \mathcal{N}’s construction $B_1V_1 \perp MV_1$.

Since this perpendicular must be unique, P_0, B_1, and V_1 are collinear as will be P_0, A_1, and V_2.

Proposition 6. The line joining the intersection points of \mathcal{E}_A and \mathcal{E}_B is the perpendicular bisector of the segment $[f_Af_B]$ and also passes through P_0.

Proof. Let U_1, U_2 denote the points where \mathcal{E}_A and \mathcal{E}_B intersect. In order to prove that P_0, U_1, and U_2 are collinear, we show each lies on the perpendicular bisector of $[f_Af_B]$. Since U_1 (resp. U_2) is on \mathcal{E}_A (resp. \mathcal{E}_B), whose foci are M and f_A (resp. M and f_B), with main axis of length $2r$, then

$$U_1f_A + U_1M = 2r; \quad U_2f_B + U_1M = 2r.$$

This implies that $U_1f_A = U_1f_B$ and $U_2f_A = U_2f_B$, hence both U_1 and U_2 belong to the perpendicular bisector of $[f_Af_B]$. Since we already showed that $P_0V_1 \perp MV_1$, and since V_1 is the center of Mf_A, this means that P_0V_1
A SPECIAL CONIC ASSOCIATED WITH THE REULEAUX NEGATIVE PEDAL CURVE

Figure 7. The two branches of the N are arcs of ellipses E_A and E_B (green and blue), centered on Reuleaux vertices V_1, V_2, respectively. They have a common focus in M, and the other foci are f_A, f_B. The lengths of their main axes is $2r$, the same as the diameters of the three Reuleaux circles (dashed). Points P_0, A_1, V_2 are collinear and along their minor axis. P_0, B_1, V_1 are collinear and along their minor axis. $P_0 A_1$ and $P_0 B_1$ are tangent to E_A and E_B, respectively. $A_2 B_2$ is tangent to both ellipses and A_2, B_2, V_3 are collinear. The circle (black) passing through M and the other foci f_A and f_B of the ellipses E_A, E_B (green and blue) is centered on P_0 (antipodal of M w.r. to V_3). Distance between the foci f_A and f_B is constant. Triangle $T = \triangle f_A f_B P_0$ is equilateral and its sides pass through (i) A_2, (ii) B_2, (iii) A_1, B_1, respectively. Both intersections U_1, U_2 of E_A with E_B lie on the perpendicular bisector of $f_A f_B$, i.e., they are collinear with P_0. T and $V_1 V_2 V_3$ are homothetic (M is their homothety center) and the ratio of their sides is 2.

is the perpendicular bisector of $[Mf_A]$ and this implies that $P_0 f_A = P_0 M$. Similarly, $P_0 f_B = P_0 M$, hence $P_0 f_A = P_0 f_B$. Therefore P_0 is also on the perpendicular bisector of $[f_A f_B]$, ending the proof. □

3.2. Triangles and Homotheties. Referring to Figure 7:

Proposition 7. The two sides of the triangle $\triangle f_A P_0 f_B$, incident on P_0, contain points A_2 and B_2. The other side contains points A_1 and B_1.

Proof. The construction the negative pedal of arc $V_2 V_3$ implies $A_1 V_2 \perp M V_2$. Since V_2 is the center of the E_A, $A_1 V_2$ is the perpendicular bisector of $[M f_B]$ hence $A_1 f_B = A_1 M$. Since A_1 lies on E_A, $M A_1 + f_A A_1 = 2r$, hence $f_B A_1 + f_A A_1 = f_A f_B$. Therefore, by the triangle inequality, f_B, A_1, f_A must be collinear. A similar proof applies to B_1. In order to prove that $P_0, B_2,$
and f_A are collinear, we simply show that $P_0f_A = P_0A_2 + A_2f_A$. As noted above, A_2V_3 is perpendicular to P_0M and V_3 is its midpoint. Hence A_2V_3 is the perpendicular bisector of $[P_0M]$; so $P_0A_2 = MA_2$. Since A_2 lies on \mathcal{E}_A we have

$$P_0A_2 + A_2f_A' = MA_2 + A_2f_A = 2r$$

The proof for B_2 is similar. The triangles $\triangle f_AF_BP_0$ and $\triangle V_1V_2V_3$ are homothetic with ratio 2, and homothety center M. Hence, $\triangle f_AF_BP_0$ is equilateral and the distance between the f_A and f_B is the same as the diameter $2r$ of the circles that form the Reuleaux.

Proposition 8. Triangles $\triangle f_AF_BP_0$ and $\triangle V_1V_2V_3$ are homothetic at ratio 2, and with M the homothety center. Hence, $\triangle f_AF_BP_0$ is equilateral and the distance between f_A and f_B is the same as $2r$. Furthermore, their barycenters X_2 and X'_2 are collinear with M.

Proof. The points V_1, V_2, V_3 are the midpoints of MF_A, MF_B and P_0M, respectively. Thus, V_1V_2 is a mid-base1 of $\triangle f_AMF_B$, V_2V_3 is a mid-base of $\triangle f_BP_0f_A$ and V_3V_1 is a mid-base of $\triangle P_0Mf_A$. Thus, $\triangle f_AF_BP_0$ is equilateral with sides twice that of the original triangle: $f_AF_B = 2V_1V_2$. This shows that the distance between the pair of foci of \mathcal{E}_A and \mathcal{E}_B is constant and equal to the length of their major axes. Note that the lines f_AF_A, f_VF_B, P_0V_3 intercept in M, hence the two triangles are perspective at M. Due to the parallelism of their sides their medians will be (respectively) parallel; let X_2 and X'_2 denote the barycenters of triangles $\triangle V_1V_2V_3$ and $\triangle f_AF_BP_0$, respectively. The barycenter divides the medians in equal proportions, which guarantees $\triangle MX'_2V_2 \sim \triangle MX_2f_B$. Since M, V_2, f_B were collinear, M, X'_2, X_2 are collinear, as well. □

4. Asymmetric Reuleaux

In this section we consider a generalized Reuleaux Triangle where the radii r_1, r_2, r_3 of the three circles may be different, and their centers O_i don’t necessarily lie on the vertices of an equilateral.

We also consider a generalized Reuleaux triangle whose sides are three circular arcs of three circles which have three arbitrary radii r_1, r_2, r_3 of the three circles may be different, and whose centers O_1, O_2, O_3 don’t necessarily form an equilateral triangle.

Without loss of generality, assume M is always on the Reuleaux side contained on the circle centered on O_3, with endpoints V_1, V_2. The following facts still hold:

(i) The conic \mathcal{E}^* can only have a focus on M if one is at the symmetric Reuleaux configuration.

(ii) For a choice of O_1, O_2, O_3, r_1, r_2, the distance $|f'_Af'_B|$ is invariant over M, r_3.

(iii) V_2, A_1, P_0 are collinear and V_1, B_1, P_0 are collinear.

(iv) The line through the two intersections U_1, U_2 of \mathcal{E}_A with \mathcal{E}_B is perpendicular to $f'_Af'_B$.

(v) A_2B_2 is tangent to both \mathcal{E}_A and \mathcal{E}_B.

1This is a line parallel to a side at half the altitude.
5. Conclusion

We studied properties of a negative pedal of a curve which have a remarkable symmetry: the equilateral Reuleaux triangle. Our methods are entirely synthetic, the results are new and surprising and all the proofs are readable, which is highly gratifying. The only non-elementary (yet synthetic) tool was the use of polar reciprocity, due to Poncelet, invoked in order to prove the result about the focus of the external conic.

Some of the above results still hold if the Reuleaux is asymmetric, i.e., defined by three arcs of arbitrary circles. Other, not. For instance, in general setting, the focus of the endpoint conic will no longer coincide with the pedal point M. Below, a few additional questions we couldn’t manage with a synthetic apparatus.

- What is the location of the focus of the endpoint conic if the Reuleaux is asymmetric? When does this coincides with the pedal point?
- What are the bounds on the eccentricity of the endpoint conic associated with a Reuleaux?
- What are the locations of the limiting points D_1 and D_2 that defines the type of the endpoint conic. Can these points be obtained (construct) geometrically?

We presume one must abdicate the idea of a synthetic proof, in order to provide an answer to all these questions.

Appendix A. Duality and the Negative Pedal Curve

Here we review some inversive concepts and results on polar duals.

Fix a circle I centered at point M and of arbitrary radius, called the inversion circle.

Let Γ' denote the inverse of a curve Γ and A' the inverse of a point A, w.r. to I. Assume all inversions below are performed w.r. to I. The polars and poles are implicitly performed w.r. to I and Γ^* denote the dual (reciprocal curve) of Γ.

The following result explicitly states the ambivalent definition of a dual curve.

Proposition 9 (Fundamental Theorem on Dual Curves). Let Γ a regular curve. Let Γ^*_1 be the locus of the poles of its tangents and Γ^*_2 the envelope of the polars its points. Then $\Gamma^*_1 = \Gamma^*_2$.

Furthermore, Γ^* is regular and the polars of the points to the dual curve Γ^* are the tangents to Γ, while the poles of the tangents of Γ^* are the points of Γ.

Further, if we perform the dual of a dual, we obtain the original curve: $[\Gamma^*]^* = \Gamma$.

This result, whose proof is based on the fundamental pole-polar theorem justifies the dual definition of the curve Γ^* either as a loci of points, or as an envelope of lines and specifies who the points and the tangents at a dual curve are.

For more details on poles, polars and polar reciprocity, see e.g. [2].

Since the Reuleaux circle is the delimited by circular arcs, below we clarify what a dual of a circle is and how it can be construct.
Figure 8. The dual of a curve γ (violet) w.r. to \mathcal{I} (dashed black), is the curve Γ (dark green). It is the envelope of polars $E'D'$ of points D on γ, as well as loci of E', the poles of the tangents ED to γ, as D sweeps γ. The dual of a circle is a conic. Γ is an ellipse iff M is inside γ, a hyperbola iff M is outside γ and a parabola, iff M is on γ. Its focus is M, and the directrix is the polar of O. Its vertices are the inverses of A'_1 and A'_2, the intersection of MO with γ.

Referring to Figures 8.

Proposition 10. The dual (or the polar dual, or the reciprocal) of a circle Γ is a conic Γ^* whose:

- focus coincides with the center of the inversion circle \mathcal{I};
- vertices are the inversions of the intersection points of the line joining the centers of the two circles Γ and \mathcal{I} and circle Γ;
- directrix is the polar of the center of Γ.

The conic Γ^* will be

- an ellipse if the center of \mathcal{I} is inside Γ;
- a parabola, if the center of \mathcal{I} is on Γ;
- a hyperbola, if the center of \mathcal{I} is outside Γ.

Proposition 11. The dual of a conic Γ is a circle Γ^* if and only if the center of \mathcal{I} is a focus of the conic Γ. If this is the case:

- the inverses of the vertices of Γ are a pair of antipodal points on the dual circle Γ^*;
- the directrix of Γ is the polar of the center of Γ^*.

These remarkable results are classic; see [1] or [2, Art.309], for a proof and other details.

There is a natural intertwining between negative pedal curve, inversion, and polar reciprocity.
A SPECIAL CONIC ASSOCIATED WITH THE REULEAUX NEGATIVE PEDAL CURVE

Figure 9. The negative pedal curve $N(\Gamma)$ (dark green) of a circle Γ (orange) w.r. to I (dashed black) defines as the envelope of lines DE' (green) where D is a current point of Γ and $DE' \perp MD$. Since DE' is (also) the polar of D', (green) the inverse of D, situated on circle γ (violet) then $N(\Gamma)$ is the envelope of the polars of its inverted circle γ. Therefore $N(\Gamma)$ is the dual of the its inverse circle γ, hence a conic with a focus in M. Its vertices coincides with points A_1, A_2 the diameter of Γ that contains M. Here, Γ is an the ellipses, since M is inside γ.

Proposition 12. The negative pedal curve of Γ w.r. to a pedal point is the reciprocal of its inverse, Γ' w.r. to a circle centered on that pedal point: $N(\Gamma) = \Gamma'^*$. Therefore:

- the negative pedal curve is the locus of the poles of the tangents to its inverted curve;
- the polars of the points of a negative pedal curve $N(\Gamma)$ are the tangents to its inverted curve Γ'.

Though this is a known result, for convenience of the reader we include its straightforward proof:

Proof. First we prove that the dual of Γ' is included into the negative pedal of Γ. Let S a point in Γ'; then S is an inverse of some point L in Γ; $S = L'$; hence, the polar of S is the perpendicular in point S' to the line joining M and S'; since $S' = (L')' = L$, the polar of $S = L'$ is the perpendicular in L to line ML. Since inversion is bijective (in fact, it is an involution), if S sweeps Γ', L sweeps Γ, hence lines ML corresponds to the set of all the tangents to the negative pedal of Γ.

The other inclusion is similar, if we refer to negative pedal curves as envelope of lines. \qed
Figure 10. $N(\Gamma)$ (orange) being the dual of its inverse, γ (violet), is (also) the locus of the poles E of tangents in D', to γ, as D sweeps Γ. Note that DE is the tangent to $N(\Gamma)$ passing through D. $N(\Gamma)$ is an ellipse (see Fig 9) iff $M \in [A_1 A_2]$ and $N(\Gamma)$ is a hyperbola iff M is not on segment $[A_1 A_2]$. The negative pedal of a circle is never a parabola.

Thus, the negative pedal curve initially defined as an envelope of lines can also be constructed as a "point curve", i.e., as the locus of the poles of the tangents to its inverse Γ'.

In order to construct the negative pedal of a circle w.r. to a pedal point that does not lie on Γ, we first build its inverse, Γ' then obtain the latter’s dual. Note that the inverse of can be a circle or a line. The latter case occurs if the center of inversion is on the inverted circle.

Below we describe the negative pedal curve of a circle.

Proposition 13. The negative pedal $N(\Gamma)$ of a circle Γ, w.r. to a pedal point M is a conic, whose:

- focus coincides with M;
- center coincides with the center of circle Γ;
- vertices are the intersection points of the line that joins the pedal point M and the center of Γ, with the circle Γ;
- focal axis is the diameter of the circle Γ.

Then $N(\Gamma)$ will be an ellipse (resp. hyperbola), if the pedal point is interior (resp. exterior) to the circle Γ.

The negative pedal curve of a circle centered on O w.r. to a point on the circumference reduces to a point, namely the antipodal of M w.r. to O.

Proof. First assume that M is not on the circle. Build the negative pedal curve of the circle as follows:
A special conic associated with the Reuleaux negative pedal curve

(i) construct Γ', the inverse of the circle Γ. Its diameter will be $[A'_1A'_2]$ where A'_1 and A'_2 are the inverses of vertices A_1 and A_2 of the conic Γ.

(ii) perform the dual of circle Γ' to obtain a conic whose focus lies on M (since this is the inversion center) and whose vertices are precisely the inverses of A'_1 and A'_2, respectively, i.e., A_1 and A_2.

By the result above, the conic will be an ellipse (resp. hyperbola), if M is inside (resp. outside) Γ.

If the pedal point M is on the circle, then the inverse is a line, whose reciprocal reduces to a point, its pole.

We emphasize that the negative polar of a circle can never be a parabola!

Parabolas are negative pedals of lines, only.

References

[1] Akopyan, A., Zaslavsky, A.: Geometry of conics, Mathematical World, vol. 26. American Mathematical Society, Providence, RI (2007). DOI 10.1090/mawrdl/026. URL doi.org/10.1090/mawrdl/026. Translated from the 2007 Russian original by Alex Martsinkovsky

[2] Salmon, G.: A treatise on conic sections. Longmans, Green, Reader and Dyer (1869)

[3] Weisstein, E.: Mathworld. MathWorld–A Wolfram Web Resource (2019). URL mathworld.wolfram.com

Liliana Gabriela Gheorghe, Universidade Federal de Pernambuco, Departamento de Matemática, Recife, PE, Brazil

E-mail address: liliana@dmat.ufpe.br

Dan Reznik, Data Science Consulting, Rio de Janeiro, RJ, Brazil

E-mail address: dan@dat-sci.com