NEWS 2009 Machine Transliteration Shared Task System Description:
Transliteration with Letter-to-Phoneme Technology

Colin Cherry and Hisami Suzuki
Microsoft Research
One Microsoft Way
Redmond, WA, 98052
{colinc, hisamis}@microsoft.com

Abstract
We interpret the problem of transliterating English named entities into Hindi or Japanese Katakana as a variant of the letter-to-phoneme (L2P) subtask of text-to-speech processing. Therefore, we apply a re-implementation of a state-of-the-art, discriminative L2P system (Jiampojamarn et al., 2008) to the problem, without further modification. In doing so, we hope to provide a baseline for the NEWS 2009 Machine Transliteration Shared Task (Li et al., 2009), indicating how much can be achieved without transliteration-specific technology. This paper briefly summarizes the original work and our re-implementation. We also describe a bug in our submitted implementation, and provide updated results on the development and test sets.

1 Introduction
Transliteration occurs when a word is borrowed into a language with a different character set from its language of origin. The word is transcribed into the new character set in a manner that maintains phonetic correspondence.

When attempting to automate machine transliteration, modeling the channel that transforms source language characters into transliterated target language characters is a key component to good performance. Since the primary signal followed by human transliterators is phonetic correspondence, it makes sense that a letter-to-phoneme (L2P) transcription engine would perform well at this task. Of course, transliteration is often framed within the larger problems of translation and bilingual named entity co-reference, making available a number of other interesting features, such as target lexicons (Knight and Graehl, 1998), distributional similarity (Bilac and Tanaka, 2005), or the dates of an entity’s mentions in the news (Klementiev and Roth, 2006). However, this task’s focus on generation has isolated the character-level component, which makes L2P technology a near-ideal match. For our submission, we re-implement the L2P approach described by Jiampojamarn et al. (2008) as faithfully as possible, and apply it unmodified to the transliteration shared task for the English-to-Hindi (Kumaran and Kellner, 2007) and English-to-Japanese Katakana1 tests.

2 Approach
2.1 Summary of L2P approach
The core of the L2P transduction engine is the dynamic programming algorithm for monotone phrasal decoding (Zens and Ney, 2004). The main feature of this algorithm is its capability to transduce many consecutive characters with a single operation. This algorithm is used to conduct a search for a max-weight derivation according to a linear model with indicator features. A sample derivation is shown in Figure 1.

There are two main categories of features: context and transition features, which follow the first two feature templates described by Jiampojamarn et al. (2008). Context features are centered around a transduction operation. These features include an indicator for the operation itself, which is then conjoined with indicators for all n-grams of source context within a fixed window of the operation. Transition features are Markov or n-gram features. They ensure that the produced target string makes sense as a character sequence, and are represented as indicators on the presence of target n-grams. The feature templates have two main parameters, the size S of the character window from which source context features are drawn, and the maximum length T of target n-gram indicators. We fit these parameters using grid search over 1-best

1Provided by http://www.cjk.org
ame → アメ, ri → リ, can → カン

Figure 1: Example derivation transforming “American” into “アメリカン”.

accuracy on the provided development sets.

The engine’s features are trained using the structured perceptron (Collins, 2002). Jiampo-
jamarn et al. (2008) show strong improvements in the L2P domain using MIRA in place of the
perceptron update; unfortunately, we did not im-
plement a k-best MIRA update due to time con-
straints. In our implementation, no special con-
sideration was given to the availability of multi-
ple correct answers in the training data; we always
pick the first reference transliteration and treat it
as the only correct answer. Investigating the use
of all correct answers would be an obvious next
step to improve the system.

2.2 Major differences in implementation

Our system made two alternate design decisions
(we do not claim improvements) over those made
by (Jiampojamarn et al., 2008), mostly based on
the availability of software. First, we employed a
beam of 40 candidates in our decoder, to enable ef-
ficient use of large language model contexts. This
is put to good use in the Hindi task, where we
found n-gram indicators of length up to \(n = 6 \)
provided optimal development performance.

Second, we employed an alternate character
aligner to create our training derivations. This
aligner is similar to recent non-compositional
phrasal word-alignment models (Zhang et al.,
2008), limited so it can only produce monotone
character alignments. The aligner creates sub-
string alignments, without insertion or deletion
operators. As such, an aligned transliteration pair
also serves as a transliteration derivation. We em-
ployed a maximum substring length of 3.

The training data was heuristically cleaned af-
ter alignment. Any derivation found by the aligner
that uses an operation occurring fewer than 3 times
throughout the entire training set was eliminated.
This reduced training set sizes to 8,511 pairs
for English-Hindi and 20,306 pairs for English-
Katakana.

Table 1: Development and test 1-best accuracies, as reported by the official evaluation tool

System/Test set	With Bug	Fixed
Hindi Dev	36.7	39.6
Hindi Test	41.8	46.6
Katakana Dev	46.0	47.1
Katakana Test	46.6	46.9

3 The Bug

The submitted version of our system had a bug
in its transition features: instead of generating an
indicator for every possible n-gram in the gener-
ated target sequence, it generated n-grams over
target substrings, defined by the operations used
during transduction. Consider, for example, the
derivation shown in Figure 1, which generates
“アメリカン”. With buggy trigram transition
features, the final operation would produce the
single indicator \([メリ|カン]\), instead of the two
character-level trigrams \([メリ|カ] \) and \([リ|カン] \).
This leads to problems with data sparsity, which
we had not noticed on unrelated experiments with
larger training data. We report results both with
the bug and with fixed transition features. We do
so to emphasize the importance of a fine-grained
language discriminative language model, as op-
posed to one which operates on a substring level.

4 Development

Development consisted of performing a parameter
grid search over \(S \) and \(T \) for each language pair’s
development set. All combinations of \(S = 0 \ldots 4 \)
and \(T = 0 \ldots 7 \) were tested for each language
pair. Based on these experiments, we selected (for
the fixed version), values of \(S = 2, T = 6 \) for
English-Hindi, and \(S = 4, T = 3 \) for English-
Katakana.

5 Results

The results of our internal experiments with the
official evaluation tool are shown in Table 1. We
report 1-best accuracy on both development and
test sets, with both the buggy and fixed versions
of our system. As one can see, the bug makes less of
an impact in the English-Katakana setting, where
more training data is available.
6 Conclusion

We have demonstrated that an automatic letter-to-phoneme transducer performs fairly well on this transliteration shared task, with no language-specific or transliteration-specific modifications. Instead, we simply considered Hindi or Katakana to be an alternate encoding for English phonemes. In the future, we would like to investigate proper use of multiple reference answers during perceptron training.

Acknowledgments

We would like to thank the NEWS 2009 Machine Transliteration Shared Task organizers for creating this venue for comparing transliteration methods. We would also like to thank Chris Quirk for providing us with his alignment software.

References

Slaven Bilac and Hozumi Tanaka. 2005. Extracting transliteration pairs from comparable corpora. In Proceedings of the Annual Meeting of the Natural Language Processing Society, Japan.

Michael Collins. 2002. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In EMNLP.

Sittichai Jampojamarn, Colin Cherry, and Grzegorz Kondrak. 2008. Joint processing and discriminative training for letter-to-phoneme conversion. In ACL, pages 905–913, Columbus, Ohio, June.

Alexandre Klementiev and Dan Roth. 2006. Named entity transliteration and discovery from multilingual comparable corpora. In HLT-NAACL, pages 82–88, New York City, USA, June.

Kevin Knight and Jonathan Graehl. 1998. Machine transliteration. Computational Linguistics, 24(4):599–612.

A. Kumaran and Tobias Kellner. 2007. A generic framework for machine transliteration. In Proc. of the 30th SIGIR.

Haizhou Li, A. Kumaran, Vladimir Pervouchine, and Min Zhang. 2009. Report on NEWS 2009 machine transliteration shared task. In Proceedings of ACL-IJCNLP 2009 Named Entities Workshop (NEWS 2009), Singapore.

Richard Zens and Hermann Ney. 2004. Improvements in phrase-based statistical machine translation. In HLT-NAACL, pages 257–264, Boston, USA, May.

Hao Zhang, Chris Quirk, Robert C. Moore, and Daniel Gildea. 2008. Bayesian learning of non-compositional phrases with synchronous parsing. In ACL, pages 97–105, Columbus, Ohio, June.