A Highly Efficient Parallel Algorithm for Computing the Fiedler Vector

Murat Manguoglu
Purdue University
March 22, 2010

Abstract
The eigenvector corresponding to the second smallest eigenvalue of the Laplacian of a graph, known as the Fiedler vector, has a number of applications in areas that include matrix reordering, graph partitioning, protein analysis, data mining, machine learning, and web search. The computation of the Fiedler vector has been regarded as an expensive process as it involves solving a large eigenvalue problem. We present a novel and efficient parallel algorithm for computing the Fiedler vector of large graphs based on the Trace Minimization algorithm (Sameh, et.al). We compare the parallel performance of our method with a multilevel scheme, designed specifically for computing the Fiedler vector, which is implemented in routine MC73Fiedler of the Harwell Subroutine Library (HSL). In addition, we compare the quality of the Fiedler vector for the application of weighted matrix reordering and provide a metric for measuring the quality of reordering.

1 Introduction
The second smallest eigenvalue and the corresponding eigenvector of the Laplacian of a graph have been used in a number of application areas including matrix reordering [11] [10] [9] [1], graph partitioning [14] [15], machine learning [13], protein analysis and data mining [5] [18] [8], and web search [4]. The second smallest eigenvalue of the Laplacian of a graph is sometimes called the algebraic connectivity of the graph, and the corresponding eigenvector is known as the Fiedler vector, due to the pioneering work of Fiedler [3].

For a given $n \times n$ sparse symmetric matrix A, or an undirected weighted graph with positive weights, one can form the weighted-Laplacian matrix, L_w, as follows:

$$L_w(i, j) = \left\{ \begin{array}{ll} \sum_j |A(i, j)| & \text{if } i = j, \\
-|A(i, j)| & \text{if } i \neq j. \end{array} \right.$$ (1)

One can obtain the unweighted Laplacian by simply replacing each nonzero element of the matrix A by 1. In this paper, we focus on the more general weighted case; the method we present is also applicable to the unweighted Laplacian. Since the Fiedler vector can be computed independently for disconnected graphs, we assume that the graph is connected. The eigenvalues of L_w are $0 = \lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots \leq \lambda_n$. The eigenvector x_2 corresponding to smallest nontrivial eigenvalue λ_2 is the sought Fiedler vector. If the matrix, A, is nonsymmetric we use $(|A| + |A^T|)/2$, instead.

A state of the art multilevel solver [7] called MC73Fiedler for computing the Fiedler vector is implemented in the Harwell Subroutine Library(HSL) [6]. It uses a series of levels of coarser graphs where the eigenvalue problem corresponding to the coarsest level is solved via the Lanczos method for estimating the
Fiedler vector. The results are then prolongated to the finer graphs and Rayleigh Quotient Iterations (RQI) with shift and invert are used for refining the eigenvector. Linear systems encountered in RQI are solved via the SYMMLQ algorithm. We consider MC73_Fiedler as one of the best uniprocessor implementation for determining the Fiedler vector.

In Section 2, we describe a novel parallel solver: TraceMin-Fiedler based on the Trace Minimization algorithm (TraceMin) [17, 16], and present results comparing it to MC73_Fiedler, in Section 3. Finally, in Section 4, we compare the quality of the Fiedler vectors obtained by both methods for reordering sparse matrices.

2 The TraceMin-Fiedler Algorithm

We consider solving the standard symmetric eigenvalue problem

\[Lx = \lambda x \] \hspace{1cm} (2)

where \(L \) denotes the weighted Laplacian, using the TraceMin scheme for obtaining the Fiedler vector. The basic TraceMin algorithm [17, 16] can be summarized as follows. Let \(X_k \) be an approximation of the eigenvectors corresponding to the \(p \) smallest eigenvalues such that \(X_k^T L X_k = \Sigma_k \) and \(X_k^T X_k = I \), where \(\Sigma_k = \text{diag}(\rho_1^{(k)}, \rho_2^{(k)}, ..., \rho_p^{(k)}) \). The updated approximation is obtained by solving the minimization problem

\[
\min \text{tr}(X_k - \Delta_k)^T L (X_k - \Delta_k), \quad \text{subject to } \Delta_k^T X_k = 0.
\] \hspace{1cm} (3)

This in turn leads to the need for solving a saddle point problem, in each iteration of the TraceMin algorithm, of the form

\[
\begin{bmatrix}
L & X_k \\
X_k^T & 0
\end{bmatrix} \begin{bmatrix}
\Delta_k \\
N_k
\end{bmatrix} = \begin{bmatrix}
LX_k \\
0
\end{bmatrix}.
\] \hspace{1cm} (4)

Where the Schur complement system \((X_k^T L^{-1} X_k)N_k = X_k^T X_k\) needs to be solved. Once \(\Delta_k \) and \(X_k \) are obtained \((X_k - \Delta_k)\) is then used to obtain \(X_{k+1} \) which forms the section

\[
X_{k+1}^T L X_{k+1} = \Sigma_{k+1}, X_{k+1}^T X_{k+1} = I.
\] \hspace{1cm} (5)

The TraceMin-Fiedler algorithm, which is based on the basic TraceMin algorithm, is given in Figure 1.

The most time consuming part of the algorithm is solving the saddle-point problem in each outer TraceMin iteration. This involves, in turn, solving large sparse symmetric positive semi-definite systems of the form

\[LW_k = X_k \] \hspace{1cm} (6)

using the Conjugate Gradient algorithm with a diagonal preconditioner in Figure 2. Our main enhancement of the basic TraceMin scheme are contained in step 8, solving systems involving the Laplacian, and step 7 concerning the deflation process. In the TraceMin-Fiedler algorithm, not only is the coefficient matrix \(L \) is guaranteed to be symmetric positive semi-definite, but that its diagonal (the preconditioner) is guaranteed to have positive elements. On the other hand, in MC73_Fiedler there is no guarantee that the linear systems, arising in the RQI with shift and invert, are symmetric positive semi-definite with positive diagonal elements. Hence, MC73_Fiedler uses SYMMLQ without any preconditioning to solve linear systems in the Rayleigh Quotient Iterations.
Algorithm 1:

Data: L is the $n \times n$ Laplacian matrix defined in Eqn. (1); ε_{out} is the stopping criterion for the $||.||_{\infty}$ of the eigenvalue problem residual

Result: x_2 is the eigenvector corresponding to the second smallest eigenvalue of L

$p \gets 2; \quad q \gets 3p$

$n_{\text{conv}} \gets 0; \quad \mathbf{X}_{\text{conv}} \gets \begin{bmatrix} \end{bmatrix}$

$\hat{L} \gets L + ||L||_{\infty}10^{-12} \times \mathbf{I}$

$D \gets$ the diagonal of L

$\hat{D} \gets$ the diagonal of \hat{L}

$X_1 \gets \text{rand}(n,q)$

for $k = 1, 2, \ldots \max \text{it}$ do

1. Orthonormalize X_k into V_k;

2. Compute the interaction matrix $H_k \gets V_k^T L V_k$;

3. Compute the eigendecomposition $H_k Y_k = Y_k \Sigma_k$ of H_k. The eigenvalues Σ_k are arranged in ascending order and the eigenvectors are chosen to be orthogonal;

4. Compute the corresponding Ritz vectors $X_k \gets V_k Y_k$;

Note that X_k is a section, i.e. $X_k^T L X_k = \Sigma_k, X_k^T X_k = \mathbf{I}$;

5. Compute the relative residual $||L X_k - X_k \Sigma_k||_{\infty}/||L||_{\infty}$;

6. Test for convergence: If the relative residual of an approximate eigenvector is less than ε_{out}, move that vector from X_k to X_{conv} and replace n_{conv} by $n_{\text{conv}} + 1$ increment. If $n_{\text{conv}} \geq p$, stop;

7. Deflate: If $n_{\text{conv}} > 0, X_k \gets X_k - X_{\text{conv}} (X_{\text{conv}}^T X_k)$;

8. if $n_{\text{conv}} = 0$ then

 Solve the linear system $\hat{L} W_k = X_k$ approximately with relative residual ε_{in} via the PCG scheme using the diagonal preconditioner \hat{D};

else

 Solve the linear system $L W_k = X_k$ approximately with relative residual ε_{in} via the PCG scheme using the diagonal preconditioner D;

9. Form the Schur complement $S_k \gets X_k^T W_k$;

10. Solve the linear system $S_k N_k = X_k^T X_k$ for N_k;

11. Update $X_{k+1} \gets X_k + \Delta_k = W_k N_k$

Figure 1: TraceMin-Fiedler algorithm.
Algorithm 2:

Data: \(\mathbf{L} \mathbf{x} = \mathbf{b} \), \(\mathbf{L} \) is the \(n \times n \) Laplacian matrix defined in Eqn. (1), \(\varepsilon_{in} \) is the stopping criterion for the \(||\cdot||_\infty\) of the relative residual, \(\mathbf{b} \) is the right hand side, and \(\mathbf{M} \) is the preconditioner

Result: \(\mathbf{x} \) is solution of the linear system

Solve the preconditioned system \((\mathbf{M}^{-1/2} \mathbf{L} \mathbf{M}^{-1/2})(\mathbf{M}^{1/2} \mathbf{x}) = (\mathbf{M}^{-1/2} \mathbf{b})\);

\[\tilde{\mathbf{L}} = \mathbf{M}^{-1/2} \mathbf{L} \mathbf{M}^{-1/2} ; \]

\[\tilde{\mathbf{b}} = \mathbf{M}^{-1/2} \mathbf{b} ; \]

\[\tilde{x} = (\mathbf{M}^{1/2} \mathbf{x}) ; \]

\[\tilde{\mathbf{r}}_0 \leftarrow [0, \ldots, 0]^T ; \]

\[\tilde{\mathbf{p}}_0 \leftarrow \tilde{\mathbf{r}}_0 ; \]

for \(k = 1, 2, \ldots \) max it do

1. \(\alpha_k \leftarrow \frac{\tilde{\mathbf{r}}_k^T \tilde{\mathbf{r}}_k}{\tilde{\mathbf{p}}_k^T \tilde{\mathbf{L}} \tilde{\mathbf{p}}_k} ; \)

2. \(\tilde{x}_{k+1} \leftarrow \tilde{x}_k + \alpha_k \tilde{\mathbf{p}}_k ; \)

3. \(\tilde{\mathbf{r}}_{k+1} \leftarrow \tilde{\mathbf{r}}_k - \alpha_k \tilde{\mathbf{L}} \tilde{\mathbf{p}}_k ; \)

4. if \(||\tilde{\mathbf{r}}_{k+1}||_\infty / ||\tilde{\mathbf{r}}_0||_\infty \leq \varepsilon_{in} \) then

 exit

5. \(\beta_k \leftarrow \frac{\tilde{\mathbf{r}}_{k+1}^T \tilde{\mathbf{r}}_{k+1}}{\tilde{\mathbf{r}}_k^T \tilde{\mathbf{r}}_k} ; \)

6. \(\tilde{\mathbf{p}}_{k+1} \leftarrow \tilde{\mathbf{r}}_{k+1} + \beta_k \tilde{\mathbf{p}}_k ; \)

Figure 2: Preconditioned Conjugate Gradient Scheme for solving systems in the form \(\mathbf{L} \mathbf{x} = \mathbf{b} \).

We note, in TraceMin-Fiedler, that after the smallest eigenvector, which corresponds to the null space of \(\mathbf{L} \), has converged then in preconditioned CG in Figure 2,

\[\tilde{\mathbf{p}}_k^T \tilde{\mathbf{L}} \tilde{\mathbf{p}}_k > 0. \]

(7)

Observing that \(\mathbf{v} \perp \mathbf{b} \) due to the deflation step, the proof is given below.

Theorem 2.1 Let \(\mathbf{L} \) be symmetric positive semidefinite such that \(\mathbf{L} \mathbf{v} = 0 \) (i.e. \(\mathcal{N}(\mathbf{L}) = \text{span}[\mathbf{v}] \)) and \(\mathbf{M} = \text{diag}(\mathbf{L}) \) (\(\Rightarrow \mathbf{M}^{-1/2} \mathbf{L} \mathbf{M}^{-1/2} \mathbf{M}^{1/2} \mathbf{v} = 0 \Rightarrow \mathbf{L} \mathbf{v} = 0 \) where \(\mathbf{v} = \mathbf{M}^{1/2} \mathbf{v} \))

The following statement is true for the preconditioned conjugate gradient method in Figure 2: if \(\mathbf{v} \perp \mathbf{b} \) then \(\tilde{\mathbf{v}} \perp \tilde{\mathbf{p}}_n \) and \(\tilde{\mathbf{v}} \perp \tilde{\mathbf{r}}_n \)

Proof (by induction)

- The base case:

\[
\tilde{\mathbf{v}}^T \tilde{\mathbf{p}}_0 = \tilde{\mathbf{v}}^T \tilde{\mathbf{r}}_0 = \tilde{\mathbf{v}}^T (\tilde{\mathbf{b}} - \tilde{\mathbf{L}} \tilde{\mathbf{x}}_0) (\text{note } x_0 = 0) = \tilde{\mathbf{v}}^T \tilde{\mathbf{b}} = \mathbf{v}^T \mathbf{M}^{1/2} \mathbf{M}^{-1/2} \mathbf{b} = \mathbf{v}^T \mathbf{b} = 0
\]
• Inductive hypothesis: Assume that $\tilde{v} \perp \tilde{p}_k$ and $\tilde{v} \perp \tilde{r}_k$ for $n = k$.

• Inductive step: Then for step $n = k + 1$,

 $$
 \tilde{v}^T \tilde{r}_{k+1} = \tilde{v}^T (\tilde{r}_k - \alpha_k \tilde{L} \tilde{p}_k)
 = 0 \quad \text{(by inductive hypothesis and } \tilde{v}^T \tilde{L} = 0)
 $$

 and

 $$
 \tilde{v}^T \tilde{p}_{k+1} = \tilde{v}^T (\tilde{r}_{k+1} + \beta_k \tilde{p}_k)
 = 0 + \beta_k \tilde{v}^T \tilde{p}_k
 = 0 \quad \text{(by inductive hypothesis)}
 $$

Therefore, we do not need to use a diagonal perturbation after the smallest eigenvalue and the corresponding eigenvector have converged.

We note that our algorithm can easily compute additional eigenvectors of the Laplacian matrix by setting p to be the number of desired smallest eigenpairs.

Parallelism in the algorithm is achieved by partitioning all vectors, X_k, V_k, W_k and the coefficient matrix L by block rows where each MPI process contains one block. The matrix and the vectors are partitioned into blocks of roughly equal size. The most time consuming operation in Figure 1 is the solution of the linear systems involving L. The diagonal preconditioner does not require any communications. The sparse matrix-vector multiplications do require communication, however, with the amount of communication determined by the sparsity structure of the matrix. Therefore, the overall scalability of the algorithm is problem dependent. In the implementation in this paper we only communicate the elements that are needed to complete the product via asynchronous point to point communication (i.e. using MPI	exttt{ISEND} and MPI	exttt{IRECV}). The remaining operations that require communication are the inner products that use MPI	exttt{ALLREDUCE} with vectors of multiple columns.

3 Numerical Results

We implement the parallel TraceMin-Fiedler algorithm [12] in Figure 1 in parallel using MPI. We compare the parallel performance of MC73_Fiedler with TraceMin-Fiedler using a cluster with Infiniband interconnection where each node consists of two quad-core Intel Xeon CPUs (X5560) running at 2.80GHz (8 cores per node). For both solvers we set the stopping tolerance for the ∞-norm of the eigenvalue problem residual to 10^{-5}. In TraceMin-Fiedler we set the inner stopping criterion (relative residual norm for solving the linear systems using the preconditioned CG scheme) as $\varepsilon_{in} = 10^{-1} \varepsilon_{out}$, and the maximum number of the preconditioned CG iterations to be 30. For MC73_Fiedler, we use all the default parameters.

The set of test matrices are obtained from the University of Florida (UF) Sparse Matrix Collection [2]. A search for matrices in this collection which are square, real, and which are of order $2,000,000 < N < 5,000,000$ returns the four matrices listed in Table 1. If the adjacency graph of A has any disconnected single vertices, we remove them since those vertices are independent and have trivial solutions. We apply both MC73_Fiedler and TraceMin-Fiedler to the weighted Laplacian generated from the adjacency graph of the preprocessed matrix where the weights are the absolute values of matrix entries. After obtaining the Fiedler vector x_2 produced by each algorithm, we compute the corresponding eigenvalue λ_2,

$$
\lambda_2 = \frac{x_2^T L x_2}{x_2^T x_2}.
$$

(8)
Table 1: Matrix size (N), number of nonzeros (nnz), and type of test matrices.

Matrix Group/Name	N	nnz	symmetric	application
1. Rajat/rajat31	4,690,002	20,316,253	no	circuit simulation
2. Schenk/nlpkkt	3,542,400	95,117,792	yes	nonlinear optimization
3. Freescale/Freescale1	3,428,755	17,052,626	no	circuit simulation
4. Zaoui/kktPower	2,063,494	12,771,361	yes	optimum power flow

Table 2: Relative residuals $\|Lx - \hat{\lambda}x\|_{\infty}/\|L\|_{\infty}$ for TraceMin-Fiedler and MC73_Fiedler where $\varepsilon_{out} = 10^{-5}$.

Matrix/Cores	TraceMin-Fiedler	MC73_Fiedler			
rajat31	1.1×10^{-12}	1.1×10^{-12}	1.1×10^{-12}	1.1×10^{-12}	3.03×10^{-9}
nlpkkt	9.1×10^{-6}	9.1×10^{-6}	9.1×10^{-6}	9.1×10^{-6}	6.49×10^{-7}
Freescale1	7.5×10^{-12}	7.5×10^{-12}	7.5×10^{-12}	7.5×10^{-12}	1.03×10^{-7}
kktPower	3.1×10^{-24}	3.1×10^{-24}	3.1×10^{-24}	3.1×10^{-24}	4.07×10^{-8}

We report the relative residuals $\|Lx_2 - \hat{\lambda}_2x_2\|_{\infty}/\|L\|_{\infty}$ in Table 2.

The total time required by TraceMin-Fiedler using 1, 2, and 4 nodes with 8 MPI processes, i.e. using 8 cores, per node are presented in Table 3. We emphasize that the parallel scalability results for TraceMin-Fiedler is preliminary and that there is more room for improvement. Since MC73_Fiedler is purely sequential we have used it on a single core. The speed improvements realized by TraceMin-Fiedler on 1, 8, 16, and 32 cores over MC73_Fiedler on a single core are depicted in Figure 3 with the actual solve times and the speed improvement values are given in Tables 3 and 4. Note that on 32 cores, our scheme realizes speed improvements over MC73_Fiedler that range between 4 and 641 for our four test matrices.

Next, we compute the Fiedler vector of a symmetric matrix of dimension 11,333,520 \times 11,333,520 and 61,026,416 nonzeros. The matrix is obtained from a 3D Finite Volume Method (FVM) discretization of a MEMS device. MC73_Fiedler consumes 75.5 seconds on a single core. The speed improvement of TraceMin-Fiedler is given in Table 4. We note that the results using single core on a node has a much more memory bandwidth available compared to 8 cores per node. Therefore, the speed improvement from 1 to 8 cores (all on a single node) is not ideal. TraceMin-Fiedler is 44.2 times faster than MC73_Fiedler using 256 cores.

Table 3: Total time in seconds (rounded to the first decimal place) for TraceMin-Fiedler and MC73_Fiedler and the average number of inner PCG iterations, number of outer TraceMin iterations for TraceMin-Fiedler.

Matrix/Cores	TraceMin-Fiedler	MC73_Fiedler
rajat31	2(1)	81.5s
nlpkkt	2(30)	83.9s
Freescale1	2(30)	52.8s
kktPower	2(1)	341.6s
Figure 3: Speed improvement of TraceMin-Fiedler compared to uniprocessor MC73_Fiedler for four test problems.

Table 4: Speed improvement over MC73_Fiedler ($T_{MC73_Fiedler}/T$).

Matrix/Cores	TraceMin-Fiedler	MC73_Fiedler
rajat31	14.5 59.2 116.5 227.5	1.0
nlpkkt	0.8 3.4 5.5 7.8	1.0
Freescale1	0.9 2.2 3.3 4.2	1.0
kktPower	71.2 332.3 501.0 641.4	1.0
Using the Fiedler vector for permuting the elements of a matrix

One of the applications of the Fiedler vector is matrix reordering and bandwidth reduction. One can obtain the permutation to achieve reduction in the (weighted or nonweighted) bandwidth of the matrix by sorting the elements of the Fiedler vector (see [1] [10] for details).

In this section we propose a metric to measure the quality of the reordering, namely the relative bandweight. We compare the quality of the Fiedler vector using this metric.

We define the relative bandweight of a specified band of the matrix as follows:

$$w_k(A) = \frac{\sum_{i,j:|i-j|<k}|A(i,j)|}{\sum_{i,j}|A(i,j)|}.$$

(9)

In other words, the bandweight of a matrix A, with respect to an integer k, is equal to the fraction of the total magnitude of entries that are encapsulated in a band of half-width k.

We randomly selected matrices with smaller dimension to be able to visualize the effect of reordering from the UF Sparse Matrix Collection in Table 5. The relative residuals for the Fiedler vector computed by both methods and the number of iterations for TraceMin-Fiedler is given in Table 6.

In 2 cases, namely bcsstk22 and cvxbqp1, out of 10, the relative residual of the Fiedler vector from MC73_Fiedler did not reach the stopping tolerance of 10^{-5}. In Figures 5 and 12, we depict the relative bandweight comparison for these two cases and the resulting reordered matrices. In both cases TraceMin_Fiedler produces a better reordering. The relative residual of MC73_Fiedler (3.5×10^{-10}) is significantly better than TraceMin_Fiedler (2.3×10^{-9}) for sparsine. However, the quality of reordering is better for TraceMin_Fiedler using both our bandweight metric as well as the sparsity plots of the reordered
Table 5: Properties of test matrices.

Matrix	n	nnz	application
bcsstk22	138	696	structural mechanics
problem1	414	2,779	FEMLAB test matrix
rail_1357	1,357	8,985	heat transfer
c-19	2,327	21,817	nonlinear optimization
eurqsa	7,245	46,142	economics
tuma2	12,992	49,365	mine model
smt	25,710	3,749,582	structural mechanics
cvxbqp1	50,000	349,968	nonlinear optimization
sparsine	50,000	1,548,988	structural optimization
F2	71,505	5,294,285	structural mechanics

matrices. For 6 cases out of 10, TraceMin_Fiedler generated a better reordering based on the sparsity plots and bandweights (see Figures 14, 13, 12, 11, 7, and 5), while in 3 cases (see Figures 10, 8, and 6) both methods produce comparable quality reorderings. Finally, for eurqsa, even though the bandweight measure indicates the reordering is slightly better if one uses MC73_Fiedler, the sparsity plots indicate better clustering of large elements using TraceMin_Fiedler.
Table 6: Relative residuals and the approximate eigenvalue(λ_2).

Matrix	$\|L\|_\infty$	TraceMin-Fiedler Relative Residual	λ_2	# Outer(Avg. Inner) its.	MC73_Fiedler Relative Residual	λ_2
bcsstk22	5.3×10^6	4.7×10^{-6}	6.0×10^{-2}	3(30)	2.2×10^{-5}	2.8×10^4
problem1	1.7×10^1	6.7×10^{-6}	4.6×10^{-2}	3(30)	2.7×10^{-6}	4.6×10^{-2}
rail1357	9.1×10^{-5}	8.2×10^{-6}	2.8×10^{-9}	4(30)	5.4×10^{-6}	2.9×10^{-8}
c-19	1.2×10^4	1.6×10^{-6}	3.8×10^{-1}	3(29)	8.2×10^{-6}	4.0×10^{-1}
eurqsa	1.3×10^7	5.3×10^{-8}	9.2×10^{-1}	2(30)	2.9×10^{-7}	4.3×10^{-1}
tuma2	1.0×10^1	2.6×10^{-6}	8.9×10^{-4}	8(30)	9.5×10^{-6}	8.6×10^{-4}
smt	1.8×10^7	8.3×10^{-7}	4.9×10^{2}	2(30)	5.2×10^{-6}	2.0×10^{-4}
cvxbqp1	7.0×10^5	6.2×10^{-6}	7.5×10^{6}	2(30)	1.7×10^{-2}	9.4×10^{3}
sparsine	3.2×10^6	2.3×10^{-6}	1.4×10^{3}	4(23)	3.5×10^{-10}	1.0×10^{5}
F2	4.2×10^7	1.5×10^{-8}	1.0×10^{4}	3(30)	8.8×10^{-6}	4.7×10^{2}
Figure 5: Sparsity plots of *bcsstk22*: red and blue indicates the largest and the smallest elements, respectively, in the sparsity plots
Figure 6: Sparsity plots of *problem1*; red and blue indicates the largest and the smallest elements, respectively, in the sparsity plots.
Figure 7: Sparsity plots of rail_1357; red and blue indicates the largest and the smallest elements, respectively.
Figure 8: Sparsity plots of c-19; red and blue indicates the largest and the smallest elements, respectively.
Figure 9: Sparsity plots of *eurqsa*; red and blue indicates the largest and the smallest elements, respectively.
5 Conclusions

We have presented a new algorithm for computing the Fiedler vector on parallel computing platforms, and have shown its effectiveness compared to the well-known scheme given by routine MC73.Fiedler of the Harwell Subroutine Library for computing the Fiedler vector of four large sparse matrices. The scalability of the method was demonstrated for a matrix of dimension 11 million on a cluster. Finally, we have compared the quality of the reordering produced from the Fiedler vector for a variety of matrices from the UF sparse matrix collection and proposed the the bandweight as metric to measure the quality of the reordering.

Acknowledgments

The author is grateful to Professors Ahmed Sameh and Ananth Grama for their useful comments and supports, as well as introducing the idea of weighted reordering. The author also thanks Dr. Faisal Saied for providing an implementation of the trace minimization method and Eric Cox for his suggestions for improving the presentation of this paper.

References

[1] Stephen T. Barnard, Alex Pothen, and Horst Simon. A spectral algorithm for envelope reduction of sparse matrices. Numerical Linear Algebra with Applications, 2(4):317–334, 1995.

[2] T. A. Davis. University of Florida sparse matrix collection. NA Digest, 1997.

[3] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2):298–305, 1973.

[4] Xiaofeng He, Hongyuan Zha, Chris H.Q. Ding, and Horst D. Simon. Web document clustering using hyperlink structures. Computational Statistics & Data Analysis, 41(1):19 – 45, 2002.

[5] Desmond J. Higham, Gabriela Kalna, and Milla Kibble. Spectral clustering and its use in bioinformatics. Journal of Computational and Applied Mathematics, 204(1):25 – 37, 2007. Special issue dedicated to Professor Shinnosuke Oharu on the occasion of his 65th birthday.

[6] HSL. A collection of Fortran codes for large-scale scientific computation, 2004. See http://www.cse.scitech.ac.uk/nag/hsl/.

[7] Y.F. Hu and J.A. Scott. HSL_MC73: a fast multilevel Fiedler and profile reduction code. Technical Report RAL-TR-2003-036, 2003.

[8] S. Kundu, D.C. Sorensen, and Jr. G.N. Philipshi. Automatic domain decomposition of proteins by a gaussian network model. Proteins: Structure, Function, and Bioinformatics, 57(4):725–733, 2004.

[9] M. Manguoglu. A parallel hybrid sparse linear system solver. In Computational Electromagnetics International Workshop, 2009. CEM 2009, pages 38–43, July 2009.

[10] M. Manguoglu, M. Koyuturk, A. Grama, and A. H. Sameh. Weighted matrix ordering and parallel banded preconditioners for iterative linear system solvers. SIAM Journal on Scientific Computing, accepted.
[11] Murat Manguoglu, Ahmed H. Sameh, and Olaf Schenk. Pspike: A parallel hybrid sparse linear system solver. *Lecture Notes in Computer Science (Euro-Par 2009 Parallel Processing)*, 5704:797–808, 2009.

[12] M. Manguoglu, F. Saied, E. Cox, and A. Sameh. http://www.cs.purdue.edu/homes/mmanguog/fiedler.html, 2010.

[13] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In *Advances in Neural Information Processing Systems 14*, pages 849–856. MIT Press, 2001.

[14] Alex Pothen, Horst D. Simon, and Kan-Pu Liou. Partitioning sparse matrices with eigenvectors of graphs. *SIAM J. Matrix Anal. Appl.*, 11(3):430–452, 1990.

[15] Huaijun Qiu and Edwin R. Hancock. Graph matching and clustering using spectral partitions. *Pattern Recognition*, 39(1):22 – 34, 2006.

[16] Ahmed Sameh and Zhanye Tong. The trace minimization method for the symmetric generalized eigenvalue problem. *J. Comput. Appl. Math.*, 123(1-2):155–175, 2000.

[17] Ahmed H. Sameh and John A. Wisniewski. A trace minimization algorithm for the generalized eigenvalue problem. *SIAM Journal on Numerical Analysis*, 19(6):1243–1259, 1982.

[18] S. J. Shepherd, C. B. Beggs, and S. Jones. Amino acid partitioning using a fiedler vector model. *Journal European Biophysics Journal*, 37(1):105–109, 2007.
Figure 10: Sparsity plots of *tuma2*; red and blue indicates the largest and the smallest elements, respectively.
Figure 11: Sparsity plots of \textit{smt}; red and blue indicates the largest and the smallest elements, respectively, in the sparsity plots.
Figure 12: Sparsity plots of \textit{cvxbqp1}; red and blue indicates the largest and the smallest elements, respectively.
Figure 13: Sparsity plots of *sparsine*; red and blue indicates the largest and the smallest elements, respectively.
Figure 14: Sparsity plots of F_2; red and blue indicates the largest and the smallest elements, respectively.