Let F be an irreducible polynomial in 4 variables with complex coefficients with degree δ, such that none of its first partial derivatives is identically zero. Let A, B, C, D denote finite sets of complex numbers. Let $Z(F)$ denote the zero set of F. The paper proves that $|Z(F) \cap (A \times B \times C \times D)| = O(|A|^{2/3}|B|^{2/3}|C|^{2/3}|D|^{2/3} + |A||B| + |A||C| + |A||D| + |B||C| + |B||D| + |C||D|)$, where the constant in the $O(\cdot)$ term depends polynomially on δ, or $Z(F)$ exhibits some very strong structure. This is the natural 4-variable analogue of the 3-variable result of the authors [Duke Math. J. 165, No. 18, 3517–3566 (2016; Zbl 1365.52023)]. Three applications of the result are shown.

Reviewer: László A. Székely (Columbia)

MSC:

52C10 Erdős problems and related topics of discrete geometry
05D99 Extremal combinatorics

Keywords:

combinatorial geometry; discrete geometry; incidences; polynomials

Full Text: DOI arXiv

References:

[1] S. Ball, \textit{On sets defining few ordinary planes}, Discrete \& Computational Geometry, to appear, available at arXiv:1606.02138 (2016).
[2] Charalambides, M., Distinct distances on curves via rigidity, Discrete \& Computational Geometry, 51, 666-701, (2014) - Zbl 1310.52017 - doi:10.1007/s00454-014-9586-5
[3] Elekes, G.; Rónyai, L., A combinatorial problem on polynomials and rational functions, Journal of Combinatorial Theory. Series A, 89, 1-20, (2000) - Zbl 0953.05005 - doi:10.1006/jcta.1999.2976
[4] Elekes, G.; Szabó, E., How to find groups? (and how to use them in Erdős geometry?), Combinatorica, 32, 537-571, (2012) - Zbl 1299.05018 - doi:10.1007/s00493-012-2505-6
[5] Harris, J., Algebraic geometry: A first course, (1992), New York
[6] Hartshorne, R., Algebraic geometry, (1977), New York-Heidelberg - Zbl 0367.14001
[7] Husenmüller, D., Elliptic curves, (2004), New York
[8] Károlyi, G., Incidence geometry in combinatorial arithmetic, Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio Mathematica, 52, 37-43, (2009) - Zbl 1240.51001
[9] Lin, A.; Makhlouf, M.; Nassajian Moharrad, H.; Schicho, J.; Swanepoel, K.; Zeeuw, F., On sets defining few ordinary circles, Discrete \& Computational Geometry, 59, 59-87, (2018) - Zbl 1384.52023 - doi:10.1007/s00454-017-9885-8
[10] G. Munthe, \textit{Topics in Polynomial Interpolation Theory}, Ph.D. dissertation, University of Oslo, 2010.
[11] Murphy, B.; Roche-Newton, O.; Shkredov, I., Variations on the sum-product problem, SIAM Journal on Discrete Mathematics, 29, 514-540, (2015) - Zbl 1370.52017 - doi:10.1137/140952004
[12] Nassajian Moghaddam, H.; Pham, T.; Valculescu, C.; Zeeuw, F., Schwartz-zippel bounds for two-dimensional products, (2017) - Zbl 1404.52018
[13] Pach, J.; Sharir, M., On the number of incidences between points and curves, Combinatorics, Probability and Computing, 7, 121-127, (1998) - Zbl 0901.52006 - doi:10.1017/S0963548397001912
[14] Raz, O. E.; Sharir, M.; Solymosi, J., Polynomials vanishing on grids: the elekes-Rónyai problem revisited, American Journal of Mathematics, 138, 1029-1065, (2016) - Zbl 1343.05016 - doi:10.1353/ajm.2016.0033
[15] Raz, O. E.; Sharp, M.; Zeeuw, F., Polynomials vanishing on Cartesian products: the elekes-szabó theorem revisited, Duke Mathematical Journal, 165, 3517-3566, (2016) - Zbl 1365.52023 - doi:10.1215/00127094-3674103
[16] O. Roche-Newton, \textit{A new expander and improved bounds for A(A + A)}, available at arXiv:1603.06827 (2016).
[17] Schwartz, J., Fast probabilistic algorithms for verification of polynomial identities, Journal of the Association for Computing
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.