Tutte’s 3-Flow Conjecture in 3-tree-connected graphs

MORTEZA HASANVAND,

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
morteza.hasanvand@alum.sharif.edu

Abstract

Tutte’s 3-flow conjecture says that every 4-edge-connected graph admits a nowhere-zero 3-flow. Kochol (2001) showed that it is enough to prove this conjecture for 5-edge-connected graphs. Former, Jaeger, Linial, Payan, and Tarsi (1992) conjectured that every 5-edge-connected graph is Z_3-connected and so it admits a nowhere-zero 3-flow. In this note, we show that if the second conjecture would be true, then every 3-tree-connected graph must also be Z_3-connected and so Tutte’s 3-flow conjecture can be extended to this family of graphs.

Keywords: Tutte’s 3-Flow Conjecture; Z_3-connectivity; modulo orientation; tree-connectivity.

Introduction

In this note, all graphs have no loop, but multiple edges are allowed. Let G be a graph, let k be an integer, $k \geq 2$, and let $p: V(G) \to Z_k$ be a mapping such that $|E(G)| \equiv \sum_{v \in V(G)} p(v)$, where Z_k is the cyclic group of order k. An orientation of G is called p-orientation, if for every vertex v, $d_G^+(v) \equiv p(v)$, where $d_G^+(v)$ denotes the out-degree of v. A graph G is called Z_3-connected, if it admits a p-orientation, for every mapping $p: V(G) \to Z_3$ satisfying $|E(G)| \equiv \sum_{v \in V(G)} p(v)$. We say that a graph G admits a nowhere-zero 3-flow, if it admits a p-orientation in which each vertex v, $2p(v) \equiv d_G(v)$. According these definitions, if G is Z_3-connected, then obviously it must admit a nowhere-zero 3-flow. Note that these definitions are equivalent to their initial well-known definitions, see [7, 8]. A graph G is called k-tree-connected, if it contains k edge-disjoint spanning trees. Note that every $2k$-edge-connected graph is also k-tree-connected [9, 11].

Tutte’s 3-Flow Conjecture says that every 4-edge-connected graph admits a nowhere-zero 3-
flow. Jaeger, Linial, Payan, and Tarsi (1992) proposed a stronger conjecture which says every 5-edge-connected graph is \mathbb{Z}_3-connected. In 2001 Kochol [6] proved that if every 5-edge-connected graph admits a nowhere-zero 3-flow, then Tutte’s 3-Flow Conjecture is true.

Conjecture 1. (5) Let G be a graph and let $p : V(G) \to \mathbb{Z}_3$ be a mapping such that $|E(G)| \equiv \sum_{v \in V(G)} p(v)$. If G is 5-edge-connected, then it admits a p-orientation.

In 2012 Thomassen [10] succeeded to confirm Conjecture 1 for 8-edge-connected graphs. Later, Lovász, Thomassen, Wu, and Zhang (2013) [8] improved Thomassen’s result to the following version by pushing down the needed edge-connectivity by one.

Theorem 1. (8) Let G be a graph and let $p : V(G) \to \mathbb{Z}_3$ be a mapping such that $|E(G)| \equiv \sum_{v \in V(G)} p(v)$. If G is 6-edge-connected, then it admits a p-orientation.

In [3] the authors used a stronger version of their result to confirm Conjecture 1 for 4-tree-connected graphs. In this note, we show that if Conjecture 1 would be true, then that conjecture together with Tutte’s 3-Flow Conjecture can be developed to 3-tree-connected graphs. Note that this number is sharp, because the complete graph of order 4 does not have as a nowhere-zero 3-flow, while it is 2-tree-connected.

Theorem 2. (3) Let G be a graph and let $p : V(G) \to \mathbb{Z}_3$ be a mapping such that $|E(G)| \equiv \sum_{v \in V(G)} p(v)$. If G is 4-tree-connected, then it admits a p-orientation.

1 Orientations modulo 3 in 3-tree-connected graphs

The following theorem shows a consequence of Conjecture 1.

Theorem 3. Assume that Conjecture 1 is true. Let G be a graph, let $p : V(G) \to \mathbb{Z}_3$ be a mapping such that $|E(G)| \equiv \sum_{v \in V(G)} p(v)$. If G is 3-tree-connected, then it admits a p-orientation.

Proof. Let $k = 3$ and $\lambda = 5$. By induction on $|V(G)|$. For $|V(G)| = 1$, the proof is clear. So, suppose $|V(G)| \geq 2$. If G is λ-edge-connected, then it follows from the assumption. Thus, we assume G is not λ-edge-connected. Let $T_1, \ldots, T_{\lambda-2}$ be $\lambda-2$ edge-disjoint spanning trees of G. Let
C be an edge cut of G with the minimum size. Note that $|C| \leq \lambda - 1$ and $G \setminus C$ is composed by two disjoint connected graphs G_1 and G_2. Let $r \in \{0, \ldots, k-1\}$ be the unique integer with
\[r + |E(G_1)| = \sum_{v \in V(G_1)} p(v). \]

Suppose first that $|E(C)| = \lambda - 2$. This implies that for each tree T_j, $|E(C) \cap E(T_j)| = 1$, and hence every graph G_j contains $\lambda - 2$ edge-disjoint spanning trees. Since $|E(C)| = \lambda - 2 \geq k - 1 \geq r$, one can orient r edges of C from G_1 to G_2 and $|E(C)| - r$ remaining edges from G_2 to G_1. Now, for every graph G_j, let $p_j : V(G_j) \to \mathbb{Z}_k$ be a mapping such that for each vertex $v \in V(G_j)$, $p_j(v) = p(v) - q_j(v)$, where $q_j(v)$ is the number of edges of C directed away from v. Since $r = \sum_{v \in V(G_1)} q_1(v)$, we have $|E(G_1)| = \sum_{v \in V(G_1)} p_1(v)$. Also, since $|C| - r = \sum_{v \in V(G_2)} q_2(v)$ and $|E(G)| = \sum_{v \in V(G)} p(v)$, we have $|E(G_2)| = \sum_{v \in V(G_2)} p_2(v)$. Thus the induction hypothesis implies that every graph G_j has a p_j-orientation. It is not hard to see that these orientations of G_1, C, and G_2 induce a p-orientation for G. In future cases, we leave some details for the reader in order to apply the induction hypothesis.

Now, suppose that $|E(C)| = \lambda - 1$. Without loss of generality assume that $|E(C) \cap E(T_1)| = 2$ and $|E(C) \cap E(T_j)| = 1$ for each tree T_j with $j > 1$. Also, without loss of generality assume that the spanning graph of G_1 with the edge set $E(G_1) \cap E(T_1)$ is connected. Therefore, G_1 contains $\lambda - 2$ edge-disjoint spanning trees. In G, contract all vertices of G_1 to a single vertex (by removing loops) and call the resulting graph G'_2. It is easy to see that G'_2 contains $\lambda - 2$ edge-disjoint spanning trees. Let $p'_2 : V(G'_2) \to \mathbb{Z}_k$ be a mapping such that for each vertex $v \in V(G'_2) \cap V(G_2)$, $p'_2(v) = p(v)$ and for the vertex $u \in V(G'_2)$ corresponding to G_1, $p'_2(u) = r$.

Now, if $|V(G_1)| > 1$ then by the induction hypothesis, the graph G'_2 has a p'_2-orientation. This orientation of G'_2 induces an orientation for C. In this case, let $p_1 : V(G_1) \to \mathbb{Z}_k$ be a mapping such that for each vertex $v \in V(G_1)$, $p_1(v) = p(v) - q(v)$, where $q(v)$ is the number of edges of C directed away from v. At present, by the induction hypothesis, the graph G_1 has a p_1-orientation. It is not hard to see that the p_1-orientation of G_1 and p'_2-orientation of G'_2 induce a p-orientation for G.

In the final case, set $V(G_1) = \{u\}$. Let xu and uy be the two edges of T_1 incident to u. Now, remove the vertex u from G and add a new edge xy to G. Call the resulting graph H. Since T_1 is a tree with no multiple edges, $x \neq y$ and so H has no loop. Note also that $|E(H)| = |E(G)| - |E(C)| + 1$. It is not hard to see that H contains $\lambda - 2$ edge-disjoint spanning trees. In G orient the edge xu from x to u and orient the edge uy from u to y. Next, orient exactly $r_u - 1$ edges of $E(C) \setminus \{xu, uy\}$ away from u and orient all remaining edges of $E(C)$ in opposite direction, where
\(r_u \in \{1, \ldots, k\} \) is the unique integer with \(r_u \equiv k \mod p(u) \). Since \(|E(\mathcal{C})\setminus\{xu, uy\}| = \lambda - 3 \geq k - 1 \geq r_u - 1 \), this orientation of \(\mathcal{C} \) is possible. Now, let \(p_0: V(H) \to \mathbb{Z}_k \) be a mapping such that for each vertex \(v \in V(H) \), \(p_0(v) = p(v) - q(v) \), where \(q(v) \) is the number of edges of \(\mathcal{C} \setminus \{xu, uy\} \) directed away from \(v \). By the induction hypothesis, \(H \) has a \(p_0 \)-orientation. It is not difficult to see that the \(p_0 \)-orientation of \(H \) and the orientation of \(C \) induce a \(p \)-orientation for \(G \). Notice that if the edge \(xy \) of \(H \) oriented from \(y \) to \(x \), for inducing, the direction of two edges \(xu \) and \(uy \) in \(G \) must be reversed. This completes the proof. \(\square \)

By combining Theorem 2.1 in [4] with Theorem 3, one can derive the following corollary.

Corollary 1. Assume that Conjecture 1 is true. Let \(G \) be a 3-tree-connected graph. Then \(G \) does not have exactly one vertex \(z \) satisfying \(d_G(z)^3 \not\equiv 0 \) if and only if it can be edge-decomposed into three factors \(G_1, G_2, \) and \(G_3 \) such that for each \(v \in V(G_i), |d_{G_i}(v) - d_G(v)/3| < 1 \).

2 Conclusion: A generalization

In 2006 Barát and Thomassen [2] conjectured that for every tree \(T \) there exists a natural number \(k_T \) such that every \(k_T \)-edge-connected simple graph of size divisible by \(|E(T)| \) has a \(T \)-edge-decomposition. However, this conjecture investigates only the existence of \(k_T \), an upper bound on \(k_T \) was stated in [1] as the following conjecture. A consequence of Theorem 3 says that the following conjecture is true, if Conjecture 1 would be true (using the special case \(p = 0 \)).

Conjecture 2. ([1]) Let \(G \) be a simple graph of size divisible by \(k \) with \(k \geq 1 \), and let \(T \) be a tree of size \(k \). If \(G \) is \(k \)-tree-connected, then it admits a \(T \)-edge-decomposition.

When \(k \geq 3 \), the special case \(k \)-star of the above-mentioned conjecture can conclude the next conjecture (more precisely they are equivalent), using an idea that was used in [7]. To see this, for every vertex \(v \) of the graph \(G \), replace a large graph \(H_v \) containing \(k \) edge-disjoint spanning trees with \(|E(H_v)| + p(v)^k \equiv 0 \) such that after replacing the resulting graph forms a simple graph. Since the new graph contains \(k \) edge-disjoint spanning trees and its size is divisible by \(k \), by the assumption it admits a \(k \)-star-decomposition. Now, orient the edges of these stars away from their centres. It is not difficult to see that this orientation induces a \(p \)-orientation for \(G \).

Conjecture 3. Let \(G \) be a graph, let \(k \) be an integer, \(k \geq 3 \), and let \(p: V(G) \to \mathbb{Z}_k \) be a mapping such that \(|E(G)|^k \equiv \sum_{v \in V(G)} p(v) \). If \(G \) is \(k \)-tree-connected, then it has a \(p \)-orientation.
References

[1] J. Barát and D. Gerbner, Edge-decomposition of graphs into copies of a tree with four edges, Electron. J. Combin., 21 (2014), Paper 1.55, 11.

[2] J. Barát and C. Thomassen, Claw-decompositions and Tutte-orientations, J. Graph Theory 52 (2006) 135–146.

[3] Han, Lai, and Li, Nowhere-zero 3-flow and Z_3-connectedness in graphs with four edge-disjoint spanning trees, J. Graph Theory 88 (2018) 577–591.

[4] M. Hasanvand, Equitable factorizations of edge-connected graphs, arXiv:1906.04325.

[5] F. Jaeger, N. Linial, C. Payan, and M. Tarsi, Group connectivity of graphs—a nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992) 165–182.

[6] M. Kochol, An equivalent version of the 3-flow conjecture, J. Combin. Theory Ser. B 83 (2001) 258–261.

[7] L. Lai, Mod $(2p + 1)$-orientations and $K_{1,2p+1}$-decompositions, SIAM J. Discrete Math. 21 (2007) 844–850.

[8] L.M. Lovász, C. Thomassen, Y. Wu, and C.-Q. Zhang, Nowhere-zero 3-flows and modulo k-orientations, J. Combin. Theory Ser. B 103 (2013) 587–598.

[9] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961) 445–450.

[10] C. Thomassen, The weak 3-flow conjecture and the weak circular flow conjecture, J. Combin. Theory Ser. B 102 (2012) 521–529.

[11] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961) 221–230.