Changing the circuit-depth complexity of measurement-based quantum computation with hypergraph states

Mariami Gachechiladze,1 Otfried Gühne,1 and Akimasa Miyake2

1 Naturwissenschaftlich-Technische Fakultät, Universität Siegen, 57068 Siegen, Germany
2 Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
(Dated: April 9, 2019)

While the circuit model of quantum computation defines its logical depth or “computational time” in terms of temporal gate sequences, the measurement-based model could allow totally different temporal ordering and parallelization of logical gates. By developing techniques to analyze Pauli measurements on multi-qubit hypergraph states generated by the Controlled-Controlled-Z (CCZ) gates, we introduce a deterministic scheme of universal measurement-based computation. In contrast to the cluster-state scheme where the Clifford gates are parallelizable, our scheme enjoys massive parallelization of CCZ and SWAP gates, so that the computational depth grows with the number of global applications of Hadamard gates, or, in other words, with the number of changing computational bases. A logarithmic-depth implementation of an \(N \)-times Controlled-Z gate illustrates a novel trade-off between space and time complexity.

I. INTRODUCTION

A typical way to build a computer, classical or quantum, is to first realize a certain set of elementary gates which can then be combined to perform algorithms. The set of gates is called universal if arbitrary algorithms can be implemented. Consequently, the concept of universality is fundamental in computer science. While the most common choice for the universal gate set in quantum circuits is a two-qubit entangling gate supplemented by certain single-qubit gates \[1\], the universal gate set given by the three-qubit Toffoli gate [the Controlled-Controlled-Z (CCZ) gate for our case] and the one-qubit Hadamard \((H)\) gate \[2\] is fascinating for several reasons.

First, the Toffoli gate alone is already universal for reversible classical computation. Consequently, the set may give insight into fundamental questions about the origin of quantum computational advantage, in the sense that changing the bases among complementary observables (by the Hadamard gates) brings power to quantum computation \[4\]. Second, this gate set allows certain transversal implementations of fault-tolerant universal quantum computation using topological error correction codes. Transversality means that, in order to perform gates on the encoded logical qubits, one can apply corresponding gates to the physical qubits in a parallel fashion, and this convenience has sparked recent interest on this gate set \[9\]–\[14\]. Third, the many-body entangled states generated by the CCZ gates are known as hypergraph states in entanglement theory \[15\]–\[19\]. They found applications in quantum algorithms \[20\] and Bell inequalities \[21\]. Furthermore, as discussed below, they were recently utilized in measurement-based quantum computation (MBQC) \[22\]–\[24\], because they overlap with renormalization-group fixed-point states of 2D symmetry-protected topological orders with global \(Z_2\) symmetry \[24\].

Motivated by these observations, we introduce a deterministic scheme of MBQC for the gate set of \{CCZ, \(H\)\}, using multi-qubit hypergraph states. MBQC is a scheme of quantum computation where first a highly-entangled multi-particle state is created as a resource, then the computation is carried out by performing local measurements on the particles only \[25\]–\[26\]. Compared with the canonical model of MBQC using cluster states \[27\] generated by Controlled-Z \((CZ)\) gates, our scheme allows to extend substantially several key aspects of MBQC, such as the set of parallelizable gates and the byproduct group to compensate randomness of measurement outcomes (see \[28\]–\[30\] for previous extensions using tensor network states). Although 2D ground states with certain symmetry-protected topological orders (SPTO) have been shown to be universal for MBQC \[22\]–\[23\], our construction has a remarkable feature that it allows deterministic MBQC, where the layout of a simulated quantum circuit can be predetermined. As a resource state, we consider hypergraph states built only from CCZ unitaries. This is because (i) these states have a connection to genuine 2D SPTO, (ii) it is of fundamental interest if CCZ unitaries alone are as powerful as common hybrid resources by \(CZ\) (or so-called non-Clifford elements) and CCZ unitaries, and (iii) they might be experimentally relevant since it requires only one type of the entangling gate, albeit a three-body interaction (cf.\[32\]–\[35\]). On a technical novelty, we derive a complex graphical rule for Pauli-X basis measurements on general hypergraph states, which allows a deterministic MBQC protocol on a hypergraph state, for the first time. The rule may find independent applications in deriving entanglement witnesses \[36\]–\[37\], nonlocality proofs \[21\]–\[39\], and verification \[40\]–\[43\] for a large class of hypergraph states.

As a remarkable consequence of deterministic MBQC, we demonstrate an \(N\)-qubit generalized Controlled-Z \((C^N Z)\) gate, a key logical gate for quantum algorithms such as the unstructured database search \[42\], in a depth logarithmic in \(N\). Although relevant logarithmic implementations of \(C^N Z\) have been studied in Refs. \[43\]–\[45\], we
highlight a trade-off between space and time complexity in MBQC, namely, reducing exponential ancilla qubits to a polynomial overhead on the expense of increasing time complexity from a constant depth to a logarithmic depth, in this example.

II. SUMMARY OF THE COMPUTATIONAL SCHEME

In MBQC, an algorithm is executed by performing local measurements on some entangled resource state. Consequently, two different physical resources, the entangling gates needed to prepare the state and the required class of measurements, characterize the MBQC scheme. To provide a fine-grained classification, let us define the Clifford hierarchy of unitary gates [40]. The unitary gates in the k-th level of the Clifford hierarchy C_k are defined inductively, with C_1 consisting of tensor products of Pauli operators, and $C_{k+1} = \{U | \forall P \in C_k, UPU^\dagger \in C_k\}$. The gates in C_2 form the so-called Clifford group, preserving the Pauli group operators under conjugation. They allow an efficient classical simulation if the initialization and read-out measurements are performed in the Pauli bases [47].

There are three relevant aspects in the complexity of MBQC. First: the adaptation of measurement bases, namely whether the choice of some measurement bases depends on the results of previous measurements. Second: the notion of parallelism and logical depth (cf. [45,49]) in terms of the ordering of measurements. Third: due to intrinsic randomness in the measurement outcomes, there are byproduct operators sometimes to be corrected. In the canonical scheme of MBQC using the cluster state, Pauli measurements implement Clifford gates in C_2 without adaptation of measurement bases, so these gates are parallelized. As Clifford gates are not universal, more general measurements in the X-Y-plane of the Bloch sphere must be performed to generate unitaries in C_3. The byproduct group is generated by the Pauli operators X and Z.

Our scheme, however, has several key differences summarized in Table I. Our state is prepared using CCZ gates ($CCZ \in C_3$), but Pauli measurements alone are sufficient for universal computation. We choose $\{CCZ, H\}$ to be the logical gate set for universal computation. Indeed, we can implement all logical CCZ gates at arbitrary distance in parallel, by showing that nearest neighbor CCZ gates (CCZ^{nn}) and SWAP gates are applicable without adaptation. Our implementation generates the group of byproduct operators $\{Z, X, Z\}$, which differs from the standard byproduct group. Since we need Hadamard gates to achieve universality and our byproduct group is not closed under the conjugation with the Hadamard gate, we need to correct all CCZ byproducts before the Hadamard gates. Thus, the logical depth grows according to the number of global applications of Hadamard gates, effectively changing the computational bases (see Fig. 1).

III. HYPERGRAPH STATES AND NOVEL MEASUREMENT RULES

Hypergraph states are generalizations of multi-qubit graph states. A hypergraph state corresponds to a hypergraph $H = (V, E)$, where V is a set of vertices (corresponding to the qubits) and E is a set of hyperedges, which may connect more than two vertices (see Fig. 2 for an example). The hyperedges correspond to interactions required for the generation of the state, as the state is defined as

$$|H\rangle = \prod_{e \in E} C_e |+\rangle^\otimes |V\rangle,$$

where the C_e’s are generalized CZ gates, $C_e = 1 - 2|1 \ldots 1\rangle \langle 1 \ldots 1|/2$ acting on the Hilbert space associated to $|e\rangle$ qubits and $|+\rangle$ is a single-qubit eigenstate of the Pauli-X observable. Hypergraph states created by only three-qubit CCZ gates are called three-uniform.

In MBQC protocols CZ unitaries guarantee information flow via perfect teleportation [26,27]. Obtaining CZ gates with an unit probability from three-uniform hypergraph states has been a challenge as Pauli-Z measurements always give CZ gates probabilistically. Therefore, only probabilistic or hybrid (where CCZ and CZ gates are available on demand) scenarios have been considered in the literature [13,22,31]. However, using a novel

Preparation gates	$CCZ \in C_2$	$CCZ \in C_3$
Measurements	Pauli + C_2	Pauli
Implemented gates	C_2^\dagger	C_3^\dagger
Byproduct	$\{X, Z\}$	$\{CCZ, H\}$
Parallelized gates	U_2	$\{CCZ^{nn}, SWAP\}$

TABLE I. Features of MBQC schemes using cluster and hypergraph states. Our scheme with a hypergraph state implements all logical CCZ and SWAP gates without adaptation of measurements, leading to a massive parallelization of these.
non-trivial Pauli-\(X\) measurement rule on three-uniform hypergraph states, we achieve deterministic teleportation via projecting on \(CZ\) gates with unit probability.

Note that Pauli-\(X\) measurement on a graph state always projects onto a graph state, up to local unitary transformations [50]. For hypergraph states, only Pauli-\(Z\) measurement rule is known [17], while Pauli-\(X\) measurements lead, in general, out of the hypergraph state space. In the Appendix A, we give a sufficient criterion and a rule for Pauli-\(X\) measurements to map hypergraph states to hypergraph states. This rule for general hypergraph states entirely captures the known graph state case. It can be derived by the well-known local complementation rule generalized for hypergraph states [37]. Here we only give couple of examples needed later for MBQC protocol (See Appendix for more).

For ease of notation, we draw a box instead of three vertices \(V = \{1, 2, 3\}\) and connect it with an edge to another vertex \(k (\geq 4)\) [see Fig. 2 (a)], if every two out of those three vertices are in a three-qubit hyperedge with the vertex \(k\). In addition, we say that a box is measured in the \(\mathcal{M}\)-basis if all three qubits \(\{1, 2, 3\}\) are measured in the \(\mathcal{M}\)-basis [see Fig. 2 (b), where \(\mathcal{M} = X\)]. The main two examples of measurement rules are presented in Fig. 3 (a) and (b), where the post-measurement states are graph states with unit probability. By direct inspection one can check that there are only two possible local Clifford equivalent post-measurement states when \(\mathcal{M} = X\).

FIG. 2. (a) Denoting the four-qubit hypergraph state with hyperedges \(E = \{\{1, 2, 4\}, \{2, 3, 4\}, \{1, 3, 4\}\}\) with the vertex and the box. (b) Pauli-\(X\) measurements on vertices 1, 2, 3 by Pauli-\(X\) measurement on the box.

FIG. 3. Pauli-\(X\)-measurements on the given hypergraph states result in graph states, with a Hadamard gate applied to its vertex 5. All dashed lines (depicting byproducts) appear additionally if the product of measurement outcomes on vertices 1, 2, 3 is \(-1\). (a) Pauli-\(Z\) byproduct. (b) Pauli-\(X\) and \(CZ\) byproducts.

IV. UNIVERSAL RESOURCE STATE AND MBQC SCHEME

Theorem 1. Based on the hypergraph state of Fig. 4 (a), we propose MBQC with the following features: (i) it is universal using only Pauli measurements, (ii) it is deterministic, (iii) it allows parallel implementations of all logical \(CCZ\) and \(SWAP\) gates, among the universal gate set by \(CCZ\), \(SWAP\), and Hadamard gates, and (iv) its computational logical depth is the number of global layers of logical Hadamard gates.

We discuss the points in Theorem 1 individually: (i) Universality with Pauli measurements only: For the universal gate set we choose \(CCZ\) and Hadamard gates. We realize the \(CCZ\) gate on arbitrary qubits in two steps: a nearest neighbor \(CCZ\) gate (\(CCZ^{nn}\)) and a \(SWAP\) gate, swapping an order of inputs. Here we assume that information flows from the bottom to the top.

As a first step we measure almost all boxes in Pauli-\(X\) basis, except the ones attached to the horizontal three vertices surrounded by a hyperedge \(CCZ\). As a result we get graph edges connecting different parts of the new state, see the transition from Fig. 4 (a) to (b). Getting these graph edges is a crucial step, since it is partially responsible for (ii) determinism of the protocol. We use the resource in Fig. 5 to implement the \(CCZ^{nn}\) gate. For \(CCZ^{nn}\) gate implementation we have to secure indepen-

FIG. 4. (a) The universal resource state composed of elements on Fig. 3 (a) and (b). (b) Resource state obtained after measuring all boxes in Pauli-\(X\) bases, except the ones attached to three qubits surrounded by a hyperedge. All dashed circles represent Pauli-\(Z\) byproducts.

FIG. 5. A nearest-neighbor \(CCZ\) gate is implemented up to \(\{Z, CZ\}\) byproducts. See the Appendix B for details.
byproducts without adaptivity.

edges corresponding to byproduct to get rid of all the vertices which might be included in we get a graph as in Fig. 6 (c). The main idea here is for the derivation) and looking at the bigger fragment,

CCZ in Fig. 4 (b) in Pauli-

from the resource state by measuring all remaining boxes

CCZ both contained in

See Fig. 9 in the Appendix B for the explicit derivations.

to the rest of the state with the graph edges, and perform-

CCZ to the hypergraph state to be used as a logical CCZ

Now we need a SWAP and a Hadamard \((H)\) gate both contained in \(\mathcal{C}_2\). Since some graph states can directly implement Clifford gates with Pauli measurements only, we first get rid of all unnecessary CCZ hyperedges from the resource state by measuring all remaining boxes in Fig. 4 (b) in Pauli-X bases resulting to the state in Fig. 6 (b) (the full Pauli-X measurement rule is needed for the derivation) and looking at the bigger fragment, we get a graph as in Fig. 6 (c). The main idea here is to get rid of all the vertices which might be included in edges corresponding to byproduct CCZ’s. Then, we make Pauli-Z measurements (qubits to which an \(H\) is applied, we measure in the Pauli-X basis) on coloured vertices. As a result, we project to a hexagonal lattice deterministically. This construction is the final step also responsible for (ii) Determinism of the protocol. The hexagonal lattice can implement any Clifford gate in parallel up to \(\{X, Z\}\) byproducts using Pauli measurements only \([51]\), and therefore, we can implement a SWAP gate. (iii) Parallelization: The SWAP and CCZ\(^nn\) gates together give a CCZ gate over arbitrary distance, up to \(\{CZ, X, Z\}\) byproducts without adaptivity.

(iv) Logical depth: Finally, after every CCZ gate layer, we need to implement the Hadamard layer, which is straightforward \([26]\). However, since CZ byproducts cannot be fed-forward through Hadamard gates, we need to correct all CZ’s. We can again use the hexagonal lattice to perform the correction step, however, the \((k-1)\)-th correction step as enumerated in Fig. 1 itself introduces \(\{X, Z\}\) byproducts which due to the commutation relation, \(C_{abc}X_a = X_aC_{abc}C_{bc}\), introduces new CZ byproducts before the \(k\)-th correction step. Consequently, the measurement results during the \((k-1)\)-th correction must be taken into account to correct all CZ byproducts before the \(k\)-th correction step. To sum up, we can parallelize all CCZ gates, but we need to increment the circuit depth for each Hadamard layer in order to correct all CZ byproducts adaptively.

V. APPLICATIONS OF PARALLELIZATION

We demonstrate that the parallelization in our MBQC protocol may find several practical applications, by considering an example of an \(N\)-times Controlled-Z \((C^N Z)\) gate. Its implementation has been known either (i) in an \(O(\log N)\) non-Clifford \(T\) depth with \((8N-17)\) logical \(T\)-gates, \((10N-22)\) Clifford gates and \(\lceil(N-3)/2\rceil\) ancillae \([43,44]\), or (ii) in a constant depth (or constant rounds of adaptive measurements) albeit with \(O(\exp N)\) CZ gates in the cluster-state MBQC model and \(O(\exp N)\) ancillae \([26]\). In our approach, a decomposition of the \(C^N Z\) gate by CCZ gates and a few number of Hadamard layers is desired.

Theorem 2. An \(N\)-times Controlled-Z \((C^N Z)\) gate is feasible in an \(O(\log N)\) logical depth of the Hadamard layers (or “Hadamard” depth), using a polynomial spatial overhead in \(N\), namely \((2N-6)\) logical Hadamard gates, \((2N-5)\) CCZ gates and \((N-3)\) ancillae, where \(N = 3\cdot2^r\) for a positive integer \(r\).

The detailed derivation of the gate identity and the resource count is given in Fig. 7 and the Appendix C. Note that the \(T\) depth \([43,44]\) of (i) and the Hadamard depth in Theorem 2 are both logarithmic in this example. However, while the former counts the depth of gates in \(\mathcal{C}_3\) as a rough estimate in fault-tolerant quantum computation,
the latter gives the depth according to the count in C_2. Note that the T depth in general is not the actual circuit depth of a unitary-gate sequence as it involves other non-commuting gates in C_2. Our Hadamard depth, however, is indeed the actual logical depth of computation. Comparing (ii) with our Theorem 2 the depth can be made constant in N on a cluster state, if the number of physical qubits used in the MBQC protocol is allowed to be 2^{N-1} [20]. Note that our construction in Theorem 2 can be adapted on a cluster state by creating CCZ gates in a constant depth and applying Theorem 2, so that the depth can be logarithmic in N.

VII. ACKNOWLEDGMENT

We would like to thank D. Orsucci and J. Miller for scientific discussions, and D.-S. Wang for introducing to us his deterministic teleportation protocol using the five-qubit three-uniform hypergraph state in Fig. 8 of the Appendix C. M.G. would like to thank A. Miyake, O. Gühne, and G. Cordova for making her visit in Albuquerque possible, and the entire CQuIC group at UNM for hospitality. M.G. and O.G acknowledge financial support from the DFG and the ERC (Consolidator Grant 683107/TempoQ). M.G. acknowledges funding from the Gesellschaft der Freunde und Förderer der Universität Siegen. A.M. is supported in part by National Science Foundation grants PHY-1521016 and PHY-1620651.

Appendix A: The Pauli-X Measurement Rule for Hypergraph States

We introduced a deterministic scheme of MBQC for the gate set of CCZ and Hadamard gates, using a three-uniform hypergraph state and Pauli measurements. It enables us to parallelize massively all long-range CCZ gates and the computational depth grows as we change computational bases. To take a broader perspective, one can define the Fourier hierarchy (FH) [4, 6, 7] in terms of the number of the global change of the bases (namely, the globally parallel application of H gates). Notably, classical polynomial-time computation, called the complexity class P, belongs to the 0th-level of FH. Since it is known that several important quantum algorithms, such as Kitaev’s phase estimation, belong to the 2nd-level of FH (which requires only two layers of global H gates) [7], it would be interesting to explore the implementations of low-level FH algorithms in our formulation. The recent major result by Bravyi et al. [22] which proved quantum exponential advantage in the 2D Hidden Linear Function problem using a shallow circuit in the 2nd-level of FH is really encouraging towards this research direction (see e.g., [53–55]).
a hypergraph state, one can expand an original hypergraph state over a vertex \(a \) or a set \(V_a \) and check if all possible equally weighted superposition of expanded hypergraph states gives some other hypergraph state or a state which is local unitary equivalent to a hypergraph state.

Let us consider particular cases of hypergraph states \(|H\rangle \) which when expanded over three vertices 1, 2, 3, gives eight new hypergraphs satisfying the following constraints \(H_{000} = H_{001} = H_{010} = H_{100} \equiv H_{\alpha} \) and \(H_{111} = H_{110} = H_{101} = H_{011} \equiv H_{\beta} \). Then the expanded state can be written as follows:

\[
|H\rangle = \frac{1}{\sqrt{8}} \left((|000\rangle + |001\rangle + |010\rangle + |100\rangle)|H_{\alpha}\rangle + (|111\rangle + |110\rangle + |101\rangle + |011\rangle)|H_{\beta}\rangle \right). \tag{A3}
\]

If qubits 1, 2, 3 are all measured in Pauli-X bases, due to the symmetry of the first three qubits, there are only four possible post measurement states presented in Table II. We see from Table II that outcome \(\langle + \rangle \) never occurs and outcomes \(\langle + - \rangle \) and \(\langle - - \rangle \) are equivalent up to the global sign. Therefore, if we measure the first three qubits of the hypergraph state \(|H\rangle \) as presented in Eq. (A3), there are only two possible post-measurement states and they correspond to the equally weighted superposition of two hypergraph states \(|H_{\alpha}\rangle \pm |H_{\beta}\rangle \). These three qubits and their adjacencies are of our interest and in the main text they are denoted by a box. Below we consider three examples where we measure these three qubits but we vary the hypergraphs \(H_{\alpha} \) and \(H_{\beta} \).

The equally weighted superposition of two hypergraph states is not always a hypergraph state again unless we choose two hypergraphs \(H_{\alpha} \) and \(H_{\beta} \) specifically. Here we give a sufficient criterion for equally weighted superpositions of two hypergraph states being a hypergraph state up to local unitary operations and derive the graphical rule for such cases:

Theorem 4. Let \(H_{\alpha} = (V, E) \) and \(H_{\beta} = (V, E \cup \{a\} \cup \tilde{E}) \), where \(\tilde{E} \) are hyperedges not containing a vertex \(a \in V \). Then the equally weighted superpositions of two hypergraph states \(|H_{\alpha}\rangle \) and \(|H_{\beta}\rangle \) up to the Hadamard gate acting on the vertex \(a \), \(H_{\alpha} \) are still hypergraph states denoted by \(|H_{+}\rangle \) and \(|H_{-}\rangle \):

\[
H_{\alpha}|H_{+}\rangle = H_{\alpha}(|H_{\alpha}\rangle + |H_{\beta}\rangle) \propto \prod_{e' \in E'} C_{e'} \prod_{e \in \mathcal{A}^{\alpha}(a)} \prod_{\tilde{e} \in \tilde{E}} C_{e \cup \tilde{e}} C_{\tilde{e} |a| +} \otimes N; \tag{A4}
\]

\[
H_{\alpha}|H_{-}\rangle = H_{\alpha}(|H_{\alpha}\rangle - |H_{\beta}\rangle) \propto C_{a} \prod_{e' \in E'} C_{e'} \prod_{e \in \mathcal{A}^{\alpha}(a)} \prod_{\tilde{e} \in \tilde{E}} C_{e \cup \tilde{e}} C_{\tilde{e} |a| +} \otimes N. \tag{A5}
\]

Here \(\mathcal{A}^{\alpha}(a) \) is the adjacency of the vertex \(a \) in hypergraph \(H_{\alpha} \) and \(E' = \{e' | a \notin e', e' \in E\} \) and \(C_{a} = Z_{a} \).

Proof. Let us assume that \(a = 1 \). Then we get:

\[
H_{1}|H_{+}\rangle = H_{1}(|H_{\alpha}\rangle + |H_{\beta}\rangle) \tag{A6}
\]

\[
= H_{1}(|H_{\alpha}\rangle + Z_{1} \prod_{\tilde{e} \in \tilde{E}} C_{\tilde{e}} |H_{\alpha}\rangle) \tag{A7}
\]

\[
= H_{1} (\prod_{e \in E} C_{e} (|+\rangle \otimes N + Z_{1} \prod_{\tilde{e} \in \tilde{E}} C_{\tilde{e}} |+\rangle \otimes N) \otimes N) \tag{A8}
\]

\[
= H_{1} (\prod_{e \in E} C_{e} H_{1} (|+\rangle + |-\rangle \prod_{\tilde{e} \in \tilde{E}} C_{\tilde{e}} |+\rangle \otimes N^{-1}) \tag{A9}
\]

#	Outcome	Post-measurement state		
1.	\(+ + +_{123}\)	\(\propto (H_{\alpha}\rangle +	H_{\beta}\rangle)\)
2.	\(+ + -_{123}\)	\(\propto (H_{\alpha}\rangle -	H_{\beta}\rangle)\)
3.	\(+ - -_{123}\)	0		
4.	\(- - -_{123}\)	\(\propto -(H_{\alpha}\rangle -	H_{\beta}\rangle)\)

TABLE II. All possible post-measurement states for Pauli-X measurements on qubits 1, 2, 3 in Eq. (A3). Case 2 and 4 are equivalent up to a global sign.
\[H_1 \prod_{e' \in E'} C_{e'} \prod_{e'' \in E''} C_{e''} H \left(\prod_{\bar{e} \in \bar{E}} |+\rangle + |\rangle \prod_{\bar{e} \in \bar{E}} C_{\bar{e}} |+\rangle \right)^{\otimes N-1} \]
\[= \prod_{e' \in E'} C_{e'} H \prod_{e'' \in E''} C_{e''} H \left(\prod_{\bar{e} \in \bar{E}} |+\rangle + |\rangle \prod_{\bar{e} \in \bar{E}} C_{\bar{e}} |+\rangle \right)^{\otimes N-1} \]
\[= \prod_{e' \in E'} C_{e'} H \prod_{e'' \in E''} C_{e''} H \left(\prod_{\bar{e} \in \bar{E}} |0\rangle + |1\rangle \prod_{\bar{e} \in \bar{E}} C_{\bar{e}} |+\rangle \right)^{\otimes N-1} \]
\[\propto \prod_{e' \in E'} C_{e'} H \prod_{e'' \in E''} C_{e''} H \left(\prod_{\bar{e} \in \bar{E}} |0\rangle + |1\rangle \prod_{\bar{e} \in \bar{E}} C_{\bar{e}} |+\rangle \right)^{\otimes N-1} \]
\[= \prod_{e' \in E'} C_{e'} \prod_{e'' \in E''} C_{e''} \prod_{e_1 \in A^0(1)} C_{e_1 \cup \{1\}} |+\rangle^{\otimes N} \]
\[\left(\prod_{\bar{e} \in \bar{E}} |0\rangle + |1\rangle \prod_{\bar{e} \in \bar{E}} C_{\bar{e}} |+\rangle \right)^{\otimes N} \]
\[\propto \prod_{\bar{e} \in \bar{E}} C_{\bar{e}} \prod_{e_1 \in A^0(1)} C_{e_1 \cup \bar{E}}. \]

In Eq. (A9) we decompose a set of hyperedges \(E \) into two parts: \(E' \), hyperedges which do not contain the vertex 1 and \(E'' \) hyperedges which contain the vertex 1. In Eq. (A10) the set of hyperedges \(\prod_{e' \in E'} C_{e'} \) commute with \(H_1 \) and going to Eq. (A11), \(H_1 \prod_{e'' \in E''} C_{e''} H = \prod_{e_1 \in A^0(1)} C_{e_1,1} \), since Hadamard gate \(H_1 \) changes \(Z_1 \) to \(X_1 \) and, therefore, generalized Controlled-\(Z \) gates become generalized \(CNOT \) gates.

In Eq. (A11), \(H_1 \) is applied to \(|\pm\rangle \) and in Eq. (A12) a new hypergraph state is obtained, which is written in an expanded form over vertex 1. If we write this hypergraph state we get Eq. (A13):

\[\left(|0\rangle + |1\rangle \prod_{\bar{e} \in \bar{E}} C_{\bar{e}} \right)^{\otimes N} \]
Then generalized \(CNOT \) gates are applied to a new hypergraph state in Eq. (A13). The action of generalized \(CNOT \) gate was described in Ref. [27] as follows: Applying the generalized \(CNOT_{e_1 \cup \bar{E}} \) gate to a hypergraph state, where a set of control qubits \(C \) controls the target qubit \(t \), introduces or deletes the set of edges \(E_t = \{e_1 \cup C|e_1 \in A(t)\} \).

In Eq. (A13) the generalized \(CNOT \) gate is applied to the hypergraph state which corresponds to the hypergraph \(V, \{e \cup \{1\}|e \in \bar{E}\} \). The target qubit in the generalized \(CNOT \) gate is the vertex 1 and its adjacency is, therefore, given by edge-set \(\bar{E} \). The control qubits are presented by the edge-set \(A^0(1) \), which correspond to the adjacency of the vertex 1 in the hypergraph \(H_\alpha \). The action of generalized \(CNOT \) gate takes the pairwise union of hyperedges in \(A^0(1) \) and \(\bar{E} \) and adds or deletes new hyperedges:

\[\prod_{e_1 \in A^0(1)} \prod_{\bar{e} \in \bar{E}} C_{e_1 \cup \bar{E}}. \]

Inserting these hyperedges in Eq. (A14), we get the final hypergraph states:

\[H_1(|H_+\rangle) \propto \prod_{e' \in E'} C_{e'} \prod_{e_1 \in A^0(1)} \prod_{\bar{e} \in \bar{E}} C_{e_1 \cup \bar{E}} |e_1 \cup \bar{E} |+\rangle^{\otimes N}. \]

In case of the minus superposition \(H_1|H_-\rangle \), the derivations are very similar to \(H_1|H_+\rangle \) up to Eq. (A12). In particular, due to the minus sign in the superposition, we get a different hypergraph state from the one in Eq. (A15):

\[H_1(|+\rangle - |\rangle \left(\prod_{\bar{e} \in \bar{E}} C_{\bar{e}} \right)^{\otimes N-1} = \left(|0\rangle - |1\rangle \prod_{\bar{e} \in \bar{E}} C_{\bar{e}} \right)^{\otimes N-1} = C_1 \prod_{\bar{e} \in \bar{E}} C_{\bar{e}} |+\rangle^{\otimes N} \]

Now we apply generalized \(CNOT \) gate to the hypergraph state in Eq. (A18):

\[\prod_{e_1 \in A^0(1)} C_{e_1} C_{e_1 \cup \{1\}} |+\rangle^{\otimes N}. \]

The hypergraph state in Eq. (A18) has the additional edge \(C_1 \) and this means that the adjacency of the vertex 1 in Eq. (A19) is given by the edge-set \(\{E \cup \{\emptyset\}\} \). The action of generalized \(CNOT \) gate takes the pairwise union of hyperedges in \(A^0(1) \) and \(\{E \cup \{\emptyset\}\} \) and introduces new hyperedges of the form in the hypergraph:
complementation and then we generalize this result to hypergraph states. This gives a graphical rule for Pauli-measurements on hypergraph states.

Given any graph state \(|G\rangle\) corresponding to a connected graph \(G = (V, E)\), if we expand it over any of its vertices \(a \in V\),

\[
|G\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle_a |G_0\rangle + |1\rangle_a |G_1\rangle \right),
\]

then graphs corresponding to \(|G_0\rangle\) and \(|G_1\rangle\) satisfy the condition of Theorem 4 since \(|G_1\rangle = \prod_{e \in \mathcal{N}(a)} Z_e |G_0\rangle\), where \(\mathcal{N}(a)\) is the neighbourhood of the vertex \(a\). So, if the vertex \(a\) is measured in Pauli-\(X\) basis, the post measurement states are the equally weighted superpositions of \(|G_0\rangle\) and \(|G_1\rangle\) and therefore, Theorem 4 gives the rules for deriving post-measurement states for both outcomes of measurement Pauli-\(X\) basis. The rules for Pauli-\(X\) measurement for graph states was previously derived in Ref. [50] using a different approach.

1. Pauli-\(X\) measurement rule using generalised local complementation on hypergraph states

Here we briefly review the post-measurement rules obtained for graph states using the graphical action called, local complementation and then we generalize this result to hypergraph states. This gives a graphical rule for Pauli-\(X\) measurements on hypergraph states.

Given a graph states \(|G\rangle\), corresponding to a graph \(G = (V, E)\), there are well defined graphical rules for obtaining post-measurement states after Pauli-\(X\) measurement [50] up to local corrections. The post measurement state after measuring a vertex \(a\) in Pauli-\(X\) basis is:

\[
U^a_{x, \pm} |\tau_{b_0} (\tau_a \circ \tau_{b_0} (G)) - a\rangle,
\]

for any \(b_0 \in \mathcal{N}(a)\), where the map \(\tau\) is local complementation and \(U^a_{x, \pm}\) corresponds to a local unitary operation depending on the measurement outcome. The action of local complementation on some vertex \(a\) is defined as follows: If there were edges between pairs of vertices in \(\mathcal{N}(a)\), erase the edges and if there is no edges between some of the vertices in \(\mathcal{N}(a)\), the edge is added between these pairs of vertices. Pauli-\(X\) measurement on graph states can be described as the three consecutive applications of local complementations [50].

Now we extend the rule to hypergraph states. We keep in mind the sufficient rule for Pauli-\(X\) measurements on hypergraph states to give a hypergraph state. Instead of writing down all the measured qubits, we can write the following state, which would give exactly the same post-measurement states when the vertex \(B\) is measured in Pauli-\(X\) bases, as the original hypergraph vertices being measured in Pauli-\(X\) bases (here we are disregarding the probabilities for the post-measurement states):

\[
|H_B\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle_B |H_{a}\rangle + |1\rangle_B |H_{\beta}\rangle \right).
\]

We have replaced the three qubits (a box) here with only one additional ancilla qubit \(B\), which from the structure of the hypergraphs \(H_{a}\) and \(H_{\beta}\) evidently contains at least one graph edge connecting \(B\) to the rest of the hypergraph.

We are now ready to formulate the result:

Theorem 5. Given a hypergraph state \(|H_B\rangle\) corresponding to a hypergraph \(H_B = (V_B, E_B)\) as in Eq. (A24), then the post-measurement states of Pauli-\(X\) basis measurement on the vertex \(B\) is derived by three actions of generalized local complementation rule as follows:

\[
U_{x, \pm} |\tilde{\tau}_a (\tilde{\tau}_B \circ \tilde{\tau}_a (|H_B\rangle)) - \{B\}\rangle,
\]
where a and B are contained in the same graph edge, \(\{a, B\} \in E_B \) and
\[
U_{x,+} = 1 \quad \text{and} \quad U_{x,-} = C_a \prod_{e_i, a \in A^H_a (a)} C_{e_i}.
\]

Here \(A^H_a (a) \) means that the adjacency of qubit a must be taken from the hypergraph \(H_a \).

Proof. We first introduce the action of a generalized local complementation on vertex \(B \) of an arbitrary hypergraph state \(|H\rangle\):
\[
\hat{\tau}_B (|H\rangle) = \prod_{e_i, a \in A^H_a (a)} \prod_{e_j, i < j} C_{e_i \cup e_j} |H\rangle.
\]

Therefore, a pairwise union of \(\forall e_i, e_j \in A^H (B) \), where \(i < j \), is added to the hyperedges of a hypergraph \(H \) as a result of an action of a generalized local complementation. For the physical maps and a derivation of the rule see Ref. [37].

Now we use this rule to prove the theorem. From Theorem [4] we know that the hypergraphs have the following structure: \(H_a = (V, E) \) and \(H_B = (V, E \cup \{a\} \cup E) \), where \(E \) are hyperedges not containing a vertex \(a \in V \). Therefore, the hypergraph \(H_B \) indeed contains an edge \(\{a, B\} \) and there is no other hyperedge in \(H_B \) containing both \(a \) and \(B \) together.

Let us then consider the action of the first generalized local complementation \(\hat{\tau} (a) \). Note again that \(a \) is only contained in the hyperedges \(E \cup \{a, B\} : \)
\[
\hat{\tau} (a) |H_B \rangle = \hat{\tau} (a) C_a B \prod_{e_i, a \in A^H_a (a)} C_{e_i \cup B} |+\rangle_B |H_a \rangle = C_a B \prod_{e_i, a \in A^H_a (a)} C_{e_i \cup B} \prod_{e_j, i < j} C_{e_i \cup e_j} \prod_{e_i, \in E} C_{e_i} |+\rangle_B |H_a \rangle.
\]

Now we consider the second action, when \(\hat{\tau} (B) \) is applied to the new hypergraph. Note that the vertex \(B \) is now contained in three types of hyperedges: the every hyperedge in \(A^H_a \) \cup \(a \) and every hyperedge in \(E \) \cup \(E \) finally in \(\{a, B\} \). We have to take a pairwise union between the types of the hyperedges and also the pairwise union within each type too:
\[
\hat{\tau} (B) \circ \hat{\tau} (a) |H_B \rangle = C_a B \prod_{e_i, a \in A^H_a (a)} C_{e_i \cup B} \prod_{e_i, \in E} C_{e_i \cup e_j} \prod_{e_i, \in E'} C_{e_i} |+\rangle_V |B\rangle^{-1}.
\]

where \(E' \) are hyperedges in \(H_a \), which do not contain the vertex \(a \). Next step is to remove the vertex \(B \) and all the hyperedges it is adjacent to:
\[
|\tau_B \circ \tau_a (|H_B\rangle) - \{B\} \rangle = \prod_{e_i, a \in A^H_a (a)} C_{e_i \cup B} \prod_{e_i, \in E} C_{e_i \cup e_j} \prod_{e_i, \in E'} C_{e_i} |+\rangle_V |B\rangle^{-1}.
\]

And finally, the generalized local complementation over the vertex \(a \) gives:
\[
|\tau_a (\tau_B \circ \tau_a (|H_B\rangle)) - \{B\} \rangle = \prod_{e_i, a \in A^H_a (a)} C_{e_i \cup B} \prod_{e_i, \in E} C_{e_i} |+\rangle_V |B\rangle^{-1}.
\]

This expression exactly corresponds to the one in Eq. (A3), the post-measurement state for the positive superposition. For the negative outcome we just fix the correction term \(U_{x,-} \):
\[
U_{x,-} |\tau_a (\tau_B \circ \tau_a (|H_B\rangle)) - \{B\} \rangle = C_a \prod_{e_i, \in E} C_{e_i \cup B} \prod_{e_i, a \in A^H_a (a)} C_{e_i} |+\rangle_V |B\rangle^{-1},
\]
which exactly corresponds to the post-measurement state for negative superposition in Eq. (A5).

2. Examples of Pauli-X measurements on hypergraph states

Here we give examples of Pauli-X measurements on hypergraph states. In all of our examples exactly three vertices are measured in Pauli-X bases. The post-measurement states are derived by first expanding the hypergraph state
over these three vertices as shown in Eq. (A3), then checking if new emerging hypergraphs H_α and H_β satisfy the condition of Theorem 4. And only the final step if to apply the result of Theorem 4 to give the post-measurement hypergraph states.

Here we only consider three-uniform hypergraph states and focus on cases when post-measurement states are graph states regardless of the measurement outcomes, in general this is not the case.

Example 1: The smallest three-uniform hypergraph state which after measuring the first three qubits in Pauli-X basis can deterministically project on a Bell state is (see Fig. 8):

$$|H_5\rangle = C_{124}C_{125}C_{134}C_{135}C_{234}C_{235}|+\rangle^\otimes 5 = \frac{1}{2\sqrt{2}}\left((|000\rangle + |001\rangle + |010\rangle + |100\rangle)|+\rangle^\otimes 2 + (|011\rangle + |101\rangle + |101\rangle + |111\rangle)|-\rangle^\otimes 2\right).$$

(A33)

The state $|H_5\rangle$ is given in the expanded form over vertices 1, 2, 3 as in Eq. (A3) and $|H_\alpha\rangle = |+\rangle^\otimes 2$ and $|H_\beta\rangle = |-\rangle^\otimes 2 = Z^\otimes 2|+\rangle^\otimes 2$.

We fix a to be vertex 4, H_α to have hyperedges $E_\alpha = \emptyset$ and H_β to have hyperedges $E_\beta = \{\{4\} \cup \tilde{E}\}$, where $\tilde{E} = \{\{5\}\}$. These two hypergraphs satisfy condition of Theorem 4. So, measuring qubits 1, 2, 3 in Pauli-X basis gives two possible post-measurement hypergraph states $H_4|H_+\rangle \propto |+\rangle^\otimes 2 + |-\rangle^\otimes 2$ with the probability 1/5 and $H_4|H_-\rangle \propto |+\rangle^\otimes 2 + |-\rangle^\otimes 2$ with the probability 4/5. Using Theorem 4 we derive these post-measurement states:

$$H_4|H_+\rangle \propto H_4(|+\rangle^\otimes 2 + |-\rangle^\otimes 2) \propto C_{45}|+\rangle^\otimes 2 \quad \text{and} \quad H_4|H_-\rangle \propto H_4(|+\rangle^\otimes 2 - |-\rangle^\otimes 2) \propto C_{45}C_4|+\rangle^\otimes 2.$$

(A34)

![FIG. 8](image)

Example 2: Let us consider the six-qubit hypergraph state $|H_6\rangle$ presented on Fig. 3 (a). After measuring qubits 1, 2, 3 in Pauli-X basis we project on the three-qubit graph state. To see this, we write $|H_6\rangle$ directly in the expanded form over vertices 1, 2, 3:

$$|H_6\rangle \propto (|000\rangle + |001\rangle + |010\rangle + |100\rangle) \otimes 4 \otimes 5 \otimes 6 \oplus (|110\rangle + |101\rangle + |111\rangle + |111\rangle) \otimes 4 \otimes 5 \otimes 6.$$

(A35)

Here H_α has hyperedges $E_\alpha = \emptyset$ and H_β has hyperedges $E_\beta = \{\{4\}, \{5\}, \{6\}\}$ and we fix to apply the Hadamard correction on the vertex $a = 5$. We can use Theorem 4 to derive two post-measurement states up to Hadamard gate applied to the vertex 5:

$$H_5|H_+\rangle \propto C_{45}C_{56}|+\rangle^\otimes 3 \quad \text{and} \quad H_5|H_-\rangle \propto C_{45}C_{56}C_5|+\rangle^\otimes 3.$$

(A36)

Example 3: Let us consider more complicated six-qubit hypergraph state $|H_6\rangle$ presented on Fig. 3 (b). We write this state expanded over vertices 1, 2, 3:

$$|H_6\rangle \propto (|000\rangle + |001\rangle + |010\rangle + |100\rangle) \otimes 4 \otimes 5 \otimes 6 \oplus (|110\rangle + |101\rangle + |111\rangle + |111\rangle) \otimes 4 \otimes 5 \otimes 6.$$

(A37)
Here H_a has hyperedges $E_a = \{1, 2, 3\}$ and H_β has hyperedges $E_\beta = \{1, 2, 3\}, \{4\}, \{5\}, \{6\}$ and we fix to apply the Hadamard correction on the vertex $a = 5$. We can use Theorem \[4\] to derive two post-measurement states up to Hadamard gate applied to qubit 5:

$$H_5|H_+\rangle \propto C_{45}C_{56}|+\rangle^{\otimes 3} \quad \text{and} \quad H_5|H_-\rangle \propto C_{45}C_{56}C_{46}|+\rangle^{\otimes 3}. \quad (A38)$$

Remark. We can increase the number of vertices that we measure in Pauli-X and generalize a notion of the box defined in the main text. The box that we considered up to now was corresponding to the structure of the expanded three vertices and was always connected to the rest of the hypergraph with three-qubit hyperedges. Now we try to extend this result to higher cardinality edges. Let us expand a hypergraph state over m-qubits, where $3 \leq m \leq N - 2$ is an odd number, in the following way:

$$|H_N\rangle \propto \left(\sum_x |x\rangle\right) \otimes |H_\alpha\rangle + \left(\sum_y |y\rangle\right) \otimes |H_\beta\rangle, \quad (A39)$$

where $x, y \in \{0, 1\}^m$ and the first sum runs over all computational bases elements with the weight $w(x) \leq \lfloor m/2 \rfloor$ and the second sum runs over all computational bases elements with the weight $w(y) > \lfloor m/2 \rfloor$.

If all the first m vertices are measured in Pauli-X bases, then we again get two possible measurement outcomes $|H_\alpha\rangle \pm |H_\beta\rangle$. However, the box now can look very different from the $m = 3$ case. For simplicity let us fix $|H_\alpha\rangle = |+\rangle^{\otimes |N-m|}$ and $|H_\beta\rangle = |-\rangle^{\otimes |N-m|}$. The smallest hyperedge the new type of a box is connected to the rest of the hypergraph has a cardinality equal to $\lfloor m/2 \rfloor + 1$. But in addition, for some cases of m with this construction the box will be connected to the rest of the hypergraph with different sizes of hyperedges.

To illustrate this let us consider an example of $|H_7\rangle$, where $m = 5$ and $|H_\alpha\rangle = |+\rangle^{\otimes 2}$ and $|H_\beta\rangle = |-\rangle^{\otimes 2}$. Then the smallest cardinality hyperedge in the hypergraph is of a size four - the smallest weight of vector $|y\rangle$ is equal to $\lceil 5/2 \rceil = 3$ and plus 1. However, these are not all the hyperedges in the hypergraph: The vectors with the weight four are in the second summand and they are tensored with $|−\rangle^{\otimes 2}$. However, if we choose any four vertices among m, then every three from them are connected to both vertices $m + 1$ and $m + 2$, but $\binom{4}{3} = 4$, which is an even number. So, the hypergraph must have additional cardinality 5 edges. Similarly we have to check the weight of the last term in the sum: $\binom{5}{3} + \binom{6}{4} = 15$ is an odd number and, therefore, there is no cardinality six edges in the hypergraph. Therefore, similarly to $m = 3$ case, we got a box containing five qubits but the box is connected to the rest of the hypergraph with four- and five-qubit hyperedges in a symmetric manner.

Appendix B: Implementation of CCZ^{nn} gate

Since we have chosen $\{CCZ, H\}$ to be the universal gate set, we need to show in detail how to implement these gates on our resource state. To start with, we implement CCZ gates only on the nearest neighbor qubits (denote it by CCZ^{nn}) and therefore, we need SWAP gate too. The goal is to implement all the gates deterministically. All Pauli measurements are made in one step but for simplicity we consider them in several steps. At the step one the box is measured in Pauli-Z basis. This evidently removes the box entirely and introduces Pauli-Z byproducts on the vertices $1, 2, 3$ as presented on Fig. 9.

On Fig. 9 at step 1 we first describe the measurements needed to get CCZ^{nn} gate using our resource state. Now let us measure the vertex 4 in Pauli-Z basis, this effectively implements Pauli-X measurement, since the Hadamard gate was applied to this vertex. We need to use Theorem \[4\] to derive a post-measurement state. Let us write the hypergraph state in the expanded form over the vertex 4:

$$|H\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle_4 |H_0\rangle + |1\rangle_4 |H_1\rangle \right) = \frac{1}{\sqrt{2}} \left(|0\rangle_4 |H_0\rangle + |1\rangle_4 Z_1 Z_2 |H_0\rangle \right). \quad (B1)$$

Then $|H_0\rangle$ and $|H_1\rangle$ satisfy the condition of Theorem \[4\] with a Hadamard applied on the vertex 1 and accordingly the post-measurement state is given on Fig. 9 at step 3. CCZ gate is now applied to the vertices $2, 3, 7$. At this step we have to point out that the post-measurement state has the edges $\{1\} \{2, 3\}$ for the measurement outcome "$−1\". Thus, this is where CZ byproducts come into the computation scheme discussed in the main text. At the step 3 the vertex 1 is measured in Pauli-X basis and since the Hadamard is applied to this qubits, this implements Pauli-Z measurement instead. Repeating this measurement pattern over as shown at the step 4 given the final state at the step 5, where CCZ gate is applied to vertices $7, 8, 9$ upto CZ and Z byproducts.
FIG. 9. Implementing CCZ^n gate. All measurements are made simultaneously. We present them step by step to emphasize how CZ byproducts come into the computational scheme. Step 1: Pauli-Z measurement on the box removes the box and introduces Pauli-Z byproducts on vertices 1, 2, 3. Step 2: The vertex 4 is measured in X-basis projecting on the state at step 3. Step 3: We see the CZ_{23} byproduct depending on the outcome of the measurement on the vertex 4. Measuring the vertex 1 in Pauli-Z, projects on the hypergraph at step 4. Step 4: Repeating the measurements for vertices 2, 3, 5, 6 gives the state at step 5.

FIG. 10. (a) Circuit for C^6Z gate using long-ranged CCZ gates. (b) Implementation SWAP gate: Uses 9 CZ gates (brown edges) and 8 ancilla qubits.

Appendix C: Discussion of the complexity

Here we first give the proof for the gate identity from the main text.

Lemma 6. The following equality holds for any state $|\psi\rangle$ and sets $i \in e_1$ and $i \in e_2$:

$$C_{e_1} H_i C_{e_2} H_i C_{e_1} |+\rangle_i |\psi\rangle = |+\rangle_i C_{e_1 \cup e_2 \setminus \{i\}} |\psi\rangle.$$ \hfill (C1)

Proof. Assume that $i = 1$ and denote $e'_1 \equiv e_1 \setminus \{1\}$ and $e'_2 \equiv e_2 \setminus \{1\}$, then $e_1 \cup e_2 \setminus \{1\} = e'_1 \cup e'_2$:

$$C_{e_1} H_i C_{e_2} H_i C_{e_1} |+\rangle_i |\psi\rangle = C_{e'_1 \cup e'_2} CNOT_{e'_2 \cup e'_1} C_{e'_1 \cup e'_2} |+\rangle_i |\psi\rangle \hfill (C2)$$

We can express an arbitrary multi-qubit state $|\psi\rangle$ in Pauli-X orthonormal basis $|j\rangle$: $|\psi\rangle = \sum_j \phi_j |j\rangle$. Then each vector $|+\rangle_i |j\rangle$ is itself a hypergraph state. In Ref. [37] the action of a generalized $CNOT$ gate was described on hypergraph states as we have already used in the previous sections: Applying the generalized $CNOT_{e_t}$ gate to a hypergraph state, where a set of control qubits C controls the target qubit t, introduces or deletes the set of edges $E_t = \{e_t \cup C | e_t \in A(t)\}$.

In our example the target qubit \(t = 1 \) and for each hypergraph state \(|+\rangle_1 |j\rangle \) the target qubit \(t = 1 \) is in a single hyperedge \(C_{e_1} \) only. Therefore from linearity follows that:

\[
C_{\{1\} \cup e_1} CNOT_{e_2,1} C_{\{1\} \cup e_1} |+\rangle_1 (\sum_j \psi_j |j\rangle) = C_{\{1\} \cup e_1} C_{e_2 \cup e_1} C_{\{1\} \cup e_1} |+\rangle_1 (\sum_j \psi_j |j\rangle) = C_{e_2 \cup e_1} |+\rangle_1 |\psi\rangle
\]

\((C3) \)

For an example let us step-by-step consider the circuit in Fig. 7 in the main text implementing a \(C^6Z \) gate:

\[
C_{145} H_1 C_{123} H_1 C_{145} |+\rangle_1 |+\rangle_2 |+\rangle_3 |\psi\rangle_{456789} = C_{2345} |+\rangle_1 |+\rangle_2 |+\rangle_3 |\psi\rangle_{456789}. \quad (C4)
\]

Applying the same identity one more time when we have a Hadamard on the second qubit (we omit the first qubit \(|+\rangle_1 \)):

\[
C_{267} H_2 C_{2345} H_2 C_{267} |+\rangle_2 |+\rangle_3 |\psi\rangle_{456789} = C_{34567} |+\rangle_2 |+\rangle_3 |\psi\rangle_{456789}. \quad (C5)
\]

And finally, using the third qubit \(|+\rangle_3 \) for the same identity, we get the \(C^6Z \) gate (we again omit writing \(|+\rangle_1 \)):

\[
C_{389} H_3 C_{34567} H_3 C_{389} |+\rangle_3 |\psi\rangle_{456789} = |+\rangle_3 C_{456789} |\psi\rangle_{456789}. \quad (C6)
\]

Measuring qubits 1, 2, 3 in Pauli-X bases, we get \(C_{456789} = C^6Z \) gate being applied to the arbitrary state \(|\psi\rangle_{456789} \).

Next we count physical resource necessary to implement \(C^N Z \) gate. We saw in Appendix B in Fig. 9 that the minimal physical resource for \(CCZ^{nn} \) gate is one physical \(CCZ^{nn} \) gate, and three \(CZ \) gates, represented by physical edges \{1, 4\}, \{2, 5\}, \{3, 6\} and six ancilla qubits \{1, 2, 3, 4, 5, 6\}. The minimal physical resource for a \(SWAP \) gate is nine \(CZ \) gates and eight ancilla qubits represented in Fig. 10 (b). Number of total \(CCZ^{nn} \) gates can be counted easily from the circuit, it also matches with number of Hadamard gates in the circuit plus one and for implementing \(C^{3 \cdot 2^k} \) gate is equal to:

\[
K_{CCZ} = 3 \left(\sum_{k=1}^{r} 2^k \right) + 1 = 2N - 5. \quad (C7)
\]

Here we count number of \(SWAP \) gates needed. For \(C^6Z \) we need twenty-four \(SWAP \) gates. In general, to implement a \(C^N Z \) gate with our protocol having already created a \(C^{N/2} Z \) gate, we need \(N(N - 2) \) \(SWAP \) gates. So, in order to create \(C^N Z \) gate we need to sum up \(SWAP \) gates needed at all previous steps of iteration. If \(N = 3 \cdot 2^k \), then there are totally \(r = \log(N/3) \) iterations in our model from Observation 2. To sum up, totally

\[
K_{SWAP} = \sum_{k=1}^{r} (3 \cdot 2^k)(3 \cdot 2^k - 2) = 4N \left(\frac{N}{3} - 1 \right) \quad (C8)
\]
FIG. 12. (a) The 55-qubit graph state given in Ref. [26], which can implement three-qubit phase-gates. Six gray vertices are for input-output, seven dark purple vertices are measured in the second round of measurement, the rest is measured in Pauli-\(X\) basis in the first round and the vertices which are already removed are measured in Pauli-\(Z\) basis. (b) The seven-qubit graph state obtained after Pauli measurements on (a) capable of implementing a three-qubit phase-gates [26, 57].

SWAP gates are needed.

So, to sum up we need \(K_{CCZ} = 2N - 5\) physical \(CCZ^m\) gates, \(3K_{CCZ} + 9K_{SWAP} = 3(2N - 5) + 12N^2 - 36N = 12N^2 - 30N - 15\) physical \(CZ\) gates, and \(6K_{CCZ} + 8K_{SWAP} = \frac{32}{3}N^2 - 20N - 30\) physical qubits.

Next we look into the standard protocol for creating the \(C^N\) \(Z\) gate using MBQC with cluster states. In Ref. [26] the 55-qubit cluster state is given to implement three-qubit phase-gates. Some of the vertices are missing from the cluster as they have been measured in Pauli-\(Z\) basis (see Fig. 12 (a) for the 55-qubit cluster state from Ref. [26]). The gray qubits serve for input and output registers. The main idea of the protocol is to measure all the vertices displayed on Fig. 12 (a) except the dark purple ones in the first round of measurements in Pauli-\(X\) basis simultaneously. Resulting post-measurement state up to Pauli byproducts is the seven-qubit graph state on Fig. 12 (b). Note the similarity of this graph with the graph in Fig. 5 of Ref. [57].

We draw this graph state in the following way: The graph has \(\binom{3}{1}\) = 3 central vertices, which are connected to input-output wires, \(\binom{3}{2}\) = 1 vertex adjacent to all the central qubits, and \(\binom{3}{3}\) = 3 vertices, each adjacent to only two of the central vertices such that all pairs from the central vertices are connected to distinct vertices. Totally, this makes \(\binom{3}{1} + \binom{3}{2} + \binom{3}{3}\) = \(2^3 - 1\) = 7 qubits. Then, depending on the previous Pauli-\(X\) measurement outcomes, each of these seven qubits are measured in the two eigenbases of \(U_Z(\pm \frac{\pi}{4})XU_Z(\pm \frac{\pi}{4})^\dagger\) creating a three-qubit phase-gate up to Pauli byproducts [26, 57].

If we extend this result for \(C^4\) \(Z\) gate, the initial cluster state must be reduced to the graph state via Pauli measurements implemented in parallel. The structure of this graph is analogous to the one discussed for \(C^3\) \(Z\) case. But now we need \(\sum_{i=1}^4 \binom{4}{i}\) = \(2^4 - 1\) qubits. From here one can see that to implement a \(C^N\) \(Z\) gate in the standard way starting from the cluster state, one would only need to adapt measurement basis twice, which is constant for any \(N\), but number of qubits one would require is \(\sum_{i=1}^N \binom{N}{i}\) = \(2^N - 1\) which is exponential with the size of the gate implemented [57].

Let us look at the count of a physical qubits in case our gate identity from Theorem 2 is used on a cluster state. As seen in Fig. 12 (b) for the three-qubit phase-gate eight physical qubits are needed. The swap gate can be implemented as in Fig. 10 (b), therefore needs 8 qubits. Therefore totally \(8(K_{CCZ} + K_{SWAP}) = \frac{32}{3}N^2 - 16N - 40\) qubits are needed, which is polynomial in \(N\).

[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).
