Synthesis and characterization of new 1,4-dihydropyran derivatives by novel Ta-MOF nanostructures as reusable nanocatalyst with antimicrobial activity

Irfan Ahmad\(^1\), Saade Abdalkareem Jasim\(^2\)*, Ghulam Yasin\(^3\), Basim Al-Qargholi\(^4\) and Ali Thaeer Hammid\(^5\)

\(^1\)Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia, \(^2\)Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq, \(^3\)Department of Botany, Bahauddin Zakariya University, Multan, Pakistan, \(^4\)Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq, \(^5\)Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq

Novel Ta-MOF was synthesized under mild conditions by ultrasound irradiations. The sample was characterized by SEM, FTIR, XRD, XPS, TG and BET technique. The final structures showed high physicho-chemical properties including narrow particle size distribution, homogenous morphology, high thermal stability and remarkable surface area. Ta-MOF synthesized in this study was used as a catalyst in the synthesis of 1,4-dihydropyran derivatives. The results proved that it has a high catalyst capability. Its advantages include high recyclability, less reaction time with higher efficiency and synthesis of new 1,4-dihydropyran derivatives. In the following, antimicrobial activity including antifungal and antibacterial activity of Ta-MOF nanoparticles based on Minimum Inhibitory Concentration, Minimum Fungicidal Concentration and Minimum Bactericidal Concentration were evaluated. The synthesized Ta-MOF, in addition to high catalytic properties, showed high antimicrobial activity with MIC value between 16 and \(-256\) μg/ml, and can be introduced as an agent against bacteria and fungi.

KEYWORDS
multicomponent reaction, 1, 4-dihydropyran, Ta-MOF nanostructures, reusable nanocatalyst, antimicrobial activity

1 Introduction

Metal organic frameworks nanostructures (MOFn) are crystalline compounds that have functional potentials depending on their distinct properties such as high surface resistance, chemical properties, mechanical and physical features (Ren et al., 2015; Al-Rowaili et al., 2018; Li et al., 2021). These properties include high porosity, high surface area, small particle size distribution and high thermal stability (Ghanbari et al., 2020; Zeng...
et al., 2020). Due to these characteristics, the samples have practical potentials in the field of environment, medicine and sensors (Yang et al., 2019; Zeng et al., 2020; Liu et al., 2022).

Although these samples have distinct properties, it is important to activate them in order to control their critical properties for a systematic purpose (Guselnikova et al., 2019). Various methods have been used for this purpose, including microwave and inverse micelle method. In most of these methods, the properties of the final product are not ideal, including low specific surface area and lack of control over porosity properties (Choi et al., 2008; Bakhshi et al., 2022).

Ultrasonic is a new method that not only produces the compound in a short time and has controlled properties. It also activates the surface properties of the products. These
features distinguish this route from conventional methods (Razavi et al., 2017).

So far, different MOF nanostructures have been produced that have different applications. Among these compounds, tantalum (Ta) nanostructures have received special attention due to their different oxidation number, high reactivity and desirable catalytic properties (Karami et al., 2020).

Today, the use of nanoparticles in organic chemistry was increasing and in the synthesis of organic and heterocyclic compounds as efficient and recyclable catalysts have been reported (Chen et al., 2018; Dhameliya et al., 2020; Kazemi, 2020; Purohit et al., 2020; Zhao et al., 2021). Nanoparticles have a high ability to synthesize heterocyclic compounds using the multi-component reaction method (Keivanloo et al., 2013; Shaabani et al., 2017; Zeebaree and Zeebaree, 2019; Tamoradi et al., 2020). As we know, in multi-component reactions, three or more reactants are reacted together under optimal conditions and the desired product is synthesized in one step (Neto et al., 2021; Mohajer et al., 2022). Pyran’s six-membered heterocyclic ring, which has an oxygen in its structure, also has a high ability to be synthesized using multi-component reactions under different conditions. Pyran derivatives has several biological properties (Borah et al., 2021; Kate et al., 2022) for example vitamin E (Scheme 1) which is one of the essential compounds for human life has a pyran derivatives ring in its structure.

Furthermore Zanamivir (Scheme 2) as a commercial antiviral drug contains pyran derivatives (Garazd and Garazd, 2016).

Due to the importance of synthesizing compounds using new methods and the use of recyclable catalysts, novel Ta- metal organic frameworks nanostructures with desirable physicochemical properties were synthesized and used as a recyclable catalyst in the synthesis of 1,4-Dihydropyran derivatives. In addition to catalytic activity, the synthesized Ta-MOF nanoparticles showed acceptable antimicrobial properties.

2 Experimental section

2.1 Materials and devices

Merck and Sigma-Aldrich are the brands that required reagents and solvents were prepared. TG analysis were used from 25°C to 700°C with rate of 10°C.min⁻¹ under an N₂ atmosphere with model of TA (Q600. America). The morphology and mean particle size were obtained by SEM analysis (Czech Republic, TESCAN, MIRA III). FTIR spectra of the Ta-MOF have been recorded between 4,000 and 500 cm⁻¹ as KBr pellets on AVTAR Spectrometer. Textural properties including porosity and specific surface area were measurement with an N₂ adsorption/desorption technique (JAPAN, BELSORP MINI II). CHN and S elemental analyses of derivatives were performed by Thermo Finnigan Flash EA microanalyzer. ¹H and ¹³C-NMR spectra of derivatives were recorded in the DMSO-d₆ solutions by Bruker FT-NMR Ultra Shield-250 spectrometer.
Kruss type KSP1N melting point meter were used for Uncorrected melting points of derivatives. XPS measurement was performed with Al-Ka 1,486.6 eV X-ray lab source using Omicron energy analyzer (EA-125).

2.2 Synthesis of Ta-MOF nanostructures

In an ultrasonic assisted method, solution of Ta (NO3)3.6H2O (0.2 mmol) and C7H5NO4 (0.4 mmol) in 35 ml of water was prepared. Resultant solution was then added to the ultrasonic bath under optimal conditions including time duration of 10 min, temperature of 25°C and ultrasonic power of 150 W. After 30 min, the initial crystals of Ta-MOF were created and separated by centrifugation.

2.3 Synthesis of 1,4-dihydropyran derivatives by Ta-MOF nanostructures

A mixtures of 1 mmol aromatic aldehydes, 1 mmol malononitrile, 1 mmol ethyl acetoacetate and 3 mg Ta-MOF nanostructures in 2 ml EtOH was stirred at room temperature. The reaction monitoring by TLC (thin layer chromatography) and after of completion, to separate nanoparticles 10 ml acetone was added. Finally the solvent was removed and the precipitates recrystallized in EtOH/H2O.

2.3.1 Methyl 6-amino-5-cyano-2-methyl-4-phenyl-4H-pyran-3-carboxylate (4a)

Efficiency 95%; IR (KBr, Vmax/cm): 3425, 3341 (NH2), 2152 (CN), 3279 (OH), 1665 (CO), H NMR (300 MHz, DMSO-d6), δ (ppm): 2.27 (s, 3H, CH3), 3.58 (s, 3H, OCH3), 4.92 (s, 1H, CH), 6.77 (s, 2H, NH2), 7.02 (d, J = 8.40 Hz, 2H, Ar), 7.15-7.19 (t, J = 7.4 Hz, 1H, Ar), 7.42-7.45 (t, J = 8.5 Hz, 2H, Ar).

2.3.2 Methyl 6-amino-5-cyano-4-(3-hydroxyphenyl)-2-methyl-4H-pyran-3-carboxylate (4b)

Efficiency 91%; IR (KBr, Vmax/cm): 3412, 3385 (NH2), 3257 (OH), 2137 (CN), 1672 (CO), H NMR (300 MHz, DMSO-d6), δ (ppm): 2.37 (s, 3H, CH3), 5.25 (s, 1H, CH), 6.32-6.35 (m, 3H, Ar), 6.45 (s, 2H, NH2), 6.86 (t, J = 7.5 Hz, 1H, Ar), 9.14 (s, 1H, OH).

2.3.3 Methyl 6-amino-5-cyano-4-(4-hydroxyphenyl)-2-methyl-4H-pyran-3-carboxylate (4c)

Efficiency 93%; IR (KBr, Vmax/cm): 3452, 3375 (NH2), 3257 (OH), 2137 (CN), 1672 (CO), H NMR (300 MHz, DMSO-d6), δ (ppm): 2.19 (s, 3H, CH3), 3.51 (s, 3H, OCH3), 5.12 (s, 1H,
2.3.4 Methyl 6-amino-5-cyano-4-(2-methoxyphenyl)-2-methyl-4H-pyran-3-carboxylate (4d)

Efficiency 88%; IR (KBr, Vmax/cm⁻¹): 3434, 3342 (NH₂), 2149 (CN), 1661 (CO), 1H NMR (300 MHz, DMSO-d₆), δ (ppm): 2.04 (s, 3H, CH₃), 3.57 (s, 3H, OCH₃), 3.69 (s, 3H, OCH₃), 5.05 (s, 1H, CH), 6.58 (s, 2H, NH₂), 6.71-6.73 (m, 2H, Ar), 6.90-6.93 (m, 2H, Ar).

2.3.5 Methyl 6-amino-5-cyano-4-(4-methoxyphenyl)-2-methyl-4H-pyran-3-carboxylate (4e)

Efficiency 95%; IR (KBr, Vmax/cm⁻¹): 3392, 3317 (NH₂), 2121 (CN), 1671 (CO), 1H NMR (300 MHz, DMSO-d₆), δ (ppm): 2.14 (s, 3H, CH₃), 3.54 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 4.98 (s, 1H, CH), 6.65 (s, 2H, NH₂), 6.79 (d, J = 8.1 Hz, 2H, Ar), 7.19 (d, J = 8.3 Hz, 2H, Ar).

2.3.6 Methyl 6-amino-5-cyano-4-(3,4-dimethoxyphenyl)-2-methyl-4H-pyran-3-carboxylate (4f)

Efficiency 87%; IR (KBr, Vmax/cm⁻¹): 3434, 3362 (NH₂), 2147 (CN), 1652 (CO), 1H NMR (300 MHz, DMSO-d₆), δ (ppm): 2.25 (s, 3H, CH₃), 3.64 (s, 3H, OCH₃), 3.72 (s, 6H, OCH₃), 5.24 (s, 1H, CH), 6.37 (s, 2H, NH₂), 6.71-6.75 (m, 3H, Ar-H); 13C NMR (DMSO-d₆) δ = 15.12, 38.57, 54.23, 55.48, 56.18, 58.44, 108.79, 112.86, 115.36, 119.47, 124.01, 136.48, 145.91, 147.24, 154.19, 161.12, 167.87; Anal. Calcd for C₁₇H₁₈N₂O₅: C, 61.81; H, 5.49; N, 8.45; O, 26.46. Found: C, 61.82; H, 5.52; N, 8.45; O, 26.23.

2.3.7 Methyl 6-amino-5-cyano-2-methyl-4-(3,4,5-trimethoxyphenyl)-4H-pyran-3-carboxylate (4g)

Efficiency 84%; IR (KBr, Vmax/cm⁻¹): 3451, 3387 (NH₂), 2130 (CN), 1669 (CO); 1H NMR (DMSO-d₆) δ = 2.22 (s, 3H, CH₃), 3.67 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 3.79 (s, 6H, OCH₃), 5.18 (s, 1H, CH), 6.33 (s, 2H, NH₂), 6.68-6.73 (m, 3H, Ar-H); 13C NMR (DMSO-d₆) δ = 15.75, 39.01, 52.76, 55.72, 56.35, 56.89, 57.99, 109.24, 119.47, 120.16, 120.94, 135.38, 146.29, 146.86, 147.24, 155.59, 160.62, 166.43; Anal. Calcd for C₁₈H₂₀N₂O₆: C, 59.99; H, 5.59; N, 7.77; O, 26.64. Found: C, 59.96; H, 5.60; N, 7.75; O, 26.67.

2.4 Antimicrobial activity activity of Ta-MOF

Antibacterial and antifungal activity of Ta-MOF nanostructures including broth microdilution and time-kill test were evaluated according previously reported methods and CLSI guidelines M07-A9, M26-A, M27-A2 (Etemadi et al., 2016; Hosseinazadegan et al., 2020a; Hosseinazadegan et al., 2020b; Moghaddam-Manesh et al., 2020; Moghaddam-manesh et al., 2021; Zeraati et al., 2022).

Antimicrobial activity including Minimum Fungicidal Concentration (MFC), Minimum Bactericidal Concentration (MBC) and Minimum Inhibitory Concentration (MIC) values on fungi and Gram-positive bacteria strains and Gram-negative strains, were tested and all tests were repeated three times and the mean values of the test results were reported.

3 Results and discussion

3.1 Synthesis and characterization of Ta-MOF

Figure 1A shows thermal curve of Ta-MOF nanostructures synthesized by ultrasonic method. According to this analysis, a main peak occurred in region about 312°C, which is related to the decomposition of 2, 6 pyridine dicarboxylic acid (ligands) in the structure. The thermal stability of product seems to be at a temperature range before 312°C. This stability has improved compared to the previous Ta-MOF sample. Optimal synthetic conditions as well as different configurations of compounds have
SCHEME 3
Synthesis of 1,4-dihydropyran derivatives by Ta-MOF nanostructures.

TABLE 1 Optimization of reaction conditions in synthesis by Ta-MOF nanostructures.

No	Product	Solvent	NPs (mg)	Temperature (°C)	Time (min)	Yield (%)
1	4a	H₂O	5	r. t	30	59
2	4a	EtOH	5	r. t	30	71
3	4a	MeOH	5	r. t	30	35
4	4a	H₂O:EtOH (1:1)	5	r. t	10	95
5	4a	EtOH	5	40	15	92
6	4a	EtOH	5	50	15	89
7	4a	EtOH	5	reflux	15	85

TABLE 2 Synthesized 1,4-dihydropyran derivatives (4a-g) by Ta-MOF nanostructures.

Entry	Product	Structure	Time (min)	Yield (%)	Mp (°C)	Found	Reported
1	4a	![Structure 1](image1.png)	10	95	175-177	177-178	Amirnejat et al. (2020)
2	4b	![Structure 2](image2.png)	14	91	162-164	163-165	Heravi et al. (2022)

(Continued on following page)
greatly influenced this difference. In temperature ranges of 390 and 478°C, the residual of Ta-MOF components will decompose, which can be attributed to the collapse of the organometallic lattice.

Figure 1B shows SEM image of Ta-MOF nanostructures synthesized by ultrasonic method in optimum conditions. Since the production of Ta-MOF nanostructures with uniform morphology and small particle size distribution affect the

Entry	Product	Structure	Time (min)	Yield (%)	Mp (°C)	
					Found	Reported
3	4c	![Structure](image1.png)	15	93	172-173	172-174 Heravi et al. (2022)
4	4d	![Structure](image2.png)	17	88	189-192	190-192 Malviya et al. (2019)
5	4e	![Structure](image3.png)	10	95	166-168	165-167 Heravi et al. (2022)
6	4f	![Structure](image4.png)	20	87	195-197	New
7	4g	![Structure](image5.png)	23	84	200-202	New
effective application of samples, so according to this Fig, synthesis of Ta-MOF samples with such desirable properties can be related to the development of suitable precursor and usage of optimum synthetic conditions. In addition, according to SEM image, morphology of the Ta-MOF samples is spherical, which can affect the surface area of the final products. In order to ensure the presence of elements of Ta, O and C on the final structure, EDX elemental analysis was used, which as shown in Figure 1C, these related elements are well observed in the Ta-MOF nanostructure.

The X-ray spectrum of nanoparticles was shown in Figure 2A. Based on the results obtained from the spectrum, the pattern observed for Ta-MOF nanostructures was similar to the monoclinic crystal system reported for similar MOF compounds (Sargazi et al., 2018).

One of the important properties that affects the application of products in different fields is textural properties. Figure 2B shows the N\textsubscript{2} adsorption/desorption isotherms for Ta-MOF nanostructures synthesized by the ultrasonic method. Based on this isotherm, the adsorption/desorption behavior of Ta-MOF is similar to the type III of classical isotherm series, which is related to microporous nature of products with weak interaction (Gupta et al., 2012). As an important result, the specific surface area of the Ta-MOF nanostructures is about 1700 m2/g, which

Entry	Cat	Time (min)	Temperature (°C)/condition	Yield (%)
1	Pd MNP	20	r. t	90
2	Dibutylamine	20	r. t	85
3	Ta-MOF nanostructures	15	r. t	93

TABLE 3 Synthesis of 4c in different conditions.

SCHEME 4
Proposed mechanisms for the synthesis of 1,4-dihydropyran derivatives derivatives by by Ta-MOF nanostructures.

FIGURE 5
Ability to reuse of Ta-MOF in synthesis of 5a. The results of Figure 5 show that the efficiency reduction with catalyst reuse in 6 times is negligible.
facilitates the potential application of Ta-MOF in the biological field (Rojas et al., 2014).

Figure 2C showed the XPS spectra of Ta-MOF nanostructures. Based on this Fig, some characterization binds related to information of Ta-MOF are showed in final structures. It is in accordance with the results of elemental analysis confirming the presence of carbon, oxygen and tantalum elements in the structure. As an important results, present of binding energy related to information Ta-MOF is a strong evidence to correct synthesis of catalyst.

Figure 3 showed FTIR spectrum of ligand (4A) and Ta-MOF (4B) prepared by ultrasonic route. Based on the IR spectrum, all the peaks in the ligand were observed in the nanoparticles. The carboxylic acid group was observed at 3400 cm$^{-1}$ (Yang et al., 2021). The peak near 3010 cm$^{-1}$ confirms the presence of coordinated water in the Ta-MOF nanostructures. The stretching vibration of aromatic C-H was attributed to the peak at 2800 cm$^{-1}$. The bending C-H groups are the reasons for the peak around 760 cm$^{-1}$, while those around 700 and 640 cm$^{-1}$ are related to the Ta-O bond (Wang et al., 2021). According to the results of FTIR spectra and considering various configurations of the linker (Sargazi et al., 2020), the structures of Ta-MOF nanostructures were proposed in Figure 4.

3.2 Catalytic activity of Ta-MOF

By Multicomponent reaction of aldehyde derivatives, malononitrile and methyl acetoacetate and using Ta-MOF nanostructure as reusable nanocatalyst novel 1,4-dihydropyran derivatives according to scheme 3 were synthesized. The optimal conditions such as solvent, amount of catalyst and temperature were studied and the results were given in Table 1. The results proved that the best solvent was the mixture of water and ethanol (1:1), the optimal amount of catalyst was 4 mg and the optimum temperature was room temperature and by using optimal conditions 1,4-dihydropyran derivatives were synthesized according to Table 2.

The proposed mechanism for the synthesis of 1,4-dihydropyran derivatives by using Ta-MOF nanostructures were given in Scheme 4. The Ta-MOF nanostructures used in this study showed high recyclability. To study the recycling properties of the catalyst (Wang et al., 2022), after completion of the reaction and separation, it was washed several times with water and ethanol and after drying at room temperature was reused and the results of catalyst recycling were shown in Figure 5.

To compare the catalytic activity of Ta-MOF nanostructures with previous reports, synthesis 4c were examined. A review of previous reports showed that Dibutylamine (Kalla et al., 2015) and Fe$_3$O$_4$@SiO$_2$@NH$_2$@Pd(OCOCH$_3$)$_2$ (Pd-MNPs) (Heravi et al., 2022) recently reported for synthesis of 4c. The comparison results of the synthesis methods were given in Table 3.
3.3 Antimicrobial activity of Ta-MOF nanostructures

MIC, MFC and MBC values for Ta-MOF nanostructures on Aspergillus fumigatus (PTCC 5009) and Fusarium oxysporum (PTCC 5115) as Fungi strains, Rhodococcus equi (PTCC 1633) and Staphylococcus epidermidis (PTCC 1435) as Gram-positive bacteria strains and Shigella dysenteriae (PTCC 1188) and Escherichia coli (PTCC 1399) as Gram-negative strains were tested and the results of the MIC, MBC and MFC values for Ta-MOF nanostructures were given in Table 4.

Ta-MOF nanostructures showed a good effect on the studied fungal and bacterial strains. The antifungal and antibacterial activity of Ta-MOF nanostructures was compared with commercial antifungal drugs such as terbinafine and trolnafate and common commercial antibiotics such as gentamicin and cefazolin and the results showed that trolnafate had no effect on Aspergillus fumigatus and Fusarium oxysporum, but the Ta-MOF nanostructures showed a good effect with MFC 64 μg/ml and 32 μg/ml, respectively. In antibacterial activity, cefazolin had no effect on Rhodococcus equi and Shigella dysenteriae, but the MBC values for Ta-MOF nanostructures was obtained 32 μg/ml and 256 μg/ml, respectively.

4 Conclusion

In this study, novel Ta-metal organic nanostructures with desirable physicochemical properties were synthesized under optimum conditions of ultrasonic (time duration of 10 min, temperature of 25°C and ultrasonic power of 150 W). The final products have thermal stability around 312°C, high surface area of 1700 m²/g and small particle size distribution of 55 nm. The Ta-MOF nanostructures were used as recyclable catalysts in the synthesis of 1,4-dihydropyran derivatives and new derivatives were synthesized. Ta-metal organic nanostructures, in addition to their catalytic properties, also showed significant antimicrobial properties.

References

Ahmad et al. 10.3389/fchem.2022.967111

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

Author contributions

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

The authors would like to thanks Scientific Research Dean- ship at King Khalid University, Abha, Saudi Arabia through the Large Research Group Project under grant number (RGP.02/219/43).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Catalytic approaches to multicomponent reactions: A critical review and perspectives on the roles of catalyst. Molecules 27, 132. doi:10.3390/molecules27010132
Purohit, G., Rawat, D. S., and Reiser, O. (2020). Palladium nanocatalysts encapsulated on porous silica @ magnetic carbon-coated cobalt nanoparticles for sustainable hydrogenation of nitroarenes, alkenes and alkynes. ChemCatChem 12, 569–575. doi:10.1002/ccct.201901571
Razavi, S. A. a, Masoomi, M. Y., and Morsali, A. (2017). Ultrasound assisted synthesis of a tetrazine functionalised MOF and its application in colorimetric detection of phenylhydrazine. Ultrason. Sonochem. 37, 502–508. doi:10.1016/j.ulsonch.2017.02.011
Ren, J., Langmi, H. W., North, B. C., and Mathe, M. (2015). Review on processing of metal-organic framework (MOF) materials towards system integration for hydrogen storage. Int. J. Energy Res. 39, 607–620. doi:10.1002/er.3255
Rojas, S., Quartapelle-Procopio, E., Carmona, F., Romero, M., Navarro, J., and Barea, E. (2014). Biophysical characterisation, antitumor activity and MOF encapsulation of a half-sandwich ruthenium(ii) misonoxantranato system. J. Mat. Chem. B 2, 2473–2477. doi:10.1039/c3tb21513f
Sargazi, G., Afzali, D., and Mostafavi, A. (2018). An efficient and controllable ultrasonic-assisted microwave route for flower-like Tat(Ⅲ)-MOF nanostructures: Preparation, fractional factorial design, DFT calculations, and high-performance N2 adsorption. J. Porous Mater 25, 1723–1741. doi:10.1007/s10924-018-0658-3
Sargazi, G., Afzali, D., Mostafavi, A., and Kazemam, H. (2020). A novel composite derived from a metal organic framework immobilized within electropositive nanofibrous polymers: An efficient methane adsorbent. J. Catal. 380, 345–348. doi:10.1016/j.jcat.2020.05.448
Shaaban, A., Afshari, R., and Hooshmand, S. E. (2017). Crosslinked chitosan nanoparticle-anchored magnetic multi-wall carbon nanotubes: A bio-nanoreactor with extremely high activity toward click-multicomponent reactions. New J. Chem. 41, 8469–8481. doi:10.1039/c7nr01150d
Tamordari, T., Mousavi, S. M., and Mohammadi, M. (2020). Praseodymium(ii) anchored on CoFe2O4 MNPs: An efficient heterogenous magnetic nanocatalyst for one-pot, multi-component domino synthesis of polyhydroquinoline and 2,3-di- hydroquinazolin-4(1H)-one derivatives. New J. Chem. 44, 3012–3020. doi:10.1039/c9nr06546e
Wang, Z., Dai, L., Yao, J., Guo, T., Hrynsphan, D., Tatsiana, S., et al. (2021). Improvement of Alcaligenes sp. TB performance by Fe-Pd/multi-walled carbon nanotubes: Enriched denitrification pathways and accelerated electron transport. Bioresour. Technol. 327, 124785. doi:10.1016/j.biortech.2021.124785
Wang, Y., Wu, X., Liu, J., Zhai, Z., Yang, Z., Xia, J., et al. (2022). Mo-modified band structure and enhanced photocatalytic properties of tin oxide quantum dots for visible-light driven degradation of antibiotic contaminants. J. Environ. Chem. Eng. 10, 107091. doi:10.1016/j.jece.2021.107091
Yang, Y., Wang, S. Q., Wen, H., Ye, T., Chen, L. J., et al. (2019). Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation Angew. Chem. Int. Ed. 58, 15362–15366. doi:10.1002/anie.2019099770
Yang, Y., Zhu, H., Xu, X., Bao, L., Wang, Y., Lin, H., et al. (2021). Construction of a novel lanthanum carbonate-grafted ZSM-5 zeolite for effective highly selective phosphate removal from wastewater. Microporous Mesoporous Mater. 324, 111289. doi:10.1016/j.micromeso.2021.111289
Zeerabae, Y. S. S., and Zerabae, A. Y. S. (2019). Synthesis of copper nanoparticles as oxidising catalysts for multi-component reactions for synthesis of 1, 3, 4-thiadiazole derivatives at ambient temperature. Sustain. Chem. Pharm. 13, 100155. doi:10.1016/j.scbp.2019.100155
Zeng, Q., Bie, B., Guo, Q., Yuan, Y., Han, Q., Han, X., et al. (2020). Hyperpolarized Xe NMR signal advancement by metal-organic framework entrapment in aqueous solution. Proc. Natl. Acad. Sci. 117, 17355–17356. doi:10.1073/pnas.2004121117
Zeraati, M., Moghaddam-Manesh, M., Khodamoradi, S., Hosseinzadegan, S., Golpayegani, A., Chauhan, N. P. S., et al. (2022). Ultrasound assisted reverse micelle synthesis of a novel Zn-metal organic framework as an efficient candidate for antimicrobial activities. J. Mol. Struct. 13147, 131315. doi:10.1016/j.molstruc.2021.131315
Zhao, C., Xi, M., Huo, J., and He, C. (2021). B-Doped 2D-InSe as a bifunctional catalyst for CO 2/CH 4 separation under the regulation of an external electric field. Phys. Chem. Chem. Phys. 23, 23219. doi:10.1039/d1cp03943a

Ahmad et al. 2022.