Assessment of metal levels in foodstuffs from the Region of Valencia (Spain)

Silvia Marín a, Olga Pardo a,b, Alfredo Sánchez a, Yovana Sanchis b, Dinoraz Vélez c, Vicenta Devesa c, Guillermina Font a, Vicent Yus a,b,c,*

a Food Safety Research Area, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, FISABIO. Av. Catalunya, 21, 46020, Valencia, Spain
b Analytical Chemistry Department. University of Valencia. Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
c Institute of Agrochemical and Food Technology (IATA-CSIC). Av. Agustín Escardino no 7, 46980 Paterna, Valencia, Spain

d Keywords: Metals Foodstuffs Occurrence data ICF-MS HPLC-CVAFS

ABSTRACT

Concentrations of lead, mercury, cadmium, arsenic, tin, copper and chromium were measured in a study carried out in 2010–2011. A total of 8100 food samples were collected and composite samples for 12 food groups were analysed for metal concentration levels. Metal levels were, in general, below the maximum levels set by the current European legislation. The fish group presented the highest Cd, Hg and As levels, whereas sweeteners and condiments group was the most contaminated food group by Pb, Cr and Sn and the meat group had the highest concentrations of Cu. The results of this study are generally similar to or lower than those observed in other studies conducted in other countries, except in the case of Hg, for which high values were obtained, mainly in swordfish. In addition, this survey confirms a decreasing tendency when compared with other studies carried out in Spain.

1. Introduction

Environmental contamination through heavy metals is recognised as a public health hazard worldwide [1]. The general population is exposed to a large number of relevant contaminants such as metals through food consumption, water and other environmental matrices. Diet (food and water) is the main route of exposure to metals [2]. Some metals are relevant toxic elements such as Pb, Cd, As, Cr (VI) and Hg or minor toxic metals (Sn), whereas others are considered essential or probably essential trace elements with likely potential toxicity at excess intakes such as Cu and Cr (III). Besides, mercury can occur as inorganic mercury, mercuric cations and organic mercury. Methylmercury (meHg) is by far the most common form of organic mercury in the food chain [3]. Regarding arsenic, the organic form is less harmful than the inorganic form of arsenic (iAs) which can cause cancer [4]. Nevertheless, the last EFSA Scientific Opinion on arsenic in food [5] shows that occurrence data on arsenic are usually reported as total arsenic (approximately 98%).

Although the European Commission adopted the Regulation 1881/2006 [6] setting maximum levels for Cd, Hg, Sn, iAs and Pb in foodstuffs, Member States should monitor and report levels of these elements to allow the Commission to assess the need to modify existing measures or to adopt additional ones. In addition, it is of great importance to determine the concentrations of metals in foodstuffs in order to calculate the dietary exposure, required to evaluate the possible risk associated through food consumption.

The dietary exposure of a population to food contaminants can be assessed by different approaches [7]. The World Health Organization (WHO) recommended the so-called total diet studies (TDSs) [8] and nowadays the standardised methodology recommended by the WHO [8] or more recently by EFSA [9] is the most widely used in many countries.

In 2008, the results of a monitoring programme on cadmium, lead and mercury in fish and seafood was carried out by the Department of Public Health of the Valencian government, Spain [10]. The estimated dietary exposure of these pollutants was also reported. However, a representative dataset on food consumption is more appropriate to derive the dietary exposure. Consequently, a new study was carried out in the Region of Valencia in which a representative dataset on food consumption was combined with data on the concentration of the compounds of interest in foods to derive the exposure. Over the last years, some studies have reported metal occurrence data in several countries such as France [11], UK [12] or Chile [13]. In Spain, other studies have also allowed the acquisition of data on the concentrations of trace elements in foodstuffs from Catalonia [14,15] or Canary Islands [16]. In 2008, a study was carried out in Valencia [17] to determine the levels

* Corresponding author.
E-mail address: yusa_vic@gva.es (V. Yusá).

https://doi.org/10.1016/j.toxrep.2018.05.005
Received 10 December 2017; Received in revised form 2 May 2018; Accepted 13 May 2018
Available online 21 May 2018

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
of mercury, cadmium and lead in fish and seafood marketed in the Region of Valencia using data from monitoring. To complement this study, in 2010–2011, the Public Health Directorate of the region of Valencia started the Valencia Total Diet Study, to estimate the dietary exposure to toxic and essential elements in order to assess the derived health risk. The data in the context of a health risk assessment was reported previously [18]. The present study contains more detail on analytical methods and more complete reporting of the results. The data presented are of great interest as it can be used for regulatory purposes.

The aim of this work was to present metal occurrence data in foodstuffs collected in the region of Valencia for Pb, Cd, As, Hg, Cu, Cr and Sn and to compare these results with those obtained in other countries or in different regions in Spain, and, when available, to compare these results with the maximum levels established by law [6].

2. Material and methods

2.1. Samples

Foodstuffs were selected to be representative of the diet of the population of the Region of Valencia. Two main criteria were considered for selecting the food in the study: (1) the most consumed foods in the population of the Region of Valencia. Two main criteria were considered for designing the sampling plan: the type of establishment and its geographical location. The sampling was carried out in two stages: (1) Selection of a random cluster sample corresponding to different geographical areas or core areas of the Valencian Region; being the sample size assigned to each city of the Region of Valencia, with over 25,000 inhabitants each, at their respective markets and supply chains (see Fig. S.I.1 in the supplementary information online).

Only edible parts of each food were included in the composites. Kitchen utensils were used for food handling. Food was homogenised with a Thermomix TM-21 food processor and the obtained mixture was divided into 100 g or mL aliquots. These composite samples were stored in high-density polyethylene bags. For maximum stability and homogeneity of samples, fresh samples (high water content) were previously lyophilised with a Telstar LyoAlfa 15 lyophiliser and sent to the laboratory for analysis.

2.2. Reagent and standard solutions

All reagents used in this study were Suprapur-type (Merck, Darmstadt, Germany), or of high analytical grade. Reagents and samples were prepared using analytical reagent grade chemicals and ultrapure water type I (ASTM) generated by purifying distilled water with a Milli-Q Gradient A10 system (Merck Millipore S.A., Merck KGaA, Darmstadt, Germany).

2.3. Analysis

The samples were analysed in two different laboratories: the Public Health Laboratory (Alicante) and the Institute of Agrochemical and Food Technology (Valencia), accredited following the ISO/IEC 17,025 standard [19]. The analytical techniques used fulfilled the criteria set in Regulation (EC) N°333/2007 [20]. All analyses were performed according to protocols of quality assurance, including duplicate samples, reagent blanks, fortified samples and certified reference materials. Detailed methodologies are described in the following sections.

2.3.1. Analysis of Pb, Cd, total As (tAs), Cu, Cr and Sn

The digestion of lyophilised samples was carried out using a microwave digestion system, Ethos one (Milestone Inc., Shelton, USA), equipped with the Q-20 Quartz Rotor Ultratrace Analysis (20 mL quartz

Food group	Foodstuffs	Nº Total samples	Nº total of composites (or analysis)
Vegetable oils (Vo)	Olive oil and sunflower oil	200	20
Mineral water (Mw)	Mineral water	100	10
Alcoholic beverages (Ab)	Wine and beer	200	20
Non-alcoholic beverages (nAb)	Soda and soft drinks, orange juice, multi-fruits juice	300	30
Meat and meat products (Meat)	Chicken, pork, beef, lamb, rabbit, hamburgers, sausages, cured ham, cooked ham, cured sausages, foie-grass and olif.	1200	120
Cereals, pulses, tuber, nuts and dried fruits (Cereal)	Rice, industrial bakery, cornflakes, cookies, beans, white bread, sliced bread, wholemeal bread, pasta, potatoes, dried fruits.	1100	110
Prepared dishes (Pd)	Pizzas, snacks, frozen prepared dishes and canned meals	400	40
Sweeteners and condiments (Sc)	Chocolate and cacao, sugar, salt, sweets and sauces and mayonnaise	500	50
Vegetables and fruits (Vf)	Spinaches and chards; le Helvetica*n; green beans; onions; garlic; peppers; aubergine, zucchini and cucumber; carrots and pumpkin; tomatoes; olives and pickles; cauliflower, cabbage and broccoli; artichokes, celery and leek; mushrooms; coffee and soluble coffee; oranges; strawberries; apples and pears; sherry and plum; melon and watermelon; banana; peach and apricot; grapes.	2200	220
Eggs (Egg)	Chicken eggs	100	10
Milk and dairy products (Milk)	Milk, cheese, yogurt, custards and smoothie, butter and soybean products	600	60
Fish and seafood (Fish)	Canned fish, tuna, squid and cuttlefish, sea bream and sea bass, swordfish, shellfish, mussels, whitefish, salmon and trout, sardine and anchovy, salting fish and smoked fish.	1200	120

Note: Number of samples/food item = 100.
Number of samples/composite = 10.
tubes, 250 °C and 40 bars operating parameters). A unique sample digestion procedure was applied to all samples, but immediately after digestion, different approaches were used depending on the stability of the analytes.

Approximately 0.25 g of lyophilised or dried sample were weighed in quartz digestion vessels and 5 mL of suprapure HNO3 (65%) were added in a fume hood. The mixture was left to react for over an hour until the gas generation process finished. Samples were placed in the microwave digestion system and the digestion programme shown in Table S.I.1 in the supplementary information online was applied.

In each digestion sequence, at least one randomly-selected vessel was filled with reagents only and taken through the entire procedure as a reagent blank. After cooling at room temperature, sample solutions were quantitatively transferred into 25 mL glass volumetric flasks (Class A) and completed with ultra-pure water to the final volume. Solutions were transferred to 50 mL polypropylene tubes and two aliquots were immediately prepared:

Aliquot for tAs, Cd, Cr, Cu and Pb analysis by ICP–MS: 9.9 mL of the digestion solution was placed in a 10 mL polypropylene tube and 0.100 mL of 10 mg L−1 Internal Standard solution (containing scandium (Sc), germanium (Ge), rhodium (Rh), antimony (Sb) and bismuth (Bi)) was added to obtain a final concentration of 10 μg L−1.

Aliquot for Sn analysis by ICP–MS: 9.4 mL of the digestion solution was placed in a 10 mL polypropylene tube, 0.5 mL of suprapur HCl 37% was added to stabilise Sn in solution and 0.1 mL of mg L−1 Internal Standard solution was added to obtain a final concentration of 10 μg L−1.

Residual moisture was determined in all lyophilised samples, in order to correct the final results expressed in dry mass. The following procedure was applied: approximately 0.5 g of sample was weighed on a previously dried and stabilised ceramic container and introduced in an oven at 105 °C overnight. After this step, containers were introduced in a desiccator and weighed until a constant weight was obtained.

Analysis were performed on an ELAN DRC II ICP-MS (PerkinElmer, Shelton, USA) equipped with a standard concentric-glass nebulizer and a baffled-glass cyclonic spray chamber (both from Meinhard® Glass Products, Golden, Colorado, USA). The instrumental operating conditions are shown in Table S.I.1 in the supplementary information online. As a routine basis, several performance parameters (i.e., sensitivity in the whole mass range, reading precision, double-charges and oxide formations) were checked daily with the 1 μg L−1 tuning solution. In high-chloride sample matrices (i.e., mineral salt, salted fish and salted meat) tAs was analysed by means of dynamic reaction cell (DRC) technology using ultra-pure oxygen (O2) as a reaction gas. In the rest of matrices, tAs was analysed in Standard mode. In all matrices, Cr was analysed in DRC mode using methane as a reaction gas in order to eliminate ArC-based interferences.

Multi-element standard solutions were used for external calibration. Six standards in 2% (w/w) HNO3 matrix for As, Cd, Cr and Pb, and in 2% (w/w) HCl matrix for Sn were prepared at levels ranging from 0 to 50 μg L−1. For Cu, the calibration range was enlarged up to 100 μg L−1. A standard linear regression approach was applied with internal standardisation.

Five different quality control samples (QCS) were chosen to monitor the analytical sequence: Initial Calibration Verification (ICV), Initial Calibration Blank (ICB), Reagent Blanks, Certified Reference Materials (CRM) and Continuous Calibration Verification (CCV) as well as internal standard signal monitoring. The CRM used to assess method performance criteria were BCR 150 (skinned milk), BCR 191 (brown bread) and BCR 185R (bovine liver) from the Community Bureau of Reference Materials and Measurement, European Commission, Joint Research Centre, DORM 3 (fish protein) from the National Research Council, Canada and LGC7162 (strawberry leaves) from the Laboratory of Government Chemist (LGC, UK) (see Table S.I.1 in the supplementary information online).

2.3.2. Analysis of total Hg (tHg)

Samples were digested in a microwave oven and mercury was measured by cold vapor generation coupled with atomic fluorescence spectrometry (CV-AFS), using a PSA team 10,023 model, Orpington, UK, in the samples of fish and seafood. Lyophilized samples (0.2 g) were placed in a Teflon PFA vessel and treated with 4 mL of HNO3 concentrate (14 N) and 1 mL of H2O2. The Teflon PFA vessel was irradiated at 800 W (180 °C, 15 min). At the end of the digestion programme, the digest was placed in a 250 mL beaker and allowed to rest all night to eliminate nitrous vapour. It was then filtered through 0.45 μm and made up to volume with 5% HCl (v/v).

2.3.3. Analysis of meHg

For the extraction of Hg species, an ultrasonic acid extraction was employed. A volume of 10 mL of extractant solution (0.10% v / v HCl + 0.05% m / v L-cysteine + 0.10% v / v 2-mercaptoethanol) was added to the lyophilized samples (0.2−2 g). The mixture was sonicated for 5 min and centrifuged (2000 rpm/15 min). The resulting extract was filtered through a 0.45 μm Whatman Nylon before the quantification by HPLC-thermooxidation-CV-AFS, using polytetrafluoroethylene (PTFE) tubing and T-joints.

The instrumental conditions for tHg and meHg determination and the method performance criteria are shown in Table S.I.2 in the supplementary information online. As CRM, DORM-2, TORT-2 and DORM-3, from the Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, were used.

2.3.4. Analysis of inorganic iAs

Analysis was performed by acid digestion, solvent extraction and hydride generation by flow injection (FI-HG-AAS) determination [21]. Deionised water (4.1 mL) and 12 mol L−1 HCl (18.4 mL) were added to lyophilised or dry food samples (0.5−1 g) and the mixture was left overnight (12-15 h). After reduction by HBr (2 mL) and hydrazine sulfate (1.5% w/v, 1 mL), iAs was extracted into chloroform (3 x 10 mL) and back-extracted into 1 mol L−1 HCl (2 x 10 mL). The determination of inorganic arsenic in the back-extraction phase was performed by means of the following procedure: 2.5 mL of ashing aid suspension (20% w/v Mg(NO3)2 + 2% w/v MgO) and 10 mL of 14 mol L−1 HNO3 were added to the combined back-extraction phases. The mixture was evaporated on a sand bath until total dryness and placed in a muffle furnace (425 ± 25 °C; 12 h). The white ash obtained was dissolved in 6 M HCl and reducing solution (5% m/v KI + 5% m/v ascorbic acid). After 30 min, the resulting solution was filtered through Whatman No. 1 filter-paper and diluted to final volume with 6 mol L−1 HCl.

The instrumental conditions and the analytical characteristics of the method are shown in Table S.I.3 in the supplementary information online. As CRM, rice flour SRM 1568a from the National Institute of Standards and Technology (NIST) was analyzed with each series of samples.

2.4. Consumption data

Intake estimates were based on consumption data obtained from a questionnaire-based dietary survey conducted and validated in 2010–11 by the Valencian Public Health Directorate (Fullana et al. 2010). Dietary data were collected through a 24-h recall in which 1478 subjects (195 young children between 6 and 15 years of age and 43.5 kg mean body weight; and 1281 adults between 16 and 95 years of age and 71.2 kg mean body weight) were asked in a face-to-face interview to recall and describe the kinds and amounts of all foods and beverages ingested during the previous 24-h period. It was conducted from June 2010 to February 2011 in three consecutive periods or waves in order to take into account of variations in consumption patterns according to season. The food consumption data and more detailed information can be found in a previous paper published by the authors [18] in which dietary exposure was assessed.
2.5. Statistical analysis

Ordinary statistical methods were used to calculate the arithmetical mean, minimum and maximum levels on numbers (n) of general food groups. Results below the LOQ, were set to LOQ/2, as in a middle-bound (MB) scenario assessment and were set to LOQ in the upper-bound (UB) scenario assessment. The article describes the metal concentration data by food but the study was not designed to allow statistical comparisons between foods (only ten data per food). However, food group data were enough for carrying out a statistical comparison and assessment of significant differences. This was made using Student’s t-test. All statistics were performed using data analysis function in Microsoft Office Excel.

3. Results

Tables 2a and 2b (Pb, Cd, As, Cu, Cr and Sn) and Table 2c (Hg) show the concentration found in the different foodstuffs analysed. The distribution of element concentrations in food groups was represented graphically. All food group results were expressed as the mean on the corresponding figures.

3.1. Lead

Of the 810 samples analysed, 84% contained Pb at levels higher than the LoQ (Tables 2a and 2b and Fig. 1). All samples fell below the limits established by normative [6]. By food groups, the average levels of Pb found followed the sequence: “Sweeteners and condiments” (Sc) (0.0958 mg kg⁻¹) > Cereal (0.0438 mg kg⁻¹) > Fish (0.0349 mg kg⁻¹) > Meat (0.0273 mg kg⁻¹) > Prepared dishes” (Pd) (0.0225 mg kg⁻¹) > “Vegetable oils” (Vo) (0.0192 mg kg⁻¹) (see Fig. 1).

In the Sc group, salt was by far the product with the highest Pb mean level (0.331 mg kg⁻¹). In the “cereal” group, bakery presented the highest average levels (0.0893 mg kg⁻¹), followed by pasta (0.0540 mg kg⁻¹) and pulses (0.0522 mg kg⁻¹) (see Table 2a). In the “Fish group”, mussel presented the highest mean levels (0.2203 mg kg⁻¹). However, these values are below the maximum limit established by law [6]. In the “Meat” group, the food cured sausage presented the highest Pb levels (0.0607 mg kg⁻¹). Snacks were the food with the highest Pb average level in the “Prepared dishes” group (0.0376 mg kg⁻¹). The rest of food groups contained, in general, low average levels of Pb.

3.2. Cadmium

Of the 810 samples analysed, 54% contained Cd at levels higher than the LoQ (Tables 2a and 2b and Fig. 1). All of the samples fell below the limits established by normative [6].

The “fish” group presented the highest average levels of Cd, at 0.0816 mg kg⁻¹ (ranging between 0.0018 and 0.5686 mg kg⁻¹), followed by Sc (0.0512 mg kg⁻¹), “Meat” (0.0281 mg kg⁻¹), “Cereal” (0.0271 mg kg⁻¹) and “Prepared dishes” (0.0246 mg kg⁻¹) (see Table 2a and Fig. 1).

In the “fish” group, mussel presented, once again, the highest average Cd levels (0.1967 mg kg⁻¹) followed by squid (0.1853 mg kg⁻¹). The second group with high Cd levels was “Sweeteners and condiments”, mainly due to the contribution of chocolate and cocoa, with an average of 0.0938 mg kg⁻¹ (see Table 2a). In the “meat” group, offal presented the statistically highest Cd average levels (0.1583 mg kg⁻¹) (see Table 2a). Whereas dried fruits were the products with the highest level of Cd in the “Cereal” group, with a range between 0.040 and 0.232 mg kg⁻¹ (Table 2a).

3.3. Total arsenic

Of the 810 samples analysed, 87% contained tAs at levels higher than the LoQ (Tables 2a and 2b and Fig. 1). All samples were below the normatively established limits [6].

The “fish” group presented the highest tAs levels. Results ranged between 0.3292 and 18.3130 mg kg⁻¹ and the average level was 2.1669 mg kg⁻¹ (see Table 2a). The other food groups presented low values in relation to fishery products. In the present study, the concentration range was between 0.0304 mg kg⁻¹ for the “Cereal” and 0.0035 mg kg⁻¹ for “Alcoholic beverages” group. In the “Cereal” group, rice presented the highest level, with an average level of 0.1468 mg kg⁻¹ and a range between 0.1160 and 0.2330 mg kg⁻¹ (see Table 2a).

3.4. Inorganic arsenic

Of the 810 samples analysed, 91% contained iAs at levels higher than the LoQ (Tables 2a and 2b and Fig. 1). All samples were below the normatively established limits [6].

The iAs average concentration was 0.007 mg kg⁻¹ with a minimum of 0.0001 mg kg⁻¹ for tomato and a maximum of 0.0502 mg kg⁻¹ for shellfish (Tables 2a and 2b). By food groups, the highest levels of iAs were found in the “fish and fishery products” group, with an average of 0.0174 mg kg⁻¹. Shellfish showed the highest levels with an average of 0.0502 mg kg⁻¹, followed by the homogeneous mixture of “sardine and anchovy” with an average concentration of 0.03992 mg kg⁻¹. Mussel iAs average level was of 0.0270 mg kg⁻¹.

In the group of “cereals, pulses, tubers and nuts” of the present study, an iAs average value of 0.0133 mg kg⁻¹ fresh weight was obtained. Again, the highest level was found in rice with an average of 0.0740 mg kg⁻¹ (see Table 2a).

3.5. Mercury

Of the 120 fish and seafood samples analysed, 100% of tHg and meHg values were quantified (> LOQ) (Table 2c and Fig. 2). In the present study the average values were 0.2515 mg kg⁻¹ for tHg and 0.1604 mg kg⁻¹ for meHg (see Table 2c). The highest values of tHg and meHg were observed in swordfish (average of 1.4448 mg kg⁻¹ for tHg and values from 1.0854 to 2.2875 mg kg⁻¹), in which all samples exceed the limit established by law of 1.0 mg kg⁻¹ fresh weight [6]. Tuna average value was below the limit established by law [6], but 3 samples exceed it, with a maximum value of 1.6155 mg kg⁻¹ (see Fig. 2). The rest of the samples were below the maximum levels established by legislation. The lowest levels were detected in mussels (see Table 2c), with an average value of 0.007 mg kg⁻¹.

3.6. Copper

Of the 810 samples analysed, 97% contained Cu at levels higher than the LoQ (Tables 2a and 2b and Fig. 1). Average values obtained varied from 0.0485 mg kg⁻¹ in Alcoholic beverages group (Ab) to 5.1891 mg kg⁻¹ in the “meat” group.

In the “meat” group the levels ranged between 0.2663 mg kg⁻¹ (chicken) and 100.8016 mg kg⁻¹ (offal). The product with the highest average level was the offal with 50.4074 mg kg⁻¹ and the product with the lowest level was chicken (0.3589 mg kg⁻¹) (see Table 2a).

The “Cereals” group presented also high Cu levels, but below the “Meat” group, with an average of 3.0958 mg kg⁻¹ mainly due to the contribution of dried fruits in which an average of 11.483 mg kg⁻¹ was obtained (Table 2a).

In the “Sweeteners and condiments” group, the main contributors were chocolate and cocoa, with an average of 13.3355 mg kg⁻¹.

3.7. Chromium

Of the 810 samples analysed, 95% contained Cr at levels higher than the LoQ (Tables 2a and 2b and Fig. 1). The highest mean levels were found in the food group “sweeteners
Table 2a

Levels of Pb, Cd, As, Cu, Cr and Sn in foods in mg kg\(^{-1}\) fresh mass.

FOODSTUFFS	Pb	Cd	As	Cu	Cr	Sn
Vo (n = 20)	80	0.0192	0.0104	0.0270	0	0.0022
Olive oil	60	0.0204	0.0116	0.0270	0	0.0023
Sunflower oil	100	0.0004	0.0004	0.0104	0	0.0004
Wine	10	0.0023	0.0014	0.0270	0	0.0024
Mw (n = 10)	0	0.0002	0.0002	0.0104	0	0.0002
Ab (n = 20)	70	0.0048	0.0012	0.0684	23	0.0281
Meat (n = 120)	68	0.0273	0.0025	0.0684	23	0.0281
Chicken	40	0.0031	0.0025	0.0044	0	0.0086
Pork	30	0.0052	0.0037	0.0062	0	0.0148
Beef	10	0.0035	0.0035	0.0035	0	0.0185
Lamb	20	0.0038	0.0035	0.0040	0	0.0140
Rabbit	10	0.0033	0.0030	0.0035	0	0.0118
Hamburgers	100	0.0328	0.0129	0.0617	20	0.0044
Sausages	100	0.0273	0.0230	0.0369	40	0.0085
Cured ham	90	0.0119	0.0069	0.0253	0	0.0530
Cured sausage	100	0.0607	0.0472	0.0684	20	0.0082
Cooked ham	100	0.0202	0.0154	0.0246	0	0.0331
Foie-gras	100	0.0287	0.0200	0.0416	100	0.0176
Offal	100	0.0333	0.0200	0.0665	100	0.0576
Cereal (n = 110)	95	0.0438	0.0025	0.3925	87	0.0271
Rice	40	0.0123	0.0097	0.0153	10	0.0091
Industrial bakery	100	0.0893	0.0295	0.3925	80	0.0106
Corn flakes	100	0.0471	0.0360	0.0630	100	0.0238
Cookies	100	0.0508	0.0290	0.0960	80	0.0128
Beans	100	0.0522	0.0380	0.0690	100	0.0150
White bread	100	0.0253	0.0133	0.0362	100	0.0164
Sliced bread	100	0.0407	0.0252	0.0935	100	0.0159
Wholemeal bread	100	0.0306	0.0251	0.0371	100	0.0159
Pasta	100	0.0540	0.0290	0.1110	100	0.0182
Potatoes	100	0.0147	0.0025	0.0471	100	0.0233
Dried fruits	100	0.0462	0.0208	0.1260	100	0.1106
Pd (n = 40)	100	0.0225	0.0057	0.0286	100	0.0128
Pizzas	100	0.0376	0.0121	0.1740	100	0.0176
Frozen prepared dishes	100	0.0128	0.0057	0.0200	100	0.0128
Canned meals	100	0.0180	0.0102	0.0200	100	0.0128

(continued on next page)
Table 2a (continued)

FOODSTUFFS	IAs (Min, Max)	Cu (Min, Max)	Cr (Min, Max)	Sn (Min, Max)										
	> LOQ (%)	Mean	Min	Max	> LOQ (%)	Mean	Min	Max	> LOQ (%)	Mean	Min	Max		
Wine	0.0003	0.009	100	0.0590	0.0271	0.0957	10	0.0101	0.0101	0.0101	0			
Beer	0.0009	0.027	100	0.0381	0.0304	0.0573	100	0.0107	0.0099	0.0173	100	0.0178	0.0026	0.0816
nAb(n = 30)	0.0003	0.035	100	0.1404	0.0226	0.3238	100	0.0239	0.0099	0.0803	83	0.0184	0.0024	0.0785
Soda and soft drinks	0.0003	0.035	100	0.0108	0.0026	0.0356	100	0.0217	0.0061	0.0563	80	0.0048	0.0024	0.0136
Orange juice	0.0004	0.035	100	0.2004	0.1679	0.2297	100	0.0086	0.0099	0.0313	70	0.0141	0.0038	0.0414
Multi-fruits juice	0.0014	0.035	100	0.2100	0.1508	0.3238	100	0.0415	0.0090	0.0803	100	0.0323	0.0102	0.0785
Meat(n = 120)	0.0003	0.014	100	0.5189	0.2663	0.8016	100	0.2384	0.0188	2.2237	81	0.1151	0.0006	0.6879
Chicken	0.0013	0.037	100	0.3589	0.2663	0.5360	100	0.0804	0.0525	0.1163	30	0.0152	0.0026	0.0397
Pork	0.0003	0.003	100	0.5044	0.3951	0.6498	100	0.7234	0.0260	1.5890	100	0.4490	0.2924	0.6879
Beef	0.0003	0.057	100	0.7173	0.6025	1.0018	100	0.7932	0.0614	2.2237	100	0.1855	0.1268	0.2370
n = number of composite samples. **Vo**: Vegetable oils; **Mw**: Mineral water; **Ab**: Alcoholic beverages; **nAb**: Non-alcoholic beverages; **Meat**: Meat and meat products; **Cereal**: Cereals; **Pd**: Prepared dishes; **Sc**: Sweeteners and condiments; **Ve**: Vegetables and fruits; **Egg**: Eggs; **Milk**: Milk and dairy products; **Fish**: Fish and seafood.														

Notes: Number of samples/food = 10.
Table 2b
Levels of Pb, Cd, Cu, Cr and Sn in foods in mg kg\(^{-1}\) fresh mass.

FOODSTUFFS	Pb (n = 50)	Pb (n = 100)	Pb (n = 50)	Pb (n = 100)	Pb (n = 50)
Sc	0.094	0.0957	0.0979	0.0910	0.0910
Chocolate and cocoa	0.012	0.013	0.014	0.015	0.015
Sugar	0.020	0.021	0.022	0.023	0.023
Salads	0.021	0.022	0.023	0.024	0.024
Sauces and mayonnaise	0.014	0.015	0.016	0.017	0.017
Vf (n = 220)	0.03	0.03	0.03	0.03	0.03
Oranges	0.0016	0.0017	0.0018	0.0019	0.0019
Strawberries	0.0031	0.0032	0.0033	0.0034	0.0034
Spinaches and swiss chard	0.0123	0.0124	0.0125	0.0126	0.0126
Lettuce	0.0038	0.0039	0.0040	0.0041	0.0041
Sweet peas	0.0027	0.0028	0.0029	0.0030	0.0030
Tomatoes	0.0066	0.0067	0.0068	0.0069	0.0069
Green beans	0.0034	0.0035	0.0036	0.0037	0.0037
Corned beef and pork	0.0014	0.0015	0.0016	0.0017	0.0017
Coffee and soluble coffee	0.0027	0.0028	0.0029	0.0030	0.0030
Coffee (n = 10)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 50)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 100)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 500)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 1000)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 5000)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 10000)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 50000)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 100000)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 500000)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 1000000)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 5000000)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 10000000)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 50000000)	0.0013	0.0014	0.0015	0.0016	0.0016
Coffee (n = 100000000)	0.0013	0.0014	0.0015	0.0016	0.0016

(cont.)
Table 2b (continued)

FOODSTUFFS Pb Cd tAs iAs

Foodstuff	Pb	Cd	tAs	iAs
Whitefish	80	0.0055	0.0026	0.0107
Salmon and trout	100	0.0090	0.0037	0.0237
Sardine and anchovy	100	0.0380	0.0236	0.0667
Salted fish	100	0.0343	0.0094	0.0911
Smoked fish	100	0.0160	0.0121	0.0225

FOODSTUFFS As Cu Cr Sn

Foodstuff	As	Cu	Cr	Sn		
Chocolate and cacao	0.0021	0.0060	0.6353	0.5306		
Salt	0.0177	0.0662	0.4840	0.2200		
Sweets	0.0100	0.0061	0.3143	0.0310		
Sauces and mayonnaise	0.0034	0.0065	0.6302	0.5396		
Vf (n = 22)	0.0001	0.0047	0.1191	0.0847		
Oranges	0.0007	0.0020	0.3485	0.2976		
Strawberries	0.0002	0.0058	0.2390	0.1754		
Spinach and Swiss chard	0.0020	0.0245	0.9630	0.4556		
Lettuces	0.0004	0.0048	0.4353	0.1938		
Green beans	0.0006	0.0025	0.6377	0.3653		
Onions	0.0008	0.0031	0.4433	0.2357		
Garlic	0.0009	0.0059	1.4906	0.6423		
Peppers	0.0060	0.0037	0.6411	0.4286		
Aubergine, courgette and cucumber	0.0048	0.0149	0.5035	0.1982		
Carrots and pumpkins	0.0011	0.0003	0.4674	0.0847		
Tomatoes	0.0014	0.0077	1.2533	0.9826		
Apples and pears	0.0011	0.0070	0.5808	0.3687		
Sherry and plum	0.0011	0.0026	0.6211	0.5373		
Melon and watermelon	0.0010	0.0018	0.5630	0.2279		
Bananas	0.0003	0.0021	0.6308	0.4557		
Peach and apricot	0.0015	0.0031	0.9204	0.5615		
Grapes	0.0003	0.0036	0.8825	0.7062		
Cauliflower, cabbage and broccoli	0.0022	0.0061	0.6458	0.1811		
Artichoke, leek, celery and chard	0.0011	0.0035	0.8906	0.6198		
Mushrooms	0.0028	0.0219	2.1291	1.2736		
Coffee and soluble coffee	0.0011	0.0071	3.6122	0.8650		
Egg (n = 10)	0.0003	0.0003	0.6583	0.6136		
Milk (n = 60)	0.0011	0.0083	0.4490	0.0126		
Cheese	0.0004	0.0009	0.0467	0.0399		
Yogurt	0.0005	0.0006	0.0764	0.0583		
Custards and smoothies	0.0012	0.0044	0.1622	0.0147		
Butter	0.0010	0.0083	0.0649	0.0126		
Soybean products	0.0012	0.0082	1.6658	1.3139		
Fish (n = 420)	0.0022	0.1133	1.1390	0.1351		
Canned fish	0.0020	0.0108	0.3384	0.2545		
Foodstuff	Sn	Cu	Cr	Sn	Cu	Cr
-----------	----	----	----	----	----	----
Tuna	0.0048	0.0086	0.0064	0.0070	0.0052	0.0064
Squid and cuttlefish	0.0048	0.0086	0.0064	0.0070	0.0052	0.0064
Seabream and seabass	0.0048	0.0086	0.0064	0.0070	0.0052	0.0064
Swordfish	0.0048	0.0086	0.0064	0.0070	0.0052	0.0064
Shellfish	0.0048	0.0086	0.0064	0.0070	0.0052	0.0064
Mussels	0.0048	0.0086	0.0064	0.0070	0.0052	0.0064
Whitefish	0.0048	0.0086	0.0064	0.0070	0.0052	0.0064
Salmon and trout	0.0048	0.0086	0.0064	0.0070	0.0052	0.0064
Sardine and anchovy	0.0048	0.0086	0.0064	0.0070	0.0052	0.0064
Salting fish	0.0048	0.0086	0.0064	0.0070	0.0052	0.0064
Smoked fish	0.0048	0.0086	0.0064	0.0070	0.0052	0.0064
Number of composite samples: 10.						
N	10	10	10	10	10	10
M	10	10	10	10	10	10
Max	0.0067	0.0086	0.0064	0.0070	0.0052	0.0064
Min	0.0048	0.0086	0.0064	0.0070	0.0052	0.0064
Mean	0.0054	0.0086	0.0064	0.0070	0.0052	0.0064

In the following sections the concentration levels found for each metal are discussed.

It should be noticed that every dietary exposure assessment is affected by scientific uncertainties or scientific knowledge limitations. These are important for the correct interpretation of the results. First of all, the effect of cooking or processing was not taken into account for the calculation of the metal levels in the different products studied. Secondly, when samples were analyzed as composites, it is usual to find concentrations levels below the regulated levels because they correspond to mean levels. There are many uncertainties associated with the analytical methods, including sample representativeness or the use of different analytical limits if data are censored, and also with the methodology such as the different composition of samples or food groups and the different origin of the products. Tables 3a–3c show comparative data of levels of metals between the present study and different TDS carried out in various countries.

4.1. Lead

Regarding the Pb levels reported in this study, in the “Fish” group, the high average level presented for bivalve molluscs and crustaceans can be explained because they are filter feeders that accumulate metals from aquatic environment regardless of environmental pollution although contaminated water can also increase their metal content [23]. The average lead level in mussels obtained in the present study, was similar to that found in previous studies carried out in Valencia in 2005 and 2006 (0.220 mg kg⁻¹) [17], or in the 2nd French TDS (0.268 mg kg⁻¹) [11]. Although Rose et al. [12] reported high levels of Pb in offal (0.065 mg kg⁻¹) (see Table 3a), in the present study the values obtained for offal were not particularly high (0.0333 mg kg⁻¹). This difference could be explained by the different species included in both studies. In some foods such as the cured sausage, snacks, olives and pickles, the high average Pb levels found can be related with their high salt content, the food product with the highest Pb level.

The Pb average levels obtained in this study have been compared with other studies. As can be seen in Table 3a, the Pb levels found in this study are, in general, higher than those found in other countries as
well as those reported previously in other regions of Spain [24]. Nevertheless, the levels observed in this study were similar to or lower than those observed in the data provided by EFSA [25], with mean lead levels between 0.0003 mg kg\(^{-1}\) for infant follow-on formulae to 4.3 mg kg\(^{-1}\) for dietetic products with an overall median across all categories of 0.021 mg kg\(^{-1}\). In the present study infant follow-on formulae were not included because the study included subjects between 16 and 95 years of age. On the other hand, as none of the subjects interviewed reported the consumption of dietetic products, they were not selected in this study, because it was assumed that this product was not consumed in this region.

4.2. Cadmium

The high Cd levels obtained in the "fish" group mainly for mussels and squid are statistically similar (p-value 0.21) to those reported in France where crustaceans and molluscs had an average Cd of 0.1666 mg kg\(^{-1}\) [26] but statistically lower (p-value 0.02) than those reported by Korea, with Cd levels in molluscs of 0.677 mg kg\(^{-1}\) [27]. This difference could be explained by the different metal distribution in the fishery areas. In samples of fishery products collected in markets of Valencia in 2005–2006 average values obtained in molluscs (mussels) were 0.170 mg kg\(^{-1}\); in cephalopods 0.230 mg kg\(^{-1}\) and squid and 0.140 mg kg\(^{-1}\) in cuttlefish [17]. The lowest value (0.0070 mg kg\(^{-1}\)) found in fish were obtained in Lebanon [28] and in a market-basket study conducted in Sweden with values of 0.006 mg kg\(^{-1}\) [29] (see Table 3a). The high Cd values found in chocolate and cocoa could be explained by the naturally high Cd content in the soils of some regions in cocoa-producing countries. Millour, in France, obtained values for dark chocolate of 0.076 mg kg\(^{-1}\) [11] (see Table 3a). On the other hand, the Cd levels in offal from the present study were higher than those found in viscera in some studies such as those conducted in the UK (0.084 mg kg\(^{-1}\); [12]), and in Santiago de Chile (0.079 mg kg\(^{-1}\); [13]). In the 2nd TDS carried out in France, the levels reported in offal were indeed lower (0.020 mg kg\(^{-1}\); [11]) (see Table 3a).

In general, similar results than those found in this study were reported by EFSA [30], with arround half of the food samples with levels below the limit of quantification and an overall median across all categories of 0.1 mg kg\(^{-1}\). Furthermore, similar results to those reported in this study were obtained for the food products molluscs (0.132 mg kg\(^{-1}\)) or chocolate (0.081 mg kg\(^{-1}\)). Although in the EFSA report algal supplements and seaweeds used as a vegetable had the highest average cadmium levels, this products were not included in this study because it was assumed that these products were not consumed in this region.

Table 2c

Fish and seafood (n = 120)	tHg (mg kg\(^{-1}\)) Mean Min Max	meHg (mg kg\(^{-1}\)) Mean Min Max						
	> LOQ (%)							
100	0.2515	0.0032						
	2.2874							
Canned fish	100	0.2165	0.1275	0.3691	100	0.1689	0.0973	0.2500
Tuna	100	0.9395	0.4409	1.6155	100	0.7212	0.2476	1.7285
Squid and cuttlefish	100	0.0240	0.0103	0.0550	100	0.0083	0.0015	0.0256
Sea bream and sea bass	100	0.0700	0.0433	0.0974	100	0.0119	0.0035	0.0219
Swordfish	100	1.4448	1.0851	2.2874	100	0.8186	0.6266	1.0791
Shellfish	100	0.0441	0.0090	0.0978	100	0.0129	0.0025	0.0251
Mussels	100	0.0070	0.0032	0.0132	100	0.0055	0.0033	0.0109
Whitenfish	100	0.0802	0.0207	0.1711	100	0.0487	0.0203	0.1147
Salmon and trout	100	0.0203	0.0117	0.0354	100	0.0176	0.0041	0.0386
Sardine and anchovy	100	0.0339	0.0107	0.0595	100	0.0275	0.0034	0.0558
Salting fish	100	0.1206	0.0466	0.2002	100	0.0787	0.0405	0.1162
Smoked fish	100	0.0165	0.0124	0.0225	100	0.0052	0.0044	0.0091

n = number of composite samples. Number of samples/food = 10.

4.3. Total arsenic

The percentage of samples with tAs levels over the LoQ (87%) in the present study is higher than those reported by EFSA [31] among the EU members reported results (44%) or in the 2nd French total diet study (65%) [11], fact that reflects the effort made for decreasing the LoQ values (0.0004–0.010 mg kg\(^{-1}\)).

The iAs levels found in the "fish" group (average 2.1669 mg kg\(^{-1}\)) are in the range of average tAs values in fish reported in different studies such as 1.351 mg kg\(^{-1}\) in the Santiago de Chile TDS [13] or 3.990 mg kg\(^{-1}\) in the total diet study conducted in France (see Table 3a). In particular, shellfish tAs average values (6.9377 mg kg\(^{-1}\)) were consistent with the results from other studies carried out in Belgium [32] and Spain [14]. Data collected by EFSA from 19 EU countries, showed statistically similar average values (p-value 0.35) for fishery products (2.8387 mg kg\(^{-1}\), UB) than those reported in the present study and the highest values were found also in crustaceans 5.691 mg kg\(^{-1}\), cephalopods 3.923 mg kg\(^{-1}\) and molluscs 3.4078 mg kg\(^{-1}\).

It is well known that rice and rice-based products could present high arsenic levels. This fact has been also confirmed in the present study, in which rice presented the highest level in the "cereal" group. Nevertheless, these values of tAs in rice were, lower than those detected in Catalonia, Spain, where the average value of tAs in rice was higher 0.18 mg kg\(^{-1}\) [24] and much lower than those found in Canada, with an average value of 1.240 mg kg\(^{-1}\) [32] (see Table 3a) but higher than those detected in the first TDS of France (0.016 mg kg\(^{-1}\) for white rice) [11]. This fact demonstrating the effectiveness of the global measures to reduce the environmental pollution.

4.4. Inorganic arsenic

Again, the percentage of samples with iAs levels over the LoQ (91%) in the present study is higher than those reported by EFSA [31] among the EU members reported results (68%), reflecting the effort made for decreasing the LoQ values (0.0001–0.0049 mg kg\(^{-1}\)).

The levels of iAs found in the "fish and fishery products" group were statistically similar (p-value 0.23) to those reported by EFSA of 0.0256 mg kg\(^{-1}\) from 21 EU countries [31]. The iAs average level in mussel are agree with the study carried out with samples of foods purchased in Belgian markets, in which iAs was only detected in mussels and prawns with average values in a range of 0.005 to 0.022 mg kg\(^{-1}\) fresh weight (Ruttens, et al., 2012).
inorganic arsenic. In addition, similar data were reported by EFSA, mean value of 0.101 mg kg\(^{-1}\) for rice [31].

Although the speciation of As in the context of risk assessment is of great relevance, most of the studies determine the iAs content inferred from tAs by the use of conversion factors. Nevertheless, few studies such as a TDS carried out in the UK reported levels. In the aforementioned study, iAs levels were below the LOQ for most of the food groups and was only detected in cereals and fish [12]. On the other hand, in a TDS carried out in Hong Kong, the iAs detection frequency was 51%. The levels found by food group are presented in Table 3a.

Fig. 1. Mean levels by food groups of a) Pb, b) Cd, c) tAs, d) iAs, e) Cu, f) Cr and e) Sn (mg kg\(^{-1}\)).
Spain lacks information on iAs content in foods. The data presented here are of great interest and contribute to the recommendation issued by the European Commission on the need to provide iAs content in food for regulatory purposes.

4.5. Mercury

Table 3b shows the comparison with other studies. As can be seen, the concentrations reported in most studies were lower than those found in the present study but, the same as in the present study, the highest levels were found in fish, specifically in tuna or swordfish and the lowest contents were reported in shellfish. In the European context, in France and UK values of 0.045 mg kg\(^{-1}\) [11] and 0.056 mg kg\(^{-1}\) [12], respectively, were obtained. In the 2nd French TDS fish had the highest Hg concentrations with an average value of 0.065 mg kg\(^{-1}\) [11]. Nevertheless, the highest average values (0.476 mg kg\(^{-1}\)) were found in tuna, with a maximum value of 0.702 mg kg\(^{-1}\). The lowest Hg values in food were obtained in the TDS carried out in Santiago (Chile) (0.048 mg kg\(^{-1}\)) [13]. In Asia, tHg values reported were relatively low, ranging from 0.0119 mg kg\(^{-1}\) in fish in Cambodia [35] to 0.770 mg kg\(^{-1}\) in swordfish in Taiwan [36]. In the New Zealand TDS, the highest values were detected in fish paste (0.195 mg kg\(^{-1}\) and 0.2655 mg kg\(^{-1}\), lower-bound (LB) and upper-bound (UB) respectively), followed by fresh fish (0.1376 mg kg\(^{-1}\) and 0.0893 mg kg\(^{-1}\), LB and UB respectively) [37]. Finally, in the Canadian TDS the highest value of tHg was observed in swordfish, with an average value of 1.820 mg kg\(^{-1}\).

Hg levels found in the study were in good agreement with values reported by other authors in studies conducted in countries from the Mediterranean coast. In Italy detected Hg levels were in the range of 0.430–1.140 mg kg\(^{-1}\) for the five most consumed fish species [38]. In Catalonia (Spain), Perelló obtained the highest concentrations of Hg in fish, with an average of 0.22 mg kg\(^{-1}\) [24], which dropped in relation with values from a previous study, in which an average of 0.247 mg kg\(^{-1}\) was reported [14]. In Madrid (Spain), average values of 0.990 mg kg\(^{-1}\) for luvar and 0.930 mg kg\(^{-1}\) for swordfish were obtained [39]. In Andalucia (Spain) an average value of 0.540 mg kg\(^{-1}\) for swordfish and 0.470 mg kg\(^{-1}\) for tuna [40] were found and in Valencia (Spain) values of 0.7666 mg kg\(^{-1}\) for swordfish and 0.666 mg kg\(^{-1}\) for tuna were reported [41]. Finally, in a study carried out in Canarias, tHg average levels in fish of 0.1189 mg kg\(^{-1}\) [16] were obtained.

In the present study meHg represents 60.2 ± 30.6% of tHg, varying by species between 18.1 ± 11.1% for sea bream and bass to 82.8 ± 30.2% for mussels. The contribution of meHg to tHg in swordfish was 58 ± 9.6% and in tuna was 73.4 ± 14.4%. Similar relations were reported in other studies, obtaining values ranging from 50% to 100% depending on the species in Hong Kong (Wang et al., 2013); 68% in China [42] and 38.16%, 74.6% y 91.2% in three different Cambodia regions [35]. According to WHO, the proportion of meHg contributing to tHg is between 30–100%, depending on the species, size, age and diet of the fish [43].

4.6. Copper

The average values of Cu found in the present study in meat (5.1891 mg kg\(^{-1}\)) were in the range of those in different studies conducted in Sweden [29] and Canada [33], respectively (see Table 3c), in which values from 0.740 to 10.723 mg kg\(^{-1}\) were reported. The average level of Cu found in offal (50.4074 mg kg\(^{-1}\)) was similar to the maximum reported levels in the UK (52.5000 mg kg\(^{-1}\)) [44]. On the other hand, the maximum level found in offal in the present study (100.8016 mg kg\(^{-1}\)) was also similar to those found in a TDS carried out in France (113.0000 mg kg\(^{-1}\)) [11] or Canada (127.687 mg kg\(^{-1}\)) [33].

Regarding “Cereals” group, the average Cu level (3.0958 mg kg\(^{-1}\)) in the present study was also statistically similar (p-value 0.18) to those in UK [44] in which values of 2.210 mg kg\(^{-1}\) in cereals and 9.150 mg kg\(^{-1}\) in dried fruits were obtained.

Finally, the Cu levels found in chocolate and cocoa (average of 13.3355 mg kg\(^{-1}\)) were higher than those reported in the 2nd French TDS in chocolate (average of 6.430 mg kg\(^{-1}\)) [11]. This fact could be explained by the different origin of the cocoa. In addition, in the 2nd French TDS, the main contributor to the Cu intake was group “Sweeteners, honey and confectionery”.

4.7. Chromium

The Cr levels found in the food group “sweeteners and condiments” (0.7925 mg kg\(^{-1}\)) in the present study were statistically lower (p-value 0.03) than those obtained also for sweeteners in a total diet study from Brazil [43] but statistically similar (p-value 0.13) than those reported in France [11], with average values of 0.799 mg kg\(^{-1}\) and 0.574 mg kg\(^{-1}\), respectively (see Table 3c). On the other hand, the Cr average level found in “meat and meat product” food group (0.2384 mg kg\(^{-1}\)) was also statistically similar (p-value 0.15) to the values obtained in France (0.299 mg kg\(^{-1}\)) [11].

The lowest levels were detected in alcoholic and non-alcoholic drinks with average values of 10.66 μg kg\(^{-1}\) and 23.90 μg kg\(^{-1}\), respectively (Table 2a).

The highest values of Cr in food were reported in the total diet study of Catalonia, with average values ranging from 0.272 to 1.500 mg kg\(^{-1}\).
Table 3a
Comparative data of levels (mean) (mg kg$^{-1}$) to Pb, Cd and As, from TDS in different countries.

Food Groups	Australia* 2008 [47]	UK*2006 [12]	France* 2007-2009	Lebanon* 2008 [26]	Sweden 1999 [29]	Canada* 2007 [33]	Cataloniac 2012* [15]	Hong-Kong 1ºTDS* [14]	Present study Valencia 2010
Pb									
V0	(0.0017-0.0046)	< 0.006 (LOD)***	0.004	< 0.006 ***	0.020	0.004 ***	0.0192		
Mw	(0.0030-0.0031)	0.004	< 0.0005						
Ab	(0.0062-0.0063)	0.010	0.018	0.0050					
nAb	(0.0013-0.0017)	< 0.001 (LOQ)	0.007	< 0.001 **	0.0034		0.0068		
Meat	0.0091	< 0.005 (LOQ)	0.011	0.0030	0.0041	0.11	0.0273		
Cereal	(0.0086-0.0088)	< 0.007 (LOQ)	0.009 (c. p.)	0.0080 (c. p.)	0.009 (c. p.)	0.0047	0.010 (ce); 0.011 (pu); 0.014 (pu); 0.012 (ib).		0.0438
Pd	0.0321	0.008	0.007	0.00049					
Sc	(0.0203-0.0212)	< 0.006 (LOD)	0.017 (swee); 0.014	(andd)	0.007 (swee)	0.0418			
Fv	(0.0064-0.0067)	0.009	0.016±3 (veg)±0.0010 (fr)	< 0.003 (vég); 0.007 (fr)	0.0053	0.006 (veg); 0.004 (fr)			0.0091
Eggs	(0.0019-0.0022)	0.006	< 0.004	< 0.0009	0.002				
Milk	(0.0023-0.0030)	< 0.003 (LOQ)	0.007	< 0.002	0.0025	0.002	< 0.002 (milık); 0.01 (dp)		0.0109
Fish	0.0057	< 0.004 (LOQ)	0.050	0.006	0.0036	0.028			
Cd									
V0	(0.009-0.0123)	< 0.005 (LOD) ***	0.001	< 0.003 ***	0.0131	< 0.002 ***	ND		
Mw	(0.0001-0.0002)	0.001	< 0.0005						
Ab	(0.001-0.0015)	0.001	< 0.001	0.0002					
nAb	(0.0009-0.0011)	< 0.001 (LOD)	0.002	< 0.0004**	< 0.0004	0.001	0.0281		
Meat	(0.0020-0.0025)	< 0.007 (LOQ)	0.007	0.0058	0.0040	0.001			0.0271
Cereal	(0.00152-0.0156)	0.021 (c. p.); 0.0065 (d.f.)	0.024 (c. p.)	0.0151 (c. p.)	0.024 (c. p.)	0.0302	0.015 (ce, pu); 0.001 (pu); 0.010 (ib)		0.0246
Pd	0.0079	0.012	0.021 (swee); 0.017	(andnd)	0.007 (swee)	0.0079	0.0246	0.0512	
Sc	(0.0122-0.0137)	< 0.006 (LOQ)	0.012	0.0302 (veg); 0.0063 (fr)	< 0.001 (fr)	0.0155	0.006 (veg); 0.002 (fr)	0.094	
Fv	(0.0049-0.0052)	0.012	0.0302 (veg); 0.0063 (fr)	< 0.001 (fr)	0.0155	0.006 (veg); 0.002 (fr)	0.094	0.0048	
Eggs	(0.0002-0.0011)	0.001	< 0.002	< 0.002	0.010	< 0.002	ND	0.0085	
Milk	(0.0007-0.0018)	< 0.003 (LOQ)	0.002	< 0.002	0.0010	0.002	ND	0.0816	
Fish	0.0088	0.015	0.0055	0.0070	0.006	0.032	0.050	0.023	
tAs									
V0	(0.005-0.0233)	< 0.005 (LOD) ***	0.015		0.0675	< 0.002 ***	ND		
Mw	(0.0002-0.0006)	0.001	0.0004				ND	0.0035	
Ab	(0.008-0.009)	0.009	0.0052	0.0004			ND	0.0023	
nAb	(0.00025)	< 0.001 (LOD)	0.012		0.0004				
Table 3a (continued)

Food Groups	Australia\(^a\) 2008 [47]	UK\(^b\) 2006 [12]	France\(^c\) 2007-2009	Lebanon\(^d\) 2008 [28]	Sweden 1999 [29]	Canada\(^e\) 2007 [33]	Cataloniac 2012\(^*\)	Hong-Kong 1ºTDS\(^d\) [34]	Present study Valencia 2010
Meat	(0.019-0.020)	0.022 chicken	0.026		0.0065	0.001	0.0233		0.0233
Cereal	(0.0253-0.0354)	< 0.018(c. p.)	0.021(c. p.)		0.0101	0.045(ce);	0.002(tu); < 0.002(tu);		0.0304
Pd	0.0245			0.030	0.0130	0.013(b)	0.0300		0.0300
Sc	(0.0115-0.0216)	< 0.009(LOQ) swee;	0.035	0.0255			0.0216		0.0216
Fv	(0.0065-0.031)	0.013		0.0045	0.001		0.0162		0.0162
Eggs	(0.011-0.012)	< 0.003(LOQ) fr	0.015	0.0036	< 0.002	0.0054	0.0054		0.0054
Milk	(0.0022-0.0108)	< 0.003(LOD) d. p.	0.016	0.0060	< 0.002		0.0158		0.0158
Fish	1.800	3.990	1.920	2.285	3.2		2.167		2.167
iAs				0.0015	0.0040	0.0005	0.0005		0.0005
Vo				0.0008	0.0009		0.0005		0.0005
Ab				0.0035	0.0027		0.0027		0.0027
nAb				0.0017	0.0015		0.0015		0.0015
Meat				< 0.002		0.0042	0.0124		0.0124
Cereal				0.007(ce);	0.0072	0.1048	0.1048		0.1048
Pd				0.0015	0.0073		0.0159		0.0159
Sc				0.0032 (swee); 0.009	0.0091		0.0091		0.0091
Fv				0.001		0.0017	0.0017		0.0017
Eggs				0.001		0.0015	0.0015		0.0015
Fish	(0.0-0.05)	0.015		0.017			0.1133		0.1133

ND: not detected; f: fish; s: shellfish; c: crustaceans; m: molluscs; v: vegetables; fr: fruits; m. p.: meat products; c. p.: cereal products; ce: cereals; pu: pulses; tu: tubers; ib: industrial bakery; d. p.: dairy products; d.f.: dried fruits; swee: sweeteners; cond: condiments; ° in brackets, own value calculated from the data of the author (LB-UB); °°(UB); °°°(MB); °median** include soft drinks, light beer and mineral water; *** include animal fats.
for the oils and fats and the fruits groups, respectively [15]. Conversely, in the UK study [12] most values were below the LOQ/LOD (0.003–0.020 mg kg\(^{-1}\)) and the detected values were in a range from 0.020 to 0.080 mg kg\(^{-1}\) for the oils and fats and the sugar and preserves groups, respectively (Table 3c).

4.8. Tin

The percentage of samples with Sn levels over the LoQ (53%) in the present study is lower than those reported by in the 2nd French total diet study (74%) [46], maybe because the different food products included in both studies.

Although high concentrations of tin in foods were found in tinned fruit and vegetables, in some multi-vitamin and mineral food supplements (levels up to 10 μg tin/tablet) (EGVM, 2002) or in “compotes and stewed fruits” [46], in this study these kind of products were not included in this study because it was assumed that these products were not consumed in this region.

Although in the 2nd French total diet study [46] high contents of tin were also found in the “sweeteners, honey and confectionery groups” (0.238 mg kg\(^{-1}\)), those are statistically lower (p-value 0.01) than the tin contents found in the present study for the Sc group. Nevertheless, it should be taken into account that in the French study high tin levels were also observed in some sauces such as tomato sauce (5.99 mg kg\(^{-1}\)), included in other different group called “condiments and sauces”, but in the Sc in the present study. Therefore, in the TDS, the conclusions should be interpreted with caution, because the food groups could include different food items.

Most of the total diet studies have not studied the levels of tin in food. Only the 2nd French TDS, a study carried out in UK (Rose, et al., 2010) and the 20th TDS in Australia reported Sn values in food with values in all food groups close to the LoQ value except for canned foods such as canned vegetables, canned fruits, canned tuna and baked (see Table 3c).

5. Conclusions

The results of this study indicate that the estimated levels of Pb and Cd in foodstuffs were, on the whole, satisfactory compared with the maximum levels set by European regulations. However, in the case of Hg, all swordfish samples (100%) and three samples of tuna (30%) out of the 10 composite samples analyzed of each foodstuffs, exceeded the limits established by law.

The fish group presented the highest Cd, Hg and As levels, whereas Sc was the most contaminated food group by Pb, Cr and Sn, mainly due to salt and the meat group had the highest levels of Cu. In the mineral water group only As was quantified and in the vegetable oils group, both Cu and Cr were detected.

The results of this study are generally similar to or lower than those observed in other TDSs conducted in other countries, except in the case of Hg, for which high values were obtained, mainly in swordfish. This survey confirms a decreasing tendency when compared with other studies carried out in Spain.

As has been mentioned in the discussion part, some scientific uncertainties should be taken into account for comparisons. First of all, the effect of cooking was not taken into account for the calculation of the metal levels in the different products studied and secondly, the samples were analyzed as composites, therefore concentrations found correspond to mean levels.

Heavy metals are related with some toxic effects, such as fish deformities [51]. For this reason, the contamination data has been compared with own-food consumption data, to estimate the exposure of the population of Valencia [18]. The results show that a percentage of population could be at risk, especially young children. This highlights the difficulties inherent to establishing maximum levels of metals in Europe, taking into account different dietary patterns in the various countries, and the technological and market aspects involved.

For certain metals (e.g., Hg, As, Cr and Sn), speciation has become an essential tool that provides information on the chemical form present in the samples, which is crucial for accurately assessing toxicity. Therefore, it is important in future studies to obtain speciation data for Cr and Sn, not included in the present study.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This project was supported by the General Directorate of Public Health of the region of Valencia, Spain.

Transparency document

The Transparency document associated with this article can be found in the online version.

Acknowledgements

The authors thank the colleagues and technicians who participated in this study.
Table 3c
Comparative data of levels (mg kg\(^{-1}\)) to Cu, Cr and Sn, from TDS in different countries.

Food Groups	Australia\(^a\) 2008 [47]	UK\(^b\) 2006 [12]	France\(^b\) 2007-2009	Lebanon\(^c\) 2008 [28]	Sweden 1999 [29]	Canada\(^b\) 2007 [31]	Brazil\(^b\) [45]	Catalonia\(^c\)* 2008 [50]	Present study Valencia 2010
Cu									
Vo	(2.1161-2.1213)	< 0.080 (LOQ) ***	0.095	< 0.130 ***	1.0051	0.123 ***	0.1243		
Mw	(0.1575-0.182)	0.074	0.095	< 0.0005	0.0561	ND	0.0485		
Ab	(0.1587-0.163)	0.121	0.121	0.046	0.0581	0.118	0.1404		
nAb	(0.0059-0.018)	0.207	0.207	0.018 **	0.0118	0.118	0.1404		
Meat	0.8511	1.160 (m. p.); 52.500 (offal)	9.450	164.441	0.740	10.7237	0.160 (m.)	3.0958	
Cereal	1.5444	2.210 (c. p.)	1.460 (c. p.)	1.50885 (c. p.)	1.900 (c. p.)	1.7203	1.5627		
Pd	1.130	0.689	0.689	0.893	1.5627	0.9514	2.9694		
Sc	(0.9917-0.9948)	1.800 (swee)	3.690 (swee); 0.614 (cond)	1.900 (swee)	0.9514	2.9694			
Fv	1.3163	0.580 (veg); 0.786 (fr)	0.819	0.48808 (veg); 0.44837 (fr)	0.670 (veg); 0.090	0.5913	0.943 (veg); 0.787		
Eggs	0.610	0.570	0.734	0.630	0.602	1.950	0.6583		
Milk	(0.233-0.2348)	0.330 (d. p.)	0.146	0.178 (milk); 0.19164 (d.p.)	0.096	0.1988	0.489 (d.p.)		
Fish	2.6275	0.910	3.110	0.25467	0.730	0.6015	1.280		
Cr									
Vo	(0.067-0.1933)	0.020 ***	0.1000	< 0.009 ***	< 0.020 (LOD)	1.500 ***	0.1499		
Mw	(0.0004-0.0017)	< 0.003 (LOD)	0.019	0.017	0.012	0.0400			
Ab	(0.0135-0.0199)	0.078	0.078	< 0.001 **	< 0.0011 (LOD)	0.2384			
nAb	(0.0091-0.015)	0.102	0.102	0.19	0.060 (poultry); 0.117 (pork); 0.056 (beef)	0.870			
Meat	(0.096-0.1036)	0.037 (m. p.)	0.299	0.019	0.060 (poultry); 0.117 (pork); 0.056 (beef)	0.870			
Cereal	(0.0598-0.1127)	< 0.030 (LOQ) (c. p.)	0.286 (c. p.)	0.021 (c. p.)	0.025 (c. p.)	1.020 (cereals)	0.0992		
Pd	(0.0715-0.083)	0.253	0.253	0.025	0.025	0.1457			
Sc	(0.0867-0.1449)	0.080 (swee)	0.574 (swee); 0.345 (cond)	0.100 (swee)	0.799 (swee); < 0.020 (LOD) (sal)	0.7925			
Fv	(0.0325-0.0515)	< 0.008 (LOQ) (veg); < 0.007 (LOQ)(fr)	0.119	< 0.005 (veg); 0.011 (fr)	0.048 (veg); 0.016 (fr)	0.365 (veg); 0.226			
Eggs	(0.030-0.043)	0.010	0.220	< 0.005	0.220 (m. p.)	1.150	0.0498		
Milk	(0.0367-0.0732)	< 0.010 (LOQ) (d. p.)	0.173	< 0.003	0.024 (d.p.)	0.748 (d.p.); 0.272			
Fish	(0.0603-0.075)	0.040	0.272	0.025	0.025	0.784			
Sn									
Vo	< 0.020 (LOD) ***								
Mw	< 0.03 (LOD)								
Ab									
nAb									
Meat	0.04 (m. p.)								
Cereal	< 0.020 (LOD) (c. p.)								
Pd									
Sc	< 0.025 (LOD) (swee)								
Fv	< 0.003 (LOD) (veg); < 0.005 (LOQ) (fr)								
Eggs	< 0.001 (LOD)								
Milk	< 0.020 (LOD) (d. p.)								
Fish	< 0.021 (LOD)								

ND: not detected; f: fish; s: shellfish; c: crustaceans; m: molluscs; veg: vegetables; fr: fruits; m. p.: meat products; ce: cereals; c. p.: cereal products; d. p.: dairy products; d.f.: dried fruits; swee: sweeteners; cond: condiments; * in brackets, own value calculated from the data of the author (LB-UB); b (UB); c (MB); * median; ** include soft drinks, light beer and mineral water; *** include animal fats.
