Anomalous Hall effect in (In,Mn)Sb dilute magnetic semiconductor

G. Mihály,1 M. Csontos,1 S. Bordács,1 I. Kézsmárki,1 T. Wojtowitz,2 X. Liu,3 B. Jankó,3 and J.K. Furdyna3

1Department of Physics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
2Institute of Physics, Polish Academy of Sciences, PL-02668 Warsaw, Poland
3Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

Dated: February 1, 2008

PACS numbers: 75.50.Pp, 75.30.Et, 85.75.-d

High magnetic field study of Hall resistivity in the ferromagnetic phase of (In,Mn)Sb allows one to separate its normal and anomalous components. We show that the anomalous Hall term is not proportional to the magnetization, and that it even changes sign as a function of magnetic field. We also show that the application of pressure modifies the scattering process, but does not influence the Hall effect. These observations suggest that the anomalous Hall effect in (In,Mn)Sb is an intrinsic property and support the application of the Berry phase theory for (III,Mn)V semiconductors. We propose a phenomenological description of the anomalous Hall conductivity, based on a field-dependent relative shift of the heavy- and light-hole valence bands and the split-off band.

As promising candidates for spintronic applications (III,Mn)V dilute magnetic semiconductors have attracted considerable attention during the past few years [1]. In these alloys the Mn$^{2+}$ ions provide localized magnetic moments and valence band holes at the same time. The presence of charge and spin degrees of freedom and the carrier mediated nature of the ferromagnetic coupling open a new way to the electrical control of ferromagnetism [2]. Devices based on magnetic semiconductors represent a novel generation of information technology where MRAM functionalities arise simply from bulk properties [3, 4]. Moreover, the magnetic state of diluted magnetic semiconductors (DMSs) can be quickly manipulated by magneto-optical Kerr-effect (MOKE) measurements the samples were mounted in a self-clamping cell, with kerosene as the pressure medium.

In general, AHE may arise from scattering processes involving spin-orbit coupling. In the skew scattering and side-jump models [3, 6, 7] the Fermi-surface properties of the charge carriers are important. We test this possibility experimentally by modifying the scattering process via application of hydrostatic pressure.

An alternative class of descriptions relates AHE to the Berry phase acquired while the electrons propagate in spin-orbit coupled Bloch bands. In this picture the AHE arises from near degeneracy points of the bands [3, 6, 8, 9, 10, 11] where interband processes become relevant. Spin-orbit coupling and the lack of inversion symmetry may result in this type of AHE even for collinear ferromagnets [10]. Our high magnetic field experiments aim to reveal an AHE contribution arising from the relative displacement of the various spin-up and spin-down bands.

InSb has the largest spin-orbit coupling among the III-V semiconductors, and becomes a ferromagnetic metal a when few percent of Mn$^{2+}$ ions are inserted into the In$^{+}$ sites [12, 13, 14, 15, 16]. The band structure is well known [17], including the parameters of the partially filled heavy hole (hh) and light hole (lh) bands. (In,Mn)Sb is an ideal system to study AHE, and our purpose is to distinguish between the possible AHE mechanisms experimentally.

The In$_{0.98}$Mn$_{0.02}$Sb sample was grown by low temperature molecular beam epitaxy (MBE) in a Riber 32 R&D MBE system on closely lattice matched hybrid (001) CdTe/GaAs substrates to a thickness of 230 nm (for further growth details and structural characterization, see Refs. 13 and 14). The magnetic properties were investigated by magneto-optical Kerr-effect (MOKE) measurements. The magnetotransport measurements were performed in a six-probe arrangement with magnetic field perpendicular to the layer plane. For high-pressure measurements the samples were mounted in a self-clamping cell, with kerosene as the pressure medium.

In ferromagnetic systems the Hall-resistivity is often described as a sum of two terms,

$$\rho_H = \rho_{xy} = R_0 B + R_S M,$$

a normal Hall contribution due to the Lorentz force, plus an anomalous Hall term ρ_{AH} that is proportional to the magnetization M. Alternatively, a similar separation can be made in the Hall-conductivity,

$$\sigma_H = \sigma_0 B + \chi_S M.$$

Here the first term corresponds to the normal Hall effect related to the carrier concentration ($\sigma_0 = R_0/\rho^2$), while the second term defines the anomalous Hall conductivity, σ_{AH}.

The analysis of the AHE in terms of ρ_{AH} or σ_{AH} is not a simple technical question. The description by ρ_{AH} implicitly assumes that the Hall signal arising from different processes is additive in the scattering rate, $1/\tau$. On the
counter, in the Berry phase picture the transverse current due to the AHE is additive, and does not depend on the electron scattering that determines the longitudinal current.

In most materials - including (In,Mn)Sb - the Hall-resistivity ($\rho_H = \rho_{xy}$) is at least by one order of magnitude smaller than longitudinal resistivity (ρ_{xx}). Consequently, the Hall conductivity defined by Eq. 2 cannot be distinguished from the off-diagonal conductivity derived by matrix inversion from Eq. 1, as $-\rho_H/(\rho_{xx}^2 - \rho_H^2) \approx -\rho_H/\rho_{xx}^2 = \sigma_H$.

In magnetic semiconductors at low magnetic fields the Lorentz term gives usually a negligible contribution compared to the AHE, and the Hall resistivity seems to be simply proportional to the magnetization $[14]$. This situation is exemplified in Fig. 1 by the temperature dependence of the Hall-signal in (In,Mn)Sb: The development of a large nonlinear contribution to $\rho_H(B)$ and the onset of hysteresis loops signify the crossing of the paramagnetic-ferromagnetic phase boundary $[15]$.

The Hall phenomenon at high magnetic fields, however, is more complex: the anomalous Hall effect is not simply proportional to the magnetization, i.e. the AHE coefficient - either R_S or χ_S - is not a constant, but strongly field dependent. The upper panel in Fig. 2 displays the Hall-resistivity up to $B = 14$ T, at various pressures. Qualitatively, the two terms of Eq. (1) play different roles in the different field ranges. At low fields, the negative contribution of the AHE overcomes the positive normal Hall term, while at high fields the linear contribution due to the Lorentz force is dominating. Subtracting the linear term from the total Hall signal the resulting the anomalous Hall term has a non-monotonic dependence on the magnetic field: following a sharp peak it slowly decays, changes sign (see inset of Fig. 2), then saturates at high fields. As the magnetization gradually increases with increasing magnetic field, it is clear that $\rho_{AH} \propto M$ relation is not valid.

Before proceeding, we note that the separation of the normal Hall effect by subtracting a linear term - which is often applied as a first step of the analysis - assumes that the linear field dependence of the normal Hall resistivity is not affected by the multiband nature of the electrical conductivity. In materials where various bands contribute to the conductivity, however, a deviation from the linear variation is expected, since the contribution of the different types of carriers is not simply additive $[18]$. While this is true, the characteristic field above which this effect may influence the normal Hall effect is quite high, given by ρ_H/R_0 which is ~ 100 T for (In,Mn)Sb. Another possibility is that the subband Hall contributions to the normal Hall effect themselves are field dependent due to the change in the population of the spin-split bands. As both the band parameters $[17]$ and the value of the exchange coupling is known $[19]$, it is easy to show that in the magnetic field range of the experiments this leads to less than 1% correction to R_0.

The normal Hall effect may however be field dependent...
for a third reason. In case of different types of carriers any difference in the magnetic field dependence of the subband resistivities influences the relative weights of the subband Hall contributions \[20\]. While the contributions of the two subbands to the normal Hall effect cannot be determined separately, the limiting bounds of the field dependence can easily be evaluated. These correspond to the situations when one of the two subbands makes the dominant contribution to the Hall effect, while the magnetoresistance arises solely either from this or from the other subband. These limiting curves can be derived from the experimentally determined magnetoresistance. As a result, the area enclosed by the gray curves in the lower panel of Fig. 2 represents the possible field dependence of the normal Hall resistivity arising from the multiband nature of (In,Mn)Sb. Clearly the observed Hall signal is far beyond even the extreme limits of the normal Hall term. Thus the strong field dependence has to be attributed to the anomalous Hall effect. Note also that, due to the identical (positive) sign of \(R_0 \) in the heavy- and light-hole bands, a negative peak cannot arise from multiband effects under any circumstances.

Next we briefly discuss the influence of hydrostatic pressure on the Hall effect. The pressure effects on the magnetoresistivity have been investigated in detail previously \[15, 16\]. Here we only recall that while the number of charge carriers is not influenced by pressure (as demonstrated by the high field behavior of the Hall resistivity shown on Fig. 2), the longitudinal resistivity is enhanced. The experimental observations shown in Figs. 3 and 4(b) suggest that \(\rho(p, T, B) \) has the form of \(f(p)\rho(T, B) \), indicating that resistivity change is due to the pressure induced enhancement of the effective mass. The diagonal resistivity increases by more than 20% for the applied pressure of 2.7 GPa. In contrast, the anomalous part of the off-diagonal conductivity is independent of pressure (see Figs. 4c and 5a), indicating a dissipationless anomalous Hall current \[21\].

The above observation is in disagreement with the extrinsic scattering picture. Simultaneously, the strong field dependence of the AHE is also suggestive of an intrinsic mechanism, which is independent of the scattering processes and is rather determined by the singularities in the band structure. Note also that the anomalous Hall conductivity changes sign as a function of magnetic field (Fig. 5a), which is not expected in the scattering models of the AHE.

Berry phase calculations of the AHE are based on the four band spherical Luttinger model of the (II,V) semiconductors which takes into account parabolic dispersions for heavy-hole and light-hole bands in the presence of spin-orbit coupling \[10, 11\]. Furthermore, in the ferromagnetic case an additional term,

\[
H_{ex} \propto J_{pd} s S
\]

has to be introduced into the total Hamiltonian \[10\], which represents the exchange interaction between the localized magnetic moments on Mn\(^{2+}\) ions (\(S \)) and the spins of the charge-carrying holes (\(s \)). This coupling results in the spin splitting of the valence bands. Jungwirth et al. have shown that if both spin-orbit and exchange coupling (\(J_{pd} \)) are important, then AHE is generally non-linear in the magnetization, and it may have both positive and negative signs. Their numerical calculations - including the influence of the split-off band and also the nonparabolic nature of the valence bands - gave good estimates for the magnitude of the AHE in (Ga,Mn)As and (In,Mn)As.

The Luttiger parameters of InSb \[17\] indicate that for In\(_{0.98}\)Mn\(_{0.02}\)Sb, where the hole concentration is \(n = 3 \times 10^{20} \text{cm}^{-3} \), the Fermi level is only \(\sim 150 \text{meV} \) away from
the lower lying split-off band. Due to the exchange splitting, the majority and minority spin bands move about ±25 meV apart from each other. In the Berry-phase picture, the dominant contributions to AHE arise from the nearly degenerate points of the bands located close to the Fermi energy [6, 7, 8, 9]. The vicinity of the split-off band - even without band-crossing - may then have a significant effect on the Berry phase acquired by the heavy band, and light holes, and the large shift of up- and down-spin bands may be responsible to the measured field dependence of the AHE.

It is important to note that as the magnetic field is varied, the relative position of the bands shifts linearly with the absolute value of the magnetization (due to the exchange origin of the splitting). Assuming that the corresponding correction in the anomalous Hall coefficient is also linear in band shift, i.e. $\chi_S \sim (1 - \alpha |M|)$, one obtains the anomalous Hall conductivity varying as

$$\sigma_{AH} \propto M(1 - \alpha |M|)$$

(4)

Such a behavior is demonstrated in Fig. 5, where the experimentally determined $\sigma_{AH}(B)$ and the corresponding $M(B)$ curves are plotted in the from of $\sigma_{AH}(B)/M$ versus M. The observed linear variation above $B \approx 2T$ confirms the above phenomenological picture (using only one fitting parameter, $\alpha = 0.05 cm^3/emu$) [22].

In conclusion we showed that - in contrast to the general belief - in (In,Mn)Sb the AHE is not simply proportional to magnetization. The anomalous Hall signal (either R_S or χ_S) can have a reverse sign before saturating at high field. We attribute this behavior of AHE to Berry phase effects, and we propose a qualitative description of the field-dependent AHE, where exchange splitting leads to a relative shift between the valence bands and the nearby split-off band. The intrinsic nature of the AHE was also confirmed by high pressure experiments: we demonstrated that the off-diagonal terms of the conductivity tensor are not influenced, while the diagonal terms are reduced due to the pressure-induced enhancement of the scattering process.

Acknowledgement

Several enlightening discussions with G. Zar´ and are acknowledged. We are grateful to C. Timm whose comment initiated the clarification of multiband effects in R_0. This research was supported by the National Science Foundation NIRT Award DMR 02-10519 and by the Hungarian Scientific Research Fund OTKA under Grant Nos. F61413, K62441, and Bolyai 00239/04.

[1] A.H. MacDonald, P. Schiffer, and N. Samarth, Nat. Mater. 4, 195 (2005).
[2] H. Ohno et al., Nature 408, 944 (2000).
[3] D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science 301, 943 (2003).
[4] M. Yamanouchi, D. Chiba, F. Matsukura, and H. Ohno, Nature 428, 539 (2004).
[5] G. Sundaram, and Q. Niu, Phys. Rev. B 59, 14915 (1999).
[6] Y. Yao et al., Phys. Rev. Lett. 92, 037204 (2004).
[7] N. Nagaosa, J. Phys. Soc. Jpn. 75, 042001 (2006).
[8] M. Onoda, and N. Nagaosa, J. Phys. Soc. Jpn. 71, 9 (2002).
[9] Z. Fang et al., Science 302, 92 (2003).
[10] T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002).
[11] S. Murakami, N. Nagaosa and S.C. Zhang, Science 301, 1348 (2003).
[12] The Mn doping makes the system metallic with $k_F l \sim 30$, and ferromagnetic with Curie temperature slightly below 10 K (where k_F is the Fermi-wave number and l is the mean free path). The transport and magnetic properties of (In,Mn)Sb have been characterized in a series of recent experiments: see Refs. 13, 14, 15, 16.
[13] T. Wojtowicz et al., Appl. Phys. Lett. 82, 4130 (2003).
[14] T. Wojtowicz et al., Physica E 20, 325 (2004).
[15] M. Csontos et al., Nature Materials 4, 447 (2005).
[16] M. Csontos et al., Phys. Rev. Lett. 95, 227203 (2005).
[17] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
[18] N.W. Ashcroft and N.D. Mermin, Solid State Physics, Saunders Collage, Philadelphia (1976).
[19] T. Dietl, H. Ohno and F. Matsukura, Phys. Rev. B 63, 195205 (2001).
[20] $R_0 = (\rho_{hh}^B(\rho_{hh}^B) + \rho_{lh}^B(\rho_{lh}^B))/((\rho_{hh}(B) + \rho_{lh}(B))^2$,

where ρ_{hh}, ρ_{lh}, ρ_{hh} denote the subband Hall coefficients and resistivities, respectively.
[21] Wei-Li Lee et al., Science 303, 1647 (2004).
[22] Note that in the proposed description the pressure dependence of J_{ph} [15] requires only the horizontal axis of the

![FIG. 5: (Color online) Comparison of the field dependence of (a) the high field anomalous conductivity and (b) the magnetization. (c) σ_{AH}/M as a function of M. The variation of σ_{AH}/M as a function of M is clearly seen to be linear over a wide field range above about 2 T. The dash-dotted line corresponds to Eq. (4).](image-url)
$\sigma_{AH}(B)$ curve shown in Fig. 3 (by about $\sim 3\%$, which is not resolved in the experiment).