Higher Order Stability of a Radiatively Induced 220 GeV Higgs Mass

V. Eliasa,b, R. B. Mannb,c, D. G. C. McKeona,b and T. G. Steeled

aDepartment of Applied Mathematics, The University of Western Ontario, London, Ontario N6A 5B7, Canada
bPerimeter Institute, 31 Caroline Street North Waterloo, Ontario Canada N2L 2Y5
cDepartment of Physics, University of Waterloo, Waterloo, Ontario Canada N2L 3G1
dDepartment of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada

The effective potential for radiatively broken electroweak symmetry in the single Higgs doublet Standard Model is explored to four sequentially subleading logarithm-summation levels (5-loops) in the dominant Higgs self-interaction couplant λ. We augment these results with all contributing leading logarithms in the remaining large but sub-dominant Standard Model couplants (t-quark, QCD and $SU(2) \otimes U(1)$ gauge couplants) as well as next to leading logarithm contributions from the largest of these, the t-quark and QCD couplants. Order-by-order stability is demonstrated for earlier leading logarithm predictions of an $\mathcal{O}(220 \text{ GeV})$ Higgs boson mass in conjunction with fivefold enhancement of the value for λ over that anticipated from conventional spontaneous symmetry breaking.

PACS numbers:

Radiative symmetry breaking, as proposed by S. Coleman and E. Weinberg \cite{1}, embraced the premise that the Standard Model (SM) Lagrangian was protected by some symmetry from a tree level mass term for the Higgs field. In the absence of large destabilizing Yukawa couplings (heavy fermions), Coleman and Weinberg were able to show that λ, the scalar self-coupling within that Lagrangian, was of the same order as the $SU(2) \otimes U(1)$ gauge coupling constants to the fourth power. However, such a small magnitude for λ no longer occurs in the presence of the large t-quark Yukawa coupling, which requires an even larger value of λ to stabilize the SM effective potential. Very recent work, \cite{2, 3} based upon full consideration of all contributing leading-logarithm (LL) terms in the effective potential for the single-Higgs-doublet SM effective potential that devolves from a Coleman-Weinberg (mass-term-protected) tree potential, has predicted a Higgs boson mass (218 GeV) well within indirect-measurement bounds \cite{4}, in conjunction with a Higgs-doublet SM effective potential that devolves from a Coleman-Weinberg (mass-term-protected) tree potential, [conventionally, $y = m_H^2/(8\pi^2 \phi^2) = 0.01$, an enhancement directly measurable in processes such as $WW \rightarrow HH$ \cite{5}. The purpose of the present article is to ascertain whether such clear phenomenological signatures for radiative electroweak symmetry breaking based upon such a conformally invariant tree potential (as may arise from a protective higher symmetry) persist upon inclusion of subsequent-to-leading logarithm contributions to the effective potential.

In ref. \cite{2}, the summation of LL contributions to the SM effective potential is expressed in terms of its dominant three couplants $x = g_t^2(v)/4\pi^2 = 0.0253$, $y = \lambda(v)/4\pi^2$, $z = \alpha_s(v)/\pi = 0.0329$, where the momentum scale $v = \langle \phi \rangle = 246.2 \text{ GeV}$ is the vacuum expectation value (vev) of electroweak symmetry breaking. This LL effective potential may be expressed as a power series in the logarithm $L = \log(\phi^2/v^2)$:

$$ V_{\text{eff}} \equiv \pi^2 \phi^4 S = \pi^2 \phi^4 \left(A + BL + CL^2 + DL^3 + EL^4 + \ldots \right). \tag{1} $$

The constant $A = y + K$, where K includes all finite ϕ^4 counterterms remaining after divergent contributions from ϕ^4 graphs degree-2 and higher in couplant powers are cancelled. Coefficients $\{B, C, D, E\}$ are explicitly obtained in refs. \cite{2, 3} via the renormalization group (RG) equation,

$$ \left[(-2 - 2\gamma) \frac{\partial}{\partial L} + \beta_x \frac{\partial}{\partial x} + \beta_y \frac{\partial}{\partial y} + \beta_z \frac{\partial}{\partial z} - 4\gamma \right] S = 0, \tag{2} $$

as degree $\{2, 3, 4, 5\}$ polynomials in the couplants x, y, z. The unknown couplant $y(v)$ and finite counterterm $K\phi^4$ are numerically determined by the simultaneous application of Coleman and Weinberg’s renormalization conditions \cite{1}:

$$ V_{\text{eff}}' (v) = 0 \implies K = -B/2 - y; \quad V_{\text{eff}}^{(4)} (v) = V_{\text{tree}}^{(4)} (v) \implies y = \frac{11}{3} B + \frac{35}{3} C + 20D + 16E. \tag{3} $$

Given the LL expressions for $\{B, C, D, E\}$ in Eqs. (8)–(11) of ref. \cite{2}, one finds that $y = 0.05383, K = -0.05794$, in which case coefficients $\{A, B, C, D, E\}$ in the potential \cite{1} are numerically determined. The “running Higgs boson
mass* [6] at the vev-momentum-scale is found from the second derivative of the effective potential

$$m^2_H = V''_{eff}(v) = 8\pi^2 v^2 (B + C),$$

(4)

to be $m_H = 216$ GeV at LL level [2]. Incorporation of LL contributions to $\{A - E\}$ from the much smaller electroweak gauge couplings $r = g_3^2/4\pi^2 = 0.0109$, $s = g^2/4\pi^2 = 0.00324$ modifies the value of m_H to be 218 GeV and $y(v)$ to be 0.0545 [3].

We consider here whether this large value of the self-interaction coupling $y(v)$ is still sufficiently small for the LL Higgs boson mass (218 GeV) to be subject to controllable corrections from those subsequent-to-leading-logarithm contributions to the effective potential that are dominated by higher powers of y. To address stability when $y(v)$ is large, we first consider the scalar field theory projection (SFTP) of the SM effective potential, obtained by setting all SM couplings except the dominant coupling $y (y > z, x, r, s)$ to zero. Indeed, focusing on the large-coupling subtheory and then taking into account subdominant couplings is analogous to the usual treatment of processes in which QCD and electroweak corrections both occur (e.g. $e^+e^- \rightarrow$ hadrons).

When supplemented by scalar-field kinetic terms, the SFTP of the SM electroweak effective potential is equivalent to a globally O(4) symmetric massless scalar field theory for which β_y and γ have been calculated in $\overline{\text{MS}}$ to five-loop order. [The coupling constant in ref. [7] is $g = 3\sqrt{2}/(8\pi^2) = 3y/2.]$ The LL SFTP of the SM effective potential is just the $x = 0$ limit of Eq. (6.1) of ref. [3]:

$$V_{\text{SFTP}}^{LL} = \pi^2 \phi^4 \left[\frac{y}{1 - 3yL} + K' \right].$$

(5)

The constant K' represents the contribution of all finite ϕ^4 counterterms degree-2 and higher in y. Curiously, if v retains its 246 GeV SM value, the running Higgs mass and scalar coupling $y(v)$ extracted from this potential are not very different from those of the full LL series. By applying conditions [3] to the SFTP LL values $\{B, C, D, E\} = \{3y^2, 9y^3, 27y^4, 81y^5\}$ obtained from Eq. (5), one finds that $y(v) = 0.05414$ and $K' = -y - \frac{3}{2}y^2 = -0.05853$. Substituting this value for y into B and C [Eq. (1)], we obtain a running Higgs boson mass of 221 GeV at the vev-momentum-scale, only a small departure from the 216 GeV result [2] when Standard Model couplings x and z are assigned physical vev-momentum-scale values instead of the value zero. [Note that the SFTP is not scale-free: a physical vev scale $v = (\sqrt{2}G_F)^{-1/2}$ arises from the SM gauge sector.] These results suggest that the SFTP of the SM dominates radiative electroweak symmetry breaking, subject to manageably small corrections from the other smaller SM interaction couplings ($x, z, etc.$)

In the absence of an explicit mass term, the SFTP all-orders potential takes the form of a perturbative field theoretic series ($y = \lambda/4\pi^2$, $\mathcal{L} = \log(\phi^2/\mu^2)$)

$$V_{\text{SFTP}} = \pi^2 \phi^4 S_{\text{SFTP}}, \quad S_{\text{SFTP}} = y + \sum_{n=1}^{\infty} \sum_{m=0}^{n} T_{n,m} y^{n+1} L^m.$$

(6)

LL contributions to this series involve coefficients $T_{n,n} = 3^n$ from Eq. (5); NLL contributions correspond to coefficients $T_{n,n-1}$; and so forth. The invariance of V_{SFTP} under changes in the renormalization scale μ implies that S_{SFTP} satisfies the $\overline{\text{MS}}$ renormalization-group (RG) equation [2] with $\beta_y = \beta_z = 0$, and with [7]

$$\gamma = \frac{3}{8}y^2 - \frac{9}{16}y^3 + \frac{55}{128}y^4 - 49.8345y^5 + \ldots$$

(7)

The series S_{SFTP} in the full potential [3] may be rewritten in terms of sums of leading (S_0) and successively subleading ($S_1, S_2, ...$) logarithms:

$$S_{\text{SFTP}} = yS_0(yL) + y^2 S_1(yL) + y^3 S_2(yL) + y^4 S_3(yL) + \ldots; \quad S_k(u) = \sum_{n=k}^{\infty} T_{n,n-k} u^{n-k}.$$

(8)

Given $u = yL$, we employ the methods of ref. [8] to obtain successive differential equations for $S_k(u)$, first by substituting Eq. (8) into the RG equation [2] with nonzero RG functions [1], and then by organizing the RG equation in powers of y:

$$\mathcal{O} \left(y^2 \right): \quad 2 \left(1 - 3u \right) \frac{dS_0}{du} - 6S_0 = 0, \quad S_0 (0) = 1;$$

(9)

$$\mathcal{O} \left(y^3 \right): \quad 2 \left(1 - 3u \right) \frac{dS_1}{du} - 12S_1 = -21S_0 - \frac{39}{2} u \frac{dS_0}{du}, \quad S_1 (0) = T_{1.0};$$

(10)

$$\mathcal{O} \left(y^4 \right): \quad 2 \left(1 - 3u \right) \frac{dS_2}{du} - 18S_2 = \frac{41823}{220} S_0 - \frac{3}{4} u \frac{dS_0}{du} + \frac{10332}{55} u \frac{dS_0}{du} - \frac{81}{2} S_1 - \frac{39}{2} u \frac{dS_1}{du}, \quad S_2 (0) = T_{2.0}.$$

(11)
n^α LL SFTP	SFTP + α LL in $\{x,z\}$	SFTP + α LL in $\{x,z,r,s\}$			
\(n\) \(y(v)\)	\(m_H\) \(T_{\alpha,0}\)	\(y(v)\) \(m_H\) \(T_{\alpha,0}\)	\(y(v)\) \(m_H\) \(T_{\alpha,0}\)		
0 0.05414 221.2	1	0.05383 215.8	1	0.05448 218.3	1
1 0.05381 227.0	2.5521	0.05351 221.7	2.5533	0.05415 224.4	2.5603
2 0.05392 224.8	-8.1770	0.05362 219.5	-8.1744	0.05426 222.1	-8.1773
3 0.05385 226.2	83.211	0.05355 221.3	83.190	0.05419 224.0	83.195
4 0.05391 225.6	114.18	0.05338 223.6	-982.24	0.05406 225.5	-1191.8

Table I: Perturbative stability of results inclusive of N^α LL contributions from the dominant couplant $y(v) = (\lambda(v)/4\pi)^2$ to the SFTP of the SM effective potential (columns 2-4). Columns 5-7 show the effect of augmenting this projection with prior determinations of LL contributions to the effective potential from t-quark ($x = g_T^2(v)/4\pi^2$) and from QCD ($z = \alpha_s(v)/\pi$). Columns 8-10 further augment this projection with LL contributions from electroweak $SU(2)$ $(r = g_2^2(v)/4\pi^2)$ and $U(1)$ $(s = g^2/4\pi^2)$ gauge couplants. m_H denotes the vev-referenced running Higgs boson mass $[V_{eff}(v)]^{1/2}$ in GeV units ($v = 246.2$ GeV).

Equations for S_3 and S_4 (not displayed) are also straightforward to obtain from the 5-loop RG functions (7). One can thus obtain exact solutions to the sums of LL, NLL, N^2LL, N^3LL, and N^4LL contributions to the series (5).

As before we choose $\mu = v$, the scalar field vev, in which case $L \rightarrow L = \log(\phi^2/v^2)$ (5). Recall that the counterterm K' in the LL potential (16) ($K' = -0.05853$) and the couplant $y = (0.05414)$ are comparable in magnitude; K' is not a single higher-order counterterm coefficient. The SFTP ϕ^4 counterterm coefficient K' can accommodate contributions of any logarithm-free terms $T_{n,0}y^{n+1}$ ($n > 1$) in the complete series (6). The all-orders SFTP of the effective potential

$$V_{SFTP} = \pi^2 \phi^4 \sum_{n=0}^{\infty} T_{n,m} y^n L^m = \pi^2 \phi^4 \sum_{k=0}^{\infty} y^k S_k(yL),$$

is then approached by the following successive approximations to Eq. (12), which incorporate the summations of successively subleading logarithms contributing to the complete series (5):

$$V_{LL} = \pi^2 \phi^4 \left[\sum_{n=0}^{\infty} T_{n,n} (yL)^n + yT_{1,0} + y^2 T_{2,0} + y^3 T_{3,0} + \cdots \right] \equiv \pi^2 \phi^4 [yS_0(yL) + K'],$$

$$V_{NLL} = \pi^2 \phi^4 \left[\sum_{n=0}^{\infty} T_{n,n} (yL)^n + y \sum_{n=1}^{\infty} T_{n,n-1} (yL)^{n-1} + y^2 T_{2,0} + \cdots \right]$$

$$= \pi^2 \phi^4 \left[yS_0(yL) + y^2 S_1(yL) + (K' - y^2 T_{1,0}) \right],$$

$$V_{N^2LL} = \pi^2 \phi^4 \left[\sum_{q=0}^{\infty} y^q S_q(yL) \left(K' - \sum_{q=1}^{\infty} y^{q+1} T_{q,0} \right) \right] =_{\text{lim } p \rightarrow \infty} V_{N^2LL} = V_{SFTP}. \quad \text{(15)}$$

Note from Eq. (13) that K' is numerically inclusive of all finite ϕ^4 counterterms. Thus for the NLL case with K' already determined from application of Eq. (5) to Eq. (5), we now find from Eq. (3) that $T_{1,0} = -[4K' - 21y^3 + 6y^2 + 4y]/12y^3 = 2.5521, y = 0.05381$, and from Eq. (5) that $[V_{SFTP}(v)]^{1/2} = 227$ GeV.

One can continue this procedure through N^4LL order, applying conditions (5) on potentials (15) to determine $T_{n,0}$ and y while making use of the information $(T_{1,0}, \ldots, T_{n-1,0}, K')$ from preceding orders. The results, as summarized in columns 2-4 of Table I, show remarkable order-by-order stability in the values obtained both for the couplant $y(v)$ and the running Higgs boson mass. Note also that the SFTP potential (12) is compatible by construction with the \overline{MS} renormalization scheme, since the summations $S_k(yL)$ of N^kLL’s are obtained from differential equations [e.g. Eqs. (9)-(11)] derived from \overline{MS} RG functions (7).

We now augment the SFTP with the smaller subdominant SM couplants $\{x, z, r, s\}$ (3). If only the LL from $\{x, z\}$, the Yukawa interaction sector, are included, K is found from the minimization condition (3) to be $K = -y - 3y^2/2 + 3x^2/8 = -0.05793$, where y is the LL value 0.05383 obtained [via Eq. (3)] in ref. (3). If LL contributions from $\{r, s\}$, the $SU(2) \otimes U(1)$ gauge couplants, are also included, the constant K is now $K = -y - 3y^2/2 + 3x^2/8 - 3rs/64 - 9r^2/128 - 3s^2/128 = -0.058704$, where y is the LL value for $y(v) = 0.05481$ obtained [via Eq. (5)] in ref. (5). These results are listed in columns 5-10 of Table I. The order-by-order stability of improved predictions $y(v) = 0.054$, $m_H = 220–227$ GeV is quite striking. Moreover, we have also found that this stability persists when contributions
from subdominant couplings x and z are considered to NLL order via use of two-loop $\overline{\text{MS}}$ RG functions in Eq. 11. The all-orders effective potential analogous to Eq. (6) but now inclusive of all three dominant SM couplings x, y, z is of the form

$$V_{xyz} = \pi^2 \phi^4 \sum_{n=0}^{\infty} x^n \sum_{k=0}^{\infty} y^k \sum_{\ell=0}^{n+k+\ell-1} z^\ell \sum_{p=0}^{\ell} L^p D_{n,k,\ell,p} = \pi^2 \phi^4 S_{xyz} \quad (D_{0,1,0,0} = 1, \, D_{1,0,0,0} = D_{0,0,1,0} = 0), \quad (16)$$

where the series S_{xyz} can be expressed either as summations of LLs ($p = n + k + l - 1$), NLLs ($p = n + k + l - 2$), etc, as in Eq. 12, or as power series in the logarithm L, as in Eq. 11. To NLL order, only the $y^2 \quad (D_{0,2,0,0} = T_{1,0} \equiv a)$ and $x^2 \quad (D_{2,0,0,0} \equiv b)$ finite counterterms from divergent one-loop ϕ^4 graphs contribute to the coefficients $\{B, C, D, E\}$. The NLL contributions to $\{B, C, D, E\}$ from Eq. 10 are

$$B = \left[3y^2 - \frac{3}{4} \right]_{LL}$$

$$\quad \quad + \left[\left(-\frac{27}{4} + \frac{3a}{2} \right) xy^2 + \left(\frac{3}{2} + \frac{3b}{4} \right) x^3 - \left(1 + 4b \right) x^2 z + \left(6a - \frac{21}{2} \right) y^3 + \left(\frac{3}{4} - \frac{3a}{2} \right) x^2 y \right]_{NLL},$$

$$C = \left[9y^3 + \frac{9}{4} xy^2 - 9x^2 y + \frac{3}{2} x^2 z - \frac{9}{32} x^3 \right]_{LL}$$

$$\quad \quad + \left[\left(27a - \frac{621}{8} \right) y^4 + \left(\frac{27a}{2} - \frac{225}{4} \right) xy^3 + \left(\frac{3a}{2} + \frac{21}{2} \right) x^2 y^2 + \left(\frac{3a - 9}{2} \right) x^2 y z + \left(-\frac{225a}{32} + \frac{27}{8} \right) x^2 y^2 \right]_{NLL},$$

$$D = \left[27y^4 + \frac{27}{2} xy^3 - \frac{3}{2} xy^2 z + 3x^2 y z - \frac{225}{32} x^2 y^2 - \frac{23}{8} x^2 z^2 + \frac{15}{16} x^3 z - \frac{45}{16} x^3 y + \frac{99}{256} x^4 \right]_{LL}$$

$$\quad \quad + \left[\left(-\frac{801}{2} + 108a \right) y^5 + \left(\frac{11547}{32} + 81a \right) xy^4 + \left(-12a + \frac{147}{2} \right) x y^3 z + \left(\frac{15a}{8} - \frac{291}{16} \right) x y^2 z^2 \right]_{NLL},$$

$$\quad \quad + \left[\left(-\frac{23a}{4} + \frac{75}{4} \right) x^2 y^2 + \left(\frac{45}{32} - \frac{45a}{2} \right) x^2 y^3 + \left(\frac{177a}{16} - \frac{33}{8} \right) x^2 y^2 z + \left(-\frac{877}{32} - \frac{115b}{4} \right) x^2 z^3 \right]_{NLL},$$

$$\quad \quad + \left[\left(\frac{3125}{128} + \frac{201b}{16} \right) x^3 z^2 + \left(\frac{69a}{8} - \frac{615}{16} \right) x^3 y z + \left(\frac{19323}{256} - \frac{2781a}{128} \right) x^3 y^2 \right]_{NLL},$$

$$\quad \quad + \left[\left(-\frac{1023}{128} - \frac{135b}{32} - \frac{9a}{4} \right) x^4 z + \left(\frac{3825}{256} + \frac{45a}{128} \right) x^4 y + \left(-\frac{1035}{512} + \frac{45b}{64} + \frac{81a}{64} \right) x^5 \right]_{NLL}.$$
\[
E = \left[81y^5 + \frac{243}{4}xy^4 - 9xy^3z + \frac{45}{32}xy^2z^2 - \frac{69}{16}x^2yz - \frac{135}{8}x^2y^3 + \frac{531}{64}x^2y^2 + \frac{345}{64}x^2z^3 - \frac{603}{256}x^3z^2 \\
+ \frac{207}{32}x^3yz - \frac{8343}{512}x^3y^2 - \frac{459}{512}x^4z + \frac{135}{512}x^4y + \frac{837}{1024}x^5 \right]_{LL} \\
+ \left[\left(-\frac{55539a}{4096} + \frac{1081377}{8192} \right)y^2x^4 + \left(\frac{2187a}{256} - \frac{29133}{2048} \right)yx^5 + \left(-\frac{125793}{64} + 405a \right)y^6 \right]_{NLL} \\
+ \left[\left(\frac{1035b}{64} + \frac{105c}{16} + \frac{111633}{4096} \right)x^4z + \left(-\frac{1215a}{32} - \frac{195939}{1024} \right)y^4x^2 + \left(\frac{452b}{64} + \frac{38613}{512} \right)x^2z^4 \right]_{NLL} \\
+ \left[\left(-\frac{315b}{64} + \frac{207a}{32} + \frac{17703}{2048} \right)x^5z + \left(\frac{459b}{128} - \frac{75315}{1024} \right)x^3z^3 + \left(-\frac{28323}{16} + 405a \right)y^6 \right]_{NLL} \\
+ \left[\left(\frac{4581}{64} + \frac{855a}{32} \right)y^3x^2z + \left(-\frac{31455a}{256} + \frac{227529}{512} \right)y^3x^3 + \left(\frac{3231}{8} - \frac{135a}{2} \right)y^4xz \right]_{NLL} \\
+ \left[\left(-\frac{3807}{32} + \frac{225a}{16} \right)y^3x^2z + \left(-\frac{28197}{128} + \frac{7191a}{128} \right)y^2x^2z^2 + \left(\frac{14847}{512} - \frac{1215a}{64} \right)y^2x^2z^2 \right]_{NLL} \\
+ \left[\left(\frac{3603}{128} + \frac{165a}{64} \right)y^2x^3z + \left(-\frac{35145}{512} + \frac{621a}{256} \right)yx^4z + \left(\frac{7323}{64} - \frac{2643a}{128} \right)yx^3z^2 \right]_{NLL} \\
+ \left[\left(-\frac{93}{2} + \frac{345a}{32} \right)y^2x^3z + \left(\frac{208629}{32768} + \frac{1485b}{2048} + \frac{1269a}{1024} \right)x^6 \right]_{NLL}.
\]

Analogous to \(A = y + K \) in the series expansions of Eqs. (14)-(15), the leading term \(A \) in the power series \(\tilde{A} \) is just \(y + K \), where the constant \(K \) is inclusive of all degree-2 and higher purely \(\phi^4 \) terms (\(p = 0 \)) in the full potential \(V \). Given our previous determination (in the absence of gauge couplant s \(r \) and \(s \) of \(K = -0.057353 \)) and our NLL SFTP + \(\{ x, z \}_{LL} \) result \(a = T_{1,0} = 2.5533 \) [Table II] we find upon application of conditions \(\theta \) that \(b = -17.306 \) and \(y(v) = 0.05311 \). Substituting these results into Eq. \(\Gamma \) [via Eqs. (17)-(20)], we find that \(V_{eff} = (227.8 \text{GeV})^2 \). This result, involving a full NLL treatment of dominant \(\{ x, y, z \} \) contributions to \(V_{eff} \), is a full next-order extension of the LL contributions of \(\{ x, y, z \} \) to \(V_{eff} \) presented in [2]. If we further augment this NLL result with LL contributions from electroweak gauge couplants \(\tilde{V} \), \(T_{1,0} = 2.5603 \) [Table II], \(b = -17.857 \), \(y(v) = 0.05374 \), and \(V_{eff} = (230.7 \text{GeV})^2 \).

In radiative electroweak symmetry breaking, the next order relationship between the physical Higgs boson mass and \(V_{eff} \) has been worked out in principle [1]. In particular, the next order Higgs inverse propagator mass term must remain \(V_{eff}(v) \) because of the absence of a primitive \(\phi^2 \) term in the original Lagrangian. The kinetic term for the inverse propagator (as seminally discussed for the massless gauge boson propagator in [12]) must retain consistency with the relation \(m_{H}^2 = -\gamma(x) \phi \) implicit within the RG equation [2], in which case the next-order inverse propagator for the Higgs field at \(\mu = v \) may be expressed as

\[
\Gamma(p^2, v) = \left[1 - \left(\frac{3}{4}x(v) - \frac{9}{16}r(v) - \frac{3}{16}s(v) \right) \log \left(\frac{p^2}{v^2} \right) \right] p^2 - \frac{v^2}{V_{eff}(v)}.
\]

We have included only those SM contributions to \(\gamma(v) \) that are linear in the couplants \(\{ x, y, z, r, s \} \) [10]. The zero of \(\Gamma \) is the NLL prediction for the physical Higgs boson mass \(\Gamma \left(m_H^2, v \right) = 0 \), which is found to be reduced by only 0.2–0.3 GeV from values respectively below 231 GeV and above 220 GeV extracted from \(V_{eff}(v) \) past LL order. We therefore conclude that the 220–230 GeV Higgs boson mass and a factor of five enhancement of the scalar-field self-interaction coupling are indeed signature predictions for radiative SM electroweak symmetry breaking. This enhancement should be particularly evident in WW → HH cross-sections [13] accessible in the not too distant future.

We are grateful for useful discussions with F.A. Chishtie, M. Sher and V.A. Miransky and for support from the Natural Sciences and Engineering Research Council of Canada.

[1] S. Coleman and E. Weinberg, Phys. Rev. D7, 1888 (1973).
[2] V. Elias, R.B. Mann, D.G.C. McKeon, T.G. Steele, Phys. Rev. Lett. 91, 251601 (2003)
[3] V. Elias, R.B. Mann, D.G.C. McKeon, T.G. Steele, Nucl. Phys. B 678, 147 (2004) (E) ibid B703, 413 (2004). The Erratum’s corrections are included in the current version of [hep-ph/0308301].
[4] V.M. Abazov et al (D∅ Collaboration), Nature 429, 638 (2004).
[5] F.A. Chishtie and V. Elias, [hep-ph/0502044].
[6] M. Quiros, in Perspectives on Higgs Physics II, edited by G.L. Kane (World Scientific, Singapore, 1997), p. 148.
[7] H. Kleinert et al., Phys. Lett. B 272, 39 (1991); 319, 545 (E) (1993).
[8] M.R. Ahmady, F.A. Chishtie, V. Elias, A.H. Fariborz, N. Fattahi, D.G.C. McKeon, T.N. Sherry, T.G. Steele, Phys. Rev. D 66, 014010 (2002).
[9] The approximate scale invariance of LL results is discussed in refs. [2,3].
[10] C. Ford, D.R.T. Jones, P.W. Stephenson, M.B. Einhorn, Nucl. Phys. B 395, 17 (1993).
[11] K.T. Mahanthappa and M. Sher, Phys. Rev. D 22, 1711 (1980).
[12] H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).