\textbf{A}^1\text{-CONNECTED VARIETIES OF RANK ONE OVER NON-CLOSED FIELDS}

QILE CHEN AND YI ZHU

Abstract. In this paper, we proved two results regarding the arith-
metics of separably A^1-connected varieties of rank one. First we proved
over a large field, there is an A^1-curve through any rational point of the
boundary, if the boundary divisor is smooth and separably rationally
connected. Secondly, we generalize a theorem of Hassett-Tschinkel for
the Zariski density of integral points over function fields of curves.

\textbf{Contents}

1. Introduction \hspace{1cm} 1
2. A Gluing technique \hspace{1cm} 3
3. Zariski density \hspace{1cm} 7
References \hspace{1cm} 8

1. Introduction

Separably A^1-connected varieties has been introduced and studied in
[CZ13, CZ14]. They are the analogue of separably rationally connected
(SRC) varieties in the non-proper setting. When the non-proper variety ad-
mits a log smooth compactification, the recent developments on log stable
maps provide us a powerful tool to study A^1-connectedness. We refer to
[Kat89] for the basics of logarithmic geometry, and to [GS13, Che14, AC14,
ACMW14, Wis14] for the details of the theory of stable log maps.

In this paper, we study the arithmetics of simple separably A^1-connected
varieties of rank one with the SRC center over non-closed fields, or equiva-
lently, log pairs with the ambient variety smooth proper and the boundary
divisor smooth irreducible SRC. Our results consists of two parts: one is
over large fields and the other is over function fields of algebraic curves over
an algebraically closed field of characteristic zero.

Date: September 24, 2014.
2010 Mathematics Subject Classification. 14G05, 14M22.
Key words and phrases. stable log maps, A^1-connected varieties, large fields, integral
points, Zariski density.

Chen is partially supported by NSF grant DMS-1403271.
1.1. **Over large fields.** According to Iitaka’s philosophy, we expect the results for SRC varieties hold for separably \mathbb{A}^1-connected varieties in an appropriate form. Our first motivation here is to generalize Kollár’s theorem [Kol99, Theorem 1.4]: over a large field K, every rational point of a proper SRC variety is contained in a very free rational curve defined over K. In the logarithmic setting, we would like to find \mathbb{A}^1-curves on a proper separably \mathbb{A}^1-connected log variety defined over K. Since each \mathbb{A}^1-curve also gives a K-rational point on the boundary, a necessary condition for existence of \mathbb{A}^1-curves is $D(K) \neq \emptyset$. Conversely, we have the following:

Theorem 1.1. Let K be a large field. Let $X = (\mathcal{X}, \mathcal{D})$ be a proper log smooth, simple, and separably \mathbb{A}^1-connected K-variety of rank one with the SRC center. Then there exists a very free \mathbb{A}^1-curve defined over K through any K-rational point of \mathcal{D}.

1.2. **Over function fields.** Let k be an algebraically closed field of characteristic zero. Let B be a smooth projective algebraic k-curve, and let F be its function field. Our second motivation is to study arithmetics of \mathbb{A}^1-connected varieties over F. Based on the work of [KMM92, GHS03, HT06a], Hassett-Tschinkel proposed the weak approximation conjecture:

Conjecture 1.2. [HT06a] Proper rationally connected varieties defined over F satisfy the weak approximation.

Over number fields, number theorists are also interested in the approximation results for non-proper varieties, i.e. the strong approximation. Note that affine spaces satisfy the strong approximation. From our point of view, \mathbb{A}^1-connected varieties are generalizations of affine spaces. We propose the following question:

Question 1.3. Does strong approximation hold for \mathbb{A}^1-connected varieties over F?

A special case of Question 1.3 is the Zariski density of integral points studied by Hassett-Tschinkel [HT08]. Using the log deformation theory, we give another proof of Hassett-Tschinkel’s theorem in the \mathbb{A}^1-connectedness setting:

Theorem 1.4. Let $X = (\mathcal{X}, \mathcal{D})$ be a log smooth, proper, and \mathbb{A}^1-connected variety of rank one with the SRC center defined over F. Given a model $\pi : (\mathcal{X}, \mathcal{D}) \to B$ with the generic fiber $(\mathcal{X}, \mathcal{D})$, let S be a non-empty finite set of places on B containing the images of the singularities of \mathcal{X} and \mathcal{D}. Then the set of S-integral points of the family are Zariski dense.

Furthermore, when S is nonempty containing all places of bad reductions [HT08, Definition 4], there exists an S-integral point through any finite collection of integral points lying in the strongly \mathbb{A}^1-uniruled locus of the fiber $(\mathcal{X}_t, \mathcal{D}_t)$ for $t \in B \setminus S$.
For a log variety X given by a pair (X, D) over an algebraically closed field, we defined the strongly \mathbb{A}^1-uniruled locus of X to be the open subset of $X \setminus D$ consisting of points contained in the image of free \mathbb{A}^1-curves.

By [CZ13, Corollary 1.10], the above theorem generalizes the previous work of Hassett and Tschinkel [HT08, Theorem 1]. It also includes the pairs (\mathbb{P}^1, ∞) and Hirzebruch surface H_n with the $(-n)$-curve as the boundary, where the original argument of Hassett and Tschinkel does not apply. We wish to further study Zariski density and strong approximation in our subsequent work for \mathbb{A}^1-connected varieties with more general boundaries.

1.3. Notations. In this paper, all log structures are fine and saturated [Kat89, Section 2]. Capital letters such as C, S, X, Y are reserved for log schemes. Their associated underlying schemes are denoted by $\mathcal{C}, \mathcal{S}, \mathcal{X}, \mathcal{Y}$ respectively.

A log scheme X is called of rank one, if geometric fiber of the characteristic monoid $\mathcal{M}_{X,x} := \mathcal{M}_{X,x}/\mathcal{O}_{X,x}^*$ is either \mathbb{N} or $\{0\}$ for any geometric point $x \in X$. Given a pair (X, D) with $D \subset X$ a cartier divisor, denote by X the canonical log scheme associated to the pair (X, D), see [Kat89, Complement 1]. Such log scheme X is of rank one. For simplicity, we may write $X = (X, D)$ to denote the corresponding log scheme and the underlying pair. We say that a log smooth proper variety $X = (X, D)$ of rank one is simple if the boundary divisor is irreducible and smooth. We will keep using the terminology in [AC14], and call D the center.

Let K be a field, and X be a proper, log smooth K-variety defined by a log smooth pair (X, D) such that $D \subset X$ is a smooth divisor. Given a stable log map $f : C/S \rightarrow X$ over S, a marking $\Sigma \subset C$ is called a contact marking if the corresponding contact order is non-trivial. See [AC14, Section 3.8] and [ACGM10] for more details of contact orders.

Recall that a stable log map $f : C/S \rightarrow X$ is non-degenerate if the log structure \mathcal{M}_S is trivial over every geometric point on S. A stable log map is called an \mathbb{A}^1-curve if it is a non-constant, non-degenerate genus zero stable log map with only one contact marking. Otherwise, we called it a stable \mathbb{A}^1-map.

We use $\mathcal{M}_{\mathbb{A}^1,n}(X, \beta)$ to denote the log algebraic K-stack of stable \mathbb{A}^1-maps with target X, n non-contact markings, and curve class $\beta \in H_2(X)$. Denoted by $\mathcal{M}_{\mathbb{A}^1,0}(X, \beta)$ its underlying algebraic stack. When $n = 0$, we write $\mathcal{M}_{\mathbb{A}^1}(X, \beta)$ instead of $\mathcal{M}_{\mathbb{A}^1,0}(X, \beta)$.

Let s be a K-point of D. Denote by $\mathcal{M}_{\mathbb{A}^1}(X, \beta; s)$ the fiber of the contact evaluation morphism

$$\mathcal{M}_{\mathbb{A}^1}(X, \beta) \rightarrow D$$

over s.

2. A Gluing Technique

Definition 2.1. Let $K \subset L$ be any field extension. An \mathbb{A}^1-comb over $S = \text{Spec} L$ is a stable \mathbb{A}^1-map $f : C/S \rightarrow X$ in $\mathcal{M}_{\mathbb{A}^1}(X, \beta)(S)$ satisfying:
the underlying curve \mathcal{C} of C is given by a union of irreducible components $\mathcal{C}_0, \mathcal{C}_1, \ldots, \mathcal{C}_m$ over S such that \mathcal{C} is obtained by joining \mathcal{C}_0 and \mathcal{C}_i along two L-points $q_i : S \to \mathcal{C}_0$ and $p_i : S \to \mathcal{C}_i$ for each $i \neq 0$.

(2) the unique contact marking is given by an L-point $q_\infty : S \to \mathcal{C}_0$.

(3) the general fiber of the restriction $f_i := f|_{\mathcal{C}_i}$ over S defines a family of \mathbb{A}^1-curves on X for $i \neq 0$.

We call f_i the \mathbb{A}^1-tooth of f, and \mathcal{C}_0 the handle of f.

We introduce an \mathbb{A}^1-comb construction when the teeth are Galois conjugate to each other.

Proposition 2.2. Let $K \subset L$ be a Galois extension with $G = \text{Gal}(L/K)$. Given an K-rational point $s \in D(K)$, and \mathbb{A}^1-curves $[f_i : C_i \to X] \in \mathcal{M}_{\mathbb{A}^1}(X, \beta; s)(L)$ for $i = 1, \ldots, m$ with $m \geq 2$, such that they are contained in a G-orbit under the Galois action. Then there exists an \mathbb{A}^1-comb $[f : C/S \to X] \in \mathcal{M}_{\mathbb{A}^1}(X/K, \beta' ; s)(L)$ with S the standard log point over $\text{Spec} L$ satisfying:

1. $\beta' = m \cdot \beta$;
2. f_i is the tooth of f for each i;
3. C is obtained by gluing C_1, \ldots, C_m along m different L-rational points of $C_0 = \mathbb{P}^1$ contained in a G-orbit;
4. f contracts the handle C_0 to the K-rational point s;
5. the log structure on S is minimal in the sense of [Che14, AC14].

If furthermore the set of \mathbb{A}^1-curves $\{[f_i]\}$ forms a complete Galois orbit, then $[f]$ is G-invariant, and descents to a K-rational point in $\mathcal{M}_{\mathbb{A}^1}(X/K, \beta' ; s)(K)$.

Proof. Comparing with the case of usual stable maps, the major difficulty is to construct morphism on the level of log structures. We split the construction into several steps.

Step 1. Construct the underlying map.

Choose $C_0 = \mathbb{P}^1$ defined over K with prescribed m different L-rational points

$$q_1, \ldots, q_m,$$

and a K-rational point q_∞, which will be the contact marking of the \mathbb{A}^1-comb. We may choose the L-rational points in (2.1) contained in a G-orbit compatible with the Galois action on $\{f_i\}$. Let C be the nodal curve over L obtained by gluing C_0 and C_i by identifying p_i with the contact marking $q_i \in C_i$. Then $f : C \to X$ is defined by gluing f_i with the contraction map $f(C_0) = s$.

Step 2. Expansion along D
Denote by \(N := N_{D/X} \) the normal bundle of \(D \) in \(X \), and form \(\mathbb{P} = \mathbb{P}(N \otimes \mathcal{O}_D) \). Thus, we have a \(\mathbb{P}^1 \)-fibration:
\[
\phi : \mathbb{P} \to D
\]
with two disjoint sections \(D_0 \cong D_\infty \cong D \) such that
\[
N_{D_0/P} \cong N_{D_\infty/P} \cong N^\vee.
\]
Consider \(W = \mathbb{P} \cup_{D_0 \cong D} X \) obtain by gluing \(\mathbb{P} \) and \(X \) using the canonical identification \(D_0 \cong D \). By [Ols03], there is a canonical log smooth family
\[
(2.2) \quad \psi : W \to B
\]
over \(\psi : W \to B := \text{Spec } K \). The underlying family \(\psi \) is called the expansion along \(D \). We call \(\psi \) the logarithmic expansion along \(D \). Note that we have a natural morphism of log schemes
\[
(2.3) \quad \pi : W \to X
\]
whose underlying morphism \(\pi \) is the contraction of the \(\mathbb{P}^1 \)-fibration \(\phi \). This can be shown by a similar argument as in for example [GS13, Proposition 6.1].

Step 3. Lift \(f \) to underlying stable map to the expansion

Denote by \(c = \beta \cap D \in \mathbb{Z}_{>0} \). The integer \(c \) is the contact order of \(f_i \) at the contact marking \(p_i \) for each \(i \). Since both \(X \) and \(D \) are defined over \(K \), the fiber of the restriction \(\phi|_W \) is a \(\mathbb{P}^1_K \) defined over \(K \). We then construct the underlying stable map
\[
f'_0 : C_0 \cong \mathbb{P}^1 \to \mathbb{P}^1_K
\]
such that

1. \(f'_0 \) factors through \(\mathbb{P}^1_B \);
2. \(f'_0 \) tangent to \(D_0 \) at \(q_i \) with contact order \(c \) for \(i = 1, \ldots, m \);
3. \(f'_0 \) tangent to \(D_\infty \) at \(q_\infty \) with contact order \(m \cdot c \).

Such \(f'_0 \) can be defined by choosing a non-zero \(L \)-rational function in
\[
(2.4) \quad H^0(\mathcal{O}_{\mathbb{P}^1}(m \cdot c \cdot q_\infty - \sum_i c \cdot q_i)).
\]

Gluing \(f'_0 \) and \(f_i \) by identifying the \(L \)-rational points \(p_i \) and \(q_i \), we obtain the underlying stable map \(f' : C \to W \).

Step 4. Lift \(f' \) to a stable log map to \(W/B \).

We next construct a stable log maps \(f' \) over \(f'_0 \) as in the following commutative diagram
\[
(2.5) \quad \begin{array}{ccc}
C & \xrightarrow{f'} & W \\
S & \xrightarrow{h} & B
\end{array}
\]
where $S \cong B$.

Denote by $C^\sharp := (\mathcal{C}, \mathcal{M}^\sharp) \to B^\sharp := (\mathcal{B}, \mathcal{M}_{B^\sharp})$ the log curve with the canonical log structure over the underlying curve C. Let $\sigma_i \in C$ be the node obtained by gluing q_i and p_i. By [Ols03], there is a canonical log structure \mathcal{N}_i over B associated to the node σ_i of the underlying curve C. Furthermore, we have

$$\mathcal{M}^\sharp_B \cong \mathcal{N}_1 \oplus \cdots \oplus \mathcal{N}_m.$$

Since the log structure \mathcal{M}_B and \mathcal{N}_i are canonically associated to the underlying structure of the fibers, by the same argument as in [Kim10, Section 5.2.3], for each $i \neq \infty$ the underlying map f' induces a morphism of log structures defined over L:

$$h_i : \mathcal{M}_B \to \mathcal{N}_i. \tag{2.6}$$

To construct the stable log map as in (2.5), it suffices to construct a log scheme $S = (\mathcal{S}, \mathcal{M}_S)$ with isomorphisms

$$\mathcal{M}_S \cong \mathcal{N}_i, \quad \text{for each } i. \tag{2.7}$$

Since by our construction of the morphism, the Galois action provides a canonical set of such isomorphisms by permuting the nodes and the underlying maps. This provides the log map as needed.

Finally, the composition $f := \pi \circ f' : C/S \to X$ is a stable log map to X lifting the underlying stable map \tilde{f} as in STEP 1, which fulfills the conditions as in the statement. The minimality in (5) follows from a direct calculation of the minimal monoid.

When the set of \mathbb{A}^1-teeth forms a complete Galois orbit, we notice that the rational section of (2.4) can be choosing defined over K. Since the isomorphism (2.7) is given by the Galois conjugation, the \mathbb{A}^1-map is stable under the Galois action, hence descents to a K-rational point as in the statement.

Lemma 2.3. Let \overline{K} be the algebraic closure of K. Let $X = (\mathcal{X}, \mathcal{D})$ be a log smooth, proper, simple, and separably \mathbb{A}^1-connected \overline{K}-variety of rank one with the SRC center. Then there exists a very free \mathbb{A}^1-curve over \overline{K} through any \overline{K}-rational point of \mathcal{D}.

Proof. The proof is similar to that of [CZ13, Theorem 1.9]. We give a sketch as follows. Since \mathcal{D} is SRC, by [Kol96, IV.3], given any point $p \in \mathcal{D}$, there exists a free rational curve $f : \mathbb{P}^1 \to \mathcal{D}$ connecting p and a general point q. By separably \mathbb{A}^1-connectedness, we may choose a very free \mathbb{A}^1-curve $g : (\mathbb{P}^1, \{\infty\}) \to (\mathcal{X}, \mathcal{D})$ with the boundary marking q such that $\deg(f^*\mathcal{O}_X(\mathcal{D}) + g^*\mathcal{O}_{\mathcal{X}}(\mathcal{D})) > 0$. By [CZ13, Lemma 3.6], we can glue f and g into a stable \mathbb{A}^1-map with the contact marking p. A general smoothing of the stable \mathbb{A}^1-map will do the job.

Proof of Theorem 1.1. Given a K-point $p \in \mathcal{D}(K)$, by Lemma 2.3 we may choose a finite Galois extension L over K such that there exists a very free
A^1-curve f_1 passing through p_L. By Proposition 2.2, gluing the Galois orbit of f_1, we obtain an A^1-comb $f \in \mathfrak{M}_{A^1}(X/K, m\beta; \underline{s})(K)$. We may further assume that f is automorphism-free. By construction, f is unobstructed and the minimal log structure on S has rank one. Thus, it gives a smooth point of the underlying scheme $\mathfrak{M}_{A^1}(X/K, m\beta; \underline{s})(K)$. Since the set of very free A^1-curves through p forms a dense open subset of $\mathfrak{M}_{A^1}(X/K, m\beta; \underline{s})$, the theorem is proved when K is large.

Remark 2.4. When X is log Fano and the normal bundle of D is nontrivial and effective, there is a simple proof using Kollár’s result and [CZ13, Lemma 3.5]. However, our condition is weaker. The normal bundle of D could be negative, for example the Hirzebruch surface with the $(-n)$-curve as the boundary.

3. Zariski density

Proof of Theorem 1.4. By [HT08, Theorem 9], after passing to a good resolution, we may assume that both X and D are nonsingular.

Since the geometric generic fiber of $D \to B$ is rationally connected, by [GHS03] there is a section $f_0 : B \to D$. We can use the comb smoothing argument as in [HT06b, Proposition 24], and assume that

1. f_0 is an immersion in D;
2. the morphism $df_0 : f_0^*\Omega_D \to \Omega_B$ is surjective, with the locally free kernel $N_{D/B}^\vee$;
3. f_0 is S-free, i.e., $H^1(N_{D/B}^\vee(-S)) = 0$, and $N_{D/B}^\vee(-S)$ is globally generated.

Notation 3.1. let $f : C \to X$ be a usual stable map over a geometric point such that

1. C consists of irreducible components $C_0 \cup C_1 \cup \cdots \cup C_m$, where $C_0 \cong B$ is of genus g, and all other irreducible components are rational.
2. For each $i \neq 0$, the irreducible component C_i is attached to C_0 at a general point $p_i \in C_0$ away from S, and there is no node on C other than p_i for $i = 1, \cdots, m$.
3. $f(C_0) \subset D$, and $q_i = f(p_i)$ is in general position of D for all i.
4. $f|_{C_i}$ defines an A^1-curve for any $i \neq 0$.

Lemma 3.2. Notations as above, assume that $\deg_{C_0} f^*(D) = e$ for all i. Fix any point $\sigma \in C_0$. Assume that $c \geq 0$, and there is an isomorphism

$$N_{D/X|C_0} \cong \mathcal{O}_{C_0}(c \cdot \sigma - e(p_1 + \cdots + p_m)).$$

Then there is a log map $f : C/S \to X$ with a unique contact marking σ of contact order c, where X_D is the log scheme associated to the pair (X, D).
Proof. By assumption, we may choose a surjection
\[O_{\mathbb{C}^0} \oplus N_D^{\vee} |_{\mathbb{C}^0} \rightarrow O_{\mathbb{C}^0} (e(p_1 + \cdots + p_m)) \]
where the restriction to the first factor is given by the divisor \(e \cdot \sum_{i \geq 1} p_i \), and to the second factor is given by \(c \cdot \sigma \). This induces a morphism
\[\mathbb{C}^0 \rightarrow \mathbb{P}(O_{\mathbb{C}^0} \oplus N_D^{\vee} |_{\mathbb{C}^0}) \]
tangent to \(D_\infty \) at \(\sigma \) of order \(c \), and tangent to \(D_0 \) at \(p_i \) of order \(c_i \). By the same argument as in [CZ13, Lemma 3.6], the section \(s \) induces a map to the expansion. To further lift the underlying stable map to a stable log map, we will need the set of isomorphisms of the nodes as in (2.7). But since we are over algebraically closed fields, we could always make a choice of such isomorphisms. This provides the stable log map as needed.

Now consider the situation as in Notation 3.1. By the \(\mathbb{A}^1 \)-connectedness of the general fiber, we may choose \(m \) free \(\mathbb{A}^1 \)-curves as the teeth \(f|_{\mathbb{C}^0} : \mathbb{C}^0 \rightarrow X \). Then by [HT08, Lemma 21] and degree count, there is a log map \(f : C \rightarrow X \) as long as \(m \) is sufficiently large and all \(p_i \)'s are generic.

Furthermore, we may assume that \(\sigma \) be a point lying in \(S \) and \(f \) is a local immersion away from the special points. By [CZ14, (4.3.7) and Lemma 4.13], we conclude that \(H^1(N_f^{\vee}(-S)) = 0 \) and \(N_f^{\vee}(-S) \) is globally generated.

Theorem 1.4 follows from taking a general deformation of \(f \).

The approximation at a finite collection of integral points can be proved similarly as follows. By further gluing free \(\mathbb{A}^1 \)-teeth, we may assume \(f \) has \(\mathbb{A}^1 \)-teeth passing through those integral points. Then a general smoothing of \(f \) fixing those integral points will do the job.

\[\star \]

References

[AC14] Dan Abramovich and Qile Chen, Stable logarithmic maps to Deligne-Faltings pairs II, The Asian Journal of Mathematics 18 (2014), no. 3, 465–488.

[ACGM10] D. Abramovich, Q. Chen, D. Gillam, and S. Marcus, The evaluation space of logarithmic stable maps, arXiv:1012.5416v1 (2010), preprint.

[ACMW14] Dan Abramovich, Qile Chen, Steffen Marcus, and Jonathan Wise, Boundedness of the space of stable log maps, arXiv:1408.0869 (2014).

[Che14] Qile Chen, Stable logarithmic maps to Deligne-Faltings pairs I, Ann. of Math. (2) 180 (2014), no. 2, 455–521. MR 3224717

[CZ13] Qile Chen and Yi Zhu, Very free curves on fano complete intersections, arXiv:1311.7189 (2013).

[CZ14] Qile Chen and Yi Zhu, \(\mathbb{A}^1 \)-curves on log smooth varieties, arXiv:1407.5476 (2014).

[GHS03] Tom Graber, Joe Harris, and Jason Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57–67 (electronic). MR 1937199 (2003m:14081)

[GS13] Mark Gross and Bernd Siebert, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc. 26 (2013), no. 2, 451–510. MR 3011419

[HT06a] Brendan Hassett and Yuri Tschinkel, Weak approximation over function fields, Invent. Math. 163 (2006), no. 1, 171–190. MR 2208420 (2007b:14109)

[HT06b] Brendan Hassett and Yuri Tschinkel, Weak approximation over function fields, Invent. Math. 163 (2006), no. 1, 171–190. MR 2208420 (2007b:14109)
A¹-CONNECTED VARIETIES OF RANK ONE OVER NON-CLOSED FIELDS

[HT08] Log Fano varieties over function fields of curves, Invent. Math. 173 (2008), no. 1, 7–21. MR 2403393 (2009c:14080)

[Kat89] Kazuya Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191–224. MR MR1463703 (99b:14020)

[Kim10] Bumsig Kim, Logarithmic stable maps, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008), Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, Tokyo, 2010, pp. 167–200. MR 2683209 (2011m:14019)

[KMM92] János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992), no. 3, 429–448. MR 1158625 (93i:14014)

[Kol96] János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180 (98c:14001)

[Kol99] Rationally connected varieties over local fields, Ann. of Math. (2) 150 (1999), no. 1, 357–367. MR 1715330 (2000h:14019)

[Ols03] Martin C. Olsson, Universal log structures on semi-stable varieties, Tohoku Math. J. (2) 55 (2003), no. 3, 397–438. MR MR1993863 (2004f:14025)

[Wis14] Jonathan Wise, Moduli of morphisms of logarithmic schemes, arXiv:1408.0037 (2014).

(Chen) Department of Mathematics, Columbia University, Rm 628, MC 4421, 2990 Broadway, New York, NY 10027, U.S.A.
E-mail address: qchen@math.columbia.edu

(Zhu) Department of Mathematics, University of Utah, Room 233, 155 S 1400 E, Salt Lake City, UT 84112, U.S.A.
E-mail address: yzhu@math.utah.edu