Human beta-defensin-1 rs2738047 polymorphism is associated with shisha smoking risk among Saudi population

Mikhlid Almutairi1 · Bader Almutairi1 · Mohammad Almutairi1 · Narasimha Reddy Parine2 · Abdulwahed Alrefaei1 · Mohammad Alanazi2 · Abdelhabib Semlali3

Received: 29 December 2020 / Accepted: 22 March 2021 / Published online: 7 April 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Human β-defensin (HBD), a member of the antimicrobial peptides, is essential for respiratory epithelial cells’ microbial defense, and is affected by cigarette smoking (CS). Its expression is upregulated by stimulation from microbes or inflammation. Genetic polymorphisms in the HBD-1 gene have been implicated in the development of various smoking-related diseases, including chronic obstructive pulmonary disease and asthma. Thus, we sought to analyze possible associations between HBD-1 single-nucleotide polymorphism (SNP) in HBD-1 gene and CS in ethnic Saudi Arabian subjects. Variants rs1047031 (C/T), rs1799946 (C/T), rs2738047 (C/T), and rs11362 (C/T) were investigated by genotyping 575 blood specimens from males and females, smokers/non-smokers: 288/287. The CT and CT+TT genotypes of rs1799946 presented an ~5-fold increased correlation with CS among the female smokers, compared with the female controls (OR = 5.473, P = 0.02003; and OR = 5.211, P = 0.02028, respectively), an observation similar to rs11362 SNP in female smokers, but with protective effects in TT genotype, compared with the CC reference allele (OR = 0.143, P = 0.04368). In shisha smokers, the heterozygous CT and the CT/TT genotype of rs2738047 polymorphism showed the same results with ~3-fold increased correlation with CS (OR = 2.788; P = 0.03448), compared with the cigarette smokers category. No significant association was shown in genotypic distributions and allelic frequencies of rs1047031. Further investigations, including large study samples, are required to investigate the effects of shisha on human beta-defensin expression and protein levels.

Keywords Smoking · Human β-defensin-1 · Polymorphism · Genotyping · Saudi · rs2738047

Introduction

Biochemical studies have uncovered mutagenic effects of several components of cigarette smoking (CS), including alterations in DNA methylation (Steenaard et al. 2015) and induction of genetic alterations of proto-oncogenes to oncogenes, tumor suppressor genes, like the critical TP53 gene (Pfeifer et al. 2002; Taghavi et al. 2010; Almutairi et al. 2021b), and genes involved in innate immunity (Kohailan et al. 2017; Kohailan et al. 2016; Almutairi et al. 2021a). Previous reports have addressed the effects of tobacco smoking throughout the respiratory tract. Also, CS deregulates factors involved in important cell functions, including growth (Alamri et al. 2015), adhesion, and migration (Semlali et al. 2011a) in fibroblasts and human gingival epithelial cells (Semlali et al. 2011a; Semlali et al. 2011b). According to the Centers for Disease Control and Prevention, every year, more than 7 million people die worldwide due to smoking-related diseases (A Report of the Surgeon General. Atlanta 2014), such as heart diseases (Kamimura et al. 2018), lung cancer (Khuder 2001), stroke (Pan et al. 2019), asthma (Cerveri et al. 2012), and gastrointestinal mucosal (Zhang et al. 2012).

The immune response to infection is comprised of two arms, an adaptive or specific immune defense and an innate
or non-specific immune defense (Cheroutre and Huang 2013).
The innate defense system includes defensins, which are a specific group of antimicrobial peptides (AMPs) (Wang et al. 2012), also called host defense peptides (Niyonsaba et al. 2016); they are short, cationic, amphipathic and rich in cysteine residues (Pazgier et al. 2006), and are highly expressed on the surfaces of epithelial tissues. AMPs are the first line of defense between living organisms and their environment (Lehrer and Ganz 2002). Immune cells could also activate the expression of these peptides (Rohrl et al. 2008). Their vital roles in the innate immune system across species, defending against viruses, fungi, and bacteria, and involvement in adaptive immunity, inflammation, wound repair, cytokine and chemokine expression, histamine production, and the enhancement of the antibody response, have been well-established (El-Baky et al. 2015).

Humans have approximately 40 defensin genes located on different chromosomes (Patil et al. 2005), that are classified into three major subfamilies, alpha (α), beta (β), and theta (θ), according to the pairing mechanism of the six conserved cysteine residues that form three disulfide bridges (Cederlund et al. 2011; Lehrer and Lu 2012). The human β-defensins (HBDs) have been detected in many protective epithelial tissues such as the skin and the mucous membranes of the respiratory tract, the prostate, and the intestines (Schneider et al. 2005). They are also involved in the proliferation and metastasis of tumor cells (Diamond and Ryan 2011).

Human beta-defensins contain ~35 residual amino acids (Schneider et al. 2005), and their structure consists of a signal sequence of between 36 and 42 amino acids at the C-terminus preceding the mature defensin peptide (Ganz 2003). Thus far, only six types of HBDs have been described and characterized in humans. HBDs 1 through 4 are present primarily in the epithelial tissues, including the epidermis, urogenital, and respiratory tracts, while HBD-5 and HBD-6 are found only in the epididymis (Niyonsaba et al. 2009; Niyonsaba et al. 2006). HBD peptides are associated with tumorigenesis and shown to overexpress in various cancer cells (Avila 2017). Defensin gene polymorphisms have been associated with susceptibility to the human immunodeficiency virus (HIV) and the development of acquired immunodeficiency syndrome (AIDS) (Mehlotra et al. 2013).

Human beta-defensin-1 is a class of the defensin family and has the ability to directly or indirectly inactivate or kill a broad spectrum of fungi and bacteria by triggering innate and adaptive immune responses (Aerts et al. 2008; Harder et al. 2007). This gene is located at 8p22-23 (Celerino Da Silva et al. 2016) and is considered to be an essential antimicrobial peptide among epithelial and salivary defenses (Polesello et al. 2015). The expression of HBD-1 has been observed in the epidermis, sebaceous glands, and sweat ducts, and might also be induced by pathogenic molecules such as peptidoglycans and lipopolysaccharides (LPSs) (Sorensen et al. 2005).

Human beta-defensin-1 plays a vital role in the microbial defense of the ocular (corneal and conjunctival) (Huang et al. 2007), oral (Mathews et al. 1999), and respiratory epithelial cells (airway mucosal) due to its moderate antimicrobial property. In the airway, this function is affected by CS (Frederic et al. 2008). Its expression can be upregulated by stimulation from microbes or inflammation (Avila 2017). Additionally, HBD-1 might have potential anticancer properties (Prado-Montes de Oca 2010; Donald et al. 2003), as a loss of HBD-1 expression has been detected in prostate and renal carcinoma cells. It could also inhibit the proliferation of human bladder cancer cells and promote apoptosis in renal cell carcinoma (Sun et al. 2006; Bullard et al. 2008). Furthermore, HBD-1 was cytotoxic to prostate cancer cell lines at later stages and may be involved in the control of tumor progression, as well as the recognition and elimination of other types of cancer (Bullard et al. 2008; Sun et al. 2006).

Several studies showed that the low expression of HBD-1 gene owing to genetic polymorphisms is associated with the susceptibility of HIV infection in two separate studies on Italian and Brazilian patients (Braida et al. 2004; Milanese et al. 2006) and/or with the pathogenesis of inflammatory bowel disease (Wilson et al. 2014). Besides, other studies have reported that polymorphisms of HBD-1 gene are related to the susceptibility of pulmonary infectious diseases, including chronic obstructive pulmonary disease (COPD) (Matsushita et al. 2002) and asthma (Levy et al. 2005).

Currently, there is no previous investigation of the effects of CS on the four HBD-1 SNPs. Therefore, the goal of the current study was to analyze possible associations between variants of HBD-1 (rs1047031, rs1799946, rs2738047, and rs11362) and CS in ethnic Saudi Arabian subjects. This could allow for the identification of sensitive genetic markers, not only for the diagnosis of diseases related to CS but also for the prevention of the potential effects of CS on healthy patients.

Materials and methods

Ethics statement and demographical information

Written ethical consent for this study was reviewed by and obtained from the Research Ethics Committee of the College of Applied Medical Sciences at King Saud University (KSU) in Riyadh, Kingdom of Saudi Arabia (KSA) (Approval Number: CAMS 13/3536). All participants of this study provided written informed consent, and the study was conducted following the principles in the Helsinki Declaration, updated in 2008. Essentially, participants who smoked cigarettes or shisha were termed smokers, while those who did not use any type of tobacco product were referred to as non-smokers. Clinical data on CS history, clinical history, including allergic symptoms, an average of cigarette sticks smoked per day, and...
body mass index were filled out by each participant through a self-completed questionnaire with his/her signature.

Collection of blood samples

Blood samples were collected via direct venipuncture from a group of 288 smoking Saudi adults (patients) and a group of 287 healthy, non-smoking Saudi adults (controls) recruited from the Blood Donation Center at King Saud medical city (Riyadh, Saudi Arabia) between September 2018 and December 2019. Both groups of volunteers did not have inflammatory diseases and/or chronic respiratory diseases at the time of sample collection.

Genomic DNA extraction

As described in previous reports (Almutairi et al. 2019; Semlali et al. 2019), leukocyte genomic DNA was isolated from peripheral blood samples through the PureLink® Genomic DNA Mini Kit (Catalogue No K1820-01; Invitrogen™, Carlsbad, CA, USA), as per the manufacturer’s instructions. The concentration of the extracted DNA was quantitated using a NanoDrop 8000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Then, the purified DNA was labelled and stored at −80°C until further analysis.

Preparation of TaqMan® SNP Genotyping Assay for PCR amplification

Genomic DNA from each blood sample was isolated for the two study groups at a final concentration of 20 ng/μL. Four tag SNPs identified in the HBD-1 gene were used for genotyping analysis. Each genotyping was carried out in a total volume of 10 μL containing 0.3 μL of 40X TaqMan® Genotyping SNP Assay (Applied Biosystems), 5.5 μL of TaqMan® Genotyping Master Mix (Applied Biosystems, Foster City, CA, USA), 2 μL of 20 ng of isolated DNA, and 2.2 μL distilled water. Polymerase chain reaction (PCR) amplifications were performed using a QuantStudio™ 7 Flex Real-Time PCR System (Applied Biosystems). Details of the PCR cycling conditions have been described in previous publications of our group (Almutairi et al. 2019, Semlali et al. 2019).

Human beta-defensin-1 SNP selections

Briefly, four polymorphisms were selected in this study according to their location on the HBD-1 gene transcript, for example, 3′-UTR, or 5′-UTR, or in the exon region. Furthermore, we performed a literature review of these SNPs’ association with a plethora of diseases in diverse ethnic groups (Hu et al. 2004; Matsushita et al. 2002) to further guide our selection thereof. This correlation could be explained by SNPs’ ability to alter the function of their corresponding genes’ which might also enhance their ability to induce diseases not yet studied. These genetic variants in HBD-1 are rs1047031 (C > T), rs1799946 (C>T), rs2738047 (C > T, L38F), and rs11362 (C > T). All details of the four HBD-1 polymorphisms are described in Table 1.

Statistical analysis

As described in previous work (Semlali et al. 2019; Almutairi et al. 2019), the deviations of the computed genotypic and allelic frequencies of each SNP were checked using a Hardy–Weinberg equilibrium assay, and genetic comparisons were performed via X² tests and allelic odds ratios (ORs). Confidence intervals (CIs) at 95% were measured using a two-tailed Fisher’s exact test. The Statistical Package for the Social Sciences (SPSS) version 16.0 statistical software (SPSS, Chicago, USA) was used to perform all statistical calculations. A P-value of <0.05 was considered statistically significant.

Results

Clinical parameters of the study participants

The basic clinical parameters of the study inclusion among the smoking and non-smoking individuals are displayed in

Table 1	Description of the selected SNPs in HBD-1 gene			
SNP ID	SNP location	SNP type	Alleles change	Amino acids change
rs1047031	NC_000008.11:g.6870676	3′ UTR variant	C/T	transition substitution ---
rs1799946	NC_000008.11:g.6877909	5′ UTR variant	C/T	transition substitution ---
rs2738047	NC_000008.11:g.6870776	Missense Variant	C/T	L38F
rs11362	NC_000008.11:g.6877877	5′ UTR variant	C/T	transition substitution ---

Abbreviations: SNP: single-nucleotide polymorphism; 3′ UTR: 3-prime untranslated region; 5′ UTR: 5-prime untranslated region; L: leucine; F: phenylalanine
Table 2 Clinical and demographic data of the study participants for genotyping

Variable	Smokers, N (%)	Control (non-smokers), N (%)
Number of participants	288 (100%)	287 (100%)
Mean of age	29.76±7.09	29.13±8.83
Age of participants (years)		
≤ 29 years	155 (53.8%)	176 (61.3%)
> 29 years	133 (46.2%)	110 (38.3%)
Undetermined	0	1 (0.4%)
Gender		
Men	264 (91.7%)	203 (70.7%)
Women	24 (8.3%)	84 (29.3%)
Years of smoking		
≤ 7 years	173 (60%)	Na
> 7 years	114 (39.6%)	Na
Undetermined	1 (0.4%)	Na
Average of smoking per day		
≤ 12 times	148 (51.4%)	Na
> 12 times	139 (48.2%)	Na
Undetermined	1 (0.4%)	Na
Type of smoking		
Cigarette	216 (75%)	Na
Shisha	71 (24.6%)	Na
Undetermined	1 (0.4%)	Na

Abbreviations: N, number; Na, not applicable

Table 2. Both groups did not show any significant differences in their ages, genders, and any other smoking characteristics of the study. The total number of volunteers used in this study were 575 Saudi adults, comprising 288 individuals in the smoking group (91.7% men, 8.3% women), and 287 individuals of the non-smoking group (70.7% men, 29.3% women). Among the smoking group, 54% (n = 155) were aged ≤29 years and 46% (n = 133) were >29 years (mean age, 29.76 ± 7.09). Regarding the non-smoking group, ~61% were ≤29 years and 39% were >29 years (mean age, 29.13 ± 8.83). Regarding the length of years of smoking (duration), the percentage of participants who had engaged in smoking for ≤7 years was 60%, compared with ≥7 years of smoking (22%). Also, we categorized the smoking group based on the average of CS per day into 51.4% who had consumed CS ≤12 times, and 48.2% of those who had consumed >12 times CS. Also, we separated smoking participants depending on the smoking types into 75% consuming cigarettes, and ~25% consuming shisha.

Genotypic distribution of HBD-1 gene polymorphisms among smokers and non-smokers

Through the TaqMan genotyping assay, the four SNPs were tested in 575 Saudi individuals, including 288 from the smoking group and 287 from the healthy, non-smoking group. Table 3 shows the general prevalence of genotype and allele frequencies of HBD-1 rs1047031, rs1799946, rs2738047, and rs11362 with smoking participants, compared with the healthy controls. Among the genotype and allele frequencies of these SNPs, we found no significant association with smoking habits. Regarding the results of the rs1047031 variant, the genotype distributions were 96% CC and 4% CT in both groups studied. In contrast, HBD-1 rs11362 SNP was distributed as controls: 33% CC, 49% CT, and 18% TT and for the smoking individuals: 34%, 50%, and 16%, respectively.

Association between HBD-1 gene polymorphisms and smokers’ ages

To investigate any relationship between HBD-1 gene polymorphisms and the smokers’ ages, we categorized all smokers and non-smokers into two groups, as follows: those whose age was 29 years or less (group A; ≤ 29 years) and those whose ages were more than 29 years old (group B; > 29 years). The numbers of smokers and non-smokers were 155 and 176, respectively, in group A (133) and group B (110) (see Table 2). The results analysis did show any associations between HBD-1 rs1047031, rs1799946, rs2738047, and rs11362 and allelic and genotypic distributions in both group A (smokers) and group B (healthy controls) (Table 4). Among younger smokers (group A), the genotype allocations of CC, CT, and TT genotype polymorphisms were found to be 83%, 16%, and 1%, respectively, in non-smokers, while they were 84%, 15%, and 1%, respectively, in non-smokers, compared with 82%, 17%, and 1%, respectively, in smokers. As for HBD-1 SNPs rs2738047, and rs11362, the genotype frequencies were 97%/32% CC, 3%/47% CT, and 0%/21% TT, respectively, in non-smoking controls, while they were 95%/30% CC, 5%/55% CT, and 0%/15%, respectively, in non-smokers, and 88%/26%, 11%/48%, and 1%/26%, respectively, in smokers of group B.
rs11362 polymorphisms, the distributions were 95%/34% CC, 5%/52% CT, and 0%/14% TT, respectively, in group B (non-smoking controls), while they were 96%/39% CC, 4%/44% CT, and 0%/17%, respectively, in group B (smoking group) (Table 4).

The relationship between HBD-1 SNPs and gender of smokers

We also examined the correlation between HBD-1 gene polymorphisms in smokers among 84 controls and 24 smokers of females, and 203 controls and 264 smokers of males. Although the number of female smokers was small, compared to the healthy females, our results supported an association between polymorphisms rs1799946 and rs1136 in the HBD-1 gene and smokers versus non-smokers. As shown in Table 5, in the female gender, the CT and CT+TT genotypes of rs1799946 presented approximately 5-fold increased correlation with CS among the female smokers compared with the female controls (OR = 5.473, P = 0.02003; and OR = 5.211, P = 0.02028, respectively). Also, as presented in Table 5, similar significant results were observed in rs1136 SNP in females, but with protective effects. TT genotype appeared to have a protective association with female smokers, compared with the CC reference allele (OR = 0.143, P = 0.04368).

However, the results of rs1047031 and rs2738047 polymorphisms demonstrated no significant relationship with CS in the female gender. In rs1047031, the
Table 4 Comparison of genotypic allocations of *HBD-1* gene polymorphisms in smokers with entire controls at ages ≤ 29 years and > 29 years

Polymorphisms	Alleles	Controls	≤ 29 years	OR	95% CI	X²	P value		
rs1047031	Total	N 171	% 100%	N 153	% 100%	Ref			
	CC	141	83%	124	81%				
	CT	28	16%	29	19%	1.178	0.664–2.088	0.31	0.57532
	TT	2	1%	0	0%	0.227	0.011–4.780	1.75	0.18621
	CT+TT	30	17%	29	19%	1.099	0.625–1.933	0.11	0.74261
	C	310	91%	277	91%	Ref			
	T	32	9%	29	9%	1.014	0.598–1.720	0.00	0.95821
rs1799946	Total	N 175	% 100%	N 154	% 100%	Ref			
	CC	52	30%	40	26%				
	CT	83	47%	85	55%	1.331	0.798–2.220	1.21	0.27209
	TT	40	23%	29	19%	0.943	0.501–1.772	0.03	0.85410
	CT+TT	123	70%	114	74%	1.205	0.742–1.956	0.57	0.45070
	C	187	53%	165	54%	Ref			
	T	163	47%	143	46%	0.994	0.731–1.352	0.00	0.97076
rs2738047	Total	N 176	% 100%	N 155	% 100%	Ref			
	CC	170	97%	148	95%				
	CT	6	3%	7	5%	1.340	0.441–4.076	0.27	0.60489
	TT	0	0%	0	0%	1.148	0.023–5.822	0.00	1.00000
	CT+TT	346	98%	303	98%	Ref			
	C	6	2%	7	2%	1.332	0.443–4.007	0.26	0.60853
	T	152	44%	131	42%	0.915	0.671–1.248	0.32	0.57376
rs11362	Total	N 171	% 100%	N 155	% 100%	Ref			
	CC	55	32%	47	30%				
	CT	80	47%	85	55%	1.243	0.758–2.039	0.75	0.38795
	TT	36	21%	23	15%	0.748	0.389–1.435	0.77	0.38153
	CT+TT	116	68%	108	70%	1.090	0.681–1.742	0.13	0.72031
	C	190	56%	179	58%	Ref			
	T	152	44%	131	42%	0.915	0.671–1.248	0.32	0.57376
Polymorphisms	Alleles	Controls	> 29 years	OR	95% CI	X²	P value		
rs1047031	Total	N 108	% 100%	N 130	% 100%	Ref			
	CC	89	82%	115	88%	Ref			
	CT	19	18%	14	11%	0.570	0.271–1.200	2.23	0.13553
	TT	0	0%	1	1%	2.325	0.094–57.747	0.77	0.37991
	CT+TT	19	18%	15	12%	0.611	0.294–1.270	1.77	0.18390
	C	197	91%	244	94%	Ref			
	T	19	9%	16	6%	0.680	0.341–1.357	1.21	0.27147
rs1799946	Total	N 107	% 100%	N 131	% 100%	Ref			
	CC	25	23%	34	26%	Ref			
	CT	57	53%	63	48%	0.813	0.433–1.524	0.42	0.51752
	TT	25	24%	34	26%	1.000	0.482–2.076	0.00	1.00000
	CT+TT	82	77%	97	74%	0.870	0.480–1.576	0.21	0.64532
	C	107	50%	131	50%	Ref			
	T	107	50%	131	50%	1.000	0.697–1.435	0.00	1.00000
percentage of genotype distributions of CC, CT, and TT for female non-smokers was 80%, 19%, and 1%, and female smokers were 79%, 21%, and 0%, while in rs2738047, the percentage of genotype distributions of CC, CT, and TT for healthy female controls was 95%, 5%, and 0%, and for female smokers, 92%, 8%, and 0%.

Finally, in the male gender, the results of the four SNPs tested also did not display any correlation between the genotypic frequencies and CS. The genotype distributions for the CC reference allele were 83% and 25%, for heterozygous CT 16% and 52%, and for a double-mutant allele TT 1% and 23%, in healthy males in rs1047031 and rs1799946 variants, respectively. However, in male smokers, these values for CC were 85% and 28%, for CT 14% and 51%, and for TT 1% and 21%, respectively. For SNPs rs2738047 and rs11362, the male genotype distributions in healthy controls were as follows: CC 97% and 31%, CT 3% and 54%, and TT 0% and 15%. However, in smokers, the values were as follows: CC 96% and 34%, CT 4% and 49%, and TT 0% and 17% (Table 5).

The association between SNPs in HBD-1 gene and daily CS rate

Furthermore, we classified the smoking group into two categories according to the daily CS consuming rate, as follows: moderate smokers (smoking ≤12 times daily), which included 148 participants, and heavy smokers (smoking >12 times daily), which included 139 participants. We carried out this classification to enable us to investigate the relationship between the genetic variations of HBD-1 gene and the daily rate of CS consumption. The analyses of this study showed no significant association between the HBD-1 SNPs (rs1047031, rs1799946, rs2738047, and rs11362) and either the moderate or the heavy smokers, compared with the non-smokers. In the moderate and heavy smoking groups, the percentage of rs1047031 genotype distributions (CC, CT, TT) in the controls of both classes was 82%, 17%, and 1%. However, in the moderate smoking group, the allocations were 88% for CC, 12% for CT, and 0% for TT, and in heavy smokers, 81% for CC, 18% for CT, and 1% for TT. In rs1799946 SNP, the genotype frequencies were distributed, as follows: control groups for both: CC 27%, CT 50%, and TT 23%; moderate smokers: CC 23%, CT 47%, and TT 30%; heavy smokers: CC 29%, CT 57%, and TT 14%. In contrast, the rs2738047 and rs11362 genotypes in healthy controls of both classes were distributed into CC 96% and 33%, CT 4% and 49%, and TT 0% and 18%. Furthermore, in rs2738047 SNP, the allocations for moderate smokers were 95% for CC, 5% for CT, and 0% for TT, and for heavy smokers, 97% for CC, 3% for CT, and 0% for TT. In rs11362 SNP, however, the distribution for moderate smokers was 41% for CC, 45% for CT, and 14% for TT, and heavy smokers, 27% for CC, 54% for CT, and 19% for TT (Table 6).

Polymorphisms	Alleles	Controls	≤ 29 years	OR	95% CI	X²	P value		
rs2738047	CC	105	100%	126	96%	Ref			
	CT	5	5%	5	4%	0.833	0.235–2.957	0.08	0.77754
	TT	0	0%	0	0%	0.834	0.016–42.390	-	1.00000
	CT+ TT	5	5%	5	4%	0.833	0.235–2.957	0.08	0.77754
	C	215	98%	257	98%	Ref			
	T	5	2%	5	2%	0.837	0.239–2.928	0.08	1.00003
rs11362	CC	37	34%	52	39%	Ref			
	CT	57	52%	58	44%	0.724	0.414–1.265	1.29	0.25608
	TT	15	14%	23	17%	1.091	0.503–2.368	0.05	0.82563
	CT+ TT	72	66%	81	61%	0.800	0.472–1.357	0.68	0.40819
	C	131	60%	162	61%	Ref			
	T	87	40%	104	39%	0.967	0.670–1.394	0.03	0.85597

Abbreviations: HBD-1 = human beta-defensin-1, N = number, % = percent, Ref = reference allele, OR: odds ratio

The frequencies of HBD-1 SNPs according to the smoking duration

We also separated the smoking populations based on the years of smoking into 173 short-term smokers (≤ 7 years) and 114 long-term smokers (> 7 years) to test the
Polymorphisms	Alleles	Controls	Males	OR	95% CI	X²	P value	
	N	%	N	%				
rs1047031								
Total	198	100%	259	100%	Ref			
CC	165	83%	220	85%				
CT	32	16%	38	14%	0.891	0.534–1.486	0.20	0.65720
TT	1	1%	1	1%	0.750	0.047–12.079	0.04	0.83869
CT+TT	33	17%	39	15%	0.886	0.535–1.470	0.22	0.63995
C	362	91%	478	92%	Ref			
T	34	9%	40	8%	0.891	0.553–1.436	0.23	0.63520
rs1799946								
Total	199	100%	261	100%	Ref			
CC	50	25%	72	28%	Ref			
CT	104	52%	133	51%	0.888	0.570–1.383	0.28	0.59921
TT	45	23%	56	21%	0.864	0.507–1.473	0.29	0.59142
CT+TT	149	75%	189	72%	0.881	0.579–1.340	0.35	0.55367
C	204	51%	277	53%	Ref			
T	194	49%	245	47%	0.930	0.716–1.208	0.30	0.58629
rs2738047								
Total	203	100%	262	100%	Ref			
CC	196	97%	252	96%	Ref			
CT	7	3%	10	4%	1.111	0.415–2.972	0.04	0.83367
TT	0	0%	0	0%	0.778	0.015–39.394	-	1.00000
CT+TT	7	3%	10	4%	1.111	0.415–2.972	0.04	0.83367
C	399	98%	514	98%	Ref			
T	7	2%	10	2%	1.109	0.418–2.939	0.04	0.83520
rs11362								
Total	199	100%	264	100%	Ref			
CC	62	31%	89	34%	Ref			
CT	107	54%	130	49%	0.846	0.560–1.279	0.63	0.42846
TT	30	15%	45	17%	1.045	0.594–1.837	0.02	0.87865
CT+TT	137	69%	175	66%	0.890	0.600–1.319	0.34	0.56133
C	231	58%	308	58%	Ref			
T	167	42%	220	42%	0.988	0.759–1.286	0.01	0.92866

Polymorphisms	Alleles	Controls	Females	OR	95% CI	X²	P value	
	N	%	N	%				
rs1047031								
Total	82	100%	24	100%	Ref			
CC	66	80%	19	79%	Ref			
CT	15	19%	5	21%	1.158	0.373–3.597	0.06	0.79977
TT	1	1%	0	0%	1.137	0.045–29.030	0.29	0.59220
CT+TT	16	20%	5	21%	1.086	0.352–3.348	0.02	0.88643
C	147	90%	43	90%	Ref			
T	17	10%	5	10%	1.005	0.351–2.883	0.00	1.00036
rs1799946								
Total	84	100%	24	100%	Ref			
CC	27	32%	2	8%	Ref			
CT	37	44%	15	63%	5.473	1.154–25.956	5.41	0.02003*
TT	20	24%	7	29%	4.725	0.885–25.213	3.75	0.05269
CT+TT	57	68%	22	92%	5.211	1.142–23.781	5.39	0.02028*
C	91	54%	19	40%	Ref			
T	77	46%	29	60%	1.804	0.939–3.467	3.18	0.07468
genotype differences of HBD-1 gene SNPs with the duration of CS. As shown in Table 7, the genotype and allele correlations and statistical analyses of those SNPs in both groups of smokers are described and compared with the non-smoking populations. Nevertheless, the genotype frequencies of the four selected SNPs did not correlate significantly with CS in both short-term smokers and long-term smokers in contrast with non-smokers (Table 7). The genotype distributions of rs1047031 SNP in both groups of years of smoking was as follows: CC 84%, CT 16%, and TT 0%. In rs1799946 SNP, the percentage of genotype distributions of CC, CT, and TT of non-smokers were 27%, 50%, and 23%, respectively, whereas, with the cigarette and shisha smokers, the CC, CT, and TT were 28% and 20% CC, 52% and 52% CT, and 20% and 28% TT, respectively. Also, the HBD-1 rs11362 results did not reveal any significant association in either the category of smoking types when compared with non-smokers. The genotype allocations of CC, CT, and TT of the controls were 33%, 49%, and 18%, respectively; however, the genotype distributions among smokers showed

Comparison between the effect of CS and shisha smoking on HBD-1 polymorphisms

Finally, we evaluated if the risk associated with CS would be different from another type of smoking, such as the tobacco concoction, shisha (CS vs shisha). All smokers were grouped into two categories: cigarette smokers and shisha smokers, which included 216 and 71 individuals from both groups, respectively. This study showed that the genotype frequency results of rs1047031, rs1799946, and rs11362 in both types of smoking and for rs2738047 in cigarettes did not show any significant correlation with both types of smoking, compared with the controls (Table 8). For rs1047031, the genotype distributions of CC, CT, and TT for non-smokers were 82%, 17%, and 1% respectively, whereas, whereas with the cigarette and shisha smokers, the CC, CT, and TT were 83% and 89%, 16% and 11%, and 1% and 0%, respectively. For rs1799946, the genotype allocations of CC, CT, and TT of non-smokers were 27%, 50%, and 23%, respectively, whereas, whereas with the cigarette and shisha smokers, the CC, CT, and TT were 28% and 20% CC, 52% and 52% CT, and 20% and 28% TT, respectively. Also, the HBD-1 rs11362 results did not reveal any significant association in either the category of smoking types when compared with non-smokers. The genotype allocations of CC, CT, and TT of the controls were 33%, 49%, and 18%, respectively; however, the genotype distributions among cigarette smokers were 32%, 51%, and 17%, respectively, while among shisha smokers they were 41%, 46%, and 13%, respectively. In contrast, for HBD-1 SNP rs2738047, the genotype frequencies among smokers showed

Table 5 (continued)

Polymorphisms	Alleles	Controls	Males	OR	95% CI	X²	P value
rs2738047							
	Total	84	24				
	CC	80	22				
	CT	4	2				
	TT	0	0	3.578	0.069–185.385	-	1.00000
	CT+TT	4	2	1.818	0.312–10.586	0.45	0.50054
	C	164	46	1.783	0.316–10.041	0.44	0.78072
	T	4	2	0.143	0.017–1.202	4.07	0.04368*
	Total	82	24				
	CC	30	10				
	CT	31	13	1.258	0.479–3.303	0.22	0.64079
	TT	21	1	0.143	0.017–1.202	4.07	0.04368*
	CT+TT	52	14	0.808	0.319–2.042	0.20	0.65149
	C	91	33	0.567	0.286–1.123	2.69	0.10098
	T	73	15	0.567	0.286–1.123	2.69	0.10098

*P < 0.05. Abbreviations: HBD-1 = human beta-defensin-1, N = number, % = percent, Ref = reference allele, OR: odds ratio.
Polymorphisms	Alleles	Controls	≤12 times/day	OR	95% CI	\(\chi^2 \)	P value		
		N	%	N	%				
rs1047031	Total	280	100%	144	100%	Ref			
	CC	231	82%	127	88%	Ref			
	CT	47	17%	17	12%	0.658	0.363–1.193	1.92	0.16603
	TT	2	1%	0	0%	0.363	0.017–7.622	1.10	0.29510
	CT+TT	49	18%	17	12%	0.631	0.349–1.141	2.35	0.12559
	C	509	91%	271	94%	Ref			
	T	51	9%	17	6%	0.626	0.355–1.105	2.65	0.10370
rs1799946	Total	283	100%	146	100%	Ref			
	CC	77	27%	34	23%	Ref			
	CT	141	50%	69	47%	1.108	0.675–1.820	0.17	0.68442
	TT	65	23%	43	30%	1.498	0.858–2.617	2.03	0.15470
	CT+TT	206	73%	112	77%	1.231	0.774–1.959	0.77	0.37961
	C	295	52%	137	47%	Ref			
	T	271	48%	155	53%	1.232	0.928–1.634	2.09	0.14871
rs2738047	Total	287	100%	147	100%	Ref			
	CC	276	96%	139	95%	Ref			
	CT	11	4%	8	5%	1.444	0.568–3.672	0.60	0.43801
	TT	0	0%	0	0%	1.982	0.039–100.419	-	1.00000
	CT+TT	11	4%	8	5%	1.444	0.568–3.672	0.60	0.43801
	C	563	98%	286	97%	Ref			
	T	11	2%	8	3%	1.432	0.570–3.599	0.59	0.44318
rs11362	Total	281	100%	148	100%	Ref			
	CC	92	33%	61	41%	Ref			
	CT	138	49%	67	45%	0.732	0.474–1.132	1.97	0.16048
	TT	51	18%	20	14%	0.591	0.321–1.089	2.88	0.08992
	CT+TT	189	67%	87	59%	0.694	0.460–1.048	3.04	0.08147
	C	322	57%	189	64%	Ref			
	T	240	43%	107	36%	0.760	0.568–1.015	3.46	0.06288
Polymorphisms	Alleles	Controls	>12 times/day	OR	95% CI	\(\chi^2 \)	P value		
---------------	---------	----------	---------------	----	--------	--------	--------		
		N	%	N	%				
rs1047031	Total	280	100%	138	100%	Ref			
	CC	231	82%	112	81%	Ref			
	CT	47	17%	25	18%	1.097	0.642–1.873	0.12	0.73429
	TT	2	1%	1	1%	1.031	0.093–11.494	0.00	0.98004
	CT+TT	49	18%	26	19%	1.094	0.646–1.853	0.11	0.73694
	C	509	91%	249	90%	Ref			
	T	51	9%	27	10%	1.082	0.663–1.767	0.10	0.75218
rs1799946	Total	283	100%	138	100%	Ref			
	CC	77	27%	40	29%	Ref			
	CT	141	50%	78	57%	1.065	0.664–1.707	0.07	0.79385
	TT	65	23%	20	14%	0.592	0.315–1.112	2.68	0.10170
	CT+TT	206	73%	98	71%	0.916	0.583–1.438	0.15	0.70241
	C	295	52%	158	57%	Ref			
	T	271	48%	118	43%	0.813	0.608–1.086	1.96	0.16135
rs2738047	Total	287	100%	138	100%	Ref			
	CC	276	96%	134	97%	Ref			
	CT	11	4%	4	3%	0.749	0.234–2.396	0.24	0.62503
a significant allocation when compared with controls in the shisha smokers’ category. Among the shisha smokers, the heterozygous CT and the combined variants CT/TT showed the same results, with an ~3-fold increase in correlation with CS (OR= 2.788; P =0.03448), while in cigarette smokers, no associations were observed with the genotype frequencies for this polymorphism equaled CC, CT, and TT, 32%, 51%, and 17%, respectively, compared to the controls, which were 33%, 49%, and 18%, respectively.

Discussion

The smoke derived from a cigarette is a complex mixture of chemicals, with harmful components such as carbon monoxide (CO), nitrogen oxides, and hydrogen cyanide (HCN) gases along with liquid vapors, including formaldehyde, benzene, acrolein, and some N-nitrosamines. Besides, there are submicron-sized solid particles such as nicotine, polyaromatic hydrocarbons (PAHs), phenol, and specific tobacco-specific nitrosamines (TSNAs) contained in the smoke (2011). Consequently, the chemical complexity and the chemical toxin content make CS highly deleterious, with diverse effects on human health. In particular, HCN is likely to affect the human respiratory system by its toxic effects on the respiratory epithelial and the cilia lining triggering diseases, including lung cancer, breast cancer, colon cancer, cardiovascular, and asthma (Khuder 2001; Di Cello et al. 2013; Kytola et al. 2017; West 2017; Cerveri et al. 2012).

In Saudi population, smoking is a risk factor for cardiac diseases (Al-Sieni et al. 2013), COPD (Al Ghobain et al. 2015), benign oral mucosal lesions (Al-Attas et al. 2014), decrease in lung functions (Milaat and el-Ganai 1998), transmission of COVID-19 infection (Ahmed et al. 2020), and periodontal disease (Natto et al. 2005). Furthermore, smoking affects host innate immunity contributing to structural and functional alterations of respiratory ciliary epithelium and different types of human immune cells (Mehta et al. 2008). Remarkably, CS involves genetic variation leading to changes in gene expression (Kopa and Pawliczak 2018), which contribute to the development of several diseases (Yadav et al. 2017). Cigarette smoking has been shown to attenuate HBD-1 expression and secretion markedly in the lung epithelium. HBD-1, a member of the critical antimicrobial peptides, has been implicated in local defense of airway homeostasis (Wang et al. 2015). Also, the HBD-1 peptide has been shown to play an essential role in an innate immune response against human microbes, and its dysregulation has been involved in cancer progression (Marzani et al. 2012). The majority of Saudi individuals is non-smokers and is of different ages. The current smoking prevalence is much lower in females than in males; however, cigarette and shish smoking are potential threats and affect all general populations (Bassiony 2009). In this investigation, we aimed to examine the present hypothesis: CS might contribute to nucleotide changes in the HBD-1 gene, which might lead to the initiation of multiple smoking-related diseases (Wang et al. 2015; Slebioda et al. 2021; Loo et al. 2012; Chen et al. 2019) such as chronic periodontitis (Zupin et al. 2017), and chronic obstructive pulmonary disease (Matsushita et al. 2002). Consequently, we aimed to identify the possible associations between HBD-1 polymorphisms rs1047031, rs1799946, rs2738047, and rs11362 and smoking by investigating the polymorphic distributions and effects on different parameters between smokers and non-smokers control among the Saudi population.

Our results indicated that there were no significant differences in genetics distributions of HBD-1 genetic variants
Table 7 Comparison of genotype frequencies of HBD-1 gene polymorphisms in participants who smoked for ≤ 7 years and > 7 years, and the entire non-smoking controls

Polymorphisms	Alleles	Controls	≤ 7 Years	OR	95% CI	X²	P value	
	N	%	N	%				
rs1047031								
Total	280	100%	170	100%				
CC	231	82%	143	84%	Ref			
CT	47	17%	27	16%	0.928	0.553–1.557	0.08	0.77698
TT	2	1%	0	0%	0.323	0.015–6.769	1.23	0.26662
CT+TT	49	18%	27	16%	0.890	0.532–1.488	0.20	0.65699
C	509	91%	313	92%	Ref			
T	51	9%	27	8%	0.861	0.529–1.401	0.36	0.54666
rs1799946								
Total	283	100%	172	100%				
CC	77	27%	41	24%	Ref			
CT	141	50%	95	55%	1.265	0.799–2.004	1.01	0.31516
TT	65	23%	36	21%	1.040	0.596–1.814	0.02	0.88968
CT+TT	206	73%	131	76%	1.194	0.771–1.850	0.63	0.42626
C	295	52%	177	51%	Ref			
T	271	48%	167	49%	1.027	0.785–1.343	0.04	0.84526
rs2738047								
Total	287	100%	173	100%				
CC	276	96%	164	95%	Ref			
CT	11	4%	9	5%	1.377	0.559–3.393	0.49	0.48535
TT	0	0%	0	0%	1.044	0.596–1.814	0.04	0.83389
CT+TT	11	4%	9	5%	1.377	0.559–3.393	0.49	0.48535
C	563	98%	337	97%	Ref			
T	11	2%	9	3%	1.367	0.561–3.333	0.48	0.49024
rs11362								
Total	281	100%	173	100%				
CC	92	33%	55	32%	Ref			
CT	138	49%	94	54%	1.139	0.745–1.742	0.36	0.54685
TT	51	18%	24	14%	0.787	0.437–1.419	0.64	0.42543
CT+TT	189	67%	118	68%	1.044	0.696–1.567	0.04	0.83389
C	322	57%	204	59%	Ref			
T	240	43%	142	41%	0.934	0.712–1.225	0.24	0.62179

Polymorphisms	Alleles	Controls	> 7 years	OR	95% CI	X²	P value	
	N	%	N	%				
rs1047031								
Total	280	100%	112	100%				
CC	231	82%	95	85%	Ref			
CT	47	17%	16	14%	0.828	0.447–1.532	0.36	0.54686
TT	2	1%	1	1%	1.216	0.109–13.568	0.03	0.87367
CT+TT	49	18%	17	15%	0.844	0.462–1.539	0.31	0.57897
C	509	91%	206	92%	Ref			
T	51	9%	18	8%	0.872	0.498–1.529	0.23	0.63239
rs1799946								
Total	283	100%	112	100%				
CC	77	27%	33	29%	Ref			
CT	141	50%	53	48%	0.877	0.524–1.469	0.25	0.61806
TT	65	23%	26	23%	0.933	0.507–1.719	0.05	0.82479
CT+TT	206	73%	79	71%	0.895	0.552–1.451	0.20	0.65213
C	295	52%	119	53%	Ref			
rs1047031, rs1799946, rs2738047, and rs11362 in smokers compared to non-smokers, regarding age, years of smoking, and the average amount of either CS or shisha smoking per day, suggesting that CS might not interfere with the allelic difference of HBD-1 in a population. These results are in agreement with another recent study, which showed that CS did not have any effect between smokers and non-smokers in the same population, but rather, a different immunity gene such as TDG in SNP rs4135050 (Almutairi et al. 2019) and IL-7R SNPs rs12516866 and rs1053496 (Semlali et al. 2019). Furthermore, there are no significant differences between the pathologies of the oral cavity and the genotype of rs11362 and rs1799946 (Slebioda et al. 2021). However, significant associations were found between rs11362 and rs1800972 SNPs HBD-1 gene and chronic periodontitis development in North-East Italy (Zupin et al. 2017).

In gender comparison, although the percentage of female smokers was ~8% compared to the 92% of male smokers, it was intriguing to find a significant difference in the genotype distribution of HBD-1 rs1799946 and rs11362 in female smokers, compared with the female non-smokers, suggesting a possible interference of CS in disease development among women, as reported previously that a compromise of HBD-1 SNP activity is associated with poor outcomes of acute respiratory distress syndrome (Feng et al. 2019) and human papillomavirus infection in Brazilian females (Segat et al. 2014), as well as asthma progression among European American females (Levy et al. 2005). Additionally, it has been reported that females are more susceptible to develop colon cancer in contrast to males (Anderson et al. 2011), and this observation is likely to relate to CS, causing HBD-1 polymorphism and dysregulation of its expression (Wang et al. 2015), with the subsequent disease pathogenesis (Wiechula et al. 2010). This effect could be due to the CS effect on sex hormones. Different studies explained that smokers have higher progesterone levels (Duskova et al. 2012), and lower estrogen levels (Gu et al. 2013). Also, a previous study in Saudi pregnant smokers showed that CS could cause fetus damage, as well as different types of DNA damage in both pregnant women smokers and fetuses, which reveals that components from smoking consumption could spread effectively throughout the body (Demarini 2004).

Interestingly, our data showed that shisha usage could cause a difference in the genotype distribution of the HBD-1 polymorphism rs2738047. Despite the limited shisha smokers, we noticed the percentage of CT and CT/TT appearance significantly increased among shisha smokers than cigarette smokers. This could explain that shisha smoking might lead to the development of serious diseases, consistent with a report that showed that smoking of shisha has an association with the incidence of bladder cancer (Goerlitz et al. 2014). Also, a recent study proved the significant effect of waterpipe tobacco smoking on choline acetyltransferase gene polymorphism (Khabour et al. 2020). Therefore, waterpipe tobacco smoking could impact gene variation and result in disease progression (Kudhair et al. 2020).

Table 7 (continued)

Polymorphisms	Alleles	Controls	≤ 7 Years	OR	95% CI	X²	P value		
		N	%	N	%				
rs2738047	T	271	48%	105	47%	0.960	0.705−1.309	0.06	0.79881
	Total	287	100%	112	100%				
	CC	276	96%	109	97%		Ref		
	CT	11	4%	3	3%	0.691	0.189−2.523	0.32	0.57343
	TT	0	0%	0	0%	2.525	0.050−128.055	-	1.00000
	CT+	11	4%	3	3%	0.691	0.189−2.523	0.32	0.57343
	TT	0	0%	0	0%		Ref		
rs11362	C	563	98%	221	99%		Ref		
	T	11	2%	3	1%	0.695	0.192−2.514	0.31	0.76938
	Total	281	100%	114	100%				
	CC	92	33%	43	38%		Ref		
	CT	138	49%	49	43%	0.760	0.467−1.237	1.23	0.26823
	TT	51	18%	22	19%	0.923	0.498−1.711	0.06	0.79898
	CT+	189	67%	71	62%	0.804	0.511−1.265	0.89	0.34447
	TT	322	57%	135	59%		Ref		
	T	240	43%	93	41%	0.924	0.676−1.263	0.24	0.62135

Abbreviations: HBD-1 = human beta-defensin-1, N = number, % = percent, Ref = reference allele, OR: odds ratio
Table 8 Comparison of genotype frequencies of \textit{HBD-1} gene polymorphisms in smokers who smoked cigarettes and those who smoked shisha

Polymorphisms	Alleles	Controls		Cigarettes	OR	95% CI	X^2	P value
		N & %	N & %					
rs1047031	Total	280 100%	211 100%	Ref				
	CC	231 82%	175 83%	0.983 0.608–1.588	0.00	0.94407		
	CT	47 17%	35 16%	0.660 0.059–7.337	0.12	0.73346		
	TT	2 1%	1 1%	0.970 0.604–1.556	0.02	0.89886		
	CT+TT	49 18%	36 17%	Ref				
	C	509 91%	385 91%	Ref				
	T	51 9%	37 9%	0.959 0.616–1.494	0.03	0.85376		
rs1799946	Total	283 100%	213 100%	Ref				
	CC	77 27%	60 28%	Ref				
	CT	141 50%	110 52%	1.001 0.658–1.523	0.00	0.99560		
	TT	65 23%	43 20%	0.849 0.509–1.417	0.39	0.53085		
	CT+TT	206 73%	153 72%	Ref				
	C	295 52%	230 54%	Ref				
	T	271 48%	196 46%	0.928 0.721–1.193	0.34	0.55907		
rs2738047	Total	287 100%	215 100%	Ref				
	CC	276 96%	210 98%	Ref				
	CT	11 4%	5 2%	0.597 0.204–1.746	0.90	0.34148		
	TT	0 0%	0 0%	1.314 0.026–66.470	0	1.00000		
	CT+TT	11 4%	5 2%	0.597 0.204–1.746	0.90	0.34148		
	C	563 98%	425 99%	Ref				
	T	11 2%	5 1%	0.602 0.208–1.746	0.89	0.34541		
rs11362	Total	281 100%	216 100%	Ref				
	CC	92 33%	69 32%	Ref				
	CT	138 49%	110 51%	1.063 0.712–1.586	0.09	0.76548		
	TT	51 18%	37 17%	0.967 0.572–1.637	0.02	0.90145		
	CT+TT	189 67%	147 68%	1.037 0.710–1.515	0.04	0.85094		
	C	322 57%	248 57%	Ref				
	T	240 43%	184 43%	0.995 0.772–1.283	0.00	0.97176		

Polymorphisms	Alleles	Controls	Shisha	OR	95% CI	X^2	P value
		N & %	N & %				
rs1047031	Total	280 100%	71 100%	Ref			
	CC	231 82%	63 89%	Ref			
	CT	47 17%	8 11%	0.624 0.281–1.389	1.35	0.24448	
	TT	2 1%	0 0%	0.729 .035–15.381	0.54	0.46059	
	CT+TT	49 18%	8 11%	0.599 0.270–1.329	1.62	0.20346	
	C	509 91%	134 94%	Ref			
	T	51 9%	8 6%	0.596 0.276–1.286	1.78	0.18274	
rs1799946	Total	283 100%	71 100%	Ref			
	CC	77 27%	14 20%	Ref			
	CT	141 50%	37 52%	1.443 0.735–2.834	1.14	0.28489	
	TT	65 23%	20 28%	1.692 0.793–3.614	1.87	0.17141	
	CT+TT	206 73%	57 80%	1.522 0.802–2.888	1.67	0.19661	
	C	295 52%	65 46%	Ref			
	T	271 48%	77 54%	1.290 0.892–1.865	1.83	0.17626	

© Springer
Finally, this work has many advantages. Firstly, we determined polymorphisms in the HBD-1 gene in three categories of SNP location (3′ UTR, 5′ UTR, and exon variants) in the HBD-1 genome. Secondly, all samples collected were restricted from the same region of Riyadh, not from different regions in Saudi Arabia, and they were well monitored, along with proper storage protocols. However, our study has a limitation, since we were unable to have adequate female smokers as volunteers to participate due to the social traditions in our community.

Conclusion

Our findings showed significant alternation of HBD-1 polymorphisms rs1799946 and rs11362 among females, as well as a high percentage of rs2738047 in shisha smokers. The functional role of the HBD-1 polymorphisms in smoking is still uncertain. Therefore, further investigations, including large study samples, are required to investigate the effects of shisha on human beta-defensin expression and protein levels.

Acknowledgements The authors thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.

Author contributions Mikhlid Almutairi: project administration, conceptualization, corresponding author, funding acquisition, and writing original draft of the manuscript; Bader Almutairi: writing- review of the manuscript, investigation, and validation; Mohammad Almutairi: methodology and investigation; Narasimha Reddy Parine: formal analysis and software; Abdulwahed Alrefaei: data curation and methodology; Mohammad Alanazi: resources; Abdelhabib Semlali: supervision, writing- review and editing of the manuscript.

Funding The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. (RG-1440-044).

Data Availability All data generated or analyzed during this study are included in this published article.

Declarations

Ethics approval and consent to participate A written ethical consent was approved by the Research Ethics Committee of the Applied Medical Sciences College at King Saud University (Riyadh, Saudi Arabia) and the reference number of the ethical approval is CAMS 13/3536. Each participant of both smoker and non-smoker groups signed consent of written informed document for participating in the current study. All methods were performed in accordance with the relevant guidelines and regulations.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

References

A Report Of The Surgeon General. Atlanta, G. U. S. D. O. H. A. H. S., centers for disease control and prevention, national center for chronic disease prevention and health promotion, office on smoking and

Table 8 (continued)

Polymorphisms	Alleles	Controls	Cigarettes	OR	95% CI	X²	P value
		N	%	N	%		
rs2738047	Total	287	100%	70	100%		
	CC	276	96%	63	90%		4.47
	CT	11	4%	7	10%	2.788	7.476
	TT	0	0%	0	0%	4.354	221.534
	CT+TT	11	4%	7	10%	2.788	7.476
	C	563	98%	133	95%		4.47
rs11362	Total	281	100%	71	100%		
	CC	92	33%	29	41%		0.92
	CT	138	49%	33	46%	0.759	1.334
	TT	51	18%	9	13%	0.560	1.274
	CT+TT	189	67%	42	59%	0.705	1.203
	C	322	57%	91	64%		1.65
	T	240	43%	51	36%	0.752	1.101

*P < 0.05. Abbreviations: HBD-1 = human beta-defensin-1, N = number, % = percent, Ref = reference allele, OR: odds ratio
health. 2014. 2014. The Health Consequences of Smoking: 50 Years of Progress

Aerts AM, Francois IE, Cammue BP, Thevissen K (2008) The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 65:2069–2079

Ahmed N, Maqsood A, Abduljabbar T, Vohra F (2020) Tobacco smoking a potential risk factor in transmission of COVID-19 infection. Pak J Med Sci 36:S104–S107

Al Ghabain M, Alhamad EH, Alorainy HS, Al Kassimi F, Lababidi H, Al Ghobain M, Alhamad EH, Alorainy HS, Al Kassimi F, Lababidi H, Al Hajjaj MS (2015) The prevalence of chronic obstructive pulmonary disease in Riyadh, Saudi Arabia: a BOLD study. Int J Tuberc Lung Dis 19:1252–1257

Alamri A, Semlali N, Jacques E, Alanazi M, Zakrzewski A, Chmielewski W, Rouabia M (2015) Long-term exposure of human gingival fibroblasts to cigarette smoke condensate reduces cell growth by modulating Bax, caspase-3 and p53 expression. J Periodontal Res 50:423–431

Al-Attas SA, Ibrahim SS, Amer HA, Darwish Ze S, Hassan MH (2014) Prevalence of potentially malignant oral mucosal lesions among tobacco users in Jeddah, Saudi Arabia. Asian Pac J Cancer Prev 15:757–762

Almutairi M, Mohammad Alhaqed A, Almeer R, Almutairi M, Alzahrani M, Semlali N, Mohammad Alhaqed A, Reddy Parine N, Semlali A (2019) Effect of the thymine-DNA glycosylase rs4135050 variant on Saudi smoker population. Mol Genet Genomic Med 7:e00590

Almutairi M, Rouabia M, Sahab Almutairi M, Al-Zahrani M, Al-Numair NS, Mohammad Alhaqed A, Reddy Parine N, Semlali A (2021a) Correlation between genetic variation in thymine DNA glycosylase and smoking behavior. Gene 766:145092

Almutairi MH, Almutairi BO, Alrubie TM, Alharbi SN, Parine NR, Alrefaei AF, Aldeail I, Alamri A, Semlali A (2021b) Association between tobacco substance usage and a missense mutation in the tumor suppressor gene P53 in the Saudi Arabian population. PLoS One 16:e0245133

Al-Sieni AI, Al-Alawy AI, Al-Shehri ZS, Al-Abbasi FA (2013) Serum amyloid-A protein and serum rheumatoid factor as serological surrogate markers for smoking risk factor in Saudi population. Pak J Pharm Sci 26:239–243

Anderson JC, Moezzardalan K, Messina CR, Latreille M, Shaw RD (2011) Smoking and the association of advanced colorectal neoplasia in an asymptomatic average risk population: analysis of exposure and anatomical location in men and women. Dig Dis Sci 56:3616–3623

Avila EE (2017) Functions of antimicrobial peptides in vertebrates. Curr Protein Pept Sci 18:1098–1119

Bassiony MM (2009) Smoking in Saudi Arabia. Saudi Med J 30:876–881

Braida L, Boniotto M, Pontillo A, Tovo PA, Amoroso A, Crovella S (2004) A single-nucleotide polymorphism in the human beta-defensin 1 gene is associated with HIV-1 infection in Italian children. AIDS 18:1598–1600

Bullard RS, Gibson W, Bose SK, Belgrave JK, Eaddy AC, Wright CJ, Hazen-Martin DJ, Lage JM, Keane TE, Ganz TA, Donald CD (2008) Functional analysis of the host defense peptide human beta-defensin-1, 2 and 3 in non-inflamed pseudocyst, mucoceles. Oral Dis 14:657–667

Cerveri I, Cazoletti L, Corsico AG, Marcon A, Niniano R, Grosso A, Ronzoni V, Accordini S, Janson C, Pin I, Siroux V, DE Marco R (2012) The impact of cigarette smoking on asthma: a population-based international cohort study. Int Arch Allergy Immunol 158:175–183

Chen C, Fan X, Yu S, Liu P, Pan Y, Lin L, Li C (2019) Association between periodontitis and gene polymorphisms of hBD-1 and CD14: a meta-analysis. Arch Oral Biol 104:141–149

Cheroutre H, Huang Y (2013) Crosstalk between adaptive and innate immune cells leads to high quality immune protection at the mucosal borders. Adv Exp Med Biol 785:43–47

Demarini DM (2004) Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. Mutat Res 567:447–474

Di Cello F, Flowers VL, Li H, Vecchio-Pagan B, Gordon B, Harbom K, Shin J, Beatty R, Wang W, Brayton C, Baylin SB, Zalnow CA (2013) Cigarette smoke induces epithelial to mesenchymal transition and increases the metastatic ability of breast cancer cells. Mol Cancer 12:90

Diamond G, Ryan L (2011) Beta-defensins: what are they really doing in the oral cavity? Oral Dis 17:628–635

Donald CD, Sun CQ, Lim SD, Macoska J, Cohen C, Amin MB, Young AN, Ganz TA, Marshall FF, Petros JA (2003) Cancer-specific loss of beta-defensin 1 in renal and prostatic carcinomas. Lab Invest 83:501–505

Duska DA, Smunkova K, Hill M, Velikova M, Kubatova J, Kancheva Y, Khabour OF, Abu-Eitah RN, Alzoubi KH, Abu-Siniyeh A, Eissenberg T, Hazen-Martin DJ, Lage JM, Keane TE, Ganz TA, Donald CD (2007) Human antimicrobial proteins and their role as effectors of innate immunity. J Endotoxin Res 13:317–326

Eli-Bakry NA, Uversky VN, Redwan EM (2015) Human consensus inter-ferons: bridging the natural and artificial cytokines with intrinsical disorder. Cytokine Growth Factor Rev 26:637–645

Eng Q, Liu N, Song S and Ma Y (2013) Relationship between beta-defensin-1 gene polymorphism and susceptibility and prognosis of acute respiratory distress syndrome. Medicine, 95

Frederic MK, Yamaii T, Mizukawa N, Kaneda Y, Katase N, Gunduz M, Nagatsuka H, Sugahara T (2008) Expression of human beta-defensin -1, -2, and -3 in non-inflamed pseudocyst, mucoceles. Oral Dis 14:652–657

Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

Goerlitz D, Amr S, Dash C, Saleh DA, EL Daly M, Abdel-Hamid M, EL Khabour OF, Abu-Eitah RN, Alzoubi KH, Abu-Siniyeh A, Eissenberg T (2018) Cigarette smoking and incident heart failure: insights from the Jackson Heart Study. Circulation 137:2572–2582

Harder J, Glaser R, Schroder JM (2007) Human antimicrobial proteins effectors of innate immunity. J Endotoxin Res 13:317–338

Hu RC, Xu YJ, Zhang ZX, Ni W, Chen SX (2004) Correlation of HDEFB1 polymorphism and susceptibility to chronic obstructive pulmonary disease in Chinese Han population. Chin Med J 117:1637–1641

Huang LC, Jean D, Proske RJ, Reins RY, Mcdermott AM (2007) Ocular surface expression and in vitro activity of antimicrobial peptides. Curr Eye Res 32:595–609

Kaminska M, Kola J, Hanzlikova L, Pezarowska-Kapusta E, Kolesik M, Kajdasz K, Hajkova J, Orlicz K, Mignotte B, Zalow CA (2013) Cigarette smoking and incident heart failure: insights from the Jackson Heart Study. Circulation 137:2572–2582

Khabour OF, Abu-Eitah RN, Alzoubi KH, Abu-Siniyeh A, Eisenberg T (2020) The effect of genetic variations in the choline acetyltransferase gene (ChAT) on waterpipe tobacco smoking dependence. Tob Induc Dis 18:27
Khudair SA (2001) Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer 31:139–148

Kohailan M, Alanazi M, Rouabha M, Alami A, Parine NR, Alhadheq A, Basavarajappa S, Abdullah Al-Kheraif AA, Semlali A (2016) Effect of smoking on the genetic makeup of toll-like receptors 2 and 6. Onco Targets Ther 9:7187–7198

Kohailan M, Alanazi M, Rouabha M, Al Amri A, Parine NR, Semlali A (2017) Two SNPs in the promoter region of Toll-like receptor 4 gene are not associated with smoking in Saudi Arabia. Onco Targets Ther 10:745–752

Kopa PN, Pawlczak R (2018) Effect of smoking on gene expression profile - overall mechanism, impact on respiratory system function, and reference to electronic cigarettes. Toxicol Mech Methods 28:397–409

Kudhair BK, Alabid NN, Taheri-Kafrani A, Lafta IJ (2020) Correlation of GSTP1 gene variants of male Iraqi waterpipe (Hookah) smokers and the risk of lung cancer. Mol Biol Rep 47:2677–2684

Kytola V, Topaloglu U, Miller LD, Bitting RL, Goodman MM, Agostino RB Jr, Desnoyers RJ, Albright C, Yacoub G, Qasem SA, Deyoung B, Thorsson V, Shumulevich I, Yang M, Scherberan A, Pagni M, Liu L, Nykter M, Chen K, Hawkins GA, Grant SC, Petty WJ, Alistar AT, Levine EA, Staren ED, Langefeld CD, Miller V, Singal G, Petro RM, Robinson M, Blackstock W, Powell BL, Wagner LI, Foley KL, Abraham E, Pasche B, Zhang W (2017) Mutational landscapes of smoking-related cancers in Caucasians and African Americans: precision oncology perspectives at Wake Forest Baptist Comprehensive Cancer Center. Theranostics 7:2914–2923

Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14:96–102

Lehrer RI, Lu W (2012) alpha-Defensins in human innate immunity. Immuno Rev 245:84–112

Levy H, Raby BA, Lake S, Tantisira KG, Kwiatkowski D, Lazarus R, Silverman EK, Richter B, Klimecki WT, Vercelli D, Martinez F, Weiss ST (2005) Association of defensin beta-1 gene polymorphisms with asthma. J Allergy Clin Immunol 115:252–258

Loo WT, Bai LJ, Fan CB, Yue Y, Dou YD, Wang M, Liang H, Cheung MN, Chow L, Li JL, Tian Y, Qiu S, Zheng Q, Pan M (2019) The relationship between smoking and stroke: a meta-analysis. Medicine (Baltimore) 98:e14872

Matilainen M, Segat L, Zupin L, Moura RR, Coelho AV, Chagas BS, De Freitas AC, Coelho J, Ho SM, Svoboda P, Pohl J, Marshall FF, Petsas JA (2006) Human beta-defensin-1, a potential chromosome 8p tumor suppressor: conservation in vertebrates. J Biol Chem 281:5419–5424

Mathews M, Jia HP, Guthmiller JM, Losh G, Graham S, Johnson GK, Tack BF, McCray PB, Jr. (1999) Production of beta-defensin anti-microbial peptides by the oral mucosa and salivary glands. Infect Immun 67:2740–2745

Matsushita I, Hasegawa K, Nakata K, Yasuda K, Tokunaga K, Keicho N (2002) Genetic variants of human beta-defensin-1 and chronic obstructive pulmonary disease. Biochem Biophys Res Commun 291:17–22

Mehlotra RK, Zimmerman PA, Weinberg A, Jurevic RJ (2013) Variation in human beta-defensin genes: new insights from a multi-population study. Int J Immunogenet 40:261–269

Mehta H, Nazzal K, Sadikot RT (2008) Cigarette smoking and innate immunity. Inflamm Res 57:497–503

Milaat WA, el-Ganai FM (1998) Effects of cigarette smoking on lung function of Saudi students. Asia Pac J Public Health 10:39–49

Milanese M, Segat L, Pontillo A, Arraes LC, De Lima Filho JL, Crovella S, Orthologue of human beta-defensin 3. J Biol Chem 283:5414–5419

Naito S, Baljoon M, Bergstrom J (2005) Tobacco smoking and periodontal health in a Saudi Arabian population. J Periodontol 76:1919–1926

Niyonsaba F, Nagaoka I, Ogawa H (2006) Human defensins and cathelicidins in the skin: beyond direct antimicrobial properties. Crit Rev Immunol 26:545–576

Patil AA, Cai Y, Sang Y, Blecha F, Zhang G (2005) Cross-species analysis of the mammalian beta-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol Genomics 23:5–17

Pazzier MJ, Hoover DM, Yang D, Lu W, Lubkowski J (2006) Human beta-defensins. Cell Mol Life Sci 63:1294–1313

Pfeifer GP, Denissenko MF, Olivier M, Tretayakova N, Hecht SS, Hainaut P (2002) Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21:7435–7451

Polesello V, Zupin L, Di Lenarda R, Biasotto M, Ottaviani G, Gobbo M, Cecco L, Alberi G, Pozzato G, Crovella S, Segat L (2015) Impact of DEFB1 gene regulatory polymorphisms on hBD-1 salivary concentration. Arch Oral Biol 60:1054–1058

Prado-Montes de Oca E (2010) Human beta-defensin 1: a restless warrior against allergies, infections and cancer. Int J Biochem Cell Biol 42:800–804

Rohrer J, Yang D, Oppenheim JJ, Hebtlans G (2008) Identification and biological characterization of mouse beta-defensin 14, the orthologue of human beta-defensin 3. J Biol Chem 283:5414–5419

Schneider JJ, Unholzer A, Schaller M, Schafer-Korting M, Korting HC (2005) Human defensins. J Mol Med (Berl) 83:587–595

Semenlali A, Almutairi M, Azzi A, Reddy Parine N, Alamri A, Alsulami S, Almualaih M, Rouabha M (2011a) Whole cigarette smoke promotes human gingival epithelial cell apoptosis and inhibits cell repair processes. J Periodontal Res 46:533–541

Semenlali A, Chakir J, Goulet JP, Chmielewski W, Rouabha M (2011a) Whole cigarette smoke promotes human gingival epithelial cell apoptosis and inhibits cell repair processes. J Periodontal Res 46:533–541

Semenlali A, Chakir J, Rouabha M (2011b) Effects of whole cigarette smoke on human gingival fibroblast adhesion, growth, and migration. J Toxicol Environ Health A 74:948–962

Semenlali A, Almutairi M, Azzi A, Reddy Parine N, Alamri A, Alsulami S, Meshal Almualaih M, Rouabha M (2019) TSLP and TSLP receptors variants are associated with smoking. Mol Genet Genomic Med 7:e4842

Slebioda Z, Wozniak T, Doroczka-Bobkowska B, Wozniewicz M, Kowalska A (2021) Beta-defensin 1 gene polymorphisms in the pathologies of the oral cavity-data from meta-analysis: association only with rs1047031 not with rs1800972, rs1799946, and rs11362. J Oral Pathol Med 50:22–31

Sorensen OE, Thapa DR, Rosenthal A, Liu L, Roberts AA, Ganz T (2005) Differential regulation of beta-defensin expression in human skin by microbial stimuli. J Immunol 174:4870–4879

Steenaard RV, Lighart S, Stolk L, Peters MJ, Van Meurs JB, Uitterlinden AG, Hofman A, Franco OH, Dehghan A (2015) Tobacco smoking is associated with methylation of genes related to coronary artery disease. Clin Epigenetics 7:54

Sun QQ, Arnold R, Fernandez-Galarz C, Parrish AB, Almekinder T, He J, Ho SM, Svboda P, Pohl J, Marshall FF, Petsos JA (2006) Human beta-defensin-1, a potential chromosome 8p tumor suppressor: control of transcription and induction of apoptosis in renal cell carcinoma. Cancer Res 66:8542–8549

Taghavi N, Biramijamal F, Sotoudeh M, Moaven O, Khademi H, Abbaszadeh MR, Malekzadeh R (2010) Association of p53/p21
expression with cigarette smoking and prognosis in esophageal squamous cell carcinoma patients. World J Gastroenterol 16: 4958–4967

Wang G, Li J, Zou P, Xie H, Huang B, Nie P, Chang M (2012) Expression pattern, promoter activity and bactericidal property of beta-defensin from the mandarin fish Siniperca chuatsi. Fish Shellfish Immunol 33:522–531

Wang WM, Ye P, Qian YJ, Gao YF, Li JJ, Sun FF, Zhang WY, Wang X (2015) Effects of whole cigarette smoke on human beta defensins expression and secretion by oral mucosal epithelial cells. Tob Induc Dis 13:3

West R (2017) Tobacco smoking: health impact, prevalence, correlates and interventions. Psychol Health 32:1018–1036

Wiechula B, Cholewa K, Ekiel A, Romanik M, Dolezych H, Martirosian G (2010) HBD-1 and hBD-2 are expressed in cervico-vaginal lavage in female genital tract due to microbial infections. Ginekol Pol 81: 268–271

Wilson TJ, Jobim M, Segat L, Bianco AM, Salim PH, Portela P, Jobim LF, Damin DC, Schwartsmann G, Roesler R, Crovella S (2014) DEFB1 gene 5′ untranslated region (UTR) polymorphisms are marginally involved in inflammatory bowel disease in south Brazilians. Int J Immunogenet 41:138–142

Yadav P, Ellinghaus D, Remy G, Freitag-Wolf S, Cesaro A, Degenhardt F, Boucher G, Delacret M, International, I. B. D. G. C, Peyrin-Biroulet L, Pichavant M, Rioux JD, Gosset P, Franke A, Schumm LP, Krawczak M, Chamaillard M, Dempfle A, Andersen V (2017) Genetic factors interact with tobacco smoke to modify risk for inflammatory bowel disease in humans and mice. Gastroenterology 153:550–565

Zhang L, Ren JW, Wong CC, Wu WK, Ren SX, Shen J, Chan RL, Cho CH (2012) Effects of cigarette smoke and its active components on ulcer formation and healing in the gastrointestinal mucosa. Curr Med Chem 19:63–69

Zupin L, Robino A, Navarra CO, Pirastu N, Di Lenarda R, Gasparini P, Crovella S, Bevilacqua L (2017) LTF and DEFB1 polymorphisms are associated with susceptibility toward chronic periodontitis development. Oral Dis 23:1001–1008

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.