Two new calcicolous caloplacoid lichens from South Korea, with a taxonomic key to the species of *Huriella* and *Squamulea*

Beeyoung Gun Lee¹, Jae-Seoun Hur²

¹ Baekdudaegan National Arboretum, Bonghwa 36209, Republic of Korea ² Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Republic of Korea

Corresponding author: Beeyoung Gun Lee (gitanoblue@koagi.or.kr)

Abstract

Pyrenodesmia rugosa Lee & Hur and *Huriella aeruginosa* Lee & Hur are described as new lichen-forming fungi from a calcareous mountain of South Korea. *Pyrenodesmia rugosa* is distinguishable from *Pyrenodesmia micromontana* (Frolov, Wilk & Vondrák) Hafellner & Türk, the most similar species, by thicker thallus, rugose areoles, larger apothecia, shorter hymenium, shorter hypothecium and narrower tip cells of paraphyses. *Huriella aeruginosa*, the second new species, differs from *Squamulea chelonia* Bungartz & Sochting by dark greenish-grey to grey thallus without pruina, gold to yellow-brown epihymenium, larger ascospores and thallus K– and KC– reaction. Molecular analyses employing internal transcribed spacer (ITS), mitochondrial small subunit (mtSSU) and nuclear large subunit ribosomal RNA (LSU) sequences strongly support the two caloplacoid species to be distinct in their genera. A surrogate key is provided to assist in the identification of all 20 taxa in *Huriella* and *Squamulea*.

Keywords

Biodiversity, phylogeny, saxicolous, taxonomy, Teloschistaceae
Introduction

Many lichens are only detected in calcareous areas, particularly for crustaceous lichens, as many plants are never found, except on calcareous rocks and soils (Watson 1918; Kossowska 2008; Pykälä et al. 2017). Caloplacoid lichens have been discovered in calcareous areas, such as *Pyrenodesmia albobustulata* (Khodos. & S.Y. Kondr.) I.V. Frolov & Vondrák, *P. badioreagens* (Tietjach & Muggia) Sochting, Arup & Frödén, *P. concreticola* (Vondrák & Khodos.) Sochting, Arup & Frödén, *P. erodens* (Tietjach, Pinna & Grube) Sochting, Arup & Frödén, ‘*Squamulea* chelonia, *Squamulea galactophylla* (Tuck.) Arup, Sochting & Frödén, ‘*Squamulea* humboldtiana’ Bungartz & Sochting, *Squamulea parviloba* (Wetmore) Arup, Sochting & Frödén and *S. subsoluta* (Nyl.) Arup, Sochting & Frödén (Khodosovtsev et al. 2002; Tietjach et al. 2003; Wetmore 2003; Tietjach and Muggia 2006; Vondrák 2008; Arup 2013; Bungartz et al. 2020). Many lichens have been introduced from the calcareous areas in Korea, such as *Anema decipiens* (A. Massal.) Forssell, *Astroplaca loekoesiana* S.Y. Kondr., Farkas, J.J. Woo & Hur, *Caeruleum heppii* (Nägeli ex Körb.) K. Knudsen & Arcadia, *Clauzadea metzleri* (Körb.) Clauzade & Cl. Roux, *Clauzadea monticola* (Ach.) Hafellner & Bellem., *Collema auriforme* (With.) Coppins & J.R. Laundon, *Cristatula* (L.) Weber ex F.H. Wigg., *Endocarpon pallidum* Ach., *Halecania pakistanica* van den Boom & Elix, *Heppia adglutinata* A. Massal., *Ionaspis epulotica* (Ach.) Blomb. & Forssell, *Lecania turicensis* (Hepp) Müll. Arg., *Lecanora albescens* (Hoffm.) Branth & Rostr., *L. semipallida* H. Magn., *Lemmopsis arnoldiana* (Hepp) Zahlbr., *Lichinella cribellifera* (Nyl.) P.P. Moreno & Egea, *L. stipatula*Nyl., *Placynthium tantaleum* (Hepp) Hue, *Porina fluminea* P.M. McCarthy & P.N. Johnson, *Psorotichia frustulosa* Anzi, *P. schaereri* (A. Massal.) Arnold, *Pterygiopsis affinis* (A. Massal.) Henssen, *Pyrenocarpon aff. thelostomum* (Ach. ex J. Harriman) Coppins & Aptroot, *Rufoplaca aesanensis* S.Y. Kondr. & Hur, *Staurothele frustulenta* Vain., *Synalissa ramulosa* (Hoffm.) Körb., *Thyrea confusa* Henssen, *Toniinia poeltiana* S.Y. Kondr., Lökös & Hur, *T. tristis* (Th. Fr.) Th. Fr. and *Verrucaria muralis* Ach. (van den Boom and Elix 2005; Joshi et al. 2009; Schultz and Moon 2011; Aptroot and Moon 2014, 2015, Kondratyuk et al. 2016a, 2016b, 2017a, 2020). Although calcicolous caloplacoid lichens were little reported from Korea in the past, for example, *Rufoplaca aesanensis*, it is assumed that diverse caloplacoid lichens inhabit calcareous rocks and soils which were previously reported from just rock or soil without specifying specific rock or soil types.

This study describes two new calcicolous caloplacoid lichens in the genera *Pyrenodesmia* and *Huriella*. Qualified field surveys for the lichen diversity on the Baekdudaegan Mountains, the main mountain range stretching across the entire Korean Peninsula, were accomplished during the summer of 2020 and a few dozen specimens of caloplacoid lichens were collected in Mt. Seokbyung, a calcareous mountain (Fig. 1). We describe them as two new species, *Pyrenodesmia rugosa* and *Huriella aeruginosa*. The specimens are deposited in the herbarium of the Baekdudaegan National Arboretum (KBA), South Korea.
Materials and methods

Morphological and chemical analyses

Hand-cut sections were prepared with a razor blade under a stereomicroscope (Olympus optical SZ51; Olympus, Tokyo, Japan), examined under a compound microscope (Nikon Eclipse E400; Nikon, Tokyo, Japan) and imaged using a software programme (NIS-Elements D; Nikon, Tokyo, Japan) and a DS-Fi3 camera (Nikon, Tokyo, Japan), mounted on a Nikon Eclipse Ni-U microscope (Nikon, Tokyo, Japan). The ascospores were investigated at 1000× magnification in water. The length and width of the ascospores were measured and the range of spore sizes was shown with average, standard deviation and number of measured spores. Thin-layer chromatography (TLC) was performed using solvent systems A and C according to standard methods (Orange et al. 2001).

Isolation, DNA extraction, amplification and sequencing

Hand-cut sections of ascomata or thallus from all collected specimens were prepared for DNA isolation and DNA was extracted with a NucleoSpin Plant II Kit in line with the manufacturer’s instructions (Macherey-Nagel, Düren, Germany). PCR amplification for the internal transcribed spacer region (ITS1-5.8S-ITS2 rDNA), the mitochondrial
small subunit and the nuclear large subunit ribosomal RNA genes was achieved using Bioneer’s AccuPower PCR Premix (Bioneer, Daejeon, Korea) in 20-µl tubes and primers ITS5 and ITS4 (White et al. 1990), mrSSU1 and mrSSU3R (Zoller et al. 1999) and LR0R and LR5 (Rehner and Samuels 1994), respectively. The PCR thermal cycling parameters used were 95 °C (15 sec), followed by 35 cycles of 95 °C (45 sec), 54 °C (45 sec) and 72 °C (1 min) and a final extension at 72 °C (7 min), based on Ekman (2001). DNA sequences were generated by the genomic research company Macrogen (Seoul, Korea).

Phylogenetic analyses

All ITS, mtSSU and LSU sequences were aligned and edited manually using ClustalW in Bioedit V.7.2.6.1 (Hall 1999). All missing and ambiguously aligned data and parsimony-uninformative positions were removed and only parsimony-informative regions were finally analysed in MEGA X (Stecher et al. 2020). The final alignment comprised 878 (ITS), 900 (mtSSU) and 1701 (LSU) columns for *Pyrenodesmia*. In them, variable regions were 178 (ITS), 42 (mtSSU) and 618 (LSU). The phylogenetically-informative regions were 356 (ITS), 55 (mtSSU) and 98 (LSU). The final alignment for *Huriella* and *Squamulea* comprised 693 (ITS) columns. In them, variable regions were 78 (ITS). Finally, the phylogenetically-informative region was 246 (ITS). Phylogenetic trees with bootstrap values were obtained in RAxML GUI 2.0 beta (Edler et al. 2019) using the Maximum Likelihood method with a rapid bootstrap with 1000 bootstrap replications and GTR GAMMA for the substitution matrix. The posterior probabilities were obtained in BEAST 2.6.4 (Bouckaert et al. 2019) using the HKY (Hasegawa, Kishino and Yano) model, as the appropriate model for nucleotide substitution, based on the Bayesian Information Criterion (BIC) (Schwarz 1978) as evaluated by bModelTest (Bouckaert and Drummond 2017), empirical base frequencies, gamma for the site heterogeneity model, four categories for gamma and a 10,000,000 Markov Chain Monte Carlo chain length with a 10,000-echo state screening and 1000 log parameters. Then, a consensus tree was constructed in TreeAnnotator 2.6.4 (Bouckaert et al. 2019) with a burn-in of 5000, no posterior probability limit, a maximum clade credibility tree for the target tree type and median node heights. All trees were displayed in FigTree 1.4.2 (Rambaut 2014) and edited in Microsoft Paint. The bootstrapping and Bayesian analyses were repeated three times for the result consistency and no significant differences were shown for the tree shapes and branch values. The phylogenetic trees and DNA sequence alignments are deposited in TreeBASE under the study ID 28190.

Results and discussion

Phylogenetic analyses

Three independent phylogenetic trees for *Pyrenodesmia* and one independent phylogenetic tree for *Squamulea* were produced from 165 sequences (96 for ITS, 37 for mtSSU and 32 for LSU) from GenBank and four new sequences (two for ITS, one for mtSSU...
and one for LSU) for the new species (Table 1). *Pyrenodesmia rugosa*, a new species, was positioned in the genus *Pyrenodesmia* in all ITS, mtSSU and LSU trees. The ITS tree described that the new species was solely located without any clade. Several species closely positioned with the new species were *Pyrenodesmia aractina* (Fr.) S.Y. Kondr., *P. bicolor* (H. Magn.) S.Y. Kondr. and *P. haematites* (Chaub. ex St.-Amans) S.Y. Kondr., represented by a bootstrap value of 84 and a posterior probability of 0.73 (not shown) for the branch (Fig. 2). The mtSSU tree showed that the new species was located in a clade with *Pyrenodesmia albopruinosa* (Arnold) S.Y. Kondr. and *P. micromontana*, represented by a bootstrap value of 72 and a posterior probability of 1.0 for the branch (Fig. 3). The LSU tree depicted that the new species was positioned solely without any clade. Several species, such as *Kuettlingeria cretensis* (Zahlbr.) I.V. Frolov & Vondrák, *K. neotaurica* (Vondrák, Khodos., Arup & Søchting) I.V. Frolov, Vondrák & Arup, *Pyrenodesmia albopustulata*, *P. chalybaea* (Fr.) A. Massal., *P. helgeoides* (Vain.) Arnold, *P. microstepposa* (Frolov, Nadyeina, Khodos. & Vondrák) Hafellner & Türk, *P. molariformis* (Frolov, Vondrák, Nadyeina & Khodos.) S.Y. Kondr., *P. pratensis* (Wetmore) Frolov & Vondrák and *P. variabilis* (Pers.) A. Massal. are situated close to the new species (Fig. 4).

Huriella aeruginosa, the second new species, was located in *Huriella* in the ITS tree. The ITS tree described that the new species was positioned in a clade with ‘*Squamulea* subsoluta’ and ‘*Squamulea*’ sp., represented by a bootstrap value of 35 (not shown) without a posterior probability as the Maximum Likelihood analysis did not match with the Bayesian Inference for the clade (Fig. 5). Although the two closely located sequences were named for *Squamulea* in the beginning, they are close to *Huriella*, not *Squamulea*. The two sequences are arranged in the genus *Huriella* with the new species. The phylogenetic analyses did not designate any species identical to the two new species in each genus *Pyrenodesmia* and *Huriella*.

Taxonomy

Pyrenodesmia rugosa B.G. Lee & J.-S. Hur, sp. nov.

MycoBank No: 839184

Fig. 6

Diagnosis. *Pyrenodesmia rugosa* differs from *P. micromontana* by thicker thallus (125–200 μm vs. 95–125 μm), rugose areoles (vs. flat areoles), larger apothecia (0.2–0.7 mm diam. vs. 0.2–0.4 mm diam.), shorter hymenium (60–70 μm vs. 80–100 μm), shorter hypothecium (50–55 μm vs. 80–100 μm) and narrower tip cells of paraphyses (3–4.5 μm vs. 5–6 μm).

Type. South Korea, Gangwon Province, Gangneung, Okgye-myeon, Mt. Seokbyung (summit), 37°35.21’N, 128°53.87’E, 1,072 m alt., on calcareous rock, 17 June 2020, B.G.Lee & H.J.Lee 2020-000902, with *Athallia* cf. *vitellinula* (Nyl.) Arup, Frödén & Søchting, *Bagliettoa baldensis* (A. Massal.) Vězda, *Catillaria lenticularis* (Ach.) Th. Fr. and *Staurothele* aff. *succedens* (Rehm) Arnold (holotype: BDNA-L-0001102!); same locality, on calcareous rock, 17 June 2020, B.G.Lee & H.J.Lee 2020-000899, with *Athallia* cf. *holocarpa* (Hoffm.) Arup, Frödén & Søchting and *Staurothele* cf. *rupifraga*
Table 1. Species list and DNA sequence information employed for phylogenetic analysis.

No	Species	ID (ITS)	ID (mtSSU)	ID (LSU)	Voucher
1	Amundsenia approximata	KJ789965	L08179		(LD)
2	Amundsenia australis	KJ789962	21966		(HO)
3	Athallia holocarpa	MG954144	Vondrak 18072		
4	Athallia vitellinulina	FJ346556	Arup L03052		
5	Caloplaca monacensis	MG773668	Malicke 8255		
6	Caloplaca sp.	KC611244	CBFS:JV6943		
7	Erichansenia sauronii	KC179120	Sochting 7654		
8	Huriella aeruginosa	MW832829	BDNA-L-0001072		
9	Huriella flakusii	MT967442	Bungartz 4131	(CDS 28162)	
10	Huriella flakusii	MT967444	Bungartz 4157	(CDS 28188)	
11	Huriella loekoesiana	KY614406	KoLRI 15423		
12	Huriella loekoesiana	KY614407	KoLRI 19017		
13	Huriella loekoesiana	KY614408	KoLRI 40141		
14	Huriella loekoesiana	KY614409	KoLRI 40236		
15	Huriella loekoesiana	KY614410	KoLRI 40238		
16	Huriella loekoesiana	KY614411	HKAS 102112		
17	Huriella loekoesiana	KY614412	KRAM-L-70242		
18	Huriella loekoesiana	KY614413			
19	Kuettlingeria albolutea	KC179423	Arup L09030	(LD)	
20	Kuettlingeria areolata	MN305805	Vondrak 10854		
21	Kuettlingeria atroflava	MH104921	Vondrak 8723	(PRA)	
22	Kuettlingeria cretensis	MH104925	Frolov s.n.		
23	Kuettlingeria diphyodes	MH104926	Frolov 1430		
24	Kuettlingeria emilii	KC416102	JV9358		
25	Kuettlingeria eurybrocarpa	KC179427	Arup L07109	(LD)	
26	Kuettlingeria neotaurica	MN305807	Vondrak 7213		
27	Kuettlingeria percrocata	MH104931	Vondrak 4634	(PRA)	
28	Kuettlingeria soralifera	MN305808	Vondrak 10813		
29	Kuettlingeria aff. soralifera	JN641781	CBFS:JV8325		
30	Kuettlingeria teicholyta	MH104935	Vondrak 6943	(PRA)	
31	Kuettlingeria xerica	MN305809	Vondrak 14544		
32	Kuettlingeria aff. xerica	H6Q11275	CBFS:JV7618		
33	Lendemeriella borealis	MG954129	Vondrak 11073		
34	Lendemeriella executa	MG954227	Spribille 24441		
35	Lendemeriella nivalis	MG954222	Spribille 29306		
36	Lendemeriella reptans	MH104934	Lendemer 48186	(NY)	
37	Lendemeriella sorocarpa	MG954132	Vondrak 12695		
38	Lendemeriella tormoearpa	MG954221	Spribille 29473		
39	Oleghinia demissa	KT220203	X. Llimona (BCN)		
40	Pyrenodesmia aetnensis	EU639590	TSB 37658		
41	Pyrenodesmia alboperinaea	EF093577	GT91476		
42	Pyrenodesmia alboperinata	MH104918	Vondrak 10463	(PRA)	
43	Pyrenodesmia alociza	EF090931	TSB 37735		
44	Pyrenodesmia aractina	GU723415	Bornholm 5907		
45	Pyrenodesmia aractina	GU723418	Bornholm 6911		
46	Pyrenodesmia aractina	MH104919	Vondrak 6702	(PRA)	
47	Pyrenodesmia aractina	MH104920	X. Llimona (BCN)		
48	Pyrenodesmia badioretans	EF081035	TSB 36422		
49	Pyrenodesmia bicolor	MH104922	Vondrak 10373	(PRA)	
No	Species	ID (ITS)	ID (mtSSU)	ID (LSU)	Voucher
----	--------------------------	----------	------------	----------	-----------------------
	Pyrenodesmia ceracea	HQ234603	MH100779	MH100747	BM-6656
50	Pyrenodesmia chalybaea	KC884498	MH100780	MH100748	CBFS;JV4059
51	Pyrenodesmia circumalbata	MH104923	MH100781	MH100749	Halici s.n.
52	Pyrenodesmia concreticola	KC884506	MH100781	MH100749	CBFS;JV9443
53	Pyrenodesmia duplicata	HQ611272			TUR-V-7513
54	Pyrenodesmia erodens	MH104927	MH100788	MH100755	Vondrak 12733 (PRA)
55	Pyrenodesmia haematites	GU723420	MH100789	MH100756	Vondrak 7278 (PRA)
56	Pyrenodesmia haematites	GU723421			JS280
57	Pyrenodesmia helygeoides	MH104928			Vondrak 7278 (PRA)
58	Pyrenodesmia helygeoides	MH104929	MH100790	MH100757	Frolov 1414
59	Pyrenodesmia micromarina	NR_156257	MH100791	MH100758	CBFS;JV8199
60	Pyrenodesmia micromarina	MH100791	MH100758		Vondrak 7236 (PRA)
61	Pyrenodesmia micromontana	NR_158297	MH100792	MH100759	CBFS;JV9467
62	Pyrenodesmia microstepposa	NR_156260	MH100760	MH100760	CBFS;JV9141
63	Pyrenodesmia molariformis	KC416145	MH100793	MH100761	Nadyeina 132 (KW)
64	Pyrenodesmia obscurella	MH104938	MH100762	MH100762	Vondrak 7641 (PRA)
65	Pyrenodesmia peliophylla	MG733135			Jason Hollinger:16476
66	Pyrenodesmia pratensis	MH104933	MH100795	MH100765	MIN 891605
67	Pyrenodesmia rugosa	MW832828	MW832825	MW832904	BDNA-L-0001099
68	Pyrenodesmia transcarpica	MH104936	MH100799	MH100768	Vondrak 9430 (PRA)
69	Pyrenodesmia variabilis	KT291466	KT291514	KT291561	Ulf Arup L07196 (LD)
70	Shackletonia buelliae	KC179117			Sochting 7583
71	Shackletonia siphonopora	KC179121			Sochting 7883
72	Squamulea galactophylla	KC179122			Morse 10997 (LD)
73	Squamulea kiamae	KC179123			Kondratyuk 20480 (LD)
74	Squamulea parviflora	KC179124			Wetmore 87830 (LD)
75	Squamulea squamosa	MT967462			Moberg 8782 (UPS)
76	Squamulea squamosa	KC179125			Karnefelt AM9060105 (LD)
77	Squamulea ‘squamosa’	MT967465			Bungartz 7428 (CDS 37915)
78	Squamulea subsoluta	AF353954			Arup L97072
79	Squamulea subsoluta	DQ173238			Arup L97829
80	Squamulea subsoluta	KJ133480			KoLRI 011067
81	Squamulea ‘chelonia’	MT967448			Bungartz 4521 (CDS 28607)
82	Squamulea ‘chelonia’	MT967451			Bungartz 9251 (CDS 46069)
83	Squamulea ‘chelonia’	MT967452			Bungartz 6146 (CDS 34358)
84	Squamulea ‘chelonia’	MT967439			Buck 29560 (MIN)
85	Squamulea ‘humboldtiana’	MT967440			Bungartz 4711B (CDS 56235)
86	Squamulea ‘humboldtiana’	MT967441			Bungartz 9985 (CDS 47354)
87	Squamulea ‘humboldtiana’	MT967445			Yánez-Ayabaca 2023 (CDS 48373)
88	Squamulea ‘oceanica’	MT967446			Bungartz 10152 (CDS 47571)
89	Squamulea ‘oceanica’	MT967447			Bungartz 9857 (CDS 47195)
90	Squamulea ‘oceanica’	MT967455			AptoHo 65489 (CDS 32078)
91	Squamulea ‘osseophila’	MT967456			AptoHo 65468 (CDS 32057)
92	Squamulea ‘phyllidizans’	MT967456			
Beeyoung Gun Lee & Jae-Seoun Hur / MycoKeys 84: 35–55 (2021)

(A. Massal.) Arnold (paratype: BDNA-L-0001099; GenBank MW832828 for ITS, MW832825 for mtSSU and MW832804 for LSU).

Thallus saxicolous (calcicolous), crustose, mainly areolate or slightly rimose, rugose, greyish-brown to pale brown, often with orange spots, margin indeterminate or determinate when placodioid areoles are arranged around edge, vegetative propagules absent, areoles 0.4–1.0 mm diam., 125–200 μm thick; cortex hyaline with pale brown pigment layer, pale brown pigment K+ purple, 10–40 μm thick, cortical cells granular, 5–10 μm diam., with epinecral layer, 5–7 μm thick; medulla 60–110 μm thick below algal layer or inconspicuous and algal layer shown just above substrate; photobiont coccoid, cells globose to oval, 5–15 μm diam., algal layer 50–70 μm thick. Small crystals present between algal cells, not dissolving in K. Prothallus absent.

Apothecia abundant, scattered or concentrated in centre, rounded, often contiguously or even coalescent when mature, emerging on the surface of thallus, immersed or adnate, slightly constricted at the base, 0.2–0.7 mm diam. Disc flat when young and flat or concave when mature, often white pruinose, black, 200–300 μm thick; zeorine, margin persistent, generally entire or rarely slightly crenulate, thalline margin paler to disc and showing brown colour, often inconspicuous due to locating below proper margin, proper margin concolorous to disc. Amphithecium present, with small crystals between algal cells, not dissolving in K, 80–130 μm wide laterally, algal layers continuous to the base and underlying the hypothecium, algal cells 5–15 μm diam., cortical layer hyaline with pale brownish pigment at periphery, 10–40 μm thick. Parathecium well-developed, hyaline, but grey with slightly brown pigment concolorous to ephymenium at periphery, 20–40 μm wide laterally and 50–90 μm wide at periphery. Ephymenium grey with slightly brown pigment, K+ purple, tiny granules abundant on surface, not dissolving in K, 5–10 μm high. Hymenium hyaline, 60–70 μm high. Hypothecium hyaline, base open and extending downwards, 50–55 μm high. Oil droplets present in upper hypothecium, but absent in hymenium. Paraphyses septate, often anastomosing, 2–2.5 μm wide, generally simple, but occasionally branched at tips, tips slightly swollen, not pigmented, 3.0–4.5 μm wide. Asci oblong to narrowly clavate, 8-spored, 52–60 × 14–18 μm (n = 5). Ascospores ellipsoid, 1-septate, polarilocular when mature or narrow septum remaining, hyaline
Korean calcicolous caloplacoid lichens

permanently, 11–18 × 5.5–11 μm (mean = 14.1 × 7.6 μm; SD = 1.6(L), 1.0(W); L/W ratio 1.5–2.5, ratio mean = 1.9, ratio SD = 0.3; n = 105), septum 1.5–3.0 μm. Pycnidia not detected.

Chemistry. Thallus K–, KC–, C–, Pd–. Epihymenium K+ purple. Hymenium I+ blue. UV–. No lichen substance was detected by TLC.

Figure 2. Phylogenetic relationships amongst available species in the genus *Pyrenodesmia*, based on a Maximum Likelihood analysis of the dataset of ITS sequences. The tree was rooted with the sequences of the genera *Caloplaca*, *Lendemeriella*, *Olegblumia* and *Usnochroma*. Maximum Likelihood bootstrap values ≥ 70% and posterior probabilities ≥ 95% are shown above internal branches. Branches with bootstrap values ≥ 90% are shown in bold. The new species *Pyrenodesmia rugosa* is presented in bold and all species names are followed by the GenBank accession numbers. Reference Table 1 provides the species related to the specific GenBank accession numbers and voucher information.
Distribution and ecology. The species occurs on the calcareous rock. The species is currently known from the type collections.

Etymology. The species epithet indicates the lichen’s thallus texture, rugose or wrinkled, which is the key characteristic distinguished from closely-related calcicolous species in the genus *Pyrenodesmia*.

Notes. The new species is similar to *P. micromontana*, *P. microstepposa* and *Caloplaca micromarina* Frolov, Khodos. & Vondrák in having epilithic thallus without vegetative propagules, small apothecia generally less than 0.5 mm diameter and the substrate preference to calcareous rocks. The new species differs from *P. micromontana* by thicker thallus (125–200 μm vs. 95–125 μm), rugose areoles (vs. flat areoles), larger apothecia (0.2–0.7 mm diam. vs. 0.2–0.4 mm diam.), shorter hymenium (60–70 μm vs. 80–100 μm), shorter hypothecium (50–55 μm vs. 80–100 μm) and narrower tip cells of paraphyses (3–4.5 μm vs. 5–6 μm) (Frolov et al. 2016).
The new species is different from *P. microstepposa* by darker thallus (greyish-brown to pale brown vs. ochre, grey or grey-white), rugose thallus (vs. flat thallus), thinner thallus (125–200 μm vs. 85–370 μm), smaller algal cells (5–15 μm diam. vs. 13.5–20.5 μm diam.), presence of pruina on disc (vs. absence of it), absence of oil droplets in hymenium (vs. presence of it), greyish epihymenium (vs. brownish epihymenium), wider ascospores (11–18 × 5.5–11 μm with the L/W ratio of 1.5–2.5 vs. 13.6–18.4 × 6–7.9 μm with the ratio of 1.9–2.9) (Frolov et al. 2016).

The new species is distinguished from *C. micromarina* by darker thallus (greyish-brown to pale brown vs. ochre to grey), rugose thallus (vs. flat thallus), absence of pruina on thallus (vs. presence of it), shorter hymenium (60–70 μm vs. 90–100 μm), shorter septum (1.5–3 μm vs. 2.6–3.4 μm) and the habitat preference to mountain rocks (vs. coastal rocks) (Frolov et al. 2016).

Additional specimens examined: South Korea, Gangwon Province, Okgye-myeon, Mt. Seokbyung (summit), 37°35.21’N, 128°53.87’E, 1,072 m alt., on calcareous rock, 17 June 2020, B.G.Lee & H.J.Lee 2020-000889, with *Bagliettoa baldensis*, *Catillaria lenticularis*, *Fulgogasparrea decipioides* (Arup) S.Y. Kondr., M.H. Jeong.
Kärnefelt, Elix, A. Thell & Hur and Laundonia flavovirescens (Wulfen) S.Y. Kondr., Lőkös & Hur (BDNA-L-0001089); same locality, on calcareous rock, 17 June 2020, B.G.Lee & H.J.Lee 2020-000909, with Bagliettoa baldensis, Rusavskia elegans (Link) S.Y. Kondr. & Kärnefelt and Verrucaria nigrescens Pers. (BDNA-L-0001109); same locality, on calcareous rock, 17 June 2020, B.G.Lee & H.J.Lee 2020-000910, with Bagliettoa baldensis, Catillaria lenticularis and Laundonia flavovirescens (BDNA-L-0001110); same locality, on calcareous rock, 17 June 2020, B.G.Lee & H.J.Lee 2020-000911, with Athallia cf. vitellinula, Bagliettoa baldensis, Lichenella sp. and Rusavskia elegans (BDNA-L-0001111); same locality, on calcareous rock, 17 June 2020, B.G.Lee & H.J.Lee 2020-000913, with Athallia cf. vitellinula, Bagliettoa baldensis, Endocarpon sp., Laundonia flavovirescens, Lichenella sp. and Rusavskia elegans (BDNA-L-0001113); same locality, on calcareous rock, 17 June 2020, B.G.Lee & H.J.Lee 2020-000916, with Caloplaca sp., Endocarpon sp., Lichenella sp. and Rusavskia elegans (BDNA-L-0001116).

Figure 5. Phylogenetic relationships amongst available species in the genera Huriella and Squamulea, based on a Maximum Likelihood analysis of the dataset of ITS sequences. The tree was rooted with the sequences of the genera Amundsenia, Erichansenia and Shackletonia. Maximum Likelihood bootstrap values ≥ 70% and posterior probabilities ≥ 95% are shown above internal branches. Branches with bootstrap values ≥ 90% are shown in bold. The new species Huriella aeruginosa is presented in bold and all species names are followed by the GenBank accession numbers. Reference Table 1 provides the species related to the specific GenBank accession numbers and voucher information.
Huriella aeruginosa B.G. Lee & J.-S. Hur, sp. nov.
MycoBank No: 839185
Fig. 7

Diagnosis. *Huriella aeruginosa* differs from *‘Squamulea’ chelonia* by dark greenish-grey to grey thallus without pruina (vs. yellow orange to deep orange thallus with white pruina), gold to yellow-brown epiphyemenium (vs. orange epiphyemenium), larger ascospores (7.5–12 × 4.5–7.5 μm vs. 8–10.4 × 4.7–6.0 μm) and the chemistry (thallus K–, KC– and no substance vs. thallus K+ purple, KC± purplish and the presence of parietin, teloschistin, fallacinal, parietinic acid and emodin).

Type. South Korea, Gangwon Province, Gangneung, Okgye-myeon, Mt. Seokbyung (summit), 37°35.21’N, 128°53.87’E, 1,072 m alt., on calcareous rock, 17 June 2020, B.G.Lee & H.J.Lee 2020-000872, with *Bagliettoa baldensis*, *Catillaria lenticularis*, *Endocarpon subramulosum* Y. Joshi & Hur, *Laundonia flavovirescens*, *Rusavskia elegans* and *Verrucaria nigrescens* (holotype: BDNA-L-0001072!; GenBank MW832829 for ITS).
Figure 7. *Huriella aeruginosa* (BDNA-L-0001072, holotype) in morphology A–C habitus and apothecia. Thallus dark greenish-grey to grey with no pruina. Thalline margin of apothecia concolorous to disc D apothecia adnate or rarely sessile. Amphithecium well-developed, but paratheciun inconspicuous. E thallus with dark green pigment layer under cortex F–G clavate asci containing 8-spores H ascospores generally ellipsoid, but occasionally globose, developing polarilocular in both types. Two blue coloured spores in lactophenol cotton blue. Scale bars: 1 mm (A–C); 100 μm (D);10 μm (E–H).

Thallus saxicolous (calcicolous), crustose, mainly areolate or slightly rimose, placodioid around edge, but without distinct lobes, thin, dark greenish-grey to grey, occasionally pale yellowish-grey when young, margin indeterminate or determinate when placodioid areoles are arranged around edge, vegetative propagules absent, areoles 0.3–0.7 mm diam., 150–200 μm thick; cortex hyaline with dark green pigment
layer, 15–25 μm thick, cortical cells granular, coarsely anticlinally arranged, 5–10 μm diam., with epinecral layer, up to 5 μm thick; medulla 80–100 μm thick, below algal layer, with large crystals (materials of substrate possibly) and brown cells (dead algal cells possibly); photobiont coccoid, cells globose to oval, 5–25 μm. Small crystals in cortex, medulla and between algal cells, dissolving in K. Prothallus absent.

Apothecia abundant, scattered and not concentrated in centre, rounded, often contiguous when mature, emerging on the surface of thallus, immersed, adnate or rarely sessile, constricted at the base, 0.2–0.4 mm diam. Disc flat when young and flat or slightly convex when mature, not pruinose, orange from the beginning, 110–230 μm thick; margin persistent, even to disc or slightly prominent, generally entire or slightly crenulate, thalline margin concolorous to disc, proper margin inconspicuous. Amphithecial well-developed, with small crystals between algal cells, dissolving in K, 50–55 μm wide laterally, algal layers continuous to the base or solitarily remaining in amphitheciu, algal cells 5–25 μm diam., cortical layer hyaline with gold to yellow-brown pigment concolorous to epihymenium at periphery, 15–20 μm thick. Parathecia inconspicuous, hyaline but gold to yellow-brown at periphery, ca. 10 μm wide laterally and ca. 20 μm wide at periphery. Epihymenium gold to yellow-brown, granular, pigment K+ wine red and dissolved, 10–20 μm high. Hymenium hyaline, 45–55 μm high. Hypothecium hyaline, 35–45 μm high. Oil droplets present, small, along paraphyses and more in the base of hymenium and hypothecium. Paraphyses septate, anastomosing, 2–3 μm wide, simple or branched at tips, tips swollen or slightly swollen, not pigmented, 3.5–5.5 μm wide. Asci clavate, 8-spored, 35–48 × 14–17 μm (n = 5). Ascospores generally ellipsoid, occasionally globose, 1-septate, polarilocular or narrow septum remaining, hyaline permanently, 7.5–12 × 4.5–7.5 μm (mean = 9.9 × 5.7 μm; SD = 0.9(L), 0.6(W); L/W ratio 1.2–2.3, ratio mean 1.8, ratio SD = 0.2; n = 104), globose spores 7.5–9 × 7.0–9.2 μm (mean = 8.0 × 7.7 μm; SD = 0.8(L), 0.9(W); L/W ratio 1.0–1.1, ratio mean = 1.0, ratio SD = 0.1; n = 11). Pycnidia not detected.

Chemistry. Thallus K–, KC–, C–, Pd–. Apothecia K+ wine red. Epihymenium K+ wine red. Epitymexium and hymenium I+ blue. UV–. No lichen substance was detected by TLC.

Distribution and ecology. The species occurs on the calcareous rock. The species is currently known from the type collection.

Etymology. The species epithet indicates the lichen’s thallus colour, dark green, which is the key characteristic distinguished from all the species in the genus Huriella.

Notes. The morphological classification of the new species is not clear between Huriella and Squamulea because the new species has some characteristics for the former genus and others for the latter, i.e. the new species represents mainly areolate thallus without lobed margin and smaller apothecia for the former, whilst showing some squamulose thallus and wider ascospores for the latter (Table 2). The molecular results concluded the new species classification into the former genus, Huriella.

The new species is unique with the key characteristics of green pigmented thallus (with a distinct green layer in a section) and the substrate preference to calcareous rocks amongst all Huriella species.
Table 2. Comparison of the new species with two type species in *Huriella* and *Squamulea*.

Species	*Huriella aeruginosa*	*Huriella loekoesiana*	*Squamulea subsoluta*
Thallus	mainly areolate, rimose or placoid around edge, but without lobes	areolate (not squamulose)	squamulose, areolate or subsquamulose, margin slightly lobed
Apothecia (mm in diam.)	0.2–0.4	0.2–0.4(–0.5)	0.1–0.6
Ascospores (μm)	7.5–12 × 4.5–7.5	(8.5–)9–11(–12) × (4.5)5–6	9.5–12.5 × 5.5–7
Molecular phylogeny	Huriella	Huriella	Squamulea
Reference	–	Kondratyk et al. 2017b	Nash III et al. 2007; Arup et al. 2013

The new species is similar to ‘*Squamulea* chelonia, *Squamulea galactophylla*, ‘*Squamulea humboldtiana*, *S. parviloba* and *S. subsoluta* in the substrate preference to calcareous rocks. However, the new species is different from ‘*Squamulea chelonia* by dark greenish-grey to grey thallus without pruina (vs. yellow orange to deep orange thallus with white pruina), gold to yellow-brown ephymenium (vs. orange ephymenium), larger ascospores (7.5–12 × 4.5–7.5 μm vs. 8–10.4 × 4.7–6.0 μm) and the chemistry (thallus K–, KC– and no substance vs. thallus K+ purple, KC± purplish and the presence of parietin, teloschistin, fallacinal, parietinic acid and emodin) (Bungartz et al. 2020).

The new species differs from *S. galactophylla* by thallus colour (dark greenish-grey to grey vs. dirty white to yellowish-brown), flat to convex disc (vs. flat disc only), yellowish-orange apothecia (vs. cinnamon-brown apothecia), smaller ascospores (7.5–12 × 4.5–7.5 μm vs. 10–15 × 5–7 μm) (Fink 1935; Arup 2013).

The new species is distinguished from ‘*Squamulea humboldtiana* by dark greenish-grey to grey thallus without pruina (vs. yellow-orange to deep orange thallus with pruina), absence of prothallus (vs. presence of prothallus), larger ascospores (7.5–12 × 4.5–7.5 μm vs. 8.1–9.9 × 4.8–5.9 μm) and the chemistry (thallus K–, KC– and no substance vs. thallus K+ purple, KC± purplish and the presence of parietin, teloschistin, fallacinal, parietinic acid and emodin) (Bungartz et al. 2020).

The new species differs from *S. parviloba* by dark greenish-grey to grey thallus (vs. yellow-orange to orange thallus), absence of lobes (vs. short narrow elongated lobes around edge), convex and yellow-orange disc (vs. flat and deep orange disc), smaller ascospores (7.5–12 × 4.5–7.5 μm vs. 11–14 × 5.5–7 μm) and the chemistry (thallus K– vs. thallus K+ red) (Wetmore 2003; Nash III et al. 2007).

The new species is different from *S. subsoluta* by dark greenish-grey to grey thallus (vs. yellow-orange, orange to reddish-orange thallus), absence of prothallus (vs. black prothallus), flat to convex, yellow-orange apothecia (vs. flat to concave, deep orange apothecia) and the chemistry (thallus K– and no substance vs. thallus K+ red, the presence of parietin, fallacinal, emodin and teloschistin) (Wetmore 2003; Nash III et al. 2007).

The most distinctive characteristic of the new species is the thallus colour, i.e. dark greenish-grey to grey, which is different from all comparable calcicolous species in the genus *Squamulea*.
Key to the species of *Huriella* and *Squamulea* (20 taxa)

Although some species of *Huriella* have distinct characteristics, different from *Squamulea*, such as mainly areolate and non-squamulose thallus without lobes at margin, smaller apothecia and narrower ascospores (Kondratyuk et al. 2017b), those morphological taxonomic keys do not clearly separate the two genera concerning all known species in the genera. The morphological characteristics are assumingly based on the comparison between type species of the comparable genera, but several species do not correspond to the characteristics (e.g. *Huriella aeruginosa*, *H. flakusii* Wilk and *H. salyangiana* S.Y. Kondr. & Hur with squamulose thalli), although those species are classified in the genus *Huriella* in molecular phylogeny. Such a discrepancy between morphology and molecular phylogeny occur in *Squamulea squamosa* (B. de Lesd.) Arup, Søchting & Frödén and *S. subsoluta* as well. Both species are considered conspecific in morphology. Both species are very similar in morphology and ecology occurring together on the same rock. Whereas the only difference between them is that the former has a thalline margin and it is lacking in the latter (Nash III et al. 2007), the latter representing a permanent thalline margin from the Galapagos Islands as well (Bungartz et al. 2020). However, the two species are separated and located distant from each other in molecular results of this study (Fig. 5). Nevertheless, those are still considered conspecific in the key below as a taxonomic key is based mainly on ecology, morphology and chemistry. The genera *Huriella* and *Squamulea* should be more studied in the future and here a preliminary key is updated from previous taxonomic keys of Wetmore (2003) and Bungartz et al. (2020).

1 Not directly on rock, but on lichen or bone ... 2
 – On rock ... 4
2 On lichen (*Aspicilia*) living on rock ... *Squamulea nesodes*
 – On bone .. 3
3 Thallus generally areolate, without blastidia, not pruinose
 ..
 ‘*Squamulea* osseophila’
 – Thallus generally (sub)squamulose, blastidia abundant, not pruinose or faintly orange pruinose on thallus ... ‘*Squamulea* phyllidizans’
4 On calcareous rocks ... 5
 – On siliceous rocks .. 10
5 Thallus pruinose .. 6
 – Thallus not pruinose ... 7
6 Thallus angular, areolate to subsquamulose, prothallus absent
 ..
 ‘*Squamulea* chelonia’
 – Thallus areolate or bullate, prothallus black when present
 ..
 ‘*Squamulea* humboldtiana’
7 Thallus whitish, greyish or greenish ... 8
 – Thallus yellow-orange to orange .. 9
8 Thallus dirty whitish, disc cinnamon-brown *Squamulea galactophylla*
 – Thallus dark greenish-grey to grey, disc orange *Huriella aeruginosa*
9 Areole margins with small lobules..........................*Squamulea parviloba*
 – Areole margins without lobules..........................*Squamulea squamosa (S. subsoluta)*
 10 With blastidia or soredia..11
 – Without blastidia or soredia..13
 11 Thallus brownish-orange, apothecia rare, disc reddish to reddish-brown, ascospores 11–16 × 6–8 μm, isthmus 1–3 μm ..*Squamulea kiamae*
 – Thallus yellowish-orange to deep orange, apothecia common, disc concolorous to thallus or slightly deeper, ascospores 8.4–13.3 × 5–7.1 μm, isthmus 2.5–4.6 μm.................................12
 12 Blastidia abundant, sometimes faintly orange pruinose on thallus, but not pruinose on disc..‘*Squamulea phyllidizans*
 – Soredia rarely present, rarely white pruinose on disc, but not pruinose on thallus..*Squamulea squamosa (S. subsoluta)*
 13 Thallus areolate to (sub)squamulose..14
 – Thallus areolate or bullate, but not squamulose...............................21
 14 Prothallus distinctly blackened..‘*Squamulea* oceanica*
 – Prothallus absent..15
 – Disc brownish to reddish or blackish...16
 – Disc orangish..19
 15 Thallus orange, disc reddish, ascospores 11–14.2 × 5.9–7.5 μm..........................*Huriella flakusii*
 – Thallus brownish, disc pale brown, brownish-orange to blackish-brown17
 16 Disc 0.4–0.9 mm diam., hypothecium 50–100 μm high, ascospores 9–13 × 5–6 μm..*Squamulea coreana*
 – Disc 0.2–0.4 mm diam., hypothecium 100–150 μm high, ascospores 10–10.5 × 4.5–6 μm..*Squamulea uttarkashiana*
 17 Areole margins with small lobules..‘*Squamulea parviloba*
 – Areole margins without lobules..20
 18 Ascospores 8–10.4 × 4.7–6 μm, isthmus 2.1–3.3, not pruinose on disc..............‘*Squamulea* chelonia
 – Ascospores 8.4–13.3 × 5.2–7 μm, isthmus 2.5–4 μm, rarely pruinose on disc ..*Squamulea squamosa (S. subsoluta)*
 19 Thallus yellow-orange to deep orange, prothallus black when present, ascospores 8.1–9.9 × 4.8–5.9 μm, isthmus 2.7–3.2 μm...........‘*Squamulea* humboldtiana
 – Thallus yellow-brownish or yellow-greenish, prothallus absent, ascospores 9–15 × 5–8 μm, isthmus 2–5 μm ..22
 20 Apothecia 0.2–0.3 mm diam., disc dull brown, dull yellow to bright yellow...
 – Apothecia 0.3–1 mm diam., disc orange, brownish-yellow to reddish-orange

21 Thallus yellow-orange to deep orange, prothallus black when present, ascospores 8.1–9.9 × 4.8–5.9 μm, isthmus 2.7–3.2 μm...........‘*Squamulea* humboldtiana
 – Thallus yellow-brownish or yellow-greenish, prothallus absent, ascospores 9–15 × 5–8 μm, isthmus 2–5 μm ..22
 22 Apothecia 0.2–0.3 mm diam., disc dull brown, dull yellow to bright yellow...
 – Apothecia 0.3–1 mm diam., disc orange, brownish-yellow to reddish-orange

23 Apothecia 0.2–0.3 mm diam., disc dull brown, dull yellow to bright yellow...

24

Korean calcicolous caloplacoid lichens

23 Disc dull yellow to bright yellow, hymenium 50–60 μm high, hypothecium 20–30 μm high, ascospores 9–11 × 5–6 μm, isthmus 4–5 μm
............... Huriella loekoesiana
– Disc dull brown, hymenium 80–100 μm high, hypothecium 80–110 μm high, ascospores 13–14.5 × 7–8 μm, isthmus 3–4 μm... Huriella upretiana

24 On mountain, thallus yellow-brown, disc orange, isthmus 3–4 μm..............
............... Squumulea micromera
– On coast, thallus dull green-yellow to yellow-brown, disc orange to red-orange, isthmus 2–3 μm......................... Huriella pohangensis

Acknowledgements

This work was supported by a grant from the Korean National Research Resource Center Program (NRF-2017M3A9B8069471).

References

Aptroot A, Moon KH (2014) 114 new reports of microlichens from Korea, including the description of five new species, show that the microlichen flora is predominantly Eurasian. Herzogia 27(2): 347–365. https://doi.org/10.13158/heia.27.2.2014.347
Aptroot A, Moon KH (2015) New lichen records from Korea, with the description of the lichenicolous Halecania parasitica. Herzogia 28(1): 193–203. https://doi.org/10.13158/heia.28.1.2015.193
Arup U, Søchting U, Frödén P (2013) A new taxonomy of the family Teloschistaceae. Nordic Journal of Botany 31(1): 016–083. https://doi.org/10.1111/j.1756-1051.2013.00062.x
Bouckaert RR, Drummond AJ (2017) bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology 17(1): e42. https://doi.org/10.1186/s12862-017-0890-6
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NE, Ogilvie HA, du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu CH, Xie D, Zhang C, Stadler T, Drummond AJ (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15(4): e1006650. https://doi.org/10.1371/journal.pcbi.1006650
Bungartz F, Søchting U, Arup U (2020) Teloschistaceae (lichenized Ascomycota) from the Galapagos Islands: a phylogenetic revision based on morphological, anatomical, chemical, and molecular data. Plant and Fungal Systematics 65(2): 515–576. https://doi.org/10.35535/pfsyst-2020-0030
Edler D, Klein J, Antonelli A, Silvestro D (2019) raxmlGUI 2.0 beta: a graphical interface and toolkit for phylogenetic analyses using RAxML. bioRxiv. https://doi.org/10.1101/800912
Ekman S (2001) Molecular phylogeny of the Bacidiaceae (Lecanorales, lichenized Ascomycota). Mycological Research 105: 783–797. https://doi.org/10.1017/S0953756201004269
Fink B (1935) The Lichen Flora of the United States. University of Michigan Press, MI, USA. https://doi.org/10.3998/mpub.9690813

Frolov I, Vondrák J, Fernández-Mendoza F, Wilk K, Khodosovtsev A, Halici MG (2016) Three new, seemingly-cryptic species in the lichen genus Caloplaca (Teloschistaceae) distinguished in two-phase phenotype evaluation. Annales Botanici Fennici 53(3–4): 243–262. https://doi.org/10.5735/085.053.0413

Hall TA (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Joshi Y, Wang XY, Koh YJ, Hur JS (2009) Thelotrema subtile and Verrucaria muralis New to Korea. Mycobiology 37(4): 302–304. https://doi.org/10.4489/MYCO.2009.37.4.302

Khodosovtsev A, Kondratyuk S, Kärnefelt I (2002) Caloplaca albopustulata, a new saxicolous lichen from Crimea Peninsula, Ukraine. Graphis Scripta 13: 5–8.

Kondratyuk SY, Lökös L, Halda JP, Haji Moniri M, Farkas E, Park JS, Lee BG, Oh SO, Hur JS (2016a) New and noteworthy lichen-forming and lichenicolous fungi 4. Acta Botanica Hungarica 58(1–2): 75–136. https://doi.org/10.1556/034.58.2016.1-2.4

Kondratyuk SY, Lökös L, Halda JP, Upreti DK, Mishra GK, Haji Moniri M, Farkas E, Park JS, Lee BG, Liu D, Woo JJ, Jayalal RGU, Oh SO, Hur JS (2016b) New and noteworthy lichen-forming and lichenicolous fungi 5. Acta Botanica Hungarica 58(3–4): 319–396. https://doi.org/10.1556/ABot.58.2016.3-4.7

Kondratyuk SY, Lökös L, Halda JP, Roux C, Upreti DK, Schumm F, Mishra GK, Nayaka S, Farkas E, Park JS, Lee BG, Liu D, Woo JJ, Hur JS (2017a) New and noteworthy lichen-forming and lichenicolous fungi 6. Acta Botanica Hungarica 59(1–2): 137–260. https://doi.org/10.1556/034.59.2017.1-2.7

Kondratyuk SY, Lökös L, Upreti DK, Nayaka S, Mishra GK, Ravera S, Jeong MH, Jang SH, Park JS, Hur JS (2017b) New monophyletic branches of the Teloschistaceae (lichen-forming Ascomycota) proved by three gene phylogeny. Acta Botanica Hungarica 59(1–2): 71–136. https://doi.org/10.1556/034.59.2017.1-2.6

Kondratyuk SY, Lökös L, Oh SO, Kondratiiuk TO, Parnikoza IY, Hur JS (2020) New and Noteworthy Lichen-Forming and Lichenicolous Fungi, 11. Acta Botanica Hungarica 62(3–4): 225–291. https://doi.org/10.1556/034.62.2020.3-4.3

Kossowska M (2008) Lichens growing on calcareous rocks in the Polish part of the Sudety Mountains. Zakład Bioróżnorodności i Ochrony Szaty Roślinnej, Instytut Biologii Roślin Uniwersytetu Wrocławskiego, Wrocław.

Nash III TH, Ryan BD, Diedrich P, Gries C, Bungartz F (2007) Lichen Flora of the Greater Sonoran Desert Region, Vol III. Lichens Unlimited/Arizona State University, Tempe.

Orange A, James PW, White FJ (2001) Microchemical Methods for the Identification of Lichens. The British Lichen Society, London.

Pykälä J, Launis A, Myllys L (2017) Four new species of Verrucaria from calcareous rocks in Finland. The Lichenologist 49(1): 27–37. https://doi.org/10.1017/S0024282916000542

Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625–634. https://doi.org/10.1016/S0953-7562(09)80409-7
Korean calcicolous caloplacoid lichens

Rambaut A (2014) FigTree v1.4.2. University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree

Schultz M, Moon KH (2011) Notes on taxonomy and distribution of some critical cyanobacterial lichens from South Korea. Nova Hedwigia 92(3): 479–486. https://doi.org/10.1127/0029-5035/2011/0092-0479

Schwarz G (1978) Estimating the dimension of a model. Annals of Statistics 6: 461–464. https://doi.org/10.1214/aos/1176344136

Stecher G, Tamura K, Kumar S (2020) Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution 37(4): 1237–1239. https://doi.org/10.1093/molbev/msz312

Tretiach M, Pinna D, Grube M (2003) Caloplaca erodens [sect. Pyrenodesmia], a new lichen species from Italy with an unusual thallus type. Mycological Progress 2(2): 127–136. https://doi.org/10.1007/s11557-006-0050-7

Tretiach M, Muggia L (2006) Caloplaca badioreagens, a new calcicolous, endolithic lichen from Italy. The Lichenologist 38(3): 223–229. https://doi.org/10.1017/S0024282906005305

van den Boom PP, Elix JA (2005) Notes on Halecania species, with descriptions of two new species from Asia. The Lichenologist 37(3): 237–246. https://doi.org/10.1017/S0024282905014787

Vondrák J, Khodosovtsev A, Pavel Ř (2008) Caloplaca concreticola (Teloschistaceae), a new species from anthropogenic substrata in Eastern Europe. The Lichenologist 40(2): 97–104. https://doi.org/10.1017/S002428290800755X

Watson W (1918) The bryophytes and lichens of calcareous soil. Journal of Ecology 6(3): 189–198. https://doi.org/10.2307/2255303

Wetmore CM (2003) The Caloplaca squamosa group in North and Central America. The Bryologist 106(1): 147–156. https://doi.org/10.1639/0007-2745(2003)106[0147:TCSGIN]2.0.CO;2

White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18(1): 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Zoller S, Scheidegger C, Sperisen C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. The Lichenologist 31(5): 511–516. https://doi.org/10.1006/lich.1999.0220