Photochemical Synthesis of Transition Metal-Capped Uranium(VI) Nitride Complexes

Laurent Maron (laurent.maron@irsamc.ups-tlse.fr)
University of Toulouse https://orcid.org/0000-0003-2653-8557

Xiaoqing Xin
Nanjing University

Iskander Douair
University of Toulouse

Yue Zhao
https://orcid.org/0000-0001-6094-4087

Shuao Wang
State Key Laboratory of Radiation Medicine and Protection, Soochow University
https://orcid.org/0000-0002-1526-1102

Congqing Zhu
Nanjing University https://orcid.org/0000-0003-4722-0484

Article

Keywords:

Posted Date: January 28th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1271255/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Photochemical Synthesis of Transition Metal-Capped Uranium(VI) Nitride Complexes

Xiaoqing Xin,1,3 Iskander Douair2, Yue Zhao,1 Shuao Wang,4 Laurent Maron,2* and Congqing Zhu1*

Affiliations:

1 State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

2 LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France

3 School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023 China

4 State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China

* Correspondence and requests for materials should be addressed to L.M. (E-mail: laurent.maron@irsamc.ups-tlse.fr) or to C.Z. (E-mail: zcq@nju.edu.cn).
Abstract: Uranium nitrides play important roles in dinitrogen activation and functionalization and in nuclear power chemistry, but the synthesis and isolation of mono-uranium molecular nitrides remains a challenge due to their high reactivity. Here, we report the first example of transition metal (TM)-capped mono-U(VI) nitride complexes, which was generated by the photolysis of azide-bridged U(IV)-TM (TM = Rh, Ir) precursors. The U(V) nitride intermediates with bridged azide ligands were isolated successfully by careful control of the irradiation time, suggesting that the photolysis of azide-bridged U(IV)-TM precursors is a stepwise process. The presence of two U(VI) nitrides capped by three TMs was clearly demonstrated by an X-ray crystallographic study. These TM-capped mono-U(V) nitride intermediates and mono-U(VI) nitride products exhibit excellent stability both in the solid-state and in THF solution under ambient light. Density functional theory calculations show that the photolysis was necessary to break the N-N bond of the azide ligands, as suggested by the antibonding N-N interaction in their lowest unoccupied molecular orbitals.

Metal nitride complexes were proposed as a key intermediate in N₂ activation and functionalization.¹,² Uranium nitride complexes have attracted significant attention due to their potential applications in N₂ fixation,³-⁵ small molecule activation⁶-¹¹ and utility as next-generation nuclear fuels.¹²-¹⁵ Since uranium nitride materials have been considered to be effective catalysts for the Haber–Bosch synthesis of NH₃ from N₂,¹⁶ a series of molecular uranium nitride complexes have been synthesized by N₂
cleavage or azide reduction, which generally leads to bi- and polymetallic uranium nitride complexes containing U(IV) centers and a few examples with U(III), U(V) or U(VI) centers. However, the synthesis of mono-uranium nitrides lags far behind, largely due to the limited synthetic methods and high chemical reactivity of mono-uranium nitrides.

Although several examples of mono-U(V) nitrides have been reported, mono-U(VI) nitrides are extremely rare. For instance, the Cummins group reported a borane-capped U(V) nitridoborate complex $\text{[N(n-Bu)$_4$][(C$_6F_5$)$_3$BNU(N[t-Bu]Ar)$_3$]}$ (Ar = 3,5-Me$_2$C$_6$H$_3$), which could be converted to a U(VI) nitride complex $\text{[(C$_6F_5$)$_3$BNU(N[t-Bu]Ar)$_3$]}$ by chemical oxidation. Liddle and co-workers reported that a U(III) complex [U(TrenTIPS)] (TrenTIPS = $\text{[N(CH$_2CH_2NSi_{Pr}$)$_3$]}$) could react with NaN$_3$, leading to a terminal U(V) nitride complex $\text{[UN(TrenTIPS)][Na(12-crown-4)$_2$]}$, which could be further oxidized to the U(VI) nitride complex [U(N)(TrenTIPS)] by iodine. However, this U(VI) nitride species is unstable and decomposes to a U(IV) amide through C–H activation under photolytic conditions, which is consistent with the direct photolysis of U(IV) azide species.

Photolysis of metal azides is a typical route to metal nitrides in transition metal chemistry. However, despite continuous efforts, this method is less successful in the synthesis of actinide nitride complexes. For example, Kiplinger and co-workers attempted to isolate a U(VI) nitride complex (I in Fig. 1) by the photolysis of $\text{(C$_5Me_5$)$_2$U[N(SiMe$_3$)$_2$](N$_3$)}$, but only the intramolecular C–H activated product $\text{(C$_5Me_5$)(C$_5Me_6CH_2$NH)U[N(SiMe$_3$)$_2$]}$ was isolated. Fortier and co-workers proposed
that a U(VI) nitride (II in Fig. 1) was formed as a transient intermediate by the photolysis of the corresponding U(IV) azide complex, but the U(VI) nitride also could not be isolated.49 Recently, Mazzanti and co-workers reported a stable U(VI) nitride \[\text{NBu}_4]\[\text{U(OSi(OtBu)}_3\text{N}\] (III in Fig. 1) by the photolysis of an anionic U(IV) azide analogue.40 This remains the only example of the successful isolation of a mono-U(VI) nitride complex \textit{via} a photolysis route. These results demonstrate that U(VI) nitrides are accessible under photochemical conditions but require an appropriate ligand framework and specific reaction conditions to capture this transient mono-U(VI) nitride intermediate.

\begin{center}
\begin{tikzpicture}
\node (I) at (0,0) {\includegraphics[width=2cm]{I.png}};
\node (II) at (4,0) {\includegraphics[width=2cm]{II.png}};
\node (III) at (0,-3) {\includegraphics[width=4cm]{III.png}};
\node (IV) at (4,-3) {\includegraphics[width=4cm]{IV.png}};
\end{tikzpicture}
\end{center}

\textbf{Figure 1.} Mono-U(VI) nitrides generated by the photolysis of uranium azides.

Our group successfully isolated a multimetallic U(IV) nitride supported by a multidentate N-P ligand \((\text{N(CH}_3)\text{(CH}_2\text{CH}_2\text{NHPPr}_2)_2}\) \textit{via} U-Rh synergistic \textit{N}_2 cleavage.29 Thus we attempt to access mono-U(VI) nitride with the aid of transition metals by this platform. Herein, we report the synthesis of the first example of transition-metal-
capped mono-U(VI) nitride (IV in Fig. 1) via photolysis of U(IV)-azide precursors. The mono-U(V) nitride intermediates were also successfully isolated by careful control of the irradiation time.

Results

Synthesis and structural characterization. By treatment of complex 1 with 1 equiv. of [RhCl(COD)]_2 in tetrahydrofuran (THF) at room temperature (RT) overnight, the complex [{U{N(CH}_3)CH}_2CH}_2NP}_iPr}_2Cl}_2[(μ-Cl)Rh(COD)]_2 (2a) was formed and was isolated as green crystals in 81% yield after recrystallization from toluene at -30 °C (Fig. 2). Its iridium analogue, [{U{N(CH}_3)CH}_2CH}_2NP}_iPr}_2Cl}_2[(μ-Cl)Ir(COD)]_2 (2b), could also be prepared by the reaction of 1 with 1 equiv. of [IrCl(COD)]_2 following the same procedure, which was isolated as orange crystals in 74% yield. The formation of complexes 2a and 2b is analogous to the FLP-type reactivity observed previously in rare-earth organometallic chemistry. Both 2a and 2b were fully characterized by nuclear magnetic resonance (NMR) spectroscopy, elemental analysis, and single-crystal X-ray diffraction.

Treatment of 2a with 4 equiv. of NaN}_3 in THF at RT overnight led to the formation of a uranium azide complex [{U{N(CH}_3)CH}_2CH}_2NP}_iPr}_2N}_3}_2[(μ-N}_3)Rh(COD)]_2 (3a) as brown crystals in 70% yield by generating crystals from the concentrated reaction mixture (Fig. 2). The complex 2b could also react with 4 equiv. of NaN}_3 affording the corresponding complex [{U{N(CH}_3)CH}_2CH}_2NP}_iPr}_2N}_3}_2[(μ-N}_3)Ir(COD)]_2 (3b) as red crystals in 65% yield. The ^1H NMR spectra of complexes 3a and 3b exhibit a broad range of peaks from +67.46 to -50.01 ppm and +70.12 to -52.63 ppm, respectively,
consistent with the paramagnetic U(IV) species (Figs. S3 and S4).

Figure 2. Synthesis and reactivity of complexes 2, 3, 4 and 5. Complexes 3a and 3b with four azides were prepared by the reaction of complexes 2 with NaN₃. By careful control of the irradiation time of complexes 3, the mono-U(VI) nitrides 5 were formed via the mono-U(VI) nitride intermediates 4. The nitride groups in complexes 5 could react with acid or H₂/acid to form NH₄⁺ in good yield.

The asymmetric structures of 2a and 2b feature one U atom and two Rh or Ir atoms, which are bridged by two Cl ligands (Fig. 3). The U–N_amido and U–N_amine bond lengths are comparable to those observed in precursor 1. The bridged U–Cl distances are approximately 0.2 Å longer than the terminal U–Cl bonds, which reveals a weak interaction between the U center and the bridged Cl atoms.
The molecular structures of complexes 3a and 3b were also confirmed by X-ray crystallography (Fig. 3). The salient features of complexes 3a and 3b are the two terminal uranium azide ligands and two sideways-bound azide units bridging Rh or Ir atoms. The distances of two terminal U–N_{azide} bonds in complexes 3a (2.307(5) and 2.304(5) Å) and 3b (2.295(8) and 2.311(8) Å) are significantly shorter than the bridged U–N_{azide} bond lengths (2.515(5) and 2.453(5) Å for 3a, 2.533(8) and 2.475(7) Å for 3b), but these all fall in the range of previously reported U(IV) azide species (2.20(4)-2.564(12) Å). The terminal azides of N10–N11–N12 in 3a (1.140(7) Å for N10–N11 and 1.147(8) Å for N11–N12) and 3b (1.148(11) Å for N10–N11, 1.157(12) Å for N11–N12) present delocalized forms and are consistent with a typical U–N=N=N pattern, whereas the terminal azides of N13–N14–N15 in 3a (1.179(7) Å for N13–N14, 1.138(8) Å for N14–N15) and 3b (1.168(11) Å for N13–N14, 1.126(12) Å for N14–N15) show more localized structures.

The distances of Rh–N_{azide} (2.091(5) and 2.103(5) Å) in 3a are consistent with the values found in previously reported rhodium complexes with side-on bridged azide ligands (2.076(10)-2.28(9) Å). The corresponding N–N bond distances of bridged azides in 3a (1.197(7) and 1.159(7) Å for N4–N5 and N5–N6, 1.228(7) and 1.144(7) Å for N7–N8 and N8–N9) are very close to those observed in 3b (1.244(11) and 1.137(11) Å for N4–N5 and N5–N6, 1.229(10) and 1.117(10) Å for N7–N8 and N8–N9). Therefore, the bridged azide groups are liable to shift toward a more localized U=N=N≡N bonding interaction due to their coordination with the uranium center, which suggests that the elimination of N$_2$ from the bridged azides is possible.
Figure 3. Molecular structures of 2 and 3. a–d, Solid-state structures of 2a (a), 2b (b), 3a (c) and 3b (d) by X-ray crystallography with 50% probability ellipsoids. Solvent molecules, hydrogen atoms and the isopropyl moieties in P1Pr\textsubscript{2} are omitted for clarity.

The reduction, photolysis, and thermolysis of uranium azide complexes are known to be effective methods for the synthesis of uranium nitrides with the release of N\textsubscript{2}.8,20,35,38,40,48 Thus, we attempted to synthesize uranium nitride complexes by these routes. Only unidentified products were formed by the reduction of 3 with KC\textsubscript{8}
or thermolysis of 3 at 70 °C for 2 days as suggested by the in-situ 1H NMR spectra. Fortunately, the photolysis of complex 3a in THF under UV light irradiation for 2 days resulted in the formation of $\{[\text{U}(\text{N}(\text{CH}_3)\text{(CH}_2\text{CH}_2\text{NP}^\text{Pr}_2)\text{N}_3)(\mu-N)_3]\text{Rh}(\text{COD})]_2[(\mu-N)\text{Rh}(\text{COD})]\}$ (4a), which was isolated as brown crystals in 54% yield from toluene at RT (Fig. 2). In comparison with 3a, the 1H NMR spectrum of 4a exhibits a narrow spectral range of +23.37 ppm to -12.46 ppm, which was consistent with a previously reported U(V) complex $\{[\text{U}(\text{Tren}_{\text{DMBS}})\text{N}_3]\}_2(\mu-N)$ (from +24.86 to -13.31 ppm) and reflects the 5f1 nature of these species (Fig. S5).

After further photolysis of complex 4a under UV light for 2 days, a diamagnetic U(VI) species $\{[\text{U}(\text{N}(\text{CH}_3)\text{(CH}_2\text{CH}_2\text{NP}^\text{Pr}_2)\text{N}_3)(\mu-N)_3]\text{Rh}(\text{COD})]_2[\text{Rh}(\text{COD})]\}$ (5a) was isolated in 65% yield after recrystallization (Fig. 2). The 1H NMR study shows that exposing complex 3b to UV light for 1 day resulted in the disappearance of 3b, and formation of complex $\{[\text{U}(\text{N}(\text{CH}_3)\text{(CH}_2\text{CH}_2\text{NP}^\text{Pr}_2)\text{N}_3)(\mu-N)_3]\text{Rh}(\text{COD})]_2[\text{Rh}(\text{COD})]\}$ (4b) as brown crystals in 52% yield after recrystallization (Fig. 2). Similar to the Rh analogues, complex 4b could be further photolysis under UV light for 1 day, leading to the formation of complex $\{[\text{U}(\text{N}(\text{CH}_3)\text{(CH}_2\text{CH}_2\text{NP}^\text{Pr}_2)\text{N}_3)(\mu-N)_3]\text{Ir}(\text{COD})]_2[\text{Ir}(\text{COD})]\}$ (5b) as brown crystals in 58% yield. Both 5a and 5b could be obtained by the photolysis of 3a and 3b under UV light for 4 and 2 days, respectively. These results suggest that the photolysis of 3 is controllable and that complexes 4a and 4b can be viewed as the intermediates in these processes.

The solid-state structures of 4 and 5 were determined by single-crystal X-ray diffraction. The U centers in 4a and 4b are coordinated with a tridentate
$[\text{N(CH}_3\text{)(CH}_2\text{CH}_2\text{NP}^*\text{Pr}_2)_2]^2-$ ligand, three azide ligands and a nitride ligand and in a distorted pentagonal bipyramidal geometry (Fig. 4). The nitride atom (N4) is bonded to one U atom and two Rh atoms. The U1-N4 distances are 1.963(5) Å in 4a and 2.011(4) Å in 4b, which are shorter than U–N multiple bond lengths (2.0470(3) and 2.0511(3) Å) in a U(V) nitride complex with a U(V)=N=U(V) unit. However, the U–N bond length is slightly longer than the U≡N bond length (1.916(4) Å) in the borane-capped uranium(V) species. The Rh/Ir–N4 bond lengths in 4a and 4b are close to the Rh/Ir–Nazide bond lengths, and are comparable to those observed in 3a and 3b, respectively. The bridged U–Nazide bond lengths in complexes 4 are comparable to those found in complexes 3. The U(V) azide units in complexes 4 could be further photolyzed to generate U(VI) nitride complexes 5.

The centrosymmetric structures of 5 feature two bridged nitride atoms, which are capped by three Rh or Ir atoms (Fig. 4). The bond lengths of U1–N3 in 5a and 5b are 1.975(5) Å and 2.005(6) Å, which are comparable with the U-Nitride bond lengths found in complexes 4a and 4b, respectively. These results indicate that 5a and 5b have two U-N multiple bonds. Therefore, complexes 5 represent the first example of a transition metal capped U(VI) nitride species. It is also the rare U(VI) nitride complex generated by the photolysis of uranium azide species. The distances of Rh-N3 (2.082(4) Å and 2.067(4) Å) and Ir–N3 (2.059(6) Å and 2.047(6) Å) are comparable to the Rh/Ir-N4 bond distances observed in 4a and 4b, respectively. The bond lengths of N4-N5 and N5-N6 in 5a and 5b are comparable, and are consistent with the delocalized N-N distances in complexes 3 with a U-N=N=N form.
Figure 4. Molecular structures of 4 and 5. a–d, Solid-state structures of 4a (a), 4b (b), 5a (c) and 5b (d) by X-ray crystallography with 50% probability ellipsoids. Solvent molecules, hydrogen atoms and the isopropyl moieties in P'Pr₂ are omitted for clarity.

Stability and reactivity of uranium-nitride complexes. It is known that high oxidation state uranium nitride complexes are extremely unstable and consequently, the stabilities of the newly synthesized U(V) and U(VI) nitrides 4 and 5 were investigated.
Both 4 and 5 exhibit remarkable stability in the solid-state or in THF solution for at least 2 weeks under a N₂ atmosphere, which is probably because the active nitrides are capped/stabilized by transition metals. Irradiation of U(V)-nitride-azide complexes 4a and 4b for 2 and 1 days resulted in the formation of rare U(VI)-nitride complexes 5a and 5b, respectively (Fig. 2). However, further extending the irradiation time leads to the decomposition of 5a and 5b to unidentified products.

The protonation of metal nitrides to produce NH₃ is a critical step in N₂ reduction and conversion. Thus, we examined the reactivity of 4 and 5 toward acid and H₂ (Fig. 2). We found that substantial NH₄Cl (in 68%-82% yields) was formed by the reactions of uranium nitride complexes 4 and 5 with excess PyHCl in THF solution (Figs. S9-S12). The addition of 1 atm H₂ to the crystalline solids or to the degassed THF solution of 4 and 5, led to a gentle color change from brown to red. Unfortunately, attempts to isolate the single crystals of the resulting products were unsuccessful. However, addition of excess PyHCl to the reaction mixtures of 4 and 5 with H₂ in THF solution led to the formation of NH₄Cl in 41%-67% yields, respectively (Figs. S13-S16). In comparison, no NH₄⁺ was observed from the reactions of uranium azide complexes 3 with excess PyHCl (Fig. S17). These results suggest that the nitride units in complexes 4 and 5 are the sources of the NH₄⁺.

Magnetic studies and electronic absorption spectra. The variable-temperature magnetic data of complexes 3 and 4 in the solid-state were measured by a superconducting quantum interference device (SQUID) magnetometry (Fig. 5). The magnetic moments of 3a and 3b at 300 K are 3.90 μₘ and 3.54 μₘ, respectively, which...
are close to the theoretical value (3.58 μ_B) for the $5f^2$ uranium ion in the 3H_4 ground state. With decreasing temperatures, the magnetic moments of 3a and 3b decrease persistently to 0.43 μ_B and 0.47 μ_B at 1.8 K, respectively, and with a trend to zero, which is characteristic of U(IV) complexes. The effective magnetic moments of 4a and 4b at 300 K are 2.76 μ_B and 2.30 μ_B, respectively, which are very close to the theoretical value of 2.54 μ_B for one U(V) ion. The magnetic moments of 4a and 4b decrease smoothly to 0.91 μ_B and 1.03 μ_B at 1.8 K, respectively, with decreasing temperature. The temperature dependence and the magnitude of μ_{eff} values of complexes 4a and 4b are consistent with reported U(V) complexes. These results suggest that the oxidation states of uranium centers in complexes 3 and 4 were U(IV) and U(V), respectively.

Figure 5. Variable-temperature effective magnetic moment data of 3 and 4.

The ultraviolet/visible/near-infrared (UV/Vis/NIR) electronic absorption spectra of complexes 3-5 were recorded in THF at RT (Figs. S22-S27). These complexes exhibit similar absorption profiles with gradually increasing molar absorption at high energy in the UV–Visible region but show different fingerprint features in the NIR region. Here, both 3a and 3b display broad bands approximately from 975 nm to 1200 nm with a
series of weak absorptions ($\varepsilon < 100 \text{ M}^{-1} \text{ cm}^{-1}$), which is in agreement with those observed for previously reported U(IV) complexes.60,61 Generally, species with $5f^3$ configured U(V) centers exhibit less complicated absorption spectra than species with $5f^2$ configured U(IV) centers in the NIR region. Consistently, the spectra for 4a and 4b show a weak and sharp $5f$–$5f$ transition at $\lambda = 1631$ and 1634 nm, which are characteristic of the U^{IV}-centered $5f^1$ electronic configuration.62,63 As expected for U(VI) species with a $5f^0$ electronic configuration, the spectra of 5a and 5b show no characteristic absorption peak in the NIR region (900–1700 nm), consistent with previously reported U(VI) complexes $[\text{U}(\text{N})(\text{TREN})\text{Cl}_2]$38 and $[\text{NBu}_4][\text{U}((\text{O}^\text{Bu})_3\text{Si})_4(\text{N})]$.40

Theoretical studies. DFT calculations (B3PW91) were used to describe the bonding properties of these complexes, in particular complexes 4 and 5. To probe the validity of the computational approach, the geometries of complexes 3a/3b are compared with the experimental geometries. The two terminal U–N$_\text{azide}$ bonds are well reproduced (2.27/2.30 Å in 3a and 2.27/2.30 Å in 3b). The same is true for the two bridged U–N$_\text{azide}$ bonds (2.49/2.54 Å in 3a and 2.51/2.55 Å in 3b). In the same way, the Rh-N$_\text{azide}$ bonds are correctly described (2.11 Å) indicating that the computational method is appropriate to describe such complexes. The LUMOs of complexes 3a/3b (see SI) clearly display some antibonding π interactions in the azide ligands so that populating such orbital would result in N-N bond breaking. According to the orbital energies, this would imply an energy of 78.0 kcal mol$^{-1}$ which is consistent with the need for photolysis to form complexes 4a/4b. Moreover, it is interesting to note that
the formation of the two latter complexes from 3a/3b is thermodynamically favorable (by 17.6 kcal mol\(^{-1}\) for 4a and 18.2 kcal mol\(^{-1}\) for 4b). The bonding situation was thus analyzed for complexes 4a and 4b and the bond lengths are well reproduced.

Analysis of the unpaired spin densities (1.23 in 4a and 1.24 in 4b), clearly indicates the presence of a U(V) metal center in these two complexes. At the NBO level, the U1-N4 bond is found to be a double bond with polarized bonds toward N (68\% for \(\sigma\) and 72\% for \(\pi\) in 4a and 72\%/75\% in 4b, Table S10). These bonds involve \(fd\) hybrid orbitals on uranium (78\% 5f-20\% 6d for \(\sigma\) and 59\% 5f-39\% 6d for \(\pi\) in 4a but 59\% 5f-33\% 6d and 57\% 5f-33\% 6d in 4b). Although polarized, these bonds appear to be quite covalent as demonstrated by the U1-N4 Wiberg Bond Index (WBI) of 1.96 in 4a (1.83 in 4b). The associated Rh1-N4 bond was only observed at the second order donor-acceptor and the associated WBI was 0.45. On the other hand, the Ir1-N4 bond is 0.49 in 4b. Therefore, as found by scrutinizing the molecular orbitals (MO, Fig. 6), the U1-N4-Rh(Ir) bonds in 4a and 4b are 3c-2e bonds. Similar to complexes 3a/3b, the LUMOs of complexes 4a and 4b (see SI) also display some antibonding interactions in the azide ligands so that populating this orbital would allow the N-N bond breaking. According to the orbital energy, this process would imply an energy of 80.0 kcal mol\(^{-1}\) in line with photolysis. For the transformation of 4a/4b onto complexes 5a/5b, the reaction is thermodynamically favored by 43.5 kcal mol\(^{-1}\) (5a) and 49.6 kcal mol\(^{-1}\) (5b).

Finally, the bonding in complexes 5a/5b was analyzed. The optimized geometries compare well with the experimental geometries. In both complexes, the uranium centers are at the oxidation state +VI and have no residual unpaired spin densities.
The two double U-N bonds are similar to those found in complexes 4 with a WBI of 1.91 for 5a (1.80 for 5b), and the MO clearly displays 3c-2e U-N-Rh(Ir) bonds (Fig. 6). At the NBO level, the U1-N3 and U1-N3’ bonds are found to be U-N double bonds polarized toward N and these bonds also involve fd hybrid orbitals on uranium (Table S10).

![Complexes 4a/4b and 5a/5b](image)

Figure 6. U-N-Rh(Ir) bonding molecular orbitals of complexes 4a/4b and 5a/5b.

Conclusion

In summary, we have synthesized the first example of transition metal capped-U(VI) nitride complexes 5a and 5b. These are the second examples of U(VI) nitride
species generated by photolysis of U(IV) azide precursors, 3a and 3b. The mono-U(V) nitride intermediates 4a and 4b were successfully isolated by controlling the duration of the irradiation. They were sufficiently stable to be fully characterized and could be further photolyzed to mono-U(VI) nitrides 5 under UV irradiation conditions. Therefore, the photolysis of the azide units in complexes 3a and 3b was controllable and is a stepwise process. The excellent stabilities of both the U(V) nitride intermediates 4 and the U(VI) nitride products 5 are probably due to the active nitrides being capped/stabilized by transition metals. DFT study allowed us to analyze the bonding of these complexes, indicating the presence of U-N multiple bonds and U-N-Rh(Ir) 3c-2e interactions. Moreover, the DFT calculations showed that the photolysis was necessary to break the N-N bond of the azide ligands by populating the LUMOs of complexes 3 and 4 and this displays an antibonding N-N interaction. This study implies that a multiple N-P ligand is an effective platform to capture unstable U(VI) nitrides with the aid of transition metals.

Methods

General considerations. Experiments were performed under an Ar atmosphere using standard Schlenk-line or glove-box techniques. Solvents were dried and degassed with a solvent purification system before use. See the Supplementary Information for detailed experimental procedures, crystallographic, and computational details.

Data Availability. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC),
under deposition numbers CCDC-2104709 (2a), 2104710 (2b), 2104711 (3a), 2104712 (3b), 2104713 (4a), 2104714 (4b), 2104715 (5a) and 2104716 (5b). These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 91961116), the National Key R&D Program of China (2021YFA1502500), the Fundamental Research Funds for the Central Universities (14380262), Programs for high-level entrepreneurial and innovative talents introduction of Jiangsu Province. LM is member of the Institute Universitaire de France. Humboldt Foundation and Chinese Academy of Science are acknowledged for support. CalMip is also gratefully acknowledged for a generous grant of computing time.

Author contributions

C.Z. conceived this project. X.X. performed the experiments and solved all the X-ray structures with support from Y.Z.. C.Z. and X.X. analyzed the experimental data. I.D. and L.M. conducted the theoretical calculations. L.M. analyzed the theoretical results. C.Z. and L.M. drafted the paper with support from others. All authors discussed the results and contributed to the preparation of the final manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/
Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

References:

1. Kim, S., Loose, F. & Chirik, P. J. Beyond ammonia: nitrogen–element bond forming reactions with coordinated dinitrogen. Chem. Rev. 120, 5637–5681 (2020).

2. Chalkley, M. J., Drover, M. W. & Peters, J. C. Catalytic N₂-to-NH₃ (or -N₂H₄) conversion by well-defined molecular coordination complexes. Chem. Rev. 120, 5582–5636 (2020).

3. Fox, A. R., Bart, S. C., Meyer, K. & Cummins, C. C. Towards uranium catalysts. Nature 455, 341–349 (2008).

4. Falcone, M., Chatelain, L., Scopelliti, R., Zivkovic, I. & Mazzanti, M. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex. Nature 547, 332–335 (2017).

5. Falcone, M. et al. The role of bridging ligands in dinitrogen reduction and functionalization by uranium multimetallic complexes. Nat. Chem. 11, 154–160 (2019).

6. Falcone, M., Kefalidis, C. E., Scopelliti, R., Maron, L. & Mazzanti, M. Facile CO cleavage by a multimetallic CsU₂ nitride complex. Angew. Chem. Int. Ed. 55, 12290–12294 (2016).

7. Falcone, M., Chatelain, L. & Mazzanti, M. Nucleophilic reactivity of a nitride-bridged diuranium(IV) complex: CO₂ and CS₂ functionalization. Angew. Chem. Int. Ed. 55, 4074–4078 (2016).

8. Barluzzi, L., Chatelain, L., Fadaei-Tirani, F., Zivkovic, I. & Mazzanti, M. Facile N-
functionalization and strong magnetic communication in a diuranium(v) bis-nitride complex. *Chem. Sci.* **10**, 3543–3555 (2019).

9. Falcone, M., Poon, L. N., Fadaei Tirani, F. & Mazzanti, M. Reversible dihydrogen activation and hydride transfer by a uranium nitride complex. *Angew. Chem. Int. Ed.* **57**, 3697–3700 (2018).

10. Barluzzi, L., Falcone, M. & Mazzanti, M. Small molecule activation by multimetallic uranium complexes supported by siloxide ligands. *Chem. Commun.* **55**, 13031–13047 (2019).

11. Palumbo, C. T., Scopelliti, R., Zivkovic, I. & Mazzanti, M. C-H Bond activation by an isolated dinuclear U(III)/U(IV) Nitride. *J. Am. Chem. Soc.* **142**, 3149–3157 (2020).

12. King, D. M. & Liddle, S. T. Progress in molecular uranium-nitride chemistry. *Coord. Chem. Rev.* **266-267**, 2–15 (2014).

13. Matthews, R. B., Chidester, K. M., Hoth, C. W., Mason, R. E. & Petty, R. L. Fabrication and testing of uranium nitride fuel for space power reactors. *J. Nucl. Mater.* **151**, 345 (1988).

14. Rao, G. A. R., Mukerjee, S. K., Vaidya, V. N., Venugopal, V. & Sood, D. D. Oxidation and hydrolysis kinetic studies on UN. *J. Nucl. Mater.* **185**, 231–241 (1991).

15. Silva, G. W. C. et al. Reaction sequence and kinetics of uranium nitride decomposition. *Inorg. Chem.* **48**, 10635–10642 (2009).

16. Haber, F. Verfahren Zur Herstellung von Ammoniak Durch Katalytische Vereinigung von Stickstoff Und Wasserstoff, Zweckmaßig Unter Hohem Druch. DE 229126, (1909).

17. Korobkov, I., Gambarotta, S. & Yap, G. P. A highly reactive uranium complex supported by the calix[4] tetrapyrrrole tetraanion afforded dinitrogen cleavage,
solvent deoxygenation, and polysilanol depolymerization. *Angew. Chem. Int. Ed.* **41**, 3433–3436 (2002).

18. Camp, C., Pécaut, J. & Mazzanti, M. Tuning uranium-nitrogen multiple bond formation with ancillary siloxide ligands. *J. Am. Chem. Soc.* **135**, 12101–12111 (2013).

19. Chatelain, L., Scopelliti, R. & Mazzanti, M. Synthesis and structure of nitride-bridged uranium(III) complexes. *J. Am. Chem. Soc.* **138**, 1784–1787 (2016).

20. Du, J. et al. Thorium- and uranium-azide reductions: a transient dithorium-nitride versus isolable diuranium-nitrides. *Chem. Sci.* **10**, 3738–3745 (2019).

21. Fox, A. R., Arnold, P. L. & Cummins, C. C. Uranium–nitrogen multiple bonding: isostructural anionic, neutral and cationic uranium nitride complexes featuring a linear U=N=U core. *J. Am. Chem. Soc.* **132**, 3250–3251 (2010).

22. Evans, W. J., Kozimor, S. A. & Ziller, J. W. Molecular octa-uranium rings with alternating nitride and azide bridges. *Science* **309**, 1835–1838 (2005).

23. Evans, W. J., Miller, K. A., Ziller, J. W. & Greaves, J. Analysis of uranium azide and nitride complexes by atmospheric pressure chemical ionization mass spectrometry. *Inorg. Chem.* **46**, 8008–8018 (2007).

24. Nocton, G., Pécaut, J. & Mazzanti, M. A nitrido-centered uranium azido cluster obtained from a uranium azide. *Angew. Chem., Int. Ed.* **47**, 3040–3042 (2008).

25. Fortier, S., Wu, G. & Hayton, T. W. Synthesis of a nitrido-substituted analogue of the uranyl ion, [N=U=O]⁺. *J. Am. Chem. Soc.* **132**, 6888–6889 (2010).

26. Straub, M. D. et al. Amidinate supporting ligands influence molecularity in formation of uranium nitrides. *Inorg. Chem.* **60**, 6672–6679 (2021).

27. Palumbo, C. T. et al. Tuning the structure, reactivity and magnetic communication of nitride-bridged uranium, complexes with the ancillary ligands. *Chem. Sci.* **10**, 21
28. Barluzzi, L. et al. Synthesis, structure, and reactivity of uranium(VI) nitrides. *Chem. Sci.* **12**, 8096–8104 (2021).

29. Xin, X. et al. Dinitrogen cleavage by a multimetallic cluster featuring uranium–rhodium bond. *J. Am. Chem. Soc.* **142**, 15004–15011 (2020).

30. Mullane, K. C. et al. C–H bond addition across a transient uranium–nitrido moiety and formation of a parent uranium imido complex. *J. Am. Chem. Soc.* **140**, 11335–11340 (2018).

31. Cleaves, P. A. et al. Two-electron reductive carbonylation of terminal uranium(V) and uranium(VI) nitrides to cyanate by carbon monoxide. *Angew. Chem. Int. Ed.* **53**, 10412–10415 (2014).

32. Chatelain, L. et al. Terminal uranium(V)-nitride hydrogenations involving direct addition or Frustrated Lewis Pair mechanisms. *Nat. Commun.* **11**, 337 (2020).

33. Tsoureas, N., Kilpatrick, A. F. R., Inman, C. J. & Cloke, F. G. N. Steric control of redox events in organo-uranium chemistry: synthesis and characterisation of U(V) oxo and nitrido complexes. *Chem. Sci.* **7**, 4624–4632 (2016).

34. King, D. M. et al. Synthesis and structure of a terminal uranium nitride complex. *Science* **337**, 717–720 (2012).

35. King, D. M. et al. Molecular and electronic structure of terminal and alkali metal-capped uranium(V) nitride complexes. *Nat. Commun.* **7**, 13773 (2016).

36. Boreen, M. A. et al. Lewis acid capping of a uranium(V) nitride via a uranium(III) azide molecular square. *Chem. Commun.* **56**, 4535–4538 (2020).

37. Fox, A. R. & Cummins, C. C. Uranium-nitrogen multiple bonding: the case of a four-coordinate uranium(VI) nitridoborate complex. *J. Am. Chem. Soc.* **131**,
38. King, D. M. et al. Isolation and characterization of a uranium(VI)–nitride triple bond. *Nat. Chem.* **5**, 482–488 (2013).

39. Rudel, S. S., Deubner, H. L., Müller, M., Karttunen, A. J. & Kraus, F. Complexes featuring a linear [N≡U≡N] core isoelectronic to the uranyl cation. *Nat. Chem.* **12**, 962–967 (2020).

40. Barluzzi, L., Scopelliti, R. & Mazzanti, M. Photochemical synthesis of a stable terminal uranium(VI) nitride. *J. Am. Chem. Soc.* **142**, 19047–19051 (2020).

41. Sun, J. et al. A platinum(II) metallonitrene with a triplet ground state. *Nat. Chem.* **12**, 1054–1059 (2020).

42. Scheibel, M. G. et al. Closed-shell and open-shell square-planar iridium nitrido complexes. *Nat. Chem.* **4**, 552–558 (2012).

43. Atienza, C. C. H., Bowman, A. C., Lobkovsky, E. & Chirik, P. J. Photolysis and thermolysis of bis(imino)pyridine cobalt azides: C-H activation from putative cobalt nitrido complexes. *J. Am. Chem. Soc.* **132**, 16343–16345 (2010).

44. Vogel, C., Heinemann, F. W., Sutter, J., Anthon, C. & Meyer, K. An iron nitride complex. *Angew. Chem. Int. Ed.* **47**, 2681–2684 (2008).

45. Berry, J. F. et al. An octahedral coordination complex of iron(VI). *Science* **312**, 1937–1941 (2006).

46. Zolnhofer, E. M. et al. An intermediate cobalt(IV) nitrido complex and its N-migratory insertion product. *J. Am. Chem. Soc.* **136**, 15072–15078 (2014).

47. Scheibel, M. G. et al. Synthesis and reactivity of a transient, terminal nitrido complex of rhodium. *J. Am. Chem. Soc.* **135**, 17719–17722 (2013).

48. Thomson, R. K. et al. Uranium azide photolysis results in C–H bond activation and
provides evidence for a terminal uranium nitride. *Nat. Chem.* **2**, 723–729 (2010).

49. Yadav, M., Metta-Magaña, A. & Fortier, S. Intra- and intermolecular interception of a photochemically generated terminal uranium nitride. *Chem. Sci.* **11**, 2381–2387 (2020).

50. Shi, K. et al. Heterometallic clusters with multiple rare earth metal–transition metal bonding. *J. Am. Chem. Soc.* **143**, 5998–6005 (2021).

51. Sun, X., Su, W., Shi, K., Xie, Z. & Zhu, C. Triple Frustrated Lewis Pair-type reactivity on a single rare-earth metal center. *Chem.-Eur. J.* **26**, 5354–5359 (2020).

52. Xin, X. & Zhu, C. Isolation of heterometallic cerium(III) complexes with a multidentate nitrogen–phosphorus ligand. *Dalton Trans.* **49**, 603–607 (2020).

53. Nocton, G., Pécaut, J. & Mazzanti, M. A nitride-centered uranium azido cluster obtained from a uranium azide. *Angew. Chem. Int. Ed.* **47**, 3040–3042 (2008).

54. Berthet, J.-C., Lance, M., Nierlich, M., Vigner, J. & Ephritikhine, M. Tricyclopentadienyluranium azide complexes. *J. Organomet. Chem.* **420**, C9–C11 (1991).

55. Castro-Rodriguez, I., Olsen, K., Gantzel, P. & Meyer, K. Uranium tris-aryloxide derivatives supported by triazacyclononane: engendering a reactive uranium(III) center with a single pocket for reactivity. *J. Am. Chem. Soc.* **125**, 4565–4571 (2003).

56. Cano, F. H., Foces-Foces, C., Oro, L. A., Pinillos, M. T. & Tejel C. Mixed-bridged bimetallic d⁸ complexes. Crystal and molecular structure of (η³-C₃H₅)₃Pd(μ-pz)(μ-N₃)Rh(CO)₂, heterobinuclear complex with extended Rh⋯Rh interactions. *Inorg. Chim. Acta, 128*, 75–80 (1987).

57. Han, W. S. & Lee, S. W. Azido- or hydroxyl-capped half-cubanes containing Cp*Rh fragments: [Cp*Rh₃(μ-X)₃(μ₂-X)]²⁺ (X = OH⁻ or N₃⁻). *Dalton Trans.* 3360–3364 (2004).
58. Liddle, S. T. The renaissance of non-aqueous uranium chemistry. *Angew. Chem. Int. Ed.* **54**, 8604–8641 (2015).

59. Kindra, D. R. & Evans, W. J. Magnetic susceptibility of uranium complexes. *Chem. Rev.* **114**, 8865–8882 (2014).

60. Anderson, N. H. et al. Investigation of the electronic ground states for a reduced pyridine(diimine) uranium series: evidence for a ligand tetraanion stabilized by a uranium dimer. *J. Am. Chem. Soc.* **137**, 4690–4700 (2015).

61. Mills, D. P. et al. A delocalized arene-bridged diuranium single-molecule magnet. *Nat. Chem.* **3**, 454–460 (2011).

62. Anderson, N. H. et al. Harnessing redox activity for the formation of uranium tris(imido) compounds. *Nat. Chem.* **6**, 919–926 (2014).

63. Anderson, N. H. et al. Investigation of uranium tris(imido) complexes: synthesis, characterization, and reduction chemistry of [U(NDIPP)₃(thf)]₃. *Angew. Chem. Int. Ed.* **54**, 9386–9389 (2015).
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryInformation.pdf
- 3b.cif
- 5a.cif
- checkcif4b.pdf
- 2a.cif
- 2b.cif
- checkcif3a.pdf
- checkcif5a.pdf
- checkcif4a.pdf
- checkcif2a.pdf
- 5b.cif
- 4a.cif
- checkcif2b.pdf
- 3a.cif
- checkcif3b.pdf
- checkcif5b.pdf
- 4b.cif