Skeleton Ideals of Certain Graphs, Standard Monomials and Spherical Parking Functions

Chanchal Kumar Gargi Lather Sonica
IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab -140 306, India
MCM DAV College for Women Sector- 36 A, Chandigarh - 160 036, India
{chanchal,mp15003}@iisermohali.ac.in sonica.anand@gmail.com

Submitted: Sep 20, 2020; Accepted: Jan 29, 2021; Published: Mar 26, 2021
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let G be a graph on the vertex set $V = \{0, 1, \ldots, n\}$ with root 0. Postnikov and Shapiro were the first to consider a monomial ideal M_G, called the G-parking function ideal, in the polynomial ring $R = \mathbb{K}[x_1, \ldots, x_n]$ over a field \mathbb{K} and explained its connection to the chip-firing game on graphs. The standard monomials of the Artinian quotient $\frac{R}{M_G}$ correspond bijectively to G-parking functions. Dochtermann introduced and studied skeleton ideals of the graph G, which are subideals of the G-parking function ideal with an additional parameter k ($0 \leq k \leq n - 1$). A k-skeleton ideal $M_G^{(k)}$ of the graph G is generated by monomials corresponding to non-empty subsets of the set of non-root vertices $[n]$ of size at most $k + 1$. Dochtermann obtained many interesting homological and combinatorial properties of these skeleton ideals. In this paper, we study the k-skeleton ideals of graphs and for certain classes of graphs provide explicit formulas and combinatorial interpretation of standard monomials and the Betti numbers.

Mathematics Subject Classifications: 05E40, 13D02

1 Introduction

Let G be a graph on the vertex set $V = \{0, 1, \ldots, n\}$ with a root 0. The graph G is completely determined by a symmetric $(n + 1) \times (n + 1)$ matrix $A(G) = [a_{ij}]_{0 \leq i, j \leq n}$, called its adjacency matrix, where a_{ij} is the number of edges from i to j. Let $R = \mathbb{K}[x_1, \ldots, x_n]$ be the standard polynomial ring in n variables over a field \mathbb{K}. The G-parking function ideal M_G of G is a monomial ideal in R given by the generating set

$$M_G = \langle m_A : \emptyset \neq A \subseteq [n] = \{1, \ldots, n\} \rangle,$$

https://doi.org/10.37236/9874
where \(m_A = \prod_{i \in A} x_i^{d_A(i)} \) and \(d_A(i) = \sum_{j \in V \setminus A} a_{ij} \) is the number of edges from \(i \) to a vertex outside the set \(A \) in \(G \). The standard monomial basis \(\{ x^b = \prod_{i=1}^n x_i^{b_i} \} \) of the Artinian quotient \(\frac{R}{\mathcal{M}_G} \) is determined by the set

\[
P\mathbb{F}(G) = \{ b = (b_1, \ldots, b_n) \in \mathbb{N}^n : x^b \notin \mathcal{M}_G \}
\]

of \(G \)-parking functions. Further, \(\dim_k \left(\frac{R}{\mathcal{M}_G} \right) \) is the number of spanning trees of \(G \), given by the determinant \(\det(L_G) \) of the reduced Laplacian matrix \(L_G \) of \(G \). Let \(\text{SPT}(G) \) be the set of spanning trees of \(G \). The edges of a spanning tree of \(G \) are given orientation so that all paths in the spanning tree are directed away from the root. As \(|P\mathbb{F}(G)| = |\text{SPT}(G)| \), one would like to construct an explicit bijection \(\phi : P\mathbb{F}(G) \to \text{SPT}(G) \). Using the Depth-First-Search version of burning algorithm, an algorithmic bijection \(\phi : P\mathbb{F}(G) \to \text{SPT}(G) \) for simple graphs \(G \), preserving reverse sum \(rsum(\mathcal{P}) \) of \(G \)-parking function \(\mathcal{P} \) and the number \(\kappa(G, \phi(\mathcal{P})) \) of \(\kappa \)-inversions of the spanning tree \(\phi(\mathcal{P}) \), is constructed by Perkinson, Yang and Yu [13]. A similar bijection for multigraphs \(G \) is constructed by Gaydarov and Hopkins [5].

Postnikov and Shapiro [15] introduced the \(G \)-parking function ideal \(\mathcal{M}_G \) and derived many of its combinatorial and homological properties. In particular, they showed that the cellular free complex supported on the first barycentric subdivision \(\mathcal{B}(\Delta_{n-1}) \) of an \((n-1) \)-simplex \(\Delta_{n-1} \) is a free resolution of \(\mathcal{M}_G \). Further, the cellular resolution of \(\mathcal{M}_G \) is minimal, provided the graph \(G \) is saturated (i.e., \(a_{ij} > 0 \) for \(i \neq j \)). The minimal resolution of the parking function ideal \(\mathcal{M}_G \) for any graph \(G \) is described in [2, 10, 12].

In a series of papers, Dochtermann [3, 4] introduced and studied subideals of the \(G \)-parking function ideal \(\mathcal{M}_G \) described by \(k \)-dimensional ‘skeleta’. For an integer \(k \) \((0 \leq k \leq n-1)\), the \(k \)-skeleton ideal \(\mathcal{M}_G^{(k)} \) of the graph \(G \) is defined as the subideal

\[
\mathcal{M}_G^{(k)} = \langle m_A : \emptyset \neq A \subseteq [n]; |A| \leq k + 1 \rangle
\]

of the monomial ideal \(\mathcal{M}_G \). For \(k = 0 \), the ideal \(\mathcal{M}_G^{(0)} \) is generated by powers of variables \(x_1, \ldots, x_n \). Hence, its minimal free resolution and the number of standard monomials can be easily determined. For \(k = 1 \) and \(G = K_{n+1} \), the minimal resolution of the one-skeleton ideal \(\mathcal{M}_{K_{n+1}}^{(1)} \) is a cocellular resolution supported on the labelled polyhedral complex induced by any generic arrangement of two tropical hyperplanes in \(\mathbb{R}^n \) and the \(i^{th} \) Betti number

\[
\beta_i \left(\frac{R}{\mathcal{M}_{K_{n+1}}^{(1)}} \right) = \sum_{j=1}^{n} j \binom{j-1}{i-1} \quad \text{for} \quad 1 \leq i \leq n-1
\]

(see [3]). Also, the number of standard monomials of \(\frac{R}{\mathcal{M}_{K_{n+1}}^{(1)}} \) is given by

\[
\dim_k \left(\frac{R}{\mathcal{M}_{K_{n+1}}^{(1)}} \right) = (2n-1)(n-1)^{n-1} = \det(Q_{K_{n+1}}),
\]
where $Q_{K_{n+1}}$ is the reduced signless Laplacian matrix of K_{n+1}.

In this paper, we determine all the Betti numbers of the k-skeleton ideal $M_{K_{n+1}}^{(k)}$ of the complete graph K_{n+1}. The crucial observation is an identification of the ideal $M_{K_{n+1}}^{(k)}$ with an Alexander dual of some multipermutohedron ideal. We first describe a permutohedron and an associated permutohedron ideal. Let $u = (u_1, u_2, \ldots, u_n) \in \mathbb{N}^n$ such that $u_1 < u_2 < \cdots < u_n$ and let \mathcal{S}_n be the set of permutations of $[n]$. For a permutation σ of $[n]$, let $\sigma u = (u_{\sigma(1)}, \ldots, u_{\sigma(n)})$ and $x^\sigma = \prod_{i=1}^n x_i^{u_{\sigma(i)}}$. The convex hull of all permutations σu of u in \mathbb{R}^n is an $(n-1)$-dimensional polytope $P(u)$, called a permutohedron.

Also, the monomial ideal $I(u)$ is called a permutohedron ideal. If some coordinates of $u = (u_1, u_2, \ldots, u_n)$ are allowed to be equal, then the polytope $P(u)$ is called a multipermutohedron and the monomial ideal $I(u)$ is called a multipermutohedron ideal.

The multigraded Betti numbers of multipermutohedron ideals are described in [7]. Also, a combinatorial description of multigraded Betti numbers of Alexander duals of multipermutohedron ideals is given in [8]. Now from the identification of $M_{K_{n+1}}^{(k)}$ with an Alexander dual of some multipermutohedron ideal, we obtain a combinatorial expression for the $(i-1)^{th}$ Betti number $\beta_{i-1} \left(M_{K_{n+1}}^{(1)} \right)$ (Theorem 12). In particular, for $n \geq 3$, we show that $\beta_{i-1} \left(M_{K_{n+1}}^{(1)} \right) = \binom{n+1}{i+1}$ and $\beta_{i-1} \left(M_{K_{n+1}}^{(n-2)} \right)$ as in Corollary 13.

The main object of study in this paper are spherical G-parking functions. A finite sequence $P = (p_1, \ldots, p_n) \in \mathbb{N}^n$ is called a G-parking function if $x^P = \prod_{i=1}^n x_i^{p_i} \notin \mathcal{M}_G$, on the other hand, the sequence $P = (p_1, \ldots, p_n)$ is called a spherical G-parking function if $x^P \in \mathcal{M}_G \setminus \mathcal{M}_G^{(n-2)}$. A G-parking or a spherical G-parking function $P = (p_1, \ldots, p_n) \in \mathbb{N}^n$ can be equivalently thought of as a function $P : [n] \to \mathbb{N}$ with $P(i) = p_i$ ($1 \leq i \leq n$). The sum (or degree) of P is given by $\text{sum}(P) = \sum_{i \in [n]} P(i)$. Let

$$\text{PF}(G) = \{ P \in \mathbb{N}^n : x^P \notin \mathcal{M}_G \} \text{ and } \text{SPF}(G) = \{ P \in \mathbb{N}^n : x^P \in \mathcal{M}_G \setminus \mathcal{M}_G^{(n-2)} \}$$

be the sets of G-parking functions and spherical G-parking functions, respectively. The standard monomials of $R_{\mathcal{M}_G^{(n-2)}}$ are of the form x^P for $P \in \text{PF}(G)$ or $P \in \text{SPF}(G)$. Thus,

$$\dim_k \left(R_{\mathcal{M}_G^{(n-2)}} \right) = \dim_k \left(R_{\mathcal{M}_G} \right) + \dim_k \left(\mathcal{M}_G \setminus \mathcal{M}_G^{(n-2)} \right) = |\text{PF}(G)| + |\text{SPF}(G)|.$$

A notion of spherical K_{n+1}-parking functions is introduced in [4]. We recall that a K_{n+1}-parking function $P = (p_1, \ldots, p_n) \in \mathbb{N}^n$ is an ordinary parking function of length n, i.e., a non-decreasing rearrangement $p_1 \leq p_2 \leq \cdots \leq p_n$ of $P = (p_1, \ldots, p_n)$ satisfies $p_{i+1} < j$, for all j. It can be easily checked that $P = (p_1, \ldots, p_n) \in \mathbb{N}^n$ is a spherical K_{n+1}-parking function if a non-decreasing rearrangement $p_1 \leq p_2 \leq \cdots \leq p_n$ of $P = (p_1, \ldots, p_n)$ satisfies $p_1 = 1$ and $p_{i+1} < j$ for $2 \leq j \leq n$. The notion of spherical K_{n+1}-parking function has appeared earlier in the literature (see [16]) as prime parking functions of length n. Prime parking functions were defined and enumerated by Ira Gessel. The number of spherical K_{n+1}-parking functions is $(n-1)^{n-1}$, which is same as the number of
uprooted trees on the vertex set \([n]\). A (labelled) rooted tree \(T\) on the vertex set \([n]\) is called uprooted if the root is bigger than all its children. Let \(U_n\) be the set of uprooted trees on the vertex set \([n]\). Dochtermann conjectured existence of a bijection \(\phi_n : \text{sPF}(K_{n+1}) \rightarrow U_n\) such that \(\sum(P) = \genus(G)\) for all uprooted trees \(P\) in the complete graph \(K_n = K_{n+1} - \{0\}\) on the vertex set \([n]\).

For a simple graph \(G\) on the vertex set \(V\) whose root 0 is connected to all other vertices, we construct an injective map \(\phi_G : \text{sPF}(G) \rightarrow U(G')\), where \(G' = G - \{0\}\) and \(U(G')\) is the set of uprooted spanning trees of \(G'\). Moreover, the injective map \(\phi_G\) satisfies

\[
\sum(P) = g(G) - \kappa(G, \phi_G(P)) + 1 \quad \text{for all} \quad P \in \text{sPF}(G),
\]

where \(g(G)\) is the genus of the graph \(G\) (Theorem 20). We have determined the image of \(\phi_G\) for many simple graphs \(G\). In particular, we show that the map \(\phi_{K_{n+1}} = \phi_n : \text{sPF}(K_{n+1}) \rightarrow U_n\) is a bijection and establish a conjecture of Dochtermann on spherical \(K_{n+1}\)-parking functions.

If \(e\) is an edge of \(G\), then \(G - \{e\}\) is the graph obtained from \(G\) by deleting the edge \(e\). We show that \(|\text{sPF}(G)| = |\text{sPF}(G - \{e_0\})|\) (Lemma 17), where \(e_0\) is an edge from the root to another vertex. As an application, we observe that \(|\text{sPF}(K_{m+1,n})| = |\text{sPF}(K_{n+1,m})|\) for complete bipartite graphs (Proposition 33). If \(e_1\) is an edge in the complete graph \(K_{n+1}\), not through the root, we show that \(|\text{sPF}(K_{n+1} - \{e_1\})| = (n-1)^{a-3}(n-2)^2\) (Theorem 31). In this case, spherical \((K_{n+1} - \{e_1\})\)-parking functions correspond bijectively with some specified subset of uprooted trees on the vertex set \([n]\) (Theorem 23).

Some extensions of these results for the complete multigraph \(K_{n+1}^{a,b}\) and the complete bipartite multigraph \(K_{m+1,n}^{a,b}\) \((a, b \geq 1)\) are also obtained.

Remark 1. This paper is motivated by [3] and an earlier version of [4] posted on the arXiv. In the new version of [4], Dochtermann and King identify the standard monomials of \(k\)-skeleton ideals \(\mathcal{M}_{K_{n+1}}^{(k)}\) with the vector parking functions and using a Breadth-First-Search burning algorithm, they construct a bijection from spherical \(K_{n+1}\)-parking functions to uprooted spanning trees of \(K_n\) that takes degree to an inversion statistic. In this paper, we obtain the standard monomials and the Betti numbers of \(\mathcal{M}_{K_{n+1}}^{(k)}\) by identifying it with an Alexander dual of some multipermutohedron ideal. For constructing bijection, we use a Depth-First-Search variant of burning algorithm.

\section{Parking functions and Depth-First-Search algorithms}

In this section, we briefly describe some known results on parking functions and the Depth-First-Search algorithms. Most of the known results are stated without proof. These results and notions will be used in the subsequent sections of this paper.

\subsection{Parking functions}

A sequence \(P = (p_1, \ldots, p_n) \in \mathbb{N}^n\) is called an ordinary parking function of length \(n\), if a non-decreasing rearrangement \(p_1 \leq p_2 \leq \cdots \leq p_n\) of \(P\) satisfies \(p_j < j\) for \(1 \leq j \leq n\).
We denote the set of ordinary parking functions of length \(n \) by \(\text{PF}(n) \). The notion of ordinary parking function has a nice generalization.

Definition 2. Let \(\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{N}^n \) with \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 1 \). A finite sequence \(\mathcal{P} = (p_1, \ldots, p_n) \in \mathbb{N}^n \) is called a \(\lambda \)-parking function of length \(n \), if a non-decreasing rearrangement \(p_{i_1} \leq p_{i_2} \leq \cdots \leq p_n \) of \(\mathcal{P} \) satisfies \(p_{i_j} < \lambda_{n-j+1} \) for \(1 \leq j \leq n \). Let \(\text{PF}(\lambda) \) be the set of \(\lambda \)-parking functions.

Clearly, the ordinary parking functions of length \(n \) are precisely \(\lambda \)-parking functions of length \(n \) for \(\lambda = (n, n-1, \ldots, 2, 1) \in \mathbb{N}^n \). The number of \(\lambda \)-parking functions is given by the ‘so-called’ Steck determinantal formula (see [14]). Let

\[
\Lambda(\lambda_1, \ldots, \lambda_n) = \begin{bmatrix}
\frac{\lambda_j^{i-1+j}}{(j-i+1)!} \\
\end{bmatrix}_{1 \leq i, j \leq n}.
\]

In other words, the \((i, j)^{th}\) entry of the \(n \times n \) matrix \(\Lambda(\lambda_1, \ldots, \lambda_n) \) is \(\frac{\lambda_j^{i-1+j}}{(j-i+1)!} \), where by convention, \(\frac{1}{(j-i+1)!} = 0 \) for \(i > j + 1 \). The determinant \(\det(\Lambda(\lambda_1, \ldots, \lambda_n)) \) is called a Steck determinant.

Theorem 3 (Pitman-Stanley). The number of \(\lambda \)-parking functions is given by

\[
|\text{PF}(\lambda)| = (n!) \det(\Lambda(\lambda_1, \ldots, \lambda_n)) = n! \det \begin{bmatrix}
\frac{\lambda_j^{i-1+j}}{(j-i+1)!} \\
\end{bmatrix}_{1 \leq i, j \leq n}.
\]

For \(\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{N}^n \) with \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 1 \), Postnikov and Shapiro [15] considered the monomial ideal

\[
\mathcal{M}_\lambda = \langle \prod_{j \in A} x_j^{\lambda_{|A|}} : \emptyset \neq A \subseteq [n] \rangle
\]

in the polynomial ring \(R = \mathbb{K}[x_1, \ldots, x_n] \). A monomial \(x^b = \prod_{j=1}^n x_j^{b_j} \notin \mathcal{M}_\lambda \) is called a standard monomial of \(\frac{R}{\mathcal{M}_\lambda} \) or \(\mathcal{M}_\lambda \). Clearly, \(x^b = \prod_{j=1}^n x_j^{b_j} \) is a standard monomial of \(\mathcal{M}_\lambda \) if and only if \(b = (b_1, \ldots, b_n) \in \text{PF}(\lambda) \). In other words, a monomial basis of the \(\mathbb{K} \)-vector space \(\frac{R}{\mathcal{M}_\lambda} \) correspond bijectively with the \(\lambda \)-parking functions.

Theorem 4 (Pitman-Stanley, Postnikov-Shapiro). The dimension of \(\frac{R}{\mathcal{M}_\lambda} \) is given by

\[
\dim_{\mathbb{K}} \left(\frac{R}{\mathcal{M}_\lambda} \right) = |\text{PF}(\lambda)| = \sum_{(b_1, \ldots, b_n) \in \text{PF}(n)} \prod_{i=1}^n (\lambda_{n-b_i} - \lambda_{n-b_i+1}),
\]

where the summation runs over ordinary parking functions of length \(n \) and \(\lambda_{n+1} = 0 \).

A closed formula for the number of \(\lambda \)-parking functions for various specific values of \(\lambda \) is given in [14, 17]. For more on parking functions, we refer to an excellent survey article by Yan [18].
2.2 Graph theoretic notions and G-parking functions

Let G be a connected graph on the vertex set $V(G) = V = \{0, 1, \ldots, n\}$. Suppose $A(G) = [a_{ij}]_{0 \leq i,j \leq n}$ is the (symmetric) adjacency matrix of G. We assume that G is a loopless graph, i.e., $a_{ii} = 0$ for all i. Let $E(i,j) = E(j,i)$ be the set of edges between distinct pair of vertices $i,j \in V$. If $E(i,j) \neq \emptyset$, then i and j are called adjacent vertices and we write $i \sim j$. On the other hand, if i and j are non-adjacent, we write $i \sim j$. We have $|E(i,j)| = a_{ij}$. The graph G is called a simple graph if $|E(i,j)| = a_{ij} \leq 1$ for $i,j \in V$. Otherwise, G is called a multigraph. The set $E(G) = \bigcup_{i,j \in V} E(i,j)$ is the set of edges of G.

If $v \in V$, then $G - \{v\}$ denotes the graph on the vertex set $V - \{v\}$ obtained from G by deleting the vertex v and all the edges through v. If $e \in E(G)$ is an edge of G, then $G - \{e\}$ denotes the graph on the vertex set V obtained from G by deleting the edge e. If $E(i,j) \neq \emptyset$, then $G - E(i,j)$ denotes the graph on vertex set V obtained from G on deleting all the edges between i and j.

Fix a root $r \in V$ of G (usually, we take $r = 0$). Set $\tilde{V} = V \setminus \{r\}$. Let $\text{SPT}(G)$ be the set of spanning trees of G rooted at r. We orient spanning tree $T \in \text{SPT}(G)$ so that all paths in T are directed away from the root r. For every $j \in \tilde{V}$, there is a unique oriented path in T from the root r to j. An $i \in \tilde{V}$ lying on this unique path in T is called an ancestor of j in T. Equivalently, we say that j is a descendent of i in T. If in addition, i and j are adjacent in T, then we say that i is a parent of its child j. Every child j has a unique parent $\text{par}_T(j)$ in T.

Definition 5. By an inversion of $T \in \text{SPT}(G)$, we mean an ordered pair (i,j) of vertices such that i is an ancestor of j in T with $i > j$. The total number of inversions of a spanning tree T is denoted by $\text{inv}(T)$. An inversion (i,j) of T is called a κ-inversion of T if i is not the root r and $\text{par}_T(i)$ is adjacent to j in G.

The invariant $g(G) = |E(G)| - |V(G)| + 1$ is called the genus of the graph G. The κ-number $\kappa(G,T)$ of T in G is given by

$$\kappa(G,T) = \sum_{i,j \in \tilde{V}; i > j} |E(\text{par}_T(i),j)|.$$

For a simple graph G, the total number of κ-inversions of T is $\kappa(G,T)$. If $G = K_{n+1}$ with root 0, then $\kappa(K_{n+1},T) = \text{inv}(T)$ for every $T \in \text{SPT}(K_{n+1})$.

Definition 6. Let G be a graph on the vertex set $V = \{0, 1, \ldots, n\}$ with the adjacency matrix $A(G) = [a_{ij}]_{0 \leq i,j \leq n}$. Let $r \in V$ be the root of G and $\tilde{V} = V \setminus \{r\}$. A function $\mathcal{P} : \tilde{V} \rightarrow \mathbb{N}$ is called a G-parking function (with respect to the root r) if for every non-empty set $A \subseteq \tilde{V}$, there exists $i \in A$ such that $\mathcal{P}(i) < d_A(i) = \sum_{j \in V \setminus A} a_{ij}$.

Note that, if root $r = 0$, then \mathcal{P} is a G-parking function if and only if $x^\mathcal{P} \notin \mathcal{M}_G$, i.e., $x^\mathcal{P}$ is a standard monomial of the G-parking function ideal \mathcal{M}_G. For a G-parking
function \(P : \tilde{V} \to \mathbb{N} \), the sum \(\text{sum}(P) \) and the reverse sum \(\text{rsum}(P) \) of \(P \) are respectively given by

\[
\text{sum}(P) = \sum_{i \in \tilde{V}} P(i) \quad \text{and} \quad \text{rsum}(P) = g(G) - \sum_{i \in \tilde{V}} P(i).
\]

Definition 7. A rooted tree on the vertex set \([n]\) is called an **uprooted tree** if the root is bigger than all its children.

Let \(U_n \) be the set of uprooted trees on the vertex set \([n]\). Then it is well known that \(|U_n| = (n - 1)^{n-1} \). For certain graphs \(G \) on the vertex set \(V \), we shall show that the spherical \(G \)-parking functions correspond to uprooted spanning trees of \(G' = G - \{0\} \).

2.3 Depth-First-Search Algorithms

We now describe the Depth-First-Search burning algorithm of Perkinson-Yang-Yu [13] for simple graphs. Let \(G \) be a simple graph on the vertex set \(V \) with a root \(r \in V \). Applied to an input function \(P : V \setminus \{r\} \to \mathbb{N} \), the Depth-First-Search algorithm of Perkinson-Yang-Yu [13] gives a subset \(\text{burnt vertices} \) of burnt vertices and a subset \(\text{tree edges} \) of tree edges as an output. We imagine that a fire starts at the root \(r \) and spreads to other vertices of \(G \) according to the depth-first rule. The value \(P(j) \) of the input function \(P \) can be considered as the number of water droplets available at vertex \(j \) that prevents spread of fire to \(j \). If \(i \) is a burnt vertex, then consider the largest non-burnt vertex \(j \) adjacent to \(i \). If \(P(j) = 0 \), then fire from \(i \) will spread to \(j \). In this case, add \(j \) in \(\text{burnt vertices} \) and include the edge \((i, j)\) in \(\text{tree edges} \). Now the fire spreads from the burnt vertex \(j \). On the other hand, if \(P(j) > 0 \), then one water droplet available at \(j \) will be used to prevent fire from reaching \(j \) through the edge \((i, j)\). In this case, the dampened edge \((i, j)\) is removed from \(G \), number of water droplets available at \(j \) is reduced to \(P(j) - 1 \) and the fire continue to spread from the burnt vertex \(i \) through non-dampened edges. If all the edges from \(i \) to unburnt vertices get dampened, then the search backtracks. At the start, \(\text{burnt vertices} = \{r\} \) and \(\text{tree edges} = \{\} \).

Perkinson, Yang and Yu [13] constructed a bijection \(\phi : \text{PF}(G) \to \text{SPT}(G) \) using their Depth-First-Search algorithm.

Theorem 8 (Perkinson-Yang-Yu). Let \(G \) be a simple graph on the vertex set \(V \) with root \(r \). After applying Depth-First-Search burning algorithm to \(P : V \setminus \{r\} \to \mathbb{N} \), if \(\text{burnt vertices} = V \), then \(P \) is a \(G \)-parking function and tree edges in the set \(\text{tree edges} \) form a spanning tree \(\phi(P) \) of \(G \). If \(\text{burnt vertices} \neq V \), then \(P \) is not a \(G \)-parking function. Further, the mapping \(P \mapsto \phi(P) \) given by the Depth-First-Search algorithm induces a bijection \(\phi : \text{PF}(G) \to \text{SPT}(G) \) such that

\[
\text{rsum}(P) = g(G) - \text{sum}(P) = \kappa(G, \phi(P)) \quad \text{for all} \quad P \in \text{PF}(G).
\]
Let $\sum_{P \in PF(G)} q^{rsum(P)}$ be the reversed sum enumerator for G-parking functions. Theorem 8 establishes the identity

$$\sum_{P \in PF(G)} q^{rsum(P)} = \sum_{T \in SPT(G)} q^{\kappa(G,T)},$$

that extends a similar identity obtained by Kreweras [6] for the complete graph K_{n+1}.

We now describe the Depth-First-Search burning algorithm of Gaydarov-Hopkins [5] for multigraphs. Consider a connected multigraph G on the vertex set V with root r. Let $E(i,j) = E(j,i)$ be the set of edges between distinct pair of vertices i and j. Fix a total order on $E(i,j)$ for all distinct pairs $\{i,j\}$ of vertices and write $E(i,j) = \{e^0_{ij}, e^1_{ij}, \ldots, e^{a_{ij}-1}_{ij}\}$, where $|E(i,j)| = a_{ij}$. Thus we assume that edges of the multigraph G are labelled. Applied to an input function $P : V \setminus \{r\} \to \mathbb{N}$, the Depth-First-Search algorithm for multigraphs gives a subset burnt vertices of burnt vertices and a subset tree edges of tree edges with nonnegative labels on them as an output. As in the case of Depth-First-Search algorithm for simple graphs, we imagine that a fire starts at the root r and spread to other vertices of G according to the depth-first rule. If i is a burnt vertex, then consider the largest non-burnt vertex j adjacent to i. If $P(j) < a_{ij} = |E(i,j)|$, then $P(j)$ edges with higher labels, namely $e^{a_{ij}-P(j)}_{ij} - 1$ will be added to tree edges and j included in burnt vertices. Now fire will spread from the burnt vertex j. On the other hand, if $P(j) \geq a_{ij}$, then all the edges in $E(i,j)$ get dampened and $P(j)$ reduced to $P(j) - a_{ij}$. The fire continue to spread from the burnt vertex i through non-dampened edges. If all the edges from i to unburnt vertices get dampened, then the search backtracks. At the start, burnt vertices = $\{r\}$ and tree edges = \emptyset. Gaydarov and Hopkins [5] extended Theorem 8 to multigraphs using the Depth-First-Search burning algorithm for multigraph.

Theorem 9 (Gaydarov-Hopkins). Let G be a multigraph on V with root r. After applying Depth-First-Search burning algorithm to $P : V \setminus \{r\} \to \mathbb{N}$, if burnt vertices = V, then P is a G-parking function and tree edges with labels in the set tree edges form a labelled spanning tree $\phi(P)$ of G. If burnt vertices $\neq V$, then P is not a G-parking function. Suppose $\ell(e)$ is the label on an edge e of $\phi(P)$. Then the mapping $P \mapsto \phi(P)$ given by Depth-First-Search burning algorithm induces a bijection $\phi : PF(G) \to SPT(G)$ such that

$$rsum(P) = \kappa(G,T) + \sum_{e \in E(T)} \ell(e) \quad \text{for all} \quad P \in PF(G), \quad \text{where} \quad T = \phi(P).$$

The bijective map induced by the Depth-First-Search algorithms is always denoted by ϕ in this paper ignoring its dependence on the graph and the root.
3 \(k\)-skeleton ideals of complete graphs

Let \(0 \leq k \leq n - 1\). Consider the \(k\)-skeleton ideal \(\mathcal{M}_{K_{n+1}}^{(k)} \) of the complete graph \(K_{n+1}\) on the vertex set \(V = \{0, 1, \ldots, n\}\). As stated in the Introduction, we have

\[
\mathcal{M}_{K_{n+1}}^{(k)} = \left\langle \prod_{j \in A} x_j^{n-|A|+1} \right
angle : \emptyset \neq A \subseteq [n]; |A| \leq k + 1 \right\rangle.
\]

For \(k = 0\), \(\mathcal{M}_{K_{n+1}}^{(0)} = \langle x_1^{n}, \ldots, x_n^{n} \rangle \) is a monomial ideal in \(R\) generated by \(n\)th power of variables. Thus, its minimal free resolution is given by the Koszul complex associated to the regular sequence \(x_1, \ldots, x_n\) in \(R\). Also, \(\dim_k \left(\frac{R}{\mathcal{M}_{K_{n+1}}^{(0)}} \right) = n^n \). For \(k = n - 1\), \(\mathcal{M}_{K_{n+1}}^{(n-1)} = \mathcal{M}_{K_{n+1}} \). The minimal free resolution of the \(K_{n+1}\)-parking function ideal \(\mathcal{M}_{K_{n+1}} \) is the cellular resolution supported on the first barycentric subdivision \(\text{Bd}(\Delta_{n-1}) \) of an \(n-1\)-simplex \(\Delta_{n-1}\) and

\[
\dim_k \left(\frac{R}{\mathcal{M}_{K_{n+1}}} \right) = |\text{PF}(K_{n+1})| = |\text{SPT}(K_{n+1})| = (n+1)^{n-1}.
\]

For \(k = 1\), the 1-skeleton ideal \(\mathcal{M}_{K_{n+1}}^{(1)} \) has a minimal cocellular resolution supported on the labelled polyhedral complex induced by any generic arrangement of two tropical hyperplanes in \(\mathbb{R}^{n-1}\) (see Theorem 4.6 of [3]) and \(\dim_k \left(\frac{R}{\mathcal{M}_{K_{n+1}}^{(1)}} \right) = (2n-1)(n-1)^{n-1} \).

3.1 Betti numbers of \(\mathcal{M}_{K_{n+1}}^{(k)} \)

We now express the \(k\)-skeleton ideal \(\mathcal{M}_{K_{n+1}}^{(k)} \) of \(K_{n+1}\) as an Alexander dual of a multipermutohedron ideal. Let \(u = (u_1, u_2, \ldots, u_n) \in \mathbb{N}^n\) such that \(u_1 \leq u_2 \leq \ldots \leq u_n\). For \(m = (m_1, \ldots, m_s)\) such that the smallest entry in \(u\) is repeated exactly \(m_1\) times, second smallest entry in \(u\) is repeated exactly \(m_2\) times, and so on. Then \(\sum_{j=1}^{s} m_j = n\) and \(m_j \geq 1\) for all \(j\). In this case, we write \(u(m)\) for \(u\). The monomial ideal \(I(u(m)) = \langle x_1^{su(m)} : \sigma \in \mathfrak{S}_n \rangle\) of \(R\) is called a multipermutohedron ideal. If \(m = (1, \ldots, 1) \in \mathbb{N}^n\), then \(I(u(m))\) is a permutohedron ideal.

Let \(u(m) = (1, 2, \ldots, k, k+1, \ldots, n) \in \mathbb{N}^n\), where \(m = (1, \ldots, 1, n-k) \in \mathbb{N}^{k+1}\). For \(k = 0\), \(u(m) = (1, \ldots, 1) \in \mathbb{N}^n\), while for \(k = n - 1\), \(u(m) = (1, 2, \ldots, n) \in \mathbb{N}^n\). Let \(I(u(m))[n]\) be the Alexander dual of the multipermutohedron ideal \(I(u(m))\) with respect to \(n = (n, \ldots, n) \in \mathbb{N}^n\).

Theorem 10. For \(0 \leq k \leq n - 1\), \(\mathcal{M}_{K_{n+1}}^{(k)} = I(u(m))[n] \).

Proof. Using Proposition 5.23 of [11], it follows from the Lemma 2.3 of [8]. \(\square\)

Let \(b = (b_1, \ldots, b_n) \in \mathbb{N}^n\). The \((i-1)\)th multigraded Betti number \(\beta_{i-1,b}(\mathcal{M}_{K_{n+1}}^{(k)})\) of \(\mathcal{M}_{K_{n+1}}^{(k)}\) in degree \(b\) is given by

\[
\beta_{i-1,b}(\mathcal{M}_{K_{n+1}}^{(k)}) = \dim_k \tilde{H}^{\text{Supp}(b)} -1 \left(K_b(\mathcal{M}_{K_{n+1}}^{(k)}); \mathbb{K} \right) \quad \text{for} \quad i \geq 1,
\]
where $K_b(M_{K_{n+1}}^{(k)})$ is the lower Koszul simplicial complex of $M_{K_{n+1}}^{(k)}$ in degree b and $\text{Supp}(b) = \{j : b_j > 0\}$ (see Theorem 5.11 of [11]). Since $M_{K_{n+1}}^{(k)} = I(u(m))^{[n]}$, a combinatorial description of all multidegrees b such that $\beta_{k-1,b}(M_{K_{n+1}}^{(k)}) \neq 0$ is given in terms of dual m-isolated subsets (see Definition 3.1 and Theorem 3.2 of [8]). For the particular case of $m = (1, \ldots, 1, n-k) \in \mathbb{N}^{k+1}$, the notion of dual m-isolated subsets can be easily described. Let $J = \{j_1, \ldots, j_t\} \subseteq [n]$ be a non-empty subset with $0 = j_0 < j_1 < \cdots < j_t$.

1. J is a dual m-isolated subset of type-1 if $J \subseteq [k+1]$ and its dual weight $\text{dwt}(J) = t-1$.

Let $I_m^{(1)}$ be the set of dual m-isolated subsets of type-1 and let $I_m^{(1)}(i) = \{J \in I_m^{(1)} : \text{dwt}(J) = i\}$.

2. $J = \{j_1, \ldots, j_t\}$ is a dual m-isolated subset of type-2 if $J \setminus \{j_i\} \subseteq [k]$, $k+1 < j_i \leq n$ and its dual weight $\text{dwt}(J) = (t-2) + (j_i - k)$. Let $I_m^{(2)}$ be the set of dual m-isolated subsets of type-2 and let $I_m^{(2)}(i) = \{J \in I_m^{(2)} : \text{dwt}(J) = i\}$.

Let $I_m = I_m^{(1)} \bigcup I_m^{(2)}$ be the set of all dual m-isolated subsets and $I_m(i) = I_m^{(1)}(i) \bigcup I_m^{(2)}(i)$.

Consider $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ with $\lambda_i = n - i + 1$ for $1 \leq i \leq k$ and $\lambda_i = n - k$ for $k+1 \leq i \leq n$. Let e_1, \ldots, e_n be the standard basis vectors of \mathbb{R}^n. For $0 < i < j \leq n$, we set $\varepsilon(i, j) = \sum_{i+1}^j e_i$. For any $J = \{j_1, \ldots, j_t\} \in I_m$, let $b(J) = \sum_{a=1}^t \lambda_{j_a} \varepsilon(j_{a-1}, j_a) \in \mathbb{N}^n$.

We illustrate the concept of dual m-isolated subsets and its relation with multigraded Betti numbers with an example.

Example 11. Let $n = 6$ and $k = 2$. Take $u(m) = (1, 2, 3, 3, 3, 3)$. Then $m = (1, 1, 4)$ and $\lambda = (6, 5, 4, 4, 4, 4)$. Consider the multipermutohedron ideal $I(u(m))$ and the 2-skeleton ideal $M_{K_{6+1}}^{(2)}$. Set $6 = (6, 6, 6, 6, 6)$. The Alexander dual $I(u(m))^{[6]} = M_{K_{6+1}}^{(2)}$.

A subset $J \subseteq [3]$ is a dual m-isolated subset of type-1. For example, $J = \{2\}$ and $\tilde{J} = \{1, 3\}$ are dual m-isolated subsets of type-1 with dual weights 0 and 1, respectively. Also, the associated multidegrees are $b(J) = (5, 5, 0, 0, 0, 0)$ and $b(\tilde{J}) = (6, 4, 4, 0, 0, 0)$. The lower Koszul simplicial complex $K_b(M_{K_{6+1}}^{(2)})$ for $b = b(J)$ or $b(\tilde{J})$ is isomorphic to the 0-dimensional simplicial complex consisting of two points. Thus $\beta_{0,b(J)}(M_{K_{6+1}}^{(2)}) = 1$ and $\beta_{1,b(\tilde{J})}(M_{K_{6+1}}^{(2)}) = 1$. Further, the subsets $J' = \{4\}$ and $J'' = \{1, 5\}$ are examples of dual m-isolated subsets of type-2 with dual weights 1 and 3, respectively. We have $b(J') = (4, 4, 4, 4, 4, 4)$ and $b(J'') = (6, 4, 4, 4, 4, 4)$. The lower Koszul simplicial complex $K_{b(J')}M_{K_{6+1}}^{(2)}$ is isomorphic to the 0-skeleton of a 3-simplex, while $K_{b(J'')}M_{K_{6+1}}^{(2)}$ is isomorphic to the 1-skeleton of a 3-simplex. Therefore $\beta_{1,b(J')}M_{K_{6+1}}^{(2)} = 3$ and $\beta_{3,b(J'')}M_{K_{6+1}}^{(2)} = 3$.

Theorem 12. For $b = (b_1, \ldots, b_n) \in \mathbb{N}^n$ and $1 \leq i \leq n$, let $\beta_{i-1,b}(M_{K_{n+1}}^{(k)})$ be the $(i - 1)^{th}$ multigraded Betti number of $M_{K_{n+1}}^{(k)}$ in degree b. Then the following statements hold.

(i) For $J = \{j_1, \ldots, j_t\} \in I_m^{(1)}(i-1)$, $\beta_{i-1,b(J)}(M_{K_{n+1}}^{(k)}) = 1$, where $t = i$.

The Electronic Journal of Combinatorics 28(1) (2021), #P1.53
Corollary 13. Assume that M be helpful in constructing a concrete minimal resolution of $\mathcal{M}^{(k)}_{K_{n+1}} = (j_{n-j_{i-1}}^{k-j_i-1})$, where $t + j_i - k = i + 1$.

(iii) If $b = \pi b(J)$ is a permutation of $b(J)$ for some $J \in \mathcal{I}^*_m(i-1)$ and some $\pi \in \mathcal{S}_n$, then $\beta_{i-1,b} \left(\mathcal{M}^{(k)}_{K_{n+1}} \right) = \beta_{i-1,b} \left(\mathcal{M}^{(k)}_{K_{n+1}} \right)$. Otherwise, $\beta_{i-1,b} \left(\mathcal{M}^{(k)}_{K_{n+1}} \right) = 0$.

(iv) The $(i-1)^{th}$ Betti number $\beta_{i-1} \left(\mathcal{M}^{(k)}_{K_{n+1}} \right) \cdot \mathcal{M}^{(k)}_{K_{n+1}}$ is given by,

$$
\beta_{i-1} \left(\mathcal{M}^{(k)}_{K_{n+1}} \right) = \beta_i \left(\frac{R}{\mathcal{M}^{(k)}_{K_{n+1}}} \right) = \sum_{J \in \mathcal{I}^{(i-1)}_m} \beta_{i-1}^J + \sum_{\bar{J} \in \mathcal{I}^{(i-1)}_m} \beta_{i-1}^{\bar{J}},
$$

where $\beta_{i-1}^J = \prod_{a=1}^i \left(j_{a+1}^{n+1} \right)$ and $\beta_{i-1}^{\bar{J}} = \left[\prod_{a=1}^i \left(l_{a+1} \right) \right] \left(n - l_i - 1 \right)$ for $J = \{ j_1, \ldots, j_i \} \in \mathcal{I}^{(i-1)}_m$ and $\bar{J} = \{ \ell_1, \ldots, \ell_t \} \in \mathcal{I}^{(i-2)}_m \left(i - 1 \right)$. Here, $j_i = \ell_i = n$ and $l_0 = 0$.

Proof. Since $\mathcal{M}^{(k)}_{K_{n+1}} = \mathcal{I} \left(\mathcal{U} \left(\mathcal{M} \right) \right)^n$, theorem follows from Theorem 3.2 and Corollary 3.4 of [8].

Theorem 12 describes all multigraded Betti numbers of $\mathcal{M}^{(k)}_{K_{n+1}}$. We hope that it could be helpful in constructing a concrete minimal resolution of $\mathcal{M}^{(k)}_{K_{n+1}}$.

Corollary 13. Assume that $n \geq 3$ and $1 \leq i \leq n$. Then $\beta_{i-1} \left(\mathcal{M}^{(1)}_{K_{n+1}} \right) = i \left(n+1 \right)$ and

$$
\beta_{i-1} \left(\mathcal{M}^{(n-2)}_{K_{n+1}} \right) = \sum_{j} \frac{n!}{j_1! (j_2 - j_1)! \cdots (n - j_i)!} + \sum_{\ell} \frac{n!(n - l_{i-2} - 1)}{l_1! (l_2 - l_1)! \cdots (n - l_{i-2})!},
$$

where the first and second summations run over all sequences of integers $j = (j_1, \ldots, j_i)$ with $0 < j_1 < \cdots < j_i < n$ and $\ell = (l_0, l_1, \ldots, l_{i-2})$ with $0 = l_0 < l_1 < \cdots < l_{i-2} < n - 1$, respectively.

Proof. For $k = 1$, we have $\mathcal{M} = (1,n-1) \in \mathbb{N}^2$. We can easily see that $\mathcal{I}^*_m(i-1) = \{ \{ 1, i \}, \{ i+1 \} \}$ for $i \geq 2$ and $\mathcal{I}^*_m(0) = \{ \{ 1 \}, \{ 2 \} \}$. Thus, $\beta_0(\mathcal{M}^{(1)}_{K_{n+1}}) = \beta_0^{(1)} + \beta_0^{(2)} = \binom{n}{1} + \binom{n}{2} = \binom{n+1}{2}$. For $i \geq 2$,

$$
\beta_{i-1}(\mathcal{M}^{(1)}_{K_{n+1}}) = \beta_{i-1}^{(1,i)} + \beta_{i-1}^{(i+1)} = \binom{i}{1} \left(\binom{n}{i} \left(\binom{i-2}{0} + \frac{n}{i+1} \right) \right)\binom{i}{1} = \binom{i}{1},
$$

which is same as $\beta_i \left(\frac{R}{\mathcal{M}^{(1)}_{K_{n+1}}} \right) = \sum_{j=1}^n j(j-1) = \sum_{j=1}^n i(i) = (i) \sum_{j=1}^n (i) = \binom{n+1}{i}$ obtained in [3].
For $k = n - 2$, $J = \{j_1, \ldots, j_t\} \in \mathcal{I}^t_{kn+1}(i - 1)$ if and only if $J \subseteq [n - 1]$ and $\beta^J_{i-1} = \prod_{a=1}^i (\lambda^J_{a+1})$. Also, $\tilde{J} = \{l_1, \ldots, l_t\} \in \mathcal{I}^t_{kn+2}(i - 1)$ if and only if $l_{t-1} \leq n - 2$, $l_t = n$ and $t = i - 1$. Since, $\beta^J_{i-1} = \left[\prod_{a=1}^{i-2} (\lambda^J_{a+1})\right]_{(n-l_{t-2} - 1)}^{(n-l_{t-2} - 1)}$, we get the desired expression for $\beta_{i-1} \left(\mathcal{M}_{kn+2}^{(n-2)}\right)$.

Consider the first barycentric subdivision $\mathcal{Bd}^t(\Delta_{n-1})$ of an $n - 1$-simplex Δ_{n-1}. We construct a polyhedral cell complex $\mathcal{Bd}^t(\Delta_{n-1})$ whose vertices are the vertices of $\mathcal{Bd}^t(\Delta_{n-1})$ corresponding to subsets $A \subseteq [n]$ with $|A| \leq k + 1$. An edge in $\mathcal{Bd}^t(\Delta_{n-1})$ corresponds either to a chain $A_1 \subseteq A_2 \subseteq [n]$ with $|A_2| \leq k + 1$ or a pair $\{A, B\}$ of subsets of $[n]$ with $|A| = |B| = k + 1$ and $|A \setminus B| = 1$. The higher dimensional faces of $\mathcal{Bd}^t(\Delta_{n-1})$ are polytopes spanned by its edges. A vertex of $\mathcal{Bd}^t(\Delta_{n-1})$ corresponding to A with $|A| \leq k + 1$ has a natural label $\left(\prod_{j \in A} x_j\right)_{n - |A| + 1}$. The cellular resolution supported on the polyhedral cell complex $\mathcal{Bd}^t(\Delta_{n-1})$ is a non-minimal resolution of $\mathcal{M}_{Kn+1}^{(k)}$ if $1 \leq k \leq n - 2$. The minimal cellular resolution of $\mathcal{M}_{Kn+1}^{(1)}$ constructed in [3] can be obtained by deleting certain edges of the polyhedral cell complex $\mathcal{Bd}^1(\Delta_3)$.

3.2 Standard monomials of $\mathcal{M}_{Kn+1}^{(k)}$

A monomial $x^b = \prod_{j=1}^n x_j^{b_j} \notin \mathcal{M}_{Kn+1}^{(k)}$ is called a standard monomial of $\frac{R}{\mathcal{M}_{Kn+1}^{(k)}}$ or $\mathcal{M}_{Kn+1}^{(k)}$.

Let $\lambda = (\lambda_1, \ldots, \lambda_n)$, where $\lambda_i = n - i + 1$ for $1 \leq i \leq k$ and $\lambda_j = n - k$ for $k + 1 \leq j \leq n$. We have seen that $I(u(m))^{[n]} = \mathcal{M}_{Kn+1}^{(k)} = \mathcal{M}_\lambda$. In view of Theorem 4, the number of standard monomials of $\mathcal{M}_{Kn+1}^{(k)}$ is precisely the number of λ-parking functions and $\dim_{K} \left(\frac{R}{\mathcal{M}_{Kn+1}^{(k)}}\right) = |\text{PF}(\lambda)| = n! \det(A(n, n - 1, \ldots, n - k + 1, n - k, \ldots, n - k))$.

More generally, for $a, b \geq 1$, we consider the complete multigraph $K_{n+1}^{a,b}$ on the vertex set V with adjacency matrix $A(K_{n+1}^{a,b}) = [a_{ij}]_{0 \leq i, j \leq n}$ given by $a_{0,i} = a_{i,0} = a$ and $a_{i,j} = b$ for $i, j \in V \setminus \{0\};\ i \neq j$. In other words, $K_{n+1}^{a,b}$ has exactly b number of edges between the root 0 and any other vertex i, while it has exactly b number of edges between distinct non-root vertices i and j. Clearly, $K_{n+1}^{a,1} = K_{n+1}$. The k-skeleton ideal $\mathcal{M}_{Kn+1}^{(k)}$ of $K_{n+1}^{a,b}$ is given by

$$\mathcal{M}_{Kn+1}^{(k)} = \left\{ \prod_{j \in A} x_j^{a + (n - |A|)b} : \emptyset \neq A \subseteq [n]; |A| \leq k + 1 \right\}.$$

Let $\lambda_i^{a,b} = (\lambda_1^{a,b}, \ldots, \lambda_n^{a,b})$, where $\lambda_i^{a,b} = a + (n - i)b$ for $1 \leq i \leq k$ and $\lambda_j^{a,b} = a + (n - k - 1)b$ for $k + 1 \leq j \leq n$. Then, $\mathcal{M}_{Kn+1}^{(k)} = \mathcal{M}_{\lambda^{a,b}}$ and from Theorem 4,

$$\dim_{K} \left(\frac{R}{\mathcal{M}_{Kn+1}^{(k)}}\right) = n! \det(A(\lambda_1^{a,b}, \ldots, \lambda_n^{a,b})).$$
We proceed to evaluate the Steck determinant and compute the number of standard monomials of $\mathcal{M}_{k_n+b}^{(k)}$. Consider the polynomial
\[f_n(x) = \det(\Lambda(x + (n-1)b, x + (n-2)b, \ldots, x + b, x)) \]
in an indeterminate x. In other words, we have
\[f_n(x) = \det \begin{bmatrix} \frac{x}{n!} & \frac{x^2}{2!} & \frac{x^3}{3!} & \cdots & \frac{x^{n-1}}{(n-1)!} & \frac{x^n}{n!} \\ 1 & \frac{x+b}{1!} & \frac{(x+b)^2}{2!} & \cdots & \frac{(x+b)^{n-2}}{(n-2)!} & \frac{(x+b)^{n-1}}{(n-1)!} \\ 0 & 1 & \frac{x+2b}{1!} & \cdots & \frac{(x+2b)^{n-3}}{(n-3)!} & \frac{(x+2b)^{n-2}}{(n-2)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \frac{(x+(n-2)b)}{1!} & \frac{(x+(n-2)b)^2}{(n-1)!} \\ 0 & 0 & 0 & \cdots & 1 & \frac{(x+(n-1)b)}{n!} \end{bmatrix}. \]
The polynomial $f_n(x) = \frac{x(x+b)^{n-1}}{n!}$ and $\dim_k \left(\frac{R}{\mathcal{M}_{k_n+b}} \right) = a(a + nb)^{n-1}$ (see [14, 15]). Also, for $1 \leq k \leq n - 2$, consider another polynomial $g_{n,k}(x)$ in x given by
\[g_{n,k}(x) = \det(\Lambda(x + kb, x + (k-1)b, \ldots, x + b, x, \ldots, x)), \]
where the last $n - k$ coordinates in $(x + kb, x + (k-1)b, \ldots, x + b, x, \ldots, x)$ are x.

Proposition 14. The polynomial $g_{n,k}(x)$ is given by
\[g_{n,k}(x) = \sum_{j=0}^{k} \frac{1}{j!(n-j)!} (x-j)(k+1)^{j-1}b^j. \]

Proof. We first give a simple proof of $f_n(x) = \frac{x(x+b)^{n-1}}{n!}$ as in [9]. Clearly, $f_1(x) = x$ and $f_2(x) = \frac{x(x+2b)}{2!}$. Proceeding by induction on n, we assume that $f_j(x) = \frac{x(x+jb)^{j-1}}{j!}$ for $1 \leq j \leq n - 1$. Further, using properties of determinants, we observe that the derivative $f'_n(x)$ of $f_n(x)$ satisfies $f'_n(x) = f_{n-1}(x+b)$. This shows that $f'_n(x) = \frac{(x+b)(x+nb)^{n-2}}{(n-1)!}$. As $f_n(0) = 0$, on integrating $f'_n(x)$ by parts, we get $f_n(x) = \frac{x(x+nb)^{n-1}}{n!}$.

Again using properties of determinants, we see that the $(n-k-1)^{th}$ derivative $g_{n,k}^{(n-k-1)}(x)$ of $g_{n,k}(x)$ satisfies
\[g_{n,k}^{(n-k-1)}(x) = f_{k+1}(x) = \frac{x(x+(k+1)b)^k}{(k+1)!} = \sum_{j=0}^{k} \binom{k}{j} x^{k-j+1} \frac{(k+1)^j b^j}{(k+1)!}. \]
Since $g_{n,k}(0) = g'_{n,k}(0) = \cdots = g_{n,k}^{(n-k-1)}(0) = 0$ and the $(n-k-1)^{th}$ derivative of $\frac{x^n}{(n-j)(n-j-1) \cdots (n-j-k+2)}$ is x^{k-j+1}, we get $g_{n,k}(x) = \sum_{j=0}^{k} \binom{k}{j} x^{n-j} \frac{(k+1)^j b^j}{(n-j)(n-j-1) \cdots (k+1)!}$. \[\square\]
Theorem 15 (Yan). The number of standard monomials of \(\frac{R}{M^{(b)}_{K_{n+1}}^{a,b}} \) is given by

\[
\dim_K \left(\frac{R}{M^{(k)}_{K_{n+1}}^{a,b}} \right) = \sum_{j=0}^{k} \binom{n}{j} (a + (n - k - 1)b)^{n-j}(k - j + 1)(k + 1)^{j-1}b^j.
\]

In particular, we have \(\dim_K \left(\frac{R}{M^{(1)}_{K_{n+1}}^{a,b}} \right) = (a + (n - 2)b)^{n-1}(a + (2n - 2)b) \) for \(k = 1 \) and \(\dim_K \left(\frac{R}{M^{(n-2)}_{K_{n+1}}^{a,b}} \right) = a(a + nb)^{n-1} + (n - 1)^{n-1}b^n \) for \(k = n - 2 \).

Proof. The first part follows from \(\dim_K \left(\frac{R}{M^{(k)}_{K_{n+1}}^{a,b}} \right) = n! \ g_{n,k}(a + (n - k - 1)b) \) using Proposition 14.

For \(k = 1, g_{n,1}^{(n-2)}(x) = f_2(x) = \frac{x(x+2b)}{2!} = \frac{x^2}{2!} + bx \). As \(g_{n,1}^{(j)}(0) = 0 \) for \(0 \leq j \leq n - 2 \), we obtain \(g_{n,1}(x) = \frac{x^n}{n!} + \frac{b x^{n-1}}{(n-1)!} = \frac{x^{n-1}(x + nb)}{n!} \).

Now \(\dim_K \left(\frac{R}{M^{(1)}_{K_{n+1}}^{a,b}} \right) = n! \ g_{n,1}(a + (n - 2)b) = (a + (n - 2)b)^{n-1}(a + (2n - 2)b) \).

Also, for \(k = n - 2 \), we have \(g_{n,n-2}^{(n-2)}(x) = f_{n-1}(x) = \frac{x(x+(n-1)b)^{n-1}}{(n-1)!} - \frac{(x+(n-1)b)^{n}}{n!(n-1)!} + C \), where \(C \) is a constant of integration. Since \(g_{n,n-2}(0) = 0 \), we get \(C = \frac{(n-1)^{n-1}b^n}{n!} \). Hence,

\[
g_{n,n-2}(x) = \frac{1}{n!} [(x - b)(x + (n - 1)b)^{n-1} + (n - 1)^{n-1}b^n].
\]

Again, from \(\dim_K \left(\frac{R}{M^{(n-2)}_{K_{n+1}}^{a,b}} \right) = n! \ g_{n,n-2}(a + b) \), we get the desired result.

Remark 16. The determinant \(\det(Q_{K_{n+1}}^{-}) \) of the reduced signless Laplacian matrix \(Q_{K_{n+1}}^{-} \) of \(K_{n+1}^{a,b} \) satisfies \(\dim_K \left(\frac{R}{M^{(n-2)}_{K_{n+1}}^{a,b}} \right) = (a + (n - 2)b)^{n-1}(a + (2n - 2)b) = \det(Q_{K_{n+1}}^{-}) \). Also, we have \(g_{n,n-2}^{(n-2)}(x) = f_{n-1}(x) = \frac{x(x+(n-1)b)^{n-2}}{(n-1)!} - \frac{(x+(n-1)b)^{n}}{n!(n-1)!} + C \), where \(C \) is a constant of integration. Since \(g_{n,n-2}(0) = 0 \), we get \(C = \frac{(n-1)^{n-1}b^n}{n!} \). Thus on integrating \(g_{n,n-2}(x) \) in two ways, we get \(g_{n,n-2}(x) \) and a polynomial identity

\[
\frac{(x - b)(x + (n - 1)b)^{n-1} + (n - 1)^{n-1}b^n}{n!} = \sum_{j=0}^{n-2} \binom{n}{j} x^{n-j}(n - j - 1)(n - 1)^{j-1}b^j.
\]
On substituting $x = a + b$, we get an identity
\[\sum_{j=0}^{n-2} \binom{n}{j} (a + b)^{n-j}(n - j - 1)(n - 1)^{j-1}b^j = a(a + nb)^{n-1} + (n - 1)^{n-1}b^n \]
for positive integers a and b. Taking $a = b = 1$, it justifies the equality
\[\sum_{j=0}^{n-2} \binom{n}{j} 2^{n-j}(n - j - 1)(n - 1)^{j-1} = (n + 1)^{n-1} + (n - 1)^{n-1} \]
described in [4](Corollary 3.7).

4 Spherical G-parking functions

Let G be a connected graph on the vertex set $V = \{0, 1, \ldots, n\}$ with root 0. As stated in the Introduction, $\mathcal{P} : [n] \to \mathbb{N}$ is a spherical G-parking function if $x^\mathcal{P} = \prod_{i \in [n]} x_i^{p(i)} \in \mathcal{M}_G \setminus \mathcal{M}_G^{(n-2)}$. Let $PF(G)$ (or $sPF(G)$) be the set of G-parking functions (respectively, spherical G-parking functions).

Let e_0 be an edge of G joining the root 0 to another vertex. We shall compare $sPF(G)$ with $sPF(\tilde{G})$, where $\tilde{G} = G - \{e_0\}$. After renumbering vertices, we may assume that $e_0 = e_{0,n}$ is an edge joining the root 0 with n.

Lemma 17. Let G be a connected graph on the vertex set V and $\tilde{G} = G - \{e_0\}$. Then
\[\mathcal{M}_G = (\mathcal{M}_G : x_n) = \{ z \in R : zx_n \in \mathcal{M}_G \}. \]
Further, the multiplication map $\mu_{x_n} : \{ x^\mathcal{P} : \mathcal{P} \in sPF(\tilde{G}) \} \to \{ x^\mathcal{P} : \mathcal{P} \in sPF(G) \}$ induced by x_n is a bijection. In particular, $|sPF(G)| = |sPF(\tilde{G})|$.

Proof. For $\emptyset \neq A \subseteq [n]$, let m_A and m_A' be the generators of \mathcal{M}_G and \mathcal{M}_G, respectively. Clearly, $m_A = m_A'$ if $n \notin A$ and $m_A = m_A x_n$ if $n \in A$. This shows that $\mathcal{M}_G = (\mathcal{M}_G : x_n)$. Also, $\mathcal{M}_G^{(n-2)} = (\mathcal{M}_G^{(n-2)} : x_n)$. Thus the natural sequences of R-modules (or \mathbb{K}-vectors spaces)
\[0 \to R/\mathcal{M}_G \xrightarrow{\mu_{x_n}} R/\mathcal{M}_G \to R/\mathcal{M}_G : x_n \to 0 \quad \text{and} \quad 0 \to R/\mathcal{M}_G^{(n-2)} \xrightarrow{\mu_{x_n}} R/\mathcal{M}_G^{(n-2)} \to R/\mathcal{M}_G^{(n-2)} : x_n \to 0 \]
are short exact. Let $\alpha : R/\mathcal{M}_G^{(n-2)} \to R/\mathcal{M}_G$ and $\beta : R/\mathcal{M}_G^{(n-2)} \to R/\mathcal{M}_G$ be the natural projections.

Since $\langle \mathcal{M}_G, x_n \rangle = \langle \mathcal{M}_G^{(n-2)}, x_n \rangle$, the multiplication map μ_{x_n} induces an isomorphism $\ker(\alpha) \xrightarrow{\sim} \ker(\beta)$ between kernels $\ker(\alpha)$ and $\ker(\beta)$. Also $\{ x^\mathcal{P} : \mathcal{P} \in sPF(\tilde{G}) \}$ and $\{ x^\mathcal{P} : \mathcal{P} \in sPF(G) \}$ are monomial basis of $\ker(\alpha)$ and $\ker(\beta)$, respectively. Thus μ_{x_n} induces a bijection between the bases. \qed

We now give a few applications of the Lemma 17.
Proposition 18. Let E be the set of all edges of K_{n+1} or $K_{n+1}^{a,b}$ through the root 0. Then

1. $|sPF(K_{n+1} - E)| = |sPF(K_{n+1})|.$
2. $|sPF(K_{n+1}^{a,b} - E)| = |sPF(K_{n+1}^{a,b})|.$
3. $|sPF(K_{n+1}^{a,b})| = b^n(n - 1)^{n-1}.$

Proof. By Lemma 17, we know that the number of spherical G-parking functions and the number of spherical $(G - \{e_0\})$-parking functions are the same for any edge e_0 of G through the root 0. Now, repeatedly applying Lemma 17, we see that (1) and (2) hold.

Let $\lambda = ((n - 1)b, (n - 2)b, \ldots, 2b, b, b).$ Consider the graph $K_{n+1}^{a,b} - E$ and its $(n - 2)$-skeleton ideal $M_{K_{n+1}^{a,b} - E}^{(n-2)}.$ Clearly, $M_{K_{n+1}^{a,b} - E}^{(n-2)} = M_{\lambda}.$ As $K_{n+1}^{a,b} - E$ is disconnected, $PF(K_{n+1}^{a,b} - E) = \emptyset.$ Thus

$$|sPF(K_{n+1}^{a,b})| = |sPF(K_{n+1}^{a,b} - E)| = \dim_k \left(\frac{R}{M_{K_{n+1}^{a,b} - E}^{(n-2)}} \right) = |	ext{PF}(\lambda)| = (n!)g_{n,n-2}(b) = b^n(n - 1)^{n-1},$$

where the polynomial $g_{n,n-2}(x)$ is given in the Remark 16. \hfill \square

Note that the cardinality $|sPF(K_{n+1}^{a,b})|$ is independent of $a.$ As we have seen that $|\text{PF}(K_{n+1}^{a,b})| = a(a + bn)^{n-1},$ $|sPF(K_{n+1}^{a,b})| = b^n(n - 1)^{n-1}$ also follows from Theorem 15.

4.1 A modified Depth-First-Search burning algorithm

Let G be a connected simple graph on the vertex set V with a root 0. Let $\mathcal{M}_G = \langle m_A : \emptyset \neq A \subseteq [n] \rangle$ be the G-parking function ideal. For a spherical G-parking function $P \in sPF(G),$ define $\tilde{P} : [n] \rightarrow \mathbb{N}$ so that $x^\tilde{P} = \frac{x^P}{m_{[n]}},$ where $m_{[n]}$ is the generator of \mathcal{M}_G corresponding to $[n].$ We say that \tilde{P} is the reduced spherical G-parking function associated to $P \in sPF(G).$ Let $sPF(G) = \{\tilde{P} : P \in sPF(G)\}$ be the set of reduced spherical G-parking functions. We shall analyse the condition $sPF(G) \subseteq PF(G).$ Since removing (or adding) edges from the root 0 to another vertex in G do not change the number of spherical G-parking functions (Lemma 17), we may assume that the root 0 is connected to all the other vertices in $G.$ In this case, $m_{[n]} = x_1x_2\cdots x_n$ and $\tilde{P}(i) = P(i) - 1$ for $i \in [n].$

Lemma 19. Let G be a connected simple graph on the vertex set V with a root 0. Suppose the root 0 is connected to all other vertices of $G.$ Then

1. $\tilde{PF}(G) \subseteq PF(G).$
2. Let $P \in sPF(G)$ and $r \in [n]$ be the unique vertex such that $\tilde{P}(r) = 0$ but $\tilde{P}(j) \geqslant 1$ for $j > r.$ Consider the graph $G' = G - \{0\}$ on the vertex set $[n]$ with root $r.$ Then $\tilde{P} = \tilde{P}_{[n]\{r\}}$ is a G'-parking function.
Let $\mathcal{P} \in \text{sPF}(G)$ such that $\tilde{\mathcal{P}} \notin \text{PF}(G)$. Then there exists $\emptyset \neq A \subseteq [n]$ such that $m_A \mid x^\mathcal{P}$, i.e., m_A divides $x^\mathcal{P}$. Thus $m_A m_{[n]} \mid x^\mathcal{P}$. If $A \neq [n]$, then $m_A \mid x^\mathcal{P}$, a contradiction to $\mathcal{P} \in \text{sPF}(G)$. Also, if $A = [n]$, then $(m_{[n]})^2 \mid x^\mathcal{P}$. Since G is a simple graph and the root 0 is connected to all other vertices of G, $m_B \mid (x_1 x_2 \cdots x_n)^2$ for any $B \subseteq [n]$ with $|B| = n - 1$. Again a contradiction. This proves the first part.

Let $\mathcal{P} \in \text{sPF}(G)$. If $\tilde{\mathcal{P}}(i) \geq 1$ for all $i \in [n]$, then $\mathcal{P}(i) \geq 2$ for all i. Thus $(m_{[n]})^2 \mid x^\mathcal{P}$, which leads to a contradiction. Thus $\tilde{\mathcal{P}}(i) = 0$ for some i. Let $r = \max\{i \in [n] : \mathcal{P}(i) = 0\}$.

Now consider the graph $G' = G - \{0\}$ on the vertex set $[n]$ with root r. When we emphasize the root r of G', we denote this graph by (G', r). Let $\mathcal{M}_{(G', r)} = \{\mathcal{P} : 0 \neq A \subseteq [n] \setminus \{r\}\}$ be the G'-parking function ideal in the polynomial ring $\mathbb{K}[x_1, \ldots, \hat{x}_r, \ldots, x_n]$. We see that $\tilde{\mathcal{P}} = \mathcal{P}|_{[n] \setminus \{r\}}$ is not a G'-parking function, then $\tilde{\mathcal{P}}(i) = 0$, $x^\mathcal{P} = \prod_{i \in [n] \setminus \{r\}}(x_i)^{\tilde{\mathcal{P}}(i)} = x^{\mathcal{P}}_{m_{[n]}}.$

Thus $m_A \mid x^\mathcal{P}$, a contradiction to $\mathcal{P} \in \text{sPF}(G)$. □

We now proceed to associate uprooted trees to spherical parking functions by modifying the Depth-First-Search burning algorithm. Let G be a connected simple graph satisfying the hypothesis of Lemma 19. Let $\mathcal{P} \in \text{sPF}(G)$ and $\hat{\mathcal{P}}$ be the associated reduced spherical G-parking function. In the following three steps, an uprooted spanning tree of G' is associated to each $\mathcal{P} \in \text{sPF}(G)$.

1. Set $r = \max\{i \in [n] : \hat{\mathcal{P}}(i) = 0\}$ and consider the graph $G' = G - \{0\}$ with root r.

2. Let $\phi : \text{PF}(G', r) \to \text{SPT}(G', r)$ be the bijective map induced by Depth-First-Search algorithm (Theorem 8). As $\bar{\mathcal{P}} = \hat{\mathcal{P}}|_{[n] \setminus \{r\}}$ is a (G', r)-parking function, $\phi(\hat{\mathcal{P}})$ is a spanning tree of G'. Also, $\sum(\bar{\mathcal{P}}) = g(G') - \kappa(G', \phi(\hat{\mathcal{P}}))$.

3. Since $\bar{\mathcal{P}} \in \text{PF}(G', r)$ and $\bar{\mathcal{P}}(j) \geq 1$ for all $j > r$, there exists $i < r$ such that $\bar{\mathcal{P}}(i) = 0$. On applying the Depth-First-Search algorithm to $\hat{\mathcal{P}}$, all the edges (r, j) for $j > r$ get dampened. Thus the spanning tree $\phi(\hat{\mathcal{P}})$ is an uprooted spanning tree of G'.

Let $\mathcal{U}(G')$ be the set of uprooted spanning trees of the graph G'. We define a map $\phi_G : \text{sPF}(G) \to \mathcal{U}(G')$ given by $\phi_G(\mathcal{P}) = \phi(\hat{\mathcal{P}})$, where $\hat{\mathcal{P}} = \bar{\mathcal{P}}|_{[n] \setminus \{r\}}$. We say that the map ϕ_G is induced by a modified Depth-First-Search algorithm.

Theorem 20. Let G be a simple graph on the vertex set V with root 0 and $G' = G - \{0\}$. Suppose the root 0 is connected to all other vertices of G. Then there exists an injective map $\phi_G : \text{sPF}(G) \to \mathcal{U}(G')$ such that $\sum(\mathcal{P}) = g(G') - \kappa(G', \phi_G(\mathcal{P})) + 1$ for all $\mathcal{P} \in \text{sPF}(G)$.

Proof. We have already constructed the map ϕ_G. Let $\mathcal{P}, \mathcal{P}' \in \text{sPF}(G)$ such that $\phi_G(\mathcal{P}) = \phi_G(\mathcal{P}') = T \in \mathcal{U}(G')$. Let r be the root of T. Since $\phi : \text{PF}(G', r) \to \text{SPT}(G', r)$ is a bijection and $\phi(\hat{\mathcal{P}}) = \phi(\hat{\mathcal{P}}')$, we have $\hat{\mathcal{P}} = \hat{\mathcal{P}}'$ and hence $\mathcal{P} = \mathcal{P}'$. Note that $\sum(\mathcal{P}) = \sum(\hat{\mathcal{P}}) + n$ and $g(G) = g(G') + n - 1$. Thus $\sum(\mathcal{P}) = g(G') - \kappa(G', \phi_G(\mathcal{P})) + 1$ follows from $\sum(\hat{\mathcal{P}}) = g(G') - \kappa(G', \phi(\hat{\mathcal{P}}))$. □
Let \(\mathrm{Im}(\phi_G) = \{ \phi_G(\mathcal{P}) : \mathcal{P} \in \mathrm{sPF}(G) \} \) be the image of \(\phi_G \) in \(U(G') \). Theorem 20 shows that under some mild conditions on the simple graph \(G \), the spherical \(G \)-parking functions correspond bijectively with the uprooted trees in \(\mathrm{Im}(\phi_G) \). In general, it is not easy to give a combinatorial description for the image \(\mathrm{Im}(\phi_G) \).

Let \(T \in U(G') \) be an uprooted spanning tree of \(G' = G - \{0\} \). Suppose \(\mathrm{root}(T) = r \). Consider the bijective map \(\phi : \mathrm{PF}(G',r) \to \mathrm{SPT}(G',r) \). Then there exists a unique \((G',r)\)-parking function \(\mathcal{P}_T \) such that \(\phi(\mathcal{P}_T) = T \). Let

\[
\overline{U}(G') = \{ T \in U(G') : \mathcal{P}_T(j) \geq 1 \text{ for } j > r = \mathrm{root}(T) \},
\]

Proposition 21. \(\mathrm{Im}(\phi_G) \subseteq \overline{U}(G') = \{ T \in U(G') : \mathcal{P}_T(j) \geq 1 \text{ for } j > r = \mathrm{root}(T) \} \).

Proof. Let \(\phi_G(\mathcal{P}) = \hat{\mathcal{P}} \), where \(\hat{\mathcal{P}} = \overline{\mathcal{P}}|_{[n]\{r\}} \). As \(\mathcal{P}_T = \hat{\mathcal{P}} \) and the root is given by \(\mathrm{root}(T) = \max \{ i \in [n] : \hat{\mathcal{P}}(i) = 0 \} \), the result follows. \(\square \)

4.2 Spherical parking functions for complete graphs

Let \(K_{n+1} \) be the complete graph on the vertex set \(V \) and \(K_n = K_{n+1} - \{0\} \) be the complete graph on the vertex set \([n] \). Let \(U_n = U(K_n) \) be the set of uprooted trees on the vertex set \([n] \). From Theorem 20, there exists an injective map \(\phi_n = \phi_{K_{n+1}} : \mathrm{sPF}(K_{n+1}) \to U_n \). We show that \(\phi_n \) is a bijection and solve a conjecture of Dochtermann on spherical \(K_{n+1} \)-parking functions.

Theorem 22. There exists a bijection \(\phi_n : \mathrm{sPF}(K_{n+1}) \to U_n \) such that

\[
\sum(\mathcal{P}) = \left(\begin{array}{c} n \\ 2 \end{array} \right) - \kappa(K_n,\phi_n(\mathcal{P})) + 1 \quad \text{for all } \mathcal{P} \in \mathrm{sPF}(K_{n+1}).
\]

Proof. The existence of injective map \(\phi_n = \phi_{K_{n+1}} : \mathrm{sPF}(K_{n+1}) \to U_n \) with the desired property follows from the Theorem 20. We just need to show that \(\phi_n \) is surjective. Let \(T \in U_n \) and \(\mathrm{root}(T) = r \). Consider the bijective map \(\phi : \mathrm{PF}(K_n,r) \to \mathrm{SPT}(K_n,r) \) induced by Depth-First-Search algorithm and \(\mathcal{P}_T \) is the unique \((K_n,r)\)-parking function such that \(\phi(\mathcal{P}_T) = T \). Since \(T \) is uprooted, \(\mathcal{P}_T(j) \geq 1 \) for \(j > r \). Now consider ideals \(\mathcal{M}_{K_{n+1}} = \langle m_A : \emptyset \not\subseteq A \subseteq [n] \rangle \) and \(\mathcal{M}_{K_n,r} = \langle \bar{m}_B : \emptyset \not\subseteq B \subseteq [n] \setminus \{r\} \rangle \).

Suppose, if possible, \(\mathcal{P}_T \neq \hat{\mathcal{P}} \) for all \(\mathcal{P} \in \mathrm{sPF}(K_{n+1}) \). Then \(m|_{[n]\{r\}} \prod_{j \in [n]\{r\}} x_j^{\mathcal{P}_T(j)} \) is not a standard monomial of \(\mathcal{M}_{K_{n+1}}^{(n-2)} \). Thus there exists \(\emptyset \not\subseteq A \subseteq [n] \) such that \(m_A \) divides \(m|_{[n]\{r\}} \prod_{j \in [n]\{r\}} x_j^{\mathcal{P}_T(j)} \). If \(r \in A \), then \(x_r \) appearing in \(m_A = \left(\prod_{j \in A} x_j \right) x_r \) must have the multiplicity 1. This is possible, only if \(A = [n] \), a contradiction. If \(r \not\in A \), then \(\bar{m}_A = \frac{m_A}{\gcd(m_A,m|_{[n]\{r\}})} \) and \(\bar{m}_A \prod_{j \in [n]\{r\}} x_j^{\mathcal{P}_T(j)} \). This shows that \(\mathcal{P}_T \) is not a \((K_n,r)\)-parking function, again a contradiction. Hence \(\phi_n \) is surjective.

The surjectivity of \(\phi_n \) also follows from \(|\mathrm{sPF}(K_{n+1})| = |U_n| = (n-1)^{n-1} \). \(\square \)

We now study spherical \(G \)-parking functions for \(G = K_{n+1} - \{e\} \), where \(e \) is an edge not through the root 0. Let \(e = e_{p,q} = (p,q) \) be the edge in \(K_{n+1} \) joining \(p \) and...
have multiplicity 1. Thus $A \in \text{trees on the vertex set } [n]$ and $U(G)$ be the set of uprooted spanning trees of G'. In fact, $U_n^{(p \sim q)} = U(G')$ is the set of uprooted trees on the vertex set $[n]$ with no edge between p and q (i.e., $p \sim q$). Let $\overline{U}_n^{(p \sim q)} = U(G') = \{ T \in U(G') : P_T(j) \geq 1 \text{ for } j > r = \text{root}(T) \}$ as in Proposition 21 and set $U'_n = U_n^{(1 \sim n)}$. In view of Theorem 20 and Proposition 21, there exists an injective map $\phi_G : \text{sPF}(G) \to \overline{U}_n^{(p \sim q)}$.

Theorem 23. For $n \geq 3$ and $G = K_{n+1} - \{ e_{p,q} \}$, the map $\phi_G : \text{sPF}(G) \to \overline{U}_n^{(p \sim q)}$ is a bijection such that $\sum(\mathcal{P}) = \binom{n}{2} - \kappa(G', \phi_G(\mathcal{P}))$ for all $\mathcal{P} \in \text{sPF}(G)$, where $G' = G - \{ 0 \}$.

Proof. We only need to show that $\text{Im}(\phi_G) = \overline{U}_n^{(p \sim q)}$. This proof is similar to the proof of Theorem 22. Let $T \in \overline{U}(G') = \overline{U}_n^{(p \sim q)}$ and $\text{root}(T) = r$. Consider the bijective map $\phi : \text{PF}(G', r) \to \text{SPT}(G', r)$ induced by Depth-First-Search algorithm and \mathcal{P} is the unique (G', r)-parking function such that $\phi(\mathcal{P}) = T$. Let $\mathcal{M}_G = \{ m_A : 0 \neq A \subseteq [n] \}$ and $\mathcal{M}_{(G',r)} = \{ m_A : 0 \neq A \subseteq [n] \setminus \{ r \} \}$ be the parking function ideals. Suppose, if possible, $\mathcal{P}_{T} \neq \mathcal{P}$ for all $\mathcal{P} \in \text{sPF}(G)$. Then $m_{[n]} \prod_{j \in [n] \setminus \{ r \}} x_j^{P_{j}(j)}$ is a standard monomial of $\mathcal{M}_G^{(n-2)}$. Thus there exists $0 \neq A \subseteq [n]$ such that m_A divides $m_{[n]} \prod_{j \in [n] \setminus \{ r \}} x_j^{P_{j}(j)}$.

Let $r \in A$ but $r \notin \{ p, q \}$. As $m_A | m_{[n]} \prod_{j \in [n] \setminus \{ r \}} x_j^{P_{j}(j)}$, x_r appearing in m_A must have multiplicity 1. Thus $A = [n]$, a contradiction. Now suppose $r = q \in A$ (or $r = p \in A$). Then $A \neq [n]$ implies that $A = [n] \setminus \{ p \}$ (respectively, $A = [n] \setminus \{ q \}$). In fact, $m_{[n] \setminus \{ p \}} = \prod_{j \in [n] \setminus \{ p,q \}} x_j^{2}$ and $m_{[n] \setminus \{ q \}} = \prod_{j \in [n] \setminus \{ p,q \}} x_j^{2} x_p$. Clearly, in either of the cases, $\overline{m}_{[n] \setminus \{ p,q \}} = \prod_{j \in [n] \setminus \{ p,q \}} x_j$ divides $\prod_{j \in [n] \setminus \{ r \}} x_j^{P_{j}(j)}$, a contradiction to \mathcal{P}_{T} being (G', r)-parking function.

Finally, if $r \notin A$, then $\overline{m}_A = \frac{m_A}{\gcd(m_A, m_{[n]})}$ and \overline{m}_A divides $\prod_{j \in [n] \setminus \{ r \}} x_j^{P_{j}(j)}$. This shows that \mathcal{P}_{T} is not a (G', r)-parking function, again a contradiction. This completes the proof. \hfill \Box

We now determine conditions so that $\overline{U}_n^{(p \sim q)} = \overline{U}_n^{(p \sim q)}$.

Proposition 24. $\overline{U}_n^{(p \sim q)} \setminus \overline{U}_n^{(p \sim q)} = \{ T \in U_n^{(p \sim q)} : \text{root}(T) = p \text{ and } \mathcal{P}_{T}(q) = 0 \}$.

Proof. Let $T \in U_n^{(p \sim q)}$ such that $\text{root}(T) = r \neq p$. Consider the unique (G', r)-parking function \mathcal{P}_{T} such that $\phi(\mathcal{P}_{T}) = T$. As T is uprooted, all the edges (r, j) in G' for $j > r$ must get dampened. Thus $\mathcal{P}_{T}(j) \geq 1$ for all $j > r$ such that $r \sim j$ in G' or G. Since $G = K_{n+1} - \{ e_{p,q} \}, T \in \overline{U}_n^{(p \sim q)}$. \hfill \Box

Since there are no uprooted tree T on the vertex set $[n]$ with root(T) = 1, it follows from Proposition 24 that $\overline{U}_n^{(p \sim q)} = \overline{U}_n^{(p \sim q)}$ if and only if $p = 1$. The following corollary is immediate.

Corollary 25. For $n \geq 3$ and $G = K_{n+1} - \{ e_{1,n} \}$, the map $\phi_G : \text{sPF}(G) \to U_n^{(1 \sim n)}$ induces a bijection between the set of spherical G-parking functions and the set of uprooted trees on the vertex set $[n]$ with $1 \sim n$. \hfill \Box

The Electronic Journal of Combinatorics 28(1) (2021), #P1.53

19
Remark 26. By renumbering vertices of \(G \), we easily see that
\[
|sPF(K_{n+1} - \{e_{p,q}\})| = |sPF(K_{n+1} - \{e_{1,n}\})| = |\mathcal{U}_n|,
\]
for any edge \(e_{p,q} \) between vertices \(p, q \in [n] \) with \(p < q \). Thus, \(|\mathcal{U}_n^{(p,q)}| = |\mathcal{U}_n^e|\).

The bijection \(\phi_n : sPF(K_{n+1}) \rightarrow \mathcal{U}_n \) constructed in Theorem 22 can be extended to the case of the complete multigraph \(K_{n+1}^{a,b} \) on the vertex set \(V \).

Let \(sPF(K_{n+1}^{a,b}) \) be the set of spherical \(K_{n+1}^{a,b} \)-parking functions. Let \(\mathcal{U}_n^b \) be the set of uprooted tree \(T \) on the vertex set \([n]\) with label \(\ell : E(T) \rightarrow \{0, 1, \ldots, b - 1\} \) on the edges of \(T \) and a weight \(\omega(r) \in \{0, 1, \ldots, b - 1\} \) assigned to the root \(r \) of \(T \). Clearly, \(|\mathcal{U}_n^b| = b^n|\mathcal{U}_n| = b^n(n-1)^{n-1} \). Also, \(|sPF(K_{n+1}^{a,b})| = b^n(n-1)^{n-1} \) is independent of \(a \). We may assume that \(a \geq b \). As an application of the Depth-First-Search algorithm for multigraph (Theorem 9), we construct a bijection

\[
\phi_n^b : sPF(K_{n+1}^{a,b}) \rightarrow \mathcal{U}_n^b.
\]

The reduced spherical \(K_{n+1}^{a,b} \)-parking function \(\hat{P} \) associated to \(P \in sPF(K_{n+1}^{a,b}) \) is given by \(\hat{P}(i) = P(i) - a \) for all \(i \in [n] \). Let \(\hat{sPF}(K_{n+1}^{a,b}) = \{\hat{P} : P \in sPF(K_{n+1}^{a,b})\} \). Then as \(a \geq b \), we can verify that \(sPF(K_{n+1}^{a,b}) \subseteq PF(K_{n+1}^{a,b}) \). Let \(K_n^b = K_{n+1}^{a,b} - \{0\} \) be the complete multigraph on the vertex set \([n]\) such that \(|E(i,j)| = b\) for every distinct pair \(\{i,j\} \) of vertices.

Theorem 27. There exists a bijection \(\phi_n^b : sPF(K_{n+1}^{a,b}) \rightarrow \mathcal{U}_n^b \) such that
\[
rsum(P) + \omega(r) + 1 = \kappa(K_n^b, T) + \sum_{e \in E(T)} \ell(e) \text{ for all } P \in sPF(K_{n+1}^{a,b}),
\]
where \(T = \phi_n^b(P) \) and weight \(\omega(r) \in \{0, 1, \ldots, b - 1\} \) at the root \((T) = r\).

Proof. Let \(P \in sPF(K_{n+1}^{a,b}) \). Then \(\hat{P} \in PF(K_{n+1}^{a,b}) \). Choose the largest vertex \(r \) of \(K_n^b = K_{n+1}^{a,b} - \{0\} \) such that \(\hat{P}(r) < b \). We claim that \(\hat{P}(j) < b \) for some \(j < r \). Otherwise, \(\hat{P}(i) \geq a + b \), for all \(i \in [n] \setminus \{r\} \), a contradiction to \(P \in sPF(K_{n+1}^{a,b}) \). Now consider \(r \) to be the root of the complete multigraph \(K_n^b \) on the vertex set \([n]\). Then \(\hat{P} = \hat{P} \mid_{[n]\setminus\{r\}} \) is a \((K_n^b, r)\)-parking function. On applying the Depth-First-Search algorithm for multigraph (Theorem 9), we get \(\phi(\hat{P}) \in \mathcal{U}_n^b \) with root \(r \) and weight \(\omega(r) = \hat{P}(r) \). The mapping \(\phi_n^b : sPF(K_{n+1}^{a,b}) \rightarrow \mathcal{U}_n^b \) given by \(\phi_n^b(P) = \phi(\hat{P}) \) is clearly injective. Since \(|sPF(K_{n+1}^{a,b})| = |\mathcal{U}_n^b| = b^n(n-1)^{n-1} \), the map \(\phi_n^b \) is a bijection. Also,
\[
g(K_n^b) - \sum_{i \in [n]\setminus\{r\}} \hat{P}(i) = \text{rsum}(\hat{P}) = \kappa(K_n^b, \phi(\hat{P})) + \sum_{e \in E(\phi(\hat{P}))} \ell(e).
\]
Since \(\text{rsum}(P) = g(K_{n+1}^{a,b}) - \sum_{i \in [n]} P(i) \), we verify that \(\text{rsum}(\hat{P}) = \text{rsum}(P) + \omega(r) + 1 \). \(\square \)
4.3 Counting uprooted trees

In this subsection, we determine the number \(|\mathcal{U}'_n|\) of uprooted trees on the vertex set \([n]\) with \(1 \sim n\). Let \(\mathcal{T}_{n,0}\) be the set of labelled trees on the vertex set \([n]\) such that the root has no child (or son) with smaller labels. Let \(\mathcal{A}_n\) be the set of labelled rooted-trees on the vertex set \([n]\) with a non-rooted leaf \(n\). Chauve, Dulucq and Guibert [1] constructed a bijection \(\eta : \mathcal{T}_{n,0} \to \mathcal{A}_n\). As earlier, let \(\mathcal{U}_n\) be the set of uprooted trees on the vertex set \([n]\). Also, let \(\mathcal{B}_n\) be the set of labelled rooted-trees on the vertex set \([n]\) with a non-rooted leaf 1. We see that there are bijections \(\mathcal{U}_n \to \mathcal{T}_{n,0}\) and \(\mathcal{B}_n \to \mathcal{A}_n\) obtained by simply changing label \(i \to n - i + 1\) for all \(i\). The bijection \(\eta : \mathcal{T}_{n,0} \to \mathcal{A}_n\) induces a bijection \(\psi : \mathcal{U}_n \to \mathcal{B}_n\). For sake of completeness, we briefly describe construction of the bijection \(\psi\) essentially as in [1].

Let \(T \in \mathcal{U}_n\) with root \(r\). Note that \(r \neq 1\).

Step (1) : Consider a maximal increasing subtree \(T_0\) of \(T\) containing 1. Let \(T_1, \ldots, T_l\) be the subtrees (with at least one edge) of \(T\) obtained by deleting edges in \(T_0\). Let \(r_i\) be the root of \(T_i\) for \(1 \leq i \leq l\). The root \(r\) of \(T\) must be a root of one of the subtrees \(T_j\). Let \(r_j = r\). Then 1 is a leaf of \(T_j\).

Step (2) : If \(T_0\) has \(m\) vertices, then \(T_0\) is determined by an increasing tree \(\overline{T_0}\) on the vertex set \([m]\) and a set \(S_0\) of labels on \(T_0\). We write \(T_0 = (\overline{T_0}, S_0)\).

Step (3) : Let \(\overline{S_0} = (S_0 \setminus \{1\}) \cup \{r\}\). Then \((\overline{T_0}, \overline{S_0})\) determines an increasing subtree \(\overline{T_0}\) with root \(r' = \min \{\overline{S_0}\}\). Graft \(T_j\) on the increasing subtree \(\overline{T_0}\) at the root \(r\) and obtain a tree \(T'_j\). Now graft \(T_i (i \neq j)\) on \(T'_j\) at \(r_i\) and obtain a tree \(T''\) with root \(r'\). Also note that 1 is a non-rooted leaf of \(T''\).

All the above steps can be reversed, thus \(\psi(T) = T''\) defines a bijection \(\psi : \mathcal{U}_n \to \mathcal{B}_n\).

Lemma 28. \(|\mathcal{U}_n| = |\mathcal{B}_n| = (n - 1)^{n-1}\).

Proof. The bijection \(\psi : \mathcal{U}_n \to \mathcal{B}_n\) gives \(|\mathcal{U}_n| = |\mathcal{B}_n|\). The number of labelled rooted-trees on the vertex set \([2,3,\ldots,n]\) by Cayley’s formula is \((n - 1)^{n-2}\). Any tree in \(\mathcal{B}_n\) is obtained uniquely by attaching 1 to any node \(i\) of a labelled rooted tree on the vertex set \([2,3,\ldots,n]\). Since there are exactly \(n - 1\) possibilities for \(i\), we have \(|\mathcal{B}_n| = (n - 1)^{n-2}(n - 1) = (n - 1)^{n-1}\). \(\square\)

For \(n \geq 3\), let \(\mathcal{U}'_n = \{T \in \mathcal{U}_n : 1 \sim n \text{ in } T\}\). We shall determine the image \(\psi(\mathcal{U}'_n) \subseteq \mathcal{B}_n\) of \(\mathcal{U}'_n\) under the bijection \(\psi : \mathcal{U}_n \to \mathcal{B}_n\). Let \(\mathcal{B}'_n = \{T' \in \mathcal{B}_n : 1 \sim n \text{ in } T'\}\). Set

\[
\mathcal{A} = \{T' \in \mathcal{B}'_n : \text{root}(T') = r' = n\},
\]

\[
\mathcal{B}' = \{T' \in \mathcal{B}'_n : \text{root}(T') = r' \neq n \text{ with } r' \sim n \text{ and 1 is a descendent of } n\},
\]

\[
\mathcal{B}'' = \{T' \in \mathcal{B}'_n : \text{root}(T') = r' \neq n \text{ with } r' \sim n\}.
\]

Lemma 29. \(\psi(\mathcal{U}'_n) = \mathcal{A} \amalg \mathcal{B}' \amalg \mathcal{B}''\).

Proof. Let \(T' \in \mathcal{B}'_n\). Then there is a unique \(T \in \mathcal{U}_n\) such that \(T' = \psi(T)\). Let \(r\) and \(r'\) be the roots of \(T\) and \(T'\), respectively. Clearly, \(r \neq 1\). Let \(\text{Son}_T(1)\) be the set of sons of 1 in \(T\). Then from the construction of \(T' = \psi(T)\), \(r' = \min \{\{r\} \cup \text{Son}_T(1)\}\). Also, the leaf 1
in \(T' \) is adjacent to \(j \) if and only if \(j = \text{par}_T(1) \) is the parent of 1 in \(T \). This shows that \(1 \sim n \) in \(T \) if and only if \(1 \sim n \) in \(T' \). Hence, \(\psi(\mathcal{U}'_n) \subseteq \mathcal{B}'_n \). Further, we see that \(r' = n \) if and only if 1 is already a leaf in \(T \), and in this case, \(T' = \psi(T) = T \). In other words, \(\mathcal{A} \subseteq \mathcal{U}'_n \) and \(\psi(T) \) is for all \(T \in \mathcal{A} \).

If \(T' \in \mathcal{B}'', \) then the unique \(T \in \mathcal{U}_n \) with \(\psi(T) = T' \) must have \(1 \sim n \) in \(T \), that is, \(T \in \mathcal{U}'_n \). Now we consider the remaining case. Let \(T' \in \mathcal{B}'_n \) with \(\text{root}(T') = r' \neq n \) and \(r' \sim n \) in \(T' \). We shall show that \(\psi(T) = T' \) for \(T \in \mathcal{U}'_n \) if and only if 1 is a descendant of \(n \) in \(T' \) (or equivalently, \(T' \in \mathcal{B}' \)). Consider the maximal increasing subtree \(T'_0 \) of \(T' \) containing the root \(r'. \) If 1 is a descendant of a leaf \(r'_j \) of \(T'_0 \), then the maximal increasing subtree \(T'_0 \) of \(T' \) containing 1 is obtained by replacing \(r'_j \) with 1 in the vertex set of \(T'_0 \) and labeling it as indicated in Step (2) of the construction of \(\psi \). Clearly, \(r'_j = r \) is the root of \(T. \) If \(r'_j = r \neq n \), then \(1 \sim n \) in \(T \) as \(r' \sim n \) in \(T' \). Thus, if \(r'_j \neq n, \) i.e., 1 is not a descendant of \(n \) in \(T' \), then \(T' \notin \psi(\mathcal{U}'_n) \). On the other hand, if \(r'_j = n, \) i.e., 1 is a descendant of \(n \) in \(T' \) with \(1 \sim n \), then \(\text{root}(T) = r = n \) and \(1 \sim n \) in \(T. \)

Proposition 30. For \(n \geq 3, \) we have \(|\mathcal{U}'_n| = (n - 1)^{n-3}(n-2)^2. \)

Proof. By Lemma 29, we have \(|\mathcal{U}'_n| = |\psi(\mathcal{U}'_n)| = |\mathcal{A}| + |\mathcal{B}'| + |\mathcal{B}''. | \) First we enumerate the subset \(\mathcal{A} = \{ T' \in \mathcal{B}'_n : \text{root}(T') = r' \neq n \} \). The number of labelled trees on the vertex set \(\{2, 3, \ldots, n\} \) with root \(n \) is \((n - 1)^{n-3} \). Since any tree in \(\mathcal{A} \) is uniquely obtained by attaching 1 to any node \(i \in \{2, \ldots, n - 1\} \) of a labelled tree on the vertex set \(\{2, \ldots, n\} \) with root \(n \), we have \(|\mathcal{A}| = (n - 1)^{n-3}(n-2). \)

Let us consider the subset \(\mathcal{C} = \{ T' \in \mathcal{B}'_n : \text{root}(T') = r' \neq n \} \subseteq \mathcal{B}'_n \). Clearly, \(\mathcal{B} = \mathcal{B}' \cup \mathcal{B}'' \supseteq \mathcal{C}. \) The enumeration of \(\mathcal{C} \) is similar to that of \(\mathcal{A} \), except now the root \(r' \in \{2, \ldots, n - 1\} \) can take any one of the \(n - 2 \) values. Thus \(|\mathcal{C}| = (n - 1)^{n-3}(n-2)^2. \) We can easily construct a bijective correspondence between \(\mathcal{A} \) and \(\mathcal{C} \setminus \mathcal{B} \). Let \(T' \in \mathcal{A}. \) Then \(1 \sim n \) in \(T' \) and \(\text{root}(T') = n. \) Consider the unique path from the root \(n \) to the leaf 1 in \(T'. \) As \(1 \sim n \) in \(T' \), the child \(\tilde{r} \) of \(n \) lying on this unique path is different from 1. Let \(T'' \) be rooted tree consisting of the tree \(T' \) with the new root \(\tilde{r}. \) As \(\text{root}(T'') = \tilde{r} \neq n, \tilde{r} \sim n \) and 1 is not a descendant of \(n \) in \(T'' \), we have \(T'' \in \mathcal{C} \setminus \mathcal{B}. \) The mapping \(T' \mapsto T'' \) from \(\mathcal{A} \) to \(\mathcal{C} \setminus \mathcal{B} \) is clearly a bijection. If \(T'' \in \mathcal{C} \setminus \mathcal{B}, \) then \(\text{root}(T'') = \tilde{r} \neq n, \tilde{r} \sim n \) and 1 is not a descendant of \(n \) in \(T'' \). Now unique \(T' \in \mathcal{A} \) that maps to \(T'' \) is the rooted tree obtained from \(T'' \) by taking \(n \) as the new root. Thus \(|\mathcal{A}| = |\mathcal{C} \setminus \mathcal{B}| \) and hence, \(|\mathcal{U}'_n| = |\mathcal{C}| = (n - 1)^{n-3}(n-2)^2. \)

Theorem 31. Let \(e_{p,q} \) be an edge of \(K_{n+1} \) joining distinct vertices \(p, q \in [n]. \) For \(n \geq 3, \) the number of spherical parking functions of \(K_{n+1} - \{e_{p,q}\} \) is given by

\[
|\text{sPF}(K_{n+1} - \{e_{p,q}\})| = |\mathcal{U}'_n| = (n - 1)^{n-3}(n-2)^2.
\]

Proof. In view of Theorem 23 and Remarks 26, the result follows.

Let \(F_l = \{e_{1,n}, e_{1,n-1}, \ldots, e_{1,n-l+1}\} \) be a set of \(l \)-edges through the vertex 1 in the complete graph \(K_{n+1}. \) We consider the graph \(K_{n+1} - F_l \) and ask the following question.

Question 32. What is the number of spherical \((K_{n+1} - F_l) \)-parking functions?

Computations for smaller values of \(n \) and \(l \) indicate that

\[
|\text{sPF}(K_{n+1} - F_l)| = (n - 1)^{n-3}(n-l-1)^2.
\]
5 Spherical $K_{m+1,n}$-parking functions

Let $K_{m+1,n}$ be the complete bipartite graph on the vertex set $V' = [0,m] \bigsqcup [m+1,m+n]$, where $[0,m] = \{0,1,\ldots,m\}$ and $[m+1,m+n] = \{m+1,\ldots,m+n\}$. Let $K_{m+1,n}^{a,b}$ be the complete bipartite multigraph on V'. More precisely, there are a number of edges in $K_{m+1,n}^{a,b}$ between the root 0 and j, while b number of edges between i and j, where $i \in [m]$ and $j \in [m+1,m+n]$.

Proposition 33. We have $|sPF(K_{m+1,n}^{a,b})| = |sPF(K_{n+1,m}^{a,b})|$.

Proof. Let E and E' be the set of all edges of $K_{m+1,n}^{a,b}$ and $K_{n+1,m}^{a,b}$ through the root 0, respectively. On repeatedly applying the Lemma 17, we see that

$$|sPF(K_{m+1,n}^{a,b})| = |sPF(K_{m+1,n}^{a,b} - E)| \quad \text{and} \quad |sPF(K_{n+1,m}^{a,b})| = |sPF(K_{n+1,m}^{a,b} - E')|.$$

Since graphs $K_{m+1,n}^{a,b} - E$ and $K_{n+1,m}^{a,b} - E'$ are obtained from each other by interchanging vertices as $i \leftrightarrow n+i$ and $m+j \leftrightarrow j$ (for $i \in [m], j \in [n]$), $|sPF(K_{m+1,n}^{a,b} - E)| = |sPF(K_{n+1,m}^{a,b} - E')|$.

Although the root 0 is not connected to all the other vertices in the simple complete bipartite graph $K_{m+1,n}$, we can construct a map $\phi_{K_{m+1,n}} : sPF(K_{m+1,n}) \rightarrow \mathcal{U}(K_{m,n})$ as in Theorem 20, where $\mathcal{U}(K_{m,n})$ is the set of uprooted spanning trees of $K_{m,n} = K_{m+1,n} - \{0\}$.

The reduced spherical $K_{m+1,n}$-parking function \widetilde{P} associated to $P \in sPF(K_{m+1,n})$ is given by $\widetilde{P}(j) = \mathcal{P}(j)$ for $1 \leq j \leq m$ and $\widetilde{P}(j) = \mathcal{P}(j) - 1$ for $m+1 \leq j \leq m+n$. We see that $K_{m,n} = K_{m+1,n} - \{0\}$ is the complete bipartite graph on the vertex set $[m] \bigsqcup [m+1,m+n]$. The following statements can be easily verified.

(i) $s\overline{\mathcal{PF}}(K_{m+1,n}) \subseteq \mathcal{PF}(K_{m+1,n})$.

(ii) Let $r = \max\{i \in [m+n] : \widetilde{P}(i) = 0\}$. Then $m+1 \leq r \leq m+n$.

(iii) $\widetilde{P} = \widetilde{P}|_{[m+n]\setminus\{r\}}$ is a $(K_{m,n},r)$-parking function.

(iv) If $\phi : \mathcal{PF}(K_{m,n},r) \rightarrow \mathcal{SPT}(K_{m,n},r)$ is the bijection induced by Depth-First-Search algorithm, then $\phi(\widetilde{P})$ is an uprooted spanning tree of $K_{m,n}$.

Now define a map $\phi_{K_{m+1,n}} : sPF(K_{m+1,n}) \rightarrow \mathcal{U}(K_{m,n})$ given by $\phi_{K_{m+1,n}}(\mathcal{P}) = \phi(\widetilde{P})$ for $\mathcal{P} \in sPF(K_{m+1,n})$. For each $T \in \mathcal{U}(K_{m,n})$, let \mathcal{P}_T be the unique $(K_{m,n},r)$-parking function such that $\phi(\mathcal{P}_T) = T$. Let $\mathcal{U}(K_{m,n}) = \{T \in \mathcal{U}(K_{m,n}) : \mathcal{P}_T(j) \geq 1 \text{ for } j > \text{root}(T)\}$.

Theorem 34. The map $\phi_{K_{m+1,n}} : sPF(K_{m+1,n}) \rightarrow \mathcal{U}(K_{m,n})$ is injective with the image $\mathcal{U}(K_{m,n})$ and $\text{sum}(\mathcal{P}) = m(n-1) - \kappa(K_{m,n}, \phi_{K_{m+1,n}}(\mathcal{P})) + 1$ for all $\mathcal{P} \in sPF(K_{m+1,n})$.

Proof. Proceed as in the proof of Theorems 20 and 22. \qed
Remark 35. The following three statements can be easily verified.

1. \(|sPF(K_{m+1,1})| = 1 = |sPF(K_{1+1,n})|\).
2. Every spanning tree \(T\) of \(K_{m,n}\) with root\((T) = m + n\) lies in \(\overline{U}(K_{m,n})\). Thus
\[|\{P \in sPF(K_{m+1,n}) : \overline{P}(m + n) = 0\}| = |PF(K_{m,n})| = m^{n-1}n^{m-1}.
\]
3. We have \(|sPF(K_{m+1,n}^{a,b})| = b^{m+n}|sPF(K_{m+1,n})|\).

We could not enumerate \(sPF(K_{m+1,n})\) or \(U(K_{m,n})\). Thus we ask the following question.

Question 36. What is the number of spherical \(K_{m+1,n}\)-parking functions?

For \(n = 2\), this question has an easy answer.

Proposition 37. For \(m \geq 1\), \(|sPF(K_{m+1,2})| = (m - 1)2^m + 1\).

Proof. We know that \(|sPF(K_{m+1,2})| = |sPF(K_{m+1,2} - E)|\), where \(E\) is the set of all edges of \(K_{m+1,2}\) through the root 0. Now the \(m\)-skeleton ideal of the (disconnected) graph \(K_{m+1,2} - E\) is given by
\[\mathcal{M}_{K_{m+1,2} - E}^{(m)} = \left\langle x_i^2, y_j^m, y_1y_2, x_1x_2 \cdots x_isy_j^{m-s} : i \in [m]; j = 1, 2 \text{ and } \{i_1, \ldots, i_s\} \subseteq [m] \right\rangle,
\]
where \(y_j = x_{m+j}\) for \(j = 1, 2\). The standard monomials of \(\mathcal{M}_{K_{m+1,2} - E}^{(m)}\) are of the forms \(x_1x_2 \cdots x_isy_1^{\alpha}\) with \(0 \leq \alpha < m - s\) or \(x_1x_2 \cdots x_isy_2^{\beta}\) with \(1 \leq \beta < m - s\). Thus the number of standard monomials of the first type is \(\sum_{s=0}^{m-1} \binom{m}{s}(m-s) = m2^{m-1}\), while that of the second type is \(\sum_{s=0}^{m-1} \binom{m}{s}(m-s-1) = (m - 2)2^{m-1} + 1\).

Acknowledgements

Thanks are due to the referee for helpful comments. The second author is thankful to the Ministry of Education, Government of India for financial support.

References

[1] C. Chauve, S. Dulucq and O. Guibert. Enumeration of some labelled trees. Proceeding of SFCA/FPSAC 2000 (Moscow, June 2000), D. Krobo and A. Mikhalev eds., Springer, pages 146–157, 2000.

[2] A. Dochtermann and R. Sanyal. Laplacian ideals, arrangements, and resolutions. J. Algebraic Combin., 40(3):805–822, 2014.

[3] A. Dochtermann. One-skeleta of G-parking function ideal : resolutions and standard monomials. arXiv:1708.04712v4, 2017.

[4] A. Dochtermann and W. King. Trees, parking functions, and standard monomials of skeleton ideals. arXiv:1806.04289v2, 2018.

[5] P. Gaydarov and S. Hopkins. Parking functions and tree inversions revisited. Adv. in Appl. Math., 80:151–179, 2016.
[6] G. Kreweras. Une famille de polynômes ayant plusieurs propriétés énumératives. *Period. Math. Hungar.*, 11(4):309–320, 1980.

[7] A. Kumar and C. Kumar. Multigraded Betti numbers of multipermutohedron ideals. *J. Ramanujan Math. Soc.*, 28(1):1–18, 2013.

[8] A. Kumar and C. Kumar. Alexander duals of multipermutohedron ideals. *Proc. Indian Acad. Sci.(Math Sci.)*, 124(1):1–15, 2014.

[9] C. Kumar. Steck determinants and parking functions. *Ganita*, 68(1):33–38, 2018.

[10] M. Manjunath, F.-O. Schreyer and J. Wilmes. Minimal free resolutions of the G-parking function ideal and the toppling ideal. *Trans. Amer. Math. Soc.*, 367(4):2853–2874, 2015.

[11] E. Miller and B. Sturmfels. Combinatorial commutative algebra. Graduate Texts in Mathematics 227, Springer-Verlag, New York, 2005.

[12] F. Mohammadi and F. Shokriech. Divisors on graphs, connected flags, and syzygies. *Int. Math. Res. Not. IMRN*, 24:6839–6905, 2014.

[13] D. Perkinson, Q. Yang and K. Yu. G-parking functions and tree inversions. *Combinatorica*, 37(2):269–282, 2017.

[14] J. Pitman and R. P. Stanley. A polytope related to empirical distributions, plane trees, parking functions, and the associahedron. *Discrete and Computational Geometry*, 27:603–634, 2002.

[15] A. Postnikov and B. Shapiro. Trees, parking functions, syzygies, and deformations of monomial ideals. *Trans. Amer. Math. Soc.*, 356:3109–3142, 2004.

[16] R. P. Stanley. Enumerative combinatorics: volume 2. Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, 1999.

[17] C. H. Yan. On the enumeration of generalized parking functions. Proceedings of the 31-st Southeastern International Conference on Combinatorics, *Graph Theory and Computing* (Boca Raton, FL, 2000), *Congressus Numerantium*, 147:201–209, 2000.

[18] C. H. Yan. Parking functions. In *Handbook of enumerative combinatorics*, *Discrete math. Appl.* (Boca Raton), pages 853–893. CRC Press, Boca Raton, FL 2015.