On differential spectra in the reaction $pp \rightarrow K^+\bar{K}^0d$
in the nearthreshold region

V.P.Chernyshev, P.V.Fedorets, A.E.Kudryavtsev, V.E.Tarasov

Institute of Theoretical and Experimental Physics
117259 Moscow, Russia

1. The reactions with production of the lightest scalar mesons are presently the subject
of experimental study by the ANKE collaboration at COSY machine at Jülich [1, 2].
Recently the preliminary results on the reaction

$$pp \rightarrow K^+\bar{K}^0d$$

(1)
at the proton-beam energy $T_p = 2.645$ GeV, obtained in the current experiment at ANKE
spectrometer [3, 4], have been reported. The experiment is going on and has the aim to
observe the scalar $a_0^+(980)$ meson ($I^GJ^{PC} = 1^{-0++}$) in the decay channel $K\bar{K}$
to and study its properties. Note that the allowed $K\bar{K}$-mass interval in the reaction (1) at a given
incident energy is rather narrow ($991.4 < M_{K\bar{K}} < 1037.3$ MeV), i.e. approximately two
times smaller than the expected width of a_0 meson ($\Gamma_a \sim 80$ MeV). Thus, the phase-volume
limitations should already reproduce a resonance-like bump in the $K\bar{K}$-mass spectrum. In
this situation, the observation of a_0 meson in the reaction (1) appears to be not an easy
problem.

The subject of this article is to discuss the possible distributions for different observ-
ables one may expect from the reaction (1) at the incident energy $T_p = 2.645$ GeV. The
modern effective meson-nucleon theories of strong interactions are not able to predict cross
sections for production of heavy mesons ($m_a \sim 1$ GeV) with high accuracy. There exist
theoretical predictions for production rate of a_0 meson in the reaction $NN \rightarrow a_0d$, based on
a meson exchange model [5]. There are also estimations, according to which nonresonance
background in the reaction (1) is expected to be strongly suppressed in comparison with
a_0 contribution (see, Ref. [1]). However, in the present article we consider the problem in
the model-independent way, making use of the conservation laws for quantum numbers in
the reaction (1).

Below we shall discuss the $K^+\bar{K}^0$- and \bar{K}^0d-mass spectra for this reaction with unpolar-
ized particles at different hypotheses for the production amplitude. From the experimental
point of view the $K^+\bar{K}^0$-mass spectrum should be the most sensitive to the possible con-
tribution of a_0^+ resonance in this channel. On the other hand the \bar{K}^0d-mass spectrum may
be essentially influenced by strong final-state \bar{K}^0d interaction (this question in details was
discussed in Ref. [4]). Some comments on the angular distributions will be given.

2. Note that at the incident kinetic energy $T_p = 2.645$ GeV the the reaction (1) is
rather close to threshold regime ($Q = \sqrt{s} - m_d - m_{K^+} - m_{\bar{K}^0} \approx 45.9$ MeV, where \sqrt{s}
is total energy in CMS). Thus, one may expect that contributions of lower partial waves
should dominate. Let us introduce the following notations:
Differential cross section may be written as

\[K \bar{\phi}_1 \]

Here:

- \(K \) - final kaons;
- \(\bar{\phi}_1 \) - polarizaton vector of the deuteron in CMS;
- \(q, L_q \) - relative 3-momentum of kaons and orbital angular momentum, respectively, in the final \(K \bar{K} \) system;
- \(k_1 \) - relative momenta in the final \(\bar{K}d \) system;
- \(k_2 \) - relative momenta of \(K \) meson with respect to the final \(\bar{K}d \) system in CMS.

In what follows, the final particles in the CMS of the reaction (1) are considered to be nonrelativistic and the corresponding momenta are given by the expressions:

\[
q = \sqrt{\frac{2m_K m_{\bar{K}}}{m_K + m_{\bar{K}}}} (m_{\bar{K}} - m_K - m_{\bar{K}}), \quad k = \sqrt{\frac{2(m_K + m_{\bar{K}}) m_d}{m_K + m_{\bar{K}} + m_d}} (\sqrt{s} - m_d - m_{\bar{K}}),
\]

\[
k_1 = \sqrt{\frac{2m_d m_K}{m_d + m_K}} (m_{\bar{K}} - m_d - m_{\bar{K}}), \quad k_2 = \sqrt{\frac{2(m_d + m_{\bar{K}}) m_K}{m_K + m_{\bar{K}} + m_d}} (\sqrt{s} - m_K - m_{\bar{K}}).
\]

Differential cross section may be written as

\[
d\sigma = N |M|^2 q k q m_{K\bar{K}} d\Omega_k d\Omega_q \quad (N = (4\pi)^{-5} p^{-1} s^{-1}).
\]

Here: \(M \) is matrix element; \(\Omega_k \) and \(\Omega_q \) are solid angles for the directions of the momenta \(k \) and \(q \), respectively.

In the simplest approximation, in which the production amplitude \(M \) is constant, the mass spectra are given only by phase-space limitations for the three final particles, i.e.

\[
\frac{d\sigma}{dm_{K\bar{K}}} = N_0 k q, \quad \frac{d\sigma}{dm_{\bar{K}d}} = N_0 k_1 k_2,
\]

where \(N_0 = (4\pi)^2 N |M|^2 = const \). The distributions (4) are shown in Fig.1a and Fig.1b (dotted curves) and are symmetric.

However, the approximation \(M = const \) corresponds to the forbidden case \(L_k = L_q = 0 \). Note that since the final \(K^+ \bar{K}^0 d \) system in the reaction (1) has isospin 1 the case \(L_k = L_q = 0 \) is forbidden due to parity, angular momentum and isospin conservation laws and Pauli principle. Thus, the possible lowest-partial-wave contributions correspond to the cases: \(L_k = 1, L_q = 0 \) and/or \(L_k = 0, L_q = 1 \). In both these cases the initial \(NN \) system has the total spin \(S = 1 \) and the orbital angular momentum \(L_p = 1 \) or \(L_p = 3 \) (see also Refs. 5, 6).

3. The case \(L_k = 1, L_q = 0 \). Nonresonance production of \(K\bar{K} \)-system. In this case the reaction amplitude should be linear in \(k \) and contain odd powers (\(\leq 3 \)) of the initial relative momentum \(p \). This amplitude may be written in the general form

\[
M = a (p \cdot S) (k \cdot e^*) + b (p \cdot k) (S \cdot e^*) + c (k \cdot S) (p \cdot e^*) + d (p \cdot S) (p \cdot e^*) (k \cdot p).
\]

Hereafter: \(e \) is the polarization vector of the deuteron and \(S = \phi_1^T \sigma_2 \phi_2 \), where \(\phi_1 \) and \(\phi_2 \) are the spinors of the initial nucleons. The coefficients \(a, b, c \) and \(d \) are independent
complex scalar amplitudes. In terms of amplitudes a, b, c, i.e. omitting amplitude d, the expression (3) was also discussed in Ref. [2]. The matrix element (4), when squared and averaged (summed) over the polarizations of the initial nucleons (final deuteron), gives

$$\frac{d^2\sigma}{dm_{KK}d\Omega_k} = 4\pi N (A + B\cos^2\theta) k^3 q,$$

(6)

where θ is the CM polar angle of outgoing $K\bar{K}$ system with respect to the proton beam in the reaction (1) and

$$A = \frac{1}{2}(|a|^2 + |c|^2) p^2, \quad B = \left[|b|^2 + \frac{1}{2}|b + p^2d|^2 + \text{Re} \left(a^*c + (a + c)^*(b + p^2d)\right)\right] p^2.$$

(7)

The values A and B in Eq. (6) are known if any concrete model is used. If $a = c = 0$ in Eq. (3) then $A = 0$ and $d^2\sigma/dm_{KK}d\Omega_k \sim \cos^2\theta$. On the other hand, $d^2\sigma/dm_{KK}d\Omega_k$ should be flat with respect to $\cos\theta$ if $B = 0$. The latter is valid if $a = b = d = 0$ or $c = b = d = 0$ in Eq. (3). The amplitude (3) is always necessarily leads to flat distribution on Ω_q (angular distribution of outgoing kaon in the rest frame of the $K^+\bar{K}^0$-system. For the $K^+\bar{K}^0$- and K^0d-mass distributions one gets

$$\frac{d\sigma}{dm_{KK}} = N_1 k^3 q, \quad \frac{d\sigma}{dm_{Kd}} = N_1 \left[k_1^2 + \left(\frac{m_d}{m_{K^0} + m_d}\right)^2 k_2^2\right] k_1 k_2,$$

(8)

where $N_1 = (4\pi)^2 N (A + B/3) = \text{const}$. The distributions (8) are shown in Fig.1a and Fig.1b by solid curves 1.

4. The case $L_k = 1$, $L_q = 0$. Resonance production of $K\bar{K}$-system. Consider now the case of a pure resonance production of $K\bar{K}$ system through the chain

$$pp \rightarrow a_0^+ d \rightarrow K^+\bar{K}^0 d.$$

(9)

In this case the expression (3) should be considered as the amplitude of a_0^+-meson production in the reaction $pp \rightarrow a_0^+ d$. To obtain the amplitude of the reaction (3) we should multiply the expression (4) by the a_0-meson propagator and by the constant g_{aKK} of the decay $a_0^+ \rightarrow K^+\bar{K}^0$. Note that angular distributions for resonance production mechanism are identical to those for nonresonance case, discussed above in Section 3. For the mass spectra we have

$$\frac{d\sigma}{dm_{KK}} = N_2 |\Pi_a(m_{KK})|^2 k^3 q, \quad \frac{d\sigma}{dm_{Kd}} = \frac{1}{2} N_2 k_1 k_2 \int k^2 |\Pi_a(m_{KK})|^2 dz'.$$

(10)

Here: $N_2 = (4\pi)^2 N (A + B/3)(g_{aKK}/2m_a)^2 = \text{const}; \; \Pi_a(m) = (m - m_a + i\Gamma(m)/2)^{-1}$ is the nonrelativistic a_0 propagator; m_a is the nominal mass of a_0^+ meson; $z' = \theta'$ and θ' is

1 The maximal value $L_p = 3$ for orbital momentum of the initial nucleons is taken into account in Eq. (1). All the amplitudes a, b, c and d may be expressed through vertex constants of some effective Lagrangian for the reaction (1). This amplitudes may also depend on the total energy \sqrt{s}. One may consider them to be a constants if \sqrt{s} is fixed.
the angle between the directions of outgoing \bar{K}^0 and K^+ mesons in the rest frame of \bar{K}^0d system. For the width $\Gamma(m)$ in $\Pi_a(m_{\bar{K}K})$ we use the analytic expression (Flatte [4]):

$$\Gamma(m) = g_1 q_1 + g q,$$

(11)

where q_1 is relative momentum in the $a_0 \rightarrow \pi + \eta$ decay channel, taken at $m = m_a$, and q is the relative momentum in the $K\bar{K}$ system (see Eqs. (4)). We use the parameters $m_a = 998$ MeV, $g_1 = 0.243$ and $g = 0.221$ for a_0^+ meson from Ref [8].

To calculate the integral in the expression for $d\sigma/dm_{\bar{K}d}$ (10) one should express the values k^2 and $m_{\bar{K}K}$ in terms of variable z'. The effective mass $m_{\bar{K}K}$ can be expressed through the value q^2 according to Eqs. (2). The expressions for k^2 and q^2 in terms of the variable z' are the following:

$$k^2 = k_1^2 + \beta^2 k_2^2 + 2\beta k_1 k_2 z', \quad q^2 = \alpha_1^2 k_1^2 + \beta_1^2 k_2^2 - 2\alpha_1\beta_1 k_1 k_2 z',$$

(12)

$$\beta = \frac{m_d}{m_{\bar{K}} + m_d}, \quad \alpha_1 = \frac{m_K}{m_{\bar{K}} + m_K}, \quad \beta_1 = \frac{m_K (m_{\bar{K}} + m_K + m_d)}{(m_{\bar{K}} + m_K) (m_{\bar{K}} + m_d)}.$$

The distributions (10) are shown in Fig.1a and Fig.1b by dashed curves.

5. The case $L_k = 0$, $L_q = 1$. Nonresonance production of p-wave $K\bar{K}$-system in s wave with respect to deuteron. The amplitude of the reaction (1) in this case may be written in the form (4), where k is substituted by q, i.e.

$$M = a (p \cdot S) (q \cdot e^*) + b (p \cdot q) (S \cdot e^*) + c (q \cdot S) (p \cdot e^*) + d (p \cdot S) (p \cdot e^*) (q \cdot p).$$

(13)

The values a, b, c and d are also taken to be constants. Using this amplitude, one gets

$$\frac{d^2\sigma}{dm_{\bar{K}K} d\Omega_q} = 4\pi N (A + B \cos^2 \theta_1) k q^3,$$

(14)

Here: A and B are the constants, given in Eqs. (7); θ_1 is the angle of outgoing \bar{K}^0 meson with respect to the proton beam in the rest frame of K^0d system. If $a = c = 0$ in Eq. (13) then $A = 0$ and $d^2\sigma/dm_{\bar{K}d} d\Omega_q \sim \cos^2 \theta_1$. On the other hand, if $a = b = d = 0$ or $c = b = d = 0$ then $B = 0$ and the distribution (14) should be flat with respect to $\cos \theta_1$. In any case the amplitude (13) leads to flat angular distribution on Ω_k.

The $K^+\bar{K}^0$- and \bar{K}^0d-mass distributions are the following:

$$\frac{d\sigma}{dm_{\bar{K}K}} = N_1 k q^3, \quad \frac{d\sigma}{dm_{\bar{K}d}} = N_1 (\alpha_1^2 k_1^2 + \beta_1^2 k_2^2) k_1 k_2,$$

(15)

where $N_1 = (4\pi)^2 N (A + B/3) = const$. The values α_1 and β_1 are given in Eqs. (12). These distributions are shown in Fig.1a and Fig.1b by solid curves 2.

6. Let us here discuss the results. Looking at $K^+\bar{K}^0$-mass distributions in Fig. 1a, one can see that this mass spectrum is very sensitive to the choice of the partial-wave amplitude of the reaction. The cases $L_k = 1$, $L_q = 0$ (solid curve 1 and dashed curve) and
\(L_k = 0, \ L_q = 1 \) (solid curve 2) correspond to strongly different \(K^+\bar{K}^0 \)-mass distributions. Generally the experimental data may correspond to some intermediate case as well as to confirm one of these two limiting cases. The preliminary results \[4\] seem to confirm the variant with \(L_k = 1, \ L_q = 0 \). This variant looks like more as the argument in favour of \(a_0^+ \)-resonance hypothesis than against it. However, since the data \[4\] are preliminary and the experiment is going on, the situation may also change.

Comparing \(K^+\bar{K}^0 \)-mass spectra for resonance (solid curve 1) and nonresonance (dashed curve) hypotheses, one can see that these distributions are not drastically different. That is why to separate \(a_0^+ \)-resonance and nonresonance mechanisms of the reaction (1) at low incident energy \(T_p = 2645 \text{ MeV} \) seems to be not an easy problem.

The \(K^0d \)-mass spectra in Fig. 1b are less sensitive to the choice of the production amplitude. The spectra shown by solid curves 1 and 2 are rather different, but in the case of \(L_k = 1, \ L_q = 0 \) the \(a_0^+ \)-resonance and nonresonance hypotheses correspond to approximately the same distributions (dashed curve and solid curve 1). The \(K^0d \)-mass spectrum is more interesting in connection with effects of final state interaction (FSI) of \(K^0 \) mesons with deuteron. This question was thoroughly studied in Ref. \[7\], and it was found that the calculated mass spectra were essentially influenced by strong \(K^0d \) FSI, when the latter was taken into account. Here the following remark is also possible. Suppose the pure \(a_0^+ \)-production mechanism in the reaction (1). The FSI process \(a_0d \rightarrow K\bar{K}d \) leads to the contribution, which looks like a background for \(a_0 \). This subprocess may also essentially contribute to the partial waves with \(L_k = 0 \) and \(L_q = 1 \) in the total amplitude of the reaction (1) and modify \(K\bar{K} \)-mass spectrum. The observation of the FSI-induced desintegration of \(a_0^+ \) meson should be a serious argument in favour of the molecular hypothesis \[10\] of \(a_0 \) meson.

Two of us (A.E.K. and V.E.T.) are thankful to the DFG-RFFI grant for the financial support.

References

[1] V.P. Chernyshev et al., COSY proposal #55 'Study of \(a_0^+ \) mesons at ANKE' (1997); L.A. Kondratyuk et al., Preprint ITEP 18-97, Moscow (1997).

[2] Workshop on \(a_0(980) \) physics with ANKE, M.Büscher and V.Kleber (eds.), Berichte des Forschungszentrum Jülich, 2000.

[3] M.Büscher (spokesperson) et al, Status report for COSY experiment #55, March 16, 2001.

[4] V.Kleber. The talk given at Workshop on Strangeness Production in \(pp \) and \(pA \) Interactions at ANKE, June 21/22 2001, PNPI, Gatchina. Berichte des Forschungszentrum Jülich, Jül-3922, ISSN 0944-2952 (Nov. 2001).

[5] V.Yu. Grishina, L.A. Kondratyuk, E.L. Bratkovskaya, M. Büscher, and W. Cassing, Eur.Phys.G. A 9, 277 (2000); nucl-th/0007074 (2000).
[6] A.E. Kudryavtsev, V.E. Tarasov. In. Proc. of ANKE 2000 Workshop, Jülich 3801, p.151; JETP Lett., 72, 410 (2000); nucl-th/0102053, Feb 2001.

[7] E. Oset, Jose A. Oller, Ulf-G. Meissner, nucl-th/0109050, Sep 2001.

[8] S. Teige, B.B. Brabson, R.R. Crittenden, et al. [E852 Collaboration], “Properties of the $a_0(980)$ meson”, Phys. Rev. D 59 (1999) 012001.

[9] S.M. Flatte, Phys.Lett., 63, 224 (1976).

[10] J.Weinstein and N.Isgur, Phys.Rev.D 41, 2236 (1990).
Figure 1: Mass spectra of $K^+\bar{K}^0$ (a) and \bar{K}^0d (b) systems in the reaction (1) at $T_p = 2645$ MeV. All distributions are normalized to 1 at the maximal values. Solid curves 1: nonresonance production with $L_k = 1$, $L_q = 0$. Solid curves 2: nonresonance production with $L_k = 0$, $L_q = 1$. Dashed curves: pure a_0-meson production ($L_k = 1$, $L_q = 0$). Dotted curves: pure phase-spase distributions (this case corresponds to $L_k = L_q = 0$ and is forbidden).