NONASSOCIATIVE CYCLIC EXTENSIONS OF FIELDS AND CENTRAL SIMPLE ALGEBRAS

C. BROWN AND S. PUMPLÜN

Abstract. We define nonassociative cyclic extensions of degree \(m \) of both fields and central simple algebras over fields. If a suitable field contains a primitive \(m \)th (resp., \(q \)th) root of unity, we show that suitable nonassociative generalized cyclic division algebras yield nonassociative cyclic extensions of degree \(m \) (resp., \(qs \)). Some of Amitsur’s classical results on non-commutative associative cyclic extensions of both fields and central simple algebras are obtained as special cases.

Introduction

Analogously as both for commutative field extensions [6, 2, 3, 26] and for associative cyclic extensions of fields and central simple algebras [5], nonassociative cyclic extensions of degree \(m \) of a field or a central division algebra are investigated separately for prime characteristics and for the case that the characteristic is zero or a prime \(p \) with \(\gcd(p, m) = 1 \). Nonassociative cyclic extensions of degree \(p \) in characteristic \(p \) were already studied in [18].

Let \(D \) be a finite-dimensional central division algebra over a field \(K \). An (associative) central division algebra \(A \) over a field \(F \) is called a non-commutative cyclic extension of degree \(m \) of \(D \) over \(K \), if \(\text{Aut}_F(A) \) has a cyclic subgroup of automorphisms of order \(m \) which are all extended from \(id_D \), and if \(A \) is a free left \(D \)-module of rank \(m \) [5]. For instance, if \(F \) contains a primitive \(m \)th root of unity, then generalized cyclic algebras \((D,\sigma,a)\) are cyclic extensions of \(D \) of degree \(m \) [5, Theorem 6]. We recall that a generalized cyclic algebra \((D,\sigma,a)\) is a quotient algebra \(D[t;\sigma]/(t^m-a)D[t;\sigma] \), where \(D[t;\sigma] \) is a twisted polynomial ring, \(\sigma \in \text{Aut}(D) \) is an automorphism such that \(\sigma|_K \) has finite order \(m \), \(F_0 = \text{Fix}(\sigma) \cap K \), and \(f(t) = t^m - a \in D[t;\sigma] \) with \(d \in F_0^\times \). The special case where \(D = F \) and \(F_0 = \text{Fix}(\sigma) \) yields the cyclic algebra \((F/F_0,\sigma,a)\) [12, p. 19].

A finite-dimensional central simple algebra \(A \) over \(F \) is called a G-crossed product if it contains a maximal field extension \(K/F \) which is Galois with Galois group \(G = \text{Gal}(K/F) \). If \(G \) is solvable then \(A \) is called a solvable G-crossed product. In [9] we revisited a result by Albert [1] on solvable crossed products and gave a proof for Albert’s result using generalized cyclic algebras following Petit’s approach [17], proving that a G-crossed product is solvable if and only if it can be constructed as a chain of generalized cyclic algebras. Hence any solvable G-crossed product division algebra is always a generalized cyclic division algebra. In particular, hence if \(F \) contains a primitive \(m \)th root of unity, solvable crossed product division algebras over \(F \) are non-commutative cyclic extensions.

2010 Mathematics Subject Classification. Primary: 17A35; Secondary: 17A60, 16S36.

Key words and phrases. Skew polynomial, Ore polynomial, cyclic algebra, cyclic extension.
A generalization of associative cyclic extensions of simple rings instead of division rings was considered in [13].

In this paper, we define and investigate nonassociative cyclic extensions of degree m of both fields and central simple algebras employing nonassociative generalized cyclic division algebras: Let A be a unital nonassociative division algebra. Then A is called a nonassociative cyclic extension of D of degree m, if A is a free left D-module of rank m and $\text{Aut}(A)$ has a cyclic subgroup G of order m, such that for all $H \in G, H|_D = id_D$.

We show that if F contains a primitive mth root of unity (i.e., F has characteristic 0 or characteristic p with $gcd(m, p) = 1$), then the nonassociative generalized cyclic division algebras $(D, \sigma, a) = D[t; \sigma]/(t^m - a)D[t; \sigma]$ with $a \in D^\times$ are nonassociative cyclic extensions of D of degree m. Additionally, the subgroup of order m in $\text{Aut}_F(D, \sigma, a)$ that consists of automorphisms extending id_D contains only inner automorphisms (Corollary 10). We also investigate the structure of the automorphism groups of nonassociative generalized cyclic algebras in general.

Note that nonassociative cyclic division algebras $(K/F, \sigma, a)$ are a special case of nonassociative generalized cyclic division algebras. If F contains a primitive mth root of unity the nonassociative cyclic division algebras $(K/F, \sigma, a)$ are nonassociative cyclic extensions of K of degree m. The subgroup of the automorphisms extending id_K has order m, is isomorphic to $\ker(N_{K/F})$, and contains only inner automorphisms. If F has no non-trivial mth root of unity and $a \in K^\times$ is not contained in any proper subfield of K, all automorphisms of $(K/F, \sigma, a)$ are inner and leave id_K fixed (Theorem 3).

We point out that nonassociative generalized cyclic algebras have been recently successfully used both in constructing space-time block codes and linear codes [19, 20, 21, 22].

The paper is organized as follows: After introducing the basic terminology in Section 1, we define nonassociative cyclic extensions and nonassociative generalized cyclic algebras in Section 2 and investigate nonassociative cyclic extensions of a field. In Section 3 we show when generalized cyclic division algebras (D, σ, d) are nonassociative cyclic extensions of D of degree m. We briefly look at the question when a nonassociative overring is a nonassociative cyclic extension of a field or a central simple algebra in Section 4.

The results presented in this paper complements the ones for the nonassociative algebras $(K, \delta, d) = K[t; \delta]/K[t; \delta]f(t)$ for $f(t) = t^p - t - d \in K[t; \delta]$ constructed using a field K of characteristic p together with some derivation δ with minimum polynomial $g(t) = t^p - t \in F[t]$, $F = \text{Const}(\delta)$, and of the nonassociative algebras $(D, \delta, d) = D[t; \delta]/D[t; \delta]f(t)$ for $f(t) = t^p - t - d \in D[t; \delta]$ constructed using a division algebra D, where the derivation δ has minimum polynomial $g(t) = t^p - t \in F[t]$ and the field F characteristic p. [18].

1. Preliminaries

1.1. Nonassociative algebras. Let F be a field and let A be an F-vector space. A is an algebra over F if there exists an F-bilinear map $A \times A \to A$, $(x, y) \mapsto x \cdot y$, denoted simply by juxtaposition xy, the multiplication of A. An algebra A is called unital if there is an
element in A, denoted by 1, such that $1x = x1 = x$ for all $x \in A$. We will only consider unital algebras without saying so explicitly.

The **associator** of A is given by $[x, y, z] = (xy)z - x(yz)$. The left nucleus of A is defined as $\text{Nuc}_l(A) = \{ x \in A \mid [x, A, A] = 0 \}$, the middle nucleus of A is $\text{Nuc}_m(A) = \{ x \in A \mid [A, x, A] = 0 \}$ and the right nucleus of A is $\text{Nuc}_r(A) = \{ x \in A \mid [A, A, x] = 0 \}$. $\text{Nuc}_l(A)$, $\text{Nuc}_m(A)$, and $\text{Nuc}_r(A)$ are associative subalgebras of A. Their intersection $\text{Nuc}(A) = \{ x \in A \mid [x, A, A] = [A, x, A] = [A, A, x] = 0 \}$ is the **nucleus** of A. $\text{Nuc}(A)$ is an associative subalgebra of A containing $F1$ and $x(yz) = (xy)z$ whenever one of the elements x, y, z lies in $\text{Nuc}(A)$. The **center** of A is $C(A) = \{ x \in A \mid x \in \text{Nuc}(A) \}$ and $xy = yx$ for all $y \in A$.

An algebra $A \neq 0$ is called a **division algebra** if for any $a \in A$, $a \neq 0$, the left multiplication with a, $L_a(x) = ax$, and the right multiplication with a, $R_a(x) = xa$, are bijective. If A has finite dimension over F, A is a division algebra if and only if A has no zero divisors [24, pp. 15, 16]. An element $0 \neq a \in A$ has a left inverse $a_l \in A$, if $R_a(a_l) = a_l a = 1$, and a right inverse $a_r \in A$, if $L_a(a_r) = a_r a = 1$. If $m_r = m_l$ then we denote this element by m^{-1}.

An automorphism $G \in \text{Aut}_F(A)$ is an inner automorphism if there is an element $m \in A$ with left inverse m_l such that $G(x) = (m_l x)m$ for all $x \in A$. We denote such an automorphism by G_m. The set of inner automorphisms $\{ G_m \mid m \in \text{Nuc}(A) \}$ is a subgroup of $\text{Aut}_F(A)$. Note that if the nucleus of A is commutative, then for all $0 \neq n \in \text{Nuc}(A)$, $G_n(x) = (n^{-1} x)n = n^{-1} xn$ is an inner automorphism of A such that $G_n|_{\text{Nuc}(A)} = \text{id}|_{\text{Nuc}(A)}$.

1.2. Division algebras obtained from twisted polynomial rings

Let D be a unital division ring and σ a ring automorphism of D. The **twisted polynomial ring** $D[t; \sigma]$ is the set of polynomials $a_0 + a_1 t + \cdots + a_n t^n$ with $a_i \in D$, where addition is defined term-wise and multiplication by $ta = \sigma(a) t \ (a \in D)$ [16]. That means, $at^n b t^m = a \sigma^n(b) t^{n+m}$ and $t^n a = \sigma^n(a) t^n$ for all $a, b \in D$ [12, p. 2]. $R = D[t; \sigma]$ is a left principal ideal domain and there is a right division algorithm in R, i.e. for all $g, f \in R$, $f \neq 0$, there exist unique $r, q \in R$ such that $\deg(r) < \deg(f)$ and $g = qf + r$ [12, p. 3]. (Our terminology is the one used by Petit [17] and different from Jacobson’s [12], who calls what we call right a left division algorithm and vice versa.)

An element $f \in R$ is **irreducible** in R if it is no unit and it has no proper factors, i.e there do not exist $g, h \in R$ such that $f = gh$ [12, p. 11].

Let $f \in D[t; \sigma]$ be of degree m and let mod_f, f denote the remainder of right division by f. Then the vector space $R_m = \{ g \in D[t; \sigma] \mid \deg(g) < m \}$ together with the multiplication

$$g \circ h = gh \mod_f$$

becomes a unital nonassociative algebra $S_f = (R_m, \circ)$ over $F_0 = \{ z \in D \mid zh = hz \text{ for all } h \in S_f \}$ (cf. [17, (7)]), and F_0 is a subfield of D. We also denote this algebra R/Rf.

We note that when $\deg(g) + \deg(h) < m$, the multiplication of g and h in S_f is the same as the multiplication of g and h in R [17, (10)].

A twisted polynomial $f \in R$ is **right-invariant** if $fR \subset Rf$. If f is right invariant then Rf is a two-sided ideal and conversely, every two-sided ideal in R arises this way.

S_f is associative if and only if f is right-invariant. In that case, S_f is the usual quotient algebra $D[t; \delta]/(f)$ [17, (9)].
2. Nonassociative Generalized Cyclic Algebras and Nonassociative Cyclic Extensions

In the following, let D be a division algebra which is finite-dimensional over its center $F = C(D)$ and $\sigma \in \text{Aut}(D)$ such that $\sigma|_F$ has finite order m and fixed field $F_0 = \text{Fix}(\sigma) \cap F$. Note that F/F_0 is automatically a cyclic Galois field extension of degree m with $\text{Gal}(F/F_0) = \langle \sigma|_F \rangle$.

2.1. Following Jacobson [12, p. 19], an (associative) generalized cyclic algebra is an associative algebra $S_f = D[t; \sigma]/D[t; \sigma]f$ constructed using a right-invariant twisted polynomial

$$f(t) = t^m - d \in D[t; \sigma]$$

with $d \in F_0^\times$. We write (D, σ, d) for this algebra. If D is a central simple algebra over F of degree n, then (D, σ, d) is a central simple algebra over F_0 of degree mn and the centralizer of D in (D, σ, d) is F [12, p. 20]. In particular, if $D = F$, F/F_0 is a cyclic Galois extension of degree m with Galois group generated by σ and $f(t) = t^m - d \in F[t; \sigma]$, we obtain the cyclic algebra $(F/F_0, \sigma, d)$ of degree m.

This definition generalizes to nonassociative algebras as follows:

Definition 1. A nonassociative generalized cyclic algebra of degree mn is an algebra $S_f = D[t; \sigma]/D[t; \sigma]f$ over F_0 with $f(t) = t^m - d \in D[t; \sigma]$, $d \in D^\times$. We denote this algebra by (D, σ, d).

The algebra $A = (D, \sigma, d)$, $d \in D^\times$, has dimension m^2n^2 over F_0. In particular, if $D = F$ and F/F_0 is a cyclic Galois extension of degree m with Galois group generated by σ, then $(F/F_0, \sigma, d)$ is a nonassociative cyclic algebra [25]. A is associative if and only if $d \in F_0$. If (D, σ, d) is not associative then $\text{Nuc}_l(A) = \text{Nuc}_m(A) = D$ and $\text{Nuc}_r(A) = \{g \in S_f \mid fg \in Rf\}$.

(D, σ, d) is a division algebra over F_0 if and only if $f(t) = t^m - d \in D[t; \sigma]$ is irreducible [17, (7)]. Moreover, we know that $f(t) = t^2 - d \in D[t; \sigma]$ is irreducible if and only if $\sigma(z)z \neq d$ for all $z \in D$, $f(t) = t^3 - d \in D[t; \sigma]$ is irreducible if and only if $d \neq \sigma^2(z)\sigma(z)z$ for all $z \in D$, and $f(t) = t^4 - d \in D[t; \sigma]$ is irreducible if and only if

$$\sigma^2(y)\sigma(y)y + \sigma^2(x)y + \sigma^2(y)\sigma(x) \neq 0 \text{ or } \sigma^2(x)x + \sigma^2(y)\sigma(y)x \neq d$$

for all $x, y \in D$ (cf. [17] or [19], [7, Theorem 3.19], see also [11]). More generally, if F_0 contains a primitive mth root of unity and m is prime then $f(t) = t^m - d \in D[t; \sigma]$ is irreducible if and only if $d \neq \sigma^{m-1}(z) \cdots \sigma(z)z$ for all $z \in D$ ([7, Theorem 3.11], see also [19, Theorem 6]).

Amitsur’s definition [5] of cyclic extensions generalizes to the nonassociative setting as follows:

Definition 2. Let $m \geq 2$. Let A be a nonassociative division algebra with center F_0 and D an associative division algebra with center F. Then A is a nonassociative cyclic extension of D of degree m, if A is a free left D-module of rank m and $\text{Aut}(A)$ has a cyclic subgroup G of order m, such that for all $H \in G$, $H|_D = id$.

2.2. Nonassociative cyclic extensions of a field. For a nonassociative cyclic algebra
\((K/F, \sigma, d)\) of degree \(m\), and for all \(k \in K\) such that \(N_{K/F}(k) = 1\), the map

\[H_{id,k}(\sum_{i=0}^{m-1} a_i t^i) = a_0 + \sum_{i=1}^{m-1} a_i \left(\prod_{l=0}^{i-1} \sigma(l)(k) \right) t^i \]

is an inner \(F\)-automorphism of \((K/F, \sigma, d)\) extending \(id_K\). The subgroup generated by the automorphisms \(H_{id,k}\) is isomorphic to \(\ker(N_{K/F})\) [8, Theorem 19].

The maps \(H_{id,k}\) are the only \(F\)-automorphisms of \((K/F, \sigma, d)\), unless for some \(j \in \{1, \ldots, m-1\}\), \(\sigma^j\) can be extended to an \(F\)-automorphism of \((K/F, \sigma, d)\) as well. More precisely, the automorphism \(\tau = \sigma^j\) with \(j \in \{1, \ldots, m-1\}\) can be extended to an \(F\)-

automorphism \(H\) of \((K/F, \sigma, d)\), if and only if there is an element \(k \in K\) such that

(1) \(\sigma^j(d) = N_{K/F}(k)d.\)

The extension then has the form \(H = H_{\tau,k}\) with

(2) \(H_{\tau,k}(\sum_{i=0}^{m-1} a_i t^i) = \tau(a_0) + \sum_{i=1}^{m-1} \tau(a_i) \left(\prod_{l=0}^{i-1} \sigma(l)(k) \right) t^i \)

[8, Theorem 4]. We then immediately get the following partial generalization of [5, Theorem 6]:

Theorem 1. Suppose \(F\) contains a primitive \(m\)th root of unity \(\omega\), \(A = (K/F, \sigma, d)\) is a nonassociative cyclic division algebra of degree \(m\) over \(F\), and \(d \in K \setminus F\). Then \(A\) is a nonassociative cyclic extension of \(K\) of degree \(m\). The generating automorphism of the subgroup of \(\text{Aut}_F(A)\) of order \(m\) is given by \(H_{id,\omega}\).

Proof. \(\langle H_{id,\omega} \rangle\) is a cyclic subgroup of \(\text{Aut}_F(A)\) of order \(m\) by [8, Theorem 20]. It consists of automorphisms extending \(id_K\), therefore \(A\) is a nonassociative cyclic extension of \(K\). \(\square\)

Corollary 2. If \(m\) is prime, \(F\) contains a primitive \(m\)th root of unity and \(K/F\) is a cyclic Galois extension of degree \(m\), then \(K\) has a nonassociative cyclic extension of degree \(m\).

Proof. Let \(d \in K \setminus F\) and suppose \(\text{Gal}(K/F) = \langle \sigma \rangle\). Then since \(m\) is prime, the nonassociative cyclic algebra \(A = (K/F, \sigma, d)\) is a division algebra [25, Corollary 4.5]. Thus \(A\) is a nonassociative cyclic extension of \(K\) by Theorem 1. \(\square\)

If \(F\) has no non-trivial \(m\)th root of unity, we obtain:

Theorem 3. Suppose \(F\) has no non-trivial \(m\)th root of unity. Let \(A = (K/F, \sigma, d)\) be a nonassociative cyclic algebra of degree \(m\) where \(d \in K^\times\) is not contained in any proper subfield of \(K\). Then every \(F\)-automorphism of \(A\) leaves \(K\) fixed and

\[\text{Aut}_F(A) \cong \ker(N_{K/F}).\]

In particular, all automorphisms of \(A\) are inner.
Proof. Every automorphism of A has the form $H_{id,k}$; suppose that there exist $j \in \{1, \ldots, m-1\}$ and $k \in K^\times$ such that $H_{\sigma^j,k} \in \text{Aut}_F(A)$. This implies $H^2_{\sigma^j,k} = H_{\sigma^j,k} \circ H_{\sigma^j,k} \in \text{Aut}_F(A)$ and

$$H^2_{\sigma^j,k} \left(\sum_{i=0}^{m-1} x_i t^i \right) = \sigma^{2j}(x_0) + \sum_{i=1}^{m-1} \sigma^{2j}(x_i) \left(\prod_{q=0}^{i-1} \sigma^{i+q}(k) \sigma^q(k) \right) t^i.$$

(3)

Now $H^2_{\sigma^j,k}$ must have the form $H_{\sigma^{3j},l}$ for some $l \in K^\times$, and comparing (2) and (3) yields $l = k \sigma^j(k)$. Similarly, $H^2_{\sigma^{3j},k} = H_{\sigma^{3j},s} \in \text{Aut}_F(A)$ where $s = k \sigma^j(k) \sigma^{2j}(k)$. Continuing in this manner we conclude that the automorphisms $H_{\sigma^j,k}, H_{\sigma^{3j},l}, H_{\sigma^{3j},s}, \ldots$ all satisfy (1) implying that

$$\sigma^i(d) = N_{K/F}(k)d,$$

$$\sigma^{2j}(d) = N_{K/F}(k\sigma^j(k))d = N_{K/F}(k)^2d,$$

$$\vdots$$

$$d = \sigma^{nj}(d) = N_{K/F}(k)^n d,$$

where $n = m/\gcd(j,m)$ is the order of σ^j. Note that $\sigma^{3j}(d) \neq d$ for all $i \in \{1, \ldots, n-1\}$ since d is not contained in any proper subfield of K. Therefore $N_{K/F}(k)^n = 1$ and $N_{K/F}(k)^i \neq 1$ for all $i \in \{1, \ldots, n-1\}$ by (4), i.e. $N_{K/F}(k)$ is a primitive nth root of unity, thus also an mth root of unity, a contradiction. This proves the assertion. \square

Note that if $d \in K^\times$ is not contained in any proper subfield of K then $1, d, \ldots, d^{m-1}$ are linearly independent over F and thus A is a division algebra [25]. In particular, if m is prime then $1, d, \ldots, d^{m-1}$ are linearly independent over F. This yields for a field F of arbitrary characteristic:

Corollary 4. Suppose that F has no non-trivial mth root of unity. If $d \in K^\times$ is not contained in any proper subfield of K (e.g. if m is prime), and $\ker(N_{K/F})$ has a subgroup of order m, then any cyclic algebra $A = (K/F, \sigma, d)$ is a cyclic extension of K of degree m.

Example 5. Let $K = \mathbb{F}_q^m$ be a finite field, $q = p^r$ for some prime p, σ an automorphism of K of order $m \geq 2$ and $F = \text{Fix}(\sigma) = \mathbb{F}_q$, i.e. K/F is a cyclic Galois extension of degree m with $\text{Gal}(K/F) = \langle \sigma \rangle$. Then $\ker(N_{K/F})$ is a cyclic group of order $s = (q^m - 1)/(q - 1)$ and any division algebra $(K/F, \sigma, d)$ has exactly s inner automorphisms, all of them extending id_K. The subgroup they generate is cyclic and isomorphic to $\ker(N_{K/F})$ [10]. Hence if m divides s, which is the case if F contains a primitive mth root of unity, then there is a subgroup of automorphisms of order m extending id_K and hence $(K/F, \sigma, d)$ is a cyclic extension of K of degree m.

3. Nonassociative cyclic extensions of a central simple algebra

3.1. From now until stated otherwise, let $A = (D, \sigma, d)$ be a nonassociative generalized cyclic algebra of degree mn over F_0, for some $d \in D \setminus F_0$. We first determine the automorphisms of A:
Theorem 6. (i) Suppose \(\tau \in \text{Aut}_{F_0}(D) \) commutes with \(\sigma \). Then \(\tau \) can be extended to an automorphism \(H \in \text{Aut}_{F_0}(A) \), if and only if there is some \(k \in F^\times \) such that \(\tau(d) = N_{F/F_0}(k)d \). In that case, the extension \(H \) of \(\tau \) has the form \(H = H_{\tau,k} \) with
\[
H_{\tau,k}(\sum_{i=0}^{m-1} a_it^i) = \tau(a_0) + \sum_{i=1}^{m-1} \tau(a_i)(\prod_{l=0}^{i-1} \sigma^l(k))t^i.
\]

All maps \(H_{\tau,k} \) where \(\tau \in \text{Aut}_{F_0}(D) \) commutes with \(\sigma \) and where \(k \in F^\times \) such that \(\tau(d) = N_{F/F_0}(k)d \) (hence \(N_{F/F_0}(k)^{mn} = 1 \)), are automorphisms of \(A \).

In particular, for \(\tau \neq \text{id} \) and \(d \notin \text{Fix}(\tau) \), \(N_{F/F_0}(k) \neq 1 \).

(ii) \(\text{id} \in \text{Aut}(D) \) can be extended to an automorphism \(H \in \text{Aut}_{F_0}(A) \), if and only if there is some \(k \in F^\times \) such that \(N_{F/F_0}(k) = 1 \). In that case, the extension \(H \) of \(\text{id} \) has the form \(H = H_{\text{id},k} \) with
\[
H_{\text{id},k}(\sum_{i=0}^{m-1} a_it^i) = a_0 + \sum_{i=1}^{m-1} a_i(\prod_{l=0}^{i-1} \sigma^l(k))t^i.
\]

All \(H_{\text{id},k} \) where \(k \in F^\times \) such that \(N_{F/F_0}(k) = 1 \) are automorphisms of \(A \).

Proof. (i) Let \(H \in \text{Aut}_{F_0}(A) \), then \(H|_D \in \text{Aut}_{F_0}(D) \), since \(H \) leaves the left nucleus invariant. Thus \(H|_D = \tau \) for some \(\tau \in \text{Aut}_{F_0}(D) \). Write \(H(t) = \sum_{i=0}^{m-1} k_it^i \) for some \(k_i \in D \), then we have
\[
H(tz) = H(t)H(z) = (\sum_{i=0}^{m-1} k_i t^i)\tau(z) = \sum_{i=0}^{m-1} k_i \tau(z)\sigma^i(t)z^i,
\]
and
\[
H(tz) = H(\sigma(z)t) = (\tau(\sigma(z)))\sum_{i=0}^{m-1} k_i t^i = \sum_{i=0}^{m-1} \tau(\sigma(z))k_i t^i
\]
for all \(z \in D \). Comparing the coefficients of \(t^i \) yields
\[
k_i \sigma^i(\tau(z)) = k_i \tau(\sigma^i(z)) = \tau(\sigma(z))k_i \text{ for all } i = \{0, \ldots, m-1\}
\]
for all \(z \in D \) since \(\sigma \) and \(\tau \) commute. In particular, we obtain
\[
k_i(\tau(\sigma^i(z)) - \tau(\sigma(z))) = 0 \text{ for all } i = \{0, \ldots, m-1\}
\]
for all \(z \in F \), i.e. \(k_i = 0 \) or \(\sigma^i|_F = \sigma^i|_F \) for all \(i = \{0, \ldots, m-1\} \). As \(\sigma|_F \) has order \(m \), this means \(k_i = 0 \) for all \(1 \neq i \in \{0, \ldots, m-1\} \). For \(i = 1 \), this yields \(k_1 \tau(\sigma(z)) = \tau(\sigma(z))k_1 \) for all \(z \in D \), hence \(k_1 \in F \). This implies \(H(t) = kt \) for some \(k \in F^\times \).

Since
\[
H(zt^i) = H(z)H(t)^i = \tau(z)(kt)^i = \tau(z)\left(\prod_{l=0}^{i-1} \sigma^l(k)\right)t^i,
\]
for all \(i \in \{1, \ldots, m-1\} \) and all \(z \in D \), \(H \) has the form
\[
H_{\tau,k} : \sum_{i=0}^{m-1} a_it^i \mapsto \tau(a_0) + \sum_{i=1}^{m-1} \tau(a_i)(\prod_{l=0}^{i-1} \sigma^l(k))t^i,
\]
for some \(k \in F^\times \).

Comparing the constant terms in \(H(t)^m = H(t^m) = H(d) \) implies
\[
\tau(d) = k\sigma(k) \cdots \sigma^{m-1}(k)d = N_{F/F_0}(k)d.
\]
Let \(N = N_{F/F_0} \circ N_{D/F} \) be the norm of the \(F_0 \)-algebra \(D \). Applying \(N \) to both sides of the equation yields \(N(d) = N(k)^m N(d) \), so that \(N(k)^m = 1 \). Now \(k \in F^\times \) and \(D \) has degree \(n \), thus
\[
N(k) = N_{F/F_0}(N_{D/F}(k)) = N_{F/F_0}(k^n) = N_{F/F_0}(k)^n,
\]
and so \(N(k)^m = N_{F/F_0}(k)^{nm} = 1 \).

Finally, the fact that the maps \(H_{\tau,k} \) are automorphisms when \(\tau \) commutes with \(\sigma \), and \(\tau(d) = N_{F/F_0}(k)d \), can be shown similarly to the proof of [8, Theorem 4], see also [7].

(ii) In particular, for \(\tau = id \), we get from (i) that \(H \) has the form
\[
H_{id,k} : \sum_{i=0}^{m-1} a_i t^i \mapsto a_0 + \sum_{i=1}^{m-1} a_i \left(\prod_{l=0}^{i-1} \sigma^l(k) \right) t^i
\]
for some \(k \in F^\times \) with \(k \sigma(k) \cdots \sigma^{m-1}(k) = N_{F/F_0}(k) = 1 \). \(\square \)

The above is proved for a more general set-up in the first author’s PhD thesis [7]. Note that the automorphisms \(H_{\tau,k} \) are restrictions of automorphisms of the twisted polynomial ring \(D[t;\sigma] \).

Corollary 7. (i) The subgroup of \(F_0 \)-automorphisms of \(A \) extending \(id_D \in \text{Aut}_{F_0}(D) \) is isomorphic to
\[
\{ k \in F^\times \mid k \sigma(k) \cdots \sigma^{m-1}(k) = 1 \}.
\]
(ii) If \(F_0 \) contains a primitive \(m \)th root of unity \(\omega \), then \(\langle H_{id,\omega} \rangle \) is a cyclic subgroup of \(\text{Aut}_{F_0}(A) \) of order \(m \).

3.2. We obtain the following generalization of [5, Theorem 6]:

Corollary 8. Suppose \(F_0 \) contains a primitive \(m \)th root of unity. If \(f(t) = t^m - d \in D[t;\sigma] \) is irreducible, then \(A \) is a nonassociative cyclic extension of \(D \) of degree \(m \). In particular, if \(m \) is prime and
\[
d \neq \sigma^{m-1}(z) \cdots \sigma(z) z
\]
for all \(z \in D \), then \(A \) is a nonassociative cyclic extension of \(D \) of degree \(m \).

Proof. If \(F_0 \) contains a primitive \(m \)th root of unity \(\omega \), then \(\langle H_{id,\omega} \rangle \) is a cyclic subgroup of \(\text{Aut}_{F_0}(A) \) of order \(m \) by Corollary 7 (ii). If \(m \) is prime, then \(f(t) = t^m - d \in D[t;\sigma] \) is irreducible if and only if
\[
d \neq \sigma^{m-1}(z) \cdots \sigma(z) z
\]
for all \(z \in D \). The rest is trivial. \(\square \)

Proposition 9. Every automorphism \(H_{id,k} \) of \(A \) is an inner automorphism
\[
G_c \left(\sum_{i=0}^{m-1} a_i t^i \right) = (c^{-1} \sum_{i=0}^{m-1} a_i t^i) c
\]
for some \(c \in F^\times \) satisfying \(k = \sigma(c)c^{-1} \).
Proof. For all $k \in F$ such that $N_{F/F_0}(k) = 1$, $H_{id,k}$ is an F-automorphism extending id_D. These are the only F_0-automorphisms of A, unless $\tau \neq id$ can be also extended. By Hilbert’s Satz 90, $N_{F/F_0}(k) = 1$ if and only if there is $c \in F^\times$ such that $k = c^{-1}\sigma(c)$ [14]. So there is $c \in F^\times$ such that $k = c^{-1}\sigma(c)$ and

$$k\sigma(k) \cdots \sigma^{i-1}(k) = c\sigma^i(c), \quad i = 1, \ldots, m - 1$$

yields that $H_{id,k} = G$ with

$$G(\sum_{i=0}^{m-1} a_it^i) = a_0 + a_1c^{-1}\sigma(c)t + \sum_{i=2}^{m-1} a_ic^{-1}\sigma^i(c)t^i,$$

which is an inner automorphism, since $G = G_c$ with

$$G_c(\sum_{i=0}^{m-1} a_it^i) = (c^{-1}\sum_{i=0}^{m-1} a_it^i)c.$$

Note that here we use that $F = C(D)$.

\[\square\]

Corollary 10. If F_0 contains a primitive mth root of unity ω, then A is a cyclic extension of D of order m, and all automorphisms extending id_D are inner.

Example 11. Let F and L be fields and let K be a cyclic Galois extension of both F and L such that $[K : F] = n$, $[K : L] = m$, $\text{Gal}(K/F) = \langle \gamma \rangle$ and $\text{Gal}(K/L) = \langle \sigma \rangle$, and $\sigma\circ\gamma = \gamma\circ\sigma$. Define $F_0 = F \cap L$.

Let $D = (K/F, \gamma, c)$ be a cyclic division algebra of degree n with $c \in F_0$, i.e. $D \cong D_0 \otimes_{F_0} K$ for some cyclic algebra $D_0 = (F/F_0, \gamma, c)$. Let $1,e,\ldots,e^{n-1}$ be the canonical basis of D, that is $e^n = c, ex = \gamma(x)e$ for every $x \in K$. For $x = x_0 + x_1e + x_2e^2 + \cdots + x_{n-1}e^{n-1} \in D$, define an L-linear map $\sigma \in \text{Aut}_L(D)$ via

$$\sigma(x) = \sigma(x_0) + \sigma(x_1)e + \sigma(x_2)e^2 + \cdots + \sigma(x_{n-1})e^{n-1}$$

(note that $c \in L$ implies $\sigma(xy) = \sigma(x)\sigma(y)$ for all $x, y \in D$). Then $\sigma \in \text{Aut}_{F_0}(D)$ has order m. For all $d \in D^\times$,

$$D[t;\sigma]/D[t;\sigma](t^m - d) = (D, \sigma, d)$$

is a generalized nonassociative cyclic algebra of degree mn over F_0 (used for instance in [20]). (D, σ, d) is associative if and only if $d \in F_0$. In the special case that $d \in F^\times$,

$$(D, \sigma, d) = (L/F_0, \gamma, c) \otimes_{F_0} (F/F_0, \sigma, d)$$

is the tensor product of an associative and a nonassociative cyclic algebra.

If F_0 contains a primitive mth root of unity and $d \in D^\times \setminus F_0$ is chosen such that $f(t) = t^m - d \in D[t;\sigma]$ is irreducible, then (D, σ, d) is a cyclic extension of D of order m, and all automorphisms extending id_D are inner (Corollary 10). Recall that if m is prime then $f(t) = t^m - d \in D[t;\sigma]$ is irreducible if and only if $d \neq \sigma^{m-1}(z) \cdots \sigma(z)z$ for all $z \in D$.

For $m = 2$, this algebra is studied in [21], and used in the codes constructed in [15]. For $d \in F^\times$ the algebra is used in [23], see also [20].
In the following, let D be a division algebra which is finite-dimensional over its center $F = C(D)$, $\sigma \in \text{Aut}(D)$ an automorphism such that $\sigma|_F$ has finite order q and fixed field $F_0 = \text{Fix}(\sigma) \cap F$. If D has degree n then the associative generalized cyclic algebra $A = (D, \sigma, a)$ has degree qn over F_0. We choose $a \in F_0$ such that A is a division algebra.

Now assume F_0 contains a primitive qth root of unity ω. Then $\tau = H_{id_D, \omega} : A \rightarrow A$ generates a cyclic subgroup of $\text{Aut}_{F_0}(A)$ of order q by [5, Theorem 6] which consists of automorphisms which all extend id_D. We obtain the following generalization of [5, Theorem 7]:

Theorem 12. Suppose there exists $\rho \in \text{Aut}(A)$, $b \in A$ and $1 \neq k \in F_0$ such that

1. τ commutes with ρ,
2. $\tau(b) = k\rho(k) \cdots \rho^{m-1}(k)b$,
3. k^q is a primitive mth root of unity,
4. $t^m - b \in A[t; \rho]$ is irreducible, and
5. the algebra $B = A[t; \rho]/A[t; \rho](t^m - b)$ is either associative, or finite-dimensional over $F_0 \cap \text{Fix}(\rho)$, or finite-dimensional over $\text{Nuc}_e(B)$.

Then B is a nonassociative cyclic extension of D of degree mq which contains A.

Proof. Since B is a free left A-module of rank m and A is a free left D-module of rank q, B is a free left D-module of rank mq. Furthermore, (4) and (5) yield that B is a division algebra by [17, (7)]. Define the map

$$H_{\tau, k} : B \rightarrow B, \quad \sum_{i=0}^{m-1} x_i t^i \mapsto \tau(x_0) + \sum_{i=1}^{m-1} \tau(x_i)(\prod_{l=0}^{i-1} \rho^l(k)) t^i \quad (x_i \in A),$$

then (1) and (2) together imply that $H_{\tau, k}$ is an automorphism of B by [8, Theorem 4].

$H_{\tau, k}$ has order mq: We have $\tau(k) = k$ because $k \in F_0 \subset D$. Therefore straightforward calculations yield $H_{\tau, k}^2 = H_{\tau, k} \circ H_{\tau, k} = H_{\tau^2, k\tau(k)} = H_{\tau^2, k^2}$, $H_{\tau, k}^2 = H_{\tau^2, k^2}$ etc., thus $H_{\tau, k}$ will have order at least q. After q steps we obtain $H_{\tau, k}^q = H_{id_A,v}$ with $v = k^q$ and so $H_{\tau, k}$ has order mq by (3).

Finally $H_{\tau, k}|_D = \tau|_D = id_D$, hence we conclude B is a nonassociative cyclic extension of D of degree mq. \qed

4. When is a ring a nonassociative cyclic extension?

A nonassociative ring $A \neq 0$ is called a right division ring, if for all $a \in A$, $a \neq 0$, the right multiplication with a, $R_a(x) = xa$, is bijective. If D is a division ring and f is irreducible, then $S_f = D[t; \sigma]/D[t; \sigma]f$ is a right division algebra and has no zero divisors ([17, (6)] or [11]).

Theorem 13. (cf. [17, (3), (6)])

(i) Let S be a nonassociative ring with multiplication \circ. Suppose that

1. S has an associative subring D which is a division algebra and S is a free left D-module of rank m, and there is $t \in S$ such that t^i, $0 \leq i < m$ is a basis of S over D, when defining $t^{i+1} = t \circ t$, $t^0 = 1$;
2. for all $a \in D$, $a \neq 0$, there are $a_1, a_2 \in D$, $a_1 \neq 0$, such that $t \circ a = a_1 \circ t + a_2$;
Then $S \cong S_f$ with $f(t) \in D[t; \sigma, \delta]$ and σ, δ defined via $t \circ a = \sigma(a) \circ t + \delta(a)$ and where the polynomial $f(t) = t^m - \sum_{i=0}^{m-1} d_i t^i$ is given by $t^m = \sum_{i=0}^{m-1} d_i t^i$ with $t^0 = 1$, $t^{i+1} = t \circ t^i$, $0 \leq i < m$.

(ii) If S is a right division ring in (i) then f is irreducible.

Theorem 13 yields the nonassociative analogues to the existence conditions for associative cyclic extensions in [5, Theorem 6].

Theorem 14. (i) Let S be a nonassociative ring with multiplication \circ, which has a field K as a subring, and is a free left K-vector space of dimension m. Suppose that

1. there is $t \in S$ such that t^i, $0 \leq i < m$, is a basis of S over K when defining $t^0 = 1$, $t^{i+1} = t \circ t^i$, $0 \leq i < m$;
2. for all $a \in K$, $a \neq 0$, there is $a' \in K^\times$, such that $t \circ a = a' \circ t$;
3. for all $a, b, c \in K$, $i + j < m$, $k < m$, we have $[a \circ t^i, b \circ t^j, c \circ t^k] = 0$;
4. $t^m = d$ for some $d \in K^\times$;
5. the map $\sigma : K \to K$, $\sigma(a) = a'$, has order m and fixed field $F = \{a \in K \mid t \circ a = a \circ t\}$ containing a primitive mth root of unity ω, and K/F is a finite cyclic Galois extension.

Then $S \cong S_f = (K/F, \sigma, d)$ with $f(t) = t^m - d \in K[t; \sigma]$.

(ii) If S is a right division ring in (i) then f is irreducible and $S \cong (K/F, \sigma, d)$ is a nonassociative cyclic extension of K of degree m.

Proof. (1), (2) and (3) imply that $S \cong S_f$ with $f \in K[t; \sigma]$ and σ defined via $t \circ a = \sigma(a) \circ t$, i.e. $\sigma(a) = a'$, and where the polynomial $f(t) = t^m - \sum_{i=0}^{m-1} d_i t^i$ is given by $t^m = \sum_{i=0}^{m-1} d_i t^i$ for some suitably chosen d_i (cf. [17, (3)]). (4) implies that indeed $f(t) = t^m - d$. (5) guarantees that $(K/F, \sigma, d)$ where F contains a primitive mth root of unity ω.

(iii) Here we are in the setup of Theorem 1 which yields the assertion: F contains a primitive mth root of unity ω, so $\langle H_{d, \omega} \rangle$ is a cyclic subgroup of order m of the division algebra $(K/F, \sigma, d)$.

For nonassociative cyclic extensions of a central simple algebra D we obtain from Theorem 13:

Theorem 15. (i) Let S be a nonassociative ring with multiplication \circ, which has an associative subring D which is a division algebra and S is a free left D-module of rank m. Suppose that

1. there is $t \in S$ such that t^i, $0 \leq i < m$, is a basis of S over D when defining $t^0 = 1$, $t^{i+1} = t \circ t^i$, $0 \leq i < m$;
2. for all $a \in D$, $a \neq 0$, there are $a' \in D$, $a' \neq 0$, such that $t \circ a = a' \circ t$;
3. for all $a, b, c \in D$, $i + j < m$, $k < m$, we have $[a \circ t^i, b \circ t^j, c \circ t^k] = 0$;
4. $t^m = d$;
5. the map $\sigma : D \to D$, $\sigma(a) = a'$, has order m, fixed field $\{a \in D \mid t \circ a = a \circ t\}$ and D/F is a central simple algebra, where $F_0 = F \cap \text{Fix}(\sigma)$ contains a primitive mth root of unity ω.

Then $S \cong S_f = (D, \sigma, d)$ with $f(t) = t^m - d \in D[t; \sigma]$.

(ii) If S is a right division ring and D a central simple algebra in (i), then f is irreducible and S a nonassociative cyclic extension of D of degree m.

\[\square \]
Proof. (1), (2) and (3) imply that $S \cong S_f$ with $f \in D[t; \sigma]$ and σ defined via $t \circ a = \sigma(a) \circ t$, i.e. $\sigma(a) = a'$, and where the polynomial $f(t) = t^m - \sum_{i=0}^{m-1} d_i t^i$ is given by $t^m = \sum_{i=0}^{m-1} d_i t^i$ for some suitably chosen d_i (cf. [17, (3)]). (4) implies $f(t) = t^m - d$. (5) guarantees that $S \cong (D, \sigma, d)$ where F contains a primitive mth root of unity ω.

(ii) Here we are in the setup of Theorem 6 which yields the assertion, since F contains a primitive mth root of unity ω, $\langle H_{id, \omega} \rangle$ is a cyclic subgroup of order m of the division algebra (D, σ, d).

□

References

[1] A. A. Albert, Structure of algebras. Vol. 24, AMS 1939.
[2] A. A. Albert, Cyclic fields of degree p^n over F of characteristic p. Bull. AMS 40 (1934), 625-631.
[3] A. A. Albert, Modern higher algebra. Chicago 1937, Chapter IX, 192-208.
[4] A. S. Amitsur, Differential Polynomials and Division Algebras. Annals of Mathematics, Vol. 59 (2) (1954) 245-278.
[5] A. S. Amitsur, Non-commutative cyclic fields. Duke Math. J. 21 (1954), 87105.
[6] E. Artin, O. Schreier, Über eine Kennzeichnung der reell algebraischen Körper. Abh. Math. Seminar der Hamburgischen Universitäten, 5 (1927), 225-231.
[7] C. Brown, Petit’s algebras and their automorphisms. PhD Thesis, University of Nottingham, 2018.
[8] C. Brown, S. Pumplün, The automorphisms of Petit’s algebras. Comm. Algebra 46 (2) (2018), 834-849.
[9] C. Brown, S. Pumplün, Solvable crossed product algebras revisited. Online at arXiv:1702.04605 [math.RA]
[10] C. Brown, S. Pumplün, A. Steele, Automorphisms and isomorphisms of Jha-Johnson semifields obtained from skew polynomial rings. To appear in Comm. Alg. Online at arXiv:1703.02356 [math.RA]
[11] C. Brown, S. Pumplün, How a nonassociative algebra reflects the properties of a skew polynomial. Preprint, 2018.
[12] N. Jacobson, “Finite-dimensional division algebras over fields.” Springer Verlag, Berlin-Heidelberg-New York, 1996.
[13] K. Kishimoto, On cyclic extensions of simple rings. J. Fac. Sci. Hokkaido Univ. Ser. I 19 (1966), 74-85.
[14] T. Y. Lam, A. Leroy, Hilbert 90 theorems over division rings. Trans. Amer. Math. Soc. 345 (2) (1994), 595-622.
[15] N. Markin, F. Oggier, Iterated space-time code constructions from cyclic algebras. IEEE Transactions on Information Theory, 59 (9), September 2013.
[16] O. Ore, Theory of noncommutative polynomials. Annals of Math. 34 (3) (1933), 480-508.
[17] J.-C. Petit, Sur certains quasi-corps généralisant un type d’anneau-quotient. Séminaire Dubriel. Algèbre et théorie des nombres 20 (1966 - 67), 1-18.
[18] S. Pumplün, Nonassociative differential extensions of characteristic p. Results in Mathematics 72 (1-2) (2017), 245-262, DOI 10.1007/s00025-017-0656-x
[19] S. Pumplün, Tensor products of nonassociative cyclic algebras. Journal of Algebra 451 (2016), 145-165.
[20] S. Pumplün, A. Steele, Fast-decodable MIDO codes from nonassociative algebras. Int. J. of Information and Coding Theory (IJICOT) 3 (1) 2015, 15-38.
[21] S. Pumplün, How to obtain division algebras used for fast decodable space-time block codes. Adv. in Math. Comm. 8 (3) (2014), 323 - 342.
[22] S. Pumplün, A. Steele, The nonassociative algebras used to build fast-decodable space-time block codes. Adv. Math. Comm. 9 (4) (2015), 449-469.
[23] K. P. Srinath, B. S. Rajan, Fast-decodable MIDO codes with large coding gain. IEEE Transactions on Information Theory (2) 60 2014, 992-1007.
[24] R. D. Schafer, “An Introduction to Nonassociative Algebras.” Dover Publ., Inc., New York, 1995.
[25] A. Steele, Nonassociative cyclic algebras. Israel Journal of Mathematics 200 (1) (2014), 361-387.
[26] E. Witt, Zyklische Körper und Algebren der Charakteristik p vom Grad p^n. J. Reine Angew. Math. 176 (1936), 126-140.
Email address: christian_jb@hotmail.co.uk; susanne.pumpluen@nottingham.ac.uk

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom