Monpa, memory, and change: an ethnobotanical study of plant use in Mêdog County, South-east Tibet, China

Shan Li¹,², Yu Zhang¹, Yongjie Guo³,⁴, Lixin Yang¹ and Yuhua Wang¹*

Abstract

Background: Due to their relative isolation, the previous studies of Monpa plant use were only conducted in north-east India. In October 2013, Mêdog County was no longer remote, thanks to completion of a highway into the county. This study of plant species used by the Monpa had three research objectives. These were (i) to identify and record local names and uses of plants in Mêdog County, (ii) to assess which of these were uses of endemic or near-endemic species within this part of the Indo-Burma biodiversity hotspot, and (iii) to assess how plant uses reflect socio-economic change in Mêdog County?

Methods: Field surveys were conducted in 12 villages of four townships in Mêdog County, Tibet, China. Two field visits were made. The first field trip was in November 2017 and the second field trip was in May 2018. We interviewed 64 key informants between 21 and 84 years old. Most of them were the village leaders and other local people who are knowledgeable about plants. After transect walks with knowledgeable local people, we used free listing, key informant interviews, and semi-structured interviews during the field work. Plants traditionally used by the Monpa were documented. Utilization frequency was used to assess the significance of each species, and the Cultural Importance index was used to estimate the cultural significance of the species in common. We also used the informant consensus factor (FIC) to determine the homogeneity of the informants’ knowledge of medicinal plants.

(Continued on next page)
Results: One hundred ninety-four plant species belonging to 82 families and 158 genera were recorded and collected. One hundred twenty-two species, primarily fruits, were food plants. Forty-five species were used as traditional medicines. This included highly valued species collected in alpine areas (Paris polyphylla) and brought to villages in Mêdog, which are at a lower altitude (between 728 and 1759 m a.s.l.). Seven edible plant species were also used as herbal medicines. We also recorded 39 species used for other purposes in Monpa daily life. These included nine species that were used to make agricultural tools, five species for dyes and mordants, four species for timber, three species for fuelwood, four species for religious ritual use, three species for washing, two species for incense, two species for thatching, two species for fiber (rope and paper), two “calendar plants” were used to indicate seasons for agricultural purposes, two fish poison plant species, and one species were used as a tobacco substitute. Based on taxonomic insights and from studies elsewhere, we suggested that fiber species were under-reported (c. 14 species were used vs. one species reported used). Even though these plant species are rich and diverse, the use of endemic or near-endemic species was rarely recorded in previous studies. These species included Arenga micrantha (used for starch), Homesteadia tibetica (fruits), Castanopsis clarkii (edible nuts) and Gnetum pendulum (edible nuts), Ophiiorrhiza medogensis (vegetables), Derris scabraulis (fish poison), Radermachera yunnanensis (agricultural tools), Litsea tibetana (seed oil), Dendrocalamus tibeticus (wine strainers and implements for administering medicine), Zanthoxylum motuoense (spices), Cinnamomum contractum (tobacco substitutes), Morus wittiorum (medicines), and Garcinia nuijiangensis (funeral rituals). Despite the absence of roads until 2013 and the impression of “isolation,” Monpa knowledge of plant use reflects three categories of change. Firstly, oral histories of plants used in Bhutan were also encountered by Monpa people after their migration from Bhutan to south-eastern Tibet. Secondly, a “slow change” through centuries of exchange of knowledge (for example of Chinese and Tibetan medical systems), seeds of introduced crops (finger millet (indigenous to Africa), maize (from Meso-America), and experimentation and use of introduced medicinal plants (such as Datura stramonium, which originates from North America). Thirdly, “fast change” over the past decade. This is reflected in changes in traditional architecture and in rising commercial trade in selected plant resources such as Dendrobium orchid stems and Paris polyphylla rhizomes which are in demand in China’s Traditional Chinese Medicine (TCM) markets.

Conclusions: Monpa people in the south-eastern Tibet have detailed knowledge of the diverse plant resources. But that traditional knowledge is now faced with a crisis because of the modern socio-economic change. In addition, Monpa knowledge of plants reflects slower changes in knowledge as well. For example, Monpa ethnomedicine has been influenced by traditional Tibetan and Chinese medicine over a longer period in time. Overall, this study provides a deeper understanding of the Monpa peoples’ knowledge on wild plants, including endemic and near-endemic species whose uses have not been previously recorded. Several of these narrowly distributed species, such as the fish poison Derris scabraulis, could be the focus of further studies. Some wild edible plants may also have interesting dietary constituents which need in-depth studies. These detailed studies could enable the Monpa people to benefit from the use of their traditional plant-derived culture and therefore support the biodiversity conservation.

Keywords: Indo-Burma biodiversity hotspot, endemic plants, Monpa, cultural change

Background

Introduction

This study was carried out in Mêdog County in the south-eastern Tibet, at the edge of two “biodiversity hotspots” which were the Himalayan and the Indo-Burma biodiversity hotspots. Due to its biogeography, topography, and altitudinal range (a difference of 7500 m over 40 km), south-east area of Tibet has high levels of biodiversity. South-eastern Tibet is also culturally diverse, with Tibetan, Hui, Monpa, Lhoba people developing cultural landscapes through farming, pastoralism, wild plant use, and management. The need to combine traditional ecological knowledge with management strategies to achieve biodiversity conservation in local beliefs and practices is well recognised [1]. In their review of conservation needs for the Indo-Burma biodiversity hotspot, for example, the CEPF (2012) stressed the need for “greatly improved information on status and distribution in Indo-Burma to highlight species for which available information is so limited that it precludes any form of meaningful conservation action”. This study is a contribution toward both conservation and development.

Although a few studies have been done on Monpa plant use in north-east India [2], this is the first study of Monpa ethnobotany in this formerly remote part of China. No longer remote, this area is undergoing rapid socio-economic change, which may lead to declining knowledge of local plant uses. In other parts of the
region, however, 68 medicinal plant species were recorded as used by Tibetans in Shangri-la, Yunnan, China [3]. Traditional knowledge of 168 wild edible plant species were recorded in Tibetans of Shangri-la region, Yunnan, China [4]. The uses of 81 species of vascular plants were recorded in Tibetans of Zhouqu county, Gansu, China [5]. The uses of 54 species of vascular plants and 22 mushrooms were recorded in Tibetan community of Zhagana in Tewo County, Gansu, China [6].

Study aims and research objectives

The aim of this study was to document the ethnobotanical knowledge of the Monpa people in Mêdog County, south-eastern Tibet. As no previous studies had been done on Monpa plant use in China, we had three research objectives. These were (i) to identify and record local names and uses of plants in Mêdog County, (ii) to assess which of these were uses of endemic or near-endemic species within this part of the Indo-Burma biodiversity hotspot, and (iii) to assess how current plant uses reflect socio-economic change in Mêdog County?

Methods

Location of the study sites

Mêdog County is the most remote county in the south-eastern Tibet, which covers a total area of approximately 31,395 km², located in the lower river valley of the Yarlung Tsangpo River. It is called “Pe-ma-ko” by the Tibetan Buddhists, meaning “hidden lotus.” The average annual temperature in Mêdog County ranges from 16 to 18 °C. The lowest temperature is 2 °C in January and the highest temperature is 33.8 °C in July. The annual average rainfall is 2350 mm, the frost-free period is about 330 days, and the average humidity is over 80%. In the horizontal distance of 40 km, Mêdog County has an altitudinal difference of more than 7500 m, with plant species ranging from alpine plant species to tropical plant species and complex vegetation structures [7, 8].

We had selected 12 villages belonging to four townships in the Mêdog County from different altitudes for investigation (Table 1). Monpa people accounted for 99.2% of the total population of the Beibeng Township. Dexing Township is the nearest township to the Mêdog County. It is located on the right bank of the Yarlung Tsangpo River, across the river from Mêdog County. Bangxin Township is situated in the northeast of Mêdog County and “Bangxin” which means “flat land” in Tibetan language. Jiaresa Township is located in the northern part of Mêdog County and is one of the three remote towns in the Mêdog County (Table 1).

The location of the 12 study villages in Mêdog County are shown in Fig. 1. The names and altitudes of the seven villages of Beibeng Township are Beibeng Village (839 m a.s.l), Jiangxin Village (893 m a.s.l), Xirang Village (823 m a.s.l), Gelin Village (1759 m a.s.l), De’ergong Village (1552 m a.s.l), Badeng Village (1316 m a.s.l), and Acang Village (1342 m a.s.l). The altitudes of the three villages in Dexing Township are Dexing Village (728 m a.s.l), Hezha Village (1051 m a.s.l), and Naerdong Village (1571 m a.s.l). We also studied one village in Bangxin Township: Bangxin Village (1162 m a.s.l) and one village in Jiaresa Township: Gengbang Village (1330 m a.s.l).

Cultural background: Monpa in Mêdog

The literal meaning of Monpa is “man of the lower country,” referring to several ethnically related peoples, which may not be related linguistically [9]. In the early to mid-eighteenth century, due to the hardships and heavy taxes in Bhutan at the time, the local Monpa people heard that there was a sacred place in the south-east of Tibet, called Pe-ma-ko (now Mêdog), where there was the chance for a better life, so they decided to flee from Bhutan to Tibet [10]. The oldest record of mentioning Monpa was the Tibetan epic of King Ling Gesar during the fourth century [11]. The language used by “Monpa” belongs to the Tibeto-Burman language group of the Sino-Tibetan language family [9]. However, the Monpa people do not have their own written characters. Consequently, the history of the Monpa people is known through oral histories and Tibetan literature [12]. In 1964, the Monpa group was officially recognized as an independent ethnic group by the People’s Republic of China [13] and approximately 25,000 Monpa currently reside in the low-altitude areas of Tsona, Nyingchi, and Mêdog in the Tibet Autonomous Region of China [14]. In China, the highest population of Monpa speakers lives in Mêdog County, a biologically and culturally diverse region that is 34,000 km² in extent.

Field survey

Ethnobotanical fieldwork took place over 45 days spreading between November 2017 and May 2018. We

Table 1: Basical geographical information of the Townships

Township	Beibeng	Dexing	Bangxin	Jiaresa
Elevation	400–5260 m	850 m	1240 m	1120 m
Climate	Low mountain tropical humid climate and Mountain subtropical semi-humid climate	Low mountain tropical humid climate and Mountain subtropical semi-humid climate	Mountain subtropical semi-humid climate	Mountain subtropical semi-humid climate
Population	2371	1668	1370	581
interviewed 64 key informants. After transect walks with knowledgeable local people, information was collected through free listing, semi-structured, and key informant interviews, participatory approaches and group discussions. Most of key informants were the village leaders and the knowledgeable persons in the village. The age of key informants ranged between 21 and 84 years old. The interviews included the questions that were relevant to document detail information on all useful wild plants. The questions investigated included: What is your age? What is the local name of each plant? What are the most frequently used parts? What ailment does this plant treat? What is the cooking or preparation method of each plant? Do you know any other uses of the plants? We documented the ethnobotanical information for each plant, including scientific name, vernacular name, parts used, habitat and other specific purposes. Additional file 1 and Additional file 2 local writing system is derived from Tibetan language, so the local name is spelled by the writing system which is founded by Turrell Wylie (https://www.omniglot.com/writing/tibetan.htm) (Additional files 1 and 2). Scientific names of plants were confirmed by The Plant List (http://www.thepointlist.org). All the voucher specimens of listed species were collected and deposited at the herbarium of Kunming Institute of Botany.

Data analysis

Ethnobotanical quantitative indices including utilization frequency, informant consensus factor (FIC), and cultural importance index (CI) were adopted. The use frequency of certain species was estimated by utilization frequency:

\[f = \frac{N_m}{N_i} \]

Where \(N_m \) was the number of certain species mentioned by informant, and \(N_i \) was the total number of informants. High \(f \) values indicated the plant used frequently [15].

FIC was determined using the following formula to evaluate the information of medicinal plants distributed between informants and to determine the homogeneity of informant’s knowledge on medicinal plants.

\[\text{FIC} = \frac{N_{ur} - N_t}{N_{ur} - 1} \]

Where \(N_{ur} \) was the number of use reports from informants for each ailment category, and \(N_t \) was the total number of species used by all informants for this ailment category. Values of FIC ranging between 0 and 1. High FIC values (close to one) showed the agreement among the informants about this ailment category. On the contrary, low FIC values (close to zero) showed disagreement among the informants [16].

Each species mentioned by an informant within one use category was a use report (UR). Cultural importance index (CI) was used to indicate the spread of the use
(number of informants) of each species as well as to
determine diversity of uses.

\[CI_i = \sum_{u=1}^{N_{\text{UR}_{ui}}} \sum_{i=1}^{NC} \frac{UR_{ui}}{N} \]

\(N \) was the total number of informants and \(NC \) was the
total number of use categories. \(CI \) was the sum of the
proportion of informants that mentioned each of the use
categories for a given species. The higher \(CI \) value
indicated the multiple uses of a species [17].

Results and discussion

Diversity and enumeration of Monpa plant use

This study has documented 194 plant species belonging
to 82 families and 158 genera used by Monpa people in
Mêdog County (Table 4 in Appendix). Of these plant
species, 84 were herbaceous (43.3%), 52 species were
trees (26.8%), 35 species were shrubs (18%), and 23
species were lianas or vines (11.9%). The survey results
reveal that there are 45 species of ethnomedicinal plants,
122 species of local edible plants, and 39 plant species
has been traditionally consumed as other purposes in
Monpa daily life, including agriculture tools (9), dyes (5),
incense (2), timber (4), fuelwood (3), religious ritual use
(4), washing (clothes and hair) (3), thatching (2), fish
poisons (2), fiber (2), seasonal indication (2), and a to-

bacco substitute (1) (Fig. 2).

In contrast to the staple diet of naked barley, yak meat,
mutton, buttered tea, and barley wine of traditional
Tibetan, they seldom eat vegetables or fruits, yet plant
resources in Mêdog County are more plentiful. Monpa
people have a wide variety of vegetables and beverages
in their traditional daily diet. The most frequently used
part is the fruit (58 species, 47.5%) in this study,
which is consistent with the situation in northeast
India, which has similar bio-climatic conditions [18].
This demonstrates the rich diversity of wild fruits
and vegetables in the region, providing local residents
with sustainable economic pillars and livelihood se-
curity by targeting wild edible fruits and vegetables
that can be developed commercially [18]. Out of 122
wild edible species, seven are also used as herbal
medicine. *Equisetum ramosissimum*, for example, the
root of this species is usually eaten directly as a fruit
and boiling the aerial part could be used for treating
rheumatism. Wild edible plants with high \(CI \) values
may have peculiar dietary constituent and require
further research. In addition, the alcoholic beverage
consumed by almost all Nepalese and Tibetans
(known as "jnard") which has the same ingredients as
this yellow “wine” in Mêdog County [19]. Seasonal
fishing and fishing by poison are also great economic
activities for many tribal people in the world. Studies
in Nepal recorded that four entirely different plant
species exploited as fish poison plants [20]. Tsering
et al.’s study was focused on higher altitude species
used by Monpa people, including the medicinal
plants *Aconitum heterophyllum*, *Neopicrorhiza scro-
phulariiflora*, *Paris polyphylla*, *Rhododendron hodgso-
nii*, *Swertia chirayita*, and *Taxus baccata* [2]. In our
study, one of these higher altitude species was re-
corded (*Paris polyphylla*).

Edible fruits and vegetables

Food categories include fruit, vegetable, starch, oil,
nut, beverage, condiment, and forage (Fig. 3). The
most widely used wild edible species are fruits (42
species), followed by vegetables (41 species). The Monpa depended on wild fruits with high CI values such as Saurauia punduana (0.78), Elaeocarpus bracleanus (0.5), Duchesnea indica (0.41), or Ficus semi-cordata (0.39) for vitamins and nutrients. The same as Lhoba people [21], Monpa depended on fruits from wild edible species which may be related to the low productivity of cultivated fruit trees of the Monpa group. Rubus ellipticus Sm. (0.33) is a renowned wild edible fruit to Monpa ethnic people in Mêdog County, whose ripe fruits can be taken orally and act as medicine for aperient and juice of the tender leaves cures oral ulcers in the district Udhampur, J&K, India [22]. Monpa people have been using stone casserole as cookware since ancient times [23]. Monpa people like to eat “hot-pot” dishes in the stone casserole including wild vegetables and meat which are a popular food combination in Mêdog County. Wild vegetables with high CI values included Crassocephalum crepidioides (0.78), Pimpinella diversifolia (0.56), Rorippa dubia (0.31), Solanum torvum (0.2), and Solanum hirta (0.08). Solanum hirta is a leafy vegetable that is also used as a functional food to provide energy for children and elders [24]. It is interesting that while it is used as a medicine in Bhutan [25], Entada rheedii is a popular addition to food by Monpa people. The cooking method for Entada rheedii is time-consuming due to the toxicity of the seeds. The seeds have to be detoxified by leaching and heating. The seeds are boiled with water, which is poured off each time to clear away the toxicity, then refilling the pot with water, repeating the process more than ten times. The Entada rheedii seeds are then cut into pieces and fried with rice.

Other categories were less frequent in use such as forage (13), starch (seven), beverage (seven), oil (six), spice source plant (five), and nuts (two). However, Monpa people have a rich tradition of extracting beverage, starch, and oil from specific plants in the region.

Fermented beverages

Traditional consumption of alcoholic beverages is an ancient tradition that is still an integral part of Monpa society. The Monpa people have the traditional custom of “three bowls of wine”, meaning that guests have to drink three bowls of yellow wine before they enter the door to show their friendship. Seven plant species were used to produce a yellow “wine.” The mainly ingredients were rice (Oryza sativa L.), maize (Zea mays L.), Eleusine coracana, and Fagopyrum esculentum. Buddleja asiatica is the most important plant species during the preparation of alcoholic beverage fermentation by Monpa people in Mêdog County. Based on the uses of Buddleja lindleyana and Buddleja officinalis in coloring rice yellow [26] and B. officinalis in indigo fermentation [27], we suggest that B. asiatica is a dual purposeful species, as both a wine colorant and a source of microorganisms that an aid to fermentation (Fig. 4).

Starch sources

Starch in Monpa people diets was supplemented by starch processed from wild species. Cultivated starch
sources were from both cereal crops and cultivated tubers (Table 4 in Appendix). The cultivated cereals were buckwheat (*Fagopyrum esculentum* and *Fagopyrum tataricum*), finger millet (*Eleusine coracana*), rice, and maize. Three taro (*Colocasia*) species and four yam (*Dioscorea*) species were cultivated as starch sources (Table 4 in Appendix). Of these, *Dioscorea alata* tubers have 80% starch in dry matter [28] and *Colocasia esculenta* have 70–80% starch in dry matter [29]. Wild species also provided supplementary starch sources (excluding the starch-rich seeds of *Entada rheedii* mentioned in the previous section). Two of these were palms (Table 4 in Appendix) in the genus *Arenga*. As Ellen points out [30], this is one of main starch-producing palm genera used for food in Asia, the other genera being *Borassus*, *Caryota*, *Corypha*, *Eugeissona*, and *Metroxylon*. Starch production from *Arenga micrantha* is poorly known as it is endemic to Mêdog County [8] and is documented in this study (Fig. 5). In contrast, *Arenga pinnata* is widely distributed in Asia, where it is most commonly served as palm sugar [31], but is also used as a starch source [30]. Other starch sources were *Alsophila articulata* and *Chenopodium album*. Today, the uses of *Arenga micrantha*, *Arenga pinnata*, and *Alsophila articulata* are almost abandoned. This decrease in consumption of these wild starch sources has increased the production of cultivated cereal crops in Mêdog County [32].

Seed oils

The Monpa in Mêdog County totally used six wild edibles as the source of oil and fats. One of these species, *Perilla frutescens*, was also widely used in various tribal groups of the northeast India [33]. Moreover, *Perilla frutescens* oil is rich in natural compounds that could be developed as nutraceuticals and/or phytomedicine [34].

Medicinal plant use

According to our survey results, 45 plant species are used as herbal medicines for treating 13 different categories of human ailments. Botanical and ethnobotanical information about these plant species include scientific name, family name, vernacular name, part(s) used, the method of preparation, the ailments treated, and voucher specimen number. Just over half medicinal plants were herbs (51.1%). This agrees with reports from the lower elevation of Bhutan that most of the ethnobotanical plants were herbs [25]. The common use of herbs as sources of medicine found in this study were also indicated by studies conducted elsewhere.

Fig. 4 The "yellow-wine" production process. a “Cakes” used to start rice “wine” fermentation drying on a bamboo rack. These are made from a mix of species based on a secret recipe. b Preparing the starch base for “yellow wine” from rice (*Oryza sativa*), maize (*Zea mays*), *Eleusine coracana*, and *Fagopyrum esculentum*. c Finger millet (*Eleusine coracana*). d Straining the wine using a strainer made from *Dendrocalamus tibeticus* culms. e Ready for a welcome drink of three cups of yellow wine: cultural and social values underpin the continued production of the yellow wine.
Leaves (40%) are the most predominantly used parts of these medicinal plants, followed by roots (22.2%), fruits (15.6%), seeds (11.1%), stems (6.7%), whole plant (6.7%), branches (6.7%), and buds (4.4%). The preference for leaf has also been recorded among the traditional Tibetan doctors of Mustang district of the north-central part of Nepal [35].

Uses for all illnesses for wild medicinal plants are locally classified into 13 categories (Table 2). These are skin and subcutaneous tissue diseases, circulatory system, immune system, genitourinary ailments, neurological diseases, inflammation, gastrointestinal ailments, endocrine and metabolism disorders, respiratory system disorders, leech bites, snake bites, abortion, musculoskeletal system disorders, and other diseases. FIC results for the 13 illness categories ranged from 0 to 0.75, with the highest for musculoskeletal system disorders (FIC = 0.75; two species, five use-reports), immune system diseases (FIC = 0.67; two species, four use-reports), and respiratory system disorders (FIC = 0.6; three species, six use-reports) (Table 2). One of the important livelihoods of the Monpa is hunting; the highest FIC for musculoskeletal system disorders is related to the damage caused by the accidents.

An empirical observation on the use of medicinal plants by the Monpa people of Mêdog County study area requires cross-validation with published literature on phytochemical and pharmacological properties of medicinal plants reported in this study to verify their effectiveness. Our literature review of 21 medicinal plant species shows that local uses are generally consistent with known pharmacological properties. And based on a literature review, 11 medicinal plant species had partial uses similar with reported pharmacological properties.
To date, no research studies are available on the phytochemical constituents or pharmacological properties of the *Cinnamomum contractum*, *Brassaiopsis hainla*, *Fraxinus floribunda*, or *Zanthoxylum motuoense*. Literature studies indicated that seven species, namely *Artemisia vestita*, *Coix lacryma-jobi*, *Equisetum ramosissimum*, *Oxalis corniculata*, *Persicaria capitata*, *Uncaria rhynchophylla*, and *Uncaria scandens*, were used in Tibetan medicine to treat the same ailments [37]. Four other species (*Curcuma aromatica*, *Dendrobium catenatum*, *Elaeocarpus braceanus*, *Sambucus williamsii*) were possibly the substitutes for *Curcuma longa* L., *Dendrobium nobile* Lindl., *Terminalia chebula* Retz., and *Sambucus williamsii* in Tibetan medicine. And only one species (*Paris polyphylla*) was used for different purpose by the Monpa than in Tibetan medicine.

Comparison of the information on traditional medicinal plant use of Monpa ethnic group with ethnomedical studies conducted in the lower elevation of Bhutan [25], shows that only one wild medicinal plant, *Datura stramonium*, is used in the same for toothache (Table 3).

Natural dyes and mordants

Strobilanthes cusia (Yang-shar-pa), *Rubia wallichiana* (Lae-nyi), *Rubia membranacea* (Lae-nyi), *Eurya acuminata* (Zem-shing), and *Curcuma longa* (Dgrong) are the commonly used species in traditional dye processes. Fresh stems and leaves of *Strobilanthes cusia* are a well-known indigo source [78]. Boiling the stems of *Rubia membranacea* are used as a red dye. Mashed *Curcuma longa* tubers are used to dye threads yellow, while *Eurya acuminata* is used to dye threads green. In India, *Eurya acuminata* is used as a mordant together with *Rubia cordifolia* [79]. Whether *E. acuminata* is used in Mêdog as a mordant with *Rubia membranacea* or *Rubia wallichiana* is unknown at this stage, but is worth further investigation. This is because the genus *Eurya* (Pentaphylacaceae) is a known aluminium hyperaccumulator group [80] that are effective as mordants for red dye processes together with anthroquinone rich dye species, including *Rubia* [81].

Paper making

The Monpa community in Linzhi city is famous for hand-made paper for religious scripts that is made from the stem bark of *Edgeworthia gardneri*. Peeling the stem bark and removing the outermost layer of the stem bark, the remaining parts are soaked in the water, then stir the solution into a viscous state, pour the solution into a wooden flat mold, and dry it into a paper. Linzhi paper is better than Tibetan paper produced elsewhere.

Fibers for rope and string

Although *Edgeworthia gardneri* (Thymelaceae) can also be used for making rope and string, the value of this species for paper making may be a reason why this alternative use was not mentioned by local people.

Table 2 Informant consensus factor for traditional medicinal plant use categories

Illness category	Number of taxa (N_t)	Number of use-reports (N_u)	Informant consensus factor (FIC)
Circulatory system such as high blood pressure, altitude sickness	3	4	0.33
Endocrine and metabolism disorders such as diabetes	1	1	–
Gastrointestinal ailments such as diarrhea, stomach pain, cholecystitis,	6	10	0.44
Intestinal worms	2	2	0
Genitourinary ailments such as menstrual problems	2	2	0
Immune system such as rheumatism	2	4	0.67
Inflammation, suppuration, infective, toothache, sinusitis, clear heat and	8	17	0.56
Detoxification			
Malaria, mosquito and flea repellent, snake bite, leech bite	5	8	0.43
Morning sickness, abortion	2	3	0.5
Musculoskeletal system such as sprain, arthritis	2	5	0.75
Neurology diseases such as epilepsy, acute alcoholic intoxication	4	6	0.4
Others (heat stroke, refreshing, killing insects, rice blast)	4	5	0.25
Respiratory system disorders such as cold, sore throat and stuffy nose	3	6	0.6
Skin and subcutaneous tissue diseases such as wound, bruises, psoriasis,	16	28	0.44
Allergy, scar, leprosy, bleeding, bad skin odor			

Li et al. Journal of Ethnobiology and Ethnomedicine (2020) 16:5 Page 9 of 26
Scientific name	Reported phytochemical/pharmacological properties	Indigenous use	Local use agreed with known properties
Alocasia longiloba Miq.	Livestock wounds [37]	Anti-infective and treating burns	Yes
Arintinga excelsa Noronha	Antipyretic, aphrodisiac and carminative, expectorant, anti-inflammatory, and antitussive [39]	Refreshing	Partial
Artemisia vestita Wall. ex Besser	Clearing deficient heat, invigorating stomach, promoting diuresis, inducing the expulsion of gas from the stomach or intestines [40]	Stomach pain	Yes
Begonia acacetosa Craib	Invigorate the circulation of blood [37]	Leeches bite	Yes
Bidens pilosa L.	Anti-inflammatory, antiseptic, liver-protective, blood-pressure lowering, and hypoglycemic effects [41]	Cold, sore throat, and stuffy nose	Yes
Bassiaopsis hainla (Buch.-Ham.) Seem.	No relevant report found	Arthritis	
Cinnamomum contractum H. W. Li	No relevant report found	Stomach pain	
Citrus medica L.	Antioxidative, anti-inflammatory, and analgesic [42]	Cold	Yes
Coix lacryma-jobi L.	Inhibit obesity and reduce blood lipids [43]	High blood pressure	Partial
Craibiodendron henryi W. W. Sm.	Antioxidant activities and vasodilator effects [44]	Rice blast	
Curcuma aromatica Salisb.	Antioxidant, relieving pain and anti-inflammation, contributing flavor, and preventing cancer [45]	Heat stroke, irregular menstruation, and alcoholism	Partial
Datura stramonium L.	Ulcers, wounds, anti-inflammation, rheumatism, bruises, fever and toothache [46]	Toothache	Yes
Debregeasia longifolia (Bur.f.) Wedd.	Antitumor, rheumatism [47, 48]	Preventing miscarriage, and bruises	No
Dendrobium catenatum Lindl.	Enhancing immunity, resisting tumor, nourishing yin and clearing heat, benefiting stomach and promoting body fluid [49]	Cold	Yes
Dichor seafragifuga Lour.	Anti-malarial activity [50]	Mosquito repellent	Partial
Duchesnea indica (Jack.s) Focke	Anti-inflammatory, clearing heat, detumescence, and detoxification [51, 52]	Detoxification and bruises	Yes
Eboecarpus braceanus Watt ex C. B. Clarke	Anxiety, depression, nerve pain, epilepsy, and migraine [53]	Diarrhea	No
Equisetum ramosissimum Desf.	high blood pressure and diabetes [54]	Rheumatism	No
Fraxinus floribunda Wall.	No relevant report found	Sprain and sunburn	
Hovenia acerta Lindl.	Alcoholism and vomiting [55]	Alcoholism	Yes
Impatients arguta Hookf. & Thomson	Amenorrhoea, abdominal pain, and hemostasis [57]	Stop bleeding	Yes
Isodon lophanthoides (Buch.-Ham. ex D.Don) H.Hara	Enteritis, jaundice, hepatitis, laryngopharyngitis, leptomatus leprosy, and ascariasis [38]	Intestinal worms	Yes
Leycesteria formosa Wall.	Traumatic bleeding and fracture [37]	Stop bleeding	Yes
Millettia pachycarpa Benth.	Antimicrobic, a medication capable of causing the evacuation of parasitic intestinal worms [56]	Killing insects	Yes
Morindora dioica Roxb. ex Willd.	Diuretic, laxative, antihypertensive, anti-inflammatory, and analgesic properties [57]	Cholecystitis	Partial
Mosla wittiorum Hand.-Mazz.	Antioxidant activity and cytotoxicity [58]	Leprosy	Partial
Mosla diandera (Buch.-Ham. ex Roxb.)	Allergic disease is involved in many diseases such as asthma, sinusitis, and	Allergies	Yes

Li et al. Journal of Ethnobiology and Ethnomedicine
(2020) 16:5
Page 10 of 26
Scientific name	Reported phytochemical/pharmacological properties	Indigenous use	Local use agreed with known properties
Maxim.	Rheumatoid arthritis [59]		
Nicotiana tabacum L.	Antitumor, detoxification and anti-inflammatory [60]	Sinusitis	Partial
Oxalis comiculata L	Giddiness, cough, cold, fever, diarrhea, dysentery, antihelmintic [61]	Morning sickness	No
Paris polyphilla ssp.	Anticancer, snake bite, parotitis, mastitis, chronic bronchitis, injuries from fractures, as well as to stop bleeding [62]	Diabetes	No
Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross	Anti-inflammatory, antibacterial, analgesic, and diuretic [63]	Burns	Yes
Piper semiimmerum C. DC.	Platelet aggregation induced by thrombin (IIa) or PAF in rabbit [64]	Altitude sickness and irregular menstruation	No
Piper sylvaticum Roxb.	Anthelmintic, antioxidant and hepatoprotective activities and treatment of bronchitis [65]	Anti-inflammatory	Yes
Ricinus communis L	A laxative, an anti-infective, or an anti-inflammatory drug [66]	Bruises	Partial
Sambucus williamsii Hance	Anti-inflammatory, analgesic, fracture healing [67]	Bruises	Yes
Sauromatum venosum (Dryand. ex Aiton) Kunth	Mitogenic and anti-proliferative activity [68]	Suppuration	No
Solanum aculeatissimum Jacq.	Constipation, back pain, snakebites, toothache, headache, skin infections, cough [69]	Psoriasis	Partial
Stephania abyssinica (Quart-Dill. & A.Rich.) Wulp.	Treat various stomach disorders, laxative, antidote, regulator of menstrual cycle [70]	Rheumatism and snake bite	Partial
Swertia angustifolia Buch-Ham. ex D. Don	Febrifuge and epilepsy [71]	Anti-malaria	Yes
Swertia nervosa (Wall. ex G. Don) C. B. Clarke	Clearing away heat and toxic material, invigorating blood circulation and regulating menstruation [72]	Diarrhea	Yes
Toddalia asiatica (L.) Lam.	Relieve pain and stasis as well as for haemostatic, treat malaria, fever and to cure rheumatism [73, 74]	Epilepsy	No
Uncaria rhynchophylla (Miq.) Miq. ex Havil.	Treatment of hypertension, headache, and stroke [75]	High blood pressure	Yes
Uncaria scandens (Sm.) Hutch.	Treatment of nosotoxicosis, headache, dizziness, high fever in children, seizures, convulsions [76]	Epilepsy	Yes
Viburnum cylindricum Buch-Ham. ex D. Don	Cough, diarrhea, rheumatoid arthritis, and tumefaction [77]	Anti-inflammatory, scar and repelling flea	Partial
Zanthoxylum motoense C. C. Huang	No relevant report found	Bad skin odor	
during our fieldwork. What was mentioned as a source of rope was the aerial roots of *Poikilospermum lanceolatum* (Urticaceae). Based on taxonomic insights and from studies elsewhere, however, we suggested that fiber species were under-reported (c. 14 species in four families (Fabaceae, Moraceae, Urticaceae, and Thymeleaceae) were used compared to the use of just one species (*Poikilospermum lanceolatum*) reported used for rope making). For example, *Debregeasia longifolia* (Urticaceae) is known for the quality of its fibers from other parts of China and *Millettia pachycarpa* (Leguminosae) bark is also recorded used for rope in the Flora of China (www.efloras.org). It is also likely that the bark of Moraceae (*Ficus auriculata, Ficus cyrtophylla, Ficus oligodon, Ficus seminodata, Ficus subincisa, Morus alba, and Morus wittiorum*) are also used for rope or twine. As is the stem bark of several Urticaceae (*Elatostema cuneiforme, Elatostema nasutum, Gonostegia hirta, Pilea hilliana*).

House construction, tools, and utensils

Morus wittiorum, Celastrus glaucophyllus, Terminalia myriocarpa, and *Pinus wallichiana* are the main timber species that the Monpa used for building their houses, of which *Terminalia myriocarpa* is the best quality of all timber species but cannot be chopped now because of it is vulnerable species according to the China Red Data Book [82]. *Erythrina arborescens, Wendlandia tinctoria, Maesa rugosa, Radermachera yunnanensis, Abroma augusta, Macaranga denticulata,* and *Phrynium placentarium* are used to make agricultural tools or daily-life utensils. For example, *Wendlandia tinctoria* can be used to make hiltts for knives and *Erythrina arborescens* is used to make carvings for religious rituals.

Imperata cylindrica and *Themeda villosa* are used for thatching, of which the quality of *Imperata cylindrica* is better than *Themeda villosa*. *Themeda villosa* are covered on the roof, paved 5 cm thick, and changed once in 7 years, but *Imperata cylindrica* can be maintained 7 years.

In addition to use of bamboo (mainly *Bambusa teres* and *Dendrocalamus tibeticus*) for making household utensils, the rattan *Calamus acanthophathus* is used to make baskets (Fig. 6). This widespread species is found in China (Tibet, Yunnan) as well as in Bhutan, India, Laos, Myanmar, Nepal, Thailand, and Vietnam which is also used as a source of edible greens (from the young shoots).

Ritual uses of plants

The Monpa belief systems, derived from the pre-Buddhist Bon religion and from Tibetan Buddhism, also link to animistic beliefs, where even the new houses have soul [83]. *Laurocerasus undulata* seeds oil and liquor are blended together during religious rituals by Monpa people, and then poured near the house to drive away misfortune and malevolent spirits. Nowadays, Monpa culture has been deeply influenced by Tibetan culture and most of the Monpa people believe in Tibetan Buddhism. *Cinnamomum iners* and *Ekelohzita blanda* are used as incense sources, which play an important role in the religious rituals of the Monpa. *Luculia gratissima* locally called “nom-meng” is also used as an offering in religious rituals.

The Monpa in Mêdog County have a unique funeral culture owing to the special geographical environment, cultural background, and religious beliefs. The practice of re-burial occurs when after burial, the bones are dug out for cremation, and the ashes are scattered into the Yarlung Tsangpo River. This cremation is ignited by the leaves of *Altingia excelsa* locally called “Sang-shing,” which was used by the Monpa people to burn the body. In the meantime, yak butter and liquor are periodically added to the fire, along with offerings of rice, maize, and “Konpu” (*Eleusine coracana*). Secondly, put the leaves and stems of “Sra-gu” (*Arundo donax*) and the branches of “La-ga-dong-shing” (*Garcinia nujiangensis*) in turn. The leaves of “Sang-shing” are an essential ignition material for every funeral of the Monpa people.

Fish poisons

Seasonal fishing and hunting are great economic activities of Monpa ethnic community in addition to agriculture. Fishing by poison was well-known throughout the world in historical time [84]. *Derris scabraulis* and *Hydrocotyle javanica* are poisonous plants used by the Monpa people in Mêdog County for fishing. A proper amount of poisonous plants are soaked in the water, the fish will lose consciousness and float to the water within half an hour. However, if you could not catch the fish in time, the fish will wake up. No relevant reports about these two poisonous plants were found. However, the rotenones, saponins, and cyanide are the main active ingredients of these fish poison species [85].

Calendar plants

According to our investigation, *Mussaenda pubescens* and *Meliosma pinnata* are used for indicating the time of sowing maize by Monpa people. *Mussaenda pubescens* blossoms and the weather is fine, then you can sow the seeds in the field, but you cannot sow the seeds after the blooming period of *Meliosma*...
The flowering period of *Mussaenda pubescens* is during June to July. The blooming period of *Meliosma pinnata* is during May to June [86]. The flowering time of these two species is exactly the same as maize planting time.

Uses of endemic and near-endemic plant species

Uses of endemic and near-endemic species in 12 plant families reflect the plant diversity of this part of the Indo-Burman biodiversity “hot-spot.” Uses of these species have been rarely recorded in previous studies. In our field survey, we recorded the uses of narrowly distributed edible plants, for example, *Arenga micrantha* (used for starch), *Hornstedtia tibetica* (for fruits), *Castanopsis clarkei*, and *Gnetum pendulum* (for edible nuts) (Fig. 7a, d) and *Ophiorrhiza medogensis* (for vegetables). In contrast to the widespread use of the poisonous *Derris trifoliolata* (Leguminosae) containing rotenone, which occurs from East Africa to the Western Pacific, Monpa people use *Derris scabricaulis* which is endemic to Yunnan and Tibet. In terms of farming and equipment used by local households, agricultural tools are made from the high-density wood of *Radermachera yunnanensis* (Bignoniaceae) while wine strainers and implements for administering medicine are made from *Dendrocalamus tibeticus* (Poaceae). *Litsea tibetana* (Lauraceae) is a near endemic seed oil source, as are spices from the endemic

Fig. 6 Rattan as a basketry resource. *a* Men returning to their village with bundles of *Calamus acanthospathus* stems. *b* Details of harvested *C. acanthospathus*. *c* Splitting *C. acanthospathus* in preparation for weaving. *d* A woven rattan strap for a carrying basket. *e* Completed winnowing basket. *f* Storage baskets.
Zanthoxylum motuoense (Rutaceae). Additional unusual records are the use of Cinnamomum contractum (Lauraceae) as a tobacco substitute (a species only found in south-east Tibet and NW Yunnan, Morus wittiorum (Moraceae) fruits for medicine and the use of Garcinia nuijangensis (Clusiaceae), a species restricted to south-east Tibet, north-west, and west Yunnan for funeral rituals.

How do plant uses reflect socio-economic change in Mêdog County?

Until October 2013, there were no major roads in Mêdog County and Monpa people practised swidden agriculture, supplemented by hunting and gathering [87]. Despite the absence of roads, Monpa knowledge of plant uses reflect at least three categories of change.

Firstly, through oral history, knowledge of plants that Monpa ancestors would have encountered in Bhutan and Tibet prior to their migration to Mêdog. Secondly, a slow change in knowledge as introduced species were brought to Mêdog along the trade routes. These species include cereal crops from Africa (Eleusine coracana and Sorghum bicolor) and meso-America (Zea mays), cultivated fruits from north-west China (Prunus persica), medicinal plants from Africa (Ricinus communis) and North America (Datura stramonium), fuel from the Mediterranean Basin and the Middle East (Arundo donax), and three South American Solanceae that have come into “traditional” use (Nicotiana tabacum, Solanum americanum and Solanum aculeatissimum). Although oral histories do not indicate when these species were introduced, the fact that several introduced species are used ritually (maize, Eleusine coracana and Arundo donax) is one indication of early introductions. Another indication is the “traditional” medicinal use of introduced medicinal plants such as Datura stramonium (Fig. 8). Although D. stramonium seeds are known to be used for treating toothache elsewhere [88], but the method of preparation and administration used by Monpa people is innovative (Fig. 8a–d). Thirdly, in contrast to these “slow changes,” there is “fast
change” over the past decade that has speeded up rapidly since the highway was opened in October 2013. This is reflected in changes in traditional architecture and in trade in selected plant resources (such as *Dendrobium* and *Paris* to China’s TCM markets).

While Monpa people still have a wealth of ethno-botanical knowledge that has been passed down orally from generation to generation, the construction of a highway to Mêdog County has stimulated rapid change and possible loss of traditional knowledge. The influence of modernization, social and economic development, and the lack of interests shown by the young generation are seriously threatened to the ethnic culture of no written words [89]. Our research shows that the increasing publicity and availability of Tibetan and Chinese medicines has also affected the indigenous knowledge of the Monpa. There are no exclusive traditional doctors in the villages now and traditional medical knowledge is about to disappear.

Conclusions

Monpa traditional plant-based knowledge are practiced, accumulated, and passed down from generation to generation. The Monpa people in Mêdog County still preserve most of traditional plant-based knowledge. We documented 194 wild plant species belonging to 82 families 158 genera used for traditional medicines, food, dyeing, timber, religion, and other purposes during our ethnobotanical survey. Overall, this study provides a deeper understanding of the Monpa traditional knowledge on wild plants. The study suggests some wild medical plant species might have new active ingredients which are necessitated for further investigation. Since the development of modernization has changed the Monpa lifestyle and production structure, traditional knowledge and biocultural diversity can be essential components to ensure the sustainable development of Monpa community and may play a significant role in the sustainable use and development of Tibetan plant resources.

Fig. 8 Experimentation and use of an introduced species in Monpa “traditional” medicine. a *Datura stramonium* fruits. The seeds are used to treat toothache. b, c Mixing *D. stramonium* seeds with pig fat. d Creating hot steam by placing a red hot iron in water, on which the *Datura* seed/fat mixture is placed. e *Dendrocalamus tibeticus* bamboo culm, sealed using rice around a protruding tube that is placed over the super-heated *Datura* and pig-fat infused steam to direct the ingredients to the sore tooth and remove the “insect” causing toothache.
Appendix

Table 4 Ethnobotanical inventory of Monpa in Mêdog County, Tibet, China

Family name	Scientific name	Vernacular name	Habit	Parts used	Local use	Voucher specimen number		
Acanthaceae	*Strobilanthes cusia* (Nees) Kuntze	Yang-shar-pa	Herb	Leaves	Dye plant	WangYH0009		
Actinidiaceae	*Saurauia punduana* Wall.	A-rong-ma	Tree	Flower buds and fruits	Food (a kind of fruit)	18CS16811		
Adoxaceae	*Sambucus williamsii* Hance	Bha-mu-kling-shi	Shrub	Leaves	Leaves are baked on the fire with butter used for treating bruises	18CS16839		
Adoxaceae	*Viburnum cylindricum* Buch.-Ham. ex D. Don	Uh-mu-ling-shing	Tree	Fruits and burgeons	Fruit oil soaked in alcohol for anti-inflammatory and soaked in honey for removing scar. Burgeons are boiled in water for repelling flea	18CS16894		
Adoxaceae	*Viburnum enubesens* Wall.	Tseh-za-ku-lu-shing	Tree	Fruits	Food (a kind of fruit)	18CS16949		
Altingiaceae	*Altingia excelsa* Noronha	Sang-shing	Tree	Branches, fruits and burgeons	Fuel. Fruits are burned for refreshing. Making tea	18CS16869		
Amaranthaceae	* Chenopodium album* L.	Shar-ri-mu	Herb	Seeds	Food (extracting starch)	18CS16857		
Anacardiaceae	*Choerospondias axillaris* (Roxb.) B. L. Burtt & A. W. Hill	Ju-ru-ra	Tree	Fruits	Food (a kind of fruit)	18CS16940		
Apocynaceae	*Pimpinella diversifolia* DC.	Gya-ma-ga-da	Herb	Whole plant	Food (a kind of vegetable)	18CS16816		
Apocynaceae	Apocynaceae sp.	Nu-ru	Vine	Roots and stems	Medicine used for treating allergy	18CS16899		
Araceae	*Alocasia longiloba* Miq.	Bo-zong-gang-gyi-pa	Herb	Roots	Sliced roots used for anti-infective and treating burns	WangYH0069		
Araceae	*Colocasia affinis* Schott	Bu-dong	Herb	Rhizomes	Food (a kind of vegetable). Extracting starch	18CS16922		
Araceae	*Colocasia antiquorum* Schott	Bu-pong	Herb	Whole plant	Food (a kind of vegetable). Extracting starch	18CS16824		
Araceae	*Colocasia esculenta* (L.) Schott	Pon-song	Herb	Whole plant	Food (a kind of vegetable). Extracting starch	18CS16814		
Araceae	*Remusatia pumila* (D. Don) H. Li & A. Hay	Pon-song	Herb	Whole plant	Food (a kind of vegetable, and boiled in the water)	18CS16929		
Araceae	*Remusatia vivipara* (Roxb.) Schott	Ri-bo-song	Herb	Leaves	Food (a kind of vegetable, and boiled in the water)	WangYH0178		
Araliaceae	*Sauromatum venosum* (Dryand. ex Aiton) Kunth	Reh-drong-ma	Herb	Whole plant	Crushed plants are used for treating suppuration	18CS16876		
Araliaceae	*Brassaiopsis hainila* (Buch.-Ham.) Seem.	Bhong-dong-shing	Tree	Barks	Boiled for treating arthritis	18CS16883		
Araliaceae	*Hydrocotyle javanica* Thunb.	Sa-la-meng-ba-ren	Herb	Whole plant	Fish poison plant	18CS16948		
Araliaceae	*Schefflera khasiana* (C. B. Clarke) R. Vig.	Pyu-shing	Tree	Stems	Musical instrument	18CS16897		
Arecaeeae	*Arenga micrantha* C. F. Wei	Ta-shi	Tree	Stems	Food (extracting starch). Forage	18CS16836		
Arecaeeae	*Arenga pinnata*	Ta-shing	Tree	Stems	Extracting starch	18CS169132		
Family name	Scientific name	Vernacular name	Habit	Parts used	Local use	f	CI	Voucher specimen number
-------------	----------------	----------------	-------	------------	-----------	---	----	------------------------
Arecaceae	*Calamus acanthophalus*	B-nyu-mu/ Ba-ser	Vine	Burgeons and fruits	Food (a kind of vegetable and fruit). Making agriculture tools	0.43	0.43	18CS16864
Areaceae	*Caryota obtusa*	Chu-shing	Tree	Stems	Making chopsticks	0.09	0.09	18CS16819
Asparagaceae	*Polygonatum oppositifolium*	Ren-gyi-tsong	Herb	Burgeons	Food (a kind of vegetable)	0.05	0.05	WangYH0194
Asparagaceae	*Rhodota nepalensis*	Ka-lu	Herb	Tender stems	Food (a kind of vegetable)	0.34	0.34	18CS16817
Athyriaceae	*Diplazium esculentum*	Ta-wai	Fern	Tender stems and leaves	Food (a kind of vegetable)	0.33	0.33	WangYH0050
Balsaminaceae	*Impatiens arguta*	Gyang-tsong-hwen	Herb	Leaves	Crushed leaves are used for stopping bleeding. Forage	0.08	0.08	18CS16834
Begoniaceae	*Begonia aborensis*	Gyu-bu	Herb	Stems	Food (a kind of vegetable)	0.13	0.13	18CS16818
Begoniaceae	*Begonia acetosella*	Pa-pa-man	Herb	Leaves	Mashed leaves are used for treating leeches bite	0.27	0.27	WangYH0038
Berberidaceae	*Holboellia latifolia*	Chou-dang-lee-si	Vine	Fruits	Food (a kind of fruit)	0.05	0.05	WangYH0037
Bignoniaceae	*Radermachera yunnanensis*	Gya-srong-ni-shing	Tree	Stems	Making agriculture tools	0.08	0.08	18CS16944
Boraginaceae	*Cordia dichotoma*	Pa-mi-shing	Tree	Fruits	Extracting oil	0.13	0.13	18CS16835
Brassicaceae	*Cardamine macrophylla*	Shu	Herb	Whole plant	Food (a kind of vegetable)	0.2	0.2	18CS16989
Caprifoliaceae	*Leycesteria formosa*	Pya-min-mon	Shrub	Leaves	Medicine used for stopping bleeding	0.13	0.13	WangYH0170
Celastraceae	*Celastrus glaucophyllus*	Ling-shing	Trunk	Timber plant	0.2	0.2	WangYH0048	
Clusiaceae	*Garcinia nujangensis*	La-ga-dong-shing	Tree	Fruits and stems	Food (a kind of fruit). Fuel	0.27	0.27	WangYH0027
Combretaceae	*Terminalia myricarpa*	Ba-lern-shing	Tree	Trunks	Timber plant	0.27	0.27	WangYH0124
Commelinaceae	*Streptolirion volubile*	Pa-ner-ju	Herb	Whole plant	Forage	0.13	0.13	18CS16885
Family name	Scientific name	Vernacular name	Habit	Parts used	Local use f	CL	Voucher specimen number	
-------------	-----------------	----------------	-------	------------	-------------	----	------------------------	
Compositae	Acmella oleracea (L.) R. K. Jansen	Nyi-ri-ki	Herb	Burgeons	Food (a kind of vegetable)	0.13	WangYH0056	
Compositae	Artemisia vestita Wall. ex Besser	Myer-rang-ma	Herb	Leaves	The powder of “xin zei” are wrapped in leaves and rolled up, and then placed on the navel as moxibustion, used for treating stomach pain	18CS16868		
Compositae	Bidens pilosa L.	Srong-treng-rong	Herb	Leaves	Boiled leaves used for treating cold, sore throat and stuffy nose	0.05	18CS16872	
Compositae	Crassocephalum crepidioides (Benth.) S. Moore	Gyal-pehn	Herb	Whole plant	Food (a kind of vegetable)	0.78	18CS16809	
Compositae	Gymnura procumbens (Lour.) Merr.	Wenv-gya-pa	Herb	Aerial parts	Forage	0.06	18CS16872	
Compositae	Helianthus tuberosus L.	Yang-gyal	Herb	Tubers		18CS16854		
Cornaceae	Cornus capitata Wall.	Da-ming-der-shing	Tree	Fruits	Food (a kind of fruit)	0.08	18CS16950	
Cucurbitaceae	Cucurbitaceae sp.	Doe-shung	Vine	Tubers	Washing hair and clothes	0.19	18CS16823	
Cucurbitaceae	Momordica dioica Roxb. ex Willd.	Su-ba	Herb	Leaves	Food (a kind of vegetable), boiled leaves used for treating cholecystitis. Washing hair and clothes	0.31	18CS16874	
Cucurbitaceae	Solena heterophylla Lour.	Gang-gu-long	Herb	Fruits	Food (a kind of fruit)	0.25	18CS16873	
Cucurbitaceae	Thladiantha cordifolia (Blume) Cogn.	Su-pa	Vine	Tubers	Washing hair and clothes	0.34	18CS16863	
Cucurbitaceae	Trichosanthes tricuspisata Lour.	A-pa-kas	Vine	Seeds	Food (a kind of vegetable)	0.06	18CS16943	
Cucurbitaceae	Zehneria japonica (Thunb.) H.Y. Liu	Ka-gyi	Herb	Whole plant	Food (a kind of vegetable)	0.19	18CS16826	
Cupressaceae	Platycladus orientalis (L.) Franco	Shug-pa	Tree	Stems	Religious ritual use		WangYH0017	
Cyatheaceae	Aiptophila articulata J. Sm. ex T. Moore & Houllston	A-gyi	Tree	Stems	Making alcohol beverages. Extracting starch	0.16	18CS169108	
Cyperaceae	Scirpus rathorum Diels	Gong-bu-ueh	Herb	Fruits	Food (a kind of fruit)	0.06	18CS16946	
Dioscoreaceae	Dioscorea alata L.	Dgro-ton/Gyu-dang	Vine	Rhizomes	Food (a kind of vegetable), Extracting starch	0.08	18CS169104	
Dioscoreaceae	Dioscorea melanophyrm Prain & Burkill	Bo-zon-za-ju	Vine	Leaves and rhizomes	Food (a kind of vegetable), Extracting starch, Forage	0.06	WangYH0059	
Dioscoreaceae	Dioscorea pentaphylla L.	Pan-dang	Vine	Roots	Extracting starch, Forage. Food (a kind of fruit)	0.34	18CS16889	
Dioscoreaceae	Dioscorea sp.	Ju-dang	Vine	Rhizomes	Food (a kind of vegetable), Extracting starch	0.36	18CS16877	
Ebenaceae	Diospyros lotus L.	A-mu-dong-bashing	Tree	Fruits	Food (a kind of fruit)	18CS16954		
Ebenaceae	Diospyros variegata Kurz	Ang-dripa	Shrub	Fruits	Food (a kind of fruit)		WangYH0104	
Elaeagnaceae	Elaeagnus conferta Roxb.	Trong-pa-lin	Shrub	Fruits	Food (a kind of fruit)	18CS16952		
Elaeagnaceae	Elaeagnus	Dar-ma	Shrub	Fruits	Food (a kind of fruit)	0.27	18CS16859	
Family name	Scientific name	Vernacular name	Habit	Parts used	Local use	f	CI	Voucher specimen number
-----------------	--	-----------------	-----------	-------------------	---	----	-----	-------------------------
Elaeocarpaceae	Elaeocarpus bracteatus Watt ex C. B. Clarke	Gar-shar-dong-shing	Tree	Seeds and fruits	Boiled seeds used for treating diarrhea. Food (a kind of fruit)	0.5	0.5	18CS16858
Euphorbiaceae	Ostodes paniculata Blume	Ga-ren-de-shing	Tree	Seeds	Extracting oil	0.06	0.06	18CS16840
Euphorbiaceae	Ricinus communis L. var.	Gyal-muna	Herb	Leaves	Leaves are baked on the fire with butter used for treating bruises. Seed oils	0.11	0.11	18CS16938
Gentianaceae	Swertia nervosa (Wall. ex G. Don) C. B. Clarke	Pa-bhu-ser-pu	Herb	Leaves and roots	Leaves are boiled in the water used for treating diarrhea	0.27	0.27	18CS16841
Gnetaceae	Gnetum pendulum C. Y. Cheng	Gyong-ga-sa	Vine	Fruits	Nut	0.22	0.22	18CS16959
Hydrangeaceae	Dichroa febrifuga Loure.	Yo-gor-shing	Shrub	Branches	Branches are burned as mosquito repellent	0.30	0.30	18CS16901
Hypericaceae	Hypericum bellum H. L. Li	Kor-mashiing	Shrub	Fruits	Food (sweet taste)	0.09	0.09	18CS16931
Hyposidaceae	Molinia capitulata (Lour.) Herb.	Tsan-ngan	Herb	Fruits	Food (a kind of fruit)	0.11	0.11	18CS16938
Lamiaceae	Elsholtzia blanda (Benth.) Benth.	Na-gang-shing	Herb	Aerial parts	Incense plant	0.27	0.27	18CS16829
Lamiaceae	Elsholtzia feddei H.Lév.	Pa-pi	Herb	Leaves	Spice plant for making blood sausage	0.22	0.22	18CS16959
Lamiaceae	Isodon lophanthoides (Buch.-Ham. ex D.Don)H.Hara	Ra-khu-la-dang	Herb	Whole plant	Boiled liquid for treating intestinal parasites	0.22	0.22	18CS16959
Lamiaceae	Mosla dianthera (Buch.-Ham. ex Roxb.) Maxim.	Shing-nang-gu-lu	Herb	Whole plant	Chewed leaves used for treating allergies	0.22	0.22	18CS16959
Lamiaceae	Penilla frutescens (L.) Britton	Nang	Herb	Seeds	Extracting oil	0.08	0.08	18CS169199
Lamiaceae	Pogostemon brevicollus Y.Z.Sun	Na-mu-sein	Herb	Whole plant	Food (a kind of vegetable)	0.22	0.22	18CS16959
Family name	Scientific name	Vernacular name	Habit	Parts used	Local use	f	CI	Voucher specimen number
-------------	-----------------	-----------------	-------	------------	-----------	----	-----	-------------------------
Lauraceae	Cinnamomum contractum H. W. Li	Shing-tsa	Tree	Roots	Crushed roots are used for stomach pain. Tobacco substitutes	0.28	0.28	18CS16892
Lauraceae	Cinnamomum iners Reinw. ex Blume	Lho-pa-sang-shing	Tree	Leaves	Incense plant	0.06	0.06	WangYH0030
Lauraceae	Litsea tibetana Yen C. Yang & P. H. Huang	Snying-shing	Shrub	Fruits	Extracting oil	0.09	0.09	18CS16934
Leguminosae	Amphicarpaea bracteata subsp. edgeworthii (Benth.) H.Ohashi	Shor-ru	Herb	Roots	Forage	WangYH0094		
Leguminosae	Deriss scabicaulis (Franch.) Gagnep.	Ang-du-ru	Liana	Roots	Fish poison plant	0.16	0.16	18CS16821
Leguminosae	Erythrina arboreascens Roxb.	Tsa-shing	Tree	Stems and leaves	Stems are used for carving materials. Making agriculture tools	0.25	0.32	18CS16891
Leguminosae	Entada rheedii Spreng.	Kor-lo-ba-ru	Vine	Fruits	Food (remove toxicity by boiling 10 times)	0.22	0.22	18CS16846
Leguminosae	Millettia pachycarpa Benth.	Ngra-ru	Liana	Seeds and roots	Crushed seeds and roots are used for killing insects	0.09	0.09	WangYH0061
Loranthaceae	Tripodanthus acutifolius (Ruiz & Pav.) Tiegh.	Tsa-snying	Shrub parasitic	Fruits	Food (a kind of fruit)	18CS16928		
Malvaceae	Abroma augusta (L.) L.f.	Go-men-ta-dong-shing	Shrub	Whole plant	Making agriculture tools	0.06	0.06	WangYH0003
Malvaceae	Malacea sp.	Pu-lang-shing	Tree	Fruits	Food (a kind of fruit)	0.06	0.06	18CS16827
Malvaceae	Sterculia lancefolia Roxb.	Bha-ba-ba-ru	Tree or shrub	Fruits	Food (a kind of fruit)	0.23	0.23	18CS16910
Malvaceae	Urena lobata L.	Tsi-ming-uenh	Herb	Whole plant	Religious ritual use	0.22	0.22	18CS16893
Marantaceae	Stachyphrynium placentarium (Lour.) Clausager & Borchs.	La-gu-la-la	Herb	Leaves	Making agriculture tools	WangYH0196		
Malanthiaceae	Paris polyphylla ssp.	A-du-ba-du	Herb	Rhizomes	Boiled liquid for treating diabetes	18CS16853		
Menispermaceae	Stephania abyssinica (Quart.-Dill. & A.Rich.) Walp.	Ru-dour	Woody vine	Roots	Boiled the dried roots used for treating rheumatism and snake bite	WangYH0177		
Menispermaceae	Stephania sp.	Yong-ju-pin	Woody vine	Fruits	Food (a kind of fruit)	0.22	0.22	18CS16932
Moraceae	Ficus auriculata Loureiro	Ba-drong-ma-shing	Tree	Fruits and leaves	Food (a kind of fruit). Forage	0.06	0.08	18CS16960
Moraceae	Ficus cyrtophylla (Wall. ex Miq.) Miq.	Pa-ju-ma	Tree or shrub	Fruits	Beverage	18CS16915		
Moraceae	Ficus oligodon Miq.	Ba-ler-drong-ma	Tree	Fruits	Food (a kind of fruit)	0.09	0.09	18CS16918
Moraceae	Ficus semicordata Buch.-Ham. ex Sm.	Drong-ma	Tree	Fruits and leaves	Fruits are eaten directly. Leaves are used as sandpaper to burnish the bowl	0.39	0.43	18CS16832
Moraceae	Ficus subincisa Buch.-Ham. ex Sm.	Rel-me-sgrong-ma	Tree	Fruits	Food (a kind of fruit)	18CS16925		
Moraceae	Morus alba L.	Sems-ling-shing	Tree	Fruits	Food (a kind of fruit)	0.17	0.17	18CS16902
Family name	Scientific name	Vernacular name	Habit	Parts used	Local use	CI	Voucher specimen number	
-------------	-----------------	-----------------	-------	------------	-----------	----	------------------------	
Moraceae	Morus wittiorum	Sems-ling-shing	Tree	Stems	Boiled liquid for treating leprosy. Timber plant	0.25	18CS16947	
Musaceae	Musa sanguinea	A-nyi-lae-sih	Herb	Fruits	Food (a kind of fruit)	0.3	WangYH0176	
Nephrolepidaceae	Nephrolepis cordifolia (L.) C. Presl	Ta-wai	Fern	Fruits	Food (a kind of fruit)	0.33	18CS16896	
Oleaceae	Fraxinus floribunda	Tra-per-shing	Tree	Barks	Boiled liquid for treating sprain and sunburn	0.33	18CS16912	
Omphalotaceae	Lentinus sjor-caju Fr.	Bren-ba-ba-mu	Fungi	Mushroom	Food (a kind of vegetable)	0.06	18CS16933	
Omphalotaceae	Lentinus sp.	Tsier-gen-ba-mu	Fungi	Mushroom	Food (a kind of vegetable)	0.06	18CS16930	
Ophioglossaceae	Ophioglossum vulgatum L.	Gu-gu-meng	Grass	Burgeons	Food (a kind of vegetable)	0.06	18CS16844	
Orchidaceae	Dendrobium catenatum Lindl.	Shi-hu	Herb	Stems	Boiled liquid for treating cold	0.06	18CS16856	
Oxalidaceae	Oxalis cunicular L.	Ju-bu-uenh	Herb	Leaves	Eaten directly, used for treating morning sickness	0.06	18CS16867	
Pentaphylacaceae	Eurya acuminata DC.	Zem-shing	Tree or shrub	Leaves	Dye plant and mordant	WangYH0067		
Phytolaccaceae	Phytolacca acinosa Roxb.	Mye-myegang-pum-mon	Herb	Leaves	Spice plant	0.06	18CS16881	
Pinaceae	Pinus wallichiana A.B. Jacks.	Shog-shing-nang	Tree	Trunks	Timber plant	0.2	WangYH0128	
Piperaceae	Piper semiimmersum C. DC.	Pi-pi-ling	Climber	Leaves	Boiled the dried leaves used for treating altitude sickness and irregular menstruation	WangYH00097		
Piperaceae	Piper sp.	Sa-pa	Shrub or climber	Leaves	Mashed leaves used for stopping bleeding	18CS16822		
Piperaceae	Piper sylvaticum Roxb.	Pang-ser	Climber	Leaves	Mashed leaves used for anti-inflammatory	WangYH0188		
Poaceae	Arundo donax L.	Sra-gu	Bamboo	Leaves and stems	Fuel	WangYH00097		
Poaceae	Bambusa teres Munro	Li-shing	Bamboo	Culms	Making bow and arrow	0.09	WangYH00092	
Poaceae	Coix lacyma-jobi L.	Phon-pa-lin	Herb	Seeds	Boiled liquid for treating high blood pressure. Ornament plant	0.27	WangYH0179	
Poaceae	Dendrocalamus tibeticus Hsueh & T. P. Yi	Ha-po	Bamboo	Culms and shoots.	Food (a kind of vegetable). Making agriculture tools	0.1	WangYH0160	
Poaceae	Eleusine cocanaca (L.) Gaertn.	Kon-pu	Herb	Seeds	Making alcohol beverages. Extracting starch	0.47	WangYH0001	
Poaceae	Imperata cylindrica (L.) Raeusch.	Shing-pu	Herb	Leaves	Thatching	0.06	18CS16843	
Poaceae	Phyllostachys manni Gamble	Suo-nong	Bamboo	Burgeons	Food (a kind of vegetable)	0.08	18CS16907	
Poaceae	Sorghum bicolor (L.) Moench	Phim-nang	Herb	Stems and seeds	Stems are eaten directly. Seeds are used for preparing alcohol beverages	0.05	18CS16814	
Poaceae	Themeda villosa (Lam.) A.Camus	Pi-li	Herb	Leaves	Thatching	0.11	18CS16842	
Table 4 Ethnobotanical inventory of Monpa in Mêdog County, Tibet, China (Continued)

Family name	Scientific name	Vernacular name	Habit	Parts used	Local use	f	CI	Voucher specimen number
Polygonaceae	Fagopyrum acutatum (Lehm.) Mansf. ex K.Hammer	Pin-dae-mu	Herb	Leaves	Food (a kind of vegetable). Forage	0.13	0.15	18CS16813
Polygonaceae	Fagopyrum esculentum Moench	Ka-la	Herb	Fruits	Food (extracting starch)	0.13	0.13	18CS16855
Polygonaceae	Fagopyrum tataricum (L.) Gaertn.	Ka-la	Herb	Seeds	Making alcohol beverages. Extracting starch	0.17	0.21	WangYH0182
Polygonaceae	Persicaria capitata (Buch.-Harm. ex D.Don) H.Gross	Long-pa-dang-mo-nang	Herb	Whole plant	Medicine used for burns	0.05	0.05	WangYH0155
Polygonaceae	Persicaria nepalensis (Meisn.) Miyabe	Gong-sger-ming	Herb	Whole plant	Food (a kind of fruit). Forage	0.06	0.08	18CS16919
Polygonaceae	Polygonum chinense var. ovalifolium Meisner	Gu-ju-ma-shing	Herb	Tender stems and leaves	Food (a kind of vegetable)	0.09	0.09	18CS16820
Polygonaceae	Polygonus sp.	Shing-pa-mu	Fungi	Mushroom	Food (a kind of vegetable)	0.09	0.09	18CS16917
Primulaceae	Embelia floribunda Wall.	Ju-bu-ru	Vine	Fruits and roots	Food (a kind of fruit)	0.09	0.09	18CS16927
Primulaceae	Maesa marioniae Merr.	Ker-seh-ru	Shrub	Fruits	Food (a kind of fruit)	0.06	0.06	18CS16953
Primulaceae	Maesa rugosa C. B. Clarke	Lho-ku-mer-shing	Shrub	Leaves	Making agriculture tools	0.09	0.09	18CS16957
Ranunculaceae	Clematis napaulensis DC.		Vine	Leaves	Forage	WangYH0058		
Rhamnaceae	Hovenia acerba Lindl.	Shi-pi	Tree	Fruits	Boiled or eaten directly, used for alcoholism	18CS16884		
Rhamnaceae	Rhamnus napalensis (Wall.) M. A. Lawson	Da-gor-shing	Shrub	Fruits	Food (a kind of fruit)	0.06	0.06	18CS16923
Rosaceae	Chaenomeles cathayensis (Hems) C. K. Schneid.	Tong-ju-bha-bu	Tree	Fruits	Food (a kind of fruit)	0.27	0.27	18CS16921
Rosaceae	Duchesnea indica (Jacks.) Focke	Pu-tshu-la-gong	Herb	Fruits	Food (a kind of fruit), boiled the dried fruits used for detoxification and treating bruises	0.41	0.41	18CS16875
Rosaceae	Laurocerasus undulata (Buch.-Harm. ex D. Don) M. Roemer	Dan-bur	Tree or shrub	Seeds	Extracting oil. Religious ritual use	WangYH0068		
Rosaceae	Prunus persica (L.) Batsch	Lin-shing	Tree	Fruits	Food (a kind of fruit)	0.33	0.33	18CS16956
Rosaceae	Rubus ellipticus Sm.	Tser-gong	Shrub	Fruits	Food (a kind of fruit)	0.33	0.33	18CS16850
Rosaceae	Rubus niveus Thunb.	Tu-lu-tse-gong	Shrub	Fruits	Food (a kind of fruit)	0.05	0.05	18CS16815
Rubiaceae	Luculia gratissima (Wall) Sweet	Non-meng	Tree or shrub	Flowers	Religious ritual use	WangYH0051		
Rubiaceae	Mussaenda pubescens Dryand.	Meng-gya-bai-dong-shing	Shrub	Leaves	Seasonal indication	0.06	0.06	18CS16941
Family name	Scientific name	Vernacular name	Habit	Parts used	Local use	f	CI	Voucher specimen number
-------------	-----------------	-----------------	-------	------------	-----------	----	------	-------------------------
Rubiaceae	Ophiorrhiza medogensis H. Li	Ming-zim-ma-mu	Herb	Whole plant	Food (a kind of vegetable)	0.11	0.11	18CS16862
Rubiaceae	Rubia membranacea Diels	Lae-nyi	Herb	Stems	Dye plant	WangYH0114		
Rubiaceae	Rubia wallichiana Decne.	Lae-nyi	Herb	Stems	Dye plant	0.3	0.3	WangYH0127
Rubiaceae	Spiradiclis sp.	Mi-zu-ma	Herb	Whole plant	Food (a kind of vegetable)	0.09	0.09	18CS16833
Rubiaceae	Uncaria rhynchophylla (Miq.) Miq. ex Havil.	Gou-du	Liana	Stems	Boiled liquid for treating high blood pressure	18CS16962		
Rubiaceae	Uncaria scandens (Sm.) Hutch.	Tsae-tsu	Liana	Leaves	Boiled liquid for treating epilepsy	18CS16905		
Rubiaceae	Wendiandia tinctoria (Roxb.) DC.	Mehi-neng-nang-shi	Tree or shrub	Stems	Making agriculture tools	0.17	0.17	18CS16900
Rutaceae	Citrus medica L.	Hpo-rang-nying-pa	Tree or shrub	Stems	Medicine used for treating cold	18CS16961		
Rutaceae	Toddalia asiatica (L.) Lam.	Ae-pi-ka-ba	Shrub	Seeds	Seed oil with butter is used for treating epilepsy	18CS16895		
Rutaceae	Zanthoxylum motuoense C. C. Huang	Gei	Tree	Fruits	Crushed fruits are used for treating bad skin odour. Spice plant	0.56	0.56	18CS16895
Sabiaceae	Meliosma pinnata (Roxb.) Maxim.	Beng-shar-shing	Tree	Flowers	Seasonal indication	0.06	0.06	18CS16945
Scrophulariaceae	Buddleja asiatica Lour.	Yang-ren	Shrub	Whole plant	Making alcohol beverages	18CS16914		
Solanaceae	Datura stramonium L.	Yun-ma-chu-dong	Herb or subshrub	Seeds	Medicine used for treating toothache	0.06	0.06	18CS16837
Solanaceae	Nicotiana tabacum L.	Da-mu-ga	Herb	Leaves	Crushed leaves used for treating sinusitis	18CS16906		
Solanaceae	Solanum americanum Mill.	Gu-ju-shu	Herb	Burgeons	Food (a kind of vegetable)	0.14	0.14	18CS16838
Solanaceae	Solanum aculeatissimum Jacq.	Kha-lang-gyi	Herb to subshrub	Roots	Crushed roots and the leaves of Luffa cylindrica are used for treating psoriasis	18CS16866		
Solanaceae	Solanum torvum Sw.	Kha-lang-gyi	Shrub	Fruits	Food (a kind of vegetable)	0.2	0.2	18CS16812
Taxaceae	Torreya grandis var. yunnanensis (W.C.Cheng & LKFu) Silba	Gae-long-shing	Tree	Fruits	Food (a kind of fruit)	18CS16880		
Thymelaeaceae	Edgeworthia gardneri (Wall.) Mein.	Sho-gu-shing/ Ju-pu-shing	Tree	Barks	Papermaking	0.05	0.05	WangYH0006
Urticaceae	Debregeasia longifolia (Burm.f.) Wedd.	Rang-shing	Shrub	Roots	Boiled liquid for preventing miscarriage and treating bruises	18CS16870		
Urticaceae	Elatostema cuneiforme W.T.Wang	Tsen-tsen-pa	Herb	Aerial parts	Forage	0.08	0.08	WangYH0091
Urticaceae	Elatostema nasutum Hookf.	Da-mi-ru	Herb	Leaves	Food (a kind of vegetable boiled in the water first)	18CS16848		
Urticaceae	Gonostegia hirta	Ro-gyi-ba	Herb	Whole	Food (a kind of vegetable)	0.08	0.08	18CS16924
Table 4 Ethnobotanical inventory of Monpa in Mêdog County, Tibet, China (Continued)

Family name	Scientific name	Vernacular name	Habit	Parts used	Local use	f	CI	Voucher specimen number
Urticaceae	Pilea hilliana Hand.-Mazz.	Ru-gong-su-gang	Herb	Leaves	Food (a kind of vegetable)	0.05	0.05	WangYH0159
Urticaceae	Poikilospermum lanceolatum (Trécul) Merr.	Ba-mi-ru	Shrub	Leaves and aerial roots	Leaves are used for forage. Aerial roots are used for rope	0.34	0.36	18CS16830
Urticaceae	Urtica maieri H. Lév.	Gang-dang-gyal-zu	Herb	Leaves	Food (a kind of vegetable)			WangYH0040
Violaceae	Viola sp.	Pian-mier	Herb	Whole plant	Boiled liquid for clearing heat and detoxification			WangYH0066
Vitaceae	Tetrastigma serratum (Roxb.) Planch.	Ju-bae-ru	Liana	Fruits	Food (a kind of fruit)	0.28	0.28	18CS16828
Xanthorrhoeaceae	Hemerocallis fulva (L.) L.	Chu-ta	Herb	Leaves and flowers	Food (a kind of vegetable)	0.17	0.17	18CS16887
Zingiberaceae	Alpinia bambusifolia C. F. Liang & D. Fang	Tar-gang	Herb	Flower buds	Food (sweet taste)	0.2	0.2	WangYH0101
Zingiberaceae	Alpinia malaccensis (Burm.f.) Roscoe	Tar-gang	Herb	Flower buds	Food (sweet taste)	0.2	0.2	WangYH0103
Zingiberaceae	Curcuma aromatica Salisb.	Dgrong	Herb	Roots and leaves	Boiled roots used for treating heat stroke, irregular menstruation and boiled leaves used for treating alcoholism	18CS16879		
Zingiberaceae	Curcuma longa L.	Dgrong	Herb	Roots	Dye plant	0.22	0.22	WangYH0070
Zingiberaceae	Hedychium coccineum Buch.-Ham. ex Sm.	Ma-mi-niu-mu	Herb	Burgeons	Food (a kind of vegetable)	0.05	0.05	18CS16849
Zingiberaceae	Hornstedtia tibetica T.L.Wu & S.J.Chen	Su-mi	Herb	Fruits	Food (a kind of fruit)	0.08	0.08	18CS16847

Voucher specimen number with CS means collection section

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13002-020-0355-7.

Additional file 1. The Tibetan alphabet (Consonants).
Additional file 2. The Tibetan alphabet (Vowels).

Acknowledgments
We are very thankful to the local people in Beibeng Village, Jiangxin Village, Xirang Village, Gelin Village, De’ergong Village, Badeng Village, Acang Village, Dexing Village, Hezhia Village, Naerdong Village, Bangshin Village, and Gengbang Village in Mêdog County, who have provided valuable information related to the useful plant resources. Extremely gratitude is expressed to the families of Rinchin lhamo for their kind hospitality, and to Padma Dorje for his genuine assistance.

Authors’ contributions
SL and YHW conceived and designed the research. SL, YZ, YJG, LXY, and YHW collected the data. YZ and YJG provided the botanical identification. SL analyzed the data and prepared the manuscript. LXY and SL took the photographs. YHW reviewed the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA20050204, XDA19050301, and XDA19050303) and the 13th Five-year Informatization Plan of Chinese Academy of Sciences (No.XXH13506), and the National Public Scientific Data Center for Basic Sciences.

Availability of data and materials
All data generated or analysed during this study are included in this published article and its supplementary information files.

Ethics approval and consent to participate
The authors asked for permission from the local authorities and the people interviewed to carry out the study.

Consent for publication
The people interviewed were informed about the study’s objectives and the eventual publication of the information gathered, and they were assured that the informants’ identities would remain undisclosed.

Competing interests
The authors declare that they have no competing interests.
Author details
1 Department of Economic Plants and Biotechnology, Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. 2 Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China. 3 Germplasm Bank of Wild Species of China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China. 4 University of Chinese Academy of Sciences, Beijing CN-100049, China.

Received: 11 September 2019 Accepted: 13 January 2020

Published online: 30 January 2020

References
1. Salick J, Amend A, Anderson D, Hoffmeister K, Gunn B, Zhendong F. Tibetan sacred sites conserve old growth trees and cover in the eastern Himalayas. Biodivers Conserv. 2007;16(3):693–706. https://doi.org/10.1007/s10531-005-4581-5.
2. Veer V, Gopalakrishnan R. Herbal insecticides, repellents and biomedicines: effectiveness and commercialization. New Delhi: Springer; 2016. https://doi.org/10.1007/978-81-322-2704-5.
3. Liu YC, Dao ZL, Yang CY, Liu YT, Long CL. Medicinal plants used by Tibetans in Shangri-la, Yunnan, China. J Ethnobiol Ethnomed. 2009;5(1):15. https://doi.org/10.1186/1746-4269-5-15.
4. Ju Y, Zhuo JX, Liu B, Long CL. Eating from the wild: diversity of wild edible plants used by Tibetans in Shangri-la region, Yunnan, China. J Ethnobiol Ethnomed. 2013;9(1):28. https://doi.org/10.1186/1746-4269-9-28.
5. Kang Y, Luczak L, Kang J, Wang F, Hou JJ, Guo QP. Wild foods plants by the Tibetans of Gongba Valley (Zhougu county, Gansu, China). J Ethnobiol Ethnomed. 2014;10(1):20. https://doi.org/10.1186/1746-4269-10-20.
6. Kang J, Kang YX, Ji XL, Guo QP, Jacques G, Pietras M, Luczaj N, Li DW, Luczaj L. Wild foods plants and fungi used in the mycophilous Tibetan community of Zhagana (Tewo County, Gansu, China). J Ethnobiol Ethnomed. 2016;12(1):21. https://doi.org/10.1186/s13002-016-0094-y.
7. Wang L. Investigation of Mêdog Village. Beijing: China Economic Publishing House; 2011.
8. Yang N, Zhou X. Plants of the Mêdog. Beijing: China Forestry Publishing House; 2015.
9. Ethnologue. Languages of the world, twenty-first edition. Dallas: SIL International; 2018. http://www.ethnologue.com. Accessed 15 Dec 2018.
10. Zhang X. An overview of historical culture, literature and art of Monpa people. Popular Lit Art. 2018;12:40.
11. Chen L. On the literary and artistic exchange between the Tibetan and the Moniba People. Tibetan Art Stud. 1995;1:56.
12. L Z, Hong M. Monpa ethnic group: investigation of Cuona County, Gongri town in Xizang. Kunming: Yunnan University Publishing House; 2004.
13. Li S. Research on traditional settlements space of the Moinba Nationality in Mêdog Village. Beijing: China Economic Publishing House; 2004.
14. Anonymous. Moinba ethnic group and its customs. In: Anonymous, editors. Tibet travel guide–let Tibet travel guide–let. Beijing: China National Tourism Administration; 2001.
15. Cunningham AB, Ingram W, Kadat W, et al. Hidden economies, future options: trade in non-timber products from forests and agroforestry systems in eastern Indonesia. AGRAR Technical Report: Cornell; 2011.
16. Geng YF, Zhang Y, Ranjitkar S, Huai HY, Wang YH. Traditional knowledge and its transmission of wild edible plants used by the Naxi in Baidi Village, northwest Yunnan province. J Ethnobiol Ethnomed. 2016;12(1):10. https://doi.org/10.1186/s13002-016-0082-2.
17. Longvah T, Deosthale YG. Chemical and nutritional studies on hanshi (perilla frutescens), a traditional oilseed from northeast India. J Am Oil Chem Soc. 1991;68(10):781–4. https://doi.org/10.1007/BF02662172.
18. Ahmed HM, Tavaszi-Sarosi S. Identification and quantification of essential oil content and composition, total polyphenols and antioxidant capacity of Perilla frutescens (L.) Britt. Food Chem. 2004;10(5):735–8. https://doi.org/10.1016/j.foodchem.2002.01.052.
19. Bhattarai S, Chaudhary RP, Cassandra LQ, Robin SLT. The use of medicinal plants in the trans-himalayan arid zone of Mustang district, Nepal. J Ethnobiol Ethnomed. 2010;6:14. https://doi.org/10.1186/1746-4269-6-14.
20. Ayyanar M, Ignacimuthu S. Traditional knowledge of Kani tribals in Kouthalai of Tirunelveli hills, Tamil Nadu, India. J Ethnopharmacol. 2005;102:246–55. https://doi.org/10.1016/j.jep.2005.06.020.
21. Subject database of china plant, medicinal plant database. Institute of Botany, Chinese Academy of Science, Beijing. 2014. http://www.plant.csbdb.cn/herb. Accessed 8 Jun 2014.
22. Jiang B, Lu ZQ, Zhang HJ, Zhao QS, Sun HD. Diterpenoids from Isonochloa chinensis. Flavour Frag J. 2003;18(5):449–53. https://doi.org/10.1002/ffj.1250.
23. Kanjilal PB, Kotoky R, Singh RS. Chemical composition of the leaf oil of Altingia excisa from Khasi Hills. Flavour Frag J. 2001;14(4):360–4. https://doi.org/10.1007/BF02662172.
24. Yang ZM, Li B, Liu PP, Chen YJ, Liu Y. Systematic preliminary research on traditional medicine with secondary technologies in island southeast Asia. Archaeol Ocean. 2008;4(2):62–74. https://doi.org/10.2307/40387408.
25. Cunningham AB, Ingram W, Kadat WD, et al. Hidden economies, future options: trade in non-timber products from forests and agroforestry systems in eastern Indonesia. AGRAR Technical Report: Cornell; 2011.
26. Longvah T, Deosthale YG. Chemical and nutritional studies on hanshi (perilla frutescens), a traditional oilseed from northeast India. J Am Oil Chem Soc. 1991;68(10):781–4. https://doi.org/10.1007/BF02662172.
27. Ahmed HM, Tavaszi-Sarosi S. Identification and quantification of essential oil content and composition, total polyphenols and antioxidant capacity of Perilla frutescens (L.) Britt. Food Chem. 2004;10(5):735–8. https://doi.org/10.1016/j.foodchem.2002.01.052.
28. Bhattarai S, Chaudhary RP, Cassandra LQ, Robin SLT. The use of medicinal plants in the trans-himalayan arid zone of Mustang district, Nepal. J Ethnobiol Ethnomed. 2010;6:14. https://doi.org/10.1186/1746-4269-6-14.
29. Ayyanar M, Ignacimuthu S. Traditional knowledge of Kani tribals in Kouthalai of Tirunelveli hills, Tamil Nadu, India. J Ethnopharmacol. 2005;102:246–55. https://doi.org/10.1016/j.jep.2005.06.020.
30. Subject database of china plant, medicinal plant database. Institute of Botany, Chinese Academy of Science, Beijing. 2014. http://www.plant.csbdb.cn/herb. Accessed 8 Jun 2014.
31. Jiang B, Lu ZQ, Zhang HJ, Zhao QS, Sun HD. Diterpenoids from Isonochloa chinensis. Flavour Frag J. 2003;18(5):449–53. https://doi.org/10.1002/ffj.1250.
32. Yang ZM, Li B, Liu PP, Chen YJ, Liu Y. Systematic preliminary research on the chemical components of Artemisia venosa vitrea. Med Plant. 2014;3. https://doi.org/10.2307/40387408.
33. Deba F, Xuan TD, Yasuda M, Tawata S. Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Dioscorea villosa Linn. var. Radiata. Food Control. 2008;19(4):346–52. https://doi.org/10.1016/j.foodcont.2007.04.011.
34. Bansal SS, Murshuman A, GISNS, Bili M. Therapeutic potential of Curcim medica L, peel extract in carrageenan induced inflammatory pain in rat. J Pharmacol Toxicol. 2010;5(3):108. https://doi.org/10.3932/jrpm.2009.123.133.
35. Yu F, Gao J, Zeng Y, Liu CX. Effects of adlay seed oil on blood lipids and antioxidant capacity in hyperlipidemic rats. J Sci Food Agric. 2011;91(10):1843–5. https://doi.org/10.1002/jsfa.4939.
