Catia customization for Design and Modeling of Two stage spur Gearbox

Mayuresh V.Patwardhan a,1, Uddhavrao Nimbalkar a,2,*

a M Tech (Mechanical) PG student Department of Mechanical Engineering, Rajarambapu Institute of Technology, Sakhare, Maharashtra, 415414, India
1 mayuresh.patwardhan26@gmail.com, 2 uddhavrao.nimbalkar@ritindia.edu
* corresponding author

1. Introduction

Current scenario of the market is competitive. To sustain in the market for company product time to the market have to be minimum. Companies existing product demands from the customer are to be provided quickly as soon as possible. Existing product requirement has same parametric features of components for different specification. Design and modeling time of the product is generally 60-70% of overall time of the product development. Design phase has lot of potential where time can be saved. Parametric modeling can be used for saving the modeling time. Knowledge based approach can be useful for saving the design time. Lot of repetitive calculations can be saving for avoiding tedious work. CATIA software is selected having strong parameterization. Mechanical product selected is gearbox. Nowadays best of the best innovations are coming into picture, in these, researchers have made one way to reduce maximum design time by doing design automation concept which means integration of GUI developed with the help of computer programming language and market available CAD packages. Graphical User Interface (GUI) is the only way for users to communicate with the system.

But no specific software is available for the design of a specific product. So by this dissertation approach it is very important to make one tailor-made software which will be useful for complete design of a specific component and output of the software should easily be integrated with other modeling software. In this with use of Macro which means program written for specific task. For developing advanced macros for special needs Catia V5 is an open system. Macros may be useful for creating, analyzing, measuring, modifying. Translating, optimizing surfaces, solids, wireframes and more. Macros are useful for part operation, assembly operation and all multidisciplinary applications.
2. Literature Review

Many research attempts have been made in the area of parametric modeling.

Ruchik D. Trivedi et al [1] discussed about integrating the commercially available package Pro/E with Microsoft Excel spreadsheet for 3D parametric modeling. Various product variants of the inner ring of spherical roller bearing have been executed by parametric designing concept in Pro/Engineer Wildfire.

Umesh Bedse et al [2] discussed about developed GUI is made for the case study of design of CI engine parts like cylinder head, cylinder block, piston and crankshaft. CI engine is having many numbers of mechanical components, but parts named above are the most important parts of any CI engine. So design of these parts is useful to take into account to develop a GUI. And creo software is used for modeling.

Indrajitsinh J. Jadeja et al [3] discussed about the work reviews the procedural steps involved in the design of couplings and the development of the software package using visual basic as a tool for the design. This system is carried out on the case study of flange coupling and standard design equation being carried out together with the use of programming software and use CREO as modeling software.

Dhaval b. shah et al [4] discussed about the 3D models for flange type coupling and related dimension database in Microsoft Excel have been prepared. This Excel sheet has been linked with Autodesk Inventor to transfer data and relate to respective features of the part. User can update the model just by modifying the sheet. This takes comparatively very less time to generate complex part models with respect to generating them individually. This automation can further be proceeded by exporting models to the analysis or CAM package.

L.Karikalan et al [5] discussed about the the main purpose of this assignment is to provide a gear box with Low reduction ratio, low weight and efficient for engine up to 500cc. It should also be used in “All Terrain” vehicles.

CATIA V5

CATIA (Computer Aided Three Dimensional Interactive Application) is a multi-platform CAD/CAM/CAE commercial software suite developed by French company Dassault Systems and it is marketed world-wide by IBM. Catia is the world’s leading CAD/CAM/CAE software. For developing advanced macros for special needs Catia V5 is open system. A macro is a series of functions, written in a scripting language, that you group in a single command to perform the requested task automatically. These macros may be useful for creating, analyzing, measuring, modifying, Translating, optimizing surfaces, solids, wireframes and more. Macros are used to save time, reduce the possibility of human error by automating repetitive processes, standardization, improving efficiency, expanding Catia’s capabilities, and for streamlining tasks. For creating basic structure and basic flow of program we require inputs, outputs, and supporting data from the user. Catia provides customization capability. In Catia the part Objects, which are used for developing part model i.e. three dimensional object are structured under a automation tree.

CATIA V5 MACROS

A macro is a series of functions, written in a scripting language, that you group in a single command to perform the requested task automatically. In simple it is a piece of code written in certain programming language which groups a set of operation that defines a certain task. For each task separate code is written and assembled together by using forms.

CATIA Customization/Automation Objects

In CATIA the part objects, which are used for developing part model i.e. three dimensional object are structured under a tree as shown in the following figure. As and when needed the part object can be extracted with the macro programming for customization or automation of CATIA V5 The Part Document object aggregates, or includes, the part tree structure starting with the Part object located at the top of the part specification tree. These Part Document objects are: Origin Element, Geometric...
Elements, Bodies and Part objects are: Constraints, Relations, Parameters, and Factory3D, Shape Factory (Sketches, Geometric Elements, and Shapes).

Figure 1. Part Modeling Object Tree

3. Methodology

1. First user need to give input parameters of gearbox to GUI form
 The input parameters are as follows
 - Power (P) in KW
 - No. of teeth on gear 1 (Z1)
 - Service factor
 - RPM of Gear 1 (N1)
 - No. of teeth on gear 3 (Z3)
 - Factor of safety
 - RPM of Gear 4 (N4)
 - Surface hardness (BH2)
 - Ultimate stress for gear material Sut – N/mm²

2. As the input parameters are given from calculate module we get the value which is best suitable according to design procedure of gearbox

Mayuresh V. Patwardhan et. al (Catia customization for Design and Modeling of Two stage spur Gearbox)
3. As user fill that value into the input module value the design is getting checked
4. And gear dimensions are generated and model is generated.

![Developed GUI](image-url)

Figure 3. Developed GUI

![Spur gear with formula](image-url)

Figure 4. Spur gear with formula

4. Result and Discussion

Design calculations

Notation	Value	Unit
Power to be transmitted	P	10
RPM of Input Shaft (Gear 1)	N1	1440
RPM of Output Shaft (Gear 4)	N4	90
Minimum number of teeth for Gear 1	Z1	18
Lewis form Factor for Gear 1	Y1	0.308
UTS of Gear material	Sut	600
Surface Hardness for Gears	BHN	340

Mayuresh V. Patwardhan et. al (Catia customization for Design and Modeling of Two stage spur Gearbox)
Assumptions

- Gear teeth pressure angle α: 20
- Pitch line velocity v: 5 m/s
- Ratio b/m: 10
- Material for all gears is considered the same, the pinion is weaker than gear. Hence it is necessary to design for Pinion i.e. Gear 1

Module Based on Beam Strength

Step	Formula	Value
1	$\text{Velocity Factor} = \frac{3}{3 + v}$	0.375
2	$\text{Permissible bending stress for gear teeth} = \frac{200}{3} \text{N/mm}^2$	66305.9622 N/mm
3	$\text{Torque transmitted by Gear 1} = \frac{60 \times 10^6}{3.142} \times \frac{P}{N1}$	19096117 Nmm
4	$\text{Module step-1} = \frac{22.5}{7} \times P \times Cs \times Fs$	5987520.00
5	$\text{Module step-2} = \frac{71.760}{22.5} \times \text{Module step-1}$	71.760
6	$\text{Module Based on Beam Strength} = \text{Cubertoot(step-4)}$	4.16

Module Based on Beam Strength

Selection of Module & FOS For Beam Strength & Wear Strength	Formula	Value
Standardized Module	$\text{stdm} = 5$	
Pitch Circle diameter for Gear 1	$\text{dp1} = 90 \text{mm}$	$m \times Z1$

B1 Considering Dynamic load

- Tangential force due to rated torque $\text{Pt} = 1473.46582 \text{N}$
- Actual Pitch line velocity $\text{Va} = 6.78672 \text{m/s}$
- Velocity Factor $\text{Cv} = 0.30654$
- Effective load $\text{Peff} = 7210.1987 \text{N}$
- Beam Strength $\text{Sb} = 15400.000 \text{N}$
- FOS Considering Dynamic load $\text{Fsb} = 2.1359$

B2 Total transmission ratio

- $i = 16 \times \frac{N1}{N4}$
Mayuresh V. Patwardhan et. al (Catia customization for Design and Modeling of Two stage spur Gearbox)
Figure 4. model for assembly of gearbox

D Shaft Selection

Shaft 1
Center Distance between Gear 1 & Gear 2 C1 225 mm \((dp1+dp2)/2\)
Center Distance between Gear 3 & Gear 4 C2 225 mm \((dp3+dp4)/2\)

ASME code for Bending moment kb 1.5
ASME code for torsional moment kt 1

Assumptions
Factor of Safety for shaft 1 Fss 2
Distance Between Bearings on Shaft 1 L1 200 mm
Permissible Shear Stress Ssy 108 N/mm² \(0.18 \times S_{ut}\)
Gears are fixed on shaft by Keyways, Therefore tmax 40.5 N/mm² \(0.75 \times Ssy/Fss\)
Tangential Force at Gear 1 (C) Ftc 1473.466 N \(T_1 \times 2/dp1\)
Axial Force at Gear 1 Fac 536.298 N \(Ftc \times \tan \theta\)
Resultant force at C Fct 1568.030 N \(Ftc / \cos \theta\)
Tangential Force at Gear 1 (C) Ftc 1473.466 N \(T_1 \times 2/dp1\)
Axial Force at Gear 1 Fac 536.298 N \(Ftc \times \tan \theta\)
Resultant force at C Fct 1568.030 N \(Ftc / \cos \theta\)

Weight of Spur Gear 1 Ws1 24.499 N
Total Resultant Force at C Fc 1592.528 N
Reactions at A Ra 796.264 N \(Fc \times (L_1/2)/L_1\)
Reactions at B Rb 796.264 N \(Fc - Ra\)
Maximum Bending moment at C Mbc 79626.40518 Nmm \(Fc \times L_1/4\)
Equivalent twisting moment Te1 136610.0309 \(\sqrt{(K_b \times M_b)^2 + (K_t \times M_t)^2}\)
Shaft 1 Diameter cube \(d_1^3\) 17176.76477 \(16/(3.142 \times t_{max}) \times T_{e}\)
Shaft 1 Diameter d1 25.802 mm
Considering next standard value for Shaft Diameter 27.00 mm

Shaft 2
Distance Between Bearings on Shaft 2 L2 180 mm
Distance Between Bearing and Spur Gear 2 LEG 45 mm
Distance Between Gear 2 & 3 LGH 90 mm

Mayuresh V. Patwardhan et. al (Catia customization for Design and Modeling of Two stage spur Gearbox)
Tangential Force at Gear 2 (G)	FtG	368.366	N	Mt/(dp2/2)
Weight of Gear 2	Wg2	389.9790136		
Total force at Gear 2	FG	758.345	N	
Tangential Force at Gear 3 (H)	FtH	1473.466	N	Mt/(dp3/2)
Weight of Gear 3	Wg3	24.37369		
Total force at Gear 3	FH	1497.840		
Taking moment at E, Force at F	RF	1312.966004	N	(FG*LEG+ (FH*(LEG+LGH)))/L2
Force at E	RE	943.219	N	FG+FH-RF
Bending moment at G	MG	42444.85418	Nmm	RE*LEG
Bending moment at F	MH	59083.4702	Nmm	RE*LEH-FG*LGH
Maximum Bending moment	Mmax2	59083.4702	Nmm	
Equivalent Twisting moment	Te2	110683.8183	Nmm	Sqrt((Kb*Mmax2)^2+(Kt*Mt)^2)
	d2	13916.91298		
	d2	24.05364907		
Considering next standard value for Shaft Diameter	d2	26	mm	
Shaft 3	Distance Between Bearings on Shaft 3	L3	240	mm
Distance Between Bearing and Spur Gear 4	LKJ	150	mm	
	LIK	90		
Tangential Force at Gear 4 (K)	FtK	368.366	N	Mt/(dp4/2)
Axial Force at Gear 14	Fak	134.074	N	Ftk* tan20
Resultant force at k	FrK	392.007	N	Ftk/ Cos20
Weight of Gear 4	Wg4	389.979		
Total Force at Gear 4	Fk	781.986	N	
Reaction at J	RJ	293.245	N	FK*LIK/L3
Reaction at I	RI	488.742	N	FK-RJ
Maximum Bending moment at K	MbK	43986.73551	Nmm	RI * LIK
Equivalent twisting moment	Te3	93540.65777	Nmm	sqrt((Kb*MbK)^2+(Kt*Mt)^2)
Shaft 3 Diameter cube	d3^3	11761.40482	(16/(3.142*tmax))*Te	
Shaft 3 Diameter	d3	22.742	mm	
Considering next std value for Shaft Dia	d3	30.00	mm	

E Bearing Selection
- for Shaft-1 Diameter at bearings | 25 | mm |
- Selected Bearing Number | 6005 |
- Load factor / Service Factor (Ks) | 1.5 |
- Bearing ID | 25 | mm |
- Bearing OD | 47 | mm |
- Thickness | 12 | mm |
- Static Load Rating | C01 | 6.55 | KN |
- Dynamic Load Rating | C1 | 11.9 | KN |
Radial load at Bearing A
Axial Load at Bearing A
RADIAL LOAD RATING FOR BEARING
AXIAL LOAD RATING FOR BEARING
EQUIVALENT DYNAMIC BEARING LOAD
Bearing life in Revolutions

Fr\(a\) 796.264 N
Fa\(a\) 0 N
\(X\) 1
\(Y\) 1
\((Xf_a + Yf_a) \times Ks\)
L\(\text{Rev}\) 989.00 Millions of revolutions

Figure 5. Drafted View of Gearbox

5. Conclusion

The objective was to customize CATIA V5 for design two stage spur gearbox with minimum user requirements (inputs). With the help of this customization gearbox is generated. Also the time required for generating part model (three dimensional model) of gearbox is reduced to few minutes. This part model can be used to draft different views of the gearbox which can directly be used for manufacturing processes. Thus, customization will increase productivity of the designer with increase in quality of design which in turn reduces lead time for design of gearbox.

References

[1] Ruchik D. Trivedi (2013). 3D Parametric Modeling for Product Variants Using Case Study on Inner Ring of Spherical Roller Bearing. Mechanical Engineering Tracks of the 3rd Nirma University International Conference on Engineering. Procardia Engineering 51(2013)709 –714.

[2] Umesh Bedse (2016). Developing a GUI based Design Software in VB Environment to Integrate with CREO for Design and Modeling of CI Engine. International Journal of Latest Trends in Engineering and Technology (IJLTEL), Vol. 6 Issue 4 March 2016, ISSN: 2278-621X.

[3] Indrajitsinh J. Jadeja (2014). Developing a GUI based Design Software in VB Environment to Integrate with CREO for Design and Modeling using Case Study of Coupling. International Journal of Engineering Sciences & Research Technology April, 2014 [088-4095] ISSN: 2277 9655.

[4] Dhaval B. Shah (2013). Parametric Modeling and Drawing Automation for Flange Coupling Using Excel Spreadsheet. International Journal of Research in Engineering & Technology (IJRET) Vol. 1, Issue 2, July 2013, 187-192 © Impact Journals.

[5] L.Karikalan (2018). Design and Analysis of Two Stage Reduction Gearbox for All Terrain Vehicles. International Journal of Advance Engineering and Research Development Volume 5, Issue 03, March -2018 e-ISSN (O): 2348-4470 p-ISSN (P): 2348-6406.
[6] Saša ĆUKOVIC (2010). Automatic Determination of Grinding Tool Profile for Helical Surfaces Machining Using CATIA/VB Interface. UPB Scientific Bulletin, Series D: Mechanical Engineering, January, 2010 Vol. 72, Issue. 2, 2010 ISSN 1454-2358.

[7] Thakkar A. and Patel Y., 2012. Integration of PRO/E with Excel and C language for design automation, India: IIERT, pp. 1-4.

[8] V.B.Bhandari “A text book of design of machine elements”, McGraw-Hill education India Pvt. Ltd.

[9] R.S.Khurmi and J.K.Gupta “A text book of Machine Design”, Euraisa Publication House, 2005 pp1021-1065.