Optimizing Bivariate Partial Information Decomposition

Abdullah Makkeh, Dirk Oliver Theis*

Institute of Computer Science of the University of Tartu
Ulikooli 17, 51014 Tartu, Estonia
{makkeh,dotheis}@ut.ee

September 23, 2018

Abstract

None of the BROJA information decomposition measures $\text{SI}, \text{CI}, \text{UI}_y, \text{UI}_z$ are convex or concave over the probability simplex. In this paper, we provide formulas for the sub-gradient and super-gradients of any of the information decomposition measures. Then we apply these results to obtain an optimum of some of these information decomposition measures when optimized over a constrained set of probability distributions.

1 Introduction

Terminology and notation

We use the common shorthand $[n] := \{1, \ldots, n\}$. For vectors, we use the following summation convention: Replacing an index by an asterisk $*$ has the effect summing over all the possible values, e.g., for $p \in \mathbb{R}^{A \times B \times C}$, the term $p_{a,*c}$ stands for $(\sum_{b \in B} p_{a,b,c})$, e.g.,

$$p_{a,*c} = (\sum_{b \in B} p_{a,b,c})(\sum_{a \in A} p_{a,b,c})$$

All random variables considered in this paper have finite range (unless explicitly stated otherwise). Denote by R_X the range\(^1\) of the (finite-range) random variable X.

For a (finite) set X, we denote the probability simplex by

$$\Delta^X := \{p \in \mathbb{R}_+^X \mid p_* = 1\}$$

For us, a probability distribution on a set X, is a vector in Δ^X.

*Supported by the Estonian Research Council, ETAG (Eesti Teadusagentuur), through PUT Exploratory Grant #620, and by the European Regional Development Fund through the Estonian Center of Excellence in Computer Science, EXCS.

\(^1\)The range is a set with the property $P(X = x) > 0$ for all $x \in R_X$, and $P(X = x) = 0$ for all $x \not\in R_X$. If a range exists it is unique; if the range exists and is finite, we say that the random variable has “finite range”.

1
2 Main Theorem: Derivatives of PID-Quantities

\[M(p) := \max_q h(q) \]
over \(q \in \mathbb{R}^{S \times Y \times Z} \)
subject to \(q_{s,y,z} = p_{s,y,z} \) for all \((s, y) \in S \times Y\);
(1c) \(q_{s,z} = p_{s,z} \) for all \((s, z) \in S \times Z\);
(1d) \(q_{s,y,z} \geq 0 \) for all \((s, y, z) \in S \times Y \times Z\).
(1e)

Proposition 1 (Corollary 3 in [3]). A feasible point \(q \) is an optimal solution to (1), if and only if there exist \(\lambda \in \mathbb{R}^{S \times Y} \) and \(\mu \in \mathbb{R}^{S \times Z} \) satisfying the following:

(a) For all \((y, z) \in Y \times Z\) with \(q_{*,y,z} > 0 \):
\[\lambda_{s,y} + \mu_{s,z} = \ln \left(\frac{q_{s,y,z}}{q_{*,y,z}} \right) \quad \text{holds for all } s \in S; \]

(b) For all \((y, z) \in Y \times Z\) with \(q_{*,y,z} = 0 \), there is a probability distribution \(\varrho \) with support \(S \) such that
\[\lambda_{s,y} + \mu_{s,z} \leq \ln(\varrho_{y,z}^s) \quad \text{holds for all } s \in S. \]

If \(q, \lambda, \mu \) are as in the proposition, then we say that \(\lambda, \mu \) are Lagrange multipliers certifying optimality.

Lemma 2. Suppose \(p \) has full support. Let \(q \) be an optimal solution of (1), and let \(\lambda, \mu \) be Lagrange multipliers certifying optimality.

(a) If \(q_{*,y,z} > 0 \) for all \((s, y, z) \in S \times Y \times Z\), then \(M \) is differentiable in \(p \), and we have
\[\frac{\partial M(p)}{\partial s_{y,z}} = -\lambda_{s,y} - \mu_{s,z} \]
(2)

(b) In any case, the vector defined by
\[g(p)_{s,y,z} := -\lambda_{s,y} - \mu_{s,z} \]
(3)
is a super-gradient on \(M \) in the point \(p \).

Proof. If \(q \) is the optimal solution of (1), then
\[M(p) = \max_q h(q) = -\min_q -h(q) = h(q) \]
where \(h(q) = H(S \mid Y, Z) \). So, the gradient of \(M \) in \(p \) is
\[\nabla M(p) = -\ln \left(\frac{q_{s,y,z}}{q_{*,y,z}} \right)_{s,y,z} \]
(4)

If \(q_{s,y,z} > 0 \) for all \((s, y, z) \in S \times Y \times Z\), then \(q_{*,y,z} > 0 \) for all \((y, s) \in Y \times Z\) and so \(M \) is differentiable in \(p \). Moreover, Equation (2) follows from the fact that \(q, \lambda, \mu \) are as in Proposition 1 and the gradient defined in (4).

From [3, Proposition 2] and Proposition 1, we have \(\lambda_{s,y} + \mu_{s,z} \) is a sub-gradient to \(M'(p) := \min_q -h(q) \) subject to the constraints (1c), (1d), and (1e) in the point \(p \). Hence \(-\lambda_{s,y} - \mu_{s,z}\) is a super-gradient on \(M \) in the point \(p \).

We would like to emphasize that, in this lemma as well as in the following results, the condition that \(p \) has full support is only there to simplify notation, and can be readily abandoned.
Lemma 3 ([5], Lemma 2.73). Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a convex function and \(p \in \text{dom}(f) \). A vector \(g \) is a subgradient of \(f \) in the point \(p \) iff

\[
f'(p, d) \geq g^T d \quad \text{for all } d \in \mathbb{R}^n.
\]

Theorem 4. Suppose \(p \) has full support. Let \(q \) be an optimal solution of (1), and let \(\lambda, \mu \) be Lagrange multipliers certifying optimality.

(a) If \(q_{s,y,z} > 0 \) for all \((s, y, z) \in S \times Y \times Z \), then CI, SI, UIy, UIz are all differentiable in \(p \), and we have

\[
\begin{align*}
\partial_{s,y,z} \text{CI}(p) &= \ln \left(\frac{p_{s,y,z}}{p_{s,y,z}^*} \right) - \lambda_{s,y} - \mu_{s,z} \quad (5a) \\
\partial_{s,y,z} \text{SI}(p) &= -1 + \ln \left(\frac{p_{s,y,z}^*}{p_{s,y,z}} \right) - \lambda_{s,y} - \mu_{s,z} \quad (5b) \\
\partial_{s,y,z} \text{UIy}(p) &= \ln \left(\frac{p_{s,y,z}^*}{p_{s,y,z}} \right) + \lambda_{s,y} + \mu_{s,z} \quad (5c) \\
\partial_{s,y,z} \text{UIz}(p) &= \ln \left(\frac{p_{s,y,z}^*}{p_{s,y,z}} \right) + \lambda_{s,y} + \mu_{s,z} \quad (5d)
\end{align*}
\]

(b) In any case, the vectors defined by

\[
\begin{align*}
g_{\text{CI}}(p)_{s,y,z} &= \ln \left(\frac{p_{s,y,z}}{p_{s,y,z}^*} \right) - \lambda_{s,y} - \mu_{s,z} \quad (6a) \\
g_{\text{SI}}(p)_{s,y,z} &= -1 + \ln \left(\frac{p_{s,y,z}^*}{p_{s,y,z}} \right) - \lambda_{s,y} - \mu_{s,z} \quad (6b)
\end{align*}
\]

are local super-gradivents of CI and SI respectively and the vectors defined by

\[
\begin{align*}
g_{\text{UIy}}(p)_{s,y,z} &= \ln \left(\frac{p_{s,y,z}^*}{p_{s,y,z}} \right) + \lambda_{s,y} + \mu_{s,z} \quad (7a) \\
g_{\text{UIz}}(p)_{s,y,z} &= \ln \left(\frac{p_{s,y,z}^*}{p_{s,y,z}} \right) + \lambda_{s,y} + \mu_{s,z} \quad (7b)
\end{align*}
\]

are local subgradients of UIy and UIz in the point \(p \) respectively.

Proof. For (a), Bertschinger et al. in [1] defined the partial information decomposition as follows:

\[
\begin{align*}
\text{CI}(p) &= \text{MI}(S; Y, Z) - \min_q \text{MI}(S; Y, Z) \\
\text{SI}(p) &= \max_q \text{CoI}(S; Y; Z) \\
\text{UIy}(p) &= \min_q \text{MI}(S; Y | Z) \\
\text{UIz}(p) &= \min_q \text{MI}(S; Z | Y)
\end{align*}
\]

where the optimization is subject to the constraints (1c), (1d), and (1e). Using the definition of \(\text{MI}(S; Y, Z) \) and the chain rule, we get

\[
\begin{align*}
\text{CI}(p) &= M(p) - H(S | Y, Z) \\
\text{SI}(p) &= M(p) + \text{MI}(S; Y) - H(S | Z) \\
\text{UIy}(p) &= \text{MI}(S; Z) + H(S) - M(p) \\
\text{UIz}(p) &= \text{MI}(S; Y) + H(S) - M(p)
\end{align*}
\]

where \(H(S | Y, Z), H(S | Z), \text{MI}(S; Y), \) and \(\text{MI}(S; Y) \) are functions of \(p \). By direct computations the equations in (a) follow using the fact \(\partial_{s,y,z} M(p) = -\lambda_{s,y} - \mu_{s,z} \).

3
For (b), let
\[
\begin{align*}
g_{CI}(p) &= H(S \mid Y, Z) \\
g_{SI}(p) &= MI(S; Y) - H(S \mid Z) \\
g_{UI_y}(p) &= MI(S; Z) + H(S) \\
g_{UI_z}(p) &= MI(S; Y) + H(S).
\end{align*}
\] (8)

Since \(p \) has a full support then all the functions in (8) are differentiable and
\[
\begin{align*}
g'_{CI}(p, d) &= \sum_{s,y,z} \ln \left(\frac{p_{s,y,z}}{p_{s,y,z}} \right) d_{s,y,z} \\
g'_{SI}(p, d) &= \sum_{s,y,z} \left(\ln \left(\frac{p_{s,y,z}p_{s,y,z}}{p_{s,y,z}p_{s,y,z}} \right) - 1 \right) d_{s,y,z} \\
g'_{UI_y}(p, d) &= \sum_{s,y,z} \ln \left(\frac{p_{s,y,z}}{p_{s,y,z}} \right) d_{s,y,z} \\
g'_{UI_z}(p, d) &= \sum_{s,y,z} \ln \left(\frac{p_{s,y,z}}{p_{s,y,z}} \right) d_{s,y,z}.
\end{align*}
\] (9)

From Lemma 2 and Lemma 3, \(g(p) \) is a super-gradient of \(M \) at \(p \) and for any \(d \in \mathbb{R}^{S \times Y \times Z} \), we have \(-M'(p, d) \geq -g^Td\). Hence, the vectors defined by (6a) and (6b) are super-gradients of CI and SI respectively and the vectors defined by (7a) and (7b) are local subgradients of UI\(_y\) and UI\(_z\) in the point \(p \) respectively.

Corollary 5. Let \(I \) be any of CI, SI, UI\(_y\), UI\(_z\). At the points where \(I \) is not smooth it is
(a) concave, in the case of \(I = CI, SI \);
(b) convex, in the case of \(I = UI_y, UI_z \).

Proof. Using Theorem (a), the vectors \(g_{CI}(p) \) and \(g_{SI}(p) \) are local super-gradients of CI and SI and the vectors \(g_{UI_y}(p) \) and \(g_{UI_z}(p) \) are local sub-gradients of UI\(_y\) and UI\(_z\) in the point \(p \). From this, the statements in this Corollary follow.

3 Application I: Extractable Shared Information

Let \(S, Y, Z \) are random variables with joint probability distribution \(p \), and denote by \(S, Y, Z \) the ranges, respectively, of \(S, Y, Z \).

For a set \(R \) and a \(m \in \mathbb{N} \), a **stochastic** \(([m] \times R) \)-matrix is a matrix \(\Pi \) with \(m \) rows (indexed \(1, \ldots, m \) as usual) and columns indexed by the elements of \(R \), whose entries are nonnegative reals such that \(\Pi_{s,z} = 1 \). Let \(p \) be a probability distribution on \(S \times Y \times Z \), and \(\Pi \) be a stochastic \(([m] \times S) \)-matrix. Then we define the probability distribution \(\Pi(p) \) as follows:
\[
\Pi_t(s,y,z) := \sum_{s \in R_{S_i}(p)} \Pi_{t,s}p_{s,y,z}, \text{ for all } t \in [m] \text{ and } (y,z) \in Y \times Z.
\]

Rauh et al. [4] define two “extractable” versions of shared information. Let \(S, Y, Z \) be random variables with distribution \(p \in \mathbb{P}^{S \times Y \times Z} \). The **extractable shared information** of \(S, Y, Z \) is defined as
\[
SI_{\text{ext}}(p) := \sup_f SI(f(S); Y, Z)
\] (10)

where the supremum is taken over all functions \(f: S \to T \), where \(S \) is the range of \(S \) and \(T \) is an arbitrary finite set. The **probabilistically extractable shared information** is defined as
\[
SI_{\text{prext}}(p) := \sup_T SI(T; Y, Z)
\] (11)
where the supremum is taken over all random variables \(T \) (with finite range) which are conditionally independent of \(Y, Z \) given \(S \).

It is straightforward that the extractable shared information of \(p \) is the value of the following optimization problem:

\[
\text{SI}_{\text{ext}}(p) := \max_{\Pi} \text{SI}(\Pi(p))
\]

over \(\Pi \in \mathbb{R}^{[m] \times S} \)

subject to

\[
\Pi_{t,s} = 1 \quad \text{for all } s \in S
\]

\[
\Pi_{t,s} \geq 0 \quad \text{for all } (t, s) \in [m] \times S
\]

\[
\Pi_{t,s} \in \mathbb{Z} \quad \text{for all } (t, s) \in [m] \times S.
\]

To see why this is the same as the definition \((10)\), given in \([4]\), let us take random variables \(S, Y, Z \) with distribution \(p \). The integrality constraints \((12d)\) — together with the nonnegativity inequalities \((12c)\) and the equation — have precisely the effect of ensuring that for every \(s \) in the range of \(S \) there exists a unique \(t \in [m] \) such that \(\Pi_{t,s} = 1 \). In other words, \(\Pi \) defines a mapping from \(Rg_S \) to \([m]\). Since \(m \) is the size of the range of \(S \), the optimization problem \((12)\) simply optimizes over all functions defined on the range of \(S \), which is exactly \((10)\).

Similarly, the probabilistically extractable shared information is the value of the following optimization problem:

\[
\sup_{m \geq |S|} \text{SI}(\Pi(p))
\]

over \(m \geq |S| \)

subject to

\[
\Pi_{t,s} = 1 \quad \text{for all } s \in S
\]

\[
\Pi_{t,s} \geq 0 \quad \text{for all } (t, s) \in [m] \times S.
\]

To see why this is equivalent to the definition \((11)\), given in \([4]\), consider the relation

\[
\Pi_{t,s} = \mathbb{P}(T = t \mid S = s).
\]

Given \(\Pi \), it defines a random variable \(T \) which is conditionally independent of \(X_1, \ldots, X_k \) given \(S \), such that \(\Pi(p) \) is the distribution of \((T, X_1, \ldots, X_k) \). On the other hand, given a random variable \(T \) conditionally independent of \(X_1, \ldots, X_k \) given \(S \), setting \(m := \max Rg_S \), relation \((14)\) defines a \(\Pi \) such that \(\Pi(p) \) is the distribution of \((T, X_1, \ldots, X_k) \). We invite the reader to check these claims — or read the detailed proof in \([2, \text{Lemma 5.2.1}]\).

There are two significant differences between the \((12)\) and \((13)\). Firstly, it lacks the integrality constraints, making it a continuous optimization problem. Secondly, the dimension, \(m \), is a variable, making the optimization problem infinite dimensional (as observed in \([4]\)), and thus basically intractable from an algorithmic point of view. (The lower bound \(m \geq S \) is redundant, see Lemma \(6 \) below).

The following optimization problem, however, is a standard continuous optimization problem to which we can apply our results: For a fixed value of \(m \in \mathbb{N} \), let us define

\[
\text{SI}_{\text{m}}(p) := \max_{\Pi} \text{SI}(\Pi(p))
\]

over \(\Pi \in \mathbb{R}^{m \times S} \)

subject to

\[
\Pi_{t,s} = 1 \quad \text{for all } s \in S
\]

\[
\Pi_{t,s} \geq 0 \quad \text{for all } (t, s) \in [m] \times S.
\]

\(^2\)Approximation through is thinkable.
The following lemma is quite obvious (see \cite[Lemma 5.2.2]{makkeh} for a detailed proof).

Lemma 6. The sequence \(m \mapsto \text{SI}^\bullet(m) \) is non-decreasing and for every fixed \(m_0 \geq |S| \),

\[
\text{SI}^\text{ext}(p) \leq \text{SI}^\bullet_{m_0}(p) \leq \sup_{m \geq 0} \text{SI}^\bullet_m(p) = \sup_{m \geq 0} \text{SI}^\text{prext}(p).
\]

Acknowledgements

This research was supported by the Estonian Research Council, ETAG (*Eesti Teadusagentuur*), through PUT Exploratory Grant #620. We also gratefully acknowledge funding by the European Regional Development Fund through the Estonian Center of Excellence in Computer Science, EXCS.

References

[1] Bertschinger, N.; Rauh, J.; Olbrich, E.; Jost, J.; Ay, N. Quantifying unique information. *Entropy* 2014, 16, 2161–2183.

[2] Makkeh, A. Applications of Optimization in Some Complex Systems. Ph.D. Thesis, University of Tartu, Tartu, Estonia, forthcoming.

[3] Makkeh, A.; Theis, D. O.; Vicente, R. Bivariate Partial Information Decomposition: The Optimization Perspective. *Entropy* 2017, 19(10) 530.

[4] Rauh, J.; Banerjee, P. Kr.; Olbrich, E.; Jost, J.; Bertschinger, N. On Extractable Shared Information *Entropy* 2017, 19 (10) 328.

[5] Ruszczyński, A. P. Nonlinear optimization *Princeton university press* 2006, 13.