APOE gene polymorphisms and diabetic peripheral neuropathy

Christodoulos Monastiriotis1, Nikolaos Papanas1, Stavroula Veletza2, Efstratios Maltezos1

Abstract
Genetic factors may influence the natural course of diabetic peripheral neuropathy and explain some of its variability. The aim of this review was to examine the association between apolipoprotein E (apoE) gene polymorphisms and diabetic peripheral neuropathy. Four relevant studies were identified. The two earlier works provided evidence that the ε4 allele is a risk factor for this complication, while the two more recent studies were negative. Important differences in the methodology used and in the populations included are obvious, rendering difficult the comparison between studies. In conclusion, the association between APOE gene polymorphisms and diabetic peripheral neuropathy is still unclear. Available evidence is rather limited and results have so far been contradictory. Future studies should employ more robust methodology, adjusting for potential confounders and for the prevalence of neuropathy in the general population with diabetes.

Key words: apolipoprotein E, diabetes mellitus, diabetic neuropathy, polymorphisms.

Introduction
Diabetic neuropathy is a chronic microvascular complication of diabetes mellitus (DM). It is a heterogeneous group of disorders, whose pathophysiology is extremely complex and which affects both the somatic and the autonomic component of the peripheral nervous system [1-6]. Distal symmetric polyneuropathy, also called peripheral neuropathy, is the most common form of this complication, affecting about 30% of patients with DM [1, 2, 4]. It has also been noted that some patients show minor or no clinical signs of neuropathy even after many years of diabetes, while others suffer from severe neuropathy by the time of, or before, the diagnosis of DM [7-10]. There is now ample evidence to support the view that pathogenesis starts even before the diagnosis of overt DM, during the so-called pre-diabetic stage [7].

Several factors have been identified to affect the course of diabetic peripheral neuropathy [1-6] (Table I). Diabetes duration and degree of glycaemic control are the major factors affecting incidence and severity, while patient age and height, hypertension and dyslipidaemia are other contributory factors [2, 5-7]. Nevertheless, even within comparable DM duration and glycaemic control, there is a considerable degree of between-patient variability in terms of clinical manifestations and severity of diabetic peripheral neuropathy [2, 5-7]. In view of this variability, it has been hypoth-
Table I. Factors that affect the course of diabetic peripheral neuropathy (based on references [1-6])

Diabetes duration	Poor glycaemic control	Height	Hypertension	Age	Visceral obesity	Smoking	Hypoinsulinaemia	Dyslipidaemia	Genetic factors

Search strategy

The electronic search was based on the PubMed, Embase and Google Scholar databases up to June 2012 using combinations of the following keywords: complications, diabetes, gene, neuropathy, pathogenesis, peripheral neuropathy, polymorphism, APOE. All types of articles written in English were included, while works written in other languages were only studied in abstract form.

Evidence for the association between APOE gene polymorphism and diabetic neuropathy

Studies investigating the association between APOE gene polymorphisms and diabetic neuropathy are summarised in Table II.

The first study was carried out in Japan by Tsuzuki and colleagues and published in 1998 [24]. It included 158 patients with type 2 DM, who were examined for diabetic retinopathy, nephropathy and neuropathy. Severity of neuropathy was assessed by a scale devised by the authors. All patients were APOE genotyped and divided into three genotype groups: E2 (genotypes ε2/ε2 and ε2/ε3), E3 (genotype ε3/ε3) and E4 (genotypes ε3/ε4 and ε4/ε4) [24]. The three groups did not differ in terms of patient age, diabetes duration, body mass index or glycated haemoglobin (HbA1c). No significant differences were observed in the rates of retinopathy and nephropathy among the three groups. However, neuropathy was significantly (p < 0.05) more frequent in the E4 group (39%), compared to the E3 group (28%) and the E2 group (23%). Furthermore, patients in the E4 group presented earlier and more severe neuropathy than those in the other two groups [24]. The limitations of this study include the small patient series and the subjective evaluation of neuropathy severity using a non-standardised scale. Nonetheless, the results concur with those of current evidence on the association of APOE polymorphisms with the severity of CNS diseases [21, 25-27], inasmuch as the ε4 allele was related to more severe disease.

Two years later, Bedlack et al. [19] published a literature review on the relation between APOE gene polymorphisms and several neuromuscular diseases. Among other things, they discussed diabetic peripheral neuropathy, reviewing the previous study, which was then the only available work. In 2003, these authors reported on their own findings in this area [28]. They included 187 patients with DM, divided into two groups: the group of ε4/ε4 or ε3/ε4 genotypes and the group comprising other genotypes (including patients with ε2/ε3, ε3/ε3 and ε2/ε4). Severity of neuropathy was evaluated by the NIS-LL (Neuropathy Impairment Score in the Lower Limbs) [29] scoring system. Comparison
between groups was carried out by multiple regression analysis with adjustment for age, DM duration, as well as most recent and the higher detected triglyceride and HbA1c levels. Patients in the ε3/ε4 or ε4/ε4 group exhibited more severe neuropathy, similar to that associated either with an additional 15 years of age or with an additional 15 years of diabetes duration [28]. Of note, glycemic control or triglyceride levels were not significant predictors in this model.

Surprisingly, in 2005 two new studies questioned the correlation of APOE gene polymorphisms with severity of diabetic neuropathy. The first work included 56 patients with clinically overt neuropathy [30]. These underwent an oral glucose tolerance test and were divided into three groups: patients with normal oral glucose tolerance test, those with impaired glucose tolerance and those with DM. Genotyping for the APOE gene was carried out using skin biopsy specimens and the severity of neuropathy was evaluated using the Neuropathy Impairment Score (NIS) [31]. According to their genotype, patients were divided into APOEε4(+) and APOEε4(−). The ε4 allele rate among subjects with DM or impaired glucose tolerance was not significantly different from that of the general population in the United States and Europe, as based on previous prevalence studies. The authors concluded that the ε4 allele was not a risk factor for neuropathy [30]. The limitations of the study include the small patient series, the unidentified cause of neuropathy among subjects with normal oral glucose tolerance test and the use of NIS, which may be criticised as not very sensitive for small fibre dysfunction.

In the same year, another study was published by Voron’ko et al. [32] in Russia including 180 patients with type 1 DM. According to the presence or otherwise of neuropathy, patients were divided into two groups: those with shorter than 5 years DM duration who exhibited clinical neuropathy, and those with longer than 10 years DM duration who had no clinically manifest neuropathy. Neuropathy was diagnosed according to the San Antonio consensus on the diagnosis of neuropathy [33] and the Neurodiab Subcommittee criteria [34]. Genotype rates and allele rates were measured in each group and no significant differences were observed [32]. Thus, it was concluded that APOE gene polymorphisms did not affect the severity of diabetic neuropathy. The limitation of this study is the use of a unique division of patients according to the severity of neuropathy without adjustment for covariates (such as age, gender, DM duration, level of glycaemic control). As a result, it may be argued that the two patient groups might be essentially different and incomparable, diminishing the clinical implications of the results.

Authors (publication year)	Population studied	Number of patients	Neuropathy scale	Grouping compared	Results	Conclusions
Tsuzuki et al. (1998) [24]	Japanese patients with type 2 diabetes	158	Devised by the authors	E2 (ε2/ε2 and ε2/ε3) vs. E3 (ε3/ε3) vs. E4 (ε3/ε4)	Higher frequency of diabetic neuropathy in E3 (28%) vs. E2 (23%) and E2 (28%) (p < 0.05)	ε4 is a risk factor for diabetic neuropathy
Bedlack et al. (2003) [28]	American patients with type 1 and type 2 diabetes	387	NIS-LL Group A: E3/4 and E4/4 vs. other alleles	Group A: averaged 3.12 NIS-LL points more than group B	Group A and E2/ε4 (p = 0.02)	Higher frequency of diabetic neuropathy
Zhou et al. (2005) [30]	American patients with peripheral neuropathy	56	NIS	Normal OGGT vs. IGT vs. diabetes mellitus	Group A: diabetes duration ≤ 10 years vs. group B: diabetes duration > 10 years without peripheral neuropathy	No significant differences were observed between the two groups (p < 0.001)
Voron’ko et al. (2005) [32]	Russian patients with type 1 diabetes	180	Devised by the authors	Group A: diabetes age ≤ 5 years vs. group B: diabetes age > 5 years	Group A: averaged 3.12 NIS points more than group B	ε4 is not a risk factor for diabetic peripheral neuropathy

NIS – Neuropathy Impairment Score, NIS-LL – Neuropathy Impairment Score in the Lower Limbs, OGGT – Oral Glucose Tolerance Test, IGT – Impaired Glucose Tolerance

Table II. Studies examining the association of APOE gene polymorphisms with diabetic peripheral neuropathy
Discussion

The present review examined the evidence for the association between APOE gene polymorphism and diabetic peripheral neuropathy. This potential relationship is of importance, given the data on some contribution of apoE isoforms to nerve repair and regeneration. First, experimental research has shown that traumatic or toxic sciatic nerve injury leads to increased synthesis of apoE by Schwann cells [35, 36]. Interestingly, apoE deficient mice fail to accomplish complete nerve regeneration after sciatic nerve injury. Indeed, regeneration looks morphologically normal on light microscopy [37], but electron microscopy reveals fewer and abnormally shaped small, unmyelinated axons, compared with wild-type animals [38]. Secondly, human studies have provided evidence that the APOE4 allele confers increased risk of developing early Alzheimer’s disease [22], while the APOE2 allele lowers this risk [23]. Furthermore, the APOE4 allele is related to worse outcome after intracranial haemorrhage [25] or head injury [26], as well as to increased likelihood of cognitive impairment following cardiopulmonary bypass surgery [39, 40]. In addition, some recent lines of evidence suggest that APOE gene polymorphisms are associated with lipid profile, thereby affecting cardiovascular risk and longevity as well [41].

The evidence on the association between APOE gene polymorphism and diabetic neuropathy is still rather limited and definitive conclusions cannot be drawn [24, 28, 30, 32]. This uncertainty is further enhanced by the important methodological differences between the studies. Indeed, different scoring systems for the severity of diabetic peripheral neuropathy, different genotype group formation, and discrepancies of populations studied (e.g. type 1 only or both types of diabetes) become immediately clear [24, 28, 30, 32]. Consequently, it is extremely difficult to compare studies with each other, and still less to attempt a pooled data analysis.

A further important issue to consider is the differences in the general populations from which patient series were drawn. Essentially, the different conclusions on the role of APOE gene polymorphisms in diabetic neuropathy may largely be, beyond the aforementioned differences in methodology, due to the fact that the studies were carried out in populations of different origin [24, 28, 30, 32]. Accordingly, it is conceivable that the role of apoE in the pathogenesis of diabetic peripheral neuropathy is enhanced or diminished by other uncontrolled genetic factor(s) that are differently distributed among various populations, thereby altering the association of APOE gene polymorphisms with diabetic peripheral neuropathy. Of note, only Zhou et al. [30] compared allele rates between the patients studied and the general population, attempting to ensure generalisability of their findings.

Hence, additional enquiries are required to clarify the association between the APOE gene polymorphisms and diabetic peripheral neuropathy. It would be useful to carry out studies in different populations using the same method [42]. Ideally, studies should employ a common scale to quantify the severity of neuropathy, common genotype group division and comparison to the genotypic rates of the general populations to ensure that patient series included are representative of the background populations. In this fashion, it would be possible to attempt a meta-analysis of results and clarify the potential role of APOE gene polymorphisms in the pathogenesis and natural course of diabetic peripheral neuropathy.

Conclusions

The association between APOE gene polymorphisms and diabetic peripheral neuropathy remains unclear at the moment. Available evidence is rather limited and results have thus far been contradictory [24, 28, 30, 32]. Important discrepancies may be indentified in methodology and in populations used. Thus, additional research is required to elucidate the potential role of APOE gene polymorphisms in the pathogenesis and natural course of diabetic neuropathy. Future studies should employ more robust and reproducible methodology [42-45], but also adjust for potential confounders, as well as for the prevalence of neuropathy in the general diabetic population. Such works will be very useful, contributing to the accumulating knowledge on the various novel and, at times, paradoxical issue of diabetes [46]. It is anticipated that they will enrich our knowledge on the causal pathways of diabetic neuropathy.

Acknowledgments

This review was written independently. No company or institution supported it financially. Nikolaos Papanas has been an advisory board member of TrigoCare International; has participated in sponsored studies by Novo Nordisk and Novartis; received honoraria as a speaker for Novo Nordisk and Pfizer; and attended conferences sponsored by TrigoCare International, Novo Nordisk, sanofi-aventis and Pfizer. Efstratios Maltezos has participated in sponsored studies by Novo Nordisk and Novartis; and attended conferences sponsored by Wyeth, Pfizer and Bayer.

References

1. Thomas PK. Metabolic neuropathy. J R Coll Phys Lond 1973; 7: 154-60.
2. Shaw JE, Simmet PZ, Gries FA, Ziegler D. Epidemiology of diabetic neuropathy. In: Gries FA, Cameron NE, Low PA, Ziegler D (eds). Textbook of diabetic neuropathy. Stuttgart/New York: Thieme 2003: 64-82.

3. Sima AA. New insights into the metabolic and molecular basis for diabetic neuropathy. Cell Mol Life Sci 2003; 60: 2445-64.

4. Varkonyi T, Kempler P. Diabetic neuropathy: new strategies for treatment. Diabetes Obes Metab 2008; 10: 99-108.

5. Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: where are we now and where to go? J Diabetes Investigation 2011; 2: 18-32.

6. Malik RA. Current and future strategies for the management of diabetic neuropathy. Treat Endocrinol 2003; 2: 389-400.

7. Papanas N, Vinik AI, Ziegler D. Neuropathy in prediabetes: does the clock start ticking early? Nat Rev Endocrinol 2011; 7: 682-90.

8. Singleton JR, Smith AG, Bromberg MB. Increased prevalence of impaired glucose tolerance in patients with painful sensory neuropathy. Diabetes Care 2001; 24: 1448-53.

9. Sumner CJ, Sheth S, Griffin JW, Comblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003; 60: 108-11.

10. Ziegler D, Papanas N, Roden M; GDC Study Group. Neuropathy: evaluation of three cut-off points of sudomotor dysfunction for early detection of polynuropathy in recently diagnosed diabetes. Diabet Med 2011; 28: 1412-5.

11. Sivenius K, Pihlajamaki J, Partanen J, Niskanen L, Laakso M, Uusitupa M. Aldose reductase gene polymorphisms and peripheral nerve function in patients with type 2 diabetes. Diabetes Care 2004; 27: 2021-6.

12. Papanas N, Papatheodorou K, Papazoglou D, Kotsiou S. Arch Med Sci 20. Strittmatter W, Saunders A, Strittmatter WJ, Morgenlander JC. Apolipoprotein E associated with astrocytic glia of the central nervous system and with non myelinating glia of the peripheral nervous system. J Clin Invest 1985; 76: 1501-13.

13. Bedlack RS, Strittmatter WJ, Morgenlander JC. Apolipoprotein E and neuromuscular disease: a critical review of literature. Arch Neurol 2000; 57: 1561-5.

14. Strittmatter W, Saunders A, Schmechel D, Pericak-Vance M, Enghild J, Roses A. Apolipoprotein E: high-avidity binding to b-amylloid and increased frequency of type 4 allele in late-onset familial Alzheimer's disease. Proc Natl Acad Sci USA 1993; 90: 1977-81.

15. Strittmatter W, Roses A. Apolipoprotein E and Alzheimer's disease. Proc Natl Acad Sci USA 1995; 92: 4725-7.

16. Corder E, Saunders, A, Strittmatter, W et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late-onset families. Science 1993; 261: 921-3.

17. Corder E, Saunders A, Risch N, et al. Protective effect of apolipoprotein E type 2 allele for late-onset Alzheimer disease. Nat Genet 1994; 7: 180-4.

18. Tsuzuki S, Murano T, Watanabe H, Itoh Y, Miyashita Y, Shirai K. The examination of apoE phenotypes in diabetic patients with peripheral neuropathy. Rinsho Byori 1998; 46: 829-33.

19. Alberts M, Graffagnino C, McClenney C, et al. APOE genotype and survival from intracerebral haemorrhage. Lancet 1995; 346: 575.

20. Teasdale G, Nicoll J, Murray G, Fiddes M. Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 1997; 350: 1069-71.

21. Jordan B, Relkin N, Ravdin L, Jacobs A, Bennett A, Gandhy S. Apolipoprotein E $\epsilon4$ associated with chronic traumatic brain injury in boxing. JAMA 1997; 278: 136-40.

22. Bedlack RS, Edelman D, Gibbs JW 3rd, et al. APOE genotype is a risk factor for neuropathy severity in diabetic patients. Neurology 2003; 60: 1022-4.

23. Apfel SC, Schwartz S, Adornato B, et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: a randomized controlled trial. JAMA 2000; 284: 2215-21.

24. Zhou Z, Hoke A, Comblath DR, Griffin JW, Polydefkis M. APOE epsilon4 is not a susceptibility gene in idiopathic or diabetic sensory neuropathy. Neurology 2005; 64: 139-41.

25. Dyck PJ, Litchy WJ, Lehman KA, Hokanson JL, Low PA, O'Brien PC. Variables influencing neuropathic endpoints: the Rochester Diabetic Neuropathy Study of Healthy Subjects. Neurology 1995; 45: 1115-21.

26. Voron'ko OE, Yakunina NYu, Strokov IA, Lavrova IN, Nosikov IV. Association of polymorphic markers of the lipid metabolism genes with diabetic neuropathy in type 1 diabetes mellitus. Mol Biology 2005; 39: 206-9.

27. American Diabetes Association and American Academy of Neurology. Report and recommendations of the San Antonio conference on diabetic neuropathy. Diabetes 1988; 37: 1000-4.

28. Dyck PJ, Melton JL, O'Brien PC, Service FG. Approaches to improve epidemiological studies of diabetic neuropathy: Insights from the Rochester diabetic neuropathy study. Diabetes 1997; 46 Suppl 2: S5-S8.

29. Skene J, Shooter E. Denvatized sheath cells secrete a new protein after nerve injury. Proc Natl Acad Sci USA 1983; 80:4169-73.

30. Gelman B, Rifai N, Goodrum J, Comblath DR, Polydefkis M. Apolipoprotein E is released by rat sciatic nerve during segmental demyelination and remyelination. J Neuropathol Exp Neurol 1987; 46: 644-52.

31. Popko B, Goodrum J, O'Brien PC, Service FG. Approaches to improve epidemiological studies of diabetic neuropathy: Insights from the Rochester diabetic neuropathy study. Diabetes 1997; 46 Suppl 2: S5-S8.

32. Skene J, Shooter E. Dervatized sheath cells secrete a new protein after nerve injury. Proc Natl Acad Sci USA 1983; 80:4169-73.

33. Voorn;k'o OE, Yakunina NYu, Strokov IA, Lavrova IN, Nosikov IV. Association of polymorphic markers of the lipid metabolism genes with diabetic neuropathy in type 1 diabetes mellitus. Mol Biology 2005; 39: 206-9.

34. American Diabetes Association and American Academy of Neurology. Report and recommendations of the San Antonio conference on diabetic neuropathy. Diabetes 1988; 37: 1000-4.

35. Dyck PJ, Melton JL, O'Brien PC, Service FG. Approaches to improve epidemiological studies of diabetic neuropathy: Insights from the Rochester diabetic neuropathy study. Diabetes 1997; 46 Suppl 2: S5-S8.

36. Skene J, Shooter E. Dervatized sheath cells secrete a new protein after nerve injury. Proc Natl Acad Sci USA 1983; 80:4169-73.

37. Voron'ko OE, Yakunina NYu, Strokov IA, Lavrova IN, Nosikov IV. Association of polymorphic markers of the lipid metabolism genes with diabetic neuropathy in type 1 diabetes mellitus. Mol Biology 2005; 39: 206-9.
41. Kolovou G, Kolovou V, Vasiliadis I, Wierzbicki AS, Mikhailidis DP. Ideal lipid profile and genes for an extended life span. Curr Opin Cardiol 2011; 26: 348-55.
42. Tesfaye S, Bouillon AJ, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010; 33: 2285-93.
43. Valensi P, Attali JR, Gagant S. Reproducibility of parameters for assessment of diabetic neuropathy. The French Group for Research and Study of Diabetic Neuropathy. Diabet Med 1993; 10: 933-9.
44. Mojaddidi M, Quattrini C, Tavakoli M, Malik RA. Recent developments in the assessment of efficacy in clinical trials of diabetic neuropathy. Curr Diab Rep 2005; 5: 417-22.
45. Bissinger A, Grycewicz T, Grabowicz W, Lubinski A. The effect of diabetic autonomic neuropathy on P-wave duration, dispersion and atrial fibrillation. Arch Med Sci 2011; 7: 806-12.
46. Katsiki N, Banach M. Statins and the risk of diabetes: the debate. Arch Intern Med 2012; 172: 895-6.