Role of TROP2, Cyclin D1 and FOXP3 in Bladder Carcinoma in Egyptian Patients: An Immunohistochemical Study

Dalia Rifaat Al-sharaky (daliah_alsharaky@yahoo.com)  
Menoufia University Faculty of Medicine

Moshira Mohammed Abdelwahed  
Menoufia University Faculty of Medicine

Hend Ahmad Abdou Kassem  
Menoufia University Faculty of Medicine

Abdelnaby Saied Abdelnaby  
Menoufia University Faculty of Medicine

Research

Keywords: TROP2, CYCLIN D1, FOXP3, BC, Immunohistochemistry, Prognosis

DOI: https://doi.org/10.21203/rs.3.rs-91173/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

In Egypt, Urinary bladder carcinoma is a common malignancy accounting for 14.3% of total malignancies in both sexes with 3:1 male to female ratio. It comprises 88.3% of the total urinary system tumors according to the National cancer institute registry 2016 (1). The expected new cases are about 10.709 by 2020, 12.762 by 2025 and 28.337 by 2050 (2,3). To reduce bladder cancer morbidity and mortality there is an urgent need to identify novel tumor marker which are specific enough for prognosis and can serve as effective anticancer targets (4).

TROP-2 is a transmembrane glycoprotein encoded by the Tacstd2 gene (5), which has been actively studied as a prognostic marker and an attractive immunotherapeutic target in human cancer treatment (6).

Methods

Using the standard immunohistochemical technique, TROP2, CYCLIN D1 and FOXP3 expression in 80 primary bladder carcinomas and 20 specimens as non neoplastic group were assessed. The bladder carcinoma cases included 50 cases with muscle invasive bladder cancer and 30 cases with non-muscle invasive bladder cancer.

Results

Overexpression of both TROP2 and FOXP3 implied poor prognostic impact as significantly associated with muscle invasive bladder cancer, high grade, advanced stage, lymph node involvement and high mitotic count. Cyclin D1 displayed an inverse relation with both TROP2 and FOXP3 reflecting a favorable prognostic impact. Tumoral FOXP3 expression is directly correlated with peritumoral FOXP3+ lymphocytes expression. TROP2, CYCLIN D1, FOXP3 expression didn’t affect the overall survival of the studied sample.

Conclusions

The inverse relation between Cyclin D1 and TROP2 proposes consumption of Cyclin D1 by TROP2 as a ligand in the urinary bladder carcinogenesis. Strong diffuse overexpression of both TROP2, and FOXP3 could be promising potential biomarkers for identifying patients with poor prognostic factors in bladder cancer serving as potential targets for cancer therapy.

Background

In Egypt, Urinary bladder carcinoma is a common malignancy accounting for 14.3% of total malignancies in both sexes with 3:1 male to female ratio. It comprises 88.3% of the total urinary system tumors according to the National cancer institute registry 2016 (1). The expected new cases are about 10.709 by 2020, 12.762 by 2025 and 28.337 by 2050 (2,3).

To reduce bladder cancer morbidity and mortality there is an urgent need to identify novel tumor marker which are specific enough for prognosis and can serve as effective anticancer targets (4).

TROP-2 is a transmembrane glycoprotein encoded by the Tacstd2 gene (5), which has been actively studied as a prognostic marker and an attractive immunotherapeutic target in human cancer treatment (6).
Trop2 has several ligands, including claudin-1, claudin-7, cyclin D1, and potentially IGF-1, as for cyclin D1 is a protein encoded by CCND1 gene and it is required for progression through the G1 phase of the cell cycle (7). Trop2 forms an oncogenic fusion protein with cyclin D1 (8). This chimera is expressed by human tumors differentially (9). FOXP3 is a forkhead box transcription factor containing a DNA-binding domain (10), it is known as the most specific marker of the regulatory T lymphocytes (Tregs) (11). FOXP3 plays a crucial role in the development and function of Tregs, it is constitutively expressed in the nucleus of human Tregs (12).

The aim of this study is to investigate the role of TROP2, Cyclin D1 and FOXP3 in bladder carcinoma and correlate their expression with the available clinicopathological parameters and overall survival.

Methods

This retrospective study included 80 primary bladder carcinoma and 20 non neoplastic bladder specimens. The bladder carcinoma cases included 50 cases with MIBC and 30 cases of NMIBC. The cases were retrieved from the archives of Pathology Department, Faculty of Medicine, Menoufia University spanning the period between January 2017 and December 2019.

Clinical data of the studied groups:

Clinical data regarding the bladder carcinoma cases were obtained from patients’ medical records and documented in [Table1].

Histopathological Assessment

The hematoxylin and eosin (H&E) stained sections were evaluated for the followings; Histological type according to WHO classification, 2016. Tumor grading was done according to WHO/ISUP grading criteria (13). Mitotic and apoptotic count were counted semi quantitatively in ten randomly selected high power fields (14). Depth of invasion and staging of the tumor were assessed according to TNM staging system/American Joint Committee on Cancer (AJCC) Staging manual 8th edition. According to TNM classification for the stage; the malignant tumors were classified histologically as non-muscle invasive urinary bladder carcinoma (NMIUBC) (stage pTa and pT1) or muscle invasive urinary bladder carcinoma (MIUBC) (stage pT2, pT3 and pT4) (15).

Immunohistochemistry:

The method used for immunostaining was streptavidin-biotin amplified system. Sections cut from the paraffin-embedded blocks were stained with Anti-TROP2 (cat# 241308, abbexa, UK) purified rabbit polyclonal antibody was received as 0.1 ml conc. and diluted by phosphate buffer saline (PBS) in a dilution of 1:100. Anti-Cyclin D1 (cat# RM-9104-R7, Thermo Fisher Scientific, USA) rabbit polyclonal antibody was received was received as a ready to use 7 ml vial. Anti-FOXP3 (cat # ARP32743, Aviva Systems Biology, USA) rabbit polyclonal antibody was received as 0.1 ml conc. and diluted by PBS in a dilution of 1:100.

Tissue sections prepared from, normal skin as positive control for TROP-2 (16), from normal human tonsil for Cyclin D1 (17) and from spleen for FOXP3 (18). Negative control slides were also included in each run by omitting the primary antibody.
Cytoplasmic and/or membranous staining in any number of tumor cells for TROP2 were required to assign the positivity (16). Nuclear staining in any number of cells for Cyclin D1 were required to assign the positivity (17). FOX3 was assessed in malignant epithelial tissues and in the intra-tumoral and peri-tumoral infiltrating lymphocytes, cytoplasmic and nuclear staining in any number of tumor cells and tumor infiltrating lymphocytes whether (peri-tumoral or intratumoral) respectively were required to assign the positivity (18).

**Statistical Analysis:**

The statistical analysis was conducted using SPSS “statistical package for the social science” program for windows, version 22.0 (SPSS INC., Chicago, Illinois, USA). Contingency tables were analyzed with descriptive statistics [Arithmetic mean (x̄), Standard deviation (SD), Percentage (%), Median and Range] and analytic statistics [Chi-square test (X²-test), Mann-Whitney Z test (Z test), Kruskal-Wallis test (K test), Fisher’s exact (FE)]. Overall survival (OS) was analyzed using the Kaplan–Meier method, and differences were examined using log-rank tests. Cox’s proportional hazard regression test was used to estimate univariate and multivariate hazard ratios for prognosis. P values of ≤ 0.05 were considered statistically significant (19).

**Results**

- **Clinicopathologic characteristics:**

Clinicopathologic characteristics of primary bladder carcinoma cases (80 cases) are summarized in [table 1], as for the clinical data of the non neoplastic group (no. =20) their age ranged from 30 to 77 years with mean ±SD of 56.8±10.9 years with a median age of 55 years, 18 cases (90%) were male and 2 cases (10%) were female.

- **Immunohistochemical (IHC) profile of TROP2, Cyclin D1 and FOXP3 in the studied non neoplastic and UBC groups were summarized in [table 2].**

- **Comparison between malignant and control groups regarding TROP2, Cyclin D1 and FOXP3 immunohistochemical profile [table 2]**

The expression of the studied TROP2, Cyclin D1 and FOXP3 between both non neoplastic and UBC groups failed to reach a statistical significance.

- **Relationship between TROP2, Cyclin D1 and FOXP3 IRS score and clinicopathological factors in primary bladder carcinoma cases [table 3, 4 and 5]**

TROP2 high immunoreactive score (IRS) was statistically in favor of high grade (P= 0.017), advanced stage (P=0.001), presence of lymph node involvement (P=0.001), LVI (P= 0.001), PNI (P= 0.005) and high mitotic count (P= 0.001) [Table 3].

Cyclin D1 high Immunoreactive score (IRS) was correlated with early stage group (P=0.001), absence of lymph node involvement (P=0.001) and low mitotic count (P=0.007). Moreover, all high IRS cyclin D1 cases (20/20) displayed absence of bilharzial infestation (P=0.001) [Table 4].
Regarding tumoral FOXP3 immunoreactive score (IRS), low IRS was in favor of early stage group \((P=0.003)\) and absence of lymph node involvement \((P=0.025)\). In contrast, high FOXP3 IRS was significantly in favor of presence of LVI, since 9 cases out of 17 cases of positive LVI displayed high IRS \((P=0.001)\). Also, high FOXP3 IRS was statistically associated with high mitotic count \((P=0.008)\) [Table 5].

-Correlation between Cyclin D1 H-score and both TROP2and tumoral FOXP3 H-scores in malignant cases

There was a significant inverse relationship between Cyclin D1 H-score and both TROP2 and FOXP3 H-scores \((P=0.001\text{ and }0.005\text{ respectively})\)

-Survival analysis:

Univariate analysis of overall survival showed the bad prognostic impact of advanced pathological T stage \((P=0.003)\), nodal invasion \((P=0.006)\) and bilharzial infestation \((P=0.044)\) (figure 65) on patient’s outcome.

None of TROP2, Cyclin D1, tumoral and peritumoral FOXP3 expressions showed significant impact on overall survival

Discussion

In the current study TROP2, was expressed in 85% of the non-neoplastic urothelium and in 97.5% of the malignant group \((P>0.05)\) in agreement with (20, 21, 22, 23). Transcription factors known to be involved in cancer cell progression, such as WT1 regulate Trop-2 transcription (24), in addition, overexpression of TROP2 may be due to Trop-2's intrinsic regulatory effects on cancer cell growth, invasion, and proliferation (25). So, overexpression of Trop-2 naturally leads to tumor progression as a key driver of cancer growth (6). On the other hand, Trop2 was found to be over expressed across normal tissues in animal model, including bladder, uterus, kidney, lung, and skin (23). The expression of Trop2 in normal tissues may play an important role in normal tissue homeostasis. EpCAM, the Trop2 paralog, is thought to function as an epithelial cell adhesion molecule (26, 27). Trop2 shares a conserved cysteine-rich region in its extracellular domain that is required for EpCAM-mediated adhesions (27).

TROP2 high immunoreactive score \((IRS)\) was significantly associated with poor prognostic factors as high grade, advanced stage, presence of lymph node involvement , LVI, PNI and high mitotic count. These results are in agreement with (20) who demonstrated that high expression of TROP2 and high score were significantly associated with tumor high grade, advanced stage, and recurrence in UBC who also found that TROP2 overexpression was associated with tumor stage, lymph node involvement, tumor size and distant metastases in gastric carcinoma.

Studies such as (28,29,4) found that overexpression of TROP2 enhanced cell proliferation, migration, and invasion in the lung cancer cells, gall bladder cancer and oral squamous cell carcinoma (OSCC) respectively, while downregulation of TROP2 triggered apoptosis and impaired proliferation. This was explained by (30,29) who found that TROP2 lead to activation and regulation of ERK pathway in cervical cancer cells and regulation of PI3K/AKT pathway inducing EMT in gall bladder cancer respectively . Moreover, studies done (31,32) found that loss of TROP2 lead to autocrine activation of the EGFR family member ErbB3 through neu-
regulin-1 in the mesenchymal subtype of head and neck squamous cell cancer (HNSCC) and induced sensitivity to anti-ErbB3 antibodies, leading to reduced proliferation and tumorigenic growth in HNSCC cells.

Regarding Cyclin D1, it was expressed in 85% of the non-neoplastic urothelium and in 76.2% of the malignant group (P>0.05), in the current study. Our results are in concordance with (33) who reported cyclin D1 immunoreactivity similarly frequent in bladder tumors (51.6%) and normal tissue of bladder (50%). A study done in 2007 (34) agreeing, reported uniformly intense expression of cyclin D1 in the non-neoplastic group. However other studies (35) reported higher cyclin D1 protein expression in UBC and in endometrial carcinoma (36) compared to the adjacent normal tissue.

While other studies (37, 38, 39) reported complete absence of cyclin D1 in normal urothelium and in other tissues as colonic and gastric mucosa (40, 41, 42) while only expressed in the carcinoma group.

Cyclin D1 high expression was reported in early stage group (P=0.031), absent PNI (P=0.037) and absence of lymph node involvement (P=0.001), in agreement with (43,44,17) who stated low level of Cyclin D1 in advanced stage, poorly differentiated tumors, vascular invasion, as well as lymph node involvement. While Lee et al., 2010 found that cyclin D1 was significantly higher with advanced stage and MIBC (45).

In the current study, all high IRS cyclin D1 cases (20/20) displayed absence of bilharzaiial infestation (P=0.001) in agreement with which was explained by (46). The favorable prognostic impact implied by Cyclin D1 overexpression is attributed to its evidence in the initial stages where cell proliferation is a necessary step, involving no tumor invasion or metastasis as suggested by (47) and that low cyclin D1 expression might be a surrogate of other genetic events in the same cells, which ultimately drives cell growth and leads to worse prognosis (48). Moreover, the phenotype of cyclin D1 was correlated with the degree of cancer progression and invasiveness. Altered expression of cyclin D1 may lead to changes in the biological behavior of transformed cells, for instance growth, proliferation, invasion and metastasis (17)

The inverse correlation between Cyclin D1 expression and poor prognostic parameters was not only reported in urothelial carcinoma; but also among other tumors, as in gastric carcinoma (49), in laryngeal squamous cell carcinoma (50) and in invasive breast carcinoma (51).

Regarding the expression of FOXP3 in the studied groups, FOXP3 was expressed only in epithelium in the non-neoplastic group and was found to be expressed in both malignant cells and lymphocytes (peritumoral and intratumoral) in cases of malignant group.

In this current study, FOXP3 was expressed in 85% of the normal urothelium and in 75% of the tumor cells in malignant group (P>0.05). This is in contrast to (18) and (52) who found that FOXP3 was highly expressed in cancer cells of UBC while (53) found that FOXP3 was expressed in normal breast and down-regulated in adjacent mammary cancer. Predominance of missense mutations in breast and prostate cancer patients via transcriptionally repressing ErbB2and Skp2genes in breast cancer and c-Myc gene in prostate cancer suggested the role of FOXP3 as a tumor suppressor gene (53, and 54).

Low tumoral FOXP3 immunoreactive score (IRS) is in favor of early stage group (P=0.003), absence of lymph node involvement (P=0.025), absence of LVI (P=0.001) and low mitotic count (P=0.008). Association of tumoral FOXP3 with poor prognostic factors is in agreement with (55) who demonstrated that expression of
tumoral FOXP3 was associated with lymphatic metastasis, advanced stage and high proliferative index (Ki-67 ≥ 14%) in cancer breast.

The prognostic role of FOXP3 in tumor cells has been studied for many years. In vitro, FOXP3 represses the transcription of the HER2, SKP2, MYC, MMP2, and UPA genes and induces the expression of p21 and LATS2. Thus, inhibited cell growth, cell migration and cell invasion which have been observed in cell lines derived from breast, prostate and ovarian cancers that overexpress FOXP3 (56).

This poor outcome in cancer may be due to variable mechanisms. Regulatory T cells inhibit many adaptive and innate immune cells, including CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and B cells. It has been shown that Treg cells also inhibit NK cells in a TGF-β dependent manner (57). Also, Treg cells can suppress immune responses of effector T cells as well as other immune cells through direct cell-cell contact dependent mechanisms and release of various soluble factors (58).

Another explanation, Tregs can induce immune tolerance and lead to tumor progression by the following mechanisms: secretion of immunosuppressive molecules such as transforming growth factor beta (TGFβ), IL-10 and CCL22; directly cytolysis of NK cells and CD8+ cells; metabolic disruption; and promoting angiogenesis (59; 60; 61; 62). On the other hand, Tregs can inhibit tumor-promoting inflammation induced by bacteria infection, thereby contributing to an improved outcome (63).

Tumor infiltrating lymphocytes (TILs) may be classified into lymphocytes infiltrating the tumor cell islets (thus being in direct contact with tumor cells) called intra-epithelial (intra-tumoral) and TILs lymphocytes infiltrating the tumor stroma (peritumoral infiltrating lymphocytes) (64).

Sakaguchi et al., 2008 demonstrated that tumor infiltrating lymphocytes (TILs) are composed of different kinds of lymphocytes, including CD4+ and CD8+ T cells, Tregs, B cells, NK cells and NKT cells. Treg cells expressing the transcription factor FOXP3 are naturally present in the immune system and their dysfunction due to FOXP3 gene mutation causes fatal autoimmune disease (65).

Most of FOXP3+ Treg cells are CD4+ T cells that express CD25 can suppress the activation, proliferation and effector functions of a wide range of immune cells displaying a central role in the prevention of immune diseases (65,66).

In this current study, tumoral FOXP3 H. Score was significantly associated with increase in peritumoral positively stained FOXP3+ lymphocytes H. score (p=0.001) and this agreeS with (67) who reported that a high infiltration of FOXP3+ lymphocytes was accompanied by FOXP3+ tumor expression in cancer breast, FOXP3 expressed in the malignant cells succeeded to recruit lymphocytes infiltration into tumor microenvironment. Most of FOXP3+ Treg cells are CD4+ T cells that express CD25 suppressing effector functions of a wide range of immune cells.

Regarding overall survival, in current study, presence of bilharziasis, advanced pathological T stage and presence of lymph node invasion showed poor impact on patient’s outcome. Furthermore, by multivariate COX-regression analysis, pathological T stage was the most independent prognostic factor affecting patient's overall survival agreeing with (13).
On contrary with several studies which found that TROP2 expression had been associated with poor survival in various cancers including; CRC (68, 69 and 70), breast cancer (8), gastric cancer (71; 72; 73) and cancer cervix (30), our study failed to revealed significant association between the TROP2 immunoreactivity and patient’s survival. On the other hand, studies as (74) found that Trop2 overexpression was associated with better survival in non small cell lung cancer (NSCLC) in patients with adenocarcinoma and may be a better prognostic marker in advanced stage adenocarcinoma.

Similarly, our study failed to reveal significant association between the Cyclin D1 immunoreactivity and patient’s overall survival. This was similar to (75), while (33) reported that decreased expression of Cyclin D1 was associated with poor prognosis.

Furthermore, our study failed to reveal significant association between the tumoral FOXP3 immunoreactivity and patient's survival. This was contrary to (76, 52; 77; 55) who found that increased expression of FOXP3 was associated unfavourable prognosis in pancreas, bladder and breast carcinoma respectively which is in contrast to (63, 78) who demonstrated a positive correlation between tumoral FOXP3 and survival in patients with HER2+ tumours who have received neoadjuvant therapy and in gastric carcinoma respectively. These findings might be explained by few number of studied cases.

The present study showed a significant inverse relationship between Cyclin D1 H-score and both TROP2 and FOXP3 H-score in primary bladder carcinoma cases, as Cyclin D1 served as a good prognostic marker, while, TROP2 and FOXP3 was an unfavorable element of bladder cancer patients. However, no previous studies assessed this relationship in malignant tumor, yet this inverse relationship could be explained as proposed by (6) that the phosphorylated forms of cyclin D1 are faster-migrating forms having a shorter half-life and that Trop-2 decreases cyclin D1 expression overall. In the current study, Trop2 forms an oncogenic chimeric cyclin D1-Trop2 protein, implicated in cell transformation in urinary bladder carcinoma which eventually consumes the cyclin D1 causing the inverse relation between both Trop2 and cylin D.

**Conclusion**

Both TROP2 and FOXP3 imply poor prognostic impact and predicts tumor aggressiveness in bladder carcinoma in Egyptian patients while Cyclin D1 implies a favorable one. The inverse relation between Cyclin D1 and TROP2 proposes the consumption of Cyclin D1 by TROP2 as a ligand in the urinary bladder carcinogenesis in bladder carcinoma with high grade, advanced stage, high mitotic count and muscle invasion. TROP2, FOXP3 and Cyclin D1 are suggested to be a promising candidate biomarkers that might serve as prognostic factors for prediction of tumor behavior in bladder carcinoma in Egyptian patients. Further studies conducted on a larger scale to convey the role of TROP2 and FOXP3 antagonists as potential targeted therapeutic tools in UBC, is recommended.

**Abbreviations**

BC: Bladder cancer

Tregs : regulatory T lymphocytes
AJCC : American Joint Committee on Cancer
AJCC-UICC: American Joint Committee on Cancer-Union International Center Cancer staging system
NMIBC: Non-muscle-invasive bladder cancer
MIBC: Muscle invasive bladder cancer
UC: Urothelial carcinoma
IHC: immunohistochemical
IRS: immunoreactive score
PNI: perineural invasion
TILs: Tumor infiltrating lymphocytes

Declarations

Ethics approval and consent to participate:
The ethics committee in the faculty of medicine Menoufia University approved the purpose of this retrospective study and the use of archival paraffin blocks to evaluate the expression of the studied primary antibodies.

Consent for publication:
Not applicable

Availability of data and materials:
The data that support the findings of this study are available from [third party name] but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of [third party name].

Competing interests:
The authors declare that they have no competing interests

Funding:
No fund was contributed to the current study

Authors' contributions:
Dalia Rifaat Al-Sharaky - participated in histopathological assessment of the stained slides, interpretation of the results, analysis and a contributor in writing the manuscript.

Moshira Mohammed Abdelwahed - participated in interpretation of the results, analysis and writing the discussion.

Hend Ahmad Abdou Kassem - participated in histopathological assessment of the stained slides, interpretation of the results, analysis and writing the manuscript.

Abdelnaby Saied Abdelnaby - participated in histopathological assessment of the stained slides

All authors read and approved the final manuscript.

Acknowledgements

Not applicable

References

1. Ibrahim A.S., Khaled H.M., Mikhail N.H., Baraka H. & Kamel H. (2014) Cancer Incidence in Egypt: Results of the National Population-Based Cancer Registry Program. Journal of Cancer Epidemiol 2014, 18.

2. Helal T., Salman M. & Ezz-Elarab SS (2015) Malignant urinary bladder system tumors. In Helal T, Salman M, Ezz-Elarab SS (eds) pathology based cancer registry 2001-2010. Ain Shams Faculty of Medicine; 7th ch: 63-72.

3. Kyritsi F., Loffredo C.A., Zheng Y.L., Philips G. & Amr S. (2018) "Urinary Bladder Cancer in Egypt: Are There Gender Differences in Its Histopathological Presentation?". Advances in Urology, pp. 1–7.

4. Tang G., Tang Q., Jia L., Chen Y., Lin L., Kuai X., Gong A. & Feng Z (2019) TROP2 increases growth and metastasis of human oral squamous cell carcinoma through activation of the PI3K/Akt signaling pathway. Int J Mol Med 44, 2161–2170.

5. Fong D., Moser P., Krammel C., Gostner J., Margreiter R., Mitterer M., Gastl G. & Spizzo G. (2008a) High Expression Of TROP-2 Correlates With Poor Prognosis In Pancreatic Cancer. British Journal Of Cancer 99, 1290-1295.

6. Guerra E., Trerotola M., Aloisi A., Tripaldi R., Vacca G., La Sorda R., Lattanzio R., Piantelli M. & Alberti S. (2013) The TROP-2 Signalling Network In Cancer Growth. Oncogene 32, 1594-1600

7. Baldin V., Lukas J., Marcote M.J., Pagano M. & Draetta G. (1993) "Cyclin D1 is a nuclear protein required for cell cycle progression in G1". Genes & Development 7, 812–21

8. Huang J.W., Shiau C.W., Yang Y.T., Kulp S.K., Chen K.F., Brueggemeier R.W., Shapiro C.L. & Chen C.S. (2005) Peroxisome proliferator-activated receptor gamma-independent ablation of cyclin D1 by thiazolidinediones and their derivatives in breast cancer cells. Mol Pharmacol 67, 1342-8.

9. Cubas R., Li M., Chen C. & Yao Q (2009) TROP 2: a possible therapeutic target for late stage epithelial carcinomas. Biochim Biophys Acta 1796, 309-314
10. Lopes J.E., Torgerson T.R., Schubert L.A., Anover S.D., Ocheltree E.L., Ochs H.D. & Ziegler S.F. (2006) Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol 177, 3133–42.

11. Fontenot J.D., Gavin M.A. & Rudensky A.Y. (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330-336.

12. Martin F., Ladoire S., Mignot G., Apetoh L. & Ghiringhelli F. (2010) Human FOXP3 and cancer. Oncogene 29, 4121–9.

13. Moch H., Humphrey PA., Ulbright T.M. & Reuter V. (2016) tumor of urinary tract In: Moch H., Humphrey PA., Ulbright TM. and Reuter V. (eds), WHO Classification of Tumours of the Urinary System and Male Genital Organs. 4th Ed, Lyon, France: International Agency for Research on Cancer, 2nd ch, 78-133.

14. Chauhan R, Verma N, Sharma S P, Bhargava R, Singh P. Role of apoptotic index, mitotic index and MIB-1 antibody expression as biomarkers in preneoplastic and neoplastic lesions of uterine cervix. Int J Res Med Sci. 2016;4(6): 2093-100

15. Boustead G.B., Fowler S., Swamy R., Kocklebergh R. & Hounsome L. (2014) Section of Oncology, BAUS (2014). Stage, grade and pathological characteristics of bladder cancer in the UK: British Association of Urological Surgeons (BAUS) urological tumour registry. BJU Int 113, 924-30.

16. Avellini C., Licini C., Lazzarini R., Gesuita R., Guerra E., Tossetta G., Castellucci C., Giannubilo S.R., Procopio A., Alberti S., Mazzucchelli R., Olivieri F. & Marzioni D. (2017) The trophoblast cell surface antigen 2 and miR-125b axis in urothelial bladder cancer: Oncotarget 8, 58642-58653.

17. Amer A.I. & Eid A.M. (2019) Prognostic significance of Cyclin D1 in urothelial carcinoma; correlation with p53 and clinicopathological parameters. J Am Sci 15, 86-91.

18. Winerdal M.E., Marits P., Winerdal M., Hasan M., Rosenblatt R., Tolf A., Selling K., Sherif A. & Winqvist O. (2011) FOXP3 and survival in urinary bladder cancer. BJU Int 108, 1672-8

19. Dawson B, Trapp R (eds). Basic and clinical biostatistics: large medical books. Oxford, London. Boston; 2001. p. 270-275.

20. Zhang L., Yang G., Jiang H., Liu M., Chen H., Huang Y., Wang Z. & Bo J. (2017) TROP2 is associated with the recurrence of patients with non-muscle invasive bladder cancer. Int J Clin Exp Med 10, 1643-1650.

21. Ohmachi T., Tanaka F., Mimori K., Inoue H., Yanaga K. & Mori M (2006) Clinical Significance Of TROP-2 Expression In Colorectal Cancer. Clinical Cancer Research 12, 3057-3063.

22. Bignotti E., Todeschini P., Calza S., Falchetti M., Ravanini M., Tassi R.A., Ravaggi A., Bandiera E., Romani C., Zanotti L., Tognon G., Odicino F.E., Facchetti F., Pecorelli S. & Santin A.D. (2010) Trop-2 overexpression as an independent marker for poor overall survival in ovarian carcinoma patients. Eur J Cancer 46, 944-953.

23. Stepan L., Trueblood E., Hale K., Babcock J., Borges L. & Sutherland C. (2011) Expression Of TROP-2 Cell Surface Glycoprotein In Normal And Tumor Tissues Potential Implications As A Cancer Therapeutic Target. Journal Of Histochemistry & Cytochemistry 59, 701-710.

24. Zaman S., Jadid H., Denson A.C. & GrayE (2019) Targeting Trop-2 in solid tumors: future prospects. Onco Targets Ther12, 1781–1790.
25. Shvartsur A. & Bonavida B. (2015) TROP-2 And Its Overexpression In Cancers: Regulation And Clinical/Therapeutic Implications. Genes & Cancer 6, 84-105.

26. Litvinov S.V., Balzar M., Winter M.J., Bakker H.A.M., Braïre-De Bruijn I.H., Prins F., Fleuren G.J. & Wamaar S.O. (1997) Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins. J Cell Biol 139,1337-1348.

27. Balzar M., Braïre-De Bruijn I.H., Rees-Bakker H.A.M., Prins F.A., Helfrich W., De Leij L., Riethmuller G., Alberti S., Wamaar S.O., Fleuren G.J. & Litvinov S.V. (2001) Epidermal growth factor-like repeats mediate lateral and reciprocal interactions of Ep-CAM molecules in homophilic adhesions. Mol Cell Biol 21, 2570-2580.

28. Li Z., Jiang X. & Zhang W. (2016) TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells. Biochem Biophys Res Commun 470, 197-204.

29. Li X., Teng S., Zhang Y., Zhang W., Zhang X., Xu K., Yao H., Yao J., Wang H., Liang X. & Hu Z. (2017) TROP2 promotes proliferation, migration and metastasis of gallbladder cancer cells by regulating PI3K/AKT pathway and inducing EMT. Oncotarget 8, 47052–47063.

30. Liu T., Liu Y., Bao X., Tian J. & Yang X (2013) Overexpression of TROP2 predicts poor prognosis of patients with cervical cancer and promotes the proliferation and invasion of cervical cancer cells by regulating ERK signaling pathway. PLoS One 8, e75864.

31. Zhang K., Jones L., Lim S., Maher C.A., Adkins D., Lewis J., Kimple R.J., Fertig E.J., Chung C.H., Van Tine B.A., Ellis M.J., Herrlich A. & Michel L.S. (2014) Loss of Trop2 causes ErbB3 activation through a neuregulin-1-dependent mechanism in the mesenchymal subtype of HNSCC. Oncotarget 5, 9281-9294.

1. Redlich N., Robinson A.M., Nickel K.P., Stein A.P., Wheeler D.L., Adkins D.R., Uppaluri R., Kimple R.J., Tine B.A. & Michel L.S. (2018) Anti-Trop2 blockade enhances the therapeutic efficacy of ErbB3 inhibition in head and neck squamous cell carcinoma. Cell Death Dis, 5.

33. Khabaz N., Buhmeida A., Ghabrah T., Qureshi I.A., Butt N.S., Al-Maghrabi B., Nedjadi T., Al-Qahtani M. & Al-Maghrabi J. (2016) Cyclin D1 expression is associated with stage, grade and survival in urinary bladder carcinoma. Int J Clin Exp Med 9, 23482-23490.

34. Shariat S.F., Ashfaq R., Sagalowsky A.I. & Lotan Y. (2007) Association of cyclin D1 and E1 expression with disease progression and biomarkers in patients with non muscle-invasive urothelial cell carcinoma of the bladder. Urol Oncol 25, 468-75.

35. Kopparapu K., Boorjian S.A., Robinson B.D., Downes M., Gudas L.J., Mongan N.P. & Persson J.L. (2013) Expression of Cyclin D1 and Its Association with Disease Characteristics in Bladder Cancer. Anticancer Res 33, 5235–5242.

36. Yan R., Wu X., Wang Y., Yu C., Li H. & Zhang L. (2017): Overexpression of peptidyl-prolyl isomerase 1 (Pin1) and cyclin D1 in endometrial cancer Int J Clin Exp Pathol 10, 3335-3343.

37. Takagi Y., Takashi M., Koshikawa T., Sakata T. & Ohshima S. (2000) Immunohistochemical demonstration of cyclin D1 in bladder cancers as an inverse indicator of invasiveness but not an independent prognostic factor. Int J Urol 7, 366-72.

38. Mhawech P., Greloz V., Oppikofer C., Szalay-Quinodoz I. & Hermann F. (2004) Expression of cell cycle proteins in T1a and T1b urothelial bladder carcinoma and their value in predicting tumor progression. Cancer 100, 2367-75.
39. Fristrup N., Birkenkamp-Demtroder K., Reinert T., Sanchez-Carbayo M., Segersten U., Malmstrom P.U., Palou J., Alvarez-Mugica M., Pan C.C., Ulhøi B.P., Borre M., Omtoft T.F. & Dyrskjot L. (2014) Multicenter validation of cyclin D1, MCM7, TRIM29, and UBE2C as prognostic protein markers in non-muscle-invasive bladder cancer. Am J Pathol 182, 339-49.

40. Bahnassy A.A, Zekri A.R, El-Houssini S., El-Shehaby A.M, Mahmoud M.R, Abdallah S. & El-Seraf M. (2004) CyclinAand cyclinD1 as significant prognostic markers in colorectal cancer patients. BMC Gastroenterol 23, 4:22.

41. Gao, Zhou Y., Li Y., Li J.S., Zhen J.H., & Yuan Y.P. (2004) Alteration of cyclin D1 in gastric carcinoma and its clinicopathologic significance. World J Gastroenterol 10, 2936–2939.

42. Shan S., Hsu H.P., Lai M.D., Hung Y.H., Wang C.Y., Yen M.C. & Chen Y.L. (2017) Cyclin D1 overexpression correlates with poor tumor differentiation and prognosis in gastric cancer. Oncol Lett 14, 4517–4526.

43. Galmozzi F., Rubagotti A., Romagnoli A., Carmignani G., Perdelli L., Gatteschi B. & (2006) Prognostic value of cell cycle regulatory proteins in muscle-infiltrating bladder cancer. J Cancer Res Clin Oncol 132, 757-64.

44. Lenz P., Pfeiffer R., Baris D., Schned A.R, Takikita M., Poscablo M.C., Schwenn M., Johnson A., Jones M., Kida M., Cantor K.P., Rothman N., Silverman D.T., Hewitt S.M & Moore L.E. (2012) Cell-cycle control in urothelial carcinoma. large-scale tissue array analysis of tumor tissue from Maine and Vermont. Cancer Epidemiol Biomarkers Prev 21, 1555-64.

45. Lee T.K., Miyamoto H., Osunkoya A.O., Guo C.C., Weiss S.W. & Epstein J.I. (2010) Smooth muscle neoplasms of the urinary bladder: a clinicopathologic study of 51 cases. Am J Surg Pathol 34, 502-9.

46. Zaghloul M.S. (2012) Bladder cancer and schistosomiasis. Journal of Egyptian National Cancer Institute; No longer published by Elsevier, 151-159.

47. Guang S. & Tian T. (2015) Expression of cyclin D1 and cyclin E in urothelial bladder carcinoma detected in tissue chips using a quantum dot immunofluorescence technique. Oncol Lett 10, 1271–1276.

48. Sud N. (1998) Cloning Of The Murine TROP-2 Gene: Conservation Of A Pip2-Binding Sequence In The Cytoplasmic Domain Of TROP-2. Int. J. Cancer 75, 324-330.

49. Feakins R.M., Nickols C.D., Bidd H. & Walton S.J. (2003) Abnormal expression of pRb, p16, and cyclin D1 in gastric adenocarcinoma and its lymph node metastases: relationship with pathological features and survival. Hum Pathol 34, 1276–82.

50. Jovanovic I.P., Radosavljevic G.D., Simovic- Markovic B.J., Stojanovic S.P., Stefanovic S.M., Peinovic N.N. & Arsenijevic N.N. (2014) Clinical significance of Cyclin D1, FGF3 and p21 protein expression in laryngeal squamous cell carcinoma. J BUON 19, 944–52.

51. Parvin T., Das C., Choudhury M., Chattopadhyay B.K. & Mukhopadhyay M. (2019) prognostic utility of Cyclin D1 in invasive breast carcinoma. Indian J Surg Oncol 10, 167-173

52. Zhang H., Prado K., Zhang K.X., Peek E.M., Lee J., Wang X., Huang J., Li G., Matteo Pellegrini M., & Chin A.I. (2016) Biased Expression of theFOXP3Δ3Isoform in Aggressive Bladder Cancer Mediates Differentiation and Cisplatin Chemotherapy Resistance. Clin Cancer Res 22, 5349-5361.

53. Zuo T., Liu R., Zhang H., Chang X., Liu Y., Wang L., Zheng P. & Liu Y. (2007) FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest 117, 3765–73.
54. Wang L., Liu R., Li W., Chen C., Katoh H., Chen G.Y., Mcnally B., Lin L., Zhou P., Zuo T., Conney K.A., Liu Y. & Zheng P. (2009) Somatic Single Hits Inactivate the X-Linked Tumor Suppressor FOXP3 in the Prostate. Cancer Cell 16, 336–46.

55. PengL., Li L., Guo Y.W., Yu P., Yin X.J., Wang S. & Liu C.P. (2019) CD8+ cytotoxic and FoxP3+ regulatory T lymphocytes serve as prognostic factors in breast cancer. Am J Transl Res 11,5039-5053.

56. Nishikawa H. & Sakaguchi S. (2014) Regulatory T cells in cancer immunotherapy. Current opinion in immunology. Curr Op in Immunol 27, 1-7.

57. Ralainirina N., Poli A., Michel T., Poos L., Andres E., Hentges F. & Zimmer J (2007). Control of NK cell functions by CD4+CD25+ regulatory T cells. J Leukoc Biol 81, 144–153.

58. Schmidt, Oberle N. & Krammer P.H. (2012) Molecular Mechanisms of Treg-Mediated T Cell Suppression. Front Immunol 3, 51.

59. Gupta S., Joshi K., Wig J.D. & Arora S.K. (2007) Intratumoral FOXP3 expression in infiltrating breast carcinoma: Its association with clinicopathologic parameters and angiogenesis. Acta oncolgica 46, 792-797

60. Ohara M., Yamaguchi Y., Matsuura K., Murakami S., Arihiro K. & Okada M. (2009) Possible involvement of regulatory T cells in tumor onset and progression in primary breast cancer. Cancer Immunol Immunother 58, 441-447.

61. Facchiabene A., Motz G.T. & Coukos G. (2012) T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer research 72, 2162-2171.

62. Devaud C., Darcy P.K. & Kershaw M.H. (2014) Foxp3 expression in T regulatory cells and other cell lineages. Cancer immunology, immunotherapy: CII 63, 869-876.

63. Ladoire S., Martin F. & Ghiringhelli F. (2011) Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer immunology, immunotherapy: CII 60(7): 909-18.

64. Homychova H., Melichar B., Tomsova M., Mergancova J., Umminska H. & Ryska A. (2008) Tumor-infiltrating lymphocytes predict response to neoadjuvant chemotherapy in patients with breast carcinoma. Cancer Invest 26, 1024-1031.

65. Sakaguchi S., Yamaguchi T., Nomura T. & Ono M. (2008) Regulatory T cells and immune tolerance. Cell 133, 775-787.

66. Allan C.B. & Hafler D.A. (2006) Human regulatory T cells and their role in autoimmune disease. Immunol. Rev 212, 203-216.

67. Takenaka M., Seki N., Toh U., Hattori S., Kawahara A., Yamaguchi T., Koura K., Takahashi R., Otsuka H., Takahashi H., Iwakuma N., Nakagawa S., Fujii T., Sasada T., Yamaguchi R., Yano H., Shirouzu K. & Kage M. (2013) FOXP3 expression in tumor cells and tumor-infiltrating lymphocytes is associated with breast cancer prognosis. Mol Clin Oncol 1, 625-632.

68. Xu K.Y. & Gu J (2009) Expression of Trop2 mRNA in left-sided and right sided colon cancer and its clinical Zhonghua Wei Chang Wai Ke Za Zhi 12, 285–289.

69. Fang Y.J., Lu Z.H., Wang G.Q., Pan Z.Z., Zhou Z.W., Yun J.P., Zhang M.F. & Wan D.S. (2009) Elevated expressions of MMP7, Trop2, and surviving are associated with survival, disease recurrence, and liver
metastasis of colon cancer. Int J Colorectal Dis 24, 875–884.

70. **Sukunthankar M., Alberti S. & Baek S.J. (2010)** Epigallocatechin3-gallate (EGCG) post-transcriptionally and posttranslationally suppresses the cell proliferative protein Trop2 in human colorectal cancer cells. Anticancer Research 30, 2497–2503.

71. **Muhlmann G., Spizzo G., Gostner J., Zitt M., Maie H., Moser P., Gastl G., Zitt M., Muller H.M., Margreiter R., Ofner D. & Fong D (2009)** Trop2 expression as prognostic marker for gastric carcinoma. J Clin Pathol 62, 152–158.

72. **Zhao M., He X.L. & Teng X.D. (2016)** Understanding the molecular pathogenesis and prognostics of bladder cancer: an overview. Chin J Cancer Res 28, 92-8.

73. **Zhao W., Ding G., Wen J., Tang Q., Yong H., Zhu H., Zhang S., Qiu Z., Feng Z. & Zhu J. (2017)** Correlation between Trop2 and amphiregulin coexpression and overall survival in gastric cancer. Cancer Med 6, 994–1001.

74. **Pak M.G., Shin D.H., Lee C.H. & Lee M.K. (2012)** Significance of EpCam and Trop2 expression in non-small cell lung cancer. World J Surg Oncol 10, 53.

75. **Sgambato A., Migaldi M., Faraglia B., Aloysio D.E., Ferrari P., Ardito R., Gaetani C.D.E., Capelli G., Cittadinil A. & Trentini G.P. (2002)** Cyclin D1 expression in papillary superficial bladder cancer: its association with other cell cycle-associated proteins, cell proliferation and clinical outcome. Int. J. Cancer 97, 671–678.

76. **Hinz S., Pagerols-Raluy L., Oberg H.H., Ammerpohl O., Grussel S., Sipos B., Grutzmann R., Pilarsky C., Ungefroren H., Saeger H.D., Kloppel G., Kabelitz D. & Kalthoff H. (2007)** FoxP3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res 67, 8344-8350.

77. **Merlo A., Casalini P., Carcangiu M.L., Malventano C., Triulzi T., Mënard S., Tagliahue E. & Balsari A. (2009)** FOXP3 expression and overall survival in breast cancer. J Clin Oncol 27, 1746-1752.

78. **Ma G.F., Miao Q., Liu Y.M., Gao H., Lian J.J., Wang Y.N., Zeng X.Q., Luo T.C., Ma L.L., Shen Z.B., Sun Y.H., & Chen S.Y. (2014)** High FoxP3 expression in tumour cells predicts better survival in gastric cancer and its role in tumour microenvironment. Br J Cancer 110, 1552–1560.

**Tables**

**Table (1): Clinicopathological data of the studied bladder carcinoma cases (no.=80):**
| Variables                               | Carcinoma group (No=80) |
|----------------------------------------|-------------------------|
| Age(years)                             | Mean±SD                 |
|                                        | 63.5±10.3               |
|                                        | median                  |
|                                        | 65                      |
|                                        | Range                   |
|                                        | 26 – 96                 |
| Gender                                 | No  %                   |
|                                        | Male 66 82.5            |
|                                        | Female 14 17.5          |
| Tumor Size (50 cases)                  | Mean±SD                 |
|                                        | 4.7±1.2                 |
|                                        | Range                   |
|                                        | 4.7                     |
|                                        | Median                  |
|                                        | 3-9                     |
| WHO Histologic Type (2016)             | Infiltrating UC NO  %   |
|                                        | Noninvasive papillary UC|
|                                        | 76 95                   |
|                                        | 4 5                     |
| Grading                                | Low  %                  |
|                                        | 18 22.5                 |
|                                        | High 62 77.5            |
| Muscularis propria invasion            | NMUIBC No  %            |
|                                        | MIUBC 50 62.5           |
| Tumor stage                            | Ta  %                   |
|                                        | 4 5                     |
|                                        | T1 32.5                 |
|                                        | T2 22.5                 |
|                                        | T3 35                    |
|                                        | T4 5                     |
| Stage grouping                         | Early  %                |
|                                        | 30 37.5                 |
|                                        | Advanced 50 62.5        |
| Lymph node stage (no=50)               | N0  %                   |
|                                        | N1 22                    |
|                                        | N2 38                    |
| Bilharziasis                           | Present  %              |
|                                        | 24 30                    |
|                                        | Absent 70                |
| LVI                                    | Present  %              |
|                                        | 20 25                    |
|                                        | Absent 75                |
|               | Present | 10   | 12.5 |
|---------------|---------|------|------|
| PNI           | Absent  | 70   | 87.5 |
| Necrosis      | Present | 28   | 35   |
|               | Absent  | 52   | 65   |
| Stromal reaction | Dysmoplastic | 39   | 47.5 |
|               | Inflammatory | 29   | 36.3 |
|               | Both    | 13   | 16.2 |
| Mitosis       | Mean±SD | 5.8±2.6 |
|               | Range   | 2 – 15 |
|               | median  | 5     |
| Apoptosis     | Mean±SD | 15.0±6.5 |
|               | Range   | 3 – 31 |
|               | median  | 14    |

SD: Standard deviation  No: number  UC: Urothelial carcinoma

Table 2: comparison between the non-neoplastic group and UBC group regarding the immunohistochemical profile of the studied TROP2, Cyclin D1 and FOXP3
| Variables                                      | Non neoplastic group (No=20) | Malignant group (No=80) | Test of significance | P-value |
|-----------------------------------------------|------------------------------|-------------------------|----------------------|---------|
|                                               | No   | (%)  | No   | (%)  | FE=  |         |         |
| TROP2 positivity                              |      |      |      |      | No=17 | No=78 |
| Positive                                      | 17   | 85   | 78   | 97.5 |       | 5.6    | 0.056  |
| Negative                                      | 3    | 15   | 2    | 2.5  |       |        |        |
| Percentage                                    | Mean±SD | 64.1±15.9 | 72.0±19.2 | FE=1.7 | 0.081 |
| Range                                         | 30–90 | 20–100 |        |      |       |        |
| Median                                        | 70    | 77.5  |        |      |       |        |
| TROP2 Subcellular localization                | Membranous | 0 100 | 52   | 66.7 | FE=7.8 | 0.005* |
| Membranocytoplasmic                          | 17 | 33.3 | 26    |       |        |        |
| TROP2 predominant intensity                   | Mild  | 0 0 10 | 10   | 12.8 | FE=4.1 | 0.128  |
| Moderate                                      | 4    | 23.5 | 27    | 52.6 |       |        |
| Strong                                        | 13   | 76.5 | 41    |       |        |        |
| TROP2 pattern of staining                     | Patchy | 5 12 | 19   | 24.4 | FE=0.189 | 0.759 |
| Diffuse                                       |      |      | 59   | 75.6 |       |        |
| TROP2 IRS                                     | Low   | 6 35.3 | 31   | 39.7 | X²=0.116 | 0.733 |
| High                                          | 11   | 64.7 | 47    | 60.3 |       |        |
| TROP2 H Score                                 | Mean±SD | 174.1±56.3 | 182.5±73.9 | FE=0.696 | 0.487 |
|                                              | Median | 50–240 | 20–300 |       |        |
|                                              | Range  | 180    | 190    |       |        |
| Cyclin D1 expression | Positive | 17 | 85 | 61 | 76.2 | FE= 0.714 | 0.551 |
|----------------------|----------|----|----|----|-------|------------|--------|
|                      | Negative | 3  | 15 | 19 | 23.8  |            |        |
| No                   |          | 17 | 61 |    |       |            |        |
| Percentage           | Mean± SD | 39.4±21.5 | 48.4±21.6 | U= 1.5 | 0.123 |
|                      | Range    | 10 – 80 | 10 – 90 |    |       |            |        |
|                      | Median   | 40 | 50 |    |       |            |        |
| Predominant intensity| Mild     | NO | %  | NO | %     | FE= 1.7   | 0.425 |
|                      | Moderate | 2  | 11.8 |  | 10 | 16.4 |        |
|                      | Strong   | 10 | 58.8 |  | 25 | 41   |        |
|                      |          | 5  | 29.4 |  | 26 | 42.6 |        |
| Cyclin D1 IRS        | Low      | 15 | 2  | 88.2 | 41 | 67.2 | FE=2.9 | 0.129 |
|                      | High     |    | 11.8 | 20 | 32.8 |        |        |
| Distribution         | Patchy   | 11 | 64.7 |  | 43 | 70.5 | x²=0.209 | 0.648 |
|                      | Diffuse  | 6  | 35.3 |  | 18 | 29.5 |        |        |
| Cyclin D1 H.Score    | Mean± SD | 88.5±58.1 | 111.1±59.4 | U=1.4 | 0.123 |
|                      | Range    | 20 – 220 | 10 – 240 |    |     |        |        |
|                      | Median   | 80 | 120 |    |     |        |        |
| FOXP3 Expression | negative | NO | %   | NO | %   | FE= | 0.903 | 0.342 |
|------------------|----------|----|-----|----|-----|------|--------|--------|
|                  | positive | 20 | 25  | 3  | 15  |      |        |        |
|                  |          | 60 | 75  | 17 | 85  |      |        |        |
|                  |          | NO=60 | NO=17 |    |      |      |        |        |
| FOXP3 Percent    | Mean± SD | 40.0±21.7 | 42.9±18.2 | U= | 0.720 | 0.471 |
|                  | Range    | 10– 80 | 10– 60 |    |      |      |        |        |
|                  | Median   | 30  | 50  |    |      |      |        |        |
| FOXP3 Distribution | Patchy | 54  | 90  | 11 | 6   | 64.7 | 35.3  | FE= 6.44 | 0.011* |
|                  | Diffuse  | 6   | 10  |    |      |      |        |        |
| FOXP3 Intensity  | Mild to moderate | 42 | 70  | 16 | 94.1 | FE= 5.6 | 0.060 |
|                  | strong   | 18  | 30  | 1  | 5.9  |      |        |        |
| FOXP3 Subcellular localization | cytoplasamic | 60 | 100 | 9  | 52.9 | FE= 31.5 | 0.001* |
|                  | apical cytoplasmic | 0  | 0   | 8  | 47.1 |      |        |        |
| FOXP3 IRS        | Low      | 46  | 6.7 | 15 | 88.2 | FE= 1.077 | 0.299 |
|                  | High     | 14  | 23.3 | 2 | 11.8 |      |        |        |
| FOXP3 H score    | Mean± SD | 81.3±53.7 | 69.4±30.7 | U= | 0.351 | 0.726 |
|                  | Range    | 10 – 200 | 20 – 120 |    |      |      |        |        |
|                  | Median   | 70  | 60  |    |      |      |        |        |

Table 3: Relationship between TROP2 immunoreactive score (IRS) and studied clinico-pathological parameters in malignant cases
|                       | TROP2 IRS | test of significant | P value |
|-----------------------|-----------|---------------------|---------|
|                       | Low (no=31) | High (no=47)        |         |
| NO                    | %         | NO                  | %       |
| Gender                | Male (no=64) | 24 37.5             | 40 62.5 | $\chi^2=0.749$ | 0.387 |
|                       | Female (no=14) | 7 50                | 7 50    |                   |       |
| age/years             | mean ±SD  | 63.2±12.1           | 63.4±9.3| U= 0.092          | 0.927 |
|                       | range      | 26 – 96             | 46 – 83 |                   |       |
|                       | median     | 65                  | 64      |                   |       |
| WHO Histological type | Infiltrating UC (no=75) | 30 40.5          | 45 59.5 | FE= 0.731         | 0.694 |
|                       | Non invasive papillary UC (no=3) | 1 33.3 | 2 66.7 |                   |       |
| Grade                 | Low (no=17) | 11 64.7             | 6 35.3  | $\chi^2=5.6$      | 0.017*|
|                       | High (no=61) | 20 32.8             | 41 67.2 |                   |       |
| stage group           | Early (no=28) | 24 85.7             | 4 14.3  | $\chi^2=38.5$     | 0.001*|
|                       | advanced (no=50) | 7 14                | 43 86   |                   |       |
| lymph node            | Absent (no=20) | 4 20                | 16 80   | FE= 39.1          | 0.001*|
|                       | present (no=30) | 3 10                | 27 90   |                   |       |
| Bilharasis            | absent (no=55) | 23 41.8             | 32 58.2 | $\chi^2=0.335$   | 0.563 |
|                       | present (no=23) | 8 34.8              | 15 65.2 |                   |       |
| Necrosis              | absent (no=50) | 19 38                | 31 62   | 0.177 (x2)       | 0.674 |
|                       | present (no=28) | 12 42.9             | 16 57.1 |                   |       |
| LVI                   | absent (no=58) | 30 51.7             | 28 48.3 | $\chi^2=13.5$    | 0.001*|
|                       | present (no=20) | 1 5                 | 19 95   |                   |       |
| PNI                   | absent (no=68) | 31 45.6             | 37 54.4 | FE= 7.6           | 0.005*|
|                       | present (no=10) | 0 0                | 10 100  |                   |       |
Table 4: Relationship between Cyclin D1 immunoreactive score (IRS) and the studied clinico-pathological parameters in malignant cases.
| Variables            | Cyclin D1 IRS | Test of significance | P value |
|----------------------|--------------|----------------------|---------|
|                      | Low (no=41)  | High (no=20)         |         |
| Gender               |              |                      |         |
| Male (no=50)         | NO %         | NO %                 | FE=     |
|                      | 35 67.3      | 15 32.7              | 0.977   |
|                      | 6 66.7       | 5 33.3               | 0.323   |
| Female (no=11)       |              |                      |         |
|                      | 35 67.3      | 15 32.7              | FE=     |
|                      | 6 66.7       | 5 33.3               |         |
| Age/years            | mean ±SD     |                      | U=      |
|                      | 64.0±8.2     | 61.4±13.1            | 0.347   |
|                      |              |                      | 0.729   |
| Grade                |              |                      | FE=     |
| Low (no=13)          | 6 46.2       | 7 53.8               | 3.2     |
|                      | 35 72.9      | 13 27.1              | 0.068   |
| High (no=48)         |              |                      | FE=     |
|                      | 6 46.2       | 7 53.8               | 3.2     |
|                      | 35 72.9      | 13 27.1              | 0.068   |
| stage group          |              |                      | FE=     |
| Early (no=27)        | 11 40.7      | 16 59.3              | 15.4    |
|                      | 30 88.2      | 4 11.8               | 0.001*  |
| Advanced (no=34)     |              |                      |         |
|                      | 11 40.7      | 16 59.3              | FE=     |
|                      | 30 88.2      | 4 11.8               |         |
| lymph node (No=34)   |              |                      | FE=     |
| Absent (no=14)       | 13 92.6      | 1 7.4                | 15.7    |
|                      | 17 85        | 3 15                 | 0.001*  |
| Present (no=20)      |              |                      |         |
|                      | 13 92.6      | 1 7.4                | FE=     |
|                      | 17 85        | 3 15                 |         |
| Bilharasis           |              |                      | FE=     |
| absent (no=45)       | 25 55.6      | 20 44.4              | 0.6     |
|                      | 16 100       | 0 0                  | 0.001*  |
| present (no=16)      |              |                      |         |
|                      | 25 55.6      | 20 44.4              | FE=     |
|                      | 16 100       | 0 0                  |         |
| LVI                  |              |                      | FE=     |
| Absent (no=47)       | 28 59.6      | 19 40.4              | 5.6     |
|                      | 13 92.8      | 1 7.2                | 0.062   |
| Present (no=14)      |              |                      | FE=     |
|                      | 28 59.6      | 19 40.4              | 5.6     |
|                      | 13 92.8      | 1 7.2                | 0.062   |
| PNI                  |              |                      | FE=     |
| Absent (no=56)       | 37 66.1      | 19 33.9              | 0.404   |
|                      | 4 80         | 1 20                 | 0.525   |
| Present (no=5)       |              |                      | FE=     |
|                      | 37 66.1      | 19 33.9              | 0.404   |
|                      | 4 80         | 1 20                 | 0.525   |
| Necrosis             |              |                      | FE=     |
| Absent (no=40)       | 26 63.4      | 14 70                | 0.256   |
|                      | 15 36.6      | 6 30                 | 0.611   |
| Present (no=21)      |              |                      | FE=     |
|                      | 26 63.4      | 14 70                | 0.256   |
|                      | 15 36.6      | 6 30                 | 0.611   |
| Apoptosis            | mean ±SD     |                      | K=      |
|                      | 15.5±6.3     | 14.5±5.8             | 0.501   |
|                      |              |                      | 0.617   |
| Mitosis              | mean ±SD     |                      | K=      |
|                      | 6.3±2.7      | 4.5±1.5              | 2.7     |
|                      |              |                      | 0.007*  |

Table 5: Relationship between tumoral FOXP3 IRS and the studied clinico-pathological parameters in malignant cases
| Variables                      | FOXP3 IRS                          | Test of significance | P value |
|-------------------------------|------------------------------------|----------------------|---------|
|                               | Low (no=46)                        | High (no=14)         |         |
| Gender                        | NO                                 | %                    |         |
| Male (no=51)                  | 39                                 | 76.5                | FE= 0.007 | 0.932 |
| Female (no=9)                 | 7                                  | 77.8                |         |       |
| age/years                     | NO                                 | %                    |         |
| mean ±SD                      | 62.5±10.8                          | 66.0±10.4            | U= 1.2 | 0.227 |
| range                         | 26 – 96                            | 46 – 83              |         |       |
| median                        | 64.5                               | 65.5                |         |       |
| WHO Histological type         | Infiltrating UC (no=59)            | 45                   | 76.3    | FE= 0.310 | 0.578 |
| Non invasive papillary UC (no=1) | 1                              | 100                 | 23.7    |         |       |
| Grade                         | low (no=12)                        | 10                   | 83.3    | FE= 0.373 | 0.542 |
| high (no=48)                  | 36                                 | 75                  | 12      | 25     |       |
| stage group                   | early (no=19)                      | 19                   | 100     | FE= 8.5 | 0.003* |
| advanced (no=41)              | 27                                 | 65.9                | 14      | 34.1   |       |
| lymph node (no=41)            | Absent (no=14)                     | 8                    | 57.1    | FE= 9.3 | 0.025* |
| Present (no=27)               | 19                                 | 70.4                | 8       | 29.6   |       |
| Bilharzasis                   | absent (no=41)                     | 34                   | 82.9    | FE= 2.8 | 0.092 |
| present (no=19)               | 12                                 | 63.2                | 7       | 36.8   |       |
| LVI                           | absent (no=43)                     | 38                   | 88.4    | FE= 11.6 | 0.001* |
| present (no=17)               | 8                                  | 41.7                | 9       | 11.6   |       |
| present (no=17)               | 7                                  | 41.7                | 5       | 11.6   |       |
| PNI                           | absent (no=52)                     | 41                   | 78.8    | FE= 1.03 | 0.309 |
| present (no=8)                | 5                                  | 62.5                | 3       | 37.5   |       |
| Necrosis                      | absent (no=38)                     | 30                   | 78.9    |         |       |
| present (no=22)               | 16                                 | 72.7                | 8       | 21.1   | (k^2)= 0.301 | 0.583 |
| Stromal reaction              | Desmoplastic (no=25)               | 22                   | 88      | FE= 3.6 | 0.161 |
| inflammatory (no=26)          | 17                                 | 65.4                | 9       | 34.6   |       |
| both (no=9)                   | 7                                  | 77.8                | 2       | 22.2   |       |
| Apoptosis                     | mean ±SD                           | 14.0±6.5             | 17.5±8.3| U= 1.22 | 0.220 |
| range                         | 3– 31                              | 8 – 31               |         |       |
| median                        | 13.5                               | 14.5                |         |       |
| Mitosis | mean ±SD | range | median |
|---------|----------|-------|--------|
|         | 5.6±2.4  | 2 – 15| 5      |
|         | 7.6±2.7  | 4 – 15| 7      |
|         | U= 2.6   |       | 0.008 *|