A Case of Perivascular Epithelial Cell Tumor of the Pancreas Diagnosed Preoperatively by Endoscopic Ultrasound-guided Fine-needle Aspiration

Konomu Uno, Shuya Shimizu, Katsumi Hayashi, Tomonori Yamada, Atsunori Kusakabe, Hiroshi Kanie, Yusuke Mizuno, Kazuhiro Nagao, Hiromichi Araki, Tadashi Toyohara, Takeo Kanda, Kohei Okayama, Takanori Suzuki, Shun Miyagishima, Takashi Watanabe and Takahiro Nakazawa

Abstract:
We herein report a 49-year-old woman with a perivascular epithelial cell tumor (PEComa) of the pancreas. Imaging studies demonstrated a relatively well-demarcated mass, measuring approximately 40 mm in diameter, located in the pancreatic tail. It was heterogeneously enhanced almost to the same degree as the surrounding pancreatic tissue in both the arterial and portal venous phases. We performed endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) using the Acquire™ 22-gauge needle and preoperatively obtained a definitive diagnosis with a sufficient sample. Clinicians should consider pancreatic PEComa in their differential diagnosis of patients with a pancreatic mass.

Key words: perivascular epithelial cell tumor, pancreatic PEComa, EUS-FNA, Acquire™

(Intern Med Advance Publication)
(DOI: 10.2169/internalmedicine.2265-18)

Introduction

Perivascular epithelioid cell tumors (PEComas) are a rare neoplasm derived from mesenchymal tissue with histological and immunohistochemical (IHC) characteristics of perivascular epithelioid cells (PECs) (1). PECs, which are distributed in the perivascular region in a radial pattern, show epithelioid features when near vessels but become spindle-shaped when distant from vessels. PECs are members of the PEComa tumor family, which includes tumors arising from the kidney and liver, such as angiomyolipoma, as well as clear-cell “sugar” tumors of the lung and extrapulmonary sites and lymphangioleiomyomatosis. On IHC staining, these neoplastic cells express melanocytic markers, including human melanoma black 45 (HMB-45) and melanoma antigen (Melan-A), as well as myogenic markers, such as α-smooth muscle actin (α-SMA) and desmin (1-6). PEComas can occur in any part of the body but tend to arise in bone, soft tissue, abdominopelvic organs, the gastrointestinal tract, and retroperitoneal organs. However, PEComas arising in the pancreas are extremely rare (7). Accordingly, the clinical and imaging manifestations of pancreatic PEComas have not been fully clarified.

The diagnosis of solid pancreatic masses using imaging modalities is sometimes difficult. To plan surgical resection of the pancreas, a histopathological examination is required preoperatively for a definitive diagnosis. It was reported previously that suspected pancreatic malignancy can be evaluated accurately using endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA), regardless of the size or location of the lesion, and the accuracy in all subgroups was > 90% (8). Thus, it is possible to diagnose the majority of pancreatic lesions using EUS-FNA with considerably high accuracy. However, sufficient samples are necessary for a histopathological assessment, such as IHC staining, to obtain a correct diagnosis.

We herein report a rare case of PEComa of the pancreas...
A 49-year-old woman was referred to our hospital for the further examination of a mass in the pancreatic tail that was incidentally discovered by a clinical survey using abdominal ultrasound. She had no remarkable medical history and did not consume alcohol. Her family history was not relevant to her current disorder. She did not have any symptoms, and her physical examination showed no significant abnormal findings.

Laboratory tests, including hematological, serological, biochemical, and tumor marker analyses, revealed no significant abnormal findings. IgG4 was also within normal limit at 38.3 mg/dl (normal range, 4.5-117 mg/L). Abdominal contrast-enhanced computed tomography (CT) demonstrated a relatively well-demarcated mass, measuring approximately 40 mm in diameter, located in the pancreatic tail (Fig. 1A, B and C). It was heterogeneously enhanced almost to the same degree as the surrounding pancreatic tissue in both the arterial and portal venous phases. This mass was slightly hyperintense on T2-weighted magnetic resonance imaging (MRI) (arrows) (A). Diffusion-weighted imaging showed that the lesion was clearly hyperintense on MRI (arrows) (B). Magnetic resonance cholangiopancreatography showed that the main pancreatic duct was translocated to the inferior side (arrows). Disruption and dilatation of the upstream main pancreatic duct were not found (C).

Case Report

Since a malignant tumor could not be ruled out, the patient underwent EUS-FNA to establish a definitive diagnosis. We performed EUS-FNA with a total of three punctures diagnosed preoperatively by EUS-FNA.

Figure 1. Contrast-enhanced abdominal computed tomography revealed a relatively well-demarcated mass, measuring approximately 40 mm in diameter, located in the pancreatic tail (arrows). It was heterogeneously enhanced almost to the same degree as the surrounding pancreatic tissue in both the arterial and portal venous phases. (A) Plain scan. (B) Arterial phase. (C) Portal venous phase.

Figure 2. The pancreatic mass was slightly hyperintense on T2-weighted magnetic resonance imaging (MRI) (arrows) (A). Diffusion-weighted imaging showed that the lesion was clearly hyperintense on MRI (arrows) (B). Magnetic resonance cholangiopancreatography showed that the main pancreatic duct was translocated to the inferior side (arrows). Disruption and dilatation of the upstream main pancreatic duct were not found (C).
using the Acquire® device with a 22-gauge needle (Boston Scientific Corporation, Marlborough, MA, USA), because a high rate of procuring a sample sufficient for a histological evaluation with a high diagnostic accuracy was reported with this device. The mass was relatively hard; however, the puncture was achieved with little effort, and the needle never bent during the procedures (Fig. 3B). We used the negative pressure suction technique with a 20-ml syringe and the fanning method, and the needle was moved back and forth approximately 30 times for each puncture. A rapid on-site evaluation by the Diff-Quick method revealed sufficient amount of specimen, and clusters of tumor cells were present with slightly hypertrophied nuclei. Histologically, the tumor was composed of epithelioid to spindle-shaped cells with abundant eosinophilic cytoplasm, round-to-oval nuclei, and indistinct small nucleoli proliferating in a sheet-like fashion (Hematoxylin and Eosin staining ×200).

Subsequently, the patient underwent distal pancreatectomy. The surgical specimen showed a well-circumscribed, yellowish-white mass that measured 43 mm×30 mm and was surrounded by a complete fibrous capsule with a negative surgical margin (Fig. 6A). At the microscopic level, the tumor was composed of spindle cells possessing clear to foamy cytoplasm, round-to-oval nuclei, and indistinct small nucleoli proliferating in a sheet-like fashion (Fig. 4). Necrosis, calcification, atypia, and mitotic figures were not evident. The results of an IHC analysis are shown in Table 1. These tumor cells were positive for HMB-45, Melan-A, and α-SMA (Fig. 5A, B and C) but negative for a nervous system marker (S-100), epithelial markers (AE1/AE3 and CAM5.2), and endocrine markers (synaptophysin and chromogranin A). The Ki-67 index was <5% (Fig. 5D). The above features were consistent with a PEComa.

Table 1. Results of Immunohistochemical Analysis.

Antigen	Results
HMB-45	+
Melan-A	+
cyclin-D1	+
vimentin	+
α-SMA	+
β-Catenin	
AE1/AE3	-
CD10	-
CD34	-
CD56	-
chromograninA	-
synaptophysin	-
c-kit	-
DOG1	-
desmin	-
S-100	-
Ki-67	<5%

The results of an IHC analysis showed similar features to those of specimens obtained by EUS-FNA. We therefore achieved a
definitive diagnosis of PEComa of the pancreas. The patient was discharged on day 25 post-surgery and is currently undergoing outpatient follow-up, with no recurrence of the original tumor or distant metastasis observed at 12 months post-surgery.

Discussion

We herein report a case of PEComa of the pancreas diagnosed preoperatively by EUS-FNA. The World Health Organization defines PEComa as “a mesenchymal tumor composed of histologically and IHC distinctive PECs”. PECs are characterized by an epithelioid or spindle-shaped appearance with a clear eosinophilic or granular cytoplasm, a round-to-oval centrally located nucleus, and an inconspicuous nucleus. On IHC, PECs express melanocytic and myogenic markers but not cytokeratins or endocrine markers (12), which concurred with the findings in our case. These tumors can arise in any part of the human body and at any age but are more predominant in women than in men. PEComa of
The pancreas was first reported by Zamboni et al. in 1996 (13). We searched the MEDLINE database for papers in the English language from the year of database inception to May 2018 using the following terms: perivascular epithelial cell tumor, PEComa, pancreas, and pancreatic. After reviewing the titles and abstracts for eligibility, the literature search generated 24 cases from studies with available abstracts (14). The clinical characteristics of previously reported pancreatic PEComas are summarized in Table 2. The prognosis of pancreatic PEComa is generally good, with no local recurrence after surgical resection and a low rate of metastasis. However, two cases showed hepatic metastases during the observation period; one had multiple hepatic metastases at 27 months (15) and the other at 6 months after pancreatic resection (16). Folpe et al. previously described features predictive of the presence of tumor recurrence or metastasis in PEComa (12). These features included a large size (>5 cm), infiltrative growth, hypercellularity, high nuclear grade, high mitotic figures (>1/50 high-power field), and necrosis. Malignant PEComas show two or more of these worrisome features. In the present case, the tumor was approximately 40 mm in diameter, and none of the above features were identified, so this patient’s prognosis is promising. As PEComa has malignant potential, surgery is considered the appropriate treatment choice, if possible. Therefore, the rapid and accurate assessment of pancreatic masses is warranted in order to direct patient management, and a correct preoperative diagnosis is crucial.

At present, the integration of CT, MRI, and ultrasound findings is the mainstay in the evaluation of pancreatic tumors. Pancreatic tumors include a heterogeneous group of primary lesions, such as adenocarcinoma, NET, SPN, pancreaticoblastoma, pancreatic lymphoma, and rare miscellaneous neoplasms in general (9, 10). Tan et al. reported the imaging characteristics of PEComa in 32 cases (17). Dynamic CT and MRI showed tumors that were hypointense on T1-weighted images and hyperintense on T2-weighted images. Tumors were typically hypovascular, with intermediate uptake on contrast-enhanced CT and MRI. Intraoperative findings have shown that PEComas are often hypovascular, with minimal or no enhancement on contrast agents. Histologically, PEComas are characterized by a network of perivascular epithelioid cells, with a rich vasculature and variable degree of differentiation, ranging from benign to malignant. The presence of angiomatoid features is a hallmark of PEComa, and the cells are often positive for HMB-45 and Melan-A, with occasional expression of smooth muscle actin. Immunohistochemical staining for these markers is critical in the diagnosis of PEComa, as it can be challenging to distinguish from other tumors with similar clinical and imaging features. The absence of nuclear atypia and the presence of perivascular differentiation are important in distinguishing PEComa from other tumors. In conclusion, PEComa of the pancreas is a rare but distinct entity that should be considered in the differential diagnosis of pancreatic tumors with characteristic imaging and histologic features. The management of PEComa should be multidisciplinary, with consideration of surgical resection, chemotherapy, and other therapeutic options based on tumor characteristics and patient outcomes.
weighted imaging and hyperintense on T2-weighted imaging, although some were isodense with fat. The tumors usually had well-defined borders and a regular shape. Most tumors were significantly enhanced heterogeneously in the arterial and venous phases. Tumors were slightly hypodense on delayed-phase CT imaging, whereas some showed delayed enhancement. Our patient showed almost the same imaging findings as those described above. However, CT imaging provides insufficient sensitivity for the diagnosis of PEComa. Two previous reports described the respective rates of a correct preoperative PEComa diagnosis as being 15.7% and 31.3% using CT and 22.7% and 40% using MRI, with almost the same sensitivity (14, 17). Therefore, imaging is not useful for differentiating pancreatic PEComa from other pancreatic mass lesions.

EUS-FNA is widely performed for the evaluation of pancreatic solid mass lesions. In the aforementioned 24 cases of pancreatic PEComa in the literature, 14 underwent EUS-FNA prior to surgery; however, 7 of these 14 cases did not obtain a clear diagnosis due to the limitations of EUS-FNA. The diagnostic accuracy of this method is affected by the availability of a rapid on-site evaluation, as a cytopathologist may not be widely available at all institutions. Furthermore, certain neoplasms, such as neuroendocrine tumors, lymphomas, and autoimmune pancreatitis, may be difficult to diagnose without IHC staining and intact histological architecture for an accurate pathological assessment. Core tissue is therefore needed in order to establish a definitive diagnosis. The Acquire® needle is a device with Fransen geometry for EUS-FNA. Several studies have assessed the utility of the Fransen needle (18-20), and when using this needle we were able to successfully obtain sufficient core samples. However, there have been concerns about the potential for tumor seeding or dissemination of tumor cells via a puncture into the peritoneal cavity. Although preoperative EUS-FNA has not been shown to be associated with an increased risk of mortality concerning tumor cell dissemination along the needle track with resected pancreatic cancer (21), only a limited number of needle punctures should be performed, using a device such as a Fransen needle to facilitate the collection of a sufficient amount of specimen.

In summary, we encountered a case of PEComa of the pancreas diagnosed preoperatively with EUS-FNA. As obtaining a definitive diagnosis of pancreatic PEComa was difficult using only imaging, preoperative EUS-FNA was useful in this case. Clinicians should consider pancreatic PEComa in their differential diagnosis of patients with a pancreatic mass. The clinical manifestations of pancreatic PEComas have not been fully clarified, so long-term regular follow-up of this patient is essential.

The authors state that they have no Conflict of Interest (COI).

References
1. Hornick JL, Fletcher CD. PEComa: what do we know so far? Histopathology 48: 75-82, 2006.
2. Zhang S, Chen F, Huang X, et al. Perivascular epithelial cell tumor (PEComa) of the pancreas: A case report and review of literature. Medicine (Baltimore) 96: e7050, 2017.
3. Okuwaki K, Kida M, Masutani H, et al. A Resected Perivascular Epithelioid Cell Tumor (PEComa) of the Pancreas Diagnosed Using Endoscopic Ultrasound-guided Fine-needle Aspiration. Internal Medicine 52: 2061-2066, 2013.
4. Jiang H, Ta N, Huang XY, et al. Peripancreatic perivascular epithelioid cell tumor: A case report with clinicopathological features and a literature review. World J Gastroenterol 22: 3693-3700, 2016.
5. Collins K, Buckley T, Anderson K, Karasik M, Ligato S. Perivascular Epithelioid Cell Tumor (PEComa) of Pancreas Diagnosed Preoperatively by Endoscopic Ultrasound-Guided Fine-Needle Aspiration: A Case Report and Review of Literature. Diagn Cytopathol 45: 59-65, 2017.
6. Mizuichi Y, Nishihara K, Hayashi A, et al. Perivascular epithelial cell tumor (PEComa) of the pancreas: a case report and review of previous literatures. Surg Case Rep 2: 59, 2016.
7. Martignoni G, Pea M, Reghellini D, Zamboni G, Bonetti F. PEComas: the past, the present and the future. Virchows Arch 452: 119-132, 2008.
8. Uehara H, Ikezawa K, Kawada N, et al. Diagnostic accuracy of endoscopic ultrasound-guided fine needle aspiration for suspected pancreatic malignancy in relation to the size of lesions. J Gastroenterol Hepatol 26: 1256-1261, 2011.
9. Scialpi M, Reginelli A, D’Andrea A, et al. Pancreatic tumors imaging: An update. Int J Surg 28 (Suppl 1): S142-S155, 2016.
10. Low G, Panu A, Millo N, Leen E. Multimodality imaging of neoplastic and nonneoplastic solid lesions of the pancreas. Radiographics 31: 993-1015, 2011.
11. Sofuni A, Iijima H, Moriyasu F, et al. Differential diagnosis of pancreatic tumors using ultrasound contrast imaging. J Gastroenterol 40: 518-525, 2005.
12. Polpe AL, Mentzel T, Lehr HA, Fisher C, Balzer BL, Weiss SW. Perivascular epithelioid cell neoplasms of soft tissue and gynecologic origin: a clinicopathologic study of 26 cases and review of the literature. Am J Surg Pathol 29: 1558-1575, 2005.
13. Zamboni G, Pea M, Martignoni G, et al. Clear cell “sugar” tumor of the pancreas. A novel member of the family of lesions characterized by the presence of perivascular epithelioid cells. Am J Surg Pathol 40: 722-730, 1996.
14. Zizzo M, Ugoletti L, Tumiati D, et al. Primary pancreatic perivascular epithelioid cell tumor (PEComa): A surgical enigma. A systematic review of the literature. Pancreatology 18: 238-245, 2018.
15. Nagata S, Yuki M, Tomaeda M, et al. Perivascular epithelioid cell neoplasm (PEComa) originating from the pancreas and metastasizing to the liver. Pancreas 40: 1155-1157, 2011.
16. Mourra N, Lazure T, Colas C, Arrive L, de Gramont A. Perivascular epithelioid cell tumor (PEComa) originating from the pancreas and metastasizing to the liver. Pancreas 40: 1155-1157, 2011.
17. Tan Y, Zhang H, Xiao EH. Perivascular epithelioid cell tumour; dynamic CT, MRI and clinicopathological characteristics—analysis of 32 cases and review of the literature. Clin Radiol 68: 555-561, 2013.
18. Bang JY, Hebert-Magee S, Navaneethan U, Hasan MK, Hawes R. Varadarajulu S. Randomized trial comparing the Fransen and Fork-tip needles for EUS-guided fine-needle biopsy sampling of solid pancreatic mass lesions. Gastrointest Endosc 87: 1432-1438, 2018.
19. Mitri RD, Rimbas M, Attili F, et al. Performance of a new needle for endoscopic ultrasound-guided fine-needle biopsy in patients with pancreatic solid lesions: A retrospective multicenter study. Endosc Ultrasound 2017.
20. Bang JY, Hebert-Magee S, Hasan MK, Navaneethan U, Hawes R,
Varadarajulu S. Endoscopic ultrasonography-guided biopsy using a Franseen needle design: Initial assessment. Dig Endosc 29: 338-346, 2017.

21. Ngamruengphong S, Swanson KM, Shah ND, Wallace MB. Pre-operative endoscopic ultrasound-guided fine needle aspiration does not impair survival of patients with resected pancreatic cancer. Gut 64: 1105-1110, 2015.

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).