Vibration characteristics of piezoelectric functionally graded carbon nanotube-reinforced composite doubly-curved shells

V. V. THAM, H. Q. TRAN†, T. M. TU
National University of Civil Engineering, Giai Phong Road 55, Hai Ba Trung District, Hanoi 100000, Vietnam
(Received Dec. 6, 2020 / Revised Feb. 10, 2021)

Abstract This paper presents an analytical solution for the free vibration behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) doubly curved shallow shells with integrated piezoelectric layers. Here, the linear distribution of electric potential across the thickness of the piezoelectric layer and five different types of carbon nanotube (CNT) distributions through the thickness direction are considered. Based on the four-variable shear deformation refined shell theory, governing equations are obtained by applying Hamilton’s principle. Navier’s solution for the shell panels with the simply supported boundary condition at all four edges is derived. Several numerical examples validate the accuracy of the presented solution. New parametric studies regarding the effects of different material properties, shell geometric parameters, and electrical boundary conditions on the free vibration responses of the hybrid panels are investigated and discussed in detail.

Key words free vibration, four-variable shear deformation refined theory, functionally graded carbon nanotube-reinforced composite (FG-CNTRC), piezoelectric material

Chinese Library Classification O242
2010 Mathematics Subject Classification 11C08, 30G25, 32W50, 35R15, 65N12

1 Introduction

Functionally graded carbon nanotube-reinforced composite (FG-CNTRC) materials are a new generation of composite materials in which carbon nanotubes (CNTs) are designed purposefully to grade with specific rules along with desired directions within an isotropic matrix. Thanks to the outstanding properties of FG-CNTRC and electromechanical properties of piezoelectric materials, the complicated FG-CNTRC structures with integrated piezoelectric layers (PFG-CNTRC) offer great potential for use in engineering, advanced aerospace, medicine, military, and automotive structural applications. The PFG-CNTRC structures are applied as smart structures to control the free vibration, suppress the forced vibration, decrease the deflection and stresses, delay the buckling, decrease the post-buckling deflection, flutter control,
and suppress the snap-through phenomenon. Subsequently, researchers started to investigate
the behavior of the PFG-CNTRC structures in the last few years.

Based on the three-dimensional (3D) theory of elasticity, Alibeigloo[1–5] performed the bend-
ing and free vibration analysis of PFG-CNTRC plates and cylindrical panels (CYLs) subjected
to mechanical uniform pressure, thermal load, and applied voltage field. Using a unified formu-
lation of a finite layer model based on Reissner’s mixed variational theorem, the 3D buckling
responses of the PFG-CNTRC plates under bi-axial compressive loads were investigated by
Wu and Chang[6]. In the classical lamination theory based on the Kirchhoff plate theory,
the interlaminar shear deformation is neglected. Nasihatgozar et al.[7] studied the stability of
the PFG-CNTRC cylindrical panels under the axial and biaxial loadings. Applying the Ritz
energy approach, the post-buckling behavior of PFG-CNTRC cylindrical shells subjected to
axial compression and lateral loads in the thermal environment was investigated by Ansari et
al.[8]. Using the first-order shear deformation plate theory (FSDT) with the assumption of
constant transverse shear deformation, Rafiee et al.[9] analyzed the nonlinear dynamic stability
of PFG-CNTRC plates with initial geometric imperfection subjected to a combined thermal
and electrical loadings and interaction of parametric and external resonance. Rafiee et al.[10]
also investigated the large amplitude free vibration of the immovable simply supported PFG-
CNTRC plates. Based on the FSDT and the Ritz method, Kiani[11] developed a model for
the free vibration analysis of FG-CNTRC plates with various mechanical and electrical bound-
ary conditions. Sharma et al.[12] implemented a finite element model with the nonlinear fuzzy
logic controller to perform active vibration control of the FG-CNTRC plates. Some research
papers on the analysis of PFG-CNTRC plates and shells based on the higher-order shear de-
formation plate theory are also available. Kolahchi et al.[13] presented a model based on the
refined piezoelasticity zig-zag theory for general wave propagation analysis of the piezoelectric
sandwich plate. The free vibration behavior of the PFG-CNTRC quadrilateral spherical panel
was examined by Setoodeh et al.[14]. Nguyen-Quang et al.[15] introduced an extension of the
isogeometric approach based on the non-uniform rational B-spline (NURBS) basis functions for
the dynamic response of the laminated PFG-CNTRC plates. Based on Reddy’s higher-order
shear deformation theory, Selim et al.[16] studied the impact analysis of the PFG-CNTRC plates
using the element-free IMLS-Ritz model. Song et al.[17] presented the active vibration control
of FG-CNTRC plates with surface-bonded piezoelectric actuator and sensor. Selim et al.[18]
presented a novel element-free IMLS-Ritz model for the active vibration control of the FG-
CNTRC plate with different positions of piezoelectric sensor layer and actuator layer. Zhang
et al.[19] presented an optimal shape control of PFG-CNTRC plates with the open-loop control
and the displacement feedback control gain.

Free vibration characteristics of shell structures were reported by many authors such as Tran
et al.[20], Baghlani et al.[21] for FGM cylindrical shells; Song et al.[22] for FNTRC cylindrical
shells; Zhu et al. for cylindrical nano-shell[23], and doubly curved nano-shell[24].

In the present work, the previous works of Tran et al.[25] and HUU et al.[26] for PFG-CNTRC
plates are utilized and developed wherein multilayer FG-CNTRC doubly curved panels (DCPs)
with surface-bonded piezoelectric layers are modeled using four-variable shear deformation re-
efined theory for the first time. By applying Navier’s solution, the governing equations can be
solved to obtain the vibrational responses of hybrid shell panels. Several numerical examples
validate the accuracy of the present model. The effects of material properties, geometric pa-
rameters, and electrical boundary conditions on the vibrational responses of the hybrid panels
are also investigated and discussed in detail.

2 Mathematical formulation

2.1 Geometry and material properties

Consider a laminated FG-CNTRC doubly curved panel (FG-CNTRC-DCP) with two perfect
bonded piezoelectric layers at the top and bottom surfaces, as shown in Fig. 1.
Vibration characteristics of PFG-CNTRC doubly-cured shells

Fig. 1 Schematic of laminated PFG-CNTRC doubly curved shell panel (color online)

The panel with constant principal curvatures is referred to as an orthogonal curvilinear coordinate system \((x, y, z)\). The length, width, and two radii of principal curvatures of the middle surface of the panel are denoted by \(a\), \(b\), and \(R_x\) and \(R_y\), respectively. The thickness of the core and each piezoelectric layer are also marked by \(h_c\) and \(h_p\), respectively.

As shown in Fig. 2, for each layer, five types of distributions of CNT are considered. UD represents the uniform distributions, and the other four types of functionally graded distributions of CNT are denoted by FG-A, FG-V, FG-X, and FG-O.

Fig. 2 Distribution types of FG-CNT reinforced composite layers: (a) UD layer; (b) FG-A layer; (c) FG-V layer; (d) FG-X layer; (e) FG-O layer (color online)

According to the distributions of CNTs, the CNT volume fractions \(V_{\text{CNT}}(z)\) for each FG-CNTRC layer are given as\(^{[27]}\)

\[
V_{\text{CNT}}(z) = \begin{cases}
V^*_{\text{CNT}} & \text{for UD CNTRC}, \\
2V^*_{\text{CNT}} \frac{z - z_k}{z_{k+1} - z_k} & \text{for FG-V CNTRC}, \\
2V^*_{\text{CNT}} \frac{z_{k+1} - z}{z_{k+1} - z_k} & \text{for FG-A CNTRC}, \\
2V^*_{\text{CNT}} \left(1 - \frac{|2z - z_k - z_{k+1}|}{z_{k+1} - z_k}\right) & \text{for FG-O CNTRC}, \\
2V^*_{\text{CNT}} \left(\frac{|2z - z_k - z_{k+1}|}{z_{k+1} - z_k}\right) & \text{for FG-X CNTRC},
\end{cases}
\] (1)
where
\[
V^*_{\text{CNT}} = \frac{w_{\text{CNT}}}{w_{\text{CNT}}} + \frac{\eta_{\text{CNT}}}{\eta_{\text{CNT}}} - \frac{\rho_{\text{CNT}}}{\rho_{\text{CNT}}},
\]
and
\[
\mathbf{K} = \begin{bmatrix}
E_{11}(z) &= \eta_1 V_{\text{CNT}}(z) E^1_{11} + V_m(z) E^m, \\
E_{22}(z) &= \eta_2 V_{\text{CNT}}(z) E^1_{22} + V_m(z) E^m, \\
\end{bmatrix}
\]
where \(E^1_{11}, E^1_{22}, \text{ and } E^m\) are Young’s moduli of CNT and matrix; \(G_{12}^\text{CNT}\) and \(G_m\) are the shear modulus of CNT and matrix; \(\eta_1, \eta_2, \text{ and } \eta_3\) are CNT efficiency parameters; \(V_m\) and \(V_{\text{CNT}}\) are volume fractions of matrix and CNT with the relation of \(\rho_{\text{CNT}} + \rho_m = 1; \nu^\text{CNT}\) and \(\nu^m\) are Poisson’s ratios of CNT and matrix.

2.2 Approximation on mechanical displacement

The displacements field for doubly curved shell based on the four-variable shear deformation refined theory is given by the following equations:
\[
\begin{aligned}
u(x, y, z, t) &= \left(1 + \frac{z}{R_x}\right) v_0(x, y, t) - z \frac{\partial w_b(x, y, t)}{\partial x} - f(z) \frac{\partial w_s(x, y, t)}{\partial x}, \\
v(x, y, z, t) &= \left(1 + \frac{z}{R_y}\right) v_0(x, y, t) - z \frac{\partial w_b(x, y, t)}{\partial y} - f(z) \frac{\partial w_s(x, y, t)}{\partial y}, \\
w(x, y, z, t) &= v_0(x, y, t) + w_s(x, y, t),
\end{aligned}
\]
where \(u_0\) and \(v_0\) are the in-plane displacements in the directions of \(x\) and \(y\); \(w_b\) and \(w_s\) represent the bending and shear components of the transverse displacement, respectively. The polynomial shape function is used as \(f(z) = z^3 - \frac{3}{2} z^2 + \frac{1}{2} \left(\frac{z}{R_x}\right)^3\). The strains at any point in the shell space associated with the displacement field in Eq. (4) can be obtained by applying the fundamental kinematic relations of a 3D body in curvilinear coordinates as follows:
\[
\begin{aligned}
\varepsilon_x &= \frac{1}{1 + z/R_x} \left(\varepsilon_x^0 + z \kappa_x^0 + f(z) \kappa_x^1\right), \\
\varepsilon_y &= \frac{1}{1 + z/R_y} \left(\varepsilon_y^0 + z \kappa_y^0 + f(z) \kappa_y^1\right), \\
\gamma_{xy} &= \frac{1}{1 + z/R_x} \left(\gamma_{xy}^0 + z \kappa_{xy}^0 + f(z) \kappa_{xy}^1\right) \\
\gamma_{yz} &= \frac{1}{1 + z/R_y} \left(\gamma_{yz}^0 + z \kappa_{yz}^0 + f(z) \kappa_{yz}^1\right), \\
\gamma_{xz} &= \frac{1}{1 + z/R_z} g(z) \gamma_{xz}^0, \\
\end{aligned}
\]
2.3 Approximation on electric potential

In this work, the electric potential distribution in the transverse direction of each piezoelectric layer is approximated by the linear function as follows[31–33]:

\[
\begin{align*}
\Phi^i(x, y, z, t) &= \left(z - \frac{h}{2}\right)\frac{1}{h_p}\phi^i(x, y, t) = Z_p^i\phi^i(x, y, t), \quad \frac{h_c}{2} \leq z \leq \frac{h_c}{2} + h_p, \\
\Phi^b(x, y, z, t) &= -\left(z + \frac{h}{2}\right)\frac{1}{h_p}\phi^b(x, y, t) = Z_p^b\phi^b(x, y, t), \quad -\frac{h_c}{2} - h_p \leq z \leq -\frac{h_c}{2}.
\end{align*}
\]

(7)

The electric field is related to electric potential by the following relation:

\[
E_i = -\nabla \Phi_i, \quad i = x, y, z,
\]

(8)

where \(\nabla\) denotes the gradient operator. Thus, the components of the electric field are obtained as

\[
\begin{align*}
(E^i_x, E^i_y, E^i_z) &= -\left(\frac{1}{1 + z/R_c}Z_p^i\phi_x, \frac{1}{1 + z/R_c}Z_p^i\phi_y, \frac{1}{h_p}\phi^i\right), \\
(E^b_x, E^b_y, E^b_z) &= -\left(\frac{1}{1 + z/R_c}Z_p^b\phi_x, \frac{1}{1 + z/R_c}Z_p^b\phi_y, \frac{1}{h_p}\phi^b\right).
\end{align*}
\]

(9)

2.4 Constitutive equations

The stress-strain relation for the \(k\)th CNT layer is expressed as[34]

\[
\begin{pmatrix}
\sigma_{xx}^k \\
\sigma_{yy}^k \\
\tau_{xy}^k \\
\tau_{xz}^k \\
\tau_{yz}^k \\
\gamma_{xy}^k \\
\gamma_{xz}^k \\
\gamma_{yz}^k
\end{pmatrix} = \begin{pmatrix}
Q_{11}^k(z) & Q_{12}^k(z) & 0 & 0 & Q_{16}^k(z) & 0 & 0 & 0 \\
Q_{12}^k(z) & Q_{22}^k(z) & 0 & 0 & 0 & Q_{26}^k(z) & 0 & 0 \\
0 & 0 & Q_{44}^k(z) & Q_{45}^k(z) & 0 & 0 & 0 & 0 \\
0 & 0 & Q_{54}^k(z) & Q_{55}^k(z) & 0 & 0 & 0 & 0 \\
Q_{16}^k(z) & 0 & 0 & 0 & 0 & Q_{66}^k(z) & -Q_{66}^k(z) & 0 \\
Q_{26}^k(z) & 0 & 0 & 0 & 0 & 0 & Q_{66}^k(z) & -Q_{66}^k(z) \\
0 & 0 & Q_{56}^k(z) & -Q_{66}^k(z) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}\begin{pmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy} \\
\gamma_{xz} \\
\gamma_{yz}
\end{pmatrix},
\]

(10)

in which \(Q_{ij}^k(z)\) are transformed material constants expressed in terms of material constants[35],

\[
\begin{align*}
Q_{11}^k(z) &= Q_{11}^k(z)\cos^2\theta^k + 2(Q_{12}^k(z) + 2Q_{66}^k(z))\sin^2\theta^k\theta^k + Q_{22}^k(z)\sin^4\theta^k, \\
Q_{12}^k(z) &= (Q_{11}^k(z) + Q_{22}^k(z) - 4Q_{66}^k(z))\sin^2\theta^k\cos^2\theta^k + Q_{12}^k(z)(\sin^4\theta^k + \cos^4\theta^k), \\
Q_{22}^k(z) &= Q_{11}^k(z)\sin^2\theta^k + 2(Q_{12}^k(z) + 2Q_{66}^k(z))\sin^2\theta^k\cos^2\theta^k + Q_{22}^k(z)\cos^4\theta^k, \\
Q_{16}^k(z) &= (Q_{11}^k(z) - Q_{12}^k(z) - 2Q_{66}^k(z))\sin\theta^k\cos^3\theta^k \\
&\quad + (Q_{12}^k(z) - Q_{22}^k(z) + 2Q_{66}^k(z))\sin^3\theta^k\cos\theta^k, \\
Q_{26}^k(z) &= (Q_{11}^k(z) - Q_{12}^k(z) - 2Q_{66}^k(z))\sin^3\theta^k\cos\theta^k \\
&\quad + (Q_{12}^k(z) - Q_{22}^k(z) + 2Q_{66}^k(z))\sin^3\theta^k\cos\theta^k, \\
Q_{56}^k(z) &= (Q_{11}^k(z) + Q_{22}^k(z) - 2Q_{12}^k(z) - 2Q_{66}^k(z))\sin^2\theta^k\cos^2\theta^k \\
&\quad + Q_{66}^k(z)(\sin^4\theta^k + \cos^4\theta^k), \\
Q_{54}^k(z) &= Q_{44}^k(z)\cos^2\theta^k + Q_{55}^k(z)\sin^2\theta^k, \\
Q_{45}^k(z) &= (Q_{55}^k(z) - Q_{44}^k(z))\cos\theta^k\sin\theta^k, \\
Q_{55}^k(z) &= Q_{55}^k(z)\cos^2\theta^k + Q_{44}^k(z)\sin^2\theta^k,
\end{align*}
\]

(11)

where \(Q_{ij}^k(z)\) are the plane stress-reduced stiffnesses defined in terms of the engineering constants in the material axes of the layer,

\[
\begin{align*}
Q_{11}^c(z) &= \frac{E_{11}(z)}{1 - \nu_{12}^2}, & Q_{12}^c(z) &= \frac{\nu_{12}E_{22}(z)}{1 - \nu_{12}^2}, & Q_{22}^c(z) &= \frac{E_{22}(z)}{1 - \nu_{12}^2}, \\
Q_{44}^c &= G_{23}(z), & Q_{55}^c &= G_{13}(z), & Q_{66}^c &= G_{12}(z).
\end{align*}
\]

(12)
For the k_pth piezoelectric layer ($k_p = \text{top, bottom}$), the stress components and electric displacement in the piezoelectric layer are given as \[\frac{\partial \delta E}{\partial T} \] where C_{ij}^{kp} are stiffness coefficients for the piezoelectric layers; e_{ij} is the electromechanical coupling matrix; p_{ij} is the dielectric permittivity matrix; E is the electric field, and D is the displacement in the piezoelectric layer.

\subsection{2.5 Governing equation}

Hamilton's principle is applied herein to obtain the equations of motion of laminated PFG-CNTRC doubly curved shell panels,

\[
\int_0^t (\delta U - \delta T) \, dt = 0,
\]

where δU is the variation of strain energy, and δK is the variation of kinetic energy. The expression of variation of strain energy for the PFG-CNTRC panels is

\[
\delta U = \int_0^b \int_0^a \int_{-h/2}^{h/2} \left(\sigma_{xx} \delta\varepsilon_{xx} + \sigma_{yy} \delta\varepsilon_{yy} + \sigma_{xy} \delta\varepsilon_{xy} + \tau_{xy} \delta\gamma_{xy} + \tau_{yx} \delta\gamma_{yx} + \tau_{xx} \delta\gamma_{xz} + \tau_{yy} \delta\gamma_{yz} - D_x^{ik} \delta E_x^k + D_y^{ik} \delta E_y^k - D_x^{jk} \delta E_x^j - D_y^{jk} \delta E_y^j \right) \, dz \, dx \, dy.
\]

Substituting Eq. (5), Eq. (9), Eq. (13), and Eq. (14) into Eq. (17), we can get the variation of strain energy δU as

\[
\delta U = \int_0^b \int_0^a \left(N_x \delta\varepsilon_{xx} + N_y \delta\varepsilon_{yy} + N_{yx} \delta\varepsilon_{xy} + N_{xy} \delta\varepsilon_{yx} + M_x^{ik} \delta\kappa_{ikx} + M_y^{ik} \delta\kappa_{iky} + M_{xy}^{ik} \delta\kappa_{ikxy} + M_{yx}^{ik} \delta\kappa_{ikyx} + Q_{xx} \delta\gamma_{xx} + Q_{xx} \delta\gamma_{xx} + Q_{yy} \delta\gamma_{xx} + Q_{yy} \delta\gamma_{xx} \right) \, dz \, dx \, dy.
\]
\[
\delta T = \int_0^b \int_y^b \rho(z) (\ddot{u} \dot{w} + \ddot{v} \dot{w} + \ddot{w} \dot{w}) \left(1 + \frac{z}{R_z}\right) \left(1 + \frac{z}{R_y}\right) \, dz \, dx \\
= \delta T_1 + \delta T_2 + \delta T_3 + \delta T_4, \tag{19}
\]

where

\[
\delta T_1 = \int_0^b \int_y^b \left(\frac{1}{R_x} \left(- \left(\bar{I}_1 + \bar{I}_2 \right) \ddot{u} + \ddot{I}_2 \frac{\partial \ddot{w}_b}{\partial x} + J_2 \frac{\partial \ddot{w}_b}{\partial x} \right) + \bar{I}_1 \frac{\partial \ddot{u}}{\partial x} \right) \delta u_0 \, dx \, dy,
\]

\[
\delta T_2 = \int_0^b \int_y^b \left(\frac{1}{R_y} \left(- \left(\bar{I}_1 + \bar{I}_2 \right) \ddot{v} + \ddot{I}_2 \frac{\partial \ddot{w}_b}{\partial y} + J_2 \frac{\partial \ddot{w}_b}{\partial y} \right) + \bar{I}_1 \frac{\partial \ddot{v}}{\partial y} \right) \delta v_0 \, dx \, dy,
\]

\[
\delta T_3 = \int_0^b \int_y^b \left(- \left(\bar{I}_1 + \bar{I}_2 \right) \ddot{u} + \ddot{I}_2 \frac{\partial \ddot{w}_b}{\partial x} + J_2 \frac{\partial \ddot{w}_b}{\partial x} \right) \delta w_0 \, dx \, dy,
\]

\[
\delta T_4 = \int_0^b \int_y^b \left(- \left(\bar{I}_1 + \bar{I}_2 \right) \ddot{v} + \ddot{I}_2 \frac{\partial \ddot{w}_b}{\partial y} + J_2 \frac{\partial \ddot{w}_b}{\partial y} \right) \delta w_0 \, dx \, dy,
\]

in which \(\rho(z)\) is the mass density, and \(\bar{I}_i\) \((i = 0, 1, 2)\) and \(\bar{J}_i\) \((i = 1, 2)\) are inertia terms defined by

\[
\begin{align*}
\bar{I}_i &= i + 1 + \frac{1}{R_x} + \frac{1}{R_y} \\
\bar{I}_{i+2} &= \frac{1}{R_x} \left(\bar{I}_1 \bar{I}_2 \right) \frac{\partial \ddot{w}_b}{\partial x} \left(\bar{I}_1 \bar{I}_2 \right) \frac{\partial \ddot{w}_b}{\partial x} \\
\bar{I}_1 &= f(z) \bar{I}_1, \quad \bar{K}_1 = f^2(z) \bar{I}_1.
\end{align*}
\tag{24}
\]

The governing equations can be obtained by substituting the variation of strain energy and kinetic energy from Eq. (18) and Eq. (19) into Eq. (16) and then set the coefficients of \(\delta u_0, \delta v_0, \delta w_b, \delta w_s, \delta \phi^a, \) and \(\delta \phi^b\) to be zero,

\[
\begin{align*}
\delta u_0 : \frac{\partial N_x}{\partial x} + \frac{\partial N_y}{\partial y} + \frac{Q_{zb}}{R_x} = \bar{I}_0 \ddot{u} + \bar{I}_1 \left(\frac{\ddot{u}}{R_x} - \frac{\partial \ddot{w}_b}{\partial x} \right) - \bar{J}_1 \frac{\partial \ddot{w}_b}{\partial x},
\delta v_0 : \frac{\partial N_y}{\partial x} + \frac{\partial N_x}{\partial y} + \frac{Q_{zb}}{R_y} = \bar{I}_0 \ddot{v} + \bar{I}_1 \left(\frac{\ddot{v}}{R_y} - \frac{\partial \ddot{w}_b}{\partial y} \right) - \bar{J}_1 \frac{\partial \ddot{w}_b}{\partial y},
\delta w_b : \frac{N_x}{R_x} + \frac{N_y}{R_y} - \frac{\partial Q_{zb}}{\partial x} - \frac{\partial Q_{zb}}{\partial y} = - \bar{I}_0 (\ddot{w}_b + \ddot{w}_s),
\delta w_s : \frac{N_x}{R_x} + \frac{N_y}{R_y} - \frac{\partial Q_{zs}}{\partial x} - \frac{\partial Q_{zs}}{\partial y} = - \bar{I}_0 (\ddot{w}_b + \ddot{w}_s),
\delta \phi^a : \frac{\partial \bar{D}_b^a}{\partial x} + \frac{\partial \bar{D}_b^a}{\partial y} + \bar{D}_z^a = 0,
\delta \phi^b : \frac{\partial \bar{D}_b^b}{\partial x} + \frac{\partial \bar{D}_b^b}{\partial y} + \bar{D}_z^b = 0.
\end{align*}
\tag{25}
\]
3 Solution procedure

In this study, two sets of simply supported boundary conditions named cross-ply (SS-1) and angle-ply (SS-2) laminates shown in Table 1 are considered.

Table 1 Two sets of simply supported boundary conditions

Edge	Boundary condition	SS-1	SS-2
x = 0 and x = a	u₀ = u₁ = u₂ = w₁, y = w₁, y = 0	u₀ = u₁ = w₁ = w₁, y = u₀, y = w₁ = 0	Nₓ = Mᵧ = Mₓ = Mᵧ = φₓ = φᵧ = 0
y = 0 and y = b	u₀ = u₁ = w₁ = w₁, x = w₁, x = 0	v₀ = w₁ = w₁ = u₁, x = w₁, x = 0	Nᵧ = Mₓ = Mₓ = φₓ = φᵧ = 0

Following the Navier solution procedure, the following expansion displacements for u₀, v₀, wₛ, wᵧ, φₓ, and φᵧ are chosen to satisfy the boundary conditions given in Table 1. Here, uₘₙ, vₘₙ, wₘₙ, wᵧₘₙ, φₓₘₙ, and φᵧₘₙ are arbitrary parameters to be determined, α = \(\alpha \pi \), β = \(\beta \pi \), and \(m, n \) denote the numbers of half-waves in the x- and y-directions, respectively.

By substituting the expansion displacement functions in Table 2 into Eq. (25), the following matrix form can be obtained:

\[
\begin{pmatrix}
 m_{11} & m_{12} & m_{13} & m_{14} & 0 & 0 \\
 m_{12} & m_{22} & m_{23} & m_{24} & 0 & 0 \\
 m_{13} & m_{23} & m_{33} & m_{34} & 0 & 0 \\
 m_{14} & m_{24} & m_{34} & m_{44} & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
 \hat{u}_{mn} \\
 \hat{v}_{mn} \\
 \hat{w}_{mn}^b \\
 \hat{w}_{mn}^t \\
 \hat{\psi}_{mn} \phi^b \\
 \hat{\psi}_{mn} \phi^t
\end{pmatrix}
\]
FG-CNTRC shell panels integrated with piezoelectric layers, equation in Eq. (24), we obtain a short form of the equation for vibration characteristics of K respectively. Equation (27) can be rewritten in the short form as

\[
\begin{pmatrix}
 k_{11} & k_{12} & k_{13} & k_{14} & k_{15} & k_{16} \\
 k_{12} & k_{22} & k_{23} & k_{24} & k_{25} & k_{26} \\
 k_{13} & k_{23} & k_{33} & k_{34} & k_{35} & k_{36} \\
 k_{14} & k_{24} & k_{34} & k_{44} & k_{45} & k_{46} \\
 k_{15} & k_{25} & k_{35} & k_{45} & k_{55} & k_{56} \\
 k_{16} & k_{26} & k_{36} & k_{46} & k_{56} & k_{66}
\end{pmatrix}
\begin{pmatrix}
 u_{mn} \\
 v_{mn} \\
 w_m^b \\
 w_s^p \\
 \psi_m^t \\
 \psi_m^b
\end{pmatrix} = \begin{pmatrix}
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0
\end{pmatrix},
\]

(27)

where \(m_{ij}\) and \(k_{ij}\) are given in Appendices B1 and B2 for SS-1 and SS-2 boundary conditions, respectively. Equation (27) can be rewritten in the short form as

\[
\begin{pmatrix}
 M_{uu} & 0 \\
 0 & 0
\end{pmatrix}
\begin{pmatrix}
 \ddot{u} \\
 \ddot{\phi}
\end{pmatrix} + \begin{pmatrix}
 K_{uu} & K_{u\phi} \\
 K_{u\phi} & K_{\phi\phi}
\end{pmatrix}
\begin{pmatrix}
 u \\
 \phi
\end{pmatrix} = \begin{pmatrix}
 0 \\
 0
\end{pmatrix},
\]

(28)

Table 2 Expansion displacements \((u_0, v_0, w_s, \phi^l, \phi^b)\)

Displacement	SS-1	Boundary condition	SS-2
\(u_0(x, y, t)\)	\(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} u_{mn} \cos(\alpha x) \sin(\beta y)\)	\(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} u_{mn} \sin(\alpha x) \cos(\beta y)\)	
\(v_0(x, y, t)\)	\(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} v_{mn} \sin(\alpha x) \sin(\beta y)\)	\(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} v_{mn} \cos(\alpha x) \sin(\beta y)\)	
\(w_s(x, y, t)\)	\(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} w_s^{mn} \sin(\alpha x) \sin(\beta y)\)	\(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} w_s^{mn} \cos(\alpha x) \sin(\beta y)\)	
\(w_s(x, y, t)\)	\(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} w_s^{mn} \sin(\alpha x) \sin(\beta y)\)	\(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} w_s^{mn} \cos(\alpha x) \sin(\beta y)\)	
\(\phi^l(x, y, t)\)	\(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \psi_m^{mn} \sin(\alpha x) \sin(\beta y)\)	\(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \psi_m^{mn} \cos(\alpha x) \sin(\beta y)\)	
\(\phi^b(x, y, t)\)	\(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \psi_m^{mn} \sin(\alpha x) \sin(\beta y)\)	\(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \psi_m^{mn} \cos(\alpha x) \sin(\beta y)\)	

where \(M_{uu}\) is the mass matrix, \(K_{uu}\) is the elastic matrix, \(K_{u\phi}\) is the piezoelectric matrix, and \(K_{\phi\phi}\) is the permittivity matrix. Substituting the solution of the second equation into the first equation in Eq. (24), we obtain a short form of the equation for vibration characteristics of FG-CNTRC shell panels integrated with piezoelectric layers,

\[
(M_{uu}) \ddot{u} + ((K_{uu} - (K_{u\phi})(K_{\phi\phi})^{-1}(K_{\phi u}))(u) = 0.
\]

(29)

For free vibration, Eq. (29) reduces to an eigenvalue problem by setting \((u) = (\ddot{u})e^{i\omega t}\)

\[
((K_{uu}) - (K_{u\phi})(K_{\phi\phi})^{-1}(K_{\phi u}))(\ddot{u}) = 0.
\]

(30)

Equation (30) is associated with the natural frequencies of an open-circuit (Opc) PFG-CNTRC doubly curved shell panels (see Fig. 3(a)). For the closed-circuit (Clc) (see Fig. 3(b)) condition, both the upper and lower piezoelectric layers are grounded cause the electric displacement disappears from Eq. (28). Hence, we obtain the following eigenvalue problem for the Clc boundary condition:

\[
((K_{uu}) - \omega^2(M_{uu}))(\ddot{u}) = 0.
\]

(31)

The eigensolution of free vibration for PFG-CNTRC-DCP can be obtained using a general eigenvalue approach.
Fig. 3 Electrical boundary conditions: (a) closed-circuit and (b) open-circuit

4 Numerical results and discussion

In this section, several comparison studies are conducted to verify the accuracy of instant solution in predicting natural frequencies of a simply supported isotropic doubly curved shell panel and a rectangular FG-CNTRC; both of these structures are integrated with piezoelectric layers at the top and bottom surfaces. Furthermore, the effects of involved parameters such as CNT volume fractions, distribution types of CNT, and different geometric parameters on free vibration response of PFG-CNTRC doubly curved shell panel are also investigated in detail. Unless mentioned otherwise, the material properties of PFG-CNTRC doubly curved shell panels are given in Table 3.

Table 3 Material properties of piezoelectric and FG-CNT materials

Property	Substrate layer	Piezoelectric layer			
	PmPV[15]	CNT[15]	Al₂O₃[32]	PZT-4[32]	PZT-5A[15]
ρ/(kg·m⁻³)	1 150	1 400	3 800	7 500	7 750
E₁₁/GPa	Eₘ=2.5	5.64×10⁵	380	–	E = 63
E₂₂/GPa	Eₘ=2.5	7.08×10⁵	380	–	–
G₁₂/GPa	–	1 945.5	–	–	G = 23.3
ν₁₂	0.34	0.175	0.3	–	0.35
C₁₁/GPa	–	–	–	139	–
C₁₂/GPa	–	–	–	77.8	–
C₁₃/GPa	–	–	–	74.3	–
C₂₂/GPa	–	–	–	115	–
C₃₃/GPa	–	–	–	25.6	–
C₄₄/5₅/GPa	–	–	–	30.6	–
e₃₁/cm⁻²	–	–	–	–	–9.299
e₃₃/cm⁻²	–	–	–	–	15.1
e₁₁/cm⁻²	–	–	–	12.7	12.322
p₁₁/(nFm⁻¹)	–	–	–	6.75	1.53
p₃₃/(nFm⁻¹)	–	–	–	5.9	1.50

Also, the CNT efficiency parameters ηₖ(j = 1, 2, 3) associated with a given volume fraction V*ₖCNT are[15]: η₁ = 0.137, η₂ = 1.022 for the case of V*ₖCNT = 0.12, η₁ = 0.142, η₂ = 1.626 for the case of V*ₖCNT = 0.17, and η₁ = 0.141, η₂ = 1.585 for the case of V*ₖCNT = 0.28, and in all cases η₃ = 0.7η₂.

4.1 Comparison studies

Since there are no published results for the PFG-CNTRC doubly curved shell in the open literature, two numerical examples predict the free vibration behaviors of the piezoelectric isotropic doubly curved shell panels, and the PFG-CNTRC plates are performed to validate the present approach.

4.1.1 Example 1

Firstly, the fundamental frequencies of the simply supported isotropic doubly curved shell panel with surface-bonded piezoelectric layers for different geometric parameters are presented in Table 4. The Opc and Clc of electric boundary conditions are also considered. The shell
Vibration characteristics of PFG-CNTRC doubly-cured shells

Table 4 Fundamental frequencies ω of piezoelectric isotropic DCP ($a/b = 1, R_y/b = 5$)

a/R_x	h/a	h_p/h	$\omega_{\text{Clc}}/\text{Hz}$	$\omega_{\text{Opc}}/\text{Hz}$
			Present Ref. [38] Ref. [32]	Present Ref. [38] Ref. [32]
−0.2	0.1	0.1	823.126 824.049 823.997	840.081 841.189 843.029
0.2	0.1	0.1	1 484.893 1 483.998 1 483.888	1 514.076 1 512.112 1 515.550
0	0.1	0.1	1 480.806 1 398.792 1 398.093	1 457.032 1 449.614 1 461.337
0.2	0.1	0.1	1 498.803 1 498.047 1 498.297	1 528.068 1 526.689 1 530.183
0.2	0.2	1	1 412.678 1 411.727 1 411.025	1 469.096 1 462.898 1 474.891
0.2	0.2	0.1	1 418.902 1 411.727 1 411.025	1 469.096 1 462.898 1 474.891
0.2	0.2	0.2	1 543.343 1 542.349 1 542.240	1 543.343 1 542.349 1 545.778
0.2	0.2	0.2	1 425.281 1 424.974 1 424.279	1 481.171 1 475.765 1 487.688

Panel substrate is made of alumina (Al$_2$O$_3$), and two piezoelectric layers are made of PZT-4. It should be noted that the results reported by Sayyaadi et al.[32, 38] were based on the HSDT. The excellent agreement between the results shows the accuracy of the current approach.

4.1.2 Example 2

Secondly, the free vibration of the laminated cross-ply and angle-ply PFG-CNTRC plates with simply supported boundary conditions is investigated. The fundamental frequencies are given in Table 5 for different CNT volume fractions, CNT distribution types, and electrical boundary conditions (EBC). Properties of the plate are set equal to $a = b = 0.4\text{m}$, $h = a/20$, and $h_p = h/10$. The substrate is made of a multi-laminate of armchair SWCNT, and piezoelectric layers are PZT-5A. It can be seen that the present results agree well with those by Nguyen-Quang et al.[15] based on the isogeometric approach and the HSDT. The maximum difference is only 1.41% for the case that $V_{\text{CNT}} = 0.28$, FG-X, and $[p/−45^{°}/45^{°}/−45^{°}/−45^{°}/45^{°}/−45^{°}/p]$ configuration.

4.2 Parametric studies

4.2.1 Free vibration of PFG-CNTRC doubly curved shell panels

Parametric studies are carried out to understand the effects of material properties, geometric parameters, laminate configurations, and electrical boundary conditions on the free vibration responses of PFG-CNTRC doubly curved shell panels. The substrate of the panel is made of armchair SWCNT, and two piezoelectric layers are PZT-5A. Tables 6–8 list the fundamental frequencies of the CYL, spherical panel (SPH), and hyperbolic paraboloid (HPR) with various inlet parameters. It is observed from these tables that the distribution types of CNT have a significant effect on the stiffness of the panel. In detail, the FG-O panel has the lowest value of frequencies, while the FG-X panels have the highest ones. This conclusion is compatible with the conclusion of other researchers in the related studies in the literature. In three forms of doubly-curved shell panels, the HPR shell panels have the lowest frequencies, and the SPH shell panels have the highest frequencies. These results may become from the fact that SHP has a curvature effect, while the HPR has both positive and negative curvature that neutralize the effect of each other. These tables also reveal that the Opc of electrical boundary conditions always have higher frequencies than the Clc with all other parameters.

4.2.2 Effect of CNT distribution types

Figure 4 depicts the effect of distribution types of CNT on the fundamental frequencies of cross-ply PFG-CNTRC doubly curved shell panels for different R_x/R_y ratio in case of the Opc condition. It is observed that the previous conclusions regarding the CNT distribution types are
also shows that the value of the fundamental frequencies is minimum at the ratio confirmed.

\[
T_{\text{830}} \quad \text{this example are set by}
\]

with closed and open piezoelectric layers are shown in Fig. 7. The parameters of the panels in 4.2.4 Effect of electrical boundary conditions

\[
f_\omega \text{PC} \quad \text{where}
\]

This observation, maybe because of the curvature effect, is suppressed when the panels have 4.2.3 Effect of CNT volume fractions

\[
\text{FG-X} \quad \text{FG-O}
\]

Moreover, the percentage change of frequency \((f_{\text{PC}})\) of the SPH panel is shown in Fig. 5, where \(f_{\text{PC}}\) is defined as

\[
f_{\text{PC}} = \left(\frac{\omega_{\text{FG}} - \omega_{\text{UD}}}{\omega_{\text{UD}}} \right) \times 100\%.
\]

(32)

It can be seen from Fig. 5 that among four CNT distribution types, only FG-X shows the positive of \(f_{\text{PC}}\), while others show the negative of \(f_{\text{PC}}\). These results indicate that only the FG-X panel has higher stiffness than the UD panel, while UD is the simplest distribution type.

4.2.3 Effect of CNT volume fractions

Figure 6 indicates that the fundamental frequencies of the PFG-CNTRC doubly curved shell panels strongly increase with the increase of CNT volume fractions. The panels are set by \(a/h = 20, a/b = 1, R_x/a = 5, \text{FG-X in Opc condition}\) and \([p/0^\circ/90^\circ/0^\circ/p]\) of configuration.

4.2.4 Effect of electrical boundary conditions

The natural frequency of laminated cross-ply FG-CNTRC doubly curved shell panels coupled with closed and open piezoelectric layers are shown in Fig. 7. The parameters of the panels in this example are set by \(a/h = 20; a/b = 1; R_x/a = 5; \text{FG-X; } V_{\text{CNT}}^* = 28\%\). Figure 7 shows that the FG-CNTRC panels coupled with the Opc always vibrate with the higher value of frequencies compared to the FG-CNTRC panels coupled with the Clc because the Opc converts electric potential to mechanical energy while the Clc does not.

Table 5

\(V_{\text{CNT}}^*\)	FG type	EBC	Laminate configuration	\([p/0^\circ/90^\circ/0^\circ/p]\)	\([p/-45^\circ/45^\circ/-45^\circ/45^\circ/-45^\circ/p]\)		
0.12	UD Clc	587.093	563.510	0.61	662.572	656.538	0.92
	Op Clc	622.030	627.716	0.91	692.902	695.085	0.31
	FG-X Clc	593.270	588.372	0.83	667.328	658.696	1.31
	FG-V Clc	585.306	581.714	0.87	661.675	655.660	0.93
	FG-O Clc	620.461	626.205	0.92	692.094	694.272	0.31
	FG-O Clc	608.947	578.737	0.38	657.878	654.510	0.51
	Op Clc	616.286	623.243	0.13	688.462	693.196	0.68
0.17	UD Clc	628.442	624.543	0.62	727.596	720.800	0.94
	Op Clc	660.887	665.615	0.71	754.830	755.388	0.07
	FG-X Clc	636.977	631.317	0.90	753.961	731.781	1.41
	FG-V Clc	668.952	671.913	0.44	760.925	758.217	0.36
	FG-O Clc	665.500	668.427	0.32	721.527	718.247	0.46
	Op Clc	653.061	659.687	1.00	749.042	752.995	0.52
0.28	UD Clc	692.016	686.852	0.75	828.983	821.713	0.88
	Op Clc	720.749	723.150	0.33	851.843	850.524	0.16
	FG-X Clc	704.853	697.260	0.19	838.282	826.415	1.44
	Op Clc	733.029	732.991	0.01	860.872	855.093	0.68
	FG-V Clc	685.165	682.974	0.76	827.912	820.463	0.91
	Op Clc	717.276	719.788	0.35	850.901	849.465	0.17
	FG-O Clc	680.340	677.986	0.35	821.193	818.750	0.30
	Op Clc	709.665	714.904	0.73	844.364	847.767	0.40
Table 6 Fundamental frequencies ω of PFG-CNTRC-DCP ($a = b, R_x/a = 5$, and $V_{\text{CNT}}^\ast = 0.12$).

Shell panel	FG type	EBC	Laminate configuration					
Cylindrical (CYL, $R_y = \infty$)	UD	Clc	592.304	154.618	593.607	159.006	687.170	235.130
	Clc	Opc	626.968	161.568	628.015	165.064	717.108	241.601
	FG-A	Clc	567.175	147.982	589.313	156.416	687.365	235.617
	FG-A	Opc	604.219	155.591	624.305	162.746	717.697	240.706
	FG-V	Clc	571.471	153.409	594.398	161.032	685.268	234.439
	FG-V	Opc	607.158	160.109	628.652	166.879	714.979	243.326
	FG-X	Clc	630.839	161.458	599.683	160.097	721.811	243.326
	FG-X	Opc	663.076	168.121	633.711	166.108	721.811	243.326
	FG-O	Clc	550.429	147.529	587.575	157.968	682.292	233.388
	FG-O	Opc	588.048	154.803	622.373	164.072	712.477	239.897

Spherical (SPH, $R_y/b = 5$)	UD	Clc	614.685	227.995	618.604	239.508	761.658	405.509
	Clc	Opc	648.704	234.979	651.724	244.267	791.004	413.788
	FG-A	Clc	586.781	221.745	611.821	236.324	762.835	406.178
	FG-A	Opc	623.529	229.384	645.821	241.370	792.821	414.711
	FG-V	Clc	598.356	229.060	622.037	242.409	758.969	404.781
	FG-V	Opc	632.817	235.592	654.682	246.917	787.815	412.812
	FG-X	Clc	651.893	232.777	624.478	240.418	767.182	408.539
	FG-X	Opc	683.647	239.612	657.247	245.140	796.300	416.780
	FG-O	Clc	574.487	223.264	612.812	238.726	756.211	402.522
	FG-O	Opc	611.225	230.398	646.288	243.522	785.789	410.839

Hyperbolic paraboloid (HPR, $R_y/b = −5$)	UD	Clc	582.399	120.108	582.436	120.108	656.344	136.697
	Clc	Opc	617.059	127.493	617.099	127.493	686.410	143.221
	FG-A	Clc	560.869	115.105	580.953	119.736	655.459	136.496
	FG-A	Opc	597.416	122.836	615.839	127.165	685.614	143.038
	FG-V	Clc	557.348	114.953	580.372	119.711	655.459	136.496
	FG-V	Opc	593.608	122.670	615.246	127.140	685.614	143.038
	FG-X	Clc	621.407	128.706	588.566	121.415	661.040	137.732
	FG-X	Opc	653.585	135.620	622.840	128.725	690.861	144.209
	FG-O	Clc	539.908	110.864	576.336	118.804	651.711	135.669
	FG-O	Opc	577.610	118.829	611.398	126.266	682.029	142.240

Fig. 4 Effects of distribution types of CNT on ω of PFG-CNTRC-DCP for different R_x/R_y ratio ([p/0°/90°/0°/p], $a/h = 20$, $a/b = 1$, $R_x/a = 5$, and $V_{\text{CNT}}^\ast = 0.28$) (color online).

Fig. 5 Variation of PCF of PFG-CNTRC spherical shell panel with R_x/R_y ratio (color online).
Table 7 Fundamental frequencies ω of PFG-CNTRC-DCP ($a = b$, $R_y/a = 5$, and $V_{CNT}^* = 0.17$)

Shell panel configuration	FG type	EBC	$[p/0^\circ/p]$	$[p/0^\circ/90^\circ/0^\circ/p]$	$[p/(-45^\circ/45^\circ/-45^\circ)a/p]$	
			$a/h = 20$	$a/h = 100$	$a/h = 20$	$a/h = 100$
Cylindrical (CYL, $R_y = \infty$)	UD	Clc	633.572 164.396	635.074 169.546	758.173 269.051	269.051
		OpC	665.777 170.885	667.020 175.122	784.980 274.812	274.812
	FG-A	Clc	598.652 155.938	629.723 166.595	758.225 269.554	269.554
		OpC	633.715 163.155	662.292 172.434	785.445 275.334	275.334
FG-V	Clc	603.036 161.691	635.332 171.781	755.967 268.334	268.334	
		OpC	636.713 167.967	667.202 177.105	782.551 273.892	273.892
FG-X	Clc	685.601 173.875	643.487 171.108	791.305 277.054	277.054	
		OpC	714.948 180.017	674.977 176.629	784.980 274.812	274.812
FG-O	Clc	575.813 154.583	626.931 168.188	758.225 269.554	269.554	
		OpC	611.696 161.471	659.343 173.815	778.967 272.653	272.653
Spherical (SPH, $R_y/b = 5$)	UD	Clc	656.589 240.614	661.155 254.209	849.365 469.563	469.563
		OpC	688.210 247.117	691.855 258.431	875.501 476.964	476.964
FG-A	Clc	619.120 233.156	653.114 250.730	850.514 470.304	470.304	
		OpC	653.929 240.360	684.716 255.223	877.308 477.950	477.950
FG-V	Clc	706.953 247.435	669.331 255.599	856.600 473.443	473.443	
		OpC	735.893 253.754	699.614 259.786	882.553 480.800	480.800
FG-X	Clc	601.151 234.135	653.377 253.302	842.404 465.845	465.845	
		OpC	636.156 240.819	681.501 257.557	868.792 473.287	473.287
Hyperbolic paraboloid (HPR, $R_y/b = -5$)	UD	Clc	623.421 128.847	623.462 128.848	720.586 150.857	150.857
		OpC	655.611 135.726	655.656 135.726	747.584 156.763	156.763
FG-A	Clc	592.150 121.654	621.209 128.289	719.455 150.584	150.584	
		OpC	626.700 128.968	653.684 135.224	746.555 156.509	156.509
FG-V	Clc	588.329 121.488	620.521 128.260	719.454 150.584	150.584	
		OpC	622.956 128.789	652.991 135.194	746.555 156.509	156.509
FG-X	Clc	676.025 140.546	631.932 130.654	726.872 152.244	152.244	
		OpC	705.298 146.873	663.600 137.441	753.602 158.098	158.098
FG-O	Clc	564.824 116.046	615.213 127.073	714.596 149.505	149.505	
		OpC	600.798 123.644	647.887 134.043	741.873 155.462	155.462

Fig. 6 Effect of V_{CNT}^* on fundamental frequencies ω of PFG-CNTRC shell panel (color online)

Fig. 7 Effect of electrical boundary conditions on ω of PFG-CNTRC-DCP (color online)

4.2.5 Effect of curvature of shell panels

The effect of radii of curvature on the natural frequencies of the SPH, CYL, and HPR shell panels are shown in Figs. 8 to 10, respectively. It can be seen from these figures that with the
Table 8 Fundamental frequencies ω of PFG-CNTRC-DCP ($a = b$, $R_x/a = 5$, and $V_{\text{CNT}} = 0.28$)

Shell panel	FG type	Laminate configuration			
	EBC	$a/h = 20$	$a/h = 100$	$a/h = 20$	$a/h = 100$
Cylindrical	UD Clc	696.079 176.288	697.771 182.254	869.286 323.219	
	Clc	645.376 165.016	691.385 179.245	869.286 323.703	
	Opc	677.457 171.831	720.359 184.516	892.263 328.795	
Spherical	UD Clc	717.463 250.215	722.558 266.355	987.409 570.737	
	Clc	745.644 256.334	749.826 270.100	1 009.173 577.071	
Hyperbolic	UD Clc	686.512 142.888	686.568 142.888	820.668 174.254	
paraboloid	Clc	638.958 131.868	683.163 141.999	819.621 173.881	
	Opc	670.478 138.592	712.050 148.236	842.404 178.979	
	Clc	634.839 131.687	682.322 141.962	819.621 173.881	
	Opc	666.077 138.397	711.212 148.199	842.404 178.979	
	Clc	761.021 150.902	699.305 145.597	829.855 176.247	
Hyperbolic	Opc	786.416 165.428	727.267 151.652	852.241 181.268	
paraboloid	Clc	600.719 123.820	674.977 140.327	812.987 172.392	
	Opc	634.061 130.896	704.078 146.602	835.950 177.524	

Increase of R_x/a ratio, the frequencies of SPH and CYL decrease while the frequencies of HPR increase. The frequencies of all three types of shell panels are approximately equal to those of the plate with the corresponding input parameters when the value of R_x/a ratio reaches 20. This observation once again confirms that the opposite curvature will reduce the stiffness of the shells.

4.2.6 Effect of piezoelectric layer thickness

In order to investigate the effect of piezoelectric layer thickness on the free vibration response of the composite shell panel, the variation of percentage difference in natural frequency β is defined as

$$\beta = \frac{\omega_{\text{with piezoelectric layer}} - \omega_{\text{without piezoelectric layer}}}{\omega_{\text{without piezoelectric layer}}} \times 100\%.$$ (33)

Figures 11, 12, and 13 present the percentage difference in natural frequency β versus the h_p/h ratios for different forms of the panel, distribution types of CNT, and CNT volume fractions. It is observed from these figures that the HPR panel has a higher value of β than CYL and SPH panel, the panel reinforced with lower CNT volume fractions has a higher value of β, among five CNT distribution types, the FG-O panel has the highest value of β while the FG-X has lowest one. It can be concluded that the piezoelectric effects are more effective in the case of smaller stiffness panels rather than the case of greater stiffness ones. Furthermore,
Fig. 8 Effect of radius of curvature on ω of PFG-CNTRC spherical shell panels $(a/h = 20, \ a/b = 1, \ V_{\text{CNT}} = 0.28, \ R_y = R_x, [p/0^\circ/90^\circ/0^\circ/p])$ (color online)

Fig. 9 Effect of radius of curvature on ω of PFG-CNTRC cylindrical shell panels $(a/h = 20, \ a/b = 1, \ V_{\text{CNT}} = 0.28, \ R_y = \infty, [p/0^\circ/90^\circ/0^\circ/p])$ (color online)

Fig. 10 Effect of radius of curvature on ω of PFG-CNTRC HPR shell panels $(a/h = 20, \ a/b = 1, \ V_{\text{CNT}} = 0.28, \ R_y = -R_x, [p/0^\circ/90^\circ/0^\circ/p])$ (color online)

Fig. 11 Variation of β of the PFG-CNTRC-DCP versus h_p/h ratios for electrical boundary conditions $(a/h = 20, \ a/b = 1, \ R_y/a = 5, \ FG-X, \ V_{\text{CNT}} = 0.28, \ [0^\circ/90^\circ/0^\circ/p])$ (color online)

Fig. 12 Variation of β of spherical panel versus h_p/h ratios for different CNT distribution types $(a/h = 20, \ a/b = 1, \ R_y/a = R_y/b = 5, \ V_{\text{CNT}} = 0.28, \ [p/0^\circ/90^\circ/0^\circ/p])$ (color online)

Fig. 13 Variation of β of spherical panel versus h_p/h ratios for different CNT volume fractions $(a/h = 20, \ a/b = 1, \ R_y/a = R_y/b = 5, \ FG-X, \ [p/0^\circ/90^\circ/0^\circ/p])$ (color online)
these figures also indicate that increasing the thickness of piezoelectric layers from zero to a specific value leads to a decrement of β. It can be explained by the fact that the piezoelectric material has a higher mass density and lower elastic moduli compared with the core material. After that specific value of h_p/h, the percentage difference in natural frequency β increases by the increment of piezoelectric layers thickness because the electromechanical coupling effect increases with an increase in h_p/h and should increase the value of β. The electromechanical coupling effect is lower than the combined effects of the increase in the mass density, and the decrease in the stiffness results in negative values of β for values of h_p/h.

5 Conclusions

In this paper, an analytical solution based on the four-variable shear deformation refined theory is developed for carrying out the free vibration of the laminated functionally graded nanotube-reinforced composite doubly curved shell panels with surface-bonded piezoelectric layers. Comparison studies validate the accuracy of the model. Numerical results are provided to explore the effects of the CNT volume fraction, the CNT distribution type, the thickness of the piezoelectric layers, laminate configurations, and mechanical and electrical boundary conditions on the natural frequencies of the hybrid panels. Through the present formulation and numerical results, some conclusions can be drawn. (i) The volume fraction of CNT has substantial effects on dynamic responses of PFG-CNTRC panels. (ii) The natural frequencies of PFG-CNTRC panel with Opc electrical boundary condition are always higher than those with the Clc case when all other inlet parameters are the same. (iii) CNT reinforcements distributed close to top and bottom are more efficient than those distributed near the mid-plane for increasing the stiffness of the panels.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] ALIBEIGLOO, A. Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity. Composite Structures, 95, 612–622 (2013)
[2] ALIBEIGLOO, A. Elasticity solution of functionally graded carbon-nanotube-reinforced composite cylindrical panel with piezoelectric sensor and actuator layers. Smart Materials and Structures, 22(7), 075013 (2013)
[3] ALIBEIGLOO, A. Three-dimensional thermoelasticity solution of functionally graded carbon nanotube reinforced composite plate embedded in piezoelectric sensor and actuator layers. Composite Structures, 118, 482–495 (2014)
[4] ALIBEIGLOO, A. Thermoelastic analysis of functionally graded carbon nanotube reinforced composite cylindrical panel embedded in piezoelectric sensor and actuator layers. Composites Part B: Engineering, 98, 225–243 (2016)
[5] ALIBEIGLOO, A. Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity. European Journal of Mechanics-A/Solids, 44, 104–115 (2014)
[6] WU, C. P. and CHANG, S. K. Stability of carbon nanotube-reinforced composite plates with surface-bonded piezoelectric layers and under bi-axial compression. Composite Structures, 111, 587–601 (2014)
[7] NASIHATGOZAR, M., DAGHIGH, V., ESKANDARI, M., NIKBIN, K., and SIMONEAU, A. Buckling analysis of piezoelectric cylindrical composite panels reinforced with carbon nanotubes. *International Journal of Mechanical Sciences*, **107**, 69–79 (2016)

[8] ANSARI, R., POURASHRAF, T., GHOALMI, R., and SHAHABODINI, A. Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers. *Composites Part B: Engineering*, **90**, 267–277 (2016)

[9] RAFIEE, M., HE, X., and LIEW, K. Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection. *International Journal of Non-Linear Mechanics*, **59**, 37–51 (2014)

[10] RAFIEE, M., LIU, X., HE, X., and KITIPORNCHAI, S. Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates. *Journal of Sound and Vibration*, **333**(14), 3236–3251 (2014)

[11] KIANI, Y. Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers. *Computers & Mathematics with Applications*, **72**(9), 2433–2449 (2016)

[12] SHARMA, A., KUMAR, A., SUSHEEL, C., and KUMAR, R. Smart damping of functionally graded nanotube reinforced composite rectangular plates. *Composite Structures*, **155**, 29–44 (2016)

[13] KOLAHCHI, R., ZAREI, M. S., HAJMOHAMMAD, M. H., NOURI, A., HAJMOHAMMAD, M. H., and NOURI, A. Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory. *International Journal of Mechanical Sciences*, **130**, 534–545 (2017)

[14] SETOODEH, A., SHOJAEE, M., and MALEKZADEH, P. Application of transformed differential quadrature to free vibration analysis of FG-CNTRC quadrilateral spherical panel with piezoelectric layers. *Computer Methods in Applied Mechanics and Engineering*, **335**, 510–537 (2018)

[15] NGUYEN-QUANG, K., VO-DUY, T., DANG-TRUNG, H., and NGUYEN-THOI, T. An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers. *Computer Methods in Applied Mechanics and Engineering*, **322**, 25–46 (2018)

[16] SELIM, B., YIN, B., and LIEW, K. Impact analysis of CNT-reinforced composite plates integrated with piezoelectric layers based on Reddy’s higher-order shear deformation theory. *Composites Part B: Engineering*, **136**, 10–19 (2018)

[17] SONG, Z., ZHANG, L., and LIEW, K. Active vibration control of CNT reinforced functionally graded plates based on a higher-order shear deformation theory. *International Journal of Mechanical Sciences*, **105**, 90–101 (2016)

[18] SELIM, B., ZHANG, L., and LIEW, K. Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy’s higher-order shear deformation theory. *Composite Structures*, **163**, 350–364 (2017)

[19] ZHANG, L., SONG, Z., and LIEW, K. Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches. *Composites Part B: Engineering*, **85**, 140–149 (2016)

[20] TRAN, M. T., NGUYEN, V. L., PHAM, S. D., and RUNGAMORNJAT, J. Free vibration of stiffened functionally graded circular cylindrical shell resting on Winkler-Pasternak foundation with different boundary conditions under thermal environment. *Acta Mechanica*, **231**(6), 2545–2564 (2020)

[21] BAGHLANI, A., KHAYAT, M., and DEHGHAN, S. M. Free vibration analysis of FGM cylindrical shells surrounded by Pasternak elastic foundation in thermal environment considering fluid-structure interaction. *Applied Mathematical Modelling*, **78**, 550–575 (2020)

[22] SONG, Z., ZHANG, L., and LIEW, K. Active vibration control of CNT-reinforced composite cylindrical shells via piezoelectric patches. *Composite Structures*, **158**, 92–100 (2016)

[23] ZHU, C. S., FANG, X. Q., LIU, J. X., and LI, H. Y. Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells. *European Journal of Mechanics-A/ Solids*, **66**, 423–432 (2017)
Appendix A

\[
\begin{pmatrix}
N_{xx} \\
N_{xy}
\end{pmatrix} = \sum_{k=1}^{n} \int_{z_k}^{z_{k+1}} \left(1 + \frac{\bar{z}}{R_y} \right) \left(\frac{\sigma_{xx}^{k}}{\tau_{xy}^{k}} \right) dz - \int_{-h/2}^{-h/2-h_p} \left(1 + \frac{\bar{z}}{R_y} \right) \left(\frac{\sigma_{xx}^{p}}{\tau_{xy}^{p}} \right)^T dz
\]

where \(\bar{z} = \frac{z}{h_p} \).
\[
\begin{align*}
\left(N_{yy} \right)_{M_{yy}} &= \sum_{k=1}^{n} \int_{y_k}^{y_{k+1}} \left(1 + \frac{z}{R_x} \right) \left(\frac{\sigma_{yy}}{\tau_{yy}} \right) dz - \int_{-h/2}^{-h/2-h_y} \left(1 + \frac{z}{R_y} \right) \left(\frac{\sigma_{yy}^{\text{pie}}}{\tau_{yy}^{\text{pie}}} \right) dz \\
&\quad - \int_{h/2}^{h/2+h_y} \left(1 + \frac{z}{R_y} \right) \left(\frac{\sigma_{yy}^{\text{pie}}}{\tau_{yy}^{\text{pie}}} \right) dz, \\
\left(M_{xy} \right)_{M_{xy}} &= \sum_{k=1}^{n} \int_{y_k}^{y_{k+1}} \left(1 + \frac{z}{R_y} \right) \left(\frac{\sigma_{xy}}{\tau_{xy}} \right) dz - \int_{-h/2}^{-h/2-h_y} \left(1 + \frac{z}{R_y} \right) \left(\frac{\sigma_{xy}^{\text{pie}}}{\tau_{xy}^{\text{pie}}} \right) dz \\
&\quad - \int_{h/2}^{h/2+h_y} \left(1 + \frac{z}{R_y} \right) \left(\frac{\sigma_{xy}^{\text{pie}}}{\tau_{xy}^{\text{pie}}} \right) dz, \\
\left(M_{yx} \right)_{M_{xy}} &= \sum_{k=1}^{n} \int_{y_k}^{y_{k+1}} \left(1 + \frac{z}{R_y} \right) \left(\frac{\sigma_{yx}}{\tau_{yx}} \right) dz - \int_{-h/2}^{-h/2-h_y} \left(1 + \frac{z}{R_y} \right) \left(\frac{\sigma_{yx}^{\text{pie}}}{\tau_{yx}^{\text{pie}}} \right) dz \\
&\quad - \int_{h/2}^{h/2+h_y} \left(1 + \frac{z}{R_y} \right) \left(\frac{\sigma_{yx}^{\text{pie}}}{\tau_{yx}^{\text{pie}}} \right) dz, \\
Q_{ex} &= \sum_{k=1}^{n} \int_{y_k}^{y_{k+1}} \left(1 + \frac{z}{R_y} \right) \left(\frac{t_{ex}}{t_{ex}^{\text{pie}}} \right) dz - \int_{-h/2}^{-h/2-h_y} \left(1 + \frac{z}{R_y} \right) \left(\frac{t_{ex}^{\text{pie}}}{t_{ex}^{\text{pie}}} \right) dz \\
&\quad - \int_{h/2}^{h/2+h_y} \left(1 + \frac{z}{R_y} \right) \left(\frac{t_{ex}^{\text{pie}}}{t_{ex}^{\text{pie}}} \right) dz, \\
Q_{ey} &= \sum_{k=1}^{n} \int_{y_k}^{y_{k+1}} \left(1 + \frac{z}{R_y} \right) \left(\frac{t_{ey}}{t_{ey}^{\text{pie}}} \right) dz - \int_{-h/2}^{-h/2-h_y} \left(1 + \frac{z}{R_y} \right) \left(\frac{t_{ey}^{\text{pie}}}{t_{ey}^{\text{pie}}} \right) dz \\
&\quad - \int_{h/2}^{h/2+h_y} \left(1 + \frac{z}{R_y} \right) \left(\frac{t_{ey}^{\text{pie}}}{t_{ey}^{\text{pie}}} \right) dz.
\end{align*}
\]

Appendix B1

\[m_{11} = -\left(\frac{I_0 + \tilde{I}_1}{R_x} + \frac{I_2}{R_x^2} \right), \quad m_{12} = 0, \quad m_{13} = \left(\frac{I_1}{R_x} + \frac{I_2}{R_x^2} \right) \alpha_m, \quad m_{14} = \left(\frac{J_1}{R_x} + \frac{J_2}{R_x^2} \right) \alpha_m, \]
\[m_{22} = -\left(\frac{I_0 + \tilde{I}_1}{R_y} + \frac{I_2}{R_y^2} \right), \quad m_{23} = \left(\frac{I_1}{R_y} + \frac{I_2}{R_y^2} \right) \beta_n, \quad m_{24} = \left(\frac{J_1}{R_y} + \frac{J_2}{R_y^2} \right) \beta_n, \]
\[m_{33} = -\left(\frac{I_0}{R_x} - \tilde{I}_1 (\alpha_m^2 + \beta_n^2) \right), \quad m_{34} = -\tilde{I}_0 - J_2 (\alpha_m^2 + \beta_n^2), \quad m_{44} = -\tilde{I}_0 - \tilde{K}_1 (\alpha_m^2 + \beta_n^2). \]
\[k_{11} = -\left(B_{11} + \tilde{B}_{11} + \tilde{D}_{11} \right) \alpha_m - \left(A_{66} + 2 \tilde{B}_{66} + \tilde{D}_{66} \right) \beta_n, \]
\[k_{12} = -\left(A_{12} + A_{66} + (B_{12} + B_{66}) \left(\frac{1}{R_x} + \frac{1}{R_y} \right) + \frac{1}{R_x R_y} (D_{12} + D_{66}) \right) \beta_n. \]
\[k_{13} = \left(\frac{A_{11}}{R_x} + \frac{A_{12}}{R_x} + \frac{1}{R_x} (\tilde{B}_{11} + \frac{B_{11}}{R_x} + \frac{B_{12}}{R_y}) \right) + \left(B_{12} + B_{66} + \tilde{B}_{66} + \frac{1}{R_x} (D_{12} + D_{66} + D_{66}) \right) \beta_n \]
\[+ \left(\frac{\tilde{B}_{11}}{R_x} + \frac{\tilde{B}_{12}}{R_x} \right) \alpha_m, \]
\[k_{14} = \left(\frac{\tilde{B}_{11}}{R_x} + \frac{\tilde{D}_{11}}{R_x} \right) \alpha_m + \left(\frac{B_{12} + B_{66} + \tilde{B}_{66} + \frac{D_{12}}{R_x} + \frac{D_{66}}{R_x} + \frac{D_{66}}{R_x}}{R_x} \right) \beta_n \]
\[+ \left(\frac{\tilde{D}_{11}}{R_x} + \frac{\tilde{B}_{11}}{R_x} + \frac{\tilde{B}_{12}}{R_x} \right) \alpha_m. \]
\[k_{15} = -\left(A_{11}^p + \frac{B_{12}^p}{R_e} \right) \alpha_m, \quad k_{16} = -\left(A_{12}^p + \frac{B_{12}^p}{R_e} \right) \alpha_m, \]
\[k_{22} = -\left(\tilde{A}_{12} + 2 \frac{B_{12}}{R_e} + \frac{D_{12}}{R_e} \right) \alpha_m^2 - \left(\tilde{A}_{22} + 2 \frac{B_{22}}{R_e} + \frac{D_{22}}{R_e} \right) \beta_n^2, \]
\[k_{23} = \left(\frac{A_{12}}{R_e} + \frac{\tilde{A}_{12}}{R_y} + \frac{B_{12}^p}{R_e} + \frac{\tilde{B}_{12}^p}{R_y} \right) \beta_n + \left(B_{22} + \frac{D_{22}}{R_e} \right) \beta_n^2, \]
\[+ \left(B_{12} + B_{12}^p + \frac{B_{66}}{R_y} + \frac{1}{R_y} \left(D_{12} + D_{66} + D_{16} \right) \right) \beta_n \alpha_m, \]
\[k_{24} = \left(\frac{A_{12}}{R_e} + \frac{\tilde{A}_{12}}{R_y} + \frac{B_{12}^p}{R_e} + \frac{\tilde{B}_{12}^p}{R_y} \right) \beta_n + \left(B_{22}^p + \frac{D_{22}^p}{R_y} \right) \beta_n^2, \]
\[+ \left(B_{12} + B_{12}^p + \frac{B_{66}}{R_y} + \frac{1}{R_y} \left(D_{12} + D_{66} + D_{16} \right) \right) \beta_n \alpha_m, \]
\[k_{25} = -\left(A_{22}^p + \frac{B_{22}^p}{R_y} \right) \beta_n, \quad k_{26} = -\left(A_{22}^p + \frac{B_{22}^p}{R_y} \right) \beta_n, \]
\[k_{33} = -\frac{A_{11}}{R_e} - \frac{2 B_{12}}{R_e} - \frac{A_{22}}{R_e} - \frac{2 B_{22}}{R_e} - \frac{2 B_{11}^p}{R_y} \beta_n^2 - \frac{2 B_{12}^p}{R_y} \alpha_m^2, \]
\[- D_{11} \alpha_m - (2 D_{12} + 2 D_{66} + D_{16} + \tilde{D}_{12} \alpha_m \beta_n^2 - \tilde{D}_{22} \beta_n^4, \]
\[k_{34} = -\frac{A_{11}}{R_e} - \frac{2 B_{12}}{R_e} - \frac{A_{22}}{R_e} - \frac{2 B_{22}}{R_e} - \frac{2 B_{11}^p}{R_y} \beta_n^2 - \frac{2 B_{12}^p}{R_y} \alpha_m^2, \]
\[- (2 D_{11}^p + 2 D_{66}^p + D_{16}^p) \alpha_m \beta_n^2 - \tilde{D}_{11} \alpha_m^4 - \tilde{D}_{22} \beta_n^4, \]
\[k_{35} = B_{21}^p \beta_n^2 + B_{11}^p \alpha_m^2 + \frac{A_{11}^p}{R_e} + \frac{A_{22}^p}{R_y}, \quad k_{36} = -\frac{A_{11}^p}{R_e} + \frac{A_{22}^p}{R_y} + B_{12}^p \alpha_m + B_{22}^p \beta_n, \]
\[k_{44} = -\frac{A_{11}}{R_e} - \frac{2 B_{12}}{R_e} - \frac{A_{22}}{R_e} - \frac{2 B_{22}}{R_e} - \frac{2 B_{11}^p}{R_y} \beta_n^2 - \frac{2 B_{12}^p}{R_y} \alpha_m^2, \]
\[- (2 D_{11}^p + 2 D_{66}^p + D_{16}^p + \tilde{D}_{16}^p) \alpha_m \beta_n^2 - \tilde{D}_{11} \alpha_m^4 - \tilde{D}_{22} \beta_n^4, \]
\[k_{45} = \frac{A_{11}^p}{R_e} + \frac{A_{22}^p}{R_e} + (D_{11}^p + C_{11}) \alpha_m + (C_{21}^p + D_{11}^p) \beta_n, \]
\[k_{46} = \frac{A_{11}^p}{R_e} + \frac{A_{22}^p}{R_e} + (D_{11}^p + C_{11}^p) \alpha_m + (C_{21} + D_{11}^p) \beta_n, \]
\[k_{55} = -D_{12}^p \alpha_m^2 - D_{92} \beta_n^2 + Q^{pT}, \quad k_{56} = 0, \quad k_{66} = -D_{22}^p \alpha_m^2 - D_{92} \beta_n^2 + Q^{pT}, \]

Appendix B2

\[m_{11} = -\left(\tilde{I}_0 + 2 \frac{\tilde{I}_1}{R_e} + \frac{\tilde{I}_2}{R_e} \right), \quad m_{12} = m_{13} = m_{14} = 0, \quad m_{22} = -\left(\tilde{I}_0 + \frac{\tilde{I}_1}{R_e} + \frac{\tilde{I}_2}{R_e} \right), \]
\[m_{23} = m_{24} = 0, \quad m_{33} = -\tilde{I}_0 - \tilde{I}_2 (\alpha_m^2 + \beta_n^2), \quad m_{34} = -\tilde{I}_0 - \tilde{I}_2 (\alpha_m^2 + \beta_n^2), \quad m_{44} = -\tilde{I}_0 - \tilde{K}_1 (\alpha_m^2 + \beta_n^2), \]
\[k_{11} = -\left(\tilde{A}_{11} + 2 \frac{\tilde{B}_{11}}{R_e} + \frac{\tilde{D}_{11}}{R_e} \right) \alpha_m^2 - \frac{2 \tilde{B}_{11}}{R_e} \frac{D_{11}}{R_e} - \frac{\tilde{D}_{11}}{R_e} \beta_n^2, \]
\[k_{12} = -\left(\tilde{A}_{12} + \tilde{A}_{22} \right) \alpha_m^2 + \frac{1}{R_e} \left(\frac{1}{R_e} + \frac{1}{R_y} \right) \left(D_{12} + D_{66} \right) \beta_n \alpha_m, \]
\[k_{13} = \left(\frac{A_{12}}{R_e} + \frac{\tilde{A}_{12}}{R_y} + \frac{B_{12}}{R_e} + \frac{\tilde{B}_{12}}{R_y} \right) + \left(2 B_{16}^p + B_{16} + \frac{2 D_{16}}{R_e} \right) \beta_n \alpha_m^2 + \left(B_{26} + \frac{D_{26}}{R_e} \right) \beta_n^3, \]
\[k_{14} = \left(\frac{B_{26}}{R_e} + \frac{D_{26}}{R_y} \right) \beta_n^3 + \left(\frac{2 B_{16} + B_{16} + \frac{2 D_{16}}{R_e}}{R_e} + \frac{2 D_{16}}{R_e} \alpha_m + \frac{\tilde{A}_{16}}{R_e} + \frac{\tilde{B}_{16}}{R_y} + \frac{B_{16} + \frac{D_{26}}{R_y}}{R_y} \right) \beta_n, \]
\[k_{15} = 0, \quad k_{16} = 0, \quad k_{22} = -\left(\tilde{A}_{12} + 2 \frac{\tilde{B}_{12}}{R_y} + \frac{\tilde{D}_{12}}{R_y} \right) \alpha_m^2 - \left(\tilde{A}_{22} + 2 \frac{\tilde{B}_{22}}{R_y} + \frac{\tilde{D}_{22}}{R_y} \right) \beta_n^2, \]
\[k_{23} = \left(\frac{A_{16}}{R_c} + \frac{A_{26}}{R_y} + \frac{1}{R_y} \left(\frac{B_{26}}{R_c} + \frac{B_{16}}{R_y} \right) \right) \alpha_m + \left(\frac{\overline{D}_{16}}{R_y} + \frac{B_{16}}{R_y} \right) \alpha_m + \left(2B_{26} + \frac{B_{16}}{R_y} \right) \alpha_m + \left(\overline{D}_{26} + \frac{2B_{26}}{R_y} \right) \beta_n \alpha_m,
\]

\[k_{24} = \left(\frac{A_{16}}{R_c} + \frac{A_{26}}{R_y} + \frac{1}{R_y} \left(\frac{B_{26}}{R_c} + \frac{B_{16}}{R_y} \right) \right) \alpha_m + \left(\frac{\overline{D}_{16}}{R_y} + \frac{B_{16}}{R_y} \right) \alpha_m + \left(2B_{26} + \frac{B_{16}}{R_y} + \frac{1}{R_y} \left(\overline{D}_{26} + \frac{D_{26}^e}{R_y} \right) \right) \alpha_m \beta_n,
\]

\[k_{25} = 0, \quad k_{26} = 0,
\]

\[k_{33} = -\frac{\overline{A}_{11}}{R_x^2} - 2\frac{A_{12}}{R_x R_y} - \frac{\overline{A}_{22}}{R_x^2} - 2 \left(\frac{B_{12}}{R_x} + \frac{B_{22}}{R_y} \right) \beta_n^2 - 2 \left(\frac{\overline{B}_{11}}{R_x} + \frac{B_{11}}{R_y} \right) \alpha_m^2 - \frac{\overline{D}_{11} \alpha_m^4}{R_y} - 2D_{11}^e + 2D_{66}^e + D_{66}^e \alpha_m^2 \beta_n^2 - D_{22} \beta_n^4,
\]

\[k_{34} = -\frac{\overline{A}_{11}}{R_x^2} - 2\frac{A_{12}}{R_x R_y} - \frac{\overline{A}_{22}}{R_x^2} - \left(\frac{B_{12}}{R_x} + \frac{B_{22}}{R_y} \right) \beta_n^2 - \left(2D_{12}^e + 2D_{66}^e + D_{66}^e \right) \alpha_m^2 \beta_n^2 - D_{11}^e \alpha_m^4 - D_{22} \beta_n^4,
\]

\[k_{35} = B_{21} \beta_n^2 + B_{11}^e \alpha_m^2 + \frac{A_{21}^e}{R_y} + \frac{A_{11}^e}{R_x^2} + k_{36} = \frac{A_{12}^e}{R_x} + \frac{A_{21}^e}{R_y} + B_{12} \alpha_m^2 + B_{22} \beta_n^2,
\]

\[k_{44} = -\frac{\overline{A}_{11}}{R_x^2} - 2\frac{A_{12}}{R_x R_y} - \frac{\overline{A}_{22}}{R_x^2} - \left(\frac{A_{12}}{R_x} + \frac{B_{22}^e}{R_y} \right) \beta_n^2 - \left(A_{11}^e + \frac{B_{11}^e}{R_x} + 2 \frac{B_{22}^e}{R_y} \right) \alpha_m^2 - \left(2E_{12} + 2E_{66}^e + E_{66}^e \right) \alpha_m^2 \beta_n^2 - \left(\overline{E}_{11}^e \alpha_m^4 - \overline{E}_{22} \beta_n^4,
\]

\[k_{45} = \frac{A_{21}^e}{R_x} + \frac{A_{11}^e}{R_y} + (C_{21}^e + C_{11}^e) \alpha_m^2 + (C_{21}^e + D_{11}^e) \beta_n^2,
\]

\[k_{46} = \frac{B_{21}^e}{R_x} + \frac{B_{11}^e}{R_y} + (C_{21}^e + D_{22}^e) \alpha_m^2 + (D_{21}^e + C_{22}^e) \beta_n^2,
\]

\[k_{55} = -D_{s12}^e \beta_n^2 + D_{p13}^e \beta_n^2 + Q^e T^e, \quad k_{56} = 0, \quad k_{66} = -D_{s22}^e \alpha_m^2 - D_{s22}^e \beta_n^2 + Q^e B^e,
\]

where

\[A_{11}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_x} \right) \varepsilon_3 - \frac{\partial Z_2^e}{\partial z} \phi^d \, dz,
\]

\[A_{12}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_y} \right) \varepsilon_3 - \frac{\partial Z_2^e}{\partial z} \phi^d \, dz,
\]

\[A_{21}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_x} \right) \varepsilon_3 - \frac{\partial Z_2^e}{\partial z} \phi^d \, dz,
\]

\[A_{22}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_y} \right) \varepsilon_3 - \frac{\partial Z_2^e}{\partial z} \phi^d \, dz,
\]

\[B_{11}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_x} \right) \varepsilon_3 - \frac{\partial Z_2^e}{\partial z} \phi^d \, dz,
\]

\[B_{12}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_y} \right) \varepsilon_3 - \frac{\partial Z_2^e}{\partial z} \phi^d \, dz,
\]

\[B_{21}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_x} \right) \varepsilon_3 - \frac{\partial Z_2^e}{\partial z} \phi^d \, dz,
\]

\[B_{22}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_y} \right) \varepsilon_3 - \frac{\partial Z_2^e}{\partial z} \phi^d \, dz,
\]

\[C_{11}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_x} \right) \varepsilon_3 - \frac{\partial Z_2^e}{\partial z} \phi^d \, dz,
\]

\[C_{21}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_y} \right) \varepsilon_3 - \frac{\partial Z_2^e}{\partial z} \phi^d \, dz,
\]

\[D_{11}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_x} \right) \varepsilon_2 \frac{-1}{1 + \frac{z}{R_y}} Z_1^d \, dz,
\]

\[D_{12}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_y} \right) \varepsilon_2 \frac{-1}{1 + \frac{z}{R_y}} Z_1^d \, dz,
\]

\[D_{21}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_x} \right) \varepsilon_1 \frac{-1}{1 + \frac{z}{R_y}} Z_1^d \, dz,
\]

\[D_{22}^e = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{z}{R_y} \right) \varepsilon_1 \frac{-1}{1 + \frac{z}{R_y}} Z_1^d \, dz.
\]