Runge-Kutta 4th-order method analysis for viscoelastic Oldroyd 8-constant fluid used as coating material for wire with temperature dependent viscosity

Zeeshan Khan2, Haroon Ur Rasheed2, Iskander Tlili3, Ilyas Khan1 & Tariq Abbas2

Polymer flow during wire coating dragged from a bath of viscoelastic incompressible and laminar fluid inside pressure type die is carried out numerically. In wire coating the flow depends on the velocity of the wire, geometry of the die and viscosity of the fluid. The governing equations expressing the heat transfer and flow solved numerically by Runge-Kutta fourth order method with shooting technique. Reynolds model and Vogel's models are encountered for temperature dependent viscosity. The numerical solutions are obtained for velocity field and temperature distribution. It is seen that the non-Newtonian parameter of the fluid accelerates the velocity profile in the absence of porous and magnetic parameters. For large value of magnetic parameter the reverse effect is observed. It is observed that the temperature profiles decreases with increasing pseudoplastic parameter in the presence and absence of porous matrix as well as magnetic parameter. The Brinkman number contributes to increase the temperature for both Reynolds and Vogel's models. With the increasing of pressure gradient parameter of both Reynolds and Vogel's models, the velocity and temperature profile increases significantly in the presence of non-Newtonian parameter. The solutions are computed for different physical parameters. Furthermore, the present result is also compared with published results as a particular case.

The understanding and analysis of non-Newtonian fluids is of excellent interest from fundamental as well as applied perspective1,2. The knowledge of physics and material science associated with the flows of non-Newtonian fluids may have direct effects on numerous fields such as polymer preparation, covering and coating, ink-jet printing, smaller scale fluidics, homodynamic, the flow of turbulent shear, colloidal and additive suspensions, animal blood etc. For this reason, concentration has been shown towards these flows and subsequently the literature presents extensive work on numerical, analytical, and asymptotic solutions on the subject3,4. Furthermore, flow of these fluids presents great challenges equally to the experts from diverse research fields such as numerical simulations, engineering, mathematics, physics etc. Indeed, the equations proposed and created for non-Newtonian models are considerably more complicated as compared with Newtonian fluids. The modeled equations of non-Newtonian fluid are highly nonlinear and very difficult to obtain the exact solutions of such equations5–8. Due to the non-linear and inapplicable nature in terms of superposition principle, it is evenly hard to obtain the highly accurate solutions for viscous fluids5–8. For this purpose, many researchers developed analytical and numerical technique to obtained the solution of these non-linear equations.

Wire-coating (an extrusion procedure) is generally utilized as a part of the polymer industry for insulation and it protects the wire from mechanical damage. In this procedure an exposed preheated fiber or wire is dipped and dragged through the melted polymer. This procedure can also be accomplished by extruding the melted polymer over a moving wire. A typical wire coating equipment is composed of five distinct units: pay-off tool, wire pre-heating tool, an extruder, a cooling and a take-off tool. Most common dies used for coatings are: tubing-type

1Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam. 2Sarhad University of Science and Information Technology, 25000 Peshawar, KPK, Pakistan. 3Energy and Thermal Systems Laboratory, National Engineering School of Monastir, Street Ibn El Jazzar, 5019, Monastir, Tunisia. Correspondence and requests for materials should be addressed to I.K. (email: ilyaskhan@tdt.edu.vn)
dies and pressure type dies. The later one is normally used for wire-coating and seems like annulus. That’s why flows through such die are similar to the flows through annular area formed by a couple of coaxial cylinders. One of the two cylinders (inner cylinder) moves in the direction of axial while the second (external cylinder) is fixed. Preliminary efforts done by several researchers\(^2\)–\(^4\) used power-law and Newtonian models to reveal the rheology of the polymer melt flow. In\(^5\)–\(^7\), authors provide the wire coating analysis using pressure type die. Afterwards, more research work regarding this matter was conveyed by\(^8\)–\(^11\). In addition, a very detailed survey regarding heat transfer and fluid flow in wire-coating is given by\(^1\) Akter and Hashmi in\(^2\), analyzed the wire coating using pressurized die. Later on, Akter and Hashmi performed simulations on polymer flow during the wire-coating process by means of a conical unit as in\(^2\)–\(^4\).

Wire coating or covering is a modern industrial procedure to coat a wire for insulation and environmental safety. Wire coating can be classified in three types such as dipping process, coaxial process, and electrostatic deposition process. The dipping process provides considerably stronger bond among the continuums however this process is relatively slow when compared to the other two processes. The problems related to the coating extrusion based on the pressure-die were reviewed by Han and Rao in\(^5\). Generally, the extrusion process is consisting of three components termed: feeding unit, the barrel and head with a die. The detailed discussions regarding these three distinct elements are reported by Kozan in\(^1\). In addition, Sajid et al. in\(^2\) addressed and solved the wire-coating process of Oldroyd (8-constant fluid) by utilizing HAM method. Similarly, another research work, presented in\(^3\) by Shah et al. utilized the perturbation approach and analytically analyzed the wire-coating of a third-grade fluid.

At present, the Phan-Thanh-Tranner (PTT) model, a third-grade visco-elastic fluid model, is the most commonly used model for wire-coating. The high-speed wire-coating process for polymer melts in elastic constitutive model was analyzed by Binding in\(^1\). It also discussed the shortcomings of the realistic modeling approach. Mulla et al. in\(^5\) provided the wire-coating analysis based on the tube-tooling die. Kasajima and Ito in\(^7\) analyzed the wire-coating process and examined the post treatment of polymer extruded meanwhile. They also discussed the impacts of heat transfer on cooling coating. Afterward, Winter in\(^1\),\(^2\) investigated the thermal effect on die both from inside and outside perspective. Recently, wire-coating in view of linear variations of temperature in the polyethylene temperature analysis was investigated by Baag and Mishra in\(^4\).

The wet-on-dry (WOD) and wet-on-wet (WOW) are the most common coating process used for double-layer coating. In wet-on-wet process the fiber is dragged into the primary layer and then curved by ultraviolet lamp. Then, primary coated layer is passed through the secondary coating-layer and again curved by ultraviolet lamp. But in the wet-on-wet process the fiber is passed from the primary and secondary-coating die and then curved by ultraviolet lamp. Recently WOW process gained significant importance production industry. Herein, WOW coating-process is applied for fiber optics. Kim et al.\(^5\) used WOW process for the analysis of two-layers coating on optical fiber. Zeeshan et al.\(^6\),\(^7\) used pressure coating die for the two-layer coating in optical coating analysis using PTT fluid model. The same author discussed viscoelastic fluid for two-layer coating in fiber coating\(^8\). Sisko fluid model was used for fiber coating by adopting WOW process by Zeeshan et al.\(^9\) in the presence of pressure type coating die.

In the recent study MHD flow of viscoelastic fluid is investigated for two-layer coating on optical fiber by applying WOW coating-process inside pressurized coating die. The modeled equations describing the polymer flow inside the die are solved numerically by Runge-Kutta Fehlberg algorithm with shooting technique\(^10\)–\(^14\). At the end for validation of the present result, a comparison is done with published results reported by Shah et al.\(^5\).

Sheikholeslami and Ganji\(^16\) carried out heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies. Sheikholeslami and Ganji\(^17\) studied heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators. Sheikholeslami et al.\(^18\) investigated heat transfer improvement and pressure drop during condensation of refrigerant-based nano-fluid; an experimental procedure. Sheikholeslami and Rokni\(^19\) investigated CVFEM for effect of Lorentz forces on nano-fluid flow in a porous complex shaped enclosure by means of non-equilibrium model. Chal Qur et al.\(^20\) studied convective hydromagnetic instabilities of a power-law liquid saturating a porous medium: Flux conditions. Sheikholeslami and Shehzad\(^21\) carried out Simulation of water based nano-fluid convective flow inside a porous enclosure via non-equilibrium model. Sheikholeslami and Seyednejad\(^22\) investigated simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM.

Modeling of the Problem

The geometry of the flow problem is shown in Fig. 1 in which the wire of radius \(R_w\) is dragged with velocity \(V\) inside the coating die filled with viscoelastic fluid. The fluid is electrically conducted in the presence of applied magnetic field \(B_0\) normal to the flow. Due to small magnetic Reynold number the induced magnetic field is negligible, which is also a valid assumption on laboratory scale.

The velocity and temperature profiles for one-dimensional flow are:

\[
u = [0, 0, w(r)], \quad S = S(r), \quad \Theta = \Theta(r).
\]

Here \(R_b\) is the radius of the die, \(\Theta_w\) temperature of the wire and \(\Theta_d\) is the temperature of the die.

For viscoelastic fluid, the stress tensor is:

\[
\sigma = \frac{\gamma_1}{2} \frac{DS}{Dt} + \frac{\gamma_2}{2} (\mathbf{A}_1 S + \mathbf{SA}_1) + \frac{\gamma_3}{2} (trS)\mathbf{A}_1 + \frac{\gamma_4}{2} (trS\mathbf{A}_1)I
\]

\[
= \eta\left[\mathbf{A}_1 + \frac{\gamma_1}{2} \frac{DA_1}{Dt} + \gamma_4 (tr\mathbf{A}_1^2)I\right].
\]

(2)
In above equation A_i and $\gamma(i = 1 - 7)$ are the Rivlin-Ericksen tensor and material constants respectively.

$$A_i = L^T + L,$$ \hspace{1cm} (3)

$$A_n = A_{n-1}L^T + LA_{n-1} + \frac{DA_{n-1}}{Dt}, \hspace{0.5cm} n = 2, 3, \ldots$$ \hspace{1cm} (4)

The basic governing equations for incompressible flow are the continuity, momentum and energy equations are given by:

$$\nabla \cdot u = 0,$$ \hspace{1cm} (5)

$$\rho \frac{Du}{Dt} = \nabla \cdot T + J \times B,$$ \hspace{1cm} (6)

$$\rho \frac{D\theta}{Dt} = k \nabla^2 \theta + T \cdot L,$$ \hspace{1cm} (7)

In Eq. (6) the body force is defined as.

$$f \times B = -\sigma B_0^2 w.$$ \hspace{1cm} (8)

In view of Eqs (1–8), we have:

$$\frac{\partial p}{\partial z} = \frac{1}{r} \frac{d}{dr} (r S_{rz}),$$ \hspace{1cm} (9)

$$\frac{\partial p}{\partial \theta} = 0,$$ \hspace{1cm} (10)

$$\frac{\partial p}{\partial z} = \frac{1}{r} \frac{d}{dr} (r S_{rz}) - \sigma B_0^2 w - \frac{\nu}{k_p} w,$$ \hspace{1cm} (11)

$$\frac{\partial p}{\partial z} = \frac{1}{r} \frac{d}{dr} \left[\frac{r \eta \left(1 + \alpha \left(\frac{dw}{dr} \right)^2 \right)}{1 + \beta \left(\frac{dw}{dr} \right)^2} \right].$$ \hspace{1cm} (12)
\begin{equation}
\frac{k}{r^2} \left(\frac{d^2 \theta}{dr^2} + \frac{1}{r} \frac{d \theta}{dr} \right) \left[r \left(1 + \alpha \left(\frac{dw}{dr} \right)^2 \right) \right] = 0,
\end{equation}

where

\[\alpha = \gamma_1(\gamma_4 + \gamma_5) - (\gamma_3 + \gamma_6)(\gamma_4 + \gamma_5 - \gamma_2) - \frac{\gamma_5 \gamma_7}{2}, \]
\[\beta = \gamma_4(\gamma_3 + \gamma_6) - (\gamma_3 + \gamma_6)\gamma_4(\gamma_3 + \gamma_6 - \gamma_4) - \frac{\gamma_5 \gamma_6}{2}. \]

Constant viscosity. Introducing the dimensionless parameters

\[r^* = \frac{r}{R_w}, \quad w^* = \frac{w}{V}, \quad \alpha^* = \frac{\alpha V^2}{R_w^2}, \quad \beta^* = \frac{\beta V^2}{R_w^2}, \quad M = \frac{\sigma R_0^2}{(\eta R_0^2)}, \]
\[p^* = \frac{p}{(\eta V/R_w^2)}, \quad \beta_1 = \frac{\mu_0 U_w^2}{k(\theta_d - \theta_w)}, \quad k_p^* = \frac{k_p}{R_w^2}, \]
\[\theta^* = \frac{\theta - \theta_w}{\theta_d - \theta_w}, \quad Br = \frac{\eta V^2}{k(\theta_d - \theta_w)}. \]

In view of Eq. (14), the system of Eqs (12) and (13) becomes:

\begin{equation}
\begin{aligned}
\left[\frac{d^2 \theta}{dr^2} + \frac{1}{r} \frac{d \theta}{dr} \right] &+ \frac{1}{\mu} \left(\frac{dw}{dr} \right)^2 \left[1 + \beta \left(\frac{dw}{dr} \right)^2 \right]
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
&= -1 \left[M\theta + \frac{1}{K}\frac{d\theta}{dr} \right],
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
&= \frac{\mu_0 U_w^2}{k(\theta_d - \theta_w)} \left[\frac{d^2 \theta}{dr^2} \right] + \frac{1}{\mu} \left(\frac{dw}{dr} \right)^2 \left[1 + \beta \left(\frac{dw}{dr} \right)^2 \right] = 0.
\end{aligned}
\end{equation}

Corresponding to the boundary-conditions

\[w(1) = 1, \quad w(\delta) = 0, \]

\[\theta(1) = 0, \quad \theta(\delta) = 1. \]

The constant viscosity case is discussed by Shah et al. in detail. Here we discuss the variable viscosity case.

Reynolds model. In this case \(\eta \) is a function of temperature. Introducing the dimensionless parameters:

\[r^* = \frac{r}{R_w}, \quad w^* = \frac{w}{V}, \quad \alpha^* = \frac{\alpha V^2}{R_w^2}, \quad R_d = \delta > 1, \quad \beta^* = \frac{\beta V^2}{R_w^2}, \]
\[M = \frac{\sigma R_0^2}{(\eta R_0^2)}, \quad p^* = \frac{p}{(\eta V/R_w^2)}, \quad Br = \frac{\mu_0 U_w^2}{k(\theta_d - \theta_w)}, \quad k_p^* = \frac{k_p}{R_w^2}, \]
\[\theta^* = \frac{\theta - \theta_w}{\theta_d - \theta_w}, \quad Br = \frac{\eta V^2}{k(\theta_d - \theta_w)}, \quad \frac{\partial p}{\partial z} = \Omega. \]

In Reynolds model, the dimensionless temperature dependent viscosity can be expressed as \(\eta = e^{-B_j \theta \theta} \approx 1 - B_j \theta \). Therefore, Eqs (15–18) in view of Eq. (19) becomes:
\[
\frac{d^2w}{dr^2} = \frac{r_{1} + \beta \left(\frac{dw}{dr}\right)^2}{r_{1} + \left(3\alpha - \beta \left(\frac{dw}{dr}\right)^2 + \alpha \beta \left(\frac{dw}{dr}\right)^3\right)}\frac{1}{r_{1} + \left(\frac{dw}{dr}\right)^2 + \alpha \beta \left(\frac{dw}{dr}\right)^3}\frac{dw + \beta \left(\frac{dw}{dr}\right)^2}{1 + \left(\frac{dw}{dr}\right)^2},
\]

\[
\frac{d^2\theta}{dr^2} = -\frac{1}{r} \frac{d\theta}{dr} - (1 - B_{1}m\theta) \frac{B_{1} \left(\frac{dw}{dr}\right)^2 + \alpha \left(\frac{dw}{dr}\right)^4}{1 + \beta \left(\frac{dw}{dr}\right)^2},
\]

(20)

\[
w(1) = 1, \ w(\delta) = 0, \ \theta(\delta) = 1.
\]

(22)

Vogel’s model. In this case of temperature dependent viscosity, temperature can be expressed as
\[
\mu = \mu_{0} \exp \left(\frac{D}{B + \theta} - \theta_{w}\right),
\]

by expanding
\[
\eta = \Omega_{1} \left(1 - \frac{D}{B_{1}^{\prime} \theta}\right),
\]

(23)

where \(\Omega_{1} = \eta_{0} \exp \left(\frac{D}{B} - \theta_{w}\right)\) and \(D, B'\) denotes the temperature dependent viscosity parameters of the Vogel's model. Therefore, Eqs (15–18) in view of Eq. (19) becomes:

\[
\frac{d^2w}{dr^2} = \frac{r_{1} + \beta \left(\frac{dw}{dr}\right)^2}{r_{1} + \left(3\alpha - \beta \left(\frac{dw}{dr}\right)^2 + \alpha \beta \left(\frac{dw}{dr}\right)^3\right)}\frac{1}{r_{1} + \left(\frac{dw}{dr}\right)^2 + \alpha \beta \left(\frac{dw}{dr}\right)^3}\frac{dw + \beta \left(\frac{dw}{dr}\right)^2}{1 + \left(\frac{dw}{dr}\right)^2},
\]

(24)

\[
\frac{d^2\theta}{dr^2} = -\frac{1}{r} \frac{d\theta}{dr} - \Omega_{1} \left(1 - \frac{D}{B_{1}^{\prime} \theta}\right) \frac{B_{1} \left(\frac{dw}{dr}\right)^2 + \alpha \left(\frac{dw}{dr}\right)^4}{1 + \beta \left(\frac{dw}{dr}\right)^2},
\]

(25)

\[
w(1) = 1, \ w(\delta) = 0, \ \theta(\delta) = 1.
\]

(26)

Numerical Solution

The above system of equations are solved numerically by using fourth order Runge-Kutta method along with shooting technique. For this purpose the Eqs (20), (21), (24) and (26) are transformed in to first order due to the higher order equation at \(r = \delta\) (boundary-layer thickness) unavailable. Then, the boundary value problem is solved by shooting method.

Numerical solution of Reynolds model. Eqs (20) and (21) are solved numerically by Runge-Kutta method corresponding to the boundary conditions (22) by considering

\[
z_{1} = w, \ z_{2} = \frac{dw}{dr} \text{ and } z_{3} = \theta, \ z_{4} = \frac{d\theta}{dr}.
\]

(27)

In view of Eq. (27), Eqs (20) and (22) becomes:
with boundary conditions

\[z_a(1) = 1, \quad z_a(1) = 0, \]
\[z_a(2) = 0, \quad z_b(2) = 1. \]

Numerical solution of Vogel’s Model. The numerical solution of Eqs (24) and (25) with boundary conditions given in Eq (26) can be obtained by considering \(D = \beta b \). The expression for the velocity and temperature profiles are:

\[
\begin{align*}
\alpha' &= \left[\Omega + \frac{1}{(1 - \beta)\psi} \left(M + \frac{1}{\psi^2} \right) \right] z_1 + \frac{1}{(1 - \beta)\psi} \left[\frac{M + 1}{\psi} \right] \left[1 + \beta z_2^2 \right]^2 - [z_2 + (\alpha + \beta z_2^2 + \alpha z_2^2)] \\
\beta' &= -\frac{1}{r} z_4 - \frac{(1 - B_r \rho \theta)}{r} \frac{B_r (z_2^2 + \alpha z_2^2)}{(1 + \beta z_2^2)},
\end{align*}
\]

with the specific boundary conditions

\[z_a(1) = 1, \quad z_a(1) = 0, \]
\[z_a(2) = 0, \quad z_b(2) = 1. \]

Analysis of the Results

In this section the results are discussed derived on the theoretical basis. In the following subsection the figures illustrate how the fluid velocity and the temperature distribution vary in the pressure unit of the conical geometry for different physical parameter values such as dilatant constant \(\alpha \), pseudoplastic constant \(\beta \), viscosity parameter of Reynolds model \(m \), and Vogel’s parameter \(\Omega \), Brinkman number \(\overline{Br} \), magnetic parameter \(M \) and porosity parameter \(k_p \). The numerical solutions have been calculated by fourth order Ruge-Kutta method along with shooting technique.

Reynolds Model. Figure 2 displays the velocity profile in he presence and absence of porous matrix \(k_p \), by variation of magnetic parameter \(M \) and dilatant constant \(\alpha \). The effect of dilatant constant on the velocity profile is significant. It is noticed that the velocity profile retards with the increasing values of dilatant constant but reverse effect is observed in the presence of \(k_p = 0.2 \) when \(M = 0, k_p = 0.2 \). The impact of \(\beta \) on velocity variation is depicted in Fig. 3 in the presence and absence of \(M \) and \(k_p \). It is investigated that the pseudoplastic constant \(\beta \), accelerates the velocity of the coating polymer by
taking \(M = 0 \). But converse effect is detected in the presence of \(k_p \). Thus in the absence of \(M \) and \(k_p \) the non-Newtonian parameter accelerates the velocity profile within the die. It is also evident that for \(M = \frac{3}{2} \), the velocity profile retards as \(\beta \) increases in the presence/absence of \(k_p \).

Figure 4 displays the influence of viscosity parameter (Reynolds model parameter) \(m \) on the velocity profile in the presence/absence of \(k_p \). It is observed that for both presence/absence of \(k_p \) and \(M \) the velocity profile increases all points. Due to high magnetic field, the electromagnetic force may add to nonlinearity of velocity distribution. It is also stimulated that for high values of viscosity and magnetic parameter i.e., \(k_p = 50 \) and \(M = 2 \), accelerates/decelerates the velocity profile. Figure 5 delineates the impact of \(M \) on velocity profile in the presence/absence of \(k_p \). It is
perceived that the velocity profile decreases with magnetic parameter. This deceleration in velocity field is due to the magnetic force density which is equivalent to a viscous force means orthogonal to the direction of magnetic field.

In the presence and absence of M, Fig. 6 depicts the velocity profile for various values of porous matrix. This shows that the porous matrix has accelerating effect of velocity profile both in the presence and absence of M. The impact of Br and M in the presence/absence of porous medium on the temperature profile is revealed in Fig. 7. It follows that the Br i.e., the relation between viscous heating to the heat conductor enhance the temperature distribution in the presence/absence of k_p. It is also remarkable to note that two-layer variation is noted with the increasing values of magnetic parameter. Temperature distribution increases sharply within the region $r \leq 1.4$, and retards significantly. In the absence/presence of k_p, the impact of M and β on the temperature distribution is displayed in Fig. 8. The Reynolds model viscosity parameter is taken to be fixed at $m = 15$. It is seen that the temperature decreases with increasing β in the presence/absence of k_p and M. Figure 9 shows the effect of porous matrix on temperature distribution. It is noticed that the temperature profile gets accelerated as k_p increase in both cases. Also is remarkable to note that for large values of magnetic parameter and Brinkman number i.e., $M = 3$ and $Br = 15$, the temperature is maximum at the middle of the annular die.

Vogel's model. The effect of physical parameter involves in the Vogel's model on the solutions are revealed in Figs 10–16. The Fig. 10 shows the effect of dilatant constant α as well as the pseudoplastic constant β in the presence/absence of k_p and M on the velocity. From this simulation it’s pointed out that the velocity decreases as the dilatant constant increases while the effect of β is quite opposite to that of α. Also the results of Shah et al. can be easily recovered by taking $M = 0$, $k_p = 0$, $\alpha = 0.4$. The variation of the velocity of the coating liquid is displayed in Fig. 11. It is seen that the velocity decreases with increasing M. This due the Lorenz forces, which act as a resistive force and resist the motion of the fluid. The variation of the velocity is significant for porous matrix. Figure 12 depicts the effect of M and Ω (pressure gradient parameter of Vogel's model) on the velocity profile in the presence and absence of k_p. Due the existence of non-Newtonian characteristic the pressure gradient parameter accelerates the velocity profile significantly in the domain $r \leq 1.3$ and then decrease sharply. In the presence/absence of porous matrix as well as magnetic parameter, the effect of pseudoplastic constant on temperature is displayed in
Fig. 13. With the increasing values of β the temperature distribution within the die increases. It is interesting to note that for $M = 3$ and $k_p = 0.2$, the temperature profiles increases significantly to a certain region $r \leq 1.5$ and afterwards, it decreases. Figure 14 reveals the effect of pressure gradient parameter of Vogel’s model on the temperature profile with the contribution of constant porous matrix in the presence/absence of M. From this simulation it is observed that $M = 0$ and $k_p = 0.2$, the temperature profile increases as Ω increases. Retarding effect was observed after the region $r \geq 1.5$ and in the presence of M and k_p, reverse effect was encountered near the plate. An interesting observation is observed in Fig. 15. It is significant that the temperature distribution gets...
accelerated due to the increase of M in the presence and absence of k_p. The impact of Br on the temperature is depicted in Fig. 16. It is observed that for large value of Brinkman number i.e., $Br = 20$, the peak in temperature distribution is encountered within the layer $1 \leq r \leq 1.7$ and afterwards, it decreased sharply in the presence and absence of k_p. Finally, the present results are also compared with reported results\(^4\) and good agreement has been found as presented in Table 1 and in Fig. 17.
Conclusion
The magnetic field and heat transfer effect on wire coating analysis is investigated numerically while drawing the wire from the center of the die filled with viscoelastic fluid. The velocity and temperature profiles have been obtained numerically by applying Runge-Kutta method along with shooting technique. The effect of variable viscosity is also encountered. Reynolds and Vogel's models are used for the variable viscosity. The effect of physical parameters such as values such as dilatant constant (α), pseudoplastic constant (β), viscosity parameter of Reynolds model (m), and viscosity parameter of Vogel's model (Ω), Brinkman number (Br), magnetic parameter (M) and porosity parameter (k_p). It is seen that the non-Newtonian parameter of the fluid accelerates the velocity profile in the absence of porous

Figure 14. Impact of Ω on temperature (Vogel's model).

Figure 15. Impact of M on temperature (Vogel's model).

Figure 16. Impact of Br on temperature (Vogel's model).
and magnetic parameters. For large value of magnetic parameter the reverse effect is observed. It is observed that the temperature profiles decreases with increasing psedoplastic parameter in the presence and absence of porous matrix as well as magnetic parameter. The Brinkman number contributes to increase the temperature for both Reynolds and Vogel’s models. With the increasing of pressure gradient parameter of both Reynolds and Vogel’s models, the velocity and temperature profile increases significantly in the presence of non-Newtonian parameter.

References

1. Rajagopal, K. R. On the boundary conditions for fluids of the differential type, In: A. Sequira (Ed.), Navier-Stokes Equation and Related Non-Linear Problems. Plenum press, New York, 273–278 (1995).
2. Rajagopal, K. R. & Kaloni, P. N. Some remarks on the boundary conditions for fluids of the differential type, In: Gram, G. A. & Malik, S. K. (Eds). Continuum Mechanics and its Applications, Hemisphere, WashingtonDC. 935–941 (1989).
3. Szeri, A. Z. & Rajagopal, K. R. Flow of a non-Newtonian fluid between heated parallel plates. International Journal of Non-Linear Mechanics 20, 91–101 (1985).
4. Makinde, O. D. Irreversibility analysis for gravity driven non-Newtonian liquid film along an inclined isothermal plate. PhysicaScripta. 74, 642–645 (2006).
5. Makinde, O. D. Thermal criticality for a reactive gravity driven thin film flow of a third-grade fluid with adiabatic free surface down an inclined plane. Appl. Math. Mech. Ed. 30, 373–380 (2009).
6. Massoudi, M. & Christie, I. Effects of variable viscosity and viscous dissipation on the flow of a third-grade fluid in a pipe. International Journal of Non-Linear Mechanics. 30, 687–699 (1995).
7. Damirel, Y. & Kahraman, R. Thermodynamics Analysis of Convective Heat Transfer in an Annular Packed Bed. Int. J. Heat Fluid Flow. 21, 442–448 (2000).
8. Postelnicu, A., Grosan, T. & Pop, I. Free convection boundary-layer over a vertical permeable flat plate in a porous medium with internal heat generation. International Communications in Heat and Mass Transfer. 27, 729–738 (2000).
9. Bernhardt, E. C. Processing of Thermoplastic Materials, Reinhold Publishing, New York, 263–269 (1962).
10. McKelvey, J. M. Polymer Processing. (John Wiley and Sons, New York, 1962).
11. Bagley, E. B. & Storey, S. H. Processing of thermoplastic materials. Wire Prod. Res. 38, 1104–1122 (1963).
12. Han, C. D. & Rao, D. The rheology of wire coating extrusion. Polym. Eng. Sci. 18, 1019–1029 (1978).
13. Carley, I. F., Endo, T. & Krantz, W. Realistic analysis of flow in wire coating dies. Polym. Eng. Sci. 19, 1178–1187 (1979).
14. Han, C. D. Rheology and Processing of Polymeric Materials. Polymer Processing. Oxford University Press 2, 235–256 (2007).
15. Mitidieri, S. Fundamentals of Polymer Processing. (McGraw-Hill, New York, 1977).
16. Tadmor, Z. & Gogos, C. G. Principle of Polymer Processing. (John Wiley and Sons, New York, 1978).
17. Kajisima, M. & Tot, K. Post-treatment of polymer extrudate in wire coating. Appl. Polym. Symp. 221, 221–235 (1972).
18. Tadmor, Z. & Bird, R. B. Rheological analysis of stabilizing forces in wire-coating dies. Polym. Eng. Sci. 14, 124–136 (1974).
19. Caswell, B. & Tanner, R. J. Wire coating die using finite element methods. Polym. Eng. Sci. 18, 417–421 (1978).
20. Vagner, R. & Mitsoulis, E. Effect of die design on the analysis of wire coating. Adv. Polym. Technol. 5, 305–325 (1985).
21. Mitsoulis, E. Fluid flow and heat transfer in wire coating. A review. Adv. Polym. Technol. 6, 467–487 (1986).
22. Akter, S. & Hashmi, M. S. J. Modelling of the pressure distribution within ahydrodynamic pressure unit: effect of the change in viscosity during drawingewire coating. J. Mater. Process. Technol. 77, 32–36 (1998).
23. Akter, S. & Hashmi, M. S. J. Analysis of polymer flow in a conical coating unit: a power law approach. Prog. Org. Coat. 37, 15–22 (1999).
24. Akter, S. & Hashmi, M. S. J. Wire drawing and coating using a combined geometryhydrodynamic unit. J. Mater. Process. Technol. 178, 98–110 (2006).

r	Present work	Rehan et al.
1	1	1
1.2	0.73425	0.73451
1.4	0.52522	0.52520
1.6	0.348501	0.348552
1.8	0.180476	0.180466
2	0	0

Table 1. Comparison of present work with Rehan et al.
25. Han, C. D. & Rao, D. The rheology of wire coating extrusion. *Polyim. Eng. Sci.*, **18**, 1019–1029 (1978).
26. Kozan, R. Prediction of the coating thickness of wire coating extrusion processes using artificial neural network (ANN). *Mod. Appl. Sci.*, **3** (2009).
27. Sajid, M., Siddiqui, A. M. & Hayat, T. Wire coating analysis using MHD oldroyd 8-constant fluid. *Int. J. Eng. Sci.* 45, 381–392 (2007).
28. Shah, R. A., Islam, S., Ellahi, M., Siddiqui, A. M. & Haroon, T. Analytical solutions for heat transfer flows of a third grade fluid in post treatment of wire coating. *Int. J. Nonnewton. Fluid Mech.* 6, 4213–4223 (2011).
29. Binding, D. M., Blythe, A. R., Guster, S., Mosquera, A. A. & Townsend, P. Wester, M. P. Modelling polymer melt flows in wire coating process. *J. Nonnewton. Fluid Mech.* 64, 191–206 (1996).
30. Multu, I., Townsend, I. & Webster, M. F. Simulation of cable-coating viscoelastic flow with coupled and de-coupled schemes. *J. Nonnewton. Fluid Mech.* 74, 1–23 (1998).
31. Kasajima, M. & Ito, K. Post-treatment of polymer extrudate in wire coating. *Appl.Polyim. Symp.* 20, 221–235 (1973).
32. Winter, H. H. SPE 36th ANTEC. *Tech. Papers,* 23, 462 (1977).
33. Symmons, G. R., Hasmi, M. S. J. & Pervinmehr, H. Plasto-hydrodynamics die less wire drawing theoretical treatments and experimental result, In: Progress Reports in Conference in Developments in Drawing of Metals. *Met. Soc, London.* 54–62 (1992).
34. Baag, S. & Mishra, S. R. Power law model in post treatment analysis of wire coating with linearly variable temperature. *Am. J. Heat and Mass Transf.* 2, 89–107 (2015).
35. Kim, K., Kwak, H. H. & Park, S. H. Theoretical prediction on double-layer coating in wet-on-wet optical fiber coating process. 8–35–44 (2011).
36. Kim, K. & Kwak, H. H. Analytic Study of Non-Newtonian Double Layer Coating Liquid Flows in Optical Fiber Manufacturing. *Trans Tech Publ.* 224, 260–263 (2012).
37. Zeeshan, R. A., Shah, Islam, S. & Siddique, A. M. Double-layer Optical Fiber Coating Using Viscoelastic Phan-Thien-Tanner Fluid. *New York Science Journal.* 6, 66–73 (2013).
38. Khan, Z., Islam, S., Shah, R. A., Khan, I. & Gul, T. Exact Solution of PTT Fluid in Optical Fiber Coating Analysis using Two-layer Coating Flow. *J. Appl. Environ. Biol. Sci.* 596–105 (2015).
39. Khan, Z., Islam, S. & Shah, R. A. Flow and heat transfer of two immiscible fluids in double-layer optical fiber coating. *J. Coat. Tech. Res.*, https://doi.org/10.1007/s11998-016-9817-1.
40. Sheikholeslami, M., Hayat, T. & Alsaedi, A. Numerical simulation of nanofluid forced convection heat transfer improvement in existence of magnetic field using lattice Boltzmann method. *Int. J Heat Mass Transf.* 108, 1870–1883 (2017).
41. Hayat, T., Khan, M. I., Waqas, M., Alsaedi, A. & Farooq, M. Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid Comput Methods. *Appl Mech Eng* 315, 1011–1024 (2017).
42. Waqas, M., Khan, M. I., Hayat, T. & Alsaedi, A. Numerical simulation for magneto Carreau nanofluid model with thermal radiation: a revised model. *Comput Methods Appl Mech Eng* 324, 640–653 (2017).
43. Mahanthesh, B., Gireesha, B. I., Gorla, R. S. R., Abbasi, F. M. & Shehzad, S. A. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. *J Magn Magn Mater.* 417, 189–196 (2016).
44. Khan, M. I., Hayat, T. & Alsaedi, A. Numerical analysis for Darcy-Forchheimer flow in presence of homogeneous-heterogeneous reactions. *Results Phys.* 7, 2644–2650 (2017).
45. Shah, R. A., Islam, S., Siddiqui, A. M. & Haroon, T. Wire coating analysis with Oldroyd 8-constant fluid by optimal homotopy asymptotic method. *Comput. Math. Appl.* 63, 693–707 (2012).
46. Sheikholeslami, M. & Ganji, D. D. Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies. *Energy.* 116, 341–352 (2016).
47. Sheikholeslami, M. & Ganji, D. D. Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators. *Energy Conversion and Management.* 127, 112–123 (2016).
48. Sheikholeslami, M., Darzi, M. & Sadoughi, M. K. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. *International Journal of Heat and Mass Transfer.* 122, 643–650 (2018).
49. Sheikholeslami, M., Houman, & Rokni, B. CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of non-equilibrium model. *Journal of Molecular Liquids.* 254, 446–462 (2018).
50. Chabtour, C., Hamed, H. B., Beji, H., Guizani, A. & Alimi, W. Convective hydromagnetic instabilities of a power-law fluid saturating a porous medium: Flux conditions. *Physics of Fluids.* 30, 013101, https://doi.org/10.1063/1.5017996 (2018).
51. Sheikholeslami, M. & Shehzad, S. A. Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. *International Journal of Heat and Mass Transfer.* 120, 1200–1212 (2018).
52. Sheikholeslami, M. & Seyedinazhad, M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. *International Journal of Heat and Mass Transfer.* 120, 772–781 (2018).

Author Contributions
Dr. Zeeshan Khan wrote the manuscript. Dr. Haroon Ur Rasheed gave the simulation of the problem and helped the corresponding author in reporting the results and discussion. Both authors have carefully revised the manuscript. Dr. Muhammad Imran Department of Mathematical Sciences and Dr. Ilyas Khan Department of Mathematics and Statistics, helped the corresponding author in reply to the reviewers’ reports. The corresponding author is grateful to Dr. Tariq Abbas from Department of Computer Science for their support in preparation for the manuscript in technical writing and drawing quality figures wherever required.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018