GRAPHS WITH 4-RAINBOW INDEX 3 AND n − 1

XUELIANG LI\(^1\), INGO SCHIERMEYER\(^2\)
KANG YANG\(^1\) AND YAN ZHAO\(^1\)

\(^1\) Center for Combinatorics and LPMC-TJKLC
Nankai University
Tianjin 300071, China

\(^2\) Institut für Diskrete Mathematik und Algebra
Technische Universität Bergakademie Freiberg
09596 Freiberg, Germany

e-mail: lxl@nankai.edu.cn
Ingo.Schiermeyer@tu-freiberg.de
yangkang@mail.nankai.edu.cn
zhaoyan2010@mail.nankai.edu.cn

Abstract

Let G be a nontrivial connected graph with an edge-coloring \(c : E(G) \to \{1, 2, \ldots, q\} \), \(q \in \mathbb{N} \), where adjacent edges may be colored the same. A tree \(T \) in \(G \) is called a rainbow tree if no two edges of \(T \) receive the same color. For a vertex set \(S \subseteq V(G) \), a tree that connects \(S \) in \(G \) is called an \(S \)-tree. The minimum number of colors that are needed in an edge-coloring of \(G \) such that there is a rainbow \(S \)-tree for every set \(S \) of \(k \) vertices of \(V(G) \) is called the \(k \)-rainbow index of \(G \), denoted by \(rx_k(G) \). Notice that a lower bound and an upper bound of the \(k \)-rainbow index of a graph with order \(n \) is \(k − 1 \) and \(n − 1 \), respectively. Chartrand \textit{et al.} got that the \(k \)-rainbow index of a tree with order \(n \) is \(n − 1 \) and \(n \) and the \(k \)-rainbow index of a unicyclic graph with order \(n \) is \(n − 1 \) or \(n − 2 \). Li and Sun raised the open problem of characterizing the graphs of order \(n \) with \(rx_k(G) = n − 1 \) for \(k \geq 3 \). In early papers we characterized the graphs of order \(n \) with 3-rainbow index 2 and \(n − 1 \). In this paper, we focus on \(k = 4 \), and characterize the graphs of order \(n \) with 4-rainbow index 3 and \(n − 1 \), respectively.

\textbf{Keywords:} rainbow \(S \)-tree, \(k \)-rainbow index.

\textbf{2010 Mathematics Subject Classification:} 05C05, 05C15, 05C75.

References
[1] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer, 2008).

[2] Q. Cai, X. Li and J. Song, Solutions to conjectures on the \((k,\ell)\)-rainbow index of complete graphs, Networks 62 (2013) 220–224. doi:10.1002/net.21513

[3] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) R57.

[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.

[5] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75–81. doi:10.1002/net.20296

[6] G. Chartrand, S.F. Kappor, L. Lesniak and D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq 2 (1984) 1–6.

[7] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010) 360–367. doi:10.1002/net.20399

[8] L. Chen, X. Li, K. Yang and Y. Zhao, The 3-rainbow index of a graph, Discuss. Math. Graph Theory 35 (2015) 81–94. doi:10.7151/dmgt.1780

[9] P. Erdős and A. Gyárfás, A variant of the classical Ramsey problem, Combinatorica 17 (1997) 459–467. doi:10.1007/BF01195000

[10] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer Briefs in Math., Springer, New York, 2012).

[11] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1–38. doi:10.1007/s00373-012-1243-2

[12] X. Li, I. Schiermeyer, K. Yang and Y. Zhao, Graphs with 3-rainbow index \(n - 1\) and \(n - 2\), Discuss. Math. Graph Theory 35 (2015) 105–120. doi:10.7151/dmgt.1783

Received 14 January 2014
Revised 22 May 2014
Accepted 16 June 2014