Update of Time-Dependent \( CP \) Asymmetry Measurements in \( b \rightarrow c\bar{c}s \) Decays

The \( \text{BaBar} \) Collaboration
August 13, 2008

Abstract

We present updated measurements of time-dependent \( CP \) asymmetries in fully reconstructed neutral \( B \) decays containing a charmonium meson. The measurements reported here use a data sample of \( (465 \pm 5) \times 10^6 \ T(4S) \rightarrow B\bar{B} \) decays collected with the \( \text{BaBar} \) detector at the PEP-II \( B \) factory. The time-dependent \( CP \) asymmetry parameters measured from \( J/\psi K^0_S, J/\psi K^0_L, \psi(2S)K^0_S, \chi_{c1}K^0_S, \eta_cK^0_S, \) and \( J/\psi K^{*0} \) decays are

\[
C_f = 0.026 \pm 0.020(\text{stat}) \pm 0.016(\text{syst}),
\]
\[
S_f = 0.691 \pm 0.029(\text{stat}) \pm 0.014(\text{syst}).
\]

Submitted to the 34th International Conference on High-Energy Physics, ICHEP 08, 29 July—5 August 2008, Philadelphia, Pennsylvania.
The **BaBar** Collaboration,

B. Aubert, M. Bona, Y. Karyotakis, J. P. Lees, V. Poireau, E. Prencipe, X. Prudent, V. Tisserand  
**Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France**

J. Garra Tico, E. Grauges  
**Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain**

L. Lopez$^{ab}$, A. Palano$^{ab}$, M. Pappagallo$^{ab}$  
**INFN Sezione di Bari$^a$; Dipartimento di Fisica, Università di Bari$^b$, I-70126 Bari, Italy**

G. Eigen, B. Stugu, L. Sun  
**University of Bergen, Institute of Physics, N-5007 Bergen, Norway**

G. S. Abrams, M. Battaglia, D. N. Brown, R. N. Cahn, R. G. Jacobsen, L. T. Kerth, Yu. G. Kolomensky, G. Lynch, I. L. Osipenkov, M. T. Ronan,$^1$ K. Tackmann, T. Tanabe  
**Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA**

C. M. Hawkes, N. Soni, A. T. Watson  
**University of Birmingham, Birmingham, B15 2TT, United Kingdom**

H. Koch, T. Schroeder  
**Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany**

D. Walker  
**University of Bristol, Bristol BS8 1TL, United Kingdom**

D. J. Asgeirsson, B. G. Fulsom, C. Hearty, T. S. Mattison, J. A. McKenna  
**University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1**

M. Barrett, A. Khan  
**Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom**

V. E. Blinov, A. D. Bukin, A. R. Buzykaev, V. P. Druzhinin, V. B. Golubev, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, K. Yu. Todyshev  
**Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia**

M. Bondioli, S. Curry, I. Eschrich, D. Kirkby, A. J. Lankford, P. Lund, M. Mandelkern, E. C. Martin, D. P. Stoker  
**University of California at Irvine, Irvine, California 92697, USA**

S. Abachi, C. Buchanan  
**University of California at Los Angeles, Los Angeles, California 90024, USA**

J. W. Gary, F. Liu, O. Long, B. C. Shen,$^1$ G. M. Vitug, Z. Yasin, L. Zhang  
**University of California at Riverside, Riverside, California 92521, USA**

$^1$Deceased
K. E. Alwyn, D. Bailey, R. J. Barlow, Y. M. Chia, C. L. Edgar, G. Jackson, G. D. Lafferty, T. J. West, J. I. Yi

University of Manchester, Manchester M13 9PL, United Kingdom

J. Anderson, C. Chen, A. Jawahery, D. A. Roberts, G. Simi, J. M. Tuggle

University of Maryland, College Park, Maryland 20742, USA

C. Dallapiccola, X. Li, E. Salvati, S. Saremi

University of Massachusetts, Amherst, Massachusetts 01003, USA

R. Cowan, D. Dujmic, P. H. Fisher, G. Sciolla, M. Spitznagel, F. Taylor, R. K. Yamamoto, M. Zhao
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA

P. M. Patel, S. H. Robertson

McGill University, Montréal, Québec, Canada H3A 2T8

A. Lazzaroab, V. Lombardoa, F. Palomboab

INFN Sezione di Milanoa; Dipartimento di Fisica, Università di Milanoab, I-20133 Milano, Italy

J. M. Bauer, L. Cremaldi R. Godang, R. Kroeger, D. A. Sanders, D. J. Summers, H. W. Zhao

University of Mississippi, University, Mississippi 38677, USA

M. Simard, P. Taras, F. B. Viaud

Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7

H. Nicholson

Mount Holyoke College, South Hadley, Massachusetts 01075, USA

G. De Nardoab, L. Listaa, D. Monorchioab, G. Onoratoab, C. Sciaccaab

INFN Sezione di Napoli; Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy

G. Raven, H. L. Snoek

NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands

C. P. Jessop, K. J. Knoepfel, J. M. LoSecco, W. F. Wang

University of Notre Dame, Notre Dame, Indiana 46556, USA

G. Benelli, L. A. Corwin, K. Honscheid, H. Kagan, R. Kass, J. P. Morris, A. M. Rahimi, J. J. Regensburger, S. J. Sekula, Q. K. Wong

Ohio State University, Columbus, Ohio 43210, USA

N. L. Blount, J. Brau, R. Frey, O. Igonkina, J. A. Kolb, M. Lu, R. Rahmat, N. B. Sinev, D. Strom, J. Strube, E. Torrence

University of Oregon, Eugene, Oregon 97403, USA

6Now at University of South Alabama, Mobile, Alabama 36688, USA
G. Castelli$^{ab}$, N. Gagliardi$^{ab}$, M. Margoni$^{ab}$, M. Morandin$^a$, M. Posocco$^a$, M. Rotondo$^a$, F. Simonetto$^{ab}$, R. Stroili$^{ab}$, C. Voci$^{ab}$

*INFN Sezione di Padova$^a$; Dipartimento di Fisica, Università di Padova$^b$, I-35131 Padova, Italy*

P. del Amo Sanchez, E. Ben-Haim, H. Briand, G. Calderini, J. Chauveau, P. David, L. Del Buono, O. Hamon, Ph. Leruste, J. Ocariz, A. Perez, J. Prendki, S. Sitt

*Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France*

L. Gladney

*University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA*

M. Biasini$^{ab}$, R. Covarelli$^{ab}$, E. Manoni$^{ab}$, C. Angelini$^{ab}$, G. Batignani$^{ab}$, S. Bettarini$^{ab}$, M. Carpinelli$^{ab}$, A. Cervelli$^{ab}$, F. Forti$^{ab}$, M. A. Giorgi$^{ab}$, A. Lusiani$^{ac}$, G. Marchiori$^{ab}$, M. Morganti$^{ib}$, N. Neri$^{ab}$, E. Paoloni$^{ab}$, G. Rizzo$^{ab}$, J. J. Walsh$^a$

*INFN Sezione di Pisa$^a$; Dipartimento di Fisica, Università di Pisa$^b$; Scuola Normale Superiore di Pisa$^c$, I-56127 Pisa, Italy*

D. Lopes Pegna, C. Lu, J. Olsen, A. J. S. Smith, A. V. Telnov

*Princeton University, Princeton, New Jersey 08544, USA*

F. Anulli$^a$, E. Baracchini$^{ab}$, G. Cavoto$^a$, D. del Re$^{ab}$, E. Di Marco$^{ab}$, R. Faccini$^{ab}$, F. Ferrarotto$^a$, F. Ferroni$^{ab}$, M. Gaspero$^{ab}$, P. D. Jackson$^a$, L. Li Gioi$^a$, M. A. Mazzoni$^a$, S. Morganti$^a$, G. Piredda$^a$, F. Polci$^{ab}$, F. Renga$^{ab}$, C. Voea$^a$

*INFN Sezione di Roma$^a$; Dipartimento di Fisica, Università di Roma La Sapienza$^b$, I-00185 Roma, Italy*

M. Ebert, T. Hartmann, H. Schröder, R. Waldi

*Universität Rostock, D-18051 Rostock, Germany*

T. Adye, B. Franek, E. O. Olaiya, F. F. Wilson

*Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom*

S. Emery, M. Escalier, L. Esteve, S. F. Ganzhur, G. Hamel de Monchenault, W. Kozanecki, G. Vasseur, Ch. Yèche, M. Zito

*CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France*

X. R. Chen, H. Liu, W. Park, M. V. Purohit, R. M. White, J. R. Wilson

*University of South Carolina, Columbia, South Carolina 29208, USA*

M. T. Allen, D. Aston, R. Bartoldus, P. Bechtle, J. F. Benitez, R. Cenci, J. P. Coleman, M. R. Convery, J. C. Dingfelder, J. Dorfan, G. P. Dubois-Felsmann, W. Dunwoodie, R. C. Field, A. M. Gabareen, S. J. Gowdy, M. T. Graham, P. Grenier, C. Hast, W. R. Innes, J. Kamiński, M. H. Kelsey, H. Kim, P. Kim, M. L. Kocian, D. W. G. S. Leith, S. Li, B. Lindquist, S. Luitz, V. Luth, H. L. Lynch, D. B. MacFarlane, H. Marsiske, R. Messner, D. R. Muller, H. Neal, S. Nelson, C. P. O’Grady, I. Ofte, A. Perazzo, M. Perl, B. N. Ratcliff, A. Roodman, A. A. Salnikov, R. H. Schindler, J. Schwiening, A. Snyder, D. Su, M. K. Sullivan, K. Suzuki, S. K. Swain, J. M. Thompson, J. Va’vra, A. P. Wagner, M. Weaver, C. A. West, W. J. Wisniewski, M. Wittgen, D. H. Wright, H. W. Wulsin, A. K. Yarritu, K. Yi, C. C. Young, V. Ziegler

*Stanford Linear Accelerator Center, Stanford, California 94309, USA*

---

Also with Università di Sassari, Sassari, Italy
P. R. Burchat, A. J. Edwards, S. A. Majewski, T. S. Miyashita, B. A. Petersen, L. Wilden
Stanford University, Stanford, California 94305-4060, USA

S. Ahmed, M. S. Alam, J. A. Ernst, B. Pan, M. A. Saeed, S. B. Zain
State University of New York, Albany, New York 12222, USA

S. M. Spanier, B. J. Wogsland
University of Tennessee, Knoxville, Tennessee 37996, USA

R. Eckmann, J. L. Ritchie, A. M. Ruland, C. J. Schilling, R. F. Schwitters
University of Texas at Austin, Austin, Texas 78712, USA

B. W. Drummond, J. M. Izen, X. C. Lou
University of Texas at Dallas, Richardson, Texas 75083, USA

F. Bianchi$^{ab}$, D. Gamba$^{ab}$, M. Pelliccioni$^{ab}$
INFN Sezione di Torino$^a$; Dipartimento di Fisica Sperimentale, Università di Torino$^b$, I-10125 Torino, Italy

M. Bomben$^{ab}$, L. Bosisio$^{ab}$, C. Cartaro$^{ab}$, G. Della Ricca$^{ab}$, L. Lanceri$^{ab}$, L. Vitale$^{ab}$
INFN Sezione di Trieste$^a$; Dipartimento di Fisica, Università di Trieste$^b$, I-34127 Trieste, Italy

V. Azzolini, N. Lopez-March, F. Martinez-Vidal, D. A. Milanes, A. Oyanguren
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain

J. Albert, Sw. Banerjee, B. Bhuyan, H. H. F. Choi, K. Hamano, R. Kowalewski, M. J. Lewczuk,
I. M. Nugent, J. M. Roney, R. J. Sobie
University of Victoria, Victoria, British Columbia, Canada V8W 3P6

T. J. Gershon, P. F. Harrison, J. Ilic, T. E. Latham, G. B. Mohanty
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

H. R. Band, X. Chen, S. Dasu, K. T. Flood, Y. Pan, M. Pierini, R. Prepost, C. O. Vuosalo, S. L. Wu
University of Wisconsin, Madison, Wisconsin 53706, USA
1 INTRODUCTION

The Standard Model (SM) of electroweak interactions describes CP violation as a consequence of an irreducible phase in the three-family Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1]. In the CKM framework, neutral $B$ decays to CP eigenstates containing a charmonium and a $K^{(*)0}$ meson through tree-diagram dominated processes provide a direct measurement of $\sin 2\beta$ [2], where the angle $\beta$ is defined in terms of the CKM matrix elements $V_{ij}$ for quarks $i, j$ as $\arg[-(V_{cd}V_{cb}^*)/(V_{td}V_{tb}^*)]$.

We identify (tag) the initial flavor of the reconstructed $B$ candidate, $B_\text{rec}$, using information from the other $B$ meson, $B_\text{tag}$, in the event. The decay rate $g_+ (g_-)$ for a neutral $B$ meson decaying to a $CP$ eigenstate accompanied by a $B^0 (\bar{B}^0)$ tag can be expressed as

$$g_\pm(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}}\left\{ (1 \mp \Delta w) \pm (1 - 2w) \times \left[ -\eta_f S \sin(\Delta m_d \Delta t) - C \cos(\Delta m_d \Delta t) \right] \right\} \tag{1}$$

where

$$S = -\eta_f \frac{2 \text{Im} \lambda}{1 + |\lambda|^2},$$

$$C = \frac{1 - |\lambda|^2}{1 + |\lambda|^2},$$

the $CP$ eigenvalue $\eta_f = +1 (-1)$ for a $CP$ even (odd) final state, $\Delta t \equiv t_{\text{rec}} - t_{\text{tag}}$ is the difference between the proper decay times of $B_{\text{rec}}$ and $B_{\text{tag}}$, $\tau_{B^0}$ is the neutral $B$ lifetime, and $\Delta m_d$ is the mass difference of the $B$ meson mass eigenstates determined from $B^0 - \bar{B}^0$ oscillations [3]. We assume that the corresponding decay-width difference $\Delta \Gamma_d$ is zero. Here, $\lambda = (q/p)(\bar{A}/A)$ [4], where $q$ and $p$ are complex constants that relate the $B$-meson flavor eigenstates to the mass eigenstates, and $\bar{A}/A$ is the ratio of amplitudes of the decay without mixing of a $\bar{B}^0$ or $B^0$ to the final state under study. The average mistag probability $w$ describes the effect of incorrect tags, and $\Delta w$ is the difference between the mistag probabilities for $B^0$ and $\bar{B}^0$ mesons. The sine term in Eq. 1 results from the interference between direct decay and decay after $B^0 - \bar{B}^0$ oscillation. A non-zero cosine term arises from the interference between decay amplitudes with different weak and strong phases (direct $CP$ violation $|\bar{A}/A| \neq 1$) or from $CP$ violation in $B^0 - \bar{B}^0$ mixing $(|q/p| \neq 1)$. In the SM, $CP$ violation in mixing and direct $CP$ violation in $b \to \bar{c}\ell\bar{s}$ decays are both negligible [4]. Under these assumptions, $\lambda = \eta_f e^{-2\alpha \beta}$, and $C = 0$. Thus, the time-dependent $CP$-violating asymmetry is

$$A_{CP}(\Delta t) \equiv \frac{g_+ (\Delta t) - g_- (\Delta t)}{g_+ (\Delta t) + g_- (\Delta t)} \tag{2}$$

and $S = \sin 2\beta$. If we relax the assumption that $C = 0$, then $S = \sqrt{1 - C^2} \sin 2\beta$.

Previous Babar measurements have reported time-dependent $CP$ asymmetries in terms of the parameters $\sin 2\beta$ and $|\lambda|$. In this paper we report results in terms of $C_f = \eta_f C$ and $S_f = \eta_f S$ to be consistent with other time-dependent $CP$ asymmetry measurements. We reconstruct $B^0$ decays to the final states $J/\psi K^0_S$, $J/\psi K^0_L$, $\psi(2S) K^0_S$, $\chi_{c1} K^0_S$, $\eta_c K^0_S$, and $J/\psi K^{*0}$ ($K^{*0} \to K^0 \pi^0$) [5]. The $J/\psi K^0_L$ final state is $CP$ even, and the $J/\psi K^{*0}$ final state is an admixture of $CP$ even and $CP$ odd amplitudes. Ignoring the angular information in $J/\psi K^{*0}$ results in a dilution of the measured $CP$ asymmetry by a factor $1 - 2R_\perp$, where $R_\perp$ is the fraction of the $L=1$ contribution. In Ref. [6] we
have measured $R_L = 0.233 \pm 0.010$ (stat) $\pm 0.005$ (syst), which gives an effective $\eta_f = 0.504 \pm 0.033$ for $f = J/\psi K^{*0}$, after acceptance corrections. In addition to measuring a combined $S_f$ and $C_f$ for the CP modes described above, we measure $S_f$ and $C_f$ for each mode individually, for the $J/\psi K_s^0$ mode where we split this into samples with $K_s^0 \rightarrow \pi^+\pi^-$ and $\pi^0\pi^0$, and for the channel $J/\psi K^0$ (combining the $K_S^0$ and $K_L^0$ final states). Since our last published result [7], we have added $82 \times 10^6\ B\bar{B}$ decays and applied improved event reconstruction algorithms to the entire dataset.

2 THE DATASET AND $\text{BaBar}$ DETECTOR

The results presented in this paper are based on data collected with the $\text{BaBar}$ detector at the PEP-II asymmetric energy $e^+e^-$ storage rings [8] operating at the Stanford Linear Accelerator Center. At PEP-II, 9.0 GeV electrons and 3.1 GeV positrons collide at a center-of-mass energy of 10.58 GeV which corresponds to the $\Upsilon(4S)$ resonance. The asymmetric energies result in a boost from the laboratory to the center-of-mass (CM) frame of $\beta\gamma \approx 0.56$. The dataset analyzed has an integrated luminosity of 425.7 fb$^{-1}$ corresponding to $(465 \pm 5) \times 10^6\ B\bar{B}$ pairs recorded at the $\Upsilon(4S)$ resonance (on-peak).

The $\text{BaBar}$ detector is described in detail elsewhere [9]. Surrounding the interaction point is a five-layer double-sided silicon vertex tracker (SVT) which measures the impact parameters of charged particle tracks in both the plane transverse to, and along the beam direction. A 40-layer drift chamber (DCH) surrounds the SVT and provides measurements of the momenta for charged particles. Charged hadron identification is achieved through measurements of particle energy-loss in the tracking system and the Cherenkov angle obtained from a detector of internally reflected Cherenkov light. A CsI(Tl) electromagnetic calorimeter (EMC) provides photon detection, electron identification, and $\pi^0$ reconstruction. The aforementioned components are surrounded by a solenoid magnet, that provides a 1.5 T magnetic field. Finally, the flux return of the magnet is instrumented in order to allow discrimination of muons from pions. For the most recent 211.7 fb$^{-1}$ of data, a portion of the resistive plate chambers constituting the muon system has been replaced by limited streamer tubes [10, 11].

We use a right-handed coordinate system with the $z$ axis along the electron beam direction and the $y$ axis upward, with the origin at the nominal beam interaction point. Unless otherwise stated, kinematic quantities are calculated in the laboratory rest frame. The other reference frame which we commonly use is the CM frame of the colliding electrons and positrons.

We use Monte Carlo (MC) simulated events generated using the GEANT4 [12] and EvtGen [13] based $\text{BaBar}$ simulation.

3 RECONSTRUCTION OF $B$ CANDIDATES

We select two samples of events in order to measure the time-dependent CP asymmetry parameters $S_f$ and $C_f$. These are a sample of fully reconstructed $B$ meson decays to flavor eigenstates ($B_{\text{flav}}$) and a sample of signal events used in the extraction of the CP parameters ($B_{\text{CP}}$). The $B_{\text{flav}}$ sample consists of $B^0$ decays to $D^{(*)-}(\pi^+, \rho^+, a_1^\pm)$ and $J/\psi K^{*0}$ (where $K^{*0} \rightarrow K^+\pi^-$) final states. We use the $B_{\text{flav}}$ sample of events to determine dilution parameters (mistag probabilities). The $B_{\text{CP}}$ sample of events consists of $B^0$ decays to $J/\psi K_S^0$, $J/\psi K_L^0$, $\psi(2S)K_S^0$, $\eta K_S^0$, $\chi_{c1}K_S^0$, and $J/\psi K^{*0}$. We assume the interference between the CP side and the tag side reconstruction is negligible and therefore the dilution parameters are assumed to be the same for the $B_{\text{flav}}$ and $B_{\text{CP}}$ samples. We
also select a sample of fully reconstructed charged $B$ meson decays to $J/\psi K^+$, $\psi(2S)K^+$, $\chi_{c1}K^+$, $\eta K^+$, and $J/\psi K^{*+}$ (where $K^{*+} \rightarrow K^+ \pi^0$) final states to use as a control sample.

The event selection is unchanged from that described in Ref [7]. Events that pass the selection requirements are refined using kinematic variables. The $J/\psi K^0_L$ mode has the requirement that the difference $\Delta E$ between the candidate CM energy and the beam energy $E^*_{\text{beam}}$ in the CM satisfies $|\Delta E| < 80$ MeV. We require that the beam-energy substituted mass $m_{ES} = \sqrt{(E^*_{\text{beam}})^2 - (p^*_B)^2}$ is greater than 5.2 GeV/$c^2$ for all other categories of events, where $p^*_B$ is the $B$ momentum in the $e^+e^-$ CM frame.

We calculate the proper time difference $\Delta t$ between the two $B$ decays from the measured separation $\Delta z$ between the decay vertices of $B_{\text{rec}}$ and $B_{\text{tag}}$ along the collision ($z$) axis [14]. The $z$ position of the $B_{\text{rec}}$ vertex is determined from the charged daughter tracks. The $B_{\text{tag}}$ decay vertex is determined by fitting tracks not belonging to the $B_{\text{rec}}$ candidate to a common vertex, and including constraints from the beam spot location and the $B_{\text{rec}}$ momentum [14]. Events are accepted if the calculated $\Delta t$ uncertainty is less than 2.5 ps and $|\Delta t|$ is less than 20 ps. The fraction of signal MC events satisfying these requirements is 95%.

4 B MESON FLAVOR TAGGING

A key ingredient in the measurement of time-dependent $CP$ asymmetries is to determine whether at the time of the $B_{\text{tag}}$ decay the $B_{\text{rec}}$ was a $B^0$ or a $\bar{B}^0$. This ‘flavor tagging’ is achieved with the analysis of the decay products of the recoiling $B$ meson $B_{\text{tag}}$. The overwhelming majority of $B$ mesons decay to a final state that is flavor-specific, i.e. only accessible from either a $B^0$ or a $\bar{B}^0$, but not from both. The purpose of the flavor tagging algorithm is to determine the flavor of $B_{\text{tag}}$ with the highest possible efficiency $\epsilon_{\text{tag}}$ and lowest possible probability $w$ of assigning the wrong flavor to $B_{\text{tag}}$. It is not necessary to fully reconstruct $B_{\text{tag}}$ in order to estimate its flavor. The figure of merit for the performance of the tagging algorithm is the effective tagging efficiency

$$Q = \epsilon_{\text{tag}}(1 - 2w)^2,$$

which is related to the statistical uncertainty $\sigma_S$ and $\sigma_C$ in the coefficients $S$ and $C$ through

$$\sigma_{S,C} \propto \frac{1}{\sqrt{Q}}.$$

We use a neural network based technique [14, 7] that isolates primary leptons, kaons and pions from $B$ decays to final states containing $D^*$ mesons, and high momentum charged particles from $B$ decays, to determine the flavor of the $B_{\text{tag}}$. The output of this algorithm is divided into seven mutually-exclusive categories. These are (in order of decreasing signal purity) Lepton, Kaon I, Kaon II, Kaon-Pion, Pion, Other and Untagged. The performance of this algorithm is determined using the $B_{\text{flav}}$ sample. The Untagged category of events contain no flavor information, so carry no weight in the time-dependent analysis, and are not used here.

5 LIKELIHOOD FIT METHOD

We determine the composition of our final sample by performing simultaneous fits to the $m_{ES}$ distributions for the full $B_{CP}$ and $B_{\text{flav}}$ samples, except for the $J/\psi K^0_L$ sample for which we fit the $\Delta E$ distribution.
We define a signal region $5.27 < m_{ES} < 5.29$ GeV/$c^2$ ($|\Delta E| < 10$ MeV for $J/\psi K^0_L$), which contains 15481 CP candidate events that satisfy the tagging and vertexing requirements (see Table 1). For all modes except $\eta_c K^0_S$ and $J/\psi K^0_L$, we use simulated events to estimate the fractions of events that peak in the $m_{ES}$ signal region due to cross-feed from other decay modes (peaking background). For the $\eta_c K^0_S$ mode, the cross-feed fraction is determined from a fit to the $m_{ES}$ distributions in data. For the $J/\psi K^0_L$ decay mode, the sample composition, effective $\eta_f$, and $\Delta E$ distribution of the individual background sources are determined either from simulation (for $B \rightarrow J/\psi X$) or from the $m_{\ell^+\ell^-}$ sidebands in data (for non-$J/\psi$ background). Figure 1 shows the distributions of $m_{ES}$ obtained for the $B_{CP}$ and $B_{flav}$ events, and $\Delta E$ obtained for the $J/\psi K^0_L$ events.

Figure 1: Distributions for $B_{CP}$ and $B_{flav}$ candidates satisfying the tagging and vertexing requirements: a) $m_{ES}$ for the final states $J/\psi K^0_S$, $\psi(2S)K^0_S$, $\chi_{c1} K^0_S$, and $\eta K^0_S$, b) $\Delta E$ for the final state $J/\psi K^0_L$, c) $m_{ES}$ for $J/\psi K^{*0}(K^{*0} \rightarrow K^0_S \pi^0)$, and d) $m_{ES}$ for the $B_{flav}$ sample. In each plot, the shaded region is the estimated background contribution.

We determine $S_f$ and $C_f$ from a simultaneous maximum likelihood fit to the $\Delta t$ distribution of the tagged $B_{CP}$ and $B_{flav}$ samples. The $\Delta t$ distributions of the $B_{CP}$ sample are modeled by Eq. 1. Those of the $B_{flav}$ sample evolve according to Eq. 1 with $S_f = C_f = 0$. The observed amplitudes for the CP asymmetry in the $B_{CP}$ sample and for flavor oscillation in the $B_{flav}$ sample are reduced by the same factor, $1 - 2w$, due to flavor mistags. The $\Delta t$ distributions for the signal are convolved with a resolution function common to both the $B_{flav}$ and $B_{CP}$ samples, modeled by the sum of three Gaussian functions [14]. The combinatorial background is incorporated with an empirical
description of its $\Delta t$ spectra, containing zero and non-zero lifetime components convolved with a resolution function [14] distinct from that of the signal. The peaking background is assigned the same $\Delta t$ distribution as the signal but with $S_f = C_f = 0$, and uses the same $\Delta t$ resolution function as the signal. As the non-zero lifetime component of the combinatorial background contains both events that are mixed and un-mixed, we allow the value of $\Delta m_d$ for this component to float in the fit.

In addition to $S_f$ and $C_f$, there are 69 free parameters in the $CP$ fit. For the signal, these are

- 7 parameters for the $\Delta t$ resolution,
- 12 parameters for the average mistag fractions $w$ and the differences $\Delta w$ between $B^0$ and $\bar{B}^0$ mistag fractions for each tagging category,
- 7 parameters for the difference between $B^0$ and $\bar{B}^0$ reconstruction and tagging efficiencies.

The background is described by

- 24 mistag fraction parameters,
- 3 parameters for the $\Delta t$ resolution,
- 4 parameters for the $B_{flav}$ time dependence,
- 8 parameters for possible $CP$ violation in the background, including the apparent $CP$ asymmetry of non-peaking events in each tagging category,
- 1 parameter for possible direct $CP$ violation in the $\chi_{c1}K^0_S$ background to $J/\psi K^{*0}$, and
- 3 parameters for possible direct $CP$ violation in the $J/\psi K^0_L$ mode, coming from $J/\psi K^0_S$, $J/\psi K^{*0}$, and the remaining $J/\psi$ backgrounds.

The effective $|\lambda|$ of the non-$J/\psi$ background is fixed from a fit to the $J/\psi$-candidate sidebands in $J/\psi K^0_L$. We fix $\tau_{B^0} = 1.530$ ps and $\Delta m_d = 0.507$ ps [3]. The determination of the mistag fractions and $\Delta t$ resolution function parameters for the signal is dominated by the $B_{flav}$ sample, which is about 10 times more abundant than the $CP$ sample.

6 LIKELIHOOD FIT VALIDATION

Before fitting the data in order to extract $CP$ asymmetry parameters, we validate the integrity of the likelihood. We perform three sets of tests in order to validate the fit. The first of these tests consists of generating ensembles of simulated experiments from the PDFs and fitting each simulated experiment. The distribution of fitted $S_f$ and $C_f$ parameters are required to be unbiased, and we verify that the uncertainties are extracted correctly from the fit by requiring that the distribution of the pull $P$ on a parameter $O$, given by $P = (O_{fit} - O_{gen})/\sigma(O_{fit})$, is a Gaussian centered about zero with a width of one. The quantity $O_{fit}$ is the fitted value, with a fitted error of $\sigma(O_{fit})$, and $O_{gen}$ is the generated value.

The second test involves fitting simulated $CP$ events with the full Babar detector simulation. We require that the $P$ distributions for these signal-only simulated experiments are centered about zero with a width of one. We assign an systematic uncertainty corresponding to any deviations
and the statistical uncertainties of the mean values of the fitted $S_f$ and $C_f$ distributions from the generated values.

The third test on our ability to extract $S_f$ and $C_f$ correctly is to perform null tests on control samples of neutral and charged $B$ events where $S_f$ and $C_f$ should equal zero. We use charged $B$ decays to $J/\psi K^\pm$, $\psi(2S)K^\pm$, $\chi_cK^\pm$, $J/\psi K^{*\pm}$ with $K^{*\pm} \rightarrow K^{\pm}\pi^0$ and $K_S^0\pi^\pm$, and neutral $B_{flav}$ decays for this purpose. The parameters $S_f$ and $C_f$ are zero for these modes within the SM.

7 RESULTS

The fit to the $B_{CP}$ and $B_{flav}$ samples yields $S_f = 0.691 \pm 0.029$ and $C_f = 0.026 \pm 0.020$, where the errors are statistical only. The correlation between these two parameters is +0.3%. We also perform a separate fit in which we allow different $S_f$ and $C_f$ values for each charmonium decay mode, a fit to the $J/\psi K^0_s(\pi^+\pi^- + \pi^0\pi^0)$ mode, and a fit to the $J/\psi K^0(K_S^0 + K_L^0)$ sample. We split the data sample by run period and by tagging category. We perform the $CP$ measurements on control samples with no expected $CP$ asymmetry. The results of these fits are summarized in Table 1. Figure 2 shows the $\Delta t$ distributions and asymmetries in yields between events with $B^0$ tags and $\bar{B}^0$ tags for the $\eta_f = -1$ and $\eta_f = +1$ samples as a function of $\Delta t$, overlaid with the projection of the likelihood fit result. Figure 3 shows the $\Delta t$ distributions and asymmetry for $J/\psi K^0_s$ events only. We also performed the $CP$ fit using the $\sin2\beta$ and $|\lambda|$ parameters, which yields $\sin2\beta = 0.691 \pm 0.029$ and $|\lambda| = 0.974 \pm 0.020$.

The dominant systematic errors on $S_f$ are due to limited knowledge of various background properties, including possible differences between the $B_{flav}$ and $B_{CP}$ tagging performances, to the description of the $\Delta t$ resolution functions, uncertainties in $J/\psi K^0_s$-specific backgrounds and in the amounts of peaking backgrounds and their $CP$ asymmetries, and to the uncertainties in the values of the physics parameters $\Delta m_d, \tau_B, \Delta \Gamma_d/\Gamma_d$. The only sizable systematic uncertainties on $C_f$ are due to the $CP$ content of the peaking backgrounds and to the possible interference between the suppressed $\bar{b} \rightarrow \bar{u}c\bar{d}\overline{d}$ amplitude with the favored $b \rightarrow c\bar{u}d\overline{d}$ amplitude for some tag-side $B$ decays [18]. The total systematic error on $S_f (C_f)$ is 0.014 (0.016). The main systematic uncertainties on both $S_f$ and $C_f$ for the full sample, for the seven individual modes, and for the fits to the $J/\psi K^0$ and $J/\psi K^0_s$ samples are summarized in Tables 2 and 3.

8 CONCLUSIONS

We report improved measurements of the time-dependent $CP$ asymmetry parameters that supersede our previous results [7]. These measurements are given in terms of $C_f$ and $S_f$ for the first time with our data sample. We measure

$$C_f = 0.026 \pm 0.020(stat) \pm 0.016(syst),$$

$$S_f = 0.691 \pm 0.029(stat) \pm 0.014(syst),$$

providing a model independent constraint on the position of the apex of the Unitarity Triangle [15]. Our measurements agree with previous published results [7, 19] and with the theoretical estimates of the magnitudes of CKM matrix elements within the context of the SM [20]. We also report measurements of $C_f$ and $S_f$ for each of the decay modes within our $CP$ sample and of the $J/\psi K^0(K_S^0 + K_L^0)$ sample.
Table 1: Number of events $N_{\text{tag}}$ and signal purity $P$ in the signal region after tagging and vertexing requirements, and results of fitting for CP asymmetries in the $B_{CP}$ sample and various subsamples. In addition, fit results for the $B_{\text{flav}}$ and $B^+$ control samples demonstrate that no artificial CP asymmetry is found where we expect no CP violation ($S_f = 0$, $C_f = 0$). Errors are statistical only.

| Sample               | $N_{\text{tag}}$ | $P$ (%) | $S_f$         | $C_f$         |
|----------------------|------------------|---------|---------------|---------------|
| Full CP sample       | 15481            | 76      | 0.691 ± 0.029 | 0.026 ± 0.020 |
| $J/\psi K_S^0(\pi^+\pi^-)$ | 5426            | 96      | 0.666 ± 0.039 | 0.019 ± 0.028 |
| $J/\psi K_S^0(\pi^0\pi^0)$ | 1324            | 87      | 0.629 ± 0.092 | 0.093 ± 0.063 |
| $\psi(2S)K_S^0$      | 861              | 87      | 0.905 ± 0.101 | 0.092 ± 0.077 |
| $\chi_{c1}K_S^0$    | 385              | 88      | 0.619 ± 0.161 | 0.133 ± 0.109 |
| $\eta K_S^0$         | 381              | 79      | 0.930 ± 0.160 | 0.082 ± 0.125 |
| $J/\psi K_L^0$       | 5813             | 56      | 0.698 ± 0.062 | −0.030 ± 0.050 |
| $J/\psi K^{*0}$      | 1291             | 67      | 0.608 ± 0.241 | 0.028 ± 0.084 |
| $J/\psi K^0$         | 12563            | 77      | 0.670 ± 0.031 | 0.019 ± 0.023 |
| $J/\psi K_S^0$       | 6750             | 95      | 0.660 ± 0.036 | 0.029 ± 0.026 |
| $\eta_f = -1$        | 8377             | 93      | 0.688 ± 0.032 | 0.041 ± 0.023 |
| 1999-2002 data       | 3079             | 78      | 0.736 ± 0.061 | 0.013 ± 0.045 |
| 2003-2004 data       | 4916             | 77      | 0.721 ± 0.050 | 0.047 ± 0.037 |
| 2005-2006 data       | 4721             | 76      | 0.634 ± 0.051 | 0.046 ± 0.035 |
| 2007 data            | 2765             | 75      | 0.666 ± 0.071 | −0.017 ± 0.049 |
| Lepton               | 1740             | 83      | 0.734 ± 0.052 | 0.079 ± 0.038 |
| Kaon I               | 2187             | 78      | 0.617 ± 0.054 | −0.045 ± 0.039 |
| Kaon II              | 3630             | 76      | 0.695 ± 0.057 | 0.073 ± 0.039 |
| Kaon-Pion            | 2882             | 74      | 0.746 ± 0.087 | 0.006 ± 0.061 |
| Pion                 | 3053             | 76      | 0.726 ± 0.135 | 0.018 ± 0.092 |
| Other                | 1989             | 74      | 0.767 ± 0.349 | −0.168 ± 0.238 |
| $B_{\text{flav}}$ sample | 166276        | 83      | 0.021 ± 0.009 | 0.012 ± 0.006 |
| $B^+$ sample         | 36082            | 94      | 0.021 ± 0.015 | 0.013 ± 0.011 |

9 ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educación y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received
Table 2: Main systematic uncertainties on $S_f$ and $C_f$ for the full CP sample, and for the $J/\psi K^0$, $J/\psi K^0_S$, and $J/\psi K^0_L$ samples. For each source of systematic uncertainty, the first line gives the error on $S_f$ and the second line the error on $C_f$. The total systematic error (last row) also includes smaller effects not explicitly mentioned in the table.

| Source/sample                  | Full | $J/\psi K^0$ | $J/\psi K^0_S$ | $J/\psi K^0_L$ |
|-------------------------------|------|--------------|---------------|---------------|
| Beamspot                      | $S_f$| 0.0013       | 0.0021        | 0.0027        | 0.0000        |
|                               | $C_f$| 0.0006       | 0.0010        | 0.0021        | 0.0001        |
| Mistag differences            | $S_f$| 0.0077       | 0.0057        | 0.0059        | 0.0083        |
|                               | $C_f$| 0.0047       | 0.0069        | 0.0053        | 0.0052        |
| $\Delta t$ resolution        | $S_f$| 0.0067       | 0.0068        | 0.0069        | 0.0071        |
|                               | $C_f$| 0.0027       | 0.0029        | 0.0034        | 0.0070        |
| $J/\psi K^0_L$ background     | $S_f$| 0.0057       | 0.0063        | 0.0000        | 0.0271        |
|                               | $C_f$| 0.0007       | 0.0008        | 0.0000        | 0.0036        |
| Background fraction and CP content | $S_f$| 0.0046       | 0.0034        | 0.0036        | 0.0044        |
|                               | $C_f$| 0.0029       | 0.0021        | 0.0009        | 0.0107        |
| $m_{ES}$ parameterization    | $S_f$| 0.0022       | 0.0020        | 0.0026        | 0.0006        |
|                               | $C_f$| 0.0004       | 0.0005        | 0.0008        | 0.0002        |
| $\Delta m_d, \tau_B, \Delta \Gamma_d/\Gamma_d$ | $S_f$| 0.0030       | 0.0033        | 0.0036        | 0.0040        |
|                               | $C_f$| 0.0013       | 0.0012        | 0.0011        | 0.0013        |
| Tag-side interference        | $S_f$| 0.0014       | 0.0014        | 0.0014        | 0.0014        |
|                               | $C_f$| 0.0143       | 0.0143        | 0.0143        | 0.0143        |
| Fit bias (MC statistics)      | $S_f$| 0.0023       | 0.0044        | 0.0041        | 0.0063        |
|                               | $C_f$| 0.0026       | 0.0044        | 0.0041        | 0.0060        |
| Total                        | $S_f$| 0.0135       | 0.0131        | 0.0119        | 0.0311        |
|                               | $C_f$| 0.0164       | 0.0187        | 0.0167        | 0.0270        |
Table 3: Main systematic uncertainties on $S_f$ and $C_f$ for the $J/\psi K_S^0(\pi^+\pi^-)$, $J/\psi K_S^0(\pi^0\pi^0)$, $\psi(2S)K_S^0$, $\chi_{c1}K_S^0$, $\eta cK_S^0$, and $J/\psi K^{*0}(K^{*0}\to K^0\pi^0)$ decay modes. For each source of systematic uncertainty, the first line gives the error on $S_f$ and the second line the error on $C_f$. The total systematic error (last row) also includes smaller effects not explicitly mentioned in the table.

| Source/sample               | $J/\psi K_S^0(\pi^+\pi^-)$ | $J/\psi K_S^0(\pi^0\pi^0)$ | $\psi(2S)K_S^0$ | $\chi_{c1}K_S^0$ | $\eta cK_S^0$ | $J/\psi K^{*0}$ |
|----------------------------|----------------------------|----------------------------|----------------|----------------|--------------|----------------|
| Beamspot                   | $S_f$                      | 0.0027                     | 0.0078         | 0.0284         | 0.0010       | 0.0058        |
|                           | $C_f$                      | 0.0017                     | 0.0032         | 0.0084         | 0.0115       | 0.0001        |
| Mistag differences         | $S_f$                      | 0.0075                     | 0.0074         | 0.0089         | 0.0065       | 0.0064        |
|                           | $C_f$                      | 0.0039                     | 0.0046         | 0.0052         | 0.0067       | 0.0047        |
| $\Delta t$ resolution     | $S_f$                      | 0.0072                     | 0.0074         | 0.0072         | 0.0099       | 0.0163        |
|                           | $C_f$                      | 0.0030                     | 0.0043         | 0.0070         | 0.0039       | 0.0036        |
| $J/\psi K_S^0$ background  | $S_f$                      | 0.0001                     | 0.0000         | 0.0001         | 0.0000       | 0.0000        |
|                           | $C_f$                      | 0.0000                     | 0.0000         | 0.0000         | 0.0000       | 0.0000        |
| Background fraction and CP content | $S_f$                  | 0.0032                     | 0.0073         | 0.0156         | 0.0174       | 0.0506        |
|                           | $C_f$                      | 0.0012                     | 0.0034         | 0.0056         | 0.0098       | 0.0187        |
| $m_{ES}$ parameterization  | $S_f$                      | 0.0021                     | 0.0089         | 0.0238         | 0.0061       | 0.0023        |
|                           | $C_f$                      | 0.0007                     | 0.0063         | 0.0008         | 0.0017       | 0.0005        |
| $\Delta m_d, \tau_B, \Delta \Gamma_d/\Gamma_d$ | $S_f$                  | 0.0031                     | 0.0073         | 0.0157         | 0.0025       | 0.0158        |
|                           | $C_f$                      | 0.0014                     | 0.0013         | 0.0010         | 0.0009       | 0.0020        |
| Tag-side interference     | $S_f$                      | 0.0014                     | 0.0014         | 0.0014         | 0.0014       | 0.0014        |
|                           | $C_f$                      | 0.0143                     | 0.0143         | 0.0143         | 0.0143       | 0.0143        |
| Fit bias (MC statistics)   | $S_f$                      | 0.0048                     | 0.0040         | 0.0079         | 0.0072       | 0.0073        |
|                           | $C_f$                      | 0.0042                     | 0.0030         | 0.0019         | 0.0042       | 0.0070        |
| Total                     | $S_f$                      | 0.0129                     | 0.0179         | 0.0365         | 0.0398       | 0.0566        |
|                           | $C_f$                      | 0.0160                     | 0.0187         | 0.0209         | 0.0257       | 0.0271        |
Figure 2: a) Number of $\eta_f = -1$ candidates ($J/\psi K_S^0$, $\psi(2S)K_S^0$, $\chi_{c1}K_S^0$, and $\eta_c K_S^0$) in the signal region with a $B^0$ tag ($N_{B^0}$) and with a $\bar{B}^0$ tag ($N_{\bar{B}^0}$), and b) the raw asymmetry, $(N_{B^0} - N_{\bar{B}^0})/(N_{B^0} + N_{\bar{B}^0})$, as functions of $\Delta t$; c) and d) are the corresponding distributions for the $\eta_f = +1$ mode $J/\psi K_L^0$. The solid (dashed) curves represent the fit projections in $\Delta t$ for $B^0$ ($\bar{B}^0$) tags. The shaded regions represent the estimated background contributions.

support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation.

References

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Th. Phys. 49, 652 (1973).

[2] A.B. Carter and A.I. Sanda, Phys. Rev. D 23, 1567 (1981); I.I. Bigi and A.I. Sanda, Nucl. Phys. 193, 85 (1981).
Figure 3: a) Number of $J/\psi K_s^0$ candidates in the signal region with a $B^0$ tag ($N_{B^0}$) and with a $\overline{B}^0$ tag ($N_{\overline{B}^0}$), and b) the raw asymmetry, $(N_{B^0} - N_{\overline{B}^0})/(N_{B^0} + N_{\overline{B}^0})$, as functions of $\Delta t$. The solid (dashed) curves represent the fit projections in $\Delta t$ for $B^0$ ($\overline{B}^0$) tags. The shaded regions represent the estimated background contributions.

[3] W.-M. Yao et al., (Particle Data Group), J. Phys. G33, 1 (2006).

[4] See, for example, D. Kirkby and Y. Nir, pages 146-155 in Ref. [3].

[5] Charge conjugation is implied throughout this paper.

[6] B. Aubert et al., (BaBar Collaboration), Phys. Rev. D 76, 031102(R) (2007).

[7] B. Aubert et al., (BaBar Collaboration), Phys. Rev. Lett. 99, 171803 (2007).

[8] PEP-II Conceptual Design Report, SLAC-R-418 (1993).

[9] BaBar Collaboration, B. Aubert et al., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).

[10] G. Benelli and K. Honscheid and E. A. Lewis and J. J. Regensburger and D. S. Smith, Nuclear Science Symposium Conference Record, 2005 IEEE, 2, 1145 (2005).

[11] M. R. Convery and P. C. Kim and H. P. Paar and C. H. Rogers and R. H. Schindler and S. K. Swain and C. C. Young, Nucl. Instrum. Methods Phys. Res., Sect. A 556, 134 (2006).

[12] S. Agostinelli et al., (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[13] D. Lange et al., Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[14] B. Aubert et al., (BaBar Collaboration), Phys. Rev. D 66, 032003 (2002).
[15] See, for example, A. Ceccucci, Z. Ligetti, and Y. Sakai, pages 138-145 in Ref. [3]

[16] R. Itoh, et al., (The Belle Collaboration), Phys. Rev. Lett. 95 091601 (2005); B. Aubert et al., (BABAR Collaboration), Phys. Rev. D 71 032005 (2005).

[17] P. Krokovny et al., (The Belle Collaboration), Phys. Rev. Lett. 97 081801 (2006); B. Aubert et al., (BABAR Collaboration), Phys. Rev. D 99 231802 (2007).

[18] O. Long, M. Baak, R. N. Cahn, and D. Kirkby, Phys. Rev. D 68, 034010 (2003).

[19] K. F. Chen, et al., (Belle Collaboration), Phys. Rev. Lett. 98, 031802 (2007).

[20] M. Ciuchini et al., Z. Phys. C 68, 239 (1995).