Abstract

Using a fully-fledged formulation of gauge field theory deformed by the spacetime noncommutativity, we study its impact on relic neutrino direct detection, as proposed recently by the PTOLEMY experiment. The noncommutative background tends to influence the propagating neutrinos by providing them with a tree-level vector-like coupling to photons, enabling thus otherwise right-handed (RH) neutrinos to be thermally produced in the early universe. Such a new component in the universe’s background radiation has been switched today to the almost fully active sea of non-relativistic neutrinos, exerting consequently some impact on the capture on tritium at PTOLEMY. The peculiarities of our nonperturbative approach tend to reflect in the cosmology as well, upon the appearances of the coupling temperature, above which RH neutrinos stay permanently decoupled from thermal environment. This entails the maximal scale of noncommutativity as well, being of order of $10^{-15} M_P$, above which there is no impact whatsoever on the capture rates at PTOLEMY. The latter represents an exceptional upper bound on the scale of noncommutativity coming from phenomenology.

Keywords: Big Bang Nucleosynthesis, Neutrinos, Noncommutative Geometry

Out of the three pillars of the standard Big Bang model, Big Bang nucleosynthesis (BBN) relates directly to neutrinos and provides us with useful (but somewhat indirect) information about the universe when it was just about 1 minute old. Another pillar of the Big Bang, the cosmic microwave background radiation (CMBR), the relic radiation left over from the moment the universe cooled off and became transparent, allows us to see directly into cosmos when it was 380000 years old. It was measured recently so precisely that this has deepened our understanding of the early universe to a hitherto undreamed-of scale. A related prediction of the standard theory is the undisputed existence of a relic neutrino background, whose direct detection would enable to see what was the universe doing when it was only about one second old.

Given the fact that neutrinos interact only feebly with ordinary matter, the relic neutrino background turns out to be composed altogether of neutrinos which are nonrelativistic today, making them consequently very difficult to directly detect in the laboratory. This also turns out to be the only primary source of nonrelativistic neutrinos in the universe at present.

A first promising proposal to detect such a cold sea of neutrinos at the temperature of around 2 Kelvin, was to use the inverse beta decay of Tritium nucleus, $\nu_e + ^3\text{H} \rightarrow ^3\text{He} + e^-$. The possibility of detecting such a background experimentally, using this process, was investigated. Earlier attempts to detect relic neutrino sea were precisely compiled, but also strongly criticized. With the recently proposed PTOLEMY experiment, with an energy resolution $\Delta \sim 0.15 \text{ eV}$ and implementing a 100 gram sample of Tritium, the detection of relic neutrino background might soon become a dream come true.

For a long time, BBN has proven as one of the most powerful available probes of physics beyond the standard model (SM), giving many interesting constraints on particle properties. The BBN has played a central role in constraining particle properties since the seminal paper of Steigman, Schramm and Gunn, in which the observation-based determination of the primordial abundance of ^4He was used for the first time to constrain the number of light neutrino species. Later, with the inclusion of other light element abundances (^4He and ^7Li) and their successful agreement with the theoretically pre-
dicted abundances, many aspects of physics beyond SM has been further constrained [3]. One usually parameterizes the energy density of new relativistic particles in the early universe in terms of the effective additional number of neutrino species, ΔN_{eff}. After decades in which ΔN_{eff} remained poorly constrained, a combination of Planck observations (Planck 2015 results [2]) with other astrophysical data has recently strongly constrained the neutrino sector of the theory, giving $\left(\Delta N_{\text{eff}}\right)_{\text{max}} = 0.33$. Since the data favour $N_{\text{eff}} = 3.15 \pm 0.23$ [2], one finds this consistent with the standard model value $N_{\text{eff}} = 3.046$ itself.

Entertaining the possibility to thermally produce right-handed (RH) neutrinos ν_R in some extension of the standard model, we note that the energy density of 3 light RH neutrinos is equivalent to the effective number ΔN_{eff} of additional doublet neutrinos

$$\Delta N_{\nu} = 3 \left(\frac{T_{\nu_L}}{T_{\nu_R}} \right)^4,$$

where T_{ν_L} is the temperature of the SM neutrinos, being the same as that of photons down to $T \sim 1$ MeV. Hence we have

$$3 \left(\frac{T_{\nu_L}}{T_{\nu_R}} \right)^4 \lesssim \left(\Delta N_{\text{eff}}\right)_{\text{max}}.$$ \hspace{1cm} (2)

In the following we take the latest Planck result, $\left(\Delta N_{\text{eff}}\right)_{\text{max}} = 0.33$.

How the temperature of ν_R’s, which decoupled at T_{dec}, relates to the temperature of still interacting ν_L’s below T_{dec}, stems easily from the fact that the entropy in the decoupled species and the entropy in the still interacting ones are separately conserved. The ratio of the temperatures is a function of T_{dec} and is given by

$$\frac{T_{\nu_L}}{T_{\nu_R}} = \left[\frac{g_{\nu_R}(T_{\text{dec}})}{g_{\nu_R}(T_{\nu_L})} \frac{g_s(T_{\nu_L})}{g_s(T_{\text{dec}})} \right]^{1/3},$$

where g_{ν_R} and g_s are the degrees of freedom specifying the entropy of the decoupled and of the interacting species, respectively [1, 11]. Since in our case we ignore the possibility that the decoupled particles may subsequently annihilate into other non-interacting species, g_{ν_R} stays constant after decoupling and therefore, for all practical purposes, the first ratio in (3) equals unity.

Now, combining (2) with (3) and noting that at the time of BBN $g_s S(T_{\nu_L} \sim \text{MeV}) = 10.56$ [12], one arrives at

$$g_s S(T_{\text{dec}}) \gtrsim \frac{24.1}{\left(\Delta N_{\text{eff}}\right)_{\text{max}}^{1/4}}.$$ \hspace{1cm} (4)

With the latest bound $\left(\Delta N_{\text{eff}}\right)_{\text{max}} = 0.33$, (4) implies $g_s S(T_{\text{dec}}) > 55.3$ which, given the temperature dependence of $g_s S$ [12], can be seen to enforce $T_{\text{dec}} \gtrsim T_C$, where T_C is the critical temperature for the deconfinement restoration phase transition, $T_C \sim 200$ MeV.

Since background neutrinos are ultra-relativistic at freeze out, the left-handed neutrinos ν_L almost exactly coincide with the left-helicity neutrinos ν_L (similarly for anti-neutrinos), which means that in the standard theory the right-helicity neutrinos ν_R are (practically) not populated at all. If, by some mechanism, the right-handed neutrinos ν_R were thermally produced in the early universe, they again almost exactly coincide with the right-helicity neutrinos ν_L (and similarly for anti-neutrinos). Since for free streaming neutrinos it is their helicity that is conserved [13], and the relic neutrino background is non-relativistic today (for neutrino masses $m_\nu \gtrsim 10^{-3}$ eV), one finds that non-relativistic right-helicity neutrinos ν_L are no longer inert, in fact, they can (almost) equally be captured in the $\nu_e + ^3\text{H} \to ^3\text{He} + e^-$ process as their left-helicity partners ν_L’s do.

As calculated in detail in [14] (for earlier calculations see also [15]) the total capture rate boils down to a simple expression

$$\Gamma = \sigma[n(\nu_R) + n(\nu_L)]N_{\text{trit}},$$

where $\sigma \approx 4 \times 10^{-45}$ cm2, N_{trit} is the number of tritium nuclei and $n(\nu_R)$ and $n(\nu_L)$ are the number densities of left- and right-helicity neutrinos per degree of freedom. In the standard theory, both active degrees of freedom for the massive Majorana case equally contribute to the process, while in the Dirac case only one active (out of four) degrees of freedom does so. Hence, the capture rate in the Majorana case is twice that in the Dirac case [14].

Note that the thermal production of right-handed Dirac neutrinos in the early Universe has been discussed before in the literature and the cosmological bound on the extra effective number of neutrino species can be satisfied [16]. A possible way to discriminate between thermal and non thermal cosmic relic neutrinos was proposed in [17].

When the right-handed neutrinos are produced by some non-standard mechanism in the early universe, their relative contribution in [4] is given by the ratio of the temperatures cubed ($n_R \sim T_R^3$), as given by [3]. This is because the ratio in (3) remains constant below $T \sim$ MeV, as both ν_L and ν_R are then decoupled. This implies around 20% magnification of the capture rate at PTOLEMY if $T_{\text{dec}} \sim T_C$, and around 10% magnification if $T_{\text{dec}} \sim T_{EW}$, where T_{EW} is the critical temperature for electroweak phase transition, $T_{EW} \approx 200$ GeV. We plot the capture rate enhancement (percentage) versus decoupling temperature in Fig. 1.

As a working example to realize a thermal production of right-handed neutrinos ν_R in the early universe, via plasmon decay into neutrino pairs [18, 19, 20], we propose a fully-fledged Seiberg-Witten (SW) map based [21, 22] θ-exact formulation of noncommutative (NC) gauge field theory. This model further preserves unitarity [23], has a correct commutative limit [24, 25], and for which it has been shown that a nice UV/IR behavior at the quantum level can in fact be achieved, especially when supersymmetry is included [26, 27, 28, 29, 30].

Alluding to the above model, we now introduce an effective coupling involving neutrinos and photons on NC spaces which can result in thermal production of right-handed neutrinos in the early universe, giving consequently a nonzero right-helicity component in the cos-
mic neutrino background. Such an additional component would result in an enhancement to the Tritium capture rate in the PTOLEMY experiment, which, if observed and assuming to be due to the space-time noncommutativity above, the interaction is seen as a noncommutative analogue of the adjoint representation with \(\kappa \). From the perspective of non-Abelian gauge theory, one could also say that the neutrino field is charged in a noncommutative way (or fraction) space and a coupling constant \(e \kappa \). The light-like case \([23]\) with notations \(\gamma^\mu \rightarrow \gamma_\mu \) specified in \([29]\), corresponds to \(\kappa = 0 \) parameter. Using standard techniques the plasmon decay rate into neutrinos (per generation) can be calculated to be \([24]\)

\[
\Gamma_{\text{NC}}(\gamma_{\text{pl.}} \rightarrow \bar{\nu}_L(\nu_L^c) \rightarrow \bar{\nu}_L(\nu_L^c)) = \kappa^2 \frac{\alpha}{2} \omega_{\text{pl}} \left(1 - \frac{\sin X}{X} \right)
\]

with \(\alpha \) being the fine structure constant. For the light-like noncommutativity preserving unitarity \([24]\) the full noncommutative effect will be still exhibited through \(X = \omega_{\text{pl}}^2/(2\Lambda_{\text{NC}}^2) \).

1. Note that instead of SW map of Dirac neutrinos \(\Psi \) one may consider a chiral SW map, which is compatible with grand unified models having chiral fermion multiplets \([21]\).

2. The light-like case \([23]\) with notations \(\gamma^2 = (\gamma^\mu)^2 = \gamma_{\mu\nu} \gamma^{\nu} = 2(E^2 - B^2) \) specified in \([23]\), corresponds to \(|\vec{E}_0| = |\vec{B}_0| = 1/(2\Lambda_{\text{NC}}^2) \), and \(\vec{E}_0 \cdot \vec{B}_0 = 0 \).
It is important to note that the plasma frequency ω_{pl} is determined as the frequency of plasmons at $|q| = 0$. In the very high temperature regime, where the mass of background electrons is irrelevant and can be put to zero, the dispersion relation for transverse and longitudinal waves can be calculated analytically, giving \[\omega_{pl}^2 = \Re e \Pi_{T/L}(q_0, |q| = 0) = \frac{\pi^2 T^2}{9}, \] (13)

where $\Re e \Pi_{T/L}$ is the transverse/longitudinal part of the one-loop contribution to the photon self-energy at finite temperature/density.

Now we continue with the investigation of the cosmic neutrino background in NC spacetimes. The RH neutrino is commonly considered to decouple at the temperature T_{dec} when the condition

$$\Gamma(\gamma_{pl} \rightarrow \nu R) \approx H(T_{dec}),$$

is satisfied. In this case the plasma frequency reads

$$\omega_{pl} = \frac{e T_{dec}}{3} \sqrt{g_{*}^{\text{ch}}},$$

where g_{*}^{ch} counts all (effectively massless) charged-matter loops in $\Pi_{T/L}$. On the other hand, the Hubble parameter is given by

$$H(T_{dec}) = \left(\frac{8 \pi^3}{90} g_*(T_{dec}) \right)^{1/2} \frac{T_{dec}^2}{M_{Pl}},$$

and g_* counts the total number of effectively massless degrees of freedom. Further on, we stick with parameters g_* and g_{*}^{ch} fixed at their SM values, $g_* \simeq g_{*}^{\text{ch}} \simeq 100$.

Computing the decoupling temperature T_{dec} based on the assumption that the decay rate (13) is solely due to NC effects and comparing with lower bounds on T_{dec} that can be inferred from observational data, we are now in position to determine lower bounds on the scale of noncommutativity Λ_{NC}. Proceeding in this spirit, one finds that BBN provides the following relation between the decoupling temperature T_{dec} and the NC scale Λ_{NC}:

$$T_{dec} \simeq \frac{k^2}{2\pi} \sqrt{\frac{5\alpha^3 g_{*}^{\text{ch}}}{g_*}} M_{pl} \left(1 - \frac{\sin X}{X} \right),$$

$$X = \frac{2\pi\alpha g_{*}^{ch} T_{dec}^2}{9\Lambda_{NC}^2}.$$

Note that with fixed g_* and g_{*}^{ch} one cannot simply dial down $\Delta N_{\nu}^{\text{max}}$ to arbitrary precision to accommodate T_{dec} being proportional M_{pl}, as given by (17). On the other hand, sensitivity to PTOLEMY requires small T_{dec}, which one can only achieve for $(1 - \sin X) \ll 1$. This only occurs when $X \ll 1$, so in this limit we can use the leading order term in the expansion in X to obtain:

$$\Lambda_{NC}^4 \simeq \frac{k^2 \pi}{243} \sqrt{\frac{5\alpha^3 (g_{*}^{ch})^5 g_*}{g_*}} M_{pl} T_{dec}^3.$$

Now setting $g_* = g_{*}^{\text{ch}} = 100$, $M_{pl} = 1.221 \times 10^{19}$ GeV and $T_{dec} \gtrsim 200$ MeV (quark-hadron phase transition), a lower bound on Λ_{NC} can be obtained as

$$\Lambda_{NC} \gtrsim 0.98 \sqrt{\frac{\Lambda_{NC}}{\text{TeV}}}.$$

For $T_{dec} \gtrsim 200$ GeV (EW phase transition), we have

$$\Lambda_{NC} \gtrsim 175 \sqrt{\frac{\Lambda_{NC}}{\text{TeV}}}.$$

This bounds appear to be relatively mild in comparison with other similar bounds \cite{24, 25, 28, 29}. Also, as shown below and in contrast with those lower bounds on Λ_{NC}, the full numerical solution to (14) will feature a maximal allowable NC scale $\Lambda_{NC}^{\text{max}}$, above which the RH neutrino can never stay in the thermal equilibrium via the NC coupling to photon and thus have no impact on PTOLEMY capture rate.

Since the equation (14) is exact with respect to the scale of noncommutativity and decoupling temperature, it is interesting to extend our investigation to a temperature range well beyond the validity of the θ-first order approximation (18), which is done by numerical evaluation and shown in the Fig. 2. We find, surprisingly, that due to the switch in the behavior of the plasmon decay rate from T^5 at low temperatures to T at very high temperatures the solution curve actually drops down at a temperature range roughly independent from the NC scale and singles out a closed region on the scale of noncommutativity Λ_{NC} versus decoupling temperature T_{dec}. Within this region surrounded by the solid curve, the Hubble expansion rate (16) is always smaller than the NC plasmon decay rate (12). Therefore the higher temperature solution at each given noncommutative scale, sitting on the right-hand side of the solid curve, may be interpreted as the coupling temperature, i.e. the temperature where the NC plasmon decay rate first time catches (or it may be the reheating temperature, whichever is lower) the Hubble rate during cooling of the universe after the Big Bang.

The appearance of a closed region where $\Gamma > H$ implies that the NC scale can be bounded from above at $\Lambda_{NC}^{\text{max}} \approx 0.95 \times 10^{-4} M_{Pl}$. For NC scales $\Lambda_{NC} > \Lambda_{NC}^{\text{max}}$ RH neutrinos stay out of thermal equilibrium at any temperature. For each NC scale $\Lambda_{NC} < \Lambda_{NC}^{\text{max}}$, there exists two temperature scales, namely a, lower, decoupling temperature T_{dec} and a higher, coupling temperature T_{couple}. As a consequence, RH neutrinos can only stay in effective thermal contact with the rest of the universe for the temperature range $T_{dec} \leq T \geq T_{\text{couple}}$. In other words, during cooling of the universe, RH neutrinos first time enter thermal equilibrium when temperature reaches T_{couple}. As the temperature decreases further, the decay rate, starting at T_{dec}, drops once again below the Hubble rate and sterile neutrinos finally decouple.
parameter from the exact/nonperturbative treatment of the NC theories. Both phenomena share the same similarity to the UV/IR mixing in the radiative corrections

The equation (17) allows us to estimate the bound on T_{couple} analytically: In any case it has to be smaller than a fixed temperature scale

$$T_0 = \frac{\kappa^2}{2\pi} \sqrt{\frac{5\alpha^3 g^{\text{ch}}_* M_{\text{Pl}}}{g_*}} |_{\kappa=1} \approx 2.22 \times 10^{-4} \kappa^2 M_{\text{Pl}}, \quad (21)$$

multiplying the maximum value (≈ 1.217) of the $(1 - \sin X/X)$ term sitting in the parenthesis, while for sufficiently small NC scales T_{couple} converges to T_0. These facts provide an estimation for T_{couple}’s maximal value $T_{\text{max}} \approx 1.22 T_0 \approx 2.7 \times 10^{-4} \kappa^2 M_{\text{Pl}}$. Via T_0, T_{max} depends on the quadratic power of the parameter κ and gets suppressed rather quickly when κ decreases, as illustrated in 3D Fig. 3.

The existence of T_{couple}, bounded from above by $T_{\text{max}} \approx 2.7 \times 10^{-4} M_{\text{Pl}}$ and an upper bound on the scale of noncommutativity $\Lambda_{\text{NC}} \approx 0.95 \times 10^{-4} M_{\text{Pl}}$ for RH neutrino to reach thermal equilibrium via NC coupling to photon from Fig. 2 represent additional results of our work. Now we note that decoupling of the production rate for two branches of T_{dec} (T_{dec} and T_{couple}) exhibits certain similarity to the UV/IR mixing in the radiative corrections of the NC theories. Both phenomena share the same origin from the exact/nonperturbative treatment of the NC parameter θ in the quantum theory as well.

In total we have shown that the PTOLEMY total capture rate in the Dirac neutrino case may be enhanced in the present scenario up to 20% (10%) if the scale of noncommutativity $\Lambda_{\text{NC}} \gtrsim O(1)$ (TeV ($\gtrsim O(100)$) TeV. This is still consistent with the bunch of constraints on the scale of noncommutativity obtained from particle physics phenomenology [87, 88, 89, 90, 91, 92, 93, 94]. If, however, one adopts a more ‘natural’ value for Λ_{NC}, which is closer to the string (or even Planck [48]) scale, then the total capture stays as predicted by the standard theory. Hence, the results of the PTOLEMY experiment could not only be used as a test of noncommutative gauge field theories, but also could provide an independent constraint on the scale of noncommutative deformation of spacetime as well.

Acknowledgment

We would like to thank G.Y. Huang for drawing our attention on refs. [16, 17] considering the PTOLEMY experiment, and for encouraging comments regarding our work. This work is supported by the Croatian Science Foundation (HRZZ) under Contract No. IP-2014-09-9582, and by the COST Action MP1405 (QSPACE). J.Y. acknowledges support by the H2020 Twinning project No. 692194, "RBI-T-WINNING". J.T. and J.Y. would like to acknowledge support of W. Hollik, and MPI Munich, for hospitality.

References

[1] S. Sarkar, Big Bang nucleosynthesis and physics beyond the Standard Model, Rept. Prog. Phys. 59, 1493 (1996), [arXiv:hep-ph/9602260].

[2] P. A. R. Ade et al., [Planck Collaboration], Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13, doi:10.1051/0004-6361/201525830, [arXiv:1502.01589 [astro-ph.CO]].
tative standard model at hadron colliders, Phys. Rev. D 74, 096004 (2006), [arXiv:hep-ph/0608155].

[45] M. M. Ettefaghi and M. Haghighat, Massive Neutrino in Noncommutative Space-time, Phys. Rev. D 77, 056009 (2008), [arXiv:0712.3034].

[46] A. Alboteanu, T. Ohl, and R. Ruckl, The Noncommutative standard model at $O(\theta^2)$, Phys. Rev. D 76, 105018 (2007), [arXiv:0707.3595].

[47] A. Alboteanu, T. Ohl, and R. Ruckl, The Noncommutative standard model at the ILC, Acta Phys. Polon. B 38, 3647 (2007), [arXiv:0709.2359].

[48] S. A. Abel, J. Jaeckel, V. V. Khoze, and A. Ringwald, Vacuum Birefringence as a Probe of Planck Scale Noncommutativity, JHEP 0609, 074 (2006), [arXiv:hep-ph/0607188].