Immunoglobulin β Signaling Regulates Locus Accessibility for Ordered Immunoglobulin Gene Rearrangements

By Kazushige Maki,* Kisaburo Nagata,* Fujiko Kitamura,* Tositada Takemori,† and Hajime Karasuyama*

From the *Department of Immunology, Tokyo Metropolitan Organization for Medical Research, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan; and the †Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan

Abstract

The antigen receptor gene rearrangement at a given locus is tightly regulated with respect to cell lineage and developmental stage by an ill-defined mechanism. To study the possible role of precursor B cell antigen receptor (pre-BCR) signaling in the regulation of the ordered immunoglobulin (Ig) gene rearrangement during B cell differentiation, a newly developed system using μ heavy (H) chain membrane exon (μm)-deficient mice was employed. In this system, the antibody-mediated cross-linking of Igβ on developmentally arrested progenitor B (pro-B) cells mimicked pre-BCR signaling to induce early B cell differentiation in vivo. Analyses with ligation-mediated polymerase chain reaction revealed that the Igβ cross-linking induced the redirection of Ig gene rearrangements, namely, the suppression of ongoing rearrangements at the H chain locus and the activation of rearrangements at the light (L) chain locus. Upon the cross-linking, the κL chain germline transcription was found to be upregulated whereas the VH germ-line transcription was promptly downregulated. Notably, this alteration of the accessibility at the H and L chain loci was detected even before the induction of cellular differentiation became detectable by the change of surface phenotype. Thus, the pre-BCR signaling through Igβ appears to regulate the ordered Ig gene rearrangement by altering the Ig locus accessibility.

Key words: pre-B cell receptor • surrogate light chain • allelic exclusion • B cell development • recombinase

Introduction

The diversity of antigen specificity among B cells is generated during their development through the rearrangement of gene segments encoding parts of the variable region of H and L chains (1, 2). A common recombinase that recognizes a conserved recombination signal sequence (RSS) mediates all the rearrangement reactions (3). However, the rearrangement at a given locus is highly regulated during B cell development such that there is a clear-cut order of Ig gene rearrangements, namely, H chain gene rearrangements before L chain gene rearrangements (4, 5). Once μH chain is expressed through a functional VH-DH-JH rearrangement in one allele of the H chain gene, the recombinase is directed towards the L chain locus, and the DH-JH joint in the other allele of the H chain gene is not targeted for further VH to DH-JH rearrangement. This regulation of recombinase targeting appears to be important for allelic exclusion, namely, the mechanism by which a single B cell has only one functionally rearranged H chain allele to ensure one immune specificity per cell (6, 7). However, signals involved in this spatial and temporal regulation of the Ig gene rearrangements remained largely unknown. In this study, we examined the role of signaling through Igβ, a component of the pre-BCR, in this regulation by using a novel system to manipulate Ig gene rearrangements in vivo.

The pre-BCR is composed of the membrane-bound form of the μH chain, Vpre-B/λ5 surrogate L chain, and an Igκ/Igβ heterodimer (8, 9). Its expression is restricted to the early pre-B cell stage of B cell development in which the rearrangement of the H chain gene but not yet the L chain gene has been completed (10, 11). The critical role of...
the pre-BCR in B cell generation was illuminated by creating pre-BCR−deficient mice in which B cell development was found to be severely impaired at the transition from the pro-B cell stage to the large pre-B cell stage (12, 13). The importance of the pre-BCR was further confirmed in humans by finding agammaglobulinemia patients with mutations of either the μH chain gene or the λ5 gene (14, 15). The pre-BCR has been suggested to regulate several hallmark events associated with progression from the pro-B to pre-B cell stage, including Ig gene rearrangements (16, 17). Studies with transgenic mice indicated that allelic exclusion was mediated by the membrane-bound form of the μH chain (18–20). Indeed, allelic exclusion was found to be violated in heterozygous mice carrying a targeted disruption of the membrane exon of the μH chain in one allele and an unmutated gene in the other allele (21). Furthermore, it has been shown that μH chain genes were not allelically excluded at the pre-B cell stage in λ5-deficient mice (22). These results support the idea that the pre-BCR is involved in the process of allelic exclusion at the pre-B cell stage, even though an underlying mechanism including a signaling pathway remains to be elucidated. The membrane-bound form of the μH chain was also found to be functional in the induction of κL chain rearrangements when expressed in in vitro pro-B cell lines (23–25). On the other hand, studies with a series of knockout mice clearly demonstrated that neither μH chain nor surrogate L chain was a prerequisite for L chain gene rearrangement (13, 21, 26, 27). Thus, the role of the pre-BCR in a L chain gene rearrangement remains an open question.

To assess the proposed roles of the pre-BCR in regulation of Ig gene rearrangements, it is essential to show whether signaling through the pre-BCR actually suppresses or induces rearrangements at the H and L chain loci in vivo. However, to our knowledge no study has directly addressed this issue so far. The extremely low level of pre-BCR surface expression has hampered biochemical studies of pre-BCR signaling (10, 28), and a ligand triggering pre-BCR signaling has not been identified. Moreover, transformed pre-B cell lines turned out not to be proper materials for analyzing the differentiation signals of the pre-BCR. To overcome these limitations, we have recently established a novel system that provides a superior way to analyze pre-BCR signaling by using bone marrow pro-B cells (29). The Igκ/Igβ heterodimer was detected in association with calnexin on the surface of μH chain−pro-B cells, albeit at low levels, and was able to transduce signals across the cell membrane when cross-linked (29, 30). In vivo treatment of recombinant activating gene (R AG)-2−deficient mice with anti-Igβ mAb revealed that cross-linking Igβ on developmentally arrested pro-B cells induced early B cell differentiation from pro-B to small pre-B cells (29). Therefore, we concluded that the antibody-mediated cross-linking of Igβ on pro-B cells mimicked the signal that is normally transduced via the pre-BCR. As it is extremely difficult to analyze the differentiation signal through pre-BCR itself, our novel system should provide a powerful tool for analyzing how pre-BCR signaling regulates differentiation events such as Ig gene rearrangements. However, it is impossible to examine the effects of Igβ cross-linking on Ig gene rearrangements using R AG-2-deficient mice because the recombination machinery is kept intact (12). Our results indicate that the signaling through Igβ, a component of the pre-BCR, regulates locus accessibility for ordered Ig gene rearrangement.

Materials and Methods

Mice. μm-deficient mice (12) and R AG-2-deficient mice (31) were provided by Dr. K. Rajewsky (University of Cologne, Germany) and Dr. F.W. Alt (Howard Hughes Medical Institute, Boston, MA, The Children's Hospital, respectively). They were bred and maintained under specific pathogen-free conditions in our animal facility and used for analysis at 8–12 wk of age. All of the experiments in this study were performed according to the Guidelines for Animal Use and Experimentation as set out by our Institutions.

Antibodies. FITC-conjugated anti-CD45R/B220 (RA3-6B2), PE-conjugated anti-CD45R/B220 (RA3-6B2), and biotin-conjugated antibodies specific to CD25 (7D4), CD117 (3C1), BP-1 (6C3), CD2 (R M2-5), and κL chain (R 5-240) were purchased from Pharmingen. The mAb against λ5 (LM3 32) was purified and labeled with biotin by standard methods. PE-conjugated streptavidin was purchased from Southern Biotechnology Associates, and allophycocyanin (APC)-conjugated streptavidin was provided by Pharmingen. The mAb against mouse Igβ (HM79) was described previously (30).

Cell Preparation and Flow Cytometry. Bone marrow cells were isolated from femurs and tibias of mice and suspended in staining buffer (PBS containing 0.1% BSA and 0.1% NaN3). For the enrichment of B lineage cells, B220+ cells were purified from bone marrow by using anti-CD45R (B220)-conjugated microbeads according to the procedure of the manufacturer (Miltenyi Biotech). More than 90% of the cells in the enriched population were found to express B220 (data not shown). Staining of bone marrow cells was performed as described (10). Debris, erythrocytes, and dead cells were excluded from the analysis by forward and side scatter and propidium iodide gating. For cytoplasmic staining, bone marrow cells were fixed and permeabilized with Cytofix/Cytoperm kit (Pharmingen) according to the manufacturer's instructions. Stained cells were analyzed by FACSCalibur™ (Becton Dickinson). Cell sorting was performed with a FACS Vantage™ (Becton Dickinson).

PCR and Reverse Transcription PCR Analyses. Genomic DNA was prepared from B220+ bone marrow cells and subjected to PCR to detect V-J joints of the κL chain gene. PCR conditions and primers were described previously (33). The PCR products were electrophoresed in 2% agarose gel, blotted onto nylon membranes, and then hybridized with 32P-labeled oligonucleotide probe jkx2-2 (5′-GTGGCTTCCAGAACGTCCA-3′). The radioactivity was quantified with a Bio-Image analyzer (model BAS 2500; Fuji Photo Film Co., Ltd.). For reverse transcription (RT)-PCR, total RNA was prepared from B220+ bone marrow cells using Isogen (Nippon gene) and treated with RNase-free DNase (GIBCO BRL) to remove contaminating genomic DNA. cDNA was prepared using Moloney murine leukemia virus (M MLV)
Reverse transcriptase R NaseH− (ReverTra Ace; Toyobo Co., Ltd.) and oligo dT or Vκ,J558 antisense primer (34). RT was carried out at 50°C. For Vκ,J558 germline transcripts, samples were amplified as described previously (34). For other genes, PCR was carried out with 25 cycles of 20 s at 94°C, 15 s at 55°C, and 1 min at 72°C. Sequences of the primers used for μ, γ germline transcripts, Vκ,J558 germline transcripts, and hypoxanthine phosphoribosyl transferase (HPRT) have been described previously (34–37). Each PCR amplification was carried out within the logarithmic phase (data not shown). The PCR products were electrophoresed in 3% agarose gel, blotted onto nylon membranes and hybridized with the following ρ-labeled oligonucleotide probes: Cγ3-P, 5′-GACAGCAACTGCAGGTTGAGTGC-3′; Vγ,J558-P, 5′-AAGGCCACACTGACTCA-3′; Jκ1-P, 5′-GTGCCCTCACCGCACGTCCA-3′; and HPRT-P, 5′-GGTGAAAGGGACCTCT-3′.

Ligation-mediated PCR Assays. Ligation-mediated PCR (LMPCR) assays were carried out as described (38, 39) with minor modification. In brief, genomic DNA from B220+ bone marrow cells was subjected to linker ligation at 16°C overnight in 10 μl ligation mixture (50 mM Tris [pH 7.4], 10 mM MgCl2, 20 mM dithiothreitol, 1 mM ATP, 5 μg/ml BSA, 10 pmol BW linker, and 2U T4 DNA ligase [TaKaRa Shuzo]) and then heated to 95°C for 10 min to inactivate T4 ligase. Samples were subjected to nested PCR as described (38, 39) after normalization for DNA content by PCR amplification of RAG-1 gene as described previously (35). The PCR products were electrophoresed in 3% agarose gel, blotted onto nylon membranes and hybridized with the following 32P-labeled oligonucleotide probes: 5′-DGγ1,1-P, 5′-GCCCTGGCCAGTATGGTCTGGTG-3′; 5′-Jκ1-P, 5′-CAGTGAGGGGTTTTTTTGACAGCGACAG-3′; or RAG-1-P, 5′-AGGTAGCTTTAGCCAACTGACGG-3′.

Results

B cell differentiation is induced in μm-deficient Mice When Treated with Anti-Igβ mAb. μm-deficient mice were treated by a single injection of 1 mg of anti-Igβ mAb HM 79. Flow cytometric analysis of their bone marrow cells isolated on day 6 after injection revealed that the expression of CD25 (Tac), BP-1, and CD2 on CD45R (B220) were downregulated in the treated mice compared with untreated or PBS-treated mice, as described previously (21, 26), their levels were found 20 and 40 times higher, respectively, in the anti-Igβ-treated mice (Fig. 2 A). This indicates that the cross-linking of Igβ on pro-B cell promotes the production of Vκ-Jκ joints. To confirm the effect of Igβ cross-linking on L chain gene rearrangement, the expression of κL chain protein was analyzed by flow cytometry. In accord with the PCR analysis, κL chain was detectable in a single cell population of ~4% of CD45R+ bone marrow cells even in the absence of any detectable expression of κL chain gene rearrangements. However, the observed increase in Vκ-Jκ joints and κL chain proteins among the B lineage population in the treated mice might not be due to the activation of rearrangements. It could be the consequence of preferential expansion of a minor population of cells that had already completed κL chain gene rearrangements before the treatment. Therefore, we used the LM PCR assay, which reflects more accurately the amount of active V(D)J recombinase at a particular locus because it detects intermediates in the recombination reaction rather than its end-products (38). DNA was prepared from CD45R+ bone marrow cells 6 d after the treatment with anti-Igβ mAb or PBS, and subjected to ligation with double strand linkers followed by nested PCR using a linker-specific primer and a pair of primers specific for the broken-ended RSS upstream of Jκ1 (38, 39). As shown in Fig. 3 (top), the frequency of intermediates of Vκ-Jκ rearrangement carrying broken-ended RSS upstream of Jκ1 greatly increased in the anti-Igβ-treated μm-deficient mice compared with the PBS-treated mice. This clearly indicated that the antibody-mediated cross-linking of Igβ on pro-B cells indeed activated the recombination at the κL chain locus.
Igβ Cross-Linking on Pro-B Cells Induces the Suppression of Rearrangements at the H Chain Locus. The LMPCR assay was further applied to examine recombination activity at the H chain locus by using primers specific for the broken-ended RSS upstream of DFL16.1. The frequency of intermediates of V_{H} to D_{HJ} rearrangements carrying the broken-ended RSS upstream of DFL16.1 was found to be much lower in CD45R^{+} bone marrow cells from the anti-Igβ–treated μ-deficient mice than in those from PBS–treated control mice (Fig. 3, bottom). This clearly indicated that the antibody-mediated cross-linking of Igβ on pro-B cells suppressed the V_{H} to D_{HJ} recombination at the H chain locus.

Igβ Cross-Linking on Pro-B Cells Induces the Alteration of A possibility at the H and L Chain Loci before the Induction of Surface Phenotypic Changes. It has been shown that small pre-B cells in bone marrow of normal mice have a high activity of recombination at the L chain locus, but no activity at the H chain locus (39). Therefore, the alteration of recombination activity at the H and L chain loci observed in the CD45R^{+} bone marrow cells from μ-deficient mice might not be a primary effect of the Igβ cross-linking. It could be simply the consequence of the differentiation from pro-B cells to small pre-B cells induced by the anti-Igβ treatment. To address this issue, we analyzed the kinetics of the surface phenotypic changes of CD45R^{+} bone marrow cells after the treatment with anti-Igβ mAb, compared with the kinetics of the germline transcription at the H and L chain loci, which has been demonstrated to correlate strongly with rearrangement at those loci (40, 41).

As shown in Fig. 4 A, no apparent change was detected on day 1.5 after injection in the expression of CD25 and BP-1 on CD45R^{+} bone marrow cells, whereas their expression was upregulated on days 3 and 6. The kinetics of the proportion of CD25^{+} or BP-1^{+} cells among CD45R^{+} B lineage cells is summarized in Fig. 4 B. In parallel with the analysis of these surface markers, total RNA was prepared from CD45R^{+} bone marrow cells on days 0, 1.5, 3, and 6 after injection. Semiquantitative RT-PCR with specific primers revealed that the cross-linking of Igβ on pro-B cells induced a drastic reduction of V_{H} J558 germline transcripts derived from unrearranged V_{H} segments, although μ0 germline transcripts stayed at almost the same levels (Fig. 5 A). On day 6, the amount of V_{H} J558 germline transcripts was diminished to approximately one fifth of that on day 0. Notably, threefold reduction of V_{H} J558 germline transcripts was detected as early as on day 1.5 after injection, even though no apparent change in the surface phenotype of pro-B cells was observed at that time (compare Fig. 4 B with Fig. 5 A). In contrast, the level of κL chain germline transcripts derived from an unrearranged κL chain gene was greatly upregulated as much as ninefold by day 6 after injection (Fig. 5 B). An approximately two-fold increase of κL chain germline transcripts was detected as early as day 1.5 after injection. To clarify the significance of this increase in the κL chain germline transcripts before the induction of cellular differentiation, the level of κL chain germline transcripts was further examined in BP-1^{−} versus BP-1^{+} fraction sorted from CD45R^{+} bone

![Figure 2](https://example.com/figure2.png)

Figure 2. The cross-linking of Igβ on pro-B cells in μ-m-deficient mice promoted the production of V_{K}-J_{K} joints and κL chain proteins. μ-deficient mice (10-wk-old) were injected intraperitoneally with either 1 mg of anti-Igβ mAb, normal hamster IgG, or PBS. On day 6 after injection, bone marrow cells were isolated from the mice. (A) B220^{+} cells were isolated from their bone marrow cells by magnetic cell sorting using B220-specific beads. Equivalent amounts of DNA extracted from B220^{+} cells were amplified by PCR with a combination of V_{K} degenerate primers and a primer downstream of J_{K}. Southern blot of the PCR products was hybridized with oligonucleotide probe specific to the J_{K} gene. As positive and negative controls, samples prepared from normal (Wt) and RAG-2–deficient (RAG-2^{−/−}) mice are shown on the right side. Treatment with normal hamster IgG gave the same result as treatment with PBS (data not shown). RAG-1 gene was amplified in parallel to confirm that each sample contained approximately the same amount of DNA. (B) Bone marrow cells were stained with PE–anti-B220 on the surface, followed by cytoplasmic staining with hamster IgG gave the same result as treatment with PBS (data not shown). RAG-1 gene was amplified in parallel to confirm that each sample contained approximately the same amount of DNA.

![Figure 3](https://example.com/figure3.png)

Figure 3. The cross-linking of Igβ on pro-B cells in μ-m-deficient mice activated rearrangements at the L chain locus but suppressed those at the H locus. DNA extracted from B220^{+} bone marrow cells as in the legend to Fig. 2 A was subjected to LMPCR to detect signal broken ends upstream of the J_{1} SBE (top) and those upstream of the DFL16.1 (DFL16.1 SBE, bottom). RAG-1 gene was amplified in parallel to confirm that each sample contained approximately the same amount of DNA.
bone marrow cells of μm-deficient mice 3 d after the treatment with anti-Igκ mAb or PBS (Fig. 6). As expected, BP-1+ differentiated cells from the anti-Igκ-treated mice expressed 5.9 times higher levels of κL chain germline transcripts compared with BP-1− cells from the PBS-treated control mice (F1 versus F0 in Fig. 6 B). Intriguingly, a 3.6-fold increase of κL chain germline transcripts was detected even in BP-1− undifferentiated cells from the anti-Igκ-treated mice compared with the corresponding cells from the control mice (F1 versus F0 in Fig. 6 B). Therefore, the upregulation of κL chain germline transcripts appeared to start before the differentiation from BP-1− cells to BP-1+ cells. These results indicate that upon the anti-Igκ treatment, the κL chain locus in pro-B cells became open and more accessible for recombinases, whereas the H chain locus became less accessible, even before the sign of cellular differentiation became detectable on the cell surface.

Discussion

This study demonstrated that the antibody-mediated Igκ cross-linking on pro-B cells induced their differentiation to the small pre-B cell stage in μm-deficient mice as if it mimicked pre-BCR signaling. This has allowed us to directly examine the possible effects of signaling through Igκ, a signal-transducing component of the pre-BCR, on the Ig gene rearrangements in early B cell precursors. We found that the Igκ signaling induced a drastic change in the targeting of V(D)J recombinase activity, from being predominantly active at the H chain locus to being restricted to the L chain locus. Importantly, we demonstrated that the change of locus accessibility indicated by the upregulation of κL chain germline transcripts and the downregulation of Vκ germline transcripts was detectable even before the cellular differentiation indicated by the change of surface phenotype. Therefore, the alteration of locus accessibility induced by the Igκ signaling is not simply a consequence of the differentiation of pro-B cells to small pre-B cells, where decreased accessibility at the H chain locus and increased accessibility at the L chain locus have been reported (38, 39, 42). Our results strongly suggest that the signaling through the Igκ/Igβ heterodimer of the pre-BCR is involved in the regulation of ordered Ig gene rearrangement by altering the accessibility of the H and L chain loci.

Previous studies with a series of knockout mice demonstrated that neither μH chain nor surrogate L chain was required for L chain gene rearrangement (13, 21, 26, 27). In accord with this, low levels of κL chain germline transcripts and some κL chain gene rearrangements could be detected in bone marrow pro-B cells from μm-deficient mice. However, interestingly we found that the Igκ cross-linking
on pro-B cells drastically increased κL chain germline transcripts as well as the occurrence of κL chain gene rearrangements. The induction of such κL chain germline transcription was also observed in pro-B cells of RAG-deficient mice when the μH chain transgene was expressed (43, 44). Therefore, pre-BCR signaling via Igβ appears to facilitate opening the L chain loci for efficient access of recombinase even though it is not necessarily a prerequisite for the induction of L chain gene rearrangements.

The importance of Igβ in the allelic exclusion was previously demonstrated by creating mice carrying the transgene encoding the chimeric molecule between the μH chain and the Igβ cytoplasmic tail (45). Consistent with this, in our system used in this study, the in vivo cross-linking of Igβ on pro-B cells resulted in the suppression of rearrangements at the H chain locus as detected by LMPCR. We further demonstrated that VκJ588 germline transcripts in pro-B cells were downregulated to one third as early as day 1.5 after the anti-Igβ treatment, namely before cellular differentiation. This prompt closing of the H chain locus would be a mechanism of allelic exclusion at the H chain locus observed in normal B cell development, in that as soon as μH chain is produced through a functional VκH, DJH rearrangement in one allele of the H chain gene, the rearrangement at the other allele is supposed to be prevented. Thus, the signaling through Igβ appears to be involved in allelic exclusion through altering the accessibility at the H chain locus. Since Vκmu but not μ0 germline transcription was suppressed by Igβ cross-linking, the inaccessibility appears to be restricted to Vκ segments at the H chain locus. This is consistent with previous observations in μH chain transgenic mice (38, 42).

Another level of regulation in allelic exclusion has been proposed. It has been shown that RAG-2 proteins are quickly degraded during the S, G2, and M phases of the cell cycle (46, 47). Since the pre-BCR signal drives the cell cycle for several rounds of division (10), RAG-2 proteins produced during the pro-B cell stage for H gene rearrangement would be degraded rapidly in pre-BCR—expressing large pre-B cells. It seems reasonable that the pre-BCR signal leads to closing of the H chain locus and opening of the L chain locus while it downregulates the RAG activity. When the expression of surrogate L chain is shut off, most likely by pre-BCR signaling itself, and the RAG activity increases again (35), VDJ recombinase targets the L chain locus but no longer the H chain locus. Thus, the pre-BCR appears to guarantee the allelic exclusion doubly by regulating both the recombinase and its target loci.

There has been much debate about what triggers pre-BCR signaling in normal B cell development, whether binding of a putative ligand or self-aggregation of the pre-BCR (17). Whether the surface expression of the pre-BCR is essential for its function is another important question (48, 49), since the expression level of the pre-BCR on the surface of pre-B cells is extremely low compared with that of the BCR, and the vast majority of the pre-BCR was detected intracellularly (10, 28). This study did not address those issues. Nevertheless, it clearly demonstrated that the Igβ complex on pro-B cells is fully competent to transduce signals across the cell membrane for cell differentiation and Ig gene rearrangements, though its expression level on the cell surface is extremely low and almost undetectable even by flow cytometry, as in the case of the pre-BCR (29). This favors the idea that the pre-BCR exerts its function on the cell surface in spite of its paucity.

The system described in this study is unique in that the ordered program of Ig gene rearrangements can be triggered in vivo by one shot of the antibody injection. Abelson murine leukemia virus (A-MuLV)-transformed pro-B and pre-B cell lines as well as Ig transgenic mice have been widely used to study the mechanism of Ig gene rearrangements (4, 18–20, 36, 38, 42–45). Our system has an advantage over those studies in that the antibody-mediated elicitation of transient and synchronous responses of pro-B cells allows us to examine the kinetics of each process in the rearrangement program, such as the alteration of chromatin structure and transcription in a particular locus. This approach should facilitate the elucidation of the mechanism by which the ordered Ig gene rearrangement is regulated during B cell development.

Figure 6. The cross-linking of Igβ on pro-B cells upregulated κL chain germline transcripts even before the induction of surface phenotypic changes. (A) μ-deficient mice (10-wk-old) were injected intraperitoneally with PBS or 1 mg of anti-Igβ mAb. On day 3 after injection, bone marrow cells were isolated and stained with FITC-anti-CD45R (B220) and biotin-conjugated anti–BP-1 in conjunction with APC-streptavidin. BP-1+ B220+ cells (F1 and F2 fractions, left) and BP-1+ B220+ cells (F3 fraction) were sorted separately by a cell sorter and reanalyzed for the expression of BP-1 and B220 (right). (B) RNA extracted from cells in F0, F1, or F2 fraction was subjected separately to RT-PCR and Southern blot analyses to detect κL chain germline transcripts (bottom) as in the legend to Fig. 5 B. Relative expression of the transcripts in each fraction was calculated from radioactivity and is shown in the top. The signal in the BP-1+ B220+ cells from the PBS-treated μ-deficient mice (F3) is set to 1.0.
We thank Drs. K. Rajewsky and F.W. Alt for providing μm-deficient and RAG-2-deficient mice, respectively.

This work was supported in part by grants from the Ministry of Education, Science, Sports and Culture (Japan).

Accepted: 16 February 2000

R references

1. Tonegawa, S. 1983. Somatic generation of antibody diversity. Nature 302:575–581.
2. Alt, F.W., T.K. Blackwell, and G.D. Yancopoulos. 1987. Development of the primary antibody repertoire. Science 238:1079–1087.
3. Schatz, D.G., M.A. Oettinger, and M.S. Schlissel. 1992. V(D)J recombination: molecular biology and regulation. Annu. Rev. Immunol. 10:359–383.
4. Alt, F., N. Rosenberg, S. Lewis, E. Thomas, and D. Baltimore. 1981. Organization and reorganization of immunoglobulin genes in A-MULV-transformed cells: rearrangement of heavy but not light chain genes. Cell 27:381–390.
5. Eth, M.G., P. Ammirati, S. Jackson, and F.W. Alt. 1985. R equilibrated progression of a cultured pre-B-cell line to the B-cell stage. Nature 317:353–355.
6. Rolink, A., and F. Melchers. 1991. Molecular and cellular origins of B lymphocyte diversity. C. R. Acad. Sci. 313:1081–1094.
7. Rajewsky, K. 1996. Clonal selection and learning in the antibody system. Nature 381:751–758.
8. Karasuyama, H., A. Kudo, and F. Melchers. 1990. The proteins encoded by the VpreB and λ5 pre-B-cell specific genes can associate with each other and with μ heavy chain. J. Exp. Med. 172:969–972.
9. Subata, T., and M. Eth. 1990. The products of pre-B cell-specific genes (λ5 and VpreB) and the immunoglobulin μ chain form a complex that is transported onto the cell surface. J. Exp. Med. 172:973–976.
10. Karasuyama, H., A. Rolink, Y. Shinkai, F. Young, F.W. Alt, and F. Melchers. 1994. The expression of VpreB/λ5 surrogate light chain in early bone marrow precursors is normal and B cell-deficient mutant mice. Cell 77:133–143.
11. Lassoued, K., C.A. Nunez, L. Billops, H. Kubagawa, R.C. Monteiro, T.W. LeBlanc, and M.D. Cooper. 1993. Expression of surrogate light chain receptors is restricted to a late stage in pre-B cell differentiation. Cell 73:73–86.
12. Kitamura, D., J. Ross, R. Kuhn, and K. R. Rajewsky. 1991. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 350:423–426.
13. Kitamura, D., A. Kudo, S. Schaal, W. Muller, F. Melchers, and K. R. Rajewsky. 1992. A critical role of λ5 protein in B cell development. Cell 69:823–831.
14. Yel, L., Y. Miniegi, E. Coustan-Smith, R.H. Buckley, H. Trubel, L.M. Pachman, G.R. Kitchingman, D. Campana, J. R. Ohrer, and M.E. Conley. 1996. Mutations in the μ heavy-chain gene in patients with agammaglobulinemia. N. Engl. J. Med. 335:1486–1493.
15. Miniegi, Y., E. Coustan-Smith, Y.H. Wang, M.D. Cooper, D. Campana, and M.E. Conley. 1996. Mutations in the human λ5/14.1 gene result in B cell deficiency and agammaglobulinemia. J. Exp. Med. 187:71–77.
16. Melchers, F., H. Karasuyama, D. Haasner, S. Bauer, A. Kudo, N. Sakaguchi, B. Jameson, and A. Rolink. 1993. The surrogate light chain in B-cell development. Immunol. Today. 14:60–68.
17. Karasuyama, H., A. Rolink, and F. Melchers. 1996. Surrogate light chain in B cell development. Adv. Immunol. 63:1–41.
18. Weaver, D., F. Costantini, T. Imanishi-Kari, and D. Baltimore. 1985. A transgenic immunoglobulin mu gene prevents rearrangement of endogenous genes. Cell 42:117–127.
19. Nussenzweig, M.C., A.C. Shaw, E. Sinn, D.B. Danner, K.L. Holmes, H.C. Morse III, and P. Leder. 1987. Allelic exclusion in transgenic mice that express the membrane form of immunoglobulin μ. Science 236:816–819.
20. Manz, J., K. Denis, O. Witte, R. Brinster, and U. Storb. 1988. Feedback inhibition of immunoglobulin gene rearrangement by membrane μ, but not by secreted μ heavy chains. J. Exp. Med. 168:1363–1381.
21. Kitamura, D., and K. Rajewsky. 1992. Targeted disruption of μ chain membrane exon causes loss of heavy-chain allelic exclusion. Nature 356:154–156.
22. Offert, D.A., E. Ehlich, W. Muller, and K. Rajewsky. 1996. Surrogate light chain expression is required to establish immunoglobulin heavy chain allelic exclusion during early B cell development. Immunity 4:133–144.
23. Eth, M., E. Petrac, P. Wiese, L. Robel, and F.W. Alt. 1987. Activation of Vκ gene rearrangement in pre-B cells follows the expression of membrane-bound immunoglobulin heavy chains. EMBO J. 6:3299–3305.
24. Ilesias, A., M. Kopf, G.S. Williams, B. Buhrer, and G. Kohler. 1991. Molecular requirements for the μ5 induced light chain gene rearrangement in pre-B cells. EMBO J. 10:2147–2155.
25. Subata, T., R. Tsubata, and M. Eth. 1992. Crosslinking of the cell surface immunoglobin μ (μ5 surrogate light chain complex) on pre-B cells induces activation of V gene rearrangements at the immunoglobulin κ locus. Int. Immunol. 4:637–641.
26. Ehlich, A., S. Schaal, H. Gu, D. Kitamura, W. Muller, and K. R. Rajewsky. 1993. Immunoglobulin heavy and light chain genes rearrange independently at early stages of B cell development. Cell 72:695–704.
27. Chen, J., M. Trounshine, F.W. Alt, F. Young, C. Kurahara, J.F. Loring, and D. H. Uszlar. 1993. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immunol. 5:647–656.
28. Winkler, T.H., A. Rolink, F. Melchers, and H. Karasuyama. 1995. Precursor B cells of mouse bone marrow express two different complexes with the surrogate light chain on the surface. Eur. J. Immunol. 25:446–450.
29. Nagata, K., T. Nakamura, F. Kitamura, S. Kuramochi, S. Taki, K.S. Campbell, and H. Karasuyama. 1997. The Igλ/ Igκ heterodimer on μ-negative proB cells is competent for transducing signals to induce early B cell differentiation. Immunity 7:559–570.
30. Koyama, M., K. Ishihara, H. Karasuyama, J.L. Cordell, A. lwamoto, and T. Nakamura. 1997. CD79α/CD79β heterodimers are expressed on pre-B cell surfaces without associated μ heavy chain. Int. Immunol. 9:1767–1772.
31. Shinkai, Y., G. R Athubun, K.P. Lam, E.M. Oltz, V. Stewart, M. M endeho, J. Charron, M. Datta, F. Young, A.M. Stahl, and F.W. Alt. 1992. A RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68:855–867.
32. Karasuyama, H., A. R. olink, and F. Melchers. 1993. A complex of glycoproteins is associated with VpreB/λ5 surrogate light chain on the surface of μ heavy chain-negative early precursor B cell lines. J. Exp. Med. 178:469–478.

33. Caldwell, R.G., J.B. Wilson, S.J. Anderson, and R. Longnecker. 1998. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 9:405–411.

34. Corcoran, A.E., A. Riddell, D. Krooshoop, and A.R. Venkitaraman. 1998. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature. 391:904–907.

35. Grawunder, U., T.M. Leu, D.G. Schatz, A. Werner, A.G. Rolink, F. Melchers, and T.H. Winkler. 1995. Down-regulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity. 3:601–608.

36. Schlissel, M.S., L.M. Corcoran, and D. Baltimore. 1991. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J. Exp. Med. 173:711–720.

37. Maki, K., S. Sunaga, and K. Ikuta. 1996. The V-J recombination of T cell receptor-γ genes is blocked in interleukin-7 receptor-deficient mice. J. Exp. Med. 184:2423–2427.

38. Schlissel, M., A. Constantinescu, T. Morrow, M. Baxter, and A. Peng. 1993. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5'-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev. 7:2520–2532.

39. Constantinescu, A., and M.S. Schlissel. 1997. Changes in locus-specific V(D)J recombinase activity induced by immunoglobulin gene products during B cell development. J. Exp. Med. 185:609–620.

40. Yanopoulos, G.D., and F.W. Alt. 1985. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell. 40:271–281.

41. Schlissel, M.S., and D. Baltimore. 1989. Activation of immunoglobulin kappa gene rearrangement correlates with induction of germline kappa gene transcription. Cell. 58:1001–1007.

42. Stanhope-Baker, P., K.M. Hudson, A.L. Shaffer, A. Constantinescu, and M.S. Schlissel. 1996. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell. 85:887–897.

43. Spanopoulou, E., C.A. Roman, L.M. Corcoran, M.S. Schlissel, D.P. Silver, D. N emaze, M.C. Nussenzweig, S.A. Shinton, R.R. Hard, and D. Baltimore. 1994. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev. 8:1030–1042.

44. Young, F., B. Ardman, Y. Shinkai, R. Lansford, T.K. Blackwell, M. M endelsohn, A. R olink, F. Melchers, and F.W. Alt. 1994. Influence of immunoglobulin heavy- and light-chain expression on B-cell differentiation. Genes Dev. 8:1043–1057.

45. Papavasiliou, F., Z. Misulovin, H. Suh, and M.C. Nussenzweig. 1995. The role of Igκ in precursor B cell transition and allelic exclusion. Science. 268:408–411.

46. Lin, W.C., and S. Desiderio. 1993. Regulation of V(D)J recombination activator protein RAG-2 by phosphorylation. Science. 260:953–959.

47. Lin, W.C., and S. Desiderio. 1994. Cell cycle regulation of V(D)J recombination-activating protein RAG-2. Proc. Natl. Acad. Sci. U.S.A. 91:2733–2937.

48. Aoki, Y., K.J. Isselbacher, B.J. Cherayil, and S. Pillai. 1994. Tyrosine phosphorylation of Blk and Fyn Src homology 2 domain-binding proteins occurs in response to antigen-receptor ligation in B cells and constitutively in pre-B cells. Proc. Natl. Acad. Sci. U.S.A. 91:4204–4208.

49. Aoki, Y., K.J. Isselbacher, and S. Pillai. 1994. Bruton tyrosine kinase is tyrosine phosphorylated and activated in pre-B lymphocytes and receptor-ligated B cells. Proc. Natl. Acad. Sci. U.S.A. 91:10606–10609.