Ethnomedicinal documentation of polyherbal formulations and other folk medicines in Aurora, Zamboanga del Sur, Philippines

JAYSON R. PUCOT1,2,*; CESAR G. DEMAYO1

1Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology. Bonifacio Ave., Tibanga, Iligan City 9200, Philippines
2Department of Arts and Sciences, Institute of Teacher Education, Arts, and Sciences, Davao del Sur State College, Brgy. Matti, Digos City 8002, Philippines. Tel. +82-293-9136, *email: jayson.pucot@g.msuiit.edu.ph

Abstract. Pucot JR, Demayo CG. 2021. Ethnomedicinal documentation of polyherbal formulations and other folk medicines in Aurora, Zamboanga del Sur, Philippines. Biodiversitas 22: 5331-5343. In Aurora—a rural municipality in western Mindanao, Philippines, wide patronization of folk medicines has been observed, and polyherbal formulations are one of the treatments used. However, knowledge of these formulations has not been documented, imposing a threat that might lead to its eventual loss. The lack of baseline information on these formulations also stagnates its development, and the danger of possible herb-herb interactions might remain high. Therefore, this study aims to compile polyherbal formulations and other folk medicine used by the healers and locals of Aurora and assess the utilization and knowledge of these indigenous practices with implications for its conservation and strengthening localized folk medicine pharmacovigilance. Through purposive and snowball sampling, a total of 23 key informants volunteered and were interviewed using semi-structured questionnaires. Knowledge and practices about medicinal plants were analyzed using descriptive statistics. A total of 34 polyherbal formulations and ten other folk medicines were recorded. Most of the plant species used belonged to the Poaceae family (14 species), Arecaceae, and Musaceae families (10 species each) and were mainly utilized for bughat, pasmo, and kabuhi-illnesses linked with cultural beliefs. The concept of synergism was also observed when it comes to folk medicine usage. It is recommended that more surveys of polyherbal medicines be conducted along with chemical profiling and pharmacological investigations, especially in the rural areas where these folk medicines are still widely utilized.

Keywords: Ethnopharmacology, herbal medicines, medicinal plants, Mindanao, rural health, survey

INTRODUCTION

In the absence of modern therapeutics, people used herbal medicines to treat and prevent diseases (Yaniv 2014). The naturally occurring compounds found in these plants have been essential for discovering novel medicine candidates even to this day (Sintar 2020). Although western medicines are now widely available, the use of medicinal plants is still increasing because of numerous reasons, including a broad spectrum of cultural and socioeconomic factors (Rondilla et al. 2021). Many studies have already shown that plants, from Abelmoschus esculentus (L.) Moench to Zingiber officinale Roscoe have various biological activities that are widely beneficial to human health (Alima and Demayo 2018; Pucot et al. 2021). Many laboratory-based assessments were conducted as a result of different ethnobotanical surveys in various local communities and indigenous groups (Prastiyananto et al. 2020; Vo et al. 2015), reiterating the importance of bioprospecting folk medicine in the drug discovery and development processes.

In the Philippines, especially in the rural areas of Mindanao, herbal medicines are still widely used for the prevention and treatment of diseases (Alduhisa and Demayo 2019; Olowa and Demayo 2015; Pucot and Demayo 2021a; Pucot et al. 2019). A recent survey in Aurora—a rural municipality in western Mindanao, showed wide patronization of folk medicines (Pucot and Demayo 2021b). These have been attributed to many factors, including rich cultural diversity and a long history of using folk medicine (https://aurorazdgs.gov.ph). Traditional healers are often consulted when locals have health concerns and commonly prescribe plants either individually or in polyherbal formulations. These formulations, however, have not been documented, and the lack of information on this indigenous knowledge might result in its eventual loss. The development of the country’s polyherbal formulations might also stagnate because of the lack of baseline data. The threat of possible herb-herb interaction and adverse effects might remain high without this baseline information.

Therefore, this study aims to compile polyherbal and other folk medicines used by the healers and locals of Aurora, Zamboanga del Sur, and assess their utilization and knowledge of this valuable indigenous knowledge with implications for its conservation and strengthening localized folk medicine pharmacovigilance.

MATERIALS AND METHODS

Study area

The research was conducted in Aurora, Zamboanga del Sur—a rural municipality in western Mindanao, Philippines

* Corresponding author.
The municipality encompasses 18,095 hectares that are distributed unevenly among its 44 barangays. The geography of the municipality is exceedingly variable, ranging from highly plain along the coastlines and lowlands to extremely steep mountains with peaks of 1000 feet above sea level. Because of its high elevation, the municipality has a cooler climate, ranging from 22 to 35 degrees Celsius (Municipality of Aurora 2014). The municipality’s vegetation is dominated by perennial trees and vine crops, followed by grazing pastures or grassland. The initial sampling was done in 14 barangays of Aurora. However, the availability of key informants was only recorded in eight barangays: (1) Acad, (2) Alegria, (3) Cabilinan, (4) Campo Uno, (5) Kahayagan East, (6) Inasagan, (7) Romarate, (8) San Jose (Figure 1).

Ethical considerations

The research was guided by the ISE codes of ethics (International Society of Ethnobiology 2006). The researcher also underwent a rapid COVID-19 antigen test before conducting the interviews with non-reactive results for both COVID-19 IgM and IgG tests (ACEH-RT: 2020-1533). All participants who volunteered for the study were assured that taking part or withdrawing would not affect them in any way, and their privacy and anonymity were maintained at all times, as reflected on the interview consent form. The interview was conducted in a location of the participant’s choosing, and those who could not read or write were granted an oral interview.

Data and sample collection

The sampling was conducted from August 2020 to March 2021, observing the health protocols laid down by the Municipal Inter-Agency Task Force for COVID-19 prevention. The study was conducted in coordination with the local government unit (LGU) under the mayor’s permit No. 3192179, the municipal Environment and Natural Resources Office (MENRO), and the Provincial Environment and Natural Resources Office (PENRO) of Zamboanga del Sur with gratuitous permit no. R9-04-2021. The sampling includes acquiring free prior informed consent, certifications, and permits, semi-structured interviews, focus group discussions, plant and field assessments, and medicinal plant identification.

Figure 1. Sampling sites in Aurora (A), Zamboanga del Sur (B), Philippines (C)
Polyherbal and other folk medicine data were collected through semi-structured interviews with key informants through purposive and snowball sampling. All data were encoded and analyzed using Microsoft Excel Spreadsheet Software. Key informants are identified as (i) Manambalay, a shamanistic or traditional healer; (ii) manghihilot, a masseur or masseuse; and (iii) community members who are knowledgeable about polyherbal formulations. The semi-structured questionnaire was modified and adapted from previous ethnobotany surveys (Abe and Ohtani 2013; Alduhisa and Demayo 2019; Okowa and Demayo 2015; Ong and Kim 2014) with modifications and Cebuano translations (the local language widely used in the area). Briefly, the questionnaire comprises demographic information such as name, age, sex, educational background, civil status, occupation, and contact information. Additional details such as the composition of the polyherbal formulations and local name of the plants’ used, purpose(s), the plant’s part(s) used, modes of application, quantities, frequency of administration, and the origins of herbal medicinal usage were also noted.

Plant collection and identification

Plant specimens were photographed during supervised field walks with the help of the respondents. Notes on the plants’ habits, habitat, vernacular names, and local names of their uses were also recorded. The samples were then processed for identification. The researchers initially identified the samples, and a botanist and taxonomist assisted in the final identification and validation. Plants were further validated by checking for spelling, synonyms, family classifications, and distribution using Co’s Digital Flora of the Philippines (CDFP; www.philippineplants.org) and Plants of the World Online (POWO; www.plantsoftheworldonline.org).

RESULTS AND DISCUSSION

Characteristics and polyherbal knowledge of the locals

Twenty-three respondents from Aurora, Zamboanga del Sur, were interviewed about their polyherbal and other folk medicinal practices. Of these respondents, there were more females (60.87%) than males (39.13%) and were mainly on the primary education level (56.52%). Based on these results, it can be argued that females and those with lower educational attainment are more aligned to using polyherbal formulations. Other closely related ethnobotanical studies in the country also showed that females have more knowledge of medicinal plants (Abe and Ohtani 2013; Balinado and Chan 2017; Tantengco et al. 2018). Some have also correlated higher educational attainment with lesser folk medicine knowledge (Morilla et al. 2014; Ong and Kim 2014), while others have reported otherwise (Abe and Ohtani 2013; Tantengco et al. 2018). It is crucial that more research on the differences in sociodemographic factors be conducted to further understand factors affecting indigenous knowledge transmission. On the other hand, most of the informants are farmers (43.48%), while the rest are manambalay (healers) (30.43%), manghihilot (masseur or masseuse) (8.70%), and unemployed (13.04%). The complete demographic profile of the respondents is presented in Table 1.

Knowledge of polyherbal formulations and other folk medicine amongst informants mainly came from their parents (39%), while others acquired this knowledge from their community (22%), learned it themselves (17%), learned it through their relatives (9%), or through tuga (13%)-a healing or mystical power bestowed by gods or spirits. Alarmingly, most of the folk medicines were administered internally (i.e., through drinking) (74%). The prolonged oral consumption of some herbal medicines is often correlated with toxicity and poisoning (de Oliveira et al. 2011; Ghorani et al. 2018; Ozyigit et al. 2018; Pavlova and Karadjova 2013); thus, it is recommended that local consumers observe caution when orally administering herbal products.

The medicinal plant species used in the polyherbal formulation were mainly gathered from lasang (52.17%) (forest or woods where dense plants and trees are present), while others collect them from their vicinity (30.43%) and their community (17.39%). The collection of plant materials was primarily done when the need arises (48%); however, some collect them daily (22%), weekly (9%), monthly (4%), and annually (17%). A strict specific schedule is followed in the collection of plant materials (e.g., when plant materials are used for healing purposes, the collection should always be done early in the morning when the sun has not risen yet).

Table 1. Sociodemographic characteristics of key informants in Aurora, Zamboanga del Sur
Category
Location
Education level
Gender
Occupation
Civil Status
Age
Moreover, the weekly collection must be done on Tuesdays and Fridays because these days are believed to have added powers to any act of shamanism and sorcery, medicinal practices, and materials used thereof. This practice was also observed in other parts of the country (Aparece 2006; Rebuya et al. 2020) and other cultures worldwide (Napoli 2008; Ugent 2000).

Furthermore, the annual collection of medicinal plants and other healing materials is usually done during the holy week. This practice is attributed to the belief that humans and gods or any spiritual entities can communicate with each other during this period; thus, prayers, healing practices, and materials conducted and collected during the holy week will be more efficacious. This practice is also heavily influenced by Christianity and its syncretism with elements of the Philippine precolonial beliefs and practices. The same practice was observed with the Lunas of Bohol (Aparece 2006), the power acquisition of local traditional healers (Necesito and Gaspan III 2019), the pangalapal of Siqijor (Bucol 2008), and even in the making of Holy anointing oil or Holy Chrism in other countries (Toma et al. 2014).

Noticably, the concept of synergism when it comes to using folk medicine was observed. This is attributed to their claims that one can combine all folk medicines as long as they are used for the same purpose. For example, a plant used as an antibacterial can be mixed with any other antibacterial plant, making it more effective and efficient in treating diseases. Further investigation should be conducted as there are possibilities of synergistic and antagonistic effects resulting from herb-herb interaction as observed in other studies (Guardo et al. 2017; Moussaoui and Alaoui 2016). Also, the concomitant use of herbal medicines with that of pharmaceutical drugs should also be investigated as it was also noted in rare cases, including the possible reactions of chemicals involved in making the herbal formulations.

Illnesses, polyherbal formulations, and other folk medicine

A total of 34 polyherbal formulations were collected in this study, as shown in Table 2. Most of the plant species used belong to the Poaceae family (14 species), followed by the Arecaceae and Musaceae families with ten species (Figure 2). Most formulations (45%) were made to treat relapse, fatigue, headache, body pain, fever, and migraine. These often simultaneously occurring illnesses are the symptoms of bughat (Unilab Incorporated 2019) and pasmo (Del Fierro and Nolasco 2013). Although bughat is usually experienced by females who have given birth (Unilab Incorporated 2019), according to the respondents, males can also experience the same, especially when they engage in highly physically demanding work shortly after or during the sickness recovery period. The same symptoms are experienced when someone is napasmo (from the root word pasmo). In the Bisaya-speaking areas, including Aurora, pasmo could have different causes and manifestations. For this study, pasmo is parallel to (Del Fierro and Nolasco 2013) definition, which is when one’s eating habits are irregular. However, according to the locals, pasmo can also be experienced when one consumes cold food and beverages or eats food considered makapasmo (can cause pasmo) when hungry, e.g., eating young coconut meat while experiencing hunger. Most of the polyherbal formulations for these illnesses are consumed internally and usually warm to attain a balance between hot and cold elements-roughly the same concept as pasma (Tan and Tan 2008). Another frequently mentioned illness is kabulti. Kabulti is described as having burning chest discomfort, bloating, burping, and sudden weakness that sometimes leads to syncope. Early reports have defined it as a pulsation that is found in the navel or hidden in the ribs and could indicate one’s body state (Rubel et al. 1975), while others describe it as gastroesophageal reflux disease (GERD) (Abatayo 2015). Nevertheless, more research into these symptoms’ clinical basis should be done to understand their causes and treatments.

Aside from polyherbal formulations, another folk medicine was also recorded in this survey, as shown in Table 3. Notably, eggs were used for treating dengue fever and symptoms of pasmo and bughat. Eggs have been considered both nutritional and functional foods with several active components, including the carotenoids lutein and zeaxanthin, which could act as antioxidants and various biological activities such as immunomodulatory and antihypertensive activities (Réhault-Godbert et al. 2019). These compounds might have caused the perceived alleviation of symptoms. The use of eggs for treatment was also recorded in other folk healers in the world, including the curanderos of the Mexican American people (Lopez 2005).

Moreover, roasting was also a popular method for preparing folk medicine, including the roasting of corn, coconut shells, and rice. Corn offers excellent health benefits, promoting postprandial glycemic or insulinemic responses, lipid metabolism, colon health, and mineral absorption (Ai and Jane 2016). Hot water with roasted corn or rice was also widely popular amongst locals as an alternative to coffee and was often promoted as a functional beverage. Compared to other belief systems, lixiviated ashes of coconut shells were also used during parem baba and after giving birth in Indonesia (Niehof 1988). It was also part of the healing practices of the Malavedan tribe (Rajasekharan 2013).
Table 2. Polyherbal medicines used by the healers and locals of Aurora, Zamboanga del Sur, Philippines

No.	Scientific name	Family	Local name	Disease or purpose	Preparation and administration	Administration frequency/duration	Quantity or dosage	
1	*Eleusine indica* (L.) Gaertn. *Kyllinga nemoralis* (J.R.Forst. & G.Forst.) Dandy ex Hutch. & Dalziel *Vigna radiata* (L.) R.Wilczek	Poaceae Cyperaceae Leguminosae	Bila-bila Busikad Monggos	Relapse, fatigue, headache, body pain, fever; migraine	Drink infusion	Thrice a day before meal or as needed	½ glass	
2	*Persea americana* Mill. *Psidium guajava* L. *Chrysophyllum cainito* L.	Lauraceae Cyperaceae Sapotaceae	Abokado Bayabas Caymito	Diarrhea, stomachache, stomach problems, peptic ulcer, gas pain, flatulence, stomach acidity, burning chest, discomfort, nausea	Drink decoction	Twice a day or as needed	One glass	
3	*Musa acuminata x balbisiana* *Cocos nucifera* L.	Musaceae Arecaeae	Saging kardaba Lubi (limbahon)	Relapse, fatigue, headache, body pain, fever; migraine	Drink the mixture of *Saging kardaba* petiole sap and Coconut liquid endosperm (Coconut water) with hot water.	Once a day until symptoms subside	All the sap from a palm-sized petiole and a coconut fruit	
4	*Ficus septica* Burm.f *Mimosa pudica* L. *Zea mays* L.	Moraceae Fabaceae Poaceae	Lagnob kipi-kiipi Mais	Relapse, fatigue, headache, body pain, fever; migraine	Drink decoction of roots and/or shoots of *kiipi-kiipi*, *lagnob*, and roasted *mais* seeds.	Every morning before breakfast and every night before sleeping/ until symptoms subside	1-2 glasses	
5	*Gmelina arborea* Roxb. *Jatropha curcas* L. *Zingiber officinale* Roscoe	Lamiaceae Euphorbiaceae Zingiberaceae	Gemelina Tuba-tuba Luy-a	Gas pain, flatulence; arthritis, muscle pain, muscle knots, swellings, stomach acidity, burning chest discomfort, nausea	Apply heated crushed *Gmelina* leaves, *Tubata* tuba scraped bark, and pounded rhizomes of *luy-a* as poultice.	Every morning and every night before sleeping/ until symptoms subside	Entirely on the affected area	
6	*Citrus maxima* (Burm.) Osbeck *Blumea balsamifera* (L.) DC. *Pseudelephantopus spinicus* (B.Juss. ex Aubl.) Rohr ex Gleason	Rutaceae Asteraceae Compositae	Buongon Gabon Dila dila sa iro	Relapse, fatigue, headache, body pain, fever; migraine	Drink decoction	Once a day or as needed	1-2 glasses	
7	*Psidium guajava* L. *Syzygium cumini* (L.) Skeels	Myrtaceae Myrtaceae	Bayabas Lumboy	Diarrhea and stomachache	Drink decoction	Twice a day or as needed	1-2 glasses	
No	Plant Name	Family	Part(s) Used	Condition(s)	Application	Frequency	Note	
----	------------	--------	--------------	--------------	-------------	-----------	------	
8	Musa textilis Née	Musaceae	Abaka	Relapse, fatigue, headache, body pain, fever; migraine	Drink sap from the heated center portion of three palm-sized petioles of each plant.	Once a day or as needed	All sap from one palm-sized petiole of each plant	
8	Corypha utan Lam.	Arecaceae	Buli					
8	Musa acuminata x balbisiana	Musaceae	Saging					
8	Musa sp.	Musaceae	Saging bulongan					
9	Momordica charantia L.	Cucurbitaceae	Ampalaya	Flatulence, fatigue, relapse, headache, body pain, fever, muscle knots, muscle spasm, muscle pain, swellings, stomach acidity. Burning chest discomfort, nausea	Mix *sili* fruit, *ampalaya* crushed and heated leaves, and coconut oil and apply as a massage oil	As needed	Entirely on the affected area	
9	Capsicum annuum L.	Solanaceae	Sili					
9	Cocos nucifera L.	Arecaceae	Lubi					
10	Pseudelephantopus spicatus (B.Juss. ex Aubl.) Rohr ex Gleason	Compositae	Dila dila sario	Flatulence, stomachache, diarrhea, dysmenorrhea, stomach acidity	Apply heated and crushed roots and/or shoots of each plant as a poultice.	As needed	Entirely on the affected area	
10	Chromalena odorata (L.) R.M. King & H.Rob.	Asteraceae	Hagonoy					
10	Blumea balsamifera (L.) DC.	Asteraceae	Gabon					
11	Eleusine indica (L.) Gaertn.	Poaceae	Bila bila	Fever, teething child	Drink warm water infused with the respective plant’s part	As needed	½ glass	
11	Vigna radiata (L.) R.Wilczek	Leguminosae	Monggos					
11	Kyllinga nemoralis (J.R.Forst. & G.Forst.) Dandy ex Hutch. & Dalziel	Cyperaceae	Busikad					
11	Blumea balsamifera (L.) DC.	Asteraceae	Gabon					
11	Euphorbia hirta L.	Euphorbiaceae	Tawa-tawa, mangagaw					
12	Jatropha curcas L.	Euphorbiaceae	Tuba-tuba	Maternal care, postpartum recovery, labor enhancer	Mix coconut oil with *tuba-tuba* scraped bark, *luy-a* crushed rhizome, and *tabako* pounded leaves, and apply as a poultice or as a massage oil.	As needed	Entirely on the affected area	
12	Zingiber officinale Roscoe	Zingiberaceae	Luy-a					
12	Nicotiana tabacum L.	Solanaceae	Tabako					
12	Cocos nucifera L.	Arecaceae	Lubi					
13	Myristica simiarum A. DC.	Myristicaceae	Duguan, dugusay	Relapse, fatigue, headache, body pain, fever; migraine	Drink the mixture of decocted *Duguan* bark (1-3 palm-sized bark), *Saging kardaba* roots, and *gaan-gaan* roots with coconut water	Once a day or as needed	1-2 glasses	
13	Musa acuminata x balbisiana	Musaceae	Saging					
13	Cocos nucifera L.	Arecaceae	Lubi (limbahon)					
13	Flemingia strobilifera (L.) W.T.Aiton	Leguminosae	gaan-gaan					
No.	Plant Name	Family	Common Name	Part(s) Used	Use(s)			
-----	------------	--------	-------------	-------------	--------			
14	*Blumea balsamifera* (L.) DC.	Asteraceae	Gabon	Cough, fever, chills	Lf	E Apply as a poultice on the chest, forehead, and other parts of the body	As needed	Entirely on the affected area
15	*Corypha utan* Lam.	Arecaceae	Buli	Relapse, fatigue, headache, body pain, fever; migraine	Sp	I Drink the sap from the heated center portion of three palm-sized petioles of each plant.	Once a day or as needed	All extracted sap
16	*Musa acuminata* Colla	Zingiberaceae	Luy-a	Diabetes	Lf	I Drink water infusion	Once a day or as needed	½-1 glass
17	*Bidens pilosa* L.	Asteraceae	Tuway-tuway, Tulay-tulay	Relapse, fatigue, headache, body pain, fever; migraine	Rt	I Drink decoction	Once a day or as needed	One glass
18	*Heliotropium indicum* L.	Boraginaceae	Elepanteng puti					
19	*Corchorus olitorius* L.	Malvaceae	Saluyot Okra					
20	*Persea americana* Mill.	Lauraceae	Abokado buongon	Relapse, fatigue, headache, body pain, fever; migraine	Lf	I Drink decoction	Once a day or as needed	1-2 glasses
No.	Plant Name (Family)	Local Name	Medicinal Use	Part Used	Method	Dosage		
-----	---------------------	------------	---------------	-----------	--------	--------		
21	Pterocarpus indicus Willd.	Leguminosae	Nara	Leukemia	Brk	Drink decoction	Every morning and every night before sleeping/ until symptoms subside	
21	Vitex parviflora A.Juss.	Lamiaceae	Tugas					
21	Lagerstroemia speciosa (L.) Pers.	Lythraceae	Banaba					
22	Cordia dichotoma G. Forst.	Boraginaceae	Anonang	Diarrhea, gastrointestinal problems, stomach acidity, burning chest discomfort, nausea	Brk	Drink decoction	Twice a day or as needed	
22	Ficus septica Burm.f	Moraceae	Lagnob			1-2 glasses		
23	Cordia dichotoma G. Forst.	Boraginaceae	Anonang	Relapse, fatigue, headache, body pain, fever; migraine	Brk	Drink decoction	Twice a day or as needed	
23	Ficus septica Burm.f	Moraceae	Lagnob			One glass		
23	Dendrocnide meyeniana (Walp.) Chew	Urticaceae	Alingatong kahoy					
23	Leucozyke capitellata (Poir.) Wedd.	Urticaceae	Lagasi					
23	Sonneratia caseolaris (L.) Engl.	Lythraceae	Pagatpat					
24	Chrysopogon aciculatus (Retz.) Trin.	Poaceae	Amorsiko	Hypertension	Wh	Drink decoction	Once a day or as needed	
24	Bambusa bambos (L.) Voss	Poaceae	Kawayan			One glass		
24	Mimosa pudica L.	Fabaceae	Kipi-kipi, hibi-hibi, makahiya					
25	Sida acuta Burm.f.	Malvaceae	Iskobang mayawis	Muscle knots, muscle spasm; bruise, sprains, strains, fracture, and dislocation	Rt	Apply crushed and heated plant parts as a poultice	As needed	
25	Justicia gendarussa Burm.f	Acanthaceae	Mandalusa			Entirely on the affected area		
25	Blumea balsamifera (L.) DC.	Asteraceae	Gabon					
25	Nicotiana tabacum L.	Solanaceae	Tabako					
26	Imperata cylindrica (L.) R. Raesch.	Poaceae	Kugon	Relapse, fatigue, headache, body pain, fever; migraine	Lf	Drink infusion	Once a day or as needed	
26	Kyllinga nemoralis (J.R.Forst. & G.Forst.) Dandy ex Hutch. & Dalziel	Cyperaceae	Busikad			1-2 glasses		
26	Corypha utan Lam.	Areceae	Buni					
26	Eleusine indica (L.) Gaertn.	Poaceae	Bila-bila					
27	Cordia dichotoma G. Forst.	Boraginaceae	Anonang	Relapse, fatigue, headache, body pain, fever; migraine	Rt	Drink decoction	Once a day or as needed	
27	Cordia dichotoma G. Forst.	Areceae	Buni			1-2 glasses		
27	Lygodium circinatum (Burm. f.) Sw.	Lygodiaceae	Nito					
No.	Plant Name	Family	Part(s) Used	Condition(s)	Directions	Frequency/Duration	Notes	
-----	------------	--------	--------------	--------------	------------	-------------------	-------	
28	*Blumea balsamifera* (L.) DC.	Asteraceae	Lf	Cough, chills, fever	Drink decoction	Every morning or as needed	1-2 glasses	
	Vitex negundo L.	Lamiaceae	Lf					
	Coleus amboinicus Lour.	Lamiaceae	Lf					
29	*Ficus minahassae* (Teijm. & Vriese) Miq.	Moraceae	Rt	Relapse, fatigue, headache, body pain, fever; migraine	Drink decoction	Twice a day or as needed	1/2 glass	
	Ficus septica Burm.f	Moraceae	Lf					
30	*Musa acuminata* Colla	Musaceae	Pt	Scabby lesion, scabies, skin diseases, itchiness, eczema, ringworms, dermatitis,	Mix extracts and apply to the affected area	Thrice a day or as needed	Entirely on the affected area	
	Plectranthus scutellarioides (L.) R.Br.	Lamiaceae	Lf					
31	*Zea mays* L.	Poaceae	Se	Relapse, fatigue, headache, body pain, fever; migraine	Drink decoction of *buongon, gabon,* and *hilbas leaves* together with whole *bila-bila* plant and roasted *mais* seeds.	Once a day or as needed	One glass	
	Citrus maxima (Burm.) Osbeck	Rutaceae	Lf					
	Blumea balsamifera (L.) DC.	Asteraceae	Lf					
	Psidium guajava L.	Myrtaceae	Lf					
	Artemisia vulgaris L.	Compositae	Lf					
	Eleusine indica (L.) Gaertn.	Poaceae	Wh					
	Cocos nucifera L.	Areceae	Sh					
32	*Musa acuminata* Colla	Musaceae	Pt	Teething baby, gum problems	Pound *saging murado* petiole, *salimbagat* leaves, and one teaspoon of salt and apply to affected gums	Every morning until symptoms subsides	Entirely on the affected area	
	Thottea affinis (Planch. ex Rolfe) med.	Aristolochiaceae	Lf					
	Sodium chloride or salt							
33	*Corypha utan* Lam.	Areceae	Sp	Relapse, fatigue, headache, body pain, fever; migraine	Drink the sap from the heated center portion of three palm-sized petioles of each plant	Once a day or as needed	All extracted sap	
	Musa spp.	Musaceae	Sp					
	Zea mays L.	Poaceae	Sh	Relapse, fatigue, headache, body pain, fever; migraine	Drink water infused with roasted *lagnob* shoots, and starchy water from boiling rice	Every morning for three days/ until symptoms subsides	1/2 glass	
	Ficus septica Burm.f	Moraceae	Lf					
	The starchy water from boiling or cooking rice							

Note: 1PP: Plant-parts used: Brk: bark; Fr: fruit; Lf: leaves; Pt: petiole; Rt: roots; Rz: rhizome; Se: seeds; Sh: shoots; Sp: sap; St: stem; Wh: whole plant. 1I: internal; E: external
No.	Scientific name/ English name or translation	Local name	Disease or purpose	Preparation and administration	Frequency/duration	Quantity/dosage
1	Philippine native chicken undercooked egg	Malasadong itlog sa manok	Relapse, fatigue, headache, body pain, fever; migraine	Eat undercooked egg directly	Every morning before meal for three days/ until symptoms subside	One whole egg
2	Uncooked quail egg	Itlog sa pugo	Dengue fever	Ear raw egg directly	Every morning before meal for three days/ until symptoms subside	One whole egg
3	Roasted coconut shell	Bagol paigon	Relapse, fatigue, headache, body pain, fever; migraine	Drink water infused with roasted coconut shell	Every morning before a meal until symptoms subside	$\frac{1}{2}$-1 glass
4	Earthworm feces	Tae sa wati paigon	Relapse, fatigue, headache, body pain, fever; migraine	Drink water infused with earthworm feces	Only once or as needed	$\frac{1}{2}$ glass
5	Softdrinks	Softdrinks	Relapse, fatigue, headache, body pain, fever; migraine	I; Mix ice into a boiling hot mixture of soft drinks and roasted rice and inhale the steam; Apply the moisture from the boiling mixture of soft drinks and roasted rice on the patient’s back	Every night before sleeping for three days; As needed	Entirely on the affected area
	Ice	Ice				
	Roasted rice	Pinaig na bugas humay				
6	Brown sugar	Sentral	Nausea, Diarrhea	Drink a mixture of 1-3 tablespoons of caramelized brown sugar and a cup of water.	As needed	One glass
7	Soil	Yuta	Goiter	Apply on the neck a handful of soil collected a foot deep from the ground.	Every morning thrice a week or as needed	The process is done to prevent goiter from developing, so it is a life-long treatment.
8	Three strands of human hair	Tulo ka grano sa buhok Mais pinaig	Relapse, fatigue, headache, body pain, fever; migraine	Drink water infused with three strands of human hair and roasted corn	Every morning for three days or as symptoms subside	1/2 glass
9	Artemisia vulgaris L.	Hilbas Mais pinaig	Relapse, fatigue, headache, body pain, fever; migraine	Drink decoction of hilbas leaves and roasted corn mixed with egg	Every morning for three days or as symptoms subside	1/2-1 glass
10	Philippine native chicken egg	Itlog bisaya	Mental disorder or distress	Tie the person on the doldol tree	A week or as needed	

Note: I: internal; E: external
Bioprospecting and pharmacovigilance of polyherbal and other folk medicine

Previous studies have investigated individual plants’ bioactive compounds, including their in vitro and in vivo pharmacological activities (He et al. 2007; Alima and Demayo 2018; Pucot and Demayo 2021a; Pucot et al. 2021). Polyherbal formulations, however, were not emphasized because of their complex synergistic and antagonistic effects and structural diversity (Li and Lou 2017; Abdalla and Mühling 2019). Nevertheless, some were able to utilize the enormous potential of polyherbal medicines, which have shown promising health benefits. An example is the polyherbal formulation Diasulin that is used for its anti-diabetic efficacy. Diasulin is a polyherbal drug composed of ethanolic extracts from ten medicinal plants, which shows a significant decrease in blood glucose, tissue lipids, lipid peroxide formation, and increased plasma insulin (Ghorbani 2014).

In this study, the most frequently mentioned polyherbal formulations were the ABC or the Abokado (P. americana), Bayabas (P. guajava), and Caimito (C. caimito) formulations. It is primarily used for problems of the digestive system. Previous reports have shown that P. americana and P. guajava have anti diarrheal activities (Adeniyi et al. 2020; Santhoshkumar et al. 2014) while C. caimito had antialcuer effects (da Rosa et al. 2019). However, there is currently no data on the effects of these plants when combined, and the mechanisms of action are still unknown. Thus, it is recommended that this polyherbal formulation be investigated further along with other formulations reported in this study.

Studies concerning polyherbal formulations, including surveys and laboratory assays, should be done not only for bioprospecting but also for strengthening herbal medicines’ pharmacovigilance. With this, various parameters, including the pharmacokinetic (PK)-pharmacodynamics (PD) of the interaction between polyherbal medicines and pharmaceutical drugs, should also be conducted as there are instances where these medicines are used concomitantly (e.g., warfarin and herbal medicine (Choi et al. 2017)). Adverse drug reactions have become a significant global public health problem which comprises 6.7% of all hospitalizations in selected regions of the world, and the number is still rising (Gromek et al. 2015). This calls for a systematic and more detailed ADME/Tox and chemical profiling of herbal medicines along with surveys in many rural areas like Aurora and indigenous people-inhibited areas where these folk medicines are still widely utilized.

The study reported the first survey of polyherbal medicines in western Mindanao, Philippines. In conclusion, it recorded 34 polyherbal formulations and ten other folk medicines utilized by healers and locals to prevent and treat diseases. These medicines were commonly used to treat bughat, pasmo, and kabuhi, which might imply that these diseases are currently widespread in the area; thus, should be further investigated. Through this survey, a snippet of the country’s indigenous knowledge of plant utilization and knowledge of folk medicine has been documented, which offers vast opportunities for further pharmacological research and leads to discovering novel bioactive compounds with implications for its conservation. The survey’s output also reiterates the need to document folk medicines in rural-most areas and indigenous people-inhabited areas where pharmacovigilance should also be given importance to avoid detrimental effects of toxic components of some herbal medicines on human health.
ACKNOWLEDGMENTS

We are very grateful to the locals of Aurora, Zamboanga del Sur, for their active involvement and support in the conduct of the study. The first author would like to thank Aida, Gretchie, and Jhomie for field assistance. The first author would also like to thank the Department of Science and Technology-Accelerated Science and Technology Human Resource Development Program-National Science Consortium (DOST-ASTHRDP-NSC) for the scholarship grant. We also acknowledge the DENG Region IX and LGU Aurora for granting the permits used in this study and Muhmin Michael Manting and Mark Arcelay K. Naive for assistance in the identification of samples.

REFERENCES

Abatayo RS, PM. 2015. Ang kabuhi. https://www.phistar.com/banan/opinion/2015/02/20/1425586/ang-kabuhi [9-6-2021].

Abdalla MA, Mühling KH. 2019. Plant-derived sulfur containing natural products produced as a response to biotic and abiotic stresses: A review of their structural diversity and medicinal importance. J Appl Bot Food Qual 92: 204-215. DOI: 10.5073/JABFQ.2019.092.029.

Abe R, Ohtani K. 2013. An ethnobotanical study of medicinal plants and traditional therapies on Batan Island, the Philippines. J Ethnopharmacol 145 (2): 554-565. DOI: 10.1016/j.jep.2012.11.029.

Ademiyi O, Tion D, Ako M, Banise O. 2020. Ameliorative effects of aqueous extract of avocado pear oil on castor oil induced diarrhea in experimental animals. World J Med Biomed Sci 1 (2): 125-131.

Ai Y, Jone J. 2016. Macronutrients in corn and human nutrition. Compr Rev Food Sci Food Saf 15 (3): 581-598. DOI: 10.1111/1541-4337.12192.

Alduhisa GU, Demayo CG. 2019. Ethnomedicinal plants used by the Subanen tribe in two villages in Ozamis City, Mindanao, Philippines. Pharmacophore 10 (4): 28-42.

Alima Z, Demayo CG. 2018. Antioxidant and cytotoxic activities of selected plant extracts against human non-small cell lung adenocarcinoma (A549), human colon carcinoma cells (HCT116) and Chinese hamster normal ovary cells (Aa8). Intl J Pharm Res 9 (11): 4562-4571.

Aparece UB. 2006. Lunas: The “Mother” of all Sukdan Shamans’ medicines. Asian Pac J Trop Biomed 6: 573-576. DOI: 10.1016/j.apjtb.2010.05.016.

Abatayo CG. 2019. Ethnomedicinal plants used by the indigenous Subanen tribe in two villages in Ozamis City, Mindanao, Philippines. J Ethnopharmacol 1231: 125-131.

Nguyen TA, Elbrecht MM, Ghorbani A, Demayo CG. 2018. Antioxidant and cytotoxic activities of selected plant extracts against human non-small cell lung adenocarcinoma (A549), human colon carcinoma cells (HCT116) and Chinese hamster normal ovary cells (Aa8). Intl J Pharm Res 9 (11): 4562-4571.

Ghorbani A. 2014. Clinical and experimental studies on polyherbal formulations for diabetes: current status and future prospective. J Integr Med 12 (4): 336-345. DOI: 10.1016/j.jim.2014.06.015.

Gromek K, Drumond N, Simas P. 2015. Pharmacovigilance of herbal medicines. Int J Risk Saf Med 27: 55-65. DOI: 10.3233/JRS-150643.

Grosjean NI, Sainz P, González-Coloma A, Barullo J, Martínez-Díaz RA. 2017. Trypanocidal effects of essential oils from selected medicinal plants. Synergy among the main components. Nat Prod Commun 12 (5): 1934578X1701200056. DOI: 10.1177/1934578X1701200056.

He L, Wang Y-S, Wang Q-I. 2007. In vitro antitumor activity of triterpenes from Cerinops tayaul. Nat Prod Res 21 (14): 1228-1233. DOI: 10.1080/14778640701569516.

International Society of Ethnobiology. 2006. ISE Code of Ethics (with 2008 additions).

Li G, Lou H. 2017. Strategies to diversify natural products for drug discovery. Med Res Rev 38 (4): 1255-1294. DOI: 10.1002/med.21474.

Lopez RA. 2005. Use of alternative folk medicine by Mexican American women. J Immigr Health 7 (1): 23-31. DOI: 10.1007/s10903-005-1387-8.

Morilla LJO, Sumaya NHN, Rivero HH, Madamba RSB. 2014. Medicinal plants of the Subanen in Dumug, Zamboanga del Sur, Philippines. Intl Conf Food Biol Med Sci. DOI: 10.15242/ ncbe.c0114577.

Moussoua F, Alaoui T. 2016. Evaluation of antibacterial activity and synergistic effect between antibiotic and the essential oils of some medicinal plants. Asian Pac J Trop Biomed 6 (1): 32-37. DOI: 10.4103/apjtb.apjtb2015.09.024.

Municipality of Aurora. 2014. Comprehensive Land Use Plan: 2014-2024. Zamboanga del Sur, Philippines.

Napoli M. 2008. The plants, rituals and spells that “cured” helminthiasis in Sicily. J Ethnobiol Ethnomed 4 (1): 1-19. DOI: 10.1186/1746-4269-4-21.

Necesito R, Gaspan III WS. 2019. The power of healing: Decolonizing feminist reading of Luke 9: 49-50 and the traditional healers in the Philippines. SDCA Asia-Pacific Multidisciplinary Res J 1 (1): 57.

Niehof A. 1988. Traditional medication at pregnancy and childbirth in Madura, Indonesia. The Context of Medicines in Developing Countries. Springer Netherlands, Dordrecht. DOI: 10.1007/978-94-009-2713-1_12.

Olomega L, Demayo C. 2015. Ethnomedicinal uses of medicinal plants among the Muslim Maranaos in Iligan City, Mindanao, Philippines. Adv Environ Biol 9 (27): 204-216.

Ong HG, Kim YD. 2014. Quantitative ethnobotanical study of medicinal plants in Aurora, Zamboanga del Sur: implications to contemporary medicine. J Complement Med Res 12: 163-168. DOI: 10.15294/biosaintifika.v12i2.23600.

Niehof A. 1988. Traditional medication at pregnancy and childbirth in Madura, Indonesia. The Context of Medicines in Developing Countries. Springer Netherlands, Dordrecht. DOI: 10.1007/978-94-009-2713-1_12.

Pucot J, Demayo C. 2021a. Medicinal plants used by the indigenous people of the Philippines: A systematic review of ethnobotanical surveys and bioactive compounds. J Complement Med Res 12 (2): 107-131. DOI: 10.15242/iicbe.c0114577.

Pucot J, Demayo C. 2021b. Medicinal plants used by the indigenous people of the Philippines: A systematic review of ethnobotanical surveys and bioactive compounds. J Complement Med Res 12 (2): 231-239. DOI: 10.15455/jcmr.2021.12.02.15.

Pucot JR, Dapar MLG, Demayo CG. 2021. Qualitative analysis of the antimicrobial, phytochemical and GC-MS profile of the stem ethanolic extract from Androcladus borneensis (King and Gamble). J Complement Med Res 12 (2): 107-131. DOI: 10.15455/jcmr.2021.12.02.15.

Pucot JR. 2015. An overview of selected medicinal plants growing on serpentine in Bulgaria. Biol Trace Elem Res 158: 288-297. DOI: 10.1007/s12011-013-9484-8.

Prastiyantie ME, Wardoyo FA, Wilson W, Darmawati S. 2020. Antibacterial activity of various extracts of Averrhoa bilimbi against multidrug resistant bacteria. Biosaaintika J Biol Biol Edue 12 (2): 163-168. DOI: 10.15294/biosaaintika.v12i2.23600.

Pucot J. 2015. Medicinal plants used by the indigenous people of the Philippines: A systematic review of ethnobotanical surveys and bioactive compounds. J Complement Med Res 12 (2): 107-131. DOI: 10.15455/jcmr.2021.12.02.15.

Pucot JR. 2021a. Medicinal plants used by the indigenous people of the Philippines: A systematic review of ethnobotanical surveys and bioactive compounds. J Complement Med Res 12 (2): 231-239. DOI: 10.15455/jcmr.2021.12.02.15.

Pucot JR, Dapar MLG, Demayo CG. 2021. Qualitative analysis of the antimicrobial, phytochemical and GC-MS profile of the stem ethanolic extract from Androcladus borneensis (King and Gamble). J Complement Med Res 12 (2): 231-239. DOI: 10.15455/jcmr.2021.12.02.15.

Pucot JR, Demayo C. 2021b. Traditional and poly-herbal formulations of medicinal plants in Aurora, Zamboanga del Sur: Implications to healthcare-seeking behavior and safety. Mindanao State University-Ligaran Institute of Technology, Philippines.

Pucot JR, Manting MME, Demayo CG. 2019. Ethnomedicinal plants used by selected indigenous peoples of Mindanao, the Philippines as cancer therapeutics. Phcma Pharm Res 10 (3): 61-69.

Rajasekharan S. 2013. Traditional and folk practices-contemporary relevance and future prospects. Erara Environ Congr 141.
Rebuya NR, Lasarte ES, Amador MMA. 2020. Medical pluralism, traditional healing practices, and the partido albularyo: Challenge in inclusion. Open J Soc Sci 8 (6): 72-79. DOI: 10.4236/jss.2020.86007.

Rélhaut-Godbert S, Guyot N, Nys Y. 2019. The golden egg: Nutritional value, bioactivities, and emerging benefits for human health. Nutrients 11 (3): 684. DOI: 10.3390/nu11030684.

Rondilla NAO, Rocha ICN, Roque SJR, Lu RMS, Apolinar NLB, Solaiman-Balt AA, Abion TJJ, Banatin PBP, Javier CVM. 2021. Folk medicine in the Philippines: A phenomenological study of health-seeking individuals. Int J Med Stud 9 (1): 25-32. DOI: 10.5195/ijms.2021.849.

Rubel AJ, Weller-Fahy K, Trosdal M. 1975. Conception, gestation, and delivery according to some Mananabang of Cebu. Philipp Q Cult Soc 3 (2/3): 131-145.

Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, Velayutham K, Thomas J, Venkatesan J, Kim S-K. 2014. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 7 (12): 968-976. DOI: 10.1016/S1995-7645(14)60171-1.

Sintar I. 2020. Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochem Rev 19: 1199-1209. DOI: 10.1007/s11101-019-09629-9.

Tan ML, Tan MT. 2008. Revisiting Usog. Pasma, Kulam. The University of the Philippines Press, Diliman, Quezon City, Philippines.

Tantengco OAG, Condes MLC, Estadilla HHT, Ragragio EM. 2018. Ethnobotanical survey of medicinal plants used by aya communities in Dinalupihan, Bataan, Philippines. Pharmacogn J 10 (5): 859-870. DOI: 10.5530/pj.2018.5.145.

Toma C-C, Cotoraci CA, Caruntu S-A, Morigovan C, Neag TA, Olah N. 2014. The new concept of “clerically healing” the holy Chrism. Eur J Sci Theology 10 (5): 185-197.

Ugent D. 2000. Medicine, myths and magic the folk healers of a mexican market. Econ Bot 54 (4): 427-438. DOI: 10.1007/BF02866542.

Unilab Incorporated. 2019. Bughat is Real. https://www.unilab.com.ph/bexidol-forte/articles/articles/bughat-is-real [8-6-2021].

Vo QH, Nguyen PH, Zhao BT, Ali MY, Choi JS, Min BS, Nguyen TH, Woo MH. 2015. Protein tyrosine phosphatase 1B (PTP1B) inhibitory constituents from the aerial parts of Tradescantia spathacea Sw. Fitoterapia 103: 113-121. DOI: 10.1016/j.fitote.2015.03.017.

Yaniv Z. 2014. Introduction: Medicinal plants in ancient traditions. Medicinal and Aromatic Plants of the Middle-East. Springer, Dordrecht. DOI: 10.1007/978-94-017-9276-9_1.