Effect of prone position on respiratory parameters, intubation and death rate in COVID-19 patients: systematic review and meta-analysis

Fatemeh Behesht Aeen1, Reza Pakzad2, Mohammad Goudarzi Rad3, Fatemeh Abdi4,5*, Farzaneh Zaheri6 & Narges Mirzadeh7

Prone position (PP) is known to improve oxygenation and reduce mortality in COVID-19 patients. This systematic review and meta-analysis aimed to determine the effects of PP on respiratory parameters and outcomes. PubMed, EMBASE, ProQuest, SCOPUS, Web of Sciences, Cochrane library, and Google Scholar were searched up to 1st January 2021. Twenty-eight studies were included. The Cochran’s Q-test and I² statistic were assessed heterogeneity, the random-effects model was estimated the pooled mean difference (PMD), and a meta-regression method has utilized the factors affecting heterogeneity between studies. PMD with 95% confidence interval (CI) of PaO₂/FIO₂ Ratio in before-after design, quasi-experimental design and in overall was 55.74, 56.38, and 56.20 mmHg. These values for Spo₂ (SaO₂) were 3.38, 17.03, and 7.58. PP in COVID-19 patients lead to significantly decrease of the Paco₂ (PMD: −8.69; 95% CI −14.69 to −2.69 mmHg) but significantly increase the PaO₂ (PMD: 37.74; 95% CI 7.16–68.33 mmHg). PP has no significant effect on the respiratory rate. Based on meta-regression, the study design has a significant effect on the heterogeneity of Spo₂ (SaO₂) (Coefficient: 12.80; p < 0.001). No significant associations were observed for other respiratory parameters with sample size and study design. The pooled estimate for death rate and intubation rates were 19.03 (8.19–32.61) and 30.68 (21.39–40.75). The prone positioning was associated with improved oxygenation parameters and reduced mortality and intubation rate in COVID-19 related respiratory failure.

Abbreviations
PMD Pooled mean difference
CI Confidence interval
ARDS Acute Respiratory Distress Syndrome
VILI Ventilator-induced lung injury
PaO₂ Pressure of arterial oxygen
FIO₂ Fraction of inspired oxygen
WHO World Health Organization
PP Prone position
NIV Non invasive ventilation
IMV Intermittent mandatory ventilation
HFNO High flow nasal oxygen
PEEP Positive end expiratory pressure

1Student Research Committee, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran. 2Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran. 3Master of Critical Care Nursing, Tehran University of Medical Sciences, Tehran, Iran. 4School of Nursing and Midwifery, Alborz University of Medical Sciences, Karaj, Iran. 5Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran. 6Midwifery Department, Kurdistan University of Medical Sciences, Sanandaj, Iran. 7Department of Midwifery, School of Nursing and Midwifery, Bam University of Medical Sciences, Bam, Iran. *email: abdi@sbmu.ac.ir
Recently a new virus called coronavirus 2019 (COVID-19) is spreading all around the world\cite{1,2} and caused a global pandemic with increasing incidence, mortality, and medical resource consumption which impose enormous socio-economic burdens\cite{3,4}. COVID-19 disease ranges from mild respiratory tract illness to severe progressive pneumonia, primarily manifesting as acute respiratory distress syndrome (ARDS) requiring admission to the intensive care unit (ICU)\cite{5}. ARDS occurs in 20–41% of patients\cite{5}. The mortality rate among ARDS patients is high and has been reported to be between 30 and 40%\cite{6,7}. Higher mortality of COVID-19 patients may be related to higher incidences of barotrauma and ventilator-induced lung injury (VILI)\cite{8}. The COVID-19 pandemic presented a unique challenge for the health care systems. The shortage of resources is one of these problems that pandemic imposed, include human resources, ICU beds, and mechanical ventilators\cite{9}. In the absence of effective therapies for COVID-19, the implementation of supportive care is essential\cite{10}. Prone positioning is one of these interventions for patients with severe ARDS, which could improve oxygenation and has a survival benefit\cite{11} and also could improve outcomes in COVID-19 patients. It has been suggested as the standard of care in international guidelines\cite{12}. Prone positioning is a prone position for periods of 12–16 h/day\cite{13,14,15}. Correct selection of patients and applying the accurate treatment protocol for prone positioning are crucial to its efficacy\cite{6}. Special precautions are required for placing and monitoring a patient in the prone position\cite{16}. Intubated patients in prone positioning are at risk, such as accidental removal of the tracheal tube, pressure ulcer, facial edema, gastroesophageal reflux, and other problems. Overall, it seems that correct patient selection, timely initiation, and duration of patient’s placement in this position can all affect the effectiveness of this intervention\cite{6}. Considering that COVID-19 is a novel disease that caused many difficulties and due to lack of sufficient evidence, the need to assess the effects of prone positioning as a supportive care in hypoxemic patients is necessary, so we conducted this systematic review and meta-analysis to determine the effects of prone position on respiratory parameters and outcomes of COVID-19 patients.

Materials and methods

In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for designing and implementing systematic review studies, the following steps were taken: a systematic literature search, organization of documents for the review, abstracting and quality assessment of each study, synthesizing data, and writing the report\cite{21}. The protocol of the study was registered in the International Prospective Register Of Systematic Reviews (PROSPERO) at the National Institute For Health Research. Registration number in PROSPERO is CRD42021257619.

Search strategy. According to the PICO framework, the systematic literature search was conducted on PubMed, EMBASE, ProQuest, SCOPUS, Web of Sciences, Cochrane library, and Google Scholar databases. MeSH Keywords were connected with AND, OR and NOT prone position and respiratory parameters, and their suggested entry terms were the main keywords in the search strategy.

1. 'Coronavirus Disease 2019' [Title/Abstract], OR 'COVID-19' [Title/Abstract], OR 'Coronavirus' [Title/Abstract], OR 'SARS-cov-2' [Title/Abstract], OR 'Severe acute respiratory syndrome coronavirus-2' [Title/Abstract], OR '2019-nCoV' [Title/Abstract], OR 'SARS-Cov' [Title/Abstract]
2. 'Prone' [Title/Abstract], OR 'Prone position' [Title/Abstract]
3. 'Oxygenation' [Title/Abstract], OR 'Cell Respiration' [Title/Abstract], OR 'Cell Respiration' [Title/Abstract]
4. 'Respiratory Distress Syndrome' [Title/Abstract], OR 'Acute respiratory distress syndrome' [Title/Abstract], OR 'Hypoxemic' [Title/Abstract], OR 'Respiratory Insufficiency' [Title/Abstract], OR 'Dyspnea' [Title/Abstract]
5. 1 AND 2
6. 1 AND 2 AND 3
7. 2 AND 3 AND 4
8. 1 AND 2 AND 3 AND 4

Population, Intervention, Comparators, Outcomes (PICO) criteria for this study includes (P): patients with COVID-19. (I): prone position. (C): no intervention. (O): respiratory parameters and outcome.

Abbreviation	Description
CPAP	Continuous positive airway pressure
SD	Standard deviation
IQR	Interquartile range
Inclusion and exclusion criteria.

Type of studies. Studies including quasi-experimental and before–after designs were included if the effects of prone position on respiratory parameters were reported as an outcome. Also, studies met the inclusion criteria if they were published until 1st January 2021. There was no language filtering. The case report, case series, reviews, and studies with incomplete data were excluded.

Type of participants. The studies were selected if participants were patients with Reverse transcription polymerase chain reaction (RT-PCR) confirmed test or if imaging findings showed evidences of COVID-19, patients with COVID-19 need oxygenation (face mask, nasal cannula, invasive mechanical ventilation, non-invasive mechanical ventilation). Pregnant women, patients who have prone positioning contraindication such as skeletal fractures were excluded.

Type of intervention. Patients were instructed to stay in the prone position based on the proning protocol of each study for at least 30–60 min and then return to the supine position. Standard prone position was considered for 16 h/day (some studies considered the duration of prone position ≥ 3–4 h, or until the patient is uncomfortable). The average time of prolonged sessions was considered up to 36 h. However, in one study, a 5-min protocol was used. Respiratory parameters were measured three times in most studies (before positioning, during prone position, and after prone position).

Type of outcomes measure. The primary outcome was the respiratory parameters and respiratory status. The secondary outcomes were death rate and intubation rates (Supplementary 1).

Study selection. Two authors independently evaluated the eligibility of these articles, and any disagreements were resolved by consensus. Several articles were excluded due to being irrelevant or duplicated. Finally, 28 full-text articles were included in the systematic review and 26 articles in the meta-analysis (Fig. 1).

Risk of bias and quality assessment. The methodological quality of the included studies in this review was conducted by the Mixed Methods Appraisal Tool (MMAT). The quality assessment was conducted independently by two authors. The MMAT was developed to appraise different empirical studies categorized into.
five categories: qualitative, randomized controlled trial, non-randomized, quantitative descriptive, and mixed methods studies. This tool consists of five items for each category, each of which could be marked as Yes, No, or cannot tell. Based on the scoring system, score one is assigned to Yes and score 0 to all other answers. In other words, the total score would be the percentage of affirmative responses. To evaluate the final scores qualitatively, the scores above half (more than 50%) were considered high quality.

Data extraction. Data were collected as follows: reference, location, type of study, sample size, age, duration of the prone position, proning protocol, timing of measurement, and respiratory parameters.

Unification of units. All respiratory parameters converted to mmHg. For conversion of respiratory parameters to get from SI units (KPa) to mmHg was multiplied by 7.501.

Statistical analysis. All analyses were conducted with Stata software version 14.0 (College Station, Texas). For each study, the mean and standard deviation (SD) of respiratory parameters in the prone position and supine position was extracted and if Median and IQR was reported; we changed it to mean with [(min + max + 2*Median)/4] or [(med + q1 + q3)/3] and SD with [IQR/1.35]. Then mean difference (MD) of respiratory parameters for each study was calculated by mean1 minus to mean 2. Due to different studies design (Before–After or Quasi-Experimental design), in the before–after design, we calculated the change score MD (mean after prone position minus mean before prone position), and in Quasi-Experimental design, we calculated MD (mean in supine position minus mean in prone position). Then Standard deviation in Before–After design and Quasi-Experimental design was calculated based on formulas (1) and (2):

$$SD_{change \ score} = \sqrt{SD_{before}^2 + SD_{after}^2 - (2 \times r \times SD_{before} \times SD_{after})}$$

where SD_{before}, SD_{after} and $Corr$ is the standard deviation in before prone position, standard deviation after prone position, and correlation coefficient between before and after

$$SD_{pooled} = \sqrt{\frac{(n_1 - 1)SD_{pron}^2 + (n_2 - 1)SD_{sup}^2}{n_1 + n_2 - 2}}$$

where SD_{pron}, SD_{sup}, n_1, and n_2 is the standard deviation in prone position group, the standard deviation in supine position group, the sample size in the prone position and supine position groups. Then pooled MD (PMD) was calculated by the "Metan" command. Heterogeneity was determined using Cochran’s Q test of heterogeneity, and the I^2 index was used to quantify heterogeneity. In accordance with the Higgins classification approach, I^2 values above 0.7 were considered as high heterogeneity. To estimate the PMD for respiratory parameters and subgroup analysis (study design and ventilation), the fixed-effect model was used, and when the heterogeneity was greater than 0.7, the random-effects model was used. The meta-regression analysis was used to examine the effect of study design, sample size, BMI, age and prone position (PP) duration as factors affecting heterogeneity among studies. The "Meta bias" command was used to check for publication bias, and if there was any publication bias, the PMD was adjusted with the "Metatrim" command using the trim-and-fill method. In all analyses, a significance level of 0.05 was considered.

Result
Overall, 1970 studies were found through databases. After excluding redundant papers, 855 studies remained. After reading abstracts, 775 studies were excluded from the list. Then, the full text of the remaining 80 studies was reviewed, and 52 studies were excluded. Finally, 28 studies included in qualitative analysis and 26 studies with a total sample size of 1272 participants were included in the quantitative analysis. The flowchart of this selection process is shown in Fig. 1. Studies were published during 2020–2021, most studies were done in the UK, China, and Spain with three studies and range participants age were 17–83 years old (Tables 1 and 2). Supplementary 2 shows risk of bias assessment for included studies. All studies were high quality (more than 50% scores).

Pooled mean difference of respiratory parameters in total and based on subgroups. Figure 2 showed the forest plot for MD of PaO_2/FIO_2 Ratio in included studies. The minimum and maximum reported MD of PaO_2/FIO_2 reported by Abou-Arab et al. (MD: 0.00; 95% CI 7.21–7.21 mmHg) in France and by Mittermaier et al. (MD: 187.90; 95% CI 156.14–199.66 mmHg) in Germany. Based on Fig. 2 using the random-effects model approach, the PMD in the study with before–after design, quasi-experimental design and in total was 55.74 (95% CI 28.13–83.35) mmHg, 56.38 (95% CI 8.47–104.29) mmHg, and 56.20 (95% CI 33.16–79.24) mmHg; respectively. This means that in general, the prone position in COVID-19 patients leads to significant improvement corresponding to Spo_2 (Sao_2). Also the PMD of $Paco_2$ in the before–after design. The PMD of other respiratory parameters showed in Table 3 and
ID	Author (Ref.)	Recruitment period	Country	Study type	Population/SS	Gender/age (year)	Mean (SD)/median	Duration of PP	Proning protocol/ timing of measurement (hour)		
1	Abou Arab	1 March to 30 April, 2020	France	Before–after	Mechanically ventilated COVID-19 T: 25	Male/female	At least one 16-h PP session	H0: Before PP	H1: At the end of the first 16-h PP session		
2	Coppo	20 March to 9 April, 2020	Italy	Before–after	COVID-19-related pneumonia T: 56	Male: 44 Female: 12 Age: 18–75	At least 3 h	H0: before PP	H1: 10 min after pronation	H2: 1 h after returning to the supine position	
3	Ferrando	12 March to 9 June, 2020	Spain and Andorra	Quasi-experimental	COVID-19 patients with ARF Case: 55 Control: 144 T: 199	Male/female	16 h/day during 3 consecutive day	Case: HFNO + awake PP	Control: only receive HFNO		
4	Caputo	1 March to 1 April, 2020	USA	Before–after	COVID-19 Hypoxemia (SpO₂ < 90%) T: 50	Male/female	5 min	Awake self proning with supplemental oxygen	H0: before PP	H1: With Supplemental oxygenation	H2: After 5 min of proning
5	Ni	31 January to 15 February, 2020	China	Quasi-experimental	COVID-19 Case: 17 Control: 35 T: 52	Male/female	At least 4 h/day for 10 days	G1: Standard care	G2: Position care (prone or lateral)		
6	Elharrar	27 March to 8 April, 2020	France	Before–after	COVID-19 T: 24	Male/female	PP subgroup: Between less than 1 h to more than 3 h based on tolerability <1 h (n: 4) 1 to < 3 h (n: 5) ≥ 3 h (n: 15)	H0: Before PP	H1: During PP	H2: 6 to 12 h after resupination	
7	Retucci	March and April 2020	Italy	Quasi-experimental	COVID-19 with spontaneous breathing T: 26	Male/female	1 h session/39 sessions: Case: 12 prone session Control: 2 lateral session	Prone (case) and lateral position (control) in Noninvasive Helmet CPAP Treatment	H0: Before intervention	H1: During intervention	H2: 45 min after resupination
8	Mittermaier	15 March to 11 April, 2020	Germany	Quasi-experimental	Mechanically ventilated COVID-19 T: 15	Male/female	15±2.5 h for 62 days	G1: Intubation	G2: PEEP	G3: PP	
9	Taboada	31 March to 11 April, 2020	Spain	Before–after	COVID-19 T: 29	Male/female	1 h	H0: Before PP	H1: During PP	H2: After PP	
10	Taboada	15 March to 15 April, 2020	Spain	Before–after	COVID-19 T: 50	Male/female	30–60 min	H0: Supine position	H1: PP	H2: Resupination	
11	Zang	1 February to 30 April, 2020	China	Before–after	COVID-19 Case: 23 Control: 37 T: 60	Male/female	Median: 9 h (8–22)	H0: Before PP	H1: 10 min after PP	H2: 30 min after PP	
12	Dong	5 February to 29 February, 2020	China	Before–after	COVID-19 T: 25	Male/female	PP session >4 h/day Mean (SD): 4.9 (3.1) h	Lateral positioning if PP not tolerated	H0: Before PP	H1: After sessions of PP	
13	Shelhamer	25 March to 2 May, 2020	USA	Quasi-experimental	Mechanically ventilated patients with moderate to severe ARDS due to COVID-19 Case: 62 Control: 199 T: 261	Male/female	At least 16 h	Case: Prone Control: Not prone			
14	Thompson	6 April 6 to 14 April, 2020	USA	Before–after	COVID-19 with severe hypoxic respiratory failure T: 25	Male/female	At least 1 awake session of the prone position lasting longer than 1 h	H0: Supine position	H1: 1 h after initiation of PP		
ID	Author (Ref.)	Recruitment period	Country	Study type	Population/SS	Gender/age (year)	Duration of PP	Proning protocol/ timing of measurement (hour)			
----	---------------	---------------------	---------	------------	---------------	------------------	---------------	---			
15	Tu14	1 February to 10 March, 2020	China	Before–after	COVID-19	Male/female Age: 51 (11)	Median of 5 (IQR: 3–8) procedures per subject (twice daily). The median duration was 2 (IQR: 1–4) h	PP in HFNC H₀: before PP H₁: after PP			
16	Weiss16	18 March to 31 March, 2020	USA	Before–after	Mechanically ventilated patients with COVID-19	Male/female Age: 58.5 (51.8–69.3)	Several sessions lasting for 16 h	First PP session H₀: Pre-prone (in 1 h) H₁: Post-prone (in 2 h) H₂: Post-prone (4 h after) H₃: Pre-supine (0.5–2 h before) H₄: Post-supine (0.5–2 h after)			
17	Winearl13	8 April to 31 May, 2020	UK	Before–after	COVID-19	Male/female Age: 62 (13)	Mean duration of PP was 8 ± 5 h for a mean of 10 ± 5 days	PP combined with CPAP H₀: Prior to CPAP initiation H₁: On CPAP prior to PP H₂: During PP on CPAP (15 min after PP initiation) H₃: 1 h after PP while on CPAP			
18	Khullar9	March and May 2020	USA	Before–after	Mechanically ventilated SARS-CoV-2-positive adults/ Living (n = 6) deceased (n = 17)	Male/female Age: 57 (25–75)	≥ 16 h, ≥ 1 day	H₀: Before PP H₁: Post proning H₂: 48 h after PP			
19	Sharp16	12 March to 20 April, 2020	UK	Quasi-experimental	Mechanically ventilated COVID-19 pneumonia	Male/female Age: 30–76	Two or more full proning cycles	H₀: Supine position H₁: Prone position			
20	Wendi17	30 March to 4 April, 2020	USA	Before–after	Spontaneously breathing COVID-19 with hypoxic respiratory distress	Male/female Age: 31(5)	At least 2 h	H₀: Room air H₁: Before PP with supplemental O₂ H₂: With PP			
21	Berril12	23 March to 7 May, 2020	UK	Before–after	Mechanically ventilated COVID-19	Female: 34 Age: (Med ± SD) 58.5 ± 11.1	The average duration was 16.5 ± 2.7 h/patient Proning done on average for 4 ± 2.4 separate sessions Total session: 131	H₀: Before PP H₁: After 3 h of PP			
22	Burton-Papp18	4 March to 11 May, 2020	UK	Before–after	COVID-19 G₁: 13 G₂: 7	Male/female Age: 53.4 (8.3)	5 prone cycles (each cycle lasted up to 3 h)	PP in conjunction with NIV G₁: Only NIV G₂: NIV and IMV T: All NIV and PP			
23	Carsetti1	NR to May 2020	Italy	Before–after	Mechanically ventilated SARS-CoV-2	Male: 10 Age: 58 (50–64)	Standard duration: 16 h Prolonged duration: 36 h	H₀: Before pronation H₁: During pronation H₂: Resupination			
24	Jagan30	24 March to 5 May, 2020	Grand Island	Quasi-experimental	COVID-19 G₁: 40 G₂: 65 T: 105	Male/female Age: G₁: 56.0 (14.4) G₂: 65.8 (16.3)	1 h	G₀: Proning G₁: Not proning			
25	Padrão9	1 March to 30 April, 2020	Brazil	Quasi-experimental	COVID-19 hypoxemic respiratory failure/case: 57 Control: 109 T: 166	Male/female Age: 58.1 (14.1)	Between 30 min and 4 h	Case: PP Control: Not PP H₀: Before PP H₁: After PP			
26	Sartini32	April 2, 2020	Italy	Before–after	Hypoxemic COVID-19 (SpO₂ < 94%)	Male/female Age: 59 (6.5)	Median 3 h (IQR, 1–6 h)	PP for NIV patients H₀: Before NIV H₁: After NIV H₂: During NIV in pronation (60 min after start) H₃: 60 min after NIV end			

Continued
Table 1. Overview of all included studies in systematic review. SS sample size, PP prone position, H hour, min minutes, G group, T total, O₂ oxygen, NIV non invasive ventilation, IMV intermittent mandatory ventilation, HFNO high flow nasal oxygen, PEEP positive end expiratory pressure, CPAP continuous positive airway pressure, SD standard deviation, IQR interquartile range.

ID	Author (Ref.)	Recruitment period	Country	Study type	Population/SS	Gender/age (year)	Mean (SD)/median (IQR)/range	Duration of PP	Proning protocol/timing of measurement (hour)
27	San⁴⁰	1 April to 31 May, 2020	Turkey	Before–after	COVID-19 pneumonia (SpO₂ < 93%) T: 21	Male/female	Age: 71 (60–76.5)	G₁: ≥ 15 min or below (N = 7) G₂: > 15 min (N = 14)	PP on the ambulance stretcher H₁: Before transport H₂: After transport
28	Solverson⁴¹	1 April to 25 May, 2020	Canada	Before–after	Non-intubated COVID-19 patients T: 17	Male/female	Age: Median (range) 53 (34–81)	The median number of daily prone positioning sessions was 2 (1–6) with a duration of 75 (30–480) min for the first session G₁: < 75 min (n = 8) G₂: ≥ 75 min (n = 9)	H₀: Supine position H₁: Prone position H₂: Resupination

Fig. 3. It should be noted that prone position leads to improvement of PaO₂ but does not have any effects on the respiratory rate in general, especially in the quasi-experimental design. The pooled estimate and 95% CI for death rate and intubation rate were 19.03 (8.19–32.61) and 30.68 (21.39–40.75); respectively (Fig. 4).

Figure 5 showed PMD of respiratory parameters based on ventilation status. PMD of SpO₂ (SaO₂) in Intubation and Non-intubation subgroup was 10.56 (95% CI – 18.15 to 39.26) and 8.57 (95% CI 3.47–13.67); respectively. These means that the prone position in COVID-19 patients with non-intubation leads to significant improvement corresponding to SpO₂ (SaO₂) but Intubation have no effects on SpO₂ (SaO₂) improvement. Also PMD of PaO₂/FIO₂ in Intubation and non-intubation subgroup was 65.03 (95% CI 6.06–123.99) and 49.56 (95% CI 26.56–72.56); respectively. This means that the prone position in COVID-19 patients leads to significant improvement of PaO₂/FIO₂ Ratio, but this value for Intubated patients was higher than non-intubated groups. Situation of other parameter was showed in Fig. 5.

Publication bias. Based on Egger’s test results, significant publication bias was observed for PaO₂/FIO₂ Ratio (Coefficient: 5.63; 95% CI 0.91–10.35; p: 0.024). Therefore, the fill- and trim-adjusted PaO₂/FIO₂ Ratio (PMD: 57.41, 95% CI 32.19–81.01 mmHg) was generated, which was not significantly different from the original PaO₂/FIO₂ Ratio (PMD: 56.20; 95% CI 33.16–79.24 mmHg). It means that the result of the meta-analysis was robust.

Heterogeneity and meta-regression results. According to Cochran’s Q test of heterogeneity, there was significant heterogeneity among studies (p < 0.001). Except for PaCO₂, in the before–after design, the heterogeneity amount was more than 85% based on the I² index, which indicates high heterogeneity. Table 4 presents the results of the univariate meta-regression; there are significant associations between study, results with study design corresponding to SPO₂ (Sao₂) percent (Coefficient: 12.80; p < 0.001). No significant associations were observed for other respiratory parameters.

Discussion

This systematic review analyzed the effects of prone position on respiratory parameters, intubation, and death rate. We found that prone position initiation leads to improved oxygenation parameters (PaO₂/FIO₂ ratio, SpO₂, PaO₂, and PaCO₂) in patients with mild to severe respiratory failure due to confirmed COVID-19. However, the prone position did not change the respiratory rate in patients with hypoxemic respiratory failure suffering from COVID-19.

Most of the studies (18/28 studies) demonstrated significant improvement in PaO₂/FIO₂ ratio after prone positioning. Moreover, the improvement of SpO₂ (SaO₂) and PaO₂ has been shown in 15 and 7 studies, respectively. Although the effect of prone position after resupination has declined in five studies, the early prone positioning should be considered as first-line therapy in ARDS patients. Initiation of prone position in ARDS patients by reducing shunt, and V/Q mismatch, brings about an increase in the recruitment of non-aerated areas of the lungs, secretion clearance, improvement work of breathing (WOB) and oxygenation, and reduction of mortality compared with the supine position. Prone position by enhancement in PaO₂/FIO₂ ratio not only leads to a decrease in the classification of respiratory failure but also prevents further complications due to ARDS, such as multi-organ failure (MOF), which is the most common cause of mortality in this devastating condition.

The efficacy of prone positioning may be affected by various protocols, such as different settings (ICU or emergency department), the timing of initiation (early or late), duration (prolonged or short sessions), positioning (prone position with or without lateral position), respiratory support in intubated or non-intubated patients (mechanical ventilation, NIV, nasal cannula, helmet, face mask) and the severity of ARDS. Even though in this study PaO₂/FIO₂ ratio was significantly higher in the prone-positioning group with mild to severe ARDS, a further meta-analysis need to assess the impact of prone position in a different classification of ARDS with mild...
ID	Author	SPO₂ (SaO₂) (%) Mean (SD)/median (IQR)	PaO₂/FIO₂ ratio or SPO₂/ FIO₂ ratio Mean (SD)/median (IQR)	PaCO₂ (mmHg) Mean (SD)/median (IQR)	PaO₂ (mmHg) Mean (SD)/median (IQR)	RR Mean (SD)/median (IQR)	Other variables
1	Abou-Arab	H₂: 91 (78–137)					
 H₃: 124 (97–149) | H₂: 49 (42–51)
 H₃: 49 (44–57) | NR | NR | NR | NR |
| 2 | Coppo | H₂: 97.2 (2.8)
 H₃: 98.2 (2.2)
 H₄: 97.1 (1.9) | H₂: 185.3 (76.6)
 H₃: 285.5 (112.9)
 H₄: 192.9 (100.9) | H₂: 35.3 (4.9)
 H₃: 35.6 (4.5)
 H₄: 35.5 (4.4) | H₂: 117.1 (47.4)
 H₃: 208.4 (110.9)
 H₄: 121.4 (69.6) | H₂: 24.5 (3.5)
 H₃: 24.6 (6.9)
 H₄: 23.9 (6.3) | Intubation rate 18/56 |
| 3 | Ferrando | H₄: Case: 90.4
 Control: 90.4
 H₅: Case: 97.6
 Control: 88.8 | H₄: Case: 148.2
 Control: 123.9
 H₅: Case: 113.6
 Control: 109.7 | H₄: Case: 34.0
 Control: 34.7
 H₅: Case: 42.4
 Control: 44.8 | NR | NR | NR |
| 4 | Caputo | H₂: 80
 H₃: 84
 H₄: 94 | NR | NR | NR | NR | Intubation rate 13/50 |
| 5 | Ni | H₂: 128 (60)
 G₁: 142 (54)
 T: 133 (38)
 SpO₂/FIO₂: 49% (95% CI 86–733) | NR | NR | NR | NR |
| 6 | Elharrar | Total: H₂: 341.1 (5.3)
 H₃: 32.8 (4.5)
 H₄: 32.3 (5.1) | Total: H₂: 72.8 (14.2)
 H₃: 91 (27.3)
 H₄: 77.6 (11.5) | Total: H₂: 18.2 (2.7) | NR | NR | Intubation rate 5/24 |
| 7 | Retucci | Total: H₂: 182.9 (43.0)
 H₃: 220.0 (64.5)
 H₄: 179.3 (43.9) | Total: H₂: 38 (35–40)
 H₃: 35–39
 H₄: 38 (35–40) | Total: H₂: 86.9 (15.1)
 H₃: 104.5 (25.0)
 H₄: 85.4 (13.4) | Total: H₂: 23.7 (4.7)
 H₃: 23.1 (4.5)
 H₄: 23.6 (4.7) | Intubation rate 7/26
 (26.9%)
 Death rate 2/26 (7.7%) |
| 8 | Mittermaier | H₂: 84.3 (28)
 G₁: 80°
 G₁: 40°
 H₂: 210.7 (86.6)
 G₁: 197.9 (43.0)
 G₁: 190°
 H₂: 52.4 (9.7) | H₂: 35.9 (7)
 G₁: 79.3 (7.8) | H₂: 31 (2.6)
 G₂: 16 (2.6)
 G₁: 15.7 (2.8) | Death rate
 G₁: = 40%
 G₂: = 42.9%
 G₁: = 35.6% |
| 9 | Taboada | H₂: 93.8 (2.3)
 H₃: 95.8 (2.1)
 H₄: 95.2 (2.7) | H₂: 196 (68)
 H₃: 242 (107) | H₂: 75°
 H₃: 80° | NR | NR | Death rate 2/9 (7%) |
| 10 | Taboada | NR | NR | NR | NR | NR | Death rate 4% |
| 11 | Zang | H₂: 91.09 (1.54)
 H₃: 95.30 (1.72)
 H₄: 95.48 (1.73) | NR | NR | Case
 H₂: 28.22 (3.06)
 H₃: 27.78 (2.75)
 H₄: 24.87 (1.84) | Death rate
 Case: 10/23 (43.5%)
 Control: 28/37 (73.7%) |
| 12 | Dong | H₂: 194 (164–252)
 H₃: 348 (288–590) | NR | NR | H₂: 28.4 (3.5)
 H₃: 21.3 (1.3) | Death rate 0/25 |
| 13 | Shellhammer | PaO₂/FIO₂
 Case
 H₂: 0.10 (0.04, 0.17) + 11%
 improvement
 SPO₂/FIO₂
 H₂: 0.28 (0.63, 0.08) + 24%
 improvement | NR | NR | NR | NR | Death rate
 Case: 48 (77.4%)
 Control: 167 (83.9%) |
| 14 | Thompson | H₂: 50–95%
 H₃: 90–100%
 (median [SE], 7% [1.2%],
 95% CI 4.6–9.4%) | NR | NR | NR | NR | Intubation rate 12/25 (48%)
 Death rate 3/25 (10%) |
| 15 | Tu | H₂: 90 (2)
 H₃: 96 (3) | H₂: 47 (7)
 H₃: 39 (5) | H₂: 69 (10)
 H₃: 108 (14) | NR | NR | Intubation rate 2/9 |
| 16 | Weiss | H₂: 96 (93–99.0)
 H₃: 97.5 (95–99)
 H₄: 97 (95–99.0)
 H₅: 98 (96–99.0)
 H₆: 96.5 (94.0–99.0) | H₂: 7.5 (11.6–19.2)
 H₃: 27 (19.5–35.7)
 H₄: 6.8 (6.0–7.7)
 H₅: 6.3 (5.5–6.8) | H₂: 11.8 (9–14.2)
 H₃: 14.5 (10.2–20.4)
 H₄: 23.4 (5.3–41.5)
 H₅: 9.9
 H₆: 13.5 (10.3–17.3) | NR | NR | Death rate 11/42 |
| 17 | Winearls | H₂: 94 (3)
 H₃: 95 (2)
 H₄: 96 (2) | H₂: 143 (73)
 H₃: 201 (70)
 H₄: 252 (87)
 H₅: 234 (107) | NR | NR | NR | Death rate 4/24 |

Continued
ID	Author	SPO2 (Sao2) (%)	PaO2/FiO2 ratio or SPO2/FiO2 ratio	PaCO2 (mmHg) Mean (SD)/median (IQR)	PaO2 (mmHg) Mean (SD)/median (IQR)	RR Mean (SD)/median (IQR)	Other variables				
18	Khullar	NR	Living	NR	NR	NR	NR				
			H1: 86.5*	H1: 138*	H1: 68.2*	H1: 77.1*	H1: 27.2				
			H2: 115*	H2: 84.2*	Decreased	H2: 71.9*	H2: 23.6				
			H3: 84.8*	H3: 210*	Total	H3: 78.5*	NR				
			H4: 92*	H4: 105*	Total	H4: 78.5*	NR				
			H5: 86.5*	H5: 102*	Total	H5: 78.5*	NR				
			H6: 84.2*	H6: 109*	Total	H6: 78.5*	NR				
19	Sharp	NR	H1: 88.95 (19.34)	H1: 118.18 (28.11)	NR	NR	30 day mortality rate 9/12				
20	Wendt	H1: 83% (IQR: 75–86%)	H1: 90% (IQR: 89–93%)	H1: 96% (IQR: 94–98%)	NR	NR	NR	Intubation rate 14/31 Death rate 8/31			
21	Berisl	NR	H1: 99.8 (37.5)	H1: 151.9 (58.9)	NR	NR	Death rate 17/34 (50%)				
22	Burton-Papp	NR	Δ PaCO2/FiO2; G1: + 40.8 (95% CI	28.8–52.7	G1: + 5.06 (95% CI – 9.5 to 19.75)	T: + 28.7 mmHg (95% CI	18.7–38.6)	NR	Intubation rate 7/20 (33%) Death rate 0%		
23	Caredetti	NR	Standard pronation	H1: 47.3 (8.9)	NR	NR	NR				
24	Jagan	NR	(95% CI 29.6 lower to 10.8 higher)		NR	NR	Death rate G1: 0 24.6% Intubation rate G1: 10% G1: 27.7%				
25	Padrao	Case	H1: 94 (92–96)	Case	H1: 224 (159–307)	NR	Intubation rate Case: 33/37 (98%) Control: 53/109 (49%) Death rate Case: 6 (11%) Control: 22 (20%)				
26	Sartini	H1: 93.5*	H1: 118.6*	H1: 90.2*	NR	NR	Intubation rate 1/15 Death rate 1/15				
27	Sen	G1: 96.5 (82.3–92.5)	H1: 91.0 (89.1–93.4)	H1: 87.9 (5.6)		G1: 35.3 (13.3–43.9)	Total	H1: 92.8 (89.9–97.1)	NR	NR	NR
28	Solverson	G1: 91 (87–95)	H1: 98 (94–100)	G1: 138 (97–198)	G1: 152 (97–233)	Total	H1: 165 (106–248)	NR	NR	NR	

Table 2. Respiratory parameters, intubation rate, and death rate in COVID-19 patients. H hour, Spo2 pulse oximeter oxygen saturation, Sao2 oxygen saturation (arterial blood), Paco2 partial pressure of carbon dioxide, PaO2 partial pressure of oxygen, FiO2 fractional inspiratory oxygen, RR respiratory rate, SD standard deviation, IQR interquartile range, mmHg millimeter of mercury, CI confidence interval, SE standard error, SHR subdistribution hazard ratio, SS sample size, NR not reported. *Data extracted from figures and charts.
Figure 2. Forest plot for mean difference (MD) of PaO2/FIO2 Ratio (mmHg) based on random effects model. The midpoint of each line segment shows the MD, the length of the line segment indicates the 95% confidence interval in each study, and the diamond mark illustrates the pooled MD.

Figure 3. Pooled mean difference and 95% confidence interval of respiratory parameters based on the random effects model in total and in different study design. The diamond mark illustrates the pooled estimate.
In terms of respiratory rate, in few studies, the respiratory rate reduction was significant, but we found that respiratory rate did not change during the prone positioning in the overall analysis. Our systematic review and meta-analysis demonstrated that prone positioning leads to a lower mortality rate in confirmed COVID-19 patients. Although in this systematic review and meta-analysis, many studies have assessed the impact of prone position on the short term (28 days) mortality, where they benefit from prone positioning protocols, the effect of prone positioning in the long-term (3 months or more) mortality is unclear. Therefore, further studies will be needed to demonstrate the relationship between prone positioning in COVID-19 patients and long-term mortality. Furthermore, this study confirmed that the improvement of oxygenation parameters due to the prone position might be associated with a lower intubation rate in COVID-19 patients.

Conclusions

In our systematic review of 28 studies, prone positioning has been compared with supine positioning in hypoxic adult patients with COVID-19. We found prone position by optimizing lung recruitment, and the V/Q mismatch can improve oxygenation parameters such as PaO₂/FIO₂ Ratio, Spo₂ (Sao₂), PaO₂, PaCO₂. Nevertheless, the prone position did not change their respiratory rate. Moreover, the initiation of prone position might be associated with a lower mortality and intubation rate. Since most patients demonstrated improved oxygenation and lower mortality and intubation rate, we recommend the prone position in patients COVID-19. Similar to other studies, our research had some limitations. (1) Some studies did not report values of the respiratory parameters in different groups and just reported significantly parameter (like that p-value); which we have to exclude this studies from the quantitative analysis that this limitation was not be resolved even by data requesting from corresponding authors. We would like to perform the gender-specific estimation, but it was not possible due to insufficient data in the primary studies; (2) also we tend to estimate the pooled MD in different geographical regions or country-specific estimation based on available methods, since the infrequent studies number, this estimation will not be robust.

Table 3. Result of meta-analysis for calculation of pooled mean difference of respiratory parameters; publication bias and fill and trim method. CI confidence interval, N number of study, PMD pooled mean difference, PaO₂ partial pressure of oxygen, FIO₂ fractional inspiratory oxygen, Sao₂ oxygen saturation (arterial blood), RR respiratory rate.

Variables	Subgroup	Meta-analysis	Heterogeneity	Egger's test for publication bias	Fill-and-trim		
		PMD (95% CI)	I² (%)	Coefficient (95% CI) P-value	PMD (95% CI)		
PaO₂/FIO₂ ratio	Before–after design (N = 8)	55.74 (28.13–83.35)	93.7	121.01	5.63 (0.91–10.35)	0.024	57.41 (32.19–81.01)
	Quasi-experimental design (N = 4)	56.38 (8.47–104.29)	98.4	141.02	10.02 (− 25.04 to 5.01)	0.168	–
	Total (N = 12)	56.20 (33.16–79.24)	96.8	99.04	57.41 (32.19–81.01)	0.024	57.41 (32.19–81.01)
Spo₂ (Sao₂)	Before–after design (N = 8)	3.38 (1.68–5.09)	93.1	4.24	–		
	Quasi-experimental design (N = 4)	17.03 (12.19–21.88)	87.6	16.72	–		
	Total (N = 12)	7.58 (4.93–10.23)	97.6	16.95	–		
Paco₂	Before–after design (N = 5)	− 2.45 (− 5.15 to 0.25)	74.1	5.67	–		
	Quasi-experimental design (N = 3)	− 18.49 (− 34.50 to − 2.47)	99.5	197.95	− 3.89 (− 16.71 to 8.94)	0.486	–
	Total (N = 8)	− 8.69 (− 14.69 to − 2.69)	98.6	70.21	–		
Pao₂	Before–after design (N = 5)	34.16 (16.41–51.91)	87.7	321.34	–		
	Quasi-experimental design (N = 2)	43.84 (26.03–61.18)	99.9	251.02	2.12 (− 18.16 to 22.40)	0.799	–
	Total (N = 7)	37.74 (7.16–68.33)	99.3	160.14	–		
RR	Before–after design (N = 6)	− 3.10 (− 5.49 to − 0.71)	95.0	7.14	1.52 (− 12.94 to 15.98)	0.815	–
	Quasi-experimental design (N = 4)	− 1.88 (− 12.95 to 9.19)	99.6	126.87	1.52 (− 12.94 to 15.98)	0.815	–
	Total (N = 10)	− 3.08 (− 6.94 to 0.78)	98.9	36.50	–		
Figure 4. Forest plot for death rate and intubation rate in included studies. The diamond mark illustrates the pooled estimate and length of diamond indicates 95% confidence interval.
Figure 5. Pooled mean difference and 95% confidence interval of respiratory parameters based on the random effects model in different ventilation status. The diamond mark illustrates the pooled estimate.
Table 4. Results of the univariate meta-regression analysis on the heterogeneity of the determinants. CI confidence interval, mmHg millimeter of mercury, PMD pooled mean difference, PaO₂ partial arterial oxygen, FIO₂ fractional inspiratory oxygen, Sao₂ oxygen saturation (arterial blood), RR respiratory rate, RPM respiration per minute, Study design before–after design = 1; quasi-experimental design = 2.

Variables	Sample size	Study design	BMI	Age	PP duration			
	Coefficient (95% CI)	p-value						
SPO₂/Sao₂ (%)	0.04 (−0.01 to 0.14)	0.091	12.80 (7.78 to 17.81)	<0.001	−0.91 (−5.66 to 3.83)	0.941	0.04 (−1.35 to 1.26)	0.941
	−0.15 (−0.79 to 0.4789)	0.583	−1.22 (−76.96 to 74.52)	0.972	−3.282 (−30.59)	0.927	−0.77 (−11.46 to 13.01)	0.899
PaO₂/FIO₂ ratio	0.05 (−0.23 to 0.33)	0.697	−15.71 (−46.37 to 14.94)	0.256	0.34 (−22.74 to 23.43)	0.955	0.05 (−2.97 to 3.07)	0.969
(mmHg)	0.15 (−2.01 to 2.31)	0.821	8.80 (−62.74 to 80.34)	0.765	−10.24 (−50.94 to 30.47)	0.193	−1.69 (−6.90 to 3.52)	0.443
PaCO₂ (mmHg)	0.01 (−0.11 to 0.15)	0.701	2.12 (−8.80 to 13.03)	0.765	−1.37 (−55.51 to 52.76)	0.802	−0.39 (−1.42 to 2.20)	0.626
PaO₂ (mmHg)	RR (RPM)							
Sample size	0.04 (−0.01 to 0.14)	0.941	0.05 (−1.35 to 1.26)	0.941	0.04 (−1.35 to 1.26)	0.941	0.04 (−1.35 to 1.26)	0.941
	−0.15 (−0.79 to 0.4789)	0.583	−1.22 (−76.96 to 74.52)	0.972	−3.282 (−30.59)	0.927	−0.77 (−11.46 to 13.01)	0.899
	0.05 (−0.23 to 0.33)	0.697	−15.71 (−46.37 to 14.94)	0.256	0.34 (−22.74 to 23.43)	0.955	0.05 (−2.97 to 3.07)	0.969
	0.15 (−2.01 to 2.31)	0.821	8.80 (−62.74 to 80.34)	0.765	−10.24 (−50.94 to 30.47)	0.193	−1.69 (−6.90 to 3.52)	0.443
	0.01 (−0.11 to 0.15)	0.701	2.12 (−8.80 to 13.03)	0.765	−1.37 (−55.51 to 52.76)	0.802	−0.39 (−1.42 to 2.20)	0.626

Figure 6. Association between sample size with mean difference (MD) of PaO₂/FIO₂ Ratio (mmHg) (A) and SPO₂ (Sao₂) (B) using meta-regression. Size of the circles indicates sample magnitude. There was no significant association between sample size with MD of PaO₂/FIO₂ Ratio and SPO₂ (Sao₂).

References
1. Carsetti, A., Paciarini, A.D., Marini, B., Pantanetti, S., Adrario, E., Donati, A. Prolonged prone position ventilation for SARS-CoV-2 patients is feasible and effective. Crit. Care. 24(1), 1–3 (2020).
2. Shaterian, N. & Abdi, F. Is cesarean section a safe delivery method to prevent mother to child transmission of SARS-CoV-2?. Tehran Univ. Med. J. TUMS Publ. 78(5), 337–338 (2020).
3. Roozbeh, N., Amirian, A. & Abdi, F. Coronavirus and male infertility: Letter to the editor. Tehran Univ. Med. J. 78(9), 630–631 (2020).
4. Ni, Z. et al. Efficacy of early prone or lateral positioning in patients with severe COVID-19: a single-center prospective cohort. Precision Clinical Medicine, 1–12 (2020).
5. Coppo, A. et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): A prospective cohort study. Lancet Respir. Med. 8, 765–774 (2020).
6. Ghelichkhani, P. & Esmaeili, M. Prone position in management of COVID-19 patients; a commentary. Arch. Acad. Emerg. Med. 8(1), e48, 1–3 (2020).
7. Abdi, F. & Amirian, A. Diagnosis of SARS-CoV-2 vertical transmission using the amniotic fluid test. J. Mil. Med. 22(6), 670–671 (2020).

8. Khullar, R., Singh, G., Bae, J., Gattu, R., Jain, S., et al. Effects of prone ventilation on oxygenation, inflammation, and lung infiltrates in COVID-19 related acute respiratory distress syndrome: A retrospective cohort study. J. Clin. Med. 9(12), 4129 (2020).

9. Padrao, E.H., Valente, F.S., Besen, B.A.M.P., Rahhal, H., Mesquita, P.S., de Alencar, J.C.G., et al. Awake prone positioning in COVID-19 hypoxic respiratory failure: Exploratory findings in a single-center retrospective cohort study. Acad. Emerg. Med. 8(10), 1–11 (2020).

10. Koeckerling, D. et al. Awake prone positioning in COVID-19. Thorax 75, 833–834 (2020).

11. Sheltami, M., Wesson, P.D., Solari, I.L., Jensen, D.L., Steele, W.A., Dimitrov, V.G., et al. Prone positioning in moderate to severe acute respiratory distress syndrome due to COVID-19: a cohort study and analysis of physiology. J. Intensive Care Med. 36(2), 241–252 (2021).

12. Berrill, M. Evaluation of oxygenation in 129 proning sessions in 34 mechanically ventilated COVID-19 patients. J. Intensive Care Med. [Original Res.] 36(2), 239–232 (2021).

13. Sryma, P.B. et al. Reinventing the wheel in ARDS: Awake proning in COVID-19. Arch Bronconeumol. 56(11), 747–763 (2020).

14. Karpov, A., Mitra, A.R., Crowe, S., Haljan, G. Prone position after liberation from prolonged mechanical ventilation in COVID-19 respiratory failure. Crit. Care Res. Pract. 688120, 1–7 (2020).

15. Rahmani, F., Salmasi, S. & Rezaeifar, P. Prone position effects in the treatment of COVID-19 patients. Caspian J. Intern. Med. 11(1), 5580–5582 (2020).

16. Weiss, T.T., Cerda, F., Scott, J.B., Kaur, R., Surgurlu, S., Mirza, S.H., et al. Prone positioning for patients intubated for severe acute respiratory distress syndrome (ARDS) secondary to COVID-19: A retrospective observational cohort study. Br. J. Anaesthesia, 126(1), 48–55 (2020).

17. Taboada, M., Rodriguez, N., Riveiro, V., Abelleira, R., Ricoj, J., Lama, A., et al. Short-term outcomes of 50 patients with acute respiratory distress by COVID-19 where prone position was used outside the ICU. J. Clin. Anesthesia. 67, 110028 (2020).

18. Qadri, S.K. et al. Critically ill patients with COVID-19: A narrative review on prone position. Pauhn Theo. 6, 233–246 (2020).

19. Dong, W., Gong, Y., Feng, J., Bai, L., Qing, H., Zhou, P., et al. Early awake prone and lateral position in non-intubated severe and critical patients with COVID-19 in Wuhan: A respective cohort study. https://doi.org/10.1101/2020.05.09.20091454 (2020).

20. Makic, M.F. Prone position of patients with COVID-19 and acute respiratory distress syndrome. J. Peranesth. Nurs. 35, 437–438 (2020).

21. Moher, D., Liberati, A., Tetzlaff, J. & Altman, D.G. P. preferred reporting items for systematic reviews and meta-analysis: The PRISMA statement. PLoS Med. 7(6), e1000097 (2009).

22. Hong, Q.N. et al. The Mixed Methods Appraisal Tool (MMAT) version 2018 for information professionals and researchers. Educ. Inf. 34(4), 285–291 (2018).

23. Soltani, S., Tahbazadeh, A., Zakeri, A., Zakeri, A.M., Lafi, T., Shabani, M., et al. COVID-19 associated central nervous system manifestations, mental and neurological symptoms: a systematic review and meta-analysis. Rev. Neurosci. 32(3), 351–361 (2021).

24. Hashemi, H. et al. Global and regional prevalence of strabismus: A comprehensive systematic review and meta-analysis. Strabismus. 27(2), 54–65 (2019).

25. Abou-Arab, O., Haye, G., Belys, C., Huette, P., Roger, P.A., Guillard, M., et al. Hypoxemia and prone position in mechanically ventilated COVID-19 patients: A prospective cohort study. Can. J. Anesth. 68, 262–263 (2020).

26. Ferrando, C., Mellado-Artigas, R., Gea, A., Arruti, E., Aldecoa, C., Adalia, R., et al. Awake prone positioning does not reduce the risk of intubation in COVID-19 treated with high-flow nasal oxygen therapy: A multicenter, adjusted cohort study. Crit. Care. 24(597), 1–11 (2020).

27. Caputo, N.D., Strayer, R.J. & Levitan, R. Early self-proning in non-intubated patients in the emergency department: A single ED's experience during the COVID-19 pandemic. Acad. Emerg. Med. 27, 375–378 (2020).

28. Elharrar, X. et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA 323, 2336–2338 (2020).

29. Retucci, M., Aliberti, S., Cerutti, C., Santambrogio, M., Tammaro, S., Cuccarini, F., et al. Prone and lateral positioning in spontaneously breathing patients with COVID-19 pneumonia undergoing noninvasive helmet CPAP treatment. CHEST. 158(6), 2431–2435 (2020).

30. Mittermaier, M., Pickerodt, P., Kurth, F., Jarcy, L.B.D., Uhrig, A., Garcia, C., et al. Evaluation of PEEP and prone positioning in early COVID-19 ARDS. EclinicalMedicine. 28, 100579, 1–9 (2020).

31. Taboada, M., Rodríguez, N., Riveiro, V., Baluja, A. & Atanassoff, P.G. Prone positioning in awake non-ICU patients with ARDS caused by COVID-19. Anaesth. Crit. Care Pain Med. [Letter to the Editor]. 39, 581–583 (2020).

32. Bartini, C. et al. Respiratory parameters in patients with COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit. JAMA 323(22), 2338–2340 (2020).

33. Thompson, A.E., Ranard, B.L., Wei, Y. & Jelic, S. Prone positioning in awake, nonintubated patients with COVID-19 hypoxic respiratory failure. JAMA Internal Med. 180(11), 1537–1539 (2020).

34. Yu, G.-W., Liao, Y.-X., Li, Q.-Y., Dong, H., Yang, L.-Y., Zhang, X.-Y., et al. Prone positioning in high-flow nasal cannula for COVID-19 patients with severe hypoxemia: a pilot study. Ann. Transl. Med. 8(9), 598 (2020).

35. Winears, S., Swingwood, E.L., Hardaker, C.L., Smith, A.M., Easton, E.M., Millington, K.J., et al. Early conscious prone positioning in patients with COVID-19 receiving continuous positive airway pressure: A retrospective analysis. BMJ Open Resp. Res. 7(e000077), 1–4 (2020).

36. Sharp, T., Al-Faham, Z., Brown, M., Martin-Lazaro, J., Morales, J.C. Prone position in COVID-19: Can we tackle rising dead space? J. Intensive Care Soc. 1–4 (2020).

37. Wendt, C., Mobus, K., Wiener, D., Eskin, B., Allegra, J.R. Prone positioning on non-intubated COVID 19 patients in hypoxic respiratory distress: Single site retrospasive health records review. J. Emerg. Nursing. 47(2), 279–287 (2021).

38. Burton-Papp, H.C., Jackson, A.I.R., Beecham, R., Ferrari, M., Aslim-Ho, M., Crockett, M.P.W., et al. Conscious prone positioning during non-invasive ventilation in COVID-19 patients: Experience from a single centre [version 1; peer review: 2 approved]: F1000Research2020 9(859), (2020).

39. Jagan, N., Morrow, L.E., Walters, R.W., Klein, L.P., Wallen, T.J., Chung, J., et al. The POSITIONED study: Prone positioning in nonintubated coronavirus disease 2019 patients—A retrospective analysis. Crit. Care Explorations. 2(e0229) (2020).

40. San, I., Yildrim, C., Bekgöz, B., Gemicioglu, E. Transport of awake hypoxemic probable COVID 19 patients in the prone position. Am. J. Emerg. Med. 1–8 (2020).

41. Solverson, K., Weatherald, J., Parhar, K.K.S. Tolerability and safety of awake prone positioning COVID-19 patients with severe hypoxic respiratory failure. Can. J. Anesth. [Rep. Original Investig.] 68, 64–70 (2020).

42. Zhang, X. et al. Efficacy of early prone position for COVID-19 patients with severe hypoxia: a single-center prospective cohort study. Intensive Care Med. 40(11), 1634–1642 (2014).

43. Kallet, R.H. A comprehensive review of prone position in ARDS. Respir. Care 60(11), 1660–1667 (2015).

44. Guerin, C. Efficacy of prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 368(23), 2159–2168 (2013).

45. Scholten, E.L., Bettler, J.R., Prisk, G.K. & Malhotra, A. Treatment of ARDS with prone positioning. Chest 151(1), 215–224 (2017).
47. Wright, A. D. & Flynn, M. Using the prone position for ventilated patients with respiratory failure: A review. *Nurs. Crit. Care* 16(1),19–27 (2011).
48. Malhotra, A., & Kacmarek, R. M. Prone ventilation for adult patients with acute respiratory distress syndrome. https://www.uptodate.com/contents/prone-ventilation-for-adult-patients-with-acute-respiratorydistress-syndrome (2020).
49. Gattinoni, L. *et al.* (eds) Prone Positioning in Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine (Thieme Medical Publishers, 2019).
50. Hashemi, H. *et al.* Global and regional prevalence of age-related cataract: A comprehensive systematic review and meta-analysis. *Eye* 34(8), 1357–1370 (2020).
51. Yap, C. Y. & Aw, T. Arterial blood gases. *Proc. Singapore Healthcare* 20(3), 227–235 (2011).
52. Singh, V., Khatana, S., & Gupta, P. Blood gas analysis for bedside diagnosis. *Natl. J. Maxillofacial Surg.* 4(2), 136–141 (2013).
53. Berry, W., Barreiro, G., Dziekan, G., Enright, A., Evans, P., & Funk, L. Pulse oximetry training manual. (World Health Organization) (2011).
54. Auliawati, D., Suparyathia, I. B. G., Wati, D. K., Hartawan, I. N. B. & Subanada, I. B. SpO2/ FiO2 ratio as an oxygenation parameter in pediatric acute respiratory distress syndrome. *Bali Med. J.* 5(2), 358–361 (2016).
55. Nico, A., Massaroni, C., Schena, E., & Sacchetti, M. The importance of respiratory rate monitoring: From healthcare to sport and exercise. *Sensors.* 20(6396) (2020).

Acknowledgements
We appreciate the reviewers comment.

Author contributions
F.B. and F.A. conceived the study, interpreted the data, drafted the manuscript and approved the final version of the paper. R.P. critically analyzed the data. M.G.H., F.Z., N.M. interpreted the data.

Funding
This study has no funding.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-93739-y.

Correspondence and requests for materials should be addressed to F.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021