Use of Nanostructured Photocatalysts for Dye Degradation: A Review

Victor Ruiz-Santoyo1*, Beatriz A. Andrade-Espinoza2, Rafael Romero-Toledo3, Luis M. Anaya-Esparza4, Zuamí Villagrán5, Antonio Guerra-Contreras6

1 Engineering Department, Division of Agricultural Sciences and Engineering, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, 47600 Tepatitlán de Morelos, Mexico
2 Department of Clinics, Division of Biomedical Sciences, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, 47600 Tepatitlán de Morelos, Mexico
3 Chemical Engineering Department, Division of Natural and Exact Sciences, University of Guanajuato, Láscurrán de Retana No. 5, 36000 Guanajuato, Mexico
4 Department of Livestock and Agricultural Sciences, Division of Agricultural Sciences and Engineering, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, 47600 Tepatitlán de Morelos, Mexico
5 Department of Health Sciences, Division of Biomedical Sciences, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, 47600 Tepatitlán de Morelos, Mexico
6 Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Láscurrán de Retana No. 5, 36000 Guanajuato, Mexico
* Corresponding author, e-mail: victor.ruiz8959@alumnos.udg.mx

Received: 05 July 2021, Accepted: 30 September 2021, Published online: 29 March 2022

Abstract
Among the technologies proposed for wastewater treatment, the Advanced Oxidation Processes are viable and technological strategies for dyes degradation. Different photocatalytic systems classified in metal oxides alone or combined through hybrid composites or immobilized onto supports have been designed in various nanostructured shapes for their application in the photodegradation of polluting dyes. This review aims to describe the dyes as an environmental threat, photocatalysis as an effective process to remove dyes from water and provide an overview of the recent studies using photocatalytic systems grouped according to their development. Furthermore, this review describes the main parameters of a photocatalytic system with an important role in dye photodegradation. Finally, we discuss the limitations of photocatalysis for real industrial applications and the challenges for this environmental nanotechnology.

Keywords
advanced oxidation process, dyes, photocatalytic systems, water treatment

1 Introduction
The use of natural dye for textile dyeing has been practiced for 5,000 years ago. On the other hand, the discovery and application of synthetic dyes began in the 19th century by displacing the use of natural dye. Nowadays, the global colorant market is about 32 billion USD and is projected to increase to around 42 billion USD by 2021 [1]. Synthetic dyes present advantages compared to natural dyes because of their lower prices, repeatability, and wide range of bright shades with considerably improved color fastness properties [2]. Dyes are colorful substances designed to give a hue to any colorable materials, and this is possible as dyes can attach themselves to any amenable materials. Moreover, dyes are composed of a group of atoms known as chromophores, responsible for the dye color. Dyes are sorted according to their application and chemical structure and are classified as acid, basic, direct, mordant, and reactive dyes, which are examples of soluble dyes, whereas azo, disperse, sulphur and vat dyes are an example of insoluble dyes [3]. The azo dyes kind, molecules with one or more azo (N=N) bridges linking substituted aromatic structures, represent a 70\% of the global production and are the most frequently utilized dyes [4]. Unfortunately, the dye industry dramatically contributes to global pollution, generating consequences to the ground and water due to its toxic, carcinogenic, and xenobiotic repercussions. On the other hand, researchers have proposed using the Advanced Oxidation Processes as viable and technological strategies for dyes degradation.
Oxidation Processes (AOP’s) as an attractive technology for removing a wide range of emerging contaminants. The AOP’s involve the in-situ production of highly reactive oxygen species such as hydroxyl radicals (OH) and superoxide anion radicals (O$_2^-$) with oxidation potentials of 2.7 and -2.3 eV, respectively. These species can be initiated by primary oxidants (e.g., H$_2$O$_2$, O$_3$), energy sources (e.g., UV light, ultrasonic, and heat), or catalysts (e.g., TiO$_2$, ZnO, and ZrO$_2$) [5]. Among AOP’s, photocatalysis is a viable alternative process to remove the emerging contaminants at standard temperature and pressure (STP) conditions by oxidation reactions. As mentioned, a huge variety of nano-materials with photocatalytic activities have been used in environmental remediation because they propose using solar energy to promote photo-reaction, making the process cheaper and environmentally friendly. Moreover, the favorable combination of electronic structure, light absorption properties, charge transport characteristics, improved textural proprieties, excited lifetimes, and versatility in shapes and sizes of metal oxides has made them possible for their application in photocatalysts [6]. Therefore, this review compiles the information of current photocatalytic systems based on mixed oxide nanoparticles used to degrade water dyes. In addition, scientific aspects were discussed, some social concerns and current trends of photocatalysis are also described.

2 Dyes and their environmental impact

Nowadays, it is estimated that 700,000 tons of various colouring from about 100,000 commercially accessible dyes are manufactured each year [7]. Nevertheless, between 10% and 15% of the synthetic dyes are lost during different textile industries processes [4]. Moreover, about 40,000–50,000 tons of dyes are discharged in water bodies from natural or anthropogenic means [8]. The azo dyes are considered one of the most difficult compounds to be removed and degraded from aqueous systems; thereby, the public demand for color-free discharge has rendered decolorization of wastewater a priority [9]. During the dying processes, not all dyes that are applied to the fabrics are fixed on them, and usually, a portion of these dyes that remains un-fixed to the fabrics and gets washed out, this amount of generated textile wastewater can reach more than 300 L kg$^{-1}$ of product [10]. These un-fixed dyes are found to be in high concentrations in textile effluents, and the composition of the wastewater will depend on the different organic-based compounds and the dyes used in the dry and wet-processing steps. Moreover, textile wastewaters can generate fluctuations in parameters such as chemical oxygen demand (COD), total organic carbon (TOC), biochemical oxygen demand (BOD), pH, flavor, colour, and odor when are released in aquifers [11]. The releasing of dye effluents into aquifers is undesirable due to the high impact on photosynthesis of aquatic organisms, and the carcinogenic nature and mutagenicity of many of these dyes and their breakdown products [11]. One of the main concerns is reducing the penetration of light when dyes are dissolved in water, which can cause an alteration of the photosynthetic activity and thus modify the natural balance of flora and fauna. Furthermore, these effluents can pass through soil layers and may contaminate nearby surface and underground water. For human health affectations, the dermal exposure of the dye precursors leads to bladder cancer, since as dyes contain aromatic amines, they can generate damage in the DNA of cells, leading to the risk of cancer disease. Moreover, dyes can promote other human health problems such as allergies, urticaria, angioedema, hyperactivity, ocular irritability, aggressiveness and learning impairment related to intake of dye [12].

3 Photocatalysis

Photocatalysis was proposed in 1972 by Fujishima and Honda [13]; they discovered that TiO$_2$ decomposes water into hydrogen and oxygen under light irradiation. In this context, photocatalysis is the acceleration of a reaction using a catalyst in light presence with an adequate wavelength. To carry out a photocatalytic process, the incident light on the catalyst should supply energy equal to or greater than the semiconductor band gap value (eV). This energy can be calculated using Eq. (1):

$$E_g (eV) = \frac{1239.9}{\lambda (nm)},$$

(1)

where λ is the wavelength value, for example, if a semiconductor has a band gap of 3.0 eV, the incident wavelength value on photocatalyst should be equal to or under 413.3 nm to photo-excite the electrons from the valence band (V_g) to the conduction band (C_g). Therefore, an electron belonging to V_g is excited to the C_g, giving as a result a pair of species, a hole (h$^-$) in the V_g and an electron (e$^-$) in the C_g [14], Fig. 1 and Eq. (2). The recombination of e$^-$ and h$^-$ carriers must be prevented to promote the photocatalytic reaction. The excited electrons that are now in C_g (e\mathbb{e}_g) react with oxygen (O$_2$) to produce superoxide radicals (O$_2^-$) which degrade pollutants in water (H$_2$O) and carbon dioxide (CO$_2$), Eqs. (3) and (4). On the other hand, the water oxidation reaction takes place in the
positive hole in valance balance (h⁺) generating hydroxyl radicals (OH•) and hydrogen ions (H⁺) to degrade pollutants in water (H₂O) and carbon dioxide (CO₂) as well, Eqs. (5) and (6) [15]. In a typical photocatalysis process, two different reactions occur; an oxidation reaction due to photo-induced positive holes and a reduction reaction due to photo-induced negative electrons [16]. Furthermore, the oxidation potentials of hydroxyl (OH•) and superoxide radical (O₂•⁻) are 2.7 and −2.3 eV respectively, whereas the oxidation potential of organic molecules ranged from −1 to 2 eV but, due to the difference in potential between the reactive oxygen species and the pollutant molecules, an organic pollutant molecule in contact with the hydroxyl (OH•) or superoxide radical (O₂•⁻) will either gain or lose electrons immediately through chain reactions resulting in the mineralization of the organic molecules forming CO₂ and H₂O as innocuous products.

catalyst + hv → e⁻CB + h⁺VB (excitation) \(\text{(2)}\)

O₂ + e⁻CB → O₂•⁻ (O₂ reduction) \(\text{(3)}\)

O₂•⁻ + pollutant → H₂O + CO₂ \(\text{(4)}\)

H₂O + h⁺VB → OH⁻ + H⁺ (OH⁻ oxidation) \(\text{(5)}\)

OH⁻ + pollutant → H₂O + CO₂ \(\text{(6)}\)

The most important characteristics of a photocatalytic system are the morphology, high surface area, thermal and mechanical stability, reusability, active sites, and desired band gap [17]. According to Molinari et al. [18], photocatalysis offers some advantages:

1. It avoids the application of hazardous heavy metal compounds and oxidants/reducing agents.
2. It permits the mineralization of the pollutants with the generation of safer by-products as H₂O and CO₂.

3. It is an alternative to traditional high energy-demanding treatment methods by using solar energy as the energy source.
4. It degrades a moderate range of pollutant concentrations.
5. It can be combined with another wastewater method to get a better water quality

Additionally, the use of photocatalysis at industrial processes is still restricted due to the recombination of the photo-generated e⁻ and h⁺ carriers, which releases energy in unproductive heat form, fast-backward reaction, and the inability to utilize solar radiation energy since around 5% of solar radiation is UV light [19].

3.1 Photocatalysts synthesis methods

Nanotechnology is defined as the ability to structure matter in atomic and molecular levels between 1–100 nm [20]. At this scale, materials have novel size-dependent features different from their larger counterparts. Nanomaterials have been developed in several forms, such as nanotubes, nanowires, flakes, particles, rods, films, quantum dots, and colloids [21]. Nanotechnology has opened a wide possibility field for designing nanomaterials with the objective application through manipulating synthesis conditions, which allows us to design nanostructures with attractive features in shape, size, mechanic resistance, and chemistry activity [22]. The synthesis of nanomaterials with a defined morphology is an important key to getting nanostructures with desired chemical and physical properties. Moreover, the chemical activity depends not only on their size, shape, morphology, and phase composition, as well as the synthesis route [23]. This favors the preparation of nanostructured materials with desirable features, which enhance the catalytic activity of the photocatalyst. Furthermore, the power of the lamp also plays an important role with influence on the performance of the photocatalyst. Several nanoparticles synthesis methods have been reported, and each one is selected depending on the nanostructures application. The most common methods for photocatalysts synthesis are colloidal, microwave radiation, sol-gel, hydrothermal, chemical vapor deposition, photochemistry reduction, solvothermal, electrochemical deposition process, and electrospinning [24]. Among these methods, the sol-gel is the most attractive way to synthesize photocatalysts due to low cost, reproducibility, high purity, synthesis time, variable control, low process...
temperature, and homogeneity in particle size [25, 26]. The sol-gel method for preparing metal oxide photocatalysts relies on the hydrolysis and polycondensation of the metal alkoxides used as precursors, M(OR)\textsubscript{x} (M = Si, Ti, Zr, Zn, Al, Sn and Mo) to react in aqueous or organic phase.

4 Nanostructured photocatalytic systems for dye degradation

Throughout history, various photocatalytic systems have been developed to eliminate the dyes present in water. The development of photocatalytic materials through history can be divided into three groups: single component photocatalysts in suspension, heterojunction photocatalysts (multi-component in suspension), and immobilized photocatalysts, Fig. 2.

4.1 Single component photocatalysts

Elements such as TiO\textsubscript{2}, ZnO, ZrO\textsubscript{2}, Fe\textsubscript{2}O\textsubscript{3}, CdS, and ZnS are semiconductors and can act as sensitizers for light-induced redox processes due to the electronic structure of the metal atoms in chemical combination, which are characterized by an empty \(C_B \) and a filled \(V_B \) [27]. When these kinds of materials are irradiated with energy equal to or greater than its band gap value (eV), an e− from \(V_B \) migrates to the \(C_B \) generating an h+ behind. The h+ may react either with electron donors in the solution or with hydroxide ions to produce powerful oxidizing species like superoxide radicals (\(O_2^– \)) and hydroxyl (OH•) radicals. Nevertheless, the recombination process of the e− and h+ carriers must be avoided to favor the photocatalysis reaction. TiO\textsubscript{2} was the first material used and investigated for the water-splitting reaction. Years later, its application increased to other fields like H\textsubscript{2} production, water, and air pollutant oxidation, antibacterial activity, and solar cells development. However, due to its large band gap (3.2 eV for anatase and 3.0 eV for rutile), it only can operate under UV light irradiation. Indeed, the anatase phase of TiO\textsubscript{2} is preferred catalytic reactions due to its conferred features by its crystallinity nature [28]. In this context, other metal oxides with a wide use for photocatalytic purposes are ZnO and ZrO\textsubscript{2}. The ZnO can present the crystalline phases type wurtzite, zinc blende, or rock salt. Moreover, the ZnO is seen as the substitute for TiO\textsubscript{2} and is considered as an efficient and promising candidate in environmental management systems because of its unique characteristics, such as direct and wide band gap in the near-UV spectral region, strong oxidation ability, suitable photocatalytic property, and a large free-exciton binding energy so that excitonic emission processes can persist at or even above room temperature [29]. For its part, the ZrO\textsubscript{2} can present the cubic, tetragonal, or monoclinic crystal structure (eV = 3.25–5.1 eV, depending on the preparation technique), and it belongs to the group of semiconductor materials. In this context, it has been reported that ZrO\textsubscript{2} can cause higher photocatalytic degradation than nano TiO\textsubscript{2} [30]. Moreover, the manipulation of ZrO\textsubscript{2} morphological tuning, porous structure control, and crystallinity development is required to enhance the light-harvesting capability, prolong the lifetime of photoinduced electron-hole pairs, and facilitate the reactant accessibility to surface active sites [31]. Fig. 3 shows the band gap of common semiconductors, while Table 1 [31–44] shows representative first group photocatalysts.

This first group of metal oxides including the TiO\textsubscript{2} [32–37], ZrO\textsubscript{2} [31, 38, 39], and ZnO [40–44] exhibited good physical features like thermal and mechanical
stability, low toxicity and cost of production, reusability, and easy reactivation. However, their main drawback is their wide band gap value from 3 to 5 eV and the recombination process that present, by affecting the production of the e− and h+ carriers. Therefore, a new group of photocatalysts with superior features of coupled nanomaterials was developed, which are based in heterojunctions.

4.2 Heterojunction photocatalysts

To enhance the visible light absorption efficiency of the photocatalyst, the electronic structure of the nanomaterial needs to be modified [45]. Methods such as doping, metal loading, and heterojunctions have been used to efficiently separate the photogenerated e- and h+ carriers in

![Fig. 3 Band gap of semiconductors (eV) versus Normal Hydrogen Electrode](image)

Table 1 TiO\textsubscript{2}, ZrO\textsubscript{2} and ZnO applied for the dye removal

No	Photocatalyst	Synthesis Method	Morphology	Size (nm)	Band gap (eV)	Light	Dye	Time (min)	Degradation (%)	Ref.
1	TiO\textsubscript{2}	Degussa P-25	-	30	3.0	UV	Methyl red	60	75	[32]
2	TiO\textsubscript{2}	Degussa P-25	-	30	3.0	UV	Congo red	120	95	[32]
3	TiO\textsubscript{2}	Degussa P-25	-	30	3.0	UV	Methyl blue	120	98	[32]
4	TiO\textsubscript{2}	Hydrolysis of TiCl\textsubscript{4}	Irregular	30	3.0	UV	McrB	120	92	[33]
5	TiO\textsubscript{2}	Hydrolysis of TiCl\textsubscript{4}	Irregular	30	3.0	UV	Methylene blue	30	95	[35]
6	TiO\textsubscript{2}	Hydrothermal	Irregular	30	3.0	UV	Methyl orange	30	70	[35]
7	TiO\textsubscript{2}	Hydrothermal	Irregular	30	3.0	UV	Methyl orange	30	70	[35]
8	TiO\textsubscript{2}	Hydrothermal	Irregular	30	3.0	UV	Methyl orange	30	70	[35]
9	Core-shell structured TiO\textsubscript{2}	One-step hydrogen treatment	Core-shell	30–40	3.0	Vis	Methylene blue	150	96	[36]
10	TiO\textsubscript{2}	Hydrothermal	Cube	80–100	3.3	UV	Acetate Red X3B	30	98	[37]
11	ZrO\textsubscript{2}	Electrochemical	-	-	-	UV	Methylene blue	60	80	[38]
12	ZrO\textsubscript{2}	Electrochemical	-	-	-	UV	Methylene blue	60	80	[38]
13	ZrO\textsubscript{2}	Electrochemical	-	-	-	UV	Congo red	60	87	[38]
14	ZrO\textsubscript{2}	Electrochemical	-	-	-	UV	Malachite green	60	100	[38]
15	ZrO\textsubscript{2}	Hydrothermal	Semiglobular	34	3.25	UV	Methyl Orange	110	99	[31]
16	ZrO\textsubscript{2}	Hydrothermal	Semiglobular	17	3.58	UV	Methyl Orange	110	90	[31]
17	ZrO\textsubscript{2}	Hydrothermal	Semiglobular	20	4.33	UV	Methyl Orange	110	80	[31]
18	ZrO\textsubscript{2}-Zeolite	Sol-gel method and precipitation	Semispherical	40.8	-	UV	Methyl Orange	80	100	[39]
19	ZnO	Hydrothermal	-	-	3.3	UV	Violet 26	60	90.1	[34]
20	ZnO	Co-precipitation	Slit platelets	550	-	UV	Reactive Blue 19	360	100	[40]
21	ZnO	Co-precipitation	Slit platelets	550	-	UV	Reactive blue 21	360	91	[40]
22	ZnO	Ultrasonication	Semiglobular	17.5	3.25	Sunlight	Methylene blue	120	89.7	[41]
23	ZnO	Calcination	Irregular	10	-	UV	Malachite green	150	98.5	[42]
24	ZnO	Precipitation and ultrasound	Spherical	50	-	UV	Reactive blue 203	20	85.4	[43]
25	ZnO	Sol-gel	Rod-like	22–50	3.37	UV	Methyl orange	30	99.7	[44]
26	ZnO	Sol-gel	Rode-like	22–50	3.37	UV	Congo red	30	92.1	[44]
27	ZnO	Sol-gel	Rode-like	22–50	3.37	UV	Direct black 38	30	99.45	[44]
a photocatalytic semiconductor. The created electronic structure of the new photocatalyst could decrease the recombination of the carriers due to the creation of new energy levels by trapping the electrons by reducing the recombination of the charge carries (Fig. 4 (b)) [46]. A heterojunction is the creation of an interface between two different semiconductors with unequal band gap structure, resulting in band alignments. In this sense, different classes of heterojunctions have been reported:

1. semiconductor–semiconductor,
2. semiconductor–metal,
3. semiconductor–carbon, and
4. multicomponent heterojunction [47].

The principal requirement to create a heterojunction, is that semiconductors should exhibit dissimilar band gaps, and the narrow band gap must lie in the visible region. In addition, in the direct band gap, the highest energy level of the conduction band aligns with the lowest energy level of the valence band to momentum [48], hence direct band gap is preferred over the indirect band gap. There are three types of conventional heterojunction photocatalysts, those with a straddling gap (type-I, Fig. 4 (a)), with a staggering gap (type-II, Fig. 4(b)), and with a broken gap (type-III, Fig. 4 (c)), [49, 50].

In the type-I heterojunction, the conduction band and the valence band of semiconductor A are higher and lower than those corresponding of the semiconductor B. In other words, the band gap of one semiconductor B is inside of the band gap of A semiconductor. When the photocatalyst is irradiated with the appropriate energy, the e− and h+ carriers from semiconductor A migrate and are caught by the C and V of semiconductor B. Since e− and h+ carriers are caught on the same semiconductor, the charge carriers cannot be effectively separated. In the type-II heterojunction, the C and the V of semiconductor A are higher than the corresponding C and V of semiconductor B. Therefore, under light irradiation, the photogenerated electrons from A will migrate to C of semiconductor B, while the photogenerated holes from semiconductor B will migrate to V of semiconductor A. In both cases, the redox ability will be also considerably reduced because the redox reaction occurs on semiconductor with the lowest redox potential. In the type-III heterojunction, the C and V of semiconductor A are higher than the C of semiconductor B, and the band gaps do not overlap. The carrier transfer is like type-II, just more pronounced. For this case, the e− and h+ carriers migration and separation between the two semiconductors cannot be carried out, making it unsuitable for enhancing the separation of the e− and h+ carriers [51]. From the three cases, the type-II heterojunction looks to be the most photoactive heterojunction due to its suitable electronic structure for the spatial separation of the photinduced e− and h+ carriers. Moreover, type-II heterojunction photocatalysts exhibit good e− and h+ carriers separation efficiency, fast mass transfer and absorbance of light in the visible region with a band gap values under 2.8 eV [52]. In this sense, Prabhu et al. [53] synthesized djembe like ZnO microstructures by surfactant-assisted hydrothermal method,

![Fig. 4 The three conventional heterojunction types, (a) type-I, (b) type-II and (c) type-III. Adapted from [49].](Image)
and its composite with graphitic carbon nitride (g-C3N4) was prepared by ethanolic reflux method for the first time. The nanostructures were studied in the photodegradation of methylene blue (MB) and rhodamine B (RhB). According to optical studies, the V_g potential and C_g potential were calculated as 2.83 eV and –0.64 eV for ZnO and 1.62 eV and –1.15 eV for g-C3N4. Due to the distinct positions of the V_g and C_g potentials between ZnO and g-C3N4, a type-II heterojunction was formed. The authors also mentioned that the heterojunction formed between djembe like ZnO and g-C3N4 decreased the optical band gap energy due to the light absorption was shifted towards the visible region. The degradation efficiency of the ZnO/g-C3N4 composite for MB and RhB degradation was found to be ~95% and ~97%, respectively, compared to the pure ZnO and g-C3N4.

The authors proposed a possible visible-light-driven photocatalytic mechanism at the interface of ZnO/g-C3N4 heterojunction (Fig. 5, [53]). Pure ZnO semiconductor cannot be excited due to its wide bandgap (3.17 eV); only the g-C3N4 is excited by visible light to generate e^- and h^+ carriers. Since the C_g edge potential (–1.15 eV) of g-C3N4 is more negative than that of ZnO (–0.64 eV), the photoexcited electrons in the CB of g-C3N4 are transferred to the CB of ZnO and then to the surface of the photocatalyst, by enhancing their photocatalytic properties.

Additionally, Ramezanalizadeh et al. [54] prepared through a sol-gel hydrothermal approach a novel CoTiO3/CuBi2O4 heterojunction semiconductor photocatalyst for the degradation of Direct Red 16 dye under LED visible light irradiation. According to optical studies, compared to the pure CoTiO3 and CuBi2O4, CoTiO3/CuBi2O4 heterojunction showed the highest photodegradation efficiency. Based on the obtained results, the CoTiO3/CuBi2O4 heterojunction nanocomposites showed the highest removal efficiency (91%) in pH 4.3 solutions and at a loading of 5 g/L. This effect was attributed to the efficient separation of electron-hole pairs, compatible junction formation, visible light absorption ability, suitable band gap, and a large amount of light-harvesting. Moreover, according to the scavenger experiments, the pH played a major role during photocatalytic activity. Similarly, Chen et al. [55] prepared a photocatalyst of TiO2 grown in situ on the surface of carbon nanotubes (CNT) for the photocatalytic degradation of Rhodamine B (Rh-B) under simulated sunlight synthesized by the sol-gel reflux method. The degradation efficiency of CNT-TiO2 for Rh-B was 50% higher than pure TiO2, and the addition of CNT increased the specific surface area, optical support, dispersibility, and uniformity of the synthetic material of the TiO2 nanoparticles. The authors concluded that the n-n heterojunction structure was beneficial to accelerate the e^- and h^+ carriers migration and improved the photocatalytic performance of the composite. In this study, the authors proposed that under the radiation of simulated sunlight, photoexcited electrons from TiO2 C_g were transferred to the CNT structure, reducing the recombination process of the e^- and h^+ carriers.

4.3 The p–n heterojunctions

Although the heterojunction type-II seems to be the most effective way to avoid the recombination process due to the entrapment of photogenerated e^- and h^+ carriers, it is not effective enough to avoid the fast recombination process. Hence, the p-n-type heterojunction model was proposed to explain the accelerated migration of photogenerated species through a generated electric field in the interface between p-type and n-type semiconductors by suppressing the recombination process [56]. A p–n junction is the interaction between two types of semiconductors photocatalytic materials (p-type and n-type) inside a single crystal of photocatalyst. The p-type semiconductor contains an excess of holes, and the n-type semiconductor contains an excess of electrons. Therefore, during irradiation, when electrons and holes are photo-created, the electrons of C_g from p-type semiconductor near of interface undergo diffusion towards C_g of n-type (positive field) and then reacted with O2 adsorbed on the surface to produce reactive O_2^-. At the same time, the holes from the V_g of n-type semiconductor near interface tend to flow towards V_g of p-type (negative field) semiconductor, establishing the p-n junction (Fig. 6) [57].
The electron-hole transfer between n-type and p-type semiconductors is known as diffusion, and it will continue until the system’s equilibrium state (e.g., Fermi level), reducing the recombination of the photogenerated charge carriers by the internal electric field at the p-n junction [58]. Moreover, the systems of p-n junctions are designed for operation under visible light, one of the goals of modern photocatalysis. Recently, Habibi-Yangjeh et al. [59] prepared ZnO/ZnBi2O4 (containing 5, 10, 20, and 30 wt% of ZnBi2O4) nanocomposites with p-n heterojunction fabricated by integrating ZnO with ZnBi2O4 nanoparticles via a calcination process for the photodegradation of RhB. The ZnO/ZnBi2O4 nanocomposites exhibited superior photocatalytic performance for the photodegradation of the organic dye under visible light compared with the pure ZnO and ZnBi2O4. The composite ZnO/ZnBi2O4 with 10 wt% achieved a photodegradation of 97% of the RhB dye after 240 min, whereas the pristine ZnO and ZnBi2O4 decomposed 28% and 39% of the RhB solution after 360 min, respectively. This enhancement can be ascribed to the efficient charge carrier separation through the heterojunction structure, which inhibits the recombination of photinduced charges. The authors mentioned that an inner electrostatic field directed from ZnO to ZnBi2O4 was produced; moreover, in the presence of visible-light illumination, only ZnBi2O4 is excited, and the e− and h+ carriers are produced because of its narrow band gap. After the p-n heterojunction formation, the Cb level of ZnBi2O4 is more negative than that of ZnO. Hence, the excited electrons can inject into the Cb of ZnO, promoted by the inner electrostatic field, while holes remain in the VB of ZnBi2O4. Therefore, the photogenerated charge carriers can be separated effectively by the formed inner field of p-n heterojunction reducing the recombination of the e− and h+ carriers in the photocatalyst. In another work, Sang et al. [60] reported the synthesis of heterostructured Bi2O3/Bi2S3 nanoflowers (1 to 2 µm of diameter) fabricated by a one-step hydrothermal method to remove of RhB and Cr(VI). The results of photocatalysis showed that removal efficiencies of RhB (99.7%) and Cr(VI) (91.8%) over Bi2O3/Bi2S3 heterojunction were higher than those of pure Bi2O3 and Bi2S3 (< 50% of removal) under visible light irradiation after 90 min of reaction. The improved photocatalytic performance of the Bi2O3/Bi2S3 heterojunctions was associated with the combination between components and their specific surface areas (46.3 m²g⁻¹, 10.1 m²g⁻¹ and 12.6 m²g⁻¹, respectively. Moreover, according to the radical trapping experiments, the photogenerated h+ were the major oxidative species for removing RhB, while the photogenerated e− were responsible for the photoreduction of Cr(VI). Authors argued that the excited e− on the Cb of p-type Bi2S3 moves to n-type Bi2O3, while the photogenerated h+ still stays in the Vb of p-type Bi2S3. In the Bi2O3/Bi2S3 photocatalytic system, the e− and h+ carriers are involved in the redox reaction. Therefore, for the system of Cr(VI) solution, the e− provided by the Cb of n-type Bi2O3 is being effectively consumed by Cr(VI), which is a strong oxidant. On the other hand, the h+ stayed on the Vb of Bi2S3 would oxidize the RhB molecules directly (Fig. 7); hence the h+ is the predominant radicals, which oxide RhB to simpler molecules.

For its part, Lu et al. [61] prepared a series of BiOI/KTaO3 p–n heterojunctions via a facile in situ chemical bath strategy for the degradation of Rhodamine B (RhB) under visible light irradiation. As a result, the BiOI/KTaO3 composites showed higher photocatalytic efficiency compared to the individual catalysts. In particular, 54 wt% BiOI/KTaO3
degraded 98.6% RhB within 30 minutes without affecting its removal properties up to 3 cycles (91.1%), while only 68.1% RhB was degraded over pure BiOI. According to the authors, the improved photocatalytic performance was attributed to the successful construction of the p–n junction between BiOI and KTaO$_3$, facilitating the separation and migration of photo-induced charge carriers.

4.4 Direct Z-scheme

Yu et al. [62] proposed the concept of the direct Z-scheme mechanism to explain the process of the photocatalytic formaldehyde degradation in the TiO$_2$/g-C$_3$N$_4$ presence. The assembly of a direct Z-scheme photocatalyst (Fig. 8) looks like that of a type-II heterojunction (Fig. 4 (b)), but their e$^-$ and h$^+$ charge carriers transport processes are somewhat different [63]. Furthermore, the direct Z-scheme system does not need a redox medium, and the photocarriers directly transfer across the interface of both semiconductors without a charge carrier intermediary. Therefore, the transmission distance is reduced, and the photocatalytic efficiency is enhanced. Under light irradiation, the photogenerated electrons in semiconductor A, with a lower reduction ability, recombine with the photogenerated holes in semiconductor B with a lower oxidation ability [64]. Thus, the photogenerated electrons in semiconductor B with high reduction ability and the photogenerated holes in semiconductor A with a high oxidation ability are kept in their particular sites to get the spatial separation of charge carriers to improve the redox capacity of the photocatalytic structure. In this manner, the charge-carrier migration is more promising than in type-II junction because the migration of electrons from the C$_A$ of semiconductor A to the hole-rich V_A of semiconductor B is thermodynamically possible by the electrostatic attraction between the e$^-$ and h$. Direct Z-scheme offers advantages as fast e$^-$ and h$^+$ carriers separation efficiency, good redox ability, corrosion resistance, and low fabrication cost [49, 65].

In this sense, Zhao et al. [66] prepared a Z-scheme heterogeneous g-C$_3$N$_4$/FeOCl photocatalysts using the calcination method. The composite with a morphology of a ribbon-like sheet was used to eliminate RhB from water. Compared with the pure FeOCl material (60% of RhB removal), the Z-scheme g-C$_3$N$_4$/FeOCl composites revealed a higher photocatalytic activity (90% of RhB removal) under visible light irradiation after 60 minutes of reaction. The authors argued that the enhanced catalytic activity of the g-C$_3$N$_4$/FeOCl material was attributed to the formation of a Z-scheme between g-C$_3$N$_4$ and FeOCl (Fig. 9). Authors explained that when g-C$_3$N$_4$/FeOCl is irradiated with visible light, the electrons from the V_A of the g-C$_3$N$_4$ and FeOCl were transferred to their respective C$_A$. After that, the electrons were transferred from the C$_A$ of FeOCl to the V_A of the g-C$_3$N$_4$ and combined with h$. Then, these electrons transformed the H$_2$O$_2$ into the OH$^\bullet$. In this process, the H$_2$O$_2$ served as the electron acceptor which further successfully limited the recombination of holes and electrons. On the other hand, on the surface of the FeOCl material, the Fe$^{3+}$ was transformed into Fe$^{2+}$ with the presence of H$_2$O$_2$ and the irradiation of visible light; hence, the Fe$^{2+}$ was easily reacted with H$_2$O$_2$ to generated the OH$^-$ for removing the pollutant. Due to the C$_A$ of the g-C$_3$N$_4$ was more negative than E$(O_2/O_2^\bullet^−)$ and the V_A of the FeOCl was more positive than E$(OH^−/OH^\bullet)$, the

![Fig. 8](image1.png)
Fig. 8 Electron-hole separation on a direct Z-scheme photocatalysts

![Fig. 9](image2.png)
Fig. 9 The PF-like degradation mechanism of g-C$_3$N$_4$/FeOCl composite under the visible light irradiation. Adapted from [66].
electron which gathered on the C_p of the g-C$_3$N$_4$ would also reduce O$_2$ to form the O$_2^−$ and the h$^+$ on the V_g of the FeOCl could oxidize the OH$^−$ into the OH$^+$ at the same time.

In other study, An et al. [67] prepared a core-shell Ag$_2$CO$_3@g$-C$_3$N$_4$ photocatalyst by two-dimensional coating nanosheet g-C$_3$N$_4$ on the surface of Ag$_2$CO$_3$ for the photodegradation of methyl orange (MO). According to the authors, the Ag$_2$CO$_3@g$-C$_3$N$_4$ (5 wt.%) composite exhibited the best degradation efficiency, up to 96.7% and 87.3% after five cycles. However, the photodegradation performance was in a g-C$_3$N$_4$ dose-dependent response (from 1 wt.% to 10 wt.%). The authors mentioned that the photocatalytic performance was due to the faster-photogenerated carrier migration efficiency derived from core-shell structure and chemical bond hybridization effect arising from Ag$_2$CO$_3$ and g-C$_3$N$_4$. Moreover, the excellent performance of photocatalyst was due to the Z-scheme structure formed by the Ag$_2$CO$_3@g$-C$_3$N$_4$ photocatalyst, which effectively avoids the accumulation of photoinduced electrons in the Ag$_2$CO$_3$ and inhibits Ag$^+$ photoreduction, which significantly improves the stability of Ag$_2$CO$_3$. Recently, Zhang et al. [68] reported a Z-scheme-based BiOI/CdS heterojunction with efficient photocatalytic degradation of RhB (20 mg/L) under visible light. The in-situ stirring and calcining method synthesized the Z-scheme-based BiOI/CdS heterojunction. Three BiOI/CdS composites were prepared (the mass ratio of BiOI to CdS was 60 wt.%, 80 wt.%, and 100 wt.%, respectively referred to as 0.6-BiOI/CdS, 0.8-BiOI/CdS, and 1.0-BiOI/CdS). The removal efficiency of RhB was BiOI < CdS < 1.0-BiOI/CdS < 0.6-BiOI/CdS < 0.8-BiOI/CdS. Moreover, after 4 cycles, the degradation of the 4th experiment reached 98% of the first, indicating the 0.8-BiOI/CdS composites exhibited excellent stability. According to the authors, the free radical capture experiments showed that O was the main active substance in the degradation process.

4.5 The g-C$_3$N$_4$-based photocatalysts

The g-C$_3$N$_4$ is a characteristic material belonging to the second group of designed photocatalysts with a band gap of 2.7 eV, which means that operates under visible light. g-C$_3$N$_4$ shows a two-dimensional (2D) planar $π$ conjugation structure, which could improve the electron transfer mechanism due to its prominent electronic activity [69]. In addition, due to its high nitrogen content, g-C$_3$N$_4$ may provide more active reaction sites than other N carbon materials by contributing to the photocatalytic reaction [70]. However, its fast recombination of the e$^−$ and h$^+$ carriers reduces its photoactivity efficiency as only photocatalyst. Therefore, it is recommended that g-C$_3$N$_4$ be coupled to another semiconductor material to improve its photocatalytic activity by creating an interesting electronic structure as a whole. For example, Wei et al. [71], through the solvothermal method, synthesized the ternary heterojunction g-C$_3$N$_4$/Ag/ZnO with a 3D flower-like structure and 1.5 µm of diameter for the photodegradation of MO. The ternary heterojunction g-C$_3$N$_4$/Ag/ZnO photocatalytic activity was better compared to the pure g-C$_3$N$_4$, g-C$_3$N$_4$/ZnO composite, and g-C$_3$N$_4$/Ag composites. According to the authors, the plasma effect of Ag nanoparticles can be used to expand the response range of the photocatalyst to visible light. Meanwhile, Ag particles on the heterogeneous interface of g-C$_3$N$_4$ and ZnO play the role of conducting electrons, which are beneficial to separating of photogenerated electrons and holes. Zhao et al. [72] prepared a photocatalyst of Ag/WO$_3@g$-C$_3$N$_4$, demonstrating better adsorption capacity promotion than traditional WO$_3$. The composite was prepared by calcination and compared with the Ag/WO$_{3.9}$ and g-C$_3$N$_4$, the Ag/WO$_{3.9}$/g-C$_3$N$_4$ showed a graphite-like carbon nitride as a substrate, and nano-sheets WO$_{2.0}$ attached to silver nanoparticles are stacked on g-C$_3$N$_4$. This unique structure generated a large specific surface area, coupled with the oxygen deficiency inherent in WO$_{2.9}$, which favored the adsorption of dye molecules. Moreover, the photocatalytic tests (under visible light irradiation ($λ > 420$ nm)) on Ag/WO$_{2.9}$, g-C$_3$N$_4$, and Ag/WO$_{2.9}$/g-C$_3$N$_4$ showed that Ag/WO$_{2.9}$/g-C$_3$N$_4$ has the best adsorption activity and photocatalytic degradation ability under visible light conditions. The authors also mentioned that the formed photocatalyst constitutes a Z-scheme, which effectively separates the C_g region and the V_g region and performs efficient regional reaction. Likewise, Xue et al. [73] prepared a hetero-structured photocatalyst consisting of two-dimensional g-C$_3$N$_4$ nanosheets and commercial MoO$_3$ microparticles through a simple mixing and annealing process for the photodegradation of RhB. According to the authors, the MoO$_3$/g-C$_3$N$_4$ composite showed a significant improvement compared with individual MoO$_3$ or g-C$_3$N$_4$ and their physical mixture. Moreover, with the results of electron spin resonance, the authors concluded that a direct Z-scheme charge transfer between MoO$_3$ and g-C$_3$N$_4$ not only causes an accumulation of electrons in g-C$_3$N$_4$ and holes in MoO$_3$, but also boosts the formation of superoxide radicals and hydroxyl radicals. The total dye was photodegraded in 15 minutes...
using 25 mg of catalyst dispersed into 50 mL of RhB solution (10 mg L\(^{-1}\)). In this context, several heterojunctions materials have been used for MO [66, 71, 72, 74–79], RhB [53, 59, 60, 61, 67, 72, 73, 78, 80–95], MB [53, 72, 75, 77, 94, 96–105] and other polluting dyes [54, 75, 100, 103, 106–118] removal, as shown in Table 2.

4.6 Immobilized photocatalysts

The typical suspended photocatalytic systems of powders show good mass transfer coefficients and the advantage of a greater surface area against the immobilized system. However, their disadvantage relies on the recovery of the powders after the photocatalytic reaction, increasing the process costs, which is a drawback [119]. In addition, the loss in the photoactivity of the recycled powders is another challenge related to the separation techniques. The immobilized systems take better advantage of the irradiated light and do not require a post-treatment for recovery the photocatalyst. The features of the semiconductor-active species and its interaction with the employed support are key factors to achieve a good photoactivity. Unfortunately, the immobilized system's configuration is only effective in arranging with a high surface-to-volume ratio, e.g., in microchannel reactors [120]. For example, Bahrudin et al. [121] studied the decolorization of methyl orange (MO) using immobilized TiO\(_2\)/chitosan-montmorillonite (TiO\(_2\)/CS-MT), a combination of TiO\(_2\) as the top layer and CS-MT as the sub-layer on a glass plate. The authors mentioned that the immobilized CS-MT film showed better performance over the CS film since the former adhered stronger and swelled less than the latter, which showed its favorability in the aqueous medium. Moreover, the bilayer photocatalyst could remove the MO from the solution 3 times faster than the single TiO\(_2\) within 90 min of irradiation under a UV–Vis lamp due to the strong adsorption of dye by the CS-MT sub-layer.

Ounas et al. [122] presented a simple and effective approach to prepare a polymethyl methacrylate–TiO\(_2\) (TiO\(_2\)/PMMA) film photocatalyst, by a cheap and low-cost technique. The characterization of the film by XRD, FTIR, and Transmittance spectroscopy confirmed that the anatase TiO\(_2\) has been deposited on the surface of the polymer. The film prepared was subsequently used in photodegradation of MB under artificial UV irradiation and showed a good prospect for the immobilization of TiO\(_2\) intended for the photodegradation of pollutants generally present in waters. However, the authors mentioned that the method described can still be improved to become easier and faster in a near future. Furthermore, de Araujo Scharnberg et al. [123] evaluated the photocatalytic properties of TiO\(_2\) under porous ceramics support for the degradation of RhB. For this, the anatase TiO\(_2\) calcined at 400 °C was prepared by the sol-gel method and supported in a porous ceramic substrate by a dip-coating process. The heterogeneous photocatalysis showed excellent results, with the degradation of up to 83% of RhB. The Authors also mentioned that after the usage, a major part of the catalyst stayed at ceramics, making possible to recover it, or to use the catalyst in a continuous flow reactor. Additionally, Inderyas et al. [124] reported that ZnO nanoparticles were immobilized on polyurethane foam (PUF) and employed for the degradation of Acid black 1 dye. In this study, the process variables like dye concentration, pH, the concentration of H\(_2\)O\(_2\), irradiation time were optimized for maximum dye degradation. The ZnO/PUF showed high efficiency for the degradation of AB1 dye, and up to 86% and 65% dye degradation was achieved under UV and solar light irradiation at neutral pH, 4% H\(_2\)O\(_2\), 240 min/sunlight, and 75 min/UV irradiation time using 40 mg L\(^{-1}\) dye initial concentration. Moreover, the reductions in BOD, COD, and TOC values confirmed that the ZnO/PUF was efficient. Das and Mahalingam [125] prepared a physical mixture of rGO and g-C\(_3\)N\(_4\) along with TiO\(_2\) (ratio of 1:1:1). The nanocomposites were immobilized in a polystyrene film using the facile solvent casting method for the degradation of remazol turquoise blue dye. The results using the immobilized catalyst mixture film gave 92.25% of TOC reduction, 94% of decolorization in 140 min, and a 72% of degradation in the fourth time of reuse.

In this sense, several supported photocatalysts have been prepared for MO [121, 126–130], RhB [123, 131–133], MB [122, 134–144], and other polluting dyes [124, 125, 145–159] removal, as shown in Table 3.

5 Influence of operational parameters on the photocatalytic degradation

According to the evidence, the photocatalysts synthesized by different methods are attractive materials with high photocatalytic properties for diverse dye degradation from water. However, their effects are in a shape-, size- and dose-dependent response. In general, these materials are low-cost, efficient, reusable, and environmentally friendly for wastewater treatment. Additionally, the efficiency of these materials mainly depends on the experimental conditions, as discussed in Subsections 5.1–5.6.
No.	Photocatalyst	Synthesis method	Morphology	Size (nm)	Band gap (eV)	Light	Dye	Time (min)	Degradation (%)	Ref.
1	SrTiO₃-BiOI	Microwave-assisted solvothermal	Fibers	-	1.9–2.3	Vis	Methyl orange	180	94.6	[74]
2	g-C₃N₄/Ag/ZnO	Solvothermal	Flower	150	-	Vis	Methyl orange	180	58.1	[71]
3	Ag₂O₃/g-C₃N₄	Coating two-dimensional	Ribbon-sheet	-	-	Vis	Methyl orange	54	96.7	[66]
4	CoFe₂O₄/MoO₃	Electrospinning and hydrothermal	Nano rod/flower like	-	1.26–1.01	Vis	Methyl orange	60	67.5	[75]
5	BiOI/Ag₂SiO₃	Deposition–precipitation	Spherical	-	1.87	Vis	Methyl orange	40	98.1	[76]
6	BiOBr/Ag₂SiO₃	Hydrothermal	Flake/irregular	-	2.41–2.54	Vis	Methyl orange	20	96	[77]
7	BiFeO₃/CuWO₄	Impregnation	Wafer-like/grain-like	-	2.2	Vis	Methyl orange	120	85	[78]
8	g-C₃N₄/Ag/PO₄	Cakination and precipitating	Sheet/irregular spherical	-	-	Vis	Methyl orange	30	95	[79]
9	WO₃/g-C₃N₄	Cakination	Nanosheet stack	150–50	-	Vis	Methyl orange	270	>95	[72]
10	WO₃/g-C₃N₄	Cakination	Nanosheet stack	150–50	-	Vis	Rhodamine B	270	>91	[72]
11	g-C₃N₄/Ag/PO₄	Cakination and precipitating	Sheet/irregular spherical	-	-	Vis	Rhodamine B	15	96	[79]
12	MoO₃/g-C₃N₄	Mixing and annealing	Porous and lamellar structure	-	2.81	Vis	Rhodamine B	15	100	[73]
13	ZnSbulk g-C₃N₄	In-situ hydrothermal	Irregular	-	-	Vis	Rhodamine B	90	99	[80]
14	Bi₂MoO₆/WO₃/Ag/PO₄	One-step hydrothermal	Sheet/rod/sphere	-	2.33	Vis	Rhodamine B	120	97.31	[81]
15	NaTaO₃/g-C₃N₄/G	In-situ cakination and photochemical reduction	Sheet/nanocubes	-	-	Vis	Rhodamine B	70	99	[82]
16	Fe₂O₃/C-g-C₃N₄	One-step carbonizing	-	-	Vis	Rhodamine B	80	95	[83]	
17	TiO₂ modified rod-like g-C₃N₄	One-pot hydrothermal	Rod/nanocubes	25–35	2.45	Vis	Rhodamine B	240	98.6	[84]
18	Bi₂O₃/Bi₂S	One-step hydrothermal	Nanoflower	1000–2000	3.38–1.44	Vis	Rhodamine B	90	99.72	[60]
19	BiOI/KTaO₃	Hydrothermal and chemical bath	Nanosheets/cubes	-	-	Vis	Rhodamine B	30	98.6	[61]
20	Sm₂TiO₇	Biopolymer - mediated	Spherical	12	2.6	Vis	Rhodamine B	80	94	[85]
21	Bi₂Sb₂S₅	Hydrothermal	Rod	37	2.4–2.9	Vis	Rhodamine B	30	97	[86]
22	ZnO/ZnBiO₃	Refluxing route and cakination	Rice-like/spherical	-	-	Vis	Rhodamine B	240	97	[59]
23	αβ Bi₂O₃	Solvothermal	Spherical and rod/snano flakes/flower like	24–126	2.35–3.19	Vis	Rhodamine B	120	99.6	[87]
24	Ag/P₂O₅/BiNbO₄	Co-precipitation	Spherical/irregular	350/100	3.24	Vis	Rhodamine B	30	98.8	[88]
25	NiO/FeO	Solvothermal	Foam-like/microspheres	-	-	Vis	Rhodamine B	60	90	[89]
26	TiO₂/AgBr/polyaniline	Ultrasound	Irregular spheres	-	1.85	Vis	Rhodamine B	140	98.6	[90]
27	Zn₂(VO₄)₂/FeVO₃	Hydrothermal	Rod/flower	-	2.01	Vis	Rhodamine B	90	100	[91]
28	BiOI/Bi₂O₃	Hydrothermal	Square nanosheets	20–20	3.15	Vis	Rhodamine B	60	>90	[92]
29	MoO₃/Bi₂O₃	Hydrothermal	Grain/nanorods	-	-	Vis	Rhodamine B	40	99.6	[93]
30	g-C₃N₄/FeCl₃	Cakination	Nanosheets attached to Ag/CO₃	-	-	Vis	Rhodamine B	60	90	[67]
31	BiFeO₃/CuWO₄	Impregnation	Wafer-like/grain-like	-	2.2	Vis	Rhodamine B	120	87	[78]
No.	Photocatalyst	Synthesis method	Morphology	Size (nm)	Band gap (eV)	Light	Dye	Time (min)	Degradation (%)	Ref.
-----	-------------------------------	---------------------------	------------------------	-----------	--------------	-------	-----------	------------	----------------	------
32	ZnO/g-C_3N_4	Hydrothermal	Djembe like	-	3.07	Vis	Rhodamine B	50	95	[53]
33	AgI/BiVO_4	Hydrothermal	Irregularly shaped blocks	-	2.27-2.34	Vis	Rhodamine B	80	89	[94]
34	AgPO_4/NaTaO_3	Hydrothermal		-		Vis	Rhodamine B	25	99	[95]
35	AgI/BiVO_4	Hydrothermal	Irregularly shaped blocks	-	2.27-2.34	Vis	Methylen blue	80	99	[94]
36	ZnO/g-C_3N_4	Hydrothermal	Djembe like	-	3.07	Vis	Methylen blue	50	97	[53]
37	N doped TiO_2 (N/TiO_2)	Sol-gel approach	Spherical	14-18	2.91	Vis	Methylen blue	100	97	[96]
38	Fe_3O_4/FeWO_4	Hydrothermal	Nanowires/nanoparticles	200-500	2.5	Vis	Methylen blue	60	97.1	[97]
39	TiO_2/NiO	Hydrothermal	Nanosheet/nanorod	20-40		Vis	Methylen blue	100	100	[98]
40	CaWO_4/Ag_2WO_4	One-step hydrothermal	Irregular	-	2.79-3.57	Vis	Methylen blue	105	85	[99]
41	BiOBr/Ag_2SiO_3	Hydrothermal	Flakes	-	2.57-2.54	Vis	Methylen blue	15	98	[77]
42	WO_2/g-C_3N_4	Calcination	Sheet stack	150-50		Vis	Methylen blue	270	93.5	[72]
43	CoFe_2O_4/MoS_2	Electrospinning and hydrothermal	Nano rod/flower like	-	1.26-1.01	Vis	Methylen blue	60	48.9	[75]
44	g-C_3N_4/MnV_2O_5	Hydrothermal	Layer/rod	-		Vis	Methylen blue	210	95	[100]
45	Bi_2WO_6/GO/Bi_25FeO_49	Hydrothermal	Nanosheets/flakes/nanorod	-		Vis	Methylen blue	30	98.1	[101]
46	g-C_3N_4@Zn_0.5Cd_0.5S	Co-precipitation hydrothermal	Layer	40-80	2.51-2.8	Vis	Methylen blue	240	99.9	[102]
47	Ag/MnO_4/graphene	Sol–gel and hydrothermal	Spherical	-		Vis	Methylen blue	120	973	[103]
48	Ag/AgBr/LaAlO_3	Deposition	Spherical/flake	-	2.65	Vis	Methylen blue	60	89	[104]
49	Cu_2O@HNBWO_3	Solution redox	Spherical/Layer	-		Vis	Methylen blue	120	90	[105]
50	Ag/MnO_4/graphene	Sol–gel and hydrothermal	Spherical/irregular/sheet	-		Vis	Congo red	120	98.8	[103]
51	CoFe_2O_4/MoS_2	Electrospinning and hydrothermal	Nano rod/flower like	-	1.26-1.01	Vis	Congo red	60	94.9	[75]
52	PSCN/Ag@Ag/1/WO_3	One-pot precipitation	Irregular/sheet	-		Vis	Malachite green	60	90	[106]
53	CdS/CdWO_4	Ultrasound and precipitation	Nanorod/short rod	1-35	2.34-2.25, 2.32-2.33	Vis	Malachite green	100	97	[107]
No.	Photocatalyst	Synthesis method	Morphology	Size (nm)	Band gap (eV)	Light	Dye	Time (min)	Degradation (%)	Ref.
-----	---------------	------------------	------------	-----------	--------------	-------	-----	-----------	----------------	------
54	2D/1D g-C₃N₄/CaTiO₃	Solothermal and calcination	Sheet/square tubular	-	-	Vis	Malachite green	90	95.02	[108]
55	2D/1D g-C₃N₄/CaTiO₃	Solothermal and calcination	Sheet/square tubular	-	-	Vis	Crystal violet	180	99.76	[108]
56	ZnMoO₄/BiFeWO₄/RGO	Dispersion and ultrasound	Spherical, diamond, and hexagonal-like particles/sheet	-	-	Vis	Acid blue 25	180	98	[109]
57	g-C₃N₄/MnVO₄	Hydrothermal	Layer/rod	-	-	Vis	Indigo Carmine	210	94	[100]
58	g-C₃N₄-melamine-urea	Thermal polycondensation	Layers	-	2.82–2.86	Vis	Reactive orange 16	100	95	[110]
59	Sr/Ag-TiO₂@g-C₃N	Sol-gel and hydrothermal	Flake	-	-	Vis	Reactive black-42	40	95.6	[111]
60	Ni foam@ZnO/MoS₂	Two-step electrodeposition	Sheet	-	-	Vis	Acid Red 1	40	83	[112]
61	CoTiO₂/CuBi₂O₄	Sol-gel/hydrothermal	Flower-like	53.6–67.6	1.9	Vis	Direct red 16	90	91	[54]
62	Y₂MnO₃/CoO₂	Sonochemistry method	Ball	-	2.82–2.51	Vis	Methyl red	240	99	[113]
63	Ag-V₂O₅/Cu-MOF/rGO	Solothermal	Particles/nanosheet	-	-	Vis	Acid blue 92	120	78	[114]
64	p-Ag₃PO₄-n-BiFeO₃	Precipitation	Sphere/cuboid	-	2.18	Vis	Acid orange 7	120	91	[115]
65	ZnO NPs/polypyrrole	Precipitation and chemical oxidation	Spherical	-	-	Vis	Orange II	30	100	[116]
66	Ag@AgBr/Bi₂MoO₆	Chemical deposition-light reduction	Flake/flower	-	2.78	Vis	Reactive blue 19	120	98.7	[117]
67	MoS₂/BiPO	Hydrothermal	Rods	-	-	Vis	Brilliant green	70	80	[118]
No.	Photocatalyst	Substrate	Synthesis method	Morphology	Light	Dye	Time (min)	Degradation (%)	Ref.	
-----	-----------------------	----------------------------------	------------------------------------	----------------	-------	---------------------	------------	-----------------	------	
1	TiO₂	Polyether sulfone matrix	Phase inversion technique	Tear and finger	UV	Methyl orange	540	80	[126]	
2	BaWO₄	MOF-199-NH₂	Hydrothermal	Octahedral	UV	Methyl orange	80	98	[127]	
3	γ-Fe₂O₃	Ni substrate	Autoclave	Rods and spheres	UV	Methyl orange	540	98	[128]	
4	SₓNₓ-codoped TiO₂	Glass beads	Sol–gel and Dip coating	Irregular	Vis	Methyl orange	80	90	[129]	
5	TiO₂	Chitosan-montmorillonite	Dip-coating	Flakes	Vis	Methyl orange	90	84	[121]	
6	TiO₂/MgO	Chitosan-Hydrogel	Dropping	Granular	UV	Methyl orange	90	82.4	[130]	
7	Au-TiO₂	Cellulose membranes	Tape and the suction filtration	Spherical	Vis	Rhodamine B	300	95	[131]	
8	BiOCl	Bi plate	I onic nucleation	Microspheres	Vis	Rhodamine B	210	98	[132]	
9	TiO₂	Diatomite	Sol-gel	Disks	UV	Rhodamine B	120	92.6	[133]	
10	TiO₂	Porous ceramic	Dip-coating	Porous net	UV	Rhodamine B	300	83	[123]	
11	TiO₂-P25	Borosilicate glass spheres	Pip-coating	Microspheres	Solar	Methylen blue	90	96	[134]	
12	TiO₂	ZSM-5 zeolite with nickel nanoparticles	Sol-gel	Semispherical	UV	Methylen blue	120	99.8	[135]	
13	Rutile TiO₂	Basil seed	Hydrothermal and Coating process	Rods	UV	Methylen blue	120	98.9	[136]	
14	Sintered commercial TiO₂	Basil seed	Coating process	Spheres	UV	Methylen blue	120	97.9	[136]	
15	TiO₂	Poly methyl methacrylate	-	-	UV	Methylen blue	200	70	[122]	
16	Chitosan-Polydimethylsiloxane-SiO₂-TiO₂	Pumice stones	Modified hydrothermal	Amorphous	Simulated sunlight	Methylen blue	1,800	64	[137]	
17	Erbium-doped TiO₂	Macroporous silica films	Sol-gel and ultrasonic bath	Irregular	Vis	Methylen blue	60	100	[138]	
18	Carbon-doped TiO₂	Polyamide fibers	Electrospinning	Granular	Vis	Methylen blue	300	82.6	[139]	
19	TiO₂/PEG (polyethylene glycol)	Double-sided adhesive tape	Brush technique	Porous	Vis	Methylen blue	75	100	[140]	
20	Co-tetracarboxyl-phthalocyanine	Chitosan-Fe₂O₃	Immersion	Spherical	Vis	Methylen blue	300	90	[141]	
21	TiO₂	Steel mesh	Electrospraying and hot-pressing	Spherical	UV	Methylen blue	40	100	[142]	
22	TiO₂ and ZnO	Poly(vinylidene difluoride)-cotrifluoromethylene	Solvent casting	Rectangular	UV	Methylen blue	300	85	[143]	
23	TiO₂	Polypropylene copolymer	Electrostatic-heating coating	Granular	Sunlight	Methylen blue	5,760	99.30	[144]	
24	TiO₂	Grape marc-based activated carbon	Chemical activation and impregnation	Flakes	UV	Reactive black 5	60	98.9	[145]	
25	TiO₂-P25	Polyethylene terephthalate	Wash coating of a TiO₂ suspension	Grooves and sheets	Simulated sunlight	Reactive Black 5	240	78	[146]	
26	Fe-Ce-N tri-doped TiO₂	Glass bed	Sol-gel	Spherical	Vis	Direct Blue 15	60	99	[147]	

Table 3: Photocatalytic studies about dyes degradation using immobilized photocatalysts
No.	Photocatalyst	Substrate	Synthesis method	Morphology	Light	Dye	Time (min)	Degradation (%)	Ref.
27	Fe$_2$O$_3$/TiO_2	Carbon fiber cloth	Spraying process	Granular	Vis	Basic blue 41	240	97.5	[148]
28	ZnO and polypyrrole	Silica ring	Polymerization	Smooth flakes	Vis	Violet 7	360	64	[149]
29	Mixture of TiO_2, rGO and g-C$_3$N$_4$	Polystyrene	Facile solvent casting	-	UV	Remazol turquoise blue	140	94	[125]
30	Au-Pt	Hydrocalcites containing Ni(II) and Fe(III)	Co-precipitation and Sol-immobilisation	Lamellar	UV	Orange II	60	95	[150]
31	ZnO/Zn	Photoanode	Heat attachment	Rods	UV	Reactive green 19	480	100	[151]
32	TiO_2	GO electrode	Electrochemical deposition	Spherical and layers	UV	Acid red 14	120	96.3	[152]
33	TiO_2	Indium tin oxide	Spin-coating process	Granular	UV	Basic blue 26	60	91.2	[153]
34	ZnO	Polyurethane	Hydrothermal	Symmetrical	UV	Acid black 1	75	86	[124]
35	TiO_2	Reticulated Al$_2$O$_3$ ceramics	Dipping method	Granular	UV	Reactive orange 16	75	99	[154]
36	TiO$_2$/ZnO	Spacer fabrics	Cold plasma discharge	-	UV	Reactive orange 16	60	81	[155]
37	TiO$_2$/chitosan	Glass support	Dip-coating	-	Vis	Reactive Red 4	60	100	[156]
38	TiO$_2$ double-sided adhesive tape (DSAT)	Glass plate	Brush technique	Porous and granular	UV	Reactive Red 4	30	55	[157]
39	TiO$_2$ (P-25)	Glass	Ultrasonic sedimentation	Particulate layers	UV	Acid orange 7	120	80	[158]
40	TiO$_2$-P25 Degussa	Glass fibre mat	Impregnation	Fibreglass mat	UV	Acid orange 7	40	90	[159]
5.1 The pH influence

The pH of the solution in photocatalytic reactions determines electrostatic properties such as the surface charge of the photocatalyst, formation of hydroxyl radicals, size of the aggregates that it forms, and the band edge position of metal oxides used as photocatalysts [160]. Furthermore, the pH can influence the adsorption–desorption characteristics of the catalyst surface [161]. The photocatalyst surface can be protonated and deprotonated under acidic and alkaline conditions, respectively (Eqs. (7) and (8)):

\[
\text{MO} + \text{H}^+ \rightarrow \text{MOH}^+ \\
\text{MOOH}^+ \rightarrow \text{MO}^- + \text{H}_2\text{O}.
\]

The operating pH affects the isoelectric point and the surface charge of the photocatalyst. The reaction occurs at a different pH values from the isoelectric point (point of zero charges, pzc) where the surface of the material is not charged; under this value, the material is positively charged, and above this value, the catalyst is negatively charged. At pH > pzc, the adsorption of positively charged contaminants is preferred, while at pH < pzc, the adsorption of negatively charged contaminants is favored [162]. Values close to neutrality have no significant effect on the operation. Although the pH primarily affects the adsorption of charged contaminants, it also has a role in the photocatalysis of those neutral molecules that tend to dissociate into charged species. Therefore, the pH affects the surface of the photocatalyst and the dissociation of the dye [163].

5.2 Process temperature

In most photodegradation reactions, these are carried out at STP and do not require cooling or heating of the reaction system due to the photonic activation. Preferably the reactions should occur between 20 °C and 80 °C, since at high temperature (T ≥ 80 °C), the recombination process of charge carriers is favored. Furthermore, the exothermic adsorption of reactant is not favored and tends to become the rate-limiting step [162, 164]. The increasing temperature does not favor adsorption, which becomes the inhibitor of the reaction, while at low temperature, inefficient desorption of final products is presented, and an increment in the activation energy is required to carry out the reaction [165]. Therefore, there is no need to waste energy for heating water that possesses a high heat capacity.

5.3 Photocatalysts loading

When the catalyst loading is increased, there is an increase in the contact surface of the catalyst, and a variation of the average dye–photocatalyst ratio could generate losses in the surface area by aggregation (particle–particle interactions) due to excess of the solid concentration causing a decrease in the number of exposed active surface sites [160]. The decrease of degradation at higher catalyst loading may be due to the deactivation of activated molecules by collision with ground-state molecules [166]. Moreover, with the increment of photocatalyst loading, UV light penetration can be reduced due to saturation of the aqueous medium, affecting the photodegradation rates [163]. Therefore, an optimum amount of photocatalyst must be used to ensure total absorption of light photons and avoid unnecessary excess. A constant agitation with a magnetic stirrer at the reactor base and an air flux bubbled continuously inside the reactor to provide enough O₂ are recommended to keep powder particles fluidization.

5.4 Dye concentration

The dye degradation rate under photocatalytic processes depends on its initial concentration [167]. When the initial dye concentration is increased, many molecules are adsorbed on the catalyst surface, and this may promote an inhibiting effect on the reaction of the dye with photo-generated holes or hydroxyl radicals because of the lack of any direct contact between them [168]. Furthermore, when the concentration of dye is increased, the dye molecules adsorb light (UV-screening effect), and the photons hardly reach the photocatalyst surface. Thus, the photodegradation efficiency decreases. On the other hand, the Langmuir-Hinshelwood model describes the kinetics of photocatalytic reactions of aquatic organics pollutants [169]; this model is based on the next assumptions:

1. limited surface adsorption sites,
2. only single layer adsorption, and
3. no interactions between molecules after adsorption.

Langmuir-Hinshelwood model is expressed as:

\[
\frac{dc}{dt} = k_{ad} C \frac{C}{1 + k_{ad} C},
\]

where C is the concentration of aquatic organic, \(k_{ad}\) is the adsorption equilibrium constant and \(k\) is the intrinsic rate constant, which takes into account parameters such as catalyst mass, efficient photon flow, O₂ layer, etc. [170]. When
the concentration of dye is so low (millimolar), the Eq. (9) can be simplified to an apparent first-order equation [171]:

$$\ln\left(\frac{C}{C_0}\right) = -k_{app}t = -k_{app}t.$$

(10)

The linear region can be obtained from the plot of $\ln(C/C_0)$ vs t, in which the slope gives the rate constant of photodegradation. The half-life time (degradation of dye to its 50%) is calculated as:

$$t_{1/2} = (\ln(2))/k_{app}.$$

(11)

5.5 Light source and intensity

Relatively high light intensity is required to provide photocatalyst particle enough photons energy. Hence, it is essential to establish the range of radiation with which the solution must be irradiated. It has been shown that the reaction rate is proportional to the radiant flux Φ. However, above a certain value, the reaction rate becomes proportional to $\Phi^{0.5}$, indicating strong electron-hole recombination. In this context, Ollis et al. [172] studied the effect of light intensity on the kinetics of the photocatalytic reaction, and the following results were found:

1. At low light intensities (0–20 mW/cm2), the rate would increase linearly with increasing light intensity (first-order) due to reactions involving e^- and h^+ carriers formation is predominant.
2. At intermediate light intensities beyond a certain value (≈ 25 mW/cm2), the rate would depend on the square root of the light intensity (half order) because the e^- and h^+ carriers separation compete with recombination causing a lower effect on the reaction rate.
3. At high light intensities, the rate is independent of light intensity if the temperature is low.

Other important factor is the lamp-reactor geometry where the reaction takes place; the geometry and fabrication materials could favor the homogeneous dispersion of the light.

5.6 Disadvantages and perspectives in photocatalysis

Even though researchers have made tremendous progress in the photocatalysis field, some challenges remain about the operation of photocatalysts in industrial applications. For example, the light distribution inside the reactor and the configuration of the reactor are the main issues to be addressed. According to Ahmad et al. [173], the scaling-up of a photocatalytic reactor has been limited due to the reactor design have not been able to address the two most important strictures; light distribution inside the reactor through absorbing and scattering liquid to the photocatalyst, and to provide high surface areas for photocatalysts coating per unit reactor volume. In addition, the costs of incident photon production must be considered in the process economy when talking about treating huge volumes of wastewater. Furthermore, the chemical restrictions play a crucial role in the performance of dye removal such as the interfacial charge transfer, improve the charge carriers separation, and the inhibition of charge carriers recombination process. Some challenges like mass transfer limitations, catalyst deactivation, generation of intermediate products and by-products, and the multi-complex optimization of the materials and the reactor configuration limit the real industrial applications. On the other hand, several trends for further development are currently under investigation. These trends include:

1. The development of economical methods for the preparation at large scale of nanomaterials with controlled morphology.
2. The development of the characterization techniques and instruments to elucidate and confirming the migration pathways of electron-hole pairs in heterojunction photocatalyst.
3. The hybridation with photocatalytic components in a single device.
4. The fine control of increasingly complex nanoarchitectures and (v) the use of novel non-oxidic materials.

According to the literature, there are some challenges to be achieved for scaling up applications of photocatalysts. However, their use for dye degradation is an active research area with potential applications as an alternative for wastewater treatment. Therefore, further research efforts should be dedicated to solving these challenges.

6 Concluding remarks

According to the evidence, the potential application of photocatalysis is an efficient alternative to remove dyes from water. Most recent works reported promising degradation results (> 90% of dye degradation) in shorter reaction times. Nevertheless, the search for photocatalysts with desired characteristics to induce the total oxidation of dye molecules under visible light irradiation in an economically accessible way is encouraging. From the transition of single component photocatalysts to the design and application of heterojunctions and immobilized photocatalytic systems, important problems were solved, such as
References

[1] Santos-Ebinuma, V. C., Roberto, I. C., Simas Teixeira, M. F., Pessoa, A. "Improving of red colorants production by a new Penicilium purpureogenum strain in submerged culture and the effect of different parameters in their stability", Biotechnology Progress, 29(3), pp. 778–785, 2013. https://doi.org/10.1002/btpr.1720

[2] Bulut, M. O., Akar, E. "Ecological dyeing with some plant pulps on woolen yarn and cationized cotton fabric", Journal of Cleaner Production, 32, pp. 1–9, 2012. https://doi.org/10.1016/j.jclepro.2012.03.010

[3] Rauf, M. A., Ashraf, S. S. "Survey of recent trends in biochemically assisted degradation of dyes", Chemical Engineering Journal, 209, pp. 520–530, 2012. https://doi.org/10.1016/j.cej.2012.08.015

[4] Hassaan, M. A., El Nemr, A. "Health and Environmental Impacts of Dyes: Mini Review", American Journal of Environmental Science and Engineering, 1(3), pp. 64–67, 2017. https://doi.org/10.11648/j.ajese.20171003.11

[5] Martini, J., Orge, C. A., Faria, J. L., Pereira, M. F. R. Soares, O. S. G. P. "Sulfamethoxazole degradation by combination of advanced oxidation processes", Journal of Environmental Chemical Engineering, 6(4), pp. 4054–4060, 2018. https://doi.org/10.1016/j.jece.2018.05.047

[6] Chang, H. H., Cheng, T.-J., Huang, C.-P., Wang, G.-S. "Characterization of titanium dioxide nanoparticle removal in simulated drinking water treatment processes", Science of The Total Environment, 601–602(17), pp. 886–894, 2017. https://doi.org/10.1016/j.scitotenv.2017.05.228

[7] Katheresan, V., Kansedo, J., Lau, S. Y. "Efficiency of various recent wastewater dye removal methods: A review", Journal of Environmental Chemical Engineering, 6(4), pp. 4676–4697, 2018. https://doi.org/10.1016/j.jece.2018.06.060

[8] Barak, A., Goel, Y., Kumar, R., Shukla, S. K. "Removal of methyl orange over TiO$_2$-polyacrylamide hydrogel", Materials Today: Proceedings, 12, pp. 529–535, 2019. https://doi.org/10.1016/j.matpr.2019.03.094

[9] Hameed, B. B., Ismail, Z. Z. "Decolorization, biodegradation and detoxification of reactive red azo dye using non-adapted immobilized mixed cells", Biochemical Engineering Journal, 137, pp. 71–77, 2018. https://doi.org/10.1016/j.bej.2018.05.018

[10] Bilińska, L., Gmurek, M., Ledakowicz, S. "Textile wastewater treatment by AOPs for brine reuse", Process Safety and Environmental Protection, 109, pp. 420–428, 2017. https://doi.org/10.1016/j.psp.2017.04.019

[11] Ben Mansour, H., Houas, I., Montassar, F., Ghedira, K., Barillier, D., Mosrati, R., Chekir-Ghedira, L. "Alteration of in vitro and acute in vivo toxicity of textile dyeing wastewater after chemical and biological remidiation", Environmental Science and Pollution Research, 19(7), pp. 2634–2643, 2012. https://doi.org/10.1007/s11356-012-0802-7

[12] Kant, R. "Textile dyeing and printing industry: An environmental hazard", Natural Science 4(1), pp. 22–26, 2012. https://doi.org/10.4236/ns.2012.41004

[13] Fujishima A., Honda, K. "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238(5358), pp. 37–38, 1972. https://doi.org/10.1038/238037a0

[14] Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., He, Y. "An overview on limitations of TiO$_2$-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures", Water Research, 79, pp. 128–146, 2015. https://doi.org/10.1016/j.watres.2015.04.038

[15] Byrne, C., Subramanian, G., Pillai, S. C. "Recent advances in photocatalysis for environmental applications", Journal of Environmental Chemical Engineering, 6(3), pp. 3531–3555, 2018. https://doi.org/10.1016/j.jece.2017.07.080

[16] Di Mauro, A., Fragala, M. E., Privitera, V., Impellizzeri, G. "ZnO for application in photocatalysis: From thin films to nanostructures", Materials Science in Semiconductor Processing, 29, pp. 71–78, 2017. https://doi.org/10.1016/j.mssp.2017.03.029

extending the life of the photogenerated species and the use of a lower photocatalytic powder amount per volume of wastewater. In addition, the design of immobilized photocatalysts also solved problems such as powder separation and recovery stages. However, it attracted new challenges (e.g., reduction of surface area). At present, the demand for environmental sustainability that humanity is facing has forced researchers to design photocatalytic systems that avoid the recombination process, with various life cycles and low cost energetic, easy to manufacture, and economically accessible at laboratory scale. An ideal photocatalyst should fulfill requirements such as visible-light activity, high solar energy conversion efficiency, proper band gap structure for redox reactions, high photostability for long-term applications, and scalability for commercialization. In fact, several researching groups agree that the design of active nanostructures under visible light is one of the main challenges for the development of these materials. Some current limitations may be resolved in the future, by coupling photocatalysis with other emerging technologies.

Acknowledgments

Ruiz-Santoyo express his gratitude to CONACYT by the scholarship No. 633566. Authors declare no conflict of interest. Dedicated to the memory of Marañón-Ruíz, V. F.
Hisatomi, T., Kubota, J., Domen, K. "Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting", Chemical Society Reviews, 43(22), pp. 7520–7535, 2014. https://doi.org/10.1039/C3CS60378D

Molinar, R., Lavorato, C., Argurio, P. "Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review", Catalysis Today, 281(1), pp. 144–164, 2017. https://doi.org/10.1016/j.cattod.2016.06.047

Ni, M., Leung, M. K. H., Leung, D. Y. C., Sumathy, K. "A review and recent developments in photocatalytic water-splitting using TiO₂ for hydrogen production", Renewable and Sustainable Energy Reviews, 11(3), pp. 401–427, 2007. https://doi.org/10.1016/j.rser.2005.01.009

AlKahtani, R. N. "The implications and applications of nanotechnology in dentistry: A review", The Saudi Dental Journal, 30(2), pp. 107–116, 2018. https://doi.org/10.1016/j.sdentj.2018.01.002

Ayodhya, D., Veerahadrangam, G. "A review on recent advances in photocatalysis of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection", Materials Today Energy, 9, pp. 83–113, 2018. https://doi.org/10.1016/j.mtener.2018.05.007

Dahman, Y. "An Introduction to Nanotechnology**, In: Nanotechnology and Functional Materials for Engineers, Elsevier, Amsterdam, Netherlands, 2017, pp. 1–17. https://doi.org/10.1016/B978-0-323-51256-5.00001-0

Kusior, A., Banas, J., Trencecz-Zajac, A., Zabrycka, P., Mieck-Ilnicka, A., Radecka, M. "Structural properties of TiO₂ nanomaterials”, Journal of Molecular Structure, 1157, pp. 327–336, 2018. https://doi.org/10.1016/j.molstruc.2017.12.064

Zanella, R. "Metodologias para la sintesis de nanoparticulas: controlando forma y tamaño” (Methodologies for nanoparticle synthesis: shape and size control), Mundo Nano. Revista Interdisciplinaria en Nanociencia y Nanotecnología, 5(1), pp. 69–81, 2012. (in Spanish) https://doi.org/10.22201/eiiche.24485691e.2012.1.45167

Ong, C. B., Ng, L. Y., Mohammad, A. W. "A review of ZnO nanoparticles as photocatalysts: Synthesis, mechanisms and applications”, Renewable and Sustainable Energy Reviews, 81(1), pp. 536–551, 2018. https://doi.org/10.1016/j.rser.2017.08.020

Dehghanghadikolaei, A., Ansary, J., Ghoreishi, R. "Sol-gel process applications: A mini-review”, Proceedings of the Nature Research Society, 2, pp. 1–11, 2018. https://doi.org/10.1105/j.prnrs.201802008

Akpan, U. G., Hameed, B. H. "Parameters affecting the photocatalytic degradation of dyes using TiO₂-based photocatalysts: A review”, Journal of Hazardous Materials, 170(2–3), pp. 520–529, 2009. https://doi.org/10.1016/j.jhazmat.2009.05.039

Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., O’Shea, K., Entezari, M. H., Dionysiou, D. D. "A review on the visible light active titanium dioxide photocatalysts for environmental applications", Applied Catalysis B: Environmental, 125, pp. 331–349, 2012. https://doi.org/10.1016/j.apcatb.2012.05.036

Lee, K. M., Lai, C. W., Ngai, K. S., Yuan, J. C. "Recent developments of zinc oxide based photocatalyst in water treatment technology: A review”, Water Research, 88(1), pp. 428–448, 2016. https://doi.org/10.1016/j.watres.2015.09.045

Nisanalsa Bandara, W. R. L., De Silva, R. M., De Silva, K. M. N., Dahanyake, D., Gunasekara, S., Thanabalasingam, K. "Is nano ZrO₂ a better photocatalyst than nano TiO₂, for degradation of plastics?”, RSC Advances, 7(73), pp. 46155–46163, 2017. https://doi.org/10.1039/c7ra08324f

Basahel, S. N., Ali, T. T., Mokhtar, M., Narasimharao, K. "Influence of crystal structure of nanosized ZrO₂ on photocatalytic degradation of methyl orange", Nanoscale Research Letters, 10(1), Article number: 73, 2015. https://doi.org/10.1186/s11671-015-0780-z

Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J. M. "Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methylene Red, Congo Red, Methylene Blue) in water by UV-irradiated titania”, Applied Catalysis B: Environmental, 39(1), pp. 75–90, 2002. https://doi.org/10.1016/S0926-3373(02)00078-4

Sathiyan, K., Bar-Ziv, R., Mendelson, O., Zdiki, T. "Controllable synthesis of TiO₂ nanoparticles and their photocatalytic activity in dye degradation", Materials Research Bulletin, 126, Article number: 110842, 2020. https://doi.org/10.1016/j.materresbull.2020.110842

Jamil, A., Bokhari, T. H., Javed, T., Mustafa, R., Sajid, M., Noreen, S., Zubler, M., Nazir, A., Iqbal, M., Jilani, M. I. "Photocatalytic degradation of disperse dye Violet-26 using TiO₂ and ZnO nanomaterials and process variable optimization”, Journal of Materials Research and Technology, 9(1), pp. 1119–1128, 2020. https://doi.org/10.1016/j.jmrt.2019.11.035

Ammari, Y., El Atmani, K., Bay, L., Bakas, I., Pourzal, S., Ait Ichou, I. "Elimination of a mixture of two dyes by photocatalytic degradation based on TiO₂, P-25 Degussa”, Materials Today Proceedings, 22(1), pp. 126–129, 2020. https://doi.org/10.1016/j.matpr.2019.08.142

Hu, H., Lin, Y., Hu, Y. H. "Core-shell structured TiO₂, as highly efficient visible light photocatalyst for dye degradation", Catalysis Today, 341, pp. 90–95, 2020. https://doi.org/10.1016/j.cattod.2019.01.077

Li, X., Yang, H., Lv, K., Wen, L., Liu, Y. "Fabrication of porous TiO₂ nanosheets assembly for improved photoreactivity towards X3B dye degradation and NO oxidation”, Applied Surface Science, 503, Article number: 144080, 2020. https://doi.org/10.1016/j.apsusc.2019.144080

Hanafi, M. F., Sapawe, N. "The Potential of ZrO₂ Catalyst Toward Degradation of Dyes and Phenolic Compound", Materials Today Proceedings, 19(4), pp. 1524–1528, 2019. https://doi.org/10.1016/j.matpr.2019.11.177

Mansouri, M., Mozafari, N., Bayati, B., Setarahshenas, N. "Photocatalytic dye degradation of methyl orange using zirconia – zeolite nanoparticles”, Bulletin of Materials Science, 42(5), Article number: 230, 2019. https://doi.org/10.1007/s12034-019-1933-y
[40] Rodrigues, J., Hatami, T., Rosa, J. M., Tambourgi, E. B., Mei, L. H. I. "Photocatalytic degradation using ZnO for the treatment of RB 19 and RB 21 dyes in industrial effluents and mathematical modeling of the process", Chemical Engineering Research and Design, 153, pp. 294–305, 2020.
https://doi.org/10.1016/j.cherd.2019.10.021

[41] Satdeve, N. S., Ugwekar, R. P., Bhanvase, B. A. "Ultrasound assisted preparation and characterization of Ag supported on ZnO nanoparticles for visible light degradation of methylene blue dye", Journal of Molecular Liquids, 291, Article number: 111313, 2019.
https://doi.org/10.1016/j.molliq.2019.111313

[42] Chijioke-Okeke, M. O., Okorocha, N. J., Anukam, B. N., Oguzie, E. E. "Photocatalytic Degradation of a Basic Dye Using Zinc Oxide Nanocatalyst", International Letters of Chemistry, Physics, and Astronomy, 81, pp. 18–26, 2019.
https://doi.org/10.18052/www.scipress.com/ilcpa.81.18

[43] Bagheri, M., Najafabadi, N. R., Borou, E. "Removal of reactive blue 203 dye photocatalytic using ZnO nanoparticles stabilized on functionalized MWCNTs", Journal of King Saud University - Science, 32(1), pp. 799–804, 2020.
https://doi.org/10.1016/j.jksus.2019.02.012

[44] Chen, X., Wu, Z., Liu, D., Gao, Z. "Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes", Nanoscale Research Letters, 12(1), Article number: 143, 2017.
https://doi.org/10.1186/s11671-017-1904-4

[45] Wang, X., Long, R., Liu, D., Yang, D., Wang, C., Xiong, Y. "Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays", Nano Energy, 24, pp. 87–93, 2016.
https://doi.org/10.1016/j.nanoen.2016.04.013

[46] Pirzada, B. M., Mir, N. A., Qutub, N., Mehraj, O., Sabir, S., Muneer, M. "Synthesis, characterization, and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures", Materials Science and Engineering: B, 193, pp. 137–145, 2015.
https://doi.org/10.1016/j.mseb.2014.12.005

[47] Periyannan, S., Manceriu, L., Nguyen, N. D., Klein, A., Jaegermann, W., Colson, P., Henrist, C., Cloots, R. "Influence of ZnO Surface Modification on the Photocatalytic Performance of ZnO/NiO Thin Films", Catalysis Letters, 149(7), pp. 1813–1824, 2019.
https://doi.org/10.1007/s10562-019-02781-z

[48] Parul, Kaur, K., Badru, R., Singh, P. P., Kaushal, S. "Photodegradation of organic pollutants using heterojunctions: A review", Journal of Environmental Chemical Engineering, 8(2), Article number: 103666, 2020.
https://doi.org/10.1016/j.jece.2020.103666

[49] Low, J., Yu, J., Jaroniec, M., Wageh, S., Al-Ghamdi, A. A. "Heterojunction Photocatalysts", Advanced Materials, 29(20), Article number: 1601694, 2017.
https://doi.org/10.1002/adma.201601694

[50] Zhu, Y., Wan, T., Wen, X., Chu, D., Jiang, Y. "Tunable Type I and II heterojunction of CoO2 nanoparticles confined in g-C3N4 nanotubes for photocatalytic hydrogen production", Applied Catalysis B: Environmental, 244, pp. 814–822, 2019.
https://doi.org/10.1016/j.apcatb.2018.12.015

[51] Moniz, S. J. A., Shevlin, S. A., Martin, D. J., Guo, Z. X., Tang, J. "Visible-light driven heterojunction photocatalysts for water splitting - a critical review", Energy & Environmental Science, 8(3), pp. 731–759, 2015.
https://doi.org/10.1039/c4ee03271c

[52] Chen, W., Liu, T. Y., Huang, T., Liu, X. H., Duan, G. R., Yang, X. J., Chen, S. M. "A novel yet simple strategy to fabricate visible light responsive Co3TiO4/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation", RSC Advances, 5(122), pp. 101214–101220, 2015.
https://doi.org/10.1039/c1ra18302b

[53] Prabhu, S., Pudukudy, M., Harish, S., Navaneethan, M., Sohila, S., Murugesan, K., Ramesh, R. "Facile construction of djembe-like ZnO and its composite with g-C3N4 as a visible-light-driven heterojunction photocatalyst for the degradation of organic dyes", Materials Science in Semiconductor Processing, 106, Article number: 104754, 2020.
https://doi.org/10.1016/j.mssp.2019.104754

[54] Ramezanizadeh, H., Rafiee, E. "Design, fabrication, electro- and photoelectrochemical investigations of novel CoTiO4/CuBiO4 heterojunction semiconductor: An efficient photocatalyst for the degradation of DR16 dye", Materials Science and Semiconductor Processing, 113, Article number: 105055, 2020.
https://doi.org/10.1016/j.mssp.2020.105055

[55] Chen, Y., Qian, J., Wang, N., Xing, J., Liu, L. "In-situ synthesis of CNT/TiO2 heterojunction nanocomposite and its efficient photocatalytic degradation of Rhodamine B dye", Inorganic Chemistry Communications, 119, Article number: 108071, 2020.
https://doi.org/10.1016/j.inoche.2020.108071

[56] Chen, C. J., Liao, C. H., Hsu, K. C., Wu, Y. T., Wu, J. C. S. "P-N junction mechanism on improved NiO/TiO2 photocatalyst", Catalysis Communications, 12(14), pp. 1307–1310, 2011.
https://doi.org/10.1016/j.catcom.2011.05.009

[57] Cao, J., Li, X., Lin, H., Chen, S., Fu, X. "In situ preparation of novel p-n junction photocatalyst BiOCl/(BiO)2CO3 with enhanced visible light photocatalytic activity", Journal of Hazardous Materials, 239–240, pp. 316–324, 2012.
https://doi.org/10.1016/j.jhazmat.2012.08.078

[58] Xu, J., Feng, B., Wang, Y., Qi, Y., Niu, J., Chen, M. "BiOCl Decorated NaNbO3 Nanocubes: A Novel p-n Heterojunction Photocatalyst With Improved Activity for Ottoxacin Degradation", Frontiers in Chemistry, 6, Article number: 393, 2018.
https://doi.org/10.3389/fchem.2018.00393

[59] Habibi-Yangjeh, A., Pirhashemi, M., Ghosh, S. "ZnO/ZnB2O4 nanocomposites with p-n heterojunction as durable visible-light-activated photocatalysts for efficient removal of organic pollutants", Journal of Alloys Compounds, 826, Article number: 154229, 2020.
https://doi.org/10.1016/j.jallcom.2020.154229

[60] Sang, Y., Cao, X., Dai, G., Wang, L., Peng, Y., Geng, B. "Facile one-pot synthesis of novel hierarchical Bi2O3/Bi2S3 nanoflower photocatalyst with intrinsic p-n junction for efficient photocatalytic removals of RhB and Cr(VI)", Journal of Hazardous Materials, 381, Article number: 120942, 2020.
https://doi.org/10.1016/j.jhazmat.2019.120942
[61] Lu, X., Li, Q., Liu, S., Luo, R., Li, H., Zhang, M., Cui, C., Zhu, G., Chen, S., Liang, C. “Fabrication of a novel BiOI/KTaO_2 p–n heterostructure with enhanced photocatalytic performance under visible-light irradiation”, RSC Advances, 10(18), pp. 10921–10931, 2020. https://doi.org/10.1039/c9ra01023k

[62] Yu, J., Wang, S., Low, J., Xiao, W. “Enhanced photocatalytic performance of direct Z-scheme g-C_3N_4/TiO_2 photocatalyst for decomposition of formaldehyde in air”, Physical Chemistry Chemical Physics, 15(39), pp. 16883–16890, 2013. https://doi.org/10.1039/C3CP53131G

[63] Qi, K., Cheng, B., Yu, J., Hu, W. “A review on TiO_2-based Z-scheme photocatalysts”, Chinese Journal of Catalysis, 38(12), pp. 1936–1955, 2017. https://doi.org/10.1016/S1872-2067(17)62962-0

[64] Low, J., Jiang, C., Cheng, B., Wageh, S., Al-Ghamdi, A. A., Yu, J. "A Review of Direct Z-Scheme Photocatalysts", Small Methods, 1(5), Article number: 1700080, 2017. https://doi.org/10.1002/smtd.201700080

[65] Xu, Q., Zhang, L., Yu, J., Wageh, S., Al-Ghamdi, A. A., Jaroniec, M. "Direct Z-scheme photocatalysts: Principles, synthesis, and applications", Materials Today, 21(10), pp. 1042–1063, 2018. https://doi.org/10.1016/j.mattoday.2018.04.008

[66] Zhao, J., Ji, M., Di, J., Zhang, Y., He, M., Li, H., Xia, J. "Novel Z-scheme heterogeneous photo-Fenton-like g-C_3N_4/FeOCl for the pollutants degradation under visible light irradiation", Journal of Photochemistry and Photobiology A: Chemistry, 391, Article number: 112343, 2020. https://doi.org/10.1016/j.jpochem.2019.112343

[67] An, W., Sun, K., Hu, J., Cui, W., Liu, L. "The Z-scheme Ag_CoO@g-C_3N_4 core-shell structure for increased photoinduced charge separation and stable photocatalytic degradation", Applied Surface Science, 504, Article number: 144345, 2020. https://doi.org/10.1016/j.apsusc.2019.144345

[68] Zhang, T., Wang, X., Sun, Z., Liang, Q., Zhou, M., Xu, S., Li, Z., Sun, D. "Constructing Z-scheme based BiOI/CdS heterojunction with efficient visible-light photocatalytic dye degradation", Solid State Science, 107, Article number: 106350, 2020. https://doi.org/10.1016/j.solidstatesciences.2020.106350

[69] Masih, D., Ma, Y., Rohani, S. "Graphitic C_3N_4 based noble-metal-free photocatalyst systems: A review", Applied Catalysis B: Environmental, 206, pp. 556–588, 2017. https://doi.org/10.1016/j.apcatb.2017.01.061

[70] Ye, L., Liu, J., Jiang, Z., Peng, T., Zan, L. "Facets coupling of BiOBr-g-C_3N_4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity", Applied Catalysis B: Environmental, 142–143, pp. 1–7, 2013. https://doi.org/10.1016/j.apcatb.2013.04.058

[71] Wei, X., Liu, H., Li, T., Jiang, Z., Hu, W., Niu, Q., Chen, J. “Three-dimensional flower heterojunction g-C_3N_4/AgZnO composed of ultrathin nanosheets with enhanced photocatalytic performance”, Journal of Photochemistry and Photobiology A: Chemistry, 390, Article number: 112342, 2020. https://doi.org/10.1016/j.jpochem.2019.112342

[72] Zhao, X., Zhang, X., Han, D., Niu, L. "Ag supported Z-scheme WO_3/g-C_3N_4 composite photocatalyst for photocatalytic degradation under visible light", Applied Surface Science, 501, Article number: 144258, 2020. https://doi.org/10.1016/j.apsusc.2019.144258

[73] Xue, S., Wu, C., Pu, S., Hou, Y., Tong, T., Yang, G., Qin, Z., Wang, Z., Bao, J. "Direct Z-Scheme charge transfer in heterostructured MoO_3/g-C_3N_4 photocatalysts and the generation of active radicals in photocatalytic dye degradations", Environmental Pollution, 250, pp. 338–345, 2019. https://doi.org/10.1016/j.envpol.2019.04.010

[74] Hu, C., Huang, H. X., Lin, Y. F., Yoshida, M., Chen, T. H. "Decoration of SrTiO_3 nanofibers by BiOI for photocatalytic methyl orange degradation under visible light irradiation", Journal of the Taiwan Institute of Chemical Engineers, 96, pp. 264–272, 2019. https://doi.org/10.1016/j.jtica.2018.11.020

[75] Ren, B., Shen, W., Li, L., Wu, S., Wang, W. "3D CoFe_2O_4 nanorod/flower-like MoS_2 nanosheet heterojunctions as recyclable visible light-driven photocatalysts for the degradation of organic dyes", Applied Surface Science, 447, pp. 711–723, 2018. https://doi.org/10.1016/j.apsusc.2018.04.064

[76] Qin, J., Chen, N., Feng, C., Chen, H., Feng, Z., Gao, Y., Zhang, Z. "Fabrication of a Novel p–n Heterojunction BiOCl/AgSiO_4 Nanocomposite as a Highly Efficient and Stable Visible Light Driven Photocatalyst", Catalysis Letters, 149(3), pp. 891–903, 2019. https://doi.org/10.1007/s10562-018-2631-x

[77] Jia, K. L., Zhu, Z. S., Qu, J., Jing, Y. Q., Yu, X. J., Abdelkrim, Y., Hao, S. M., Yu, Z. Z. "BiOBr/AgSiO_4 heterojunctions for enhancing visible light catalytic degradation performances with a sequential selectivity enabled by dual synergistic effects", Journal of Colloid and Interface Science, 561, pp. 396–407, 2020. https://doi.org/10.1016/j.jcis.2019.11.005

[78] Ramezanalizadeh, H., Manteghi, F. "Design and development of a novel BiFeO_3/CuWO_4 heterojunction with enhanced photocatalytic performance for the degradation of organic dyes", Journal of Photochemistry and Photobiology A: Chemistry, 338, pp. 60–71, 2017. https://doi.org/10.1016/j.jphotochem.2017.02.004

[79] Ding, M., Zhou, J., Yang, H., Cao, R., Zhang, S., Shao, M., Xu, X. "Synthesis of Z-scheme g-C_3N_4 nanosheets/Ag_3PO_4 photocatalysts with enhanced visible-light photocatalytic performance for the degradation of tetracycline and dye", Chinese Chemical Letters, 31(1), pp. 71–76, 2020. https://doi.org/10.1016/j.ccl.2019.05.029

[80] Yan, Y., Yang, M., Wang, C., Liu, E., Hu, X., Fan, J. "Defected ZnS/bulk g–C_3N_4 heterojunction with enhanced photocatalytic activity for dyes oxidation and Cr (VI) reduction", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582, Article number: 123861, 2019. https://doi.org/10.1016/j.colsurfa.2019.123861
[81] Zhang, H., Yu, D., Wang, W., Gao, P., Bu, K., Zhang, L., Zhong, S., Liu, B. "Multiple heterojunction system of Bi$_2$MoO$_6$/WO$_4$/Ag$_2$PO$_4$ with enhanced visible-light photocatalytic performance towards dye degradation", Advanced Powder Technology, 30(9), pp. 1910–1919, 2019. https://doi.org/10.1016/j.apt.2019.06.010

[82] Yang, F., Yan, L., Zhang, B., He, X., Li, Y., Tang, Y., Ma, C., Li, Y. "Fabrication of ternary NaTaO$_3$-g-C$_3$N$_4$/G heterojunction photocatalyst with enhanced activity for Rhodamine B degradation", Journal of Alloys Compounds, 805, pp. 802–810, 2019. https://doi.org/10.1016/j.jallcom.2019.07.052

[83] Kang, M. J., Yu, H., Lee, W., Cha, H. G. "Efficient Fe$_3$O$_4$/C-g-C$_3$N$_4$ Z-scheme heterojunction photocatalyst prepared by facile one-step carbonizing process", Journal of Physics and Chemistry Solids, 130, pp. 93–99, 2019. https://doi.org/10.1016/j.jpcs.2019.02.017

[84] Huang, H., He, M., Yang, X., Tian, Z., Hu, J., Wen, B. "One-pot hydrothermal synthesis of TiO$_2$/RCN heterojunction photocatalyst for production of hydrogen and rhodamine B degradation", Applied Surface Science, 493, pp. 202–211, 2019. https://doi.org/10.1016/j.apsusc.2019.07.013

[85] Kavyarasa, K., Maria Magdalene, C., Jayakumar, D., Samson, V., Bashir, A. K. H., Maaza, M., Letsholathebe, D., Mahmoud, A. H., Kennedy, J. "High performance of pyrochlore like Sm$_3$Ti$_4$O$_{12}$ heterojunction photocatalyst for efficient degradation of rhodamine-B dye with waste water under visible light irradiation", Journal of King Saud University – Science, 32(2), pp. 1516–1522, 2020. https://doi.org/10.1016/j.jsusci.2019.12.006

[86] Dashairya, L., Mehta, A., Saha, P., Basu, S. "Visible-light-induced enhanced photocatalytic degradation of Rhodamine-B dye using Bi$_2$Sb$_3$S$_6$ solid-solution photocatalysts", Journal of Colloid Interface Science, 561, pp. 71–82, 2020. https://doi.org/10.1016/j.jcis.2019.11.118

[87] Bera, K. K., Chakraborty, M., Mondal, M., Banik, S., Bhattacharya, S. K. "Synthesis of α-β Bi$_2$O$_3$ heterojunction photocatalyst and evaluation of reaction mechanism for degradation of RhB dye under natural sunlight", Ceramics International, 46(6), pp. 7667–7680, 2020. https://doi.org/10.1016/j.ceramint.2019.11.269

[88] Li, N., Miao, S., Zheng, X., Lai, J., Lv, S., Gu, X., Zhang, M., Yang, J., Cui, S. "Construction of Ag$_2$PO$_4$/BiNbO$_4$ heterojunction photocatalysts with high activity for Rhodamine B removal under simulated sunlight irradiation", Ceramics International, 45(18), pp. 24260–24268, 2019. https://doi.org/10.1016/j.ceramint.2019.08.138

[89] Hu, X., Wang, G., Wang, J., Hu, Z., Su, Y. "Step-scheme NiO/BiO$_3$ heterojunction photocatalyst for rhodamine photodegradation", Applied Surface Science, 511, Article number: 145499, 2020. https://doi.org/10.1016/j.apsusc.2020.145499

[90] Zeynali, S., Taghizadeh, M. T. "Highly efficient TiO$_2$/AgBr/PANI heterojunction with enhanced visible light photocatalytic activity towards degradation of organic dyes", Journal of Materials Science: Materials in Electronics, 30(18), pp. 17020–17031, 2019. https://doi.org/10.1007/s10854-019-02036-y

[91] Sajid, M. M., Shad, N. A., Javed, Y., Khan, S. B., Amin, N., Zhang, Z., Imran, Z., Yousuf, M. I. "Facile synthesis of Zn$_x$VO$_{2+y}$/FeV$_4$O$_9$ heterojunction and study on its photocatalytic and electrochemical properties", Applied Nanoscience, 10(7), pp. 421–433, 2020. https://doi.org/10.1007/s13204-019-01199-8

[92] Wu, K., Qin, Z., Zhang, X., Guo, R., Ren, X., Pu, X. "Z-scheme BiOCl/Bi$_2$O$_3$ heterojunction with oxygen vacancy for excellent degradation performance of antibiotics and dyes", Journal of Materials Science, 55(9), pp. 4017–4029, 2020. https://doi.org/10.1016/j.jpcs.2019.04.0300-2

[93] Jiang, T., Wang, K., Guo, T., Wu, X., Zhang, G. "Fabrication of Z-scheme MoO$_3$/Bi$_2$O$_3$ heterojunction photocatalyst with enhanced photocatalytic performance under visible light irradiation", Chinese Journal of Catalysis, 41(1), pp. 161–169, 2020. https://doi.org/10.1016/S1872-2067(19)63391-7

[94] Lakhera, S. K., Venkataramana, R., Mathew, G., Hafeez, H. Y., Nepolian, B. "Fabrication of high surface area Agl incorporated porous BiVO$_4$ heterojunction photocatalysts", Materials Science In Semiconductor Processing, 106, Article number: 104756, 2020. https://doi.org/10.1016/j.mssp.2019.104756

[95] Wang, X., Ma, J., Kong, Y., Fan, C., Peng, M., Komarneni, S. "Synthesis of p-n heterojunction Ag$_2$PO$_4$/NaTaO$_3$ composite photocatalyst for enhanced visible-light-driven photocatalytic performance", Materials Letters, 251, pp. 192–195, 2019. https://doi.org/10.1016/j.matlet.2019.05.078

[96] Assayehgen, E., Solaiappan, A., Chebude, Y., Alemayehu, E. "Fabrication of tunable anatase/rutile heterojunction N/TiO$_2$ nanophotocatalyst for enhanced visible light degradation activity", Applied Surface Science, 515, Article number: 145966, 2020. https://doi.org/10.1016/j.apsusc.2020.145966

[97] Cao, X., Chen, Y., Jiao, S., Fang, Z., Xu, M., Liu, X., Li, L., Pang, G., Feng, S. "Magnetic photocatalysts with a p-n junction: Fe$_3$O$_4$ nanoparticle and FeWO$_4$ nanowire heterostructures", Nanoscale, 6(21), pp. 12366–12370, 2014. https://doi.org/10.1039/c4nr03729d

[98] Chen, J., Wang, M., Han, J., Guo, R. "TiO$_2$ nanosheet/NiO nanorod hierarchical nanostructures: p–n heterojunctions towards efficient photocatalysis", Journal of Colloid Interface Science, 562, pp. 313–321, 2020. https://doi.org/10.1016/j.jcis.2019.12.031

[99] Ayappan, C., Palanivel, B., Jayaraman, V., Maiyalagan, T., Mani, A. "One-step hydrothermal synthesis of CaWO$_4$/n-Ag$_2$WO$_4$ heterojunction: An efficient photocatalyst for removal of organic contaminants", Materials Science in Semiconductor Processing, 104, Article number: 104693, 2019. https://doi.org/10.1016/j.mssp.2019.104693

[100] Nithya, M., Vidhya, S., Keerthi. "A novel g-C$_3$N$_4$/MnV$_2$O$_7$ heterojunction photocatalyst for the removal of methylene blue and indigo carmine", Chemical Physics Letters, 737, Article number: 136832, 2019. https://doi.org/10.1016/j.cplett.2019.136832
[101] Zhang, R., Zhang, T., Zhao, C., Han, Q., Li, Y., Liu, Y., Zeng, K. "A novel Z-scheme Bi3W6O13 -based photocatalyst with enhanced dye degradation activity", Journal of Nanoparticle Research, 21(9), Article number: 203, 2019. https://doi.org/10.1007/s11051-019-4652-9

[102] Qi, S., Wang, D., Zhao, Y., Xu, H. "Core–shell g-C3N4/Zn0.5Cd0.5S heterojunction photocatalysts with high photocatalytic activity for the degradation of organic dyes", Journal of Materials Science: Materials in Electronics, 30(5), pp. 5284–5296, 2019. https://doi.org/10.1007/s10854-019-00828-w

[103] Rizal, M. Y., Saleh, R., Taufik, A. "Characterization and photocatalytic activity of Ag/MnO2/graphene composites under visible light irradiation for organic dye degradation", Journal of Environmental Chemical Engineering, 8(3), Article number: 103610, 2020. https://doi.org/10.1016/j.jece.2019.103610

[104] Venkataswamy, P., Sudheera, M., Vaishnavi, K., Ramaswamy, K., Ravi, G., Vithal, M. "A New Ag/AgBr/LaAlO3 Plasmonic Composite: Synthesis, Characterization, and Visible-Light Driven Photocatalytic Activity", Journal of Electronic Materials, 49(4), pp. 2358–2370, 2020. https://doi.org/10.1007/s11664-019-07938-5

[105] Zhu, J., He, J., Hu, L. "A novel CuInO2/NbWO4 heterojunction photocatalyst with enhanced photocatalytic performance", Materials Letters, 254, pp. 297–300, 2019. https://doi.org/10.1016/j.matlet.2019.07.062

[106] Hasija, V., Raizada, P., Sudhaik, A., Singh, P., Thakur, V. K., Khan, A. A. P. "Fabrication of Ag/AgI/WO3 heterojunction anchored P and S co-doped graphitic carbon nitride as a dual Z scheme photocatalyst for efficient dye degradation", Solid State Science, 100, Article number: 106095, 2020. https://doi.org/10.1016/j.solidstatesciences.2019.106095

[107] Cui, H., Li, B., Li, Z., Li, X., Xu, S. "Z-scheme based CdS/CdWO4 heterojunction visible light photocatalyst for dye degradation and hydrogen evolution", Applied Surface Science, 455, pp. 831–840, 2018. https://doi.org/10.1016/j.apsusc.2018.06.054

[108] Chen, X., He, X., Yang, X., Wu, Z., Li, Y. "Construction of novel 2D/1D g-C3N4/CaTiO3 heterojunction with face-to-face contact for boosting photodegradation of triphenylmethane dyes under simulated sunlight", Journal of the Taiwan Institute of Chemical Engineers, 107, pp. 98–109, 2020. https://doi.org/10.1016/j.jtice.2019.12.002

[109] Mafa, P. J., Ntsendwana, B., Mambo, B. B., Kuverega, A. T. "Visible Light Driven ZnMoO4/BeFeWO4/rGO Z-Scheme Photocatalyst for the Degradation of Anthraquinonic Dye", Journal of Physical Chemistry C, 123(33), pp. 20605–20616, 2019. https://doi.org/10.1021/acs.jpcc.9b05008

[110] Solehuddin, M., Sirimahachai, U., Ali, G. A. M., Chong, K. F., Wongnawa, S. "One-pot synthesis of isotype heterojunction g-C3N4/MU photocatalyst for effective tetracycline hydrochloride antibiotic and reactive orange 16 dye removal", Advanced Powder Technology, 31(5), pp. 1891–1902, 2020. https://doi.org/10.1016/j.apt.2020.02.020

[111] Wei, X., Xu, X., Yang, X., Li, J., Liu, Z. "Visible light degradation of reactive black-42 by novel Sr/Ag-TiO2@g-C3N4 photocatalyst: RSM optimization, reaction kinetics and pathways", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228, Article number: 117870, 2020. https://doi.org/10.1016/j.saa.2019.117870

[112] Fei, W., Li, H., Li, N., Chen, D., Xu, Q., Li, H., He, J., Lu, J. "Facile fabrication of ZnO/MoS2 p-n junctions on Ni foam for efficient degradation of organic pollutants through photoelectrocatalytic process", Solar Energy, 199, pp. 164–172, 2020. https://doi.org/10.1016/j.solener.2020.02.037

[113] Wang, Y., Tian, H. "Study on the construction of YMnO4/Co3O4 composite photocatalyst heterostructure and photocatalytic degradation of methyl red", Optik, 201, Article number: 163524, 2020. https://doi.org/10.1016/j.ijleo.2019.163524

[114] Akbarzadeh, E., Soheili, H. Z., Hosseinifard, M., Gholami, M. R. "Preparation and characterization of novel Ag3VO4/Cu-MOF/rGO heterojunction for photocatalytic degradation of organic pollutants", Materials Research Bulletin, 121, Article number: 110621, 2020. https://doi.org/10.1016/j.materresbull.2019.110621

[115] Di, L., Yang, H., Xian, T., Chen, X. "Facile Synthesis and Enhanced Visible-Light Photocatalytic Activity of Novel p-Ag3PO4/n-BiFeO3 Heterojunction Composites for Dye Degradation", Nanoscale Research Letters, 13(1), Article number: 257, 2018. https://doi.org/10.1186/s11671-018-2671-6

[116] Escober-Villanueva, A. G., Ovando-Medina, V. M., Martinez-Gutiérrez, H., Mültelito, M. P. "Fast photodegradation of Orange IIazo dye under visible light irradiation using a semiconducting n–p heterojunction of ZnO nanoparticles/polyaniline as catalyst", Journal of Materials Science: Materials in Electronics, 31(2), pp. 1317–1327, 2020. https://doi.org/10.1007/s10854-019-02644-8

[117] Yang, R., Zhao, Q., Liu, B. "Two-step method to prepare the direct Z-scheme heterojunction hierarchical flower-like Ag3AgBr/Bi2MoO6 microsphere photocatalysts for waste water treatment under visible light", Journal of Materials Science: Materials in Electronics, 31(7), pp. 5054–5067, 2020. https://doi.org/10.1007/s10854-020-03040-3

[118] Ritika, Kaur, M., Umar, A., Mehta, S. K., Kansal, S. K., Khan, M. A., Algharni, H. "Enhanced solar light-mediated photocatalytic degradation of brilliant green dye in aqueous phase using Bi2O3 nanospindles and MoS2/BiPO4 nanorods", Journal of Materials Science Materials in Electronics, 30(23), pp. 20741–20750, 2019. https://doi.org/10.1007/s10854-019-02441-3

[119] Dijkstra, M. F. J., Michorius, A., Buwalda, H., Panneman, H. J., Winkelman, J. G. M., Beenackers, A. A. C. M. "Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation", Catalysis Today, 66(2–4), pp. 487–494, 2001. https://doi.org/10.1016/S0920-5861(01)00257-7

[120] Padoin, N., Soares, C. "An explicit correlation for optimal TiO2 film thickness in immobilized photocatalytic reaction systems", Chemical Engineering Journal, 310(2), pp. 381–388, 2017. https://doi.org/10.1016/j.cej.2016.06.013
[121] Bahrudin, N. N., Nawi, M. A. "Mechanistic of photocatalytic decolorization and mineralization of methyl orange dye by immobilized TiO$_2$/chitosan-montmorillonite", Journal of Water Process Engineering, 31, Article number: 100843, 2019. https://doi.org/10.1016/j.jwpe.2019.100843

[122] Ounas, O., El Foulani, A. A., Lekhlif, B., Jamal-Eddine, J. "Immobilization of TiO$_2$ into a poly methyl methacrylate (PMMA) as hybrid film for photocatalytic degradation of methylene blue", Materials Today: Proceedings, 22(1), pp. 35–40, 2020. https://doi.org/10.1016/j.mtpr.2019.08.068

[123] de Araujo Scharnberg, A. R., de Loreto, A. C., Wermuth, T. B., Alves, A. K., Arcaro, S., dos Santos, P. A. M., de Assis Lawisch Rodríguez, A. "Porous ceramic supported TiO$_2$ nanoparticles: Enhanced photocatalytic activity for Rhodamine B degradation", Boletín de La Sociedad Española de Cerámica y Vidrio, 59(6), pp. 230–238, 2020. https://doi.org/10.1080/20531591.2019.12.001

[124] Inderyas, A., Bhatti, I. A., Ashar, A., Ashraf, M., Gani, A., Yousaf, M., Mohsin, M., Ahmad, M., Rafique, S., Massoud, N., Iqbal, M. "Synthesis of immobilized ZnO over polyurethane and photocatalytic activity evaluation for the degradation of azo dye under UV and solar light irradiation", Materials Research Express, 7(2), Article number: 025033, 2020. https://doi.org/10.1088/2053-1591/ab715f

[125] Das, S., Mahalingam, H. "Novel immobilized ternary photocatalytic polymer film based airlift reactor for efficient degradation of complex phthalocyanine dye wastewater", Journal of Hazardous Materials, 383, Article number: 121219, 2020. https://doi.org/10.1016/j.jhazmat.2019.121219

[126] Hir, Z. A. M., Moradhamiedani, P., Abdullah, A. H., Mohamed, M. A. "Immobilization of TiO$_2$ into polyethersulfone matrix as hybrid film photocatalyst for effective degrada- tion of methyl orange dye", Materials Science in Semiconductor Processing, 57, pp. 157–165, 2020. https://doi.org/10.1016/j.mssp.2016.10.009

[127] Ramezanalizadeh, H., Zakeri, F., Manteghi, F. "Immobilization of BaWO$_4$ nanostructures on a MOF-199-NH$_2$: An efficient separa- ble photocatalyst for the degradation of organic dyes", Optik, 174, pp. 776–786, 2018. https://doi.org/10.1016/j.ijleo.2018.08.052

[128] Ahmed, S. N., Inam, A., Haider, W. "γ-Fe$_3$O$_4$ photocatalyst immobilized on a porous Ni substrate for recyclable solar photocatalysis", Journal of Nanoparticle Research, 21(11), Article number: 238, 2019. https://doi.org/10.1007/s11051-019-4663-6

[129] Khalilian, H., Behpour, M., Atouf, V., Hosseini, S. N. "Immobilization of S, N-codoped TiO$_2$ nanoparticles on glass beads for photocatalytic degradation of methyl orange by fixed bed photocatalyst under visible and sunlight irradiation", Solar Energy, 112, pp. 239–245, 2015. https://doi.org/10.1016/j.solener.2014.12.007

[130] Arikal, D., Kallingal, A. "Photocatalytic degradation of azo and anthraquinone dye using TiO$_2$/MgO nanocomposite immobilized chitosan hydrogels", Environmental Technology, 42(15), pp. 2278–2291, 2021. https://doi.org/10.1080/09593330.2019.1701094

[131] Yu, Y., Zhu, X., Wang, L., Wu, F., Liu, S., Chang, C., Luo, X. "A simple strategy to design 3-layered Au-TiO$_2$ dual nanoparticles immobilized cellulose membranes with enhanced photocatalytic activity", Carbohydrate Polymers, 231, Article number: 115694, 2020. https://doi.org/10.1016/j.carbpol.2019.115694

[132] Zhang, X., Li, R., Wang, Y., Zhang, X., Wang, Y., Fan, C. "Slow-releasing Cl$^-$ to prepare BiOCl thin film on Bi plate and its photocatalytic properties", Materials Letters, 174, pp. 126–128, 2016. https://doi.org/10.1016/j.matlet.2016.03.109

[133] Wang, B., de Godoi, F.C., Sun, Z., Zeng, Q., Zheng, S., Frost, R. L. "Synthesis, characterization and activity of an immobilized photocatalyst: Natural porous diatomite supported titania nanoparticles", Journal of Colloid Interface Science, 438, pp. 204–211, 2015. https://doi.org/10.1016/j.jcis.2014.09.064

[134] Cunha, D. L., Kuznetsov, A., Achete, C. A., da Hora Machado, A. E., Marques, M. "Immobilized TiO$_2$ on glass spheres applied to heterogeneous photocatalysis: photoactivity, leaching and regeneration process", PeerJ, 6, Article number: e4464, 2018. https://doi.org/10.7717/peerj.4464

[135] Badvi, K., Javanbakht, V. "Enhanced photocatalytic degradation of dye contaminants with TiO$_2$ immobilized on ZSM-5 zeolite modified with nickel nanoparticles", Journal of Cleaner Production, 280(2), Article number: 124518, 2021. https://doi.org/10.1016/j.jclepro.2020.124518

[136] Alias, S. S., Harun, Z., Azhar, F. H., Ibrahim, S. A., Johar, B. "Comparison between commercial and synthesised nano flower-like rutile TiO$_2$ immobilised on green super adsorbent towards dye wastewater treatment", Journal of Cleaner Production, 251, Article number: 119448, 2020. https://doi.org/10.1016/j.jclepro.2019.119448

[137] Shao, L., Liu, H., Zeng, W., Zhou, C., Li, D., Wang, L., Lan, Y., Xu, F., Liu, G. "Immobilized and photocatalytic performances of PDMS-SiO$_2$-chitosan@TiO$_2$ composites on pumice under simulated sunlight irradiation", Applied Surface Science, 478, pp. 1017–1026, 2019. https://doi.org/10.1016/j.apsusc.2019.02.060

[138] Castañeda-Conterras, J., Marañón-Ruiz, V. F., Chiu-Zárate, R., Pérez-Ladrón De Guevara, H., Rodríguez, R., Michel-Uribé, C. "Photocatalytic activity of erubium-doped TiO$_2$ nanoparticles immobilized in macro-porous silica films", Materials Research Bulletin, 74(2), pp. 290–295, 2012. https://doi.org/10.1016/j.materresbull.2011.11.021

[139] Saiful Amran, S. N. B., Wongsao, V., Abdul Halim, N. S., Husni, M. K., Sambudi, N. S., Wirzal, M. D. H. "Immobilized carbon-doped TiO$_2$ in polyamide fibers for the degradation of methylene blue", Journal Of Asian Ceramic Societies, 7(3), pp. 321–330, 2019. https://doi.org/10.7717/peerj.4464

[140] Nawawi, W. I., Zahrudin, R., Ishak, M. A. M., Ismail, K., Zuliahani, A. "The Preparation and Characterization of Immobilized TiO$_2$/PEG by Using DSAT as a Support Binder", Applied Sciences, 7(1), Article number: 24, 2017. https://doi.org/10.3390/app7010024
[141] Chen, C., Ma, Z., Zhou, S., Li, T., Sun, X. "Cobalt-Tetracarboxyl-Phthalocyanine Linked with FeO\textsubscript{3}/Chitosan Microspheres—Efficient Catalyst for Dye Degradation", Catalysis Letters, 147(9), pp. 2399–2409, 2017. https://doi.org/10.1007/s10562-017-2149-7

[142] Ramasundaram, S., Seid, M. G., Kim, H. E., Son, A., Lee, C., Kim, E. J., Hong, S. W. "Binder-free immobilization of TiO\textsubscript{2} photocatalyst on steel mesh via electrospaying and hot-pressing and its application for organic micropollutant removal and disinfection", Journal of Hazardous Materials, 360, pp. 62–70, 2018. https://doi.org/10.1016/j.jhazmat.2018.07.100

[143] Teixeira, S., Martins, P. M., Lanceros-Méndez, S., Kühn, K., Cuniberti, G. "Reusability of photocatalytic TiO\textsubscript{2} and ZnO nanoparticles immobilized in poly(vinylidene difluoride)-co-trifluoroethylene", Applied Surface Science, 384, pp. 497–504, 2016. https://doi.org/10.1016/j.apsusc.2015.06.041

[144] Sutisna, Rohmat, M., Bibowow, E., Murniati, R., Khalik, M. "The use of TiO\textsubscript{2} immobilized into grape marc-based activated carbon for RB-5 Azo dye photocatalytic degradation", Arabian Journal of Chemistry, 12(8), pp. 3018–3027, 2019. https://doi.org/10.1016/j.arabjc.2015.06.041

[145] Baudys, M., Zlámal, M., Krýsa, J., Jirkovský, J., Kluson, P. "Notes on heterogeneous photocatalysis with the model azo dye Acid Orange 7 on TiO\textsubscript{2} chitosan layer by layer system", Journal of Colloid Interface Science, 372(1), pp. 104–112, 2012. https://doi.org/10.1016/j.jcis.2012.01.024

[146] Khalidi Maki, L., Maleki, A., Rezaee, R., Darai, H., Yetilmenez, K. "LED-activated immobilized Fe-Fe\textsubscript{3}O\textsubscript{4} nanocatalyst on glass bed for photocatalytic degradation of organic dyes from aqueous solutions", Environmental Technology & Innovation, 15, Article number: 100411, 2019. https://doi.org/10.1016/j.eti.2019.10.001

[147] Behpour, M., Shirazi, P., Rahbar, M. "Immobilization of the Fe\textsubscript{3}O\textsubscript{4}/TiO\textsubscript{2} photocatalyst on carbon fiber cloth for the degradation of a textile dye under visible light irradiation", Reaction Kinetics, Mechanisms and Catalysis, 127(2), pp. 1073–1085, 2019. https://doi.org/10.1007/s11144-019-01581-1

[148] González-Casamachin, D. A., Rivera De la Rosa, J., Lucio-Ortiz, C. J., De Haro De Rio, D. A., Martinez-Vargas, D. X., Flores-Escamilla, G. A., Dávila Guzman, N. E., Ovando-Medina, V. M., Moctezuma-Velazquez, E. "Visible-light photocatalytic degradation of acid violet 7 dye in a continuous annular reactor using ZnO/PPy photocatalyst: Synthesis, characterization, mass transfer effect evaluation and kinetic analysis", Chemical Engineering Journal, 373, pp. 325–337, 2019. https://doi.org/10.1016/j.cej.2019.05.032

[150] Liji Sobhana, S. S., Meherdi, R., Malnivirta, M., Paturi, P., Lastusaari, M., Diru, M. M., Garcia, Y., Fardim, P. "Heteronuclear nanoparticles supported hydroxaltes containing Ni(II) and Fe(III) stable photocatalysts for Orange II degradation", Applied Clay Science, 132–133, pp. 641–649, 2016. https://doi.org/10.1016/j.clay.2016.08.016

[151] Lee, S. L., Ho, L. N., Ong, S. A., Wong, Y. S., Voon, C. H., Khalik, W. F., Yusoff, N. A., Nordin, N. "A highly efficient immobilized ZnO/Zn photoanode for degradation of azo dye Reactive Green 19 in a photocatalytic fuel cell", Chemosphere, 166, pp. 118–125, 2017. https://doi.org/10.1016/j.chemosphere.2016.09.082

[152] Akerdi, A. G., Bahrami, S. H., Arami, M., Pajoontan, E. "Photocatalytic discoloration of Acid Red 14 aqueous solution using titania nanoparticles immobilized on graphene oxide fabricated plate", Chemosphere, 159, pp. 293–299, 2016. https://doi.org/10.1016/j.chemosphere.2016.06.020

[153] Kim, C., Kim, J. T., Kim, K. S., Jeong, S., Han, Y. S. "Immobilization of TiO\textsubscript{2} on an ITO substrate to facilitate the photoelectrochemical degradation of an organic dye pollutant", Electrochimica Acta, 54(24), pp. 5715–5720, 2009. https://doi.org/10.1016/j.electacta.2009.05.018

[154] Yildiz, T., Yatmaz, H. C., Öztürk, K. "Anatase TiO\textsubscript{2} powder immobilized on reticulated Al\textsubscript{2}O\textsubscript{3} ceramics as a photocatalyst for degradation of RO16 azo dye", Ceramics International, 46(7), pp. 8651–8657, 2020. https://doi.org/10.1016/j.ceramint.2019.12.098

[155] Ghoreishian, S. M., Badii, K., Norouzii, M., Malek, K. "Effect of cold plasma pre-treatment on photocatalytic activity of 3D fabric loaded with nano-photocatalysts: Response surface methodology", Applied Surface Science, 365, pp. 252–262, 2016. https://doi.org/10.1016/j.apsusc.2015.12.155

[156] Nawi, M. A., Sabar, S., Sheilatina "Photocatalytic decolourisation of Reactive Red 4 dye by an immobilised TiO\textsubscript{2}/chitosan layer by layer system", Journal of Colloid Interface Science, 372(1), pp. 80–87, 2012. https://doi.org/10.1016/j.jcis.2012.01.024

[157] Wan Ismail, W. I. N., Ain, S. K., Zaharudin, R., Jawad, A. H., Nawi, M. A., Sabar, S., Sheilatina "Photocatalytic decolourisation of Reactive Red 4 dye by an immobilised TiO\textsubscript{2}/chitosan layer by layer system", Journal of Colloid Interface Science, 372(1), pp. 80–87, 2012. https://doi.org/10.1016/j.jcis.2012.01.024

[158] Chen, C., Ma, Z., Zhou, S., Li, T., Sun, X. "Cobalt-Tetracarboxyl-Phthalocyanine Linked with FeO\textsubscript{3}/Chitosan Microspheres—Efficient Catalyst for Dye Degradation", Catalysis Letters, 147(9), pp. 2399–2409, 2017. https://doi.org/10.1007/s10562-017-2149-7

[159] Baudys, M., Zlámal, M., Krýsa, J., Jirkovský, J., Kluson, P. "Notes on heterogeneous photocatalysis with the model azo dye acid orange 7 on TiO\textsubscript{2}", Reaction Kinetics, Mechanisms and Catalysis, 106(2), pp. 297–311, 2012. https://doi.org/10.1007/s11144-012-0438-0

[160] Adamek, E., Baran, W., Ziemiańska-Błaszczyk, J., Sobczak, A. "Immobilisation of TiO\textsubscript{2}-P25 on a glass fibre mat: Preparation, photocatalytic activity and stability", Solar Energy, 188, pp. 1232–1242, 2019. https://doi.org/10.1016/j.solener.2019.07.034
[160] Qourzal, S., Barka, N., Tamimi, M., Assabbane, A., Ait-Ichou, Y. "Photodegradation of 2-naphthol in water by artificial light illumination using TiO$_2$ photocatalyst: Identification of intermediates and the reaction pathway", Applied Catalysis A: General, 334(1–2), pp. 386–393, 2008. https://doi.org/10.1016/j.apcata.2007.09.034

[161] Jyothi, K. P., Yesodharan, S., Yesodharan, E. P. "Ultrasound (US), Ultraviolet light (UV) and combination (US + UV) assisted semiconductor catalysed degradation of organic pollutants in water: Oscillation in the concentration of hydrogen peroxide formed in situ", Ultrasonic Sonochemistry, 21(5), pp. 1787–1796, 2014. https://doi.org/10.1016/j.ultsonch.2014.03.019

[162] Mozia, S. "Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review", Separation and Purification Technology, 73(2), pp. 71–91, 2010. https://doi.org/10.1016/j.seppur.2010.03.021

[163] Paz, Y. "Preferential photodegradation - why and how?", Comptes Rendus Chimie, 9(5–6), pp. 774–787, 2006. https://doi.org/10.1016/j.crci.2005.03.032

[164] Herrmann, J. M. "Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. R.L. Burwell Jr. (1912–2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill)", Topics in Catalysis, 34(1), pp. 49–65, 2005. https://doi.org/10.1007/s11244-005-3788-2

[165] Herrmann, J. M. "Heterogeneous photocatalysis: fundamentals and the removal to various types of aqueous pollutants", Catalysis Today, 53(1), pp. 115–129, 1999. https://doi.org/10.1016/S0920-5861(99)00107-8

[166] Neppolian, B., Choi, H. C., Sakthivel, S., Arabindoo, B., Murugesan, V. "Solar light induced and TiO$_2$ assisted degradation of textile dye reactive blue 4", Chemosphere, 46(8), pp. 1173–1181, 2002. https://doi.org/10.1016/S0045-6535(01)00284-3

[167] Konstantinou, I. K., Albanis, T. A. "TiO$_2$-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review", Applied Catalysis B: Environmental, 49(1), pp. 1–14, 2004. https://doi.org/10.1016/j.apcata.2003.11.010

[168] Daneshvar, N., Salari, D., Khataee, A. R. "Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters", Journal of Photochemistry and Photobiology A: Chemistry, 157(1), pp. 111–116, 2003. https://doi.org/10.1016/S1010-6030(03)00015-7

[169] Ling, H., Kim, K., Liu, Z., Shi, J., Zhu, X., Huang, J. "Photocatalytic degradation of phenol in water on as-prepared and surface modified TiO$_2$ nanoparticles", Catalysis Today, 258(1), pp. 96–102, 2015. https://doi.org/10.1016/j.cattod.2015.03.048

[170] Valente, J. P. S., Padiha, P. M., Florentino, A. O. "Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO$_2$", Chemosphere, 64(7), pp. 1128–1133, 2006. https://doi.org/10.1016/j.chemosphere.2005.11.050

[171] Chiou, C. H., Wu, C. Y., Juang, R. S. "Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO$_2$ process", Chemical Engineering Journal, 139(2), pp. 322–329, 2008. https://doi.org/10.1016/j.cej.2007.08.002

[172] Ollis, D. F., Pelizzetti, E., Serpone, N. "Photocatalytized destruction of water contaminants", Environmental Science & Technology, 25(9), pp. 1522–1529, 1991. https://doi.org/10.1021/es00021a001

[173] Ahmad, R., Ahmad, Z., Khan, A. U., Mastoi, N. R., Aslam, M., Kim, J. "Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications", Journal of Environmental Chemical Engineering, 4(4), pp. 4143–4164, 2016. http://doi.org/10.1016/j.jece.2016.09.009