On Kernel Method–Based Connectionist Models and Supervised Deep Learning Without Backpropagation

Shiyu Duan
michaelshiyu3@gmail.com
Shujian Yu
yusjlcy9011@ufl.edu
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, U.S.A.

Yunmei Chen
yun@math.ufl.edu
Department of Mathematics, University of Florida, Gainesville, FL 32611, U.S.A.

Jose C. Principe
principe@cnel.ufl.edu
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, U.S.A.

We propose a novel family of connectionist models based on kernel machines and consider the problem of learning layer by layer a compositional hypothesis class (i.e., a feedforward, multilayer architecture) in a supervised setting. In terms of the models, we present a principled method to “kernelize” (partly or completely) any neural network (NN). With this method, we obtain a counterpart of any given NN that is powered by kernel machines instead of neurons. In terms of learning, when learning a feedforward deep architecture in a supervised setting, one needs to train all the components simultaneously using backpropagation (BP) since there are no explicit targets for the hidden layers (Rumelhart, Hinton, & Williams, 1986). We consider without loss of generality the two-layer case and present a general framework that explicitly characterizes a target for the hidden layer that is optimal for minimizing the objective function of the network. This characterization then makes possible a purely greedy training scheme that learns one layer at a time, starting from the input layer. We provide instantiations of the abstract framework under certain architectures and objective functions. Based on these instantiations, we present a layer-wise training algorithm for an l-layer feedforward network for classification, where $l \geq 2$ can be arbitrary. This algorithm can be given an intuitive geometric interpretation that makes the learning dynamics transparent. Empirical results are provided to complement our theory. We show that the kernelized networks, trained
layer-wise, compare favorably with classical kernel machines as well as other connectionist models trained by BP. We also visualize the inner workings of the greedy kernelized models to validate our claim on the transparency of the layer-wise algorithm.

1 Introduction

One can “kernelize” any neural network (NN) by replacing each artificial neuron (McCulloch & Pitts, 1943)—a function approximator of the form
\[f(x) = \sigma(w^T x + b) \]—with a kernel machine—function approximator of the form
\[f(x) = \langle w, \phi(x) \rangle_H + b \] with kernel function
\[k(x, y) = \langle \phi(x), \phi(y) \rangle_H. \]

While the nonlinearities in deep NNs make it notoriously difficult to analyze these models, the simple interpretation of a kernel machine as a hyperplane in a reproducing kernel Hilbert space (RKHS) makes the kernelized networks more tractable mathematically. We shall refer to the kernelized NNs in general as kernel networks (KNs).

We then revisit the problem of learning a composite hypothesis class, by which we mean a trainable model that consists of more elementary trainable submodels, in a supervised learning setting. In this letter, we consider only the special case of a compositional hypothesis class, in which the elementary submodels are linked via function compositions, and therefore the overall model can be written as
\[F = F_l \circ \cdots \circ F_1 \]
for some \(l \), with each \(F_i \) being a submodel with proper domain and codomain. For example, a deep feedforward NN can be considered as a compositional hypothesis class.

When it comes to training these models, the usual method is to learn all its trainable submodels simultaneously using, for example, backpropagation (BP; Rumelhart, Hinton, & Williams, 1986). However, in the context of supervised learning, the need for BP is caused by the fact that there is no explicit target information to tune the latent submodels (Rumelhart et al., 1986). Moreover, when the model is large, BP usually becomes computationally intensive and can suffer from issues such as a vanishing gradient. Also, BP returns very little information on the training of each submodel to the user and therefore forces the user to treat the model as a black box. For example, it is usually not possible to know which specific part or parts of the network is responsible when the performance is suboptimal. Also, it is extremely difficult to interpret or assess the hidden representations during or after training.

We propose a novel training framework for compositional models that enables learning via directly propagating the targets at the output layer to the hidden layers in the optimal way, contrasting how BP trains via propagating the derivative information with respect to the targets but not the targets themselves. To be specific, we consider the problem of reducing the compositional learning problem into a set of noncompositional ones and then solving each one of them individually. We approach by deriving
explicit targets for the hidden submodels. The targets are optimal for minimizing a given objective function of the overall model. The central idea can be summarized as follows: Let input data S_X, supervision S_Y (labels in classification, dependent variable in regression), a two-layer feedforward architecture $F_2 \circ F_1$, and an objective function $\tilde{R}(F_2 \circ F_1(S_X), S_Y)$ be given. Define $F_2^* \circ F_1^* := \arg\min_{F_2 \circ F_1} \tilde{R}(F_2 \circ F_1(S_X), S_Y)$. If we could find functions s, u, and a new objective $\tilde{R}_1(s(F_1(S_X)), u(S_Y))$ whose minimizer is equivalent to F_1^* for minimizing the objective \tilde{R}, then finding F_1^* is equivalent to finding an F_1 that minimizes \tilde{R}_1. If the dependence of s and u on F_2 can be reduced to a point where this search for F_1^* does not involve the trainable parameters of F_2, then we have reduced the original compositional learning problem into two noncompositional ones that can be solved sequentially.

As examples, we provide instantiations of the abstract framework and, based on these instantiations, a sample greedy training algorithm for a multilayer feedforward architecture for classification. This greedy learning algorithm enjoys the same optimality guarantee as BP in the sense that both effectively train each layer to minimize the overall objective. But the former is faster, more memory efficient, and evidently less susceptible to vanishing gradient. It also greatly increases the transparency of deep models: the quality of learning in the hidden layers can be directly assessed during or after training, providing the user with more information about training. Also, alternative model selection and hyperparameter tuning paradigms are now available since unsatisfying performance of the network can be traced to a certain layer or layers, allowing the user to debug the layers individually. Moreover, the target for each hidden layer in this algorithm can be given an intuitive geometric interpretation, making the learning dynamics transparent.

Empirical results are provided to complement our theory. First, we compare KNs with classical kernel machines and show that KNs consistently outperform support vector machines (SVMs) (Cortes & Vapnik, 1995) as well as several SVMs enhanced by multiple kernel learning (MKL) algorithms (Bach, Lanckriet, & Jordan, 2004; Gönen & Alpaydın, 2011). We then fully or partly kernelized both fully connected and convolutional NNs and trained them with the proposed layer-wise algorithm. The resulting KNs compare favorably with their NN equivalents trained with BP, as well as some other commonly used deep architectures trained with BP, together with unsupervised greedy pretraining. We also visualize the learning dynamics and hidden representations in the greedy kernelized networks to validate our claim on the transparency of the greedy algorithm.

2 Setting and Notations

We consider the following supervised setup. Let a realization of an independent and identically distributed (i.i.d.) random sample be given: $S =$
\{ (x_n, y_n) \}_{n=1}^N \), where \((x_n, y_n) \in \mathbb{R}^{d_0} \times \mathbb{R}\). Denote \(\{x_n\}_{n=1}^N\) as \(S_X\) and \(\{y_n\}_{n=1}^N\) as \(S_Y\) for convenience. We consider only real, continuous, symmetric, positive-definite (PD) kernels (Schölkopf & Smola, 2001), which possess the reproducing property \(k(x, y) = \langle \phi(x), \phi(y) \rangle_H\), where \(H\) is the RKHS induced by \(k\). Further, we assume, for all kernels considered in all results, that \(k(x, x) = c < +\infty, \forall x\), and that \(\inf_{x, y} k(x, y) = a > -\infty\). It is straightforward to check using the Cauchy-Schwarz inequality that the first condition implies \(\max_{x, y} k(x, y) = c\). Note that by construction of a PD kernel, we always have \(a < c\).

For the rest of this letter, we use bold letters to denote vectors or vector-valued functions. For random elements, we use capital letters to denote the random element and lowercase letters a realization of it. Notations similar to the following will be used whenever convenient. For a general \(l\)-layer feedforward architecture \(F_l \circ \cdots \circ F_1\) and for \(i = 2, 3, \ldots, l\), \(x \in \mathbb{R}^{d_0}\), \(F_i(x) := F_i \circ \cdots \circ F_1(x)\). For any \(F\), the shorthand \(F(S_X)\) represents \(\{F(x_n)\}_{n=1}^N\) and the same for \(F(S_Y)\). When there is no confusion, we suppress the dependence of any loss function on the example for brevity (i.e., for a loss function \(\ell\)); instead of writing \(\ell(f(x), y)\), we write \(\ell(f)\).

Given a loss function \(\ell(f(x), y)\), we define the risk as \(R(f) := \mathbb{E}_{(X, Y)} \ell(f(X), Y)\) and an objective function \(\tilde{R}(f(S_X), S_Y)\) to be a bound on the risk that is computable using the given data only. In this letter, we take any objective as given without rigorously justifying why it is a bound of some risk since that is not the purpose of this letter. Nevertheless, the objectives we use are fairly common, and the corresponding justifications are routine. We make this distinction between risk and objective here as it will be needed in later discussions.

3 Kernelizing a Neural Network

Kernel machines are parametric models defined as \(f(x) = \langle w, \phi(x) \rangle_H + b\) with kernel \(k(x, y) = \langle \phi(x), \phi(y) \rangle_H\) and \(w, b\) being the learnable weights and \(\phi\) being a map into the RKHS \(H\). NNs are connectionist models defined by arbitrarily combining the parametric base units defined as \(f(x) = \sigma(w^\top x + b)\) with \(w, b\) being the learnable weights and \(\sigma\) a (usually nonlinear) gating function. These base units are sometimes called neurons.

While NNs are flexible models and have strong, expressive power in practice, they are notoriously difficult to analyze due to each nonlinear neuron being a nontrivial function itself and the arbitrariness involved in the overall architecture design. Kernel machines, in comparison, are much more mathematically tractable since they are linear models in the feature space \(H\); that is, the \(f\) is linear in \(w\). This allows one to reduce otherwise abstract problems into geometric ones, making possible simpler and more intuitive solutions. However, their architectures are not as flexible, and their
practical performance in most cutting-edge machine learning applications has been unsatisfying (Bengio, Courville, & Vincent, 2013).

The question we consider is how to combine the idea of connectionism, which is central to NNs, with kernel machines and build families of models that are flexible, expressive, and at the same time more mathematically tractable than NNs. We hope this will be a first step toward explaining why deep learning performs so well in the most challenging AI tasks.

In this section, we discuss how to kernelize an NN to build models that combine the best of both worlds. We first present the generic approach and then, as an example, concretely define a fully kernelized multilayer perceptron (MLP). To further shed light on the effect of kernelization on the expressive power of the original model, we give an analysis on the model complexity of a fully kernelized MLP.

3.1 A Generic Approach to Kernelization. The general idea we adopt is to build connectionist models with the base units being not neurons but kernel machines. This is mathematically viable since in an NN, any neuron can be directly replaced by a kernel machine without altering the architecture and functionality of the network. An illustration of this kernelization procedure is provided in Figure 1. In this way, one can kernelize an NN to any degree: a node, several nodes, a layer, several layers, or the entire network.

KN is flexible in the sense that one can inject prior knowledge into the architecture design, as is done for NNs. KN inherits the expressive power of the original NN since a kernel machine is a universal function approximator.
under mild conditions (Park & Sandberg, 1991; Micchelli, Xu, & Zhang, 2006). Moreover, KN works in a more mathematically intuitive way since each base unit is a simple linear model in an RKHS.

Further, a general criticism toward kernel methods in machine learning is that their performance usually relies heavily on the parameterization of the kernels used. This issue is mitigated in KN, thanks to the introduction of connectionism. To be specific, KN performs nonparametric kernel learning alongside learning to perform the given task. Indeed, to build the network, one needs only generic kernels, but in a connectionist model, the kernels on the noninput layers admit the form $k(F(x), G(y))$, where F, G are some other trainable submodels. The fact that F, G are trainable makes this kernel “adaptive,” mitigating to some extent any limitation of the fixed generic kernel k. The training of F and G makes this adaptive kernel optimal as a constituent part of the corresponding kernel machine for the task the network was trained for. And it is always a valid kernel if the generic kernel k is. Note that observations similar to this one have been made in different contexts by, for example, Huang and LeCun (2006) and Bengio et al. (2013). We include it here only for completeness.

3.2 Kernelized MLP: The Architecture. As a more concrete example, we now define a fully kernelized l-layer MLP, which we specifically refer to as kernel MLP (kMLP).

The l-layer kMLP is defined as follows. For $i \geq 1$, the ith layer in a kMLP, denoted F_i, is an array of d_i kernel machines: $F_i : \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_i}$, $F_i(x) = (f_{i1}^1(x), f_{i2}^1(x), \ldots, f_{id_i}^1(x))$ with the f_{ij}^i all using kernel k_i. Let F_0 be the identity map on \mathbb{R}^{d_0}. Each $f_{ij}^i : \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}$ is a hyperplane in RKHS H_i: $f_{ij}^i(x) = \langle w_f^{ij}, \phi_i(F_{i-1} \circ \cdots \circ F_0(x)) \rangle_{H_i} + b_{f_{ij}^i}$, $w_f^{ij} \in H_i$, $b_{f_{ij}^i} \in \mathbb{R}$. The set of mappings

$$\left\{ F_l \circ \cdots \circ F_1 : w_f^{ij} \in H_i, b_{f_{ij}^i} \in \mathbb{R} \right\}$$

defines an l-layer kMLP.

In practice, w_f^{ij} is usually not accessible but can be approximated using, for instance, $\sum_{n=1}^N \alpha_{i,n}^j \phi_i(F_{i-1} \circ \cdots \circ F_0(x_n))$, where the $\alpha_{i,n}^j \in \mathbb{R}$ are the learnable parameters.

3.3 Kernelized MLP: Model Complexity. We give a bound on the model complexity of an l-layer kMLP using a well-known complexity

\[\text{APyTorch-based (Paszke, Gross, Chintala, & Chanan, 2017) library for implementing KN and the proposed layer-wise training algorithm is available at https://github.com/michaelshiyu/kerNET.} \]

\[\text{The optimality of this expansion can be justified in the following layer-wise setting by directly applying the representer theorem (Schölkopf, Herbrich, & Smola, 2001).} \]
measure, gaussian complexity (Bartlett & Mendelson, 2002). In particular, the bound describes the relationship between the depth and width of the model and the complexity of its hypothesis class, providing insights into the effect of kernelization on the expressive power of the model, as well as useful information for model selection. We first review the definition of gaussian complexity.

Definition 1 (Gaussian Complexity). Let X_1, \ldots, X_N be i.i.d. random elements defined on metric space \mathbb{X}, and let \mathcal{F} be a set of functions mapping from \mathbb{X} into \mathbb{R}. Define

$$\hat{G}_N(\mathcal{F}) = \mathbb{E} \left[\sup_{f \in \mathcal{F}} \frac{1}{N} \sum_{n=1}^{N} Z_n f(X_i) \right],$$

where Z_1, \ldots, Z_N are independent standard normal random variables. The gaussian complexity of \mathcal{F} is defined as $G_N(\mathcal{F}) = \mathbb{E} \hat{G}_N(\mathcal{F})$.

Intuitively, gaussian complexity quantifies how well elements in a given function class can be correlated with a normally distributed noise sequence of length N (Bartlett & Mendelson, 2002).

For proposition 1 and the lemma based on which this proposition is proven (lemma 3 in appendix B), we impose the following smoothness assumption on all kernels considered: for each fixed $x \in \mathbb{R}^{d_{i-1}}$, we assume that $k_i(x, y)$, as a function of y, is L_i, x-Lipschitz with respect to the Euclidean metric on $\mathbb{R}^{d_{i-1}}$. Let $x \in \mathbb{R}^{d_{i-1}}$, $L_i, x = L_i$, which we assume to be finite.

Proposition 1. Given an l-layer kMLP, approximate w_{f_j} using

$$\sum_{v=1}^{m} \alpha^j_{i,v} \phi_i(F_{i-1} \circ \cdots \circ F_1(x_v)),$$

where the x_v are an m-subset of S_{x}, $1 \leq m \leq N$, $\alpha^j_i := (\alpha^j_{i,1}, \ldots, \alpha^j_{i,m}) \in \mathbb{R}^m$ and $b_{f_j} \in \mathbb{R}$. Assume $\|\alpha^j_i\|_1 \leq A_i$ and let $d_1 = 1$. Consider

$$\mathcal{F}_1 = \left\{ x \mapsto (f^1_1(x), \ldots, f^d_1(x)) \mid f^j_1 \in \Omega, \ j = 1, \ldots, d_1 \right\},$$

where Ω is a given hypothesis class of functions from \mathbb{R}^{d_0} to \mathbb{R}. Denote the class of functions implemented by this kMLP as $\mathcal{F}_{l\text{-kMLP}}$, if $F_1 \in \mathcal{F}_1$, for $i \geq 2$, we have

$$G_N(\mathcal{F}_{l\text{-kMLP}}) \leq 2d_1 \prod_{i=2}^{l} A_i L_i d_i G_N(\Omega).$$
It is worth noting that the model complexity kMLP grows in the depth and width of the network in a similar way as that of an MLP (Sun, Chen, Wang, Liu, & Liu, 2016). In particular, the expressive power of the model increases linearly in the width of a given layer and roughly exponentially in the depth of the network.

4 A Layer-Wise Learning Framework

We now formally present our greedy framework for learning compositional hypothesis classes in a supervised setting. To simplify discussion, we first consider the two-layer case:

\[\mathcal{F} = \{ F = F_2 \circ F_1 \mid F_i \in \mathcal{F}_i, \ i = 1, 2 \} . \]

Define \(F_1^* \circ F_2^* = F^* := \arg\min_{F \in \mathcal{F}} \tilde{R}(F(S_X), S_Y) \). The goal is to train the input layer to find \(F_1^* \) (without touching the output layer), freeze the input layer afterward, and then train the output layer to find \(F_2^* \).

To disentangle the training of the two layers, we must disentangle the definitions of \(F_1^* \) and \(F_2^* \). The idea is to recharacterize \(F_1^* \), that is, derive conditions under which \(F_1 = F_1^* \), using no information on the trainable parameters of the output layer. Then we need to translate these conditions into choosing a new loss \(\ell_1 \) (inducing a new risk \(R_1 \)), a function \(s \), and a function \(u \) accordingly with the property that

\[\arg\min_{F_1 \in \mathcal{F}_1} R_1(s(F_1(X)), u(Y)) = F_1^* \]

and that \(s, u \) do not rely on the trainable parameters of the output layer. An objective \(\tilde{R}_1(s(F_1(S_X)), u(S_Y)) \) can be subsequently chosen, and we can find \(F_1^* \) by training the input layer to minimize this new objective. This training process requires no tuning on the output layer as this new objective does not involve the trainable parameters of that layer.

The recharacterization of \(F_1^* \) is dependent on \(F_2 \) and \(\tilde{R} \). Therefore, different choices induce different instantiations of our general framework.

The search of \(u \) can be understood as the procedure of explicitly propagating the targets \(S_Y \) to the hidden layers. This contrasts how BP trains via propagating derivative information with respect to the targets but not the targets directly.

We proceed by first describing the general framework and then, as examples, provide instantiations under a specific choice of \(\mathcal{F}_2 \) and two families of objectives. Finally, based on these instantiations, we provide a sample layer-wise training algorithm for learning an \(l \)-layer feedforward network for classification, where \(l \geq 2 \) can be arbitrary. This layer-wise algorithm is simple to implement, and its learning dynamics enjoy an intuitive geometric interpretation.
4.1 The Framework. Let the architecture \mathbb{F} and objective \hat{R} be given. Our greedy learning framework for the two-layer compositional hypothesis class consists of the following steps:

1. Finding F_1^*
 a. Define an equivalence relation between hypotheses.
 b. Give an equivalent definition for F_1^* under the new equivalence relation.
 c. Recharacterize F_1^* for the given \mathbb{F} under the given objective \hat{R}.
 d. Choose $s, u, \ell_1,$ and \hat{R}_1 accordingly.
 e. Train the input layer to minimize $\hat{R}_1(s(F_1(S_X)), u(S_Y))$.
 f. After training, freeze the input layer at, say, F_1^0.

2. Finding F_2^*
 a. Train the output layer to minimize $\hat{R}(F_2 \circ F_1(S_X), S_Y)$.

We now provide more details for a couple of the listed steps.

Step 1a: Define an equivalence relation between hypotheses. In our framework, we use the following definition of equivalence between hypotheses of the input layer:

$$F_1 = G_1 \quad \text{if and only if} \quad \min_{F_2 \in \mathbb{F}_2} \hat{R}(F_2 \circ F_1) = \min_{F_2 \in \mathbb{F}_2} \hat{R}(F_2 \circ G_1), \ \forall S.$$

It is easy to check that this is indeed an equivalence relation. Intuitively, this means that we consider two hypotheses of the input layer to be equally good if the best networks one can build with these two hypotheses minimize the objective function equally well (i.e., when they have the same “potential”). Evidently, this notion of equivalence is proper and sufficient, as we have no knowledge of F_2 while we train the input layer.

Step 1b: Give an equivalent definition for F_1^* under the new equivalence relation. Compared to the original minimizer definition of F_1^*, it is easier to work with the following more concrete definition under the equivalence relation described in step 1a.

Lemma 1. Suppose $F_1^* \in \mathbb{F}_1' \subseteq \mathbb{F}_1$ and $F_2^* \in \mathbb{F}_2' \subseteq \mathbb{F}_2$. We have

$$F_1^* = \arg\min_{F_1 \in \mathbb{F}_1'} \min_{F_2 \in \mathbb{F}_2'} \hat{R}(F_2 \circ F_1).$$

This definition is easier to work with when we later recharacterize F_1^* because it shrinks the range of F_2 we need to consider for each F_1 to only the minimizer F_2 under that specific F_1.

4.2 Some Instantiations. We now provide instantiations of the greedy learning framework under a specific family of \mathbb{F}_2 and two classes of objective functions. Note that these instantiations are certainly not all that can be
derived from our layer-wise framework. We leave the exploration of more such instantiations as future work.

Steps 1a and 1b are the same for all instantiations. Therefore, the only nontrivial steps in our framework to discuss for specific instantiations are steps 1c and 1d.

The specific \mathbb{F}_2 we consider in this section is defined as the set of functions of the following form: $F_2(x) = (f_2^1(x), \ldots, f_2^{d_2}(x))$, $f_2^j(x) = \langle w^j_f, \phi(x) \rangle_H + b^j_f$ with kernel $k(x, y) = \langle \phi(x), \phi(y) \rangle_H$, $j = 1, \ldots, d_2$, $x, y \in \mathbb{R}^{d_0}$, where we have omitted and will continue to omit writing out explicitly the function composition. For example, for $x \in \mathbb{R}^{d_0}$, we write $F_2(x)$ in place of $F_2(F_1(x))$. There is no assumption needed on F_1.

For these instantiations, we consider the case $Y \in \{+1, -1\}$, and we shall use subscript + or − to indicate the class of a particular example, if needed.

4.2.1 Recharacterize F_1^* under Regularized Hinge Loss as Objective. Let $d_2 = 1$, and write f_2 in place of F_2 accordingly. Let the objective function $\tilde{R}(f_2 \circ F_1)$ be $\tilde{R}(f_2 \circ F_1) + \tau \|w_f\|_H$, where $\tau > 0$ is a hyperparameter that can be chosen as desired and

$$\tilde{R}(f_2 \circ F_1) = \frac{1}{N} \sum_{n=1}^{N} \ell(f_2 \circ F_1, (x_n, y_n))$$

with $\ell(f_2 \circ F_1, (x_n, y_n)) = \max(0, 1 - y_nf_2(x_n))$, the hinge loss. Let $\kappa = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}_{\{y_n=+\}}$. We now re-characterize F_1^*:

Theorem 1. Assume that $\tau < \sqrt{2(c-a)} \min(\kappa, 1 - \kappa)$ and that there exist $(x_+, y_+), (x_-, y_-) \in S$ such that $\ell(f_2^* \circ F_1^*, (x_n, y_n)) = 0$, $n = +, -$.

If F_1 satisfies

$$k(F_1(x_+), F_1(x_-)) = a \quad \text{and} \quad k(F_1(x), F_1(x')) = c$$

(4.1)

for all pairs of $x_+, x_- \in S_X$ and all pairs of $x, x' \in S_X$ with $y = y'$, then $F_1 = F_1^*$.

4.2.2 Recharacterize F_1^* under Regularized Supervised Representation Similarity (SRS) Loss as Objective. Consider function $h : \mathbb{R}^{d_2} \times \mathbb{R}^{d_2} \to \mathbb{R}$ with the property that $h(x, y)$, as a function of x and y, has the following properties:

- $\inf_{x, y} h(x, y) = b > -\infty$, $\sup_{x, y} h(x, y) = d < \infty$, $d > b$.
- h depends only on $\|x - y\|_q$ for some $q \geq 1$, that is, $h(x, y) = h(\|x - y\|_q)$.
- h strictly decreases in $\|x - y\|_q$ for all $x, y \in \mathbb{R}^{d_2}$ with $h(x, y) > b$.

S. Duan, S. Yu, Y. Chen, and J. Principe
Define the following SRS loss:

\[\ell(F_2 \circ F_1, (x, y), (x', y')) = |g(y, y') - h(F_2(x), F_2(x'))|^p, \]

where \(p \geq 1 \) can be arbitrarily chosen and \(g(y, y') = b \) if \(y \neq y' \) and \(d \) if otherwise.

It is easy to see that this loss penalizes the similarity between images of examples under the mapping \(F_2 \circ F_1 \) based on their classes, hence, the name supervised representation similarity.

Let the objective function be

\[\tilde{R}(F_2 \circ F_1) = \frac{1}{N^2} \sum_{n, m=1}^{N} \ell(F_2 \circ F_1, (x_n, y_n), (x_m, y_m)) + \tau t\left(\|w_{f_2}^1\|_H, \ldots, \|w_{f_{l-1}}^l\|_H \right), \]

where \(\tau > 0 \) can be freely chosen and \(t \) can be any function that strictly decreases in all of its arguments.

Theorem 2. Assume that there exist \((x_+, y_+), (x_-, y_-) \in S\) such that

\[\ell(F_2^* \circ F_1^*, (x_+, y_+), (x_-, y_-)) = 0. \]

Also assume that for all \(j \), \(\|w_{f_j}^*\|_H > 0 \).

If \(F_1 \) satisfies

\[k(F_1(x_+), F_1(x_-)) = a; \text{ and} \]

\[k(F_1(x), F_1(x')) = c \] \hspace{1cm} (4.2)

for all pairs of \(x_+, x_- \in S_X \) and all pairs of \(x, x' \in S_X \) with \(y = y' \), then \(F_1 = F_1^* \).

4.2.3 On Selecting \(s, u, \ell_1, \) and \(\tilde{R}_1 \). For both of the two objectives described above, we may choose, for example, \(s \) to be the kernel function \(k \), \(u \) to be the function defined as \(u(y, y') = a \) if \(y \neq y' \) and \(c \) if otherwise, and \(\ell_1 \) to be the SRS loss defined earlier with \(g \) set to \(u \) and \(h \) set to \(s \),

\[\ell_1(F_1, (x, y), (x', y')) = |u(y, y') - k(F_1(x), F_1(x'))|^p, \]

where \(p \geq 1 \) can be freely chosen. This of course requires \(k \) to satisfy the conditions on \(h \) for the resulting loss to be a valid SRS loss.

Under this selection of \(\ell_1 \), it is evident that the minimizers of \(\ell_1 \) (and also \(R_1 \)) are all equal to \(F_1^* \) by theorems 1 and 2. \(\tilde{R}_1 \) can be set to the empirical SRS loss plus an arbitrary regularization term on norms of the weights.

4.2.4 Generalizing to \(l \)-Layer Feedforward Models with \(l \geq 2 \). The generalization to a feedforward model with \(l \) layers, where \(l \geq 2 \) can be arbitrary, is trivial. To begin, treat \(F_1 \) and \(F_{l-1} \circ \cdots \circ F_1 \) as the earlier \(F_2 \) and \(F_1 \), respectively. Then work as in the two-layer case to find an objective \(\tilde{R}_{l-1} \) for
This reduces the \(l \)-layer problem to an \(l - 1 \)-layer problem. Repeat this procedure on the rest of the layers until we return to the original two-layer case.

4.3 A Layer-Wise Training Algorithm for an \(l \)-Layer (\(l \geq 2 \)) Feedforward Network for Classification

We can build on the instantiations a certified (in the sense that the optimality is guaranteed) layer-wise algorithm for training an \(l \)-layer (\(l \geq 2 \)) feedforward network for classification tasks. In this section, we describe this algorithm and show that it enjoys a geometric interpretation that makes the learning dynamics transparent. Moreover, we show that there is a simple acceleration method for the kernelized noninput layers, making the architecture more practical.

We present this algorithm for binary classification. Nevertheless, as multiclass problems can be reduced to a set of binary classification problems by using either the one-versus-all or the one-versus-one strategy (Schölkopf & Smola, 2001), an extension of this algorithm to multiclass problems is trivial.

The architecture considered is as follows:

\[
\left\{ f_l \circ \cdots \circ F_1 : \mathbb{R}^{d_0} \to \mathbb{R} \mid F_i (x) = (f_i^1 (x), \ldots, f_i^{d_i} (x)),
\right. \\
\left. f_i^j (x) = \langle w_{f_i^j}, \phi_i (x) \rangle_{H_i} + b_{f_i^j}, \quad w_{f_i^j} \in H_i, \quad b_{f_i^j} \in \mathbb{R},
\right. \\
\forall l > i > 1, \forall j, \ f_i (x) = \langle w_{f_i}, \phi_i (x) \rangle_{H_i} + b_{f_i}, \quad w_{f_i} \in H_i, \quad b_{f_i} \in \mathbb{R}. \right\}
\]

Note that we have made no assumption on the input layer.

For \(i < l \), define

\[
\tilde{R}_i (F_i) = \frac{1}{N^2} \sum_{n, m} \ell_i (F_i, (x_n, y_n), (x_m, y_m)) \\
+ \tau_i t \left(\| w_{f_i^1} \|_{H_i}, \ldots, \| w_{f_i^{d_i}} \|_{H_i} \right).
\]

where

\[
\ell_i (F_i, (x_n, y_n), (x_m, y_m)) = \left| u (y_n, y_m) - \theta_{i+1} (F_i (x_n), F_i (x_m)) \right|^p.
\]

\(p \geq 1 \) can be chosen freely, \(\tau > 0, \ u (y, y') = a \) if \(y = y' \) and \(c \) otherwise, and \(t \) can be any function that strictly decreases in all of its arguments.
For $i = 1, 2, \ldots, l$ do

unfreeze layer i

train layer i to minimize \tilde{R}_i

freeze layer i

end for

For $i = l$, define

$$\tilde{R}_l (f_l) = \frac{1}{N} \sum_{n=1}^{N} \ell_l (f_l, (x_n, y_n)) + \tau_l \|w_{f_l}\|_{H_l},$$

where

$$\ell_l (f_l, (x_n, y_n)) = \max (0, 1 - y_n f_l (x_n))$$

Then the training algorithm is given in algorithm 1.

The optimality of this training algorithm is justified by theorems 1 and 2 when the τ_i and k_i satisfy the corresponding conditions for all $i = 1, \ldots, l$.

We emphasize that this particular training algorithm gives great freedom to the choice of F_l: it can be any arbitrary architecture. In particular, it can be a stack of multiple layers in practice. This stack can be trained with an end-to-end method such as BP.

4.3.1 Geometric Interpretation of Learning Dynamics. The sufficient conditions described by equations 4.1 and 4.2 can be interpreted geometrically. Under an F_l satisfying these conditions, images of examples from distinct classes are as distant as possible in the RKHS induced by k whereas images of examples from the same class are as concentrated as possible (see, the proof of theorem 1 in appendix B). Intuitively, such a representation is the “easiest” for the classification task. And our earlier theorems essentially justified this intuition in a rigorous fashion.

Therefore, the learning dynamics of this training algorithm can be given a straightforward geometric interpretation: it trains each layer to push apart
examples from different classes while squeezing together those within the same class. In other words, each layer learns a better representation of the data. Eventually the output layer works as a classifier on the final hidden representation.

4.3.2 Accelerating the Kernelized Layers. There is a natural method to accelerate the kernelized noninput layers. The hidden targets are sparse in the sense that for 1 ≤ i < l and any \(F_i \) satisfying equation 4.1 or 4.2, we have \(\phi_{i+1}(F_i(x_m)) = \phi_{i+1}(F_i(x_n)) \) if \(y_m = y_n \) and \(\phi_{i+1}(F_i(x_m)) \neq \phi_{i+1}(F_i(x_n)) \) if \(y_m \neq y_n \) (see the proof of theorem 2 in appendix B).

Since we usually approximate \(w_{i+1} \) using \(\sum_{n=1}^{N} \alpha_{i+1,n} \phi_{i+1}(F_i(x_n)) \), retaining only one example from each class would result in exactly the same hypothesis class \(F_{i+1} \) because

\[
\left\{ \sum_{n=1}^{N} \alpha_{i+1,n} \phi_{i+1}(F_i(x_n)) \mid \alpha_{i+1,n} \in \mathbb{R} \right\} = \left\{ \sum_{n=\pm}^{N} \alpha_{i+1,n} \phi_{i+1}(F_i(x_n)) \mid \alpha_{i+1,n} \in \mathbb{R} \right\}
\]

for arbitrary \(x_+ \), \(x_- \) in \(S_X \).

Thus, after training a given layer, depending on how well its objective function has been minimized, one may discard some of the centers for kernel machines of the next layer to speed up the training of that layer without sacrificing performance. This trick also has a regularization effect on the kernel machines since the number of trainable parameters of a kernel machine grows linearly in the number of its centers.

4.4 How Is Our Layer-Wise Framework Different from the Existing Layer-Wise Pretraining Schemes? Existing layer-wise pretraining methods such as those proposed in Hinton, Osindero, and Teh (2006) and Bengio, Lamblin, Popovici, and Larochelle (2007) require backpropagation (BP) fine-tuning. This is because, to the best of our knowledge, no optimality guarantee comparable to that provided by BP can be made for these pretraining algorithms. In other words, the layer-wise pretraining commonly used in the deep learning community does not necessarily learn the hypothesis that minimizes the objective function for the network and thus can only be used as an add-on to BP that helps BP converge faster.

In contrast, our work proves such optimality for our layer-wise training scheme in certain specific learning settings and therefore completely removes the need for BP in those settings. To put this another way, even if one applies BP after performing our layer-wise training, one will not (in theory) end up with a hypothesis that is strictly better than the one learned by the layer-wise learning process in terms of minimizing the objective function of the network.

Coming up with a purely layer-wise substitute for BP is relevant because, as we have mentioned, BP can be computationally expensive and its end-to-end nature makes it practically impossible to precisely trace the source of unsatisfying performance and find out which layer or layers is to be blamed. This can make the architecture search process lengthy and
sometimes painful. Furthermore, training all layers simultaneously complicates the parameter space and may introduce more local minima to the learning process, which can be another unwanted factor for gradient descent–based learning. In contrast, a fully layer-wise training process allows one to divide and conquer the learning problem and reveals more useful information about training, mitigating the issues to some extent.

5 Related Work

The link between NNs and the kernel method has been long known. In Vapnik (2000) defined the hyperbolic tangent kernel and used it in SVM, leading to an architecture equivalent to a shallow MLP. Suykens and Vandewalle (1999) viewed MLP as an SVM by treating the hidden layer as the feature map and proposed a modified support vector method to train the former. More recently, Cho and Saul (2009) defined an “arc cosine” kernel to imitate the computations performed by a one-layer MLP. Zhuang, Tsang, and Hoi (2011) extended the idea to arbitrary kernels with a focus on MKL, using an architecture similar to a two-layer kMLP. As a further generalization, Zhang et al. (2017) proposed kMLP and fully kernelized CNN. However, they did not extend the idea to more network architectures. These works essentially combine kernel method with deep learning by substituting neurons in NNs with kernel machines, which is similar to what we are pursuing in our work. However, to the best of our knowledge, our work enjoys perhaps the greatest generality among works that follow this line of research.

There are also works that attempt to integrate kernel method with deep learning using other methods. Suykens (2017) drew connections between restricted Boltzmann machines (RBM) and kernel machines by creating RBM-like representations for the latter. The resulting restricted kernel machines (RKMs) are then combined to form deep RKMs. Mairal, Koniusz, Harchaoui, and Schmid (2014) proposed learning hierarchical representations by learning mappings of kernels that are invariant to irrelevant variations in images. Hermans and Schrauwen (2012) used the kernel method to expand the echo state networks to essentially infinite-sized recurrent neural networks. The resulting network can then be viewed as a recursive kernel that can be used in SVMs. Wilson, Hu, Salakhutdinov, and Xing (2016) proposed to learn the covariance matrix of a gaussian process using an NN in order to make the kernel “adaptive.” Such an interpretation of “adaptive” kernels can be given to KNs as well. This idea also underlies the now standard approach of combining a deep NN with SVM for classification, which was first explored by Huang and LeCun (2006) and Tang (2013) and can be viewed as a special case of the proposed kernelization framework. In terms of the training of such hybrid systems, there are mainly two methods. The first is to apply BP to the entire model (Tang, 2013), which enjoys an optimality guarantee from BP but forces the SVM to be trained with gradient descent instead of the more efficient optimization algorithms that are
usually used for SVMs. The alternative is to feed the hidden representations from a trained NN to the SVM and train the latter in the usual way (Huang & LeCun, 2006), but this practice is not theoretically solid. The proposed layer-wise learning framework serves as another alternative that combines the best of both worlds: one can train the NN and SVM separately with an optimality guarantee as that given by BP.

Among works on improving or substituting BP in learning a deep architecture, most aim at improving the classical method, working as add-ons for BP. The most notable ones are perhaps the unsupervised greedy pretraining techniques proposed by Hinton et al. (2006) and Bengio et al. (2007). Among works that try to completely substitute BP, none provided a comparable optimality guarantee in theory as that given by BP. Fahlman and Lebiere (1990) pioneered the idea of greedily learning the architecture of an NN. In their work, each new node is added to maximize the correlation between its output and the residual error signal. Several authors have explored the idea of approximating error signals propagated by BP locally at each layer or each node (Bengio, 2014; Carreira-Perpinan & Wang, 2014; Lee, Zhang, Fischer, & Bengio, 2015; Balduzzi, Vanchinathan, & Buhmann, 2015; Jaderberg et al., 2016). Erdogmus, Fontenla-Romero, Principe, Alonso-Betanzos, and Castillo (2005) proposed an initialization scheme for BP that can also be interpreted as propagating the targets at the output to the hidden layers. Zhou and Feng (2017) proposed a BP-free deep architecture based on decision trees. Raghu, Gilmer, Yosinski, and Sohl-Dickstein (2017) attempted to quantify the quality of hidden representations toward learning more interpretable deep architectures, sharing a motivation similar to ours.

6 Experiments

We now demonstrate the competence of the kernelized models and the effectiveness of the proposed layer-wise framework via experiments. We will be implementing the sample training algorithm described in section 4.3. This section is divided into two parts. The first is dedicated to comparing KNs with traditional kernel machines. In the second part, we compare KNs with other popular connectionist models. These empirical results serve as proofs of concept for the proposed architectures, as well as the greedy training framework.

6.1 Comparing KNs with Classical Kernel Machines. We now compare a single-hidden-layer kMLP using simple, generic kernels with the classical SVM and SVMs enhanced by MKL algorithms that used significantly more kernels to demonstrate the competence of kMLP and, in particular, its ability to perform well without excessive kernel parameterization. The standard SVM and seven other SVMs enhanced by popular MKL methods were compared (Zhuang et al., 2011), including the classical convex MKL (Lanckriet, Cristianini, Bartlett, Ghaoui, & Jordan, 2004) with
kernels learned using the extended-level method proposed in Xu, Jin, King, and Lyu (2009) (MKL\footnote{LEVEL}); MKL with L^p norm regularization over kernel weights (Kloft, Brefeld, Sonnenburg, & Zien, 2011) (L^pMKL), for which the cutting plane algorithm with second-order Taylor approximation of L^p was adopted; generalized MKL (GMKL) in Varma & Babu (2009), for which the target kernel class was the Hadamard product of single gaussian kernel defined on each dimension; infinite kernel learning (IKL) in Gehler and Nowozin (2008) with MKL\footnote{LEVEL} as the embedded optimizer for kernel weights; two-layer multilayer kernel machine (MKM) in Cho and Saul (2009); and two-layer MKL (2LMKL) and infinite two-Layer MKL (2LMKL\footnote{INF}) in Zhuang, Tsang, and Hoi (2011).

Eleven binary classification data sets that have been widely used in MKL literature were split evenly for training and test and were all normalized to zero mean and unit variance prior to training. Twenty runs with identical settings but random weight initializations were repeated for each model. For each repetition, a new training-test split was selected randomly.

For kMLP, all results were achieved using a greedily trained, one-hidden-layer model with the number of kernel machines ranging from 3 to 10 on the first layer for different data sets. The second layer was a single kernel machine. All kernel machines within one layer used the same gaussian kernel ($k(\mathbf{x}, \mathbf{y}) = e^{-\frac{\| \mathbf{x} - \mathbf{y} \|^2}{\sigma^2}}$), and the two kernels on the two layers differed only in kernel width σ. All hyperparameters were chosen via five-fold cross-validation. As for the other models compared, for each data set, SVM used a gaussian kernel. For the MKL algorithms, the base kernels contained gaussian kernels with 10 different widths on all features and on each single feature and polynomial kernels of degree 1 to 3 on all features and on each single feature. For 2LMKL\footnote{INF}, one gaussian kernel was added to the base kernels at each iteration. Each base kernel matrix was normalized to unit trace. For L^pMKL, p was selected from $\{2, 3, 4\}$. For MKM, the degree parameter was chosen from $\{0, 1, 2\}$. All hyperparameters were selected by five-fold cross-validation.

From Table 1, kMLP compares favorably with other models, which validates our claim that it learns its own kernels nonparametrically, hence can work well even without excessive kernel parameterization. Performance difference among models can be small for some data sets, which is expected since these data sets are all rather small and not too challenging. Nevertheless, it is worth noting that only two gaussian kernels were used for kMLP, whereas all other models except for SVM used significantly more kernels.

\subsection*{6.2 Comparing KNs with NNs}
In this section, we provide empirical results on comparing KN with NN. We first demonstrate the competence of kernelized NNs and the effectiveness of the layer-wise learning method using kMLPs. We use the proposed layer-wise algorithm derived from our greedy learning framework and Adam (Kingma & Ba, 2014) as the
Table 1: Average Test Error (%) and Standard Deviation (%) from 20 Runs.

Size/Dimension	SVM	\(\text{MKL}^{\text{LEVEL}}\)	\(L^p\text{MKL}\)	GMKL	IKL	MKM	2LMKL	2LMKL^{INF}	kMLP-1
Breast 683/10	3.2 ± 1.0	3.5 ± 0.8	3.8 ± 0.7	3.0 ± 1.0	3.5 ± 0.7	2.9 ± 1.0	3.0 ± 1.0	3.1 ± 0.7	2.4 ± 0.7
Diabetes 768/8	23.3 ± 1.8	24.2 ± 2.5	27.4 ± 2.5	33.6 ± 2.5	24.0 ± 3.0	24.2 ± 2.5	23.4 ± 1.6	23.4 ± 1.9	23.2 ± 1.9
Australian 690/14	15.4 ± 1.4	15.0 ± 1.5	15.5 ± 1.6	20.0 ± 2.3	14.6 ± 1.2	14.7 ± 0.9	14.5 ± 1.6	14.3 ± 1.6	13.8 ± 1.7
Iono 351/33	7.2 ± 2.0	8.3 ± 1.9	7.4 ± 1.4	7.3 ± 1.8	6.3 ± 1.0	8.3 ± 2.7	7.7 ± 1.5	5.6 ± 0.9	5.0 ± 1.4
Ringnom 400/20	1.5 ± 0.7	1.9 ± 0.8	3.3 ± 1.0	2.5 ± 1.0	1.5 ± 0.7	2.3 ± 1.0	2.1 ± 0.8	1.5 ± 0.8	1.5 ± 0.6
Heart 270/13	17.9 ± 3.0	17.0 ± 2.9	23.3 ± 3.8	23.0 ± 3.6	16.7 ± 2.1	17.6 ± 2.5	16.9 ± 2.5	16.4 ± 2.1	15.5 ± 2.7
Thyroid 140/5	6.1 ± 2.9	7.1 ± 2.9	6.9 ± 2.2	5.4 ± 2.1	5.2 ± 2.0	7.4 ± 3.0	6.6 ± 3.1	5.2 ± 2.2	3.8 ± 2.1
Liver 345/6	29.5 ± 4.1	37.7 ± 4.5	30.6 ± 2.9	30.6 ± 2.6	40.0 ± 2.9	29.9 ± 3.6	34.0 ± 3.4	37.3 ± 3.1	28.9 ± 2.9
German 1000/24	24.8 ± 1.9	28.6 ± 2.8	25.7 ± 1.4	29.6 ± 1.6	30.0 ± 1.5	24.3 ± 2.3	25.2 ± 1.8	25.8 ± 2.0	24.0 ± 1.8
Waveform 400/21	11.0 ± 1.8	11.8 ± 1.6	11.1 ± 2.0	11.8 ± 1.8	10.3 ± 2.3	10.0 ± 1.6	11.3 ± 1.9	9.6 ± 1.6	10.3 ± 1.9
Banana 400/2	10.3 ± 1.5	9.8 ± 2.0	12.5 ± 2.6	16.6 ± 2.7	9.8 ± 1.8	19.5 ± 5.3	13.2 ± 2.1	9.8 ± 1.6	11.5 ± 1.9
Rank -	4.2	6.3	7.0	6.9	4.3	5.4	5.0	2.8	1.6

Notes: Results with overlapping 95% confidence intervals (not shown) are considered equally good. Best results are marked in bold. The average ranks (calculated using average test error) are provided in the bottom row. Due to the limited sizes of the data sets, we pooled the 20 random samples when computing confidence intervals.
underlying optimization algorithm. We show that this algorithm, albeit only having been certified under certain families of objectives, works well with most popular objective functions in practice. We then compare kMLPs trained with BP and the layer-wise algorithm to show the effectiveness of the latter. Finally, to showcase the competence of the greedily trained kernelized models, we compare kMLPs learned layer-wise with other popular deep architectures including MLPs, deep belief networks (DBNs; Hinton & Salakhutdinov, 2006), and stacked autoencoders (SAEs; Vincent, Larochelle, Lajoie, Bengio, & Manzagol, 2010), with the last two trained using a combination of unsupervised greedy pretraining and standard BP (Hinton et al., 2006; Bengio et al., 2007). We also visualize the learning dynamics of greedy kMLPs and show that it is intuitive and simple to interpret. In the second part of the experiments, we partially kernelize the classic LeNet-5 (LeCun, Bottou, Bengio, & Haffner, 1998) and compare it with the original to validate our claim that the proposed kernelization and training algorithm is flexible in the sense that it works well with any given feedforward NN architecture and one can freely decide the degree of kernelization. The hidden representations learned from the two models are visualized. We show that the hidden representations learned by the kernelized model are much more discriminative than that from the original.

6.2.1 Part 1: Kernelizing MLPs. In terms of the data sets used, rectangles, rectangles-image and convex are binary classification data sets, and mnist (50k test) and mnist (50k test) rotated are variants of MNIST. fashion-mnist is the Fashion-MNIST data set (Xiao, Rasul, & Vollgraf, 2017). These data sets all contain 28 × 28 grayscale images. In rectangles, and rectangles-image, the model needs to learn if the height of the rectangle is longer than the width, and in convex, if the white region is convex. Examples from these data sets are shown in Figure 2. In actual training, no preprocessing method was used. As for the specific kernels used, we used gaussian kernels \(k(x, y) = e^{-\|x-y\|^2/\sigma^2} \) for the kernelized models for all our experiments. To ensure that the comparisons with other models are fair, we used the regularized (two-norm regularization on weights) cross-entropy loss as the objective function for the output layer of all models. More details are in appendix A.
We first test the effect of using different hidden loss functions with a two-hidden-layer kMLP. The three-hidden-layer loss functions tested include the proposed SRS-1 loss (i.e., the SRS loss with $p = 1$), the SRS-2 loss, and the empirical alignment (Cristianini, Shawe-Taylor, Elisseeff, & Kandola, 2002) between G_i and G^*, where i is the hidden layer being optimized. G_i is the kernel matrix of k_{i+1} computed on $F_i(S_X)$ and G^* is the kernel matrix induced by g on S_X. The regularization term was always chosen to be the sum of the L^2 norms of the weights. On convex, this kMLP achieved a test error rate of 19.36%, 18.53%, and 21.70% using alignment, SRS-2, and SRS-1 as the hidden losses, respectively. As a baseline, our best two-hidden-layer MLP achieved an error rate of 23.28% on this data set. For the rest of our experiments, we use the best result from these three hidden losses for our greedily trained models.

We now test the layer-wise learning algorithm against BP using the standard MNIST data set (LeCun, Cortes, & Burges, 2010). Results from several MLPs were added as benchmarks. These models were trained with Adam or RMSProp (Tieleman & Hinton, 2012), and extra training techniques such as dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) and batch normalization (BN; Ioffe & Szegedy, 2015) were applied to boost performance. kMLPs accelerated using the proposed method (kMLPFAST) were also tested, for which we randomly discarded some centers of each noninput layer before its training. Two popular acceleration methods for kernel machines were compared, including using a parametric representation (kMLPPARAM), that is, for each node in a kMLP, $f(x) = \sum_{n=1}^{m} \alpha_n k(w_n, x)$, α_n, w_n learnable and m a hyperparameter, and using random Fourier features (kMLPRFF; Rahimi & Recht, 2008).

Results in Table 2 validate the effectiveness of our layer-wise algorithm. For both the single-hidden-layer and the two-hidden-layer kMLPs, the layer-wise algorithm consistently outperformed BP. The layer-wise method is also much faster than BP. In fact, it is practically impossible to use BP to train kMLP with more than two hidden layers without any acceleration method due to the computational complexity involved. Moreover, it is worth noting that the proposed acceleration trick is clearly very effective despite its simplicity and even produced models outperforming the original ones, which may be due to its regularization effect. This shows that kMLP, together with the greedy learning scheme, can be of practical interest even when dealing with the massive data sets in today’s machine learning.

From Table 3, we see that the performance of kMLP is on par with some of the most popular and most mature deep architectures. In particular, the greedily trained kMLPs compared favorably with their direct NN equivalents, the MLPs, even though neither batch normalization nor dropout was used for the former.

In Figure 3, we visualize the learning dynamics within a two-hidden-layer kMLP learned layer-wise. Since by construction of the gaussian kernel, the image vectors are all of unit norm in the RKHS, we can visualize the
Table 2: Testing the Proposed Layer-Wise Algorithm and Acceleration Method on MNIST.

Model	Layer-Wise Algorithm	Layer-Wise Acceleration Method	Test Error (%)	95% Confidence Interval (%)
MLP-1	RMSProp+BN		2.05 ± 0.28	1.77 ± 0.26
MLP-1	RMSProp+dropout		1.58 ± 0.24	1.67 ± 0.25
MLP-2	RMSProp+BN		1.58 ± 0.24	3.44 ± 0.36
MLP-2	RMSProp+dropout		1.58 ± 0.24	1.77 ± 0.26
kMLP-1	(BP)		3.44 ± 0.36	2.01 ± 0.28
kMLP-1	(GREEDY)		1.77 ± 0.26	2.01 ± 0.28

Notes: The numbers following the model names indicate the number of hidden layers used. For kMLP^FAST, we also include in parentheses the ratio between the number of training examples randomly chosen as centers for the kernel machines on the layer and the size of the training set. Apart from kMLP-2 (BP), the BP kMLP results are from Zhang et al. (2017). For this and all following tables in this letter, the entries correspond to test errors (%) and 95% confidence intervals (%). Results with overlapping confidence intervals are considered equally good. Best results are marked in bold.
Table 3: Comparing kMLPs (Trained Fully Layer-Wise) with MLPs and Other Popular Deep Architectures Trained with BP and BP Enhanced by Unsupervised Greedy Pretraining.

Architecture	Rectangles	Rectangles-Image	Convex	Mnist (50k Test) Rotated	Fashion-Mnist
MLP-1 (SGD)	7.16 ± 0.23	33.20 ± 0.41	32.25 ± 0.41	4.69 ± 0.19	18.11 ± 0.34
MLP-1 (Adam)	5.37 ± 0.20	28.82 ± 0.40	30.07 ± 0.40	4.71 ± 0.19	18.64 ± 0.34
MLP-1 (RMSProp+BN)	5.37 ± 0.20	23.81 ± 0.37	28.60 ± 0.40	4.57 ± 0.18	18.75 ± 0.34
MLP-1 (RMSProp+dropout)	5.50 ± 0.20	23.67 ± 0.37	36.28 ± 0.42	4.31 ± 0.18	14.96 ± 0.31
MLP-2 (SGD)	5.05 ± 0.19	22.77 ± 0.37	25.93 ± 0.38	5.17 ± 0.19	18.08 ± 0.34
MLP-2 (Adam)	4.36 ± 0.18	25.69 ± 0.38	25.68 ± 0.38	4.42 ± 0.18	17.22 ± 0.33
MLP-2 (RMSProp+BN)	4.22 ± 0.18	23.12 ± 0.37	23.28 ± 0.37	3.57 ± 0.16	13.73 ± 0.30
MLP-2 (RMSProp+dropout)	4.75 ± 0.19	23.24 ± 0.37	34.73 ± 0.42	3.95 ± 0.17	13.57 ± 0.30
DBN-1	4.71 ± 0.19	23.69 ± 0.37	19.92 ± 0.35	3.94 ± 0.17	14.69 ± 0.31
DBN-3	2.60 ± 0.14	22.50 ± 0.37	18.63 ± 0.34	3.11 ± 0.15	10.30 ± 0.27
SAE-3	2.41 ± 0.13	24.05 ± 0.37	18.41 ± 0.34	3.46 ± 0.16	10.30 ± 0.27
kMLP-1	2.24 ± 0.13	23.29 ± 0.37	19.15 ± 0.34	3.10 ± 0.15	11.09 ± 0.28
kMLP-1 FAST	2.36 ± 0.13 (0.05)	23.86 ± 0.37 (0.01)	20.34 ± 0.35 (0.17)	2.95 ± 0.15 (0.1)	12.61 ± 0.29 (0.1)
kMLP-2	2.24 ± 0.13	23.30 ± 0.37	18.53 ± 0.34	3.16 ± 0.15	10.53 ± 0.27
kMLP-2 FAST	2.21 ± 0.13 (0.30.3)	23.24 ± 0.37 (0.01/0.3)	19.32 ± 0.35 (0.005/0.03)	3.18 ± 0.15 (0.3/0.3)	10.94 ± 0.27 (0.1/0.7)

Notes: The MLP-1 (SGD), DBN, and SAE results are from Larochelle, Erhan, Courville, Bergstra, and Bengio (2007). Note that in order to be consistent with Larochelle et al. (2007), the MNIST results here were obtained using a train/test split (10k/50k) more challenging than what is commonly used in the literature.
distance between two vectors by visualizing the value of their inner product. In Figure 3d, we can see that while the image vectors are distributed randomly prior to training (see Figure 3c), there is a clear pattern in their distribution after training that reflects the dynamics of training: the layer-wise algorithm squeezes examples from the same class closer together while pushing examples from different class farther apart. And it is easy to see that such a representation would be simple to classify. Figures 3b and 3d suggest that this greedy, layer-wise algorithm still learns “deep” representations: the higher-level representations are more distinctive for different digits than the lower-level ones. Moreover, since learning becomes increasingly simple for the upper layers as the representations become more and more well behaved, these layers are usually easy to set up and converge very fast during training.

6.2.2 Part 2: Kernelizing the Classic LeNet-5. We kernelize the output layer of the classic LeNet-5 (LeCun et al., 1998) architecture and train it layer-wise with all the layers but the output layer as one layer and the output layer as a second layer. The nonoutput layers are trained with BP. This is to demonstrate that our kernelization method and the layer-wise algorithm are flexible in the sense that the former can be applied to only part of the network and that the latter works well with partly kernelized models. Since we are interested in evaluating the layer-wise algorithm on partly kernelized NNs instead of pursuing state-of-the-art performance, we use the original LeNet-5 without increasing the size of any layer or the number of layers. ReLU (Glorot, Bordes, & Bengio, 2011) and max pooling were used as activations and pooling layers, respectively. Both models were optimized
Table 4: Kernelizing the Output Layer of the Classic LeNet-5.

	MNIST	Fashion-MNIST	CIFAR-10
LeNet-5	0.76 ± 0.17	9.34 ± 0.57	36.42 ± 0.94
kLeNet-5	0.75 ± 0.17	8.67 ± 0.55	35.87 ± 0.94

Note: The kernelized model (kLeNet-5) was trained layer-wise.

Figure 4: Visualizing the data representation of the MNIST test set in the last hidden layer of kLeNet-5 (left) and LeNet-5 (right). Each color corresponds to a digit. Representations learned by kLeNet-5 are more discriminative for different digits.

using Adam. The two networks were trained and tested on the unpreprocessed MNIST, Fashion-MNIST, and CIFAR-10 (Krizhevsky & Hinton, 2009) data sets.

In Table 4, the results suggest that kernelization and the layer-wise algorithm resulted in marginal accuracy increase in all data sets. We emphasize that the layer-wise framework does not help the network learn intrinsically superior hypotheses compared to the traditional end-to-end methods. In that regard, it offers the same optimality guarantee as that provided by an end-to-end method such as BP. We argue that the layer-wise framework is promising because it is more lightweight and returns more information on the training of the individual layers to the user, making possible new and more flexible model selection and hyperparameter-tuning paradigms. This could serve as a tentative step toward increasing the interpretability of deep architectures.

Figure 4 provides more insights into the difference of kLeNet-5 and LeNet-5, in which we plotted the activations of the last hidden layer of the two models after PCA dimension reduction using the MNIST test set. In
particularly, we see that the representations in the last hidden layer of kLeNet-5 are much more discriminative for different digits than those in the corresponding layer of LeNet-5. Note that since the two models differed only in their output layers, this observation suggests that the layer-wise training algorithm turns deep architectures into more efficient representation learners, which may prove useful for computer vision tasks that build on convolutional features (Gatys, Ecker, & Bethge, 2015; Gardner et al., 2015).

7 Conclusion

In this letter, we first proposed a family of connectionist models based on the kernel method and then presented a framework to train multilayer feedforward networks in a greedy, layer-by-layer fashion. Several instantiations of the framework were provided and their optimality proven. Finally, we described a certified layer-wise training algorithm for deep feedforward architectures for classification based on the earlier instantiations. Empirical results were provided to supplement our theory, in which our proposed models and the layer-wise training algorithm compared favorably with classical kernel machines, as well as other popular connectionist models.

Appendix A: Experimental Setup

The dataset rectangles has 1000 training images, 200 validation images, and 50,000 test images. The model is required to tell if a rectangle contained in an image has a larger width or length. The location of the rectangle is random. The border of the rectangle has a pixel value 255, and pixels in the rest of an image all have value 0. rectangles-image is the same as rectangles except that the inside and outside of the rectangle are replaced by an image patch, respectively. rectangles-image has 10,000 training images, 2000 validation images, and 50,000 test images. convex consists of images in which there are white regions (pixel value 255) on a black (pixel value 0) background. The model needs to tell if the region is convex. This dataset has 6000 training images, 2000 validation images, and 50,000 test images. mnist (50k test) contains 10,000 training images, 2000 validation images, and 50,000 test images taken from the standard MNIST. mnist (50k test) rotated is the same as the fourth except that the digits have been randomly rotated. For detailed descriptions of the data sets, see (Larochelle et al., 2007).

The experimental setup for the greedily trained kMLPs is as follows. kMLP-1 corresponds to a one-hidden-layer kMLP with the first layer consisting of 15 to 150 kernel machines using the same gaussian kernel and

3The last 200 of the training set. Same for other data sets as well.
the second layer being a single or 10 (depending on the number of classes) kernel machines using another gaussian kernel. Hyperparameters were selected using the validation set. The validation set was then used in final training only for early stopping based on validation error. For the standard MNIST and Fashion-MNIST, the last 5000 training examples were held out as a validation set. kMLP-1FAST is the same kMLP for which we accelerated by randomly choosing a subset of the training set as centers for the second layer after the first had been trained. The kMLP-2 and kMLP-2FAST are the two-hidden-layer kMLPs, the second hidden layers of which contained 15 to 150 kernel machines. Settings of all the kMLPs trained with BP are in Zhang et al. (2017). Note that because it is extremely time- and memory-consuming to train kMLP-2 with BP without any acceleration method, to make training possible, we could only randomly use 10,000 examples from the entire training set of 55,000 examples as centers for the kMLP-2 (BP) from Table 2.

In Table 3, we compared kMLP with a one- and two-hidden-layer MLP (MLP-1/MLP-2), a one- and three-hidden-layer DBN (DBN-1/DBN-3), and a three-hidden-layer SAE (SAE-3). For these models, hyperparameters were also selected using the validation set. For the MLPs, the sizes of the hidden layers were chosen from the interval [25, 700]. All hyperparameters involved in Adam, RMSProp, and BN were set to the suggested default values in the corresponding papers. If used, dropout or BN was added to the hidden layers, and the best probability for dropout was found using the validation set. For DBN-3 and SAE-3, the sizes of the three hidden layers varied in intervals [500, 3000], [500, 4000] and [1000, 6000], respectively. DBN-1 used a much larger hidden layer than DBN-3 to obtain comparable performance. A simple calculation shows that the total number of parameters in the kMLPs were fewer than those in the corresponding DBNs and SAEs by orders of magnitude in all experiments. As in the training for the kMLPs, the validation set was also reserved for early stopping in final training. The DBNs and SAEs had been pretrained without supervision before the supervised training phase, following the algorithms described in Hinton et al. (2006); and Bengio et al. (2007). More detailed settings for these models were reported in Larochelle et al. (2007).

Appendix B: Proofs

Lemma 2. Suppose $f_1 \in F_1$, \ldots, $f_d \in F_d$ are elements from sets of real-valued functions defined on \mathbb{R}^p for some $p \geq 1$, and $F \subset F_1 \times \cdots \times F_d$ is a subset of their direct sum. For $f \in F$, define $\omega \circ f : \mathbb{R}^p \times \cdots \times \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}$ as $(x_1, \ldots, x_m, y) \mapsto \omega(f_1(x_1), \ldots, f_d(x_1), f_1(x_2), \ldots, f_d(x_m), y)$, where $x_1, \ldots, x_m \in \mathbb{R}^p$, $y \in \mathbb{R}^q$, and $\omega : \mathbb{R}^{md} \times \mathbb{R}^q \to \mathbb{R}$ is bounded and L-Lipschitz for each $y \in \mathbb{R}^q$ with respect to the Euclidean metric on \mathbb{R}^{md}. Let $\omega \circ F = \{\omega \circ f : f \in F\}$.
Define
\[G^j_N(\mathbb{F}_i) = \mathbb{E}_{Z_n, X_n} \left[\sup_{f \in \mathbb{F}_i} \frac{1}{N} \sum_{n=1}^{N} Z_n f(X^j_n) \right], \quad i = 1, \ldots, d, \ j = 1, \ldots, m, \]
where the \(X^j_n \) are i.i.d. random vectors defined on \(\mathbb{R}^p \). We have
\[G_N(\omega \circ \mathbb{F}) \leq 2L \sum_{i=1}^{d} \sum_{j=1}^{m} G^j_N(\mathbb{F}_i). \] (B.1)

In particular, if for all \(j \), the \(X^j_n \) on which the gaussian complexities of the \(\mathbb{F}_i \) are evaluated are sets of i.i.d. random vectors with the same distribution, we have
\[G^1_N(\mathbb{F}_i) = \cdots = G^m_N(\mathbb{F}_i) =: G_N(\mathbb{F}_i) \text{ for all } i \text{ and equation B.1 becomes} \]
\[G_N(\omega \circ \mathbb{F}) \leq 2mL \sum_{i=1}^{d} G_N(\mathbb{F}_i). \]

This lemma is a generalization of a result on the gaussian complexity of Lipschitz functions on \(\mathbb{R}^k \) from Bartlett and Mendelson (2002). The technique used in the following proof is also adapted from there.

Proof. For brevity, we prove the case where \(m = 2 \). The general case uses the same technique except that the notations would be more cumbersome.

Let \(\mathbb{F} \) be indexed by \(\mathcal{A} \). Without loss of generality, assume \(|\mathcal{A}| < \infty \). Define
\[T_\alpha = \sum_{n=1}^{N} \omega (f_{\alpha, 1}(X_n), \ldots, f_{\alpha, d}(X_n), Y_n) Z_n, \]
\[V_\alpha = L \sum_{n=1}^{N} \sum_{i=1}^{d} (f_{\alpha, i}(X_n) Z_{n,i} + f_{\alpha, i}(X'_n) Z_{N+n,i}), \]
where \(\alpha \in \mathcal{A}, \{ (X_n, X'_n) : n = 1, \ldots, N \} \) is a random sample of size \(N \) on \(\mathbb{R}^p \times \mathbb{R}^p \) and \(Z_1, \ldots, Z_N, Z_{1,1}, \ldots, Z_{2N,d} \) are i.i.d. standard normal random variables.

Let arbitrary \(\alpha, \beta \in \mathcal{A} \) be given, and define \(\|T_\alpha - T_\beta\|_2^2 = \mathbb{E} (T_\alpha - T_\beta)^2 \), where the expectation is taken over the \(Z_n \). Define \(\|V_\alpha - V_\beta\|_2^2 \) similarly, and we have
\[\|T_\alpha - T_\beta\|_2^2 = \sum_{n=1}^{N} (\omega (f_{\alpha, 1}(X_n), \ldots, f_{\alpha, d}(X'_n), Y_n) \]
\[- \omega \left(f_{\beta, 1} (X_n), \ldots, f_{\beta, d} (X'_n), Y_n \right) \right)^2 \]
\[\leq L^2 \sum_{n=1}^{N} \sum_{i=1}^{d} \left(\left(f_{\alpha, i} (X_n) - f_{\beta, i} (X_n) \right)^2 + \left(f_{\alpha, i} (X'_n) - f_{\beta, i} (X'_n) \right)^2 \right) \]
\[= \| V_\alpha - V_\beta \|^2_2. \]

By Slepian’s lemma (Pisier, 1999),
\[N\hat{G}_N (\omega \circ F) = E\bar{Z}_n \sup_{\alpha \in A} T_\alpha \]
\[\leq 2E\bar{Z}_n, \bar{Z}_{N+n, i} \sup_{\alpha \in A} V_\alpha \]
\[\leq N2L \sum_{i=1}^{d} \left(\hat{G}_N (F_i) + \hat{G}'_N (F'_i) \right). \]

Taking the expectation of the X_n, X'_n, Y_n on both sides proves the result. □

Lemma 3. Given kernel $k : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$, let
\[F_2 = \left\{ f : \mathbb{R}^d \rightarrow \mathbb{R}, \ f (x) = \sum_{\nu=1}^{m} \alpha_\nu k (x_\nu, x) + b \mid \alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{R}^m, \| \alpha \|_1 \leq A, \ b \in \mathbb{R} \right\}, \]

where the x_ν are an m-subset of S_X. Define
\[F_1 = \left\{ (f_1, \ldots, f_d) : x \mapsto (f_1 (x), \ldots, f_d (x)) \mid x \in \mathbb{R}^d, \ f_j \in \Omega \right\}, \]
where Ω is a given hypothesis class of real-valued functions on \mathbb{R}^d.

Also, define
\[F_2 \circ F_1 = \left\{ h : x \mapsto \sum_{\nu=1}^{m} \alpha_\nu k (F (x_\nu), F (x)) + b \mid x \in \mathbb{R}^d, \| \alpha \|_1 \leq A, \ b \in \mathbb{R}, \ F \in F_1 \right\}. \]

We have
\[G_N (F_2 \circ F_1) \leq 2ALd_1 G_N (\Omega). \]
Proof. First, note that the bias \(b \) does not change \(\hat{G}_N (F_2 \circ F_1) \).

\[
\hat{G}_N (F_2 \circ F_1) = \mathbb{E} \sup_{\alpha, F} \frac{1}{N} \sum_{n=1}^{N} \sum_{v=1}^{m} \alpha_v k (F(x_v), F(x_n)) Z_n
\]

\[
\leq \mathbb{E} \sup_{\alpha, F, y_v \in \mathbb{R}^d} \frac{1}{N} \sum_{n=1}^{N} \sum_{v=1}^{m} \alpha_v k (y_v, F(x_n)) Z_n.
\]

Suppose the supremum over \(y_v \) is attained at \(Y_v \), which are random vectors because they are functions of the \(Z_n \).

Write

\[
g_v \circ F(x) = k (F(x), Y_v),
\]

\[
\omega \circ F(x) = \sum_{v=1}^{m} \alpha_v g_v \circ F(x) = \sum_{v=1}^{m} \alpha_v k (F(x), Y_v).
\]

Then we have

\[
\hat{G}_N (F_2 \circ F_1) \leq \mathbb{E} \sup_{\alpha, F} \frac{1}{N} \sum_{n=1}^{N} \sum_{v=1}^{m} \alpha_v k (Y_v, F(x_n)) Z_n
\]

\[
= \mathbb{E} \sup_{\alpha, F} \frac{1}{N} \sum_{n=1}^{N} \omega \circ F(x) Z_n
\]

\[
= \hat{G}_N (\omega \circ F_1).
\]

We now prove a Lipschitz property for \(\omega \). For any \(\xi_1, \xi_2 \in \mathbb{R}^d \), we have

\[
| \omega (\xi_1) - \omega (\xi_2) | = \left| \sum_{v=1}^{m} \alpha_v (g_v (\xi_1) - g_v (\xi_2)) \right|
\]

\[
\leq \sum_{v=1}^{m} |\alpha_v| |g_v (\xi_1) - g_v (\xi_2)|
\]

\[
\leq A \max_v |g_v (\xi_1) - g_v (\xi_2)|
\]

\[
= A \max_v |k (\xi_1, Y_v) - k (\xi_2, Y_v)|
\]

\[
\leq A \max_v L_{\gamma_v} \| \xi_1 - \xi_2 \|_2
\]

\[
\leq AL \| \xi_1 - \xi_2 \|_2.
\]
Therefore, \(\omega \circ F(x) \), as a function of \(F(x) \), is Lipschitz with regard to the Euclidean metric on \(\mathbb{R}^d \) with Lipschitz constant at most \(AL \). It is easy to check that \(\omega \) is bounded. Now the desired result follows from lemma 2. \(\square \)

Proof of Proposition 1. The result follows from repeatedly applying lemma 3. \(\square \)

Proof of Lemma 1. Let \(G_1 = \arg\min_{F_1 \in F_1'} \min_{F_2 \in F_2} \tilde{R}(F_2 \circ F_1), \quad G_2 = \arg\min_{F_2 \in F_2} \tilde{R}(F_2 \circ G_1). \)

Suppose \(F^* \neq G_1 \):

\[
\tilde{R}(G_2 \circ G_1) = \min_{F_2 \in F_2} \tilde{R}(F_2 \circ G_1) \quad \text{(definition of } G_2) \\
< \min_{F_2 \in F_2} \tilde{R}(F_2 \circ F^*_1) \quad \text{(definition of } G_1 \text{ and } F^*_1 \neq G_1) \\
= \tilde{R}(F^*_2 \circ F^*_1). \quad \text{(definition of } F^*_2)
\]

However, this contradicts the optimality of \(F^*_1 \circ F^*_1 \).

Proof of Theorem 1. Let \(F_1' \) be the class of all \(F_1' \) such that for any \(f_2 \in \arg\min_{f_2 \in F_2} \tilde{R}(f_2 \circ F_1) \), there exist \((x_+, y_+), (x_-, y_-) \in S \) such that \(\ell(f_2 \circ F_1, (x_n, y_n)) = 0, \ n = +, - \).

Observe that \(F_1' \in F_1' \) since any \(f_2 \in \arg\min_{f_2 \in F_2} \tilde{R}(f_2 \circ F_1) \) is easily shown to be \(f'_2 \):

Now suppose \(F_1' \) satisfies equation 4.1. If we show \(F_1' \in F_1' \) and that for any \(F_1' \in F_1' \), we have

\[
\min_{f_2 \in F_2} \tilde{R}(f_2 \circ F_1') \geq \min_{f_2 \in F_2} \tilde{R}(f_2 \circ F_1).
\]

Then by lemma 1, \(F_1' = F_1' \).

We now start the formal proof. Note that we drop the layer indices 1 and 2 for brevity, which will cause no confusion since the output layer will be denoted by \(f \) and the input layer \(F \). We assume that \(F_\circ \) satisfies equation 4.1. Let \(f' \in \arg\min_{f \in F_2} \tilde{R}(f \circ F_\circ) \). Let \(F_1' \in F_1' \) be given and also let \(f' \in \arg\min_{f \in F_2} \tilde{R}(f \circ F_\circ) \).

Claim 1.

\[
\| \phi(x) \|_H = \sqrt{c}, \ \forall x \in \mathbb{R}^d.
\]

Proof of Claim 1.

\[
c = k(x, x) = \langle \phi(x), \phi(x) \rangle_H = \| \phi(x) \|^2_H,
\]

which implies \(\| \phi(x) \|_H = \sqrt{c} \). This completes the proof of claim 1. \(\square \)
Claim 2.

\[\phi(F(x)) = \phi(F(x')), \quad \forall x, x' \in S_X \text{ with } y = y'. \]

\[\phi(F(x_+)) = \phi(F(x_-)), \quad \forall x_+, x_- \in S_X. \]

Proof of Claim 2. By Cauchy-Schwarz inequality and claim 1,

\[0 < c = k(F(x), F(x')) = \langle \phi(F(x)), \phi(F(x')) \rangle_H \leq \| \phi(F(x)) \|_H \| \phi(F(x')) \|_H = c. \]

So the equality holds in Cauchy-Schwarz and we have \(\phi(F(x)) = p\phi(F(x')) \) for some \(p > 0 \). Again by claim 1, \(p = 1 \).

The second part of this claim follows from \(k(F(x_+), F(x_-)) = a \neq c. \)

This completes the proof of claim 2. \(\square \)

Claim 3. For any \(x_+, x_- \in S_X \) and any \(F : \mathbb{R}^{d_0} \to \mathbb{R}^{d_1} \),

\[\sqrt{2(c - a)} = \| \phi(F(x_+)) - \phi(F(x_-)) \|_H \geq \| \phi(F(x_+)) - \phi(F(x_-)) \|_H. \]

Proof of Claim 3.

\[\| \phi(F(x_+)) - \phi(F(x_-)) \|_H^2 = \| \phi(F(x_+)) \|_H^2 + \| \phi(F(x_-)) \|_H^2 - 2\langle \phi(F(x_+)), \phi(F(x_-)) \rangle_H \]

\[= c + c - 2k(F(x_+), F(x_-)) \]

\[= 2c - 2a \]

\[\geq 2c - 2k(F(x_+), F(x_-)) \]

\[= \| \phi(F(x_+)) \|_H^2 + \| \phi(F(x_-)) \|_H^2 - 2\langle \phi(F(x_+)), \phi(F(x_-)) \rangle_H \]

\[= \| \phi(F(x_+)) - \phi(F(x_-)) \|_H^2. \]

This completes the proof of claim 3. \(\square \)

Claim 4.

\[\tilde{R}(f^o \circ F) = \tau \| w_f^\tau \|_H = \frac{2\tau}{\| \phi(F(x_+)) - \phi(F(x_-)) \|_H}, \quad \forall x_+, x_- \in S_X. \]

Proof of Claim 4.

\[\tilde{R}(f^o \circ F) \]

\[= \frac{1}{N} \sum_{n=1}^{N} \max(0, 1 - y_n f^o(F^o(x_n))) + \tau \| w_f \|_H \]
\[= \kappa \max (0, 1 - y_+ f^0 (F^0 (x_+))) \\
+ (1 - \kappa) \max (0, 1 - y_- f^0 (F^0 (x_-)))] + \tau \| w_f \|_H, \]

for any pair of \(x_+, x_- \in S_x \). Let

\[
\zeta_{f^0} = y_+ f^0 (F^0 (x_+)) + y_- f^0 (F^0 (x_-)) \\
= \| w_f \|_H \| \phi (F^0 (x_+)) - \phi (F^0 (x_-)) \|_H \cos \theta_{f^0}.
\]

We have

\[
R (f^0 \circ F^0) = \kappa \max (0, 1 - t_{f^0}) + (1 - \kappa) \max (0, 1 - (\zeta_{f^0} - t_{f^0})) \\
+ \tau \| w_f \|_H,
\]

where \(t_{f^0} = f^0 (F^0 (x_+)) \).

Note that by definition of \(f^0 \),

\[
R (f^0 \circ F^0) = \min_f R (f \circ F^0) \\
= \min_{\zeta_{f^0}, t_{f^0}, \| w_f \|_H} \kappa \max (0, 1 - t_{f^0}) \\
+ (1 - \kappa) \max (0, 1 - (\zeta_{f^0} - t_{f^0})) + \tau \| w_f \|_H.
\]

There are four possible cases that the terms inside the minimum operator can be simplified to:

1. If \(1 \geq t_{f^0} \geq \zeta_{f^0} - 1, \zeta_{f^0} \leq 2 \), to \(1 - (1 - \kappa)\zeta_{f^0} + (1 - 2\kappa)t_{f^0} + \tau \| w_f \|_H \).
2. If \(t_{f^0} \geq \max (1, \zeta_{f^0} - 1) \), to \((1 - \kappa)(1 - \zeta_{f^0} + t_{f^0}) + \tau \| w_f \|_H \).
3. If \(t_{f^0} \leq \min (1, \zeta_{f^0} - 1) \), to \(\kappa (1 - t_{f^0}) + \tau \| w_f \|_H \).
4. If \(1 \leq t_{f^0} \leq \zeta_{f^0} - 1, \zeta_{f^0} \geq 2 \), to \(\tau \| w_f \|_H \).

If \(\zeta_{f^0} \geq 2 \), for each fixed \(\zeta_{f^0}, \| w_f \|_H, t_{f^0} \), we have that the values of \(\bar{R} \) in cases 2 and 3 are no less than that in case 4 and that their minima agree. Therefore, when \(\zeta_{f^0} \geq 2 \), \(\bar{R} (f^0 \circ F^0) = \tau \| w_f \|_H \).

But, if \(\zeta_{f^0} \leq 2 \), then for each fixed \(\zeta_{f^0} \), \(\| w_f \|_H, t_{f^0} \), first note that \(t_{f^0} \in \mathbb{R} \) can be chosen freely by adjusting \(b \). Also, since \(\max (1, \zeta_{f^0} - 1) = 1 \) and \(\min (1, \zeta_{f^0} - 1) = \zeta - 1 \), by working out the minima over \(t_{f^0} \) in cases 1 to 3, respectively, we have \(\bar{R} (f^0 \circ F^0) = \min (\kappa, 1 - \kappa)(2 - \zeta_{f^0}) + \tau \| w_f \|_H \).

Note that we have \(\zeta_{f^0} = \| w_f \|_H \psi^0 \cos \theta_{f^0} \), where \(\psi^0 = \| \phi (F^0 (x_+)) - \phi (F^0 (x_-)) \|_H \). We can rewrite the earlier result in terms of \(\zeta_{f^0} \) and \(\cos \theta_{f^0} \). Consequently, we now determine the minimum over \(\zeta_{f^0} \) and \(\cos \theta_{f^0} \) of the resulting expression.

To this end, first observe that for each \(\zeta_{f^0} \), one can choose \(\cos \theta_{f^0} \in [-1, 1] \) freely by adjusting \(\| w_f \|_H \) under the constraint that the two quantities must be of the same sign if both are nonzero. Therefore, for each \(\zeta_{f^0} \geq 2 \),
\[
\min_{\cos \theta_f} \hat{R}(f \circ F^\circ) = \hat{R}(f \circ F^\circ) \big|_{\cos \theta_f = 1} = \frac{\tau \xi_f}{\psi^\circ}.
\]

Similarly, for each \(\zeta_f \leq 2 \), we have \(\min_{\cos \theta_f} \hat{R}(f \circ F^\circ) = \min(\kappa, 1 - \kappa)(2 - \zeta_f) + \tau |\zeta_f| / \psi^\circ \).

Combining these two cases and using the assumption on \(\tau \), it is easy to see that \(\hat{R}(f^\circ \circ F^\circ) = \min_{\tau/\psi} \hat{R}(f \circ F^\circ) = \hat{R}(f \circ F^\circ) \big|_{\zeta_f = 2} = 2\tau / \psi^\circ \). This completes the proof of claim 4.

Remark 1. By claim 4, \(F^\circ \in \mathbb{F}'_1 \).

Claim 5. For any \(F^\prime \in \mathbb{F}'_1 \), \(\min_{f \in \mathbb{F}'_2} \hat{R}(f \circ F^\prime) \geq \min_{f \in \mathbb{F}'_2} \hat{R}(f \circ F^\circ) \).

Proof of Claim 5. By claim 4, it amounts to prove

\[
\hat{R}\big(f' \circ F \big) \geq \frac{2\tau}{\|\phi(F^\circ(x^+)) - \phi(F^\circ(x^-))\|_H},
\]

for an arbitrary pair of \(x_+, x_- \in S_X \). Suppose \((x^+_1, y^+_1), (x^-_1, y^-_1) \) are a pair of examples with \(x^+_1, x^-_1 \in S_X \) and \(\ell(f' \circ F, (x^+_1, y^+_1)) = 0 \). Then we have \(y^+_1 f'(x^+_1) + y^-_1 f'(x^-_1) \geq 2 \).

Since \(y^+_1 f'(x^+_1) + y^-_1 f'(x^-_1) = \|w_f\|_H \|\phi(F^\circ(x^+_1)) - \phi(F^\circ(x^-_1))\|_H \cos \theta_f \), it is implied that \(\cos \theta_f \in (0, 1] \), \(\|\phi(F^\circ(x^+_1)) - \phi(F^\circ(x^-_1))\|_H > 0 \) and \(\|w_f\|_H \geq 2/\|\phi(F^\circ(x^+_1)) - \phi(F^\circ(x^-_1))\|_H \). Therefore,

\[
\hat{R}\big(f' \circ F \big) \geq \tau \frac{2\tau}{\|\phi(F^\circ(x^+_1)) - \phi(F^\circ(x^-_1))\|_H}
\geq \frac{2\tau}{\|\phi(F^\circ(x^+_1)) - \phi(F^\circ(x^-_1))\|_H} = \hat{R}(f^\circ \circ F^\circ).
\]

This concludes the proof of claim 5 and theorem 1.

Proof of Theorem 2. Denote with \(\mathbb{F}'_2 \) the set of all \(F'_2 \) such that for all \(j \), \(\|w_{f'_j}\|_H > 0 \).

Denote with \(\mathbb{F}'_1 \) the set of all \(F'_1 \) such that for any \(F_2 \in \arg \min_{F_2 \in \mathbb{F}'_2} \hat{R}(F_2 \circ F'_1) \), \(F_2 \) satisfies

\[
\exists (x_+, y_+), (x_-, y_-) \in S_X \times S_Y \text{ s.t. } \ell(F_2 \circ F'_1, (x_+, y_+), (x_-, y_-)) = 0.
\]
Using the same argument as in the beginning of the proof of theorem 1, we have \(\mathbf{F}'_1 \in \mathbb{F}'_1 \). Let \(\mathbf{F}'_2 \in \mathbb{F}'_2 \) be given and suppose \(\mathbf{F}'_2 \) satisfies equation 4.2. Let

\[
\mathbf{F}'_2 \in \arg \min_{\mathbf{F}_2 \in \mathbb{F}'_2} \tilde{R}(\mathbf{F}\circ \mathbf{F}'_1), \quad \text{and} \quad \mathbf{F}'_2 \in \arg \min_{\mathbf{F}_2 \in \mathbb{F}'_2} \tilde{R}(\mathbf{F}\circ \mathbf{F}'_1).
\]

Then by lemma 1, the proof is complete if we can show \(\tilde{R}(\mathbf{F}\circ \mathbf{F}'_1) \geq \tilde{R}(\mathbf{F}\circ \mathbf{F}'_1) \).

To this end, first note that claims 1, 2, and 3 from the proof of theorem 1 evidently hold here as well. Define

\[
\psi = 1/N^{2} \sum_{n,m=1}^{N} \mathbb{I}_{\{y_m \neq y_n\}}.
\]

Claim 6. \(\mathbf{F}\circ \mathbf{F}'_2(x) = \mathbf{F}\circ \mathbf{F}'_2(x') \), \(\forall x, x' \in S_x \) with \(y = y' \).

Proof of Claim 6. \(\forall x, x' \in S_x \),

\[
\mathbf{F}\circ \mathbf{F}'_2(x) - \mathbf{F}\circ \mathbf{F}'_2(x') = (f^{\circ}_2(x) - f^{\circ}_2(x'), \ldots)
\]

\[
= \left(\begin{array}{c} w_{f^2_1}, \phi(F^0_1(x)) - \phi(F^0_1(x')) \end{array} \right)_H, \ldots) = (0, \ldots),
\]

where we have used claim 2 for the last equality. This completes the proof of claim 6.

Combining this claim with our earlier assumptions on \(h \), we can simplify the objective function

\[
\tilde{R}(\mathbf{F}\circ \mathbf{F}'_2) = \psi \left(h \left(\| \mathbf{F}\circ \mathbf{F}'_2(x_+) - \mathbf{F}\circ \mathbf{F}'_2(x_-) \|_q \right) - b \right)^p
\]

\[
+ \tau t \left(\| w_{f^{l_2}_j} \|_H, \ldots, \| w_{f^{l_2}_j} \|_H \right),
\]

where \(x_+, x_- \in S_x \) are arbitrary.

Rewrite the above expression as

\[
\tilde{R}(\mathbf{F}\circ \mathbf{F}'_2)
\]

\[
= \psi \left(h \left(\sum_{j=1}^{d_2} \| w_{f^{l_2}_j} \|_H \phi(F^0_1(x_+)) - \phi(F^0_1(x_-)) \|_H \left(\cos \theta_{f^{l_2}_j} \right)^{\frac{q}{1+q}} - b \right)^p
\]

\[
+ t \left(\| w_{f^{l_2}_j} \|_H, \ldots, \| w_{f^{l_2}_j} \|_H \right)
\]

Claim 7. \(\left(\cos \theta_{f^{l_2}_j} \right)^2 = 1, \forall j \).
Proof of Claim 7. This claim follows from noting that for each \(\psi \circ \psi F - b \circ \varphi F = F b - x \), \(\cos \theta \) may be chosen freely, and since the \(\| w_{f_j} \| _H \) are nonzero by the definition of \(F' \), it is easy to see that the unique minimizers of the \(\| \cos \theta \) are \(\| \cos \theta \| = 1 \), \(\forall j \). This completes the proof of claim 7.

Using claim 3 and the above claim, we further simplify the objective function into

\[
\tilde{R} (F_2 \circ F_1) = \psi \left(\left(h \left(2(c-a) \left(\sum_{j} w_{f_j}^q \right) \right) \right) - b \right) + \tau t \left(\left(\sum_{j} w_{f_j}^p \right) \right)
\]

Now, let \((x', x) \in \{ \arg \max_{x', x} \| F_2 (x') - F_2 (x) \|_q \} \), we have

\[
\tilde{R} (F_2' \circ F_1') \geq \psi \left(\left(h \left(\| F_2 (x') - F_2 (x) \|_q \right) \right) - b \right) + \tau t \left(\left(\| w_{f_j}^q \right) \right) \]

This concludes the proof of theorem 2. \qed
Acknowledgments

This work was supported by DARPA (FA9453-18-1-0039) and NSF DMS (1719932).

References

Bach, F. R., Lanckriet, G. R., & Jordan, M. I. (2004). Multiple kernel learning, conic duality, and the SMO algorithm. In Proceedings of the Twenty-First International Conference on Machine Learning (p. 6). New York: ACM.

Balduzzi, D., Vanchinathan, H., & Buhmann, J. M. (2015). Kickback cuts backprop’s red-tape: Biologically plausible credit assignment in neural networks. In Proceedings of the 29th Conference on Artificial Intelligence (pp. 485–491). Palo Alto: AAAI.

Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3, 463–482.

Bengio, Y. (2014). How auto-encoders could provide credit assignment in deep networks via target propagation. arXiv:1407.7906.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. In B. Schölkopf, J. C. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19 (pp. 153–160). Cambridge, MA: MIT Press.

Carreira-Perpinan, M., & Wang, W. (2014). Distributed optimization of deeply nested systems. In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, 22 (pp. 10–19).

Cho, Y., & Saul, L. K. (2009). Kernel methods for deep learning. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, & A. Culotte (Eds.), Advances in neural information processing systems (pp. 342–350). Cambridge, MA: MIT Press.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., & Kandola, J. S. (2002). On kernel-target alignment. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14 (pp. 367–373). Cambridge, MA: MIT Press.

Erdogmus, D., Fontenla-Romero, O., Principe, J. C., Alonso-Betanzos, A., & Castillo, E. (2005). Linear-least-squares initialization of multilayer perceptrons through backpropagation of the desired response. IEEE Transactions on Neural Networks, 16(2), 325–337.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In D. S. Touretzky (Ed.), Advances in neural information processing systems, 2 (pp. 524–532). San Mateo, CA: Morgan Kaufmann.

Gardner, J. R., Upchurch, P., Kusner, M. J., Li, Y., Weinberger, K. Q., Bala, K., & Hopcroft, J. E. (2015). Deep manifold traversal: Changing labels with convolutional features. arXiv:1511.06421.
On Kernel Networks and Deep Learning Without Backpropagation

Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A neural algorithm of artistic style. arXiv:1508.06576.

Gehler, P., & Nowozin, S. (2008). Infinite kernel learning (Technical Report TR-178). Baden-Wurttemberg: Max Planck Institute for Biological Cybernetics.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (pp. 315–323).

Gönen, M., & Alpaydin, E. (2011). Multiple kernel learning algorithms. Journal of Machine Learning Research, 12, 2211–2268.

Hermans, M., & Schrauwen, B. (2012). Recurrent kernel machines: Computing with infinite echo state networks. Neural Computation, 24(1), 104–133.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.

Huang, F. J., & LeCun, Y. (2006). Large-scale learning with SVM and convolutional for generic object categorization. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Vol. 1, pp. 284–291). Piscataway, NJ: IEEE.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167.

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., Silver, D., & Kavukcuoglu, K. (2016). Decoupled neural interfaces using synthetic gradients. arXiv:1608.05343.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv:1412.6980.

Kloft, M., Brefeld, U., Sonnenburg, S., & Zien, A. (2011). LP-norm multiple kernel learning. Journal of Machine Learning Research, 12, 953–997.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images (Tech. Rep.). Citeseer.

Lanckriet, G. R., Cristianini, N., Bartlett, P., Ghaoui, L. E., & Jordan, M. I. (2004). Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5, 27–72.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empirical evaluation of deep architectures on problems with many factors of variation. In Proceedings of the 24th International Conference on Machine Learning (pp. 473–480). New York: ACM.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

LeCun, Y., Cortes, C., & Burges, C. (2010). MNIST handwritten digit database. AT&T Labs. http://yann.lecun.com/exdb/mnist.

Lee, D.-H., Zhang, S., Fischer, A., & Bengio, Y. (2015). Difference target propagation. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 498–515). Berlin: Springer.

Mairal, J., Koniusz, P., Harchaoui, Z., & Schmid, C. (2014). Convolutional kernel networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 27 (pp. 2627–2635). Red Hook, NY: Curran.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. *Bulletin of Mathematical Biophysics, 5*(4), 115–133.

Michelli, C. A., Xu, Y., & Zhang, H. (2006). Universal kernels. *Journal of Machine Learning Research, 7*, 2651–2667.

Park, J., & Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks. *Neural Computation, 3*(2), 246–257.

Paszke, A., Gross, S., Chintala, S., & Chanan, G. (2017). Pytorch: Tensors and dynamic neural networks in Python with strong GPU acceleration. https://github.com/pytorch/pytorch

Pisier, G. (1999). *The volume of convex bodies and banach space geometry*. Cambridge: Cambridge University Press.

Raghu, M., Gilmer, J., Yosinski, J., & Sohl-Dickstein, J. (2017). SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), *Advances in neural information processing systems, 30* (pp. 6076–6085). Red Hook, NY: Curran.

Rahimi, A., & Recht, B. (2008). Random features for large-scale kernel machines. In J. C. Platt, D. Koller, Y. Singer, & S. T. Roweis (Eds.), *Advances in neural information processing systems, 20* (pp. 1177–1184). Cambridge, MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. *Nature, 323*(6088), 533–538.

Schölkopf, B., Herbrich, R., & Smola, A. J. (2001). A generalized representer theorem. In D. Helmbold & B. Williamson (Eds.), *Computational learning theory* (pp. 416–426). Berlin: Springer.

Schölkopf, B., & Smola, A. J. (2001). *Learning with kernels: Support vector machines, regularization, optimization, and beyond*. Cambridge, MA: MIT Press.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research, 15*(1), 1929–1958.

Sun, S., Chen, W., Wang, L., Liu, X., & Liu, T.-Y. (2016). On the depth of deep neural networks: A theoretical view. In *Proceedings of the 30th AAAI Conference on Artificial Intelligence* (pp. 2066–2072). Palo Alto, CA: AAAI.

Suykens, J. A. (2017). Deep restricted kernel machines using conjugate feature duality. *Neural Computation, 29*(8), 2123–2163.

Suykens, J. A., & Vandewalle, J. (1999). Training multilayer perceptron classifiers based on a modified support vector method. *IEEE Transactions on Neural Networks, 10*(4), 907–911.

Tang, Y. (2013). *Deep learning using linear support vector machines*. arXiv:1306.0239.

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop, coursera: Neural networks for machine learning (Technical Report). Toronto: University of Toronto.

Vapnik, V. (2000). *The nature of statistical learning theory*. Berlin: Springer.

Varma, M., & Babu, B. R. (2009). More generality in efficient multiple kernel learning. In *Proceedings of the 26th Annual International Conference on Machine Learning* (pp. 1065–1072). New York: ACM.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. *Journal of Machine Learning Research, 11*, 3371–3408.
Wilson, A. G., Hu, Z., Salakhutdinov, R., & Xing, E. P. (2016). Deep kernel learning. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (pp. 370–378).

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747.

Xu, Z., Jin, R., King, I., & Lyu, M. (2009). An extended level method for efficient multiple kernel learning. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems, 21 (pp. 1825–1832). Red Hook, NY: Curran.

Zhang, S., Li, J., Xie, P., Zhang, Y., Shao, M., Zhou, H., & Yan, M. (2017). Stacked kernel network. arXiv:1711.09219.

Zhou, Z.-H., & Feng, J. (2017). Deep forest: Towards an alternative to deep neural networks. arXiv:1702.08835.

Zhuang, J., Tsang, I. W., & Hoi, S. C. (2011). Two-layer multiple kernel learning. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (pp. 909–917).

Received April 29, 2019; accepted September 2, 2019.