Genetic variants of glutamate receptor gene family in Taiwanese Kawasaki disease children with coronary artery aneurysms

Ying-Ju Lin1,2, Jeng-Sheng Chang3, Xiang Liu4, Hsinyi Tsang4, Ting-Hsu Lin1, Chiu-Chu Liao1, Shao-Mei Huang1, Wen- Kuei Chien5,6, Jin-Hua Chen5,6, Jer-Yuan Wu2,7, Chien-Hsiun Chen2,7, Li-Ching Chang7, Cheng-Wen Lin8, Tsung-Jung Ho2,9,10 and Fuu-Jen Tsai1,2,11*

Abstract

Background: Patients with Kawasaki disease (KD), a pediatric systemic vasculitis, may develop coronary artery aneurysm (CAA) as a complication. To investigate the role of glutamate receptors in KD and its CAA development, we performed genetic association studies.

Methods and results: We examined the whole family of glutamate receptors by genetic association studies in a Taiwanese cohort of 262 KD patients. We identified glutamate receptor ionotropic, kainate 1 (GRIK1) as a novel susceptibility locus associated with CAA formation in KD. Statistically significant differences were noted for factors like fever duration, 1st Intravenous immunoglobulin (IVIG) used time (number of days after the first day of fever) and the GRIK1 (rs466013, rs425507, and rs38700) genetic variants. This significant association persisted even after using multivariate regression analysis (Full model: for rs466013: odds ratio =2.12; 95% CI =1.22-3.65; for rs425507: odds ratio =2.16; 95% CI =1.26-3.76; for rs388700: odds ratio =2.16; 95% CI =1.26-3.76).

Conclusions: We demonstrated that GRIK1 polymorphisms are associated CAA formation in KD, even when adjusted for fever duration and IVIG used time, and may also serve as a genetic marker for the CAA formation in KD.

Keywords: KD, GRIK1, Single nucleotide polymorphism, CAA

Background

Patients with Kawasaki disease (KD), an acute systemic vasculitis, may develop coronary artery aneurysm (CAA) as a complication. KD is one of the leading causes of acquired cardiovascular diseases in childhood. Infectious agents, host immune dysregulation, and genetic susceptibility are thought to be responsible for the development of KD and its related complications [1-3]. However, the pathological mechanisms underlying KD remain to be elucidated.

Numerous genome-wide association studies have been conducted to identify host cellular genes that affect KD susceptibility [4-14] in the European, Japanese, Korean, and Taiwanese populations. In the European population [11,13], no common SNPs have been identified as susceptibility loci for European KD. However, a common SNP (rs2233152; MIA gene) was observed in the European, Japanese, and Taiwanese populations [9-11]. Common gene SNPs among Asians including Japanese, Taiwanese, and Korean populations have also been observed [4,6,9,10,12,14,15]. Six SNPs, namely, rs2736340 (BLK), rs2618479 (BLK), rs6993775 (BLK), rs10401344 (ITPKC), rs2233152 (MIA), and rs4813003 (CD40) have been observed in both Japanese and Taiwanese populations [9,10] (Additional files 1 and 2). These studies suggest that genes involved in the immune-regulatory responses and cardiovascular-related pathogenesis may contribute to KD susceptibility.

Glutamate receptors were initially demonstrated to play important roles in excitatory neurotransmission in the brain and interneuronal communication [16]. Based on their different activation mechanisms, glutamate receptors...
Genetic association study of the glutamate receptor gene family in Taiwanese KD children and controls

To identify KD susceptibility genes, a total of 53 SNPs of 16 genes within the glutamate receptor gene family including GRIK1, GRIK2, GRIK3, GRIK4, GRIK5, GRIA1, GRIA2, GRIA4, GRM1, GRM2, GRM3, GRM4, GRM5, GRM6, GRM7, and GRM8 genes were genotyped in 262 Taiwanese KD children and in 1107 healthy people from the general population of Taiwan who were Han Chinese ethnic background for the SNP association study (Table 1). No significant differences were found between these 2 groups, suggesting that the glutamate receptor family genes may not contribute to KD susceptibility.

GIKI1 genetic polymorphisms may be related to KD-associated CAA complications

To examine the role of glutamate receptors in KD-associated CAA complications, we analyzed the correlation between KD children and the whole glutamate gene family. As shown in Table 2, the genotype distributions (dominant model) of 6 glutamate gene SNPs were statistically different between these 2 groups (p<0.05). These SNPs were rs466013, rs425507, rs388700, rs402280, rs17104835 and rs712723. Among these, 4 SNPs were found to be located in the GRIK1 gene (p=0.007, 0.005, 0.004 and 0.022, respectively) (Additional file 1). GRIK1 consists of 18 exons and is located at 21q21.3 as shown in Figure 1. All SNPs were in Hardy-Weinberg equilibrium and had a successful genotyping frequency of >99%. The linkage disequilibrium (LD) structure of this region was also established, with 1 haplotype block determined. Four SNPs were located in that block. To evaluate the relationship among these 4 SNPs, pairwise LD analysis was performed. The D’ statistics were all 1.0. Strong LD was observed in the following 2 groups of SNPs, group1 (rs466013, rs425507, rs388700), with the r² statistics >0.5 between every 2 SNPs in each group (data not shown). The frequencies of the TT and TC genotypes of GRIK1 (rs466013) were significantly higher in KD patients with CAA than those in patients without CAA (63.2% for KD with CAA and 44.9% for KD without CAA complications; odds ratio =2.11 [95% confidence interval (CI) =1.22-3.65]). Similar results were also observed in rs425507, rs388700 and rs402280. These data suggest that GRIK1 may be a potential susceptibility locus involved in the development of KD with CAA complications.

Multivariate regression analyses shows that GRIK1 genetic polymorphisms may be related to CAA formation in KD

According to the above results, statistically significant differences in factors associated with CAA formation in KD were noted for the clinical characteristics including fever duration (p<0.0001), first IVIG used time (p<0.0001; number of days after the first day of fever), and the GRIK1 (rs466013, rs425507, rs38700, and rs402280) genetic variants (p =0.007, p =0.005, p =0.004, and p =0.022, respectively) (Tables 1 and 3). To further confirm the genetic role of GRIK1, we used multivariate regression analyses to adjust those potential factors (i.e., fever duration and IVIG used time) that may affect the analysis. As shown in Table 3, significant associations between KD with CAA...
SNP	Chromosome	Cytoband	Physical position	Nearest genes	Controls No. (%)	KD patients No. (%)	p value	Odds ratio (95% CI)
rs466013	21	q21.3	29826300	GRIK1	TT + TC 507 (45.9)	131 (50.2)	0.205	1.19 (0.91-1.56)
					CC 599 (54.1)	130 (49.8)		
rs425507	21	q21.3	29827658	GRIK1	TT + GA 507 (45.8)	130 (49.6)	0.265	1.17 (0.89-1.53)
					AA 600 (54.2)	132 (50.4)		
rs388700	21	q21.3	29830158	GRIK1	TT + TA 506 (45.7)	130 (49.6)	0.254	1.17 (0.89-1.53)
					AA 601 (54.3)	132 (50.4)		
rs402280	21	q21.3	29835401	GRIK1	TT + TA 424 (38.3)	116 (44.3)	0.075	1.28 (0.97-1.68)
					AA 683 (61.7)	146 (55.7)		
rs17816480	6	q16.3	101522140	GRIK2	TT + TC 201 (18.2)	48 (18.3)	0.951	1.01 (0.71-1.43)
					CC 906 (81.8)	214 (81.7)		
rs2786239	6	q16.3	101637565	GRIK2	GG + GA 186 (16.8)	45 (17.2)	0.677	1.06 (0.80-1.41)
					AA 921 (83.2)	217 (82.8)		
rs4840194	6	q16.3	101768497	GRIK2	CC + CT 357 (32.2)	88 (33.6)	0.468	0.91 (0.69-1.91)
					TT 750 (67.8)	174 (66.4)		
rs1310715	6	q16.3	101961427	GRIK2	TT + TC 597 (53)	133 (50.9)	0.91	1.60 (0.80-1.41)
					CC 520 (47.0)	128 (49.1)		
rs527631	1	p34.3	36844396	GRIK3	AA + AG 172 (15.5)	45 (17.6)	0.407	1.16 (0.81-1.67)
					GG 935 (84.5)	210 (82.4)		
rs476894	1	p34.3	36868682	GRIK3	CC + GA 234 (21.1)	63 (24.0)	0.305	1.18 (0.86-1.62)
					AA 873 (78.9)	199 (76.0)		
rs541671	1	p34.3	36905238	GRIK3	TT + TA 267 (24.1)	65 (25.9)	0.554	1.10 (0.80-1.51)
					AA 840 (75.9)	186 (74.1)		
rs35317705	1	p34.3	36972969	GRIK3	CC + CT 128 (11.6)	33 (12.6)	0.641	1.10 (0.73-1.66)
					TT 979 (88.4)	229 (87.4)		
rs11218005	11	q23.3	120782227	GRIK4	AA + AC 132 (11.9)	35 (13.4)	0.523	1.14 (0.76-1.70)
					CC 975 (88.1)	227 (86.6)		
rs3901285	11	q23.3	120862726	GRIK4	TT + TC 650 (58.7)	158 (60.3)	0.638	1.07 (0.81-1.41)
					CC 457 (41.3)	104 (39.7)		
rs4936566	11	q23.3	120944529	GRIK4	AA + AG 669 (60.4)	145 (55.3)	0.131	0.81 (0.62-1.06)
					GG 438 (39.6)	117 (44.7)		
rs443239	19	q13.2	42001892	GRIK5	CC + CG 289 (26.1)	64 (24.4)	0.576	0.91 (0.67-1.25)
					GG 818 (73.9)	198 (75.6)		
rs1493395	5	q33.2	153532297	GRIA1	AA + AG 565 (51.1)	125 (47.7)	0.326	0.87 (0.67-1.14)
					GG 541 (48.9)	137 (52.3)		
rs12153489	5	q33.2	153568777	GRIA1	CC + CT 1087 (98.2)	259 (98.9)	0.454	1.59 (0.47-5.39)
					TT 20 (1.8)	3 (1.1)		
rs4424038	5	q33.2	153740704	GRIA1	CC + CT 1102 (99.5)	262 (100.0)	0.276	ND
					TT 5 (0.5)	0 (0.0)		
rs17035909	4	q32.1	157247565	GRIA2	AA + AT 351 (31.7)	87 (33.3)	0.640	1.07 (0.80-1.43)
					TT 756 (68.3)	175 (66.7)		
rs17035959	4	q32.1	157302204	GRIA2	AA + AC 1075 (97.1)	255 (97.3)	0.848	1.08 (0.47-2.48)
					CC 32 (2.9)	7 (2.7)		
Table 1 Genotype distribution of glutamate receptor family gene SNPs in Taiwanese KD patients and controls (Continued)

SNP	Chromosome	Gene	Genotype	Patient Cases	Control Cases	Odds Ratio (95% CI)
rs7695870	4	GRIA2	CC + CT	1082 (97.7)	258 (98.5)	0.460 (0.51-4.32)
rs6855973	4	GRIA2	AA + AT	1085 (98)	258 (98.4)	0.623 (0.45-3.83)
rs10895875	11	GRIA4	AA + AT	715 (64.6)	181 (69.1)	0.169 (0.92-1.64)
rs4754136	11	GRIA4	CC + CT	1102 (99.5)	261 (99.6)	0.877 (0.14-1.10)
rs17104835	11	GRIA4	CC + CT	447 (40.4)	104 (39.8)	0.839 (0.74-1.28)
rs7750018	6	GRM1	AA + AT	1085 (98)	258 (98.4)	0.623 (0.45-3.83)
rs362851	6	GRM1	CC + CG	713 (64.4)	169 (64.5)	0.977 (0.76-1.33)
rs2300631	6	GRM1	AA + AG	1076 (97.2)	253 (96.6)	0.583 (0.38-0.87)
rs1983842	6	GRM1	AA + AG	1070 (96.7)	253 (96.6)	0.940 (0.46-2.04)
rs802441	7	GRM3	AA + AG	1081 (97.6)	255 (97.3)	0.759 (0.38-2.04)
rs802466	7	GRM3	AA + AG	1076 (98)	258 (98.5)	0.567 (0.38-0.82)
rs12704286	7	GRM3	AA + AG	364 (32.9)	91 (34.8)	0.567 (0.82-1.44)
rs17697415	7	GRM3	AA + AG	364 (32.9)	91 (34.8)	0.567 (0.82-1.44)
rs1873254	6	GRM4	AA + AG	1090 (98.5)	260 (99.2)	0.337 (0.47-0.83)
rs937039	6	GRM4	AA + AG	1090 (98.5)	260 (99.2)	0.337 (0.47-0.83)
rs1565361	6	GRM4	CC + CT	503 (45.5)	117 (44.7)	0.819 (0.74-1.27)
rs4106126	11	GRM5	CC + CT	1093 (98.7)	256 (97.7)	0.214 (0.21-1.44)
rs1391878	11	GRM5	CC + CT	1093 (98.7)	256 (97.7)	0.214 (0.21-1.44)
rs12787863	11	GRM5	AA + AG	447 (40.4)	110 (42.0)	0.634 (0.81-1.40)
rs7126679	11	GRM5	AA + AG	651 (58.9)	160 (61.1)	0.513 (0.83-1.44)
rs2856354	5	GRM6	AA + AG	1055 (95.3)	244 (93.1)	0.151 (0.38-1.16)
complications and the GRIK1 (rs466013, rs425507, rs38700 and rs402280) genetic variants were observed (Full model: for rs466013: odds ratio = 2.12; 95% CI = 1.22-3.65; for rs425507: odds ratio = 2.16; 95% CI = 1.26-3.76; for rs388700: odds ratio = 2.16; 95% CI = 1.26-3.76; for rs402280: odds ratio = 1.89; 95% CI = 1.09-3.21).

Taken together, these data suggest that the significant association observed between CAA complications and the presence of the GRIK1 genotypes persists even after adjusting for the potential factors.

Discussion

Previous research from our lab suggests that the NMDA receptor (GRIN3A) from the glutamate receptor family may influence KD pathogenesis [26]. In this study, we screened the entire glutamate receptor family including the iGluRs and mGluRs (GRIK, GRIA and GRM gene families) and identified another member, namely GRIK1, that may be involved in the development of KD-associated CAA complications in Taiwanese children of Han Chinese ethnic background. The most striking finding of this study is that 4 GRIK1 gene variants were found to be strongly associated with the presence of CAA in KD patients, even in the multivariable model.

Our genetic association study showed that none of the genes of the glutamate receptor gene family including GRIK1, GRIK2, GRIK3, GRIK4, GRIK5, GRIA1, GRIA2, GRIA4, GRM1, GRM2, GRM3, GRM4, GRM5, GRM6, GRM7, and GRM8 genes contributed to KD susceptibility. However, genetic variation of the GRIK1 locus may potential induce susceptibility to the development of KD with CAA complications. The significant association observed between KD with CAA complications and the GRIK1 genetic variants (rs466013, rs425507, rs38700, and rs402280) was found to persist even after adjusting for fever duration and first IVIG used time. These results suggest that the GRIK1 gene may be involved in CAA formation of KD. GRIK1 polymorphisms have been investigation for their associations with different diseases including Juvenile absence epilepsy [28,29], schizophrenia [30,31], alcohol dependence [32], topiramate’s effects on heavy drinking [33,34], topiramate-induced side effects [35], and hepatitis B virus (HBV)-related hepatocellular carcinoma [36]. However, these GRIK1 polymorphism data of various studies are also not absolutely consistent and conclusive. These studies show that GRIK1 gene may mainly contribute to neuropsychological diseases.

Glutamate is known to signal and is released by nerves,
Table 2: Association of the genetic variants of glutamate receptor family genes in Taiwanese KD children according to the presence or absence of CAA

SNP	Chromosome	Cytoband	Physical position	Nearest genes	KD CAA- No. (%)	KD CAA+ No. (%)	p value	Odds ratio (95% CI)
rs466013	21	q21.3	29826390	GRIK1	TT + TC 83 (44.9)	48 (63.2)	0.007	2.11 (1.22 3.65)
					CC 102 (55.1)	28 (36.8)		
rs425507	21	q21.3	29827658	GRIK1	G + GA 82 (44.1)	48 (63.2)	0.01	2.17 (1.26 3.76)
					AA 104 (55.9)	28 (36.8)		
rs388700	21	q21.3	29830158	GRIK1	TT + TA 81 (44.1)	48 (63.2)	0.004	2.20 (1.27 3.81)
					AA 104 (55.9)	28 (36.8)		
rs402280	21	q21.3	29835401	GRIK1	TT + TA 74 (39.8)	42 (55.2)	0.022	1.87 (1.09 3.21)
					AA 112 (60.2)	34 (44.8)		
rs17816480	6	q16.3	101522140	GRIK2	TT + TC 30 (16.1)	18 (23.7)	0.151	1.61 (0.84 3.11)
					CC 156 (83.9)	58 (76.3)		
rs2786239	6	q16.3	101637565	GRIK2	GG + GA 29 (15.6)	16 (21.1)	0.288	1.44 (0.73 2.85)
					AA 157 (84.4)	60 (76.9)		
rs4840194	6	q16.3	101768497	GRIK2	CC + CT 64 (34.4)	24 (31.6)	0.660	0.88 (0.50 1.56)
					TT 122 (65.6)	52 (68.4)		
rs1310715	6	q16.3	101061427	GRIK2	TT + TC 91 (49.2)	42 (55.3)	0.373	1.28 (0.75 2.18)
					CC 94 (50.8)	34 (44.7)		
rs527631	1	p34.3	36844396	GRIK3	AA + AG 32 (17.6)	13 (17.8)	0.966	1.02 (0.50 2.07)
					GG 150 (82.4)	60 (82.2)		
rs476894	1	p34.3	36868682	GRIK3	GG + GA 45 (24.2)	18 (23.7)	0.930	0.97 (0.52 1.82)
					AA 141 (75.8)	58 (76.3)		
rs541671	1	p34.3	36905238	GRIK3	TT + TA 47 (26.1)	18 (25.3)	0.902	0.96 (0.51 1.80)
					AA 133 (73.9)	53 (74.7)		
rs35317705	1	p34.3	36972969	GRIK3	CC + CT 22 (11.8)	11 (14.5)	0.558	1.26 (0.58 2.75)
					TT 164 (88.2)	65 (85.5)		
rs11218005	11	q23.3	120782227	GRIK4	AA + AC 27 (14.5)	8 (10.5)	0.389	0.69 (0.30 1.60)
					CC 159 (85.5)	68 (89.5)		
rs3901285	11	q23.3	120862726	GRIK4	TT + TC 113 (60.7)	45 (59.2)	0.817	0.94 (0.54 1.62)
					CC 73 (39.3)	31 (40.8)		
rs4936566	11	q23.3	120944529	GRIK4	AA + AG 104 (55.9)	41 (54.0)	0.771	0.92 (0.54 1.58)
					GG 82 (44.1)	35 (46.0)		
rs443239	19	q13.2	42001892	GRIK5	CC + CG 45 (24.2)	19 (25.0)	0.890	1.04 (0.56 1.94)
					TT 164 (88.2)	65 (85.5)		
rs1493395	5	q33.2	153532297	GRIA1	AA + AG 88 (47.3)	37 (48.7)	0.840	1.06 (0.62 1.80)
					GG 98 (52.7)	39 (51.3)		
rs12153489	5	q33.2	153568777	GRIA1	TT + CT 40 (21.5)	19 (25.0)	0.539	1.22 (0.65 2.28)
					CC 146 (78.5)	57 (75.0)		
rs4424038	5	q33.2	153740704	GRIA1	TT + CT 23 (12.4)	10 (13.2)	0.861	1.07 (0.48 2.38)
					CC 163 (87.6)	66 (86.8)		
rs17035909	4	q32.1	157247565	GRIA2	AA + AT 66 (35.7)	21 (27.6)	0.210	0.69 (0.38 1.24)
					TT 119 (64.3)	55 (72.4)		
rs17035959	4	q32.1	157302204	GRIA2	CC + AC 72 (38.7)	25 (32.9)	0.376	0.78 (0.44 1.36)
					AA 114 (61.3)	51 (67.1)		
Table 2 Association of the genetic variants of glutamate receptor family genes in Taiwanese KD children according to the presence or absence of CAA

Gene Symbol	Chromosome	Position	rsID	CR72	G72	OR (95% CI)		
rs7695870	4	157342624	GRIA2	TT + CT	50 (26.9)	26 (34.2)	0.236	1.41 (0.80-2.51)
rs6855973	4	157365463	GRIA2	TT + AT	60 (33.2)	18 (24.0)	0.148	0.64 (0.34-1.18)
rs10895875	11	105785485	GRIA4	AA + AT	130 (69.9)	51 (67.1)	0.673	1.16 (0.58-2.30)
rs4754136	11	105846312	GRIA4	TT + CT	56 (30.1)	25 (32.9)	0.092	0.43 (0.16-1.17)
rs17104835	11	105971356	GRIA4	CC + CT	66 (35.7)	38 (50)	0.032	1.80 (1.05-3.10)
rs7750018	6	146206595	GRM1	TT + CT	43 (23.1)	19 (25.0)	0.745	1.11 (0.60-2.06)
rs362851	6	146389448	GRM1	CC + CG	117 (62.9)	52 (68.4)	0.397	1.28 (0.72-2.25)
rs2300631	6	146428918	GRM1	AA + AG	135 (72.7)	57 (75.0)	0.688	1.13 (0.62-2.09)
rs12023603	1	51466999	GRM2	CC + CT	56 (30.1)	23 (30.2)	0.980	1.01 (0.56-1.80)
rs1983842	1	51535259	GRM2	AA + CG	136 (73.1)	54 (71.1)	1	
rs802441	7	86657787	GRM3	TT + CT	51 (27.4)	23 (30.2)	0.643	1.15 (0.64-2.06)
rs802466	7	86698122	GRM3	CC + CT	35 (18.8)	9 (11.8)	0.171	0.58 (0.26-1.27)
rs12704286	7	86745625	GRM3	AA + AG	60 (33.3)	27 (38.6)	0.435	1.26 (0.71-2.23)
rs17697415	7	86772500	GRM3	CC + CT	35 (18.8)	9 (11.8)	0.171	0.58 (0.26-1.27)
rs1873254	6	34058712	GRM4	AA + AG	105 (57.4)	43 (57.3)	0.995	1.00 (0.58-1.72)
rs937039	6	34075875	GRM4	GG + AG	78 (42.6)	32 (42.7)	0.823	0.93 (0.49-1.76)
rs1565361	6	34089248	GRM4	AA + CT	84 (45.2)	33 (43.4)	0.797	0.93 (0.54-1.60)
rs4106126	11	88647181	GRM5	TT + CT	43 (23.1)	18 (23.7)	0.922	1.03 (0.55-1.94)
rs1391878	11	88713212	GRM5	CC + CT	39 (21.0)	19 (25.0)	0.476	1.26 (0.67-2.35)
rs12787863	11	88810547	GRM5	AA + AG	77 (41.4)	33 (43.4)	0.763	1.09 (0.63-1.86)
rs7126679	11	89020677	GRM5	AA + AG	109 (59.9)	48 (64.0)	0.539	1.19 (0.68-2.08)
rs2856354	5	178978728	GRM6	GG + AG	81 (43.6)	37 (48.7)	0.448	1.23 (0.72-2.10)
Table 2 Association of the genetic variants of glutamate receptor family genes in Taiwanese KD children according to the presence or absence of CAA (Continued)

SNP ID	Chr	Physical Position	Gene	Genotype	N Cases with CAA	N Cases without CAA	p-value	OR (95% CI)
rs10464073	5	q35.3	GRM6	GG + AG	81 (43.6)	37 (48.7)	0.448	1.23 (0.72-2.10)
				AA	105 (56.4)	39 (51.3)		
rs17078880	5	q35.3	GRM6	TT + CT	51 (27.7)	20 (26.7)	0.863	0.95 (0.52-1.74)
				CC	133 (72.3)	55 (73.3)		
rs2645341	5	q35.3	GRM6	GG + AG	53 (28.5)	19 (25.0)	0.565	0.84 (0.45-1.54)
				AA	133 (71.5)	57 (75.0)		
rs6764411	3	p26.1	GRM7	CC + AC	127 (68.3)	52 (68.4)	0.982	1.01 (0.57-1.79)
				AA	59 (31.7)	24 (31.6)		
rs17697928	3	p26.1	GRM7	AA + AG	130 (69.9)	48 (63.2)	0.289	0.74 (0.42-1.29)
				GG	56 (30.1)	28 (36.8)		
rs779741	3	p26.1	GRM7	CC + AC	124 (66.7)	48 (63.2)	0.587	0.86 (0.49-1.50)
				AA	62 (33.3)	28 (36.8)		
rs1354405	3	p26.1	GRM7	GG + AG	103 (55.4)	38 (50.0)	0.428	0.81 (0.47-1.38)
				AA	83 (44.6)	38 (50.0)		
rs712723	7	q31.33	GRM8	CC + CT	115 (61.8)	59 (77.6)	0.014	2.14 (1.16-3.6)
rs17627206	7	q31.33	GRM8	TT + CT	71 (38.2)	20 (10.7)	0.957	0.98 (0.41-2.32)
rs11563505	7	q31.33	GRM8	TT + CT	46 (24.7)	19 (25.0)	0.964	1.01 (0.55-1.88)

Physical position of individual SNPs was based on the NCBI Assembly database: GRCh38 version.

GRIK, glutamate receptor, ionotropic, kainate; GRIA, glutamate receptor, ionotropic, AMPA; GRM, glutamate receptor, metabotropic; SNP, single nucleotide polymorphism; CI, confidence interval.
p-values were obtained by chi-square test (2 x 2 table).
Bold italic are significant at p value <0.05.

Figure 1 Analysis of single nucleotide polymorphisms (SNPs) and the linkage disequilibrium (LD) pattern of the GRIK1 gene. Genomic location of SNPs present on chromosome 21q21.3. Physical position of individual SNPs was based on the NCBI Assembly database: GRCh38 version. Linkage disequilibrium (LD) blocks in the GRIK1 gene, estimated by using HAPLOVIEW software. Pairwise D' values (%) are indicated in squares; red indicates linkage disequilibrium (D' =1, logarithm of odds (LOD) ≥2).
macrophages, lymphocytes, and chondrocytes [37,38]. These amino acids bind to iGluRs and mGluRs to regulate peripheral pain, release of cytokines and matrix metalloproteinases, and immune responses [39-41]. Our studies have firstly showed that glutamate receptors including NMDA [26] and KA receptors are involved in the CAA complications of KD regardless of the fever duration and first IVIG used time. KD is a multi-systemic disorder with a possible underlying pathology of immune-mediated vasculitis [1,42]. The vascular endothelium forms a functional barrier between the vessel wall and the bloodstream. Recent studies have shown that regulation of certain glutamate receptors may induce the inflammation of endothelial cells, thereby mediating pathogenesis of vascular diseases [43,44]. Although the current therapy for KD includes high doses of aspirin in conjunction with IVIG treatment [45], reports suggest that this regimen cannot efficiently prevent CAA development. In this study, we showed that the glutamate receptor GRIK1 is significantly associated with KD with CAA complications of Han Chinese individuals, who account for 98% of the Taiwanese residents, were considered for recruitment. This study was approved by the Human Studies Committee of China Medical University Hospital (CMUH REC No. DMR101-IRB1-313 (CR-1)).

Consent
The written informed consent was obtained from the patient's guardian/parent/next of kin for the publication of this report and any accompanying images.

SNP genotyping
Fifty-three single nucleotide polymorphisms (SNPs) of 16 genes within the glutamate receptor gene family including GRIK1, GRIK2, GRIK3, GRIK4, GRIK5, GRIA1, GRIA2, GRIA4, GRM1, GRM2, GRM3, GRM4, GRM5, GRM6, GRM7, and GRM8 were selected from the NCBI SNP database and HAPMAP website (Tables 2 and 3) [52]. Selection criteria for including SNPs in the analysis were a minimum allele frequency of >0.05 in the Han Chinese population and a Hardy-Weinberg equilibrium (p >0.05). A summary of information on the SNPs in the glutamate receptor genes (location, position, rs number, and genotype) is presented in Table 1. Briefly, genomic DNA was extracted from peripheral blood leukocytes according to the standard protocols (Genomic DNA kit; Qiagen). SNPs were genotyped using a custom-designed VeraCode GoldenGate Genotyping Assay System (Illumina); genotyping was performed as outlined in http://www.illumina.com/.

Primers and probes were designed and created using Custom VeraCode GoldenGate Genotyping Assay System software. Genotype calls were automatically generated using GenCall software version 3.1.3. We assessed the 8 VeraCode runs individually for intra-plate inconsistencies (e.g., variation in fluorescence intensities). Genotype cluster plots generated by individual VeraCode and SAM assays were visually inspected for call quality. Plots that appeared to be “unusually” clustered (i.e., unlike the predicted spread in terms of software-generated HWE or

Table 3 Association of GRIK1 genetic polymorphisms with CAA complications in Taiwanese KD children by multivariate regression analysis

GRIK1 genetic polymorphisms	Odds ratio	95% CI	p value
Full model (adjusted by fever duration and first IVIG used time)			
rs466013	2.12	1.22-3.65	0.011
rs425507	2.16	1.26-3.76	0.009
rs388700	2.16	1.26-3.76	0.009
rs402280	1.89	1.09-3.21	0.028

GRIK1, glutamate receptor, ionotropic, kainate 1; IVIG, Intravenous immunoglobulin; CAA, Coronary artery aneurysm; CI, confidence interval. Full model shows results from a logistic regression model including the indicated predictors, fever duration (days) and first IVIG used time (number of days after the first day of fever). Bold italic are significant at p value <0.05.
distance between clusters [9] were investigated further by selecting samples via direct Sanger sequencing for genotype confirmation. Samples were sequenced using Big Dye Terminator v3.1 (AB, Foster City, CA, USA) according to the manufacturer's guidelines, and sequenced with an AB 3730 genetic analyzer.

Analysis of haplotype blocks

Based on the HAPLOVIEW software, we used the Lewontin D' measure to estimate the intermarker coefficient of LD of patients [53]. The confidence interval (CI) of LD was estimated using a resampling procedure and then used to construct the haplotype blocks.

Statistical analyses

Data are expressed as means ± standard deviation for continuous variables. Genotypes were obtained by direct sequencing selecting samples via direct Sanger sequencing for geno-

Additional files

Data are expressed as means ± standard deviation for continuous variables. Genotypes were obtained by direct sequencing selecting samples via direct Sanger sequencing for geno-

Additional file 1: Figure S1.

Search results of single nucleotide polymorphisms (SNPs) of rs466013 from 4 GWAS studies were used for searching for common gene SNPs by using Venny website (http://bioinfogp.cnb.csic.es/tools/venny/).

Figure S2.

Figure S3.

Figure S4.

Figure S5.

Genetic variations within the PSORS1 region affect Kawasaki disease development and coronary artery aneurysm formation. Biomed 2013, 3:73–81.

Chang CI, Kuo HC, Chang JS, Lee JK, Tsai FJ, Khor CC, Chang LC, Chen SP, Kim JJ, Park YM, Yoon D, Lee KY, Seob Song M, Doo Lee H, Kim KJ, Park IS, Yan Y, Ma Y, Liu Y, Hu H, Shen Y, Zhang S, Tao D, Wu Q, Peng Q, Yang Y.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

YJL, JSC, XL, and FJT conceived and designed the experiments. THL, CCL, SMH, CWL, and HT performed the experiments. WKC and JHC analyzed the data. JSC, XL, JYW, CHC, LCC, and TJH contributed reagents/materials/analysis tools. YJL and XL wrote the manuscript. All the authors have read and approved the final manuscript.

Acknowledgments

The authors wish to thank the Department of Pediatrics, China Medical University Hospital (CMUH) for administrative assistance and China Medical University (CMU) under the Aim for Top University Plan of the Ministry of Education, Taiwan. We also thank Drs. Kuan-Teh Jeang, Chia-Yen Chen, and Willy W. L. Hong for technical help and suggestions.

Funding

Financial support for this research was provided by CMU (CMU100-S-01), CMUH (DMD-103-039), and the Republic of China National Science Council (NSC100-2320-B-039-012-MY3).

Author details

1Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. 2School of Chinese Medicine, China Medical University, Taichung, Taiwan. 3Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan. 4National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA. 5Biostatistics Center, China Medical University, Taichung, Taiwan. 6Biostatistics Center and School of Public Health, Taipei Medical University, Taipei, Taiwan. 7Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. 8Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan. 9Division of Chinese Medicine, China Medical University, Beigang Hospital, Yunlin County, Taiwan. 10Division of Chinese Medicine, Tainan Municipal An-Nan Hospital -China Medical University, Tainan, Taiwan. 11Asia University, Taichung, Taiwan.

Received: 7 February 2014 Accepted: 20 October 2014 Published: 19 November 2014

References

1. Burns JC, Glode MP: Kawasaki syndrome. Lancet 2004, 364:533–544.

2. Chang LY, Chang IS, Wu YC, Chiang BL, Lee CY, Chen PJ, Wang JT, Ho HN, Chen DS, Huang LM: Epidemiologic features of Kawasaki disease in Taiwan, 1996–2002. Pediatrics 2004, 114:678–682.

3. Lin W, Liu HP, Chang JS, Lin YJ. Genetic variations within the PSORS1 region affect Kawasaki disease development and coronary artery aneurysm formation. Biomed 2013, 3:73–81.

4. Chang CI, Kuo HC, Chang JS, Lee JK, TsaI FJ, Koor CC, Chang LC, Chen SP, Ko TM, Liu YM, Chen YJ, Hong YM, Jang GY, Hieibberd ML, Kuipers T, Burgner D, Levin M, Burns JC, Davilla S, Chen YT, Chen CH, Wu WY, Lee YC: Replication and meta-analysis of GWAS identified susceptibility loci in Kawasaki disease confirm the importance of B lymphoid tyrosine kinase (BLK) in disease susceptibility. PLoS One 2013, 8:e72037.

5. Kim JJ, Park YM, Yoon D, Lee KY, Seob Song M, Doo Lee H, Kim KJ, Park S, Nam HK, Woon Yun S, Ki HM, Mi Hong Y, Young Jang G, Lee JK: Identification of KCN2 as a susceptibility locus for coronary artery aneurysms in Kawasaki disease using genome-wide association analysis. J Hum Genet 2013, 58:521–525.

6. Yan Y, Ma Y, Liu Y, Hu H, Shen Y, Zhang S, Tao D, Wu Q, Peng Q, Yang Y: Combined analysis of genome-wide linked susceptibility loci to Kawasaki disease in Han Chinese. Hum Genet 2013, 132:669–680.

7. Lin MT, Hsu CL, Chen PL, Yang WS, Wang JK, Fann CS, Wu MH: A genome-wide association analysis identifies novel susceptibility loci for coronary arterial lesions in patients with Kawasaki disease. Trans Res 2013, 161:513–515.

Additional file 2: Table S1.

Characteristics of GWAS studies for KD susceptibility included in this meta-analysis. Table S2. Meta-analysis for previous reported GWAS studies for KD susceptibility.
8. Onouchi Y: Genetics of Kawasaki disease: what we know and don't know. Circ J 2012, 76:1581–1586.
9. Onouchi Y, Ozaki K, Burns JC, Shimizu C, Terai M, Hamada H, Honda T, Suzuki H, Suemaga T, Takeuchi T, Yoshikawa N, Suzuki Y, Yasukawa K, Ebata R, Higashi K, Saji T, Nemmoto T, Takatsuki S, Ouchi K, Kishi F, Yoshikawa T, Nagai T, Hamamoto K, Sato Y, Honda A, Kobayashi H, Sato J, Shibuta S, Miyawaki M, Oishi K, et al.: A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet 2012, 44:517–521.
10. Lee YC, Kuo HC, Chang JS, Chang LY, Huang LM, Chen MR, Dong CD, Li H, Huang FY, Lee ML, Huang YC, Hwang B, Lin TH, Huang SM, Jeang KT, Chen CY, Tsai FJ, Wu JY: Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis. Nat Genet 2012, 44:522–525.
11. Khor CC, Dawila S, Brenkus WB, Lee YC, Shimizu C, Wright VJ, Yeung RS, Tan DE, Sim KS, Wang JJ, Wong TY, Pang J, Mitchell P, Crnac R, Dahndah N, Cheung YT, Huang YC, Yang W, Park IS, Lee JK, Wu JY, Levin M, Burns JC, Burgner D, Kuijpers TW, Hibberd ML: Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Genet 2011, 43:1241–1246.
12. Kim JJ, Hong YM, Sohn S, Jang GY, Ha KS, Yoon SW, Han MK, Lee KY, Song MS, Lee HD, Kim DS, Lee JE, Shin ES, Jang HJ, Lee YS, Kim SY, Lee JH, Bang WJ, Wu JY, Kim KJ, Park YM, Seo EJ, Park IS, Lee JK: A genome-wide association analysis reveals rs131 and rs1030241 as susceptibility loci for Kawasaki disease. Hum Genet 2011, 129:487–495.
13. Burgner D, Dawila S, Brenkus WB, Ng SB, Li Y, Bonnard C, Ling L, Wright VJ, Thalammuthu A, Odmar M, Shimizu C, Burns J, Levin M, Kuijpers TW, Hibberd ML: A genome-wide association study identifies novel and functionally related susceptibility loci for Kawasaki disease. PLoS Genet 2009, 5:e1000319.
14. Tsai FJ, Lee YC, Chang JS, Huang LM, Huang FY, Chiu NC, Chen MR, Chi H, Lee YJ, Chang LC, Liu YM, Wang HH, Chen CH, Chen YT, Wu JY, Lin CW, Lai CH, Tien N, Lan YC, Ho MW, Chien WK, Chen JH, Lin CH: Identification of novel susceptibility loci for Kawasaki disease in a Han chinese population by a genome-wide association study. PLoS One 2011, 6:e16853.
15. Peng Q, Chen C, Zhang Y, He H, Wu Q, Liao J, Li BV, Luo C, Hu X, Zheng Z, Yang Y: Single-nucleotide polymorphism rs2290692 in the 3'UTR of ITPKC associated with susceptibility to Kawasaki disease in a Han Chinese population. Pediatr Cardiol 2012, 33:1046–1053.
16. Delbarre D, Dacougal D, Sourdut V, Russer M: Brain plasticity and ion channels. J Physiol Paris 2003, 97:403–414.
17. Diguet E, Fergnut PO, Normand E, Centelles L, Mulle C, Tison F: Experimental basis for the putative role of GluR6/kainate glutamate receptor subunit in Huntingdon's disease natural history. Neurobiol Dis 2004, 15:675–685.
18. Mildrum B: Amino acids as dietary excitotoxins: a contribution to understanding neurodegenerative disorders. Brain Res Brain Res Rev 1998, 28:193–214.
19. Rogers SW, Andrews P, Gahring LC, Wixsnand T, Cauley K, Crain B, Hughes TE, Heinemann SF, McNamara JO: Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. Science 1994, 265:686–651.
20. Bolton C, Paul C: Glutamate receptors in neuroinflammatory demyelinating disease. Mediators Inflamm 2006, 2006:25684.
21. Chen H: Possible Role of Platelet GluR1 Receptors in Comorbid Depression and Cardiovascular Disease. Cardiovasc Psychiatry Neurol 2009, 2009:42728.
22. Morell CN, Sun H, Ikeda M, Beique JC, Swaim AM, Mason E, Martin TV, Thompson LE, Gozen O, Ampagooman D, Sprengel R, Rothstein JD, Faradny N, Huganir R, Loewenstein CJ: Glutamate mediates platelet activation through the AMPA receptor. J Exp Med 2008, 205:575–584.
23. Lin SH, Maiese K: Group I metabotropic glutamate receptors prevent endothelial programmed cell death independent from MAP kinase p38 activation in rat. Neurosci Lett 2001, 298:207–211.
24. Chen CH, Beard RS, Bearden SE: Homocysteine impairs endothelial wound healing by activating metabotropic glutamate receptor 5. Microcirculation 2012, 19:285–295.
25. Chen Z, Du Z, Liu JF, Lu DX, Li L, Guan YQ, Wang S: Endothelial progenitor cell transplantation ameliorates elastin breakdown in a Kawasaki disease mouse model. Chin Med J (Engl) 2012, 125:2295–2301.
26. Lin YJ, Chang JS, Liu X, Hung CH, Lin TH, Huang SM, Jeang KT, Chen CY, Liao CC, Lin CW, Lai CH, Tien N, Yan YC, Ho MW, Chen KH, Chen HY, Tsai FJ: Association between GRIN3A Gene Polymorphism in Kawasaki Disease and Coronary Artery Aneurysms in Taiwanese Children. PLoS One 2013, 8:e81384.
27. Burgner D, Curtis N: Kawasaki disease as a cause of encephalitis. Arch Dis Child 2011, 96:588–589.
28. Sander T, Hildmann T, Kretz R, Forst R, Sailer U, Bauer G, Schmitz B, Beck-Mannagetta G, Wiener TF, Jand D: Allelic association of juvenile absence epilepsy with a GluR5 kainate receptor gene (GRIK1) polymorphism. Am J Med Genet 1997, 74:416–421.
29. Izi C, Barbon A, Kretz R, Sander T, Barlati S: Sequencing of the GRIK1 gene in patients with juvenile absence epilepsy does not reveal mutations affecting receptor structure. Am J Med Genet 2002, 114:354–359.
30. Shibata H, Joo A, Fujiy T, Tani A, Makino C, Hirata N, Ikuta R, Ninomiya H, Tashiro N, Fukumaki Y: Association study of polymorphisms in the GluR5 kainate receptor gene (GRIK1) with schizophrenia. Psychiatr Genet 2001, 11:39–144.
31. Hirata Y, Zai CC, Souza RP, Lieberman JA, Meltzer HY, Kennedy JL: Association study of GRIK1 gene polymorphisms in schizophrenia: case-control and family-based studies. Hum Psychopharmacol 2012, 27:246–251.
32. Krzaner HR, Gelernter J, Anton RF, Arias AJ, Herman A, Zhao H, Burian L, Covault J: Association of markers in the 3' region of the GluR5 kainate receptor subunit gene to alcohol dependence. Alcohol Clin Exp Res 2009, 33:925–930.
33. Krzaner HR, Covault J, Feinn R, Armeli S, Tenhen H, Arias AJ, Gelernter J, Pond T, Oncken C, Kampman KM: Topiramate treatment for heavy drinkers: moderation by a GRIK1 polymorphism. Am J Psychiatry 2014, 171:445–452.
34. Krzaner HR, Armeli S, Feinn R, Tenhen H, Gelernter J, Covault J: GRIK1 genotype moderates topiramate's effects on daily drinking level, expectations of alcohol's positive effects and desire to drink. Int J Neuropsychopharmacol 2014, 17:549–556.
35. Ray LA, Miranda J, Rick JM, MacKillop J, McGeary J, Tidey JW, Rothenbor D, Gualterney G, Swift RW, Moret PW: A preliminary pharmacogenetic investigation of adverse events from topiramate in heavy drinkers. Clin Psychopharmacol 2009, 29:122–129.
36. Lawand NB, McNearney T, Westlund KN: Amino acid release into the physiological and pathophysiological mechanisms. Pharmacol Ther 2004, 99:1–20.
37. Heintz SF, McNamara JO: Modulation of interleukin-6 and matrix metalloproteinase 2 expression in human fibroblast-like synovocytes by functional ionotropic glutamate receptors. Arthritis Rheum 2007, 56:2525–2534.
38. Lindblad SS, Mydel P, Hellvard A, Jonsson M, Bokarewa MI: The N-methyl-d-aspartic acid receptor antagonist memantine ameliorates and delays the development of arthritis by enhancing regulatory T cells. Neurosignals 2012, 20:571–7.
39. Miller KE, Hoffman EM, Suthathian M, Schechter R: Glutamate pharmacology and metabolism in peripheral primary afferents: physiological and pathophysiological mechanisms. Pharmacol Ther 2011, 130:283–309.
40. Burns JC: Commentary: translation of Dr. Tomisaku Kawasaki's original report of fifty patients in 1967. Pediatr Infect Dis J 2002, 21:993–995.
41. Sharp CD, Houghton J, Eldow JW, Warren A, Jackson TH, Jawahar A, Nanda A, Minagar A, Alexander JS: N-methyl-D-aspartate receptor activation in human cerebral endothelium promotes intracellular oxidative stress. Am J Physiol Heart Circ Physiol 2005, 288:H1893–H1899.
42. Yoshio T, Okamoto H, Hioraha S, Minoda S: IgG anti-NR2 glutamate receptor autoantibodies from patients with systemic lupus erythematosus activates endothelial cells. Arthritis Rheum 2013, 65:457–463.
43. Weng KP, Ou SF, Lin CC, Hsieh KS: Recent advances in the treatment of Kawasaki disease. J Chin Med Assoc 2011, 74:481–484.
46. Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Bums JC, Shulman ST, Bolger AF, Ferrieri P, Baltimore RS, Wilson WR, Baddour LM, Levison ME, Pallasch TJ, Falace DA, Taubert KA: Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 2004, 114:1708–1733.

47. Falcini F: Kawasaki disease. Curr Opin Rheumatol 2006, 18:33–38.

48. Lin YJ, Chang JS, Liu X, Lin TH, Huang SM, Liao CC, Lin CW, Chien WK, Chen JH, Wu JY, Chen CH, Chang LC, Tsang H, Jeang KT, Chen CY, Tsai FJ: Sorting nexin 24 genetic variation associates with coronary artery aneurysm severity in Kawasaki disease patients. Cell Biosci 2013, 3:44.

49. Lin YJ, Lan YC, Lai CH, Lin TH, Huang SM, Liao CC, Lin CW, Hung CH, Tien N, Liu X, Chien WK, Chen JH, Tsai FJ: Association of Promoter Genetic Variants in Interleukin-10 and Kawasaki Disease With Coronary Artery Aneurysms. J Clin Lab Anal 2014, 28:461–464.

50. Kim S, Dedeoglu F: Update on pediatric vasculitis. Curr Opin Pediatr 2005, 17:695–702.

51. Matsubara T, Furukawa S, Yabuta K: Serum levels of tumor necrosis factor, interleukin 2 receptor, and interferon-gamma in Kawasaki disease involved coronary-artery lesions. Clin Immunol Immunopathol 1990, 56:29–36.

52. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K: dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001, 29:308–311.

53. Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21:263–265.

doi:10.1186/2045-3701-4-67

Cite this article as: Lin et al: Genetic variants of glutamate receptor gene family in Taiwanese Kawasaki disease children with coronary artery aneurysms. Cell & Bioscience 2014 4:67.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit