Localization of the DMDL Gene-encoded Dystrophin-related Protein Using a Panel of Nineteen Monoclonal Antibodies: Presence at Neuromuscular Junctions, in the Sarcolemma of Dystrophic Skeletal Muscle, in Vascular and Other Smooth Muscles, and in Proliferating Brain Cell Lines

Nguyen thi Man,* J. M. Ellis,* D. R. Love,‡ K. E. Davies,‡ K. C. Gatter,§ G. Dickson,‖ and G. E. Morris*

*Research Division, N. E. Wales Institute, Deeside, Clwyd, CH5 4BR, Great Britain; ‡Molecular Genetics Group, Institute of Molecular Medicine; and ‖Department of Pathology, John Radcliffe Hospital, Oxford, OX3 9DU, Great Britain; and ‖Department of Experimental Pathology, Guy’s Hospital Medical School, London, SE1 9RT, Great Britain

Abstract. mAbs have been raised against different epitopes on the protein product of the DMDL gene, which is an autosomal homologue of the X-linked DMD gene for dystrophin. These antibodies provide direct evidence that DMDL protein is localized near acetylcholine receptors at neuromuscular junctions in normal and nzdx mouse intercostal muscle. The primary location in tissues other than skeletal muscle is smooth muscle, especially in the vascular system, which may account for the wide tissue distribution previously demonstrated by Western blotting. The DMDL protein was undetectable in the nonjunctional sarcolemma of normal human muscle, but was observed in nonjunctional sarcolemma of Duchenne muscular dystrophy patients, where dystrophin itself is absent or greatly reduced. The expression of DMDL protein is not restricted to smooth and skeletal muscle, however, since relatively large amounts are present in transformed brain cell lines of both glial and Schwann cell origin. This contrasts with the low levels of DMDL protein in adult brain tissue.

Materials and Methods

mAb Production

The expression plasmid was produced by cloning a 1.05-kb fragment of Bfm3 cDNA (10, 11) into the SmaI site of pEX2. The fragment starts at nucleotide 510 in the sequence (10) and the plasmid was introduced into E. coli POP2136. Induction by incubation at 42°C and purification of the 155-kD β-galactosidase fusion protein by extraction of inclusion bodies with 2% SDS and gel filtration on Ultragel AcA34 (LKB Instruments, Inc., Gaithersburg, MD) were performed as described previously (12). mAbs were produced by immunization of Balb/c mice and fusion of spleen cells with Sp2/0 myeloma cells as described previously (12). Hybridoma culture supernatants were screened initially by ELISA using microtiter plates coated with fusion protein or with β-galactosidase alone and were further selected for binding to a 400-kD protein on Western blots of human lung extracts. All hybridoma cell lines were subcloned twice by limiting dilution. The immunoglobulin subtype of each antibody was determined with an isotyping kit (Serotec, Oxford, UK).
Results

Fifty-six percent of normal muscle sections showed that the MAb (MANCH01-19) bind to a single lane of the blot. On Western blots, the 10 DMDL-specific mAbs (MANCH01-10) bind to a 400K protein in both normal and mdx mouse muscle and, in characteristically larger amounts, in both normal and mdx lung (Fig. 1); our previous results with polyclonal antisera have shown that mdx lung expresses more DMDL protein than mdx muscle (11). Dystrophin, in contrast, is found in large amounts in normal muscle and in smaller amounts in normal lung, but is absent from mdx tissues (Fig. 1). Both dystrophin-specific and cross-reactive antibodies show characteristic sarcolemmal immunostaining of normal human and mouse frozen muscle sections, but DMDL-specific antibodies do not stain normal muscle sarcolemma (Figs. 2 and 3). These results show the specificity of the mAbs for their respective antigens in both SDS-denatured and native states.

Two MAbs were tested for staining of Duchenne sarcoclemma as in Fig. 3. a) Antibodies were placed in seven different epitope mapping groups from their binding to different subfragments of the DMDL fusion protein (manuscript in preparation; see refs 8, 12, 13). b) Antibodies were tested for staining of Duchenne sarcoclemma as in Fig. 3. w, weak.

Table I. Characterization of 19 mAbs against the COOH-terminal Region of the Chromosome 6 Homologue of Human Dystrophin

Antibody	Subtype	Dys*	Lung†	NMJ	Group	DMDL membrane
MANCH01	G1	+	+	+	3	ND
MANCH02	G1	+	+	+	4	ND
MANCH03	G1	+	+	+	4	ND
MANCH04	G1	+	+	w	4	ND
MANCH05	G1	+	w	ND	4	ND
MANCH06	G1	+	+	+	4	ND
MANCH07	G2a	+	+	5		
MANCH08	G2a	+	+	+	5	
MANCH09	G2a	w	w	5		
MANCH10	G2a	+	+	2		

* Only MANCH01-19 cross-reacted with the corresponding region of dystrophin in a fusion protein on ELISA plates and they also gave typical dystrophin membrane staining (Dys) on frozen human muscle sections.
† All antibodies reacted with a 400K homologous band on Western blots of human lung and mdx mouse lung, though with different intensities.

Antibody	Subtype	Dys*	Lung†	NMJ	Group	DMDL membrane
MANCH011	G1	+	+	+	3	ND
MANCH012	G1	+	+	3		
MANCH013	G1	+	w	3		
MANCH014	G1	+	+	3		
MANCH015	G1	+	+	6		
MANCH016	G3	+	+	6		
MANCH017	G2a	+	+	6		
MANCH018	G1	+	+	7		
MANCH019	G1	+	+	1	ND	

The Journal of Cell Biology, Volume 115, 1991

1696
Figure 1. Western blots of DMDL protein and dystrophin (DYS) in normal and mdx mouse lung and muscle extracts. The blots were incubated with MANCH07 antibody for DMDL protein and MANDYS1 for dystrophin. We have optimized this method for detection of the low levels of DMDL protein in muscle and, consequently, the dystrophin band in normal muscle appears overloaded and distorted. The smaller band at ~180 kD is a degradation product of dystrophin. MANCH07 is among the weaker of the DMDL-specific monoclonals on Western blots of SDS-denatured proteins (Table I and Fig. 5), but is shown because it reacts well with native DMDL protein on frozen sections and was used in Figs. 2-4 for this reason.

but shows no binding to mdx muscle (since dystrophin is absent in mdx). Other mAbs that recognize five additional DMDL epitopes also showed neuromuscular junction staining in mdx muscle (Table I). Two mAbs (MANCHO16 and 18) failed to stain neuromuscular junctions because they require denatured DMDL antigen and so bind on Western blots but not frozen sections.

Fig. 3 shows that in human thigh muscle (where neuromuscular junctions are uncommon) DMDL-specific mAbs show little or no detectable staining of the sarcolemma of normal fibers, but they do show significant membrane staining on a large proportion of fibers from Duchenne patients. The situation is the reverse of that seen with antidystrophin antibodies, which stain normal but not Duchenne muscle (Fig. 3). Although the extent and intensity of staining varied between fibers, at least 50–80% of Duchenne fibers showed some membrane staining with anti-DMDL antibodies, compared with the very much smaller proportion of dystrophin-positive fibers (1–3%) frequently reported in Duchenne patients. This result has been obtained with antibodies in five epitope groups tested on three different Duchenne patients. Sarcolemmal staining of DMDL protein is also detectable in mdx muscle (Fig. 2), even though background staining is higher on mouse than on human sections. One antibody, MANCHO4, which was negative on Duchenne membranes, was also weak on neuromuscular junctions and is probably too weak to detect low antigen levels (Table I). It is not uncommon for mAbs to show a strong preference for either native or denatured antigen.

Figure 2. Immunolocalization of DMDL protein and dystrophin (DYS) with acetylcholine receptors in normal and mdx mouse muscle sections by double labeling. MANCH07 antibody for DMDL and MANDYS1 for dystrophin were used, followed by a mixture of rhodamine-labeled rabbit anti-(mouse Ig) and fluorescein-labeled α-bungarotoxin.
Fig. 4 shows the localization of DMDL protein in human uterus sections using the homologue-specific antibody, MANCH07, and illustrates both the intense staining of vascular smooth muscle in blood vessels and the rather less intense staining of bands of myometrial smooth muscle throughout the surrounding tissue (Fig. 4 a). At lower magnification (Fig. 4 c), it is clear that each of these sites makes a significant contribution to the total DMDL protein content of this tissue. We have observed similar binding of DMDL-specific antibodies to blood vessels in other tissues, including lung, heart, liver, brain, and testis (results not shown).

Fig. 5 a shows that a 400K protein comigrating with dystrophin can be detected by all anti-DMDL protein antibodies tested on Western blots of extracts of proliferating tumor cell lines of both glial and Schwann cell origin. Variation in intensity of the 400K band probably reflects differences in antibody affinity for SDS-denatured DMDL protein, since it correlates well with intensity of staining of the human lung 400-kD protein by the same antibodies (Table I), notably the weak reaction of MANCH09 in lane 12. These differences make it difficult to obtain an absolute value for the ratio of DMDL protein to dystrophin. It is clear, however, that the ratio of DMDL protein to dystrophin is much higher in the cell lines than in adult brain tissue, when Western blots of the same samples are compared using dystrophin-specific MANDYSI and DMDL-specific MANCHOI (Fig. 5 a, lanes 2 and 9, and Fig. 5 b). The subcellular localization of DMDL protein in these cultured cells has not yet been determined, because of technical problems arising from their small size and rounded morphology.

Discussion

We have shown that several different mAbs against the 400-kD autosomal homologue of dystrophin localize this protein to the neuromuscular junction and to smooth muscle. The latter observation explains our recent demonstration that lung has high levels of DMDL protein, relative to other tissues, and that high levels of DMDL transcripts are found in placenta (11). It remains to be seen whether all highly vascular tissues contain high levels of the homologue, but its presence in tissue culture cells (Fig. 5) shows that it is not merely a smooth muscle isoform of dystrophin. Nevertheless, the uniform staining of myometrial smooth muscle cells in uterus (Fig. 4) contrasts strongly with the absence of staining in skeletal muscle fibers (Fig. 3), except at neuromuscular junctions. Both DMDL protein and dystrophin itself are present at neuromuscular junctions (Fig. 2). Pons et al. (14) have described neuromuscular junction staining in mdx and Duchenne skeletal muscle by antibodies raised against the COOH-terminal region of dystrophin and have suggested that cross-reaction with a dystrophin-like protein is responsible. Our neuromuscular junction staining using several mAbs raised against DMDL sequences provides direct evidence that the antigen involved is an authentic product of the DMDL gene, as opposed to indirect evidence obtained using cross-reactive ant dystrophin antibodies.

The DMDL-specific mAbs do not stain nonjunctional membranes of normal human muscle, but they do stain Duchenne membranes, though rather weakly. Similar results have been obtained by Tanaka et al. (16, 17). They raised a
polyclonal antiserum against a 51 amino-acid synthetic peptide near the COOH terminus of the DMDL homologue and observed weak staining of normal muscle membranes, but much more intense staining of Duchenne and mdx mouse membranes. These authors point out that, although the DMDL protein is likely to be responsible, the possibility of cross-reaction by other proteins that share an epitope with DMDL protein cannot be ruled out. Antibodies (monoclonal or polyclonal) may cross-react with epitope-sharing proteins on immunostained sections, even though they do not cross-react on Western blots, and vice versa. A polyclonal antiserum raised against dystrophin, for example, has been shown to stain both dystrophin and actinin in frozen sections, though dystrophin was difficult to detect on Western blots (6). Without an available mutation resulting in absence of the DMDL homologue (like the mdx and Duchenne mutations for dystrophin), it is impossible to entirely rule out cross-reactions with proteins other than DMDL and dystrophin. mAbs against different epitopes on the DMDL protein, however, do resolve this problem to a considerable extent and the fact that a number of different mAbs bind to the neuromuscular junction, vascular smooth muscle, the Duchenne membrane, and transformed brain cell lines makes it more likely that they are binding to authentic DMDL antigen at all four locations. These data are a considerable advance on our earlier studies (11) and those of Khurana et al. (7), in which potentially cross-reactive polyclonal antisera against large fragments of recombinant DMDL protein were used for Western blotting.

There is evidence to suggest that there is more DMDL mRNA and protein in fetal tissues than in adult tissues (7, 11) and several proteins associated with the neuromuscular junction, including the acetylcholine receptor, have a more general membrane distribution on immature, denervated, or regenerating fibers (15). Regenerating fibers might explain the presence of DMDL-positive membranes in Duchenne muscle (Fig. 3). The high levels of DMDL protein in proliferating brain cell tumor lines, relative to adult brain tissue (Fig. 5), are also consistent with expression in predifferentiation cells and tissues. Fetal tissues, however, may also be more highly vasculated than adult tissues so that blood vessels could make a significant contribution to fetal DMDL
tein concentrations in the two extracts. (b) Identical amounts of muscle appears overloaded and distorted. Fig. 1, when conditions are used that reveal the low levels of both twoblots, which were developed with MANCHOI (lane 9 in a) for bind both DMDL and dystrophin (lanes 3-7; MANCHO 17, 15, 11, different mAbs applied in the “miniblotter” multiple lane blotting apparatus. Two dystrophin-specific antibodies (lanes 1 and 2; MANDYS16 and MANDYS1 [12]), five DMDL-specific antibodies (lanes 8-12; MANCHO 7, 1, 2, 3, and 9), and five antibodies that bind both DMDL and dystrophin (lanes 3-7; MANCHO 17, 15, 11, 18, and 19) were used. The intensity differences between glioma and Schwannoma blots may be accounted for by different total protein concentrations in the two extracts. (b) Identical amounts of the same extracts of Balb/c mouse brain and muscle were used for the two blots, which were developed with MANCHO1 (lane 9 in a) for DMDL and MANDYS1 (lane 2 in a) for dystrophin (DYS). As in Fig. 1, when conditions are used that reveal the low levels of both DMDL and dystrophin in adult brain, the dystrophin band in adult muscle appears overloaded and distorted.

protein and mRNA levels in some tissues. In dystrophic muscle, the homologue may be occupying some of the membrane sites left vacant by the absence of dystrophin. This raises the intriguing question of whether the homologue can perform any dystrophin-like functions at the muscle membrane. The immunohistochemical analysis of the developmental expression of the DMDL protein and identification of proteins with which it interacts should provide some insight into its function.

We thank J. Bloomfield and H. Turley for technical assistance; Tim Hel-lwell (Royal Liverpool Hospital) for normal and Duchenne human muscle sections; Graham Butfield (Agriculture and Food Research Council, East Lothian) for mdx mice; and Eijiro Ozawa (National Institute of Neuroscience, Japan) for communicating results before publication.

We thank the Muscular Dystrophy Group of Great Britain and Northern Ireland for grant support (to G. E. Morris and K. E. Davies).

Received for publication 17 July 1991 and in revised form 21 August 1991.

References

1. Bar, S., E. Barnea, Z. Levy, S. Neuman, D. Yaffe, and U. Nudel. 1990. A novel product of the Duchenne muscular dystrophy gene which greatly differs from the known isoforms in its structure and tissue distribution. Biochem. J. 272:557–560.

2. Buckle, V. J., J. L. Guenet, D. Simonchazottes, D. R. Love, and K. E. Davies. 1990. Localisation of a dystrophin-related autosomal gene to 60q24 in man, and to mouse chromosome 10 in the region of the dystrophy muscularis (Dy) locus. Hum. Genet. 85:324–326.

3. Fambrough, D. M. 1979. Control of acetycholine receptors in skeletal muscle. Physiol. Rev. 59:165–227.

4. Fardeau, M., F. M. S. Tome, H. Collin, N. Augier, F. Pons, J. O. C. Leger, and J. Leger. 1990. Immunocytochemical detection of a dystrophin-like protein in the neuromuscular junctions in Duchenne Muscular Dystrophy and in mdx mice. J. Neurol. Sci. 98 (Suppl):232.

5. Hoffman, E. P., R. H. Brown, and L. M. Kunkel. 1987. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 51:919–928.

6. Hoffman, E. P., S. C. Watkins, H. S. Slattery, and L. M. Kunkel. 1989. Detection of a specific isoform of alpha-actinin with antisera directed against dystrophin. J. Cell Biol. 108:503–510.

7. Khurana, T. S., E. P. Hoffman, and L. M. Kunkel. 1990. Identification of a chromosome-6-encoded dystrophin-related protein. J. Biol. Chem. 265:16171–16172.

8. Koenig, M., and L. M. Kunkel. 1990. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J. Biol. Chem. 265:4560–4566.

9. Koenig, M., A. Monaco, and L. M. Kunkel. 1988. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53:219–226.

10. Love, D. R., D. F. Hill, G. Dickson, N. K. Sparr, B. C. Byth, R. F. Marsden, F. S. Walsh, Y. H. Edwards, and K. E. Davies. 1989. An autosomal transcript in skeletal muscle with homology to dystrophin. Nature (Lond.). 339:55–58.

11. Love, D. R., G. E. Morris, J. M. Ellis, U. Fairbrother, R. F. Marsden, J. R. Bloomfield, Y. H. Edwards, C. P. Slater, D. J. Parry, and K. E. Davies. 1991. Tissue distribution of the dystrophin-related gene product and expression in the mdx and dy mouse. Proc. Natl. Acad. Sci. USA 88:3243–3247.

12. Nguyenthi Man, A. J. Cartwright, G. E. Morris, D. R. Love, J. R. Bloomfield, and K. E. Davies. 1990. Monoclonal antibodies against defined regions of the muscular dystrophy protein, dystrophin. FEBs (Fed. Eur. Biochem. Soc.) Lett. 262:237–240.

13. Nguyenthi Man, J. M. Ellis, I. B. Giinjaar, M. M. B. van Paassen, G.-J. B. van Ommen, A. F. M. Moorman, A. J. Cartwright, and G. E. Morris. 1990. Monoclonal antibody evidence for structural similarities between the central rod regions of actinin and dystrophin. FEBs (Fed. Eur. Biochem. Soc.) Lett. 272:109–112.

14. Pons, F., N. Augier, J. O. C. Leger, A. Robert, F. M. S. Tome, M. Fardeau, T. Voit, L. V. B. Nicholson, D. Mornet, and J. J. Leger. 1991. A homologue of dystrophin is expressed at the neuromuscular junctions of normal individuals and DMD patients, and of normal and mdx mice: immunological evidence. FEBs (Fed. Eur. Biochem. Soc.) Lett. 282:161–165.

15. Stutz, J. R., M. Schachner, and J. Covault. 1986. Expression of several adhesive macromolecules (N-CAM, L1, J1, uvoomurin, laminin, fibronectin and a heparan sulfate proteoglycan) in embryonic, adult and denervated adult skeletal muscle. J. Cell Biol. 102:420–431.

16. Tanaka, H., T. Shimizu, and E. Ozawa. 1989. Expression of dystrophin-like protein on the surface membrane of muscle cells in mdx mice. Proc. Japan Acad. Ser. B. 65:238–241.

17. Tanaka, H., T. Ishiguro, C. Eguchi, K. Saito, and E. Ozawa. 1991. Expression of a dystrophin-related protein associated with the skeletal muscle cell membrane. Histochemistry. 96:1–5.

18. Tenekecon, G., J. Yoshino, K. W. L. Peden, J. Bigbee, J. L. Rukowsi, Y. Kishimoto, G. H. de Vries, and G. M. McKhann. 1987. Transfection of neonatal rat Schwann cells with SV-40 large T antigen gene under control of the metallothioinein promoters. J. Cell Biol. 105:2315–2325.