Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells*

NASA-CR-205161

Carmen E. Perrone+, Daniela Fenwick-Smith, and Herman H. Vandenburgh

From the Department of Pathology, Brown University School of Medicine and The Miriam Hospital, Providence, Rhode Island 02906

Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vitro. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/μg of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24–72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2–5-fold increase in long-term IGF-1 efflux over 24–72 h. Collagen also caused a 2–5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

Insulin-like growth factors (IGFs) are potent mitogens involved in stimulating skeletal muscle growth (1–4). They increase amino acid uptake and protein synthesis, decrease protein degradation, and stimulate the proliferation and differentiation of skeletal muscle cells (2, 5–10). IGFs have been shown to be secreted from several mammalian skeletal muscle cell lines (8, 11, 12). A number of studies have revealed that IGF-2 is released during myoblast proliferation while IGF-1 efflux is observed during skeletal muscle differentiation (1, 8). Increases in IGF-1 mRNA have been observed during muscle regeneration after injury (13–15), and during work-induced compensatory hypertrophy (16). It has been suggested that the increased secretion of IGF-1 during work-induced hypertrophy (16) may promote the accumulation of proteins in skeletal muscle cells by an autocrine mechanism but the level of IGF-1 release from skeletal muscle cells undergoing hypertrophy is not known.

The mitogenic effects of insulin-like growth factors are regulated by their binding proteins (reviewed in Refs. 17–20). IGF binding proteins are released from cells which also secrete insulin-like growth factors (1, 18, 21, 22). They have been well characterized in serum in vivo (23) and in conditioned medium from tissue-cultured fibroblasts, liver cells, smooth muscle, decidual cells, and mammalian skeletal myoblasts (reviewed in Refs. 1, 18, 21, and 22). The efflux of IGF binding proteins from these cultured cells correlates with changes in the secretion of IGF-1. Thus, during C2 skeletal muscle cell line differentiation, increased secretion of IGF-1 is accompanied by increased release of IGF binding proteins (1). There are no reports on IGF binding protein efflux during either skeletal muscle repair or skeletal muscle hypertrophy.

This study was conducted to first establish whether primary cultures of differentiated avian skeletal muscle cells secrete IGF-1 and IGF binding proteins in a manner similar to tissue-cultured mammalian skeletal muscle cell lines. Second, using blocking antibodies, we determined whether IGF-1 secreted by the muscle cells could act as an autocrine/paracrine growth stimulator. Third, we determined the effect of repetitive mechanical stimulation on the sensitivity of the cells to exogenous IGF-1. Finally, the effect of mechanical stimulation on the autocrine secretion of IGF-1 and IGF binding proteins from the cultured avian pectoralis skeletal muscle cells was examined. The results indicate that IGF-1 is an autocrine/paracrine growth factor in differentiated avian pectoralis skeletal muscle cultures. Repetitive mechanical stimulation of the muscle cells increased the sensitivity of the cells to exogenous IGF-1, and acutely stimulated IGF-1 release; but it had no long-term effect on either IGF-1 or IGF binding protein release. In contrast, the release of IGF-1 and IGF binding proteins from the muscle cells was dramatically stimulated by embedding the cells in a three-dimensional collagen type I matrix after myofiber formation. This stimulated release of IGF-1 by type I collagen may be responsible for its ability to stimulate skeletal myofiber growth in vitro (24).

EXPERIMENTAL PROCEDURES

Materials—Fertilized Leghorn chicken eggs were purchased from Beaver River Farm, Kingstown, RI. Silicone rubber elastic membranes were from Dow Corning Corp., Midland, MI. Rat tail type I collagen was obtained from Collaborative Biomedical Products, Bedford, MA. Eagle's basal medium, penicillin, glutamine, and trypsin were from Life Technologies, Inc., Grand Island, NY. C18 Sep-Pak cartridges were obtained from Waters, Division of Millipore, Bedford, MA. Protein assay kits were purchased from Pierce.

1*P-Insulin-like growth factor-1, donkey anti-rabbit antibody, and 1-[U-14C]phenylalanine were from

Abbreviations

MM medium, muscle maintenance medium; PGM, program.
stretches the substratum with 2-ram diameter vertically moving (TRIAL39.PGM, Fig. 1). The cells were mechanically stimulated by (five by a cell stimulator while the other 18 wells were mechanically stimulated with selenate, 6 mM glutamine. The rinsed cells were incubated in defined serum-free medium with either 25 or 250 μg/ml anti-IGF-1 antibody. During the last 4-6 h of incubation, protein synthesis rates were measured as outlined below.

IGF-1 mRNA Determination—Total RNA was extracted using the RNeasy kit method (CINNA/BioTech, Houston, TX), and yielded 1-2 μg/10^6 cells, as determined spectrophotometrically. The integrity of the RNA was checked by agarose gel electrophoresis by standard techniques (28). Northern blots for IGF-I mRNA were performed by separating 10-20 μg of total RNA on 1% agarose gels, transferring the RNA by capillary action to Biotrans membranes (ICN, Costa Mesa, CA) and baking for 2 h at 68 °C, prehybridizing at 42 °C for 1 h (5 × Denhardt's, 5 × SSC, 50 mM sodium phosphate, pH 6.5, 0.1% SDS, 250 μg/ml salmon sperm DNA, 50% formamide), and hybridizing overnight at 42 °C in prehybridization solution containing 10^6 cpm of 32P-labeled IGF-I antisense probe. Posthybridization washes were performed according to the ICN Biotechnologies protocol. The membranes were exposed to Hyperfilm X-ray film (Amersham) for 24 h at ~80 °C using 1 intensifying screen. Ribonuclease protection assays for IGF-I mRNA determination were also performed (28) on 20-40 μg of total RNA, using a commercially available kit (RBA-II, Ambion, Austin, TX). A pPCR2 BlueScript plasmid (gift of P. Rotwein) containing the cDNA sequence for chicken IGF-I was used to prepare the IGF-I mRNA probe. The plasmid was linearized at the BamHI site, and 32P-labeled antisense IGF-I probe prepared with [32P]CTP (Amersham) MAXIscript T3 transcription kit (Ambion). The probe was purified on 5% polyacrylamide, 8 M urea gels. Linearized pHPlExScript plasmid (Ambion) containing 1-250-base pair mouse actin gene fragment was utilized as a control clone. In all experiments, Torula yeast RNA served as a negative control, while total adult mouse liver total RNA, chicken 12-day embryo skeletal muscle, and eye total RNA served as positive controls.

Biochemical Assays—Cells were collected, rinsed twice in phenol red-free Earle's balanced saline solution, and stored at ~80 °C. Protein assays were performed on cell sonicate aliquots using the biocinchonic acid protein assay as described previously (25). Protein synthesis was determined using [1-14C]phenylalanine incorporation into trichloro-
acetic acid-insoluble material during a 4–6-h incubation period as described previously by Vandenburgh et al. (29). Incorporation is linear during this time period and excess nonradioactive phenylalanine was included in the medium (0.5 mM) to allow rapid equilibration of the intracellular and extracellular amino acid pools (30). DNA was measured fluorometrically by the modified method of Labarca and Paigen (31).

Electrophoresis and Ligand Blotting—IGF binding proteins in the conditioned medium were examined using gel electrophoresis and ligand blotting (23, 32, 33). Four parts of conditioned medium were mixed with one part nonreducing sample buffer (0.5 M Tris-HCl, pH 6.8, 10% (w/v) glycerol, 12.5% (w/v) sodium dodecyl sulfate, and 0.05% (w/v) bromphenol blue), boiled for 5 min, and cooled to 21 °C. The proteins in the conditioned medium were separated by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis prepared according to Laemmli (32). The proteins were transferred to nitrocellulose paper by Western blotting (33), and identified by the 125I-IGF-1 ligand blotting technique (23).

Briefly, the nitrocellulose membrane was air-dried at room temperature, soaked for 30 min (4 °C) in saline (0.15% NaCl, 0.5 mM mg/ml sodium azide, 0.01% (w/v) Tris-HCl, pH 7.4) with 3% (w/v) Nonidet P-40, 0.2 h (4 °C) in saline with 1% bovine serum albumin, and 10 min (4 °C) in saline with 0.1% (w/v) Tween 20. The washed membranes were incubated overnight (4 °C) in saline, 1% (w/v) powdered milk, 0.1% Tween 20, and 500,000 cpm of 125I-IGF-1. After extensive rinsing in saline, the membrane was air-dried, and exposed to x-ray film for varying times at ~80 °C with two intensifying screens. The amounts of labeled binding proteins were determined quantitatively by densitometric scanning of preflashed x-ray autoradiographs using a computerized image analysis system (JAVA and PEAKFIT, Jandel Scientific, Corte Madera, CA).

Statistical analyses of the data were performed by t tests for unpaired values using a statistical software program (SIGMASTAT, Jandel Scientific).

RESULTS

Stretch Responses of Skeletal Muscle Cells to IGF-1 and Insulin—The relationship between mechanical stimulation, cell growth, and IGF-1 was first examined by performing protein synthesis-IGF-1 dose-response studies on collagen-embedded static control and mechanically stimulated skeletal muscle cultures. As previously reported for control muscle cell cultures (4), nanomolar concentrations of IGF-1 did not stimulate protein synthesis or cell growth (Fig. 2A). In contrast, at concentrations which were ineffective in static cultures, IGF-1 stimulated cell growth (Fig. 2A) and protein synthesis (Fig. 2B) in mechanically-stimulated cells. In addition, myosin heavy chain content was also increased in mechanically-stimulated cells by doses of IGF-1 (12 nM) that were ineffective in control static cultures (3.5 nM versus 12 nM, Fig. 2D). Insulin, at a concentration of 5 μM, was inactive in stimulating cell growth in static cultures, but the same concentration caused a significant increase in protein/DNA ratios in mechanically-stimulated cells (Fig. 2A). The effect of insulin on protein synthesis in the muscle cell cultures was also enhanced significantly by stretch (Fig. 2C). Insulin was active only at pharmacological doses in stimulating muscle cell growth since most of its growth-stimulatory effects are via the IGF-1 receptor, for which it has a low affinity (4). Similar results were obtained in three separate experiments. These data indicate that mechanical stimulation increases the sensitivity of skeletal muscle cells to exogenously added IGF-1 and insulin.

Effect of Collagen on the Autocrine Secretion of IGF-1 from Differentiated Skeletal Muscle Cells—One mechanism by which stretch could increase the cell's growth response to exogenously added IGF-1 would be by supplementing this with endogenously produced IGF-1. Insulin-like growth factors have been reported in conditioned medium from mammalian skeletal muscle cell lines but not primary avian muscle. Therefore, the endogenous secretion of IGF-1 from differentiated avian skeletal muscle cells was examined. The influence of embedding the muscle cells in a three-dimensional collagen gel matrix on IGF-1 efflux was measured first since the muscle cells withstand long-term repetitive stretch better when supported by an extracellular matrix (24). Collagen-embedded day 6 muscle cultures grown in plastic culture dishes were found to release 5.1 ± 0.9 pg of IGF-1/μg of protein from 0 to 24 h and 3.4 ± 0.6 pg of IGF-1/μg of protein from 24 to 48 h, which was 3–11 times greater than IGF-1 efflux from noncollagen-embedded cells (Fig. 3). The level of IGF-1 release varied significantly between different cell preparations, from 3 to 34 pg/μg of protein/24 h. The reason for this wide fluctuation in IGF-1 release from primary cell cultures is not known but it has been also found for other growth factors released from these cells (30). Each experiment was therefore repeated with at least two different cell preparations.

Within the same cell preparation, IGF-1 release was always greater when the muscle cells were grown on the elastic membranes of the mechanical cell stimulator compared to plastic...
conditioned medium resulted from IGF-1 trapped from serum indicate that only a small percent of the IGF-1 released into the radioactivity in the original 85/10/5 medium. These results suggest that the IGF-1 release from collagen-embedded cultures was due to the cells releasing the IGF-1 from the matrix. The 12sI-IGF-1 measured in homogenates of the collagen-embedded gels, 10-15-fold less than the IGF-1 released from collagen-embedded cultures, was approximately 20-80 pg/µg of protein, and there was no significant difference between control and stretched cultures. The effect of stretch on IGF-1 release from skeletal muscle cells grown on silicone rubber membranes was investigated next. The cells were mechanically stimulated 6.7-21% every 30 min from day 6 to day 9 postplating as outlined under “Experimental Procedures.” The efflux of IGF-1 into the medium over a 12-24 h period was approximately 20-80 pg/µg of protein, and there was no significant difference between control and stretched cultures (Fig. 4). No responses to mechanical stimulation were observed when muscle cells were stretched for up to days 10 and 11 postplating (data not shown).

To examine the time course of IGF-1 efflux with stretch, day 6 noncollagen-embedded cells were mechanically stimulated using the TRIAL39.PGM activity pattern, and conditioned medium was collected at 1, 2, 4, 5, 12, and 24 h of stretch, with fresh medium added to the cultures at each time point. The efflux of IGF-1 from the muscle cells (Fig. 5B). To examine the time course of IGF-1 efflux with stretch, day 6 noncollagen-embedded cells were mechanically stimulated using the TRIAL39.PGM activity pattern, and conditioned medium was collected at 1, 2, 4, 5, 12, and 24 h of stretch, with fresh medium added to the cultures at each time point. Non-collagen-embedded cultures were used in these kinetic studies to eliminate the collagen as a potential diffusion barrier. While total accumulated release of IGF-1 over the 24-h incubation period was not significantly different in these noncollagen-embedded cultures (control static cultures: 18.7 pg of IGF-1/µg of protein/24 h; stretched cultures: 16.4 pg of IGF-1/µg of protein/24 h), as found for the collagen-embedded culture experiments described above, the kinetics of IGF-1 release was significantly different between control and stretched cells. IGF-1 release from static control cells increased rapidly during the first 4 h and then increased at a slower rate over the remaining 20-h period (Fig. 6). IGF-1 release from stretched cells was significantly increased.

Effect of Mechanical Stimulation on IGF-1 Release from Cultured Skeletal Muscle Cells—To assess the effect of stretch on IGF-1 release, 6-day-old collagen-embedded cultures of differentiated skeletal muscle cells grown on silicone rubber membranes were mechanically stimulated 12% every 30 min from day 6 to day 9 postplating as outlined under “Experimental Procedures.” The efflux of IGF-1 into the medium over a 12-24 h period was approximately 20-80 pg/µg of protein, and there was no significant difference between control and stretched cultures (Fig. 4). No responses to mechanical stimulation were observed when muscle cells were stretched for up to days 10 and 11 postplating (data not shown). The effect of different patterns of mechanical stimulation on IGF-1 efflux from the collagen-embedded muscle cells was examined next. The cells were mechanically stimulated 6.7-21% every 30 min for 24 h with the same frequency as in TRIAL39.PGM. No significant differences in IGF-1 efflux were observed among the different stretch intensity groups (Fig. 5A). Similarly, a 6-fold increase in the frequency of mechanical stimulation (5-min rest periods, TRIAL32.PGM) showed no effect on the release of IGF-1 from the muscle cells (Fig. 5B). To examine the time course of IGF-1 efflux with stretch, day 6 noncollagen-embedded cells were mechanically stimulated using the TRIAL39.PGM activity pattern, and conditioned medium was collected at 1, 2, 4, 5, 12, and 24 h of stretch, with fresh medium added to the cultures at each time point. Non-collagen-embedded cultures were used in these kinetic studies to eliminate the collagen as a potential diffusion barrier. While total accumulated release of IGF-1 over the 24-h incubation period (i.e. addition of released IGF-1 at all the time points) was not significantly different in these noncollagen-embedded cultures (control static cultures: 18.7 pg of IGF-1/µg of protein/24 h; stretched cultures: 16.4 pg of IGF-1/µg of protein/24 h), as found for the collagen-embedded culture experiments described above, the kinetics of IGF-1 release was significantly different between control and stretched cells. IGF-1 release from static control cells increased rapidly during the first 4 h and then increased at a slower rate over the remaining 20-h period (Fig. 6). IGF-1 release from stretched cells was signifi-

![Fig. 3. Effect of collagen on IGF-1 release from skeletal muscle cells grown on plastic tissue culture dishes, or on silicone rubber membranes.](image1)

![Fig. 4. Effect of stretch on IGF-1 release from skeletal muscle cells.](image2)
Autocrine Secretion of Insulin-like Growth Factor-1

FIG. 5. Effect of stretch intensity and frequency on IGF-1 efflux. Collagen-embedded skeletal muscle cells were switched to defined MM medium from day 6 to day 8 postplating. Cultures in A were mechanically stimulated for 24 h by the same frequency pattern as outlined in Fig. 1, but with varied percent intensities of stretch. This experiment was performed with the same cell preparation by varying prong heights between wells as described under “Experimental Procedures.” Cultures in B were mechanically stimulated every 5 min instead of every 30 min by the same pattern of activity as outlined in Fig. 1. Results are expressed as the mean ± S.E. of six values per group and compared by t test for unpaired values.

FIG. 6. Time course of IGF-1 efflux from noncollagen-embedded skeletal muscle cells. The cells were mechanically stimulated by TRAIL39.PGM. The media was removed at each time point, and fresh defined MM media added. IGF-1 content was assayed in each sample as outlined under “Experimental Procedures.” Results are expressed as the mean ± S.E. of 2-3 values and compared by t test for unpaired values.

IGF-1 mRNA.2

Comparison of IGF-1 Secretion from Myofibers and Fibroblasts—Because avian skeletal muscle cultures contain both myofibers and fibroblasts, we determined which cell type contributes to the IGF-1 released into the medium, and which cell type was stimulated to release IGF-1 when collagen-embedded. Noncollagen and collagen-embedded mixed cultures containing both cell types, myofiber-enriched cultures, and fibroblast-only cultures were prepared as outlined under “Experimental Procedures.” At day 6 postplating the cells were rinsed, and incubated for 24-48 h in defined serum-free medium. Both myofiber-enriched cultures and confluent fibroblast cultures released IGF-1 under both noncollagen- and collagen-embedded conditions (Fig. 7). Noncollagen-embedded cells released lower amounts of IGF-1 than collagen-embedded cells in both cell types (Fig. 7, A versus B). On a per unit of microgram of cellular protein basis, collagen-embedded fibroblast cultures produced 1.7-2.4 times more IGF-1 than collagen-embedded myofibers at 24 and 48 h of incubation in defined medium. Interestingly, on a per unit protein basis, mixed cultures effluxed less IGF-1 than either of the two cell types alone.

Autocrine/Paracrine Effect of IGF-1 Released from Differentiated Skeletal Muscle Cells—Insulin-like growth factors can modulate anabolic processes in a number of cells including those from which they originate (12). Therefore we examined the effect of locally released IGF-1 on the differentiated skeletal muscle cells. Noncollagen-embedded and collagen-embedded skeletal muscle cells were preincubated in serum-free medium in the presence or absence of anti-IGF-1 antibody for 48 h, and L-[U-14C]phenylalanine incorporation into cellular proteins followed over a 4-h incubation period. Compared to control cells, protein synthesis was decreased 52 and 29% in the antibody-treated noncollagen-embedded and collagen-embedded cells, respectively (Fig. 8).

IGF Binding Protein Secretion from Cultured Skeletal Muscle Cells—The physiological responses of insulin-like growth factors are modulated by IGF binding proteins, and their secretion might be altered by collagen embedding or mechanical stimulation. The release of IGF binding proteins from the differentiated avian skeletal muscle cultures was therefore examined. Gel electrophoresis and ligand blotting of conditioned medium from the skeletal muscle cultures revealed the presence of three IGF binding proteins of molecular masses 31, 36, and 43 kilodaltons (kDa) (Fig. 9). The 36-kDa band was the predominant secreted binding protein from the avian cells. The effects of collagen and stretch on the efflux of these binding proteins was studied over a 24-h period. Compared to noncollagen-embedded static muscle cells, cells embedded in a colla-
Fig. 7. Collagen-induced efflux of IGF-1 from skeletal muscle mixed cultures, skeletal myofiber-enriched, and fibroblast-enriched cultures. Myofiber-enriched cultures and fibroblast only cultures were prepared as described under "Experimental Procedures." Six-day-old cultures were incubated in defined MM medium for 24–48 h and IGF-1 efflux measured from noncollagen-embedded (A) and collagen-embedded (B) cells. Results are expressed as the mean ± S.E. of four values and compared by unpaired t test. ■, mixed cultures; □, myofiber-enriched cultures; △, fibroblast-enriched cultures.

Fig. 8. Effect of anti-IGF-1 antibody on protein synthesis in noncollagen-embedded and collagen-embedded skeletal muscle cells. Five-day-old non-collagen-embedded and collagen-embedded skeletal muscle cells were rinsed and preincubated for 48 h in MM medium containing 25 and 250 μg of anti-IGF-1 rabbit antibody, respectively. Control cells were preincubated in MM medium without the antibody for 48 h. Protein synthesis was assayed over a 4–6-h time period, with or without the antibody. Values are expressed as the mean ± S.E. of eight values and compared by unpaired t test.

Fig. 9. Detection of IGF binding proteins released from skeletal muscle cell cultures. Conditioned medium was analyzed for IGF binding proteins using ligand blot as described under "Experimental Procedures." The autoradiography shows three binding proteins of molecular masses 31, 36, and 43 kDa. No significant differences in IGF binding protein levels were detected between control (C) and stretched (S) cultures.

Fig. 10. IGF binding proteins released from noncollagen-embedded and collagen-embedded skeletal muscle cells. Differentiated muscle cells were grown either with or without collagen embedding as described under "Experimental Procedures." On day 6 postplating, the cells were rinsed for 2 h and incubated in defined medium for 0–24, and 24–48 h. Conditioned medium was analyzed for binding protein levels by ligand blotting and quantitative densitometric analysis as outlined under "Experimental Procedures." Values (arbitrary density units/μg cell protein) are expressed as the mean ± S.E. of six samples per group and compared by unpaired t test. NCE, noncollagen-embedded; CE, collagen embedded. All statistical analyses were done comparing NCE versus CE in the different groups.

DISCUSSION

This is the first report assessing the efflux of IGF-1 from differentiated primary avian skeletal muscle cells in tissue culture. This study revealed that primary cultures of well-differentiated skeletal myofibers release IGF-1 in significant amounts. Autocrine secretion of IGF-1 has been hypothesized to be involved in work induced skeletal muscle growth in vivo (18), and we tested this hypothesis with an in vitro model of stretch-induced skeletal muscle growth. Mechanical stretch influenced the sensitivity of skeletal muscle cells to exogenously added IGF-1, and increased the acute but not long-term release of IGF-1 from these cells. On a nanomolar basis, the acute release of IGF-1 with stretch was found to be 20–40-fold less than the amount of recombinant IGF-1 required to stimulate muscle growth in mechanically stimulated cultures.
secretion of IGF binding proteins from differentiated avian skeletal muscle cells. A number of studies have shown the presence of IGF binding proteins in human and chicken serum (18, 33), and human amniotic fluid (21), as well as in conditioned medium of tissue cultured liver cells (18), and mammalian muscle cell lines (1, 22). The C2 muscle cell line secretes a single IGF binding protein of 29 kDa (22), while the C2C12 cell line releases three binding proteins of molecular masses 24, 30, and 32 kDa (1). The three IGF binding proteins released from the primary avian skeletal muscle cells are similar in molecular mass to the binding proteins found in avian serum in vivo (28, 33, and 41 kDa) (33). Mechanical stimulation of the skeletal muscle cells had no significant effect on the efflux rate of IGF binding proteins at any of the time periods studied.

A second significant finding in this study was the increased release of IGF-1 and IGF binding proteins from skeletal muscle cells after embedding them in a three-dimensional type I collagen matrix. Collagen-embedded cells released 3–11 times more IGF-1 than noncollagen-embedded cells. There is evidence that IGF-1 stimulates collagen synthesis (36) but there appear to be no studies on the effect of collagen on IGF-1 release. Embedding the myofibers in a collagen gel matrix stimulates their hypertrophy (24, 37), possibly by activating IGF-1 synthesis and secretion as a paracrine/autocrine growth factor. The mechanism by which collagen enhances IGF-1 release from avian pectoralis muscle cells is not known. In differentiating hepatocytes, collagen promotes the activity of transcription factors resulting in the increased transcription of serum protein genes, such as albumin (38, 39). Collagen may interact with cell surface receptors resulting in increased transcription of the IGF-1 gene. Because collagen type I recognizes and binds to integrins (40–42), the effects of collagen on IGF-1 expression may be modulated via these receptors.

In addition to the differences in IGF-1 efflux from noncollagen-embedded and collagen-embedded cells, skeletal muscle cells grown on a silicone rubber substratum consistently released greater amounts of IGF-1 into the conditioned medium than when grown on plastic culture plates. These results indicate the importance of running proper controls of cells growing on identical substratum. The elastic substratum may have greater permeability than polystyrene plastic to gases such as oxygen and carbon dioxide, resulting in increased cellular activities and leading to elevated levels of IGF-1 production. Skeletal muscle hypoxia not only reduces muscle mass but also reduces oxidative metabolism in the muscle tissue (43).

The tissue cultures utilized in these experiments consisted of two main cell types, myofibers and fibroblasts. Lowe et al. (44) reported that fibroblasts are capable of synthesizing IGF-1 in vivo. Our experiments using enriched myofiber or confluent fibroblast cultures showed that both cell types are capable of releasing IGF-1. Whereas in mouse primary skeletal muscle cultures the muscle cells produce greater amounts of IGF-1 than fibroblasts (11), the avian fibroblasts released greater amounts of IGF-1 than the enriched myofiber cultures on a microgram cellular protein basis. But, since 80–90% of the cellular protein in the mixed avian muscle cultures utilized in this study arises from skeletal myofibers (30), the production of IGF-1 by the myofibers in these cultures on a microgram cell protein basis constitutes the major part of total IGF-1 release. It is difficult, however, to determine the exact contribution of each cell type in the mixed cultures since the two cell types appear to interact in regulating total IGF-1 efflux in a complex manner when co-cultured (Fig. 7), as found previously for the regulation of total protein degradation in the two cell types (45). IGF-1 secretion in mixed cultures was less than in either cell type alone, indicating some form of feedback inhibition.

in vitro. If the stretch-induced autocrine production of IGF-1 is involved in stretch-induced muscle growth, it must be either more biologically active or more accessible to the IGF-1 receptor than exogenously added recombinant human IGF-1. The acute secretion of IGF-1 from cultured skeletal muscle cells was embedded in a collagen gel on day 3 postplating, and mechanically stimulated by TRIAL39 PGM starting on day 6. Conditioned medium was collected at 0.5, 1, 4, 8, and 12 h of stretch, and analyzed for binding proteins by ligand blotting as described under “Experimental Procedures.” Values are the mean ± S.E. of 4 samples per group and compared by unpaired t test.

FIG. 11. Time course of stretch-induced release of IGF binding proteins. Differentiated skeletal muscle cells were embedded in a collagen gel on day 3 postplating, and mechanically stimulated by TRIAL39 PGM starting on day 6. Conditioned medium was collected at 0.5, 1, 4, 8, and 12 h of stretch, and analyzed for binding proteins by ligand blotting as described under “Experimental Procedures.” Values are the mean ± S.E. of 4 samples per group and compared by unpaired t test.

Table 1.

Time (hours)	IGF-1 Binding Proteins Released (density units/mg protein)																							
	A	B	C																					
0.5	1	4	8	12	0.5	1	4	8	12	0.5	1	4	8	12										
31 KD	2.5	3	3.5	1.5	2	3	4	2	3	1.5	2	3	4	2	3	1.5	2	3	4	2	3	4		
36 KD	20	15	10	5	20	15	10	5	20	15	10	5	20	15	10	5	20	15	10	5	20	15	10	5
43 KD	50	40	30	20	50	40	30	20	50	40	30	20	50	40	30	20	50	40	30	20	50	40	30	20

FIG. 11. Time course of stretch-induced release of IGF binding proteins. Differentiated skeletal muscle cells were embedded in a collagen gel on day 3 postplating, and mechanically stimulated by TRIAL39 PGM starting on day 6. Conditioned medium was collected at 0.5, 1, 4, 8, and 12 h of stretch, and analyzed for binding proteins by ligand blotting as described under “Experimental Procedures.” Values are the mean ± S.E. of 4 samples per group and compared by unpaired t test.
Autocrine Secretion of Insulin-like Growth Factor-1

when the two cell types are cultured together.

IGF-1 secreted from cultured skeletal muscle cells can be considered an important autocrine factor. Our experiments showed that protein synthesis rates are significantly reduced in the muscle cells when incubated in the presence of anti-IGF-1 antibody. Similarly, [3H]thymidine uptake in fetal rat myoblasts was blocked when these cells were incubated with a monoclonal antibody against human somatomedin (12). Locally produced IGF-1 therefore plays an important role in the maintenance of tissue-cultured skeletal muscle cells due to its effects on anabolic processes.

In summary, this paper shows that IGF-1 and IGF binding proteins are released from differentiated avian pectoralis muscle cell cultures, and that the long-term in vitro release of these proteins from the muscle cells is not significantly stimulated by stretch. Stretch-induced myofiber hypertrophy in cultured skeletal muscle cells may involve the short-term increase in IGF-1 secretion, changes in IGF-1 receptors, or a non-IGF-1-related mechanism. In addition, significant collagen-induced IGF-1 and IGF binding protein release from the differentiated muscle cells occurs in vitro. Further studies are needed to examine the mechanisms leading to collagen-induced IGF-1 and IGF binding protein synthesis and/or release from skeletal muscle cells.

Acknowledgments—We acknowledge Rosa Lopez Solerani for her valuable assistance with the tissue cultures. We also thank Janet Shansky and Joseph Chromiak for their valuable technical advice. We are grateful to the National Institute of Diabetes and Digestive and Kidney Diseases, National Hormone and Pituitary Program for providing the IGF-1 antibody utilized in these experiments, and Dr. Peter Rotwein (Washington University, St. Louis, MO) for the IGF-1 mRNA antisense probe.

REFERENCES
1. Tolleson, S. E., Layara, R., McCusker, R. H., Clemmons, D. R., and Rotwein, P. (1989) J. Biol. Chem. 264, 13810–13817
2. Ewton, D. L., and Florini, J. R. (1990) Proc. Soc. Exp. Biol. Med. 194, 76–79
3. Florini, J. R., Ewton, D. L., and Magri, K. A. (1991) Annu. Rev. Physiol. 53, 201–215
4. Vandenburgh, H. H., Karlisch, P., Shansky, J., and Feldstein, R. (1991) Am. J. Physiol. 260, C475–C484
5. Janeczko, R. A., and Rettinger, J. D. (1984) J. Biol. Chem. 259, 6292–6297
6. Dodson, M. V., Allen, R. E., and Hossner, K. L. (1985) Proc. Soc. Exp. Biol. Med. 194, 81–86
7. Allen, R. E., and Rankin, L. L. (1990) Proc. Soc. Exp. Biol. Med. 194, 81–86
8. Florini, J. R., Magri, K. A., Ewton, D. Z., James, P. L., Grindstaff, K., and Rotwein, P. S. (1991) J. Biol. Chem. 266, 15917–15923
9. Magri, K. A., Ewton, D. Z., and Florini, J. R. (1991) in Molecular Biology and Physiology of Insulin and Insulin-like Growth Factors (Raizada, M., and LeRoith, D., eds) pp. 57–76, Plenum Press, New York.
10. Lennartsson, A., Jennische, E., Oldfors, A., Edwall, D., and Norstedt, G. (1992) Mol. Endocrinol. 6, 1227–1234
11. Hill, D. J., Grace, C. J., Fowler, L., Holder, A. T., and Milner, R. G. D. (1984) J. Cell. Physiol. 119, 349–358
12. Hill, D. J., Grace, C. J., Nisley, S. P., Morrell, D., Holder, A. T., and Milner, R. G. D. (1985) Endocrinology 117, 2061–2072
13. Jennische, E., and Hansson, H. A. (1987) Acta Physiol. Scand. 130, 327–332
14. Jennische, E. (1989) Acta Endocrinol. 121, 733–738
15. Edwall, D., Schalling, M., Jennische, E., and Norstedt, G. (1988) Endocrinology 124, 820–825
16. DeVol, D. L., Rotwein, P., Sadow, J. L., Novakowski, J., and Bechtel, P. J. (1990) J. Physiol. 259, E89–E95
17. Sara, R. V., and Hall, K. (1990) Am. J. Physiol. 70, 591–613 (abstr.)
18. Hummel, R. E. (1989) Eur. J. Biochem. 190, 445–445
19. Luan, E. M., and Pekomen, P. (1990) Acta Endocrinol. 123, 7–13
20. McCusker, H. R., and Clemmons, D. R. (1988) J. Cell. Physiol. 137, 512–516
21. Clemmons, D. R. (1991) in Molecular Biology and Physiology of Insulin and Insulin-like Growth Factors (Razada, M., and LeRoith, D., eds) pp. 115–123, Plenum Press, New York.
22. Ernst, C. W., McCusker, R. H., and White, M. E. (1992) Endocrinology 130, 607–616
23. Hossenlopp, P., Seurn, D., Segovia-Quinson, B., Hardourn, S., and Bionx, M. (1988) Anal. Biochem. 154, 138–143
24. Vandenburgh, H. H., Karnis, P., and Farr, L. (1986) In Vitro (Rockville) 24, 136–147
25. Vandenburgh, H. H., Hartfals, Jr., Karlisch, P., and Shansky, J. (1989) Am. J. Physiol. 256, C674–C682
26. Breier, B. H., Gallaher, B. W., and Gluckman, P. D. (1991) J. Endocrinol. 128, 347–357
27. Furlanetto, R. W., Underwood, L. E., Van Wyk, J., and D’Ercole, J. (1997) J. Clin. Invest. 90, 645–657
28. Sambrook, J., Fritsch, E., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
29. Duclos, M. J., Wiltse, L. S., and Goddard, C. (1991) J. Endocrinol. 128, 35–42
30. Vandenburgh, H. H., Hartfals, Jr., Sohar, L., and Shansky, J. (1990) Am. J. Physiol. 259, C232–C240
31. Labarca, C., and Paigen, K. (1993) Anal. Biochem. 162, 344–352
32. Laemmli, U. K. (1970) Nature 227, 680–685
33. Armstrong, D. G., McKay, C. O., Morrill, D. J., and Goddard, C. (1989) J. Endocrinol. 120, 373–378
34. Mangat, H., and DeBold, A. J. (1993) Endocrinology 133, 1408–1403
35. Jannisse, E., and Mavoyska, G. L. (1990) Acta Physiol. Scand. 146, 79–86
36. Gillery, P., Lapeyre, A., Maquart, F.-X., and Borel, J.-P. (1992) J. Cell. Physiol. 152, 389–396
37. Swadison, S. and Mayne, R. (1992) J. Cell Sci. 102, 543–552
38. DiPersio, C. M., Jasick, D. A., and Zaret, K. S. (1990) Mol. Cell. Biol. 11, 4405–4414
39. Liu, J., DiPersio, C. M., and Zaret, K. S. (1991) Mol. Cell. Biol. 11, 773–784
40. Sussan, W. D., Kuk, R. P., Zutier, M. M., Adams, S. P., Rodriguez, B. A., and Florim, J. (1991) Mol. Cell. Biol. 11, 1035–1044
41. Hoppler, H., and Despinches, D. (1992) Int. J. Sports Med. 13, 168–168
42. Lowe, W. L., Yorik, M. A., Harp, C. W., Teasdale, R. M., Hovas, R. J., Albrecht, B., and Prokipou, C. (1992) Mol. Endocrinol. 6, 741–752
43. Vandenburgh, H. H., and Kaufman, S. (1996) J. Biol. Chem. 275, 5826–5833