DIFFERENTIAL CALCULUS OVER DOUBLE LIE ALGEBROIDS

SOPHIE CHEMLA

Abstract. M. Van den Bergh [18] defined the notion of a double Lie algebroid and showed that a double quasi-Poisson algebra gives rise to a double Lie algebroid. We give new examples of double Lie algebroids and develop a differential calculus in that context. We recover the non commutative Karoubi–de Rham complex [9], [7] and the double Poisson–Lichnerowicz cohomology [15] as particular cases of our construction.

1. INTRODUCTION

Let k be a field of characteristic 0. The pair (L, ω) is a Lie–Rinehart algebra [20] over a commutative k-algebra A if L is endowed with a k-Lie algebra structure and an A-module structure where the two structures are linked by a compatibility relation involving the anchor ω. There is a one-to-one correspondence [10] between Lie–Rinehart algebra structures on L and Gerstenhaber algebra structures on L_{*} (where L_{*} is the exterior algebra of L). If A is smooth and L is a finitely generated projective A-module, then L is the A-module of global sections of a Lie algebroid. Lie–Rinehart algebras generalize at the same time A-algebras (case where $\omega = 0$) and the Lie algebra of derivations over A (then $\omega = id$). A Poisson smooth algebra gives rise to a Lie–Rinehart algebra structure (on $L = \Omega^{1}$) and this is also true for quasi-Poisson smooth G-algebras [1], [7]. If X is a Poisson manifold, then $L = \Omega_{X}^{1} \oplus \Gamma(X \times g)$. Lie algebroids have been extensively studied and used, in particular in Poisson geometry. A Lie–Rinehart algebra L defines a differential d_{L} on the graded algebra $L_{*}A$. In the case of an A-Lie algebra, we recover the Cartan–Eilenberg differential. In the case where $L = \text{Der}(A)$ (with A smooth), we recover the de Rham differential. In the case where $L = \Omega^{1}(X)$ (X being a Poisson manifold), we recover the Lichnerowicz–Poisson differential. More generally a differential calculus has been developed for Lie algebroids [8].

In this article, we are interested in the case where A is not necessarily commutative. As in [17] and [18], we use a non commutative version of differential geometry based on an idea of Kontsevitch: For a property of a non commutative k-algebra to have a geometric meaning, it should induce (through a trace map) a standard geometric property on all representation spaces $\text{Rep}(A, N) = \text{Hom}(A, \text{Mat}_{N}(k))$, for all integer N. The coordinate ring of $\text{Rep}(A, N)$ is

$$\mathcal{O}_{\text{Rep}(A, N)} = \frac{k[a_{i,j} | a \in A, (i, j) \in [1, N]^2]}{< (ab)_{i,j} = a_{i,k}b_{k,j}, a, b \in A>},$$

If the k-algebra A is smooth, then the commutative k-algebra $\mathcal{O}_{\text{Rep}(A, N)}$ is smooth for all N [17], [18]. If $A = k < x_{1}, \ldots, x_{m} >$ is a free associative k-algebra generated by the variables x_{1}, \ldots, x_{m}, then

$$\text{Rep}_{N}(A) = \text{Mat}_{N}(k) \oplus \text{Mat}_{N}(k) \oplus \cdots \oplus \text{Mat}_{N}(k) \simeq k^{mN^{2}}$$

where, if $\alpha \in [1, m]$, M_{α} is the $N \times N$ matrix $(x^{j}_{i,\alpha})_{i,j}$ and $\text{Tr}(x_{\alpha_{1}} \cdots x_{\alpha_{r}}) = \text{Tr}(M_{\alpha_{1}}M_{\alpha_{2}} \cdots M_{\alpha_{r}})$.

The non commutative geometry notions defined according to the principle of Kontsevitch are often called by a name with the prefix "double". Thus derivations $\text{Der}(A)$ are replaced by double derivations $\text{Der}(A)$ (that are derivations from A to $A \otimes A$ considered with its exterior A-bimodule structure), Poisson algebras are replaced by double Poisson algebras, etc ... The Karoubi–de Rham complex was defined in the non commutative setting [9], the contraction and the Lie derivative by a double vector field were defined in [2]. Double Poisson cohomology was defined [21], [15] and computed for some examples of double Poisson brackets associated with quivers.

In [18], double Lie algebroids or double Lie–Rinehart algebras were introduced and it was shown that a double quasi-Poisson algebra gives rise to a double Lie algebroid. A double Lie algebroid L being an A-bimodule, one can construct the tensor algebra of L, $T_{A}(L)$. In [18], the double Lie algebroid structure has been defined by the Gerstenhaber double structure it induces on $T_{A}(L)$.

1
We give a direct definition of a double Lie algebroid and show that there is a correspondence between double Lie algebroid structures on an A-bimodule and double Gerstenhaber algebra structures on $T_A(L)$. We give new examples of double Lie algebroids. Studying the case where $A = k$, we see that any associative k-algebra has a natural double Lie algebroid structure. Then, we develop a differential calculus for double Lie algebroids: definition of a differential d_A, for which we give an explicit formula, Lie derivative, contraction, etc... In the case where $L = \text{Der}(A)$ and A is smooth, we recover the Karoubi–de Rham complex (17, 7) but some of our formulas are new even in that case. In the case where A is a smooth double Poisson algebra and $L = \Omega_A^2$, the differential d_A coincides with that of double Poisson cohomology (21, 15). In the case where $A = k$, d_A is the differential computing cyclic cohomology. Thus we recover the classical picture. The theory of double Lie algebroids encompasses several theories.

Acknowledgement

I am most grateful to Y. Kosmann-Schwarzbach and V. Rubtsov for their help and encouragement, which were essential for the completion of this article. They both gave me several references that were instrumental for me to complete this article. They explained to me several aspects of the theory of double Poisson algebras and commented on earlier versions of this preprint. I am happy to extend to them my most sincere thanks.

Convention :

We will use the same notation as [17].

If $(V_i)_{i=1,...,n}$ are k vector spaces and $s \in S_n$, then for $a = a_1 \otimes \cdots \otimes a_n \in V_1 \otimes \cdots \otimes V_n$

$$\tau_s(a) = a_{s^{-1}(1)} \otimes \cdots \otimes a_{s^{-1}(n)}.$$

If $(V_i)_{i=1,...,n}$ are k graded vector spaces and $s \in S_n$, then for $a = a_1 \otimes \cdots \otimes a_n \in V_1 \otimes \cdots \otimes V_n$

$$\sigma_s(a) = (-1)^{t(a)} a_{s^{-1}(1)} \otimes \cdots \otimes a_{s^{-1}(n)}.$$

where $t = \sum_{i<j,s^{-1}(i)>s^{-1}(j)} |a_{s^{-1}(i)}||a_{s^{-1}(j)}|$.

$\tau_{(12)}$ (respectively $\sigma_{(12)}$) will be also denoted $(x \otimes y)\circ = y \otimes x$ (respectively $(x \otimes y)\circ = (-1)^{[x,y]} y \otimes x$.)

Let B be a fixed k-algebra that will be, most of the time, semisimple commutative of the form $B = k e_1 \oplus \cdots \oplus k e_n$ with $e_i^2 = e_i$. A B-algebra is a k-algebra A equipped with a morphism of k-algebras $B \to A$. The notion of B-algebra allows to define relative versions.

2. Definitions and generalities

Most of the definition and results of this section come from [17].

Definition 2.1. An n-bracket is a linear map

$$\{\ldots,\ldots\} : A^\otimes_n \to A^\otimes_n$$

which is a derivation $A \to A^\otimes_n$ in its last argument for the outer bimodule structure on A^\otimes_n i.e.

$$\{\{a_1, a_2, \ldots, a_{n-1}, a_n a'_n\} = a_n \{\{a_1, a_2, \ldots, a_{n-1}, a'_n\} + \{\{a_1, a_2, \ldots, a_{n-1}, a_n\}\} a'_n$$

and which is cyclically antisymmetric in the sense that

$$\tau_{(1\ldots n)} \circ \{\ldots,\ldots\} \circ \tau_{(1\ldots n)} = (-1)^{n+1}\{\ldots,\ldots\}.$$

If A is a B-algebra, then an n-bracket is B-linear if it vanishes when its last argument is in the image of B.

As in [17], we set

$$\{a, b\}_L = \{a, b_1\} \otimes b_2 \otimes \cdots \otimes b_n$$

Associated to a double bracket $\{\ldots,\ldots\}$, we define a tri-ary operation $\{\ldots,\ldots\}$ as follows:

$$\{a, b, c\} = \{a, \{b, c\}\}_L + \tau_{(123)} \{b, \{c, a\}\}_L + \tau_{(132)} \{c, \{a, b\}\}_L$$

Proposition 2.2. ([17]) $\{\ldots,\ldots\}$ is a 3-bracket.

Definition 2.3. ([17]). Let A be a k-algebra. A double bracket $\{\ldots,\ldots\}$ on A is a double Poisson bracket if $\{\ldots,\ldots\} = 0$. An algebra with a double Poisson bracket is a double Poisson algebra.
Example 2.4. ([17], [16]) One may characterize the double Poisson brackets on $k[t]$. For $\lambda, \mu, \nu \in k$,
$$\{(t, t)\} = \lambda(t \otimes 1 - 1 \otimes t) + \mu(t^2 \otimes 1 - 1 \otimes t^2) + \nu(t^2 \otimes t - t \otimes t^2)$$
defines a double Poisson structure if and only if $\lambda \nu - \mu^2 = 0$ and any double Poisson structure on $k[t]$ is of this form.

We will see many other examples of double Poisson algebras further.

The following proposition was proved in [17]:

Proposition 2.5. Assume that $(A, \{\cdot, \cdot\})$ is a double Poisson algebra. For any elements a and b of A, we set $\{a, b\} = \{(a, b)\}'$. Then the following holds:

1) $\{\cdot, \cdot\}$ is a derivation in its second argument and vanishes on commutators in its first argument.
2) $\{\cdot, \cdot\}$ is anti-symmetric modulo commutators.
3) $\{\cdot, \cdot\}$ makes A into a left Loday algebra, i.e. $\{\cdot, \cdot\}$ satisfies the following version of Jacobi identity
$$\{a, \{b, c\}\} = \{\{a, b\}, c\} + \{b, \{a, c\}\}$$
4) $\{\cdot, \cdot\}$ makes $A/[A, A]$ into a Lie algebra.

Definition 2.6. ([11], [15]) A Poisson structure on A is a Lie bracket $\{-, -\}$ on A such that for each $a \in A$, the map $[a, -] : \frac{A}{[A, A]} \to \frac{A}{[A, A]}$ is induced by a derivation on A.

Remarks 2.7. (i) In the case where A is commutative, we recover the usual Poisson bracket.

(ii) It was shown in [17] (lemme 2.6.2) that a double Poisson bracket on A induces a Poisson structure on A.

(iii) A Poisson structure on A is also called a H_0-Poisson structure as it is a structure on $\frac{A}{[A, A]} = HC_0(A)$ which is the 0th cyclic group of A. In [1], derived Poisson structure were defined on higher cyclic cohomology group.

Let D be a graded algebra. There are two commuting D^e-module structures on $D \otimes D$: For any homogeneous elements α, β, x, y in D,
$$\alpha(x \otimes y)\beta = \alpha x \otimes y\beta$$
$$\alpha * (x \otimes y) * \beta = (-1)^{|\alpha||\beta|+|\alpha||x|+|y||\beta|}x\beta \otimes \alpha y$$

Definition 2.8. ([13]) Let $d \in \mathbb{Z}$ and let D be a graded algebra. D is called a double Gerstenhaber algebra of degree d if it is equipped with a graded bilinear map
$$\{\cdot, \cdot\} : D \otimes D \to D \otimes D$$
of degree d such that the following identities hold:

1) $\{(\alpha, \gamma)\} = (-1)^{|\alpha||\gamma|}\gamma\{\alpha, \gamma\}$
1') $\{(\beta, \gamma, \alpha)\} = (-1)^{|\alpha||\beta|+|\beta||\gamma|}\gamma\{\alpha, \gamma\} + \{\alpha, \beta\} \cdot \gamma$
2) $\{\{\alpha, \beta\} = (-1)^{|\alpha||\beta|+|\beta||\gamma|}\gamma\{\alpha, \gamma\} + \{\alpha, \beta\} \cdot \gamma$
2') $\{\{\alpha, \beta\} = (-1)^{|\alpha||\beta|+|\beta||\gamma|}\gamma\{\alpha, \gamma\} + \{\alpha, \beta\} \cdot \gamma$
3) $\{\{\alpha, \beta\} \} \{\{\alpha, \beta\} \} \{\{\alpha, \beta\} \} \{\{\alpha, \beta\} \} \{\{\alpha, \beta\} \}$

Remarks 2.9. 1) The definition of double Gerstenhaber algebra is given in [17]. It is extended to the case of double Gerstenhaber algebra of degree $d \in \mathbb{Z}$ in [13]. The case $d = -1$ corresponds to double Gerstenhaber algebras (see [17]) and the case $d = 0$ corresponds to double Poisson algebras ([17]).

2) Assertions 1) and 1') are equivalent if assertion 2) is satisfied ([13]).

If D is a double Gerstenhaber algebra, we define the associated bracket $\{-, -\} : D \otimes D \to D$ by:
$$\forall (\alpha, \beta) \in D^2, \quad \{\alpha, \beta\} = \{(\alpha, \beta)\}'\{(\alpha, \beta)\}''.$$
The following proposition was partly stated in [17]:
Proposition 2.10. Let D be a Gerstenhaber algebra of degree d and let α, β, γ three homogeneous elements in D.

1) $\{\alpha \otimes (\beta - (-1)^{|\alpha||\beta|}\beta \otimes \alpha, \gamma\} = 0$.
2) $\{\alpha, \beta\} = (-1)^{|\alpha||\beta|}(\beta \otimes \alpha) \in [D, D]$
3) $\{\alpha, \{\beta, \gamma\}\} - \{\{\alpha, \beta\}, \gamma\} + (-1)^{|\alpha||\beta|+d}(\beta, \{\alpha, \gamma\}\}) = 0$

where $\{\alpha,\gamma\}$ acts on tensors by

$$\{\alpha, \{\beta, \gamma\}\} = \{\alpha, \{\beta, \gamma\}\} + \{\{\alpha, \beta\}, \gamma\} - \{\alpha, \{\beta, \gamma\}\}$$

4) $\frac{D}{[D, D]}[d]$ is a graded Lie algebra.

Remark 2.11. Proposition 2.10 is proved in the ungraded case in [17]. In this case, $d = 0$ and D is a double Poisson algebra. Our proof is similar to that of [17] so that we only sketch the main lines of it.

Proof. 1) and 2) are straightforward computations if one uses the relation

$$\{\alpha, \beta\} = (-1)^{|\alpha||\beta|}((\beta \otimes \alpha) + ([\alpha, \beta])_T)$$

4) is a consequence of the previous statements. Let us now prove 3).

We will make use of the following lemma whose proof is left to the reader:

Lemma 2.12. Set $\{(\alpha, \{\gamma, \beta\})\} = (-1)^{|\alpha||\beta|}(\gamma, \{\beta, \alpha\}) \otimes (\alpha, \{\gamma, \beta\})$. The following equality holds

$$\{(\alpha, \{\gamma, \beta\})\} = (-1)^{|\gamma||\beta|+d}(\gamma, \{\beta, \alpha\}) \otimes (\alpha, \{\gamma, \beta\})$$

Let us now compute the three terms of the equality 3). Assertion 3) will follow from these computations.

$$\{(\alpha, \{\beta, \gamma\})\} = \{\alpha, \{\beta, \gamma\}\} + (-1)^{|\alpha||\beta|+d}((\beta, \gamma) \otimes (\alpha, \{\beta, \gamma\}))$$

$$= (m \otimes 1)\{(\alpha, \{\beta, \gamma\})\} + (1 \otimes m)\{(\alpha, \{\beta, \gamma\})\}$$

$$= (m \otimes 1)\{(\alpha, \{\beta, \gamma\})\} + (1 \otimes m)\{(\alpha, \{\beta, \gamma\})\}$$

$$\{(\alpha, \{\beta, \gamma\})\} = (\sigma_{(12)}(\gamma, \{\alpha, \beta\}) - (m \otimes 1)\{(\alpha, \{\beta, \gamma\})\})$$

$$= (\sigma_{(12)}(\gamma, \{\alpha, \beta\}) - (m \otimes 1)\{(\alpha, \{\beta, \gamma\})\})$$

$$= (\sigma_{(12)}(\gamma, \{\alpha, \beta\}) - (m \otimes 1)\{(\alpha, \{\beta, \gamma\})\})$$

$$= (\sigma_{(12)}(\gamma, \{\alpha, \beta\}) - (m \otimes 1)\{(\alpha, \{\beta, \gamma\})\})$$

$$= (\sigma_{(12)}(\gamma, \{\alpha, \beta\}) - (m \otimes 1)\{(\alpha, \{\beta, \gamma\})\})$$

$$= (\sigma_{(12)}(\gamma, \{\alpha, \beta\}) - (m \otimes 1)\{(\alpha, \{\beta, \gamma\})\})$$

3. Double derivations

In this section, we recall results of [17].

Let B be a k-algebra. A B-algebra is a pair (A, η) where $\eta : B \to A$ is an algebra morphism.

Denote by $m : A \otimes_B A \to A$ multiplication on A. One sets $\Omega_B^1(A) := \text{Ker}(m)$. It is naturally endowed with an A^e-module structure. If $a \in A$, then $da = a \otimes 1 - 1 \otimes a$ belongs to $\Omega_B^1(A)$. If A is finitely generated as a B-algebra, then Ω_B^1A is finitely generated as a left A^e-module.

Definition 3.1. A B-algebra A is called smooth over B if it is finitely generated as an B-algebra and Ω_B^1A is projective as a left A^e-module.

Example 3.2. Let $Q = (Q, I)$ be a finite quiver with vertex set $I = \{1, \ldots, n\}$ and edge set Q. Denote by e_i the idempotent associated to the vertex i and we put $B = \oplus_i k e_i$. The path algebra $A = k[Q]$ is smooth over B ([17]).
Let $\text{Der}_B(A, A \otimes A)$ be the B-derivations from A to $A \otimes A$ where we put the outer bimodule structure on $A \otimes A$. Such a derivation is called a double derivation. Inner bimodule structure on A^e allows to endow $\text{Der}_B(A, A \otimes A)$ with an A^e-module structure:

$$\alpha \cdot D \cdot \beta(a) = D(a)\beta \otimes \alpha D(a)''$$

Notation: The A^e-module $\text{Der}_B(A, A \otimes A)$ will be denoted $\text{Der}_B(A)$.

Example 3.3. We assume that we are in the situation where $B = ke_1 \oplus \cdots \oplus ke_n$ with $e_i^2 = e_i$.

Let $E_i : A \rightarrow A \otimes A$ defined by $E_i(a) = ae_i \otimes e_i - e_i \otimes e_i a$ and $E = \sum_{i=1}^n E_i \in \text{Der}_B(A)$.

Proposition 3.4. (17) Let δ, Δ in $\text{Der}_B(A)$, then

$$\{\{\delta, \Delta\}\} = (\delta \otimes 1)\Delta - (1 \otimes \Delta)\delta$$

$$\{\{\delta, \Delta\}\} := (1 \otimes \delta)\Delta - (\Delta \otimes 1)\delta = -\{\{\Delta, \delta\}\}$$

are derivation from A to $A^{\otimes 3}$ where the A^e-bimodule structure on $A^{\otimes 3}$ is the outer structure.

We define

$$\{\{\delta, \Delta\}\}_l = \tau_{(23)} \circ \{\{\delta, \Delta\}\}_r \in \text{Der}(A) \otimes A$$

$$\{\{\delta, \Delta\}\}_r = \tau_{(12)} \circ \{\{\delta, \Delta\}\}_r \in A \otimes \text{Der}(A)$$

We write

$$\{\{\delta, \Delta\}\}_l = \{\{\delta, \Delta\}\} \otimes \{\{\delta, \Delta\}\}''$$

$$\{\{\delta, \Delta\}\}_r = \{\{\delta, \Delta\}\} \otimes \{\{\delta, \Delta\}\}''$$

with $\{\{\delta, \Delta\}\}_l, \{\{\delta, \Delta\}\}_r \in A$ and $\{\{\delta, \Delta\}\}_l, \{\{\delta, \Delta\}\}_r \in \text{Der}(A)$.

Theorem 3.5. (14) For $a, b \in A$ and $\delta, \Delta \in \text{Der}_B(A)$, the following equations

$$\{a, b\} = 0$$

$$\{\delta, a\} = \delta(a) \in A \otimes A$$

$$\{\delta, \Delta\} = \{\{\delta, \Delta\}\}_l + \{\{\delta, \Delta\}\}_r$$

define a unique structure of double Gerstenhaber algebra on $T_A \text{Der}_B(A)$.

Notation: From now on, $T_A \text{Der}_B(A)$ will be denoted $D_B(A)$.

Proposition 3.6. (17) Assume that A is a finitely generated k-algebra. The linear map

$$\mu : (A^e)_n \rightarrow \{B \text{-linear } n \text{-brackets on } A\}$$

$$Q = \delta_1 \cdots \delta_n \rightarrow \{\{\ldots, \ldots, -\}\}_Q = \{\{-\ldots, -\}\} = \sum_{i=0}^{n-1} (-1)^{(n-1)\tau_{(1\ldots n)}} \circ \{\{-\ldots, -\}\}_Q \circ \tau_{(1\ldots n)}^{-1}$$

where

$$\{a_1, \ldots, a_n\}_Q = \delta_n(a_1)'' \delta_1(a_2)'' \cdots \delta_{n-1}(a_{n-1})'$$

This maps factors through $\frac{D_B A}{[D_B A, D_B A]}$. The map μ is an isomorphism if A is B-smooth.

In [17], the following expression is proved for $\{\{-\ldots, -\}\}_Q$.

Proposition 3.7. For $Q \in (A^e)_n$, the following identity holds:

$$\{a_1, \ldots, a_n\}_Q = (-1)^{\frac{n(n-1)}{2}} \{a_1, \ldots, a_n, \{Q, a_n\}\}_L \cdots \} \{a_1, \ldots, a_{n-2}\} \{Q, a_{n-1}\}$$

The isomorphism μ allows to characterize double Poisson algebras on a smooth algebra.

Proposition 3.8. Let A be a smooth B-algebra. Double B-linear Poisson structures on A are in bijection with the $P \in T^2 \text{Der}_B(A)$ such that $\{P, P\} = 0$ modulo $[D_B A, D_B A]$.

Remark 3.9. In the case of a double bivector field, the formula of proposition 3.8 is the double version of the formula $\{f, g\} = -[f, [P, g]]$ ([11]) for the Poisson bracket.

The double Poisson - Lichnerowicz cohomology was defined in [21], [15]:
Definition 3.10. Let A be a k-double Poisson algebra with Poisson double bracket defined by the Poisson bivector $P \in T^2 \text{Der}_k(A)$ such that $\{ P, P \} = 0 \text{ mod } [D_k A, D_k A]$. The double Poisson-Lichnerowicz cohomology of A is the cohomology of the complex $\left(\frac{D_k A}{[D_k A, D_k A]}, \{ P, - \} \right)$.

The concept of quasi-Poisson G-manifolds was introduced in [1] and Massuyeau and Turaev ([13]) gave an algebraic formulation of it. Double quasi-Poisson algebras were defined in [17]. They also give rise to H_0-Poisson structures.

Definition 3.11. We assume that we are in the situation where $B = ke_1 \oplus \cdots \oplus ke_n$ with $e_i^2 = e_i$.

Let $E_i : A \rightarrow A \otimes A$ defined by $E_i(a) = ae_i \otimes e_i - e_i \otimes e_i a$ and $E = \sum_{i=1}^{\infty} E_i$.

A double quasi-Poisson bracket on A is a B-linear bracket $\{ \cdot, \cdot \}$ such that

$$\{ [-,-,-] \} = \{ [-,-,-] \}_{E^3}.$$

Proposition 3.12. ([17]) Let $(A, \{ [-,-] \})$ be a quasi-Poisson algebra. Then

1) $(A, \{ [-,-] \})$ is a left Loday algebra.

2) $(A, \{ [-,-] \})$ induces a H_0-Poisson structure on A.

Definition 3.13. $P \in (D_B A)_2$ is a differential double quasi Poisson bracket if

$$\{ P, P \} = \frac{1}{6} E^3 \text{ mod } [D_B A, D_B A]$$

Remark 3.14. If A is smooth, then quasi Poisson bracket and differential quasi Poisson bracket are equivalent notions.

Examples 3.15. 1) Examples of Poisson double brackets and of quasi-Poisson double brackets over the path algebra of a double of a quiver are given in [17].

2) Let A be the free associative algebra on n variables, $A = k < x_1, \ldots, x_n >$. Linear double Poisson structures are studied in [15]. Define $\{ \{ x_i, x_j \} \} = b_{ij} x_i \otimes 1 - b_{ji} 1 \otimes x_j$ and extend this skew symmetric bracket to a biderivation. This linear skew symmetric bracket is a double Poisson bracket if and only if $x_i x_j = b_{ij} x_i \otimes x_j$ is an associative multiplication.

3) Quadratic double Poisson brackets on $C < X_1, X_2, \ldots, X_n >$ have been studied in [19]. Define $\{ \{ x_i, x_j \} \} = k_{ij} x_i \otimes x_j - k_{ji} x_j \otimes x_i + 1 - b_{ij} 1 \otimes x_j$ and extend this bracket to a bi-derivation. For this quadratic double bracket to be Poisson, r has to satisfy the associative Yang-Baxter equation.

4) Given an oriented surface Σ with boundary $\partial \Sigma$ and base point $* \in \partial \Sigma$, a quasi-Poisson double algebra structure is constructed on the group algebra $A = \mathbb{K}[\pi]$ of $\pi_1(\Sigma, *)$ in [13]. The Lie bracket on $\frac{A}{[A, A]}$ in this case is twice the Goldman Lie bracket.

5) Double Poisson structures on a semi-simple algebra (over an algebraically closed field) are described in [21].

4. Double Lie Algebroids

V. Roubtsov drew my attention to the fact that the definition of a double Lie algebroid is given in [18]. But it is defined by its characterization in terms of double Gerstenhaber algebras as explained in proposition 4.1 below. The definition we give is more explicit.

Definition 4.1. A double Lie algebroid is a quadruple $(L, A, \omega, \{ [-,-] \})$ where

- L is an A^e-module.
- $\{ [-,-] \} : L \otimes L \rightarrow L \otimes A \oplus A \otimes L$
- $(D, \Delta) \mapsto [(D, \Delta)]^0 \otimes [(D, \Delta)]^0 = [(D, \Delta)]^0 \otimes [(D, \Delta)]^0 + [(D, \Delta)]^0 \otimes [(D, \Delta)]^0$ (with $[(D, \Delta)]^0, [(D, \Delta)]^0 \in L$ and $[(D, \Delta)]^0, [(D, \Delta)]^0 \in A$) is a map satisfying $[(D, \Delta)]^0 = -[(\Delta, D)]^0$.
- $\omega : L \rightarrow \text{Der}_B(A)$ is a morphism of A^e-modules.
- $\{ \omega(D), \omega(D) \} = \omega(\{ D, D \})$ where we also denote by ω the extension of ω to a map from $A \otimes L \oplus L \otimes A$ to $A \otimes \text{Der}_B(A) \oplus \text{Der}_B(A) \otimes A$.

• Jacobi identity: If \(D_1, D_2, D_3 \) are elements of \(\mathbb{L} \), one has:

\[
\left\{ \left[\left[D_1, D_2, D_3 \right] \right] + \tau_{(123)} \right\} + \tau_{(123)} = 0
\]

where

\[
\left\{ \left[\left[D_1, \left[D_2, D_3 \right] \right] \right] \right\} L := \left\{ \left[\left[D_1, \left[D_2, D_3 \right] \right] \right] \right\} \otimes \left\{ \left[D_2, D_3 \right] \right\}^
u
\]

\(\forall (D, a) \in \mathbb{L} \times A \rightarrow \left\{ D, a \right\} = \omega(D)(a) \)

• If \((D, \Delta) \in \mathbb{L}^2 \), one has

\[
\left\{ \left[\left[D, a\Delta \right] \right] = D(a)\Delta + a\left\{ \left[D, \Delta \right] \right\} \right\} \)

\[
\left\{ \left[\left[D, \Delta \right] \right] \right\} + \left\{ \left[D, a \right] \right\} \Delta + a\left\{ \left[D, \Delta \right] \right\} = 0
\]

Remarks 4.2.

(i) When there will be ambiguity, the bracket \(\left\{ \left[\left[D, \Delta \right] \right] \right\} \) will be denoted \(\left\{ \left[\left[D, \Delta \right] \right] \right\}_L \).

(ii) The Jacobi identity is equivalent to the following: Let \(D_1, D_2, D_3 \) be elements of \(\mathbb{L} \):

\[
\left\{ \left[\left[D_1, \left[D_2, D_3 \right] \right] \right] + \tau_{(123)} \right\} = 0
\]

where

\[
\left\{ \left[\left[D_1, \left[D_2, D_3 \right] \right] \right] \right\} L := \left\{ \left[\left[D_1, \left[D_2, D_3 \right] \right] \right] \right\} \otimes \left\{ \left[D_2, D_3 \right] \right\} \]

(iii) For differential calculus, we will assume that \(A \) is a smooth \(B \)-algebra and that \(\mathbb{L} \) is a finitely generated projective \(A^* \)-module.

Notation: We set \(\left\{ \left[D, \Delta \right] \right\} \) for the component of \(\left\{ \left[D, \Delta \right] \right\} \) that is \(\mathbb{L} \otimes A \) and \(\left\{ \left[D, \Delta \right] \right\} \) for its component in \(\mathbb{L} \otimes \mathbb{L} \). Adopting a Sweedler’s type notation, we set

\[
\left\{ \left[D, \Delta \right] \right\}_L = \left\{ \left[D, \Delta \right] \right\}_L \otimes \left\{ \left[D, \Delta \right] \right\}_L \]

with \(\left\{ \left[D, \Delta \right] \right\}_L, \left\{ \left[D, \Delta \right] \right\}_L \in \mathbb{L} \) and \(\left\{ \left[D, \Delta \right] \right\}_L, \left\{ \left[D, \Delta \right] \right\}_L \in A \). One has

\[
\left\{ \left[D, \Delta \right] \right\}_L = -\left\{ \left[D, \Delta \right] \right\}_L \]

Lemma 4.3. Let \(D_1, D_2, D_3 \) be three elements of \(\mathbb{L} \). One has:

\[
\left\{ \left[\left[D_1, \left[D_2, D_3 \right] \right] \right] \right\} \otimes \left\{ \left[D_1, \left[D_2, D_3 \right] \right] \right\} \otimes \left\{ \left[D_2, D_3 \right] \right\} \]

\(\forall (D, a) \in \mathbb{L} \times A \rightarrow \left\{ D, a \right\} = \omega(D)(a) \)

Proof. The lemma follows from the Jacobi identity, taking the component on \(\mathbb{L} \otimes A \).

Proposition 4.4. Let \((D, \Delta) \in \mathbb{L}^2 \) and \((\alpha, \beta) \in A^2 \), one has:

\[
\left\{ \left[\left[D, \Delta \right] \right] \right\}_L = \left\{ \left[\left[D, \Delta \right] \right] \right\}_L \otimes \left\{ \left[D, \Delta \right] \right\}_L \otimes \left\{ \left[D, \Delta \right] \right\}_L \]

\[
\left\{ \left[D, \Delta \right] \right\}_L = \left\{ \left[D, \Delta \right] \right\}_L \otimes \left\{ \left[D, \Delta \right] \right\}_L \]

\[
\left\{ \left[D, \Delta \right] \right\}_L = \left\{ \left[D, \Delta \right] \right\}_L \otimes \left\{ \left[D, \Delta \right] \right\}_L \]

\[
\left\{ \left[D, \Delta \right] \right\}_L = \left\{ \left[D, \Delta \right] \right\}_L \otimes \left\{ \left[D, \Delta \right] \right\}_L \]

\[
\left\{ \left[D, \Delta \right] \right\}_L = \left\{ \left[D, \Delta \right] \right\}_L \otimes \left\{ \left[D, \Delta \right] \right\}_L \]

\[
\left\{ \left[D, \Delta \right] \right\}_L = \left\{ \left[D, \Delta \right] \right\}_L \otimes \left\{ \left[D, \Delta \right] \right\}_L \]

Proof. The proof follows from the properties of the double Lie algebroid bracket and easy computations.

Proposition 4.5. Let \((\mathbb{L}, \Delta, \omega, \{., .\}_L) \) be a quadruple such that \(\{., .\}_L \) is a map from \(\mathbb{L} \otimes \mathbb{L} \) to \(A \otimes \mathbb{L} \) and \(\omega \) a map from \(\mathbb{L} \) to \(\text{Der}(A) \). There is a unique graded bilinear map \(\{., .\}_L : \text{T}_A(\mathbb{L}) \otimes \text{T}_A(\mathbb{L}) \rightarrow \text{T}_A(\mathbb{L}) \) of degree \(-1\) satisfying the following conditions:

• For all \((\alpha, \beta, D, \Delta) \in A^2 \otimes L^2 \),

\[
\{\alpha, \beta\} = 0
\]

\[
\{D, \alpha\} = \omega(D)(\alpha) \otimes \omega(D)(\alpha)
\]

\[
\{D, \Delta\} = \{D, \Delta\}_L
\]
• for all \((a, b, c) \in T_A(\mathbb{L})\)

\[
\{\{a, be\}\} = (-1)^{(|a|-1)|b|} b\{\{a, c\}\} + \{\{a, b\}\} c
\]

\[
\{\{a, b\}\} = -(-1)^{(|a|-1)(|b|-1)} \sigma_{(12)} \{\{b, a\}\}
\]

\((\mathbb{L}, A, \omega)\) is a double Lie–Rinehart algebra over \(A\) if and only if \(T_A(\mathbb{L})\) is a double Gerstenhaber algebra.

Proof. Adopting a Sweedler type notation for \(\{\{,\}\}\), one has for any \(a_1, \ldots, a_m, b_1, \ldots, b_n \in T_A(\mathbb{L})\):

\[
\{a_1 \cdots a_m, b_1 \cdots b_n\} = \sum_{p,q} b_1 \cdots b_{q-1} \{a_p, b_q\} a_{p+1} \cdots a_m \otimes a_1 \cdots a_{p-1} \{a_p, b_q\}'' b_{q+1} \cdots b_n
\]

One sets

\[
\{\{a, b, c\}\} = \{\{a, \{b, c\}\}\}_L + (-1)^{|a|-1(|b|+|c|)} \sigma_{(123)} \{\{b, \{c, a\}\}\}_L + (-1)^{|c|-1(|a|+|b|)} \sigma_{(123)}^2 \{\{c, \{a, b\}\}\}_L.
\]

\(\{[-, -, -]\}\) is a triple bracket. We want to show that it is zero. We need to check it on generators.

First case: If two of the \(a, b, c\) are in \(A\) then all the terms are zero.

Second case: If all the \(a, b, c\) are in \(\mathbb{L}\), it is 0 by hypothesis.

Third case: We check Jacobi identity in the case of a triple \((\alpha, D, \Delta)\) in \(A \times \mathbb{L} \times \mathbb{L}\). We need to show the equality:

\[
\{\{\alpha, \{D, \Delta\}\}\}_L + \sigma_{(123)} \{\{D, \{\Delta, \alpha\}\}\}_L + \sigma_{(123)}^2 \{\{\Delta, \{\alpha, D\}\}\}_L = 0
\]

Before computing each of these terms, let us remark that

\[
\omega(\{\{D, \Delta\}\}_L) = \{\{\omega(D), \omega(\Delta)\}\}_L.
\]

This equality can be written more simply as follows:

\[
\omega(\{\{D, \Delta\\}'_L \otimes \{\{D, \Delta\\}\}'_L) = \{\{\omega(D), \omega(\Delta)\\}'_L \otimes \{\{\omega(D), \omega(\Delta)\\}'_L
\]

one has

\[
\{\{\alpha, \{D, \Delta\}\}\}_L = \{\{\alpha, \{\{D, \Delta\\}'_L \otimes \{\{D, \Delta\\}'_L\}_L = -\tau_{(12)} \omega(\{\{D, \Delta\\}'_L \otimes \{\{D, \Delta\\}'_L\}_L
\]

\[
= -\tau_{(12)} \omega(\{\{D, \Delta\\}'_L \otimes \{\{D, \Delta\\}'_L\}_L
\]

\[
= -\tau_{(12)} \omega(\{\{D, \Delta\\}'_L \otimes \{\{D, \Delta\\}'_L\}_L
\]

\[
\sigma_{(123)} \{\{D, \{\Delta, \alpha\}\}\}_L = \sigma_{(123)} \{\{\omega(D), \omega(\Delta)\}'_L \otimes \{\{\omega(D), \omega(\Delta)\}'_L\}_L = \tau_{(123)} (\{\omega(D) \otimes 1\} \omega(\Delta)) (\alpha)
\]

\[
\sigma_{(123)} \{\{\Delta, \{\alpha, D\}\}\}_L = -\tau_{(123)} \{\Delta, \{\omega(\Delta), \omega(D)\}'_L \otimes \{\{\omega(\Delta), \omega(D)\}'_L\}_L
\]

In the next proposition, we study the case where the anchor \(\omega\) is zero.

Proposition 4.6. Let \((\mathbb{L}, [-, -, -], \omega)\) be a double Lie–Rinehart algebra over \(A\) such that \(\omega = 0\).

Set \(X \bullet Y = -\{X, Y\}_r = -\{\{X, Y\}'_L, \{X, Y\}'_L\}_r\) and \(X \bullet Y = \{X, Y\}_l = \{\{X, Y\}'_L, \{X, Y\}'_L\}_r\).

The laws \(\bullet_r\) and \(\bullet_l\) are associative so that \([- , -] : \mathbb{L} \times \mathbb{L} \rightarrow \mathbb{L}\) is the difference of two associative products. The laws induces by \(\bullet_r\) and \(\bullet_l\) in \(\mathbb{L} / [A, \mathbb{L}]\) are opposite from each other. The bracket \([-, -]\) induces a Lie bracket on \(\mathbb{L} / [A, \mathbb{L}]\) that comes from an associative product.

Proof. The associativity of \(\bullet_l\) follows from lemma \([33]\) and proposition \([34]\). The proof of the associativity of \(\bullet_r\) is similar. Let \(X\) and \(Y\) in \(\mathbb{L}\).

\[
X \bullet Y = -\{\{X, Y\}'_L, \{X, Y\}'_L\}_r = \{\{X, Y\}'_L, \{X, Y\}'_L\}_r = \{\{X, Y\}'_L, \{X, Y\}'_L\}_r \text{ mod } [A, \mathbb{L}]
\]

\(Y \bullet_l X \text{ mod } [A, \mathbb{L}]\).
Let us now give several examples of double Lie algebroids.

Example 1:
\((\mathcal{D}er(A), A, id) \) is a double Lie algebroid.

Example 2: If \(A = k \), double Lie algebroid structures on \(\mathbb{L} \) over \(k \) are in bijection with associative \(k \)-algebras structures over \(\mathbb{L} \). Indeed, If \(\mathbb{L} \) is a double Lie algebroid over \(k \), then \(\{\{\cdot, \cdot\}\}_t \) is an associative product. Conversely, an associative product over \(k \) gives rise to a double Lie–Rinehart algebra over \(k \) as follows: \(\{\{X, Y\}\}_t = XY \otimes 1, \{\{X, Y\}\}_r = -1 \otimes XY \) and \(\{\{X, Y\}\} = XY \otimes 1 - 1 \otimes YX \). The bracket \(\{\{\cdot, \cdot\}\} \) identifies to the Lie bracket coming from the associative structure.

Exemple 3:
Let us recall the definition of a double Lie algebra:

Definition 4.7. Let \(\mathfrak{g} \) be a vector space of finite dimension. A double Lie bracket over \(\mathfrak{g} \) is a map \(\{\{\cdot, \cdot\}\} : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g} \) satisfying the Jacobi identity.

Remark 4.8. Let \(V \) be a \(m \) dimensional \(\mathbb{C} \)-vector space. Double Lie algebra structures on \(V \) are in bijection (\([2]\)) with operators \(r \in \text{End}(V \otimes V) \) such that \(r(v \otimes u) = -r(u \otimes v) \) (skew-symmetry) and solution of the classical Yang Baxter equation
\[
r^{23}_{12} + r^{31}_{23} + r^{12}_{31} = 0
\]
where \(r^{ij} \) acts on \(V^\otimes 3 \) non trivially on \((i,j) \) spaces and as identity elsewhere.

Let \(\mathfrak{g} \) be a double Lie algebra with double bracket \(\{\{\cdot, \cdot\}\}_g \). This latter induces a Poisson bracket on \(T(\mathfrak{g}) \). There is a unique double Lie algebroid structure on \(L = T(\mathfrak{g}) \otimes \mathfrak{g} \otimes T(\mathfrak{g}) \) such that
\[
\forall (X,Y) \in \mathfrak{g}, \quad \forall a \in T(\mathfrak{g}),
\{\{X,Y\}\}_L = \{\{X,Y\}\}_g
\omega(X)(a) = \{\{X,a\}\}_T(\mathfrak{g})
\]
Then \(T(\mathfrak{g}) \otimes \mathfrak{g} \otimes T(\mathfrak{g}) \) is a Lie double algebroid over \(T(\mathfrak{g}) \).

Example 4: Let \(V \) be an \(A^c \)-module of finite type. For \(\lambda, \mu \) in \(\text{Hom}_{A^c}(V, V \otimes V) \) (the exterior \(A^c \)-module structure on \(V \otimes V \) is used for the \(\text{Hom}_{A^c} \)), one sets:
\[
\{\{\lambda, \mu\}\}^\sim = (\lambda \otimes 1)\mu - (1 \otimes \mu)\lambda
\{\{\lambda, \mu\}\}_t = (1 \otimes \lambda)\mu - (\mu \otimes 1)\lambda
\]
One sets
\[
\{\{\lambda, \mu\}\}_l = \tau_{23}\{\{\lambda, \mu\}\}^\sim
\{\{\lambda, \mu\}\}_r = \tau_{12}\{\{\lambda, \mu\}\}^\sim
\{\{\lambda, \mu\}\}_t = \{\{\lambda, \mu\}\}_l + \{\{\lambda, \mu\}\}_r
\]
Then
\[
\{\{\lambda, \mu\}\} \in \text{Hom}_{A^c}(V, V \otimes V) \otimes_k V + V \otimes_k \text{Hom}_{A^c}(V, V \otimes V)
\]
Then
\[
\{\{\lambda, \mu\}\} \in \text{Hom}_{A^c}(V, V \otimes V) \otimes_k T_A(V) \oplus T_A(V) \otimes_k \text{Hom}_{A^c}(V, V \otimes V)
\]
There is a unique double Lie algebroid structure on \(T_A(V) \otimes_k \text{Hom}(V, V \otimes V) \otimes_k T_A(V) \) with anchor map
\[
\omega : T_A(V) \otimes_k \text{Hom}(V, V \otimes V) \otimes_k T_A(V) \to \mathcal{D}er(T(V))
\alpha \odot \lambda \odot \beta \implies \alpha \{\{\lambda, \cdot\}\}_t \beta
\]
where \(\{\{\lambda, \cdot\}\} \) is the unique double derivation of \(T_A(V) \) such that for all \(v \in V \), \(\{\{\lambda, v\}\} = \lambda(v) \) and, for all \(a \in A \), \(\{\{\lambda, a\}\} = 0 \).

Example 5:
Let \(A \) be a \(B \)-algebra endowed with a \(B \)-linear double Poisson bracket. The quadruple \((\Omega^1_B A, A, \omega, \{\cdot, \cdot\}) \) is a double Lie–Rinehart algebra with \(\omega \) and \(\{\cdot, \cdot\} \) defined as follows:
\[\Omega_1 \circ A \rightarrow \text{Der}_B(A) \]
\[da \mapsto \{(a, -)\} \]
\[\{(da, db)\} = d\{(a, b)\}' \otimes \{(a, b)\}'' + \{(a, b)\}' \otimes d\{(a, b)\}'' \]

Example 6: (15) Let \((A, P)\) a double quasi-Poisson algebra and let \(E\) be the double derivation of \(A\) defined by \(E(a) = a \otimes 1 - 1 \otimes a\). Then \(\tilde{\Omega}_A = \Omega_A \otimes AEA\) has the structure of a double Lie algebroid where the double bracket is defined as follows
\[\{(da, db)\} = d\{(a, b)\}' \otimes \{(a, b)\}'' \]
\[\{(da, db)\}_{\tilde{\Omega}_A} = \{(a, b)\} + \frac{1}{4} [b, [a, E \otimes 1 - 1 \otimes E]] \]
\[\{(E, X)\}_{\tilde{\Omega}_A} = X \otimes 1 - 1 \otimes X \]
for \(a, b \in A, X \in \mathcal{T}_A,\tilde{\Omega}_A\) where \([-,-]\) denotes the commutator for the inner \(A\)-bimodule structure on \(AEA \otimes AEA\). Futhermore the anchor is the \(A^r\)-bimodule morphism defined by:
\[\Omega_A \otimes AEA \rightarrow \text{Der}(A) \]
\[(du, \delta) \rightarrow \{(u, -)\} + \delta \]

is surjective.

5. Differential calculus

\(A \otimes A\) is endowed with a \(A^r \otimes A^r\)-module structure. Let \(M\) be an \(A^r\)-module. We choose to set
\[M^* = \{ \lambda : M \rightarrow A \otimes A \mid \lambda(\alpha \cdot D \cdot \beta) = \lambda(D)' \otimes \alpha \lambda(D)'' \} \]
\(M^*\) is itself an \(A^r\)-module as follows:
\[\forall \lambda \in M^*, \quad \forall (a, b) \in A^2, \quad \forall D \in M, \quad (a \cdot \lambda \cdot b)(D) = a \lambda(D)' \otimes \lambda(D)'' b. \]

Remark 5.1. We can exchange the role of the two \(A^r\)-module structures on \(A \otimes A\) and define
\[M_\ast = \{ \lambda : M \rightarrow A \otimes A \mid \lambda(\alpha \cdot D \cdot \beta) = \alpha \lambda(D)' \otimes \lambda(D)'' \beta \}. \]

Composition by \(\tau_{(12)}\) is an isomorphism of \(A^r\)-modules from \(M^*\) to \(M_\ast\).

Let \(M\) be an \(A^r\)-module. Let us endow \(A^{\otimes n+1}\) with the \((A^r)^{\otimes n}\)-module structure where the ith copy of \(A^r\) acts as follows:
\[a' \otimes a'' \cdot (a_1 \otimes \cdots \otimes a_{n+1}) = a_1 \otimes \cdots \otimes a_n a'' \otimes a_{n+1} \otimes \cdots \otimes a_{n+1}, \]
then the map (17)
\[\Psi : M^* \otimes A^n \rightarrow \text{Hom}_{(A^r)^{\otimes n}}(M^{\otimes n}, A^{\otimes n+1}) \]
\[\Psi(\lambda_1 \otimes \lambda_2 \otimes \cdots \lambda_n)(m_1 \otimes \cdots \otimes m_n) = \lambda_1(m_1) \otimes \lambda_1(m_1)'' \lambda_2(m_2) \otimes \cdots \otimes \lambda_n(m_n)'' \]
is well defined.

If \(M\) is a finitely generated \(A^r\)-projective module, then \(\Psi\) is an isomorphism of \(A^r\)-modules.

The cyclic group \(C_n\) acts on \(\text{Hom}_{(A^r)^{\otimes n}}(M^{\otimes n}, A^{\otimes n})\) as follows:
\[\forall \omega \in \text{Hom}_{(A^r)^{\otimes n}}(M^{\otimes n}, A^{\otimes n}), \quad \tau_{(1 \ldots n)} \cdot \omega = \tau_{(1 \ldots n)} \circ \omega \circ \tau_{(1 \ldots n)}^{-1} \]
The set of signed invariants of \(\text{Hom}_{(A^r)^{\otimes n}}(M^{\otimes n}, A^{\otimes n})\) under the action of \(C_n\) is
\[s - \text{inv} \text{Hom}_{(A^r)^{\otimes n}}(M^{\otimes n}, A^{\otimes n}) := \{ \omega \in \text{Hom}_{(A^r)^{\otimes n}}(M^{\otimes n}, A^{\otimes n}) \mid \tau_{(1 \ldots n)} \cdot \omega = (\omega) \} \]
If \(M\) is a finitely generated projective \(A^r\)-module, M. van den Bergh showed (17) that \(T^*(M^*)\) is isomorphic to \(s - \text{inv} \text{Hom}_{(A^r)^{\otimes n}}(M^{\otimes n}, A^{\otimes n})\). He constructed the following isomorphism \(\mu\) between the two spaces:

\[\mu : T^*(M^*) \rightarrow s - \text{inv} \text{Hom}_{(A^r)^{\otimes n}}(M^{\otimes n}, A^{\otimes n}) \]

\[\text{our map is slightly different from that of M. Van den Bergh due to different conventions for the dual of L} \]

makes use of \(M_\ast\), we make use of \(M^*\).
\[\mu : \frac{T^\ast(M^\ast)}{[T^\ast(M^\ast), T^\ast(M^\ast)']} \rightarrow s - \text{inv} \operatorname{Hom}_{A^\ast} (M^\otimes n, A^\otimes n) \]

\[\mu(\lambda_1 \otimes \cdots \otimes \lambda_n) = \{[-, \ldots, -]\} \lambda_1 \ldots \lambda_n = \sum_i (-1)^{(n-1)\delta_{1(i-1)} n} \circ \Phi \circ \tau_{(1) n}^i \]

with
\[\Phi(\lambda_1 \otimes \lambda_2 \otimes \cdots \otimes \lambda_n)(m_1 \otimes \cdots \otimes m_n) = \lambda_n(m_n)'' \lambda_1(m_1)' \otimes \lambda_1(m_1)' \lambda_2(m_2)' \otimes \cdots \lambda_{n-1}(m_{n-1})'' \lambda_n(m_n)' . \]

Notation: In the computation, \(\Phi(\lambda_1 \otimes \cdots \otimes \lambda_n) \) will be denoted \(\lambda_1 \otimes \cdots \otimes \lambda_n \).

Let \(C \) be a graded algebra and let
\[\Theta : C \rightarrow C \otimes C \]
\[c \mapsto \Theta(c)' \otimes \Theta(c)'' \]
be a double derivation. One sets
\[\circ \Theta : C \rightarrow C \]
\[c \mapsto \Theta(c)'' \Theta(c)' . \]

\(\circ \Theta \) is an endomorphism of \(C \) and induces an endomorphism of \(\frac{C}{[C; C]} \). We will be mostly interested in the case where \(C = T_A(\mathbb{L}^\ast) \) or \(C = T_A(\mathbb{L}) \) where \(\mathbb{L} \) is a double Lie–Rinehart algebra.

Proposition 5.2. 1) Let \(d : C \rightarrow C \) be a derivation of degree \(|d| \). It induces a derivation still denoted \(d : C \otimes C \rightarrow C \otimes C \) :
\[\forall c_1 \otimes c_2 \in C \otimes C , \quad d(c_1 \otimes c_2) = d(c_1) \otimes c_2 + (-1)^{|c_1| c_1} \circ d(c_2) \]
Let \(\tilde{d} : C \rightarrow C \otimes C \) be a double derivation. If \(c \in C \), we will write \(\tilde{d}(c) = \tilde{d}(c)' \otimes \tilde{d}(c)'' \) and we set \(\iota = \circ \tilde{d} \). Then \(\circ(d \circ \iota) = d \circ \iota \) and \(\circ(\iota \circ d) = \iota \circ d \).

2) (17) Let \(\delta : C \rightarrow C \otimes C \) and \(\Delta : C \rightarrow C \otimes C \) be two double derivations.
\[\delta \circ \delta = \tau_{12} \Delta \circ \delta = \circ \iota \{\delta, \Delta\} + \circ \tau \{\delta, \Delta\} \]
where \(\circ \iota (\epsilon' \otimes \epsilon'') = \circ \iota \epsilon' \otimes \epsilon'' \) and \(\circ \tau (\epsilon' \otimes \epsilon'') = \epsilon' \otimes \circ \iota \epsilon'' \)

Proof. 1) \((d \circ \iota)(c) = d((\tilde{d}(c)')' \otimes \tilde{d}(c)''') + (-1)^{|\tilde{d}(c)|} |\tilde{d}(c)'| \tilde{d}(c)'' \circ d(\tilde{d}(c)''') . \)
Hence
\[\circ(d \circ \iota)(c) = \tilde{d}(c)'' d(\tilde{d}(c)')(1 + |\tilde{d}(c)'| + |\tilde{d}(c)''|) + (d(\tilde{d}(c)''')) \tilde{d}(c)'(1 + |\tilde{d}(c)'| + |\tilde{d}(c)'''|) \]
\[= d \left[\tilde{d}(c)'' d(\tilde{d}(c)')'(1 + |\tilde{d}(c)'| + |\tilde{d}(c)'''|) + (d(\tilde{d}(c)''')) \tilde{d}(c)'(1 + |\tilde{d}(c)'| + |\tilde{d}(c)'''|) \right] \]
\[= (d \circ \iota)(c) \]
The equality \(\circ(d \circ \iota) = \iota \circ d \) is obvious.
2) is stated in [17].

Let us now see examples of this situation.

The contraction (similar to [17])
Set \(\mathbb{L}^\ast = \operatorname{Hom}_{A^\ast} (L, A \otimes A) \) and let \(D \in \mathbb{L} \). The element \(D \) defines a degree -1 double derivation \(\tilde{d}_D : T_A(\mathbb{L}^\ast) \rightarrow T_A(\mathbb{L}^\ast) \otimes T_A(\mathbb{L}^\ast) \)
\[\forall c \in \mathbb{L}^\ast , \quad \tilde{d}_D(c) = \alpha(D)' \otimes \alpha(D)''' . \]
More explicitly, the map \(\tilde{d}_D : T^\ast(\mathbb{L}^\ast) \rightarrow T^\ast(\mathbb{L}^\ast) \otimes T^\ast(\mathbb{L}^\ast) \) is given by
\[\tilde{d}_D(a_1 \ldots a_n) = \sum_{i=1}^n (-1)^{i-k} a_1 \ldots a_k(D)' \otimes \alpha_k(D)'' \alpha_{k+1} \ldots a_n \]

Lemma 5.3. (17) For all \(\Phi, \Theta \) in \(\mathbb{L} \), one has :
\[\iota_{\Phi} \circ \iota_{\Theta} = \iota_{\Phi \circ \Theta} = \iota_{\Phi} \circ \iota_{\Theta} = 0 \]
From now on, we will assume that L is a finitely generated and projective A^r-module.

The Karoubi-de Rham complex was defined in [9]. It corresponds to the case where $L = \mathbb{D}er(A)$. In this case, differential calculus was treated in [7] (differential, Lie derivative etc...) but the formulas don’t adjust to any double Lie algebroid. Even if $L \cong \mathbb{D}er(A)$, some of our formulas are different but, most of the time, we make use of the hypothesis A smooth.

The differential
For a general double Lie algebroid, the definition of the differential is more complicated than in the case where $L = \mathbb{D}er(A)$.

Theorem 5.4. One defines $d_{\triangle}: T_A(L^*) \to T_A(L^*)$ as the degree one derivation determined by:

- For $D \in L$, $d_{\triangle}(D) = D(a)\otimes D(a)''$
- For $\lambda \in L^*$, $d_{\triangle}(\lambda) \in \mathbb{L}^* \otimes_A L^* \cong \text{Hom}_A(L \otimes \Lambda, A^\otimes 3)$ is given by for all $D, \Delta \in L$:

$\quad \quad d_{\triangle}(\lambda)(D, \Delta) = D(\lambda(D)) \otimes \lambda(\Delta)'' - \lambda(\Delta) \otimes D(\lambda(D)'') - \tau_{23}([\lambda([D, \Delta])]_1) \otimes \{D, \Delta]\}_3''$

One can easily compute the general formula for d_{\triangle}: $\forall \psi \in \text{Hom}_A(\mathbb{L}^{\otimes n}, A^\otimes n+1)$

\[
d_{\triangle}(\psi)(D_1, \ldots, D_{n+1}) = \sum_{i=1}^{n+1} (-1)^{i-1} (id^{n-i} \circ d_1 \circ id^{n-i}) \psi(D_1, \ldots, \widehat{D_i}, \ldots, D_{n+1})
\]

where if $\psi = \psi_1 \otimes \psi_2 \otimes \cdots \otimes \psi_n \in \mathbb{L}^{\otimes n \otimes A}$ with $\psi_i : L \to A^\otimes 2$, then $\psi_i([D_1, D_i+1]) = \tau_{23} (\psi_i([D_1, D_i+1]) \otimes \{D_1, D_i+1\})_3''$

But d_{\triangle} is a derivation whose square is zero (that is to say a differential).

Proof: In the proof, we will make use of the following notation: If $\lambda \in L^*$, then $d_{\triangle}(\lambda(1)) \otimes \cdots \otimes d_{\triangle}(\lambda(n+1))$ where $d_{\triangle}(\lambda(1))$ takes values in A.

If D_1, D_2, D_3 are three elements of L, one has:

\[
(d_{\triangle} \circ d_{\triangle})(\lambda)(D_1, D_2, D_3) = D_1 [D_2 \lambda(D_3)']' \otimes D_2 (\lambda(D_3)')'' \otimes \lambda(D_3)' - D_1 (\lambda(D_2)')' \otimes D_3 (\lambda(D_2)')''
\]

But

\[
-\frac{1}{12} \sum_{i=1}^{n+1} (-1)^{i-1} (id^{n-i} \circ d_1 \circ id^{n-i}) \psi(D_1, \ldots, \widehat{D_i}, \ldots, D_{n+1})
\]

A lot of terms cancel, and we are left with

\[
\frac{1}{12} \psi(D_1, D_2) \otimes \psi(D_3) = \lambda([D_1, D_3])' \otimes D_2 (\lambda(D_3)')'' \otimes \lambda([D_1, D_3])_3''
\]

\[
+ \lambda([D_1, D_2])' \otimes \psi(D_3) = \lambda([D_1, D_3])'' \otimes \psi(D_3)
\]

\[
- \lambda([D_1, D_3])'' \otimes \psi(D_3)
\]

\[
- \psi(D_1, D_2) \otimes \psi(D_3) = \frac{1}{12} \psi(D_1, D_3) = \lambda([D_1, D_3])'' \otimes \psi(D_3)
\]

\[
+ \lambda([D_1, D_2])' \otimes \psi(D_3) = \lambda([D_1, D_3])'' \otimes \psi(D_3)
\]

\[
- \lambda([D_1, D_3])'' \otimes \psi(D_3)
\]

A lot of terms cancel, and we are left with

\[
\frac{1}{12} \psi(D_1, D_2) \otimes \psi(D_3) = \lambda([D_1, D_3])'' \otimes D_2 (\lambda(D_3)')'' \otimes \lambda([D_1, D_3])_3''
\]

\[
+ \lambda([D_1, D_2])' \otimes D_3 (\lambda(D_3)')'' \otimes \lambda([D_1, D_3])_3''
\]

\[
- \lambda([D_1, D_3])'' \otimes \psi(D_3)
\]

A lot of terms cancel, and we are left with

\[
\frac{1}{12} \psi(D_1, D_2) \otimes \psi(D_3) = \lambda([D_1, D_3])'' \otimes D_2 (\lambda(D_3)')'' \otimes \lambda([D_1, D_3])_3''
\]

\[
+ \lambda([D_1, D_2])' \otimes D_3 (\lambda(D_3)')'' \otimes \lambda([D_1, D_3])_3''
\]

\[
- \lambda([D_1, D_3])'' \otimes \psi(D_3)
\]
The equality \(d_L \circ d_L(\lambda)(D_1, D_2, D_3) = 0\) follows now from the lemma [3].

Remark 5.5. In [7], it is shown that for \(L = \mathcal{D}er(A)\) and \(A\) smooth, the complex \((T^*_A(L), d_L)\) is acyclic in strictly positive degree.

Definition 5.6. The differential \(d_L\) induces a differential

\[
d_L : \frac{T_A(L^*)}{[T_A(L^*), T_A(L^*)]} \to \frac{T_A(L^*)}{[T_A(L^*), T_A(L^*)]}
\]

We set \(DR(L)^* := \frac{T_A(L^*)}{[T_A(L^*), T_A(L^*)]}\) and \(d_L\) will be called "the differential of the double Lie algebroid" \(L\).

Remarks 5.7. 1) If \(L = \mathcal{D}er_k(A)\) and \(A\) smooth, the complex \((DR^*(L), d_L)\) is the Karoubi–de Rham complex ([2], [7]).

2) If \(A\) is a smooth double Poisson algebra and \(L = \Omega^1(A)\), we will see that the complex \((DR^*(L), d_L)\) is the complex computing the non commutative Poisson cohomology ([15]).

In low degree, the expression of \(d_L\) is the following: For all \(a \in A\), \(\phi \in L\) and \(\tilde{\phi} \in s - \text{inv} \text{Hom}(A, L, A)\)

\[
d_L(a)(D) = D(a)^\nu D(a)^\nu D(a)^\nu \Delta - \tilde{\phi} \Delta (\tilde{\phi}(D)) - \tilde{\phi}[\{\{D, \Delta\}^\nu, \{D, \Delta\}^\nu\}] - \{\{D, \Delta\}^\nu, \tilde{\phi}(\{\{D, \Delta\}^\nu\})
\]

We now give an expression for \(d_L\) in any degree.

Theorem 5.8. Let \(\mu_1, \ldots, \mu_n \in \mathbb{R}^*\). We have the following formula where indices should be understood modulo \(n + 1\):

\[
d_L (\{\{-, \ldots, -\}\}_{\mu_1, \ldots, \mu_n})(D_1 \otimes \cdots \otimes D_{n+1}) = \{L\} + \{LL\}
\]

where \(\{L\} = \mu_n(D_{n+1})^{\nu} \mu_1(D_1)^{\nu} \mu_2(D_2)^{\nu} \cdots \otimes \mu_{n-1}(D_{n-1})^{\nu} \mu_n(D_{n+1})^{\nu} + \cdots + \sum_{i=1}^{n}(-1)^{(n-1)(i-1)}\mu_i(D_i)^{\nu} \cdots \otimes \mu_{i-1}(D_{i-1})^{\nu} \mu_1(D_1)^{\nu} \cdots \otimes \mu_n(D_{n+1})^{\nu}
\]

\[
\{LL\} = \sum_{i=1}^{n}(-1)^i \mu_n(D_{n+1}) \nu \mu_1(D_1)^{\nu} \cdots \mu_2(D_2)^{\nu} \cdots \otimes \mu_{i-1}(D_{i-1}) \nu \mu_1(D_1)^{\nu} \cdots \mu_{n-1}(D_{n-1}) \nu \mu_n(D_{n+1})^{\nu}
\]

and \(\{\{\cdot, \ldots, \cdot\}\}_{\mu_1, \ldots, \mu_n} = \sum_{i=1}^{n}(-1)^{(n-1)(i-1)} \mu_n(\{\{D_1, D_i\}^\nu, \{D_i, D_{i+1}\}^\nu\}) \nu \mu_1(\{\{D_1, D_i\}^\nu, \{D_i, D_{i+1}\}^\nu\}) \nu \mu_2(\{\{D_1, D_i\}^\nu, \{D_i, D_{i+1}\}^\nu\}) \nu \cdots \otimes \mu_{n-1}(D_{n-1}) \nu \mu_n(D_{n+1})^{\nu} + \cdots + \sum_{i=2}^{n}(-1)^{(n-1)(i-1)} \mu_n(D_{n+1}) \nu \mu_1(D_1)^{\nu} \cdots \otimes \mu_{i-1}(D_{i-1}) \nu \mu_1(D_1)^{\nu} \cdots \otimes \mu_n(D_{n+1})^{\nu}
\]

For simplicity, we write \(\sigma := \tau_{(1 \ldots n)}\) and \(\tau := \tau_{(1 \ldots n+1)}\). Then

\[
\{\{-, \ldots, -\}\}_{\mu_1, \ldots, \mu_n} = \sum_{i=1}^{n}(-1)^{(n-1)(i-1)} \mu_n(\{\{D_1, D_i\}^\nu, \cdots \otimes \{D_1, D_{i+1}\}^\nu\}) \nu \mu_1(\{\{D_1, D_i\}^\nu, \cdots \otimes \{D_1, D_{i+1}\}^\nu\}) \nu \cdots \otimes \mu_{n-1}(D_{n-1}) \nu \mu_n(D_{n+1})^{\nu}.
\]

Using the formulas of \(L\) and \(LL\) one writes \(d_L((\{-, \ldots, -\}_{\mu_1, \ldots, \mu_n})(D_1 \otimes \cdots \otimes D_{n+1}) = (I) + (II)\).

In the computation of \((I)\), the terms of the form \(D_1(\cdot) \otimes \ldots \otimes \cdot\) give \(\{\{D_1, \{D_2, \ldots, D_{n+1}\}\}_{\mu_1, \ldots, \mu_n}\}L\).
More precisely:

\[
(I) \quad D_1 \sum_{n=1}^{\infty} \mu_n (D_n, D_{n+1})^\prime \mu_2 (D_2) \mu_2 (D_2) \cdots \mu_{n-1} (D_{n-1}) \mu_n (D_n, D_{n+1}) + \ldots \\
+ \sum_{i=1}^{n} \sum_{j=1}^{i-1} (-1)^{(i-1)(j-1)} (i-1)^{\mu_{i-1}(m_{i-1}(D_i L), D_l \in D_{r-1}(1))}
\]

= \left\{ D_1, \{D_2, \ldots, D_n\} \right\} L + \ldots \\
+ \sum_{n=1}^{k} (-1)^{n-1} \tau_1 \left\{ D_1, \left\{ D_{n+1}, \ldots, D_{n+1} \right\} \right\} L + \ldots \\
= \sum_{n=1}^{k} (-1)^{n-1} \tau_1 \left\{ D_1, \left\{ D_{n+1}, \ldots, D_{n+1} \right\} \right\} L + \ldots
\]

where the notation \(\mu_k \leftarrow \mu_{i-1}(m_{i-1}(D_i L), D_l \in D_{r-1}(1)) \) means that we reproduce the previous term, replacing \(\mu_k \) by \(\mu_{i-1}(m_{i-1}(D_i L), D_l \in D_{r-1}(1)) \).

When computing \((II)\), the terms finishing by \(\{D_n, D_{n+1}\} \) give

\[
(-1)^n \left\{ D_1, \ldots, D_{n-1}, \{D_n, D_{n+1}\} \right\} \mu_1 \cdots \mu_n \times \{D_n, D_{n+1}\}
\]

More precisely:

\[
(II) = \sum_{n=1}^{k} (-1)^{n} \mu_n \left\{ \{D_1, \ldots, D_{n+1}\} \right\} \mu_1 (D_1) \mu_2 (D_2) \cdots \mu_{n-1} (D_{n-1}) \mu_n (\{D_n, D_{n+1}\}) \times \{D_n, D_{n+1}\}
\]

\[
+ \sum_{i=1}^{k} \sum_{j=1}^{i-1} (-1)^{(i-1)(j-1)} (i-1)^{\mu_{i-1}(m_{i-1}(D_i L), D_l \in D_{r-1}(1))}
\]

\[
= (-1)^n \left\{ D_1, \ldots, D_{n-1}, \{D_n, D_{n+1}\} \right\} \mu_1 \cdots \mu_n + \ldots + (-1)^{2n-1} (D_k \leftarrow D_{r+1}(D_k))
\]

\[
= \sum_{n=1}^{k} (-1)^{n-1} \tau_1 \left\{ D_1, \ldots, D_{n+1} \right\} \left\{ D_{n+1}, D_{n+2}, \ldots, \{D_{n+1}, D_{n+1}\} \right\} \mu_1 \cdots \mu_n L
\]

\[\square\]

Remark 5.9. In the case where \(A = k, L = B \) is a finite dimensional algebra and \(\{a, b\} = ab - ba \), it is easy to see (using theorem 5.8) that \(T^* (L^*) \) is isomorphic to the cochains of the cyclic cohomology

\[C^n \bigl(\{ f : B^\otimes n \to k, f \circ \tau^{-1}_{(1, n)} = (-1)^{n-1} f \} \) and \(d_L \) is the differential of the Hochschild complex. Thus the complex \(\left(T^* (L^*), \frac{\text{Der}_k (A)}{(1, k)}, d_L \right) \) computes the cyclic cohomology of \(B \).

We will now study more in detail the case where \(A \) is a smooth double Poisson algebra with double bracket defined by the double biderivation \(P = \delta \Delta \) and \(L = \Omega^1_A \). Note that \(\Omega^1_A = \text{Der}_k (A)^* \) and \(\text{Der}_k (A) = \Omega^1_A^* \) so that if \(D \) is in \(\text{Der}_k (A) \), then \(\sigma D \in \Omega^1_A^* \).

Proposition 5.10. 1) If \(a, f \in A \), then \(d_L (a)(df) = \{ f, [P, a] \} \).

2) If \(D_1, \ldots, D_n \) are in \(L \), then

\[d_L (\sigma D_1, \ldots, \sigma D_n) (da_1 \otimes \cdots \otimes da_{n+1}) = \{ a_1, \{a_2, \ldots, \{a_{n+1}, \{P, D_1 \ldots D_n\}\} \} \}
\]

Proof. Let us prove that \(d_L (a)(df) = \{ f, \{\delta \Delta, a\} \} \). With our definition, we get

\[d_L (a)(df) = \{ f, [\delta] \} \otimes \{ f, [\delta] \} \otimes \Delta (\delta(f)) \otimes \Delta (\delta(f)) \otimes \Delta (\delta(f)) - \delta(f) \Delta (\delta(f)) \otimes \Delta (\delta(f)) \]

On the other hand:

\[\{ \delta \Delta, a \} = \{ a, \delta \Delta \} + \{ a, \delta \Delta \} + \{ a, \delta \} \Delta (\delta(a)) - \delta(a) \Delta (\delta(a)) \]

Hence \(\{ \delta \Delta, a \} (df) = \delta(f) \delta(a) \Delta (\delta(a)) + \delta(a) \Delta (\delta(a)) \Delta (\delta(a)) \neq 0 \).

The proof of 2) is a consequence of the following lemmas.
Lemma 5.11. \(d_L(\sigma D)(da \otimes db) = -\{\{a, \{b, \{P, D\}\}\}\}_L \)

Proof.
\[
d_L(\sigma D)(da \otimes db) = -D(a)^{\nu}(b, D(a^\nu)^{\nu})P + \{\{a, D(b)^{\nu}\}P \otimes D(b)^{\nu} - \tau(23)\} \{\{\sigma D, \{\{a, \{P, b\}\}\}\}\}_L
\]
\[
= -D(a)^{\nu}(b, D(a^\nu)^{\nu})P + \{\{a, D(b)^{\nu}\}P \otimes D(b)^{\nu} - D(\{\{a, b\}\}^\nu \otimes \{\{a, b\}\}^\nu) \otimes D(\{\{a, b\}\}^\nu) \}^\nu
\]
\[
= -D(a)^{\nu}(b, D(a^\nu)^{\nu})P + \{\{a, D(b)^{\nu}\}P \otimes D(b)^{\nu} - \tau(132)\} \{\{D, \{a, \{P, b\}\}\}\}_L
\]
\[
= -D(a)^{\nu}(b, D(a^\nu)^{\nu})P + \{\{a, D(b)^{\nu}\}P \otimes D(b)^{\nu} - \{\{a, \{\{P, b\}_L, \{D, a\}\}_L\}_{L + \tau(132)}\} \{\{b, \{\{D, a\}\}^\nu\}P \otimes \{\{D, a\}\}^\nu\}
\]
\[
= +\{\{a, D(b)^{\nu}\}P \otimes D(b)^{\nu} + \{\{a, \{\{P, b\}_L, \{D, a\}\}_L\}_{L + \tau(132)}\} \{\{b, \{\{D, a\}\}^\nu\}P \otimes \{\{D, a\}\}^\nu\}
\]
\[
= -\{\{\{a, b, \{P, D\}\}\}_L\}_{L + \tau(132)}\}
\]
where we used the formula \(\{\{a, b\}\} = \{\{a, \{P, b\}\}\}\).

Lemma 5.12. If \(\delta_1, \ldots, \delta_n\) are in \(\mathcal{D}(A)\) and \(a_1, \ldots, a_n \in A\), then
\[
\{\{\{a_1, \{\{a_2, \ldots, a_n\}\}_L\}_L \ldots \}_L = \delta_1(a_1)^{\nu} \otimes \delta_1(a_1)^{\nu} \otimes \delta_2(a_2)^{\nu} \otimes \delta_3(a_3)^{\nu} \otimes \cdots \delta_{n-1}(a_{n-1})^\nu \otimes \delta_n(a_n)^\nu \otimes \delta_n(a_n)^\nu
\]
Proof by induction on \(n\).

Proposition 5.13. Let \(A\) be a smooth double Poisson algebra. If \(L = \Omega^*_A\), the differential \(d_L\) coincides with the double Poisson cohomology defined by Pichereau and Van Weyer. ([13]).

This proposition follows from the previous theorem.

The Lie derivative:

The definition of the Lie derivative is more complicated for a general double Lie algebroid than in the case where \(L = \mathcal{D}(A)\) ([7]).

Let \(D\) be an element of \(L\). The Lie derivative along \(D\) is the map \(L_D : T_A(L^*) \to T_A(L^*) \otimes T_A(L^*)\) defined by the following conditions:

- \(L_D(a) = D(a)\)
- If \(\lambda \in L^*\),
\[
L_D(\lambda)(\Delta) = \lambda(\Delta)^{\nu} \otimes D(\lambda(\Delta)^{\nu}) \otimes \tau(23) \{\lambda(\{\{D, \lambda(\Delta)^{\nu}\} \otimes \{\{D, \Delta\}\}^\nu\}_{L + \tau(23)}\}_{L + \tau(23)}\}
\]
- \(L_D(\lambda) \in A \otimes L^* \otimes L^* \otimes A\) as the map
\[
\Delta \to \lambda(\Delta)^{\nu} \otimes D(\lambda(\Delta)^{\nu}) \otimes \tau(32) \{\lambda(\{\{D, \Delta\}\}^\nu) \otimes \{\{D, \Delta\}\}^\nu\}_{L + \tau(32)}\}
\]

belongs to \(L^* \otimes A\) and the map
\[
\Delta \to D(\lambda(\Delta)^{\nu}) \otimes \lambda(\Delta)^{\nu} \otimes \tau(32) \{\lambda(\{\{D, \Delta\}\}^\nu) \otimes \{\{D, \Delta\}\}^\nu\}_{L + \tau(32)}\}
\]
is in \(A \otimes L^*\).

- \(L_D\) is a degree preserving double derivation from \(T_A(L^*)\) to \(T_A(L^*) \otimes T_A(L^*)\).

Standard formulas involving the differential \(d_L\), contraction and Lie derivative hold in the case where \(L = \mathcal{D}(A)\) ([7, 17]). We prove now that they hold for any double Lie algebroids. In particular, one has the Cartan identity:

Proposition 5.14. The map \(d_L\) is a degree one derivation of \(T_A(L^*)\) and can be extended to a degree one derivation of \(T_A(L^*) \otimes T_A(L^*)\) as follows:
\[
\forall (\alpha, \beta) \in T_A(L^*_L), \quad d_L(\alpha \otimes \beta) = d_L(\alpha) \otimes \beta + (-1)^{\alpha} \alpha \otimes d_L(\beta).
\]

One has the following properties: For any \(D\) and \(\Delta\) in \(L\):
1) \(d_L(\alpha_L) \otimes \alpha_L + \alpha_L \otimes d_L(\alpha_L) = L_D\)
2) \(\{L_D, \alpha_L\}_L = \{L_D, \alpha_L\}_L = 0\).

Remark 5.15. Consequences of these formulas will be seen later.
Proof. 2) It is enough to prove the relation \(\partial_{b_{D}} \circ \tilde{b_{D}} + \tilde{b_{D}} \circ \partial_{b_{D}} = L_{D} \) on elements of \(A \) and \(L^{*} \).

On elements of \(A \), it is obvious. On elements \(\lambda \in L^{*} \), we give the main steps of the computation:

\[
(\tilde{b_{D}} \circ \partial_{b_{D}} + \partial_{b_{D}} \circ \tilde{b_{D}})(\lambda)(\Delta) = \frac{\partial_{b_{D}}(\lambda(D), \Delta)}{\tilde{b_{D}}(\lambda(D), \Delta) + \partial_{b_{D}}(\lambda(D)) (\Delta)} = \frac{\lambda(D)(\Delta)}{L_{D}(\lambda)(\Delta)}
\]

3) The relations \(\{[\tilde{b_{D}}, b_{D}]\}_{1} = 0 \) and \(\{[b_{D}, \tilde{b_{D}}]\}_{r} = 0 \) are easy to check on elements of \(A \) and \(\mathbb{L} \).

\[
\square
\]

6. FROM DOUBLE TO CLASSICAL

We now explain how to go from the double picture to the classical picture by the use of representation spaces \([\ref{17}]\). In the section, we assume by simplicity that \(B = k \).

Let \(A \) be a \(k \)-algebra an \(N \in \mathbb{N} \). Denote by \(\text{Rep}_{N}(A) \) the representation space \(\text{Hom}_{alg}(A, M_{N}(k)) \) The coordinate ring of \(\text{Rep}_{N}(A) \) is

\[
O_{N}(A) := k[\text{Rep}_{N}(A)] = \frac{k[a_{p,q}, (p, q) \in [1, N], a \in A]}{<a_{p,q}b_{q,r} - (ab)_{p,r}>}
\]

For any element \(x \in \text{Rep}_{N}(A) \) one has

\[
a_{p,q}(x) = x(a)_{p,q}
\]

Examples 6.1. 1) If \(A = \frac{k[t]}{[t]} \), then \(\text{Rep}_{N}(A) = \{Q \in M_{N}(k) \mid Q^{n} = (0)\} \).

2) If \(A = k < x_{1}, \ldots, x_{q} > \), then \(\text{Rep}_{N}(A) = M_{N}(k) \oplus \cdots \oplus M_{N}(k) \).

Theorem 6.2. \([\ref{17}]\) If \((A, \{\{-, -\}\}) \) is a double Poisson algebra, then \(O_{N}(A) \), endowed with the bracket determined by

\[
\{a_{i,j}, b_{u,v}\} = \{(a, b)'_{u,j}, (a, b)'_{v,i}\}
\]

is a Poisson algebra.

If \(a \in A \), one introduces \(X(a) \) the \(M_{n}(k) \) valued function on \(\text{Rep}_{N}(A) \) defined by \(X(a)_{i,j} = a_{i,j} \).

One has the relation \(X(ab) = X(a)X(b) \) and one defines \(\text{Tr} : \frac{A}{[A, A]} \rightarrow O_{N}(A), \quad \varpi \rightarrow \text{Tr}(X(a))) = \sum_{i} a_{i,i} \)

\(GL_{N}(k) \) acts by conjugation on \(\text{Rep}_{N}(A) \). Using a result of Lebruyn and Procesi \([\ref{12}]\), the following theorem is shown in \([\ref{8}]\).

Theorem 6.3. If the \(k \)-algebra \(A \) is finitely generated, the map

\[
\text{Tr} : \frac{A}{[A, A]} \rightarrow O_{N}(A)^{GL_{N}(k)} \quad \varpi \rightarrow \text{Tr}(X(a)) = \sum_{i} a_{i,i}
\]

is an isomorphism of Lie algebras.

If \(M \) is an \(A^{*} \)-module, one defines \([\ref{13}]\) the \(O_{N}(A) \)-module \((M)_{N} \)

\[
(M)_{N} = \frac{k[m_{i,j}, \ m \in M]}{<a_{i,u}m_{u,j} - (am)_{i,j}, a_{u,j}m_{i,u} - (ma)_{i,j}>}
\]

If \(m \in M \), one introduces \(\text{Tr}(m) = \sum_{i=1}^{N} m_{i,i} \in (M)_{N} \).

We will be interested in the case where \(M = \mathbb{L} \) is a double Lie Rinehart algebra.

If \(\delta \in \text{Der}(A) \), one defines \([\ref{17}]\) the corresponding derivation on \(O_{N}(A) \) by

\[
\delta_{i,j} (a_{u,v}) = \delta(a)'_{u,j} \delta(a)'_{v,i}
\]

If \(\delta = \delta_{1} \ldots \delta_{n} \), one sets \(\delta_{i,j} = \delta_{1, a_{1}, i, j} \delta_{2, a_{1}, 2, j} \cdots \delta_{n, a_{n-1}, j} \in \wedge \text{Der}(O_{N}(A)) \). In other words, this can be rewritten by the relation \(X(\delta) = X(\delta_{1}) \ldots X(\delta_{n}) \).
Proposition 6.4. ([17]) If \(P, Q \in DA \), then the following relation holds:
\[
\{P_{ij}, Q_{uv}\} = \{[P, Q]\}_{ij}^{uv}
\]
where \(\{\cdot, \cdot\} \) denotes the Schouten bracket on \(DA \) and \(\{\cdot, \cdot\} \) the Schouten bracket between poly-vector fields on \(\text{Rep}_N(A) \).

Proposition 6.5. The Trace map \(\text{Tr} \) ([17])
\[
\text{Tr} : \frac{DA}{[DA, DA]} \rightarrow \wedge \text{Der} (\mathcal{O}_N(A))
\]
is a Lie algebra homomorphism if both side are equipped with the Schouten bracket.

Theorem 6.6. ([13])
There exists a unique Lie algebroid structure \((\mathbb{L}_N, \mathcal{O}_N(A), [\cdot, \cdot], \omega) \) with bracket \([\cdot, \cdot]\) and anchor \(\omega \) determined below by the equalities below:
\[
\omega(X_{i,j})(a_{u,v}) = X(a)(a)_{i,j}^{uv},
\]
\[
[X_{i,j}, Y_{u,v}] = \{X, Y\}_{i,j}^{uv}
\]

Proof. The only thing that is not obvious is the Jacobi identity and the fact that \(\omega \) is a Lie algebra morphism. We need to prove the identities
\[
[X_{i,j}, Y_{u,v}, Z_{k,m}] + [Y_{u,v}, Z_{k,m}, X_{i,j}] + [Z_{k,m}, X_{i,j}, Y_{u,v}] = 0
\]
These two identities follows from the double Jacobi identities by a straightforward computation. \(\square \)

1. If \(D \in L \), we consider the matrix \(X(D) = (D_{i,j}) \) as being with values in \(\wedge \mathcal{O}_N(A)(\mathbb{L})_N \) and we set
\[
\forall D_1 \cdots \cdot D_n, \quad X(D_1 \cdots D_n) = X(D_1) \cdots X(D_n) \in \wedge \mathcal{O}_N(A)(\mathbb{L})_N.
\]
One defines the trace map (as in [17]) by \(\text{Tr} : T_A(L) \rightarrow \wedge \mathcal{O}(L)_N \) by \(\text{Tr}(D_1 \cdots \cdot D_n) = \text{Tr}X(D) \).

Proposition 6.7. If \(D, \Delta \) are in \(L \), one has the following equality \([\text{Tr}(D), \text{Tr}(\Delta)] = \text{Tr}([D, \Delta]) \) where the left hand side involves the Schouten bracket on \(\wedge \mathcal{O}_N(A)(\mathbb{L})_N \) and the right hand side involves the double Schouten bracket. \(\square \)

Proof. It is a straightforward computation.

Let \(M \) be an \(A^* \)-module. To the \(A^* \)-module
\[
M^* = \{ \lambda : M \rightarrow A \otimes A : \lambda(amb) = \lambda(m)b \otimes a\lambda(m)^n \},
\]
on one associates
\[
(M^*)_N = \{ \lambda_{i,j}, \lambda \in M^* \}
\]
If \(\lambda \in M^* \) and \(m \in M, \lambda_{i,j} \) defines an element of \(\text{Hom}_{\mathcal{O}_N(A)}((M)_N, \mathcal{O}_N(A)) \) by
\[
\lambda_{i,j}(m_{u,v}) = \lambda(m)_{i,j}^{uv}
\]
For us, \(M \) will be a double Lie–Rinehart algebra \(L \) or its dual \(L^* \).

Remark 6.8. If \(M = \wedge \text{Der}(A) \), one recovers the equality \((da)_{i,j} = da_{i,j} \) (17).

We go on mimicking Van den Berg’s construction:

If \(\Lambda = \lambda_1 \otimes \lambda_2 \otimes \cdots \otimes \lambda_n \in T^n(M^*) \), we define
\[
\Lambda_{i,j} = \lambda_{1,i_1} \lambda_{2,i_2} \cdots \lambda_{n,i_n-j} \in \wedge ((M)_N^*)
\]
and \(X(\Lambda) = (\Lambda_{i,j})_{i,j} \). The latter is a matrix with values in \(\wedge ((M)_N^*) \).

Lemma 6.9. Let us identify \(\Lambda = \lambda_1 \otimes \lambda_2 \otimes \cdots \otimes \lambda_n \) to \(\Phi \in \text{Hom}_{A^*}(\mathbb{L}_N^a, A^{\otimes n+1}) \). If we write
\[
\Phi(D_1 \otimes \cdots \otimes D_n) = \Phi^{(1)}(D_1) \otimes \cdots \otimes \Phi^{(n+1)}(D_n),
\]
then
\[
\Phi_{i,j}(D_{1,u_{i,v_1}} \otimes \cdots \otimes D_{u_{n,v_n}}) = \sum_{\sigma \in S_n} (-1)^n \Phi^{(1)}(D_{\sigma(1)} \otimes \cdots \otimes D_{\sigma(n)})_{i_1,v_1} \Phi^{(2)}(D_{\sigma(1)} \otimes \cdots \otimes D_{\sigma(n)})_{u_1,v_2} \cdots \Phi^{(n+1)}(D_{\sigma(1)} \otimes \cdots \otimes D_{\sigma(n)})_{u_{n-1},v_{n-1}} \Phi^{(n)}(D_{\sigma(1)} \otimes \cdots \otimes D_{\sigma(n)})_{u_{n},v_{n}}
\]
Theorem 6.12.

Proof.

\[\Phi(1)^{(D)}(\sigma(1) \cdots \sigma(n))_{uv} \Phi(2)^{(D)}(\sigma(1) \cdots \sigma(n))_{uv} \Phi(n-1)^{(D)}(\sigma(1) \cdots \sigma(n))_{uv} \Phi(n)^{(D)}(\sigma(1) \cdots \sigma(n))_{uv} \]

Let us now prove (ii). In the following computation \((D \leftrightarrow \Delta, u \leftrightarrow k, v \leftrightarrow p)\) means the same expression as before exchanging \(D\) with \(\Delta\), \(u\) with \(k\), \(v\) with \(p\).

\[d_{(\lambda),j}^i(D_{k,p}, \Delta_{u,v}) = \lambda(D) \Delta(\lambda(D))_{k,p} \Delta_{u,v} \]

Proposition 6.11. Let \(Tr\) be the Trace map : if \(\Phi \in T_A(\mathbb{L}^*)\), \(Tr(\Phi) = Tr(X(\Phi))\)

\(a)\) If \(\lambda \in \mathbb{L}^*\) and \(D \in \mathbb{L}\), then \(Tr(\lambda(D)) = Tr(\lambda)(Tr(D))\).

\(b)\) If \(\Phi \in T_A(\mathbb{L}^*)\), one has \(Tr_d(\Phi) = d_{(\lambda),j}((Tr\Phi))\)

Proof. a) is an easy computation :

\[Tr(\lambda)(Tr(D)) = \sum_{i,j} \lambda_{i,j}(D_{i,j}) = \lambda(D)_{i,j} \lambda(D)_{j,i} = Tr(\lambda(D)) \]

Let us now prove b).

Let us first prove by induction on the degree of \(\Phi\) that \(d_{(\lambda)}(\Phi)_{i,j} = d_{(\lambda)}(\Phi_{i,j})\).

For \(deg(\Phi) = 1\), we have already proved it in a previous lemma.

Assume that it is proved for \(deg(\Phi) = n\) and let us use it for \(\Phi\lambda\) if \(\lambda \in \mathbb{L}^*\).

Then \(Tr[d_{(\lambda)}(\Phi)] = \sum_{i,j} d_{(\Phi)}(d_{(\lambda)}(\Phi))_{i,j} = d_{(\lambda)}(\Phi))\).
7. Reduced contraction and Lie derivative

In this section, we generalize results of [7].

Definition 7.1. Let L be a double Lie algebroid. If Θ is in L, one defines the reduced Lie derivative and the reduced contraction by:

$$\iota_\Theta : T^2_A(L^*) \to T^1_A(L^*), \quad \alpha \mapsto \circ \iota_\Theta \alpha$$

$$L_\Theta : T^2_A(L^*) \to T^3_A(L^*), \quad \alpha \mapsto \circ L_\Theta \alpha$$

Explicitly, if $\alpha_1, \alpha_2, \ldots, \alpha_n$ are in L^*, one has

$$\iota_\Theta (\alpha_1 \alpha_2 \ldots \alpha_n) = \sum_{k=1}^n (-1)^k (n-k+1) \alpha_k(\Theta)'' \cdot \alpha_{k+1} \ldots \alpha_n \alpha_1 \ldots \alpha_{k-1} \cdot \alpha_k(\Theta)'$$

$$L_\Theta (\alpha_1 \alpha_2 \ldots \alpha_n) = \sum_{k=1}^n (-1)^k (n-k+1) L_\Theta (\alpha_k)'' \cdot \alpha_{k+1} \ldots \alpha_n \alpha_1 \ldots \alpha_{k-1} \cdot L_\Theta (\alpha_k)'$$

Proposition 7.2. 1) For any $\Theta \in L$, the following equalities of endomorphisms of $T_A(L^*)$ hold:

$$d_L \circ \iota_\Theta + \iota_\Theta \circ d_L = L_\Theta,$$

$$d_L \circ L_\Theta = L_\Theta \circ d_L$$

2) The maps d_L, L_Θ and ι_Θ descend to maps from $DR^*(L)$ to $DR^*(L)$ denoted respectively d_L, L_Θ and ι_Θ. One has

$$d_L \circ \iota_\Theta + \iota_\Theta \circ d_L = L_\Theta,$$

$$d_L \circ L_\Theta = L_\Theta \circ d_L$$

3) For any δ and Δ in L, one has $L_\Theta (\Delta + \sigma_{12} \iota_\Theta \delta) = 0$ (as maps from $T_A(L^*)$ to $T_A(L^*) \otimes T_A(L^*)$).

Remark 7.3. The previous proposition is proved for $L = \mathcal{D}er(A)$ in [7] but our proof is different.

Proof. 1) follows by applying $\circ()$ to the relation

$$L_\Theta = d_L \circ \iota_\Theta + \iota_\Theta \circ d_L$$

and using proposition 5.2 and from proposition 5.2.

2) followed from proposition 5.2 and from proposition 5.2.

References

[1] A. Alekseev, Y. Kosmann-Schwarzbach, E. Meinrenken, Quasi-Poisson manifolds, Canadian Journal of Math. 54 (1), (2002) 419-456.

[2] J. Avan, R. Ragoucy, V. Roubtsov, Quantization and dynamisation of trace-Poisson bracket, Communications in Mathematical Physics, 341, (2016) 263-287.

[3] H. Bursztyn, M. Crainic, Dirac structures, momentum maps, and quasi-Poisson manifolds, The breadth of symplectic and Poisson geometry, Progr. Math., 232, Birkhauser, (2005) 1–40.

[4] Y. Berest, X. Chen, F. Eshmatov, A. Ramadoss, Non commutative Poisson structures, derived representation schemes and Calabi-Yau algebras, Mathematical aspects of quantization, Contemp. Math. 583, edited by S. Evens, M. Gekhtman, B.C. Hall, X. Liu, C. Polini, (2012) 219-246.

[5] W. Crawley-Boevey, A note on non commutative Poisson structures, QA/0506268. unpublished.

[6] W. Crawley-Boevey, Poisson structures on moduli spaces of representations, J. Algebra 325, (2011), 205-215.

[7] W. Crawley-Boevey, P. Etingof, V. Ginzburg, Non commutative geometry and quiver algebras, Advances in Mathematics, volume 209, Issue 1, 274-336.

[8] S. Evens, J.H Lu, A. Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quarterly Journal of Math, 50, no 200, (1999), 417-436.

[9] M. Karoubi, Homologie cyclique et K-theorie, Asterisque 149, (1987).

[10] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applicandae Mathematicae 41, (1995), 1243–1274.

[11] Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier 46, no 5, (1996) 1243-1274.

[12] L. Lebruyn, C. Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), 585-598.

[13] G. Massuyeau, V. Turaev, Brackets in Pontryagin algebras of manifolds, arXiv : 1308.5131.

[14] G. Massuyeau, V. Turaev, Poisson structures on representation spaces of surfaces, Int. Math. Res. Notices 2014:1 (2014), 1-64.

[15] A. Pichereau, Van de Weyer, Double Poisson cohomology of path algebras of quivers, J. of Algebra 319, (2008), no 1, 105-133.

[16] G. Powell, On double Poisson structures on commutative algebras, arXiv:1603.07553

[17] M. Van den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc. 360 (2008), 5711-5769.

[18] M. Van den Bergh Non commutative quasi-hamiltonian spaces, Poisson geometry in mathematics and physics, Contemp. Math. 450, edited by G. Dito, J-H Lu, Y. Maeda, A. Weinstein, A.M.S., (2008) 273-299.
[19] A. Odesskii, V. Rubtsov, V. Sokolov, Double Poisson brackets on free associative algebras, non commutative birational geometry, representations and combinatorics, Contemp. Math. 592, A.M.S., edited by A. Berenstein and V. Retakh, (2013) 225-239.

[20] G. Rinehart, Differential forms for general commutative algebras, Transaction of the american mathematical Society 108, (1963) 195-222.

[21] G. Van de Weyer, Double Poisson structures on finite dimensional semi simple algebras, Algebra and representation theory (2006).