Research Article

On Some Complete Monotonicity of Functions Related to Generalized k–Gamma Function

Hesham Moustafa,1 Hanan Almuashi2, and Mansour Mahmoud3,*

1Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
2Mathematics Department, Faculty of Science, Jeddah University, Jeddah 21589, Saudi Arabia
3Mathematics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Mansour Mahmoud; mansour@mans.edu.eg

Received 30 March 2021; Accepted 10 May 2021; Published 24 May 2021

Academic Editor: Nasser Saad

Copyright © 2021 Hesham Moustafa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we presented two completely monotonic functions involving the generalized k–gamma function $\Gamma_k(x)$ and its logarithmic derivative $\psi_k(x)$, and established some upper and lower bounds for $\Gamma_k(x)$ in terms of $\psi_k(x)$.

1. Introduction

The ordinary gamma function is given by the following equation [1]:

$$\Gamma(u) = \lim_{n \to \infty} \frac{n! u^{n-1}}{u(u+1)(u+2), \ldots, (u+(n-1))}, \quad u > 0,$$

which was discovered by Euler when he generalized the factorial function to noninteger values. Lots of mathematicians studied the gamma function because of its great importance; for complete studies of the gamma function, please refer to [2, 3]. The digamma function is the logarithmic derivative of the gamma function and is given by [4]:

$$\psi(u) = -\gamma - \frac{1}{u} + \sum_{i=1}^{\infty} \left(\frac{1}{i} - \frac{1}{u+i} \right), \quad u > 0,$$

where $\gamma = \lim_{n \to \infty} \left(\sum_{i=1}^{n} \frac{1}{i} - \log n \right)$ is Euler–Mascheroni’s constant. A function $L(x)$ defined on an interval I is said to be completely monotonic if it possesses derivatives $L^{(n)}(u)$ for all $n \in \mathbb{N}$ such that

$$(-1)^n L^{(n)}(u) \geq 0, \quad u \in I; n \in \mathbb{N}.$$

Completely monotonic functions have remarkable applications in different fields such as in the theory of special functions, numerical and asymptotic analysis, probability, and physics. Some important properties of these functions were collected in [5], and for more information about this topic, we refer the reader to [6, 7].

In 2007, Alzer and Batir [8] proved that the function

$$M_\alpha(u) = \ln \Gamma(u) - u \ln u + u - \ln \sqrt{2\pi} + \frac{1}{2} \psi(u + \alpha), \quad \alpha \geq 0,$$

is completely monotonic on $(0, \infty)$ if and only if $\alpha \geq (1/3)$, and they also proved the function $-M_\alpha(u)$ is completely monotonic on $(0, \infty)$ if and only if $\alpha = 0$. As a consequence, they introduced the following sharp bounds for Γ function in terms of ψ function:

$$\exp \left[-\frac{1}{2} \psi(u + c) \right] \leq \frac{\Gamma(u)}{\left(\sqrt{2\pi} u e^{-\gamma} \right)} \leq \exp \left[-\frac{1}{2} \psi(u + d) \right], \quad u > 0,$$

with the best possible constants $c = (1/3)$ and $d = 0$. In order to refine inequality (5), Batir [9] modified the function $M_0(u)$ and proved that the function
which is completely monotonic on \((0, \infty)\) if and only if \(\delta \geq (1/4)\), and the function \(-T_\delta(u)\) is completely monotonic on \((0, \infty)\) if and only if \(\delta \leq 0\). As a consequence, he deduced the following refinement of the inequality (5):

\[
\exp \left[\frac{1}{2} \psi(u) - \frac{1}{6(u - a)} \right] \leq \left(\frac{\Gamma(u)}{\sqrt{2\pi u^e/u}} \right)^\delta < \exp \left[\frac{1}{2} \psi(u) - \frac{1}{6(u - b)} \right], \quad u > 0, \tag{7}
\]

with the best possible constants \(a = (1/4)\) and \(b = 0\).

In many contexts, such as the combinatorics of creation, the annihilation operators, and the perturbative computation of Feynman integrals, the following symbol appears [10–12]:

\[
(u)_{nk} = u(u + k)(u + 2k), \ldots, (u + (n - 1)k), \quad u \text{ and } k > 0; n \in \mathbb{N}, \tag{8}
\]

which is a generalization of the ordinary Pochhammer symbol \((u)_n = ((\Gamma(u + n))/\Gamma(u))\), when \(k = 1\). Diaz and Pariguan [13] were motivated by the importance of \((u)_{nk}\), and they called it “the Pochhammer \(k\)-symbol,” and they introduced the \(k\)-gamma function by

\[
\Gamma_k(u) = \lim_{n \to \infty} n! (nk)^{(u(k-1)} = \int_0^\infty v^{u-1} e^{-v/k} dv, \quad u \text{ and } k > 0, \tag{9}
\]

which satisfies the functional equation:

\[
\Gamma_k(u + k) = u \Gamma_k(u), \quad \Gamma_k(k) = 1, \quad u, k > 0. \tag{10}
\]

As special cases, \(\Gamma_1(u)\) is the ordinary gamma function and the case \(k = 2\) is of particular interest since \(\Gamma_2(u) = \int_0^\infty v^{u-1} e^{-(v/2)} dv\) is the Gaussian integral. The \(k\)-gamma function and ordinary gamma functions are related by the relation

\[
\Gamma_k(u) = k^{(u(k-1)} \Gamma(u/k). \quad u \text{ and } k > 0. \tag{11}
\]

The \(k\)-analogue of the digamma function is given by [14]:

\[
\psi_k(u) = \ln \frac{k - y}{k} - \frac{1}{u} + \sum_{m=1}^{\infty} \left[\frac{1}{nk} - \frac{1}{nk + u} \right], \quad u \text{ and } k > 0, \tag{12}
\]

and it satisfies the following relations for \(u \text{ and } k > 0\) and \(m = 0, 1, 2, \ldots:\)

\[
\psi_k^{(m)}(u + k) = (-1)^m m! \psi_k^{(m)}(u), \quad \psi_k^{(m)}(k) = \frac{\ln k - y}{k}. \tag{13}
\]

In 2018, Nantomah et al. [15] presented the following integral representations:

\[
\psi_k(u) = \int_0^\infty \left[\frac{2e^{-1} - e^{-kt}}{kt} - \frac{e^{-ut}}{1 - e^{-kt}} \right] dt, \quad u \text{ and } k > 0, \tag{14}
\]

\[
\psi_k^{(m)}(u) = (-1)^{m+1} \int_0^\infty t^m \left(\frac{e^{-ut}}{1 - e^{-kt}} \right) dt, \quad u \text{ and } k > 0; m \in \mathbb{N}. \tag{15}
\]

Ege and Yildirim [16] obtained an inequality involving \(\psi_k'(u + k)\) and \(\psi_k''(u + k)\) which can be written, by using (13), as

\[
-k\psi_k'(u) - \frac{1}{u} - \frac{1}{ku} < \psi_k''(u) - \frac{1}{12u^2} - \frac{1}{ku}, \quad k \text{ and } u > 0. \tag{16}
\]

In 2020, Yildirim [17] presented some monotonicity properties for \(\psi_k^{(m)}\) functions, and he deduced the following inequalities:

\[
\frac{1}{2u} < \ln u - \psi_k(u) < \frac{1}{2u} + \frac{k}{12u^2}, \quad u \text{ and } k > 0, \tag{17}
\]

\[
\frac{1}{2u^2} + \frac{k}{6u^3} - \frac{k^2}{30u} < \psi_k(u) - \frac{1}{ku} < \frac{1}{2u^2} + \frac{k}{6u^3}, \quad u \text{ and } k > 0, \tag{18}
\]

\[
\frac{1}{u} < - \psi_k''(u) - \frac{1}{ku} < \frac{1}{u} + \frac{k}{2u}, \quad u \text{ and } k > 0. \tag{19}
\]

For more information about \(\Gamma_k\) and \(\psi_k\) functions, we refer the reader to [18–20] and the related references therein.

Nantomah et al. [21] introduced the following two-parameter deformation of the gamma and digamma functions for \(u \text{ and } k > 0\) and \(p \in \mathbb{N}^2:\)

\[
\Gamma_{pk}(u) = \frac{(p + 1)k^{(p+1)}(pk)_{(u(k-1)}}{u(u + k)(u + 2k), \ldots, (u + (p-1)k)}, \quad u \in \mathbb{C}, \quad k > 0, \tag{20}
\]

\[
\psi_{pk}(u) = \frac{1}{k} \ln (pk) - \sum_{i=1}^{p} \frac{1}{ik} \ln (pk) - \frac{1}{k} \int_0^\infty \left(\frac{1}{1 - e^{-kt}} \right)^p e^{-ut} dt.
\]

Nantomah et al. [22] introduced some complete monotonicity properties for \(\Gamma_{pk}\), and they deduced the following inequalities:
Motivated by these results, we will present a \(k \)-analogue of the functions \(M_n(u) \) and \(T_n(u) \) and study their monotonicity. As a consequence, we deduce some inequalities for \(\Gamma_k \) and \(\psi^{(m)}_k \) functions.

2. Preliminary

Using relation (11), we have

\[
\psi_k(x) = \frac{1}{k} \ln k + \frac{1}{k} \psi(x), \quad x \text{ and } k > 0,
\]

\[
\psi^{(m)}_k(x) = \frac{1}{k^{m-1}} \psi^{(m)}(x), \quad x \text{ and } k > 0; m \in \mathbb{N}.
\]

Also, using the following asymptotic formula of \(\Gamma \) function [4]

\[
\ln \Gamma(y) \sim \left(y - \frac{1}{2} \right) \ln y - y + \ln \sqrt{2\pi} + \sum_{i=1}^{\infty} \frac{B_{2i}}{(2i)(2i-1)y^{2i-1}}, \quad y \to \infty,
\]

with relation (11), we conclude for \(k > 0 \) that

\[
\psi_k(x) = \frac{1}{k} \ln x - \frac{1}{2k} + \sum_{i=1}^{\infty} \frac{k^{2i-1}B_{2i}}{(2i)(2i-1)x^{2i}}, \quad x \to \infty,
\]

and for \(s \in \mathbb{N} \),

\[
\psi^{(s)}_k(x) \sim \frac{(-1)^{s-1} (s-1)!}{kx^s} - \frac{(-1)^s s!}{2x^{s+1}} + \frac{(-1)^s \sum_{i=1}^{\infty} (s+2i-1)! k^{2i-1}B_{2i}}{(2i)(2i-1)! x^{2i+s}}, \quad x \to \infty.
\]

Corollary 1. Let \(S \) be a real-valued function defined on \(x > x_0; x_0 \in \mathbb{R} \) with \(S(x) \) tends to zero as \(x \to \infty \). Then, for \(r \in \mathbb{R}^+ \), \(S(x) > 0 \), if \(S(x + r) < S(x) \) for all \(x > x_0 \) and \(S(x) < 0 \), if \(S(x + r) > S(x) \) for all \(x > x_0 \).

Now, we will prove the following auxiliary results.

Lemma 1. For \(k > 0 \), we have

\[
0 \leq \frac{1}{k} \ln \left(\frac{pk}{u + pk + k} \right) - \psi_p (u) \leq \frac{1}{u} - \frac{1}{(u + pk + k)} \quad u \text{ and } k > 0; p \in \mathbb{N},
\]

\[
0 \leq \psi_p (u) - \frac{1}{k} \left[1 - \frac{1}{u + pk + k} \right] \leq \frac{1}{u^2} - \frac{1}{(u + pk + k)^2}. \quad u \text{ and } k > 0; p \in \mathbb{N}.
\]
for all \(x > (k/3) \). Now, we let \(H_k(x) = -(k/2)\psi_k''(x + (k/3)) + x\psi_k'(x) + (1/x^2) + (1/kx) \) and use (13) to get

\[
H_k(x + k) - H_k(x) = k\psi_k''(x + k) + \frac{k^5 + 10k^4x + 10k^3x^2 + 9k^2x^3 + 27kx^4 + 27x^5}{x^2(k + x)^2(k + 3x)^3},
\]

\[\lim_{x \to 0} N_k(x),\]

\[
N_k(x + k) - N_k(x) = \frac{k^2h_k(x - 0.83k)}{x^2(k + x)^2(2k + x)^2(4k + 3x)^3}
\]

where

\[
10^{18}h_k(x) = 507528366752760409361k^9 + 1593661565313594402000300k^8x
\]

\[+ 10^8(7661562262154588964)k^7x^2 + 10^8(1604508702355386252)k^6x^3
\]

\[+ 10^8(19056153366876366)k^5x^4 + 10^10(140271547017402)k^4x^5
\]

\[+ 10^{12}(654834692196)k^3x^6 + 10^{14}(1892006748)k^2x^7
\]

\[+ 10^{16}(3091689)kx^8 + 10^{18}(2187)x^9 > 0, \quad x > 0.
\]

Then, \(N_k(x + k) - N_k(x) > 0 \) for all \(x \geq 0.83k \) with \(\lim_{x \to \infty} N_k(x) = 0 \); hence, we have \(N_k(x) < 0 \) for all \(x \geq 0.83k \). It follows that \(H_k(x + k) - H_k(x) < 0 \) for all \(x \geq 0.83k \) with \(\lim_{x \to \infty} H_k(x) = 0 \). Then, \(H_k(x) > 0 \) for all \(x > 0.83k \). Finally, consider the function \(L_k(x) = (k/2)\psi_k''(x + (k/3)) - (1/x^3) \) and use (13) to obtain

\[
L_k(x + k) - L_k(x) = -\frac{k^2f_k(x - 0.76k)}{x^2(k + x)^3(k + 3x)^5},
\]

where

\[
9765625f_k(x) = 13183088k^5 + 2823864000k^4x
\]

\[+ 10116487500k^3x^2 + 13331953125k^2x^3
\]

\[+ 7593750000kx^4 + 1582031250x^5 > 0,
\]

for \(x > 0 \). Then, \(L_k(x + k) - L_k(x) < 0 \) with \(\lim_{x \to \infty} L_k(x) = 0 \). Hence, \(L_k(x) > 0 \) for all \(x \geq 0.76k \).

Using relation (12) of \(\psi_k \), we conclude the following corollary which will be useful in the next part.

Corollary 2. Let \(x \in (0, \infty) \) and \(k > 0 \). Then, the following limits are valid:

\[
\lim_{x \to 0} x^{m+1}\psi_k^{(m)}(x) = (-1)^{m+1}m!, \quad m = 0, 1, 2, \ldots,
\]

and

\[
\lim_{x \to 0} x^m\psi_k^{(m)}(x + kb) = 0, m \in \mathbb{N} \text{ and } b > 0.
\]

3. Two Completely Monotonic Functions Involving \(\Gamma_k(x) \) and \(\psi_k(x) \) Functions

Theorem 1. The function

\[
M_{1,k}(x) = \ln \Gamma_k(x) - \ln \left(\frac{2\pi}{k} \right) - \frac{x}{k}\ln x
\]

\[+ \frac{x}{k} + \frac{k}{2}\psi_k(x + \lambda k), \quad \lambda \geq 0; k > 0,
\]

is completely monotonic on \((0, \infty)\) if and only if \(\lambda \geq 1/3 \), and the function \(-M_{1,k}(x)\) is completely monotonic on \((0, \infty)\) if and only if \(\lambda = 0 \).

Proof. Using relation (15), we get

\[
M_{1,k}^{(n)}(x) = \psi_k^{(n)}(x) - \frac{1}{kx} + \frac{k}{2}\psi_k^{(n)}(x + \lambda k) = \int_0^\infty e^{-zt} \Phi(t) dt,
\]

where

\[
\Phi(t) = 1 - e^{kt} + kte^{kt} - \frac{(kt)^2}{2}e^{(1-\lambda)kt}.
\]

Let \(\lambda \geq 1/3 \), then we obtain

\[
\Phi(t) \geq 1 - e^{kt} + kte^{kt} - \frac{(kt)^2}{2} e^{(2/3)kt}
\]

\[
= \sum_{r=1}^{\infty} \sum_{l=0}^{r} \binom{r}{l} (kt)^{r+1} \frac{1}{(r + 2)! 3^r} > 0.
\]
Consequently, $M_{1,k}''(x)$ is completely monotonic on $(0,\infty)$; hence, $M_{1,k}'(x)$ is increasing on $(0,\infty)$. Using asymptotic expansions (26) and (27), we have $\lim_{x \to \infty} M_{1,k}'(x) = 0$, and then, $M_{1,k}'(x) < 0$. Hence, $M_{1,k}(x)$ is decreasing on $(0,\infty)$. Using asymptotic expansions (25) and (26), we have $\lim_{x \to \infty,\quad x k}$ expansions (25) and (26), we have $\lim_{x \to \infty,\quad x k}$, and therefore, $\lim_{x \to \infty,\quad x k}$ asymptotic expansions (26) and (27), we have

$\lim_{x \to \infty,\quad x k}$ asymptotic expansions (26) and (27), we have

$$\lim_{x \to \infty,\quad x k} \ln \left(\frac{\Gamma_k(x)}{(2\pi/k)x^{(x/k)-(1/2)}e^{-x/k}} \right) = \frac{1}{2} \ln x + \frac{k}{2} \psi_k(x + \lambda k) > 0, \quad x \text{ and } k > 0.$$ \hspace{1cm} (40)

Proof. Using relation (15), we get

$$U_{\beta, k}''(x) = \psi_k'(x) + \frac{k}{2} \psi_k''(x) + \frac{k}{3(x - \beta k)^2} = \int_0^\infty \frac{e^{-\omega}}{k(e^{xk} - 1)} d\omega, \quad \omega = \beta t,$$

where

$$\varphi(t) = 1 - e^{kt} + kte^{kt} - \frac{(kt)^2}{2} e^{kt} + \frac{(kt)^2}{6} e^{\beta kt} - 1.$$

(44)

Let $\beta \geq (1/4)$, then we obtain

$$\varphi(t) \geq \frac{11}{2880} + \frac{7}{2304} + \sum_{r=3}^\infty \frac{f(r)}{(r+2)!} (kt)^{r+2} > 0, \quad t > 0,$$

(46)

where

$$f(r) = \frac{(r+1)}{6} \left[r \left(\frac{5}{4} r - 3 \right) + \frac{1}{4} \left(7r + 2 \sum_{j=2}^{r} \binom{r}{j} \right) \right] > 0, \quad r \geq 5.$$ \hspace{1cm} (47)

Then, $U_{\beta, k}''(x)$ is completely monotonic on $(0,\infty)$. Thus, $U_{\beta, k}''(x)$ is an increasing function on $(0,\infty)$; using asymptotic expansions (26) and (27), we get that $\lim_{x \to \infty} U_{\beta, k}'(x) = 0$. Then, $U_{\beta, k}'(x)$ is a decreasing function with $\lim_{x \to \infty} U_{\beta, k}'(x) = 0$; hence, $U_{\beta, k}'(x) > 0$. Thus, we deduce that $U_{\beta, k}(x)$ is a completely monotonic function on $(0,\infty)$. Conversely, if $U_{\beta, k}(x)$ is a completely monotonic function, then it is positive and we obtain

$$\beta \geq \lim_{x \to \infty} \frac{1}{6(\ln \Gamma_k(x) - \ln(\sqrt{(2\pi/k)} - (x/k)\ln x + (x/k) + (k/2)\psi_k(x)))}, \quad k > 0.$$ \hspace{1cm} (48)

Using asymptotic expansions (25) and (26), we have

$$\ln \Gamma_k(x) - \ln(\sqrt{(2\pi/k)} - \frac{x}{k} \ln x + \frac{k}{2} \psi_k(x) = -\frac{k(4x + k)}{24x^2} + O\left(\frac{1}{x} \right).$$ \hspace{1cm} (49)

Then,
3.1. Some Inequalities for $\Gamma_k(x), \psi_k(x),$ and $\psi_{k(m)}(x)$

Functions. As a consequence of the completely monotonic properties of the two functions $M_{\beta,k}(x)$ and $U_{\beta,k}(x),$ we conclude the following results.

Corollary 3. For a and $b \geq 0,$ the following inequality holds:

$$\exp\left[-\frac{k}{2} \psi_k(x + ka)\right] \leq \frac{\Gamma_k(x)}{\sqrt{(2\pi/k)x^{(x/k)}e^{-(x/k)}}} \leq \exp\left[-\frac{k}{2} \psi_k(x + kb)\right], \quad x \text{ and } k > 0,$$

with the best possible constants $a = (1/3)$ and $b = 0.$

Proof. The left-hand side of inequality (54) is equivalent to $(x/k)M_{\beta,k}(x) > 0$ which leads to $a \geq (1/3)$ as mentioned in the proof of Theorem 1. Using the increasing property of $\psi_k(x)$ on $(0,\infty),$ we get $e^{-(k/2)\psi_k(x+(x/k))} \geq e^{-(k/2)\psi_k(x+ka)}$ for $k \geq 1/3$ and hence, $-U_{\beta,k}(x)$ is a completely monotonic function on $(0,\infty)$ for $\beta \leq 0.$ Now, $U_{\beta,k}(x)$ is a decreasing function on $(0,\infty)$ with $\lim_{x \to \infty} U_{\beta,k}(x) = 0,$ and then, $U_{\beta,k}(x) > 0.$ Thus, $U_{\beta,k}(x)$ is an increasing function on $(0,\infty)$ with $\lim_{x \to \infty} U_{\beta,k}(x) = 0; \text{ hence, } U_{\beta,k}(x) < 0.$ Therefore, we deduce that $-U_{\beta,k}(x)$ is a completely monotonic function on $(0,\infty)$ for $\beta \leq 0.$ Conversely, if $-U_{\beta,k}(x)$ is a completely monotonic function, then $U_{\beta,k}(x) < 0$ and

$$\beta \leq \lim_{x \to 0} \left[\frac{x}{k} + \frac{6x^2}{k(4x + k)} \right] = \frac{1}{4} \quad (50)$$

Now, for $\beta \leq 0,$ then

$$\varphi(t) \leq 1 - e^{kt} + kte^{kt} - \frac{(kt)^2}{3} - \frac{(kt)^2}{6}$$

$$= -\frac{1}{3} \sum_{r=2}^{\infty} \frac{(r^2 - 1)(kt)^{r+2}}{(r + 2)!} < 0,$$

and hence, $-U_{\beta,k}(x)$ is a completely monotonic function on $(0,\infty)$ for $\beta \leq 0.$ Now, $U_{\beta,k}(x)$ is a decreasing function on $(0,\infty)$ with $\lim_{x \to \infty} U_{\beta,k}(x) = 0,$ and then, $U_{\beta,k}(x) > 0.$ Thus, $U_{\beta,k}(x)$ is an increasing function on $(0,\infty)$ with $\lim_{x \to \infty} U_{\beta,k}(x) = 0; \text{ hence, } U_{\beta,k}(x) < 0.$ Therefore, we deduce that $-U_{\beta,k}(x)$ is a completely monotonic function on $(0,\infty)$ for $\beta \leq 0.$ Conversely, if $-U_{\beta,k}(x)$ is a completely monotonic function, then $U_{\beta,k}(x) < 0$ and

$$\lim_{x \to 0} \frac{k^2}{2} \left[k\psi_k(x + kc) - \frac{1}{x} - \frac{k}{6x^2} \right] = \lim_{x \to 0} \frac{k^2}{2} \left[\frac{2x^2 - 2kcx - c^2k^2}{6x^2(x + kc)^2} \right]$$

$$= \frac{1}{2} \left(-c + \frac{1}{3} \right) \quad (58)$$

Using functional relations (10) and (13), we get

$$\lim_{x \to 0} \frac{x}{k} + \frac{6x^2}{k(4x + k)} \quad (52)$$

Using functional relations (10) and (13), we get

$$\frac{1}{3} \sum_{r=2}^{\infty} \frac{(r^2 - 1)(kt)^{r+2}}{(r + 2)!} < 0,$$

$$\beta \leq \lim_{x \to 0} \left[\frac{x}{k} + \frac{6x^2}{k(4x + k)} \right] = \frac{1}{4} \quad (50)$$

Now, for $\beta \leq 0,$ then

$$\varphi(t) \leq 1 - e^{kt} + kte^{kt} - \frac{(kt)^2}{3} - \frac{(kt)^2}{6}$$

$$= -\frac{1}{3} \sum_{r=2}^{\infty} \frac{(r^2 - 1)(kt)^{r+2}}{(r + 2)!} < 0,$$

and hence, $-U_{\beta,k}(x)$ is a completely monotonic function on $(0,\infty)$ for $\beta \leq 0.$ Now, $U_{\beta,k}(x)$ is a decreasing function on $(0,\infty)$ with $\lim_{x \to \infty} U_{\beta,k}(x) = 0,$ and then, $U_{\beta,k}(x) > 0.$ Thus, $U_{\beta,k}(x)$ is an increasing function on $(0,\infty)$ with $\lim_{x \to \infty} U_{\beta,k}(x) = 0; \text{ hence, } U_{\beta,k}(x) < 0.$ Therefore, we deduce that $-U_{\beta,k}(x)$ is a completely monotonic function on $(0,\infty)$ for $\beta \leq 0.$ Conversely, if $-U_{\beta,k}(x)$ is a completely monotonic function, then $U_{\beta,k}(x) < 0$ and

$$\lim_{x \to 0} \frac{x}{k} + \frac{6x^2}{k(4x + k)} \quad (52)$$

Using functional relations (10) and (13), we get

$$\frac{1}{3} \sum_{r=2}^{\infty} \frac{(r^2 - 1)(kt)^{r+2}}{(r + 2)!} < 0,$$
Hence, we conclude from (57) that
\[(1/2)(-c + (1/3)) \leq 0, \text{ and then, } c \geq (1/3). \text{ Using the decreasing property of } \psi_k(x) \text{ on } (0, \infty), \text{ we get that } c = (1/3) \text{ is the best possible constant in (56). Also, Theorem 1 gives the right-hand side of inequality (56) for } d = 0. \text{ If there exists } d > 0 \text{ such that the right-hand side of (56) is valid for } x \in (0, \infty), \text{ then we would have}
\[- \lim_{x \to \infty} x \psi_k(x) < \lim_{x \to \infty} x \psi_k(x + k d).
\]

From (34) and (35), we have \(\lim_{x \to \infty} x \psi_k(x) = -1\) and \(\lim_{x \to \infty} x \psi_k(x + k d) = 0\) which contradict with (59). Hence, the best possible constant in (56) is \(d = 0\). □

Remark 2. The lower bound of (56) improves the lower bound of (21), when \(p \to \infty\), for all \(x > 0\).

\[
\frac{(-1)^m x^{m+1}}{k} M_{c,k}(x) = \frac{(-1)^m x^{m+1}}{k} V_k(x) + \frac{(m-1)!}{x^m} \frac{km!}{6x^{m+1}} > 0,
\]

where

\[
(-1)^m V_k(x) = (-1)^m \psi_k^{(m-1)}(x) - \frac{(m-2)!}{k x^{m+1}} - \frac{(m-1)!}{2x^m} \frac{km!}{12x^{m+1}}.
\]

Using asymptotic expansion (27), we have

\[
\lim_{x \to \infty} x^{m+1} \left[(-1)^m k \psi_k^{(m)}(x + gk) + (m-1)! \frac{km!}{6x^{m+1}} \right] = \lim_{x \to \infty} x^{m+1} \left[\frac{(m-1)!gk x^{m-1} - 1}{x^{m+1}} (x + gk)^m + \frac{km!}{6x^{m+1}} \right] - \frac{km!}{2(x + gk)^{m+1}} + O\left(\frac{1}{x^{m+2}}\right),
\]

\[
= \frac{m!}{2} \left(g - \frac{1}{3} \right).
\]

Remark 3. From Lemma 1, we conclude that the lower bound of (56) improves the lower bound of (17) for all \(x > (k/3)\).

Corollary 5. For \(m \geq 0\), \(x \geq k > 0\), and \(m = 2, 3, \ldots\), the following inequality holds:

\[
- \frac{(m-2)!}{x^{m+1}} \psi_k^{(m)}(x + gk) < \frac{(-1)^m k \psi_k^{(m-1)}(x)}{2x^m} - \frac{(m-2)!}{k x^{m+1}} \psi_k^{(m)}(x + hk),
\]

with the best possible constants \(g = (1/3)\) and \(h = 0\).

Proof. For \(m = 2, 3, \ldots\), the left-hand side of (60) is equivalent that

\[
\frac{(-1)^m x^{m+1}}{k} M_{c,k}(x) = \frac{(-1)^m x^{m+1}}{k} V_k(x) + \frac{(m-1)!}{x^m} \frac{km!}{6x^{m+1}} > 0,
\]

\[
\frac{(-1)^m x^{m+1}}{k} M_{c,k}(x) = \frac{(-1)^m x^{m+1}}{k} V_k(x) + \frac{(m-1)!}{x^m} \frac{km!}{6x^{m+1}} > 0.
\]

Hence, we conclude from (61) that \((m!/2)(g - (1/3)) \geq 0\), and this leads to \(g \geq (1/3)\). Since \(\psi_k(x)\) is strictly completely monotonic on \((0, \infty)\), then the function \((-1)^m \psi_k^{(m)}(x)\) is increasing on \((0, \infty)\) for \(m = 0, 1, 2, \ldots\), and then, \(g = (1/3)\) is the best possible constant in (60). Also, Theorem 1 gives the right-hand side of inequality (60) for \(h = 0\). If there exists \(h > 0\) such that the right-hand side of (60) is valid for \(x \in (0, \infty)\), then we would have

\[
\frac{(-1)^m x^{m+1}}{k} M_{c,k}(x) = \frac{(-1)^m x^{m+1}}{k} V_k(x) + \frac{(m-1)!}{x^m} \frac{km!}{6x^{m+1}} > 0.
\]

From (34) and (35), we have \(\lim_{x \to 0} x^m \psi_k^{(m-1)}(x) = (-1)^m (m-1)!\) and also \(\lim_{x \to 0} x^m \psi_k^{(m)}(x + h) = 0\), and this contradicts with (64). Then, the best possible constant in (60) is \(h = 0\). □
Remark 4. For $m = 2$, the lower bound of (60) improves the lower bound of (22), when $p \to \infty$, for all $x > 0$.

Remark 5. From Lemma 1, we conclude that the lower bound of (60) for $m = 2$ improves the lower bound of (16) for all $x \geq 0.83k$.

\[\exp\left[\frac{k}{2} \psi_k(x) - \frac{k}{6(x - k/4)} \right] < \frac{\Gamma_k(x)}{\left(\sqrt{2\pi/k}\right)^x e^{(x/k)}} < \exp\left[\frac{k}{2} \psi_k(x) - \frac{k}{6x} \right], \quad x \text{ and } k > 0. \]

(Corollary 6) The following inequality holds:

Remark 6. From Lemma 1, we conclude that the lower bound of (60) for $m = 3$ improves the lower bound of (19) for all $x \geq 0.76k$.

Data Availability

The data used to support the findings of the study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] P. Agarwal, R. P. Agarwal, and M. Ruzhansky, Special Functions and Analysis of Differential Equations, CRC Press, Boca Raton, FL, USA, 1st edn. edition, 2020.
[2] E. Artin, The Gamma Function, Athena series, Holt, Rinehart and Winston, New York, NY, USA, 1964.
[3] M. Godefroy, "La Fonction Gamma ; Théorie, Histoire," Bibliographie, Gauthier-Villars, Paris, France, 1901.
[4] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, NY, USA, 1965.
[5] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, NJ, USA, 1946.
[6] H. Alzer and C. Berg, "Some classes of completely monotonic functions," Annales Academiae Scientiarum Fennicae Mathematica, vol. 27, pp. 445–460, 2002.
[7] H. Van Haeringen, "Completely monotonic and related functions," Journal of Mathematical Analysis and Applications, vol. 204, no. 2, pp. 389–408, 1996.
[8] H. Alzer and N. Batir, "Monotonicity properties of the gamma function," Applied Mathematics Letters, vol. 20, no. 7, pp. 778–781, 2007.
[9] N. Batir, "On some properties of the gamma function," Expositiones Mathematicae, vol. 26, no. 2, pp. 187–196, 2008.
[10] P. Deligne, P. Etingof, D. Freed et al., Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, American Mathematical Society, Providence, RI, USA, 1999.
[11] R. D’iaz and E. Pariguan, "Symmetric quantum Weyl algebras," Annales Mathematiques Blaise Pascal, vol. 11, pp. 187–203, 2004.
[12] R. D’iaz and E. Pariguan, "Quantum symmetric functions," Communications in Algebra, vol. 33, pp. 1947–1978, 2005.
[13] R. D’iaz and E. Pariguan, "On hypergeometric functions and k–Pochhammer symbol," Divulgaciones Matematicas, vol. 15, no. 2, pp. 179–192, 2007.
[14] K. Nantomah and M. M. Iddrisu, "The k-analogue of some inequalities for the gamma function," Electronic Journal of Mathematical Analysis and Applications, vol. 2, no. 2, pp. 172–177, 2014.
[15] K. Nantomah, K. S. Nisar, and K. S. Gehlot, "On a k-extension of the Nielsen’s (beta)-function," International Journal of Nonlinear Analysis and Applications, vol. 9, no. 2, pp. 191–201, 2018.
I. Ege and E. Yıldırım, “Some monotonicity properties on k–gamma function,” *Adıyaman University Journal of Science*, vol. 9, no. 1, pp. 66–76, 2019.

E. Yıldırım, “Monotonicity properties on k–digamma function and its related inequalities,” *Journal of Mathematical Inequalities*, vol. 14, no. 1, pp. 161–173, 2020.

M. Mansour, “Determining the k-generalized gamma function $\Gamma_k(x)$ by functional equations,” *International Journal of Contemporary Mathematical Sciences*, vol. 4, no. 21, pp. 653–660, 2009.

L. Yin, L. G. Huag, X. L. Lin, and Y. L. Wang, “Monotonicity, concavity, and inequalities related to the generalized digamma function,” *Advances in Difference Equations*, vol. 2018, no. 1, 246 pages, 2018.

L. Yin, L. G. Huag, Z. M. Song, and X. K. Dou, “Some monotonicity properties and inequalities for the generalized digamma and polygamma functions,” *Journal of Inequalities and Applications*, vol. 2018, no. 1, 249 pages, 2018.

K. Nantomah, E. Prempeh, and S. B. Twum, “On a (p, k)-analogue of the gamma function and some associated inequalities,” *Moroccan Journal of Pure and Applied Analysis*, vol. 2, no. 2, pp. 79–90, 2016.

K. Nantomah, F. Merovci, and S. Nasiru, “Some monotonicity properties and inequalities for the (p, k)-gamma function,” *Kragujevac Journal of Mathematics*, vol. 42, no. 2, pp. 287–297, 2018.

F. Qi, S. Guo, and B. N. Guo, “Complete monotonicity of some functions involving polygamma functions,” *Journal of Computational and Applied Mathematics*, vol. 233, no. 9, pp. 2149–2160, 2010.