SYSTEMATIC REVIEW

Pharmacological management of seizures in patients with COVID-19: a systematic review [version 2; peer review: 2 approved]

Priscilla Kolibea Mante1, Nana Ofori Adomako2, John-Paul Omuojine3, Paulina Antwi1

1Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
2Department of Pharmacy Practice, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
3Department of Psychiatry, Komfo Anokye Teaching Hospital, Kumasi, Ghana

Abstract

Background: Some patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported to exhibit neurological symptoms such as seizures and impaired consciousness. Our study reviews reported cases to assess the pharmacological approach to managing seizures in SARS-CoV-2 patients and associated outcomes.

Methods: A systematic review of case reports on the incidence of seizures following coronavirus disease 2019 (COVID-19) among patients that reported use of antiepileptic drugs (AEDs) in management was performed by using the PRISMA (preferred reporting items for systematic reviews and meta-analysis) guidelines. Databases used included EMBASE, PubMed, SCOPUS, and Google Scholar. Data was presented as qualitative and descriptive data.

Results: In total, 67 articles were selected for full-text assessment, of which 18 were included in the final review. Patients had a median age of 54 years, most of whom were male. Remdisivir, dexamethasone, Laninamivir, hydroxychloroquine, azithromycin, and Lopinavir-ritonavir were common agents used in the management of COVID-19. Most patients presented with either generalized tonic-clonic seizures or status epilepticus. Most patients received levetiracetam as drug choice or as part of their regimen. Other AEDs commonly prescribed included midazolam and sodium valproate. Some patients received no antiepileptic drug therapy. Most of the patients who died had more than one comorbidity. Also, most of the patients who died received COVID-19 treatment drugs. None of the patients who received midazolam as drug choice or as part of their regimen developed recurrent seizures in contrast to patients who received levetiracetam and sodium valproate as drug choice or as part of their regimen. Interestingly, none of the patients who received no AEDs suffered recurrent seizures or died.

Any reports and responses or comments on the article can be found at the end of the article.
Conclusions: Standard guidelines for managing seizures in COVID-19 patients may be required. A limitation of this review is that it involved the use of case reports with no controls and a small number of patients.

Keywords
SARS-CoV-2, neurological symptoms, levetiracetam, status epilepticus, epilepsy

This article is included in the Coronavirus (COVID-19) collection.
Amendments from Version 1

This version contains corrections of clerical errors, updates of the introduction, methods and discussion sections of the original manuscript. Inconsistencies in number patients and publications reviewed have been corrected. The introduction has been updated to clarify the purpose of the review. The grading system i.e. the Murad tool used to grade the reports as fair quality vs good/excellent quality has been updated in the study characteristics section. Table 1 has been updated to show that the seizure histories of patients 9 and 10 were not reported and negative respectively. The use of ‘nil of note’ and ‘no’ in Table 1 has all been changed to ‘nil of note’ for consistency. ROSC has been defined in Table 1. Laminavir has been corrected to Laninamivir throughout the manuscript. The discussion has been updated to explore possible reasons for all the patients who did not receive AEDs, did not suffer recurrent seizures and also survived as well as midazolam's effect on mortality. Finally, Four more references have been added. Any further responses from the reviewers can be found at the end of the article.

Introduction

Neurological manifestations have been reported in about one-third of patients with coronavirus disease 2019 (COVID-19). In addition to the primary respiratory symptoms, there have been neurological symptoms manifested at all levels of the nervous system (Mao et al., 2020). Several case studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have demonstrated neurological effects such as strokes, loss of consciousness, encephalopathy, generalized tonic-clonic convulsions and neuralgia (Beyls et al., 2020). This is not entirely surprising as SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) have previously been associated with sporadic neuropathological changes (Desforges et al., 2020; Lau et al., 2004).

SARS-CoV-2 has been proposed to enter the central nervous system (CNS) either via systemic vascular dissemination or by crossing the cribriform plate of the ethmoid bone (Baig et al., 2020). The latter mechanism is speculated to contribute to anosmia experienced by a quarter of patients (Baig et al., 2020). Similar to SARS-CoV-1, the new SARS-CoV-2 is believed to make its way into biological cells via the angiotensin-converting enzyme 2 (ACE2) receptor (Lan et al., 2020).

Although few cases have been reported, studies indicate that seizures may occur early in the disease process. Nevertheless, the presence of seizures bears heavily on the management and outcome of patients with SARS CoV-2. Recurrent or prolonged seizures, as occurs in status epilepticus, may contribute to or worsen hypoxic encephalopathy, cerebrovascular events, and cytokine storms that can further lead to acute seizures (Bartiromo et al., 2020).

Further to this, COVID-19 may be more difficult to treat in patients exhibiting seizures than in other patients. Antiepileptic drugs (AEDs) tend to cause complex drug-drug interactions and adjustment of these drugs may be necessary to prevent heart, liver, or kidney complications that may occur in patients with severe COVID-19 (Asadi-Pooya et al., 2020). No special guidelines currently exist for management of seizure symptoms in COVID-19. Hence, seizures in patients are controlled with currently available AEDs based on seizure types exhibited by patients. We provide a review of publications on cases of seizure disorders reported in patients with COVID-19, the pharmacological approach to management and outcomes on mortality exploring implications on management of patients.

In the wake of a pandemic that has prompted experimental clinical therapy, reviews of the prevailing practices may provide information to guide clinical decision-making. Our objective was therefore to assess which antiepileptic medication or medications are most effective for managing seizures occurring in patients with COVID-19.

Methods

Strategy for literature search

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to perform a systematic review of the literature (Moher et al., 2010). Comprehensive electronic literature searches were performed in EMBASE, PubMed, SCOPUS, and Google Scholar to identify articles that covered the neuropathological symptoms in COVID-19. This review primarily aimed to synthesize information on seizure-related complications in patients with COVID-19.

The search included articles published in the English Language from January to December, 2020. Keywords used included ‘neurology’ or ‘neurological manifestations’ or ‘nervous system’, ‘neuropathy’ or ‘nerves’ and ‘COVID-19’ or ‘SARS-CoV-2’ and ‘antiepileptic drugs’ or ‘antiseizure drugs’. A combination of keywords and MeSH terms were applied to maximize the output from literature findings. The full search string for the database search was COVID-19* OR SARS-CoV-2* OR AND neurological manifestations* OR nervous system* AND antiepileptic drugs* OR antiseizure drugs*. The bibliography list of selected articles were screened by reading through the corresponding abstracts in order to identify additional appropriate studies. Screening was done by JPO and disagreements were resolved by all authors. As seizure complications were rare in COVID-19, all articles reporting seizures were included. We included all types of articles or preprints (from the bioRxiv) that met the following criteria: reported the incidence of seizures following COVID-19 among patients of all ages or reported the use of antiepileptic drugs (AEDs) in the management of COVID-19-related seizures. Studies that reported on patients with a history of seizure disorders were excluded from the study. Only reported cases of seizure complications for which explicit temporal or causal association with COVID-19 infection could be determined were included in the review. Animal studies were excluded. All studies selected were initially managed using Microsoft Word v16.45. This review has not been registered and a review protocol was not prepared.

Data extraction

Data was extracted with the aid of a pre-designed data extraction form. Data extraction from full text of eligible articles was done independently by two investigators (PKM and NOA). The following data were obtained: author, country of report,
demographic details, the number of patients with COVID-19 having seizure complications, frequency and prevalence of seizures, electroencephalogram (EEG), neuroimaging and/or other laboratory investigations associated with other neuropathological symptoms, management strategies and outcomes. Accuracy of extracted data was rechecked by a third independent investigator. Investigators made every effort to prevent data duplication. Quality of the included cases was assessed based on Consensus-based Clinical Case Reporting (CARE) guidelines for case reports by ensuring the selected cases met the criteria as stated in the 2013 CARE checklist.

Data synthesis and statistical analyses
Studies were first tabulated as qualitative data as selected studies were case reports. Given the small number of cases, descriptive analysis was performed to generate frequencies and percentages. All analyses and data visualisation were conducted using STATA version 13 (StataCorp, College Station, TX, USA).

Results
Study characteristics
A search of literature yielded 249 citations. Following duplicates removal, and titles and screening of abstracts, 67 articles were selected for full-text assessment. Subsequent to full-text evaluation, 18 articles were used for the final review (Figure 1). Characteristics of the included articles are provided in Table 1. All articles were case reports/series. One article was a multi-center study. Three case reports were of fair quality whereas all other studies were graded to be of good or excellent quality according to the Murad tool for methodological quality and risk of bias. Studies were considered as “poor,” “moderate/fair,” or “good/excellent” quality when 3 or fewer, 4, or 5 of the criteria were fulfilled, respectively (Murad et al., 2018).

Patient characteristics
The 18 articles reported incidence of seizure complications among 29 patients with COVID-19 from ten countries (USA [n=12], Germany [n=2], Italy [n=2], Switzerland [n=2], Iran

Figure 1. Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 flow diagram of the literature search and studies included in review (Page et al., 2021).
Reference	Patient No.	Country	COVID-19 Drugs	AEDs	Sex	Age (yrs.)	Seizure Disorder Reported	Seizure History	Comorbidities	Outcome	
(Karambelkar et al., 2020)	1	USA	Hydroxychloroquine	None	male	32	Not stated	Tonic-Clonic Seizure	Sleep apnea	Generalized Tonic-Clonic Seizure	Patient ultimately discharged from intensive care unit after being deemed hemodynamically stable.
(Balloy et al., 2020)	2	USA	Lopinavir-Ritonavir, Hydroxychloroquine	Diazepam, Midazolam, Levetiracetam	male	32	Generalized Tonic-Clonic Seizure	Status Epilepticus	Chronic systolic heart failure, atrial fibrillation, hypertension	Negative	
(Abdulsalam et al., 2020)	3	Kuwait	None	Diazepam, Midazolam, Levetiracetam	male	59	Generalized Tonic-Clonic Status Epilepticus	Status Epilepticus	Atrial fibrillation, obstructive sleep apnea	Nil of note	
(Balloy et al., 2020)	4	France	None	Clozapine, Levetiracetam	male	37	Status Epilepticus	Status Epilepticus	Nil of note	Negative	
(Chen et al., 2020)	5	USA	Remdesivir	Levetiracetam, Phenytoin	female	60	Non-convulsive status epilepticus	Status Epilepticus	Multiple end stage renal disease	Negative	
(Chen et al., 2020)	6	USA	Remdesivir	Levetiracetam	female	50	Non-convulsive status epilepticus	Status Epilepticus	Hypertension	Negative	
(Chen et al., 2020)	7	USA	Remdesivir	Levetiracetam	male	38	Non-convulsive status epilepticus	Status Epilepticus	Hypertension	Negative	
(Chen et al., 2020)	8	USA	Remdesivir	Levetiracetam	female	38	Non-convulsive status epilepticus	Status Epilepticus	End stage renal disease, kidney transplant, diabetes, chronic congestive heart failure, hypertension	Negative	

Table 1. Descriptive characteristics of included studies.
Patient No.	Country	COVID-19 Drugs	AEDs	Sex	Age (yrs.)	Seizure History	Comorbidities Reported	Seizure Disorder Reported	Outcome	
9	Spain	None	Diazepam, lecarnic, sodium valproate	male	74	Not stated	IgG kappa multiple myeloma	Refractory Epilepticus	Patient stabilized.	
10	Iran	None	Levetiracetam, midazolam	female	54	Status Epilepticus	HIV	Nil of note	Status Epilepticus	Expired in ICU.
11	Iran	None	Midazolam, levetiracetam	male	42	Status Epilepticus	HIV	Nil of note	Seizure-like events	Expired in ICU.
12	Iran	None	Midazolam, levetiracetam	male	35	Status Epilepticus	HIV	Nil of note	Seizure-like events	Expired in ICU.
13	Iran	None	Dexmetetasone	male	29	Status Epilepticus	HIV	Nil of note	Seizure-like events	Discharged.
14	Iran	None	Phenobarbital	female	2 days	Status Epilepticus	HIV	Nil of note	Seizure-like events	Expired in ICU.
15	USA	None	Lorazepam, Levitiracetam	male	11	Generalized tonic-clonic seizure	Nil of note	Negative	Seizure-like events	Improved in mentation.
16	Japan	None	Levetiracetam	male	24	Generalized tonic-clonic seizure	Nil of note	Negative	Seizure-like events	Expired in ICU.
17	USA	None	Hydroxychloroquine, azithromycin	female	41	Generalized tonic-clonic seizure	HIV	Nil of note	Seizure-like events	Expired in ICU.
18	USA	None	Levetiracetam, Valproate	male	41	Generalized tonic-clonic seizure	Nil of note	Negative	Seizure-like events	Discharged.
19	USA	None	Hydroxychloroquine, azithromycin	male	72	Coronary artery disease, DM type 2, Hypertension, end stage kidney disease	HIV	Nil of note	Tonic seizures	A code blue was called on admission day 5 after patient became pulseless. Return of Spontaneous Circulation (ROSC) was not be achieved.
Patient No.	Country	COVID-19 Drugs	AEDs	Sex	Age (yrs.)	Seizure Disorder Reported	Comorbidities	Seizure History	Outcome	Reference
------------	----------------	----------------	---------------------	--------	------------	--------------------------	---------------	-----------------	---------	---
20	Switzerland	None	None	female	64	Focal status epilepticus	None stated	Negative	Negative	(Bernard-Valnet et al., 2020)
21	Switzerland	None	None	female	67	Unclassified	None stated	Negative	Negative	(Zanin et al., 2020)
22	Italy	levetiracetam, lacosamide, phenytoin	levetiracetam	female	54	Focal Status Epilepticus	None stated	Negative	Negative	(Hepburn et al., 2021)
23	USA	Not stated	Levetiracetam	male	76	Focal Status Epilepticus	COPD, complete heart block, cervical fusion	Negative	She recovered well without requiring intensive care	(Logmin et al., 2020)
24	USA	Not stated	Levetiracetam	male	82	Focal Status Epilepticus	Syncope, neuropathic pain, atrial fibrillation	Negative	Patient's EEG recorded the following day after the second event showed no abnormalities, patient recovered after 2 weeks of antiviral therapy	(Fasano et al., 2020)
25	Germany	None	None	female	70	Focal Status Seizure	Syncope, neuropathic pain, atrial fibrillation	Negative	Patient recovered well without requiring intensive care	(Fasano et al., 2020)

The patient markedly improved 96h after admission with resolution of her symptoms. The patient was transferred to rehabilitation without sensorimotor deficits after 12 days. Clinical and electrographic seizure activity subsided. The patient was transferred to rehabilitation without sensorimotor deficits after 12 days. The patient recovered well without requiring intensive care. She recovered well without requiring intensive care. The patient was transferred to rehabilitation without sensorimotor deficits after 12 days.
Reference	Patient No.	Country	COVID-19 Drugs	AEDs	Sex	Age (yrs.)	Seizure Disorder Reported	Seizure History	Comorbidities	Outcome	Seizure History		
(Gaughan et al., 2020)	27	Ireland	None	None	male	87	Generalized tonic-clonic seizure	Negative	Nil of note	Patient remained clinically well; no respiratory symptoms during admission. EEG was performed following discharge demonstrated temporal dysfunction maximal on the right side, compatible with the known imaging abnormalities.	Negative	Patient remained clinically well, no respiratory symptoms during admission. EEG was performed following discharge demonstrated temporal dysfunction maximal on the right side, compatible with the known imaging abnormalities.	Negative
(Elgamasy et al., 2020)	28	Ireland	None	Lorcetepam	female	77	Generalized tonic-clonic seizure	Nil of note	Nil of note	Seizure aborted. Montreal Cognitive Assessment (MOCA) performed four months post hospitalization was 24/30, suggesting persistent cognitive deficit.	Negative	Seizure aborted. Montreal Cognitive Assessment (MOCA) performed four months post hospitalization was 24/30, suggesting persistent cognitive deficit.	Negative
(Elgamasy et al., 2020)	29	Germany	None	Levetiracetam, Carbamazepine, Magnesium	female	73	Focal seizure	Nil of note	Hypertension	The patient was discharged home for self-isolation.	Nil of note	The patient was discharged home for self-isolation.	Nil of note
Seizure types and antiepileptic drugs administered
The distribution of the types of seizures presented by the patients are summarized in Figure 2a. Most patients presented with either generalized tonic-clonic seizures (9/29; 31%) or status epilepticus (9/29; 31%). Two patients presented with non-convulsive status epilepticus while one patient suffered refractory status epilepticus. The majority (19/29; 65.5%) of patients received levetiracetam as drug choice or as part of their regimen (Figure 2b). Moreover, 17.2% (5/29) and 13.8% (4/29) received midazolam and sodium valproate as drug choice or as part of their regimen, respectively, whereas 17.2% (5/29) received no drug therapy (Figure 2).

Seizures and patient outcomes
In all, 24.1% (7/29) of patients died, including 9.1% (1/11) of patients with no comorbidities and 33.3% (6/18) of those with ≥1 comorbidity. Moreover, 28.6% (4/14) of patients who received no COVID-19 treatment drugs died whereas 20% (3/15) of those who received COVID-19 treatment drugs died. Overall, 31.0% (9/29) of patients had recurrent seizures of whom 22.22% (2/9) died. None of the patients who received midazolam as drug choice or as part of their regimen developed recurrent seizures whereas 52.6% (10/19) and 25% (1/5) of patients who received levetiracetam and sodium valproate as drug choice or as part of their regimen developed recurrent seizures, respectively (Table 2). The

Figure 2. Seizure types (A) and of anti-epilepsy drugs administered (B) in 29 coronavirus disease 2019 (COVID-19) patients with seizure disorders.
proportion of patients who received midazolam, levetiracetam, or sodium valproate as drug choice or as part of their regimen who died were 60% (3/5), 26.3% (5/19), and 50% (2/4), respectively. Moreover, none of patients who received no AEDs suffered recurrent seizures or died.

Discussion

This systematic review synthesized evidence on the pharmacological management and outcomes in patients with COVID-19 who experienced seizure disorders. Our findings revealed significant heterogeneity in the pharmacological management of seizures in COVID-19 patients. This may be ascribed to the limited knowledge of the pathophysiology of seizures in COVID-19 patients and the lack of evidence-based guidelines. In all, nearly 1 in 4 patients died which may reflect the poor prognosis and clinical challenge in managing these patients. The study also identified status epilepticus and generalized tonic-clonic seizures as the seizure types with highest incidence in COVID-19 patients. Moreover, development of recurrent seizures and mortality appeared to vary according to the AED used.

Researchers have related the incidence of seizures in COVID-19 patients to factors such as multiple organ failure, hypoxia and severe metabolic and electrolyte changes that may be experienced by these patients (Asadi-Pooya et al., 2020). A suggested mechanism by (Nikbakht et al., 2020) associates the incidence of seizures in patients with COVID-19 to increased proinflammatory cytokine (IL-1B, IL-6, TNF-a) levels by microglia/astrocytes in the brain after viral entry through nerve pathways (directly) or ACE2 receptors (indirectly). This results in the elevation of glutamate and aspartate levels, and reduction in levels of Gamma-amino butyric acid (GABA) and disruption of the blood brain barrier (BBB), in the CNS. These effects are notably involved in the pathophysiology of seizures in patients (Nikbakht et al., 2020).

Evidence from literature suggests poorly-controlled brain inflammation in the pathophysiology of status epilepticus (SE). Elevated levels of proinflammatory cytokines have been identified in the CSF of patients with refractory SE (Wang & Chen, 2018). Generalized seizure pathogenesis has also been associated with cytokines - TNF-a, IL-1B and IL-6 (Dede et al., 2017). The increased cytokine levels suggested in COVID-19 may explain the high incidence of status epilepticus and generalized seizures in COVID-19 patients.

This underlying pathological association may indicate that as with other conditions, impairments are best managed by treatment of the underlying disease (Tinetti & Fried, 2004). In congruence with this, it was observed, that patients who did not receive AEDs but managed for COVID-19 only did not suffer recurrent seizures and survived. However, idiosyncratic resolution of seizures of other patients in the absence of medication therapy was also observed.

The respiratory depressive effect of midazolam may underlie the increased mortality in patients taking midazolam for seizure management identified in this study. COVID-19 can lead to significant hypoxaemia (Simonson et al., 2021) that may be worsened by benzodiazepine-induced respiratory depression which can also cause hypoxaemia and/or hypercapnia (Gonzalez Castro et al., 2017).

Levetiracetam is one of three drugs identified to have high efficacy and comparable side effect profiles in the management of refractory SE (Chamberlain et al., 2020; Kapur et al., 2019). Regardless, the benzodiazepines remain first line in SE according to the NICE Guidelines (Nunes et al., 2012). Levetiracetam is an AED initially approved for partial onset seizure as an adjunct and subsequently as an adjunct in juvenile myoclonic seizures and generalized tonic-clonic seizures in the US. In the European Union, it is used as initial monotherapy in these conditions. With low protein binding and predominant kidney excretion, pharmacokinetic interactions are not a major concern. However, enzyme-inducing AEDs have been shown to cause a reduction in levetiracetam serum levels and promote higher clearance (Abou-Khalil, 2008). Its good pharmacokinetic interaction profile may warrant its use in COVID-19 cases. The mechanism of action of levetiracetam is via binding to SV2A, a synaptic vesicle protein, which results in the reduction of vesicle release rate of neurotransmitters (Lynch et al., 2004).

Table 2. Outcomes of AED-treated COVID-19 patients experiencing seizures.

AED(s)	Recurrent seizures	Survived		
	Yes (n = 9)	No (n = 20)	Yes (n = 22)	No (n = 7)
Levetiracetam	9 (47.37)	10 (52.63)	14 (73.68)	5 (26.31)
Midazolam	0 (0)	5 (100)	2 (40)	3 (60)
Sodium Valproate	3 (75)	1 (25)	2 (50)	2 (50)
Other drugs	0 (0)	2 (100)	1 (50)	1 (50)
No drug	0 (0)	6 (100)	6 (100)	0 (0)

AED = antiepileptic drug; COVID-19
Levetiracetam has been identified to decrease levels of the cytokines, IL-1B, IL-2 and TNF-a (Himmerich et al., 2013) and may therefore be beneficial in seizure management in COVID-19 patients. However, a study conducted by Li et al. (2013) revealed the role of levetiracetam in inhibiting CD8+ T-lymphocyte function, which is key in protection against viral infections. The study related this effect to the elevated incidence of upper respiratory tract infections in patients receiving levetiracetam. Administration of levetiracetam in COVID-19 patients may therefore be associated with detrimental respiratory effects and may explain the association between increased mortality and levetiracetam administration in COVID-19 patients with seizures as seen in our study. However, further research will be needed in drawing definite conclusions on this association.

The finding of increased mortality in patients with SE is consistent with the general high mortality associated with SE. Status epilepticus has evidently remained a clinical emergency with poor short- and long-term outcomes as well as high morbidity and mortality in the affected population (Marawar et al., 2018; Stelzer et al., 2015). An acute symptomatic cause such as a CNS infection, as occurs in COVID-19, has been identified as a critical factor related to morbidity. Treatment challenges such as delayed initiation of therapy and lack of effective medication have been identified to be possibly related to higher mortality (Stelzer et al., 2015).

Conclusion
The adequacy of antiseizure medication administered may be of concern and there is a need for the establishment of proper seizure management guidelines in COVID-19.

Study limitation
Our study involved the use of case reports with no controls and a significantly small number of patients.

Data availability
All data underlying the results are available as part of the article and no additional source data are required.

Reporting guidelines
DRYAD: PRISMA checklist for ‘Pharmacological management of seizures in patients with COVID-19: a systematic review’. https://doi.org/10.5061/dryad.2jm63xspf.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

References

Abdulsalam MA, Abdulsalam AJ, Shehab D: Generalized status epilepticus as a possible manifestation of COVID-19. Acta Neural Scand. Wiley Online Library, 2020; 142(4): 297-299.

Pubmed Abstract | Publisher Full Text | Free Full Text

Abou-Khalil B: Levetiracetam in the treatment of epilepsy. Neuropsychiatr Dis Treat. 2008; 4(3): 507-23.

Pubmed Abstract | Publisher Full Text | Free Full Text

Adadi-Pooya AA, Attar A, Moghadami M, et al.: Management of COVID-19 in people with epilepsy: drug considerations. Neurol Sci. 2020; 41(8): 2005-2011.

Pubmed Abstract | Publisher Full Text | Free Full Text

Baig AM, Khaileeg A, Ali U, et al.: Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020; 11(7): 995-998.

Pubmed Abstract | Publisher Full Text | Free Full Text

Balloy G, Leclan-Vosmeau L, Pérémon Y, et al.: Non-lesional status epilepticus in a patient with coronavirus disease 2019. Clin Neurophysiol. 2020; 131(8): 2059-2061.

Pubmed Abstract | Publisher Full Text | Free Full Text

Bartromo M, Borchi B, Botta A, et al.: Threatening drug-drug interaction in a kidney transplant patient with Coronavirus Disease 2019 (COVID-19). Transpl Infect Dis. 2020; 22(4): e13286.

Pubmed Abstract | Publisher Full Text | Free Full Text

Bernard-Valent R, Pizzarotti B, Anichini A, et al.: Two patients with acute meningoencephalitis concomitant with SARS-CoV-2 infection. Eur J Neurol. 2020; 27(9): e43-e44.

Pubmed Abstract | Publisher Full Text | Free Full Text

Beyls C, Martin N, Hermida A, et al.: Lopinavir-ritonavir treatment for COVID-19 infection in intensive care unit: risk of bradycardia. Circ Arrhythm Electrophysiol. 2020; 13(10): e008798.

Pubmed Abstract | Publisher Full Text | Free Full Text

Bhutta S, Sayed A, Ranabhat B, et al.: New-onset seizure as the only presentation in a child with COVID-19. Cureus. 2020; 12(6): e8820.

Pubmed Abstract | Publisher Full Text | Free Full Text

Chamberlain JM, Kapur J, Shinmar S, et al.: Efficacy of levetiracetam, fosphenytoin, and valproate for established status epilepticus by age group (ESETT): a double-blind, responsive-adaptive, randomised controlled trial. Lancet. 2020; 395(10231): 1217-1224.

Pubmed Abstract | Publisher Full Text | Free Full Text

Chen T, Dai Z, Mo P, et al.: Clinical Characteristics and Outcomes of Older Patients with Coronavirus Disease 2019 (COVID-19) in Wuhan, China: A Single-Centered, Retrospective Study. J Gerontol A Biol Sci Med Sci. 2020; 75(9): 1768-1792.

Pubmed Abstract | Publisher Full Text | Free Full Text

Dede F, Karadenizli S, Özsoy OD, et al.: The effects of adenosinergic modulation on cytokine levels in a pentylenetetrazole-induced generalized tonic-clonic seizure model. Neuroimmunomodulation. 2017; 24(1): 54-59.

Pubmed Abstract | Publisher Full Text

Desforges M, Le Coupac C, Dubeau F, et al.: Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2020; 12(1): 14.

Pubmed Abstract | Publisher Full Text | Free Full Text

Duong L, Xu P, Liu A: Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in Downtown Los Angeles, early April 2020. Brain Behav Immun. 2020; 87: 33.

Pubmed Abstract | Publisher Full Text | Free Full Text

Elgamasy S, Kamel MG, Ghazy S, et al.: First Case of Focal Epilepsy Associated with SARS-Coronavirus-2. J Med Virol. 2020; 92(10): 2238-2242.

Pubmed Abstract | Publisher Full Text | Free Full Text

Emami A, Faradad N, Akbari A, et al.: Seizure in patients with COVID-19. Neurol Sci. 2020; 41(11): 3057-3061.

Pubmed Abstract | Publisher Full Text | Free Full Text

Fasano A, Cavallieri F, Canali E, et al.: First motor seizure as presenting symptom of SARS-CoV-2 infection. Neurol Sci. 2020; 41(7): 1651-1653.

Pubmed Abstract | Publisher Full Text | Free Full Text

Gaughan M, Connolly S, Direkze S, et al.: Generalized tonic-clonic seizures in the context of mild COVID-19 infection. J Neurol. 2020; 1-3.

Pubmed Abstract | Publisher Full Text | Free Full Text

Gómez-Enjuto S, Hernando-Requejo V, Lapeña-Motilla J, et al.: Verapamil as
treatment for refractory status epilepticus secondary to PRES syndrome on a SARS-CoV-2 infected patient. Seizure. 2020; 80: 157–158. PubMed Abstract | Publisher Full Text | Free Full Text
Gonzalez Castro LN, Mehta JB, Braynov JB, et al. Quantification of respiratory depression during pre-operative administration of midazolam using a non-invasive respiratory volume monitor. PLoS One. 2017; 12(2); e0172750. PubMed Abstract | Publisher Full Text | Free Full Text
Haddad S, Tayyar R, Rosch L, et al. Encephalopathy and seizure activity in a COVID-19 well controlled HIV patient. JIDCases. 2020; 21; e00814. PubMed Abstract | Publisher Full Text | Free Full Text
Hepburn M, Mullaguri N, George P, et al. Acute Symptomatic Seizures in Critically Ill Patients with COVID-19: Is There an Association? Neuroradiol Care. 2021; 34(1): 139–143. PubMed Abstract | Publisher Full Text | Free Full Text
Himmenrich H, Bartsh C, Hamer H, et al. Impact of mood stabilizers and antiepileptic drugs on cytokine production in viro. J Psychiatr Res. 2013; 47(11): 1751–1759. PubMed Abstract | Publisher Full Text
Kapur J, Elm J, Chamberlain JM, et al. Randomized trial of three anticonvulsant medications for status epilepticus. N Engl J Med. 2019; 381(22): 2103–2113. PubMed Abstract | Publisher Full Text | Free Full Text
Karambelkar PV, Reulpote CS, Saeed F, et al. The Neurological Manifestations of COVID-19-A Case Series. J Clin Transl Res. 2020; 6(4): 187–189. PubMed Abstract | Publisher Full Text | Free Full Text
Lan J, Ge L, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020; 581(7807): 215–220. PubMed Abstract | Publisher Full Text | Free Full Text
Lau KK, Yu WC, Chu CM, et al. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis. 2004; 10(2): 342–4. PubMed Abstract | Publisher Full Text | Free Full Text
Li G, Nowak M, Bauer S, et al. Levetiracetam but not valproate inhibits function of CD+ T lymphocytes. Seizure. 2013; 22(8): 462–466. PubMed Abstract | Publisher Full Text
Logmin K, Karam M, Schichel T, et al. Non-epileptic seizures in autonomic dysfunction as the initial symptom of COVID-19. J Neurol. 2020; 267(9): 2490–2491. PubMed Abstract | Publisher Full Text | Free Full Text
Lynch BA, Lambeng N, Nocka K, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A. 2004; 101(26): 9861–9866. PubMed Abstract | Publisher Full Text | Free Full Text
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683–690. PubMed Abstract | Publisher Full Text | Free Full Text
Macaraw R, Bans A,Mahulikar A, et al. Updates in refractory status epilepticus. Crit Care Res Pract. 2018; 2018: 9768949. PubMed Abstract | Publisher Full Text | Free Full Text
Mohler D, Liberati A, Terziiff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010; 8(5): 336–341. PubMed Abstract | Publisher Full Text | Free Full Text
Moriguchi T, Hari N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020; 94: 55–58. PubMed Abstract | Publisher Full Text | Free Full Text
Murad MH, Sultan S, Haffar S, et al. Methodological quality and synthesis of case series and case reports. BMJ Evid Based Med. 2018; 23: 60–63. PubMed Abstract | Publisher Full Text | Free Full Text
Nikkakht F, Mohammadjahanizadeh A, Mohammadi E: How does the COVID-19 cause seizure and epilepsy in patients? The potential mechanisms. Mult Scler Relat Discord. 2020; 46: 102535. PubMed Abstract | Publisher Full Text | Free Full Text
Nunes VO, Sawyer L, Neilson J, et al. Diagnosis and management of the epilepsies in adults and children: summary of updated NICE guidance. BMJ. 2012; 344: e281. PubMed Abstract | Publisher Full Text | Free Full Text
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372: n71. PubMed Abstract | Publisher Full Text | Free Full Text
Simonson TS, Baker TL, Banzett RB, et al. Silent hypoxaemia in COVID-19 patients. J Physiol. 2021; 599(4): 1057–65. PubMed Abstract | Publisher Full Text | Free Full Text
Sohal S, Mansur M. COVID-19 Presenting with Seizures. JIDCases. 2020; 20; e00782. PubMed Abstract | Publisher Full Text | Free Full Text
Stelzer FG, Bustamante GdO, Sander H, et al. Short-term mortality and prognostic factors related to status epilepticus. Arch Neurolog. 2015; 72(8): 670–675. PubMed Abstract | Publisher Full Text | Free Full Text
Tinetti ME, Fried T: The end of the disease era. Am J Med. 2004; 116(3): 179–85. PubMed Abstract | Publisher Full Text
Wang M, Chen Y. Inflammation: a network in the pathogenesis of status epilepticus. Front Mol Neurosci. 2018; 11: 341. PubMed Abstract | Publisher Full Text | Free Full Text
Zanin L, Saraceno G, Panciani PP, et al. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir (Mien). 2020; 162(7): 1491–1494. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✅ ✅

Version 2

Reviewer Report 06 May 2022

https://doi.org/10.21956/aasopenres.14455.r28988

© 2022 Kasanga E et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✅ Ella A. Kasanga
Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA

Anthony Oppong-Gyebi
Biogen Inc., Cambridge, MA, USA

The authors have fully addressed the comments and suggestions provided in the initial review.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Parkinson's disease, stroke, neurological disorders, neuropharmacology

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 26 July 2021

https://doi.org/10.21956/aasopenres.14344.r28657

© 2021 Tagoe T. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✅ Thomas A. Tagoe
Department of Physiology, UG Medical School, College of Health Sciences, University of Ghana, Accra, Ghana

The authors present here a systemic review of case reports on the incidence of seizures among
patients who were hospitalised due to COVID-19 infections. The reports include those published between January to December 2020. The databases that were searched as well as the search string used is provided to allow reproduction of their work. The authors identify 67 articles which was narrowed down to 19. Based on these reports, the frequency of specific anti epileptic drugs used in case management is clearly reported as well as the type of seizures and patient outcomes. Studies that reported on patients with a history of seizures were excluded. Only cases of seizure complication for which a temporal or causal relationship with COVID-19 infection could be determined were included. This contributed towards focusing the scope of the review. The authors do a good job of pulling out key pieces of information from each report and discuss the potential pathways by which AEDs could overlap with COVID-19. Based on the reports presented as part of the review, the authors conclude that AEDs could potentially be worsening patient outcomes. Although the review is scientifically sound, there are a few outstanding points which could further strengthen the review if addressed.

1. Figure 1 shows that 48 out of 67 retrieved records were excluded. Details on the common reasons for exclusion among the 48 cases that were cut will be useful.

2. According to the methodology, data extracted included "...frequency and prevalence of seizures, electroencephalogram (EEG), neuroimaging and/or other laboratory investigations associated with other neuropathological symptoms,...". However this information is not included in any of the tables or results presented.

3. Under the study characteristics, there is no basis given for judging case reports as "fair", "good" or "excellent".

4. The labelling of the flow diagram in figure 1 could be done vertically rather than horizontally, purely for aesthetic reasons and better reading.

5. Information on seizure history is absent for some of the reported cases (9 and 10). Considering that this was a critical point in selection of cases, it will be great to know if this information was absent from the primary reports or erroneously left out of the review.

6. The data in this review clearly shows that all the patients who did not receive AEDs (n = 6), did not suffer recurrent seizures and also survived. This is a curious finding which could have been further explored in the discussion.

7. Based on the mechanism of action of levetiracetam, the authors propose that "Administration of levetiracetam in COVID-19 patients may therefore be associated detrimental respiratory effects and may explain the association between increased mortality and levetiracetam administration in COVID-19 patients with seizures as seen in our study". Although this is sound, patients that received levetiracetam also showed the highest survival rates among all the patients who received AEDs. A discussion around another AED with a different mechanism of action from levetiracetam and worse survival rates would have enriched the review.

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Yes

Are sufficient details of the methods and analysis provided to allow replication by others?
Yes

Is the statistical analysis and its interpretation appropriate?
Not applicable

Are the conclusions drawn adequately supported by the results presented in the review?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Epilepsy, Plasticity, Learning and Memory

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 05 Nov 2021

Priscilla Mante, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

1. Figure 1 shows that 48 out of 67 retrieved records were excluded. Details on the common reasons for exclusion among the 48 cases that were cut will be useful.

 Answer: The authors have provided information on the inclusion/exclusion criteria in the methods section. The 48 records excluded did not meet the strict inclusion criteria.

2. According to the methodology, data extracted included "...frequency and prevalence of seizures, electroencephalogram (EEG), neuroimaging and/or other laboratory investigations associated with other neuropathological symptoms,...". However this information is not included in any of the tables or results presented.

 Answer: This information, where available and relevant to the study and findings, were added to the outcome section of Table 1.

3. Under the study characteristics, there is no basis given for judging case reports as "fair", "good" or "excellent".

 Answer: The Murad tool was used to evaluate the studies for methodological quality and risk of bias. Studies were considered as “poor,” “moderate/fair,” or “good/excellent” quality when 3 or fewer, 4, or 5 of the criteria were fulfilled, respectively. This criterion has been updated in the manuscript.

4. The labelling of the flow diagram in figure 1 could be done vertically rather than horizontally, purely for aesthetic reasons and better reading.

 Answer: The authors would appreciate further clarification on this comment.

5. Information on seizure history is absent for some of the reported cases (9 and 10). Considering that this was a critical point in selection of cases, it will be great to know if this
information was absent from the primary reports or erroneously left out of the review.

Answer: The seizure histories of patients 9 and 10 were not reported and negative respectively; the table has been updated accordingly.

6. The data in this review clearly shows that all the patients who did not receive AEDs (n = 6), did not suffer recurrent seizures and also survived. This is a curious finding which could have been further explored in the discussion.

Answer: The discussion has been updated accordingly.

7. Based on the mechanism of action of levetiracetam, the authors propose that “Administration of levetiracetam in COVID-19 patients may therefore be associated detrimental respiratory effects and may explain the association between increased mortality and levetiracetam administration in COVID-19 patients with seizures as seen in our study”. Although this is sound, patients that received levetiracetam also showed the highest survival rates among all the patients who received AEDs. A discussion around another AED with a different mechanism of action from levetiracetam and worse survival rates would have enriched the review.

Answer: The discussion has been updated accordingly.

Competing Interests: None to declare
However, it is still unclear what unmet need this review is aiming to answer. Providing more clarification (at least a sentence or two) on the purpose of this review, in our opinion, will underscore the relevance of the review.

2. What were the criteria for selecting the 4 electronic literature search platforms used for this review? Could more information be garnered from these additional search platforms - the Cochrane Library, Web of Science Core Collection, CENTRAL, and clinicaltrials.gov?

3. What was the rubric for the grading system for the reports (fair quality vs good/excellent quality)?

4. There are a number of inconsistencies in the patient and publication counts. Specifically,
 1. It is stated that there are 19 studies/references but Table 1 only shows 18 references.
 2. Under patient characteristics, it is stated that the patients were from 9 countries, however, there are 10 countries listed.
 3. The patient count from the patient characteristics section adds up to 29, however, the table only shows data for 28 patients.

5. In Table 1, for patients 9 and 10, are the seizure histories not reported or negative? Please clarify.

6. The authors stated that there is significant heterogeneity in the pharmacological management of seizures in COVID-19. Was that conclusion based on any inferential statistics run or it was based on the observation from the descriptive statistics?

7. In patient 16, Moriguchi et al. indicated that the patient received Laninamivir. Is this the same as Laminavir indicated in Table 1? Why is there an asterisk on Laminavir (no information is provided on the use of the asterisk in the table legend)?

8. The conclusion of the review article could be expounded a little bit further. The authors stated that ‘The adequacy of anti-seizure medication administered may be of concern’. How did they come up with this conclusion?

9. In the title of this review, the authors refer to the pharmacological management of seizures. However, the term, ‘pharmacological management’ does not just entail the choice of pharmacological agent (which is the highlight of this review), but also the duration of therapy, dose, possible side effects, and other aspects. Thus, in our opinion, the title does not fully represent the content of the review.

Minor Comments

1. In the co-morbidities column for table 1, different terms have been used to signify no comorbidities – no, nil of note, and none stated. The authors can consider using one term for consistency.

2. In Table 1, the seizure description for patients 7 & 8 are incomplete (as compared to patients 12, 13 and 14).
3. Please define ROSC (as used for patient 19 in table 1).

4. There are words omitted in the discussion section, for instance:
 1. This results in the elevation of glutamate and aspartate levels..........................
 2. Administration of levetiracetam in COVID-19 patients may therefore be associated with detrimental......

References
1. Moriguchi T, Harii N, Goto J, Harada D, et al.: A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. *Int J Infect Dis*. 2020; 94: 55-58 PubMed Abstract | Publisher Full Text

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Partly

Are sufficient details of the methods and analysis provided to allow replication by others?
Yes

Is the statistical analysis and its interpretation appropriate?
Yes

Are the conclusions drawn adequately supported by the results presented in the review?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Parkinson's disease, stroke, neurological disorders, neuropharmacology

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.

Author Response 05 Nov 2021

Priscilla Mante, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Major Comments:
1. In reading the introduction, the authors state the information provided by this review. However, it is still unclear what unmet need this review is aiming to answer. Providing more clarification (at least a sentence or two) on the purpose of this review, in our opinion, will underscore the relevance of the review. Answer:

 Answer: The introduction has been updated accordingly.

2. What were the criteria for selecting the 4 electronic literature search platforms used for
this review? Could more information be garnered from these additional search platforms - the Cochrane Library, Web of Science Core Collection, CENTRAL, and clinicaltrials.gov?

Answer: The four search platforms were made the focus of the search after preliminary search for such cases. Given that the review was focused on case reports due to the scarcity of such cases, majority of the databases stated by reviewers were not useful.

3. What was the rubric for the grading system for the reports (fair quality vs good/excellent quality)?

Answer: The Murad tool was used to evaluate the studies for **methodological quality** and risk of bias. Studies were considered as “poor,” “moderate,” or “good/excellent” quality when 3 or fewer, 4, or 5 of the criteria were fulfilled, respectively.

Answer: This criterion has been updated in the manuscript.

4. There are a number of inconsistencies in the patient and publication counts. Specifically, it is stated that there are 19 studies/references but Table 1 only shows 18 references.

Answer: This has been corrected.

Under patient characteristics, it is stated that the patients were from 9 countries, however, there are 10 countries listed.

Answer: This has been corrected.

The patient count from the patient characteristics section adds up to 29, however, the table only shows data for 28 patients.

Answer: Table 1 does show data for 29 patients and not 28, in accordance with the patient count from the patient characteristics.

5. In table 1, for patients 9 and 10, are the seizure histories not reported or negative? Please clarify.

Answer: The seizure histories of patients 9 and 10 were not reported and negative respectively; the table has been updated accordingly.

6. The authors stated that there is significant heterogeneity in the pharmacological management of seizures in COVID-19. Was that conclusion based on any inferential statistics run or it was based on the observation from the descriptive statistics?

Answer: This conclusion was based on the observation from the descriptive characteristics.

7. In patient 16, Moriguchi *et al.* indicated that the patient received Laninamivir. Is this the
same as Laminavir indicated in Table 1? Why is there an asterisk on Laminavir (no information is provided on the use of the asterisk in the table legend)?

Answer: The study reported the use of Laninamivir. This has been made consistent throughout the manuscript. The asterisk was used to indicate the ongoing nature of the case. It has however been removed from the table.

8. The conclusion of the review article could be expounded a little bit further. The authors stated that 'The adequacy of anti-seizure medication administered may be of concern'. How did they come up with this conclusion?

Answer: Based on the information available, adequacy of antiseizure medications used may still be in question as the results of the study. Provide no concrete conclusions on the advantage of specific anti-seizure drugs.

9. In the title of this review, the authors refer to the pharmacological management of seizures. However, the term, 'pharmacological management' does not just entail the choice of pharmacological agent (which is the highlight of this review), but also the duration of therapy, dose, possible side effects, and other aspects. Thus, in our opinion, the title does not fully represent the content of the review.

Answer: The term ‘pharmacological management’ may also simply describe the use of drug therapy for management of conditions and as such, may have emphasis laid on medication choice.

Minor Comments

1. In the co-morbidities column for table 1, different terms have been used to signify no comorbidities – no, nil of note, and none stated. The authors can consider using one term for consistency.

Answer: Authors agree that the use of ‘nil of note’ and ‘no’ connote the same thing and has all been changed to ‘nil of note’ for consistency. However, the use of ‘none stated’ is to suggest that the reference provided no such information and as such, does not suggest the absolute absence of any comorbidity.

2. In table 1, the seizure description for patients 7 & 8 are incomplete (as compared to patients 12, 13 and 14).

Answer: This has been corrected.

3. Please define ROSC (as used for patient 19 in table 1).

Answer: ROSC has been defined in table 1.

4. There are words omitted in the discussion section, for instance:

 This results in the elevation of glutamate and aspartate levels.................................
Answer: This has been corrected.

Administration of levetiracetam in COVID-19 patients may therefore be associated with detrimental......

Answer: This has been corrected.

Competing Interests: None to declare