Action and Diagnosis Protocol for Musculoskeletal Tumors in the Tumor Service of the CCOI Frank Pais

Carlos Gonzalez de Varona¹, Alicia Tamayo Figueroa*², Ragnar Calzado Calderon², Vilma Rondon Garcia³, Maria Emilia Santiesteban Fuentes⁴ and Jose Enrique Perez Gonzalez¹

¹Asistente profesor, Medicine integral general and Orthopedic/traumatology first degree, Cuba
²Auxiliar profesor, Ortopedic/traumatology second degree, Cuba
³Radiology Department second degree, Cuba
⁴Internal medicine/intensive therapy master; Cuba

*Corresponding author: Alicia Tamayo Figueroa, Auxiliar profesor, Ortopedic/traumatology second degree, Cuba

ARTICLE INFO

Received: May 11, 2021
Published: May 18, 2021

Citation: Carlos Gonzalez de V, Alicia Tamayo F, Ragnar Calzado C, Vilma Rondon G, Maria Emilia Santiesteban F, Jose Enrique Perez G. Action and Diagnosis Protocol for Musculoskeletal Tumors in the Tumor Service of the CCOI Frank Pais. Biomed J Sci & Tech Res 35(5)-2021. BJSTR. MS.ID.005770.

ABSTRACT

Keywords: Action Guide; Bone Tumors; Musculoskeletal Oncology; Orthopedic Surgeons; Radiologists; Clinicians; Pathologists

Introduction

Bone tumors are not common. Statistics indicate an incidence of ten cases of malignant primary bone tumor per million inhabitants per year, while benign tumors are much more frequent. Among benign bone tumors, the most frequent are: Osteochondroma, Enchondroma, Giant Cell Tumor (GCT) and Osteoid Osteoma. In the case of the malignant, the most frequent is multiple myeloma followed by Osteosarcoma, Chondrosarcoma and Ewing’s sarcoma. In pseudotumor lesions, the most frequent are: solitary bone cyst, aneurysmal bone cyst and metaphyseal fibrous defect. Musculoskeletal oncology is a multidisciplinary specialty for which the work in our service has not been possible without the joint effort and dedication of orthopedic surgeons, radiologists, clinicians and pathologists.

Development

Knowing how to diagnose in time and knowing how to guide a patient is on countless occasions the salvation of a life or the preservation of a part of the human body. The simplest classification in terms of tumors, as we all know, is benign or malignant, but as studies on tumors have developed, it has become known of the need for a classification more in line with the current situation in the study of tumors and After multiple attempts we have that the WHO for practical purposes recommends that the following be used [1-10].
Eye Put Who Classify Table

Diagnostic Procedures

Lab tests:
- a) Complete blood count with erythrocyte sedimentation.
- b) Creatinine, Transaminases, uric acid
- c) Glycemia (if necessary).
- d) Serology.
- e) HIV.
- f) C-reactive protein
- g) Calcium and phosphorus in the blood.
- h) Alkaline phosphatase (has prognostic value in tumors that form bone tissue).
- i) Acid phosphatase and PSA (if prostate cancer is suspected).
- j) Protein electrophoresis, Bence Jones protein, Kappa Lambda Index and medullogram (if multiple myeloma is suspected).
- k) Functional thyroid studies [11-20].

Imaging Diagnosis

A. Conventional simple radiology in at least two views. In these you can define:
 1. Numbers of bone lesions.
 2. Location and situation.
 3. Effect of the injury on the bone.
 4. Periosteal reaction.
 5. Special features.

B. Computerized Axial Tomography (CT): In these the calcifications are demonstrated, the periosteal reaction is appreciated, the extension of the lesion can be assessed, and it is useful for staging as well as digital reconstructions of the injury site can be performed.

C. Angiography: it is used little, but it is useful in vascular lesions, to carry out embolization’s, to determine very vascular areas related to the tumor.

D. Scintigraphy: In our environment with Technetium 99 dysphonate and MIBI. It is used to track hidden tumors, look for metastases, and evaluate tumor activity after surgery.

E. Magnetic resonance: It is the most useful technique to appreciate the tumor activity and the intramedullary extension and to soft tissues of the tumor.

F. Biopsy: necessary for the definitive diagnosis [21-30].
 a) Closed by needle puncture that can be:
 i. BAAF (Fine Needle Aspiration Biopsy)
 ii. Needle.
 I. Trocar.
 b) Openly (with general anesthesia and in a regulated operating room) and can be of two types:
 I. Incisional: a fragment of the tumor is taken.
 II. Excisional: the entire tumor is removed and is indicated in: benign tumors, malignant tumors in which this is the treatment and in painful metastases.
 III. Considerations to take into account when performing the biopsy:
 a) Do not make transverse incisions (if the tumor is malignant then it will be necessary to remove the entire incision)
 b) Do not go through several compartments (for the same reason above)
 c) Carry out careful hemostasis.
 d) Remove ischemia before closing.
 e) Place the drain if necessary, through the incision.
 f) Use a compression bandage.
 g) Send samples to microbiology if associated septic process is suspected.

G. Staging (the Enneking system is used)
 1. G: histological grade of malignancy.
 2. G 0: benign.
 3. G 1: low grade malignant.
 4. G 2: high grade malignant.
 A. T: tumor location.
 B. T 0: intracapsular.
 C. T 1: intercompartmental. Extracapsular
 D. T 2: extra-compartmental.
 a) M: presence of metatasis.
 b) M 0: no metastasis.
 c) M 1: metastasis.

Surgical Procedures

1. Intralesional resection (through the tumor) and
subsequent treatment (curettage and filling with autologous cancellous bone or Bench, hydroxyapatite and PMMA.)
2. Marginal resection (by the reactive zone of the tumor).
3. Wide resection: resection of the entire tumor with a small margin of normal tissue.
4. Radical resection: Amputation of the limb to the level that is necessary as well as the amputation of fingers and joints in the beam, disarticulation in both the upper and lower limbs.
5. Placement of tumor prostheses for proximal femur and knee tumors.
6. Chemotherapy and radiotherapy by the Oncology service [31-40].

Action for the Most Frequent Tumors in the Service

Most Frequent Benign Tumors
A. Osteochondroma: It is carried out en bloc resection including the base to avoid recurrences when:
 1. Compressive symptoms appear.
 2. Increase in size after the physis is closed.
 3. Appearance of intense pain.
 4. Presence of calcifications inside [41-50].
B. Osteoid osteoma: The treatment of choice is surgical. If it is stage 1 and pain is controlled with analgesics, observation is recommended and if it is stage 2 and 3, en bloc excision of the tumor including the niche will be performed.
C. Enchondroma: The treatment of choice is surgical by curettage and preferably filling with coral hydroxyapatite with adequate granulometry.

Most Frequent Malignant Tumors
A. Osteosarcoma: Radical surgery with preoperative polychemotherapy is recommended for 8 to 12 weeks, which eliminates up to 90% of micro-metastases and sterilizes the reactive area. After surgery, chemotherapy is continued for 12 to 24 weeks.
B. Giant Cell Tumor: The treatment of GCT is controversial and controversial and includes various options such as:
 1. Curettage and graft of autologous or homologous bone.
 2. Curettage and insertion of polymethylmethacrylate (PMMA).
 3. Cryotherapy after curettage.
 4. Curetting and washing the cavity with phenol, alcohol, Zinc chloride and hydrogen peroxide, milling the cavity and inserting PMMA or bone graft.
 5. En bloc resection and bone transport with external fixator or tumor prosthesis.
 6. Radiotherapy.
 7. Embolization of the vessels that feed it [51-60].

In our environment we do not use cryotherapy or lavage of the cavity, radiotherapy is in disuse because it produces sarcomatous degeneration of the tumor and we have no experience in embolization of the vessels.

En bloc resection with transportation guarantees a low incidence of recurrence but causes multiple complications such as infection, graft resorption, pseudoarthrosis, delayed union and fractures: a very long period of time is also required for the patient’s recovery. In the case of en bloc resection and insertion of a tumor prosthesis, it is only possible when the GCT is located in the proximal epiphysis of the femur and knee.

We usually use curettage with PMMA insertion, which controls recurrences in between 80 and 90% of cases with much better results than bone graft insertion and also facilitates early ambulation, immediate rehabilitation and social incorporation of the patient in a shorter period of time. We have used amputation in those cases of malignant GCT with soft tissue infiltration or those located in short bones that have not been feasible for another surgery and due to the high risk of metastasizing [61-71].

C. Chondrosarcoma: They are not chemo or radiosensitive, they only require surgical treatment:
 1) En bloc resection of the tumor and bone transport with external fixator or insertion of a tumor prosthesis.
 2) Radical surgery:
 I. Amputation.
 II. Dislocation.
 3) Ewing’s sarcoma: Chemotherapy + radiotherapy.
 4) Surgery only in sacrificial bones associated with preoperative chemotherapy to decrease the size of the tumor and make surgery easier.
 5) Survival at 5 years can be as high as 60%.

D. Multiple myeloma: it is the most common primary malignant bone tumor.

It is the responsibility of Internal Medicine and Hematology, if there are pathological fractures, surgical stabilization by the orthopedic will be needed.

E. Pseudotumor lesions
1. Solitary Bone Cyst: Generally, there is no urgency for treatment; it is important to explain to the parents that it is a benign lesion and the dangers of a fracture or growth retardation if the lesion involves the physis. If a pathological fracture occurs, it is preferable to wait for consolidation since in some cases this causes the cyst to heal.

a) Curettage and filling: With caution if the lesion is adjacent to the physis.

b) Non-ossifying Fibroma or Metaphyseal Fibrous Defect: Observation

c) It is only operated if it is symptomatic or has a risk of fracture (more than 50 to 75% of the diameter of the bone)

d) Treatment consists of curettage and filling.

e) Aneurysmal Bone Cyst: Curettage and filling. In our experience we want to point out that the remote but present possibility of the installation of a tumor of another type, including a malignant one, on this type of lesion must be taken into account, which requires strict monitoring.

Conclusion

Establish a protocol for diagnosis and action in the event of a suspected tumor that allows us to evaluate the patient as soon as possible to avoid unnecessary sacrifices. Trains orthopedic surgeons in the management of tumor lesions. Request the competition for related specialties whenever necessary, knowing in advance that teamwork is essential in this area.

Conflict of Interest

None.

References

1. Ando K, Arslán demir C, Bell WC (2010) Bone Cancer. Progression and Therapeutic Approaches. 1st Edn. Elsevier, Inc., United States of America.
2. (2014) Statistical health yearbook. MINSAP.
3. Aegerter E, Kirkpatrick JA (1988) General considerations about Tumors. 1st Edn., Havana: Technical Scientific Ed.
4. Aguilera A, Torrealba R (1990) Surgical treatment of bone tumors and other pathologies with allografts. Rev Cub Ortopédia y Traumatol 5(10): 97-112.
5. Alleyn G (2006) Clinical Oncology. 2nd Edn., Murphy GP, Washington, USA.
6. Fletcher C, Mertens F (2002) World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of Soft Tissue and Bone. 1st Edn., Lyon: IARC Press, France.
7. Álvarez López Alejandro, García Lorenzo Yenima, Puentes González I, Pedraza NE, Franco A (2012) Informe anatomo-patológico de un tumor óseo de células gigantes en localización no habitual Acta Médica del Centro [revista en la Internet] 6(1).
8. Álvarez López Alejandro, García Lorenzo Yenima, Rodríguez Rodríguez O, Briones Y. Primary bone tumors in a pediatric hospital. Rev Cubana Ortop & Traumatol [magazine on the Internet] 16 (1-2): 61-64.
9. Antman K, Crowley J, Baleczarz K, Kempt R, Weiss R, et al. (1998) A southwest oncology group phase II study of doxorubicin, dacarbazine, ifosfamide and mesna in advanced osteosarcoma, Ewing’s sarcoma and Rhabdomyosarcoma. Cancer 82 (7): 1288-1295.
10. Bakemeier RF (1980) Principles of Oncology Medicine and Cancer Chemotherapy. 1st Edn., New York: Rochester, USA.
11. Benjamin A, Alman F, G Barr, John C (2006) Pediatric Bone and Soft Tissue Sarcomas. 1st Edn., Berlin: Springer-Verlag.
12. Bickels J, Jelinek J, Shmookler B (2001) Biopsy of Musculoskeletal. Philadelphia: Jaffe HL.
13. Buckley JD, Pendergrass TW, Buckley CM, Pritchard DJ, Nesbit ME, et al. (1998) Epidemiology of osteosarcoma and Ewing’s sarcoma: a study of 305 cases by the children’s cancer group. Cancer 83 (7): 1440-1448.
14. Canale T (2013) Campbell Cirugía Ortopédica. 12th Edn., Elsevier, Boston, USA.
15. Remotti F, Feldman F (2012) Nonneoplastic lesions that simulate primary tumors of bone. Archives of Pathology & Laboratory Medicine 136 (7): 772-788.
16. Candebat R, Candebat RR, Mauri Pérez O, Sosa M, Rajadel R, et al. (2012) Fibroma desmoplácoide de la columna lumbar. Rev Cubana Ortop Traumatol [revista en la Internet] 26(1).
17. Holzapfel B, Lüdemann M, Holzapfel D, Rech H, Rudert M (2012) Open biopsy of bone and soft tissue tumors: guidelines for precise surgical procedures. Operative Orthopädie Und Traumatologie 24(4-5): 403-415.
18. Gaynor JJ, Tan CC, Gasper E (1992) Refinement of clinicopathologic staging for localized soft tissue sarcoma: study of 423 adults. J Clin Oncol 10(2): 1317-1319.
19. González I, Pedraza NE, Franco A (2012) Informe anatomo-patológico de un tumor óseo de células gigantes en localización no habitual Acta Médica del Centro [revista en la Internet] 6(1).
20. Eeing D (2008) Assessment of interobserver variability and histological parameters to improve reliability in classification and grading of central cartilaginous tumors, 2nd Edn., Berlin: Springer-Verlag.
21. Enneking WF, Conrad EV (1989) Common bone tumors. Summit CIBA Geigy 2(45).
22. Enneking WF, Wolf RE (1996) The staging and surgery of musculoskeletal neoplasms. Clin Orthop 271 (1): 433-481.
23. Enneking WF (1987) A system of staging musculoskeletal neoplasms. Clin Oncol (1): 97-109.
24. Enneking WF (1983) Musculoskeletal Tumor Surgery. 1st Edn., Enneking WF, New York, USA.
25. Eyesan S, Iwou O, Obalum D, Nnodu O, Abdulkareem F (2011) Surgical consideration for benign bone tumors. Nigerian Journal of Clinical Practice [revista en la Internet] 14 (2): 146-150.
26. Fleming ID, Cooper JS, Henson DE (1997) Cancer Staging Manual. 5th Edn., Lippincott-Raven, Philadelphia, Pennsylvania.
27. Wahab Vargas RA, Figueroa Castillo F, Sosa Mendoza P, Useche Medina ND, Ortiz Barrios G (2003) Incidence of bone tumors in the pathology department of the Central University Hospital Antonio Maria Pineda. 1997. Postgraduate Medical Bulletin. UCLA XIX (1): 27-33.
28. Kissane M John (1986) Anderson Pathology. 8th Edn., Buenos Aires: Médica Panamericana, pp: 2105-2147.
29. Remonet I, Esteve J, Bouvier MA (2003) Cancer Incidence and mortality in France over the period 1978-2000. Rev Epidemiol Sante Publique 51: 3-30.
30. Hashimoto ND, Hatori M, Hosaka M (2006) Osteosarcoma arising from giant cell tumor of bone. Ten years after primary surgery: A case report and review of literature. Tohoku J Exp Med 208: 157-162.

31. Grimer RJ, Bieback S, Flege S (2005) Periosteo osteosarcoma a European review of outcome. Eur J Cancer 41: 2806-2811.

32. Hatori M, Watanabe M, Kotabe H, Kobukun S (2006) Condroxasenoma of the ring finger. A case report and review of the literature. Tohoku J Exp Med 208: 275-281.

33. Katchy RC, Ziad FA, Alexander S, Gah D, Albed Motaif M (2005) Malignant bone tumor in Kuwait: a 10-year clinicopathological study. Int orthop 29 (6): 406-411.

34. Valdespinó Gómez VM, Cintra mc Glone E, Figueroa Beltrán MA (1990) Bone tumors Prevalence Gac Med Mex 126: 325-334.

35. López VL, Grande GA, Siez Gañan L, Zorrilla TB (2005) Cancer mortality in children and adolescents in the community of Madrid 1977-2001. An pediatr 62: 420-426.

36. Rech A, castro CG, Mattei J (2004) Clinical features in osteosarcoma and prognostic implications. J Pediatr 80 (1): 65-70.

37. Guo W, Xu W, Huoos AG, Healy JH, Feng C (1999) Comparative frequency of bone sarcomas among different racial groups. Chin Med J 112: 1101-1104.

38. Ferris TJ, Turner BO, Garcia AJA, Morales CL (2005) Risk factors for pediatric malignant bone tumors. An pediatr 65 (6): 537-547.

39. Juárez Ocaña S, González Miranda G, Mejía Arangure JM (2004) Frequency of cancer in children residing in Mexico City and treated in the hospitals of the Instituto Mexicano del Seguro Social (1996-2001). BMC cancer [Revista en la Internet] 4: 50.

40. Fajardo Gutiérrez A, Sandoval Mex AM, Mejía Arangure JM, Rendón Macías ME (2002) Clinical and social factors that affect the time to diagnosis of Mexican children with cancer. Med Pediatr Oncol 39: 25-31.

41. Arndt CAS, Crist WM (1999) Common Musculoskeletal tumors of childhood and adolescence. N Engl J Med 341: 342-352.

42. Yüceeturk G, Sabah D, Recean B, Kara AD, Yalançayya S (2011) Prevalence of bone and soft tissue tumors. Acta Orthop Traumatol Turc [Revista en la Internet] 45(3):135-143.

43. Schajowicz F, Sissons H., Sobin L (2005) The World Health Organization’s Histologic Classification of Bone Tumors. Medicine 9 (60): 3922-3926.

44. Precison Diagnosis. Ortho-tips 4(2).

45. Jiménez Sanz A (2006) Diagnostic protocol for pediatric malignant bone tumors. Acta Orthop Traumatol Turc [Revista en la Internet] 45(3):135-143.

46. Katchy KC, Ziad F, Adbel Motaif M (2005) Malignant bone tumor in Kuwait: a 10-year clinicopathological study. Int orthop 29 (6): 406-411.

47. García B Cristián, Mayor S, González AM (2008) Malignant Bone Tumors: Precision Diagnosis. Ortho-tips 4(2).

48. Torrijos Estrada A, Hernández Samz A (2006) Diagnostic protocol for osteoelastic and osteolytic lesions. Medicine 9 (60): 3922-3926.

49. Sánchez-Torres LJ, Santos-Hernández M (2012) The art of diagnosing bone tumors. Acta Ortopédica Mexicana 26 (1): 57-65.

50. Pereda G, Rubaut M, González R (2004) Coral hydroxapatite in the treatment of tibia fractures. Medical advances XI (38): 61-64.

51. Rodríguez Rodríguez Eugenio Isidoro, Arredondo Reyes Roydy, López Marrero Noeill, Fernández García Giselle, Taura Suárez Leonardo (2014) Incidence of tumors and bone pseudotumor lesions in children. Medical Archive of Camagüey 18 (5): 498-506.

52. Terracini B, Maule MM (2007) A etiological clues from the descriptive epidemiology of childhood acute lymphatic leukemia and other malignancies. J Epidemiol Community Health 61: 180-181.

53. Taquechel Candeaut O, Corral Pacheco N, Rodríguez Moreno R, Legrá Rodríguez, Verdecia Jarque (2002) Primitive bone tumors in children. MEDISAN [series on the Internet] 6 (1): [approx. 5 p.].

54. Peris Bonet R, Giner Ripoll B (2005) Epidemiology of childhood cancer. In: Madero López L, Muñoz Villa A, editors. Pediatric Hematology and Oncology, 2nd (Edn.), Madrid: Ergon, pp: 227-230.

55. Hoyos Z, Flores R, Rodríguez A, Muñoz C (2010) Central osteoma in mandibular condyle Treatment: Report of a case. Rev Mex Cir Bucal y Maxil 6 (2): 61-65.

56. Dalambiras S, Boutsisouis C, Tilaveridis I (2005) Peripheral osteoma of the maxilla: report of an unusual case. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100 (1): e19-24.

57. Izquierdo Hernández B, Mayayo Sinaeus E, Crespo-Rodríguez AM (2008) Imaging diagnosis of intra-articular osteoid osteoma. Rev esp cir ortop Trauma 52: 194-198.

58. Hatori M, Watanabe M, Hosaka M, Sasano H, Narita M, et al. (2009) A classic adamantinoma arising from osteofibrous dysplasia-like adamantinoma in the lower leg: a case report and review of the literature. Tohoku J. Exp. Med 6 (1): 53-59.

59. Sohey Sheikh, Shambungappaa Pallagait, Isla Singal, Aman Kalucha (2011) Desmoplasic Ameloblastoma: A Case Report J Dent Res Dent Clin Dent Prospect 5 (1): 27-32.

60. Yin B, Liu L, Li YD, Geng DY, Du ZG (2011) Retropertoneal hemangiopericytoma: case report and literature review. Chinese Medical Journal 1:55-156.

61. Gac E, Patricio, Seymour M Camila, Klein P Eulin, Cabané T Patricio, Segura H Paula, et al. (2013) Hemangiopericytoma: reporte de 3 casos. Rev Chil Cir 65(2): 172-176.

62. Cade S (1990) Osteogenic sarcoma. A study based on 133 patients. J R Coll Surg I 2: 79-111.

63. Bone BL, Evans HL (1990) Osteosarcoma practice of clinicopathologic of 26 cases. Cancer 65: 27-62.

64. Muscolo DL, Farfalli Germán L, Aponte Tinao Luis, Ayerza Miguel A (2009) Update on osteosarcoma. Rev Asoc Argent Orthop Traumatol 74 (1): 86-101. Available at: http://www.asa.org.ar.

65. Anderson ME, Randall RL, Springfield DS, Gebhart MC (2014) Sarcomas of bone. In: Niederhuber JE, Armitage J0, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff’s Clinical Oncology, 5th (Edn.), Pa: Elsevier, Pennsylvania.

66. Escarpenter Buliés JC, Martinez Cuitiño A, Gutiérrez Guillerón MA, Morales Jiménez LM (2012) Clinical case. Tumor of the right femur. Review of the topic and presentation of a case.

67. Melo GL, Martinez CV (2005) Chondroid bone tumors: chondromas versus conventional chondrosarcomas. Rev Chil Radioi11 (4): 170-178.

68. Greenspan A, Remagen W (2002) Tumors of bones and joints, 1st (Edn.). Marban, Spain, pp: 59-120.

69. Damron T, Beauchamp C (2013) Soft-tissue lumps and bumps. J Bone Joint Surg Am [magazine on the Internet] 85 (6): 1142-1155.

70. Peres Raul, Garcia B Cristián, Parra R Dimitri, Solar G Antonieta, Oyanedel Q Roberto, et al. (2005) Bone involvement in Langerhans cell histiocytosis in children: simple radiological study. Clinical presentation and radiological diagnosis. Rev chil Radiol 11(3): 116-121.

71. Azouz EM, Sargal G, Rodríguez MM, Podda A (2005) Langerhans cell histiocytosis: pathology, imaging and treatment of skeletal involvement. Pediatr Radiol 35: 103-115.
