L_p-MULTIPLIERS ON QUANTUM TORI

ÉRIC RICARD

Abstract. It was shown by Chen, Xu and Yin that completely bounded Fourier multipliers on noncommutative L_p-spaces of quantum tori T^d_θ do not depend on the parameter θ. We establish that the situation is somehow different for bounded multipliers. The arguments are based on transference from the commutative torus.

1. Introduction

Quantum tori are very natural examples in noncommutative geometry for a long time. Nevertheless not much was done about them from a more analytical point of view. Elements in quantum tori have a formal Fourier expansion. Thanks to it most of the classical objects from harmonic analysis make sense and one is tempted to look for counterparts of basic results. This approach really started with a recent paper [2] by Chen, Xu and Yin. Motivated by the developments of noncommutative harmonic analysis and integration, they established for instance the pointwise convergence of Fejér or Bochner-Riesz means in L_p. They also considered natural Fourier multipliers and showed that their complete bounded norm on L_p do not depend on the parameters of the tori. In another article [8], Xiong, Xu and Yin continued this line of investigation by looking at analogues of classical function spaces. Fourier multipliers and transference techniques played an important rôle there. The main goal of this note is to show that the bounded norm of Fourier multipliers on noncommutative tori somehow depends on the parameters solving a question from [2].

We refer to [4, 5] for results on noncommutative L_p-spaces associated to (semi-finite) von Neumann algebras and to [6] for operator spaces. We recall the basics on quantum tori, we refer to [6, 2] for more details. Let $d \geq 1$ and θ be a real skew symmetric matrix of size d. The d-dimensional noncommutative torus associated to θ is the universal C^*-algebra A^θ_θ generated by d unitary operators U^θ_k such that

$$U^\theta_k U^\theta_j = e^{2\pi i \theta_{kj}} U^\theta_j U^\theta_k.$$

We may drop the exponent θ when no confusion can occur. Also when $d = 2$, we prefer to think of θ as a real number and we use U_θ and V_θ for the generators. So that we have $U_\theta V_\theta = e^{2\pi i \theta} V_\theta U_\theta$.

For a multi-index $m = (m_1, ..., m_d) \in \mathbb{Z}^d$, we put $U^m = U_1^{m_1} ... U_d^{m_d}$ for basis monomials. As usual a polynomial is a finite sum of monomials. The set of polynomials is dense in L^p-spaces. Any element in $L^1(T^d_\theta)$ has a natural formal Fourier expansion $x \sim \sum x(m) U^m$ where $\hat{x}(m) = \tau(x(U^m)^*)$. Given a function $\varphi : \mathbb{Z}^d \to \mathbb{C}$, we say that it is the symbol of a multiplier (resp. completely bounded) on $L^p(T^d_\theta)$ if the map defined on monomials by $M_{\varphi}(U^m) = \varphi(m) U^m$ extends to bounded (resp. completely bounded) map on $L^p(T^d_\theta)$. We refer to [2, 8] for basic facts on those multipliers. We will use quite often multipliers of Fejér type $F_n^d : \mathbb{Z}^d \to \mathbb{C}$ given by $F_n^d(m_1, ..., m_d) = \prod_{i=1}^d \left(1 - \frac{|m_i|}{n}\right)^+$. They give rise to unital completely positive multipliers and $M_{F_n^d}$ is an completely contractive pointwise approximation of the identity in $L^p(T^d_\theta)$, $1 \leq p < \infty$ and in A^θ_θ (see Proposition 2.1). When $\theta = 0$, we recover classical function spaces $L^p(T^d) = L^p(\mathbb{R}^d, dm)$ where dm is the Haar measure on \mathbb{T}^d and $A^\theta_0 = C^*(\mathbb{Z})$. In [5] Proposition 8.1.3, Pisier gave the first example of a bounded multiplier on $L^p(G)$ ($1 < p \neq 2 < \infty$ and G any infinite compact abelian group) that is not completely bounded. We aim to use it for Fourier multipliers on $L^p(T^d_\theta)$. The idea behind it is pretty simple : when $\theta \notin \mathbb{Q}$, A^θ_θ contains asymptotically a nice copy of $C^*(\mathbb{Z}) \otimes A^\theta_0$.

2010 Mathematics Subject Classification: 46L51; 47A30.

Key words: Noncommutative L_p-spaces.
Theorem 3.7 in [1].

Proof. Let \(P \) be a representative of a class in \(\mathcal{Z} \). We get that
\[
\langle d, \langle U^n, A \rangle \rangle = \langle d, \langle U^n, A \rangle \rangle.
\]

By the universal property of \(\mathcal{Z} \), we proceed by using some folklore discretization arguments.

Periodization of Fourier multipliers.

Proposition 2.2. Let \(1 \leq p < \infty \), for any \(\varphi \in \mathcal{Z} \), we have
\[
\| M_\varphi \|_{cb(L_p(T^n))} = \| M_\varphi \|_{cb(L_p(T^\omega))}.
\]

Proof. The proof of the first part is the same as above. For the second one, assume \(M_\varphi : L_\infty(T^n) \to L_\infty(T^\omega) \). Composing it with a Fejér type kernel \(F_\varphi \), \(M_{F_\varphi} : L_\infty(T^n) \to C^*(T^\omega) \). Composing again with the trivial character, we get that \(\| s_{F_\varphi} \| \leq \| s_{\varphi} \| \). Using the \(* \)-homomorphism \(M_\varphi \), \(\| s_{F_\varphi} \| \leq \| s_{\varphi} \| \). But \(M_{F_\varphi} \) is then a family of normal uniformly bounded maps converging pointwise for the \(w^* \)-topology. Its limit is \(M_\varphi \).

2. Completely bounded multipliers

In this section, we give a short direct proof of the following result from [2]:

Proposition 2.1. Let \(1 \leq p < \infty \), for any \(\varphi \in \mathcal{Z} \), we have
\[
\| M_\varphi \|_{cb(L_p(T^n))} = \| M_\varphi \|_{cb(L_p(T^\omega))}.
\]

Moreover
\[
\| M_\varphi \|_{cb(L_\infty(T^n))} = \| M_\varphi \|_{cb(L_\infty(T^\omega))}.
\]

Proof. The proof of the first part is the same as above. For the second one, assume \(M_\varphi : L_\infty(T^n) \to L_\infty(T^\omega) \). Composing it with a Fejér type kernel \(F_\varphi \), \(M_{F_\varphi} : L_\infty(T^n) \to C^*(T^\omega) \). Composing again with the trivial character, we get that \(\| s_{F_\varphi} \| \leq \| s_{\varphi} \| \). Using the \(* \)-homomorphism \(M_\varphi \), \(\| s_{F_\varphi} \| \leq \| s_{\varphi} \| \). But \(M_{F_\varphi} \) is then a family of normal uniformly bounded maps converging pointwise for the \(w^* \)-topology. Its limit is \(M_\varphi \).

3. Bounded multipliers on \(L_p \), \(1 < p < \infty \)

3.1. Periodization of Fourier multipliers. We aim to prove a periodization result for Fourier multipliers on \(\mathbb{Z} \). We proceed by using some folklore discretization arguments.

Denote by \(z \) the canonical generator of \(\mathcal{L}(\mathbb{Z}) = L_\infty(\mathbb{T}) \) and for any \(n \geq 1 \), \(\gamma_n \) that of \(\mathcal{L}(\mathbb{Z}/n\mathbb{Z}) \) the group von Neumann algebra associated to the finite group \(\mathbb{Z}/n\mathbb{Z} \). We always choose the representative of a class in \(\mathbb{Z}/n\mathbb{Z} \) with smallest absolute value.

Lemma 3.1. Let \(f : \mathbb{R}^+ \to \mathbb{R}^+ \) be a non decreasing convex function with \(f(0) = 1 \), then for any \(n \geq 0 \), there exists a measure \(\mu \) on \(\mathbb{T} \) such that
\[
\forall |k| \leq n, \quad \hat{\mu}(k) = f(|k|) \quad \text{and} \quad \| \mu \| \leq f(n)^2.
\]

Proof. The sequence given by \(m_k = f(n-k) \) for \(k \leq n \) and \(m_k = f(0) = 1 \) for \(k > n \) is non increasing convex, hence there exists a positive measure \(\nu \) with \(\hat{\nu}(k) = m_k \) for mass \(f(n) \), see Theorem 3.7 in [1]. Then \(\mu = (z^n \nu) * (z^n \nu) \) has the desired properties.

We fix some \(1 \leq p < \infty \). We also denote by \(\mathcal{P}_d = \text{span}\{z^k; |k| \leq d\} \subset L_p(\mathcal{L}(\mathbb{Z})) \) and similarly \(\mathcal{P}_d^n = \text{span}\{\gamma_n z^k; |k| \leq d\} \subset L_p(\mathcal{L}(\mathbb{Z}/n\mathbb{Z})) \).

For \(2d < n \), one can consider the formal identity \(j_{d,n} : \mathcal{P}_d \to \mathcal{P}_{d,n} \) given by \(j_{d,n}(z^k) = \gamma_n^k \).

As usual let \(\sin_{d,n}(x) \) be \(\sin(x/n) \).

Proposition 3.2. For any \(n > 2d \),
\[
\| j_{d,n} \|_{cb} \leq \sin_c^{-2}(\frac{d}{n}), \quad \| j_{d,n}^{-1} \|_{cb} \leq \left(1 - \frac{2d}{n} \right) \sin_c\left(\frac{d}{n} \right)^{-2}.
\]
Lemma 3.4. Fix some integer \(N > 0 \). Let \(\gamma \) be a \(\ast \)-representation of the form \(\gamma = (\frac{Z}{n})^k \). The function \(\sin^{-1} n \) is convex on \([0, \pi]\), using Lemma 3.4, there exists a measure on \(\mathbb{T} \) with \(\mu(k) = \sin^{-1} n \) for \(|k| \leq d \) with mass at most \(\sin^{-2} n \). For any \(f \in P_d \), we have \(j_{n,d}(f) = \mathcal{E}(f * \mu) \), this gives the first estimate.

Computing the Fourier expansion in \(L_2(\mathbb{T}) \) gives for \(|k| < n \):

\[
(\gamma_n)^k = \sum_{j \in \mathbb{Z}} \sin c \left(\frac{\pi(k + jn)}{n} \right) z^{k+jn}.
\]

Hence with the Fejér kernel \(F_{n/2} \), assuming \(|k| \leq d < n/2 \):

\[
F_{n/2} \ast \gamma_n^k = \left(1 - \frac{2|k|}{n} \right) \sin c \left(\frac{\pi k}{n} \right) z^k.
\]

To get \(j_{n,-1} \) one just need to make corrections as above using that \(\sin^{-1} n \) and \(1-x^{-1} \) are convex. \(\square \)

Proposition 3.3. Let \(\varphi : \mathbb{Z} \to \mathbb{C} \) be a Fourier multiplier on \(L_p(\mathbb{T}) \), then there exists a sequence of periodic multipliers \(\varphi_n : \mathbb{Z} \to \mathbb{C} \) converging pointwise to \(\varphi \) with \(\|M_{\varphi_n}\| \leq \|M_{\varphi}\| \) and \(\|M_{\varphi_n}\|_{\text{cb}} \leq \|M_{\varphi}\|_{\text{cb}} \).

Proof. Fix \(n > 2d \). We use transference once again. Consider the measure preserving \(\ast \)-homomorphism \(\pi_n : L(\mathbb{Z}) \to L(\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z}) \) given by \(\pi_n(z) = z \otimes \gamma_n \). Let \(\psi : \mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z} \to C \) and \(q : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \) be the quotient mapping. Using the intertwining identity \((1d \otimes M_{\varphi}) \circ \pi_n = \pi_n \circ M_{\varphi q} \) and the fact that bounded maps on \(L_p \) tensorize with the identity of \(L_p \) by Fubini’s theorem, one gets that

\[
\|M_{\varphi q} : L_p(\mathbb{T}) \to L_p(\mathbb{T} / n\mathbb{Z})\| \leq \|M_{\varphi} : L_p(\mathbb{T}) \to L_p(\mathbb{T} / n\mathbb{Z})\|.
\]

Note that, for \(d < n \), the Fejér kernel \(F_d \) is also positive definite on \(\mathbb{Z}/n\mathbb{Z} \). The map \(j_{n,d} \circ M_{\varphi} \circ j_{n,-1} \circ M_{\varphi} \) is the Fourier multiplier \(\varphi_{n,d} \) on \(\mathbb{Z} / n\mathbb{Z} \) so that \(M_{\varphi_{n,d}}(\gamma_n) = \varphi(k) (1 - \frac{|k|}{d}) \gamma_n^k \). Using Proposition 3.2 we get \(\|M_{\varphi_{n,d}}\| \leq c_{n,d} \|M_{\varphi}\| \) with \(c_{n,d} \to 1 \) as \(n/d \to \infty \) and similarly with \(\text{cb} \) norms.

Let \(\varphi_n \) be \(\varphi_{n^2,n}/c_{n^2,n} \circ q \). Obviously \(\|M_{\varphi_n}\| \leq \|M_{\varphi}\| \), \(\|M_{\varphi_n}\|_{\text{cb}} \leq \|M_{\varphi}\|_{\text{cb}} \) and \(\lim_{n \to \infty} \varphi_n(k) = \varphi(k) \). \(\square \)

3.2. Ultraproducts. Given a family of finite von Neumann algebras \((M_i, \tau_i)_{i \in \mathbb{N}} \) with normalized trace \(\tau_i \), their (reduced) von Neumann ultraproduct along the free ultrafilter \(U \) is

\[
\mathcal{M}_U = \ell_\infty(M_i)_{U}, \quad \mathcal{I}_U = \{(x_i) \in \ell_\infty(M_i) : \lim_{\mathcal{I}_U} (x_i^* x_i) = 0 \}.
\]

It is a finite von Neumann algebra with normalized trace \(\tau((x_i)^*) = \lim_{\mathcal{I}_U} \tau_i(x_i) \), see [6] section 9.10.

Lemma 3.4. Let \(T_i : M_i \to M_i \) be a sequence of maps such that \(\sup_i \|T_i\|_{B(M_i)} + \|T_i\|_{B_1(M_i)} < \infty \), then \(T_i = \prod_{i \in I} T_i \) is well defined on \(M_{\mathcal{U}} \) and moreover \(\|T_i\|_{B_1(M_{\mathcal{U}})} \leq \lim_{\mathcal{I}_U} \|T_i\|_{B_1(M_{\mathcal{U}})} \) (the same holds for \(\text{cb} \) norms).

Proof. The assumptions yield that \(T_i \) is well defined on \(\ell_\infty(M_i) \) and stabilizes \(I_{\mathcal{U}} \), so it is well defined on \(M_{\mathcal{U}} \).

For \(x = (x_i)^* \in M_{\mathcal{U}} \), we have \(\|x\|_{L_p(M_{\mathcal{U}}, \tau)} = \lim_{\mathcal{I}_U} \|x_i\|_{L_p(M_{\mathcal{U}}, \tau_i)} \) by the definition of the trace. The second assertion follows. \(\square \)

We now focus on 2-dimensional tori \(T_2^n \). Recall that the two generators satisfy \(U_\theta V_\theta = e^{i2\pi \theta} V_\theta U_\theta \). We still denote by \(z \) the generator of \(L_\infty(\mathbb{T}) \).

Proposition 3.5. Fix some integer \(N > 0 \). For \(\theta \not\in \mathbb{Q} \) and \(\gamma \in \mathbb{R} \), there is an explicit \(\text{cb} \)-isometric embedding

\[
\pi : L_p(\mathbb{T}) \otimes_p L_p(T_2^N) \to L_p(\mathbb{T}_{\mathcal{U}}),
\]

obtained by a \(\ast \)-representation of the form

\[
\pi(z) = (U_\theta)^*, \quad \pi(U_\gamma) = (U_\theta^{Nn})^*, \quad \pi(V_\gamma) = (V_\theta^{kn})^*.
\]
Remark 3.8. Actually one can directly construct periodic

Remark 3.10. When to

This also follows directly from Pisier’s example as there is a conditional expectation from

Notice that $C^*(Z) \otimes A_\mathbb{T}$ is a 3-dimensional torus. By its universal property, we can extend π to a $*$-representation $\pi : C^*(Z) \otimes A_\mathbb{T} \to L_\infty(T^2_\mathbb{R})$. It is obviously trace preserving, hence it extends to complete isometries at all L_p-levels

3.3. Applications to multipliers.

Proposition 3.6. Let $1 \leq p \leq \infty$, and $\varphi : \mathbb{Z} \to \mathbb{C}$ be periodic and $\theta \notin \mathbb{Q}$, then

$$\|M_{\varphi \otimes 1} : L_p(T^2_\mathbb{R}) \to L_p(T^2_\mathbb{R})\| = \|M_{\varphi} : L_p(T) \to L_p(T)\|_{cb}.$$

Proof. The proof uses transference again. Let N be the period of φ. We use the embedding π of $L_p(T) \otimes L_p(T^2_\mathbb{R})$ from Proposition 3.5 with $\gamma = \theta$. As φ is N-periodic, the multiplier $M_{\varphi \otimes 1}$ is well defined and uniformly bounded on L_∞ and L_2, we can consider its ultrapower $(M_{\varphi \otimes 1})_U$ by Lemma 3.3. Take $a, b, c \in \mathbb{Z}$, we have by N-periodicity

$$\pi((M_{\varphi \otimes 1})_U(\varphi(a) \varphi(b) \varphi(c))) = \pi((M_{\varphi \otimes 1}(\varphi(a) \varphi(b) \varphi(c)))^*) = \varphi(a) \pi(\varphi(b) \varphi(c)).$$

By linearity, continuity and density, we get for all $x \in L_p(T) \otimes L_p(T^2_\mathbb{R})$,

$$\pi((M_{\varphi \otimes 1})_U(\varphi(a) \varphi(b) \varphi(c))) = \pi((M_{\varphi \otimes 1}(\varphi(a) \varphi(b) \varphi(c)))^*) = \varphi(a) \pi(\varphi(b) \varphi(c)).$$

Hence by Lemma 3.3 we get that $\|M_{\varphi} \otimes Id\| \leq \|M_{\varphi \otimes 1}\|$. But $L_\infty(T^2_\mathbb{R})$ is the hyperfinite factor, so we can conclude $\|M_{\varphi} \otimes Id\| = \|M_{\varphi}\|_{cb}$. The other inequality is clear by Proposition 2.1 as

$$\|M_{\varphi}\|_{cb(L_p(T))} = \|M_{\varphi \otimes 1}\|_{cb(L_p(T^2))} = \|M_{\varphi \otimes 1}\|_{cb(L_p(T^2))}.$$

Theorem 3.7. For any $\theta \notin \mathbb{Q}$ and $1 < p \neq 2 < \infty$, there exists $\varphi : \mathbb{Z}^2 \to \mathbb{C}$ such that

$$\|M_{\varphi} : L_p(T^2) \to L_p(T^2)\| < \infty \quad \text{but} \quad \|M_{\varphi} : L_p(T^2) \to L_p(T^2)\| = \infty.$$

Proof. If not, by the closed graph theorem, there is a constant c such that

$$\|M_{\varphi} : L_p(T^2) \to L_p(T^2)\| \leq c\|M_{\varphi} : L_p(T^2) \to L_p(T^2)\|.$$

By Pisier’s example, there is a multiplier φ on $L_p(T)$ that is not completely bounded. By Proposition 3.3, we can find periodic multipliers φ_n on $L_p(T)$ with $\|M_{\varphi_n}\| \to \|M_{\varphi}\|$ and $\|M_{\varphi_n}\|_{cb} \to \infty$. Next $\|M_{\varphi_n \otimes 1} : L_p(T^2) \to L_p(T^2)\| \to \infty$ by Proposition 3.6. But $\|M_{\varphi_n \otimes 1} : L_p(T^2) \to L_p(T^2)\| \to \|M_{\varphi_n \otimes 1} : L_p(T^2)\|_{cb} \to \infty$ by Fubini’s theorem.

Remark 3.8. Actually one can directly construct periodic φ_n from Pisier’s example.

Remark 3.9. It is also easy to see that $1 < p \neq 2 < \infty$ there exists $\varphi : \mathbb{Z}^2 \to \mathbb{C}$ such that

$$\|M_{\varphi} : L_p(T^2) \to L_p(T^2)\| < \infty \quad \text{but} \quad \|M_{\varphi} : L_p(T^2) \to L_p(T^2)\|_{cb} = \infty.$$

This also follows directly from Pisier’s example as there is a conditional expectation from $L_\infty(T^2_\mathbb{R})$ to $L_\infty(T)$ the algebra generated by U.

Remark 3.10. When $\theta = \frac{\gamma}{2} \in \mathbb{Q}$, then $L_p(T^2_\mathbb{R}) \subset L_p(T^2, S^b_\mathbb{R})$; a possible embedding is given by $\pi(U_{a,b}) = b^{-1/p} \sum_{k=1}^b e^{2\pi i k \frac{a}{b}} e_{k,k}$, $\pi(V_{a,b}) = b^{-1/p} \sum_{k=1}^b e^{2\pi i k \frac{a}{b}} e_{k,k-1}$ where $e_{k,k}$ is the canonical basis of $S^b_\mathbb{R}$. Hence multipliers are automatically bounded. Nevertheless, the equivalence constant must behave badly, but we have no quantitative estimates.

Remark 3.11. The algebra $L_\infty(T^2_\mathbb{R})$ can be seen as a crossed product $L_\infty(T) \rtimes_{\gamma} \mathbb{Z}$ where the action comes from the rotation of angle θ. Thus, the above proofs produce a \mathbb{Z}-equivariant map T on $L_p(T)$ such that $T \times Id$ is unbounded on L_p.

Corollary 3.12. For any $\theta, \gamma \in \mathbb{R} \setminus \mathbb{Q}$ such that $\theta \notin \gamma \mathbb{Q}$ and $1 < p \neq 2 < \infty$, there exists $\varphi : \mathbb{Z}^2 \to \mathbb{C}$ such that

$$\|M_{\varphi} : L_p(T^2) \to L_p(T^2)\| < \infty \quad \text{but} \quad \|M_{\varphi} : L_p(T^2) \to L_p(T^2)\| = \infty.$$
Proof. This is once again a transference from the multiplier constructed in Theorem 3.4.

As above if the result does not hold, there exists c with

\[
\|M_\psi : L_p(T^2_\theta) \to L_p(T^2_\theta)\| \leq c \|M_\psi : L_p(T^2_\gamma) \to L_p(T^2_\gamma)\|.
\]

By the assumption, for all $n > 0$, we can find some k_n such that

\[
|e^{i2\pi k_n \gamma} - 1| < \frac{1}{n}, \quad |e^{i2\pi k_n \theta} - e^{i2\pi \theta}| < \frac{1}{n}.
\]

Indeed the set $N(\theta, \gamma)$ is equidistributed in \mathbb{R}^2 modulo 1.

The subalgebra $(U_{\gamma}, V_{\gamma})'$ is $L_\infty(T^2_{k_n, \gamma})$, the associated conditional expectation corresponds to the multiplier associated to the function $\psi(k, l) = 1_{k_n l}$. And similarly with θ. Thus applying (1) to multipliers of the form $\varphi(k, l) = 1_{k_n l} f(k, l/k_n)$ for $f : \mathbb{Z}^2 \to \mathbb{C}$, we deduce that

\[
\|M_f : L_p(T^2_{k_n, \theta}) \to L_p(T^2_{k_n, \theta})\| \leq c \|M_f : L_p(T^2_{k_n, \gamma}) \to L_p(T^2_{k_n, \gamma})\|.
\]

Let $P^0_d = \text{span}\{U_{\alpha}^d V_{\alpha}^d ; |k|, |l| \leq d\}$. Going to ultraproducts as in Proposition 3.3 we deduce that there are cb isometric embeddings

\[
\pi_\gamma : L_p(T^2) \to \prod_u L_p(T^2_{k_n, \gamma}), \quad \pi_\theta : L_p(T^2) \to \prod_u L_p(T^2_{k_n, \theta})
\]

given by the extension of $\pi_\gamma(U_0) = (U_{k_n \gamma})^*$, $\pi_\gamma(V_0) = (V_{k_n \gamma})^*$ and $\pi_\theta(U_0) = (U_{k_n \theta})^*$, $\pi_\theta(V_0) = (V_{k_n \theta})^*$.

In particular this restricts to $(P^0_d, ||\cdot||_p) = \prod_u (P^0_{k_n} ||\cdot||_p)$ given by the ultraproduct of the formal identity maps $i_u : U^0_{k_n} V^0_{k_n} \to U^0_{k_n} V^0_{k_n}$ (recall that the ultraproduct of m-dimensional spaces is still m-dimensional). As the spaces share the same finite dimension, by a compactness argument, we get that $\lim_u \|i_u : (P^0_{k_n}, ||\cdot||_p) \to (P^0_{k_n}, ||\cdot||_p)\| = \lim_u \|i_u^{-1} : (P^0_{k_n}, ||\cdot||_p) \to (P^0_{k_n}, ||\cdot||_p)\| = 1$.

Let $\varphi : \mathbb{Z}^2 \to \mathbb{C}$ and $F^0_{d, \varphi} = F^0_d \otimes F^0_d$ be the symbol of the 2-dimensional Fejér kernel. As we can write $M_{F^0_{d, \varphi}} = i_u \circ M_{\varphi} \circ i_u^{-1} \circ M_{F^0_d}$, we get $\lim_u \|M_{F^0_{d, \varphi}} : L_p(T^2_{k_n, \gamma}) \to L_p(T^2_{k_n, \gamma})\| \leq \|M_{\varphi} : L_p(T^2) \to L_p(T^2)\|$.

Using the isometric embedding π_θ from (3), the estimate (2), we can consider the ultraproduct of $M_{F^0_{d, \varphi}}$ to get $\|M_{F^0_{d, \varphi}} : L_p(T^2) \to L_p(T^2)\| \leq c \|M_{\varphi} : L_p(T^2) \to L_p(T^2)\|$. Letting $d \to \infty$ contradicts Theorem 3.7.

4. Bounded multipliers on L_∞

We conclude by giving an analogue of Theorem 3.7 for $p = \infty$ (or $p = 1$ by duality), recall that $\|M_\varphi : L_\infty(T^2_\theta) \to L_\infty(T^2_\theta)\|_{cb} = \|M_\varphi : L_\infty(T^2) \to L_\infty(T^2)\|_{cb}$. By Proposition 2.1.

Proposition 4.1. For any $\theta \notin \mathbb{Q}$, there exists $\varphi : \mathbb{Z}^2 \to \mathbb{C}$ such that

\[
\|M_\varphi : L_\infty(T^2_\theta) \to L_\infty(T^2_\theta)\| < \infty \quad \text{but} \quad \|M_\varphi : L_\infty(T^2_\theta) \to L_\infty(T^2_\theta)\|_{cb} = \infty.
\]

Proof. Assume the conclusion does not hold, then there is a constant c, with $\|M_\varphi\|_{cb} \leq c \|M_\varphi\|$. One can construct inductively increasing sequences of integers k_n, l_n such that k_n is odd and

\[
\forall j < n, \quad |e^{i2\pi \theta k_n l_n} + 1| < \frac{1}{2^{2n}}, \quad |e^{i2\pi \theta k_n l_n} - 1| < \frac{1}{2^{2n}}.
\]

Indeed to construct l_{n+1}, one just need to pick it such that $|e^{i\pi \theta l_{n+1}} + 1| < \frac{1}{2^{2(n+1)}}$ as $\theta \notin \mathbb{Q}$. Then $|e^{i2\pi \theta k_n l_{n+1}} + 1| < \frac{1}{2^{2n+2}}$ follows by taking k_j powers.

Similarly to get k_{n+1}, it suffices to choose k big enough and such that $|e^{i2\pi (2k_1 + \theta)} - 1| < \frac{1}{2^{2k_1}}$ as $\theta \notin \mathbb{Q}$ and to put $k_{n+1} = 2k + 1$.

Put $e_n = U_{\theta}^k V_{\theta}^l$. We have $e_n e_j = e^{i2\pi \theta k_n l_n} U_{\theta}^{k_n + k_j} V_{\theta}^{l_j}$, hence

\[
\|e_n e_j + e_j e_n\| \leq \frac{1}{2^{2n-1}}, \quad \|e_n e_j^* + e_j^* e_n\| \leq \frac{1}{2^{2n-1}}.
\]

Fix some N. For any $a_j \in \mathbb{C}$, and $x = \sum_{j=1}^N a_j e_{n+j}$, we have the following inequalities

\[
\|x\|^2 \geq \|\tau(x^* x)\| = \sum_{j=1}^N |a_j|^2
\]
We deduce that for n big enough on the subspace $E^N_\infty = \text{span}(e_{n+j})_{j=1}^N$ the L_∞-norm is smaller than 2 times the L_2-norm. Since the L_∞-norm dominates the L_2-norm, E^N_∞ is then 2-complemented in $L_\infty(T^2_\theta)$ by the natural orthogonal projection; this is the Fourier multiplier M_ψ where ψ is the characteristic function of $\{(k_{n+j}, l_{n+j})\}$. More generally for any choice of sign $\varepsilon = (\varepsilon_j)$, the function
$$
\psi = \sum_{j=1}^N \varepsilon_j 1_{(k_{n+j}, l_{n+j})}
$$
defines a Fourier multiplier on L_∞ of norm at most 4. Hence we can think of $\{(k_{n+j}, l_{n+j})_{j=0}\}$ as a kind of generalized hilbertian-Sidon set.

We will use an argument from [4] section 7 to get a contradiction. We must have $\|M_{\psi_\varepsilon}\|_{cb} \leq 4c$, hence the sequence $(e_{n+j})_{j=1}^N$ is 4c-completely unconditional in $L_\infty(T^2_\theta)$ and 4c-completely complemented. By duality, the same holds in $L_1(T^2_\theta)$.

Let $f_i = e_i \otimes \delta_i$, where δ_i is the basis of the operator space $R_N \cap C_N$. Then, using that all e_i are unitaries, we get that for matrices $a_i \in M_d$

$$
\| \sum_i a_i \otimes f_i \|_{M_d \otimes L_\infty(T^2_\theta) \otimes (R_N \cap C_N)} = \| \sum_i a_i \otimes \delta_i \|_{M_d \otimes (R_N \cap C_N)} = \max \{ \| \sum_i a_i^* a_i \|^{1/2} \| \sum_i a_i a_i^* \|^{1/2} \}.
$$

Moreover by complete unconditionality, $F_N = \text{span} f_i \subset L_\infty(T^2_\theta) \otimes (R_N \cap C_N)$ is completely complemented in $L_\infty(T^2_\theta) \otimes (R_N \cap C_N)$ with constant 4c. Indeed the projection is just the average over all possible signs $\epsilon_i \in (\varepsilon_i \delta_i)$, by duality, we deduce that $F_N \approx \text{span} f_i \subset L_1(T^2_\theta) \otimes (R_N \cap C_N)$. Next by the noncommutative Khintchine inequalities ([5] Section 8.4) and complete unconditionality, for any matrices $a_i \in S^d_1$

$$
\| \sum_i a_i \otimes f_i \|_{S^d_1 \otimes L_1(T^2_\theta) \otimes (R_N \cap C_N)} \approx \| \sum_i a_i \otimes \delta_i \|_{S^d_1 \otimes (R_N \cap C_N)} \approx \| \sum_i a_i \otimes e_i \|_{S^d_1 \otimes L_1(T^2_\theta)}.
$$

Hence (e_i) generates $R_N + C_N$ as an operator space in L_1. Using duality once again, as M_ψ is a projection, we get that for some constant C independent of N, E^N_∞ is C-completely isomorphic to $R_N \cap C_N$. This contradicts the fact that $R_N \cap C_N$ has an injectivity constant of order \sqrt{N} (see [6]).

The above argument actually shows that a generalized completely hilbertian-Sidon set must span $R \cap C$ as an operator space.

There is a possible variant of the proof. The set $\{e_n, n \geq 1\}$ actually generates a copy of ℓ_2 in $L_\infty(T^2_\theta)$ and is complemented. By choosing in the construction very rapidly increasing sequences $(k_n, l_n)_{n \geq 1}$, one could also make $\{(k_{n+j}, l_{n+j})_{j=0}\}$ a Sidon set in $L_\infty(T^2)$. But infinite Sidon sets are not complemented, this also leads to a contradiction.

Using the embedding and techniques of Corollary 3.12 with the injectivity of $L_\infty(T^2)$, one can also prove that for any $\theta, \gamma \in \mathbb{R} \setminus \mathbb{Q}$ such that $\theta \notin \gamma \mathbb{Q}$, there is a multiplier φ such that

$$
\| M_\varphi : L_\infty(T^2_\theta) \to L_\infty(T^2_\gamma) \| < \infty \quad \text{but} \quad \| M_\varphi : L_\infty(T^2_\theta) \to L_\infty(T^2_\gamma) \| = \infty.
$$

Acknowledgments. The author is supported by ANR-2011-BS01-008-01.

References

[1] D. C. Champeney. A handbook of Fourier theorems. Cambridge University Press, Cambridge, 1987.
[2] Zeqian Chen, Quanhua Xu, and Zhi Yin. Harmonic analysis on quantum tori. Comm. Math. Phys., 322(3):755–805, 2013.
[3] Kenneth R. Davidson. C*-algebras by example, volume 6 of Fields Institute Monographs. American Mathematical Society, Providence, RI, 1996.
[4] Christian Le Merdy, Éric Ricard, and Jean Roydor. Completely 1-complemented subspaces of Schatten spaces. Trans. Amer. Math. Soc., 361(2):849–887, 2009.
[5] Gilles Pisier. Non-commutative vector valued L_p-spaces and completely p-summing maps. Astérisque, (247):vi+131, 1998.
[6] Gilles Pisier. Introduction to operator space theory, volume 294 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2003.
[7] Gilles Pisier and Quanhua Xu. Non-commutative L_p-spaces. Handbook of the geometry of Banach spaces, Vol. 2, pages 1459–1517, North-Holland, Amsterdam, 2003.
[8] Xian Xiong, Quanhua Xu, and Zhi Yin. Function spaces on quantum tori. Preprint, 2015.
Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Normandie, 14032 Caen Cedex, France

E-mail address: eric.ricard@unicaen.fr