Spontaneous Lorentz Symmetry Breaking by Anti-Symmetric Tensor Field

Kiyoshi Higashijima\(^1\) and Naoto Yokoi\(^2\)

Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, JAPAN

Abstract

We study the spontaneous Lorentz symmetry breaking in a field theoretical model in (2+1)-dimension, inspired by string theory. This model is a gauge theory of an anti-symmetric tensor field and a vector field (photon). The Nambu-Goldstone (NG) boson for the spontaneous Lorentz symmetry breaking is identified with the unphysical massless photon in the covariant quantization. We also discuss an analogue of the equivalence theorem between the amplitudes for emission or absorption of the physical massive anti-symmetric tensor field and those of the unphysical massless photon. The low-energy effective action of the NG-boson is also discussed.

\(^1\)higashij@het.phys.sci.osaka-u.ac.jp
\(^2\)yokoi@het.phys.sci.osaka-u.ac.jp
1 Introduction

Quantum field theories based on the Poincaré invariance, in particular, the Lorentz invariance successfully describe elementary particles below the weak scale energy (∼ 100 GeV). In a last few years, a possible type of the Lorentz non-invariant extensions of the quantum field theories has been extensively studied. These are the field theories on the space-time whose coordinates are non-commutative, called the non-commutative field theories\[1, 2, 3, 4\]. The action of the non-commutative field theories can be constructed by replacing the product of fields in the action of the ordinary field theory with the ⋆-product defined as

\[f(x) \ast g(x) \equiv e^{i\theta_{ij} \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j}} f(x + \xi)g(x + \eta) |_{\xi = \eta = 0}, \]

(1.1)

where \(\theta^{ij} \) is a constant non-commutative parameter: \([x^i, x^j] = i\theta^{ij}\). Thus the action explicitly contains the constant anti-symmetric tensor \(\theta^{ij} \), and the Lorentz invariance in \((p+1)\)-dimension for \(p \geq 2 \) cannot be maintained.

String theory naturally provides the non-commutative field theories as the world volume effective theories on D-branes\[4\]: the world volume effective theory of Dp-brane with a constant background NS-NS B-field is equivalent to a \((p+1)\)-dimensional non-commutative field theory whose constant non-commutative parameter \(\theta^{ij} \) is given by the background NS-NS B-field \(B_{ij} \). In string theory the NS-NS B-field is indeed a dynamical field in closed string sector and thus the constant background field can be interpreted as the constant vacuum expectation value of the dynamical NS-NS B-field. From this perspective, the Lorentz symmetry is spontaneously broken by the constant vacuum expectation value of the second rank anti-symmetric tensor field.

In this paper, based on this viewpoint, we discuss the spontaneous Lorentz symmetry breaking within the effective field theory of the string theory. Concretely, we investigate the Nambu-Goldstone boson for the Lorentz symmetry breaking in a field theoretical toy model in \((2+1)\)-dimension of a second rank anti-symmetric tensor field and a vector field, which is inspired by the effective theory of the string theory. We find that the NG-boson is an unphysical field and their amplitudes, however, provide the useful information about the physical amplitudes of the model through the “equivalence theorem”. We also discuss the low-energy dynamics of the NG-boson from the perspective of the nonlinear realization of the Lorentz symmetry.

This paper is organized as follows. In the next section, we introduce the gauge invariant model of a second rank anti-symmetric tensor field and a vector field and discuss the covariant canonical quantization of the model. In section 3, the vacuum of the model
where the anti-symmetric tensor field has a constant vacuum expectation value is discussed and also the Nambu-Goldstone boson for the spontaneous Lorentz symmetry breaking is studied in detail. In section 4, a possible perturbation of the model is discussed and the equivalence theorem between the physical amplitudes and the amplitudes of the unphysical NG-boson is also argued. In section 5, some related problems are discussed and the relation to the non-commutative field theories is speculated.

2 A toy model for field theory of $B_{\mu\nu}$ and A_μ

In this section we discuss the covariant canonical quantization of a toy model for the gauge invariant field theory of an second rank anti-symmetric tensor field $B_{\mu\nu}$ coupled with a vector field A_μ (photon) in (2+1)-dimension.

2.1 Canonical quantization of the model

The action of the toy model is given by

$$S = \int d^3 x \left(\frac{1}{12m^2} (H_{\mu\nu\rho})^2 - \frac{1}{4} (F_{\mu\nu} - B_{\mu\nu})^2 \right),$$

(2.1)

where

$$H_{\mu\nu\rho} = \partial_\mu B_{\nu\rho} + \partial_\rho B_{\mu\nu} + \partial_\nu B_{\rho\mu}, \quad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu,$$

(2.2)

and m is a parameter with dimension of mass. This action is inspired by string theory. Indeed, the first and second term in (2.1) are the same form as the leading term of the effective action of $B_{\mu\nu}$, which is a massless mode of closed string, and the leading term of the Dirac-Born-Infeld (DBI) action of D-brane world volume effective theory, which is the effective action of the open string sector, in α'-expansion.

The action (2.1) is invariant under the gauge transformation:

$$\delta B_{\mu\nu}(x) = \partial_\mu \Lambda_\nu(x) - \partial_\nu \Lambda_\mu(x),$$

$$\delta A_\mu(x) = \Lambda_\mu(x) + \partial_\mu \Lambda(x),$$

(2.3)

where $\Lambda_\mu(x)$ and $\Lambda(x)$ are 1-form and scalar gauge functions respectively. Because of this gauge invariance, the system described by the action (2.1) is a singular (constrained) system. Thus, for the canonical quantization, one must introduce gauge fixing terms.

3 The metric is $\eta_{\mu\nu} = \eta^{\mu\nu} = \text{diag.}(+1, -1, -1)$.
4 In fact, this type of action appears in various contexts of string theory. [1, 2, 3, 4].
Since we want to discuss the spontaneous Lorentz symmetry breaking in the sequel, we must take a Lorentz invariant gauge fixing terms. We introduce the following gauge fixing terms:

\[S_{gf} = \int d^3x \left(C^\nu \partial^\mu B_{\mu\nu} - B \partial_\mu A^\mu - C \partial_\mu C^\mu \right), \quad (2.4) \]

where \(B(x) \) is the Nakanishi-Lautrup (NL) B-field for the vector field and \(C_\mu(x) \) and \(C(x) \) are the counterparts for the anti-symmetric tensor gauge field\[10, 11\]. These gauge fixing terms are the analogues of the Landau gauge in quantum electrodynamics (QED).

Although the canonical quantization of the model in the BRST formalism can be carried out, we make the canonical quantization in the NL formalism\[10, 11\] for simplicity\[5\].

The gauge fixed action is given by (2.1) and (2.4):

\[S_{\text{total}} = \int d^3x \mathcal{L}_{\text{total}}(x) = \int d^3x \left(\frac{1}{12m^2} (H_{\mu\nu\rho})^2 - \frac{1}{4} (F_{\mu\nu} - B_{\mu\nu})^2 + C^\nu \partial^\mu B_{\mu\nu} - B \partial_\mu A^\mu - C \partial_\mu C^\mu \right). \quad (2.5) \]

The equations of motion derived from (2.5) for each field become as follows.

\begin{align*}
B_{\mu\nu} & : \frac{1}{m^2} \partial_\rho H^{\rho\mu\nu} + (B_{\rho\mu} - F_{\rho\mu} + C_{\rho\mu}) = 0, \\
A_\mu & : -\partial_\rho (F_{\rho\mu} - B_{\rho\mu}) - \partial^\mu B = 0, \\
C_\mu & : -\partial_\rho B^{\rho\mu} - \partial^\mu C = 0, \\
B & : \partial_\mu A^\mu = 0, \\
C & : \partial_\mu C^\mu = 0, \quad (2.6-2.10)
\end{align*}

where \(C_{\mu\nu} = \partial_\rho C_\rho - \partial_\rho C_\mu \). Actually, by combining these equations, one can find free field equations of each field:

\begin{align*}
\Box^2 A_\mu &= 0, \quad \Box (\Box + m^2) B_{\mu\nu} = 0, \\
\Box^2 C_\mu &= 0, \quad \Box B = 0, \quad \Box C = 0. \quad (2.11)
\end{align*}

Thus this model is essentially a free field theory and can be quantized completely. Note that the anti-symmetric tensor field \(B_{\mu\nu} \) is a mixture of massive and massless components.\[5\]

\[\text{In the BRST formalism, ghost and anti-ghost fields are introduced in addition. However, since this action is a quadratic action with abelian gauge symmetry, ghost and anti-ghost fields are free fields and decouple.} \]
Following the procedure in \[10, 11\], the three-dimensional commutation relations can be calculated by using the equal-time commutation relations,

\[
[\phi_I(x, t), \phi_J(y, t)] = 0, \quad [\pi^I(x, t), \pi^J(y, t)] = 0,
\]

\[
[\phi_I(x, t), \pi^J(y, t)] = i\delta^I_I\delta^2(x - y), \quad \text{where} \quad \pi^I(x, t) \equiv \frac{\partial L_{\text{total}}(x)}{\partial \phi_I(x, t)}. \quad (2.12)
\]

Here we abbreviate various field as \(\phi_I(x, t)\), where \(I\) denotes various indices. The explicit forms of the non-vanishing three-dimensional commutation relations are\[6\]

\[
[B(x), A_\mu(y)] = [C(x), C_\mu(y)] = -i \partial_\mu D(x - y),
\]

\[
[A_\mu(x), A_\nu(y)] = [C_\mu(x), A_\nu(y)] = -i \eta_{\mu\nu} D(x - y) + i \eta_\nu \partial_\nu E(x - y),
\]

\[
[C_\mu(x), B_{\nu\rho}(y)] = -i \left(\eta_{\mu\nu} \partial_\rho - \eta_{\mu\rho} \partial_\nu \right) D(x - y),
\]

\[
[B_{\mu\nu}(x), B_{\rho\sigma}(y)] = i \left(\eta_{\mu\rho} \partial_\sigma - \eta_{\mu\sigma} \partial_\rho \right) D(x - y) + m^2 \left(\eta_{\mu\rho} \eta_{\nu\sigma} - \eta_{\mu\sigma} \eta_{\nu\rho} \right) \Delta(x - y : m^2)
\]

\[
- i \left(\eta_{\mu\rho} \partial_\sigma - \eta_{\mu\sigma} \partial_\rho \right) D(x - y), \quad (2.13)
\]

where

\[
\Delta(x : m^2) \equiv \frac{1}{(2\pi)^2} \int d^3 k \, \epsilon(k_0) \delta(k^2 - m^2) e^{-ikx}, \quad D(x) \equiv \Delta(x : m^2 = 0), \quad (2.14)
\]

\[
E(x) \equiv \frac{1}{(2\pi)^2} \int d^3 k \, \epsilon(k_0) \delta'(k^2) e^{-ikx}, \quad \square E(x) = D(x). \quad (2.15)
\]

In order to quantize the model consistently, we require the physical state conditions analogous to the ordinary QED in the NL formalism\[11, 12\]. We define the physical state through the physical state conditions:

\[
C_\mu^{(+)}(x)|\text{phys}\rangle = 0, \quad B_\mu^{(+)}(x)|\text{phys}\rangle = 0, \quad C^{(+)}(x)|\text{phys}\rangle = 0, \quad (2.16)
\]

where \(\phi_I^{(+)}(x)\) means the positive energy part of \(\phi_I(x)\). In the gauge \(2.4\), as seen from \(2.11\), \(C_\mu(x)\) is a dipole field. Although the separation between the positive and negative energy part of a dipole field is a non-trivial problem, the cut-off procedure is known to give the well-defined separation as is found in the next subsection\[11, 12\]. Thus the physical state conditions \(2.16\) are well-defined.

\[6\]The equal-time commutation relations are obtained by setting \(x^0 = y^0\) in the three-dimensional commutation relations.
2.2 The physical spectrum

In order to find the spectrum of the model, we define the creation and annihilation operators of each field. The annihilation operators are defined by the Fourier transforms:

\[C^{(+)}(x) = \frac{1}{2\pi} \int d^3k \, \theta(k_0) e^{-ikx} b(k), \]
\[B^{(+)}(x) = \frac{1}{2\pi} \int d^3k \, \theta(k_0) e^{-ikx} c(k), \]
\[C^{(+)}(x : \epsilon) = \frac{1}{2\pi} \int d^3k \, \theta(k_0 - \epsilon) e^{-ikx} c(k), \]
\[A^{(+)}(x : \epsilon) = \frac{1}{2\pi} \int d^3k \, \theta(k_0 - \epsilon) e^{-ikx} a(k), \]
\[B^{(+)}_{\mu\nu}(x) = \frac{1}{2\pi} \int d^3k \, \theta(k_0) e^{-ikx} b_{\mu\nu}(k), \] \((2.17) \)

and the creation operators are defined by the hermitian conjugate of \((2.17) \). \(\epsilon \) in the definitions \((2.17) \) is an infra-red cut-off parameter for the dipole fields.\(^{11, 12}\)

The commutation relations of the operators can be calculated by the three-dimensional commutation relations \((2.13) \). The non-vanishing commutation relations are

\[
\begin{align*}
[b(p), a^+_{\mu}(k)] &= [c(p), c^+_{\mu}(k)] = ip_{\mu} \theta(p_0) \delta(p^2) \delta^3(p - k), \\
[a_{\mu}(p), a^+_{\nu}(k)] &= [c_{\mu}(p), c^+_{\nu}(k)] = -\eta_{\mu\nu} \theta(p_0) \delta(p^2) \delta^3(p - k) - p_{\mu} p_{\nu} \theta(p_0) \delta(p^2) \delta^3(p - k), \\
[c_{\mu}(p), b^+_{\nu\rho}(k)] &= i(\eta_{\mu\nu} p_{\rho} - \eta_{\mu\rho} p_{\nu}) \theta(p_0) \delta(p^2) \delta^3(p - k), \\
[b_{\mu\nu}(p), b^+_{\rho\sigma}(k)] &= (-\eta_{\mu\rho} p_{\nu} p_{\sigma} + \eta_{\mu\sigma} p_{\nu} p_{\rho} + \eta_{\nu\rho} p_{\mu} p_{\sigma} - \eta_{\nu\sigma} p_{\mu} p_{\rho} + m^2 (\eta_{\mu\rho} \eta_{\nu\sigma} - \eta_{\mu\sigma} \eta_{\nu\rho})) \theta(p_0) \delta(p^2 - m^2) \delta^3(p - k) \\
&\quad - (\eta_{\mu\rho} p_{\nu} p_{\sigma} + \eta_{\mu\sigma} p_{\nu} p_{\rho} + \eta_{\nu\rho} p_{\mu} p_{\sigma} - \eta_{\nu\sigma} p_{\mu} p_{\rho}) \theta(p_0) \delta(p^2) \delta^3(p - k). \quad (2.18)
\end{align*}
\]

In terms of these operators, the physical state conditions \((2.16) \) become

\[c_{\mu}(p)|\text{phys}\rangle = 0, \quad b(p)|\text{phys}\rangle = 0, \quad c(p)|\text{phys}\rangle = 0. \] \((2.19) \)

The vacuum state is defined by

\[b_{\mu\nu}(p)|\text{vac}\rangle = 0, \quad a_{\mu}(p)|\text{vac}\rangle = 0, \quad (2.20) \]
\[c_{\mu}(p)|\text{vac}\rangle = 0, \quad b(p)|\text{vac}\rangle = 0, \quad c(p)|\text{vac}\rangle = 0. \] \((2.21) \)

The vacuum state is physical by definition. One particle states are constructed by the creation operators from the vacuum state. Physical one particle states, which satisfy the conditions \((2.19) \), are constructed by the creation operators which commute with \(c_{\mu}(p) \), \(b(p) \), and \(c(p) \). The physical states are summarized as follows:\(^7\)

\(^7\) \(f_{\mu\nu}(p) \) and \(c_{\mu\nu}(p) \) are the Fourier transforms of \(F^{(+)}_{\mu\nu}(x : \epsilon) \) and \(C^{(+)}_{\mu\nu}(x : \epsilon) \), respectively.
(i) Physical massless states in the momentum frame \(p_\mu = (p, 0, p) \),

\[
c_i^+(p)|\text{vac}\rangle, \quad (c_0^+(p) - c_2^+(p)) |\text{vac}\rangle, \quad b^+(p)|\text{vac}\rangle.
\] (2.22)

(ii) Physical massive states with mass \(m \) in the rest frame \(p_\mu = (m, 0, 0) \),

\[
u^\mu_\nu(p)|\text{vac}\rangle \equiv (b^\mu_\nu(p) - f^\mu_\nu(p) + c^\mu_\nu(p)) |\text{vac}\rangle.
\] (2.23)

Here \(u^\mu_\nu(p) \) is the creation operator of the gauge invariant field \(U^{\mu\nu}(x) \equiv B^{\mu\nu}(x) - F^{\mu\nu}(x) + C^{\mu\nu}(x) \). Note that the massless states of photon \(a_\mu(p) \) are all unphysical due to the “large” gauge symmetry with 1-form gauge function (2.3).

One can show that all the physical massless states (2.22) are null states from the commutation relations (2.18). The physical massive state \(u^\mu_1(p)|\text{vac}\rangle \) is the propagating states with positive norm and \(u^\mu_0(p)|\text{vac}\rangle \) and \(u^\mu_2(p)|\text{vac}\rangle \) are null states in the rest frame. Thus we conclude that the physical propagating degree of freedom of the model is a physical massive state \(u^\mu_1(p)|\text{vac}\rangle \) with mass \(m \). Although the action (2.1) has the gauge symmetry (2.3), the physical massive state appears through the generalized Stueckelberg formalism, which is the anti-symmetric tensor field version of the Stueckelberg formalism of QED. The anti-symmetric tensor field \(B^{\mu\nu} \) “eats” the degrees of freedom of the gauge field \(A_\mu \) and become a massive anti-symmetric tensor field. Note that massless second rank anti-symmetric tensor field has no physical propagating degrees of freedom and massive one has one physical propagating degree in (2+1)-dimension.

We consider the interesting limit of the model, \(m \rightarrow 0 \). This corresponds to the limit where the modes of closed string decouple in the corresponding effective action of string theory discussed in the previous subsection. In this limit, the commutation relation of \(B^{\mu\nu} \) in (2.13) becomes

\[
[B^{\mu\nu}(x), B^{\rho\sigma}(y)] = 0,
\] (2.24)

and the commutators of the creation and annihilation operators also become

\[
[b^{\mu\nu}(p), b^{\rho\sigma}_+(k)] = 0.
\] (2.25)

Thus the states associated with the anti-symmetric tensor field \(B^{\mu\nu} \) become zero norm. In this limit, the physical propagating massless state in the momentum frame \(p_\mu = (p, 0, p) \) is given by

\[
(u^\mu_0(p) - u^\mu_2(p)) |\text{vac}\rangle.
\] (2.26)

8In this paper, the physical propagating state means the physical state with positive norm which contributes to the physical amplitudes.

9Massless photon has also one physical propagating degree in (2+1)-dimension.
Indeed, the norm of this physical propagating state becomes
\[
\langle (u_{01}(p) - u_{12}(p))(u_{01}^+(p) - u_{12}^+(p)) \rangle = \langle (f_{01}(p) - f_{12}(p))(f_{01}^+(p) - f_{12}^+(p)) \rangle = 4p^2 \langle a_1(p) a_1^+(p) \rangle.
\] (2.27)

Hence, in this limit, the physical propagating state becomes essentially the transverse photon \(a_1^+(p)\) |vac\rangle. However it is worth noting that even though the norms of \(\langle u_{01}^+(p) - u_{12}^+(p) \rangle |\text{vac}\rangle\) and \(\langle f_{01}^+(p) - f_{12}^+(p) \rangle |\text{vac}\rangle\) are same in the limit \(m \to 0\), the physical propagating state is not \(\langle f_{01}^+(p) - f_{12}^+(p) \rangle |\text{vac}\rangle\), but \(\langle u_{01}^+(p) - u_{12}^+(p) \rangle |\text{vac}\rangle\).

This situation is similar to the broken phase of Yang-Mills-Higgs model, where the equivalence theorem holds\(^{[14, 15]}\). This theorem claims the amplitude for emission or absorption of the longitudinal states of the massive gauge boson becomes equal, at high energy, to the amplitude for emission or absorption of the unphysical Nambu-Goldstone states, which is “eaten” by the gauge boson. In our model, the physical massive state of the anti-symmetric tensor field appears after the anti-symmetric tensor field “eats” the unphysical state of the transverse photon. The above analysis of the norm of the physical states implies that the analogous equivalence theorem holds in our model: in the high energy region where one can ignore mass \(m\), the amplitude for emission or absorption of the longitudinal states of the physical massive anti-symmetric tensor field is the same as the amplitude for emission or absorption of the unphysical massless transverse photon.

3 Spontaneous Lorentz symmetry breaking by anti-symmetric tensor field

In this section we discuss the spontaneous breaking of the Lorentz symmetry by a constant vacuum expectation value (vev) of the second rank anti-symmetric tensor field in our model.

3.1 The Nambu-Goldstone boson for the spontaneous Lorentz symmetry breaking

The equations of motion \((2.6)-(2.10)\) have a solution such that only \(B_{\mu\nu}\) and \(F_{\mu\nu}\) have constant nonzero vev’s\(^{[11]}\):

\[
\langle B_{12} \rangle = \langle F_{12} \rangle = B_{\text{vev}} = \text{const.} \ (\neq 0),
\]

\(^{[11]}\)If the vev \(\langle \tilde{B}^\mu \rangle \ (= \frac{1}{2} \epsilon^{\mu\nu\rho} \langle B_{\nu\rho} \rangle) = \langle \tilde{F}^\mu \rangle\) is a time-like constant vector, one can transform it to this form by an appropriate Lorentz transformation.

8
In this viewpoint, the nonzero vev of B_1 such as Λ gauge transformation which eliminates the vev requires the linear 1-form gauge functions may expect to be able to eliminate this vev by the gauge transformation. However the nonperturbative string theory, the possibility of $\langle C \rangle$ vev’s of M formations by the vev of B by the Noether method. The conserved currents $F_{\mu\nu}$ is spontaneously broken down to the spatial rotation $SO(2) \sim U(1)$ by the vev of B_{12} and F_{12} \footnote{Our convention for the Poincaré algebra in (2+1)-dimension is $[P_{\mu}, P_{\nu}] = 0, \ [M_{\mu\nu}, P_{\rho}] = -i (\eta_{\mu\rho} P_{\nu} - \eta_{\nu\rho} P_{\mu}), \ [M_{\mu\nu}, M_{\rho\sigma}] = -i (\eta_{\mu\rho} M_{\nu\sigma} - \eta_{\nu\rho} M_{\sigma\mu} + \eta_{\rho\sigma} M_{\mu\nu} - \eta_{\mu\sigma} M_{\nu\rho}).$}

One can easily find that this solution is a ground state with vanishing energy of the Hamiltonian derived from the action (2.3). (See (3.3).) Although $B_{\mu\nu}$ and $F_{\mu\nu}$ are not gauge invariant under the gauge transformation (2.3), one may expect to be able to eliminate this vev by the gauge transformation. However the gauge transformation which eliminates the vev requires the linear 1-form gauge functions such as $\Lambda_1(x) = \frac{1}{2}B_{\mu\nu} x^\mu$ and $\Lambda_2(x) = \frac{1}{2}B_{\mu\nu} x^\mu$. These gauge functions are ill-defined at the infinity. Hence we do not require the invariance under such singular gauge transformations to define the Hilbert space of the quantum theory.

As discussed in \footnote{(3.2)} on the vacuum (3.1), the (2+1)-dimensional Lorentz symmetry $SO(2, 1) \sim SL(2, \mathbb{R})$ is spontaneously broken down to the spatial rotation $SO(2) \sim U(1)$ by the vev of B_{12} and F_{12} \footnote{\footnote{(3.2)} denotes infinitesimal transformations of internal spin: $(S_{\rho\sigma}\chi) = 0$ for scalar fields, $(S_{\rho\sigma}V_\mu) = i (\eta_{\rho\sigma} V_\mu - \eta_{\mu\sigma} V_\rho)$ for vector fields, and $(S_{\rho\sigma}B_{\mu\nu}) = i (\eta_{\rho\sigma} B_{\mu\nu} - \eta_{\mu\nu} B_{\rho\sigma} - \eta_{\sigma\nu} B_{\rho\mu})$ for second rank anti-symmetric tensor fields. What is the Nambu-Goldstone (NG) bosons for the broken boost generators in this model?}

In order to answer this question, we construct the generators of the Lorentz transformations $M_{\rho\sigma}$ by the Noether method. The conserved currents $M_{\rho\sigma}^\mu(x)$ for the Lorentz symmetry can be derived from the action (2.3)\footnote{(3.2)}: $M_{\rho\sigma}^\mu(x) = x_\rho T_\sigma^\mu(x) - x_\sigma T_\rho^\mu(x) - i \frac{\partial L_{\text{total}}(x)}{\partial (\partial_\mu \phi)} (S_{\rho\sigma} \phi)_1$

\begin{align*}
M_{\rho\sigma}^\mu(x) &= x_\rho T_\sigma^\mu(x) - x_\sigma T_\rho^\mu(x) - i \frac{\partial L_{\text{total}}(x)}{\partial (\partial_\mu \phi)} (S_{\rho\sigma} \phi)_1 \\
&= \frac{1}{2m^2} H^{\mu\rho\beta} (x_\rho \partial_\sigma - x_\sigma \partial_\rho) B_{\alpha\beta} - (F^\mu_{\alpha\beta} - B^\mu_{\alpha\beta}) (x_\rho \partial_\sigma - x_\sigma \partial_\rho) A_\alpha \\
&\quad + C_\alpha (x_\rho \partial_\sigma - x_\sigma \partial_\rho) B^\mu_{\alpha\beta} - B (x_\rho \partial_\sigma - x_\sigma \partial_\rho) A^\mu - C (x_\rho \partial_\sigma - x_\sigma \partial_\rho) C^\mu \\
&\quad - (x_\rho \delta^\mu_\rho - x_\sigma \delta^\mu_\rho) \left(\frac{1}{12m^2} (H_{\alpha\beta\gamma})^2 - \frac{1}{4} (F_{\alpha\beta} - B_{\alpha\beta})^2 + C^{\beta\delta} \partial^\alpha B_{\alpha\beta} \right) \\
&\quad + \left(\frac{1}{m^2} H^{\alpha\beta\gamma} + \eta^{\alpha\beta} C^{\beta\gamma} - \eta^{\alpha\beta} C^{\gamma} \right) (\eta_{\rho\sigma} B_{\beta\gamma} - \eta_{\sigma\alpha} B_{\rho\beta}) \\
&\quad - (F^\mu_{\alpha\beta} - B^\mu_{\alpha\beta}) (\eta_{\rho\sigma} A_\alpha - \eta_{\sigma\alpha} A_\rho) - \eta^{\mu\alpha} C (\eta_{\rho\sigma} C_\gamma - \eta_{\sigma\gamma} C_\rho), (3.2)
\end{align*}
where the canonical energy-momentum tensor $T^\rho_\mu(x)$ is given by

$$
T^\rho_\mu(x) = \frac{1}{2m^2} H^{\alpha\beta\gamma} \partial_\rho B_{\alpha\beta} - (F^{\mu\alpha} - B^{\mu\alpha}) \partial_\rho A_\alpha + C_\alpha \partial_\rho B^{\mu\alpha} - B \partial_\rho A^\mu - C \partial_\rho C^\mu - \delta^\mu_\rho \left(\frac{1}{12m^2} (H_{\alpha\beta\gamma})^2 - \frac{1}{4} (F_{\alpha\beta} - B_{\alpha\beta})^2 + C^3 \partial^\alpha B_{\alpha\beta} \right).
$$

(3.3)

From the conserved currents (3.2), one can obtain the generators of Lorentz transformation $M_{\rho\sigma}$:

$$
M_{\rho\sigma} = \int d^2x M_{\rho\sigma}^0(x). \quad (3.4)
$$

By utilizing the expressions (3.2) and (3.4) and the commutation relations (2.13), we have the nonvanishing vev of the following commutation relations on the vacuum (3.1):

$$
\langle [iM_{0i}, B_{0j}(x)] \rangle = \int d^2y \langle [iM_{0i}^0(y), B_{0j}(x)] \rangle = \epsilon_{ij} B_{\text{vev}}, \quad (3.5)
$$

$$
\langle [iM_{0i}, F_{0j}(x)] \rangle = \int d^2y \langle [iM_{0i}^0(y), F_{0j}(x)] \rangle = \epsilon_{ij} B_{\text{vev}} \quad (\epsilon_{12} = 1). \quad (3.6)
$$

Thus two boost generators M_{0i} ($i = 1, 2$) are spontaneously broken on the vacuum. From the above commutation relations, the candidates for the NG-bosons for the broken boost generators are B_{0i} and F_{0i}. However, $B_{\mu\nu}$ is a mixture of massive and massless components as discussed previously. As obtained in the previous section, the mass eigenstates of the model are the massive field $U_{\mu\nu}$ and the massless field $F_{\mu\nu}$ (or A_μ) and the other massless fields C_μ, B, and C. Since NG-bosons are necessarily massless state, we conclude that the NG-bosons for the broken boost generators are the massless photon F_{0i}. Incidentally, the massive field $U_{\mu\nu}$ satisfies

$$
\langle [iM_{0i}, U_{\mu\nu}(x)] \rangle = \int d^2y \langle [iM_{0i}^0(y), U_{\mu\nu}(x)] \rangle = 0. \quad (3.7)
$$

Thus the fact that $B_{\mu\nu}$ becomes essentially a massive field is consistent with the Nambu-Goldstone theorem.

3.2 Are the NG-bosons physical?

We have identified the NG-bosons for the spontaneous Lorentz symmetry breaking with the massless photon F_{0i}. The one particle state of the massless photon $F_{\mu\nu}$ (or A_μ) is an unphysical state as discussed in the previous section. Hence the NG-bosons for
the spontaneous Lorentz symmetry breaking are unphysical states, i.e., unphysical NG-bosons. Since the Lorentz symmetry is a physical global symmetry, the corresponding NG-bosons are expected to be physical. Is this a contradiction?

In order to answer this question, let us discuss the one particle state created by the broken boost generators from the vacuum (3.1). Inserting the decompositions \(\phi_I(x) = \langle \phi_I \rangle + \hat{\phi}_I(x) \) on the vacuum\(^{13}\) into the expressions of the currents (3.2), one can construct the broken parts of the currents \(M_{0i}^B(x) \) which depends on \(B_{\text{vev}} \), i.e., \(M_{0i}^B = M_{0i}^{B\mu}(B_{\text{vev}}, \hat{\phi}_I) + \hat{M}_{0i}^{B\mu}(\hat{\phi}_I) \). The explicit forms of the broken parts of the currents \(M_{0i}^B(x) \) are

\[
M_{0i}^B(x) = B_{\text{vev}} \epsilon_{ij} \left\{ \frac{1}{2} x^j \left(\hat{F}^{\mu 0} - \hat{B}^{\mu 0} + \eta^{\mu 0} \hat{B} \right) - \frac{1}{2} x_0 \left(\hat{F}^{\mu j} - \hat{B}^{\mu j} + \eta^{\mu j} \hat{B} \right) \\
+ \left(\frac{1}{m^2} \hat{H}^{\mu 0j} + \eta^{\mu 0} \hat{C}^{ij} - \eta^{\mu j} \hat{C}^0 \right) \right\}
\]

(3.8)

and \(M_{12}^B \) vanishes. Using the equations of motion for \(\hat{\phi}_I \) which are the same as (2.6)-(2.10), one can easily show that these currents are also conserved. From these currents one can obtain the broken parts of the generators which are conserved:

\[
M_{0i}^B \equiv \int d^2 \mathbf{x} \ M_{0i}^{B0}(x) = B_{\text{vev}} \int d^2 \mathbf{x} \ \epsilon_{ij} \left\{ \left(\frac{1}{2} x_0 \hat{U}^{0j}(x) \right) + \left(\frac{1}{2} x_0 \hat{C}^{0j}(x) + \frac{1}{2} x^j \hat{B}(x) + \hat{C}^j(x) \right) \right\}. \quad (3.9)
\]

Hereafter we abbreviate simply \(\hat{\phi}_I \) as \(\phi_I \) without confusion. These broken parts of generators indeed satisfy

\[
[i M_{0i}^B, B_{0j}(x)] = [i M_{0i}^B, F_{0j}(x)] = \epsilon_{ij} B_{\text{vev}}. \quad (3.10)
\]

Note that \(M_{0i}^B \) is a physical operator which commutes with \(C_\mu \), \(B \), and \(C \).

We consider the one particle state created by \(M_{0i}^B \) from the vacuum (3.1), denoted as \(|\text{VAC}\rangle\). Since we are interested in the NG-bosons for the broken generators, we consider only the massless state of the one particle state given by

\[
M_{0i}^B|\text{VAC}\rangle \bigg|_{\text{massless}} = B_{\text{vev}} \int d^2 \mathbf{x} \ \epsilon_{ij} \left(-\frac{1}{2} x_0 C^{0j}(x) + \frac{1}{2} x^j B(x) + C^j(x) \right)|\text{VAC}\rangle. \quad (3.11)
\]

From the commutation relations (2.13), one can easily find that these states are the physical states which satisfy the conditions (2.16), but the null states. Therefore we conclude

\(^{13}\) Since \(\langle F_{12} \rangle = B_{\text{vev}} \), we take, for an example, the vev’s of \(A_i \) as \(\langle A_1 \rangle = -\frac{1}{2} B_{\text{vev}} x^2 \) and \(\langle A_2 \rangle = \frac{1}{2} B_{\text{vev}} x^3 \).
that although the spontaneous Lorentz symmetry breaking is physical, the massless one particle state created by the broken generator M_{bi}^0 from the vacuum (3.1) is not only a physical state but also null state. Since our model has the twisted structure of the Hilbert space with an indefinite metric on account of the gauge invariance (2.3), nonzero matrix elements exist between physical null states and unphysical states. Thereby the NG-boson which has the nonzero matrix element with this massless one particle state can be unphysical. This is closely analogous to the abelian Higgs model in the NL formalism [11].

As discussed in the previous section, in the limit $m \to 0$, the unphysical transverse photon, which is the unphysical NG-boson for the spontaneous Lorentz symmetry breaking, becomes essentially the physical propagating state of the model. The implication of this fact will be discussed in the next section.

4 A perturbation

So far, we have studied the free field theory of $B_{\mu\nu}$ and A_{μ} whose action is given by (2.5). In this section, we discuss a possible perturbation of the model. We introduce the following interaction terms to (2.5) as the perturbation:

$$L_{\text{int}}(x) = \sum_{n=2}^{N} a_n \left\{ (F_{\mu\nu} - B_{\mu\nu})^2 \right\}^n.$$ (4.1)

This type of interactions is obtained by the α'-expansion of DBI action\[14\]. These interactions are gauge invariant under the gauge transformation (2.3) and consistent with the physical state conditions (2.16): these interaction terms do not change the equations of motion of C_{μ}, B, and C in (2.11) and keep them free fields. Although these interactions are non-renormalizable, we treat them as the perturbations which are interpreted as the operator insertions in the matrix elements in the similar manner to the chiral Lagrangian of QCD.

Although the equations of motion of $B_{\mu\nu}$ and A_{μ} is modified due to the interaction terms, the solution (3.1) still remains to be a solution of the modified equations. Thus, even after including the perturbations, the spontaneous Lorentz symmetry breaking is realized. In this case, the argument about the NG-boson in the previous section does not change essentially and hence we can conclude that the NG-boson remains to be the unphysical photon.

\[14\]By virtue of the peculiarity of (2+1)-dimension, a Lorentz scalar constructed from $F_{\mu\nu} - B_{\mu\nu}$ can be always expressed as a polynomial of $(F_{\mu\nu} - B_{\mu\nu})^2$.

12
As is well-known, the low-energy dynamics of the NG-boson is given by only the symmetry argument, i.e., the low-energy theorem. In particular, the low-energy effective action of the NG-boson is given by the nonlinear realization of the broken symmetry. In the case of the spontaneous Lorentz symmetry breaking, these argument holds and the low-energy effective action of the NG-boson is expected to be given by the nonlinear realization of the broken Lorentz symmetry. This problem will be argued in the next section.

In the limit $m \to 0$, the physical propagating state becomes essentially the unphysical transverse photon. Furthermore the amplitude of the physical propagating state (2.26), for example, the two-point amplitude satisfies

$$\left\langle (u_{01}(p) - u_{12}(p)) \tilde{L}_{\text{int}}(q) \left(u_{01}^+(k) - u_{12}^+(k) \right) \right\rangle$$

$$= \left\langle (f_{01}(p) - f_{12}(p)) \tilde{L}_{\text{int}}^{(b_{\mu\nu}=0)}(q) \left(f_{01}^+(k) - f_{12}^+(k) \right) \right\rangle,$$

(4.2)

where $\tilde{L}_{\text{int}}(q)$ and $\tilde{L}_{\text{int}}^{(b_{\mu\nu}=0)}(q)$ are the Fourier transforms of $L_{\text{int}}(x)$ and $L_{\text{int}}^{(B_{\mu\nu}=0)}(x)$ which is obtained by setting $B_{\mu\nu} = 0$ in (4.1), respectively. This relation can be generalized to the scattering amplitudes for any number of the incoming or outgoing physical particles. Thus the physical amplitude in this limit is given by the amplitude of the unphysical transverse photon, that is, the NG-boson of the spontaneous Lorentz symmetry breaking. This is an analogue of the equivalence theorem of the Yang-Mills-Higgs model. In the energy region $(B_{\text{vev}})^{\frac{2}{3}} \gg E \gg m$, where $(B_{\text{vev}})^{\frac{2}{3}}$ is the scale of the Lorentz symmetry breaking, the physical S-matrix elements can be obtained by the scattering amplitudes of the NG-bosons for the Lorentz symmetry breaking.

5 Discussions

In this paper, we have studied a covariant canonical quantization of a gauge invariant model of a second rank anti-symmetric tensor field and a vector field (photon). The spontaneous Lorentz symmetry breaking on the vacuum with a constant vev of the anti-symmetric tensor field has also been studied and the NG-boson of the Lorentz symmetry breaking has been identified with the unphysical photon. In this section, we discuss some related problems.

5.1 The spontaneous symmetry breaking of translation

Until now, we have discussed only the spontaneous Lorentz symmetry breaking on the vacuum (3.1). Indeed, the vacuum breaks the translational symmetry, because the vev
\[\langle F_{12} \rangle = B_{\text{vev}} \] leads to, for example, the vev's
\[\langle A_1 \rangle = -\frac{1}{2} B_{\text{vev}} x^2, \quad \text{and} \quad \langle A_2 \rangle = \frac{1}{2} B_{\text{vev}} x^1. \] (5.1)

Since \(A_1 \) and \(A_2 \) are not gauge invariant, one may expect that the vev's can be eliminated by a gauge transformation. However, following the discussion about the vev's of \(B_{\mu\nu} \) and \(F_{\mu\nu} \) in section 3, we do not require the invariance of the Hilbert space under the singular gauge transformation which eliminates them.

By the vev's (5.1), two translation generators \(P_1 \) and \(P_2 \) are broken:
\[\langle [iP_i, A_j(x)] \rangle = \epsilon_{ij} \frac{1}{2} B_{\text{vev}}, \] (5.2)
where \(P_i \) is given by the canonical energy-momentum tensor (3.3)
\[P_i = \int d^2 x \ T_{0i}^0 (x). \] (5.3)

The NG-bosons associated with the broken translation generator \(P_1 \) and \(P_2 \) are \(A_2 \) and \(A_1 \) respectively. The similar discussion to the broken Lorentz symmetry concludes that the NG-boson of the broken translational symmetry is also the unphysical massless photon.

This can be also understood from the following commutation relation in the Poincaré algebra:\(^{14}\)
\[[M_{0i}, P_0] = -i P_i. \] (5.4)

Sandwiching the Jacobi identity
\[[[M_{0i}, P_0], A_j(x)] + [[A_j(x), M_{0i}], P_0] + [[P_0, A_j(x)], M_{0i}] = 0 \] (5.5)
between the vacuum states \(|\text{VAC}\rangle \), one can obtain the following equality
\[\langle [iP_i, A_j(x)] \rangle = \langle [iM_{0i}, \partial_0 A_j(x)] \rangle = \epsilon_{ij} \frac{1}{2} B_{\text{vev}}, \] (5.6)
where we have used \(P_0 |\text{VAC}\rangle = 0 \) and \([P_0, \phi_I] = -i \partial_0 \phi_I \). This implies that when the NG-boson of the broken translation generator \(P_i \) is \(A_j \), the NG-boson of the broken Lorentz generator \(M_{0i} \) is given by its time derivative \(\partial_0 A_j \sim F_{0j} \). This phenomenon has been known as the inverse Higgs phenomenon in the nonlinear realization of space-time symmetries\(^{19}\).
5.2 Relation to the nonlinear realization of Lorentz symmetry

According to the discussion in the previous subsection, the low-energy effective action of the NG-boson A_i can be obtained by the nonlinear realization of the translational and Lorentz symmetry, which leads to a 1-dimensional effective action \[^{15}\] However, since no physical lower-dimensional object such as a brane exist in our model, we expect a (2+1)-dimensional effective action which describes the low-energy effective theory in the whole space-time.

To realize this expectation, as in the case of the broken boost generators, we split the broken translation generators P_i into the broken parts and the unbroken parts such as

$$P_i = P_i^B(B_{\text{vev}}) + \hat{P}_i \[^{16}\]$$

$$P_i^B = \frac{B_{\text{vev}}}{2} \int d^2 x \epsilon_{ij} \left(\hat{U}_0^j - \hat{C}_0^j \right). \quad (5.7)$$

The broken parts of the translation generators satisfy

$$[iP_i^B, A_j] = \epsilon_{ij} \frac{1}{2} B_{\text{vev}}. \quad (5.8)$$

The same argument as the case of the boost generators leads us to the conclusion that the NG-bosons for the broken translation generators can be the unphysical massless photon.

Here, if one considers only the physical Hilbert space defined by the physical state conditions (2.16), one can show that the generators $\{M_{\mu\nu}, P_0, \hat{P}_i\}$ form a closed Poincaré algebra on the physical Hilbert space. As far as one considers this Poincaré algebra on the physical Hilbert space, the translational symmetry generated by \hat{P}_i is unbroken and only the boost symmetry generated by M_{0i} is broken. In this breaking pattern of the Poincaré symmetry, the low-energy effective action constructed by the nonlinear realization is a (2+1)-dimensional effective action and its explicit form has been obtained in \[^{18}\]. Thus, we expect that the physical amplitudes of the model can be obtained by the low-energy effective action via the equivalence theorem discussed in the previous section.

5.3 Other related topics

From the relation between the non-commutative gauge theory and the D-brane world volume effective theory on a constant background anti-symmetric tensor field, our investigation is expected to give some new insights to the non-commutative gauge theory.

\[^{15}\]The Nambu-Goto type effective action on a lower-dimensional brane embedded in higher dimensional flat space-time is known to be obtained by the nonlinear realization of the higher-dimensional translational and Lorentz symmetries \[^{20}\].

\[^{16}\]As in the case of the boost generators, one can show that P_i^B and \hat{P}_i are conserved separately.
However, in this context, the anti-symmetric tensor field is taken as an external field: the kinetic term for the anti-symmetric tensor field does not exist. Then the vacuum

$$\langle B_{12} \rangle \neq 0 \quad \text{and} \quad \langle F_{12} \rangle = 0,$$

is allowed as the solution of the equation of motion of a gauge field A_μ. This solution is a different vacuum from our vacuum $\langle B_{11} \rangle$. The extension of our analysis to the above case and the relation to the non-commutative gauge theory are interesting problems.

We make some speculations about the dynamics of photon A_μ in our model. At first, since the photon is the NG-boson of the broken Lorentz symmetry on the vacuum $\langle B_{11} \rangle$, the NG-theorem concludes that the photon cannot become massive on the vacuum. Secondly, as discussed in [18], the NG-boson of the broken Lorentz symmetry has derivative couplings with any fields including itself. Hence, the photon is expected to have derivative coupling with any fields including itself and neutral fields. From the relation to the non-commutative gauge theory, this seems consistent with the fact that the non-commutative photon in the non-commutative QED, where the products of fields are replaced by the \ast-products, has self-couplings and derivative couplings with fields in the adjoint representation, i.e., neutral fields [21, 22].

Although the discussion in this paper is limited to the model in (2+1)-dimension, the similar discussions can be applied to the models in higher dimensions. Investigation of the more realistic case, that is, (3+1)-dimensional case is an interesting future problem.

Investigation of the supersymmetric extension of our model from the viewpoint in this paper is also interesting.

Acknowledgements
We would like to thank N. Ohta, T. Nakatsu, M. Torii, T. Kimura and T. Kugo for useful discussions and comments.

References

[1] A. Connes, M. R. Douglas and A. Schwarz, “Noncommutative Geometry and Matrix Theory: Compactification On Tori”, JHEP 9802:003 (1998).

[2] M. R. Douglas and C. Hull, “D-Branes and the Noncommutative Torus”, JHEP 9802:008 (1998).

[3] H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, “Noncommutative Yang-Mills in IIB Matrix Model”, Nucl. Phys. B565, 176 (2000).
[4] N. Seiberg and E. Witten, “String Theory and Noncommutative Geometry”, JHEP 9909:032 (1999).

[5] M. Kalb and P. Ramond, “Classical Direct Interstring Action”, Phys. Rev. D9, 2273 (1974).

[6] E. Cremmer and J. Scherk, “Spontaneous Dynamical Breaking of Gauge Symmetry in Dual Models”, Nucl. Phys. B72, 117 (1974).

[7] C. G. Callan, C. Lovelace, C. R. Nappi and S. A. Yost, “String Loop Corrections to Beta Functions”, Nucl. Phys. B288, 525 (1987).

[8] M. Green, “The Influence of World-Sheet Boundaries on Critical Closed String Theory”, Phys. Lett. B302, 29 (1993).

[9] For example, J. Polchinski, “STRING THEORY”, Vol. I and II (Cambridge University Press, 1998).

[10] N. Nakanishi, “Indefinite Metric Quantum Field Theory”, Prog. Theor. Phys. Suppl. 51, 1 (1972).

[11] N. Nakanishi and I. Ojima, “COVARIANT OPERATOR FORMALISM OF GAUGE THEORIES AND QUANTUM GRAVITY” (World Scientific, 1990) and references therein.

[12] N. Nakanishi, “A Way out of a Formal Difficulty Encountered in the Landau-Gauge Quantum Electrodynamics”, Prog. Theor. Phys. 51, 952 (1974).

[13] E. C. G. Stueckelberg, Helv. Phys. Acta 11, 299 (1938).

[14] M. S. Chanowitz and M. K. Gaillard, “The TeV Physics of the Strongly Interacting W’s and Z’s”, Nucl. Phys. B261, 379 (1985).

[15] K. Aoki, “On the Equivalence Theorem Between W(L), Z(L) and Nambu-Goldstone Particles”, Talk presented at the meeting on “Physics at TeV Energy Scale” (KEK, Tsukuba, 1987).

[16] V. A. Kostelecký and S. Samuel, “Spontaneous Breaking of Lorentz Symmetry in String Theory”, Phys. Rev. D39, 683 (1989).

[17] V. A. Kostelecký and S. Samuel, “Collective Physics in the Closed Bosonic String”, Phys. Rev. D42, 1289 (1990).
[18] N. Yokoi, “Nonlinear Realization of Lorentz Symmetry”, \(\text{hep-th/0011158}\).

[19] E. A. Ivanov and V. I. Ogievetsky, “The Inverse Higgs Phenomenon in Nonlinear Realizations”, Teor. Mat. Fiz. 25, 164 (1975).

[20] E. Ivanov, “Diverse PBGS Patterns and Superbranes”, \(\text{hep-th/0002204}\).

[21] M. Hayakawa, “Perturbative Analysis on Infrared Aspects of Noncommutative QED on \(R^4\)”, Phys. Lett. B478, 394 (2000).

[22] M. Hayakawa, “Perturbative Analysis on Infrared and Ultraviolet Aspects of Noncommutative QED on \(R^4\)”, \(\text{hep-th/9912167}\).