ERCC1 and ERCC2 Haplotype Modulates Induced BPDE-DNA Adducts in Primary Cultured Lymphocytes

Xiaobo Lu1,2, Yanhua Liu1,2,9, Tao Yu1,2,9, Sha Xiao1, Xiaoyan Bao1, Liang Pan1, Guolian Zhu1, Yuan Cai1, Qiufang Liu1, Cuihong Jin1, Jinghua Yang1, Shengwen Wu1, Li An1, Tahar van der Straaten3

1 Department of Toxicology, School of Public Health, China Medical University, Shenyang, People’s Republic of China, 2 Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People’s Republic of China, 3 Department Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands

Abstract

Background: Benzo[a]pyrene (B[a]P), and its ultimate metabolite Benzo[a]pyrene 7,8-diol 9,10-epoxide (BPDE), are classic DNA damaging carcinogens. DNA damage caused by BPDE is normally repaired by Nucleotide Excision Repair (NER), of which ERCC1 and ERCC2/XPD exert an indispensable role. Genetic variations in ERCC1 and ERCC2 have been related to DNA repair efficiency. In this study we used lymphocytes from healthy individuals to show that polymorphisms in ERCC1 and ERCC2 are directly associated with decreased DNA repair efficiency.

Methods: ERCC1 (rs3212986 and rs11615) and ERCC2 (rs13181, rs1799793 and rs238406) were genotyped in 818 healthy Han individuals from the northeast of China. BPDE induced DNA adducts in lymphocytes were assessed by high performance liquid chromatography (HPLC) in 282 randomly selected participants. The effect of ERCC1 rs3212986 and ERCC2 rs238406 on DNA damage caused by B[a]P was assessed with a modified comet assay.

Results: We found that the variant genotypes of ERCC1 rs3212986 and ERCC2 rs238406 were associated with the high levels of BPDE-DNA adducts. Especially ERCC1 rs3212986 A-allele variant was significantly associated with the high BPDE-DNA adducts. Haplotype analysis showed that the ERCC1 haplotype AC (OR = 2.36, 95% CI = 1.84–2.97), ERCC2 haplotype AGA (OR = 1.51, 95% CI = 1.06–2.15) and haplotype block AGAAC (OR = 5.28, 95% CI = 2.95–9.43), AGCAC (OR = 1.35 95% CI = 1.13–1.60) were linked with high BPDE-DNA adducts. In addition, we found that the combined minor alleles of ERCC1 rs3212986 and ERCC2 rs238406 were associated with a reduced DNA repair capacity.

Conclusions: Our results suggest that the variant genotypes of ERCC1 rs3212986 and ERCC2 rs238406 are associated with decreased repair efficiency of BPDE induced DNA damage, and may be predictive for an individual’s DNA repair capacity in response to environmental carcinogens.

Introduction

Benzo[a]pyrene (B[a]P) is a classic DNA damaging carcinogen which is one of a multitude of polycyclic aromatic hydrocarbons (PAHs) commonly found in tobacco smoke and in the ambient environment [1,2]. Benzo[a]pyrene 7,8-diol 9,10-epoxide (BPDE), the ultimate metabolite of B[a]P, forms covalent BPDE-DNA adducts within a cell that damages the structure and function of biological macromolecules such as DNA and protein [3]. The covalent binding of reactive metabolites to DNA is suggested to be involved in cancer initiation [4]. Most species have developed adaptive DNA repair systems against genomic insults from environmental hazards, and have effectively maintained genomic integrity during the evolution. An efficient DNA repair system is crucial for eliminating BPDE-DNA adducts, and a reduced DNA repair efficiency is related to a higher risk of cancer development.

DNA repair is a complicated biological process consisting of several distinct pathways. There are at least 5 DNA repair systems known to repair DNA damages: Base Excision Repair (BER), Nucleotide Excision Repair (NER), Mismatch Repair (MMR), Homologous Recombination Repair (HRR), and Non-Homologous End Joining (NHEJ). Nucleotide Excision Repair (NER) is an important and versatile repair system that removes a wide variety of DNA damages and especially deals with bulky DNA damage that leads to a distortion of the DNA helix such as DNA adducts induced by chemical carcinogens [5]. NER consists of a multi-step process that involves at least 20–30 proteins in a well-defined order. ERCC1 (Excision repair cross complementation group 1) and ERCC2/XPD (Excision repair cross complementation group 2/xceroderma pigmentosum D) are both indispensable genes for a well functional NER. ERCC1 protein forms a heterodimer with
ERCC1/XPF and acts as an endonuclease that excises the DNA lesion by 5' incision [6]. The ERCC2 gene product XPD acts as a subunit of the basal transcription factor TFIIH complex and is also essential for NER. It encodes an ATP-dependent DNA helicase and opens DNA strands around the site of the lesion to make it accessible for repair by other NER proteins [7,8]. ERCC1 and ERCC2 genes are both located on chromosome 19q13.3 and exert important roles as a whole. Genetic variations in the form of single nucleotide polymorphisms (SNPs) in ERCC1 and ERCC2 may modulate the levels of DNA damage in response to carcinogen exposure because of a possibly altered protein function or gene expression.

Two common SNPs in ERCC1, the synonymous 11615 at exon 4 (Asn11615Asn), and rs3212986 located at the 3'-untranslated region of ERCC1 (C8992A) have been associated with an increase risk to develop lung cancer [9–12], squamous cell carcinoma of the head and neck (SCCHN) [13,14], basal cell carcinoma (BCC) [15–17], breast cancer [18,19] and colorectal cancer [20]. Several SNPs have been identified in ERCC2 and three of them are explored in our current study. ERCC2 rs13181 at exon23 and rs1799793 at exon10 result in amino acid change (Lys751Gln and Asp312Asn, respectively) while rs238406 at exon6 is a silent polymorphism (Arg156Arg). Studies on these three polymorphisms have been reported extensively for their potential implication in the risk of cancer development. These three ERCC2 SNPs are found to be associated with a reduced repair of aromatic DNA adducts [21,22] and an increasing risk of lung cancer [23,24], bladder cancer [25], esophageal squamous cell carcinoma (ESCC) [26] and head and neck cancer [27]. Although many population-based case-control studies suggested that these polymorphisms may predict an individual's susceptibility to cancer, these conclusions are not entirely consistent and it is therefore imperative to investigate whether these genetic variations correlate with differences in DNA repair efficiency in the general population.

BPDE-DNA adducts detected in peripheral blood lymphocytes, are phenotypic markers for carcinogen metabolism and host DNA repair capacity [28]. However, the levels of in vivo-induced DNA adducts depend on the dose and duration of carcinogen exposure and are hardly estimated in a population-based study. For that reason we performed an in vitro study by incubating freshly isolated lymphocytes with BPDE to induce DNA adducts and determined the amount of adducts after standardized exposure conditions to indicate individual's DNA repair capacity as the previous studies recommended [29,29,29]. Because the amount of in vitro BPDE-induced DNA adduct levels are more than1000 times higher than those in vivo induced by smoking or other environmental carcinogens [30], measuring the detectable level of in vitro BPDE-induced DNA adducts in peripheral blood lymphocytes may provide a useful tool for measuring DNA repair capacity, which can reflect individual susceptibility to PAHs-induced carcinogenesis.

We hypothesize that ERCC1 and ERCC2 polymorphisms may modulate the induced BPDE-DNA adduct levels and affect host DNA repair capacity. Therefore, we tested DNA repair efficiency in lymphocytes from 282 individuals and associated that with their corresponding ERCC1 and ERCC2 genotypes. We found that the combined minor alleles of ERCC1 rs3212986 and ERCC2 rs238406 show a decreased DNA repair efficiency and can be used as valid biomarkers to predict an individual's DNA repair capacity in response to environmental carcinogen.

Materials and Methods

Study Population

The study population consisted of 818 healthy participants recruited from a Physical Examination Center of Shenyang (a city in the northeast of China) from October 2010 to July 2011. The Institutional Review Board of China Medical University approved the study and informed consent was obtained from all participants prior to the study. All activities involving human subjects were done under full compliance with government policies and the Helsinki Declaration. After the study procedures were explained and all questions were answered, subjects signed informed consent forms. Demographic data (demographic characteristics, anamnesis, family history and lifestyles: smoke and alcohol consumption) were obtained with a questionnaire.

DNA Isolation and Genotyping

From each participant 10 ml of venous blood was obtained by vena puncture and collected in tubes containing folic acid sodium anticoagulation. DNA was extracted from 2 ml blood by phenol chloroform extraction which has been described elsewhere [31]. Two SNPs in ERCC1 (rs11615 and rs3212986) and three SNPs in ERCC2 (rs13181, rs1799793 and rs238406) were analyzed by TaqMan® on ABI 7500 Real-time PCR system (ABI, US, Stagapore). All PCR reagents were purchased from ABI Company. Assay ID of ERCC2/XPD rs238406 is C_8714009_10 and the part number is 4351375.

ERCC1 rs11615 primers:
Forward: 5’-CCTTTCGTCCTCCTCCAGA-3’
Reverse: 5’-CCCCAGGCACATAGTGGGAAAT-3’
Probes: 5’-VIC-TCTGCTGGCAATGGTCCCTG-MGB-3’;
5’-CAG-TGCCCTG-MGB-3’

ERCC2/XPD rs13181 primers:
Forward: 5’-CAGGAGATCAAAGAGACAGA-3’
Reverse: 5’-CTCTTGGACATTTTACCACCT-3’
Probes: 5’-VIC-TGGTGCAGTTTTCCAG-3’;
5’-CAG-TGCCCTG-MGB-3’

ERCC1 rs1799793 primers:
Forward: 5’-CAGCAGGGATCTGACGCTA-3’
Reverse: 5’-CCTGCTGGGAGACGCTAT-3’
Probes: 5’-VIC-TGGTGCAGTTTTCCAG-3’;
5’-CAG-TGCCCTG-MGB-3’

DNA isolation and genotyping from peripheral blood lymphocytes of healthy individuals was performed as follows: DNA was isolated from peripheral blood lymphocytes using a DNA Isolation Kit (Promega, Madison, WI). The DNA samples were purified by precipitation with alcohol and dissolved in TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0). Prior to genotyping, the quality of DNA was tested by agarose gel electrophoresis. The DNA samples were genotyped using the standard TaqMan® real-time PCR method.

Study Population

In vitro Lymphocytes Exposure to BPDE

Lymphocytes were isolated from 8 ml blood sample. In brief, blood was added gently above human lymphocyte separation medium in 15 ml centrifuge tubes. After centrifugation at 2000 rpm for 5 min, lymphocytes were separated and 10^6 cells per ml was suspended in frozen stock solution (containing 50% fetal bovine serum, 40% RPMI-1640 and 10% DMSO) and kept at -80°C for 3 days. Then lymphocytes were thawed and resuspended in RPMI 1640 culture medium (Gibco, USA) containing 50% fetal bovine serum, 40% RPMI-1640 and 10% DMSO and kept at 37°C with 5% CO2. The density of lymphocytes was adjusted to 10^6 cells/ml, and 1 ml of cell suspension was added to each well of a 24-well plate with 6.4 ml of RPMI 1640 culture medium. After 24 h, the lymphocytes were collected and different BPDE concentrations (0.1–2 μM) were added to the culture medium. After 24 h of incubation, the lymphocytes were collected and frozen at -80°C for later use.

PCR reactions were run in a 20 μl final volume including: Premix Ex Taq™10 μl, 0.4 μl of each probe and primer, 2 μl DNA (40 ng/μl) and 6.4 μl of pure water. Cycling conditions were 95°C for 10 min, and 40 cycles of 95°C for 5s and 60°C for 30s. Data analysis for allele discrimination was performed using SDS software.
at −80°C promptly. Lymphocytes were re-suspended in RPMI 1640 (supplemented with 20% fetal bovine serum, 2 mM L-glutamine, 100 U penicillin streptomycin combination and 112.4 μg/ml phytohemagglutinin) at a cell concentration of 5 × 10⁷/ml and were cultured for 2–3 days (logarithmic phase) in a 12-well cell culture plate under 5% CO₂ at 37°C. After 67 hrs of phytohemagglutinin stimulation, a final concentration of 4 μmol/L BPDE (Benzo[a]pyrene-7,9-dihydrodiol-9,10-epoxide, purchased from National Cancer Institute Chemical Carcinogen Repository, Kansas City, MO) was added to the cultures [28,32]. The levels of BPDE-DNA adducts were maximal after 3 hrs incubation and decreased rapidly during 4–6 hrs [33,34]. Therefore, lymphocytes were harvested after 5 hrs of incubation.

Detection of BPDE-DNA Adducts Using High Performance Liquid Chromatography

The harvested lymphocytes were washed and re-suspended in PBS. The HPLC methods used for detecting BPDE-DNA adducts were previously described [35,36]. Briefly, DNA was extracted from lymphocytes and quantified. The ultraviolet spectrum of DNA from calf thymus (obtained from the commercial source of Life Technologies Corporation) [37], PBS, BPDE standard solution and their mixture were scanned with a UV spectrophotometer to inspect the UV wavelength of the maximum absorption. The BPDE-DNA adducts were detected by a HPLC system using Waters Alliance 2487 with ultraviolet-absorbance detection at 275 nm. BPDE-DNA adducts were separated on the 250 × 4.6 mm Diamonsil(R) C18, 5 μm HPLC column (Dikma, Lake Forest, CA, USA) and were equilibrated in 70% methanol (experiencing a standby state at 37°C). 20 μl of neutralizing solution (0.4 M Tris-HCl, pH 7.5, 0.03 M Tris- HCl, pH 7.5), Ethidium bromide was used for staining. Finally, DNA damage in a single cell was detected using fluorescent microscope. Mean difference values of tail olives moment (and tail areas) between control and B[a]P exposed group indicates presence of induced DNA damage of BPDE-DNA adducts. At least 30 tail olives moment (and tail areas) in each slide were counted. The damage level was obtained with the formula: (control group-exposed group) tail olives moment (or tail area)/ tail olives moment (or tail area) of control group.

One-way ANOVA, non-parametric Kruskal Wallis tests and Wilcoxon two-sample test were used to determine DNA adduct levels by the categorical variables such as age, sex, smoking, drinking status and diverse genotypes. Multiple unconditional logistic regression analysis to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) for high DNA adduct levels in participants with different haplotypes of ERCC1 and ERCC2. All statistical analysis were two sided with P value <0.05 considered statistically significant and were performed using SPSS Software for Windows (version 15.0).

Results

1. Distribution of ERCC1 and ERCC2 Polymorphisms

A total of 818 healthy Chinese Han participants were included in the study. 238 were women and 580 were men; ages ranged from 17 to 90 years (mean 43 years). Genotype frequencies of ERCC1 and ERCC2 polymorphisms are described as following. For ERCC1 rs11615, the frequency of C-allele was 0.729 and T-allele was 0.271, for rs3212986 the frequency of C-allele was 0.710 and A-allele was 0.290. Similarly, for ERCC2 rs13181, the frequency of A-allele was 0.922 and C-allele 0.078; for rs1799793 the frequency of G-allele was 0.929 and A-allele was 0.071; and for rs238406 the frequency of G-allele was 0.559 and A-allele 0.441. The five SNPs were all in Hardy-Weinberg equilibrium. Linkage disequilibrium was found in ERCC1 rs11615 and rs3212986 (D’ = 0.859, R² = 0.091); ERCC2 rs1799793 and rs238406 (D’ = 1.0,
2. BPDE-DNA Adducts and Characteristics of Study Population

For a panel of 282 randomly selected samples the induced BPDE-DNA adducts in lymphocytes were detected by HPLC. The levels of in vitro DNA adducts ranged from 438 to 8646 adducts/10^8 nucleotides. The associations of BPDE-DNA adducts with characteristics of study population are represented in Table 1. Subjects with an age of 50–70, and over 70 years old had higher BPDE-DNA adduct levels compared with participants younger than 30 years old. The amount of BPDE-DNA adducts was significantly increased (*P*<0.05) for participants with a history of alcohol use or smoking. There was no difference in BPDE-DNA adduct levels between male and female.

3. BPDE-DNA Adducts and ERCC1, ERCC2 SNPs

The results for the association between BPDE-DNA adducts and ERCC1, ERCC2 genotypes are summarized in Table 2. The amount of BPDE-DNA adducts in subjects carrying *ERCC1* rs3212986 CA and AA genotypes was significantly higher compared to subjects with the CC genotype (*P*<0.01). Similarly, the amount of BPDE-DNA adducts in subjects with *ERCC2* rs238406 CA and AA genotypes was higher compared to subjects with the CC genotype. The amount of BPDE-DNA

![Chromatograms of blank, DNA, BPDE and DNA+BPDE solutions using HPLC-UV detection.](doi:10.1371/journal.pone.0060006.g001)
adducts showed a weak downward trend with the number of the A-allele of ERCC2 rs1799793, but no statistical significance was observed. No difference of BPDE-DNA adducts in ERCC1 rs11615 and ERCC2 rs13181 polymorphisms were found.

4. Association of BPDE-DNA Adducts with ERCC1 rs3212986 and ERCC2 rs238406 Stratified by Age and Smoking Status

Previous studies have suggested that the levels of DNA adducts is affected by age and smoking status. Table 3 and Table 4 show the result of the association between ERCC1 rs3212986, ERCC2 rs238406 and BPDE-DNA adduct levels stratified by age and smoking status. ERCC1 rs3212986 CA and AA genotypes were associated with high levels of BPDE-DNA adducts in each age group. For non-smokers and heavy smokers the minor A-allele of ERCC1 rs3212986 was also found to be linked with the risk of high levels of BPDE- adducts. The minor A allele of ERCC2 rs238406 was associated with high BPDE-DNA adduct levels in the age group above 70 years and in the group of heavy smokers.

The interactive effect of all covariates on BPDE-DNA adduct levels was analyzed by Multiple Linear Regression according to the approximately normal distribution of BPDE-DNA adduct levels (Table 5). ERCC1 rs3212986 and age had significant contribution to the variation of BPDE-DNA adduct levels among all covariates (P<0.05). The standardized partial regression coefficients obtained from Stepwise Multiple Linear Regression analysis can show the contribution to the variation of BPDE-DNA adduct levels. The coefficients of ERCC1 rs3212986 and age were 0.470 and 0.149 respectively (P<0.05).

5. BPDE-DNA Adducts and ERCC1, ERCC2 Haplotypes

Table 6 shows the association between BPDE-DNA adduct levels and ERCC1 and ERCC2 haplotypes. Median DNA adduct level was used as the cut off point to dichotomize the study participants. As a result, DNA adducts less than 2055.5 were categorized as low-level adduct groups, and more or equal to 2055.5 were categorized as high-level adduct groups. The participants with the most common haplotype showed the lowest risk for high BPDE-DNA adduct levels (Table 2). The haplotype including the minor A allele of ERCC1 rs3212986 had a higher risk.

Table 1. BPDE-DNA adducts levels and characteristics of study population (X ± s, n = 282).

Covariates	N(%)	BPDE-DNA adduct levels (adducts/10^8 nucleotides)	P	Pb
Gender				
Male	175(62.1)	2280.6± 1310.8		
Female	107(37.9)	2516.0± 1519.9	0.180	
Age (years)				
<30	68(24.1)	1970.6± 995.1		
30–50 (obtain50)	43(15.2)	2226.7± 1269.9	0.286	
50–70	80(28.4)	2432.5± 1209.8	0.025	
>70	91(32.3)	2451.4± 1289.1	0.018	0.072
Smoking history				
never	142(51.4)	2161.0± 1071.6		
<20 years	74(32.6)	2386.9± 1601.0	0.225	
>=20 years	66(16.0)	2632.5± 1516.7	0.015	0.047
Drinking history				
never	166(58.9)	2151.4± 1069.1		
<20 years	85(30.1)	2476.4± 1460.2	0.089	
>=20 years	31(11.0)	2672.0± 1690.0	0.015	0.028

*P value was obtained using the LSD test or t-test analysis comparing with reference.

**P value was obtained using one-way ANOVA.

doi:10.1371/journal.pone.0060006.t001

Figure 2. DNA damage caused by B[a]P exposure detected by a modified comet assay. Figure 2 shows a typical image to reflect the damage levels caused by BPDE-DNA adducts in a randomly selected sample. BPDE covalently binds to cellular DNA and forms interactive complexes. 50 μmol H2O2 was used to induce DNA fragmentation, resulting in long tails after electrophores in control lymphocytes (see Fig. 2A. control or non-exposed group). BPDE-DNA adducts will capture the short H2O2 induced DNA fragments, and consequently, a shorter tail olive (or tail area) will be found in BPDE-exposed cells compared to non-exposed cells (see Fig. 2B. BPDE-exposed group).

doi:10.1371/journal.pone.0060006.g002
of high amounts of BPDE-DNA adducts. Compared with the reference, high BPDE-DNA adduct levels were associated with ERCC1 haplotype AC (OR = 2.36, 95% CI = 1.94–2.97). For the most common ERCC2 haplotype AGC, the frequency was 0.480. Compared with AGC, high BPDE-DNA adduct levels were associated with AGA haplotype which included the minor A-allele of ERCC2 rs234064 (OR = 1.51, 95% CI = 1.06–2.15). Haplotype blocks combining the five SNPs in ERCC1 and ERCC2 are listed in Table 5. Six haplotype blocks had frequencies of ≥3% in the study population. Haplotype AGCCC is the most common one and is composed of the low-risk alleles of the five SNPs. The frequency of the most common haplotype AGCCC was 0.283.

Table 2. ERCC1, ERCC2 genotypes and BPDE-DNA adduct levels (χ² ± s, n = 282).

SNP	N(%)	BPDE-DNA adduct levels (adducts/10⁶ nucleotides)	p²	p³
ERCC1 C19007T, C>T, rs11615				
CC	139(49.3)	2215.6 ± 1216.7	Reference	
CT	113 (40.1)	2422.4 ± 1052.0	0.151	0.306
TT	30 (10.6)	2187.0 ± 1023.5	0.900	
CT+TT	143 (50.7)	2373.0 ± 1046.9	0.504	
ERCC1 C8092A, C>A; rs3212986				
CC	162 (57.4)	1766.0 ± 907.8	Reference	
CA	103 (36.5)	3140.1 ± 1467.9	<0.01	<0.01
AA	17 (6.1)	3548.7 ± 1849.0	<0.01	
XPD/ERCC2 Lys751Gln, A>C; rs13181				
AA	240 (85.1)	2351.4 ± 1427.1	Reference	
AC	40 (14.2)	2506.4 ± 1219.8	0.517	0.710
CC	2 (0.7)	1861.0 ± 1175.2	0.622	
AC+CC	42 (14.9)	2475.6 ± 1211.8	0.623	
XPD/ERCC2 Asp312Asn, G>A; rs1799793				
GG	241 (85.5)	2864.9 ± 1766.4	Reference	
GA	39 (13.8)	2239.6 ± 1086.7	0.500	0.306
AA	2 (0.7)	1006.5 ± 286.4	0.160	
GA+AA	42 (14.5)	2179.5 ± 1093.7	0.141	
XPD/ERCC2 Arg156Arg, C>A; rs238406				
CC	95 (33.69)	2100.0 ± 1164.1	Reference	
CA	140 (49.64)	2350.1 ± 1352.1	0.155	0.003
AA	47 (16.67)	2944.9 ± 1766.4	0.001	
CA+AA	187 (66.31)	2507.1 ± 1484.1	0.041	

p value was obtained using the LSD test or t-test analysis comparing with reference.

p value was obtained using one-way ANOVA.

doi:10.1371/journal.pone.0060006.t002

6. The Combined Minor Alleles of ERCC1 rs3212986 and ERCC2 rs234064 Predict the DNA Damage Induced by B[a]P

Based on the results from the analysis of in-vitro BPDE-DNA adducts, we hypothesized that the minor alleles of ERCC1 rs3212986 and ERCC2 rs234064 are associated with reduced DNA repair capacity. To test our hypothesis, we selected the participants carrying different ERCC1 rs3212986 and ERCC2 rs234064 genotypes and analyzed their induced DNA damage levels by B[a]P using the modified comet assay. Interestingly, we observed that the combined minor alleles of ERCC1 rs3212986 and ERCC2 rs234064 were associated with a reduced DNA repair capacity by detecting differences in the tail olive moment ratio, tail area ratio and the comprehensive holistic marking (*P*<0.01) (See Figure 3).

Discussion

In this study we investigated the effect of common SNPs in DNA repair enzymes ERCC1 and ERCC2 on their effect on repairing BPDE-induced DNA damage. We found that haplotype of minor alleles of ERCC1 rs3212986 and ERCC2 rs234064 were associated with a reduced DNA repair capacity.

In recent years many studies have shown that reduced DNA repair efficiency is associated with an increased risk to develop cancer after exposure to environmental carcinogens. Hospital based case-control studies were usually performed in research field, but some limitations in those studies such as selection bias and the retrospective nature of the study designs should be concerned. Therefore it is imperative to investigate the effect of genetic variations on DNA repair capacity in the general population. To our knowledge, only a few studies have investigated the associations between in-vitro-induced DNA adduct levels and genetic variations in DNA repair genes in normal cells from healthy individuals. For that reason, we performed a cell culture-based assay for experimentally induction of BPDE-DNA adducts in isolated lymphocytes from a healthy population from the northeast of China. However, since the in vitro induced DNA adducts detected by HPLC as a surrogate measure of an individual’s DNA repair capacity may be less reliable, we also conducted a modified comet assay to further confirm the effect of those significant polymorphisms. Comparing with the previous analogue studies, the strength of our study is that we used a more reliable evaluation combining both the detection of BPDE-DNA adducts and the genetic damage in lymphocytes measured by the modified comet assay to reflect individual’s DNA repair capacity.

As is well known, the Nucleotide Excision Repair (NER) removes a wide variety of DNA adducts induced by chemical carcinogens PAHs [5]. ERCC1 and ERCC2 genes located on chromosome 19q13.3 both exert important roles in NER. ERCC1 and ERCC2 polymorphisms may affect NER function and consequently levels of DNA damage in response to carcinogen exposure. In the present study we investigated the effect of ERCC1 and ERCC2 polymorphisms on the repair efficacy of genetic damage induced by carcinogens. We found that the variant genotypes of ERCC1 rs3212986 and ERCC2 rs234064 are associated with the induced BPDE-DNA adduct levels after adjusting for age and smoking status. Furthermore, we conducted a haplotype analysis with these five SNPs. Although a number of studies showed that ERCC1 rs11615 is a predictive biomarker for better survival in patients treated with platinum-based chemotherapy [6,39–42], this effect may attribute to the strong linkage disequilibrium between ERCC1 rs11615 and rs3212986 (*D³* = 0.859, *R²* = 0.091). We also found that ERCC1 haplotype
AC including the minor A-allele of ERCC1 rs3212986, ERCC2 haplotype AGA including the minor A-allele of ERCC2 rs238406 and haplotype block AGAAC including both the minor A-allele of ERCC1 rs3212986 and the minor A-allele of ERCC2 rs238406 are associated with an increased risk of high DNA adduct levels. Therefore, the significant dose-response relationship between genetic damage levels induced by environmental carcinogens and the numbers of the combined minor alleles of ERCC1 rs3212986 and ERCC2 rs238406 indicated that these are valid predictive values for an individual’s DNA repair capacity.

Table 3. Association between ERCC1 rs3212986 and ERCC2 rs238406 polymorphisms and BPDE-DNA adducts stratified by age.

	≤30 years	30–50 years (50 years)	≥50 years
	OR(95% CI)	OR(95% CI)	OR(95% CI)
≤30 years			
ERCC1 C8092A, C>A, rs3212986			
CC	30	Reference	20
CA+AA	8	10.78(3.52–33.06)	2
XPD/ERCC2 Arg156Arg, C>A, rs238406			
CC	12	Reference	13
CA	22	1.33(0.43–4.09)	6
AA	3	4.0(0.77–20.65)	3
CA+AA	25	1.6(0.56–4.88)	9
≥50 years			
ERCC1 C8092A, C>A, rs3212986			
CC	33	Reference	33
CA+AA	5	11.65(3.83–35.45)	11
XPD/ERCC2 Arg156Arg, C>A, rs238406			
CC	14	Reference	18
CA	19	1.58(0.42–3.03)	22
AA	5	1.2(0.3–4.86)	6
CA+AA	24	1.17(0.47–2.93)	28

ε40 years			
ERCC1 C8092A, C>A, rs3212986			
CC	57	Reference	40
CA+AA	15	6.78(3.15–14.55)	6
XPD/ERCC2 Arg156Arg, C>A, rs238406			
CC	57	Reference	40
CA+AA	15	8.67(1.68–44.91)	2

Table 4. Association between ERCC1 rs3212986 and ERCC2 rs238406 polymorphism and BPDE-DNA adducts stratified by smoking index.

	Smoking index (1)	Smoking index (1–500)	Smoking index (>500)
	OR (95% CI)	OR (95% CI)	OR (95% CI)
≤30 years			
ERCC1 C8092A, C>A, rs3212986			
CC	57	Reference	40
CA+AA	15	6.78(3.15–14.55)	6
XPD/ERCC2 Arg156Arg, C>A, rs238406			
CC	57	Reference	40
CA+AA	15	8.67(1.68–44.91)	2
≥50 years			
ERCC1 C8092A, C>A, rs3212986			
CC	57	Reference	40
CA+AA	15	6.78(3.15–14.55)	6
XPD/ERCC2 Arg156Arg, C>A, rs238406			
CC	57	Reference	40
CA+AA	15	8.67(1.68–44.91)	2

ERCC1 plays a central role in NER as a heterodimer endonuclease, which excises the DNA lesion by the 5’ incision. Interestingly, ERCC1 rs3212986 (located at the 3’-nontranslated region of ERCC1) [20] is overlapping with the downstream adjacent gene designated CAST (previously reported as Anti-Sense ERCC1, ASE-1) [43]. It appeared that ERCC1 rs3212986 polymorphism was also located in the coding region of CAST resulting in amino acid change [44]. CAST serves as a component of preformed T-cell receptor complexes and transduces signals upon T-cell receptor stimulation and represents a new signaling pathway via the CD3ε-containing TCR signaling module [45].
haplotypes with frequency less than 0.03.

Table 5. Multiple covariates analysis for BPDE-DNA adduct.

Covariates	β_1	β_2	β_3
ERCC1 C8092A C>A, rs3212986	0.460	0.000	
XPD/ERCC2 Arg156Arg, C>A, rs238406	0.025	0.657	
Age	157.402	0.149	0.010
Smoking history	169.946	0.097	0.151
Drinking history	-91.796	-0.056	0.386

β_1: partial regression coefficient of multiple linear regression.
β_2: standardization partial regression coefficient of multiple linear regression.
β_3: P value for the partial regression coefficient of all covariates to BPDE-DNA adduct levels using multiple linear regression.

With an increased risk of skin cancer [47]. Consistently with their finding, we also found that the minor A allele of ERCC2 rs238406 was associated with high BPDE-DNA adduct levels and low DNA repair capacity. These results were also in line with three studies on ERCC2 rs238406 polymorphisms based on the Chinese population [48–50]. However, Lovatt et al [51] reported that those genotypes were associated with a low risk of skin cancer. Chang JS et al [52] also reported that the minor A allele of ERCC2 rs238406 had no relationship with the risk of cancer development. In contrast, Zhao et al found that the participants with ERCC2 rs238406 AA or CA had a lower risk of having high-level adducts compared with ERCC2 rs238406 CC after adjustment for other covariates and also reminded that the inconsistent findings in above studies are due to the sample size [20]. In our current study, besides the detection of DNA adducts we also performed the modified comet assay to further confirm the significant effect of ERCC2 rs238406 on DNA damage caused by B[a]P. ERCC2 rs238406 was validated to have a significant effect on DNA repair capacity. However, the detailed mechanisms need to be clarified systematically.

In the present study, the participants carrying ERCC2 rs1799793 AA and GA genotypes had lower BPDE-DNA adduct levels than those with wild-type GG genotype; however this difference did not reach the limit of statistical significance. There was no statistical difference between the amount of BPDE-DNA adducts and the minor alleles of XPD/ERCC2 rs13181 or rs1799793, which was inconsistent with data reported by Matullo G et al [53] in Italian, and by Hui Zhao et al [28] in non-Hispanic white participants. However, it was consistent with data reported by Zhai et al [54] in Chinese people. In contrast, Vinea P et al [5],

Table 6. ERCC2 haplotypes and BPDE-DNA adduct levels.

Haplotype	Frequency	BPDE-DNA adduct levels	OR (95% CI)	P value	
	<2055.5, N(%)	≥2055.5, N(%)			
ERCC1 C8092A C>A, rs3212986; ERCC1 C19007T C>T, rs11615					
CC	0.464	162(57.45)	99(35.11)	Reference	
CT	0.293	90(31.91)	76(26.95)	1.38(0.93–2.05)	0.1997
AC	0.230	30(10.64)	100(35.46)	**2.36(1.84–2.97)**	<0.001
AT	0.013	0(0)	7(2.48)	0.0118	
XPD/ERCC2 Lys751Gln A>C, rs13181; XPD/ERCC2 Asp312Asn G>A, rs1799793; XPD/ERCC2 Arg156Arg C>A, rs238406					
AGC	0.480	148(52.48)	123(44.62)	Reference	
AGA	0.407	102(36.17)	128(45.39)	**1.51(1.06–2.15)**	0.030
CAC	0.041	11(3.90)	13(4.61)	1.02(0.44–2.35)	0.700
AAC	0.035	13(4.61)	7(2.48)	0.65(0.25–1.65)	0.118
CCC	0.029	8(2.84)	11(3.90)	1.65(0.65–4.24)	0.707
XPD/ERCC2 Lys751Gln A>C, rs13181; XPD/ERCC2 Asp312Asn G>A, rs1799793; XPD/ERCC2 Arg156Arg C>A, rs238406; ERCC1 C8092A C>A, rs3212986; ERCC1 C19007T C>T, rs11615					
AGCCC	0.283	97(34.40)	63(22.34)	Reference	
AGACC	0.126	48(17.02)	23(8.16)	1.00(0.84–1.21)	0.002
AGCCT	0.136	43(15.25)	34(12.06)	1.10(0.84–1.45)	0.289
AGACT	0.11	33(11.70)	30(10.64)	1.09(0.94–1.26)	0.67
AGAAC	0.166	21(7.45)	72(25.53)	**5.28(2.95–9.43)**	<0.001
AGGAC	0.054	8(2.84)	23(8.16)	**1.35(1.13–1.60)**	0.004
Other d	0.125	32(11.34)	37(13.11)	**1.78(1.01–3.15)**	0.059

d Other haplotypes with frequency less than 0.03.

e P value was obtained using X2 test.

doi:10.1371/journal.pone.0060006.t005
Zhang J et al [55], Spitz MR et al [56] and Mitra AK et al [57] reported that ERCC2 rs13181 and rs1799793 minor alleles are risk factors to cancer development and associated with low DNA repair capacity.

These inconsistent findings might be related to different ethnicities. Donghui Li et al reported that ethnicity was a significant predictor of BPDE-DNA adducts levels [30]. The prevalence of the ERCC1 rs11615 C alleles according to Hapmap data from NCBI is 0.36 and 0.24 respectively in Caucasians and China respectively. Our current study showed that the frequency of the T-allele was 0.271, which is much lower than the average frequency in a European population but similar to other studies in China. For ERCC1 rs3212986, the frequency of the A-allele was 0.290 and concordant with frequency in Caucasians and China. In Caucasians, the reported frequency of ERCC2 rs13181 C-allele varied from 0.35 to 0.41, and the reported ERCC2 rs1799793 A-allele frequency also varied from 0.28 to 0.40 [23]. In contrast, the frequency of the variant C-allele of ERCC2 rs13181 was 0.078 and the A-allele of ERCC2 rs1799793 was 0.071, which are consistent with frequencies in China but markedly different from previous reports in Caucasians. For ERCC2 rs238406, the frequency of A-allele was 0.427 and consistent with frequency in Caucasians [58]. Although an analogue study also analyzed the induced BPDE-DNA adducts in cultured primary lymphocytes from 707 healthy non-Hispanic participants, whether the same associations exist in other ethnic groups is still unknown. Therefore it was imperative for us to perform a different study based on a population from the northeast of China.

Figure 3. Comparison of DNA damage caused by B[a]P in different combined minor alleles of ERCC1 rs3212986 and ERCC2 rs238406. We selected the participants carrying different ERCC1 rs3212986 and ERCC2 rs238406 genotypes and analyzed their induced DNA damage levels induced by B[a]P using the modified comet assay. The damage levels were evaluated by the tail olive moment ratio, tail area ratio and the combined holistic marking respectively. The relationship between the combined minor alleles of ERCC1 rs3212986 and ERCC2 rs238406 and the effect on the repair efficacy of the DNA damage level caused by B[a]P were evaluated. Interestingly, we found following the increasing copies of the combined minor alleles, a reduced DNA repair capacity had been found in the tail olive moment ratio, tail area ratio and the combined holistic marking. (P<0.01).

doi:10.1371/journal.pone.0060006.g003

0+0 denoted as none minor alleles in both SNPs;
1+0 denoted as one minor allele in any one SNP;
2+0 denoted as two minor alleles in any one SNP;
1+1 denoted as one minor allele in each one SNP;
1+2 denoted as one minor allele in one SNP and two alleles in another allele;
2+2 denoted as two minor alleles in both SNPs

Data represent as Mean means ± SD (standard deviation)
One-way ANOVA and LSD were used for statistical analysis

* comparing with 0+0 genotype, P<0.05
& comparing with 1+0 genotype, P<0.05

A Study Based on a Healthy Population from China
Overall, we found a significant dose-response relationship between genetic damage levels and the variant genotypes of ERCC1 rs3212986 and ERCC2 rs230406. This indicated that the variant genotypes provided a valid predictive value to individual's DNA repair capacity in response to environmental carcinogens. However, the limitations of our current study is obvious. The induced in-vitro DNA adducts in lymphocytes were only detected in 282 study participants (a part of 818 study participants) and we only detected the adducts in sera from coke oven workers exposed to measured amounts of polycyclic aromatic hydrocarbons in the work atmosphere. Cancer Res 46(8): 4178–4183.

Miller EC (1978) Some current perspectives on chemical carcinogenesis in humans and experimental animal: presidential address. Cancer Res 38(6): 1479–1496.

Vineis P, Manuguerra M, Kavoufka FR, Guarrera S, Allone A, et al. (2009) A field study on low-penetrance variant in DNA repair genes and cancer susceptibility. J Natl Cancer Inst 101(4): 24–36.

Krivak TC, Darcy KM, Tian C, Boskman M, Gallion H, et al. (2011) Single nucleotide polymorphisms in ERCC1 are associated with disease progression, and survival in patients with advanced stage oesophageal and primary peritoneal carcinoma; a Gynecologic Oncology Study group. Gynecol Oncol 122(1): 121–126.

Benhamou S, Sarasin A (2005) ERCC2/XPD gene polymorphisms and lung cancer. Curr Opin Oncol 17(1): 1–4.

Benhamou S, Sarasin A (2002) ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis 17(6): 463–469.

Kiyohara C, Yoshimasa K (2007) Genetic polymorphisms in the nucleotide excision repair gene ERCC2 and lung cancer: a meta-analysis. Eur J Hum Genet 15: 59–71.

Li Y, Gu S, Wu Q, Li Y, Fu X, et al. (2007) No association of ERCC1 C2802A and T19007C polymorphisms to cancer risk: a meta-analysis. Eur J Hum Genet 15: 967–973.

Cao C, Zhang YM, Wang R, Sun SF, Chen ZB, et al. (2011) Excision repair cross-complementation group 1 polymorphisms and lung cancer risk: a meta-analysis. Chin Med J (Engl) 124(14): 2203–2208.

Zhou W, Liu G, Park S, Wang Z, Wain JC, et al. (2005) Gene-smoking interaction associations for the ERCC1 polymorphisms in the risk of lung cancer. Cancer Epidemiol Biomarkers Prev 14(1): 49–49.

Yang M, Kim WH, Choi Y, Lee SH, Kim KR, et al. (2006) Effects of ERCC1 expression in peripheral blood on the risk of head and neck cancer. Cancer Epidemiol Biomarkers Prev 15(3): 269–273.

Sturgo EM, Zheng R, Li L, Castille RJ, Eicher SA, et al. (2000) XPD/ERCC2 polymorphisms and head and neck cancer: a case-control analysis. Carcinogenesis 21(12): 2219–23.

Zhao H, Wang LE, Li D, Chamberlain RM, Sturgis EM, et al. (2006) Genetic polymorphisms of ERCC2/XPD and lung cancer risk: a meta-analysis. Lung Cancer 46(1): 1–10.

Vogel U, Laros J, Jacobsen NR, Thomsen BL, Bak H, et al. (2006) Two regions in chromosome 19q13.2–3 are associated with risk of lung cancer. Mutat Res 546(1–2): 65–74.

Shao J, Gu M, Xu Z, Hu Q, Qian L (2007) Polymorphisms of the DNA gene XPD and risk of bladder cancer in a Southeastern Chinese population. Cancer Genet Cytogenet 177: 30–39.

Yu HP, Wang XL, Sun X, Su VH, Wang YJ, et al. (2004) Polymorphisms in the DNA repair gene XPD and susceptibility to esophageal squamous cell carcinoma. Cancer Genet Cytogenet 145(1): 10–5.

Sturgo EM, Zheng R, Li L, Castille RJ, Eicher SA, et al. (2000) XPD/ERCC2 polymorphisms and head and neck cancer: a case-control analysis. Carcinogenesis 21(12): 2219–23.

Sturgo EM, Zheng R, Li L, Castille RJ, Eicher SA, et al. (2000) XPD/ERCC2 polymorphisms and head and neck cancer: a case-control analysis. Carcinogenesis 21(12): 2219–23.

Sturgo EM, Zheng R, Li L, Castille RJ, Eicher SA, et al. (2000) XPD/ERCC2 polymorphisms and head and neck cancer: a case-control analysis. Carcinogenesis 21(12): 2219–23.

Sturgo EM, Zheng R, Li L, Castille RJ, Eicher SA, et al. (2000) XPD/ERCC2 polymorphisms and head and neck cancer: a case-control analysis. Carcinogenesis 21(12): 2219–23.

Sturgo EM, Zheng R, Li L, Castille RJ, Eicher SA, et al. (2000) XPD/ERCC2 polymorphisms and head and neck cancer: a case-control analysis. Carcinogenesis 21(12): 2219–23.

Sturgo EM, Zheng R, Li L, Castille RJ, Eicher SA, et al. (2000) XPD/ERCC2 polymorphisms and head and neck cancer: a case-control analysis. Carcinogenesis 21(12): 2219–23.

Sturgo EM, Zheng R, Li L, Castille RJ, Eicher SA, et al. (2000) XPD/ERCC2 polymorphisms and head and neck cancer: a case-control analysis. Carcinogenesis 21(12): 2219–23.

Sturgo EM, Zheng R, Li L, Castille RJ, Eicher SA, et al. (2000) XPD/ERCC2 polymorphisms and head and neck cancer: a case-control analysis. Carcinogenesis 21(12): 2219–23.

Sturgo EM, Zheng R, Li L, Castille RJ, Eicher SA, et al. (2000) XPD/ERCC2 polymorphisms and head and neck cancer: a case-control analysis. Carcinogenesis 21(12): 2219–23.

Sturgo EM, Zheng R, Li L, Castille RJ, Eicher SA, et al. (2000) XPD/ERCC2 polymorphisms and head and neck cancer: a case-control analysis. Carcinogenesis 21(12): 2219–23.
formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA. Nucleic Acids Res 39(9): 3988–4006.

37. Shih MK, Hu ML (1996) UVA-potentiated damage to calf thymus DNA by Fenton reaction system and protection by para-aminobenzoic acid. Photochem Photobiol 63(3): 296–291.

38. Pavanello S, Gabbanini G, Mastrangelo G, Brugnone F, Maccacaro G, et al. (1999) Influence of GSTM1 genotypes on anti-BPDE-DNA adduct levels in mononuclear white blood cells of humans exposed to PAH. Int Arch Occup Environ Health 72(4): 238–46.

39. Kang S, Ju W, Kim JW, Park NH, Song YS, et al. (2006) Association between excision repair cross-complementation group 1 polymorphism and clinical outcome of platinum-based chemotherapy in patients with epithelial ovarian cancer. Exp Mol Med 38(3): 329–324.

40. Ryu JS, Hong YC, Han HS, Lee LE, Kim S, et al. (2004) Association between polymorphisms of ERCC1 and XPD and survival in non-small-cell lung cancer patients treated with cisplatin combination chemotherapy. Lung Cancer 44(3): 311–316.

41. Chang PM, Tseng CH, Chen PM, Lin JK, Lin TC, et al. (2006) ERCC1 codon 118 C>T polymorphism associated with ERCC1 expression and outcome of FOLFOX-4 treatment in Asian patients with metastatic colorectal carcinoma. Cancer sci 100(2): 278–283.

42. Cheng J, Ha M, Wang Y, Sun J, Chen J, et al. (2012) A C118T polymorphism of ERCC1 and response to cisplatin chemotherapy in patients with late-stage non-small cell lung cancer. J Cancer Res Clin Oncol 138(2): 231–238.

43. Chen P, Wiencke J, Aldape K, Carturan S, et al. (2000) Association of an ERCC1 polymorphism with adult-onset glioma. Cancer Epidemiol Biomarkers Prev 9(8): 843–847.

44. Whitehead CM, Winkfein RJ, Fritzler MJ, Rattner JB (1997) ASE-1: a novel protein of the fibrillar centres of the nucleolus and nucleolus organizer region of mitotic chromosomes. Chromosoma (Berl.) 106: 493–502.

45. Yamazaki T, Hamano Y, Tashiro H, Itoh K, Nakano H, et al. (1999) CAST, a novel CD3e-binding protein transducing activation signal for interleukin-2 production in T cells. J Biol Chem 274: 18173–18180.

46. Hansen RD, Sorensen MJ, Ulumeland A, Overkild K, Wallin H, et al. (2008) A haplotype of polymorphisms in ASE-1, RAI and ERCC1: the effects of tobacco smoking and alcohol consumption on risk of colorectal cancer: a Danish prospective case-cohort study. BMC Cancer 8: 54.