Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity

Katharine A. Horzmann and Jennifer L. Freeman
School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA

Abstract

Neurotransmission is the basis of neuronal communication and is critical for normal brain development, behavior, learning, and memory. Exposure to drugs and chemicals can alter neurotransmission, often through unknown pathways and mechanisms. The zebrafish (Danio rerio) model system is increasingly being used to study the brain and chemical neurotoxicity. In this review, the major neurotransmitter systems, including glutamate, GABA, dopamine, norepinephrine, serotonin, acetylcholine, histamine, and glutamate are surveyed and pathways of synthesis, transport, metabolism, and action are examined. Differences between human and zebrafish neurochemical pathways are highlighted. We also review techniques for evaluating neurological function, including the measurement of neurotransmitter levels, assessment of gene expression through transcriptomic analysis, and the recording of neurobehavior. Finally examples of chemical toxicity studies evaluating alterations in neurotransmitter systems in the zebrafish model are reviewed.

Keywords

acetylcholine; dopamine; GABA; glutamate; neurotoxicology; neurotransmission; neurotransmitters; norepinephrine; serotonin; zebrafish

1. Introduction

Neurotransmission is the basis of neuronal communication and is critical for normal brain development, behavior, learning and memory, and even maintenance of life. The nervous system is exceedingly complex, and many enzymes, transporters, and receptors all work in concert to maintain these functions. Neurotransmission can be altered by exposure to drugs, pharmaceuticals, chemotherapeutic agents, radiation, food additives, and environmental toxicants including pesticides and heavy metals ([1,2] and as reviewed by [3–6]). Alterations in neurotransmission have been linked to a number of diseases including movement disorders, neuropsychiatric disorders, and depression (reviewed by [7–9]).
The zebrafish (Danio rerio) research model is increasingly being used in neurotoxicity studies (as reviewed by [3,10–13]). Zebrafish share the common neurotransmitter pathways with mammals and have similar neuromuscular pathways in many areas such as the spinal cord, hindbrain and retina, but as the brain develops by eversion rather than inversion, some classical regions of the mammalian brain, such as the hippocampus, amygdala, and substantia nigra, are not present as such in zebrafish. The function of these areas appears to be maintained elsewhere in the brain, allowing functional comparisons between zebrafish and mammals [14]. As an additional resource, Mueller and Wullimann have recently published a second edition of their “Atlas of Early Zebrafish Brain Development”, which characterizes neuronal development and provides excellent figure panels for neuroanatomy [15].

Although the neurochemistry of zebrafish has been reviewed previously [11,16], this review will specifically focus on reviewing the application of the zebrafish in chemical toxicology studies investigating adverse impacts to neurotransmitter systems. In addition, this review includes new research findings published since the last reviews on zebrafish neurochemistry, updated terminology, and aims to serve as a reference for the major neurotransmitter systems.

2. Zebrafish as a Biomedical Model

The zebrafish is a well-recognized biomedical research model. Zebrafish have been utilized in many scientific disciplines including developmental biology, drug discovery, pharmacology, genetics, and toxicology (reviewed in [17–20]). The zebrafish has many strengths as a research model. The adults are small (up to 3 cm), and large colonies can be easily maintained with basic husbandry. Zebrafish have a short generational interval, with sexual maturity beginning at 3–4 months post fertilization (mpf). Once mature, a single breeding pair of zebrafish can produce 100–200 fertilized embryos per spawning. The embryos develop ex utero, are nearly transparent, and are easily manipulated for developmental studies [21,22]. Zebrafish are also ideal for genetic manipulation, with ex utero fertilization allowing for the production of haploid embryos [23].

The zebrafish genome has been mapped and approximately 70%–80% of zebrafish genes share homology with the human genome, and 84% of genes associated with disease in humans are also present in zebrafish [24,25]. Furthermore, metabolic pathways are highly conserved between zebrafish and mammals, making zebrafish well suited to mechanism focused research [18].

The early teleost had a whole-genome duplication event approximately 320–350 million years ago [26,27]. Although nearly half of these gene duplicates are thought to have been lost within the first 75 million years, it is hypothesized that the remaining genes may have undergone a process of subfunctionalization or neofunctionalization [28,29]. Genes with a single copy in zebrafish are referred to as being orthologs to human genes if they share a common gene origin, while genes with two copies in zebrafish are termed paralogous and may have sub- or neofunctionalization [30]. The teleost whole-genome duplication event has
important implications for the study of gene functions in biological pathways, including the neurotransmitter systems where two paralogs may have divergent functions.

3. Review of Neurotransmitter Systems

Zebrafish share the common neurotransmitter systems with other vertebrates, and therefore can serve as a model system for neurotoxicity. Although there are many more similarities than not, there are some noteworthy differences between mammals and zebrafish within the neurotransmitter systems, mainly in the number and name of genes encoding proteins, as a result of the teleost gene duplication event. In general, the synthesis and metabolism pathways are shared between the brain of mammals and teleosts. The major shared neurotransmitter systems are reviewed and differences in relevant genes, anatomy, and physiology are highlighted below.

3.1. Glutamate

Glutamate is the most common neurotransmitter in the mammalian and teleost brain, with an expected 80%-90% of mammalian synapses using glutamate as the neurotransmitter [31]. Glutamate is the primary excitatory neurotransmitter with functions associated with neurodevelopment, learning and memory, and general cognition as well as neurodegenerative diseases and pathologic conditions such as epilepsy, amnesia, cerebral ischemia, motor neuron diseases, pain, and psychosis [32,33]. Glutamate is also associated with synaptic plasticity and, depending on the receptor activated, may act to modulate neural impulses received by the postsynaptic neuron rather than excite [34,35].

Glutamate, an amino acid, is a member of multiple metabolic pathways including the tricarboxylic acid (TCA) cycle and is a precursor of many biologically important molecules including amino acids L-proline and L-arginine as well as the neurotransmitter γ-aminobutyric acid (GABA) and glutathione [33,36]. Most of the glutamate within the brain is produced from α-ketoglutarate, an intermediate of the TCA cycle. α-ketoglutarate is transaminated with another amino group, usually from aspartate, to form glutamate. This transamination is typically performed by aspartate aminotransferase, an enzymatic protein encoded by the glutamic-oxaloacetic transaminase 1 (GOT1) gene; however, other aminotransferases such as glutamic-pyruvate transaminases (GPT) can also produce glutamate [36].

Within neurons, the majority of glutamate is stored in synaptic vesicles. In mammals, the solute carrier (SLC) family SLC17 members SLC17A7, SLC17A6, and SLC17A8 (also known as the vesicular glutamate transporter family (VGLUT) 1, 2, 3, respectively) are responsible for transporting glutamate into synaptic vesicles, although only SLC17A7 and SLC17A6 are found in glutamatergic neurons [37]. Once released into the synaptic cleft, glutamate binds to receptors on postsynaptic neurons and adjacent glial cells. Most glutamate receptors are located on the dendritic spines of the postsynaptic neurons [38].

Glutamate receptors fall into two categories, ionotropic and metabotropic. Ionotropic receptors act by opening a cation channel after binding to the target and are thus part of the ligand-gated ion channel superfamily. The ligand-gated ion channel superfamily includes the
ionotropic glutamate receptors, GABA_A receptors, 5-hydroxytryptamine 3 receptor (5-HT3),
nicotinic acetylcholine receptors, and glycine receptors as reviewed by Collingridge et al.
and Keramidas et al. [39,40]. The superfamily shares a common structure, with each channel
being composed of 5 identical or homologous subunits surrounding the central pore [41].
Each subunit has an extensive extracellular, hydrophilic N-terminus, 4 transmembrane
domains that form the ion channel, and an extracellular C-terminus. The superfamily can be
divided into subfamilies which include the ionotropic glutamate receptors, the cys-loop
receptor family, and ATP-gated channels. As reviewed by Connolly and Wafford [42] and
Kozuska and Paulsen [43], the cys-loop receptor family is characterized by a loop on the N-
terminus formed by a disulfide bond between two cysteines and includes the GABA_A, 5-
HT3, nicotinic acetylcholine, and glycine receptors. Each class of ligand-gated ion channels
can be further divided based on if the channel is anion or cation specific, with glycine and
GABA_A receptors being anionic and 5-HT3 and nicotinic acetylcholine receptors being
cationic for example [40].

Metabotropic receptors act through second messenger systems. The term metabotropic is
typically applied to a family of glutamate receptors that are G-protein-coupled receptors;
however, GABA_B receptors, catecholamine receptors, all serotonin receptors except for 5-
HT₃, muscarinic acetylcholine receptors, and histamine receptors also act through second
messenger systems and can be classified as metabotropic receptors due to their activation of
G proteins and a variety of intracellular signaling cascades upon target binding [44–46]. As
reviewed by Katritch et al., G-protein-coupled receptors have a shared structure with seven
transmembrane domains and represent the largest superfamily of proteins [47]. A full
description of G-protein-coupled receptors is beyond the scope of this review, but the topic
has been extensively reviewed previously [48,49] and is commonly found in textbooks.

The functions, pharmacology, and mechanisms of the glutamate receptor types have been
extensively reviewed [33–35,37,50–52]; key information is summarized here.

Ionotropic glutamate receptors are grouped into three classes: N-methyl D-aspartate
(NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), and kainite
(KA). The classes were named according to selective agonists and each class is made up of
multiple gene families which code for individual receptor subunits. The NMDA class
receptor has seven genes which code for glutamate ionotropic receptor NMDA type subunits
(GRIN, also known as glutamatergic ionotropic NDMA type; GluNs): GRIN1, GRIN2A,
GRIN2B, GRIN2C, GRIN2D, GRIN3A, and GRIN3B. AMPA receptors are made up of the
glutamate ionotropic receptor AMPA type subunits (GRIA, also known as glutamatergic
ionotropic AMPA type; GluA), GRIA1, GRIA2, GRIA3, and GRIA4, while glutamate ionotropic receptor kainate type subunits (GRIK, also known as glutamatergic ionotropic
kainate type receptors; GluKs) fall into 5 families, GRIK1, GRIK2, GRIK3, GRIK4, and
GRIK5 [52,53]. Upon binding glutamate, AMPA and KA receptors rapidly open ion
channels that favor sodium conductance, while NMDA channels favor calcium conductance
and have slower kinetics [51,52].

Metabotropic receptors are organized into three classes or groups, Group I, Group II, and
Group III receptors. Group I receptors include GRM1 and GRM5. Group I receptors
classically are coupled to G_q/G_{11} proteins that activate inositol triphosphate (IP3) second messenger signaling and increase intracellular calcium levels, leading to postsynaptic depolarization [34]. Additional signaling pathways have also been recognized, with Group I receptors also acting through other G_q proteins, $G_{i/o}$ proteins, G_s proteins, and independent of G protein to activate alternative pathways. Downstream targets include phospholipase D, and protein kinase pathways such as Jun kinase, the mitogen-activated protein kinase/ extracellular receptor kinase (MAPK/ERK) pathway, and the mammalian target of rapamycin (MTOR)/p70 S6 kinase pathway [54–57]. Group II receptors include the GRM2 and GRM3 subtypes and couple predominantly through G_i/G_o proteins. These proteins act by decreasing $3',5'-$cyclic adenosine monophosphate (cAMP) levels through the inhibition of adenylyl cyclase, resulting in a hyperpolarization of the postsynaptic membranes [34]. Group III receptors are the GRM4, GRM6, GRM7, and GRM8 families and they also act by inhibiting adenylyl cyclase and decreasing intracellular cAMP levels. Group II and Group III members can also act through alternative signaling, similar to Group I receptors [50,58,59].

Glutamate is also taken up into glia and neurons via the SLC1A family of genes, also known as the high affinity excitatory amino acid transporters (EAATs). This gene family regulates the levels of extracellular glutamate to prevent excitotoxicity. In astrocytes and oligodendroglia, glutamate can be used in the TCA cycle for the production of energy, used for protein synthesis, or cycled back to glutamine. Glutamate-ammonia ligase (GLUL; glutamine synthetase) causes waste ammonia to react with glutamate to form glutamine, thus detoxifying the ammonia in the process. Glutamine is exported out of the glial cells into the extracellular fluid by SN/SA transporters in the SLC38 class (also known as SNATs) of solute transporters [53]. The free extracellular glutamine can then be taken back into neurons. Within neurons, phosphate-active glutaminase (GLS or PAG) recycles the glutamine to glutamate once again. Much of the glutamate within the brain is recycled through this glutamine cycle. Glutamate can be further processed into GABA via glutamate decarboxylase in GABAergic neurons.

Table 1 outlines human genes important for glutamatergic synthesis, metabolism, and signaling and known zebrafish paralogs. In most cases, zebrafish have multiple paralogs for each human gene; however, some genes in zebrafish only have a single ortholog. For example, zebrafish express got1 (glutamic-oxaloacetic transaminase 1), the ortholog of GOT1, while there are two paralogs each of the vesicular glutamate transporters SLC17A7 and SLC17A6 (slc17a7a and slc17a7b, and slc17a6a and slc17a6b, respectively), with only one ortholog of SLC17A8 (slc17a8). Zebrafish have three paralogs of glutamate-ammonia ligase GLUL (glula, glulb, and glulc) and two paralogs of glutaminase GLS (glsa and glsb) [60]. Zebrafish have 8 paralogous genes that code for AMPA type receptor subunits, 6 genes that code for KA type subunits, and 13 putative genes that code for NMDA type ionotropic receptors [61–63]. Humans have 8 subtypes of metabotropic receptors divided into three groups while zebrafish have 12 receptor subtypes similarly divided [64,65]. Currently there are 13 members of the slc1a family of EAATs transporters, with slc1a8a, slc1a8b, and slc1a9 lacking corresponding paralogs in mammals due to a gene loss event by therian mammals [66,67].
During embryonic and post embryonic neurogenesis, proneural and neuronal cells express genes coding for basic helix-loop-helix (Bhlh) transcription factors and the patterns of expression can help identify neuronal populations [68]. The expression of neurogenin 1 (Neurog1)/Neurogenic differentiation 1 (Neurod; NeuroD1) has been linked to the development of glutamatergic neurons [69].

Identification of glutamatergic neurons in adult brains is often made based on the presence of transporter proteins. The SLC17A (VGLUT) genes SLC17A6 and SLC17A7 are often used as markers of glutamatergic neurons; however, glial cells can also express these transporters [33,70]. Glutamate itself is a poor marker due to its role in many metabolic pathways. Although the various receptor subunits are differentially expressed throughout the brain, glutamate receptors are also expressed on glia [72]. For a further account on distribution of these receptors in zebrafish please see Haug et al. [64] and Huang et al. [65].

3.2. GABA

GABA is the major inhibitory neurotransmitter in the central nervous system (CNS) and GABAergic neurons are widely present throughout the brain. As an inhibitory neurotransmitter, GABA mainly acts to modulate neural systems and the activity of postsynaptic cells [73]. GABA has been associated with the regulation of neural transmission and perturbances in the GABAergic system have been associated with epilepsy, depression, schizophrenia, and sleep dysfunction [74–76].

As reviewed by Ben-Ari and Reynolds et al. [77,78], in early development neurons have higher intracellular levels of chloride than mature neurons due to the expression of the sodium-potassium-chloride cotransporter 1 (NKCC1; SLC12A2) in the absence of potassium-chloride cotransporter 2 (KCC2; SLC12A5) expression [79]. Therefore, the classic inhibitory neurotransmitters GABA and glycine act to depolarize, and excite the immature neuron. Concurrent with neuronal maturation, SLC12A5 is expressed and this transporter reverses the chloride gradient, establishing the adult chloride gradient and causing GABA and glycine to act as inhibitory neurotransmitters [80].

GABA is synthesized in neurons through the GABA shunt. In the first step, α-ketoglutarate from the TCA cycle is transaminated by the 4-aminobutyrate transaminase (ABAT; GABA α-ketoglutarate transaminase; GABA-T) enzyme into L-glutamic acid. In the second step, glutamate decarboxylase (GAD) removes the carboxyl group and produces GABA. In mammals, two genes code for GAD, GAD1 and GAD2 (also known as GAD67 and GAD65, respectively) [81].

GABA is packaged into synaptic vesicles by the SLC32A1 solute carrier, also known as Vesicular GABA transporter (VGAT). Upon presynaptic depolarization, the vesicles are released into the synaptic space. SLC6A family members, SLC6A1, SLC6A11, and SLC6A12, also known as GABA transporters (GAT1, GAT3, and BGT1) are responsible for transporting GABA out of the synapse [82]. SLC6A13 (GAT2) does not appear to have a significant role in the brain [73]. Neurons may recycle the collected GABA back into synaptic vesicles or GABA can be metabolized to succinic semialdehyde by ABAT [83]. In glia, which lack GAD, the succinic semialdehyde is oxidized by succinic semialdehyde
dehydrogenase (SSADH; aldehyde dehydrogenase 5 family member A1; ALDH5A) into succinic acid, which enters the TCA cycle and can be cycled through to α-ketoglutarate to again produce glutamine [73,84].

GABA has two classes of receptors: GABA_A and GABA_B. As mentioned previously, GABA_A receptors are ligand-gated ion channel receptors and mediate postsynaptic membrane hyperpolarization through the influx of chloride through their integral channel [85]. Like all ligand-gated ion channels, GABA_A receptors are pentamers and 19 subunits in 7 classes provide basis of the regional variations and differential actions [86].

GABA_B receptors are metabotropic and therefore can mediate a variety of effects through their coupling with G proteins [87–89]. GABA_B receptors can activate certain potassium channels, regulate IP3, or inhibit cAMP production [89]. Presynaptic GABA receptors may inhibit presynaptic neurotransmitter release [90]. Two GABA_B receptor subunits have been identified in mammals, GABABR1 and GABABR2 (reviewed in [87,91]).

Table 2 list genes important for the synthesis, metabolism, and action of GABAergic neurons in humans and the known zebrafish paralogs. Zebrafish have a single copy of some GABAergic genes, such as the transaminase abat, the VGAT transporter slc32a1, and aldh5a1 (SSADH). Other genes such as gad1 (glutamate decarboxylase), slc6a1 (GAT1), and slc6a11 (GAT3) have two zebrafish paralogs [92]. Corresponding zebrafish orthologs or paralogs have not been identified for all human GABA receptor subunits (e.g., GABRA2 and GABRA4), but some human genes have more than one paralog in zebrafish (e.g., GABBR1: gabbr1a and gabbr1b).

GAD has only been identified in GABAergic neurons, therefore providing a specific marker for GABA producing neurons. Additionally, zebrafish achaete-scute homolog 1a (Zash1a) expression has been linked to the development of GABA producing, inhibitory neurons, and has been used as a marker for GABAergic neurons during development [93,94].

In zebrafish, GABA is widely produced in the brain and spinal cord by interneurons [95]. The postembryonic (3 days post fertilization; dpf) subpallium, preoptic region, ventral and sections of the dorsal thalamus, and hypothalamus have been shown to produce GABA [93]. In the adult, GABA has been identified in the olfactory bulb, subpallium, preoptic, pretectal, ventral thalamic, hypothalamic, and posterior tubercular nuclei with scattered Gad1 positive cells in the pallial zones and the bed nucleus of the stria medullaris [96,97]. GABA, Gad2, Gabra1, and Gabbr1 are expressed in the zebrafish cerebellum and have a similar distribution to mammals [98].

3.3. Catecholamines

Dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline) are the major catecholamine neurotransmitters. Structurally, this group is characterized by a catechol group (benzene group with two adjacent hydroxyl groups), with an ethylamine side chain and an amine group. Catecholamines are considered modulatory neurotransmitters and have been linked to reward, movement, memory, and neuropsychiatric disorders [99–101].
Catecholamines are formed from the amino acid tyrosine and oxygen. Tyrosine hydroxylase (tyrosine 3-monooxygenase; TH) is the first enzyme in the synthesis pathway and is the rate-limiting step. TH produces 3,4-dihydroxy-l-phenylalanine (L-DOPA) with (6R)-L-erythro-tetrahydrobiopterin (BH4) and Fe$^{2+}$ acting as cofactors in the hydroxylase step [102]. L-DOPA is converted to dopamine (DA) by the enzyme aromatic amino acid decarboxylase (AAAD), also known as DOPA decarboxylase [103]. AAAD is the preferred enzyme name as AAAD is also important in the monoamine serotonin synthesis pathway [82]. Although TH immunoreactivity is considered specific for dopaminergic neurons, AAAD can be found in non-monoamine producing neurons and glial cells. AAAD can also alternatively produce trace amines such as tryptamine, tyramine, and 2-phenylethylamine [104].

In noradrenergic and adrenergic neurons DA is converted to norepinephrine (NE) by dopamine-β-hydroxylase (dopamine β-monooxygenase; DBH) and NE can be further modified by phenylethanolamine-N-methyltransferase (PNMT) to epinephrine (EP).

Catecholamines are transported into vesicles through members of the SLC18 family, namely SLC18A2 (also known as VMAT2) in the brain (as reviewed by [105,106]). SLC18A2 can transport serotonin and histamine as well as catecholamines. Dopamine and norepinephrine transporters belong to the SLC6 family of carriers, with, at least in mammals, SLC6A2 functioning as the norepinephrine transporter (NET), and SLC6A3 as the dopamine transporter (DAT) [107].

Catecholamines are metabolized by a monoamine oxidase (MAO) enzyme. In humans, there are two isoforms of MAO in mammals, MAO-A and MAO-B, with different substrate specificity, pharmacology, and anatomic localization [108]. The catecholamine substrates are degraded into aldehydes, and aldehyde dehydrogenase and aldehyde reductase further degrade the products into alcohols or glycols respectively. Catechol-O-methyltransferase (COMT) adds a methyl group to catecholamines and their metabolites, which assists in elimination of the neurotransmitters and their metabolites. A major DA metabolite is 3,4-dihydroxyphenylacetic acid (DOPAC), which is the product of MAO and aldehyde dehydrogenase. DOPAC can be further metabolized by COMT to form homovanillic acid (HVA). Norepinephrine is mostly metabolized by MAO and aldehyde reductase, forming 3,4-dihydroxyphenylglycol (DHPG). Likewise, DHPG can be further metabolized to 3-methoxy-4-hydroxyphenylglycol (MHPG) [104].

Catecholamines bind to G-protein-coupled receptors to modulate neurotransmission. As reviewed by Callier et al., there are five dopaminergic receptors in mammals: D1–D5, with D1 and D5 (D1-like) and D2–D4 (D2-like) sharing similar mechanisms [109]. D1-like receptors classically activate G_{q} G-proteins causing an increase in cAMP while D2-like activate G_{q}/G_{11} G-proteins which inhibits adenylyl cyclase activity [110]. Beaulieu et al. extensively reviewed the mechanisms of dopamine receptor signaling [111]. Norepinephrine has nine receptors organized into three families, α_1, α_2, and β, each containing three receptors. α_1 receptors activate G_{q}/G_{11} proteins and activate phospholipase C and increase intra cellular calcium and protein kinase C activation. The α_2 adrenergic receptors are coupled to G_{q}/G_{11} proteins and inhibit adenylyl cyclase and stimulate phospholipase A2. The β adrenergic receptors are coupled to G_{q} and activate adenylyl cyclase [104].
Originally two Th encoding paralogs were identified in teleosts, \(\text{th1} \) and \(\text{th2} \)\(^{[112]} \). \(\text{th1} \)-negative, \(\text{th2} \)-positive neurons were identified in zebrafish brain\(^{[113–115]} \) and although these neurons appeared to be immunoreactive for \(\text{slc18a2 (vmat2)}, \text{aaad}, \text{and slc6a3 (dat)}, \) consistent with a dopaminergic phenotype, it was discovered that the gene encoded by \(\text{th2} \) appears to function as a tryptophan hydroxylase when isolated in vitro\(^{[115,116]} \). Therefore, \(\text{th1} \) is referred to as \(\text{th} \) by the Zebrafish Information Network (ZFIN) and is considered the only tyrosine hydroxylase in zebrafish. Currently, only one ortholog of \(\text{AAAD (aaad)}, \text{DBH (dbh)}, \) and of the transporters \(\text{SLC18A2 (slc18a2)}, \text{SLC6A2 (slc6a2)}, \text{and SLC6A3 (slc6a3)} \) have been identified. Although mammals have two isozymes, MAO-A and MAO-B, zebrafish have only one paralogous enzyme, \(\text{Mao} \) (also known as \(\text{Zmao} \))\(^{[117]} \). Zebrafish \(\text{Mao} \) may have a structure and function more similar to MAO-A, but is inhibited by \(\text{deprenyl}, \) a MAO-B specific inhibitor\(^{[118,119]} \). Two putative \(\text{COMT} \) genes have been identified, \(\text{comta} \) and \(\text{comtb} \). However, the gene products have not been fully characterized, and some protein products may not be functional\(^{[16,120]} \). Table 3 outlines known paralogs of dopamine and adrenergic receptors\(^{[121,122]} \). The receptor genes \(\text{drd1a} \) and \(\text{drd1b} \) likely have D1-like activity and the other receptor genes likely have D2-like functions\(^{[122]} \).

In order to help compare neuroanatomy between species, dopaminergic populations have been labeled numerically based on rostral to caudal location in the brain. As reviewed by Schweitzer et al.\(^{[123]} \), Rink and Wullimann\(^{[124]} \) labeled the dopaminergic populations 1–8 in larvae and 0–8 in adults, with 0 representing the ventral thalamic area. Sallinen\(^{[119]} \) used a 17 population classification scheme. Both classification systems localize dopaminergic neurons to the olfactory bulb, subpallium, posterior tuberculum, hypothalamus, and pretectum\(^{[123]} \). Zebrafish brain lack a substantia nigra and ventral tegmental area, however, the posterior tuberculum has populations of dopaminergic cells with projections that extend to the subpallium and spinal cord\(^{[125,126]} \). Figure 1 outlines the locations of the modulatory neurotransmitters in humans and zebrafish.

Neurons producing dopamine or norepinephrine also produce either glutamate or GABA and therefore have two transmitter profiles. Dopaminergic neurons in the dopaminergic posterior tubercular groups 2, 4, and 6 and hypothalamic group 5 and some norepinephrine producing cells in the area postrema produce glutamate and all other dopamine or norepinephrine producing neurons produce GABA\(^{[134]} \).

\(\text{DBH} \), the enzyme that converts dopamine to epinephrine, is also present and is used as a marker of adrenergic neurons. \(\text{Dbh} \) is only found in zebrafish hindbrain, specifically at the locus coeruleus\(^{[135,136]} \). The locus coeruleus projects to the pallium, the subpallium and the thalamus\(^{[137,138]} \).

3.4. Serotonin

The neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) is a biologic amine. 5-HT has an indole nucleus with a hydroxyl group and an amine group. L-tryptophan is the base of the molecule, with dietary protein being the major source. 5-HT is a modulatory neurotransmitter and has been associated with brain development, appetite, motor function, arousal and mood, neuroendocrine function, circadian rhythms, and depression\(^{[139–142]} \).
The first enzyme in the 5-HT synthesis pathway is tryptophan hydroxylase (L-tryptophan-5-monooxygenase; TPH), which converts tryptophan to 5-hydroxytryptophan (5-HTP). The conversion of tryptophan to 5-HTP is considered the rate limiting step in the synthesis pathway and is unique to serotonergic neurons. In mammals there are two genes that code for TPH. TPH1 is expressed in the periphery and TPH2 is expressed exclusively in the brain and can be used as a marker for serotonergic neurons [143]. Once formed, 5-HTP is quickly converted to 5-HT by AAAD.

5-HT is transported into synaptic vesicles by vesicular transporter SLC18A2 (VMAT2) and released from the vesicle via exocytosis [144]. The serotonin transporter SLC16A4 (also known as SERT) is responsible for the uptake/reuptake of 5-HT, although glia and non-serotonergic neurons can take up serotonin through organic cation transporter (OCT), plasma membrane monoamine transporter (PMAT), or through SLC6A2 or SLC6A3 (NET and DAT, respectively) [145].

5-HT is metabolized by MAO to 5-hydroxy-indoleacetaldehyde which is rapidly metabolized by an aldehyde dehydrogenase to form 5-hydroxyindoleacetic acid (5-HIAA), the major metabolite of 5-HT [145].

In mammals there are three families of 5-HT receptors (HTR) that act through G-proteins, the 5-HT1 family, the 5-HT2 family, and a family that includes the 5-HT4, 5-HT6, and 5-HT7 receptors [142]. 5-HT3 is a cation specific ligand-gated ion channel and is considered its own family [145]. The 5-HTR1 family generally acts to inhibit adenylyl cyclase through the Gi/o family of G proteins while the 5-HTR2 family acts through Gq/11 family G proteins by stimulating phospholipase C. The 5-HTR4, 5-HTR6, and 5-HTR7 family mainly act through the Gs family G proteins to stimulate adenylyl cyclase [146].

As a result of the teleost gene duplication event, zebrafish have four paralogous genes encoding TPH, although the nomenclature has not been standardized. Bellipanni et al. first identified two paralogs of TPH in the developing zebrafish brain, tphD1, expressed in the preoptic nuclei and the posterior tubercular in the diencephalon, and tphD2, expressed in the pineal gland and transiently in the preoptic nuclei [147]. Teraoka et al. identified a third paralog of Tph, tphR, expressed in the raphe nuclei and pineal gland [148]. In later reviews of the serotonin neurotransmitter system, these genes are referred to as tph1a, tph1b, and tph2, respectively [149–151]. Further research found that zebrafish th2 encodes for a fourth tph gene in the ventral diencephalon and caudal hypothalamus [116]. This gene has also been called tph3 to better reflect its function [150]. As mentioned previously, zebrafish have only one ortholog of AAAD and MAO [117]. There are two paralogs of the serotonin transporter gene SLC6A4, slc6a4a and slc6a4b [152]. In mammals, over 15 HTR genes have been identified. Table 4 outlines the critical genes in serotonin synthesis and metabolism as well as listing known paralogous genes for the serotonin HTR receptor families [121].

As reviewed by Lillesaar [149], in larval zebrafish 5-HT positive cells are located in the pineal gland, the pretectum, the posterior tuberculum, the hypothalamus, and the superior and inferior raphe. Panula et al. outlined a labeling scheme for the adult zebrafish with serotoninergic nuclei identified in the pretectal complex, the anterior, intermediate, and
posterior paraventricular organ nuclei, the dorsal, median, and ventrolateral raphe, the inferior raphe, and the caudal raphe [16,150]. Adult zebrafish also have scattered serotonergic neurons within the medulla oblongata [137]. The distribution of 5-HT in the zebrafish brain compared to humans is shown in Figure 1C.

When identifying serotonergic populations, the Ets-domain transcription factor pet1 (pheochromocytoma 12 ETS [E26 transformation-specific]) is a specific developmental marker of the raphe serotonergic nuclei [151]. TPH is typically used as the serotonergic specific marker in imaging studies [149].

3.5. Acetylcholine

Acetylcholine (ACH) is the major neurotransmitter in the parasympathetic nervous system and is the neurotransmitter at neuromuscular junctions [153]. Additionally, ACh neurotransmission is widespread in the CNS and can help modulate the release of other neurotransmitters such as GABA, and has been implicated in arousal, reward, and learning and memory [153–155].

ACh is formed from acetyl-CoA and choline via choline acetyltransferase (ChAT). Two SLC family transport systems, a high affinity (SLC5A7; HAcU) and a low affinity (SLC44 family; LAcU), concentrate choline in terminals to provide a reserve for ACh synthesis. SLC44 is present ubiquitously throughout the body, but SLC5A7 is only found in cholinergic nerve termini [156]. The rate of SLC5A7 transport is regulated by the rate of ACh release and SLC5A7 is the rate limiting step in ACh production. Once ACh has been synthesized by ChAT it is packaged into vesicles by vesicular ACh transporter (VAcHT) which is coded by SLC18A3 [106]. ACh is then released in quanta into the synaptic cleft in a calcium dependent manner. Unlike other neurotransmitters which have transporter mediated uptake/reuptake to clear the synapse, ACh is metabolized by acetylcholinesterase (AChE) within the synaptic space and broken into acetate and choline [156].

There are two major types of cholinergic receptors, nicotinic (nAChR) and muscarinic receptors (mAChR). The receptors were respectively named after nicotine and muscarine, their drug agonists. nAChRs are a member of the cys-loop family of ligand-gated ion channel receptors and are formed by combinations of receptor subunits [156,157]. In mammals, there are 17 nicotinic receptor subunits including muscle and neural specific subunits. nAChRs are located throughout the brain, though many subtypes of nAChR are located on presynaptic termini or cell bodies and function to modulate neurotransmitter release [154]. mAChRs are G-protein-coupled receptors and are located throughout the CNS and PNS. There are five subtypes of mAChR receptors in mammals, M1–M5. M1, M3, and M5 couple to Gq/11 family proteins to increase phospholipase C. M2 and M4 receptors act to decrease adenylyl cyclase through Gi/Go receptor activation. mAChR are expressed throughout the brain, but are not uniformly distributed (reviewed by Brown [158]).

The important genes in the cholinergic system are outlined in Table 5. Zebrafish have two paralogs of the HAcU SLC5A7 (slc5a7a and slc5a7b), although slc5a7b has not been well described. The gene that produces ChAT has two paralogs in zebrafish, chata and chatb. slc18a3a and slc18a3b are two paralogs of SLC18A3 (VAcHT). There is only one paralog of
ACHE (ache). Currently, there are 12 putative genes encoding nAChR subunits in zebrafish and 10 putative paralogs of mAChR [159–161].

Cholinergic neurons have been identified through immunohistochemical staining against choline-acetyltransferase (ChAT) [94,162]. In zebrafish, cholinergic neurons are found in both the brain and spinal cord, specifically in the octavolateralis cells and modulatory or sensory neurons, the ventral telencephalic area, the central, dorsal, and subcommissural nuclei of the ventral telencephalic areas, the preoptic area, dorsal thalamus, pretectal nuclei, hypothalamus, optic tectum, and tegmentum [137,163–165]. The distribution of ACh in zebrafish and human brains is shown in Figure 1D.

3.6. Histamine

Histamine is a signaling molecule present in many tissues, serving functions in the stomach, skin, and immune systems. Histamine also has a role in neurotransmission [166]. Within the CNS, histamine is associated with wakefulness, feeding and drinking, and learning and memory [130,167,168].

The structure of histamine, 2-(4-imidazolyl)ethylamine, is similar to 5-HT, NE, and EP, but histamine has an imidazole nucleus and therefore has tautomeric properties that may be associated with receptor affinity. In mammals, mast cells of bone marrow origin reside in perivascular spaces, choroid plexus, and meninges and can produce significant amounts of histamine within the brain although the only neurons that produce histamine are located within hypothalamic tuberomamillary neurons within the posterior hypothalamus [169]. Zebrafish, on the other hand, do not have stores of histamine outside of the brain, suggesting any histamine is of importance to neurotransmission [130,170]. The periventricular cells of the caudal hypothalamus are the only cell group that contains histaminergic neurons in zebrafish brain, similar to mammals, although the axons project throughout the CNS [137,170]. These histamine producing neurons also contain other signaling molecules including GABA, neuropeptides, and thyrotropin-releasing hormone [171].

Histamine is synthesized by L-histidine decarboxylase (HDC). The rate of biosynthesis is controlled by the availability of L-histidine and the rate limiting enzyme, HDC. Once formed, histamine is transported into vesicles by SLC18A2 (VMAT2) [172]. Most histamine in the brain is released via non-synaptic mechanisms and often acts on both presynaptic and postsynaptic receptors. There is no evidence of a neuronal histamine transporter [169].

The metabolism of histamine can occur either by diamine oxidase (DAO; amine oxidase AOC1), which oxidizes histamine to imidazole acetic acid (IAA), or by histamine N-methyltransferase (HNMT), which methylates histamine and forms tele-methylhistamine (t-MH) and is then further metabolized by MAO (MAO-B in mammals) to tele-methylimidazole acetic acid (t-MIAA). The methylation metabolism pathway is more common in vertebrate brains and HMT is widely distributed throughout the brain [168,169].

Mammals have four histamine receptors that are found in the brain, H1, H2, H3, and H4. H1 and H2 are considered excitatory while H3 is inhibitory and often acts as an autoreceptor. H4 is the most recently discovered but does appear to localize to the brain [173].
receptors are linked to G proteins in both neurons and glia. H1 receptors are linked to G$_q$ and stimulate phospholipase C. H2 receptors may couple with G$_q$ or G$_s$ but act through the stimulation of adenylyl cyclase. H3 receptors are linked to G$_i/o$ and inhibit adenylyl cyclase. H3 receptors may also activate MAPK, Akt/GSK-3β, and phospholipase A$_2$ pathways [174–176]. The H4 receptor is similar to the H3 receptor and acts through G$_i/o$ proteins to inhibit adenylyl cyclase [173].

In zebrafish there is one ortholog each of HDC (L-histidine decarboxylase), AOC1 (diamine oxidase), and HNMT (histamine N-methyltransferase) (Table 6). To date, there are four known genes in zebrafish that code for histamine receptors, hrh1, hrh2a, hrh2b, and hrh3 [177]. In zebrafish, histamine containing neurons have been localized only to the ventrocaudal hypothalamus, though the projections are widespread [137,178]. The distribution of histamine in the zebrafish brain compared to humans is shown in Figure 1E.

3.7. Glycine

Glycine is an amino acid that serves as a signaling molecule and neurotransmitter in the brainstem and spinal cord. Glycine is the simplest amino acid, with only a hydrogen for its side chain. Glycine, typically considered an inhibitory neurotransmitter, is involved with interneuron differentiation in neurodevelopment, mediation of spinal reflexes, and reflex behaviors such as breathing [179,180].

Glycine can be formed through the conversion of serine to glycine with either glycine dehydrogenase (GLDC), also known as glycine decarboxylase (GDC) or glycine-cleavage system, or serine hydroxymethyltransferase (SHMT). Glycine is transported into synaptic vesicles via the vesicular inhibitory amino acid transporter, SLC32A1 (VIAAT, also known as vesicular GABA transporter (VGAT)) [180].

Glycine is transported out of the synaptic cleft by glycine transporters. Two glycine transporters, SLC6A9 (GLYT1) and SLC6A5 (GLYT2), have been identified in mammals [180]. SLC6A9 and SLC6A5 transporters are expressed on both astrocytes and postsynaptic neurons [181].

The glycine receptors are in the ligand gated ion channel superfamily. In mammals, glycine receptor subunits arise from two separate gene families. The α gene family has four subunit genes (α1–α4) and the β gene group has only one member (reviewed by Bowery and Smart [182]). Glycine also acts on NMDA receptors and modulates the amplitude and time course of the glutamate-elicited response [183]. Interestingly, although no metabotropic counterparts have been identified, the glycine receptor subunit α can interact with G protein βγ subunits, which potentiates the response to glycine [184].

As outlined in Table 7, zebrafish tend to have a single known ortholog for most of the genes important for glycine metabolism [185,186]. The exception is the presence of two paralogs for glycine receptor α subunit 4 gene and the glycine receptor β gene. Glycinergic neurons are identified via positive immunoreactivity for glycine transporter (slc6a9) immunohistochemistry. In the developing zebrafish, glycine producing cells are limited to the hindbrain and spinal cord, and appear as early as 20 h post fertilization (hpf) [187,188].
In adult zebrafish, the vast majority of glycinergic neurons are within the medulla oblongata, though a few positive neurons are within a ventral tegmental equivalent nucleus [129,187].

3.8. Other Neurotransmitters

Other substances can also act as neurotransmitters in the brain, including purines, peptides, nitric oxide, and endocannabinoids [189,190]. Please see Rico et al. [11] for a review of the purine nucleotides and nucleosides in zebrafish and Panula et al. [16] for a review of neuropeptides.

4. Evaluation of Neurotoxicity

The neurotransmitter systems can serve as targets of chemical toxicity. The individual enzymes, transporters, and receptors may be altered by chemical toxicants through changes in gene expression or changes in activity of the enzyme or receptor. Multiple methods can be used to evaluate neurotransmitter systems in zebrafish, from the measuring of neurotransmitter levels in the brain, to evaluation of gene expression, to the functional testing of behavioral assays. These methods are reviewed below.

4.1. Evaluation of Neurotransmitters

In the evaluation of chemical toxicants, measuring neurotransmitter levels can provide information on the functional alterations in the brain resulting from chemical treatment. The quantity of neurotransmitters can be measured in the zebrafish brain. Sallinen et al. [119] and Chatterjee et al. [191] have both described methods for measuring neurotransmitter levels via high performance liquid chromatography (HPLC) that have been modified and used in other laboratories [192,193].

Experimental neurotransmitter results may be comparable within one laboratory, but not comparable across multiple laboratories due to differences in experimental methods and equipment used. Furthermore, one difficulty in comparing neurotransmitter levels across studies and laboratories is the lack of reference intervals and the tendency to normalize neurotransmitter values to controls rather than reporting absolute values, which limits comparison. For example, Pan et al. [194] reported the difference in neurotransmitter levels between the AB and short-fin wildtype strains of zebrafish as a ratio between zebrafish strains, rather than average concentration. Table 8 lists reported neurotransmitter levels from control zebrafish. Comparison of values in the table is difficult between studies in part to different methodologies used for normalization. Neurotransmitter levels can be normalized to protein content or number of fish pooled for the sample, and it is difficult to equate between the two methods.

Other methods for the measurement of neurotransmitters include an analytical method described by Tufi et al. [195] of hydrophilic interaction liquid chromatography (HILIC) coupled to tandem mass spectrometry (MS/MS) that has been used to measure neurotransmitter levels in zebrafish larvae. The levels of neurotransmitters and major metabolites were measured in 0–6 dpf zebrafish larvae. Additionally, Jones et al. [196] describe a technique to detect neurotransmitter release and reuptake in brain tissue slices through fast scan cyclic voltammetry (FSCV).
4.2. Evaluation of Gene Expression Changes in Neurotransmitter Pathways

Chemical toxicants can affect the expression of genes, and evaluation of these changes can provide information on pathways that may be altered due to chemical exposure. Quantitative PCR (qPCR) can be used to evaluate alterations in gene expression [198]; however, the information is limited to the number of genes investigated.

Microarray studies have been used to evaluate gene expression after chemical exposure in zebrafish [199–202]. The value of transcriptomic evaluations in zebrafish toxicology studies is well recognized, especially for environmental toxicology [12,203]. Next generation technologies such as RNA-seq are providing precise and powerful options for evaluating the transcriptome [203,204]. Please see the review by Wang et al. [204] and Aanes et al. [205] for information on RNA-seq and its application in zebrafish.

4.3. Evaluation of Neurobehavior

The significance of apparent alterations in gene expression and changes in neurotransmitter levels is uncertain without having differences in phenotype. Zebrafish are an accepted model of neurobehavior [206–215] and have been used to study stress, anxiety-like behavior, and depression, with decreased movement typically associated with anxiety [216–218]. Zebrafish are increasingly being used in neurobehavioral research to evaluate learning and neuropsychiatric disorders (reviewed by [207,208,212,219]). Neurobehavioral tests have been developed for both larval and adult zebrafish to assess anxiety-like behavior. Changes in neurobehavior can substantiate changes observed through neurotransmitter analysis or through transcriptomic evaluation; however, changes in neurobehavior cannot be localized to a specific neurotransmitter, pathway, or protein. Please refer to Kalueff et al. [219] and Parker et al. [220] for recent reviews of neurobehavior in zebrafish toxicology research.

4.4. Visualization of Neurotransmitters and Neurotransmitter Systems

The visualization of neurotransmitters has been important for evaluating the location, relative quantity, and pathologic alterations of neurotransmitters and neurotransmitter pathway components. A multitude of techniques, including immunohistochemistry, in situ hybridization, immunofluorescence, calcium indicators, selective fluorescent reporters [221–226] (and reviewed by [227]) have been used to study neuroanatomy and neurotransmitter systems in zebrafish. The imaging of neurotransmitters, transporters, and receptors in zebrafish brains has classically been used in the study of developmental biology [68] and recently for neural systems mapping [226,228]. A recent review by Arrenberg and Driever [228] highlights the use of optogenetics and calcium indicator activity probes in the development of functional maps of the zebrafish brain. Currently this methodology has been underused in studies of chemical toxicity, but could provide powerful information when combined with the other approaches mentioned.

4.5. Pharmacology Screens

The advantages of the zebrafish model system allow for high throughput screening of pharmacologic agents which can help identify neuropathways, mechanisms of toxicity, possible therapeutic drugs, and help classify zebrafish behavior (reviewed by [229–234]). The neuropharmacology of the monoamine neurotransmitters was reviewed by Maximino
and Herculano [235]. Kalueff et al. [219] have also recently written a highly recommended review that evaluates the zebrafish system in neurobehavior and pharmacology screenings.

5. Specific Examples of Chemical Toxicity Targeting Neurotransmitter Systems

Zebrafish have been used as a model organism to study the effect of multiple classes of chemicals on neurodevelopment and neural function. Classes of chemicals examined include drugs, especially ethanol, pesticides, and metals. The significant methods and findings from the literature are summarized below and in Table 8.

5.1. Drugs

The effects of alcohol have been extensively studied in zebrafish. Rico et al. [236] found that adult zebrafish exposed to ethanol had increased AChE activity in a 1% ethanol treatment group although the mRNA levels of AChE were decreased, suggesting post-transcriptional or post-translational modifications to AChE. Chatterjee and Gerlai [191] found that adult zebrafish exposed to ethanol for 1 h had an increase in brain dopamine levels at all treatment levels, while 5-HT and 5-HIAA increased at the highest (1%) ethanol group. Chatterjee and Shams [237] found a similar increase in dopamine and 5-HT after acute ethanol exposure in AB strain zebrafish, but not in SF strain zebrafish. Puttonen et al. [238], found that larval Turku strain zebrafish with acute exposure to ethanol had increased locomotor activity at lower treatment levels, decreased locomotor activity at the highest treatment level (3%), upregulation of hdc (histidine decarboxylase), th1, and th2 at higher treatment levels, no alterations in the dopaminergic and histaminergic systems according to in situ hybridization and immunohistochemistry, and a decrease in dopamine levels, as measured by HPLC. These results suggest that ethanol has the ability to alter the cholinergic, dopaminergic, and histaminergic neurotransmitter systems and that neurobehavior can be a sensitive measure of altered neurotransmitter systems.

The effects of alcohol on zebrafish behavior appear to have an inverted U shaped dose-response, with increased locomotor activity and shoaling behavior at lower doses and decreased locomotor activity and shoaling behavior at higher doses, as well as either increased or decreased measures of anxiety [237,239–242]. Although this finding appears to be dependent on the specific zebrafish strain (AB, SF, WIK, or Turku strain) used and therefore, needs further analysis [237–239,243]. Bailey et al. found juvenile AB strain zebrafish with developmental exposure to ethanol had increased locomotor activity overall and after stress or anxiety inducing stimuli [244]. A latent learning neurobehavioral assay performed by Luchiari et al. suggested that AB strain zebrafish have impaired memory recall after ethanol exposure [245]. Echevarria et al. have reviewed additional behavioral outcomes of ethanol exposure in zebrafish [246].

Zenki et al. [247] found that alcohol and its metabolite acetaldehyde decreased the activity of glutamate transporters, based on measuring the in vitro rate of glutamate uptake in tissue sections, in adult zebrafish and that acetaldehyde was more toxic than ethanol when
measuring cell viability via 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction and extracellular lactate dehydrogenase (LDH) activity.

Nicotine is often used to study nicotinic cholinergic receptors, but nicotine also is a drug known for anxiolytic effects. Levin et al. [248] and Bencan and Levin [249], found that adult zebrafish exposed to nicotine had reduced time spent in the bottom of a novel tank (novel tank test) and found that the anxiolytic effect was mediated through the Chrna7 and Chrna4b receptor subunits [248,249]. Levin and Chen (2004), also found that adult zebrafish exposed to low dose nicotine had improved memory based on a 3-chambered tank test for learning assessment while zebrafish exposed to higher concentrations of nicotine had impaired memory function [250].

5.2. Pesticides

Pesticides represent a broad group of chemicals that include herbicides, insecticides, fungicides, and rodenticides. Some pesticides are important environmental toxicants while others are more acutely toxic to humans (for example, during application or manufacturing).

The effects of organophosphate pesticides on brain acetylcholinesterase are well known, however, exposure to organophosphates can also affect other brain neurotransmitter systems. Eddins et al. [251] studied the effects of developmental exposure of zebrafish to chlorpyrifos. Adult zebrafish previously exposed to chlorpyrifos had greater startle responses in a startle response and habituation behavioral assay that persisted into the habituation period. Additionally, decreased dopamine and serotonin levels and increased transmitter turnover were measured in larval zebrafish while only the decreased dopamine persisted to adulthood [251].

Atrazine is a commonly used herbicide in the Midwestern United States that often contaminates drinking water supplies. Wirbisky et al. [199] found decreased levels of the serotonin metabolite 5-HIAA and decreased serotonin turnover (5-HIAA/5-HT) in the brain of adult female zebrafish aged 9 months that were exposed to atrazine only during embryogenesis. Transcriptomic analysis via microarray identified multiple molecular pathways related to brain development, function, and behavior that were altered in the treatment groups including several targets associated with the serotoninergic system [199].

Semicarbazide is a contaminant formed from the breakdown of azodicarbonamide, a chemical used to treat flour. Semicarbazide derivatives have also been used as herbicides. Adult zebrafish exposed to semicarbazide for 96 h had increased expression of gad1 while adult zebrafish with 28 day exposure had down regulation of gad1, gabrr1, and gabbr2 [252]. Yu et al. [252] suggest the alterations of the GABAergic pathway genes could indirectly result in alterations in the hypothalamus-pituitary-gonadal axis.

Strychnine is commonly used as rodent bait. Roy et al. [253] found that zebrafish embryos treated with strychnine had decreased expression of glra4 at 24 and 48 hpf, gad1 at 24–96 hpf, and slc17a6a and slc17a6b (VGLUT2) at 48 hpf.
5.3. Metals

Some metals, such as lead and mercury are important environmental toxicants [254–256]. Developmental lead exposure is linked to a number of CNS effects, including lowered IQ and attention deficit disorders [257–260]. Wirbisky et al. [193] found that developmental exposure to lead resulted in altered expression of GABAergic pathway genes including gad2, gad1b, slc6a1 (gat1), slc32a1 (vgat), gabbr1, and gabbr1a as well as altering GABA levels during development. Furthermore, Lee and Freeman [261] found that adult zebrafish with a developmental lead exposure had altered gene expression in pathways associated with neurodevelopment and neurotransmission.

In addition, studies have also started to evaluate the impact of mercury exposure on neurotransmitter systems. The toxicity of mercury depends on its chemical form. Methylmercury is associated with Minamata disease and nervous system impairment. Cambier et al. [198] fed adult male fish food contaminated with methylmercury and found changes in gene expression in the GABA synthesis and metabolism pathways. Inorganic mercury is associated with acute toxicity and renal failure; however, Richetti et al. [262] found that adult zebrafish exposed to mercury chloride and lead acetate had decreased activity of acetylcholinesterase, but no alterations in the gene expression of AChE.

6. Conclusions

The neurotransmitter systems are highly conserved between zebrafish and mammals, making the zebrafish model a powerful tool for the study of mechanisms of chemical neurotoxicity. Although there are some differences in neurochemistry, the pathways of neurotransmitter synthesis, metabolism, and action are highly conserved across species. Although some genes have multiple paralogs in zebrafish, further research into these paralogs may help identify new functions of genes in humans. Furthermore, further research into neurotransmitter receptors may provide more information about basic neurological systems and connectivity.

The nervous system is an important target of chemical toxicants. Neurotransmitter levels, gene expression, and neurobehavior can be evaluated after chemical treatment to discover toxicant based changes in the nervous system. New technologies provide more sensitive and powerful methods; however, the integration of these methods along with other techniques, such as imaging and activity assays, will be necessary to determine the mechanisms and pathogenesis of chemical toxicant related alterations. Overall, relatively few studies have focused on alterations of neurochemical systems in zebrafish, but the completed studies support the utility and application of zebrafish in neurochemical toxicology.

Acknowledgments

This work was supported by the National Institutes of Health, National Institute of Environmental Health Sciences (R15 ES019137 to J.L.F.).
References

1. Megha K, Deshmukh PS, Ravi AK, Tripathi AK, Abegaonkar MP, Banerjee BD. Effect of low-intensity microwave radiation on monoamine neurotransmitters and their key regulating enzymes in rat brain. Cell Biochem Biophys. 2015; 73:93–100. [PubMed: 25672490]

2. Kaplan SV, Limbocker RA, Gehringer RC, Divis JL, Osterhaus GL, Newby MD, Sofis MJ, Jarmolowicz DP, Newman BD, Mathews TA, et al. Impaired brain dopamine and serotonin release and uptake in wistar rats following treatment with carboplatin. ACS Chem Neurosci. 2016; 7:689–699. [PubMed: 27145395]

3. Parng C, Roy NM, Ton C, Lin Y, McGrath P. Neurotoxicity assessment using zebrafish. J Pharmacol Toxicol Methods. 2007; 55:103–112. [PubMed: 16769228]

4. Andersen HR, Nielsen JB, Grandjean P. Toxicologic evidence of developmental neurotoxicity of environmental chemicals. Toxicology. 2000; 144:121–127. [PubMed: 10781879]

5. Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006; 368:2167–2178. [PubMed: 17174709]

6. Costa LG. Interactions of neurotoxicants with neurotransmitter systems. Toxicology. 1988; 49:359–366. [PubMed: 2897731]

7. Beitz JM. Parkinson’s disease: A review. Front Biosci (Sch Ed). 2014; 6:65–74.

8. Sarter M, Bruno JP, Parikh V. Abnormal neurotransmitter release underlying behavioral and cognitive disorders: Toward concepts of dynamic and function-specific dysregulation. Neuropsychopharmacology. 2006; 32:1452–1461. [PubMed: 17164812]

9. Werner FM, Covenas R. Classical neurotransmitters and neuropeptides involved in major depression: A review. Int J Neurosci. 2010; 120:455–470. [PubMed: 20583898]

10. De Esch C, Slierker R, Wolterbeek A, Woutersen R, de Groot D. Zebrafish as potential model for developmental neurotoxicity testing: A mini review. Neurotoxicol Teratol. 2012; 34:545–553. [PubMed: 22971930]

11. Rico EP, Rosenberg DB, Seibt KJ, Capiotti KM, Da Silva RS, Bonan CD. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol Teratol. 2011; 33:608–617. [PubMed: 21907791]

12. Fan CY, Cowden J, Simmons SO, Padilla S, Ramabhadran R. Gene expression changes in developing zebrafish as potential markers for rapid developmental neurotoxicity screening. Neurotoxicol Teratol. 2010; 32:91–98. [PubMed: 19460430]

13. Nishimura Y, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, Tanaka T. Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit Anom. 2015; 55:1–16.

14. Cheng RK, Jesuthasan SJ, Penney TB. Zebrafish forebrain and temporal conditioning. Philos Trans R Soc Lond Ser B Biol Sci. 2014; 369 20120462.

15. Mueller, T., Wullimann, MF. Atlas of Early Zebrafish Brain Development. 2nd. Elsevier; San Diego, CA, USA: 2016.

16. Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis. 2010; 40:46–57. [PubMed: 20472064]

17. Bowman TV, Zon LI. Swimming into the future of drug discovery: In vivo chemical screens in zebrafish. ACS Chem Biol. 2010; 5:159–161. [PubMed: 20166761]

18. Hill AJ, Teraoka H, Heideman W, Peterson RE. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci. 2005; 86:6–19. [PubMed: 15703261]

19. Lele Z, Krone PH. The zebrafish as a model system in developmental, toxicological and transgenic research. Biotechnol Adv. 1996; 14:57–72. [PubMed: 14536924]

20. Yang L, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, Mikut R, Liebel U, Müller F, Strähle U. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol. 2009; 28:245–253. [PubMed: 19406227]

21. McGrath P, Li CQ. Zebrafish: A predictive model for assessing drug-induced toxicity. Drug Discov Today. 2008; 13:394–401. [PubMed: 18468556]
22. Penberthy WT, Shafizadeh E, Lin S. The zebrafish as a model for human disease. Front Biosci. 2002; 7:d1439–d1453. [PubMed: 12045008]
23. Vascotto SG, Beckham Y, Kelly GM. The zebrafish’s swim to fame as an experimental model in biology. Biochem Cell Biol. 1997; 75:479–485. [PubMed: 9551173]
24. Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL. The syntenic relationship of the zebrafish and human genomes. Genome Res. 2000; 10:1351–1358. [PubMed: 10984453]
25. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, muffato M, Collins JE, Humphray S, McLaren K, Matthews L, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013; 496:498–503. [PubMed: 23594743]
26. Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y. Major events in the genome evolution of vertebrates: Paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA. 2004; 101:1638–1643. [PubMed: 14757817]
27. Christoffels A, Koh EG, Chia JM, Brenner S, Aparicio S, Venkatesh B. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol. 2004; 21:1146–1151. [PubMed: 15014147]
28. Sato Y, Hashiguchi Y, Nishida M. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evolut Biol. 2009; 9:1–14.
29. Glasauer SM, Neuhauss SC. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genom. 2014; 289:1045–1060.
30. Postlethwait J, Amores A, Cresko W, Singer A, Yan YL. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet. 2004; 20:481–490. [PubMed: 15363902]
31. Braitenberg, V., Schüz, A. Cortex: Statistics and Geometry of Neuronal Connectivity. 2nd. Springer; Berlin, Germany: 1998.
32. Meldrum BS. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J Nutr. 2000; 130:1007s–1015s. [PubMed: 10736372]
33. Nicu MJ, Kelmendi B, Sanacora G. Overview of glutamatergic neurotransmission in the nervous system. Pharmacol Biochem Behav. 2012; 100:656–664. [PubMed: 21889952]
34. Sherman SM. The function of metabotropic glutamate receptors in thalamus and cortex. Neuroscientist. 2014; 20:136–149. [PubMed: 23459618]
35. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm. 2014; 121:799–817. [PubMed: 24578174]
36. Yelamanchi SD, Jayaram S, Thomas JK, Gundimeda S, Khan AA, Singhal A, Keshava Prasad TS, Pandey A, Somani BL, Gowda H. A pathway map of glutamate metabolism. J Cell Commun Signal. 2016; 10:69–75. [PubMed: 26635200]
37. Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH. Vgluts define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci. 2004; 27:98–103. [PubMed: 15102489]
38. Rubio ME, Wenthold RJ. Differential distribution of intracellular glutamate receptors in dendrites. J Neurosci. 1999; 19:5549–5562. [PubMed: 10377362]
39. Collingridge GL, Olsen RW, Peters J, Spedding M. A nomenclature for ligand-gated ion channels. Neuropharmacology. 2009; 56:2–5. [PubMed: 18655795]
40. Keramidas A, Moorhouse AJ, Schofield PR, Barry PH. Ligand-gated ion channels: Mechanisms underlying ion selectivity. Prog Biophys Mol Biol. 2004; 86:161–204. [PubMed: 15288758]
41. Howard RJ, Trudell JR, Harris RA. Seeking structural specificity: Direct modulation of pentameric ligand-gated ion channels by alcohols and general anesthetics. Pharmacol Rev. 2014; 66:396–412. [PubMed: 24515646]
42. Connolly CN, Wafford KA. The cys-loop superfamily of ligand-gated ion channels: The impact of receptor structure on function. Biochem Soc Trans. 2004; 32:529–534. [PubMed: 15157178]
43. Kozuska JL, Paulsen IM. The cys-loop pentameric ligand-gated ion channel receptors: 50 years on. Can J Physiol Pharmacol. 2012; 90:771–782. [PubMed: 22493950]
44. Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009; 459:356–363. [PubMed: 19458711]
45. Trkulja V, Salkovic M, Lackovic Z. Signalling promiscuity of the metabotropic neurotransmitter receptors: Are there any functional consequences? Period Biol. 1998; 100:157–164.
46. Fryxell KJ. The evolutionary divergence of neurotransmitter receptors and second-messenger pathways. J Mol Evol. 1995; 41:85–97. [PubMed: 7608992]
47. Katritch V, Cherezov V, Stevens RC. Structure-function of the G-protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol. 2013; 53:531–556. [PubMed: 23140243]
48. Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002; 3:639–650. [PubMed: 12209124]
49. Strader CD, Fong TM, Tota MR, Underwood D, Dixon RAF. Structure and function of G-protein-coupled receptors. Annu Rev Biochem. 1994; 63:101–132. [PubMed: 7979235]
50. Willard SS, Koochekpour S. Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci. 2013; 9:948–959. [PubMed: 24155668]
51. Karakas E, Regan MC, Furukawa H. Emerging structural insights into the function of ionotropic glutamate receptors. Trends Biochem Sci. 2015; 40:328–337. [PubMed: 25941168]
52. Harvey BH, Shahid M. Metabotropic and ionotropic glutamate receptors as neurobiological targets in anxiety and stress-related disorders: Focus on pharmacology and preclinical translational models. Pharmacol Biochem Behav. 2012; 100:775–800. [PubMed: 21708184]
53. Hassel, B., Dingledine, R. Chapter 17—Glutamate and glutamate receptors. In: Brady, ST.Siegel, GJ.Albers, RW., Price, DL., editors. Basic Neurochemistry. 8th. Academic Press; New York, NY, USA: 2012. p. 342-366.
54. Niswender CM, Conn PJ. Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010; 50:295–322. [PubMed: 20055706]
55. Page G, Khidir FA, Pain S, Barrier L, Fauconneau B, Guillard O, Piriou A, Hugon J. Group I metabotropic glutamate receptors activate the p70S 6 kinase via both mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK 1/2) signaling pathways in rat striatal and hippocampal synaptoneurosomes. Neurochem Int. 2006; 49:413–421. [PubMed: 16549223]
56. Saugstad, JA., Ingram, SL. Group I metabotropic glutamate receptors (mGlu1 and mGlu5). In: Gereau, RW., Swanson, GT., editors. The Glutamate Receptors. Humana Press; Totowa, NJ, USA: 2008. p. 387-463.
57. Hermans E, Challiss RA. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: Prototypic family C G-protein-coupled receptors. Biochem J. 2001; 359:465–484. [PubMed: 11672421]
58. Willard SS, Koochekpour S. Glutamate signaling in benign and malignant disorders: Current status, future perspectives, and therapeutic implications. Int J Biol Sci. 2013; 9:728–742. [PubMed: 23983606]
59. Iacovelli L, Bruno V, Salvatore L, Melchiorri D, Gradini R, Caricasole A, Barletta E, De Blasi A, Nicoletti F. Native group-III metabotropic glutamate receptors are coupled to the mitogen-activated protein kinase/phosphatidylinositol-3-kinase pathways. J Neurochem. 2002; 82:216–223. [PubMed: 12124422]
60. Dhanasiri AKS, Fernandes JMO, Kiron V. Glutamine synthetase activity and the expression of three glul paralogues in zebrafish during transport. Comp Biochem Physiol Part B. 2012; 163:274–284.
61. Lin WH, Wu CH, Chen YC, Chow WY. Embryonic expression of zebrafish ampa receptor genes: Zygotic gria2a expression initiates at the midblastula transition. Brain Res. 2006; 1110:46–54. [PubMed: 16887104]
62. Hoppmann V, Wu JJ, Saviknes AM, Helvik IV, Becker TS. Expression of the eight AMPA receptor subunit genes in the developing central nervous system and sensory organs of zebrafish. Dev Dyn. 2008; 237:788–799. [PubMed: 18224707]
63. Cox JA, Kucenas S, Voigt MM. Molecular characterization and embryonic expression of the family of N-methyl-D-aspartate receptor subunit genes in the zebrafish. Dev Dyn. 2005; 234:756–766. [PubMed: 16123982]
64. Haug MF, Gesemann M, Mueller T, Neuhauss SC. Phylogeny and expression divergence of metabotropic glutamate receptor genes in the brain of zebrafish (Danio rerio). J Comp Neurol. 2013; 521:1533–1560. [PubMed: 23047810]
65. Huang YY, Haug MF, Gesemann M, Neuhauss SC. Novel expression patterns of metabotropic glutamate receptor 6 in the zebrafish nervous system. PLoS ONE. 2012; 7:e35256. [PubMed: 22523578]
66. Rico EP, de Oliveira DL, Rosenberg DB, Mussulini BH, Bonan CD, Dias RD, Wofchuk S, Souza DO, Bogo MR. Expression and functional analysis of Na+-dependent glutamate transporters from zebrafish brain. Brain Res Bull. 2010; 81:517–523. [PubMed: 19941938]
67. Gesemann M, Lesslauer A, Maurer CM, Schönthaler HB, Neuhauss SC. Phylogenetic analysis of the vertebrate excitatory/neural amino acid carrier (SLC1/EAAT) family reveals lineage specific subfamilies. BMC Evolut Biol. 2010; 10:1–15.
68. Mueller T, Wullimann MF. Anatomy of neurogenesis in the early zebrafish brain. Dev Brain Res. 2003; 140:137–155. [PubMed: 12524185]
69. Schuurmans C, Guillemot F. Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr Opin Neurobiol. 2002; 12:26–34. [PubMed: 11861161]
70. Liguz-Lecznar M, Skangiel-Kramska J. Vesicular glutamate transporters (VGLUTs): The three musketeers of glutamatergic system. Acta Neurobiol Exp. 2007; 67:207–218.
71. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci. 2004; 7:613–620. [PubMed: 15156145]
72. Gallo V, Ghiani CA. Glutamate receptors in glia: New cells, new inputs and new functions. Trends Pharmacol Sci. 2000; 21:252–258. [PubMed: 10871893]
73. Olsen, RW., Li, GD. Chapter 18—GABA. In: Brady, ST.Siegel, GJ.Albers, RW., Price, DL., editors. Basic Neurochemistry. 8th. Academic Press; New York, NY, USA: 2012. p. 367-376.
74. Pehrson AL, Sanchez C. Altered γ-aminobutyric acid neurotransmission in major depressive disorder: A critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des Devel Ther. 2015; 9:603–624.
75. Kantrowitz J, Citrome L, Javitt D. GABA_G receptors, schizophrenia and sleep dysfunction. CNS Drugs. 2009; 23:681–691. [PubMed: 19594197]
76. Greenfield LJ. Molecular mechanisms of antiseizure drug activity at GABA_A receptors. Seizure. 2013; 22:589–600. [PubMed: 23683707]
77. Ben-Ari Y. Excitatory actions of GABA during development: The nature of the nurture. Nat Rev Neurosci. 2002; 3:728–739. [PubMed: 12209121]
78. Reynolds A, Brustein E, Liao M, Mercado A, Babilonia E, Mount DB, Drapeau P. Neurogenic role of the depolarizing chloride gradient revealed by global overexpression of KCC2 from the onset of development. J Neurosci. 2008; 28:1588–1597. [PubMed: 18272680]
79. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K. The K⁺/Cl⁻ co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 1999; 397:251–255. [PubMed: 9930699]
80. Yamada J, Okabe A, Toyoda H, Kilb W, Luhmann HH, Fukuda A. Cl⁻ uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J Physiol. 2004; 557:829–841. [PubMed: 15090604]
81. Bosma PT, Blázquez M, Collins MA, Bishop JD, Drouin G, Priede IG, Docherty K, Trudeau VL. Multiplicity of glutamic acid decarboxylases (GAD) in vertebrates: Molecular phylogeny and evidence for a new GAD paralog. Mol Biol Evol. 1999; 16:397–404. [PubMed: 10331265]
82. Scimemi A. Structure, function, and plasticity of GABA transporters. Front Cell Neurosci. 2014; 8:161. [PubMed: 24987330]
83. Schousboe A, Bak LK, Waagepetersen HS. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol. 2013; 4:102.
84. Walls AB, Waagepetersen HS, Bak LK, Schousboe A, Sonnewald U. The glutamine–glutamate/GABA cycle: Function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem Res. 2015; 40:402–409. [PubMed: 25380696]
85. Sigel E, Steinmann ME. Structure, function, and modulation of GABA_A receptors. J Biol Chem. 2012; 287:40224–40231. [PubMed: 23038269]

86. Simon J, Wakimoto H, Fujita N, Lalande M, Barnard EA. Analysis of the set of GABA_A receptor genes in the human genome. J Biol Chem. 2004; 279:41422–41435. [PubMed: 15258161]

87. Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ. International union of pharmacology. XXXIII. Mammalian γ-aminobutyric acid receptors: Structure and function. Pharmacol Rev. 2002; 54:247–264. [PubMed: 12037141]

88. Pinard A, Seddik R, Bettler B. GABA_B receptors: Physiological functions and mechanisms of diversity. Adv Pharmacol (San Diego Calif). 2010; 58:231–255.

89. Padgett, CL., Slesinger, PA. GABA_B receptor coupling to G-proteins and ion channels. In: Thomas, PB., editor. Advances in Pharmacology. Vol. 58. Academic Press; San Diego, CA, USA: 2010. p. 123-147.

90. Kullmann DM, Ruiz A, Rusakov DM, Scott R, Semyanov A, Walker MC. Presynaptic, extrasynaptic and axonal GABA_A receptors in the CNS: Where and why. Prog Biophys Mol Biol. 2005; 87:33–46. [PubMed: 15471589]

91. Bettler B, Tiao JYH. Molecular diversity, trafficking and subcellular localization of GABA_B receptors. Pharmacol Ther. 2006; 110:533–543. [PubMed: 16644017]

92. Martin SC, Heinrich G, Sandell JH. Sequence and expression of glutamic acid decarboxylase isoforms in the developing zebrafish. J Comp Neurol. 1998; 396:253–266. [PubMed: 9634146]

93. Mueller T, Vernier P, Wullimann MF. A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared with mouse. J Comp Neurol. 2006; 494:620–634. [PubMed: 16374795]

94. Mueller, T., Wullimann, MF. Atlas of Early Zebrafish Brain Development. 2nd. Elsevier; San Diego, CA, USA: 2016. Chapter 3—Interpretation of data—How to use the atlas: Analysis; p. 159-204.

95. Higashijima SI, Schaefer M, Fetcho JR. Neurotransmitter properties of spinal interneurons in embryonic and larval zebrafish. J Comp Neurol. 2004; 480:19–37. [PubMed: 15515025]

96. Kim YJ, Nam RH, Yoo YM, Lee CJ. Identification and functional evidence of GABAergic neurons in parts of the brain of adult zebrafish (Danio rerio). Neurosci Lett. 2004; 355:29–32. [PubMed: 14729227]

97. Mueller T, Guo S. The distribution of GAD67-mRNA in the adult zebrafish (teleost) forebrain reveals a prosomeric pattern and suggests previously unidentified homologies to tetrapods. J Comp Neurol. 2009; 516:553–568. [PubMed: 19673006]

98. Delgado L, Schmachtenberg O. Immunohistochemical localization of GABA, GAD65, and the receptor subunits GABA_A1 and GABA_B1 in the zebrafish cerebellum. Cerebellum. 2008; 7:444–450. [PubMed: 18636866]

99. Goldman-Rakic PS. The cortical dopamine system: Role in memory and cognition. Adv Pharmacol(San Diego Calif). 1998; 42:707–711.

100. Schultz W. Updating dopamine reward signals. Curr Opin Neurobiol. 2013; 23:229–238. [PubMed: 23267662]

101. Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S. The nature of dopamine dysfunction in schizophrenia and what this means for treatment: Meta-analysis of imaging studies. Arch Gen Psychiatry. 2012; 69:776–786. [PubMed: 22474070]

102. Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011; 508:1–12. [PubMed: 21176768]

103. Cho S, Neff NH, Hadjiconstantinou M. Regulation of tyrosine hydroxylase and aromatic L-amino acid decarboxylase by dopaminergic drugs. Eur J Pharmacol. 1997; 323:149–157. [PubMed: 9128833]

104. Gnegy, ME. Chapter 14—Catecholamines. In: Brady, ST.Siegel, GJ.Albers, RW., Price, DL., editors. Basic Neurochemistry. 8th. Academic Press; New York, NY, USA: 2012. p. 283-299.

105. Benarroch EE. Monoamine transporters: Structure, regulation, and clinical implications. Neurology. 2013; 81:761–768. [PubMed: 23902707]

106. Lawal HO, Krantz DE. Slc18: Vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol Asp Med. 2013; 34:360–372.
107. Rudnick G, Kramer R, Blakely RD, Murphy DL, Verrey F. The SLC6 transporters: Perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflüg Arch— Eur J Physiol. 2014; 466:25–42.

108. Shih JC, Chen K, Ridd MJ. Role of MAO A and B in neurotransmitter metabolism and behavior. Pol J Pharmacol. 1999; 51:25–29. [PubMed: 10389141]

109. Callier S, Snapyan M, Le Crom S, Prou D, Vincent JD, Vernier P. Evolution and cell biology of dopamine receptors in vertebrates. Biol Cell/Under Auspices Eur Cell Biol Organ. 2003; 95:489–502.

110. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: From structure to function. Physiol Rev. 1998; 78:189–225. [PubMed: 9457173]

111. Beaulieu JM, Espinoza S, Gainetdinov RR. Dopamine receptors—IUPHAR review 13. Br J Pharmacol. 2015; 172:1–23. [PubMed: 25671228]

112. Candy J, Collet C. Two tyrosine hydroxylase genes in teleosts. Biochim Biophys Acta. 2005; 1727:35–44. [PubMed: 15652156]

113. Filippi A, Mahler J, Schweitzer J, Driever W. Expression of the paralogous tyrosine hydroxylase encoding genes th1 and th2 reveals the full complement of dopaminergic and noradrenergic neurons in zebrafish larval and juvenile brain. J Comp Neurol. 2010; 518:423–438. [PubMed: 20017209]

114. Yamamoto K, Ruuskanen JO, Wullimann MF, Vernier P. Two tyrosine hydroxylase genes in vertebrates new dopaminergic territories revealed in the zebrafish brain. Mol Cell Neurosci. 2010; 43:394–402. [PubMed: 20123022]

115. Yamamoto K, Ruuskanen JO, Wullimann MF, Vernier P. Differential expression of dopaminergic cell markers in the adult zebrafish forebrain. J Comp Neurol. 2011; 519:576–598. [PubMed: 2192085]

116. Ren G, Li S, Zhong H, Lin S. Zebrafish tyrosine hydroxylase 2 gene encodes tryptophan hydroxylase. J Biol Chem. 2013; 288:22451–22459. [PubMed: 23754283]

117. Setini A, Pierucci F, Senatori O, Nicotra A. Molecular characterization of monoamine oxidase in zebrafish (Danio rerio). Comp Biochem Physiol Part B Biochem Mol Biol. 2005; 140:153–161.

118. Anichtchik O, Sallinen V, Peitsaro N, Panula P. Distinct structure and activity of monoamine oxidase in the brain of zebrafish. (Danio rerio) J Comp Neurol. 2006; 498:593–610. [PubMed: 16917825]

119. Sallinen V, Sundvik M, Reenilä I, Peitsaro N, Khrustalyov D, Anichtchik O, Toleikyte G, Kaslin J, Panula P. Hyperserotonergic phenotype after monoamine oxidase inhibition in larval zebrafish. J Neurochem. 2009; 109:403–415. [PubMed: 19222706]

120. Alazizi A, Liu MY, Williams FE, Kurogi K, Sakakibara Y, Suiko M, Liu MC. Identification, characterization, and ontogenic study of a catechol o-methyltransferase from zebrafish. Aquat Toxicol. 2011; 102:18–23. [PubMed: 21371608]

121. Sprague J, Bayraktaroglu L, Clements D, Conlin T, Fashena D, Frazer K, Haendel M, Howe DG, Mani P, Ramachandran S, et al. The zebrafish information network: The zebrafish model organism database. Nucleic Acids Res. 2006; 34:DS81–D585. [PubMed: 16381936]

122. Ruuskanen JO, Laurila J, Xhaard H, Rantanen VV, Vuoriluoto K, Wurster S, Marjamaki A, Vainio M, Johnson MS, Scheinin M. Conserved structural, pharmacological and functional properties among the three human and five zebrafish alpha-2-adrenoceptors. Br J Pharmacol. 2005; 144:165–177. [PubMed: 15655522]

123. Schweitzer J, Löhr H, Filippi A, Driever W. Dopaminergic and noradrenergic circuit development in zebrafish. Dev Neurobiol. 2012; 72:256–268. [PubMed: 21567980]

124. Rink E, Wullimann MF. Development of the catecholaminergic system in the early zebrafish brain: An immunohistochemical study. Dev Brain Res. 2002; 137:89–100. [PubMed: 12128258]

125. Rink E, Wullimann MF. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior thalamus). Brain Res. 2001; 889:316–330. [PubMed: 11166725]

126. Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M. Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol. 1997; 377:577–595. [PubMed: 9007194]
127. Parker MO, Brock AJ, Walton RT, Brennan CH. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front Neural Circuits. 2013; 7:1–13. [PubMed: 23440175]

128. Panula P, Sundvik M, Karlstedt K. Developmental roles of brain histamine. Trends Neurosci. 2014; 37:159–168. [PubMed: 24486025]

129. Barreiro-Iglesias A, Mysiak KS, Adrio F, Rodicio MC, Becker CG, Becker T, Anadon R. Distribution of glycinergeric neurons in the brain of glycine transporter-2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain-spinal descending systems. J Comp Neurol. 2013; 521:389–425. [PubMed: 22736487]

130. Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008; 88:1183–1241. [PubMed: 18626069]

131. Tomkins DM, Sellers EM. Addiction and the brain: The role of neurotransmitters in the cause and treatment of drug dependence. Can Med Assoc J. 2001; 164:817–821. [PubMed: 11276551]

132. Dalley JW, Roiser JP. Dopamine, serotonin and impulsivity. Neuroscience. 2012; 215:42–58. [PubMed: 22542672]

133. Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: A neurotransmitter correlate of consciousness? Trends Neurosci. 1999; 22:273–280. [PubMed: 10354606]

134. Filippi A, Mueller T, Driever W. Vglut2 and gad expression reveal distinct patterns of dual GABAergic versus glutamatergic cotransmitter phenotypes of dopaminergic and noradrenergic neurons in the zebrafish brain. J Comp Neurol. 2014; 522:2019–2037. [PubMed: 24374659]

135. Ma PM. Catecholaminergic systems in the zebrafish. III. Organization and projection pattern of medullary dopaminergic and noradrenergic neurons. J Comp Neurol. 1997; 381:411–427. [PubMed: 9136799]

136. McLean DL, Fetcho JR. Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish. J Comp Neurol. 2004; 480:38–56. [PubMed: 15515022]

137. Kaslin J, Panula P. Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol. 2001; 440:342–377. [PubMed: 11745628]

138. Ma PM. Catecholaminergic systems in the zebrafish. II. Projection pathways and pattern of termination of the locus coeruleus. J Comp Neurol. 1994; 344:256–269. [PubMed: 8077460]

139. Daubert EA, Condron BG. Serotonin: A regulator of neuronal morphology and circuitry. Trends Neurosci. 2010; 33:424–434. [PubMed: 20561690]

140. Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: News from mouse molecular genetics. Nat Rev Neurosci. 2003; 4:1002–1012. [PubMed: 14618156]

141. Lucki I. The spectrum of behaviors influenced by serotonin. Biol Psychiatry. 1998; 44:151–162. [PubMed: 9693387]

142. Parsey RV. Serotonin receptor imaging: Clinically useful. J Nucl Med. 2010; 51:1495–1498. [PubMed: 20847181]

143. Walther DJ, Bader M. A unique central tryptophan hydroxylase isoform. Biochem Pharmacol. 2003; 66:1673–1680. [PubMed: 14563478]

144. Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: A review. J Vet Pharmacol Ther. 2008; 31:187–199. [PubMed: 18471139]

145. Hensler, JG. Chapter 15—Serotonin. In: Brady, ST; Siegel, GJ; Albers, RW; Price, DL, editors. Basic Neurochemistry. 8th. Academic Press; New York, NY, USA: 2012. p. 300-322.

146. Nichols DE, Nichols CD. Serotonin receptors. Chem Rev. 2008; 108:1614–1641. [PubMed: 18476671]

147. Bellipanni G, Rink E, Bally-Cuif L. Cloning of two tryptophan hydroxylase genes expressed in the diencephalon of the developing zebrafish brain. Mech Dev. 2002; 119(Suppl);S215–S220. [PubMed: 14516688]

148. Teraoka H, Russell C, Regan J, Chandrasekhar A, Concha ML, Yokoyama R, Higashi K, Takeuchi M, Dong W, Hiraga T, et al. Hedgehog and fgf signaling pathways regulate the development of tphR-expressing serotonergic raphe neurons in zebrafish embryos. J Neurobiol. 2004; 60:275–288. [PubMed: 15281067]
149. Lillesaar C. The serotonergic system in fish. J Chem Neuroanat. 2011; 41:294–308. [PubMed: 21635948]

150. Herculano AM, Maximino C. Serotonergic modulation of zebrafish behavior: Towards a paradox. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014; 55:50–66.

151. Lillesaar C, Tannhauser B, Stigloher C, Kremmer E, Bally-Cuif L. The serotonergic phenotype is acquired by converging genetic mechanisms within the zebrafish central nervous system. Dev Dyn. 2007; 236:1072–1084. [PubMed: 17304529]

152. Norton WHJ, Folchert A, Bally-Cuif L. Comparative analysis of serotonin receptor (HTR1A/ HTR1B families) and transporter (slc6a4a/b) gene expression in the zebrafish brain. J Comp Neurol. 2008; 511:521–542. [PubMed: 18839395]

153. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron. 2012; 76:116–129. [PubMed: 23040810]

154. Alkondon M, Rocha ES, Maelicke A, Albuquerque EX. Diversity of nicotinic acetylcholine receptors in rat brain. V. Alpha-bungarotoxin-sensitive nicotinic receptors in olfactory bulb neurons and presynaptic modulation of glutamate release. J Pharmacol Exp Ther. 1996; 278:1460–1471. [PubMed: 8819534]

155. Kenney JW, Florian C, Portugal GS, Abel T, Gould TJ. Involvement of hippocampal jun-n terminal kinase pathway in the enhancement of learning and memory by nicotine. Neurpsychopharmacology. 2010; 35:483–492. [PubMed: 19776730]

156. Fisher, SK., Wonnacott, S. Chapter 13—Acetylcholine. In: Brady, ST.Siegel, GJ.Albers, RW., Price, DL., editors. Basic Neurochemistry. 8th. Academic Press; New York, NY, USA: 2012. p. 258-282.

157. Yakel JL. Cholinergic receptors: Functional role of nicotinic ach receptors in brain circuits and disease. Pflüg Arch Eur J Physiol. 2013; 465:441–450.

158. Brown DA. Muscarinic acetylcholine receptors (mAChRs) in the nervous system: Some functions and mechanisms. J Mol Neurosci. 2010; 41:340–346. [PubMed: 20446119]

159. Zirger JM, Beattie CE, McKay DB, Thomas Boyd R. Cloning and expression of zebrafish neuronal nicotinic acetylcholine receptors. Gene Expr Patterns. 2003; 3:747–754. [PubMed: 14643683]

160. Papke RL, Ono F, Stokes C, Urban JM, Boyd RT. The nicotinic acetylcholine receptors of zebrafish and an evaluation of pharmacological tools used for their study. Biochem Pharmacol. 2012; 84:352–365. [PubMed: 22580045]

161. Williams FE, Messer WS Jr. Muscarinic acetylcholine receptors in the brain of the zebrafish (Danio rerio) measured by radioligand binding techniques. Comp Biochem Physiol Part C: Toxicol Pharmacol. 2004; 137:349–353.

162. Kaslin J, Nystedt JM, Ostergard M, Peitsaro N, Panula P. The orexin/hypocretin system in zebrafish is connected to the aminergic and cholinergic systems. J Neurosci. 2004; 24:2678–2689. [PubMed: 15028760]

163. Clemente D, Porteros A, Weruaga E, Alonso JR, Arenzana FJ, Aijón J, Arévalo R. Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis. J Comp Neurol. 2004; 474:75–107. [PubMed: 15156580]

164. Mueller T, Vernier P, Wullimann MF. The adult central nervous cholinergic system of a neurogenetic model animal, the zebrafish. Danio rerio Brain Res. 2004; 1011:156–169. [PubMed: 15157802]

165. Arenzana FJ, Clemente D, Sánchez-González R, Porteros Á, Aijón J, Arévalo R. Development of the cholinergic system in the brain and retina of the zebrafish. Brain Res Bull. 2005; 66:421–425. [PubMed: 16144624]

166. Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci. 2003; 4:121–130. [PubMed: 12563283]

167. Sundvik M, Kudo H, Toivonen P, Rozov S, Chen YC, Panula P. The histaminergic system regulates wakefulness and orexin/hypocretin neuron development via histamine receptor H1 in zebrafish. FASEB J. 2011; 25:4338–4347. [PubMed: 21885652]

168. Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M. Histaminergic transmission in the mammalian brain. Physiol Rev. 1991; 71:1–51. [PubMed: 1846044]

Toxics. Author manuscript; available in PMC 2017 July 18.
169. Leurs, R., Hough, L.B., Blandina, P., Haas, H.L. Chapter 16—Histamine. In: Brady, ST.Siegel, GJ.Albers, RW., Price, DL., editors. Basic Neurochemistry. 8th. Academic Press; New York, NY, USA: 2012. p. 323-341.

170. Eriksson KS, Peitsaro N, Karlstedt K, Kaslin J, Panula P. Development of the histaminergic neurons and expression of histidine decarboxylase mRNA in the zebrafish brain in the absence of all peripheral histaminergic systems. Eur J Neurosci. 1998; 10:3799–3812. [PubMed: 9875358]

171. Onodera K, Yamatodani A, Watanabe T, Wadas H. Neuropharmacology of the histaminergic neuron system in the brain and its relationship with behavioral disorders. Prog Neurobiol. 1994; 42:685–702. [PubMed: 7938544]

172. Kukko-Lukjanov TK, Panula P. Subcellular distribution of histamine, GABA and galanin in tuberomamillary neurons in vitro. J Chem Neuroanat. 2003; 25:279–292. [PubMed: 12842273]

173. Connelly WM, Shenton FC, Lethbridge N, Leurs R, Waldvogel HJ, Faull RL, Lees G, Chazot PL. The histamine h4 receptor is functionally expressed on neurons in the mammalian CNS. Br J Pharmacol. 2009; 157:55–63. [PubMed: 19413571]

174. Drutel G, Peitsaro N, Karlstedt K, Wieland K, Smit MJ, Timmerman H, Panula P, Leurs R. Identification of rat H3 receptor isoforms with different brain expression and signaling properties. Mol Pharmacol. 2001; 59:1–8. [PubMed: 11125017]

175. Giovannini MG, Efoudebe M, Passani MB, Baldi E, Bucherelli C, Giachi F, Corradetti R, Blandina P. Improvement in fear memory by histamine-elicited ERK2 activation in hippocampal CA3 cells. J Neurosci. 2003; 23:9016–9023. [PubMed: 14534235]

176. Mariottini C, Scartabelli T, Bongers G, Arrigucci S, Nosí D, Leurs R, Chiarugi A, Blandina P, Pellegrini-Giampietro DE, Passani MB. Activation of the histaminergic H3 receptor induces phosphorylation of the Akt/GSK-3β pathway in cultured cortical neurons and protects against neurotoxic insults. J Neurochem. 2009; 110:1469–1478. [PubMed: 19549072]

177. Peitsaro N, Sundvik M, Anichtchik OV, Kaslin J, Panula P. Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior. Biochem Pharmacol. 2007; 73:1205–1214. [PubMed: 17266939]

178. Sundvik M, Panula P. Organization of the histaminergic system in adult zebrafish (Danio rerio) brain: Neuron number, location, and cotransmitters. J Comp Neurol. 2012; 520:3827–3845. [PubMed: 22522821]

179. McDearmid JR, Liao M, Drapeau P. Glycine receptors regulate interneuron differentiation during spinal network development. Proc Natl Acad Sci USA. 2006; 103:9679–9684. [PubMed: 16763051]

180. Hernandez MS, Troncone LR. Glycine as a neurotransmitter in the forebrain: A short review. J Neural Trans (Vienna Austria: 1996). 2009; 116:1551–1560.

181. Raiteri L, Stigliani S, Usai C, Diaspro A, Paluzzi S, Milanese M, Raiteri M, Bonanno G. Functional expression of release-regulating glycine transporters GLYT1 on GABAergic neurons and GLY2 on astrocytes in mouse spinal cord. Neurochem Int. 2008; 52:103–112. [PubMed: 17597258]

182. Bowery NG, Smart TG. GABA and glycine as neurotransmitters: A brief history. Br J Pharmacol. 2006; 147:S109–S119. [PubMed: 16402094]

183. Cummings KA, Popescu GK. Glycine-dependent activation of nmda receptors. J Gen Physiol. 2015; 145:513–527. [PubMed: 25964432]

184. Yevenes GE, Peoples RW, Tapia JC, Parodi J, Soto X, Olate J, Aguayo LG. Modulation of glycine-activated ion channel function by G-protein βγ subunits. Nat Neurosci. 2003; 6:819–824. [PubMed: 12858180]

185. Fucile S, de Saint Jan D, David-Watine B, Korn H, Bregestovski P. Comparison of glycine and GABA actions on the zebrafish homomeric glycine receptor. J Physiol. 1999; 517(Pt 2):369–383. [PubMed: 10332088]

186. Imboden M, Devignot V, Goblet C. Phylogenetic relationships and chromosomal location of five distinct glycine receptor subunit genes in the teleost Danio rerio. Dev Genes Evol. 2001; 211:415–422. [PubMed: 11685575]
187. Higashijima S, Mandel G, Fetcho JR. Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish. J Comp Neurol. 2004; 480:1–18. [PubMed: 15515020]

188. Moly PK, Ikenaga T, Kamihagi C, Islam AFMT, Hatta K. Identification of initially appearing glycine-immunoreactive neurons in the embryonic zebrafish brain. Dev Neurobiol. 2014; 74:616–632. [PubMed: 24318965]

189. Joca SR, Moreira FA, Wegener G. Atypical neurotransmitters and the neurobiology of depression. CNS Neurol Disord-Drug Targets. 2015; 14:1001–1011. [PubMed: 26350337]

190. Holmqvist, B., Ebbesson, L., Alm, P. Nitric oxide and the zebrafish (Danio rerio): Developmental neurobiology and brain neurogenesis. In: Bruno, T., Barry, T., editors. Advances in Experimental Biology. Vol. 1. Elsevier; Amsterdam, The Netherlands: 2007. p. 229-465.

191. Chatterjee D, Gerlai R. High precision liquid chromatography analysis of dopaminergic and serotonergic responses to acute alcohol exposure in zebrafish. Behav Brain Res. 2009; 200:208–213. [PubMed: 19378384]

192. Milanese C, Sager JJ, Bai Q, Farrell TC, Cannon JR, Greenamyre JT, Burton EA. Hypokinesia and reduced dopamine levels in zebrafish lacking β- and γ1-synucleins. J Biol Chem. 2012; 287:2971–2983. [PubMed: 22128150]

193. Wirbisky SE, Weber GJ, Lee JW, Cannon JR, Freeman JL. Novel dose-dependent alterations in excitatory GABA during embryonic development associated with lead (Pb) neurotoxicity. Toxicol Lett. 2014; 229:1–8. [PubMed: 24875535]

194. Pan Y, Chatterjee D, Gerlai R. Strain dependent gene expression and neurochemical levels in the brain of zebrafish: Focus on a few alcohol related targets. Physiol Behav. 2012; 107:773–780. [PubMed: 22313674]

195. Tuñi S, Leonards P, Lamoree M, de Boer J, Legler J, Legradi J. Changes in neurotransmitter profiles during early zebrafish (Danio rerio) development and after pesticide exposure. Environ Sci Technol. 2016; 50:3222–3230. [PubMed: 26866575]

196. Jones LJ, McCutcheon JE, Young AMJ, Norton WHJ. Neurochemical measurements in the zebrafish brain. Front Behav Neurosci. 2015; 9:246. [PubMed: 26441575]

197. Lopez Patino MA, Yu L, Yamamoto BK, Zhidanova IV. Gender differences in zebrafish responses to cocaine withdrawal. Physiol Behav. 2008; 95:36–47. [PubMed: 18499199]

198. Cambier S, Gonzalez P, Mesmer-Dudons N, Bréthes D, Fujimura M, Bourdineaud J-P. Effects of dietary methylmercury on the zebrafish brain: Histological, mitochondrial, and gene transcription analyses. BioMetals. 2012; 25:165–180. [PubMed: 21947502]

199. Wirbisky SE, Weber GJ, Sepulveda MS, Xiao C, Cannon JR, Freeman JL. Developmental origins of neurotransmitter and transcriptome alterations in adult female zebrafish exposed to atrazine during embryogenesis. Toxicology. 2015; 333:156–167. [PubMed: 25929836]

200. Freeman JL, Weber GJ, Peterson SM, Nie LH. Embryonic ionizing radiation exposure results in expression alterations of genes associated with cardiovascular and neurological development, function, and disease and modified cardiovascular function in zebrafish. Front Genet. 2014; 5:268. [PubMed: 25147559]

201. Peterson SM, Zhang J, Weber G, Freeman JL. Global gene expression analysis reveals dynamic and developmental stage-dependent enrichment of lead-induced neurological gene alterations. Environ Health Perspect. 2011; 119:615–621. [PubMed: 21147602]

202. Weber GJ, Sepulveda MS, Peterson SM, Lewis SS, Freeman JL. Transcriptome alterations following developmental atrazine exposure in zebrafish are associated with disruption of neuroendocrine and reproductive system function, cell cycle, and carcinogenesis. Toxicol Sci. 2013; 132:458–466. [PubMed: 23358194]

203. Scholz S. Zebrafish embryos as an alternative model for screening of drug-induced organ toxicity. Arch Toxicol. 2013; 87:767–769. [PubMed: 23543011]

204. Wang Z, Gerstein M, Snyder M. RNA-seq: A revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10:57–63. [PubMed: 19015660]

205. Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SGP, Lim AYM, Hajan HS, Collas P, Bourque G, et al. Zebrafish mRNA sequencing deciphered novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res. 2011; 21:1328–1338. [PubMed: 21555364]
206. Ahmad F, Richardson MK, Noldus LPJJ, Tegelenbosch RAJ. Zebrafish embryos and larvae in
behavioural assays. Behaviour. 2012; 149:1241–1281.

207. Bailey J, Oliveri A, Levin ED. Zebrafish model systems for developmental neurobehavioral
toxicology. Birth Defects Res Part C Embryo Today. 2013; 99:14–23.

208. Blaser RE, Chadwick L, McGinnis GC. Behavioral measures of anxiety in zebrafish (Danio
rerio). Behav Brain Res. 2010; 208:56–62. [PubMed: 19896505]

209. Budick SA, O’Malley DM. Locomotor repertoire of the larval zebrafish: Swimming, turning and
prey capture. J Exp Biol. 2000; 203:2565–2579. [PubMed: 10934000]

210. Buske C, Gerlai R. Diving deeper into zebrafish development of social behavior: Analyzing high
resolution data. J Neurosci Methods. 2014; 234:66–72. [PubMed: 24970579]

211. Champagne DL, Hoefnagels CCM, de Kloet RE, Richardson MK. Translating rodent behavioral
repertoire to zebrafish (Danio rerio): Relevance for stress research. Behav Brain Res. 2010;
214:332–342. [PubMed: 20540966]

212. Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK,
Tien AK, Tien DH, et al. Understanding behavioral and physiological phenotypes of stress and
anxiety in zebrafish. Brain Behav Res. 2009; 205:38–44. [PubMed: 19540270]

213. Gerlai R. Fish in behavior research: Unique tools with a great promise! J Neurosci Methods.
2014; 234:54–58. [PubMed: 24768578]

214. Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Bormer M, Chawla JS, Craddock C, Kyzar
DJ, Roth A, Landsman S, et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and
beyond. Zebrafish. 2013; 10:70–86. [PubMed: 23590400]

215. Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain
disorders. Trends Pharmacol Sci. 2014; 35:63–75. [PubMed: 24412421]

216. Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A Jr.
Measuring anxiety in zebrafish: A critical review. Behav Brain Res. 2010; 214:157–171.
[PubMed: 20510300]

217. Nguyen M, Stewart AM, Kalueff AV. Aquatic blues: Modeling depression and antidepressant
action in zebrafish. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014; 55:26–39.

218. Steenbergen PJ, Richardson MK, Champagne DL. The use of the zebrafish model in stress
research. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011; 35:1432–1451.

219. Kalueff AV, Echevarria DJ, Homechaudhuri S, Stewart AM, Collier AD, Kaluyeve AA, Li S, Liu
Y, Chen P, Wang J, et al. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology
and toxicology research. Aquat Toxicol. 2016; 170:297–309. [PubMed: 26372090]

220. Parker MO. Adult vertebrate behavioural aquatic toxicology: Reliability and validity. Aquat
Toxicol. 2016; 170:323–329. [PubMed: 26358137]

221. Connaughton VP, Behar TN, Liu WLS, Massey SC. Immunocytochemical localization of
excitatory and inhibitory neurotransmitters in the zebrafish retina. Vis Neurosci. 1999; 16:483–
490. [PubMed: 10349969]

222. DeCarvalho TN, Subedi A, Rock J, Harfe BD, Thissie C, Thissie B, Halpern ME, Hong E.
Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish. Genesis. 2014;
52:636–655. [PubMed: 24753112]

223. Fetcho JR, O’Malley DM. Imaging neuronal networks in behaving animals. Curr Opin Neurobiol.
1997; 7:832–838. [PubMed: 9464974]

224. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL,
Chen TW, Bargmann CI, et al. An optimized fluorescent probe for visualizing glutamate
neurotransmission. Nat Methods. 2013; 10:162–170. [PubMed: 23314171]

225. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ. Whole-brain functional imaging at cellular
resolution using light-sheet microscopy. Nat Methods. 2013; 10:413–420. [PubMed: 23524393]

226. Garaschuk O, Milos RI, Konnerth A. Targeted bulk-loading of fluorescent indicators for two-
photon brain imaging in vivo. Nat Protoc. 2006; 1:380–386. [PubMed: 17406260]

227. O’Malley DM, Zhou Q, Gahtan E. Probing neural circuits in the zebrafish: A suite of optical
techniques. Methods. 2003; 30:49–63. [PubMed: 12695103]
228. Arrenberg AB, Driever W. Integrating anatomy and function for zebrafish circuit analysis. Front Neural Circuits. 2013; 7
229. Bruni G, Lakhani P, Kokel D. Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish. Front Pharmacol. 2014; 5
230. Magno LDP, Fontes A, Goncalves BMN, Gouveia A. Pharmacological study of the light/dark preference test in zebrafish (Danio rerio): Waterborne administration. Pharmacol Biochem Behav. 2015; 135:169–176. [PubMed: 26026898]
231. Maximino C, daSilva AWB, Gouveia A Jr, Herculano AM. Pharmacological analysis of zebrafish (Danio rerio) scototaxis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011; 35:624–631.
232. McCarroll MN, Gendelev L, Keiser MJ, Kokel D. Leveraging large-scale behavioral profiling in zebrafish to explore neuroactive polypharmacology. ACS Chem Biol. 2016; 11:842–849. [PubMed: 26845413]
233. Rihel J, Schier AF. Behavioral screening for neuroactive drugs in zebrafish. Dev Neurobiol. 2012; 72:373–385. [PubMed: 21567979]
234. Stewart AM, Greico F, Tegelenbosch RAJ, Kyzar EJ, Nguyen M, Kaluyeva A, Song C, Noldus L, Kalueff AV. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J Neurosci Methods. 2015; 255:66–74. [PubMed: 26238728]
235. Maximino C, Herculano AM. A review of monoaminergic neuropsychopharmacology in zebrafish. Zebrafish. 2010; 7:359–378. [PubMed: 21158565]
236. Rico EP, Rosemberg DB, Dias RD, Bogo MR, Bonan CD. Ethanol alters acetylcholinesterase activity and gene expression in zebrafish brain. Toxicol Lett. 2007; 174:25–30. [PubMed: 1788594]
237. Chatterjee D, Shams S, Gerlai R. Chronic and acute alcohol administration induced neurochemical changes in the brain: Comparison of distinct zebrafish populations. Amino Acids. 2014; 46:921–930. [PubMed: 24381007]
238. Puttonen H, Sundvik M, Rozov S, Chen YC, Panula P. Acute ethanol treatment upregulates th1, th2 and hdc in larval zebrafish in stable networks. Front Neural Circuits. 2013; 7
239. Gerlai R, Ahmad F, Prajapati S. Differences in acute alcohol-induced behavioral responses among zebrafish populations. Alcohol Clin Exp Res. 2008; 32:1763–1773. [PubMed: 18652595]
240. Gerlai R, Lee V, Blaser R. Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol Biochem Behav. 2006; 85:752–761. [PubMed: 17196640]
241. Tran S, Gerlai R. Time-course of behavioural changes induced by ethanol in zebrafish (Danio rerio). Behav Brain Res. 2013; 252:204–213. [PubMed: 23756142]
242. Kurta A, Palestis BG. Effects of ethanol on the shoaling behavior of zebrafish (Danio rerio). Dose-Response. 2010; 8:527–533. [PubMed: 21191489]
243. Pannia E, Tran S, Rampersad M, Gerlai R. Acute ethanol exposure induces behavioural differences in two zebrafish (Danio rerio) strains: A time course analysis. Behav Brain Res. 2014; 259:174–185. [PubMed: 24239692]
244. Bailey JM, Oliveri AN, Zhang C, Frazier JM, Mackinnon S, Cole GJ, Levin ED. Long-term behavioral impairment following acute embryonic ethanol exposure in zebrafish. Neurotoxicol Teratol. 2015; 48:1–8. [PubMed: 25599606]
245. Luchiari AC, Salajan DC, Gerlai R. Acute and chronic alcohol administration: Effects on performance of zebrafish in a latent learning task. Behav Brain Res. 2015; 282:76–83. [PubMed: 25557800]
246. Echevarria DJ, Toms CN, Jouandot DJ. Alcohol-induced behavior change in zebrafish models. Rev Neurosci. 2011; 22:85–93. [PubMed: 21615263]
247. Zenki KC, Mussulini BHM, Rico EP, Oliveira DLD, Rosemberg DB. Effects of ethanol and acetaldehyde in zebrafish brain structures: An in vitro approach on glutamate uptake and on toxicity-related parameters. Toxicol In Vitro. 2014; 28:822–828. [PubMed: 24681127]
248. Levin ED, Bencan Z, Cerutti DT. Anxiolytic effects of nicotine in zebrafish. Physiol Behav. 2007; 90:54–58. [PubMed: 17049956]
249. Bencan Z, Levin ED. The role of α7 and α4β2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol Behav. 2008; 95:408–412. [PubMed: 18671990]
250. Levin ED, Chen E. Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol. 2004; 26:731–735. [PubMed: 15451037]

251. Eddins D, Cerutti D, Williams P, Linney E, Levin ED. Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: Comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol Teratol. 2010; 32:99–108. [PubMed: 19268529]

252. Yu M, Zhang X, Guo L, Tian H, Wang W, Ru S. Anti-estrogenic effect of semicarbazide in female zebrafish (Danio rerio) and its potential mechanisms. Aquat Toxicol. 2016; 170:262–270. [PubMed: 26688189]

253. Roy NM, Arpie B, Lugo J, Linney E, Levin ED, Cerutti D. Brief embryonic strychnine exposure in zebrafish causes long-term adult behavioral impairment with indications of embryonic synaptic changes. Neurotoxicol Teratol. 2012; 34:587–591. [PubMed: 23022260]

254. Wigle DT, Arbuckle TE, Walker M, Wade MG, Liu SL, Krewski D. Environmental hazards: Evidence for effects on child health. J Toxicol Environ Health Part B. 2007; 10:3–39.

255. Tchounwou, PB., Yedjou, CG., Patlolla, AK., Sutton, DJ. Heavy metal toxicity and the environment. In: Luch, A., editor. Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology. Springer Basel; Basel, Switzerland: 2012. p. 133-164.

256. Depledge, MH., Weeks, JM., Bjerregaard, P. Handbook of Ecotoxicology. Blackwell Publishing Ltd; Oxford, UK: 2009. Heavy metals; p. 543-569.

257. Kuhlmann AC, McGlothan JL, Guilarte TR. Developmental lead exposure causes spatial learning deficits in adult rats. Neurosci Lett. 1997; 233:101–104. [PubMed: 9350842]

258. Schwartz J. Low-level lead exposure and children’s IQ: A metaanalysis and search for a threshold. Environ Res. 1994; 65:42–55. [PubMed: 8162884]

259. Baghurst PA, McMichael AJ, Wigg NR, Vimpani GV, Robertson EF, Roberts RJ, Tong SL. Environmental exposure to lead and children’s intelligence at the age of seven years. N Engl J Med. 1992; 327:1279–1284. [PubMed: 1383818]

260. Joe MB, Kahn RS, Tanya F, Auinger P, Lanphear BP. Exposures to environmental toxicants and attention deficit hyperactivity disorder in U.S. Children. Environ Health Perspect. 2006; 114:1904–1909. [PubMed: 17185283]

261. Lee J, Freeman JL. Embryonic exposure to 10 μg L$^{-1}$ lead results in female-specific expression changes in genes associated with nervous system development and function and alzheimer’s disease in aged adult zebrafish brain. Metallomics. 2016; 8:589–596. [PubMed: 26776728]

262. Richetti SK, Rosemberg DB, Ventura-Lima J, Monserrat JM, Bogo MR, Bonan CD. Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure. Neurotoxicology. 2011; 32:116–122. [PubMed: 21074552]
Figure 1.
Distribution of Modulatory Neurotransmitters in the Zebrafish and Human Brain.
Distribution of DA in the zebrafish (left) and human (right) brains (red); (B) Distribution of NE in zebrafish (left) and human (right) brains (blue); (C) Distribution of 5-HT in zebrafish (left) and human (right) brains (green); (D) Distribution of ACh in zebrafish (left) and human (right) brains (yellow); (E) Distribution of histamine in zebrafish (left) and human (right) brains (purple). Brains are not to scale with some simplification of systems that are represented. DA, dopamine; NE, norepinephrine; 5-HT, serotonin; ACh, acetylcholine. Neurotransmitter distributions synthesized from [16,127–133].
Table 1

Zebrafish genes involved in glutamate neurotransmission.

Common Name	Human	Zebrafish	Gene ID	RefSeq	ZFIN ID
Glutamic-oxaloacetic transaminase 1	GOT1	got1	406330	NM_213057	ZDB-GENE-040426-2003
Vesicular glutamate transporter 1 (VGLUT1)	SLC17A7	sk17a7a	795293	NM_001098755	ZDB-GENE-050105-5
		sk17a7b	100331980	XM_009297642	ZDB-GENE-131125-32
Vesicular glutamate transporter 2 (VGLUT2)	SLC17A6	sk17a6a	494492	NM_001098755	ZDB-GENE-050105-4
		sk17a6b	100149756	NM_001128821	ZDB-GENE-030616-554
Vesicular glutamate transporter 3 (VGLUT3)	SLC17A8	slc17a8	563467	NM_001082835	ZDB-GENE-060503-416
Glutamine-oxaloacetic transaminase 2	glula		100000775		ZDB-GENE-030131-688
Glutamate-ammonia ligase (Glutamine synthetase)	GLUL	glub	336473	NM_182866	ZDB-GENE-030131-8417
		gluc	566165	NM_001075114	ZDB-GENE-060929-540
Glutaminase	GLS	glsa	564147	NM_001045044	ZDB-GENE-050204-3
		glsb	564746	NM_688079	ZDB-GENE-030616-550
AMPA Receptors					
GRIA1	griala	798689	NM_205598		ZDB-GENE-020125-1
	griab	403044	NM_205730		ZDB-GENE-020125-2
GRIA2	griala	170450	NM_131894		ZDB-GENE-020125-3
	griab	170451	NM_131895		ZDB-GENE-020125-4
GRIA3	griala	170452	NM_198339		ZDB-GENE-020125-5
	griab	368416	NM_198360		ZDB-GENE-030616-53
GRIA4	griala	407735	NM_214067		ZDB-GENE-020125-7
	griab	336069	NM_212752		ZDB-GENE-030131-8013
Kainate Receptors					
GRIK1	grika	798001	NM_009305317		ZDB-GENE-030131-6502
	grikb	561540	NM_684048		ZDB-GENE-070821-1
GRIK2	grika	556013	NM_009300832		ZDB-GENE-080414-1
	grikb	100334689	NM_009300849.1		–
Common Name	Human	Zebrafish	Gene ID	RefSeq	ZFIN ID
------------	--------	-----------	---------	-----------	-----------------
NMDA Receptors					
GRIK4		grik4	556582	XM_009291736	ZDB-GENE-070821-5
GRIK5		grik5	798791	NM_001328156	ZDB-GENE-070821-6
GRIN1	gri1a		767745	NM_001076714	ZDB-GENE-051202-1
	gri1b		100005675	NM_001144131	ZDB-GENE-051202-2
GRIN2A	gri2aa	563297	XM_686662	ZDB-GENE-070424-129	
	gri2ab	570493	XM_009306215	ZDB-GENE-070424-223	
GRIN2B	gri2ba		–	–	ZDB-GENE-090821-2
	gri2bb	559976	NM_001128337	ZDB-GENE-061207-27	
GRIN2C	gri2ca	100003342	XM_002661129	ZDB-GENE-070822-3	
	gri2cb	100333648	XM_009306796	ZDB-GENE-100308-2	
GRIN2D	gri2da	449864	XM_009294079	ZDB-GENE-041008-124	
	gri2db	–	–	–	ZDB-GENE-100920-7
GRIN3A	gri3a	564832	XM_009305086	ZDB-GENE-130530-780	
	gri3b	566411	XM_009298558	ZDB-GENE-070912-354	
GRIN3B	gri3b	100333101	XM_009305920	ZDB-GENE-131122-77	
Metabotropic Receptors					
GRM1	gm1a	555576	NM_001044788	ZDB-GENE-030131-7893	
	gm1b	100150246	NM_001302252	ZDB-GENE-090821-3	
GRM5	gm5a	568406	NM_001328710	ZDB-GENE-090821-9	
	gm5b	100332913	NM_001302238	ZDB-GENE-090821-6	
GRM2	gm2a	336153	NM_001302225	ZDB-GENE-030131-8097	
	gm2b	564461	NM_001287547	ZDB-GENE-060201-5	
GRM3	gm3	565256	NM_001128343	ZDB-GENE-061009-13	
GRM4	gm4	567181	NM_001302241	ZDB-GENE-030131-5781	
	gm6a	568484	NM_001123292	ZDB-GENE-060208-1	
GRM6	gm6b	565450	NM_001080020	ZDB-GENE-021120-2	
GRM7	gm8a	–	–	–	
	gm8b	–	–	–	
GRM8	gm8a	792371	NM_001302228	ZDB-GENE-110421-2	
	gm8b	569768	NM_001287539	ZDB-GENE-110421-3	
Common Name	Human	Zebrafish	Gene ID	RefSeq	ZFIN ID
---------------	-------	-----------	---------	----------	------------------
SLC1A1	sklal	436939	NM_001002666	ZDB-GENE-040718-414	
	sklala2	560802	NM_001190305	ZDB-GENE-100422-11	
SLC1A2	sklala2a	335836	NM_199979	ZDB-GENE-030131-7779	
	sklala2b	323439	NM_212640	ZDB-GENE-030131-159	
SLC1A3	sklala3a	556181	NM_001190303	ZDB-GENE-090708-3	
SLC1A4	sklala4	368885	NM_001002513	ZDB-GENE-030616-566	
SLC1A5	sklala5	100002129	NM_001190755	ZDB-GENE-070901-4	
SLC1A6	sklala6	559270	NM_001109703	ZDB-GENE-071004-45	
SLC1A7	sklala7a	100170783	NM_001291344	ZDB-GENE-061009-24	
	sklala7b	100463167	NM_001190760	ZDB-GENE-101111-7	
SLC1A8	sklala8a	570702	XM_694211	ZDB-GENE-101111-8	
	sklala8b	564474	NM_0011908516	ZDB-GENE-070912-552	
SLC1A9	sklala9	100463516	NM_001190759	ZDB-GENE-101111-9	

*Zebrafish grm2b has previously been known as grm7.
Table 2

Zebrafish genes involved in GABA neurotransmission.

Common Name	Human	Zebrafish	Gene ID	RefSeq	ZFIN ID
Na-K-Cl cotransporter 1 (NKCC1)	SLC12A2	slc12a2	415170	NM_001002080	ZDB-GENE-040625-53
K-Cl cotransporter 2 (KCC1)	SLC12A5	slc12a5	797331	NM_001302243	ZDB-GENE-120927-3
4-aminobutyrate transaminase	ABAT	abat	378968	NM_201498	ZDB-GENE-031006-4
Glutamate decarboxylase	GAD1	gada1	100329827	XM_005167412	ZDB-GENE-070912-472
	gadb1	378441	NM_194419	ZDB-GENE-030909-3	
	GAD2	gada2	550403	NM_001017708	ZDB-GENE-030909-9
Vesicular GABA transporter (VGAT)	SLC32A	slc32a1	798575	NM_001080701	ZDB-GENE-061201-1
GABA Transporter 1 (GAT1)	SLC6A1	slc6a1	692318	NM_001045287	ZDB-GENE-060519-23
	slc6a1b	492490	NM_001007362	ZDB-GENE-041114-57	
	slc6a1l	568985	XM_092346	ZDB-GENE-041210-296	
GABA Transporter 3 (GAT3)	SLC6A1l	slc6a1la	558960	NM_001098387	ZDB-GENE-030131-3729
	slc6a1lb	100150472	XM_001919885	ZDB-GENE-121116-2	
Succinic semialdehyde dehydrogenase	ALDH5A	aldh5a1	565235	NM_001110468	ZDB-GENE-070228-2
GABA Receptors					
GABRA1	gabra1	768183	NM_001077326	ZDB-GENE-061013-194	
GABRA2	gabra2	100150704	XM_009307207	ZDB-GENE-141216-16	
GABRA3	gabra3	100538116	XM_009295708	ZDB-GENE-091204-365	
GABRA4		–	–	–	ZDB-GENE-081013-194
GABRA5	gabra5	799124	XM_001339475	ZDB-GENE-081104-30	
	gabra6a	393704	NM_200731	ZDB-GENE-040426-1692	
	gabra6b	559693	XM_002667357	ZDB-GENE-080815-1	
GABA_A Receptor Subunit α					
GABRB1	gabrb1	10033177	XM_002664133	ZDB-GENE-090313-230	
GABRB2	gabrb2	336252	NM_001024387	ZDB-GENE-030131-8196	
Common Name	Human	Zebrafish	Gene ID	RefSeq	ZFIN ID
--------------	---------	-----------	-------------	-------------------	-------------------
GABRB2	gabrb2	100332196	XM_00517480	ZDB-GENE-111215-5	
GABRB3	gabrb3	566922	XM_005166079	ZDB-GENE-101102-2	
	gabrb4	566514	XM_005173874	ZDB-GENE-070424-211	
			XM_017353011		
GABA_γ Receptor Subunit γ	GABRG1	-	-	-	-
	GABRG2	gubrg2	553402	NM_001256250	ZDB-GENE-091118-65
	GABRG3	gubrg3	567057	XM_009302568	ZDB-GENE-070718-5
GABA_δ Receptor Subunit δ	GARBD	gabrd	571422	XM_695007	ZDB-GENE-081105-170
GABA_π Receptor Subunit π	GABRP	gabrp	566633	XM_005173293	ZDB-GENE-081028-62
GABA_ρ Receptor Subunit ρ	GABRR1	gabrr1	568984	NM_001025553	ZDB-GENE-040724-212
	GABR2	gabrr2a	751659	NM_001045376	ZDB-GENE-060825-164
		gabrr2b	569032	XM_692394	ZDB-GENE-041014-174
	GABR3	gabrr3a	570876	NM_001128760	ZDB-GENE-080722-20
		gabrr3b	-		ZDB-GENE-131120-131
GABA_ζ Receptor Subunit ζ	GABRZ	gabrz	561738	NM_001114742	ZDB-GENE-080303-26
GABA_B Receptor 1	GABBR1	gabbr1a	373873	XM_689405	ZDB-GENE-030904-5
		gabbr1b	558708	XM_005170102	ZDB-GENE-060503-5
GABA_B Receptor 2	GABBR2	gabbr2	560267	NM_001144043	ZDB-GENE-060503-620
Zebrafish genes involved in catecholamine neurotransmission.

Common Name	Human	Zebrafish	Gene ID	RefSeq	ZFIN ID
Tyrosine hydroxylase	TH	th	30384	NM_131149	ZDB-GENE-990621-5
Aromatic amino acid decarboxylase	AAAD	aad	406651	NM_213342	ZDB-GENE-040426-2656
Dopamine-β-hydroxylase	DBH	dbh	30505	NM_001109694	ZDB-GENE-990621-3
Phenylethanolamine-N-methyltransferase	PNMT	pnt	100332609	XM_002666341	–
Vesicular monoamine transporter 2 (VMAT2)	SLC18A2	sk18a2	55304	NM_001256225	ZDB-GENE-080514-1
Dopamine transporter (DAT)	SLC6A3	slc6a3	80787	NM_131755	ZDB-GENE-010316-1
Norepinephrine transporter (NET)	SLC6A2	slc6a2	56576	XM_689046	ZDB-GENE-110408-4
Catechol-O-methyltransferase	COMT	comta	561372	NM_001030157	ZDB-GENE-050913-117
		comtb	565370	NM_001083843	ZDB-GENE-040724-164
Dopamine Receptors					
DRD1	drd1a	792634	XM_01759120	ZDB-GENE-130522-1	
	drd1b	568126	NM_001135976	ZDB-GENE-070524-2	
DRD2	drd2a	282557	NM_183068	ZDB-GENE-021119-2	
	drd2b	378719	NM_197936	ZDB-GENE-030910-2	
	drd2c	378718	NM_197935	ZDB-GENE-030910-1	
DRD3	drd3	282554	NM_183067	ZDB-GENE-021119-1	
DRD4	drd4a	503564	NM_001012616	ZDB-GENE-070112-996	
	drd4b	503565	NM_001012618	ZDB-GENE-070508-3	
DRD5	drd5a	100536970	XM_003199767	ZDB-GENE-130522-2	
	drd5b	–	–	ZDB-GENE-130522-3	
Adrenergic Receptors					
ADRA1A	adra1aa	798498	NM_001324454	ZDB-GENE-030131-2831	
	adra1ab	557259	XM_680297	ZDB-GENE-060503-384	
ADRA1B	adra1ba	100149100	XM_001921978	ZDB-GENE-120510-1	
	adra1bb	492486	NM_0007358	ZDB-GENE-041114-51	
ADRA1D	adra1d	568614	XM_691951	ZDB-GENE-090312-203	
Common Name	Human	Zebrafish	Gene ID	RefSeq	ZFIN ID
-------------	-------	-----------	---------	------------	--------------
ADRA2	adra2a	266750	NM_207637	ZDB-GENE-021010-1	
ADRA2B	adra2b	266751	NM_207638	ZDB-GENE-021010-2	
ADRA2C	adra2c	266752	NM_207639	ZDB-GENE-021010-3	
	adra2da	266754	NM_194364	ZDB-GENE-021010-4	
	adra2db	266755	NM_194365	ZDB-GENE-021010-5	
ADRB1	adrb1	557194	NM_001128689	ZDB-GENE-081022-145	
ADRB2	adrb2a	565838	NM_001102652	ZDB-GENE-100414-3	
	adrb2b	100037315	NM_001089471	ZDB-GENE-070410-32	
ADRB3	adrb3a	558248	NM_001128335	ZDB-GENE-080917-21	
	adrb3b	792519	NM_001135134	ZDB-GENE-081022-154	
Table 4

Zebrafish genes involved in serotonin neurotransmission.

Common Name	Human	Zebrafish	Gene ID	RefSeq	ZFIN ID
Tryptophan hydroxylase	TPH1	tph1a	352943	NM_178306	ZDB-GENE-030317-1
		tph1b	415103	NM_001001843	ZDB-GENE-030805-6
	TPH2	tph2	407712	NM_001310068	ZDB-GENE-040624-4
		tph3/th2	414844	NM_001001829	ZDB-GENE-050201-1
Aromatic amino acid decarboxylase	AAAD	aaad	406651	NM_212827	ZDB-GENE-040426-2656
Monoamine oxidase	MAO-A, MAO-B	Mao	404730	NM_001039972	ZDB-GENE-040329-3
Serotonin Transporter (SERT)	SLC6A4	slc6a4a	664719	NM_001177459	ZDB-GENE-060314-1
		slc6a4b	664770	NM_001123321	ZDB-GENE-060314-2
Serotonin Receptors	HTR1A	htr1a	100001828	NM_001145766	ZDB-GENE-071203-1
		htr1b	797538	NM_001128709	ZDB-GENE-090409-2
	HTR1B	htr1b	561647	NM_001145686	ZDB-GENE-081022-141
		htr1d	556429	NM_001145686	ZDB-GENE-090409-3
		htr1fa	100005344	XM_017357893	ZDB-GENE-081105-125
		htr2a	560808	NM_001044743	ZDB-GENE-070912-500
	HTR2	htr2b	751784	NM_001044743	ZDB-GENE-081022-57
Serotonin Receptors	HTR2CL1	htr2cl1	100000981	XM_001339004	ZDB-GENE-081104-48
	HTR2CL2	htr2cl2	798599	XM_001339004	ZDB-GENE-120215-109
	HTR3	htr3a	571641	XM_009295409	ZDB-GENE-071012-5
		htr3b	571632	NM_001126410	ZDB-GENE-071012-4
	HTR5	htr5a	100038775	NM_001007121	ZDB-GENE-060531-129
		htr5al	368475	XM_009297078	ZDB-GENE-030616-574
	HTR6	htr6	568269	XM_685507	ZDB-GENE-030131-7839
	HTR7	htr7	562111	NM_178306	ZDB-GENE-130530-666
Table 5
Zebrafish genes involved in cholinergic neurotransmission.

Common Name	Human	Zebrafish	Gene ID	RefSeq	ZFIN ID
High-affinity choline transporter	SLC5A7	slc5a7a	100005589	XM_005159931	ZDB-GENE-090313-273
		slc5a7b		–	ZDB-GENE-140429-1
Choline acetyltransferase	CHAT	chata	100170938	NM_001130719	ZDB-GENE-080102-2
		chatb	103171573	NM_001291882	ZDB-GENE-140429-2
Vesicular ACh transporter (VAcHT)	SLC18A3	sk18a3a	559347	NM_001077550	ZDB-GENE-060929-990
		sk18a3b	394082	NM_201107	ZDB-GENE-040426-1410
Acetylcholinesterase	ACHE	ache	114549	NM_131846	ZDB-GENE-010906-1
Nicotinic Cholinergic Receptors					
CHRNA1	chmA1	30725	NM_131445	ZDB-GENE-980526-137	
CHRNA2	chmA2a	678575	NM_001040327	ZDB-GENE-040108-2	
	chmA2b	568849	XM_692206	ZDB-GENE-041001-99	
CHRNA3	chmA3	568467	NM_001921279	ZDB-GENE-070822-1	
CHRNA4	chmA4a	–	–	–	ZDB-GENE-130530-903
	chmA4b	556619	NM_001048063	ZDB-GENE-090505-3	
CHRNA5	chmA5	550584	NM_001017785	ZDB-GENE-050417-440	
CHRNA6	chmA6	555747	NM_001042684	ZDB-GENE-090312-91	
CHRNA7	chmA7	394199	NM_201219	ZDB-GENE-040108-3	
CHRNA9	chmA9	568807	XM_001920859	ZDB-GENE-090312-63	
CHRNA10	chmA10a	556507	NM_001044804	ZDB-GENE-060503-725	
	chmA10b	–	–	–	ZDB-GENE-130530-624
Muscarinic Cholinergic Receptors					
CHRM1	chm1a	792708	XM_001332257	ZDB-GENE-090410-9	
	chm1b	794658	NM_178301	ZDB-GENE-070705-188	
CHRM2	chm2a	352938	NM_178301	ZDB-GENE-030314-1	
	chm2b	555516	XM_678041	ZDB-GENE-090410-3	
CHRM3	chm3a	571679	XM_695289	ZDB-GENE-090410-4	
	chm3b	100149598	XM_001919125	ZDB-GENE-090410-5	
CHRM4	chm4a	100150701	XM_001922407	ZDB-GENE-090410-6	
Common Name	Human	Zebrafish	Gene ID	RefSeq	ZFIN ID
-------------	-------	-----------	---------	--------	---------
chrm-ß	–	–	–	–	ZDB-GENE-090410-7
CHRM5	chrm.ß	553978	NM_001020803	ZDB-GENE-080723-32	
	chrm.5a	553978	NM_001020803	ZDB-GENE-080723-32	
	chrm.ß	561491	NM_001030160	ZDB-GENE-041001-169	
Zebrafish genes involved in histamine neurotransmission.

Common Name	Human	Zebrafish	Gene ID	RefSeq	ZFIN ID
L-Histidine decarboxylase	HDC	hdc	793609	NM_001102593	ZDB-GENE-080102-5
Amine oxidase	AOC1	aoc1	555401	NM_001077598	ZDB-GENE-061103-112
Histamine N-methyltransferase	HNMT	hnmt	445242	NM_001003636	ZDB-GENE-040801-157
Histamine Receptors					
HRH1	hrh1		735302	NM_001042731	ZDB-GENE-070531-3
HRH2	hrh2a		735303	NM_001045338	ZDB-GENE-070531-4
	hrh2b		100005590	NM_001109738	ZDB-GENE-070928-20
HRH3	hrh3		561773	NM_001025518	ZDB-GENE-040724-204
Table 7

Zebrafish genes involved in glycine neurotransmission.

Common Name	Human Gene ID	Zebrafish Gene ID	RefSeq	ZFIN ID	
Glycine dehydrogenase	GLDC	gldc	321621	NM_199554	ZDB-GENE-030131-340
Serine hydroxymethyltransferase 1	SHMT1	shmt1	394021	NM_201046	ZDB-GENE-040426-1558
Serine hydroxymethyltransferase 2	SMHT2	shmt2	100144628	NM_001123374	ZDB-GENE-071213-1
Inhibitory amino acid transporter	SLC32A1	slc32a1	798575	NM_001080701	ZDB-GENE-061201-1
Glycine transporter 1	SLC6A9	sk6a9	494490	NM_001030073	ZDB-GENE-050105-3
Glycine transporter 2	SLC6A5	sk6a5	494450	NM_001009557	ZDB-GENE-050105-2
Glycine receptor α	GLRA1	glra1	30676	NM_131402	ZDB-GENE-091117-1
	GLRA2	glra2	793646	NM_001167899	ZDB-GENE-090407-1
	GLRA3	glra3	192124	NM_152965	ZDB-GENE-020402-1
	GLRA4	glra4a	83413	NM_131782	ZDB-GENE-010410-3
		glra4b	192125	NM_001202511	ZDB-GENE-020402-2
Glycine receptor β	GLRB	glrb	83412	NM_131781	ZDB-GENE-010410-2
		glrbb	445193	NM_001003587	ZDB-GENE-040801-106
Table 8

Reported neurotransmitter levels in control zebrafish brain.

Reference (Age, Sex, and Strain if Known)	Glutamate	GABA	DA	NE	5-HT	ACh
Adult Zebrafish						
Panula et al. [16]	–	–	2.09 ± 0.42 nmol/g	4.53 ± 0.97 nmol/g	–	–
(Sex, age, and strain unknown)						
López Patiño et al. [197]	–	–	1.5–2 pg/ug protein	–	–	–
(Male and female 9 ± 1 mpf AB wildtype)						
Chatterjee and Gerlai [191]	–	–	4.18 ± 0.28 ng/mg protein	–	–	–
(Male and female 90 dpf AB wildtype)						
Embryonic/Larval Zebrafish						
Wirbisky et al. [193]	–	–	78.31 ± 2.26 ng/fish (48 hpf)	99.17 ± 6.54 ng/fish (72 hpf)	–	–
(Embryos raised at 28.5 °C)						
Tufi et al. [195]	9.1 ± 0.5 ng/embryo (48 hpf)	1.8 ± 0.03 ng/embryo (48 hpf)	–	7.2 ± 0.01 pg/embryo (48 hpf)	3.0 ± 0.1 pg/embryo (72 hpf)	
(Embryos raised at 26 °C)	12 ± 0.3 ng/embryo (72 hpf)	2.2 ± 0.1 ng/embryo (72 hpf)		7.1 ± 0.1 pg/embryo (48 hpf)	4.0 ± 0.1 pg/embryo (72 hpf)	