Dimuons in Neutrino Telescopes: New Predictions and First Search in IceCube

Bei Zhou1,∗ and John F. Beacom2,3,4,†

1William H. Miller III Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
2Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, Ohio 43210, USA
3Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
4Department of Astronomy, Ohio State University, Columbus, Ohio 43210, USA

(Dated: arXiv v1: 6 October 2021; arXiv v2 and journal: 28 December 2021)

Neutrino telescopes allow powerful probes of high-energy astrophysics and particle physics. Their power is increased when they can isolate different event classes, e.g., by flavor, though that is not the only possibility. Here we focus on a new event class for neutrino telescopes: dimuons, two energetic muons from one neutrino interaction. We make new theoretical and observational contributions. For the theoretical part, we calculate dimuon-production cross sections and detection prospects via deep-inelastic scattering (DIS; where we greatly improve upon prior work) and W-boson production (WBP; where we present first results). We show that IceCube should have ≃ 130 dimuons (≃ 6 from WBP) in its current data and that IceCube-Gen2, with a higher threshold but a larger exposure, could detect ≃ 620 dimuons (≃ 30 from WBP) in 10 years. These dimuons are almost all produced by atmospheric neutrinos. For the observational part, we perform a simple but conservative analysis of IceCube public data, finding 19 candidate dimuon events. Subsequent to our paper appearing, visual inspection of these events by the IceCube Collaboration revealed that they are not real dimuons, but instead arise from an internal reconstruction error that identifies some single muons crossing the dust layer as two separate muons. To help IceCube and the broader community with future dimuon searches, we include the updated full details of our analysis. Together, these theoretical and observational contributions help open a valuable new direction for neutrino telescopes, one especially important for probing high-energy QCD and new physics.

I. INTRODUCTION

Neutrino observatories have been making groundbreaking discoveries [1–6]. For astrophysics, high-energy neutrino telescopes in particular can reveal the elusive sites of hadronic cosmic-ray acceleration. IceCube has discovered TeV–PeV diffuse astrophysical neutrinos [6–9] and a few promising sources [10–12]. For particle physics, high-energy neutrino telescopes reach unprecedented energy scales, detecting some standard-model processes for the first time [13–24]. They also provide unique information on new physics, including dark matter [25–35], novel neutrino interactions [36–46], and other exotic signals [47–55]. Much more progress is expected with new telescopes, including KM3NeT [56], Baikal-GVD [57], P-ONE [58], and especially IceCube-Gen2 [59].

So far, neutrino-telescope analyses are based on studies of just a few event classes, including tracks from muons, showers from other particles, and double bangs from taus. To get more from the data, new event classes are needed. Dimuons are an event class that has been detected in accelerator neutrino experiments at energies from tens to hundreds of GeV [60–66], but never in neutrino telescopes or in any experiment above 1 TeV. A dimuon event is two energetic muons produced by the same neutrino. Dimuon data are important for quantum chromodynamics (QCD), especially for measuring the strange-quark parton distribution function (PDF) [67–69] through deep-inelastic scattering (DIS). Dimuons can also come from W-boson production (WBP) [21], triplets [20, 21, 70–75], and the Glashow resonance [13, 23]. They are a background for new-physics searches, e.g., where a pair of staus is produced [47–54]. Figure 1

![Graphical representation of dimuons and other events with similar signatures. Dimuon signals may be either starting and throughgoing. Backgrounds from two coincident single muons are rare except for downgoing events. New-physics signals, e.g., double staus produced in supersymmetric models, can have a similar topology.](image-url)
sketches these possibilities.

In this paper, we predict yields for, search for, and discuss the physical significance of neutrino-induced dimuons in high-energy neutrino telescopes. We focus on the two channels with the largest yields, DIS and WBP. In Sec. II, we make our theoretical predictions of dimuon signals, plus backgrounds for them, in IceCube and IceCube-Gen2. The signals are large enough that IceCube should already have many events, while the backgrounds are mostly either negligible or reducible. In Sec. III, we search for dimuons in IceCube’s 10 years of data for point-source searches [76, 77], finding 19 dimuon candidates. Though IceCube has recently shown that these are not real dimuons, the details of our analysis remain valuable, as explained therein. In Sec. IV, we discuss the exciting physical significance of dimuons, including for measuring the strange-quark PDF at much higher factorization scales than before and possibly for enabling the first detection of WBP. We conclude in Sec. V.

II. THEORETICAL PREDICTIONS

In this section, we present our theoretical predictions for dimuons in IceCube and IceCube-Gen2. In Sec. II A, we discuss the most important neutrino-induced dimuon processes; in Sec. II B, our calculational framework; in Sec. II C, we show the cross sections and parent neutrino spectra; in Sec. II D, our predicted signals; and in Sec. II E, we discuss our predicted backgrounds.

A. Neutrino-Induced Dimuon Processes

The largest neutrino-induced dimuon yield is from charged current neutrino-nucleus DIS [78–83], i.e.,

\[\nu_\mu + q_1(N) \rightarrow \mu^- + q_2 \rightarrow \mu^- + \mu^+ + \nu_\mu + X, \]

where the neutrino has energy \(E_\nu \), \(q_1 \) is the incoming quark in the nucleon \(N \), \(q_2 \) the outgoing quark, and \(X \) denotes hadrons. The \(\mu^- \) comes directly from the leptonic vertex while the \(\mu^+ \) and \(\nu_\mu \) come from the decay of a hadron following the hadronization of \(q_2 \). (For \(\bar{\nu}_\mu \), take a CP transform.) Theoretically, tau neutrinos could also produce dimuons, with the tau lepton decaying to a muon, but the event rate is negligible due to their low fluxes in atmospheric neutrinos. Our calculations greatly improve upon the early work in Refs. [47, 48], which focused on the new-physics signatures but also made estimates of the DIS backgrounds.

Figure 2 shows the dominant case of Eq. (1), with an incoming strange quark and an outgoing charm quark. The charm quark produces a high-energy D meson via hadronization, and the D meson decay products include a high-energy muon. Our calculation also includes the contributions from incoming down quarks and charm antiquarks, which matter only at high energies. When the incoming neutrino energy is above a few hundred TeV, there is an important contribution from bottom-quark to top-quark transitions, with \(t \rightarrow W \rightarrow \mu \), where \(W \) is the W boson [84]. However, the overall event rate is suppressed by the low neutrino flux at high energies. In principle, hadronization produces multiple hadrons that can decay to multiple muons (e.g., trimuon events). However, the expected event rates are very low and most events would be below detector thresholds.

The next most important dimuon-production process is the neutrino-nucleus WBP [16, 17, 20, 21]. Though WBP is a significant component of high-energy neutrino interactions (as large as \(\approx 7.5\% \) for ice and \(\approx 14\% \) for iron, which is important for neutrino attenuation in Earth [20]), it has not yet been identified [21]. The first calculation of WBP, by Lee and Yang, dates back to the early 1960s [14, 15]. WBP mainly produces dimuons via

\[\nu_\mu + A \rightarrow \mu^- + W^+ + A', \quad \text{with } W^+ \rightarrow \mu^+ \nu_\mu \text{ or } \tau^+ \nu_{\tau}. \]

where \(A \) and \(A' \) are the incoming and outgoing nuclei, respectively (the process \(W \rightarrow c \rightarrow \mu \) also makes a contribution, but our calculation shows that it is less than \(10\% \)). The diagrams of this process can be found in Fig. 1 of Ref. [20]. The energy transferred to the nucleus is small compared to the energy threshold of high-energy neutrino telescopes [20, 21], so we do not expect muons or hadronic activity from the nuclear side. (As above, for \(\bar{\nu}_\mu \), take a CP transform.) We again ignore tau-neutrino-induced events due to their low fluxes.

Trident events could also produce dimuons [20, 21, 70–75], but they have smaller cross sections and most of them are below the energy threshold of IceCube and especially IceCube-Gen2. Another possibility is Glashow resonance [13, 23], \(\bar{\nu}_e + e^- \rightarrow W^- \), with the W decaying to two quarks that produce two muons through hadronization, but the event rate is highly suppressed due to very low fluxes around \(E_\nu \approx 6.3 \text{ PeV} \). Note that Glashow-resonance events do not occur for \(\nu_e \) in neutrino detectors, due to the lack of positron targets.

Most of our predicted events are opposite-sign
dimuons, but same-sign dimuons could occur through higher order processes [85]. High-energy neutrino telescopes cannot distinguish the charge of a muon.

B. Calculational Framework

There are two kinds of dimuon events. One is starting dimuons, with the parent neutrino interactions occurring in the detector. The other is throughgoing dimuons, with the neutrino interactions occurring outside the detector, where the two muons travel while losing energy in matter before entering the detector.

We define the more energetic muon as \(\mu_1 \) and the less energetic one as \(\mu_2 \). We use \(E_{\mu_1} \) and \(E'_{\mu_2} \) to denote their energies at production and \(E_{\mu_1} \) and \(E'_{\mu_2} \) to denote their energies when entering the detector. For starting events, \(E_{\mu_1} = E'_{\mu_1} \) and \(E_{\mu_2} = E'_{\mu_2} \). For DIS, most often \(\mu_1 \) is the muon directly from the leptonic vertex while \(\mu_2 \) is the muon from subsequent hadronization and decay. For WBP, on the contrary, \(\mu_1 \) comes most often from the W decay while \(\mu_2 \) comes directly from the leptonic vertex. We assume that all \(D \) mesons decay before interaction, which would overestimate the DIS dimuon rate above \(E_{\nu} \sim 10 \text{ TeV} \), where the precise effects are vague due to the cross-section uncertainties [86, 87]. Dimuons from the WBP process, which dominates at such energies, are not affected by this.

The calculation of the spectra of starting dimuons starts with

\[
\frac{dN_{\mu\mu}^{st}}{dE_{\mu_1/2}^{\mu}} = \frac{dN_{\mu\mu}^{st}}{dE_{\mu_1/2}^{\mu'}} = N \times \int_{E_{\text{th}}}^{\infty} dE_{\nu} \, \frac{dE_{\nu}}{dE_{\nu}'} \left(E_{\nu} \frac{d\sigma_{\mu\mu}^{\text{cuts}}}{dE_{\mu_1/2}^{\mu}}(E'_{\mu_1/2}, E_{\nu}|E'_{\mu_2} > E_{\text{th}}) \right),
\]

where \(N \) is the number of interaction targets (nucleons or nuclei) in the detector (1 km\(^3\) of ice in IceCube and 7.9-km\(^3\) in IceCube-Gen2), \(T \) the observation time, \(dF_{\nu} / dE_{\nu} \) the neutrino flux in a certain zenith range after taking into account attenuation in Earth (Sec. II B3), \(\sigma_{\mu\mu}^{\text{cuts}} \) the dimuon cross section after an angular-separation cut (Sec. II C), and \(E_{\text{th}} \) is the energy threshold of the detector, which is 100 GeV for IceCube [88] and 300 GeV for IceCube-Gen2 [59].

For throughgoing dimuons, we develop a framework for such calculations in Appendix B that takes into account the energy losses of both muons [87, 89, 90] and the detector threshold. The spectrum of throughgoing \(E_{\mu_2} \) is (Appendix B),

\[
\frac{dN_{\mu\mu}^{\text{thr}}}{dE_{\mu_2}} = \frac{A_{\det} T N_A}{\alpha + \beta E_{\mu_2}} \int_{E_{\mu_1}}^{\infty} dE_{\nu} \, \frac{dE_{\nu}}{dE_{\nu}'} \left(E_{\nu} \frac{d\sigma_{\mu\mu}^{\text{cuts}}}{dE_{\mu_1/2}^{\mu}}(E'_{\mu_1/2}, E_{\nu}|E'_{\mu_2} > E_{\text{th}}) \right),
\]

where \(A_{\det} \) is the cross-sectional area of the detector (about 1 km\(^2\) for IceCube [88] and (7.9)\(^{2/3}\) km\(^2\) for IceCube-Gen2 [59]), and \(N_A = 6.02 \times 10^{-23} \text{ g}^{-1} \) is the Avogadro number. Here \(\alpha = 3.0 \times 10^{-3} \text{ GeV cm}^2/\text{g} \) and \(\beta = 3.0 \times 10^{-6} \text{ cm}^2/\text{g} \) characterize the muon energy losses in ice (\(dE/dX = -\alpha - \beta E \)), where \(X \) is the column density, due to ionization and radiation, respectively [87, 89, 90]. The variations of \(\alpha \) and \(\beta \) with energy are slow.

The spectrum of throughgoing \(E_{\mu_1} \) is (Appendix B),

\[
\frac{dN_{\mu\mu}^{\text{thr}}}{dE_{\mu_1}} = \frac{A_{\det} T N_A}{\alpha + \beta E_{\mu_1}} \int_{E_{\mu_1}}^{\infty} dE_{\nu} \, \frac{dE_{\nu}}{dE_{\nu}'} \left(E_{\nu} \frac{d\sigma_{\mu\mu}^{\text{cuts}}}{dE_{\mu_1}^{\mu}}(E_{\mu_1}, E_{\nu}|E_{\mu_2} > E_{\text{th}}) \right),
\]

where \(A_{\det} \) is the cross-sectional area of the detector (about 1 km\(^2\) for IceCube [88] and (7.9)\(^{2/3}\) km\(^2\) for IceCube-Gen2 [59]), and \(N_A = 6.02 \times 10^{-23} \text{ g}^{-1} \) is the Avogadro number. Here \(\alpha = 3.0 \times 10^{-3} \text{ GeV cm}^2/\text{g} \) and \(\beta = 3.0 \times 10^{-6} \text{ cm}^2/\text{g} \) characterize the muon energy losses in ice (\(dE/dX = -\alpha - \beta E \)), where \(X \) is the column density, due to ionization and radiation, respectively [87, 89, 90]. The variations of \(\alpha \) and \(\beta \) with energy are slow.

Above the detector thresholds (deposited energies of 100 GeV for IceCube and 300 GeV for IceCube-Gen2), we take the detection efficiency and the muon-track particle-identification efficiency to be unity, which is realistic. The energy resolution is \(\approx 10\% \), much smaller than the bin sizes we use below, so we neglect smearing. And the angular resolution is \(\approx 1^\circ \), which is small enough that it only needs to be considered for separating two muons.
On a string

ν

DOMs

µ

that a simple criterion captures much of the physics. We must be defined by experimental analyses, but we show have a minimum angular separation. Ultimately, this

D

DOMs on each string is

D

in 2011) [88]. For IceCube-Gen2, this is planned to be

D

DOMs is determined by the spacing between the adja-

neutrino detector. The horizontal spacing between

strings in the detector. We consider two high-energy neu-
tect Cherenkov photons. The DOMs are deployed on the
strings in the detector. We show a show a larger separation.

FIG. 3. A dimuon event traveling in a high-energy neutrino
detector. The vertical lines and the dots on them represent
the strings in the detector and the DOMs on them, respec-
tively. In our calculation, we require µ1 and µ2 to separate
by at least 2Dν, to be distinguishable, where Dν is the vertical
spacing between DOMs (here we show a larger separation).

1. IceCube and IceCube-Gen2

High-energy neutrino telescopes detect Cherenkov
photons emitted by relativistic secondary charged par-
ticles produced by neutrino interactions. A muon forms
a long track due to its low energy-loss rate in matter, in
contrast to electrons and hadrons, which form a shower
that looks like a blob. Compared to showers, tracks have
worse energy resolution while better angular resolution,
which makes it possible to recognize dimuon events (un-
like dielectron events).

For dimuon detection, the most important aspects
of the neutrino telescopes are the angular and energy
thresholds, which are determined (see below) by the spac-
ings between the digital optical modules (DOMs) that de-
tect Cherenkov photons. The DOMs are deployed on the
strings in the detector. We consider two high-energy neu-
trino telescopes: IceCube [88] and the proposed IceCube-
Gen2 (the optical array only) [59].

Figure 3 illustrates a dimuon event in a high-energy neutrino
detector. The horizontal spacing between DOMs is determined by the spacing between the adja-
cent strings, which is Dν = 125 m in IceCube (for the
86-string complete configuration, or IC86, which started in
2011) [88]. For IceCube-Gen2, this is planned to be
Dν = 240 m [59]. The vertical spacing between the
DOMs on each string is Dν ≃ 17 m in IceCube (with 60
DoMs between 1450 and 2450 m below the surface) [88]
and planned to be about Dν ≃ 16 m for IceCube-Gen2
(with 80 DOMs between 1325 m and 2575 m) [59].

2. Angular Separation Cut

To be recognized as being two tracks, dimuons must
have a minimum angular separation. Ultimately, this
must be defined by experimental analyses, but we show
that a simple criterion captures much of the physics. We
define the angular-separation cut to be (Fig. 3)

Rν2θνμ > 2Dν,

(7)

where θνμ is the angle between µ1 and µ2, and Rν2 is
the range of µ2 between its production point and where it
events the detector or stops in it. For throughgoing muons,
we use

Rν2 = \frac{1}{\rho_{\text{ice}}} \ln \left(\frac{E_\nu}{\rho_{\text{ice}} c^2} \right),

where \rho_{\text{ice}} = 0.92 g/cm^3.

For starting muons, we use the maximum of this range and
the detector size (1 km for IceCube or (7.9)^{1/3} km for
IceCube-Gen2).

The reason for the angular-separation cut is as follows. As µ1 and µ2 pass through the detector, their Cherenkov
photons trigger nearby DOMs on each string. Meanwhile,
the separation between them increases as they propagate,
reaching the maximum of Rν2θνμ. If their separation is
large enough to trigger different DOMs on one or multiple
strings, they can be identified as dimuons. As the ho-

muon detector. The horizontal DOM spacing is too large to easily distinguish µ1 and µ2, we focus on the vertical spacing, estimating that a threshold of 2Dν is reasonable, which seems to be the
case. Strictly speaking, the muons do not hit the DOMs;
the light from their Cherenkov cones (angle ≃ 42°) does.
We thus refer here to the reconstructed directions.

Our definition is exact for dimuons aligned horizon-
tally in Fig. 3, such that the two muons trigger different
DOMs on the same strings. For muons aligned perpen-
dicular to the page, detection can still be favorable be-
cause there are many rows of strings, and the projected
separation between them may still be small. The most
difficult configuration to detect is when the dimuons are
aligned vertically, along a string. However, these events
are less important because the atmospheric-neutrino flux
peaks near the horizon and because downgoing muons
constitute a serious background. Finally, our angular-
separation cut is zenith-angle independent. For a dimuon
coming from zenith angles of θν ≠ 90°, the spacing be-

between the DOMs are effectively smaller, i.e., scaling by
1/\sin θν. However, the widths and separation of two muons being
projected vertically is effectively larger, i.e., scaling by
1/\sin θν. These two effects cancel. Therefore, we use
Eq. (7) for all dimuons.

3. Neutrino Fluxes and Earth Absorption

The neutrino flux relevant for dimuon production is

\frac{dF_\nu}{dE_\nu}(E_\nu) = 2\pi \int d\cos θ_\nu \frac{dI_\nu}{dE_\nu}(E_\nu, \cos θ_\nu) e^{-σ(E_\nu)C(θ_\nu)},

(8)

where dI_ν/dE_ν is the neutrino intensity (flux per
solid angle). For atmospheric neutrinos, we use
HKKM2015 [95] (for the South Pole) below 10 TeV and
IceCube’s measurements [96] above 10 TeV. This flux
peaks near the horizon, e.g., being ≃ 3.5 times brighter
for the horizontal flux compared to the vertical flux at
1 TeV, and even more so at higher energies. For astrophysical neutrinos, we use IceCube’s measurements [97],
though they are not important for dimuon production. Here \(\sigma(E_\nu) \) is the neutrino cross section and \(C(\theta_2) \) is the number column density through Earth. We include both DIS and WBP cross sections, as the latter increases the Earth’s attenuation by as much as 15% [21]. The critical energy for attenuation in Earth is \(\simeq 40 \text{ TeV} \) for core-crossing trajectories and is higher for shorter paths.

C. Cross Sections and Parent Neutrino Spectra

Before calculating the observable dimuon spectra, we first show the dimuon-production cross sections (without and with cuts) and the parent spectra of the neutrinos that produce dimuons. For simplicity, we focus on starting dimuons. For throughgoing muons, the results are qualitatively similar but need more involved calculations, which are done in the next subsection.

Figure 4 (left panel) shows the cross sections. For DIS, the dimuon cross section is \(\sim 10^{-2} \) of the total. (Our calculated DIS cross section is consistent with Refs. [78–81] and our dimuon ratio is consistent with Ref. [67, 98] below 1 TeV.) For WBP, which has a higher threshold due to the heavy \(W \) boson, the ratio is given by the corresponding decay branching ratios [20, 21].

Figure 4 (right panel) shows the parent neutrino spectra, which are the products of the flux (Eq. (8)) with the cross sections. The DIS contribution peaks at \(\sim 1 \text{ TeV} \) while the WBP contribution peaks at \(\sim 10 \text{ TeV} \). These peaks cut off at low energies due either detector (DIS) or production (WBP) thresholds. They cut off at high energies due to the angular-separation cut, which is less severe for WBP due to the heavy \(W \) boson.

D. Predicted Dimuon Signals

Figures 5 and 6 show our predicted dimuon spectra for IceCube and IceCube-Gen2, respectively, taking into account all effects. Importantly, we display our results in terms of detectable muon energy (for starting muons, the initial energy; for throughgoing muons, the detector-entering energy), making them directly comparable to experimental data. The energy of a muon can be measured by its energy-loss fluctuations (for higher energies) or its range (for lower energies) [99]. In ice, the ranges of muons of energy 0.1, 1, and 10 TeV are about 0.4, 2.5, and 8.5 km, respectively. For energies at a few to several hundred GeV, measuring the muon energy can be less precise, which will smear the peaks. Table I summarizes the total numbers of events for different channels. Both throughgoing and starting events are important; in IceCube-Gen2, which has a higher threshold, starting events become more important. Almost all of the events are from atmospheric neutrino interactions, with astrophysical neutrinos contributing less than \(\simeq 3\% \).

These figures show some key features. The DIS spectra are large, dominating the WBP spectra. For both, the spectra of \(\mu^2 \) are softer than those of \(\mu_1 \), but they are close enough that both muons can be measured. Comparing to Fig. 4 (right panel), which is for starting muons only, WBP events carry smaller fractions of the neutrino energy. Comparing the left and right panels of both Figs. 5 and 6, throughgoing events dominate at the highest muon energies, which is expected due to the long muon range at high energies. Finally, the separation of DIS and WBP events is more challenging than it appears in Fig. 4 (right panel). This is primarily due to the different kinematics of DIS and WBP interactions. In Sec. IV B, we discuss how to separate them, exploiting the lack of hadronic showers in WBP events [20, 21].

We estimate the overall theoretical uncertainties in our predictions. For the atmospheric neutrino flux, the uncertainty at the relevant energies (Fig. 4) is about 25% [95, 96, 100]. For DIS cross sections and hadronization, the overall uncertainty is about 10% at somewhat lower energies [69, 101], though it would mildly increase with energy. For WBP, the uncertainty is about 15% [20]. Combining the flux and interaction uncertainties in quadrature, the overall theoretical uncertainty of our predictions is estimated to be about 30% for both DIS and WBP dimuons. This is large enough to cover the uncertainties due to the variation of \(\alpha \) and \(\beta \) with energy, etc.

E. Dimuon Backgrounds

A background for dimuon signals is two coincident single-muon events. Our conservative calculations below show that this background is negligible for all-sky starting dimuons and for northern-sky throughgoing dimuons, while perhaps reducible for southern-sky throughgoing dimuons. Atmospheric muon bundles [102, 103], i.e., causal associations of muons, are relevant only for southern-sky throughgoing dimuons. Other possible backgrounds are discussed below.

For two independent muons to mimic a dimuon, they must appear within the same small time \((\delta_T) \), angular \((\delta_\theta) \), and positional \((\delta_D) \) intervals. The probability of such a coincidence is \([R_\mu \delta_T \delta_\theta^2 \delta_D^2 / (A_{\text{tot}} A_{\text{det}})]^2 \), where \(R_\mu \) is the all-sky single-muon rate, \(A_{\text{tot}} \simeq 41, 253 \text{ deg}^2 \) is all-sky angular area, and \(A_{\text{det}} \) is the area of the detector.

	Starting DIS	Starting WBP	Throughgoing DIS	Throughgoing WBP
IceCube, 10 yrs	37	0.3	85	6.0
IceCube-Gen2, 10 yrs	370	5.8	231	22
Then, the number of all-sky coincident muons in an observation time T is

$$N_{\mu\mu}^{\text{coinc}} = \left(\frac{R_{\mu} \delta_\mu \delta_\delta \delta_D}{A_{\text{tot}} A_{\text{det}}} \right)^2 T A_{\text{tot}} A_{\text{det}} = R_{\mu}^2 T \frac{\delta_\mu \delta_\delta \delta_D}{A_{\text{tot}} A_{\text{det}}},$$

with the last three terms being temporal, directional, and positional, respectively. For starting dimuons, there should also be a term for coincidence on the depth position; we ignore this as the backgrounds for starting dimuons are already small.

The δ_T is set by the timing resolution of the detector for track events. For both Icecube and IceCube-Gen2, an optimistic choice is the timing resolution of the DOMs, which is a few ns. (For real dimuon events, the muons are simultaneous.) A conservative choice would be the time it takes a high-energy muon to cross the detector, $\sim 3 \times 10^{-6}$ s for IceCube. However, the IceCube data we use [76, 77] in Sec. III has time bins of $\approx 8.6 \times 10^{-4}$ s, though this is a choice, not a detector limitation. To be conservative, we adopt this value, though IceCube can significantly improve upon it. The δ_μ is set by the maximal $\theta_{\mu\mu}$, which we find to be $\theta_{\mu\mu}^{\text{max}} \approx 5^\circ$ for our predicted events, so we use $\delta_\mu = 10^\circ$ to be conservative, much larger than detector angular resolution for tracks ($\approx 1^\circ$). The δ_δ is set by $R_{\mu\mu}^{\text{max}}$, which we conservatively take to be a few kilometers times 5, obtaining a few hundred meters, which is larger than the position resolution of the detector.

We first consider backgrounds for all-sky starting dimuons. The relevant single muons are almost in-

duced by atmospheric neutrinos. For starting single muons, the all-sky event rate in IceCube is $R_\mu \approx 0.02$ s$^{-1}$ for $E_\nu > 100$ GeV. So conservatively, Eq. (9) gives $N_{\mu\mu}^{\text{coinc}} \approx 3 \times 10^{-2}$ for 10 years of IceCube. For 10 years of IceCube-Gen2 ($E_\nu > 300$ GeV), $N_{\mu\mu}^{\text{coinc}} \approx 4 \times 10^{-2}$. For northern-sky throughgoing single muons, the rate R_μ is ≈ 10 times larger in IceCube and a smaller increase for IceCube-Gen2, meaning $N_{\mu\mu}^{\text{coinc}}$ is at most ≈ 100 times larger than those from starting single muons. All of these background rates, even when estimated conservatively, are negligible.

For southern-sky throughgoing dimuons, the relevant single tracks are atmospheric muons. The total rate is $R_\mu \approx 1500$ s$^{-1}$ for IceCube and ≈ 7.9 times larger for IceCube-Gen2 [104]. For $T = 10$ years, Eq. (9) gives $N_{\mu\mu}^{\text{coinc}} \approx 2 \times 10^9$ (IceCube) and 4×10^9 (IceCube-Gen2), which are both huge. However, dedicated experimental analyses may be able to reduce these backgrounds by orders of magnitude and also lower the energy threshold due to the temporal, directional, and positional correlations of μ_1 and μ_2. There are several reasons. True neutrino-induced events would be produced in the ice, $\lesssim 1.5$ km above the detector, compared to coincidences of atmospheric muons or muon bundles, for which the muons are produced $\sim 10-20$ km above the detector. The IceTop detector [105–107] can be used as a powerful veto. It would be realistic to use a much smaller time interval [108, 109] while keeping all of the signal. Using a smaller angular interval would greatly reduce backgrounds while only somewhat reducing the signal. Rais-
III. OBSERVATIONAL RESULTS

In this section, we present our observational results on dimuon candidates in IceCube public data. In Sec. III A, we explain the dataset and how we search. In Sec. III B,
we discuss why these events appear to be real dimuons, followed by Sec. III C, where we discuss the arguments against this.

Subsequent to our paper appearing, visual inspection of these events by the IceCube Collaboration reveals that they are not real dimuons, but instead arise from an internal reconstruction error that identifies some single muons crossing the dust layer as two separate muons.

To help IceCube and the broader community, we include the updated full details of our analysis. The first reason is to help future dimuon searches, showing what works and what needs further attention. The second reason is to help identify a subtle background that could affect other searches, e.g., a point-source search (especially transients) that finds two associated events versus one would be quite different. The third reason is to model a productive exchange between theorists and an experimental collaboration, where IceCube provided helpful feedback before and after our paper appeared, and where we shared this feedback publicly.

A. Dataset and Search for Dimuons

Almost all IceCube data is private, but the collaboration has released a limited dataset covering 10 years (April 2008 to July 2018) of all-sky events [76, 77]. This dataset is optimized for point-source searches and is intended to facilitate multimessenger analyses. There are 1,134,450 muon-track events, which are obtained after multiple strong cuts to reduce backgrounds. The energy distribution of this dataset is strongly suppressed by cuts below a muon energy of about 400 GeV, so we take this as an approximate threshold. The transition in the spectrum is broad, so the precise threshold is uncertain, which leads to a factor-of-two uncertainty in the DIS yields and much less sensitivity in the WBP yields. We thus expect to find fewer dimuons than our prediction in Sec. II D.

For these events, the arrival times are given in the unit of modified Julian day (MJD), downsampling to a precision of 1×10^{-8} day (8.6×10^{-4} s), much longer than any physically relevant timescale. The energy uncertainties are not given. The angular distributions are consistent with a uniform distribution in right ascension and a reasonable distribution in declination (see Figs. 1 and 2 of Ref. [112]). The 1σ angular errors of the events are typically $\lesssim 1^\circ$. The event positions are not given. Despite the limitations of this dataset, it is adequate for our dimuon search. With the greater details available to a collaboration analysis, especially the ability to create a dataset optimized for dimuon searches instead of point sources, much better results are expected.

We search for dimuons in the dataset through the following procedure. First, we sort the events in terms of their arrival times. Second, we group time-adjacent events into all possible pairs and sort the pairs by the differences in their arrival times. Third, we search for pairs with the same arrival times (within 8.6×10^{-4} s).

In total, we find 21 such pairs, which already gives a huge reduction in the number of events. Finally, we check the angular distance between the muons in each pair. Only two pairs have large angular distances ($\simeq 50^\circ$ and $\simeq 60^\circ$, much larger than the $\theta_{\mu\mu}^{\text{max}} \simeq 5^\circ$ expected for dimuons). Thus, these two pairs are only temporally coincident and are backgrounds (as discussed below, these are consistent with expectations). For the other 19 pairs, their angular distances are mostly smaller than $\theta_{\mu\mu}^{\text{max}}$, except two pairs with $\simeq 9^\circ$ but also with large angular uncertainties. These 19 pairs thus appear to be dimuons. Following a similar procedure, we do not find trimuons or other multimuon candidates. Appendix A gives further details on these 19 dimuon candidates.

B. Why These Events Appear to Be Dimuons

We first examine the basic characteristics of the 19 candidate dimuons. The arrival times of these events are all after about May 2011, when IceCube’s construction was completed (86 strings). Between about April 2008 and May 2011, the incomplete IceCube detector had a smaller acceptance, especially at lower energies. In the following, we focus on the period with the full detector (May 2011 to July 2018 [76, 77], 6.93 years live time), which will reduce the yield relative to our predictions. Within this, the arrival-time distribution is apparently uniform. The energy distribution is comparable to that of single-muon events, with some important differences, discussed below.

The right-ascension distribution is apparently uniform. (Appendix A has figures that show the right-ascension and zenith angular distributions.) For the zenith angles (= Dec + 90° for IceCube’s location) of the dimuon candidates, they are all northern-sky events (upgoing), indicating that they are not atmospheric muons. In fact, all candidates are at Dec $\gtrsim 10^\circ$, below the horizon. The dataset has strong cuts to reduce backgrounds, which suppresses southern-sky events. The angular distribution favors horizontal over vertically upward events. All of these characteristics are consistent with atmospheric-neutrino events.

The expected number of background events from coincident single muons is negligible, following the approach of Sec. II E. With 897,406 muon-track events in $T \simeq 6.93$ years of exposure [76, 77], we obtain an event rate (for the cuts of this dataset) of $R_\mu \simeq 4 \times 10^{-3}$ s$^{-1}$. For the

	Starting DIS	WBP 0.95	Throughgoing DIS	WBP 1.6
IceCube, 6.93 yrs	0.95	0.04	13.0	1.6
Last but not least, we compare the 19 dimuon events with our theory, beginning with the yield. With a threshold of 400 GeV, we predict ~ 14 DIS and ~ 1.6 WBP dimuons (mostly throughgoing), which is in excellent agreement with our observed dimuon candidates, taking into account the $\sim 30\%$ theoretical uncertainties (Sec. II D) and the factor-of-two experimental uncertainties for the point-source dataset due to this threshold effect (Sec. III A). The details are summarized in Table II. The most important factor for reducing the prediction from ~ 130 events is the increased energy threshold. This effect can be estimated from Fig. 5. We also take into account the reduction in exposure from 10 years and the reduction in solid angle from 4π.

Figure 7 (left panel) shows the 19 candidate dimuons in the plane of E_{μ_1} and E_{μ_2}. Almost all the events are within the white region, as expected. One event is detected with a lower value of E_{μ_2}, but this is plausible, as the detector would have already been triggered by the deposition of E_{μ_1} (or it might just be energy resolution smearing).

Figure 7 (right panel) shows the energy distributions for both the data and our theoretical prediction. We also show the energy distribution of single-muon events, which is directly obtained from the dataset and rescaled to include 19 events, as if the dimuon candidates were somehow misreconstructed single muons. The data is clearly inconsistent with the single-muon prediction (for example, in the bin of $E_{\mu_1} = 3$ TeV, there are 6 dimuons observed but only $\sim 1 \pm 1$ expected), so we do not show the uncertainties on the single-muon prediction. Instead, to show how well the spectrum of dimuon events has been measured, we show the Poisson uncertainties on the data. The shape of the dimuon spectrum is in excellent agreement with the data.

Figure 8 shows the angular-separation distribution of the data compared to our prediction, finding good agreement. The normalization of our prediction is absolute (taking into account exposure time, threshold, etc.), and is not scaled to 19 events. The prediction before angular smearing (red dashed) is calculated directly using Eq. (B11). To take into account angular smearing, we...
C. Why These Events Are Not Dimuons

As noted, the IceCube Collaboration finds after visual inspection that these candidates are not real dimuons, but instead arise from single muons misreconstructed as two muons. This arises because of the difficulty of reconstructing muon tracks that cross the dust layer at a depth of 2000–2100 m, which causes significant light scattering and absorption. IceCube has analysis tools to cope with this, but these failed in a small fraction of cases.

Before this definitive result from the IceCube Collaboration, we received skeptical remarks about our candidate events from IceCube experts [114].

Initially, the strongest argument was based on how the data-acquisition system works [115–117]. In short, the trigger for high-energy muons works by searching for coincidences of hits on eight nearby DOMs within 5 µs; if this occurs, all data within the whole detector within ±10 µs is saved as one event. Because real dimuons are simultaneous (and it takes 3 µs for a muon to travel 1 km), any real occurrence of a dimuon would be read out as one event. However, we wondered if the dataset we use lists fitted tracks, not events. We now know that this supposition is incorrect.

Also initially, another serious concern was that IceCube would be unable to fit two simultaneous tracks because the Cherenkov cones would be so similar. Building on that point, for most of these events, the separation angles are comparable to the angular uncertainties. However, it seemed reasonable that the relative angular uncertainty to separate two muons could be less than the absolute angular uncertainties on their directions. This point remains uncertain to us.

Also initially, the only specific possible explanation for the events that seemed reasonable was that they may be some sort of ghost tracks, perhaps due to afterpulsing of photomultipliers, a phenomenon in which a photomultiplier that has collected a large amount of light then triggers again after a delay [118, 119]. Afterpulsing is a small effect (∼0.06 of the original signal strength), with most of it occurring within a few µs, which, by the arguments in the paragraph above, would cause it to be registered as part of the original muon event. A smaller fraction of afterpulsing occurs at times around 11 µs, which could lead to a pattern of DOM hits that is registered as a separate event. However, the distribution of hits would likely not form a good fit to a muon track, because the spread in time values would be large compared to that of a real muon, as the spread in afterpulsing times is large compared to the time for the muon to travel between DOMs (a small fraction of 1 µs). In addition, the fake muon should be much fainter (∼0.01 less energetic for late hits) than the parent muon, which we do not find. We now know that our counterarguments were correct.

Other possibilities were raised, though were unlikely. First, dineutrino events from one cosmic-ray induced air shower. However, the event rate is only about one per 14 years [120]. In any case, by the argument above, these would register as one event, due to being simultaneous. Second, a track splitting into two, but this is rare, especially if the muons have comparable energies (and, again, these would be simultaneous). Third, some kind of new-physics signal, e.g., double staus [47–54].

In conclusion, our 19 candidate events are not real dimuons, as shown by direct inspection of the events by
IceCube. Even though we now know that these dimuon candidates are just misreconstructed muons, it remains an interesting mystery why the observed muon distributions were so close to our predictions. Only IceCube can shed light on this, and we encourage them to do so. It might simply be a coincidence, but there might be issues that help understand backgrounds for future searches. Separately, we strongly encourage IceCube to develop a fitting algorithm specifically designed to find two simultaneous, nearby tracks.

IV. DISCUSSIONS OF PHYSICAL POTENTIAL

In this section, we discuss more about the physics potential of dimuons. In Sec. IV.A, we show that dimuons could be important for measuring the strange-quark PDF, especially with current IceCube data. In Sec. IV.B, we show that the first detection of WBP could occur in the first few years of IceCube-Gen2 by using showerless starting dimuons. In Sec. IV.C, we show that dimuons are useful for neutrino-energy measurements and for characterizing backgrounds for new physics.

A. Implications for QCD

Dimuon data from accelerator neutrino experiments have been shown to be very important for measuring the strange-quark PDF [67–69]. Here we show that neutrino telescopes can do so at much higher factorization scales, by measuring dimuon cross sections at unprecedented high neutrino energies. The numbers of events are less than those obtained in laboratory experiments, but the energy reach of neutrino telescopes is much greater.

We calculate the x-Q distribution for the dimuons in IceCube (Fig. 5) and IceCube-Gen2 (Fig. 6), and compare with accelerator neutrino experiments. Here x is the parton-momentum fraction and Q is the factorization scale. For starting dimuons, this is

$$
\frac{d^2N_{\mu\mu}^{x}}{dx dQ} = TN_t \int dE_\nu \frac{dF_\nu}{dE_\nu}(E_\nu) \frac{d^2\sigma_{\mu\mu}^{x\text{ults}}}{dxdQ}(x, Q, E_\nu | E'_{\mu\mu} > E_{\text{th}}) .
$$

For throughgoing muons (Appendix B), this is

$$
\frac{d^2N_{\mu\mu}^{x\text{thr}}}{dx dQ} = \frac{A_{\text{det}}TN_A}{\beta} \int dE_\nu \frac{dF}{dE_\nu}(E_\nu) \int_{E_{\text{th}}}^{E_\nu} dE'_{\mu\mu} \frac{d^3\sigma_{\mu\mu}^{x\text{ults}}}{dxdQdE'_{\mu\mu}} \ln \left(\frac{\alpha + \beta E'_{\mu\mu}}{\alpha + \beta E_{\text{th}}} \right) .
$$

Figure 9 shows the x-Q distributions of dimuons in IceCube and IceCube-Gen2 from our calculation and those from the events from CCFR [61, 64, 68], an accelerator neutrino experiment. For simplicity, we do not show data from other accelerator experiments [64, 66, 68, 121], which cover a similar x-Q range to CCFR. Overall, IceCube and IceCube-Gen2 dimuons have Q larger by one order of magnitude, because $Q \sim E_\nu$. IceCube-Gen2 covers a larger region than IceCube because of its larger detector volume. Neutrino telescopes will provide special opportunities to measure the strange-quark PDF on oxygen, whereas measurements with accelerator neutrino experiments have been on heavy targets (e.g., iron, lead, etc.) [60–66, 68]. They are also complementary to LHC [122, 123] (proton-proton collision) and HERA [124] (electron-proton collision) data, which cover a similar x-Q range. Importantly, the neutrino data uniquely probe the nuclear effects on the strangeness at larger Q, especially on the s-s asymmetry. Finally, we note that inelasticity measurements are also useful to measure the strange-quark PDF [125].

The regions covered by IceCube and IceCube-Gen2 dimuons are limited by the following factors. According to DIS kinematics, $Q^2 \approx 4E_\nu E_\mu \sin^2(\theta_{\mu\mu}/2)$ and $x \approx 4E_\nu E_\mu \sin^2(\theta_{\mu\mu}/2)/(2m_N E_h)$, where m_N is the nucleon mass and E_h the final-state hadronic energy. Therefore, $Q_{\text{max}} \sim \text{maximum } E_\nu$, which depends on the detector size. Moreover, $Q_{\text{min}} \sim E_{\text{th}}/\mu\mu$ and $x_{\text{min}} \sim E_{\text{th}}(\theta_{\mu\mu}^\text{min})^2$, which is determined by both energy and angular thresholds. Importantly, lowering the angular threshold (i.e., the vertical spacing between DOMs) only moderately would significantly decrease x_{min}, which, in principle, could be as small as 10^{-5} in IceCube/IceCube-Gen2. This would also help lower Q_{min}.

B. Enabling the First Detection of WBP

WBP interactions have not yet been detected, despite being second to only DIS in importance for high-energy neutrino interactions. A critical feature of WBP events is that the nuclear interaction is typically soft, leading to events without hadronic showers, which is rare for DIS [20, 21]. This is also true for the dimuon subset of WBP events.

We conservatively estimate the minimum detectable size of a hadronic shower in a dimuon event as follows. The shower energy should be larger than a fraction f (related to energy resolution) of the average energy lost by the muons $\Delta E_{\mu\mu}$ in their initial path length L (precision related to the detector spacing). From $dE/dX = -\alpha - \beta E$, we find that

$$
\frac{f \times \Delta E_{\mu\mu}(L)}{\Delta E_{\mu\mu}(L)} = \frac{f \times (E'_{\mu\mu} + E'_{\mu\mu} + 2e)(1 - e^{-\beta L_{\text{face}}})}{\Delta E_{\mu\mu}(L)} .
$$

Typically, $L \ll 1/(\beta L_{\text{face}}) \approx 3.6$ km, so $f \times \Delta E_{\mu\mu}(L) \propto f \times L$, and f and L are degenerate. Therefore, we fix $L = 300$ m, chosen to be somewhat larger than the spacing between two adjacent strings in IceCube-Gen2 (240 m).

Figure 10 shows our starting dimuon spectra in IceCube-Gen2 after removing events with shower energies higher than certain fractions of the initial dimuon energy loss. Different panels are for different f, which is degenerate with L. The results show that a cut on the shower energy reduces the DIS spectra at all E_μ values. This
FIG. 9. Distributions of parton-momentum fraction x and factorization scale Q for dimuon events. Those in blue are for our predicted dimuons (numbers of events in x-Q bins) as titled in each panel, corresponding to the dimuons in Figs. 5 and 6. All panels use the same color scale. The dots are the data points of CCFR dimuons used for CT18 PDF set [61, 64, 68].

can be understood from Eq. (12), which is approximately proportional to energy when $E'_{\mu_1} + E'_{\mu_2} \sim E_\nu \gg 2\epsilon \sim 1$ TeV. Importantly, as expected, decreasing f significantly lowers the number of showerless starting DIS dimuons. When $f < 0.3$, almost all of the showerless starting dimuons are from WBP, i.e., background free.

Our choice of shower-energy threshold should be reasonable for IceCube-Gen2. The energy resolution of IceCube, which is comparable to IceCube-Gen2, is $\approx 10\%$ (systematics dominated) at least above a few TeV [6], which is much better than the $f = 0.3$ needed. Moreover, the topology of a shower, which looks like a blob, is quite different from that of a dimuon track. This will also help to remove the DIS starting dimuons. On the other hand, the predicted DIS dimuon rate above $E_\nu \sim 10$ TeV would be lower if, as mentioned in Sec. II B, the interactions between D mesons and matter are included, while the predicted WBP dimuon rate is unaffected. Finally, to make our calculation more realistic, it will be necessary to require not just that the muons are created in a showerless interaction, but also that the muons do not shower too much in the initial length segment.

We thus expect showerless starting dimuons in IceCube-Gen2 to be a background-free way to identify WBP events. As we predict about 5.8 events from WBP in 10 years of IceCube-Gen2, the first detection could be accomplished within a few years. This will test the standard model and constrain new physics.
FIG. 10. Starting dimuons for 10 years of IceCube-Gen2 with their shower energies below different thresholds, as noted in each panel. $\Delta E_{\mu\mu}(300 \text{ m})$ is the average energy lost by the two muons in their initial path length of 300 m. The top left panel has a threshold of infinity and is the same as the left panel of Fig. 6. The total number of starting WBP dimuons (signal) is about 5.8, and they are all showerless. The total numbers of starting DIS dimuons (background) are about 370, 4.4, 0.4, and 0.1 for the top left, top right, bottom left, and bottom right panels, respectively.

C. Other Implications

For the same parent neutrino energy E_ν, the reconstructed energy of a dimuon ($E_{\mu1} + E_{\mu2}$), is closer to E_ν than that of a single-muon event (E_μ). The first reason is that the dimuon loses much less energy than single-muon events before entering the detector, as the range of the production point is limited by $E_{\mu2}$, which is usually $\ll E_{\mu1} \sim E_\mu$. A quantitative comparison can be obtained by comparing the number or acceptance of throughgoing events to starting events. For single-muon events, the ratio is $\gtrsim 20$ while for dimuon events, it is only $\simeq 2$ (Table I). So, the range of the dimuons is $\lesssim (2/20) \lesssim 1/10$ of that of single-muon events. The second reason is that the $E_{\mu2}$ could be used to estimate the energy transferred to the hadronic side. This could help measure the spectrum [7–9, 126], testing neutrino mixing [127, 128], cross sections [18, 19, 22, 24], and more.

Dimuons could also be backgrounds for new-physics searches. An intriguing example is the double staus in the supersymmetric models, induced by neutrino interactions. These would also leave throughgoing double tracks in the detector and have been searched for by the IceCube Collaboration [47–54].

V. CONCLUSIONS

Neutrino observatories play a critical role in astrophysics and particle physics [1–6]. High-energy neutri-
nos, a vibrant field, have been providing unique information on astrophysics [6–12], standard-model particle physics [13–24], and new physics [25–55] thanks to their unprecedented high energies, long propagation distances, and intervening high column densities (through Earth). On the other hand, those physics studies are based on only a few event classes, including muon tracks, showers, and double bangs. New event classes should be studied to take more advantage of the data.

For the theoretical contribution of this paper, we study dimuons in IceCube and IceCube-Gen2, focusing on production through DIS and WBP, the two most important processes. We develop a theoretical framework to calculate the event rate and spectra of the starting and throughgoing dimuons (Sec. II B). Our calculation shows that a dimuon-optimized search for 10 years of IceCube data can find $\sim 37 + 85$ DIS dimuons (starting + throughgoing) and $\sim 0.3 + 6.0$ WBP dimuons (Fig. 5). For 10 years of IceCube-Gen2, there will be $\sim 370 + 230$ DIS dimuons, and $\sim 5.8 + 22$ WBP dimuons (Fig. 6). The above numbers are summarized in Table I. These dimuons are almost all from atmospheric neutrinos. We estimate the backgrounds caused by two coincident single muons (Sec. II E), finding them negligible for all but southern-sky throughgoing dimuons, but which could be substantially reduced.

For the observational contribution of this paper, we analyze 10 years of IceCube's publicly available data [76, 77] (Sec. III). Importantly, we find 19 candidate dimuon events. The IceCube public dataset is optimized for point-source searches instead of dimuon searches and has strong cuts especially at lower energies, so we find fewer events than we predict. While these events have been found to be caused by an internal reconstruction error, they are an important background, previously unknown, for dimuon and other searches.

Dimuons have important physics potential. They provide new information about QCD, especially the strange-quark PDF [67–69], probing factorization scales 10 times higher than accelerator neutrino data. For IceCube, this measurement can be done with current data. In Sec. IV B, we show that showerless [20, 21] starting dimuons could lead to the first detection of WBP events within a few years of IceCube-Gen2, several decades after the WBP process was first calculated by Lee and Yang [14, 15]. Finally, we note in Sec. IV C that the dimuons are better for reconstructing parent neutrino energies than single-muon events, and they are also a background for some new-physics scenarios.

The ideas and calculations in this paper can be applied to other neutrino telescopes, including KM3NeT [56], Baikal-GVD [57], P-ONE [58], and especially IceCube-Gen2 [59]. The physics characteristics of the dimuon events could even shape choices about detector design. Lower-energy detectors are also worth studying, such as Super-Kamionkande [129], DUNE [130], DeepCore [131], and the IceCube Upgrade [132]. Their lower energy and angular thresholds could complement their smaller volumes. In these detectors, dimuons from tridents are especially important [20, 21, 70–75]. Moreover, the much lower angular threshold could be important to probe small-x regions for the strange-quark PDF (see Sec. IV A). In addition, new theoretical studies are needed to develop techniques to isolate dimuon events, to exploit their physics potential, and to explore new-physics scenarios for which dimuons are backgrounds.

The continued success of neutrino physics and astrophysics depends on developing new tools to get the most out of the data. An important part of that is developing new event classes, although it is not easy (e.g., compare the decades of work on tau double-bang events).

ACKNOWLEDGMENTS

We are grateful for helpful discussions with Bob Bernstein, Tom Gaisser, Alfonso Garcia Soto, Xiaoyuan Huang, Claudio Kopper, Stephen Mrenna, Aditya Parikh, Carsten Rott, and especially Francis Halzen, Spencer Klein, Keping Xie, and the many members of the IceCube Collaboration who helped to quickly investigate our candidate events. We used FeynCalc [133, 134], MadGraph [91], and Pythia [92] for some calculations. B.Z. was supported by the Simons Foundation. J.F.B. was supported by National Science Foundation Grant No. PHY-2012955.
Appendix A: Dimuon Candidates in IceCube Data

In this appendix, we give more details about the 19 dimuon candidates that we find in the IceCube 2008–2018 data [76, 77]. Table III lists the details of these events. Figure 11 shows the sky angular distributions of the dimuon candidates compared to our predictions, finding good agreement.

TABLE III. Each row is one event (two muons). Column names ending with “1” and “2” are for \(\mu_1 \) and \(\mu_2 \), respectively. MJD1/2 are their arrival times in the unit of modified Julian day (MJD). \(E_{\mu_1/2} \) are their energies (energy proxies). RA1/2 and Dec1/2 are their arrival directions in the equatorial coordinate system (for IceCube’s location, zenith angle = Dec + 90°). AngErr1/2 are their 1σ angular errors. AngDis is the angular separation between each \(\mu_1 \) and \(\mu_2 \), with uncertainty of \(\text{DisErr} = \sqrt{\text{AngErr1}^2 + \text{AngErr2}^2} \). We quote the data as obtained from the IceCube, noting that most values are given with more digits than warranted by the uncertainties.

MJD1 [day]	MJD2 (= MJD1)	\(E_{\mu_1} \) [TeV]	\(E_{\mu_2} \)	RA1 [deg]	RA2	Dec1	Dec2	AngErr1	AngErr2	AngDis	DisErr
56068.26557772	56068.26557772	1.23	1.05	25.065	25.860	18.168	18.466	0.38	1.85	0.81	1.89
56115.78056499	56115.78056499	2.29	0.65	296.835	296.891	41.777	46.922	3.10	0.41	5.15	3.13
56235.14756523	56235.14756523	2.19	2.19	179.781	185.182	20.271	28.274	2.50	1.57	9.39	2.95
56582.68675378	56582.68675378	2.29	1.35	120.687	121.892	26.630	24.994	1.47	0.78	1.96	1.66
56653.19502448	56653.19502448	3.31	1.48	48.106	47.781	30.840	30.100	0.75	1.19	3.13	1.41
56784.87114671	56784.87114671	1.35	0.35	126.690	126.357	69.524	70.871	1.97	2.83	1.35	3.45
56813.78701082	56813.78701082	0.91	0.83	184.136	181.708	31.627	31.957	3.01	0.83	2.09	3.12
56895.78341718	56895.78341718	1.91	0.79	295.288	303.817	14.387	16.670	1.94	1.61	8.53	2.52
56932.15214130	56932.15214130	1.70	0.98	175.546	173.549	36.710	35.972	1.17	0.86	1.77	1.45
56940.02405671	56940.02405671	5.13	3.72	1.404	0.541	11.716	9.353	2.38	2.83	2.51	3.93
57214.99298310	57214.99298310	1.51	0.83	13.089	14.760	39.101	39.034	3.50	0.85	1.30	3.60
57376.46221142	57376.46221142	1.66	1.55	326.795	328.022	17.543	15.199	2.11	1.15	2.62	2.40
57461.19606500	57461.19606500	1.35	1.10	308.771	307.274	31.268	30.077	1.08	1.37	1.75	1.74
57499.81363094	57499.81363094	5.89	1.70	199.430	201.527	16.454	15.029	2.55	1.30	2.47	2.86
57560.74070687	57560.74070687	1.74	0.79	219.566	219.023	12.582	13.008	1.62	0.74	0.68	1.78
57650.26270928	57650.26270928	6.17	2.40	256.189	255.088	19.588	20.293	2.03	0.77	1.25	2.17
57661.79317519	57661.79317519	1.45	0.91	24.276	21.095	23.145	24.317	1.72	2.22	3.14	2.81
58003.09416087	58003.09416087	2.29	1.23	349.095	345.586	21.328	19.554	2.17	1.30	3.74	2.53
58266.46093610	58266.46093610	2.63	1.48	296.881	294.994	19.596	20.896	1.57	1.45	2.20	2.14
Appendix B: Calculational Framework for Throughgoing Dimuons

In this appendix, we develop the first calculational framework to calculate the event rate and spectra of throughgoing dimuons. This framework can also be adapted for other particles and materials (simply change α and β), such as distaus from supersymmetric models [47–54].

The setup is as follows. A neutrino interacts outside the detector and produces two muons, with initial energies $E_{\mu 1}'$ and $E_{\mu 2}'$. We denote the more energetic muon as μ_1 and the less energetic muon as μ_2. The muons travel while losing energy in matter, eventually entering the detector with energies $E_{\mu 1}$ and $E_{\mu 2}$. Because the detector has energy and angular thresholds, only those muons with enough energy (and large enough angular separation) can be identified as dimuons.

The number of detectable throughgoing dimuons, $N_{\mu\mu}^{thr}$, is limited by how many μ_2 can reach the detector above the energy threshold (E_{th}), i.e.,

$$N_{\mu\mu}^{thr} = A_{\text{det}} T \int_{E_{\text{th}}}^{\infty} dE_{\mu 2} \int_{E_{\mu 2}}^{\infty} dE_{\mu 1}' \frac{dF_{\nu}}{dE_{\nu}}(E_{\nu}) \frac{dP_{\text{tot}}}{dE_{\mu 2}}(E_{\mu 2}, E_{\nu}),$$

where A_{det} is the cross-sectional area of the detector (as a good approximation, we assume it to be direction-independent), T the observation time, dF_{ν}/dE_{ν} is the neutrino flux in a certain energy and zenith range after considering absorption by the Earth, and $dP_{\text{tot}}/dE_{\mu 2}$ is the probability density for a neutrino with energy E_{ν} to produce a μ_2 with energy $E_{\mu 2}$ entering the detector. In the second line, X (in column-density units of g/cm2) is the path length of a muon between its production point and where it enters the detector, $N_A = 6.02 \times 10^{-23}$ g$^{-1}$ is the Avogadro number, and $\sigma_{\mu\mu}^{\text{cuts}}$ is the dimuon cross section after angular-separation cuts, and $dP_{2}/dE_{\mu 2}$ is the probability density (specified below) for a μ_2 with initial energy $E_{\mu 2}'$ to reach the detector with energy $E_{\mu 2}$ after traveling a distance X. From Eq. (B1), we can obtain the spectrum of $E_{\mu 2}$, i.e., $dN_{\mu\mu}^{thr}/dE_{\mu 2}$.

Then, for the spectrum of μ_1, we can start with a similar formula, requiring that both μ_1 and its associated μ_2
enter the detector with energies above E_{th},

$$
\frac{dN_{\mu\mu}^{\text{thr}}}{dE_{\mu_1}} = A_{\text{det}} T \int_{E_{\text{th}}}^\infty dE_{\nu} \frac{dF_{\nu}^{\mu}}{dE_{\nu}} (E_{\nu}) \frac{dP_{1}\text{tot}}{dE_{\mu_1}} (E_{\mu_1}, E_{\mu_2} > E_{\text{th}}, E_{\nu})
$$

$$
= A_{\text{det}} T \int_{E_{\text{th}}}^\infty dE_{\nu} \frac{dF_{\nu}^{\mu}}{dE_{\nu}} (E_{\nu}) \int_{E_{\nu}}^{E_{\nu}'} dE_{\mu_1'} \int_{E_{\nu}}^{E_{\nu}'} dE_{\mu_2} \int_{E_{\nu}}^{E_{\nu}'} dE_{\nu}' \int_0^\infty dX
$$

$$
N_A \frac{\sigma_{\mu\mu}^{\text{cuts}}}{dE_{\mu_1} dE_{\mu_2}} (E_{\mu_2}, E_{\mu_2}', X) \frac{dP_1}{dE_{\mu_1}} (E_{\mu_1}, E_{\mu_1}', X),
$$

where the notation is very similar to that above.

To simplify the integrals above, we need to specify dP_1/dE_{μ_1} and dP_2/dE_{μ_2}. Here we approximate them, assuming that the muon energy loss takes its average value. (In principle, these expressions can be obtained from simulations, taking into account stochastic fluctuations.) To a very good approximation [87, 89, 90],

$$
\frac{dP}{dE_{\mu}} (E_{\mu}, E_{\mu}', X) = \delta (E_{\mu} - \langle E_{\mu} (X) \rangle) = \delta (E_{\mu} - [\langle E_{\mu}' \rangle + \epsilon] e^{-\beta X} - \epsilon),
$$

where $\langle E_{\mu} (X) \rangle$ denotes the average energy of the muon (with initial energy E_{μ}') after losing energy over a distance X and $\epsilon = \alpha/\beta$ is the critical energy of the muon (above which the radiative energy loss dominates). Then, for example, dP_2/dE_{μ_2} can be written as

$$
\frac{dP_2}{dE_{\mu_2}} (E_{\mu_2}, E_{\mu_2}', X) = \delta (E_{\mu_2} - \langle E_{\mu_2} (X) \rangle) = \frac{\delta (X - X_0)}{\alpha + \beta E_{\mu_2}}, \text{ with } X_0 = \frac{1}{\beta} \ln \left(\frac{E_{\mu_2}' + \epsilon}{E_{\mu_2} + \epsilon} \right).
$$

Returning to Eq. (B1), this now reduces to

$$
N_{\mu\mu}^{\text{thr}} = A_{\text{det}} T N_A \int_{E_{\text{th}}}^\infty dE_{\mu_2} \int_{E_{\nu}}^{E_{\nu}'} dE_{\nu}' \frac{dF_{\nu}^{\mu}}{dE_{\nu}} (E_{\nu}) \int_{E_{\nu}}^{E_{\nu}'} dE_{\mu_1} \frac{d\sigma_{\mu\mu}^{\text{cuts}}}{dE_{\mu_2}} (E_{\mu_1}, E_{\nu}, E_{\nu}') \ln \left(\frac{\alpha + \beta E_{\mu_2}}{\alpha + \beta E_{\text{th}}} \right).
$$

(B5)

For the spectrum of μ_1, Eq. (B2) reduces in a similar way to

$$
\frac{dN_{\mu\mu}^{\text{thr}}}{dE_{\mu_1}} = A_{\text{det}} T N_A \int_{E_{\text{th}}}^\infty dE_{\mu_2} \int_{E_{\nu}}^{E_{\nu}'} dE_{\nu}' \frac{dF_{\nu}^{\mu}}{dE_{\nu}} (E_{\nu}) \int_{E_{\nu}}^{E_{\nu}'} dE_{\mu_1} \frac{d\sigma_{\mu\mu}^{\text{cuts}}}{dE_{\mu_2}} (E_{\mu_1}', E_{\nu}, E_{\nu}') \int_{E_{\nu}}^{E_{\nu}'} dE_{\mu_1} \frac{dP_1}{dE_{\mu_1}} (E_{\mu_1}, E_{\mu_1}', X_0).
$$

(B7)

Similar to Eq. (B4), dP_1/dE_{μ_1} can be written as

$$
\frac{dP_1}{dE_{\mu_1}} (E_{\mu_1}, E_{\mu_1}', X_0) = \frac{E_{\mu_2}' + \epsilon}{E_{\nu}'} \left[\frac{E_{\mu_1} + \epsilon}{E_{\mu_1} + \epsilon} - \delta \left(E_{\mu_2} - \left[\frac{E_{\mu_2}'}{E_{\nu}'} \right] \frac{E_{\mu_1} + \epsilon}{E_{\mu_1} + \epsilon} - \epsilon \right) \right].
$$

(B8)

Note that the delta function is fixed at X_0 by Eq. (B4). Plugging this into Eq. (B7), we obtain

$$
\frac{dN_{\mu\mu}^{\text{thr}}}{dE_{\mu_1}} = A_{\text{det}} T N_A \int_{E_{\text{th}}}^\infty dE_{\mu_1} \int_{E_{\nu}}^{E_{\nu}'} dE_{\nu}' \int_{E_{\nu}}^{E_{\nu}'} dE_{\mu_1} \frac{d\sigma_{\mu\mu}^{\text{cuts}}}{dE_{\mu_2}} (E_{\mu_1}, E_{\mu_2}, E_{\nu}),
$$

(B9)

where $E_{\mu_2}' > E_{\mu_2,\text{th}} = E_{\nu} + \epsilon (E_{\text{th}} + \epsilon) - \epsilon$. As a cross check, integrating over E_{μ_1} and E_{μ_1}' recovers Eq. (B6).
Finally, the distributions in x and Q can be calculated as

$$\frac{d^2 N_{\mu\mu}^{\text{thr}}}{dxdQ} = A_{\det} T \int dE_{\nu} \frac{dF}{dE_{\nu}}(E_{\nu}) \frac{d^2 P_{\nu\mu}^{\text{cut}}}{dxdQ}(x, Q, E_{\nu}|E_{\mu}\mu > E_{th})$$

$$= A_{\det} T \int dE_{\nu} \frac{dF}{dE_{\nu}}(E_{\nu}) \int_{E_{th}}^{E_{\nu}} dE_{\mu2} \int_{E_{th}}^{E_{\nu}} dE_{\mu2}' \int_{0}^{\infty} dx N_A \frac{d^3 \sigma_{\mu\mu}^{\text{cuts}}}{dxdQdE_{\mu2}dE_{\mu2}'}(E_{\mu2}, E_{\mu2}', X)$$

(B10)

$$= \frac{A_{\det} T N_A}{\beta} \int dE_{\nu} \frac{dF}{dE_{\nu}}(E_{\nu}) \int_{E_{th}}^{E_{\nu}} dE_{\mu2}' \ln \left(\frac{E_{\mu2}' + \epsilon}{E_{th} + \epsilon}\right) \frac{d^3 \sigma_{\mu\mu}^{\text{cuts}}}{dxdQdE_{\mu2}'}(x, Q, E_{\mu2}', E_{\nu}),$$

and the distribution in $\theta_{\mu\mu}$ can be calculated as

$$\frac{d^2 N_{\mu\mu}^{\text{thr}}}{d\theta_{\mu\mu}} = \frac{A_{\text{eff}} T N_A}{\beta} \int dE_{\nu} \frac{dF}{dE_{\nu}}(E_{\nu}) \int_{E_{th}}^{E_{\nu}} dE_{\mu2}' \ln \left(\frac{\alpha + \beta E_{\mu2}'}{\alpha + \beta E_{th}}\right) \frac{d^2 \sigma_{\mu\mu}^{\text{cuts}}}{d\theta_{\mu\mu}dE_{\mu2}'}$$

(B11)

As a cross check, integrating over x and Q in Eq. (B10) or $\theta_{\mu\mu}$ in Eq. (B11) recovers Eq. (B6).

[1] Raymond Davis, Jr., Don S. Harmer, and Kenneth C. Hoffman, “Search for neutrinos from the sun,” Phys. Rev. Lett. 20, 1205–1209 (1968).

[2] K. Hirata et al. (KamioKande-II), “Observation of a Neutrino Burst from the Supernova SN 1987a,” Phys. Rev. Lett. 58, 1490–1493 (1987).

[3] R. M. Bionta et al., “Observation of a Neutrino Burst in Coincidence with Supernova SN 1987a in the Large Magellanic Cloud,” Phys. Rev. Lett. 58, 1494 (1987).

[4] Y. Fukuda et al. (Super-Kamiokande), “Evidence for oscillation of atmospheric neutrinos,” Phys. Rev. Lett. 81, 1562–1567 (1998), arXiv:hep-ex/9807003.

[5] Q. R. Ahmad et al. (SNO), “Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory,” Phys. Rev. Lett. 89, 011301 (2002), arXiv:nucl-ex/0204008.

[6] M. G. Aartsen et al. (IceCube), “Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector,” Science 342, 1242856 (2013), arXiv:1311.5238 [astro-ph.HE].

[7] M. G. Aartsen et al. (IceCube), “A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube,” Astrophys. J. 809, 98 (2015), arXiv:1507.03991 [astro-ph.HE].

[8] M. G. Aartsen et al. (IceCube), “Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data,” Phys. Rev. Lett. 125, 121104 (2020), arXiv:2001.09520 [astro-ph.HE].

[9] R. Abbasi et al. (IceCube), “The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data,” Phys. Rev. D 104, 022002 (2021), arXiv:2011.03545 [astro-ph.HE].

[10] M. G. Aartsen et al. (IceCube), “Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert,” Science 361, 147–151 (2018), arXiv:1807.08794 [astro-ph.HE].

[11] M. G. Aartsen et al. (IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403), “Multimesenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A,” Science 361, eaat1378 (2018), arXiv:1807.08816 [astro-ph.HE].

[12] M. G. Aartsen et al. (IceCube), “Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data,” Phys. Rev. Lett. 124, 051103 (2020), arXiv:1910.08488 [astro-ph.HE].

[13] Sheldon L. Glashow, “Resonant Scattering of Antineutrinos,” Phys. Rev. 118, 316–317 (1960).

[14] T. D. Lee and Chen-Ning Yang, “Theoretical Discussions on Possible High-Energy Neutrino Experiments,” Phys. Rev. Lett. 4, 307–311 (1960).

[15] T. D. Lee, Chen-Ning Yang, and P. Markstein, “Production Cross-section of Intermediate Bosons by Neutrinos in the Coulomb Field of Protons and Iron,” Phys. Rev. Lett. 7, 429–433 (1961).

[16] D. Seckel, “Neutrino photon reactions in astrophysics and cosmology,” Phys. Rev. Lett. 80, 900–903 (1998), arXiv:hep-ph/9709290 [hep-ph].

[17] I. Alikhanov, “Hidden Glashow resonance in neutrino-nucleus collisions,” Phys. Lett. B756, 247–253 (2016), arXiv:1503.08817 [hep-ph].

[18] M. G. Aartsen et al. (IceCube), “Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption,” Nature 551, 596–600 (2017), arXiv:1711.08119 [hep-ex].

[19] Mauricio Bustamante and Amy Connolly, “Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers,” Phys. Rev. Lett. 122, 041101 (2019), arXiv:1711.11043 [astro-ph.HE].

[20] Bei Zhou and John F. Beacom, “Neutrino-nucleus cross sections for W-boson and trident production,” Phys. Rev. D 101, 036011 (2020), arXiv:1910.08090 [hep-ph].

[21] Bei Zhou and John F. Beacom, “W-boson and trident production in TeV-PeV neutrino observatories,” Phys. Rev. D 101, 036010 (2020), arXiv:1910.10720 [hep-ph].

[22] R. Abbasi et al. (IceCube), “Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube,” 10.1103/PhysRevD.104.022001, arXiv:2011.03560 [hep-ex].

[23] M. G. Aartsen et al. (IceCube), “Detection of a particle shower at the Glashow resonance with IceCube,” Nature 591, 220–224 (2021), Erratum: Nature 592, E11.
A. Albert et al., “Measuring the Neutrino Cross Section Using 8 years of Upgoing Muon Neutrinos Observed with IceCube,” in 37th International Cosmic Ray Conference (2021), arXiv:2108.04965 [astro-ph.HE].

John F. Beacom, Nicole F. Bell, and Gregory D. Mack, “General Upper Bound on the Dark Matter Total Annihilation Cross Section,” Phys. Rev. Lett. 99, 231301 (2007), arXiv:astro-ph/0608090.

Hasan Yuksel, Shunsaku Horiuchi, John F. Beacom, and Shin’ichiro Ando, “Neutrino Constraints on the Dark Matter Total Annihilation Cross Section,” Phys. Rev. D 76, 123506 (2007), arXiv:0707.0196 [astro-ph].

Kohta Murase and John F. Beacom, “Constraining Very Heavy Dark Matter Using Diffuse Backgrounds of Neutrinos and Cascaded Gamma Rays,” JCAP 10, 043 (2012), arXiv:1206.2595 [hep-ph].

Brian Feldstein, Alexander Kusenko, Shigeki Matsumoto, and Tsutomu T. Yanagida, “Neutrinos at IceCube from Heavy Decaying Dark Matter,” Phys. Rev. D 88, 015004 (2013), arXiv:1303.7320 [hep-ph].

Arman Esmaili and Pasquale Dario Serpico, “Are Ice Neutrinos neutrino PeV-scale decaying dark matter?” JCAP 11, 054 (2013), arXiv:1308.1105 [hep-ph].

Kohta Murase, Ranjan Laha, Shin’ichiro Ando, and Markus Ahlers, “Testing the Dark Matter Scenario for PeV Neutrinos Observed in IceCube,” Phys. Rev. Lett. 115, 071301 (2015), arXiv:1503.04663 [hep-ph].

M. G. Aartsen et al. (IceCube), “Search for annihilating dark matter in the Sun with 3 years of IceCube data,” Eur. Phys. J. C 77, 146 (2017), [Erratum: Eur.Phys.J.C 79, 214 (2019)], arXiv:1612.05949 [astro-ph.HE].

Pasquale Di Bari, Patrick Otto Ludl, and Sergio Palomares-Ruiz, “Unifying leptongenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal,” JCAP 11, 044 (2016), arXiv:1606.06238 [hep-ph].

M. G. Aartsen et al. (IceCube), “Search for neutrinos from decaying dark matter with IceCube,” Eur. Phys. J. C 78, 831 (2018), arXiv:1804.03848 [astro-ph.HE].

Carlos A. Argüelles, Alejandro Diaz, Ali Kheirandish, Andréés Olivas-De-Campo, Ibrahim Safa, and Aaron C. Vincent, “Dark matter annihilation to physical neutrinos in the high-statistics era,” Phys. Rev. D 104, 123014 (2021), arXiv:2107.13568 [hep-ph].

Ivone F. M. Albuquerque, Gustavo Burdman, and Z. Chacko, “Neutrino telescopes as a direct probe of supersymmetry breaking,” Phys. Rev. Lett. 92, 221802 (2004), arXiv:hep-ph/0312197 [hep-ph].

Ivone F. M. Albuquerque, Gustavo Burdman, and Z. Chacko, “Direct detection of supersymmetric particles in neutrino telescopes,” Phys. Rev. D 75, 035006 (2007), arXiv:hep-ph/0605120 [hep-ph].

Shin’ichiro Ando, John F. Beacom, Stefano Profumo, and David Rainwater, “Probing new physics with long-lived charged particles produced by atmospheric and astrophysical neutrinos,” JCAP 04, 029 (2008), arXiv:0711.2908 [hep-ph].

“Exotic signatures from physics beyond the Standard Model in IceCube - Signal and background simulations,” in 33rd International Cosmic Ray Conference (2013).

Sandro Kopper (IceCube), “Search for Neutrino Induced Double Tracks as an Exotic Physics Signature in IceCube,” PoS ICRC2015, 1104 (2016).

Sandro Kopper, Search for Exotic Double Tracks with the IceCube Neutrino Telescope, Ph.D. thesis, Wuppertal U. (2016).

Stephan Meighen-Berger, M. Agostini, A. Ibarra, K. Krings, H. Niederhausen, A. Rappelt, E. Resconi, and A. Turcati, “New constraints on supersymmetry using neutrino telescopes,” Phys. Lett. B 811, 135929 (2020), arXiv:2005.07523 [hep-ph].

https://pos.sissa.it/395/1117/pdf.

Pilar Coloma, Pedro A. N. Machado, Ivan Martinez-Soler, and Ian M. Shoemaker, “Double-Cascade Events from New Physics in Icecube,” Phys. Rev. Lett. 119, 201804 (2017), arXiv:1707.08573 [hep-ph].

S. Adrian-Martinez et al. (KM3NeT), “Letter of in-
tent for KM3NeT 2.0,” J. Phys. G43, 084001 (2016), arXiv:1601.07459 [astro-ph.IM].
57. A. D. Avrorin et al. (Baikal-GVD), “Baikal-GVD: status and prospects,” EPJ Web Conf. 191, 01006 (2018), arXiv:1808.10353 [astro-ph.IM].
58. Matteo Agostini et al. (P-ONE), “The Pacific Ocean Neutrino Experiment,” Nature Astron. 4, 913–915 (2020), arXiv:2005.09493 [astro-ph.HE].
59. M. G. Aartsen et al. (IceCube-Gen2), “IceCube-Gen2: the window to the extreme Universe,” J. Phys. G 48, 060501 (2021), arXiv:2008.04323 [astro-ph.HE].
60. H. Abramowicz et al., “Experimental Study of Opposite Sign Dimuons Produced in Neutrino and anti-neutrinos Interactions,” Z. Phys. C 15, 19 (1982).
61. A. A. Bazarko et al. (CCFR). “Determination of the strange quark content of the nucleon from a next-to-leading order QCD analysis of neutrino charm production,” Z. Phys. C 65, 189–198 (1995), arXiv:hep-ex/9406007.
62. P. Vilain et al. (CHARM II), “Leading order QCD analysis of neutrino induced dimuon events,” Eur. Phys. J. C 11, 19–34 (1999).
63. P. Astier et al. (NOMAD), “Neutrino production of opposite sign dimuons in the NOMAD experiment,” Phys. Lett. B 486, 35–48 (2000).
64. M. Goncharov et al. (NuTeV), “Precise Measurement of Dimuon Production Cross-Sections in νμ, Fe and ντ, Fe Deep Inelastic Scattering at the Tevatron,” Phys. Rev. D 64, 112006 (2001), arXiv:hep-ex/0102049.
65. A. Kayis-Topaksu et al. (CHORUS), “Leading order analysis of neutrino induced dimuon events in the CHORUS experiment,” Nucl. Phys. B 798, 1–16 (2008), arXiv:0804.1869 [hep-ex].
66. O. Samoylov et al. (NOMAD), “A Precision Measurement of Charm Dimuon Production in Neutrino Interactions from the NOMAD Experiment,” Nucl. Phys. B 876, 339–375 (2013), arXiv:1308.4750 [hep-ex].
67. Giovanni De Lellis, Pasquale Migliozzi, and Pietro Santorelli, “Charm physics with neutrinos,” Phys. Rept. 399, 227–320 (2004), [Erratum: Phys.Rept. 411, 323–324 (2005)].
68. Tie-Jium Hou et al., “New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC,” Phys. Rev. D 103, 014013 (2021), arXiv:1912.10053 [hep-ph].
69. Ferran Faura, Shayan Irandipour, Emanuele R. Nocera, Juan Rojo, and Maria Ubiali, “The Strangest Proton?” Eur. Phys. J. C 80, 1168 (2020), arXiv:2009.00014 [hep-ph].
70. Wolfgang Altmannshofer, Stefania Gori, Maxim Pospelov, and Itay Yavin, “Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams,” Phys. Rev. Lett. 113, 091801 (2014), arXiv:1406.2332 [hep-ph].
71. Gabriel Magill and Ryan Plestid, “Neutrino Trident Production at the Intensity Frontier,” Phys. Rev. D95, 073004 (2017), arXiv:1612.05642 [hep-ph].
72. Shao-Feng Ge, Manfred Lindner, and Werner Rodejohann, “Atmospheric Trident Production for Probing New Physics,” Phys. Lett. B772, 164–168 (2017), arXiv:1702.02617 [hep-ph].
73. Peter Ballett, Matheus Hostert, Silvia Pascoli, Yuber F. Perez-Gonzalez, Zahra Tabrizi, and Renata Zukanovich Funchal, “Neutrino Trident Scattering at Near Detectors,” JHEP 01, 119 (2019), arXiv:1807.10973 [hep-ph].
74. Rhorry Gauld, “Precise predictions for multi-TeV and PeV energy neutrino scattering rates,” Phys. Rev. D 100, 091301 (2019), arXiv:1905.03792 [hep-ph].
75. Wolfgang Altmannshofer, Stefania Gori, Justo Martin-Albo, Alexandre Sousa, and Michael Wallbank, “Neutrino Tridents at DUNE,” Phys. Rev. D 100, 115029 (2019), arXiv:1902.06765 [hep-ph].
76. R. Abbasi et al. (IceCube), “IceCube Data for Neutrino Point-Source Searches Years 2008-2018,” (2021), 10.21234/CPKQ-K003, arXiv:2101.09836 [astro-ph.HE].
77. IceCube Collaboration (2021), “All-sky point-source IceCube data: years 2008-2018. Dataset.” 10.21234/sxvs-mt83.
78. Raj Gandhi, Chris Quigg, Mary Hall Reno, and Ina Sarcevic, “Ultrahigh-energy neutrino interactions,” Astropart. Phys. 5, 81–110 (1996), arXiv:hep-ph/9512364 [hep-ph].
79. Raj Gandhi, Chris Quigg, Mary Hall Reno, and Ina Sarcevic, “Neutrino interactions at ultrahigh-energies,” Phys. Rev. D58, 093009 (1998), arXiv:hep-ph/9807264 [hep-ph].
80. Amanda Coopers-Sarkar, Philipp Mertsch, and Subir Sarkar, “The high energy neutrino cross-section in the Standard Model and its uncertainty,” JHEP 08, 042 (2011), arXiv:1106.3723 [hep-ph].
81. Amy Connolly, Robert S. Thorne, and David Waters, “Calculation of High Energy Neutrino-Nucleon Cross Sections and Uncertainties Using the MSTW Parton Distribution Functions and Implications for Future Experiments,” Phys. Rev. D83, 113009 (2011), arXiv:1102.0691 [hep-ph].
82. Chien-Yi Chen, P. S. Bhupal Dev, and Amarjit Soni, “Standard model explanation of the ultrahigh energy neutrino events at IceCube,” Phys. Rev. D89, 033012 (2014), arXiv:1309.1764 [hep-ph].
83. Valerio Bertone, Rhorry Gauld, and Juan Rojo, “Neutrino Telescopes as QCD Microscopes,” JHEP 01, 217 (2019), arXiv:1808.02034 [hep-ph].
84. Vernon Barger, Edward Basso, Yu Gao, and Wai-Yee Keung, “Neutrino signals in IceCube from weak production of top and charm quarks,” Phys. Rev. D 95, 093002 (2017), arXiv:1611.00773 [hep-ph].
85. P. H. Sandler et al., “Neutrino production of same sign dimuons at the Fermilab Tevatron,” Z. Phys. C 57, 1–12 (1993).
86. R. Barcelo, J. I. Illana, M. D. Jenkins, and M. Masip, “Propagation in the atmosphere of ultrahigh-energy charged hadrons,” Phys. Rev. D 83, 034027 (2011), arXiv:1010.0894 [hep-ph].
87. P. A. Zyla et al. (Particle Data Group), “Review of Particle Physics,” PTEP 2020, 083C01 (2020).
88. https://icecube.wisc.edu/().
and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP 07, 079 (2014), arXiv:1405.0301 [hep-ph].

92] Torbjörn Sjöstrand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel, Christine O. Rasmussen, and Peter Z. Skands, “An introduction to PYTHIA 8.2,” Comput. Phys. Commun. 191, 159–177 (2015), arXiv:1410.3012 [hep-ph].

93] Carl Schmidt, Jon Pumplin, Daniel Stump, and C. P. Yuan, “CT14QED parton distribution functions from isolated photon production in deep inelastic scattering,” Phys. Rev. D93, 114015 (2016), arXiv:1509.02905 [hep-ph].

94] https://hep.pa.msu.edu/cteq/public/index.html.

95] M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara, and S. Midorikawa, “Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model,” Phys. Rev. D92, 023004 (2015), arXiv:1502.03916 [astro-ph.HE].

96] Mathis Börner, M. Börner, T. Ruhe, F. Scheriau, and M. Schmitz (IceCube), “Unfolding measurement of the Atmospheric Neutrino Spectrum using IceCube-79/86,” PoS ICRC2015, 1098 (2016).

97] M. G. Aartsen et al. (IceCube), “Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data,” Phys. Rev. Lett. 125, 121104 (2020), arXiv:2001.09520 [astro-ph.HE].

98] G. De Lellis, A. Marotta, and P. Migliozzi, “A Combined analysis of all data on nu and anti-nu induced single charm production,” J. Phys. G 28, 713 (2002), [Erratum: J. Phys.G 28, 1515 (2002)], arXiv:hep-ph/0201050.

99] R. Abbasi et al. (IceCube), “A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors,” JINST 16, P08034 (2021), arXiv:2103.16931 [hep-ex].

100] Sebastian Schöneberg, The spectrum of atmospheric neutrinos above GeV energies, Ph.D. thesis, Ruhr U., Bochum (2016).

101] SayipjamaL Dulat, Tie-Jiun Hou, Jun Gao, Marco Guzzi, Joey Huston, Pavel Nadjolsky, Jon Pumplin, Carl Schmidt, Daniel Stump, and C. P. Yuan, “New parton distribution functions from a global analysis of quantum chromodynamics,” Phys. Rev. D 93, 033006 (2016), arXiv:1506.07443 [hep-ph].

102] T. K. Gaisser and T. Stanev, “Muon bundles in underground detectors,” Nucl. Instrum. Meth. A 235, 183–192 (1985).

103] Christoph Berger et al. (FREJUS), “Experimental Study of Muon Bundles Observed in the Frejus Detector,” Phys. Rev. D 40, 2163 (1989).

104] M. G. Aartsen et al. (IceCube), “Characterization of the Atmospheric Muon Flux in IceCube,” Astropart. Phys. 78, 1–27 (2016), arXiv:1506.07981 [astro-ph.HE].

105] Delia Tosi and Hershal Pandya (IceCube), “IceTop as veto for IceCube: results,” PoS ICRC2019, 445 (2020), arXiv:1908.07008 [astro-ph.HE].

106] Delia Tosi and Hershal Pandya (IceCube), “Performance of IceTop as a veto for IceCube,” PoS ICRC2017, 967 (2018).

107] Delia Tosi and Kyle Jero (IceCube), “IceTop as Veto for IceCube,” PoS ICRC2015, 1086 (2016).

108] https://docushare.icecube.wisc.edu/dsWeb/Get/Version-103436/IceCube%20performance.pdf.

109] http://icecube.lbl.gov/PDFS/RGS_Heidelberg_paper.pdf.

110] R. Abbasi et al. (IceCube), “An improved method for measuring muon energy using the truncated mean of dE/dx,” Nucl. Instrum. Meth. A 703, 190–198 (2013), arXiv:1208.3430 [physics.data-an].

111] Brian Clark et al. (IceCube), “Characterization of the PeV astrophysical neutrino energy spectrum with IceCube using down-going tracks,” PoS ICRC2021, 1137 (2021), arXiv:2107.14298 [astro-ph.HE].

112] Bei Zhou, Marc Kamionkowski, and Yun-feng Liang, “Search for High-Energy Neutrino Emission from Radio-Bright AGN,” Phys. Rev. D 103, 123018 (2021), arXiv:2103.12813 [astro-ph.HE].

113] M. G. Aartsen et al. (IceCube), “Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data,” Astropart. Phys. 66, 39–52 (2015), arXiv:1408.0634 [astro-ph.HE].

114] Francis Halzen and Spencer Klein (private communication).

115] R. Abbasi et al. (IceCube), “The IceCube Data Acquisition System: Signal Capture, Digitization, and Time-stamping,” Nucl. Instrum. Meth. A 601, 294–316 (2009), arXiv:0810.4930 [physics.ins-det].

116] Francis Halzen and Spencer R. Klein, “IceCube: An Instrument for Neutrino Astronomy,” Rev. Sci. Instrum. 81, 081101 (2010), arXiv:1007.1247 [astro-ph.HE].

117] M. G. Aartsen et al. (IceCube), “The IceCube Neutrino Observatory: Instrumentation and Online Systems,” JINST 12, P03012 (2017), arXiv:1612.05093 [astro-ph.IM].

118] R. Abbasi et al. (IceCube), “Calibration and Characterization of the IceCube Photomultiplier Tube,” Nucl. Instrum. Meth. A 618, 139–152 (2010), arXiv:1002.2442 [astro-ph.IM].

119] P. A. Amaudruz et al. (DEAP), “In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment,” Nucl. Instrum. Meth. A 922, 373–384 (2019), arXiv:1705.10183 [physics.ins-det].

120] Don van der Drift and Spencer R. Klein, “Double Neutrino Production and Detection in Neutrino Detectors,” Phys. Rev. D 88, 033013 (2013), arXiv:1305.5277 [astro-ph.HE].

121] David Alexander Mason, Measurement of the strange - antistrange asymmetry at NLO in QCD from NuTeV dimuon data, Ph.D. thesis, Oregon U. (2006).

122] Georges Aad et al. (ATLAS), “Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector,” JHEP 05, 068 (2014), arXiv:1402.6263 [hep-ex].

123] Albert M Sirunyan et al. (CMS), “Measurement of associated production of a W boson and a charm quark in proton-proton collisions at √s = 13 TeV,” Eur. Phys. J. C 79, 269 (2019), arXiv:1811.10021 [hep-ex].

124] I. Abt et al. (ZEUS), “Charm production in charged current deep inelastic scattering at HERA,” JHEP 05, 201 (2019), arXiv:1904.03261 [hep-ex].

125] M. G. Aartsen et al. (IceCube), “Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube,” Phys. Rev. D 99, 032004 (2019), arXiv:1808.07629 [hep-ex].
[126] J. Stettner (IceCube), “Measurement of the Diffuse Astrophysical Muon-Neutrino Spectrum with Ten Years of IceCube Data,” PoS ICRC2019, 1017 (2020), arXiv:1908.09551 [astro-ph.HE].

[127] M. G. Aartsen et al. (IceCube), “Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data,” Phys. Rev. D 91, 072004 (2015), arXiv:1410.7227 [hep-ex].

[128] M. G. Aartsen et al. (IceCube), “Search for sterile neutrino mixing using three years of IceCube DeepCore data,” Phys. Rev. D 95, 112002 (2017), arXiv:1702.05160 [hep-ex].

[129] http://www-sk.icrr.u-tokyo.ac.jp/sk/index-e.html.

[130] R. Acciarri et al. (DUNE), “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 2: The Physics Program for DUNE at LBNF,” (2015), arXiv:1512.06148 [physics.ins-det].

[131] R. Abbasi et al. (IceCube), “The Design and Performance of IceCube DeepCore,” Astropart. Phys. 35, 615–624 (2012), arXiv:1109.6096 [astro-ph.IM].

[132] M. G. Aartsen et al. (IceCube-PINGU), “Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU),” (2014), arXiv:1401.2046 [physics.ins-det].

[133] R. Mertig, M. Bohm, and Ansgar Denner, “FEYN CALC: Computer algebraic calculation of Feynman amplitudes,” Comput. Phys. Commun. 64, 345–359 (1991).

[134] Vladyslav Shtabovenko, Rolf Mertig, and Frederik Orellana, “New Developments in FeynCalc 9.0,” Comput. Phys. Commun. 207, 432–444 (2016), arXiv:1601.01167 [hep-ph].