Strategies for Optimizing the Use of PPE During Surgery in COVID-19 Pandemic: Rapid Scoping Review of Guidelines

Vikesh Agrawal1 • Sanjay Kumar Yadav1 • Pawan Agarwal1 • Dhananjaya Sharma1

Received: 17 August 2020 / Accepted: 30 December 2020 / Published online: 6 January 2021
© Association of Surgeons of India 2021

Abstract
Personal protective equipment (PPE) plays a fundamental role in the prevention of spread to Health Care Professionals (HCP); especially in a surgical setting. This scoping review of surgery guidelines was performed to appraise the quality of appropriate PPE recommendations and propose a strategy to optimize the PPE usage. This rapid scoping review of guidelines on surgery during COVID-19 was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews protocol. Important databases were searched from January 1, 2020 to July 31, 2020, for relevant studies produced by a national/international academic association/organization, in English literature, using relevant keywords. Quality of evidence was graded according to GRADE guidelines. The searches yielded a total of 1725 studies, out of these 41 guidelines on surgery during COVID-19 matching with predefined criteria were evaluated. The level of evidence was uniformly rated “low,” as assessed by GRADE guidelines and recommendations provided by them were mostly non-specific covering a narrow range of items. The crucial issue of optimization of PPE was not addressed at all. Economic implications demand optimization of PPE and conservation of resources. A simple decision-making algorithm addressing all the limitations of guidelines can be constructed, which allows HCPs to safeguard themselves and at the same time optimize conserving resources.

Keywords Personal protective equipment • COVID-19 pandemic • Surgery • Guidelines

Introduction
As the COVID-19 pandemic rages across the world with no end or clear treatment in sight, its prevention is of paramount importance. Prevention of patient-to-patient transmission and prevention of patient-to-Health Care Professionals (HCPs) transmission is the main focus of this effort. Personal protective equipment (PPE) plays a fundamental role in the prevention of spread to HCPs; especially in a surgical setting. However, the term “PPE,” a contemporary buzzword, is not standardized and broadly includes a variety of masks, respirators, gloves, gowns, or body covers. Furthermore, meeting its universal demand has been hindered by economic reasons, misinformation, panic buying, and stockpiling during a pandemic. Rationale use of PPEs is the need of the hour not only because of its cost but also since the majority of the countries have not witnessed the pandemic’s peak, yet some are facing the second wave, logistically forcing us to be ready for a long-drawn battle [1]. The medical world responded quickly to the current pandemic and came out with many rapidly emerging guidelines; however, most of these did not pass the stringent tests of the quality of evidence and methodology because the necessary clinical experience/evidence is still evolving [2, 3]. This prompted us to perform a scoping review of surgery guidelines that emerged during the COVID-19 pandemic to identify the appropriate PPE recommendations, appraise their quality, and propose a strategy to optimize the PPE usage.
Methods

This rapid scoping review of guidelines on surgery and laparoscopic surgery during COVID-19 was conducted according to the PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) protocol and did not need prior registration [4].

Search Strategy The following databases were searched from January 1, 2020, to July 31, 2020, for relevant studies: Medline, Embase, Global Health, Scopus, Web of Science Core Collection, WHO, Global Index Medicus, and Google Scholar. The search strategy included terms related to clinical practice guidelines and its synonyms (“clinical pathway,” “clinical protocol,” “consensus,” “consensus development conference,” “critical pathways,” “guidelines,” “practice guidelines,” “health planning guidelines,” “guideline,” “practice guideline,” “position statement,” “policy statement,” “practice parameter,” “best practice,” “standards,” “recommendations”) and coronavirus diseases and its synonyms (“SARS-cov 2,” “covid 19,” “coronavirus,” “novel coronavirus,” “coronavirus covid-19”) and personal protective equipment and its synonyms (“PPE,” “N95,” “Respirator”). Apart from scholarly/published material, hand-searching of key international surgical associations, minimal access surgery associations and laparoscopic and endoscopic surgery associations and a grey literature search was also performed.

The inclusion criterion was that the guidelines on surgery/ laparoscopic surgery must have been produced by a national/ international academic association/organization, in English literature. Exclusion criteria were guidelines exclusively concerned with anesthesia procedure; regional/hospital/government guidelines; non-peer-reviewed guidelines; commentaries, reviews, viewpoints, opinions, case series, case reports, or recommendations from individual author or group of authors or institutes.

Two reviewers (SKY and VA) reviewed the potential abstracts and if required, full texts of the search material to select the studies that appeared to be a “best fit” with stated objectives. Full articles of selected studies were reviewed in detail, and resolution of any disagreements was done in consultation with third and fourth authors (PA and DS).

Data Synthesis An all-inclusive list of relevant geographical, methodological, surgical, and evaluation of evidence parameters was made after a preliminary review of included guidelines. The various parameters included in the evaluation were the country of origin, level of evidence, and special attention to the recommendations on types/indications/method/disposal of PPE. The parameters were identified in every included guideline and were finally tabulated in a standardized Microsoft Excel Version 16 form. The result was assessed for each of the criteria and evaluated as recommended/not recommended/not available. Quality of evidence was graded according to GRADE guidelines: as very low/low/moderate/high [5].

Result

The initial search yielded a total of 1725 studies, out of these 41 guidelines on surgery and laparoscopic surgery during COVID-19 matching with pre-defined criteria were chosen and evaluated in this rapid scoping review (Fig. 1).

A summary of all guidelines with the origin of their country, academic association, type of study, type of evidence and recommendations based on various surgical/technical parameters are shown in Table 1 [6–46].

In general, guidelines on types/indications/method/disposal of PPE were embedded within a document that primarily focused on surgery/laparoscopic surgery, and recommendations provided by them were mostly non-specific covering a narrow range of items (Table 2).

A maximum number of guidelines originated from individual National associations (27/41), followed by regional societies (9/41) and international societies (5/41). Globally, only 8/41 guidelines were published by national associations from LMICs. None of the guidelines qualified to be evidence-based clinical practice guidelines in terms of the level of evidence and the methodology adopted for the development of guidelines. The level of evidence was uniformly rated “low,” as assessed by GRADE guidelines, as they were based on level 3 evidence and grade C recommendations (Table 1) [4]. The most commonly recommended PPE was in the form of gloves (unspecified, 90.24%), head cap (90.24%), N95 respirator (82.92%), front doffing gown (90.24%), and face shield (87.80%). Though the N95 respirator (filtering facepiece mask; FFP2 in one) was the most commonly recommended respirator, a surgical mask (2 or 3 layered) was recommended in 5/41 and powered air-purifying respirators (PAPR) in only 1/41 guidelines. Enhanced personal protective equipment (EPPE) suit was recommended in 92.68% of COVID-19 positive patients and 55.53% of COVID-19 negative patients. Use of EPPE in positive patients by all staff members in OR was recommended by 68.29% of guidelines, while 12.19% were not in favor of that. High-risk aerosol-generating procedures (HAGP) were poorly defined in most of the guidelines on minimally invasive surgery (17); however, the use of EPPE in HAGP was recommended in 9/17 guidelines irrespective of COVID-19 status, 7 did not recommend and 6 did not mention it. The donning and doffing technique of PPE was described in only 21.95% of studies. Disposal of PPE was either not described or was poorly described in almost all guidelines. Surprisingly, there was no guidance on decontamination and re-use of face shield/
respirators. None of the guidelines took into consideration the optimization of the supply/utilization of PPE. Universal pre-operative testing was recommended in only 58.53% of cases and was not recommended in 26.82% of patients, while it was not mentioned in 12.19% of guidelines. The PPE recommendations did not vary with the emergency and routine settings.

Discussion

HCPs are on the frontline in this war against the COVID-19 pandemic and are therefore most vulnerable to exposure from an infected patient. Such infections are as high as one in ten HCPs getting infected in some countries and many of them have succumbed to the infection. This is the reason for the focus on the safety of HCPs against accidental infection from their patients. PPE works as a barrier between an individual’s skin, mouth, nose, or eyes, and viral/bacterial infections, and includes gloves, medical masks, respirators, eye protection, gowns, aprons, and shoe covers. The use of PPE has been shown to provide a high level of protection even in the face of heavy exposure in very high incidence areas like Wuhan, China [47]. The rapid global increase in the number of infected patients resulted in a shortage of PPE even in developed countries, while the health care systems in LMICs were put under severe logistics and economic pressure. As the end of this pandemic is still not in sight, a strategy has to be formulated for rational and appropriate utilization of PPEs to conserve resources for this long haul. This scoping review was conducted to evaluate the quality of current guidelines that emerged during the COVID-19 pandemic and how this crucial issue of PPE recommendations was addressed in a surgical setting.

A scoping review is an ideal approach to assess the nature and extent of research evidence and identify knowledge gaps promptly, especially for an on-going pandemic where knowledge, attitude, and practice are still evolving and are diverse. When evaluated by GRADE assessment, the level of the evidence was uniformly rated “low” in all guidelines (Table 1) [4]. As seen in the summary of their guidance on PPE in

Fig. 1 Flow chart summarizing the results of the screening process and study selection as per the PRISMA guideline
S. no.	Guideline Country	LMIC Date of publication	GRADE E/R Specialty Hand Hygiene Head cap Front donning gown Face shield Type of respirator Donning described Doffing described EPPE by all staff EPPE in a negative patient EPPE in a positive patient EPPE in HAGP Disposal of PPE																	
1	RCOG BSGE [6]	UK N Mar-20	Low E MIS	NA	Y	Y	Y	N95	N	N	N	Y	Y	Y	Y	NA				
2	SHED [7]	Latin America N 17-03-20	Low E MIS	NA	Y	Y	Y	N95	N	N	N	Y	Y	NA						
3	ERUS [8]	Europe N 25-03-20	Low E MIS	NA	Y	Y	Y	Surgeon mask	N	N	N	Y	Y	NA						
4	CAG [9]	Canada N 27-03-20	Low E MIS	NA	Y	Y	Y	Surgeon mask	N	N	N	Y	NA							
5	FAAED [10]	Argentina N 27-03-20	Low E MIS	NA	Y	Y	Y	Surgeon mask	N	N	N	Y	Y	NA						
6	ISDE [11]	International N 30-03-20	Low E MIS	NA	Y	Y	Y	N95	NA	NA	NA	NA	NA	NA						
7	ABORL-CCF[12]	Brazil Y Apr-20	Low Both Oncosurgery	Y	Y	Y	Y	N95	NA	NA	NA	NA	NA	NA						
8	SEBGS [13]	Europe N 03-04-20	Low E Gynecology	NA	Y	Y	Y	N95	N	N	N	Y	Y	NA						
9	SASREG [14]	South Africa Y 06-04-20	Low E MIS	NA	Y	Y	Y	N95	N	N	Y	Y	Y	Y						
10	IIS (Italian) [15]	Italy N 07-04-20	Low E All	Y	Y	Y	Y	N95	Y	Y	Y	Y	Y	Y						
11	WEO [16]	Global N 09-04-20	Low E MIS	NA	Y	Y	Y	N95	Y	Y	Y	Y	Y	NA						
12	IFSO [17]	International N 14-04-20	Low E Metabolic	Y	Y	Y	Y	N95	NA	NA	NA	NA	NA	NA						
13	AMF [18]	Mexico Y 15-04-20	Low E MIS	NA	Y	Y	Y	N95	Y	Y	Y	N	Y	NA						
14	ESGE and ESGENA [19]	Europe N 17-04-20	Low E Endoscopy	Y	Y	Y	Y	Surgeon mask	NA	NA	N	Y	N	NA						
15	ESTES [20]	Europe N 17-04-20	Low E Trauma	Y	Y	Y	Y	N95 OR PAPR	Y	Y	Y	Y	Y	NA						
16	AFOP and SFORL [21]	France N 18-04-20	Low Both ENT	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y							
17	USANZ [22]	ANZ N 19-04-20	Low E MIS	NA	Y	Y	Y	N95	N	N	Y	Y	Y	Y						
18	SAGES & EAES [23]	USA N 22-04-20	Low E MIS	NA	Y	Y	Y	N95	N	N	Y	Y	Y	NA						
19	ALSGBH [24]	UK N 22-04-20	Low E Gynecology	NA	Y	Y	Y	N95	N	N	Y	Y	Y	NA						
20	EAU [25]	Europe N 27-04-20	Low Both Urology	Y	Y	Y	Y	N95	NA	NA	N	Y	NA	NA						
21	SRED-ARCE [26]	Romania N 01-05-20	Low Both MIS	Y	Y	Y	Y	Y	Y	N	N	Y	Y							
22	AGES Nigeria [27]	Nigeria Y 04-05-20	Low E Gynecology	NA	Y	Y	NA	N95	N	N	NA	NA	Y	NA						
23	SRS [28]	International N 08-05-20	Low E MIS	NA	Y	Y	Y	N95	N	N	Y	Y	Y	Y						
24	ELSEA [29]	Asia N 11-05-20	Low E MIS	NA	Y	Y	Y	N95	N	N	Y	Y	Y	NA						
25	ASLS [30]	Argentina N 13-05-20	Low E MIS	NA	NA	NA	NA	N95	N	N	NA	NA	NA	NA						
26	EBS [31]	Europe N 23-05-20	Low E Hernia	NA	NA	NA	NA	N95	N	N	NA	NA	NA	NA						
27	AAGL [32]	USA N 24-05-20	Low E Gynaecology	NA	Y	Y	Y	N95	N	N	Y	Y	Y	Y						
28	IIS [33]	India Y 05-06-20	Low E General surgery	NA	Y	Y	Y	N95	N	N	Y	Y	Y	NA						
29	BSGE [34]	UK N 05-06-20	Low E MIS	NA	Y	Y	Y	N95	N	N	Y	Y	Y	Y						
30	SGO [35]	USA N 06-06-20	Low Both Gynaecology	Y	Y	Y	Y	Surgeon mask	NA	NA	N	N	Y	NA						
31	SICOB [36]	Italy N 08-06-20	Low E Metabolic and GI General surgery	NA	NA	NA	Y	N95	N	N	N	N	N	NA						
32	ASI [37]	India Y 09-06-20	Low E	NA	NA	NA	NA	N95	N	N	N	N	N	NA						
S. no.	Guideline	Country	LMIC	Date of publication	GRADE	E/R	Specialty	Hand Hygiene	Head cap	Front doffing gown	Face shield	Type of respirator	Donning described	Doffing described	EPPE by all staff	EPPE in a negative patient	EPPE in a positive patient	EPPE in HAGP	Disposal of PPE	
--------	------------	---------	------	---------------------	-------	-----	-----------	-------------	----------	-------------------	------------	-------------------	------------------	-------------------	-----------------	------------------	------------------	------------------	----------------	----------------
33	HNCIG [38]	International	N	11-06-2020	Low	R	Oncosurgery	Y	Y	Y	N95	NA								
34	BCS & BBMSS [39]	Brazil	Y	12-06-2020	Low	R	Metabolic	Y	Y	Y	N95	NA								
35	TAES [40]	Turkey	Y	16-06-2020	Low	E	Emer. Surgery	Y	Y	Y	Y	N95	NA	NA	NA	NA	NA	NA		
36	BCS [41]	Brazil	N	20-06-2020	Low	E	MIS	NA	Y	Y	Y	N95	N	N	Y	Y	Y	Y	NA	
37	ESGE [42]	Europe	N	20-06-2020	Low	E	MIS	NA	Y	Y	Y	N95	N	N	Y	Y	Y	Y	NA	
38	ACG [43]	USA	N	03-07-2020	Low	E	MIS	NA	Y	Y	Y	NA	Y	Y	Y	Y	Y	Y	NA	
39	BAUS [44]	UK	N	05-07-2020	Low	E	MIS	NA	Y	Y	Y	N95	N	N	Y	Y	Y	Y	NA	
40	AGA [45]	USA	N	27-07-2020	Low	E	MIS	NA	Y	Y	Y	N95	N	N	Y	Y	Y	Y	NA	
41	ACHED & others [46]	Chile	N	NA	Low	E	MIS	Y	Y	Y	Y	Surgeon mask	Y	Y	Y	Y	Y	Y	NA	

LMIC low middle-income countries, GRADE grading of recommendations, assessment, development, and evaluations, E emergency, R routine, EPPE enhanced PPE, HAGP high aerosol generating procedure, Y recommended, N not recommended, NA information not available, MIS minimally invasive surgery, RCOG BSGE Royal College of Gynaecology-British Society for Gynaecological Endoscopy, SIED Interamerican Society for Digestive Endoscopy, ERUS EAU Robotic Urology Section, CAG Canadian Association of Gastroenterology, FAEAED Federación Argentina de Asociaciones de Endoscopia Digestiva, ISDE International Society for Diseases of the Esophagus, ABORL-CCF Brazilian Association of Otolaryngology and Cervicofacial Surgery, SERGS Society of European Robotic Gynaecological Endoscopy, SASREG Southern African Society of Reproductive Medicine and Gynaecological Endoscopy, IIS (Italian) International Inter Society Italian, WEO World Endoscopy Organization, IPSO International Society for Obesity and Metabolic Disorders, AME Asociación Mexicana de Endoscopia, ESGE and ESGENA European Society of Gastrointestinal Endoscopy and the European Society of Gastroenterology and Endoscopy Nurses and Associates, ESTES European Society of Trauma and Emergency, AFOP and SFORL French Association of Pediatric Otorhinolaryngology and French Society of Otorhinolaryngology, USANZ Urological Society of Australia and New Zealand, SAGES & EAES Society of American Gastrointestinal and Endoscopic Surgeons and The European Association for Endoscopic Surgeons, ALGBI Association of Laparoscopic Surgeons of Great Britain and Ireland, EAU European Association of Urology, SRED ARCE Romanian Society of Digestive Endoscopy and the Romanian Association of Endoscopic Surgery, AGES Nigeria Association of gynaecological endoscopy surgeons of Nigeria, SRS Society of Robotic Surgery, ELSA Endoscopic and Laparoscopic Surgeon of Asia, ASLS Argentine Society of Laparoscopic Surgery, EHS European Hernia Society, AAGL American Association of Gynecologic Laparoscopy, IIS Indian inter-society, BSGE British Society for Gynaecological Endoscopy, SGO Society of Gynecologic Oncology, SICOB Società Italiana di Chirurgia dell’Obesità e Malattie Metaboliche, ASI Association of Surgeons of India, HNCIG Head and Neck Cancer International Group, BCS & BBMSS Brazilian College of Surgeons and the Brazilian Bariatric and Metabolic Surgery Societies, TAES Turkish Association of Endocrine Surgery, BCS Brazilian College of Surgeons, ESGE European Society of Gastrointestinal Endoscopy, AGC American College of Gastroenterology, BAUS British Association of Urological Surgeons, AGA American Gastroenterological Association, ACHED & others Asociaciones Chilenas de Endoscopia Digestiva
Table 2, a major knowledge gap was lack of recommendations for optimizing the PPE use, conservation of resources, and advice on its donning/ doffing and disposal (Table 3).

Transmission of COVID-19 is believed to be predominantly via inhalation of droplets (10–100 μm) which are aerodynamically produced during an expiratory event (breathing, talking, coughing, and sneezing) and gravitationally settle quickly. Some surgical procedures are high aerosol-generating procedures (HAGP); these are defined by WHO as medical procedures that are aerosol-generating and are consistently associated with an increased risk of pathogen transmission. Other equally important determinants of this risk are the duration of exposure, the proximity of HCP to aerosol, manipulation of high viral load tissue, and infectivity of organisms generated from the use of energy devices (laser, cautery, drills, micro-debriders, saws, and ultrasonic devices) [48]. This complex issue is further compounded by the debatable labeling of laparoscopy as high HAGPs for the risk of virus transmission [2]. Therefore, there is an urgent need to stratify HAGPs based not only on the type of surgery but also on incorporating other compounding factors too in the risk assessment [49].

“Mask” is the primary prophylaxis against droplet infection. Interestingly, the evolution of the “mask” has its roots in surgery, having been developed by Polish Surgeon Professor Jan Mikulicz-Radecki in 1897; who realized the importance of German bacteriologist Carl Flügge’s discovery of droplets as a mode of transmission of disease. The generic term “mask” includes various specific types with different qualities: ordinary home-made cloth mask, 3-layer surgical mask, respirator variants with/ without valve (tight-fitting design to protect the wearer, with a safety rating; the letters N and FFP/ P denote standardization by US Center for Disease Control and European Committee for Standardization respectively; the numbers after N/FFP/P denote filter capacity, i.e., removes x% of all particles that are 0.3 microns in diameter or larger) and powered air-purifying respirator (PAPR; headgear-and-fan assembly that actively filters pollutant/pathogen from ambient air then delivers the clean air to the user). Since surgical face masks filter particles larger than 0.1 to 5.0 μm, it has been shown to provide adequate protection from transmission of COVID-19 in low-risk circumstances during previous respiratory virus epidemics [50]. However, a recent systemic review suggests that N95 respirators might offer better protection from viral transmission than surgical masks [51]. Similarly, a large variation exists in components of PPE with undefined classification/degree of protection by different types/best ways of its donning and doffing (to avoid any breach in bio-safety) and how to train HCWs to use PPE [52]. Such heterogeneity in classification and practice shows a lack of clear evidence.

Any decision making process for resource optimization (and thereby resource conservation) needs broad consensus on three issues: classification of surgical procedure into high or low risk (based on the degree of aerosol generation and HCP’s exposure), classification of PPE into “universal” respiratory precaution (for normal AGPs) or “specific” respiratory precautions (for high AGPs), and classification of a patient into COVID positive or negative (based on symptoms and best diagnostic modalities: RT-PCR and chest CT scan) [1, 51, 53–56]. Theoretically, universal preoperative testing helps

S. no.	Criteria	Recommended	Not recommended	Not mentioned			
		n	%	n	%	n	%
1.	LMIC	8	19.51	33	80.48	0	0
2.	Hand Hygiene	13	31.70	0	0	28	68.29
3.	Gloves	37	90.24	0	0	4	9.75
4.	Head cap	37	90.24	0	0	4	9.75
5.	N95 respirator	34	82.92	5	12.19	2	4.87
6.	Front doffing gown	37	90.24	0	0	4	9.75
7.	Face shield	36	87.80	1	2.43	4	9.75
8.	Donning described	9	21.95	26	63.41	6	14.63
9.	Doffing described	9	21.95	26	63.41	6	14.63
10.	EPPE worn by all staff in OR	28	68.29	5	12.19	8	19.51
11.	Use of EPPE in a negative patient in OR	24	58.53	9	21.95	8	19.51
12.	Use of EPPE in a positive patient in OR	38	92.68	0	0	3	7.317
13.	EPPE in HAGP	30	73.17	1	2.43	10	24.39
14.	Disposal of PPE	3	7.317	0	0	38	92.68

LMIC low middle income countries, EPPE enhanced personal protective equipment, OR operation room, HAGP high-risk aerosol generating procedure, PPE personal protective equipment
to categorize the surgical patients into COVID positive or negative, but the two most commonly used diagnostic modalities: RT-PCR and CT scan Thorax do not have 100% accuracy [57, 58]. Surprisingly, none of the 41 guidelines for surgery during this COVID pandemic addressed the crucial issue of optimization of PPE use; routine versus emergency settings, consideration of clinical surveillance, and none of the guidelines even from LMICs have any advice for temporary measures in the context of PPE shortage or reusability of PPEs.

To sum up, this scoping review of guidelines for surgery has brought out certain gaps in available research evidence:

Table 3 The identified gaps in the existing knowledge on the use of PPE and the practice recommendations based on scoping review

S. no.	Criteria	Existing knowledge gaps	Our practice recommendations
1.	Classification of PPE	The PPE has lot of variations and there is a need for categorization of PPE	• Classification of PPE into ‘universal’ respiratory precaution (for normal AGPs) or ‘specific’ respiratory precautions (for high AGPs) is recommended
• Categorization of PPE is needed			
Category 1 PPE (Universal respiratory precaution) (N95/Surgical mask, Head cap, Cloth gown, Double latex gloves)			
Category 2 PPE (Reusable N95 respirator, Disposable Head Cap, Disposable, impermeable gown, Reusable Eye-shield, Reusable Face shield, Disposable shoe cover, Latex gloves with Nitrile gloves)			
Category 3- Enhanced PPE (All disposable, Coverall, N95/PAPR, Eyeshield, Face shield, Latex gloves with Nitrile gloves, Shoe cover)			
2.	Rational use of PPE in a surgical setting	- The use of PPE is not optimized and used similarly for a positive, negative, and unknown status of the infection	
- PPE is used without assessment of the risk of infection concerning aerosol-generating procedure potential of the procedure
- Due consideration has not been given for resource-constrained settings
- Economic implications of irrational use of PPE are not studied | • Classification of a patient into COVID positive or negative (based on clinical screening/ suitable diagnostic modalities: RT-PCR and Chest CT scan)
• Risk stratification of the procedure according to aerosol generating potential should be followed a COVID-19 negative patient and PPE usage should be optimized.
• The situations in emergency settings vary, therefore PPE recommendations may be different |
| 3. | PPE for a high AGP | About 25% of the studies did not specify the need of PPE with reference to aerosol generating potential of the procedure | ‘Specific’ respiratory precautions are recommended, however, due consideration need to be given to preoperative status of infection with reference to use of EPPE (Category 3) |
| 4. | PPE for Non-AGP | Majority of studies recommended EPPE irrespective of aerosol generating potential. | A minimum of ‘Universal’ respiratory precautions are recommended, however, due consideration need to be given to preoperative status of infection with reference to use of EPPE (Category 3) |
| 5. | PPE for a negative patient | Majority of studies recommended EPPE irrespective of preoperative testing results. | Category 1 PPE for NAGP and Category 2 PPE for AGPs is recommended |
| 6. | PPE for a positive patient | Majority of studies recommended EPPE irrespective of preoperative testing results. | Category 3- Enhanced PPE is recommended |
| 7. | PPE for resource-constrained setting | Most of the guidelines have not addressed the issue about resource-constrained settings where there is a shortage or unavailability of testing, CT scan or EPPE | A minimum of category 2 PPE is recommended, however, a “universal” respiratory precaution is doable in NAGPs. |
| 8. | Use of PPE for operation room staff | Majority of the studies recommended use of EPPE by all staff in the operation room | Use of PPE need to be optimized by reducing no of staff persons in OR, and use of recommended PPE. |
| 9. | Optimization strategies of PPE | The crucial issue of optimization of PPE was conspicuously missing. The use of PPE has largely been guided by fear over science and not based on the possibility of transmission with respect to preoperative testing, imaging, and aerosol-generating potential of the procedure. | Risk stratification and PPE optimization strategy are recommended (Figure 2). However, the impact of the proposed algorithm needs to be studied prospectively and validated qualitatively. |
| 10. | Efficacy of PPE | It was found to have direct correlation with donning and doffing technique | Strict donning and doffing techniques, use of ‘buddy’ technique should be adopted |
| 11. | PPE Disposal | Only 3/41 studies reported the importance of PPE disposal | Strict hospital waste disposal policy should be followed |
1. When assessed by GRADE, the level of evidence was uniformly rated “low” in all guidelines.

2. The crucial issue of optimization of PPE has not been addressed at all and is conspicuously missing. This can serve as a richly informed starting point for further conceptual work in the field of research, practice, and policy. This pandemic has caused major disruption to the health economics of all countries, barring none. This alone calls for the optimization of PPE and the conservation of resources. Surgeons are considering rebooting elective surgery wherever the pandemic has plateaued [59]. Much needed research on such an important topic should be part of the continuation and rebooting of surgical services. A simple decision-making algorithm can be constructed, based upon this scoping review which can allow HCWs to walk the tightrope between safeguarding themselves and optimizing/conserving resources (Fig. 2). This algorithm addresses all the limitations of guidelines observed in this scoping review.

Results of our scoping review are not meant as a critique of these guidelines; however, only a rigorous evidence base will make these guidelines more reliable. Additionally, easy understanding, resource availability, geographical implications and economic implications part of any recommendation has to be addressed, especially for LMIC which is facing the major brunt of the pandemic [3, 60]. The Association of Surgeons of India has led from the front in this war against the COVID-19 pandemic. Formulation and timely revision of guidelines on this contemporary and vitally important topic, incorporating the economic needs of LMICs, will further enhance ASI’s eminence and will be of immense help for all the surgeons working in LMICs. This scoping review can provide interim guidance and act as the stepping stone for the development of such a guideline.

Acknowledgments
We are extremely thankful to Professor Sandeep Kumar, MS FRCS (Edinburgh) PhD (Wales) MMSc (Newcastle), Editor in Chief, Indian Journal of Surgery, Consultant Surgeon, Scientist and Epidemiologist, Professor and Founder Director AIIMS Bhopal, for his extremely valuable inputs in developing this manuscript.

Data Availability
Available

Compliance with ethical standards

Conflict of Interest
The authors declare that they have no conflict of interest.

Code Availability
Not applicable

Ethics Approval
Obtained

Consent to Participate
Not applicable

Consent for Publication
Not applicable

References

1. Forrester JD, Nassar AK, Maggio PM, Hawn MT (2020) Precautions for operating room team members during the COVID-19 pandemic. J Am Coll Surg 230(6):1098–1101. https://doi.org/10.1016/j.jamcollsurg.2020.03.030
2. Agrawal V, Sharma D (2020) Initial advice to avoid laparoscopic surgery due to fear of COVID-19 virus transmission: Where was the evidence? [published online ahead of print, 2020 Jul 31]. Br J Surg. https://doi.org/10.1002/bjs.11860

3. Agrawal V, Yadav SK, Agarwal P, Sharma D (2020) ‘EMERGE’: construction of a simple quality appraisal tool for rapid review of laparoscopic surgery guidelines during COVID-19 pandemic. BJHS. https://doi.org/10.1002/bjs.11988

4. Tricco AC, Lillie E, Zarim W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, Hempel S, Akli EA, Chang C, McGowan J, Stewart L, Hartling L, Aldcroft A, Wilson MG, Garrity C, Lewin S, Godfrey CM, Macdonald MT, Langlois EV, Soares-Weiser K, Moirarty J, Clifford T, Tuncap O, Straus SE (2018) PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 169(7):467–473. https://doi.org/10.7326/M18-0850

5. Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A (2011) GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol 64(4):380–382

6. Joint RCOG (2020) / BSGE Statement on gynaecological laparoscopic procedures and COVID-19 [Internet]. BSGE. [Accessed on 2020 Jun 20]. Available from: https://www.bsgsge.org/news/joint-rcog-bsge-statement-on-gynaecological-laparoscopic-procedures-and-covid-19/

7. Recommendations for the endoscopy units during the coronavirus infection outbreak (COVID-19) Available from: http://www.sedonline.org/wp-content/uploads/2020/03/COVID-19-info-ACTUALIZADA-ingles.pdf. Accessed 21 Oct 2020

8. EAU Robotic Urology Section (ERUS) guidelines during COVID-19 emergency | Uroweb [Internet]. Uroweb. 2020. Available from: https://uroweb.org/eau-robotic-urology-section-erus-guidelines-during-covid-19-emergency/. Accessed on 20 June 2020

9. Tse F, Borgaonkar M, Leontiadis GI (2020) COVID-19: advice from the Canadian Association of Gastroenterology for Endoscopy Facilities, as of March 16, 2020. J Can Assoc Gastroenterol 3(3):147–149. https://doi.org/10.1093/jcag/gwa012 (Accessed on 20/07/2020)

10. Comunicado Federación Argentina de Asociaciones de Endoscopia Digestiva (F.A.A.E.D). Available from: http://www.faaed.org.ar/images/Recomendaciones-Coronavirus.pdf. Accessed on 20 June 2020

11. COVID-19 Guidance Statement [Internet]. ISDE. Available from: https://isde.net/covid19-guidance. Accessed on 20 June 2020

12. Lavinsky J, Kosugi EM, Baptistella E, Roithmann R, Dolci E, Cauquet A, Froehlich I, Heras A, Schlag P, for the ISDE Covid-19 action group: an organisation-wide collaborative effort to adapt the ISDE guidelines to the COVID-19 pandemic. Endoscopy. 52(6):483–490. https://doi.org/10.1055/a-1155-6229

13. Kimmig R, Verheijen RHM, Rudnicki M, for SERGS Council – ACTUALIZADA-ingles.pdf. Accessed 21 Oct 2020

14. Guidance for Endoscopic Surgery during COVID-19: 6 April 2020 [Internet]. SASREG. 2020. Available from: https://sasreg.co.za/guidance-for-endoscopic-surgery-during-covid-19-6-april-2020/. Accessed on 20 June 2020

15. Coccolini F, Perrone G, Chiariugi M, Di Marzo F, Ansaloni L, Scardoglio I et al (2020) Surgery in COVID-19 patients: operational directives. World J Emerg Surg 15(1):25. Published 2020 Apr 7. https://doi.org/10.1186/s13017-020-00307-2

16. WEO recommendations on digestive endoscopy and the COVID-19 pandemic. Available from: https://www.worldendo.org/wp-content/uploads/2016/03/200409_WEO-Advice-to-Endoscopists-COVID-19-Update-April-9-2020.pdf. Accessed on 20/07/2020

17. Yang W, Wang C, Shikora S, Kow L (2020) Recommendations for metabolic and bariatric surgery during the COVID-19 pandemic from IFSO. Obes Surg 30(6):2071–2073. https://doi.org/10.1007/s11695-020-04578-1

18. Recomendaciones generales para disminuir el riesgo de contagio en las unidades de endoscopia durante la pandemia de Covid-19. Available from: https://www.amegendoscopia.org.mx/docs/2020/recomendaciones_generales_COVID-AMEG.pdf. Accessed on 20/07/2020

19. Gralnek IM, Hassan C, Beilnhoff U, Antonelli G, Ebibgo A, Pellise M, Arvanitakis M, Bhandari P, Bisschops R, van Hoof JE, Kaminski MF, Triantafyllou K, Webster G, Pohl H, Dunkley I, Fehlke B, Guzic M, Gjerjeck T, Maassen S, Waagenes W, de Pater M, Poonchon T, Siersema PD, Messmann H, Dinis-Ribeiro M (2020) ESGE and ESGENA position statement on gastrointestinal endoscopy and the COVID-19 pandemic. Endoscopy. 52(6):483–490. https://doi.org/10.1055/a-1155-6229

20. Coimbra R, Edwards S, Kurihara H, Bass GA, J Balogh ZJ, Tilsed J et al (2020) European Society of Trauma and Emergency Surgery (ESTES) recommendations for trauma and emergency surgery preparation during times of COVID-19 infection. Eur J Trauma Emerg Surg 46(3):505–510. https://doi.org/10.1007/s00068-020-01364-7

21. Leboulander N, Sagardoy T, Akkari M, Ayari-Khalilfalah S, Celerier C, Fayoux P, Luscan R, Mansbach AL, Moredu E, Pondaven S, Simon F, Teissier N, Thierry B, Fanous A, Lescanne E, Nicollas R, Couloigner V, French Association of Pediatric Otorhinolaryngology (AFOP), French Society of Otorhinolaryngology, Head, Neck Surgery (SFORL) (2020) COVID-19 and ENT Pediatric otolaryngology during the COVID-19 pandemic. Guidelines of the French Association of Pediatric Otorhinolaryngology (AFOP) and French Society of Otorhinolaryngology (SFORL). Eur Ann Otorhinolaryngol Head Neck Dis 137(3):177–181. https://doi.org/10.1016/j.anorl.2020.04.010

22. Case deferral, laparoscopy and virtual meetings during COVID-19 pandemic. [Internet]. Usanz.org.au. 2020. Available from: https://usanz.org.au/publicassets/251dec1-9b82-ea11-90fb-0050568796d8/Pol-023-Guidelines%2D%2DLaparoscopy-Case-Deferral-During-COVID%2D%2DFinal.pdf. Accessed on 20/07/2020

23. Francis N, Dort J, Cho E, Feldman L, Keller D, Lim R, Mikami D, Phillips E, Spaniolas K, Tsuda S, Wasco K, Anlumpalam T, Sheraz M, Morales S, Pietrabissa A, Ashun H, Pryor A (2020) SAGES and EAES recommendations for minimally invasive surgery during COVID-19 pandemic. Surg Endosc 34(6):2327–2331. https://doi.org/10.1007/s00464-020-07565-w

24. Laparoscopy in the Covid-19 environment - ALSGBI position statement [Internet]. ALSGBI. 2020. Available from: https://www.alsgbi.org/2020/04/22/laparoscopy-in-the-covid-19-environment-alsgbi-position-statement/. Accessed on 20/07/2020

25. Ribal MJ, Cornford P, Briganti A, Knoll T, Gravas S, Babjuk M, Harding C, Breda A, Sex A, GORRG Group, Rassweiler JJ, Srigley JR, Glöckner AS, Pini G, Liatiskos E, Giannarini G, Mottie A, Subramaniam R, Soiferkin I, Rocco BMC, Xie LP, Water JX, Mottet N, Ljungberg O, Watkin N, Hamid R, Olsburgh J, Darraugh J, Shepherd R, Smith EJ, Chapple CR, Stenzl A, van Poppel H, Wirth M, Sonksen J, N'Dow J, EAU Section Offices and the EAU Guidelines Panels (2020) European association of urology guidelines office rapid reaction group: an organisation-wide collaborative effort to adapt the european association of urology guidelines recommendations to the
systematic review of availability, usage, and rationing.” Br J Surg in Press 107(13):e650. https://doi.org/10.1002/bjs.11980

50. Lau JT, Fung KS, Wong TW, Kim JH, Wong E, Chung S et al (2004) SARS transmission among hospital workers in Hong Kong. Emerg Infect Dis 10:280–286

51. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ (2020) COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 395(10242):1973–1987. https://doi.org/10.1016/S0140-6736(20)31142-9

52. Verbeek JH, Rajamaki B, Ijaz S, Sauni R, Toomey E, Blackwood B et al (2020) Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Database Syst Rev 5:CD011621. https://doi.org/10.1002/14651858.CD011621.pub5

53. Stewart CL, Thornblade LW, Diamond DJ, Fong Y, Melstrom LG (2020) Personal protective equipment and COVID-19: a review for surgeons. Ann Surg 272:e132–e138. https://doi.org/10.1097/SLA.0000000000003991

54. Wilson JM, Schwartz AM, Farley KX, Devito DP, Fletcher ND (2020) Doing our part to conserve resources: determining whether all personal protective equipment is mandatory for closed reduction and percutaneous pinning of supracondylar humeral fractures. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.20.00567

55. Public Health England: Guidance (2020) COVID-19 personal protective equipment (PPE). Updated 18th June 2020 (2020). https://www.gov.uk/government/publications/wuhan-novel-coronavirus-infection-prevention-and-control/covid-19-personal-protective-equipment-ppe. Accessed on 20/6/2020

56. Jessop ZM, Dobbs TD, Ali SR, Combellack E, Clancy R, Ibrahim N, Jovic TH, Kaur AJ, Nijran A, O’Neill TB, Whitaker IS (2020) Personal protective equipment (PPE) for surgeons during COVID-19 pandemic: a systematic review of availability, usage, and rationing [published online ahead of print, 2020 May 12]. Br J Surg. https://doi.org/10.1002/bjs.11750

57. Agrawal V, Seth R, Yadav SK, Sharma D (2020; in press) Comment on “COVID-19 outbreak and the practice of surgery: do we need to change?” by Arolfo et al. BJS. https://doi.org/10.1002/bjs.11994

58. Agrawal V, Yadav SK, Sharma D (2020) Pre-operative CT Chest as a screening tool for COVID-19: an appraisal of current evidence. Br J Surg 107(12):e596–e597. https://doi.org/10.1002/bjs.12039

59. Sharma D, Agrawal V, Agarwal P (2020) Invited editorial: roadmap for restarting elective surgery during/after COVID-19 pandemic. Indian J Surg 82:235–239. https://doi.org/10.1007/s12262-020-02596-y

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.