Pathological consequences of chronic olfactory inflammation on neurite morphology of olfactory bulb projection neurons

Brandon Joseph LaFever
Penn State College of Medicine https://orcid.org/0000-0002-8766-1260

Yuka Imamura Kawasawa
Penn State College of Medicine

Ayako Ito
Penn State College of Medicine

Fumiaki Imamura (fui1@psu.edu)
Penn State College of Medicine https://orcid.org/0000-0003-1410-3126

Research

Keywords: Chronic rhinosinusitis, chronic olfactory inflammation, olfactory system, projection neurons, neurite, lipopolysaccharide

Posted Date: November 22nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1054067/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Title
Pathological consequences of chronic olfactory inflammation on neurite morphology of olfactory bulb projection neurons

Authors
Brandon J. LaFever, BSa, Yuka Imamura Kawasawa, PhDa,b,c, Ayako Ito, PhDa, and Fumiaki Imamura, PhDa

Author affiliation
aDepartment of Pharmacology, Penn State College of Medicine, 500 University Dr., Hershey, Pennsylvania 17033, USA
bDepartment of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Dr., Hershey, Pennsylvania 17033, USA
cInstitute for Personalized Medicine, Penn State College of Medicine, 500 University Dr., Hershey, Pennsylvania 17033, USA

Corresponding Author
Fumiaki Imamura, PhD
Department of Pharmacology,
Penn State College of Medicine
500 University Drive
Hershey, PA 17033, USA
Email: fui1@psu.edu
Tel: +1-717-531-5734
ABSTRACT

Background: Chronic olfactory inflammation (COI) in conditions such as chronic rhinosinusitis significantly impairs the functional and anatomical components of the olfactory system. COI induced by intranasal administration of lipopolysaccharide (LPS) results in atrophy, gliosis, and pro-inflammatory cytokine production in the OB. Although chronic rhinosinusitis patients have smaller olfactory bulbs (OBs), the consequences of olfactory inflammation on OB neurons are largely unknown.

Methods: In this study, we investigated the neurological consequence of COI on OB projection neurons, mitral cells (MCs) and tufted cells (TCs). To induce COI, we performed unilateral intranasal administration of LPS to mice for 4 and 10 weeks. Effects of COI on the OB were examined using RNA-sequencing approaches and immunohistochemical analyses.

Results: We found that repeated LPS administration upregulated immune-related biological pathways in the OB after 4 weeks. We also determined that the length of TC lateral dendrites in the OB significantly decreased after 10 weeks of COI. The axon initial segment of TCs decreased in number and in length after 10 weeks of COI. The lateral dendrites and axon initial segments of MCs, however, were largely unaffected. In addition, dendritic arborization and axon initial segment reconstruction both took place following a 10-week recovery period.

Conclusion: Our findings suggests that olfactory inflammation specifically affects TCs and their integrated circuitry, whereas MCs are potentially protected from this condition. This data demonstrates unique characteristics of the OBs ability to undergo neuroplastic changes in response to stress.
KEY MESSAGES

- Tufted cells undergo neurite dysregulation in response to chronic olfactory inflammation, whereas mitral cells are largely unaffected.
- Tufted cells experience complete recovery from neurite dysregulation following a period of ceased inflammation.

KEY WORDS

Chronic rhinosinusitis; chronic olfactory inflammation; olfactory system; projection neurons; neurite; lipopolysaccharide
INTRODUCTION

Individuals are exposed to chemicals and environmental agents on a daily basis, some of which are capable of entering the body and inducing an immune response. Bacteria, viruses, and allergens such as dust, mold, or pollen are common agents that can enter the nasal cavity and induce inflammation of the olfactory mucosa, mucous membranes lining the olfactory epithelium (OE), and the paranasal sinuses1, 2. This inflammatory state is the foundation to the disease known as rhinosinusitis3. Rhinosinusitis is one of the most common medical conditions in the world4, currently affecting about 12.5% of individuals in the United States alone5. Symptoms of rhinosinusitis can include thick nasal mucus, stuffy nose and congestion, facial pain, headache, cough, fever, and hyposmia/anosmia6-8. Rhinosinusitis can be an acute or chronic disease9, 10, yet when the condition lasts longer than 12 weeks it is considered chronic rhinosinusitis (CRS) and is typically due to a bacterial infection4, 8, 11, 12.

Although immune responses are an essential first line of defense for the body against invading pathogens, chronic inflammation can act as a significant stressor on an organ or system and may result in damage of the affected tissue13-15. Although airflow obstruction within the nasal cavity has been linked to hyposmia, clinical studies have demonstrated that the immune response induced during CRS can severely damage the olfactory mucosa and olfactory epithelium, another major contributor to the loss of smell16-19. Patients with CRS also exhibit a decrease in the volumetric size of their olfactory bulbs (OBs)20, 21. Nonetheless, the extent to which the CRS-induced inflammatory responses affect the central nervous system (CNS) including the OB is currently not well understood.

Preclinical research using rodents has established that intranasal (i.n.) administration of various chemical entities can induce inflammation of the olfactory epithelium in the form of immune cell activation, infiltration, and pro-inflammatory cytokine release resulting in apoptosis of olfactory sensory neurons22-28. Our previous studies have also demonstrated that i.n. administration of lipopolysaccharide (LPS) has severe implications on the CNS including OB gliosis and atrophy23, 29, 30. More specifically, beginning as early as 3 weeks of i.n. LPS administrations, a significant upregulation of microglial and astrocytic activity as well as the presence of pro-inflammatory cytokines can be detected in the superficial OB layers including the olfactory nerve layer (ONL), glomerular layer (GL), and the superficial external plexiform layer (sEPL). Interestingly, after 10 weeks of administrations, OB atrophy takes place primarily in the same three superficial OB layers
in which the layers are significantly thinner than in controls29, 30. In this study, and in conjunction with our previous studies, we administered LPS into the mouse nostril repetitively over the course of 4 and 10 weeks to induce a state of chronic inflammation of the olfactory epithelium (or chronic olfactory inflammation, COI). We report that COI induces a decrease in the activity of projection neurons residing in the EPL (tufted cells, TCs), as well as dendritic retraction and axonal instability of the same neurons. Mitral cells (MCs) residing in the mitral cell layer (MCL), however, appear to be almost entirely unaffected. Finally, we report that the COI-induced TC impairments return to homeostasis following a recovery period. These results provide further evidence that the OB consists of highly plastic components capable of undergoing severe stress.
METHODS

Animals
In this study, we used eight-week-old C57BL/6J (stock #000664) and YFP knockin (stock #006148; C57BL/6J background) mice purchased from The Jackson Laboratory, as well as Pcdh21-CreER knockin (BRC #RBRC02410; C57BL/6J background) mice purchased from Riken BRC. Pcdh21-CreER x YFP mice were created by crossing Pcdh21-CreER-positive mice with YFP homozygotes to create Cre-positive/YFP heterozygotes (+/Het mice; this was the only genotype used for this mouse line in this study). Among the +/Het mice, a yellow fluorescent protein (YFP) is specifically expressed in MC/TCs in the OBs following tamoxifen injections. All mice were deeply anesthetized with isoflurane and intranasally administered 10 μL of LPS from Escherichia coli (Sigma; product #L2880; lot #025M4040V) in physiologic saline (1 mg/ml; Sigma). LPS administrations took place three times per week for 4 or 10 weeks and were carried out unilaterally to the left naris of each mouse, with the right side serving as an internal control. For analyses of recovery, one group of eight-week-old +/Het mice (n=3) underwent unilateral 10-week LPS administrations as discussed previously and were subsequently housed for 10 weeks with no additional treatment.

Three days prior to being sacrificed for immunohistochemical analyses, mice were intraperitoneally injected with tamoxifen (30 mg/kg). The dose for tamoxifen was selected after multiple trials at different doses in order to observe optimal YFP expression in fewer OB projection neurons allowing us to trace individual neuron apical and lateral dendrites (data not shown). For histologic preparation, mice were anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg) and transcardially perfused with PBS, followed by 4% (wt/vol) paraformaldehyde in PBS. Heads were removed and placed in the same fixative at 4°C overnight. The rostral half of the calvaria (anterior to the bregma) and the nasal bone were then placed in 0.45 mol/L EDTA in PBS at 4°C for 2 days for decalcification, cryoprotected with 30% sucrose (wt/vol) at 4°C overnight, embedded in OCT compound (Sakura Finetek USA, Torrance, Calif), and maintained at -80°C until use. All protocols were approved by and all methods were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee of Penn State College of Medicine.

RNA sequencing analysis
RNA Extraction: OBs were microdissected from fixed and cryopreserved whole mouse brains. Approximately 5 mg of frozen tissue was incubated with proteinase K (500 μg/ml) in 500 μl of 10
mM NaCl, 500 mM Tris (pH 8.0), 20 mM EDTA, and 1% SDS at 55 °C for 3 hours until the tissue was completely dissolved. The acid phenol-chloroform method was applied for RNA extraction using the Direct-zol™ RNA Micro prep Kit (Zymo Research). RNA quality and quantity were determined by RNA Pico BioAnalyzer (Agilent technologies).

RNA-sequencing and Analysis: The cDNA libraries were prepared using the QuantSeq 3’mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen) as per the manufacturer’s instructions. Briefly, total RNA was reverse transcribed using oligo (dT) primers. The second cDNA strand was synthesized by random priming, in which DNA polymerase is efficiently stopped when reaching the next hybridized random primer allowing only the fragment closest to the 3’ end being captured for later indexed adapter ligation and PCR amplification. The processed libraries were assessed for their size distribution and concentration using the BioAnalyzer High Sensitivity DNA Kit (Agilent Technologies). The libraries were pooled and diluted to 3 nM using 10 mM Tris-HCl, pH 8.5, and then denatured using the Illumina protocol. The denatured libraries were loaded onto an S1 flow cell on an Illumina NovaSeq 6000 (Illumina) and run for 53-101 cycles according to the manufacturer’s instructions. After the quality and polyA trimming by BBduk and alignment by HISAT2 (version 2.1.0), read counts were calculated using HTSeq by supplementing Ensembl gene annotation (GRCm38.78). DESeq2 R package was used to determine differentially expressed genes by taking into account a paired design where each mouse individual was compared between ipsilateral and contralateral. Significance was defined to be those with adjusted p-value < 0.1 calculated by the Benjamini-Hochberg method to control the false discovery rate (FDR). The ggplot2 R package was used for generating a heatmap. The list of differentially expressed genes was analyzed with Ingenuity Pathway Analysis (IPA). Fastq files and raw read counts generated during this study are available at GEO (GSE185945).

Immunostaining

Olfactory tissues were coronally cut on a cryostat into 20µm slices, mounted on slide glasses, dried and stored at −80°C until use. The sections were rehydrated with TBST (10 mmol/L Tris-HCl [pH 7.4] and 100 mmol/L NaCl with 0.3% Triton-X100 [vol/vol]), blocked with blocking buffer (5% normal donkey serum [vol/vol] in TBST) at room temperature for one hour, and incubated with primary antibodies diluted in blocking buffer overnight at 4°C. The antibodies and dilutions used in the present study are as follows: mouse anti-Ankyrin G IgG2a (NeuroMab, catalog #75-146, 1:500), chicken anti-green fluorescent protein (GFP; Abcam, catalog #ab13970, 1:1000), which also recognizes YFP, mouse anti-Calretinin (NeuroMarkers, catalog #MA5-14540, 1:400), Alexa Fluoro 488 mouse anti-Tbx21 (Biolegend, catalog #644830, 1:300), rabbit anti-Phospho-
S6 Ribosomal Protein (PS6; Cell Signaling Technology, catalog #4854S, 1:1000), rabbit anti-
Parvalbumin (Millipore Sigma, catalog #MAB1572, 1:300), and rabbit anti-Somatostatin
(ImmunoStar, catalog #20067, 1:300). For double immunostaining with fluorescence, Alexa
Fluoro 488-conjugated or 555-conjugated donkey antispecies IgGs (Thermo Fisher Scientific)
were used as secondary antibodies (1:300) and incubated on tissue sections at room temperature
for one hour. Nuclei were counterstained with 4',6-diamidino-2-phenylindole (DAPI). The sections
were coverslipped with fluorescence mounting medium (Dako Agilent) and imaged using the
Zeiss Axio Imager M2 fluorescent microscope with an automated motorized XY stage. All images
were acquired using the same excitation light intensity, exposure time, and numerical aperture of
the objective lens.

Image analyses and morphometry
Five OB sections were stained from each mouse brain with calretinin and DAPI and divided into
each OB sublayer (including the superficial and deep EPL) to measure their area. Cells that were
positive for DAPI, Tbx21, and YFP in the MCL and EPL were defined as MCs and TCs,
respectively, and were subsequently counted to determine the numbers in their respective layers.
The area of the superficial and deep (s/d)EPL were measured separately by using Photoshop
software. The lengths of YFP-positive (YFP+) dendrites were measured in the sEPL and dEPL
separately by manual tracing in the FIJI/ImageJ software using the ROI Manager tool with the
freehand line tracer. The primary method of normalizing the dendrite data was to divide the total
length of dendrites per OB (in μm) by the number of YFP+ somata in that OB (final units in
μm/cell). Similarly, we also normalized this data with respect to dendrite density by converting the
sEPL and dEPL areas to square millimeters (mm²) and divided the total length of dendrites (in
μm) in each layer of each OB section by the respective area in mm² (resulting units of μm/mm²).
Axon initial segments (AISes) were measured in a region defined by a rectangle with an area of
650x450 μm² in both the medial and lateral portion of the OB. AISes were defined by positive
Ankyrin G staining and all AISes in the region were counted and measured in length (μm), and
were analyzed via manual tracing in the FIJI/ImageJ software using the ROI Manager tool with
the freehand line tracer.

Experimental design and statistical analysis
Comparisons of the relative OB sizes and AIS length/count among contralateral and ipsilateral
OBs were statistically analyzed by one-way analysis of variance followed by Tukey’s HSD post-
hoc tests for multiple comparisons. Comparisons of dendrite length among contralateral and
ipsilateral OBs were statistically analyzed by paired t-tests due to differences in inherent cre-recombination and subsequent expression of YFP. A p-value ≤ 0.05 indicated a significant difference. Statistical analyses were performed using Prism software (GraphPad Software, Inc.). Values are reported as means ± SEM.
RESULTS

Upregulation of interferon-γ-driven inflammatory pathways following 4-week COI

We first aimed to examine gene expression signatures affected by early stage COI. To induce COI, LPS administrations took place three times per week for 4 weeks and were carried out unilaterally to the left naris of each mouse, with the right side serving as an internal control. The OB ipsilateral to the side of the injected naris is referred to as ipsilateral (ipsi), and the opposite OB (control) as contralateral (contra). Differential gene expression analysis was performed between the ipsilateral and contralateral OB from mice administered LPS (n=3). We identified 47 genes upregulated and 18 downregulated in the ipsilateral OBs compared to contralateral OBs (Fig. 1A). To understand the functional relevance of these clusters, we performed functional annotation analysis for these genes using Ingenuity Pathway Analysis (IPA, Qiagen). The Core Analysis highlighted the most significantly enriched and activated Canonical Pathway as “Neuroinflammation Signaling Pathway” (-log(p-value) = 5.95, z-score = 2.646, Fig. 1B). Molecules directly involved in this pathway include B2M, CCL5, CYBB, HLA-A, HLA-DQA1, HLA-DQB1, HLA-DRB5, and RAC2.

Next, we examined the upstream regulator in the IPA Core Analysis and identified interferon-γ (IFN-γ) as the most significant upstream regulator with the largest z-score (p-value = 5.04E-20, z-score = 4.749, Supplementary Table 1). Although the expression level of IFN-γ itself is not altered, the significant number of related downstream molecules including B2M, Bst2, C1QA, C1QB, C4A/C4B, CCL5, CD74, CTSS, Cxcl9, CYBB, GBP2, GFAP, HLA-A, HLA-DQA1, HLA-DQB1, HLA-DRB5, Ifi47, IFITM3, Igtp, Iigp1, IRF1, IRF8, LGALS3BP, PARP14, PENK, RAC2, TAP1, and TAPBP are upregulated. The Mechanistic Network (Fig. 1C), a method to predict signaling cascades that connect other significantly represented upstream regulators to elicit the observed gene expression changes, demonstrated that IFN-γ may orchestrate with other cytokines such as TNF-α and IL-1β and regulate cascades of intracellular signaling to lead to activations of multiple transcription regulators such as IRF1, NF-kB complex, CREBBP, RELA, IRF8, STAT1, and STAT3. NR3C1, on the other hand, is downregulated and its inhibition is predicted to be mediated by TNF-α.

Finally, we summarize our findings by IPA’s Graphical Summary (Fig. 1D) to provide an overview of the major biological themes in the IPA analysis by selecting the most significant entities identified in the Core Analysis such as Canonical Pathways, Upstream Regulators, and Disease
and Biological Functions, further representing how they relate to each other. The Graphical Summary demonstrates how upregulated/activated (shown in orange) and downregulated/inhibited (shown in blue) genes, pathways, or diseases interact with each other. In addition to the activation of Neuroinflammation Signaling Pathway observed in the Canonical Pathway analysis (Fig. 1B) and IFN-γ which was depicted in the Upstream Regulator analysis (Fig. 1C), we revealed that many pathways associated with immune responses and leukocyte activities are activated, while infectious status is predicted to be inhibited.

Reduction of tufted cell lateral dendrites following 10-week COI

The presence of proinflammatory cytokines such as IFN-γ and TNF-α are capable of causing dendritic atrophy, retraction, and loss of synapses in primary neuronal cultures. It is important to note that LPS-induced COI does not cause the death of OB projection neurons (MCs/TCs) at any point up to the 24-week time point. Therefore, we aimed to explore the potential phenomenon of dendritic retraction of MC/TCs following our COI paradigm.

The distribution of projection neuron somata and lateral dendrites is unique based on cell type. TC somata are located in the EPL and extend their lateral dendrites throughout the sEPL, whereas MC somata exist in the MCL and extend their lateral dendrites in the dEPL. In order to observe changes to the somata and dendritic morphology of MCs/TCs in the OB, we used Pcdh21-CreER x YFP (+/Het) transgenic mice unilaterally administered with LPS (i.n.) for 10 weeks. Protocadherin-21 (Pcdh21) is a member of the protocadherin homophilic cell-adhesion protein family uniquely expressed in MCs/TCs in the mouse OB. On the final LPS-administration day, the mice were treated with tamoxifen (i.p., 30 mg/kg) to activate CreER for the YFP expression from the ROSA site and sacrificed 3 days after the injection.

As expected, the overall shape of the ipsilateral OB appears to be atrophied and narrower compared to the contralateral OB (Fig. 2A). Cell bodies and dendrites expressing YFP were observed in the GL, EPL, and MCL of both OBs (Fig. 2B, C). There were no differences in the total number of TCs, YFP+ cells in the EPL, counted from 5 coronal OB sections (contra., 72.00 ± 17.58 vs ipsi., 72.67 ± 21.39). The number of MCs, YFP+ cells in the MCL, was smaller than that of TCs but not significantly different comparing the contralateral to the ipsilateral OBs (contra., 23.67 ± 12.86 vs ipsi., 29.00 ± 16.92). This data suggests that the +/-Het transgenic model preferentially labels TCs over MCs in the OB, and LPS treatment does not influence the expression of YFP in OB projection neurons.
Next, we analyzed the YFP+ dendrites in the EPL. In the contralateral OB, the total length of YFP+ dendrites counted from 5 coronal sections was significantly greater in the sEPL than in the dEPL (Fig. 2B; 15217 ± 1332 μm vs 7421 ± 1905 μm, respectively; p=0.0014). However, the length of YFP+ dendrites in the ipsilateral OB was not statistically different between sEPL and dEPL (Fig. 2C; 10095 ± 1470 μm vs 7327 ± 1588 μm, respectively; p=0.2210). The total length of YFP+ dendrites in the sEPL was significantly reduced in the ipsilateral OB compared to that of contralateral OBs (p=0.0178). However, the densities of YFP+ dendrites were not significantly different in the sEPL (p=0.7458) nor in the dEPL (p=0.9751) between contralateral and ipsilateral OBs, which is consistent with the area reduction of the sEPL but not dEPL in the ipsilateral OB.

In order to normalize the effects of COI on the dendrites of MCs and TCs, we calculated ratios of YFP+ dendrites (length in μm) to YFP+ cell bodies measured in each OB (μm/cell). This allows us to normalize for variability in our data that may exist due to animal differences in CreER expression. Upon analysis, we observed a significant reduction of dendrites in the sEPL (Fig. 2D; contra., 223.1 ± 74.70 μm/cell vs ipsi., 152.4 ± 69.77 μm/cell; p=0.0073). However, we did not observe any changes to dendrite density in the dEPL (Fig. 2E; contra., 382.5 ± 190.6 μm/cell vs ipsi., 345.2 ± 244.4 μm/cell; p=0.3594). These results suggest that the overall length of TC, but not MC, dendrites has been reduced.

Alterations in the axon initial segment of tufted cells following 10-week COI

Our findings of decreased TC dendrites have led us to believe that there may be further physiological impairments to TCs following COI. The AIS is the site of a neuron that separates its somatodendritic and axonal compartments, and is primarily responsible for maintaining the neuron’s polarity and initiating action potentials. One of the most essential components of the AIS is the cytoskeletal-associated protein, Ankyrin-G (AnkG). Previous studies have shown that shorter or fewer AISes measured by AnkG are indicative of impairments to the neurons physiology, such as a decrease in excitability. We first co-stained OB sections with AnkG and Tbx21, an OB projection neuron-specific marker, and confirmed that the vast majority of AnkG+ AISes present in the EPL and MCL are derived from TCs and MCs, respectively (Supplementary Fig. 1).
We, then, measured the length of each individual AIS, as well as the number in each OB. Since our previous studies primarily investigated the response of LPS-treatment on the medial and lateral OBs, we chose to focus on these regions as well. Through this analysis, we observed a significant reduction in the number of AISes in the ipsilateral OB EPL (Fig. 3A, B). Our data demonstrated that fewer AISes were present in the lateral EPL of the ipsilateral OB (Fig. 3B2). The number of AISes in the lateral OB EPL decreased from 165.6 ± 47.45 AISes in the contralateral OB to 94.20 ± 29.24 in the ipsilateral OB (Fig. 3F histogram; $p=0.0175$). This phenomenon, however, was not found in the medial OB EPL (Fig. 3E histogram; contra., 165.4 ± 26.47 vs ipsi., 130.8 ± 24.81; $p=0.3829$). For both OBs, there were no differences in the number of MCL AISes counted, regardless of laterality (Fig. 3C, D histograms; medial contra., 119.2 ± 12.76; lateral contra., 122.6 ± 23.09; medial ipsi., 120.2 ± 16.25; lateral ipsi., 120.6 ± 24.17).

We further analyzed the length of the AISes that were present in each OB. Since TCs reside solely in the EPL and MCs in the MCL, we have classified the AISes measured in the EPL as belonging primarily to TCs and AISes in the MCL as those of MCs. It was determined that the TC AISes in the lateral OB significantly decreased in their length (Fig. 3F; contra., $12.05 \pm 1.079 \mu m$ vs ipsi., $9.399 \pm 1.100 \mu m$; $p=0.0009$). This phenomenon was not found for the TC AISes in the medial OB (Fig. 3E; contra., $14.84 \pm 0.6815 \mu m$ vs ipsi., $13.58 \pm 0.3369 \mu m$; $p=0.1370$). Although there was no change in the number of MC AISes in the medial OB, it did appear that the AISes present in the medial region of the OB significantly decreased in length (Fig. 3C; contra., $21.88 \pm 4.978 \mu m$ vs ipsi., $19.49 \pm 4.964 \mu m$; $p=0.0006$). However, the length of MC AISes in the lateral OB did not appear to shorten (Fig. 3D; contra., $15.84 \pm 0.7814 \mu m$ vs ipsi., $16.29 \pm 0.8635 \mu m$; $p=0.7684$). Collectively, these results suggest that COI has the most significant effect on TCs morphologically and physiologically in the lateral OB.

Reduction in tufted cell activity following 10-week COI

To examine the alterations in cellular activity of the OB projection neurons, we stained OBs with an antibody against phoso-S6 ribosomal protein (pS6), one of neuronal activity markers. A recent study demonstrated that pS6 is an exceptional activity marker for OB projection neurons, and that naris occlusion is capable of significantly reducing the expression of pS6 among projection neurons on the ipsilateral OB. It is also worth noting that the vast majority of pS6-expressing projection neuron somata were double-positive for Tbx21 (Supplementary Fig. 2). Upon immunohistochemical analysis of mice that underwent the 10-week unilateral COI paradigm, we observed robust pS6 staining throughout the entire MCL and EPL of the
contralateral OB (Fig. 4). In contrast, we observed fewer pS6-positive projection neuron somata throughout the EPL in the ipsilateral OB. The MCL, however, did not appear to have any reduction in pS6 signal (Fig. 4B, C). These findings further suggest that functional impairments may be occurring to TCs rather than MCs throughout the ipsilateral OB.

No apparent loss of OB interneurons following 10-week COI

Olfactory information is not only processed by OB projection neurons, but requires substantial communication with a variety of OB interneurons. Based on their location in the OB, interneurons play a major role in fine-tuning of olfactory information before it even reaches the cortex. OB interneurons can also be further differentiated by their immunoreactivity\(^ {37} \). For example, the parvalbumin-positive (PV+) and somatostatin-positive (SST+) interneurons are found in the EPL and are distributed primarily throughout the sEPL and dEPL, respectively\(^ {37, 44-46} \). Here, we investigated whether the effects of COI on TCs would extend to interneurons residing throughout the sEPL and dEPL. Figure 5 shows PV+ and SST+ interneurons in the sEPL and dEPL of the contralateral and ipsilateral OBs following the 10-week COI paradigm. To quantify the effects of COI on these interneurons, we counted the numbers from 5 coronal sections (n=5 mice). Consistent with previous literature, there were more PV+ interneurons in the sEPL than in the dEPL of the contralateral OB (333.0 ± 29.04 vs 256.0 ± 30.55, respectively; \(p=0.0037 \)\(^{40} \)). However, the number of PV+ interneurons in each EPL sublayer of the ipsilateral OB was not significantly different from that of the contralateral OB (Fig. 5A, B; sEPL: contra., 333.0 ± 29.04 vs ipsi., 298.8 ± 33.91, \(p=0.2874 \); dEPL: contra., 274.0 ± 22.15 vs ipsi., 256.0 ± 30.55, \(p=0.7660 \)). Similarly, as SST+ interneurons are not present in the sEPL\(^ {47} \), we counted only from the dEPL. No differences were observed in the number of SST+ interneurons following 10-week COI (Fig. 5C, D; contra., 167.4 ± 16.83 vs ipsi., 169.4 ± 12.64; \(p=0.3859 \)). Collectively, this data suggests that there is no change in the number of PV+ or SST+ interneurons in the OB following the 10-week COI paradigm.

Remodeling of tufted cell lateral dendrites after recovery period following 10-week COI

Our previous studies demonstrated that a 10-week period of no LPS treatment following the 10-week COI paradigm resulted in a recovery of the OB atrophy and depletion of inflammatory responses\(^ {30} \). Therefore, we sought to investigate if the recovery phenomenon would extend to the OB on a cellular level. For this experiment, we used male +/Het mice (n=3) treated with LPS for 10 weeks followed by a 10-week recover period of no treatment. We first investigated if TC lateral dendrites recover from their reduction caused by COI.
Consistent with our previous studies, the overall shape of the ipsilateral OB appears to undergo a complete recovery. We counted the total number of YFP+ cells in the EPL of the contralateral and ipsilateral OBs and observed more YFP+ TC soma in the ipsilateral OB compared to the contralateral (contra., 64.00 ± 15.52 vs ipsi., 79.00 ± 14.42; $p=0.0131$). The number of YFP+ MCs, however, was not significantly different (contra., 16.00 ± 6.083 vs ipsi., 17.33 ± 1.528; $p=0.6667$). To compensate the difference in the numbers of labeled YFP+ cells, the total number of YFP+ dendrites in the sEPL and dEPL were divided by the total number of YFP+ TCs and MCs, respectively. Surprisingly, even after this normalization, we still observed a slightly significant increase of dendrites in the ipsilateral sEPL compared to contralateral (Fig. 6D; contra., $202.1 \pm 41.38 \mu m/cell$ vs ipsi., $222.8 \pm 37.70 \mu m/cell$; $p=0.0357$). We did not observe any changes to dendrite length in the dEPL (Fig. 6E; contra., $294.0 \pm 88.64 \mu m/cell$ vs ipsi., $340.6 \pm 101.2 \mu m/cell$; $p=0.1139$). Thus, our results suggest that the overall length of TC dendrites has not only recovered, but the TCs may have more dendrites in the ipsilateral OB following the 10-week recovery period.

Stabilization of tufted cell activity and axon initial segment integrity after recovery period following 10-week COI

Lastly, we investigated the effect of a recovery period on the integrity of the AIS of MCs and TCs following COI. We performed the same analysis as previously stated, and observed no significant differences between the ipsilateral and contralateral OBs in either the length or number of AISes for both MCs and TCs (Fig. 7). These results indicate that no apparent “over-recovery” phenomenon occurs with respect to TC AIS integrity. Combined with our previous findings, these results suggest that the TC AISes in the lateral OB that are damaged following COI are capable of returning back to appropriate lengths, essentially re-stabilizing, allowing for a restoration in the transfer of OB information. Consistent with this observation, there was no apparent reduction of the pS6 expression in the EPL of the ipsilateral OB in mice who underwent the 10-week COI paradigm followed by a 10-week recovery period of no treatment (Fig. 8). These results suggest that a functional recovery of TCs occurs after a sufficient period without exposure to LPS.
In this study, we found that COI induced by i.n. administration of LPS causes dendritic retraction and axonal instability of TCs, but not MCs, in the mouse OB. The superficial OB layers (GL, ONL, sEPL) are the primary region of OB atrophy and inflammation at 10 weeks of LPS administrations29, 30. Our results suggest that the reduction of dendrites that was observed in the ipsilateral OB is primarily attributed to a reduction in the sEPL. Similarly, the shortening and loss of AISes takes place primarily in the lateral EPL of the ipsilateral OB, a region that has been proven to be most susceptible to COI at this time point.

The signaling cascades downstream of proinflammatory cytokines such as IFN-\(\gamma\) and TNF-\(\alpha\) has been demonstrated to occur in the OB as early as at 4 weeks of i.n. LPS administrations. These cytokines are capable of inducing the retraction of neuronal dendrites and synaptic degradation in primary neuronal cultures36. We anticipate that a similar phenomenon is taking place in our current paradigm in which the presence of proinflammatory cytokines and activated glial cells among the superficial OB layers induce neuronal stress and subsequent structural dysregulation. Our previous study, however, demonstrated that cessation of COI results in a reduction of immune responses in the OB. This suggests that anti-inflammatory mechanisms may take place following the absence of persistent inflammation. Microglia and astrocytes are well established to engage in both pro- and anti-inflammatory activities48-50. Our research thus far has established that signaling cascades activated by cytokines such as TNF-\(\alpha\), IFN-\(\gamma\), IL-1\(\beta\), and IL-10 are significantly upregulated in the OB following COI. Although the former three are pro-inflammatory, IL-10 is an anti-inflammatory cytokine released by astrocytes which may act to maintain (or restore) neuronal homeostasis51, 52. The release of IL-10 and other neuroprotective agents may be a necessary step in evading, or recovering from, potential TC degeneration. Similarly, astrocytes and microglia are capable of mediating and amplifying axonal and dendrite growth through mechanisms including the release of fibroblast growth factor and purinergic signaling, respectively53-56. The present study demonstrating a recovery effect of the observed TC dendritic retraction may be attributed to similar neuroprotective mechanisms via glial cell activity.

Our findings of reduced TC AIS number and length is highly suggestive of functional impairments to TC-integrated neural circuits. AISes are responsible for action potential initiation and maintenance of neuronal polarity39, 57. The actual assembly of the AIS is coordinated primarily by AnkG, a cytoskeletal-associated protein40, 58. It remains unknown whether the mechanisms of AIS...
maintenance and AIS assembly (or reassembly) as controlled by AnkG are related. However, we speculate that the ability of TCs to reconstruct their AISes in the recovery period following COI is possibly also coordinated by AnkG-mediated mechanisms. Nonetheless, dysfunctional AISes induced by diminished AnkG integrity will likely contribute to a decrease in excitability and signal transmission to a neuron’s downstream targets. It is also interesting to note that AnkG is necessary to maintain the structural and functional segregation of a neuron’s axon from its dendrites. These implications suggest a potential biological connection between axon destabilization and dendritic retraction in our COI paradigm.

All of our sensory systems are comprised of first-, second-, and third-order neurons which uniquely relay sensory information to the CNS at each level. Therefore, it is plausible to assert that damage to the neural components at any of these levels will impair sensory processing in the CNS. Multiple clinical studies reported cortical atrophy and altered brain activity in response to spinal cord injury. Similarly, clinical studies investigating the role of diabetic retinopathy on CNS have found remapping and impairments of the primary visual cortex following disease onset. This phenomenon, however, has yet to be thoroughly investigated with respect to the olfactory system. COI causes ablation to the first-order neurons of the olfactory system, olfactory sensory neurons, which can occur after only one day of i.n. LPS administration, and this phenotype will persist for the duration of COI. Our current findings which model CRS suggest that olfactory information processing and transmission at the level of the second-order neurons (specifically, TCs) may be disrupted due to structural and functional pathophysiology. While the olfactory second-order neurons (MCs/TCs) share a multitude of features, they differ in two distinct ways, anatomically; (1) somata location within the OB, and (2) neurite projection patterns. MCs project their axons to most structures within the olfactory cortex (OC), whereas TC axons are more localized to targets including the anterior olfactory nucleus, olfactory tubercle, and anterior piriform cortex. When drawing comparisons to other sensory systems, this information leads us to speculate that the differences in axonal projection patterns of MCs and TCs may also be a component of the olfactory system impacted by the pathophysiological nature of COI. More specifically, the third-order neurons of the olfactory system residing in the TC-targeted OC regions may also be impacted by COI in the form of cortical atrophy or even immune responses. Further studies are needed to address whether these OC regions are also susceptible to the neuropathological effects of COI.
CONCLUSIONS

In conclusion, the findings presented in this report demonstrate that TCs undergo significant neurite dysregulation following COI primarily in the forms of lateral dendrite retraction and AIS shortening, whereas MCs, as well as PV+ and SST+ interneurons, are largely unaffected. Our study also suggests that the mechanisms underlying neurite dysregulation are induced through common pathways involving the pro-inflammatory cytokine, IFN-γ. Furthermore, the pathological responses of TCs to COI was shown to recover following a period without olfactory inflammation. In summary, this study provides a strong foundation for investigating the cellular and molecular mechanisms responsible for regulating the reversible changes occurring in TC-integrated OB neural circuits. Overall, we have revealed some of the major consequences of inflammation on the homeostatic functioning of olfactory bulb projection neurons, as well as unveiled a novel pathway of neuroinflammation from the periphery to the CNS. Developing a deeper understanding of the biological mechanisms underlying CRS and the consequences of inflammation-induced hyposmia is a vital next step to the overarching goal of enhancing human health.

ABBREVIATIONS

AIS: axon initial segment; AnkG: Ankyrin G; CNS: central nervous system; COI: chronic olfactory inflammation; CRS: chronic rhinosinusitis; dEPL: deep external plexiform layer; EPL: external plexiform layer; GL: glomerular layer; i.n.: intranasal; IFN-γ: interferon-γ; LPS: lipopolysaccharide; MC: mitral cell; MCL: mitral cell layer; OB: olfactory bulb; OC: olfactory cortex; OE: olfactory epithelium; ONL: olfactory nerve layer; Pcdh21: protocadherin-21; pS6: phoso-S6 ribosomal protein; PV: parvalbumin; sEPL: superficial external plexiform layer; SST: somatostatin; TC: tufted cell; YFP: yellow fluorescent protein.
DECLARATIONS

Ethics approval and consent to participate
All protocols were approved by and all methods were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee of Penn State College of Medicine.

Consent for publication
Not applicable.

Availability of data and material
The datasets analyzed during the current study are available from the corresponding author upon reasonable request.

Competing interests
The authors declare no competing interests.

Funding Source
The present study was supported by NIH grant R01DC016307 (F.I).

Authors contributions
B.J.L. and F.I. designed research; B.J.L., Y.I., and A.I. performed research; B.J.L., Y.K., and F.I. analyzed data; B.J.L., Y.K., and F.I. wrote the paper.

Acknowledgement
This work was supported by NIH grant R01DC016307 (F.I.). We thank Dr. Andras Hajnal for critical reading of this manuscript.
FIGURE LEGENDS

Figure 1: Differentially expressed genes in the OB following 4-week COI.
(A) Heatmap of differentially expressed genes. (B) Most significant Canonical Pathways of differentially expressed genes. (C) Mechanistic Network of the most significantly activated Upstream Regulator, IFN-γ. (D) Graphical summary of differentially expressed genes illustrated with their subcellular localizations. Each entity has passed a fisher’s exact test p-value cut-off of 0.05 and absolute z-score cut-off of 2 or greater. In panels (B-D), orange represents upregulated genes or activated pathways, where blue represents downregulated genes or inhibited pathways. Details for shapes of nodes and colors or patterns of lines can be found in the IPA’s website (https://qiagen.secure.force.com/KnowledgeBase/articles/Basic_Technical_Q_A/Legend).

Figure 2. Reduction of tufted cell lateral dendrites following 10-week COI.
(A) Coronal section of the OBs stained for YFP, calretinin, and DAPI. Calretinin is used to delineate between the superficial and deep EPL, where the lateral dendrites of TCs and MCs exist, respectively. (B) Enlarged view of the medial (B1) and lateral (B2) contralateral OB. (C) Enlarged view of the medial (C1) and lateral (C2) ipsilateral OB. The Pcdh21-CreER x YFP transgenic mouse model (+/Het) preferentially labels TCs and their lateral dendrites compared to MCs. (D, E) Graphs show the densities of lateral dendrites for TCs (D) and MCs (E) in μm of dendrites per cell. Dendrite densities of TC lateral dendrites decreased significantly in the ipsilateral OB compared to contralateral. There were no changes in the densities of MC lateral dendrites. Individual data are plotted, and the means are shown as bars. Data in D and E were analyzed with a paired t-test: **p < 0.01 compared to contralateral OB (control). Scale bars, 500 μm (A), and 100 μm (B, C).

Figure 3. Reduction and shortening of tufted cell axon initial segments following 10-week COI.
(A, B) Coronal sections of the OBs stained for Ankyrin G and DAPI. Axon initial segments of TCs and MCs exist in the EPL and MCL, respectively. (A) Enlarged views of the medial (A1) and lateral (A2) contralateral OB. (B) Enlarged views of the medial (B1) and lateral (B2) contralateral OB. (C-F) Histograms show the frequency of axon initial segments at various lengths from five coronal OB sections for each mouse (n=5). Graphs show differences in the average length of AIS length comparing the contralateral to ipsilateral OB. Data are shown as mean ± SEM. There were no differences in the number of MC AISes counted in either the medial (C; histogram) or lateral OBs (D; histogram). MC AISes in the medial OB appeared to have shortened in length (C; graph),
whereas those in the lateral OB did not change in length (D; graph). There were no differences in the number of TC AISes counted in medial OB (E; histogram). The TC AISes in the lateral OB were the only AISes to significantly decrease in number (F; histogram). TC AISes in the medial OB did not change in length (E; graph), whereas those in the lateral OB significantly decreased (F; graph). Data in C-F were analyzed by one-way analysis of variance followed by Tukey’s HSD post-hoc tests for multiple comparisons: *p < 0.05, ***p < 0.001 compared to contralateral OB (control). Scale bars, 100 μm.

Figure 4. Reduced cellular activity of the OB following 10-week COI.
(A) Coronal sections of the OB stained with pS6 and DAPI. TCs express less pS6 in the ipsilateral OB compared to the contralateral OB following 10-week COI, whereas MCs are unaffected. (B) Enlarged view of the medial (B1) and lateral (B2) contralateral OB. (C) Enlarged view of the medial (C1) and lateral (C2) ipsilateral OB. Scale bars, 500 μm (A), and 100 μm (B, C).

Figure 5. No changes in the number of OB interneurons following 10-week COI.
(A, B) Coronal sections of the OBs stained for PV and DAPI. More PV+ interneurons exist in the sEPL than in the dEPL of the untreated OB. However, the number of PV+ interneurons in each EPL sublayer of the ipsilateral OB was not significantly different from that of the contralateral OB. (C, D) Coronal sections of the OBs stained for SST and DAPI. There were no differences in the number of SST+ interneurons in the dEPL between the contralateral and ipsilateral OBs. Data in C-F were analyzed by one-way analysis of variance followed by Tukey’s HSD post-hoc tests for multiple comparisons. Scale bars, 100 μm.

Figure 6. 10-week recovery period restores tufted cell lateral dendrites following 10-week COI.
(A) Coronal section of the OBs stained for YFP, calretinin, and DAPI. Calretinin is used to delineate between the superficial and deep EPL, where the lateral dendrites of TCs and MCs exist, respectively. (B) Enlarged view of the medial (B1) and lateral (B2) contralateral OB. (C) Enlarged view of the medial (C1) and lateral (C2) ipsilateral OB. (D, E) Graphs show the densities of lateral dendrites for TCs (D) and MCs (E) in μm of dendrites per cell. Dendrite densities of TC lateral dendrites were greater in the ipsilateral OB compared to contralateral. There were no changes in the densities of MC lateral dendrites. Individual data are plotted, and the means are shown as bars. Data in D and E were analyzed with a paired t-test: *p < 0.05 compared to contralateral OB (control). Scale bars, 500 μm (A), and 100 μm (B, C).
Figure 7. 10-week recovery period restores tufted cell axon initial segments following 10-week COI.

(A, B) Coronal sections of the OBs stained for Ankyrin G and DAPI. Axon initial segments of TCs and MCs exist in the EPL and MCL, respectively. (A) Enlarged views of the medial (A1) and lateral (A2) contralateral OB. (B) Enlarged views of the medial (B1) and lateral (B2) contralateral OB. (C-F) Histograms show the frequency of axon initial segments at various lengths from five coronal OB sections for each mouse (n=5). Graphs show differences in the average length of AIS length comparing the contralateral to ipsilateral OB. Data are shown as mean ± SEM. There were no differences in the number of MC AISes counted in either the medial (C; histogram) or lateral (D; histogram) OBs. No differences were observed in the lengths of MC AISes in either the medial (C; graph) nor lateral (D; graph) OBs. There were also no differences in the number of TC AISes counted in medial (E; histogram) or lateral (F; histogram) OBs. TC AISes in the medial OB did not change in length (E; graph), nor did those in the lateral OB (F; graph). Data in C-F were analyzed by one-way analysis of variance followed by Tukey’s HSD post-hoc tests for multiple comparisons. Scale bars, 100 μm.

Figure 8. 10-week recovery period restores cellular activity of the OB following 10-week COI.

(A) Coronal sections of the OB stained with pS6 and DAPI. The expression of pS6 among TCs has recovered in the ipsilateral OB after the 10-week recovery period following 10-week COI. (B) Enlarged view of the medial (B1) and lateral (B2) contralateral OB. (C) Enlarged view of the medial (C1) and lateral (C2) ipsilateral OB. Scale bars, 500 μm (A), and 100 μm (B, C).

Supplementary Figure 1.
Labelling of the AIS using AnkG preferentially occurs in conjunction with somata expressing Tbx21 both in the MCL and EPL in untreated mice.

Supplementary Figure 2.
Using pS6 as a marker for OB projection neuron cellular activity was demonstrated to occur in conjunction with somata expressing Tbx21 both in the MCL and EPL in untreated mice.
REFERENCES

1. Peters AT, Spector S, Hsu J, Hamilos DL, Baroody FM, Chandra RK, et al. Diagnosis and management of rhinosinusitis: a practice parameter update. Ann Allergy Asthma Immunol 2014; 113:347-85.
2. Ahmad N, Zacharek MA. Allergic rhinitis and rhinosinusitis. Otolaryngol Clin North Am 2008; 41:267-81, v.
3. Patel RM, Pinto JM. Olfaction: anatomy, physiology, and disease. Clin Anat 2014; 27:54-60.
4. Rosenfeld RM, Piccirillo JF, Chandrasekhar SS, Brook I, Kumar KA, Kramper M, et al. Clinical practice guideline (update): Adult Sinusitis Executive Summary. Otolaryngol Head Neck Surg 2015; 152:598-609.
5. Hamilos DL. Chronic rhinosinusitis: epidemiology and medical management. J Allergy Clin Immunol 2011; 128:693-707; quiz 8-9.
6. Dalton P. Olfaction and anosmia in rhinosinusitis.
7. Doty RL, Mishra A. Olfaction and its alteration by nasal obstruction, rhinitis, and rhinosinusitis. Laryngoscope 2001; 111:409-23.
8. Meltzer EO, Hamilos DL, Hadley JA, Lanza DC, Marple BF, Nicklas RA, et al. Rhinosinusitis: Establishing definitions for clinical research and patient care. Otolaryngol Head Neck Surg 2004; 131:S1-62.
9. Gudis DA, Soler ZM. Chronic Rhinosinusitis-Related Smell Loss: Medical And Surgical Treatment Efficacy. Current otorhinolaryngology reports 2016; 4:142-7.
10. Sánchez-Vallecillo MV, Fraire ME, Baena-Cagnani C, Zernotti ME. Olfactory dysfunction in patients with chronic rhinosinusitis. International journal of otolaryngology 2012; 2012:327206-.
11. Gwaltney JM, Jr. Acute Community-Acquired Sinusitis. Clinical Infectious Diseases 1996; 23:1209-25.
12. Benninger MS, Ferguson BJ, Hadley JA, Hamilos DL, Jacobs M, Kennedy DW, et al. Adult chronic rhinosinusitis: definitions, diagnosis, epidemiology, and pathophysiology. Otolaryngol Head Neck Surg 2003; 129:S1-32.
13. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. Journal of neurochemistry 2016; 139 Suppl 2:136-53.
14. Kotas Maya E, Medzhitov R. Homeostasis, Inflammation, and Disease Susceptibility. Cell 2015; 160:816-27.
15. Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Frontiers in Cellular Neuroscience 2018; 12:72.

16. Kern RC. Chronic sinusitis and anosmia: pathologic changes in the olfactory mucosa. Laryngoscope 2000; 110:1071-7.

17. Lanza DC, Kennedy DW. Adult rhinosinusitis defined. Otolaryngol Head Neck Surg 1997; 117:S1-7.

18. Wolfensberger M, Hummel T. Anti-inflammatory and surgical therapy of olfactory disorders related to sino-nasal disease. Chem Senses 2002; 27:617-22.

19. Yee KK, Pribitkin EA, Cowart BJ, Rosen D, Feng P, Rawson NE. Analysis of the olfactory mucosa in chronic rhinosinusitis. Ann N Y Acad Sci 2009; 1170:590-5.

20. Alarabawy RA, Eltomey MA, Shehata EM. Volumetric study of the olfactory bulb in patients with chronic rhinonasaal sinusitis using MRI. The Egyptian Journal of Radiology and Nuclear Medicine 2016; 47:487-91.

21. Rombaux P, Potier H, Bertrand B, Duprez T, Hummel T. Olfactory bulb volume in patients with sinonasal disease. Am J Rhinol 2008; 22:598-601.

22. Epstein VA, Bryce PJ, Conley DB, Kern RC, Robinson AM. Intranasal Aspergillus fumigatus exposure induces eosinophilic inflammation and olfactory sensory neuron cell death in mice. Otolaryngol Head Neck Surg 2008; 138:334-9.

23. Hasegawa-Ishii S, Shimada A, Imamura F. Lipopolysaccharide-initiated persistent rhinitis causes gliosis and synaptic loss in the olfactory bulb. Sci Rep 2017; 7:11605.

24. Islam Z, Harkema JR, Pestka JJ. Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain. Environ Health Perspect 2006; 114:1099-107.

25. Islam Z, Amuzie CJ, Harkema JR, Pestka JJ. Neurotoxicity and Inflammation in the Nasal Airways of Mice Exposed to the Macrocyclic Trichothecene Mycotoxin Roridin A: Kinetics and Potentiation by Bacterial Lipopolysaccharide Coexposure. Toxicological Sciences 2007; 98:526-41.

26. Kanaya K, Kondo K, Suzukawa K, Sakamoto T, Kikuta S, Okada K, et al. Innate immune responses and neuroepithelial degeneration and regeneration in the mouse olfactory mucosa induced by intranasal administration of Poly(I:C). Cell Tissue Res 2014; 357:279-99.

27. Lindsay R, Slaughter T, Britton-Webb J, Mog SR, Conran R, Tadros M, et al. Development of a murine model of chronic rhinosinusitis. Otolaryngol Head Neck Surg 2006; 134:724-30; discussion 31-2.
28. Yagi S, Tsukatani T, Yata T, Tsukioka F, Miwa T, Furukawa M. Lipopolysaccharide-induced apoptosis of olfactory receptor neurons in rats. Acta Otolaryngol 2007; 127:748-53.

29. Hasegawa-Ishii S, Shimada A, Imamura F. Neuroplastic changes in the olfactory bulb associated with nasal inflammation in mice. J Allergy Clin Immunol 2019; 143:978-89.e3.

30. Hasegawa-Ishii S, Imamura F, Nagayama S, Murata M, Shimada A. Differential Effects of Nasal Inflammation and Odor Deprivation on Layer-Specific Degeneration of the Mouse Olfactory Bulb. eNeuro 2020; 7.

31. Körbler T, Grsković M, Dominis M, Antica M. A simple method for RNA isolation from formalin-fixed and paraffin-embedded lymphatic tissues. Exp Mol Pathol 2003; 74:336-40.

32. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015; 12:357-60.

33. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31:166-9.

34. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15:550.

35. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

36. Kim IJ, Beck HN, Lein PJ, Higgins D. Interferon gamma induces retrograde dendritic retraction and inhibits synapse formation. J Neurosci 2002; 22:4530-9.

37. Nagayama S, Homma R, Imamura F. Neuronal organization of olfactory bulb circuits. Front Neural Circuits 2014; 8:98.

38. Nagai Y, Sano H, Yokoi M. Transgenic expression of Cre recombinase in mitral/tufted cells of the olfactory bulb. genesis 2005; 43:12-6.

39. Ogawa Y, Rasband MN. The functional organization and assembly of the axon initial segment. Curr Opin Neurobiol 2008; 18:307-13.

40. Alshammari MA, Alshammari TK, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci 2016; 10:5.

41. Galliano E, Hahn C, Browne LP, P RV, Tufo C, Crespo A, et al. Brief Sensory Deprivation Triggers Cell Type-Specific Structural and Functional Plasticity in Olfactory Bulb Neurons. J Neurosci 2021; 41:2135-51.

42. Yamada R, Kuba H. Structural and Functional Plasticity at the Axon Initial Segment. Front Cell Neurosci 2016; 10:250.
43. Knight ZA, Tan K, Birsoy K, Schmidt S, Garrison JL, Wysocki RW, et al. Molecular profiling of activated neurons by phosphorylated ribosome capture. Cell 2012; 151:1126-37.
44. Liu G, Froudarakis E, Patel JM, Kochukov MY, Pekarek B, Hunt PJ, et al. Target specific functions of EPL interneurons in olfactory circuits. Nature Communications 2019; 10:3369.
45. Miyamichi K, Shlomai-Fuchs Y, Shu M, Weissbourd Brandon C, Luo L, Mizrahi A. Dissecting Local Circuits: Parvalbumin Interneurons Underlie Broad Feedback Control of Olfactory Bulb Output. Neuron 2013; 80:1232-45.
46. Lepousez G, Csaba Z, Bernard V, Loudes C, Videau C, Lacombe J, et al. Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb. J Comp Neurol 2010; 518:1976-94.
47. Lepousez G, Csaba Z, Bernard V, Loudes C, Videau C, Lacombe J, et al. Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb. Journal of Comparative Neurology 2010; 518:1976-94.
48. Pozzo ED, Tremolanti C, Costa B, Giacomelli C, Milenkovic VM, Bader S, et al. Microglial Pro-Inflammatory and Anti-Inflammatory Phenotypes Are Modulated by Translocator Protein Activation. Int J Mol Sci 2019; 20.
49. Shinozaki Y, Shibata K, Yoshida K, Shigetomi E, Gachet C, Ikenaka K, et al. Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y(1) Receptor Downregulation. Cell Rep 2017; 19:1151-64.
50. Becerra-Calixto A, Cardona-Gómez GP. The Role of Astrocytes in Neuroprotection after Brain Stroke: Potential in Cell Therapy. Front Mol Neurosci 2017; 10:88.
51. Mizuno T, Sawada M, Marunouchi T, Suzumura A. Production of interleukin-10 by mouse glial cells in culture. Biochem Biophys Res Commun 1994; 205:1907-15.
52. Rasley A, Tranguch SL, Rati DM, Marriott I. Murine glia express the immunosuppressive cytokine, interleukin-10, following exposure to Borrelia burgdorferi or Neisseria meningitidis. Glia 2006; 53:583-92.
53. Le R, Esquenazi S. Astrocytes mediate cerebral cortical neuronal axon and dendrite growth, in part, by release of fibroblast growth factor. Neurol Res 2002; 24:81-92.
54. Chen C, Jiang Z, Fu X, Yu D, Huang H, Tasker JG. Astrocytes Amplify Neuronal Dendritic Volume Transmission Stimulated by Norepinephrine. Cell Rep 2019; 29:4349-61.e4.
55. Eyo UB, Gu N, De S, Dong H, Richardson JR, Wu LJ. Modulation of microglial process convergence toward neuronal dendrites by extracellular calcium. J Neurosci 2015; 35:2417-22.
56. Eyo UB, Haruwaka K, Mo M, Campos-Salazar AB, Wang L, Speros XSt, et al. Microglia provide structural resolution to injured dendrites after severe seizures. Cell Rep 2021; 35:109080.

57. Hedstrom KL, Ogawa Y, Rasband MN. AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity. J Cell Biol 2008; 183:635-40.

58. Jenkins SM, Bennett V. Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J Cell Biol 2001; 155:739-46.

59. Le Bras B, Fréal A, Czarnecki A, Legendre P, Bullier E, Komada M, et al. In vivo assembly of the axon initial segment in motor neurons. Brain Struct Funct 2014; 219:1433-50.

60. Jacques L, Morris CE, Longtin A, Joos B. Action potential initiation in damaged axon initial segment. BMC Neuroscience 2014.

61. Sobotzik JM, Sie JM, Politi C, Del Turco D, Bennett V, Deller T, et al. AnkyrinG is required to maintain axo-dendritic polarity in vivo. Proc Natl Acad Sci U S A 2009; 106:17564-9.

62. Aguilar J, Humanes-Valera D, Alonso-Calviño E, Yague JG, Moxon KA, Oliviero A, et al. Spinal cord injury immediately changes the state of the brain. The Journal of neuroscience: the official journal of the Society for Neuroscience 2010; 30:7528-37.

63. Curt A, Bruehlmeier M, Leenders KL, Roelcke U, Dietz V. Differential Effect of Spinal Cord Injury and Functional Impairment on Human Brain Activation. Journal of Neurotrauma 2002; 19:43-51.

64. Karunakaran KD, He J, Zhao J, Cui J-L, Zang Y-F, Zhang Z, et al. Differences in Cortical Gray Matter Atrophy of Paraplegia and Tetraplegia after Complete Spinal Cord Injury. Journal of Neurotrauma 2018; 36:2045-51.

65. Ferreira FS, Pereira JMS, Reis A, Sanches M, Duarte JV, Gomes L, et al. Early visual cortical structural changes in diabetic patients without diabetic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255:2113-8.

66. Ferreira S, Pereira AC, Quendera B, Reis A, Silva ED, Castelo-Branco M. Primary visual cortical remapping in patients with inherited peripheral retinal degeneration. NeuroImage: Clinical 2017; 13:428-38.

67. Murphy MC, Conner IP, Teng CY, Lawrence JD, Safiullah Z, Wang B, et al. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma. Scientific reports 2016; 6:31464-.
68. Chon U, LaFever BJ, Nguyen U, Kim Y, Imamura F. Topographically distinct projection patterns of early- and late-generated projection neurons in the mouse olfactory bulb. eneuro 2020:ENEURO.0369-20.2020.

69. Igarashi KM, Ieki N, An M, Yamaguchi Y, Nagayama S, Kobayakawa K, et al. Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J Neurosci 2012; 32:7970-85.

70. Mori K, Sakano H. How is the olfactory map formed and interpreted in the mammalian brain? Annu Rev Neurosci 2011; 34:467-99.

71. Orona E, Rainer EC, Scott JW. Dendritic and axonal organization of mitral and tufted cells in the rat olfactory bulb. J Comp Neurol 1984; 226:346-56.
Figure 1: Differentially expressed genes in the OB following 4-week COI.
(A) Heatmap of differentially expressed genes. (B) Most significant Canonical Pathways of differentially expressed genes. (C) Mechanistic Network of the most significantly activated Upstream Regulator, IFN-γ. (D) Graphical summary of differentially expressed genes illustrated with their subcellular localizations. Each entity has passed a fisher's exact test p-value cut-off of 0.05 and absolute z-score cut-off of 2 or greater. In panels (B-D), orange represents upregulated genes or activated pathways, where blue represents downregulated genes or inhibited pathways. Details for shapes of nodes and colors or patterns of lines can be found in the IPA's website (https://qiagen.secure.force.com/KnowledgeBase/articles/Basic_Technical_Q_A/Legend).
Figure 2. Reduction of tufted cell lateral dendrites following 10-week COI.

(A) Coronal section of the OBs stained for YFP, calretinin, and DAPI. Calretinin is used to delineate between the superficial and deep EPL, where the lateral dendrites of TCs and MCs exist, respectively. (B) Enlarged view of the medial (B1) and lateral (B2) contralateral OB. (C) Enlarged view of the medial (C1) and lateral (C2) ipsilateral OB. The Pcdh21-CreER x YFP transgenic mouse model (+/+Het) preferentially labels TCs and their lateral dendrites compared to MCs. (D, E) Graphs show the densities of lateral dendrites for TCs (D) and MCs (E) in μm of dendrites per cell. Dendrite densities of TC lateral dendrites decreased significantly in the ipsilateral OB compared to contralateral. There were no changes in the densities of MC lateral dendrites. Individual data are plotted, and the means are shown as bars. Data in D and E were analyzed with a paired t-test: *p < 0.01 compared to contralateral OB (control). Scale bars, 500 μm (A), and 100 μm (B, C).
Figure 3. Reduction and shortening of tufted cell axon initial segments following 10-week COI.

(A, B) Coronal sections of the OBs stained for Ankyrin G and DAPI. Axon initial segments of TCs and MCs exist in the EPL and MCL, respectively. (A) Enlarged views of the medial (A1) and lateral (A2) contralateral OB. (B) Enlarged views of the medial (B1) and lateral (B2) contralateral OB. (C-F) Histograms show the frequency of axon initial segments at various lengths from five coronal OB sections for each mouse (n=5). Graphs show differences in the average length of AIS length comparing the contralateral to ipsilateral OB. Data are shown as mean ± SEM. There were no differences in the number of MC AISes counted in either the medial (C; histogram) or lateral OBs (D; histogram). MC AISes in the medial OB appeared to have shortened in length (C; graph), whereas those in the lateral OB did not change in length (D; graph). There were no differences in the number of TC AISes counted in medial OB (E; histogram). The TC AISes in the lateral OB were the only AISes to significantly decrease in number (F; histogram). TC AISes in the medial OB did not change in length (E; graph), whereas those in the lateral OB significantly decreased (F; graph). Data in C-F were analyzed by one-way analysis of variance followed by Tukey’s HSD post-hoc tests for multiple comparisons: *p < 0.05, ***p < 0.001 compared to contralateral OB (control). Scale bars, 100 μm.
Figure 4. Reduced cellular activity of the OB following 10-week COI.
(A) Coronal sections of the OB stained with pS6 and DAPI. TCs express less pS6 in the ipsilateral OB compared to the contralateral OB following 10-week COI, whereas MCs are unaffected. (B) Enlarged view of the medial (B1) and lateral (B2) contralateral OB. (C) Enlarged view of the medial (C1) and lateral (C2) ipsilateral OB. Scale bars, 500 μm (A), and 100 μm (B, C).
Figure 5. No changes in the number of OB interneurons following 10-week COI.

(A, B) Coronal sections of the OBs stained for PV and DAPI. More PV+ interneurons exist in the sEPL than in the dEPL of the untreated OB. However, the number of PV+ interneurons in each EPL sublayer of the ipsilateral OB was not significantly different from that of the contralateral OB. (C, D) Coronal sections of the OBs stained for SST and DAPI. There were no differences in the number of SST+ interneurons in the dEPL between the contralateral and ipsilateral OBs. Data in C-F were analyzed by one-way analysis of variance followed by Tukey’s HSD post-hoc tests for multiple comparisons. Scale bars, 100 μm.
Figure 6. 10-week recovery period restores tufted cell lateral dendrites following 10-week COI. (A) Coronal section of the OBs stained for YFP, calretinin, and DAPI. Calretinin is used to delineate between the superficial and deep EPL, where the lateral dendrites of TCs and MCs exist, respectively. (B) Enlarged view of the medial (B1) and lateral (B2) contralateral OB. (C) Enlarged view of the medial (C1) and lateral (C2) ipsilateral OB. (D, E) Graphs show the densities of lateral dendrites for TCs (D) and MCs (E) in μm of dendrites per cell. Dendrite densities of TC lateral dendrites were greater in the ipsilateral OB compared to contralateral. There were no changes in the densities of MC lateral dendrites. Individual data are plotted, and the means are shown as bars. Data in D and E were analyzed with a paired t-test: *p < 0.05 compared to contralateral OB (control). Scale bars, 500 μm (A), and 100 μm (B, C).
Figure 7. 10-week recovery period restores tufted cell axon initial segments following 10-week COI.

(A, B) Coronal sections of the OBs stained for Ankyrin G and DAPI. Axon initial segments of TCs and MCs exist in the EPL and MCL, respectively. (A) Enlarged views of the medial (A1) and lateral (A2) contralateral OB. (B) Enlarged views of the medial (B1) and lateral (B2) contralateral OB. (C-F) Histograms show the frequency of axon initial segments at various lengths from five coronal OB sections for each mouse (n=5). Graphs show differences in the average length of AIS length comparing the contralateral to ipsilateral OB. Data are shown as mean ± SEM. There were no differences in the number of MC AISs counted in either the medial (C; histogram) or lateral (D; histogram) OBs. No differences were observed in the lengths of MC AISs in either the medial (C; graph) nor lateral (D; graph) OBs. There were also no differences in the number of TC AISs counted in medial (E; histogram) or lateral (F; histogram) OBs. TC AISs in the medial OB did not change in length (E; graph), nor did those in the lateral OB (F; graph). Data in C-F were analyzed by one-way analysis of variance followed by Tukey's HSD post-hoc tests for multiple comparisons. Scale bars, 100 µm.
Figure 8. 10-week recovery period restores cellular activity of the OB following 10-week COI.

(A) Coronal sections of the OB stained with pS6 and DAPI. The expression of pS6 among TCs has recovered in the ipsilateral OB after the 10-week recovery period following 10-week COI. (B) Enlarged view of the medial (B1) and lateral (B2) contralateral OB. (C) Enlarged view of the medial (C1) and lateral (C2) ipsilateral OB. Scale bars, 500 μm (A), and 100 μm (B, C).
Supplementary Figure 1.
Labelling of the AIS using AnkG preferentially occurs in conjunction with somata expressing Tbx21 both in the MCL and EPL in untreated mice.
Supplementary Figure 2.
Using pS6 as a marker for OB projection neuron cellular activity was demonstrated to occur in conjunction with somata expressing Tbx21 both in the MCL and EPL in untreated mice.
Upstream Regulator	Expr Fold Change	Molecule Type	Predicted Activation State	Activation z-score	Flags	p-value of overlap	Target Molecules in Dataset	Mechanistic Network
KDM1A	0.088	enzyme						
IFNG		cytokine	Activated	4.749				
STAT1	1.108	transcription regulator	Activated	2.826	bias	9.4E-20		
Ifnar		group	Activated	3.576		3.16E-19		
MAPT		other						
DYSF	0.984	other						
SIRT1	0.155	transcription regulator	Inhibited	-3.45		2.18E-19		
ZBTB10	0.096	other	Activated	3.17	bias	4.19E-13		
Interferon alpha		group	Activated	3.573		8.51E-13		
STAT3	0.016	transcription regulator		0.931		1.15E-12		
IL4		cytokine						
IRF1		transcription regulator	Activated	2.223		9.62E-12		
SNCA	0.514	enzyme	Activated	3.138		3.06E-12		
QKI	0.205	other		1.941		4.35E-12		
IL27	0.759	cytokine	Activated	2.609		6.25E-12		
ELAVL1		other	Activated	2.985		7.53E-12		
PKC3G	2.644	kinase	Inhibited	-2.813		1.03E-11		
JAK1/2		group	Activated	2.528		1.54E-11		
STAT6	1.324	transcription regulator	Inhibited	-2.487		1.68E-11		
TRIM24	0.301	transcription regulator	Inhibited	-2.343	bias	1.85E-11		
lipopolysaccharide		chemical drug	Activated	4.2		3.94E-11		
IRF9	0.077	transcription regulator		-0.277		7.35E-11		
SLC3A3		ion channel						
nosine		chemical - endogenous mammalian		2.646		8.48E-11		
IRF3	0.052	transcription regulator		3.1		1.96E-10		
IL6		cytokine	Activated	2.93		2.12E-10		
poly rI:rC-RNA		biologic drug	Activated	3.648		2.86E-10		
CiliTA	1.944	transmembrane receptor	Activated	2.149		5.38E-10		
IL1B	0.77	cytokine	Activated	2.654		1.5E-09		
Immunoglobulin		complex		0.858		3.02E-09		
NRAS	0.378	enzyme	Inhibited	-2.03		4.29E-09		
INFg	0.301	transcription regulator		0.933		6.13E-09		
Tigm1	1.289	other	Inhibited	-2.588		7.97E-09		
Compound	Chemical Drug/Regulator Type	Regulation Type	Beta-score	p-value				
----------------------	-----------------------------	----------------	-----------	-----------				
EB3	cytokine	Activated	2.425	1.05E-08				
B2M	transmembrane receptor	Activated	2.104	0.0000015				
IFNα2	cytokine	Activated	2.777	2.16E-08				
APP	enzyme	Activated	3.073	2.34E-08				
PGR	enzyme	Inhibited	-2.621	8.98E-08				
TNF	cytokine	Activated	3.761	3.00E-08				
IL10	cytokine	Activated	4.085	8.69E-08				
TLR2	cytokine	Activated	1.911	1.00E-08				
IL10	growth factor	Activated	1.903	0.0000016				
Rosiglitazone	chemical drug	Activated	0.937	0.0000065				
Beta-estradiol	chemical drug	Inhibited	-2.236	1.99E-08				
DNA polymerase II	complex	Activated	3.073	2.34E-08				
Ezh2	methyltransferase	Activated	2.269	3.86E-08				
Myc	cytokine	Activated	2.425	1.05E-08				
ELF5	growth factor	Activated	2.625	1.05E-08				
IL2	cytokine	Activated	2.104	0.0000015				
ZC3H11C	transcription regulator	Activated	2.425	1.05E-08				
ERK1/2	enzyme	Inhibited	-1.222	0.000016				
CX3CL1	cytokine	Activated	2.269	3.86E-08				
IL10RA	transmembrane receptor	Activated	2.135	3.00E-08				
AGN194204	cytokine	Activated	2.625	1.05E-08				
JUN	transcription regulator	Activated	2.269	3.86E-08				
IFNα/β	group	Activated	2.425	1.05E-08				
CpG ODN 1826	chemical reagent	Activated	2.142	0.0000029				
IL2R	cytokine	Activated	2.269	3.86E-08				
Jak2	enzyme	Activated	2.269	3.86E-08				
SSB	enzyme	Inhibited	-2.236	1.99E-08				
17α-ethinylestradiol	chemical drug	Inhibited	-0.896	0.0000398				
Chemical/Drug	Type	Effect	Log2 Fold Change	p-value				
---------------	------	--------	-----------------	---------				
Cyclophosphamide	Chemical Drug	-1.432	0.00000409	B2M,C4A/C4B,CCL5,CD74,RAC2				
Kainic Acid	Chemical Toxicant	-1.432	0.00000409	APOL1,DCL2,ERBB4,GFAP,NPTX2,PEK6				
BAGALNT1	Enzyme	0.563	0.00000515	C1QA,C1QB,C4A/C4B				
ACKR2	G-protein coupled receptor	1.000	0.0000046	CCL5,Cxcl9,Ifi47,Ifg1				
BMP10	Growth Factor	-1.342	0.00000536	C1QA,C1QB,C4A/C4B,CCL5,CD74,HLA-A,NPPA,PTN,SERPINA3				
ZNF106	Other	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
E. coli B5 lipopolysaccharide	Chemical - Endogenous Non-mammalian	Activated	2.586	0.00000635	B2M,CCL5,CYBB,GBP2,HLY-A,Ifg1,Irgf1			
CSF1	Cytokine	1.000	0.00000651	CCL5,Cxcl9,Ifi47,Ifg1,Ifg1,IRF1				
BMP10	Growth Factor	1.000	0.00000651	C1QA,C1QB,HLY-A,IRF8,PTN,SERPINA3				
ZNF106	Other	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
TGF2	G-protein coupled receptor	Activated	2.000	0.00000651	B2M,CCL5,CYBB,GBP2,HLY-A,IRF8,PTN,SERPINA3			
FGF2	Cytokine	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
E. coli B5 lipopolysaccharide	Chemical - Endogenous Non-mammalian	Activated	2.586	0.00000635	B2M,CCL5,CYBB,GBP2,HLY-A,Ifg1,Irgf1			
CSF1	Cytokine	1.000	0.00000651	CCL5,Cxcl9,Ifi47,Ifg1,IRF1				
BMP10	Growth Factor	1.000	0.00000651	C1QA,C1QB,HLY-A,IRF8,PTN,SERPINA3				
ZNF106	Other	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
BMP10	Growth Factor	-1.342	0.00000536	C1QA,C1QB,C4A/C4B,CCL5,Cxcl9,IFi47,Ifg1,IRF1				
ZNF106	Other	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
IFN type 1	Group	Activated	2.586	0.00000635	B2M,CCL5,CYBB,GBP2,HLY-A,IRF8,PTN,SERPINA3			
CSF1	Cytokine	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
BMP10	Growth Factor	1.000	0.00000651	C1QA,C1QB,HLY-A,IRF8,PTN,SERPINA3				
ZNF106	Other	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
TGF2	G-protein coupled receptor	Activated	2.000	0.00000651	B2M,CCL5,CYBB,GBP2,HLY-A,IRF8,PTN,SERPINA3			
FGF2	Cytokine	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
E. coli B5 lipopolysaccharide	Chemical - Endogenous Non-mammalian	Activated	2.586	0.00000635	B2M,CCL5,CYBB,GBP2,HLY-A,Ifg1,Irgf1			
CSF1	Cytokine	1.000	0.00000651	CCL5,Cxcl9,Ifi47,Ifg1,IRF1				
BMP10	Growth Factor	1.000	0.00000651	C1QA,C1QB,HLY-A,IRF8,PTN,SERPINA3				
ZNF106	Other	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
BMP10	Growth Factor	-1.342	0.00000536	C1QA,C1QB,C4A/C4B,CCL5,Cxcl9,IFi47,Ifg1,IRF1				
ZNF106	Other	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
PSMB11	Peptidase	-3.84	0.00000762	CCL5,Cxcl9,HLA-A,IRF1,IRF8,NPPA,OMP,SERPINA3				
IL1R1	Transmembrane Receptor	Activated	2.586	0.00000635	B2M,CCL5,CYBB,GBP2,HLY-A,IRF8,PTN,SERPINA3			
CSF1	Cytokine	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
BMP10	Growth Factor	1.000	0.00000651	C1QA,C1QB,HLY-A,IRF8,PTN,SERPINA3				
ZNF106	Other	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
TGF2	G-protein coupled receptor	Activated	2.000	0.00000651	B2M,CCL5,CYBB,GBP2,HLY-A,IRF8,PTN,SERPINA3			
FGF2	Cytokine	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
E. coli B5 lipopolysaccharide	Chemical - Endogenous Non-mammalian	Activated	2.586	0.00000635	B2M,CCL5,CYBB,GBP2,HLY-A,Ifg1,Irgf1			
CSF1	Cytokine	1.000	0.00000651	CCL5,Cxcl9,Ifi47,Ifg1,IRF1				
BMP10	Growth Factor	1.000	0.00000651	C1QA,C1QB,HLY-A,IRF8,PTN,SERPINA3				
ZNF106	Other	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
BMP10	Growth Factor	-1.342	0.00000536	C1QA,C1QB,C4A/C4B,CCL5,Cxcl9,IFi47,Ifg1,IRF1				
ZNF106	Other	-0.029	0.00000586	C4A/C4B,FITM3,LYZ,SERPINA3				
Gene/Protein	2.237	ligand-dependent nuclear receptor	1.091	0.0000468	CCL5, HLA-DQB1, IGF1, NP2A, SERPINA3	27 (7)		
-------------	-------	----------------------------------	-------	------------	-----------------------------------	--------		
KRAS	-0.316	enzyme	-0.378	0.0000504	B2M, CD74, CYBB, GFAP, ITIM3, IRF1, IGF1, LYZ, PCDH1, SERPINA3, TAP1	30 (9)		
PROC (I)	0.84	other	0.000513	GBB2, Igp1, IGF5				
PLK4	1.739	kinase	0.000513	Cc9, Igp1, IGF1				
THRA	0.388	ligand-dependent nuclear receptor	-1.067	0.000531	IG1F, IRF1, NP2A, Ngn, PENK			
prostaglandin E2	chemical - endogenous mammalian	-1.52	0.000572	CCL5, Cxcl9, GFAP, IGF1, Igp1, IRF1, PENK	34 (18)			
DUSP1	-0.176	phosphatase	-0.528	0.000602	CYBB, ITIM3, Igp1, IGF1, IRF1	20 (4)		
MAP3K7	0.063	kinase	0.000605	CCL5, BGBP2, IRF1, NP2A		26 (10)		
IFNAR1	0.654	transmembrane receptor	Activated	2.2	bias	0.000602	B2M, CCL5, Cxcl9, HLA-A, IRF1	32 (17)
dehydroisoandrosterone	chemical - endogenous mammalian	1.739	0.000667	B2M, GFAP, IGF1, NP2A		17 (6)		
NCOA2	0.137	transcription regulator	1.96	0.000679	CCL5, Cxcl9, HLA-A, IRF1, LYZ			
fingolimod	-1.969	bias	0.000007	CCL5, Cxcl9, DQA1, DQB1				
etonox	-0.378	chemical drug	0.000704	B2M, NP2A				
RPSA	0.035	translation regulator	-2.449	0.000708	CCL5, IGF1, TAP1			
CNTF	-2.154	cytokine	0.000734	GFAP, IRF1, PENK, SERPINA3		19 (5)		
TLR3	0.655	transmembrane receptor	1.941	0.000734	CCL5, Cxcl9, BP2, IGF1, IRF1	29 (15)		
Nuclear factor 1	group	0.161	kinase	0.000945	IGF1, Igp1, IRF1			
IL1B	0.472	kinase	0.001113	CCL5, Cxcl9, HLA-DQ, BGP2, Igp1, TAP1	27 (7)			
RARB	-0.468	ligand-dependent nuclear receptor	Activated	2.236	0.001113	GBB2, IGF1, Igp1, LYZ		
ACE2	0.522	peptidase	0.001113	CCL5, Cxcl9, CYBB				
Hb2-1	0.472	kinase	0.001114	C1Q, C1QB, Cxcl9, CYBB				
6-hydroxydopamine	chemical toxicant	-2.449	0.001114	CCL5, CYBB, GFAP, PENK		28 (7)		
dextran sulfate	chemical drug	Activated	2.767	0.001227	B2M, CCL5, BP2, HLA-A, IRF1, SERPINA3, TAP1	26 (13)		
hemin	chemical - endogenous mammalian	1.186	0.001213	CCL5, Cxcl9, BP2, HLA-A, IRF1, NP2A	28 (13)			
IL18	0.151	kinase	0.001234	IRF1, NP2A, SERPINA3		22 (7)		
IFN gamma	0.161	kinase	0.001355	IGF1, NP2A, SERPINA3				
E. coli serotype 0127B8 lipopolysaccharide	chemical - endogenous non-mammalian	2.219	0.001355	CCL5, Cxcl9, IRF1, IRF5		13 (3)		
NRC1	0.437	ligand-dependent nuclear receptor	Activated	-1.446	0.001356	B2M, C4A, C4B, CCL5, Cxcl9, BP2, IGF1, IRF1, IRF5, NP2A	34 (15)	
IL17A	0.849	cytokine	0.001358	B2M, CCL5, Cxcl9, BP2, IGF1, IRF1		31 (16)		
IL13	0.521	cytokine	0.001561	CCL5, Cxcl9, IGF1, IRF1		32 (12)		
ethanol	0.521	cytokine	0.001667	CCL5, Cxcl9, IGF1, IRF1		16 (2)		
RNAE2H2A	1.63	enzyme	0.00182	GBB2, IGF1, IRF1				
CYP191A	0.762	enzyme	0.00183	GBB2, GFAP, HLA-A, IGF1				
sildenafil	1.655	chemical drug	0.00196	CYBB, GFAP, SERPINA3		22 (6)		
S-nitrosoglutathione	chemical toxicant	1.655	0.00196	CYBB, GFAP, IGF1				
GSK0660	0.008	chemical reagent	0.00196	C1Q, C1QB				
CLTC	0.008	other	0.00196	CD74, HLA-A				

Notes:**NR3C2** and **NR3C1** are ligand-dependent nuclear receptors. The table includes various genes and their roles, with a focus on their relationships to different processes such as regulation, signal transduction, and immune responses. The table also highlights the activation status of certain genes. For example, **IFNAR1** is shown to be activated, and **IL18** is demonstrated as a cytokine that can influence immune responses. The table is comprehensive, listing numerous genes and their interactions, providing a detailed overview of the molecular interactions within the context of the document.
Gene	Description	Value	Group	Bias	Z-Score
TAPBP	transporter	1.268	0.000196	HLA-A,TAP1	
dihydrotestosterone	chemical - endogenous mammal	-0.047	0.000201	B2M,C4A/C4B,CD74,CYBB,GFAP,HLA-A,IGF1,LYZ	
AIRHGAP21	other	0.552	0.000201	Cc09,IgG1,IGF1	
Cc02	enzyme	0.016	0.000201	CTSS,GFAP,HPPA	
VIP	other	0.691	0.000211	CD74,HLA-DRB1,LYZ	
CEBPB	transcription regulator	-0.102	0.000214	C1QA,CCL5,CD74,GFAP,HLA-A,IGF1,IGP1,RAC2	
SOX4	transcription regulator	0.138	0.000234	CD74,HLA-DQB1,IGF1,LYZ,TUBB2B	
IL12(complex)	complex	-0.047	0.000244	CCL5,CX09,IgG1,IGF1,IGF8	
PSMB9	peptidase	5.28	0.000252	HLA-A,TAP1	
RXAP	transcription regulator	0.649	0.000252	B2M,HLA-DQA1	
HRA000	chemical reagent	0.332	0.000259	Cc09,IgG1,IGF1	
KOT	transmembrane receptor	-0.328	0.000274	CCL5,HLA-DRB1	
ZFTA-RELA	fusion gene/product	0.000274	IRF1,TAP1,TAPBP		
ARHGAP21	other	0.552	0.000274	CCL5,CX09,IgG1	
SMAA4	transcription regulator	-0.088	0.000281	CD74,CTSS,IGF1,LYZ	
DMD	other	-0.099	0.000303	C1QB,CTSS,GFAP,IGF1,LYZ	
B4GALT6	enzyme	-0.263	0.000314	CCL5,GFAP	
ZFTA-RELA	fusion gene/product	0.000314	IRF1,IgG1		
RELA	transcription regulator	0.137	0.000314	C1QB,CTSS,GFAP,IGF1,LYZ	
SFRS1	other	0.332	0.000325	CCL5,CX09,IgG1	
JUN	transcription regulator	-0.377	0.000385	C1QB,Cc02a/Cc02a,Cx09,FABP7,IGF1,HPPA,PEK	
BAX	transporter	0.341	0.000391	CCL5,CTSS,HLA-A	
NR1H3	ligand-dependent nuclear receptor	0.841	0.000395	Bz2,C1QA,CCL5,LYZ,TAP1	
epigallocatechin-gallate	chemical drug	Inhibited	-2.204	0.000419	CCL5,IgG4,IRF1,PTN,TAP1
ILRN	cytokine	-0.208	0.000425	C1QA,HLA-DRB1,IGF1,IRF1	
DOC5	other	0.554	0.000436	CCL5,CX09,GFAP,HPPA	
CDK9	kinase	1.441	0.000436	CCL5,HLA-DQA1,HNRPH1	
FGFR2A	transmembrane receptor	0.857	0.000436	CCL5,GF2B,IFITM3	
RAB2	group	0.000438	C6B2,IGG4,IFG1		
dexamethasone	chemical - endogenous mammal	-0.714	0.000461	CCL5,CYBB,GFAP,HPF1,NPPA	
CTCF	transcription regulator	0.179	0.000476	HLA-DQA1,HLA-DQB1,HLA-DRB5,LYZ	
LDLR	transporter	0.624	0.000479	Bz2,C1QA,CCL5,LYZ,TAP1	
Growth hormone	group	0.615	0.000487	CCL5,GFAP,IGF1,IRF1,NPPA	
ADAM10	peptidase	-0.016	0.000532	CD74,FAFP7,OMP,TUBB2B	
IKBKG	kinase	1.528	0.000532	CCL5,GF2B,HLA-A,NPPA	
mibolerone	chemical drug	Inhibited	-2.204	0.000546	C1QA,CCL5,IGF1,IRF1
cortisatin	chemical - other	1.943	0.000546	C1QA,CCL5,IGF1,IRF1,PTN	
NCOR2	transcription regulator	0.274	0.000536	C1QA,CTSS,IGF1	
Co2	cytokine	0.000536	C1QA,CCL5,LYZ,TAP1		
heme	chemical - endogenous mammal	-0.714	0.000536	CCL5,LYZ,TAP1	
CCL3L3	cytokine	1.626	0.000542	CCL5,CX09	
tacrolimus	chemical drug	1.943	0.000545	CCL5,CTSS,GFAP,HPPA,PEK	
Clitzazone	chemical drug	-1	0.000561	CCL5,CYBB,GFAP,HPPA	
CSF2	cytokine	1.218	0.000562	C1QA,CCL5,CD74,Cx09,CYBB,HLA-DQB1,IGF1,LYZ	
IL11	cytokine	0.989	0.000563	IGF1,IRF1,PEP3A3	
IL1A	cytokine	0.139	0.000555	C1QA,CCL5,LYZ,TAP1,IRF1,PEP3A3	
SOCS1	other	3.005	0.000576	Cc09,IgG1,IGF1	
LY294002	chemical drug	Inhibited	-1.132	0.000587	CCL5,CCL5,CD74,GFAP,IRF1,IRF1,PTN
ACOX1	enzyme	0.224	0.000623	HLA-DQA1,HLA-DRB5,IGF1,LYZ,TUBB2B	
TRP1	ion channel	0.224	0.000631	B2M,C1QA,CCL5,CD74,FAFP7,GFAP,PEP3A3,PEK,PEP3A3	
trichostatin A	chemical drug	1.238	0.000631	B2M,CYBB,HLA-DQB1,IGS95,IFG1,IRF1,IRF3,NPPA,PEK,SEZ1L	
IFCAM1	other	-0.283	0.000664	CCL5,CX09,IGF1,IRF1	
PRDM1	transcription regulator	-0.528	0.000665	CD74,HLA-DQA1,IRF1,PEP3A3,TAPBP	
morphine	chemical drug	-0.83	0.000656	CYBB,GFAP,HPPA,PEK	

Note: Values are given as Z-Score, with significance levels indicated by bolded text.
Gene	Description	Fold Change	p-Value	Associated Genes
AGT	-0.795 growth factor	1.379	0.000667	C4A/C4B,C55,CTS5,CYBB,IGF1,NPPA,NPTX2,PTN,SERPINA3
CA8	-0.00689	0.000689	30 (14)	B2M,CC55,CD74
U126	chemical drug	-0.025 bias	0.000705	CCL5,CYBB,GAPF,HLA-DQA1,IRF1,NPPA,RAC2
lovastatin	chemical drug	-0.025 bias	0.000705	CCL5,CYBB,GAPF,HLA-DQA1,IRF1,NPPA,RAC2
U0126	chemical drug	-0.025 bias	0.000705	CCL5,CYBB,GAPF,HLA-DQA1,IRF1,NPPA,RAC2
PPARG	-0.121 ligand-dependent nuclear receptor	0.537	0.000734	C1QA,C1QB,FABP7,MPEG1,NPPA
PRKCA	0.563	0.000837	CCL5,CFAP,HILA-DQA1,HILA-DQB1,NPPA,NTX2,RENK	
PIAS4	0.019 other	0.000848	CCL5,CIFAP,HILA-DQA1,HILA-DQB1,NPPA,NTX2,RENK	
NFKB1	-0.277	0.000921	HLA-A,IRF1,TAP1	
MAPK9	-0.154 enzyme	0.00112	CCL5,CIFAP,HILA-DQA1,HILA-DQB1,NPPA,NTX2,RENK	
NFYA	0.162 transcription regulator	0.00166	HILA-DQA1,GAPF,HILA-DQB1,NPPA,RAC2	
ESR1	-0.037 kinase	1.091	0.00156	CCL5,GAPF,HILA-DQA1,GAPF,HILA-DQB1,GAPF,HILA-DQB1,NPPA,RAC2

Endothelin group

- **VADIMZAN**
 - Chemical drug
 - Fold change: -0.025 bias
 - p-value: 0.000705
 - Associated genes: CCL5,CYBB,GAPF,HLA-DQA1,IRF1,NPPA,RAC2

Monocrotaline

- **Monocrotaline**
 - Chemical toxicant
 - Fold change: -1.281
 - p-value: 0.000837
 - Associated genes: CCL5,GFAP,HLA-DQA1,HLA-DQB1,IGF1,NPPA,NPTX2,PENK

L-Carnitine

- **L-Carnitine**
 - Chemical - endogenous mammalian
 - Fold change: -1.281
 - p-value: 0.000837
 - Associated genes: CCL5,GFAP,HLA-DQA1,HLA-DQB1,IGF1,NPPA,NPTX2,PENK

Prazosin

- **Prazosin**
 - Chemical drug
 - Fold change: -1.281
 - p-value: 0.000837
 - Associated genes: CCL5,GFAP,HLA-DQA1,HLA-DQB1,IGF1,NPPA,NPTX2,PENK

Geldanamycin

- **Geldanamycin**
 - Chemical drug
 - Fold change: -1.281
 - p-value: 0.000837
 - Associated genes: CCL5,GFAP,HLA-DQA1,HLA-DQB1,IGF1,NPPA,NPTX2,PENK

Enterotoxin B

- **Enterotoxin B**
 - Biologic drug
 - Fold change: -1.281
 - p-value: 0.000837
 - Associated genes: CCL5,GFAP,HLA-DQA1,HLA-DQB1,IGF1,NPPA,NPTX2,PENK

NFKB1

- **NFKB1**
 - Transcription regulator
 - Fold change: -1.281
 - p-value: 0.000837
 - Associated genes: CCL5,GFAP,HLA-DQA1,HLA-DQB1,IGF1,NPPA,NPTX2,PENK

ERBB2

- **ERBB2**
 - Kinase
 - Fold change: -1.281
 - p-value: 0.000837
 - Associated genes: CCL5,GFAP,HLA-DQA1,HLA-DQB1,IGF1,NPPA,NPTX2,PENK

CUX1

- **CUX1**
 - Transcription regulator
 - Fold change: -1.281
 - p-value: 0.000837
 - Associated genes: CCL5,GFAP,HLA-DQA1,HLA-DQB1,IGF1,NPPA,NPTX2,PENK
| Gene | Class | Description | Log2 | P-value | |
|---|---|---|---|---|---|
| NOS2 | enzyme | | 1.387 | 0.00166 |
| C6 | complex | Activated | 2.213 | 0.00167 |
| PPARA| ligand-dependent nuclear receptor | -0.577 | 0.00167 |
| CCK | other | | -0.93 | 0.00173 |
| liparabinomannan | chemical - endogenous non-mammalian | 0.00173 |
| ilomastat | chemical drug | CCL5, ERRB4 |
| LCN2 | transporter | CCL5, Cxcl9, IGF1, LGALS3BP, SERPINA3 |
| IL1β | cytokine | -0.33 bias | 0.0018 |
| ZFHX3 | transcription regulator | 0.00183 |
| SB220680 | other | C4A/C4B, TLH, IGF1 |
| HDXAS | transporter regulator | 0.00186 |
| mifepristone | chemical drug | CCL5, Cxcl9, GFAP, NPPA |
| SAMSN1 | other | 0.00186 |
| SLC13A1 | transporter | GBP2, IGF1, LGALS3BP, NPPA, PENK |
| IKBK | kinase | 0.00195 |
| ZFP36 | transcription regulator | 0.00201 |
| PPIF | enzyme | -0.21 bias | 0.00201 |
| SLPI | other | 0.00204 |
| levodopa | chemical - endogenous mammalian | -0.964 |
| dactin | chemical drug | 0.0022 |
| HRAS | enzyme | 0.00222 |
| PDGF-αA | complex | CCL5, CTSS, IGF1, IRF1 |
| CDC73 | other | 0.388 |
| TIGAM2 | other | 0.00221 |
| Saa3 | other | 0.259 |
| SPRY1 | other | 0.00221 |
| Fus | transcription regulator | 0.00221 |
| bee venom | chemical - endogenous non-mammalian | 0.00233 |
| NFATC2 | transcription regulator | 0.00236 |
| NFIX | transcription regulator | 0.00238 |
| wortmannin | biological drug | CCL5, IGF1, IRF1, IRF8 |
| vancomycin | biologic drug | CCL5, CTSS, C4A/C4B, LGALS3BP, SERPINA3 |
| ZNF503 | other | -1.487 |
| dimethyl lactonate | chemical reagent | 0.00256 |
| CCR1 | G-protein coupled receptor | 0.00256 |
| Mx2 | other | 1.807 bias | 0.00259 |
| N-acetyl-D-glucosamine methyl ester | chemical drug | 0.00261 |
| Gm20504 | other | 0.00268 |
| CAMTA2 | transcription regulator | 0.00268 |
| CAMTA1 | other | 0.00268 |
| SNORD21 | other | 0.00268 |
| CYTL1 | cytokine | 0.00268 |
| TPH2 | enzyme | 0.00268 |
| ENO2 | enzyme | 0.00268 |
| GATA | other | 0.00268 |
| GLP1D1 | enzyme | 0.00268 |
| CORN | peptidase | 0.00268 |
| Rait16/Rait1e | other | 0.00268 |
| GDN | other | 0.00268 |
| GPD | enzyme | 0.00268 |
| NOS1 | G-protein coupled receptor | 0.00268 |
| BNP | chemical drug | 0.00268 |
| anthraquinone | chemical toxicant | 0.00268 |
| SCH 39370 | chemical - protease inhibitor | 0.00268 | NPPA |
| 10-hydroxydecanoic acid | chemical - endogenous non-mammalian | 0.00268 | IGF1 |
| thiorphan | chemical - protease inhibitor | 0.00268 | NPPA |
| deoxyorticosterone acetate/potassium chloride/sodium chloride | chemical reagent | 0.00274 | CCL5,CYBB |
| TKB1 | enzyme | 0.522 | kinase |
| FTO | enzyme | 0.048 | other |
| BAK1 | other | 0.562 | other |
| MX2-3 | ligand-dependent nuclear receptor | 0.348 | inhibited |
| RARA | enzyme | -0.108 | other |
| HAVCR1 | enzyme | -3.413 | other |
| ST4 | microRNA | 1.981 | bias |
| CARD9 | enzyme | 0.0313 | other |
| CXCL10 | cytokine | 2.616 | other |
| PTX3 | enzyme | 0.0313 | other |
| colletin | biologic drug | 0.0315 | other |
| INSIG1 | enzyme | -0.009 | other |
| kanamy c-A | enzyme | 0.0331 | other |
| TIRAP | enzyme | -3.413 | other |
| CBF | enzyme | 0.0333 | other |
| mir-23 | microRNA | 0.0333 | other |
| FAS | microRNA | 1.333 | other |
| NCF1 | enzyme | 1.123 | other |
| CGAS | enzyme | 4.151 | other |
| KDM8 | enzyme | 0.284 | other |
| CNG | enzyme | 0.0354 | other |
| BNE1 | enzyme | -0.037 | other |
| NFIC | enzyme | 0.108 | other |
| TAB1 | enzyme | 0.226 | other |
| ROR | enzyme | 0.0357 | other |
| SYK | enzyme | 1.298 | kinase |
| INSR | enzyme | 0.0369 | kinase |
| cholesterol | enzyme | -0.019 | kinase |
| melonodazole | enzyme | 0.0375 | other |
| TNFSF14 | cytokine | 0.0376 | other |
| SUMO1 | enzyme | 0.231 | other |
| PBX1 | enzyme | 0.225 | other |
| TR | enzyme | 0.0384 | other |
| TSRC | enzyme | 0.0398 | other |
| PTPA | enzyme | 0.523 | other |
| PRDM16 | enzyme | 0.568 | other |
| CTBB | enzyme | 4.356 | other |
| HSFG2 | enzyme | 0.901 | other |
| Kik1 | enzyme | 0.042 | other |
| vinblastine | enzyme | 0.042 | other |
| Alpha catenin | enzyme | 0.042 | other |
| indomethacin | enzyme | 0.042 | other |
| mir-130 | enzyme | 1.91 | other |
| UBE2I | enzyme | 0.78 | other |
| RAD21 | enzyme | 0.185 | other |
| FOS | enzyme | 0.184 | other |
| tetradecanoylphorbol acetate | enzyme | -0.581 | other |
| genistein | enzyme | -1.3 | other |
| **Thioacetamide** | chemical toxicant | 0.00481 | C4A/C4B,GFAP,IGF1,LGALS3BP |
| **Bortezomib** | chemical drug | 0.849 | 0.00488 | CCL5,GFAP,IGF1,SERPINA3 |
| **SMARC5** | transcription regulator | 0.368 | 0.00505 | B2M,HLA-A,UNK358B1 |
| **PLAUR** | transmembrane receptor | 0.00517 | CCL5,CYBB | 19 (5) |
| **15-keto-13,14-dihydroprostaglandin E2** | chemical - endogenous mammalian | | |
| **MEK3C** | enzyme | 0.34 | 0.00536 | GFAP |
| **ARLT6** | other | -0.999 | 0.00536 | CCL5 |
| **ADGRG1** | G-protein coupled receptor | -0.16 | 0.00536 | GFAP |
| **ADH1C** | enzyme | -0.975 | 0.00536 | NPPA |
| **SERPINE2** | other | -0.202 | 0.00536 | HLA-A |
| **SMARCA5** | transcription regulator | 0.368 | 0.00536 | B2M,HLA-A,UNC93B1 |
| **PLAUR** | transmembrane receptor | 0.00517 | CCL5,CYBB | 19 (5) |
| **15-keto-13,14-dihydroprostaglandin E2** | chemical - endogenous mammalian | | |
| **MEK3C** | enzyme | 0.34 | 0.00536 | GFAP |
| **ARLT6** | other | -0.999 | 0.00536 | CCL5 |
| **ADGRG1** | G-protein coupled receptor | -0.16 | 0.00536 | GFAP |
| **ADH1C** | enzyme | -0.975 | 0.00536 | NPPA |
| **SERPINE2** | other | -0.202 | 0.00536 | HLA-A |
| **SMARCA5** | transcription regulator | 0.368 | 0.00536 | B2M,HLA-A,UNC93B1 |
| **PLAUR** | transmembrane receptor | 0.00517 | CCL5,CYBB | 19 (5) |
| **15-keto-13,14-dihydroprostaglandin E2** | chemical - endogenous mammalian | | |
| **MEK3C** | enzyme | 0.34 | 0.00536 | GFAP |
| **ARLT6** | other | -0.999 | 0.00536 | CCL5 |
| **ADGRG1** | G-protein coupled receptor | -0.16 | 0.00536 | GFAP |
| **ADH1C** | enzyme | -0.975 | 0.00536 | NPPA |
| **SERPINE2** | other | -0.202 | 0.00536 | HLA-A |
| **SMARCA5** | transcription regulator | 0.368 | 0.00536 | B2M,HLA-A,UNC93B1 |
| **PLAUR** | transmembrane receptor | 0.00517 | CCL5,CYBB | 19 (5) |
| **15-keto-13,14-dihydroprostaglandin E2** | chemical - endogenous mammalian | | |
| **MEK3C** | enzyme | 0.34 | 0.00536 | GFAP |
| **ARLT6** | other | -0.999 | 0.00536 | CCL5 |
| **ADGRG1** | G-protein coupled receptor | -0.16 | 0.00536 | GFAP |
| **ADH1C** | enzyme | -0.975 | 0.00536 | NPPA |
| **SERPINE2** | other | -0.202 | 0.00536 | HLA-A |
| **SMARCA5** | transcription regulator | 0.368 | 0.00536 | B2M,HLA-A,UNC93B1 |
| **PLAUR** | transmembrane receptor | 0.00517 | CCL5,CYBB | 19 (5) |
| **15-keto-13,14-dihydroprostaglandin E2** | chemical - endogenous mammalian | | |
| **MEK3C** | enzyme | 0.34 | 0.00536 | GFAP |
| **ARLT6** | other | -0.999 | 0.00536 | CCL5 |
| **ADGRG1** | G-protein coupled receptor | -0.16 | 0.00536 | GFAP |
| **ADH1C** | enzyme | -0.975 | 0.00536 | NPPA |
| **SERPINE2** | other | -0.202 | 0.00536 | HLA-A |
| **SMARCA5** | transcription regulator | 0.368 | 0.00536 | B2M,HLA-A,UNC93B1 |
| **PLAUR** | transmembrane receptor | 0.00517 | CCL5,CYBB | 19 (5) |
| **15-keto-13,14-dihydroprostaglandin E2** | chemical - endogenous mammalian | | |
| **MEK3C** | enzyme | 0.34 | 0.00536 | GFAP |
| **ARLT6** | other | -0.999 | 0.00536 | CCL5 |
| **ADGRG1** | G-protein coupled receptor | -0.16 | 0.00536 | GFAP |
| **ADH1C** | enzyme | -0.975 | 0.00536 | NPPA |
| **SERPINE2** | other | -0.202 | 0.00536 | HLA-A |
| **SMARCA5** | transcription regulator | 0.368 | 0.00536 | B2M,HLA-A,UNC93B1 |
| **PLAUR** | transmembrane receptor | 0.00517 | CCL5,CYBB | 19 (5) |
| Gene | Description | Expression | Associated Genes |
|------|-------------|------------|------------------|
| JAK | Group | 0.00595 | CCL5,IGF1 |
| USP22| Peptidase | 0.00595 | CCL5,LYZ |
| pristane | Chemical toxicant | 0.00595 | CCL5,GBP2,PENK |
| IL22 | Cytokine | 0.00621 | CCL5,Cxcl9,SERPINA3 |
| DPP4 | Peptidase | 0.00623 | CCL5,Cxcl9 |
| FLT3 | Kinase | 0.00651 | CYBB,LYZ |
| HBB | Transporter | 0.00651 | CCL5,Cxcl9 |
| SOD1 | Enzyme | 0.00656 | B2M,C1QA,GFAP,IGF1 |
| PI3 | Complex | 0.00671 | IGF1,IRF1,PENK |
| Sox11 | Transcription regulator | 0.00671 | CCL5,ERBB4,HLA-DRB5 |
| PRKACA | Kinase | 0.00679 | IGF1,PENK |
| temozolomide | Chemical drug | 0.00679 | CCL5,Cxcl9 |
| pristane | Chemical toxicant | 0.00685 | CCL5,Cxcl9,IRF1,IFITM3,IGF1 |
| fulvestrant | Chemical drug | 1.869 | CCL5,CD74,IGF1,IRF1 |
| SMAD1 | Transcription regulator | 0.00704 | C1QA,C1QB,CCL5,Cxcl9,IRF1 |
| C3AR1 | G-protein coupled receptor | 0.00708 | CCL5,IGF1 |
| IFIH1 | Enzyme | 0.00708 | B2M,CCL5 |
| calcitriol | Chemical drug | 0.00709 | CCL5,Cxcl9,CYBB,IGF1,PENK,TAP1 |
| quinolinic acid | Chemical - endogenous mammalian | 0.00737 | GFAP,PENK |
| N-formylMet-Leu-Ph | Chemical reagent | 0.00737 | CYBB,RAC2 |
| IL-12 (family) | Group | 0.00751 | CCL5,IRF1,IRF8 |
| EBF1 | Transcription regulator | 0.00765 | CCL5,Cxcl9,IRF1 |
| PAF1 | Other | 0.00767 | CCL5,IFITM3 |
| halofuginone | Chemical drug | 0.00779 | C4A/C4B,CCL5,Cxcl9,IRF1,IFITM3 |
| estrogen | Chemical drug | 0.055 | bias |
| IL15 | Cytokine | 0.00791 | CCL5,CD74,IRF1,NPTX2,RAC2 |
| Ack28 | Transcription regulator | 0.00798 | B2M,IGF1 |
| istradefylline | Chemical drug | 0.00803 | PENK |
| HS-243 | Chemical - kinase inhibitor | 0.00803 | CCL5 |
| SXNT01959 | Chemical reagent | 0.00803 | IGF1 |
| drotrecogin alfa | Biologic drug | 0.00803 | NPPA |
| Os1/213 | Group | 0.00803 | IGF1 |
| psipentofylline | Chemical drug | 0.00803 | GFAP |
| SLC4A5 | Transporter | 0.00803 | NPPA |
| DPP10 | Peptidase | 0.00803 | KCNIP1 |
| LRRK2E | Ion channel | 0.00803 | CCL5 |
| ASPAT1 | Enzyme | 0.00803 | IGF1 |
| HP1BP3 | Other | 0.348 | IGF1 |
| ABRA | Other | 0.00803 | NPPA |
| SF3BP1 | Other | 0.915 | NPPA |
| PCDH17 | Other | 0.209 | NPPA |
| Ap1 gamma | Group | 0.00803 | HLA-A |
| GLO1 | Enzyme | 0.00803 | GFAP |
| GNL4 | Other | 0.00803 | CCL5 |
| INPP1 | Other | -1.374 | NPPA |
| Tardp | Transcription regulator | 0.00803 | ERBB4 |
| ostami | Chemical drug | 0.00803 | IGF1 |
| ZNRD1ASP | Other | 0.00803 | HLA-A |
| S100A1 | Other | -0.082 | NPPA |
| IFNGR2 | Transmembrane receptor | 0.00803 | IRF1 |
| MBP5 | Other | -0.14 | IGF1 |
| MYOZ2 | Other | 0.00803 | NPPA |
| DDX4 | Enzyme | 1.602 | IFTM3 |
| Lycium barbarum polysaccharides | Chemical - endogenous non-mammalian | 0.00803 | IGF1 |
| LIFR | Transmembrane receptor | 0.00803 | GFAP |
| Gene/Drug | Type | Description |
|-----------|------|-------------|
| Herc5 | enzyme| |
| fomepizole| chemical drug | |
| desmazole | chemical drug | |
| chlorothamidine | chemical-drug | |
| CRTCL-MAM-2 | fusion | product |
| (+)gallic+chinate | gallic acid | enzyme-protase inhibitor |
| 2,5'-dideoxadenosine | chemical reagent | |
| proline zinc insulin | biologic drug | |
| 2R,4R-4-aminoypymidine-2,4-dicarboxylic acid | chemical reagent | |
| aflatoxin B1 | chemical - endogenous | non-mammalian |
| IFNA4 | cytokine | |
| JUNB | 1.227 | transcription regulator group |
| cytokine | group | |
| carrageenan | chemical drug | |
| DIO2 | -0.134 | enzyme |
| IGK | 3.578 | enzyme |
| glucocorticoid | chemical reagent | |
| budesonide | chemical drug | |
| TSC2 | 0.123 | other |
| HSL | complex | |
| APLN | 0.503 | other |
| DCN | 0.422 | other |
| TNFRSF11A | 0.505 | transmembrane receptor |
| galactosylceramide-alpha | chemical reagent | |
| SMPD1 | 0.103 | enzyme |
| PTP1E | 1.712 | phospholase |
| ninflutacin | chemical drug | |
| SP600125 | chemical drug | -0.152 |
| Insulin | group | -1.732 |
| progesterone | chemical - endogenous | mammalian |
| MAP2K7 | 0.831 | kinase |
| APOA1 | transporter | |
| MAP2K4 | -0.014 | kinase |
| Ro 25-6760 | chemical toxicant | |
| sargamostim | biologic drug | |
| cholinase | group | |
| CACTIN | 0.965 | other |
| ROBO3 | 0.191 | transmembrane receptor |
| G100H71 | 1.224 | other |
| SLCO1C3 | -0.456 | transporter |
| endothelin receptor | group | |
| ITPRB2 | -0.074 | other |
| LRG3 | 1.061 | other |
| ALX3 | -1.162 | transcription regulator |
| calhepstin L inhibitor | chemical drug | |
| TNIL | 0.429 | other |
| GALNS | 0.755 | enzyme |
| KCNBD3 | 0.034 | ion channel |
| PKA | 0.361 | other |
| UFD1 | 0.28 | peptidase |
| RGL2 | 0.523 | other |
| miR-384 | microRNA | |
| K-604 | chemical drug | |
| TAAT2 | 0.229 | transcription regulator |
| NILC4 | 0.195 | other |
| A4GALT | enzyme | |
| CSTB | 1.037 | peptidase |
| SCIN | other | |
| Compound | Type | Other | p-value | Modulation |
|---|--------------------------------|--------------------------------|---------|-------------|
| phenylacetic acid | chemical - endogenous mammalian | other | 0.0107 | GFAP |
| arzoxifene | chemical drug | | 0.0107 | IGF1 |
| nabumetone | chemical drug | | 0.0107 | NPPA |
| cromakalin | chemical drug | | 0.0107 | NPPA |
| sodium phosphate | chemical drug | | 0.0107 | NPPA |
| AC0033537.1 | other | | 0.0107 | CCL5 |
| succinylacetone | chemical - endogenous mammalian | other | 0.0107 | CYBB |
| CDP-choline | chemical - endogenous mammalian | other | 0.0107 | GFAP |
| tamoxifen | chemical drug | | 1.521 | ERBB4,IGF1,IRF1,SERPINA3 |
| DO3 | enzyme | | 0.0113 | HLA-A,IRF1,Ngn |
| PPP2CA | phosphatase | | 0.0113 | Cck1,IRF1 |
| PTGES | enzyme | | 0.0113 | CYBB,NPPA |
| anisomycin | chemical - endogenous non-mammalian | other | 0.0113 | CYBB,IRF1 |
| DNMT3A | enzyme | | 0.0114 | CYBB,IRF1,NRF8 |
| STUB1 | enzyme | | 0.0117 | CTSS,NPPA |
| Ap1 | complex | | 0.0118 | CCL5,GFAP,IGF1 |
| IRF1A | transcription regulator | 0.562 | 0.012 | CCL5,Cxcl9,ERBB4,IGF1,NPPA |
| DNMT3B | enzyme | | 0.012 | CCL5,HLA-DQB1,PTN |
| dopamine | chemical - endogenous mammalian | | 0.012 | CCL5,Cxcl9,PENK |
| CS11L1 | growth factor | | 0.0121 | IGF1,IRF1 |
| IL6ST | transmembrane receptor | | 0.0124 | GFAP,IRF1 |
| FOXP3 | transcription regulator | | 0.0127 | CCL5,GFAP,HLA-A |
| rotenone | chemical toxicant | | 0.0128 | CYBB,GFAP |
| MAPK8 | kinase | | 0.0129 | CCL5,CYBB,NPPA |
| S100A8 | other | | 0.0131 | C1QB,Cxcl8,IGF1 |
| IL19R1 | transmembrane receptor | -1.964 | 0.0133 | Bax2,GBP2,GFAP,IGF1,1LGAL3BP,PARP14 |
| CF102 | chemical drug | | 0.0133 | CCL5 |
| davusenlan | chemical drug | | 0.0133 | NPPA |
| teniposide | chemical drug | | 0.0133 | CCL5 |
| ILX-23-7553 | chemical drug | | 0.0133 | NPPA |
| RAN7R1 | complex | | 0.0133 | IRF1 |
| SMPD3 | enzyme | | 0.0133 | GF1 |
| IRF3-IRF7 | complex | | 0.0133 | CCL5 |
| propolis | biologic drug | | 0.0133 | CCL5 |
| Fk | other | | 0.0133 | NPPA |
| G6PC3 | phosphatase | | 0.0133 | CYBB |
| S100A1 | group | | 0.0133 | NPPA |
| MCOLN2 | ion channel | | 0.0133 | CCL5 |
| TAF9 | transcription regulator | | 0.0133 | IRF1 |
| Nc2 | complex | | 0.0133 | HLA-A |
| RAP1B | enzyme | | 0.0133 | CCL5 |
| KON12 | ion channel | | 0.0133 | KCNIP1 |
| NBR1 | other | | 0.0133 | CYBB |
| CTS5 | peptidase | | 0.0133 | NPPA |
| DGX | peptidase | | 0.0133 | GFAP |
| ADAM8 | peptidase | | 0.0133 | CCL5 |
| AQP3 | transporter | | 0.0133 | CCL5 |
| talazoparib | chemical drug | | 0.0133 | CCL5 |
| RIYANK | transcription regulator | | 0.0133 | HLA-A |
| Z-endoxifen | chemical - endogenous mammalian | other | 0.0133 | IGF1 |
|Idegakalin | chemical drug | | 0.0133 | GF1 |
| fluticasone | chemical drug | | 0.0133 | CCL5 |
| H3B-8810 | chemical drug | | 0.0133 | CCL5 |
| Chemical/Protein | Category | Description | Log2 Fold Change | Associated Genes |
|-----------------|----------|-------------|-----------------|------------------|
| Gabapentin | Chemical | Drug | 0.0133 | GFAP |
| Naloxone | Chemical | Drug | 0.0133 | PNK |
| Fenoldopam | Chemical | Drug | 0.0133 | CYBB |
| Nor-binaltorphimine | Chemical | Reagent | 0.0133 | CYBB |
| Celecoxib | Chemical | Drug | 0.0133 | GFAP |
| 5-Hydroxydecanoic acid | Chemical | -Endogenous mammalian | 0.0133 | NPPA |
| Halofuginol | Chemical | Reagent | 0.0133 | CCL5 |
| FLJ13191 | 0.185 | Transcription regulator | 0.0138 | CCL5, Cxcl9 |
| MRTFA | 0.542 | Transcription regulator | 0.0139 | CCL5, HLA-A, NPPA |
| Cytarabine | Chemical | Drug | 0.0140 | CCL5 |
| IRF4 | 0.803 | Cytoplasm | 0.0143 | CCL5, GFAP, IGF1 |
| Topotecan | Chemical | Drug | 0.0143 | CCL5, GFAP, IGF1 |
| 3,3'-Diindolylmethane | Chemical | Drug | 0.0144 | NLA-A, TAP1 |
| ANXA7 | 0.299 | Ion channel | 0.0148 | Cc9 |
| Folic acid | Chemical | Drug | 0.0148 | CCL5, CYBB |
| INHBA | 0.294 | Growth factor | 0.0151 | ERBB4, IGF1, IGF1 |
| USF2 | 0.293 | Transcription regulator | 0.0152 | B2M, LGALS3BP |
| PRKD1 | 0.377 | Kinase | 0.0152 | CCL5, Cc9 |
| CD28 | Transmembrane receptor | Activated | 0.0153 | B2M, HLA-DQB1, IGF1, IGF2, IGF3 |
| MAPK14 | 0.494 | Kinase | 0.0153 | CCL5, Cc9, NPPA |
| PDX1 | 0.054 | Transcription regulator | 0.0153 | ERBB4, FABP7, GFAP |
| SRF | 0.054 | Kinase | 0.0153 | CCL5, Cc9 |
| SHH | 0.437 | Peptidase | 0.0156 | CVA, ERBB4, IGF1 |
| SASH1 | -0.78 | Other | 0.0156 | IGF1 |
| RORA | -0.238 | Ligand-dependent nuclear receptor | 0.0159 | CCL5, Cc9, IGF1 |
| MCEB613 | 0.016 | Chemical reagent | 0.0165 | Cc9 |
| Pervanadate | 0.016 | Chemical reagent | 0.0164 | IGF1 |
| SHH1 | 0.054 | Other | 0.0166 | NPPA |
| F-Actin | 0.016 | Complex | 0.0166 | CTSS |
| 5R-Hydroxytriptolide | Chemical | Drug | 0.0166 | IGF1 |
| BCC1 | 0.016 | Other | 0.0166 | ERBB4 |
| PKCAP1 | 0.016 | Other | 0.0166 | IGF1 |
| Ampa Receptor | Complex | Protein complex | 0.0166 | ERBB4 |
| PRKACB | 0.143 | Kinase | 0.0166 | PENK |
| Msx3 | 0.932 | Peptidase | 0.0166 | IGF1 |
| ERAP1 | 1.747 | Phosphatase | 0.0166 | CCL5 |
| PTPN1 | 0.311 | Transcription regulator | 0.0166 | ERBB4, GFAP |
| BLC18A1 | 0.138 | Transporter | 0.0166 | CYBB |
| mir-320b (and other miRNAs w/ seed AAAGCUG) | Mature microRNA | 0.0166 | IGF1 |
| 190 nucleobase | Biologic drug | 0.0166 | CCL5 |
| MOV10L1 | 0.016 | Enzyme | 0.0166 | NPPA |
| TAF10 | 0.394 | Transcription regulator | 0.0166 | IGF1 |
| LRG1 | 0.927 | Other | 0.0166 | ERBB4 |
| RNF17 | 0.22 | Other | 0.0166 | SERPIN A3 |
| NOCT | 0.315 | Transcription regulator | 0.0166 | IGF1 |
| EPHA4 | 0.533 | Kinase | 0.0166 | IGF1 |
| SBB | 1.439 | Other | 0.0166 | PENK |
| Nru4r | 0.016 | G-protein coupled receptor | 0.0166 | IGF1 |
| Lasentib | 0.016 | Chemical drug | 0.0166 | CCL5 |
| ERC2 | 0.145 | Enzyme | 0.0166 | IGF1 |
| U 50488H | 0.016 | Chemical reagent | 0.0166 | CYBB |
| Icatibat | 0.016 | Chemical drug | 0.0166 | CYBB |
| Amlactin | 0.016 | Chemical drug | 0.0166 | PTN |
| BB-Cl-amidine | 0.016 | Chemical reagent | 0.0166 | IGF1 |
| Gene/Protein | Type | Z-score | p-value |
|----------------------|----------------------|---------|-----------|
| zimelidine | chemical drug | 0.0186 | SERPINA3 |
| lysophosphatidylcholine | chemical - other | 0.0186 | CCL5,EDN4 |
| IFI16 | transcription regulator | 2.645 | 0.0191 |
| CCL5 | cytokine | 4.542 | 0.0191 |
| PLX5E22 | chemical drug | 0.0191 | B2M,CCL5 |
| GATA6 | transcription regulator | 0.0191 | C3A/C4B,IRF8,NPPA |
| CHUK | kinase | 0.192 | 0.0196 |
| miR-16-5p (and other miRNAs with seed AGCAAGCA) | mature microRNA | 0.0196 | IG1,LMATOR5,NPPA |
| cisplatin | chemical drug | 1.747 | 0.0199 |
| Fos | group | 0.02 | IG1,NPPA,PCDH1,PTN |
| PPARβ | other | 0.02 | CCL5,IGF1 |
| FFAO3 | G-protein coupled receptor | 0.0205 | Cc9,GGBP2 |
| TGFA | growth factor | 0.0205 | CCL5,GFAP |
| C3 | peptidase | 0.0205 | CTD,CCL5 |
| PPP3CA | phosphatase | 0.0205 | GFAP,NPPA |
| epinephrine | chemical - endogenous mammalian | 0.0205 | NPPA,PTN |
| ANGPT2 | growth factor | 0.0206 | CCL5,CYBB,NPPA |
| metformin | chemical drug | 0.0206 | IGF1,PARP14 |
| E2F2 | transcription regulator | 0.0206 | CCL5,ERBB4,IGF1,PTN |
| UCA1 | other | 0.0213 | NPPA |
| cyanidin 3-O-glucoside | chemical - endogenous non-mammalian | 0.0213 | CCL5 |
| PPT1 | enzyme | 0.0213 | GFAP |
| ABCC1 | transporter | 0.0213 | CYBB |
| LITAF | transcription regulator | 0.0213 | CCL5 |
| U1 snRNP | complex | 0.0213 | CCL5 |
| CDSL | transmembrane receptor | 0.0213 | CCL5 |
| ERC4 | enzyme | 0.0213 | IGF1 |
| RLNT1 | other | 0.0213 | NPPA |
| miR-192-5p (and other miRNAs with seed UGACUCAU) | mature microRNA | 0.0213 | IGF1 |
| POU3F3 | transcription regulator | 0.182 | FABP7 |
| SCN1A | ion channel | 0.0213 | CYBB |
| SMN1/SMN2 | other | 0.677 | IGF1 |
| GRP1 | transcription regulator | 0.373 | IGF1 |
| HEYL | transcription regulator | 2.188 | NPPA |
| TPP1 | phosphatase | 0.015 | IGF1 |
| DSG2 | other | 2.627 | NPPA |
| MTPN | transcription regulator | 0.073 | NPPA |
| Rho1 | other | 0.013 | HLA-A |
| CAPN2 | peptidase | 0.013 | GFAP |
| NCR3 | transmembrane receptor | 0.013 | CCL5 |
| CCL-34 | chemical reagent | 0.013 | Cc9 |
| JUNB | transmembrane receptor | 0.013 | HLA-A |
| cariporide | chemical drug | 0.013 | NPPA |
| domoic acid | chemical toxicant | 0.013 | GFAP |
| ETV6-NTRK3 | fusion gene/product | 0.013 | IGF1 |
| epoxyeicosatrienoic acid analog B | chemical reagent | 0.013 | CYBB |
| epoxyeicosatrienoic acid analog A | chemical reagent | 0.013 | CYBB |
| tosyllysine chloromethyl ketone | chemical - protease inhibitor | 0.013 | IGF1 |
| USF1 | transcription regulator | 1.174 | B2M,CTSS |
| TRAF2 | enzyme | 2.953 | CCL5,MEG1 |
| romidepsin | biologic drug | 0.0214 | CCL5,Cc9 |
| pimpyrrolidoneuric acid | chemical drug | 0.0218 | C1QB,IGF1,TUBB2B |
| TFK | kinase | 0.0219 | CCL5,HLA-A |
| IFN1 | cytokine | 0.0224 | HLA-DQβ1,NPTX2 |
| MAPK3 | kinase | 0.0224 | HLA-DQβ1,NPTX2 |
| Chemical | Type | Regulation | Z-score |
|----------|------|------------|---------|
| Histamine | Chemical - endogenous mammalian | 0.0224 | CCL5, PENK |
| TGM2 | Enzyme | 0.0228 | CD74, PARP14, TAP1 |
| IRF5 | Transcription regulator | 0.0234 | CCL5, IFITM3 |
| NCOA3 | Transcription regulator | 0.0239 | IGFI, IRF1 |
| FGF19 | Growth factor | 0.0239 | HLA-DQB1, SERPINA3 |
| Haloperidol | Chemical drug | 0.0239 | GFAP, PENK |
| Ck2 | Complex | 0.0239 | CYBB |
| IRF-3 dimer | Complex | 0.0239 | CCL5 |
| BVRD-2A | Enzyme | 0.0239 | CCL5 |
| ZBD2 | Transcription regulator | 0.0239 | HLA-A |
| RUBCN | Other | 0.0239 | GBP2 |
| AIF4 | Transcription regulator | 0.0239 | WRAP58 |
| MARCHF2 | Enzyme | 0.0239 | CCL5 |
| Salmonella typhimurium lipopolysaccharide | Chemical - endogenous non-mammalian | 0.0239 | CCL5 |
| CD58P1 | Phosphatase | 0.0239 | NPPA |
| PHF6 | Transcription regulator | 0.0239 | IGFI |
| MHC CLASS I (family) | Group | 0.0239 | CCL5 |
| Farnitin | Complex | 0.0239 | CCL5 |
| Nicotin | Chemical reagent | 0.0239 | GFAP |
| GADD45G | Other | 0.0239 | NPTX2 |
| TRG | Other | 0.0239 | HLA-DQB1 |
| DUSP16 | Phosphatase | 0.0239 | IFI |
| TPM3 | Other | 0.0239 | IGFI |
| Cc6 | Cytokine | 0.0239 | CT5 |
| NB | Transporter | 0.0239 | NPPA |
| YB6X3 | Transcription regulator | 0.0239 | HLA-DQB1 |
| Benazepril | Chemical drug | 0.0239 | NPPA |
| ammonium trichloro(dioxoethylene O,O'-)tellurate | Chemical drug | 0.0239 | HLA-DQB1 |
| Brimonidine | Chemical drug | 0.0239 | GFAP |
| PD 168393 | Chemical drug | 0.0239 | CCL5 |
| IL14 | Chemical reagent | 0.0239 | HLA-A |
| 3-beta, 17-beta-androstenediol | Chemical - endogenous mammalian | 0.0239 | LYZ |
| TPT3 | Transcription regulator | 0.0239 | B2M, LYZ, SERPINA3, TAP1 |
| ERBB4 | Kinase | 0.0239 | ERBB4, SERPINA3 |
| Ascorbic acid | Chemical - endogenous mammalian | 0.0244 | IGFI, NPPA |
| SOC3 | Phosphatase | 0.0254 | IRF1, NPPA |
| RGS4 | Enzyme | 0.0259 | IGFI, NPPA |
| ATPI | Transcription regulator | 0.0259 | NPPA, PENK |
| To-901317 | Chemical reagent | 0.0261 | IFI, MPE1G1, SERPINA3 |
| CCL2 | Cytokine | 0.0264 | CCL5, IGFI |
| Trinitrobenzenesulfonic acid | Chemical reagent | 0.0264 | CCL5, Cxcl9 |
| Stat1-Stat2 | Complex | 0.0265 | IRF1 |
| RNASEH2B | Other | 0.0265 | CCL5 |
| PARP14 | Enzyme | 0.0265 | CCL5 |
| Rhesus theta-defensin 1 | Chemical - endogenous mammalian | 0.0265 | CCL5 |
| DAZ2 | Translation regulator | 0.0265 | IFITM3 |
| L2HGDH | Enzyme | 0.0265 | CYBB |
| PHLP2 | Enzyme | 0.0265 | NPPA |
| Necrostatin-1 | Chemical reagent | 0.0265 | GFAP |
| EEFA2 | Translation regulator | 0.0265 | CYBB |
| CD244 | Transmembrane receptor | 0.0265 | CCL5 |
| KCNN4 | Ion channel | 0.0265 | CCL5 |
| LGALS8 | Other | 0.0265 | CCL5 |
| HLA-DQB1 | Other | 0.0265 | HLA-DQA1 |
| Gene/Chemical | Expression Value | Function/Type | Expression Value | Associated Genes |
|--------------|-----------------|---------------|-----------------|------------------|
| SEMA4D | 1.399 | transmembrane receptor | 0.0265 | HLA-DQB1 |
| ITGA4 | 0.717 | transmembrane receptor | 0.0265 | HLA |
| PDK2 | 0.278 | kinase | 0.0265 | IRF8 |
| NCR1 | 0.451 | transmembrane receptor | 0.0265 | CCL5 |
| RNF41 | 0.275 | phosphatease | 0.0265 | IRF |
| RELN | -0.151 | peptidase | 0.0265 | FABP7 |
| CD200R1 | 0.075 | transmembrane receptor | 0.0265 | Cxcl9 |
| L1RB1 | 0.715 | other | 0.0265 | Cxcl9 |
| ICN1T1 | 0.392 | ion channel | 0.0265 | NPPA |
| CTTN | 0.152 | other | 0.0265 | CCL5 |
| TDGF4 | 0.225 | growth factor | 0.0265 | NPPA |
| clomipramine | 0.875 | chemical drug | 0.0265 | NPPA |
| IGBP1 | 0.875 | other | 0.0265 | NPPA |
| RELN | -0.225 | peptidase | 0.0265 | CCL5 |
| (5-(4-N-methyl-N2-pyridyl)amino)ethoxybenzyl thiazolidine-2,4-dione | 0.225 | chemical reagent | 0.0265 | CTSS |
| OGA | 0.027 | enzyme | -0.152 | C1QA,C1QB,FABP7,IGF1 |
| TRA4 | 0.153 | transcription regulator | 0.0265 | PENK,PTN |
| FOX2A2 | 0.374 | kinase | 0.0265 | CCL5,MPEG1 |
| methotrexate | 0.618 | chemical drug | 0.0265 | CIGF1,LYTZ,NPTX2 |
| EGF | 0.74 | growth factor | -0.548 | bias |
| YBX1 | 0.4 | transcription regulator | 0.0265 | CCL5,HLA-DQB1 |
| RHA | 0.225 | enzyme | 0.0265 | NPPA |
| N-acetyl-L-cysteine | 0.225 | chemical drug | 0.0265 | CCL5,HLA-A |
| ADIPQ2 | 0.029 | other | 0.0265 | CCL5,CYBB,NPPA |
| EIF2AK2 | 0.374 | kinase | 0.0265 | IRF1,LGAL53BP |
| CTSV | 0.153 | peptidase | 0.0265 | PENK |
| mGluR | 0.374 | group | 0.0265 | ERBB4 |
| apolipoprotein B | 0.374 | biologic drug | 0.0265 | CCL5 |
| APOL1 | 0.153 | transporter | 0.0265 | Cxcl9 |
| FBXO42 | 0.731 | other | 0.0265 | CCL5 |
| Y001 | 0.4 | enzyme | 0.0265 | CCL5 |
| IRX4 | 0.731 | transcription regulator | 0.0265 | NPPA |
| DHTK1 | 0.731 | enzyme | 0.0265 | NPPA |
| HTR2B | 0.731 | G-protein coupled receptor | 0.0265 | NPPA |
| PRPF19 | 0.517 | enzyme | 0.0265 | NPPA |
| SARM1 | 0.923 | transmembrane receptor | 0.0265 | CCL5 |
| Taq18 | 0.923 | other | 0.0265 | CCL5 |
| G0s1 | 0.923 | group | 0.0265 | B2M |
| astroglia | 0.923 | chemical - endogenous non-mammalian | 0.0265 | GFAP |
| BM66-7548057 | 0.923 | chemical drug | 0.0265 | ERBB4 |
| TAF5 | 0.852 | transcription regulator | 0.0265 | IGF1 |
| ITL1RD | 1.149 | other | 0.0265 | Cxcl9 |
| MED14 | 0.331 | transcription regulator | 0.0265 | IRF8 |
| mIR-193a-3p (and other mature miRNAs w/seed ACUGGCC) | 0.331 | mature microRNA | 0.0265 | ERBB4 |
| m1520 | 0.331 | microRNA | 0.0265 | IGF1 |
| docosahexaenoic acid | 0.331 | chemical reagent | 0.0265 | CCL5 |
| PLCB1 | 0.259 | enzyme | 0.0265 | NPPA |
| WWP2 | 0.136 | enzyme | 0.0265 | CCL5 |
| MMP7 | 0.136 | peptidase | 0.0265 | ERBB4 |
| LB-205 | 0.136 | chemical reagent | 0.0265 | GFAP |
| ISG15 | 1.698 | other | 0.0265 | IFTM3 |
| Gene | log2FC | Description | log10(p) | Genes |
|-----------|--------|----------------------|----------|---------------------------|
| TNF3 | -0.008 | transporter | 0.0291 | CCL5 |
| AFF1 | -0.101 | transcription regulator | 0.0291 | IGF1 |
| CAMK2G | 0.287 | kinase | 0.0291 | NPPA |
| OSTM1 | -0.379 | other | 0.0291 | IRF6 |
| MYZAP | 0.076 | other | 0.0291 | NPPA |
| CYBA | 0.416 | enzyme | 0.0291 | CYBB |
| Ifn (includes others) | cytokine | | 0.0291 | IGF1 |
| emactuzumab | biologic drug | 0.0291 | PTN |
| sesame oil | chemical reagent | 0.0291 | GFAP |
| aldosterone | chemical drug | | 0.0291 | CCL5 |
| cidofovir | chemical drug | 0.0291 | NPPA |
| SD6 | -0.379 | chemical reagent | 0.0291 | CCL5 |
| 2,2-bis(4-hydroxyphenyl)-1,1,1-trichloroethane | chemical - endogenous mammalian | 0.0291 | IGF1 |
| terbutaline | chemical drug | 0.0291 | GFAP |
| phoslopholid | chemical - endogenous mammalian | 0.0291 | CCL5 |
| CA074-methyl ester | chemical reagent | 0.0291 | GFAP |
| theophylline | chemical drug | 0.0291 | GFAP |
| progesterone | chemical drug | 0.0291 | GFAP |
| allopregnanolone | chemical - endogenous mammalian | 0.0291 | PENK |
| testolone | chemical drug | 0.0291 | IGF1 |
| erlotinib | chemical drug | 0.0307 | CCL5,CYBB |
| EP300 | 0.081 | transcription regulator | 0.0312 | IGF1 |
| THPO | 0.263 | cytokine | 0.0313 | IRF1,TAP1 |
| CEBP8 | 0.263 | transcription regulator | 0.0313 | GFAP,IGF1 |
| NS399 | 0.263 | chemical reagent | 0.0313 | CCL5,IGF1 |
| estrogen receptor | group | 0.0314 | ERBB1,IGF1,PCDH1 |
| PPARC1A | 0.088 | transcription regulator | 0.106 | IGF1,NPPA,PTN,SERPINA3 |
| L-Lysine | chemical - endogenous mammalian | 0.0317 | IGF1 |
| chlorcyclizine | chemical drug | 0.0317 | SERPINA3 |
| ATP6AP2 | -0.004 | transporter | 0.0317 | CYBB |
| SLC7A2 | -0.001 | transporter | 0.0317 | Cx9 |
| BV6 | -0.001 | chemical reagent | 0.0317 | CCL5 |
| PTGDR2 | 0.081 | G-protein coupled receptor | 0.0317 | CCL5 |
| DEPTOR | -0.012 | other | 0.0317 | CCL5 |
| AFAP1-AS1 | -0.012 | other | 0.0317 | RAC2 |
| PEL1 | 0.268 | enzyme | 0.0317 | CCL5 |
| STAR | 0.211 | transporter | 0.0317 | CCL5 |
| CST3 | 0.431 | other | 0.0317 | IRF6 |
| AVPR1A | -3.835 | G-protein coupled receptor | 0.0317 | NPPA |
| CAV3 | -0.106 | enzyme | 0.0317 | NPPA |
| CCR3 | -0.106 | G-protein coupled receptor | 0.0317 | NPPA |
| PIAS2 | 0.277 | transcription regulator | 0.0317 | IGF1 |
| RB105C1 | -0.002 | other | 0.0317 | CCL5 |
| DORZ | 0.344 | kinase | 0.0317 | HLA-A,a |
| NPY2R | 0.143 | kinase | 0.0317 | NPPA |
| ARF6 | 0.085 | transporter | 0.0317 | CCL5 |
| DAT5 | 0.085 | transporter | 0.0317 | NPPA |
| MAS1 | 0.135 | G-protein coupled receptor | 0.0317 | CYBB |
| KASGRF1 | 0.135 | other | 0.0317 | IGF1 |
| NGFI | 0.575 | other | 0.0317 | PENK |
| **riluzole** | chemical drug | 0.0317 | **GFAP** |
| **threonine** | chemical drug | 0.0317 | **GF1** |
| **Mt** | group | 0.0317 | **GFAP** |
| **KITLG** | -0.759 | growth factor | 0.0321 | **B2M**, **GFAP**, **NPPA** |
| **primac acid** | chemical toxicant | 0.0321 | **CCL5**, **HLA-DQA1**, **IRITM3**, **IRIF8** |
| **GATA4** | transcription regulator | 0.0324 | **IRF8**, **NPPA**, **SERPINA3** |
| **cyclosporin A** | biologic drug | 0.152 | 0.0328 | **CA4/C4B**, **CCL5**, **GFAP**, **NPPA** |
| **LMNA** | 0.406 | other | 0.0333 | **IRF1**, **IRIF8**, **NPPA** |
| **Mapk** | group | 0.0341 | **CYBB**, **IGF1** |
| **MYF6** | transcription regulator | 0.0341 | **Cxcl9**, **IGF1** |
| **neomycin** | chemical drug | 0.0343 | **CCL5** |
| **perhexiline** | chemical drug | 0.0343 | **SERPINA3** |
| **ISGF3** | complex | 0.0343 | **IRF1** |
| **TRIM18** | enzyme | 0.0343 | **CCL5** |
| **harmine** | chemical - endogenous non-mammalian | 0.0343 | **NPPA** |
| **ANG** | 1.432 | enzyme | 0.0343 | **CCL5** |
| **PPP3CB** | 0.226 | phosphatase | 0.0343 | **CYBB** |
| **CCL21** | cytokine | 0.0343 | **Cxcl9** |
| **GNB3** | enzyme | 0.0343 | **CX3G13** |
| **PDE4B** | 0.022 | enzyme | 0.0343 | **CCL5** |
| **BGLAP** | other | 0.0343 | **CD74** |
| **GHSR** | G-protein coupled receptor | 0.0343 | **IGF1** |
| **PLAZOG2E** | enzyme | 0.0343 | **CCL5** |
| **EDNRB** | 0.116 | G-protein coupled receptor | 0.0343 | **NPPA** |
| **ACO1** | enzyme | 0.0343 | **GFAP** |
| **MA-602** | chemical reagent | 0.0343 | **IGF1** |
| **6-aminopyrazolopyrimidine derivative compound II** | chemical drug | 0.0343 | **FITM3** |
| **RV 838** | chemical reagent | 0.0343 | **GFAP** |
| **hormone** | chemical drug | 0.0343 | **IGF1** |
| **[D-Ala2,N-Me-Phe4,Gly5-ol]-Enkephalin** | chemical reagent | 0.0343 | **CCL5**, **CYBB**, **IGF1** |
| **6-aminopyrazolopyrimidine derivative compound II** | chemical drug | 0.0353 | **C4A/C4B**, **CYBB** |
| **peptidoglycan** | chemical - endogenous non-mammalian | 0.0358 | **HLA-A**, **MPEG1** |
| **ciprofloxacin** | chemical drug | 0.0358 | **HG1-A**, **MPEG1** |
| **cyclic AMP** | chemical - endogenous mammalian | 0.036 | **IGF1**, **LGALS3BP**, **PENK** |
| **TNFSF11** | cytokine | 0.036 | **CCL5**, **CYBB**, **GFAP**, **SERPINA3** |
| **CDK11A** | 0.219 | kinase | 0.0363 | **Cxcl9**, **FITM3**, **LGALS3BP** |
| **NPEUL2** | 0.67 | transcription regulator | 0.0364 | **CL5**, **CYBB**, **GFAP**, **SERPINA3** |
| **mexinidine** | chemical drug | 0.0369 | **NPPA** |
| **Ginkgo biloba** | chemical drug | 0.0369 | **CCL5** |
| **4-nonylphenol** | chemical toxicant | 0.0369 | **IGF1** |
| **[N2-(gamma-D-glutamyl)-meso-2,2'-diaminopimelic acid]** | chemical reagent | 0.0369 | **CCL5** |
| **SCAVENGER receptor CLASS A** | group | 0.0369 | **CCL5** |
| **DNAJC3** | 0.149 | other | 0.0369 | **Ngn** |
| **mir-302** | microRNA | 0.0369 | **CCL5** |
| **PLCE1** | enzyme | 0.0369 | **GFAP** |
| **PTP8E** | phosphatase | 0.0369 | **Cxcl9** |
| **PIAS3** | 0.289 | transcription regulator | 0.0369 | **SERPINA3** |
| **TRAF4** | -0.408 | other | 0.0369 | **CCL5** |
| **CSF3R** | 2.887 | transmembrane receptor | 0.0369 | **Lyz** |
| **ZBTB32** | transcription regulator | 0.0369 | **HLA-DQ8** |
| **RALA** | enzyme | 0.0369 | **NPPA** |
| Gene/Protein | Type | Expression | Change | Functions/Properties |
|-------------|-----------------------|------------|--------|--|
| ADAM15 | peptidase | -0.139 | | CCL5 |
| SOCS2 | other | 0.0369 | | IGF1 |
| picrox chloride | chemical toxicant | 0.0369 | | HLA-DQA1, IGF1, NRPA3 |
| metoprolol | chemical drug | 0.037 | | GFAP, IGF1, IGF1, NPPA |
| streptozocin | chemical drug | 0.037 | | GFAP, IGF1, IGF1, NPPA, NRPA3 |
| GNA15 | enzyme | 0.037 | | GP2, SERPINA3 |
| pseudoxyalumin | chemical drug | 0.037 | | IGF1, NPPA |
| LDL | complex | 0.0373 | | CCL5, CYBB, IGF1 |
| hyaluronic acid | chemical - endogenous mammalian | 0.0376 | | CCL5, CyIβ |
| 5-N-ethylcarboxyamido adenosine | chemical reagent | 0.0388 | | HLA-DQA1, HLA-DQB1 |
| L-glutamic acid | chemical - endogenous mammalian | 0.0388 | | B2M, TAP1 |
| arsenite | chemical toxicant | 0.0388 | | IGF1, IRF1 |
| 5-hydroxytryptamine | chemical - endogenous mammalian | 0.0394 | | CYBB, IGF1 |
| estrone | chemical - endogenous mammalian | 0.0395 | | IGF1 |
| TIFA | other | 0.0395 | | CCL5 |
| IFNL2 | other | 0.0395 | | CyIβ |
| TLR5 | other | 0.0395 | | B2M |
| TAP1 | ion channel | 0.0395 | | HLA-A |
| TLR5 | other | 0.0395 | | IFN |
| PTBP1 | enzyme | 0.0395 | | SERPINA3 |
| SPTLC2 | enzyme | 0.0395 | | NPPA |
| BTK | transcription regulator | 0.0395 | | NPPA |
| MGEA8 | other | 0.0395 | | NPPA |
| CAPN4 | peptidase | 0.0395 | | CCL5 |
| DRA5A3 | other | 0.0395 | | IGF1 |
| PRRA | other | 0.0395 | | IRF1 |
| CCL19 | cytokine | 0.0395 | | CyIβ |
| HRNRPD | transcription regulator | 0.0395 | | PENK |
| Pigs2d2 | other | 0.0395 | | CCL5 |
| RGS1 | enzyme | 0.0395 | | CyIβ |
| SIRPA | phosphatase | 0.0395 | | CCL5 |
| intralipid | chemical drug | 0.0395 | | PENK |
| FITC | chemical reagent | 0.0395 | | CyIβ |
| hydroxylflumide | chemical drug | 0.0395 | | IGF1 |
| N-ethyl-N-nitosourea | chemical toxicant | 0.0395 | | CyIβ |
| zinc protoporphyrin IX | chemical - endogenous mammalian | 0.0395 | | IGF1 |
| NUP98-KDMSA | fusion gene/product | 0.0395 | | LYZ |
| NUP98-NSD1 | fusion gene/product | 0.0395 | | LYZ |
| abulmin | chemical drug | 0.0395 | | CCL5 |
| NAD+ | chemical - endogenous mammalian | 0.0395 | | NPPA |
| aixistatin | chemical - protease inhibitor | 0.0395 | | CD74 |
| cyprotonene acetate | chemical drug | 0.0395 | | IGF1 |
| Histone H3 | group | 0.0398 | | B2M, CCL5, CYBB, IGF1 |
| diphtheria toxin | chemical - endogenous non-mammalian | 0.0401 | | C1QA, PENK |
| THR8 | ligand-dependent nuclear receptor | 0.0404 | | LY2, NPPA, PENK |
| melatonin | chemical - endogenous mammalian | 0.0407 | | GFAP, IGF1 |
| STAT5B | transcription regulator | 0.0408 | | IGF1, IRF1, NPPA |
| LDB1 | transcription regulator | 0.0419 | | IGF1, TAP1, UNC93B1 |
| PTEN | phosphatase | 0.0419 | | CCL5, IGF1, NPPA, PTN, UN493B1 |
| prostaglandin A2 | chemical - endogenous non-mammalian | 0.0421 | | IGF1 |
| 2-chloroadenosine | chemical reagent | 0.0421 | | NPPA |
| salbutrimil | chemical reagent | 0.0421 | | NPPA |
| salbutrimil | chemical reagent | 0.0421 | | CCL5 |
| Term | Type | Value | Associated Terms |
|----------------------|-----------------------|--------|-----------------------------------|
| DPH5 | enzyme | 0.157 | IGF1 |
| Retna | other | 0.0421 | NPPA |
| CABIN1 | other | 0.0421 | NPPA |
| NTF4 | growth factor | 0.477 | PENK |
| PURA | transcription regulator| -0.11 | GFAP |
| SLC18A3 | transporter | 0.477 | PENK |
| POU3F2 | transcription regulator| -0.287 | FBAP2 |
| LY96 | transmembrane receptor| 1.927 | CCL5 |
| DPY14 | transcription regulator| -1.135 | NPPA |
| MRT101 | group | 0.0421 | IGF1 |
| IGHE | other | 0.0421 | CCL5 |
| CSK | kinase | 0.0421 | PENK |
| GFBP4 | other | 0.0421 | IGF1 |
| TNGFIP2 | other | 0.0421 | IGF1 |
| IFT57 | other | 0.0421 | PENK |
| TNFRF12A | transmembrane receptor| 0.0285 | CCL5 |
| CXCL2 | cytokine | 1.487 | NPPA |
| BGL10 | transcription regulator| -0.129 | CCL5 |
| CAMK2D | kinase | 0.013 | NPPA |
| DMH1 | chemical reagent | 0.0421 | CCL5 |
| aroclor 1254 | chemical toxicant | 0.0421 | Nrgn |
| tranylcypromine | chemical drug | 0.0421 | CCL5 |
| glyburide | chemical drug | 0.0421 | NPPA |
| LXN2 | transcription regulator| 0.206 | NCL1,TAP1,UNC9381 |
| STAT5A | transcription regulator| 2.503 | IGF1,IRF1,SERPINA3 |
| FGF2 | growth factor | 0.0427 | GFAP,IGF1,NPPA,PENK |
| staurosporine | chemical drug | 0.0422 | IGF1,SERPINA3,PENK |
| interferon beta-1a | biologic drug | 0.0438 | HLA-DRB5,IRF1 |
| E2F | group | 0.0444 | IGF1,NPPA |
| deoxy corticosterone | chemical endogenous mammalian | 0.0447 | CYBB |
| picropodophyllin | chemical drug | 0.0447 | GFAP |
| triclosan | chemical drug | 0.0447 | CYBB |
| VDR | other | 0.0447 | CCL5 |
| FZD9 | G-protein coupled receptor | 1.961 | CCL5 |
| GSDE1 | enzyme | 0.0447 | FABP2 |
| IL17F oligomer | complex | 0.0447 | CCL5 |
| MYT1 | transcription regulator| 0.94 | Bcl2 |
| ARG1 | enzyme | 0.0447 | IGF1 |
| NRP1 | transmembrane receptor| -0.45 | HLA-DRB5,CCL5 |
| DDX3X | enzyme | 0.033 | CCL5 |
| NBEAL2 | other | 0.0447 | IGF1 |
| TOT1A | enzyme | 0.0447 | Nrgn |
| S1PR3 | G-protein coupled receptor | 0.696 | IGF1 |
| IRF2 | other | 0.0447 | CCL5 |
| premarin | chemical drug | 0.0447 | IGF1 |
| 7-nitroindazole | chemical reagent | 0.0447 | GFAP |
| phenoxin | chemical drug | 0.0447 | CCL5 |
| cemazolin | chemical drug | 0.0447 | CCL5 |
| STAT3s | group | 0.0451 | IGF1,IRF1 |
| ILPE | enzyme | 0.0451 | CD74,HLA-DOA1 |
| Cs | cytokine | 0.0451 | CCL5,CYBB |
| 8-bromo-cAMP | chemical reagent | 0.469 | bias |
| HMOX1 | enzyme | 0.0454 | GFAP,IGF1,NPPA,RAG2 |
| PI3K (complex) | complex | 0.0463 | CYBB,IGF1,NPPA |
| AKT1 | kinase | 0.0467 | CCL5,CD74,NPPA |
| mw-155 | microRNA | 0.047 | CCL5,IRF2 |
| SB-431542 | chemical reagent | 0.047 | GFAP,IGF1 |
| N(R)-3-kohobilinyl)-S-N-methylcarboxamidoadenosine | chemical drug | 0.0472 | NPPA |
| alpha-amanitin | chemical toxicant | 0.0472 | GFAP |
| Ren2 | peptidase | 0.0472 | CYBB |
| Gene | Function | Expression Value | Gene | Function | Expression Value |
|------|----------|------------------|------|----------|------------------|
| c-Src | group | 0.0472 | GFAP | | |
| NMDA Receptor | complex | 0.0472 | PENK | | |
| LRBA | other | 0.157 | CCL5 | | |
| ghrelin | biologic drug | 0.0472 | IGF1 | | |
| GRK2 | kinase | 0.008 | NPPA | | |
| Sl100b | other | -0.631 | GFAP | | |
| TAF1 | transcription regulator | 0.328 | IGF1 | | |
| mir-322 | microRNA | 0.0472 | NPPA | | |
| mir-208 | microRNA | 0.0472 | NPPA | | |
| SLC6A3 | transporter | 0.726 | GFAP | | |
| CD46 | transmembrane receptor | 1.487 | LAMTOR5 | | |
| PTGFR | G-protein coupled receptor | 2.131 | NPPA | | |
| CXCL3 | cytokine | 0.0472 | CCL5 | | |
| PDK4 | kinase | 0.0472 | IGF8 | | |
| GAB1 | other | 0.592 | CCL5 | | |
| PCSK1 | peptidase | -0.584 | IGF1 | | |
| pimozide | chemical drug | 0.0472 | IGF8 | | |
| quinpirole | chemical reagent | 0.0472 | NPPA | | |
| piperine | chemical drug | 0.0472 | IGF1 | | |
| iloprost | chemical drug | 0.0472 | CCL5 | | |
| NR5A2 | ligand-dependent nuclear receptor | 0.381 | C1QB,Cxcl8 | | |
| RB1 | | 0.049 | CCL5,Cxcl8,IFITM3,IGF1 | | |
| Rp-cAMPS | chemical - kinase inhibitor | 0.0493 | NPPA | | |
| RHOJ | enzyme | 0.302 | PTN | | |
| CBX7 | other | 0.713 | CTS5 | | |
| XRC6 | enzyme | 0.27 | CCL5 | | |
| PTPN2 | phosphatase | 0.02 | Cxcl9 | | |
| STAT5 inhibitor V1 | chemical reagent | 0.0498 | NPPA | | |
| ITGB4 | transmembrane receptor | 0.826 | CCL5 | | |
| S1PR2 | G-protein coupled receptor | 1.921 | CCL5 | | |
| AICDA | enzyme | 0.0498 | CD74 | | |
| KCNIP3 | transcription regulator | 0.105 | GFAP | | |
| PAEP | other | 0.0498 | CCL5 | | |
| EM2 | other | 1.158 | IGF1 | | |
| NRTN | growth factor | -1.111 | PENK | | |
| KLF13 | transcription regulator | 0.443 | CCL5 | | |
| CEP-1347 | chemical drug | 0.0498 | CCL5 | | |
| thioridazine | chemical drug | 0.0498 | SERPINA3 | | |

© 2000-2021 QIAGEN. All rights reserved.