The ergodicity bias in the observed galaxy distribution

Jun Pan1, Pengjie Zhang2
1The Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008, China
2Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai, 200030, China
E-mail: jpan@pmo.ac.cn

Abstract. The spatial distribution of galaxies we observed is subject to the given condition that we, human beings are sitting right in a galaxy – the Milky Way. Thus the ergodicity assumption is questionable in interpretation of the observed galaxy distribution. The resultant difference between observed statistics (volume average) and the true cosmic value (ensemble average) is termed as the ergodicity bias. We perform explicit numerical investigation of the effect for a set of galaxy survey depths and near-end distance cuts. It is found that the ergodicity bias in observed two- and three-point correlation functions in most cases is insignificant for modern analysis of samples from galaxy surveys and thus close a loophole in precision cosmology. However, it may become non-negligible in certain circumstances, such as those applications involving three-point correlation function at large scales of local galaxy samples. Thus one is reminded to take extra care in galaxy sample construction and interpretation of the statistics of the sample, especially when the characteristic redshift is low.

1. Introduction

One key support to the Cosmological Principle is the observed near-isotropy of the cosmic microwave background radiation and the angular distribution of galaxies. But isotropy alone does not prove homogeneity, the crucial link from isotropy to homogeneity is the Copernican Principle, which asserts that we are not privileged observer sitting in a special place in the Universe.

Then there is the ergodicity assumption which states that by averaging over sufficiently large volume the measured statistics (volume average) is equivalent to the statistics on ensemble average. It is with the Cosmological Principle and the ergodicity assumption that we believe for any galaxy survey, as long as its effective volume is sufficiently large so that the cosmic variance can be ignored, the resulted sample is a fair representation of the Universe \cite{1, 2, 3}.

It is true that there are no proper reasons to resurge the specialty of human beings in the modern cosmology, although there are works claiming we are in the center of a giant local void (e.g. \cite{4}). Nevertheless, strictly speaking, the validity of the ergodicity
The ergodicity bias still requires averaging over the observer positions to avoid possible selection bias. Unfortunately, in reality, we are only able to observe the galaxy distribution from the Milky Way. We are not statistically different to those observers in other galaxies than the Milky Way, but we are different to those observers not residing in any galaxy. The distribution of galaxies we observed shall be interpreted as the distribution of neighbors to us. This point is a mathematical one rather than philosophy. Namely, we have to evoke the conditional statistics given then already existence of the Milky Way in which we live to interpret the observed galaxy distribution, instead of the unconditional ones in compliance with the Copernican principle and the ergodicity assumption.

For this reason, we call the difference between the volume averaged galaxy distribution observed by us and the ensemble average as the ergodicity bias. This is a previously unknown loophole in precision cosmology and galaxy statistics. The statistical tools to deal with it turns out to be the conditional statistics, which are actually all there in the classical textbook of [1]. We will see in the following sections that the change to the way of thinking brings interesting conclusions about the measured galaxy number density, two-point correlation function (2PCF) and the three-point correlation function (3PCF).

The idea is not completely new, concern about the fairness of sample is repeatedly expressed in the book of [1], in which there is the clear recognition that the accidental perfect galaxy number counts Hubble [5] achieved is partly resulted from “substantial excess of bright galaxies due to the local concentration in and around the Virgo cluster” (p. 5 of [1]). But to our knowledge, the paper presented here is the first to explicitly address and numerically evaluate the ergodicity bias. And we do find that the ergodicity bias is negligible in most cases and thus close a loophole in modern cosmology and galaxy statistics. However, in some cases especially when the characteristic redshift is low, one may need to take extra care of this ergodicity bias.

2. Distribution of galaxies as we observed

2.1. Number density

To see how it comes, first let us check the spatial number density of galaxies. Let $n_g(r)$ denotes the local number density of galaxies at position r, then there are two averages: the ensemble average $\langle n_g(r) \rangle_e$ and the spatial average $\langle n_g(r) \rangle_R$ over sample space R.

By the Cosmological Principle the ensemble average $\langle n_g(r) \rangle_e = n_0$ is a constant everywhere, while the spatial average

$$\hat{n}_0 = \langle n_g(r) \rangle_R = \frac{\int_R n_g(r)dr}{\int_R dt}$$

is not, may depend on the position and the shape of the sample. The ergodicity assumption then just makes the two equal if the sample space R is large enough to suppress cosmic variance, no matter the big volume is achieved by depth increment or sky coverage enlargement.
But a fact is that as we are already in a galaxy, the isotropic radial number density of objects at distance \(r \) to us is a conditional number density and is expected to be

\[
\bar{n}_g(r) = n_0 \left[1 + \xi_{Gg}(r) \right],
\]

where \(\xi_{Gg} \) is the two-point cross correlation function between the Galaxy and sample galaxies. Then the measured mean number density for the sample defined by distance limit \([r_{\text{min}}, r_{\text{max}}]\) and sky coverage of \(4\pi f\) steradians is

\[
\hat{n}_0 = \langle n_g(r) \rangle_R = n_0 \frac{4\pi f \int_{r_{\text{min}}}^{r_{\text{max}}} \left[1 + \xi_{Gg}(r) \right] r^2 dr}{4\pi f (r_{\text{max}}^3 - r_{\text{min}}^3)/3}.
\]

It is very clear that this introduces a systematic bias ascribed to the long range correlation between the Galaxy with other galaxies, simply improving the sky coverage can not alleviate the bias.

The integration \(\int_{r_{\text{min}}}^{r_{\text{max}}} \xi_{Gg} r^2 dr \) in generally is not zero except for \(r_{\text{min}} = 0, r_{\text{max}} = \infty \) or well designed pair of distance cuts to force a zero provided that the \(\xi_{Gg} \) is known already at any desired distance in advance. However it is impossible to push \(r_{\text{max}} \) to infinity or always have the luck to meet with the right pair of distance cuts. The point is that no matter how deep or large the sample could be, there is the general non-zero systematics of \(\hat{n}_0 - n_0 \) regardless how small it is, our spatially averaged mean number density does not equal to the ensemble average, though asymptotically approaches, i.e. there is the ergodicity bias.

As stated in Eq. 2 the modulation to the local galaxy number density depends on \(\xi_{Gg} \), which calls for caution in taking local galaxy samples for distance-number counts related statistics, e.g. the luminosity function: redshift gradient resulted from \(\bar{n}_g \) is in fact incorporated into the evolution of the luminosity function along redshift unnoticed during estimation.

For type classification based statistical functions, there is an additional complication that the \(\xi_{Gg} \) for one class of galaxies might be very different with that for another class. Furthermore it has been detected that color of galaxies, e.g. \(g-r \), is strongly correlated even galaxies are at separation up to scales as large as \(\sim 20h^{-1}\)Mpc [6], it is highly possible that samples of local galaxies with \(z < \sim 0.007 \) is biased more or less in color.

2.2. Two-point correlation function

For an observer randomly placed in the Universe, the probability of finding a pair of galaxies in two volume elements at positions \(r_1 \) and \(r_2 \) on ensemble average is related to the two-point correlation function (2PCF) through

\[
DP_2 \propto [1 + \xi_g(r_{12})] d\mathbf{r}_1 d\mathbf{r}_2,
\]

with \(r_{12} = |\mathbf{r}_1 - \mathbf{r}_2| \). It is this \(\xi_g \) function that we aim at measuring, and shall be equal to the estimated \(\hat{\xi}_g \) which is defined through our observed possibility of finding pair of galaxies

\[
DP_2^{(O)} \propto [1 + \hat{\xi}_g(r_1, r_2)] d\mathbf{r}_1 d\mathbf{r}_2.
\]
The ergodicity bias

Figure 1. Ergodicity biases in 2/3PCFs of samples with different distance cuts. Those almost horizontal lines are $\Delta \xi$ and $\Delta \zeta$ given by Eq. 11 and Eq. 15 respectively provided that $b_{Gg} = 1$, to the left ends of which are pairs of numbers labeling distance cuts $(r_{\text{min}}, r_{\text{max}})$ of hypothetical samples. The largest scale at which estimation of 2/3PCF is robust is chosen to be $(r_{\text{max}} - r_{\text{min}})/2$. Dashed lines refer to negative value. Left panel is of 2PCF while the right panel displays the case of the 3P CF of equilateral configuration $\zeta(r_{12} = r_{23} = r_{31} = r)$. The top solid curve in the left plot is the linear 2PCF at $z = 0$ derived from the power spectrum provided by CMBFAST [7] with parameters $\Omega_m = 0.27, \Omega_b = 0.046, \Omega_\Lambda = 0.73, \sigma_8 = 0.9, n = 1$, and the ζ in the right plot is the prediction of the Eulerian perturbation theory at tree-level [8]. The dotted lines annotated with “Zwicky” approximates the Zwicky catalogue which characteristic depth is $47.2h^{-1}\text{Mpc}$, while dotted lines coincident with lines of $(30, 180)$ but marked with “S-W” mimic the Shane-Wirtanen catalogue of characteristic depth $209h^{-1}\text{Mpc}$ [9], note that the two dotted lines in the right panel are actually $-\Delta \zeta$.

However, since we are the observer not randomly located but in a galaxy as an object in the Universe, the observed probability of finding a pair of objects is in fact conditional to the object at origin point and shall be a three-points problem (see p. 173 of [1]),

$$dP_2^{(O)} \propto [1 + \xi_G(r_1) + \xi_G(r_2) + \xi_g(r_{12}) + \zeta_{Ggg}(r_1, r_2, r_{12})]dr_1dr_2$$

(6)

in which ζ_{Ggg} is the three-point cross correlation function. The 2PCF we observed before averaging over \mathcal{R} from galaxy sample evidently in principle is not the one in Eq. 4 anymore but

$$\hat{\xi}_g(r_1, r_2) = \xi_g(r_{12}) + \xi_G(r_1) + \xi_G(r_2) + \zeta_{Ggg}(r_1, r_2, r_{12})$$

(7)

which can only be a good approximation to the targeted ξ_g when $\xi_G(r_1) + \xi_G(r_2) + \zeta_{Ggg}(r_1, r_2, r_{12}) \ll \xi_g(r_{12})$. This, in together with the fact that ξ_G decreases with increasing distance and keeps positive before zero-crossing, immediately lets an amusing conclusion that galaxies close to us, on average, are clustered more strongly than distant galaxies even if there are no evolutions resulted from gravitation force and galaxy bias function.
The ergodicity bias

The measured 2PCF is actually averaged over the sample space \(\mathcal{R} \)
\[
\hat{\xi}_g(r_{12}) = \langle \hat{\xi}(\mathbf{r}_1, \mathbf{r}_2) \rangle_\mathcal{R} = \frac{\int_\mathcal{R} \int_\mathcal{R} \hat{\xi}_g(\mathbf{r}_1, \mathbf{r}_2) \delta_D(|\mathbf{r}_1 - \mathbf{r}_2| - r_{12}) d\mathbf{r}_1 d\mathbf{r}_2}{\int_\mathcal{R} \int_\mathcal{R} \delta_D(|\mathbf{r}_1 - \mathbf{r}_2| - r_{12}) d\mathbf{r}_1 d\mathbf{r}_2 },
\] (8)
where \(\delta_D \) is the Dirac delta function. It is difficult to provide exact figures about the errors by Eq. 8 before we acquire knowledge of the cross-correlation function at two- and three-point level between the Galaxy and those observational selected sample galaxies.

In practice, galaxy samples’ near-end distance limits are usually greater than \(\sim 10h^{-1}\) Mpc, the regime in consideration is fairly linear, we can comfortably assume that the bias of the Galaxy-galaxy cross-correlation functions to the dark matter correlation functions is scale independent and linear, so that
\[
\xi_{Gg}(r_{12}) \approx b_{Gg}^2 \xi(r_{12}), \quad \xi_g(r_{12}) = b_g^2 \xi(r_{12}), \quad \zeta_{Gg} \approx b_{Gg}^2 b_g^2 \zeta
\] (9)
with \(b_g \) being the bias of the sample galaxies to the dark matter and \(b_{Gg} \) being the bias of the Galaxy-galaxy correlation to the 2PCF of dark matter. In the weakly nonlinear regime \(\zeta \sim \xi^2 \) while \(\xi < 1 \) and \(b \sim 1 - 3 \) (e.g. [10] [11] [12] [13]), the 3PCF term \(\zeta_{Gg} \ll \zeta_{Gg} \) and goes to zero much faster than \(\xi \) as scales increases, which thus can be ignored. Furthermore, there is a \(1 \leftrightarrow 2 \) symmetry in Eq. 8 we then have
\[
\Delta \xi_g = \xi_g(r_{12}) - \xi_g(r_{12}) \simeq \langle \xi_{Gg} \rangle_\mathcal{R} = 2 \int_\mathcal{R} \int_\mathcal{R} \xi_{Gg}(\mathbf{r}_1) \delta_D(|\mathbf{r}_1 - \mathbf{r}_2| - r_{12}) d\mathbf{r}_1 d\mathbf{r}_2 /
\int_\mathcal{R} \int_\mathcal{R} \delta_D(|\mathbf{r}_1 - \mathbf{r}_2| - r_{12}) d\mathbf{r}_1 d\mathbf{r}_2.
\] (10)

We define a new function \(\epsilon(\mathbf{r}_1, r_{12}) \equiv \int_\mathcal{R} \delta_D(|\mathbf{r}_1 - \mathbf{r}_2| - r_{12}) d\mathbf{r}_2 / 4\pi r_{12}^2 \) which is the fraction of surface area inside \(\mathcal{R} \) of the sphere centered at \(\mathbf{r}_1 \) with radius \(r_{12} \). If the survey volume is sufficiently large that the boundary effect is negligible, \(\epsilon = 1 \). In general, \(\epsilon \) depends on the survey geometry and can only be evaluated numerically. However, under the limit of full sky coverage, the analytical expression of \(\epsilon \) can be easily derived and \(\epsilon(\mathbf{r}_1, r_{12}) = \epsilon(r_1, r_{12}) \). We then use this approximation
\[
\Delta \xi_g \simeq 2 \int_{r_{\text{min}}}^{r_{\text{max}}} \xi_{Gg}(\mathbf{r}_1) \epsilon(r_1, r_{12}) r_{12}^2 d\mathbf{r}_1 \int_{r_{\text{min}}}^{r_{\text{max}}} \epsilon(r_1, r_{12}) r_{12}^2 d\mathbf{r}_1.
\] (11)

to evaluate the ergodicity bias.

Several numerical examples are demonstrated in Figure 1, the general trend of \(\Delta \xi \) is that it trails off when \(r_{\text{min}} \) and \(r_{\text{max}} - r_{\text{min}} \) increases, cases in exception may occur when the zero-crossing scale of 2PCF is between \(r_{\text{min}} \) and \(r_{\text{max}} \). (1) In the limit that \(r_{12} \leq (r_{\text{max}} - r_{\text{min}})/2, \epsilon(r_1, r_{12}) \simeq 1 \) for most \(r_1 \) in the survey volume, thus \(\Delta \xi \) is not sensitive to \(r_{12} \) and to a good extent \(\simeq 6 b_{Gg}^2 \int_{r_{\text{min}}}^{r_{\text{max}}} \xi r^2 dr / (r_{\text{max}}^3 - r_{\text{min}}^3) \). As \(\int_0^\infty \xi_{Gg}(r) r^2 dr = 0 \) and \(\xi_{Gg} \) changes from positive to negative from small to large scales, \(\int_{r_{\text{min}}}^{r_{\text{max}}} \xi r^2 dr \) (and thus \(\Delta \xi \)) can deviate significantly from zero for some configurations of \([r_{\text{min}}, r_{\text{max}}] \). However, the condition \(r_{12} \simeq (r_{\text{max}} - r_{\text{min}})/2 \) often means \(r_{12} \) is small, \(\xi(r_{12}) \) is large and thus \(\Delta \xi \ll \xi(r_{12}) \). (2) It looks that when the characteristic redshifts are low and \(r_{12} \simeq (r_{\text{max}} - r_{\text{min}})/2, \epsilon(r_1, r_{12}) \) can considerably deviate from unity for many \(r_1 \) in the survey volume and both \(\Delta \xi \) and \(\Delta \xi/\xi \) could become significant, but in this case the cosmic variance often overwhelms the ergodicity bias. (3) For deep surveys with
The ergodicity bias

\[r_{\text{min}} \gg r_c, \] the ergodicity bias vanishes since \(\Delta \xi \sim 2\xi(r_{\text{min}}) \to 0, \) where \(r_c \approx 120h^{-1}\text{Mpc} \) is the zero point of the correlation function \((\xi(r_c) = 0). \) Thus it seems unlikely that the ergodicity bias can be significant in practical means.

2.3. Three-point correlation function

Similarly, the observed probability of finding a triplet of galaxies is conditional to the Milk way and becomes a four-point problem

\[
dP_3^{(O)} \propto \left[1 + \xi_G(r_1) + \xi_G(r_2) + \xi_G(r_3) + \xi_g(r_{12}) + \xi_g(r_{23}) + \xi_g(r_{31})
+ \xi_G(r_1)\xi_G(r_2)\xi_G(r_3) + \xi_G(r_3)\xi_g(r_{12})
+ \xi_G(r_1)\xi_g(r_{23})\xi_g(r_{31}) + \xi_g(r_{12})\xi_g(r_{23})\xi_g(r_{31})
+ \eta_{Gggg}(r_1, r_2, r_3, r_{12}, r_{23}, r_{31}) \right] dr_1 dr_2 dr_3
\]

in which \(\eta_{Gggg} \) is the four-point cross-correlation function. The 3PCF we have is practically estimated via

\[
\hat{\zeta}_g = X - \hat{\xi}_g(r_{12}) - \hat{\xi}_g(r_{23}) - \hat{\xi}_g(r_{31}) - 1
\]

where \(X \) denotes the average of all those terms inside square brackets in Eq. \(\text{13} \) over sample space \(\mathcal{R}. \) Substituting Eq. \(\text{8} \) for \(\hat{\xi} \) then yields

\[
\hat{\zeta}_g = \zeta_g + \langle \xi_G \rangle_\mathcal{R} \left[\xi_g(r_{23}) + \xi_g(r_{31}) + \xi_g(r_{12}) - 3 \right] + \langle \eta_{Gggg} \rangle_\mathcal{R} .
\]

The ergodicity bias in the 3PCF is apparently much more difficult to analyze than the 2PCF due to its complex configuration dependence. Nevertheless, if working on large scales only where \(\xi_g \ll 1, \) those higher order terms can be neglected in Eq. \(\text{14} \) and dominant contribution just comes from the term \(-3\langle \xi_G \rangle_\mathcal{R}. \) As an order of magnitude estimation, the ergodicity bias in the 3PCF at large scales is therefore roughly

\[
\Delta \xi_g = \hat{\zeta}_g - \zeta_g \simeq -3\Delta \xi_g / 2.
\]

It is known 3PCF approaches zero much faster than 2PCF when scale increases, the systematical bias identified here have much stronger effects to the third order statistical functions, which is obvious in the right panel of Fig. \(\text{1}. \) Furthermore, as in most cases \(\Delta \xi_g > 0 \) for local galaxy samples, the ergodicity bias in 3PCF effectively behaves like a negative nonlinear galaxy bias parameter \(b_2 \) \(\text{14}, \) which imposes serious questions on the reliability of the nonlinear galaxy bias parameters estimated through 3PCF of local galaxy samples and henceforth other related results.

3. Discussion

Here it is argued that by changing the point of view to that the observed distribution of galaxies in the Universe is the distribution of neighbors to our Galaxy, statistics of the distribution are conceptually very different to what we used to think of, though numerically the resulting ergodicity bias might be small for most of practical applications especially when the galaxy sample is sufficiently far away from us and very deep. Note
that it has been assumed the correlation function between the Milky Way and other galaxies follows the ensemble average ξ_{Gg} and ζ_{Ggg}, in reality the true correlation strength could have large deviation to the mean since our Galaxy is located on the outskirts of a large cluster, exact numerical effects have to be explored carefully perhaps with the help of numerical simulations.

Here we briefly discuss the impact of the ergodicity bias on precision cosmology. (1) The baryonic acoustic oscillation (BAO) cosmology, which relies on the correlation measurement at $r_{12} \simeq 100h^{-1}$ Mpc. Mean redshifts of galaxy samples constructed for BAO detection in general are at $z \sim 0.2$ or higher (e.g. [15]) and thus $r_{\text{min}} \gg r_c$. We then expect the ergodicity bias to have little numerical influence on the BAO detection. (2) The primordial non-Gaussianity study through the galaxy power spectrum [16, 17, 18] and bispectrum (e.g. [19]) at scales even larger than $100h^{-1}$ Mpc. From Fig. 1, we can conclude that the ergodicity bias certainly bias their results. Precision measurements of the primordial non-Gaussianity require larger survey depth than we have numerically evaluated, for which the induced bias is unlikely significant, but may still be non-negligible. Especially, the method proposed by [18] eliminates the cosmic variance in the power spectrum measurement by taking the ratio of the power spectra of different tracers. Since taking ratio does not eliminate the additive ergodicity bias, its relative impact is enhanced. Robust evaluation of the ergodicity bias in this case requires careful treatment of survey boundary, selection function and the intrinsic evolution of galaxy number density and clustering. We leave this detailed calculation elsewhere.

In this short report only the impact on the spatial distribution of galaxies is discussed as examples, there are possibly many other aspects of statistical analysis of galaxy samples in needs of similar conceptual adjustment. For instance the peculiar velocity of galaxy we measured is actually the relative peculiar velocity of the galaxy to our Galaxy, and the peculiar velocities of galaxies are correlated with the peculiar velocity of the Milky Way.

We must address that we are not challenging the Copernican Principle and the Cosmological Principle here, but rather simply point out an observational effect. If there were observers who are randomly placed in the Universe, they will have the same conclusion as ours about the sample provided by us. And the last thing we want to make clear is that the correlation between the Galaxy and other galaxies is not caused by our Galaxy, but is inherited from the intrinsic correlation in the underlying dark matter distribution and the roughly synchronous evolution of these galaxies.

Acknowledgments

The authors sincerely appreciate the many helpful advices of the anonymous referee. We also would like to thank Jia-Sheng Huang, Lifan Wang and Zheng Zheng for enjoyable discussion and Xianzhong Zheng for organizing the wonderful 4th Cosmology and Galaxy formation summer workshop in which the work is concluded. JP and PZ acknowledge the One-Hundred-Talent fellowships of CAS. JP and PZ are supported by
the Ministry of Science & Technology of China through 973 grant of No. 2007CB815401, 2007CB815402 and the NSFC through grants of Nos. 10533030, 10633040, 10821302, 10873035.

References

[1] P. J. E. Peebles, *The large-scale structure of the universe*. Princeton, N.J., Princeton University Press, 1980.
[2] P. Coles and F. Lucchin, *Cosmology: The Origin and Evolution of Cosmic Structure, Second Edition*. John Wiley & Sons Ltd, Chichester, July, 2002.
[3] S. Weinberg, *Cosmology*. Oxford University Press, Oxford, 2008.
[4] K. Bolejko and J. S. B. Wyithe, *Testing the copernican principle via cosmological observations*, Journal of Cosmology and Astro-Particle Physics 2 (Feb., 2009) 20 [arXiv:0807.2891].
[5] E. P. Hubble, *Extragalactic nebulae*, ApJ 64 (Dec., 1926) 321–369.
[6] R. A. Skibba and R. K. Sheth, *A halo model of galaxy colours and clustering in the Sloan Digital Sky Survey*, MNRAS 392 (Jan., 2009) 1080–1091. [arXiv:0805.0310]
[7] U. Seljak and M. Zaldarriaga, *A Line-of-Sight Integration Approach to Cosmic Microwave Background Anisotropies*, ApJ 469 (Oct., 1996) 437. [astro-ph/9603033]
[8] F. Bernardeau, S. Colombi, E. Gaztañaga, and R. Scoccimarro, *Large-scale structure of the Universe and cosmological perturbation theory*, Physics Report 367 (Sept., 2002) 1–3.
[9] E. J. Groth and P. J. E. Peebles, *Statistical analysis of catalogs of extragalactic objects. VII - Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies*, ApJ 217 (Oct., 1977) 385–405.
[10] P. Norberg, C. M. Baugh, E. Hawkins, S. Maddox, D. Madgwick, et al., *The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type*, MNRAS 332 (June, 2002) 827–838.
[11] M. Tegmark *et al.*, *Cosmological parameters from SDSS and WMAP*, PRD 69 (May, 2004) 103501.
[12] Y. Wang, X. Yang, H. J. Mo, and F. C. van den Bosch, *The Cross-Correlation between Galaxies of Different Luminosities and Colors*, ApJ 664 (Aug., 2007) 608–632. [arXiv:astro-ph/0703253]
[13] M. E. C. Swanson, M. Tegmark, M. Blanton, and I. Zehavi, *SDSS galaxy clustering: luminosity and colour dependence and stochasticity*, MNRAS 385 (Apr., 2008) 1635–1655, [arXiv:astro-ph/0702584]
[14] J. N. Fry and E. Gaztañaga, *Biasing and hierarchical statistics in large-scale structure*, ApJ 413 (Aug., 1993) 447–452.
[15] W. J. Percival, B. A. Reid, D. J. Eisenstein, N. A. Bahcall, T. Budavari, J. A. Frieman, M. Fukugita, J. E. Gunn, Z. Ivezic, G. R. Knapp, R. G. Kron, J. Loveday, R. H. Lupton, T. A. McKay, A. Meiksin, R. C. Nichol, A. C. Pope, D. J. Schlegel, D. P. Schneider, D. N. Spergel, C. Stoughton, M. A. Strauss, A. S. Szalay, M. Tegmark, M. S. Vogeley, D. H. Weinberg, D. G. York, and I. Zehavi, *Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample*, MNRAS 401 (Feb., 2010) 2148–2168, [arXiv:0907.1660]
[16] N. Dalal, O. Doré, D. Huterer, and A. Shirokov, *Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects*, PRD 77 (June, 2008) 123514. [arXiv:0710.4560]
[17] A. Slosar, C. Hirata, U. Seljak, S. Ho, and N. Padmanabhan, *Constraints on local primordial non-Gaussianity from large scale structure*, Journal of Cosmology and Astro-Particle Physics 8 (Aug., 2008) 31. [arXiv:0805.3580]
[18] U. Seljak, *Extracting Primordial Non-Gaussianity without Cosmic Variance*, Physical Review Letters 102 (Jan., 2009) 021302. [arXiv:0807.1770]
[19] D. Jeong and E. Komatsu, *Primordial Non-Gaussianity, Scale-dependent Bias, and the Bispectrum of Galaxies*, ApJ 703 (Oct., 2009) 1230–1248. [arXiv:0904.0497]