TargetCompare: A web interface to compare simultaneous miRNAs targets

Fabiano Cordeiro Moreira1,2, Bruno Dustan1,2, Igor G Hamoy1,3, André M Ribeiro-dos-Santos1 & Ândrea Ribeiro dos Santos1,4*,

1Laboratório de Genética Humana e Medica, Instituto de Ciências Biológicas, Universidade Federal do Para, Belem, PA, Brasil; 2Centro Universitário do Pará - Área de Ciências Exatas e Tecnologia, , Belém, PA, Brasil; 3Universidade Federal Rural da Amazônia, Campus de Capanema, PA, Brasil; 4Núcleo de Pesquisa em Oncologia, Universidade Federal do Para, Belem, PA, Brasil; Ândrea Ribeiro dos Santos – Email: akely@ufpa.br/akelyufpa@gmail.com; phone: +55 91 32017843; *Corresponding author

Received July 29, 2014; Accepted August 01, 2014; Published September 30, 2014

Abstract:
MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A single miRNA has thousands of target genes in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyze multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue.

Availability: http://lghm.ufpa.br/targetcompare

Keywords: miRNA, Gastric Cancer, Bioinformatics, Web tool, Target Genes.

Background:
MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression [1, 2]. Studies have demonstrated that a single miRNA may regulate several miRNAs of multiple functions, and that a single miRNA may be target of several miRNAs [3]. Thus, miRNAs form a complex, regulatory cell-signaling network [2, 4] that results in differentiated gene expression. It is estimated that two-thirds of the human genome is regulated by these small nucleotide sequences. The mechanisms underlying the negative regulation of gene expression by miRNAs are similar in animals and plants, which implies that they are involved in fundamental cellular processes including cell proliferation, development, differentiation and apoptosis [5]. Several studies have described the expression profile of miRNAs in both healthy tissues as for diseases [6-9].

Altered miRNA expression levels may contribute to disease development in humans. Several reports have linked miRNAs to cancer; the first miRNAs to be characterized were involved in cellular proliferation and death. Human tumors and tumor cell lines exhibit large differences in miRNA expression levels compared with normal tissues [8,9,10]. The evidence suggests that differentiated miRNA expression may regulate tumor suppressor genes and oncogenes [11]. To predict putative target gene of a single miRNA in silico, tools like microRNA.org [3] and targetScan [4] are used. The difficulty in this analysis is the amount of predicted targets for a single miRNA, considering that, as mentioned, a single miRNA may have thousands of possible targets. Using online databases available, the TargetCompare web tool proposes a way to analyze all possible common targets of any number of pre-selected miRNAs, indicating thereby targets with greater chances of being silenced by at least two of the miRNAs pre-
selected. The tool also associates known diseases linked to these potential target genes.

Figure 1: TargetCompare flowchart.

Implementation

The Java (http://www.oracle.com/us/technologies/java/) programming language was used for TargetCompare development and it was implemented as shown in Figure 1. The data used to compare putative targets was downloaded from three majors miRNA target prediction datasets: microrna.org [3], targetscan.org [4] and PiTa [12]. To associate the target genes with diseases, the public Genetic Association Database [13] was used. To manage the data, MySQL Database Server (http://www.mysql.com/) was used. The web tool targetCompare is freely available at http://www.lghm.ufpa.br/targetcompare.

Results & Discussion:

Using the developed tool in a single miRNA, it is possible to compare target genes in all three datasets simultaneously (Figure 2). Another way to use the web tool is to query a set of genes to find out which miRNAs target this set of genes (Figure 3). To evaluate the tool, it was used in a set of the eight miRNAs most highly expressed in antrum region of the stomach [7], we were able to identify 4,748 different genes may be regulated by up to two of the eight miRNAs selected. Using the simultaneous presence of at least six miRNAs as a selection criterion, 43 potential target genes were grouped together Table 1 (see supplementary material). The results obtained with the developed tool suggest that these putative target genes of the eight most highly expressed miRNA in antrum are strong candidates for silencing in the gastric region.

Conclusions:

This tool simultaneously evaluates different microRNAs associating them with different classes of diseases. However, the putative target genes need validation. Thus, the described tool is useful to reduce the arbitrariness in the analysis. This increases the chances of selecting target genes having an important role in the studied tissue.
Figure 3: Results for a target gene consult. The column shows all miRNAs that has as target the selected gene in all three target databases.

Funding sources:
This work was part of the REDE DE PESQUISA EM GENOMICA POPULACIONAL HUMANA (Bio Computacional/CAPES). Financial support: PROESP/UFPA-FADESP; CNPq, CAPES. FABIANO CORDEIRO MOREIRA supported by CESUPA; IGOR G. HAMOY is supported by Pós-Doc Junior (PDI) fellowship from CNPq/Brazil (162605/2011-0); ÂNDREA RIBEIRO-DOS-SANTOS supported by CNPq/Produtividade.

Competing Interests:
The authors have declared that no competing interests exist.

Author Contributions:
Conceived and designed the experiments: FCM, BD. Analysed the data: FCM, BD. Wrote the first draft of the manuscript: FCM. Contributed to the writing of the manuscript: ARS, IGH. Agree with manuscript results and conclusions: FCM, ARS, IGH. Jointly developed the structure and arguments for the paper: FCM, AMRS. Made critical revisions and approved final version: FCM, ARS, IGH. All authors reviewed and approved of the final manuscript.

Acknowledgement:
The authors would like to thank the staff of the Núcleo de Pesquisas em Oncologias - UFPA who contributed to the realization of this work.

References:
[1] Lee RC et al. Cell. 1993 75: 843 [PMID: 8252621]
[2] Ricarte Fiho JC et al. Arq Bras Endocrinol Metabol. 2006 50: 1102 [PMID: 17221118]
[3] Betel D et al. Nucleic Acids Res. 2008 36: D149 [PMID: 18158296]
[4] Lewis BP et al. Cell. 2005 120: 15 [PMID: 15652477]
[5] Meltzer PS, Nature. 2005 435: 745 [PMID: 15944682]
[6] Ribeiro-dos-Santos Â et al. PLoS ONE. 2010 8 5: e13205 [PMID: 20949028]
[7] Moreira FC et al. PLoS ONE. 2014 9: e92300 [PMID: 24647245]
[8] Calin GA & Croce CM, Nature Rev Cancer. 2006 6: 857 [PMID: 17060945]
[9] Calin GA et al. Proc Natl Acad Sci USA. 2004 101: 2999 [PMID: 14973191]
[10] Gaur A et al. Cancer Res. 2007 67: 2456 [PMID: 17363563]
[11] Guo J et al. J Gastroenterol Hepatol. 2009 24: 652 [PMID: 19175831]
[12] Kertesz M et al. Nat Genet. 2007 39: 1278 [PMID: 17893677]
[13] Becker KG et al. Nat Genet. 2004 36: 431 [PMID: 15118671]

Edited by P Kangueane

Citation: Moreira et al. Bioinformation 10(9): 602-605 (2014)

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited.
Supplementary material:

Table 1: TargetCompare results for eight most highly expressed miRNAs in the human gastric antrum region [7]. Only conserved miRNAs with good miSRV scores from microrna.org dataset were used for these analyses.

miRNAs	HNRNPF	SNRPN	CD38S8	LIP	NCAM1	LAMP2	STRADB	EAFM123B	FGD4	FRKGI	TNIPE1	ZNF2	HLA-DQB1	PAFAH1B1	PCDH15	SLC25A37	DISCI	MIAA	TET2	GRIA3	OPRM1	ZFPMM2	FBXO28	TET2	SLC25A37	SMEK1	ZNF169	GLDN	PIGG	RPP30	TIE1	NUPNL1	DCUN1D4	
-------------	--------	-------	--------	-----	-------	-------	--------	-----------	------	-------	--------	------	----------	----------	--------	----------	-------	------	------	-------	-------	--------	--------	------	----------	-------	--------	------	------	-------	------	--------	--------	
hsa-miR-145	•																																	
hsa-miR-29a	•																																	
hsa-miR-29c	•																																	
hsa-miR-21	•																																	
hsa-miR-451a	•																																	
hsa-miR-192	•																																	
hsa-miR-191	•																																	
hsa-miR-148a	•																																	