Sorption of Pb2+, Co2+ and Cr2+ Using \textit{Cissus populnea} Stem Bark Powder as Bio-Sorbent

Peter Michael Dass1,*, Louis Hitler2,3,*, Mikytsabu Ago Atoshi1 and Akakuru Ozioma Udochukwu2

1Department of Chemistry, School of Physical Sciences, Modibbo Adama University of Technology, Yola, Adamawa State, Nigeria
2Department of Pure and Applied Chemistry, University of Calabar, P.M.B 1115 Calabar, Cross River State, Nigeria
3CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China

*Corresponding authors: Peter Michael Dass, Department of Chemistry, School of Physical Sciences, Modibbo Adama University of Technology, Yola, Adamawa State, Nigeria, Tel: +86-150-0107-5832; E-mail: pmdass66@yahoo.co.uk
Louis Hitler, Department of Pure and Applied Chemistry, University of Calabar, P.M.B 1115 Calabar, Cross River State, Nigeria, Tel: +234-813-735-1855; E-mail: Louis@nanoctr.cn

Received date: November 10, 2017; Accepted date: November 21, 2017; Published date: November 24, 2017

Abstract

Sorption of Pb2+, Cd2+ and Cr2+ in aqueous solution using immobilized \textit{Cissus populnea} stem bark powder as a bio-sorbent was studied. The maximum sorption capacity of ICPSB on Pb2+, Co2+ and Cr2+ are 94.20%, 88.19% and 78.97% respectively. Effect of concentration on the sorption capacity of ICPSB shows that sorption capacity increase with increase in concentration while effect of ionic strength curve shows that sorption capacity decrease with increase in ionic strength. Effect of pH on sorption capacity of ICPSB was observed between 1-24 hours, it was observed that Pb2+ recorded the maximum sorption compared with Co2+ and Cr2+. Effect of pH was studied at pH range of 1.0-8.0. Optimal sorption was recorded at pH 8.0 for Pb2+. The result of this research has added to the use of a cheaper bio-sorbent i.e. immobilised \textit{Cissus populnea} stem bark (ICPSB) for sorption of Pb2+, Co2+ and Cr2+.

Keywords: \textit{Cissus populnea}; Sorption; Capacity; Bio-sorption; Metals

Introduction

Contamination of water by toxic heavy metals has been a major environmental problem since long. Some of the past episodes of heavy metal contamination in the aquatic environment have increased the awareness about their toxicity. The outbreak of lead poison in Zamfara state, Nigeria \cite{1,2}; the direct discharge of heavy metal containing wastes into water bodies or sewers is to be checked in order to reduce the environmental impact \cite{3}.

Heavy metals are released into the aquatic environment through a variety of sources such as metal smelters, effluents from plastics, textiles, microelectronics, wood preservatives-producing industries, usage of fertilizers and pesticides \cite{4}. Natural waters also contain toxic metals depending upon the bed rock \cite{5}. To alleviate the problem of water pollution by heavy metals, several researches has led to the discovery of some unconventional methods and low cost materials for sorption of heavy metal ions from wastewater \cite{6}. Against this backdrop, this study focuses on \textit{Cissus populnea}, an otherwise promising method for the removal of heavy metals from industrial wastewater.

Materials and Methods

Sampling and sample preparation

The \textit{Cissus populnea} stem bark was sundried until completely dried, grind in a mortar into powder and sieved through 100 mm sieve screen to produce a fine powder, kept in a polythene bag for further use.

Materials/Equipment: Calcium chloride, Sodium alginate, conc. Hydrochloric acid, Sodium hydroxide, Sodium chloride, distilled water, Cobalt, Lead, Chromium, fine powdered \textit{Cissus populnea} stem bark, flask shaker, oven, analytical balance, pH meter, atomic absorption spectrophotometer, separating funnel, conical flask and stirrer.

Preparation of reagents: a) 1000 ppm AAS standard:

- Chromium: Dissolve 7.6960 g of Chromium nitrate \(\text{Cr(NO}_3\text{)}_2\cdot9\text{H}_2\text{O}\) in 250 ml of deionized water. Dilute with more deionized water in 1 L volumetric flask.

- Cobalt: Dissolve 4.038 g of Cobalt chloride \(\text{CoCl}_2\cdot6\text{H}_2\text{O}\) in 200 ml deionized water. Dilute to 1 L in a volumetric flask with deionized water.

- Lead: Dissolve 1.5980 g of Lead nitrate \([\text{Pb(NO}_3\text{)}_2]\) in 100 ml of deionized water. Dilute to 1 L in a volumetric flask with deionized water.

b) 4% Sodium alginate: 4 g of sodium alginate is dissolved in 100 ml of distilled water and shaken until it dissolves.

Volume 4 • Issue 4 • 1000223

J Environ Anal Chem, an open access journal
ISSN: 2380-2391

© 2017 Dass PM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Preparation of *Cissus populnea* stem bark: The dissolution of *Cissus populnea* leave is done in two stages: First, 4 g of the stem bark powder is dissolved in 100 ml of water and labeled A; and 4 g of the sample is also dissolved in another 100 ml of water and labeled B. The two mixtures (A and B) each are poured into separating funnel and left to stand for 12 hours to observe the possible separation into various fractions [6].

Preparation of sodium alginate solution 2%: Measure 2.0 g of Sodium alginate into a 250 ml Erlenmeyer flask. Add 100 ml of distilled or deionized water and a stir bar. Stir on a magnetic stirrer for about one hour or until the solid dissolves. For best results, allow the mixture to sit overnight to give a uniform solution.

Procedure for immobilization of the stem bark: 25 ml of various layers of *Cissus populnea* stem bark thoroughly mixed with 25 ml of 4% stock solution of sodium alginate and stirred vigorously for even mixing in a 250 ml beaker. The mixture is poured subsequently into a flask containing 30 ml of 0.12 M Calcium chloride solution. The reaction is removed and allowed to dry at room temperature (30°C). The dried solid mass is stored in a polythene bag for further use [7].

The above process was repeated by mixing another set of blend of *Cissus populnea* stem bark and was made by mixing 4 % of stock solution of the sodium alginate and *Cissus populnea* stem bark solution at a ratio of 50/25, 45/25, 40/25, 35/25, 30/25 and 25/25.

Determination of metal ion in solution: The metal ion chosen for the study were Cr$^{3+}$, Pb$^{2+}$, Co$^{2+}$. A concentration of 200 ppm of the metal ion was prepared with distilled water, from the above concentration, 50 ml of solution of metal ion was taken into conical flask; 0.2 g of dried ICPSB was added and then shaken vigorously for 2 hours using flask shaker (Slaurt Scientific, SFI). The mixture was then filtered and the residual metal ion concentration determined using Atomic Adsorption Spectrophotometer (AAS) [6].

Effect of ionic strength on sorption capacity: Useful information regarding salt effect was obtained by measuring sorption capacity of ICPSB in various mass of NaCl. Selected mass was adjusted with 0.1, 0.5, 1, 1.5 and 2.0 g of NaCl in 200 ppm to obtain various desired concentrations of 0.1-2.0% w/w respectively. 0.2 g of ICPSB was added to sample to 50 ml of the prepared solution and the equilibrium concentration of the residual metal ion was determined.

It is then shaken for 2 hours using flask shaker. The mixture is then filtered and the residual metal ion concentration is determined using AAS [7].

Effect of initial metal ion concentration on sorption capacity: To investigate the initial metal ion concentration on sorption capacity different samples consisting of 50 ml each of different metal ion concentration from 10 ppm, 20 ppm, 40 ppm, 80 ppm, 100 ppm, but each containing 0.2 g of dried immobilized *Cissus populnea* were prepared and shaken until equilibrium was obtained at 25°C the synthetic wastewater was filtered and analyzed for residual metal ion concentration using AAS [7].

Effect of temperature on sorption capacity: To determine the effect of temperature on sorption capacity, the samples were prepared at temperature of 25°C, 30°C and 35°C respectively. The samples were filtered and analyzed for residual metal ion concentration using AAS [7].

Effect of pH on sorption capacity: To determine the effect of pH, the pH of 50 ml of 200 ppm of each metal is taken using the pH meter. Another 50 ml of 200 ppm of respective metals is taken and 2 drops of HCl is added while the pH is determine, this is repeated by adding 3 drops of conc. HCl and taking note of the pH. The above process is repeated by adding 2-3 drops of dilute NaOH to 50 ml of 200 ppm of respective metal, these was also repeated by adding 4-5 drops of dilute NaOH solution and taking note of the pH 0.2 g of ICP is added to each solution mixture and shaken for one hour using a flash shaker. The solution is filtered and analyzed for residual metal ion concentration using AAS [7].

Results and Discussion

Sorption capacity of ICPSB

Figure 1 shows the sorption efficiencies of *Cissus populnea* stem bark (ICPSB) on Pb$^{2+}$, Co$^{2+}$ and Cr$^{3+}$ [8]. It can be seen that the higher sorption capacity was recorded for Pb$^{2+}$ followed by Co$^{2+}$ and Cr$^{3+}$. The result from the present studies is comparable with those reported from similar study [7]. These differences in sorption capacity can be explained on the formation of covalent bond with a ligand. Base on this fact, Pb$^{2+}$ forms a covalent bonding easily with NH$_3$. The maximum sorption of ICPSP on Pb$^{2+}$, Co$^{2+}$, and Cr$^{3+}$ are 94.2%, 88.19% and 78.97% respectively.

Effect of time on sorption capacity of ICPSB

Figure 2 shows the effect of time on sorption capacity of ICPSB on metal ions. It can be seen that the bio-sorbent shows a general increase as the time increases from 1-24 hours. There was no decrease observed as the time increases. This fact can be attributed to the highly porous structure of the ICPSB which made available surface area for the Pb$^{2+}$ which react more easily to the binding sites present on ICPSB.
Effect of concentration on the sorption capacity of ICPSB

Figure 3 shows that feasibility and ability of a bio-sorption process depends not only on the properties of the bio-sorbent, but also on the metal ion concentration. It can be seen that as the concentration increases the sorption capacity increases also. The increase in sorption by ICPSB can be explained on the basis that at lower Pb\(^{2+}\), Co\(^{2+}\), and Cr\(^{2+}\) concentrations, the ratio of mole of these metal ions to the available surface area was low so sorption becomes less in comparison to the moles of metal ion is strongly dependent upon the solute concentration [6].

Effect of ionic strength on sorption capacity of ICPSB

Figure 4 shows the effect of ionic strength on sorption efficiency of ICPSB on metal ion. It is seen that the sorption capacity of ICPSB decreases as the ionic strength increases. Pb\(^{2+}\) shows the lowest decrease at the maximum amount of NaCl. This can be attributed to the fact that the sorption of metal ions decrease when the ionic strength can however be explained because of competition of Na\(^{+}\) with other metal ions for electrostatic binding to the ICPSB.
Conclusion

ICPSB is very effective for the removal of these heavy metal ions (Pb$^{2+}$, Co$^{2+}$, Cr$^{2+}$) for contaminated water containing such metals, thereby satisfying the aims of this study which is to use a low cost bio-sorbent ICPSB to remove heavy metals (although it is affected by certain factors such as pH, time, concentration etc.). The result shows maximum removal of Pb$^{2+}$ in all the tests determined which may be due to ICPSB affinity for Pb$^{2+}$ for, followed by Cobalt then Chromium. Therefore, ICPSB is an effective bio-sorbent for removal of heavy metal ions in solution at low cost.

References

1. World Health Organisation. Mass killing by Lead poisoning from mining activities. Reuter. June 04, 2011.
2. Lo YC, Dooyema CA, Neri A, Durant J, Jefferies T, et al. (2010) Childhood Lead Poisoning Associated with Gold Ore Processing: A Village-Level Investigation-Zamfara State, Nigeria. Environmental Health Journal 120: 1450-1455.
3. Khan MA, Lee SH, Kang S, Paeng KI, Lee G, et al. (2011) Adsorption Studies for the removal of Methyl tert-Butyl Ether on Various Commercially Available GAC’s from an Aqueous Medium. Journal of Separation and Technology 46: 1121-1130.
4. Prasad MN, Hagemeyer J, Miles RJ, Young TW (1997) Cadmium uptake and nitrogen fixing ability in heavy metal-resistant. America Chemical Society, pp. 283-298.
5. Greger M (1999) Metal availability and Bio-concentration in Plants. Heavy metal stress in plants. From molecules to ecosystems. International Journal of Phytoremediation 1: 115-123.
6. Barminas TJ, Usenahon SA (2005) Development of sodium alginate and konkoli gum-grafted-polycryamide blend membrane. Sci J Appl Sci 1: 70-79.
7. Wuyep PA, Chuma AG, Awodi S, Nok AJ (2007) Biosorption of Cr, Mn, Fe, Ni, Cu, Pb Metals From Petroleum Refinery Effluent by Calcium Alginate Immobilized Mycelia of Polyporus Squamosus. Sci Res Essay 2: 217-221.
8. Dass PM, Atoshi MA, Haggai D, Joseph J (2016) Extraction, testing of natural dye from Cissus populnea stem bark and its application on cotton fabric. Journal of Applied Life Sciences International 7: 1-8.