NUMERICAL SOLUTIONS FOR STEADY VISCOUS FLOW PAST A CIRCULAR CYLINDER IN AN ALIGNED MAGNETIC FIELD

SEKHAR, T.V.S.
School of Basic Sciences, IIT Bhubaneswar,
Bhubaneswar - 751013, INDIA
sekhartvs@iitbbs.ac.in

SIVAKUMAR, R.
Department of Physics, Pondicherry University,
Pondicherry-605 014, INDIA
rs4670@gmail.com

HARISH KUMAR
Department of Physics, Pondicherry Engineering College,
Pondicherry-605 014, INDIA
harishkumarholla@rediffmail.com

[Received: March 26, 2004, Accepted: July 16, 2004.]

Abstract. The steady incompressible magneto-hydrodynamic (MHD) flow past a circular cylinder with an aligned magnetic field is studied for the Reynolds number \(Re \) up to 40, using the Hartmann number, \(M \) as the perturbation parameter. The multigrid method with defect correction technique is used to achieve the second order accurate solution of complete nonlinear Navier-Stokes equations. The magnetic Reynolds number is assumed to be small. It is observed that as \(M \) is increased the volume of the separation bubble decreases and drag coefficient increases. The graphs of streamlines, vorticity lines, surface pressure, surface vorticity and drag coefficient are presented and the effect of the magnetic field is discussed.

Mathematical Subject Classification: 76DXX, 76005, 76W05
Keywords: Navier-Stokes equations, MHD, Hartmann number, Multigrid method, Defect correction.

1. INTRODUCTION

In the plane flow of an incompressible, viscous, electrically conducting fluid over a solid body, the presence of a normal magnetic field at the surface has the effect of alleviating an adverse pressure gradient. One might expect that separation of the boundary layer would be delayed as a result. Indeed, since the degree to which the unfavorable pressure gradient is alleviated depends on the strength of the magnetic field, it is conceivable that separation could be completely suppressed. In a two dimensional flow of a liquid with small magnetic Reynolds number under the influence of an applied magnetic field, it has been proved that if the field is strong enough and
The problem of steady two-dimensional incompressible MHD flow past a circular cylinder with an applied magnetic field parallel to the main flow was investigated by Bramely [5] using the Oseen approximation. He later extended the problem to full Navier-Stokes equations for low Reynolds numbers using the method of series truncation [6]. Shanti Swarup and Sinha [22] investigated the steady flow of an incompressible, viscous, electrically conducting fluid past a non-magnetic and non-conducting circular cylinder for low Reynolds numbers \([Re = O(R_m)\) and \(R_m \ll M \ll 1\)], using the method of matched asymptotic expansions. Very recently, Sekhar et al. [21] studied the MHD flow past a sphere in an aligned magnetic field using the multigrid method.

In the absence of a magnetic field the present problem corresponds to the steady, viscous flow past a circular cylinder which has been studied by several researchers, including Dennis and Chang [8], Fornberg [9] [10], Kawamura and Kuwahara [15], Braza et al. [7], Karniadakis and Triantafyllou [14], Ingham and Tang [11] and Baranyi and Shirakashi [2]. Roshko [20], Bearman [4] and Norberg [16] [17] have studied the flow past a cylinder experimentally and have provided invaluable data. It is well known that the flow around a cylinder becomes unstable at \(Re \sim 49\) due to periodic vortex shedding [25]. Bae et al. [1] investigated the conditions needed to facilitate the suppression of Kármán vortex excitation of a circular cylinder by a second cylinder set downstream in a cruciform arrangement. Baranyi [3] studied the unsteady momentum and heat transfer from a fixed cylinder using the finite difference method. In this paper, we discuss the flow of a conducting fluid past a circular cylinder for a range of Reynolds numbers from 10 to 40 and for the intermediate values of Hartmann number \(M\) using the finite difference method. The multigrid method with defect correction technique is applied to obtain the second order accurate solution.

2. Mathematical modelling

The equations governing the steady MHD flow of an incompressible fluid (with finite electrical conductivity \(\sigma\)) past a circular cylinder (of radius \(a\)) with uniform freestream velocity \(U_\infty\) and an uniformly applied magnetic field \(H_\infty\) at large distances are, in non-dimensional form:

Momentum equation

\[
\frac{Re}{2} (q \cdot \nabla) q = -\nabla p + \nabla^2 q + \frac{M^2}{2R_m} (\nabla \times H) \times H
\]

(1)

Ohm’s law

\[
j = (\nabla \times H) = \frac{R_m}{2} [E + q \times H]
\]

(2)

Equation of continuity

\[
\nabla \cdot q = 0
\]

(3)
where \(p \) is the pressure, \(\mathbf{q} \) the fluid velocity, \(\mathbf{H} \) the magnetic field, \(\mathbf{E} \) the electric field, \(\mathbf{j} \) the current density. The Reynolds number is \(Re = 2 \rho U_\infty a/\eta \) and \(M = \mu H_\infty a(\sigma/\eta)^{1/2} \) is the Hartmann number. The magnetic Reynolds number is given by \(R_m = U_\infty a\mu \sigma \). The viscosity, density and magnetic permeability of the fluid are \(\eta, \rho \) and \(\mu \) respectively. The following non-dimensional terms were substituted to obtain the dimensionless differential equations:

\[
q = \frac{q'}{U_\infty}, \quad p = \frac{a}{\rho \nu U_\infty} p', \quad r = \frac{r'}{a}, \quad H = \frac{H'}{H_\infty}
\]

\[
E = \frac{E'}{E_\infty}, \quad j = \frac{j'}{j_\infty}
\]

where primed variables are dimensional quantities and \(\nu \) is the kinematic viscosity, \(E_\infty \) and \(j_\infty \) are the magnitudes of electric field intensity and current density at infinity, respectively. In order to satisfy equation (2.3), the dimensionless stream function \(\psi(r, \theta) \) is introduced such that

\[
u = \frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad v = -\frac{\partial \psi}{\partial r}
\]

where \(u \) and \(v \) are the dimensionless radial and transverse components of fluid velocity. Cylindrical polar coordinates \((r, \theta, z) \) are used in such a way that the flow is symmetric about \(\theta = 0^\circ \) and \(\theta = 180^\circ \). As the magnetic field and fluid flow are aligned at infinity, the electric field can be assumed to be zero. The problem can be simplified by assuming the magnetic Reynolds number to be small. The magnetic field must not be so large that the flow develops into a slug flow. It should be large enough to see the effect on separation but small enough for the flow to be a perturbation of the potential flow with zero magnetic field. We use the low-\(R_m \) approximation and ignore equation (2.2) as well as replace the magnetic field in all MHD equations by

\[
\mathbf{H} = (-\cos \theta, \sin \theta, 0),
\]

which will eliminate several nonlinear terms of unknown quantities in the governing equations. After eliminating pressure from equation (2.1), we get

\[
\frac{Re}{2} \left[\nabla \times (\omega \times \mathbf{q}) \right] = \nabla^2 \omega + \frac{M^2}{2R_m} \left[\nabla \times \{(\nabla \times \mathbf{H}) \times \mathbf{H}\} \right]
\]

where

\[
\omega = \nabla \times \mathbf{q}
\]

is the vorticity. Substitution of equation (2.2) in equation (2.6) gives

\[
\nabla^2 \omega = \frac{Re}{2} \left[\nabla \times (\omega \times \mathbf{q}) \right] - \frac{M^2}{4} \left[\nabla \times \{(\mathbf{q} \times \mathbf{H}) \times \mathbf{H}\} \right]
\]

Expanding equations (2.7) and (2.8) we get

\[
\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = -\omega
\]
\[\frac{\partial^2 \omega}{\partial r^2} + \frac{1}{r} \frac{\partial \omega}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \omega}{\partial \theta^2} - \frac{\text{Re}}{2r} \left[\frac{\partial \psi}{\partial \theta} \frac{\partial \omega}{\partial r} - \frac{\partial \psi}{\partial r} \frac{\partial \omega}{\partial \theta} \right] = \frac{M^2}{4} \left[\omega \sin^2 \theta + \sin 2\theta \frac{\partial^2 \psi}{\partial r \partial \theta} - \frac{\sin 2\theta}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} \cos 2\theta \frac{\partial^2 \psi}{\partial r^2} \right] \] (10)

Since major velocity gradients occur near the body, we used the transformations \(r = e^{\pi \xi} \) and \(\theta = \pi \eta \) to concentrate the mesh spacing near the body. Then equations (2.9) and (2.10) can be written as

\[\frac{\partial^2 \psi}{\partial \xi^2} + \frac{\partial^2 \psi}{\partial \eta^2} + \pi^2 e^{2\pi \xi} \omega = 0 \] (11)

and

\[\frac{\partial^2 \omega}{\partial \xi^2} + \frac{\partial^2 \omega}{\partial \eta^2} - \frac{\text{Re}}{2} \left[\frac{\partial \psi}{\partial \eta} \frac{\partial \omega}{\partial \xi} - \frac{\partial \psi}{\partial \xi} \frac{\partial \omega}{\partial \eta} \right] = \frac{M^2}{4} \left[\pi^2 e^{2\pi \xi} \omega \sin^2(\pi \eta) + \sin 2(\pi \eta) \frac{\partial^2 \psi}{\partial \xi \partial \eta} - \pi \sin 2(\pi \eta) \frac{\partial \psi}{\partial \eta} - \cos 2(\pi \eta) \frac{\partial^2 \psi}{\partial \xi^2} + \pi \cos 2(\pi \eta) \frac{\partial \psi}{\partial \xi} \right] \] (12)

in the vorticity-stream function form. Equations (2.11) and (2.12) must now be solved subject to the following boundary conditions:

1. On the surface of the cylinder; \(r = 1, \xi = 0 \),
 \[\psi = \frac{\partial \psi}{\partial \xi} = 0, \]
 \[\omega = -\frac{1}{\pi^2} \frac{\partial^2 \psi}{\partial \xi^2} \]
2. At large distances from the cylinder; \(r \to \infty, \xi \to \infty \),
 \[\psi \sim e^{\pi \xi} \sin(\pi \eta) \]
 \[\omega \to 0 \]
3. Along the axis of symmetry \(\eta = 0, \eta = 1 \), \(\psi = 0 \) and \(\omega = 0 \).

3. Numerical Method

The coupled nonlinear Navier-Stokes equations are solved by first applying finite difference method and the resulting algebraic equations are solved by using the multigrid method. Here, a recursive multigrid procedure is employed in which the smoother is a point Gauss Seidel iteration and the usual coarse grid correction is applied as follows [23]. Let there be a sequence of computational grids \(G^1, G^2, \ldots, G^l \) with \(G^k \) finer than \(G^{k-1} \). Let \(U^k \to \mathbb{R} \) be the space of grid functions on \(G^k \), let \(P^k : U^{k-1} \to U^k \) be a prolongation operator and let \(R^k : U^{k+1} \to U^k \) be a restriction operator. Suppose
we have a nonlinear (system of) partial differential equation(s), discretized on G^1, G^2, \ldots, G^l. On G^k, the algebraic problem to be solved is given by

$$A^k(u^k) = f^k$$

where, A^k is the matrix obtained by suitable discretization. If \hat{u} is the approximation to exact solution u, then, $(\hat{u} - u)$ represents the error e. Then, we have

$$Ae = -r = A\hat{u} - f$$

(13)

where, r is called the residue. The coarse grid approximation \bar{u} of $-e$ satisfies

$$\bar{A}\bar{u} = Rr$$

where, \bar{A} is the operator obtained by discretizing the original problem on a coarser grid and R is the restriction operator. If the grid under consideration is coarsest, then the above equation should be solved exactly. The coarse grid correction to be added to \hat{u} is $P\bar{u}$ (where P is the prolongation operator) given by

$$\hat{u} = \hat{u} + P\bar{u}$$

This represents one multigrid cycle. Solving on G^{l-1} by γ multigrid iterations results in the following recursive algorithm:

procedure MG(k, u, f)

begin

if $k = 1$ then solve $A^1(u^1) = f^1$ else

begin $S_1(k, u, f)$

Choose $\hat{u}^{k-1} \in U^{k-1}$

$f^{k-1} = A^{k-1}(\hat{u}^{k-1})$

for $i := 1$ step 1 until γ do MG($k - 1, u, f$)

$u^k = u^k + P^k(u^{k-1} - \hat{u}^{k-1})$

$S_2(k, u, f)$

end

end MG

where, S denotes a smoother involving a small number of point Gauss Seidel iterations.

The initial solution is taken as $\psi = 0$ and $\omega = 0$ at all inner grid points except for ψ at $\xi = \infty$ where the boundary condition holds. In finding the solution for higher values of Re and M, the solution obtained for lower values of Re and M are used as starting solution. Among the two variables, ω and ψ, we first solved for ω and then for ψ. Convergence is said to have been achieved when the difference between two successive iterations m and $m + 1$, at all interior grid points, is less than 10^{-5}, i.e.,

$$|\psi^{m+1} - \psi^m| < 10^{-5}$$

and

$$|\omega^{m+1} - \omega^m| < 10^{-5}.$$
The restriction operator R^{k-1}_k transfers a fine grid function U^k to a coarse grid function U^{k-1}. On the other hand the prolongation operator, denoted as P^{k-1}_{k-1}, transfers a coarse grid function U^{k-1} to a fine grid function U^k. For the restriction operator, the simplest form is ‘injection’ where by the values of a function in the coarse grid are taken to be exactly the values at the corresponding points of the next fine grid i.e.,

$$(R^{k-1}_k u^k)_{i+1, j+1} = u^k_{2i+1, 2j+1}.$$

We used the above injection operator throughout this study. For the prolongation operator the simplest form is derived using linear interpolation. Prolongation by linear interpolation introduces no ambiguity when the interpolated value is desired at the mid points of the boundaries of a mesh cell. The following 9-point prolongation operator defined by Wesseling [24] is used for the present study

$$(P^{k-1}_{k-1} u^{k-1})_{2i+1, 2j+1} = u^{k-1}_{i+1, j+1},$$

$$(P^{k-1}_{k-1} u^{k-1})_{2i+2, 2j+1} = \frac{1}{2} \left(u^{k-1}_{i+1, j+1} + u^{k-1}_{i+2, j+1} \right),$$

$$(P^{k-1}_{k-1} u^{k-1})_{2i+1, 2j+2} = \frac{1}{2} \left(u^{k-1}_{i+1, j+1} + u^{k-1}_{i+1, j+2} \right),$$

$$(P^{k-1}_{k-1} u^{k-1})_{2i+2, 2j+2} = \frac{1}{4} \left(u^{k-1}_{i+1, j+1} + u^{k-1}_{i+1, j+2} + u^{k-1}_{i+2, j+1} + u^{k-1}_{i+2, j+2} \right).$$

The solution obtained by the above method is not second order accurate as we have approximated all terms by second order central difference method except convective terms which are approximated by first order upwind difference scheme to ensure diagonal dominance. In order to achieve second order accurate solution, the defect correction method is employed as follows. If B is the operator obtained, for example, by first order upwind discretization and A is that obtained by second order accurate discretization, then defect correction algorithm [12], [13] works as given below. At the start of defect correction, \bar{y} is a solution that is not second order accurate, and at the end of defect correction, \bar{y} is second order accurate.

\begin{verbatim}
begin Solve $B\bar{y} = b$
 for $i := 1$ step 1 until n do
 solve $By = b - A\bar{y} + B\bar{y}$
 $\bar{y} := y$
 od
end
\end{verbatim}

Usually, in practice, it is sufficient to take $n = 1$ or 2.

4. Results and Discussions

Full, nonlinear Navier-Stokes equations for the MHD flow past a circular cylinder are solved using the multigrid method with defect correction technique for the range of Reynolds numbers from 10 to 40 and for different values of Hartmann number M, using 512×512 as the finest grid with 256×256, 128×128 and 64×64 as coarser
grids. The finite difference method is applied to the grid shown in Figure 1. We observed the separation at rear stagnation point for all Reynolds numbers considered in the present study, in $M = 0$ case (Figures 2-7). The length of the wake (l/a) and angle of the separation (θ_s) are found to increase with Re as observed by some researchers [8, 9]. With no magnetic field ($M = 0$), both length of the wake and angle of the separation values (Tables 1-3) are in good agreement with Dennis and Chang [8]. We observed that as the magnetic field is increased, the Lorentz forces dominate and produce a convective rate in a direction opposite to the flow resulting in the decrease of wake length and separation angle, for all Re values ($10 \leq Re \leq 40$). A similar phenomenon can be seen in the case of the translation of a sphere in a rotating viscous fluid [18, 19] and MHD flow past a sphere [21]. For $Re = 10$ the separation bubble disappeared completely at $M = 3$ (Figure 3). As the magnetic forces are proportional to and resist the flow of fluid in any other direction than that of the unperturbed magnetic field, near the cylinder, they produce changes in the pattern of the vorticity lines. The length of standing vortex is reduced slightly and the strength of the disturbance in front of the cylinder is increased with increasing magnetic field (Figures 8-13). It can also be seen that the radial component (u) of fluid velocity near the cylinder at $\theta = 90^o$ is suppressed more compared to the transverse component (v) as it (u) is not parallel to the magnetic field (Figures 16, 17). As the Hartmann number increases, the thickness of the boundary layer adjoining the cylinder surface decreases, indicating that it tends to zero for sufficiently large values of M ($M \gg 1$) (Figure 16). This may be attributed to the enhanced velocity gradients required by the viscous stresses to compete with the large magnetic forces.

The drag coefficients and surface pressure are calculated using the following relations:

Viscous drag coefficient

$$C_v = -\frac{4\pi}{Re} \int_0^1 \omega_{\xi=0} \sin(\pi \eta) d\eta$$ \hspace{1cm} (14)

Pressure drag coefficient

$$C_p = \frac{4}{Re} \int_0^1 \left(\frac{\partial \omega}{\partial \xi} \right)_{\xi=0} \sin(\pi \eta) d\eta$$ \hspace{1cm} (15)

Total drag coefficient

$$C_D = C_v + C_p$$ \hspace{1cm} (16)

and surface pressure

$$P(0, \eta) = 1 - \frac{4}{\pi Re} \int_0^{\infty} \left(\frac{\partial \omega}{\partial \eta} \right)_{\eta=1} d\xi - \frac{4}{Re} \int_0^1 \left(\frac{\partial \omega}{\partial \xi} \right)_{\xi=0} d\eta$$ \hspace{1cm} (17)

We found that as the thickness of the boundary layer decreases, the increased velocity gradients at the surface will increase the pressure drop (Figure 14) necessary to maintain the given flow rate. It can be seen from Figure 15 that the magnetic field tends to suppress the surface vorticity behind the cylinder thereby competing with the viscous diffusion of vorticity out from the surface. The observed flow field
is in accordance with the assumption that the effect of magnetic field is the small perturbation of zero field potential flow.

Table 1. Drag coefficient values for $Re = 10$

M	256 × 256	512 × 512	θ_s	$P(0, 0)$	$P(0, 1)$	(l/a)				
0.00	1.23	1.57	2.80	1.24	1.58	2.82	29.40	-0.70	1.48	1.55
1.00	1.23	1.61	2.84	1.23	1.59	2.83	25.40	-0.73	1.48	1.34
2.00	1.23	1.70	2.93	1.23	1.70	2.93	14.06	-0.83	1.50	1.05
3.00	1.30	1.93	3.23	1.31	1.93	3.24	0	-1.06	1.53	0

Table 2. Drag coefficient values for $Re = 20$

M	256 × 256	512 × 512	θ_s	$P(0, 0)$	$P(0, 1)$	(l/a)				
0.00	0.79	1.20	1.99	0.80	1.22	2.02	43.80	-0.53	1.26	2.81
3.00	0.79	1.26	2.05	0.79	1.26	2.05	34.71	-0.60	1.27	1.80
5.00	0.82	1.54	2.36	0.82	1.54	2.36	26.36	-0.87	1.30	1.40
7.00	0.89	1.90	2.79	0.89	1.90	2.79	21.72	-1.50	1.35	1.25

Table 3. Drag coefficient values for $Re = 40$

M	256 × 256	512 × 512	θ_s	$P(0, 0)$	$P(0, 1)$	(l/a)				
0.00	0.51	0.97	1.48	0.51	0.97	1.48	53.59	-0.46	1.14	5.74
3.00	0.51	1.00	1.51	0.51	1.01	1.52	44.45	-0.47	1.14	3.81
5.00	0.53	1.15	1.68	0.53	1.15	1.68	36.01	-0.54	1.15	2.80
7.00	0.57	1.43	2.00	0.57	1.44	2.01	31.09	-0.68	1.15	2.30

Table 4. Drag coefficient values before and after defect correction for $M = 0$

Re	128 × 128 before DC	128 × 128 after DC	256 × 256 before DC	256 × 256 after DC	512 × 512 before DC	512 × 512 after DC
10	2.7186	2.7280	2.7561	2.7683	2.8133	2.8221
20	1.8826	1.8901	1.9905	1.9941	1.9954	2.0185
40	1.3851	1.3928	1.4644	1.4723	1.4742	1.4805

Table 5. Comparison of Drag coefficient values for $M = 0$

Re	Present results	Dennis and Chang [8]	Fornberg [9]	Ingham and Tang [11]
10	2.82	2.846	—	—
20	2.02	2.045	2.000	1.995
40	1.48	1.522	1.498	—

In the case of $M = 0$, the drag coefficient values are in good agreement with the earlier work [8, 9, 11]. The drag coefficient values before and after applying defect correction (DC) in three different grids 128 × 128, 256 × 256 and 512 × 512 are given
in Table 4. The comparison of the drag coefficient values for $M = 0$ is given in Table 5 and the graph of drag coefficient versus Reynolds number is presented in Figure 18. It is observed that the effect of magnetic field decreases as Re increases up to the range considered in this study.

APPENDIX A. FIGURES

Figure 1. Finite difference grid

Figure 2. Streamlines for $Re = 10$, $M = 0$

Figure 3. Streamlines for $Re = 10$, $M = 3$
Figure 4. Streamlines for $Re = 20$, $M = 0$

Figure 5. Streamlines for $Re = 20$, $M = 7$

Figure 6. Streamlines for $Re = 40$, $M = 0$

Figure 7. Streamlines for $Re = 40$, $M = 7$
Figure 8. Vorticity lines for $Re = 10, M = 0$

Figure 9. Vorticity lines for $Re = 10, M = 3$
Figure 10. Vorticity lines for $Re = 20$, $M = 0$

Figure 11. Vorticity lines for $Re = 20$, $M = 7$
Figure 12. Vorticity lines for $Re = 40, \ M = 0$

Figure 13. Vorticity lines for $Re = 40, \ M = 7$
Figure 14. Surface pressure for $Re = 40$ at different M values

Figure 15. Surface vorticity for $Re = 40$ at different M values
Figure 16. Radial component of velocity within boundary layer at $\theta = 90^\circ$

Figure 17. Transverse component of velocity within boundary layer at $\theta = 90^\circ$
Figure 18. Drag coefficient versus Reynolds number at different M values

REFERENCES

1. Bae, H. M., Baranyi, L., Koide, M., Takahashi, T. and Shirakashi, M.: Suppression of Kármán vortex excitation of a circular cylinder by a second cylinder set downstream in cruciform arrangement, Journal of Computational and Applied Mechanics, 2, (2001), 175-188.

2. Baranyi, L. and Shirakashi, M.: Numerical solution for laminar unsteady flow about fixed and oscillating cylinders, Computer Assisted Mechanics and Engineering Sciences, 6, (1999), 263-277.

3. Baranyi, L.: Computation of unsteady momentum and heat transfer from a fixed cylinder in laminar flow, Journal of Computational and Applied Mechanics, 4, (2003), 13-25.

4. Bearman, P. W.: Developments in the understanding of blunt body flows, JSME Centennial Grand Congress, International Conference on Fluid Engineering, 1, Tokyo, (1997), 53-61.

5. Bramely, J. S.: Magnetohydrodynamic flow past a circular cylinder, Journal of Applied Mathematics and Physics, 25, (1974), 409-416.

6. Bramely, J. S.: Magnetohydrodynamic flow past a circular cylinder-II, Journal of Applied Mathematics and Physics, 26, (1975), 203-209.

7. Braza, M., Chassaing, P. and Minh, H. H.: Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, Journal of Fluid Mechanics, 165, (1986), 79-130.

8. Dennis, S. C. R. and Chang, G. Z.: Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, Journal of Fluid Mechanics, 42, (1970), 471-489.

9. Fornberg, B.: A numerical study of steady viscous flow past a circular cylinder, Journal of Fluid Mechanics, 98, (1980), 819-855.
10. Fornberg, B.: *Steady viscous flow past a circular cylinder upto Reynolds numbers 600*, Journal of Computational Physics, **61**, (1985), 297-320.

11. Ingham, D. B. and Tang, T.: *A numerical investigation into the steady flow past a rotating circular cylinder at low and moderate Reynolds numbers*, Journal of Computational Physics, **87**, (1990), 107-124.

12. Juncu, G. H. and Mihail, R.: *Numerical solution of the steady incompressible Navier-Stokes equations for the flow past a sphere by a multigrid defect correction technique*, International Journal of Numerical Methods in Fluids, **11**, (1990), 379-395.

13. Juncu, G. H.: *A numerical study of steady viscous flow past a fluid sphere*, International Journal of Heat and Fluid Flow, **20**, (1999), 414-421.

14. Karniadakis, G. E. and Triantafyllou, D. S.: *Frequency selection and asymptotic states in laminar wakes*, Journal of Fluid Mechanics, **199**, (1989), 441-469.

15. Kawamura, T. and Kuwahara, K.: *Computation of high Reynolds number flow around a circular cylinder with surface roughness*, Proceedings of the 22nd Aerospace Sciences Meeting, Reno, Nevada, AIAA-84-0340, (1984), 1-11.

16. Norberg, C.: *Flow around a circular cylinder: aspects of fluctuating lift*, Journal of Fluids and Structures, **15**, (2001), 459-469.

17. Norberg, C.: *Fluctuating lift on a circular cylinder: review and new measurements*, Journal of Fluids and Structures, **17**, (2003), 57-96.

18. Raghava rao, C. V. and Sekhar, T. V. S.: *Numerical solution of the slow translation of a sphere moving along the axis of a rotating viscous fluid*, Computational Fluid Dynamics **1**, (1993), 351.

19. Raghava rao, C. V. and Sekhar, T. V. S.: *Translation of a sphere in a rotating viscous fluid - A numerical study*, International Journal of Numerical Methods in Fluids, **20**, (1995), 1253.

20. Roshko, A.: *On the development of turbulent wakes from vortex sheets*, NACA Rep., 1191, 1954.

21. Sekhar, T. V. S., Ravikumar, T. V. R. and Harish kumar: *MHD flow past a sphere at low and moderate Reynolds numbers*, Computational Mechanics **31**, (2003) 437-444.

22. Shanti swarup and Sinha, P. C.: *Magnetohydrodynamic flow past a circular cylinder*, Journal of Applied Mathematics and Physics, **28**, (1977), 73-83.

23. Wesseling, P.: *Multigrid Methods in Fluid Dynamics*, In Eds. W Hackbusch and U Trottenberg. Multigrid Methods-III, T337, (1991).

24. Wesseling, P.: *Report NA-37*, Delft University of Technology, The Netherlands (1980).

25. Williamson, C. H. K.: *Vortex dynamics in the cylinder wake*, Annual Review of Fluid Mechanics, **28**, (1996), 477-539.