PreMOn: a Lemon Extension for Exposing Predicate Models as Linked Data

Francesco Corcoglioniti, Marco Rospocher, Alessio Palmero Aprosio, Sara Tonelli
Fondazione Bruno Kessler – IRST
Via Sommarive 18, Trento, I-38123, Italy
{corcoglio,rospocher,aprosio,satonelli}@fbk.eu

Abstract

We introduce PreMOn (predicate model for ontologies), a linguistic resource for exposing predicate models (PropBank, NomBank, VerbNet, and FrameNet) and mappings between them (e.g., SemLink) as Linked Open Data. It consists of two components: (i) the PreMOn Ontology, an extension of the lemon model by the W3C Ontology-Lexica Community Group, that enables to homogeneously represent data from the various predicate models; and, (ii) the PreMOn Dataset, a collection of RDF datasets integrating various versions of the aforementioned predicate models and mapping resources. PreMOn is freely available and accessible online in different ways, including through a dedicated SPARQL endpoint.

Keywords: Predicate Models; Predicate Model Mappings; Lemon; Semantic Web; Linguistic Linked Open Data.

1. Introduction

Predicate models such as PropBank (herafter, PB) (Palmer et al., 2005), NomBank (NB) (Meyers et al., 2004), VerbNet (VN) (Schuler, 2005), and FrameNet (FN) (Baker et al., 1998) provide rich descriptions of predicate semantic classes — i.e., rolesets in NB and PB, verb classes in VN, and frames in FN (e.g., “Commerce Sell”) — and their semantic roles (e.g., “Seller” and “Buyer”), abstracting from a number of linguistic phenomena related to their realization in text. Thanks to the mappings of different predicate models, such as SemLink (Palmer, 2009) and the Predicate Matrix (Lacalle et al., 2014), and to their integration in Semantic Role Labeling (SRL) tools, they have become central to a number of tasks such as information extraction, question answering and natural language generation. In particular, due to their laying at the syntactic-semantics interface, predicate models are increasingly used within the Semantic Web (SW) community, for knowledge extraction in tools such as NewsReader (Rospocher et al., 2016) and PIKES (Corcoglioniti et al., 2016), or as the starting point for deriving general-domain ontologies grounded in natural language, such as FrameBase (Rouces et al., 2015) and the ESO ontology (Segers et al., 2015) derived from FN. Compared to the current situation where each predicate model has its own terminology, structure and proprietary XML format, the availability of a single RDF/OWL ontological model covering the main predicate models with their common aspects, specificities, and mappings would be beneficial to all the applications mentioned above, within and outside the SW area. Indeed, the use of SW technologies and the adoption of the Linked Open Data (LOD) paradigm have already been recognized as particularly beneficial to linguistic resources (see, e.g., Chiarcos et al. (2013), leading to the creation of the Linguistic Linked Open Data cloud curated by the Open Linguistic subgroup of the Open Knowledge Foundation1). In that context, the lemon (lexical model for ontologies) model by McCrae et al. (2012), recently revised by the W3C Ontology Lexicon Community Group (2015), already sets the basis for modeling the lexical entries referenced in predicate models (e.g., the verb ‘sell’), together with their links (lexical senses) to corresponding ontological concepts.

Building on lemon, in this paper we present PreMOn (predicate model for ontologies)2, a linguistic resource for exposing predicate models and mappings between them. It consists of two components: the PreMOn Ontology, an OWL 2 ontology that extends lemon for modeling semantic classes and semantic roles, the relations among them, their annotations in text, and the mappings between semantic classes and roles in different resources; and (ii), the PreMOn Dataset, a freely-available, interlinked RDF dataset for PB, NB, VN, FN, and the associated mapping resources, published online as Linked Open Data according to the conceptual schema defined by the PreMOn Ontology. PreMOn brings several benefits to users of predicate models:

1. ease of access and reuse of predicate model data, due to the adoption of a common RDF format, stable URIs, and LOD best practices;
2. possibility to abstract and capture the aspects common to different predicate models, while at the same time keeping track of the peculiarities of each model (using RDFS/OWL subclass/subproperty primitives);
3. possibility to apply SW technologies to predicate model data, such as automated reasoning and SPARQL querying, e.g., for retrieving the semantic classes of a lexical entry and the associated mappings;
4. possibility to combine PreMOn with other linguistic ontologies, e.g., for providing the SRL annotations of a text according to the NLP Interchange Format (NIF) (Hellmann et al., 2013);
5. possibility for third parties to publish and interlink their datasets with PreMOn, extending it in a decentralized way (e.g., with new mappings).

The paper is structured as follows. Section 2 provides an overview of the predicate models considered in PreMOn and of related prior works in the SW. Sections 3 and 4 illustrate the PreMOn Ontology with its core concepts and specialized modules for each predicate model, while Section 5 describes the PreMOn Dataset. Section 6 discusses possible applications, while Section 7 concludes.

1 Available at http://linguistics.okfn.org/

2 Available at http://premon.fbk.eu/
mantic roles of a frame are called frame element (FEs): agent, a function tag, such as LOC for location), and modifiers (ArgM plus a function tag, such as LOC for location), and secondary agent (ArgA in OntoNotes). Annotated examples are provided for each semantic class. A summary of PB features, compared to other predicate models, is reported in Table 1.

Aspect	NomBank	PropBank	VerbNet	FrameNet
Considered parts-of-speech	noun	verb	verb	any (9 total)
Term for semantic classes	roleset	roleset	verb (sub-class)	frame
Lexical entries per class	exactly one	exactly one	zero or more	zero or more
Scope of semantic roles	local to semantic class	local to semantic class	global	local to semantic class (core roles)
Types of semantic roles	numbered, modifier	numbered, modifier, secondary agent	thematic role (hierarchy)	core + other 3 types
Semantic class relations	–	–	subclass	inheritance + 8 relations
Semantic role relations	–	–	–	inheritance + 9 relations
Additional features	mappings to PB, VN	mappings to VN	selectional restrictions, syntactic frames	semantic types on classes, roles, lexical units

2. Background

PropBank is a predicate model for verbs, later extended to other parts-of-speech in OntoNotes. **NomBank** is a model for noun predicates that closely mirrors PB, in that it associates nouns to (noun-specific) semantic classes also called rolesets, and defines semantic roles locally to semantic classes, categorizing them as numbered arguments and modifiers. Examples are provided for each semantic class.

VerbNet is a predicate model for verbs inspired by Levin classes. Semantic classes in VN are organized in a hierarchy of verb classes. A verb class is associated to multiple verb lexical entries and to multiple globally defined thematic roles (e.g., agent, patient), which describe the semantic roles for that class (with possible selectional restrictions) and form themselves a role hierarchy. Verb classes are also associated to syntactic frames. They define how semantic roles can be realized syntactically (e.g., “Agent V Theme”) and are associated to a specification of the conveyed semantics based on logical-like predicates applied to thematic role and event variables (e.g., “cause(Agent, E)”). Both thematic roles and syntactic frames are inherited by subclasses. An example sentence is provided for each frame of a verb class.

FrameNet builds on the theory of frame semantics to provide semantic classes called frames that define prototypical situations evoked by lexical entries of different parts-of-speech. The pair (frame, lexical entry) is called lexical unit. The semantic roles of a frame are called frame elements (FEs): core and core unexpressed FEs classify mandatory arguments and characterize a frame, differently from peripheral FEs, while extra-thematic FEs (e.g., “Iteration”) situate the frame in a larger context. A set of typically co-expressed FEs form a CoreSet. Several Frames and FE relations are defined, starting from frame inheritance, along which Core FEs (but not unexpressed ones) are propagated. A small subset of frames and FEs is annotated with semantic types, that for FEs are used to express selectional constraints. Annotated examples are provided for each lexical unit.

SemLink is a resource providing a mapping between the (lexical entry, semantic class) pairs of (i) VN and PB and (ii) VN and FN, as well as between the semantic roles of these resources.

Predicate models in RDF/OWL

Despite the advantages mentioned in Section 1 and the availability of ontologies such as lemon, few attempts have been made for representing predicate models in RDF. To the best of our knowledge, no RDF version of PB and NB exists. An ontological model of VN is presented in Gangemi (2010) but no RDF data is available. An RDF version of FN 1.5 is available, but its schema is not aligned to lemon and instead closely mirrors the structure and naming used in FN file frames. Finally, VN and FN have been exposed in RDF/lemon as part of lemonUby (Eckle-Kohler et al., 2015), a lemon version of Uby, but several modeling decisions are no more aligned with the latest developments of lemon by the W3C Ontology-Lexica Community Group (besides, only RDF data for an old FN version is available).

3. The PreMON Ontology – Core Module

The PreMON Ontology is an extension of lemon (W3C Ontology Lexicon Community Group, 2015) for representing predicate models and their mappings. An overview of the PreMON Ontology core module, and its relation with lemon, is shown in Figure 1 using a UML-like notation. To guide the exposition, we will also refer to Figure 2 showing an example of instantiation of semantic classes and roles for
the predicate models here considered, as well as an example of mapping between resources from different models.

3.1. Semantic Classes and Roles

lemon represents lexical entries (class ontolex:LexicalEntry) with their associated lexical forms, and allows relating entries to the ontological entities they denote (classes, properties, individuals) using the ontolex:LexicalSense refined relation. Besides mapping to an ontology, which provides the extensional (formal) interpretation of lexical entries, lemon supports mapping entries to ontolex:LexicalConcepts (subclass skos:Concept), each denoting an intentional (~informal) meaning evoked by a set of lexical entries. Example of lexical concepts are WordNet synsets, whose semantics is not formally encoded in an ontology.

We extend lemon by introducing classes pmo:SemanticClass and pmo:SemanticRole (filled in light green in Figure 1). pmo:SemanticClass homogeneously represents the semantic classes from the various predicate models. That is, individuals of this class correspond to rolesets in PB and NB (e.g., pm:nb10-seller.01 and pm:pb17-sell.01-arg1 in Figure 2), verb classes in VN (e.g., pm:vn32-give-13.1-1), and frames in FN (e.g., pm:fn15-commerce_sell). An instance of pmo:SemanticClass typically has (via property pmo:semRole) a number of pmo:SemanticRoles, representing, from a semantic point of view, the roles the arguments of that pmo:SemanticClass can play. For instance, the triple pm:pb17-sell.01 pmo:semRole pm:pb17-sell.01-arg1 states that pm:nb10-seller.01 has the semantic role pm:nb10-seller.01-arg1. Importantly, semantic roles are defined locally to semantic classes, so VN ‘agent’ is represented as multiple semantic roles, one for each verb class it occurs in, and with each semantic role linked to its specific selectional restrictions (if any). Note that pmo:SemanticClass is defined as subclass of ontolex:LexicalConcept, as we see pmo:SemanticClasses as essentially informal concepts rather than well defined concepts of a formal ontology (although an ontology can be derived from them, cf., FrameBase and ESO). Being ontolex:LexicalConcepts, pmo:SemanticClasses inherit the link to lexical entries as well as the link (via ontolex:isConceptOf) to the ontological entities formalizing them, typically event classes.

Properties pmo:classRel and pmo:roleRel, and their resource-specific subproperties, are introduced to express the identify the resource and its version (e.g., NB 1.0, PB 1.7).
relations between elements at each level, such as subtyping, and predicate and role inheritance (e.g., pmofn:inheritsFrom and pmofn:inheritsFromFER for FN). Additional resource-specific classes (e.g., pmo:n:ThematicRole, filled in light blue in Figure 1) and properties (e.g., pmovn:thematicRole) further characterize important aspects of each predicate model, like commonalities between semantic roles.

3.2. Mappings

Mappings between different predicate models are practically relevant but cannot be expressed using only the classes above, as they are often defined (e.g., in SemLink and PredicateMatrix) in terms of \(\langle \text{pmo:SemanticClass}, \text{ontolex:LexicalEntry} \rangle \) pairs. To model these pairs, one could reuse the notion of \text{ontolex:LexicalSense}. However, its formalization in \text{lemon} as refined relation depends on the existence of (exactly) one ontological entity for each \(\langle \text{ontolex:LexicalConcept}, \text{ontolex:LexicalEntry} \rangle \) pair, a strong constraint that we do not necessarily need for our purposes. Therefore, we introduce the \text{pmo:Conceptualization} class (filled in light red in Figure 1) together with other mapping related classes. Structurally, a \text{pmo:Conceptualization} can be seen as the reification of the \text{ontolex:evokes} relation between \text{ontolex:LexicalEntry} and \text{ontolex:LexicalConcept}. Semantically, it can be seen as a very specific intensional concept (among many, in case of polysemy) evoked by a single \text{ontolex:LexicalEntry}, which can be generalized to a \text{ontolex:LexicalConcept} when multiple entries are considered but with a possible loss of information that prevents precise alignments to be represented.

Mappings are explicitly represented as individuals of \text{pmo:Mapping}, and can be seen as sets of (or n-ary relations between) either (i) \text{pmo:Conceptualizations}, (ii) \text{pmo:SemanticClasses}, and (iii) \text{pmo:SemanticRoles}, with role mappings anchored to conceptualization or class mappings via property \text{pmo:semRoleMapping}. Figure 2 shows an example of mapping (\text{pm:mapping}_{1356}) between two \text{pmo:Conceptualizations}, one from NB (\text{pm:co-n-seller-nb10-seller.01}) and one from PB (\text{pm:co-v-sell-pb17-sell.01}). We rely on this set-like modeling, since mappings are not necessarily represented as binary relations in predicate mapping resources: e.g., in the PredicateMatrix, each row represents the mapping of a semantic role / lexical entry pair over the different resources (e.g., \langle 13.1-1-agent, deal \rangle in VN, \langle sell.01-arg0, sell \rangle in PB, \langle CommerceSeller, sell \rangle in FN) as well as the corresponding WordNet verb sense. Reifying the n-ary mapping relation also allows us, if needed, to further characterize each single mapping, asserting additional information such as confidence and reliability. Moreover, it is possible to further specialize mappings (e.g., to model mappings holding only in one direction, from a resource to another one, or to represent different types of relationships among the members of the mapping) by subtyping the \text{pmo:Mapping} class or the property \text{pmo:item} relating a \text{pmo:Mapping} to its members.

3.3. Annotations

Predicate models are typically complemented by examples showing concrete occurrences of semantic classes and roles in text. More generally, a text can be annotated with seman-
tic classes and roles as a result of manual or automatic SRL. The \text{PreMon Ontology} provides some common primitives (filled in light yellow in Figure 1), based on the NLP Interchange Format (NIF) by [Hellmann et al. (2013)], which aim at properly modeling the heterogeneous annotations of a text for different predicate models. NIF introduces the general notion of \text{nif:Annotation} to represent arbitrary text strings. \text{nif:Context} is a particular subclass of \text{nif:Annotation}, representing a whole string of text. Any substring (itself a \text{nif:Annotation}) has a \text{nif:referenceContext} relation to the \text{nif:Context} individual representing the whole text containing it.

To specifically model the aforementioned examples complementing predicate models, we introduce \text{pmo:Example}, subclass of \text{nif:Context}, to represent the string associated with the example. The occurrence of a \text{ontolex:LexicalEntry}, \text{pmo:SemanticClass}, or \text{pmo:SemanticRole} in a \text{nif:Context} is denoted by an instance of \text{nif:Annotation}, related to the given \text{ontolex:LexicalEntry}, \text{pmo:SemanticClass}, or \text{pmo:SemanticRole} via property \text{pmo:valueObj} (the value attached to the annotation), and to the \text{nif:Context} instance via property \text{nif:annotation}. If detailed information on the specific span of text (i.e., substring) denoting the \text{ontolex:LexicalEntry}, \text{pmo:SemanticClass}, or \text{pmo:SemanticRole} is available (e.g., FN provides the specific offsets of lexical units, frames, and frame elements, in the example text) an additional instance of \text{pmo:Markable}, subclass of \text{nif:String}, is created and linked to the specific \text{nif:Annotation} and \text{nif:Context} via properties \text{nif:annotation} and \text{nif:referenceContext}, respectively. As the same \text{nif:Context} may contain multiple \text{nif:Annotations} referring to one or more semantic classes and their corresponding roles, an additional \text{pmo:AnnotationSet} instance is created to cluster annotations from the same predicate structure.

4. Specializing the \text{PreMon Ontology}

While the \text{PreMon Ontology} Core Module provides an homogeneous abstraction over heterogeneous predicate models, additional ontology modules, specializing or extending the \text{PreMon Ontology} core elements, can be defined to properly capture and model resource-specific aspects (including terminology) in a way compatible with the underlying \text{PreMon Ontology} assumptions. We developed four ontology modules, one for each predicate model: PropBank, NomBank, VerbNet, and FrameNet. An overview of the main additional classes (filled in light blue) and properties defined is shown in Figures 3, 4, 5, and 6.

4.1. \text{PreMon Ontology} – PropBank

Namespace: \text{http://premon.fbk.eu/ontology/pb#}

Prefix: pmopb

We define classes \text{pmopb:Roleset} and \text{pmopb:SemanticRole} as subclasses of \text{pmo:SemanticClass} and \text{pmo:SemanticRole}, respectively. Each \text{pmopb:SemanticRole} instance is related (via property \text{pmopb:argument}) to exactly one \text{pmopb:Argument}, which is defined as the disjoint union...
of three subclasses: pmo:NumberedArgument, containing the individuals corresponding to numbered arguments (e.g., Arg0, Arg1); pmo:Modifier, containing the individuals corresponding to modifiers (e.g., ArgM-LOC, ArgM-TMP); and, pmo:SecondaryAgent, containing the single individual annotating secondary agents (ArgA). While PB annotation guidelines define a single modifier (ArgM) with multiple function tags (e.g., LOC, TMP), we opt to specialize the modifier for each function tag, similarly to the way these arguments are actually annotated by state-of-the-art SRL tools. Property pmo:tag enables associating possible tags, either a pmo:Modifier or some additional tag defined in class pmo:Tag, to pmo:SemanticRoles, or nif:Annotations of semantic roles in examples. Additional classes (and related properties) are defined to represent inflectional information about examples: pmo:Inflexion, pmo:Person, pmo:Tense, pmo:Aspect, pmo:Voice, and pmo:Form.
4.2. PreMOn Ontology – NomBank

Namespace: http://premon.fbk.eu/ontology/nb#
Prefix: pmonb

Similarly to PB, we define pmonb:Roleset and pmonb:SemanticRole as subclasses of pmo:SemanticClass and pmo:SemanticRole, respectively. Each pmonb:SemanticRole instance is related (via property pmonb:argument) to exactly one pmonb:Argument, which is defined as the disjoint union of two subclasses: pmonb:NamedArgument, containing the individuals corresponding to numbered argument (e.g., Arg0, Arg1), and pmonb:Modifier, containing the individuals corresponding to modifiers (e.g., ArgM-LOC, ArgM-TMP). We also define class pmonb:Tag to capture (via property pmonb:tag) some specific annotations of markables (e.g., PRD, REF, SUPPORT) in the examples.

4.3. PreMOn Ontology – VerbNet

Namespace: http://premon.fbk.eu/ontology/vn#
Prefix: pmovn

We define classes pmovn:VerbClass and pmovn:SemanticRole as subclasses of pmo:SemanticClass and pmo:SemanticRole, respectively. Class members are modeled as instances of ontolo:LexicalEntry, connected to their class via property ontolo:evokes. The VN class hierarchy is modeled via the pmovn:subclassOf property (subproperty of skos:broader), that relates a verb class (e.g., 13.1-1) with its parent class (e.g., 13.1). Given the propagation of semantic roles along the class hierarchy, we introduce property pmovn:definesSemRole to differentiate the pmovn:SemanticRole instances defined on a class from the ones inherited from its ancestor classes. Each pmovn:SemanticRole instance is related (via property pmovn:thematicRole) to exactly one pmovn:ThematicRole, which contains all the thematic roles defined in VB. These thematic roles are organized in a hierarchy, which is formalized via the skos:broader property. For instance, pmovn:agent skos:broader pmovn:actor states that pmovn:agent is more specific than pmovn:actor. VN selectional restrictions on pmovn:SemanticRoles (e.g., restricting “theme” to something not animate) are formalized using property pmovn:restriction and class pmovn:Restriction. A verb class may have one or more pmovn:VerbNetFrames (via property pmovn:frame, or its subproperty pmovn:definesFrame, to distinguish frames defined on the class or inherited from ancestors), which have one or more ordered pmovn:SyntItems, modeling a syntactic construction (e.g., “Agent V Theme [-sentential]”) shared by all members of the class, and one or more ordered semantic pmovn:Preds, modeling the meaning of the event, and its participants, expressed by the verb class for that syntactic construction (e.g., “approve during(E), Agent, Theme”). pmovn:SyntItems are specialized according to their syntactical function (e.g., pmovn:NpSyntItem for noun phrases). A pmovn:NpSyntItem can point (via pmovn:valueObj) to a pmovn:SemanticRole, and define, via pmovn:restriction, (i) a selectional restriction holding for the pmovn:SemanticRole in that frame (e.g., “animate”), or (ii) some other syntactic restriction (e.g., “np_to_inf”). Similarly, selectional restrictions can be modelled on pmovn:PrepSyntItem (e.g., “spatial”). Predicates in pmovn:Pred have a type (pmovn:PredType, e.g., “approve”) and can be further decomposed in pmovn:PredArg (e.g., “during(E)”) of various types (e.g., pmovn:EventPredArg). Negation of a predicate is expressed by typing the corresponding instance as pmovn:NegPred, while implicit pmovn:PredArgs are typed as pmovn:ImplicitArg.

4.4. PreMOn Ontology – FrameNet

Namespace: http://premon.fbk.eu/ontology/fn#
Prefix: pmofn

We define classes pmofn:Frame and pmofn:FrameElement as subclasses of pmo:SemanticClass and pmo:SemanticRole, respectively. pmofn:FrameElement is further specialized in four subclasses, denoting the four typologies of FN frame elements (e.g., pmofn:CoreFrameElement). Being pmo:SemanticRoles, in PreMOn Ontology frame elements are always specific to the frame where they are defined, even for extra thematic frame elements that are typically shared across frames in FN (e.g., the “Corresponding” extra thematic frame element corresponds to multiple individuals of type pmofn:ExtraThematicFrameElement, one for each frame where it is defined). Frame element core sets of a pmofn:Frame are represented as reified objects of type pmofn:FECoreSet, having as members some pmofn:FrameElements. Relations between pmofn:Frames are modeled using the subproperties of pmofn:frameRelation (e.g., pmofn:inheritsFrom). Similarly, mappings between pmofn:FrameElements of pmofn:Frames related via some pmofn:frameRelation are represented using frame relation-specific subproperties of pmofn:frameElementRelation (e.g., pmofn:inheritsFromFER). Within a frame, a frame element may exclude/require the presence of another frame element (pmofn:excludesFrameElement/pmofn:requiresFrameElement). pmofn:LexicalUnit, associating a lexical entry with a frame, is defined as subclass of pmo:Conceptualization. A pmofn:LexicalUnit may have a development status (pmofn:LUSstatus) and can incorporate a pmofn:FrameElement (e.g., “microwave”, besides evoking frame “Apply heat”, also incorporates the frame element “Heating instrument”). Finally, pmofn:Frames, pmofn:FrameElements and pmofn:LexicalUnits can be constrained according to some semantic types, defined in pmofn:SemType, and organized in a hierarchy according to pmofn:subTypeOf relations between them.

5. The PreMOn Dataset

Namespace: http://premon.fbk.eu/resource/
Prefix: pm

To populate PreMOn with content from the various resources (predicate models, mappings), we developed an open-source Java command-line tool available on PreMOn website. The tool applies pluggable, resource-specific converters to the original distribution files of each resource, instantiating the proper individuals and assertions according

12 A detailed presentation of the formalization of selectional / syntactic restrictions is omitted in the paper due to lack of space. More details are provided on PreMOn website.

13 We relied on the standard first/next/item pattern for lists.
to the PreMOn Ontology. If available, mappings to additional resources (e.g., WordNet synsets, OntoNotes groupings) are also extracted. OWL 2 RL inference, statistics extraction and some cross-resource cleanup (e.g., for dropping inconsistent mappings) are applied to extracted triples, leveraging RDFPro (Carcogliotti et al., 2015) for RDF processing. The resulting triples are placed in distinct named graphs identified by the resource name and version (e.g., pm:fn15 for FN v1.5), so to track provenance at a coarse-grained level and allow querying only data of specific predicate models using SPARQL clauses FROM and FROM NAMED. Examples, and related triples, are placed in further separated named graphs (e.g., pm:fn15-œ), and their extraction can be enabled/disabled at runtime. Specific conversion strategies had to be implemented for each predicate model. E.g., in VN, semantic roles (with selectional constraints) and frames have to be propagated from a class to its subclasses, unless redefined in the latter. In PB (and NB), the instantiation of \(\text{pmopb:SemanticRole} \) from a class to its subclasses, unless redefined in the latter.

Selectional constraints) and frames have to be propagated from a class to its subclasses, unless redefined in the latter.

Specific conversion strategies had to be implemented for each predicate model. E.g., in VN, semantic roles (with selectional constraints) and frames have to be propagated from a class to its subclasses, unless redefined in the latter. In PB (and NB), the instantiation of \(\text{pmopb:SemanticRole} \) from a class to its subclasses, unless redefined in the latter. Other interesting queries can be answered given PreMOn data (see website) as, e.g., to map a semantic class or role (for a lexical entry) from a resource to another, possibly navigating chains of mappings via SPARQL property paths, or, together with WordNet RDF data, to find synonymous lexical entries that can extend a resource lexicon. The use of a single RDF model for multiple resources, amenable to the use of reasoning, querying and other SW data processing techniques, opens up new opportunities for analyzing, validating, and possibly cleaning up predicate model data. We already implemented a simple technique for identifying inconsistent mappings, which we currently remove, and we plan to further pursue this direction. By exploiting PreMOn data and ontology, NLP and knowledge extraction tools can now express SRL annotations in RDF in a way compatible with the increasingly used NIF. Indeed, the PreMOn formalization of the usage examples released with predicate models shows a concrete case of SRL annotation data exposed according to NIF principles. We are currently working on adapting the PIKES system to provide proper linguistic grounding for ontologies. In particular, PreMOn enables to ground event and frame ontologies, such as FrameBase and ESO, on a proper representation of the linguistic information for predicates, thus supporting the development of a comprehensive catalogue, from the linguistic to the knowledge level, of event and event participant types.

6. Leveraging PreMOn

By adopting an homogeneous schema for heterogeneous predicate models, PreMOn facilitates the joint querying of content from different resources. Figure 7 shows an example of query, run through the SPARQL endpoint on PreMOn website, that looks for lexical entries (?)lexEnt) evoking semantic classes in different resources (?)ressource), for which no mappings are defined. Results are ordered by decreasing number of resources defining the lexical entry. This query hints a way to exploit PreMOn to investigate, and possibly extend, mappings between predicate models.

Other interesting queries can be answered given PreMOn data (see website) as, e.g., to map a semantic class or role (for a lexical entry) from a resource to another, possibly navigating chains of mappings via SPARQL property paths, or, together with WordNet RDF data, to find synonymous lexical entries that can extend a resource lexicon.

7. Conclusions

PreMOn is both an ontology extending lemon for representing predicate models and their mappings, and a LOD dataset based on that ontology that contains interlinked predicate data for several predicate models. Future works will leverage the possibility to query and reason on the PreMOn Dataset and will focus on: (i) extending the mappings between predicate models, integrating data from the Predicate Matrix; (ii) mapping semantic classes and roles to concepts in the FrameBase and ESO ontologies; and (iii) mapping selectional constraints from VN and FN, as well as from works such as (Bryl et al., 2012), to a
common ontology (e.g., Yago), possibly propagating these constraints to PB and NB. All these lines of work are part of a larger effort to create a coherent resource for knowledge extraction that maps predicate models used by available SRL tools to FrameBase and other SW ontologies.

Acknowledgements Partially funded by the European Union’s FP7 via the NewsReader Project (ICT-316404).

8. References
Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The Berkeley FrameNet project. In Proc. COLING-ACL ’98.
Bryl, V., Tonelli, S., Giuliano, C., and Serafini, L. (2012). A novel FrameNet-based resource for the Semantic Web. In Proc. of ACM SAC 2012, pages 360–365.
Chiarcos, C., McCrae, J., Cimiano, P., and Fellbaum, C. (2013). Towards open data for linguistics: Linguistic Linked Data. In New Trends of Research in Ontologies and Lexical Resources.
Corcoglioniti, F., Rospocher, M., Mostarda, M., and Amadori, M. (2015). Processing billions of RDF triples on a single machine using streaming and sorting. In Proc. of ACM SAC 2015, pages 368–375.
Corcoglioniti, F., Rospocher, M., and Palmero Aprosio, A. (2016). A 2-phase frame-based knowledge extraction framework. In Proc. of ACM SAC 2016. to appear.

Eckle-Kohler, J., McCrae, J. P., and Chiarcos, C. (2015). lemonUby - A large, interlinked, syntactically-rich lexical resource for ontologies. Sem. Web. J., 6(4):371–378.
Gangemi, A. (2010). What’s in a schema? In Ontology and the Lexicon, pages 144–182. Cambridge Uni. Press.
Hellmann, S., Lehmann, J., Auer, S., and Brümer, M. (2013). Integrating NLP using Linked Data. In Proc. of ISWC 2013, pages 98–113.
Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., and Weischedel, R. (2006). OntoNotes: The 90% solution. In Proc. of HLT-NAACL (Short Papers), pages 57–60.
Lacalle, M. L. D., Laparra, E., and Rigau, G. (2014). Predicate Matrix: extending SemLink through WordNet mappings. In Proc. of LREC 2014.
McCrae, J., Agudo-De-Cea, G., Buitelaar, P., Cimiano, P., Declerck, T., Gómez-Pérez, A., Gracia, J., Hollink, L., Montiel-Ponsoda, E., Spohr, D., and Wunner, T. (2012). Interchanging lexical resources on the Semantic Web. Lang. Resour. Eval., 46(4):701–719.
Meyers, A., Reeves, R., Macleod, C., Szekely, R., Zielinska, V., Young, B., and Grishman, R. (2004). The NomBank project: An interim report. In HLT-NAACL 2004 Workshop: Frontiers in Corpus Annotation.
Palmer, M., Gildea, D., and Kingsbury, P. (2005). The Proposition Bank: An annotated corpus of semantic roles. Comput. Linguist., 31(1):71–106.
Palmer, M. (2009). SemLink: Linking PropBank, VerbNet and FrameNet. In Proc. of GenLex 2009.
Rospocher, M., van Erp, M., Vossen, P., Fokkens, A., Aldabe, I., Rigau, G., Soroa, A., Ploeger, T., and Bogaard, T. (2016). Building event-centric knowledge graphs from news. Journal of Web Semantics. to appear.
Rouces, J., de Melo, G., and Hose, K. (2015). FrameBase: Representing n-ary relations using semantic frames. In Proc. of ESWC 2015.
Schuler, K. K. (2005). Verblend: A Broad-coverage, Comprehensive Verb Lexicon. Ph.D. thesis.
Segers, R., Vossen, P., Rospocher, M., Serafini, L., Laparra, E., and Rigau, G. (2015). ESO: a frame based ontology for events and implied situations. In MAPLEX 2015.
W3C Ontology Lexicon Community Group. (2015). Final model specification. Technical report. http://w3.org/community/ontolex/wiki/Final_Model_Specification.

Table 1: PreMOn Dataset General Statistics.

source-target (resource)	# mappings	conceptualization	class	role
nb10-to-pb17 (nb10)	3,473	3,473	–	–
nb10-to-pb17 (nb10)	3,473	3,473	–	–
nb10-to-vn32 (nb10)	1,081	1,664	3,410	–
nb10-to-vn32 (nb10)	1,081	1,664	3,410	–
vn32-to-fn15 (vn32)	3,528	–	–	–
vn32-to-vn32 (vn32)	3,528	–	–	–
vn32-to-fn15 (vn32)	3,528	–	–	–
Total	36,253	33,272	77,545	–