I. INTRODUCTION

The extrapolation from globally fitting the Λ-cold-dark-matter (ΛCDM) model to the cosmic microwave background (CMB) data renders the Hubble constant $H_0 = 67.27 \pm 0.60\, \text{km s}^{-1}\, \text{Mpc}^{-1}$ to an unprecedented accuracy 2. On the other hand, the combined big bang nucleosynthesis (BBN) + baryon acoustic oscillation (BAO) constraint $^3,^4,^5$ is independent of the CMB data, yet still shares a similar H_0 value as inferred by CMB data if ΛCDM is assumed throughout the early Universe. Furthermore, the consistency of ΛCDM with respect to the early-Universe observations is also manifested in the consistency tests of the early integrated Sachs-Wolfe effect 6 and the sound horizon measured at the matter-radiation equality, recombination, and the end of the drag epoch $^7,^8$ or EE-polarized $^9,^10$ CMB data, the early-Universe observations could, at the very least, achieve a consensus on the Hubble constant $H_0 \lesssim 70\, \text{km s}^{-1}\, \text{Mpc}^{-1}$.

However, the Hubble constants inferred by ΛCDM from early-Universe observations are systematically lower than those from local measurements either depending on or independent of the distance ladders. The local measurements with distance ladders heavily rely on the calibrations from Cepheid $^1,^2,^3,^4,^5$, tip of the red giant branch (TRGB) $^6,^7,^8,^9$, or Miras 10 for connecting the local geometric measurements with the type Ia supernovae (SNe) in the Hubble flow. Nevertheless, the most recent measurement $H_0 = 69.8 \pm 2.2\, \text{km s}^{-1}\, \text{Mpc}^{-1}$ from TRGB calibration 10 is lower than the most recent Cepheid calibration result $H_0 = 73.2 \pm 1.3\, \text{km s}^{-1}\, \text{Mpc}^{-1}$ 11, which might be affected by the choice of Cepheid color-luminosity calibration method 12 and other sources of uncertainty in the supernova distance ladder 13. On the other hand, the local measurements independent of distance ladders vary largely among megamaser $^14,^15$, surface brightness fluctuations $^16,^17$, baryonic Tully–Fisher relation $^18,^19$, gravitational-wave standard sirens $^20,^21$, strong lensing time delay (SLTD) $^22,^23$, parallactic measurement of quasar 3C 273 $^24,^25$, and extragalactic background light γ-ray attenuation 26. At the very least, the local measurements from late-Universe observations seem to agree on $H_0 \gtrsim 70\, \text{km s}^{-1}\, \text{Mpc}^{-1}$.

The $\sim 4\sigma$ Hubble tension $^27,^28$ only arises when confronting the Planck measurement 2 with the Cepheid measurement 24, the most precise measurement from each camp. However, the rest of comparisons drawn from early-time and late-time observations are insufficient to claim a significant tension but with a rough compatibility around $H_0 \approx 70\, \text{km s}^{-1}\, \text{Mpc}^{-1}$ 29. In perspective of future developments, there are two possibilities to pursue: 1) If the Hubble tension is not real, then it should be feasible to show the consistency of ΛCDM with late-time data independent of CMB and local H_0 measurements. 2) If the Hubble tension is real, then it is necessary to narrow down the possible models $^30,^31$ either from early-time or late-time scenarios:

(i) For early-time solutions, one can modify either the expansion history or recombination history. The early-time expansion history could be altered by some temporary energy injection around the matter-radiation equality, for example, dark radiation (DR) and early dark energy (EDE) $^32,^33$. The free-streaming DR is strongly constrained by BAO+BBN 9 before the BBN epoch and disfavored by the absence of the neutrino free-streaming phase shift in CMB 17. The non-free-streaming DR, for example, strongly self-interacting neutrinos 64, is also...
disfavored by the high-ℓ polarisation CMB data [65, 66]. The EDE models also deteriorate the S8 tension [67, 69] (see, however, Refs. [70, 74]) and BBN constraint [75]. On the other hand, changing the recombination history [76, 79] (see also Ref. [80]) via primordial magnetic fields [70] found no evidence for the required baryon clumping [76–79] (see also Ref. [80]) via primordial magnetic fields [70] found no evidence for the required baryon clumping [76–79] (see also Ref. [80]).

In summary, a general no-go argument [82] could be put forward that, for early-time solutions that solely reduce the cosmic sound horizon, models with lower values of Ωm are in tension with galaxy clustering data [83], while models with higher values of Ωm are in tension with galaxy weak lensing data [84, 85]. This therefore largely rules out early-time solutions.

(ii) For various late-time solutions, the H0 constraints from the SNe data with their absolute magnitude calibrated by Cepheid variables are quasi-model-independent [86]. However, the situation changes when including BAO data. This is the usual no-go argument for the late-time solutions using the inverse distance ladder [87–94], which combines BAO+SNe with a CMB prior on the sound horizon rs. [87, 89, 91, 95–98] since BAO can only constrain the combinations H(z)rs and D_A(z)/rs. Note that rs is mainly determined by the early-Universe evolution (thus independent of late-time evolution) and therefore unimportant to be used to discriminate the late-time models. To implement the inverse distance ladder [99], one first assumes a Planck’s prior on rs ≃ 147 Mpc and some phenomenological parametrization for H(z) at late times and then fits the combined BAO+SNe data with an astrophysical determination on the SNe Ia absolute magnitude MB [24], leading to a strong constraint on the late-time Universe to be barely deviated from ΛCDM within 0.01 ≲ z ≲ 1. Although a sudden phantom transition below z ≲ 0.01 seems to raise the local H0 value while still maintaining the phenomenological success of ΛCDM above z ≳ 0.01 [100], the price to pay is to deviate MB fitted by CMB+BAO+SNe significantly from the one used to derive a locally higher H0 [101, 103]. This therefore largely rules out phantomlike dark energy models.

A more general no-go argument [104] without a CMB prior on rs (thus also independent of the early-time cosmology) could be made by combining BAO+SNe with observational H(z) data (OHD) for some late-time H(z) parameterizations from Taylor expansions in z or (1 − a) [105]. However, the Taylor expansions of H(z) in z or (1 − a) even to the fourth order still fail to cover the OHD redshift with the modest accuracy even for the ΛCDM case. We therefore propose in this paper to use a global parametrization based on the cosmic age (PAge) [106, 107] that not only reproduces ΛCDM up to high redshift with high accuracy but also covers a large class of late-time models in a wide redshift range with a high accuracy. Furthermore, it is logically more consistent to use PAge for OHD from the cosmic chronometer (CC), and the cosmic age was recently found to play an important role in the Hubble tension [108–111]. Whether the Hubble tension turns out to be real or not, our work could serve as either a no-go guide beyond or a consistency test for the ΛCDM model, respectively.

II. MODEL

The usual model-independent parametrization for the late-time expansion history adopts a Taylor expansion [105] either in redshift z [112, 113] or in y-redshift y ≡ 1 − a = z/(1 + z) [114] as shown in Appendix A of the Supplemental Material [115] for the dimensionless Hubble expansion rate E = H/H0 and dimensionless luminosity distance d_L = D_L/(c/H0). Although the Taylor expansion in y-redshift slightly improves the convergence of the Taylor expansion in redshift z, both of them still deviate significantly from the exact formula even for the ΛCDM case as shown in Fig. 1 with blue and green dashed lines. Introducing more terms with higher orders in z or y could certainly improve the convergence behavior but also weaken the constraining power of data fitting due to the presence of more nuisance parameters.

PAge is introduced as a global approximation of the cosmic expansion history [106]. Assuming our Universe is dominated by the matter component at high redshift z ≫ 1 and ignoring the radiation component and the very short period of radiation dominance before matter dominance, one could approximate the product of the Hubble expansion rate H and the cosmological time t as a quadratic function of t, namely,

\[
\frac{H}{H_0} = 1 + \frac{2}{3} \left(1 - \eta \frac{H_0 t}{p_{age}}\right) \left(\frac{1}{H_0 t} - \frac{1}{p_{age}}\right),
\]

where the parameter η could be evaluated as

\[
\eta = 1 - \frac{3}{2} p_{age} (1 + q_0)
\]

by taking a time derivative of H in (1) followed by a replacement of the deceleration parameter q(t) = −a/a2, p_{age} ≡ H_0/t_0 is the product of H_0 = 100h km s\(^{-1}\) Mpc\(^{-1}\) and the current age of Universe t_0.

For ΛCDM with late-time parametrization H(a) = H_0\sqrt{Ω_m a^{-3} + (1 - Ω_m)}, one has q_0 = −1 + 3Ω_m, and the current age of our Universe reads

\[
t_0 = \int_0^1 \frac{da}{a H(a)} = \frac{9.77788 \text{Gyr}}{3h\sqrt{1 - Ω_m}} \ln \frac{1 + \sqrt{1 - Ω_m}}{1 - \sqrt{1 - Ω_m}}.
\]

Therefore, η = 0.3726 and p_{age} = 0.9641 for fiducial ΛCDM with Ω_m = 0.3 and H_0 = 70 km s\(^{-1}\) Mpc\(^{-1}\). The corresponding H(z) and D_L(z) are shown in Fig. 1 with red dashed lines, which differ from the exact ΛCDM expressions below 3% and 1%, respectively, over the whole redshift range up to z ≈ 10^4 as shown in the inserts.

For models beyond ΛCDM, both parameters η and p_{age} should be treated as free parameters and the only two free parameters in H/H_0 of (1). To see this, we can directly solve (1) for the combination H_0 t after replacing H with
a H_0 prior and a CMB distance prior are used for data analysis. This is totally different from the purpose of this paper and the data analysis strategy as presented below.

III. DATA ANALYSIS

The data we use includes SNe Ia (standard candle), BAO (standard ruler), and OHD (standard clock), which is independent of either local H_0 measurements or the early-Universe observations like CMB and BBN.

For SNe Ia data, we use the Pantheon sample [118] containing 1048 SNe Ia within $0.01 < z < 2.3$. The SNe data directly measure the apparent magnitude $m_B(z)$, which could be computed theoretically from a model by

$$m_B(z) = M_B + 5 \log \frac{D_L(z)}{10 \text{pc}} = a_B + 5 \log d_L(z).$$ (5)

For a given model with dimensionless Hubble expansion rate $E = H/H_0$, the dimensionless luminosity distance is known as

$$d_L(z) \equiv \frac{D_L(z)}{c/H_0} = (1 + z) \int_0^z \frac{dz'}{E(z')}.$$ (6)

What the SNe magnitude-redshift relation actually constrains is $a_B \equiv M_B + 42.3841 - 5 \log h$. With a M_B prior from local distance ladders, one infers the value of H_0. However, as pointed out in Refs. [101–103], this inferred H_0 might not be consistent with the constraint on H_0 if one sets both H_0 and M_B free in the inverse distance ladder. In other words, if one adopts the SH0ES’s prior on H_0 for a certain model, the inferred M_B from a_B might not be consistent with the constraint on M_B if both H_0 and M_B are free in the inverse distance ladder. As a result, both H_0 and M_B will be regarded as free parameters in the inverse distance ladder.

For BAO data, we use the state-of-the-art datasets [119,132] as listed in Appendix C of the Supplemental Material [115]. The BAO measurements are summarized at some effective redshifts z_{eff} for the BAO feature in both line-of-sight and transverse directions. Along the line-of-sight direction, BAO directly measures $D_H(z)/r_d$ with respect to some fiducial cosmology, where the Hubble distance is defined as

$$D_H(z) = \frac{c}{H(z)}.$$ (7)

Along the transverse direction, BAO directly measures $D_M(z)/r_d$ or $D_A(z)/r_d$ with respect to the same fiducial cosmology, where the (comoving) angular diameter distances are defined via

$$D_M(z) = \frac{D_L(z)}{1 + z} = (1 + z)D_A(z).$$ (8)

For historical reason, BAO measurements could also be summarized by $D_L(z)/r_d$, where the spherically averaged
TABLE I. The cosmological constraints from fitting the datasets SNe+BAO+OHD(BC03) and SNe+BAO+OHD(MS11) to the ΛCDM and PAge models with free parameters \(\{ \Omega_m, M_B, H_0, r_d \} \) and \(\{ \eta, p_{\text{age}}, M_B, H_0, r_d \} \), respectively.

Parameter	Prior range	BC03	MS11
\(\Omega_m \)	0.15 - 0.5	0.288 ± 0.011	0.282 ± 0.011
\(\eta \)	-2 - 2	-	-
\(p_{\text{age}} \)	0.15 - 2.0	-	-
\(M_B \)	-20 - 19	-19.374 ± 0.047	-19.309 ± 0.059
\(H_0 \)	60 - 80	69.389 ± 1.474	71.591 ± 1.959
\(r_d \)	120 - 160	146.563 ± 2.894	142.573 ± 3.754
\(\chi^2_{\text{min}}/\text{d.o.f} \)	-0.9724	0.9708	0.9803

\[D_V(z) = \left[z D_M(z)^2 D_H(z) \right]^{1/3} \]

To detach the model dependence on the early-Universe cosmology and observations, the sound horizon at drag epoch \(r_d \) will be treated as a free parameter.

For OHD from the differential age method \[133\], the Hubble parameter could be directly measured by

\[H(z) = \frac{1}{1 + z} \frac{dz}{dt} \]

from the age difference \(\Delta t \) between two passively evolving galaxies that formed at the same time but are separated by a small redshift interval \(\Delta z \). This method is independent of any cosmological models but the age estimation on the evolutionary stellar population synthesis (EPS) models. We use OHD \[134\] as listed in Appendix C of the Supplemental Material \[115\] from two different EPS models: Bruzual and Charlot (2003) \[140\] (BC03 hereafter) and Maraston and Strömbäck (2011) \[131\] (MS11 hereafter). Note that the OHD points at \(z = 1.363 \) and \(z = 1.965 \) from \[139\] have adopted both EPS models of BC03 and MS11, which will not be included in the results presented below. Nevertheless, we have checked that the naive inclusion of these two OHD points in both datasets has little impact on our results and conclusions.

Fitting above SNe+BAO+OHD(BC03/MS11) to the PAge model with \(\{ \eta, p_{\text{age}}, M_B, H_0, r_d \} \) as the free parameters with flat priors as listed in Table I, we then use the Markov chain Monte Carlo code EMCEE \[142\].
to constrain the parameter space with the best-fit χ^2-test, where the likelihood function \mathcal{L} is estimated via $-2\ln \mathcal{L} = \chi^2 = \chi^2_{\text{SN}} + \chi^2_{\text{BAO}} + \chi^2_{\text{SLTD}}$. For comparison, the ΛCDM model is also fitted to the same datasets with free parameters $\{\Omega_m, M_B, H_0, r_d\}$.

IV. RESULTS

The cosmological constraints from fitting the two different datasets, SN+BAO+OHD(BC03) and SN+BAO+OHD(MS11), to the ΛCDM and PAge models are summarized in Table I and Fig. 2. For both ΛCDM and PAge models, the results from SN+BAO+BC03 generally predict a lower H_0, a lower M_B, and a higher r_d than those from SN+BAO+MS11. The results from SN+BAO+BC03 are closer to the usual constraints from CMB data, while the results from SN+BAO+MS11 are closer to the local direct measurements. This systematic shift might be caused by the different EPS models based on different empirical stellar libraries, for example, the MILES library for MS11 is slightly bluer (thus older age) than the STELIB library for BC03. Nevertheless, this situation is similar to the inverse distance ladder constraint calibrated by SLTD from the H0LiCOW measurement on $H_0 = 73.3^{+1.7}_{-1.8}$ km/s/Mpc, which results in $r_d = (137 \pm 3^{\text{stat.}} \pm 2^{\text{syst.}})$ Mpc in tension with the CMB prior. This r_d tension could be relaxed by calibrating the inverse distance ladder with the most recent SLTD measurement on $H_0 = 67.4^{\pm4.1}_{-3.2}$ km/s/Mpc from TDCOSMO+SLACS samples. Similar to the EPS-model dependence of the CC calibrator to the inverse distance ladder, the SLTD calibrator to the inverse distance ladder also admits an astrophysical dependence on the mass profile of lens galaxies.

However, the key point is that, although the use of the different EPS models directly affects the cosmological constraints for the same model from different CC data, it affects identically both the PAge and ΛCDM models since CC data are independent of any cosmological models. The difference between the ΛCDM and PAge models fitted by the same datasets is negligibly small. The reduced minimal χ^2 differs by 0.0016 (0.0014) between the ΛCDM and PAge models for SN+BAO+BC03 (MS11). This could be made more quantitatively from the Bayesian information criterion (BIC) $\text{BIC} = k \ln n - 2 \ln \mathcal{L}$, where k is the number of the model parameters, and n is the number of the data points. For SN+BAO+BC03 (MS11), the BIC difference of the PAge model with respect to the ΛCDM model is $\text{ABIC} = 4.3(4.5) > 2$. Therefore, there is positive evidence against the PAge model over the ΛCDM model.

Our PAge model is regarded here as a representative collection of various late-time models beyond ΛCDM. Different points in the $\eta - \rho_{\text{age}}$ plane generally represent different models, and different models might also be degenerated at the same point in the $\eta - \rho_{\text{age}}$ plane. Matching the deceleration parameter of a specific model at different redshifts also results in different PAge representations. Therefore, our PAge model could cover a large number of late-time models. Furthermore, since both r_d and M_B are set as free fitting parameters in our data analysis, we also effectively cover those early-time models reducing to different values of r_d and those astrophysical models with local calibrators to different values of M_B. Our final results then imply that there is a very little room for new physics beyond ΛCDM.

V. CONCLUSIONS AND DISCUSSIONS

Despite the $\sim 4\sigma$ tension in H_0 found between the global fitting result from the CMB data and that from the local distance ladder calibrated by Cepheids, the Hubble tension has been called into question for the potential unaccounted systematics. Even if the Hubble tension turns out to be real, most of the early-time solutions run into tension with large-scale structure data, while most of the late-time homogeneous solutions develop tension with the inverse distance ladder constraints, and the cosmic void as a late-time inhomogeneous solution is also disfavored by the SNe data.

In this paper, we aim to generalize the late-time no-go argument with a global parametrization for the cosmic expansion history. Our final results slightly go against the representative PAge models over the ΛCDM model, which could be made tighter with inclusions of f_{σ_8} data reserved for future work. No matter whether the Hubble tension turns out to be real or not, our work could be regarded as a no-go guide for the Hubble solutions or a consistency test for the ΛCDM model.

If the Hubble tension persists to exist, then our work indicates that the Hubble solutions might come from some exotic modifications for our concordance Universe. For example, the early-time no-go argument could be escaped from some EDE models that could reduce the matter clumping. The late-time no-go arguments could be avoided by some inhomogeneous or anisotropic modifications for our local Universe or some modified gravity effects for the magnitude-redshift relation. Some other hybrid models modifying both early-time and late-time Universe might still stand a chance in these H_0 Olympic-like games.

If the Hubble tension disappears with improving calibration systematics, our work could be regarded as a consistency test for the ΛCDM model independent of early-Universe data and local H_0 measurements. The simple extensions of the ΛCDM model have already been tested with Refs. or without the CMB data from early-Universe observations and local H_0 measurements. Our work simply adds another layer of support for the ΛCDM model.
ACKNOWLEDGMENTS

We thank Zhiqi Huang, Sunny Vagnozzi and Yuting Wang for the helpful discussions and correspondences. This work is supported by the National Key Research and Development Program of China Grant No. 2020YFC2201501, No.2021YFC2203004, No.2021YFA0718304, the National Natural Science Foundation of China Grants No. 11647601, No. 11690021, No. 11690022, No. 11821505, No. 11851302, No. 12047503, No. 11991052, No. 12075297, No. 12047558, and NO. 12105344, the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) Grant No. XDB23030100, No. XDA15020701, the Key Research Program of the CAS Grant No. XDPB15, the Key Research Program of Frontier Sciences of CAS, the China Postdoctoral Science Foundation Grant No. 2021M693238, the Special Research Assistant Funding Project of CAS, and the Science Research Grants from the China Manned Space Project with No. CMS-CSST-2021-B01.

Appendix A: Taylor expansions

For self-contained, we list below the Taylor expansions in redshift z and y-redshift $y \equiv 1 - a = z/(1 + z)$ for dimensionless Hubble expansion rate $E = H/H_0$ and dimensionless luminosity distance $d_L = D_L/(c/H_0)$, respectively.

\[
E(z) = 1 + (1 + q_0)z + \frac{1}{2}(-q_0^2 + j_0)z^2 + \frac{1}{6}(3q_0^3 + 3q_0^3 - 4q_0j_0 - 3j_0 - s_0)z^3 + \frac{1}{24}(-12q_0^2 - 24q_0^3 - 15q_0^4 + 32q_0j_0 + 25q_0^3j_0 + 7q_0s_0 + 12j_0 - 4j_0^2 + 8s_0 + l_0)z^4 + O(z^5) \quad (A1)
\]

\[
d_L(z) = z + \frac{1}{2}(1 - q_0)z^2 + \frac{1}{6}(-1 + q_0 + 3q_0^2 - j_0)z^3 + \frac{1}{24}(2 - 2q_0 - 15q_0^2 - 15q_0^3 + 5j_0 + 10q_0j_0 + s_0)z^4 + \frac{1}{120}(-6 + 6q_0 + 81q_0^2 + 165q_0^3 + 105q_0^4 + 10j_0^2 - 27j_0 - 110q_0j_0 - 105q_0^2j_0 - 15q_0s_0 - 11s_0 - l_0)z^5 + O(z^6) \quad (A2)
\]

\[
E(y) = 1 + (1 + q_0)y + (1 + q_0 - \frac{1}{2}q_0^2 + \frac{1}{2}j_0)y^2 + \frac{1}{6}(6 + 6q_0 - 3q_0^2 + 3q_0^3 + 3j_0 - 4q_0j_0 - s_0)y^3 + \frac{1}{24}(24 + 24q_0 - 12q_0^2 + 12q_0^3 + 15q_0^4 + 12j_0 - 4j_0^2 - 16q_0j_0 + 25q_0^2j_0 - 4s_0 + 7q_0s_0 + l_0)y^4 + O(y^5) \quad (A3)
\]

\[
d_L(y) = y + \frac{3}{2}(1 - q_0)y^2 + \frac{1}{6}(11 - 5q_0 + 3q_0^2 - j_0)y^3 + \frac{1}{24}(50 - 26q_0 + 21q_0^2 - 15q_0^3 - 7j_0 + 10q_0j_0 + s_0)y^4 + \frac{1}{120}(274 - 154q_0 + 141q_0^2 - 135q_0^3 + 105q_0^4 + 10j_0^2 - 47j_0 + 90q_0j_0 - 105q_0^2j_0 - 15q_0s_0 + 9s_0 + l_0)y^5 + O(y^6) \quad (A4)
\]

Here the Hubble, deceleration, jerk, snap, and lerk parameters are defined as

\[
H(t) \equiv \frac{1}{a} \frac{da}{dt}, \quad (A5)
\]

\[
g(t) \equiv -\frac{1}{a} \frac{d^2a}{dt^2} \left(\frac{1}{a} \frac{da}{dt} \right)^{-2}, \quad (A6)
\]

\[
j(t) \equiv \frac{1}{a} \frac{d^3a}{dt^3} \left(\frac{1}{a} \frac{da}{dt} \right)^{-3}, \quad (A7)
\]

\[
s(t) \equiv \frac{1}{a} \frac{d^4a}{dt^4} \left(\frac{1}{a} \frac{da}{dt} \right)^{-4}, \quad (A8)
\]

\[
l(t) \equiv \frac{1}{a} \frac{d^5a}{dt^5} \left(\frac{1}{a} \frac{da}{dt} \right)^{-5}, \quad (A9)
\]

respectively. For ΛCDM with late-time parametrization $H(t) = H_0 \sqrt{\Omega_m a(t)^{-3} + (1 - \Omega_m)}$, the current value for the deceleration, jerk, snap, and lerk parameters read

\[
g_0 = -1 + \frac{3}{2} \Omega_m, \quad (A10)
\]

\[
j_0 = 1, \quad (A11)
\]

\[
s_0 = 1 - \frac{9}{2} \Omega_m, \quad (A12)
\]

\[
l_0 = 1 + \frac{3}{2} \Omega_m (2 + 9 \Omega_m), \quad (A13)
\]

respectively.

Appendix B: Model matching

As the simplest example, ΛCDM could be extended with a nonzero Ω_k, and a dynamical dark energy with Chevallier-Polarski-Linder (CPL)
parametrization $w(a) = w_0 + w_a(1 - a)$ \cite{116,117}. For this ow_{CPL}CDM model with

$$E(a)^2 = \Omega_m a^{-3} + \Omega_k a^{-2} + (1 - \Omega_m - \Omega_k)a^{-3(1+w_0+w_a)} e^{-3w_a(1-a)},$$

(B1)

the deceleration parameter in \cite{2} is therefore expressed by the model parameters as

$$q_0 = \frac{1}{2}(1 - \Omega_k) + \frac{3}{2}(1 - \Omega_k - \Omega_m)w_0,$$

(B2)

and so does the current age of our Universe t_0, both of which could be mapped to the $\eta - p_{\text{age}}$ space as shown in Fig. 3. As shown in Table 1 of \cite{107}, the relative error of $|\Delta D_A|/D_A$ for PAge representation of this ow_{CPL}CDM model can be less than 1% over $0 < z < 2.5$.

A second example is the phantom-like dark energy (PDE) model \cite{103} with the dimensionless Hubble parameter defined by

$$E(z)^2 = \Omega_m (1 + z)^3 + (1 - \Omega_m) \left(1 + \Delta e^{-\left(\frac{z}{z_c}\right)^\beta}\right),$$

(B3)

where z_c is a phantom-like transition redshift and Δ value characterizes the strength of the phantom-like behavior. The deceleration parameter could be calculated as

$$q_0 = -1 + \frac{3}{2}\frac{\Omega_m}{1 + (1 - \Omega_m)\Delta}.$$

(B4)

Now the PAge parameters $\{\eta, p_{\text{age}}\} = \{1 - \frac{3}{2}p_{\text{age}}^2, (1 + q_0), H_0t_0\}$ could be directly expressed in terms of the model parameters $\{\Delta, z_c, \beta\}$, which could be presented in the PAge parameter space as shown in Fig. 3. The relative error of $|\Delta H/H$ for the PAge representation of PDE is less than 5% as one can explicitly check for the redshift range $0.1 \lesssim z \lesssim 10^3$. As shown in Fig. 4 the parameter region of this PDE model in PAge parameter space is largely outside the 2σ contour from fitting the datasets SNe+BAO+OHD(BC03) and SNe+BAO+OHD(MS11) to a general PAge model with free parameters $\{\eta, p_{\text{age}}, M_B, H_0, r_d\}$.

Appendix C: Data

For convenience, we also list below the full data points of BAO and OHD we used in the data analysis. The state-of-art datasets for BAO include

- Six-degree Field Galaxy Survey (6dFGS) \cite{119},
- Sloan Digital Sky Survey Data Release 7 Main Galaxy Sample (SDSS DR7 MGS) \cite{120},
- SDSS-III Baryon Oscillation Spectroscopic Survey DR12 (SDSS-III BOSS DR12) \cite{121} (Note that this tomographic constraints are more sensitive to the dynamical dark energy than the consensus 3-bin BAO and RSD measurements at three effective redshifts in \cite{90}).
• SDSS-IV eBOSS DR14 quasar sample (SDSS-IV eBOSS DR14 QSO) [122].
• SDSS-IV eBOSS DR14 Lyα [123].
• SDSS-IV eBOSS DR14 QSO-Lyα [124].
• SDSS-IV extended BOSS DR16 Luminous Red Galaxies (SDSS-IV eBOSS DR14 LRG) [123, 120] (Note that this result is actually inferred from the DR16 CMASS + eBOSS LRG galaxies).
• SDSS-IV eBOSS DR16 emission line galaxies (SDSS-IV eBOSS DR16 ELG) [127, 128].

• SDSS-IV eBOSS DR16 QSO [129, 130].
• SDSS-IV eBOSS DR16 Lyα [131].
• Dark Energy Survey Year 3 (DES Y3) [132].

Note that the OHD points at $z = 1.363$ and $z = 1.965$ from [139] adopt both EPS models of BC03 and MS11, which are not included in our presented results. Nevertheless, we have checked that the naive inclusion of these two OHD points in both datasets has little impact on our results and conclusion.

[1] SPT Collaboration, J. W. Henning et al., “Measurements of the Temperature and E-Mode Polarization of the CMB from 500 Square Degrees of SPTpol Data,” Astrophys. J. 852 no. 2, (2018) 97 arXiv:1707.09353 [astro-ph.CO].
[2] Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6 arXiv:1807.06209 [astro-ph.CO].
[3] ACT Collaboration, S. Aiola et al., “The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters,” JCAP 2012 no. 1, (2012) 047 arXiv:2007.07288 [astro-ph.CO].
[4] G. E. Addison, G. Hinshaw, and M. Halpern, “Cosmological constraints from baryon acoustic oscillations and clustering of large-scale structure,” Mon. Not. Roy. Astron. Soc. 436 (2013) 1674–1683 arXiv:1306.6984 [astro-ph.CO].
[5] E. Aubourg et al., “Cosmological implications of baryon acoustic oscillation measurements,” Phys. Rev. D92 no. 12, (2015) 123516 arXiv:1411.1074 [astro-ph.CO].
[6] G. E. Addison, D. J. Watts, C. L. Bennett, M. Halpern, G. Hinshaw, and J. L. Weiland, “Elucidating ΛCDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy,” Astrophys. J. 853 no. 2, (2018) 119 arXiv:1707.06547 [astro-ph.CO].
[7] DES Collaboration, T. M. C. Abbott et al., “Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data,” Mon. Not. Roy. Astron. Soc. 480 no. 3, (2018) 3879–3888 arXiv:1711.00403 [astro-ph.CO].
[8] A. Cuceu, J. Farr, P. Lemos, and A. Font-Ribera, “Baryon Acoustic Oscillations and the Hubble Constant: Past, Present and Future,” JCAP 1910 no. 044 arXiv:1906.11628 [astro-ph.CO].
[9] N. Schoneberg, J. Lesgourgues, and D. C. Hooper, “The BAO+BBN take on the Hubble tension,” JCAP 1910 no. 029 arXiv:1907.11594 [astro-ph.CO].
[10] O. H. E. Philcox, M. M. Ivanov, M. Simonović, and M. Zaldarriaga, “Combining Full-Shape and BAO Analyses of Galaxy Power Spectra: A 1.6% CMB-independent constraint on H_0,” JCAP 2005 no. 032 arXiv:2002.04035 [astro-ph.CO].
[11] G. D’Amico, L. Senatore, and P. Zhang, “Limits on wCDM from the EFTofLSS with the PyBird code,” JCAP 01 (2021) 006 arXiv:2003.07956 [astro-ph.CO].
[12] DES Collaboration, T. M. C. Abbott et al., “Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing,” arXiv:2105.13549 [astro-ph.CO].
[13] S. Vagnozzi, “Consistency tests of ΛCDM from the early integrated Sachs-Wolfe effect: Implications for early-time new physics and the Hubble tension,” Phys. Rev. D 104 no. 6, (2021) 063524 arXiv:2105.10425 [astro-ph.CO].
[14] O. H. E. Philcox, B. D. Sherwin, G. S. Farren, and E. J. Baxter, “Determining the Hubble Constant without the Sound Horizon: Measurements from Galaxy Surveys,” Phys. Rev. D 103 no. 2, (2021) 023538 arXiv:2008.08094 [astro-ph.CO].
[15] W. Lin, X. Chen, and K. J. Mack, “Early Universe Physics Insensitive and Uncalibrated Cosmic Standards: Constraints on Qn and Implications for the Hubble Tension,” Astrophys. J. 920 no. 2, (2021) 159 arXiv:2102.05701 [astro-ph.CO].
[16] SPT Collaboration, K. Aylor et al., “A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite,” Astrophys. J. 850 no. 1, (2017) 101 arXiv:1706.10286 [astro-ph.CO].
[17] L. Knox and M. Millea, “Hubble constant hunter's guide,” Phys. Rev. D101 no. 4, (2020) 043533 arXiv:1908.03663 [astro-ph.CO].
[18] SPT-3G Collaboration, D. Dutcher et al., “Measurements of the E-mode polarization and temperature-E-mode correlation of the CMB from SPT-3G 2018 data,” Phys. Rev. D 104 no. 2, (2021) 022003 arXiv:2101.01684 [astro-ph.CO].
[19] G. E. Addison, “High H_0 Values from CMB E-mode Data: A Clue for Resolving the Hubble Tension?,” Astrophys. J. Lett. 912 no. 1, (2021) L1 arXiv:2102.00028 [astro-ph.CO].
[20] A. G. Riess et al., “A 2.4% Determination of the Local Value of the Hubble Constant,” Astrophys. J. 826 no. 1, (2016) 56 arXiv:1604.01424 [astro-ph.CO].
[21] A. G. Riess et al., “Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia...
TABLE II. BAO data

z_{eff}	Measurement	Constraint	References
0.106	r_d/D_V	0.336 ± 0.015	6dFGS
0.15	D_V/r_d	4.47 ± 0.17	[119]
SDSS DR7 MGS			
0.31	D_A/r_d	6.29 ± 0.14	[121]
0.36	D_A/r_d	7.09 ± 0.16	[121]
0.40	D_A/r_d	7.70 ± 0.16	[121]
0.44	D_A/r_d	8.20 ± 0.13	[121]
0.48	D_A/r_d	8.64 ± 0.11	[121]
0.52	D_A/r_d	8.90 ± 0.12	[121]
0.56	D_A/r_d	9.16 ± 0.14	[121]
0.59	D_A/r_d	9.45 ± 0.17	[121]
0.64	D_A/r_d	9.62 ± 0.22	[121]
0.31	$H\times r_d$	11550 ± 700	[121]
0.36	$H\times r_d$	11810 ± 500	[121]
0.40	$H\times r_d$	12120 ± 300	[121]
0.44	$H\times r_d$	12530 ± 270	[121]
0.48	$H\times r_d$	12970 ± 300	[121]
0.52	$H\times r_d$	13940 ± 390	[121]
0.56	$H\times r_d$	13790 ± 340	[121]
0.59	$H\times r_d$	14550 ± 470	[121]
0.64	$H\times r_d$	14600 ± 440	[121]
eBOSS DR14 QSO			
1.52	D_V/r_d	26.00 ± 0.99	[122]
eBOSS DR14 Lyα			
2.34	D_H/r_d	8.86 ± 0.29	[123]
2.34	D_M/r_d	37.41 ± 1.86	[123]
eBOSS DR14 QSO-Lyα			
2.35	D_H/r_d	9.20 ± 0.36	[124]
2.35	D_M/r_d	36.3 ± 1.8	[124]
eBOSS DR16 LRG			
0.698	D_H/r_d	19.77 ± 0.47	[125] [126]
0.698	D_M/r_d	17.65 ± 0.30	[125] [126]
eBOSS DR16 ELG			
0.845	D_V/r_d	18.33 $^{+0.57}_{-0.62}$	[127]
0.85	D_H/r_d	19.6 $^{+2.2}_{-2.1}$	[127] [128]
0.85	D_M/r_d	19.5 ± 1.0	[127] [128]
eBOSS DR16 QSO			
1.48	D_H/r_d	13.23 ± 0.47	[129] [130]
1.48	D_M/r_d	30.21 ± 0.79	[129] [130]
eBOSS DR16 Lyα			
2.33	D_H/r_d	8.99 ± 0.19	[131]
2.33	D_M/r_d	37.5 ± 1.1	[131]
DES Y3			
0.835	D_M/r_d	18.92 ± 0.51	[132]

TABLE III. OHD with EPS model from BC03

z	$H(z)$ km/s/Mpc	Reference
0.3802	83.0 ± 13.5	[134]
0.4004	77.0 ± 10.2	[134]
0.4247	87.1 ± 11.2	[134]
0.4497	92.8 ± 12.9	[134]
0.4783	80.9 ± 9	[134]
0.4293	85.7 ± 5.2	[134]
0.1791	75 ± 4	[135]
0.1993	75 ± 5	[135]
0.3519	83 ± 14	[135]
0.5929	104 ± 13	[135]
0.6797	92 ± 8	[135]
0.7812	105 ± 12	[135]
0.8754	125 ± 17	[135]
1.037	154 ± 20	[135]
0.07	69.0 ± 19.6	[136]
0.12	68.6 ± 26.2	[136]
0.20	72.9 ± 29.6	[136]
0.28	88.8 ± 36.6	[136]
0.47	89 ± 23	[137]
0.1	69 ± 12	[138]
0.17	83 ± 8	[138]
0.27	77 ± 14	[138]
0.4	95 ± 17	[138]
0.48	97 ± 62	[138]
0.88	90 ± 40	[138]
0.9	117 ± 23	[138]
1.3	168 ± 17	[138]
1.43	177 ± 18	[138]
1.53	140 ± 14	[138]
1.75	202 ± 40	[138]
1.363	160 ± 33.6	[139]
1.965	186.5 ± 50.4	[139]

DR2: Implications for the Hubble Constant,” Astrophys. J. 861 no. 2, (2018) 126 [arXiv:1804.10655 [astro-ph.CO]]

[22] A. G. Riess et al., “New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant,” Astrophys. J. 855 no. 2, (2018) 136 [arXiv:1801.01120 [astro-ph.SR]]

[23] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, “Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond LambdaCDM,” Astrophys. J. 876 no. 1, (2019) 85 [arXiv:1903.07603 [astro-ph.CO]]

[24] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri, J. C. Zinn, and D. Scolnic, “Cosmic
TABLE IV. OHD with EPS model from MS11

z	$H(z)$ km/s/Mpc Reference
0.3802	89.3 ± 14.1
0.4004	82.8 ± 10.6
0.4497	99.7 ± 13.4
0.4247	93.7 ± 11.7
0.4783	86.6 ± 8.7
0.4293	91.8 ± 5.3
0.1791	81 ± 5
0.1993	81 ± 6
0.3519	88 ± 16
0.5929	110 ± 15
0.6797	98 ± 10
0.7812	88 ± 11
0.8754	124 ± 17
1.037	113 ± 15
1.363	160 ± 33.6
1.965	186.5 ± 50.4

Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with

[astro-ph.CO]

[31] E. Mortssell, A. Goobar, J. Johansson, and S. Dhawan, “The Hubble Tension Bites the Dust: Sensitivity of the Hubble Constant Determination to Cepheid Color Calibration,” [arXiv:2105.11461 [astro-ph.CO]]

[32] E. Mortssell, A. Goobar, J. Johansson, and S. Dhawan, “The Hubble Tension Revisited: Additional Local Distance Ladder Uncertainties,” [arXiv:2106.09400 [astro-ph.CO]]

[33] D. W. Pesce et al., “The Megamaser Cosmology Project. XIII. Combined Hubble constant constraints,” Astrophys. J. Lett. 891 no. 1, (2020) L1 [arXiv:2001.09213 [astro-ph.CO]]

[34] N. Khetan et al., “A new measurement of the Hubble constant using Type Ia supernovae calibrated with surface brightness fluctuations,” Astron. Astrophys. 647 (2021) A72 [arXiv:2008.07754 [astro-ph.CO]]

[35] J. P. Blakeslee, J. B. Jensen, C.-P. Ma, P. A. Milne, and J. E. Greene, “The Hubble Constant from Infrared Surface Brightness Fluctuation Distances,” Astrophys. J. 911 no. 1, (2021) 65 [arXiv:2101.02221 [astro-ph.CO]]

[36] E. Kourkchi, R. B. Tully, G. S. Anand, H. M. Courtois, A. Dupuy, J. D. Neill, L. Rizzi, and M. Seibert, “Cosmofiles-4: The Calibration of Optical and Infrared Tully–Fisher Relations,” Astrophys. J. 896 no. 1, (2020) 3 [arXiv:2004.14499 [astro-ph.CO]]

[37] J. Schombert, S. McGaugh, and F. Lelli, “Using the Baryonic Tully–Fisher Relation to Measure H0,” Astron. J. 160 no. 2, (2020) 71 [arXiv:2006.08615 [astro-ph.CO]]

[38] LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE, MASTER Collaboration, B. Abbott et al., “A gravitational-wave standard siren measurement of the Hubble constant,” Nature 551 no. 7678, (2017) 85–88 [arXiv:1710.05835 [astro-ph.CO]]

[39] LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo,” Astrophys. J. 909 no. 2, (2021) 218 [arXiv:1908.06060 [astro-ph.CO]]

[40] S. Mukherjee, G. Lavaux, F. R. Bouchet, J. Jasche, B. D. Wandelt, S. M. Nissanka, F. Leclercq, and K. Hotokezaka, “Velocity correction for Hubble constant measurements from standard sirens,” Astron. Astrophys. 646 (2021) A65 [arXiv:1909.08627 [astro-ph.CO]]

[41] H. Wang and D. Giannios, “Multimessenger parameter estimation of GW170817: from jet structure to the Hubble constant,” Astrophys. J. 908 no. 2, (2020) 200 [arXiv:2009.04427 [astro-ph.HE]]

[42] R. Wang, W.-H. Ruan, Q. Yang, Z.-K. Guo, R.-G. Cai, and B. Hu, “Hubble parameter estimation via dark sirens with the LISA-Taiji network,” Natl. Sci. Rev. 7 (10, 2020) [arXiv:2010.14732 [astro-ph.CO]]

[43] K. C. Wong et al., “H0LiCOW - XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes,” Mon. Not. Roy. Astron. Soc. 498 no. 1, (2020) 1420–1439 [arXiv:1907.04869 [astro-ph.CO]]

[44] DES Collaboration, A. J. Shaibj et al., “STRIDES: a 3.9 per cent measurement of the Hubble constant from
the strong lens system DES J0408-5354," Mon. Not. Roy. Astron. Soc. 494 no. 4, (2020) 6072–6102 arXiv:1910.06306 [astro-ph.CO].

45. S. Birrer et al., “TDCOSMO - IV. Hierarchical time-delay cosmography - joint inference of the Hubble constant and galaxy density profiles,” Astron. Astrophys. 643 (2020) A165 arXiv:2007.02941 [astro-ph.CO].

46. J.-M. Wang, Y.-Y. Songsheng, Y.-R. Li, P. Du, and Z.-X. Zhang, “A parallax distance to 3C 273 through spectroastrometry and reverberation mapping,” Nature Astron. 4 (2020) 517–525 arXiv:1906.08417 [astro-ph.CO].

47. A. Dominguez, R. Wojtak, J. Finke, M. Ajello, K. Helgason, F. Prada, A. Desai, V. Paliya, L. Marcottulli, and D. Hartmann, “A new measurement of the Hubble constant and matter content of the Universe using extragalactic background light γ-ray attenuation,” Astrophys. J. 885 no. 2, (2019) 137 arXiv:1903.12097 [astro-ph.CO].

48. J. L. Bernal, L. Verde, and A. G. Riess, “The trouble with H_0,” JCAP 1610 no. 10, (2016) 019 arXiv:1607.05617 [astro-ph.CO].

49. L. Verde, T. Treu, and A. G. Riess, “Tensions between the Early and the Late Universe,” in Nature Astronomy 2019, vol. 3, p. 891. 2019. arXiv:1907.10625 [astro-ph.CO].

50. A. G. Riess, “The Expansion of the Universe is Faster than Expected,” Nature Rev. Phys. 2 no. 1, (2019) 10–12 arXiv:2001.03624 [astro-ph.CO].

51. E. Di Valentino et al., “Snowmass2021 - Letter of interest cosmology interwoven II: The Hubble constant tension,” Astropart. Phys. 131 (2021) 102605 arXiv:2005.11284 [astro-ph.CO].

52. E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, “In the realm of the Hubble tension—a review of solutions,” Class. Quant. Grav. 38 no. 15, (2021) 153001 arXiv:2103.01183 [astro-ph.CO].

53. T. Karwal and M. Kamionkowski, “Dark energy at early times, the Hubble parameter, and the string axiverse,” Phys. Rev. D94 no. 10, (2016) 103523. arXiv:1608.01309 [astro-ph.CO].

54. V. Poulin, T. L. Smith, D. Grin, T. Karwal, and M. Kamionkowski, “Cosmological implications of ultralight axionlike fields,” Phys. Rev. D 98 no. 8, (2018) 083525 arXiv:1806.10608 [astro-ph.CO].

55. V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, “Early Dark Energy Can Resolve The Hubble Tension,” Phys. Rev. Lett. 122 no. 22, (2019) 221301 arXiv:1811.04083 [astro-ph.CO].

56. P. Agrawal, F.-Y. Cyr-Racine, D. Pinner, and L. Randall, “Rock ‘n Roll Solutions to the Hubble Tension,” arXiv:1904.01016 [astro-ph.CO].

57. M.-X. Lin, G. Benevento, W. Hu, and M. Raveri, “Acoustic Dark Energy: Potential Conversion of the Hubble Tension,” Phys. Rev. D 100 no. 6, (2019) 063542 arXiv:1905.12618 [astro-ph.CO].

58. K. V. Berghaus and T. Karwal, “Thermal Friction as a Solution to the Hubble Tension,” Phys. Rev. D 101 no. 8, (2020) 083537 arXiv:1911.06281 [astro-ph.CO].

59. J. Sakstein and M. Trodden, “Early Dark Energy from Massive Neutrinos as a Natural Resolution of the Hubble Tension,” Phys. Rev. Lett. 124 no. 16, (2020) 161301 arXiv:1911.11760 [astro-ph.CO].

60. T. L. Smith, V. Poulin, and M. A. Amin, “Oscillating scalar fields and the Hubble tension: a resolution with novel signatures,” Phys. Rev. D 101 no. 6, (2020) 063523 arXiv:1908.06995 [astro-ph.CO].

61. F. Niedermann and M. S. Sloth, “New early dark energy,” Phys. Rev. D 103 no. 4, (2021) L041303 arXiv:1910.10739 [astro-ph.CO].

62. G. Ye and Y.-S. Piao, “Is the Hubble tension a hint of AdS phase around recombination?,” Phys. Rev. D 101 no. 8, (2020) 083507 arXiv:2001.02451 [astro-ph.CO].

63. M. Gonzalez, M. P. Hertzberg, and F. Rompineve, “Ultralight Scalar Decay and the Hubble Tension,” JCAP 10 (2020) 028 arXiv:2006.13959 [astro-ph.CO].

64. C. D. Kreisch, F.-Y. Cyr-Racine, and O. Doré, “Neutrino puzzle: Anomalies, interactions, and cosmological tensions,” Phys. Rev. D 101 no. 12, (2020) 123505 arXiv:1902.00534 [astro-ph.CO].

65. A. Das and S. Ghosh, “Flavor-specific interaction favors strong neutrino self-coupling in the early universe,” JCAP 07 (2021) 038 arXiv:2011.12315 [astro-ph.CO].

66. S. Roy Choudhury, S. Hannestad, and T. Tran, “Updated constraints on massive neutrino self-interactions from cosmology in light of the H_0 tension,” JCAP 03 (2021) 084 arXiv:2012.07519 [astro-ph.CO].

67. J. C. Hill, E. McDonough, M. W. Toomey, and S. Alexander, “Early dark energy does not restore cosmological concordance,” Phys. Rev. D102 no. 4, (2020) 043507 arXiv:2003.07355 [astro-ph.CO].

68. M. M. Ivanov, E. McDonough, J. C. Hill, M. Simonović, M. W. Toomey, S. Alexander, and M. Zaldarriaga, “Constraining Early Dark Energy with Large-Scale Structure,” Phys. Rev. D102 no. 10, (2020) 103502 arXiv:2006.11235 [astro-ph.CO].

69. G. D’Amico, L. Senatore, P. Zhang, and H. Zheng, “The Hubble Tension in Light of the Full-Shape Analysis of Large-Scale Structure Data,” JCAP 05 (2021) 072 arXiv:2006.12420 [astro-ph.CO].

70. A. Chudaykin, D. Gorbunov, and N. Nedelko, “Combined analysis of Planck and SPTPol data favors the early dark energy models,” JCAP 08 (2020) 013 arXiv:2004.13046 [astro-ph.CO].

71. A. Chudaykin, D. Gorbunov, and N. Nedelko, “Exploring an early dark energy solution to the Hubble tension with Planck and SPTPol data,” Phys. Rev. D 103 no. 4, (2021) 043529 arXiv:2011.04682 [astro-ph.CO].

72. F. Niedermann and M. S. Sloth, “New Early Dark Energy is compatible with current LSS data,” Phys. Rev. D 103 no. 10, (2021) 103537 arXiv:2009.00006 [astro-ph.CO].

73. R. Murgía, G. F. Abellán, and V. Poulin, “Early dark energy resolution to the Hubble tension in light of weak lensing surveys and lensing anomalies,” Phys. Rev. D 103 no. 6, (2021) 063502 arXiv:2009.10733 [astro-ph.CO].

74. T. L. Smith, V. Poulin, J. L. Bernal, K. K. Boddy, M. Kamionkowski, and R. Murgía, “Early dark energy is not excluded by current large-scale structure data,”
[astro-ph.CO]
[103] G. Efstathiou, “To H0 or not to H0?,” Mon. Not. Roy. Astron. Soc. 505 no. 3, (2021) 3866–3872. arXiv:2103.08723 [astro-ph.CO]

[104] X. Zhang and Q.-G. Huang, “Hubble constant and sound horizon from the late-time Universe,” Phys. Rev. D 103 no. 4, (2021) 043513. arXiv:2006.16692 [astro-ph.CO]

[105] C. Cattoni and M. Visser, “The Hubble series: Convergence properties and redshift variables,” Class. Quant. Grav. 24 (2007) 5985–5998. arXiv:0710.1887 [gr-qc]

[106] Z. Huang, “Supernova Magnitude Evolution and PAge Approximation,” Astrophys. J. Lett. 892 no. 2, (2020) L28. arXiv:2001.06926 [astro-ph.CO]

[107] X. Luo, Z. Huang, Q. Qian, and L. Huang, “Reaffirming the Cosmic Acceleration without Supernovae and the Cosmic Microwave Background,” Astrophys. J. 905 no. 1, (2020) arXiv:2008.00487 [astro-ph.CO]

[108] R. Jimenez, A. Cimatti, L. Verde, M. Moresco, and B. Wandelt, “The local and distant Universe: stellar ages and H_0,” JCAP 03 (2019) 043. arXiv:1902.07081 [astro-ph.CO]

[109] J. L. Bernal, L. Verde, R. Jimenez, M. Kamionkowski, D. Valcin, and B. D. Wandelt, “The trouble beyond H_0 and the new cosmic triangles,” Phys. Rev. D 103 no. 10, (2021) 103533. arXiv:2102.05066 [astro-ph.CO]

[110] S. Vagnozzi, F. Pacucci, and A. Loeb, “Implications for the Hubble tension from the ages of the oldest astrophysical objects,” arXiv:2105.10421 [astro-ph.CO]

[111] M. Boylan-Kolchin and D. R. Weisz, “Uncertain times: the redshift–time relation from cosmology and stars,” Mon. Not. Roy. Astron. Soc. 505 no. 2, (2021) 2764–2783. arXiv:2103.15825 [astro-ph.CO]

[112] M. Visser, “Jerk and the cosmological equation of state,” Class. Quant. Grav. 21 (2004) 2603–2616. arXiv:gr-qc/0309109

[113] M.-J. Zhang, H. Li, and J.-Q. Xia, “What do we know about cosmography,” Eur. Phys. J. C 77 no. 7, (2017) 434. arXiv:1601.01758 [astro-ph.CO]

[114] S. Capozziello, R. Lazkoz, and V. Salzano, “Comprehensive cosmographic analysis by Markov Chain Method,” Phys. Rev. D 84 (2011) 124061. arXiv:1104.3096 [astro-ph.CO]

[115] See the supplemental material for the appendix A on Taylor expansions, the Appendix B for model matching examples, and Appendix C for the datasets.

[116] M. Chevallier and D. Polarski, “Accelerating universes with scaling dark matter,” Int. J. Mod. Phys. D 10 (2001) 213–224. arXiv:gr-qc/0009008

[117] E. V. Linder, “Exploring the expansion history of the universe,” Phys. Rev. Lett. 90 (2003) 091301. arXiv:astro-ph/0208512

[118] D. M. Scolnic et al., “The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample,” Astrophys. J. 859 no. 2, (2018) 101. arXiv:1710.00845 [astro-ph.CO]

[119] F. Beutler, C. Blâcke, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, “The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant,” Mon. Not. Roy. Astron. Soc. 416 (2011) 3017–3032. arXiv:1106.3366 [astro-ph.CO]

[120] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, “The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at $z = 0.15$,” Mon. Not. Roy. Astron. Soc. 449 no. 1, (2015) 835–847. arXiv:1409.3242 [astro-ph.CO]

[121] BOSS Collaboration, Y. Wang et al., “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in configuration space,” Mon. Not. Roy. Astron. Soc. 469 no. 3, (2017) 3762–3774. arXiv:1607.03154 [astro-ph.CO]

[122] M. Ata et al., “The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2,” Mon. Not. Roy. Astron. Soc. 473 no. 4, (2018) 4773–4794. arXiv:1705.06373 [astro-ph.CO]

[123] V. de Sainte Agathe et al., “Baryon acoustic oscillations at $z = 2.34$ from the correlations of Lyα absorption in eBOSS DR14,” Astron. Astrophys. 629 (2019) A85. arXiv:1904.03400 [astro-ph.CO]

[124] M. Blomqvist et al., “Baryon acoustic oscillations from the cross-correlation of Lyα absorption and quasars in eBOSS DR14,” Astron. Astrophys. 629 (2019) A86. arXiv:1904.03430 [astro-ph.CO]

[125] J. E. Bautista et al., “The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic correlation function between redshifts 0.6 and 1,” Mon. Not. Roy. Astron. Soc. 500 no. 1, (2020) 736–762. arXiv:2007.08993 [astro-ph.CO]

[126] H. Gil-Marín et al., “The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic power spectrum between redshifts 0.6 and 1.0,” Mon. Not. Roy. Astron. Soc. 498 no. 2, (2020) 2492–2531. arXiv:2007.08994 [astro-ph.CO]

[127] A. de Mattia et al., “The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the emission line galaxy sample from the anisotropic power spectrum between redshift 0.6 and 1.1,” Mon. Not. Roy. Astron. Soc. 501 no. 4, (2021) 5616–5645. arXiv:2007.09008 [astro-ph.CO]

[128] A. Tamone et al., “The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Growth rate of structure measurement from anisotropic clustering analysis in configuration space between redshift 0.6 and 1.1 for the Emission Line Galaxy sample,” Mon. Not. Roy. Astron. Soc. 499 no. 4, (2020) 5527–5546. arXiv:2007.09009 [astro-ph.CO]

[129] R. Neveux et al., “The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from the anisotropic power spectrum of the quasar sample between redshift 0.8 and 2.2,” Mon. Not. Roy. Astron. Soc. 499 no. 1, (2020) 210–229. arXiv:2007.08999 [astro-ph.CO]

[130] J. Hou et al., “The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations and the Local Hubble Constant,” Mon. Not. Roy. Astron. Soc. 416 (2011) 3017–3032. arXiv:1106.3366 [astro-ph.CO]
Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from anisotropic clustering analysis of the Quasar Sample in configuration space between redshift 0.8 and 2.2,” Mon. Not. Roy. Astron. Soc. 500 no. 1, (2020) 1201–1221, arXiv:2007.08998 [astro-ph.CO]

[131] H. du Mas des Bourboux et al., “The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations with Lyα Forests,” Astrophys. J. 901 no. 2, (2020) 153, arXiv:2007.08995 [astro-ph.CO]

[132] DES Collaboration, T. M. C. Abbott et al., “Dark Energy Survey Year 3 Results: A 2.7% measurement of Baryon Acoustic Oscillation distance scale at redshift 0.835,” arXiv:2107.04646 [astro-ph.CO]

[133] R. Jimenez and A. Loeb, “Constraining cosmological parameters based on relative galaxy ages,” Astrophys. J. 573 (2002) 37–42, arXiv:astro-ph/0106145 [astro-ph]
[158] J.-Q. Jiang and Y.-S. Piao, “Testing AdS early dark energy with Planck, SPTpol, and LSS data,” Phys. Rev. D 104 no. 10, (2021) 103524 [arXiv:2107.07128 [astro-ph.CO]].

[159] T. Karwal, M. Raveri, B. Jain, J. Khoury, and M. Trodden, “Chameleon Early Dark Energy and the Hubble Tension,” arXiv:2106.13290 [astro-ph.CO].

[160] R.-G. Cai, Z.-K. Guo, L. Li, S.-J. Wang, and W.-W. Yu, “Chameleon dark energy can resolve the Hubble tension,” Phys. Rev. D 103 no. 12, (2021) L121302, arXiv:2102.02020 [astro-ph.CO].

[161] C. Krishnan, R. Mohayaee, E. O. Colgán, M. M. Sheikh-Jabbari, and L. Yin, “Does Hubble tension signal a breakdown in FLRW cosmology?,” Class. Quant. Grav. 38 no. 18, (2021) 184001, arXiv:2105.09790 [astro-ph.CO].

[162] H. Desmond, B. Jain, and J. Sakstein, “Local resolution of the Hubble tension: The impact of screened fifth forces on the cosmic distance ladder,” Phys. Rev. D 100 no. 4, (2019) 043537, arXiv:1907.03778 [astro-ph.CO]. [Erratum: Phys.Rev.D 101, 069904 (2020). Erratum: Phys.Rev.D 101, 129901 (2020)].

[163] J. Sakstein, H. Desmond, and B. Jain, “Screened Fifth Forces Mediated by Dark Matter–Baryon Interactions: Theory and Astrophysical Probes,” Phys. Rev. D 100 no. 10, (2019) 104035 [arXiv:1907.03778 [astro-ph.CO]].

[164] J. Solà Peracaula, A. Gomez-Valent, J. de Cruz Pérez, and C. Moreno-Pulido, “Brans–Dicke cosmology with a Λ-term: a possible solution to ΛCDM tensions,” Astrophys. J. Lett. 886 no. 1, (2019) L6 [arXiv:1909.02554 [astro-ph.CO]].

[165] J. Solà Peracaula, A. Gomez-Valent, J. de Cruz Pérez, and C. Moreno-Pulido, “Brans–Dicke cosmology with a Λ-term: a possible solution to ΛCDM tensions,” Class. Quant. Grav. 37 no. 24, (2020) 245003 [arXiv:2006.04273 [astro-ph.CO]].

[166] S. Vagnozzi, “New physics in light of the H₀ tension: An alternative view,” Phys. Rev. D102 no. 2, (2020) 023518 [arXiv:1907.07569 [astro-ph.CO]].

[167] F. Okamatsu, T. Sekiguchi, and T. Takahashi, “H₀ tension without CMB data: Beyond the ΛCDM,” Phys. Rev. D 104 no. 2, (2021) 023523 [arXiv:2105.12312 [astro-ph.CO]].

[168] S. Dhawan, S. W. Jha, and B. Leibundgut, “Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles,” Astron. Astrophys. 609 (2018) A72 [arXiv:1707.00715 [astro-ph.CO]].