General tree-level amplitudes by factorization limits

Kang Zhou a, Chenkai Qiao a*

aZhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, 310027, P. R. China

Abstract: To find boundary contributions is a rather difficult problem when applying the BCFW recursion relation. In this paper, we propose an approach to bypass this problem by calculating general tree-level amplitudes using factorization limits. More explicitly, we construct an expression iteratively, which produces correct factorization limits for all physical poles, then it should be the correct amplitude. To some extent, this approach can be considered as an alternative way to find boundary contributions. To demonstrate our approach, we present three examples: $\lambda\phi^4$ theory, pure gauge theory and the Einstein-Maxwell theory.

Keywords: Amplitudes, Factorization Limits.

*The unusual ordering of authors is just to satisfy outdated requirement for Ph.Degree of Zhejiang University in China.
1. Introduction

The importance of scattering amplitudes cannot be overestimated in high-energy physics, for it serves as the intermediary between theories and experiments. The traditional approach for the analytic calculation of scattering amplitudes relies on Feynman diagrams and Feynman rules, which is well systemized and has clear physical pictures. However, with increasing number of external states, the fast growth in the number of diagrams makes the computation extremely complicated. Naturally, more efficient approaches are desired.
Initiated by Witten’s twistor string program [1], many powerful approaches have been developed in the past decade. Among these, the BCFW on-shell recursion relation [2, 3] has been successfully applied in many contexts involving massless particles at tree and loop levels, as well as for massive particles at tree level (see reviews [4–6] and relevant citations). In the derivation of the recursion relation, one deforms a pair of external momenta\(^1\) in terms of a single complex variable \(z\), thus the on-shell amplitude \(A(z)\) becomes a rational function of \(z\). The behavior of \(A(z)\) in the limit \(z \to \infty\) becomes crucial. If \(A(z) \to 0\) when \(z \to \infty\), amplitudes can be reconstructed by summing over residues of poles at finite positions. However, if \(A(z)\) does not vanish at infinity, the boundary contribution will emerge. Thus to get correct amplitudes, we need to find these boundary contributions.

It has been clarified that for many theories, such as gauge theory and gravity, boundary terms can be zero with some proper choices of momentum deformations [9, 10]. However, there are other theories in which boundary contributions cannot be avoided, for example, \(\lambda \phi^4\) theory and theories with Yukawa couplings [9]. Several attempts have been proposed for finding boundary contributions. The first one is to add auxiliary fields so that boundary terms for the enlarged theory are zero [11, 12]. By proper reduction one gets the desired amplitudes. The second one is to analyze Feynman diagrams carefully to isolate boundary contributions within these diagrams [13–15]. With this information, boundary terms can be calculated directly or recursively. The third one is to relate boundary terms to zeros of amplitudes, \(i.e.,\) roots of amplitudes [16–18]. However, it is not easy to find such zeros. Despite of progress mentioned above, a general effective approach to handle boundary terms is still lacking.

In this paper, we propose an approach to calculate tree-level amplitudes, which avoids the direct computation of boundary contributions. The idea is to seek an expression that is consistent with factorization limits for all physical poles. The searching can be done iteratively. We will start with a scalar function which has correct factorization limits for some poles. This starting function can be obtained by calculating the factorization limit for one channel, or be chosen as the result given by the BCFW recursion relation regardless of the existence of boundary contributions. Having this input, at each step we consider the factorization limit for a new channel, and adjust the starting function to include it, without disturbing correct factorization limits that have been already satisfied. When correct factorization limits for all possible channels are included, we claim that the correct amplitude is found. This approach disregards boundary contributions, therefore it can be applied to circumstances in which the BCFW approach is difficult.

This paper is organized as follows. In section 2 we give a brief overview of this approach. Then we use it to calculate amplitudes of \(\lambda \phi^4\) theory, pure gauge theory, and the Einstein-Maxwell theory, as shown in section 3, section 4 and section 5 respectively. In section 6, a brief conclusion is given.

Throughout this paper, we use the QCD conventions, \(i.e.,\) \(2k_i \cdot k_j \equiv \langle i|j\rangle [j|i]\), and \(s_{ij...t}\) denotes \((k_i + k_j + \cdots + k_l)^2\). Also \(A_{s_1...s_n}\) denotes an expression which has correct factorization limits for poles \(s_1, \cdots, s_n\). Furthermore, we will neglect the overall factor \(i\) in amplitudes, consequently the corresponding

\(^1\)There are other deformations, see [7, 8].
factorization is $A \rightarrow -A_L \frac{1}{P_2} A_R$, rather than $A \rightarrow A_L \frac{1}{P_2} A_R$. It also implies we should take

$$\text{Res} \left(\frac{A(z)}{z} \right) \bigg|_{z=z_\alpha} = -\sum_h A_L(z_\alpha) \frac{1}{P_2} A_R(z_\alpha),$$

when using the BCFW approach.

2. Outline of the approach

In this section, we present a brief discussion about the approach used in this paper. It bases on the property that a correct amplitude has consistent factorization limits for all physical poles. Since a meromorphic function is uniquely determined by its poles and related residues, if an expression has correct factorization limits for all physical poles, the expression is almost the correct amplitude that we are seeking for. Under this observation, one can reconstruct amplitudes by imposing consistent factorization limits for all physical channels.

To find (or guess) the correct expression, we can start from a scalar function depending on external momenta and helicities, which gives right factorization limits for some channels. Such a function can be obtained by direct computation of the factorization limit for one channel. For example, consider the channel $\langle 1|2 \rangle \rightarrow 0$, we can write the initial function as

$$A_{\langle 1|2 \rangle} = \frac{\lim_{\langle 1|2 \rangle \rightarrow 0} A_L A_R}{s_{12}} = \frac{\lim_{\langle 1|2 \rangle \rightarrow 0} s_{12} A}{s_{12}}.$$

(2.1)

Obviously, it has the right factorization limit for $\langle 1|2 \rangle \rightarrow 0$. The initial function can also be chosen as the result by the BCFW approach regardless of the existence of the boundary contribution. In the former choice, the function provides the correct factorization limit for the corresponding channel. In the latter choice, the function at least provides correct factorization limits for poles detected by the BCFW deformation.

At this stage, we need to point out a subtlety of this algorithm. There are many different expressions which are equivalent to each other under some particular factorization limits. For example, under the limit $\langle 1|2 \rangle \rightarrow 0$, $\langle 1|3 \rangle = \frac{(1|3)}{(1|4)}$ and $\langle 2|3 \rangle = \frac{(2|3)}{(2|4)}$, but without imposing the limit, $\langle 1|3 \rangle$ and $\langle 2|3 \rangle$ are different. More generally, we will have $f \sim f + \langle 1|2 \rangle g$ for arbitrary functions f and g. Thus when we use our algorithm, we need to choose a representative element at each step from the entire equivalent class (category) under some factorization limits.

Having the starting expression, the next step is to consider the factorization limit for a new channel. For instance, we start with $\langle 2|3 \rangle$, and consider another channel, for example $\langle 1|3 \rangle \rightarrow 0$. If

$$\lim_{\langle 1|3 \rangle \rightarrow 0} s_{13} A_{\langle 1|2 \rangle} = \lim_{\langle 1|3 \rangle \rightarrow 0} A_L A_R,$$

(2.2)

2It is not necessary to sum over helicities of the on-shell internal line, since to get non-zero three-point sub-amplitudes under the limit $\langle 1|2 \rangle \rightarrow 0$, only one kind of helicity configurations is allowed.
\[A'_{(1|3)} = A_{(1|2)} + \left(A_{(1|3)} - \frac{\lim_{(1|3)\to 0} s_{13} A_{(1|2)}}{s_{13}} \right), \]

(2.3)

where

\[A_{(1|3)} = -\lim_{(1|3)\to 0} A_L A_R / s_{13}. \]

(2.4)

Now we need to see if \(A'_{(1|3)} \) has the right factorization limit for \(\langle 1|2 \rangle \to 0 \). If it does, we are content and move on to a new pole. If it does not, it means the original expressions \(A_{(1|2)} \) or \(A_{(1|3)} \), or both are not proper choices. We need to deform them properly, \(i.e. \), to adopt different representations as discussed in the previous paragraph. The goal is that while it gives the right factorization limit for the new pole, it also keeps correct factorization limits for poles in earlier steps. Although we do not have a general guidance for the choice of proper expressions, in the following sections, we will use many examples to demonstrate how to make efficient choices.

Iterating the procedure above, we can include at least one new pole at each step. Since with proper choices of representative expressions, the set of poles that have correct factorization limits is enlarged, within finite steps, we will obtain a result that has correct factorization limits for all physical poles, \(i.e. \), we find the full amplitude as desired.

The calculation of this approach is more complicated than the BCFW one since all possible factorization channels need to be considered, and expressions of factorization limits also need to be fixed. However, since factorization is a general property of amplitudes, this approach can be applied to any quantum field theories.

3. Example I: \(\lambda \phi^4 \) theory

Given the general framework in the previous section, let us consider a simplest example, the color ordered massless \(\lambda \phi^4 \) theory. In this theory, the lowest-point amplitude is given by

\[A_4(1, 2, 3, 4) = -\lambda. \]

(3.1)

From now on we will drop out the coupling constant \(-\lambda\). We will show how to construct amplitudes of the theory by our approach. Results in this section will be the same as those given in [13]. Here, the starting expression will be obtained by the BCFW approach. Notice that the missing boundary terms will be detected, although we do not pay attention to them.

3.1 The six-point amplitude \(A_6(1, 2, 3, 4, 5, 6) \)

With only \(\lambda \phi^4 \) interaction, only amplitudes with even number of external particles can exist. The first nontrivial amplitude is \(A_6(1, 2, 3, 4, 5, 6) \). Under the deformation

\[\lambda_1 \to \lambda_1 - z\lambda_2, \quad \bar{\lambda}_2 \to \bar{\lambda}_2 + z\bar{\lambda}_1, \]

(3.2)
there is only one pole s_{561} detected and the corresponding residue gives

$$A_0 = -\frac{1}{s_{561}},$$

(3.3)

which is our starting expression for the iterative construction. Obviously, A_0 has the correct factorization limit for $s_{561} \to 0$.

The physical amplitude also contains poles s_{123} and s_{612}, for which A_0 cannot give the correct factorization limits. Under the limit $s_{123} \to 0$, we have $\lim_{s_{123} \to 0} s_{123} A_6(1, 2, 3, 4, 5, 6) = -1$, but $\lim_{s_{123} \to 0} s_{123} A_0 = 0$, thus we need to add $-\frac{1}{s_{123}}$ to A_0 to get the expression $\left(\frac{-1}{s_{561}} + \frac{1}{s_{123}}\right)$ at the second step. Now it has the correct factorization limits for poles s_{561} and s_{123}, but not for the pole s_{612}. Analogously, we add a new term $-\frac{1}{s_{612}}$ to get

$$A_6(1, 2, 3, 4, 5, 6) = -\left(\frac{1}{s_{561}} + \frac{1}{s_{612}} + \frac{1}{s_{123}}\right).$$

(3.4)

Since all factorization limits of possible channels have been given correctly, (3.4) is the correct result.

Although we did not try to find the boundary term, the added terms in these steps give the boundary contribution $\left(-\frac{1}{s_{612}} + \frac{1}{s_{123}}\right)$.

3.2 The eight-point amplitude $A_8(1, 2, 3, 4, 5, 6, 7, 8)$

The second example is the eight-point amplitude $A_8(1, 2, 3, 4, 5, 6, 7, 8)$. Under the $\langle 1|2\rangle$-shift, the BCFW approach gives

$$A_0 = \left[\frac{1}{s_{781}}\left(\frac{1}{s_{234}} + \frac{1}{s_{345}} + \frac{1}{s_{456}}\right) + \frac{1}{s_{234}}\left(\frac{1}{s_{567}} + \frac{1}{s_{678}}\right)\right],$$

(3.5)

which gives correct factorization limits for poles s_{781} and s_{234} detected by the deformation.

A_0 does not contain the pole s_{123}, which indicates

$$\lim_{s_{123} \to 0} s_{123} A_0 = 0.$$

Hence when we consider the factorization limit for the pole s_{123}, a new term needs to be added

$$A_{s_{123}} = -\lim_{s_{123} \to 0} A_4(1, 2, 3, -P_{123}) A_6(P_{123}, 4, 5, 6, 7, 8) = \frac{1}{s_{123}}\left(\frac{1}{s_{456}} + \frac{1}{s_{567}} + \frac{1}{s_{678}}\right).$$

(3.7)

Thus we obtain $A_1 = A_0 + A_{s_{123}}$ at the second step, which gives right factorization limits for poles s_{123}, s_{781} and s_{234}.

But A_1 does not contain the pole s_{812}, similarly we need to add

$$A_{s_{812}} = \frac{1}{s_{812}}\left(\frac{1}{s_{345}} + \frac{1}{s_{456}} + \frac{1}{s_{567}}\right)$$

(3.8)

to get $A_2 = A_1 + A_{s_{812}}$, which has correct factorization limits for poles s_{781}, s_{234}, s_{123} and s_{812}.
Next we consider the factorization limit for the pole $s_{678} \to 0$, given by

$$A_{s_{678}} = \frac{1}{s_{678}} \left(\frac{1}{s_{123}} + \frac{1}{s_{234}} + \frac{1}{s_{345}} \right). \quad (3.9)$$

On the other hand, we have

$$\lim_{s_{678} \to 0} s_{678} A_2 = \frac{1}{s_{123}} + \frac{1}{s_{234}}. \quad (3.10)$$

Thus using the adjustment (2.3), we add the difference between (3.9) and (3.10) to get

$$A_3 = A_2 + \left(A_{s_{678}} - \lim_{s_{678} \to 0} s_{678} A_2 \right) = A_2 + \frac{1}{s_{678}} \frac{1}{s_{345}}. \quad (3.11)$$

It can be checked that A_3 provides correct factorization limits for all possible channels, for instance,

$$\lim_{s_{345} \to 0} s_{345} A_3 = \frac{1}{s_{678}} + \frac{1}{s_{781}} + \frac{1}{s_{812}} = - \lim_{s_{345} \to 0} A_L(3, 4, 5, -P_{345}) A_R(P_{345}, 6, 7, 8, 1, 2). \quad (3.12)$$

Therefore we have found the correct result

$$A_8(1, 2, 3, 4, 5, 6, 7, 8) = A_3 = \sum_{\sigma \in Z_8} \left(\frac{1}{s_{\sigma(1)\sigma(2)\sigma(3)\sigma(6)\sigma(7)\sigma(8)}} + \frac{1}{2s_{\sigma(1)\sigma(2)\sigma(3)\sigma(5)\sigma(6)\sigma(7)}} \right), \quad (3.13)$$

where the boundary term of A_0 is

$$B = A_{s_{123}} + A_{s_{812}} + \frac{1}{s_{678}} \frac{1}{s_{345}}$$

$$= \frac{1}{s_{123}} \left(\frac{1}{s_{456}} + \frac{1}{s_{567}} + \frac{1}{s_{678}} \right) + \frac{1}{s_{812}} \left(\frac{1}{s_{345}} + \frac{1}{s_{456}} + \frac{1}{s_{567}} \right) + \frac{1}{s_{678}} \frac{1}{s_{345}}. \quad (3.14)$$

3.3 The ten-point amplitude $A_{10}(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)$

Now we consider the third example, the ten-point amplitude $A_{10}(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)$. Using the $\{1|2\}$-shift, we get the starting expression

$$A_0 = \frac{1}{s_{234}} \left[\frac{1}{s_{12345}} \left(\frac{1}{s_{678}} + \frac{1}{s_{789}} + \frac{1}{s_{89(10)}} \right) + \frac{1}{s_{56789}} \left(\frac{1}{s_{567}} + \frac{1}{s_{879}} + \frac{1}{s_{9(10)}} \right) + \frac{1}{s_{56789}} \left(\frac{1}{s_{89(10)}} + \frac{1}{s_{9(10)1}} \right) \right]$$

$$+ \frac{1}{s_{9(10)1}} \left[\frac{1}{s_{34567}} \left(\frac{1}{s_{345}} + \frac{1}{s_{456}} + \frac{1}{s_{567}} \right) + \frac{1}{s_{456789}} \left(\frac{1}{s_{456}} + \frac{1}{s_{567}} + \frac{1}{s_{678}} \right) + \frac{1}{s_{56789}} \left(\frac{1}{s_{234}} + \frac{1}{s_{345}} \right) \right]$$

$$+ \frac{1}{s_{23456}} \left(\frac{1}{s_{234}} + \frac{1}{s_{345}} + \frac{1}{s_{456}} \right) \left(\frac{1}{s_{789}} + \frac{1}{s_{89(10)}} + \frac{1}{s_{9(10)1}} \right), \quad (3.15)$$

which has correct factorization limits for poles s_{234}, $s_{9(10)1}$ and s_{23456} detected by the deformation.

Since A_0 does not contain the pole s_{123}, we should add a term to A_0 to provide the correct factorization limit. Similar manipulations as previous lead to $A_1 = A_0 + A_{s_{123}}$ where

$$A_{s_{123}} = \frac{1}{s_{123}} \left[\frac{1}{s_{56789}} \left(\frac{1}{s_{567}} + \frac{1}{s_{678}} + \frac{1}{s_{789}} \right) + \frac{1}{s_{456789}} \left(\frac{1}{s_{456}} + \frac{1}{s_{567}} + \frac{1}{s_{678}} \right) + \frac{1}{s_{12345}} \left(\frac{1}{s_{879}} + \frac{1}{s_{89(10)}} + \frac{1}{s_{9(10)}} \right) \right]$$

$$+ \frac{1}{s_{456}} + \frac{1}{s_{456}} \frac{1}{s_{89(10)}} + \frac{1}{s_{567}} \frac{1}{s_{89(10)}}, \quad (3.16)$$
The new A_1 has correct factorization limits for poles s_{234}, $s_{9(10)1}$, s_{23456} and s_{123}.

Now we move on to consider the pole $s_{(10)12}$. After a little bit computation, we get $A_2 = A_1 + A_{s_{(10)12}}$, where

$$A_{s_{(10)12}} = \frac{1}{s_{(10)12}} \left[\frac{1}{s_{45678}} \left(\frac{1}{s_{456}} + \frac{1}{s_{567}} + \frac{1}{s_{678}} \right) + \frac{1}{s_{34567}} \left(\frac{1}{s_{345}} + \frac{1}{s_{456}} + \frac{1}{s_{567}} \right) + \frac{1}{s_{56789}} \left(\frac{1}{s_{567}} + \frac{1}{s_{678}} + \frac{1}{s_{789}} \right) \right] + \frac{1}{s_{345}} \left(\frac{1}{s_{678}} + \frac{1}{s_{789}} + \frac{1}{s_{789}} \right),$$

which provides correct factorization limits for poles s_{234}, $s_{9(10)1}$, s_{23456}, s_{123} and $s_{(10)12}$.

Now we consider the pole s_{345}. The correct factorization limit is

$$A_{s_{345}} = \frac{1}{s_{345}} \left[\frac{1}{s_{23456}} \left(\frac{1}{s_{789}} + \frac{1}{s_{89(10)}} + \frac{1}{s_{9(10)1}} \right) + \frac{1}{s_{12345}} \left(\frac{1}{s_{678}} + \frac{1}{s_{789}} + \frac{1}{s_{9(10)}} \right) \right] + \frac{1}{s_{34567}} \left(\frac{1}{s_{9(10)1}} + \frac{1}{s_{789}} + \frac{1}{s_{9(10)1}} \right),$$

while A_2 gives

$$\lim_{s_{345} \to 0} s_{345} A_2 = \frac{1}{s_{23456}} \left(\frac{1}{s_{789}} + \frac{1}{s_{89(10)}} + \frac{1}{s_{9(10)1}} \right) + \frac{1}{s_{34567}} \left(\frac{1}{s_{9(10)1}} + \frac{1}{s_{12345}} \right) + \frac{1}{s_{789}} \left(\frac{1}{s_{9(10)}}, \frac{1}{s_{9(10)}} \right).$$

Adding the difference, we can construct

$$A_3 = A_2 + \left(A_{s_{345}} - \lim_{s_{345} \to 0} s_{345} A_2 \right) = A_2 + \frac{1}{s_{345}} \left[\frac{1}{s_{12345}} \left(\frac{1}{s_{678}} + \frac{1}{s_{789}} + \frac{1}{s_{9(10)}} \right) + \frac{1}{s_{9(10)}} \right].$$

Then A_3 provides correct factorization limits for poles s_{234}, $s_{9(10)1}$, s_{23456}, s_{123}, $s_{(10)12}$ and s_{345}.

Finally we consider the pole $s_{89(10)}$, whose correct factorization limit is

$$A_{s_{89(10)}} = \frac{1}{s_{89(10)}} \left[\frac{1}{s_{23456}} \left(\frac{1}{s_{234}} + \frac{1}{s_{345}} + \frac{1}{s_{456}} \right) + \frac{1}{s_{12345}} \left(\frac{1}{s_{123}} + \frac{1}{s_{234}} + \frac{1}{s_{345}} \right) \right] + \frac{1}{s_{34567}} \left(\frac{1}{s_{345}} + \frac{1}{s_{456}} + \frac{1}{s_{567}} + \frac{1}{s_{123}} + \frac{1}{s_{123}} + \frac{1}{s_{234}} + \frac{1}{s_{567}} \right],$$

while A_3 gives

$$\lim_{s_{89(10)} \to 0} s_{89(10)} A_3 = \frac{1}{s_{23456}} \left(\frac{1}{s_{234}} + \frac{1}{s_{345}} + \frac{1}{s_{456}} \right) + \frac{1}{s_{12345}} \left(\frac{1}{s_{123}} + \frac{1}{s_{234}} + \frac{1}{s_{345}} \right) + \frac{1}{s_{34567}} \left(\frac{1}{s_{345}} + \frac{1}{s_{456}} + \frac{1}{s_{567}} + \frac{1}{s_{123}} + \frac{1}{s_{123}} + \frac{1}{s_{234}} + \frac{1}{s_{567}} \right).$$
The first case is the A_4. It is sufficient to consider and anti-MHV amplitudes, which are given as

\[
\text{A}_4 = \text{A}_3 + \left(\text{A}_{s_{89}(10)} - \frac{\lim_{s_{89}(10) \to 0} s_{89}(10) \cdot \text{A}_3}{s_{89}(10)} \right)
\]

\[
= \text{A}_3 + \frac{1}{s_{89}(10)} \left[\frac{1}{s_{34567}} \left(\frac{1}{s_{456}} + \frac{1}{s_{567}} \right) \right].
\]

One can verify that A_4 gives correct factorization limits for all channels. Hence, we have found the final result

\[
\text{A}_4 = \sum_{\sigma \in \mathbb{Z}_{10}} \left(\frac{1}{s_{\sigma(1)\sigma(2)\sigma(3)\sigma(1)\sigma(2)\sigma(3)\sigma(4)\sigma(5)}} s_{\sigma(8)\sigma(9)\sigma(10)} \right) + \frac{1}{s_{\sigma(1)\sigma(2)\sigma(3)\sigma(6)\sigma(7)\sigma(8)\sigma(9)}}
\]

\[
+ \frac{1}{s_{\sigma(1)\sigma(2)\sigma(3)\sigma(4)\sigma(5)\sigma(6)}} s_{\sigma(7)\sigma(8)\sigma(9)} + \frac{1}{s_{\sigma(1)\sigma(2)\sigma(3)\sigma(4)\sigma(5)\sigma(6)}} s_{\sigma(7)\sigma(8)\sigma(9)}
\]

\[
+ \frac{1}{s_{\sigma(1)\sigma(2)\sigma(3)\sigma(4)\sigma(5)\sigma(6)}} s_{\sigma(7)\sigma(8)\sigma(9)} + \frac{1}{s_{\sigma(1)\sigma(2)\sigma(3)\sigma(4)\sigma(5)\sigma(6)}} s_{\sigma(7)\sigma(8)\sigma(9)}
\]

\[
+ \frac{1}{s_{\sigma(1)\sigma(2)\sigma(3)\sigma(4)\sigma(5)\sigma(6)}} s_{\sigma(7)\sigma(8)\sigma(9)} + \frac{1}{s_{\sigma(1)\sigma(2)\sigma(3)\sigma(4)\sigma(5)\sigma(6)}} s_{\sigma(7)\sigma(8)\sigma(9)}
\]

\[
\sum_{\sigma \in \mathbb{Z}_{10}} \left(\frac{1}{s_{\sigma(1)\sigma(2)\sigma(3)\sigma(4)\sigma(5)\sigma(6)}} s_{\sigma(7)\sigma(8)\sigma(9)} \right).
\]

As a byproduct, the boundary term of A_3 is

\[
\text{B} = \text{A}_{s_{123}} + \text{A}_{s_{123}} = \frac{1}{s_{345}} \left(\frac{1}{s_{678}} + \frac{1}{s_{789}} \right) + \frac{1}{s_{89}(10)} \left(\frac{1}{s_{123}} + \frac{1}{s_{456}} + \frac{1}{s_{567}} \right).
\]

4. Example II: Pure gauge theory

Now we move on to color ordered amplitudes of gluons. The lowest-point amplitudes are three-point MHV and anti-MHV amplitudes, which are given as

\[
\text{A}_3(1^-, 2^-, 3^+) = \frac{\langle 1|2^4 \rangle}{\langle 1|2 \rangle \langle 2|3 \rangle \langle 3|1 \rangle}, \quad \text{A}_3(1^+, 2^+, 3^-) = \frac{\langle 1|2^4 \rangle}{\langle 1|2 \rangle \langle 2|3 \rangle \langle 3|1 \rangle},
\]

where the coupling constant has been neglected. As well known, these amplitudes will vanish when $z \to \infty$ under correct deformations, therefore they can be computed by the BCFW approach [9]. We will use our approach to reproduce them. Results in this section can also be found in [5]. In this section, the calculation will start by computing the factorization limit for one channel.

4.1 The MHV amplitude $\text{A}_n(1^+ ... i^- ... j^- ... n^+)$

The first case is the n-point MHV amplitude, given by the well known formula

\[
\text{A}_n(1^+ ... i^- ... j^- ... n^+) = \frac{\langle i|j^4 \rangle}{\langle 1|2 \rangle \langle 2|3 \rangle \cdots \langle n-1|n \rangle \langle n|1 \rangle}.
\]

It is sufficient to consider $\text{A}_n(1^- ... i^- ... n^+)$ since the general formula can be transformed into this choice by cyclic permutation. We assume $\langle 1|2 \rangle$ is valid for m-point MHV amplitudes with $m < n$, then consider
factorization limits of the \(n \)-point MHV amplitude. First, let us consider the limit \(s_{12} \to 0 \). There are two types of solutions

\[
I_1: \quad \lambda_2 = \alpha \lambda_1, \quad P_{12} = \lambda_1 (\tilde{\lambda}_1 + \alpha \tilde{\lambda}_2),
I_2: \quad \tilde{\lambda}_2 = \beta \tilde{\lambda}_1, \quad P_{12} = (\lambda_1 + \beta \lambda_2)\tilde{\lambda}_1.
\]

(4.3)

Solution \(I_2 \) contributes nothing to the factorization limit, since no matter which helicity is assigned for the internal propagator, one of the sub-amplitudes \(A_L \) and \(A_R \) vanishes, thus only solution \(I_1 \) is considered. Then \(^3\)

\[
\lim_{\langle 1|2 \rangle \to 0} A_3(1^-, 2^+, -P_{12}^+) A_{n-1}(P_{12}^-, 3^+, \ldots i^- \ldots n^+) = \frac{[2| - P_{12}]^3}{[-P_{12}] [1|2] \langle P|3 \rangle \langle 3|4 \rangle \cdots \langle n|P_{12} \rangle} = \frac{\langle i| P_{12} \rangle^4}{\alpha \langle 1|3 \rangle \langle 3|4 \rangle \cdots \langle n|1 \rangle}
\]

(4.4)

where we have used \(\alpha \langle 1|3 \rangle = \langle 2|3 \rangle \). From this we can get the starting expression

\[
A_{\langle 1|2 \rangle} = -\frac{\lim_{\langle 1|2 \rangle \to 0} A_L A_R}{s_{12}} = \frac{\langle 1|i \rangle^4}{\langle 1|2 \rangle \langle 2|3 \rangle \langle 3|4 \rangle \cdots \langle n|1 \rangle}.
\]

(4.5)

Although for this special case it is already the correct result, logically, we still need to check whether it has right factorization limits for other channels. For instance, let us consider the limit \(s_{(j-1)j} \to 0 \) where both \((j-1) \) and \(j \) have positive helicity. The non-vanishing sub-amplitude corresponds to the solution \(\lambda_j = \alpha \lambda_{j-1}, \quad P_{(j-1)j} = \lambda_{j-1} (\tilde{\lambda}_{j-1} + \alpha \tilde{\lambda}_j) \). Then we have

\[
\lim_{\langle j-1|j \rangle \to 0} A_3((j-1)^+, j^+, -P_{(j-1)j}^-) A_{n-1}(P_{(j-1)j}^+, (j+1)^+, \ldots i^- \ldots (j-2)^+) = \frac{[j-1|j]^3}{[j] - P_{(j-1)j} \langle j-1|j \rangle \langle j-1|j \rangle\langle j-1|j \rangle} \langle j+1|j+2 \rangle \cdots \langle j-2|P_{(j-1)j} \rangle
\]

\[
= \frac{[j-1|j]^3}{\alpha \langle j-1|j \rangle \langle j+1|j+2 \rangle \cdots \langle j-2|j \rangle} \langle j+1|j+2 \rangle \cdots \langle j-2|j \rangle
\]

\[
= \frac{[j-1|j]^3}{\langle j+1|j+2 \rangle \cdots \langle j-2|j \rangle} \langle j+1|j+2 \rangle \cdots \langle j-2|j \rangle
\]

(4.6)

therefore \(A_{\langle 1|2 \rangle} \) provides the correct factorization limit for \(s_{(j-1)j} \to 0 \). It can also be checked that \(A_{\langle 1|2 \rangle} \) provides correct factorization limits for other channels. Therefore we can conclude that \(A_{\langle 1|2 \rangle} \) is the amplitude \(A_n(1^- \cdots i^- \cdots n^+) \) that has all correct factorization limits.

\(^3\)For the complex momentum \(-P\), one can choose corresponding spinors as \(\lambda_{-P} = \lambda_P \) and \(\tilde{\lambda}_{-P} = -\tilde{\lambda}_P \). In this choice, \(\tilde{\lambda}_{-P} \) can be replaced by \(\tilde{\lambda}_P \) if it appears for even times.
4.2 The six-point amplitude $A_6(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$

Now we turn to the six-point NMHV amplitude $A_6(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$. First let’s consider the limit $s_{12} \rightarrow 0$. The solution for the non-vanishing sub-amplitude is

$$\tilde{\lambda}_2 = \alpha \tilde{\lambda}_1, \quad P_{12} = (\lambda_1 + \alpha \lambda_2) \tilde{\lambda}_1,$$

(4.7)

We use an auxiliary spinor η to express the un-determined parameter α as $\alpha = \frac{[12]}{[01]}$. Then

$$A_{[12]} = \lim_{[12] \rightarrow 0} A_3(1^-, 2^-, -P_{12}^+) A_5(P_{12}^-, 3^-, 4^+, 5^+, 6^+)$$

$$s_{12} = \frac{1}{[12] [\eta] [12] [34] [45] [6]} \frac{[6]}{[12] + 2[\eta]}.$$

(4.8)

Notice that the spinor η can be chosen arbitrarily. It is exactly the ambiguity we have emphasized in section 2. Different choices of η gives the same result only under the limit $[12] \rightarrow 0$. Also since there are three pairs of η (we count one in the numerator and one in the denominator as a pair), each pair can be chosen independently. For the current example, we choose three pairs of η to be the same. In other words, we have chosen a type of representative expressions in the category of the limit $[12] \rightarrow 0$.

To fix η, we can try to choose one value so that $A_{[12]}$ has correct factorization limits for other channels, thus we pick a pole contained in $A_{[12]}$. Let us consider the limit $s_{45} \rightarrow 0$, the solution corresponding to the non-vanishing sub-amplitudes is

$$\lambda_5 = \alpha \lambda_4, \quad P_{45} = \lambda_4 (\tilde{\lambda}_4 + \alpha \tilde{\lambda}_5), \quad \alpha = \frac{\langle \zeta | 4 \rangle}{\langle \zeta | 5 \rangle},$$

(4.9)

then we have

$$A_{[45]} = \lim_{[45] \rightarrow 0} A_3(4^+, 5^+, -P_{45}^-) A_5(P_{45}^+, 1^-, 2^-, 3^-)$$

$$s_{45} = \frac{1}{\langle 4 \rangle \langle 4 \rangle \langle 5 \rangle \langle 5 \rangle \langle 6 \rangle \langle 1 \rangle \langle 2 \rangle \langle 3 \rangle \langle 4 \rangle + 5 \rangle \langle 3 \rangle + 4 \rangle \langle 5 \rangle \langle 5 \rangle \langle 6 \rangle \langle 6 \rangle \langle 1 \rangle \langle 2 \rangle \langle 3 \rangle \langle 4 \rangle + 5 \rangle \langle 6 \rangle \langle 6 \rangle \langle 1 \rangle \langle 2 \rangle \langle 3 \rangle \langle 4 \rangle + 5 \rangle \langle 3 \rangle. \langle 4 \rangle + 5 \rangle \langle 3 \rangle + 4 \rangle (s_{12} + s_{26}).$$

(4.10)

Again, the form of $A_{[45]}$ provides a type of representative expressions in the category of the limit $\langle 4 \rangle \langle 5 \rangle \rightarrow 0$. Now we ask if there is a choice of η and ζ, such that above two representative expressions are the same under corresponding limits, i.e., $(s_{12} s_{45} A_{[12]}_{[12]} \rightarrow 0) = (s_{12} s_{45} A_{[45]}_{[45]} \rightarrow 0)$. This is a strong constraint, since it means that two correct factorization limits are given either by $A_{[12]}$ or by $A_{[45]}$. In general, it cannot be achieved, but for this case, we fortunately manage to obtain the choice $\eta = \tilde{\lambda}_6, \zeta = \lambda_3$. To check it, for the left hand side, we have

$$\lim_{[12] \rightarrow 0} A_3(1^-, 2^-, -P_{12}^+) A_5(P_{12}^-, 3^-, 4^+, 5^+, 6^+) = \frac{[12] \langle 3 \rangle [1 + 2 \rangle [6]}{[34] \langle 4 \rangle \langle 5 \rangle \langle 5 \rangle \langle 6 \rangle \langle 6 \rangle \langle 1 \rangle \langle 2 \rangle \langle 6 \rangle \langle 6 \rangle \langle 1 \rangle \langle 2 \rangle \langle 6 \rangle}$$

$$= \frac{[12] \langle 3 \rangle [1 + 2 \rangle [6]}{[34] \langle 4 \rangle \langle 5 \rangle \langle 6 \rangle \langle 6 \rangle \langle 1 \rangle \langle 2 \rangle \langle 6 \rangle (s_{16} + s_{26})}$$

$$= \frac{[12] \langle 3 \rangle [1 + 2 \rangle [6]}{[34] \langle 4 \rangle \langle 5 \rangle \langle 6 \rangle \langle 6 \rangle \langle 1 \rangle \langle 2 \rangle \langle 6 \rangle (s_{16} + s_{26})},$$

(4.11)
where \([1|2] = 0\) is used in the last step, thus \(s_{16} + s_{26} = s_{12} + s_{16} + s_{26} = s_{126}\) and \(\langle 5|3 + 4|2\rangle = -\langle 5|6|2\rangle\). Similarly, for the right hand side we have

\[
\lim_{\langle 4|5 \rangle \to 0} A_3(4^+, 5^+, -P_{45}) A_5(P_{45}^+, 6^+, 1^-, 2^-, 3^-) = \frac{\langle 4|5 \rangle \langle 3|4 + 5|6 \rangle^3}{\langle 3|4 \rangle \langle 1|2 \rangle \langle 1|6 \rangle \langle 5|3 + 4|2 \rangle} s_{126},
\]

(4.12)

where we have used \(\langle 3|4 + 5|3\rangle = s_{126}\) and \(\langle 53|2|3\rangle = -\langle 5|3 + 4|2\rangle\) under the limit \(\langle 4|5 \rangle \to 0\).

Now a nice starting expression appears

\[
A_{[1|2]4|5} = A_{[1|2]} = A_{(4|5)} = -\frac{\langle 3|4 + 5|6 \rangle^3}{\langle 3|4 \rangle \langle 4|5 \rangle \langle 1|2 \rangle \langle 6|1 \rangle \langle 5|3 + 4|2 \rangle} s_{126},
\]

(4.13)

To continue, we consider other poles. One nice choice is a pole \(s\) such that \(\lim_{s \to 0} s A_{[1|2](4|5)} = 0\). There are two two-particle channels \(s_{23} \to 0\) and \(s_{56} \to 0\) satisfying this requirement. Proceeding as the case \([1|2] \to 0\) and \(\langle 4|5 \rangle \to 0\), we get

\[
A_{[2|3](5|6)} = -\frac{\langle 1|2 + 3|4 \rangle^3}{\langle 6|1 \rangle \langle 5|6 \rangle \langle 2|3 \rangle \langle 3|4 \rangle \langle 5|3 + 4|2 \rangle} s_{234},
\]

(4.14)

which has correct factorization limits for \(s_{23} \to 0\) and \(s_{56} \to 0\). Since \(A_{[1|2](4|5)}\) and \(A_{[2|3](5|6)}\) do not share any physical pole, we should sum them to get

\[
A_{[1|2][2|3](4|5)(5|6)} = A_{[1|2](4|5)} + A_{[2|3](5|6)}
= -\frac{1}{\langle 5|3 + 4|2 \rangle} \left(\frac{\langle 1|2 + 3|4 \rangle^3}{\langle 6|1 \rangle \langle 5|6 \rangle \langle 2|3 \rangle \langle 3|4 \rangle \langle 5|3 + 4|2 \rangle} + \frac{\langle 3|4 + 5|6 \rangle^3}{\langle 3|4 \rangle \langle 4|5 \rangle \langle 1|2 \rangle \langle 6|1 \rangle \langle 5|3 + 4|2 \rangle} \right),
\]

(4.15)

which gives the correct factorization limits for \(s_{12} \to 0\), \(s_{23} \to 0\), \(s_{45} \to 0\) and \(s_{56} \to 0\). One can verify that \(A_{[1|2][2|3](4|5)(5|6)}\) also gives correct factorization limits for remaining channels\(^4\). Thus, we have found

\[
A_6(1^-, 2^-, 3^-, 4^+, 5^+, 6^+) = A_{[1|2][2|3](4|5)(5|6)}.
\]

(4.16)

Although in this subsection, we start with the factorization of a two-particle channel, one can start with the factorization of a three-particle channel and proceed similarly to get the correct result. The calculation is shown in Appendix A.

4.3 The six-point amplitude

\(A_6(1^+, 2^-, 3^+, 4^-, 5^+, 6^-)\)

Let us start with the factorization limit for \(s_{12} \to 0\). There are two types of solutions for non-vanishing sub-amplitudes:

\[
I_1: \quad \lambda_2 = \alpha_1 \lambda_1, \quad P_{12} = \lambda_1 (\bar{\lambda}_1 + \alpha_1 \bar{\lambda}_2), \quad \alpha_1 = \frac{\langle \eta_1|2 \rangle}{\langle \eta_1|1 \rangle^2},
\]

\[
I_2: \quad \bar{\lambda}_2 = \beta_1 \bar{\lambda}_1, \quad P_{12} = (\lambda_1 + \beta_1 \lambda_2) \bar{\lambda}_1, \quad \beta_1 = \frac{\langle \xi_1|2 \rangle}{\langle \xi_1|1 \rangle}.
\]

(4.17)

\(^4\)There is a technical issue regarding the limit such as \(s_{234} \to 0\). For this case, the spinor \(\lambda_{P_{234}}\) can be expressed, for example, via \(\langle a|P_{234} \rangle = \frac{\langle a|P_{234} \rangle}{|P_{234}|^2}\) (see in Appendix A).
For solution \(I_1 \), we have

\[
A_{(1|2)} = \frac{(2|\eta_1)^3}{\langle \eta_1 | 1 \rangle \langle 1 | 2 \rangle [3|4] [4|5] [5|6] \langle \eta_1 | 1 + 2 | 6 \rangle \langle \eta_1 | 1 + 2 | 3 \rangle},
\]

(4.18)

and for solution \(I_2 \),

\[
A_{(1|2)} = \frac{[1|\zeta_1]^3 \langle 4|6 \rangle^4}{[2|\zeta_1] [2|1] [3|4] \langle 4|5 \rangle \langle 5|6 \rangle \langle 6|1 + 2 | \zeta_1 \rangle \langle 3|1 + 2 | \zeta_1 \rangle},
\]

(4.19)

\(A_{(1|2)} \) does not contain the pole \([1 | 2] \) and \(A_{(1|2)} \) does not contain the pole \((1 | 2) \). Thus we sum these two parts to obtain the starting expression \(A_{(1|2)[1|2]} = A_{(1|2)} + A_{(1|2)} \), which satisfies the factorization limit for \(s_{12} \rightarrow 0 \).

In the expression of \(A_{(1|2)[1|2]} \), there are unfixed variables \(\zeta_1 \) and \(\eta_1 \), which reflects the freedom of representative elements in the category as discussed in section 2. Now we try to fix these parameters as previous. To do so, consider the limit \(s_{23} \rightarrow 0 \), similar calculation leads to

\[
s_{23} \rightarrow 0 : \quad A_{(2|3)} = \frac{(2|\eta_2)^3 [5|1]^4}{\langle 3|\eta_2 \rangle \langle 3 | 2 \rangle [4|5] [5|6] \langle 6|1 \rangle \langle \eta_2 | 2 + 3 | 1 \rangle \langle \eta_2 | 2 + 3 | 4 \rangle},
\]

\[
A_{[2|3]} = \frac{[3|\zeta_2]^3 \langle 4|6 \rangle^4}{[\zeta_2 | 2] [3|2] (4|5) \langle 5|6 \rangle \langle 6|1 \rangle \langle 1 | 2 + 3 | \zeta_2 \rangle \langle 4|2 + 3 | \zeta_2 \rangle},
\]

(4.20)

Matching \(A_{[2|3]} \) with \(A_{[1|2]} \), yields

\[
\zeta_1 = \bar{\lambda}_3, \quad \zeta_2 = \bar{\lambda}_1,
\]

(4.21)

and

\[
A_{(1|2)[2|3]} = A_{[1|2]} = A_{[2|3]} = \frac{[1|3]^4 \langle 4|6 \rangle^4}{[4|5] [5|6] [1|2] [2|3] [6|1 + 2 | 3] \langle 4|2 + 3 | 1 \rangle s_{123}}.
\]

(4.22)

Plugging this back, the starting expression becomes \(A_{(1|2)[1|2][2|3]} = A_{(1|2)} + A_{(1|2)[2|3]} \) which has correct factorization limits for \(s_{12} \rightarrow 0 \) plus \([2|3] \rightarrow 0 \). When we do the iterative step to include the new factorization limit \(\langle 2|3 \rangle \rightarrow 0 \), we need to add \(A_{[2|3]} \) to reach \(A_{(1|2)[2|3][1|2][2|3]} = A_{(1|2)} + A_{(2|3)} + A_{[1|2][2|3]} \), which has right factorization limits for \(s_{12} \rightarrow 0 \) and \(s_{23} \rightarrow 0 \).

Now we continue to include new factorization limits for \(s_{34} \rightarrow 0 \). Using

\[
s_{34} \rightarrow 0 : \quad A_{(3|4)} = \frac{(4|\eta_3)^3}{\langle \eta_3 | 3 \rangle \langle 3 | 4 \rangle [5|6] [6|1] [1|2] \langle \eta_3 | 3 + 4 | 2 \rangle \langle \eta_3 | 3 + 4 | 5 \rangle},
\]

\[
A_{[3|4]} = \frac{[3|\zeta_3]^3 \langle 6|2 \rangle^4}{[4|\zeta_3] [4|3] [5|6] \langle 6|1 \rangle \langle 1 | 2 \rangle \langle 2|3 + 4 | \zeta_3 \rangle \langle 5|3 + 4 | \zeta_3 \rangle},
\]

(4.23)

we find that the freedom of \(A_{[2|3]} \) can be fixed by \(\eta_2 = \lambda_4 \) when we match it with \(A_{(3|4)} \) with \(\eta_3 = \lambda_2 \), and this single expression is

\[
A_{(2|3)[3|4]} = A_{(2|3)} = A_{(3|4)} = \frac{(2|4)^4 [5|1]^4}{\langle 2|3 \rangle \langle 3|4 \rangle [5|6] [6|1] \langle 4|2 + 3 | 1 \rangle \langle 2|3 + 4 | 5 \rangle s_{234}}.
\]

(4.24)
Similarly, matching $A_{[3][4]}$ and $A_{(1|2)}$ we find $\eta_1 = \lambda_6$, $\zeta_3 = \tilde{\lambda}_5$ and

$$A_{(1|2)[3][4]} = A_{(1|2)} = A_{[3][4]} = \frac{(2|6)^4[3|5]^4}{\langle 6|1\rangle \langle 1|2\rangle \langle 3|4\rangle \langle 4|5\rangle (6|4 + 5|3) \langle 2|3 + 4|5 \rangle s_{345}}. \quad (4.25)$$

Summing (1.22), (4.24) and (1.25) we have

$$A_{(1|2)(2|3)(3|4)[1|2][2|3][3|4]} = A_{[1|2][2|3]} + A_{(2|3)(3|4)} + A_{(1|2)[3|4]}$$

$$= \frac{[1|3]^4 \langle 4|6 \rangle^4}{\langle 1|2\rangle \langle 2|3\rangle \langle 3|4\rangle \langle 4|5\rangle (6|1 + 2|3) \langle 4|2 + 3|1 \rangle s_{123}} + \frac{(2|4)^4 [5|1]^4}{\langle 2|3\rangle \langle 3|4\rangle [5|6] \langle 6|1 \rangle \langle 4|2 + 3|1 \rangle \langle 2|3 + 4|5 \rangle s_{234}} + \frac{(2|6)^4 [3|5]^4}{\langle 6|1\rangle \langle 1|2\rangle [3|4] \langle 4|5\rangle \langle 6|4 + 5|3 \rangle \langle 2|3 + 4|5 \rangle s_{345}}. \quad (4.26)$$

One can check that $A_{(1|2)(2|3)(3|4)[1|2][2|3][3|4]}$ has correct factorization limits for all channels, therefore

$$A_6(1^+, 2^-, 3^+, 4^-, 5^+, 6^-) = A_{(1|2)(2|3)(3|4)[1|2][2|3][3|4]} \quad (4.27)$$

4.4 The six-point amplitude $A_6(1^+, 2^+, 3^-, 4^+, 5^-, 6^-)$

Let us start with factorization limit of $s_{12} \to 0$. There is only one type of solution corresponding to the non-vanishing sub-amplitude, namely $\lambda_2 = \alpha \lambda_1$, which leads to

$$A_{(1|2)} = \frac{\langle \eta_1 | 1 + 2 | 4 \rangle^4}{\langle 2|1\rangle \langle 2|\eta_1\rangle \langle 1|\eta_1\rangle [3|4] [4|5] [5|6] \langle \eta_1 | 1 + 2 | 3 \rangle \langle \eta_1 | 1 + 2 | 6 \rangle}. \quad (4.28)$$

To fix the choice of η_1, noticing that the pole $[5|6]$ in $A_{(1|2)}$, we then match it with the factorization limit

$$A_{[5|6]} = \frac{\langle 3|5 + 6|\zeta_1 \rangle^4}{[6|5] \langle \zeta_1 | 5 \rangle \langle \zeta_1 | 6 \rangle \langle 1|2\rangle \langle 2|3\rangle \langle 3|4\rangle \langle 1|5 + 6|\zeta_1 \rangle \langle 4|5 + 6|\zeta_1 \rangle}, \quad (4.29)$$

thus we find $\eta_1 = \lambda_3$, $\zeta_1 = \tilde{\lambda}_4$ and the starting expression given by

$$A_{(1|2)[5|6]} = A_{(1|2)} = A_{[5|6]} = -\frac{\langle 3|1 + 2 | 4 \rangle^4}{\langle 1|2\rangle \langle 2|3\rangle [4|5] \langle 5|6 \rangle \langle 1|2 + 3 | 4 \rangle \langle 3|1 + 2 | 6 \rangle s_{123}}. \quad (4.30)$$

Since $A_{(1|2)[5|6]}$ does not contain poles s_{34} and s_{61}, we will try to include their factorization limits. The limit $s_{34} \to 0$ gives

$$A_{[3|4]} = \frac{\langle 3|\eta_2 \rangle^3 [1|2]^3}{\langle 4|3\rangle \langle 4|\eta_2\rangle [5|6] [6|1] \langle \eta_2 | 3 + 4 | 2 \rangle \langle \eta_2 | 3 + 4 | 5 \rangle},$$

$$A_{[3|4]} = \frac{(5|6)^3 [\zeta_2|4]^3}{[4|3] [\zeta_2|3] [6|1] \langle 1|2\rangle \langle 2|3 + 4|z_2\rangle \langle 5|3 + 4|z_2 \rangle}, \quad (4.31)$$

\[13\]
while the limit \(s_{61} \to 0 \) gives
\[
A_{(6|1)} = \frac{\langle \eta_3 | 6 \rangle^3 [2|4]^4}{\langle 1|6 \rangle \langle 1|\eta_3 \rangle \langle 2|3 \rangle \langle 3|4 \rangle \langle 4|5 \rangle \langle \eta_3 | 1 + 6|5 \rangle \langle \eta_3 | 1 + 6|2 \rangle}.
\]
\[
A_{(6|1)} = \frac{\langle 3|5 \rangle^4 [1|\zeta_3]^4}{[1|6 \rangle \langle 6|\zeta_3 \rangle \langle 2|3 \rangle \langle 3|4 \rangle \langle 4|5 \rangle \langle 5|6 + 1|6|\zeta_3 \rangle \langle 2|6 + 1|\zeta_3 \rangle}.
\]
(4.32)

Matching \(A_{(6|1)} \) with \(A_{(3|4)} \) fixes \(\eta_2 = \lambda_5, \ \zeta_3 = \tilde{\lambda}_2, \) and we get
\[
A_{(3|4)(6|1)} = A_{(3|4)} = A_{(6|1)} = \frac{\langle 3|5 \rangle^4 [1|2]^3}{\langle 3|4 \rangle \langle 4|5 \rangle \langle 6|1 \rangle \langle 5|3 + 4|2 \rangle \langle 3|4 + 5|6 \rangle} s_{345}.
\]
(4.33)

Then matching \(A_{(6|1)} \) with \(A_{(3|4)} \) fixes \(\eta_3 = \lambda_5, \ \zeta_2 = \tilde{\lambda}_2 \) and
\[
A_{(6|1)(3|4)} = A_{(6|1)} = A_{(3|4)} = \frac{\langle 5|6 \rangle^3 [2|4]^4}{\langle 6|1 \rangle \langle 2|3 \rangle \langle 3|4 \rangle \langle 1|2 + 3|4 \rangle \langle 5|3 + 4|2 \rangle} s_{234}.
\]
(4.34)

Summing these, we have
\[
A_{(1|2)(3|4)(6|1)[3|4][5|6][6|1]} = A_{(1|2)[5|6]} + A_{(3|4)[6|1]} + A_{(6|1)[3|4]}
\]
\[
= - \frac{\langle 3|1 + 2|4 \rangle^4}{\langle 1|2 \rangle \langle 2|3 \rangle \langle 4|5 \rangle \langle 5|6 \rangle \langle 1|2 + 3|4 \rangle \langle 3|1 + 2|6 \rangle} s_{123}
\]
\[
- \frac{\langle 3|5 \rangle^4 [1|2]^3}{\langle 6|1 \rangle \langle 3|4 \rangle \langle 4|5 \rangle \langle 5|3 + 4|2 \rangle \langle 3|4 + 5|6 \rangle} s_{345}
\]
\[
- \frac{\langle 5|6 \rangle^3 [2|4]^4}{\langle 2|3 \rangle \langle 3|4 \rangle \langle 6|1 \rangle \langle 1|2 + 3|4 \rangle \langle 5|3 + 4|2 \rangle} s_{234}.
\]
(4.35)

It can be verified that \(A_{(1|2)(3|4)(6|1)[3|4][5|6][6|1]} \) has correct factorization limits for all channels, therefore
\[
A_6(1^+, 2^+, 3^-, 4^+, 5^-, 6^-) = A_{(1|2)(3|4)(6|1)[3|4][5|6][6|1]}.
\]
(4.36)

5. Example III: Einstein-Maxwell theory

In this section we consider amplitudes of photons coupling to gravitons. In such a theory the lowest-point amplitudes are of two types: photon-photon-graviton and three-graviton self interaction
\[
A_3(a^{-1}_\gamma, b_{\gamma^1}, c_{\gamma^2}) = \kappa \frac{\langle c|a \rangle^4}{\langle a|b \rangle^2}, \quad A_3(a^{-1}_\gamma, b_{\gamma^1}, c_{\gamma^2}) = \kappa \frac{\langle b|c \rangle^4}{\langle a|b \rangle^2},
\]
\[
A_3(a_{\gamma^2}, b_{\gamma}, c_{\gamma}) = \kappa \frac{\langle a|b \rangle^8}{\langle a|b \rangle^2 \langle b|c \rangle^2 \langle c|a \rangle^2}, \quad A_3(a_{\gamma^2}, b_{\gamma}, c_{\gamma}) = \kappa \frac{\langle a|b \rangle^8}{\langle a|b \rangle^2 \langle b|c \rangle^2 \langle c|a \rangle^2}.
\]
(5.1)

Since two types of three-point amplitudes have the same coupling constant \(\kappa \), we will neglect \(\kappa \) from now on.
Before starting the calculation, let us give a brief review on some general properties of amplitudes in this theory. First, let us review the validity of the BCFW approach. As proved by Cheung, the boundary term is zero when two deformed particles include at least one graviton [10]. Hence, the BCFW approach is available for amplitudes containing gravitons. On the other hand, Arkani-Hamed and Kaplan have shown that the boundary term will not vanish when deforming two photons [9]. However, their conclusion cannot be applied to the circumstance that two deformed photons have the same helicity. The reason is, their approach relies on the picture that a hard photon moves in a soft background, which means two deformed photons should be connected by photon propagators or they are attached to the same vertex.

In the Einstein-Maxwell theory, two photons with the same helicity could not satisfy such a condition because of the helicity structure of three-point amplitudes. In some cases, the naive power counting of individual Feynman diagrams shows $A(z \to \infty) = 0$ when deforming two photons with the same helicity, for example the four-point amplitude $A_4(1^{-1}_1, 2^{+1}_1, 3^{-1}_1, 4^{+1}_1)$, then the BCFW approach is feasible. However, if an amplitude contains no graviton and the naive analysis of Feynman diagrams cannot guarantee that it will vanish at $z \to \infty$, we don’t know whether it can be computed by the BCFW approach. We will see such an example, namely $A_6(1^{-1}_1, 2^{+1}_1, 3^{-1}_1, 4^{+1}_1, 5^{-1}_1, 6^{+1}_1)$. Secondly, amplitudes of this theory do not have color-order. Thus, the only difference between external particles which have the same helicity is their momenta. It means, amplitudes are invariant when exchanging labels of particles with the same helicity. This symmetry is useful for calculating and checking results.

The structure of three-point amplitudes indicates that an amplitude of this theory must contain even number of photons, and the sum of helicities of photons is zero. Thus, if we focus on amplitudes containing photons, there are two types of four-point amplitudes, two types of five-point amplitudes, three types of six-point amplitudes, and so on. We will calculate all four-point amplitudes, all five-point amplitudes, and one type of six-point amplitudes, namely $A_6(1^{-1}_1, 2^{+1}_1, 3^{-1}_1, 4^{+1}_1, 5^{-1}_1, 6^{+1}_1)$. For four-point and five-point amplitudes, we will present more tricks to fix formulae of factorization limits by considering the consistency between different channels. On the other hand, for the six-photon amplitude, we will discuss how to handle one situation: Among all possible deformations, we know the boundary term will appear for some deformations, and don’t know whether the boundary term will vanish for other deformations.

5.1 The four-point amplitude $A_4(1^{-1}_1, 2^{+1}_1, 3^{-2}_2, 4^{+2}_g)$

First let’s consider $A_4(1^{-1}_1, 2^{+1}_1, 3^{-2}_2, 4^{+2}_g)$. We start from the factorization limit of $s_{12} \to 0$, and there are two types of solutions

$I_1 : \quad \bar{\lambda}_2 = \alpha \lambda_1, \quad \lambda_3 = \beta \lambda_4, \quad P_{12} = \gamma \lambda_4 \bar{\lambda}_1,$

\[
\begin{align*}
\alpha &= \frac{\langle 4|1 \rangle}{\langle 2|4 \rangle}, & \beta &= \frac{\langle 1|4 \rangle}{\langle 3|1 \rangle}, & \gamma &= \frac{\langle 1|2 \rangle}{\langle 4|2 \rangle} = \frac{\langle 3|4 \rangle}{\langle 1|3 \rangle},
\end{align*}
\]

$I_2 : \quad \lambda_2 = \alpha \lambda_1, \quad \bar{\lambda}_3 = \beta \bar{\lambda}_4, \quad P_{12} = \gamma \lambda_1 \bar{\lambda}_4,$

\[
\begin{align*}
\alpha &= \frac{\langle 4|1 \rangle}{\langle 2|4 \rangle}, & \beta &= \frac{\langle 1|4 \rangle}{\langle 3|1 \rangle}, & \gamma &= \frac{\langle 1|2 \rangle}{\langle 4|2 \rangle} = \frac{\langle 3|4 \rangle}{\langle 1|3 \rangle}.
\end{align*}
\]
For solution I_1, we have
\[
\lim_{[1|2] \to 0} A_3(1_{\gamma}, 2_{\gamma}, -P_g, 3_g, 4_g) = \frac{(1|3)^2 (2|3)^2 [4|2]^4}{s_{12}^2}.
\] (5.3)
and for solution I_2,
\[
\lim_{(12) \to 0} A_3(1_{\gamma}, 2_{\gamma}, -P_g, 3_g, 4_g) = \frac{(1|3)^2 (2|3)^2 [4|2]^4}{s_{14}^2}.
\] (5.4)
Now we want to seek a formula $A_{(1|2)[1|2]}$ which satisfies factorization limits for both $[1|2] \to 0$ and $(12) \to 0$. It can be done by rewriting two factorization limits in the correct expressions. This technique will be used frequently in latter examples. An useful observation is $s_{13} = -s_{14}$ when $s_{12} \to 0$, since $s_{12} + s_{13} + s_{14} = 0$ for massless particles. Using this relation, we have
\[
\lim_{(1|2) \to 0} A_LA_R = \lim_{[1|2] \to 0} A_LA_R = -\frac{(1|3)^2 (2|3)^2 [4|2]^4}{s_{13} s_{14}}.
\] (5.5)
Thus we can write
\[
A_{(1|2)[1|2]} = \frac{(1|3)^2 (2|3)^2 [4|2]^4}{s_{12} s_{13} s_{14}}.
\] (5.6)
One can check that $A_{(1|2)[1|2]}$ has correct factorization limits for remaining channels, therefore it is the correct result of $A_4(1_{\gamma}, 2_{\gamma}, 3_g, 4_g)$. It is the same as the one in [16].

5.2 The four-point amplitude $A_4(1_{\gamma}, 2_{\gamma}, 3_g, 4_g)$

The second amplitude is $A_4(1_{\gamma}, 2_{\gamma}, 3_g, 4_g)$. Notice that the naive power counting of Feynman diagrams shows $A(z \to \infty) \to \frac{1}{z}$ under the deformation of two photons of same helicity, thus the BCFW approach is feasible although this case cannot be covered by conclusions in [9] and [10]. Here we try to find the amplitude using our approach. We will start from considering the limit $s_{12} \to 0$, where two types of solutions are the same as in the previous example and we find
\[
A_{(1|2)} = -\frac{(1|3)^2 (2|4)^2}{s_{12}}, \quad A_{(1|2)} = -\frac{(1|3)^2 (2|4)^2}{s_{12}}.
\] (5.7)
So we can write $A_{(1|2)[1|2]} = A_{(1|2)} = A_{(1|2)}$ as our starting expression.

Since $A_{(1|2)[1|2]}$ does not contain the pole s_{14}, we need to add a new term to get the full answer. The limit $s_{14} \to 0$ gives
\[
A_{(1|4)[1|4]} = -\frac{(1|3)^2 (2|4)^2}{s_{14}}.
\] (5.8)
Finally we sum $A_{(1|2)[1|2]}$ and $A_{(1|4)[1|4]}$ to get
\[
A_{(1|2)(1|4)[1|2][1|4]} = A_{(1|2)[1|2]} + A_{(1|4)[1|4]} = \frac{s_{13} (1|3)^2 (2|4)^2}{s_{12} s_{14}},
\] (5.9)
which has correct factorization limits for $s_{12} \to 0$ and $s_{14} \to 0$. It can be verified that $A_{(1|2)(1|4)[1|2][1|4]}$ also has correct factorization limits for remain channels. Thus $A_{(1|2)(1|4)[1|2][1|4]}$ is the correct result for the amplitude $A_4(1_{\gamma}, 2_{\gamma}, 3_g, 4_g)$. It is the same as the one in [16].
5.3 The five-point amplitude $A_5(1^{-1}, 2^{+1}, 3^{-2}, 4^{+2}, 5^{-2})$

Now we turn to the five-point amplitude $A_5(1^{-1}, 2^{+1}, 3^{-2}, 4^{+2}, 5^{-2})$. Brief analysis of sub-amplitudes shows that this amplitude only contains poles of the form $\bullet \bullet$, therefore we need not consider any channel of the form $\langle \bullet \bullet \rangle$. We start with the result of the BCFW approach through a deformation which yields the non-zero boundary term. If we deform 1^{-1} and 2^{+1}, the conclusion in [9] indicates that the boundary contribution will appear. Under the deformation

$$\lambda_2 \to \lambda_2 - z\lambda_1, \quad \bar{\lambda}_1 \to \bar{\lambda}_1 + z\bar{\lambda}_2,$$

(5.10)

the BCFW approach gives

$$A_{[13][15]} = \frac{(13 \langle 45 \rangle [3][4][2][4]^5}{[1][2][3][5][4][5][2][3]^2} + \frac{(15 \langle 34 \rangle [45][2][4]^5}{[1][2][3][4][3][5][2][5]^2},$$

(5.11)

which has correct factorization limits for poles $[13]$ and $[15]$. The expression (5.11) is just one representation in the category and we can deform it to another while keeping correct factorization limits for poles $[13]$ and $[15]$. The reason to choose another representation is that

$$\lim_{[2][3] \to 0} s_{25} A_{[13][15]} = \infty, \quad \lim_{[2][3] \to 0} s_{23} A_{[13][15]} = \infty.$$

(5.12)

To remove double poles, we can use following transformations

$$\lim_{[13] \to 0} s_{13} A_{[13][15]} = -\frac{(13)^2 (45) [3][4][2][4]^5}{[2][5][3][5][4][5][2][3]^2} = \frac{(13)^2 (25)[3][2][4]^5}{[2][3][3][5][4][5][2][3]^2} = \frac{(13)^2 (25)[2][4]^5}{[2][3][2][5][3][5][4][5].}$$

(5.13)

and

$$\lim_{[15] \to 0} s_{15} A_{[13][15]} = -\frac{(15)^2 (34)[4][5][2][4]^5}{[2][3][3][4][3][5][2][5]^2} = \frac{(15)^2 (32)[2][5][2][4]^5}{[2][3][3][4][3][5][2][5]^2} = \frac{(15)^2 (32)[2][4]^5}{[2][3][2][5][3][4][3][5].}$$

(5.14)

Then we have

$$A'_{[13][15]} = \frac{(13 \langle 25 \rangle [2][4]^5}{[1][3][2][3][2][5][3][5][4][5]} + \frac{(15 \langle 23 \rangle [2][4]^5}{[1][5][2][3][2][5][3][4][3][5]},$$

(5.15)

which will be our starting expression for later calculations.

Since $A_{[13][15]}$ does not contain the pole $[12]$, we must add a term to give the correct factorization limit for $[12] \to 0$. Thus consider $[12] \to 0$, and we get

$$\lim_{[12] \to 0} A_L A_R = -\frac{(12)^2 (35)[1][4][2][4]^4}{[1][3][1][5][3][4][3][5][4][5]} = \frac{(12)^2 (35)[2][4]^6}{[2][3][2][5][3][4][3][5][4][5]},$$

$$A_{[12]} = -\frac{\lim_{[12] \to 0} A_L A_R}{s_{12}} = -\frac{(12)[35][2][4]^6}{[1][2][2][3][2][5][3][4][3][5][4][5].}$$

(5.16)
The purpose of the last step in the first line is to deform properly under the limit, so that poles \([1|3] \) and \([1|5] \) in the denominator can be removed to keep factorization limits for \([1|3] \to 0 \) and \([1|5] \to 0 \) when \(A'_{[1|3][1|5]} \) is added. Now we reach

\[
A_{[1|2][1|3][1|5]} = \frac{(1|3) (2|5) [2|4]^{5}}{[1|3] [2|3] [2|5] [3|5] [4|5]} + \frac{(1|5) (2|3) [2|4]^{5}}{[1|5] [2|3] [2|5] [3|4] [3|5] [4|5]} - \frac{(1|2) (3|5) [2|4]^{6}}{[1|2] [2|3] [2|5] [3|4] [3|5] [4|5]},
\]

(5.17)

which has correct factorization limits for poles \([1|3], [1|5], [1|2] \). One can observe that it is invariant when exchanging 3 and 5. It can be checked that it gives correct factorization limits for remain channels, therefore

\[
A_5(1_{\gamma}^{-1}, 2_{\gamma}^{+1}, 3_{\gamma}^{-2}, 4_{\gamma}^{+2}, 5_{\gamma}^{-2}) = A_{[1|2][1|3][1|5]},
\]

(5.18)

The calculation above starts from a deformation which yields non-zero boundary contribution, however, if two deformed particles contain at least one graviton, the boundary term will vanish. In order to verify \(5.18 \), we can calculate the amplitude by the BCFW approach under a correct deformation, and compare the result with \(5.18 \). Let us choose the deformation as

\[
\lambda_3 \to \tilde{\lambda}_3 + z\lambda_5, \quad \lambda_5 \to \lambda_5 - z\lambda_3.
\]

(5.19)

Then the BCFW approach gives

\[
A_5(1_{\gamma}^{-1}, 2_{\gamma}^{+1}, 3_{\gamma}^{-2}, 4_{\gamma}^{+2}, 5_{\gamma}^{-2}) = \frac{[1|4] [2|4]^{5}}{[1|2] [3|5]^{2}} \left(\frac{\langle 1|3 \rangle \langle 2|4 \rangle}{[1|3] [2|3] [2|5] [4|5]} + \frac{\langle 3|2 \rangle \langle 1|4 \rangle}{[1|5] [2|3] [3|5] [4|5]} + \frac{\langle 1|2 \rangle \langle 3|4 \rangle}{[1|5] [2|5] [3|4]} \right).
\]

(5.20)

One can verify that it is equal to \(5.18 \) although their expressions look totally different.

5.4 The five-point amplitude \(A_5(1_{\gamma}^{-1}, 2_{\gamma}^{+1}, 3_{\gamma}^{-1}, 4_{\gamma}^{+1}, 5_{\gamma}^{-2}) \)

The next example is the five-point amplitude \(A_5(1_{\gamma}^{-1}, 2_{\gamma}^{+1}, 3_{\gamma}^{-1}, 4_{\gamma}^{+1}, 5_{\gamma}^{-2}) \). As in the previous case, a brief analysis of sub-amplitudes shows all poles are of the form \([\bullet \bullet] \). We again start from the result given by the BCFW approach under a wrong deformation which contains the non-zero boundary term. Such a deformation can be chosen as

\[
\lambda_1 \to \tilde{\lambda}_1 - z\lambda_2, \quad \lambda_2 \to \lambda_2 + z\lambda_1,
\]

(5.21)

then the BCFW approach gives

\[
A_{[1|4][1|5]} = -\frac{\langle 1|4 \rangle \langle 3|5 \rangle \langle 3|4 \rangle [2|4]^{4}}{[1|4] [2|3] [2|5] [3|5] [4|5]} + \frac{\langle 1|5 \rangle \langle 3|4 \rangle \langle 3|5 \rangle [2|4]^{5}}{[1|5] [2|3] [3|4] [4|5] [2|5]^{2}},
\]

(5.22)

which produces correct factorization limits for poles \([1|4] \) and \([1|5] \). Again the presence of the double pole \([2|5] \) suggests us to deform it. To do so, we can use \(\lim_{[1|5] \to 0} \langle 3|4 \rangle [3|5] = -\langle 2|4 \rangle [2|5] \) to rewrite the second term as

\[
\frac{\langle 1|5 \rangle \langle 3|4 \rangle \langle 3|5 \rangle [2|4]^{5}}{[1|5] [2|3] [3|4] [4|5] [2|5]^{2}} \to -\frac{\langle 1|5 \rangle \langle 2|4 \rangle [2|4]^{5}}{[1|5] [2|3] [3|4] [4|5] [2|5]},
\]

(5.23)
Thus we get our starting expression

$$A'_{[1|4][1|5]} = A_{[1|4]} + A_{[1|5]},$$

with

$$A_{[1|4]} = -\frac{\langle 1|4 \rangle \langle 3|5 \rangle [3|4 |2|4]^4}{[1|4 |2|3 |2|5 |3|5 |4|5]}, \quad A_{[1|5]} = -\frac{\langle 1|5 \rangle \langle 2|4 \rangle [2|4]^5}{[1|5 |2|3 |3|4 |4|5 |2|5]}. \quad (5.25)$$

Then we try to include a term to produce the correct factorization limit for the pole $[1|2]$, which is not contained in $A'_{[1|4][1|5]}$. The symmetry of exchanging labels implies $A_{[1|2]}$ can be obtained by exchanging 2 and 4 in $A_{[1|4]}$, thus we reach

$$A_{[1|2][1|4][1|5]} = A_{[1|2]} + A'_{[1|4][1|5]}
= -\frac{\langle 1|2 \rangle \langle 3|5 \rangle [2|3 |2|4]^4}{[1|2 |3|4 |2|5 |3|5 |4|5]} - \frac{\langle 1|4 \rangle \langle 3|5 \rangle [3|4 |2|4]^4}{[1|4 |2|3 |2|5 |3|5 |4|5]} - \frac{\langle 1|5 \rangle \langle 2|4 \rangle [2|4]^5}{[1|5 |2|3 |3|4 |4|5 |2|5]}. \quad (5.26)$$

Now we consider the factorization limit for the pole $[3|4]$. $A_{[3|4]}$ can be obtained by exchanging 1 and 3 in $A_{[1|4]}$:

$$A_{[3|4]} = \frac{\langle 1|5 \rangle \langle 3|4 \rangle [1|4 |2|4]^4}{[3|4 |1|2 |2|5 |1|5 |4|5]}, \quad (5.27)$$

thus using (2.3) one can construct

$$A'_{[3|4]} = A_{[1|2][1|4][1|5]} + \left(A_{[3|4]} - \frac{\lim_{[3|4] \to 0} s_{34} A_{[1|2][1|4][1|5]}}{s_{34}} \right) = A_{[3|4]} + A_{[1|4]}, \quad (5.28)$$

$A'_{[3|4]}$ gives correct factorization limits for $[3|4] \to 0$ and $[1|4] \to 0$, but no longer has correct factorization limits for $[1|2] \to 0$ and $[1|5] \to 0$. This is a phenomenon one will encounter if the representative expression is not properly chosen as mentioned in section 2. To avoid this, one needs to find proper representative expressions for $A_{[3|4]}$ in (5.27) and $A_{[1|4]}$ in (5.25), such that at each iterative step, the correct factorization limit is satisfied not only for the new pole, but also for other poles in previous steps.

Now we try to deform $A_{[3|4]}$ in (5.27). Noting that $A_{[3|4]}$ contains both poles $[1|2]$ and $[3|4]$, we try to transform it so that it gives the correct factorization limit for the pole $[1|2]$ automatically. Using

$$\lim_{[3|4] \to 0} s_{34} A_{[3|4]} = -\frac{\langle 1|5 \rangle \langle 3|4 \rangle^2 [1|4 |2|4]^4}{[1|2 |2|5 |1|5 |4|5]} = \frac{\langle 2|5 \rangle \langle 3|4 \rangle^2 [3|5 |2|4]^5}{[1|2 |2|5 |1|5 |4|5 |3|5]} = -\frac{\langle 1|2 \rangle \langle 3|4 \rangle^2 [1|3 |2|4]^5}{[1|2 |1|5 |2|5 |3|5 |4|5]} \quad (5.29)$$

and

$$\lim_{[1|2] \to 0} s_{12} A_{[1|2]} = \frac{\langle 1|2 \rangle \langle 3|5 \rangle^2 [2|3 |2|4]^4}{[3|4 |2|5 |3|5 |4|5]} = -\frac{\langle 1|2 \rangle \langle 4|5 \rangle [1|5 |2|4]^5}{[3|4 |2|5 |3|5 |4|5 |1|5]} = \frac{\langle 1|2 \rangle \langle 3|4 \rangle [1|3 |2|4]^5}{[1|5 |2|5 |3|4 |3|5 |4|5]} \quad (5.30)$$
we obtain

\[A_{[1][2][3][4]} = A_{[1][2]} = A_{[3][4]} = \frac{\langle 1 \big| 2 \rangle \langle 3 \big| 4 \rangle \langle 3 \big| 4 \rangle \langle 1 \big| 3 \rangle \langle 2 \big| 4 \rangle}{\langle 1 \big| 2 \rangle \langle 3 \big| 4 \rangle \langle 3 \big| 4 \rangle \langle 1 \big| 3 \rangle \langle 2 \big| 4 \rangle}, \quad (5.31) \]

where \(A_{[1][2]} \) in (5.26) has been deformed as well. Using the deformed \(A_{[3][4]} \) in (5.31) from (5.26) to (5.28), we find that the new \(A'_{[3][4]} \) gives correct factorization limits for poles \([3][4], [1][4], \) and \([1][2], \) but not for the pole \([1][5], \). To fix this problem, we need to deform \(A_{[1][4]} \) or \(A_{[1][5]} \) in (5.25).

Now noticing the symmetry \(1 \leftrightarrow 3 \) or \(2 \leftrightarrow 4, \) we can construct \(A_{[1][4][2][3]} \) from \(A_{[1][2][3][4]} \) in (5.31) by exchanging 2 and 4 as

\[A_{[1][4][2][3]} = A_{[1][4]} = A_{[2][3]} = -\frac{\langle 1 \big| 4 \rangle \langle 2 \big| 3 \rangle \langle 1 \big| 3 \rangle \langle 2 \big| 4 \rangle}{\langle 1 \big| 4 \rangle \langle 2 \big| 3 \rangle \langle 1 \big| 3 \rangle \langle 2 \big| 4 \rangle}. \quad (5.32) \]

Putting the new expressions in (5.31) and (5.32) into (5.28), we reach

\[A_{[1][2][1][4][2][3][3][4]} = A_{[1][2][3][4]} + A_{[1][4][2][3]}, \quad (5.33) \]

which gives correct factorization limits for \([1][2] \rightarrow 0, [1][4] \rightarrow 0, [2][3] \rightarrow 0, [3][4] \rightarrow 0 \) as well as \([1][5] \rightarrow 0. \]

To check it, notice that

\[
\lim_{[1][5] \rightarrow 0} s_{15} A_{[1][2][1][4][2][3][3][4]} = \frac{(1 \big| 5 \rangle \langle 1 \big| 4 \rangle \langle 2 \big| 3 \rangle \langle 1 \big| 3 \rangle \langle 2 \big| 4 \rangle}{\langle 1 \big| 4 \rangle \langle 2 \big| 3 \rangle \langle 1 \big| 3 \rangle \langle 2 \big| 4 \rangle} - \frac{(1 \big| 5 \rangle \langle 1 \big| 2 \rangle \langle 3 \big| 4 \rangle \langle 1 \big| 3 \rangle \langle 2 \big| 4 \rangle}{\langle 1 \big| 2 \rangle \langle 3 \big| 4 \rangle \langle 1 \big| 3 \rangle \langle 2 \big| 4 \rangle} = \frac{(1 \big| 5 \rangle \langle 2 \big| 4 \rangle \langle 2 \big| 4 \rangle}{\langle 2 \big| 3 \rangle \langle 2 \big| 3 \rangle \langle 3 \big| 3 \rangle \langle 3 \big| 3 \rangle \langle 4 \big| 4 \rangle \langle 4 \big| 4 \rangle} = \frac{(1 \big| 5 \rangle \langle 2 \big| 4 \rangle \langle 2 \big| 4 \rangle}{\langle 2 \big| 3 \rangle \langle 2 \big| 3 \rangle \langle 3 \big| 3 \rangle \langle 3 \big| 3 \rangle \langle 4 \big| 4 \rangle \langle 4 \big| 4 \rangle} = \frac{(1 \big| 5 \rangle \langle 2 \big| 4 \rangle \langle 2 \big| 4 \rangle}{\langle 2 \big| 3 \rangle \langle 2 \big| 3 \rangle \langle 3 \big| 3 \rangle \langle 3 \big| 3 \rangle \langle 4 \big| 4 \rangle \langle 4 \big| 4 \rangle}, \quad (5.34)\]

therefore

\[
\lim_{[1][5] \rightarrow 0} s_{15} A_{[1][2][1][4][2][3][3][4]} = s_{15} A_{[1][5]} = -\lim_{[1][5] \rightarrow 0} A_{L} A_{R}. \quad (5.35)\]

One can verify that \(A_{[1][2][1][4][2][3][3][4]} \) also gives right factorization limits for remaining channels. Thus we find the correct amplitude is

\[A(1^{-1}, 2^{+1}, 3^{-1}, 4^{+1}, 5^{-2}) = A_{[1][2][1][4][2][3][3][4]}. \quad (5.36)\]

Notice that the formula of \(A_{[1][2][1][4][2][3][3][4]} \) is manifestly invariant when exchanging \(1 \leftrightarrow 3 \) and \(2 \leftrightarrow 4. \) Result (5.36) can be rewritten as

\[
A(1^{-1}, 2^{+1}, 3^{-1}, 4^{+1}, 5^{-2}) = \frac{[1\big| 3 \rangle \langle 2 \big| 4 \rangle}{\langle 1 \big| 2 \rangle \langle 1 \big| 4 \rangle \langle 1 \big| 5 \rangle} \langle 2 \big| 3 \rangle \langle 3 \big| 4 \rangle \langle 4 \big| 5 \rangle + \langle 1 \big| 4 \rangle \langle 3 \big| 4 \rangle \langle 5 \big| 5 \rangle - \langle 1 \big| 4 \rangle \langle 3 \big| 4 \rangle \langle 5 \big| 5 \rangle} = \frac{[1\big| 3 \rangle \langle 2 \big| 4 \rangle}{\langle 1 \big| 2 \rangle \langle 1 \big| 4 \rangle \langle 1 \big| 5 \rangle} \langle 2 \big| 3 \rangle \langle 3 \big| 4 \rangle \langle 4 \big| 5 \rangle, (5.37)\]
which is the formula in [16].

As a sidenote, when two deformed particles are two photons of same helicity, there is no general proof of its boundary behavior, since this situation cannot be covered by conclusions in [9, 10]. Although naive power counting of Feynman diagrams shows that the large z behavior is z^0, using the result given in [5.37], one can observe that under the deformation of two photons of same helicity, the boundary term will vanish.

5.5 The six-point amplitude $A_6(1_{\gamma}^{-1}, 2_{\gamma}^{+1}, 3_{\gamma}^{-1}, 4_{\gamma}^{+1}, 5_{\gamma}^{-1}, 6_{\gamma}^{+1})$

The final example is the six-point amplitude $A_6(1_{\gamma}^{-1}, 2_{\gamma}^{+1}, 3_{\gamma}^{-1}, 4_{\gamma}^{+1}, 5_{\gamma}^{-1}, 6_{\gamma}^{+1})$. This case is a little different from those in previous subsections. For previous cases, we know there exist some deformations that can make boundary terms vanish, so we do not need our approach in this paper to find them. However, for $A_6(1_{\gamma}^{-1}, 2_{\gamma}^{+1}, 3_{\gamma}^{-1}, 4_{\gamma}^{+1}, 5_{\gamma}^{-1}, 6_{\gamma}^{+1})$ the situation is different. First, since there is no graviton, results in [10] can not be applied. Secondly, we know the boundary term is not zero when deforming two photons with opposite helicities. Thirdly, when two deformed photons have the same helicity, the large z behavior is z^0 by naive power counting of Feynman diagrams. Thus, our approach becomes one of useful approaches.

Let us consider the deformation:

$$\lambda_1 \rightarrow \lambda_1 - z\lambda_3, \quad \bar{\lambda}_3 \rightarrow \bar{\lambda}_3 + z\bar{\lambda}_1. \quad (5.38)$$

Under this, the BCFW approach gives residues for the following poles: $[1|2], [1|4], [1|6], \langle 3|2 \rangle, \langle 3|4 \rangle, \langle 3|6 \rangle, s_{124}, s_{125}, s_{126}, s_{145}, s_{146}, s_{156}$. A little bit algebra yields

$$A = \frac{(1|2) \langle 4|6 \rangle \langle 5|1 + 3|2 \rangle^5 ((4|5) [3|4] [5|6] [6|1 + 3|2] - (5|6) [3|6] [4|5] [4|1 + 3|2])}{[1|2] \langle 4|5 \rangle \langle 5|6 \rangle \langle 4|1 + 3|2 \rangle \langle 6|1 + 3|2 \rangle \langle 4|1 + 2|3 \rangle \langle 5|1 + 2|3 \rangle \langle 6|1 + 2|3 \rangle s_{123}} + (2 \leftrightarrow 4) + (2 \leftrightarrow 6)$$

$$+ \frac{(1|3)^4 \langle 2|3 \rangle \langle 4|6 \rangle^5 (2|1 + 3|5) \langle 1|4 \rangle (5|6) [4|5] [2|1 + 3|6] - (1|6) \langle 4|5 \rangle \langle 5|6 \rangle [2|1 + 3|4]}{(2|3) \langle 4|5 \rangle \langle 5|6 \rangle \langle 2|1 + 3|4 \rangle \langle 2|1 + 3|6 \rangle \langle 1|2 + 3|4 \rangle \langle 1|2 + 3|5 \rangle \langle 1|2 + 3|6 \rangle s_{123}} + (2 \leftrightarrow 4) + (2 \leftrightarrow 6)$$

$$+ \frac{s_{24} (5|6) [3|5] [1|2 + 4|6]^5}{(1|2) \langle 1|4 \rangle [3|6] [5|6] [1|2 + 4|5] \langle 2|1 + 4|3 \rangle \langle 4|1 + 2|3 \rangle s_{124}} + (4 \leftrightarrow 6) + (2 \leftrightarrow 6)$$

$$+ \frac{s_{46} (1|5)^5 \langle 2|5 \rangle [4|6]^4 \langle 2|1 + 5|3 \rangle}{(1|2) \langle 2|5 \rangle [3|4] [3|6] [1|2 + 5|4] \langle 1|2 + 5|6 \rangle \langle 5|1 + 2|3 \rangle s_{125}} + (2 \leftrightarrow 4) + (2 \leftrightarrow 6). \quad (5.39)$$

Four explicit terms above are residues for poles $[1|2], \langle 2|3 \rangle, s_{124} \text{ and } s_{125}$. Other terms can be obtained by exchanging labels. Result (5.39) will be our starting expression.

Now we need to include factorization limits for poles not detected by the chosen deformation. It turns out that result (5.39) is the correct amplitude that we are seeking for, since it gives correct factorization limits for all physical channels. The symmetry of exchanging labels makes the verification very easy. The amplitude has the $S_3 \otimes S_3$ symmetry: $1 \leftrightarrow 3, 3 \leftrightarrow 5, 5 \leftrightarrow 1 \text{ and } 2 \leftrightarrow 4, 4 \leftrightarrow 6, 6 \leftrightarrow 2$. Its factorization limits will be restricted by this symmetry, for example, $\lim_{[2|3] \rightarrow 0} A_L A_R$ can be obtained by exchanging 1 and 3 in $\lim_{[1|2] \rightarrow 0} A_L A_R$. (5.39) already has correct factorization limits for poles detected by the BCFW.
approach. If it is invariant when some labels are exchanged, more right factorization limits will be satisfied. For instance, (5.39) provides the correct factorization limit for $[1|2] \to 0$. If we perform the exchange $1 \leftrightarrow 3$ for (5.39), the new expression gives the correct factorization limit for $[2|3] \to 0$, since $\lim_{[2|3] \to 0} A_L A_R$ can be obtained from $\lim_{[1|2] \to 0} A_L A_R$ by this exchange. Thus, if (5.39) has the symmetry $1 \leftrightarrow 3$, the correct factorization limit for $[2|3] \to 0$ is also satisfied. Consequently, if (5.39) has the $S_3 \otimes S_3$ symmetry as the correct amplitude, all factorization limits will be given. In (5.39), the symmetry $\{2 \leftrightarrow 4, 4 \leftrightarrow 6, 6 \leftrightarrow 2\}$ is manifest. On the other hand, we have checked the symmetry $\{1 \leftrightarrow 3, 3 \leftrightarrow 5, 5 \leftrightarrow 1\}$ numerically. Therefore (5.39) is the correct $A_6(1^{−1}, 2^{+1}, 3^{−1}, 4^{+1}, 5^{−1}, 6^{+1})$.

6. Conclusion

In this paper, we have proposed an approach to calculate tree-level amplitudes through their factorization limits. We seek a quantity that has correct factorization limits for all physical channels iteratively. Starting from an initial function which has correct factorization limits for some poles, we adjust our expression to include factorization limits for new channels at each iterative step, while keeping correct factorization limits of previous poles. Proceeding by this, the proper choice of an expression in the equivalent category under corresponding limits is required. We have shown how to make such choice in various examples. Because at each step, at least one new pole is included into the set of channels having correct factorization limits, our algorithm will stop at finite steps. This approach can be applied to all circumstances no matter whether the boundary contribution vanishes.

To demonstrate, we have applied our approach to calculate amplitudes of $\lambda \phi^4$ theory, pure gauge theory, and the Einstein-Maxwell theory. Correct results of these examples are obtained, although their calculations are somewhat complicated. In these examples, one can see that no information about boundary terms is required when using this approach.

In principle, one can split an amplitude into more than two sub-amplitudes by imposing on-shell conditions on more propagators. However, it will make the computation more complicated. For example, if we cut the amplitude into three sub amplitudes, we need to consider factorization limits for all possible combinations of two channels. The number of such combinations grows extremely faster than the number of channels. The maximal cut is imposing on-shell conditions on all propagators, then all sub amplitudes are lowest-point amplitudes. In such case, all possible Feynman diagrams need to be considered one by one.

Acknowledgement

We would like to thank Prof. Bo Feng for his help throughout the project. This work is supported by Chinese NSF funding under contracts No.11031005, No.11135006 and No.11125523.
A. Alternative calculation of $A_6(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$

In this section, we present the calculation of $A_6(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$ that starts by considering the factorization limit for the three-particle channel $s_{234} \to 0$. Unlike the two-particle channel where the on-shell limit is split into the holomorphic and anti-holomorphic parts, the on-shell limit of $s_{234} \to 0$ could not be split, therefore s_{234} will appear in the denominator of the amplitude as a whole. Thus we do not solve the constraint on kinematic variables, as the calculation in the $\lambda \phi^4$ case. The factorization limit for $s_{234} \to 0$ is given by

$$\lim_{s_{234} \to 0} A_4(2^-, 3^-, 4^+, -P_{234}^+) A_4(P_{234}^+, 5^+, 6^+, 1^-) = \frac{\langle 2|3 \rangle^3}{\langle 3|4 \rangle \langle 4|P_{234} \rangle (P_{234}^2) \langle P_{234}^2 | 5 \rangle \langle 5|6 \rangle \langle 6|1 \rangle}. \quad \text{(A.1)}$$

To express $\lambda_{P_{234}}$, we can use $\langle a|P_{234} \rangle = \frac{\langle a|P_{234}|b \rangle}{||P_{234}||}$. The calculation is following,

$$\lim_{s_{234} \to 0} A_4(2^-, 3^-, 4^+, -P_{234}^+) A_4(P_{234}^+, 5^+, 6^+, 1^-) = \frac{\langle 2|3 \rangle^3}{\langle 3|4 \rangle \langle 4|P_{234} \rangle (P_{234}^2) \langle P_{234}^2 | 5 \rangle \langle 5|6 \rangle \langle 6|1 \rangle} \frac{\langle 1|P_{234}^3 \rangle^3}{\langle P_{234}^3 | 2 \rangle^2 \langle P_{234}^3 | 4 \rangle}$$

$$= \frac{(1|2 + 3|4 \rangle \langle 1|P_{234}^4 |3 \rangle^2}{\langle 5|6 \rangle \langle 6|1 \rangle \langle 3|4 \rangle^2 \langle 2|3 \rangle \langle 3|4 \rangle \langle 5|P_{234}^2 |2 \rangle}$$

$$= \frac{(1|2 + 3|4 \rangle \langle 1|P_{234}^4 |3 \rangle^2}{\langle 5|6 \rangle \langle 6|1 \rangle \langle 3|4 \rangle^2 \langle 2|3 \rangle \langle 3|4 \rangle \langle 5|3 + 4|2 \rangle}$$

$$= \frac{(1|2 + 3|4 \rangle \langle 1|P_{234}^4 |3 \rangle^2}{\langle 5|6 \rangle \langle 6|1 \rangle \langle 3|4 \rangle^2 \langle 2|3 \rangle \langle 3|4 \rangle \langle 5|3 + 4|2 \rangle} \quad \text{(A.2)}$$

From the second line to the third line, we have used $\langle 1|P_{234}^2 |3 \rangle = \langle 1|P_{234}^2 (2 + 3)|3 \rangle = -\langle 1|P_{234}^2 |3 \rangle$. This step is necessary if we try to include correct factorization limits for poles $\langle 5|6 \rangle$ and $\langle 2|3 \rangle$. Thus we obtain

$$A_{(5|6)[2|3]|s_{234}} = -\frac{\langle 1|2 + 3|4 \rangle^3}{\langle 5|6 \rangle \langle 6|1 \rangle \langle 2|3 \rangle \langle 3|4 \rangle \langle 5|3 + 4|2 \rangle s_{234}} \quad \text{(A.3)}$$

Since $A_{(5|6)[2|3]|s_{234}}$ does not contain the pole s_{126}, we should compute the factorization limit for this pole and add it to $A_{(5|6)[2|3]|s_{234}}$. Similar manipulation gives

$$A_{(4|5)[1|2]|s_{126}} = -\frac{\langle 3|4 + 5|6 \rangle^3}{\langle 3|4 \rangle \langle 4|5 \rangle \langle 1|2 \rangle \langle 6|1 \rangle \langle 5|3 + 4|2 \rangle s_{126}} \quad \text{(A.4)}$$

Summing (A.3) and (A.4), we reach the correct result.

References

[1] E. Witten, Commun. Math. Phys. 252, 189 (2004) [hep-th/0312171].

[2] R. Britto, F. Cachazo and B. Feng, Nucl. Phys. B 715, 499 (2005) [hep-th/0412308].

[3] R. Britto, F. Cachazo, B. Feng and E. Witten, Phys. Rev. Lett. 94, 181602 (2005) [hep-th/0501052].
[4] Z. Bern, L. J. Dixon and D. A. Kosower, Annals Phys. 322, 1587 (2007) [arXiv:0704.2798 [hep-ph]].

[5] B. Feng and M. Luo, Front. Phys. 7, 533 (2012) [arXiv:1111.5759 [hep-th]].

[6] H. Elvang and Y. t. Huang, arXiv:1308.1697 [hep-th].

[7] K. Risager, JHEP 0512, 003 (2005) [hep-th/0508206].

[8] P. Benincasa, C. Boucher-Veronneau and F. Cachazo, JHEP 0711, 057 (2007) [hep-th/0702032 [HEP-TH]].

[9] N. Arkani-Hamed and J. Kaplan, JHEP 0804, 076 (2008) [arXiv:0801.2385 [hep-th]].

[10] C. Cheung, JHEP 1003, 098 (2010) [arXiv:0808.0504 [hep-th]].

[11] P. Benincasa and F. Cachazo, arXiv:0705.4305 [hep-th].

[12] R. H. Boels, JHEP 1005, 046 (2010) [arXiv:1003.2989 [hep-th]].

[13] B. Feng, J. Wang, Y. Wang and Z. Zhang, JHEP 1001, 019 (2010) [arXiv:0911.0301 [hep-th]].

[14] B. Feng and C. Y. Liu, JHEP 1007, 093 (2010) [arXiv:1004.1282 [hep-th]].

[15] B. Feng and Z. Zhang, JHEP 1112, 057 (2011) [arXiv:1109.1887 [hep-th]].

[16] P. Benincasa and E. Conde, JHEP 1111, 074 (2011) [arXiv:1106.0166 [hep-th]].

[17] P. Benincasa and E. Conde, Phys. Rev. D 86, 025007 (2012) [arXiv:1108.3078 [hep-th]].

[18] B. Feng, Y. Jia, H. Luo and M. Luo, arXiv:1111.1547 [hep-th].