Comparative genomics reveals an SNP potentially leading to phenotypic diversity of *Salmonella enterica* serovar Enteritidis

Duhyun Ko and Sang Ho Choi*

Abstract
An SNP is a spontaneous genetic change having a potential to modify the functions of the original genes and to lead to phenotypic diversity of bacteria in nature. In this study, a phylogenetic analysis of *Salmonella enterica* serovar Enteritidis, a major food-borne pathogen, showed that eight strains of *S. Enteritidis* isolated in South Korea, including FORC_075 and FORC_078, have almost identical genome sequences. Interestingly, however, the abilities of FORC_075 to form biofilms and red, dry and rough (RDAR) colonies were significantly impaired, resulting in phenotypic differences among the eight strains. Comparative genomic analyses revealed that one of the non-synonymous SNPs unique to FORC_075 has occurred in *envZ*, which encodes a sensor kinase of the EnvZ/OmpR two-component system. The SNP in *envZ* leads to an amino acid change from Pro248 (CCG) in other strains including FORC_078 to Leu248 (CTG) in FORC_075. Allelic exchange of *envZ* between FORC_075 and FORC_078 identified that the SNP in *envZ* is responsible for the impaired biofilm- and RDAR colony-forming abilities of *S. Enteritidis*. Biochemical analyses demonstrated that the SNP in *envZ* significantly increases the phosphorylated status of OmpR in *S. Enteritidis* and alters the expression of the OmpR regulon. Phenotypic analyses further identified that the SNP in *envZ* decreases motility of *S. Enteritidis* but increases its adhesion and invasion to both human epithelial cells and murine macrophage cells. In addition to an enhancement of infectivity to the host cells, survival under acid stress was also elevated by the SNP in *envZ*. Together, these results suggest that the natural occurrence of the SNP in *envZ* could contribute to phenotypic diversity of *S. Enteritidis*, possibly improving its fitness and pathogenesis.

DATA SUMMARY
The whole genome sequences used in this study have been deposited previously in the National Center for Biotechnology Information RefSeq database (https://www.ncbi.nlm.nih.gov/), and the accession numbers are listed in Table S3. The authors confirm that all supporting data and protocols have been provided within the article and through the supplementary data files.

INTRODUCTION
Bacterial pathogens have evolved genetically to adapt to various environmental conditions [1]. Many studies have revealed that genetic mutations occur naturally in bacteria for their optimal fitness and successful pathogenesis during the course of infection [2, 3]. Horizontal gene transfer, one of the possible mechanisms for genetic evolution, results in the acquisition of novel genes and enables non-pathogenic bacteria to be pathogenic [4]. Alternatively, small genetic changes such as SNPs have potential to modify the function of original genes and to induce phenotypic diversity of pathogens, leading to their pathoadaptive evolution [5]. Along with the rapid development of next-generation sequencing technologies, comparative genomic analysis has discovered a number of SNPs occurring in many pathogenic bacteria including *Clostridium difficile*, *Mycobacterium tuberculosis* and *Salmonella enterica* [6–8]. However, studies on the association of each SNP with bacterial pathogenesis are still limited.
S. enterica serovar Enteritidis is a major food-borne pathogen, which causes diseases ranging from mild gastroenteritis to severe systemic infection [9, 10]. Salmonella has multiple two-component systems to recognize diverse environmental changes and to respond appropriately [11]. The EnvZ/OmpR two-component system has been well studied in Salmonella. The sensor kinase EnvZ phosphorylates itself and transfers the phosphoryl group to its cognate response regulator OmpR in response to specific environmental signals such as osmolarity and pH change [12–14]. Phosphorylation induces conformational changes of OmpR, which enhances its DNA binding affinity [15], and thus the expression of the OmpR regulon is mostly dependent on the amount of phosphorylated OmpR (OmpR-P). The OmpR regulon includes ompF and ompC, which encode outer membrane porins, and regulation of their expression is well characterized. A low level of OmpR-P is enough to activate the transcription of ompF, but not of ompC [16]. In contrast, a high level of OmpR-P activates ompC transcription, while repressing ompF transcription [16].

The EnvZ/OmpR two-component system also regulates virulence-related genes and plays an essential role in the pathogenesis of Salmonella [17, 18]. For example, the EnvZ/OmpR system controls the expression of csgD, which encodes a master regulator activating the biosynthesis of curli fimbriae and cellulose [19–21]. Curli fimbriae and cellulose are major biofilm components and contribute to the development of a red, dry and rough (RDAR) colony morphology [22–24]. In addition, the EnvZ/OmpR system represses expression of flagellar genes such as fliB and fliC, which are associated with the motility of Salmonella [25]. The EnvZ/OmpR system positively regulates the expression of hilA, encoding a major activator of virulence genes located in the Salmonella pathogenicity island 1 (SPI-1), and the expression of ssrA and ssrB, encoding a master activator of the SPI-2 genes [26–28]. The SPI-1 and SPI-2 encode type III secretion systems and enable the efficient invasion to host cells and intracellular replication [29–32]. Furthermore, OmpR itself is an acid shock protein and regulates the expression of genes that are necessary for acid resistance [14, 33–35].

In the present study, we conducted a phylogenetic analysis of 241 strains of S. Enteritidis and revealed that eight strains isolated in South Korea, including FORC_075 and FORC_078, have almost identical genome sequences. Interestingly, however, distinct phenotypes were observed in FORC_075 which showed an impaired biofilm formation and a smooth and white (SAW) colony morphology. We identified that nine non-synonymous SNPs have occurred exclusively in FORC_075, and one of which is in envZ resulting in an amino acid change from Pro248 (CCG) in other strains including FORC_078 to Leu248 (CTG) in FORC_075. By exchanging the SNP allele in envZ between FORC_075 and FORC_078, we demonstrate that the SNP in envZ determines the biofilm formation and colony morphology. The SNP in envZ induces functional modification of EnvZ, increasing the cellular level of OmpR-P in S. Enteritidis and altering the expression of the OmpR regulon. Further phenotypic analyses revealed that the SNP in envZ decreases motility, but increases both adhesion and invasion to host cells and elevates survival under acid stress. Together, these results suggest that the natural occurrence of the SNP in envZ plays a critical role in differentiating the virulence-related phenotypes of S. Enteritidis and thus contributes to its phenotypic diversity.

Impact Statement
An SNP is an evolutionary event which contributes to phenotypic diversity of bacteria in nature. Although eight strains of Salmonella enterica serovar Enteritidis, a major food-borne pathogen, had almost identical genome sequences, differential phenotypes of biofilm formation and colony morphology were observed among the eight strains. A non-synonymous SNP in envZ, encoding a sensor kinase of the EnvZ/OmpR two-component system, was identified to be responsible for the observed differential phenotypes. The SNP in envZ affected EnvZ function, increasing the phosphorylated status of OmpR in S. Enteritidis and altering the expression of the OmpR regulon. In addition, the SNP in envZ significantly differentiated the virulence-related phenotypes of S. Enteritidis, including motility, adhesion and invasion to host cells, and even acid resistance. These results suggest that the spontaneous SNP in envZ could serve as a pathoadaptive mutation of S. Enteritidis, potentially leading to its phenotypic diversity.

METHODS
Strains, plasmids and culture conditions
The strains and plasmids used in this study are listed in Table S1 (available in the online version of this article). Unless otherwise noted, all strains were grown aerobically in Luria-Bertani (LB) medium at 37°C. When required, antibiotics were added to the medium at the following concentrations: ampicillin, 100 µg ml⁻¹; kanamycin, 100 µg ml⁻¹; and chloramphenicol, 20 µg ml⁻¹. Bacterial growth was monitored spectrophotometrically at 600 nm (A₆₀₀).

Comparative genomic analyses
The eight whole genome sequences of the S. Enteritidis strains, FORC_007, FORC_019, FORC_051, FORC_052, FORC_056, FORC_074, FORC_075 and FORC_078, were retrieved from the NCBI RefSeq database (https://www.ncbi.nlm.nih.gov/). Additionally, the 233 whole genome sequences, which were analysed at ‘complete’ and ‘chromosomal’ levels and named as ‘Salmonella enterica’ subsp. enterica serovar Enteritidis’, were retrieved from the NCBI RefSeq database. All accession numbers used in this study are listed in Table S3.

For average nucleotide identity (ANI) analysis, ANI values were calculated by the JSpecies program with the BLAST algorithm comparing 1020 bp fragmented whole genome sequences of the eight FORC strains [36]. For phylogenetic

FORC_075, and one of which is in envZ resulting in an amino acid change from Pro248 (CCG) in other strains including FORC_078 to Leu248 (CTG) in FORC_075. By exchanging the SNP allele in envZ between FORC_075 and FORC_078, we demonstrate that the SNP in envZ determines the biofilm formation and colony morphology. The SNP in envZ induces functional modification of EnvZ, increasing the cellular level of OmpR-P in S. Enteritidis and altering the expression of the OmpR regulon. Further phenotypic analyses revealed that the SNP in envZ decreases motility, but increases both adhesion and invasion to host cells and elevates survival under acid stress. Together, these results suggest that the natural occurrence of the SNP in envZ plays a critical role in differentiating the virulence-related phenotypes of S. Enteritidis and thus contributes to its phenotypic diversity.
analysis, each genome of a total of 241 strains of S. Enteritidis was mapped to the genome of S. Enteritidis P125109 (reference genome) by the Snippy program (https://github.com/tseemann/snippy). The recombinant region was removed from the resulting alignment by the Gubbins program [37], and then core SNPs were extracted by the SNP-sites program [38]. The extracted SNPs were used to calculate SNP distances between the S. Enteritidis strains by the snp-dists program (https://github.com/tseemann/snp-dists). A total of 7154 SNP sites of 241 strains were used to reconstruct a phylogenetic tree by the RAxML program with a gamma distribution and a general time-reversible model under 500 bootstrap repeats [39].

For pan-genome analysis, the whole genomes of the eight FORC strains were annotated by the Prokka program [40], and their pan-genome was built by the Roary program [41] using the resulting annotations. For SNP analysis, the whole genome sequences of FORC_007, FORC_019, FORC_051, FORC_052, FORC_056, FORC_074 and FORC_075 were aligned to that of FORC_078 by the NUCmer program [42]. SNP positions were inferred by show-snps programs [42], and insertions and deletions were excluded. The effect of non-synonymous SNPs on protein function was predicted by the PROVEAN (Protein variation effect analyzer, http://provean.jcvi.org/) [43], SNAP2 (Screening for non-acceptable polymorphisms 2, https://www.rostlab.org/services/snap/) [44] and SIFT (Sorting intolerant from tolerant, https://sift.bii.a-star.edu.sg/) [45] programs.

Biofilm formation

Biofilms of the S. Enteritidis strains were formed as described previously [46] with minor modifications. Briefly, overnight cultures of the S. Enteritidis strains were diluted to an A600 of 0.01 in tryptic soy broth (1:20 diluted TSB), and 200 µl of the resulting culture was used to form biofilms on each well of 96-well polystyrene microtitre plates (Nunc). After static incubation at 30°C for 24 or 48 h, the planktonic cells were removed, and the remaining biofilms were stained with 1% crystal violet (CV) solution (Sigma-Aldrich) and quantified as described previously [47].

Colony morphology assay

For analysis of colony morphology, 1 µl of overnight cultures of the S. Enteritidis strains was used to spot onto LB agar plates without salt, containing 40 µg ml−1 of Congo red (Sigma) and 20 µg ml −1 of Coomassie brilliant blue (Sigma) (CR agar plates) or 200 µg ml−1 of calcofluor white (Sigma) (CFW agar plates). The resulting colonies were grown at 26°C for 96 h and visualized using a Stemi 305 stereomicroscope (Zeiss) equipped with an Axiocam 105 colour camera (Zeiss) or photographed using a digital camera (PowerShot G7X Mark II; Canon).

Generation of a zirT mutant

The zirT gene (FORC78_1136) was inactivated by deletion (1465 bp of 1983 bp) of the coding region using the lambda
red recombination method [48]. Briefly, a linear DNA fragment containing a kanamycin resistance (Km') cassette was amplified from pKD13 using ZIRT01-F and ZIRT01-R which were designed to carry 5′- and 3′-flanking regions of zirT (Table S2). The resulting fragment was introduced into the zirT coding region of FORC_078 carrying pKD46 to generate FORC_078- zirT::kan (Table S1). The deletion of zirT was confirmed by PCR.

Generation of single nucleotide substitution mutants

For single nucleotide substitutions (C → T in envZ of FORC_078 and T → C in envZ of FORC_075), the envZ genes of FORC_078 and FORC_075 were first replaced with a Km' cassette and chloramphenicol resistance (Cm') cassette, respectively, using the lambda red recombination method [48]. Briefly, pairs of primers, ENVZ01-F and ENVZ01-R1 or ENVZ01-F and ENVZ01-R2, which were designed to carry 5′- and 3′-flanking regions of envZ, were used for amplification of linear DNA fragments containing the Km' cassette from pKD13 and the Cm' cassette from pKD3, respectively (Table S2). The resulting Km' cassette was introduced into the envZ gene of FORC_078 carrying pKD46 to generate FORC_078-envZ::kan, and the resulting Cm' cassette was introduced into the envZ gene of FORC_075 carrying pKD46 to generate FORC_075-envZ::cat (Table S1).

Then, the envZ region of FORC_078 containing the SNP allele (C) and that of FORC_075 containing the SNP allele (T) were amplified using ENVZ02-F and ENVZ02-R (Table S2), and the resulting fragments were ligated into SphI-Sacl-digested pCVD442 to generate pDH2003 and pDH1904, respectively (Table S1). Escherichia coli S17-1 λpir containing pDH1903 was used as a conjugal donor to FORC_078-envZ::cat to generate FORC_078-EnvZ_L248P (Table S1). The conjugation and isolation of the transconjugants were conducted using the method described previously [49]. The single nucleotide substitution was confirmed by DNA sequencing. The same experimental procedures were adopted for single nucleotide substitution (C → T) in envZ of ATCC 13076 to generate ATCC 13076-EnvZ_P248L (Table S1).

Purification of OmpR and Western blot analysis

The ompR gene was amplified using OMPR01-F and OMPR01-R (Table S2), and the resulting fragment was subcloned into pET-28a(+) (Novagen) to generate pDH2003 (Table S1). The His6-tagged OmpR was expressed in E. coli BL21(DE3) and purified by affinity chromatography (Qiagen). The purified His6-tagged OmpR was used to raise mouse anti-OmpR polyclonal antibody (AbClon).

For Western blot analysis, the S. Enteritidis strains grown to an A600 of 2.5 were harvested by centrifugation, and the cells were lysed using B-PER Bacterial Protein Extraction Reagent with Enzymes (Thermo Fisher Scientific). The cell debris was removed by centrifugation to obtain clear cell lysates. OmpR and DnaK in the clear cell lysates were detected by Western blot analysis using mouse anti-S. Enteritidis OmpR antibody and mouse anti-E. coli DnaK antibody (Enzo Life Science) as described previously [50]. The phosphorylated status of OmpR was detected by Western blot analysis using 10% SuperSep Phos-tag precast gels (Wako). After electrophoresis, the precast gels were washed three times with transfer buffer (25 mM Tris, 192 mM glycine, 20% methanol and 5 mM EDTA) to remove Zn2+ and further washed once with transfer buffer without EDTA. The phosphorylated- and unphosphorylated-OmpR were detected using the same mouse anti-S. Enteritidis OmpR antibody.
RNA purification and transcript analysis

Total RNAs were isolated from the *S*. Enteritidis strains grown to an A600 of 2.5 by using an RNeasy mini kit (Qiagen). For quantitative reverse transcription-PCR (qRT-PCR), cDNA was synthesized from 1 µg of the total RNAs by using an iScript cDNA synthesis kit (Bio-Rad). Real-time PCR amplification of the cDNA was performed by using a CFX96 real-time PCR detection system (Bio-Rad) with pairs of specific primers (Table S2) as described previously [51]. Relative expression levels of each gene were calculated by using the 16S rRNA expression level as the internal reference for normalization.

Motility, adhesion, invasion and acid resistance assay

For motility assays, 2 µl of the *S*. Enteritidis strains grown to an A600 of 2.5 was used to stab into LB semisolid medium containing 0.3% agar. The plates were incubated at 37 °C for 7 h, and the migration area of cells was visualized by a Gel Doc EZ Imager (Bio-Rad).

For adhesion assays, HeLa human epithelial cells and RAW 264.7 murine macrophage cells were grown in Dulbecco’s modified Eagle medium (DMEM) (Gibco-BRL) supplemented with 10% FBS, 100 U ml⁻¹ penicillin and 100 µg ml⁻¹ streptomycin. One day before bacterial infection, the HeLa cells and RAW 264.7 cells were seeded into 24-well tissue culture plates at a concentration of 2.5×10⁵ cells per well and incubated at 37 °C under 5% CO₂. Each well was infected with the *S*. Enteritidis strains grown to an A600 of 2.5 at an m.o.i. of 10, centrifuged immediately at 500 g for 5 min, and then incubated for 30 min. The wells were washed three times with PBS to remove non-adherent bacteria and then lysed in 1% Triton X-100 for 30 min. For invasion assays, the wells were further incubated for 30 min with DMEM supplemented with 100 µg ml⁻¹ gentamicin to kill extracellular bacteria before lysis with 1% Triton X-100. The adhered and intracellular bacteria were diluted in PBS and plated on LB agar to enumerate the c.f.u.

For acid resistance assays, the *S*. Enteritidis strains grown to an A600 of 2.5 were washed once with PBS (acid-unadapted bacteria) or further incubated in M9 minimal medium containing 10 mM glucose (M9G) (pH 4.3) at 37 °C for 2 h (acid-adapted bacteria). Then, the acid-unadapted and

Table 1. Non-synonymous SNPs unique to strain FORC_075

Position in FORC_078 (nucleotide)*	Position in FORC_075 (nucleotide)†	Amino acid change	Gene	Function	PROVEAN score (prediction)	SNAP2 score (prediction)	SIFT score (prediction)‡
467477 (G)	1806812 (A)	E113K	*phsA*	Thiosulfate reductase	1.142 (neutral)	−61 (neutral)	1.00 (tolerated)
943379 (C)	2282762 (T)	G186S	−	Peptidase	−5.526 (deleterious)	60 (effect)	N/A
949118 (C)	2288501 (T)	P176L	*bioD*	ATP-dependent dethiobiotin synthetase	−9.206 (deleterious)	59 (effect)	0.00 (affect protein function)
1754770 (A)	3084775 (C)	E142A	Non-specific DNA-binding protein Dps	−0.073 (neutral)	−12 (neutral)	0.27 (tolerated)	
2115383 (C)	3445390 (T)	A139T	*ybaO*	HTH-type transcriptional regulator YbaO	−3.746 (deleterious)	59 (effect)	0.14 (tolerated)
2331756 (G)	3661765 (A)	P161S	−	Chitinase	−3.649 (deleterious)	33 (effect)	0.01 (affect protein function)
2704053 (A)	4034070 (G)	H109R	*hypT*	HOCl-specific transcription factor HypT	−7.449 (deleterious)	72 (effect)	0.59 (tolerated)
2769014 (G)	4099014 (A)	S510N	*mdID*	Ribonucleotide reductase of class III (anaerobic), large subunit	1.705 (neutral)	−97 (neutral)	0.59 (tolerated)
375731 (C)	380056 (T)	P248L	*envZ*	Osmolarity sensory histidine kinase EnvZ	−9.653 (deleterious)	73 (effect)	0.00 (affect protein function)

*The nucleotide position in the chromosome of FORC_078 (RefSeq assembly accession number GCF_004135835.1).
†The nucleotide position in the chromosome of FORC_075 (RefSeq assembly accession number GCF_003429365.1).
‡N/A, not analysed by the server.
acid-adapted bacteria were incubated in M9G (pH 3.0) at 37°C for 2 h. The pH of M9G was adjusted with HCl. Aliquots of the resulting cultures were diluted in PBS and plated on LB agar to enumerate the c.f.u.

Sequence analysis

The protein ID of FORC_075 EnvZ (WP_080165161.1) was submitted to the NCBI Identical Protein Groups database, and a list of *Salmonella* strains expressing the same FORC_075 EnvZ was retrieved. The isolation information of each strain was retrieved from the NCBI BioSample database, and its serovar was predicted by the SISTR (*Salmonella in silico* typing resource) program [52] using the whole genome sequences. All accession numbers are listed in Table S5.

Statistical analysis

Statistical analyses were performed as indicated in the figure legends using GraphPad Prism 7.0 (GraphPad Software). The significance of differences between experimental groups was accepted at a *p* value of <0.05.

RESULTS

The *S. Enteritidis* strains isolated in South Korea have a close genetic relationship

Previously, eight strains of *S. Enteritidis* isolated from different sources in South Korea were collected and designated as FORC_007, FORC_019, FORC_051, FORC_052, FORC_056, FORC_074, FORC_075 and FORC_078, and their whole genomes were then completely sequenced and deposited in the NCBI GenBank database under accession numbers GCA_001305235.1, GCA_001705055.1, GCA_002313085.1, GCA_002220345.1, GCA_002313105.1, GCA_003515965.1, GCA_003429365.1 and GCA_004135835.1, respectively. To examine their genetic similarity, ANI values were first calculated. Remarkably, the ANI values between each genome were very high, ranging from 99.98% to 100%, which indicates that the eight FORC strains possess almost identical genome sequences. Then, to determine their evolutionary relationship in the context of the *S. Enteritidis* strains isolated in different countries, an SNP-based phylogenetic analysis was performed. Although all FORC strains were isolated from
different sources or in different years (Table S4), they clustered very closely in the phylogenetic tree (Fig. 1), indicating again that their genetic backgrounds are highly similar. In more detail, the FORC_052, FORC_056, FORC_075 and FORC_078 strains were located in the same branch (Cluster-A in Fig. 1), and the other FORC strains, FORC_007, FORC_019, FORC_051 and FORC_074, clustered together with seven strains isolated in Asia (two from South Korea and five from China) (Cluster-B in Fig. 1). As can be inferred from the phylogenetic tree, the maximum SNP distances within Cluster-A, within Cluster-B, and between the two clusters were 49, 84 and 94, respectively (Fig. S1). The close phylogenetic relationship between the eight FORC strains and the seven Asian strains may result from their relative geographical proximity. Together, these results indicate that the eight FORC strains share their genomic features and have highly similar genetic backgrounds.

FORC_075 exhibits an impaired biofilm formation and a SAW colony morphology

Because the ability of *Salmonella* to form biofilms is important for persistence and survival under environmental stresses [53–56], the biofilm-forming abilities of the eight FORC strains were evaluated. Interestingly, the biofilm-forming ability of FORC_075 was much lower than those of the other FORC strains (Fig. 2a). In particular, the amount of biofilm formed by FORC_075 was approximately 20-fold lower than that formed by FORC_078, a strain phylogenetically closest to FORC_075 (Figs 1 and 2a). One possible hypothesis for the impaired biofilm formation is that FORC_075 has lost the ability to produce the major biofilm components such as curli fimbriae and cellulose. Because both curli fimbriae and cellulose contribute to the development of the RDAR colony morphology [24], the *S. Enteritidis* strains were grown on agar plates containing Congo red (CR agar plates), and their colony morphologies were also compared. FORC_007 formed red and dry colonies with concentric rings (Fig. 2b), which indicates the production of curli fimbriae only [57]. While FORC_019, FORC_051, FORC_052, FORC_056, FORC_074 and FORC_078 formed RDAR colonies, FORC_075 formed SAW colonies, a significantly distinct colony morphology from those of other FORC strains (Fig. 2b). These results support our hypothesis that FORC_075 produces low levels of curli fimbriae and cellulose. To further confirm
the cellulose production, the Salmonella Enteritidis strains were grown on agar plates containing calcofluor white (CFW agar plates), and their colonies were observed under UV light [23]. Consistent with the results of Fig. 2(b), low fluorescence intensities were observed in the colonies of FORC_007 and FORC_075 compared with those of other FORC strains forming RDAR colonies (Fig. S2), indicating that FORC_007 and FORC_075 produce a small amount of cellulose. Together, these results suggest that the impaired biofilm formation of FORC_075 is due to low levels of both curli fimbriae and cellulose production. Because the genome sequences of the eight FORC strains were almost identical, the significantly different phenotypes of biofilm formation and colony morphology of FORC_075 were unexpected.

A single SNP in envZ is responsible for the distinct phenotypes of FORC_075

To elucidate the genetic basis for the unexpected phenotypes of FORC_075, the whole genome sequence of FORC_075 was compared with those of the other FORC strains including FORC_078 using various bioinformatics tools. First, the pangenome of the eight FORC strains was built to identify genes carried differently in the FORC strains. The size of the pangenome was 4767 genes, of which about 91% (4364 genes) constitute the core genome with a length of 4,052,928 bp, indicating again that the eight FORC strains have similar genetic backgrounds. Among the accessory genome, a total of 10 adjacent genes (FORC78_1133 to FORC78_1142) were not detected just in FORC_075 (Fig. S3a). This region belongs to a genomic island known as GEI 1664/1678 [58], suggesting that genomic rearrangement may have occurred in the FORC_075 genome. In particular, the zir operon (FORC78_1134 to FORC78_1137; zirRTSU) is conserved throughout the Salmonella serovars [59]. The zirT gene encodes a membrane transporter ZirT, which mediates secretion of ZirS and ZirU, and this secretion system plays a role as an antivirulence modulator during infection [59, 60]. Because a previous study suggested that the ZirT-dependent secretion system may play a potential role in biofilm formation [60], the zirT gene was deleted in the FORC_078 genetic background, and the biofilm- and RDAR colony-forming abilities were determined. However, the biofilm formation and colony morphology of the isogenic zirT mutant of FORC_078 were similar to those of the parent strain (Fig. S3b,c). This result indicates that loss of the zir operon in the FORC_075 genome is not responsible for its impaired biofilm formation and SAW colony morphology.

Next, the whole genome sequences of the eight FORC strains were compared at the single nucleotide level. Among a total of 198 SNPs detected in the eight strains, nine non-synonymous SNPs were unique to the FORC_075 strain (Table 1). In particular, the two genes containing SNPs, dps and envZ, are related to biofilm formation [61, 62]. The SNP in dps resulted in an amino acid change from Glu142 to Ala142 in Dps, and the SNP in envZ resulted in an amino acid change from Pro248 to Leu248 in EnvZ (Table 1). When the effect of each SNP on protein function was predicted in silico, the SNP in dps was predicted not to have significant effects on the function of Dps (Table 1). In contrast, the SNP in envZ was predicted to affect the function of EnvZ (Table 1). Accordingly, the SNP in envZ rather than the SNP in dps was considered as the most likely candidate responsible for the impaired biofilm formation and SAW colony morphology of FORC_075.
To verify the effects of the SNP in *envZ* on the distinct phenotypes of FORC_075, the SNP alleles of FORC_078 and FORC_075 were exchanged with each other to express EnvZ \(P_{248L}\) in FORC_078 and EnvZ \(L_{248P}\) in FORC_075, and their biofilm formation and colony morphology were evaluated. The substitution of Pro248 of FORC_078 EnvZ with Leu (P248L) reduced the biofilm-forming ability to the level even lower than that of FORC_075 (Fig. 3a). In addition, the P248L substitution abolished the RDAR colony morphology of FORC_078 and led to the SAW colony morphology similar to that of FORC_075 (Fig. 3b). Although the substitution of Leu248 of FORC_075 EnvZ with Pro (L248P) did not completely restore the ability of FORC_075 to form RDAR colonies to the level comparable to that of FORC_078, the L248P substitution dramatically increased biofilm- and RDAR colony-forming abilities of FORC_075 (Fig. 3). Thus, the combined results indicate that the SNP in *envZ* is a major genetic change determining the ability for biofilm formation and the type of colony morphology of *S. Enteritidis*.

SNP in envZ increases OmpR-P level and alters OmpR regulon expression

To determine whether the SNP in *envZ* does indeed affect EnvZ function, the phosphorylated status of OmpR in the *S. Enteritidis* strains was examined. The P248L substitution in the FORC_078 genetic background significantly increased the OmpR-P level (Fig. 4a), while the L248P substitution in the
FORC_075 genetic background decreased the OmpR-P level to one not detectable by immunoblotting (Fig. 4c). Because the amount of OmpR-P governs *ompF* and *ompC* transcription, the effects of the SNP in *envZ* on the expression levels of *ompF* and *ompC* were further investigated. As expected, the P248L substitution resulting in a greater amount of OmpR-P in FORC_078 decreased *ompF* expression by 20-fold and increased *ompC* expression by almost 4-fold (Fig. 4b). Similarly, the L248P substitution resulting in a smaller amount of OmpR-P in FORC_075 increased *ompF* expression and decreased *ompC* expression (Fig. 4d). These results demonstrate that the non-synonymous SNP in *envZ* modifies EnvZ function, increasing the OmpR-P level in *S. Enteritidis* and altering the expression levels of *ompF* and *ompC*.

To examine the effect of the SNP in *envZ* on the expression of the OmpR regulon, expression of *csgD* and *fliC* in the *S. Enteritidis* strains were also compared. Expression of *csgD* in the FORC_078-EnvZ*P248L* and FORC_075 strains showing increased OmpR-P levels were significantly lower than those in the FORC_078 and FORC_075-EnvZ*L248P* strains showing decreased OmpR-P levels, respectively (Fig. 4). The results were consistent with previous reports that a high level of OmpR-P has a repressive effect on *csgD* expression [19, 63]. Meanwhile, *fliC* expression was also reduced in the FORC_078 strain by the P248L substitution (Fig. 4b) and elevated in the FORC_075 strain by the L248P substitution (Fig. 4d). To examine the effect of the altered expression of *fliC* on motility, the swimming areas of the *S. Enteritidis* strains on a semisolid plate surface were compared. The diameter of the swimming area of the FORC_078-EnvZ*P248L* strain was decreased to approximately 70% of that of the FORC_078 strain (Fig. 5). Similar to the decreasing effect of the P248L substitution on motility, the FORC_075 strain was less motile than the FORC_075-EnvZ*L248P* strain (Fig. 5). This suggests that the SNP in *envZ* decreases the expression level of *fliC* and thus results in reduced motility of *S. Enteritidis*. Collectively, these results indicate that functional modification of EnvZ induced by the SNP in *envZ* increases the phosphorylated status of OmpR and alters the expression of the OmpR regulon, leading to phenotypic changes in biofilm formation and motility of *S. Enteritidis*.

Fig. 7. Effect of the SNP in *envZ* on survival under acid stress. The acid-unadapted and acid-adapted *S. Enteritidis* strains were compared for their abilities to survive under acid stress (pH 3.0). Survival was expressed as the ratio of the number of surviving cells to the number of initially inoculated cells. Error bars represent the standard deviation from three independent experiments. Statistical significance was determined by Student’s t-test. **, *P*<0.005; ***, *P*<0.0005; ****, *P*<0.0001. FORC_078 and FORC_075, parent strains; FORC_078-EnvZ*P248L*, FORC_078 expressing EnvZ*P248L*; FORC_075-EnvZ*L248P*, FORC_075 expressing EnvZ*L248P*.

SNP in envZ determines the virulence-related phenotypes of *S. Enteritidis*

To extend our understanding of the role of the SNP in *envZ* in *S. Enteritidis* pathogenesis, the effects of the exchange of the SNP allele on the virulence-related phenotypes were examined. When HeLa human epithelial cells and RAW 264.7 murine macrophage cells were infected with the *S. Enteritidis* strains, the adhesion of FORC_078 to the epithelial and macrophage cells was significantly increased by the P248L substitution to the level comparable to that of FORC_075 (Fig. 6a, c). Consistent with this result, the adhesion of FORC_078 to both host cells was reduced by the L248P substitution (Fig. 6a, c). In addition, although it was not possible to assess the invasion of FORC_075 because of its gentamicin resistance (Table S1), the invasion of FORC_078 to HeLa and RAW 264.7 cells was greatly increased by the P248L substitution (Fig. 6b, d). These combined results indicate that the SNP in *envZ* leading to EnvZ*P248L* increases the infectivity of *S. Enteritidis* to host cells.
The effect of the SNP in *envZ* on survival of *S. Enteritidis* under acid stress was also assessed. The survival of acid-unadapted and acid-adapted FORC_078 at pH 3.0 was increased by more than 2-fold by the P248L substitution (Fig. 7). Similarly, the survival of FORC_075 at pH 3.0 was reduced by the L248P substitution to the level comparable to that of FORC_078 in both acid-unadapted and acid-adapted cells (Fig. 7). These results indicate that the SNP in *envZ* leading to EnvZ L248 enhances the acid resistance of *S. Enteritidis*, regardless of the previous acid adaptation. Together, the results suggest that the SNP in *envZ* improves *S. Enteritidis* pathogenesis by elevating its infectivity to host cells and survival under acid stress during the course of infection.

Effects of the SNP in envZ are not dependent on a particular S. Enteritidis genetic background

To investigate whether the effects of the SNP in *envZ* are specific to the FORC strains, an ATCC 13076-*EnvZ*P248L mutant was constructed using a standard strain of *S. Enteritidis*, ATCC 13076. The P248L substitution in the ATCC 13076 genetic background increased OmpR-P level and altered the expression of the OmpR regulon (Figs S4a, b). Moreover, the P248L substitution decreased biofilm formation of ATCC 13076, while increasing its infectivity to host cells as well as survival under acid stress (Fig. S4c–g). All these results observed in ATCC 13076 were identical to those in FORC_078, suggesting that the effects of the SNP in *envZ* are not dependent on a specific genetic background.

The SNP in envZ can naturally occur in other Salmonella strains

To determine whether the SNP in *envZ* is also found in other *Salmonella* strains, the presence of the strain expressing EnvZ L248 instead of EnvZ P248L was examined in the NCBI database. Nine isolates of *Salmonella* including FORC_075 were identified to carry the same SNP in *envZ* (Table S5). The isolation source of BCW_2682 and SLM287 was chicken meat, and that of CFSAN083304 was cattle intestine (Table S5), indicating that the strain expressing EnvZ L248 can survive in various environments. These results imply that the spontaneous SNP in *envZ* is not a dead-end mutation.

DISCUSSION

Together with the accumulation of bacterial genomic data, comparative genomic analysis has allowed us to understand dynamic genetic changes leading to phenotypic differences [64, 65]. Acquisition or loss of accessory genes and small genetic changes in core genes may have a significant impact on phenotypes, which increases the virulence and survival of bacterial pathogens under a variety of environmental
stresses. In the present study, we evaluated the phenotypes of eight strains of S. Enteritidis whose genetic similarity is very high (Fig. 1). Among the eight strains, however, FORC_075 exhibited distinct phenotypes of biofilm formation and colony morphology (Fig. 2). We demonstrated that an SNP in \textit{envZ} is responsible for the impaired biofilm formation and SAW colony morphology of FORC_075 (Table 1, Fig. 3).

The SNP in \textit{envZ} of FORC_075 resulted in EnvZ_{L248} different from EnvZ_{P248}. In other strains including FORC_078 (Table 1). Pro248 is positioned in an H box that is well conserved in sensor kinases including EnvZ and important for its autophosphorylation and phosphotransfer to OmpR [66]. Thus, mutation in Pro248 probably affects the phosphorylated status of OmpR and thereby its activity to regulate downstream genes. In this study, we detected higher OmpR-P levels in the S. Enteritidis strains expressing EnvZ_{L248} instead of EnvZ_{P248} (Figs 4a, c and S4a) and also confirmed that expression of the OmpR regulon was significantly altered depending on the amount of OmpR-P (Figs 4b, d and S4b). Interestingly, while the \textit{ompR} mRNA level was not significantly influenced by the SNP in \textit{envZ}, the total OmpR protein level was increased by the SNP in \textit{envZ} (Fig. S5). These results suggest the potential role of Pro248 in the regulation of OmpR expression at the post-transcriptional level, which remains to be studied in the future. Nonetheless, our combined results imply that this SNP has naturally occurred at a critical site in \textit{envZ} that leads to changes in the phosphorylated status of OmpR and in its regulatory activity.

FORC_075 is a clinical strain isolated from human stool (Table S3) and carries the SNP in \textit{envZ} leading to EnvZ_{L248}. There are several lines of evidence that genetic changes frequently occur in a sensor kinase of the signal transduction system during host–bacteria interactions, possibly affecting the bacterial pathogenic features. For example, S. Typhimurium strains, isolated from gallbladder of mouse, had a truncated mutation in \textit{envZ} and showed hyper-biofilm formation [46]. For group A \textit{Streptococcus} (GAS), signal transduction systems such as the LiaFSR three-component system and CovSR two-component system play an important role in virulence of the pathogen [67, 68]. GAS isolates, recovered from a patient, carried an SNP in the H box of sensor kinase LiaS, and this mutation decreased virulence of a GAS but increased its colonization to host cells [69]. In addition, GAS strains, isolated after mouse infection, contained an amino acid change from Pro285 of sensor kinase CovS (corresponding to Pro248 of EnvZ) to Ser, which affects its phosphatase activity altering the expression of virulence genes [70]. Along with these previous reports, it is possible to suggest that the SNP in \textit{envZ} of the FORC_075 genome also occurred spontaneously during the course of host infection.

During host infection, modulation of the virulence-related phenotypes is important for S. Enteritidis to obtain optimal fitness and successful pathogenesis. In this study, we identified that the SNP in \textit{envZ} of FORC_075 decreases biofilm formation and motility but elevates infectivity to host cells and acid resistance (Figs 3 and 5–7). It has been shown that loss of biofilm components could alleviate host immune responses and lead to efficient invasion of \textit{Salmonella} to host cells and its hypervirulence \textit{in vivo} [71–74]. Similarly, flagella are required for motility but stimulate the host immune system, and thus their overexpression results in attenuation of \textit{Salmonella} in the mouse model [75, 76]. Accordingly, the decreased expression of biofilm components and flagella resulting from the SNP in \textit{envZ} is expected to be beneficial for survival of S. Enteritidis in host environments by reducing the chances of being detected by the immune system. Furthermore, adhesion and invasion to host cells are essential for \textit{Salmonella} to cause infection, and induction of acid resistance enables the bacteria to survive in acidic conditions such as the stomach [77–79]. Thus, the enhanced infectivity to host cells and acid resistance resulting from the SNP in \textit{envZ} could contribute to \textit{Salmonella} pathogenesis. Together, these phenotypic changes introduced by the SNP in \textit{envZ} may confer selective advantages to the S. Enteritidis strains expressing EnvZ_{L248}.

In recent years, single nucleotide mutations underlying the clonal expansion of \textit{Salmonella} have been reported, suggesting their evolutionary impact. An SNP in the promoter region of the virulence gene \textit{pgtE}, causing hyperinvasion of \textit{Salmonella}, was proposed as a genetic signature of isolates in S. Typhimurium ST313 lineage 2 [80]. In addition, conserved SNPs in multiple loci, leading to impaired biofilm formation of \textit{Salmonella}, were presented as strong evidence of the parallel evolution in invasive \textit{Salmonella} lineages [81]. According to these recent works, we expect that the SNP in \textit{envZ} serves as a pathoadaptive mutation that could potentially play a role in bacterial evolution. The emergence of several \textit{Salmonella} strains carrying the same SNP allele in \textit{envZ} also supports our expectation (Table S5).

In summary, we revealed that eight FORC strains of S. Enteritidis had almost identical genome sequences. However, FORC_075 showed impaired biofilm- and RDAR colony-forming abilities, which was distinct from other FORC strains including FORC_078. Among non-synonymous SNPs unique to FORC_075, an SNP in \textit{envZ} leading to an amino acid change from Pro248 to Leu248 was identified to result in the impaired biofilm formation and SAW colony morphology of S. Enteritidis. The effects of the SNP in \textit{envZ} on phenotypic changes of S. Enteritidis are summarized in Fig. 8. The SNP in \textit{envZ} induced functional modification of EnvZ, which increased the cellular level of OmpR-P in S. Enteritidis and altered the expression of the OmpR regulon. The SNP in \textit{envZ} led to the decrease in motility but the increase in adhesion and invasion to host cells and even in acid resistance of S. Enteritidis. Together, these results suggest that the SNP in \textit{envZ} plays a key role in differentiating the virulence-related phenotypes. Considering that the EnvZ/OmpR system is highly conserved in \textit{Enterobacteriaceae}, it could be suggested as a good target for development of broad-spectrum antivirulence agents against many pathogens. This study provides insights into the natural occurrence of an SNP that potentially contributes to phenotypic diversity of S. Enteritidis for optimal fitness and successful pathogenesis.
Funding information
This research was supported by the National Research Foundation of Korea, funded by the Ministry of Science, ICT, and Future Planning (2017R1E1A1A01074639), and a grant (19162MFD037) from the Ministry of Food and Drug Safety to S.H.C. The funders had no role in this study.

Author contributions
D.K. and S.H.C. designed the study, D.K. performed experiments and analyses, D.K. and S.H.C. wrote the manuscript.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
1. Arber W. Genetic variation: molecular mechanisms and impact on microbial evolution. FEBS Microbiol Rev 2000;24:1–7.
2. Yang L, Jelsbak L, Marvig RL, Damkjaer S, Workman CT et al. Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci U S A 2011;108:7481–7486.
3. Lieberman TD, Michel J-B, Aingaran M, Potter-Bynoe G, Roux D et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet 2011;43:1275–1280.
4. Kelly BG, Vespermann A, Bolton DJ. The role of horizontal gene transfer in the evolution of selected foodborne bacterial pathogens. Food Chem Toxicol 2009;47:951–968.
5. Sokurenko EV, Hasty DL, Dykuizen DE. Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol 1999;7:191–195.
6. Collery MM, Kuehne SA, McBride SM, Kelly ML, Monot M et al. What’s a SNP between friends: The influence of single nucleotide polymorphisms on virulence and phenotypes of Clostridium difficile strain 630 and derivatives. Virulence 2017;8:767–781.
7. Mikheeecheva NE, Zaychikova MV, Melzeranov AV, Danilenko VN. A non synonymous SNP catalog of Mycobacterium tuberculosis virulence genes and its use for detecting new potentially virulent sublineages. Gen Biol Evol 2017;9:887–889.
8. Scaletti E, Sassera D, Comandatore F, Morganti M, Mandalari C et al. Differential single nucleotide polymorphism-based analysis of an outbreak caused by Salmonella enterica serovar Manhattan reveals epidemiological details missed by standard pulsed-field gel electrophoresis. J Clin Microbiol 2015;53:1227–1238.
9. Chen H-M, Yang W, Su L-H, Chiu C-H. Nontyphoid Salmonella infection: microbiology, clinical features, and antimicrobial therapy. Pediatr Neonatol 2013;54:147–152.
10. European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in 2017. EFsa J 2018;16:e05500.
11. Capra EJ, Laub MT. Evolution of two-component signal transduction systems. Annu Rev Microbiol 2012;66:325–347.
12. Delgado J, Forst S, Harlocker S, Inouye M. Identification of a phos- phorilation site and functional analysis of conserved aspartic acid residues of OmpR, a transcriptional activator for ompF and ompC in Escherichia coli. Mol Microbiol 1993;10:1037–1047.
13. Wang LC, Morgan LK, Godakumbura P, Kenney LJ, Anand GS. The inner membrane histidine kinase EnvZ senses osmolarity via helix coil transitions in the cytoplasm. Embo J 2012;31:2648–2659.
14. Chakraborty S, Vinardhi RS, Morgan LK, Yan J, Kenney LJ. Non-canonical activation of OmpR drives acid and osmotic stress responses in single bacterial cells. Nat Commun 2017;8:1587.
15. Head CG, Tardy A, Kenney LJ. Relative binding affinities of OmpR and OmpR-phosphate at the ompF and ompC regulatory sites. J Mol Biol 1998;281:857–870.
16. Aiba H, Mizuno T. Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, stimulates the transcription of the ompF and ompC genes in Escherichia coli. FEBS Lett 1990;261:19–22.
17. Dorman CJ, Chatfield S, Higgins CF, Hayward C, Dougan G. Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect Immun 1989;57:2136–2140.
18. Quinn HJ, Cameron ADS, Dorman CJ. Bacterial regulon evolution: distinct responses and roles for the identical OmpR proteins of Salmonella typhimurium and Escherichia coli in the acid stress response. PLoS Genet 2014;10:e1004215.
19. Gerstel U, Park C, Romling U. Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 2003;49:639–654.
20. Hammar M, Arrqvist A, Bian Z, Olsen A, Normark S. Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 1995;18:661–670.
21. Romling U, Rohde M, Olsen A, Normark S, AgID RJ. The checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 2000;36:10–23.
22. Austin JW, Sanders G, Kay WW, Collinson SK. Thin aggregative fimbriae enhance Salmonella enteridis biofilm formation. Fems Microbiology Letters 1998;162:295–301.
23. Solano C, Garcia B, Valle J, Berasain C, Ghigo JM et al. Genetic analysis of Salmonella enteridis biofilm formation: critical role of cellulose. Mol Microbiol 2002;43:793–808.
24. Roemling U. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci 2005;62:1234–1246.
25. Xu S, Zou X, Sheng X, Zhang H, Mao L et al. Expression of fliBz66 on a linear plasmid of Salmonella enterica serovar Typhi is dependent on fliA and flhDC and regulated by OmpR. Braz J Microbiol 2010;41:729–740.
26. Ellermeier CD, Ellermeier JR, Slaux JM, Hild, HiIL and RtsA constitute a feed forward loop that controls expression of the SPI-1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. Mol Microbiol 2005;57:691–705.
27. Feng X, Oropeza R, Kenney LJ. Dual regulation by phospho-OmpR of ssrA/B gene expression in Salmonella pathogenicity island 2. Mol Microbiol 2003;48:1131–1143.
28. Lee AK, Detweiler CS, Falkow S. OmpR regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J Bacteriol 2000;182:771–781.
29. Galán JE. Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol 1995;20:263–271.
30. Groisman EA, Ochman H. Cognate gene clusters govern invasion of host epithelial-cells by Salmonella typhimurium and Shigella flexneri. Embo J 1993;12:3779–3787.
31. Groisman EA, Ochman H. How Salmonella became a pathogen. Trends Microbiol 1997;5:343–349.
32. Shea JE, Hensel M, Gleeson C, Holden DW. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 1996;93:2593–2597.
33. Bang IS, Kim BH, Foster JW, Park YK. OmpR regulates the stationary-phase acid tolerance response of Salmonella enterica serovar Typhimurium. J Bacteriol 2000;182:2245–2252.
34. Chakraborty S, Mizusaki H, Kenney LJ. A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection. Plos Biology 2015;13.
35. Chakraborty S, Kenney LJ. A new role of OmpR in acid and osmotic stress in Salmonella and E. coli. Front Microbiol 2018;9.
36. Richter M, Rosseló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106:19126–19131.
37. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015;43:e15.
CRP-Coordinated Regulatory Network in Gene Is Controlled by Host Environmental Signals through a rtxA, 2020;11.

Krutcziewicz P, Brombacher E, Brombacher F, Dertinger M, van der Meer J, van der Velden N, 2004;5.

Park JH, Kim H, Lee S, Lee SH, Lee HH, Lee JY, Minami M, Shimizu S, Su H, Jang SY, Ko and Choi, 2007;7:000572

Seemann T, Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069.

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31:3691–3693.

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biology 2004;5.

Choi Y, Chan AP, PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015;31:2745–2747.

Hecht M, Bromberg Y, Rosti B. Better prediction of functional effects for sequence variants. BMC Genomics 2015;16;51.

Sim NL, Kumar P, Hu J, Henikoff S, Schneider G et al. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 2012;40:W452–W7.

Neiger MR, Gonzalez JF, Gonzalez-Escobedo K, Kuck H, White P et al. Pathoadaptive alteration of Salmonella biofilm formation in response to the gallbladder environment. J Bacteriol 2019;201.

Park JH, Jo Y, Jang SY, Kwon H, Iriecurrency Y et al. The cabABC operon essential for biofilm and rugose colony development in Vibrio vulnificus. Plos Pathog 2015;11.

Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000;97:6640–6645.

Philippe N, Alcaraz JP, Coursange E, Geisselmann J, Schneider D et al. Comparative genome analysis of Salmonella Enteritidis PT3 and Salmonella Gallinarum 287/91 provides insights into evolution and host adaptation pathways. Genome Res 2008;18:1624–1637.

Stabler RA, He M, Dawson L, Martin M, Valiente E et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 2009;10:R102.

Tomomori C, Tanaka T, Dutt R, Park H, Saha SK et al. Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat Struct Biol 1999;6:729–734.

Horstmann N, Saldana M, Sahasrabhojane P, Yao H, XP S et al. Dual-Site phosphorylation of the control of virulence regulator impacts group A streptococcal global gene expression and pathogenesis. Plos Pathog 2014;10.

Ichikawa M, Minami M, Isaka M, Tatsuino I, Hasegawa T. Analysis of two-component sensor proteins involved in the response to acid stimuli in Streptococcus pyogenes. Microbiology-Sgm 2011;117:3187–3194.

Flores AR, Jewell BE, Yelamanchili D, Olsen RJ, Musser JM. A single amino acid replacement in the sensor kinase LiaS contributes to a carrier phenotype in Group A Streptococcus. Infect Immun 2015;83:4237–4244.

Horstmann N, Tran CN, Brumlov C, Debruyne S, Yao H et al. Phosphatase activity of the control of virulence sensor kinase CovS is critical for the pathogenesis of group A streptococcus. Plos Pathog 2018;14.

White AP, Gibson DL, Grassl GA, Kay WW, Finlay BB et al. Aggregation via the red, dry, and rough morphotype is not a virulence adaptation in Salmonella enterica serovar typhimurium. Infect Immun 2008;76:1048–1058.

Tükel C, Nishimori JH, Wilson RP, Winter MG, Keestra AM et al. Toll-like receptors 1 and 2 cooperatively mediate immune responses to curl, a common amyloid from enterobacterial biofilms. Cell Microbiol 2010;12:1495–1506.

Pontes MH, Lee E-J, Choi J, Groisman EA. Salmonella promotes virulence by repressing cellulose production. Proc Natl Acad Sci U S A 2015;112:5183–5188.

Ahmad I, Lamprokostopoulou A, Le Guyon S, Streck E, Barthel M et al. Complex c-di-GMP signaling networks mediate transition between virulence properties and biofilm formation in Salmonella enterica serovar typhimurium. Plos One 2011;6:e28351.

Winter SE, Winter MG, Godinez I, Yang HJ, Russmann H et al. A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella. Plos Pathog 2010;6.

Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 2010;11:1136–1142.

Fábrega A, Vila J. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013;26:308–341.
78. Yuk HG, Schneider KR. Adaptation of Salmonella spp. in juice stored under refrigerated and room temperature enhances acid resistance to simulated gastric fluid. Food Microbiol 2006;23:694–700.

79. Álvarez-Ordóñez A, Prieto M, Bernardo A, Hill C, López M. The acid tolerance response of Salmonella spp.: an adaptive strategy to survive in stressful environments prevailing in foods and the host. Food Res Int 2012;45:482–492.

80. Hammarlof DL, Kroger C, Owen SV, Canals R, Lacharme-Lora L et al. Role of a single noncoding nucleotide in the evolution of an epidemic African clade of Salmonella. Proc Natl Acad Sci U S A 2018;115:E2614–E23.

81. MacKenzie KD, Wang Y, Musicha P, Hansen EG, Palmer MB et al. Parallel evolution leading to impaired biofilm formation in invasive Salmonella strains. PLoS Genet 2019;15:e1008233.

82. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016;44:W242–W5.

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.