Intermediate spin-charge order in the cuprates

B Fine\(^1\) and T Egami\(^{1,2,3}\)

\(^1\)Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
\(^2\)Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
\(^3\)Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

E-mails: bfine@utk.edu, egami@utk.edu

Abstract. On the basis of a rigorous constraint we show that the doped cuprates either exhibit electronic phase-separation, or balance right at the phase-separation threshold. We suggest that the pseudo-gap phase can be identified with the state that is nano-scale phase-separated in magnetic and non-magnetic phases with different charge carrier concentrations. Long-range Coulomb interaction should drive the nano-scale phase-separated state into a self-organized ordered phase, even though such ordering is most likely frustrated by chemical disorder. Identifying this nano-scale self-organization should clarify a number of confusing issues related to the origin of the superconductivity in the cuprates.

1. Introduction

High-temperature superconductivity (HTSC) in the cuprates is known to occur at charge carrier concentrations separating magnetic and non-magnetic phases. When charge carriers are injected into magnetic background, they have natural tendency to destroy it. The magnetic background, in turn, tends to expel them, or, when complete expulsion is not possible, to assemble the charge carriers together so that they destroy less magnetic correlations. This signifies the tendency towards charge inhomogeneity [1-5]. Such a tendency is opposed mainly by the increase in the kinetic energy of the charge carriers, and by the Coulomb repulsion between charge carriers if phase-separation occurs at low temperatures where ionic diffusion is not possible and electronic phase-separation is not compensated by ionic motions. Thus electronic phase-separation, if present, should be limited to nano-scale along at least one spatial direction due to the long-range Coulomb interaction. As we argue below it is possible that the presence of inhomogeneities or the proximity to the phase-separation threshold is crucial for the onset of superconductivity in the cuprates. The purpose of this work is to put forward a simple, and hence reliable, quantitative criterion for the formation of electronic inhomogeneity in the cuprates and other materials with similar phase diagram, and discuss possible implications to the HTSC phenomenon.

Reliable experimental proofs of bulk electronic phase-separation in cuprates are limited. When spin and charge modulations are static and periodic, they can be well characterized by neutron scattering and soft x-ray scattering. The most extreme, and well-studied, case of static and periodic electronic inhomogeneity in the cuprates is the non-superconducting phase in \(\text{La}_{2-x-y}\text{Nd}_x\text{(Sr,Ba)}_y\text{CuO}_4\) with \(y = 0.125 (= 1/8)\) with spin [6, 7] and charge [8] modulation. This phase is frequently referred to as the stripe phase even though the actual dimensionality of its spin and charge modulation pattern is still under debate [9-12]. However, in the case of disordered and possibly slowly fluctuating electronic...

© 2008 IOP Publishing Ltd
inhomogeneities, it is much more difficult to determine their nature by experiments. For the superconducting phases, recent observations by the scanning tunneling spectroscopy (STS) convincingly demonstrated static spatial electronic inhomogeneities, most probably pinned by chemical disorder, at least at the surface of the cuprates [13-16], while phonon dispersions suggest phase-separation in the bulk [17, 18].

Given the experimental limitations, one may choose to attack the problem theoretically, and, indeed, numerous attempts to justify or disprove electronic inhomogeneities in cuprates have been made so far [1-3, 19-38], most of them in the framework of simplified theoretical models with short range interactions, such as the \(t-J \) model or Hubbard model. For the values of model parameters relevant to cuprates, the answers to the questions of phase-separation differ from a study to study and depend on the model and the approximation involved. However the overall impression projected by these studies is that the phase-separation is a subtle business in the models with the short-range interactions, but the inclusion of the full-range Coulomb interaction would certainly suppress it. In fact, if, in the absence of Coulomb interaction, the system is balancing near the threshold of phase-separation, then the inclusion of the full-range Coulomb interaction would not only eliminate the possibility of phase-separation, but would also strongly suppress any local fluctuation towards the phase-separated state. In this work, however, we show that the situation vis-a-vis real cuprates is not as unfavorable to phase-separation as that in the above mentioned models. The detailed version of our analysis can be found in Ref. 39.

2. Condition of phase separation

We will start our discussion with an idealized, and possibly imaginary, phase diagram shown in Fig. 1. Here we consider only homogeneous phases, and suppress phase-separation as well as quantum and thermal fluctuations. The transition can be of any order, or merely a crossover. The line in Fig. 1 represents the condition (\(T \) and \(x \)) at which the free energies of the two homogeneous phases are equal in the mean-field approximation. In reality phase-separation may take place, and such a phase line as shown in Fig. 1 may not be observed. However, the usefulness of such a theoretical construct is well known for the liquid-solid phase diagram, known as the \(T_0 \) line [40]. In the context of cuprates, the line in Fig. 1 separates a homogeneous insulating phase with antiferromagnetic (AFM) correlations from the homogeneous metallic phase without AFM correlations. Therefore, it extends significantly beyond the experimentally observed region of the static AFM order.

![Fig. 1. Temperature-vs.-concentration phase diagram for imaginary homogeneous phases when phase-separation is inhibited even when the system prefers to phase-separate (see text). The solid line can represent a phase transition of any order or a crossover.](image)

The total free energy \(F_{\text{tot}} \) of a homogeneous charge compensated cuprate per one CuO\(_2\) in-plane unit can be decomposed as

\[
F_{\text{tot}}(x) = F_0(x) + F_\eta(x)
\]

(1)
where \(x \) is a dimensionless charge carrier concentration, \(F_d(x) \) is the free energy of a non-magnetic phase, and \(F_\eta(x) \) is the energy associated with the onset of AFM correlations. The system becomes unstable towards phase separation, when the curvature of \(F_{\text{tot}} \) (defined as \(\frac{1}{2} \frac{d^2 F_{\text{tot}}(x)}{dx^2} \)) reaches a finite negative value outweighing the positive curvature of the additional energy contribution, which appears in the phase separated state, and which we assume to originate mainly from the Coulomb repulsion between uncompensated charges. In order to formalize this condition we introduce the free energy curvature of non-magnetic state, \(K_0 \equiv \frac{1}{2} \frac{d^2 F_{\text{tot}}}{dx^2} \), which is assumed to be positive everywhere; the \textit{negative} curvature of the AFM free energy, \(K_\eta \equiv \frac{1}{2} \frac{d^2 F_\eta}{dx^2} \); and the positive curvature associated with the Coulomb repulsion energy \(\Delta F(\Delta x) \) between uncompensated charges having concentration \(\Delta x \), \(K_{\text{Coul}} \equiv \frac{1}{2} \frac{d^2 \Delta F}{d\Delta x^2} \). The condition for the instability of the homogeneous state then becomes:

\[
K_\eta \geq K_0 + K_{\text{Coul}}. \tag{2}
\]

We estimate the right-hand-side of inequality (\(K_{\text{tot}} \)) assuming [39] that the non-magnetic phase has a character of Fermi-liquid [41], and that the onset of phase-separation proceeds according to the \textit{lasagna} scenario (layered phase separation). This gives

\[
K_0 = \frac{\pi \hbar^2 (1 + f_0^s)}{2 m^* a^2}, \tag{3}
\]

where \(a \) is the lattice period in CuO\(_2\) planes, \(m^* \) is the effective mass and \(f_0^s \) the Landau Fermi-liquid parameter [41]; and

\[
K_{\text{Coul}} = \frac{2 e^2 R_s}{\varepsilon a}, \tag{4}
\]

where \(e \) is the charge of an electron, \(R_s \) is the distance between the CuO\(_2\) planes, and \(\varepsilon \) is the dielectric constant. We assume [39] \(a = 4 \text{ Å}, f_0^s = 6, m^* = 4 m_e \) (\(m_e \) is a free electron mass), \(R_s = 6 \text{ Å}, \varepsilon = 30 \), thus obtaining \(K_0 = 1.35 \text{ eV} \) and \(K_{\text{Coul}} = 0.57 \text{ eV} \).

The calculation of \(K_\eta \) may appear to be the most difficult part in assessing the inequality (2), since it is not clear how the destruction of the AFM correlations proceeds in cuprates with increased doping: it may pass through a magnetic Fermi-liquid with difficult-to-compute magnetic energy, or through a more exotic magnetic phases such as spin glass or resonating valence bond liquid [42]. In fact, however, in order to estimate \(K_\eta \), it is only necessary to know the value of the critical charge carrier concentration \(x_{c0} \), where AFM correlations disappear from the system, and the rather easily accessible value of magnetic energy at zero doping \(F_{\eta0} = -F_\eta(0) \). With the two above parameters, we were able to show rigorously [39] that

\[
K_\eta \geq \frac{F_{\eta0}}{x_{c0}} \approx \frac{J}{2 x_{c0}^2}, \tag{5}
\]

where \(J \) is the exchange coupling constant, which we assume \(J = 125 \text{ meV} \). The equality in constraint (8) is realized in the case of quadratic dependence of \(F_\eta(x) \) on \((x_{c0} - x) \).

3. Example of a second order phase transition

Leaving the rigorous proof of constraint (5) to Ref. 39, here, we would like to show how one can arrive to the right-hand side of the above constraint through a crude approximation in the framework
of Landau theory of second-order phase transitions. One can start from the Landau expansion of the free energy in powers of AFM order parameter (staggered local magnetization), of which absolute value is denoted as η:

$$ F_\eta = A\eta^2 + B\eta^4 $$

(6)

where A and B are two expansion coefficients. Near the critical temperature of phase transition T_C, the coefficient A can be parameterized as $A = \alpha (T - T_C)$, where α is a positive constant, and T is temperature. At $T < T_C$, the minimum of the free energy is reached at $\eta = \sqrt{\alpha (T_C - T)/2B}$, resulting in $F_\eta = -\alpha^2 (T_C - T)^2/4B^2$. Near the critical concentration x_{c0}, we neglect the dependence of $\alpha^2/4B$ on x, and assume the linear dependence of T_C on x: $T_C = \lambda (x_{c0} - x)$, where λ is a slope parameter. Note that any alternative power law dependence of T_C on x_{c0} would be more favorable to phase-separation [39]. Thus we obtain

$$ F_\eta = -K_\eta \left[x_c(T) - x\right]^2, $$

(7)

where $K_\eta = \lambda^2 \alpha^2/4B$ and $x_c(T) = x_{c0} - T/\lambda$. The right-hand side of Eq.(7) can be estimated by further assuming (see Fig. 1) that $\lambda \approx T_{c0}/x_{c0}$, where T_{c0} is the critical temperature at $x = 0$. If one now applies the Landau expansion all the way up to $x = 0$, then one obtains $F_{\eta0} = \frac{\alpha^2}{4B} T_{c0}^2$, and thus

$$ K_\eta = \frac{F_{\eta0}}{x_{c0}^2} $$

(8)

in agreement with constraint (5).

4. Chances of phase-separation

In our further estimates, we will use the minimum value of K_η given by the right-hand side of the constraint (5). Figure 2 combines all estimates from Section 3 as a function of a still unknown value of x_{c0}. The shaded areas in that plot indicate the region of uncertainty by the factor of 2 in the value of $K_{\eta0} + K_{\text{Coul}}$ and the factor of 2 increase above the minimum value of K_η as follows from the constraint (5).

Finding the value of x_{c0} now becomes the final piece of a puzzle associated with the phase-separation condition (2). This parameter is difficult to pinpoint, but this difficulty should certainly be less significant than the difficulty of describing the entire decay of AFM correlations in cuprates through possibly exotic magnetic phases. The constraint (5) implies that the faster AFM correlations decay, the stronger is the tendency towards phase separation. Helpful for an approximate analysis is the fact that the inverse quadratic dependence of the constraint (5) on x_{c0} is very steep in the range of interest, and, therefore, a relatively crude placement of the value of x_{c0} would still result in a useful insight into the chances of phase-separation in cuprates.

Here we examine several possibilities.

1) Identification of x_{c0} with the AFM phase boundary

This implies $x_{c0} = x_{AFM} = 0.02$ for La$_{2-x}$Sr$_x$CuO$_4$ and $x_{c0} \approx 0.06$ for YBa$_2$Cu$_3$O$_{6+\delta}$. However, Fig. 2 indicates that the left-hand side in inequality (2) would be two orders of magnitude greater than the right-hand side for $x_{c0} = 0.02$, and by a factor of ten for $x_{c0} = 0.06$. This means that the formation of inhomogeneities on the both sides of x_{c0} would be unavoidable, whereas the AFM phase is observed below these concentrations. Therefore this choice is likely to be incorrect.

2) $x_{c0} \approx 0.18$

This is where in our estimates the left- and the right-hand-side of condition (2) are equal to each other. This concentration is also close to the value for which the quantum criticality is suggested by
some estimates [43] and experiments [44]. However, by the nature of constraint (5), we underestimate the left-hand-side of (2). Thus this value of x_{c0} would still make a good case for an unstable homogeneous state.

3) $x_{c0} \approx 0.3$

Here it is more likely than not the homogeneous state remains stable, but the chances of phase separation are still significant, and, in any case, the fluctuations of charge carrier density should be large.

![Image](image_url)

Fig. 2. Estimates for negative K_η and positive ($K_\eta + K_{Coul}$) contributions to energy curvature per one in-plane Cu. Negative curvature is plotted as a function of an unknown critical concentration x_{c0}. Solid lines represent the estimates by formulas (8), (3) and (4) with the numbers given in the text. Shaded areas around the lines cover the regions of the factor-of-two uncertainty for the above estimates.

Recent data by Wakimoto et al. [45] on frequency-integrated intensity of inelastic neutron magnetic scattering from La$_{2-x}$Sr$_x$CuO$_4$ and La$_{2-x}$Ba$_x$CuO$_4$ indicate that AFM correlations are still present at $x = 0.3$ but reduced compared to $x = 0$ by at least one order of magnitude. This finding may appear to indicate $x_{c0} \approx 0.3$, whereas similar results for YBa$_2$Cu$_3$O$_{6+x}$ reported earlier by Bourges [46] suggest a smaller value, close to $x_{c0} \approx 0.2$, but with a smaller range of energy integration. However, the value of x_{c0} must be smaller than these values because of the possibility that what experiments are observing is the result of phase-separation into two phases: magnetic phase with $x < x_{c0}$ and non-magnetic one with $x > x_{c0}$. The disappearance of magnetic signal would then mean that the relative volume of magnetic phase approaches zero once the average concentration approaches 0.2 or 0.3.

In Ref. 39 we proposed to further constrain x_{c0} using the phenomenology of an atypical cuprate family La$_2$CuO$_4+\delta$, where intercalated oxygen ions are mobile at sufficiently high temperatures, and, as a result, large-scale phase-separation is possible and had, indeed been observed. We further employed a reasonable assumption [39] that the value of x_{c0} should limit the spinodal (locally unstable) range of charge carrier concentrations both in the case of mobile and frozen dopant ions. This idea is implemented in Fig. 3 on the basis of the experimental results of Ref. 47. The straight line in this figure extrapolates the boundary of unstable region from the higher temperatures, where the intercalated oxygen ions are mobile to the lowers temperatures, where these ions are frozen. Given that $x \approx 2\delta$ (or smaller [48]), the above extrapolation suggests that $x_{c0} \approx 0.13$, which, according to Fig. 2 corresponds to the region of likely phase-separation.

It is also interesting to note that this concentration, $x_{c0} \approx 0.13$, is close to the concentration for metal-insulator transition when superconductivity is suppressed by strong magnetic field [49]. Since the effect of such a strong magnetic field on the energy balance discussed here would not be insignificant these two cannot be the same, but if the magnetic field suppresses not only superconductivity but also nano-scale phase-separation, the coincidence of the two may be meaningful.
The fact that the best estimate of x_{c0} happens to be above the composition limit of the AFM phase, $x_{AFM} = 0.06$, and below the composition limit for the pseudo-gap, $x_{PG} = 0.25$, implies that the pseudo-gap phase most likely is indeed the nano-scale phase-separated phase. As shown in Fig. 4, the real phase diagram of the system should show only the upper and lower limit lines, ending at x_{10} and x_{20} at $T = 0$. The line that ends at x_{20} (x_{20} line) should define the pseudo-gap temperature, T_{PG}. Note that in this construct the quantum critical point is not x_{20} where T_{PG} ends, but is x_{c0}, which is at the center of the superconducting dome. This is a very important point. The lower limit line could signify the observed metal-insulator transition. This could also be the phase boundary for the AFM phase in an ideal case, but chemical disorder can separate them as is clearly the case for LSCO.

5. Implications of the results

Our analysis indicates that a generic cuprate either phase-separates or balances right at the threshold of phase-separation. As discussed in the introduction, such a conclusion contradicts the impression projected by the theoretical studies of the models with only short-range interactions and without long-range Coulomb interaction. We have shown that Coulomb repulsion between charge carriers separated by 1 to 3 lattice periods helps the system to destroy AFM correlations faster, and thus favors, rather than opposes, phase-separation [39]. This result leads naturally to the conclusion that the pseudo-gap phase is made of the nano-scale mixture of two phases, one magnetic and the other metallic and non-magnetic. The identification of the pseudo-gap phase with the phase-separated region shown in Fig. 4
is consistent with the recent report by STM-STS that the distribution of the superconducting gap is still inhomogeneous even in the overdoped region [50,51].

We conclude that the quantum critical point is not the concentration where T_{PG} extrapolates to $T = 0$, but is a point significantly lower in concentration, right in the middle of the superconducting dome in the phase diagram. However, the fluctuations associated with the “quantum critical” concentration are strongly modified and likely suppressed by nano-scale phase-separation. As a consequence of identifying the x_{c0} line with the pseudo-gap temperature our result suggests that the nano-scale phase-separation is either necessary for or at least co-exists with superconductivity. The role of the quantum critical point may not to provide quantum fluctuations that may pair holes, but may be more complex, through the formation of a new state involving nano-scale phase-separation.

One strong possibility is that the long-range Coulomb interaction tends to drive the charge-separated regions into a well-defined charge ordering, perhaps the superlattice structure with an extended unit cell. The spin-charge stripe state is one of such possible states, but the stripe state apparently competes against superconductivity, so the state that is required for HTSC most likely is a different one, probably a state with strongly two-dimensional spin-charge order. In reality it is likely that such ordering is frustrated by chemical disorder, and develops only into a nano-scale medium-range order. Indeed our recent neutron scattering study suggests that the spin correlations in the underdoped cuprates are more complex than usually assumed, with spin-glass-like disorder and the possibility of nano-scale intermediate order which is distinct from the AFM order [52]. It is possible that the formation of such local spin-charge order is intimately connected to the occurrence of HTSC. Whereas these results are preliminary and require further study, it is likely that accurate knowledge of such ordering will lead to better understanding of the HTSC physics [53].

Acknowledgments
The authors are grateful to S. A. Kivelson and E. Dagotto for useful communications. This work was supported in part by the National Science Foundation through DMR-0404781.

References
[1] Emery V J, Kivelson S A and Lin H Q 1990 Phys. Rev. Lett. 64 475
[2] Emery V J and Kivelson S A 1993 Physica C 209 597
[3] Dagotto E 1994 Rev. Mod. Phys. 66 763
[4] Nagaev E L 1995 Physics: Uspekhi 38, 497; Uspekhi Fizicheskikh Nauk 165 529
[5] Dagotto E 2005 Science 309 257
[6] Tranquada J M, Sterlinie B J, Axe J D, Nakamura Y and Uchida S 1995 Nature 375 561
[7] Fujita M, Goka H, Yamada K, Tranquada J M and Regnault L P 2004 Phys. Rev. B 70 104517
[8] Abbamonte P, Rusydi A, Smadici S, Gu G D, Sawatzky G A and Feng D L 2005 Nature Physics 1, 155
[9] Fine B V 2004 Phys. Rev. B 70 224508
[10] Christensen N B, Ronnow H M, Mesot J, Ewings R A, Momono N, Oda M, Ido M, Enderle M, McMorrow D F, Boothroyd A T 2007 Phys. Rev. Lett. 98 197003
[11] Fine B V 2007 Phys. Rev. B 75 060504
[12] Wilson J A 2007 arXiv:cond-mat/0703251
[13] Pan S H, O'Neal J P, Badzey R L, Chamon C, Ding H, Engelbrecht J R, Wang Z, Eisaki H, Uchida S, Gupta A K, Ng K-W, Hudson E W, Lang K M and Davis J C 2001 Nature 413 282
[14] Hoffman J E, McElroy K, Lee D-H, Lang K M, Eisaki H, Uchida S and Davis J C 2002 Science 297 1148
[15] Howald C, Eisaki H, Kaneko N, Greven M and Kapitulnik A 2003 Phys. Rev. B 67 014533
[16] Vershinin M, Misra S, Ono S, Abe Y, Ando Y and Yazdani A 2004 Science 303 1995
[17] Egami T 2001 AIP Conf. Proc. 554 38
[18] Stercel F, Egami T, Mook H A, Yethiraj M, Chung J-H, Arai M, Frost C and Dogan F 2008
[19] Grilli M, Raimondi R, Castellani C, Di Castro C and Kotliar G 1991 Phys. Rev. Lett. 67 259
[20] Sigmund E, Hizhnyakov V and Seibold G 1992 in Phase Separation in Cuprate Superconductors, edited by K. A. Müller and G. Benedek (World Scientific, Singapore) p 46
[21] Hellberg C S and Manousakis E 1997 Phys. Rev. Lett. 78 4609
[22] Markiewicz R S 1997 Phys. Rev. B 56 9091
[23] Becca F, Capone M and Sorella S 2000 Phys. Rev. B 62 12700
[24] Lorenzana J, Castellani C and Di Castro C 2000 Phys. Rev. B 64 235127
[25] Kivelson S A, Aeppli G and Emery V J 2001 Proc. Natl. Acad. Sci. USA 98 11903
[26] Kotliar G, Murthy S and Rozenberg M J 2002 Phys. Rev. Lett. 89 046401
[27] Carlson E W, Emery V J, Kivelson S A and Orgad D 2003 in The Physics of Conventional and Unconventional Superconductors, ed. Bennemann K H and Ketterson J B (Springer-Verlag, Berlin); eprint: cond-mat/0206217.
[28] Goodenough J B 2003 J. Phys.: Condens. Matter 15 R257
[29] Capone M, Sangiovanni G, Castellani C, Di Castro C and Grilli M 2004 Phys. Rev. Lett. 92 106401
[30] Ivanov D A 2004 Phys. Rev. B 70 104503
[31] Aichhorn M and Arrigoni E 2005 Europhys. Lett. 72 117
[32] Aichhorn M, Arrigoni E, Potthoff M and Hanke W 2006 Phys. Rev. B 74 235117
[33] Lugas M, Spanu L, Becca F and Sorella S 2006 Phys. Rev. B 74 165122
[34] Macridin A, Jarrell M and Maier T 2006 Phys. Rev. B 74 085104
[35] Ortix C, Lorenzana J and Di Castro C 2006 Phys. Rev. B 73 245117
[36] Egami T 2006 J. Phys. Chem. Solids 67 2013
[37] Eckstein M, Kollar M, Potthoff M and Vollhardt D 2007 Phys. Rev. B 75 125103
[38] Kocharian A N, Fernando G W, Wang T, Palandage K and Davenport J W 2007 Physics Lett. A 364 57
[39] Fine B V and Egami T 2007 eprint arXiv:0707.3994; 2008 Phys. Rev. B 77 014519
[40] e.g. Boettinger W J, Coriell S R and Sekerka R F 1984 Mater. Sci. Eng. 65 27
[41] Landau L D 1957 Soviet Physics JETP 3 920
[42] Anderson P W 1987 Science 235 1196
[43] Andergassen S, Caprara S, Di Castro C and Grilli M 2001 Phys. Rev. Lett. 87 056401
[44] Loram J W, Luo J, Cooper J R, Liang W Y and Tallon J L 2001 J. Phys. Chem. Solids 62 59
[45] Wakimoto S, Yamada K, Tranquada J M, Frost C D, Birgeneau R J and Zhang H 2007 Phys. Rev. Lett. 98 247003
[46] Bourges P 2000 in Neutron Scattering in Novel Materials ed. Furrer A (World Scientific, Singapore) p 252; cond-mat/0009373
[47] Radaelli P G, Jorgensen J D, Kleb R, Hunter B A, Chou F C and Johnston D C 1994 Phys. Rev. B 49 6239
[48] Li Z G, Feng H H, Yang Z Y, Hamed A, Ting S T and Hor P H 1996 Phys. Rev. Lett. 77, 5413
[49] Boebinger G S, Ando Y, Passner A, Kimura T, Okuya M, Shinoyama J, Kishio K, Tamasaku K, Ichikawa N and Uchida S 1996 Phys. Rev. Lett. 77 5417
[50] Lee J, Fujita K, McElroy K, Slezkak J A, Wang M, Aiura Y, Bando H, Ishikado M, Matsui T, Zhu J-X, Balatsky A V, Eisaki H, Uchida S and Davis J C 2006 Nature 442 546
[51] Gomes K K, Pasupathy A N, Pushp A, Ono S, Ando Y and Yazdani A 2007 Nature 447 569
[52] Egami T 2007 J. Superconductivity: Inc. Novel Magnetism 20 547
[53] Egami T 2007 in High Tc Superconductors and Related Transition Metal Oxides: Special Contributions in Honor of K. Alex Müller and the Occasion of his 80th Birthday eds. Bussmann-Holder A and Keller H (Springer-Verlag, Berlin) p 103