Sidorenko’s conjecture for a class of graphs: an exposition

David Conlon∗ Jacob Fox† Benny Sudakov‡

A famous conjecture of Sidorenko [2] and Erdős-Simonovits [3] states that if \(H \) is a bipartite graph then the random graph with edge density \(p \) has in expectation asymptotically the minimum number of copies of \(H \) over all graphs of the same order and edge density. The goal of this expository note is to give a short self-contained proof (suitable for teaching in class) of the conjecture if \(H \) has a vertex complete to all vertices in the other part. This was originally proved in [1].

Theorem 1 Sidorenko’s conjecture holds for every bipartite graph \(H \) which has a vertex complete to the other part.

The original formulation of the conjecture by Sidorenko is in terms of graph homomorphisms. A homomorphism from a graph \(H \) to a graph \(G \) is a mapping \(f : V(H) \rightarrow V(G) \) such that for each edge \((u, v) \) of \(H \), \((f(u), f(v)) \) is an edge of \(G \). Let \(h_{H}(G) \) denote the number of homomorphisms from \(H \) to \(G \). We also consider the normalized function \(t_{H}(G) = h_{H}(G) / |G|^{|H|} \), which is the fraction of mappings \(f : V(H) \rightarrow V(G) \) which are homomorphisms. Sidorenko’s conjecture states that for every bipartite graph \(H \) with \(m \) edges and every graph \(G \), \(t_{H}(G) \geq t_{K_{2}}(G)^{m} \). We will prove that this is the case for \(H \) as in Theorem 1.

We use a probabilistic technique known as dependent random choice. The idea is that most small subsets of the neighborhood of a random vertex have large common neighborhood. Our first lemma gives a counting version of this technique. We will then combine this with a simple embedding lemma to give a lower bound for \(t_{H}(G) \) in terms of \(t_{K_{2}}(G) \). For a vertex \(v \) in a graph \(G \), the neighborhood \(N(v) \) is the set of vertices adjacent to \(v \). For a sequence \(S \) of vertices of a graph \(G \), the common neighborhood \(N(S) \) is the set of vertices adjacent to every vertex in \(S \).

Lemma 1 Let \(G \) be a graph with \(N \) vertices and \(pN^{2}/2 \) edges. Call a vertex \(v \) bad with respect to \(k \) if the number of sequences of \(k \) vertices in \(N(v) \) with at most \((2n)^{-n-1} p^{k} N \) common neighbors is at least \(\frac{1}{2n}|N(v)|^{k} \). Call \(v \) good if it is not bad with respect to \(k \) for all \(1 \leq k \leq n \). Then the sum of the degrees of the good vertices is at least \(pN^{2}/2 \).

Proof: We write \(v \sim k \) to denote that \(v \) is bad with respect to \(k \). Let \(X_{k} \) denote the number of pairs \((v, S) \) with \(S \) a sequence of \(k \) vertices, \(v \) a vertex adjacent to every vertex in \(S \), and \(|N(S)| \leq (2n)^{-n-1} p^{k} N \). We have

\[
(2n)^{-n-1} p^{k} N \cdot N^{k} \geq X_{k} \geq \sum_{v, v \sim k} \frac{1}{2n}|N(v)|^{k} \geq \frac{1}{2n} N \left(\sum_{v, v \sim k} |N(v)|/N \right)^{k} = \frac{1}{2n} N^{1-k} \left(\sum_{v, v \sim k} |N(v)| \right)^{k}.
\]

∗Mathematical Institute, Oxford OX1 3LB, UK. Email: david.conlon@maths.ox.ac.uk.
†Department of Mathematics, MIT, Cambridge, MA 02139-4307. Email: fox@math.mit.edu.
‡Department of Mathematics, UCLA, Los Angeles, CA 90095. Email: bsudakov@math.ucla.edu.
The first inequality is by summing over S, the second inequality is by summing over vertices v which are bad with respect to k, and the third inequality is by convexity of the function $f(x) = x^k$. We therefore get

$$\sum_{v, v \sim k} |N(v)| \leq (2n)^{-n/k}pN^2 \leq \frac{1}{2n}pN^2.$$

Hence,

$$\sum_{\text{good}} |N(v)| \geq \sum_v |N(v)| - \sum_{k=1}^n \sum_{v, v \sim k} |N(v)| \geq pN^2 - n \cdot \frac{1}{2n}pN^2 = pN^2/2,$$

as required. \qed

Lemma 2 Suppose \mathcal{H} is a hypergraph with v vertices and at most e edges and \mathcal{G} is a hypergraph on N vertices with the property that for each k, $1 \leq k \leq v$, the number of sequences of k vertices of \mathcal{G} that do not form an edge of \mathcal{G} is at most $\frac{1}{2e}N^k$. Then the number of homomorphisms from \mathcal{H} to \mathcal{G} is at least $\frac{1}{2}N^v$.

Proof: Consider a random mapping of the vertices of \mathcal{H} to the vertices of \mathcal{G}. The probability that a given edge of \mathcal{H} does not map to an edge of \mathcal{G} is at most $\frac{1}{2}$. By the union bound, the probability that there is an edge of \mathcal{H} that does not map to an edge of \mathcal{G} is at most $e \cdot \frac{1}{2e} = 1/2$. Hence, with probability at least 1/2, a random mapping gives a homomorphism, so there are at least $\frac{1}{2}N^v$ homomorphisms from \mathcal{H} to \mathcal{G}. \qed

Lemma 3 Let $H = (V_1, V_2, E)$ be a bipartite graph with n vertices and m edges such that there is a vertex $u \in V_1$ which is adjacent to all vertices in V_2. Let G be a graph with N vertices and $pN^2/2$ edges, so $t_{K_2}(G) = p$. Then the number of homomorphisms from H to G is at least $(2n)^{-n^2}p^mN^n$.

Proof: Let $n_i = |V_i|$ for $i \in \{1, 2\}$. We will give a lower bound on the number of homomorphisms $f : V(H) \to V(G)$ that map u to a good vertex v of G. Suppose we have already picked $f(u) = v$. Let \mathcal{H} be the hypergraph with vertex set V_2, where $S \subset V_2$ is an edge of \mathcal{H} if there is a vertex $w \in V_1 \setminus \{v\}$ such that $N(w) = S$. The number of vertices of \mathcal{H} is n_2, which is at most n, and the number of edges of \mathcal{H} is $n_1 - 1$, which is also at most n. Let \mathcal{G} be the hypergraph on $N(v)$, where a sequence R of k vertices of $N(v)$ is an edge of \mathcal{G} if $|N(R)| \geq (2n)^{-(n-1)}p^kN$. Since v is good, for each k, $1 \leq k \leq v$, the number of sequences of k vertices of \mathcal{G} that are not the vertices of an edge of \mathcal{G} is at most $\frac{1}{2v}N^k$. Hence, by Lemma 2 there are at least $\sum_{v, v \text{ good}} \frac{1}{2} |N(v)|^{n_2}$ homomorphisms g from \mathcal{H} to \mathcal{G}. Pick one such homomorphism g, and let $f(x) = g(x)$ for $x \in V_2$. By construction, once we have picked $f(u)$ and $f(V_2)$, there are at least $(2n)^{-n^2}p^{N(w)/N}$ possible choices for $f(w)$ for each vertex $w \in V_1$. Hence, the number of homomorphisms from H to G is at least

$$\sum_{\text{good}} \frac{1}{2} |N(v)|^{n_2} \prod_{w \in V_1 \setminus \{v\}} (2n)^{-(n-1)p^{N(w)/N}} = \sum_{\text{good}} \frac{1}{2} (2n)^{-n(n-1)}p^{m-n_2}N^{n_1-1} \sum_{\text{good}} |N(v)|^{n_2} \geq \frac{1}{2} (2n)^{-n(n-1)}p^{m-n_2}N^{n_1-1} \left(\sum_{\text{good}} |N(v)/N|^{n_2} \right) \geq \frac{1}{2} (2n)^{-n(n-1)}p^{m-n_2}N^{n_1}(pN/2)^{n_2} \geq (2n)^{-n^2}p^mN^n.$$
The first inequality is by convexity of the function $q(x) = x^k$ and the second inequality is by the lower bound on the sum of the degrees of good vertices given by Lemma 1.

We next complete the proof of Theorem 1 by improving the bound in the previous lemma on the number of homomorphisms from H to G using a tensor power trick. The tensor product $F \times G$ of two graphs F and G has vertex set $V(F) \times V(G)$ and any two vertices (u_1, u_2) and (v_1, v_2) are adjacent in $F \times G$ if and only if u_i is adjacent with v_i for $i \in \{1, 2\}$. Let $G^1 = G$ and $G^r = G^{r-1} \times G$. Note that $t_H(F \times G) = t_H(F) \times t_H(G)$ for all H, F, G.

Proof of Theorem 1: Suppose for contradiction that there is a graph G such that $t_H(G) < t_{K_2}(G)^m$. Denote the number of edges of G as $pN^2/2$, so $t_{K_2}(G) = p$. Let $c = t_H(G) / t_{K_2}(G)^m < 1$. Let r be such that $c^r < (2n)^{-m^2}$. Then

$$t_H(G^r) = t_H(G)^r = c^r t_{K_2}(G)^{rm} = c^r t_{K_2}(G^r)^m < (2n)^{-m^2} t_{K_2}(G^r)^m.$$

However, this contradicts Lemma 3 applied to H and G^r. This completes the proof.

References

[1] D. Conlon, J. Fox and B. Sudakov, An approximate version of Sidorenko’s conjecture, *Geom. Funct. Anal.* 20 (2010), 1354–1366.

[2] A. F. Sidorenko, A correlation inequality for bipartite graphs, *Graphs Combin.* 9 (1993), 201–204.

[3] M. Simonovits, Extremal graph problems, degenerate extremal problems and super-saturated graphs, in: *Progress in graph theory* (J. A. Bondy ed.), Academic, New York, 1984, 419–437.