Desordem de adesão placentária: sinais na ressonância magnética e proposta de laudo estruturado

Placental adhesion disorder: magnetic resonance imaging features and a proposal for a structured report

Thais Coura Figueiredo Agostini¹,a, Reginaldo Figueiredo²b, Gisele Warmbrand³c, Ulysses Santos Torres³,4d, Hanna Rafaela Ferreira Dalla Pria¹,e, Giuseppe D’Ippolito¹f

1. Departamento de Diagnóstico por Imagem da Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM-Unifesp), São Paulo, SP, Brasil. 2. Departamento de Anatomia e Imagem da Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brasil. 3. Grupo Fleury, São Paulo, SP, Brasil. 4. Hospital São Luiz, São Paulo, SP, Brasil.

Correspondência: Dra. Thais Coura Figueiredo Agostini. Departamento de Diagnóstico por Imagem – EPM-Unifesp. Rua Napoleão de Barros, 800, Vila Clementino, São Paulo, SP, Brasil. 4. Hospital São Luiz, São Paulo, SP, Brasil.

Como citar este artigo:
Agostini TCF, Figueiredo R, Warmbrand G, Torres US, Dalla Pria HRF, D’Ippolito G. Desordem de adesão placentária: sinais na ressonância magnética e proposta de laudo estruturado. Radiol Bras. 2020 Set/Out;53(5):329–336.

Resumo
A desordem de adesão placentária é um tipo de placentação anormal que ocorre quando há penetração das vilosidades coriônicas na parede uterina. O acretismo placentário tornou-se mais frequente, principalmente devido às taxas crescentes de cesarianas. A ultrassonografia é a modalidade de imagem de primeira linha para avaliação placental, apresentando papel limitado nos casos de placenta posterior e achados duvidosos. Nesses casos, a ressonância magnética (RM) está indicada e é bastante eficaz, principalmente para identificar a disseminação extrauterina da placenta em gestantes de alto risco. Neste artigo de revisão apresentamos os dez principais sinais de desordem de adesão placentária pela RM descritos na literatura. Junto a isso, propomos um modelo de relatório estruturado e um questionário direcionado com o intuito de identificar os possíveis fatores de risco da paciente a ser submetida ao exame de RM da placenta, atendendo às expectativas dos especialistas envolvidos no planejamento do tratamento multidisciplinar necessário para minimizar a morbimortalidade materna.

Unitermos: Placenta acreta; Placenta prévia; Ressonância magnética.

Abstract
Placental adhesion disorder encompasses the various types of abnormal placentaion that occur when the chorionic villi penetrate the uterine wall. Placenta acreta has become more common, mainly because of the increasing rates of cesarean section. Although ultrasound is the first-line imaging modality for evaluation of the placenta, it plays a limited role in cases of posterior placenta acreta and inconclusive findings. In such cases, magnetic resonance imaging (MRI) is indicated, mainly because it is a more accurate means of identifying placental invasion of extrauterine structures in high-risk pregnant women. In this review article, we present the ten major and minor MRI features of placental adhesion disorder, as described in the international literature. In addition, we propose a template for structured reports of MRI examinations of the placenta. We have also devised a guided questionnaire in order to identify risk factors in patients scheduled to undergo such examinations, with the objective of facilitating the multidisciplinary treatment planning needed in order to minimize maternal morbidity and mortality.

Keywords: Placenta acreta; Placenta previa; Magnetic resonance imaging.
esta se encontra frequentemente associada a hemorragia maciça pós-parto, histerectomia de emergência e morbimortalidade materna(1,5). A ultrassonografia (US) combinada com a técnica de Doppler colorido é a principal ferramenta diagnóstica para se avaliar a placenta anormal. No entanto, quando os achados ultrassonográficos são suspeitos ou inconclusivos, ou em casos de placentação posterior, a ressonância magnética (RM) é recomendada como técnica de imagem suplementar(7).

A RM apresenta sensibilidade de 75–100% e especificidade de 65–100%, com valores preditivos negativo e positivo de 79–92% e 67–84.4%, respectivamente(1)(3)(4). Este método é útil para delinear a extensão plaçentária lateral ou posterior para os tecidos adiposos perifériques ou paramétricos ou ainda para detectar invasão da bexiga(5).

O objetivo do presente artigo é reunir os dez principais sinais observados na RM que possam contribuir para o diagnóstico de DAP. Além disso, criou-se um relatório estruturado abrangendo todos esses sinais e adotou-se um questionário que aborda os possíveis fatores de risco da paciente a ser submetida ao exame de RM da placenta.

PROTOCOLO DE RM

Os exames de RM podem ser realizados preferencialmente em aparelhos de 1,5-T, associados a bobina de superfície(4), visando a evitar os artefatos de susceptibilidade e o efeito dielétrico produzidos pelos equipamentos 3-T(8). A bexiga deve estar parcialmente repleta, para otimizar a avaliação da interface vesicouterina e evitar artefatos de movimento ou desconforto da paciente durante o exame com hiperdistensão vesical(2). O uso de oxigênio por meio de cânula nasal demonsrou diminuir o movimento fetal e oferece à gestante apneias mais prolongadas e confortáveis(9).

As sequências de RM são realizadas nos planos axial, sagital e coronal, destacando-se: SSFSE/HASTE/SSHTSE T2, para avaliação das camadas uterinas e arquitetura plaçentária; FIESTA, TrueFISP, bFFE T2, visando a reduzir os artefatos de respiração, além de diferenciar as bandas hipointensas de lagos venosos; e sequências graidente eco (GRE) ponderadas em T1, com a finalidade de identificar hemotoma retroplacentário (Tabela 1)(6). Sequências com alta resolução temporal e boa relação contraste-ruido, que eliminam o movimento fetal subjacente, tornaram possíveis imagens plaçentárias de elevada qualidade diagnóstica(7). O exame deve ser monitorado pelo radiologista, para definir se sequências adicionais, como obliques coronais ou sagitais, são necessárias.

Os primeiros artigos abordando a utilização da RM no diagnóstico da DAP preconizavam o uso de meio de contraste intravenoso para otimizar a eficácia do método(10,11), porém, sem oferecer indícios robustos que justificassem a sua adoção. Em um estudo recentemente publicado com grande número de gestantes, os autores concluem que o uso de contraste paramagnético em qualquer fase da gestação aumentaria o risco de alterações reumatólogicas e inflamatórias, bem como de óbito fetal e neonatal(12). Por essas razões, os exames de RM têm sido realizados sem o uso do meio de contraste intravenoso na pesquisa de DAP.

Não existe consenso a respeito da idade gestacional ideal para se realizar o exame de RM em pacientes com suspeita de DAP. Evidências demonstram que o exame realizado antes da 24ª semana apresenta acurácia muito baixa (≤ 50%), sendo considerada inaceitável(13). Por outro lado, a eficácia dos exames executados após a 35ª semana de gestação diminui em decorrência do acentuado afilamento miometrial e heterogeneidade plaçentária natural, limitando a adoção desses dois sinais por RM. Parece sensato realizar o exame de RM idealmente entre a 30ª e 35ª semanas de gestação, quando possível, mas mesmo esta sugestão pode estar sujeita a críticas, pois há autores que recomendam o exame entre a 24ª e 30ª semanas de gestação, alegando que a placenta é naturalmente mais homogênea e o miométrio é menos afilado(7).

DEZ SINAIS DE ACRETISMO PLAÇENTÁRIO NA RM

Múltiplos sinais de RM têm sido descritos no espectro da DAP. Para tanto, podem ser divididos em alterações maiores e menores (Tabela 2), quando os achados apresentarem especificidade acima de 80% e abaixo de 80%, respectivamente. Os sinais incluem lobulação uterina anormal, protuberância plaçentária, heterogeneidade plaçentária, protrusão plaçentária no orifício cervical ou outras estruturas adjacentes, bandas intraplaçentárias hipointensas em T2 associadas a retração plaçentária, banda de hipossinal em T2, indefinição da interface placentomiotelial, afilamento miometrial, vascularização plaçentária anormal e hipervascularização subserosa.

Sinais maiores

Lobulação uterina anormal

A lobulação uterina anormal pode aparecer como alargamento do segmento uterino inferior, assumindo uma

Tabela 1—Parâmetros técnicos.

Sequência:	PIANO	TR (ms)	TE (ms)	Flip angle	Espessura (mm)	Matriz	
T2 HASTE/SSFSE/SSHTSE	Axial	Min	90	180	5–9	256 × 192	
2DTrueFISP/FIESTA/bFFE	Axial	Sagital	6,71	3,26	65	6	256 × 256
Fat sat T2 FSE	Axial	5000	117	160	4	256 × 192	
T1 GRE in/out	Axial	225	2,2/4,4	80	6	256 × 128	
Fat sat 3D GRE T1	Axial	Min	10/15	4,6	224 × 160		

| TR, tempo de repetição; TE, tempo de eco; Flip angle, ângulo de aquisição; HASTE, half-Fourier acquisition single-shot turbo spin-echo; SSFSE, T2-weighted single-shot fast spin echo; SSHTSE, single-shot turbo spin-echo; TrueFISP, true fast imaging with steady-state precession; FIESTA, T2-weighted fast imaging employing steady-state acquisition sequence; bFFE, balanced fast field echo. Protocolo sugerido em equipamentos de 1,5-T.

Tabela 2—Dez sinais maiores e menores de acretismo placentário na RM.

Sinais	Especificidade	Sensibilidade
Sinais maiores		
Lobulação uterina anormal	90,2%	79,1%
Protuberância placentária	90,3%	88,8%
Heterogeneidade placentária	87,7%	78,6%
Protrusão placentária	82,4%	83,8%
Bandas de hipossinal em T2 associadas a retração placentária	100,0%	56,0%
Sinais menores		
Bandas placentárias com hipossinal em T2	71,9%	87,9%
Indefinição da interface placentomiometrial	75,6%	92,0%
Afilamento miometrial	6,5%	100,0%
Vascularização placentária anormal	37,6%	93,3%
Hipervascularização subserosa	73,1%	80,0%

aparência em forma de ampulheta, em lugar do habitual formato de pera invertida, nas imagens coronais e/ou sagitais \(^6,14\) (Figura 1).

Protuberância placentária

A protuberância placentária pode ser dividida em duas categorias, dependendo do contorno uterino. Quando ocorre discreta protuberância para fora do miométrio subjacente e o contorno está intacto e não distorcido, define-se como protuberância tipo I, e quando a placenta mostra protuberância focal, com contorno distorcido e alteração do contorno subjacente, é definida como protuberância tipo II \(^14\) (Figura 2).

Heterogeneidade placentária

A placenta normal é lisa e homogênea e apresenta intensidade de sinal intermediário em T2 \(^1\). Com a progressão da gravidez, a placenta normalmente se torna heterogênea, habitualmente após a 32ª semana, conhecida como “heterogeneidade da maturidade placentária” \(^1\). Em relação aos parâmetros de imagem, a heterogeneidade placentária permanece subjetiva e apresenta características como bandas e sinal de fluxo lentificado (flow-voids) intra-placentários, além de áreas de infarto placentário \(^14\) (Figura 3). Até 30% das pacientes sem acretismo placentário podem apresentar este sinal. É importante observar que a homogeneidade placentária deve ser avaliada nas sequências SS-FSE/HASTE/SS-TSE T2, pois há uma tendência de subestimar a homogeneidade de sinal nas sequências FIESTA, TrueFISP, bFFE T2 \(^11\).

Protrusão placentária

Este sinal consiste na invasão miometrial estendendo-se à serosa uterina ou através do orifício cervical interno e invadindo estruturas adjacentes \(^6\). Nos casos de placenta prévia, a protrusão placentária no orifício cervical interno é um sinal confiável de placenta acreta (Figura 4). Nos casos de placenta percreta, a RM pode demonstrar extensão do tecido placentário além da serosa uterina, ou seja, para o paramétrio, bexiga ou intestino \(^14\). Deve-se orientar a repleção parcial da bexiga, no momento da aquisição de imagens, com o objetivo de reduzir diagnósticos falsos-positivos de invasão vesical \(^2\).

Bandas de hipossinal em T2 associadas a retração placentária

A definição de retração placentária se traduz como sendo uma deformidade da placenta, com contração da superfície placentária e da borda externa do útero, com contorno em forma de cunha e espessura diminuída \(^15\). É acompanhada por uma banda placentária com hipossinal em T2 (este é um sinal menor e será discutido posteriormente) (Figuras 5 e 6).

Figura 1. **A:** Imagem de RM na sequência sagital T2 demonstra o aspecto normal (em pera invertida) do útero gravídico, sem sinais de acretismo placentário. **B:** Imagem ponderada em T2 coronal mostra formato de ampulheta, sugerindo o diagnóstico de DAP.
Figura 3. Imagem de RM na sequência sagital T2 mostrando heterogeneidade da placenta, caracterizada por alteração difusa de sinal associada a banda de hipossinal intraplacentária (seta).

Sinais menores
Bandas placentárias com hipossinal em T2
As bandas placentárias são áreas nodulares ou lineares de baixa intensidade de sinal em imagens ponderadas em T2\(^2\). Essas bandas frequentemente originam-se da placa basilar no lado materno da placenta e têm diâmetro longitudinal maior que 2,0 cm, espessura superior a 1,0 cm e distribuição aleatória\(^6\). Essas características ajudam a diferenciar das septos placentários normais, que tendem a ser finos e lisos\(^1\). Acredita-se que representem áreas de deposição de fibrina na placenta, possivelmente decorren-
tes de hemorragia frequente e infarto. Existe relação entre o aumento do volume das bandas e os graus crescentes de invasão placentária\(^6\). Caso a placenta apresente-se homogênea e sem bandas placentárias, é improvável que a paciente apresente placentação invasiva (Figuras 5 e 6).

Indefinição da interface placentomiometrial
A interface uteroplacentária consiste na linha demarca-
tória entre a placenta e o útero subjacente. O complexo no qual está inserida esta interface é composto por três
camadas paralelas. A camada mais interna representa a decidua hipoointensa em T2; a camada média representa o miométrio, com sinal intermediário; e a camada mais externa, com hipointensidade de sinal em T2, representa a serosa uterina (6). O adelgaçamento focal ou um defeito na interface uteroplacentária, particularmente a camada mais interna (Figura 7), é considerado preditor significativo de placenta invasora (6). Observa-se, ainda, que este sinal também pode ser inespecífico nos casos de idade gestacional avançada e afilamento no local da cesárea anterior.

Afilamento miometrial

O afilamento miometrial é definido como sendo a perda da aparência trilaminar do miométrio normal, com preservação da camada miometrial externa (14) (Figura 8).

Vascularização placentária anormal

Este sinal está relacionado a vasos intraplacentários desorganizados, tortuosos e dilatados, com calibre maior que 0,6 cm, localizados geralmente junto a áreas de bandas intraplacentárias, com hipossinal em T2. Há provável relação entre a extensão dos vasos anormais e o grau de invasão, sendo a vascularização mais bizarras observada nos casos de placenta percreta (1).

A identificação da vascularização anormal depende da comparação entre as sequências T2 HASTE/SSFSE/SSHTSE, em que os vasos apresentam ausência ou lenteificação de fluxo (flow-voids), e as sequências FIESTA/
Figura 8. A: Imagem de RM ponderada em T2 axial mostra aspecto trilaminar normal do miométrio, representado pela camada hiperintensa média e as duas camadas externas e internas hipointensas (setas). B: Imagem em T2 sagital mostra afilamento miometrial apresentando indistinção das camadas (seta).

Figura 9. Imagem de RM ponderada em T2 na sequência sagital demonstra placenta prévia completa associada a vascularização placentária desorganizada, com vasos apresentando calibre de até 9 mm (seta).

TrueFISP/hFFE, nas quais os vasos apresentam hipersinal correspondente$^{(6,14)}$ (Figura 9).

Hipervascularização subserosa

A hipervascularização subserosa representa vasos tortuosos e compactados ao longo da serosa uterina, no segmento uterino inferior, nas imagens axiais, vistos como vasos com ausência/lentificação de fluxo (*flow-voids*)$^{(14)}$ (Figura 10).

RELATÓRIO ESTRUTURADO

Os relatórios estruturados oferecem oportunidades para a melhoria na qualidade da informação pelos métodos de imagem. Ao se utilizar terminologia padronizada, promove-se maior clareza e objetividade na comunicação dos achados de imagem, que podem fornecer importantes benefícios no tratamento e acompanhamento da doença$^{(16)}$.

Figura 10. A: Imagem ponderada em T2 sagital representa a hipervascularização subserosa do útero, com *flow voids* (setas). B: Aspecto intraoperatorário.
Em nossa instituição foi elaborado um relatório estruturado abrangendo os principais sinais de DAP descritos na literatura, além dos parâmetros básicos de imagem (Figura 11). Foi também adotado um questionário que contempla os possíveis fatores de risco da paciente a ser submetida ao exame de RM de placenta (Tabela 3).

Tabela 3—Questionário para realização de RM de placenta.

Questão	Resposta
1) Número de gestações?	
2) A quantas cesarianas já foi submetida?	
3) Já realizou curetagem, miomectomia ou embolização de mioma?	
4) Apresenta alterações urinárias ou intestinais?	

RESSONÂNCIA MAGNÉTICA DE PLACENTA

Método: Exame realizado com cortes multiplanares nas sequências FSE e GRE, ponderadas em T1 e T2, sem injeção intravenosa de meio de contraste paramagnético e direcionado para o estudo da placenta.

Indicação clínica:

Análise:

Data da última menstruação:

Idade gestacional:

Gestação:

Feto	() Único () Gemelar () Trigemelar

Apresentação fetal	() Cefálica () Pélvica () Córmica

Situação	() Longitudinal () Transversal

Dorso	() Direita () Esquerda () Superior () Inferior () Anterior () Posterior

Placenta:

Localização	() Anterior () Posterior () Lateral direita () Lateral esquerda () Fúndica

Placenta prévia	() Ausente () Baixa (2 cm do orifício cervical interno) () Marginal () Parcial () Completa () Central

Distância da borda placentária inferior ao orifício cervical interno: _____cm

Espessura placentária máxima: _____cm

Sinais de acretismo placentário:

Sinal	Presente	Ausente
Lobulação uterina anormal (aspecto em ampulheta)		
Protuberância placentária		
Heterogeneidade placentária (até 32 semanas)		
Protrusão placentária (bexiga/colo/orifício cervical interno)		
Bandas de hipossinal em T2 associadas a retração placentária		
Bandas placentárias com hipossinal em T2		
Indefinição da interface placentomiometrial		
Afilamento miometrial		
Vascularização placentária anormal		
Hipervascularização subserosa		

Miomas:

() Ausente () Presente

Se presente: localização, tipo e tamanho dos maiores

Colo uterino:

Comprimento: _____cm

Achados adicionais:

Opinião:

Estudo de RM da placenta dentro dos limites da normalidade.

OU

Exame com sinais de acretismo placentário.

Figura 11. Modelo de relatório estruturado para RM de placenta com hipótese diagnóstica de acretismo placentário.
CONCLUSÃO

O acretismo placentário tornou-se mais frequente, principalmente devido às taxas crescentes de cesarianas. A US permanece como a modalidade de imagem de primeira linha para avaliação placentária, no entanto, em casos de placenta posterior e achados duvidosos, a RM tem demonstrado acurácia satisfatória e que justifica o seu uso para identificar a disseminação extrauterina da placenta, desempenhando papel importante no diagnóstico de placenta anormal em gestantes de alto risco.

Lobulação uterina anormal, protuberância placentária, heterogeneidade placentária, protrusão placentária no orifício cervical ou outras estruturas adjacentes e bandas intraplacentárias hipointensas em T2, associadas a retração placentária, apresentam alta especificidade, sendo classificadas como sinais maiores.

A adesão cuidadosa ao protocolo e a utilização do questionário direcionado e do relatório estruturado visam a incrementar a eficácia da RM e contribuem para o atendimento de pacientes com placenta invasiva, e assim apoiam o planejamento do tratamento multidisciplinar necessário para minimizar a morbimortalidade materna.

REFERÊNCIAS

1. Cuthbert F, Vinas MT, Whitby E. The MRI features of placental adhesion disorder—a pictorial review. Br J Radiol. 2016;89:20160284.
2. Baughman WC, Corteville JE, Shah RR. Placenta accreta: spectrum of US and MR imaging findings. Radiographics. 2008;28:1905–16.
3. Bour L, Placé V, Bendavid S, et al. Suspected invasive placenta: evaluation with magnetic resonance imaging. Eur Radiol. 2014;24:3150–60.
4. Derman AY, Nikac V, Haberman S, et al. MRI of placenta accreta: a new imaging perspective. AJR Am J Roentgenol. 2011;197:1514–21.
5. Bourgioti C, Zafeiropoulou K, Fotopoulos S, et al. MRI features predictive of invasive placenta with extrauterine spread in high-risk gravid patients: a prospective evaluation. AJR Am J Roentgenol. 2018;211:701–11.
6. Azour L, Besa C, Lewis S, et al. The gravid uterus: MR imaging and reporting of abnormal placentation. Abdom Radiol (NY). 2016;41:2411–23.
7. Kilcoyne A, Shenoy-Bhangle AS, Roberts DJ, et al. MRI of placenta accreta, placenta increta, and placenta percreta: pearls and pitfalls. AJR Am J Roentgenol. 2017;208:214–21.
8. Rahaim NSA, Whitby EH. The MRI features of placental adhesion disorder and their diagnostic significance: systematic review. Clin Radiol. 2015;70:917–25.
9. Shetty MK, Dryden DK. Morbidly adherent placenta: ultrasound assessment and supplemental role of magnetic resonance imaging. Semin Ultrasound CT MR. 2015;36:324–31.
10. Levine D, Hulka CA, Ludmir J, et al. Placenta accreta: evaluation with color Doppler US, power Doppler US, and MR imaging. Radiology. 1997;205:773–6.
11. Lax A, Prince MR, Mennitt KW, et al. The value of specific MRI features in the evaluation of suspected placental invasion. Magn Reson Imaging. 2007;25:87–93.
12. Bay FG, Vermeulen MJ, Bharatha A, et al. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016;316:952–61.
13. Horowitz JM, Berggren S, McCarthy BJ, et al. When timing is everything: are placental MRI examinations performed before 24 weeks’ gestational age reliable? AJR Am J Roentgenol. 2015;205:685–92.
14. Chen X, Shan R, Zhao L, et al. Invasive placenta previa: placental bulge with distorted uterine outline and uterine serosal hypervascularity at 1.5T MRI – useful features for differentiating placenta percreta from placenta accreta. Eur Radiol. 2018;28:708–17.
15. Sato T, Mori N, Hasegawa O, et al. Placental recess accompanied by a T2 dark band: a new finding for diagnosing placental invasion. Abdom Radiol (NY). 2017;42:2146–53.
16. Schwartz LW, Panicek DM, Berk AR, et al. Improving communication of diagnostic radiology findings through structured reporting. Radiology. 2011;260:174–81.
17. Familiari A, Liberati M, Lim P, et al. Diagnostic accuracy of magnetic resonance imaging in detecting the severity of abnormal invasive placenta: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2018;97:507–20.