Maximizing the number of maximal independent sets of a fixed size

Chunwei Song∗, Bowen Yao††

Mathematics Subject Classification 2020: 05C35, 05C69, 05D99, 05C31

Keywords: maximal independent set, extremal graph, disjoint union, Turán graph, maximal cliques, maximal independence polynomial

Abstract

For a fixed graph G, a maximal independent set is an independent set that is not a proper subset of any other independent set. P. Erdős, and independently, J. W. Moon and L. Moser (Israel J. Math., 3 (1965): 23–28), and R. E. Miller and D. E. Muller (IBM Res. Rep., (1960): RC-240), determined the maximum number of maximal independent sets in a graph on n vertices, as well as the extremal graphs. In this paper we maximize the number of maximal independent sets of a fixed size for all graphs of order n and determine the extremal graphs. Our result generalizes the classical result.

1 Introduction

Throughout this paper, we consider finite simple connected graphs. Let $G = (V(G), E(G)) = (V, E)$ be such a graph with vertex set V and edge set E. Below are some graph theory concepts and notation needed in this paper. Readers are suggested to refer to [1], [2] or [13] for terminologies not specified here.

An independent set (or stable set) of G is a set of pairwise nonadjacent vertices. In order for a set of vertices $U \subseteq V$ to be a maximal independent set (abbr. MIS) of G, we require the set U to (1) be independent, and (2) have no strictly super independent set W such that $U \subseteq W \subseteq V$. The set of neighbors of $v \in V$ is denoted by $N(v)$, or if necessary by $N_G(v)$.

A k-partite graph is a graph whose graph vertices can be partitioned in to k disjoint sets so that no two vertices within the same set are adjacent. A k-partite graph is said to be complete if every pair of graph vertices in the k sets are adjacent. The Turán graph $T_{n,k}$ is the complete k-partite graph with n vertices whose partite sets differ in size by at most one [1]. We also define $G_1 + G_2$ as the graph consisting of the disjoint union of two graphs G_1 and G_2. The Turán graph $T_{n,k}$ and the operation of disjoint union will be useful in the extremal graph structure described in our main theorem (Theorem 1.1).

Given G, let $i_t(G)$ be the number of independent sets of size t in G and let $i(G) = \sum_{t \geq 0} i_t(G)$ be the total number of independent sets. While there have been many extremal results on $i(G)$ and $i_t(G)$ over various families of graphs (see e.g. [4] [6] [5] [12] [16]), it makes sense to investigate parallel theories on the MIS’s, the independent sets that are not covered by bigger ones. Let $i_{\text{max}}^t(G)$ be the number of maximal independent sets of size t in G and let $i_{\text{max}}(G) = \sum_{t \geq 0} i_{\text{max}}^t(G)$ be the total number of maximal independent sets. For arbitrary graphs G on n vertices, P. Erdős (see [3]), and independently, Moon and Moser [11], and Miller and Muller [10] determined $i_{\text{max}}^t(G)$ as well as the extremal graphs.

∗School of Mathematical Sciences & LMAM, Peking University, Beijing 100871, P.R. China
csong@math.pku.edu.cn, byao@pku.edu.cn

††The authors were partially supported by NSF of China grant #11771246.
Nonetheless, studies on the number of maximal independent sets seem to be less adequate (see for instance [3, 9, 11]).

The maximal independence polynomial is defined by

\[I_{\text{max}}(G; x) := \sum_{U: U \text{ is an MIS of } G} x^{|U|}. \]

By definition, \(i_{k}^{\text{max}}(G) = [x^k] I_{\text{max}}(G; x) \), where by usual convention \([x^k] f(x)\) represents the coefficient of \(x^k \) in the polynomial or series \(f(x) \).

In this note we maximize \(i_{k}^{\text{max}}(G) \) graphs \(G \) on \(n \) vertices.

Theorem 1.1 Assume \(n = qt + r \), where \(0 \leq r < t \). For all graphs \(G \) on \(n \) vertices, we have

\[i_{k}^{\text{max}}(G) \leq q^{t-r}(q+1)^r. \] (1.1)

Furthermore, let \(H = (t-r)K_q + rK_{q+1} \), i.e. disjoint union of \(t \) cliques of the specified orders, then \(H \) is the unique extremal graph.

Remark 1.2 If \(n \) is a multiple of 3, (1.1) shows that \(i_{k}^{\text{max}}(G) \leq 3^\frac{n}{3} \), and it implies the main theorem in [11] which says that \(i^{\text{max}}(G) \leq 3^\frac{n}{3} \) when 3 divides \(n \). If \(n = 3k - 1 \), (1.1) gives that \(i_{k}^{\text{max}}(G) \leq 2 \cdot 3^{k-1} \). If \(n = 3k + 1 \), (1.1) gives that \(i^{\text{max}}(G) \leq 2^2 \cdot 3^{k-1} \) and \(i_{k}^{\text{max}}(G) \leq 2^2 \cdot 3^{k-1} \). Each case above strengthens a respective case of [11] Theorem 1. (Note that the celebrated result of [11] Theorem 1 says that each extremal graph actually has maximal independent sets of only one certain size.)

2 Proof

For completeness, we work with the complementary graph, and count cliques instead of independent sets. That is, we show that for all graphs \(G \) on \(n = qt + r \) vertices, where \(0 \leq r < t \), the number of \(t \)-maximal cliques in \(G \) is no more than \(f(n, t) := q^{t-r}(q+1)^r \). Furthermore, the Turán graph \(T_{n,t} = K_{q, \ldots, q, q+1, \ldots, q+t} \) is the unique extremal graph. We achieve this by induction on \(n + t \). Keep in mind that the proposed extremal value \(f(n, t) = q^{t-r}(q+1)^r \) strictly increases with \(n + t \).

Proof. Since the cases that \(n < t \) or \(t = 1 \) are trivial, without loss of generality, we assume that \(n \geq t \geq 2 \).

Case 1. \(r > 0 \). We start with the case that is more convenient to phrase and Case 2 will be easier to understand.

Subcase 1a. \(r > 0 \) and \(\delta(G) \geq n - q \). Let \(v_1, v_2, \ldots, v_t \) be arbitrarily selected. Note that

\[|V - \bigcap_{i=1}^{t} N(v_i)| = |\bigcup_{i=1}^{t} (V - N(v_i))| \leq \sum_{i=1}^{t} |V - N(v_i)| \leq qt < qt + r = n = |V|. \]

Hence \(\bigcap_{i=1}^{t} N(v_i) \neq \emptyset \), i.e., every \(t \) vertices in \(G \) has a common neighbor. Thus any maximal clique is larger than \(K_t \), so that \(G \) has no \(t \)-maximal cliques, implying that this subcase need not be considered in order to maximize \(i_{k}^{\text{max}}(G) \).

Subcase 1b. \(r > 0 \) and \(\delta(G) \leq n - q - 1 \). Choose a vertex \(v \) such that \(d(v) = \delta(G) \leq n - q - 1 \).

Let \(A \) be the set of \(t \)-maximal cliques in \(G \) which contains \(v \), and \(B \) be the set of \(t \)-maximal cliques in \(G \) which does not contain \(v \).

Every \(t \)-maximal clique in \(B \) is a \(t \)-maximal clique of \(G - \{v\} \). By induction hypothesis, as \(n - 1 = qt + r - 1 \), \(|B| \leq q^{t-r+1}(q+1)^{r-1} \).

To calculate \(|A| \), consider the subgraph of \(G \) induced by the neighbors of \(v \). Every \(t \)-maximal clique in \(A \) corresponds to a \((t-1)\)-maximal clique of \(G[N(v)] \). As \(|V(G[N(v)])| \leq n - q - 1 = qt + r - q - 1 = q(t-1) + r - 1 \), inductively, \(|A| \leq q^{(t-1)-(r-1)}(q+1)^{r-1} = q^{t-r}(q+1)^{r-1} \).

Therefore, the total number of \(t \)-maximal cliques in \(G \) is bounded by

\[|B| + |A| \leq q^{t-r+1}(q+1)^{r-1} + q^{t-r}(q+1)^{r-1} = q^{t-r}(q+1)^r = f(n, t). \]
Theorem 1.1. David Galvin and Yufei Zhao. The number of independent sets in a graph with small maximum degree.

David Galvin. Two problems on independent sets in graphs.

Zoltán Füredi. The number of maximal independent sets in connected graphs.

Béla Bollobás. The above equality holds if and only if the following conditions are simultaneously met.

i). $G - v$ is a t-cliques extremal graph of order $n - 1$. Inductively, this requires $G - v = T_{n-1,t} = K_{q,\ldots,q,t+1}$ with $t-r+1$ partite sets of size q and $r-1$ partite sets of size $q+1$.

ii). $d(v) = n - q - 1 = qt + r - q - 1 = q(t - r) + (q + 1)(r - 1)$ and $G[N(v)]$ is a $(t - 1)$-cliques extremal graph of order $n - q - 1$. This requires that $G[N(v)] = T_{n-q-1,t-1} = K_{q,\ldots,q,t+1}$ with $t-r$ partite sets of size q and $r-1$ partite sets of size $q+1$.

Putting i) and ii) together, clearly, the neighbors of v are precisely $t-r$ of the total $t-r+1$ partite sets of size q and $r-1$ partite sets of size $q+1$ in $G - v$. Thus $G = T_{n,t}$ is the unique extremal graph in this case.

Case 2. $r = 0$, so that $n = qt$. The case $r = 0$ is similar to Case 1, with only slight differences in the calculation.

Subcase 2a. $r = 0$ and $\delta(G) \geq n - q + 1$. For any t vertices v_1, v_2, \ldots, v_t, as

$|V - \bigcap_{i=1}^{t} N(v_i)| = |\bigcup_{i=1}^{t} (V - N(v_i))| \leq (q - 1)t < |V|,

they must have a common neighbor. Thus G has no t-maximal cliques.

Subcase 2b. $r = 0$ and $\delta(G) \leq n - q$. Choose a vertex v such that $d(v) = \delta(G) \leq n - q$.

Define A and B as in Case 1. As $n - 1 = qt - 1 = (q - 1)t + t - 1$, by similar arguments, inductively,

$|B| \leq (q - 1)^{t-1}.

On the other hand, as $|V(G[N(v)])| \leq n - q = q(t - 1)$, by induction, we have $|A| \leq q^{t-1}.

Thus the total number of t-maximal cliques in G is limited by

$|B| + |A| \leq (q - 1)^{t-1} + q^{t-1} = q^t = f(n,t).

The above extremal value is achieved if and only if the following conditions are simultaneously met.

i). $G - v$ is a t-cliques extremal graph of order $n - 1$. This means $G - v = T_{n-1,t} = K_{q,\ldots,q,t+1}$ with $t - 1$ partite sets of size q and 1 partite set of size $q - 1$.

ii). $d(v) = n - q = q(t - 1)$ and $G[N(v)]$ is a $(t - 1)$-cliques extremal graph of order $n - q$. This requires that $G[N(v)] = T_{n-q,t-1} = K_{q,\ldots,q}$ with $t - 1$ partite sets of size q.

Altogether, it is implied that $G = T_{n,t}$ is the unique extremal graph in Case 2 as well.

\[\square\]

Remark 2.1. Theorem 1.1 says that the Turán graph $T_{n,t} = K_{q,\ldots,q,t+1}$ is the unique extremal graph of the complementary scenario. That is, $T_{n,t}$ has the maximum number of maximal cliques of size t. Equivalently, $T_{n,t} = H = (t-r)K_q + rK_{q+1}$, disjoint union of t cliques of most possibly balanced sizes, is the unique extremal graph that has the maximum number of maximal independent sets of size t.

References

[1] Béla Bollobás. Modern graph theory, volume 184 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1998.

[2] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2000.

[3] Zoltán Füredi. The number of maximal independent sets in connected graphs. J. Graph Theory, 11(4):463–470, 1987.

[4] David Galvin. Two problems on independent sets in graphs. Discrete Math., 311(20):2105–2112, 2011.

[5] David Galvin and Yufei Zhao. The number of independent sets in a graph with small maximum degree. Graphs Combin., 27(2):177–186, 2011.
[6] Wenying Gan, Po-Shen Loh, and Benny Sudakov. Maximizing the number of independent sets of a fixed size. *Combin. Probab. Comput.*, 24(3):521–527, 2015.

[7] Han Hu, Toufik Mansour, and Chunwei Song. On the maximal independence polynomial of certain graph configurations. *Rocky Mountain J. Math.*, 47(7):2219–2253, 2017.

[8] Jenq-Jong Lin and Min-Jen Jou. The largest number of maximal independent sets in quasi-unicyclic graphs. *Util. Math.*, 111:85–93, 2019.

[9] Min-Sheng Lin. Counting independent sets and maximal independent sets in some subclasses of bipartite graphs. *Discrete Appl. Math.*, 251:236–244, 2018.

[10] R. E. Miller and D. E. D. E. Muller. A problem of maximum consistent subsets. *IBM Res. Rep. RC*-240, J. T. Watson Research Center, Yorktown Heights, NY, 1960.

[11] J. W. Moon and L. Moser. On cliques in graphs. *Israel J. Math.*, 3:23–28, 1965.

[12] Ashwin Sah, Mehtaab Sawhney, David Stoner, and Yufei Zhao. The number of independent sets in an irregular graph. *J. Combin. Theory Ser. B*, 138:172–195, 2019.

[13] Douglas B. West. *Introduction to graph theory*. Prentice Hall Inc., Upper Saddle River, NJ, 1996.

[14] Herbert S. Wilf. The number of maximal independent sets in a tree. *SIAM J. Algebraic Discrete Methods*, 7(1):125–130, 1986.

[15] David R. Wood. On the number of maximal independent sets in a graph. *Discrete Math. Theor. Comput. Sci.*, 13(3):17–19, 2011.

[16] Yufei Zhao. The number of independent sets in a regular graph. *Combin. Probab. Comput.*, 19(2):315–320, 2010.