Research Article

Dohoon Choi and Youngmin Lee*

Modular forms of half-integral weight on \(\Gamma_0(4) \) with few nonvanishing coefficients modulo \(\ell \)

https://doi.org/10.1515/math-2022-0512
received June 15, 2022; accepted September 21, 2022

Abstract: Let \(k \) be a nonnegative integer. Let \(K \) be a number field and \(\mathcal{O}_K \) be the ring of integers of \(K \). Let \(\ell \geq 5 \) be a prime and \(v \) be a prime ideal of \(\mathcal{O}_K \) over \(\ell \). Let \(f \) be a modular form of weight \(k + \frac{1}{2} \) on \(\Gamma_0(4) \) such that its Fourier coefficients are in \(\mathcal{O}_K \). In this article, we study sufficient conditions that if \(f \) has the form

\[
 f(z) \equiv \sum_{n=1}^{\infty} \sum_{i=1}^{t} a_i(n^2)q^{s_i n^2} \pmod{v}
\]

with square-free integers \(s_i \), then \(f \) is congruent to a linear combination of iterated derivatives of a single theta function modulo \(v \).

Keywords: Fourier coefficients of modular forms, Galois representations, modular forms of half-integral weight, theta functions

MSC 2020: 11F33, 11F80

1 **Introduction**

The Fourier coefficients of modular forms of half-integral weight are related to various objects in number theory and combinatorics such as the algebraic parts of the central critical values of modular L-functions, orders of Tate-Shafarevich groups of elliptic curves, the number of partitions of a positive integer, and so on. With a lot of application to these objects, Bruinier [1], Bruinier and Ono [2], Ono and Skinner [3], Ahlgren and Boylan [4,5], and the others studied congruence properties modulo a power of a prime for Fourier coefficients of modular forms of half-integral weight. Many of them considered modular forms of half-integral weight whose the Fourier coefficients are supported on only finitely many square classes modulo \(\ell \).

Let \(f \) be a modular form of half-integral weight on \(\Gamma_0(4N) \). Vignéras [6] proved that if the \(q \)-expansion of \(f \) has the form

\[
 f(z) = a_i(0) + \sum_{n=1}^{\infty} \sum_{i=1}^{t} a_i(n^2)q^{s_i n^2}, \quad q = e^{2\pi iz}
\]

Corresponding author: Youngmin Lee, School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea, e-mail: youngminlee@kias.re.kr

Dohoon Choi: Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea, e-mail: dohoonchoi@korea.ac.kr

Open Access. © 2022 Dohoon Choi and Youngmin Lee, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
DE GROOTER

Modular forms of half-integral weight on $\Gamma_0(4)$ with few nonvanishing coefficients modulo ℓ

1321

with a positive integer t and square-free integers s_i, then f is a linear combination of single variable theta functions (a different proof of this result was given by Bruinier [1]). Many of the aforementioned results can be considered as positive characteristic extensions of Vignéras’ result on classification of modular forms of half-integral weight such that their nonvanishing Fourier coefficients lie in only finitely many square classes. Especially, Ahlgren et al. [7] obtained an explicit mod ℓ analog of the result of Vignéras for modular forms of half-integral weight on $\Gamma_0(4)$ satisfying the Kohnen-plus condition.

Let K be a number field and O_K be the ring of integers of K. Let $M_{k,1/2}(\Gamma_0(4); O_K)$ (resp. $S_{k,1/2}(\Gamma_0(4); O_K)$) be the space of modular forms (resp. cusp forms) of weight $k + 1/2$ on $\Gamma_0(4)$ such that their Fourier coefficients are in O_K and $S_{k,1/2}(\Gamma_0(4); O_K)$ be the subspace of $S_{k,1/2}(\Gamma_0(4); O_K)$ consisting of $f \in S_{k,1/2}(\Gamma_0(4); O_K)$ satisfying the Kohnen-plus condition.

Let $\ell \geq 5$ be a prime and v be a prime ideal of O_K over ℓ. For $f \in S_{k,1/2}(\Gamma_0(4); O_K)$, Ahlgren et al. [7] proved that if

$$k + \frac{1}{2} < \ell \left(\ell + \frac{3}{2} \right)$$

(1.1)

and

$$f(z) \equiv \sum_{n=1}^{\infty} \sum_{i=1}^{t} a_i(s_n m^2) q^{s_n m^2} \pmod{v}$$

(1.2)

with square-free integers s_i, then k is even and

$$f(z) \equiv a_1(1) \sum_{n=1}^{\infty} n^k q^{s_n} \pmod{v}.$$

In this article, we study sufficient conditions that if f has the form (1.2), then f is congruent to a linear combination of iterated derivatives of a single theta function modulo v.

For a positive number ε, let P_ε be the set of primes ℓ such that for every $f \in S_{k,1/2}(\Gamma_0(4); O_K)$ with $k + \frac{1}{2} < \ell (\log \ell)^{3-\varepsilon}$, if

$$f(z) \equiv \sum_{n=1}^{\infty} \sum_{i=1}^{t} a_i(s_n m^2) q^{s_n m^2} \pmod{v}$$

with square-free integers s_i, then

$$f(z) \equiv a_1(1) \left(\sum_{n=1}^{\infty} n^k q^{s_n} \right) + a_\ell(1) \left(\sum_{n=1}^{\infty} n^{k+1/2} q^{n^m} \right) \pmod{v}.$$

The following theorem proves that the portion of P_ε in the set of primes is one.

Theorem 1.1. For a positive integer X, there is an absolute constant C such that

$$\# \{ \ell : \ell \notin P_\varepsilon \text{ and } \ell \leq X \} \leq C_0 \frac{X}{(\log X)^{1+\varepsilon}} \left(1 + C \frac{\log \log X}{\log X} \right),$$

where $C_0 := \frac{2^{2/3} \pi}{3} \prod_{P \geq 2} \frac{P^3}{P^2 - 1}$.

For a nonnegative real number r, we define an operator Θ^r on $C[[q]]$ by

$$\Theta^r \left(\sum_{n=0}^{\infty} a(n) q^n \right) = \begin{cases} \sum_{n=0}^{\infty} n^r a(n) q^n & \text{if } r \in \mathbb{Z}_{>0}, \\ 0 & \text{elsewhere.} \end{cases}$$

For convenience, we let $\Theta = \Theta^1$. As in Theorem 1.1, the previous results on modular forms of half-integral weight having the form (1.2) such as $[1,2,4,5,7]$ and so on imply that in many cases, if f has the form (1.2),
then $\Theta(f)$ is congruent to a linear combination of iterated derivatives of a single theta function modulo v. These lead us to the following conjecture on modular forms f of half-integral weight having the form (1.2).

Conjecture 1.2. Let K be a number field and O_K be the ring of integers of K. Let $\ell \geq 5$ be a prime and v be a prime ideal of O_K over ℓ. Assume that $f \in S_{k,\frac{1}{2}}(\Gamma_0(4); O_K)$ has the form

$$\Theta(f)(z) \equiv \sum_{n=1}^{\infty} s_n^2 a_n(s_n^2)q^{sn^2} \pmod{v}$$

with a square-free integer s, then

$$\Theta(f)(z) \equiv \frac{1}{2} a_q(1) \left(\sum_{n \in \mathbb{Z} \bmod{\ell}} n^{k+2} q^{n^2} \right) \pmod{v}.$$

Assume that ℓ is a prime and m is a nonnegative integer. Let $\eta(m)$ be the least positive integer such that

$$\eta(m) \equiv m \pmod{\ell - 1}.$$

Let $a(\ell, m)$ be the smallest nonnegative integer i such that

$$m + \frac{1}{2} < \ell^2 \left(\eta(m) + \frac{\ell + 1}{2} + \frac{1}{2} \right),$$

and $\beta(\ell, m)$ be the smallest nonnegative integer i such that

$$m + \frac{1}{2} < \ell^{2i+1} \left(\eta(m + \frac{\ell - 1}{2}) + \frac{\ell + 1}{2} + \frac{1}{2} \right).$$

Let

$$T(z) = 1 + 2 \sum_{n=1}^{\infty} q^{n^2}.$$

For convenience, let

$$\sum_{n=a}^{b} a_n = \begin{cases} \sum_{n=a}^{b} a_n & \text{if } a \leq b, \\ 0 & \text{if } a > b. \end{cases}$$

By using Conjecture 1.2, we have an explicit formula for modular forms of half-integral weight having the form (1.2).

Theorem 1.3. Let K, O_K, ℓ, v be as in Conjecture 1.2. Assume that $f \in M_{k,\frac{1}{2}}(\Gamma_0(4); O_K)$. Conjecture 1.2 implies that if f has the form

$$f(z) \equiv a_q(0) + \sum_{n=1}^{\infty} \sum_{i=1}^{l} a_{n+i}(s_n q^i) q^{sn^2} \pmod{v}$$

(1.3)

with square-free integers s_i, then the following statements are true.

1. If $\eta(k) \neq \ell - 1$ and $\eta(k) \neq \frac{\ell - 1}{2}$, then

$$f(z) \equiv \frac{1}{2} \sum_{l=0}^{a(k, l) - \ell'} a_l(T^k(z)) \Theta(k, 2^l) + \frac{1}{2} \sum_{l=0}^{\beta(k, l) - \ell'} a_l(T^{2l+1}) \Theta(2k+2l+1) \Theta(T(z)) q^{2l+1} \pmod{v}.$$

2. If $\eta(k) = \ell - 1$, then

$$f(z) \equiv a_q(0) T(z) + \frac{1}{2} \sum_{l=0}^{a(k, l) - \ell'} a_l(T^k(z)) \Theta(k, 2^l) + \frac{1}{2} \sum_{l=0}^{\beta(k, l) - \ell'} a_l(T^{2l+1}) \Theta(2k+2l+1) \Theta(T(z)) q^{2l+1} \pmod{v}.$$
(3) If \(\eta(k) = \frac{\ell - 1}{2} \), then
\[
f(z) = a_0(T)T(tz) + \frac{1}{2} \sum_{i=0}^{a(t,k)-1} a_i(T^2)O^{k/2}(T)(T^2z) + \frac{1}{2} \sum_{i=0}^{\beta(t,k)-1} (a_i(T^{2i+1}) - 2a_i(0))\Theta^{(2k+1)(i+1)}(T)(T^{2i+1}z) \pmod{v}.
\]

To give numerical evidence for Conjecture 1.2, we consider a basis of the space of modular forms of weight \(k + \frac{1}{2} \) on \(\Gamma_0(4) \). Let \(F_i(z) = \sum_{n=0}^{\infty} \sigma(2n+1)q^{2n+1} \) be the modular form of weight 2 on \(\Gamma_0(4) \), where \(\sigma(n) \) is the sum of positive divisors of \(n \). Then
\[
\{F_i^jT^{2k-1-i}j\}_{0 \leq j \leq \lfloor \frac{1}{2} \rfloor}
\]
is a \(\mathbb{C} \)-basis of the space of modular forms of weight \(k + \frac{1}{2} \) on \(\Gamma_0(4) \). Let \(A_{k,m} \) be an \(m \times \left(\left\lfloor \frac{k}{2} \right\rfloor + 1 \right) \) matrix such that the \((i,j)\)-entry of \(A_{k,m} \) is the \((i-1)\)th Fourier coefficient of \(F_i^{j-1}T^{2k-1-i}j \) modulo \(\ell \). Let \(B_{k,m} \) be a submatrix of \(A_{k,m} \) obtained by removing \(n^2 + 1 \)th rows for all nonnegative integers \(n \) with \((\ell, n) = 1\). Let \(\text{Null}(B_{k,m}) \) be the null space of \(B_{k,m} \). With this notation, we give the following conjecture.

Conjecture 1.4. Let \(\ell \geq 5 \) be a prime. Let 1, be the characteristic function of the set of positive real numbers. Then, for a positive even integer \(k \), we have
\[
\lim_{m \to \infty} \dim \text{Null}(B_{k,m}) = \sigma_{1}(\ell, k).
\]

By comparing the intersection of the null spaces of \(B_{k,m} \) and the space of mod \(v \) modular forms of weight \(k + \frac{1}{2} \) on \(\Gamma_0(4) \) having the form
\[
f(z) = \sum_{n \equiv 0 \mod{\ell}} \sigma(n^2)q^{n^2} \pmod{v},
\]
we have the following theorem.

Theorem 1.5. Conjecture 1.2 is equivalent to Conjecture 1.4.

Let us note that \(\text{Null}(B_{k,m}) \) is stable for sufficiently large \(m \). In the proof of Theorem 1.5, we prove that \(\dim \text{Null}(B_{k,m}) \) is larger than or equal to \(\sigma_{1}(\ell, k) \) for all positive integers \(m \). Hence, if there is a positive integer \(m \) such that \(\dim \text{Null}(B_{k,m}) = \sigma_{1}(\ell, k) \), then Conjecture 1.2 is true. To compute \(\dim \text{Null}(B_{k,m}) \), we consider the row echelon form of \(B_{k,m} \). We use C++ in this process. Then we have the following theorem.

Theorem 1.6. Assume that \(k \leq 1,000 \), or that \(\ell \in \{5, 7, 11, 13, 17, 19\} \) and \(k \leq 10,000 \). Then, Conjecture 1.2 is true.

The remainder of this article is organized as follows. In Section 2, we review some properties of \(f \) having the form (1.3) and the filtration for modular forms. In Section 3, we prove Theorems 1.1, 1.3, 1.5, and 1.6.

2 Preliminaries

In this section, we review some notions and properties of the filtration for modular forms, and then we introduce some properties about modular forms of half-integral weight on \(\Gamma_0(4) \) such that their Fourier coefficients are supported on finitely many square classes modulo a prime \(\ell \). For further details, see [8].

Throughout the rest of this article, we fix the following notation. For a congruence subgroup \(\Gamma \) and \(w \in \frac{1}{2} \mathbb{Z} \), let \(M_w(\Gamma) \) (resp. \(S_w(\Gamma) \)) be the space of modular forms (resp. cusp forms) of weight \(w \) on \(\Gamma \).
For a Dirichlet character \(\chi \) modulo \(N \), let \(M_\omega(\Gamma_0(N), \chi) \) (resp. \(S_\omega(\Gamma_0(N), \chi) \)) be the space of modular forms (resp. cusp forms) of weight \(w \) on \(\Gamma_0(N) \) with character \(\chi \).

Let \(k \) be a nonnegative integer and \(\ell \geq 5 \) be a prime. Let \(K \) be a number field and \(O_K \) be the ring of integers of \(K \). Let \(\nu \) be a prime ideal of \(O_K \) over \(\ell \). Let \(M_{k, \nu}(\Gamma_0(4N); O_K) \) (resp. \(S_{k, \nu}(\Gamma_0(4N); O_K) \)) be the space of modular forms (resp. cusp forms) of weight \(k + \frac{1}{2} \) on \(\Gamma_0(4N) \) such that their Fourier coefficients are in \(O_K \) and \(S_{k, \nu}(\Gamma_0(4); O_K) \) be the subspace of \(S_{k, \nu}(\Gamma_0(4); O_K) \) consisting of \(f \in S_{k, \nu}(\Gamma_0(4); O_K) \) satisfying the Kohnen-plus condition.

Now, we review the basic notions and properties about the Shimura correspondence. Assume that \(f \) is a cusp form of weight \(k + \frac{1}{2} \) on \(\Gamma_0(4) \). For a square-free integer \(t \), we define \(A_t(n) \) by

\[
\sum_{n=1}^{\infty} A_t(n) \frac{n^s}{n^s} = \sum_{n=1}^{\infty} \left(\frac{(-1)^n}{n} \right) \frac{1}{n^{s-k+1}} \sum_{n=1}^{\infty} a_{\nu^s}(f) \frac{n^s}{n^s},
\]

Then, the Shimura lift \(\text{Sh}_t(f) \) of \(f \) is defined by

\[
\text{Sh}_t(f)(x) = \sum_{n=1}^{\infty} A_t(n)q^n.
\]

Note that \(\text{Sh}_t(f) \in S_{2k}(\Gamma_0(2)) \). In particular, if \(f \in S_{k, \nu}(\Gamma_0(4)) \), then \(\text{Sh}_t(f) \in S_{2k}(\Gamma_0(1)) \). For each odd prime \(p \) with \(p \mid t \), we have

\[
\text{Sh}_t(f|T_{p^t,k} \frac{1}{2}) = \text{Sh}_t(f)|T_{p,2k},
\]

where \(T_{n,w} \) denotes the \(n \)th Hecke operator on the space of modular forms of weight \(w \). For each prime \(\ell \), operators \(U_\ell \) and \(V_\ell \) on formal power series are defined by

\[
\left(\sum_{n=0}^{\infty} a(n)q^n \right) U_\ell = \sum_{n=0}^{\infty} a(\ell n)q^n
\]

and

\[
\left(\sum_{n=0}^{\infty} a(n)q^n \right) V_\ell = \sum_{n=0}^{\infty} a(n)q^{\ell n}.
\]

2.1 Filtration for modular forms of half integral weight modulo a prime \(\ell \)

The theory of filtration for modular forms of integral weight was developed by Serre [9], Swinnerton-Dyer [10], Katz [11], and Gross [12]. From this, the theory of filtration for modular forms of half-integral weight on \(\Gamma_0(4) \) was studied. In this section, we review some properties of filtration for modular forms of half-integral weight on \(\Gamma_0(4) \). For the details, we refer to [13, Section 2].

We say that \(\sum_{n=0}^{\infty} a(n)q^n \) is congruent to \(\sum_{n=0}^{\infty} b(n)q^n \) modulo \(\nu \), i.e.,

\[
\sum_{n=0}^{\infty} a(n)q^n \equiv \sum_{n=0}^{\infty} b(n)q^n \pmod{\nu},
\]

if \(a(n) \equiv b(n) \pmod{\nu} \) for all nonnegative integers \(n \). For \(f \in M_{k, \nu}(\Gamma_0(4); O_K) \), we define a filtration \(\omega(f) \) of \(f \) modulo \(\nu \) by

\[
\omega(f) = \inf \left\{ k' + \frac{1}{2} : \text{there is } f' \in M_{k', \nu}(\Gamma_0(4); O_K) \text{ such that } f' \equiv f \pmod{\nu} \right\}.
\]

For convenience, if \(f \equiv 0 \pmod{\nu} \), then let \(\omega(f) = -\infty \). We summarize the properties of \(\omega(f) \) in the following lemma.
Lemma 2.1. Let \(f \in \mathbb{M}_{k + \frac{1}{2}}(\Gamma_0(4); \mathcal{O}_\ell) \). Then, the following statements are true.

1. \(k \equiv \omega(f) - \frac{1}{2} \) (mod \(\ell - 1 \)).
2. \(a(f) = \ell \cdot a(f) \).
3. There is a nonnegative integer \(k' \) such that

\[
k' \equiv k + \frac{\ell - 1}{2} \quad \text{(mod } \ell - 1) ,
\]

and there is \(g \in \mathbb{M}_{k + \frac{1}{2}}(\Gamma_0(4); \mathcal{O}_\ell) \) such that \(g \equiv f|U_\ell \) (mod \(\mathcal{O}_\ell \)). Moreover, if \(f(z) \equiv \sum_{n = 0}^{\infty} a_n(n)q^n \) (mod \(\mathcal{O}_\ell \)), then there is a nonnegative integer \(k' \) such that

\[
k' \equiv k + \frac{\ell - 1}{2} \text{ (mod } \ell - 1) \text{ and } k' + \frac{1}{2} \leq \frac{1}{\ell} \left(k + \frac{1}{2} \right) ,
\]

and there is \(g \in \mathbb{M}_{k + \frac{1}{2}}(\Gamma_0(4); \mathcal{O}_\ell) \) such that \(g \equiv f|U_\ell \) (mod \(\mathcal{O}_\ell \)).

4. There is \(h \in S_{k + \frac{1}{2}}(\Gamma_0(4)) \) such that \(h \equiv \Theta(f) \) (mod \(\mathcal{O}_\ell \)). In particular, if \(f \in S_{k + \frac{1}{2}}^+(\Gamma_0(4)) \), then \(h \in S_{k + \frac{1}{2}}(\Gamma_0(4)) \).

Proof. The proofs of (1) and (2) are in [13, Proposition 2.2]. The proof of (3) is obtained by combining [7, Lemma 4.2] and [13, Proposition 2.2]. To prove (4), let

\[
h = \left(k + \frac{1}{2} \right) \Theta(E_{\ell - 1}) f - (\ell - 1) E_{\ell - 1} \Theta(f),
\]

where \(E_{\ell - 1} \) denotes the Eisenstein series of weight \(\ell - 1 \). Since \(E_{\ell - 1} \equiv 1 \) (mod \(\mathcal{O}_\ell \)), we have \(h \equiv \Theta(f) \) (mod \(\mathcal{O}_\ell \)). By [14, Corollary 7.2], we obtain \(h \in S_{k + \frac{1}{2}}(\Gamma_0(4)) \). When \(f \) satisfies the Kohnen-plus condition, the proof of (4) is in [7, Lemma 4.1].

2.2 Modular forms of half-integral weight such that their Fourier coefficients are supported on finitely many square classes modulo \(\ell \)

In this section, we introduce some properties of modular forms of half-integral weight on \(\Gamma_0(4) \) such that their Fourier coefficients are supported on finitely many square classes modulo \(\ell \).

Ahlgren and Boylan [4] obtained the necessary conditions for the weight of \(f \in \mathbb{M}_{k + \frac{1}{2}}(\Gamma_0(4)) \) such that their Fourier coefficients are supported on finitely many square classes modulo \(\ell \) by using the theory of Galois representations. This was reproved in [15] by using only the theory of filtration for modular forms of integral weight. The Choi and Kilbourn [16] improved the necessary conditions for the weight by using only the theory of filtration for modular forms of integral weight. We review the results [4,16] in the following theorem.

Theorem 2.2. Let \(N \) be a positive integer and \(\ell \geq 5 \) be a prime with \((\ell, N) = 1 \). Assume that \(f(z) \in \mathbb{M}_{k + \frac{1}{2}}(\Gamma_0(4N)) \cap \mathcal{O}_\ell[q] \) has the form

\[
f(z) \equiv a_0(0) + \sum_{n=1}^{\infty} \sum_{s(n^2) = 1} a_s(n^2) q^{sn^2} \equiv a_0(0) + \sum_{n=1}^{\infty} \sum_{s(n^2) = 1} a_s(n^2) q^{sn^2} \quad \text{(mod } \mathcal{O}_\ell \),
\]

with square-free integers \(s_i \). Let \(\overline{\ell} \) and \(\ell_k \) be nonnegative integers, which satisfy \(k = (\ell - 1)\ell_k + \overline{\ell} \) and \(\ell_k < \ell - 1 \). Then, the following statements are true.

1. If \(\ell \mid n_i \) for some \(i \), then

\[
\overline{\ell} \leq 2\ell_k + 1.
\]
(2) If $\ell | n_i$ for all i and $\overline{k} \leq \frac{\ell - 3}{2}$, then
\[\overline{k} \leq \ell - \frac{1}{2}. \]

(3) If $\ell | n_i$ for all i and $\overline{k} > \frac{\ell - 3}{2}$, then
\[\overline{k} \leq \ell + \frac{1}{2}. \]

Bruinier and Ono [2, Theorem 3.1] proved the following theorem by using an argument in [1].

Theorem 2.3. Let N be a positive integer and $\ell \geq 5$ be a prime with $(\ell, N) = 1$. Let χ be a real Dirichlet character modulo $4N$ and $f(z) \in S_{k, \frac{1}{2}}(\Gamma_0(4N), \chi) \cap O_K[[q]]$. For each prime p with $(p, 4N\ell) = 1$, if there exists $\varepsilon_p \in \{\pm 1\}$ such that
\[f(z) \equiv \sum_{n=1}^{\infty} a_n(n)q^n \pmod{\nu}, \]
then
\[(p - 1)f|T_{p^k, k+\frac{1}{2}} \equiv \varepsilon_p \left(\frac{(-1)^k}{p} \right) \chi(p)(p^k + p^{k-1})(p - 1)f \pmod{\nu}. \]

Ahlgren et al. [7] proved that if $f \in S_{k, \frac{1}{2}}(\Gamma_0(4); O_K)$ and the Fourier coefficients of f are supported on finitely many square classes modulo ν, then f has the form
\[f(z) \equiv \sum_{n=1}^{\infty} a_f(n^2)q^{n^2} + \sum_{n=1}^{\infty} a_f(\ell n^2)q^{\ell n^2} \pmod{\nu}. \]
By using the theory of Galois representations, we extend the result [7] to cusp forms of half-integral weight on $\Gamma_0(4)$ without the Kohnen-plus condition.

Proposition 2.4. Assume that $f \in S_{k, \frac{1}{2}}(\Gamma_0(4); O_K)$ has the form
\[f(z) \equiv \sum_{n=1}^{\infty} \sum_{i=1}^{f} a_f(s_i n^2)q^{s_i n^2} \pmod{\nu} \quad (2.1) \]
with square-free integers s_i. Then, the following statements are true.

(1) If $2 | k$ and $\ell \equiv 1 \pmod{4}$, then
\[f(z) \equiv \sum_{n=1}^{\infty} a_f(n^2)q^{n^2} + \sum_{n=1}^{\infty} a_f(\ell n^2)q^{\ell n^2} \pmod{\nu}. \]

(2) If $2 | k$ and $\ell \equiv 3 \pmod{4}$, then
\[f(z) \equiv \sum_{n=1}^{\infty} a_f(n^2)q^{n^2} \pmod{\nu}. \]

(3) If $2 | k$ and $\ell \equiv 3 \pmod{4}$, then
\[f(z) \equiv \sum_{n=1}^{\infty} a_f(\ell n^2)q^{\ell n^2} \pmod{\nu}. \]

(4) If $2 | k$ and $\ell \equiv 1 \pmod{4}$, then
\[f(z) \equiv 0 \pmod{\nu}. \]
Proof. Assume that for each $i \in \{1, \ldots, t\}$, there is a positive integer n_i such that $a_i(s_i n_i^2) \neq 0 \mod v$. Following the proof of Lemma 4.1 in [4], there exist distinct odd primes p_i, \ldots, p_r, each relatively to $n_i \ell$, and a modular form $f_i \in S_k, \ell \Gamma_0(\prod_{j \neq i} p_j^{e_j}); O_k)$ such that

$$f_i(z) = \sum_{n=1}^{\infty} a_i(s_i n^2) q^{n^2} \equiv 0 \mod v.$$

By Theorem 2.3, for each prime p with $p|2s_i \ell \prod_{j \neq i} p_j$ and $p \neq 1 \mod \ell$, we have

$$f_i|T_p^{k-1}f_i = \left(\frac{(-1)^k s_i}{p}\right)(p^k + p^{k-1})f_i \mod v.$$

Since $S_2(\Gamma_0(4)) = S_2(\Gamma_0(4)) = \{0\}$, we may assume that $k \geq 2$. Let $f_i \in S_{2k}(\Gamma_0(2 \prod_{j \neq i} p_j^{e_j}))$ be the Shimura lift of f_i. Since the Shimura correspondence commutes with the Hecke operators, for each prime p with $p|2s_i \ell \prod_{j \neq i} p_j$ and $p \neq 1 \mod \ell$, we obtain

$$f_i|T_p^{2k} = \left(\frac{(-1)^k s_i}{p}\right)(p^k + p^{k-1})f_i \mod v.$$

Then, there is an integer N_i such that $N_i|2 \prod_{j \neq i} p_j^{e_j}$, and there is a newform $G_i \in S_{2k}(\Gamma_0(N_i))$ such that for each prime p with $p|2s_i \ell \prod_{j \neq i} p_j$ and $p \neq 1 \mod \ell$, we have

$$\lambda_i(p) = \left(\frac{(-1)^k s_i}{p}\right)(p^k + p^{k-1}) \mod v.$$

Here, $\lambda_i(p)$ denotes the pth Hecke eigenvalue of G_i. Let $\mathbb{F}_v = O_v/v$. Note that there is a semi-simple Galois representation

$$\rho_i : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{F}_v),$$

such that for each prime p with $p|N_i \ell$,

$$\text{tr}(\rho_i(\text{Frob}_p)) = \lambda_i(p) \mod v \quad \text{and} \quad \det(\rho_i(\text{Frob}_p)) = p^{2k-1} \mod v,$$

where Frob_p denotes any Frobenius element at p. Let $\chi_i : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{F}_v^*$ be the mod-ℓ cyclotomic character. Following the argument of the proof of [5, Proposition 4.3], we have

$$\rho_i \equiv \begin{cases} \left(\begin{array}{cc} \left(\frac{-1)^k s_i}{\ell}\right) \chi_i^k & 0 \\ 0 & \left(\frac{-1)^k s_i}{\ell}\right) \chi_i^{k-1} \end{array}\right) & \text{if } \ell | s_i, \\ \left(\begin{array}{cc} \left(\frac{-1)^k s_i}{\ell}\right) \chi_i^k \cdot \frac{\ell-1}{2} & 0 \\ 0 & \left(\frac{-1)^k s_i}{\ell}\right) \chi_i^{k-1} \cdot \frac{\ell-1}{2} \end{array}\right) & \text{if } \ell | s_i, \end{cases} \quad (2.2)$$

where $\ell s_i' = s_i$.

By the result of Carayol [17], the conductor of ρ_i divides N_i. By (2.2), we obtain that if $\ell | s_i$, then s_i^2 divides the conductor of ρ_i, and if $\ell | s_i$, then $(s_i')^2$ divides the conductor of ρ_i. Since $N_i|2 \prod_{j \neq i} p_j^{e_j}$ and $\gcd(s_i, \prod_{j \neq i} p_j) = 1$, we have $s_i \in \{1, \ell\}$. Moreover, the conductor of ρ_i is not divided by 4. Therefore, we conclude that if k is odd, then $s_i \neq 1$ and if $k + \frac{\ell-1}{2}$ is odd, then $s_i \neq \ell$.

We extend Proposition 2.4 to general modular forms of half-integral weight including noncusp forms in the following proposition.
Proposition 2.5. Assume that \(f \in M_{k+\frac{1}{2}}(\Gamma_0(4); O_K) \) has the form
\[
f(z) \equiv a_f(0) + \sum_{n=1}^{\infty} \sum_{i=1}^{l} a_f(s_i n^2)q^{bn^2} \pmod{\nu}
\]
with square-free integers \(s_i \). Then,
\[
f(z) \equiv a_f(0) + \sum_{n=1}^{\infty} a_f(n^2)q^{n^2} + \sum_{n=1}^{\infty} a_f(tn^2)q^{tn^2} \pmod{\nu}.
\]

Proof. Without loss of generality, we assume that there is a positive integer \(n \) such that \(a_f(s_i n^2) \neq 0 \) (mod \(\nu \)). Let \(a \) be the exponent of \(\ell \) in \(s_i n^2 \). Then, there is a unique square-free integer \(s'_i \) such that \(s'_i n^2 = \ell^a s_i' m_i^2 \) for some positive integer \(m_i \). By Lemma 2.1 (3), there is an integer \(k' \) and a modular form \(g \in M_{k+\frac{1}{2}}(\Gamma_0(4)) \) such that \(g \equiv f|U_{k'} \pmod{\nu} \). By Lemma 2.1 (4), there is \(h \in S_{k+\ell+\frac{1}{2}}(\Gamma_0(4)) \) such that \(h \equiv \Theta(g) \pmod{\nu} \). Since \(a_f(s_i n^2) \neq 0 \) (mod \(\nu \)), we have \(a_h(s_i' m_i^2) \neq 0 \) (mod \(\nu \)) and then \(h \) has the form (2.1). Then, \(s'_i = 1 \) by Proposition 2.5. This implies that \(s_i \in \{1, \ell\} \). Therefore, Proposition 2.5 is proved.

Combining Theorem 2.2 and Proposition 2.5, we obtain an explicit formula of \(f \in M_{k+\frac{1}{2}}(\Gamma_0(4)) \) having the form (2.3) when \(k < \ell - 1 \).

Lemma 2.6. Assume that \(f \in M_{k+\frac{1}{2}}(\Gamma_0(4); O_K) \) has the form (2.3) and \(f \not\equiv 0 \pmod{\nu} \). If \(k < \ell - 1 \), then \(k \in \{0, \frac{\ell-1}{2}\} \). Moreover,
\[
f(z) \equiv a_f(0) \left(1 + 2 \sum_{n=1}^{\infty} q^n\right) \pmod{\nu} \text{ if } k = 0
\]
and
\[
f(z) \equiv a_f(0) \left(1 + 2 \sum_{n=1}^{\infty} q^{tn^2}\right) \pmod{\nu} \text{ if } k = \frac{\ell - 1}{2}.
\]

Proof. We assume that \(k < \ell - 1 \). By Theorem 2.2, we have \(k \in \{0, 1, \frac{\ell-1}{2}\} \). Note that \(M_{\frac{1}{2}}(\Gamma_0(4)) \) is generated by \(T \). Thus, when \(k = 0 \), we obtain that \(f \) is a constant multiple of \(T \). If \(f \) has the form (2.3), then \(a_f(2) \equiv 0 \pmod{\nu} \) by Proposition 2.5. Note that \(M_{\frac{1}{2}}(\Gamma_0(4)) \) is generated by \(T^3 \) and \(a_f(2) = 3 \). Thus, when \(k = 1 \), we have \(f \equiv 0 \pmod{\nu} \). When \(k = \frac{\ell-1}{2} \), we have by Theorem 2.2
\[
f(z) \equiv \sum_{n=0}^{\infty} a_f(tn)q^n \pmod{\nu}.
\]
By Lemma 2.1 (3), there is \(g \in M_{\frac{1}{2}}(\Gamma_0(4)) \) such that \(g \equiv f|U_k \pmod{\nu} \). Since \(g \) is a constant multiple of \(T \), \(f \) is congruent to a constant multiple of \(T|V_k \pmod{\nu} \).

3 Proof of Theorems

In this section, we prove Theorems 1.1, 1.3, 1.5, and 1.6. First, we prove Theorem 1.3.

Proof of Theorem 1.3. We fix a prime \(\ell \geq 5 \). We prove Theorem 1.3 by induction on \(k \). When \(k < \ell - 1 \), Theorem 1.3 is true by Lemma 2.6. Thus, we assume that Theorem 1.3 is true when \(k < k_0 \) with a fixed positive integer \(k_0 \), where \(k_0 \) is a positive integer larger than \(\ell - 1 \).

To prove Theorem 1.3, it is enough to show that Theorem 1.3 is true when \(k = k_0 \) by induction on \(k \). Assume that \(f \in M_{k_0+\frac{1}{2}}(\Gamma_0(4); O_K) \) has the form (1.3). Then by Lemma 2.5, \(f \) has the form
\[f(z) = a_0(0) + \sum_{n=1}^{\infty} a_n(n^2)q^{n^2} + \sum_{n=1}^{\infty} a_{\ell n^2}(\ell n^2)q^{\ell n^2} \pmod{\nu}, \]

and

\[\Theta^{(t-1)/2}(f)(z) = \frac{1}{2} \left(\sum_{n \in \mathbb{Z}} a_n(n^2)q^{n^2} \right) \pmod{\nu}. \]

By Lemma 2.1 (4), there is \(g_0 \in \mathcal{S}_{k_0+\frac{1}{2}}(\Gamma_0(4)) \) such that

\[g_0 \equiv \Theta^{(t-1)/2}(f) \pmod{\nu}. \]

Let \(k_1 = \text{max}\left(k_0 + \frac{1}{2}, \omega(g_0) \right) - \frac{1}{2} \). Then, there is \(g_1 \in M_{k_1+\frac{1}{2}}(\Gamma_0(4); \mathcal{O}_K) \) such that

\[g_1(z) \equiv (f - \Theta^{(t-1)/2}(f))(z) \equiv a_0(0) + \sum_{n=1}^{\infty} a_n(\ell n^2)q^{n^2} + \sum_{n=1}^{\infty} a_{\ell n^2}(\ell^2 n^2)q^{\ell n^2} \pmod{\nu}. \]

Let \(k_2 \) be the largest integer satisfying

\[k_2 + \frac{1}{2} \leq \frac{1}{\ell} \left(k_1 + \frac{1}{2} \right) \quad \text{and} \quad k_2 \equiv \frac{\ell - 1}{2} + k_0 \pmod{\ell - 1}. \]

(3.1)

By Lemma 2.1 (3), there is \(g_2 \in M_{k_2+\frac{1}{2}}(\Gamma_0(4); \mathcal{O}_K) \) such that

\[g_2(z) \equiv g_1|U(z) \equiv a_0(0) + \sum_{n=1}^{\infty} a_n(\ell n^2)q^{n^2} + \sum_{n=1}^{\infty} a_{\ell n^2}(\ell^2 n^2)q^{\ell n^2} \pmod{\nu}. \]

Since \(k_0 > \frac{\ell}{2} \), we have

\[k_0 + 1 < \frac{1}{\ell} \left(k_0 + \frac{1}{2} \right) \leq \frac{1}{\ell} \left(k_0 + \frac{\ell^2}{2} \right) < k_0 + \frac{1}{2}. \]

For a nonnegative integer \(k \), we define a subset \(\mathcal{B}_k \) of \(M_{k+\frac{1}{2}}(\Gamma_0(4)) \) by

\[\mathcal{B}_k = \begin{cases} \{ \Theta^{k/2}(V_{\ell^2}) \}_{0 \leq i \leq \text{att}(k, \ell)} \cup \{ \Theta^{(2k+t-1)/4}(V_{\ell^2}) \}_{0 \leq i \leq \text{att}(k, \ell)} \cup \{ T \} & \text{if } \eta(k) = \ell - 1, \\ \{ \Theta^{k/2}(V_{\ell^2}) \}_{0 \leq i \leq \text{att}(k, \ell)} \cup \{ \Theta^{(2k+t-1)/4}(V_{\ell^2}) \}_{0 \leq i \leq \text{att}(k, \ell)} \cup \{ T | V_i \} & \text{if } \eta(k) = \frac{\ell - 1}{2}, \\ \{ \Theta^{k/2}(V_{\ell^2}) \}_{0 \leq i \leq \text{att}(k, \ell)} \cup \{ \Theta^{(2k+t-1)/4}(V_{\ell^2}) \}_{0 \leq i \leq \text{att}(k, \ell)} \cup \{ T | V_i \} & \text{otherwise.} \end{cases} \]

To prove Theorem 1.3, it is enough to show that if \(f \in M_{k_0+\frac{1}{2}}(\Gamma_0(4); \mathcal{O}_K) \) has the form (1.3), then \(f \) is congruent to a linear combination of \(\mathcal{B}_{k_0} \) modulo \(\nu \).

By Proposition 2.4, if \(k_0 \) is odd, then \(g_0 \equiv 0 \pmod{\nu} \). Combining the assumption that Conjecture 1.2 is true, we have

\[g_0 \equiv \frac{a_{\ell}(1)}{2} \Theta^{k_0/2}(T) \pmod{\nu}. \]

Since \(k_2 \equiv k_0 + \frac{\ell - 1}{2} \pmod{\ell - 1} \), it follows that \(\Theta^{k_2/2}(T) \equiv \Theta^{(2k_2+t-1)/4}(T) \pmod{\nu} \). By the induction hypothesis, \(g_2 \) is congruent to a linear combination of \(\mathcal{B}_{k_2} \). Since

\[f \equiv (f - \Theta^{(t-1)/2}(f)) + \Theta^{(t-1)/2}(f) \equiv g_1 | V_i + g_0 \pmod{\nu}, \]

we deduce that \(f \) is congruent to a linear combination of

\[\begin{cases} \{ \Theta^{k/2}(V_{\ell^2}) \}_{0 \leq i \leq \text{att}(k, \ell)} \cup \{ \Theta^{(2k+t-1)/4}(V_{\ell^2}) \}_{0 \leq i \leq \text{att}(k, \ell)+1} \cup \{ T | V_i \} & \text{if } \eta(k) = \ell - 1, \\ \{ \Theta^{k/2}(V_{\ell^2}) \}_{0 \leq i \leq \text{att}(k, \ell)} \cup \{ \Theta^{(2k+t-1)/4}(V_{\ell^2}) \}_{0 \leq i \leq \text{att}(k, \ell)+1} \cup \{ T | V_i \} & \text{if } \eta(k) = \frac{\ell - 1}{2}, \\ \{ \Theta^{k/2}(V_{\ell^2}) \}_{0 \leq i \leq \text{att}(k, \ell)} \cup \{ \Theta^{(2k+t-1)/4}(V_{\ell^2}) \}_{0 \leq i \leq \text{att}(k, \ell)+1} & \text{otherwise.} \end{cases} \]
If $r(k_2) = \ell - 1$, then
\[
T|V_2^2 \equiv T - \Theta^{(t-1/2)}(T) \equiv T - \Theta^{(2k_2 + t - 1/2)}(T) \pmod{v}.
\]
Thus, f is congruent to a linear combination of $TV_{2\ell+1}$ and $TV_{2\ell+2}$ if $r(k_2) = \ell - 1$, otherwise.

To complete the proof, it is sufficient to show that $\alpha(\ell, k_2) \leq \beta(\ell, k_2) + 1 \leq \alpha(\ell, k_0)$. (3.2)

First, we assume that $k_0 + \frac{1}{2} \geq \frac{t}{T}$. Since $\Theta^m(T) \equiv \Theta^{2m + t - 1/2}(T)$ for any positive integer m, we have $\omega(g_0) \leq \omega(\Theta^{k_0/2}(T)) \leq \frac{t}{2}$. This implies that
\[
k_2 = \max\left(k_0, \omega(g_0) - \frac{1}{2}\right) = k_0.
\]
Then by (3.1), we obtain (3.2).

Now, we assume that $k_0 + \frac{1}{2} < \frac{t}{2}$. In this case, we have
\[
k_2 + \frac{1}{2} \leq \frac{1}{\ell}\left(k_1 + \frac{1}{2}\right) \leq \frac{1}{\ell} \cdot \max\left(k_0 + \frac{1}{2}, \omega(g_0)\right) \leq \frac{t}{2}.
\]
Further, assume that $k_2 \neq 0$ and $k_2 \neq \frac{t - 1}{2}$. Then $\alpha(\ell, k_2) = \beta(\ell, k_2) = \beta(\ell, k_0) = 0$. By Lemma 2.6, we have $g_2 \equiv 0 \pmod{v}$, and then
\[
f \equiv \Theta^{k_2/2}(f) \equiv \frac{a_1(1)}{2} - \Theta^{k_0/2}(T) \pmod{v}.
\]
Note that $\Theta^{(t-1/2)}(T) \equiv T - T^{\ell/2} \pmod{v}$, we have $\omega(\Theta^{(t-1/2)}(T)) = \frac{t}{2}$. Then, for a positive integer m with $m \leq \frac{t - 1}{2}$, we have
\[
\omega(\Theta^m(T)) = (\ell + 1)m + \frac{1}{2}.
\]
By (3.3), we have
\[
\omega(\Theta^{k_0/2}(T)) = \eta(k_0) \leq \frac{t}{2} + \frac{1}{2} \leq k_0 + \frac{1}{2}.
\]
It implies that $a(\ell, k_0) = 1$. Hence, $a(\ell, k_2) = \beta(\ell, k_0)$ and $\beta(\ell, k_0) + 1 = a(\ell, k_0)$. For the cases when $k_0 = 0$ and $k_0 = \frac{t - 1}{2}$, we obtain (3.2) by direct computation. Thus, we conclude that if $f \in M_{k_0 + \ell/2}(\Gamma_0(k); O_K)$ has the form (1.3), then f is congruent to a linear combination of B_{k_0} modulo v. Therefore, Theorem 1.3 is proved by induction on k.

To prove Theorem 1.1, we use the following theorem which gives a sufficient condition for the weight $k + \frac{1}{2}$ that Conjecture 1.2 holds for $f \in S_{k+1/2}^+(\Gamma_0(k); O_K)$. It was proved in the proof of [7, Theorem 5.2].

Theorem 3.1. Assume that $f \in S_{k+1/2}^+(\Gamma_0(A); O_K)$ has the form
\[
f(z) \equiv \frac{1}{2} \sum_{n \in \ell} a_\ell(n^2)q^{n^2} \pmod{v} \tag{3.4}
\]
and $f \not\equiv 0 \pmod{v}$. Let p_ℓ be the smallest positive prime p such that $p \equiv 1 \pmod{\ell}$. If $2k + 1 < p_\ell^2$, then k is even and
\[f \equiv \frac{1}{2} a_{f}(1) \Theta^{k/2}(T) \pmod{\nu}. \]

Proof. We follow the proof of [7, Theorem 5.2]. By Proposition 2.4, we obtain that \(k \) is even. By Theorem 2.3, for each odd prime \(p \) with \(p \not\equiv 0, 1 \pmod{\ell} \), we have
\[
 f|_{p^2} \equiv (p^k + p^{k-1})f \pmod{\nu}.
\]
Hence, for any positive odd integer \(m \) which is not divisible by any prime \(p \) with \(p \equiv 0, 1 \pmod{\ell} \), we have
\[
 a_{f}(m^2) \equiv a_{f}(1)m^k \pmod{\nu}.
\]
Let \(k_i = \max \left(k, \frac{n(k_i)(\ell + 1)}{2} \right) \). Then, there is \(g_i \in \mathcal{S}_{k_i+2}^{+}(\Gamma_0(4); \mathcal{O}_{K}) \) such that
\[
 g_i \equiv f - \frac{1}{2} a_{f}(1) \Theta^{n(k_i)/2}(T) \pmod{\nu}.
\]
Let \(h = g_i - g_j|U|V_\ell \in \mathcal{S}_{k_i+2}^{+}(\Gamma_0(16)) \). Then, \(a_{h}(n) \equiv 0 \pmod{\nu} \) for \(n < p_i^2 \). Since
\[
 \frac{1}{12} \left(k_i + 1\right) [\mathrm{SL}_2(\mathbb{Z}) : \Gamma_0(16)] = 2k_i + 1 < p_i^2,
\]
we have \(h \equiv 0 \pmod{\nu} \) by the result of Sturm [18] called the Sturm bound. Then,
\[
 g_i(z) \equiv g_i|U|V_\ell(z) \equiv \sum_{m=1}^{\infty} a_{g_i}(4m^2)q^{4m^2} \pmod{\nu}.
\]
From the proof of [7, Theorem 5.2], we have \(g_i \equiv 0 \pmod{\nu} \). Then,
\[
 f(z) \equiv \frac{1}{2} a_{f}(1) \Theta^{k/2}(T)(z) \equiv \frac{1}{2} a_{f}(1) \left(\sum_{n \in \mathbb{Z}} n^k q^n \right) \pmod{\nu}. \]

The following proposition is a refinement of Theorem 1.1.

Proposition 3.2. Let \(g : \mathbb{R} \to \mathbb{R} \) be a function such that \(\sqrt{g(x)} \log x \) is an increasing function and \(\lim_{x \to \infty} g(x) = 0 \). Let \(P \) be a set of primes \(\ell \) such that for every \(f \in \mathcal{S}_{k_i+2}^{+}(\Gamma_0(4); \mathcal{O}_{K}) \) with \(k + \frac{1}{2} < g(\ell)(\log \ell)^2 \), if \(f \) has the form (1.2), then
\[
 f(z) \equiv \frac{1}{2} \sum_{l=0}^{a(k-1)} a_{f}(\ell^{2l})\Theta^{k/2}(T)(\ell^{2l}z) + \frac{1}{2} \sum_{l=0}^{b(k-1)} a_{f}(\ell^{2l+1})\Theta^{2k+1-1/2}(T)(\ell^{2l+1}z) \pmod{\nu}.
\]
Then, there is an absolute constant \(C \) such that
\[
 \# \{ \ell : \ell \not\in P \text{ and } \ell \leq X \} \leq C \sqrt{g(X)} \frac{X}{\log X} \left(1 + C \frac{\log \log X}{\log X} \right),
\]
where \(C_0 = \frac{2^{2/3} \pi^2}{3} \prod_{p>2} p^{-1} \).

Proof. Let \(p_i \) be the smallest positive prime \(p \) with \(p \equiv 1 \pmod{\ell} \). By using Theorem 3.1 to follow the proof of Theorem 1.3, we deduce that if \(p_i^2 > 2g(\ell)(\log \ell)^2 \), then \(\ell \in P \). From this, for a positive number \(X \), we have
\[
 \# \{ \ell : \ell \not\in P \text{ and } \ell \leq X \} \leq \# \{ \ell : p_i^2 \leq 2g(\ell)(\log \ell)^2 \text{ and } \ell \leq X \}.
\]
For convenience, let \(h(x) = \sqrt{g(x)} \). Then, we have
\[\#\{\ell : p_{\ell}^2 \leq 2g(\ell)\ell \log \ell \text{ and } \ell \leq X\} = \#\{\ell : p_{\ell} \leq 2h(\ell)\ell \log \ell \text{ and } \ell \leq X\} \]
\[\leq \sum_{n=1}^{\infty} \#\{\ell : p_{\ell} = 2n\ell + 1, n < h(\ell)\log \ell \text{ and } \ell \leq X\} \]
\[\leq \sum_{n=1}^{[h(X)\log X]} \#\{\ell : p_{\ell} = 2n\ell + 1, n < h(X)\log X \text{ and } \ell \leq X\} \]
\[\leq \sum_{n=1}^{[h(X)\log X]} \#\{\ell : 2n\ell + 1 \text{ is a prime and } \ell \leq X\}. \quad (3.5) \]

By [19, Theorem 3.12], for any positive integer \(n \), there is an absolute constant \(C \) such that
\[\#\{\ell : 2n\ell + 1 \text{ is a prime and } \ell \leq X\} \leq A \left(\prod_{p|n} \frac{p-1}{p-2} \right) \frac{X}{(\log X)^2} \left(1 + \frac{\log \log X}{\log X} \right), \]

where
\[A := 8 \prod_{2<p} \left(1 - \frac{1}{(p-1)^2} \right). \]

Note that for any positive integer \(n \), we have
\[\prod_{2<p|n} \frac{p-1}{p-2} \leq \prod_{2<p} \frac{p(p-1)}{(p+1)(p-2)} \prod_{p|n} \frac{p+1}{p} \leq \left(\prod_{2<p} \frac{p(p-1)}{(p+1)(p-2)} \right) \frac{\sigma(n)}{n}. \]

From this, we have
\[\frac{\sigma(n)}{n} = \sum_{n=1}^{[h(X)\log X]} \prod_{2<p|n} \frac{p-1}{p-2} \leq \prod_{2<p} \frac{p(p-1)}{(p+1)(p-2)} \sum_{n=1}^{[h(X)\log X]} \frac{\sigma(n)}{n} \]
\[= \prod_{2<p} \frac{p(p-1)}{(p+1)(p-2)} \sum_{n=1}^{[h(X)\log X]} \frac{\sigma(n)}{n} \sum_{d|n} \frac{1}{d} \]
\[\leq \prod_{2<p} \frac{p(p-1)}{(p+1)(p-2)} \sum_{d=1}^{[h(X)\log X]} \frac{h(X)\log X}{d} \frac{1}{d} \]
\[\leq \prod_{2<p} \frac{p(p-1)}{(p+1)(p-2)} \frac{h(X)\log X}{6}. \]

Thus, (3.5) becomes
\[\#\{\ell : p_{\ell} \leq 2h(\ell)\ell \log \ell \text{ and } \ell \leq X\} \leq \frac{4\pi^2}{3} \prod_{2<p} \frac{p^2}{p^2-1} \cdot \frac{h(X)}{\log X} \left(1 + \frac{\log \log X}{\log X} \right). \]

Therefore, we conclude that
\[\#\{\ell : \ell \notin P \text{ and } \ell \leq X\} \leq \left(\frac{2\sqrt{2\pi^2}}{3} \prod_{2<p} \frac{p^2}{p^2-1} \right) \cdot \sqrt{g(X)} \frac{X}{\log X} \left(1 + \frac{\log \log X}{\log X} \right). \]

By using Proposition 3.2, we prove Theorem 1.1.

Proof of Theorem 1.1. Let \(g(x) = (\log x)^{-\epsilon} \). When \(0 \leq \epsilon \leq 2 \), we obtain Theorem 1.1 by Proposition 3.2. If \(\epsilon > 2 \), then there is no prime \(\ell \) satisfying \(p_{\ell}^2 \leq 2g(\ell)\ell \log \ell \). Therefore, Theorem 1.1 is proved.
Now, we prove Theorem 1.5.

Proof of Theorem 1.5. To prove Theorem 1.5, first, we prove that if $a(\ell, k) \geq 1$ and k is even, then $\dim \text{Null}(B_{k,m}) \geq 1$ for any positive integer m. Since $a(\ell, k) \geq 1$, we have

$$\omega(\Theta^{(k)}(T)) = \frac{\eta(k)}{2} - (\ell + 1) + \frac{1}{2} \leq k + \frac{1}{2}.$$

Then, there is $h \in M_{k,\frac{1}{2}}(\Gamma_0(4); \mathbb{C})$ such that $h \equiv \Theta^{(k/2)}(T) \pmod{\nu}$. Let $(c(0), \ldots, c(k/2)) \in \mathbb{Z}^{(k/2)+1}$ such that

$$h = \sum_{j=0}^{k/2} c(j)F_j^2\ell^{k-4j}.$$

Then, $(c(0), \ldots, c(k/2)) \in \text{Null}(B_{k,m})$ for any positive integer m since h has the form

$$h(z) \equiv \frac{1}{2} \sum_{m \in \mathbb{Z}} a_h(n)q^n \pmod{\nu}.$$

Here, $c(j)$ is the reduction of $c(j)$ modulo ℓ. Thus, we conclude that $\dim \text{Null}(B_{k,m}) \geq 1$ for any positive integer m, when $a(\ell, k) \geq 1$ and k is even.

Now, we assume that Conjecture 1.2 is true. Let $v = (\nu(0), \ldots, \nu(\frac{1}{2} \ell)) \in \text{Null}(B_{k,m})$ for all positive integers m, and let $v(j)$ be an integer such that the reduction of $v(j)$ modulo ℓ is equal to $\overline{v(j)}$. Let

$$f_v = \sum_{j=0}^{k/2} v(j)F_j^2\ell^{k-4j} \in M_{k,\frac{1}{2}}(\Gamma_0(4)).$$

Then f_v has the form

$$f_v(z) \equiv \frac{1}{2} \sum_{m \in \mathbb{Z}} a_v(n^2)q^n \pmod{\nu}.$$

Note that $f_v \equiv \Theta^{(\ell-1)2}(f_v) \pmod{\nu}$. We assume that k is even. By the assumption that Conjecture 1.2 is true, we have

$$f_v \equiv \frac{a_v(1)}{2} \Theta^{(k)}(T) \pmod{\nu}.$$

Thus, $\lim_{m \to \infty} \dim \text{Null}(B_{k,m})$ is less than or equal to 1. If $\lim_{m \to \infty} \dim \text{Null}(B_{k,m}) = 1$, then there is $f \in S_{k,\frac{1}{2}}(\Gamma_0(4); \mathbb{C})$ such that

$$f \equiv \Theta^{(k)}(T) \pmod{\nu}.$$

This implies that

$$\eta(k) \cdot \frac{\ell}{2} + 1 + \frac{1}{2} = \omega(\Theta^{(k)}(T)) \leq k + \frac{1}{2}.$$

By the definition of $a(\ell, k)$, we have $a(\ell, k) \geq 1$. Hence, we conclude that Conjecture 1.4 is true.

To complete the proof of Theorem 1.5, we assume that Conjecture 1.4 is true. Further, assume that $f \in S_{k,\frac{1}{2}}(\Gamma_0(4); \mathbb{O})$ has the form

$$\Theta(f) \equiv \frac{1}{2} \sum_{n \in \mathbb{Z}} s n^2 a_f(sn^2)q^{sn^2} \pmod{\nu}$$

with a square-free integer s and $\Theta(f) \not\equiv 0 \pmod{\nu}$. Then, k is even and $s = 1$ by Proposition 2.4. By Lemma 2.1, there is $f_0 \in S_{k+\ell,\frac{1}{2}}(\Gamma_0(4))$ such that $f_0 \equiv \Theta(f) \pmod{\nu}$. Let $(d(0), \ldots, d((k + \ell + 1)/2)) \in \mathbb{O}_k^{(k+\ell+1)/2}$ satisfying
Let $F_v := O_R^v$. Then, for any positive integer m, we have
\[
(d(0), \ldots, d((k + \ell + 1)/2)) \in \text{Null}(B_{k+\ell+1,m}) \otimes_{F_v} F_v,
\]
where $d(f)$ is the reduction of $d(j)$ modulo v. By the assumption that Conjecture 1.4 is true, the dimension of $\text{Null}(B_{k+\ell+1,m})$ is 1 for a sufficiently large m. Hence, f_0 is congruent to a constant multiple of $\Theta^{(k+\ell+1)/2}(T)$ modulo v. Since $\eta(k + \ell + 1) = \eta(k + 2)$, we conclude that $\Theta(f)$ is congruent to a constant multiple of $\Theta^{(k+\ell+2)/2}(T)$ modulo v. \hfill \Box

We confirm Conjecture 1.2 under the assumption that $k \leq 1000$, or that $\ell \in \{5, 7, 11, 13, 17, 19\}$ and $k \leq 10,000$.

Proof of Theorem 1.6. Note that if $\Theta(f) \equiv 0 \pmod{v}$, then Conjecture 1.2 is true since $a_v(1) \equiv 0 \pmod{v}$. Thus, we may assume that $\Theta(f) \not\equiv 0 \pmod{v}$. By Proposition 2.4, $s = 1$ and k is even. Then, f has the form
\[
f(z) \equiv \frac{1}{2} \sum_{n \in \mathbb{Z}} a(n^2)q^n + \sum_{n=1}^{\infty} a(\ell n)q^{\ell n} \pmod{v}.
\]
From this, we have
\[
(f - \Theta^{(\ell-1)/2}(f))(z) \equiv \sum_{n=1}^{\infty} a(\ell n)q^{\ell n} \pmod{v}.
\]
Assume that $k < \frac{\ell - 1}{2}$. By Lemma 2.1 (3), if $f \not\equiv \Theta^{(\ell-1)/2}(f) \pmod{v}$, then there is a nonnegative integer k_0 such that
\[
k_0 \equiv k + \frac{\ell - 1}{2} \pmod{\ell - 1} \quad \text{and} \quad k_0 + \frac{1}{2} \leq \frac{1}{\ell} \left(k + \frac{\ell^2}{2}\right),
\]
and there is $g_0 \in S_{k_0^2}(\Gamma(4))$ such that
\[
g_0(z) \equiv (f - \Theta^{(\ell-1)/2}(f))U(z) \equiv \sum_{n=1}^{\infty} a(\ell n)q^{\ell n} \pmod{v}.
\]
Since $k < \frac{\ell - 1}{2}$, we have $k_0 = 0$ and then $g_0 = 0$. Thus, $f \equiv \Theta^{(\ell-1)/2}(f) \pmod{v}$ when $k < \frac{\ell - 1}{2}$. This implies that $f \equiv 0 \pmod{v}$ by Lemma 2.6. Hence, we conclude that Conjecture 1.2 is true when $k < \frac{\ell - 1}{2}$.

We fix a prime ℓ with $5 \leq \ell \leq 2001$. Assume that there is $f \in S_{k^2}(\Gamma(4); O_K)$ having the form
\[
\Theta(f)(z) \equiv \frac{1}{2} \sum_{n \in \mathbb{Z}} n^2 a(n^2)q^n \pmod{v}
\]
such that
\[
\Theta(f) \not\equiv \frac{a_v(1)}{2} \Theta^{(k^2+1)/2}(T) \pmod{v}.
\]
Then, $f \cdot E_{\ell-1} \in S_{k+\ell-1}(\Gamma(4); O_K)$ satisfies
\[
\Theta(f \cdot E_{\ell-1}) \not\equiv \frac{a_v(1)}{2} \Theta^{(k+\ell+1)/2}(T) \pmod{v}.
\]
Thus, for a positive integer m_0, confirming Conjecture 1.2 for positive integers k such that $k \leq m_0$ reduces to confirming Conjecture 1.2 for positive integers k such that $m_0 + 2 - \ell \leq k \leq m_0$.

1334 — Doohoon Choi and Youngmin Lee

DE GRUYTER
When \(\max(0, 1002 - \ell) \leq k \leq 1000 \) and \(k \) is even, we obtain by numerical method
\[
\text{dimNull}(B_{k, 1000}) = 1, (\alpha(\ell, k)).
\]
In the proof of Theorem 1.5, we have \(\text{dimNull}(B_{k, m}) \geq 1, (\alpha(\ell, k)) \) for any positive integer \(m \). Since \(\text{dimNull}(B_{k, m}) \leq \text{dimNull}(B_{k, 1000}) \) for \(m \geq 1000 \), we have
\[
\lim_{m \to \infty} \text{dimNull}(B_{k, m}) = 1, (\alpha(\ell, k))
\]
when \(\max(0, 1002 - \ell) \leq k \leq 1000 \). By Theorem 1.5, we conclude that Conjecture 1.2 is true when \(k \leq 1000 \).

The proofs for the cases when \(\ell \in \{5, 7, 11, 13, 17, 19\} \) and \(k \leq 10,000 \) are similar to the proof of the previous case. So, we skip it. \(\square \)

Acknowledgements: The authors appreciate referees for careful reading and useful comments. These comments improved the previous version of this article.

Funding information: Doohoon Choi was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1A2C1007517). Youngmin Lee was supported by a KIAS Individual Grant (MG086301) at Korea Institute for Advanced Study.

Conflict of interest: The authors state no conflict of interest.

References

[1] J. Bruinier, Nonvanishing modulo \(\ell \) of Fourier coefficients of half-integral weight modular forms, Duke Math. J. 98 (1999), no. 3, 595–611, DOI: https://doi.org/10.1215/S0012-7094-99-09819-8.

[2] J. Bruinier and K. Ono, Coefficients of half-integral weight modular forms, J. Number Theory 99 (2003), no. 1, 164–179, DOI: https://doi.org/10.1016/S0016-7075(02)00061-6.

[3] K. Ono and C. Skinner, Fourier coefficients of half-integral weight modular forms modulo \(\ell \), Ann. of Math. 147 (1998), no. 2, 453–470, DOI: https://doi.org/10.2307/121015.

[4] S. Ahlgren and M. Boylan, Coefficients of half-integral weight modular forms modulo \(\ell \), Math. Ann. 331 (2005), no. 1, 219–239, DOI: https://doi.org/10.1007/s00208-004-0555-9.

[5] S. Ahlgren and M. Boylan, Central critical values of modular \(L \)-functions and coefficients of half-integral weight modular forms modulo \(\ell \), Amer. J. Math. 129 (2007), no. 2, 429–454, DOI: https://doi.org/10.1353/ajm.2007.0006.

[6] M. F. Vignéras, Facteurs gamma et équations fonctionnelles, Lecture Notes in Mathematics, Vol. 627, Springer, Berlin, 1977, pp. 79–103.

[7] S. Ahlgren, D. Choi, and J. Rouse, Congruences for level four cusp forms, Math. Res. Lett. 16 (2009), no. 4, 683–701, DOI: https://doi.org/10.4310/MRL.2009.v16.n4.a10.

[8] K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, CBMS Regional Conference Series in Mathematics, Vol. 102, American Mathematical Society, Providence, RI, 2004.

[9] J.-P. Serre, Formes modulaires et fonctions zêta \(p \)-adiques, In: W. Kuijk and J.-P. Serre (eds), Modular Functions of One Variable III, Lecture Notes in Mathematics, Vol. 350, Springer, Berlin, Heidelberg, 1973, pp. 191–268.

[10] H. P. F. Swinnerton-Dyer, On \(\ell \)-adic representations and congruences for coefficients of modular forms, In: W. Kuijk and J.-P. Serre (eds), Modular Functions of One Variable III, Lecture Notes in Mathematics, Vol. 350, Springer, Berlin, Heidelberg, 1973, pp. 1–55.

[11] N. Katz, A result on modular forms in characteristic \(p \), In: J.-P. Serre and D. B. Zagier (eds), Modular Functions of one Variable V, Lecture Notes in Mathematics, Vol. 601, Springer, Berlin, Heidelberg, 1977, pp. 59–61.

[12] B. H. Gross, A tameness criterion for Galois representations associated to modular forms (mod \(p \)), Duke Math. J. 61 (1990), no. 2, 445–517, DOI: https://doi.org/10.1215/S0012-7094-90-06119-8.

[13] D. Choi and S. Lim, Congruences involving the \(\ell \) operator for weakly holomorphic modular forms, Ramanujan J. 51 (2020), no. 3, 671–688, DOI: https://doi.org/10.1007/s11139-019-00154-z.

[14] H. Cohen, Sums involving the values at negative integers of \(L \)-functions of quadratic characters, Math. Ann. 217 (1975), no. 3, 271–285, DOI: https://doi.org/10.1007/BF01436180.
[15] D. Choi, Modular forms of half-integral weight with few non-vanishing coefficients modulo \(\ell \), Proc. Amer. Math. Soc. 136 (2008), no. 8, 2683–2688, DOI: https://doi.org/10.1090/S0002-9939-08-09195-8.

[16] D. Choi and T. Kilbourn, The weight of half-integral weight modular forms with few non-vanishing coefficients mod \(\ell \), Acta Arith. 127 (2007), no. 2, 193–197, DOI: https://doi.org/10.4064/aa127-2-8.

[17] H. Carayol, Sur les représentations \(\ell \)-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409–468.

[18] J. Sturm, On the congruence of modular forms, In: D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn, and M. B. Nathanson (eds), Number Theory, Lecture Notes in Mathematics, Vol. 1240, Springer, Berlin, Heidelberg, 1987, 275–280.

[19] H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, Vol. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974.