Codon usage patterns of LT-Ag genes in polyomaviruses from different host species

Myeongji Cho†, Hayeon Kim† and Hyeon S. Son1,3*

Abstract

Background: Polyomaviruses (PyVs) have a wide range of hosts, from humans to fish, and their effects on hosts vary. The differences in the infection characteristics of PyV with respect to the host are assumed to be influenced by the biochemical function of the LT-Ag protein, which is related to the cytopathic effect and tumorigenesis mechanism via interaction with the host protein.

Methods: We carried out a comparative analysis of codon usage patterns of large T-antigens (LT-Ags) of PyVs isolated from various host species and their functional domains and sequence motifs. Parity rule 2 (PR2) and neutrality analysis were applied to evaluate the effects of mutation and selection pressure on codon usage bias. To investigate evolutionary relationships among PyVs, we carried out a phylogenetic analysis, and a correspondence analysis of relative synonymous codon usage (RSCU) values was performed.

Results: Nucleotide composition analysis using LT-Ag gene sequences showed that the GC and GC3 values of avian PyVs were higher than those of mammalian PyVs. The effective number of codon (ENC) analysis showed host-specific ENC distribution characteristics in both the LT-Ag gene and the coding sequences of its domain regions. In the avian and fish PyVs, the codon diversity was significant, whereas the mammalian PyVs tended to exhibit conservative and host-specific evolution of codon usage bias. The results of our PR2 and neutrality analysis revealed mutation bias or highly variable GC contents by showing a narrow GC12 distribution and wide GC3 distribution in all sequences. Furthermore, the calculated RSCU values revealed differences in the codon usage preference of the LT-AG gene according to the host group. A similar tendency was observed in the two functional domains used in the analysis.

Conclusions: Our study showed that specific domains or sequence motifs of various PyV LT-Ags have evolved so that each virus protein interacts with host cell targets. They have also adapted to thrive in specific host species and cell types. Functional domains of LT-Ag, which are known to interact with host proteins involved in cell proliferation and gene expression regulation, may provide important information, as they are significantly related to the host specificity of PyVs.

Keywords: Polyomavirus, LT-Ag, Functional domains, Sequence motif, Codon usage pattern, RSCU

Background

Polioviruses (PyVs) are non-enveloped double-stranded DNA viruses; a total of 86 PyV species have been classified by the International Committee on Taxonomy of Viruses. The classified member species belong to four genera, i.e., Alphapolyomavirus (36), Betapolyomavirus (32), Deltapolyomavirus (4), and Gammapolyomavirus (9), within the family Polyomaviridae (unassigned), while a genus of five species has not yet been classified. Their hosts are diverse, including humans, non-human primates (chimpanzees, gorillas, orangutans, and monkeys), non-primate mammals (bats, mice, racoon, badgers, cows, horses, elephants, alpacas, sea lions, seals, and dolphins), avian species (penguins, geese, and birds), and fish (sharks, perch, and cod) (https://talk.ictvonline.org/ictv-reports/ictv_online_report/dsdna-viruses/w/polyomaviridae).
The first PyV discovered was mouse PyV (MPyV), which was isolated from a murine tumor [1, 2] in the mid-1950s. Since then, simian virus 40 (SV40) was discovered in the renal cells of rhesus monkeys in the 1960s [3]. As mostly animal viruses were studied, the viruses seemed to be irrelevant to human diseases. However, two human PyVs, BKPyV and JCPyV, were found [4, 5], and in 2008, MCPyV was identified in human Merkel cell carcinoma tissue [6]. Thus, the various animal and human PyVs reported so far have drawn renewed attention. Most mammalian PyVs do not directly cause severe acute disease in infected hosts. However, an inconspicuous primary infection can persist for a lifetime, and when the host is in an immunosuppressed or immunocompromised state, such infection can lead to multiple diseases, such as progressive multifocal leukoencephalopathy and hemorrhagic cystitis, due to virus reactivation [7, 8]. PyV has a strong species-specific tendency, similar to papillomavirus [9, 10], and is thought to have co-evolved with amniotes. Various studies have been carried out to determine the infection characteristics of PyV. Therefore, it is necessary to understand their evolutionary history and their interaction with their hosts, as well as to interpret their genetic information.

Early and late gene RNAs of PyVs encode two and three proteins, respectively. The early gene is translated into 2 T-antigens (large T-antigen (LT-Ag) and small T-antigen), and the late gene is translated into three capsid proteins (VP1, VP2, and VP3) [11]. Among these, LT-Ag is directly related to tumorigenesis. Notably, the LT-Ag protein is known to bind to the p53 and Rb proteins, which are products of two typical tumor suppressor genes [12]. It has also been found to be a major factor determining the biochemical function of SV40 and MCPyV, which cause tumors in rodents and humans [13, 14]. The LT-Ag of PyV has functionally conserved domains, such as the DnaJ domain, LXCXE motif, NLS domain, Helicase domain, and p53 binding domain, that are present in most virus species [13]. Among these, the DnaJ domain, LXCXE motif, and p53 binding domain bind to proteins belonging to the cellular Hsc70 and Rb family and p53 cellular suppressor proteins, respectively, affecting replication and proliferation of the viral genome through DNA binding, ATP-dependent helicase, and ATPase activity. Specifically, when the early gene LT-Ag is continuously expressed, although PyV cannot to replicate its genome in nonpermissive hosts, cell transformation is induced, resulting in tumorigenesis. Each domain is considered to play an important role in this carcinogenesis.

PyVs vary in terms of toxicity to hosts, so their effects on hosts differ (Table 1). Variations in the infection characteristics of these viruses (whether they induce tumors due to binding to host proteins) among various hosts indicate the importance of the biochemical function of the LT-Ag protein in relation to host range and tumorigenesis. Therefore, in this study, we performed codon usage pattern, sequence similarity, and phylogenetic analyses using the genetic information of LT-Ag gene coding sequences (CDS) and major domains, to compare genetic characteristics. Based on the results of these analyses, we investigated the differences in the codon usage patterns depending on the taxon and PyV host and identified the relationships between phylogeny and sequence similarity among viruses. The genetic and evolutionary differences among the viruses identified by the comparative analysis offer a basis for explaining variations in their host range and toxicity. Based on these results, it is possible to infer the causes of the functional differences in LT-Ag among various PyVs.

Methods
Data acquisition
The virus name, abbreviation, and classification information of 86 species belonging to the family Polyomaviridae were checked (https://talk.ictvonline.org/ictv-reports/ictv_online_report/dsdna-viruses/w/polyomaviridae), and the reference sequences were downloaded from the National Center for Biotechnology Information GenBank® (https://www.ncbi.nlm.nih.gov) (Table 2). The CDS regions of the LT-Ag genes to be analyzed were extracted and classified into the following five groups, according to the host of each virus species: non-primate mammals (Group M); non-human primates (Group P); humans (Group H); avian (Group A); and fish (Group F). Known ORFs were concatenated for total codon analyses of LT-Ag. Accordingly, we performed the analysis using CDS regions in the form of the complement (join, codon start = 1) of LT-Ag from PyV reference sequences. Accession numbers are given in Table 2. To identify the domain regions contained in each LT-Ag gene CDS and extract the corresponding sequences, the amino acid sequence encoding each gene was scanned through PROSITE (https://prosite.expasy.org/), and the ScanProsite results were obtained in addition to ProRule-based predicted intra-domain features. The sequence information of the corresponding region was extracted and used for analysis. PROSITE provides predicted results and related information regarding protein domains, families, and functional sites through ProRule, a collection of rules based on profiles and patterns. Therefore, in this study, the sequence information of 54 DnaJ domains (PROSITE entry: PS50076) and 86 superfamily 3 helicases of DNA virus domains (PROSITE entry: PS51206), along with 86 complete gene sequences, was used for analysis (Table 3). Java programming was performed for LXCXE motif and sequence extraction and processing.
Phylogenetic analysis

Multiple sequence alignments were performed for each sequence using MUSCLE, and the phylogeny was reconstructed using the maximum likelihood (ML) method based on the Tamura-Nei model [68] using MEGA 7.0.26 [69]. Bootstrap analysis [70] was carried out with 1000 replicates of the dataset to determine the robustness of the individual nodes. The reconstructed trees confirmed the phylogenetic relationships for viral sequences of the LT-Ag gene, DnaJ, and helicase from different host species. Based on these results, the 86 viral species were divided into five groups [non-primate mammals (Group M), non-human primates (Group P), humans (Group H), avian (Group A), and fish (Group F)]. For the purpose of this study, virus group information based on the phylogenetic relationships was considered when conducting various analyses and interpreting and discussing the results.

Compositional analysis

The CodonW (https://sourceforge.net/projects/codonw/) and CALcal (http://genomes.urv.es/CALcal/) programs were used to perform nucleotide composition analysis. Various nucleotide compositional properties were calculated for the sequences corresponding to the CDS of the PyV LT-Ag gene, DnaJ domain, and helicase domain. The frequency of each nucleotide (%A, %C, %T, and %G), GC and AT contents (%GC and %AT), each nucleotide at the third position of synonymous codons (%A3, %C3, %T3, and %G3), G + C (%GC3) and A + T contents (%AT3) at the third codon, and G + C (%GC12) and A + T mean values (%AT12) at the first and second codons were calculated. Genetic variability was analyzed by calculating the nucleotide variability of the LT-Ag genes and two domains in each virus group. The total number of segregating sites, total number of mutations, average number of nucleotide differences between sequences, and nucleotide diversity were estimated using DnaSP v. 5.10.01 [71].

Effective number of codons (ENC) analysis

Analysis of the effective number of codons (ENC) was used to quantify the absolute codon usage bias in the PyV LT-Ag gene CDS, independent of the gene length. ENC values range from 20 to 61; 20 represents the largest codon usage bias, in which only one of the possible synonymous codons is used for the corresponding amino acid; 61 indicates no bias and means that all possible synonymous codons are used equally for the corresponding amino acid. Generally, genes are considered to have significant codon bias when the ENC value is less than 35 [72, 73].

Parity rule 2 (PR2) analysis

Parity rule 2 (PR2) analysis is commonly used to investigate the effects of mutations and selection pressure on
Table 2: Description of sequence data used in this study

No.	ICTV Taxonomy	Virus name	Accession No.	Host species	Isolation source	Country	Year	bp	Group (host)	Ref.	
1	bat polyomavirus 4a	BatPyV4a	NC_038556.1	Artibeus planirostris	spleen	French Guiana	2011	5187	M	[24]	
2	Ateles paniscus polyomavirus 1	ApanPyV1	NC_019853.1	Ateles paniscus	NA	Germany	NA	5273	P	[25]	
3	bat polyomavirus 5b-1	BatPyV5b-1	NC_026767.1	Pteropus vampyrus	spleen	Indonesia	2012	5047	M	[26]	
4	bat polyomavirus 5a	BatPyV5a	NC_026768.1	Dobsonia moluccensis	spleen	Indonesia	2012	5075	M	[26]	
5	Bornean orang-utan polyomavirus	OraPyV-Bor	NC_013439.1	Pongo pygmaeus	blood	NA	NA	5168	P	[27]	
6	Cardioderma polyomavirus	CardiodermaPyV	NC_020067.1	Cardioderma cor	rectal swab	Kenya	2006	5372	M	[28]	
7	bat polyomavirus 4b	BatPyV4b	NC_028120.1	Carollia perspicillata	spleen	French Guiana	2011	5352	M	[24]	
8	chimpanzee polyomavirus	ChiPyV	NC_014743.1	Pan troglodytes verus	blood	NA	NA	5086	P	[29]	
9	vervet monkey polyomavirus 1	VmPyV1	NC_019844.1	Chlorocebus pygerythrus	spleen	Zambia	2009	5157	P	[30]	
10	vervet monkey polyomavirus 3	VmPyV3	NC_025898.1	Chlorocebus pygerythrus	spleen	Zambia	2009	5055	P	[30]	
11	Eidolon polyomavirus 1	EidolonPyV	NC_020068.1	Eidolon helvum	rectal swab	Kenya	2009	5294	M	[28]	
12	Gorilla gorilla gorilla polyomavirus 1	GgorgPyV1	NC_025380.1	Gorilla gorilla gorilla	NA	Congo Republic	2008	5300	P	[31]	
13	Human polyomavirus 9	HPyV9	NC_015150.1	Homo sapiens	NA	Germany	2009	5026	H	[32]	
14	Human polyomavirus 12	HPyV12	NC_020890.1	Homo sapiens	NA	Germany	2007	5033	H	[33]	
15	Macaca fascicularis polyomavirus 1	MfasPyV1	NC_019851.1	Macaca fascicularis	NA	Germany	NA	5087	P	[25]	
16	Merkel cell polyomavirus	MCPyV	NC_010277.2	Homo sapiens	skin	USA	2009	5387	H	[16]	
17	hamster polyomavirus	HaPyV	NC_001663.2	Mesacricetus auratus strain Z3	NA	Germany	1967	5372	M	[34]	
18	bat polyomavirus 3b	BatPyV3b	NC_028123.1	Molossus molossus	spleen	French Guiana	2011	4903	M	[24]	
19	mouse polyomavirus	MPyV	NC_001515.2	Mus musculus	NA	NA	NA	5307	M	NA	
20	New Jersey polyomavirus	NJPyV	NC_024118.1	Homo sapiens	bicep muscle	USA	2013	5108	H	[35]	
21	Otomops polyomavirus 2	OtomopsPyV	NC_020066.1	Otomops martiensseni	rectal swab	Kenya	2006	4914	M	[28]	
22	Otomops polyomavirus 1	OtomopsPyV1	NC_020071.1	Otomops martiensseni	rectal swab	Kenya	2006	5176	M	[28]	
23	Pan troglodytes verus polyomavirus 2a	PtrovPyV2a	NC_025370.1	Pan troglodytes verus	NA	Cote d'Ivoire	2010	5309	P	[31]	
24	Pan troglodytes verus polyomavirus 3	PtrovPyV3	NC_019855.1	Pan troglodytes verus	NA	Cote d'Ivoire	NA	5333	P	[25]	
25	Pan troglodytes verus polyomavirus 4	PtrovPyV4	NC_019856.1	Pan troglodytes verus	NA	Cote d'Ivoire	NA	5349	P	[25]	
26	Pan troglodytes verus polyomavirus 5	PtrovPyV5	NC_019857.1	Pan troglodytes verus	NA	Cote d'Ivoire	NA	4994	P	[25]	
No.	ICTV Taxonomy	Virus name	Abbr.	NCBI Reference Sequence	Host species	Isolation source	Country	Year	bp	Group (host)	Ref.
-----	--------------	------------	-------	-------------------------	-------------	------------------	---------	------	----	-------------	------
27	Pan troglodytes schweinfurthii polyomavirus 2	PtrosPyV2	NC_019858.1		Pan troglodytes schweinfurthii	NA	Uganda	NA	4970	P	[25]
28	Pan troglodytes verus polyomavirus 1a	PtrovPyV1a	NC_025368.1		Pan troglodytes verus	NA	Cote d’Ivoire	2009	5303	P	[31]
29	Piliocolobus badius polyomavirus 2	PbadPyV2	NC_039051.1		Piliocolobus badius	NA	Cote d’Ivoire	2005	5148	P	[36]
30	Piliocolobus rufomitratus polyomavirus 1	PrufPyV1	NC_019850.1		Piliocolobus rufomitratus	NA	Cote d’Ivoire	NA	5140	P	[25]
31	raccoon polyomavirus	RacPyV	NC_028485.1		raccoon	NA	USA	2011	5016	M	[37]
32	Rattus norvegicus polyomavirus 1	RnorPyV1	NC_027531.1		Rattus norvegicus	spleen	Germany	2005	5318	M	[38]
33	bat polyomavirus 3a-B0454	BatPyV3a-B0454	NC_038557.1		Sturnia lilium	spleen	French Guiana	2011	5058	M	[24]
34	Sumatran orang-utan polyomavirus	OraPyV-Sum	NC_028127.1		Pongo abelii	blood	NA	NA	5358	P	[27]
35	Trichodysplasia spinulosa-associated polyomavirus	TSPyV	NC_014361.1		Homo sapiens	skin	Netherlands	2009	5232	H	[15]
36	yellow baboon polyomavirus 1	YbPyV1	NC_025894.1		Papio cynocephalus	spleen	Zambia	2009	5064	P	[30]
37	African elephant polyomavirus 1	AePyV1	NC_022519.1		Loxodonta africana	protruding ulcerated fibroma	Denmark	2011	5722	M	[39]
38	BatPyV4a	BatPyV4c	NC_028588.1		Artibeus planirostris	spleen	French Guiana	2011	5371	M	[24]
39	Myodes glareolus polyomavirus 1	BVPyV	NC_028117.1		Myodes glareolus	blood serum and body fluids	Germany	2013	5032	M	[40]
40	bat polyomavirus 6a	BatPyV6a	NC_026762.1		Acerodon celebensis	spleen	Indonesia	2013	5019	M	[26]
41	bat polyomavirus 6b	BatPyV6b	NC_026770.1		Dobsonia moluccensis	spleen	Indonesia	2012	5039	M	[26]
42	bat polyomavirus 6c	BatPyV6c	NC_026769.1		Dobsonia moluccensis	spleen	Indonesia	2012	5046	M	[26]
43	California sea lion polyomavirus 1	SLPyV	NC_013796.1		Zalophus californianus	tongue	USA	2006	5112	M	[41]
44	Cebus albifrons polyomavirus 1	CalbPyV1	NC_019854.2		Cebus albifrons	NA	Germany	NA	5013	P	[25]
45	Cercopithecus erythrotis polyomavirus 1	CeryPyV1	NC_025892.1		Cercopithecus erythrotis	NA	Cameroon	NA	5189	P	[25]
46	vervet monkey polyomavirus 2	VmPyV2	NC_025896.1		Chlorocebus pygerythrus	kidney	Zambia	2009	5167	P	[30]
47	Microtus arvalis polyomavirus 1	CVPyV	NC_028119.1		Microtus arvalis	blood serum and body fluids	Germany	2013	5024	M	[40]
48	bat polyomavirus 2a	BatPyV2a	NC_028122.1		Desmos rotundus	spleen	French Guiana	2011	5201	M	[24]
49	equine polyomavirus	EPyV	NC_017982.1		Equus caballus	eye	USA	2003	4987	M	[42]
50	BK polyomavirus	BKV, BKPyV	NC_001538.1		Homo sapiens	NA	NA	NA	5153	H	[43]
51	K Polyomavirus	KIPyV	NC_009238.1		Homo sapiens	NA	NA	NA	5040	H	[44]
Table 2: Description of sequence data used in this study (Continued)

No.	ICTV Taxonomy	Virus name	Abbr.	NCBI Reference Sequence	Host species	Isolation source	Country	Year	bp	Group (host)	Ref.
52	JC polyomavirus	JCV; JCPyV	NC_001699.1	Homo sapiens	NA	NA	NA	5130	H	[45]	
53	Weddell seal polyomavirus	WsPyV	NC_032120.1	Leptonychotes weddellii	kidney	Antarctica	2014	5186	M	NA	
54	simian virus 40	SV40	NC_001669.1	Macaca mulatta	NA	NA	NA	5243	P	[46]	
55	Mastomys polyomavirus	MasPyV	NC_025895.1	Mastomys natalensis	spleen	Zambia	2009	4899	M	[47]	
56	Meles meles polyomavirus 1	MmelPyV1	NC_026473.1	Meles meles	salivary gland	France	2014	5187	M	[48]	
57	Miniopterus polyomavirus	MiniopterusPyV	NC_020069.1	Miniopterus africanus	rectal swab	Kenya	2006	5213	M	[28]	
58	mouse pneumotropic virus	MIPvV	NC_001505.2	Mus musculus	NA	NA	NA	4754	M	[49]	
59	Myotis polyomavirus	MyPyV	NC_011310.1	Myotis lucifugus	NA	Canada	2007	5081	M	[50]	
60	Pan troglodytes verus polyomavirus 8	PtrovPyV8	NC_028635.1	Western chimpanzee	colon	Netherlands	2014	5163	P	[51]	
61	Pteronotus polyomavirus	PteronotusPyV	NC_020070.1	Pteronotus davyi	oral swab	Guatemala	2009	5136	M	[28]	
62	bat polyomavirus 2b	BatPyV2b	NC_028121.1	Pteronotus parnellii	spleen	French Guiana	2011	5041	M	[24]	
63	rat polyomavirus 2	RatPyV2	NC_032005.1	Rattus norvegicus	NA	USA	2016	5108	M	NA	
64	Saimiri sciureus polyomavirus 1	SsciPyV1	NC_038559.1	Saimiri sciureus	NA	Germany	2006	5067	P	NA	
65	squirrel monkey polyomavirus	SquiPyV	NC_009951.1	Saimiri boliviensis	spleen	NA	NA	5075	P	[52]	
66	alpaca polyomavirus	AlPyV	NC_034251.1	Vicugna pacos	NA	USA	2014	5052	M	[53]	
67	WU polyomavirus	WUPyV	NC_009539.1	Homo sapiens	NA	Australia	2009	5229	H	[54]	
68	yellow baboon polyomavirus 2	YbPyV2	AB767295.2	Papio cynocephalus	spleen and kidney	Zambia	2009	5181	P	[30]	
69	Human polyomavirus 6	HPyV6	NC_014406.1	Homo sapiens	skin	USA	2009	4926	H	[16]	
70	Human polyomavirus 7	HPyV7	NC_014407.1	Homo sapiens	skin	USA	2009	4952	H	[16]	
71	MW polyomavirus	MWPyV	NC_018102.1	Homo sapiens	stool	Malawi	2008	4927	H	[55]	
72	STL polyomavirus	STLPyV	NC_020120.1	Homo sapiens	fecal specimen	Malawi	2009	4776	H	[56]	
73	Adélie penguin polyomavirus	ADPyV	NC_026141.2	Pygoscelis adeliae	fecal material	Antarctica	2012	4988	A	[57]	
74	budgerigar fledgling disease virus	BFDV	NC_004764.2	Falconiformes and Psittaciformes (wild birds)	NA	NA	NA	4981	A	[58]	
75	butcherbird polyomavirus	Butcherbird PyV	NC_023008.1	Cragon crotatus	periocular skin	Australia	2009	5084	A	[59]	
76	canary polyomavirus	CaPyV	NC_017085.1	Serinus canaria	liver	Netherlands	2007	5421	A	[60]	
77	crow polyomavirus	CpyV	NC_017085.1	Corvus monedula	NA	NA	NA	5079	A	[22]	
Table 2 Description of sequence data used in this study (Continued)

No.	ICTV Taxonomy	Virus name	Abbr.	Accession No.	Host species	Isolation source	Country	Year	bp	Group (host)	Ref.
78	Erythrura gouldiae polyomavirus 1	EgouPyV1	NC_039052.1	Erythrura gouldiae	liver	Poland	2014	5172	A	[61]	
79	finch polyomavirus	FPYV	NC_007923.1	Pyrrhula pyrrhula grieseventris	NA	NA	2005	5278	A	[22]	
80	goose hemorrhagic polyomavirus	GHPV	NC_004800.1	goose	NA	Germany	2001	5256	A	[62]	
81	Hungarian finch polyomavirus	HunFPyV	NC_039053.1	Lonchura maia	kidney and liver	Hungary	2011	5284	A	[63]	
82	black sea bass-associated polyomavirus 1	BassPyV1	NC_025790.1	Centropristis striata	NA	USA	2014	7369	F	[64]	
83	bovine polyomavirus	BPYV	NC_001442.1	Bos taurus	kidney	NA	NA	4697	M	[65]	
84	dolphin polyomavirus 1	DPyV	NC_025899.1	Delphinus delphis	trachea	USA	2010	5159	M	[66]	
85	giant guitarfish polyomavirus	GfPyV1	NC_026244.1	Rhynchobatus djiddensis	skin lesion	USA	2014	3962	F	[67]	
86	sharp-spined notothenia polyomavirus	SspPyV	NC_026944.1	Trematomus pennelli	NA	Antarctica	2013	6219	F	NA	

No. 1~36: Alphapolyomaviruses; No. 37~68: Betaphapolyomaviruses; No. 69~81: Gammapolyomaviruses; No. 82~86: Unassigned polyomaviruses; NA Not available

All 86 viruses were classified into 5 groups according to their host as follows: non-primate mammals (Group M); non-human primate (Group P); human (Group H); avian (Group A); fish (Group F)

codon usage bias in genes. The PR2 plot positions the AT-bias \([A_3/(A_3 + T_3)]\) and GC-bias \([G_3/(G_3 + C_3)]\) at the third codon of four-codon amino acids [fourfold degenerate codon families: Ala (A), Arg (R), Gly (G), Leu (L), Pro (P), Ser (S), Thr (T), and Val (V)] of the entire genome are shown on the vertical axis (y) and horizontal axis (x), respectively. The location of the plot with both coordinates at 0.5 is \(A = T, G = C\) (PR2), indicating no bias between the effects of mutation and natural selection (replacement rate). The distance between the coordinate position (0.5, 0.5) and the plot dot, which is the center of the plot, indicates the degree and direction of the PR2 bias [74, 75].

Neutral evolution analysis

Neutrality plots are used to evaluate the relationship between the third codon positions to reflect the role of directional mutation pressure. Consequently, the gradients of the regression lines in the neutrality plot depict the relationship between GC12s and GC3s, elucidating the evolutionary rates of directional mutation pressure–natural selection equilibrium. When the gradient of the regression line is 0 (all plot dots are located on a line parallel to the abscissa), there are no effects from directional mutation pressure. When the gradient is 1 (all plot dots are located on the diagonal), we have complete neutrality. Therefore, the regression lines of the neutrality plot can be used to determine the main factor controlling evolution by measuring the degree of neutrality [76]. DnaSP v. 5.10.01 [71] was used to calculate Tajima’s D [77], Fu and Li’s D*, and F* [78] as tests of neutrality. Tajima’s D statistic measures the departure from neutrality for all mutations in a genomic region [77] and is based on the differences between the number of segregating sites and the average number of nucleotide differences. Fu and Li’s D* test is based on the differences between the number of singletons (mutations appearing only once in the sequence) and the total number of mutations. Fu and Li’s F* test is based on the differences between the number of singletons and the average number of nucleotide differences between every pair of sequences [78, 79].

Relative synonymous codon usage (RSCU) analysis

Relative synonymous codon usage (RSCU), a measure of the preference for the use of a synonymous codon, is defined as the ratio of the observed number of synonymous codons used to the expected value of the codon occurrence frequency [80]. In general, codons with an RSCU value greater than 1.0 are considered to have a higher preference (abundant codons), and those with an RSCU value lower than 1.0 have a lower preference (less-abundant codons). When the
No.	Abbr.	Accession no.	DnaJ domain	LXCXE motif	Helicase domain						
1	BatPyV4a	NC_038556.1	12 67 168	107 111	LRCDE						
2	ApanPyV1	NC_019853.1	12 77 198	122 126	LFCNE						
3	BatPyV5b-1	NC_026767.1	12 74 189	111	–						
4	BatPyV5a	NC_026768.1	12 67 168	–	382 546 495						
5	OraPyV-Bor	NC_013439.1	12 77 198	122 126	LFCDE						
6	CardiodermaPyV	NC_020067.1	12 77 198	212 216	LYCDE						
7	BatPyV4b	NC_028120.1	–	152 156	LLCEE						
8	ChiPyV	NC_014743.1	12 96 255	–	379 580 606						
9	VmPyV1	NC_019844.1	12 80 207	107 111	LHCNE						
10	VmPyV3	NC_025898.1	12 75 192	131 135	LFCSE						
11	EidolonPyV	NC_002068.1	–	236 240	LRCDE						
12	GgorgPyV	NC_020067.1	–	200 204	LFCDE						
13	HPyV9	NC_015150.1	12 86 225	123 127	LFCSE						
14	HPyV12	NC_020890.1	–	–	473 635 489						
15	MfasPyV1	NC_019851.1	12 86 225	125 129	LFCDE						
16	MCPyV	NC_012272.1	–	212 216	LFCDE						
17	HaPyV	NC_001663.2	–	130 134	LTCQE						
18	BatPyV3b	NC_028123.1	–	107 111	LYCDE						
19	MPyV	NC_001515.2	–	142 146	LFCDE						
20	NIHPyV	NC_024118.1	12 80 207	107 111	LHCDE						
21	OtoromopsPyV	NC_020066.1	12 92 243	107 111	LFCDE						
22	OtoromopsPyV	NC_020071.1	–	185 189	LRCDE						
23	ProovPyV2a	NC_025370.1	–	200 204	LFCDE						
24	ProovPyV3	NC_019855.1	12 75 192	–	486 646 483						
25	ProovPyV4	NC_019856.1	12 75 192	–	489 646 474						
26	ProovPyV5	NC_019857.1	12 86 225	123 127	LFCSE						
27	ProovPyV2	NC_019858.1	12 85 222	108 112	LFCDE						
28	ProovPyV1a	NC_025368.1	–	203 207	LFCDE						
29	PbapPyV2	NC_039051.1	12 92 243	107 111	LHCNE						
30	PruPyV1	NC_019850.1	12 93 246	107 111	LHCNE						
31	RaPyV	NC_023845.1	–	167 171	LFCDE						
32	RnorPyV1	NC_027531.1	–	128 132	LFCDE						
33	BatPyV3a-B0454	NC_038557.1	–	107 111	LHCNE						
34	OraPyV-Sum	NC_028127.1	12 75 192	–	489 649 483						
35	TSPyV	NC_014361.1	12 77 198	122 126	LFCDE						
36	YbPyV1	NC_025894.1	12 75 192	131 135	LFCSE						
37	AelPyV1	NC_022519.1	–	–	400 564 495						
38	BatPyV2c	NC_038558.1	–	223 227	LLCEE						
39	BVPyV	NC_028117.1	12 67 168	146 150	LFCDE						
40	BatPyV6a	NC_026762.1	–	84 88	LFCDE						
41	BatPyV6b	NC_026770.1	–	–	407 570 492						
42	BatPyV6c	NC_026769.1	–	–	426 587 486						
43	SLPyV	NC_013796.1	12 77 198	113 117	LHCNE						
44	CalbPyV1	NC_019854.2	–	100 104	LFCDE						
45	CeryPyV1	NC_025892.1	12 75 192	105 109	LFCDE						
No.	Abbr.	Accession no.	DnaJ domain	LXCXE motif	Helicase domain						
-----	-------	---------------	-------------	-------------	----------------						
			Start	End	nt length	Start	End	a.a. sequence	Start	End	nt length
46	VmPyV	NC_025896.1	12 75	192		105 109	LFCHE	402 562	483		
47	CVPyV	NC_028119.1	12 67	168		145 149	LSCNE	382 573	576		
48	BatPyV2a	NC_028122.1	12 80	207		– –	–	406 565	480		
49	EpV	NC_017982.1	12 86	225		105 109	LRCDE	402 562	483		
50	BKPyV	NC_001538.1	12 75	192		105 109	LFCHE	402 562	483		
51	KIPyV	NC_009238.1	– –	–		108 112	LRCNE	410 572	489		
52	JCPyV	NC_001699.1	12 75	192		105 109	LFCHE	401 561	483		
53	WsPyV	NC_032120.1	12 77	198		113 117	LHCNE	400 561	486		
54	SV40	NC_001669.1	12 75	192		103 107	LFCSE	400 560	483		
55	BKPyV	NC_001538.1	– –	–		101 105	LFCNE	414 576	489		
56	MmePyV1	NC_026473.1	12 80	207		111 115	LRCDE	365 559	585		
57	MiniPyV	NC_020069.1	12 75	192		103 107	LHCHE	369 560	576		
58	PMPYV	NC_001505.2	– –	–		103 107	LFCNE	418 573	468		
59	MyPyV	NC_011310.1	– –	–		– –	–	441 603	489		
60	PtrovPyV8	NC_028635.1	12 80	207		105 109	LFCHE	402 562	483		
61	PeronotusPyV	NC_020070.1	12 80	207		108 112	LRCDE	405 564	480		
62	BatPyV2b	NC_028121.1	12 80	207		108 112	LRCDE	406 617	636		
63	RatPyV2	NC_032005.1	12 79	204		178 182	LHCDE	474 634	483		
64	SsciPyV1	NC_038559.1	– –	–		101 105	LFCHE	410 572	489		
65	SquiPyV	NC_009951.1	– –	–		101 105	LFCNE	411 570	480		
66	AILPyV	NC_001425.1	12 67	168		107 111	LYNCE	407 567	483		
67	WUPyV	NC_001425.1	12 89	234		108 112	LRCNE	417 579	489		
68	YbPyV	AB767295.2	12 75	192		105 109	LFCHE	402 562	483		
69	HPyV5	NC_011406.1	– –	–		109 113	LYYCE	393 571	537		
70	HPyV6	NC_011407.1	– –	–		109 113	LYYCTE	416 576	483		
71	MWPYV	NC_018102.1	– –	–		105 109	LSCNE	421 580	480		
72	STLPyV	NC_020170.1	12 83	216		105 109	LSCNE	406 566	483		
73	ADPyV	NC_026141.2	8 61	162		69 73	LYYCE	408 582	525		
74	BFIV	NC_004764.2	6 82	231		– –	–	372 532	483		
75	Butcherbird PyV	NC_020308.1	8 67	180		70 74	LFCDE	410 572	489		
76	CaPyV	NC_017085.1	8 61	162		67 71	LSCNE	390 550	483		
77	CppV	NC_007922.1	11 80	210		69 73	LQQEE	405 569	495		
78	EgoupPyV1	NC_039052.1	8 75	204		70 74	LYYCE	374 572	597		
79	FPyV	NC_007923.1	6 70	195		60 64	LFCCDE	382 543	486		
80	GHPyV	NC_004800.1	8 81	222		65 69	LFCCDE	404 599	588		
81	HunFPyV	NC_039053.1	6 77	216		60 64	LFCCDE	382 543	486		
82	BassPyV1	NC_025790.1	– –	–		105 109	LMCGE	338 495	474		
83	BPyV	NC_001442.1	10 73	192		93 97	LHCNE	391 586	588		
84	DPyV	NC_025899.1	11 77	201		82 86	LYYCE	357 536	540		
85	GPyV1	NC_026244.1	– –	–		– –	–	348 517	510		
86	SspPyV	NC_026944.1	– –	–		– –	–	372 529	474		

ScanProsite results together with ProRule-based predicted intra-domain features were used for functional domains retained in LT-Ag of PyVs. LXCXE motifs and their encoding sequences were extracted through the JAVA programming.
RSCU value is equal to 1.0, either the preference for synonymous codons is the same or the codon usage is random [81]. Specifically, a codon with an RSCU value of 1.6 or more is an over-represented codon, and a codon with an RSCU value of 0.6 or less is considered an under-represented codon (≤0.6) [82]. Using the CodonW and CAIcal programs, the RSCU values of the sequences of the 54 DnaJ domains and 86 helicase domains were calculated, along with 86 LT-Ag gene CDS. Comparative analysis and visualization of each group were performed using XLSTAT.

Calculation of the codon adaptation index (CAI)
The codon adaptation index (CAI) is a quantitative measurement ranging from 0 to 1 that predicts gene expression levels based on CDS. The most frequent codons show the highest relative adaptation to the host, and sequences with a higher CAI are preferred over those with a lower CAI [83]. CAI analysis of the LT-Ag gene CDS was carried out using CAIcal [84], and the synonymous codon usage pattern of Homo sapiens, which was downloaded from the Codon Usage Database (CUD) [85], was used as the reference dataset.

Correspondence analysis (COA)
Each group of RSCU values was analyzed using the correspondence analysis (COA) method, and the results were visualized using XLSTAT. Individual data representing the LT-Ag gene coding region were expressed as a vector with 59 dimensions, and we included 59 codons, excluding methionine (ATG) and tryptophan (TGG), without synonymous codons in the analysis.

Selection pressure analysis
The number of non-synonymous substitutions per non-synonymous site (dN), the number of synonymous substitutions per synonymous site (dS), and the dN/dS ratios for the nucleotide sequences of the LT-Ag genes and two domains were estimated for all isolates in each virus group using MEGA 7.0.26 [69]. A gene is under positive (or diversifying) selection when the dN/dS ratio is > 1, neutral selection when dN/dS ratio = 1, and negative (or purifying) selection when the dN/dS ratio < 1.
Sequence similarity and evolutionary relationships among PyVs

Phylogenetic analyses using the LT-Ag gene, DnaJ domain, and helicase domain revealed that, except for two bat viruses, Alphapolyomavirus and Betapolyomavirus were grouped independently, and Gammapolyomavirus formed a separate cluster. Deltapolyomavirus and the unassigned viruses clustered together or were independent in all of the trees. Thus, except for some exceptional cases [bat PyV 2c (BatPyV2c), bat PyV 4a (BatPyV4a), and DPyV] in the ML-based tree, the viruses were generally grouped by genes. When the clustering pattern per host was examined, Groups M, P, and H formed a large cluster. In other trees, except for the DnaJ domain-based tree for which domain information was lacking (Group F was not included in the analysis), Group A (avian viruses) and Group F (fish viruses) were grouped independently (Fig. 1).

Compositional properties of LT-Ag genes

To confirm the effect of differences in composition on the codon usage patterns observed in 86 PyV species isolated from different hosts, we analyzed the nucleotide compositions of the complete sequences of the LT-Ag genes, as well as those of the DnaJ domain and helicase domain regions of the LT-Ag protein, in each virus (Table 4). These domains play particularly important roles in the biochemical function of LT-Ag and are relatively well conserved in various PyV species compared to other domain regions. Thus, it is possible to extract more accurate homologous sequences based on the protein sequence pattern and profile information using these domains. Hence, these became the subjects of this analysis. After analyzing the mean composition of each group (%), nucleotide A was the highest in all groups, and C was lowest in all sequences except for the DnaJ domain CDS of Group A (Fig. 2). In the nucleotides observed at the third position of the synonymous codons (A3, T3, G3, and C3), G3 was higher than C3. T3 was higher than A3 in all groups except Group A, H, and P of the DnaJ domain. In all analyzed sequences, the GC and GC3 values were significantly higher in Groups A and F (> 45), and Groups H, M, and P exhibited high AT and AT3 values (> 60). In particular, group H viruses had significantly higher AT3 values (> 70). According to the nucleotide frequency at the third position of the codon, all sequences except the DnaJ domain CDS of avian PyVs belonging to Group A were AT-rich, but at the individual nucleotide level, G and A were dominant over C and T. In previous studies, the GC values for the entire genomes of JCPyV, BKPyV, SV40, budgerigar fledgling disease virus (BFDV), MPyV, goose hemorrhagic PyV (GHPyV), and bovine PyV (BPyV) were 0.41, 0.41, 0.42, and 0.42, respectively.
and the GC3 values were 0.3, 0.28, 0.31, 0.45, 0.42, 0.43, and 0.33, respectively [86]. Based on the LT-Ag CDS results for the above viruses, the %GC values of the corresponding virus were 38.12, 35.82, 37.85, 46.44, 46.57, 44.43, and 38.55, respectively, and the %GC3 values were 33.82, 28.16, 34.27, 47.67, 44.06, 44.11, and 33.06, respectively. As in previous studies using whole genome sequences, the GC and GC3 values of the bird PyV in the LT-Ag gene were higher than those of the mammalian PyV.

Fig. 2 Compositional features of nucleotide sequences of LT-Ag coding genes, DnaJ domains, and helicase domains.

- **a** Nucleotide distribution of A, C, U, and G.
- **b** Distribution frequency calculated only for the third codon base.
- **c** GC and AT content at all codon positions (GC% and AT%) and at the third position (GC3s and AT3s).

Fig. 3 The range of ENC values of the LT-Ag genes and two functional domains. The cross (×) indicates the mean ENC value, and the dot (•) indicates the minimum/maximum ENC value of the LT-Ag genes and two domains within LT-Ag. Each group, which we classified by host, was composed of 9 (Group A), 3 (Group F), 13 (Group H), 36 (Group M), and 25 (Group P) nucleotide sequence data of LT-Ag genes and helicase domains. DnaJ domains were not identified in 32 protein sequences, including 3 fish PyVs; thus, a total of 54 sequence data were used for the analysis.
Codon usage patterns in the LT-Ag genes from different hosts

The ENC values were calculated to estimate the magnitude of the codon usage bias in the LT-Ag sequences of the PyVs. A mean value of 45.4 ± 4.9 was confirmed for all LT-Ag gene sequences analyzed. The lowest ENC value was observed in dolphin PyV 1 (DPyV) (34.8), and the highest value was observed in BFDV (58.4). Groups A and F viruses had ENC ranges of 50.8–58.4 and 52.7–58.1, respectively. The mean ENC values of Groups H, M, and P viruses were 42.254, 45.078, and 43.520, respectively, significantly lower than those of Groups A and F (53.311 and 55.700, respectively). Thus, the sequence compositions in the LT-Ag gene according to host species had higher ENC values (> 50) in avian PyV and fish PyV than in mammalian PyV (Groups M, P, and H), implying that the codon diversity was greater in the LT-Ag CDS region of Groups A and F viruses.

A similar ENC range pattern was observed in both domains. In the DnaJ domain, Group A viruses had an
Fig. 5 PR2-bias plot analysis. A3/(A3 + T3) were plotted against G3/(G3 + C3). The A3 content is greater than T3, and the G3 content is greater than C3 in CDS of LT-Ag genes, DnaJ domains, and helicase domains from different host species. These LT-Ag genes and their retained domains prefer to use the T-end and G-end codons.
LT-Ag gene

![Chart for LT-Ag gene](image)

DnaJ domain

![Chart for DnaJ domain](image)

Helicase domain

![Chart for Helicase domain](image)

Fig. 6 (See legend on next page.)
ENC range of 47.26–61.0. The mean ENC values of Groups H, M, and P viruses were 39.5, 42.0, and 39.3, respectively, significantly lower than the mean ENC value of Group A (53.0). In the helicase domain, Groups A and F viruses had ENC ranges of 44.94–56.81 and 46.53–61.0, respectively. The mean ENC values of Groups H, M, and P viruses were 40.8, 44.3, and 42.0, respectively, which were significantly lower than those of Groups A and F (51.5 and 53.9, respectively). These results indicate that host-specific ENC value distribution characteristics were present in the LT-Ag gene and the CDS of the domain regions contained in the LT-Ag gene. Whereas avian PyV and fish PyV included significant codon diversity, mammalian viruses belonging to Groups M, P, and H exhibited conservative and host-specific evolution of codon usage bias (Table 4, Fig. 3). Genetic variability, which was estimated by measuring the average number of pairwise nucleotide differences (k) and nucleotide diversity (π), was highest for the LT-Ag gene (k = 910.333, π = 0.54939) and helicase domain (k = 210, π = 0.46358) in Group F (Table 5).

The NC plot showing the relationship between ENC and GC3 revealed that the results from excluding eight DnaJ domains and three helicase domain CDS, while including the entire LT-Ag gene CDS were plotted under the expected ENC curve, suggesting that the codon usage was biased. This pattern was observed overall, regardless of group. However, in the LT-Ag gene sequence analysis, Groups A and F viruses exhibited more diverse codon usage, as they were located closer to the expected ENC curve. However, Groups M, P, and H had relatively more biased codon usage (Fig. 4). This codon usage pattern was consistent with the characteristics of the avian virus, which is known to have a broad host range, as opposed to the mammalian virus, with a narrow host range [7].

PR2 and neutrality analyses were performed to investigate the effects of mutation pressure and natural selection on codon usage patterns of LT-Ag CDS of PyVs. After analyzing the relationship between AT and GC contents, A was used at the third codon position of 65 fourfold degenerate codon families of 86 gene sequences at a frequency higher than or equal to T; in the fourfold degenerate codon families of 45 gene sequences, G was used at a frequency equal to or greater than C. In the DnaJ domain, A was used at the third codon position of 43 fourfold degenerate codon families of 54 gene sequences at a frequency higher than or equal to T, and in the fourfold degenerate codon families of 31 gene sequences, G was used at a frequency greater than or equal to C. In the helicase domain, A was used at the third codon position of 64 fourfold degenerate codon families of 86 sequences at a frequency higher than or equal to T, and in the fourfold degenerate codon families of 63 gene sequences, G was used at a frequency equal to or greater than C. When the distances and directions of all plot dots from the plot coordinate (0.5, 0.5) were examined, there were no significant differences between groups, and various distance distributions and similar directionality (T → A) were detected. Therefore, the bias shown in the PR2 plot results from the difference in the usage frequencies of T and A, which is generally shown in the fourfold degenerate codon families of the sequences encoding the LT-Ag genes of the PyVs and the domains contained therein, rather than differences between the groups. Unequal use of these nucleotides may imply the overlapping effect of natural selection and mutation pressure on codon selection in the corresponding gene sequences (Fig. 5). Negative values of Tajima’s D, Fu and Li’s D*, and Fu and Li’s F* were obtained for the DnaJ domain in Group H, indicating an excess of low-frequency polymorphisms caused by background selection, genetic hitchhiking, or population expansions [79, 87, 88]. The values of Tajima’s D, Fu and Li’s D*, and Fu and Li’s F* for the helicase domain in the overall population were positive, which arose from an excess of intermediate-frequency alleles and can result from population bottlenecks, structure, or balancing selection [87]. However, the P-values for Tajima’s D, Fu and Li’s D*, and Fu and Li’s F* tests were not significant (P > 0.10) in all cases (Table 5), indicating that the results were less convincing; it is also plausible that purifying selection is acting on each of the viral groups. It was impossible to do these statistical tests for the DnaJ domain in Group F, as the analysis using DnaSP software requires at least four sequences [71].

In terms of the evolution of synonymous codon usage, mutation pressure either increases or decreases the GC content, and the GC content (GC3) at the third codon position expresses the most neutral nucleotides that make an important contribution to directional mutation pressure [76]. Thus, the effect of directional mutation
Fig. 7 RSCU analysis of PyVs. There is variation in the differences between the codon preferences of the five groups in terms of the LT-Ag genes. We can see that there are relatively large differences among groups in the RSCU values of specific codons, such as codon AGA(ARG) and TTA(LEU).
and natural selection on the codon usage pattern of the PyV's LT-Ag gene CDS isolated from different host species and two functional domains contained in the gene was estimated based on the neutrality plot. Neutrality analysis also confirmed that mutation pressure and natural selection both affected the codon usage bias of the LT-Ag gene CDS. The analyzed genes showed a narrow GC12 distribution and a wide GC3 distribution, indicating a significant correlation ($r = 0.715$, $p < 0.0001$). This may indicate high mutation bias or highly variable GC contents in the corresponding genes. When comparing the gradients of the regression lines for each group, Group F had the largest regression slope of 0.5957, followed by Groups P (0.2476), H (0.2298), M (0.2135), and A (0.1654). This indicates that the relative neutrality (directional mutation pressure) of the viruses belonging to each group was 59.57%, 24.76%, 22.98%, 21.35%, and 16.54%, respectively. Therefore, the contribution of natural selection to the codon usage pattern of each group was, in descending order, Groups H (89.51%), P (86.92%), M (83.51%), and A (81.87%). Group F was less affected by natural selection than the other groups were (74.58%).

In the case of the DnaJ domain, natural selection had a relatively low effect on Group A (58.24%), whereas its effect on other groups (Groups H, M, and P) was 80% or higher. Thus, the effect of the relative neutrality (directional mutation pressure) was found to be large (Fig. 6).

Variation in RSCU value and codon usage preference

We calculated the RSCU values reflecting the codon preference in the LT-Ag genes of PyVs and analyzed their distribution pattern by group (Fig. 7) to compare them in terms of their host species (Fig. 8). First, the total mean RSCU values of the LT-Ag gene CDS in 86 species were calculated. The mean RSCU values for TTA (leu), ATT (ile), CCT (pro), GCT (ala), and AGA (arg) were 1.88, 1.62, 1.76, 1.74, and 3.78, respectively.

Fig. 8 Difference in RSCU values of 86 PyVs. Respective RSCU of the 86 LT-Ag coding genes, 54 DnaJ domain coding sequences, and 86 helicase coding sequences. All RSCU values are shown in the chromaticity diagram via chromaticity co-ordinates. The chrominance difference enables visual comparison of large data sets with various host species.
Thus, they were over-represented codons. When the distribution pattern for each group was examined, the differences in codon usage preference among the mammalian viruses belonging to Groups H, M, and P were not significant. The difference between Groups A and F and the three groups of avian and fish viruses was relatively large. When the mean RSCU values of each group were compared, Groups H, M, and P had mean RSCU values of 1.6 or higher in codon TTT (phe), TTA (leu), ATT (ile), and GCT (ala), differing from Groups A and F. Codon AGA (arg) exhibited the largest difference in codon usage preference among the groups, and the mean RSCU value for each group was 1.55 (Group A), 2.07 (F), 4.40 (H), 3.90 (M), and 4.28 (P). The color distribution according to the group or host species in Fig. 8 confirms such differences. Based on the analysis of each domain, the mean RSCU values of CCT (pro), ACT (thr), AGA (arg), and GGA (gly) were 2.13, 1.64, 3.88, and 1.64, respectively, in terms of the 54 DnaJ domain CDS. Thus, they were over-represented codons. When we compared the mean RSCU values of each group, Groups H, M, and P had values greater than 1.6 or higher in codon TCT (ser), CCT (pro), and ACT (thr), showing differences from Group A. The total mean RSCU values for 86 helicase domain CDS were 1.66, 2.00, 2.09, 1.95, 1.70, and 4.12 for TTT (phe), TTA (leu), AGT (ser), CCT (pro), GCT (ala), and AGA (arg), respectively, indicating over-represented codons. When the mean RSCU values of the groups were compared, Groups H, M, and P had values greater than 1.6 in codon TTT (phe), TTA (leu), and ACT (thr), differing from Groups A and F. The codons AGT (ser) and CCT (pro) had values greater than 1.6 in all groups except Group F. Similar to the LT-Ag gene CDS, the greatest difference in codon usage preference between the groups was detected in the case of codon AGA (arg) in the two functional domains. The mean RSCU values for each group were 1.6 (Group A), 4.76 (H), 4.47 (M), and 4.05 (P) in the DnaJ domain and 2.13 (Group A), 2.26 (F), 4.76 (H), 4.18 (M), and 4.63 (P) in the helicase domain.

A preference for a particular codon is a common evolutionary phenomenon, reflecting the evolution of the biological group and carrying important meaning as a tool for explaining basic biological phenomena at the molecular level. RSCU analysis is one of the most important methods for analyzing synonymous codons in various organisms, including viruses. As shown in Fig. 7 and Fig. 8, the RSCU values of 86 LT-Ag genes differed by group and host, and there were differences in preference for codon usage. In Table 6 and Fig. 9, the results of comparing the mean RSCU and codon frequencies between different viral groups with their respective host species are seen more clearly. Notably, the greatest difference in codon usage preference between genes and groups was detected in codon AGA (arg) of all datasets. The CAI was calculated to compare the adaptability of synonymous codon usage. In this study, the CAI value of H. sapiens was used as the reference dataset. The range of the total value was 0.690–0.790, and the mean ± standard deviation was 0.74 ± 0.02. The CAI values did not vary significantly between groups, and PyVs derived from various host species generally had high similarity to the reference data in terms of both codon usage pattern and expression level. Thus, regardless of the host species, they showed relatively high adaptability in human hosts.

COA results for RSCU values
We carried out COA using the RSCU value to identify trends associated with differences in codon preference among the gene sequences used in this study. In the COA-RSCUs generated in this study, axis 1 (y) and axis 2 (x) accounted for 74.01 and 14.96% of the total mutations, respectively. Figure 10 shows the COA results for over-represented codons, with RSCU values greater than or equal to 1.6, calculated from 86 LT-Ag gene CDS. Scatter plots B–F show high similarity in terms of the distribution patterns of the plot dots in the range (−0.2 to +0.3, −0.4 to +0.4) in all groups. Specifically, two dots plotted outside the corresponding range were identified as LT-Ag genes of BFDV and Adélie penguin PyV (ADPyV). Thus, they were presumed to indicate mutations in codon usage patterns. These are all avian PyVs belonging to Group A, and host species are wild birds and Pygospio adeliae (Adélie penguin), respectively (Fig. 10). The distances between the genes in the plots shown in Fig. 10 reflects the dissimilarity in the RSCU with respect to axis 1 and axis 2. These results explain a significant portion (74.01%) of the variation in codon usage in 86 LT-Ag genes, so natural selection may have played a very important role.

Selection pressure
The dN/dS ratio was used to estimate the natural selection pressure acting on the LT-Ag gene. The average dN/dS values for the DnaJ and helicase domains in the overall population and in each Group (Groups A, H, M, and P for DnaJ; Groups A, F, H, M, and P for helicase) were less than 1, showing that these two functional regions experience negative selection pressure (Table 5). Similarly, negative selection pressure was estimated for LT-Ag sequence pairs within Groups A, F, M, and P, ranging from 0.282 to 0.684, while the values within the overall population and Group H exceeded 1, which suggests that human PyVs have evolved by positive selection.
Discussion

In this study, we compared the nucleotide sequences encoding all PyV-encoded LT-Ag that have been classified so far and their major domains. Of the various virus species used for analysis, avian PyVs differed significantly from mammalian PyVs in terms of nucleotide composition, ENC value, and codon usage patterns. Avian PyVs are known to cause acute and chronic diseases in various bird species (Table 3). In particular, PyV disease [19–22], which is caused by BFDV and FPV (finch PyV) infection, and hemorrhagic nephritis and enteritis [23], which is caused by GHPV infection, are inflammatory diseases that cause high mortality in young avians. The high virulence of these avian PyVs contrasts with mammalian PyVs, which generally cause harmless, persistent infection in natural hosts with healthy immune systems. Mammalian PyVs, such as SV40, are known to induce tumors in nonpermissive host rodents after inoculation [89], which is rarely seen in avian PyV-infected birds. In general, the avian PyV’s infectious nature, destroying numerous cells in the infected organism, is considered to cause serious diseases. The cause of significant cell damage by these viruses has not yet been elucidated. However, while avian PyV infection in chicken embryonic fibroblasts causes remarkable cell damage by induction of apoptosis, SV40 infection of Vero cells mainly causes necrosis. Thus, the induction of necrosis by avian PyVs is thought to contribute to virulence through the efficient release of virus progeny and spread across the entire organism [58]. The differences in the virulences of viruses may reflect differences in the biochemical functions of LT-Ag, which were also confirmed by the

Region	Host pairs	RSCU distances within host pairs for abundant codons (RSCU≥1.6)
LT-Ag	A–F	0.082 0.165^a 0.406 0.676 0.134 0.244 0.111 0.521 0.780 0.346
	A–H	0.558^a 1.593^a 0.522 0.680^a 0.301 0.764^a 0.507 2.855^a 0.749 0.948
	A–M	0.435 1.169 0.512 0.334 0.257 0.471 0.204 2.355 0.645 0.709
	A–P	0.460 1.335 0.572^a 0.601 0.385^a 0.707 0.279 2.731 0.785^a 0.873
	F–H	0.477 1.428 0.117 0.004^b 0.167 0.520 0.520 2.335 0.032 0.633
	F–M	0.353 1.004 0.107 0.342 0.123 0.227 0.315 1.834 0.135 0.493
	F–P	0.378 1.170 0.166 0.074 0.251 0.463 0.389 2.210 0.005^b 0.567
	H–M	0.123 0.424 0.010^b 0.346 0.044^b 0.293 0.303 0.501 0.104 0.239
	H–P	0.098 0.259 0.050 0.079 0.083 0.057^b 0.228 0.125^b 0.036 0.113
DnaJ	A–H	1.682^a 1.064 0.224^b 1.896^a 0.542 1.580 0.395 3.157^a 0.151 1.188
	A–M	0.511 0.662 0.561 1.566 0.669 1.668^a 0.651 2.874 0.012^a 1.019
	A–P	1.476 1.230^a 0.788^a 1.664 1.304^a 1.212 0.786^a 2.447 0.449 1.262
	H–M	1.171 0.402 0.338 0.330 0.127^b 0.088^b 0.256 0.283^b 0.139 0.348
	H–P	0.207^b 0.166^b 0.564 0.232 0.762 0.368 0.391 0.711 0.600^b 0.444
	M–P	0.965 0.568 0.226 0.098^b 0.635 0.456 0.135^a 0.427 0.461 0.441
Helicase	A–F	0.142 0.494 0.489 0.633 0.653 0.003^b 0.168 0.128 0.316 0.381
	A–H	0.416 1.739^a 0.492 0.435 0.106^b 0.946 0.735^a 2.628^a 1.044^a 0.949
	A–M	0.386 1.074 0.647^a 0.059 0.184 0.837 0.053^b 2.052 0.737 0.670
	A–P	0.363 1.349 0.594 0.049 0.445 1.013 0.599 2.502 0.949 0.873
	F–H	0.558^a 1.245 0.002^b 1.069^a 0.546 0.949 0.568 2.500 0.328 0.863
	F–M	0.528 0.580 0.158 0.574 0.836 0.840 0.115 1.924 0.021^b 0.620
	F–P	0.505 0.854 0.104 0.585 1.098^a 1.016^a 0.431 2.374 0.232 0.800
	H–M	0.029 0.665 0.155 0.495 0.290 0.110 0.682 0.576 0.307 0.368
	H–P	0.053 0.390 0.102 0.484 0.552 0.066 0.136 0.126^b 0.096 0.223
	M–P	0.024^b 0.274^b 0.053 0.011^b 0.262 0.176 0.546 0.450 0.212 0.223

Region Host pairs RSCU distances within host pairs for abundant codons (RSCU≥1.6) | TTT | TTA | ATT | TCT | CCT | ACT | GCT | AGA | AGG | Avg.
Fig. 9 Mean RSCU distances of the host pairs calculated from the RSCU values for the abundant codons (RSCU ≥ 1.6) in the LT-Ag genes and two domains of PyVs.

Fig. 10 Correspondence analysis results for the RSCU values of strongly preferred codons in 86 PyVs (COA-RSCU). The COA results for over-represented codons (RSCU > 1.6) for five groups are shown in scatter plots b-f for groups A, F, H, M, and P, respectively. The plot dot distribution patterns of groups A and F vs. groups H, M, and P were compared (a). Overall, the plotted dots show high similarity in terms of distribution patterns in all groups, with a scattered range (−0.2 to +0.3, −0.4 to +0.4). Specifically, two dots plotted over the range were identified as LT-Ag genes for BFDV and ADPyV, and thus they can be seen to vary in terms of codon usage patterns. They are all avian polyomaviruses belonging to group A, and host organisms are wild birds and Pygoscelis adeliae (Adélie penguin) (a).
genetic and evolutionary differences observed in the LT-Ag gene and domains of PyVs isolated from various hosts, based on the sequence analysis performed in this study.

Conclusions
One possible explanation for the presence or absence of specific domains or sequence motifs in the LT-Ag of various PyV species, and thus the mutations and evolutionary differences observed in these functional and structural regions, is that PyVs have evolved so that each viral protein interacts with host cell targets, and they have adapted to thrive in particular host species and cell types. They are known to interact specifically with host proteins involved in cell proliferation and gene expression regulation, have a significant association with the functional domains of LT-Ag, and vary with respect to size and composition in various virus species. Thus, even though various PyV species adopt a common survival strategy, some viral LT-Ags can target new host systems or cell types. Furthermore, the domains of LT-Ag may appear to be widely conserved, but, as indicated by the genetic and evolutionary differences observed in this study, the host function regulation mechanism of LT-Ag varies with the host species. These differences can be used to study virus–host interactions, cellular pathways, mechanisms of tumorigenesis by viral infection, and treatments for new infectious diseases. As new PyVs continue to be found in various organisms, it is necessary to conduct further studies on the mechanisms involved in host-specific toxic manifestations of PyVs, host system regulation, and cell transformation.

Abbreviations
ADPyV: Adélie penguin polyomavirus; BatPyV2c: Bat polyomavirus 2c; BatPyV4a: Bat polyomavirus 4a; BFDV: Budgerigar fledgling disease virus; BKPyV: BK polyomavirus; BPyV: Bovine polyomavirus; CAI: Codon adaptation index; CDS: Coding sequence; COA: Correspondence analysis; DPyV: Dolphin polyomavirus 1; ENC: Effective number of codons; FPV: Finch polyomavirus; GHPV: Goose hemorrhagic polyomavirus; JCPyV: JC polyomavirus; KIPyV: KI polyomavirus; LT-Ag: Large tumor antigen; MCPyV: Merkel cell polyomavirus; ML: Maximum likelihood; MPyV: Mouse polyomavirus; PR2: Parity rule 2; PyV: Polyomavirus; RSCU: Relative synonymous codon usage; SV40: Simian virus 40; WUPyV: WU polyomavirus

Acknowledgements
We'd like to thank those who made their invaluable data publicly available.

Authors’ contributions
HS designed the study; MC collected and analyzed the data; MC and HK interpreted the results and wrote the manuscript; All authors read and approved the final manuscript.

Funding
This work was supported by a grant from the National Research Foundation of Korea funded by the Korea government (MSIP) (No. 2016R1C1B2015511) and the Ministry of Education (No. 2017R1D1A1B03033413).

Availability of data and materials
All data and materials described in the manuscript are available.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Laboratory of Computational Biology & Bioinformatics, Institute of Public Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea. 2Department of Biomedical Laboratory Science, Kyungdong University, 815 Gyeonhwon-ro, Munnak, Wonju, Gangwondo 24695, South Korea. 3SNU Bioinformatics Institute, Interdisciplinary Graduate Program in Bioinformatics, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.

Received: 13 June 2019 Accepted: 17 October 2019 Published online: 14 November 2019

References
1. Gross L. A filterable agent, recovered from AK leukemic extracts, causing salivary gland carcinomas in C3H mice. Proc Soc Exp Biol Med. 1953;83:414–21.
2. Stewart SE. Leukemia in mice produced by a filterable agent present in AKR leukemic tissues with notes on a sarcoma produced by the same agent. In: Anatomical Record, vol. 117. New York: Wiley; 1953. p. 532. 10158–0012: Wiley-Liss.
3. Sweet BH, Hillerme MR. The vacuolating virus, SV 40. Proc Soc Exp Biol Med. 1960;105:420–7.
4. Gardner S, Field A, Coleman D, Hulme B. New human papovavirus (BK) isolated from urine after renal transplantation. Lancet. 1971;2:1253–7.
5. Padgett B, Zurhein G, Walker D, Eckroade R, Dessel B. Cultivation of papova-like virus from human brain with progressive multifocal leukoencephalopathy. Lancet. 1971;2:1257–60.
6. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–100.
7. Krumholz A, Bininda-Emonds OR, Wutzler P, Zell R. Phylogenetics, evolution, and medical importance of polyomaviruses. Infect Genet Evol. 2009;9:784–99.
8. Moens U, Krumholz A, Ehlers B, Zell R, Johne R, Calvignac-Spencer S, Lauber C. Biology, evolution, and medical importance of polyomaviruses: an update. Infect Genet Evol. 2017a;34:18–38.
9. Van Doornaer K. Evolution of the Papillomaviridae. Virology. 2013;445:11–20.
10. Buck CB, Van Doornaer K, Peretti A, Greethong EM, Tisza MJ, An P, Katz JP, Pipas JM. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene. 2005;24:7729.
11. Ahuja D, Sáenz-Robles MT, Pipas JM. SV40 large T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc Natl Acad Sci. 2008;105:16272–7.
12. Grundhoff A, Fischer N. High-affinity Rb binding, p53 inhibition, subcellular localization, and transformation by wild-type or tumor-derived shortened Merkel cell polyomavirus large T antigens. J Virol. 2014;88:3144–60.
13. Farkas K, Austin C, Kraberger S, Davison W, Pastrana DV, Varsani A. The ancient evolutionary history of polyomaviruses. PLoS Pathog. 2016;12:e1005574.
14. DeCaprio JA, Garcea RL. A cornucopia of human polyomaviruses. Nat Rev Microbiol. 2013;11:264.
15. Borchert S, Czech-Siell M, Neumann F, Schmidt C, Wimmer P, Dobner T, Grundhoff A, Fischer N. High-affinity Rb binding, p53 inhibition, subcellular localization, and transformation by wild-type or tumor-derived shortened Merkel cell polyomavirus large T antigens. J Virol. 2014;88:3144–60.
16. Ahuja D, Sáenz-Robles MT, Pipas JM. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene. 2005;24:7729.
17. Shuda M, Feng H, Kwan HJ, Rosen ST, Gneuographic M, Moore PS, Chang Y. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc Natl Acad Sci. 2008;105:16272–7.
18. Van Der Meijden E, Janssens RW, Lauber C, Bavinck JNB, Gorbalenya AE, Feltkamp MC. Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLoS Pathog. 2010;6:e1000102.
19. Schwalter RM, Pastrana DV, Pumphrey KA, Moyer AL, Buck CB. Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe. 2010;7:509–15.
20. Graffi A, Schramm T, Graffi I, Berlowitz D, Bender E. Virus-associated skin tumors of the Syrian hamster: preliminary note. J Natl Cancer Inst. 1968;40:867–73.
18. Kilham L, Murphy HW. A pneumotropic virus isolated from C3H mice carrying the Bittner milk agent. Proc Soc Exp Biol Med. 1953;82:133–7.

19. Bernard G, Morin M, Mansolig S. A generalized inclusion body disease in the budgerigar (Melopsittacus undulatus) caused by a papovavirus-like agent. Avian Dis. 1981;25:1083–92.

20. Bozeman LH, Davis RB, Gaudy D, Lukert PD, Fletcher OJ, Dykstra MJ. Characterization of a papovavirus isolated from fledgling budgerigars. Avian Dis. 1981;25:972–80.

21. Johne R, Müller H. Avian polyomavirus in wild birds: genome analysis of isolates from Falconiformes and Psittaciformes. Arch Virol. 1998;143:1501–12.

22. Johne R, Wittig W, Fernández-de-Lucio D, Höffle U, Müller H. Characterization of two novel polyomaviruses of birds by using multiple primed rolling-circle amplification of their genomes. J Virol. 2006;80:3523–31.

23. Guerin J, Gelfi J, Dubois L, Vuillaume A, Boucouat-Baralot C, Pingret J. A novel papovavirus (goose hemorrhagic polyomavirus) is the agent of hemorrhagic nephritis entitis of geese. J Virol. 2000;74:4523–9.

24. Fagrouch Z, Sanvari R, Laverge M, Delaval M, De Thierry B, Lacoste V, Verschoor EJ. Novel polyomaviruses in south American bats and their relationship to other members of the family Polyomaviridae. J Gen Virol. 2012;93:2652–7.

25. Scuda N, Madina NF, Akoua-Koffi C, Adjigoua EU, Wverages D, Hofmann J, Cameron KN, Leendertz SAJ, Couacy-Hymann E, Robins M, Bloss G, Jarvis MA, Moens E, Mugisha L, Calvignac-Spencer S, Leendertz FH, Ehlers B. Novel polyomaviruses of nonhuman primates: genetic and serological predictors for the existence of multiple unknown polyomaviruses within the human population. PLoS Pathog. 2013;9:e1003429.

26. Kobayashi S, Sasaki M, Nakao R, Setiyono A, Handharyani E, Orba Y, Rahmandri I, Taha S, Adljan S, Subangkti M, Nakamura I, Kimura T, Sawa H. Detection of novel polyomaviruses in fruit bats in Indonesia. Arch Virol. 2015;160:1075–82.

27. Groenewoud MJ, Fagrouch Z, van Gessel S, Niphuis H, Louwv B, van Gessel S, Niphuis H, Bulavaite A, Warren KS, Heeney JL, Verschoor EJ. Characterization of novel polyomaviruses from Bornean and Sumatran orang-utans. J Gen Virol. 2010;91:653–8.

28. Tog Y, Shi M, Conrady C, Kuzmin IV, Recuenco S, Agwanda B, Alvareza D, Ellison JA, Gilbert AT, Moran D, Niezgoda M, Lindblade KA, Holmes EC, Breiman RF, Rupprecht CE, Tong S. Discovery of diverse polyomaviruses in bats and the evolutionary history of the Polyomaviridae. J Gen Virol. 2013;94:738–48.

29. Deuting J, Fagrouch Z, Groenewoud MJ, Niphuis H, Kondova I, Bogers W, Verschoor EJ. Detection and characterization of two chimpanzee polyomavirus genotypes from different subspecies. Virol J. 2010;7:347.

30. Yamaguchi H, Kobayashi S, Ishii A, Ogawa H, Nakamura J, Moonga L, Hang'ombe BM, Mweene AS, Thomas Y, Kimura T, Sawa H, Orba Y. Identification of a novel polyomavirus from vervet monkeys in Zambia. J Gen Virol. 2013;94:3557–64.

31. Leendertz FH, Scuda N, Cameron KN, Kidega T, Zuberbühler K, Leendertz SAJ, Couacy-Hymann E, Boesch C, Calvignac S, Ehlers B. African great apes are naturally infected with polyomaviruses closely related to Merkel cell polyomavirus. J Virol. 2011;85:916–24.

32. Scuda N, Hofmann J, Calvignac-Spencer S, Rupprecht K, Liman P, Kühn J, Hengel H, Ehlers B. A novel human polyomavirus closely related to the African elephant (Loxodonta africana). PLoS One. 2013;8:e77884.

33. Isbreen EA, Reyes A, Lim ES, Zhao G, Mikolasys RS, Manary MJ, Gordon JJ, Wang D. Identification of MV polyomavirus in wild rodents. J Virol. 2012;86:7097–9.

34. Misra V, Dumonceaux T, Dubois J, Willis C, Nadin-Davis S, Severini A, Wandelker A, Lindsay R, Artosb H. Detection of polyoma and corona viruses in bats of Canada. J Gen Virol. 2009;90:2015–22.

35. van Persie J, Buitendijk H, Fagrouch Z, Bogers W, Haakarta T, Kondova I, Verschoor EJ. Complete genome sequence of a novel chimpanzee polyomavirus from a western common chimpanzee. Genome Announc. 2016;4:e01405–16.

36. Verschoor EJ, Groenewoud MJ, Fagrouch Z, Weir B, Haakarta T, Kondova I, Verschoor EJ. Characterization of novel polyomaviruses from bats and the evolution of host range in the family Polyomaviridae. J Gen Virol. 2015;96:1411–22.

37. Mayer M, Dörries K. Nucleotide sequence and genome organization of the murine polyomavirus, Kilham strain. Virology. 1991;181:469–80.

38. Hill SC, Murphy KA, Cotten M, Paier AL, Benson P, Lesellier S, Gornily E, Richomme C, Grieson S, Bhuachalla DN, Chambers M, Kellam P, Boscholi ML, Ehlers B, Jarvis MA, Pybus OG. Discovery of a polyomavirus in European badgers (Meles meles) and the evolution of host range in the family Polyomaviridae. J Gen Virol. 2015;96:361–70.

39. Sennore SA, Ackley DB, Bultman JS, Weidman JA, Schook LB, Busby SM, Ecker JD, Dinner PA. Characterization of a novel polyomavirus isolated from a fibroma on the trunk of an African elephant (Loxodonta africana). PLoS One. 2013;8:e77884.

40. Nainys J, Timinskas A, Schneider J, Ulrich RG, Gedvilaite A. Identification of two novel polyomaviruses of birds by using multiply primed rolling-circle amplification of their genomes. J Virol. 2006;80:3523–31.

41. Colegrove KM, Wellehan JF Jr, Rivera R, Moore PF, Gulland FM, Lowenstein LJ, Northauwen RW, Nollens HH. Polyomavirus infection in a free-ranging California Sea lion (Zalophus californianus) with intestinal T-cell lymphoma. J Vet Diagn Invest. 2010;22:292–9.

42. Renshaw RW, Wise AG, Maes RK, Dubovi EJ. Complete genome sequence of a polyomavirus isolated from horses. J Virol. 2012;86:8903.

43. Seif I, Khougy G, Dhar R. The genome of human papovavirus BKV. Cell. 1979;18:963–77.

44. Allander T, Andreason K, Gupta S, Björkner A, Bogdanovic G, Persson MA, Dalanis T, Ramanqvi T, Andersson B. Identification of a third human polyomavirus. J Virol. 2007;81:4130–6.

45. Miyamura T, Furuno A, Yoshike K. DNA rearrangement in the control region of a novel polyomavirus associated with brain tumors in free-ranging Adelie penguins (Pygoscelis adeliae). J Gen Virol. 2015;96:851–64.

46. Orba Y, Kobayashi S, Nakamura I, Ishii A, Hang’ombe BM, Mweene AS, Thomas Y, Kimura T, Sawa H. Detection and characterization of a novel polyomavirus in wild rodents. J Virol. 2011;95:789–95.

47. Hill SC, Murphy KA, Cotten M, Paier AL, Benson P, Lesellier S, Gornily E, Richomme C, Grieson S, Bhuachalla DN, Chambers M, Kellam P, Boscholi ML, Ehlers B, Jarvis MA, Pybus OG. Discovery of a polyomavirus in European badgers (Meles meles) and the evolution of host range in the family Polyomaviridae. J Gen Virol. 2015;96:1411–22.

48. Mayer M, Dörries K. Nucleotide sequence and genome organization of the murine polyomavirus, Kilham strain. Virology. 1991;181:469–80.

49. Misra V, Dumonceaux T, Dubois J, Willis C, Nadin-Davis S, Severini A, Wandelker A, Lindsay R, Artosb H. Detection of polyoma and corona viruses in bats of Canada. J Gen Virol. 2009;90:2015–22.

50. van Persie J, Buitendijk H, Fagrouch Z, Bogers W, Haakarta T, Kondova I, Verschoor EJ. Complete genome sequence of a novel chimpanzee polyomavirus from a western common chimpanzee. Genome Announc. 2016;4:e01405–16.

51. Verschoor EJ, Groenewoud MJ, Fagrouch Z, Kewalapatt A, van Gessel S, Kik MU, Heeney JL. Molecular characterization of the first polyomavirus from a New World primate: squirrel monkey polyomavirus. J Gen Virol. 2008;89:1307–17.

52. Cruz FND Jr, Li L, Delwart E, Pesavento PA. Novel polyomaviruses in organs of the gastrointestinal tract. PLoS One. 2013;8:e58021.

53. Bozeman LH, Davis RB, Gaudy D, Lukert PD, Fletcher OJ, Dykstra MJ. Characterization of a papovavirus isolated from fledgling budgerigars. Avian Dis. 1981;25:972–80.

54. Cho et al. Virology Journal (2019) 16:137
61. Heenemann K, Sieg M, Rueckner A, Vahlenkamp TW. Complete genome sequence of a novel avian polyomavirus isolated from Gouldian finch. Genome Announc. 2015;3:e01001–15.
62. Johne R, Müller H. The genome of goose hemorrhagic polyomavirus, a new member of the proposed subgenus Avipolyomavirus. Virology. 2003;308:291–302.
63. Marton S, Erdélyi K, Dán Á, Bányai K, Fehér E. Complete genome sequence of a variant Pyrrhula pyrrhula polyomavirus 1 strain isolated from white-headed munia (Lonchura maja). Genome Announc. 2016;4:e01172–16.
64. Peretti A, FitzGerald PC, Bliskovsky V, Pastrana DV, Buck CB. Genome sequence of a fish-associated polyomavirus, black sea bass (Centropristis striata) polyomavirus 1. Genome Announc. 2015;3:e01476–14.
65. Schuurman R, Jacobs M, Van Strien A, Van Der Noordaa J, Sol C. Analysis of splice sites in the early region of bovine polyomavirus: evidence for a unique pattern of large T mRNA splicing. J Gen Virol. 1992;73:2879–86.
66. Anthony SJ, Leger JAS, Navarrete-Macias I, Nilson E, Sanchez-Leon M, Liang E, Sermon T, Jain K, Karesh W, Danzak P, Briese T, Lipkin WI. Identification of a novel cetacean polyomavirus from a common dolphin (Delphinus delphis) with Tracheobronchitis. PLoS One. 2013;8:e80239.
67. Dill IA, Ng TF, Camus AC. Complete sequence of the smallest polyomavirus genome, giant guitarfish (Rhynchobatus djiddensis) polyomavirus 1. Genome Announc. 2016;4:e00391–16.
68. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–26.
69. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
70. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.
71. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2.
72. Wright F. The ‘effective number of codons’ used in a gene. Gene. 1990;87:23–9.
73. Correron JM, Agudé M. An evaluation of measures of synonymous codon usage bias. J Mol Evol. 1998;47:268–74.
74. Sueoka N. Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol. 1995;40:318–25.
75. Sueoka N. Translation-coupled violation of parity rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position. Gene. 1999;238:53–8.
76. Sueoka N. Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci. 1988;85:2653–7.
77. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism data. Genetics. 1989;123:585–95.
78. Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709.
79. Tsompana M, Abad J, Purugganan M, Moyer JW. The molecular population genetics of the tomato spotted wilt virus (TSWV) genome. Mol Ecol. 2005;14:53–66.
80. Sharp PM, Li WH. Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res. 1986a;14:7737–49.
81. Sharp PM, Li WH. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol. 1996b;42:28–38.
82. Wong EH, Smith DK, Rabdan R, Peiris M, Poon LL. Codon usage bias and the evolution of influenza a viruses. Codon Usage Biases of Influenza Virus. BMC Evol Biol. 2010;10:253.
83. Sharp PM, Li WH. The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15:2181–95.
84. Puigbò P, Bravo IG, García-Vallejo S. CAlcai: a combined set of tools to assess codon usage adaptation. Biol Direct. 2008;3:18.
85. Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 2000;28:292.
86. Shackelton LA, Parrish CR, Holmes EC. Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. J Mol Evol. 2006;62:551–63.
87. Bisswas S, Akers JM. Genomic insights into positive selection. Trends Genet. 2006;22:437–46.
88. Moradi Z, Nazifi E, Mehrvar M. Occurrence and evolutionary analysis of coat protein gene sequences of Iranian isolates of sugarcane mosaic virus. Plant Pathol J. 2017;33:296.
89. Todaro GJ, Green H. High frequency of SV40 transformation of mouse cell line 3T3. Virology. 1966;28:756–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.