Electron magnetic resonance of iron-gallium borate single crystals
Kira Seleznyova, Mark Strugatsky, Sergey Yagupov, Yuliya Mogilenec, Alexey Drovosekov, Natalia Kreines, Patrick Rosa, Janis Kliava

To cite this version:
Kira Seleznyova, Mark Strugatsky, Sergey Yagupov, Yuliya Mogilenec, Alexey Drovosekov, et al.. Electron magnetic resonance of iron-gallium borate single crystals. Journal of Applied Physics, American Institute of Physics, 2019, 125 (22), 223905 (8 p.). 10.1063/1.5095753. hal-02176351

HAL Id: hal-02176351
https://hal.archives-ouvertes.fr/hal-02176351
Submitted on 9 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License
Electron magnetic resonance of iron-gallium borate single crystals

Kira Seleznyova,1, Mark Strugatsky,1 Sergey Yagupov,1 Yuliya Mogilenec,1 Alexey Drobosekov,2 Natalia Kreines,2 Patrick Rosa,3 and Janis Kliava4,a)

AFFILIATIONS
1 Physics and Technology Institute, V.I. Vernadsky Crimean Federal University, 4 Vernadsky Avenue, Simferopol 295007, Russian Federation
2 P.L. Kapitza Institute for Physical Problems RAS, 2 ul. Kosygina, Moscow 119334, Russian Federation
3 CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F 33600 Pessac, France
4 Laboratoire Ondes et Matière d’Aquitaine, UMR 5798 Université de Bordeaux CNRS, 33405 Talence cedex, France

a) Author to whom correspondence should be addressed: janis.kliava@u-bordeaux.fr

ABSTRACT
Electron magnetic resonance (EMR) studies of iron gallium borate, Fe\textsubscript{x}Ga\textsubscript{1-x}BO\textsubscript{3}, single crystals have been carried out in the frequency range ca. 8–38 GHz in magnetizing fields up to 10 kOe and the temperature range of 4–310 K. With decreasing x in the range of 0.34 ≤ x ≤ 1, the EMR spectra show a gradual passage from a low frequency antiferromagnetic resonance (AFMR) mode at x = 1 toward a coexistence of AFMR and cluster magnetic resonance arising, respectively, from completely and partially magnetically ordered crystal regions. Temperature and concentration dependences of magnetic characteristics of iron gallium borates, namely, the Néel temperature, the Dzyaloshinskii Moriya field, and the isotropic energy gap, have been determined by means of AFMR. In contrast to unmixed FeBO\textsubscript{3}, Fe\textsubscript{x}Ga\textsubscript{1-x}BO\textsubscript{3} crystals with 0.34 ≤ x ≤ 0.85 show anomalous nonmonotonic temperature dependences of the Dzyaloshinskii Moriya field with a maximum well below the Néel temperature suggesting the occurrence of another magnetic transition in this temperature range.

I. INTRODUCTION
Mixed iron gallium borates, Fe\textsubscript{x}Ga\textsubscript{1-x}BO\textsubscript{3}, are isostructural crystals of rhombohedral calcite type structure with point group symmetry D\textsubscript{3d} and space group P\textsubscript{3}\textsubscript{m} in the Schönflies notation.1,2 They possess a threefold axis C\textsubscript{3}, three twofold axes C\textsubscript{2} lying in the basal plane perpendicular to C\textsubscript{3}, three planes of symmetry perpendicular to C\textsubscript{2}, and an inversion center.3

From the standpoint of magnetic properties, unmixed iron borate FeBO\textsubscript{3} is a two sublattice easy plane antiferromagnet with the Néel temperature \(T_N = 348 \) K, showing a weak ferromagnetism with the resulting magnetization caused by the Dzyaloshinskii Moriya interaction.4 This material is a promising candidate for practical applications in various branches of experimental science and engineering. In particular, on the basis of iron borate magnetic memory elements possessing high density of recording, magneto acoustic and magneto optical transducers and sensitive instruments for measuring pressures and ultraweak magnetic fields can be created.5 Besides, iron borate can be used as an excellent mono chromator for synchrotron Mössbauer spectroscopy.6–8

The characteristics of magnetically ordered crystals, such as the Néel temperature, the Dzyaloshinskii Moriya field, etc., can be substantially modified under diamagnetic dilution, i.e., partial substitution of paramagnetic ions by diamagnetic ones.9–11 In this instance, in order to preserve the crystal structure, the ionic radius \(r_i \) of the diamagnetic ion should be chosen close to that of the substituted paramagnetic ion.12 Previously, we have developed a solution in the melt route for synthesizing diamagnetically diluted Fe\textsubscript{x}Ga\textsubscript{1-x}BO\textsubscript{3} single crystals of high structural perfection. Details of the crystal synthesis have been published earlier.1 A high structural perfection of the crystals has been attested using high resolution X ray techniques.9,13 The X ray topograms of mixed crystals have indicated the absence of growth steps and macroscopic structural defects, such as cracks.
and dislocations. Besides, our electron paramagnetic resonance (EPR) studies have allowed estimating the distribution widths of atomic coordinates in these crystals as ca. 0.0005 Å.14

Mixed iron gallium borate crystals are of a great interest both for solid state physics and materials science because of the following reasons:

(i) They allow monitoring the transformation of magnetic properties under the transition from magnetically ordered to paramagnetic state and fine tuning the magnetic characteristics for applications.

(ii) Understanding the properties of magnetically diluted crystals, in particular, the magnetocrystalline anisotropy, allows specifying the nature of these properties in unmixed iron borate. Indeed, various mechanisms contributing in these properties are expected to vary in a different manner under diamagnetic dilution; therefore, studying Fe\textsubscript{\textit{x}}Ga\textsubscript{1-x}BO\textsubscript{3} crystals with different \textit{x} offers the possibility to recognize the contributions of mechanisms involved.

As far as we are mainly interested in magnetic properties of the crystals, as a key experimental technique, we have used the electron magnetic resonance (EMR). This generic term refers to any type of magnetic resonance involving the electronic system, i.e., EPR, antiferromagnetic resonance (AFMR), cluster magnetic resonance (CMR), etc. EMR allows identifying magnetic states occurring for different iron contents and at different temperatures. Some of the present authors have determined by EPR the spin Hamiltonian parameters of iron ions in Fe\textsubscript{\textit{x}}Ga\textsubscript{1-x}BO\textsubscript{3} crystals with low \textit{x} values14 and used them for theoretical analysis of certain magnetic characteristics, e.g., magnetocrystalline anisotropy in unmixed FeBO\textsubscript{3}15,16. Besides, they have reported preliminary results of EMR studies of Fe\textsubscript{\textit{x}}Ga\textsubscript{1-x}BO\textsubscript{3} crystals with higher \textit{x} values.14 In this paper, we focus on the AFMR results for such crystals.

For a magnetizing field \(H\) applied in the basal plane of FeBO\textsubscript{3}, neglecting a small basal magnetocrystalline anisotropy,15,17 the low frequency (LF) AFMR mode is described by the following expression:18,19

\[\nu = \gamma [H(H + H_D) + H_2^2]^{1/2}, \quad (1) \]

where \(\nu\) is the microwave frequency, \(\gamma\) is the gyromagnetic ratio for the free electron \(g\) value, \(H_D\) is the Dzyaloshinskii Moriya field, and \(H_2^2\) is the isotropic energy gap, related to the resonance frequency in zero \(H\) and caused by elastic and magnetoelastic interactions.20 Thus, using the AFMR, one can obtain both \(H_D\) and \(H_2^2\). Previously, using Eq. (1), these quantities have been obtained for unmixed FeBO\textsubscript{3} in a wide temperature range.18 As far as all crystals

![FIG. 1. Normalized X band room temperature EMR derivative of absorption spectra of Fe\textsubscript{\textit{x}}Ga\textsubscript{1-x}BO\textsubscript{3} crystals with different \textit{x}: 1 (a), 0.75 (b), 0.20 (c), 0.04 (d), and 0.003 (e).](image1)

![FIG. 2. Normalized EMR absorption spectra of Fe\textsubscript{\textit{x}}Ga\textsubscript{1-x}BO\textsubscript{3} crystal with \textit{x} = 0.34 at 7.67 GHz and different temperatures shown alongside the curves.](image2)
in the Fe$_x$Ga$_{1-x}$BO$_3$ series are isostructural, this equation can be applied for such crystals as well.

In this work, using the AFMR technique, we have determined T_N, H_D, and H_2 for Fe$_x$Ga$_{1-x}$BO$_3$ crystals with 0.34 $\leq x \leq$ 0.85.

II. EXPERIMENTAL RESULTS

The EMR studies of Fe$_x$Ga$_{1-x}$BO$_3$ single crystals have been carried out with two different field sweep spectrometers:

(i) a laboratory developed transmission type spectrometer operating at a set of frequencies in the range ca. 8–38 GHz and recording “absorption” spectra, and
(ii) a commercial high sensitivity X band (9.46 GHz) Bruker spectrometer recording “derivative of absorption” spectra.

In both cases, the crystals were studied in the temperature range of 4–310 K and magnetizing fields up to 10 kOe applied in the basal plane of the crystals.
Figure 1 shows the EMR spectra for crystals with different \(x \). At \(x = 1 \) (unmixed iron borate) only a low field resonance line is observed in the whole ranges of microwave frequencies and temperatures used in this work. This line has earlier been identified as LF AFMR.\(^{18}\) At a somewhat lower iron content, \(x = 0.75 \), besides this low field line a new broad resonance line emerges in higher magnetic fields, with an effective \(g \) factor \(g_{\text{eff}} = 2.0 \). Assuming that iron substitution for gallium occurs more or less randomly, we can expect such crystals to contain regions with different local iron concentrations, implying different degree of magnetic ordering.

The low field line observed in mixed iron gallium borates can be reasonably identified by analogy with unmixed iron borate as the LF AFMR arising from completely magnetically ordered crystal regions. In turn, the high field line can be ascribed to CMR, i.e., EMR arising from only partially ordered regions, or, in the vicinity of the Néel temperature, to the superposition of CMR and EPR. At a still lower iron content, \(x = 0.2 \), the AFMR line disappears and the high field line becomes more pronounced. For \(x = 0.04 \), the latter line disappears as well, and the EPR spectrum of diluted Fe\(^{3+}\) ions broadened by dipole dipole interactions (Ref. 22 and references...
quoted therein), comes into view. Finally, at a very lower iron content, \(x = 0.003 \), the latter spectrum is spectacularly narrowed.

Here, we focus on the AFMR results for \(\text{Fe}_x\text{Ga}_{1-x}\text{BO}_3 \) crystals with iron contents in the range of \(0.34 \leq x < 1 \). Figure 2 shows the EMR spectra for \(x = 0.34 \) crystal at different temperatures. At room temperature only the high field line is present. At 77 K, a low field line emerges, indicating the onset of antiferromagnetic ordering so that this temperature can be considered as the Néel temperature for this crystal. In fact, in crystals with compositional disorder, a distribution of magnetic transition temperatures is expected \(^{23}\) (in our case, the compositional disorder is caused by the random substitution of iron by gallium). Therefore, strictly speaking, this temperature should be considered as an "effective" Néel temperature. Obviously, the nature of the high field line observed at temperatures much higher than the latter one, e.g., at 293 K, can be only paramagnetic. With lowering the temperature from \(T_N \), the AFMR line gradually shifts toward lower fields; simultaneously, its relative intensity increases. Similar spectra transformations in the vicinity of \(T_N \) occur in all \(\text{Fe}_x\text{Ga}_{1-x}\text{BO}_3 \) crystals studied in this work.

III. DISCUSSION

A. Néel temperature for mixed iron-gallium borates

Figure 5 illustrates the decrease of \(T_N \) with the decrease of \(x \) for \(\text{Fe}_x\text{Ga}_{1-x}\text{BO}_3 \) crystals, determined by AFMR. This behavior is quite naturally explained by the fact that in diamagnetically diluted crystals, the number of paramagnetic neighbors of a given paramagnetic ion is reduced so that the effective exchange field decreases.\(^ {24}\) For comparison, the data on \(T_N \) in similar crystals obtained by magnetometry and Mössbauer spectroscopy \(^ {25}\) are included. (In the original paper by Kamzin et al.,\(^ {25}\) they erroneously refer to their crystals as \(\text{Fe}_{1-x}\text{Ga}_x\text{BO}_6 \).) Obviously, the results of different determinations are in good agreement with each other.

B. Relationship between the antiferromagnetic resonance frequency and the magnetizing field

Figure 6 shows the frequency dependence of the resonance field (FDRF) for \(\text{Fe}_x\text{Ga}_{1-x}\text{BO}_3 \) crystals with \(x = 1 \) and 0.34 at different temperatures. For \(x = 1 \) with decreasing the temperature, the FDRF monotonously shifts downfield, as earlier reported for unmixed \(\text{FeBO}_3 \) by Velikov et al.\(^ {18}\). In contrast, for \(x = 0.34 \), it first shifts downfield and then upfield. In a greater or lesser extent, the latter comportment is characteristic of all mixed crystals with \(0.34 \leq x \leq 0.85 \).
By fitting the FDRFs with Eq. (1) using the least squares method, we have determined H_D and H_2^2 for different iron gallium borate crystals, *vide infra*.

1. Dzyaloshinskii–Moriya field

In cooling from T_N unmixed FeBO$_3$, H_D shows a sharp increase in the temperature range ca. 350 to 80 K; at lower temperatures, this increase is slowed down, e.g., see Fig. 5(a) in the paper of Velikov et al.18 (and Fig. 7 in this paper). A quite different behavior is observed for mixed Fe$_x$Ga$_{1-x}$BO$_3$ crystals (see Fig. 7). In cooling these crystals from T_N, H_D first increases and then passes through a maximum and finally decreases.

2. Isotropic energy gap

The data on H_2^2 for Fe$_x$Ga$_{1-x}$BO$_3$ crystals with $0.34 \leq x \leq 1$ at different temperatures are shown in Table I. For comparison, bibliographic data for unmixed FeBO$_3$ are also included.

For crystal with $x = 0.34$, H_2^2 is very small, and, thus, it could be determined with reasonable accuracy only at $T \approx 4$ K. The crystals with higher iron contents have much larger low temperature H_2^2 values, comparable with those for unmixed FeBO$_3$.

Detailed data on the temperature dependence of H_2^2 for $x = 0.65$ crystal are shown in Fig. 8. With decreasing the temperature from T_N to 4 K, H_2^2 increases. In the temperature range ca. 235 to 80 K, a sharp increase of H_2^2 is observed, while at lower temperatures this increase is slowed down. A similar behavior is observed for other crystals with intermediate iron contents as well as for unmixed FeBO$_3$, e.g., see Fig. 6 in the paper by Velikov et al.18

C. The possibility of another magnetic transition below the Néel temperature

The transformations of the AFMR spectra and temperature dependences of the Dzyaloshinskii–Moriya field for Fe$_x$Ga$_{1-x}$BO$_3$ crystals with different x, cf. Figs. 3, 4, 6, and 7, suggest that a certain change in the magnetic structure of these crystals occurs at temperatures well below T_N. Our SQUID measurements of the crystal with $x = 0.32$ show a reduction of the resulting magnetization below ca. 10 K (see Fig. 9). A possible explanation of this decrease is the reduction of the tilt angle between two sublattice magnetizations. This can occur if the antiferromagnetic vector (vector difference of the two sublattice magnetizations), initially lying in the basal plane, begins to rotate toward the C$_3$ axis. This

T (K)	x	0.34	0.65	0.75	0.85	1.0^{18}
4	0.75 ± 0.45	5.20 ± 0.45	6.02 ± 0.45	4.3 ± 0.5	4.9 ± 0.2	
77	…	4.90 ± 0.30	5.00 ± 0.15	3.9 ± 1.2	4.25 ± 0.25	
200	1.65 ± 0.10	0.7 ± 0.2	1.6 ± 0.2	…	…	
250	…	…	0.70 ± 0.55	…	0.6 ± 0.5	
300	…	…	…	…	…	

FIG. 8. Temperature dependence of the isotropic energy gap for Fe$_x$Ga$_{1-x}$BO$_3$ crystal with $x = 0.65$.

FIG. 9. Temperature dependence of resulting magnetization in the basal plane for Fe$_{0.32}$Ga$_{0.68}$BO$_3$ crystal with $x = 0.32$ measured in 100 Oe direct current magnetic field applied in the basal plane.
would initiate a transition from easy plane antiferromagnet with weak ferromagnetism to easy axis antiferromagnet, in which case weak ferromagnetism is absent. Such a transition, called the Morin transition, is known to arise in both undiluted and diamagnetically diluted hematite.16–29

IV. CONCLUSIONS

In mixed iron gallium borates, FeGaxGa1−xBO3, we have observed three distinct types of EMR: (i) AFMR (LF mode), (ii) CMR, and (iii) EPR. With decreasing x, the EMR spectra show a gradual passage from AFMR at x = 1 toward the EPR of diluted iron ions at x ≪ 1, going through a coexistence of AFMR and CMR arising, respectively, from completely and partially magnetically ordered crystal regions for 0.34 ≤ x ≤ 0.85, and CMR only for x < 0.34. Obviously, these crystals are of major interest for fundamental research.

The present study demonstrates the versatility of physical characteristics of mixed iron gallium borates. Indeed, the Néel temperature, the Dzyaloshinskii Moriya field, and the isotropic energy gap, due to the possibility of predetermining their proper ties simply by varying their composition, these materials are extremely promising candidates for numerous technical applications. FeGaxGa1−xBO3 crystals with 0.34 ≤ x ≤ 0.85 demonstrate an anomalous AFMR shift at low temperatures, which can be described in terms of decreasing the Dzyaloshinskii Moriya field and the resulting magnetization, confirmed by our SQUID measurements. In order to further elucidate the nature of this transformation, we consider the possibility of neutron diffraction and Mössbauer spectroscopic studies of mixed iron borate crystals.

ACKNOWLEDGMENTS

This work was partially supported by the Russian Foundation for Basic Research (RFBR) and the Ministry of Education, Science and Youth of the Republic of Crimea in the framework of scientific project Grant No. 18 42 910008 “p a o” (resonance studies), by the RFBR in the framework of scientific project Grant No. 18 32 00210 “mol a” (SQUID studies), and by the V.I. Vernadsky Crimean Federal University Development Program for 2015–2024. We are grateful to V. N. Glazkov (P.L. Kapitza Institute for Physical Problems RAS) for carrying out low temperature EMR experiments with Fe0.34Ga0.66BO3 crystal.

REFERENCES

1S. Yagupov, M. Strugatsky, K. Sleznyova, E. Maksimova, I. Nauhatsky, V. Yagupov, E. Mylyukova, and J. Kliava, “Fe2Ga1−xBO3 single crystals: Synthesis and characterization,” Appl. Phys. A 121, 179 185 (2015).
2S. Yagupov, E. Maksimova, I. Nauhatsky, V. Yagupov, E. Mylyukova, K. Sleznyova, and M. Strugatsky, “Iron borate based monocrystals for research in magneto-ordered state physics,” in Proceedings of International Conference on Oxide Materials for Electronic Engineering OMEE-2014 (IEEE, 2014), p. 207.
3R. Diehl, W. Jantze, B. I. Nolang, and W. Wettling, “Growth and properties of iron borate, FeBO3,” in Current Topics in Materials Science, edited by E. Kaldis (Elsevier, New York, 1984), Vol. 111, pp. 241 387.
4K. Sleznyova, N. A. Sergeev, M. Olszewski, P. Stepen, S. V. Yagupov, M. B. Strugatsky, and J. Kliava, “11B MAS NMR study of Ga1−xFe2BO3 mixed crystals,” Solid State Nucl. Magn. Reson. 70, 38 42 (2015).
5V. N. Sleznev, Thesis, Sutefropol State University, 1988.
6V. Potapkin, A. I. Chumakov, G. V. Smirnov, J.-P. Celse, R. Rüffer, C. McCammon, and L. Dubrovinsky, “The 57Fe synchrotron Mössbauer source at the ESRF,” J. Synchrotron Radiat. 19, 559 569 (2012).
7V. Potapkin, A. I. Chumakov, G. V. Smirnov, R. Rüffer, C. McCammon, and L. Dubrovinsky, “Angular, spectral, and temporal properties of nuclear radiation from a 57Fe synchrotron Mössbauer source,” Phys. Rev. A 86, 053808 (2012).
8S. Yagupov, M. Strugatsky, K. Sleznyova, Y. Mogilenec, N. Sneigirev, N. Marchenkov, A. G. Kulikov, Y. A. Eltovich, K. V. Frolov, Y. L. Ogarkova, and I. S. Lyubutin, “Development of synthesis technique and characterization of high-quality iron borate FeBO3 single crystals for applications in synchrotron technologies of a new generation,” Cryst. Growth Des. 18, 7435 7440 (2018).
9S. J. Clarke and A. Harrison, “Effect of diamagnetic dilution on the S = 1/2 square Heisenberg antiferromagnet,” J. Magn. Magn. Mater. 140–144, 1627 1628 (1995).
10D. Bertrand, F. Bensaamka, A. R. Fert, J. Gelard, J. P. Redolides, and S. Legrand, “Phase diagram and high-temperature behaviour in dilute system Fe1−xMgx,” J. Phys. C 17, 1725 1733 (1984).
11A. Z. Menshidkov, Y. A. Dorofeev, N. A. Mironova, and M. V. Medvedev, “The magnetic state of diamagnetically diluted antiferromagnetic cobalt monoxide,” Solid State Commun. 98, 839 842 (1996).
12R. D. Shannon, “Revised effective ionic radii and systematic studies of inter-atomic distances in halides and chalcogenides,” Acta Cryst. A 32, 751 767 (1976).
13N. Sneigirev, Yu. Mogilenec, K. Sleznyova, I. Nauhatsky, M. Strugatsky, S. Yagupov, A. Kulikov, D. Zolotov, N. Marchenkov, K. Frolov, and I. Lyubutin, “Ferro-gallium borate single crystals for nuclear resonance synchrotron experiments,” in IOP Conference Series: Materials Science and Engineering (Institute of Physics Publishing, 2019).
14K. Sleznyova, M. Strugatsky, S. Yagupov, N. Postivey, A. Artemenko, and J. Kliava, “EPR of Fe3+ in Ga2BO5,” Superposition model analysis,” Phys. Status Solidi B 251, 1393 1400 (2014).
15M. Strugatsky, K. Sleznyova, S. Yagupov, A. Drovosekov, and J. Kliava, “Nature of magnetocrystalline anisotropy in the basal plane of iron borate,” J. Magn. Magn. Mater. 442, 417 422 (2017).
16M. Strugatsky, K. Sleznyova, V. Zubov, and J. Kliava, “New insight in the nature of surface magnetic anisotropy in iron borate,” Surf. Sci. 668, 80 84 (2018).
17V. D. Doroshev, I. M. Krygin, S. N. Lukin, A. N. Molchanov, A. D. Prokhorov, V. V. Rudenko, and V. N. Sleznev, “Basal magnetic anisotropy of a weak ferromagnetic FeBO3 crystal,” J. Exp. Theor. Phys. Lett. 29, 257 260 (1979).
18V. V. Velikov, A. S. Prokhorov, E. G. Rudashevski, and V. N. Sleznev, “Antiferromagnetic resonance in FeBO3,” Soviet Phys. JETP 39, 909 915 (1974).
19E. A. Turov and N. G. Guseinov, “Magnetic resonance in rhombohedral weak ferromagnetics,” Soviet Phys. JETP 11, 955 958 (1960).
20A. S. Borovik-Romanov and E. G. Rudashevski, “Effect of spontaneous stricture on antiferromagnetic resonance in hematite,” Soviet Phys. JETP 20, 1407 1411 (1965).
21A. B. Drovosekov, N. M. Kreines, A. O. Savitsky, S. V. Kapelnitsky, V. V. Rylov, V. V. Tugushev, G. V. Prutskov, O. A. Novodvorskii, A. V. Shorokhova, Y. Wang, and S. Zhou, “Magnetic anisotropy of polycrystalline high-temperature ferromagnetic MnSi1−x (x ≈ 0.5) alloy films,” J. Magn. Magn. Mater. 429, 305 313 (2017).
22R. Berger, J. Kliava, E.-M. Yahiaoui, J.-C. Biséy, P. K. Zinsou, and P. Béziade, “Diluted and non-diluted ferric ions in borate glasses studied by electron paramagnetic resonance,” J. Non-Cryst. Solids 180, 151 163 (1995).
23H. Ikeda, M. Suzuki, and M. T. Hutchings, “Neutron scattering investigation of static critical phenomena in the two-dimensional antiferromagnets: Rb2Co,Mg , .” J. Phys. Soc. Jpn. 46, 1153 1160 (1979).
24] D. Bertrand, A. R. Fert, S. Legrand, J. P. Redoulès, and M. C. Schmidt, “Néel temperatures of dilute Fe$_1$$_xCd_{1-x}Cl_2$ and mixed Fe$_1$$_xMn_{1-x}Cl_2$ by susceptibility measurements,” J. Phys. C 14, 1789–1797 (1981).

25] A. S. Kamzin, L. P. Ov’khovik, and E. V. Snetkova, “Preparation and investigation of weakly ferromagnetic Fe$_1$$_xGa_{1-x}BO_3$ single crystals,” Phys. Solid State 45, 2128–2130 (2003).

26] J. Morin, “Magnetic susceptibility of αFe$_2$O$_3$ and αFe$_3$O$_4$ with added titanium,” Phys. Rev. 78, 819–820 (1950).

27] P. J. Besser, A. H. Morrish, and C. W. Searle, “Magnetocrystalline anisotropy of pure and doped hematite,” Phys. Rev. 153, 632–640 (1967).

28] J. K. Srivastava and R. P. Sharma, “Magnetic dilution effects on Morin phase transition in hematite,” Phys. Status Solidi B 49, 135–146 (1972).

29] G. S. Patrin, G. A. Petzakovskii, and N. V. Volkov, “Study of photoinduced properties in doped hematite single crystals via magnetic resonance,” Phys. Status Solidi A 124, 335–343 (1991).