Combined Chi-Square with k-Means for Document Clustering

Ammar Ismael Kadhim1,2 and Abood Kirebut Jassim2

1 Department of computer science, College of medicine, University of Baghdad, Baghdad, Iraq
2 Department of computer science, College of science for women, University of Baghdad, Baghdad, Iraq

E-mail: ammarusm70@gmail.com

Abstract. Currently, the dynamic website has increased with more than thousands of documents associated to a category topic available. Most of the website documents are unstructured and not in an arranged method and thereby the user suffer to obtain the related documents. A more helpful and efficiency technique by combining document clustering with ranking, where document clustering can collection the similar documents in one category and document ranking can be carried out to each cluster for selecting the best documents in the initial categorization. Besides the specific clustering technique, the different types of term weighting functions implemented to select the features that it represents website document is a chief part in clustering mission. Moreover, document clustering indicates to unsupervised categorization of text documents into clusters in such a method that the text documents in a specific cluster are similar. Therefore, this study proposed a new technique combined chi-square with k-means for clustering the website documents. Furthermore, this study implements information gain and chi-square combined with k-means for document clustering. It helps the user to obtain the whole related documents in one cluster. For experimental objective, it has selected the BBC sport and BBC news datasets to show the superiority of the proposed technique. The experimental findings show that the chi-square with combined with k-means clustering improves the performance of document clustering.

Keywords. Document clustering, chi-square, unstructured document, k-means, information gain.

1. Introduction

Nowadays, with the growth development in technology, it allows to accumulate huge quantities of data of variant types. Text mining displayed as an area concerned with the extraction of valued information from raw data. Text mining methods have been implemented to resolve a huge range of real-world challenges [1]. Clustering can be defined as an unsupervised text mining technique where the tags of data topics are unidentified [2]. Document clustering is commonly defined as the process of grouping unstructured document into one or more cluster depend on the relationship among the contents [3]. Moreover, the task of the clustering technique to recognize the categorization of data topics under investigation. Furthermore, one of the best original techniques is grouping documents into different clusters according to the similarity among them [4]. For the text mining, this mission is called as clustering and is considered as the most significant and valuable fundamental for investigating large amounts of data [5]. It also defined as the result heterogeneous
collections of data utilizing some difference condition [6]. Document clustering has played a vital role in several areas such as information retrieval [7]. The problem can be expressed by given a group of documents that it is required to split them into several clusters like documents in the same set are more related to each other than to documents in other sets. Currently, the feature selection techniques concept of process is computed and rank for each feature term utilizing statistical knowledge depends on sorting the feature terms, then it select particular feature that rank is maximum to final performance document feature [8]. Some well-known techniques are expected cross entropy (ECE), document frequency (DF), information gain (IG) and chi-square statistic. These techniques is extremely suitable to reduce the feature distance without the loss of categorization performance.

In the context of implementation, the document clustering can be classified into three chief stages:

- Document preprocessing stage: where the tokenization, stop words and non-meaningful words are eliminated.
- Features selection stage: Two different techniques have been applied to find the related features are selected from the original text document. These features input into training step.
- Document clustering stage: K-means technique has applied to cluster the text into one or more categories and to divide text documents into different categories.

A main difficulty of document clustering is the scope of the original text. To solve this problem, feature selection techniques are used to eliminate terminated and unrelated features and choose the best distinct features.

In this study, it presents an enhanced technique of document frequency feature selection technique to decrease the high-dimension of features as well as to produce a better clustering performance using k-means technique. Then, it compares with information gain technique with k-means technique on BBC sport and BBC news datasets.

The rest of the paper is prepared as surveys: the second section presents a review of related work in document clustering. Then, document preprocessing are introduced in the third section. In section four, information gain for feature selection are introduced. The document frequency using chi-square technique for feature selection technique is described in section five. In section six the k-means clustering technique is utilized to cluster the text documents. While, seven sections experimental results are introduced. Finally, it will obtain particular conclusions.

2. Related Work

Clustering techniques in related works have been classified according to variant criteria like the kind of input data, similarity measure functions, the environment of produced cluster and clustering scheme [9]. Firstly, input data in the clustering techniques are classified into three collections of numerical, classical, and merged clustering [10]. Secondly, similarity functions different similarity measures can be used for each of the input data kinds like k-means clustering technique utilizes the Euclidean similarity distance also recognized as the L2 norm for computing the similarity scores among different data clusters [11]. Thirdly, created clusters the clustering techniques can be classified into two classes of Limited (Non-overlapping) and overlapping techniques [12]. In limited clustering the text documents can only belong to one of the determined separate clusters while in overlapping clustering technique the text documents can belong to one or more clusters [13]. The kind of created clusters must not be disordered with the association function style, firm such as crisp and soft such as fuzzy clustering [14]. In firm clustering techniques, one text document that is used the binary membership $[0,1]$ whereas 1 is to belong and 0 is not belong to a while in soft clustering techniques one text document should belong to a cluster with some grade of membership between 0 and 1 [15].

In the same context, clustering techniques do not require to train set. These techniques do not assign any predetermined tag to each and all cluster [16]. That is, document clustering are a group of topics and discover to know the connection among the topics. Text clustering techniques can be broadly classified into seven categories as follows [17]:

- Hierarchical techniques
- Density-based techniques
- Grid-based techniques
- Partitioned techniques
- Model-based techniques
- Common pattern-based clustering
- Limitation-based clustering

For hierarchical techniques, the technique generates a nested group of clusters, which are arranged as a specific tree like agglomerative techniques [18]. Agglomerative techniques is initially treated every topic as a separate cluster as well as successively mix the two of clusters, which are nearby to another for creating new clusters till whole of the clusters can mix into one partition [19]. For density-based techniques set the features topics with random forms. Document clustering have achieved with respect to a density (number of topics) [20]. Grid-based techniques use multi-density grid construction to group the features topics. The pros of this technique is its speed in handling time [21]. For partitioned techniques, it generates a group of feature non-overlapping clusters like every feature topic may collect in one subgroup. Thereby, selecting a score for the desired amount of clusters to be created like K-means clustering and different of K-means techniques [22]. Model-based techniques utilize a set for every cluster and accomplish the suitable of the feature to the specified set. As well as they are also used to automatically accomplish the amount of clusters [23]. Common pattern-based utilizes sets are selected from subgroups of dimensions in order to cluster the feature topics [24]. Finally, constraint-based techniques realize clustering based on user-given. Users’ constraints on clustering like users’ requirements or properties of the clustering findings. They are difficult in a completely unsupervised learning. This attributed to the absence of a well-defined method to guess the class of clustering findings [25].

This study chi-square with k-means is used to enhance the performance for clustering documents by relying on specific terms to cluster document into one or more class. The hybrid technique is decreased the irrelevant features via using different pre-processing techniques and reduced the computations complexity via combined the chi-square with k-means.

3. Systematic scheme methodology:
The systematic scheme can be divided into four chief phrases like document preparing, feature selection, document clustering and performance evaluation as displayed in Figure 1.

![Figure 1. The phrases of systematic approach.](image)

3.1. Document preparing:
Document preparing involves of document input, term tokenization, stop words and non-meaningful words are removed. Then after the split and filter document, the high-dimension of the term feature vector can be meaningfully decreased, and then the processing task required in the detection phase can be reduced significantly.
Five methods for document preparing:
1. Term Tokenization
2. Removing common terms: stop words
3. Term Normalization
4. Stemming and Bright Stemming
5. Text Document Representation

Term tokenization: It can be defined as the task of cutting it up into segments that is named tokenization. Moreover, it may be to remove the particular symbols like punctuation [26]. As well as a token can be defined as a case of a series of symbols in certain text document that are collected together as a benefit semantic unit for handling. This type of the whole tokens involving the similar symbol series. A term is a kind that is contained in the information retrieve approach.

Removing common terms: Stop terms are public terms that should occur to be of slight value in the selection documents corresponding a user require are omitted from the vocabulary completely [27]. The common strategy for defining a stop term list is to index the terms by group frequency and then to income the best frequent words, frequently manual clarified for their semantic satisfied related to the field of the documents being sorted like stop word database, the memberships of that are then rejected via indexing process.

Term Normalization: As term parameters have of variable size and measures, thereby it is a principle that was measured the term parameters in order to be comparable [28]. Term measuring can be achieved by normalizing the term parameters that is naturally achieved on the self-governing parameters. Term normalization measures every term parameter into a domain of 0 and 1 as displayed in equation (1) as follows:

\[
X^\text{Normalization}_i = \frac{X_i - \text{Smallest}_j}{\text{Biggest}_j - \text{Smallest}_j}
\]

Where \(X_i\) indicates to the normalized value, denotes to the value of importance, denotes to the smallest value and \(X_j\) indicates the biggest value. Then being measured, the smallest value should be 0 and the maximum value should be 1, while whole other values should become in among the intervals [0, 1].

Stemming and Bright Stemming: It can be defined as the task of eliminating prefixes and suffixes from terms and it was also used decreasing transformed terms to their stem [29]. Thereby, the stem requirement is not be determined to the creative morphological origin of the term and it is typically returned to map terms to the same stem. This task is utilized to decrease the amount of terms in the vector space model and enhance the performance evaluation of the clustering technique when the variant formulas of terms are stemmed into a particular term. “play”, “plays”, “played”, and “playing” is an example that obeyed to the stem. The group of terms is conflated into a single term by the elimination of the variant suffixes -s, -ed, and -ing to obtain the unique term. This paper used the standard Porter Stemming method for finding the root terms in the text document.

The chief objective for utilizing bright stemming is that several terms different do not have similar semantics. Nevertheless; these terms different are created from the same root [30]. Thereby, stem extraction methods impact on the meanings of terms. Moreover, bright stemming by assessment goals to improve the document clustering performance whereas retaining back the terms senses. It eliminates particular distinct prefixes and suffixes from the term rather than extracting the unique stem.

Text Document Representation: it represents of a set of text documents to vectors in a public vector space is displayed as the vector space model (VSM) as well as it is a vital task of information retrieval techniques reaching from counting text documents on an enquiry and clustering [31]. An essential stage is the sight of enquiries as vectors in the similar vector space and as the document group [32]. In SVM, the contents of a text document are indicated by a multi-dimensional space vector. The correct categories of the specified vector are identified by comparing the spaces among vectors. The process of the VSM can be classified into three steps: firstly, document indexing is sort the document whereas the best related terms are extracted. Secondly, identifying the weights related to sort terms to enhance the retrieval
related to the researcher. Finally, classifying the text document with a particular scale of relationship. The best public VSM adopts that the substances are vectors in the high-dimensional term space. A public method is the bag-of-words (BOW) of documents. The similarity score function is typically depend on the space among the vectors in particular metric that is used in VSM. Each text document can represent as vector space, \(V(d) = \{(t_1,w_1),(t_2,w_2),\ldots,(t_n,w_n)\} \). \(t_i \) can be defined as the term \(i \) in text document \(d \), \(w_i \) can be defined as the weight of \(t_i \) in text document \(d \). The score of \(w_i \) can become 0 or 1 as shown in equation (2) as follows:

\[
\begin{align*}
 w_{ij} &= \begin{cases}
 1 & \text{if } t_i \in d_j \\
 0 & \text{otherwise}
 \end{cases}
\end{align*}
\]

In this situation, clustering technique cannot be completed efficiently and competently. Document indexing consists selecting an appropriate group of terms depend on the whole corpus of text documents, and assigning weights to these terms for each specified text document, thereby transmuting each text document into a vector of term weights. This weight is generally connected to the frequency of occurrence of the feature in the document and the amount of documents that utilize that feature.

3.2. Feature selection using information gain:
Information Gain (IG) can be defined as the task that used to scale the number of information gained for class by identifying whether the absence or presence of a feature document [33]. It frequently sorts the IG amount of each distinctive in training model to choose particular important terms that it required. Moreover, Information gain refers to decrease the entropy that specified a particular term as shown in Equation (3) that was given by [34] as follows:

\[
 IG(t) = \sum_{i=1}^{n} p(c_i) \log p(c_i) + p(t) \sum_{i=1}^{n} p(c_i | t) \log p(c_i | t) + p(\bar{t}) \sum_{i=1}^{n} p(c_i | \bar{t}) \log p(c_i | \bar{t})
\]

where \(c_i \) refers to the \(i \)th class, \(p(c_i) \) refers to the likelihood of the \(i \)th class, \(p(t) \) are the likelihood that the term \(t \) occurs or not in the text documents, \(p(c_i | t) \) refers to the conditional likelihood of the \(i \)th class specified that term \(t \) occurred and \(p(c_i | \bar{t}) \) refers to the conditional likelihood of the \(i \)th class specified that term \(t \) not occurred.

3.3. Feature selection using chi-square:
The Chi-square technique formula is associated to information hypothetical feature selection purposes which attempt to show the perception that the most terms \(t_m \) for the class \(c_i \) can be defined as the ones distribution most differently in the groups of positive and negative model of class \(c_i \) as shown in Equation 4 was given by [35] as follows:

\[
 \text{Chi-square}(t_m, c_i) = \frac{N(AD - CB)^2}{(A + C)(B + D)(A + B)(C + D)}
\]

where \(N \) can be defined as the amount of text documents in the dataset, \(A \) can be defined as the amount of text documents in category \(c_i \) that involve the term \(t_m \), \(B \) can be defined as the amount of text documents that involve the term in other categories, \(C \) can be defined as the amount of text documents in category \(c_i \) that do not involve the term \(t_m \) and \(D \) is the number of text documents that do not involve the term \(t_m \) in other categories.

Each feature is given a rank in each category as defined in Equation (4). After then, entirely these ranks are combined with a particular final rank of max (Chi-square \(t_m, c_i \)). Thereby, the final rank is utilized to index all features from the highest rank to the lowest rank and the highest rank is selected with the thresholding value \(m \) (where \(m=0.7 \)) from the total number of features. Documents clustering:
Document clustering can be defined as the task of automatically clustering the topics in a particular collection with respect to the similarities of their characteristic features [3]. For example, given a group D of n documents that it wants to split them into a predefined number of k subgroups D1, D2, ..., Dk, like the documents specified to each subgroup are more similar to each other than the documents specified to different subgroups. Moreover, document clustering is considered as a vital task of text mining that is used to several applications in knowledge management and in information retrieval. Two big problems was faced in document clustering: the high-dimensional of the number of features and the huge of a document collection. Furthermore, the features inside each cluster are expected to display big similarities between the group and specific cluster as well as the features across variant clusters are predicted to show big differences between the group and specific cluster. The task can be defined as unsupervised as due to do not have any information about the classes in the collection is predefined. Unsupervised document clustering is an actual influential procedure for identification the unseen construction. This paper was focused on the attention on a particular technique of cluster investigation named designated K-means clustering.

3.4 Document clustering using k-means:
K-means clustering can be defined as a collection of n topics is partitioned into k clusters that are modified recursively if they essence into an arranged split. The k-means repetition is realized in two stages: assignment and modifying.

For assignment stage, each feature in the collection is specified to the neighboring cluster by using a space metric. Thereby, the space between a specific cluster and a specified feature is computed in a vector space document via calculating the space between the specified feature documentation and the cluster centroid. The cluster centroid (μ) of the text documents in a specific cluster F as given in Equation 5 was presented by [36] as follows:

$$\mu(F) = \frac{1}{|F|} \sum_{x \in F} x$$

While, for modifying stage, the whole cluster centroids that are modified via compelling into attention the new split generated through the preceding stage. Furthermore, cluster centroid vectors have presented by the average vector of the whole features going to the corresponding clusters that used in K-means clustering. K-means starts from a predetermined group of centroids and realizes consecutive repetitions of the assignment and modifying stages till do not have any adjustments to the split that are observed consecutive repetitions.

The process of the document clustering as shown in the following:
Phase 1: Prepare the factors used for K-means.
Phase 2: Describe the amount of clusters.
Phase 3: Describe the primary group of cluster centroids and achieve the testing model for the K-means.
Phase 4: To detect matching among cluster and category tags:
 - Calculate cosine similarity spaces between cluster and class centroids.
 - Choice the greatest values cluster-to-class assignment.
Phase 5: Investigate the whole likely assignments.
Phase 6: Calculate the total spaces for the whole status.
Phase 7: Obtain the greatest assignment
Phase 8: Return to Phase 3, stop till do not any novel assignment.

4. Experimental results:
4.1. Dataset:
Two different datasets are used in this study:
The first dataset is a BBC English that was gathered from the BBC news website matching to news articles in five fields from 2004-2005. While the second dataset is the BBC sports that gathered from the BBC sports website matching to sports articles in five fields from 2004-2005. Table 1 shows the details information of two datasets (BBC news and BBC sports).
Table 1. The details information for two datasets.

No.	Dataset	No. of documents	No. of single terms	No. of classes
1	BBC news	2225	9636	5
2	BBC sports	737	4163	5

4.2. Performance Evaluation:

Two different datasets (BBC news and BBC sports) were achieved under the combined (information gain with k-means clustering and chi-square with k-means clustering for the comparison). Thereby, it utilized the same platform dataset but with different sizes of text documents. For BBC sports dataset, 737 text documents contains of five nature classes. 4,163 single features per class is used for training sets and 300 features per class that are used for testing sets. While for BBC news dataset, 2,225 text documents contains of five nature classes. 9,636 single features per category is used for training sets and 600 features per class is used for testing sets. These features were used to perform the greatest comparison of the impact on feature selection that are used two techniques (information gain and chi-square) with combined k-means clustering for grouping three clusters with do not any information about each cluster. For the results comparison, it was used via general metrics like accuracy (Acc.), precision (P.), recall (R.) and F1-measure as shown was given by [37] as shown in the following:

Accuracy (Acc.): Is represented as the ratio between the numbers of text documents that the text documents are correctly classed with the total numbers of text documents categorized for each category as given in equation (6) in the following:

\[\text{Acc.}_i = \frac{(TP)_i + (TN)_i}{(TP)_i + (TN)_i + (FP)_i + (FN)_i} \]

(6)

where \((TP)_i\) is represented as the true positive, \((TN)_i\) is represented as the true negative, \((FP)_i\) is represented as the false positive and \((FN)_i\) is represented as the false negative.

Precision (P.): is represented as the ratio of the right text document that correctly categorized among the whole associated text documents for each category as given in equation (7) in the following:

\[P_i = \frac{(TP)_i}{(TP)_i + (FP)_i} \]

(7)

Recall (R.): is represented as the ratio of the right text document that correctly categorized among the whole assigned text document for each category as given in equation (8) in the following:

\[R_i = \frac{(TP)_i}{(TP)_i + (FN)_i} \]

(8)

F1-measure: this measure is represented as the harmonic indicates to the precision and recall as given in equation (9) in the following:

\[F1\text{-measure} = \frac{2 \times P_i \times R_i}{P_i + R_i} \]

(9)

The different numbers in feature selection stage was used to simplify the analysis of the performance for the two features selection techniques combined with k-means clustering. The results showed that the performance metrics was reduced when the numbers of single features is 300 with respect to BBC sport and it increased with the numbers of single features is 600 for BBC news dataset. These increased were occurred by the selected features is increased with increase the numbers of features. Table 2 shows the comparison between IG and chi-square combined with k-means clustering based on BBC sports dataset.
Table 2. Performance metrics for combining IG and chi-square with k-means clustering based on BBC sports dataset.

Class	IG with K-means clustering	Chi-square with K-means clustering	Acc.	P.	R.	F1
Cricket	0.74 0.80 0.83 0.81	0.76 0.83 0.85 0.84				
Football	0.74 0.80 0.82 0.81	0.73 0.81 0.82 0.81				
Athletics	0.71 0.77 0.80 0.79	0.71 0.78 0.79 0.79				
Tennis	0.64 0.71 0.71 0.71	0.69 0.78 0.77 0.77				
Rugby	0.63 0.69 0.70 0.70	0.73 0.82 0.79 0.80				

Figure 2 displays the graph of comparison between IG and chi-square combined with k-means clustering according to the average of performance metrics based on BBC sports dataset.

Figure 2. The graph of the average of performance metrics based on BBC sports dataset.

As shown in Figure 2, it was showed that the average of performance metrics by using chi-square combined with k-means clustering is slightly better than other technique based on BBC sports. Furthermore, chi-square combined with k-means clustering gets better findings when the number of features is 300 for all performance metrics. Additionally, the best value of F1-measure was 0.80%, while for the other technique, the best value of F1-measure was 0.76 based on BBC news dataset. Table 3 illustrates the comparison between IG and chi-square combined with k-means clustering based on BBC news dataset.
Table 3. Performance metrics for combining IG and chi-square with k-means clustering based on BBC news dataset.

Class	IG with K-means clustering	Chi-square with K-means clustering
	Acc. P. R. F1	Acc. P. R. F1
Entertainment	0.77 0.85 0.84 0.85	0.79 0.85 0.88 0.87
Business	0.75 0.82 0.84 0.83	0.77 0.87 0.84 0.85
Technology	0.71 0.80 0.79 0.80	0.78 0.86 0.86 0.86
Sport	0.74 0.81 0.81 0.81	0.76 0.82 0.85 0.84
Politics	0.64 0.73 0.81 0.77	0.74 0.81 0.83 0.82

Figure 3 illustrates the graph of comparison between IG and chi-square combined with k-means clustering according to the average of performance metrics based on BBC news dataset.

Chi-square combined with k-means clustering finds better findings when the number of features is 600 for all performance metrics. Moreover, the best value of F1-measure was 0.85%, while for the other technique, the best value of F1-measure was 0.81 based on BBC news dataset. For BBC news dataset, the average of all performance metrics outperformed the other dataset. This attributed to increase the number of features, where the result values were increased with increased the number of features. The overall of results comparison, it can be clearly observed that the chi-square combined with k-means clustering is slightly better than the other technique. This attributed to the chi-square combined with k-means clustering is quite stable for the dataset and the style process modeling via selecting the specific features for both BBC sports and BBC news datasets. Figures 4 shows the three clusters grouping by combining chi-square with k-means clustering based on BBC sports dataset.
As shown in Figures 4 and 5, it was showed that the chi-square combined with k-means clustering for three clusters based on BBC sports and BBC news datasets respectively. According to the Figure 4, the three clusters have taken the diagonal shape with a little of noise. While in Figure 5, the three clusters have taken a regular shape with a little bit of noise based on BBC news dataset. The figures showed that the clusters behave in a similar manner but in different shapes directions.

For the complexity of each technique, the procedure of IG includes identifying whether the absence or presence of a feature in a text document. Where it must be frequently sorted the IG amount of each individual in training model to select specific significant terms that it necessary. Furthermore, IG states...
to reduce the entropy that stated a specific term. For the complexity of each technique, the procedure of IG includes identifying whether the absence or presence of a feature in a text document. Where it must be frequently sorted the IG amount of each individual in training model to select specific significant terms that it necessary. Furthermore, IG states to reduce the entropy that stated a specific term. While the procedure of chi-square technique formula is related to information hypothetical feature selection that tried to show the perception of the most terms tm for the class ci the ones distribution as two groups (positive and negative).

The IG takes \(O(NQI)\) time, \(N\) is the number of training text documents, \(Q\) is the number of testing text documents, and \(I\) is the number of classes for features selection. Thereby, the time complexity is become \(O(NQI)+O(P(c)*P(t))\), where \(p(c)\) can be defined the likelihood of the \(i^{th}\) class, \(p(t)\) can be defined as the likelihood of term \(t\) that occur in specific class is computed. While the chi-square gives \(O(N2C)\) time to train, where \(N\) can be defined as the number of training text documents and \(C\) can be defined as the number of classes. Thereafter, calculating and obtaining the most features of the class comprises computing the occurrence as two group. Therefore, the whole time is identified by \(O(NC)+O(N2c) = O(N2c)\) for each class. The chi-square gives \(O(N2CIN)\) time for \(N\) training text documents and \(I\) repetition. Thus, chi-square technique is perfectly much less computationally expensive than IG for feature selection that reflects to reduce the complexity time of chi-square.

5. Conclusion:
This study has done experimental results of performance of combined information gain with k-means and chi-square with k-means for document clustering. The experimental arrangement included selecting term weighting Boolean technique and using variant document preprocessing steps (tokenization, removing common terms, term normalization, stemming and bright stemming and text document representation schemes). Moreover, the findings of an enhanced feature selection technique (IG and chi-square) combined with k-means clustering based on different dataset (BBC sports and BBC news) for document clustering and compares between both of them. For experimental results showed that the combined chi-square with k-means clustering gets best document clustering findings with another technique (information gain with k-means) based on different datasets (BBC sport and BBC news). This is attributed to the chi-square combined with k-means clustering is quite stable for the dataset and the style process modeling via selecting the specific features for both BBC sports and BBC news datasets. Boolean weighting generates relatively the best results for document clustering. The findings with chi-square is slightly better than information gain for feature selection. Consequently, the increased in number of feature is impact on the performance metrics. The chi-square combined with k-means clustering obtains the best viewed for document clustering according to the performance metrics.

References
[1] S. A. Salloum, M. Al-Emran, A. A. Monem, and K. Shaalan, "Using text mining techniques for extracting information from research articles," in Intelligent natural language processing: Trends and Applications, ed: Springer, 2018, pp. 373-397.
[2] S. Inzalkar and J. Sharma, "A survey on text mining techniques and application," International Journal of Research In Science & Engineering, vol. 24, pp. 1-14, 2015.
[3] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez, et al., "A brief survey of text mining: Classification, clustering and extraction techniques," arXiv preprint arXiv:1707.02919, 2017.
[4] T. Basu and C. Murthy, "A similarity assessment technique for effective grouping of documents," Information Sciences, vol. 311, pp. 149-162, 2015.
[5] J. Burch, T. Moore, R. Torbert, and B. Giles, "Magnetospheric multiscale overview and science objectives," Space Science Reviews, vol. 199, pp. 5-21, 2016.
[6] M. Bafadhel, S. McKenna, S. Terry, V. Mistry, C. Reid, P. Haldar, et al., "Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their
biomarkers," *American Journal of Respiratory and Critical Care Medicine*, vol. 184, pp. 662-671, 2011.

[7] P. Prabhu, "'Document Clustering for Information Retrieval-A General Perspective'," *Available at SSRN 2190318*, 2011.

[8] I. Tsamardinos, G. Borboudakis, P. Katsogridakis, P. Pratikakis, and V. Christophides, "A greedy feature selection algorithm for Big Data of high dimensionality," *Machine Learning*, vol. 108, pp. 149-202, 2019.

[9] M. Shhtern and V. Tzerpos, "Clustering methodologies for software engineering," *Advances in Software Engineering*, vol. 2012, 2012.

[10] S. S. Ramakrishna and T. Anuradha, "AN EFFECTIVE FRAMEWORK FOR DATA CLUSTERING USING IMPROVED K-MEANS APPROACH," *International Journal of Advanced Research in Computer Science*, vol. 9, 2018.

[11] A. Singh, A. Yadav, and A. Rana, "K-means with Three different Distance Metrics," *International Journal of Computer Applications*, vol. 67, 2013.

[12] T. S. Madhulatha, "An overview on clustering methods," *arXiv preprint arXiv:1205.1117*, 2012.

[13] V. Tunali, T. Bilgin, and A. Camurcu, "An Improved Clustering Algorithm for Text Mining: Multi-Cluster Spherical K-Means," *International Arab Journal of Information Technology (IAJIT)*, vol. 13, 2016.

[14] M. Ji, F. Xie, and Y. Ping, "A dynamic fuzzy cluster algorithm for time series," in *Abstract and Applied Analysis*, 2013.

[15] D. J. Bora, D. Gupta, and A. Kumar, "A comparative study between fuzzy clustering algorithm and hard clustering algorithm," *arXiv preprint arXiv:1404.6059*, 2014.

[16] A. Kassambara, *Practical guide to cluster analysis in R: Unsupervised machine learning* vol. 1: STHDA, 2017.

[17] U. Kokate, A. Deshpande, P. Mahalle, and P. Patil, "Data stream clustering techniques, applications, and models: comparative analysis and discussion," *Big Data and Cognitive Computing*, vol. 2, p. 32, 2018.

[18] W. Cui, S. Liu, Z. Wu, and H. Wei, "How hierarchical topics evolve in large text corpora," *IEEE Transactions on Visualization and Computer Graphics*, vol. 20, pp. 2281-2290, 2014.

[19] A. Bouguettaya, Q. Yu, X. Liu, X. Zhou, and A. Song, "Efficient agglomerative hierarchical clustering," *Expert Systems with Applications*, vol. 42, pp. 2785-2797, 2015.

[20] R. J. Campello, D. Moulavi, and J. Sander, "Density-based clustering based on hierarchical density estimates," in *Pacific-Asia conference on knowledge discovery and data mining*, 2013, pp. 160-172.

[21] V. Bhatnagar, S. Kaur, and S. Chakravarthy, "Clustering data streams using grid-based synopsis," *Knowledge and Information Systems*, vol. 41, pp. 127-152, 2014.

[22] B. Shanmugapriya, "Clustering Algorithms for High Dimensional Data—A Review," *International Journal of Computer Science and Information Security (IJCIS)*, vol. 15, 2017.

[23] C. Bouveyron and C. Brunet-Saumard, "Model-based clustering of high-dimensional data: A review," *Computational Statistics & Data Analysis*, vol. 71, pp. 52-78, 2014.

[24] D. Guíjo-Rubio, A. M. Durán-Rosal, P. A. Gutiérrez, A. Troncoso, and C. Hervás-Martínez, "Time-Series Clustering Based on the Characterization of Segment Typologies," *IEEE Transactions on Cybernetics*, 2020.

[25] T. Van Craenendonck and H. Blockeel, "Constraint-based clustering selection," *Machine Learning*, vol. 106, pp. 1497-1521, 2017.

[26] S. Vijayarani and R. Janani, "Text mining: open source tokenization tools-an analysis," *Advanced Computational Intelligence: An International Journal (ACII)*, vol. 3, pp. 37-47, 2016.

[27] W. Zhang, T. Yoshida, X. Tang, and Q. Wang, "Text clustering using frequent itemsets," *Knowledge-Based Systems*, vol. 23, pp. 379-388, 2010.

[28] H. I. Koo and D. H. Kim, "Scene text detection via connected component clustering and non-text filtering," *IEEE Transactions on Image Processing*, vol. 22, pp. 2296-2305, 2013.
[29] N. Sandhya, Y. S. Lalitha, V. Sowmya, K. Anuradha, and A. Govardhan, "Analysis of stemming algorithm for text clustering," *International Journal of Computer Science Issues (IJCSI)*, vol. 8, p. 352, 2011.

[30] S. Vijayarani, M. J. Ilamathi, and M. Nithya, "Preprocessing techniques for text mining—an overview," *International Journal of Computer Science & Communication Networks*, vol. 5, pp. 7-16, 2015.

[31] P. D. Turney and P. Pantel, "From frequency to meaning: Vector space models of semantics," *Journal of artificial intelligence research*, vol. 37, pp. 141-188, 2010.

[32] W. B. A. Karaa, A. S. Ashour, D. B. Sassi, P. Roy, N. Kausar, and N. Dey, "Medline text mining: an enhancement genetic algorithm based approach for document clustering," in *Applications of Intelligent Optimization in Biology and Medicine*, ed: Springer, 2016, pp. 267-287.

[33] J. Gonzalez-Lopez, S. Ventura, and A. Cano, "Distributed multi-label feature selection using individual mutual information measures," *Knowledge-Based Systems*, vol. 188, p. 105052, 2020.

[34] G. Kou, P. Yang, Y. Peng, F. Xiao, Y. Chen, and F. E. Alsaadi, "Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods," *Applied Soft Computing*, vol. 86, p. 105836, 2020.

[35] S. Bahassine, A. Madani, M. Al-Sarem, and M. Kissi, "Feature selection using an improved Chi-square for Arabic text classification," *Journal of King Saud University-Computer and Information Sciences*, vol. 32, pp. 225-231, 2020.

[36] I.-D. Borlea, R.-E. Precup, F. Dragan, and A.-B. Borlea, "Centroid update approach to K-means clustering," *Advances in Electrical and Computer Engineering*, vol. 17, pp. 3-11, 2017.

[37] A. I. Kadhim, "Term Weighting for Feature Extraction on Twitter: A Comparison Between BM25 and TF-IDF," in *2019 International Conference on Advanced Science and Engineering (ICOASE)*, 2019, pp. 124-128.