CASPIAN SEA TIDAL MODELING USING COASTAL TIDE GAUGE DATA

Mahmoud Pirouznia1, Seyyed Rouhollah Emadi2 and Mehdi Najafi Alamdari1

1Department of Hydrography, Islamic Azad University, Northern Tehran Branch, Tehran, Iran
2Department of Surveying Engineering, Islamic Azad University, Southern Tehran Branch, Tehran, Iran
E-Mail: sap.group93@gmail.com

ABSTRACT
The purpose of this article is to model tidal conditions in the Caspian Sea using data from coastal tide gauges of Anzali, Noshahr and Neka Ports. Harmonic Analysis method was used to identify and examine 40 tidal components. The results illustrate that the annual (Sa) and semi-annual Solar (Ssa) components on all of the ports listed have the highest range in comparison with the other components which are respectively 16 cm, 18 cm and 15 cm for annual components and 2.8 cm, 5.4 cm and 3.7 cm for semi-annual components.

Keywords: Caspian Sea, harmonic analysis, tidal modelling, coastal tide gauges.

1. INTRODUCTION
Knowing the causes of water level fluctuations of the seas has been one of the major challenges in all scientific fields and attracts the attention of many researchers. Oceanic effects, aerologic effects, tides, climate change and vertical movement of the earth’s shell can be noted as five factors that contribute to the impacts of climate change on the water level fluctuations (KARABİL S. 2011).

Tidal effects due to their significant impacts on sea water level are of great importance and researchers have always been looking forward to modelling them (PSMSL, 2011).

In this study, the effectiveness of tidal components by the use of coastal tide gauge’s observations is surveyed. Harmonic analysis method was used to determine tidal amplitude and phase of 40 components.

1.1 Study area and relevant data
Caspian Sea is surrounded by five countries, including Iran, Russia, Azerbaijan, Turkmenistan and Kazakhstan. The Sea is the largest remaining section of the old Tethys Sea breakdown that was spread from the Arctic to Indian Ocean through the first to third geological period. In third geological period appearing of Caucasus and Asian mountains leads to this big Sea dividing so rise of European continent and construction of Iranian plateau were the main reasons of creation of Caspian Sea. Having the length of about 1030 Km and the width of 435 to 196 Km, the Caspian Sea locates between the 47° 57´–36° 33´ circuits and 46° 43´–54° 53´ hour circles (Arpe and Leroy, 2007).
2. TIDES

Tides are the regular ebbing and flowing movement of the sea happening as the result of attractions of celestial near-earth bodies such as the sun and the moon. Tidal acceleration of celestial objects such as the moon at one point is the difference between the gravity acceleration of that celestial body and the mass centre of the Earth at that point. Visco elastic earth changes due to tidal forces are roughly one-third of the surface international water. The vector field of these forces can be replaced by a scalar field named potential of tides. In each point of the earth this potential can be computed by (Paul Melchior, 1966):

\[
U(R_e, \lambda, \phi) = \frac{GM}{R} \sum_{i=2}^{\infty} \left(\frac{R_e}{R} \right)^i \cos i \theta
\]

Where \(G \) is the universal constant of gravity, \(M \) is the mass of absorbing body (Moon or Sun), \(R_e \) is the average radius of the Earth, \(R \) is the geocentric distance and \(\theta \) is the geological distance of a point with \((R_e, \lambda, \phi)\) coordinates. Main course of this relation is achieved when \(i=2 \). However, in some cases when \(i=3 \) is also used about the moon. Thus, the main indicator term of tidal potential describes as follow:

\[
U_2(R_e, \lambda, \phi) = \frac{3GMR_e^2}{4R^3} \left(\cos 2 \theta + \frac{1}{3} \right)
\]

And regarding to spherical trigonometry relations:

\[
U_2(R_e, \lambda, \phi) = \sum_{i=0}^{\infty} U_{2m}(R_e, \lambda, \theta)
\]
It can be seen clearly from this relation that the first parameter of the relation relates to the half-daily affects and the second and third parameters respectively show the effects of daily and long period of tides. This relationship suggests that the tidal potential is a function of the absorvent body (Moon and Sun). It should be noted that except the gravitational forces mentioned above, other factors may be effective in producing and intensifying the tides (Doodson, 1922).

In general, the sea water level fluctuations can be obtained as the result of the interaction of following dynamic processes: tides, changes in atmospheric pressure, the dynamic effects of ocean circulation, wind effects, the effects of temperature, water salinity changes, the effects of river discharge into the oceans and melting of polar ices.

3. TIDAL HARMONIC ANALYSIS

In this study, the Fourier Harmonic analysis method is used to determine the effect of tidal components. As tidal components frequency, water level in each moment and time were given, the amplitude and phase of needed component were determined.

\[u(\phi, \lambda, t) = \text{MSL}(\phi, \lambda) + \sum_{i=1}^{n} a_i(\Phi, \lambda) \cos \omega_i t + b_i(\phi, \lambda) \sin \omega_i t \]
(4)

Where \(u(\phi,\lambda,t) \) is water level in \(t \) moment obtained by tide gauge or satellite altimetry, \(\text{MSL}(\phi, \lambda) \) is sea average level, \(\omega_i=2\pi f_i \) is angular frequency derived from tidal components frequency, \(t \) is the observation time and \(a_i \) and \(b_i \) are the Fourier coefficients we need to determine. Considering equation 4 and proration, the amplitude and the phase are calculated as below:

\[\begin{pmatrix} u(\phi, \lambda, t_1) \\ u(\phi, \lambda, t_2) \\ \vdots \\ u(\phi, \lambda, t_m) \end{pmatrix}_{m \times 1} = \begin{pmatrix} 1 & \cos \omega_1 t_1 & \sin \omega_1 t_1 & \ldots & \cos \omega_n t_1 & \sin \omega_n t_1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & \cos \omega_1 t_m & \sin \omega_1 t_m & \ldots & \cos \omega_n t_m & \sin \omega_n t_m \end{pmatrix}_{m \times (2n+1)} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \\ b_1 \\ \vdots \\ b_n \end{pmatrix}_{(2n+1) \times 1} \]

It is also known that determined parameters accuracy \(\tilde{x} \) is calculated by variance covariance matrices (Vanicek, 1986)

4. TIDE MODELLING

The following equation is used to analyze and predict the tide (Luick J.L., 2004; Do-Seong Byun and Chang-Woo Cho., 2009):

\[h(t) = Z_0 + \sum_{n=1}^{N} \left[f_n(t) H_n \cos(\delta_n t - g_n + V_n(t)) + u_n(t) \right] \]

And \(n = 1, 2, \ldots, N \) tidal components

In the above equation,

\(Z_0 \) is the average sea level, \(N \) is the number of tidal components, \(\delta_n \) is angular frequency or speed (degree per hour), \(V_n(t) \) is astronomical argument, \(f_n(t) \) is Nodal factor, \(u_n(t) \) is Nodal phase, \(H_n \) is the component amplitude and \(g_n \) is the phase lag.

In above relations Nodal corrections \((f_n(t), u_n(t)) \) for each tidal component and
astronomical argument \(V_n(t_0) \) must be calculated in order to determine the revised amplitude and phass. In this step \(V_n(t_0) \) is computed as below:

\[
V_n(t_0) = i_i \lambda_s(t) + i_i \lambda_h(t) + i_i \lambda_p(t) + i_i \lambda_N(t) + i_i \lambda_P(t) + \Phi_n
\]

Where \(\left(i_i, i_c, i_d, i_e, i_f\right) \) are the constituent’s Doodson Numbers in which Solar coefficients is preferred to Lunar coefficients and the desired time is the time data starts in zero hour UT and remaining terms are as follows:

- \(\lambda_s(t) \) or simply “s” is the Mean Longitude of Moon
- \(\lambda_h(t) \) or simply “h” is the Mean Longitude of Sun
- \(\lambda_p(t) \) or simply “P” is the Longitude of Lunar Perigee
- \(\lambda_N(t) \) or simply “N” is the Longitude of Lunar Ascending Node
- \(\lambda_P'(t) \) or simply “\(P' \)” or “P1” is the Longitude of Perihelion
- \(\Phi_n \) is stationary phase (a multiple of 90°)

Stationary phase exists in most of Doodson Number’s Tables. Algebraic formula to determine the geographic Astronomical Longitude (the Celestial Sphere) \(\lambda_s(t), \lambda_h(t), \lambda_p(t), \lambda_N(t), \lambda_P'(t) \) or in some references in form of \((S, h, P, N, P') \) has provided (Cartwright, 1982; Doodson, 1921; Franco, 1988; Schureman, 1941; and Tsak- 2000, IOS, Uk). In this study Task- 2000 method has been used.

Task- 2000 based on zero hour epochs UT, January 1900. This formula is accurate at least from 1800 to 2100 (Bell et al., 1999).

\[
\lambda_s(t) = 277.0247 + 129.38481.IY + 13.17639.DL
\]
\[
\lambda_h(t) = 280.1895 - 0.23872.IY + 0.98565.DL
\]
\[
\lambda_p(t) = 334.3853 + 40.66490.IY + 0.11140.DL
\]
\[
\lambda_N(t) = 25901568 - 19.32818.IY - 0.05295.DL
\]
\[
\lambda_P'(t) = 28102209 + 0.017192.IY
\]

Where

- IY = year- 1900
- DL = IL+IDAY-1

\[
IL = (IY - 1) / 4
\]

IDAY is the number of days from January 1th of that year.

5. FORMING THE OBSERVATIONS TIME SERIES OF COASTAL TIDE GAUGE

The location of tide gauge stations which is formed from their time series data were as follows:

Station name	Latitude	Longitude	Time spam
Anzali	°37.478	°49.4623	21/3/2005-20/3/2014
Noshahr	°36.6584	°51.5047	21/3/2006-21/3/2014
Neka	°36.8502	°53.3656	1/1/2000-31/8/2012
Figure-2. Time series together with the tidal model and residual of Anzali tide gauge station.

Figure-3. Amplitude and frequency of 40 tidal components of Anzali tidal gauge station.

Figure-4. Time series together with the tidal model and residual of Noshahr tide gauge station.

Figure-5. Amplitude and frequency of 40 tidal components of Noshahr tidal gauge station.

Figure-6. Time series together with the tidal model and residual of Neka tide gauge station.

Figure-7. Amplitude and frequency of 40 tidal components of Neka tidal gauge station.
Table 2. The Amplitude and phase of 40 tidal components for Anzali tide gauge station, obtained from observations and modelling in meter and grade respectively.

Constituent	Amp-obs (m)	Phase-obs (deg)	Amp-mod (m)	Phase-mod (deg)
K2	0.003015	295.7626	0.00208	286.43
L2	0.001672	271.2841	0.00171	271.46
M2	0.008682	269.2956	0.0084	269.245
N2	0.003698	158.6862	0.00374	159.22
Ma2	0.003133	296.7903	0.00314	296.79
R2	0.017878	73.2279	0.01812	78.22
S2	0.012064	67.1411	0.01206	67.141
T2	0.005672	144.9542	0.0065	142.954
J1	0.001707	121.5101	0.0017	121.8201
K1	0.022738	11.43623	0.0233	11.3
M1	0.007332	67.24207	0.0073	68.45
O1	0.006945	165.1889	0.00693	165.1923
P1	0.00704	217.9986	0.00725	218.43
Q1	0.008204	232.6201	0.008325	232.56
S1	0.008428	83.31833	0.008267	84.673
M3	0.0072	93.20983	0.00687	93.65
S3	0.002717	119.0538	0.00281	119.487
M4	0.005868	233.6994	0.00589	233.996
S4	0.006028	85.39538	0.006518	85.7
M5	0.015845	21.3593	0.01522	21.487
M6	0.004693	239.5097	0.00467	240.43
S6	0.004883	193.316	0.0049	193.76
M8	0.008275	265.0774	0.00865	265.9
S8	0.003187	159.8985	0.00376	158.34
Mf	0.006459	109.5878	0.006217	107.789
Mn	0.007524	134.4543	0.00776	136.89
Msf	0.000792	77.13807	0.000734	76.54
Oo1	0.006236	355.2012	0.006236	355.34
Ssa	0.028563	55.42608	0.02862	53.56
Ms4	0.070979	15.67987	0.0704	15.456
Mn4	0.018667	186.2534	0.01889	186.789
Mk3	0.02533	282.7036	0.0255	282.408
Sa	0.163234	212.3174	0.163198	212.456
Mo3	0.007534	219.1039	0.007423	218.56
No3	0.026181	8.642835	0.026789	9.43
2N2	0.006548	46.04756	0.006437	47.13
So3	0.028834	137.9187	0.02889	136.67
Sk3	0.006522	44.34284	0.00657	44.389
S01	0.001092	68.53536	0.001034	68.576
Mk4	0.022139	331.8166	0.0234	331.834
Table-3. The Amplitude and phase of 40 tidal components for Noshahr tide gauge station, obtained from observations and modelling in meter and grade, respectively.

Constituent	Amp-obs (m)	Phase-obs (deg)	Amp-mod (m)	Phase-mod (deg)
K2	0.001265	205.3896	0.001276	204.9
L2	0.000134	104.9257	0.000144	103.89
M2	0.010247	275.8484	0.01028	276.896
N2	0.002429	110.3829	0.002534	110.789
Ma2	0.002005	73.94501	0.002007	74.289
R2	0.00083	248.9937	0.00076	249.3397
S2	0.000134	10.64485	0.000144	10.5689
T2	0.00104	252.2587	0.001067	252.678
J1	0.000575	38.258	0.000589	38.378
K1	0.003133	206.5065	0.003145	206.45
M1	0.000804	197.7024	0.000809	197.745
O1	0.001833	74.5144	0.001845	74.78
P1	0.001664	171.5155	0.001643	172.504
Q1	0.000887	255.0884	0.000867	255.56
S1	0.002105	352.2459	0.002175	352.211
M3	0.000044	284.4275	0.000245	284.545
S3	0.001738	106.7813	0.000678	106.3413
M4	0.000773	269.5824	0.000989	269.6724
S4	0.000389	334	0.000567	333.89
M5	0.000592	308.7407	0.000345	308.437
M6	0.000816	107.9719	0.00424	107.901
S6	0.001758	297.3552	0.000987	296.9552
M8	0.001783	300.9042	0.000345	300.405
S8	0.035218	128	0.03789	128.2362
Mf	0.000565	63.45231	0.000679	64.82
Mm	0.000585	157.1591	0.000567	156.2271
Msf	0.000698	171.7511	0.000778	171.842
Oo1	0.001602	126.1866	0.00189	125.731
Ssa	0.054341	86.44686	0.05345	86.461
Ms4	0.000389	142.9945	0.00927	143.18
Mn4	0.000375	12.73982	0.000678	13.7
Mk3	0.000346	67.02355	0.00345	66.425
Sa	0.188683	208.5804	0.18907	208.2541
Mo3	0.000228	52.28991	0.000789	51.75
No3	0.000178	216.8859	0.000845	217.323
2N2	0.000519	37.64077	0.000612	37.772
So3	0.000414	105.4683	0.000432	105.94
Sk3	0.000306	334.2423	0.000351	334.58
S01	0.000225	195.3219	0.000376	194.218
Mk4	0.000424	74.62624	0.000387	74.947
Table-4. The Amplitude and phase of 40 tidal components for Neka tide gauge station, obtained from observations and modelling in meter and grade, respectively.

Constituent	Amp-obs (m)	Phase-obs (deg)	Amp-mod (m)	Phase-mod (deg)
K2	0.000609	248.292	0.00071	248.35
L2	0.000094	210.8618	0.000078	211.23
M2	0.003386	211.6024	0.00421	212.316
N2	0.000451	33.09812	0.000418	33.789
Ma2	0.000203	2.616894	0.000206	3.269
R2	0.00027	266.0452	0.000261	266.169
S2	0.001491	353.4808	0.000078	353.724
T2	0.000322	84.26617	0.0000341	83.972
J1	0.00002	222.6129	0.000237	222.7034
K1	0.003984	232.586	0.00412	232.213
M1	0.000075	18.18968	0.000087	18.226
O1	0.001979	22.82131	0.002141	24.718
P1	0.000071	199.8688	0.000076	200.1073
Q1	0.000133	265.089	0.001343	265.323
R3	0.00014	238.5899	0.00017	238.3041
S3	0.00127	71.53864	0.00143	70.946
M4	0.00041	106.7546	0.00052	106.9928
S4	0.00007	53.35676	0.000083	53.468
M5	0.00036	289.5994	0.00038	289.783
M6	0.0004	274.9504	0.00047	275.7935
S6	0.00042	59.32671	0.00082	58.87
M8	0.00071	493216	0.00082	78.465
S8	0.00007	343.1489	0.00007	343.1376
Mf	0.003968	358.5273	0.003965	357.5186
Mn	0.001392	37.4896	0.001323	38.418
Msf	0.002203	332.5874	0.002212	333.64
Oo1	0.00043	172.098	0.00043	172.487
Ssa	0.037471	90.08432	0.0375	91.508
Ms4	0.00045	225.9218	0.0005	226.5
Mn4	0.000063	309.734	0.00006	310.47
Mk3	0.000063	168.7787	0.00007	169.681
Sa	0.151559	218.163	0.1518	217.2045
Mo3	0.00028	42.31016	0.00027	43.401
N3	0.00055	308.456	0.00054	307.731
2N2	0.00032	294.6541	0.00034	295.391
So3	0.0005	94.33536	0.0006	95.591
Sk3	0.000114	73.86118	0.000145	74.584
S01	0.000171	47.30911	0.000182	47.835
Mk4	0.00058	116.3563	0.00072	116.2482
6. CONCLUSIONS

Tidal Analysis of tide gauge stations illustrates the absence of efficiency in tidal components except for annual and semi-annual components. However, unlike other stations, in Anzali station MS4 components was effective.

The results also indicates that the annual (Sa) and semi-annual Solar (Ssa) components on all of the ports listed have the highest range in comparison with the other components which are respectively 16 cm, 18 cm and 15 cm for annual components and 2.8 cm, 5.4 cm and 3.7 cm for semi-annual components.

Ignoring the modulation of solar perihelion and nodal modulation use can be mentioned as the weak points which were effective in Tidal Harmonic Analysis; 18.6 time series must be exists for resolving all the frequencies. As the other defects of this study we can point out that there are no easy way to indicate the significance of amplitude and phase together with lack of appropriate solution for coastal areas that affects the shape of tidal waves.

The main problem with Caspian Sea northern coastal tide gauge data is improper collecting and compiling of them. Moreover, the sampling interval in Anzali and Noshahr tide gauges are daily and each three hours respectively that can affect the tidal modelling and will decrease the accuracy of the computation.

REFERENCES

Arpe K. 2005. The Caspian Sea level variability from the atomospheric modeling point of view.

Luick, John. L. 2004. Australian Tidal Handbook, National Tidal Centre Adelaide, South Australia.

Melchior Paul, The earth tides, 1966.

Vaníček P. 1986, Towards a Real-time Tidal Analysis and Prediction.

Do-Seong Byun and Chang-Woo Cho., 2009, Exploring conventional tidal prediction schemes for improved coastal numerical forecast modeling.

Bell C., Vassie J.M., Woodworth P.L. 1999. POL/PSMSL Tidal Analysis Software Kit 2000 (TASK-2000). Permanent Service for Mean Sea Level. CCMS Proudman Oceanographic Laboratory, Bidston Observatory, Birkenhead, UK. p. 20.

Karabil Sitar. 2011. Determination of Sea Level Trends and Vertical Land Motions From satellite Altimetry and Tide Gauge Observations at the Mediterranean Coast of Turkey. p. 45.

PSMSL. 2011. http://www.psmsl.org/ (accessed August 29, 2011).

Doodson A.T. 1922. Harmonic development of the tide-generating potential. Proceedings of the Royal Society of London A. 100: 305-329.