Study of C parity violating and strangeness changing $J/\psi \to PP$ weak decays

Yueling Yang,1 Junliang Lu,1 Mingfei Duan,1 Jinshu Huang,2 and Junfeng Sun1

1Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007, China
2School of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China

Abstract

Although J/ψ weak decays are rare, they are possible within the standard model of elementary particles. Inspired by the potential prospects of the future intensity frontier, the C parity violating $J/\psi \to \pi \eta^{(0)}$, $\eta \eta'$ decays and the strangeness changing $J/\psi \to \pi K$, $K \eta^{(0)}$ decays are studied with the perturbative QCD approach. It is found that the $J/\psi \to \eta \eta'$ decays have relatively large branching ratios, about the order of 10^{-11}, which might be within the measurement capability and sensitivity of the future STCF experiment.

*Chin. Phys. C 45, 083104 (2021); DOI:10.1088/1674-1137/ac06ac
I. INTRODUCTION

Today, nearly fifty years after the discovery of the J/ψ particle in 1974 [1, 2], charmonium continues to be an interesting and exciting subject of research, because they bridge the physics contents between the perturbative and nonperturbative energy scales and provide a good place to understand the complex behavior and dynamics of strong interactions. In addition, the recent observations of exotic resonances beyond our comprehension, such as XYZs [3], have caused an upsurge of research on charmonium-like states and stimulated a lot of experimental and theoretical activities.

The J/ψ particle, a system consisting of the charmed quark and antiquark pair $c\bar{c}$, is the lowest orthocharmonium state with the well established quantum number $J^{PC}=1^{--}$ [3]. With the same quantum number J^{PC} as the photon, the J/ψ particle can be directly produced by e^+e^- annihilation. To date, there are more than $10^{10} J/\psi$ events available with the BESIII detector [4]. Considering the large J/ψ production cross section $\sigma \sim 3400 \text{nb}$ [5], it is expected that more than $10^{13} J/\psi$ events will be accumulated at the planning Super Tau Charm Facility (STCF) with $3 ab^{-1}$ on-resonance dataset in the future. The large amount of data provides a good opportunity for studying the properties of the J/ψ particle, understanding the strong interactions and hadronic dynamics, exploring novel phenomena, and searching for new physics (NP) beyond the standard model (SM).

The mass of the J/ψ particle, $m_\psi = 3096.9 \text{ MeV}$ [3], is below the open charm threshold. The J/ψ hadronic decays via the annihilation of $c\bar{c}$ quark into gluons are of a higher order in the quark-gluon coupling α_s and are therefore severely suppressed by the phenomenological Okubo-Zweig-Iizuka (OZI) rule [6–8]. The OZI suppression results in (1) the electromagnetic decay ratio having the same order of magnitude as its strong decay ratio, $Br(J/\psi \rightarrow \gamma^* \rightarrow \ell^+\ell^- + \text{hadrons}) \approx 25\%$ and $Br(J/\psi \rightarrow ggg) \approx 64\%$ [3], and (2) a small decay width, $\Gamma_\psi = 92.9 \pm 2.8 \text{ keV}$ [3]. Generally, the more the number of particles in the final states, the more the effect of compact phase spaces resulting in a relatively less occurrence probability, and the lower the experimental signal reconstruction efficiency. The kinematics are simple for the J/ψ two-body decays. Given the conservation of quantum number J^P (i.e., the simultaneous conservation of both angular momentum and P parity) in the strong and electromagnetic interactions, the $J/\psi \rightarrow PP, PV, VV, SS, SA, AA$ decays originate from the P-wave contributions corresponding to the relative orbital angular momentum of
the final states $\ell = 1$, and additional F-wave ($\ell = 3$) contributions to $J/\psi \to VV$, AA decays, where P, V, S and A represent the light $SU(3)$ meson nonets, the pseudoscalar meson P with $J^P = 0^-$, vector meson V with $J^P = 1^-$, scalar meson S with $J^P = 0^+$, and axial-vector meson A with $J^P = 1^+$. The $J/\psi \to PA$, VS, VA decays emerge from the S-wave ($\ell = 0$) contributions, and additional D-wave ($\ell = 2$) contributions to $J/\psi \to VS$, VA decays; however, the $J/\psi \to PS$ decays are forbidden. Usually, the V, S and A mesons are unstable and decay immediately after their productions into many other particles. Experimentally, the branching ratios of the $J/\psi \to PV$ decays for all the possible flavor-conservation combinations of final states, such as $\pi \rho$, $\pi \omega$, $\eta(0)\rho$, $\eta(0)\omega$, $\eta(0)\phi$ and $K\bar{K}^*$, have been well determined, except for the double-OZI suppression $\pi\phi$ mode [3]. For the $J/\psi \to PP$ and VV decays, when the final states have explicit C-parity, the C invariance forbids these processes, and Bose symmetry strictly forbids two identical particles in the final states. Presently, only five branching ratios for the $J/\psi \to \pi^+\pi^-$, K^+K^-, $K_S^0\bar{K}_S^0$, $K^{*\pm}\bar{K}^{*-\mp}$ and $K^{*0}\bar{K}^{0*}$ decays have been quantitatively measured [3]. Theoretically, the J/ψ particle is widely regarded as a $SU(3)$ singlet, and the possible admixture of light quarks is negligible. It is usually assumed [9–49] that the J/ψ decay into two mesons could be induced by the interferences of (a) $c\bar{c} \rightarrow ggg \rightarrow q\bar{q}$, where q denotes light quark. (b) $c\bar{c} \rightarrow \gamma gg \rightarrow q\bar{q}$, (c) $c\bar{c} \rightarrow \gamma^* \rightarrow q\bar{q}$, (d) the $c\bar{c} \leftrightarrow q\bar{q}$ mixing, and (e) the virtual process $c\bar{c} \rightarrow c\bar{q} + \bar{c}q \rightarrow q\bar{q}$. Based on the quark model or unitary-symmetry schemes, the $J/\psi \to PP$, PV decays via the strong and electromagnetic interactions have been extensively studied using phenomenological models, such as the vector meson dominance model in Refs. [9–20] and various parametrization of the OZI J/ψ process in Refs. [21–45].

Currently, the sum of all the measured branching ratio of exclusive J/ψ decay modes, which include leptonic, hadronic and radiative decay modes, is about 66% [3], therefore there are many other J/ψ decay modes remain to be experimentally determined and studied. Besides the strong and electromagnetic decays, the J/ψ particle can also decay via the weak interactions within SM, although it is estimated that the branching ratios of J/ψ weak decays could be very small, about $2/\tau_D\Gamma_\psi \sim O(10^{-8})$, where τ_D and Γ_ψ are the lifetime of the charmed D meson and the full width of the J/ψ particle. In principle, the J/ψ weak decays are possible in different ways: (a) the $c\bar{c}$ pair annihilation into a virtual Z boson cascading into leptons or quarks, which is unsuitable for measurements owing to the serious pollution of strong and electromagnetic decays, (b) the W emission, (c) the W exchange, and (d)
the flavor-changing-neutral currents. The characteristic signal of the W-emission J/ψ weak
decays is a single charmed hadron in the final states. The semileptonic $J/\psi \to D_{(s)}^{(*)} + \ell^+ \nu_\ell$
decays and hadronic $J/\psi \to D_{(s)}^{(*)} + X$ decays (where $X = P, V$) have been investigated
experimentally [3, 50–53] and phenomenologically [54–67], where several different upper
limits on branching ratios at a 90% confidence level are obtained mainly from BESII and
BESIII experiments [50–53]. When the charmed hadrons are absent from the final states,
the J/ψ weak decays into light hadrons could be induced by the W exchange interactions. It
is generally thought that the amplitudes for the W-exchange decays are suppressed, relative
to those for the W-emission decays. Only a few studies about the W-exchange J/ψ weak
decays exist [68–70]. The study of the $J/\psi \to PP$ weak decays is helpful in testing the
non-conservation of the C parity and strangeness quantum number. Based on the 1.3×10^9
J/ψ events collected with the BESIII detector, the upper limit on branching ratio for the C
parity violating $J/\psi \to K^0_S K^0_S$ decay, $< 1.4 \times 10^{-8}$, was recently obtained at a 95% confidence
level [70]. Inspired by the potentials of BESIII and future STCP experiments, in this paper,
we will study the J/ψ decays into two pseudoscalar mesons via the W exchange interactions.
Our study will provide a ready reference for future experimental investigations to further
test SM and search for NP.

II. THE EFFECTIVE HAMILTONIAN

The effective Hamiltonian governing the $J/\psi \to PP$ weak decay is written as [71],
\[
H_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{q_1, q_2} V_{cq_1} V^*_{cq_2} \left\{ C_1(\mu) O_1(\mu) + C_2(\mu) O_2(\mu) \right\} + \text{h.c.,}
\]
where $G_F \simeq 1.166 \times 10^{-5}$ GeV$^{-2}$ [3] is the Fermi coupling constant; $V_{cq_{1,2}}$ is the Cabibbo-
Kobayashi-Maskawa (CKM) element, and $q_{1,2} \in \{d, s\}$. The latest values of CKM elements
from data are $|V_{cd}| = 0.221 \pm 0.004$ and $|V_{cs}| = 0.987 \pm 0.011$ [3]. The factorization scale
μ separates the physical contributions into short- and long-distance parts. The Wilson
coefficients $C_{1,2}$ summarize the short-distance physical contributions above the scales of μ.
They are computable with the perturbative field theory at the scale of the W^\pm boson mass
m_W, and then evolved to a characteristic scale of μ for the c quark decay based on the
renormalization group equations.
\[
\tilde{C}(\mu) = U_4(\mu, m_b) M(m_b) U_5(m_b, m_W) \tilde{C}(m_W),
\]
where the explicit expression of the evolution matrix $U_f(\mu_f, \mu_i)$ and the threshold matching matrix $M(m_b)$ can be found in Ref. [71]. The operators describing the local interactions among four quarks are defined as,

$$O_1 = \bar{c}_\alpha \gamma_\mu (1 - \gamma_5) q_{1,\alpha} \left[\bar{q}_{2,\beta} \gamma^\mu (1 - \gamma_5) c_\beta \right],$$

$$O_2 = \bar{c}_\alpha \gamma_\mu (1 - \gamma_5) q_{1,\beta} \left[\bar{q}_{2,\beta} \gamma^\mu (1 - \gamma_5) c_\alpha \right],$$

where α and β are color indices.

It should be noted that the contributions of penguin operators being proportional to the CKM factors $V_{cd}V_{cd}^* + V_{cs}V_{cs}^* \sim \mathcal{O}(\lambda^4)$, are not considered here, because they are more suppressed than the tree contributions, where the CKM factors $V_{cs}V_{cs}^* \sim \mathcal{O}(1)$, $V_{cs}V_{cd}^* \sim \mathcal{O}(\lambda)$, $V_{cd}V_{cd}^* \sim \mathcal{O}(\lambda^2)$, and the Wolfenstein parameter $\lambda \approx 0.2$.

The decay amplitudes can be written as,

$$A(J/\psi \to PP) = \frac{G_F}{\sqrt{2}} \sum_{q_1,q_2} V_{cq_1} V_{cq_2}^* \sum_{i=1}^2 C_i(\mu) \langle PP | O_i(\mu) | J/\psi \rangle,$$

where the hadron transition matrix elements (HMEs) $\langle PP | O_i(\mu) | J/\psi \rangle = \langle O_i \rangle$ relate the quark operators with the concerned hadrons. Owing to the inadequate understanding of the hadronization mechanism, the remaining and most critical theoretical work is to properly compute HMEs. In addition, it is not difficult to imagine that the main uncertainties will come from HMEs containing nonperturbative contributions.

III. HADRON TRANSITION MATRIX ELEMENTS

In the past few years, several phenomenological models, such as the QCD factorization (QCDF) [72–77] and perturbative QCD (pQCD) approaches [78–84], have been fully developed and widely employed in evaluating HMEs. According to these phenomenological models, HMEs are usually expressed as the convolution of scattering amplitudes and the hadronic wave functions (WFs). The scattering amplitudes and WFs reflect the contributions at the quark and hadron levels, respectively. The scattering amplitudes describing the interactions between hard gluons and quarks are perturbatively calculable. WFs representing the momentum distribution of compositions in hadron are regarded as process independent and universal, and could be obtained by nonperturbative methods or from data. A potential disadvantage of the QCDF approach [72–77] in the practical calculation
is that the annihilation contributions cannot be computed self-consistently, and other phenomenological parameters are introduced to deal with the soft endpoint divergences using the collinear approximation. With the pQCD approach [78–84], in order to regularize the endpoint contributions of the QCD radiative corrections to HMEs, the transverse momentum are suggested to be retained within the scattering amplitudes on one hand, and on the other hand a Sudakov factor is introduced expressly for WFs of all involved hadrons. Finally, the pQCD decay amplitudes are expressed as the convolution integral of three parts: the ultra-hard contributions embodied by Wilson coefficients C_i, hard scattering amplitudes \mathcal{H} and soft part contained in hadronic WFs Φ.

$$A_i = \prod_j \int dx_j db_j C_i(t_i) \mathcal{H}_i(t_i,x_j,b_j) \Phi_j(x_j,b_j) e^{-S_j},$$

where x_j is the longitudinal momentum fraction of the valence quark, b_j is the conjugate variable of the transverse momentum, and e^{-S_j} is the Sudakov factor. In this paper, we will adopt the pQCD approach to investigate the $J/\psi \rightarrow PP$ weak decays within SM.

IV. KINEMATIC VARIABLES

For the $J/\psi \rightarrow PP$ weak decays, the valence quarks of the final states are entirely different from those of the initial state. Only annihilation configurations exist. Therefore, the $J/\psi \rightarrow PP$ weak decays provide us with some typical processes to closely scrutinize the pure annihilation contributions. As an example, the Feynman diagram for the $J/\psi \rightarrow \pi^- K^+$ decay are shown in Fig. 1.

![Feynman diagrams for the $J/\psi \rightarrow \pi^- K^+$ decay with the pQCD approach, where (a,b) are factorizable diagrams, and (c,d) are nonfactorizable diagrams. The dots denote appropriate interactions, and the dashed circles denote scattering amplitudes.](image)

FIG. 1: Feynman diagrams for the $J/\psi \rightarrow \pi^- K^+$ decay with the pQCD approach, where (a,b) are factorizable diagrams, and (c,d) are nonfactorizable diagrams. The dots denote appropriate interactions, and the dashed circles denote scattering amplitudes.

It is convenient to use the light-cone vectors to define the kinematic variables. In the rest
frame of the J/ψ particle, one has

$$p_\psi = p_1 = \frac{m_\psi}{\sqrt{2}}(1, 1, 0),$$
$$p_K = p_2 = \frac{m_\psi}{\sqrt{2}}(1, 0, 0),$$
$$p_\pi = p_3 = \frac{m_\psi}{\sqrt{2}}(0, 1, 0),$$
$$k_1 = x_1 p_1 + (0, 0, \vec{k}_{1\perp}),$$
$$k_2 = x_2 p_2^+ + (0, 0, \vec{k}_{2\perp}),$$
$$k_3 = x_3 p_3^- + (0, 0, \vec{k}_{3\perp}),$$
$$\epsilon_\parallel^\psi = \frac{1}{\sqrt{2}}(1, -1, 0),$$

where k_i, x_i and $\vec{k}_{i\perp}$ are respectively the momentum, longitudinal momentum fraction and transverse momentum; the quark momentum k_i is illustrated in Fig. 1 (a); ϵ_\parallel^ψ is the longitudinal polarization vector of the J/ψ particle, and satisfies both the normalization condition $\epsilon_\parallel^\psi \cdot \epsilon_\parallel^\psi = -1$ and the orthogonal relation $\epsilon_\parallel^\psi p_\psi = 0$; all hadrons are on mass shell, i.e., $p_1 = m_\psi^2$, $p_2^2 = 0$ and $p_3^2 = 0$.

V. HADRONIC WAVE FUNCTIONS

With the convention of Refs. [66, 85–87], the WFs and distribution amplitudes (DAs) are defined as follows.

$$\langle 0 | \bar{c}_\alpha(0) c_\beta(z) | \psi(p_1, \epsilon_\parallel) \rangle = \frac{1}{4} f_\psi \int dk_1 e^{+i k_1 \cdot z} \left\{ \epsilon_\parallel \left[m_\psi \phi_\psi^0 - \not k_1 \phi_\psi^i \right] \right\} \beta \alpha,$$
$$\langle K(p_2) | \bar{u}_\alpha(0) s_\beta(z) | 0 \rangle = -i f_K^4 \int dk_2 e^{-i k_2 \cdot z} \left\{ \gamma_5 \left[\not k_2 \phi_K^0 + \mu_K \phi_K^p - \mu_K \left(\not h_+ + \not h_- - 1 \right) \phi_K^t \right] \right\} \beta \alpha,$$
$$\langle \pi(p_3) | \bar{d}_\alpha(0) u_\beta(z) | 0 \rangle = -i f_\pi^4 \int dk_3 e^{-i k_3 \cdot z} \left\{ \gamma_5 \left[\not k_3 \phi_\pi^0 + \mu_\pi \phi_\pi^p - \mu_\pi \left(\not n_+ + \not n_- - 1 \right) \phi_\pi^t \right] \right\} \beta \alpha,$$

where f_ψ, f_K and f_π are decay constants; $\mu_{K, \pi} = 1.6 \pm 0.2$ GeV [86] is the chiral mass; $n_+ = (1, 0, 0)$ and $n_- = (0, 1, 0)$ are the null vectors; ϕ_π^0 and $\phi_\pi^{p,t}$ are twist-2 and twist-3,
respectively. The explicit expressions of ϕ^v_ψ, ϕ^t_ψ, ϕ^a_ψ and ϕ^a_P can be found in Ref. [66] and Refs. [86, 87], respectively. We collect these DAs as follows.

$$\phi^v_\psi(x) = A x \bar{x} \exp\left(-\frac{m_c^2}{8 \omega^2 x \bar{x}}\right),$$ \hspace{1cm} (17)$$

$$\phi^t_\psi(x) = B (\bar{x} - x)^2 \exp\left(-\frac{m_c^2}{8 \omega^2 x \bar{x}}\right),$$ \hspace{1cm} \hspace{1cm} (18)$$

$$\phi^a_P(x) = 6 x \bar{x} \left\{1 + a_1^P C_1^{3/2}(\xi) + a_2^P C_2^{3/2}(\xi)\right\},$$ \hspace{1cm} (19)$$

$$\phi^P(x) = 1 + 3 \rho_+^P - 9 \rho_-^P a_1^P + 18 \rho_+^P a_2^P$$
$$+ \frac{3}{2} (\rho_+^P + \rho_-^P) (1 - 3 a_1^P + 6 a_2^P) \ln(x)$$
$$+ \frac{3}{2} (\rho_+^P - \rho_-^P) (1 + 3 a_1^P + 6 a_2^P) \ln(\bar{x})$$
$$- \left(\frac{3}{2} \rho_-^P - \frac{27}{2} \rho_+^P a_1^P + 27 \rho_-^P a_2^P\right) C_1^{1/2}(\xi)$$
$$+ (30 \eta_P - 3 \rho_-^P a_1^P + 15 \rho_+^P a_2^P) C_2^{1/2}(\xi),$$ \hspace{1cm} (20)$$

$$\phi^P_P(x) = \frac{3}{2} (\rho_+^P - 3 \rho_+^P a_1^P + 6 \rho_-^P a_2^P)$$
$$- C_1^{1/2}(\xi) \left\{1 + 3 \rho_+^P - 12 \rho_-^P a_1^P + 24 \rho_+^P a_2^P$$
$$+ \frac{3}{2} (\rho_+^P + \rho_-^P) (1 - 3 a_1^P + 6 a_2^P) \ln(x)$$
$$+ \frac{3}{2} (\rho_+^P - \rho_-^P) (1 + 3 a_1^P + 6 a_2^P) \ln(\bar{x})\right\}$$
$$- 3 (3 \rho_+^P a_1^P - \frac{15}{2} \rho_-^P a_2^P) C_2^{1/2}(\xi),$$ \hspace{1cm} (21)$$

where $\bar{x} = 1 - x$ and $\xi = x - \bar{x}$. $\omega = m_c \alpha_s(m_c)$ is the shape parameter. The parameters A in Eq.(17) and B in Eq.(18) are determined by the normalization conditions,

$$\int \phi^{v,t}_\psi(x) \, dx = 1.$$ \hspace{1cm} (22)$$

For the meaning and definition of other parameters, refer to Refs. [86, 87].

VI. DECAY AMPLITUDES

When the final states include the isoscalar η or/and η', we assume that the components of glueball, charmonium or bottomonium are negligible. The physical η and η' states are
the mixtures of the $SU(3)$ octet and singlet states. In our calculation, we will adopt the quark-flavor basis description proposed in Ref. [88], i.e.,

$$
\begin{pmatrix}
\eta \\
\eta'
\end{pmatrix} = \begin{pmatrix}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{pmatrix} \begin{pmatrix}
\eta_q \\
\eta_s
\end{pmatrix},
$$

(23)

where the mixing angle is $\phi = (39.3 \pm 1.0) ^\circ$ [88], $\eta_q = (u\bar{u} + d\bar{d}) / \sqrt{2}$ and $\eta_s = s\bar{s}$. In addition, we assume that DAs of η_q and η_s are the same as those of pion, but with different decay constants and mass [88–90],

$$
f_q = (1.07 \pm 0.02) f_\pi,
$$

(24)

$$
f_s = (1.34 \pm 0.06) f_\pi,
$$

(25)

$$
m_{\eta_q}^2 = m_\eta^2 \cos^2 \phi + m_{\eta'}^2 \sin^2 \phi - \frac{\sqrt{2}}{f_q} f_s (m_{\eta'}^2 - m_\eta^2) \cos \phi \sin \phi,
$$

(26)

$$
m_{\eta_s}^2 = m_\eta^2 \sin^2 \phi + m_{\eta'}^2 \cos^2 \phi - \frac{f_q}{\sqrt{2} f_s} (m_{\eta'}^2 - m_\eta^2) \cos \phi \sin \phi.
$$

(27)

For the C parity violating J/ψ decays, the amplitudes are

$$
A(J/\psi \rightarrow \pi^0 \eta_q) = - \frac{G_F}{\sqrt{2}} V_{cd} V_{cd}^* \left\{ a_2 \left[A_{ab}(\pi, \eta_q) + A_{ab}(\eta_q, \pi) \right] + C_1 \left[A_{cd}(\pi, \eta_q) + A_{cd}(\eta_q, \pi) \right] \right\},
$$

(28)

$$
A(J/\psi \rightarrow \pi^0 \eta) = A(J/\psi \rightarrow \pi^0 \eta_q) \cos \phi,
$$

(29)

$$
A(J/\psi \rightarrow \eta_s \eta_s) = \sqrt{2} G_F V_{cs} V_{cs}^* \left\{ a_2 A_{ab}(\eta_s, \eta_s) + C_1 A_{cd}(\eta_s, \eta_s) \right\},
$$

(31)

$$
A(J/\psi \rightarrow \eta_q \eta_q) = \frac{G_F}{\sqrt{2}} V_{cd} V_{cd}^* \left\{ a_2 A_{ab}(\eta_q, \eta_q) + C_1 A_{cd}(\eta_q, \eta_q) \right\},
$$

(32)

$$
A(J/\psi \rightarrow \eta_q \eta') = \left\{ A(J/\psi \rightarrow \eta_q \eta_q) - A(J/\psi \rightarrow \eta_s \eta_s) \right\} \sin \phi \cos \phi.
$$

(33)

For the strangeness changing J/ψ decays, the amplitudes are

$$
A(J/\psi \rightarrow \pi^- K^+) = \frac{G_F}{\sqrt{2}} V_{cs} V_{cs}^* \left\{ a_2 A_{ab}(\pi, K) + C_1 A_{cd}(\pi, K) \right\},
$$

(34)

$$
A(J/\psi \rightarrow \pi^0 K^0) = - \frac{G_F}{2} V_{cd} V_{cd}^* \left\{ a_2 A_{ab}(\pi, K) + C_1 A_{cd}(\pi, K) \right\},
$$

(35)

$$
A(J/\psi \rightarrow K^0 \eta_s) = \frac{G_F}{\sqrt{2}} V_{cs} V_{cs}^* \left\{ a_2 A_{ab}(K, \eta_s) + C_1 A_{cd}(K, \eta_s) \right\},
$$

(36)

$$
A(J/\psi \rightarrow K^0 \eta_q) = \frac{G_F}{2} V_{cd} V_{cd}^* \left\{ a_2 A_{ab}(\eta_q, K) + C_1 A_{cd}(\eta_q, K) \right\},
$$

(37)
\[\mathcal{A}(J/\psi \to K^0 \eta) = \mathcal{A}(J/\psi \to K^0 \eta_q) \cos \phi - \mathcal{A}(J/\psi \to K^0 \eta_s) \sin \phi, \]
\[\mathcal{A}(J/\psi \to K^0 \eta') = \mathcal{A}(J/\psi \to K^0 \eta_q) \sin \phi + \mathcal{A}(J/\psi \to K^0 \eta_s) \cos \phi, \]
where coefficient \(a_2 = C_1 + C_2/N_c \) and the color number \(N_c = 3 \); The amplitude building blocks \(A_{ij} \) are listed in Appendix A. From the above amplitudes, it is foreseeable that if the \(J/\psi \to \pi \eta(\eta') \) decays were experimentally observed, the CKM element \(|V_{cd}| \) could be constrained or extracted.

VII. NUMERICAL RESULTS AND DISCUSSION

TABLE I: Values of the input parameters, with their central values regarded as the default inputs unless otherwise specified.

mass, width and decay constants of the particles [3]			
\(m_{\pi^0} = 134.98 \) MeV,	\(m_{K^0} = 497.61 \) MeV,	\(f_\pi = 130.2 \pm 1.2 \) MeV,	
\(m_{\pi^\pm} = 139.57 \) MeV,	\(m_{K^\pm} = 493.68 \) MeV,	\(f_K = 155.7 \pm 0.3 \) MeV,	
\(m_\eta = 547.86 \) MeV,	\(m_{\eta'} = 957.78 \) MeV,	\(f_\psi = 395.1 \pm 5.0 \) MeV [66],	
\(m_c = 1.67 \pm 0.07 \) GeV,	\(m_{J/\psi} = 3096.9 \) MeV,	\(\Gamma_\psi = 92.9 \pm 2.8 \) keV,	

Gegenbauer moments at the scale of \(\mu = 1 \) GeV [86]			
\(a_1^\pi = 0 \),	\(a_2^\pi = 0.25 \pm 0.15 \),	\(a_1^K = 0.06 \pm 0.03 \), \(a_2^K = 0.25 \pm 0.15 \)	

The branching ratio is defined as follows.

\[\mathcal{B}_r = \frac{p_{\text{cm}}}{24 \pi m_{J/\psi}^2 \Gamma_\psi} |\mathcal{A}(J/\psi \to PP)|^2, \]
where \(p_{\text{cm}} \) is the center-of-mass momentum of final states in the rest frame of the \(J/\psi \) particle. Using the inputs in Table I, the numerical results of branching ratios are obtained and presented in Table II. Our comments on the results are presented as follows.

1. The \(J/\psi \to \eta \eta' \) decays are Cabibbo-favored. The \(J/\psi \to K \pi \) and \(K \eta(\eta') \) decays are singly Cabibbo-suppressed. The \(J/\psi \to \pi \eta(\eta') \) decays are doubly Cabibbo-suppressed. Therefore, there is a hierarchical structure, \(\mathcal{B}_r(J/\psi \to \eta \eta') \sim \mathcal{O}(10^{-11}) \), \(\mathcal{B}_r(J/\psi \to K \pi, K \eta(\eta')) \sim \mathcal{O}(10^{-12} - 10^{-13}) \) and \(\mathcal{B}_r(J/\psi \to \pi \eta(\eta')) \sim \mathcal{O}(10^{-14}) \).

2. Compared with the external \(W \)-emission induced \(J/\psi \to D_{(s)} M \) decays, the internal \(W \)-exchange induced \(J/\psi \to PP \) decays are color-suppressed because the two light valence
TABLE II: Branching ratios for the $J/\psi \to PP$ weak decays, where the uncertainties originate from mesonic DAs, including the parameters of m_c, μ_P and a_2^P.

mode	$\mathcal{B}r$	mode	$\mathcal{B}r$
$J/\psi \to \pi^0\eta$	$(2.32^{+0.81}_{-0.24})\times10^{-14}$	$J/\psi \to \eta\eta'$	$(3.01^{+0.78}_{-0.55})\times10^{-11}$
$J/\psi \to \pi^0\eta'$	$(1.45^{+0.50}_{-0.15})\times10^{-14}$		

mode	$\mathcal{B}r$	mode	$\mathcal{B}r$
$J/\psi \to \pi^-K^+$	$(0.99^{+0.33}_{-0.15})\times10^{-12}$	$J/\psi \to K^0\eta$	$(0.84^{+0.25}_{-0.22})\times10^{-13}$
$J/\psi \to \pi^0K^0$	$(0.49^{+0.16}_{-0.08})\times10^{-12}$	$J/\psi \to K^0\eta'$	$(1.94^{+0.30}_{-0.25})\times10^{-12}$

quarks of the effective operators belong to different final states. In addition, according to the power counting rule of the QCDF approach in the heavy quark limit, the annihilation amplitudes are assumed to be power suppressed, relative to the emission amplitudes [73]. Therefore, the branching ratios for $J/\psi \to PP$ decays are less than those for $J/\psi \to D(\phi)M$ decays by one or two orders of magnitude [63–67].

(3) The nonperturbative mesonic DAs are the essential parameters of the amplitudes with the pQCD approach. One of the main theoretical uncertainties arising from participating DAs is given in Table II. In addition, there are several other influence factors. For example, the decay constant f_ψ and width Γ_ψ will bring 2.5% and 3% uncertainties to branching ratios.

(4) Branching ratios for the $J/\psi \to \eta\eta'$ decays can reach up to the order of 10^{-11}, which are far beyond the measurement precision and capability of current BESIII experiment; however, they might be accessible at the future high-luminosity STCF experiment. It will be very difficult and challenging but interesting to search for the $J/\psi \to PP$ weak decays experimentally. It could be speculated that branching ratios for the $J/\psi \to PP$ weak decays might be enhanced by including some novel interactions of NP models. For example, it has been shown in Refs. [91, 92] that branching ratios for the W-emission $J/\psi \to D + X$ weak decays could be as large as $10^{-6} \sim 10^{-5}$ with the contributions from NP. An observation of the phenomenon of an abnormally large occurrence probability would be a hint of NP.
VIII. SUMMARY

Within the SM, the C parity violating $J/\psi \to \pi^0\eta^{(')}$ and $\eta\eta'$ decays and the strangeness changing $J/\psi \to K\pi$ and $K\eta^{(')}$ decays are solely valid and possible via the weak interactions; however, they are very rare. In this paper, based on the latest progress and future prospects of the J/ψ physics at high-luminosity collider, we studied the $J/\psi \to PP$ weak decays using the pQCD approach for the first time. It is found that the branching ratios for the $J/\psi \to \eta\eta'$ decays can reach up to the order of 10^{-11}, which might be measurable by the future STCF experiment.

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Grant Nos. 11705047, 11981240403, U1632109, 11547014, and 11875122) and the Program for Innovative Research Team in University of Henan Province (19IRTSTHN018), the Excellent Youth Foundation of Henan Province (212300410010) and the Chinese Academy of Sciences Large-Scale Scientific Facility Program (1G2017IHEPKF0YJ01).

Appendix A: Amplitude building blocks

From the definition of Eq.(15) and Eq.(16), it can be clearly observed that the twist-3 DAs are always accompanied by a chiral mass μ_P. With the pQCD approach, a Sudakov factor is introduced for each of the hadronic WFs.

We take the $J/\psi \to K^+\pi^-$ decay as an example. For simplicity, we use the following shorthand forms.

\begin{align*}
\phi^{v,t}_\psi &= \phi^{v,t}_\psi(x_1) e^{-S_\psi}, \\
\phi^a_K &= \phi^a_K(x_2) e^{-S_K}, \\
\phi^{p,t}_K &= \frac{\mu_K}{m_\psi} \phi^{p,t}_K(x_2) e^{-S_K}, \\
\phi^a_\pi &= \phi^a_\pi(x_3) e^{-S_\pi}, \\
\phi^{p,t}_\pi &= \frac{\mu_\pi}{m_\psi} \phi^{p,t}_\pi(x_3) e^{-S_\pi},
\end{align*}

(A1) (A2) (A3) (A4) (A5)
where the definitions of Sudakov factors are

\[S_\psi = s(x_1, p_1^+, b_1) + 2 \int_{1/b_1}^t \frac{d\mu}{\mu} \gamma_q, \]
(A6)

\[S_K = s(x_2, p_2^+, b_2) + s(\bar{x}_2, p_2^+, 1/b_2) + 2 \int_{1/b_2}^t \frac{d\mu}{\mu} \gamma_q, \]
(A7)

\[S_\pi = s(x_3, p_3^+, b_3) + s(\bar{x}_3, p_3^+, 1/b_3) + 2 \int_{1/b_3}^t \frac{d\mu}{\mu} \gamma_q, \]
(A8)

The expression of \(s(x, Q, b) \) can be found in Ref. [80]. \(\gamma_q = -\alpha_s/\pi \) is the quark anomalous dimension. In addition, the decay amplitudes are always the functions of Wilson coefficient \(C_i \). It should be understood that the shorthand

\[C_i A_{jk}(\pi, K) = \frac{\pi C_F}{N_c} m_\psi^4 f_\psi f_K f_\pi \left\{ A_j(C_i) + A_k(C_i) \right\}, \]
(A9)

where the color factor \(C_F = 4/3 \) and the color number \(N_c = 3 \). The subscripts \(j \) and \(k \) of building block \(A_{j(k)} \) correspond to the indices of Fig. 1. The expressions of \(A_i \) are written as follows.

\[A_a = \int_0^1 dx_2 dx_3 \int_0^\infty db_2 db_3 H_{ab}(\alpha_g, \beta_a, b_2, b_3) \alpha_s(t_a) C_i(t_a) \]

\[S_t(\bar{x}_2) \left\{ \phi^a_K \phi^a_\pi \bar{x}_2 - 2 \phi^p_K x_2 + \phi^t_K (1 + \bar{x}_2) \right\}, \]
(A10)

\[A_b = \int_0^1 dx_2 dx_3 \int_0^\infty db_2 db_3 H_{ab}(\alpha_g, \beta_b, b_3, b_3) \alpha_s(t_b) C_i(t_b) \]

\[S_t(x_3) \left\{ \phi^a_K \phi^a_\pi x_3 - 2 \phi^p_K \left[\phi^p_\pi x_3 - \phi^t_\pi (1 + x_3) \right] \right\}, \]
(A11)

\[A_c = \frac{1}{N_c} \int_0^1 dx_1 dx_2 dx_3 \int_0^\infty db_1 db_2 H_{cd}(\alpha_g, \beta_c, b_1, b_2) \alpha_s(t_c) C_i(t_c) \]

\[\left\{ \phi^v_\psi \left[\phi^a_K \phi^a_\pi (x_1 - x_3) + (\phi^p_K \phi^p_\pi - \phi^t_K \phi^t_\pi) (\bar{x}_2 - x_3) \right] + (\phi^t_K \phi^t_\pi - \phi^t_K \phi^t_\pi) (2 x_1 - \bar{x}_2 - x_3) \right\} \]

\[-\phi^v_\psi \left[\frac{1}{2} \phi^a_K \phi^a_\pi + 2 \phi^p_K \phi^p_\pi \right] \}_{b_2 = b_3}, \]
(A12)

\[A_d = \frac{1}{N_c} \int_0^1 dx_1 dx_2 dx_3 \int_0^\infty db_1 db_2 H_{cd}(\alpha_g, \beta_d, b_1, b_2) \alpha_s(t_d) C_i(t_d) \]

\[\left\{ \phi^v_\psi \left[\phi^a_K \phi^a_\pi (x_2 - x_1) + (\phi^p_K \phi^p_\pi - \phi^t_K \phi^t_\pi) (x_3 - \bar{x}_2) \right] + (\phi^t_K \phi^t_\pi - \phi^t_K \phi^t_\pi) (2 \bar{x}_1 - x_2 - x_3) \right\} \]

\[-\phi^v_\psi \left[\frac{1}{2} \phi^a_K \phi^a_\pi - 2 \phi^p_K \phi^p_\pi \right] \}_{b_2 = b_3}, \]
(A13)
\[H_{ab}(\alpha, \beta, b_i, b_j) = \frac{-\pi^2}{4} b_i b_j \left\{ J_0(b_j \sqrt{\alpha}) + i Y_0(b_j \sqrt{\alpha}) \right\} \]
\[\times \left\{ \theta(b_i - b_j) \left[J_0(b_i \sqrt{\beta}) + i Y_0(b_i \sqrt{\beta}) \right] J_0(b_j \sqrt{\beta}) + (b_i \leftrightarrow b_j) \right\}, \quad (A14) \]

\[H_{cd}(\alpha, \beta, b_1, b_2) = b_1 b_2 \left\{ \frac{i \pi}{2} \theta(\beta) \left[J_0(b_1 \sqrt{\beta}) + i Y_0(b_1 \sqrt{\beta}) \right] + \theta(-\beta) K_0(b_1 \sqrt{-\beta}) \right\} \]
\[\times \frac{i \pi}{2} \left\{ \theta(b_1 - b_2) \left[J_0(b_1 \sqrt{\alpha}) + i Y_0(b_1 \sqrt{\alpha}) \right] J_0(b_2 \sqrt{\alpha}) + (b_1 \leftrightarrow b_2) \right\}, \quad (A15) \]

where \(J_0, J_0, K_0 \) and \(Y_0 \) are Bessel functions. The parametrization of the Sudakov factor \(S_t(x) \) can be found in Ref. [84]. The virtualities of gluons and quarks are

\[\alpha_g = m_{\psi}^2 \bar{x}_2 x_3, \quad (A16) \]
\[\beta_a = m_{\psi}^2 \bar{x}_2, \quad (A17) \]
\[\beta_b = m_{\psi}^2 x_3, \quad (A18) \]
\[\beta_c = \alpha_g - m_{\psi}^2 \bar{x}_1 (\bar{x}_2 + x_3), \quad (A19) \]
\[\beta_d = \alpha_g - m_{\psi} \bar{x}_1 (\bar{x}_2 + x_3), \quad (A20) \]
\[t_{a,b} = \max(\sqrt{\beta_{a,b}}, 1/b_2, 1/b_1), \quad (A21) \]
\[t_{c,d} = \max(\sqrt{\alpha_g}, \sqrt{|\beta_{c,d}|}, 1/b_1, 1/b_2). \quad (A22) \]
[10] J. Pasupathy, C. Singh, Phys. Rev. D 18, 791 (1978).
[11] L. Clavelli, G. Intemann, Phys. Rev. D 28, 2767 (1983).
[12] S. Pinsky, Phys. Rev. D 31, 1753 (1985).
[13] N. Achasov, A. Kozhevnikov, Phys. Rev. D 49, 275 (1994).
[14] X. Liu, X. Zeng, X. Li, Phys. Rev. D 74, 074003 (2006).
[15] Q. Zhao, G. Li, C. Chang, Phys. Lett. B 645, 173 (2007).
[16] G. Li, Q. Zhao, B. Zou, Phys. Rev. D 77, 014010 (2008).
[17] G. Li, Q. Zhao, C. Chang, J. Phys. G 35, 055002 (2008).
[18] Q. Zhao, G. Li, C. Chang, Chin. Phys. C 34, 299 (2010).
[19] Q. Wang, G. Li, Q. Zhao, Phys. Rev. D 85, 074015 (2012).
[20] Y. Chen, Z. Guo, B. Zou, Phys. Rev. D 91, 014010 (2015).
[21] H. Kowalski, T. Walsh, Phys. Rev. D 14, 852 (1976).
[22] R. Baltrusaitis et al. (Mark III Collaboration), Phys. Rev. D 32, 2883 (1985).
[23] H. Haber, J. Perrier, Phys. Rev. D 32, 2961 (1985).
[24] A. Bramon, J. Casulleras, Z. Phys. C 32, 467 (1986).
[25] A. Bramon, J. Casulleras, Phys. Lett. B 173, 97 (1986).
[26] A. Seiden, H. Sadrozinski, H. Haber, Phys. Rev. D 38, 824 (1988).
[27] D. Coffman et al. (Mark III Collaboration), Phys. Rev. D 38, 2695 (1989).
[28] L. Köpke, N. Wermes, Phys. Rept. 174, 67 (1989).
[29] J. Jousset et al. (DM2 Collaboration), Phys. Rev. D 41, 1389 (1990).
[30] N. Morisita, I. Kitamura, T. Teshima, Phys. Rev. D 44, 175 (1991).
[31] M. Nekrasov, Z. Phys. C 61, 147 (1994).
[32] A. Bramon, R. Escribanoa, M. Scadron, Phys. Lett. B 403, 339 (1997).
[33] M. Suzuki, Phys. Rev. D 55, 2840 (1997).
[34] M. Suzuki, Phys. Rev. D 57, 5717 (1998).
[35] A. Bramon, R. Escribano, M. Scadron, Eur. Phys. J. C 7, 271 (1999).
[36] J. Rosner, Phys. Rev. D 60, 074029 (1999).
[37] T. Feldmann, P. Kroll, Phys. Rev. D 62, 074006 (2000).
[38] D. Li, H. Yu, S. Fang, Eur. Phys. J. C 28, 335 (2003).
[39] D. Li, B. Ma, H. Yu, Int. J. Mod. Phys. A 18, 3335 (2003).
[40] C. Thomas, JHEP 0710, 026 (2007).
[41] D. Wei, J. Phys. G 36, 115006 (2009).
[42] R. Escribano, Eur. Phys. J. C 65, 467 (2010).
[43] D. Wei, Y. Yang, Chin. Phys. C 34, 1785 (2010).
[44] J. Huang, J. Sun, G. Lu, H. Li, Chin. Phys. C 37, 073103 (2013).
[45] D. Wang, Y. Ban, G. Li, Chin. Phys. C 38, 063101 (2014).
[46] M. Chaichian, N. Törnqvist, Nucl. Phys. B 323, 75 (1989).
[47] B. Irwin, B. Margolis, H. Trottier, Phys. Rev. D 42, 1577 (1990).
[48] Y. Chen, E. Braaten, Phys. Rev. Lett. 80, 5060 (1998).
[49] T. Li, S. Zhao, X. Li, Nucl. Phys. A 828, 125 (2009).
[50] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 90, 112014 (2014).
[51] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 96, 111101 (2017).
[52] M. Ablikim et al. (BESIII Collaboration), JHEP 06, 157 (2021).
[53] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 89, 071101 (2014).
[54] M. Sanchis-Lozano, Z. Phys. C 62, 271 (1994).
[55] Y. Wang, H. Zou, Z. Wei et al., Eur. Phys. J. C 54, 107 (2008).
[56] Y. Wang, H. Zou, Z. Wei et al., J. Phys. G 36, 105002 (2009).
[57] M. Ivanov, C. Tran, Phys. Rev. D 92, 074030 (2015).
[58] Y. Shen, Y. Wang, Phys. Rev. D 78, 074012 (2008).
[59] R. Dhir, R. Verma, A. Sharma, Adv. High Energy Phys. 2013, 706543 (2013).
[60] T. Wang, Y. Jiang, H. Yuan et al., J. Phys. G 44, 045004 (2017).
[61] R. Verma, A. Kamal, A. Czarnecki, Phys. Lett. B 252, 690 (1990).
[62] K. Sharma, R. Verma, Int. J. Mod. Phys. A 14, 937 (1999).
[63] Y. Wang, H. Zou, Z. Wei et al., Eur. Phys. J. C 55, 607 (2008).
[64] J. Sun, L. Chen, Q. Chang, J. Huang, Y. Yang, Int. J. Mod. Phys. A 30, 1550094 (2015).
[65] J. Sun, Y. Yang, J. Gao, Q. Chang, J. Huang, G. Lu, Phys. Rev. D 94, 034029 (2016).
[66] Y. Yang, J. Sun, J. Gao, Q. Chang, J. Huang, G. Lu, Int. J. Mod. Phys. A 31, 1650161 (2016).
[67] J. Sun, Y. Yang, J. Huang, L. Chen, Q. Chang, Adv. High Energy Phys. 2016, 5071671 (2016).
[68] H. Li, M. Yang, Phys. Rev. Lett. 96, 192001 (2006).
[69] H. Li, M. Yang, Chin. Phys. C 33, 85 (2009).
[70] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 96, 112001 (2017).
[71] G. Buchalla, A. Buras, M. Lautenbacher, Rev. Mod. Phys. 68, 1125, (1996).
[72] M. Beneke, G. Buchalla, M. Neubert, C. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999).
[73] M. Beneke, G. Buchalla, M. Neubert, C. Sachrajda, Nucl. Phys. B 591, 313 (2000).
[74] M. Beneke, G. Buchalla, M. Neubert, C. Sachrajda, Nucl. Phys. B 606, 245 (2001).
[75] D. Du, D. Yang, G. Zhu, Phys. Lett. B 488, 46 (2000).
[76] D. Du, D. Yang, G. Zhu, Phys. Lett. B 509, 263 (2001).
[77] D. Du, D. Yang, G. Zhu, Phys. Rev. D 64, 014036 (2001).
[78] H. Li, H. Yu, Phys. Rev. Lett. 74, 4388 (1995).
[79] H. Li, Phys. Lett. B 348, 597 (1995).
[80] H. Li, Phys. Rev. D 52, 3958 (1995).
[81] Y. Keum, H. Li, Phys. Rev. D 63, 074006 (2001).
[82] Y. Keum, H. Li, A. Sanda, Phys. Rev. D 63, 054008 (2001).
[83] C. Lü, K. Ukai, M. Yang, Phys. Rev. D 63, 074009 (2001).
[84] H. Li, K. Ukai, Phys. Lett. B 555, 197 (2003).
[85] T. Kurimoto, H. Li, A. Sanda, Phys. Rev. D 65, 014007 (2001).
[86] P. Ball, V. Braun, A. Lenz, JHEP 0605, 004 (2006).
[87] Y. Yang, L. Lang, X. Zhao, J. Huang, J. Sun, Phys. Rev. D 103, 056006 (2021).
[88] Th. Feldmann, P. Kroll, B. Stech, Phys. Rev. D 58, 114006 (1998).
[89] A. Ali, G. Kramer, Y. Li et al., Phys. Rev. D 76, 074018 (2007).
[90] J. Sun, Y. Yang, Q. Chang, G. Lu, Phys. Rev. D 89, 114019 (2014).
[91] A. Datta, P. O’Donnell, S. Pakvasa, X. Zhang, Phys. Rev. D 60, 014011 (1999).
[92] X. Zhang, Chin. Phys. C 25, 461 (2001).