Association of Migraine and Sleep-Related Breathing Disorder
A Population-Based Cohort Study

Tomor Harnod, MD, PhD, Yu-Chiao Wang, MSc, and Chia-Hung Kao, MD

Abstract: In this nationwide population-based cohort study, we aimed to evaluate the effects of sleep-related breathing disorders (SBD) on migraine development.

Patients ages 20 years or more and diagnosed with SBD between 2000 and 2009 were evaluated as the SBD cohort (n = 3411), and compared with comparison cohort (n = 13,644). The adjusted hazard ratio (aHR) for developing migraine was calculated in both cohorts by multivariate Cox proportional hazards model.

The cumulative incidence of migraine was significantly higher in the SBD cohort than in the comparison cohort. In the SBD cohort, the overall aHR for developing migraine was 2.43 (95% confidence interval [CI] 1.72–3.44). The risk of developing migraine was higher in men (aHR 2.71) than in women (aHR 2.29) with SBD. When stratifying by age, we observed increased incidence of migraine in patients ages 20 to 44 years and 45 to 64 years, with a higher aHR of 2.51 (95% CI 1.47–4.30) and 2.68 (95% CI 1.63–4.43), respectively. The risk of developing migraine in the patients with SBD with or without comorbidity exhibited nonsignificant differences. After stratifying by the use of hypnotics, the aHR for developing migraine was 2.39 in the patients with hypnotics use and 3.58 in the patients without hypnotics use.

Our findings indicate increased risk of developing migraine in adults, but not elderly ones, with SBD.

Abbreviations: aHR = adjusted hazard ratio, BZD = benzodiazepines, CI = confidence interval, COPD = chronic obstructive pulmonary disease, HR = hazard ratio, ICD-9-CM = International Classification of Diseases, 9th Revision, Clinical Modification, IL = interleukin, LHID = the Longitudinal Health Insurance Database, NHI = national health insurance, NHIRD = the National Health Insurance Research Database, SBD = sleep-related breathing disorder, TNF = tumor necrosis factor.

INTRODUCTION
Insomnia and headache are both common complaints that could affect the quality of our daily lives. In Asia, migraine is the most prevalent type of headache diagnosed at neurology clinics (66.6% of headache patients, ranging from 50.9% to 85.8% in various countries). Worldwide, the estimated annual prevalence of migraine is approximately 15% to 20% in women and 6% to 10% in men. On the other side, insomnia, especially the sleep-related breathing disorders (SBD) can temporarily or chronically happen in a person and would be highly associated with other medical disorders. Higher prevalence of SBD was usually observed in the elderly population, and was thought to threaten their lives with increasing the risk of various vascular diseases.

Migraine is considered as a neurovascular disease and is associated with other vascular diseases, too. Previous studies have reported interacting relationships among migraine, various sleep disorders, anxiety, and depression. However, whether SBD can be considered a trigger or a predisposing factor for migraine development still remains unclear. Therefore, in this study, we used a Taiwanese nationwide population-based database to evaluate the risk of developing subsequent migraine in patients with SBD.

METHODS AND MATERIALS
Data Source
Taiwan launched a national health insurance (NHI) in 1995, operated by a single-buyer, the government. Medical reimbursement specialists and peer review should scrutinize all insurance claims. This retrospective population-based cohort study was conducted using the Longitudinal Health Insurance Database (LHID) of the National Health Insurance Research Database (NHIRD), established by the National Health Research Institutes, Department of Health, Taiwan. The
Statistical Analysis
Risk factors for migraine, including age, sex, comorbidity, and history of drug use, were compared between the SBD and comparison cohorts by using Student t test and Chi-squared test. The incidence rate of migraine (per 1000 person-year) was calculated in the 2 cohorts, according to demographic variables, comorbidity (yes/no), and drug use (yes/no). A Poisson regression model was used to estimate the incidence rate ratios and 95% confidence intervals (CIs) for migraine in the SBD and comparison cohorts according to the various variables. A multivariate Cox proportional hazards model was used to calculate the adjusted hazard ratio (aHR) and 95% CI for migraine in both cohorts, after controlling for potential confounding risk factors. The Cox model was also used to estimate the HR for migraine and SBD with various comorbidities.

RESULTS
In this study, we evaluated 3411 patients with SBD diagnosed between 2000 and 2009 as the SBD cohort, and 13,644 comparison patients as the comparison cohort (Table 1). The distributions of sex and age were similar between the 2 cohorts. However, the majority of the patients were men (67.8%) and were ages <65 years (85.1%). The mean age (± standard deviation) of 2 cohorts was 48.3 ± 15.3 years. During the 12-year follow-up, the incidence of migraine development was 2.17% in the SBD cohort and 0.66% in the comparison cohort, with the mean migraine-onset age of 46.3 and 51.6 years, respectively. The proportion of patients with a comorbidity, such as hypertension (49.7% vs 30.5%), hyperlipidemia (41.2% vs 21.5%), diabetes (24.5% vs 15.1%), stroke (26.4% vs 14.3%), COPD (37.6% vs 16.8%), depression (16.4% vs. 2.61%), and anxiety (28.2% vs. 6.18%), was substantially higher in the SBD cohort than in the comparison cohort. The proportion of patients using zolpidem, BZD, or both was higher in the SBD cohort than in the comparison cohort at the baseline (89.9% vs 68%). Surprisingly, most participants took BZD or both and only very few in the 2 cohorts used zolpidem alone (1.44% vs 0.86%; Table 1).

As shown in Figure 1, the cumulative incidence of developing migraine during the follow-up was higher in the SBD cohort than in the comparison cohort (log-rank test, P < 0.0001). The overall aHR for developing migraine was 2.43 (95% CI = 1.72–3.44), and the incidence rate of migraine was higher in the SBD cohort than in the comparison cohort (3.83 vs 1.17 per 1000 person-year; Table 2). The risk of developing migraine was higher in men (aHR = 2.71, 95% CI = 1.64–4.47) than in women (aHR = 2.29, 95% CI = 1.41–3.72) with SBD. When stratifying by age, the patients ages between 45 and 64 years were associated with the highest risk of developing subsequent migraine, with an aHR of 2.68 (95% CI = 1.63–4.43). The aHR for developing migraine was 2.51 (95% CI = 1.47–4.30) in the patients ages 20 to 44 years and 1.09 in the patients ages ≥65 years. In both the SBD and comparison cohorts, the incidence of developing migraine was greater in patients with ≥1 type comorbidities. After stratifying the patients in the SBD and comparison cohorts by drug use, we identified an aHR of 2.39 (95% CI = 1.68–3.40) in the patients with drug use and 3.58 (95% CI = 0.42–30.7) in the patients without drug use. Table 3 shows the multiplicative risk of developing migraine in the patients with SBD and various comorbidities. The comorbidities having significant interaction with SBD for migraine development included hypertension (P = 0.0146), hyperlipidemia (P = 0.0227), diabetes (P = 0.0497), and stroke (P = 0.0367). But we also observed increased risk of developing migraine in the patients with SBD and COPD (aHR = 3.08, 95% CI = 1.96–4.83), depression (aHR = 4.44, 95% CI = 2.67–7.39), or anxiety (aHR = 5.12, 95% CI = 3.41–7.69).
DISCUSSION

Our results indicate significantly increased risk of developing subsequent migraine in patients with SBD ages between 20 and 64 years, but not in older patients. Migraine is a combining neuronal and vascular disorder, which associates with other vascular events. Murinova et al proposed that migraine would be considered a risk factor for other vascular diseases based on the vascular mechanism and that migraineurs might have different endothelial, structural, and genetic factors of vessels than regular people. Through the vascular mechanism, SBD can possibly result in repeated episodes of hypoxia and hypercapnia during sleep, and altered vascular endothelial function. Tissue hypoxia was also reportedly associated with the upregulated expression of transcription factors such as hypoxia inducible factor, nuclear factor kappa B, tumor necrosis factor (TNF), inducible nitric oxide synthase, and vascular endothelial growth factor. Therefore, migraine could be caused by the changed production of endothelium-derived hyperpolarizing factors, which dilates the meningeal vessels and presents a migraine headache. These changes might also lead to other vascular comorbidities, such as hypertension, atherosclerosis, ischemia, thrombosis, and stroke.

Another study suggested that hypoxia might increase blood–brain barrier permeability, leading to brain edema, neurovascular uncoupling, and neuronal dysfunction and damage, which would be related to the neuronal or cortical mechanism of migraine. Such changes in brain cortices and

| TABLE 1. Comparison of Demographics, Comorbidity, and History of Drug Use Between SBD and Comparison Cohorts |
|---|-----------------|-----------------|-----------------|-----------------|
| Gender* | SBD | | | |
| Women | 4396 | 32.2 | 1099 | 32.2 |
| Men | 9248 | 67.8 | 2312 | 67.8 |
| Age, yr** | | | | |
| 20–44 | 6068 | 44.5 | 1517 | 44.5 |
| 45–64 | 5540 | 40.6 | 1385 | 40.6 |
| ≥65 | 2036 | 14.9 | 509 | 14.9 |
| Mean (SD)** | 48.3 (15.3) | | 48.3 (15.3) | |
| Migraine* | 90 | 0.66 | 74 | 2.17 |
| Mean of onset age (SD), yr† | 51.6 (15.2) | | 46.3 (12.8) | |
| Comorbidity* | | | | |
| Hypertension | 4155 | 30.5 | 1694 | 49.7 |
| Hyperlipidemia | 2936 | 21.5 | 1404 | 41.2 |
| Diabetes | 2062 | 15.1 | 835 | 24.5 |
| Stroke | 1951 | 14.3 | 901 | 26.4 |
| COPD | 2287 | 16.8 | 1283 | 37.6 |
| Depression | 356 | 2.61 | 561 | 16.4 |
| Anxiety | 843 | 6.18 | 961 | 28.2 |
| Drug* | | | | <0.0001 |
| None | 4362 | 32.0 | 345 | 10.1 |
| Zolpidem | 117 | 0.86 | 49 | 1.44 |
| BZD | 7681 | 56.3 | 1418 | 41.6 |
| Both | 1484 | 10.9 | 1599 | 46.9 |

COPD = chronic obstructive pulmonary disease; BZD = benzodiazepines; SBD = sleep-related breathing disorders; SD = standard deviation.
*Chi-squared test.
†Student t test.

FIGURE 1. Comparison of cumulative incidence of developing migraine between participants with (dashed line) and without (solid line) sleep-related breathing disorders.
neurons may lead to various neurological diseases, and a high degree of comorbidity has been observed among Alzheimer’s disease, migraine, and epilepsy. Therefore, SBD might induce hypoxia and cause an unstable neuronal condition, resulting in the symptoms of migraine in patients. Furthermore, there is another possible mechanism causing from the comorbid condition of migraine and epilepsy. A sleep disorder itself can increase the occurrence of interictal spikes and epileptic seizures,21,22 and migraine like headache can be preceded to a subtle seizure before the epilepsy diagnosis being made. It is due to the well-known association between migraine and epilepsy in recent studies.23 In the future, we would like to study the occurrence of interictal spikes and epileptic seizures due to the well-known association between migraine and epilepsy in recent studies.23

TABLE 2. Incidence and Adjusted Hazard Ratio of Migraine Stratified by Sex, Age, Comorbidity (Yes/No) and Drug Use (Yes/No) Between SBD and Comparison Cohorts

Variables	Event	PY	Rate	Event	PY	Rate
Overall						
Gender						
Women						
Men						
Age, yr						
20–44						
45–64						
≥65						
Comorbidity						
No						
Yes						
Drug						
No						
Yes						

Adjusted HR = multiple analysis including age, sex, comorbidities, and drug used; IRR = incidence rate ratio; CI = confidence interval; PY = person-year; Rate = incidence rate (per 1000 person-years); SBD = sleep-related breathing disorders.

As shown in Figure 1, we observed that the risk of developing subsequent migraine increased in the SBD cohort over time. We analyzed the interactions between various comorbidities and SBD, and considered the major confounding factors for migraine development. Vascular-related comorbidities, such as hypertension, hyperlipidemia, diabetes, and stroke, were significantly associated with SBD and migraine development (Table 3). However, nonvascular-related comorbidities, such as COPD, depression, and anxiety, were nonsignificantly associated with SBD and migraine development. As shown in Table 2, comorbidity and drug use exerted nonsignificant effects on the HRs for developing migraine. However, because of limited numbers of SBD patients who had no comorbidity or without drug use, these results could not be considered reliable to us in the interpretation.

The strengths of this study are its nationwide population-based design and representativeness of the 2 cohorts. However, this study also has some limitations. First, information on migraine frequency, presence or absence of aura, smoking habits, alcohol consumption, body mass index or weight, socioeconomic status, and family history were not available in the NHIRD, all of which might represent confounding factors for developing migraine. Second, evidence deriving from a cohort study is subject to several biases related to adjustment for confounders. Although our study design included adequate confounders, such as COPD, depression, and anxiety, were nonsignificantly associated with SBD and migraine development. As shown in Table 2, comorbidity and drug use exerted nonsignificant effects on the HRs for developing migraine. However, because of limited numbers of SBD patients who had no comorbidity or without drug use, these results could not be considered reliable to us in the interpretation.

The strengths of this study are its nationwide population-based design and representativeness of the 2 cohorts. However, this study also has some limitations. First, information on migraine frequency, presence or absence of aura, smoking habits, alcohol consumption, body mass index or weight, socioeconomic status, and family history were not available in the NHIRD, all of which might represent confounding factors for developing migraine. Second, evidence deriving from a cohort study is subject to several biases related to adjustment for confounders. Although our study design included adequate control for confounding factors, bias could have remained in the presence of unmeasured or unknown confounders. Finally, the diagnoses in the NHI claims data are primarily used for administrative affairs and do not undergo verification for scientific purposes due to the anonymity of patient identification numbers. We were unable to approach the patients directly to confirm the details of them and the accuracy of their diagnoses. Also, we could not obtain the characteristics of their migraine (with or without aura, episodic or chronic) and the medication use to categorize subgroups for strengthening the data analysis. However, some previous studies reported the
TABLE 3. Adjusted Hazard Ratios of Migraine Associated SBD Interaction With Comorbidity

Variable	N	Event	Adjusted HR (95% CI)	P Value
SBD Hypertension	No	No	9489 51	Ref.
	No	Yes	4155 39	1.53 (0.97–2.43)***
	Yes	No	1717 42	4.58 (3.04–6.90)***
	Yes	Yes	1694 32	3.23 (2.02–5.16)***
SBD Hyperlipidemia	No	No	10,708 58	Ref.
	No	Yes	2936 32	1.79 (1.15–2.80)*
	Yes	No	2007 45	4.17 (2.82–6.16)***
	Yes	Yes	1404 29	3.57 (2.26–5.62)***
SBD Diabetes	No	No	11,582 70	Ref.
	No	Yes	2062 20	1.45 (0.87–2.43)
	Yes	No	2576 59	3.87 (2.74–5.48)***
	Yes	Yes	835 15	2.64 (1.50–4.66)***
SBD Stroke	No	No	11,693 69	Ref.
	No	Yes	1951 21	1.65 (0.98–2.78)
	Yes	No	2510 57	3.89 (2.74–5.53)***
	Yes	Yes	901 17	2.96 (1.70–5.14)***
SBD COPD	No	No	11,357 71	Ref.
	No	Yes	2287 19	1.23 (0.73–2.06)
	Yes	No	2128 47	3.67 (2.54–5.31)***
	Yes	Yes	1283 27	3.08 (1.96–4.83)***
SBD Depression	No	No	13,288 87	Ref.
	No	Yes	356 3	1.13 (0.36–3.58)
	Yes	No	2850 56	3.06 (2.19–4.28)***
	Yes	Yes	561 18	4.44 (2.67–7.39)***
SBD Anxiety	No	No	12,801 79	Ref.
	No	Yes	843 11	1.72 (0.91–3.26)
	Yes	No	2450 40	2.75 (1.86–3.99)***
	Yes	Yes	961 34	3.12 (2.41–7.69)***

Model adjusted for age and sex; P value for interaction; CI = confidence interval; COPD = chronic obstructive pulmonary disease; HR = hazard ratio; Ref. = reference group; SBD = sleep-related breathing disorders.

* P < 0.05, ** P < 0.01.

high accuracy and validity of diagnoses from ICD-9-CM codes in the NHIRD research,27,28 and those convinced us that some valuable evidences had been shown in this study about the causal correlation between SBD and subsequent migraine development.

CONCLUSION

The findings from this population-based cohort study indicate increased risk of developing subsequent migraine in adults, but not elderly ones, with SBD, which could be thought as a trigger or a predisposing factor for migraine development. Additional large unbiased population-based studies with further categorization and analysis are required to confirm these findings.

REFERENCES

1. Wang SJ, Chung CS, Chankrachang S, et al. Migraine disability awareness campaign in Asia: migraine assessment for prophylaxis. *Headache*. 2008;48:1356–1365.

2. Cheung RT. Prevalence of migraine, tension-type headache, and other headaches in Hong Kong. *Headache*. 2000;40:473–479.

3. Lipton RB, Stewart WF, Diamond S, et al. Prevalence and burden of migraine in the United States: data from the American Migraine Study II. *Headache*. 2001;41:646–657.

4. Stonner LJ, Zwart JA, Hagen K, et al. Epidemiology of headache in Europe. *Eur J Neurol*. 2006;13:333–345.

5. Ohayon MM. Observation of the natural evolution of insomnia in the American general population cohort. *Sleep Med Clin*. 2009;4:87–92.

6. Panossian L, Daley J. Sleep-disordered breathing. *Continuum (Minneap Minn)*. 2013;19:86–103.

7. Yaffe K, Laffan AM, Harrison SL, et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. *JAMA*. 2011;306:613–619.

8. Kurth T, Gaziano JM, Cook NR, et al. Migraine and risk of cardiovascular disease in women. *JAMA*. 2006;296:283–291.

9. Kurth T, Gaziano JM, Cook NR, et al. Migraine and risk of cardiovascular disease in men. *Arch Intern Med*. 2007;167:795–801.

10. Jensen R, Stonner LJ. Epidemiology and comorbidity of headache. *Lancet Neurol*. 2008;7:354–361.

11. Pompili M, Cosimo DD, Innamorati M, et al. Psychiatric comorbidity in patients with chronic daily headache and migraine: a selective overview including personality traits and suicidal risk. *J Headache Pain*. 2009;10:283–290.

12. Kelman L, Rains JC. Headache and sleep: examination of sleep patterns and complaints in a large clinical sample of migraineurs. *Headache*. 2005;45:904–910.

13. Metso TM, Tatsumak T, Debette S, et al. Migraine in cervical artery dissection and ischemic stroke patients. *Neurology*. 2012;78:1221–1228.

14. Murino N, Krashin DL, Lucas S. Vascular risk in migraineurs: interaction of endothelial and cortical excitability factors. *Headache*. 2014;54:583–590.

15. Scher AI, Tverindt GM, Picavet HSJ, et al. Cardiovascular risk factors and migraine: the GEM population-based study. *Neurology*. 2005;64:614–620.

16. Kohler M, Stradling JR. Mechanisms of vascular damage in obstructive sleep apnea. *Nat Rev Cardiol*. 2010;7:677–685.

17. Wang Z, Li AY, Guo QH, et al. Effects of cyclic intermittent hypoxia on ET-1 responsiveness and endothelial dysfunction of pulmonary arteries in rats. *PloS ONE*. 2013;8:e58078.

18. da Rosa DP, Forgiarini LF, Baronio D, et al. Simulating sleep apnea by exposure to intermittent hypoxia induces inflammation in the lung and liver. *Mediators Inflamm.*. 2012;2012:879419.

19. Burnstock G, Ralevic V. Purinergic signaling and blood vessels in lung and liver. *Pharmacol Rev*. 2013;66:102–192.

20. Toldo I, Perissinotto E, Menegazzo F, et al. Comorbidity between artery dissection and ischemic stroke patients. *Sleep Med*. 2012;13:1017–1019. doi: 10.1016/j.sleep.2012.07.009.

21. Jain SV, Kothare SV. Sleep and epilepsy. *Semin Pediatr Neurol*. 2015;22:86–92.

22. Khachatryan SG, Prosperetti C, Rossinelli A, et al. Sleep-onset central apneas as triggers of severe nocturnal seizures. *Sleep Med*. 2015;16:1017–1019. doi: 10.1016/j.sleep.2015.03.019.

23. Toldo I, Perissinotto E, Menegazzo F, et al. Comorbidity between headache and epilepsy in a pediatric headache center. *J Headache Pain*. 2010;11:235–240.
24. Kuzawińska O, Lis K, Cudna A, et al. Gender differences in the neurochemical response of trigeminal ganglion neurons to peripheral inflammation in mice. *Acta Neurobiol Exp.* 2014;74:227–232.

25. Sarchielli P, Alberti A, Baldi A, et al. Proinflammatory cytokines, adhesion molecules, and lymphocyte integrin expression in the internal jugular blood of migraine patients without aura assessed ictally. *Headache.* 2006;46:200–207.

26. Capuano A, De Corato A, Lisi L, et al. Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology. *Mol Pain.* 2009;5:43 doi: 10.1186/1744-8069-5-43.

27. Cheng CL, Kao YH, Lin SJ, et al. Validation of the National Health Insurance Research Database with ischemic stroke cases in Taiwan. *Pharmacoepidemiol Drug Saf.* 2011;20:236–242.

28. Yu YB, Gau JP, Liu CY, et al. A nation-wide analysis of venous thromboembolism in 497,180 cancer patients with the development and validation of a risk-stratification scoring system. *Thromb Haemost.* 2012;108:225–235.