MP2-F12 Basis Set Convergence for the S66 Noncovalent Interactions Benchmark: Transferability of the Complementary Auxiliary Basis Set (CABS)

Nitai Sylvetsky¹, Manoj Kumar Kesharwani,¹ and Jan M.L. Martin¹,a)

¹Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
a)Corresponding author: gershom@weizmann.ac.il

Abstract. Complementary auxiliary basis sets for F12 explicitly correlated calculations appear to be more transferable between orbital basis sets than has been generally assumed. We also find that aVnZ-F12 basis sets, originally developed with anionic systems in mind, appear to be superior for noncovalent interactions as well, and propose a suitable CABS sequence for them.

INTRODUCTION

Explicitly correlated methods (see¹,² for recent reviews) are extremely powerful tools for thermochemistry (e.g.,³,⁴), computational spectroscopy (e.g.,⁵), and the study of noncovalent interactions.⁶ The latter will be the focus of the present paper.

Explicitly correlated MP2-F12 or CCSD(F12*) calculations in practical implementations require not only the specification of an orbital basis set and a geminal exponent, but also of three auxiliary basis sets (which we will denote by their acronyms in the MOLPRO program system⁷) that allow avoiding the need for three- and four-electron integrals:
• a “JKfit” basis set for the expansion of Coulomb (J) and exchange (K) type integrals, such as also used in density fitting Hartree-Fock or hybrid DFT calculations;
• an “MP2fit” basis set for the RI-MP2 approximation, such as also used in density fitting MP2 (a.k.a. resolution of the identity MP2, RI-MP2) or double-hybrid DFT calculations;
• an “OptRI” or “CABS” (complementary auxiliary basis set⁸) used for the evaluation of the F12-specific matrix elements.

For the most widely used orbital basis set families, there are optimized Standard JKfit⁹ and MP2fit¹⁰,¹¹ basis sets available, while for the two most commonly used families employed inside explicitly correlated calculations, namely augmented correlation consistent aug-cc-pVnZ (n=D,T,Q,5;¹²,¹³ AVnZ for short) and F12-correlation consistent cc-pVnZ-F12 (n=D,T,Q),¹⁴ compact aug-cc-pVnZ/OptRI and cc-pVnZ-F12/OptRI CABS basis sets, respectively,¹⁵,¹⁶ have been optimized. Very recently, Shaw and Hill published¹十七 improved cc-pVnZ-F12/OptRI+ basis sets that add a few extra functions optimized for the CABS-corrected HF energy. For the largest F12-optimized orbital basis set, cc-pV5Z-F12,¹十八 OptRI is as yet available: the original paper¹十八 recommends using the aug-cc-pCV5Z/MP2fit basis set instead as a brute-force alternative.

It was during a recent re-examination of the S66 benchmark¹⁹,²⁰ for noncovalent interactions that we considered the ano-pVnZ⁺ basis sets of Valeev and Neese²¹ as an alternative. For these, no optimized CABS basis sets are available, which led us to wonder about the transferability of OptRI basis sets between families. A preliminary report of our findings is presented here.
COMPUTATIONAL METHODS

Most calculations were performed using the MOLPRO 2015.1 program system3 running on the Faculty of Chemistry HPC facility.

The cc-pVnZ-F12 (VnZ-F12 for short) basis sets only carry diffuse s and p functions. For applications on anionic systems, we recently developed24 the aug-cc-pVnZ-F12 (aVnZ-F12 for short) basis sets, which have added diffuse functions of d and higher angular momenta as well. We will also consider their performance here.

RESULTS AND DISCUSSION

MP2-F12 Basis Set Convergence

First, let us consider the valence double-zeta (VDZ) basis set. sano-pVDZ is clearly unacceptably small, while ordinary aug-pVDZ without CP ("raw") performs poorly due to a large error in the HF+CABS component, which is mitigated through CP. Again, without CP, ano-pVDZ+ outperforms the similarly-sized aug-pVDZ, but applying CP closes the gap.

In the absence of CP, VDZ-F12 clearly does best, but with CP places second after AVDZ. aVDZ-F12 has no clear advantage over VDZ-F12 "raw", but does somewhat improve with a better CABS. Its performance with partial and full CP, however, does offer an improvement over the underlying VDZ-F12.

Let us now turn to the triple-zeta options. sano-pVTZ is not very useful, while ano-pVTZ+ appears to be an improvement over AVTZ. The latter performs poorly in the absence of counterpoise corrections, but actually beats VTZ-F12 with counterpoise. aVTZ-F12, however, is now markedly superior over VTZ-F12, and indeed over the other options.

Orbital Basis Set	N_{bas}	CABS	raw	CP	half-CP			
			HF+CABS	MP2-F12	HF+CABS	MP2-F12	MP2-F12	
AVDZ	384	AVDZ/OpRI	0.241	0.429	0.033	0.138	0.111	0.156
sano-pVDZ	300	VDZ-F12/OpRI	0.142	0.195	0.022	0.543	0.077	0.322
ano-pVDZ+	396	VDZ-F12/OpRI	0.116	0.309	0.016	0.199	0.061	0.100
VDZ-F12	468	VDZ-F12/OpRI	0.075	0.096	0.010	0.150	0.034	0.038
aVDZ-F12	528	VDZ-F12/OpRI	0.069	0.097	0.010	0.085	0.032	0.029
aVDZ-F12+	528	VDZ-F12/OpRI+ & diffuse	0.049	0.078	0.004	0.090	0.024	0.028
AVTZ	828	AVTZ/OpRI	0.044	0.163	0.007	0.031	0.020	0.068
sano-pVTZ	600	vanilla VTZ-F12/OpRI	0.039	0.115	0.008	0.177	0.022	0.109
ano-pVTZ+	840	vanilla VTZ-F12/OpRI	0.028	0.088	0.005	0.099	0.015	0.059
VTZ-F12	852	vanilla VTZ-F12/OpRI	0.030	0.069	0.002	0.054	0.014	0.015
aVTZ-F12	996	vanilla VTZ-F12/OpRI	0.019	0.045	0.002	0.019	0.009	0.014
AVQZ	1512	AVQZ/OpRI	0.019	0.073	0.002	0.015	0.009	0.030
sano-pVQZ	1080	vanilla VQZ-F12/OpRI	0.028	0.063	0.003	0.073	0.015	0.045
ano-pVQZ+	1332	vanilla VQZ-F12/OpRI	0.024	0.056	0.003	0.050	0.013	0.031
VQZ-F12	1452	vanilla VQZ-F12/OpRI	0.009	0.029	0.000	0.015	0.005	0.008
aVQZ-F12	1704	vanilla VQZ-F12/OpRI	0.004	0.009	0.000	0.008	0.002	0.004
aVQZ-F12+	1704	VQZ-F12/OpRI & diffuse	0.003	0.007	0.000	0.008	0.001	0.004
AVSZ	2484	AVSZ/OpRI	0.002	0.019	0.000	0.002	0.001	0.005
VSZ-F12	2316	AVOZ/MP2FIT	0.001	0.009	0.000	0.007	0.001	0.005

N_{bas} is the number of basis functions for benzene dimer, by way of illustration.

As for the quadruple-zeta options, aVQZ-F12 essentially yields V5Z-F12 quality at reduced cost. (It should be noted that we had to remove the diffuse f function on C for reasons of numerical stability.) With CP, the same is also
true of VQZ-F12. sano-pVQZ is actually inferior in performance to aVTZ-F12, while ano-pVQZ+ may be preferable over AVQZ.

Finally, we find V5Z-F12 (and hence by extension, aVQZ-F12) to be markedly superior to AV5Z.

Transferability of CABS

Using the VDZ-F12/OptRI in conjunction with ano-pVDZ+ clearly yields an unacceptable error, particularly raw. AVDZ/OptRI does noticeably better, its CABS error being a factor of five smaller than the basis set incompleteness error — which is actually numerically more precise than VDZ-F12/OptRI for VDZ-F12 itself.

For ano-pVTZ+, VTZ-F12/OptRI and AVTZ/OptRI are comparable in performance, and both cause smaller numerical errors than VTZ-F12/OptRI for VTZ-F12. For ano-pVQZ+, there is little to choose between AVQZ/OptRI and VTZ-F12/OptRI

Orbital Basis Set	CABS	N_{CABS}	raw E_{2corr}	raw E_{2corr}	E_{2corr}
ano-pVDZ+	VDZ-F12/OptRI	1056	0.043 0.131	0.003 0.038	
ano-pVDZ+	VDZ-F12/OptRI	1092	0.016 0.033	0.002 0.040	
ano-pVTZ+	VDZ-F12/OptRI	1392	0.006 0.003	0.001 0.005	
ano-pVTZ+	VDZ-F12/OptRI	1284	0.005 0.004	0.001 0.005	
ano-pVQZ+	VDZ-F12/OptRI	1632	0.008 0.004	0.001 0.004	
ano-pVQZ+	VDZ-F12/OptRI	1824	0.002 0.006	0.000 0.003	
VTZ-F12	VDZ-F12/OptRI	1056	0.029 0.010	0.012 0.016	
VTZ-F12	VDZ-F12/OptRI	1164	0.012 0.012	0.005 0.015	
VQZ-F12	VDZ-F12/OptRI	1392	0.017 0.002	0.003 0.002	
VQZ-F12	VDZ-F12/OptRI	1500	0.024 0.002	0.001 0.002	
ano-pVTZ+	VDZ-F12/OptRI	1056	0.029 0.011	0.012 0.014	
ano-pVDZ+	VDZ-F12/OptRI	1164	0.010 0.013	0.006 0.013	
ano-pVTZ+	VDZ-F12/OptRI	1464	0.008 0.008	0.005 0.003	
ano-pVDZ+	VDZ-F12/OptRI	1284	0.010 0.003	0.003 0.001	
ano-pVDZ+	VDZ-F12/OptRI	1500	0.015 0.004	0.001 0.001	
ano-pVDZ+	VDZ-F12/OptRI	1692	0.006 0.004	0.001 0.000	
ano-pVDZ+	VDZ-F12/OptRI	1632	0.002 0.001	0.000 0.001	
ano-pVDZ+	VDZ-F12/OptRI	1932	0.001 0.001	0.000 0.001	

(a) number of CABS functions for benzene dimer, by way of illustration
(b) Using VQZ-F12/OptRI+ instead of VQZ-F12/OptRI produces virtually indistinguishable results.

Let us now turn to the recently proposed VnZ-F12/OptRI+ basis sets. With VDZ-F12, the added functions do improve the HF+CABS part for this basis set, but not really the MP2-F12 correlation energy. VTZ-F12/OptRI+ does enhance the HF+CABS part a bit for VTZ-F12 (only with CP), but no measurable effect of the additional functions on the correlation energy is seen. For VQZ-F12, the effect of the additional functions in OptRI+ is 0.001 kcal/mol or less for the S66 benchmark.

What about the aVnZ-F12 basis sets? For aVDZ-F12, the winning combination appears to be to add one layer of diffuse functions to the VDZ-F12/OptRI+ CABS basis set—the extra diffuse functions appear to be helpful for the correlation energy, while OptRI+ improves HF+CABS. (The exponents for the diffuse layer were obtained by “even-tempered” extrapolation from the two outermost exponents.) The same holds true for aVTZ-F12 (though the difference is smaller here), while for aVQZ-F12, even the original VQZ-F12/OptRI is clearly adequate.
CONCLUSIONS

From the S66 noncovalent interaction benchmark, we learn that the CABS is more transferable than generally assumed, at least between similar-sized basis sets: for instance, AVnZ/OptRI works acceptably well for ano-pVnZ+ and, by extension, for sano-pVnZ. For this benchmark, we see that OptRI+ presents a significant improvement over OptRI for VDZ-F12, but represents no significant improvement for VnZ-F12 (n=T,Q).

For the aVnZ-F12 (n=D,T) basis sets, an accurate CABS is obtained by adding a single diffuse layer to VnZ-F12/OptRI+, but the original VQZ-F12/OptRI is acceptable for aVQZ-F12.

Although aVnZ-F12 basis sets were initially developed with anionic systems in mind, they appear to generally speed up basis set convergence for noncovalent interactions, with aVQZ-F12 representing a de facto basis set limit at smaller cost than V5Z-F12.

ACKNOWLEDGMENTS

This research was supported by the Israel Science Foundation (grant 1358/15), the Minerva Foundation, the Lise Meitner-Minerva Center for Computational Quantum Chemistry, and the Helen and Martin Kimmel Center for Molecular Design (Weizmann Institute of Science).

REFERENCES

1. L. Kong, F.A. Bischoff, and E.F. Valeev, Chem. Rev. 112, 75 (2012).
2. C. Hättig, W. Klopper, A. Köhn, and D.P. Tew, Chem. Rev. 112, 4 (2012).
3. A. Karton and J.M.L. Martin, J. Chem. Phys. 136, 124114 (2012).
4. N. Sylvetsky, K.A. Peterson, A. Karton, and J.M.L. Martin, J. Chem. Phys. 144, 214101 (2016).
5. J.M.L. Martin and M.K. Kesharwani, J. Chem. Theory Comput. 10, 2085 (2014).
6. B. Brauer, M.K. Kesharwani, S. Kozuch, and J.M.L. Martin, Phys. Chem. Chem. Phys. 18, 20905 (2016).
7. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reihir, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, MOLPRO 2015.1, a package of ab initio programs. Cardiff, UK, 2015.
Website: http://www.molpro.net
8. E.F. Valeev, Chem. Phys. Lett. 395, 190 (2004).
9. F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002).
10. F. Weigend, A. Köhn, and C. Hättig, J. Chem. Phys. 116, 3175 (2002).
11. C. Hättig, Phys. Chem. Chem. Phys. 7, 59 (2005).
12. R.A. Kendall, T.H. Dunning, and R.J. Harrison, J. Chem. Phys. 96, 6796 (1992).
13. D.E. Woon and T.H. Dunning, J. Chem. Phys. 98, 1358 (1993).
14. K.A. Peterson, T.B. Adler, and H.-J. Werner, J. Chem. Phys. 128, 84102 (2008).
15. K.E. Yousaf and K.A. Peterson, Chem. Phys. Lett. 476, 303 (2009).
16. K.E. Yousaf and K.A. Peterson, J. Chem. Phys. 129, 184108 (2008).
17. R.A. Shaw and J.G. Hill, J. Chem. Theory Comput. 13, 1691 (2017).
18. K.A. Peterson, M.K. Kesharwani, and J.M.L. Martin, Mol. Phys. 113, 1551 (2015).
19. J. Řezáč, K.E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 2427 (2011).
20. J. Řezáč, K.E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 3466 (2011).
21. F. Neese and E.F. Valeev, J. Chem. Theory Comput. 7, 33 (2011).
22. F. Furche, R. Ahlrichs, C. Hättig, W. Klopper, M. Sierka, and F. Weigend, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 91 (2013).
23. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012).
24. N. Sylvetsky, M.K. Kesharwani, and J.M.L. Martin, To Be Publ. (2017).
25. M.W. Schmidt and K. Ruedenberg, J. Chem. Phys. 71, 3951 (1979) and references therein.