On the Blumberg–Mandell Künneth theorem for TP

Benjamin Antieau, Akhil Mathew, and Thomas Nikolaus

August 1, 2018

Abstract

We give a new proof of the recent Künneth theorem for periodic topological cyclic homology (TP) of smooth and proper dg categories over perfect fields of characteristic $p > 0$ due to Blumberg and Mandell. Our result is slightly stronger and implies a finiteness theorem for topological cyclic homology (TC) of such categories.

Key Words. Künneth theorems, the Tate construction, topological Hochschild homology, periodic topological cyclic homology.

Mathematics Subject Classification 2010. 14F30, 16E40, 19D55.

1 Introduction

Let k be a perfect field and let A be a commutative k-algebra. In [Hes16], Hesselholt studies the periodic topological cyclic homology $\text{TP}(A)$, defined as the Tate construction $\text{THH}(A)^{tS^1}$ of the S^1-action on the topological Hochschild homology spectrum $\text{THH}(A)$.1 In characteristic 0, the analogous construction, periodic cyclic homology $\text{HP}(-/k) = \text{HH}(-/k)^{tS^1}$, is related to (2-periodic) de Rham cohomology. In characteristic $p > 0$, which we will assume henceforth, $\text{TP}(A)$ is of significant arithmetic interest: by work of Bhatt, Morrow, and Scholze [BMS18], the construction $\text{TP}(A)$ is closely related to the crystalline cohomology of A over k. For instance, one has $\pi_*(\text{TP}(k)) \simeq W(k)[[x]]_{|x| = 2}$, a 2-periodic form of the coefficient ring of crystalline cohomology.

The construction $A \mapsto \text{TP}(A)$ globalizes to quasi-compact quasi-separated schemes, and in fact TP of a scheme X is determined entirely by the dg category of perfect complexes on X. Let \mathfrak{C} be a k-linear dg category. In this case, one similarly defines the spectrum $\text{TP}(\mathfrak{C}) = \text{THH}(\mathfrak{C})^{tS^1}$. Thus TP defines a functor from k-linear dg categories to $\text{TP}(k)$-module spectra. In a similar way that crystalline cohomology is a lift to characteristic zero of de Rham cohomology, $\text{TP}(\mathfrak{C})$ is an integral lift of the periodic cyclic homology $\text{HP}(\mathfrak{C}/k)$ (see Theorem 3.4, which is due to [BMS18]). With respect to the tensor product on k-linear dg categories, the construction $\mathfrak{C} \mapsto \text{TP}(\mathfrak{C})$ is a lax symmetric monoidal functor.

Many cohomology theories for schemes, such as the crystalline theory mentioned above, satisfy a Künneth formula. In [BM17], Blumberg and Mandell prove the following result.

*Benjamin Antieau was supported by NSF Grant DMS-1552766.

†Akhil Mathew was supported by a Clay Research Fellowship.

1More generally, if R is any E_∞-ring spectrum and A is an R-algebra, we can consider $\text{THH}(A/R)$, which is topological Hochschild homology relative to R. If R is discrete, we write $\text{HH}(A/R) = \text{THH}(A/R)$.
Theorem 1.1 (Blumberg–Mandell). Let \(k \) be a perfect field of characteristic \(p > 0 \).

1. If \(\mathcal{C} \) is a smooth and proper \(k \)-linear dg category, then \(TP(\mathcal{C}) \) is compact as a \(TP(k) \)-module spectrum.

2. (K"unneth formula) If \(\mathcal{C} \) and \(\mathcal{D} \) are smooth and proper \(k \)-linear dg categories, then the natural map

\[
TP(\mathcal{C}) \otimes_{TP(k)} TP(\mathcal{D}) \to TP(\mathcal{C} \otimes_k \mathcal{D})
\]

is an equivalence.

This result is the key ingredient in Tabuada’s proof \([\text{Tab17}]\) of the fact that the category of noncommutative numerical motives is abelian semi-simple. This is a generalization of Jannsen’s theorem \([\text{Jan92}]\) to the noncommutative case. With this application in mind the above theorem was suggested by Tabuada.

In this paper, we give a short proof of a stronger form of Theorem 1.1. Let \((A, \otimes, \mathbb{I}) \) be a symmetric monoidal, stable \(\infty \)-category with biexact tensor product (in short: a stably symmetric monoidal \(\infty \)-category). We now use the following definition.

Definition 1.2. An object \(X \in A \) is perfect if it belongs to the thick subcategory generated by the unit.

Note that for \(A \simeq \text{Mod}_R \), the \(\infty \)-category of modules over an \(\mathbb{E}_\infty \)-ring spectrum \(R \), an object is perfect if and only if it is dualizable if and only if it is compact. For general \(A \), this is not typically the case.

Let \(\text{Sp} \) be the \(\infty \)-category of spectra and let \(F: A \to \text{Sp} \) be a lax symmetric monoidal, exact functor. Note that \(F(\mathbb{I}) \) is naturally an \(\mathbb{E}_\infty \)-ring and \(F(X) \) is an \(F(\mathbb{I}) \)-module for any \(X \in A \). For any \(X, Y \in A \), we have a natural map

\[
F(X) \otimes_{F(\mathbb{I})} F(Y) \to F(X \otimes Y).
\]

(1)

If \(X \) is perfect, then, by a thick subcategory argument, (1) is an equivalence for every \(Y \in A \) and \(F(X) \) is perfect as an \(F(\mathbb{I}) \)-module.

We will be interested in the following example: let \(\text{Sp}^{BS^1} \) denote the \(\infty \)-category of spectra equipped with an \(S^1 \)-action. Then \(\text{THH}(k) \) naturally defines a commutative algebra object in \(\text{Sp}^{BS^1} \) and we take \(A = \text{Mod}_{\text{THH}(k)}(\text{Sp}^{BS^1}) \). When \(\mathcal{C} \) is any \(k \)-linear dg category, \(\text{THH}(\mathcal{C}) \) defines an object of \(A \). We then consider the functor \(F: A \to \text{Sp} \) sending \(X \mapsto X^{tS^1} \). With this in mind, Theorem 1.1 is implied by the following result.

Theorem 1.3. Let \(k \) be a perfect field of characteristic \(p > 0 \). Any dualizable object in the symmetric monoidal \(\infty \)-category \(\text{Mod}_{\text{THH}(k)}(\text{Sp}^{BS^1}) \) is perfect. In particular, if \(\mathcal{C} \) is a smooth and proper dg category over \(k \), then \(\text{THH}(\mathcal{C}) \in \text{Mod}_{\text{THH}(k)}(\text{Sp}^{BS^1}) \) is perfect.

We note also that our result implies that in Theorem 1.1, one only needs one of \(\mathcal{C}, \mathcal{D} \) to be smooth and proper, and one can replace \(TP \) with \(\text{THH}^{th} \) or with \(\text{THH}^{th} \) for any closed subgroup \(H \) of \(S^1 \). In particular, taking \(H = S^1 \), we obtain a K"unneth theorem for \(\text{TC} = \text{THH}^{hS^1} \). We deduce below Theorem 1.3 directly from the regularity of \(\pi_* \text{THH}(k) \). The argument also works for dg categories over the localization \(A \) of a ring of integers in a number field at a prime over \(p \) but with \(\text{THH} \) replaced with \(\text{THH} \) relative to \(S^0 \) where \(S^0[q] \to HA \) sends \(q \) to a chosen uniformizing parameter \(\pi \) (see Corollary 3.6).
We show, using the formula of Nikolaus–Scholze [NS17], that our strengthened version of the Blumberg–Mandell theorem has an application to a finiteness theorem for topological cyclic homology. When one works with smooth and proper schemes, stronger results are known by work of Geisser and Hesselholt [GH99], but our results seem to be new in the generality of smooth and proper dg categories.

Theorem 1.4. If C is a smooth and proper dg category over a finite field k of characteristic p, then $TC(C)$ is perfect as an HZ_p-module.\(^2\)

Finally, given the theorems above and the fact that for C smooth and proper $THH(C)$ is dualizable as a $THH(k)$-module spectrum in the ∞-category $CycSp$ of cyclotomic spectra, a very natural question is to ask whether $THH(C)$ is perfect as a $THH(k)$-module in $CycSp$. We give an example to show that this is not the case.

Theorem 1.5. If X is a supersingular K3 surface over a perfect field k of characteristic $p > 0$, then $THH(X)$ is not perfect in $Mod_{THH(k)}(CycSp)$.

Acknowledgments

We would like to thank Bhargav Bhatt, Lars Hesselholt, and Peter Scholze for helpful discussions. We also thank Markus Land and the referee for extremely helpful and detailed comments on earlier versions. Finally, the second author thanks the University of Bonn for its hospitality during a week long visit.

2 Symmetric monoidal ∞-categories

As indicated in the introduction, our approach is based on the notion of *perfectness* (Definition 1.2) in a stably symmetric monoidal ∞-category. Any perfect object is dualizable, but in general the converse need not hold. In this section, we give a criterion (Theorem 2.15) for when dualizable objects are perfect in symmetric monoidal ∞-categories of spectra with the action of a compact connected Lie group.

We will need some preliminaries on presentably symmetric monoidal stable ∞-categories\(^3\). We refer to [MNN17] for more details. Let $(\mathcal{C}, \otimes, \mathbb{1})$ be one such. In this case, one has an adjunction

$$\text{Mod}_{\text{End}_c(\mathbb{1})} \rightleftarrows \mathcal{C},$$

where the left adjoint $\cdot \otimes_{\text{End}_c(\mathbb{1})} \mathbb{1} : \text{Mod}_{\text{End}_c(\mathbb{1})} \to \mathcal{C}$ is symmetric monoidal and the right adjoint $\text{Hom}_c(\mathbb{1}, \cdot) : \mathcal{C} \to \text{Mod}_{\text{End}_c(\mathbb{1})}$ is lax symmetric monoidal. Here, $\text{End}_c(\mathbb{1})$ is an E_∞-ring spectrum and $\text{Mod}_{\text{End}_c(\mathbb{1})}$ is the ∞-category of $\text{End}_c(\mathbb{1})$-modules in Sp. One knows (cf. [SS03] and [Lur17, Section 7.1.2]) that the adjunction is an equivalence precisely when $\mathbb{1} \in \mathcal{C}$ is a compact generator.

We need a definition which applies in some situations when $\mathbb{1}$ is a generator, but is no longer required to be compact.

Definition 2.1 (Cf. [MNN17, Def. 7.7]). The presentably symmetric monoidal stable ∞-category \mathcal{C} is unipotent if (2) is a localization, i.e., if the counit map $\text{Hom}_c(\mathbb{1}, X) \otimes_{\text{End}_c(\mathbb{1})} \mathbb{1} \to X$ is an equivalence for every $X \in \mathcal{C}$.

\(^2\)Note that $TC(\mathcal{C})$ is an HZ_p-module since $HZ_p \simeq \tau_{\geq 0} TC(k)$.

\(^3\)By *presentably symmetric monoidal* we mean that the underlying ∞-category is presentable and the tensor products preserves colimits in both variables seperately.
Lemma 2.2. If \(\mathcal{C} \) is a symmetric monoidal localization (see [Lur17, Definition 2.2.1.6 and Example 2.2.1.7]) of the module category of an \(\mathbb{E}_\infty \)-ring, then \(\mathcal{C} \) is unipotent. It follows that if \(\mathcal{C} \) is unipotent and if \(A \in \text{CAlg}(\mathcal{C}) \), then \(\text{Mod}_A(\mathcal{C}) \) is unipotent too.

Proof. Suppose that \(\mathcal{C} \) is a symmetric monoidal localization of \(\text{Mod}_R \) where \(R \) is an \(\mathbb{E}_\infty \)-ring spectrum. Write \(S \) for the \(\mathbb{E}_\infty \)-ring spectrum \(\text{End}_\mathcal{C}(1) \). The adjunction (2) extends to the left to a sequence of adjunctions

\[
\text{Mod}_R \rightleftarrows \text{Mod}_S \rightleftarrows \mathcal{C},
\]

where \(\text{Mod}_R \to \text{Mod}_S \) is extension of scalars along a map \(R \to S \) of \(\mathbb{E}_\infty \)-ring spectra. Since the composition of the right adjoints is fully faithful, and sends \(1 \) to \(S \), viewed as an \(R \)-module, and because \(\text{Mod}_S \to \text{Mod}_R \) preserves colimits, we see that the right adjoint \(\text{Mod}_S \to \text{Mod}_R \) is fully faithful. This implies that \(\mathcal{C} \to \text{Mod}_S \) is fully faithful. This proves the first statement. For the second, write \(T \) for the spectrum of maps from \(1 \) to \(A \) in \(\mathcal{C} \). This is an \(\mathbb{E}_\infty \)-algebra over \(S \) and \(\text{Mod}_A(\mathcal{C}) \) is a localization of \(\text{Mod}_T(\text{Mod}_S) \simeq \text{Mod}_T \) if \(\mathcal{C} \) is unipotent. \(\square \)

We will study unipotency in the following scenario. Let \(X \) be a space. We can then form the presentable stable \(\infty \)-category \(\text{Sp}^X = \text{Fun}(X, \text{Sp}) \) of spectra parametrized over \(X \). We regard \(\text{Sp}^X \) as a symmetric monoidal \(\infty \)-category with the pointwise tensor product. Given an \(\mathbb{E}_\infty \)-algebra \(R \) in \(\text{Sp}^X \), we can form the presentably symmetric monoidal stable \(\infty \)-category \(\text{Mod}_R(\text{Sp}^X) \) of \(R \)-modules in \(\text{Sp}^X \). When \(R \) is given by a constant diagram, then there is a natural equivalence \(\text{Mod}_R(\text{Sp}^X) \simeq \text{Fun}(X, \text{Mod}_R) \) and the endomorphisms of the unit are given by the function spectrum \(F(X_+;R) \). In this case, one has the following unipotence criterion.

Theorem 2.3 (Cf. [MNN17, Theorem 7.35]). Let \(R \) be an \(\mathbb{E}_\infty \)-ring such that \(\pi_*(R) \) is concentrated in even degrees. Let \(G \) be a compact, connected Lie group such that the cohomology \(H^*(BG;\pi_0(R)) \) is a polynomial algebra on even-dimensional generators. In this case, the presentably symmetric monoidal \(\infty \)-category \(\text{Fun}(BG, \text{Mod}_R) \) is unipotent.

Remark 2.4. We refer also to [MNN17, Theorem 8.13] for an example (essentially due to Hodgkin, Snaith, and McLeod) where \(\text{Fun}(BG, \text{Mod}_R) \) is unipotent although the polynomiality condition above is far from satisfied.

We will need a more precise version of this result, when \(R \) is in addition allowed to have a nontrivial \(G \)-action.

Corollary 2.5. Let \(G \) be a compact, connected Lie group. Let \(R \in \text{CAlg}(\text{Sp}^{BG}) \) be an \(\mathbb{E}_\infty \)-ring with \(G \)-action such that \(\pi_*(R) \) is concentrated in even degrees and such that the cohomology \(H^*(BG;\pi_0(R)) \) is a polynomial algebra over \(\pi_0(R) \) on even-dimensional generators. Then \(\text{Mod}_R(\text{Sp}^{BG}) \) is unipotent. Furthermore, there are classes \(x_1, \ldots, x_t \in \pi_*(R^G) \) such that

1. \((x_1, \ldots, x_t) \) is a regular sequence in \(\pi_*(R^G) \);
2. \(R^G/(x_1, \ldots, x_t) \simeq R \) and \(\pi_*(R^G)/(x_1, \ldots, x_t) \simeq \pi_*(R) \);
3. \(\text{Mod}_R(\text{Sp}^{BG}) \) is identified with the symmetric monoidal \(\infty \)-category of \(R \)-complete objects in \(\text{Mod}_{R^G} \).

Proof. We consider the basic adjunction

\[
\text{Mod}_{R^G} \rightleftarrows \text{Mod}_R(\text{Sp}^{BG}),
\]
where the left adjoint sends $M \mapsto M \otimes_{R^G} R$ for $M \in \text{Mod}_{R^G}$ and the right adjoint sends $V \mapsto V^k_G$ for $V \in \text{Mod}_R(\text{Sp}^{BG})$. Note that by Lemma 2.2 if \mathcal{C} is unipotent and $A \in \text{CAlg}(\mathcal{C})$, then $\text{Mod}_A(\mathcal{C})$ is also unipotent. Therefore, unipotence of $\text{Mod}_R(\text{Sp}^{BG})$ follows from Theorem 2.3 with R replaced by R^k_G by using the equivalence $\text{Mod}_R(\text{Fun}(BG, \text{Mod}_{R^G})) \simeq \text{Mod}_R(\text{Sp}^{BG})$ and thus (3) is a localization. Unwinding the definitions, it follows that the localization inverts those maps of R^k_G-modules $M \to M'$ such that $M \otimes_{R^G} R \to M' \otimes_{R^G} R$ is an equivalence, which verifies statement 3. Statements 1 and 2 follow easily from the degenerate homotopy fixed point spectral sequence for $\pi_*(-^G)$ and the assumptions. \qed

Let \mathcal{C} be a unipotent presentably symmetric monoidal stable ∞-category. Suppose $X \in \mathcal{C}$ is a dualizable object. In this case, one wants a criterion in order for X to be perfect. The next result follows from the statement that $X \simeq \text{Hom}_C(1, X) \otimes_{\text{End}_C(1)} 1$ for any $X \in \mathcal{C}$ when \mathcal{C} is unipotent.

Proposition 2.6. If \mathcal{C} is a unipotent presentably symmetric monoidal stable ∞-category, then an object $X \in \mathcal{C}$ is perfect if and only if $\text{Hom}_C(1, X)$ is perfect (i.e., dualizable) as an $\text{End}_C(1)$-module.

In general, dualizable objects need not be perfect without some type of regularity. We illustrate this with two examples.

Example 2.7. Let $X \in \text{Mod}_{HZ_p}$ be p-complete. Then the following are equivalent:

1. X is perfect in Mod_{HZ_p}.
2. $X \otimes_{HZ_p} HF_p \simeq X/p \in \text{Mod}_{HF_p}$ is perfect.
3. X is dualizable in the ∞-category of p-complete HZ_p-modules.
4. The direct sum $\bigoplus_{i \in \mathbb{Z}} \pi_i(X)$ is a finitely generated \mathbb{Z}_p-module.

Clearly 1 implies 3 which implies 2, and 4 implies 1. Thus, it suffices to see that 2 implies 4, which follows because $\pi_*(X)$ is derived p-complete and $\pi_*(X)/p\pi_*(X) \subseteq \pi_*(X/p)$ is finitely generated (cf. Lemma 2.12 below for a more general argument).

Example 2.8. Let $\mathcal{C} = L_{K(n)} \text{Sp}$ be the ∞-category of $K(n)$-local spectra (with respect to some prime p), which is unipotent as a symmetric monoidal localization of Sp (see Lemma 2.2). There are numerous invertible (hence, dualizable) objects in \mathcal{C} [HMS94] which are not perfect.

To see that these objects are not perfect, we argue as follows. Given $M \in \text{Pic}(L_{K(n)} \text{Sp})$, we form the object $L_{K(n)}(E_n \wedge M)$ and take the homotopy groups, equipped with the action of the Morava stabilizer group, i.e., we can consider the Morava module. We specialize to the case $n = 1$: thus, we take the p-adic K-theory of M together with the action of the Adams operations ψ^l, $l \in \mathbb{Z}_p^\times$. If M is perfect, then a thick subcategory argument shows that the eigenvalues of ψ^l are integer powers of l. By contrast, this need not be the case for objects in $\text{Pic}(L_{K(1)} \text{Sp})$, as follows from the construction in [HMS94, Proposition 2.1] when p is odd; in fact, the eigenvalues can be given by arbitrary p-adic powers of l.

Next, we need to review some facts about completion in the derived context, and with an extra grading. Let A_0 be a commutative ring and let $I = (x_1, \ldots, x_t) \subseteq A_0$ be a finitely generated ideal. In this case, one has the notion of an I-complete object of the derived category $D(A_0)$ (see [DG02]): an object M in $D(A_0)$ is I-complete if it is local for the object $A_0/x_1 \otimes_{A_0} \cdots \otimes_{A_0} A_0/x_t$ (the iterated cofiber, where all tensor products are derived). When $I = (x)$ is a principal ideal, we will often write x-complete instead of (x)-complete. Given a (discrete) A_0-module M_0, we will say that M_0 is derived I-complete if M_0, considered as an object of $D(A_0)$, is I-complete. Note the following fact about I-complete objects in the derived category.
2. Symmetric monoidal ∞-categories

Proposition 2.9 (Compare [DG02, Prop 5.3]). Let A_0 be a commutative ring and let $I = (x_1, \ldots, x_t)$ be a finitely generated ideal. If $M \in D(A_0)$, then M is I-complete if and only if each homology group of M is derived I-complete.

We will need an analog in the graded context. Let A_* be a commutative, graded ring. Let $I = (x_1, \ldots, x_t) \subseteq A_*$ be a finitely generated homogeneous ideal generated by elements $x_1, \ldots, x_t \in A_*$ of degrees d_1, \ldots, d_t. Consider the derived category $D(A_*)^{gr}$ of graded A_*-modules. Let (d) denote the operation of shifting the grading by d, so that if $M \in D(A_*)^{gr}$, then one has maps $x_i: M_{(d_i)} \rightarrow M$.

Definition 2.10. Given $M \in D(A_*)^{gr}$, we say that M is I-complete if the natural map

$$M \rightarrow \lim_i \operatorname{cofib}(x^n_i: M_{(nd_i)} \rightarrow M)$$

is an equivalence for $i = 1, 2, \ldots, t$. Equivalently, for $i = 1, 2, \ldots, t$, one requires that the limit of multiplication by x_i on M vanishes. We say that a (discrete) graded A_*-module M_* is derived I-complete if it is I-complete when considered as an object of $D(A_*)^{gr}$.

As in [DG02, Prop. 5.3] (see also the treatment in [Lur11, Section 4]), one shows that an object of $D(A_*)^{gr}$ is I-complete if and only if the homology groups (which are graded A_*-modules) are derived I-complete. This implies that the collection of derived I-complete graded A_*-modules is abelian and contains every classically I-complete graded A_*-module.

Let A be an E_∞-ring. Suppose that $\pi_*(A)$ is concentrated in even degrees. Let $I = (x_1, \ldots, x_t) \subseteq \pi_*(A)$ be a finitely generated ideal generated by elements $x_i \in \pi_{d_i}(A)$. Let M be an A-module. We say that M is I-complete if M is Bousfield local with respect to the iterated cofiber $A/(x_1, \ldots, x_t)$. Equivalently, M is I-complete if and only if for $i = 1, \ldots, t$, the (homotopy) inverse limit of multiplication by x_i on M is null, i.e., $\lim(\cdots \rightarrow \Sigma^{d_i} M \rightarrow M) = 0$.

Proposition 2.11. If A is an E_∞-ring and M is an A-module, then M is I-complete if and only if $\pi_*(M)$ is derived I-complete as a graded $\pi_*(A)$-module.

Proof. In fact, for $i = 1, \ldots, t$, the homotopy groups of $\lim(\cdots \rightarrow \Sigma^{d_i} M \rightarrow M)$ are computed by the Milnor short exact sequence

$$\lim^1(\cdots \rightarrow \pi_{* - d_i} M \rightarrow \pi_* M) \rightarrow \pi_* \left(\lim(\cdots \rightarrow \Sigma^{d_i} M \rightarrow M)\right) \rightarrow \lim(\cdots \rightarrow \pi_{* - d_i} M \rightarrow \pi_* M).$$

If M is I-complete, then the middle terms vanish for each $i = 1, 2, \ldots, t$; thus the two outer terms vanish, which implies precisely that $\pi_*(M)$ is derived I-complete. The converse follows similarly.

Lemma 2.12. Let A_* be a commutative, graded ring which is derived x-complete for some homogeneous element $x \in A_2$. Let M_* be a (discrete) graded A_*-module which is derived x-complete. Suppose $M_*/(x)M_*$ is a finitely generated A_*-module. Then M_* is a finitely generated A_*-module.

Proof. Let F_* be a finitely generated graded free A_*-module together with a map $f: F_*/(x)F_* \rightarrow M_*/(x)M_*$ which induces a surjection $F_*/(x)F_* \rightarrow M_*/(x)M_*$. We claim that f itself is a surjection. In fact, form the cofiber Cf of f in the derived category $D(A_*)^{gr}$; it suffices to see that Cf has homology concentrated in (homological, not graded) degree 1. Note first that cofib$(x: Cf_{(d)}) \rightarrow Cf)$ is concentrated in degree 1. But Cf is x-complete, so $Cf \simeq \lim_\ast \operatorname{cofib}(x^n: Cf_{(nd)}) \rightarrow Cf)$. The cofibers $\operatorname{cofib}(x^n: Cf_{(nd)} \rightarrow Cf$ are concentrated in degree one by induction on n and the transition maps are surjective; thus the homotopy limit Cf is concentrated in degree one by the Milnor exact sequence, as desired.

\square
Proposition 2.13. Let A be an E_∞-ring such that $\pi_*(A)$ is a regular noetherian ring of finite Krull dimension. Then an A-module M is perfect if and only if $\pi_*(M)$ is a finitely generated $\pi_*(A)$-module.

Proof. We show that finite generation implies perfectness; the other direction follows from a thick subcategory argument. Note that the homological dimension of $\pi_*(M)$ as a $\pi_*(A)$-module is finite by regularity. We thus use induction on the homological dimension $\text{h.dim}(\pi_*(M))$. If $\pi_*(M)$ is projective as a $\pi_*(A)$-module, then it is also projective as a graded $\pi_*(A)$-module by a simple argument [NvO82, Cor. 1.2.2] and M itself is a retract of a finitely generated free A-module. In general, choose a finitely generated free A-module N with a map $N \to M$ inducing a surjection on π_*, and form a fiber sequence $N' \to N \to M$. We have that $\text{hdim}(\pi_*(N')) = \text{hdim}(\pi_*(M)) - 1$. Since M is perfect if and only if N' is, this lets us conclude by the inductive hypothesis.

Proposition 2.14. Let A be an E_∞-ring such that $\pi_*(A)$ is a regular noetherian ring of finite Krull dimension. Suppose that $x_1, \ldots, x_t \in \pi_*(A)$ form a regular sequence and A is (x_1, \ldots, x_t)-complete. Then:

1. Let $M \in \text{Mod}_A$ be an (x_1, \ldots, x_t)-complete module such that $M/(x_1, \ldots, x_t)$ is perfect as an A-module. Then M is perfect as an A-module.

2. Let N be a dualizable object of the symmetric monoidal ∞-category of (x_1, \ldots, x_t)-complete A-modules. Then N is perfect.

Proof. For (1), by Proposition 2.13, it suffices to prove that $\pi_*(M)$ is finitely generated as an $\pi_*(A)$-module. By induction on t, one can reduce to the case where $t = 1$ where we let $x = x_1$. In this case, M/x is perfect as an A-module by assumption. It follows that $\pi_*(M)/(x) \pi_*(M) \subset \pi_*(M/x)$ is finitely generated as a $\pi_*(A)$-module. Note that $\pi_*(M)$ is a derived x-complete $\pi_*(A)$-module (Proposition 2.11). By Lemma 2.12, it follows that $\pi_*(M)$ is a finitely generated $\pi_*(A)$-module, completing the proof of (1).

For (2), we will argue that $N/(x_1, \ldots, x_t)$ is perfect as an A-module so that we can apply (1). Let $\widetilde{\text{Mod}}_A$ denote the symmetric monoidal ∞-category of complete A-modules. We have internal mapping objects in $\widetilde{\text{Mod}}_A$; namely, given $N_1, N_2 \in \widetilde{\text{Mod}}_A$, the usual mapping A-module $\text{Hom}_A(N_1, N_2)$ is also complete and yields the internal mapping object in $\widetilde{\text{Mod}}_A$. Since N is dualizable in complete A-modules, it has a dual $D N \in \widetilde{\text{Mod}}_A$ and for any N_2, we have an equivalence

$$\text{Hom}_A(N, N_2) \simeq DN \hat{\otimes}_A N_2,$$

where $\hat{\otimes}_A$ denotes the completed tensor product. Tensoring with $A/(x_1, \ldots, x_t)$, it follows that for any $N_2 \in \widetilde{\text{Mod}}_A$,

$$\text{Hom}_A(N, N_2)/(x_1, \ldots, x_t) \simeq DN \otimes_A N_2/(x_1, \ldots, x_t).$$

(4)

Note that both sides of (4) make sense for $N_2 \in \widetilde{\text{Mod}}_A$, and are unchanged by passage to the completion; therefore, (4) holds for arbitrary $N_2 \in \widetilde{\text{Mod}}_A$. The left-hand-side is identified with a shift of $\text{Hom}_A(N/(x_1, \ldots, x_t), N_2)$ and the right-hand-side commutes with filtered colimits; thus, unwinding the definitions, we find that $N/(x_1, \ldots, x_t) \in \widetilde{\text{Mod}}_A$ is a compact object and therefore perfect. By (1), this shows that N is perfect as an A-module, as desired.

We can now state and prove our main theorem about perfectness.

4By regularity, this is equivalent to the condition that $\pi_*(A)$ should be classically (x_1, \ldots, x_t)-complete.
Theorem 2.15. Let G be a compact, connected Lie group and let $R \in \text{CA}lg(\text{Sp}^{BG})$. Suppose that $\pi_*(R)$ is a regular noetherian ring of finite Krull dimension concentrated in even degrees and that $H^*(BG; \pi_0R)$ is a polynomial algebra over π_0R on even-dimensional classes. Then any dualizable object in $\text{Mod}_R(\text{Sp}^{BG})$ is perfect.

Proof. We first show that in the above situation, the graded ring $\pi_*(R^{hG})$ is a regular noetherian ring concentrated in even degrees.\footnote{In the example of interest below, one can simply compute the ring explicitly and thus the first two paragraphs become redundant.} The fact that $\pi_*(R^{hG})$ is concentrated in even degrees follows from the homotopy fixed point spectral sequence, which degenerates for degree reasons. By Corollary 2.5, one has classes $x_1, \ldots, x_t \in \pi_*(R^{hG})$ such that the x_i’s form a regular sequence in $\pi_*(R^{hG})$, the x_i’s map to zero under $\pi_*(R^{hG}) \to \pi_*(R)$, and such that one has equivalences

$$R^{hG}/(x_1, \ldots, x_t) \simeq R, \quad \pi_*(R^{hG})/(x_1, \ldots, x_t) \simeq \pi_*(R).$$

The (x_1, \ldots, x_t)-adic filtration on $\pi_*(R^{hG})$ is complete by the convergence of the spectral sequence and it has noetherian associated graded, so $\pi_*(R^{hG})$ is noetherian at least as a graded ring. Therefore, $\pi_*(R^{hG})$ is noetherian as an ungraded ring as well \cite[Th. 1.1]{GY83}.

By completeness, it follows that any maximal graded ideal of $\pi_*(R^{hG})$ contains (x_1, \ldots, x_t). Given a maximal graded ideal $m \in \pi_*(R^{hG})$, it follows that the (ungraded) localization $\pi_*(R^{hG})_m$ is a regular local ring: in fact, the quotient $\pi_*(R^{hG})_m/(x_1, \ldots, x_t)$ by the regular sequence x_1, \ldots, x_t is a regular local ring since it is a local ring of $\pi_*(R)$. By \cite[Th. 2.1]{Mat75}, this implies that $\pi_*(R^{hG})$ itself is a regular ring. Finally, we argue that $\pi_*(R^{hG})$ has finite Krull dimension. Let $p \subseteq \pi_*(R^{hG})$ be a prime ideal of height h; up to replacing h by $h-1$, we can assume that p is homogeneous by \cite[Prop. 1.3]{Mat75}. Up to enlarging p, we can then assume $(x_1, \ldots, x_t) \subseteq p$. But then $\dim \pi_*(R^{hG})_p \leq \dim \pi_*(R)_p + t$ for p the image of p in $\pi_*(R)$. This shows that h is globally bounded and thus that $\pi_*(R^{hG})$ has finite Krull dimension.

Recall now that $\text{Mod}_R(\text{Sp}^{BG})$ is unipotent by Corollary 2.5, and is identified as a symmetric monoidal ∞-category with (x_1, \ldots, x_t)-complete R^{hG}-modules. Let $M \in \text{Mod}_R(\text{Sp}^{BG})$ be dualizable. Unwinding the equivalence, it follows that M^{hG} is dualizable in the ∞-category $\text{Mod}_{R^{hG}}$ of complete R^{hG}-modules. But by part (2) Proposition 2.14, it follows that M^{hG} is perfect as an R^{hG}-module. Thus, by Proposition 2.6, M is perfect in $\text{Mod}_R(\text{Sp}^{BG})$ as desired. \hfill \square

3 Applications to THH

In this section, we give our main applications to THH and TP. After some preliminary remarks we prove our main theorem (Theorem 3.2) and give the application to Künneth theorems (Theorem 3.3). These results immediately imply Theorem 1.1 of Blumberg and Mandell. Then, we give a slightly different, second proof of the Künneth theorem based on the observation that TP is an integral lift of HP (Theorem 3.4). Finally, we go on to discuss a similar result in mixed characteristic.

Let k be a perfect field of positive characteristic. One needs the following fundamental calculation of Böckstedt (cf. \cite[Section 5]{HM97}) of the homotopy ring of $\text{THH}(k)$.

Theorem 3.1 (Böckstedt). There is an isomorphism of graded rings $\pi_\ast \text{THH}(k) \simeq k[\sigma]$ where $|\sigma| = 2$.

Here $\text{THH}(k)$ is naturally an \mathbb{E}_∞-ring spectrum equipped with an S^1-action. One can thus consider modules in Sp^{BS^1} over $\text{THH}(k)$. One has $\pi_\ast(\text{THH}(k)^{hS^1}) \simeq W(k)[x, \sigma]/(x\sigma - p)$, a
regular noetherian ring\(^6\). Here \(\sigma\) is a lift of the Bökstedt element and \(x \in \pi_{-2}(\text{THH}(k)^{hS^1})\) is a generator which is detected in filtration two in the homotopy fixed point spectral sequence. Using Theorem 2.15, one obtains the following result, stated partially as Theorem 1.3 of the introduction.

Theorem 3.2. Let \(k\) be a perfect field of characteristic \(p > 0\). There is an equivalence of symmetric monoidal \(\infty\)-categories between \(\text{Mod}_{\text{THH}(k)}(\text{Sp}^{BS^1})\) and \(x\)-complete \(\text{THH}(k)^{hS^1}\)-modules. Moreover any dualizable object in \(\text{Mod}_{\text{THH}(k)}(\text{Sp}^{BS^1})\) is perfect.

Proof. With Bökstedt’s calculation in hand, this result is a special case of Corollary 2.5 and Theorem 2.15.

We now give the application to the Künneth formula. We will work with small, idempotent-complete \(k\)-linear stable \(\infty\)-categories (which can be modeled as dg categories). These are naturally organized into an \(\infty\)-category \(\text{Cat}_{\text{perf}}^{\infty},k\). For any such \(\mathcal{C}\), we can consider the topological Hochschild homology \(\text{THH}(\mathcal{C})\), together with its natural \(S^1\)-action. We recall that \(\text{THH}\) defines a symmetric monoidal functor of \(\infty\)-categories \(\text{Cat}_{\text{perf}}^{\infty},k \to \text{Mod}_{\text{THH}(k)}(\text{Sp}^{BS^1})\).

Compare the discussion in [BGT14, Section 6] for stable \(\infty\)-categories, and we refer to [BM17, Th. 14.1] for a proof for \(k\)-linear \(\infty\)-categories (at least those with a compact generator, to which the general result reduces).

Recall (cf. [Toë12, Prop. 1.5], [BGT13, Th. 3.7]) that the dualizable objects in \(\text{Cat}_{\text{perf}}^{\infty},k\) are precisely the smooth and proper \(k\)-linear stable \(\infty\)-categories.

Theorem 3.3. Let \(k\) be a perfect field of characteristic \(p > 0\). Let \(\mathcal{C}, \mathcal{D}\) be \(k\)-linear dg categories and suppose \(\mathcal{C}\) is smooth and proper. Then for any closed subgroup \(H \subseteq S^1\), \(\text{THH}(\mathcal{C})^tH\) is a perfect \(\text{THH}(k)^{tH}\)-module and the natural map

\[
\text{THH}(\mathcal{C})^tH \otimes_{\text{THH}(k)^{tH}} \text{THH}(\mathcal{D})^tH \to \text{THH}(\mathcal{C} \otimes_k \mathcal{D})^tH
\]

is an equivalence. The same holds with \(tH\) replaced by \(hH\).

Proof. Since the functor \(\text{Mod}_{\text{THH}(k)}(\text{Sp}^{BS^1}) \to \text{Mod}_{\text{THH}(k)^{tH}}\), \(X \mapsto X^{tH}\) is lax symmetric monoidal and exact, it follows (as in the discussion in the introduction after Theorem 1.1) that it suffices to prove that \(\text{THH}(\mathcal{C}) \in \text{Mod}_{\text{THH}(k)}(\text{Sp}^{BS^1})\) is perfect. However, the construction \(\mathcal{C} \mapsto \text{THH}(\mathcal{C})\) is symmetric monoidal, and \(\mathcal{C}\) is dualizable in \(\text{Cat}_{\text{perf}}^{\infty},k\). Since symmetric monoidal functors preserve dualizable objects, it follows from Theorem 3.2 that \(\text{THH}(\mathcal{C}) \in \text{Mod}_{\text{THH}(k)}(\text{Sp}^{BS^1})\) is perfect, completing the proof.

As a complement, we give a slightly different proof of Theorem 1.1 based on the result (Theorem 3.4) that \(\text{TP}\) is an integral lift of periodic cyclic homology \(\text{HP}(\cdot/k)\). This result also appears (in the more general setting of perfectoid rings) in the work of Bhatt-Morrow-Scholze [BMS18] on integral \(p\)-adic Hodge theory, and plays a role in various key steps there. We include a proof for the convenience of the reader.

Note to begin that one has an \(S^1\)-equivariant map of \(\mathbb{E}_{\infty}\)-rings

\[
\text{HW}(k) \to \text{THH}(k)
\]

\(^6\)We refer to [NS17, Section IV-4] for a treatment of this calculation.
inducing an equivalence $(\text{HW}(k))^{tS^1} \simeq \text{TP}(k)$. When $k = \mathbb{F}_p$, the map arises from the cyclotomic trace $\overline{K(\mathbb{F}_p)}_p \simeq \text{HZ}_p \to \text{THH}(\mathbb{F}_p)$ (the first equivalence by Quillen [Qui72]); it can also be constructed by computing $\text{TC}(\mathbb{F}_p)$ ([HM97], [NS17, Section IV-4]). In general, the same argument gives a map $\text{HZ}_p \to \text{THH}(k)^{hS^1}$ and the calculation of $\pi_0(\text{THH}(k)^{hS^1}) = W(k)$ yields an extension on π_0. The existence of the spectrum level extension to a map from $\text{HW}(k)$ follows by obstruction theory from the p-adic vanishing of the cotangent complex of $W(k)$ over \mathbb{Z}_p. Since the map $(\text{HW}(k))^{tS^1} \to \text{TP}(k)$ induces a $W(k)$-linear map on homotopy rings $W(k)[t^{\pm 1}] \to W(k)[x^{\pm 1}]$, we see it is an equivalence.

Theorem 3.4 (Compare [BMS18, Theorem 6.7]). Let k be a perfect field of characteristic $p > 0$. For any $\mathcal{C} \in \text{Cat}_{\text{perf}}^{\infty,k}$, the natural map $\text{TP}(\mathcal{C}) \otimes_{\text{TP}(k)} H_k^{tS^1} \simeq \text{TP}(\mathcal{C})/p \to \text{HP}(\mathcal{C}/k)$ is an equivalence.

Proof. In fact, one has an equivalence in Sp^{BS^1}

$$\text{THH}(\mathcal{C}) \otimes_{\text{THH}(k)} H_k \simeq \text{HH}(\mathcal{C}/k), \quad \mathcal{C} \in \text{Cat}_{\text{perf}}^{\infty,k}. $$

If $\mathcal{C} = \text{Perf}(A)$ for an \mathbb{E}_1-algebra, then the equivalence arises from the equivalence of cyclic objects

$$N^{cy}(A) \otimes_{N^{cy}(k)} H_k \simeq N^{cy,k}(A),$$

where N^{cy} denotes the cyclic bar construction in spectra and $N^{cy,k}$ in Hk-module spectra.

In $\text{Mod}_{\text{THH}(k)}(\text{Sp}^{BS^1})$, we observe that Hk is perfect as it is the cofiber of the map $\Sigma^2 \text{THH}(k) \to \text{THH}(k)$ given by multiplication by σ, which can be made S^1-equivariant by the degeneration of the homotopy fixed point spectral sequence. It follows thus that

$$\text{HH}(\mathcal{C}/k)^{tS^1} \simeq (\text{THH}(\mathcal{C}) \otimes_{\text{THH}(k)} H_k)^{tS^1} \simeq \text{TP}(\mathcal{C}) \otimes_{\text{TP}(k)} H_k^{tS^1},$$

as desired. \hfill \Box

Second proof of Theorem 1.1. Let \mathcal{C} be smooth and proper over k. Since $\text{THH}(\mathcal{C})$ is bounded below and p-torsion, $\text{TP}(\mathcal{C})$ is automatically p-complete. To see that $\text{TP}(\mathcal{C})$ is a perfect $\text{TP}(k)$-module, it suffices to show that the homotopy groups of $\text{TP}(\mathcal{C})$ are finitely generated $W(k)$-modules (Proposition 2.13). However, the homotopy groups $\pi_q(\text{TP}(\mathcal{C})/p) \simeq \text{HP}_q(\mathcal{C}/k)$ are finite-dimensional k-vector spaces, which forces the homotopy groups of $\text{TP}(\mathcal{C})$ to be finitely generated $W(k)$-modules by Lemma 2.12. (Compare with the argument in the proof of [BM17, Theorem 16.1].)

Similarly, if \mathcal{D} is another dg category over k such that $\text{THH}(\mathcal{D})$ is bounded below (e.g., if \mathcal{D} is smooth and proper) then $\text{TP}(\mathcal{D})$, $\text{TP}(\mathcal{C} \otimes_k \mathcal{D})$, and the tensor product $\text{TP}(\mathcal{C}) \otimes_{\text{TP}(k)} \text{TP}(\mathcal{D})$ are automatically p-complete already. To prove the Künneth formula, it thus suffices to base-change along $\text{TP}(k) \to H_k^{tS^1}$, since reduction modulo p is conservative for p-complete objects. But one already has a Künneth formula in $\text{HP}(-/k)$,\footnote{For instance, this follows in a similar (but easier) fashion as dualizable objects in $\text{Fun}(BS^1, \text{Mod}_k)$ are perfect in view of the Postnikov filtration.} so one concludes. \hfill \Box

One also has a variant of Bökstedt’s calculation in mixed characteristic. Let A be the localization of the ring of integers in a number field at a prime ideal lying over p. Fix a uniformizer $\pi \in A$. Let $S^0[\pi]$ denote the \mathbb{E}_∞-ring $\Sigma_\infty \mathbb{Z}_{\geq 0}$. We consider the map of \mathbb{E}_∞-rings $S^0[\pi] \to HA$ sending $q \mapsto \pi$. The following result has now also appeared as [BMS18, Proposition 11.10]. We are grateful to Lars Hesselholt for explaining it to us. For the reader’s convenience, we include a proof.
3. Applications to THH

Theorem 3.5. Let A be the localization of the ring of integers in a number field at a prime ideal (π) lying over p and consider HA as an $S^0[q]$-algebra as above. There is an isomorphism of graded rings $\pi_\ast\text{THH}(A/S^0[q]) \simeq A[\sigma]$ where $|\sigma| = 2$.

Proof sketch. Note first that the Hochschild homology groups $\text{HH}_n(A/\mathbb{Z}[q])$ are finitely generated A-modules in each degree as A is a finitely generated noetherian ring. Since $\text{THH}(A/S^0[q]) \otimes_{\text{THH}(\mathbb{Z}[q]/S^0[q])} H\mathbb{Z}[q] \simeq \text{HH}(A/\mathbb{Z}[q])$, and the homotopy groups of $\text{THH}(\mathbb{Z}[q]/S^0[q])$ are finitely generated $\mathbb{Z}[q]$-modules, it follows easily that the homotopy groups of $\text{THH}(A/S^0[q])$ are finitely generated A-modules. Here we use repeatedly the following observation: if R is a connective \mathbb{E}_∞-ring with $\pi_0(R)$ noetherian and $\pi_i(R)$ finitely generated over $\pi_0(R)$, and $M \in \text{Mod}_R$ connective, the statement that the homotopy groups $\pi_j(M \otimes_R H\pi_0R)$ are finitely generated $\pi_0(R)$-modules implies that the homotopy groups $\pi_j(M)$ are finitely generated $\pi_0(R)$-modules.

Now we have $\text{THH}(A/S^0[q]) \otimes_{S^0[q]} S^0 \simeq \text{THH}(A/\pi)$ (where $S^0[q] \to S^0$ sends $q \mapsto 0$). By Bökstedt’s calculation in Theorem 3.1, this is also a polynomial ring on a degree two class. It follows that the homotopy groups $\pi_\ast(\text{THH}(A/S^0[q])$ (which are finitely generated A-modules) are π-torsion-free and hence free, and become a polynomial ring on a class in degree two after taking the quotient by π. Letting $\sigma \in \pi_2(\text{THH}(A/S^0[q])$ be a generator, we now obtain the result because A is local.

One can use Theorem 3.5 to calculate $\text{TP}(A/S^0[q])$ as in the case of perfect fields of characteristic $p > 0$. For example, $\pi_\ast\text{TP}(\mathbb{Z}(p)/S^0[q]) \simeq \mathbb{Z}(p)[q, q^{-1}][x^{\pm 1}]$ for $|x| = 2$. Using regularity as before, one obtains the following result from Theorem 2.15.

Corollary 3.6. Let A be the localization of the ring of integers in a number field at a prime ideal lying over p and consider HA as an $S^0[q]$-algebra as above. In the symmetric monoidal $\mathcal{\infty}$-category $\text{Mod}_{\text{THH}(A/S^0[q])}(\text{Sp}^{B\mathbb{S}^1})$, any dualizable object is perfect.

Let $\text{Cat}_{\mathcal{A}, \mathcal{S}}^\mathcal{A}$ denote the $\mathcal{\infty}$-category of small, \mathcal{A}-linear stable $\mathcal{\infty}$-categories. One has a symmetric monoidal functor $\text{THH}(\cdot/S^0[q]) : \text{Cat}_{\mathcal{A}, \mathcal{S}}^\mathcal{A} \to \text{Mod}_{\text{THH}(A/S^0[q])}(\text{Sp}^{B\mathbb{S}^1})$ and one may define $\text{TP}(\cdot/S^0[q]) \overset{\text{def}}{=} \text{THH}(\cdot/S^0[q])^{t\mathbb{S}^1}$. Using arguments as above, one obtains the following.

Corollary 3.7. Let A be the localization of the ring of integers in a number field at a prime ideal lying over p and consider HA as an $S^0[q]$-algebra as above. Let \mathcal{C}, \mathcal{D} be \mathcal{A}-linear stable $\mathcal{\infty}$-categories and suppose \mathcal{C} is smooth and proper. Then $\text{TP}(\mathcal{C}/S^0[q])$ is a perfect $\text{TP}(A/S^0[q])$-module and the natural map $\text{TP}(\mathcal{C}/S^0[q]) \otimes_{\text{TP}(A/S^0[q])} \text{TP}(\mathcal{D}/S^0[q]) \to \text{TP}(\mathcal{C} \otimes_A \mathcal{D}/S^0[q])$ is an equivalence.

If $\pi \in A$ is a uniformizer, one also has a map $S^0[q^{\pm 1}] \to HA$, $q \mapsto 1 + \pi$.

One can carry out a slight variant of the above calculations for $\text{THH}(\cdot/S^0[q^{\pm 1}])$ and $\text{TP}(\cdot/S^0[q^{\pm 1}])$, and replace the base-change $q \to 0$ with $q \mapsto 1$. One obtains $\pi_\ast\text{THH}(A/S^0[q^{\pm 1}]) \simeq A[\sigma]$, $|\sigma| = 2$.

Suppose now that the base ring A is given by $\mathbb{Z}/(p)[\zeta_p]$ and $\pi = \zeta_p - 1$. In this case, there is an isomorphism

$$\pi_*\text{TP}(\mathbb{Z}/(p)[\zeta_p]/\mathbb{Z}^0[q^{\pm1}]) \simeq \mathbb{Z}/(p)[q^{\pm1}]\Phi_p(q)[x^{\pm1}].$$

Here $\Phi_p(q)$ is the pth cyclotomic polynomial. Moreover, one obtains a functor

$$\text{Cat}_{\infty,\mathbb{Z}/(p)[\zeta_p]}^\text{perf} \to \text{Mod}_{\text{TP}}(\mathbb{Z}/(p)[\zeta_p]/\mathbb{Z}^0[q^{\pm1}]),$$

which analogs of our arguments show satisfies a Künneth formula for smooth and proper dg categories over $\mathbb{Z}/(p)[\zeta_p]$. Just as TP is analogous to 2-periodic crystalline cohomology, $\text{TP}(\mathbb{Z}^0[q^{\pm1}])$ in this case is roughly analogous to a 2-periodic version of the q-de Rham cohomology proposed by Scholze [Sch]. We refer to [BMS18] for details.

4 A finiteness result

We next apply our version of the Künneth theorem to prove the following finiteness result for the topological cyclic homology $\text{TC}(\mathcal{C})$ of a smooth and proper dg category \mathcal{C} over a finite field.

Theorem 4.1. Suppose k is a finite field of characteristic p. Let $\mathcal{C} \in \text{Cat}_{\infty, k}^\text{perf}$ be smooth and proper. Then $\text{TC}(\mathcal{C})$ is a perfect $\mathbb{H}Z_p$-module.

Of course, the above result fails for $\text{THH}(\mathcal{C})^{hS^1}$, already for $\mathcal{C} = \text{Perf}(k)$. The finiteness for TC follows from the Nikolaus–Scholze formula for TC in terms of THH^{hS^1} and TP and in particular the interactions with the cyclotomic Frobenius. After gathering the necessary facts about TC below and giving a lemma on natural transformations of symmetric monoidal functors, we prove Theorem 4.1 at the end of the section.

Example 4.2. Suppose $\mathcal{C} = \text{Perf}(X)$ where X is a smooth and projective variety over a finite field k. In this case, there is a stronger, more refined result of Geisser and Hesselholt [GH99]. They show [GH99, Prop. 5.1.1] that $\pi_i\text{TC}(X)$ is finite for $i \neq 0, -1$. (It also follows from their descent spectral sequence and [GS88, Prop. 4.18] that $\pi_0\text{TC}(X)$ is a finitely generated $W(k)$-module for $i = 0, -1$.) Earlier computations of Hesselholt (see [Hes96, Theorem B]) imply that the homotopy groups of $\text{TR}(X)$ vanish in degrees $> \dim X$ and hence that the homotopy groups of $\text{TC}(X)$ vanish in degrees $> \dim X$ since $\text{TC}(X)$ is the spectrum of F-fixed points of $\text{TR}(X)$; for descent-theoretic reasons [GH99, Section 3] they vanish in degrees $< -\dim X - 1$. In addition, they show that $\text{TC}(X)$ is identified with the p-adic étale K-theory of X provided X is smooth over k (see [GH99, Theorem 4.2.6]).

Definition 4.3. In this section, we write $\text{TC}^{-}(\mathcal{C})$ for $\text{THH}(\mathcal{C})^{hS^1}$.

We will need a number of preliminaries. In particular, we will use the Nikolaus–Scholze [NS17] description of the ∞-category CycSp of cyclotomic spectra. We will restrict to the p-local case.

Definition 4.4 ([NS17, Def. II.1.6]). The homotopy theory CycSp of cyclotomic spectra is the presentably symmetric monoidal stable ∞-category of pairs

$$(X \in \text{Sp}^{BS^1}, \{\varphi_p: X \to X^{tG_p}\}_{p \text{ prime}})$$

where, for each prime p, the map φ_p is S^1-equivariant for the natural S^1/C_p-action on X^{tG_p} and the natural identification $S^1 \simeq S^1/C_p$. For $X \in \text{CycSp}$, the *topological cyclic homology* $\text{TC}(X)$ is defined as the mapping spectrum $\text{Hom}_{\text{CycSp}}(1, X)$ for $1 \in \text{CycSp}$ the unit.
4. A finiteness result

By [NS17, Section II.6], the above definition agrees with earlier definitions of cyclotomic spectra (e.g., those in terms of genuine equivariant stable homotopy theory) when the underlying spectrum X is bounded below. In the rest of the paper, X will always be local at a fixed prime p. In this case, the Tate constructions $X^q_{\text{TC},q}$ for $q \neq p$ vanish, so that the only relevant map is $\varphi \overset{\text{def}}{=} \varphi_p$.

Given an object $X \in \text{CycSp}$ such that X is bounded below and in addition p-complete, then X^{hs^1} and X^{ts^1} are also p-complete\(^8\) and one obtains a Frobenius map $\varphi: X^{hs^1} \to X^{ts^1}$, in addition to the canonical map can: $X^{hs^1} \to X^{ts^1}$. We will use the fundamental formula [NS17, Prop. II.1.9, Rmk. II.4.3] (valid for bounded below p-complete $X \in \text{CycSp}$)

$$TC(X) \simeq \text{eq} \left(\text{can}, \varphi: X^{hs^1} \Rightarrow X^{ts^1} \right). \quad (5)$$

For a stable ∞-category \mathcal{C}, the topological Hochschild homology construction $THH(\mathcal{C})$ naturally admits the structure of a cyclotomic spectrum (compare [AMGR17]). For k-linear dg categories one has a symmetric monoidal functor

$$\text{THH}: \text{Cat}^{\text{perf}}_{\infty,k} \to \text{Mod}_{\text{THH}(k)}(\text{CycSp}).$$

There is a related discussion of the symmetric monoidality in [BGT14, Section 6] and we believe this is known to other authors as well. For example, one can use the symmetric monoidality of the classical point-set constructions and map that to the new ∞-category of cyclotomic spectra to get the desired functor.

Suppose $THH(\mathcal{C})$ is bounded below, e.g., if \mathcal{C} is smooth and proper over k or if $\mathcal{C} = \text{Perf}(A)$ for A a connective E_1-algebra in k-modules. Then, in this language, the *topological cyclic homology* $TC(\mathcal{C})$ can be defined as

$$TC(\mathcal{C}) = TC(THH(\mathcal{C})) = \text{eq} \left(\text{can}, \varphi: TC^{-}(\mathcal{C}) \Rightarrow TP(\mathcal{C}) \right). \quad (6)$$

Example 4.5. We need two basic properties of the two maps can and φ. Here we use more generally that for any perfect ring $\pi_* TC^{-}(k) \simeq W(k)[x,\sigma]/(x\sigma - p)$ for $x \in \pi_{-2}$ and $\sigma \in \pi_{2}$. When $k = \mathbb{F}_p$, this calculation follows from [NS17, Section IV.4]. The case of a general perfect ring follows by base-change using that if k is perfect, the cotangent complex $L_{k/\mathbb{F}_p} \simeq 0$. See also [BMS18, Section 6].

1. The map can carries $x \in \pi_{-2} TC^{-}(k)$ to an invertible element in $TP(k)$ by [NS17, Section IV.4]; there it is proved for $k = \mathbb{F}_p$ and the general case follows from the remarks above and naturality. For any \mathcal{C}, it follows that the map $TC^{-}(\mathcal{C})[1/x] \to TP(\mathcal{C})$ is an equivalence since $TP(\mathcal{C})$ is obtained by the extension of scalars $TP(k) \otimes_{TC^{-}(k)} TC^{-}(\mathcal{C})$ by [NS17, Lemma IV.4.12].

2. The map φ carries $\sigma \in \pi_{2} TC^{-}(k)$ to an invertible element in $TP(k)$. The map φ induces an equivalence $TC^{-}(k)[1/\sigma] \to TP(k)$. For any $\mathcal{C} \in \text{Cat}^{\text{perf}}_{\infty,k}$ such that $THH(\mathcal{C})$ is bounded below, one has a map $TC^{-}(\mathcal{C})[1/\sigma] \to TP(\mathcal{C})$ which is φ-semilinear. Alternatively, one has a map of $TP(k)$-modules $TC^{-}(\mathcal{C}) \otimes_{TC^{-}(k)} TP(k) \to TP(\mathcal{C})$, where the map $TC^{-}(k) \to TP(k)$ is φ.

We now prove some facts about these invariants for smooth and proper dg categories. First we need a preliminary proposition about dualizability.

\(^8\)This follows by induction up the Postnikov tower.
Proposition 4.6. 1. Let \mathcal{T} be a symmetric monoidal ∞-category and let $\text{Fun}(\Delta^1, \mathcal{T})$ denote the ∞-category of arrows in \mathcal{T}, with the pointwise symmetric monoidal structure. Then any dualizable object $f: X_1 \to X_2$ of $\text{Fun}(\Delta^1, \mathcal{T})$ has the property that the map f is an equivalence.

2. Let $\mathcal{T}, \mathcal{T}'$ be a symmetric monoidal ∞-categories. Let $F_1, F_2: \mathcal{T} \to \mathcal{T}'$ be symmetric monoidal functors and let $t: F_1 \to F_2$ be a symmetric monoidal natural transformation. Suppose every object of \mathcal{T} is dualizable. Then t is an equivalence.

Proof. The first assertion implies the second, so we focus on the first. Let \vee denote duality on \mathcal{T}. If $f: X \to Y$ has a dual, then the source and target have to be the duals of X and Y since the evaluation functors are symmetric monoidal. Thus, the dual of $f: X \to Y$ is an arrow $\bar{f}: X^\vee \to Y^\vee$.

We claim that $\bar{f} \vee$ is the inverse of f. To see this, we draw some diagrams. We write ev, coev for evaluation and coevaluation maps, respectively. Since \bar{f} is the dual of f, one has a commutative triangle

$\begin{array}{ccc}
X \otimes X^\vee & \xrightarrow{\bar{f} \otimes f} & Y \otimes Y^\vee.
\end{array}$

As a result, it follows that the diagram

$\begin{array}{ccc}
Y^\vee & \xrightarrow{\text{id}} & Y^\vee \\
\downarrow & & \downarrow \\
Y^\vee \otimes X \otimes X^\vee & \xrightarrow{\text{id} \otimes \text{coev}_X} & Y^\vee \otimes Y \otimes Y^\vee \\
\downarrow & & \downarrow \\
Y^\vee \otimes Y \otimes Y^\vee & \xrightarrow{\text{id} \otimes \text{coev}_Y} & Y^\vee \otimes Y \otimes Y^\vee \\
\downarrow & & \downarrow \\
X^\vee & \xrightarrow{f} & Y^\vee \\
\end{array}$

commutes. Chasing both ways around the diagram, one finds that $\text{id}_{Y^\vee} \simeq \bar{f} \circ f^\vee$. Dualizing again, we get that $f \circ f^\vee$ is equivalent to the identity of Y. In particular, f admits a section. To see that f is actually an equivalence, assume without loss of generality that all objects are dualizable. Now apply the symmetric monoidal equivalence $\vee: \text{Fun}(\Delta^1, \mathcal{T}) \simeq \text{Fun}(\Delta^1, \mathcal{T})^{op}$. It follows that f^\vee admits a section too. Therefore, f is an equivalence. □

Proposition 4.7. Let k be a perfect field of characteristic $p > 0$. For $\mathcal{C} \in \text{Cat}_{\infty,k}^{\text{perf}}$ smooth and proper, the φ-semilinear map $\varphi: \text{TC}^-(\mathcal{C})[1/\sigma] \to \text{TP}(\mathcal{C})$ is an equivalence. Equivalently, one has an equivalence of $\text{TP}(k)$-modules

$$\text{TC}^-(\mathcal{C}) \otimes_{\text{TC}^-(k), \varphi} \text{TP}(k) \simeq \text{TP}(\mathcal{C}).$$

Proof. Let \mathcal{T} denote the ∞-category of smooth and proper objects in $\text{Cat}_{\infty,k}^{\text{perf}}$. Then both sides of the above displayed map yield symmetric monoidal functors to $\text{Mod}_{\text{TP}(k)}$ in view of Theorem 3.3; for the right-hand-side this is the Blumberg–Mandell theorem. The natural map is a symmetric monoidal natural transformation, so the result follows from Proposition 4.6. □
Proposition 4.8. Let k be a perfect field of characteristic $p > 0$. Let $\mathcal{C} \in \text{Cat}_{\text{perf}}^{\infty,k}$ be smooth and proper.

1. For $i \gg 0$, the map $\sigma: \pi_i TC^-(\mathcal{C}) \to \pi_{i+2} TC^-(\mathcal{C})$ is an isomorphism.

2. For $i \ll 0$, the map $x: \pi_i TC^-(\mathcal{C}) \to \pi_{i-2} TC^-(\mathcal{C})$ is an isomorphism.

3. For $i \gg 0$, the map $\varphi: \pi_i TC^-(\mathcal{C}) \to \pi_i TP(\mathcal{C})$ is an isomorphism.

4. For $i \ll 0$, the map can: $\pi_i TC^-(\mathcal{C}) \to \pi_i TP(\mathcal{C})$ is an isomorphism.

Proof. Assertions 1 and 2 follow from the fact that $TC^-(\mathcal{C})$ is a perfect $TC^-(k)$-module by Theorem 3.3 and the fact that they are true for $TC^-(k)$ (recalling Example 4.5). Assertion 3 now follows from Assertion 1 and Proposition 4.7. Assertion 4 follows from Assertion 2 and the fact that $TP(\mathcal{C}) \simeq TC^-(\mathcal{C})[1/x]$ under can. \qed

Proof of Theorem 4.4. If k is a finite field, then the \mathbb{Z}_p-modules $\pi_i TC^-(\mathcal{C})$, $\pi_i TP(\mathcal{C})$ are finitely generated by Theorem 3.3. Moreover, for $i \gg 0$, one finds that φ is an isomorphism while can is divisible by p (as can(σ) is divisible by p in $TP(k)$), while for $i \ll 0$, can is an isomorphism while φ is divisible by p. The equalizer formula (6) for TC yields the assertion. \qed

5 A counterexample for cyclotomic spectra

Let k be a perfect field of characteristic $p > 0$ and let \mathcal{C} be a smooth and proper dg category over k. In view of the main result of the previous section and the fact that $\text{THH}(\mathcal{C})$ is dualizable in $\text{Mod}_{\text{THH}(k)}(\text{CycSp})$, one may now ask if $\text{THH}(\mathcal{C})$ is perfect in $\text{Mod}_{\text{THH}(k)}(\text{CycSp})$.

We show that this fails. For a supersingular K3 surface X over k, we show that $\text{THH}(X) = \text{THH}(\text{Perf}(X))$ is not perfect in CycSp. In fact, we show that $\text{TF}(X)$ (see below) is not compact as a $\text{TF}(k)$-module spectrum. This will rely on basic facts about crystalline cohomology and its description via the de Rham-Witt complex (in particular for supersingular K3 surfaces), as well as the connection between the fixed points of THH and the de Rham-Witt complex.

Definition 5.1. Recall that if $Y \in \text{CycSp}$, then Y in particular defines a genuine C_p-spectrum for each n. As a result, one can form the fixed points $\text{TR}^n(Y) = Y^{C_p^n}$. The spectrum $\text{TF}(Y)$ can be defined as the homotopy limit $\text{TF}(Y) = \lim_n \text{TR}^n(Y)$ where the transition maps are the natural maps $F: \text{TR}^{n+1}(Y) \to \text{TR}^n(Y)$ (inclusions of fixed points). Thus TF defines an exact, lax symmetric monoidal functor

$$\text{TF}: \text{CycSp} \to \text{Sp}.$$

For a scheme X, we will write $\text{TF}(X) = \text{TF}(\text{Perf}(X))$.

We refer to [Hes96] for the basic structure theorems for TR^n and TF of smooth schemes over a perfect field k and to [HM97] for the calculations over k itself. In particular, the results of [Hes96] show that the homotopy groups of TF are closely related to the cohomology groups of the de Rham–Witt complex [Ill79]. For a smooth algebra A/k, we let $W_n\Omega^*_A$ denote the level n de Rham-Witt complex of A and $W\Omega^*_A$ denote the de Rham-Witt complex of A, so that $W\Omega^*_A = \lim R W_n\Omega^*_A$ where the maps in the diagram are the restriction maps R. Recall also that the tower of graded abelian groups $\{W_n\Omega^*_A\}$ is equipped with Frobenius maps $F: W_{n+1}\Omega^*_A \to W_n\Omega^*_A$.

9This was the basis of classical definitions of cyclotomic spectra. If one follows instead Definition 4.4, we refer to the proof of Theorem II.4.10 in [NS17] for a definition of the fixed points and to the proof of Theorem II.6.3 in loc. cit. for a construction of the genuine spectrum.
Theorem 5.2 (Hesselholt–Madsen [HM97, Theorems 3.3 and 5.5]). Let \(k \) be a perfect field of characteristic \(p > 0 \).

1. One has \(\pi_\ast \THH(k)^{C_p} \cong W_{n+1}(k)[\sigma_n] \) for \(|\sigma_n| = 2 \). The map \(F : \pi_\ast \THH(k)^{C_p} \to \pi_\ast \THH(k)^{C_p} \) is the Witt vector Frobenius on \(W_{n+1}(k) \) and sends \(\sigma_{n+1} \) to \(\sigma_n \).

2. One has \(\THH_\ast(k) \cong W(k)[\sigma] \) for \(|\sigma| = 2 \).

In particular, if \(\THH(X) \) is perfect in \(\Mod_{\THH(k)}(\CycSp) \), then \(\THH_i(X) \) is a finitely generated \(W(k) \)-module for all \(i \). We show that if \(X \) is a supersingular K3 surface, then \(\THH_{-1}(X) \) is not finitely generated over \(W(k) \). Here we use the following fundamental result.

Theorem 5.3 (Hesselholt [Hes96, Theorem B]). Let \(k \) be a perfect field of characteristic \(p > 0 \). If \(A \) is a smooth \(k \)-algebra, then \(\pi_\ast \THH(A)^{C_p} \cong W_{n+1}\Omega^1_A \otimes_{W_{n+1}(k)} W_{n+1}(k)[\sigma_n] \) with \(|\sigma_n| = 2 \). The map \(F : \pi_\ast \THH(A)^{C_p} \to \pi_\ast \THH(A)^{C_p} \) is the tensor product of the map \(F : W_{n+1}\Omega^1_A \to W_{n+1}\Omega^1_A \) and the map \(W_{n+1}(k)[\sigma_{n+1}] \to W_n(k)[\sigma_n] \) acting as the Witt vector Frobenius \(F : W_{n+1}(k) \to W_n(k) \) and sending \(\sigma_{n+1} \) to \(\sigma_n \).

Now let \(X \) be a smooth and proper scheme over \(k \). Note that the construction \(U \mapsto \TR^n(U) \) is a sheaf of spectra \(\TR^n \) on the small étale site of \(X \) (cf. [GH99, Section 3]). By Theorem 5.3, there is a strongly convergent descent spectral sequence

\[
E^2_{s,t} = H^{-s}(X, \pi_\ast \TR^n) \cong H^{-s}(X, \bigoplus_{j=0}^{\infty} W_{n+1}\Omega^{-2j}_X) \Rightarrow \TR^{n}_{s+t}(X),
\]

and taking the limit over \(n \) we obtain a strongly convergent spectral sequence

\[
E^2_{s,t} = \lim_{n,F} H^{-s}(X, \bigoplus_{j=0}^{\infty} W_{n+1}\Omega^{-2j}_X) \Rightarrow \THH^{s+t}(X). \]

Note that since \(X \) is proper, all of the terms at each stage of the inverse limit are finite length, so no \(\lim^1 \) terms appear. Note also that this spectral sequence comes from filtering the étale sheaf \(\THH \) given by \(U \mapsto \THH(U) \) via the tower obtained by taking the inverse limit of the Postnikov towers of the \(\TR^n(U) \) (and not the Postnikov tower of \(\THH \) itself). We will show using this spectral sequence that \(\THH_{-1}(X) \) is non-finitely generated when \(X \) is a supersingular K3 surface.

As discussed in [Hes16, Section 5], the terms in the \(E^2 \)-page of the spectral sequence computing \(\THH \) above appear in the conjugate spectral sequence

\[
E^2_{s,t} = \lim_{n,F} H^s(X, W_n\Omega^1_X) \Rightarrow H^{s+t}_{\text{cris}}(X/W) \]

computing crystalline cohomology. This spectral sequence is studied in [IR83] together with the Hodge spectral sequence

\[
E^2_{s,t} = H^s(X, W\Omega^1_X) \Rightarrow H^{s+t}_{\text{cris}}(X/W) \]

arising from the naive filtration of the de Rham–Witt complex. When \(X \) is a surface, \(\lim_{n,F} H^s(X, W_n\Omega^1_X) = 0 \) and \(H^s(X, W\Omega^1_X) = 0 \) for \(s > 2 \) or \(t > 2 \). Moreover, the crystalline cohomology of a smooth proper \(k \)-scheme is finitely generated over \(W(k) \).

Proposition 5.4. The term \(\lim_{n,F} H^2(X, W_n\Omega^1_X) \) is not finitely generated if \(X \) is a supersingular K3 surface.
A counterexample for cyclotomic spectra

$W\Omega_X^0$	$W\Omega_X^1$	$W\Omega_X^2$
H^2	$k[[x]]$	$W(k)$
H^1	0	$W(k)^{22}$
H^0	$W(k)$	0

Figure 1: The Hodge–Witt cohomology of a supersingular K3 surface.

Proof. Recall from Figure 1 the Hodge–Witt cohomology groups $H^i(X, W\Omega_X^j)$ for X a supersingular K3 surface taken from [Ill79, Section 7.2]. By results of Illusie–Raynaud, the non-finite generation of $H^2(X, W\Omega_X^0)$ and $H^2(X, W\Omega_X^1)$ over $W(k)$ has consequences in the conjugate spectral sequence. We use the following general facts proved in [IR83].

1. If $H^{s+t}(X, W\Omega_X^t)$ is finitely generated for all $s+t=n$ (one says that X is Hodge–Witt in degree n), then $\lim_{n,F} H^s(X, W_n\Omega_X^t)$ is torsion-free for all $s+t=n$ if and only if $H^s(X, W\Omega_X^t)$ is torsion-free for all $s+t=n$ [IR83, IV.4.6.1].

2. Modulo torsion, the terms in the conjugate spectral sequence are finitely generated [IR83, Introduction, 2.2].

3. If $H^{s+t}(X, W\Omega_X^t)$ is not finitely generated for some pair (s,t), then there is a pair (s',t') such that $\lim_{n,F} H^{s'}(X, W_n\Omega_X^{t'})$ is not finitely generated [IR83, Introduction, 2.3].

From Figure 1 and points (1) and (2) above, we see that the terms $\lim_{n,F} H^s(X, W_n\Omega_X^t)$ of total degrees 0, 1, 4 in the conjugate spectral sequence are finitely generated torsion-free $W(k)$-modules. From (3), we see that some terms of total degrees 2 and 3 must be non-finitely generated.

We need to identify exactly where the failure of finite generation occurs. The conjugate spectral sequence degenerates after the E_2-page for dimension reasons. Thus, the only possibly non-zero differentials are

$$\lim_{n,F} H^0(X, W_n\Omega_X^2) \to \lim_{n,F} H^2(X, W_n\Omega_X^1)$$

and

$$\lim_{n,F} H^0(X, W_n\Omega_X^1) \to \lim_{n,F} H^2(X, W_n\Omega_X^0).$$

The term $\lim_{n,F} H^0(X, W_n\Omega_X^1)$ is in total degree 1 and hence is torsion-free and finitely generated. It follows that $\lim_{n,F} H^2(X, W_n\Omega_X^1)$ is finitely generated as well since otherwise it would contribute something infinitely generated in crystalline cohomology. Therefore, both

$$\lim_{n,F} H^0(X, W_n\Omega_X^2), \quad \lim_{n,F} H^2(X, W_n\Omega_X^1)$$

are non-finite over $W(k)$. (The kernel and cokernel of the differential are, however, finite.) We see in particular that $\lim_{n,F} H^2(X, W_n\Omega_X^1)$ is non-finite over $W(k)$. \qed

We can now state and prove the main conclusion of this section.

Corollary 5.5. Let k be a perfect field of characteristic $p > 0$. If X is a supersingular K3 surface over k, then $TF_{-1}(X)$ is not finitely generated as a $W(k)$-module. In particular, $\text{THH}(X) \in \text{Mod}_{\text{THH}(k)}(\text{CycSp})$ is not perfect.
\begin{align*}
&\lim_{n,F} H^2(X, W_n \Omega^1) \\
&\lim_{n,F} H^2(X, W_n \Omega^0 \oplus W_n \Omega^2) \quad \lim_{n,F} H^1(X, W_n \Omega^0 \oplus W_n \Omega^2) \quad \lim_{n,F} H^0(X, W_n \Omega^0 \oplus W_n \Omega^2) \\
&\lim_{n,F} H^2(X, W_n \Omega^1) \quad \lim_{n,F} H^1(X, W_n \Omega^1) \quad \lim_{n,F} H^0(X, W_n \Omega^1) \\
&\lim_{n,F} H^2(X, W_n \Omega^0) \quad \lim_{n,F} H^1(X, W_n \Omega^0) \quad \lim_{n,F} H^0(X, W_n \Omega^0)
\end{align*}

Figure 2: A part of the local-global spectral sequence for TF of a surface. To fix coordinates, the bottom left term displayed is $E^{2,-2,0}$.

Proof. Returning to the local-global spectral sequence for TF(X), Figure 2 displays the region of the spectral sequence of interest to us. All terms and differentials contributing to TF$_{s+t}(X)$ for $s + t \leq 1$ are shown. However, $\lim_{n,F} H^0(X, W_n \Omega^0_X)$ is torsion-free and finite over $W(k)$ (since it has degree 0 in the conjugate spectral sequence for crystalline cohomology). Thus, the d^2-differential hitting $\lim_{n,F} H^2(X, W_n \Omega^1)$ cannot possibly annihilate enough for the resulting term $E^3_{2,1} \cong E^\infty_{2,1}$ to be a finite $W(k)$-module. Of course, this implies that TF$_{-1}(X)$ is not finitely generated, which is what we wanted to show.

The reader might worry that this argument shows too much and can be used to contradict the finiteness of TP(X) over TP(k) given the spectral sequence of [Hes16, Theorem 6.8]. However, it is the periodicity of TP(k) that saves the day. When we periodicize the spectral sequence, more terms appear so that the differential hitting $E^2_{-2,1}$ is the same as that hitting $E^2_{-4,3}$. This fixes the non-finiteness.

References

[AMGR17] David Ayala, Aaron Mazel-Gee, and Nick Rozenblyum. The geometry of the cyclotomic trace. *arXiv e-prints*, 2017, https://arxiv.org/abs/1710.06409.

[BGT13] Andrew J. Blumberg, David Gepner, and Gonçalo Tabuada. A universal characterization of higher algebraic K-theory. *Geom. Topol.*, 17(2):733–838, 2013.

[BGT14] Andrew J. Blumberg, David Gepner, and Gonçalo Tabuada. Uniqueness of the multiplicative cyclotomic trace. *Adv. Math.*, 260:191–232, 2014.

[BM17] Andrew Blumberg and Michael Mandell. The strong Küneth theorem for topological periodic cyclic homology. *ArXiv e-prints*, 2017, http://arxiv.org/abs/1706.06846.

[BMS18] Bhargav Bhatt, Matthew Morrow, and Peter Scholze. Integral p-adic Hodge theory and topological Hochschild homology. *ArXiv e-prints*, 2018, https://arxiv.org/abs/1802.03261.
[DG02] William G. Dwyer and John P. C. Greenlees. Complete modules and torsion modules. *Amer. J. Math.*, 124(1):199–220, 2002. 2, 2.9, 2

[GH99] Thomas Geisser and Lars Hesselholt. Topological cyclic homology of schemes. In *Algebraic K-theory (Seattle, WA, 1997)*, volume 67 of *Proc. Sympos. Pure Math.*, pages 41–87. Amer. Math. Soc., Providence, RI, 1999. 1, 4.2, 5

[GS88] Michel Gros and Noriyuki Suwa. La conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmique. *Duke Math. J.*, 57(2):615–628, 1988. 4.2

[GY83] Shiro Goto and Kikumichi Yamagishi. Finite generation of Noetherian graded rings. *Proc. Amer. Math. Soc.*, 89(1):41–44, 1983. 2

[Hes96] Lars Hesselholt. On the p-typical curves in Quillen’s K-theory. *Acta Math.*, 177(1):1–53, 1996. 4.2, 5, 5.3

[Hes16] Lars Hesselholt. Topological hochschild homology and the Hasse–Weil zeta function. In *Alpine Algebraic and Applied Topology (Saas Almagell, Switzerland, 2016)*, Contemp. Math. Amer. Math. Soc., Providence, RI, 2016. To appear. 1, 5, 5

[HM97] Lars Hesselholt and Ib Madsen. On the K-theory of finite algebras over Witt vectors of perfect fields. *Topology*, 36(1):29–101, 1997. 3, 3, 5, 5, 5.2

[HMS94] Michael J. Hopkins, Mark Mahowald, and Hal Sadofsky. Constructions of elements in Picard groups. In *Topology and representation theory (Evanston, IL, 1992)*, volume 158 of *Contemp. Math.*, pages 89–126. Amer. Math. Soc., Providence, RI, 1994. 2.8

[Ill79] Luc Illusie. Complexe de de Rham-Witt et cohomologie cristalline. *Ann. Sci. École Norm. Sup. (4)*, 12(4):501–661, 1979. 5, 5

[IR83] Luc Illusie and Michel Raynaud. Les suites spectrales associées au complexe de de Rham-Witt. *Inst. Hautes Études Sci. Publ. Math.*, (57):73–212, 1983. 5, 5

[Jan92] Uwe Jannsen. Motives, numerical equivalence, and semi-simplicity. *Invent. Math.*, 107(3):447–452, 1992. 1

[Lur11] Jacob Lurie. Derived algebraic geometry XII: Proper morphisms, completions, and the Grothendieck existence theorem. 2011. Available at http://www.math.harvard.edu/~lurie/papers/DAG-XII.pdf. 2

[Lur17] Jacob Lurie. *Higher Algebra*. Available at http://www.math.harvard.edu/~lurie/papers/HA.pdf. 2, 2.2

[Mat75] Jacob Matijevic. Three local conditions on a graded ring. *Trans. Amer. Math. Soc.*, 205:275–284, 1975. 2

[MNN17] Akhil Mathew, Niko Naumann, and Justin Noel. Nilpotence and descent in equivariant stable homotopy theory. *Adv. Math.*, 305:994–1084, 2017. 2, 2.1, 2.3, 2.4

[NS17] Thomas Nikolaus and Peter Scholze. On topological cyclic homology. *ArXiv e-prints*, 2017, http://arxiv.org/abs/1707.01799. 1, 6, 3, 4, 4.4, 4, 4.5, 1, 9

[NvO82] C. Năstăsescu and F. van Oystaeyen. *Graded ring theory*, volume 28 of *North-Holland Mathematical Library*. North-Holland Publishing Co., Amsterdam-New York, 1982. 2
[Qui72] Daniel Quillen. On the cohomology and K-theory of the general linear groups over a finite field. *Ann. of Math. (2)*, 96:552–586, 1972.

[Sch] Peter Scholze. Canonical q-deformations in arithmetic geometry. *Ann. Fac. Sci. Toulouse Math.* To appear.

[SS03] Stefan Schwede and Brooke Shipley. Stable model categories are categories of modules. *Topology*, 42(1):103–153, 2003.

[Tab17] Goncalo Tabuada. Noncommutative motives in positive characteristic and their applications. *ArXiv e-prints*, 2017, http://arxiv.org/abs/1707.04248.

[Toë12] Bertrand Toën. Derived Azumaya algebras and generators for twisted derived categories. *Invent. Math.*, 189(3):581–652, 2012.