Highly Substituted Phenol Derivatives with Nitric Oxide Inhibitory Activities from the Deep-Sea-Derived Fungus *Trichobotrys effuse* FS524

Shanchong Chen 1,2, Zhaoming Liu 3, Yuchan Chen 2, Haibo Tan 3, Saini Li 3, Hongxin Liu 2,*
Weimin Zhang 2,* and Shuang Zhu 1,*

1 School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; chenshanbranchong@126.com
2 State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; liuzhaom@mail2.sysu.edu.cn (Z.L.); chencg@gdim.cn (Y.C.); maibao66@126.com (S.L.)
3 Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; tanhaibo@scbg.ac.cn
* Correspondence: zhushuang@gdpu.edu.cn (S.Z.); wnmzhang@gdim.cn (W.Z.); liuhx@gdim.cn (H.L.)

Received: 4 February 2020; Accepted: 24 February 2020; Published: 26 February 2020

Abstract: Chemical investigation on EtOAc extract of the deep-sea-derived fungus *Trichobotrys effuse* FS524 resulted in the isolation of six new highly substituted phenol derivatives trieffusols A–F (1–6), along with ten known relative analogues (7–16). Their structures with absolute configurations were extensively characterized on the basis of spectroscopic data analyses, single-crystal X-ray diffraction experiments, and electronic circular dichroism (ECD) calculations. Structurally, trieffusols A and B shared an unprecedented ploy-substituted 9-phenyl-hexahydroxanthone skeleton with an intriguing 6-6/6/6 tetracyclic fused ring system, which were often encountered as significant moieties in the pharmaceutical drugs but rarely discovered in natural products. In the screening towards their anti-inflammatory activities of 1–6, trieffusols C and D exhibited moderate inhibitory activities against nitric oxide (NO) production in LPS-induced RAW 264.7 macrophages with IC50 values ranging from 51.9 to 55.9 µM.

Keywords: deep-sea-derived fungus; *Trichobotrys effuse*; phenol derivatives; nitric oxide inhibitory activities

1. Introduction

Marine-derived fungi have emerged as one of the most promising strategic resources to search pharmacologically significant leads for the drug discovery and aroused widespread attention from natural product chemists, pharmacologists, as well as biosynthetic chemists due to their structurally abundant and diverse secondary metabolites in recent years [1,2]. Over the past decades, the research articles on marine natural products (MNP) have surged dramatically, bringing about a lot of conspicuous natural products with novel chemical scaffolds and unique biological functional arrays [3–7]. In terms of pharmacological research, secondary metabolites derived from marine fungi are increasingly recognized as important sources of biologically meaningful natural products [8,9]. These MNP have exhibited a wide range of biological activities such as anti-cancer [10], fungicidal [11], pro-angiogenic [12], anti-lymphangiogenic [13], and osteoclast differentiation inhibitory
activities [14]. Therefore, the in-depth chemical research on the MNPs would pave the step to provide potential model structures and precursor drugs for new drug developments.

During our continuing research for structurally unique and biologically significant NPs from marine fungi [15–17], the fungus strain *Trichobotrys effusae* FS524, isolated from a sediment sample collecting at the South China Sea, have attracted our attention and chemical investigation of the strain resulted to the isolation of six new highly substituted phenol derivatives triefusols A–F (1–6) along with eleven known analogues (Figure 1) including phomalolone (7) [18], 2,4-dihydroxy-3-(2-hydroxyethyl)-6-methoxyphenyl)-3-hydroxybutan-1-one (8) [18], (E)-1-(2,4-dihydroxy-3-(2-hydroxyethyl)-6-methoxyphenyl)but-2-en-1-one (9) [18], deoxyphomalolone (10) [18], phomalichenone A (11) [18], methylindole-3-acetate (12) [19], 3-indole acetic acid (13) [20], 4-methoxyphenylacetic acid (14) [21], papuline (15) [22], and stig mast-4-en-3-one (16) [23]. Furthermore, their structures with absolute configurations were successfully established with the aids of spectroscopic data analyses, single-crystal X-ray diffraction experiments, and ECD calculations. Among them, triefusols A and B shared an intriguing 6-6/6/6 tetracyclic ring system with the formation of an unprecedented ploy-substituted 9-phenyl-hexahydroxanthone skeleton, which were often encountered as one of the most ubiquitous and intriguing functional moieties in the pharmaceutical drugs but rarely discovered in natural products. Herein, we present the isolation, structure elucidation, and biological evaluation of them in this study.

![Figure 1. Structures of compounds 1–16.](image)

2. Results and Discussion

2.1. Structure Elucidation

Compound 1, a colorless crystal, was given the molecular formula as C_{32}H_{30}O_{8} determined by the HRESIMS cationic peak at m/z 431.1696 [M + H]^+ (calc 431.1700), which corresponded to eleven degree of unsaturation. The IR spectrum of 1 logically revealed the presence of hydroxyl and carbonyl functional groups through the characteristic resonance absorptions at 3443 cm\(^{-1}\) and 1668 cm\(^{-1}\), respectively. The further inspection of its \(^{1}H\) NMR spectrum (Table 1) clarified the existence of a para-substituted benzene ring resonating at \(\delta_{1} 7.11\) (2H, d, \(J = 8.6\) Hz, H-19, 23), 6.63 (2H, d, \(J = 8.6\) Hz, H-20, 22), three methine moieties at \(\delta_{1} 4.03\) (1H, m, H-4), 4.16 (1H, m, H-11), and 4.42 (1H, s, H-17), along with two methyl groups at \(\delta_{1} 0.77\) (3H, t, \(J = 7.5\) Hz, H-8) and 0.83 (3H, t, \(J = 7.4\) Hz, H-15). The \(^{13}C\) NMR spectrum combined with HMQC data of 1 resolved 23 carbon resonances.
attributable to two methyls, four methylenes, seven methines, and ten quaternary carbons containing two keto-carbonyl ones. The aforementioned aromatic ring and functionalities logically accounted for eight degrees of unsaturation, and the remaining three degrees of unsaturation necessitated that 1 should possess an additional tricyclic ring system.

Table 1. 1H (600 MHz) and 13C (150 MHz) NMR data for compounds 1 and 2 in CD$_2$COCD$_3$.

No.	1H (δ_{H} in Hz)	13C (δ_{C})	1H (δ_{H} in Hz)	13C (δ_{C})
1				
2				
3				
4				
5a	2.63 (dd, 18.1, 8.7)	33.9, CH$_2$	2.63 (dd, 18.5, 1.9)	33.7, CH$_2$
5b	3.00 (dd, 18.1, 5.7)	33.9, CH$_2$	3.20 (dd, 18.5, 4.1)	33.7, CH$_2$
6				
7a	1.56 (m)	32.5, CH$_2$	1.50 (m)	28.8, CH$_2$
7b	1.92 (dqg, 15.0, 7.6)	32.5, CH$_2$	2.23 (dd, 18.8, 2.6)	34.3, CH$_2$
8	0.77 (t, 7.6)	7.0, CH$_3$	0.32 (t, 7.4)	6.9, CH$_3$
9				
10a	3.06 (dd, 18.8, 3.9)	33.5, CH$_2$	2.83 (m)	34.3, CH$_2$
10b	2.83 (dd, 18.8, 2.6)	33.5, CH$_2$	2.75 (dd, 17.6, 9.9)	34.3, CH$_2$
11	4.16 (m)	70.9, CH$_3$	4.09 (m)	72.2, CH$_3$
12				
13				
14a	1.63 (m)	29.4, CH$_2$	1.45 (m)	23.3, CH$_2$
14b			1.81 (m)	23.3, CH$_2$
15	0.83 (t, 7.4)	7.8, CH$_3$	0.20 (t, 7.5)	6.2, CH$_3$
16				
17	4.42 (s)	32.8, CH$_3$	4.70 (s)	32.8, CH$_3$
18				
19	7.11 (d, 8.6)	130.2, CH$_3$	7.07 (d, 8.5)	130.5, CH$_3$
20	6.63 (d, 8.6)	115.4, CH$_3$	6.66 (d, 8.5)	115.4, CH$_3$
21				
22	6.63 (d, 8.6)	115.4, CH$_3$	6.66 (d, 8.5)	115.4, CH$_3$
23	7.11 (d, 8.6)	130.2, CH$_3$	7.07 (d, 8.5)	130.5, CH$_3$
21-OH		8.09 (s)	8.14 (s)	

The chemo-logical construction of the planar structure for compound 1 featuring a tetracyclic 6-6/6/6 ring system was elucidated by the analysis of 2D NMR spectra (Figure 2). In the 1H--1H COSY spectrum, the cross peaks of H-4/H-5, H-7/H-8, H-10/H-11, H-14/H-15 and H-19/23/H-20/22 suggested the presences of six independent fragments, a (C-4/C-5), b (C-7/C-8), c (C-10/C-11), d (C-14/C-15), and e (C-19/23/C-20/22). The HMBC correlations from H-19/23 to C-17 and C-21, H-20/22 to C-18 and C-21, coupled with the fragments e and f, could readily confirmed the existence of the para-substituted benzene ring (ring D). In addition, the obvious HMBC correlations from H-4 to C-2 and C-3, H-5 to C-1, C-3, C-4, and C-6, H-7 to C-2 and C-3, H-8 to C-3 in conjunction with fragments a and b unambiguously concluded the presence of the cyclohexenone moiety (ring A).
Similarly, the establishment of the other cyclohexenone moiety (ring C) was confirmed by the key HMBC correlations from H-10 to C-9, C-11, C-12, and C-16, H-11 to C-13, H-14 to C-11 and C-13, H-15 to C-12 as well as fragments c and d. Moreover, considering the remaining one degree of unsaturation and chemical shift of C-6 (δc 162.8) and C-9 (δc 161.8), we suspected that an oxygen atom should be connected between C-6 and C-9 with the formation of an oxygen bridge, which finally constructed the core pentasubstituted-4H-pyran skeleton (ring B). The aforementioned deduction was successfully reconfirmed by the informative HMBC correlations from H-17 to C-1, C-2, C-6, C-9, C-13, C-16, C-18, C-19, and C-23. Therefore, the planar structure of 1 was elucidated as a phenol-polyketone derivative consisting of an intriguing natural rarely-encountering 6-6/6/6 fused-ring system and given a trivial name as trieffusol A.

However, the high overlap of critical proton signals for H-4 and H-11, H-7 and H-14, H-5 and H-10, in conjunction with H-8 and H-15 made the further construction of the relative configurations for the chiral genetic centers C-3 and C-4 as well as C-11 and C-12 in the cyclohexenone rings A and C became a challenging issue. Moreover, all of these aforementioned carbons far away from the central C-17 chiral genetic center, which would further give rise to two pair of alternative diastereomeric configurations. Therefore, the assignment of the relative and absolute configurations of compound 1 through NMR and CD spectra seemed to be bleak. In order to corroborate the above structural deduction and establish absolute stereochemistry of 1, we attempted to get X-ray crystals in the methanol/water (30:1) system. Fortunately, the single crystals with good quality were obtained and subjected to an X-ray diffraction experiment with Cu Kα radiation. The crystal data (Figure 3) not only confirmed our deduction about the planar structure of 1, but also unambiguously established its absolute configuration as 3R,4S,11S,12S,17R. Therefore, the complete structure with absolute configuration of compound 1 was finally established and given a trivial name as trieffusol A, which possesses an unprecedented ploy-substituted 9-phenyl-hexahydroxanthone skeleton with an intriguing 6-6/6/6 tetracyclic fused ring system.
Trieffusol B was also obtained as a colorless crystal and had the same molecular formula C_{22}H_{26}O_8 as that of 1 based on the negative mode HERSIMS (m/z 429.1554 [M – H]−, calcd 429.1555), indicating the presence of eleven degree of hydrogen deficiency. Its 1H and 13C NMR data closely resembled those of 1, except for chemical shift changes at C-4, C-7, C-8, C-11, C-14 and C-15. A comprehensive analysis of the 1D and 2D NMR data deduced that compounds 1 and 2 shared the same planar structures, indicating that these two compounds should be a pair of diastereoisomers sharing the same ploy-substituted 9-phenyl-hexahydroxanthone skeleton with an intriguing 6-6/6/6 tetracyclic fused ring system. The aforementioned deduction could be further substantiated by the X-ray single-crystallographic analysis (Figure 4), which finally clarified the absolute configuration of compound 2 as 3S,4S,11S,12R,17S.

Trieffusol C was purified as a brown oil. Its molecular formula was determined as C_{16}H_{20}O_5 based on the protonated molecule peak at m/z 293.1385 [M + H]^+ (calcd 293.1384) by HRESIMS, which requires seven degrees of unsaturation. The 1H NMR data of 3 (Table 2) showed various characteristic resonances responsive for a para-substituted aromatic ring at δ_H 7.07 (2H, d, J = 8.5 Hz, H-2, 6), 6.72 (2H, d, J = 8.5 Hz, H-3, 5), one trisubstituted olefinic bond at δ_H 5.34 (1H, d, J = 1.5 Hz, H-10), one oxygenated methine moiety at δ_H 3.98 (1H, dd, J = 9.9, 5.9 Hz, H-13), one oxygenated methylene at δ_H 4.07 (2H, td, J = 6.8, 1.6 Hz, H-8), together with a methyl functionality at δ_H 0.81 (3H, t, J = 7.5 Hz, H-16). Analysis of the 13C NMR and HSQC data suggested the presences of 16 carbons, comprising one carbonyl carbon (δ_C 202.1), four nonprotonated carbons (δ_C 80.0, 129.7, 157.2, 176.5), five olefinic carbons (δ_C 100.8, 116.3, 116.3, 131.0, 131.0), one methine carbon (δ_C 72.6), four methylene carbons (δ_C 24.1, 35.1, 36.8, 71.5), together with one methyl carbon (δ_C 7.2).
Table 2. 1H (600 MHz) and 13C (150 MHz) NMR data for compounds 3 and 4 in CD$_3$OD.

No.	1H (f in Hz)	13C	1H (f in Hz)	13C
1	7.07 (d, 8.5)	129.7, C	7.07 (d, 8.5)	111.6, C
2	6.72 (d, 8.5)	157.2, C	6.72 (d, 8.5)	165.8, C
3	7.07 (d, 8.5)	116.3, CH	5.89 (s)	95.2, CH
4	2.94 (t, 6.8)	31.5, CH	4.47 (d, 3.2)	75.2, CH
5	4.07 (td, 6.8, 1.6)	71.5, CH	2.58 (d, 3.2)	44.2, CH
6	176.5, C	198.0, C		
7	5.34 (s)	100.8, CH	2.53 (q, 7.4)	16.0, CH
8	202.1, C	1.04 (t, 7.4)	13.8, CH	
9	80.0, C	1.43 (d, 6.3)	21.0, CH	
10	3.98 (dd, 9.9, 5.9)	72.6, CH		
11	2.53 (dd, 17.7, 9.9)	36.8, CH		
12	2.68 (dq, 17.7, 5.9)	24.1, CH		
13	1.89 (dd, 14.3, 7.5)	7.2, CH		
14a	0.81 (t, 7.5)	7.2, CH		

Construction of the planar structure for 3 was accomplished by analysis of its 2D NMR data. Firstly, the presence of a para-substituted phenyl moiety was confirmed by the HMBC correlations from H-3/5 to C-1, C-4 and C-5, H-2/6 to C-2 and C-4, together with 1H-1H COSY correlations of H-2/6/H-3/5. Secondly, the HMBC correlations from H-10 to C-9, C-11, C-12 and C-14, H-13 to C-12 and C-15, H-14 to C-9, C-10, C-12 and C-13, H-15 to C-11 and C-12, H-16 to C-12 and C-15, as well as 1H-1H COSY correlations of H-13/H-14 and H-15/H-16 strongly indicated the existence of the trisubstituted cyclohex-2-en-1-one moiety. Finally, the connections of the two independent phenyl and cyclohex-2-en-1-one fragments through the linkage of C-1/C-7/C-8/O/C-9 were supported by the HMBC correlations from H-2/6 to C-7, H-7 to C-1, C-2, and C-6, H-8 to C-1 and C-9 as well as 1H-1H COSY fragment H-7/H-8. Hence, the planar structure of 3 was successfully constructed as shown in Figure 1.

The relative configuration of 3 was assessed by the NOESY correlation, and the absence of the critical NOE correlation of H-13/H-15 tentatively suggested that these two protons should orientate oppositely. The absolute stereochemistry for chiral genetic centers of C-12 and C-13 in compound 3 were determined on the basis of the comparison of experimental and the quantum mechanically calculated electric circular dichroism (ECD) data by using the time-dependent density functional theory (TDDFT) at the B3LYP/6-31+G (d,p) level in MeOH. Satisfactorily, the calculated ECD spectrum of 12R,13S-3 (Figure 5) matched well with that of the experimental one with a positive Cotton effect at 255 nm and a negative one at 300 nm, respectively, which unambiguously clarified the absolute configuration of 3 to be 12R,13S.
Trieffusol D was obtained as a white powder with the molecular formula of C_{20}H_{14}O_{4} as deduced by HRESIMS data (m/z 223.0966 [M + H]^+; calcd 223.0965). The 1H NMR data of 4 (Table 3) displayed one aromatic proton [δ_H 5.89 (1H, s, H-5)], one methine [δ_H 4.47 (1H, dqd, J = 12.3, 6.3, 3.2 Hz, H-7)], one methylene [δ_H 2.53 (2H, q, J = 7.4 Hz, H-10)], and two methyls [δ_H 1.04 (3H, t, J = 7.4 Hz, H-11), 1.43 (3H, d, J = 6.3 Hz, H-12)]. Analysis of the 13C NMR spectrum of 4 in association with the aid of HSQC spectrum, helped to unlock 12 carbon resonances attributable to one conjugated carbonyl functional group (δc 198.0), six aromatic or olefinic carbons (δc 95.2, 103.1, 111.6, 162.4, 162.5, 165.8), one oxygenated methine (δc 75.2), two methylenes (δc 16.0, 44.2) and two methyls (δc 13.8, 21.0).

The 1H-1H COSY correlations of H-10/H-11 and the HMBC correlations from H-5 to C-1, C-3, C-4, and C-6, H-10 to C-2, C-3 and C-4, H-11 to C-3 and C-10 led to the establishment of the pentasubstituted benzene ring. Besides, the sequential HMBC correlations from H-8 to C-7, C-9 and C-12, H-12 to C-7 and C-8 along with the 1H-1H COSY correlations of H-8/H-7/H-12 suggested the existence of a tetrasubstituted tetrahydro-4H-pyran-4-one scaffold. Therefore, the gross structure of trieffusol D was established undoubtedly.

As for the absolute configuration, the specific optical rotation of 4 was close to zero, which logically suggested that it might be existed as a pair of enantiomers. The further chiral-phase separation via chiral HPLC to yield two optically pure enantiomers 4a and 4b, respectively. Subsequently, the theoretical ECD spectra for 4a and 4b (Figure 6) were calculated by using the time-dependent density functional theory (TDDFT) at the B3LYP/6-31+G (d,p) level in MeOH. As a result, the calculated ECD spectra matched well with those of the experimental ones. Therefore, the absolute configurations of 4a and 4b were finally assigned as R and S, respectively.
Trieffusol E was afforded as a colorless powder and possessed a molecular formula of C_{12}H_{14}O_{4} based on the HRESIMS ion peak at m/z 235.0971 [M + H]^+ (calcd 235.0965). Analysis of the 1D (Table 3) and 2D NMR data of 5 showed great similarity to those of 4-hydroxy-6-methoxy-5-(1'-oxobutyl)benzo[b]dihydrofuran [18]. The main difference was that the two methylenes at C-10 and C-11 positions in the known compound was oxidized to be a disubstituted double bond in 5. This conclusion was further verified by the key HMBC correlations from H-10 to C-9 and C-12, H-11 to C-9 and C-11, H-12 to C-10 and C-11 together with the 1H=1H COSY correlations of H-10/H-11. Besides, the other structural identification details as shown in Fig. 2 could be also supported this conclusion. Moreover, the coupling constant (J = 15.1 Hz) between H-10 and H-11 obviously illustrated the configuration of the disubstituted double bond as E-configuration. Therefore, the structure of 5 was elucidated unambiguously as depicted in Figure 1.

Table 3. 1H (600 MHz) and 13C (150 MHz) NMR data for compounds 5 and 6 in CD3OD.

No.	δH (J in Hz)	δC	δH (J in Hz)	δC
1	106.8, C	145.5, C		
2	163.0, C	117.7, C		
3	106.5, C	126.7, C		
4	169.1, C	132.7, C		
5	6.07 (s)	87.2, CH	152.6, C	
6	165.5, C	131.6, C		
7	3.07 (t, 8.7)	26.7, CH2	173.8, C	
8	4.66 (t, 8.7)	74.4, CH2	52.7 (s)	69.7, CH2
9	194.6, C	2.73 (m)	36.0, CH2	
10	7.21 (dd, 15.1, 1.6)	133.5, CH	1.64 (m)	25.5, CH2
11	6.98 (dq, 15.1, 6.9)	142.9, CH	1.00 (t, 7.3)	14.3, CH3
12	1.94 (dd, 6.9, 1.6)	18.6, CH3	4.89 (s)	58.2, CH2
13	3.86 (s)	56.4, CH3		

Trieffusol F was isolated as a brownish solid and determined to have a molecular formula as C_{13}H_{14}O_{4} from the HRESIMS data (m/z 223.0971 [M + H]^+, calcd 223.0965). The 1H NMR data (Table 3) showed characteristic resonances for one aromatic proton [δH 7.21 (1H, s, H-2)], two oxygenated methylenes [δH 4.89 (2H, s, H-12), 5.27 (2H, s, H-8)], and one methyl [δH 1.00 (3H, t, J = 7.3 Hz, H-11)]. The 13C NMR data and HSQC spectrum of 6 showed 12 carbons, which were assigned to one methyl, four methylenes (two oxygenated ones), one aromatic carbon, five quaternary carbons (one oxygenated one), and one ester carbonyl functionality. The key HMBC correlations from H-2 to C-4, C-6, and C-7, H-8 to C-3, C-4, C-5, and C-7 indicated the establishment of the isobenzofuran-1(3H)-one moiety. Furthermore, the attachments of the C-9 at C-1 and C-12 at C-6 were confirmed by the HMBC correlations from H-9 to C-1, C-2, and C-6, H-2 to C-9, H-12 to C-1, C-5, and C-6, along with the 1H=1H COSY correlations of H-9/H-10/H-11. Thus, the structure of 6 was defined as shown in Figure 1.

2.2. Biological Activity

Compounds 1–6 were evaluated for their inhibition effect of NO production in the lipopolysaccharide (LPS)-induced mouse macrophages. As shown in Table 4, compounds 3 and 4 exhibited the inhibitory activities with IC50 values ranging from 51.9 to 55.9 μM, comparable to that of the positive control Aminoguanidine (IC50: 24.8 μM). At the same time, both of them showed no cytotoxicities against macrophages, of which IC50 values were all greater than 200 μM.
Table 4. Inhibitory effects of 1-6 on the NO production and the cytotoxicity.

Compounds	Inhibition of NO production (IC50/μM)	Cytotoxicity (IC50/μM)
1	>200	>200
2	108.1 ± 3.0	>200
3	51.9 ± 1.4	>200
4a	54.3 ± 2.2	>200
4b	55.9 ± 1.6	>200
5	65.5 ± 1.3	>200
6	111.2 ± 4.6	>200
Aminoguanidine	24.8 ± 0.8	>200

*Values are expressed as the mean ± SD.

3. Materials and Methods

3.1. General Experimental Procedures

HREIMS data were collected on MAT95XP machine (Thermo Fisher Scientific, Bremen, Germany). NMR spectra were acquired by Avance-600 spectrometer (Bruker, Fällanden, Switzerland). Circular dichroism (CD) spectra were afforded by Jasco 820 spectropolarimeter (Jasco Corporation, Kyoto, Japan). Optical rotations were obtained by MCP-500 spectropolarimeter (Anton Paar, Graz, Austria). UV spectra were acquired using UV-2600 spectrophotometer (Shimadzu, Kyoto, Japan). IR data were done with Affinity-1 spectrometer (Shimadzu, Kyoto, Japan).

Preparative HPLC was performed using ODS-A column (250 × 20 mm, 5 μm, 12 nm, YMC Co., Ltd, Kyoto, Japan). An ODS-A/AQ column (250 × 10 mm, 5 μm, 12 nm, YMC Co., Ltd, Kyoto, Japan) was used for semipreparative HPLC separation and the CHIRALPAK IC column (250 × 10 mm, 5 μm) for chiral semipreparative HPLC separation. Silica gel (100–200 mesh and 200–300 mesh, Qingdao Marine Chemical Inc., Qingdao, China), C18 reversed-phase silica gel (40–63 μm, Merck, Darmstadt, Germany), and Sephadex LH-20 gel (Pharmacia Fine Chemical Co. Ltd., Uppsala, Sweden) were used in the chromatography processes. Fractions were monitored by TLC, and spots were detected on heated TLC plates (silica gel GF254 plates, Qingdao Marine Chemical Inc., Qingdao, China) with 10% H2SO4 in EtOH under UV light.

3.2. Fungal Material

The strain FS524 used in this work was isolated from a sediment sample, which was collected at the depth of 1428 m in the South China Sea (110°59'04"E, 18°00'47"N) in June 2017. The sequence data for this strain have been submitted to the GenBank under accession No. MN545626. By using BLAST (nucleotide sequence comparison program) to search the GenBank database, FS524 has 99.8% similarity to *Trichoborys effuse* DFF5CS021 (Accession No. JX156367). The strain was preserved at the Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology.

3.3. Fermentation and Extraction

The marine fungus *T. effuse* FS524 was cultured on potato dextrose agar (PDA) at 28 °C for 7 days to prepare the seed culture, and then inoculated into flasks (3 L) each containing 9 g sea salts, 250 g of rice, and 300 mL of water. After that, all flasks were incubated at 28 °C for one month and extracted repeatedly with EtOAc. After evaporation of the solvent, a dark brown solid extract (67.3 g) was obtained. The crude extract was fractionated by silica gel column chromatography (100–200 mesh) with two gradient systems of increasing polarity (petroleum ether–EtOAc, 30:1 → 1:1; CH2Cl2/CH3OH, 10:1 → 1:1) to furnish nine fractions (A–I).

Fraction C (14.8 g) was subjected to silica gel CC (petroleum ether/EtOAc, 30:1 → 1:1) to afford seven subfractions (C1–C7). C2 was further divided into two parts (C2.1, C2.2) by Sephadex LH-20 CC (CH2Cl2–MeOH, 1:1). C2.2 was purified by semi-preparative HPLC equipped with a chiral column (Isopropanol–Hexane, 70:30, 2 mL/min) to yield 7 (4.1 mg, *t* < = 15.8 min). C3 was separated
by Sephadex LH-20 CC (CH3Cl→MeOH, 1:1) to afford three subfractions (C3.1–C3.3). Then, semi-preparative HPLC equipped with a chiral column (isopropanol-hexane, 80:20, 2 mL/min) analysis of C3.2 afforded 9 (7.8 mg, $t_R = 21.3$ min) and 8 (3.4 mg, $t_R = 30.1$ min), respectively. Additionally, C4 was purified by semi-preparative HPLC equipped with a chiral column (isopropanol-hexane, 50:50, 2 mL/min) to obtain 5 (1.3 mg, $t_R = 21.9$ min) and 16 (5.4 mg, $t_R = 19.5$ min), respectively.

Fraction E (3.9 g) was divided into five subfractions (E1–E5) by Sephadex LH-20 CC (CH3Cl→MeOH, 1:1). E5 was separated by semi-preparative HPLC (MeCN–H2O, 80:20, 2 mL/min) to yield 4 (3.1 mg, $t_R = 9.2$ min), 11 (4.7 mg, $t_R = 11.0$ min), and 10 (138.2 mg, $t_R = 12.5$ min). Furthermore, 4 was purified by semi-preparative HPLC equipped with a CHIRALPAK IC column (250 × 10 mm, 5 μm) (isopropanol-hexane, 20:80, 2 mL/min) to yield 4b (1.5 mg, $t_R = 12.0$ min) and 4a (1.4 mg, $t_R = 14.5$ min), respectively.

Fraction G (11.1 g) was subjected to C-18 reversed-phase silica gel CC (gradient elution with MeOH–H2O, 30:70→100:0) to afford seven subfractions (G1–G7). G1 was separated by silica gel CC (petroleum ether-EtOAc, 8:1→1:1) to afford five subfractions (G1.1–G1.5). Then semi-preparative

HPLC (MeCN–H2O, 30:70, 2 mL/min) analysis of G1.4 afforded 3 (2.5 mg, $t_R = 19.0$ min). G1.5 was separated by semi-preparative HPLC (MeCN–H2O, 25:75, 2 mL/min) to get G1.5.2 (99.8 mg, $t_R = 8.0$ min) and G1.5.4 (20.5 mg, $t_R = 13.8$ min). G1.5.4 was further purified by semi-preparative HPLC equipped with a chiral column (Isopropanol–Hexane, 60:40, 2 mL/min) to yield 1 (10.8 mg, $t_R = 14.4$ min). And semi-preparative HPLC equipped with a chiral column (isopropanol-hexane, 45:55, 2 mL/min) analysis of G1.5.2 afforded 2 (2.3 mg, $t_R = 13.2$ min). G3 was divided into two subfractions (G3.1, G3.2) by Sephadex LH-20 CC (CH3Cl→MeOH, 1:1). Then G3.1 was separated into five subfractions (G3.1.1–G3.1.5) by semi-preparative HPLC (MeCN–H2O, 40:60, 2 mL/min). G3.1.5 was purified by semi-preparative HPLC (MeCN–H2O, 45:55, 2 mL/min) and semi-preparative HPLC equipped with a chiral column (isopropanol-hexane, 60:40, 2 mL/min) to obtain 12 (8.5 mg, $t_R = 10.0$ min). Further semi-preparative HPLC equipped with a chiral column (isopropanol-hexane, 35:65, 2 mL/min) analysis of G3.1.2 and G3.1.4 afforded 13 (15.2 mg, $t_R = 8.9$ min), 14 (5.6 mg, $t_R = 11.2$ min) and 15 (19.2 mg, $t_R = 13.6$ min), respectively. G4 was divided into eight subfractions (G4.1–G4.8) by preparative HPLC (MeOH–H2O, 65:35, 5 mL/min). Additionally, semi-preparative HPLC equipped with a chiral column (isopropanol-hexane, 30:70, 2 mL/min) and further purified by semi-preparative HPLC (MeCN–H2O, 55:45, 2 mL/min) analysis of G4.5 afforded 6 (4.3 mg, $t_R = 10.6$ min).

Trieffusol A (1): mp 149–150 °C; colorless crystal; [α]D 20 +14.5 (c 0.12, MeOH). CD (0.35 mg/mL, MeOH): 226 (2.99), 281 (1.09), 325 (1.38) nm. UV (MeOH) $λ_{max}$ (log ε): 225 (4.12), 288 (3.69) nm. IR νmax (cm$^{-1}$): 3443, 2359, 1668, 1362, 1157. 1H (600 MHz) and 13C (150 MHz) NMR spectral data, see Table 1. HRESIMS: m/z 431.1696 [M + H]+ (calcd for C30H28O8, 431.1700).

Trieffusol B (2): mp 148–149 °C; colorless crystal; [α]D 20 +33.6 (c 0.09, MeOH). CD (0.37 mg/mL, MeOH): 224 (2.57), 293 (0.39), 328 (0.34) nm. UV (MeOH) $λ_{max}$ (log ε): 224 (4.03), 293 (3.58) nm. IR data was the same as 1. 1H (600 MHz) and 13C (150 MHz) NMR spectral data, see Table 1. HRESIMS: m/z 429.1554 [M – H]+ (calcd for C29H26O8, 429.1555).

Trieffusol C (3): brown oil; [α]D 20 +8.1 (c 0.12, MeOH). CD (0.39 mg/mL, MeOH): 251 (3.38), 297 (1.53) nm. UV (MeOH) $λ_{max}$ (log ε): 225 (3.93), 250 (3.97) nm. IR νmax (cm$^{-1}$): 3389, 1595, 1516, 1221, 1153, 831. 1H (600 MHz) and 13C (150 MHz) NMR spectral data, see Table 2. HRESIMS: m/z 293.1385 [M + H]+ (calcd for C19H22O6, 293.1384).

(+)-Trieffusol D (4a): white powder; [α]D 20 +20.9 (c 0.09, MeOH). CD (0.33 mg/mL, MeOH): 215 (4.39), 288 (3.53), 309 (1.07) nm. UV (MeOH) $λ_{max}$ (log ε): 213 (4.03), 292 (3.90) nm. IR νmax (cm$^{-1}$): 2930, 1585, 1306, 1119, 716. 1H (600 MHz) and 13C (150 MHz) NMR spectral data, see Table 2. HRESIMS: m/z 223.0966 [M + H]+ (calcd for C15H20O6, 223.0965).

(−)-Trieffusol D (4b): white powder; [α]D 20 −24.7 (c 0.07, MeOH). CD (0.34 mg/mL, MeOH): 216 (−4.24), 287 (3.31), 310 (−1.10) nm. UV (MeOH) $λ_{max}$ (log ε): 213 (3.98), 292 (3.88) nm. IR data was the same as 4a. 1H (600 MHz) and 13C (150 MHz) NMR spectral data, see Table 2. HRESIMS: m/z 221.0823 [M – H]+ (calcd for C15H18O6, 221.0819).
Trieffusol E (5): colorless powder. UV (MeOH) λ_{max} (log ε): 207 (3.88), 241 (3.59), 324 (3.62) nm. IR ν_{max}: 3362, 1418, 1020, 642 cm$^{-1}$. 1H (600 MHz) and 13C (150 MHz) NMR spectral data, see Table 3. HRESIMS: m/z 235.0971 [M + H]$^+$ (calcd for C$_{12}$H$_{15}$O$_4$, 235.0965).

Trieffusol F (6): brownish solid. UV (MeOH) λ_{max} (log ε): 208 (3.74), 250 (3.19), 301 (2.81) nm. IR ν_{max}: 3310, 1748, 1522, 1009, 773 cm$^{-1}$. 1H (600 MHz) and 13C (150 MHz) NMR spectral data, see Table 3. HRESIMS: m/z 223.0971 [M + H]$^+$ (calcd for C$_{13}$H$_{15}$O$_4$, 223.0965).

3.4. X-ray Crystallographic Data of Compounds 1 and 2

The single-crystal X-ray diffraction data for compounds 1 and 2 were collected on Agilent Xcalibur Nova single-crystal diffractometer using CuKa radiation at 293 and 100 K, respectively. The crystal structures were refined by full-matrix least-squares calculation (for details see X-ray Crystallographic Analysis, Table S1 and Table S2 in the Supporting Information). Crystallographic Data have been deposited at the Cambridge Crystallographic Data Center with the deposition number of CDCC 1,974,673 for 1 and CDCC 1,974,674 for 2, respectively. The copies of these data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html.

3.5. Quantum Chemical Calculations

Merck molecular force field (MMFF) and DFT/TD-DFT calculations were carried out with the Spartan’14 software (Wavefunction Inc., Irvine, CA, USA) and the Gaussian 09 program, respectively [24]. Conformers within the 10 kcal mol$^{-1}$ energy window were generated and optimized using DFT calculations at the B3LYP/6-31+G (d,p) level. Frequency calculations were performed at the same level to confirm that each optimized conformer was true minimum and to estimate their relative thermal free energy (ΔG) at 298.15 K. Conformers with the Boltzmann distribution over 5% were chosen for ECD calculations in methanol at the B3LYP/6-311+G (d,p) level. Solvent effects were taken into consideration using the self-consistent reaction field (SCRF) method with the polarizable continuum model (PCM) [25]. Details of the individual conformers were provided in the Supporting Information. The ECD spectrum was generated by the SpecDis program [26] using a Gaussian band shape with 0.26 eV exponential half-width from dipole-length dipolar and rotational strengths.

3.6. Nitric Oxide Inhibitory Activities Assay

Compounds 1–6 were evaluated for the inhibitory activity of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 246.7 mouse macrophages [27]. The cells (180 μL) with a density of 5×10^5 cells/mL of media on 96-well plate were put under 37 °C at 5% CO$_2$ condition. After a 24 h preincubation, the seeded cells were treated with gradient dilutions of 1-6 with a maximum concentration of 100 μM, followed by stimulation with LPS (1 μg/mL) for 24 h. Then 50 μL cell culture supernatant solution was moved to a new plate which contained NO detection Griess A (50 μL) and Griess B (50 μL). Finally, the absorbance was measured at 540 nm. Aminoguanidine was used as a positive control and all data were obtained in triplicate. The viability of RAW264.7 cells was evaluated according to the SRB method simultaneously to exclude the interference of the cytotoxicity of 1-6. The RAW264.7 cells were purchased from the Cell Bank of Chinese Academy of Sciences.

4. Conclusion

In summary, six new highly substituted phenol derivatives trieffusols A–F (1–6), along with eleven known analogues (7–16) were identified from the deep-sea-derived fungus Trichobotrys effuse FS524. Interestingly, trieffusols A and B shared an intriguing 6-6/6/6 tetracyclic ring system with the formation of an unprecedented ploy-substituted 9-phenyl-hexahydroxanthone skeleton, which were often encountered as one of the most ubiquitous and intriguing functional moieties in the pharmaceutical drugs but rarely discovered in natural products. All the compounds were screened for their nitric oxide (NO) inhibitory activities, compounds 3 and 4 exhibited moderate inhibitory activities against NO production in LPS-induced RAW 264.7 macrophages.
Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Figures S1–S2: B3LYP/6-31+G (d,p) optimized low-energy conformers of 3 and 4; Figures S3–S8: 1D, 2D NMR, HREIMS, CD, UV and IR spectra of compounds 1–6.

Author Contributions: Formal analysis, Z.L. and H.T.; funding acquisition, W.Z.; investigation, S.C., Y.C. and S.Z.; project administration, W.Z.; resources, S.L.; supervision, H.L., W.Z. and S.Z.; validation, S.C. and H.L.; writing—original draft, S.C.; writing—review and editing, H.L., W.Z. and S.Z. All authors have read and agreed to the published version of the manuscript.

Funding: We thank the National Natural Science Foundation of China (41906106, 31272087), the Pearl River Science and Technology New Star Fund of Guangzhou (201806010080), the GDAS’ Project of Science and Technology Development (2019GDASYL-0103007), the Science and Technology Program of Guangzhou (201607020018), the innovation and university promotion project of Guangdong Pharmaceutical University (2017KCXTD020) and the Team Project of the Natural Science Foundation of Guangdong Province (2016A030312014).

Acknowledgments: We sincerely thank Can Li of Central Laboratory of Southern Medical University for NMR data measurements.

Conflicts of Interest: The authors declare no competing financial interest.

References
1. Jimenez, C. Marine natural products in medicinal chemistry. ACS Med. Chem. Lett. 2018, 9, 959-961.
2. El-Kashif, D.H.; Daletos, G.; Plenker, M.; Hartmann, R.; Mandi, A.; Kurtan, T.; Weber, H.; Lin, W.; Ancheeva, E.; Proksch, P. Polyketides and a dihydroquinolone alkaloid from a marine-derived strain of the fungus Metarhizium marquandii. J. Nat. Prod. 2019, 82, 2460-2469.
3. Kong, F.D.; Fan, P.; Zhou, L.M.; Ma, Q.Y.; Xie, Q.Y.; Zheng, H.Z.; Zheng, Z.H.; Zhang, R.S.; Yuan, J.Z.; Dai, H.F.; Luo, D.Q.; Zhao, Y.X. Penerpenes A–D, four indole terpenoids with potent protein tyrosine phosphatase inhibitory activity from the marine-derived fungus Penicillium sp. KFD28. Org. Lett. 2019, 21, 4864-4867.
4. Zhong, W.; Wang, J.; Wei, X.; Chen, Y.; Fu, T.; Xiang, Y.; Huang, X.; Tian, X.; Xiao, Z.; Zhang, W.; Zhang, S.; L. Long, Wang, F. Variecolortins A–C, three pairs of spirocyclic diketopiperazine enantiomers from the marine-derived fungus Eurotium sp. SCGIO F452. Org. Lett. 2018, 20, 4593-4596.
5. Liu, Z.; Chen, Y.; Chen, S.; Liu, Y.; Lu, Y.; Chen, D.; Lin, Y.; Huang, X.; She, Z. Aspterpenacids A and B, two sesterterpenoids from a mangrove endophytic fungus Aspergillus terreus H010. Org. Lett. 2016, 18, 1406-1409.
6. Zhao, D.L.; Cao, F.; Wang, C.Y.; Yang, L.J.; Shi, T.; Wang, K.L.; Shao, C.L.; Wang, C.Y. Alternatone A, an unusual perylenequinone-related compound from a soft-coral-derived strain of the fungus Alternaria alternata. J. Nat. Prod. 2019, 82, 3201-3204.
7. Limbadri, S.; Luo, X.; Lin, X.; Wang, J.; Yang, B.; Zhou, X.; Liu, Y. Versisiproketal A, an unusual tetracyclic bridged spiroketal from the sponge-associated fungus Aspergillus versicolor SCGIO 41013. Org. Biomol. Chem. 2019, 17, 2182-2186.
8. Jiao, W.H.; Li, J.; Wang, D.; Zhang, M.M.; Liu, L.Y.; Sun, F.; Li, J.Y.; Capon, R.J.; Lin, H.W. Cinerols, nitrogenous meroterpenoids from the marine sponge Dysidea cinerea. J. Nat. Prod. 2019, 82, 2586-2593.
9. Luo, M.; Cui, Z.; Huang, H.; Song, X.; Sun, A.; Dang, Y.; Lu, L.; Ju, J. Amino acid conjugated anthraquinones from the marine-derived fungus Penicillium sp. SCGIO sof101. J. Nat. Prod. 2017, 80, 1668-1673.
10. Luo, X.; Lin, X.; Tao, H.; Wang, J.; Li, J.; Yang, B.; Zhou, X.; Liu, Y. Isochromaphilones A–F, cytotoxic chloroaazaphilones from the marine mangrove endophytic fungus Diaporthe sp. SCGIO 41011. J. Nat. Prod. 2018, 81, 934-941.
11. Wang, J.; Cong, Z.; Huang, X.; Hou, C.; Chen, W.; Tu, Z.; Huang, D.; Liu, Y. Solisepptide A, a cyclic hexapeptide possessing piperazic acid groups from Streptomyces solisilvae HNM30702. Org. Lett. 2018, 20, 1371-1374.
12. Li, T.; Tang, X.; Luo, X.; Wang, Q.; Liu, K.; Zhang, Y.; de Voogd, N.J.; Yang, J.; Li, P.; Li, G. Agelanemochrome, a dimeric bromopyrrole alkaloid with a pro-angiogenic effect from the south china sea sponge Agelas nemecrinata. Org. Lett. 2019, 21, 9483-9486.
13. Chen, S.R.; Wang, S.W.; Chang, F.R.; Cheng, Y.B. Anti-lymphangiogenic alkaloids from the zoanthid Zoanthus vietnamensis collected in Taiwan. *J. Nat. Prod*. 2019, 82, 2790-2799.

14. Wang, W.; Lee, J.; Kim, K.J.; Sung, Y.; Park, K.H.; Oh, E.; Park, C.; Son, Y.J.; Kang, H. Austalides, osteoclast differentiation inhibitors from a marine-derived strain of the fungus *Penicillium rudallense*. *J. Nat. Prod.* 2019, 82, 3083-3088.

15. Liu, Z.; Wang, Q.; Li, S.; Cui, H.; Sun, Z.; Chen, D.; Lu, Y.; Liu, H.; Zhang, W. Polypropionate derivatives with mycobacterium tuberculosis protein tyrosine phosphatase B inhibitory activities from the deep-sea-derived fungus *Aspergillus fischeri* FS452. *J. Nat. Prod.* 2019, 82, 3440-3449.

16. Xu, J.; Tan, H.; Chen, Y.; Li, S.; Huang, Z.; Guo, H.; Li, H.; Gao, X.; Liu, H.; Zhang, W. Lithocarpins A-D: four tenellone-macroline conjugated [4 + 2] hetero-adducts from the deep-sea derived fungus *Phomopsis lithocarpus* F5508. *Org. Chem. Front.* 2018, 5, 1792-1797.

17. Chen, S.C.; Liu, Z.M.; Tan, H.B.; Chen, Y.C.; Li, S.N.; Li, H.H.; Guo, H.; Zhu, S.; Liu, H.X.; Zhang, W.M. Tersone A-G, new pyridone alkaloids from the deep-dea fungus *Phomopsis tersa*. *Mar. Drugs* 2019, 17, 394.

18. Kim, J.W.; Ko, W.; Kim, E.; Kim, G.S.; Hwang, G.J.; Son, S.; Jeong, M.H.; Hur, J.S.; Oh, H.; Ko, S.K.; Jang, J.H.; Ahn, J.S. Anti-inflammatory phomalichenones from an endolithic fungus *Phoma* sp. *J. Antibiot.* 2018, 71, 753-756.

19. Kang, U.; Ryu, S.M.; Lee, D.; Seo, E.K. Chemical constituents of the leaves of *Brassica oleracea* var. *acephala*. *Chem. Nat. Compn.* 2018, 54, 1023-1026.

20. Rathnayake, G.R.N.; Kumar, N.S.; Jayasinghe, L.; Araya, H.; Fujimoto, Y. Chemical investigation of metabolites produced by an endophytic fungi *Phialomonium curvatum* from the leaves of *Passiflora edulis*. *Nat. Prod. Res.* 2018, 32, 2483-2486.

21. Li, X.J.; Gao, J.M.; Chen, H.; Zhang, A.L.; Tang, M. Toxins from a symbiotic fungus, *Leptographium qinlingensis* associated with *Dendroctonus armandi* and their in vitro toxicities to *Pinus armandi* seedlings. *Eur. J. Plant Pathol.* 2012, 134, 239-247.

22. Valerio, F.; Masi, M.; Cimmino, A.; Moeini, S.A.; Lavermicocca, P.; Evidente, A. Antimould microbial and plant metabolites with potential use in intelligent food packaging. *Nat. Prod. Res.* 2018, 2, 1605-1610.

23. Li, X.J.; Liu, Z.Z.; Kim, K.W.; Wang, X.; Li, Z.; Kim, Y.C.; Yook, C.S.; Liu, X.Q. Chemical constituents from leaves of *Pileostegia viburnoides* Hook.f.et Thoms. *Nat. Prod. Sci.* 2016, 22, 154-161.

24. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, *Rev. D.01*; Gaussian, Inc.: Wallingford, CT, USA, 2013.

25. Wu, P.; Xue, J.; Yao, L.; Xu, L.; Li, H.; Wei, X. Bisacremines E-G, three polycyclic dimeric acremines produced by *Acremonium persicinum* SC0105. *Org. Lett.* 2015, 17, 4922-4925.

26. Bruhn, T.; Schmaulloflel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. *Chirality* 2013, 25, 243–249.

27. Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. *Nitric Oxide* 2001, 5, 62-71.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).