Abstract

This paper describes experiments on identifying the language of a single name in isolation or in a document written in a different language. A new corpus has been compiled and made available, matching names against languages. This corpus is used in a series of experiments measuring the performance of general language models and names-only language models on the language identification task. Conclusions are drawn from the comparison between using general language models and names-only language models and between identifying the language of isolated names and the language of very short document fragments. Future research directions are outlined.

Keywords

Language identification, language guessing, morphophonology, graphotactics

1 Introduction

Language identification is performed on different levels, from the acoustic and prosodic to the phonotactic or graphotactic, and has found various application in speech synthesis, information extraction and data mining.

Leaving aside language identification at the acoustic and prosodic level, we shall concentrate on identifying the language of a string of phonemes or graphemes. In fact, all of the methods and experiments presented here operate on graphemes, but there is no underlying assumption that forces this choice, only data availability.

We further concentrate on identifying the language of a single name, even when it is in isolation or in a document written in a different language. This is particularly interesting to named-entity recognition, especially if the methodology supports spotting names transliterated into different orthography systems, e.g. spotting English-language named-entities in Chinese newspapers.

The intuition and basic hypothesis that the work presented here tests, is that names are more ‘characteristic’ of their language than general words, and that a single name might have enough clues to confidently identify its language, where a general word of the same length wouldn’t.

The paper is structured as follows: first an overview of the literature in language identification is provided, both in the framework of text categorization and for identifying the language of a single named entity in isolation (Sect. 2). Then, in Sect. 3 the corpus used is presented, as well as the methodology for compiling it. Finally, the experimental setup and results are described (Sect. 4) and conclusions and future research directions are offered (Sect. 5).

2 Language Identification

2.1 Text Categorization

Guessing the language of a document falls under the larger area of text categorization, which aims at classifying a document as belonging to one (or more) out of certain, predefined categories or subject codes. Document language is one of the possible dimensions of categorization, interesting for various document organization, data mining, and information extraction tasks.

Cavnar and Trenkle [1994] report experiments on language categorization using a simple n-gram frequency algorithm. The language models consist of frequency counts of n-grams (up to 5-grams) for various languages. To classify a document, the frequency counts of n-grams in the document are calculated, and their distribution compared against the distribution of n-grams in the language models. The model with the smallest distance from the distribution of the document, is assumed to be the language of the document.

This algorithm was tested on Usenet postings from the soc.culture newsgroup hierarchy. An eight-language corpus was generated semi-automatically: a first pass operated under the assumption that the postings are in the language of the country or region under discussion in each newsgroup, and at a second pass discrepancies between the newsgroup’s default language and the system’s prediction were manually resolved.

With the 400 most frequent n-grams retained in the models, and postings of at least 300 bytes of length, the system classified the test set almost perfectly, achieving an accuracy of 99.8%. The authors also report an accuracy of 99.3% for postings that are under 300 bytes, without providing any further details of how accuracy drops with shorter test documents.

Cavnar and Trenkle’s algorithm has seen various implementations and use cases, most notably
2.2 Language Identification in Isolation

Language identification is very accurate even for texts as small as two or three hundred characters, but even so that is a long way from identifying the language of origin of single name, when seen in isolation.

Efforts at language identification for proper names originate in speech synthesis [Spiegel, 1985, Vitale, 1991, Font Liitjós and Black, 2001], with language identification used to adjust grapheme-to-phoneme rules. The typical approach is to improve an English-language speech synthesizer by training n-gram classifiers and using different pronunciation models for foreign names, depending on each name’s origin.

Font Liitjós and Black, in particular, note that language identification of isolated names is a difficult task, as they tried to manually tag 516 names and found that they could confidently tag only 43% of the data. For their speech synthesis experiment they used a simplification of the Cavnar and Trenkle algorithm which only counted 3-grams. They trained language models on general text (ranging from 255 thousand to 11 million words), and provided the classification results as features for the grapheme-to-phoneme models. Unfortunately they do not report results for the language identification part of their experiments, but they do make the following observation:

Ideally, we should have trained our LLMs [letter language models] on just names, instead of text corpora, since that is the distribution of our training data. However, some experiments where we had LLM trained on both text and just proper names for German, French and Spanish have shown that the probability of the two LLM were very close, and it never happened that the LLM trained on text performed worse than the LLM trained on proper names.

Another field of application of the same general methodology is automatic transliteration of named-entities for the purposes of machine translation [Huang, 2005], except that here language identification adjusts transliteration models instead of grapheme-to-phoneme ones. In Huang’s experiment languages were grouped together in clusters, where clustering was trained on the effect that it had on the transliteration models. The resulting clusters roughly corresponded to familiar language groupings (Chinese, Romance, English-and-Dutch, Nordic). Again, language identification models are reported to improve accuracy, but no results are provided for the language identification sub-task per se.

Finally, language identification is pertinent to information-extraction tasks such as named-entity recognition. In this context it is important to be able to identify the original language of a named entity in order to be able to recognize transliterated named entities. Virga and Khudanpur [2003] report identifying references to English-language named entities in Chinese text. Their approach is to train a tri-gram model on Chinese transliterations of English names and use it to pick out English-language named-entities. Knowing that a string is an English word, the original orthography can be more accurately guessed.

3 The Transfermarkt Corpus

In order to test the hypothesis stated in the introduction, a corpus of person’s names matched with the language of each name was created. The corpus is based on the Transfermarkt web-site, which features various information about 22966 football players, including—most crucially for our purposes—their nationality. The site has complete player information about several German leagues and the top league from 21 other countries. After discarding mixed-language nationalities (e.g. Belgian and Swiss) and sparse nationalities, and after combining some nationalities into a single language (U.K. & Ireland; Serbia, Croatia & Bosnia; and Czech Republic and Slovakia) there are 13 languages left with a reasonable number of names each, listed in Table 1.

A second dataset was created were only last names were considered. In the Transfermarkt web-site full names are provided without any indication of how they originate.

Language	Names	Avg. Len.
German	3153	15.1
English	1660	13.6
Serbocroatian	1474	14.3
Italian	1151	16.2
French	1141	15.8
Polish	1057	16.0
Spanish	1031	14.0
Danish	817	15.7
Dutch	809	15.1
Swedish	746	15.7
Czechoslovak	653	13.6
Norwegian	622	16.2
Portuguese	600	11.1
Total	14914	14.8

Table 1: Corpus size statistics for full names.

1 See http://www.let.rug.nl/~vannoord/TextCat/
2 See http://spamassassin.apache.org/
3 The corpus was compiled from a web crawl through the site performed on 7-6-2007.
4 A preliminary experiment has shown Czech and Slovak names to be practically indistinguishable, despite the substantial differences between the Czech and Slovak languages.
5 The cut-off point was set at 556 examples, which leaves 500 training examples at 10-fold cross-validation. Going for a minimum of 1000 training examples would leave us with too few languages, including only one pair of closely related languages (Italian and French), rendering the experiments considerably less interesting. Also note the Greek would have been included if it were for corpus size alone, but was dropped since, retaining the original orthography, a single character is always enough to accurately identify it, making any comparison pointless.
Table 2: Corpus size statistics for last names.

Language	Names	Avg. Len.
German	2608	7.8
Serbocroatian	1160	7.8
English	1132	7.5
French	1067	7.7
Italian	1042	8.2
Polish	944	8.6
Spanish	824	7.4
Dutch	746	7.5
Czechoslovak	579	7.2
Swedish	542	8.6
Danish	501	8.2
Norwegian	488	7.8
Portuguese	418	6.3
Total	12051	7.8

Two sets of tests were run, one with full diacritics and one on plain text. For the former tests, the models that come with the TextCat distribution were used. For the latter, the test sets were stripped of diacritics and plain-text models were built from 100 kbytes fragments of the JRC-Acquis Multilingual Parallel Corpus [Steinberger et al., 2006]. The JRC-Acquis corpus does not include Norwegian and Serbocroatian from the languages of Table 1, so the models from TextCat were used for these languages. Serbian, Croatian, and Bosnian have different models in TextCat, as the languages of the plain Latin and the full-diacritics models are not necessarily aligned with word boundaries. These models (and the test texts) are plain Latin transliterations of the original orthographies, so they could be immediately included.

In the web-site, names originally spelled in Cyrillic or Greek are transliterated, but the various diacritics used in Latin-based languages are retained. All such diacritics were dropped from the corpus, since some are sufficient to considerably narrow the problem down or even identify a single language (e.g. Czech [ř]).

The Transfermarkt corpus, both with diacritics and the plain Latin version, can be downloaded from http://www.iit.demokritos.gr/~konstant/dload/tmc.tgz. The archive includes the tools developed to compile and manipulate the corpus and conduct the experiments described below.

4 Experiments and Results

4.1 Categorization of Short Strings

As already mentioned, previous work has reported considerable performance increase in transliteration and grapheme-to-phoneme conversion tasks when language identification is applied before the main algorithm, even for identifying the language of a single name. Raw language guessing results, however, have not been reported except by Cavnar and Trenkle, but they only differentiate between strings that are shorter or longer than 300 bytes.

In order to establish a basis for comparison, it was necessary to conduct some experiments on language identification from strings of length comparable to the average length of 15 characters observed in the Transfermarkt corpus. The TextCat implementation of the Cavnar and Trenkle algorithm was used. The test sets were built by splitting the short texts included in the TextCat distribution. Various text fragment lengths were tried, ranging between 5 and 25 characters, not necessarily aligned with word boundaries.

Two sets of tests were run, one with full diacritics and one on plain text. For the former tests, the models that come with the TextCat distribution were used. For the latter, the test sets were stripped of diacritics and plain-text models were built from 100 kbytes fragments of the JRC-Acquis Multilingual Parallel Corpus [Steinberger et al., 2006]. The JRC-Acquis corpus does not include Norwegian and Serbocroatian from the languages of Table 1, so the models from TextCat were used for these languages. Serbian, Croatian, and Bosnian have different models in TextCat, so all three were included and the results adjusted accordingly to consider any of these three answers as correct. These models (and the test texts) are plain Latin transliterations of the original orthographies, so they could be immediately included.

The Norwegian model, on the other hand, is encoded with full diacritics and had to be simplified. This has had a slight negative effect on Norwegian results, since the frequencies in the new model are not guaranteed to be accurate. To illustrate why this is the case, consider the 2-gram [p˚a] which is present among the 400 most frequent n-grams retained in the model, but [pa] is not. In the model generated by merging [a] into [a], [p˚a] is under-represented. In a more extreme case, an n-gram might be altogether missing. Imagine, for example, a situation where neither [pa] nor [p˚a] were frequent enough to be in the original model, but their combined frequency would have been enough.

The predictive performance, averaged over 13 languages, of the plain Latin and the full-diacritics models is given in Table 3. It should be noted that the Serbocroatian model and test text in TextCat is only available without diacritics, so the same Serbocroatian text and models were employed in both experiment series. Performance is given as the balanced F-score over precision P and recall R:

\[
F_{\beta=1} = \frac{2 \cdot P \cdot R}{P + R}
\]

The most immediate conclusions from these results is that at this size range language identification has not converged yet at the numbers reported at the 300-character area, and that diacritics have a very high dis-
Table 4: Performance of general language identification models over full names.

Language	Avg Len	Recall	Prec.	Fβ=1
Italian	16.2	37%	62%	46%
Norwegian	16.2	13%	16%	14%
Polish	16.0	65%	67%	66%
French	15.8	11%	36%	17%
Swedish	15.7	3%	5%	4%
Danish	15.7	14%	17%	15%
German	15.1	41%	39%	40%
Dutch	15.1	22%	46%	30%
Serbocroatian	14.3	38%	57%	46%
Spanish	14.0	18%	23%	20%
English	13.6	7%	22%	11%
Czechoslovak	13.6	5%	20%	8%
Portuguese	11.1	29%	30%	29%
Average	14.8	23%	34%	27%

Table 5: Performance of 10-fold cross-validated full name models

Language	Avg Len	Recall	Prec.	Fβ=1
Italian	16.2	66%	69%	67%
Norwegian	16.2	41%	36%	38%
Polish	16.0	80%	88%	84%
French	15.8	47%	50%	48%
Swedish	15.7	51%	47%	49%
Danish	15.7	49%	58%	53%
German	15.1	36%	71%	48%
Dutch	15.1	44%	34%	38%
Serbocroatian	14.3	80%	79%	79%
Spanish	14.0	45%	55%	50%
English	13.6	58%	70%	63%
Czechoslovak	13.6	70%	55%	62%
Portuguese	11.1	52%	60%	56%
Average	14.8	27%	55%	60%

Table 6: Performance of 10-fold cross-validated last name models

Language	Avg Len	Recall	Prec.	Fβ=1
Italian	8.1	61%	59%	60%
Norwegian	7.8	30%	31%	30%
Polish	8.6	61%	75%	67%
French	7.7	39%	36%	37%
Swedish	8.6	51%	61%	56%
Danish	8.2	42%	60%	49%
German	7.8	44%	73%	55%
Dutch	7.5	35%	35%	36%
Serbocroatian	7.8	74%	79%	76%
Spanish	7.4	38%	41%	39%
English	7.5	51%	66%	58%
Czechoslovak	7.2	56%	36%	44%
Portuguese	6.3	40%	41%	40%
Average	7.8	48%	53%	50%

4.2 Categorization of Names

Having established the performance of general-purpose TextCat models on general text, the next step is to measure their performance over the Transfemarkt corpus and compare it against the performance of models specifically trained on names.

As a first step, the JRC-Acquis models were tested on the Transfemarkt names, where they performed substantially worse than they did on the TextCat test texts (cf. Table 4). This is, to a large extent, due to the fact that the nationality of the bearer of a name does not consistently reflect the name’s origin, resulting in considerable noise in the Transfemarkt dataset.

At a second step, the full name and last name datasets were used to train and test the language models, using 10-fold cross-validation. N-fold cross-validation is a methodology for evaluating a hypothesis when there is not enough data to obtain both a training and a test set, but the same data has to be used for both training and validation, while at the same time guaranteeing the independence of the training and the validation process. The original set is partitioned into N subsets, of which one is retained as testing data and the remaining N – 1 are used as training data. Training and testing is repeated N times (the folds), with each of the N subsets used exactly once as testing data. The N results from the folds are averaged to produce a single estimation.

The results of the full name and last name language models (Tables 5 and 6, resp.) show a completely different picture than the JRC-Acquis models, where performance over plain-Latin general text is matched and at times surpassed. Comparing full-name language identification against language identification of general text we see that similar results are obtained, despite the fact that the names dataset is a considerably more noisy, as shown by the performance of the JRC models over the Transfemarkt dataset. Last-name language identification performs even better, almost touching the results of general text language identification with diacritics.

By comparing full name and last name results, we observe that, although full names are on average almost twice as long as last names, last names alone are enough to achieve an F-score of 50%, versus 60% for full names. Intuitively, this is corroborated by the fact (observed in Sec. 3 above) that there are a lot more distinct last names than there are first names, so that the former are more ‘dense’ in information than the latter.

Finally, comparing the results of the JRC models and the Transfemarkt models of full names, tested over the Transfemarkt names, we see that training models specific to names has a most profound effect on performance, with the average F-score more than doubling (27% versus 60%). This is in sharp contrast to the remark by Font Llitjós and Black (cf. Sect. 2.2) that they did not observe any performance increase.
Figure 1: Graph plotting F-score of language identification against string length. The two lines plot language identification performance over general text of fixed length. The outlined circle, triangle, and square marks show F-scores per language, against average name length of the language. The filled circle, triangle, and square marks average these last results over all 13 languages.

when training language models with datasets of names instead of general text.

Figure 1 combines all of these results into a graph were the, so to speak, relative ‘discriminative density’, of names and general words can be seen. For full names, it is practically identical to general words since full names have an average length of almost 15 characters and can be predicted at pretty much the same rate as 15-character-long general words. First names, on the other hand, carry a lot more potential per character, as their average length is just under 8 characters, but can be predicted as accurately as general words of about 11 characters.

5 Conclusions and Future Research

The main conclusion drawn from the experiments exposed here is that names offer themselves for more accurate language identification than general words. This conclusion has been repeatedly hinted at in previous work on grapheme-to-phoneme conversion and transliteration, where a language identification preprocessing step resulted in dramatic performance increase on the main task.

Furthermore, it has been demonstrated that language identification models for names work better when trained on names, despite prior reports to the contrary in the literature. It is interesting to note that the performance reported here is on a par with the performance of human annotators, who reported that they could only confidently predict a person’s nationality in 43% of the data (cf. Sect. 2.2).

Finally, it has been confirmed that last names carry more information per character than first names. This result which was expected, since it is a lot more common for first names to appear in multiple languages than it is for last names.

A few open questions remain, however. One is the nature of the information that a name (or any word in general) carries that allows humans and Machine Learning systems to predict its linguistic background. The information used can be either morphological or phonotactic/graphotactic. For example, characteristic suffixes or prefixes like Konstantopoulos or McLeod are morphological features of their respective languages, whereas, say, a consonant cluster like Polish [krz], only found in a single (small set of) language(s), is a phonotactic phenomenon, convolved with the orthographic conventions of the language(s) at hand.

An interesting line of research to pursue is devising and conducting experiments that would analyse the contribution of each of these factors to the observed increase in language identification performance when dealing with names. There are various preliminary thoughts along these lines, including using more explicit models, combined with using representations that are more cross-linguistically uniform and uninformed with respect to the spelling of the name in its original language.

What is meant by more explicit models, is model
representations where different types of features are used instead of a flat n-gram model. So, for example, one could imagine that interesting conclusions could be drawn by analysing a model that has access to prior phonotactic models, grapheme-to-phoneme mapping models, and the results of derivational morphology analysis. This, however, would be a major undertaking requiring a long array of linguistic resources, which can be very sparse for some of the languages discussed here.

The second idea mentioned above is that of a cross-linguistically uniform and uninformed data representation. In the experiments presented here a small step in this direction was taken by dropping all diacritics, so that there will be fewer chances for ‘easy guesses’ based on characters only found in a single language. This creates a performance mis-balance in favour of orthographies that prefer grapheme clusters instead of overloaded characters, as, for example, the distinction between [s] and [sh] is retained in English and the distinction between [s] and [sz] is retained in Polish, but the distinction between [s] and [š] is lost in Czechoslovak and SerboCroatian.

One idea would be to represent names in an abstract phonological representation, but that creates the additional problem of devising such a representation which is neither too detailed nor too coarse and accurately making all the grapheme-to-phoneme conversions necessary. An attractive alternative would be based on the assumption that transliteration to a completely different orthography to a large extent removes clues that are based on orthographic idiosyncrasies of the original language. So, for example, if a resource similar to the Transfermarkt corpus would be created from original language. So, for example, if a resource similar to the Transfermarkt corpus would be created from a Greek or Russian site, all instances of [š] and [ž] would have been spelled as [c] and [mı], respectively.6

Along a totally different line of research, other dimensions of categorization could be explored. For example, depending on the language at hand, separating male from female names can range from trivial to impossible. Names can also provide indications about age (as first names come and go into fashion), social and economical status (compare ‘Paddy’ and ‘Patrick III’), religious and, in general, cultural background (René Antonius Maria Eijkelkamp and Abdelhali Chiat are both Dutch football players, but certain educated guesses can be made about their cultural backgrounds from their names alone), etc.

The extend to which such categorization attempts will remain morphophonologically interesting and will not deteriorate into thesaurus look-ups or require full-blown pragmatic knowledge cannot be predicted, but might be worth investigating.

6 Of course no transliteration is completely reversible and some information is lost. In the case of Greek the distinction between [s] and [sh-sz-ˇ s] is lost, and in Russian there is no English [th], Spanish [z], Greek [θ].

7 DG-SANGO Programme ‘Public Health’, Action 1.5 ‘eHealth’. See also http://www.medieq.org

gates the automation of the quality labelling process in medical web sites, by verifying their content using machine-readable quality criteria.

References

W. B. Cavnar and J. M. Trenkle. N-gram-based text categorization. In Proceedings of Third Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, 11–13 April 1994, pages 161–175, 1994.

A. Font Llitjós and A. W. Black. Knowledge of language origin improves pronunciation accuracy of proper names. In Proc. of Eurospeech 2001, Aalborg, Denmark, 2001. URL http://sidcar.sp.cs.cmu.edu/ari/papers/eurospeech01/Eurospeech01.pdf.

F. Huang. Cluster-specific named entity transliteration. In HLT ’05: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, Vancouver, British Columbia, Canada, pages 435–442, Morristown, NJ, USA, 2005. Association for Computational Linguistics.

M. F. Spiegel. Pronouncing surnames automatically. In Proc. Conf. of the American Voice Input/Output Society, pages 109–132, 1985.

R. Steinberger, B. Poulquen, A. Widiger, C. Ignat, T. Erjavec, D. Tufiş, and D. Varga. The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages. In Proc. of the 5th International Conference on Language Resources and Evaluation (LREC’2006), Genoa, 24–26 May 2006, 2006.

P. Virga and S. Khudanpur. Transliteration of proper names in cross-lingual information retrieval. In M. Broman Olsen, editor, Proceedings of the ACL 2003 Workshop on Multilingual and Mixed-language Named Entity Recognition, pages 57–64, 2003. URL http://www.aclweb.org/anthology/W03-1508.pdf.

T. Vitale. An algorithm for high accuracy name pronunciation by parametric speech synthesizer. Computational Linguistics, 17(3):257–276, 1991.

6 Acknowledgements

The work described here was partially supported by MedIEQ, an EU-funded project.7 MedIEQ investi-