MOTIVIC DECOMPOSITIONS OF FAMILIES WITH TATE FIBERS: SMOOTH AND SINGULAR CASES

M. CAVICCHI, F. DÉGLISE, AND J. NAGEL

Abstract. We apply Wildeshaus’s theory of motivic intermediate extensions to the motivic decomposition conjecture, formulated by Deninger-Murre and Corti-Hanamura. We first obtain a general motivic decomposition for the Chow motive of an arbitrary smooth projective family \(f : X \to S \) whose geometric fibers are Tate. Using Voevodsky’s motives with rational coefficients, the formula is valid for an arbitrary regular base \(S \), without assuming the existence of a base field or even of a prime integer \(\ell \) invertible on \(S \). This result, and some of Bondarko’s ideas, lead us to a generalized formulation of Corti-Hanamura’s conjecture. Secondly we establish the existence of the motivic decomposition when \(f : X \to S \) is a projective quadric bundle over a characteristic 0 base, which is either sufficiently general or whose discriminant locus is a normal crossing divisor. This provides a motivic lift of the Bernstein-Beilinson-Deligne decomposition in this setting.

Contents

1. Introduction 2
Plan of the paper 5
Acknowledgements 6
Notations and conventions 6
2. Smooth Artin-Tate motives and motivic decompositions 8
2.1. Gluing and weights on Beilinson motives 8
2.2. Motivic decompositions 9
2.3. Smooth Artin motives 12
2.4. Weights on smooth Artin-Tate motives 14
2.5. First decomposition theorem 16
3. Recall and complement on Wildeshaus’s motivic intermediate extensions 21
3.1. Semi-primary categories and motivic intermediate extensions 21
3.2. Semi-primary categories of Chow motives 22
3.3. Compatibility with realizations and conservativity 27
4. Motivic decompositions of projective quadric bundles 29
4.1. Corti-Hanamura decomposition of general quadrics 29
4.2. Corti-Hanamura decomposition of quadric bundles with normal crossing discriminant 32
References 35
1. Introduction

Consider a proper, regular scheme \(X \) over some base scheme \(S \). A first approximation to the questions that we study in this paper may be stated as follows: if the cohomology of each geometric fiber of \(X \) over \(S \) admits an “easy” description, does the cohomology of the whole of \(X \), relatively to \(S \), admit such a description as well?

In order to make this question more precise, let us start by looking at the case of a smooth morphism \(f : X \to S \). We have then the universal cohomological invariants of each fiber \(X_s \), \(s \in S \), and of the scheme \(X \) over \(S \), at our disposal: namely, the Chow motive \(h(X_s) \) of each fiber, over the residue field \(k(s) \), and the relative Chow motive \(^1 h_S(X) \). The first notion of “easy” description of \(h(X_s) \) which comes to mind is then provided by the requirement that \(h(X_s) \) be a Tate motive, i.e., isomorphic to a finite direct sum of twists \(\mathbb{Q}(-i) \) of the unit object, where \(\{n_i\}_{i \in I} \) is a finite collection of integers.

When \(S \) is the spectrum of an algebraically closed field \(k \), both the motive \(h_s(X) \) of the unique geometric fiber and the relative motive \(h_S(X) \) coincide of course with the Chow motive \(h(X) \) of \(X \). Fix some Weil cohomology theory \(H^\ast(\cdot) \) on the category of smooth projective varieties over \(k \). The following result provides a criterion for \(h(X) \) to be Tate, under additional assumptions:

Theorem (Kimura, Vial). Assume \(k \) is an algebraically closed field of characteristic 0. Suppose that \(X \) is a smooth projective variety over \(k \) such that the Chow motive \(h(X) \) is finite dimensional (in the sense of Kimura) and such that \(H^i(X) \) is algebraic (i.e., the rational cycle class maps \(\text{CH}^i(X) \otimes \mathbb{Q} \to H^{2i}(X, \mathbb{Q}) \) are surjective for all \(i \)). Then

\[
h(X) = \bigoplus_i \mathbb{Q}(-i)^{b_{2i}}
\]

is Tate.

This result generalises a theorem of Jannsen and was observed by Vial [Via13b] and Kimura [Kim09] (in the case where one replaces \(h(X) \) by an arbitrary Chow motive \(M \)). A proof will be sketched in Section 2.2.

Our first theorem may be seen as the natural generalization of the previous one to the relative case. A first result in this direction was obtained by Vial in [Via13a, Thm. 4.2]. It states that if \(f : X \to S \) is a flat morphism between \(k \)-varieties such that \(\text{CH}^i(X_s) \otimes \mathbb{Q} \cong \mathbb{Q} \) for all \(i \) and for all \(s \in S(\Omega) \) (where \(\Omega \) is a universal domain over \(k \)) then the relative motive \(h_S(X) \) is a Tate motive. Our theorem extends this result in two directions. First we consider geometric fibers: this implies that we will get more general motives than Tate motives. Secondly, we work over an arbitrary regular base scheme \(S \), with no assumption on the existence of a base field or of a prime \(\ell \) invertible on \(S \). In order to give the statement, recall that a representation of a group \(G \) (say, on a finite dimensional \(\mathbb{Q} \)-vector space) is Artin if it factors through a finite quotient of \(G \).

Theorem A (see Theorem 2.5.8). Let \(S \) be a regular connected scheme with étale fundamental group \(\pi \). Let \(f : X \to S \) be a smooth proper morphism whose geometric合唱 motives are meant to be with rational coefficients. For a recall of the definition of the category of Chow motives over a general base scheme, see Section 2.1.
fibers are Tate (i.e. the associated Chow motives are Tate). Then there exists an isomorphism of motives over S:

$$h_S(X) \simeq \bigoplus_{i \in I} \rho_i(V_i)(-n_i)[-2n_i]$$

where I is a finite set, V_i is a simple Artin \mathbb{Q}-representation of π, n_i is a non-negative integer and $\rho_i(V_i)$ is the rational motive naturally associated with V_i.

Moreover, the set $\{([V_i], n_i), i \in I\}$ where $[V_i]$ denotes the isomorphism class in the category of Artin representations $\text{Rep}_\mathbb{Q}(\pi)$ of π is uniquely determined.

The property which characterizes the set $\{([V_i], n_i), i \in I\}$ will be formulated in a precise way in the complete statement of Theorem A, see Theorem 2.5.8. For the moment being, let us just point out that Theorem A shows that the naive generalisation of the theorem of Kimura-Vial to the relative situation is false: if $f : X \rightarrow S$ is a smooth, projective morphism such that $h(X_s)$ is finite dimensional and such that $H^*(X_s)$ is algebraic for all $s \in S$, the relative motive $h_S(X)$ does not necessarily decompose as a direct sum of relative Lefschetz motives\(^2\), since it is an object of a more general kind - an Artin-Tate motive. This can be seen already on the topological level. If $f : X \rightarrow S$ is a smooth, projective morphism whose fibers have algebraic cohomology then the direct image sheaves $R^i f_* \mathbb{Q}$ are local systems with finite monodromy, but they are not necessarily constant. A concrete example is given by smooth quadric fibrations of even relative dimension (Corollary 2.5.13). We have recorded in Example 2.5.14 some constructions of smooth proper quadrics over Spec(\mathbb{Z}), and more generally over rings of integers of number fields, to which our result applies; for rings of integers whose spectrum is non-simply connected, we give explicit cases where relative Artin-Tate motives with non-trivial monodromy actually appear.

The singular case. We want now to treat the general case of a regular scheme X, proper over some regular base S. In order to give a meaning to the motive of the singular fibers of $f : X \rightarrow S$, one has to work in the framework of constructible rational mixed motives $\text{DM}_c(S)$, satisfying the six functors formalism and Grothendieck-Verdier duality. This formalism is by now available after the seminal work of Voevodsky, finalized by Ayoub and Cisinski-Déglise. The notion of Tate motive extends to this setting. By asking f to have Tate fibers, one may still hope to obtain a nice decomposition of the motive $h_S(X)$ as in Theorem A. We will explain in Section 2.2 that the conjectural existence of a motivic t-structure on $\text{DM}_c(S)$ and some ideas of Bondarko give ground to this belief. One should in fact expect the existence of some suitable stratification $\{S_\phi\}$ of S, with one stratum being the open locus U of smoothness of f, and the pullbacks X_{S_ϕ} to the strata of $S \setminus U$ having fixed degeneration type, in some suitable sense. The desired decomposition of $h_S(X)$ should be then expressed in terms of “easy” objects lying over each S_ϕ.

In order to get an explicit hold on the possible degenerations of the fibers, we restrict our attention to the special situation of quadric bundles in characteristic zero. Our Theorem B then shows that in at least two reasonable cases (one of them being the “generic” one), the previous hypothetical picture holds indeed true.

\(^2\)This statement is even false if one assumes that the fibers are homogeneous spaces as in [Iyer]
Theorem B (see Cor. 4.1.7, Cor. 4.2.5). Let S be a scheme over a field of characteristic 0, and $f : X \to S$ be a projective quadric bundle such that one of the following conditions holds:

1. the discriminant of X/S is a normal crossing divisor in X;
2. X/S is regular as a quadric bundle (which means "generic" in a precise sense, see Def. 4.1.4).

We consider the stratification $\{S_\phi\}$ of S given respectively by

1. the intersections of the irreducible components of the discriminant (see Def. 4.2.2) in case (1);
2. corank (see after Def. 4.1.4) in case (2).

Then there exists a finite set of simple Artin representations $\{V_{i,\phi}\}$, whose isomorphism classes are uniquely determined, such that $h_S(X)$ admits a motivic decomposition

$$h_S(X) \simeq \bigoplus_{i,\phi} j_{\phi!*}(\rho(V_{i,\phi})(-n_{i,\phi}))[-2n_{i,\phi}]$$

with $j_{\phi!*}(\cdot)$ denoting a certain extension of the given motive to a Chow motive on the closure $\overline{S_\phi}$, unique up to isomorphism.

Once again, we are leaving to the main body of the paper the precise formulation of the property characterizing the extensions $j_{\phi!*}(\rho(V_{i,\phi})(-n_{i,\phi}))$ up to isomorphism. We want however to stress that the choice of the notation is not an accident: these objects are precisely obtained by defining and applying an intermediate extension functor $j_{\phi!*}$ at the level of motives, modeled on the intermediate extension of perverse sheaves introduced in [BBD82]. As a matter of fact, Theorem B plays precisely the role of a motivic lifting of the celebrated decomposition theorem of loc. cit.

The existence of such motivic decompositions, in the presence of singularities of f, had been previously obtained only in a few cases. First by Gordon, Hanamura, Murre in [GHM03, Th. I in §2] and then by Nagel and Saito in [NS09], for conic bundles over a surface (see also [Bou16]). The existence of motivic intermediate extensions is especially important in the motivic part of the Langlands program, where the first construction of a Chow motive realizing to intersection cohomology was provided by Scholl in [Sch90], in the case of modular curves. In recent years, Wildeshaus has started a systematic study of motivic intermediate extensions based on the formalism of DM(S) and Bondarko’s weight structures. He and his students successfully applied these methods to many families of higher dimensional Shimura varieties, the most recent one being the case of genus two Hilbert-Siegel varieties treated by the first author in [Cav19]. The most general construction applies to some relative motives of ”abelian type” (see [Wil17]).

Wildeshaus’s techniques have never been applied to the motivic decomposition problem. This is what we do in our proof of Theorem B and indeed, the desire to obtain such application was the original motivation of our paper.

Let us conclude by observing that both our main Theorems A and B may be seen as expressing the existence of interesting algebraic cycles, namely, the relative correspondences on $X \times_S X$ acting on $h_S(X)$ as projectors on the direct factors of our decompositions. From this viewpoint, our results provide a positive answer to the relative analogue of a well-known conjecture dealing with smooth projective varieties over a field, the Chow–Künneth conjecture - itself a strengthening of the
K"unneth conjecture, one of the famous standard conjectures on algebraic cycles. We refer the reader to Section 2.2 for an extended discussion of this conjecture, of its relative counterparts and of the various notions of motivic decomposition that we consider in this work.

Possible developments. We believe that our method for proving Theorem B, based in particular on Theorem A, should apply to other situations. Firstly one could investigate projective families of a different type, for example degenerations of Grassmannians or Severi-Brauer varieties. The geometry of hyper-k"ahler varieties should also offer a suitable playground. Lastly, the Example 2.5.14 suggests that one could look at the arithmetic case, where we work with (flat regular) schemes over rings of integers. In particular, the theory of regular quadric fibrations in this case still seems manageable according to [APS15].

Plan of the paper

In Section 2, we recall the theory of gluing and weights for rational mixed motives, and state several versions of motivic decompositions, in order of generality. We then give some basic definitions and computations of relative smooth Artin motives, analog of Artin motives over a field. When π is the fundamental group of a regular base S, we show an equivalence of categories between the bounded derived category of Artin π-representations and the full subcategory of constructible motives formed by smooth Artin-Tate motives $DM_{c}(S)$ (Prop. 2.3.4), extending a classical result of Voevodsky-Orgogozo (the case when S is the spectrum of a field). Finally, we deduce our first motivic decomposition theorem, by combining a "spreading-out" technique valid for constructible motives, the existence of weights on smooth Artin-Tate motives (see in particular Thm. 2.4.3), and an extension argument based on Wildeshaus’s analysis of weights and of minimal/intermediate extensions of pure motives, relying on a new notion of fair extension (Def. 2.5.3).

Section 3 deals with an extension of Wildeshaus’s theory of motivic intermediate extensions in order to be able to deal with (smooth) Artin-Tate motives and their extensions along immersions. Recall that Wildeshaus’s construction, given a stratification $\Phi = \{S_\phi\}$ of the base S, consists in constructing a glued subcategory of Chow motives starting from constant local systems upstairs. Based on a criterion of semi-primality (see Def. 3.1.1), this gluing procedure guarantees the existence of the functors $j_!$ when j is the immersion between (union of) strata. We have two difficulties to circumvent in order to apply this construction.

The first one is that we need to consider more general local systems, as it is known from the work of Beauville that in the case of an algebraically closed base field, Prym motives should appear in the motives of quadric bundles. As these correspond to an "étale cover of degree 2, we are led to consider smooth Artin-Tate motives as natural motivic local systems. But then, in order to adapt Wildeshaus’s construction, one needs to control the degeneracy of smooth Artin-Tate motives, as was already done in the smooth case, in the proof of Theorem A. Fortunately, by purity of the branch locus we need only to control the degeneracy in codimension 1. Then it is sufficient to assume that the smooth Artin-Tate motives are tamely ramified to ensure sufficient regularity of the degenerations; see the proof of Theorem 3.2.4.

\footnote{given by the spectrum of the associated Clifford algebra see 2.5.12, or by the Stein factorization of the Fano scheme see the proof of Theorem 4.1.6}
The second difficulty is that to perform the glueing construction, Wildeshaus has to assume that the closures of strata of \(\{ S_\phi \} \) are smooth. This assumption is satisfied in the case (1) of Theorem B, but not in the case (2) of regular quadric bundles. In order to deal with these singularities, we have to consider a suitable resolution of the strata, \(S \to \Phi \), in such a way that we can control the pushforward of the tamely ramified smooth Artin-Tate motives appearing on the (abstract) blow-ups. Then Wildeshaus’s glueing construction goes through and one obtains a suitable category of tamely ramified \((S/\Phi)\)-constructible Artin-Tate motives \(\text{DM}^{\text{AT}}(S/\Phi) \) (see Definition 3.2.7). Moreover, this category satisfies the following good properties:

- Bondarko’s weight structure restricts to this subcategory. The corresponding weight 0 part, denoted by \(\text{AT}^{\text{tr}}(S/\Phi) \), is a pseudo-abelian subcategory of \(\text{CHM}(S) \) which is semi-primary (Theorem 3.2.10).
- The functor \(j_* \) exists, for \(j \) an inclusion of strata, and commutes with the realization functors (Theorem 3.3.1).
- The realization functors restricted to \(\text{DM}^{\text{AT}}(S/\Phi) \) are conservative (Theorem 3.3.2).

Section 4 deals with our last theorem, the motivic decomposition of certain families of projective quadric bundles. We first explain our notion of regularity for quadric bundles (Definition 4.1.4) and exploit it to construct the required resolution \(S \to \Phi \). This is achieved by considering the geometry of quadrics, more precisely by using the flag variety associated with the quadratic vector bundle of the regular quadric bundle. See Proposition 4.1.3 and Lemma 4.1.5. We then show that the motive of such quadric bundles belongs to a category obtained by gluing tamely ramified Artin-Tate motives, and deduce from the results of Section 3 our first motivic decomposition (Corollary 3.2.13). The last part of Section 3 deals with the motivic decomposition in the case where the discriminant locus is a normal crossing divisor.

Acknowledgements

The authors want to thank Emiliano Ambrosi, Giuseppe Ancona, Daniele Faenzi, Sophie Morel, Jörg Wildeshaus for discussions, ideas and interest during the course of writing of this paper. We also heartily thank the referee for his useful comments which helped us to improve our text. This work received support from the ANR HQDIAG (contract ANR-21-CE40-0015), the French “Investissements d’Avenir” program, project ISITE-BFC (contract ANR-18-IDS-0006), and the ANR Hodgefun (contract ANR-16-CE40-0011).

Notations and conventions

Given an arbitrary group \(G \), and a field \(K \) of characteristic 0, we will denote by \(\text{Rep}_K^A(G) \) the abelian monoidal category of finite dimensional \(K \)-representations \(V \) of \(G \) which factor through a finite quotient of \(G \). When \(G \) is a pro-finite group, this amounts to the continuity of the action. When \(G = \pi \) is the étale fundamental group of a geometrically pointed scheme \(X \), or the usual fundamental group of a complex variety, representations in \(\text{Rep}_K^A(\pi) \) are classically called Artin representations. In any case, thanks to Maschke’s lemma, the category \(\text{Rep}_K^A(G) \) is semi-simple.

All our schemes are implicitly assumed to be excellent noetherian and finite dimensional.
Given (such) a scheme S, we denote by $\text{DM}_c(S, \mathbb{Q})$ the triangulated category of constructible rational motives over S.\(^4\) We let $\mathbb{1}_S$ be the constant motive over S (which is also the unit of the monoidal structure). We will use cohomological motives over S: given any morphism $f : X \to S$, we put:

$$h_S(X) = f_*(\mathbb{1}_X).$$

We will also heavily rely on the Bondarko’s theory of weight structure, and especially the canonical (Chow) weight structure on $\text{DM}_c(S, \mathbb{Q})$. We recall these notions in Section 2.1.

Another important property of rational mixed motives from [CD19] that we will use is the so-called continuity property (see Def. 4.3.2, Prop. 14.3.1 of op. cit.). We will use it in the following form (see Prop. 4.3.4 of op. cit.):

Proposition 1.0.1. Let $(S_i)_{i \in I}$ be a projective system of schemes with affine transition maps, and S be its projective limit S, assumed to exist in our category of schemes. Then the canonical functor:

$$2 - \lim_{\varprojlim \ i} \text{DM}_c(S_i, \mathbb{Q}) \to \text{DM}_c(S, \mathbb{Q})$$

is an equivalence of categories.

We will use two kinds of triangulated realization functors:

- **Let** ℓ be a prime invertible on S. We have the ℓ-adic realization:

 $$\rho_\ell : \text{DM}_c(S, \mathbb{Q}) \to D^b_c(S_{\text{ét}}, \mathbb{Q}_\ell)$$

 where the right-hand side is the constructible derived category of Ekedahl’s ℓ-adic étale sheaves with rational coefficients (see [CD16, 7.2.24]).

- **Let** E be a characteristic 0 field given with a complex embedding $\sigma : E \to \mathbb{C}$. Assume S is a finite type E-scheme. We have the Betti realization:

 $$\rho_B : \text{DM}_c(S, \mathbb{Q}) \to D_c(S^\text{an}, \mathbb{Q})$$

 where the right-hand side is the constructible derived category of rational sheaves over the analytical site of $S^\text{an} = S^\sigma(\mathbb{C})$. This realization is obtained from that of [Ayo10] as the following composite:

 $$\text{DM}_c(S, \mathbb{Q}) \simeq \text{SH}_c(S)_{\mathbb{Q}+} \subset \text{SH}_c(S)_{\mathbb{Q}} \xrightarrow{\text{Betti}_S \otimes \mathbb{Q}} D_c(S^\text{an}, \mathbb{Q})$$

 where:

 - $\text{SH}_c(S)$ is the constructible stable \mathbb{A}^1-homotopy category (made of compact spectra over S).
 - $\text{SH}_c(S)_{\mathbb{Q}+}$ is plus-part of the rationalization of $\text{SH}_c(S)$ (see eg. [CD19, 16.2.1])
 - the first equivalence is given by [CD19, Th. 16.2.13].
 - the functor Betti_S is (the obvious restriction of that) defined in [Ayo10, Def. 2.1].

\(^4\)In [CD19], several models of this category are given: Beilinson motives (Def. 15.1.1), Voevodsky’s h-motives (Th. 16.1.2), Voevodsky’s motivic complexes (S geometrically unibranch scheme, Th. 16.1.4), the plus-part of the rational stable homotopy category (Th. 16.2.13 and 5.3.35), the \mathbb{P}^1-stable \mathbb{A}^1-derived étale category (Th. 16.2.22). All models being equivalent, the reader is free to choose his preferred one.
These two realization functors admit a right adjoint and commute with the six operations.\(^5\)

2. Smooth Artin-Tate motives and motivic decompositions

2.1. Gluing and weights on Beilinson motives.

2.1.1. In the theory of rational mixed motives, a crucial property is given by the gluing formalism [BBD82, Sec. 1.4.3], which is a consequence of Morel-Voevodsky’s localization theorem [MV99, Th. 2.21, p. 114]. Given a closed immersion \(i : Z \hookrightarrow S\) with complementary open immersion \(j : U \hookrightarrow S\), one has six functors

\[
\begin{align*}
\text{DM}_c(U, \mathbb{Q}) & \xrightarrow{j^*} \text{DM}_c(S, \mathbb{Q}) \xrightarrow{i_*} \text{DM}_c(Z, \mathbb{Q}), \\
\text{DM}_c(U, \mathbb{Q}) & \xleftarrow{j_*} \text{DM}_c(S, \mathbb{Q}) \xleftarrow{i^*} \text{DM}_c(Z, \mathbb{Q}),
\end{align*}
\]

satisfying the formalism of [BBD82, Sec. 1.4.3].\(^6\)

This property will be at the heart of our results (see in particular Section 3.2). They are the starting point of Hébert’s and Bondarko’s extension of the weight structure on rational motives, from the case of perfect fields to that of arbitrary bases. Let us recall this theory, from [Héb11, Thm. 3.3, thm. 3.8 (i)-(ii)], for future references.

Theorem 2.1.2. For each scheme \(S\), there is a canonical weight structure \(w\) on the triangulated category \(\text{DM}_c(S, \mathbb{Q})\) called the motivic weight structure. The family of these weight structures indexed by schemes \(S\) is uniquely characterized by the following properties.

1. The objects \(1_S(p)[2p]\) belong to the heart \(\text{DM}_c(S, \mathbb{Q})_{w=0}\) for all integers \(p\), whenever \(S\) is regular.

2. For any morphism \(f : T \rightarrow S\), the functor \(f^*\) (resp. \(f_*\)) preserves negative weights (resp. positive weights). When \(f\) is separated of finite type, the functor \(f^!\) (resp. \(f_!\)) preserves positive weights (resp. negative weights).

We will only use the motivic weight structure in this paper. So \(w\) will always mean weights for the motivic weight structure. Over a base scheme \(S\), the heart of this weight structure will be denoted by \(\text{CHM}(S)\) and is called the category of Chow motives over \(S\).

Remark 2.1.3. Gluing of (motivic) weights. Note in particular from point (2) that when \(f\) is proper (resp. étale separated of finite type), \(f_*\) (resp. \(f^*\)) preserves weights. Moreover, under the assumption of the paragraph preceding the theorem, it follows from the gluing diagram (2.1.1.a) and point (2) that the motivic weight structure on \(S\) "satisfies gluing": a motive \(M\) on \(S\) is \(w\)-positive (resp. \(w\)-negative) if and only if \(j^*(M)\) and \(i^!(M)\) (resp. \(j^*(M)\) and \(i^!(M)\)) are \(w\)-positive (resp. \(w\)-negative).

Remark 2.1.4. Assumptions on base schemes. Note that in *loc. cit.*, it is assumed that schemes are of finite type over an excellent base scheme \(B\) of dimension less than 3. First, this assumption is not used in the proof of the above statement. Secondly, the only reason this assumption appeared in motivic homotopy theory is for the proof of the Grothendieck-Verdier duality (also called "local duality"),

\(^5\)This is proved in the references indicated above.

\(^6\)This is the so-called localization property of motives, extensively studied in [CD19, §2.3].
Since then, this result has been generalized to the schemes considered in our paper by Cisinski in [Cis21, §2.3]. It is used in [Héb11] only in the statement of Corollary 3.9.

2.2. Motivic decompositions. In this section, we formulate several forms of motivic decompositions, which are extensions of the classical Chow-Künneth decomposition. To discuss the latter, let us first recall that for a smooth projective variety X over a field k and a suitable Weil cohomology theory $H^*(\cdot)$, the standard conjecture $C(X)$, the Künneth conjecture, states that the Künneth components $p_i \in H^*(X \times X, \mathbb{Q})$ of the diagonal are algebraic (i.e., they are in the image of the cycle class map).

Now the nilpotency conjecture considers the functor

$$T : \text{CHM}(k) \to \text{HM}(k)$$

from the category of Chow motives to the category of homological motives and states that if M is a Chow motive and M_{hom} the corresponding motive modulo homological equivalence (sometimes called the Grothendieck motive), the kernel of the ring homomorphism

$$\text{End}(M) \to \text{End}(M_{\text{hom}})$$

is a nilpotent ideal. If we take $M = h(X)$, the nilpotency conjecture $N(X)$ states that the kernel of the homomorphism

$$\text{Corr}^0(X, X) \to \text{End}(H^*(X, \mathbb{Q}))$$

from the ring of correspondences of degree zero to the endomorphism ring of $H^*(X)$ is a nilpotent ideal. (Note that if X has pure dimension d, the left hand side is the Chow group $\text{CH}^d(X \times X, \mathbb{Q})$, the right hand side is isomorphic to $H^{2d}(X \times X, \mathbb{Q})$ by Poincaré duality and the above map is just the cycle class map.)

The nilpotency conjecture has important consequences. First of all, it implies that the functor T is conservative (i.e., it detects isomorphisms), hence essentially injective (nonexistence of phantom motives). Moreover, Jannsen proved that conjectures $C(X)$ and $N(X)$ imply the Chow–Künneth conjecture $\text{CK}(X)$, i.e., the Künneth projectors lift to a set of mutually orthogonal projectors $\pi_i \in \text{Corr}^0(X, X)$ ($i = 0, \ldots, 2d$) such that

$$\Delta_X = \sum_{i=0}^{2d} \pi_i$$

in $\text{CH}_d(X \times X) \otimes \mathbb{Q}$ and such that π_i depends only on the motive modulo homological equivalence. In this case the motive of X admits a Chow–Künneth decomposition

$$h(X) = \bigoplus_{i=0}^{2d} h^i(X)$$

with $h^i(X) = (X, \pi_i)$.

The nilpotency conjecture is known to hold for finite-dimensional motives. This means in particular that isomorphisms between finite-dimensional Chow motives

\footnote{More precisely, it is used to obtain some resolution of singularity statement; see loc. cit.}
can be detected by passing to the corresponding homological motives. An application is the result of Kimura-Vial stated in the introduction, which is a direct consequence of the conservativity of the homological realisation on finite-dimensional motives.\(^8\)

Let us now switch to the relative setting. In their fundamental work [CH00], Corti and Hanamura defined a category \(\text{CHM}(S)\) of relative Chow motives over a quasi-quotient base scheme \(S\) defined over a field \(k\). In this setup, one works with proper morphisms \(f: X \to S\) with \(X\) smooth and quasi-projective over \(k\). Relative correspondences are elements of \(\text{CH}_*(X \times_S X)\) and composition of correspondences is defined using refined Gysin homomorphisms. If we let \(Q\) denote either \(\mathbb{Q}\) or \(\mathbb{Q}_\ell\), the relative analogue of the nilpotency conjecture states that the kernel of the map

\[
\text{Corr}_S^X(X, X) \to \text{End}(\mathbb{R}f_*(Q_X))
\]

is a nilpotent ideal. (If \(X\) has dimension \(d\) the above map can be identified with the cycle class map \(\text{CH}_d(X \times_S X)_Q \to H^{2d}_BM(X \times_S X, Q)\) to Borel–Moore homology.) Corti and Hanamura have considered a relative analogue of the notion of Chow–Künneth decomposition, by defining suitable realization functors; nowadays, we can identify them with the restriction of either the Betti realization \(\rho\) or the \(\ell\)-adic realization \(\rho_\ell\) (see our Notations and conventions, page 6) under the canonical fully faithful embedding of Corti-Hanamura’s category into constructible motives\(^9\). We will denote either of these realization functors by \(\rho\).

Let us first consider the case where \(f: X \to S\) is in addition smooth. According to Deligne’s theorem, one gets a decomposition in \(D^b(S, Q)\):

\[
Rf_*(Q_X) \cong \bigoplus_i R^i f_*(Q_X)[-i].
\]

One usually says that \(h_S(X)\) admits a relative Chow–Künneth decomposition (in short CK-decomposition) if there exist relative motives \(M_i \in \text{CHM}(S)\) such that \(h_S(X) = \bigoplus M_i\) and \(\rho(M_i) = Rf_*(Q_X)[-i]\) for all \(i\). We refer the reader to [MNP13, Chap. 8] for a thorough discussion over \(\mathbb{C}\). The first example of a relative Chow-Künneth decomposition was obtained for abelian schemes by Deninger and Murre in [DM91].

The general case is more complicated and involves the theory of perverse sheaves. Recall that this theory exists either in the analytical setting, or in the \(\ell\)-adic étale one. So let us denote as above by \(Q\) either the field \(\mathbb{Q}\) or \(\mathbb{Q}_\ell\), intending that one uses sheaves on the associated analytical site in the first case, and étale \(\ell\)-adic sheaves in the second.

When \(k\) is an algebraically closed field of characteristic zero or the separable closure of a finite field, the decomposition theorem of Beilinson-Bernstein-Deligne says that a decomposition of the form (D) still exists provided one replaces the canonical t-structure by the perverse one. Moreover, each perverse cohomology sheaf \(pRf_*(Q_X)\) is semi-simple in the perverse heart of \(D^b(S)\). These two statements can

\(^8\)If \(H^*(X)\) is algebraic there exists a finite set of algebraic cycles \(\{Z_i\}_{i \in I}\), \(Z_i \in \text{CH}^p(X)\), whose cycles classes generate the cohomology. These cycles define a morphism of Chow motives \(\alpha: \bigoplus Z_i(-p_i) \to h(X)\) such that \(T(\alpha)\) is an isomorphism, hence \(\alpha\) is an isomorphism by conservativity.

\(^9\)Indeed, when \(S\) is quasi-projective over a perfect field, it is proved in [Jin16] that the weight 0 part of \(\text{DM}_c(S)\) is equivalent to the category defined by Corti and Hanamura.
be expressed by the existence of a topological decomposition in $D^b_c(S, Q)$
\[(\text{BBD})\]
\[Rf_* (Q_X) = \bigoplus \lambda j_{\lambda*} (L_\lambda)\]
where there exists an integer n_λ such that $L_\lambda[n_\lambda]$ is a simple local system on a smooth locally closed subscheme $j_\lambda : U_\lambda \subset X$ and $j_{\lambda*} (L_\lambda)$ denotes the intermediate extension (or intersection complex) defined in [BBD82].\(^{10}\)

We can now give the first general definition of relative motivic decomposition.

Definition 2.2.1. Let k be an algebraically closed field of characteristic 0. Let $f : X \to S$ be a projective morphism of quasi-projective k-schemes such that X is smooth over k, with associated BBD-decomposition (BBD).

A Corti-Hanamura decomposition (in short: CH-decomposition) of the Chow motive $h_S(X)$ is a finite decomposition
\[h_S(X) \simeq \bigoplus \lambda M_\lambda\]
in the pseudo-abelian category $\text{CHM}(S)$ such that $\rho(M_\lambda) = j_{\lambda*} (L_\lambda)$.

When f is smooth, the decomposition (BBD) is a refinement of the decomposition (D). So in the smooth case, a CH-decomposition is similarly a refinement of a CK-decomposition.

Example 2.2.2. Such decompositions have been constructed in a few cases, particularly in complex algebraic geometry: cf. [GHM03, dCM10, MSS12].

The specificity of the above definition is to incorporate the singular case as well. The statement of our first motivic decomposition theorem, 2.5.8, together with Bondarko’s work [Bon15] lead us to the following more general kind of motivic decompositions of pure weight 0 motives.

Definition 2.2.3. Let $f : X \to S$ be a proper morphism such that X is regular. A Bondarko-Corti-Hanamura decomposition (in short: BCH-decomposition) of the Chow motive $h_S(X)$ is a finite decomposition
\[h_S(X) \simeq \bigoplus \lambda j_{\lambda*} (M_\lambda)\]
in $\text{CHM}(S)$ where $j_\lambda : V_\lambda \to S$ is a locally closed immersion, V_λ is regular, M_λ is a weight 0 motive over V_λ whose ℓ-adic realisation is a local system up to a shift, and $\rho_\ell(j_{\lambda*} (M_\lambda)) = j_{\lambda*} (\rho_\ell (M_\lambda))$.

The interest of this definition is that it does not require a base field, and moreover, it makes sense without having to choose a prime invertible on S; in particular over \mathbb{Z}. Note also that our formulation implies the existence of a decomposition of the form (D') as in footnote 10, for all primes ℓ, and contains an “independence of ℓ” result: under the existence of a BCH-decomposition, the rank of $p^R R^n f_* (Q_\ell)$ will be independent of ℓ (see also Cor. 2.5.11).

\(^{10}\) Note in particular that one deduces isomorphisms $p^R f_* (Q_X)[-n] \simeq \bigoplus \lambda [n_\lambda = n] j_{\lambda*} (L_\lambda)$ and:
\[(\text{D'})\]
\[p^R f_* (Q_X) \simeq \oplus_n p^R R^n f_* (Q_X)[-n].\]
2.2.4. Link with Bondarko’s version of the motivic conjectures. As said before, the definition is partly motivated by analysing the work of Bondarko [Bon15]. In particular, we can conjecturally justify the existence of BCH-decompositions. Indeed, the existence of such decompositions would be a consequence of the existence of the motivic t-structure together with the assumption that it is transversal (see [Bon15, Def. 1.4.1]) to the Chow weight structure. More precisely, to get the BCH-decomposition under the previous assumption, one can apply op. cit.:

- Prop. 1.4.2, point (3) to the weight 0 motive \(h_S(X) \) to get the analogue of the relative Chow Künneth decomposition: \(h_S(X) \cong \bigoplus_i H^i(h_S(X))[-i], \) \(H^i \) computed for the motivic t-structure.
- Prop. 4.2.3, to get the decomposition for each \(H^i(h_S(X)) \) given it is pure of weight \(i \).
- Rem. 4.2.4, point 2 to get the statement about the \(\ell \)-adic realisation of the BCH-decomposition.

Note moreover that Bondarko obtains in his Proposition 4.2.3 the uniqueness of the set of isomorphism classes of the factors of the BCH-decomposition. We have not stated this uniqueness property in the above definition. Indeed, to give a proper statement we either need the existence of the heart of the motivic t-structure, or conservativity of the \(\ell \)-adic realisations. However, we think that establishing BCH-decompositions is a good way to approximate the conjectural motivic t-structure, as shown by Deligne’s formula (\(\mathbb{D}' \)).

Example 2.2.5. There is at least one easy example where a BCH-decomposition exists: this is the case of relative lci cellular morphisms, first addressed by Karpenko (see [ADN20, Def. 5.3.1, Cor. 5.3.7] for the more general case). Theorem 2.5.8 gives many more examples in the smooth case (see also 2.5.10), and has indeed served as a motivation for the previous definition.

2.3. Smooth Artin motives. It is possible to extend the known results on Artin motives over a field to the relative case. Let us start with the definition.

Definition 2.3.1. We define the category of (constructible) smooth Artin motives over \(S \) as the thick triangulated subcategory of \(\text{DM}_c(S, \mathbb{Q}) \) generated by motives of the form \(h_S(X) \) (resp. \(h_S(X)(n) \)) for \(X/S \) finite and étale. We denote this category by \(\text{DM}_{A\text{sm}}(S, \mathbb{Q}) \).

Note that for \(X/S \) finite étale, \(h_S(X) \) coincides with the Voevodsky motive \(M_S(X) \).

\[\text{Note also that Bondarko shows that this would be a consequence of Beilinson’s conjectures (see op. cit., Prop. 4.1.1). He also gives an argument to get it as a consequence of the standard conjecture D together with Murre’s conjectures. Note that to get the existence of BCH-decompositions in all cases, we need to apply these conjectures for all residue fields of \(S \), and all \(\ell \)-adic realisations! Of course, this kind of exercise in juggling between motivic conjectures has its limit; we only hope to convince the reader that our definition of BCH-decompositions is reasonable.} \]

\[\text{Note however that in our Theorems A and B below, the involved motives belong to subcategories on which the realisations can be proven to be conservative (Thm. 3.3.1). So, in our cases we do get uniqueness of isomorphism classes in the BCH-decompositions.} \]

\[\text{This is not surprising as one can interpret the BCH-decomposition as an attempt to find an algebraic analogue of cellular decompositions of differential varieties.} \]
Example 2.3.2. Let k be a perfect field. Then it follows from [VSF00, Chap. 5, Rem. 2, after 3.4.1] (see also [Org04] for details) that there exists a canonical equivalence of triangulated monoidal categories:

$$\text{DM}_{\text{sm}}^A(k, \mathbb{Q}) \simeq \text{D}^b\left(\text{Rep}^A_\mathbb{Q}(G_k)\right)$$

where G_k is the absolute Galois group of k, and $\text{Rep}^A_\mathbb{Q}(G_k)$ denotes the continuous representations of G_k with rational coefficients.

2.3.3. Let us recall that one model of $\text{DM}(S, \mathbb{Q})$ is obtained as the \mathbb{P}^1-stable \mathbb{A}^1-derived category of the category $\text{Sh}(Sm_{S, \text{ét}}, \mathbb{Q})$ of rational étale sheaves on Sm_S (see [CD19, 16.2.18]).

The inclusion $\rho : S_{\text{ét}} \to Sm_{S, \text{ét}}$ of étale sites induces a fully faithful and exact functor:

$$\rho^* : \text{Sh}(S_{\text{ét}}, \mathbb{Q}) \to \text{Sh}(Sm_{S, \text{ét}}, \mathbb{Q})$$

Note that the functor ρ^* is moreover (symmetric) monoidal. One deduces a canonical composite functor:

$$\text{D}(S_{\text{ét}}, \mathbb{Q}) \xrightarrow{\rho^*} \text{D}\left(\text{Sh}(Sm_{S, \text{ét}}, \mathbb{Q})\right) \to \text{D}(S, \mathbb{Q})$$

the last functor being obtained by projection to the \mathbb{A}^1-localization and then taking infinite suspensions. We will still denote the latter composite by ρ^*. Then ρ^* is triangulated and monoidal. By definition, it sends the sheaf represented by a finite étale scheme X/S on $S_{\text{ét}}$ to the same object on $Sm_{S, \text{ét}}$, seen as a motivic complex. This is just $M_S(X) = h_S(X)$.

Proposition 2.3.4. Assume S is a regular connected scheme. Let $\pi = \pi_1(S_{\text{ét}})$ be the étale fundamental group of S associated with some geometric base point. Then the functor ρ^* is fully faithful when restricted to the full subcategory $\text{D}^b\left(\text{Rep}^A_\mathbb{Q}(\pi)\right)$ and induces an equivalence of triangulated monoidal categories:

$$\rho^* : \text{D}^b\left(\text{Rep}^A_\mathbb{Q}(\pi)\right) \to \text{DM}_{\text{sm}}^A(S, \mathbb{Q})$$

Moreover, the ℓ-adic realisation functor restricted to $\text{DM}_{\text{sm}}^A(S, \mathbb{Q})$ lands into the bounded derived category of Artin ℓ-adic Galois representations and the composite functor:

$$\text{D}^b\left(\text{Rep}^A_\mathbb{Q}(\pi)\right) \xrightarrow{\rho^*} \text{DM}_{\text{sm}}^A(S, \mathbb{Q}) \xrightarrow{\rho^*} \text{D}^b\left(\text{Rep}^A_\mathbb{Q}(\pi)\right)$$

is just the extension of scalar functor associated with $\mathbb{Q}_\ell/\mathbb{Q}$.

Proof. We prove the first assertion: fully faithful nature of the restriction of ρ^*. Note that the functor ρ^* admits a right adjoint ρ^*. The functor ρ^* commutes with direct sums: this follows formally as $\text{D}(S_{\text{ét}}, \mathbb{Q})$ is compactly generated\footnote{In fact, it is equivalent to $\text{D}(S_{\text{Nis}}, \mathbb{Q})$ as π is pro-finite; see [CD19, Th. 10.5.10]}, and ρ^* sends the compact generators to compact objects. We have to prove that for all complexes K, L in $\text{D}^b\left(\text{Rep}^A_\mathbb{Q}(\pi)\right)$, and say any $n \in \mathbb{Z}$ for the next reduction, the map:

$$\text{Hom}(K, L[n]) \to \text{Hom}(\rho^*K, \rho^*L[n]) = \text{Hom}(K, \rho^*\rho^*L[n])$$

is an isomorphism. Now we use the fact $\text{D}^b\left(\text{Rep}^A_\mathbb{Q}(\pi)\right)$ is generated by shifts of sheaves representable by some finite étale cover X/S. So we are reduced to the case $K = \mathbb{Q}(X), L = \mathbb{Q}(Y)$ for X and Y étale cover of S. Explicitly, we have to prove that the following map is an isomorphism:

$$\text{Hom}(\mathbb{Q}(X), \mathbb{Q}(Y)[n]) \to \text{Hom}(h_S(X), h_S(Y)[n]).$$
In the monoidal category $\text{Sh}(S_{\text{ét}}, \mathbb{Q})$, and therefore in $D(S_{\text{ét}}, \mathbb{Q})$, the sheaf $\mathbb{Q}(Y)$ is auto-dual. The same result holds for $h_S(X)$ in $DM(S, \mathbb{Q})$ (as for example $\rho_!$ is monoidal). Applying the formulas $\mathbb{Q}(X) \otimes \mathbb{Q}(Y) = \mathbb{Q}(X \times_S Y)$ and $h_S(X) \otimes h_S(Y) = h_S(X \times_S Y)$, we are reduced to the case $Y = S$. In other words we have to prove that the canonical map:

$$H^n(X_{\text{ét}}, \mathbb{Q}) \to \text{Hom}(h_S(X), \mathbb{Q}[n]) = H^n_{M}(X, \mathbb{Q})$$

is an isomorphism. Note that X is regular, as it is étale over S. Thus it is geometrically unibranch and we get from \cite[IX, 2.14.1]{AGV73}:

$$H^n(X_{\text{ét}}, \mathbb{Q}) = \mathbb{Q}^\pi_0(X)$$

for $n = 0$, 0 otherwise.

Also, according to \cite[14.2.14]{CD19}, we get:

$$H^n_M(X, \mathbb{Q}) = Gr^n_{\pi_0}(X) = \mathbb{Q}^\pi_0(X)$$

for $n = 0$, 0 otherwise, and so the map (2.3.4.a) is necessarily an isomorphism.

The other assertions are clear, by definition of the category of smooth Artin motives. \hfill \Box

In the complex case, we get a simpler formulation.

Proposition 2.3.5. Let E be a field of characteristic zero, S a smooth connected E-scheme and $\pi = \pi_1(S^{\text{an}})$ for any choice of base point of S^{an}.

Then the Betti realisation functor:

$$\rho_B : DM_c(S, \mathbb{Q}) \to D^{\text{b}}(S^{\text{an}}, \mathbb{Q})$$

is fully faithful when restricted to $DM^A_{\text{sm}}(S, \mathbb{Q})$ and induces an equivalence of triangulated monoidal categories:

$$\rho_B : DM^A_{\text{sm}}(S, \mathbb{Q}) \to D^b(\text{Rep}_Q^A(\pi_1(S^{\text{an}}))).$$

The proof uses the same argument as in the case of the previous proposition, given that $h_S(X)$ is realized to the complex $Rf^*_X(S^{\text{an}}, \mathbb{Q})$ which is concentrated in degree 0 and equal to the continuous representation of π represented by the Galois cover X^{an} over S^{an}.

Remark 2.3.6. The two previous propositions are obviously compatible: in the assumptions of the second one, we get according to a theorem of Grothendieck:

$$\pi_1(S_{\text{ét}}) \simeq \pi_1(S^{\text{an}})$$

where the right hand-side denotes profinite completion. In particular, we get equivalence of (abelian semi-simple monoidal) categories:

$$\text{Rep}_Q^A(\pi_1(S_{\text{ét}})) \simeq \text{Rep}_Q^A(\pi_1(S^{\text{an}})) \simeq \text{Rep}_Q^A(\pi_1(S^{\text{an}})).$$

2.4. **Weights on smooth Artin-Tate motives.** The purpose of this section is to extend results of Wildeshaus, \cite{Wil16} on Artin-Tate motives over a field to the case of a regular base scheme S. Moreover, for the purpose of our main theorem, we will need to restrict the type of allowed Artin motives, as in \textit{loc. cit.} So we introduce the next definition.
Definition 2.4.1. Let S be a regular connected scheme with étale fundamental group $\pi = \pi_1(S_{\text{ét}})$. Let \mathcal{A} be a full \mathbb{Q}-linear sub-category of $\text{Rep}_\mathcal{A}^\text{Q}(\pi)$ which is stable under retracts.\footnote{And therefore stable under kernel and cokernel as $\text{Rep}_\mathcal{A}^\text{Q}(\pi)$ is abelian semi-simple. In particular, \mathcal{A} is abelian semi-simple.}

We define the triangulated category of smooth Artin-Tate motives of type \mathcal{A} over S as the thick triangulated subcategory of $\text{DM}^\text{c}(S, \mathbb{Q})$ generated by motives of the form $\rho_i(A)(n)$ for an object A of \mathcal{A} and an integer $n \in \mathbb{Z}$ (see Proposition 2.3.4 for the definition of ρ_i). We denote it by $\text{DM}^{\text{AT}}_{\text{sm}}(S, \mathbb{Q})$.

When $\mathcal{A} = \text{Rep}_\mathcal{A}^\text{Q}(\pi)$, the above category is simply the category of smooth Artin-Tate motives over S, denoted by $\text{DM}^{\text{AT}}_{\text{sm}}(S, \mathbb{Q})$.

Remark 2.4.2. Note that compared to Definition 1.6 of [Wil16], we do not assume that \mathcal{A} is closed under tensor product. As a consequence $\text{DM}^{\text{AT}}_{\text{sm}}(S, \mathbb{Q})$ is not monoidal in general.

Theorem 2.4.3. Consider the above notations and assumptions of the above definition.

Then the weight structure on $\text{DM}^\text{c}(S, \mathbb{Q})$ restricts to a weight structure on the triangulated sub-category $\text{DM}^{\text{AT}}_{\text{sm}}(S, \mathbb{Q})$. Moreover, any motive M in $\text{DM}^{\text{AT}}_{\text{sm}}(S, \mathbb{Q})$ of weight 0 admits a decomposition:

\begin{equation}
M \simeq \bigoplus_{i \in I} \rho(V_i)(n_i)[2n_i]
\end{equation}

where I is a finite set, V_i is a simple Artin representation of π in \mathcal{A} and n_i is an integer. (See Paragraph 2.3.3 for ρ_i).

Remark 2.4.4. (1) Another way of stating the second assertion is that the canonical functor $D^b(\mathcal{A}) \rightarrow \text{DM}^{\text{AT}}_{\text{sm}}(S, \mathbb{Q})_{w=0} = \text{DM}^{\text{AT}}_{\text{sm}}(S, \mathbb{Q}) \cap \text{CHM}(S, \mathbb{Q})$

\[(V_n)_{n \in \mathbb{Z}} \mapsto \bigoplus_{n \in \mathbb{Z}} \rho_i(V_n)(n)[2n]\]

is essentially surjective. Contrary to what happens in [Wil16], over a perfect field, this functor is not an equivalence of triangulated categories. The problem comes from the non-triviality of $CH_n(V)_{\mathbb{Q}}$ for $n > 0$ and V/S finite étale. So in particular, the preceding functor is an equivalence when S is (regular) semi-local.

(2) The decomposition (2.4.3.a) is a particular case of the Corti-Hanamura decomposition: If we apply the ℓ-adic realization functor ρ_i to an Artin representation V_n we get (according to the last assertion of Prop. 2.3.4)

\[\rho_i(M) \simeq \bigoplus_{i \in I} (V_i \otimes_{\mathbb{Q}} \mathbb{Q}_\ell)(n_i)[2n_i].\]

In particular, if the decomposition (2.4.3.a) of M is not unique. But the pairs (V_i, n_i) for $i \in I$ are uniquely determined by M (or its realization).

Proof. Let us show the first assertion. Let \mathcal{H} be the full \mathbb{Q}-linear sub-category of $\text{DM}^{\text{AT}}_{\text{sm}}(S, \mathbb{Q})$ whose objects are of the form (2.4.3.a), where V_i is a simple object of \mathcal{A}. As S is regular, all motives in \mathcal{H} are of weight 0. In particular, given such
motives M, N, one has $\text{Hom}(M, N[i]) = 0$ for $i > 0$. This condition implies that there is a unique weight structure on $\text{DM}^{\text{tr}}(S, \mathbb{Q})$ (see e.g. [Wil09, 1.5]), whose heart is the pseudo-abelianization \mathcal{K} of \mathcal{H}. It follows from the axioms of weight structures that this weight structure is just the restriction of the Chow weight structure, thus proving the first assertion (see [Wil17, Rem. 4.4]).

To prove the second assertion, it is sufficient to prove that $\mathcal{K} = \mathcal{H}$, i.e. that \mathcal{H} is pseudo-abelian. Let $e : M \to M$ be an idempotent of \mathcal{H}. By assumption, we can write $M = \bigoplus_{i=1}^r \rho(V_i)(n_i)[2n_i]$ where V_i is an object of \mathcal{A} (semi-simple, but not necessary simple) and $n_1 < n_2 < \ldots < n_r$. We prove by induction on the number of factors r of M that e admits a kernel in \mathcal{H}.

We treat the case $r = 1$. According to Proposition 2.3.4, and the fact that twists are invertible, the category of motives of the form $\rho(V_i)(n_i)[2n_i]$ for an object V_i of \mathcal{A} and an integer n_i is equivalent to the abelian (semi-simple) category \mathcal{A}. This implies that any idempotent of a motive of this form admits a kernel, giving the case $r = 1$.

Assume the result is known for any integer less than $r > 1$, and prove the case where M has exactly r factors as above. Put $P = \rho(V_i)(n_i)[2n_i]$ and $Q = \bigoplus_{i=2}^r \rho(V_i)(n_i)[2n_i]$ so that $M = P \oplus Q$. Given that decomposition, we can write the idempotent e as a 2 by 2 matrix:

$$e = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Then the map $b : Q \to P$ belongs to

$$\bigoplus_{i=2}^r \text{Hom} (\rho(V_i)(n_i)[2n_i], \rho(V_i)(n_i)[2n_i]) = \text{CH}^{n_1-n_i}(V_i \times_S V_i)$$

using the auto-duality of $\rho_i(V)$ (see the proof of Prop. 2.3.4) — in the right hand-side, we identify the sheaf V_i with the finite étale S-scheme which represents it. As by assumption, $n_1 < n_i$ for $i > 1$, we get that $b = 0$. From the relation $e^2 = e$, one deduces that a and d are idempotents, of P and Q respectively, and one also gets the following constraint on d: $ca + dc = c$.

By induction, on deduce that P (resp. Q) splits into $\text{Ker}(a) \oplus \text{Ker}(1 - a)$ (resp. $\text{Ker}(d) \oplus \text{Ker}(1 - d)$) with respect to the idempotent a (resp. d) and that the map $\text{Ker}(a) \oplus \text{Ker}(d) \to P \oplus Q$ given by the matrix $\begin{pmatrix} 1 & 0 \\ -c & 1 \end{pmatrix}$ is a kernel of e in \mathcal{H}. This concludes the induction step, and the proof.

2.5. First decomposition theorem. For the needs of the proof of our first decomposition theorem, we will extend some definitions of [Wil12]. Let us first recall the following theorem, Th. 1.7 of loc. cit.

Theorem 2.5.1 (Wildeshaus). Let $j : U \to S$ be an open immersion. Then the weight-exact functor j^* induces an additive exact functor

$$j^* : \text{CHM}(S) \to \text{CHM}(U)$$

which is essentially surjective and full.

2.5.2. Consider an open immersion $j : U \to S$ and a Chow motive M over U. A Chow extension of M along j will be a pair (\tilde{M}, α) where \tilde{M} is a Chow motive over S and α is an isomorphism $j^*(\tilde{M}) \congto M$. Morphisms of such extensions are defined in the obvious way.
According to the previous theorem, extensions of M along j always exist. The goal of the work of Wildeshaus is to find (and to define) the intermediate extension of M along j; see [Wil17], Summary 2.12. For the needs of our first decomposition theorem, we will use a special type of Chow extensions that we now introduce.

Definition 2.5.3. Consider the above notations, assuming that j is dense. Then a Chow extension (\bar{M}, α) of M along j will be called *fair* if the induced map

$$\text{End}(\bar{M}) \to \text{End}(j^*(\bar{M})) \xrightarrow{\alpha} \text{End}(M)$$

is an isomorphism — i.e. a monomorphism according to the previous theorem.

The proof of the following result is identical to that of [Wil12, Th. 3.1(a)].

Theorem 2.5.4. Consider the notations of the previous definition. Assume a fair Chow extension (\bar{M}, α) of M along j exists.

Then for any extension (P, β) of M along j, there exists a decomposition of P of the form:

$$\psi : P \xrightarrow{\sim} \bar{M} \oplus i_*(L_Z)$$

where L_Z is a Chow motive over \mathbb{Z}, satisfying the relation: $j^*(\psi) = \alpha^{-1} \circ \beta$.

If moreover (P, β) is fair, then $L_Z = 0$ and the isomorphism ψ is uniquely determined by the preceding relation.

Example 2.5.5. A fair Chow extension as above is a particular instance of Wildeshaus’s theory of intermediate extension $j_!(M)$, as shown for example by the characterizing property (4a) of Summary 2.12 of [Wil17]. The preceding theorem can also be interpreted as a minimality property of the extension (\bar{M}, α).

One cannot always expect that such minimal extensions exist (the correct hope is formulated in *loc. cit.*, Conjecture 3.4; cfr. Rmk. 3.1.5). However, here are some interesting examples.

1. Assume that U is regular, and the normalization of X is regular. Then \mathbb{L}_U admits a fair Chow extension: this is [Wil12, Th. 3.11(a)].
2. Assume that both U and S are regular. Let V/U be an étale cover. Using a classical terminology, we will say that V is non-ramified along $(S - U)$ if there exists an étale cover \bar{V}/S whose restriction to U is V. In that case, for any integer $n \in \mathbb{Z}$, the Artin-Tate motive $M = h_S(V)(n)[2n]$ is a fair Chow extension of $M = h_U(V)(n)[2n]$ along j.

Indeed, \bar{M} is obviously a Chow extension of M along j (using the six functors formalism). Moreover, as in the proof of Prop. 2.3.4, one gets:

$$\text{End}(\bar{M}) \simeq \mathbb{Q}^{\pi_0(V \times_S \bar{V})}, \quad \text{End}(M) \simeq \mathbb{Q}^{\pi_0(V \times_U V)}.$$

As $V \times_U V$ is a dense open of $\bar{V} \times_S \bar{V}$, we get that \bar{M} is fair as claimed.

Remark 2.5.6. The reader can check that one can replace, in [Wil12, Th. 3.11] points (a) and (b), the constant motive \mathbb{L}_U by a smooth Artin-Tate motive $h_U(V)$ such that V is unramified along $(S - U)$.

2.5.7. Recall also that a Chow motive over a field k is said to be *Tate* if it is isomorphic to a finite sum of motives of the form $\mathbb{L}(i)[2i]$ for an integer $i \in \mathbb{Z}$. By extension, a smooth proper k-scheme is said to be Tate if its associated Chow motive is Tate.
Theorem 2.5.8. Let S be a regular connected scheme with étale fundamental group π. Let $f : X \to S$ be a smooth proper morphism whose geometric fibers are Tate.

Then there exists an isomorphisms of motives over S:

$$h_S(X) \simeq \bigoplus_{i \in I} \rho_i(V_i)(-n_i)[-2n_i]$$

where I is a finite set, V_i is a simple Artin representation of π and n_i is a non-negative integer. In other words, $h_S(X)$ is a smooth Artin-Tate motive over S of weight 0 — see Theorem 2.4.3.

Moreover, this decomposition is a BCH-decomposition of the Chow motive $h_S(X)$ (see Def. 2.2.3), and the set \{([V_i], n_i), i \in I\} where $[V_i]$ denotes the isomorphism class in $\text{Rep}_S^\mathbb{A}(\pi)$ (or what amount to the same in the corresponding category of simple étale S-covers) is uniquely determined by the property that for any prime integer ℓ and any $n \geq 0$:

$$(2.5.8.a) \quad R^{2n} f'_*(\mathbb{Q}_\ell) \simeq \bigoplus_{i \in I | n_i = n} V'_i \otimes \mathbb{Q}_\ell(-n_i)$$

where f' and V'_i are pullback of f and V_i along the open immersion $U[\ell^{-1}] \to U$.

Proof. Let $\bar{\eta}$ be a geometric generic point of S. By assumption, one gets:

$$h_{\bar{\eta}}(X_{\bar{\eta}}) \simeq \sum_{i \in I} \mathbb{1}_{\bar{\eta}}(-n_i)[-2n_i].$$

According to the continuity property of DM_S (see Proposition 1.0.1), there exists a dense open $j : U \to S$ and an étale cover $p : V \to U$ such that the above isomorphism lifts to:

$$h_V(X_V) \simeq \bigoplus_{j \in J} \mathbb{1}_V(-m_j)[-2m_j].$$

In particular, $h_U(X_U) = p_* (h_V(X_V)) \simeq \sum_{j \in J} p_* (\mathbb{1}_V)(-m_j)[-2m_j]$ is a smooth Artin-Tate motive over U. As p is finite étale, the natural map

$$p^* : h_U(X_U) \to h_U(X_V)$$

is a split monomorphism, with splitting $\frac{1}{p} \cdot p_*$ where p_* is the Gysin morphism associated with p (see e.g. [CD19, 13.7.4 and 13.7.6]). In particular, $h_U(X_U)$ is a smooth Artin-Tate motive, and it follows from Theorem 2.4.3 that there exists a decomposition:

$$h_U(X_U) \simeq \bigoplus_{i \in I} \rho_i(W_i)(-n_i)[-2n_i]$$

where W_i is a simple Artin representation of $\pi_1(U)$. Given a prime ℓ, we let $U' = U[\ell^{-1}]$, f_U' the pullback of f over U', W'_i the Artin representation of $\pi_1(U')$ induced by W_i. According to Remark 2.4.4(2), and because $p_* (h_{U'}(X_{U'})) \simeq R f_{U'}_* (\mathbb{Q}_\ell)$, one gets:

$$(2.5.8.b) \quad R^{2n} f_{U'}(\mathbb{Q}_\ell) \simeq \bigoplus_{i \in I | n_i = n} W'_i \otimes \mathbb{Q}_\ell(-n_i).$$

This is the decomposition of the locally constant sheaf $R^{2n} f_{U'}(\mathbb{Q}_\ell)$ into semi-simple components (beware the W'_i might not be simple). As this sheaf admits an extension to all S, namely $R^{2n} f'_*(\mathbb{Q}_\ell)$, $f' = f[\ell^{-1}]$, it follows that each representation W'_i is unramified along $(S - U)$. As this is true for any prime ℓ, one deduces
that W_i is unramified along $(S - U)$; i.e. it admits an extension V_i to S. According to Example 2.5.5(2), one deduces that

$$\bigoplus_{i \in I} \rho_i(V_i)(-n_i)[-2n_i]$$

is a fair Chow extension of $h_{U}(X_U)$. As $h_S(X)$ is obviously a Chow extension of $h_U(X_U)$, one deduces from Theorem 2.5.4 that there exists a decomposition:

$$(2.5.8.c) \quad h_S(X) \simeq \bigoplus_{i \in I} \rho_i(V_i)(-n_i)[-2n_i] \oplus i_*(M_Z)$$

for some Chow motive M_Z over Z. Note that Relation (2.5.8.b) implies Relation (2.5.8.a).\footnote{In particular, we know that $\rho_i(M_Z)$ vanishes but this is not sufficient to conclude (as we do not know yet that the ℓ-realization is conservative).}

It remains to prove that $M_Z = 0$. As the morphism $p : S' = \sum_{\ell \text{ prime}} S[\ell^{-1}] \to S$ is a pro-open cover, the pullback functor $p^* : \text{DM}(S) \to \text{DM}(S')$ is conservative (use the continuity property of DM [CD19, Th. 14.3.1] and the Zariski separation property as in the proof of [CD19, Prop. 4.3.9]). In particular, we can fix a prime ℓ and work over $S[\ell^{-1}]$. To simplify notation, let us assume $S = S[\ell^{-1}]$. Consider a point $x \in Z$, and let $i_x : \{x\} \to Z$ be the canonical immersion. Let \bar{x} be a geometric point over x. By assumption, $h_x(X_x)$ is a Tate motive. In other words, the motive $i_x^* h_S(X) = h_x(X_x)$ is an Artin-Tate motive over the residue field $\kappa(x)$. Decomposition (2.5.8.c) gives:

$$h_x(X_x) \simeq \bigoplus_{i \in I} \rho_i(V_{i,x})(-n_i)[-2n_i] \oplus i_x^*(M_Z)$$

where $V_{i,x}$ denotes the pullback of V_i to x (seen as an étale sheaf). As recalled in Remark 2.4.4(2), applied over $\kappa(x)$, the ℓ-adic realization of $h_x(X_x)$ determines the factors of the decomposition of $h_x(X_x)$ into twists of Artin motives (up to isomorphisms and permutations). Thus relation (2.5.8.a) (which we have already established), specialized at x using the smooth base change theorem in ℓ-adic étale cohomology, implies that the set of isomorphism classes of the $V_{i,x}$ describes all the possible factors of the weight 0 Artin-Tate motive $h_x(X_x)$ and this implies $i_x^*(M_Z) = 0$. One concludes as $(i_x^*)_{x \in Z}$ is a conservative family of functors on $\text{DM}_c(Z, \mathbb{Q})$ (see [CD19, 4.3.17]).

Remark 2.5.9. Note also that we deduce from Example 2.5.5 that for any dense open immersion $j : U \to S$, $h_S(X)$ is a fair Chow extension of $h_U(X_U)$. In particular, $h_S(X) = j_*(h_U(X_U))$.

Example 2.5.10. Let S be a regular connected scheme. The previous theorem applies in the following situations:

1. Relative Severi-Brauer S-schemes: a proper smooth morphism $f : X \to S$ whose geometric fibers are isomorphic to \mathbb{P}^r; see [Ber09, Section 2] for more discussion.
2. Étale-local cellular S-schemes: we have already met relative lci cellular schemes (Example 2.2.5). The previous theorem applies more generally to morphisms $f : X \to S$ such that there exists an étale cover $p : X' \to X$ such that $f \circ p$ is a relative lci cellular scheme in the sense of loc. cit.
Point (2) contains in particular the cases of smooth families of projective quadrics, and smooth families of projective homogeneous varieties.

Corollary 2.5.11. Under the assumption of the previous theorem, for any integer \(n \geq 0 \), the integer:
\[
\dim_{\mathbb{Q}_\ell} \left(R^n f_*(\mathbb{Q}_\ell) \right)
\]
is independent of the prime \(\ell \) invertible on \(S \).

2.5.12. An important corollary for us is the case of smooth quadrics: following [DK73, XII, Def. 2.4], a smooth quadric over a scheme \(S \) is a smooth proper morphism \(f : X \to S \) whose geometric fibers are smooth quadric hypersurfaces in the classical sense.

Let us introduce some notations in order to state the next corollary. Assume \(f \) has constant relative dimension \(n \). According to op. cit., 2.6, there exists a Severi Brauer \(S \)-scheme \(P(X) \) which contains \(X \) as an effective Cartier divisor of degree 2. If \(n = 2m \), the center of the Clifford \(\mathcal{O}_S \)-algebra associated with the closed pair \((P(X), X) \) is an étale cover \(Z(X) \) over \(S \) of degree 2; op. cit., 2.7.

Then, applying Theorem 2.5.8 and [DK73, Th. 3.3] one gets:

Corollary 2.5.13. Consider the above notations. Assume that \(S \) is regular and that there exists a prime \(\ell \) invertible on \(S \). Then there exists a decomposition of Chow motives over \(S \) as follows:
\[
h_S(X) \simeq \begin{cases}
\bigoplus_{i=0}^n \mathbb{I}_S(i)[2i] & \text{if } n = 2m + 1, \\
\mathbb{H}_S(Z(X)) \oplus \bigoplus_{i=0,i \neq m} \mathbb{I}_S(i)[2i] & \text{if } n = 2m.
\end{cases}
\]

Example 2.5.14. Let us give some concrete examples illustrating the above Corollary when \(S \) is an arithmetic scheme.

1. It is known that smooth quadrics over \(\text{Spec}(\mathbb{Z}) \) exist: one way to see this has been explained by Buzzard in [Buz23]. One considers a quadric hypersurface \(X \) in \(\mathbb{P}^N_{\mathbb{Q}} \) whose Hessian matrix \(H \) is a symmetric, integer valued \((N + 1) \times (N + 1)\) matrix with \(\det H = \pm 1 \) and even entries down the diagonal; e.g., the Gram matrix of any even unimodular lattice (these exist in any positive dimension divisible by 8) provides such an \(H \). As \(\det H \) is non-zero mod \(p \) for any prime \(p \), the quadric \(X \) admits a proper and smooth model over \(\mathbb{Z} \).

2. Since \(\text{Spec}(\mathbb{Z}) \) is simply connected (a consequence of Minkowski’s theorem), the previous construction yields quadrics whose motive decomposes, according to Cor. 2.5.13, as a sum of Tate motives (the Artin factors are necessarily trivial).

In order to find cases where genuine Artin-Tate motives appear, we have to place ourselves over a non-simply connected base. Let then \(F \) be a number field with ring of integers \(\mathcal{O}_F \), such that \(S := \text{Spec}(\mathcal{O}_F) \) has non-trivial étale fundamental group. In this setting, examples abound, as we are going to argue following a line of thought suggested to us by G. Ancona.

Let \(N \) be a positive integer. Analogously to Example (1) above, we look to a \(\mathcal{O}_F \)-valued \(2N \times 2N \) matrix \(H \), such that any entry on the diagonal is divisible by 2, and \(\det H \) is invertible in \(\mathcal{O}_F \). We may take for example \(N = 2, \mathcal{O}_F = \mathbb{Z}[\sqrt{-5}] \) (we have then \(\pi_{1,\text{ét}}(S) \simeq \mathbb{Z}/2\mathbb{Z} \)) and

\[H = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}, A = \begin{pmatrix} -4\sqrt{-5} & 9 \\ 9 & 4\sqrt{-5} \end{pmatrix}, B = \begin{pmatrix} 2 & \sqrt{-5} \\ \sqrt{-5} & -2 \end{pmatrix} \]
The matrix H is then the Hessian matrix of a smooth quadric X in \mathbb{P}^{2N-1}_S. We want to exhibit examples where the motive $h_S(Z(X))$ of Cor. 2.5.13 is non-Tate. By proper base change and Thm. 2.3.4, it is enough to make sure that there exists a prime p of O_F such that the Galois representation on $H^{N-1}_{\text{et}}(X_p, \mathbb{Q}_\ell)$, for $\ell \neq p := \text{car} O_F/p$, is non-trivial. The Lefschetz fixed point formula shows that the latter property is equivalent to the condition

$$\text{Card}(X_p(\mathbb{F}_q)) \neq 1 + q + ... + 2q^{N-1} + ...q^{2N-2},$$

where \mathbb{F}_q denotes the field O_F/p and $q = p^r$ for some r. This can be checked in specific cases, using the following elementary fact: a quadratic form in at least three variables over a finite field always admits an isotropic vector, hence always contains an hyperbolic plane.

We make explicit this principle when $N = 2$. Let m be the quadratic form in four variables over \mathbb{F}_q obtained by reducing the coefficients of H modulo p. By the fact just recalled, m can be written in the form $ut = rx^2 + sy^2$, with $r, s \in \mathbb{F}_q$. Now a computation shows that if $rx^2 + sy^2$ has no isotropic vectors, then $\text{Card}(X_p(\mathbb{F}_q)) = 1 + q^2$, thus giving us the desired quadric. For example, if we choose A and B as in (2.5.14.a) and suppose that $p \neq 2$, we have $r = s = 1$, and the fact that the bilinear form $x^2 + y^2$ has no isotropic vectors is equivalent to ask that $1 = \text{disc}(x^2 + y^2) \neq -1 \mod (\mathbb{F}_q^*)^2$, which is equivalent to ask -1 not being a square in \mathbb{F}_q. Now choose as p one of the two prime ideals above the completely split prime $p = 3$. Then, $\mathbb{F}_q = \mathbb{Z}/3\mathbb{Z}$, and -1 is not a square mod 3.

3. Recall and complement on Wildeshaus’s motivic intermediate extensions

3.1. Semi-primary categories and motivic intermediate extensions. Recall the following definition.

Definition 3.1.1. A \mathbb{Q}-linear category \mathcal{C} is **semi-primary** if

1. for all objects B of \mathcal{C}, the radical

 $$\text{rad}_{\mathcal{C}}(B, B) := \{f \in \text{Hom}_{\mathcal{C}}(B, B) | \forall g \in \text{Hom}_{\mathcal{C}}(B, B), \text{id}_B - gf \text{ is invertible}\}$$

 is nilpotent;

2. the quotient category $\mathcal{C}/\text{rad}_{\mathcal{C}}$ is semisimple.

Adopt the notations of subsection 2.1. We are now going to explain how the notion of semi-primality leads to a definition of an intermediate extension functor, following Wildeshaus.

Let \cdot denote any of the schemes U, S or Z, and fix $\mathcal{C}(\cdot)$ full pseudo-abelian subcategories of the categories $\text{DM}_{\mathcal{C}}(\cdot, \mathbb{Q})$, related by gluing. Assume that they inherit a weight structure (automatically compatible with the gluing) from the restrictions of the motivic weight structure. The subscript $w = 0$ will mean that we are taking the heart of such weight structures.

Moreover, denote by $\mathcal{C}(S)_{w=0}$ the quotient of the category $\mathcal{C}(S)_{w=0}$ by the two-sided ideal generated by $\text{Hom}_{\mathcal{C}(S)}(A, i_* B)$ and $\text{Hom}_{\mathcal{C}(S)}(i_* B, A)$, with (A, B) varying on the collection of objects of $\mathcal{C}(S)_{w=0} \times \mathcal{C}(Z)_{w=0}$ such that A admits no non-zero direct factor belonging to $\mathcal{C}(Z)_{w=0}$. Finally, denote by $\mathcal{C}(Z)^u_{w=0}$ the

\[\text{rad}_{\mathcal{C}(S)_{w=0}}(\text{[Wi17, Cor. 1.5 (a)]})\]
quotient of the category \(C(Z)_{w=0} \) by the restriction of \(g \) to \(C(Z)_{w=0} \) (with respect to the fully faithful inclusion \(i_* : C(Z)_{w=0} \hookrightarrow C(S)_{w=0} \)).

Theorem 3.1.2. [Wil17, Theorem 2.9]

1. If \(C(Z)_{w=0} \) is semi-primary, then the functors \(j^* \) and \(i_* \) induce a canonical equivalence of categories

\[
C(S)_{u=0} \simeq C(U)_{u=0} \times C(Z)_{u=0}
\]

(3.1.2.a)

2. If both \(C(Z)_{w=0} \) and \(C(U)_{w=0} \) are semi-primary, then so is \(C(S)_{w=0} \).

Definition 3.1.3. Suppose that \(C(Z)_{w=0} \) is semi-primary. The intermediate extension is the fully faithful functor

\[
j_* : C(U)_{w=0} \hookrightarrow C(S)_{w=0}
\]

corresponding to the functor \((\text{id}_{C(U)_{w=0}}, 0)\) under the equivalence of categories (3.1.2.a).

It follows from its very definition that the motivic intermediate extension functor \(j_* \) enjoys the following property (Wil17, Summary 2.12 (b)):

Proposition 3.1.4. Consider the notation and the assumptions of the previous definition. Then, any object \(M \) of \(C(S)_{w=0} \) is isomorphic to a direct sum \(j_*^* M_U \oplus i_*^* N \), for an object \(M_U \) of \(C(U)_{w=0} \) and an object \(N \) of \(C(Z)_{w=0} \). The object \(M_U \) is such that \(j_*^* M \simeq M_U \) (hence unique up to unique isomorphism) and \(N \) is unique up to an isomorphism, which becomes unique in \(C(Z)_{u=0} \).

Remark 3.1.5. It is believed that for any \(S \), the heart \(\text{CHM}(S) \) of the motivic weight structure on \(\text{DM}_c(S, \mathbb{Q}) \) is semi-primary (cfr. Wil17, Conj. 3.4]). This conjecture is at the moment completely out of reach, but it would permit, by choosing as \(C(\cdot) \) the whole of the categories \(\text{DM}_c(\cdot, \mathbb{Q}) \), to define (up to non-unique isomorphism) the intermediate extension to \(S \) of any Chow motive on \(U \). When \(S \) is the spectrum of a field, the reader should compare this conjecture with the nilpotency conjecture stated at the beginning of Section 2.2.

3.2. Semi-primary categories of Chow motives

The aim of this section is to single out some subcategories of Chow motives which can actually be shown to be semi-primary and which will be suited for our geometric applications. We will adapt Wildeshaus’ methods from Wil17, in order to show semiprimality of subcategories which are different\(^{18}\) from the ones considered in op. cit.\(^{18}\)

Fix a scheme \(S \) admitting a good stratification \(\mathcal{S} \), i.e. such that \(S \) may be written as a finite (set-theoretic) disjoint union \(\bigsqcup_{\sigma \in \mathcal{S}} S_\sigma \) of locally closed subschemes such that the closure \(\overline{S_\sigma} \) of each stratum \(S_\sigma \) is a union of strata.

We make the following assumption on our good stratification:

Assumption 3.2.1. For all \(\sigma \in \mathcal{S} \), the strata \(S_\phi \) are nilregular\(^{19}\), with nilregular closure.

Fix a stratum \(S_\sigma \) and consider the categories \(\text{DM}^{4T}_{\text{sm}}(S_\sigma, \mathbb{Q}) \) introduced in Definition 2.4.1.

\(^{18}\)See Rmk. 3.2.11 for a comment on these differences.

\(^{19}\)i.e., the underlying reduced scheme is regular.
Definition 3.2.2. The category of tamely ramified smooth Artin-Tate motives over S_{σ} is the category $\text{DM}^{\text{sm}}_{\text{AT}}(S_{\sigma}, \mathbb{Q})$ obtained by choosing $\mathcal{A} = \mathcal{A}_{\text{tr}}$, where \mathcal{A}_{tr} is the full subcategory of direct factors of objects corresponding to finite étale morphisms $q : X_{\sigma} \to S_{\sigma}$ which are tamely ramified in codimension 1 ([dJm08, 58.31, tag 0BSE]).

Remark 3.2.3. In the previous definition, suppose that S_{σ} is a scheme of characteristic zero. Then any finite étale morphism with target S_{σ} is tamely ramified in codimension 1, and the category $\text{DM}^{\text{sm}}_{\text{AT}}(S_{\sigma}, \mathbb{Q})$ equals $\text{DM}^{\text{AT}}_{\text{sm}}(S_{\sigma}, \mathbb{Q})$.

Theorem 3.2.4. Let S be a scheme with a good stratification \mathfrak{S} satisfying Assumption 3.2.1. Then:

1. The categories $\text{DM}^{\text{sm}}_{\text{AT}}(S_{\sigma}, \mathbb{Q})$ of tamely ramified smooth Artin-Tate motives over $S_{\sigma}, \sigma \in \mathfrak{S}$, can be glued to give a full, triangulated sub-category $\text{DM}^{\text{AT}}_{\text{tr}}(\mathfrak{S})$ of $\text{DM}_{\text{c}}(S, \mathbb{Q})$, called the category of \mathfrak{S}-constructible tamely ramified Artin-Tate motives over S. This subcategory is stable under formation of direct factors.

2. Let $M \in \text{DM}_{\text{c}}(S, \mathbb{Q})$. Then the following conditions are equivalent.
 a) $M \in \text{DM}^{\text{AT}}_{\text{tr}}(\mathfrak{S})$.
 b) $j^* M \in \text{DM}^{\text{sm}}_{\text{AT}}(S_{\sigma}, \mathbb{Q})$ for all $\sigma \in \mathfrak{S}$, where j denotes the immersion $S_{\sigma} \hookrightarrow S$.
 c) $j^! M \in \text{DM}^{\text{sm}}_{\text{AT}}(S_{\sigma}, \mathbb{Q})$ for all $\sigma \in \mathfrak{S}$.

In particular, the triangulated category $\text{DM}^{\text{AT}}_{\text{sm}}(S, \mathbb{Q})$ of smooth Artin-Tate motives over S is contained in $\text{DM}^{\text{AT}}_{\text{tr}}(\mathfrak{S})$.

3. The category $\text{DM}^{\text{AT}}_{\text{tr}}(\mathfrak{S})$ is pseudo-abelian.

Proof. One proceeds by induction on the number of strata. If there is only one stratum, all claims are trivial, except for the last claim of part (1) and for part (3). Of course, it suffices to prove part (3). But in the case we are treating, the category in question is just $\text{DM}^{\text{sm}}_{\text{AT}}(S, \mathbb{Q})$, and it has been shown in the proof of Thm. 2.4.3 that this category has a (bounded) weight structure whose heart is pseudo-abelian. Hence (by [Bon10, Lemma 5.2.1]), the category $\text{DM}^{\text{AT}}_{\text{sm}}(S, \mathbb{Q})$ itself is pseudo-abelian.

As for the induction step, we have that the theorem is true for the complement Z of any open stratum U, with its stratification \mathfrak{S}_Z, by the induction hypothesis. Write j_U, resp. i_Z, for the open, resp. locally closed immersion of U, resp. Z, in S.

In order to prove (1), we will prove that the criterion given by [Wil17, Prop. 4.1, (a)] is satisfied; it says that $\text{DM}^{\text{sm}}_{\text{AT}}(U, \mathbb{Q})$ and $\text{DM}^{\text{AT}}_{\text{tr}}(\mathfrak{S}_Z)$ can be glued if and only if for all objects $M \in \text{DM}^{\text{sm}}_{\text{AT}}(U, \mathbb{Q}), i^* Z j_U, i M$ belongs to $\text{DM}^{\text{AT}}_{\text{tr}}(\mathfrak{S}_Z)$. For this, we can suppose that the closure of U in S is the whole of S, that S is connected, and that S and Z are regular (and not just nilregular, cfr. Assumption 3.2.1). Then, we take a direct factor M_U of some motive $h_U(X_U/U)$, with $q : X_U \to U$ finite étale and tamely ramified in codimension 1. Suppose now that Z is of codimension 1 in S. Then by [dJm08, Lem. 58.31.5, tag 0EYH], the normalization $q' : X \to S$ of S in X_U is a finite morphism such that the restriction of X to U is isomorphic to X_U and such that $Z' := ((q')^{-1}(Z))_{\text{red}}$ is an effective Cartier divisor which is a regular scheme. Now X_U is regular by assumption. Moreover, any point of Z', being regular on an effective Cartier divisor, is regular as a point of X ([dJm08, Lem. 10.106.7, tag 00NU]). Hence, X is regular, and we can apply absolute purity to the closed immersion $Z' \hookrightarrow X$: by proper base change and the fact that the local form of q' shows that it induces an isomorphism $Z' \cong Z$, we get that for any $p \in Z$, both
\(i_Z^* \mathcal{G}(X/S)(p)\) and \(i_Z^* \mathcal{G}(X/S)(p)\) belong to \(\text{DM}^{\text{AT}}(\mathcal{G}_Z)\). Now, again using proper base change, we see that \(i_Z^* \mathcal{G}(X_U/U)(p)\) is a cone of the canonical morphism \(i_Z^* \mathcal{G}(X/S)(p)\). Hence, it belongs to \(\text{DM}^{\text{AT}}(\mathcal{G}_Z)\). But the latter category is stable under direct factors by the induction hypothesis, so \(i_Z^* \mathcal{G}(X_U/U)\) belongs to it as well. This means that the functor \(i_Z^* \mathcal{G}(X_U/U)\) maps the generators of \(\text{DM}^{\text{AT}}(U, \mathbb{Q})\) to \(\text{DM}^{\text{AT}}(\mathcal{G}_Z)\). As a consequence, the whole of \(\text{DM}^{\text{AT}}(U, \mathbb{Q})\) is mapped to the latter category under \(i_Z^* \mathcal{G}(X_U/U)\), and the criterion is fulfilled.

If \(Z\) is of codimension \(\geq 2\) in \(S\), then \(q\) extends to a finite étale morphism \(q': X \to S\) by purity of the branch locus (see [dJm08, Lem. 53.20.4, tag 0BMB]) and we conclude by reasoning as above.

The proof of the remaining points carries over word by word from the proof of the analogous points in [Wil17, Thm. 4.5].

Let us now set up a slightly different notation, in order to treat the more general geometric situations which we are interested in. Suppose that \(S\) is equipped with a good stratification, denoted from now on by \(\Phi\). The subcategories we are interested in will depend on the choice of a proper morphism \(\pi: S' \to S\) from a scheme \(S'\) which admits a good stratification \(\mathcal{S}\), such that the preimage via \(\pi\) of any stratum of \(\Phi\) is a union of strata (i.e. \(\pi\) is a morphism of good stratifications). Whenever \(T\) is a subscheme of \(S\), we will denote by \(\mathcal{S}_T\) the stratification induced by \(\mathcal{S}\) on \(S_T\).

It will be necessary to make the following assumptions on the nature of the stratifications \(\mathcal{S}\) and \(\Phi\) and of the morphism \(\pi\):

Assumption 3.2.5. (cfr. [Wil17, Ass. 5.6])

1. the good stratification \(\mathcal{S}\) on \(S'\) satisfies Assumption 3.2.1;
2. for all \(\phi \in \Phi\), the strata \(S_\phi\) are nilregular;
3. the morphism \(\pi\) is surjective, and for all \(\phi \in \Phi\) and \(\sigma \in \mathcal{S}\) such that \(S'_\sigma\) is a stratum of \(\pi^{-1}(S_\phi)\), the morphism \(\pi_\sigma: S'_\sigma \to S_\phi\) is proper with geometrically connected fibres, smooth, and such that the motive \(h(S'_\sigma/S_\phi)\) belongs to the category of Tate motives over \(S_\phi\).

Remark 3.2.6. Since we ask \(\pi_\sigma\) to be proper and smooth, the previous assumption actually implies that \(h(S'_\sigma/S_\phi)\) belongs to the category of weight zero, smooth Tate motives over \(S_\phi\).

Fix a morphism \(\pi: S' \to S\) of good stratifications \(\Phi\) and \(\mathcal{S}\), satisfying Assumption 3.2.5.(1).

Definition 3.2.7. The category \(\text{DM}^{\text{AT}}(\mathcal{S}/\mathcal{S}_\Phi)\) is the pseudo-abelian completion of the strict, full, \(\mathbb{Q}\)-linear triangulated subcategory of \(\text{DM}(S, \mathbb{Q})\) generated by the images under \(\pi_*\) of the objects of \(\text{DM}^{\text{AT}}(\mathcal{S})\).

Suppose moreover that Assumption 3.2.5.(2) is satisfied. Then, reasoning in the same way as in the proof [Wil17, Cor. 4.11], we see:

Lemma 3.2.8. (1) The restriction of the motivic weight structure on \(\text{DM}(S, \mathbb{Q})\) induces a bounded weight structure on \(\text{DM}^{\text{AT}}(\mathcal{S}/\mathcal{S}_\Phi)\). For \(\pi = id\), this gives a bounded weight structure on \(\text{DM}^{\text{AT}}(\mathcal{S})\).

(2) The heart of the above weight structure on \(\text{DM}^{\text{AT}}(\mathcal{S}/\mathcal{S}_\Phi)\) is the pseudo-Abelian completion of the strict, full, \(\mathbb{Q}\)-linear additive subcategory of \(\text{DM}(S, \mathbb{Q})\) generated by the images under \(\pi_*\) of the objects of the heart of the weight structure on \(\text{DM}^{\text{AT}}(\mathcal{S})\).
Definition 3.2.9. The heart of the weight structure on $\text{DM}^\text{AT}_t(\mathcal{S}/\Phi)$ given by the preceding Lemma is denoted by $A_T(\mathcal{S}/\Phi)$.

Now we can finally state the result that we want to employ.

Theorem 3.2.10. Let $\pi : S' \to S$ be a proper morphism of good stratifications \mathcal{S}, Φ satisfying Assumption 3.2.5. Then, the category $A_T(\mathcal{S}/\Phi)$ is semi-primary.

Proof. By Thm. 3.2.4 and proper base change (cfr. the analogous [Wil17, Cor. 4.10 (b)]), the category $\text{DM}^\text{AT}_t(\mathcal{S}/\Phi)$ is obtained by gluing the categories $A_T(\mathcal{S}_\phi/S_\phi)$ for all $\phi \in \Phi$. Hence, to prove our claim, it is enough to prove semi-primality of $A_T(\mathcal{S}_\phi/S_\phi)$ for each stratum S_ϕ and then to apply Thm. 3.1.2 iteratively.

We first observe that by Lemma 3.2.8, the category $A_T(\mathcal{S}_\phi/S_\phi)$ is the pseudo-Abelian completion of the strict, full, \mathbb{Q}-linear triangulated subcategory of $\text{DM}^c(\mathcal{S}_\phi)$ of objects, which are isomorphic to images under π_σ of tamely ramified Artin-Tate motives over S'_σ, for $\sigma \in \mathcal{S}$ such that S'_σ is a stratum of $\pi^{-1}(S_\phi)$. This implies that, by reasoning as in [Wil17, Thm. 5.4], the claim will follow as soon as we prove that the objects of the latter form are finite dimensional in the sense of Kimura.

Choose a couple of strata $\pi_\sigma : S'_\sigma \to S_\phi$ as above and take a tamely ramified finite étale morphism $q : D \to S'_\sigma$. Then, consider the Stein factorization of the morphism $\pi_\sigma \circ q$ (in the form provided by, for example, [Cad13, Thm. 6.2 (2)]).

We obtain a commutative diagram

$$
\begin{array}{ccc}
D & \xrightarrow{q} & S'_\sigma \\
\downarrow{p} & & \downarrow{\pi_\sigma} \\
\tilde{S}_\phi & \xrightarrow{r} & S_\phi \\
\end{array}
$$

where p is proper with connected fibres and r is finite étale. Moreover, the fiber of r over each point s of S_ϕ is in set-theoretic bijection with the set of connected components of the fiber of $\pi_\sigma \circ q$ over s. Thus, because of our assumption 3.2.5 (3) on the properties of π_σ, the degree of r is the same as the degree of q, say equal to d. We get a diagram

$$
\begin{array}{ccc}
D & \xrightarrow{q} & S'_\sigma \\
\downarrow{p} & & \downarrow{\pi_\sigma} \\
\tilde{S}_\phi \times_{S_\phi} S'_\sigma & \xrightarrow{q'} & S'_\sigma \\
\downarrow{p'} & & \downarrow{\pi_\sigma} \\
\tilde{S}_\phi & \xrightarrow{r} & S_\phi \\
\end{array}
$$

where q' is finite étale of degree d, so that t has to be finite étale of degree 1, i.e. it embeds D as a connected component of $\tilde{S}_\phi \times_{S_\phi} S'_\sigma$. Call the latter scheme D'. Then, using proper base change and the fact that q' and r are finite étale, we get

$$
\text{h}(D'/\tilde{S}_\phi) = p'_*1_{D'} \simeq p'_*q'^*1_{S'_\sigma} \simeq r^*\pi_{\sigma,*}1_{S'_\sigma} = r^*\text{h}(S'_\sigma/S_\phi)
$$

Since $\text{h}(S'_\sigma/S_\phi)$ belongs to the category of weight zero, smooth Tate motives over S_ϕ (again by Assumption 3.2.5 (3) and Rem. 3.2.6), we obtain that $\text{h}(D'/\tilde{S}_\phi)$
belongs to the category of weight zero, smooth Tate motives over \tilde{S}_ϕ. The motive $h(D/\tilde{S}_\phi)$, being a direct factor of $h(D'/\tilde{S}_\phi)$, belongs to the same category as well. Now $h(D/\tilde{S}_\phi)$ is isomorphic to the direct image of $h(D/\tilde{S}_\phi)$ under the finite étale morphism r, and as a consequence, it is actually a weight zero, smooth Artin-Tate motive over S_ϕ. As such, it is indeed finite dimensional (apply for example [Wil17, Prop. 5.8 (c)]). As the objects we were interested in are direct factors of objects of the form $h(D/\tilde{S}_\phi)$, we conclude.

\[\square\]

Remark 3.2.11. (1) If we relax point (3) of Assumption 3.2.5 by asking that $h(S'_\phi/S_\phi)$ be simply finite dimensional, the proof of the above theorem carries through, with the following adjustments. First, one exploits the commutative diagram coming from the Stein factorization and invokes proper base change and [Wil17, Prop. 5.8 (a)] in order to show that $h(D/\tilde{S}_\phi)$ is also finite dimensional. Then, one shows that the same holds for $h(D/S_\phi)$, by applying [Wil17, Prop. 5.8 (c)].

(2) The above theorem differs in the following way from the analogous Thm. 5.4 in [Wil17]. On the one hand, in order to deal with the gluing, we are forced to be more restrictive on the choice of possible morphisms $S' \to S$. In fact, we ask for regularity of the closure of the strata of S', whereas in loc. cit., it is only asked the weaker condition that for every immersion i_σ of a stratum S'_ϕ in the closure of a stratum, the functor i_σ^* send the unit object to a Tate motive. Moreover, the morphisms π_σ in loc. cit. can belong to a more general class than the one considered here. On the other hand, our stronger restrictions are necessary because, for a fixed S' which fulfils our requirements, the categories that we glue along the strata of S' are more general than the ones of loc. cit.

The proof of the above theorem shows in particular that for each $\phi \in \Phi$, denoting by Z_ϕ the complement of a stratum S_ϕ in its closure $\overline{S_\phi}$, the category $AT_{u}(\mathcal{G}_{Z_\phi}/Z_\phi)$ is semi-primary. So we get:

Corollary 3.2.12. Let $\pi : S' \to S$ be a proper morphism of good stratifications \mathcal{G} and Φ, satisfying Assumption 3.2.5. For each $\phi \in \Phi$, denote by $j_\phi : S_\phi \hookrightarrow \overline{S_\phi}$ the open immersion of a stratum in its closure. Then for each $\phi \in \Phi$, the intermediate extension functor

$$j_{\phi,!*} : AT_{u}(\mathcal{G}_{S_\phi}/S_\phi) \hookrightarrow AT_{u}(\mathcal{G}_{\overline{S_\phi}}/\overline{S_\phi})^{u}$$

is defined (as in Def. 3.2.12).

Corollary 3.2.13. Let $\pi : S' \to S$ be a proper morphism of good stratifications \mathcal{G} and Φ, satisfying Assumption 3.2.5. Let M be an object of the category $AT_{u}(\mathcal{G}/\Phi)$. Consider the notations of the previous Corollary, and denote moreover by $i_{\phi} : S_\phi \hookrightarrow S$ the closed immersion of the closure of a stratum. Then, there exist a subset $\Phi' \subset \Phi$, objects N_ϕ in $AT_{u}(\mathcal{G}_{S_\phi}/S_\phi)$, $\phi \in \Phi'$, and a non-canonical isomorphism

$$M \simeq \bigoplus_{\phi \in \Phi'} i_{\phi,!*} j_{\phi,!*} N_\phi$$

Proof. We may always suppose, for simplicity, that there is only one open stratum $U := S_\phi$, of Φ, and denote j_{ϕ_1} by $j : U \to S$. By using Cor. 3.2.12 and applying Prop. 3.1.4, we know that we have an isomorphism

$$M \simeq j_{!*} M_U \oplus i_* N$$
with N an object of $\text{AT}_\mathcal{tr}(\mathcal{S}_{\mathbb{Z}}/\mathbb{Z})$. By proper base change and part (2) of Thm. 3.2.4, and the fact that pullback along open immersions sends weight-zero objects to weight-zero objects, we know that the pullback of N to any stratum S_ϕ which is open in \mathbb{Z} belongs to $\text{AT}_\mathcal{tr}(\mathcal{S}_{S_\phi}/\mathcal{S}_\phi)$. Thus, we can apply to it the functor $j_{\phi,!*}$ (defined using again Cor. 3.2.12). The statement then follows by an iterated application of Prop. 3.1.4.

Notations 3.2.14. To ease notation, in future applications we will often write j_ϕ for the immersion $i_\phi \circ j_\phi$, and write $j_{\phi,!*}$ for the functors $i_{\phi,!*}j_{\phi,!*}$ appearing in the decomposition of the previous Corollary.

3.3. Compatibility with realizations and conservativity

In this paragraph, we will fix a generic point $\text{Spec}(k) \to S$ of our base S, and we will make use of the two realization functors with target the categories $D^b_c(S_{k,\text{ét}}, \mathbb{Q}_\ell)$ and $D^b_c(S^\text{an}_k, \mathbb{Q})$, obtained by composition with base change through $\text{Spec}(k) \to S$ from the functors ρ_ℓ, ρ_B introduced in the “Notations and conventions” section. Whenever we employ one of these two functors, we will implicitly assume that the hypotheses on S and ℓ are satisfied. These functors will still be denoted by the same symbols.

Let us denote any of the two families of categories $D^b_c(S_{k,\text{ét}}, \mathbb{Q}_\ell)$ and $D^b_c(S^\text{an}_k, \mathbb{Q})$ by the same symbol $D^b_c(S_k)$. Both families of categories are equipped with a perverse t-structure, whose heart (the corresponding category of perverse sheaves) will be denoted $\text{Perv}_c(S_k)$ in both cases. We will then denote by

$$H^m : D^b_c(S_k) \to \text{Perv}_c(S_k)$$

the perverse cohomology functors, and if $j : U \to S$ is an open immersion, by

$$j_* : \text{Perv}_c(U_k) \to \text{Perv}_c(S_k)$$

the intermediate extension of perverse sheaves ([BBD82, Déf. 1.4.22]). The composition of the collection of the perverse cohomology functors with one of the realization functors will be called the corresponding **perverse cohomological realization** functor.

The following result gives the compatibility of the functor of Def. 3.2.12 (when available) with the realization functors:

Theorem 3.3.1. Let $\pi : S' \to S$ be a proper morphism of good stratifications \mathcal{S} and Φ, satisfying Assumption 3.2.5. Denote by ρ any of the two realization functors ρ_ℓ or ρ_B. For each $\phi \in \Phi$, denote by $j_\phi : S_\phi \to \overline{S_\phi}$ the open immersion of a stratum in its closure. Then:

1. For any $\phi \in \Phi$, for any integer m, the restriction of the composition

$$H^m \circ \rho : \text{DM}_c(\overline{S_\phi}, \mathbb{Q}) \to \text{Perv}_c(\overline{S_\phi})$$

to $\text{AT}_\mathcal{tr}(\mathcal{S}_{S_\phi}/\mathcal{S}_\phi)$ **factors over** $\text{AT}_\mathcal{tr}(\mathcal{S}_{S_\phi}/\mathcal{S}_\phi)^u$;

2. For any $\phi \in \Phi$, for any integer m, the diagram

$$
\begin{array}{ccc}
\text{AT}_\mathcal{tr}(\mathcal{S}_{S_\phi}/\mathcal{S}_\phi) & \xrightarrow{j_{\phi,!*}} & \text{AT}_\mathcal{tr}(\mathcal{S}_{S_\phi}/\mathcal{S}_\phi)^u \\
H^m \circ \rho \downarrow & & \downarrow H^m \circ \rho \\
\text{Perv}_c(S_{S_\phi,k}) & \xrightarrow{j_*} & \text{Perv}_c(\overline{S_{S_\phi,k}})
\end{array}
$$

commutes.
Proof. The same proof of [Wil17, Thm. 7.2] applies. Indeed, the only ingredient occurring in that proof, which has to be generalized, is op. cit., Cor. 7.13: we need to obtain an analogous statement in our situation, i.e. we need to show that the radical (cfr. Def. 3.1.1) of our categories $\text{AT}_{tr}(\mathfrak{G}_{S_{\varphi}}/\mathfrak{G}_{\varphi})$ is mapped to zero under the perverse cohomological realization. The proof of Thm. 3.2.10 tells us that over each stratum S_{φ} of S, the category $\text{AT}_{tr}(\mathfrak{G}_{S_{\varphi}}/\mathfrak{G}_{\varphi})$ is actually contained in the category $\text{AT}(S_{\varphi})$ of weight zero, smooth Artin-Tate motives over S_{φ}. Then, the same strategy of proof of op. cit., Cor. 7.13, based on op. cit., Thm. 7.12, shows that we can obtain the desired statement as soon as we prove the following claim: for any couple of finite étale morphisms $q_1 : D_1 \to X, q_2 : D_2 \to X$ the ideal
\[\text{rad}_{\text{CHM}(X)}(h_X(D_1), h_X(D_2)) \]
consists of morphisms which are mapped to zero under the perverse cohomological realization. Now, by the same reasoning as in the proof of loc. cit., Thm. 7.12, we may assume that X is the spectrum of a field k. But then, $h_X(D_1)$ and $h_X(D_2)$ are Artin motives over k, i.e. objects of a full semisimple subcategory of $\text{CHM}(X) = \text{CHM}(k)$. Hence, the radical in question is zero. □

We end this section by discussing the conservativity of the restriction of the realization functors to the categories $\text{DM}^{\text{AT}}_{tr}(\mathfrak{G}/\Phi)$.

Theorem 3.3.2. Let $\pi : S' \to S$ be a proper morphism of good stratifications \mathfrak{G} and Φ, satisfying Assumption 3.2.5. Denote by ρ any of the two realization functors ρ_ℓ or ρ_B. Then, the restriction of ρ to $\text{DM}^{\text{AT}}_{tr}(\mathfrak{G}/\Phi)$,
\[\rho : \text{DM}^{\text{AT}}_{tr}(\mathfrak{G}/\Phi) \to D^b_c(S_k) \]
is conservative.

Proof. We will adopt the strategy of proof [Wil18, Thm. 4.3], which adapts to our setting and shows that conservativity of both realizations (ℓ-adic and Betti) can be deduced if the following properties hold\(^{20}\): (1) the weight structure on $\text{DM}^{\text{AT}}_{tr}(\mathfrak{G}/\Phi)$ is bounded, (2) its heart $\text{AT}_{tr}(\mathfrak{G}/\Phi)$ is semi-primary and pseudo-Abelian, (3) the restriction of ρ to $\text{AT}_{tr}(\mathfrak{G}/\Phi)$ maps the radical to zero, and (4) zero is the only object of $\text{AT}_{tr}(\mathfrak{G}/\Phi)$ mapped to zero by ρ. The first two properties have been verified before (Lemma 3.2.8 and Thm. 3.2.10), and property (3) has been seen to hold in the course of the proof of Thm. 3.3.1. With this in our hands, we can imitate step by step the proof of op. cit., Thm. 4.2 to show that property (4) is also verified and to conclude. In fact, to argue as in loc. cit. we only need the existence of the intermediate extension functor defined in Cor. 3.2.12, the fact that objects in $\text{AT}_{tr}(\mathfrak{G}/\Phi)$ decompose as direct sums of intermediate extensions (Cor. 3.2.13), and the finite dimensional nature of the objects of the categories $\text{AT}_{tr}(\mathfrak{G}_{S_{\varphi}}/\mathfrak{G}_{\varphi})$ (proof of Thm. 3.2.10). □

\(^{20}\)The proof of loc. cit. takes as starting point op. cit., Thm. 2.10, which shows that conservativity follows once we add to these hypotheses an additional one: strictness of any morphism in the image of the perverse cohomological realization, with respect to the weight filtration of the latter functor. Only the ℓ-adic realization is known to satisfy this last assumption. Building on this, the proof of Thm. 4.3 of loc. cit. then shows how to obtain conservativity for the Betti realization, too.
4. Motivic decompositions of projective quadric bundles

4.1. Corti-Hanamura decomposition of general quadrics.

4.1.1. In this section we work over a field \(k \) of characteristic zero. Let \(V \) be a \(k \)-vector space of dimension \(n \). A quadratic form \(Q \in S^2V^\vee \) can be viewed as a symmetric map \(Q : V \to V^\vee \). Its radical is the subspace \(\text{Rad}(Q) = \ker(Q) \). It is known from the theory of quadratic forms that \(Q \) descends to a symmetric bilinear form \(\overline{Q} \) on the quotient space \(\overline{V} = V/\text{Rad}(Q) \) (cf. [Cas78, 2.6]). We say that \(Q \) has corank \(r \) if \(\dim(\text{Rad}(Q)) = r \). The zero locus of \(Q \) defines a quadric \(X \subset \mathbb{P}(V) \) which is smooth if and only if \(r = 0 \). If \(r > 0 \) its singular locus is the linear subspace \(\Lambda = \mathbb{P}(\text{Rad}(Q)) \), and \(X \) is a cone with vertex \(\Lambda \) over the smooth quadric \(\overline{X} = V(\overline{Q}) \subset \mathbb{P}(\overline{V}) \cong \mathbb{P}^{n-r-1} \).

Let \(\Delta_k = \{ Q \in S^2V^\vee | \dim(\ker Q) \geq k \} \) be the space of quadratic forms of corank \(\geq k \). The standard desingularization of \(\Delta_k \) is
\[
\tilde{\Delta}_k = \{ (Q, F) \in S^2V^\vee \times G(k, V) | F \subset \ker Q \}.
\]
For our purposes it is convenient to use a slightly different construction. We denote by \(\text{Fl}(V) = \text{Fl}(1, \ldots, n - 1, V) \) the variety of complete flags
\[
F_1 \subset \ldots \subset F_{n-1} \subset F_n = V
\]
where \(\dim(F_i) = i \). Define
\[
\tilde{\Delta}_k = \{ (Q, F) \in S^2V^\vee \times \text{Fl}(V) | F_k \subset \ker Q \}.
\]
The fiber of the projection map \(p_2 : \tilde{\Delta}_k \to \text{Fl}(V) \) over \(F \) is the vector space \(H^0(\mathbb{P}(V), \mathcal{O}_{\mathbb{P}(V)}(2)) \). Hence \(\tilde{\Delta}_k \) is smooth. The advantage over the previous construction is that we have inclusions
\[
\tilde{\Delta}_{k+1} \subset \tilde{\Delta}_k \subset \text{Fl}(V)
\]
for all \(k \).

4.1.2. We now discuss the analogue of these constructions in the relative case. Let \(S \) be a quasi-projective scheme over \(k \). Let \(E \) be a rank \(n \) vector bundle over \(S \), and let \(L \) be a line bundle over \(S \). A quadratic form on \(E \) with values in \(L \) is a global section \(q \in H^0(S, S^2E^\vee \otimes L) \), or equivalently a symmetric homomorphism
\[
q : E \to E^\vee \otimes L.
\]
Let \(\rho : \mathbb{P}(E) \to S \) be the associated projective bundle with tautological line bundle \(\xi_E = \mathcal{O}_{\mathbb{P}(E)}(1) \). Using the isomorphism
\[
H^0(S, S^2E^\vee \otimes L) \cong H^0(\mathbb{P}(E), \xi_E^2 \otimes \rho^*L)
\]
we can identify \(q \) with a global section (still denoted by \(q \)) of \(\xi_E^2 \otimes \rho^*L \). The associated quadric bundle is \(X = \mathbb{V}(q) \subset \mathbb{P}(E) \). The fiber of \(f : X \to S \) over \(s \in S \) is the zero locus of \(q(s) \in S^2E_s^\vee \otimes L_s \).

We write
\[
\Delta_i(q) = \{ s \in S | \text{corank} q(s) \geq i \}, \quad U_i = \Delta_i(q) \setminus \Delta_{i+1}(q).
\]
The restriction of \(q \) to \(U_i \) defines a homomorphism of vector bundles
\[
q_i : E_i \to E_i^\vee \otimes L_i
\]
whose kernel $F_i = \ker(q_i)$ is a subbundle of E_i of rank i. As before, the quadratic form q_i descends to a quadratic form \tilde{q}_i on the quotient $E_i = E_i/F_i$. Geometrically this means that the subscheme $X_i = f^{-1}(U_i)$ is a relative cone over $X_i = V(\tilde{q}_i) \subset \mathbb{P}(E_i)$ with vertex $\mathbb{P}(F_i)$ i.e., for every $s \in U_i$ the quadric $X_s = f^{-1}(s)$ is a cone with vertex $\mathbb{P}(F_{i,s})$ over $X_s \subset \mathbb{P}(E_{i,s})$.

Let $\text{Fl}(E)$ be the bundle of complete flags in E with projection map $\pi : \text{Fl}(E) \to S$. The vector bundle π^*E has a flag of universal subbundles S_i of rank i, $i = 1, \ldots, n - 1$. The composition of

$$\pi^* q : \pi^* E \to \pi^* E^\vee \otimes \pi^* L$$

and the inclusion $\lambda_i : S_i \to \pi^* E$ defines

$$\tilde{\Delta}_i(q) = V(\tilde{q}_i) \subset \text{Fl}(E).$$

Proposition 4.1.3. If $E^\vee \otimes E^\vee \otimes L$ is generated by global sections and $q \in H^0(X, S^2 E^\vee \otimes L)$ is general, then

1. $\Delta_i(q)$ is empty or has the expected codimension $\binom{i+1}{2}$ and $\text{Sing}(\Delta_i(q)) = \Delta_{i+1}(q)$.
2. $\tilde{\Delta}_i(q)$ is smooth.

Proof. Note that if $E^\vee \otimes E^\vee \otimes L$ is generated by global sections, then the bundles $S^2 E^\vee \otimes L$, $\pi^*(E^\vee \otimes E^\vee \otimes L)$ and $S^2 \otimes \pi^* E^\vee \otimes \pi^* L$ are globally generated. Part 1 is proved by adapting the argument of [Bân91, 4.1] to the symmetric case; cf. [Ott95, 2.17]. Part 2 follows from Bertini’s theorem. \hfill \square

Definition 4.1.4. We say that $X \to S$ is a **regular** quadric bundle if it satisfies the conclusions of the Proposition 4.1.3.

A quadric bundle $f : X \to S$ admits a natural stratification by corank. Write $U_i = \Delta_i(q) \setminus \Delta_{i+1}(q)$, $X_i = f^{-1}(U_i)$. As the stratification $\Phi = \{U_i\}_{i \in I}$ does not verify Assumption 3.2.1, we have to pass to a suitable base change and verify Assumption 3.2.5. Define $S' = \text{Fl}(E)$ and consider the stratification \mathcal{S} given by $U'_i = \tilde{\Delta}_i(q) \setminus \Delta_{i+1}(q)$. Write $X' = X \times_S S'$ and $X'_i = X_i \times_{U_i} U'_i$.

Lemma 4.1.5. Let $X \to S$ be a regular quadric bundle. Then the stratification $\mathcal{S} = \{U'_i\}_{i \in I}$ satisfies Assumption 3.2.5.

Proof. Proposition 4.1.3 implies that the stratification \mathcal{S} satisfies conditions (1) and (2) of Assumption 3.2.5. The definition of $\tilde{\Delta}_i(q)$ shows that the fiber of $\pi_i : \tilde{\Delta}_i(q) \to \Delta_i(q)$ over $s \in \Delta_i(q)$ is

$$\{(W_s) \in \text{Fl}(E_s) | W_i \subset \ker(q(s))\}.$$

If $s \in U_i$ then $\ker(q(s))$ has dimension i, hence the fiber of the induced map $U'_i \to U_i$ over $s \in U_i$ is

$$\{(W_s) \in \text{Fl}(E_s) | W_i = \ker(q(s)) \} \cong \text{Fl}(\ker(q(s)) \times \text{Fl}(i + 1, \ldots, n, E_s)).$$

Over U_i we have an injective homomorphism of flag bundles

$$\text{Fl}(F_i) \times \text{Fl}(i + 1, \ldots, n; E_i) \to \text{Fl}(E_i)$$
whose image is U'_i. Hence $U'_i \to U_i$ is a relative homogeneous space and $h_{U'_i}(U'_i)$ is a relative Tate motive. This implies that the stratification \mathcal{S} also satisfies condition (3) of Assumption 3.2.5.

Theorem 4.1.6. Let $X \to S$ be a regular quadric bundle. Then $h_S(X) \in \text{AT}_{tr}(\mathcal{S}/\Phi)$.

Proof. We consider the stratifications Φ and \mathcal{S} introduced above and write $X_i = f^{-1}(U_i)$, $X'_i = X_i \times_{U_i} U'_i$. As we have seen before, X_i is a relative cone over \overline{X}_i with vertex $\mathbb{P}(F_i)$. The complement $V_i = X_i \setminus \mathbb{P}(F_i)$ is a locally trivial fiber bundle over \overline{X}_i with affine fibers. A similar result holds after base change via $\pi_i : U'_i \to U_i$ as X'_i contains the projective bundle $\mathbb{P}(F'_i)$, where $F'_i = \pi'_i(F_i)$, and the projection of the complement $V'_i = X'_i \setminus \mathbb{P}(F'_i)$ to U'_i factors as $V'_i \xrightarrow{\rho_i} \overline{X}'_i \xrightarrow{\pi'_i} U'_i$ where ρ_i is a locally trivial fiber bundle with affine fibers and π_i is a smooth quadric bundle. Hence $h_{U'_i}(V'_i) \cong h_{U'_i}(\overline{X}'_i)((-1)[-2i])$. As we have seen in Corollary 2.5.13, the motive $h_{U'_i}(\overline{X}'_i)$ is either a relative Tate motive or a relative Artin-Tate motive associated to a double étale covering $Z(\overline{X}'_i) \to U'_i$. The latter case arises if $n - i$ is even, say $n - i = 2m$. In this case the double covering $Z(\overline{X}_i) \to U'_i$ comes from the Stein factorisation of the relative Fano scheme of m-planes $F_m(\overline{X}_i/U'_i) \to U'_i$.

Since we work in characteristic zero, the map $Z(\overline{X}_i) \to U'_i$ is tamely ramified by Remark 3.2.3. As $h_{U'_i}(\mathbb{P}(F'_i))$ is a relative Tate motive, the localisation triangle

$$h_{U'_i}(V'_i) \to h_{U'_i}(X'_i) \to h_{U'_i}(\mathbb{P}(F'_i)) \to h_{U'_i}(V'_i)[1]$$

then shows that $h_{U'_i}(X'_i) \in \text{DM}_{m}^{\text{ET}}(U'_i, \mathbb{Q})$ for all i. As the map $h_{U'_i}(\mathbb{P}(F'_i)) \to h_{U'_i}(V'_i)[1]$ is zero by weight reasons, it follows that $h_{U'_i}(V'_i)$ has weight zero. Hence $h_S(X') \in \text{DM}_{\text{tr}}^{\mathcal{S}}(\mathcal{S}/\Phi)$ thanks to part (2) of Thm. 3.2.4 and has weight zero by the gluing property of motivic weights.

As $S' = \text{Fl}(E) \xrightarrow{\pi} S$ is a relative homogeneous space we have

$$\pi_* 1_{S'} \cong 1_S \oplus \bigoplus_{i : n_i > 0} 1_S(-n_i)[-2n_i].$$

By the projection formula we obtain

$$\pi_* h_S(X') = \pi_* \pi^* h_S(X) \cong h_S(X) \oplus \bigoplus_{i : n_i > 0} h_S(X)(-n_i)[-2n_i].$$

Hence $h_S(X') \in \text{DM}_{\text{tr}}^{\mathcal{S}}(\mathcal{S}/\Phi)$. Since proper morphisms respect weights and $h_S(X')$ is of weight zero, $\pi_* h_S(X')$ is of weight zero, as well as any of its direct factors. So $h_S(X) \in \text{AT}_{tr}(\mathcal{S}/\Phi)$.

Corollary 4.1.7. A regular quadric bundle $X \to S$ admits a CH-decomposition (see Def. 2.2.1).

Proof. By Corollary 3.2.13 every object M of the category $\text{AT}_{tr}(\mathcal{S}/\Phi)$ admits a decomposition

$$M \simeq \bigoplus_{\phi \in \Phi'} i_{\phi,*} j_{\phi,!} \ast N_{\phi}.$$
with N_ϕ in $\text{AT}_{tr}(\mathcal{S}_\phi / S_\phi)$. The proof of Theorem 3.2.10 shows that $N_\phi \in \text{DM}^\text{AT}_{sm}(S_\phi, \mathbb{Q})$.

Using Theorem 2.4.3 we obtain a decomposition

$$
N_\phi \simeq \bigoplus_{i, \phi \in I_\phi} \rho(V_{i, \phi})(n_{i, \phi})[2n_{i, \phi}]
$$

with $V_{i, \phi}$ a simple Artin representation of $\pi_1(S_\phi)$. Taking $M = h_{S}(X)$ we get

$$
h_{S}(X) \simeq \bigoplus_{i, \phi} i_{\phi, *}, j_{\phi, !}(\rho(V_{i, \phi})(n_{i, \phi}))[2n_{i, \phi}]
$$

which is a decomposition of $h_{S}(X)$ into simple objects of weight zero. Applying the realisation functor ρ_B and using Thm. 3.3.1, we obtain a decomposition of $Rf_\ast Q_X$ into a sum of simple objects in $D^b_c(S, Q)$. The decomposition theorem of Beilinson-Bernstein-Deligne gives isomorphisms

$$
Rf_\ast Q_X \simeq \bigoplus_k p R^k f_\ast Q_X[-k] \simeq \bigoplus_{k, \lambda} i_{\lambda, *}, j_{\lambda, !}(L_{k, \lambda})[-k]
$$

where $L_{k, \lambda}$ is a local system on S_λ. Since the simple objects appearing in this decomposition are unique, we conclude that they are realisations of Chow motives. Hence $X \to S$ admits a Corti-Hanamura decomposition. □

Remark 4.1.8. Our proof gives a more precise statement: $h_{S}(X)$ is a direct sum of motivic intermediate extensions of Artin-Tate motives of degree at most 2, hence $Rf_\ast Q_X$ decomposes as a sum of intersection complexes of local systems whose monodromy is either trivial or $\mathbb{Z}/2\mathbb{Z}$. This has been observed in the example of regular conic bundles over a surface [NS09]. In this case

$$
Rf_\ast Q_X \simeq Q_S \oplus Q_S[-2] \oplus i_\ast L[-1]
$$

where L is a local system on the smooth discriminant curve $\Delta \subset S$. The underlying motivic decomposition is

$$
h_{S}(X) \simeq 1_S \oplus 1_S(-2) \oplus \text{Prym}(\Delta/\Delta)(-1)[-2]
$$

where $\text{Prym}(\Delta/\Delta)$ is the Prym motive, an Artin-Tate motive of degree 2.

4.2. Corti-Hanamura decomposition of quadric bundles with normal crossing discriminant.

4.2.1. The aim of this final section is to show that given the previous results, it is also quite immediate to get a Corti-Hanamura decomposition for a class of quadric bundles $f : X \to S$ over a field k of characteristic zero, which don’t satisfy anymore the regularity assumption. We will instead suppose that the discriminant locus $i : D \to S$ of f is a *normal crossing divisor*. To fix our conventions, this means that D is a finite union of irreducible components

$$
D = \bigcup_{i \in I} D_i
$$

such that for each finite subset $J \subseteq I$, the underlying reduced scheme of the scheme $D_J := \bigcap_{j \in J} D_j$ is regular.

Fix now an ordering D_{i_1}, \ldots, D_{i_n} of the set $\{D_i\}_{i \subseteq I}$, in such a way that the function $\dim D_J$ is (non-strictly) increasing with respect to i, and pose the following:
Definition 4.2.2. The stratification \mathcal{S} of S is the one obtained by choosing, for each $\sigma \in \mathcal{S} := \{1, \ldots, r\}$,

$$S_\sigma := D_{J_\sigma} \setminus \left(\bigcup_{k=1, \ldots, \sigma - 1} D_{J_k} \right)$$

Note that the above defined \mathcal{S} is a well-defined stratification (i.e., the closure of each stratum is a union of strata). Then, it is clear from the definitions that we have:

Lemma 4.2.3. The stratification \mathcal{S} satisfies Assumption 3.2.1.

Hence, we can define the full, triangulated subcategory $\text{DM}_{\text{tr}}^\text{AT}(\mathcal{S})$ of $\text{DM}_{c}(S)$ as in Thm. 3.2.4.

Theorem 4.2.4. Let $X \to S$ be a quadric bundle whose discriminant is a divisor with normal crossings. Then, the motive $h_S(X)$ belongs to the category $\text{AT}_{\text{tr}}(S)$.

Proof. For each $\sigma \in \mathcal{S}$, the fibers of X_{S_σ} over S_σ have constant corank. Hence, the same computation as in the proof of Thm. 4.1.6 shows that $h_{S_\sigma}(X_{S_\sigma})$ belongs to $\text{DM}_{\text{sm}}^\text{AT}(S_\sigma, \mathbb{Q})$ for each $\sigma \in \mathcal{S}$, and gives the conclusion. □

Finally, the proof of Corollary 4.1.7 can be repeated in order to show:

Corollary 4.2.5. A quadric bundle $X \to S$ whose discriminant is a divisor with normal crossings admits a CH-decomposition.

We present an example where several nonconstant intersection motives appear in the decomposition. First we need a Lemma.

Lemma 4.2.6. Let $\pi : S' \to S$ be a finite morphism. Write $U' = \pi^{-1}(U)$, $\pi' = \pi|_{U'}$, and let $j : U \to S$, $j' : U' \to S$ be the inclusions. If F is a perverse sheaf on U' then

$$j_!(\pi'_*F) \simeq \pi_*(j'_!(F)).$$

Proof. As π and π' are finite morphisms, the functors π_* and π'_* are t-exact for the perverse t-structure [BBD82, Cor. 2.2.6 (i)]. The result then follows from the isomorphisms

$$\pi_* \circ j'_! \simeq j_* \circ \pi'_*, \quad \pi_* \circ j'_! \simeq j_! \circ \pi'_!$$

using [loc.cit., 1.3.17 (iv) and 1.4.16]. □

Example 4.2.7. Let r be a nonnegative integer. Given a $(r+1)\times(2n+3)$ matrix $A = (a_{ij})$ we define quadrics

$$Q_i = \{ x \in \mathbb{P}^{2n+2} | \sum_j a_{ij}x_j^2 = 0 \} \subset \mathbb{P}^{2n+2}, \quad i = 0, \ldots, r.$$

The quadric bundle associated to the linear system of quadrics spanned by Q_0, \ldots, Q_r is $f : X \to \mathbb{P}^r$ with

$$X = \{ (x, \lambda) \in \mathbb{P}^{2n+2} \times \mathbb{P}^r | \sum_{i,j} \lambda_ia_{ij}x_j^2 = 0 \}.$$

The fiber Q_λ of f over $\lambda = (\lambda_0 : \ldots : \lambda_r) \in \mathbb{P}^r$ is the zero locus of

$$q_\lambda = \sum_j (\sum_i a_{ij}\lambda_i)x_j^2.$$
If A is a generic matrix, the discriminant locus of f is a simple normal crossing divisor which is the union of $2n + 3$ hyperplanes: $\Delta = D_0 \cup \ldots \cup D_{2n+2}$ where

$$D_j = \{ \lambda \in \mathbb{P}^r | \sum_i a_{ij} \lambda_i = 0 \}, \quad j = 0, \ldots, 2n + 2.$$

By the previous Corollary $f : X \to S$ admits a CH-decomposition. We shall show that it contains several nonconstant intersection motives by looking at the topological realisation. Write $d_X = \dim X = 2n + r + 1$. By the decomposition theorem

$$Rf_*(\mathbb{Q}[d_X]) \simeq \bigoplus_{i=-2n-1}^{2n+1} p^* R^d f_*(\mathbb{Q}[d_X])[-i]$$

and the perverse direct images $p^* R^d f_*(\mathbb{Q}[d_X])$ are direct sums of intermediate extensions. By the perverse versions of the Lefschetz hyperplane theorem and the hard Lefschetz theorem we have

$$p^* R^d f_*(\mathbb{Q}[d_X]) = \begin{cases} \mathbb{Q}[r] & i \neq 0, i \text{ even} \\ 0 & i \neq 0, i \text{ odd} \end{cases}$$

hence

$$Rf_* \mathbb{Q}[d_X] \simeq \bigoplus_{k=-n}^{n} \mathbb{Q}[r-2k-1] \oplus p^* R^0 f_*(\mathbb{Q}[d_X]).$$

Write

$$\Delta_i = \cup_{j \neq i} D_i \cap D_j, \quad S_i = D_i \setminus \Delta_i.$$

If $\lambda \in S_i$ then Q_λ has an ordinary double point p_λ and Q_λ is a cone with vertex p_λ over a smooth quadric $\overline{Q_\lambda} \subset \mathbb{P}^{2n+1}$. Hence

$$R^{2n+2} f_* \mathbb{Q}|_{S_i} = \mathbb{Q} \oplus L_i$$

where L_i is a nontrivial rank one local system on S_i with monodromy $\mathbb{Z}/2\mathbb{Z}$. The decomposition theorem then shows that

$$R^{2n+2} f_* \mathbb{Q}|_{S_i} = \mathcal{H}^{-(r+1)}(Rf_* \mathbb{Q}[d_X]|_{S_i}) = \mathbb{Q}[r-1] \oplus \mathcal{H}^{-(r+1)}(p^* R^0 f_*(\mathbb{Q}[d_X]))$$

for all i. Thus, writing $j_\alpha : S_\alpha \to \mathbb{P}^r$ for the inclusion maps,

$$p^* R^0 f_*(\mathbb{Q}[d_X]) \simeq \bigoplus_{\alpha=0}^{r} (j_\alpha)_* (L_\alpha) \oplus R$$

where R is a perverse sheaf supported in codimension ≥ 2. Hence the CH-decomposition of $X \to S$ is of the form

$$h_S(X) \simeq \bigoplus_{k=0}^{n} \mathbb{Q} \langle -k \rangle [-2k] \oplus \bigoplus_{i=0}^{r} M_i \oplus M$$

where $\rho(M) = R$ and $\rho(M_i) = j_\ast(L_i)$ for all i.

Remark 4.2.8. In the case $r = 2$ there is a direct construction of the motive M_i underlying the intermediate extension of L_i. In this case $D_i \cong \mathbb{P}^1$ and $\Delta_i \subset D_i$ is a set of $2n + 2$ points. Let $D'_i \to D_i$ be the double covering ramified along Δ_i. Then D'_i is a smooth hyperelliptic curve of genus n. Applying the previous lemma to the diagram

\footnote{For ease of comparison with the existing literature we have adopted the usual convention of shifting by d_X.}
we obtain \(\pi_*(j'_* Q) \simeq Q \oplus j_*(L_i)\) since \(j'_* Q \simeq Q \oplus L_i\).

If we denote \(\tau\) the hyperelliptic involution on \(D'_i\), the intermediate extension \(j'_* (L_i)\) is the realisation of the Prym motive \(M_i = (D'_i, \frac{1}{2} (\tau^* + \text{id}))\).

It is not clear whether there exists a similar description of the motives \(M_i\) if \(r > 2\). In this case the variety \(D'_i\) is singular, hence \(M_i\) should be constructed as a suitable direct factor of the "intersection motive" of \(D'_i\).

Remark 4.2.9. If we take \(n = 0\) and \(r = 2\) in the example above (conic bundles over \(\mathbb{P}^2\)) the result follows from [NS09] (The result in [loc.cit.] is more general and applies to conic bundle over a surface with a reducible discriminant locus that is not necessarily a simple normal crossing divisor.)

References

[ADN20] A. Asok, F. Déglise, and J. Nagel, *The homotopy Leray spectral sequence*, Motivic homotopy theory and refined enumerative geometry, Contemp. Math., vol. 745, Amer. Math. Soc., Providence, RI, 2020, pp. 21–68.

[AGV73] M. Artin, A. Grothendieck, and J.-L. Verdier, *Théorie des topos et cohomologie étale des schémas*, Lecture Notes in Mathematics, vol. 269, 270, 305, Springer-Verlag, 1972–1973, Séminaire de Géométrie Algébrique du Bois–Marie 1963–64 (SGA 4).

[APS15] A. Auel, R. Parimala, and V. Suresh, *Quadric surface bundles over surfaces*, Doc. Math. *Extra Vol.* (2015), 31–70 (English).

[Ayo10] J. Ayoub, *Note sur les opérations de Grothendieck et la réalisation de Betti*, J. Inst. Math. Jussieu 9 (2010), no. 2, 225–263.

[Bân91] C. Bănică, *Smooth reflexive sheaves*, Proceedings of the Colloquium on Complex Analysis and the Sixth Romanian-Finnish Seminar, vol. 36, 1991, pp. 571–593. MR 1172165

[BBD82] A. Beilinson, J. Bernstein, and P. Deligne, *Faisceaux pervers*, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, no. 100, Soc. Math. France, 1982, pp. 5–171.

[Ber09] M. Bernardara, *A semiorthogonal decomposition for Brauer-Severi schemes*, Math. Nachr. 282 (2009), no. 10, 1406–1413.

[Bon10] M. Bondarko, *Weight structures vs. t-structures: weight filtrations, spectral sequences, and complexes (for motives and in general)*, J. K-Theory 6 (2010), 387–504.

[Bon15] M. V. Bondarko, *Mixed motivic sheaves (and weights for them) exist if ‘ordinary’ mixed motives do*, Compos. Math. 151 (2015), no. 5, 917–956.

[Bou16] J. Bouali, *Motives of quadric bundles*, Manuscripta Math. 149 (2016), no. 3-4, 347–368. MR 3458173

[Buz23] K. Buzzard, *Smooth proper scheme over \(\mathbb{Z}\)*, MathOverflow, 2009-12-23, https://mathoverflow.net/q/9605.

[Cad13] Anna Cadoret, *Galois categories*, Arithmetic and geometry around Galois theory, Progr. Math., vol. 304, Birkhäuser/Springer, Basel, 2013, pp. 171–246. MR 3408165

[Cas78] J. W. S. Cassels, *Rational quadratic forms*, London Mathematical Society Monographs, vol. 13, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 522835

[Cav19] M. Cavicchi, *On the boundary and intersection motives of genus 2 Hilbert-Siegel varieties*, Doc. Math. 24 (2019), 1053–1098.

[CD16] D.-C. Cisinski and F. Déglise, *Étale motives*, Compos. Math. 152 (2016), no. 3, 556–666.

[CD19] , *Triangulated categories of mixed motives*, Springer Mono. in Math., Springer Int. Pub., 2019. 7, 8, 9, 13, 14, 18, 19.
[CH00] A. Corti and M. Hanamura, *Motivic decomposition and intersection Chow groups. I*, Duke Math. J. **103** (2000), no. 3, 459–522. MR 1763656

[Cis21] D.-C. Cisinski, *Cohomological methods in intersection theory*, Homotopy theory and arithmetic geometry—motivic and diophantine aspects, Lecture Notes in Math., vol. 2292, Springer, Cham, [2021] ©2021, pp. 49–105. MR 4419310

[dCM10] M. A. A. de Cataldo and L. Migliorini, *The perverse filtration and the Lefschetz hyperplane theorem*, Ann. of Math. (2) **171** (2010), no. 3, 2089–2113. MR 2680404

[dJm08] A. de Jong (maintainer), *Stacks project*, https://stacks.math.columbia.edu/, 2008.

[DK73] P. Deligne and N. Katz, *Groupe de monodromie en géométrie algébrique (SGA 7 II)*, vol. 340, Springer, 1973 (French).

[DM91] C. Deninger and J. Murre, *Motivic decomposition of abelian schemes and the Fourier transform*, J. Reine Angew. Math. **422** (1991), 201–219.

[DH16] D. Eisenbud and J. Harris, *3264 and all that—a second course in algebraic geometry*, Cambridge University Press, Cambridge, 2016. MR 3617981

[GHM03] B. B. Gordon, M. Hanamura, and J. P. Murre, *Relative Chow-Künneth projectors for modular varieties*, J. Reine Angew. Math. **558** (2003), 1–14. MR 1979179

[Heb11] D. Hébert, *Structure de poids à la Bondarko sur les motifs de Beilinson*, Composito Mathematica **147** (2011), no. 5, 1447–1462 (French, with English summary).

[Jin16] F. Jin, *Borel–moore motivic homology and weight structure on mixed motives*, Math. Zeit. **283**, Issue 3-4 (2016), 1149–1183.

[Kim09] J. Kimura, *Surjectivity of the cycle map for Chow motives*, Motives and algebraic cycles, Fields Inst. Commun., vol. 56, Amer. Math. Soc., Providence, RI, 2009, pp. 157–165. MR 2562457

[MNP13] J. P. Murre, J. Nagel, and C. A. M. Peters, *Lectures on the theory of pure motives*, University Lecture Series, vol. 61, American Mathematical Society, Providence, RI, 2013. MR 3052734

[MSS12] S. Müller-Stach and M. Saito, *Relative Chow-Künneth decompositions for threefolds*, J. Reine Angew. Math. **666** (2012), 141–161. MR 2920884

[MV99] F. Morel and V. Voevodsky, *\mathbb{A}^1-homotopy theory of schemes*, Inst. Hautes Études Sci. Publ. Math. (1999), no. 90, 45–143 (2001). MR 1813224

[NS09] J. Nagel and M. Saito, *Relative Chow-Künneth decompositions for conic bundles and Prym varieties*, Int. Math. Res. Not. IMRN (2009), no. 16, 2978–3001. MR 2533794

[Org04] F. Orgogozo, *Isomotifs de dimension inférieure ou égale à un*, Manuscripta Math. **115** (2004), no. 3, 339–360.

[Ott95] G. Ottaviani, *Varietà proiettive di codimensione piccola*, 1995.

[Sch90] A. J. Scholl, *Motives for modular forms*, Invent. Math. **100** (1990), no. 2, 419–430. MR 1047142

[Via13a] C. Vial, *Algebraic cycles and fibrations*, Doc. Math. **18** (2013), 1521–1553. MR 3158241

[Via13b] C. Vial, *Projectors on the intermediate algebraic Jacobians*, New York J. Math. **19** (2013), 793–822. MR 3141813

[VSF00] V. Voevodsky, A. Suslin, and E. M. Friedlander, *Cycles, transfers and motivic homology theories*, Annals of Mathematics Studies, vol. 143, Princeton Univ. Press, 2000.

[Wil09] J. Wildeshaus, *Chow motives without projectivity*, Compos. Math. **145** (2009), no. 5, 1196–1226. MR 2551994

[Wil12] J. Wildeshaus, *Motivic intersection complex*, Regulators, Contemp. Math., vol. 571, Amer. Math. Soc., Providence, RI, 2012, pp. 255–276. MR 2953419

[Wil16] J. Wildeshaus, *Notes on Artin-Tate motives*, Autour des motifs—École d’été Franco-Asiatique de Géométrie Algébrique et de Théorie des Nombres/Asian-French Summer School on Algebraic Geometry and Number Theory, Vol. III, Panor. Synthèses, vol. 49, Soc. Math. France, Paris, 2016, pp. 101–131.

[Wil17] J. Wildeshaus, *Intermediate extensions of Chow motives of abelian type*, Adv. Math. (2017), no. 305, 515–600.

[Wil18] J. Wildeshaus, *Weights and conservativity*, Alg. Geom. (2018), no. 6, 686–702.

Email address: cavicchi@unistra.fr
