NEW BOUNDS FOR $\psi(x)$

LAURA FABER AND HABIBA KADIRI

ABSTRACT. In this article we provide new explicit Chebyshev’s bounds for the prime counting function $\psi(x)$. The proof relies on two new arguments: smoothing the prime counting function which allows to generalize the previous approaches, and a new explicit zero density estimate for the zeros of the Riemann zeta function.

1. INTRODUCTION.

1.1. Main Theorem and History. We recall that $\psi(x)$ is the Chebyshev function given by

$$\psi(x) = \sum_{n \leq x} \Lambda(n), \quad \Lambda(n) = \begin{cases}
\log p & \text{if } n = p^k \text{ for } k \geq 1, \\
0 & \text{else}.
\end{cases}$$

The Prime Number Theorem (PNT) is equivalent to

$$\psi(x) \sim x \quad \text{as } x \to \infty.$$

This estimate is a core tool in solving many problems in number theory and an explicit form of it turns out to be very useful in a wide range of problems. In this article, we investigate explicit bounds (also known as Chebyshev’s bounds) for the error term

$$E(x) = \left| \frac{\psi(x) - x}{x} \right|.$$

For instance, the main article of reference [20] in this subject is extensively used in various fields including Diophantine approximation, cryptography, and computer science. Moreover, breakthroughs concerning Goldbach’s conjecture (see the work of Ramaré [18], Tao [25], and Helfgott [6] [7]) rely on sharp explicit bounds for finite sums over primes. We combine a new explicit zero density estimate for $\zeta(s)$ and an optimized smoothing argument to prove

Theorem 1.1. Let $b_0 \leq 9963$ be a fixed positive constant. Let $x \geq e^{b_0}$. Then there exists $\epsilon_0 > 0$ such that $E(x) \leq \epsilon_0$, where ϵ_0 is given explicitly in (3.9) and is computed in Table 3.

Corollary 1.2. For all $x \geq e^{20}$, $E(x) \leq 5.3688 \cdot 10^{-4}$.

A classic explicit formula that relates prime numbers to non-trivial zeros of ζ is given by [1] §17, (1):

$$\psi(x) = x - \sum_{\rho} \frac{x^\rho}{\rho} - \log 2\pi - \frac{1}{2} \log(1 - x^{-2}),$$

where ρ ranges over the non-trivial zeros of the Riemann zeta function. The proof of this formula involves an explicit zero density estimate and a smoothing argument.
when x is not a prime power. As the sum over the zeros is not absolutely convergent, it is impossible to directly use this formula to bound the error term $E(x)$. To bypass this problem, the standard argument is to apply an explicit formula to an average of $\psi(x)$ on a small interval containing $[0, x]$.

In 1941 Rosser [22] Theorem 12] provides an explicit version of this proof. In 1962 Rosser and Schoenfeld [23] Theorem 28] improve on this method by introducing further averaging. Later results of Rosser and Schoenfeld [24], Dusart [2] [3], and very recently Nazardonyavi and Yakubovich [14] all use the argument of [23]. They successively obtain smaller bounds for the error term as a consequence of improvements concerning the location of the non-trivial zeros of the Riemann zeta function, namely the verification of the Riemann Hypothesis up to a fixed height H, and an explicit zero-free region of the form $\Re s \geq 1 - \frac{1}{R \log|\Im s|}$ and $|\Im s| \geq 2$, where R is a computable constant. On the other hand Theorem 1.1 relies on new arguments. We introduce a smooth weight f and compare $\psi(x)$ to the sum $\mathcal{S}(x) = \sum_{n \geq 1} \Lambda(n) f \left(\frac{n}{x} \right)$. In Section 3.1 we choose f in a close to optimal way so as to make the bound on $E(x)$ as small as possible. We also observe that Rosser and Schoenfeld’s averaging method is a special case of this smoothing method (see Section 3.4 for further discussion). In Theorem 2.3 we establish a general explicit formula for $\mathcal{S}(x)$. A large contribution to the size of $E(x)$ arises from a sum over the non-trivial zeros of the form $\sum_\rho x^{\rho-1} F(\rho)$, where F is the Mellin transform of f. This sum is studied in Section 2.3. We split it so as to isolate zeros closer to the 1-line (say of real part larger than a fixed σ_0) as they contribute the most to the sum. In section 2.3.2 we estimate this contribution by using for the first time explicit estimates for the zero density $N(\sigma_0, T)$ (as given in article [9]). This allows an extra saving over previous methods as they are of size between $\log T$ and T smaller than $N(T)$. Finally Theorem 2.8 provides a general form for the bound of the error term $E(x)$.

We provide here a history of numerical improvements for Theorem 1.1 in the case where $b_0 = 50$. At the same time we mention which height H and constant R were used.

Authors	H	R	ϵ_0
Rosser [22]	1.467 [22]	17.72 [22]	1.1900 · 10^{-2}
Rosser and Schoenfeld [23]	21.943 [12] [13]	17.5163... [23]	1.7202 · 10^{-3}
Rosser and Schoenfeld [24]	1894438 [24]	9.645908801 [24]	1.7583 · 10^{-5}
Dusart [2]	545439823 [26]	9.645908801 [24]	9.0500 · 10^{-8}
Dusart [3]	2445999556030 [5]	5.69693 [8]	1.3010 · 10^{-9}
Dusart and Schoenfeld [3]	2445999556030 [5]	5.69693 [8]	1.3055 · 10^{-9}
Nazardonyavi and Yakubovich [14]	30610046000 [17] [16]	5.69693 [8]	2.3643 · 10^{-9}
Faber and Kadiri	2445999556030 [5]		

(* unpublished)

Note that when we use the same values for H and R than [3] and [14], our bounds for $E(x)$ are consistently smaller than theirs (for all b_0 except for $b_0 = 10000$ in the case of [3]).

1.2. **Zeros of the Riemann zeta function.** We use the latest computations of Platt [16] [17] concerning the verification of RH:

Theorem 1.3. Let $H = 3.061 \cdot 10^{10}$. If $\zeta(s) = 0$ at $0 \leq \Re(s) \leq 1$ and $0 \leq \Im(s) \leq H$, then $\Re(s) = \frac{1}{2}$.
Table 3 presents values of ϵ_0 computed for this value of H. Prior to the work of Platt, Gourdon [5] announced a verification up to $H = 2,445,999,556,030$. We choose to use Platt’s value of H since his verification of RH is the most rigorous to date (he employs interval arithmetic). Since other recent results ([3] and [14]) use Gourdon’s H, we also give a version of Theorem 1.1 based on his value (see Table 4).

From [8, Theorem 1.1] we have the zero-free region:

Theorem 1.4. Let $R = 5.69693$. Then there are no zeros of $\zeta(s)$ in the region

$$\Re s \geq 1 - \frac{1}{R \log |\Im s|} \text{ and } |\Im s| \geq 2.$$

Let $T \geq 2$ and $N(T)$ be the number of non-trivial zeros $\zeta = \beta + i\gamma$ in the region $0 \leq \gamma \leq T$ and $0 \leq \beta \leq 1$. In 1941, Rosser [22, Theorem 19] proved

Theorem 1.5. Let $T \geq 2$,

$$P(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + \frac{7}{8}, \quad R(T) = a_1 \log T + a_2 \log \log T + a_3,$$

and $a_1 = 0.137$, $a_2 = 0.443$, $a_3 = 1.588$. Then

$$|N(T) - P(T)| \leq R(T).$$

We recall that $N(\sigma_0, T)$ is the number of non-trivial zeros in the region $\sigma_0 \leq \Re s \leq 1$ and $0 \leq \Im s \leq T$. In [9] the second author proved explicit upper bounds for $N(\sigma_0, T)$:

Theorem 1.6. Let $3/5 \leq \sigma_0 < 1$. Then there exists constants c_1, c_2, c_3 such that, for all $T \geq H$,

$$N(\sigma_0, T) \leq c_1 T + c_2 \log T + c_3.$$

The c_i’s depend on various (hidden) parameters and it is possible to choose these so as to make the above bound smaller when T is asymptotically large or when it is close to H, the height of the numerical verification of RH. Table 4 at the end of this paper list values for the c_i’s in these respective cases. For instance, it gives

$$N(89/100, T) \leq 0.4617T + 0.6644 \log T - 340,272,$$

which provides a saving of about $1/3(\log T)$ compared to Theorem 1.5.

When T is near H, Theorem 1.6 yields values for the c_i’s which provide a bound for $N(\sigma, T)$ of size about $\log H$. For instance, it gives that $N(99/100, H) \leq 78$ while Rosser’s Theorem gives $5.2 \cdot 10^{10}$.

2. General form of an explicit inequality for $\psi(x)$.

2.1. Introducing a smooth weight f.

Definition 2.1. Let $0 < a < b$, $m \in \mathbb{N}$ and $m \geq 2$. We define a function f on $[a, b]$ by $f(x) = 1$ if $0 \leq x \leq a$, $f(x) = 0$ if $x \geq b$, and $f(x) = g\left(\frac{x-a}{b-a}\right)$ if $a \leq x \leq b$, where g is a function defined on $[0, 1]$ satisfying

Condition 1: $0 \leq g(x) \leq 1$ for $0 \leq x \leq 1$,

Condition 2: $g(0) = g(1) = 1$,

Condition 3: $g(x)$ is continuous on $[0, 1]$.

Condition 4: $\int_0^1 g(x) dx = 1$,

Condition 5: $g'(x)$ is non-decreasing on $[0, 1]$.

Condition 6: $g(x)$ is smooth on $(0, 1)$.
Condition 2: g is an m-times differentiable function on $(0, 1)$ such that for all $k = 1, \ldots, m$,

$$g^{(k)}(0) = g^{(k)}(1) = 0,$$

and there exist positive constants a_k such that

$$|g^{(k)}(x)| \leq a_k \text{ for all } 0 < x < 1.$$

We now consider

\begin{equation}
\mathcal{S}(x) = \sum_{n=1}^{\infty} \Lambda(n) f \left(\frac{n}{x} \right) \quad \text{and} \quad E_S(x) = \left| \frac{\mathcal{S}(x) - x}{x} \right|.
\end{equation}

Let $\delta > 0$. We denote f^- and f^+ for the function f defined above with the choices $a = 1 - \delta, b = 1$ and $a = 1, b = 1 + \delta$ respectively. We also define \mathcal{S}^- and \mathcal{S}^+ the sums \mathcal{S} associated to f^- and f^+ respectively. Observe that

\begin{equation}
\mathcal{S}^-(x) \leq \psi(x) \leq \mathcal{S}^+(x) \quad \text{and} \quad E(x) \leq \max(E^-_S(x), E^+_S(x)).
\end{equation}

The Mellin Transform of f is given by

\begin{equation}
F(s) = \int_{0}^{\infty} f(t)t^{s-1}dt.
\end{equation}

We recall the property (see [10, page 80, (3.1.3)]): if there exist α and β such that $\alpha < \beta$ and, for every $\epsilon > 0$, $f(x) = \mathcal{O}(x^{-\alpha-\epsilon})$ as $x \to 0$, and $f(x) = \mathcal{O}(x^{-\beta+\epsilon})$ as $x \to +\infty$, then F is analytic in $\alpha < \Re s < \beta$. It follows from our choice of f that F is analytic in $\Re s > 0$. Moreover, we have the inverse Mellin transform formula

\begin{equation}
f(t) = \frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} F(s)t^{-s}ds.
\end{equation}

Observe that

$$\int_{a}^{b} |f^{(m+1)}(t)|t^{m+1}dt = \frac{1}{(b-a)^m} \int_{0}^{1} |g^{(m+1)}(u)|((b-a)u + a)^{m+1}du.$$

Let k be a non-negative integer. We define

\begin{equation}
M(a, b, k) = \int_{0}^{1} |g^{(k+1)}(u)|((b-a)u + a)^{k+1}du.
\end{equation}

We now record some properties of F.

Lemma 2.2. Let $0 < a < b, m \in \mathbb{N}, m \geq 2$. Let f and g be functions as in Definition 2.1

(a) The Mellin transform F of f has a single pole at $s = 0$ with residue 1 and is analytic everywhere else.

(b) Let $s \in \mathbb{C}$ such that $\Re s \leq 1$. Then F satisfies

\begin{equation}
F(1) = a + (b - a) \int_{0}^{1} g(u)du,
\end{equation}

\begin{equation}
|F(s)| \leq \frac{M(a, b, k)}{(b-a)^k |s|^{k+1}}, \text{ for all } k = 0, \ldots, m.
\end{equation}
Proof. The identity (2.6) follows immediately from the definition of \(f \).
We now use Condition 1 and Condition 2. We have \(F(s) = \int_0^b f(t) t^{s-1} dt \) with \(f'(x) = 0 \) for \(0 < x < a \). We integrate by parts once and observe that \(F(s) = \frac{G(s)}{s} \), where
\[
G(s) = -\int_a^b f'(t) t^s dt
\]
is an entire function. The residue of \(F \) at \(s = 0 \) is \(G(0) = 1 \).
Let \(\Re s \leq 1 \) and \(k = 0, \ldots, m \). Inequality (2.7) is obtained by integrating \(F \) by parts \(k+1 \) times:
\[
F(s) = \frac{(-1)^{k+1}}{s(s+1) \ldots (s+k)} \int_a^b f^{(k+1)}(t) t^{s+k} dt.
\]
We consider
\[
G_m(s) = \int_a^b t^{s+m} f^{(m+1)}(t) dt.
\]
Since \(f^{(i)} \) vanishes at both \(a \) and \(b \) for all \(i = k, \ldots, m \), we have
\[
G_m(-k) = (m-k)!(-1)^{m-k} \int_a^b f^{(k+1)}(t) dt = (m-k)!(-1)^{m-k}(f^{(k)}(b) - f^{(k)}(a)) = 0.
\]
Thus \(F \) only has a pole at \(s = 0 \) and is analytic everywhere else. \(\square \)

2.2. An explicit formula for a smooth form of \(\psi(x) \). We use classical techniques to rewrite \(\mathscr{S}(x) \) as a complex integral, shift the integration contour to the left, and collect all the poles of the integrand so as to obtain a smooth analogue of the classical explicit formula (1.1).

Theorem 2.3. Let \(0 < a < b, m \in \mathbb{N}, m \geq 2 \). Let \(f \) be a function satisfying Definition 2.1 and \(F \) its Mellin transform. Then
\[
\mathscr{S}(x) = xF(1) - \sum_\rho x^\rho F(\rho) - \frac{\zeta'}{\zeta}(0) - \sum_{n=1}^\infty x^{-2n} F(-2n),
\]
where \(\rho \) runs through all the non-trivial zeros \(\rho = \beta + i\gamma \) of the Riemann zeta function.

Proof. We insert (2.4) in (2.1):
\[
\mathscr{S}(x) = \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} x^s F(s) \left(-\frac{\zeta'}{\zeta}(s) \right) ds.
\]
Fix \(k \in \mathbb{R}\setminus2\mathbb{N} \) and \(T \geq 2 \) such that \(T \) does not equal an ordinate of a zero of \(\zeta \). Observe that the integrand has a pole at \(s = 0 \) with residue \(-\frac{\zeta'}{\zeta}(0) \), a pole at \(s = 1 \) with residue \(xF(1) \), poles at the non-trivial zeros of zeta \(\rho = \beta + i\gamma \) with residue \(-x^\rho F(\rho) \), and poles at the trivial zeros of zeta \(s = -2n, n \in \mathbb{N} \), with residue \(-x^{-2n} F(-2n) \). We move the vertical line of integration extending from \(2 - iT \) to \(2 + iT \) to the line of integration extending from \(-k - iT \) to \(-k + iT \) so as to form the rectangle \(\mathcal{R} \). Thus
\[
\mathscr{S}(x) = I_1(T, k) + I_2(T, k) - I_3(T, k) - \frac{\zeta'}{\zeta}(0) + F(1)x - \sum_{|\gamma|<T} x^\rho F(\rho) - \sum_{1\leq n \leq \frac{k}{2}} x^{-2n} F(-2n),
\]
where...
where \(I_1, I_2, I_3 \) are respectively integrating along the segments \([-k + iT, 2 + iT], [-k + iT, -k - iT], [-k - iT, 2 - iT]\). It remains to prove that for each \(j = 1, 2, 3 \), \(\lim_{k,T \to +\infty} |I_j(T, k)| = 0 \). We use the classical bounds (see [1] page 108)

\[
|\zeta'(\sigma + iT)| \ll \begin{cases} \log^2 T & \text{if } -1 \leq \sigma \leq 2, \\ \log(|\sigma| + T) & \text{if } -k \leq \sigma \leq -1, \end{cases}
\]

together with inequality (2.7) for \(F \), and obtain

\[
|I_1(T, k)| \ll \frac{\log^2 T}{T^{m+1}} |x^2| + \frac{\log T}{T^{m+1}} \frac{1}{x \log x} + \frac{x^{-T}}{T^{m-1}}.
\]

We conclude that \(\lim_{k,T \to +\infty} |I_1(T, k)| = 0 \). Note that \(I_3(T, k) = I_1(-T, k) \) converges to 0 by a similar argument. For \(I_2(T, k) \), we combine (2.7) with [1] inequality (8):

\[
|F(-k + it)| \ll \frac{-\zeta'(-k + it)}{\zeta} \ll \begin{cases} \frac{\log k}{|k|^{m+1}} & \text{if } |t| \leq \frac{3}{2}, \\ \frac{\log |t|}{|t|^{m+1}} & \text{if } |t| > \frac{3}{2}. \end{cases}
\]

Thus \(|I_2(T, k)| \ll x^{-k} \left(\frac{\log k}{k^{m+1}} + \frac{\log T}{T^{m}} \right) \), and \(\lim_{k,T \to +\infty} |I_2(T, k)| = 0 \). \[\square\]

2.3. A general form of explicit bounds for \(\psi(x) \). We deduce from (2.7) that

\[
\left| \sum_{n=1}^{\infty} x^{-2n} F(-2n) \right| \leq M(a, b, 0) \sum_{n=1}^{\infty} \frac{x^{-2n}}{2n} \leq \frac{M(a, b, 0)}{2x^2}.
\]

Together with the above, (2.6), and \(-\frac{\zeta'}{\zeta}(0) = -\frac{\log(2\pi)}{2} \), it follows that

\[
(2.11) \quad E_{\psi}(x) \leq \left| a - 1 + (b - a) \int_{0}^{1} g(u) du \right| + \sum_{\rho} x^{\beta - 1} |F(\rho)| + \frac{\log(2\pi)}{2} x^{-1} + \frac{M(a, b, 0)}{2} x^{-3}.
\]

To study the sum over the zeros, we introduce the notation

\[
* \quad H > 0 \text{ is such that if } \zeta(\beta + i\gamma) = 0 \text{ and } 0 < \gamma < H, \text{ then } \beta = 1/2,
\]

\[
* \quad T_0 > 0 \text{ is such that } \sum_{0 < \gamma < T_0} \gamma^{-1} \text{ can be directly computed},
\]

\[
* \quad T_1 \text{ is a parameter satisfying } T_0 < T_1 < H,
\]

\[
* \quad R \text{ is a constant so that } \zeta(\sigma + iT) \text{ does not vanish in the region}
\]

\[
(2.12) \quad \sigma \geq 1 - \frac{1}{R \log |t|} \text{ and } |t| \geq 2,
\]

\[
* \quad \sigma_0 \text{ is a parameter satisfying } 3/5 \leq \sigma_0 < 1,
\]

\[
* \quad c_1 > 0, c_2 > 0, c_3 < 0 \text{ depend on } \sigma_0 \text{ so that } N(\sigma_0, T) \leq c_1 T + c_2 \log T + c_3, \text{ for all } T \geq H.
\]

Using the symmetry of the zeros of zeta and using the notation \(\sum^* = \frac{1}{2} \sum_{\beta=1/2} + \sum_{1/2 < \beta < 1} \) we have:

\[
(2.13) \quad \sum_{\rho} x^{\beta - 1} |F(\rho)| = \sum_{\gamma > 0}^* \left(x^{\beta - 1} + x^{-\beta} \right) \left(|F(\rho)| + |F(\bar{\rho})| \right).
\]
We now separate the zeros vertically at H:

$$
\sum_{\rho} x^{\beta-1} |F(\rho)| = \Sigma_1 + \Sigma_2,
$$

with

$$
\Sigma_1 = x^{-\frac{1}{2}} \sum_{0 < \gamma \leq H} (|F(1/2 + i\gamma)| + |F(1/2 - i\gamma)|), \quad \Sigma_2 = \sum_{\gamma > H}^* (x^{\beta-1} + x^{-\beta}) (|F(\rho)| + |F(\overline{\rho})|).
$$

We split Σ_1 vertically at T_1 and use (2.7) to bound $|F(\rho)|$ with $k = 0$ when $\gamma \leq T_1$, and $k = m$ when $T_1 < \gamma \leq H$ respectively. Thus

$$
\Sigma_1 \leq 2x^{-\frac{1}{2}} \left(M(a, b, 0) \sum_{0 < \gamma \leq T_1} \frac{1}{\gamma} + \frac{M(a, b, m)}{(b - a)^m} \sum_{T_1 < \gamma \leq H} \frac{1}{\gamma^{m+1}} \right).
$$

Moreover, we split the first sum at height $T_0 \leq T_1$ and denote s_0 a close upper bound for $\sum_{\gamma \leq T_0} \frac{1}{\gamma}$.

In [24], the authors use $T_0 = 158.84998$ and $s_0 = 0.8113925$. We use here a computation of Darcy Best (personal communication) based on Odlyzko’s list of zeros [15]: $T_0 = 1132.491$ and $s_0 = 11.637732$.

We use (2.7) with $k = m$ for Σ_2 and split it horizontally at σ_0. Together with the zero-free region given in Theorem 1.4 and the fact that $x^{\beta-1} + x^{-\beta}$ increases with β, we obtain

$$
\Sigma_2 \leq 2 \frac{M(a, b, m)}{(b - a)^m} \left(x^{-(1-\sigma_0)} + x^{-\sigma_0} \sum_{\gamma > H} \frac{1}{\gamma^{m+1}} + \sum_{\gamma > H, \sigma_0 < \beta < 1} \frac{x^{-\frac{1}{R \log \gamma}} + x^{-(1-\frac{1}{R \log H})}}{\gamma^{m+1}} \right).
$$

We denote

$$
s_1(T_1) = \sum_{0 < \gamma \leq T_1} \frac{1}{\gamma}, \quad s_2(m, T_1) = \sum_{T_1 < \gamma \leq H} \frac{1}{\gamma^{m+1}}, \quad s_3(m) = \sum_{\gamma > H} \frac{1}{\gamma^{m+1}}, \quad s_4(m, \sigma_0) = \sum_{\gamma > H, \sigma_0 < \beta < 1} \frac{x^{-\frac{1}{R \log \gamma}}}{\gamma^{m+1}}, \quad s_5(x, m, \sigma_0) = \sum_{\gamma > H, \sigma_0 < \beta < 1} \frac{x^{-\frac{1}{R \log \gamma}}}{\gamma^{m+1}}.
$$

We have

$$
\sum_{\rho} x^{\beta-1} |F(\rho)| \leq 2 \left(M(a, b, 0)s_1(T_1) + \frac{M(a, b, m)}{(b - a)^m} s_2(m, T_1) \right) x^{-\frac{1}{2}}
$$

$$
+ 2 \frac{M(a, b, m)}{(b - a)^m} \left(x^{-(1-\sigma_0)} + x^{-\sigma_0} \right) s_3(m) + x^{-(1-\frac{1}{R \log H})} s_4(m, \sigma_0) + s_5(x, m, \sigma_0).
$$

We conclude by inserting (2.18) in (2.11).
Lemma 2.4. Let $0 < a < b, m \in \mathbb{N}$, with $m \geq 2$. Let f be a function satisfying Definition 2.7. Let H, T_0, T_1, R, and σ_0 satisfy (2.12). Then for all $x > 0$, $E_{\gamma}(x) \leq K(x, a, b, m, \sigma_0)$, where

\begin{equation}
K(x, a, b, m, \sigma_0) = \left| a - 1 + (b - a) \int_0^1 g(u)du \right| + \frac{2M(a, b, m)}{(b - a)^m} \left((x^{-1-\sigma_0} + x^{-\sigma_0})s_3(m) + x^{-1-\frac{1}{m}}s_4(m, \sigma_0) + s_5(x, m, \sigma_0) \right) + 2\left(M(a, b, 0)s_0 + M(a, b, 0)s_1(T_1) + \frac{M(a, b, m)}{(b - a)^m}s_2(m, T_1) \right) x^{-\frac{1}{2}} + \frac{\log(2\pi)}{2}x^{-1} + \frac{M(a, b, 0)}{2}x^{-3},
\end{equation}

and $M(a, b, m)$ and the s_i’s are defined in (2.5) and (2.17) respectively.

Note that for a, b, m, σ_0 fixed constants, $K(x, a, b, m, \sigma_0)$ decreases with x. Thus, for all $x \geq x_0$

\begin{equation}
E_{\gamma}(x) \leq K(x_0, a, b, m, \sigma_0).
\end{equation}

2.3.1. Bounding $s_1(T_1)$, $s_2(m, T_1)$, and $s_3(m)$. We apply here a result from Rosser and Schoenfeld [24]. It uses explicit estimates for $N(T)$ as given in Theorem 3.4 to bound certain sums over the zeros of zeta.

Lemma 2.5. [24] Lemma 7] Let $1 < U \leq V$, and let $\Phi(y)$ be nonnegative and differentiable for $U < y < V$. Let $(W - y)\Phi'(y) \geq 0$ for $U < y < V$, where W need not lie in $[U, V]$. Let Y be one of U, V, W which is neither greater than both the others or less than both the others. Choose $j = 0$ or 1 so that $(-1)^j(V - W) \geq 0$. Then

\begin{equation}
\sum_{U < \gamma \leq V} \Phi(\gamma) \leq \frac{1}{2\pi} \int_U^V \Phi(y) \log \frac{y}{2\pi} dy + (-1)^j \left(a_1 + \frac{a_2}{\log Y} \right) \int_U^V \frac{\Phi(y)}{y} dy + E_j(U, V),
\end{equation}

where the error term $E_j(U, V)$ is given by

\[E_j(U, V) = (1 + (-1)^j)R(Y)\Phi(Y) + (N(V) - P(V) - (-1)^j R(V))\Phi(V) - (N(U) - P(U) + R(U))\Phi(U). \]

Corollary 2.6. [24] Corollary of Lemma 7] If, in addition, $2\pi < U$, then

\begin{equation}
\sum_{U < \gamma \leq V} \Phi(\gamma) \leq \frac{1}{2\pi} + (-1)^j q(Y)) \int_U^V \Phi(y) \log \frac{y}{2\pi} dy + E_j(U, V), \quad \text{where} \quad q(y) = \frac{a_1 \log y + a_2}{y \log y \log(y/2\pi)}.
\end{equation}

Moreover, if $j = 0$ and $W < U$, then

\begin{equation}
E_0(U, V) \leq 2R(U)\Phi(U).
\end{equation}

We give details on how we apply Corollary 2.6 and (2.21) to s_1, s_2, and s_3. We take respectively

- $\Phi(y) = y^{-1}, U = T_0, V = T_1$,
- $\Phi(y) = y^{-m-1}, U = T_1, V = H$,
- $\Phi(y) = y^{-m-1}, U = H, V = \infty$.

8
In each case, $\Phi'(y) \leq 0$ for all y, and we choose $W < U$, $Y = U$, and $j = 0$. Since
\[
\int_{T_0}^{T_1} \log \frac{y}{2\pi} dy = \log(T_1/T_0) \log(\sqrt{T_1T_0}/(2\pi)),
\]
\[
\int_{U}^{V} \log \frac{y}{2\pi} dy = \frac{1 + m \log(U/2\pi)}{m^2 U^m} - \frac{1 + m \log(V/2\pi)}{m^2 V^m},
\]
we obtain:
\[
(2.22)
\]
\[
s_1(T_1) \leq B_1(T_1) = s_0 + \left(\frac{1}{2\pi} + q(T_0)\right) \left(\log(T_1/T_0) \log(\sqrt{T_1T_0}/(2\pi))\right) + \frac{2R(T_0)}{T_0},
\]
\[
(2.23)
\]
\[
s_2(m, T_1) \leq B_2(m, T_1) = \left(\frac{1}{2\pi} + q(T_1)\right) \left(\frac{1 + m \log(T_1/2\pi)}{m^2 T_1^m} \right) - \frac{1 + m \log(H/2\pi)}{m^2 H^m} + \frac{2R(T_1)}{T_1^{m+1}},
\]
\[
(2.24)
\]
\[
s_3(m) \leq B_3(m) = \left(\frac{1}{2\pi} + q(H)\right) \frac{1 + m \log(H/2\pi)}{m^2 H^m} + \frac{2R(H)}{H^{m+1}}.
\]

2.3.2. Bounding $s_4(m, \sigma_0)$ and $s_5(x, m, \sigma_0)$. We assume here that $\Phi(y) = o(y)$ when $y \to \infty$, so as to ensure that $\lim_{y \to \infty} \Phi(y) N(\sigma_0, y) = 0$. Since all non-trivial zeros of zeta have real part $1/2$ when $\gamma \leq H$, then $N(\sigma_0, H) = 0$ and we have the Stieltjes integral
\[
\sum_{\gamma \geq H, \beta > \sigma_0} \Phi(\gamma) = -\int_{H}^{\infty} N(\sigma_0, y) \Phi'(y) dy.
\]

Lemma 2.7. Let $H, \sigma_0, c_1, c_2, c_3$ satisfy (2.12). Let $H < U \leq V$, and let $\Phi(y)$ be non-negative and differentiable for $U < y < V$. Assume $\Phi(y) = o(y)$ when $y \to \infty$ and $(W - y)\Phi'(y) \geq 0$ for all $U < y < V$, where W need not lie in $[U, V]$. Let Y be one of U, V, W which is neither greater than both the others or less than both the others. Then
\[
\sum_{U < \gamma < V, \beta > \sigma_0} \Phi(\gamma) \leq (c_1 Y + c_2 \log Y + c_3) \Phi(Y) - (c_1 V + c_2 \log V + c_3) \Phi(V) + \int_{Y}^{V} (c_1 + c_2/y) \Phi(y) dy.
\]

Proof. We have $0 \leq N(\sigma_0, y) \leq c_1 y + c_2 \log y + c_3$. Our assumptions ensure us that $\Phi'(y) \geq 0$ if $U \leq y \leq Y$ and that $\Phi'(y) \leq 0$ if $Y \leq y \leq V$. Thus
\[
-\int_{U}^{V} N(\sigma_0, y) \Phi'(y) dy \leq -\int_{Y}^{V} (c_1 y + c_2 \log y + c_3) \Phi'(y) dy,
\]
and we integrate by part to complete the proof. \hfill \Box

For $s_4(m, \sigma_0)$, we take $\Phi(y) = \frac{1}{y^{m+1}}$, $\Phi'(y) = -\frac{m+1}{y^{m+2}}$, $W < U = Y = H$, and $V = \infty$. Thus
\[
(2.25)
\]
\[
s_4(m, \sigma_0) \leq B_4(m, H, \sigma_0) = \left(c_1 \left(1 + \frac{1}{m}\right) + c_2 \log H \frac{1}{H} + (c_3 + \frac{c_2}{m+1}) \frac{1}{H^{m}}\right) \frac{1}{H^{m}}.
\]

For $s_5(x, m, \sigma_0)$, we apply Lemma [2.7] with $U = H$, $V = \infty$, $\Phi(y) = \phi_m(y) = \frac{\log x}{R(\log x)} - (m + 1)\phi_{m}(y)$, $\phi_{m}(y)$ is
\[
\left(\frac{\log x}{R(\log x)} - (m + 1)\right)\frac{\phi_{m}(y)}{y}
\]
and
\[
(2.26)
\]
\[
W = e^{\sqrt{\frac{\log x}{R(\log x)} - (m + 1)}}.
\]
Let \(J_m(Y) \) denote the integral
\[
J_m(Y) = \int_Y^\infty \phi_m(y)dy.
\]
We obtain
\[
s_5(x, m, \sigma_0) \leq (c_1Y + c_2 \log Y + c_3)\phi_m(Y) + c_1J_m(Y) + c_2J_{m+1}(Y),
\]
Let \(z > 0, w \geq 0 \). We appeal to the theory of the following modified Bessel function
\[
K_\nu(z, w) = \frac{1}{2} \int_w^\infty t^{\nu-1} \exp \left(-\frac{z}{2}(t + 1/t) \right) dt.
\]
We do the variable change \(y = e^{z/t} \), take \(z = 2\sqrt{\frac{m}{R}} \), \(w = \sqrt{\frac{mR}{\log z}} \log Y = \frac{2m}{z} \log Y \), and recognize
\[
J_m(Y) = \frac{z}{2m}K_1(z, w).
\]
We use [24, Lemma 4] which asserts that if \(w > 1 \) then
\[
(2.28) \quad K_1(z, w) \leq Q_1(z, w) = \frac{w^2}{z(w^2 - 1)} \exp \left(-z/2(w + 1/w)\right).
\]
We deduce for \(J_m(Y) \) that if \(\log x < mR(\log Y)^2 \), then
\[
(2.29) \quad J_m(Y) \leq \frac{R}{2 \log x} \left(\frac{mR}{\log x} \right)^2 Y^{-m} e^{-\frac{\log x}{R(\log Y)}}.
\]
In this case, we have \(W < H, Y = H \). We insert (2.29) in (2.27) and obtain
\[
s_5(x, m, \sigma_0) \leq (c_1 + c_2 \frac{\log H}{H} + c_3) x^{-\frac{1}{\log H}} + c_1J_m(H) + c_2J_{m+1}(H),
\]
We conclude that if \(\log x < mR(\log H)^2 \) then
\[
(2.30) \quad s_5(x, m, \sigma_0) \leq B_5(x, m, \sigma_0) = \left(c_1 + c_2 \frac{\log H}{H} + c_3 \frac{H}{H} + c_1 \frac{R}{2 \log x} \left(\frac{mR}{\log x} \right)^2 \right) x^{-\frac{1}{\log H}}.
\]

2.3.3. Main Theorem. We deduce a new bound for \(K(x, a, b, m, \sigma_0) \) from (2.22), (2.23), (2.24), (2.25), and (2.30). Lemma 2.4 becomes

Theorem 2.8. Let \(0 < a < b, m \in \mathbb{N} \), with \(m \geq 2 \). Let \(f \) and \(g \) be functions satisfying Definition 2.1 and \(M(a, b, m) \) as defined in (2.5). Let \(H, T_0, T_1, R, \sigma_0, c_1, c_2, c_3 \) satisfy (2.12). Let \(x_0 \) be a positive constant satisfying \(x_0 < \exp(mR(\log H)^2) \). Then for all \(x \geq x_0 \)
\[
(2.31) \quad E_\varphi(x) \leq |a-1+(b-a) \int_0^1 g(u)du| + \frac{2M(a, b, m)B_5(x_0, m, \sigma_0)}{(b-a)^m} x_0^{-(1-\sigma_0)} + \frac{2M(a, b, m)B_3(m)}{(b-a)^m} x_0^{-1} + \frac{2M(a, b, m)B_3(m)}{(b-a)^m} x_0^{-1},
\]
where the \(B_i \)'s are defined in (2.22), (2.23), (2.24), (2.25), and (2.30).
3. New explicit bounds for $\psi(x)$.

3.1. Choosing the smooth function. We want to find a function g satisfying Definition 2.1 and so that the quotient $M(a, b, m)$ is as small as possible. By the Cauchy-Schwarz inequality we have

$$M(a, b, m) \leq \sqrt{\frac{b^{2m+3} - a^{2m+3}}{(b-a)(2m+3)}} \sqrt{\int_0^1 (g^{(m+1)}(u))^2 du}.$$

It follows from Calculus of Variations (see [4, Chapter 2, §11]) that the function g optimizing the quotient $\sqrt{\int_0^1 (g^{(m+1)}(u))^2 du}$ is given by

$$g(x) = 1 - (2m+1)! \int_0^x t^m(1-t)^m dt.$$

We observe that our choice of kernel is a primitive of the one used in the context of short intervals containing primes by Ramaré & Saouter [21]. This is not surprising as our object of study is $\sum_{n \geq 1} \Lambda(n) f(n/x)$, while theirs is essentially $\sum_{n \geq 1} \Lambda(n) (f(n/y) - f(n/x))$. Since y is close to x, this is approximately $\sum_{n \geq 1} \Lambda(n) f'(n/x)$.

With definition (3.2), we find

$$\int_0^1 g(u) du = 1 - \frac{(2m+1)!}{(m!)^2} \int_0^1 t^m(1-t)^m dt = \frac{1}{2},$$

and

$$M(a, b, 0) = \frac{a + b}{2}.$$

We use (3.1) to provide a simple bound for $M(a, b, m)$. Since $g(1) = 0$, $g(0) = 1$, and $g^{(2m+2)}(x) = 0$ for all $0 < x < 1$, integrating by parts m times leads to

$$\int_0^1 (g^{(m+1)}(u))^2 du = (-1)^m \int_0^1 g^{(2m+1)}(u) \cdot g'(u) du = (-1)^m g^{(2m+1)}(0) = \frac{(2m)!(2m+1)!}{(m!)^2}.$$

Thus (3.1) becomes

$$M(a, b, m) \leq \lambda(a, b, m) = \sqrt{\frac{b^{2m+3} - a^{2m+3}}{(b-a)(2m+3)}} \cdot \frac{\sqrt{(2m)!(2m+1)!}}{m!}.$$

From (3.2), we recognize that

$$g^{(m+1)}(u) = -\frac{(2m+1)!}{m!} P_m(1-2u),$$

where P_m is the m^{th} Legendre polynomial as given by Rodrigues’ formula (see [11, formula (0.4)]):

$$P_m(x) = \frac{1}{2^m m! \partial_x^m} (x^2 - 1)^m.$$

They can be written explicitly (see [11, formula (0.2)]):

$$P_m(x) = \sum_{k=0}^m \binom{m}{k}^2 \left(\frac{x+1}{2} \right)^k \left(\frac{x-1}{2} \right)^{m-k}.$$

11
These polynomials are well-known and are among the built-in functions of PARI/GP. Since the
sign of P_m alternates between its roots, $M(a, b, m)$ can be computed directly from

(3.6) \[M(a, b, m) = \frac{(2m + 1)!}{m!} \int_0^1 |P_m(1 - 2u)| ((b - a)u + a)^{m+1} du. \]

3.2. New explicit bounds for $\psi(x)$. We rewrite Theorem 2.8 with g as chosen in (3.2):

Theorem 3.1. Let $m \in \mathbb{N}$, $m \geq 2$, $\delta > 0$, and the pair (a, b) takes values $(1, 1 + \delta)$ or $(1 - \delta, 1)$. Let $H, T_0, T_1, R, \sigma_0, c_1, c_2, c_3$ satisfy (2.12). Let $b_0 > 0$ be a positive constant satisfying $b_0 < (m + 1)R(\log H)^2$. Then for all $x \geq e^{b_0}$

(3.7) \[E_\mathcal{S}(x) \leq \frac{\delta}{2} + \frac{2M(a, b, m)B_5(e^{b_0}, m, \sigma_0)}{\delta^m} + \frac{2M(a, b, m)B_3(m)}{\delta^m} e^{-(1-\sigma_0)b_0} \]
\[+ \frac{2M(a, b, m)B_3(m)}{\delta^m} e^{-\sigma_0b_0} + \frac{2M(a, b, m)B_3(m)}{\delta^m} e^{-(1-R/\sigma_0)b_0} \]
\[+ \left(\frac{\delta}{2} B_1(T_1) + \frac{M(a, b, m)B_2(m, T_1)}{\delta^m} \right) e^{-b_0/2} + \frac{\log(2\pi)}{2} e^{-b_0} + \frac{M(a, b, 0)}{2} e^{-3b_0}, \]

where $M(a, b, m)$ is given by (3.6), and the B_i’s are defined in (2.22), (2.23), (2.24), (2.25), and (2.30).

3.3. Proof of Theorem 1.1. Let $b_0 \geq 2$ be a fixed constant satisfying $b_0 < 3R(\log H)^2$ (that is $b_0 < 9.963$ for $H = 3.061 \times 10^{10}$ and $b_0 < 13.906$ for $H = 2445999556030$). Let $x \geq e^{b_0}$. We define

(3.8) \[\epsilon(b_0, a, b, m, \sigma_0, T_1) = \frac{\delta}{2} + \frac{2M(a, b, m)B_5(e^{b_0}, m, \sigma_0)}{\delta^m} + \frac{2M(a, b, m)B_3(m)}{\delta^m} e^{-(1-\sigma_0)b_0} \]
\[+ \frac{2M(a, b, m)B_3(m)}{\delta^m} e^{-\sigma_0b_0} + \frac{2M(a, b, m)B_3(m)}{\delta^m} e^{-(1-R/\sigma_0)b_0} \]
\[+ \left(\frac{\delta}{2} B_1(T_1) + \frac{M(a, b, m)B_2(m, T_1)}{\delta^m} \right) e^{-b_0/2} + \frac{\log(2\pi)}{2} e^{-b_0} + \frac{M(a, b, 0)}{2} e^{-3b_0}. \]

The definition for ϵ_0 follows directly from (2.2) and Theorem 3.1.

(3.9) \[\epsilon_0 = \max \left(\epsilon(b_0, 1, 1 + \delta, m, \sigma_0, T_1), \epsilon(b_0, 1 - \delta, 1, m, \sigma_0, T_1) \right). \]

To compute $\epsilon(b_0, 1, 1 + d, m, \sigma_0, T_1)$, we choose a value for σ_0 in Table 2\footnote{Table 2 is not included in the text.} an integer value larger than 2 for m, and a value for δ with up to 4 significant digits. Then we choose a value for T_1 which is either T_0, H or so that it satisfies

\[\frac{\delta}{2} B_1(T_1) = \frac{M(1, 1 + \delta, m)B_2(m, T_1)}{\delta^m}. \]

We do the same to compute $\epsilon(b_0, 1 - \delta, 1, m, \sigma_0, T_1)$. All values for σ_0, m, and δ are chosen to make ϵ_0 as small as possible.

3.4. Comparison with Rosser and Schoenfeld’s method.
3.4.1. The smoothing argument. The first step of their argument consists in studying \(\psi(x) \) on average on a small interval around a large \(x \) value. Let \(x, \delta > 0 \) with \(x \notin \mathbb{N} \). Let \(m \in \mathbb{N} \). It follows from the First Mean Value Theorem for Integrals applied to \(h(z) = \psi(x + z) - (x + z) \) that there exists \(z \in (0, \delta x) \) such that:

\[
h(z) + z \leq \frac{1}{(\delta/m)x^m} \int_0^{\delta x/m} \cdots \int_0^{\delta x/m} (h(y_1 + \ldots + y_m) + (y_1 + \ldots + y_m)) \, dy_1 \ldots dy_m.
\]

(In order to make Rosser and Schoenfeld’s article consistent with our setup, we replace their \(\delta \) with our \(\delta/m \).) Implementing the explicit formula (1.1) in the right integrals together with the fact that \(\psi(x + z) \leq \psi(x) \) leads to [22, Theorems 12 and 14]:

\[
E(x) \leq \frac{\delta}{2} + \Sigma(m, \delta, x) + O(x^{-1}),
\]

with

\[
\Sigma(m, \delta, x) = \left| \sum_\rho x^{\rho-1} I_{m, \delta}(\rho) \right|, \quad \text{and} \quad I_{m, \delta}(\rho) = \frac{\sum_{j=0}^{m}(-1)^{j+m+1} m_j (1 + j \delta/m)^{m+\rho}}{(\delta/m)^{m} \rho(\rho + 1) \ldots (\rho + m)}.
\]

We recall that we obtain (3.10) with

\[
\Sigma(m, \delta, x) = \left| \sum_\rho x^{\rho-1} F(\rho) \right|.
\]

We recognize that \(I_{m, \delta} \) is indeed the Mellin transform of

\[
\nu(t) = \frac{1}{m!} \sum_{j=0}^{m} (-1)^{j+m} \binom{m}{j} \left(\frac{1 + j \delta/m - t}{\delta/m} \right)^m \mathbb{1} \left(\frac{t}{1 + j \delta/m} \right),
\]

where \(\mathbb{1} \) is the indicator function on \((0, 1)\). Instead we use the function \(f \) given by Definition 2.1 and (3.2):

\[
f(x) = 1 - \frac{(2m + 1)!}{(m!)^2} \int_0^{\frac{2+1}{m}} t^m (1 - t)^m \, dt.
\]

We now compare the size of each Mellin transform. Rosser establishes (see [22, Theorem 15]) that

\[
|I_{m, \delta}(\rho)| \leq \frac{(1 + \delta/m)^{m+1} + 1)^m}{(\delta/m)^{m} |\gamma|^{m+1}} = \frac{2^m m^m}{\delta^m |\gamma|^{m+1}} (1 + o(1)),
\]

while we have from (2.7) and (3.5)

\[
|F(\rho)| \leq \frac{M(1, 1 + \delta, m)}{\delta^m |\gamma|^{m+1}} \leq \frac{\sqrt{(2m)!}(2m+1)!}{m!\delta^m |\gamma|^{m+1}} (1 + o(1)).
\]

It follows from Stirling Formula that the quotient \(\frac{|F(\rho)|}{|I_{m, \delta}(\rho)|} = \frac{\sqrt{(2m)!}(2m+1)!}{(2m)^m(m!)^2} \) decreases rapidly to 0 as \(m \) grows. For instance it is 0.0083\ldots when we take \(m = 23 \) for \(b_0 = 50 \).
3.4.2. The new density of zeros. When \(x \) is large enough, the largest contribution to \(\Sigma(m, \delta, x) \) arises from

\[
\sum_{\gamma > H, \sigma_0 < \beta < 1 - \frac{1}{\pi \log \gamma}} x^{-\frac{1}{\pi \log \gamma}} \gamma^m + 1.
\]

Rosser and successive authors took \(\sigma_0 = 1/2 \) since only bounds for \(N(T) \) were available. Rosser and Schoenfeld find (see [24] equations (3.4), (3.16) and (2.4)) that if \(b_0 \leq 2R \log^2 H \) and \(x \geq e^{b_0} \) then

\[
e^{b_0} \frac{H^m}{\pi \log H} \sum_{\gamma > H, 1/2 < \beta < 1 - \frac{1}{\pi \log \gamma}} x^{-\frac{1}{\pi \log \gamma}} \gamma^m + 1 \leq \frac{R(\log H)^3}{2\pi b_0 \left(\frac{mR(\log H)^2}{b_0} - 1 \right)} (1 + o(1)).
\]

We are able to reduce significantly the contribution of the sum by using \(\sigma_0 \) closer to the limit of the zero-free region. We establish that if \(b_0 \leq 3R \log^2 H \) and \(x \geq e^{b_0} \) then the above bound is replaced with

\[
(c_1 + \frac{c_2 \log H}{H} + \frac{c_3}{H}) + \left(c_1 + \frac{c_2}{H} \right) \frac{R}{2b_0} \left(\frac{\log H^2}{\log H^2} - 1 \right).
\]

When \(\left(\frac{mR(b_0)}{b_0} \right)(\log H)^2 - 1 \) is large enough (for instance for \(45 \leq b_0 \leq 2000 \) and \(m \geq 10 \)), the main contribution arises from the above left expression. We use the values for the \(c_i \)'s from the right column of Table 2, as they make \(c_1H + c_2 \log H + c_3 \) small. Otherwise, we use the values from the left column as they provide the smallest value for \(c_1 + \frac{c_2}{H} \).

REFERENCES

[1] H. Davenport, Multiplicative Number Theory: Third Edition, (2000).
[2] P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Thèse, Université de Limoges, 1998.
[3] P. Dusart, Estimates of some functions over primes without RH, arXiv:1002.0442, 2010.
[4] I. M. Gelfand, S. V. Fomin, Calculus of Variations, England Cliffs, N.J.: Prentice-Hall Inc., (1963), Ch2 §11.
[5] X. Gourdon, The 10^{13} first zeros of the Riemann Zeta function, and zeros computation at very large height, preprint, http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf
[6] H. Helfgott, Minor arcs for Goldbach’s problem, arXiv:1205.5252 (2012).
[7] H. Helfgott, Major arcs for Goldbach’s theorem, arXiv 1305.2897 (2013).
[8] H. Kadiri, Une région explicite sans zéros pour la fonction \(\zeta \) de Riemann, Acta Arith. 117 (2005), no. 4, 303–339.
[9] H. Kadiri, A zero density result for the Riemann zeta function, Acta Arith. 160 (2013), no. 2, 185–200.
[10] D. Kaminski, R. B. Paris, Asymptotics and Mellin-Barnes integrals, Encyclopedia of Mathematics and its Applications, 85. Cambridge University Press, Cambridge, 2001.
[11] W. Koepf, Hypergeometric Summation: An algorithmic approach to summation and special function identities, Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 1998.
[12] D. H. Lehmer, On the roots of the Riemann zeta-function, Acta Math. 95 (1956), 291–298.
[13] D. H. Lehmer, Extended computation of the Riemann zeta-function, Mathematika 3 (1956), 102108.
[14] S. Nazardonayavi, S. Yakubovich, Sharper estimates of Chebyshev’s functions \(\theta \) and \(\psi \), arXiv:1302.7208v1, (2013).
[15] A. Odlyzko, Tables of zeros of the Riemann zeta function, http://www.dtc.umn.edu/~odlyzko/zeta_tables/
[16] D. Platt, Computing degree 1 \(L \)-functions rigorously, Ph.D. Thesis, University of Bristol (2011).
[17] D. Platt, Computing \(\pi(x) \) analytically, arXiv:1203.5712 (2012).
[18] O. Ramaré, On S\'nirelman’s constant, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995), no. 4, 645–706.
[19] O. Ramaré, Explicit estimates for the summatory function of \(\lambda(n)/n \) from the one of \(\lambda(n) \), Acta Arith. 159 (2013), 113–122.
[20] O. Ramaré, R. Rumely, Primes in Arithmetic Progressions, Math. Comp. 65, 213, (1996), 397–425.
[21] O. Ramaré, X. Saouter, *Short effective intervals containing primes*. J. Number Theory 98 (2003), 10–33.

[22] J. B. Rosser, *Explicit bounds for some functions of prime numbers*, Amer. J. Math. 63 (1941), 211–232.

[23] J. B. Rosser, L. Schoenfeld, *Approximate formulas for some functions of prime numbers*, Illinois J. Math. 6 (1962), 64–94.

[24] J. B. Rosser, L. Schoenfeld, *Sharper bounds for the Chebyshev functions \(\theta(x) \) and \(\psi(x) \)*, Math. Comp., 29, 129 (1975), 243–269.

[25] T. Tao, *Every odd number greater than 1 is the sum of at most five primes*, Math. Comp., article electronically published on June 24, 2013, S 0025-5718(2013)02733-0.

[26] J. Van de Lune, H. J. J. te Riele, D. T. Winter, *On the zeros of the Riemann zeta-function in the critical strip. IV* Math. Comp., 46, 174, 1986, 667–681.

[27] S. Wedeniwski - ZETAGRID, *Computational verification of the Riemann hypothesis* Conference in Number Theory in Honour of Professor H.C. Williams, Alberta, Canada, May 2003. http://www.zetagrid.net/zeta/math/zeta.result.100billion.zeros.html
Table 2. For all $T \geq H$, $N(\sigma, T) \leq c_1 T + c_2 \log T + c_3$.

σ	c_1	c_2	c_3	c_1	c_2	c_3
0.60	4.2288	2.2841	-81.673	28.6424	2.2841	-8.7674 $\cdot 10^{11}$
0.65	2.4361	1.7965	-97.414	17.1679	1.3674	-5.2550 $\cdot 10^{11}$
0.70	1.4934	1.4609	-136.370	12.3778	0.9859	-3.7888 $\cdot 10^{11}$
0.75	1.0031	1.1442	-169.449	9.6776	0.7708	-2.9622 $\cdot 10^{11}$
0.76	0.9355	1.0921	-176.604	9.2730	0.7386	-2.8384 $\cdot 10^{11}$
0.77	0.8750	1.0437	-184.134	8.9009	0.7089	-2.7245 $\cdot 10^{11}$
0.78	0.8205	0.9986	-192.120	8.5575	0.6816	-2.6194 $\cdot 10^{11}$
0.79	0.7714	0.9566	-200.644	8.2396	0.6563	-2.5221 $\cdot 10^{11}$
0.80	0.7269	0.9176	-209.795	7.9445	0.6328	-2.4317 $\cdot 10^{11}$
0.81	0.6864	0.8812	-219.667	7.6698	0.6109	-2.3477 $\cdot 10^{11}$
0.82	0.6495	0.8473	-230.367	7.4135	0.5905	-2.2692 $\cdot 10^{11}$
0.83	0.6156	0.8157	-242.009	7.1737	0.5714	-2.1958 $\cdot 10^{11}$
0.84	0.5846	0.7862	-254.724	6.9490	0.5535	-2.1270 $\cdot 10^{11}$
0.85	0.5561	0.7586	-268.658	6.7379	0.5367	-2.0624 $\cdot 10^{11}$
0.86	0.5297	0.7327	-283.978	6.5392	0.5209	-2.0016 $\cdot 10^{11}$
0.87	0.5053	0.7085	-300.872	6.3520	0.5059	-1.9443 $\cdot 10^{11}$
0.88	0.4827	0.6857	-319.555	6.1751	0.4919	-1.8901 $\cdot 10^{11}$
0.89	0.4617	0.6644	-340.272	6.0079	0.4785	-1.8389 $\cdot 10^{11}$
0.90	0.4421	0.6443	-363.301	5.8494	0.4659	-1.7905 $\cdot 10^{11}$
0.91	0.4238	0.6253	-388.959	5.6991	0.4539	-1.7444 $\cdot 10^{11}$
0.92	0.4066	0.6075	-417.606	5.5564	0.4426	-1.7007 $\cdot 10^{11}$
0.93	0.3905	0.5906	-449.647	5.4206	0.4318	-1.6592 $\cdot 10^{11}$
0.94	0.3754	0.5747	-485.543	5.2913	0.4215	-1.6196 $\cdot 10^{11}$
0.95	0.3612	0.5596	-525.807	5.1680	0.4116	-1.5819 $\cdot 10^{11}$
0.96	0.3478	0.5452	-571.018	5.0503	0.4023	-1.5458 $\cdot 10^{11}$
0.97	0.3352	0.5316	-621.815	4.9379	0.3933	-1.5114 $\cdot 10^{11}$
0.98	0.3232	0.5187	-678.911	4.8304	0.3848	-1.4785 $\cdot 10^{11}$
0.99	0.3118	0.5063	-743.087	4.7274	0.3766	-1.4470 $\cdot 10^{11}$

To verify the values for the c_i’s, we refer the reader to [9 Section 6]: we choose the parameters from this article to be $H = H_0 - 1, \sigma_0 = 0.522817$ for $\sigma = 0.60$ and $\sigma_0 = 0.5208$ otherwise.
Table 3: Let $H = 3.061 \cdot 10^{10}$ and $b_0 \leq 9963$. For all $x \geq e^{b_0}$, $E(x) \leq \epsilon_0$.

b_0	σ_0	m	δ	T_1	ϵ_0
20	0.89	4	$1.363 \cdot 10^{-6}$	T_0	$5.3668 \cdot 10^{-4}$
25	0.89	3	$7.256 \cdot 10^{-6}$	T_0	$4.8208 \cdot 10^{-5}$
30	0.89	2	$2.811 \cdot 10^{-6}$	T_0	$5.6679 \cdot 10^{-6}$
35	0.91	3	$1.751 \cdot 10^{-7}$	16739408	$7.4457 \cdot 10^{-7}$
40	0.92	5	$2.142 \cdot 10^{-8}$	245176468	$8.6347 \cdot 10^{-8}$
45	0.92	13	$3.910 \cdot 10^{-9}$	4085373679	$1.0358 \cdot 10^{-8}$
50	0.93	23	$3.116 \cdot 10^{-9}$	9667437397	$2.3643 \cdot 10^{-9}$
55	0.93	24	$3.105 \cdot 10^{-9}$	10162544235	$1.6783 \cdot 10^{-9}$
60	0.93	24	$3.099 \cdot 10^{-9}$	10182181286	$1.6191 \cdot 10^{-9}$
65	0.94	24	$3.093 \cdot 10^{-9}$	10201894453	$1.6114 \cdot 10^{-9}$
70	0.94	24	$3.087 \cdot 10^{-9}$	10221684178	$1.6081 \cdot 10^{-9}$
75	0.94	24	$3.082 \cdot 10^{-9}$	10238234420	$1.6052 \cdot 10^{-9}$
80	0.95	24	$3.225 \cdot 10^{-9}$	10254838399	$1.6025 \cdot 10^{-9}$
85	0.95	24	$3.071 \cdot 10^{-9}$	10274834474	$1.5997 \cdot 10^{-9}$
90	0.95	24	$3.066 \cdot 10^{-9}$	10291557599	$1.5969 \cdot 10^{-9}$
95	0.95	24	$3.061 \cdot 10^{-9}$	10308335305	$1.5942 \cdot 10^{-9}$
100	0.95	24	$3.056 \cdot 10^{-9}$	10325167860	$1.5916 \cdot 10^{-9}$
200	0.97	23	$2.960 \cdot 10^{-9}$	10175863512	$1.5422 \cdot 10^{-9}$
300	0.97	23	$2.866 \cdot 10^{-9}$	10508919281	$1.4953 \cdot 10^{-9}$
400	0.98	22	$2.769 \cdot 10^{-9}$	10360124846	$1.4476 \cdot 10^{-9}$
500	0.98	21	$2.674 \cdot 10^{-9}$	10193677612	$1.4006 \cdot 10^{-9}$
600	0.98	20	$2.579 \cdot 10^{-9}$	10015840574	$1.3545 \cdot 10^{-9}$
700	0.98	20	$2.492 \cdot 10^{-9}$	10364671352	$1.3081 \cdot 10^{-9}$
800	0.98	19	$2.397 \cdot 10^{-9}$	10181118220	$1.2616 \cdot 10^{-9}$
900	0.98	18	$2.303 \cdot 10^{-9}$	9979294107	$1.2154 \cdot 10^{-9}$
1000	0.98	17	$2.209 \cdot 10^{-9}$	9761696912	$1.1695 \cdot 10^{-9}$
1500	0.98	14	$1.753 \cdot 10^{-9}$	9882930682	$9.3929 \cdot 10^{-10}$
2000	0.99	10	$1.293 \cdot 10^{-9}$	9091299627	$7.1125 \cdot 10^{-10}$
2500	0.99	6	$8.300 \cdot 10^{-10}$	7664220686	$4.8137 \cdot 10^{-10}$
3000	0.99	2	$3.000 \cdot 10^{-10}$	4992468020	$2.2211 \cdot 10^{-10}$
3500	0.99	2	$9.200 \cdot 10^{-11}$	14198916944	$6.6209 \cdot 10^{-11}$
4000	0.99	2	$2.700 \cdot 10^{-11}$	26575655437	$1.9689 \cdot 10^{-11}$
4500	0.99	2	$7.810 \cdot 10^{-12}$	30196651346	$5.8563 \cdot 10^{-12}$
5000	0.99	2	$2.320 \cdot 10^{-12}$	30572809972	$1.7434 \cdot 10^{-12}$
6000	0.99	2	$2.100 \cdot 10^{-13}$	30609694715	$1.5457 \cdot 10^{-13}$
7000	0.99	2	$1.826 \cdot 10^{-14}$	30609997695	$1.3693 \cdot 10^{-14}$
8000	0.99	2	$1.618 \cdot 10^{-15}$	3060999985	$1.2135 \cdot 10^{-15}$
9000	0.99	2	$1.434 \cdot 10^{-16}$	3060999995	$1.0755 \cdot 10^{-16}$
9963	0.99	2	$1.390 \cdot 10^{-17}$	3060999998	$9.5309 \cdot 10^{-18}$

For $45 \leq b_0 \leq 2000$ we use the values of c_i’s from the right column of Table 3. We use the left values otherwise.
Table 4: Let $H = 2445999556030$ and $b_0 \leq 13906$. For all $x \geq e^{b_0}$, $E(x) \leq \epsilon_0$.

b_0	σ_0	m	δ	T_1	ϵ_0
20	0.88	4	$1.363 \cdot 10^{-6}$	T_0	$5.3688 \cdot 10^{-4}$
25	0.89	3	$7.256 \cdot 10^{-6}$	T_0	$4.8208 \cdot 10^{-5}$
30	0.89	2	$2.806 \cdot 10^{-6}$	T_0	$5.6646 \cdot 10^{-6}$
35	0.90	2	$1.604 \cdot 10^{-7}$	11360452	$7.0190 \cdot 10^{-7}$
40	0.91	3	$1.600 \cdot 10^{-8}$	174242715	$8.0214 \cdot 10^{-8}$
45	0.92	4	$1.613 \cdot 10^{-9}$	2393630483	$8.6997 \cdot 10^{-9}$
50	0.93	7	$2.058 \cdot 10^{-10}$	36960925828	$9.4602 \cdot 10^{-10}$
55	0.96	21	$5.079 \cdot 10^{-11}$	532313030046	$1.1243 \cdot 10^{-10}$
60	0.96	28	$4.807 \cdot 10^{-11}$	770935427426	$3.2156 \cdot 10^{-11}$
65	0.96	29	$4.801 \cdot 10^{-11}$	801857986418	$2.5430 \cdot 10^{-11}$
70	0.96	29	$4.795 \cdot 10^{-11}$	802859999396	$2.4849 \cdot 10^{-11}$
75	0.96	29	$4.789 \cdot 10^{-11}$	803864521532	$2.4773 \cdot 10^{-11}$
80	0.97	29	$4.783 \cdot 10^{-11}$	804871562262	$2.4738 \cdot 10^{-11}$
85	0.97	29	$4.777 \cdot 10^{-11}$	805881313075	$2.4707 \cdot 10^{-11}$
90	0.97	29	$4.771 \cdot 10^{-11}$	806893237503	$2.4677 \cdot 10^{-11}$
95	0.97	29	$4.765 \cdot 10^{-11}$	807907891129	$2.4647 \cdot 10^{-11}$
100	0.97	29	$4.759 \cdot 10^{-11}$	808925101582	$2.4618 \cdot 10^{-11}$
200	0.98	28	$4.647 \cdot 10^{-11}$	797441603800	$2.4065 \cdot 10^{-11}$
300	0.98	28	$4.546 \cdot 10^{-11}$	815133603120	$2.3543 \cdot 10^{-11}$
400	0.98	27	$4.440 \cdot 10^{-11}$	802199639823	$2.3021 \cdot 10^{-11}$
500	0.98	26	$4.334 \cdot 10^{-11}$	788664950273	$2.2506 \cdot 10^{-11}$
600	0.98	26	$4.237 \cdot 10^{-11}$	806692808636	$2.1998 \cdot 10^{-11}$
700	0.99	25	$4.131 \cdot 10^{-11}$	792643976191	$2.1480 \cdot 10^{-11}$
800	0.99	25	$4.032 \cdot 10^{-11}$	812075384439	$2.0969 \cdot 10^{-11}$
900	0.99	23	$3.918 \cdot 10^{-11}$	762558970852	$2.0443 \cdot 10^{-11}$
1000	0.99	23	$3.818 \cdot 10^{-11}$	782528018219	$1.9921 \cdot 10^{-11}$
1500	0.99	20	$3.303 \cdot 10^{-11}$	774756126279	$1.7342 \cdot 10^{-11}$
2000	0.99	17	$2.788 \cdot 10^{-11}$	764936897224	$1.4762 \cdot 10^{-11}$
2500	0.99	14	$2.272 \cdot 10^{-11}$	752424086843	$1.2118 \cdot 10^{-11}$
3000	0.99	11	$1.755 \cdot 10^{-11}$	735757894330	$9.5728 \cdot 10^{-12}$
3500	0.99	7	$1.209 \cdot 10^{-11}$	618567513247	$6.9073 \cdot 10^{-12}$
4000	0.99	4	$6.800 \cdot 10^{-12}$	533755825076	$4.2115 \cdot 10^{-12}$
4500	0.99	2	$3.000 \cdot 10^{-12}$	576348240050	$1.6588 \cdot 10^{-12}$
5000	0.99	2	$8.400 \cdot 10^{-13}$	1334194702027	$6.0522 \cdot 10^{-13}$
6000	0.99	2	$1.036 \cdot 10^{-13}$	240190405983	$7.7686 \cdot 10^{-14}$
7000	0.99	2	$1.332 \cdot 10^{-14}$	244525025818	$9.9890 \cdot 10^{-15}$
8000	0.99	2	$1.713 \cdot 10^{-15}$	244598715821	$1.2845 \cdot 10^{-15}$
9000	0.99	2	$2.202 \cdot 10^{-16}$	2445999351095	$1.6516 \cdot 10^{-16}$
10000	0.99	2	$2.830 \cdot 10^{-17}$	2445999552648	$2.1236 \cdot 10^{-17}$
13900	0.99	2	$9.502 \cdot 10^{-21}$	H	$7.1265 \cdot 10^{-21}$

We only use the values of c_i's from the left column of Table 2.
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF LETHBRIDGE, 4401 UNIVERSITY DRIVE, LETHBRIDGE, ALBERTA, T1K 3M4 CANADA
E-mail address: laura.faber2@uleth.ca

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF LETHBRIDGE, 4401 UNIVERSITY DRIVE, LETHBRIDGE, ALBERTA, T1K 3M4 CANADA
E-mail address: habiba.kadiri@uleth.ca