Identification of a small-molecule compound that inhibits homodimerization of oncogenic NAC1 protein and sensitizes cancer cells to anticancer agents

XiaoHui Wang¹, Cheng Ji², HongHan Zhang¹, Yu Shan³, YiJie Ren¹, YanWei Hu¹, LiangRong Shi⁴, LingChuan Guo¹, WeiDong Zhu¹, YuJuan Xia¹, BeiJia Liu¹, ZiYun Rong¹, BiLian Wu¹, ZhiJun Ming¹, XingCong Ren⁶, JianXun Song⁶, JinMing Yang⁶*, Yi Zhang¹*

¹Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, China; ²Department of Respiratory Medicine, First Affiliated Hospital, Soochow University, China; ³Institute of Botany, Jiangsu Province and Chinese Academy of Science; China; ⁴Radiological intervention Center, Department of Radiology, Xiangya Hospital, Central South University, China; ⁵Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX, 77843, USA; ⁶Department of Cancer Biology and Toxicology, Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY, 40506, USA

These authors contributed equally to this work.

Running Title: Inhibitor targeting NAC1 dimerization

Key words: nucleus accumbens associated protein-1 (NAC1), dimerization, small-molecule inhibitor, combination therapy, transcriptional repressor, gene regulation, oncogene, cancer, BTB/POZ transcription factor, chemotherapy resistance

Abstract

Nucleus accumbens–associated protein-1 (NAC1) is a transcriptional repressor encoded by the NACC1 gene, which is amplified and overexpressed in various human cancers and plays critical roles in tumor development, progression, and drug resistance. NAC1 has therefore been explored as a potential therapeutic target for managing malignant tumors. However, effective approaches for effective targeting of this nuclear protein remain elusive. In this study, we identified a core unit consisting of Met-7 and Leu-90 in NAC1’s N-terminal domain (amino acids 1–130), which is critical for its...
homodimerization and stability. Furthermore, using a combination of computational analysis of the NAC1 dimerization interface and high-throughput screening (HTS) for small molecules that inhibit NAC1 homodimerization, we identified a compound (NIC3) that selectively binds to the conserved Leu-90 of NAC1 and prevents its homodimerization, leading to proteasomal NAC1 degradation. Moreover, we demonstrate that NIC3-mediated down-regulation of NAC1 protein sensitizes drug-resistant tumor cells to conventional chemotherapy and enhances the anti-metastatic effect of the antiangiogenic agent bevacizumab both in vitro and in vivo. These results suggest that small-molecule inhibitors of NAC1 homodimerization may effectively sensitize cancer cells to some anticancer agents and that NAC1 homodimerization could be further explored as a potential therapeutic target in the development of antineoplastic agents.

Introduction

Overexpression or mutation of oncogenes, and loss of tumor-suppressor genes, are important events in cancer development and progression (1,2). Since transcription is a critical control point in the production of many proteins, alterations of oncogenic or tumor suppressor proteins often involve dysregulated transcription (3). Indeed, certain transcription factors have been found to be in excess amount or overactive in various types of cancer and contribute to survival, unrestrained replication and apoptosis escape in cancers (4). Therefore, inhibiting the activity of the oncogenic transcription factor is considered as a promising strategy in anti-cancer treatment. However, many of those transcription factors seen in human cancers are considered “undruggable” due to their large protein–protein interaction (PPI) interfaces and their lack of deep protein pockets and intracellular localization. For drugging oncogenic transcription factors, several new approaches have been developed to overcome the undruggable nature of these transcription factors (5). For instance, the BRD4-based small-molecular bromodomain inhibitor (JQ1) can directly block MYC transcription and Myc-dependent transcriptional target genes; the conformation-disrupting Aurora A inhibitors can destabilize the complex of Aurora A with Myc and promote the degradation of Myc protein (6,7). Two compounds, IS3-295 and S3I-201, were reported to exert their anti-tumor activity partially through blocking the Stat3-mediated DNA binding activity (8,9). Molecular docking and synthesis of novel quinazoline analogues were shown to inhibit the NF-κB dependent gene transcription (10).

Nucleus accumbens-associated protein-1 (NAC1) is a transcription co-factor belonging to the BTB/POZ (bric-a-brac Tramtrack Broad complex/pox virus and Zn finger) family (11,12). The conserved BTB protein–protein interaction domain is required for NAC1 homodimerization, which plays important roles in various biological processes (11,13). NAC1 is overexpressed in various types of cancer
including ovarian cancer, cervical cancer and breast cancer (14,15), and has been shown to contribute to tumor suppressor inactivation (16), autophagic survival response (17), cellular senescence escape (18), cancer cell cytokinesis (19), anaerobic glycolysis (20), and fatty acid synthase expression (21). Also, high expression of NAC1 was closely associated with chemotherapy resistance and tumor recurrence (11,22), and inhibition of NAC1 by siRNA or dominant negative mutant increased apoptosis induced by anticancer agents (17,20,23). These observations indicate that NAC1 may represent a potential molecular target for cancer treatment; however, approaches to effectively targeting this nucleic oncogenic remain elusive.

It has been known that exposure of the hydrophobic interface of a dimeric protein may lead to conformational change, causing destabilization and degradation of a protein via proteasomal or autophagic pathways (24-26). In this study, we identified a core unit consisting of Met7 and Leu90 in the N-terminal (1-130) domain of NAC1, which is critical for its dimerization and stability. To test our hypothesis that inhibiting the dimerization of NAC1 can destabilize NAC1 protein and promote its degradation, we searched for chemicals able to inhibit the homodimerization of NAC1, using a combination approach of computational analysis of the dimerization interface and a high-throughput screening (HTS). Here, we reported a compound, NIC3, which has the ability to selectively bind with the conserved Leu90 of NAC1 and to inhibit NAC1 dimerization, resulting in proteasomal degradation of the NAC1 protein. We further assessed the therapeutic potential of NIC3 in combination therapy. We showed both \textit{in vitro} and \textit{in vivo} that down-regulation of NAC1 protein by NIC3 significantly overcome tumor cell resistance to conventional chemotherapy and enhanced anti-metastatic efficacy of the anti-angiogenic agent, bevacizumab. The results of this study not only underscore the potential of NAC1 as an anticancer target, but also demonstrate the therapeutic benefits of the small molecule inhibitors of NAC1 dimerization in cancer treatment.

\textbf{Results}

\textbf{Analysis of dimerization domain and residues of NAC1}
Conserved BTB/POZ domain is essential for NAC1 dimerization, which plays important roles in tumor development (11); however, no evidence has been provided about the mechanisms and biologic consequences of NAC1 dimerization. To study this, we first assessed the association of the two forms of NAC1 proteins tagged with either V5 or Myc epitopes by co-IP after their co-expression in HEK-293T cells. Figure 1A demonstrates the association of V5-NAC1 with Myc-NAC1 in the cells. To further assess the interaction between two tagged NAC1 proteins, we used bacterial-expressed GST–NAC1 protein in an \textit{in vitro} dimerization assay. Figure 1B shows that with increasing concentrations of DSS (a non-cleavable bivalent chemical cross-linker that is commonly used to detect direct protein-protein interactions), the intensity of NAC1 monomers reduced gradually accompanied by the
appearance of the expected NAC1 homodimers; NAC1 homodimers could not be detected in the bacterial-expressed NAC1-ΔN130 protein (BTB/POZ domain deletion) (Fig. 1C).

To identify the sites in BTB/POZ domain required for association between two tagged NAC1 proteins, contacts between atoms of the protein were examined using the Protein Contacts module in MOE. Among them, one dimerization core unit consisting of four residues, Met7 and Leu90 from one chain and the same residues from another chain, appears to be crucial for NAC1 dimerization (Fig S1A and S1B). To further delineate the role of binding residues (Met7-Leu90) in dimerization, using the site-directed mutagenesis method we generated two different tagged NAC1 mutants in which Leu90 sites were altered to Arg. We found that single Leu90 mutation decreased NAC1 dimer formation, and double Leu90 mutations further decreased NAC1 dimerization (Fig. 1D and Fig. S2A). Figure S2B shows that with increasing concentrations of DSS, the intensity of NAC1 monomers reduced gradually and was accompanied by the appearance of the expected NAC1 homodimers; NAC1 homodimers could not be detected in the NAC1-S91A protein. Introduction of Leu90 mutation led to a significant reduction of NAC1 protein amount in HEK-293T cells, and reduction of NAC1 protein caused by Leu90 mutation could be rescued by the proteasome inhibitor, MG132 (Fig. 1E). The pulse-chase experiments demonstrated that NAC1 mutant (L90A) had a shorter half-life than wild-type NAC1 (4.6 hrs vs. 20 mins) (Fig. 1F). Notably, ubiquitination of the NAC1 mutant (L90A) was significantly increased as compared with wild-type NAC1 (Fig. S2C). These results suggest that the dimerization core unit of NAC1 consisting of Leu90 and Met7 is critical for the formation of stable NAC1 dimers; disrupting this core unit would suppress NAC1 dimerization and destabilize this protein.

Identification of NIC3 as an inhibitor of NAC1 dimerization
To search for small-molecule compounds able to target the dimeric interface of NAC1, we screened approximately 200,000 compounds using a silico docking approach (Fig. 2A). Of the 50 hits, one compound, NIC3 (Fig. 2B), was chosen for the current study, based on the molecular docking showing that the nitrogen atoms in NIC3 form the hydrogen-bond with critical dimerization core residue Leu90, and this confers this compound drug-like properties (Fig. 2C-2E and Fig. S3). Validation of NIC3 as an inhibitor of NAC1 dimerization was carried out using co-IP assay. We showed that NIC3 could abolish co-IP of ectopic NAC1 protein tagged with V5 or Myc epitopes (Fig. 2F). Using the purified NAC1 protein (GST-NAC1) and non-denaturing PAGE analysis, we also showed the inhibition of formation of NAC1 dimerization by NIC3 in vitro (Fig. 2G). In these experiments, we incubated the bacterial-expressed proteins with increasing concentrations of NIC3, and demonstrated that NAC1 dimerization was suppressed in a dose-dependent manner.

To determine how NIC3 docks into NAC1, we prepared several chemical probes (Fig. S4). Structure-activity relationship studies revealed that
nitrogen atoms are essential for inhibition of the NAC1 dimerization, as the NIC3 treatment was able to dissociate the dimeric NAC1 into monomers, whereas analogue 1 could not inhibit the formation of NAC1 dimerization and decrease NAC1 level (Fig. 3A-3C). Based on these information, we synthesized a positive probe (PP) and a negative probe (NP), with biotin and an ester bond linker (Fig. 3D). We found that the biotin-tagged positive probe possessed the ability of effectively inhibiting NAC1 expression, while the biotin-tagged negative probe does not have this ability at the same concentration (Fig. 3E), and reduction of NAC1 protein caused by PP could be rescued by the proteasome inhibitor, MG132 (Fig. 3F). Furthermore, NAC1 dimerization was inhibited and ubiquitination of the NAC1 protein was significantly increased by PP (Fig. 3G and 3H). In co-IP experiments, we detected the association of NAC1 with PP, but not with NP (Fig. 4A). To determine whether NIC3 directly binds to NAC1, we generated a bacterial-expressed GST–NAC1 protein. The purified GST-NAC1 was incubated with increasing concentrations of PP bound to biotin glutathione particles, followed by immunoblotting with Biotin antibody. As shown in Fig 4B, the intensity of GST-NAC1 increased with increasing concentrations of PP. However, NIC3 lost its inhibitory effect on NAC1 dimerization when the nitrogen atoms were replaced with oxygen atoms (Fig. 3B). Molecular docking demonstrated that Leu90, Ser91 and Met92 form hydrogen-bonds with the nitrogen atoms of NIC3 (Fig. 2C-2E). To determine which of these residues are critical for the binding with NIC3, we mutated leucine, serine and methionine residues of NAC1 to alanine residues (Fig. 4C and 4D). Among these mutants, we found that L90A mutant completely lost the ability to bind to NIC3, while S91A and M92A retained binding to NIC3 in a manner similar to wild-type NAC1 (Fig. 4C and 4D). To determine the effects of those mutations on NAC1 structure, we calculated and compared the backbone RMSDs (root-mean-square deviations) between the wild type NAC1 and each of the mutants. None of the mutants showed significant structural changes, suggesting that neither L90A nor other NAC1 mutants tested in the studies have significant effects on the NAC1 monomer structure as compared with the wild type (Fig. S1C and S1D). These results imply that NIC3 can efficiently and specifically dock into NAC1, and that L90 of NAC1 is essential for its interaction with NIC3.

NIC3 accelerates the proteasomal degradation of NAC1 protein

As the dimerization of NAC1 contributed to its stability (Fig. 1), we next wanted to know whether inhibiting NAC1 dimerization by NIC3 would facilitate proteasomal degradation of NAC1 protein. In these experiments, we first treated HeLa cells with a series of concentrations of NIC3 for different periods of time and then analyzed the level of endogenous NAC1 protein using immunoblotting. Figure 5A and Figure 5B show that NIC3 treatment caused a reduction of NAC1 protein in a dose- and time-dependent manner. Similar effects of NIC3 on NAC1 level were observed in SKOV3 cells (Fig. S2D). The mRNA level of NAC1 was not affected by NIC3.
treatment, as measured by quantitative RT-PCR (Fig. 5C). NIC3 treatment also reduced the level of ectopic V5-tagged NAC1 in HEK-293T cells (Fig. 5D). The reduction of NAC1 protein in the NIC3-treated cells could be rescued by the proteasome inhibitor, MG132 (Fig. 5E). Figure 5F shows that the turnover of NAC1 protein was greatly facilitated in the cells treated with NIC3, as compared with that in the control cells ($t_{1/2}$: 53 min vs. 560 min), as measured by pulse-chase experiments. Additionally, NIC3 treatment enhanced the ubiquitination of NAC1 protein (Fig. 5G, S2C). To confirm these findings, we examined the effects of NIC3 on the NAC1-regulated proteins, HIF-1α and Gadd45-interacting protein 1 (Gadd45gip1) (16,20,23). We found that NIC3 treatment indeed affected HIF-1α and Gadd45-interacting protein 1 (Gadd45gip1) (Fig. S9), further supporting the role of NIC3 in accelerating the ubiquitin-proteasomal degradation of NAC1 protein via prohibiting its dimerization.

NIC3 overcomes chemo-resistance in vitro and in vivo

Conventional chemotherapy is an important part of treatment for many cancers, but its effectiveness is often limited by acquired drug resistance (27). Previous study showed that high expression of NAC1 was closely associated with chemotherapy resistance and tumor recurrence (11,22). Therefore, we determined the effects of NIC3 on tumor cell sensitivity to cisplatin and adriamycin, two commonly used anticancer drugs, in drug-resistant cancer cell lines. NIC3 itself did not show any cytotoxicity in the cancer cell lines until the concentration reached 100-1000 μM (Fig. S5). To test whether NIC3 can sensitize drug-resistant tumor cells to cisplatin or adriamycin, we caused the sub-lethal concentration of 20 μM, which can inhibit NAC1 expression significantly. The human MCF-7/ADR (adriamycin resistant) and HeLa/DDP (cisplatin resistant) cell lines were used in these experiments. We observed that combination treatment of NIC3 with adriamycin or cisplatin significantly augmented the cytotoxic effect in the resistant cancer cell lines (Fig 6A-D). The increased cytotoxicity seen in the cells treated with combination of cisplatin or adriamycin with NIC3 was associated with enhanced apoptosis, as evidenced by elevated levels of cleaved-PARP (Fig. 6E-F). We also showed that combination of cisplatin or adriamycin with NIC3 resulted in decrease of cell proliferation and increase of apoptotic cell death in human ovarian cancer cell line SKOV3 (Fig. S6A-C). By contrast, NIC3 did not show sensitizing effect in ES-2, an ovarian cancer cell line that has low intrinsic NAC1 expression (Fig. S7A-B). Furthermore, NIC3 can also reverse drug resistance in an animal xenograft model. In the mice bearing MCF-7/ADR cells (inoculated subcutaneously), NIC3 treatment alone had no effect on tumor growth; adriamycin treatment alone showed a moderate inhibitory effect on the growth of the xenografted tumors (Fig. 6G). In contrast, the combination of NIC3 with adriamycin significantly suppressed the growth of the xenografted tumors (Fig. 6G and Fig. S8A). Concomitantly, as compared with either vehicle control, NIC3 or adriamycin alone, the combination treatment of
NIC3 with adriamycin caused a significant increase in the TUNEL staining-positive cells and a decrease in Ki67, a proliferation marker (Fig. 6H), and in NAC1 protein expression (Fig. 6H and Fig. S8B). No significant changes in body weight were observed in the mice treated with the combination therapy (Fig. 6G). These results suggest that NIC3 is synergistic with cisplatin or adriamycin in suppressing cancer cell growth, which is associated with induction of apoptotic cell death in drug-resistant tumor cells both in vitro and in vivo.

NIC3 potentiates the anti-metastatic effect of bevacizumab in a metastatic breast cancer model

Bevacizumab is an anti-angiogenic agent used in treating metastatic breast cancer (28). However, hypoxia environment or cancer stem cells enrichment induced by bevacizumab may limit its anti-metastatic efficacy (29-31). We and other groups previously showed that silencing NAC1 could mitigate hypoxic microenvironment (20) and regulate the stem cells differentiation (32,33). Therefore, we next determined whether NIC3 could reinforce the anti-metastatic effect of bevacizumab. An experimental metastatic breast cancer model established by intravenous injection of the luciferase-labeled MDA-MB-231 cells was used. We observed that the combination treatment of bevacizumab with NIC3 significantly reduced the lung and bone disseminations of the tumor-bearing mice, as compared with either control-, NIC3-, or bevacizumab alone, as evidenced by the luciferase expression in the thoracic cavity and in the hind limbs (Fig. 7B and 7E). H&E staining of the sections corresponding to this region confirmed the decreases of lung metastasis (Fig. 7C-7D). Additionally, the enhanced anti-metastatic effect of this combination treatment significantly extended the survival of the tumor-bearing mice (Fig. 7F). These observations suggest that NIC3 could be used as a sensitizer in anti-metastatic therapy.

Discussion

Because of the critical role of NAC1 in oncogenesis, therapeutic targeting of this protein has been explored as a potential strategy for cancer treatment. For example, in order to inactivate NAC1, Wu, et al. developed a series of self-inhibitory peptides that block NAC1 dimerization by rebinding at the dimerization interface (34). Although this method might be an effective approach to inhibiting NAC1, there remain obscure in the biological effects of these peptides and the physicochemical challenges in the application of those peptides in vivo. Thus, non-peptidic molecules capable of targeting NAC1 appear to be better candidates. It is known that NAC1 homodimerization is critical for tumor cell proliferation and survival; yet, the mechanism by which NAC1 dimerization occurs and its biologic consequences are unclear (11). In the current study, we first focused on the molecular basis of the NAC1 protein dimerization (Figure 1 and Figure S1). We show that this type of homodimerization is important for the stability of NAC1 protein (Figure 1 and Figure S2C). Further, using the
computational analysis of the dimerization interface and high-throughput screening (HTS) approach, we identified a small molecule compound, NIC3, which is able to inhibit NAC1 dimerization via targeting the critical dimerization core residues and can promote proteasome-dependent degradation of NAC1 protein (Figure 2F-G, 5F-G and Figure S2D-E). These results are consistent with the concept that exposure of the hydrophobic interface of a dimeric protein often lead to its conformational change and destabilization (24,25). We demonstrate that degradation of NAC1 protein caused by NIC3 is specifically based on its properties as an inhibitor of NAC1 homodimerization but is not a consequence of off-target effect. Using biotin-labelled NIC3 as a probe, we show that NIC3 directly targets NAC1 protein, and through both computational and experimental studies we further show that NIC3 inhibits NAC1 homodimerization through docking into the critical residues such as Leu\(^{90}\), thereby preventing the interaction between the two NAC1 molecules (Figure 4).

A number of oncogenes such kinases are valuable druggable targets. However, there are oncogenic proteins that are regarded as “undruggable”, and most of these are transcriptional factors including MYB, MYC and NF-κB (35,36). Targeting nuclear proteins has been considered challenging, mainly due to their relatively larger interaction surfaces and lack of a druggable binding pocket (5). Nevertheless, based on new concepts in drug development and better understanding of the interaction surfaces, a number of so-called “undruggable” molecules have now been successfully targeted (37-42). The results reported here provide another example of targeting a nuclear factor through its hydrophobic pockets, and demonstrate that combination of computational analysis of the hydrophobic dimerization interface to identify the core units is a feasible approach to searching for small-molecule compounds for inhibiting homodimerization of the target proteins.

Cancer metastasis and therapeutic resistance are the major clinical challenges that account for cancer-related deaths. We show that NIC3 can sensitize drug resistant tumor cells to chemotherapeutic drugs such as Adriamycin and cisplatin, and enhance the anti-metastatic efficacy of the anti-angiogenic agent, bevacizumab. We and others have previously showed that NAC1 contributes to chemo-resistance through tumor suppressor Gadd45 inactivation (16), autophagic survival response (17), cellular senescence escape (18), cancer cell cytokinesis (19). Thus, targeting NAC1 may weaken those survival advantages in tumor cells treated with anticancer drugs. Indeed, the combination treatment of NIC3 with Adriamycin or bevacizumab shows more potent antitumor efficacy than Adriamycin or bevacizumab alone in drug-resistant tumors both in vitro and in vivo. NAC1 has previously been shown to promote hypoxic microenvironment through hypoxia-induced upregulation of HIF-1α (20) and maintain stemness of stem cells (32,33). Anti-angiogenic agents such as bevacizumab may induce hypoxia in tumor microenvironment and increase the population of cancer stem
cells that favors metastatic spread (29-31). Down-regulation of NAC1 through preventing its dimerization by small molecule inhibitors such as NIC3 may mitigate the hypoxic tumor environment and reduce the population of cancer stem cells.

Whether or not NIC3 can be further developed as a therapeutic agent for treatment of human cancer remain to be investigated. For instance, the pharmacokinetic properties of this compound are currently unknown. Bioisosteric replacements and scaffold hopping are useful approaches in drug design, as they enable to facilitate optimization of pharmacokinetic properties and activity (43). Whether bioisosterism and scaffold hopping such as substitution of lipophilic group with hydrophilic group, ethylenediamine with piperazine or homopiperazine may improve pharmacokinetics, solubility, metabolic stability, binding ability, or simplification of synthetic route of NIC3 require further studies.

Collectively, the findings reported here not only uncover a biologically critical but also therapeutically exploitable role for NAC1 homodimerization. The inhibitor of NAC1 homodimerization that we identified, NIC3, shows potent effects on sensitizing drug resistant tumor cells to chemotherapy and reinforcing the anti-metastatic efficacy of the anti-angiogenic agent, bevacizumab. Thus, small molecule inhibitors of NAC1 homodimerization may have great potential to be used as therapeutic agents in cancer treatment, and may warrant further investigation.

Experimental procedures

Cell lines and culture. The human ovarian cancer cell lines, SKOV3 and ES-2, the human cervical cancer cell line, HeLa and HeLa/DDP (the cisplatin-resistant cell line), the human breast cancer cell line, MDA-MB-231, MCF-7 and MCF-7/ADM (the Adriamycin-resistant cell line), and the human embryonic kidney HEK-293T cells, were purchased from ATCC (Manassas, VA). The identities of these cell lines were verified by STR analysis. HeLa and HeLa/DDP, ES-2, MDA-MB-231, MCF-7 and MCF-7/ADM cell lines were cultured in DMEM medium supplemented with 10% heat-inactivated fetal bovine serum, 100 units/ml of penicillin and 100 mg/ml of streptomycin. SKOV3 cell line was cultured in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum, 100 units/ml of penicillin and 100 mg/ml of streptomycin. Cells were cultured at 37°C in a humidified atmosphere of 20% O$_2$/5% CO$_2$ (normoxia) or 1% O$_2$/5% CO$_2$ (hypoxia). All cultures were monitored routinely and found to be free of contamination by mycoplasma or fungi. Cell lines did not surpass 10 passages between thawing and use.

Reagents and antibodies. The following antibodies were used in western Blot, co-immunoprecipitation or IHC: anti-NAC1 (NOVUS, Littleton, CO, USA, #NB110-77345), anti-PARP (Cell Signaling, USA, #5625S), anti-V5 (Cell Signaling Technology, Danvers, MA, USA, #2278), anti-β-actin (Santa Cruz, St
Louis, MI, USA, #sc-47778), anti-ubiquitin (Santa Cruz, Dallas, TX, USA, #sc-8017), anti-Ki67 (Proteintech, China, #19972-1-AP), Streptavidin-Horseradish Peroxidase conjugates (GE healthcare life sciences, Pittsburgh, USA, #RPN1231), mouse IgG and rabbit IgG (Beyotime, Shanghai, China, #A0216 and #A0208). Cisplatin and adriamycin were purchased from Sigma (Sigma-Aldrich, St Louis, USA, #P4394 and #1225758). MG132 and cycloheximide were purchased from Sigma (Sigma-Aldrich, St Louis, USA, #5087390001 and #M8699-1). In Situ Cell Death Detection Kit (TUNEL staining) was purchased from Roche (Roche, Basel, Switzerland, #11684817910).

Molecular docking. The 2D structures of the ligands were drawn in ChemBioDraw 2013 and converted to 3D in Molecular Operating Environment (MOE) 2014 through energy minimization. Protein structures were downloaded from RCSB Protein Data Bank (PDB code: 3GA1) and prepared with the Structure Preparation workflow in MOE to correct structural errors such as missing atoms or non-standard atom names. Then, the protonation state of the proteins and the orientation of the hydrogens were optimized by LigX at the PH of 7 and temperature of 300 K. Prior to docking, the force field of AMBER10: EHT and the implicit solvation model of Reaction Field (R-field) were selected. The docking workflow followed the “induced fit” protocol of MOE-Dock, in which the side chains of the receptor pocket were allowed to move according to ligand conformations, with a constraint on their positions. The weight used for tethering side chain atoms to their original positions was 10. For each ligand, all docked poses of which were ranked by London dG scoring first, then a force field refinement was carried out on the top 30 poses followed by a rescoring of GBVI/WSA dG, respectively.

Chemical synthesis. Syntheses of the positive probe (PP) and the negative probe (NP) were carried out according to the Supplementary Fig 4.

Plasmids and plasmid transfection. V5-NAC1 plasmid was described previously (20). The Myc-NAC1 plasmid was generated by replacing tag-V5 with tag-Myc. To generate the mutant of NAC1, we replaced the leucine site Leu-90, serine site Ser-91 with arginine, methionine site Met-92 with leucine. Site-directed mutagenesis was performed using the QuikChange Kit (Stratagene). Transfection of the plasmids was carried out using lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol.

Quantitative real-time PCR. Total RNA was prepared using TRIzol reagent (Roche). First strand cDNA was synthesized using Omniscript reverse transcription kit (Qiagen) with random primers. Quantitative RT-PCR was performed on ABI 7500 using Brilliant II SYBR Green QPCR master mix (Stratagene) and primers. After 40 cycles, data were collected and analyzed using the 7500 software (ABI).

Immunoblotting and co-immunoprecipitation. Proteins (10-20 μg) were resolved by SDS-PAGE,
and then transferred to PVDF membrane (Bio-Rad). Membranes were incubated with primary antibodies in 3% BSA at 4°C for overnight, followed by incubation with secondary antibodies at room temperature for 1 h. The protein signals were detected by ECL method. For Co-IP, appropriate antibodies were first incubated with protein A/G beads (Santa Cruz) at 4°C for overnight, then cell lysates were incubated with the protein A/G beads at 4°C for 6h. At the end of incubation, the beads were washed three times with RIPA buffer, and the immunoprecipitates were eluted with SDS buffer and then subjected to immunoblotting.

Non-denaturing PAGE. Purified NAC1 was incubated with increasing amounts of disuccinimidyl suberate (DSS, Thermo Scientific) or different concentrations of NIC3 before mixing with equal volume of sample buffer (100 mmol/L Tris, pH 8.0, 20% glycerol, 0.005% bromophenol blue, 2% Triton X-100, and 100 mmol/L DTT), followed by incubation at room temperature for 30 minutes. The cross-linking reaction was stopped by addition of 1 µL of 200 mM Tris-HCl (pH 7.4) and incubated for 15 min at room temperature to quench the cross-linker. After centrifugation at 11,000 × g for 10 minutes, the supernatants were separated by electrophoresis on 12% Tris/glycine polyacrylamide gel, followed by transfer to PVDF membrane for Western blot analysis as previously described (44).

Cell viability assay. Cellular viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Briefly, cells were plated at a density of 5×10^3 cells/well in 96-well tissue culture plates and subjected to different treatment. Following 48 h incubation at 37 °C in a humidified atmosphere containing 5% CO_2/95% air, the cells were incubated for another 4 h with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reagent. The formazan product was dissolved in dimethyl sulfoxide and read at 570 nm on a Victor3 Multi Label plate reader (PerkinElmer, Boston, MA).

Clonogenic assay. Cells subjected to different treatments were plated in 35-mm tissue culture dishes (numbers of cells varied with different cell lines in order to generate single colonies). Following incubation at 37 °C in a humidified atmosphere containing 5% CO_2/95% air for 12 days, cells were stained with 1% methylene blue in 50% methanol and colonies (>30 cells) were counted.

Histology. For IHC analysis of xenograft tumors, tumor specimens were either fixed in 4% paraformaldehyde. Tumor specimens were stained with H&E. For in situ determination of cell proliferation or apoptosis, sample slides were incubated with anti-Ki67 antibody (1:200 dilution), and subjected to terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL).

Animal experiments. Animal maintenance and experimental procedures were approved by the Institutional Animal Care and Use Committee of Soochow University. Immunodeficient female severe combined immunodeficient (SCID) mice...
(5-week-old, female) were inoculated subcutaneously with MCF-7/ADM cells (2x10^6 cells/mouse, mixed (1:1 volume) with BD Matrigel). Two weeks after inoculation, the tumor-bearing mice were divided into four groups (5 mice per group): (1) control; (2) Adriamycin; (3) NIC3; and (4) Adriamycin +NIC3. Adriamycin (5mg/kg) was given intraperitoneally q3d for 6 times. NIC3 (25mg/kg) was given via tail vein q3d for 6 times. Tumor volumes were determined by measuring the length (L) and the width (W) of the tumors and calculating using the formula: V = LxW^2/2. At the end of the experiment (on day 27), the mice were euthanized and tumors were surgically dissected. The tumor specimens were fixed in 4% paraformaldehyde for histopathologic examination. In the experimental metastasis mouse model, luciferase-labeled MDA-MB-231 human breast tumor cells (1x10^6) are injected into the tail vein of SCID mice. One week after injection, the mice were divided into four groups (5 mice per group): (1) control; (2) Bevacizumab; (3) NIC3; and (4) Bevacizumab +NIC3. Bevacizumab (5mg/kg) was given intraperitoneally q3d for 6 times. NIC3 (25mg/kg) was given via tail vein q3d for 2 weeks. Mice were imaged for luciferase expression on a weekly basis for 7 weeks via a Xenogen IVIS bioluminescent imager. Mice were injected with 5μl/gram body weight of 30mg/ml Luciferin-D (Gold Biotechnology, cat# LUCK-1G) in PBS, 5 minutes prior to imaging. Photon flux was calculated using region of interest (ROI) measurements of the ventral thoracic area for lung and bone metastasis. At the experiment end point, mice were euthanized and lung tissue was harvested for ex vivo analysis and subsequent histology.

Statistical analysis. Statistical analyses were performed using Microsoft Excel software and GraphPad Prism. The results are presented as mean ± SD from at least three independent experiments. The p values for comparisons between experimental groups were obtained by Student’s t-test. All statistical tests were two-sided. *: p < 0.05; **: p < 0.01.
Acknowledgements: This work was supported by grants from National Natural Sciences Foundation of China (81473240, 81773749) to Yi Zhang; and Natural Science Foundation of Jiangsu Province of China (BK20151209) to Cheng Ji; and sponsored by Qing Lan Project to Yi Zhang, and by a project funded by the Priority Academic Program Development of the Jiangsu Higher Education Institutes (PAPD). Thank Dr. Zhihong Liu from Sun Yat-sen University for providing fore-mentioned modeling software and Wecomput Technology for providing computation consulting.

Conflict of interest: The authors declare that they have no competing interests.
Reference

1. Futreal, P. A., Kasprzyk, A., Birney, E., Mullikin, J. C., Wooster, R., and Stratton, M. R. (2001) Cancer and genomics. Nature 409, 850-852

2. Brivanlou, A. H., and Darnell, J. E., Jr. (2002) Signal transduction and the control of gene expression. Science 295, 813-818

3. Darnell, J. E., Jr. (2002) Transcription factors as targets for cancer therapy. Nature reviews. Cancer 2, 740-749

4. Denhardt, D. T. (1996) Oncogene-initiated aberrant signaling engenders the metastatic phenotype: synergistic transcription factor interactions are targets for cancer therapy. Critical reviews in oncogenesis 7, 261-291

5. Dang, C. V., Reddy, E. P., Shokat, K. M., and Soucek, L. (2017) Drugging the 'undruggable' cancer targets. Nature reviews. Cancer 17, 502-508

6. Otto, T., Horn, S., Brockmann, M., Eilers, U., Schuttrumpf, L., Popov, N., Kenney, A. M., Schulte, J. H., Beijsersbergen, R., Christiansen, H., Berwanger, B., and Eilers, M. (2009) Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer cell 15, 67-78

7. Filippakopoulos, P., Qi, J., Picaud, S., Shen, Y., Smith, W. B., Fedorov, O., Morse, E. M., Keates, T., Hickman, T. T., Felletar, I., Philpott, M., Munro, S., McKeown, M. R., Wang, Y., Christie, A. L., West, N., Cameron, M. J., Schwartz, B., Heightman, T. D., La Thangue, N., French, C. A., Wiest, O., Kung, A. L., Knapp, S., and Bradner, J. E. (2010) Selective inhibition of BET bromodomains. Nature 468, 1067-1073

8. Turkson, J., Zhang, S., Mora, L. B., Burns, A., Sebti, S., and Jove, R. (2005) A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells. The Journal of biological chemistry 280, 32979-32988

9. Siddiquee, K., Zhang, S., Guida, W. C., Blaskovich, M. A., Greedy, B., Lawrence, H. R., Yip, M. L., Jove, R., McLaughlin, M. M., Lawrence, N. J., Sebti, S. M., and Turkson, J. (2007) Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proceedings of the National Academy of Sciences of the United States of America 104, 7391-7396

10. Xu, L., and Russu, W. A. (2013) Molecular docking and synthesis of novel quinazoline analogues as inhibitors of transcription factors NF-kappaB activation and their anti-cancer activities. Bioorganic & medicinal chemistry 21, 540-546

11. Nakayama, K., Nakayama, N., Davidson, B., Sheu, J. J., Jinawath, N., Santillan, A., Salani, R., Bristow, R. E., Morin, P. J., Kurman, R. J., Wang, T. L., and Shih Ie, M. (2006) A BTB/POZ protein, NAC-1, is related to tumor recurrence and is essential for tumor growth and survival. Proceedings of the National Academy of Sciences of the United States of America 103, 18739-18744

12. Perez-Torrado, R., Yamada, D., and Defossez, P. A. (2006) Born to bind: the
BTB protein-protein interaction domain. BioEssays : news and reviews in molecular, cellular and developmental biology 28, 1194-1202

13. Yeasmin, S., Nakayama, K., Rahman, M. T., Rahman, M., Ishikawa, M., Katagiri, A., Iida, K., Nakayama, N., Otuski, Y., Kobayashi, H., Nakayama, S., and Miyazaki, K. (2012) Biological and clinical significance of NAC1 expression in cervical carcinomas: a comparative study between squamous cell carcinomas and adenocarcinomas/adenosquamous carcinomas. Human pathology 43, 506-519

14. Nakayama, K., Rahman, M. T., Rahman, M., Yeasmin, S., Ishikawa, M., Katagiri, A., Iida, K., Nakayama, N., and Miyazaki, K. (2010) Biological role and prognostic significance of NAC1 in ovarian cancer. Gynecologic oncology 119, 469-478

15. Shih Ie, M., Nakayama, K., Wu, G., Nakayama, N., Zhang, J., and Wang, T. L. (2011) Amplification of the ch19p13.2 NACC1 locus in ovarian high-grade serous carcinoma. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 24, 638-645

16. Nakayama, K., Nakayama, N., Wang, T. L., and Shih Ie, M. (2007) NAC-1 controls cell growth and survival by repressing transcription of Gadd45GIP1, a candidate tumor suppressor. Cancer research 67, 8058-8064

17. Zhang, Y., Cheng, Y., Ren, X., Zhang, L., Yap, K. L., Wu, H., Patel, R., Liu, D., Qin, Z. H., Shih, I. M., and Yang, J. M. (2012) NAC1 modulates sensitivity of ovarian cancer cells to cisplatin by altering the HMGB1-mediated autophagic response. Oncogene 31, 1055-1064

18. Zhang, Y., Cheng, Y., Ren, X., Hori, T., Huber-Keener, K. J., Zhang, L., Yap, K. L., Liu, D., Shantz, L., Qin, Z. H., Zhang, S., Wang, J., Wang, H. G., Shih Ie, M., and Yang, J. M. (2012) Dysfunction of nucleus accumbens-1 activates cellular senescence and inhibits tumor cell proliferation and oncogenesis. Cancer research 72, 4262-4275

19. Yap, K. L., Fraley, S. I., Thiaville, M. M., Jinawath, N., Nakayama, K., Wang, J., Wang, T. L., Wirtz, D., and Shih Ie, M. (2012) NAC1 is an actin-binding protein that is essential for effective cytokinesis in cancer cells. Cancer research 72, 4085-4096

20. Zhang, Y., Ren, Y. J., Guo, L. C., Ji, C., Hu, J., Zhang, H. H., Xu, Q. H., Zhu, W. D., Ming, Z. J., Yuan, Y. S., Ren, X., Song, J., and Yang, J. M. (2017) Nucleus accumbens-associated protein-1 promotes glycolysis and survival of hypoxic tumor cells via the HDAC4-HIF-1alpha axis. Oncogene 36, 4171-4181

21. Ueda, S. M., Yap, K. L., Davidson, B., Tian, Y., Murthy, V., Wang, T. L., Visvanathan, K., Kuhajda, F. P., Bristow, R. E., Zhang, H., and Shih Ie, M. (2010) Expression of Fatty Acid Synthase Depends on NAC1 and Is Associated with Recurrent Ovarian Serous Carcinomas. Journal of oncology 2010, 285191

22. Ishibashi, M., Nakayama, K., Yeasmin, S., Katagiri, A., Iida, K., Nakayama, N., Fukumoto, M., and Miyazaki, K. (2008) A BTB/POZ gene, NAC-1, a
tumor recurrence-associated gene, as a potential target for Taxol resistance in ovarian cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 14, 3149-3155

23. Jinawath, N., Vasoontara, C., Yap, K. L., Thiaville, M. M., Nakayama, K., Wang, T. L., and Shih, I. M. (2009) NAC-1, a potential stem cell pluripotency factor, contributes to paclitaxel resistance in ovarian cancer through inactivating Gadd45 pathway. Oncogene 28, 1941-1948

24. Agashe, V. R., Shastry, M. C., and Udgaonkar, J. B. (1995) Initial hydrophobic collapse in the folding of barstar. Nature 377, 754-757

25. Lins, L., and Brasseur, R. (1995) The hydrophobic effect in protein folding. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 9, 535-540

26. Kubota, H. (2009) Quality control against misfolded proteins in the cytosol: a network for cell survival. Journal of biochemistry 146, 609-616

27. Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., and Gottesman, M. M. (2006) Targeting multidrug resistance in cancer. Nature reviews. Drug discovery 5, 219-234

28. Miller, K., Wang, M., Gralow, J., Dickler, M., Cobleigh, M., Perez, E. A., Shenkier, T., Cell, D., and Davidson, N. E. (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. The New England journal of medicine 357, 2666-2676

29. Ebos, J. M., Lee, C. R., Cruz-Munoz, W., Bjarnason, G. A., Christensen, J. G., and Kerbel, R. S. (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer cell 15, 232-239

30. Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., Inoue, M., Bergers, G., Hanahan, D., and Casanovas, O. (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer cell 15, 220-231

31. Conley, S. J., Gheordunescu, E., Kakarala, P., Newman, B., Korkaya, H., Heath, A. N., Clouthier, S. G., and Wicha, M. S. (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proceedings of the National Academy of Sciences of the United States of America 109, 2784-2789

32. Kim, J., Chu, J., Shen, X., Wang, J., and Orkin, S. H. (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049-1061

33. Malleshaiah, M., Padi, M., Rue, P., Quackenbush, J., Martinez-Arias, A., and Gunawardena, J. (2016) Nac1 Coordinates a Sub-network of Pluripotency Factors to Regulate Embryonic Stem Cell Differentiation. Cell reports 14, 1181-1194

34. Wu, T., He, P., Wu, W., Chen, Y., and Lv, F. (2018) Targeting oncogenic transcriptional corepressor Nac1 POZ domain with conformationally constrained peptides by cyclization and stapling. Bioorganic chemistry 80,
35. Baud, V., and Karin, M. (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. *Nature reviews. Drug discovery* 8, 33-40
36. Dang, C. V. (2012) MYC on the path to cancer. *Cell* 149, 22-35
37. Piunti, A., Hashizume, R., Morgan, M. A., Bartom, E. T., Horbinski, C. M., Marshall, S. A., Rendleman, E. J., Ma, Q., Takahashi, Y. H., Woodfin, A. R., Misharin, A. V., Abshiru, N. A., Lulla, R. R., Saratsis, A. M., Kelleher, N. L., James, C. D., and Shilatifard, A. (2017) Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. *Nature medicine* 23, 493-500
38. Overman, J., Fontaine, F., Moustaqil, M., Mittal, D., Sierecki, E., Sacilotto, N., Zuegg, J., Robertson, A. A., Holmes, K., Salim, A. A., Mamidyala, S., Butler, M. S., Robinson, A. S., Lesieur, E., Johnston, W., Alexandrov, K., Black, B. L., Hogan, B. M., De Val, S., Capon, R. J., Carroll, J. S., Bailey, T. L., Koopman, P., Jauch, R., Smyth, M. J., Cooper, M. A., Gambin, Y., and Francois, M. (2017) Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. *eLife* 6
39. Grimley, E., Liao, C., Ranghini, E. J., Nikolovska-Coleska, Z., and Dressler, G. R. (2017) Inhibition of Pax2 Transcription Activation with a Small Molecule that Targets the DNA Binding Domain. *ACS chemical biology* 12, 724-734
40. Rath, K. S., Naidu, S. K., Lata, P., Bid, H. K., Rivera, B. K., McCann, G. A., Tierney, B. J., Elnaggar, A. C., Bravo, V., Leone, G., Houghton, P., Hideg, K., Kuppusamy, P., Cohn, D. E., and Selvendiran, K. (2014) HO-3867, a safe STAT3 inhibitor, is selectively cytotoxic to ovarian cancer. *Cancer research* 74, 2316-2327
41. Qi, J., Dong, Z., Liu, J., Peery, R. C., Zhang, S., Liu, J. Y., and Zhang, J. T. (2016) Effective Targeting of the Survivin Dimerization Interface with Small-Molecule Inhibitors. *Cancer research* 76, 453-462
42. Vilaboa, N., Bore, A., Martin-Saavedra, F., Bayford, M., Winfield, N., Firth-Clark, S., Kirton, S. B., and Voellmy, R. (2017) New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival. *Nucleic acids research* 45, 5797-5817
43. Brown, N. (2014) Bioisosteres and Scaffold Hopping in Medicinal Chemistry. *Molecular informatics* 33, 458-462
44. Majerciak, V., Pripuzova, N., Chan, C., Temkin, N., Specht, S. I., and Zheng, Z. M. (2015) Stability of structured Kaposi's sarcoma-associated herpesvirus ORF57 protein is regulated by protein phosphorylation and homodimerization. *Journal of virology* 89, 3256-3274
Legends to Figures

Figure 1. Homodimerization of NAC1 via the BTB domain and Met7-Leu90 binding residues. (A) V5-NAC1 and Myc-NAC1 were co-transfected into HEK-293T cells. The lysates of these cells were immunoprecipitated with an anti-V5 antibody. The immunoprecipitates and input were examined by immunoblotting with the respective antibodies. Cells co-transfected with V5-NAC1 and empty Myc vector (-), or Myc-NAC1 and empty V5 vector (-), served as negative controls. (B) NAC1 homodimerization in vitro. GST-NAC1 fusion protein was incubated with increasing concentrations of the bivalent chemical cross-linker DSS. The cross-linked complexes were resolved by non-denaturing PAGE and analyzed by western blot using an anti-GST antibody. (C) GST-NAC1 and GST-ΔN130 fusion proteins were incubated with increasing concentrations of DSS, and the cross-linked proteins were analyzed by non-denaturing PAGE analysis. Non-specific bands are indicated with asterisks. (D) HEK-293T cells were transfected with a V5-NAC1 plasmid, Myc-NAC1 plasmid, V5-NAC1 (L90A) plasmid, or Myc-NAC1 (L90A) plasmid for 24 hrs, and then treated with 5 μM MG132 for another 6 hrs. Cell lysates were immunoprecipitated with an anti-Myc antibody, and then immunoblotted for V5. (E) HEK-293T cells were transfected with a V5-NAC1 plasmid or V5-NAC1 (L90A) plasmid for 24 hrs, and then treated with 5 μM MG132 for another 6 hrs. NAC1 protein was examined by western blot. β-actin was used as a loading control. (F) HEK-293T cells were transfected with a V5-NAC1 plasmid or V5-NAC1 (L90A) plasmid for 24 hrs, and then pulse-chased in the presence of cycloheximide (20 μg/ml).
for the indicated time periods. Data are presented as mean ± SD (n=3). (G) Proposed model for the role of Met7-Leu90 binding residues in NAC1 homodimerization.

Figure 2. Identification and validation of NIC3 as an inhibitor of NAC1 homodimerization. (A) Flowchart of the number of candidate compounds identified at each step resulting in 50 candidate compounds after virtual screening. (B) The structure of NIC3. (C) 3D binding mode of the receptor-ligand complex, with ligand colored in cyan, receptor atoms in green, and backbone in magenta. (D) The tentative surfaces of the binding sites on NAC1, of which the areas of exposed, polar and hydrophobic, are colored in red, magenta, and green, respectively. (E) 2D binding mode of the same complex. (F) HEK-293T cells were transfected with a V5-NAC1 plasmid and Myc-NAC1 plasmid for 12 hrs, and then treated with increasing concentrations of NIC3 for another 24 hrs. Cell lysates were immunoprecipitated with an anti-Myc antibody, followed by immunoblotting for V5. (G) GST-NAC1 purified protein was incubated with increasing concentrations of NIC3. Cell lysates were resolved by non-denaturing PAGE and analyzed by western blot using an anti-GST antibody.

Figure 3. Synthesis and biological validation of chemical probes. (A) The chemical structure of an analogue of NIC3. (B) GST-NAC1 fusion protein was incubated with increasing concentrations of analogue 1 and NIC3. Cell lysates were resolved by non-denaturing PAGE and analyzed by western blot using an anti-GST
antibody. (C) HeLa cells were incubated with 20 μM of NIC3 or 20 μM of analogue 1 for 48 h. NAC1 protein was determined by immunoblotting. β-actin was used as a loading control. (D) Chemical structures of biotin-labelled NIC3 (positive probe, PP) and biotin-labelled analogue 1 (negative probe, NP). (E) HeLa cells were incubated with 20 μM of PP or NP for 48 hrs. NAC1 protein was determined by immunoblotting. β-actin was used as a loading control. (F) HeLa cells were incubated with 20 μM of PP for 42 hrs, and then treated with 5 μM of MG132 for additional 6 hrs. NAC1 protein was examined by western blot. β-actin was used as a loading control. (G) GST-NAC1 purified protein was incubated with increasing concentrations of PP. Cell lysates were resolved by non-denaturing PAGE and analyzed by western blot using an anti-GST antibody. (H) HeLa cells were treated with 20 μM of PP for 36 hrs, and then treated with vehicle or 5 μM MG132 for additional 6 hrs. Cell lysates were immunoprecipitated with a control IgG or anti-NAC1 antibody. The immunoprecipitates and input were probed for Ub and NAC1 by immunoblotting.

Figure 4. Leu 90 of NAC1 is essential for its binding to NIC3. (A) HeLa cells were incubated with 20 μM of PP or NP for 24 hrs. The lysates of these cells were immunoprecipitated with a biotin antibody, and the immunoprecipitates were examined by immunoblotting with a NAC1 antibody. (B) GST-NAC1 fusion protein was incubated with increasing concentrations of PP for 12 hrs at 4°C, followed by immunoblotting with biotin or GST. (C, D) HEK-293T cells were transfected with V5-NAC1, V5-NAC1 (L90A), V5-NAC1 (S91A), V5-NAC1 (M92A) plasmids or
Myc-NAC1, Myc-NAC1 (L90A), Myc-NAC1 (S91A), Myc-NAC1 (M92A) plasmids for 12 hrs, followed by treatment with PP (20 μM) or NP (20 μM) for 24 hrs, and with 5 μM MG132 for additional 6 hrs. Cell lysates were immunoprecipitated with a biotin antibody, followed by immunoblotting for V5 or Myc.

Figure 5. NIC3 induces proteasome-degradation of NAC1 protein. (A) HeLa cells were treated with increasing concentrations of NIC3 as indicated for 48 hrs. NAC1 protein was determined by immunoblotting. β-actin was used as a loading control. (B) HeLa cells were treated with 20 μM of NIC3 for the indicated periods of time. NAC1 protein was determined by immunoblotting. β-actin was used as a loading control. (C) HeLa cells were treated with 20 μM of NIC3 for 24 hrs. NAC1 mRNA was measured by quantitative RT–PCR, and plotted after normalization. Bars are mean ± SD (n=3). (D) HEK-293T cells were transfected with a V5-NAC1 plasmid, and then treated with 20 μM of NIC3 for 48 hrs. Ectopic V5-tagged NAC1 was determined by immunoblotting. β-actin was used as a loading control. (E) HeLa cells were treated with 20 μM NIC3 for 40 hrs, and then treated with 5 μM of MG132 for another 6 hrs. NAC1 protein was determined by immunoblotting. β-actin was used as a loading control. (F) HeLa cells were treated with 20 μM of NIC3 for 40 hrs, and then pulse-chased in the presence of cycloheximide (20 μg/ml) for the indicated periods of time. Data are presented as mean ± SD (n=3). (G) HeLa cells were treated with 20 μM of NIC3 for 36 hrs, and then treated with vehicle or 5 μM MG132 for another 6 hrs. Cell lysates were immunoprecipitated with a control IgG or
an anti-NAC1 antibody. The immunoprecipitates and input were probed for ubiquitin and NAC1 by immunoblotting.

Figure 6. NIC3 significantly sensitizes drug resistant tumor cells to cisplatin and adriamycin in vitro and in vivo. (A-B) HeLa/DDP cells and MCF-7/ADR cells were treated with the indicated concentrations of Cisplatin or Adriamycin or with or without NIC3. 48 hrs later, cell viability was measured by MTT assay. (C-D) HeLa/DDP cells and MCF-7/ADR cells treated as described earlier were plated and incubated for 10 days at 37°C. Cells were stained, and colonies were counted under a light microscope. Bars are mean ± SD (n = 3). (E-F) HeLa/DDP cells and MCF-7/ADR cells were subjected as described earlier. Apoptosis was determined by Western blot analysis of cleaved PARP. (G) Top: Experimental schedule/regimen. Bottom left: The mice inoculated with MCF-7/ADR cells were divided into four treatment groups: 1) control; 2) NIC3 (25mg/kg); 3) Adriamycin (5mg/kg); 4) NIC3 (25mg/kg) + Adriamycin (5mg/kg). Tumor size was measured every three days. Each point represents mean ± SD (n=5). Bottom right: mice body weight. (H) The tumor specimens were stained for NAC1 protein, Ki67 protein and subjected to terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Bars are mean ± SD (n=5). Scale bar, 50 μm.

Figure 7. NIC3 significantly strengthens the therapeutic efficacy of bevacizumab in a metastatic breast cancer mouse model. Luciferase-labeled
-MDA-MB-231 human breast tumor cells \((1\times10^6)\) were injected into the tail vein of SCID mice. (A) Experimental schedule/regimen. (B) The mice inoculated with MDA-MB-231 cells were divided into four treatment groups: 1) control; 2) NIC3 (25mg/kg); 3) bevacizumab (5mg/kg); 4) NIC3 (25mg/kg) + bevacizumab (5mg/kg). Left panel: at the indicated time after xenografting, representative bioluminescence images were acquired; right panel: normalized photon flux of lung metastasis. Scale bar, 10 mm. (C) Lungs were dissected, fixed, and inspected for metastatic nodules on the surface. Graph represents numbers of observable metastatic nodules in the lung surface of each mouse. **\(p < 0.01\). Scale bar, 3 mm. (D) Lungs showing in Fig C were fixed, embedded in paraffin, sectioned, and stained by H&E for histological analyses. Scale bar, 50 μm. (E) Left panel: at the indicated week after xenografting, representative bioluminescence images were acquired; right panel: normalized photon flux of bone metastasis. Scale bar, 10 mm. (F) Mice were monitored for survival. Kaplan–Meier plots illustrating survival of the animals (n=5/group, *p<0.05, **p<0.01, log-rank test); combination treatment versus bevacizumab alone.
Fig. 2

A

B

C

D

E

F

G

NIC3 (µM)

+MG132

IB:V5

IB:Myc

Input:V5

Input:Myc

HEK293T

NIC3 (µM)

GST-NAC1

Dimer

IB: GST

Monomer

Downloaded from http://www.jbc.org/ by guest on March 24, 2020
Fig. 4

A

B

C

D

HeLa

Recombinant NAC1

IB: NAC1

IB: Biotin

IB: Biotin

IB: Biotin

IB: V5

IB: Myc

Input

Input

HEK293T

HEK293T

NP

PP

IP: Biotin

0

2.5

5

10

20

PP (µM)

100 kDa

GST-NAC1

100 kDa

GST-NAC1

WT

L90A

S91A

M92A

NP

+

-

+

-

PP

-

+

-

+

IP: Biotin

-

+

-

+

IB: Myc

70 kDa

IB: V5

70 kDa

Input

70 kDa

70 kDa
Identification of a small-molecule compound that inhibits homodimerization of oncogenic NAC1 protein and sensitizes cancer cells to anticancer agents

XiaoHui Wang, Cheng Ji, HongHan Zhang, Yu Shan, YiJie Ren, YanWei Hu, LiangRong Shi, LingChuan Guo, WeiDong Zhu, YuJuan Xia, BeiJia Liu, ZiYun Rong, BiLian Wu, ZhiJun Ming, XingCong Ren, Jianxun Song, JinMing Yang and Yi Zhang

J. Biol. Chem. published online May 17, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA119.007664

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts