RESEARCH LETTER – Pathogens and Pathogenicity

Biogeography of the fish pathogen Aeromonas salmonicida inferred by vapA genotyping

Snorre Gulla1,*, Sion Bayliss2, Bryndís Björnsdóttir3, Inger Dalsgaard4, Olga Haenen5, Eva Jansson6, Una McCarthy7, Felix Scholz8, Maaike Vercauteren9, David Verner-Jeffreys10, Tim Welch11, Tom Wiklund12 and Duncan J. Colquhoun1,13

1Fish Health Research Group, Norwegian Veterinary Institute, Oslo, Norway, 2The Milner Centre for Evolution, Department of Biology & Biotechnology, University of Bath, Bath, England, 3Matis, Reykjavik, Iceland, 4National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark, 5NRL for Fish Diseases, Wageningen Bioveterinary Research, Lelystad, the Netherlands, 6Department of Animal Health and Antimicrobial strategies, National Veterinary Institute (SVA), Uppsala, Sweden, 7Marine Scotland Science, Marine Laboratory, Aberdeen, Scotland, 8FishVet Group Ireland, Galway, Ireland, 9Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium, 10Cefas, Weymouth Laboratory, Weymouth, England, 11National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, US Department of Agriculture, Kearneysville, West Virginia, USA, 12Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, Turku, Finland and 13Department of Biological Sciences, University of Bergen, Bergen, Norway

*Corresponding author: Fish Health Research Group, Norwegian Veterinary Institute, Pb 750 Sentrum, N-0106 Oslo, Norway. Tel: +47 40829338; E-mail: snorre.gulla@vetinst.no

One sentence summary: Sub-lineages of the fish-pathogenic bacterium Aeromonas salmonicida display specific host preferences.

Editor: Craig Shoemaker

ABSTRACT

A recently described typing system based on sequence variation in the virulence array protein (vapA) gene, encoding the A-layer surface protein array, allows unambiguous subtyping of Aeromonas salmonicida. In the present study, we compile A-layer typing results from a total of 675 A. salmonicida isolates, recovered over a 59-year period from 50 different fish species in 26 countries. Nine novel A-layer types (15–23) are identified, several of which display a strong predilection towards certain fish hosts, including e.g. Cyprinidae and Pleuronectidae species. Moreover, we find indications that anthropogenic transport of live fish may have aided the near global dissemination of two cyprinid-associated A-layer types. Comparison of whole genome phylogeny and A-layer typing for a subset of strains further resulted in compatible tree topologies, indicating the utility of vapA as a phylogenetic as well as an epizootiological marker in A. salmonicida. A Microreact project (microreact.org/project/r1pcOAx9m) has been created, allowing public access to the vapA analyses and
relevant metadata. In sum, the results generated provide valuable insights into the global population structure of A. salmonicida, particularly in relation to its piscine host spectrum and the geographic distribution of these hosts.

Keywords: aquaculture; bacterial fish pathogen; *Aeromonas salmonicida*; vapA/A-layer; genotyping; host specificity

INTRODUCTION

Aeromonas salmonicida infections have caused significant problems and economic losses in commercial farming of a large number of cultivated fish species (Austin and Austin 2012). To date, *A. salmonicida* represents one of the most intensively studied fish pathogenic bacteria. Historically, most of the attention has fallen on *A. salmonicida* subsp. salmonicida (Lehmann and Neumann 1896; Griffin, Sniezko and Friddle 1953), commonly referred to as ‘typical’ *A. salmonicida*, which primarily causes disease in salmonids. In recent years however, the highly diverse group of non-subsp. salmonicida strains, commonly known as ‘atypical’ and mainly isolated from non-salmonid fish, has come under increasing scrutiny. The collective ‘atypical’ group includes, but is not limited to, the four other validly described subspecies, i.e. achromogenes, masacuicida, smithia and pectinolytica (Martin-Carnahan and Joseph 2005).

For many years, professionals were unable to systematise the phenotypically diverse range of atypical *A. salmonicida* isolates (Austin et al. 1998; Wiklund and Dalsgaard 1998). Recently however, a simple typing scheme was introduced (Gulla et al. 2016), based on sequence variation in a hypervariable region of the virulence array protein (vapA) gene (henceforth termed ‘partial vapA’). In *A. salmonicida*, this gene encodes the paracrystalline surface protein commonly referred to as the A-layer (Udey and Fryer 1978, 1981; Evenberg et al. 1982; Chu et al. 1991), the auto-agglutinating properties of which is responsible for the ‘frangible’ colony morphology commonly observed following cultivation on solid media. Based on partial vapA sequences, 333 *A. salmonicida* isolates of varying origin could be differentiated into 14 discrete clusters (‘A-layer types’) and five singletons (Gulla et al. 2016).

While a number of the previously identified A-layer types displayed a strong association with certain species of fish, the number of different fish hosts and geographic locations investigated in that study were limited. The aim of the present study was, therefore, to comprehensively assess the biogeography of fish-pathogenic *A. salmonicida* and further investigate the putative link between A-layer type and fish host.

MATERIALS AND METHODS

Metadata and vapA (or genome) accession numbers on all *A. salmonicida* isolates included in this study are provided in Table S1 (Supporting Information). The present study raises the total number of publically available *A. salmonicida* partial vapA sequences to 675. The studied isolates were recovered between 1959 and 2017 from 26 countries (five continents) and at least 50 fish species (24 families).

Lyophilised or cryopreserved stock cultures were revived by seeding onto appropriate culturing media (e.g. 5% bovine blood agar) followed by incubation at 22°C for 2–4 days prior to further processing. While all isolates had previously been identified as *A. salmonicida* in the respective laboratories of recovery, the authenticity of these identities were not, as part of the present study, verified through a unified array of phenotypic assessments. However, successful PCR amplification of the vapA gene and a clustering alongside confirmed *A. salmonicida* strains in the resulting partial vapA tree (see below) was in itself considered confirmatory evidence for their species affiliation.

DNA extraction, PCR and Sanger sequencing was conducted as previously described (Gulla et al. 2016), with the exception of sequences obtained directly from the NCBI GenBank or extracted from genome assemblies (Gulla et al., unpublished). Briefly, PCR and sequencing employed primers vapF2 and R3, which flank the hypervariable vapA gene region corresponding to nt 1497304–1497708 in the circularised genome of strain A449 (assembly accession no. GCA_000196395.1). Sequence alignments were conducted in ClustalX v2.1 (Larkin et al. 2007). Maximum Likelihood (ML) trees were constructed using PhyML v3.0 (Guindon et al. 2010), employing the Smart Model Selection option (Lefort, Longueville and Gascuel 2017), and the Approximate Likelihood-Ratio test (Anisimova and Gascuel 2006) for branch support estimation. ML trees were edited in FigTree v1.4.3 (tree.bio.ed.ac.uk/software/figtree) and/or MEGA X (Kumar et al. 2018) prior to downstream applications. Isolates displaying frameshifting events (Belland and Trust 1987; Gustafson, Chu and Trust 1994) were, for practical reasons, excluded from the material. Isolates were classified according to the system published by Gulla et al. (2016), with previously undescribed clusters being successively awarded new type designations.

A partial vapA ML tree file, together with metadata for all examined isolates, was uploaded to the Microreact (Argimón et al. 2016) web application that can be publically accessed through a unique project link at microreact.org/project/r1pc0AxA9m. The geographic origins of isolates were defined by prioritising the most accurate information available (e.g. estuary > river > province > country). In the particular case of Norwegian isolates, aquaculture sites were anonymised by using coordinates representing the ‘centre’ of the relevant municipality or county.

A tree file comparing 29 *A. salmonicida* genome assemblies available from NCBI GenBank was exported from the NCBI Tree Viewer application, and an ML tree based on partial vapA sequences from the same strains was created for comparison. Subsp. pectinolytica strains, and other representatives lacking the vapA gene (Lund, Espelid and Mikkelsen 2003; Merino et al. 2015; Gulla et al. 2016), were excluded.

RESULTS AND DISCUSSION

An A-layer typing scheme for the fish pathogen *A. salmonicida*, based on sequence heterogeneity in the vapA virulence gene, has recently been demonstrated as a cost-effective, rapid and unambiguous tool for genetic subtyping of this bacterium (Gulla et al. 2016). The method has since been employed by several investigators for characterisation of *A. salmonicida* strains (e.g. Long et al. 2016; Du et al. 2017; Scholz et al. 2017; Vaccaruer et al. 2017). In the present study, we compared vapA sequences from an extended *A. salmonicida* collection (675 isolates) of worldwide origin, recovered over six decades from a broad range of fish hosts. Nine novel A-layer types were identified and the known geographical range of previously described A-layer types was expanded. Several A-layer types found over large geographic
Figure 1. *Aeromonas salmonicida* A-layer type clustering in relation to host fish species. The circular ML tree is based on partial *vapA* sequences from 675 *A. salmonicida* isolates and two *Aeromonas* sp. outgroup strains. The tree visualises how isolates recovered from selected taxonomic fish groups (indicated by colour; see legend) in most of the cases belong to only a limited number of A-layer type clusters (numbered in the tree). Tree exported from microreact.org/project/r1pcOAx9m. For rectangular high resolution tree with strain identifiers and branch support, see Figure S1.

Areas remain exclusively associated with only single or a limited number of fish host lineages. The geographic distribution of individual types is likely dependent on the availability of susceptible hosts, and in some cases we found that anthropogenic activity has presumably played a significant role for spatial dissemination.

ML tree analysis performed on *A. salmonicida* partial *vapA* sequences identified eight singletons and 23 discrete clusters, each comprising two or more isolates (Table 1 and Figure S1, Supporting Information). The nine novel clusters identified represent A-layer types 15 through 23. A *vapA* homolog identified by BLAST within two recently published Aeromonad genomes (genome assembly accession no.: GCA_0 017 29085.1 (S-layer: OEC65338) and GCA_0 017 29005.1 (S-layer: OEC54980))...
Figure 2. *Aeromonas salmonicida* from wrasse and Atlantic cod in Norway. The spatiotemporal origins and A-layer types (see legend) of investigated isolates are shown to the left and right, respectively. Coinciding sampling points over the same time period indicate that the host-associated representation of A-layer types presumably has a biological basis. Maps exported from microreact.org/project/r1pcDx9m.

Figure 3. Comparison of *Aeromonas salmonicida* whole genome phylogeny and A-layer type clustering. Twenty-nine strains are compared, with branches and labels coloured according to their affiliated A-layer type (see far right). The consistent clustering indicates the potential of vapA as a representative phylogenetic marker in *A. salmonicida*.

(Vázquez-Rosas-Landa et al. 2017), displaying 65–74% pairwise identity with vapA sequences from *A. salmonicida*, provided an ideal non-*A. salmonicida* outgroup, which has previously been lacking.

Unsurprisingly, the previous grouping threshold of ≥98% partial vapA pairwise sequence identity for A-layer type inclusion (Gulla et al. 2016) could not be consistently enforced, an inevitable consequence of the increasing spectrum of *A. salmonicida* strains investigated. Definition of a universal identity threshold for A-layer type cluster partitioning therefore became impossible, but all isolates could nevertheless be readily assigned to single A-layer types based on their relative positioning within the tree.

Most A-layer types could be clearly linked to a particular host (i.e. taxonomic fish lineage; Table 1), and vice versa, with most of the examined fish hosts represented in only one or a few vapA clusters (Fig. 1). For instance, all isolates recovered from the fish species common dab (*Limanda limanda*), European flounder (*Platichthys flesus*) and goldfish (*Carassius auratus*)—in each case involving ≥10 isolates, recovered from ≥3 countries over a period...
Table 1. Observed characteristics of designated A-layer types. See Table S1 and/or Microreact project (microreact.org/project/r1pcOAx9m) for extended metadata on all isolates.

A-layer type	No. of isolates	Main hosts (families) involved (%)	Known geographic distribution	Temporal span	Associated subspecies	Representative strain
1	97	Salmonidae (68)	Atlantic (NW, NE), Pacific (NW, NE)	1963–2016d	salmonicida	ATCC33658
2	79	Pleuronectidae (86)	Norway	1987–2016	achromogenes	NVI-04953
3	93	Salmonidae (45), Gadidae (41)	Atlantic (NW, NE)	1962–2016d		NCIMB1110
4	23	Anarhichadidae (48), Zoarcidae (17)	Atlantic (NW, NE)	1981–2014d		CECT5200
5	52	Labridae (94)	Europe	2008–2017		
6	164	Labridae (55), Cyclopteridae (38)	Europe	1987–2017		
7	20	Salmonidae (55), Sebastidae (20)	Pacific (NW, NE, SE)	1969–2016d	masoucida	NBRC13784
8	7	Salmonidae (86)	Norway	2002–2016		
9	17	Salmonidae (82), Cyprinidae (12)	Europe	1976–2014		
10	13	Cyprinidae (92)	Europe, USA, Australia	1979–2006		
11	7	Salmonidae (86)	Northern Europe	1985–2013		
12	10	Salmonidae (90)	Europe	1987–2008	(smithia)a	
13	3	Salmonidae (100)	Eastern Canada	1987d		
14	4	Salmonidae (100)	Norway	1990–2014		
15	24	Pleuronectidae (100)	Europe	1992–2016		
16	8	Scophthalmidae (100), Esocidae (62), Salmonidae (38)	Europe, Northern Europe	1984–2012		
17	7	Scophthalmidae (100)	Europe	1990–1994		
18	17	Pleuronectidae (100)	Europe	1989–2009		
19	11	Cyprinidae (100)	Europe, USA	1994–2015		
20	4	Order: Anguilliformes (75)	Denmark, South-Korea	1992–2006		
21	3	Salmonidae (100)	Chile	1999d		
22	2	Cyprinidae (100)	Europe	1981–1997d		
23	2	Pleuronectidae (100)	Denmark	1992–1996		

*aExcluding isolates of unknown origin.

*bOnly considering isolates involved in the present study. Abbreviations: northwest (NW), northeast (NE), southeast (SE).

*cReference cultures where available.

*dSubject to some uncertainty.

*eType-strain located marginally outside A-layer type 12.

*fMismatch in 3′-end of R3 primer; partial vapA extracted from genome assemblies (Gulla et al., unpublished).

of ≥20 years—clustered exclusively in separate, single A-layer types.

Further, A-layer types recovered from marine fish along the Norwegian coast, such as wrasse (Labridae) and Atlantic cod (Gadus morhua) (Fig. 2), were heavily biased towards these particular host species despite coinciding/overlapping spatiotemporal origins. Taken together, these findings strongly suggest that the observed host/A-layer type relationships have a biological basis and are not founded upon temporal and/or geographic sampling biases.

In broader geographic terms, some A-layer types appear restricted by the spatial ranges of their natural, wild-living hosts, while others show signs of dissemination linked to anthropogenic activity. The former situation is exemplified by types 15, 17 and 18, which have all been found exclusively in coastal Northern Europe, from common dab, turbot (Scophthalmus maximus) and European flounder, respectively. In contrast, transport of live fish has presumably contributed towards the near global distribution of types 10 and 19, respectively, associated with the domesticated and extensively traded freshwater fish species koi/common carp (Cyprinus carpio) and goldfish. In other cases, such as for type 1 from (predominantly) cultivated Salmonidae species globally, and type 7 from various fish species across the Pacific Ocean, the historic epizootiologic events underlying their geographic spread is less clear. Nevertheless, these findings may serve as a reminder regarding the possible biosecurity risks arising in relation to transport of live animals.

Comparison of whole genome phylogeny and partial vapA genotype for a subset of strains revealed consistent clustering (Fig. 3). This indicates limited recombination in the vapA gene between distantly related lineages, and suggests the potential of vapA as a suitable phylogenetic marker in A. salmonicida. It should be noted, however, that the analysed whole genome dataset was strongly biased towards A-layer types 1 and 7 (subsp. salmonicida and masoucida, respectively), and broader conclusions should therefore be reserved pending analysis of a more comprehensive genome dataset.

Notably, recent years have brought several reports describing recovery of ‘mesophilic’ A. salmonicida from various sources other than diseased fish. These include, amongst others, subsp. pectinolytica specimens from polluted freshwater (Pavan et al. 2000) and also a few clinical isolates from human patients.
(Ruppé et al. 2018; Vincent et al. 2019). The current taxonomic subdivision of A. salmonicida, into a single mesophilic and four psychrophilic validly described subspecies, is questioned by core genome phylogenies, which reveals a marked genomic separation between the two phenotypes, with the psychrophilic lineage being by far the most genetically conserved (Vincent et al. 2017, 2019). As the vapA gene was apparently acquired by the psychrophilic lineage subsequent to the bifurcation of the two, A-layer typing remains limited to investigation of primarily fish-associated A. salmonicida (Gulla et al. 2016).

In summary, the present study substantially expands the number of A. salmonicida isolates (in terms of both host species and geographic origin) evaluated by A-layer typing. This has provided further support for the existence of discrete genetic subtypes of A. salmonicida displaying distinct, often highly specific, fish host affinities. The observed geographic distribution of some such subtypes presumably reflects anthropogenic activities having involved transport of live fish. We also find indications that the partial vapA gene may represent a suitable phylogenetic marker for deeper underlying population genetics amongst psychrophilic A. salmonicida. Further studies involving whole genome sequence analysis of a substantially extended number of A. salmonicida strains from diverse fish species and disparate geographic origins, covering the spectrum of novel A-layer types described here, are now required to investigate the situation.

To allow general access to data generated under the current project, the vapA tree and relevant metadata for the analysed A. salmonicida dataset was uploaded into Microreact (Argimón et al. 2016), and can be accessed through the project link microreact.org/project/r1pcOA9x9m. This web application provides a user friendly platform for sharing, visualising and interactively exploring genetic epidemiological data (consult Argimón et al. 2016 for detailed features).

SUPPLEMENTARY DATA
Supplementary data are available at FEMSLE online.

ACKNOWLEDGEMENTS
We wish to extend additional thanks to Keldur (Institute for Experimental Pathology, University of Iceland), Rocco Cipriano and Alexis Martinez Hernandez for contribution of samples, and to express our gratitude towards all contributing colleagues at The Norwegian Veterinary Institute.

FUNDING
This work was supported by The Research Council of Norway (Grant number 254848).

Conflict of interest. None declared.

REFERENCES
Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 2006;55:539–52.

Argimón S, Abudahab K, Goater RJE et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeny. Microb Genomics 2016;2:e000093.

Austin B, Austin DA, Bacterial Fish Pathogens - Disease of Farmed and Wild Fish. 5th edn. New York: Springer, 2012, DOI: 10.1007/978-1-4020-6069-4.

Austin B, Austin DA, Dalsgaard I et al. Characterization of atypical Aeromonas salmonicida by different methods. Syst Appl Microbiol 1998;21:50–64.

Belland RJ, Trust TJ. Cloning of the gene for the surface array protein of Aeromonas salmonicida and evidence linking loss of expression with genetic deletion. J Bacteriol 1987;169:4086–91.

Chu S, Cavaignac S, Feutrier J et al. Structure of the tetragonal surface virulence array protein and gene of Aeromonas salmonicida. J Biol Chem 1991;266:15258–65.

Du Y, Liu Y, Xiao P et al. Development and application of a quantitative real-time polymerase chain reaction assay for the detection of Aeromonas salmonicida. J World Aquacult Soc 2017;48:574–82.

Evenberg D, Van Boxtel R, Lugtenberg B et al. Cell surface of the fish pathogenic bacterium Aeromonas salmonicida. I. Relationship between autoagglutination and the presence of a major cell envelope protein. Biochim Biophys Acta 1982;684:241–8.

Griffin PJ, Snieszko SF, Friddle SB. A more comprehensive description of bacterium salmonicida. Trans Am Fish Soc 1953;82:129–38.

Guindon S, Dufayard J-F, Lefort V et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59:307–21.

Gulla S, Lund V, Kristoffersen AB et al. vapA (A-layer) typing differentiates Aeromonas salmonicida subspecies and identifies a number of previously undescribed subtypes. J Fish Dis 2016;39:329–42.

Gustafson CE, Chu S, Trust TJ. Mutagenesis of the paracrystalline surface protein array of Aeromonas salmonicida by endogenous insertion elements. J Mol Biol 1994;237:452–63.

Kay WW, Buckley JT, Ishiguro EE et al. Purification and disposition of a surface protein associated with virulence of Aeromonas salmonicida. J Bacteriol 1998;171:1077–84.

Kumar S, Stecher G, Li M et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547–9.

Larkin MA, Blackshields G, Brown NP et al. Clustal X version 2.0. Bioinformatics 2007;23:2947–8.

Lefort V, Longueville J-E, Gascuel O. SMS: smart model selection in PhyML. Mol Biol Evol 2017;34:2422–4.

Lehmann KB, Neumann R. Atlas Und Grunddriss Der Bakteriologie Und Lehrbuch Der Speziellen Bakteriologischen Diagnostik. 1st edn. In: Lehmann JF (ed). Munchen: J. F. Lehmanns Verlag, 1896.

Long M, Nielsen TK, Leisner JJ et al. Aeromonas salmonicida subsp. salmonicida strains isolated from Chinese freshwater fish contain a novel genomic island and possible regional-specific mobile genetic elements profiles. FEMS Microbiol Lett 2016;363:fnw190.

Lund V, Espelid S, Mikkelsen H. Vaccine efficacy in spotted wolffish Anarhichas minor: relationship to molecular variation in A-layer protein of atypical Aeromonas salmonicida. Dis Aquat Organ 2003;56:31–42.

Martin-Carnahan A, Joseph S. Aeromonadales ord. nov. In: Brenner D, Krieg N, Staley J et al. (eds). Bergey’s Manual of Systematic Bacteriology, Vol. 2, Part B, 2nd edn. New York: Springer, 2005, 556–87.

Merino S, De Mendoza E, Canals R et al. Functional genomics of the Aeromonas salmonicida lipopolysaccharide O-antigen
and A-layer from typical and atypical strains. Mar Drugs 2015;13:3791–808.

Pavan ME, Abbott SL, Zorzópolos J et al. Aeromonas salmonicida subsp. pectinolytica subsp. nov., a new pectinase-positive sub-

species isolated from a heavily polluted river. Int J Syst Evol Microbiol 2000;50:1119–24.

Ruppé E, Cherkaoui A, Wagner N et al. In vivo selection of a multidrug-resistant Aeromonas salmonicida during medicinal

leech therapy. New Microbes New Infect 2018;21:23–7.

Scholz F, Ruane NM, Morrissey T et al. Piscine myocarditis virus detected in corkwing wrasse (Symphodus melops) and ballan

wrasse (Labrus bergylta). J Fish Dis 2017;41:147–52.

Udey JL, Fryer LR. Immunization of fish with bacterins of

Aeromonas salmonicida. Mar Fish Rev 1978;40:12–7.

Vázquez-Rosas-Landa M, Ponce-Soto GY, Eguiarte LE et al. Comparative genomics of free-living Gammaproteobacte-

ria: pathogenesis-related genes or interaction-related genes? Pathog Dis 2017;75, DOI: 10.1093/femspd/ftx059.

Vercauteren M, De Swaef E, Declercq A et al. First isolation of Vibrio tapetis and an atypical strain of Aeromonas salmonicida

from skin ulcerations in common dab (Limanda limanda) in

the North Sea. J Fish Dis 2017;41:329–35.

Vincent AT, Fernández-Bravo A, Sanchis M et al. Investigation of the virulence and genomics of Aeromonas salmonicida strains

isolated from human patients. Infect Genet Evol 2019;68:1–9.

Vincent AT, Rouleau FD, Moineau S et al. Study of mesophilic Aeromonas salmonicida A527 strain sheds light on the species’

lifestyles and taxonomic dilemma. FEMS Microbiol Lett 2017;364, DOI: 10.1093/femsle/fnx239.

Wiklund T, Dalsgaard I. Occurrence and significance of atypi-

cal Aeromonas salmonicida in non-salmonid and salmonid fish

species: a review. Dis Aquat Organ 1998;32:49–69.