Two-parametric extension of h-deformation of $GL(1|1)$

Salih Celik

Mimar Sinan University, Department of Mathematics, 80690 Besiktas, Istanbul, TURKEY.

E-mail: celik@msu.edu.tr

Abstract. The two-parametric quantum deformation of the algebra of coordinate functions on the supergroup $GL(1|1)$ via a contraction of $GL_{p,q}(1|1)$ is presented. Related differential calculus on the quantum superplane is introduced.

Mathematics Subject Classifications (1991): 16S80, 81R50.

Key words: supergroup, q-deformation, h-deformation, differential calculus.

\footnotesize
\begin{footnotesize}
1New E-mail address: sacelik@yildiz.edu.tr
\end{footnotesize}
1. Introduction

Recently matrix groups like GL(2), GL(1|1), etc., were generalized in two ways called the q-deformation and the h-deformation. One of them [q-deformation] is based on a deformation of the algebra of functions on the groups generated by coordinate functions $t^{i\ j}$ which normally commute.

In the q-deformation of matrix groups [1,2], the commutation relations satisfied between the coordinate functions on the groups are determined by a matrix R_q so that the functions do not commute but satisfy the equation

$$R_q(T \otimes T) = (I \otimes T)(T \otimes I)R_q,$$

or an endomorphism of the space with non-commuting coordinates may be used [3]. In this equation the elements of R_q are complex numbers but the matrix $T = (t^{i\ j})$ is formed by generally non-commuting elements of an algebra.

The second type of deformation, called the h-deformation, is a new class of quantum deformations of matrix groups. The h-deformation is obtained as a contraction from the q-deformation of matrix groups and it has been intensively studied by many authors [4-12].

The purpose of this paper is to present the two-parametric extension of the h-deformation of the simplest supergroup GL(1|1). The single parameter h-deformation of GL(1|1), $GL_h(1|1)$, was introduced by Dabrowski and Parashar [13]. An interesting feature of the two-parameter deformation is that both the deformation parameters are anticommuting grassmann numbers.

The paper is organized as follows. In section 2 we give some notations and useful formulas which will be used in this work. In the following section we present the two-parameter deformation of GL(1|1) as related to superplanes. A two parameter R-matrix which deforms the supergroup GL(1|1) is introduced in section 4. In section 5 we construct the differential calculus on the quantum superplane on which the two-parameter quantum supergroup acts.

2. Review of $GL_{p,q}(1|1)$

We know that the supergroup GL(1|1) can be deformed by assuming that the linear transformations in GL(1|1) are invariant under the action of the quantum superplane and its dual [3].

In this paper we denote (p, q)-deformed objects by primed quantities. Unprimed quantities represent transformed coordinates.
Consider the Manin quantum superplane \(A_p \) and its dual \(A^*_q \). The quantum superplane \(A_p \) is generated by coordinates \(x' \) and \(\xi' \), and the commutation rules
\[
x' \xi' - p \xi' x' = 0, \quad \xi'^2 = 0.
\]
The quantum (dual) superplane \(A^*_q \) is generated by coordinates \(\eta' \) and \(y' \), and the commutation rules
\[
\eta'^2 = 0, \quad \eta' y' - q^{-1} y' \eta' = 0.
\]
Taking
\[
T' = \begin{pmatrix} a' & \beta' \\ \gamma' & d' \end{pmatrix}
\]
as a supermatrix in \(GL(1|1) \), we demand that the relations (1), (2) are preserved under the action of \(T' \) on the quantum superplane and its dual. Under some assumption one obtains the following \((p, q)\)-commutation relations
\[
a' \beta' = q \beta' a', \quad a' \gamma' = p \gamma' a', \quad \beta'^2 = 0,
\]
\[
d' \beta' = q \beta' d', \quad d' \gamma' = p \gamma' d', \quad \gamma'^2 = 0,
\]
\[
\beta' \gamma' + pq^{-1} \gamma' \beta' = 0, \quad a' d' = d' a' + (p - q^{-1}) \gamma' \beta'.
\]
These relations will be used in section 3.

Above relations are equivalent to the equation
\[
R_{p,q} T'_1 T'_2 = T'_2 T'_1 R_{p,q}
\]
where \(T'_1 = T' \otimes I \), \(T'_2 = I \otimes T' \) and
\[
R_{p,q} = \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & qp^{-1} & 0 & 0 \\ 0 & 0 & q - p^{-1} & 1 \\ 0 & 0 & 0 & p^{-1} \end{pmatrix}.
\]
Here we employ the convenient grading notation
\[
(T_1)^{ij}_{kl} = (T \otimes I)^{ij}_{kl} = (-1)^{k(i+l)} T^i_{kl} \delta^j_l, \quad \delta^i_l = 1 \text{ if } i = l, 0 \text{ otherwise},
\]
\[
(T_2)^{ij}_{kl} = (I \otimes T)^{ij}_{kl} = (-1)^{i(j+l)} T^j_{kl} \delta^i_l.
\]

3. The two-parametric deformation of \(GL(1|1) \)

We introduce new coordinates \(x \) and \(\xi \) by
\[
U = g_{h_1}^{-1} U', \quad U' = \begin{pmatrix} x' \\ \xi' \end{pmatrix}
\]
where
\[g_{h_1} = \begin{pmatrix} 1 & 0 \\ f_1 & 1 \end{pmatrix}, \quad f_1 = \frac{h_1}{p-1} \] (9)

Here the deformation parameter \(h_1 \), in contrast to the usual situation, is an odd (grassmann) number which has the following properties
\[h_1^2 = 0 \quad \text{and} \quad h_1 \xi = -\xi h_1. \] (10)

Now, in the limit \(p \to 1 \) we get the following exchange relations
\[x\xi = \xi x + h_1 x^2, \quad \xi^2 = -h_1 x\xi. \] (11)

These relations define a new deformation, which we called the \(h_1 \)-deformation, of the algebra of functions on the Manin superplane generated by \(x \) and \(\xi \), and we denote it by \(A_{h_1} \).

Let us now consider other (dual) coordinates \(\eta \) and \(y \) with
\[V = g_{h_2}^{-1}V', \quad V' = \begin{pmatrix} \eta' \\ y' \end{pmatrix} \] (12)
where
\[g_{h_2} = \begin{pmatrix} 1 & f_2 \\ 0 & 1 \end{pmatrix}, \quad f_2 = \frac{h_2}{q-1} \] (13)

Again, the deformation parameter \(h_2 \) is an odd (grassmann) number and it has the following properties
\[h_2^2 = 0 \quad \text{and} \quad h_2 \eta = -\eta h_2. \] (14)

Next, taking the \(q \to 1 \) limit we obtain the following relations, which define the dual \(h_2 \)-superplane \(A_{h_2}^* \) as generated by \(\eta \) and \(y \) with the commutation rules
\[\eta^2 = -h_2 \eta y, \quad \eta y = y\eta - h_2 y^2. \] (15)

Note that in order to obtain the superplane \(A_{h_1} \) and its dual \(A_{h_2}^* \), we introduced above, two matrices \(g_{h_1} \) and \(g_{h_2} \). Of course, this result could be obtained by using a single matrix \(g = g_{h_1}g_{h_2} \). But in that case the required steps are rather complicated and tedious. However, in section 4, in order to obtain an R-matrix we shall take \(g = g_{h_1}g_{h_2} \).

We now consider the linear transformations
\[T : A_{h_1} \to A_{h_1} \quad \text{and} \quad T : A_{h_2}^* \to A_{h_2}^*. \] (16)

Then, we define the corresponding \((h_1, h_2) \)-deformation of the supergroup \(GL(1|1) \) as a quantum matrix supergroup \(GL_{h_1,h_2}(1|1) \) generated by \(a, \beta, \gamma, d \) which satisfy the following \((h_1, h_2) \)-commutation relations
\[a\beta = \beta a - h_2(a^2 - \beta \gamma - ad), \quad d\beta = \beta d + h_2(d^2 + \beta \gamma - da), \]

Note that in order to obtain the superplane \(A_{h_1} \) and its dual \(A_{h_2}^* \), we introduced above, two matrices \(g_{h_1} \) and \(g_{h_2} \). Of course, this result could be obtained by using a single matrix \(g = g_{h_1}g_{h_2} \). But in that case the required steps are rather complicated and tedious. However, in section 4, in order to obtain an R-matrix we shall take \(g = g_{h_1}g_{h_2} \).

We now consider the linear transformations
\[T : A_{h_1} \to A_{h_1} \quad \text{and} \quad T : A_{h_2}^* \to A_{h_2}^*. \] (16)

Then, we define the corresponding \((h_1, h_2) \)-deformation of the supergroup \(GL(1|1) \) as a quantum matrix supergroup \(GL_{h_1,h_2}(1|1) \) generated by \(a, \beta, \gamma, d \) which satisfy the following \((h_1, h_2) \)-commutation relations
\[a\beta = \beta a - h_2(a^2 - \beta \gamma - ad), \quad d\beta = \beta d + h_2(d^2 + \beta \gamma - da), \]
\[a\gamma = \gamma a + h_1(a^2 + \gamma \beta - ad), \quad d\gamma = \gamma d - h_1(d^2 - \gamma \beta - da), \]
\[\beta^2 = h_2\beta(a - d), \quad \gamma^2 = h_1\gamma(d - a), \]
\[\beta\gamma = -\gamma\beta + (h_1\beta - h_2\gamma)(d - a), \]
\[ad = da + (h_1\beta + h_2\gamma)(a - d) - h_1h_2(a^2 - 2da + d^2) \]
provided that \(\beta \) and \(\gamma \) anticommute with \(\xi, \eta, h_1 \) and \(h_2 \), and
\[h_1h_2 = -h_2h_1. \]
(18)

One can see that when \(h_2 = 0 \), these relations go back to those of \(\text{GL}_h(1|1) \) in Ref. 13.

Alternatively, the relations (17) can be obtained using the following similarity transformation which was used first in [12]:
\[T' = gTg^{-1} \]
(19)
where in our case
\[g = g_{h_1}g_{h_2}. \]
(20)
To do this, we use the relations (3) and then take the limits \(p \to 1, q \to 1 \).

We denote by \(\mathcal{A}_{h_1,h_2} \) the algebra generated by the elements \(a, \beta, \gamma, d \) with the relations (17). The algebra \(\mathcal{A}_{h_1,h_2} \) is a (graded) Hopf algebra with the usual co-product
\[\Delta(t^i_j) = t^i_k \otimes t^k_j \]
(21)
(sum over repeated indices), co-unit
\[\varepsilon(t^i_j) = \delta^i_j, \]
(22)
and the antipode (co-inverse), which is the same as in [13],
\[T^{-1} = \begin{pmatrix} a^{-1} + a^{-1}\beta d^{-1}\gamma a^{-1} & -a^{-1}\beta d^{-1} \\ -d^{-1}\gamma a^{-1} & d^{-1} + d^{-1}\gamma a^{-1}\beta d^{-1} \end{pmatrix}, \]
(23)
provided that the formal inverses \(a^{-1} \) and \(d^{-1} \) exist.

The quantum superdeterminant of \(T \) is defined as, like that in the quantum supergroup \(\text{GL}_h(1|1) \),
\[D_{h_1,h_2} = ad^{-1} - \beta d^{-1}\gamma d^{-1} \]
(24)
which is independent of the relations (17). The equation
\[ad^{-1} - \beta d^{-1}\gamma d^{-1} = d^{-1}a - d^{-1}\beta d^{-1}\gamma \]
(25)
is also valid, however the proof is rather lengthly but straightforward. It can be checked using the relations
\[d^{-1} \beta = \beta d^{-1} - h_2(1 - ad^{-1} + d^{-1} \beta \gamma d^{-1}), \]
\[d^{-1} \gamma = \gamma d^{-1} + h_1(1 - ad^{-1} - d^{-1} \beta \gamma d^{-1}), \]
\[ad^{-1} = d^{-1} a + h_1 d^{-1} \beta (1 - ad^{-1}) + h_2(1 - d^{-1} a) \gamma d^{-1}, \]
\[\gamma d^{-1} \gamma = 0, \quad h_1 \beta d^{-1} \gamma \beta = -h_1 h_2 \beta \gamma (ad^{-1} - 1). \]

It can be also verified that \(D_{h_1, h_2} \) commutes with all matrix elements of \(T \) (and \(h_1, h_2 \)), that is, \(D_{h_1, h_2} \) belongs to the centre of the algebra \(TD = DT \).

Moreover, it can be checked that \(D_{h_1, h_2} \) has the multiplicative property
\[\Delta(D_{h_1, h_2}) = D_{h_1, h_2} \otimes D_{h_1, h_2}. \]
(26)

We close this section with the following note. If we set \(h_1 h_2 = 0 \) then only the last term in the last relation in (17) vanishes. Essentially, we can eliminate the factor \(h_1 h_2 \) from the last equation in (17). Indeed some algebra gives
\[ad = da + h_1 \beta (a - d) + h_2 (a - d) \gamma. \]
(27)

Therefore the factor \(h_1 h_2 \) does not appear in any of the relations in (17). Thus we can demand that \(h_1 h_2 = 0 \). In this situation, the relations (17) can be easily obtained from (19). This issue will be used in the following two sections.

4. R-matrix for \(\text{GL}_{h_1, h_2}(1|1) \)

We shall obtain an R-matrix for the quantum supergroup \(\text{GL}_{h_1, h_2}(1|1) \) from the R-matrix of \(\text{GL}_{p,q}(1|1) \). We know that the associative algebra (3) is equivalent to
\[R_{p,q} T'_1 T'_2 = T'_2 T'_1 R_{p,q} \]
[see equ.s (4)-(7)]. Now substituting (19) into (4) and defining the R-matrix \(R_{h_1, h_2} \) as
\[R_{h_1, h_2} = \lim_{p \to 1} \lim_{q \to 1} (g \otimes g)^{-1} R_{p,q} (g \otimes g), \]
(28)
where the matrix \(g \) is given by (20), we get the following R-matrix \(R_{h_1, h_2} \)
\[R_{h_1, h_2} = \begin{pmatrix} 1 & -h_1 & h_2 & 0 \\ -h_1 & 1 & -h_1 h_2 & h_2 \\ h_1 & -h_1 h_2 & 1 & h_2 \\ 0 & h_1 & h_1 & 1 + h_1 h_2 \end{pmatrix} \]
(29)
which gives the \((h_1, h_2)\)-deformed algebra of functions on \(\text{GL}_{h_1, h_2}(1|1)\) with the equation
\[
R_{h_1, h_2} T_1 T_2 = T_2 T_1 R_{h_1, h_2}.
\] (30)

Note that the above \(R\)-matrix for the special case \(h_2 = 0\) coincides with the one in Ref. 13. For the special case \(h_1 = 0 = h_2\), the above \(R\)-matrix becomes the unit matrix. Also \(\hat{R}_{h_1, h_2} = PR_{h_1, h_2}\), where \(P\) is the super permutation matrix, satisfies
\[
\hat{R}_{h_1, h_2}^2 = I,
\]
and thus it has two eigenvalues \(\pm 1\).

If we set \(h_1 h_2 = 0\) in (29) then the matrix \(R_{h_1, h_2}\) in (29) can be decomposed in the form
\[
R_{h_1, h_2} = R_{h_1} R_{h_2}
\] (31)
where
\[
R_{h_1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -h_1 & 1 & 0 & 0 \\ h_1 & 0 & 1 & 0 \\ 0 & h_1 & h_1 & 1 \end{pmatrix}, \quad R_{h_2} = \begin{pmatrix} 1 & -h_2 & h_2 & 0 \\ 0 & 1 & 0 & h_2 \\ 0 & 0 & 1 & h_2 \\ 0 & 0 & 0 & 1 \end{pmatrix}.
\] (32)
Here the matrix \(R_{h_1}\) coincides with the \(R_h\) matrix of [13].

It can be checked that these matrices both satisfy the graded Yang-Baxter equation
\[
R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12}, \quad R \in \{ R_{h_1}, R_{h_2} \}
\] (33)
where
\[
(R_{12})^{abc}_{\text{def}} = R^{ab}_{\text{de}} \delta^c_f, \\
(R_{13})^{abc}_{\text{def}} = (-1)^{b(c+f)} R^{ac}_{\text{df}} \delta^b_e, \\
(R_{23})^{abc}_{\text{def}} = (-1)^{a(b+c+e+f)} R^{bc}_{\text{ef}} \delta^a_d.
\] (34)
Also, the matrix \(R_{h_2}\) obeys the ungraded Yang-Baxter equation.

If we set \(\hat{R} = PR\) then one can show that they satisfy the graded braid equation
\[
\hat{R}_{12} \hat{R}_{23} \hat{R}_{12} = \hat{R}_{23} \hat{R}_{12} \hat{R}_{23}, \quad \hat{R} \in \{ \hat{R}_{h_1}, \hat{R}_{h_2} \}
\] (35)
where \(\hat{R}_{h_1} = PR_{h_1}\) and \(\hat{R}_{h_2} = PR_{h_2}\) with the grading again given by (34). Note that the matrix \(R_{h_2}\) does not satisfy the ungraded braid equation.
5. Differential Calculus on the Quantum Superplane

It is well known, through the work of Woronowicz [16], that quantum groups provide a concrete example of non-commutative differential geometry. Wess and Zumino [17] developed a differential calculus on the quantum hyperplane covariant with respect to quantum groups. They have shown that one can define a consistent differential calculus on the non-commutative space of the quantum hyperplane.

In this section we shall construct a covariant differential calculus on the quantum superplane. Before discussing the differential calculus, we note the following. Let us consider the following dual (exterior) superplane Λ^q as generated by φ' and u' with the relations

$$\varphi'^2 = 0, \quad \varphi'u' + q^{-1}u'\varphi' = 0. \quad (36)$$

We define

$$\hat{V} = g_{h_2}^{-1}\hat{V}' \quad (37)$$

where the matrix g_{h_2} is given by (13). Then we get the following relations

$$\varphi^2 = h_2\varphi u, \quad w\varphi + \varphi u = -h_2u^2 \quad (38)$$

under the assumption

$$h_2u = -uh_2. \quad (39)$$

These relations define a deformation of the (exterior) algebra of functions on the dual (exterior) superplane generated by φ and u, and we denote it by Λ_{h_2}.

Now one can check that the transformations

$$T : A_{h_1} \rightarrow A_{h_1}, \quad T : \Lambda_{h_2} \rightarrow \Lambda_{h_2} \quad (40)$$

define a two-parameter deformation of the supergroup GL(1|1), that is, they give the (h_1, h_2)- commutation relations in (17).

We now pass to the differential calculus on the superplane. Consider the coordinates x and ξ, belonging to the associative algebra A_{h_1} which satisfy the commutation relations

$$U^i U^j = \left(\hat{R}_{h_1}\right)^{ij}_{kl} U^k U^l, \quad \hat{R}_{h_1} = PR_{h_1} \quad (41)$$

where $U = (x, \xi)^T$. These relations are equivalent to (11). Similarly, one can express the relations (38) in the form

$$\hat{V}^i \hat{V}^j = -\left(\hat{R}_{h_2}\right)^{ij}_{kl} \hat{V}^k \hat{V}^l. \quad (42)$$
Note that the relations (41) and (42) can be also expressed using the R_{h_1,h_2} matrix in (29) provided it is permuted by the super permutation matrix P.

Denoting the partial derivatives with

$$\partial_i = \frac{\partial}{\partial U^i}, \quad \hat{\partial}_i = \frac{\partial}{\partial \hat{V}^i},$$

one arrives at

$$\partial_j U^i = \delta^i_j + \left(\hat{R}_{h_1,h_2} \right)^{ik}_{jl} U^l \partial_k$$

and

$$\hat{\partial}_j \hat{V}^i = \left(\hat{R}_{h_1,h_2} \right)^{ik}_{jl} \hat{V}^l \hat{\partial}_k.$$

Then we set up the relations between the coordinates of U, \hat{V} and their partial derivatives as follows: [Here, for simplicity we assumed that $h_1 h_2 = 0$]

$$\partial_x x = 1 + x \partial_x + h_1 x \partial_\xi - h_2 \xi \partial_x, \quad \partial_x \xi = \xi \partial_x - h_1 (x \partial_x + \xi \partial_\xi),$$

$$\partial_\xi x = x \partial_\xi + h_2 (x \partial_x + \xi \partial_\xi), \quad \partial_\xi \xi = 1 - \xi \partial_\xi - h_1 x \partial_\xi + h_2 \xi \partial_x,$$

and from (45)

$$\partial_\phi \phi = \phi \partial_\phi + h_1 \phi \partial_u - h_2 u \partial_\phi, \quad \partial_\phi u = u \partial_\phi - h_1 (\phi \partial_\phi + u \partial_u),$$

$$\partial_u \phi = \phi \partial_u + h_2 (\phi \partial_\phi + u \partial_u), \quad \partial_u u = - u \partial_u - h_1 \phi \partial_u + h_2 u \partial_\phi.$$

The relations between the coordinates U and \hat{V} are

$$U^i \hat{V}^j = \left(\hat{R}_{h_1,h_2} \right)^{ij}_{kl} \hat{V}^k U^l,$$

which read

$$x \phi = \phi x + h_2 (u x - \phi \xi), \quad x u = u x + h_1 \phi x + h_2 u \xi,$$

$$\xi \phi = \phi \xi - h_1 \phi x + h_2 u \xi, \quad \xi u = - u \xi - h_1 (\phi \xi + u x).$$

Finally one gets from the following equation

$$\partial_i \partial_j = \left(\hat{R}_{h_1,h_2} \right)^{ik}_{ji} \partial_k \partial_l$$

which are the commutation relations among the partial derivatives:

$$\partial_x \partial_\xi = \partial_\xi \partial_x - h_2 \partial_x^2,$$

$$\partial_\xi^2 = h_2 \partial_\xi \partial_x.$$

9
One of the interesting problems is to construct $U_{h_1,h_2}(gl(1|1))$. Work on this issue is in progress.

Acknowledgement

This work was supported in part by T. B. T. A. K. the Turkish Scientific and Technical Research Council.

References

[1] Drinfeld, V. G., Quantum groups, in Proc. IMS, Berkeley, 1986.
[2] Reshetikhin, N. Y, Takhtajan, L. A. and Faddeev, L. D., Leningrad Math. J. 1 (1990), 193-225.
[3] Manin, Yu I., Commun. Math. Phys. 123 (1989), 163-175.
[4] Demidov, E.E, Manin, Yu I., Mukhin, E. E and Zhdanovich, D.V., Prog. Theor. Phys. Suppl. 102 (1990), 203-218.
[5] Ewen, H., Ogievetsky, O. and Wess, J., Lett. Math. Phys. 22 (1991), 297-305.
[6] Zakrzewski, S., Lett. Math. Phys. 22 (1991), 287-289.
[7] Woronowicz, S. L., Rep. Math. Phys. 30 (1991), 259-269.
[8] Ohn, C. H., Lett. Math. Phys. 25 (1992), 85-88.
[9] Kupershmidt, B. A., J. Phys. A: Math. Gen. 25 (1992), L1239-L1244.
[10] Karimipour, V., Lett. Math. Phys. 30 (1994), 87-98.
[11] Aghamohammadi, A., Mod. Phys. Lett. Math. A 8 (1993), 2607-2613.
[12] Aghamohammadi, A., Khorrami, M. and Shariati, A. J. Phys. A: Math. Gen. 28 (1995), L225-231.
[13] Dabrowski, L. and Parashar, P., to appear in Lett. Math. Phys.
[14] Dabrowski, L. and Wang, L. Phys. Lett. B 266 (1991), 51-54.
[15] Chakrabarti, R. and Jagannathan, R., J. Phys. A: Math. Gen. 24 (1991), 5683-5701.
[16] Woronowicz, S. L., Commun. Math. Phys. 122 (1989), 125-170.
[17] Wess, J. and Zumino, B., Nucl. Phys. B (Proc. Suppl.) 18 B (1990), 302.