QTL-seq for the identification of candidate genes for days to flowering and leaf shape in pigeonpea

Vikas Singh1,2,6, Pallavi Sinha1,2,6, Jimmy Obala1,3,6, Aamir W. Khan1, Annapurna Chitikineni1, Rachit K. Saxena1,4 and Rajeev K. Varshney1,5

© The Author(s) 2021

To identify genomic segments associated with days to flowering (DF) and leaf shape in pigeonpea, QTL-seq approach has been used in the present study. Genome-wide SNP profiling of extreme phenotypic bulks was conducted for both the traits from the segregating population (F2) derived from the cross combination- ICP 5529 × ICP 11605. A total of 126.63 million paired-end (PE) whole-genome resequencing data were generated for five samples, including one parent ICP 5529 (obcordate leaf and late-flowering plant), early and late flowering pools (EF and LF) and obcordate and lanceolate leaf shape pools (OLF and LLS). The QTL-seq identified two significant genomic regions, one on CcLG03 (1.58 Mb region spanned from 19.22 to 20.80 Mb interval) for days to flowering (LF and EF pools) and another on CcLG08 (2.19 Mb region spanned from 6.69 to 8.88 Mb interval) for OLF and LLS pools, respectively. Analysis of genomic regions associated SNPs with days to flowering and leaf shape revealed 5 genic SNPs present in the unique regions. The identified genomic regions for days to flowering were also validated with the genotyping-by-sequencing based classical QTL mapping method. A comparative analysis of the identified seven genes associated with days to flowering on 12 Fabaceae genomes, showed synteny with 9 genomes. A total of 153 genes were identified through the synteny analysis ranging from 13 to 36. This study demonstrates the usefulness of QTL-seq approach in precise identification of candidate gene(s) for days to flowering and leaf shape which can be deployed for pigeonpea improvement.

Heredity (2022) 128:411–419; https://doi.org/10.1038/s41437-021-00486-x

INTRODUCTION

Pigeonpea [Cajanus cajan (L.)] is a protein-rich food legume that serves the dietary needs of more than a billion people in the developing world (Valenzuela 2011). Multiple uses of pigeonpea as food, livestock feed/fodder and domestic firewood make it a sustainable crop of small-holding farmers in the marginal and risk-prone rainfed conditions (Saxena 2008). Development and adoption of improved varieties with higher yield will enhance the availability of plant-based protein for per capita consumption, thereby reducing the number of malnourished people across the world, especially in developing countries.

In pigeonpea, genomics approaches are being deployed to identify genomic regions that confer resistance/tolerance for different stresses. Both biparental mapping and association mapping approaches have been utilized to dissect complex traits in pigeonpea (Bohra et al. 2020). With the advantage of Next Generation Sequencing (NGS) technologies and availability of the pigeonpea reference genome sequence (Varshney et al. 2012), trait mapping approaches have mainly focused on mapping biotic stresses like sterility mosaic disease (SMD) and Fusarium wilt (FW) (Singh et al. 2016a, 2016b; Singh et al. 2017b; Saxena et al. 2017a; 2017b), abiotic stress like drought (Sinha et al. 2015), a marker for A4-derived CMS (Sinha et al. 2016), growth habit (Saxena et al. 2017c), A4-CMS restoration (Saxena et al. 2018), cleistogamous flower, shriveled seed and seed size (Yadav et al. 2019), seed protein content (Obala et al. 2019; Obala et al. 2020).

For developing new plant types that can suit various production niches, crop diversification with the development of photo-insensitive early maturing pigeonpea cultivars is a prerequisite (Saxena et al. 2019a). The first spontaneous mutant early maturing cultivar was detected in 1953 in a farmer’s field. This triggered breeding of early maturing varieties, and subsequently, pigeonpea cultivars varying in maturity periods were bred (Saxena et al. 2019b). Since then, several early maturing cultivars have been bred in different parts of the world. Similarly, leaf shape is another morphological marker (naked eye polymorphism) in cytoplasmic male sterile (CMS) and the corresponding maintainer lines to track purity of the inbred lines and corresponding hybrids for large scale commercial hybrid seed production (Saxena et al. 2011b). It was noted that the obcordate leaf morphological marker is present in accession ICP 5529, which can be easily assessed visually in about 6 weeks after sowing.

Availability of pigeonpea genome assembly along with advances in NGS provides an opportunity to develop genomics tools and technologies for the mapping of agronomically important traits such as days to first flowering and leaf shape in

1Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502 324, India. 2International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India. 3Department of Science, Lira University, Lira, Uganda. 4Gujarat Biotechnology University (GBU), Gandhinagar 382011, Gujarat, India. 5State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia. 6These authors contributed equally: Vikas Singh, Pallavi Sinha, Jimmy Obala. Guest editor: Professor Reyazul Mir. 7email: r.k.varshney@cgiar.org

Received: 7 June 2021 Revised: 11 November 2021 Accepted: 11 November 2021
Published online: 12 January 2022
pigeonpea. QTL identification using whole-genome resequencing of two DNA bulks of progeny showing extreme phenotype (QTL-seq) is an emerging technology that enables locating and refining candidate genomic regions more efficiently compared to traditional QTL mapping approaches (Takagi et al. 2013). As the QTL-seq technique is independent of DNA marker development and genotyping the whole population, it is a time-saving and cost-effective procedure as compared to the conventional QTL analysis. The QTL-seq approach has a wide applicability in QTL identification in many agronomically important crops like rice (Takagi et al. 2013), chickpea (Das et al. 2015; Singh et al. 2016b), groundnut (Pandey et al. 2017; Kumar et al. 2020), pigeonpea (Singh et al. 2016a; Singh et al. 2017b), cucumber (Lu et al. 2014), and tomato (Illa-Berengué et al. 2015).

With the objective of identifying candidate genomic regions responsible for days to flowering (DF) and leaf shape in pigeonpea, QTL-seq approach was adopted. We were able to precisely localize genomic regions for two target traits and identify nine genetic SNPs in seven candidate genes for DF and 39 genic SNPs in 20 candidate genes for leaf shape through QTL-seq approach. The involvement of candidate genes was further validated through co-segregation analysis in the entire F2 population derived from ICP 5529 × ICP 11605 through the genotyping-by-sequencing (GBS) based approach.

MATERIALS AND METHODS

Plant materials

One F2 segregating population comprising 179 lines developed from a late duration (105 DF) and obcordate leaf shape, ICP 5529 and an early duration (67 DF) lanceolate leaf (normal) genotype, ICP 11605 was used in the present study (Obala et al. 2019). For trait evaluation, the parents and seeds of the mapping population were sown under field conditions. Sowing was done in 4 m long rows spaced 75 cm apart and 30 cm plant to plant distance within a row. Plot sizes were two rows for each of the two parents and 25–28 rows in the F2s. All cultural practices were carried out. Days to flowering (DF) were recorded for individual plants as number of days to first flowering after sowing, whereas leaf shape data was recorded 6 weeks after sowing.

Construction of pools

Extreme bulks were prepared for days to first flowering and leaf shape traits based on precise phenotyping data obtained for F2 population. For developing the extreme bulks for each trait, 15 F2S with high mean phenotypic values and 15 F2S with low mean phenotypic values were selected for the preparation of the bulks. The equimolar concentration of DNA from 15 F2S with high mean phenotypic values and 15 F2S with low mean phenotypic values were pooled together as one bulk, and similarly, DNA from low mean phenotypic values were pooled together as one bulk, and similarly, DNA from high mean phenotypic values were pooled together as one bulk, and similarly, DNA from high mean phenotypic values were pooled together as one bulk.

Whole genome sequencing and mapping of reads

Five genomic libraries (two for DF bulks, two for leaf shape bulks, and one for ICP 5529, the obcordate leaf shape parent) were constructed and subjected to the QTL-seq pipeline as shown in Figure S1 and Table S1. Phenotyping data on DF in F2s showed a variation from 65 to 102 days in comparison to parental lines (105 days of ICP 5529 and 67 days of ICP 11605). The absolute difference between the parental lines was 38 days. Shapiro–Wilk test showed that distribution for DF was significantly different from a Gaussian distribution (P ≤ 0.05) (Table S2).

In the case of leaf shape trait, all the F2s from the cross had normal lanceolate leaves suggesting recessive nature of the obcordate leaf shape, while in the F2 population, segregation for the same trait fitted well to the expected ratio of 3:1 (3 lanceolate: 1 obcordate leaf) (Table S3). Based on the phenotyping data, 15 F2S with early DF (65–66 days, early flowering pool, EF) and 15 F2S with late DF (92–102 days, late-flowering pool, LF) were selected to prepare two extreme bulks (Table S4). For leaf shape 15 F2S with LLS (lanceolate leaf pool, LLS pool) and 15 F2S with obcordate leaf shape (obcordate leaf shape pool, OLS pool) were selected to prepare extreme bulks (Table S5).

RESULTS

Construction of extreme bulks for days to flowering and leaf shape

Based on phenotyping data generated on F2s derived from a crossing combination ICP 5529 × ICP 11605, two extreme bulks each for DF (early and late) and leaf shape (normal lanceolate and obcordate types) were prepared and subjected to the QTL-seq pipeline as shown in Figure S1 and Table S1. Phenotyping data on DF in F2s showed a variation from 65 to 102 days in comparison to parental lines (105 days of ICP 5529 and 67 days of ICP 11605). The absolute difference between the parental lines was 38 days. Shapiro–Wilk test showed that distribution for DF was significantly different from a Gaussian distribution (P ≤ 0.05) (Table S2).

In the case of leaf shape trait, all the F2s from the cross had normal lanceolate leaves suggesting recessive nature of the obcordate leaf shape, while in the F2 population, segregation for the same trait fitted well to the expected ratio of 3:1 (3 lanceolate: 1 obcordate leaf) (Table S3). Based on the phenotyping data, 15 F2S with early DF (65–66 days, early flowering pool, EF) and 15 F2S with late DF (92–102 days, late-flowering pool, LF) were selected to prepare two extreme bulks (Table S4). For leaf shape 15 F2S with LLS (lanceolate leaf pool, LLS pool) and 15 F2S with obcordate leaf shape (obcordate leaf shape pool, OLS pool) were selected to prepare extreme bulks (Table S5).

Whole genome sequencing and mapping of reads

Five genomic libraries (two for DF bulks, two for leaf shape bulks, and one for ICP 5529, the obcordate leaf shape parent) were constructed and subjected to whole genome sequencing using Illumina HiSeq2500. In total, 142.80 million PE reads for DF extreme bulks (66.34 million reads for EF and 76.46 million reads for late-flowering bulks, respectively) and 122.74 million PE reads (60.86 for obcordate leaf and 61.88 million reads for lanceolate leaf bulbs, respectively) for leaf shape were generated. A total of 58.63 million PE reads were generated for ICP 5529 (Table 1). Alignment of the PE reads generated from ICP 5529 to the reference genome assembly of pigeonpea (Varshney et al. 2012) resulted in an average depth of 9.15X and 90.70% genome coverage, allowing us to develop a reference-guided assembly of ICP 5529 (hereafter designated as ICP 5529 assembly).

Mapping of the PE reads generated from extreme bulks to the developed ICP 5529 assembly for DF resulted in 15.08X and 15.10X
sequencing depth and 93.26 and 93.13% coverage for late flowering (LF) and EF bulks, respectively. Similarly, for obcordate (OLS) and LLS bulks, we obtained alignment of 13.39X and 13.41X sequencing depth and 92.93 and 92.95% coverage, to the ICP 5529 assembly, respectively. The sequence alignment of LF bulk to the ICP 5529 assembly has provided 47,429 polymorphic SNPs. In this set, 9238 SNPs were homozygous in LF bulk. (Table S6).

Similarly, of 46,510 identified SNPs between EF bulk and ICP 5529 assembly, respectively. The sequence alignment of LF bulk to the ICP 5529 assembly has provided 47,429 polymorphic SNPs. In this set, 9238 SNPs were homozygous in LF bulk. (Table S6).

Table 1. Sequencing details of parental line and bulks and mapping of sequence reads.

Sample	Number of lines bulked	Total reads generated (Million reads)	High quality reads (Million reads)	Reads mapped (Million reads)	Genome coverage at 1X	Average depth (X)
ICP 5529a	58.63	35.33	15.33	90.70%	15.15	9.15
EFb	15	66.34	62.64	30.28	93.13%	15.10
LFb	15	76.46	63.99	30.25	93.26%	15.08
OLSb	15	60.86	51.13	26.86	92.93%	13.39
LLSb	15	61.88	52.23	26.90	92.95%	13.41

*EF Early flowering pool, LF Late flowering pool, OLS Obcordate leaf shape pool, LLS Lanceolate leaf shape pool.

aICP 5529 short reads were aligned to the publicly available pigeon pea genome of Asha (Varshney et al. 2012).

bThe short reads of bulks were aligned to the ICP 5529 assembly developed by replacement of SNPs between ICP 5529 and Asha.

Fig. 1 A QTL-seq approach to identify genomic regions controlling days to flowering in pigeon pea. a ICP 11605: early flowering parent; b ICP 5529: late flowering parent; c SNP index plot between early flowering pool (top), late flowering pool (middle) and ΔSNP index plot (bottom) of chromosome CcLG03 with statistical confidence interval under the null hypothesis of no QTLs (orange, $P < 0.01$; and green, $P < 0.05$). The significant genomic region identified for days to flowering is shaded (1.58 Mb region spanned through 19.22– 20.80 Mb).
Identification of SNPs in putative candidate genes for days to flowering.

SNP index	Function	Linkage group	Gene	Position	ICP 5529 allele	EF allele	Δ SNP-index
C.cajan_09900	Pentatricopeptide repeat-containing protein	CcLG03	19222701	G (aCg)	G (aCg)	0	A (aTg)
C.cajan_10046	Chromodomain-helicase-DNA-binding protein 4	CcLG03	20439904	G G	T	1	
C.cajan_10067	Maestro heat-like repeat-containing protein family	CcLG03	20635496	T T	A	1	
C.cajan_10078	Phosphorylribosylpyrophosphate synthetase 9	CcLG03	20745506	G G	C	1	
C.cajan_10078	14-α-lipoxygenase 1	CcLG03	20745771	A A	G	1	
C.cajan_10078	Uridine nucleosidase 1	CcLG03	20747419	C C	T	1	

Candidate genomic region(s) for days to flowering

QTL-seq analysis for DF revealed a genomic region on CcLG03 (Fig. 1, Table S8 and Figs S2–S4). A genomic region spanning 1.58 Mb (19.22–20.80 Mb) on CcLG03 showing significant (P < 0.05) deviation from equal inheritance of the two parental genomes had 56 SNPs with ΔSNP-index = −1 (Table S8). Of these 56 SNPs, nine SNPs were present in seven putative genes (Table 2). Of these nine genic SNPs, seven were in the intronic region and two SNPs were predicted in the exon regions of gene C.cajan_09900 and C.cajan_10078, associated with pentatricopeptide repeat-containing protein and cell division protein, respectively. Substitution of SNPs in the predicted gene C.cajan_09900 causing a non-synonymous substitution from Cysteine (aCg in ICP 5529 and LF pool) to Threonine (aTg in EF pool). Whereas, synonymous substitution in the predicted gene C.cajan_10078 were observed between the pools.

Candidate genomic region(s) for leaf shape

Sequence analysis of lanceolate and obcordate leaf bulks revealed a candidate genomic region on CcLG08 (Fig. 2, Table S9 and Figs. S5–S7). The genomic region spanning 2.19 Mb region (6.69–8.88 Mb) on CcLG08 revealed 210 SNPs with ΔSNP-index = 1, indicating that their alleles were derived from the lanceolate leaf parent ICP 5529. By contrast, lanceolate leaf bulk at these 210 positions possesses SNP-index = 1, indicating that their alleles were derived from the lanceolate leaf parent ICP 11605 (Table S9). Of the 210 SNPs, 39 SNPs were found in the genic regions of 20 genes. Of these 20 genic SNPs, 12 were present in the intronic region and eight SNPs were predicted in the exonic region of the genes (Table 3). SNP effect analysis of the eight exonic SNPs showed four synonymous and four non-synonymous substitutions. Substitution of SNPs in the predicted gene C.cajan_15991 and C.cajan_16002 causing a non-synonymous substitution from Threonine (Tgt/aTg in ICP 5529 and obcordate leaf pool) to Cysteine (Cgt/aCg in lanceolate leaf pool). Similarly, for two genes namely, C.cajan_16012 [Glycine (Gca in ICP 5529 and obcordate leaf pool) to Alanine (Aca in lanceolate leaf pool)] and C.cajan_16013 [Cysteine (Cca in ICP 5529 and obcordate leaf pool) to Threonine (Ct in lanceolate leaf pool)] nsSNPs substitution was observed.

DISCUSSION

Advances in genomics have led to the development of various NGS based rapid trait mapping approaches like QTL-seq, MutMap, Indel-seq, BSA-Seq, etc (Varshney et al. 2020). NGS technologies have enabled modification and improvement of traditionally tricky, time-consuming bulked segregant analysis (BSA, Michelmore et al. 1991) into rapid and whole genome sequencing-based high-resolution trait mapping (Schlötterer et al. 2014). This approach has become popular nowadays due to affordable sequencing cost to many research groups and high throughput NGS tools. Moreover, the availability of draft genome sequence information in a species speeds up the sequencing of multiple individuals of that species and allows rapid identification of genomic variations as well as mapping and isolation of genes for causative mutations/target traits. Sequencing-based trait mapping combines both classical genetics and NGS platforms to map the associated traits. The application of sequencing-based trait mapping can be divided into two classes (i) trait mapping through bulk sequencing of populations, and (ii) trait mapping
through complete sequencing of populations. Several examples of NGS-based trait mapping have been reported in many crop species (see Varshney et al. 2019).

Genomic regions for leaf shape and days to flowering

Genome sequencing of pigeonpea opened new avenues to enable sequencing-based trait mapping (Varshney et al. 2012). Sequencing-based bulked segregant analysis combined with nsSNPs substitution-based approach were utilized to map the candidate genes for FW and SMD resistance in pigeonpea (Singh et al. 2016a). Similar to SNP-based approach, Indel-seq approach (Indels based) was proposed and utilized for the first time toward the identification of candidate genomic regions/gens for FW and SMD resistance in pigeonpea (Singh et al. 2017b). In the present study, the sequencing of both bulks (EF and LF bulks) identified a comparatively large number of homozygous SNPs (9238 and 7427 SNPs for LF and EF, respectively). The identified SNPs were utilized to calculate the genome-wide SNP index information for both the pools. Analysis of SNPs located in the mapped candidate region on CcLG03 revealed a candidate gene, C.cajan_09900 coding for pentatricopeptide repeat (PPR) containing protein. It is well documented in the literature that PPR protein regulates flowering time in Arabidopsis (Emami et al. 2019). The role of C.cajan_09900 in the EF of pigeonpea can now be investigated further. We have also identified SNPs in the exonic regions of the gene C. cajan_10078, which codes for the cell division protein FtsZ homolog, however, a specific role of this gene in flowering not been reported. These two candidate genes especially gene C. cajan_09900 with non-synonymous mutation and few other genes discovered earlier in pigeonpea using candidate gene approach namely CcTFL1 and EARLY FLOWERING3 (Saxena et al. 2017c; Varshney et al. 2017) would be useful in expanding our understanding of molecular mechanism involved in flowering in pigeonpea and also in related legume species. Furthermore, sequence variations detected in these genes will facilitate the development of EF cultivars in pigeonpea through genomics-assisted breeding (Varshney et al. 2021). Flowering time in pigeonpea is critical as it directly correlates with the maturity of the plant. Nowadays as research efforts are being directed toward development of short duration or EF and early maturing pigeonpea varieties that mature around 100–120 days or early, the present findings will facilitate crop improvement programs. The short duration pigeonpea varieties will provide opportunities to include them in the existing cereal based cropping systems and
Table 3. Identification of SNPs in putative candidate genes for leaf shape.

Linkage group	Gene	Position	ICP 5529 allele	OLS allele	SNP index (OLS pool)	LLS allele	SNP index (LLS Pool)	Δ SNP-index	SNP Effect	Function
CcLG08	C.cajan_15985	6701814	A	A	0	T	1	−1	Intron	Beta-carotene hydroxylase 2
CcLG08	C.cajan_15991	6764651	T (Tgt)	T (Tgt)	0	C (Cgt)	1	−1	Exon	Ac-like transposase
CcLG08	C.cajan_16002	6915910	T (aTg)	T (aTg)	0	C (aCg)	1	−1	Exon	Uncharacterized protein
CcLG08	C.cajan_16003	6921340	A	A	0	G	1	−1	Exon	Pro-Pol polyprotein
CcLG08	C.cajan_16003	6923929	T	T	0	C	1	−1	Intron	
CcLG08	C.cajan_16003	6924854	A	A	0	G	1	−1	Intron	
CcLG08	C.cajan_16003	6927480	T	T	0	C	1	−1	Intron	
CcLG08	C.cajan_16003	6927533	A	A	0	G	1	−1	Intron	
CcLG08	C.cajan_16003	6927560	T	T	0	C	1	−1	Intron	
CcLG08	C.cajan_16003	6927678	T	T	0	C	1	−1	Intron	
CcLG08	C.cajan_16012	7057478	G (Gca)	G (Gca)	0	A (Aca)	1	−1	Exon	F-box protein
CcLG08	C.cajan_16012	7059171	T	T	0	C	1	−1	Intron	Transcriptional corepressor
CcLG08	C.cajan_16013	7068486	G	G	0	C	1	−1	Intron	Uncharacterized protein
CcLG08	C.cajan_16013	7068679	G	G	0	A	1	−1	Intron	Cytochrome P450
CcLG08	C.cajan_16013	7070780	C (cCt)	C (cCt)	0	T (cTt)	1	−1	Exon	Uncharacterized protein
CcLG08	C.cajan_16014	7083922	T	T	0	A	1	−1	Intron	Transposon Ty3-I
CcLG08	C.cajan_16014	7093751	G	G	0	A	1	−1	Intron	E3 ubiquitin-protein ligase
CcLG08	C.cajan_16038	7456634	T	T	0	C	1	−1	Intron	1-aminocyclopropane-1-carboxylate oxidase homolog 1
CcLG08	C.cajan_16038	7456764	A	A	0	G	1	−1	Intron	1-aminocyclopropane-1-carboxylate oxidase homolog 1
CcLG08	C.cajan_16038	7456831	T	T	0	A	1	−1	Intron	1-aminocyclopropane-1-carboxylate oxidase homolog 1
CcLG08	C.cajan_16038	7456974	A	A	0	G	1	−1	Intron	1-aminocyclopropane-1-carboxylate oxidase homolog 1
CcLG08	C.cajan_16038	7457844	C	C	0	A	1	−1	Intron	1-aminocyclopropane-1-carboxylate oxidase homolog 1
CcLG08	C.cajan_16040	7467691	A	A	0	G	1	−1	Intron	Uncharacterized protein
CcLG08	C.cajan_16041	7486941	A	A	0	G	1	−1	Intron	Uncharacterized protein
CcLG08	C.cajan_16047	760346	T	T	0	A	1	−1	Intron	Transposon Ty3-I
CcLG08	C.cajan_16049	7641790	A	A	0	C	1	−1	Intron	E3 ubiquitin-protein ligase
CcLG08	C.cajan_16049	7642373	G	G	0	A	1	−1	Intron	
CcLG08	C.cajan_16049	7643155	A	A	0	C	1	−1	Exon	Protein ROOT PRIMORDIUM DEFECTIVE 1
CcLG08	C.cajan_16051	7666784	A	A	0	G	1	−1	Intron	
CcLG08	C.cajan_16051	7667174	T	T	0	C	1	−1	Intron	
CcLG08	C.cajan_16059	7780600	A	A	0	T	1	−1	Intron	Probable methyltransferase PMT16
CcLG08	C.cajan_16061	7836639	C	C	0	T	1	−1	Exon	1-aminocyclopropane-1-carboxylate oxidase homolog 1
CcLG08	C.cajan_16062	7870949	A	A	0	G	1	−1	Intron	
Table 3. continued

Linkage group	Gene	Position	SNP index (OLS pool)	SNP index (LLS pool)	Δ SNP-index	Function
CcLG08	C.cajan_16063	7947009	A	1	-1	Intron
CcLG08	C.cajan_16066	8008253	C	1	-1	Intron
CcLG08	C.cajan_16068	8168767	C	1	-1	Intron
CcLG08	C.cajan_16099	8666995	T	1	-1	Intron

The **Δ SNP-index** was calculated as the difference in SNP index between ICP 5529 and the respective leaf shape phenotype. The SNP index was calculated based on allele calls and read depth in comparison to the ICP 5529 reference assembly.

Co-localization of genomic regions with QTLs identified through genetic linkage mapping approach

Further, to validate our results obtained through QTL-seq approach, we have used available genetic map information on ICP 5529 × ICP 11605 population (Table S10) (Obala et al. 2019). The phenotyping data obtained on entire population for DF were combined with the genetic map information to perform classical QTL analysis. Composite interval mapping identified a total of four QTLs for DF on CcLG03 with PVE ranging from 4.60 to 47.58% (Table S11). Three QTLs, namely qDF3.1 (39.58%), qDF3.3 (47.58%) and qDF3.4 (16.18%) were identified as major effect QTLs and remaining one QTL showed minor effects (qDF3.2) for DF. All the four identified QTLs for DF were mapped between 16.68 and 22.23 Mb (5.55 Mb) region on CcLG03. We have also identified the number of genes present within each QTL region and a minimum of 32 genes were identified within QTL qDF3.3, while a maximum of 588 genes were identified within QTL qDF3.1. All the four QTLs were found in these regions with different spans of the QTL window. Therefore, it is difficult to select the genes/genomic regions for molecular breeding without narrowing the candidate genomic regions. Interestingly, the QTL-seq approach also identified the DF related QTLs with a much narrow window (1.58 Mb region; 19.22–20.80 Mb) of the QTLs on CcLG03 (Table S12). Comparative to 588 coding genes reported in the conventional QTL approach, QTL-seq provided the opportunity to select the candidate genes from the identified two exonic SNPs. After validation of these identified exonic SNPs, these can be utilized in the crop improvement programs for the development of early maturing pigeonpea varieties.

Comparative genetic mapping of days to flowering related genes across key legume crops

To utilize the identified genomic regions in pigeonpea associated with DF, we tried to understand the relevance of the present study in other crops of Fabaceae family. We did a comparative mapping of the identified seven Cajanus cajan genes associated with DF with 12 crop genomes (i) Arachis duranensis (Aradu), (ii) Arachis hypogaea (Araya), (iii) Arachis ipaensis (Araip), (iv) Cicer arietinum, (v) Glycine max (Glyma), (vi) Glycine soja (Glyso), (vii) Lupinus angustifolius (Lupan), (viii) Medicago truncatula (Medtr), (ix) Phaseolus vulgaris (Phavu), (x) Vigna angularis (Vigan), (xi) Vigna radiata (Vigra) (xii) Vigna unguiculata (Vigun). (Fig. S8). We have performed protein blast using DELTA-BLASTP. Query coverage >90%, similarity >60% and e-value ≤ 1e-10 were taken into consideration for best predicted results. Protein domain and gene functional analysis were performed using Interpro (Table S13). We have found two genes, earlier reported which plays an important role in flowering in Arabidopsis. The interpro domain...
prediction provided similar domain region hits in the protein structure of PPR domain Ccajan_09900 reflected Pentatricopeptide-tide repeat in its protein structure. PRECOCCIOUS1 (POCO1), a p-class PPR repeat protein reported as to affect flowering time in Arabidopsis thaliana (Emami et al. 2019). Another gene C. cajan_09938 hits the Zinc finger PHD-type protein named PPD finger domain containing protein (PFD) is identified to suppress the flowering in Arabidopsis thaliana (Yokoyama et al. 2019). Conserved genomic regions were identified with nine genomes out of the selected 12 targeted genomes. A high degree of conserved collinear synteny among the chromosome 6 of Arabad, Arahy and Araip were identified. On chromosome 3 of Cicer, chromosome 19 of Glyma and Glyso and chromosome 3, 1 and 7 of Vigna, Phavu and Medtr respectively, we have also found the similarity with the identified Cajanus cajan genes (Table S14). An interpretation in the view of domain search of candidate genes can give proportional understanding of functions. Comparative analysis of the seven Cajanus cajan genes with the 12 genomes, mapped to 135 homologous genes ranged from 13 (C. cajan_09900 and C.cajan_09958) to 36 (C.cajan_09965). The number of genes mapped to the other crop genomes ranged from 9 (Cicer arietinum and Vigna radiata) to 20 (Glycine max) (Table S15). Identified genes in the present study through synteny analysis in the other crops can be validated and utilized for the development of early duration crop varieties.

CONCLUSION
The present study has provided candidate genes for DF and leaf shape in pigeonpea using QTL-seq approach. Some candidate genes have been prioritized using information on non-synonymous SNPs and homology based analysis. Moreover, we have also enriched the genomic regions associated with DF through GBS based QTL analysis. In summary, this study has provided the most promising candidate gene/s for DF (C. cajan_09900) and leaf shape (C.cajan_15991, C.cajan_16002, C. cajan_16012 and C.cajan_16013) in pigeonpea. Additionally, comparative genetic mapping of DF related genes with other crops, revealed several important genes in nine other Fabaceae crop genomes. These candidate genes will be helpful in identification, cloning and functional validation of causal mutation or gene/s responsible for DF and leaf shape in pigeonpea and other related legume species.

DATA AVAILABILITY
All the data generated in the present study is provided in the Supplementary Information and sequencing data deposited as Bioproject ID PRJNA774652 in NCBI.

REFERENCES
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H et al. (2012) Genome data analysis in the other related legume species. Bioinformatics 28:1071–1079
Baute J, Polyn S, De Block J, Blomme J, Van Ljissebets M, Inzé D (2017) F-Box Protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiol 58:962–975
Bhattacharya MK, Smith AM, Ellis TH, Hedley C, Martin C. (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60:115–122
Bohra A, Saxena KB, Varshney RK, Saxena RK (2020) Genomics-assisted breeding for pigeonpea improvement. Theor Appl Genet 133:1721–1737
Cingolani P, Platts A, Wang L, Coon M, Nguyen T, Wang L et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w (111B); iso-2; iso-3. Fly (Austin) 6:80–92
Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Lakmi Kumar V et al. (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203
Emami H, Kempekn F, PRECOCCIOUS1 (POCO1) (2019) A mitochondrial pentatricopeptide repeat protein affects flowering time in Arabidopsis thaliana. Plant J 100(2):265–278
illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E (2015) Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor Appl Genet 128:1329–1342
Katta MAVSK, Khan AW, Dodamdi D, Thudi M, Varshney RK (2015) NGS-QCbox and raspberry for parallel, automated and rapid quality control analysis of large-scale next generation sequencing (Illumina) data. PLoS ONE 10:e0139868
Kosugi S, Natsume S, Yoshida K, MacLean D, Cano L, Kamoun S et al. (2013) Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data. PloS ONE 8:e75402
Kumar R, Janila P, Vishwakarma M, Khan AW, Manohar S, Gangurde SS et al. (2020) Whole genome re-sequencing-based QTL-seq identified candidate genes and molecular markers for fresh Seed dormancy in groundnut. Plant Biotechnol J 18:992–1003
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760
Lu H, Lin T, Klein J, Wang S, QJ, Zhou Q et al. (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499
Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis - a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832
Obala J, Saxena RK, Singh V, Sameer Kumar CV, Saxena KB, Tongoona P et al. (2019) Development of sequence-based markers for seed protein content in pigeonpea. Mol Gen Genom 294:57–68
Obala J, Saxena RK, Singh VK, Kale SM, Garg V, Sameer Kumar CV et al. (2020) Seed protein content and its relationships with agronomic traits in pigeonpea is controlled by both main and epistatic effects QTLs. Sci Rep 10:2144
Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shaisidhar Y, Kumar V et al. (2017) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15:927–941
Saxena KB (2008) Genetic improvement of pigeonpea-A review. Trop Plant Biol 1:159–178
Saxena KB, Choudhary AK, Srivastava RK, Bohra A, Saxena RK, Varshney RK (2019) Origin of early maturing pigeonpea germplasm and its impact on adaptation and cropping systems. Plant Breed 138:243–251
Saxena KB, Saxena RK, Hickey LT, Varshney RK (2019b) Can a speed breeding approach accelerate genetic gain in pigeonpea? Euphytica 215:202
Saxena KB, Vales ML, Kumar RV, Sultana R, Srivastava RK (2011b) Ensuring genetic purity of pigeonpea hybrids by incorporating a naked-eye polymorphic marker in A and B lines. Crop Sci 51:1564–1570
Saxena RK, Kale SM, Kumar V, Parapalli S, Joshi S, Singh VK et al. (2017a) Genotyping-by-sequencing of three mapping approaches for identification of candidate genes for resistance to sterility mosaic disease in pigeonpea. Sci Rep 7:1813
Saxena RK, Obala J, Sinjushin A, Sameer Kumar CV, Saxena KB, Varshney RK (2017c) Characterization and mapping of Df71 locus which co-segregates with CcTFL1 for growth habit in pigeonpea. Theor Appl Genet 130:1773–1784
Saxena RK, Patel K, Sameer Kumar CV, Tyagi K, Saxena KB, Varshney RK (2018) Molecular mapping and inheritance of restoration of fertility (Rf) in A4 hybrid system in pigeonpea (Cajanus cajan (L.) Millsp.). Theor Appl Genet 131:1605–1614
Saxena RK, Singh VK, Kale SM, Tathinieni R, Parapalli S, Kumar V et al. (2017b) Construction of genotyping-by-sequencing based high-density genetic maps and QTL mapping for fusarium wilt resistance in pigeonpea. Sci Rep 7:1911
Schlötterer C, Tobler R, Koehler J, Medlar S, Bartsch A, Schlötterer C (2010) In situ physical mapping of large-scale next generation sequencing (Illumina) data. PLoS ONE 5:e100501
Singh VK, Khan AW, Saxena RK, Sinha P, Kale SM, Parapalli S et al. (2017b) Indel-seq: a fast-forward genetics approach for identification of trait-associated putative candidate genomic regions and its application in pigeonpea (Cajanus cajan). Plant Biotechnol J 15:906–914
Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H et al. (2016a) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14:2110–2119
Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P et al. (2016b) Next generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J 4:1183–1194
ACKNOWLEDGEMENTS

The work was supported in part by the United States Agency for International Development (USAID): India Mission, Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India and Bill & Melinda Gates Foundation (grant number OPP1005131). This work has been undertaken as part of the CGIAR Research Program on Grain Legumes and Dry Land Cereals. ICRISAT is a member of CGIAR Consortium.

AUTHOR CONTRIBUTIONS

RKV was responsible for coordination of the study, also contributed in designing study, writing, analysis and interpretation. VKS was responsible for designing, generating data, analysis and writing. PS also contributed in designing, generating data, analysis and writing. JO contributed in generating phenotyping data, analysis and writing. AWK contributed to analysis of sequencing data and QTL-seq analysis. AC contributed in sequencing data generation and writing. RKS contributed in coordination of study, generation of segregating population, phenotyping, sequencing data generation, writing and interpretation.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41437-021-00486-x.

Correspondence and requests for materials should be addressed to Rajeev K. Varshney.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021