Formyltetrahydrofolate Hydrolase, a Regulatory Enzyme That Functions To Balance Pools of Tetrahydrofolate and One-Carbon Tetrahydrofolate Adducts in Escherichia coli

PETER L. NAGY,1 ARIANE MAROLEWSKI,2 STEPHEN J. BENKOVIC,2 AND HOWARD ZALKIN1*

Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907,1 and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 168022

Received 26 September 1994/Accepted 19 December 1994

The enzyme encoded by Escherichia coli purU has been overproduced, purified, and characterized. The enzyme catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to FH4 and formate. Formyl-FH4 hydrolase thus generates the formate that is used by purT-encoded 5'-phosphoribosylglycinamidetransformylasefor step three of de novo purine nucleotide synthesis. Formyl-FH4 hydrolase, a hexamer with 32-kDa subunits, is activated by methionine and inhibited by glycine. Heterotrophic cooperativity is observed for activation by methionine in the presence of glycine and for inhibition by glycine in the presence of methionine. These results, along with previous mutant analyses, lead to the conclusion that formyl-FH4 hydrolase is a regulatory enzyme whose main function is to balance the pools of FH4 and C5-FH4 in response to changing growth conditions. The enzyme uses methionine and glycine to sense the pools of C5-FH4 and FH4, respectively.

There are two transformylation steps in the pathway for de novo purine nucleotide synthesis. The enzymes catalyzing these reactions in Escherichia coli are purN-encoded 5'-phosphoribosylglycinamidase (GAR) transformylase and purH-encoded 5'-phosphoribosyl-4-carboxamide-5-aminomimidazole (AICAR) transformylase (20). Both enzymes use 10-formyltetrahydrofolate (formyl-FH4) as the formyl donor. E. coli also has an alternative GAR transformylase (13, 21) that is coded for by purT (21). This enzyme enables E. coli to incorporate formate into the purine ring, even though it has no formyl-FH4 synthetase (8). pff-encoded pyruvate formate lyase is utilized for the production of formate under anaerobic growth conditions (23), and a gene designated purU is required for the aerobic production of formate (18). PurU encodes a protein of 280 amino acids. The sequence from residues 85 to 280 exhibits 27% amino acid identity with GAR transformylase N (purN encoded), including 10 of 11 residues that are thought to interact with formyl-FH4 (1). This similarity as well as mutant analysis prompted the suggestion that purU encodes an enzyme that binds formyl-FH4 and catalyzes its hydrolysis to formate and FH4 (18).

Two observations suggested that PurU-dependent formate production is regulated (18). First, growth of an E. coli purN mutant that relies on GAR transformylase T (purT encoded) and PurU for purine synthesis was strongly inhibited by glycine. This inhibition was reversed by either formate or purines. Second, methionine had a positive effect on the growth of the purN mutant, although when supplied in equimolar concentrations with glycine, it did not reverse the growth inhibition. In this paper, we describe the purification and characterization of PurU and show that it is a formyl-FH4 hydrolase whose activity is regulated by glycine and methionine, in accord with the phenotype of the purN mutant.

The importance of PurU extends beyond its role in supplying formate for the GAR transformylase T reaction. It has been noted that a purU mutant required glycine supplementation to grow at the wild-type rate (18). In the presence of either adenine and methionine or adenine and histidine, the starvation for glycine was so severe that growth of the purU strain was virtually blocked unless glycine was supplied. In E. coli, glycine is synthesized in a reaction that is catalyzed by glyA-encoded serine hydroxymethyltransferase as follows: serine + FH4 \rightarrow glycine + 5,10-methylene-FH4 (27). The effect of adenine plus methionine or adenine plus histidine could starve a purU mutant for glycine by repressing pathways that regenerate FH4 from C5-FH4. The pertinent reactions that regenerate FH4 are catalyzed by two homocysteine methylases (homocysteine \rightarrow methyl-FH4 \rightarrow methionine + FH4) (6), by GAR transformylase N (GAR + formyl-FH4 \rightarrow 5'-phosphoribosyl-N-formylglycinamide [FGAR]+FH4) (11), and by AICAR transformylase (AICAR + formyl-FH4 \rightarrow 5'-phosphoribosyl-4-carboxamide-5-formamidoimidazole [FAICAR] + FH4) (20). AICAR produced during histidine synthesis also generates FH4 in the AICAR transformylase reaction (34). Since all of the compounds having an effect on the purU and purN mutant strains are involved in the interconversions of FH4 and C5-FH4, it is proposed that purU-encoded formyl-FH4 hydrolase has a general role in one-carbon metabolism, in addition to supplying formate for purine synthesis through GAR transformylase T. The data suggest that PurU regulates the ratio of C5-FH4:FH4 pools in the cell.

MATERIALS AND METHODS

Strains, plasmids, and media. The bacterial strains and plasmids used in this study are listed in Table 1. Minimal medium contained salts (33), 0.5% glucose, 1 μg of thiamine per ml, and other additions as noted. Unless specified otherwise, amino acids, formate, and adenine were added at 0.5 and 1 mM and 100 μg/ml, respectively. Luria broth was used as rich medium (15). Solid media contained 1.5% agar.

Construction of purU expression vectors. A 949-bp fragment containing the complete coding sequence of purU with NdeI and HindIII sites at the 5′ end and the 3′ end, respectively, was amplified by PCR using sense primer 789, (5′-TTC CACATATGCGATTCACCTGCCACGAAAG-3′) and antisense primer 1738, (5′-ATGACGCGCCGCTGTAACGCTTTAAGTTTGATCTG-3′). Primers are named according to the positions of their 5′ nucleotides in the purU sequence (GenBank accession number L20251). Nucleotides that were replaced to introduce restriction sites are indicated by boldface letters, restriction sites are underlined, and
TABLE 1. Bacteria, bacteriophage, and plasmids used in this work.

Strain or plasmid	Genotype or description	Comment or source
E. coli MC4100	F araD139 Δ(argF-lac)U169 repL50 thiA1 relA1	Laboratory stock
PLN100	MC4100 purU::kan	Laboratory stock
PLN103	purO300	Laboratory stock
NK5526	hisG213;Tn10λ IN(rrd-	
	-rrEl)	Laboratory stock
TX267	araDelac pG4	Laboratory stock
BL21(DE3)	omp T	Laboratory stock

Bacteriophage

P1 vir	Bacteriophage P1; lytic	Laboratory stock
Plasmids		
pMLB1034	lacZY fusion vector, Ap'	25
pPLN3	glyA-ΔZ fusion vector for overexpression	32
pT7-PU1	pT7-PU1 cloned into pT7-7	This work
pGSI	glyA plasmid	28
Bluescript SK	Bluescript SK	Laboratory stock
		Laboratory stock

* Laboratory stocks were from Purdue University.

the start codon is italicized. After digestion with NdeI and HindIII, purU was ligated into the corresponding sites of pT7-7. This vector contains the T7 promoter δ10 and the translation start site of T7 gene 10 protein along with the blu gene required for ampicillin resistance. The resulting construct was named pT7-PU1.

Overexpression of PurU. A single colony of strain BL21(DE3)pT7-PU1 was grown overnight in 10 ml of Luria broth medium supplemented with 100 μg of ampicillin per ml. Six 2-liter flasks, each containing 0.5 liter of Luria broth with ampicillin were each inoculated with 1 ml of the overnight culture and grown at 37°C to a turbidity of 180 measured with a Klett colorimeter with a 660-nm filter. At this point, lactose was added to a final concentration of 1% for induction of T7 polymerase, and the flasks were incubated at 30°C with shaking for 24 h. Cells were harvested by centrifugation and were frozen at −20°C.

Enzyme purification. All purification steps were performed at 4°C in a buffer containing 50 mM Tris-HCl (pH 7.5)–1 mM EDTA, unless otherwise noted. From cells were resuspended in 4 ml of buffer containing 4 mM phenylmethylsulfonyl fluoride per g and were broken by two passages through a French press at 20,000 lb/sq in. To the broken cell suspension, a 0.1-volume of 10% streptomycin sulfate was added slowly with stirring. After the last addition, stirring continued for 15 min, which was followed by centrifugation at 18,000 × g for 30 min. Ammonium sulfate was added slowly to 30% saturation (0.176 g/ml) with stirring. Stirring continued for 15 min following the last addition. The precipitate was collected by centrifugation for 30 min at 16,000 × g. The pellet was dissolved in buffer and dialyzed overnight against 100 volumes of the same buffer. After centrifugation at 18,000 × g for 30 min to remove precipitated protein, the solution was loaded on a DEAE-Sepharose column (1.5 by 5 cm) equilibrated with the same buffer. The column was washed with 50 ml of buffer, and the proteins were eluted with a 300-ml linear gradient of 0 to 0.5 M NaCl in the buffer. Fractions were collected by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (12), and fractions containing the enzyme were pooled.

After concentration by ammonium sulfate precipitation, the protein was dissolved in buffer, dialyzed, and adjusted to approximately 10 mg/ml. The protein was stored at −20°C.

Gel filtration chromatography. Native molecular weights of the enzyme in the crude extract and after purification were estimated by gel filtration. A column (1.1 by 90 cm) of Sephacryl S-300 equilibrated with 50 mM Tris-HCl (pH 7.5) at 4°C was calibrated with thyroglobulin (669,000), ferritin (440,000), catalase (232,000), and aldolase (158,000). Enzyme (1 ml containing either 1.6 mg of purified hydrolyase or 6.8 mg of extract protein) was applied to the column, and 1-ml fractions were collected at a flow rate of 10 ml/h. The crude extract was treated with DNases I and centrifuged at 130,000 × g for 2 h prior to gel filtration. In some experiments, the column was equilibrated with buffer containing 2 mM methionine or 100 μM glycine. Log molecular weights were plotted against Kav, (Kav = Vr / (Vr + Vt) - Vr, where Vr is the elution volume for the protein, Vt is the void volume, and Vr is the total volume). Measurements of protein concentrations. Protein concentrations were determined by the Bradford method (3) with bovine serum albumin as the standard. Synthesis of folate derivatives. (R)-5,10-Methenyl-FH4 was synthesized from dihydrofolate in two steps. Briefly, dihydrofolate (Sigma Chemical Co.) was reduced enzymatically to FH4 using dihydrofolate reductase, NADPH, and an NADPH-regenerating system (14). The purified dihydrofolate reductase was a gift from Rowena Matthews, University of Michigan. The FH4 was purified by chromatography on DEAE-Sepharose and lyophilized. 6(5)-10-Methenyl-FH4 was prepared from 6(5)-FH4 by treatment with 6(5)-FH4:FMN methyltransferase. 10-Methenyl-FH4 was isolated by chromatography on a column of Whatman cellulose (CF 12), lyophilized, and crystallized from 0.1 N HCl–0.1 M mercaptoethanol. 6(5)-10-Methenyl-FH4 was washed with ethanol and ether and stored under vacuum at −20°C. 6(5)-FH4:FMN was prepared fresh daily by dissolving about 1 mg of 6(5)-10-methenyl-FH4 in 1 ml of 40 mM potassium phosphate (pH 6.8)–0.1 mM EDTA–10 mM mercaptoethanol and by incubation for 2 h in the dark under argon (26).

Formyl-5,8-dideazafolate (fDDF) was prepared as described by Inglese et al. (11). The concentration of fDDF was determined spectrophotometrically at 310 nm (ε = 3.8 M−1 cm−1), and that of formyl-FH4 was determined spectrophotometrically at 298 nm (ε = 9.5 M−1 cm−1) (2).

Enzyme assay. Routine assays were conducted with fDDF, and some results were verified with formyl-FH4. The standard reaction with fDDF was carried out in a volume of 100 μl containing 50 mM Tris-HCl (pH 7.5), 60 μM fDDF, 2 mM methionine, and enzyme. The reaction was started by the addition of enzyme, and the initial rate of hydrolysis of fDDF was recorded at 295 nm (Δε = 18.9 M−1 cm−1) (26). The standard reaction mixture with formyl-FH4 contained 50 mM Tris-HCl (pH 7.5), 80 μM formyl-FH4, 10 mM mercaptoethanol, 2 mM methionine, and enzyme in a volume of 500 μl. All solutions except the buffer were degassed and stored with argon six times. Samples were rinsed with argon and sealed with Parafilm. All additions were made with syringes. Assays at 23°C were started by the addition of substrate. The initial rate of hydrolysis was recorded at 298 nm (Δε = 19.7 M−1 cm−1) (2).

Formate production assay. The production of formate was compared to the oxidation of NADH using the GAR transformylase (formate + GAR + ATP → N-sulfophosphoryl-N-formylglycinamide + ADP + P) reaction. The GAR was activated with pyrophosphate and ATP. Formate dehydrogenase (pyruvate + NADH + H+ → pyruvate + NAD+) reactions in the presence of 1 mM formyl-FH4, 10 mM NADH, and 10 mM glycine were determined from 18,000 × g for 30 min. Ammonium sulfate was added slowly to 30% saturation (0.176 g/ml) with stirring. Stirring continued for 15 min following the last addition. The precipitate was collected by centrifugation for 30 min at 16,000 × g. The pellet was dissolved in buffer and dialyzed overnight against 100 volumes of the same buffer. After centrifugation at 18,000 × g for 30 min to remove precipitated protein, the solution was loaded on a DEAE-Sepharose column (1.5 by 5 cm) equilibrated with the same buffer. The column was washed with 50 ml of buffer, and the proteins were eluted with a 300-ml linear gradient of 0 to 0.5 M NaCl in the buffer. Fractions were collected by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (12), and fractions containing the enzyme were pooled.

After concentration by ammonium sulfate precipitation, the protein was dissolved in buffer, dialyzed, and adjusted to approximately 10 mg/ml. The protein was stored at −20°C.

Gel filtration chromatography. Native molecular weights of the enzyme in the crude extract and after purification were estimated by gel filtration. A column (1.1 by 90 cm) of Sephacryl S-300 equilibrated with 50 mM Tris-HCl (pH 7.5) at 4°C was calibrated with thyroglobulin (669,000), ferritin (440,000), catalase (232,000), and aldolase (158,000). Enzyme (1 ml containing either 1.6 mg of purified hydrolyase or 6.8 mg of extract protein) was applied to the column, and 1-ml fractions were collected at a flow rate of 10 ml/h. The crude extract was treated with DNases I and centrifuged at 130,000 × g for 2 h prior to gel filtration. In some experiments, the column was equilibrated with buffer containing 2 mM methionine or 100 μM glycine. Log molecular weights were plotted against Kav, (Kav = Vr / (Vr + Vt) - Vr, where Vr is the elution volume for the protein, Vt is the void volume, and Vr is the total volume). Measurements of protein concentrations. Protein concentrations were determined by the Bradford method (3) with bovine serum albumin as the standard. Synthesis of folate derivatives. (R)-5,10-Methenyl-FH4 was synthesized from...
strains R320 as described elsewhere (15). Fusion in which codon 18 of glyA EcoB Bam and Theresulting glyA-lacZ, PLN100 (purU MC4100 (wildtype), R320 (purU::chloroform-SDS lysis procedure (16).

grown to mid-log phase, and samples were used to inoculate 2-ml cultures in the same medium. Cells were

averages of triplicate parallel determinations normalized for cell density (turbidity at 600 nm). The maximal acceptable difference in cell density was twofold. The values reported in Table 5 are from a single representative experiment.

Regulation of glyA expression. To examine regulation, the 5′ end of glyA was fused to a lacZ reporter. A fragment containing 340 nucleotides of 5′ flanking sequence and the first 55 nucleotides of the glyA coding sequence was amplified by PCR from plasmid pGS1 (28) with primers that provided 5′ and 3′ EcoRI and BamHI sites, respectively. The resulting fragment was inserted into the EcoRI and BamHI sites of plasmid pMBL1034 to give a glyA-lacZ translational fusion in which codon 18 of glyA was joined in frame to the 9th codon of lacZ. The resulting glyA-lacZ fusion in plasmid pL13 was transformed into strains MC4100 (wild type), R320 (purR), PLN100 (purU), and PLN103 (purR, purU). Cells were grown overnight with supplements (indicated in Table 4), and 100-μl samples were used to inoculate 2-ml cultures in the same medium. Cells were grown to mid-log phase, and β-galactosidase activity was assayed using the chloroform-SDS lysis procedure (16).

P1 transduction. The purU::kan marker was transferred from strain PLN100 to strain R320 as described elsewhere (15).

RESULTS

Overexpression of purU and enzyme purification. The purU gene was cloned into overexpression vector pT7-7, and the resulting plasmid pT7-PU1 was transformed into E. coli BL21 (DE3). This strain contains the gene for T7 RNA polymerase in the chromosome under the control of the inducible lacUV5 promoter. Upon induction by lactose, T7 polymerase is synthesized, resulting in synthesis of the target gene cloned downstream of the T7 promoter in the multicopy pT7-7 plasmid. Following induction, a protein subunit with a molecular mass of approximately 32 kDa was overproduced (Fig. 1). This subunit mass is in good agreement with the value of 31,800 Da calculated from the sequence of the cloned gene. The enzyme was purified threefold to virtual homogeneity in two steps following removal of DNA by precipitation with streptomycin sulfate (Table 2). After ammonium sulfate fractionation, the enzyme was more than 90% pure by SDS-polyacrylamide gel electrophoresis (Fig. 1, lane 3). Chromatography on DEAE-Sepharose removed small amounts of higher-molecular-weight impurities and resulted in a protein that was more than 95% pure (Fig. 1, lane 4). The small amount of contaminating protein (approximately 28 kDa), which is visible in lane 4 but not in lane 3, is assumed to result from proteolytic degradation.

Kinetics characterization. fDDF, a stable formyl-FH4 analog, was tested as a substrate to determine whether the purified purU gene product had the predicted formyl-FH4 hydrolase activity. The data summarized in Table 3 established that the enzyme catalyzed the hydrolysis of fDDF as well as of formyl-FH4. A low rate of fDDF catalysis was stimulated about 25-fold by methionine. The results of two experiments indicated that methionine activated the enzyme instead of participating directly in the reaction. First, the amount of fDDF formed, which was measured by a change in the A390, exceeded by sixfold the concentration of methionine in the assay mixture. Second, the rate of formate production, which was determined by coupled enzymatic assay, relative to the rate of deformylation of fDDF was 0.8:1, indicating that formyl methionine is not a product of the reaction. Activation by methionine exhibited saturation kinetics with a Km of 200 μM (Fig. 2) (Table 3). Therefore, 2 mM methionine was included for the routine hydrolase assay. Because of the low turnover rate of the nonactivated enzyme, the Km for fDDF was not determined accurately but was esti-

![Image](http://jb.asm.org/)

FIG. 1. SDS-polyacrylamide gel electrophoresis to monitor purification of formyl-FH4 hydrolase. Samples (20 μg) were electrophoresed on 15% polyacrylamide gels containing 1% SDS. The gels were stained with Coomassie blue. The protein samples are as follows: crude extract (lane 1), streptomycin sulfate fraction (lane 2), ammonium sulfate fraction (lane 3), DEAE-Sepharose fraction (lane 4), and molecular weight markers (lane 5). The molecular weight markers are phosphorylase b, bovine serum albumin, ovalbumin, carbonic anhydrase, soybean trypsin inhibitor, and lysozyme (top to bottom).

![Image](http://jb.asm.org/)

FIG. 2. Activation of formyl-FH4 hydrolase by methionine and inhibition by glycine. The initial rate of fDDF hydrolysis was assayed at three fixed concentrations of glycine (none [■], 20 μM [○], and 40 μM [□]).

TABLE 2. Summary of enzyme purification

Step	Vol (ml)	Amt of protein (mg)	Sp act (nmol/min/mg)	Total activity (nmol/min)
Disruption of cells	135	2,160	30	64,800
Streptomycin sulfate	135	850	55	46,800
Precipitation				
Ammonium sulfate precipitation	10	280	72	20,200
Ion-exchange chromatography	22	205	85	17,400

TABLE 3. Summary of kinetic constants

Substrate	Conc of Met (mM)	kcat (S⁻¹)	Km (μM)	kcat/Km (μM⁻¹)	Km Met (μM)	Km Gly (μM)
fDDF	0.4	0.001	<10	<0.0001 ND	ND <20	
fDDF	0.016	0.0005	6.5 ± 0.5	0.0029	194 ± 41	29
fDDF	2.0	0.026	7.0 ± 0.3	0.0037	194 ± 41	40
Formyl-FH₄	2.0	0.10	49 ± 17	0.00820	238 ± 43	ND

* Km, inhibition constant for interaction of uncompetitive inhibitor with the enzyme-substrate complex.

* ND, no data.
mated to be <10 μM. An fDDF K_m of 7.0 μM was calculated for the activated enzyme. The k_{cat} for hydrolysis of formyl-FH$_4$ was about four times faster than that for the substrate analog; however, because of a sevenfold higher K_m, the value of k_{cat}/K_m with formyl-FH$_4$ was about half of that with fDDF. These results establish that the purU gene product is a formyl-FH$_4$ hydrolase.

The hydrolase activity was subject to inhibition by glycine. Glycine inhibition was uncompetitive with fDDF (Fig. 3), although there was apparent upward curvature of the double reciprocal plot, indicative of cooperativity, for the activated enzyme at the lowest concentration of fDDF. The inhibition constant for glycine was dependent on the methionine concentration, varying between <20 μM with no methionine to 40 μM with saturating methionine (Table 3). Cooperativity for glycine inhibition was likewise dependent on the methionine concentration (Fig. 4). Hill coefficients for glycine, calculated from the data in Fig. 4, were 0.83 ± 0.12 for the unactivated enzyme and 1.68 ± 0.20 with 1.6 mM methionine. In a like manner, the Hill coefficient for methionine was 1.34 ± 0.30 in the absence of glycine, 2.54 ± 0.56 with 20 μM glycine, and 2.74 ± 0.30 with 40 μM glycine (Fig. 2). Thus, methionine and glycine, the regulators of formyl-FH$_4$ hydrolase, exhibit heterotropic cooperative interactions.

Oligomeric state. Gel filtration on Sephacryl S-300 was used to estimate the native molecular weight of formyl-FH$_4$ hydrolase. A value of approximately 190,000 was obtained (Fig. 5), suggesting that the native enzyme is a hexamer of 32,000 molecular weight subunits. A similar molecular weight was obtained for crude or purified enzyme preparations. The value was unchanged by the regulatory effectors, methionine and glycine (not shown).

Role of formyl-FH$_4$ hydrolase. Synthesis of glycine is limited in a purU mutant, resulting in a decreased growth rate (18). Addition of adenine and methionine or adenine and histidine further restricts glycine synthesis and blocks growth. To determine whether these effects are due to direct repression of glyA, which codes for serine hydroxymethyltransferase, or are a result of perturbations of the FH$_4$ and C$_1$-FH$_4$ pools, we constructed a glyA-lacZ fusion and examined glyA expression in several relevant strains, including PLN100 (purU) and MC4100 (wild type). The results of β-galactosidase reporter assays are given in Table 4. Glycine, which was required for growth of strains PLN100 and PLN103 in the presence of adenine and either methionine or histidine, had no effect on glyA expression. The data show that adenine plus methionine repressed glyA about 3-fold in strain PLN100 (purU). This repression, likely mediated by metR and purR, was partially abolished in strain PLN103 (purU purR) in accord with the results of previous work (29). Two key experiments shown in Table 4 indicate that the threefold repression of glyA by adenine plus methionine is not responsible for inhibition of glycine synthesis.

Strain	Activity* in medium supplemented with:						
	None	Gly	Met	His	Ade and Gly	Ade, Met, and Glyb	Ade, His, and Glyb
MC4100 (wild type)	27	26	18	30	21	9.0	28
R320 (purR)	34	34	27	28	35	26	36
PLN100 (purU)	21	21	13	21	21	7.3	23
PLN103 (purU purR)	33	35	25	15	34	29	32

a Expressed in Miller units (16). Values are from a single representative experiment.
b Required for growth of a purU mutant in medium with adenine plus methionine or adenine plus histidine.
TABLE 5. Relative contributions of the histidine and purine pathways to AICAR synthesis

Supplement	AICAR accumulation (µM)		
	MC4100 (wild type)	NK5526 (hisG)	TX267 (purD)
None	6.6	NG	NG
Ade	5.0	NG	5.4
His	3.6	5.0	NG
Ade + His	0.3	0	0

* Minimal medium was supplemented with 0.5 mM histidine, 1 mM adenine (as indicated), and 10 µg of sulfadiazine per ml.
* AICAR accumulation was determined colorimetrically by the amount of secreted 5-amino-4-imidazole carbonamide.
* NG, no growth.

and growth inhibition of the purU mutant. First, adenine plus methionine gave a similar threefold repression of ghA in the wild-type purU mutant (MC4100); however, these conditions do not limit glycine synthesis in the wild type (18). Second, adenine plus histidine, which also inhibit glycine synthesis and growth of the purU mutant, repressed ghA only weakly. These results indicate that repression of ghA may contribute to a decreased production of glycine but cannot account for the purU phenotype. Rather, as explained in the Discussion, repression of the synthesis of purines and methionine or purines and histidine appears to decrease the utilization of formyl-FH₄ and methyl-FH₄, with a corresponding reduction in the regeneration of FH₄, a serious problem in the purU mutant lacking formyl-FH₄ hydrolase.

The idea that repression of histidine biosynthesis could have a marked effect on the regeneration of FH₄ was quite unexpected, considering the relatively low abundance of histidine in proteins (19). For this reason, we investigated the relationship between histidine synthesis and C₄-FH₄ utilization. AICAR, a byproduct of histidine biosynthesis, and formyl-FH₄ are utilized by AICAR transformylase for purine synthesis, thus regenerating FH₄. Our approach was to estimate the relative contributions of the histidine and purine biosynthetic pathways for synthesis of AICAR. Sulfonamides inhibit AICAR transformylase, leading to the accumulation of AICAR and the secretion of 5-amino-4-imidazole carbonamide, which can be determined from the growth medium by the method described by Bratton and Marshall (4, 24, 30). The amount of AICAR produced when either purine or histidine biosynthesis is repressed or disrupted will give an estimate of the relative contributions of the two pathways to AICAR production. These data are shown in Table 5.

In the wild type, addition of adenine or histidine to the medium repressed the cognate biosynthetic pathway and decreased AICAR accumulation by 25 to 45%, whereas accumulation was inhibited 95% by repression of both pathways. AICAR accumulation was comparable in mutants blocked at an early step of each pathway. Accumulation of AICAR was completely suppressed by repression of purine biosynthesis in the histidine mutant and repression of the histidine pathway in the purine mutant. Therefore, by this analysis, the histidine and purine pathways contribute comparable amounts of AICAR for IMP synthesis. However, this conclusion must be qualified, because the extent of sulfonamide inhibition of step three in purine biosynthesis catalyzed by the two GAR transformylases is not known. It is possible that in the absence of sulfonamide, more AICAR is produced by the purine pathway than by histidine biosynthesis. Nevertheless, repression of the histidine and purine pathways decreases the cell’s capacity to regenerate FH₄ from formyl-FH₄ and leads to an imbalance in a purU mutant lacking formyl-FH₄ hydrolase.

DISCUSSION

The protein encoded by E. coli purU has been overproduced, purified approximately threefold to near homogeneity, and characterized. We have demonstrated that PurU is a formyl-FH₄ hydrolase, as had been inferred from its amino acid sequence similarity with GAR transformylase N and from mutant analysis (18). On the basis of SDS-polyacrylamide gel electrophoresis and gel filtration estimates of subunit and native molecular weights, the enzyme is a hexamer with subunits having a molecular weight of 32,000. Formyl-FH₄ hydrolase is a regulatory enzyme that is activated by methionine and inhibited by glycine. Methionine and glycine, which exhibit heterotrophic cooperative interactions, may interact with the NH₂-terminal 84-amino-acid polypeptide that is fused to the GAR transformylase-related sequence, residues 85 to the CO₂-H terminus at position 280. Thus, the NH₂-terminal 84 amino acids may function as a regulatory domain to modulate catalysis by the transformylase-related protein.

Formyl-FH₄ hydrolase catalytic activity is low compared with that of E. coli GAR transformylase N. Values for kcat and Km are compared in Table 6. It can be seen that the catalytic efficiency of GAR transformylase N (kcat/Km) is 260 and 135 times higher than those for formyl-FH₄ hydrolase with fDDF and formyl-FH₄, respectively. This difference in relative activities may reflect cellular requirements for biosynthesis versus hydrolysis or may indicate that the hydrolase was not assayed under optimal conditions. For example, the true substrate for the hydrolase may be a polyglutamate derivative of formyl-FH₄.

The results of enzyme characterization and analyses of the purU phenotype indicate two roles for formyl-FH₄ hydrolase. First, this hydrolase provides the major source of formate under aerobic growth conditions. This is shown by the requirement of formate for aerobic growth of a purN purU mutant that relies on formate-dependent GAR transformylase T for purine synthesis and growth (18). Even in the wild type containing the two GAR transformylases, formate can provide up to 50% of the carbon for position 8 of the purine ring (8).

The second and apparently major role for formyl-FH₄ hydrolase is to balance the pools of FH₄ and C₄-FH₄ to ensure that synthesis of glycine can be maintained when cells have excess purines, methionine, and histidine and the biosynthetic pathways for these molecules are shut down. Purine biosynthesis regenerates FH₄ as a product of the GAR and AICAR transformylations at steps 3 and 10. Methionine biosynthesis provides FH₄ as a product of the methionine synthase reactions, and the histidine biosynthetic pathway produces AICAR, which is formylated by AICAR transformylase to yield 5'-phosphoribosyl-1-carboxamide-5-formamidoimidazole and FH₄. In a purU mutant lacking formyl-FH₄ hydrolase,
repression of purine synthesis by adenine and repression of either the methionine or histidine pathways leads to a growth requirement for glycine (18). This glycine requirement cannot result from the threefold repression of gly by adenine plus methionine (Table 4), as was explained in the preceding section. Therefore, we conclude that repression of the purine and either the methionine or histidine pathways starves the purU mutant for FH4 needed for glycine synthesis. Although formate derived from hydrolysis of formyl-FH4 is a substrate for GAR transformylase T, the role of this alternative enzyme in step three of purine biosynthesis is not known.

The biochemical characterization of formyl-FH4 hydrolase explains how this regulatory enzyme functions to balance the FH4 and C1-FH4 pools. We propose that the methionine/glycine ratio monitors the pools of C1-FH4 and FH4. Thus, as shown by Fig. 6, excess methionine can activate the hydrolase to generate FH4 for glycine synthesis and excess glycine can inhibit the hydrolase to preserve C1-FH4 for biosynthesis of methionine, purines, and thymidylate.

Animals contain an enzyme, formyl-FH4 dehydrogenase, that may be related to E. coli formyl-FH4 hydrolase. Formyl-FH4 dehydrogenase is a bifunctional enzyme that catalyzes the reaction formyl-FH4 + NADP+ → FH4 + CO2 + NADPH + H+. As well as the NADP+-independent hydrolysis of formyl-FH4 to FH4 and formate at 20 to 30% of the oxidative rate (17 and references therein). The sequence of the rat liver enzyme derived from the cloned cDNA has three putative domains: residues 1 to 203 (GAR transformylase N), residues 204 to 416 (unknown), and residues 417 to 900 (aldehyde dehydrogenase) (7). The physiological significance of this enzyme is controversial. Suggestions for the dehydrogenase include disposal of excess one-carbon units and metabolism and detoxification of formate. Min et al. (17) have noted that the hydrolase could provide a mechanism for regenerating FH4 under conditions in which utilization of substituted folates for biosynthesis is impaired. This hypothesis is supported by the recent finding that in mice lacking the enzyme, there is a marked depletion of the cytoplasmic FH4 pool (5). However, an important distinction is that the mammalian dehydrogenase/hydrolase is not regulated by methionine and glycine in response to fluctuations in FH4 and C1-FH4 pools and does not contain a domain corresponding to residues 1 to 84 of the E. coli formyl-FH4 hydrolase.

FIG. 6. Model of the role of formyl-FH4 hydrolase. According to the model, glycine and methionine sense the FH4 and C1-FH4 pools, respectively, and regulate the activity of formyl-FH4 hydrolase activity, + and −, activation and inhibition, respectively. Biosynthetic reactions that consume C1-FH4 and regenerate FH4 are shown to the right. The enzymes for these steps are GAR transformylase, AICAR transformylase, and methionine synthase. AICAR produced by the histidine pathway mixes with AICAR from de novo purine biosynthesis. FGAR, 5′-phosphoribosyl-N-formylglycinamide; FAICAR, 5′-phosphoribosyl-4-carboxamide-5-formamidimidazole.

ACKNOWLEDGMENTS

H.Z. and P.L.N. thank Rowena Matthews for valuable advice and materials during the course of this research.

This work was supported by Public Health Service grants GM24658 (H.Z.) and GM24129 (S.J.B.) from the National Institutes of Health.

REFERENCES

1. Almassy, R. J., C. A. Janson, C.-C. Kan, and Z. Hostomska. 1992. Structures of apo and complexed Erichichia coli glycaminide ribonucleotide transformylase. Proc. Natl. Acad. Sci. USA 89:6114–6118.
2. Black, S. L., M. J. Black, and J. H. Mungam. 1978. A rapid assay for 5-amino-4-imidazolecarboxamide ribotide transformylase. Anal. Biochem. 90:397–401.
3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
4. Bratton, A. C., and E. K. Marshall. 1939. A new coupling component for sallolamine determination. J. Biol. Chem. 128:537–550.
5. Champion, K. M., R. J. Cook, S. L. Tollaksen, and C. S. Giometti. 1994. Identification of a heritable deficiency of the folate-dependent enzyme 10-formyltetrahydrofolate dehydrogenase in mice. Proc. Natl. Acad. Sci. USA 91:13338–13342.
6. Cohen, G. N., and I. Saint-Girons. 1987. Biosynthesis of threonine, lysine and methionine. p. 429–444. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, D.C.
7. Cook, R. J., S. R. Lloyd, and C. Wagner. 1991. Isolation and characterization of cDNA clones for rat liver 10-formyltetrahydrofolate dehydrogenase. J. Biol. Chem. 266:9965–9973.
8. Dev, I. K., and R. J. Harvey. 1982. Sources of one-carbon units in the folate pathway in Escherichia coli. J. Biol. Chem. 257:1980–1986.
9. Dixon, M., and E. C. Webb. 1979. Enzymes, 3rd ed. Longman Group Limited, London.
10. Hilt, A. V. 1910. The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves. J. Physiol. (London) 40:viii.
11. Inglese, J., D. L. Johnson, A. Shiau, J. M. Smith, and S. J. Benkovic. 1990. Subcloning, characterization, and affinity labeling of Escherichia coli glycaminide ribonucleotide transformylase. Biochemistry 29:1436–1443.
12. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
13. Marolles, T., F. J. Smith, and S. J. Benkovic. 1994. Cloning and characterization of a new purine biosynthetic enzyme. A non-folate glycaminide ribonucleotide transformylase from E. coli. Biochemistry 33:2531–2537.
14. Matthews, C. K., and F. M. Huememnens. 1960. Enzymatic preparation of the l-diastereoisomer of tetrahydrofolic acid. J. Biol. Chem. 235:3304–3308.
15. Miller, J. H. 1972. Experiments in molecular genetics, p. 433. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
16. Miller, J. H. 1992. A short course in bacterial genetics. A laboratory manual and handbook for Escherichia coli and related bacteria. p. 72–74. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
17. Min, H., B. Shane, and E. L. R. Stokstad. 1988. Identification of 10-formyltetrahydrofolate dehydrogenase as a major folate binding protein in liver cytosol. Biochem. Biophys. Acta 967:348–353.
18. Nagy, P. L., G. M. McCorkle, and H. Zalkin. 1993. purT, a source of formate for purT-dependent phosphoribosyl-N-formylglycinamide synthase. J. Bacteriol. 175:7066–7073.
19. Neidhardt, F. C. 1987. Chemical composition of Escherichia coli, p. 3–6. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, D.C.
20. Neuhard, J., and P. Nygaard. 1987. Purines and pyrimidines, p. 445–473. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, D.C.
21. Nygaard, P., and J. M. Smith. 1993. Evidence for a novel glycinamide ribonucleotide transformylase in Escherichia coli. J. Bacteriol. 175:3591–3597.
22. Rowe, P. B. 1968. A simple method for the synthesis of N5,N10-methylenetetrahydrofolic acid. Anal. Biochem. 22:166–177.
23. Sawers, G., and A. Böck. 1988. Anaerobic regulation of pyruvate formate-lyase from Escherichia coli K-12. J. Bacteriol. 170:5330–5336.
24. Shive, W., W. W. Ackermann, M. Gordon, M. E. Getzender, and R. E. Eakin. 1947. (S)-Amino-(4(N)-imidazole carbamide, a precursor of purines. J. Am. Chem. Soc. 69:725–726.
25. Silhavy, T. J., M. L. Berman, and L. W. Enquist. 1984. Experiments with gene fusions, p. 95–96. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
26. Smith, G. K., W. T. Mueller, P. A. Benkovic, and S. J. Benkovic. 1981. On the
cofactor specificity of glycineamide ribonucleotide and 5-aminoimidazol-4-carboxamide ribonucleotide transformylase from chicken liver. Biochemistry 20:1241–1245.

27. Stauffer, G. V. 1987. Biosynthesis of serine and glycine, p. 412–418. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, D.C.

28. Stauffer, G. V., M. D. Plamann, and L. T. Stauffer. 1981. Construction and expression of hybrid plasmids containing the Escherichia coli glyA gene. Gene 14:63–72.

29. Steiert, J. G., R. J. Rolfe, H. Zalkin, and G. V. Stauffer, 1990. Regulation of the Escherichia coli glyA gene by the purR gene product. J. Bacteriol. 172:3799–3803.

30. Stetten, M. R., and C. L. Fox, Jr. 1945. An amine formed by bacteria during sulfonamide bacteriostasis. J. Biol. Chem. 161:333–349.

31. Studier, F. W., A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185:60–89.

32. Tabor, S., and C. C. Richardson. 1985. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82:1074–1078.

33. Vogel, H. T., and D. M. Bonner. 1956. Acetylornithinase of Escherichia coli: partial purification and some properties. J. Biol. Chem. 218:97–106.

34. Winkler, M. E. 1987. Biosynthesis of histidine, p. 395–411. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, D.C.