PARAMETER OPTIMIZATION OF SINGLE EXPONENTIAL SMOOTHING USING GOLDEN SECTION METHOD FOR GROCERIES FORECASTING

Vivi Aida Fitria¹

¹STMIK Asia Malang

Email: viviaidafitria@gmail.com

ABSTRACT

Department of Agriculture and Food Security Malang City, especially in the Field of Food Supply Availability and Distribution requires a reference forecasting of food prices in Malang. The method used in the forecasting calculation is Single Exponential Smoothing. In the process of calculating the Single Exponential Smoothing method, it takes alpha parameters between 0 and 1. The problem is when to estimate the alpha value between 0 to 1 with trial error with the aim of producing minimal forecasting results. Therefore, this study aims to determine the optimal alpha value. The method used in this research is the Golden Section Method. The principle of Golden Section method in this study is to reduce the boundary area so as to produce a minimum MAPE (Mean Absolute Percentage Error) value. The data used in this study is the price of 9 commodities of Groceries in Malang since January 1, 2016 until December 31, 2017. The results showed that the Golden Section method found that the optimal alpha value was 0.999 with MAPE average of 9 commodities is 0.79%. So with this golden section method researchers do not need a long time to determine alpha by trial error.

Keywords: groceries, forecasting, Exponential Smoothing, Golden Section

INTRODUCTION

One of the tasks of the Department of Agriculture and Food Security of Malang City, especially the Field of Food Supply Availability and Distribution is to formulate groceries price policy. In formulating the policy formulation, it needs a reference for price forecasting of groceries od. The predictions made are generally based on the data contained in the past that were analyzed using certain methods. The method used for forecasting the price of groceries in Malang is Single Exponential Smoothing Method. The price of groceries used from 1 January 2016 to 31 December 2017.

In the process of calculating the Exponential Smoothing Single required alpha values between 0 to 1. In order to produce a small MAPE (Mean Absolute Percentage Error) then must input the value of the appropriate alpha parameter. The problem is the value of alpha parameters input by trial and error, so it takes a long time. Therefore in this study will discuss a method to determine the value of alpha parameters in Single Exponential Smoothing calculation process. The method used is the Golden section method.

Research on the method of Golden Section ever done Al Makhya et all [1]. The results showed that after the calculation with the Golden Section, we get the optimum parameters for each method. Similarly, in the research of Prihatmono and Utami [2], the
Golden Section method can also find the optimum parameter so as to produce minimum MAPE value. Therefore in this study, researchers applied the Golden Section Method to find the optimal variable in forecasting the prices of groceries in the Malang City.

METHODS

2.1. Data of Groceries

The price of groceries in Malang is obtained from http://siskaperbapo.com/harga/tabel page [3]. The data analyzed in this research is data of 9 commodities of Groceries starting from January 1, 2016 - 31 December 2017, ie for 731 days. The types of food commodities studied are rice, sugar, cooking oil without brand / bulk oil, chicken eggs / laying eggs, broiler chicken, fine salt, indomilk, ordinary chili, and 3 kg LPG tube.

2.2. Data Analysis

The method used in forecasting the price of groceries in this study is Single Exponential Smoothing method. The equation used in calculating the forecast with the Single Exponential Smoothing method is

$$F_{t+1} = \alpha X_t + (1-\alpha) F_t$$ \hspace{1cm} (1)

where F_t = forecast result

X_t = observation data

and α are parameters between 0 and 1 [4]. The parameter values in this study were determined using the Golden Section Method. Here are the steps for calculating the Golden Section Method, first determining the lower boundary (a) and the upper limit (b) and the tolerance iteration ceases (eps). Because the value between 0 to 1 then a = 0 and b = 1, then calculate the value of Golden Ratio (r). According to [5] the r values obtained from the Golden Section algorithm are $r_1 = \frac{-1 + \sqrt{5}}{2} = 0.618$ and $r_2 = \frac{-1 - \sqrt{5}}{2} = -1.618$. Since the parameter value is 0 < α < 1, then the r used is 0.618. Determine the initial price for the parameter $\alpha_1 = r * a + (1 - r) * b$ and $\alpha_2 = (1 - r) * a + r * b$. Look for minimum MAPE from a combination of α_1 and α_2 calculation results. Reduce the interval limit based on Golden Section criteria. Repeat steps 4 and 5 to $| \alpha_2 - \alpha_1 | \leq$ eps.

Find the minimum MAPE between combinations a, b, α_1, α_2. Output alpha is the optimum [2].

RESULTS AND DISCUSSION

Here is the result of the Golden Section Method iteration of each commodity:

1. Rice

Iterate	alpha 1	alpha 2	MAPE (alpha1)	MAPE (alpha2)	alpha1 - alpha2	Forecast Price (Rp)
1	0.3820	0.6180	0.5131	0.40691	0.2360	11072
2	0.6181	0.7639	0.4069	0.37227	0.1458	11070
3	0.7640	0.8541	0.3723	0.3562	0.0901	11078
4	0.8541	0.9098	0.3562	0.34753	0.0557	11086

Vivi Aida Fitria
PARAMETER OPTIMIZATION OF SINGLE EXPONENTIAL SMOOTHING USING GOLDEN SECTION METHOD FOR GROCERIES FORECASTING

Vivi Aida Fitria

Iterate	alpha1	alpha2	MAPE (alpha1)	MAPE (alpha2)	alpha1 - alpha2	Forecast Price (Rp)
5	0.9099	0.9443	0.3475	0.34257	0.0044	11091
6	0.9443	0.9656	0.3426	0.33969	0.0213	11094
7	0.9656	0.9787	0.3397	0.33793	0.0131	11097
8	0.9787	0.9867	0.3379	0.33695	0.0081	11098
9	0.9867	0.9919	0.3369	0.33642	0.0050	11099
10	0.9919	0.9950	0.3364	0.3361	0.0031	11099
11	0.9950	0.9969	0.3361	0.3359	0.0019	11099
12	0.9969	0.9981	0.3359	0.33577	0.0012	11100
13	0.9981	0.9988	0.3358	0.3357	0.0007	11100
14	0.9988	0.9993	0.3357	0.33565	0.0005	11100
15	0.9993	0.9995	0.3356	0.33562	0.0003	11100
16	0.9995	0.9997	0.3356	0.3356	0.0002	11100
17	0.9997	0.9998	0.3356	0.33559	0.0001	11100
18	0.9998	0.9999	0.3356	0.33558	0.0001	11100
19	0.9999	0.9999	0.3356	0.33558	0.0000	11100

In table 1 can be observed that the optimum alpha for commodity of mentik rice is 0.9999 in the iteration 19, with MAPE 0.3356%.

2. Sugar

Table 2: Optimum analysis of sugar using the golden section method

Iterate	alpha1	alpha2	MAPE (alpha1)	MAPE (alpha2)	alpha1-alpha2	Forecast Price (Rp)
1	0.3820	0.6180	0.4322	0.335	0.2360	11683
2	0.6181	0.7639	0.3346	0.303	0.1458	11673
3	0.7640	0.8541	0.303	0.288	0.0901	11680
4	0.8541	0.9098	0.288	0.28	0.0557	11686
5	0.9099	0.9443	0.2803	0.276	0.0344	11691
6	0.9443	0.9656	0.2757	0.273	0.0213	11695
7	0.9656	0.9787	0.273	0.271	0.0131	11697
8	0.9787	0.9868	0.273	0.27	0.0081	11698
9	0.9869	0.9919	0.273	0.27	0.0050	11699
10	0.9919	0.9950	0.2697	0.269	0.0031	11699
11	0.9950	0.9969	0.2693	0.269	0.0019	11699
12	0.9969	0.9981	0.269	0.269	0.0012	11700
13	0.9981	0.9988	0.2689	0.269	0.0007	11700
14	0.9988	0.9993	0.2688	0.269	0.0005	11700
15	0.9993	0.9995	0.2688	0.269	0.0003	11700
16	0.9995	0.9997	0.2688	0.269	0.0002	11700
PARAMETER OPTIMIZATION OF SINGLE EXPONENTIAL SMOOTHING USING GOLDEN SECTION METHOD FOR GROCERIES FORECASTING

Vivi Aida Fitria

Iterate	alpha1	alpha2	MAPE (alpha1)	MAPE (alpha2)	alpha1-alpha2	Forecast Price (Rp)
17	0.9997	0.9998	0.2687	0.269	0.0001	11700
18	0.9998	0.9999	0.2687	0.269	0.0001	11700
19	0.9999	0.9999	0.2687	0.269	0.0000	11700

Same as the results of iteration in rice mentik, iteration on sugar commodities stops at the 19th iteration, with alpha 0.9999 and MAPE 0.2687%.

3. Cooking oil without brand/bulk oil

Table 3: Optimum analysis of cooking oil using the golden section method

Iterate	alpha1	alpha2	MAPE (alpha1)	MAPE (alpha2)	alpha1-alpha2	Forecast Price (Rp)
1	0.3820	0.6180	0.4843	0.391	0.2360	11766
2	0.6181	0.7639	0.3911	0.357	0.1458	11760
3	0.7640	0.8541	0.3571	0.34	0.0901	11753
4	0.8541	0.9098	0.3403	0.331	0.0557	11749
5	0.9099	0.9443	0.3313	0.326	0.0344	11745
6	0.9443	0.9656	0.3262	0.323	0.0213	11743
7	0.9656	0.9787	0.3232	0.321	0.0131	11742
8	0.9787	0.9868	0.3214	0.32	0.0081	11741
9	0.9869	0.9919	0.3205	0.32	0.0050	11741
10	0.9919	0.9950	0.3199	0.32	0.0031	11740
11	0.9950	0.9969	0.3196	0.319	0.0019	11740
12	0.9969	0.9981	0.3195	0.319	0.0012	11740
13	0.9981	0.9988	0.3194	0.319	0.0007	11740
14	0.9988	0.9993	0.3193	0.319	0.0005	11740
15	0.9993	0.9995	0.3193	0.319	0.0003	11740
16	0.9995	0.9997	0.3193	0.319	0.0002	11740
17	0.9997	0.9998	0.3193	0.319	0.0001	11740
18	0.9998	0.9999	0.3193	0.319	0.0001	11740
19	0.9999	0.9999	0.3193	0.319	0.0000	11740

Iteration on cooking oil without brand/bulk oil commodities stops at the 19th iteration, with alpha 0.9999 and MAPE 0.3193%.

4. Chicken eggs/laying eggs

Table 4: Optimum analysis of eggs using the golden section method

Iterate	alpha1	alpha2	MAPE (alpha1)	MAPE (alpha2)	alpha1-alpha2	Forecast Price (Rp)
1	0.3820	0.6180	1.084	0.838	0.2360	23737
2	0.6181	0.7639	0.838	0.767	0.1458	23680
3	0.7640	0.8541	0.7674	0.735	0.0901	23648
While on chicken eggs/laying eggs commodities, it is optimal in the 19th iteration with alpha 0.9999 and MAPE 0.695%.

5. Broiler chicken

Table 5: Optimum analysis of broiler chicken using the golden section method

Iterate	alpha1	alpha2	MAPE (alpha1)	MAPE (alpha2)	alpha1-alpha2	Forecast Price (Rp)
1	0.3820	0.6180	1.241	0.954	0.2360	31492
2	0.6181	0.7639	0.9541	0.862	0.1458	31459
3	0.7640	0.8541	0.8621	0.819	0.0901	31424
4	0.8541	0.9098	0.8191	0.797	0.0557	31409
5	0.9099	0.9443	0.7974	0.785	0.0344	31403
6	0.9443	0.9656	0.785	0.778	0.0213	31401
7	0.9656	0.9787	0.7779	0.774	0.0131	31400
8	0.9787	0.9868	0.7736	0.771	0.0081	31400
9	0.9869	0.9919	0.771	0.769	0.0050	31400
10	0.9919	0.9950	0.7694	0.769	0.0031	31400
11	0.9950	0.9969	0.7686	0.768	0.0019	31400
12	0.9969	0.9998	0.7682	0.768	0.0012	31400
13	0.9988	0.9999	0.7695	0.769	0.0010	31400
14	0.9998	0.9999	0.7695	0.769	0.0000	31400
15	0.9999	0.9999	0.7695	0.769	0.0000	31400
Broiler chicken commodities is optimal in the 19th iteration with α = 0.9999 and MAPE = 0.7675%.

6. Salt

Table 6: Optimum analysis of salt using the golden section method

Iterate	α_1	α_2	MAPE (α_1)	MAPE (α_2)	$\alpha_1-\alpha_2$	Forecast Price (Rp)
1	0.3820	0.6180	2.5352	2.17	0.2360	4887
2	0.6181	0.7639	2.1699	2.076	0.1458	4879
3	0.7640	0.8541	2.076	2.036	0.0901	4876
4	0.8541	0.9098	2.0359	2.013	0.0557	4875
5	0.9099	0.9443	2.0125	1.998	0.0344	4875
6	0.9443	0.9656	1.9984	1.99	0.0213	4875
7	0.9656	0.9787	1.9899	1.987	0.0131	4875
8	0.9787	0.9868	1.9871	1.987	0.0081	4875
9	0.9737	0.9787	1.9879	1.987	0.0050	4875
10	0.9837	0.9900	1.9864	1.989	0.0062	4875
11	0.9799	0.9837	1.987	1.986	0.0038	4875
12	0.9876	0.9923	1.987	1.99	0.0047	4875
13	0.9847	0.9876	1.9864	1.988	0.0029	4875
14	0.9876	0.9876	1.9876	1.988	0.0000	4875
15	0.9923	0.9953	1.9895	1.991	0.0029	4875
16	0.9905	0.9923	1.9888	1.99	0.0018	4875
17	0.9923	0.9923	1.9895	1.99	0.0000	4875

Salt commodities is optimal in the 17th iteration with α = 0.9923 and MAPE = 1.9895%.

7. Milk

Table 7: Optimum analysis of milk using the golden section method

Iterate	α_1	α_2	MAPE (α_1)	MAPE (α_2)	$\alpha_1-\alpha_2$	Forecast Price (Rp)
1	0.3820	0.6180	0.1782	0.16	0.2360	9861
2	0.6181	0.7639	0.1597	0.154	0.1458	9860
3	0.7640	0.8541	0.1539	0.151	0.0901	9860
4	0.8541	0.9098	0.1515	0.15	0.0557	9860
PARAMETER OPTIMIZATION OF SINGLE EXPONENTIAL SMOOTHING USING GOLDEN SECTION
METHOD FOR GROCERIES FORECASTING

Vivi Aida Fitria

Iterate	alpha 1	alpha 2	MAPE (alpha1)	MAPE (alpha2)	alpha1-alpha2	Forecast Price (Rp)
5 | 0.9099 | 0.9443 | 0.1503 | 0.15 | 0.0344 | 9860
6 | 0.9443 | 0.9656 | 0.1497 | 0.149 | 0.0213 | 9860
7 | 0.9656 | 0.9787 | 0.1493 | 0.149 | 0.0131 | 9860
8 | 0.9787 | 0.986 | 0.1491 | 0.149 | 0.0081 | 9860
9 | 0.986 | 0.9919 | 0.149 | 0.149 | 0.0050 | 9860
10 | 0.9919 | 0.995 | 0.1489 | 0.149 | 0.0031 | 9860
11 | 0.995 | 0.9969 | 0.1489 | 0.149 | 0.0019 | 9860
12 | 0.9969 | 0.9981 | 0.1488 | 0.149 | 0.0012 | 9860
13 | 0.9981 | 0.9988 | 0.1488 | 0.149 | 0.0007 | 9860
14 | 0.9988 | 0.9993 | 0.1488 | 0.149 | 0.0005 | 9860
15 | 0.9993 | 0.9995 | 0.1488 | 0.149 | 0.0003 | 9860
16 | 0.9995 | 0.9997 | 0.1488 | 0.149 | 0.0002 | 9860
17 | 0.9997 | 0.9998 | 0.1488 | 0.149 | 0.0001 | 9860
18 | 0.9998 | 0.9999 | 0.1488 | 0.149 | 0.0000 | 9860
19 | 0.9999 | 0.9999 | 0.1488 | 0.149 | 0.0000 | 9860

Milk commodities is optimal in the 19th iteration with alpha 0.9999 and MAPE 0.1488%.

8. Chili

Table 8: Optimum analysis of chili using the golden section method

Iterate	alpha 1	alpha 2	MAPE (alpha1)	MAPE (alpha2)	alpha1-alpha2	Forecast Price (Rp)
1 | 0.3820 | 0.6180 | 4.088 | 3.13 | 0.2360 | 29670
2 | 0.6181 | 0.7639 | 3.1298 | 2.805 | 0.1458 | 28872
3 | 0.7640 | 0.8541 | 2.8052 | 2.658 | 0.0901 | 28555
4 | 0.8541 | 0.9098 | 2.658 | 2.583 | 0.0557 | 28440
5 | 0.9099 | 0.9443 | 2.5834 | 2.544 | 0.0344 | 28402
6 | 0.9443 | 0.9656 | 2.5437 | 2.52 | 0.0213 | 28392
7 | 0.9656 | 0.9787 | 2.5204 | 2.506 | 0.0131 | 28392
8 | 0.9787 | 0.9868 | 2.5063 | 2.498 | 0.0081 | 28394
9 | 0.9869 | 0.9919 | 2.4977 | 2.492 | 0.0050 | 28396
10 | 0.9919 | 0.995 | 2.4924 | 2.489 | 0.0031 | 28397
11 | 0.995 | 0.9969 | 2.4892 | 2.487 | 0.0019 | 28398
12 | 0.9969 | 0.9981 | 2.4872 | 2.486 | 0.0012 | 28399
13 | 0.9981 | 0.9988 | 2.4859 | 2.485 | 0.0007 | 28399
14 | 0.9988 | 0.9993 | 2.4852 | 2.485 | 0.0005 | 28400
15 | 0.9993 | 0.9995 | 2.4847 | 2.484 | 0.0003 | 28400
16 | 0.9995 | 0.9997 | 2.4844 | 2.484 | 0.0002 | 28400
PARAMETER OPTIMIZATION OF SINGLE EXPONENTIAL SMOOTHING USING GOLDEN SECTION METHOD FOR GROCERIES FORECASTING

Chili commodities is optimal in the 19th iteration with alpha 0.9999 and MAPE 2.484%.

From the nine tables above, it can be observed that the optimum alpha for commodity of mentik rice, sugar, cooking oil without brand/bulk oil, chicken eggs/broiler, broiler chicken, condom sweet milk indomilk, ordinary chili, and LPG 3 kg is 0.9999. As for the optimum alpha of salt is 0.9923. The smallest MAPE of each commodity obtained from the optimum alpha is less than 2.5%. Here are the figure of the actual price and forecasting price of each commodity with optimum alpha.

Table 9: Optimum analysis of LPG using the golden section method

Iterate	alpha 1	alpha 2	MAPE (alpha1)	MAPE (alpha2)	alpha1-alpha2	Forecast Price (Rp)
1	0.3820	0.6180	0.0972	0.078	0.2360	17600
2	0.6181	0.7639	0.0782	0.072	0.1458	17600
3	0.7640	0.8541	0.0718	0.069	0.0901	17600
4	0.8541	0.9098	0.0687	0.067	0.0557	17600
5	0.9099	0.9443	0.0669	0.066	0.0344	17600
6	0.9443	0.9656	0.0659	0.065	0.0213	17600
7	0.9656	0.9787	0.0653	0.065	0.0131	17600
8	0.9787	0.9868	0.065	0.065	0.0081	17600
9	0.9869	0.9919	0.0647	0.065	0.0050	17600
10	0.9919	0.9950	0.0646	0.065	0.0031	17600
11	0.9950	0.9969	0.0645	0.064	0.0019	17600
12	0.9969	0.9981	0.0645	0.064	0.0012	17600
13	0.9981	0.9988	0.0644	0.064	0.0007	17600
14	0.9988	0.9993	0.0644	0.064	0.0005	17600
15	0.9993	0.9995	0.0644	0.064	0.0003	17600
16	0.9995	0.9997	0.0644	0.064	0.0002	17600
17	0.9997	0.9998	0.0644	0.064	0.0001	17600
18	0.9998	0.9999	0.0644	0.064	0.0001	17600
19	0.9999	0.9999	0.0644	0.064	0.0000	17600

Three kg LPG tube commodities is optimal in the 19th iteration with alpha 0.9999 and MAPE 0.0644%.

From the nine tables above, it can be observed that the optimum alpha for commodity of mentik rice, sugar, cooking oil without brand/bulk oil, chicken eggs/broiler, broiler chicken, condom sweet milk indomilk, ordinary chili, and LPG 3 kg is 0.9999. As for the optimum alpha of salt is 0.9923. The smallest MAPE of each commodity obtained from the optimum alpha is less than 2.5%. Here are the figure of the actual price and forecasting price of each commodity with optimum alpha.
PARAMETER OPTIMIZATION OF SINGLE EXPONENTIAL SMOOTHING USING GOLDEN SECTION
METHOD FOR GROCERIES FORECASTING

Figure 1. Actual and Forecasting Price of Rice

Figure 2. Actual and Forecasting Price of Sugar

Figure 3. Actual and Forecasting Price of Oil

Figure 4. Actual and Forecasting Price of Egg

Figure 5. Actual and Forecasting Price of Chicken

Figure 6. Actual and Forecasting Price of Salt
From the figures above it can be observed that the line between the actual price and the forecast price is very close. It is shows that by using the optimum alpha, error between actual price and the forecast price is very small, which is less than 2.5%

CONCLUSION

From the results of the above research can be concluded that the Golden Section method can be used to determine the optimum alpha with MAPE average is 0.79% and the accuracy is 99.21%, so by using the Golden Section method, the researcher can shorten the time in the process of calculating the price forecasting using Exponential Smoothing Method.

The suggestion from the researcher is to make a application of Single Exponential Smoothing parameters optimization on price forecasting of Sembako in Malang city using Golden Section method web based. So that the people of Malang can also see information about the price forecast of food in Malang quickly without having to input the parameters by trial error.
REFERENCES

[1] D. Al Mahkya, H. Yasin, and M. A. Mukid, “Aplikasi Metode Golden Section untuk Optimasi Parameter pada Metode Exponential Smoothing,” *Gaussian*, vol. 3, no. 4, pp. 605–614, 2014.

[2] M. W. Prihatmono and E. Utami, “Analysis of Moving Average and Holt-Winters Optimization by Using Golden Section for Ritase Forecasting,” *J. Theor. Appl. Inf. Technol.*, vol. 95, no. 23, 2017.

[3] DISPERINDAG JATIM, “Sistem Informasi dan Ketersediaan dan Perkembangan Harga Bahan Pokok di Jawa Timur,” 2018. [Online]. Available: http://siskaperbaio.com/harga/tabel.

[4] S. Makridakis, *Metode dan Aplikasi Peramalan*. Jakarta: Binarupa Aksara, 1999.

[5] J. Kiusalaas and Jaan Kiusalaas, *Numerical Methods in Engineering with MATLAB*, vol. 40. 2005.