Genetic Risk Score Modelling for Disease Progression in New-Onset Type 1 Diabetes Patients
Brorsson, Caroline A; Nielsen, Lotte B; Andersen, Marie-Louise; Kaur, Simranjeet; Bergholdt, Regine; Hansen, Lars; Mortensen, Henrik B.; Pociot, Flemming; Størling, Joachim; Hvidoere Study Group On Childhood Diabetes

Published in:
Journal of Diabetes Research

DOI:
10.1155/2016/9570424

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Brorsson, C. A., Nielsen, L. B., Andersen, M-L., Kaur, S., Bergholdt, R., Hansen, L., ... Hvidoere Study Group On Childhood Diabetes (2016). Genetic Risk Score Modelling for Disease Progression in New-Onset Type 1 Diabetes Patients: Increased Genetic Load of Islet-Expressed and Cytokine-Regulated Candidate Genes Predicts Poorer Glycemic Control. DOI: 10.1155/2016/9570424

Download date: 20. Jul. 2018
Genetic Risk Score Modelling for Disease Progression in New-Onset Type 1 Diabetes Patients: Increased Genetic Load of Islet-Expressed and Cytokine-Regulated Candidate Genes Predicts Poorer Glycemic Control

Caroline A. Brorsson, Lotte B. Nielsen, Marie Louise Andersen, Simranjeet Kaur, Regine Bergholdt, Lars Hansen, Henrik B. Mortensen, Flemming Pociot, and Hvidoere Study Group on Childhood Diabetes

1 Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics E, University Hospital Herlev, 2730 Herlev, Denmark
2 Novo Nordisk A/S, 2760 Måløv, Denmark
3 DECCP, Clinique Pédiatrique, CH de Luxembourg, 4 rue Barblé, 1210 Luxembourg, Luxembourg

Correspondence should be addressed to Joachim Størling; joachim.stoerling.01@regionh.dk

Received 8 October 2015; Accepted 4 November 2015

Academic Editor: Marco Songini

Copyright © 2016 Caroline A. Brorsson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Genome-wide association studies (GWAS) have identified over 40 type 1 diabetes risk loci. The clinical impact of these loci on β-cell function during disease progression is unknown. We aimed at testing whether a genetic risk score could predict glycemic control and residual β-cell function in type 1 diabetes (T1D). As gene expression may represent an intermediate phenotype between genetic variation and disease, we hypothesized that genes within T1D loci which are expressed in islets and transcriptionally regulated by proinflammatory cytokines would be the best predictors of disease progression. Two-thirds of 46 GWAS candidate genes examined were expressed in human islets, and 11 of these significantly changed expression levels following exposure to proinflammatory cytokines (IL-1β + IFN-γ + TNF-α) for 48 h. Using the GWAS single nucleotide polymorphisms (SNPs) from each locus, we constructed a genetic risk score based on the cumulative number of risk alleles carried in children with newly diagnosed T1D. With each additional risk allele carried, HbA1c levels increased significantly within first year after diagnosis. Network and gene ontology (GO) analyses revealed that several of the 11 candidate genes have overlapping biological functions and interact in a common network. Our results may help predict disease progression in newly diagnosed children with T1D which can be exploited for optimizing treatment.

1. Introduction

In type 1 diabetes (T1D) the pancreatic β-cells are destroyed by the immune system in a process involving the proinflammatory cytokines interleukin-1β (IL-1β), interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα) released from antigen-presenting cells and T-cells [1, 2]. Genome-wide association scans (GWAS) have identified more than 40 genomic regions that are associated with T1D risk [3] (http://www.t1dbase.org). Many of the GWAS candidate genes have annotated immune-cell functions and most of the genetic risk variants have therefore been suggested to modulate immune-regulatory pathways [4, 5]. However, recent studies have highlighted that a significant proportion of the candidate genes are also expressed in human islets suggesting functional effects in β-cells [6–8] and possibly involvement in inflammation- and immune-mediated β-cell killing mechanisms thereby potentially affecting disease progression after clinical onset [9]. As most variants identified through GWAS contribute to only modest effects to disease risk, it is likely that a combination of variants will better capture effects of clinical relevance. In T1D, very few studies have analyzed
the impact of multiple variants on disease prediction and progression [10–12], although candidate gene-focused studies have demonstrated association with parameters of disease progression [13–16].

In the current study, we aimed at investigating whether a combined genetic risk score of T1D risk variants can predict glycemic control and residual β-cell function as assessed by HbA1c and insulin dose-adjusted HbA1c (IDAA1c) during disease progression in children with newly diagnosed T1D. We exclusively included SNPs for candidate genes expressed and transcriptionally regulated by cytokines in the target tissue of T1D, that is, human islets, as we hypothesized that these qualify as the most directly involved predictors.

2. Research Design and Methods

2.1. Expression Profiling of Candidate Genes in Human Islets. Human pancreatic islet preparations from nine nondiabetic donors (aged 8–57 years; 6 males and 3 females) were obtained from a multicenter European Union-supported program on β-cell transplantation in diabetes. None had classical T1D-associated HLA-DR risk genotypes. The program was approved by central and local ethical committees. Islet preparation, cytokine stimulation (5000 U/mL TNFα + 750 U/mL IFNγ + 75 U/mL IL-1β for 48 h), and RNA extraction have been described previously [17]. Relative gene expression of candidate genes was evaluated by TaqMan assays using the Low Density Array system on TaqMan 7900HT (Applied Biosystems). Target gene expression was normalized to the geometric mean of three housekeeping genes (GAPDH, 18S-RNA, and PPIA) and evaluated using the delta-delta Ct method [18]. One of the identified genes (IL10) whose expression was modulated following cytokine treatment was only detected in three of the human islet preparations. Genes with Ct values < 37 were considered as expressed.

2.2. Study Populations from the Hvidoere Study Group (HSG) on Childhood Diabetes. The study population was collected through HSG and is described in [19]. The cohort included in total 257 children (126 girls and 131 boys). Eighty-four percent of the patients were white Caucasian, and age at clinical diagnosis was 9.1 ± 3.7 years (mean ± SEM), BMI 16.5 ± 3.2 kg/m², and HbA1c 11.2 ± 2.1% at the time of diagnosis. DKA (HCO3 ≤ 15 mmol/L and/or pH ≤ 7.30) was present in 20.7% of the cases at the time of diagnosis. Exclusion criteria were suspected non-T1D (type 2 diabetes, maturity-onset diabetes of the young (MODY), or secondary diabetes), decline of enrolment into the study by patients or parents, and patients initially treated outside of the centers for more than 5 days. The diagnosis of T1D was according to the World Health Organization criteria. The study was performed according to the criteria of the Helsinki II Declaration and was approved by the local ethic committee in each center. All patients, their parents, or guardians gave informed consent. In the current study, patients with missing values for genotyping and clinical outcome measures were excluded leaving a total of 182 patients with complete genotype profile and clinical characterization.

2.2.1. HbA1c and IDAA1c (Insulin Dose-Adjusted HbA1c). HbA1c was analyzed centrally by ion-exchange high-performance liquid chromatography at onset and 1, 3, 6, 9, and 12 months after diagnosis. IDAA1c is defined as actual HbA1c + (4 × insulin dose (U/Kg/24h)). A calculated IDAA1c ≤ 9 corresponds to an estimated maximal C-peptide level above 300 pmol/L and has been used to define clinical remission [20].

2.3. Genotyping. Genotyping of rs2290400/GSDMB, rs232783/GSTP1, rs4948088/COBL, rs7202877/CTRLB1, rs7804356/SKAP2, rs1990760/IFIH1, rs3184504/SHP2B3, rs6897932/IL7R, rs3024505/IL10, rs3825932/CTSH, and rs689/INS was done using the KASPar system (KBioscience, Hoddesdon, UK). Typing of the HLA-class II DRB1 locus was performed by direct sequencing of exon 2 of DRB1 according to Immuno Histocompatibility Working Group. The HLA risk groups were defined as high risk (DRB1 03/04, 03/08), moderate risk (DRB1 03/03, 04/08), and low risk (all other DRB1 genotype combinations).

2.4. Gene Ontology Terms and Network Construction. We used PANTHER [21] to perform functional annotation of the 11 input candidate genes. The enrichment for gene ontology (GO) terms in the biological process category was identified based on binomial test. The human genome was used as the reference list. To construct protein networks on the 11 input candidate genes, the STRING network tool was used. STRING is a database of known and predicted protein interaction data from multiple sources including experiments, coexpression, and text mining. In total, STRING covers nearly 10,000,000 proteins from over 2,000 organisms (http://string-db.org). Network was built with a medium confidence score (0.400) and up to 10 interactors.

2.5. Statistical Analysis. A genetic risk score was calculated for each individual based on the cumulative number of risk alleles carried for the 11 SNPs and was used as a continuous variable to test for association with IDAA1c and HbA1c levels at 1, 3, 6, 9, and 12 months after T1D onset in linear regression models. The assigned risk alleles for CTSB and SKAP2 were opposite compared to risk of T1D due to regression analyses from individual SNP models. Regression models were adjusted for the covariates sex, age group (0–5, 5–10, and >10 years at diagnosis), and HLA risk groups. Forward stepwise regression models were selected from all SNPs and covariates. A p value below 0.05 was considered statistically significant. All statistical analyses were performed in SAS version 9.2.

3. Results

3.1. Cytokine-Induced Gene Expression in Human Islets. Gene expression may represent an intermediate phenotype between genetic variation and disease. We therefore first evaluated the expression of established/pinpointed T1D GWAS candidate genes in human islets left untreated or exposed to a combination of proinflammatory cytokines (IL-1β + IFNγ + TNFα) for 48 hrs to mimic disease. We found 31 out of
Of these, 11 significantly changed their expression level following cytokine treatment \((p < 0.05)\) (Table 1). Six candidate genes were upregulated by cytokines, TNFAIP3, IFI1H1, GSDMB, IL7R, IL10, and SH2B3, whereas 5 genes were downregulated, COBL, CTRB1, CTSH, SKAP2, and INS (Figure 1). Comparable expression profiles of these genes were observed in a recently published human islet dataset [6].

3.2. Genetic Risk Score Modelling of Glycemic Control and \(\beta\)-Cell Function. A genetic risk score model was constructed from the GWAS-identified SNPs linked to the 11 genes identified above to investigate the cumulative effect of T1D-associated risk alleles on disease progression in new-onset T1D children. The risk allele distribution is described in Supplementary Table 1 in Supplementary Material available online at http://dx.doi.org/10.1155/2016/9570424. HbA1c and IDAA1c (a surrogate marker for \(\beta\)-cell function [20]) levels were increased in carriers with risk allele numbers at and above the 75th percentile (corresponding to minimum 15 risk alleles) during disease progression (HbA1c: 3, 6, and 9 months after disease onset, \(p = 0.04, p = 0.0004,\) and \(p = 0.03,\) resp.; and IDAA1c: 9 months, \(p = 0.04\) (Figures 2(a) and 2(b)).

We then performed a multiple linear regression analysis adjusted for age, sex, and HLA risk groups and found significantly increased HbA1c and IDAA1c levels with increasing genetic risk score (GRS) from 3–12 months following T1D onset (Table 2). The validity of including GRS in the regression analysis was tested by comparing the variance explained by the model \((R^2)\). This clearly showed that including GRS as explanatory factor improved the model (Supplementary Table 2). These findings suggest that residual \(\beta\)-cell function declines faster following diagnosis in patients carrying increased genetic load of islet-expressed and cytokine-regulated candidate genes.

3.3. Network and GO Analyses of Candidate Genes. We next asked if any of the 11 candidate genes may interact with each other in a functional protein network which could explain their cumulative effects on disease progression. This was evaluated by the STRING network tool which constructed a network that contained 7 out of the 11 genes (Figure 3). Consistent with this, the functional annotation of these candidate genes based on GO analyses revealed significantly enriched GO terms in biological processes category (Table 3). The 11 candidate genes were found enriched for various immune-mediated processes including regulation of immune response \((p = 0.0008)\) and immune system process \((p = 0.01)\). These findings support that several of the 11 candidate genes act in common networks and pathways to affect disease risk and progression.

4. Discussion

Recent GWAS have identified a large number of loci affecting T1D risk [3]. In this study, we investigated the clinical relevance of a genetic risk score on markers of disease progression. An increased genetic risk score associated with increasing HbA1c and IDAA1c levels the first year after disease onset, indicating that a higher genetic load of islet-expressed candidate genes predicts poorer glycemic control and residual \(\beta\)-cell function, respectively. One additional risk allele resulted in a 0.15% point increase in HbA1c after 12 months and a corresponding 0.19% increase in IDAA1c corresponding to a calculated 4% lower stimulated C-peptide [20]. Our cumulative genetic risk score assumes that each risk variant contributes with equal effects to the traits, which probably does not reflect the true underlying biology. An alternative approach would be to weight each variant by published effect sizes for T1D risk, which has been done in type 2 diabetes [22, 23]. We chose the unweighted
Table 1: The 46 TID candidate genes tested for expression and cytokine regulation in human islets.

Region	GWAS SNP	Locus	Gene tested
1p13.2	rs2476601	PTPN22	PTPN22
1p31.3	rs2269241	PGM1	PGM1
1q31.2	rs2816316	RGS1	RGS1
1q32.1	rs3024505	IL10	IL10
2p25.1	rs1534422	(Gene desert)	
2q12.1	rs917997	IL18RAP	IL18RAP
2q24.2	rs1990760	IFIHI	IFIHI
2q33.2	rs3087243	CTLA4	CTLA4
3p21.31	rs1171054	CCR5	CCR5, CCR3
4p15.2	rs1051086	(Gene desert)	
4q27	rs4505848	IL2	IL2, IL21, ADADI
5q33.2	rs6897932	IL7R	IL7R
6p21.32	rs9268645	MHC	Not included
6q15	rs1175527	BACH2	BACH2
6q22.32	rs9388489	(CENPW (C6orf73))	Not tested
6q23.3	rs2327832	TNFAIP3	TNFAIP3
6q25.3	rs1738074	TAGAP	TAGAP
7p15.2	rs7804356	SKAP2	SKAP2
7p12.1	rs4948088	COBL	COBL
9p24.2	rs7020673	GLIS3	GLIS3
10p15.1	rs1225107	IL2RA	IL2RA
10p15.1	rs1125874	PRKCI	PRKCI
10q23.31	rs10509540	RNLS	RNLS
11p15.5	rs7111341, rs689	INS	INS
12p13	rs4763879	CD69	CD69
12q13.2	rs2292239	ERBB3	ERBB3
12q24.12	rs3184504	SH2B3	SH2B3
14q24.1	rs1465788	CH4orf81	CH4orf81
14q32.2	rs4900384	(0; gene desert)	CTSH
15q25.1	rs3825932	CTSH	CLEC6A, PRM3, TNP2
16p13.13	rs12708716	CLEC16A	UMOD
16p12.3	rs12444268	UMOD	UMOD
16p11.2	rs4788084	IL27 (NUPR1)	IL27, NUPR1
16q23.1	rs7202877	CTRB1	CTRB2, CTRB1
17p13.1	rs1695936	DNAH2	DNAH2
17q12	rs2290400	ORMDL3 (GSDMB)	ORMDL3, GSDMB
17q21.2	rs7221109	SMARCE1	SMARCE1
18q12.1	rs1893217	PTPN2	PTPN2
18q22.2	rs763361	CD226	CD226
19q13.32	rs425105	PRKD2	PRKD2
20p13	rs2281808	SIRPG	SIRPG
21q22.3	rs11203203	UASH3A	Not tested
22q12.2	rs5753037	HORMAD2	HORMAD2
22q13.1	rs229541	CIQTNF6	CIQTNF6
Xq28	rs2664170	GAB3	GAB3

The genes that were transcriptionally regulated by cytokines in human islets are highlighted in bold, as are the corresponding risk SNPs included in the genetic risk score analysis.
Figure 2: Correlation between HbA1c and IDAA1c levels and risk allele numbers. HbA1c (a) and IDAA1c (b) in carriers with <25% (n = 65), 25–75% (n = 96), or >75% (n = 21) risk alleles at 1, 3, 6, 9, and 12 months following disease onset. Data are means ± SEM, *p < 0.05, ***p < 0.001.

Table 2: Impact on HbA1c and IDAA1c by increasing genetic risk score.

Time after onset	Increase in HbA1c (%) per additional risk allele (SE)	p value	Increase in IDAA1c per additional risk allele (SE)	p value
1 month	0.09	0.06	—	NS
3 months	0.11 (0.04)	0.009	—	NS
6 months	0.17 (0.05)	0.0006	0.16 (0.08)	0.04
9 months	0.14 (0.05)	0.01	0.19 (0.07)	0.01
12 months	0.15 (0.06)	0.008	0.19 (0.08)	0.02

The influence of increasing risk allele number on HbA1c and IDAA1c analyzed by genetic risk score generated from 11 qualified T1D genes in linear regression analysis adjusted for age, sex, and HLA risk groups. Data are presented as increase in HbA1c (%) and IDAA1c per additional risk allele during the first year after diagnosis in 182 children with new onset T1D.

cumulative score because disease risk and disease progression are different outcomes, which will likely not have identical effect sizes. This is underlined by our previous observation that there is no statistically significant association between HLA risk and T1D progression [19]. This is also the reason why we did not include HLA risk genes in the risk score model.

The observed poorer glycemic control associated with higher genetic load might prove to be a valuable tool for prediction of disease progression. This should, however, be validated in independent cohorts. An advantage of our study is that the inclusion of variants in the genetic risk score was based on prior “biological” knowledge, as we strictly focused on islet-expressed and cytokine-regulated candidate genes. Because regulated gene expression is often highly dynamic due to positive and negative feedback mechanisms, that is, the expression of a specific gene might be increased at one time point but decreased in another and vice versa, we did not take into account in the risk score model whether genes were up- or downregulated by cytokines but simply focused on the fact that their expression level changed as we considered this most important. We may have missed genes that changed expression at different time points compared to those examined at the 48 hrs, and a more detailed time-course study in human islets would likely have allowed a greater number of SNPs to be included in the risk score and thus provide even more accurate predictions.

Interestingly, we found that 7 of the 11 investigated genes interact in a protein network and several of the genes also shared GO terms suggesting that they affect the same biological mechanisms within the β-cells. We hypothesize that the genes are modulating β-cell function in terms of insulin secretion and/or the regenerative capacity and/or regulate the vulnerability of the β-cell to immune-mediated destruction. Indeed for some of the candidate genes, functional studies in β-cells have been performed. Hence, we recently demonstrated that CTSH regulates insulin gene transcription and secretion and also has antiapoptotic properties in β-cells.
Table 3: The gene ontology terms of the 11 T1D candidate genes.

GO biological process	Reference	Count	Genes	Expected	p value
Regulation of immune response	930	7	IFIH1, INS, TNFAIP3, IL7R, SKAP2, CTSH, IL10	0.49	0.0008
Negative regulation of immune response	116	4	INS, TNFAIP3, IL7R, IL10	0.06	0.002
Positive regulation of multicellular organismal process	1357	7	IFIH1, INS, TNFAIP3, COBL, IL7R, CTSH, IL10	0.72	0.01
Negative regulation of type I interferon production	43	3	IFIH1, TNFAIP3, IL10	0.02	0.01
Immune system process	2163	8	IFIH1, SH2B3, INS, TNFAIP3, IL7R, SKAP2, CTSH, IL10	1.14	0.01
Regulation of immune system process	1473	7	IFIH1, INS, TNFAIP3, IL7R, SKAP2, CTSH, IL10	0.78	0.02
Negative regulation of chronic inflammatory response	5	2	TNFAIP3, IL10	0	0.02

The enriched gene ontology (GO) terms in the biological process category are listed for the 11 candidate genes. The GO terms are followed by number of genes having the enriched term in the reference list (Reference), number of genes in the input list having the enriched term (Count), gene names for the genes listed in Count, and Bonferroni-corrected p values.

[16]. Similarly, A20, the protein name of the gene product encoded by TNFAIP3, is an antiapoptotic protein that inhibits apoptosis induced by cytokines by blocking activation of the transcription factor NFκB [24]. In conclusion, a cumulative genetic risk score comprising variants from 11 islet-expressed candidate genes predicted significantly poorer glycemic control and β-cell function during disease progression in new-onset T1D children. This knowledge might be useful to better predict disease progression after diagnosis with T1D.

Conflict of Interests

All authors declare no conflict of interests.

Authors’ Contribution

Caroline A. Brorsson and Lotte B. Nielsen contributed equally to this paper. Lotte B. Nielsen, Caroline A. Brorsson, and Joachim Størling designed the study, researched data, and wrote the paper. Simranjeet Kaur, Marie Louise Andersen, Lars Hansen, and Regine Bergholdt researched data, contributed to discussion, and reviewed and edited the paper. Henrik B. Mortensen, Flemming Pociot, and Joachim Størling reviewed and edited the paper and contributed to discussion.

Acknowledgments

This study was funded by the Danish Council for Independent Research, the Sehested-Hansen Foundation, the National Institute of Health (1 DP3 DK085678), Beckett Fonden, Savværksjejer Jeppe Juul og hustru Ovita Juuls Mindelegat, European Foundation for the Study of Diabetes (EFSD), Novo Nordisk A/S, and Juvenile Diabetes Research Foundation (JDRF). The authors thank the members of the Hvidoere Study Group on Childhood Diabetes who have contributed to the Hvidoere Remission Phase Study: Henk-Jan Aanstoot, M.D., Ph.D., Center for Pediatric and Adolescent Diabetes Care and Research, Rotterdam,
References

[1] J. Storling, A. J. Overgaard, C. A. Brorsson et al., “Do post-translational beta cell protein modifications trigger type 1 diabetes?” *Diabetologia*, vol. 56, no. 11, pp. 2347–2354, 2013.

[2] D. L. Eizirik, M. L. Colli, and F. Ortiz, “The role of inflammation in insulitis and beta-cell loss in type 1 diabetes,” *Nature Reviews Endocrinology*, vol. 5, no. 4, pp. 219–226, 2009.

[3] J. C. Barrett, D. G. Clayton, P. Concannon et al., “Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes,” *Nature Genetics*, vol. 41, no. 6, pp. 703–707, 2009.

[4] F. Pociot, B. Akolkar, P. Concannon et al., “Genetics of type 1 diabetes: what’s next?” *Diabetes*, vol. 59, no. 7, pp. 1561–1571, 2010.

[5] P. Concannon, S. S. Rich, and G. T. Nepom, “Genetics of type 1A diabetes,” *The New England Journal of Medicine*, vol. 360, no. 16, pp. 1646–1654, 2009.

[6] D. L. Eizirik, M. Sammeth, T. Bouckenooeghe et al., “The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines,” *PLoS Genetics*, vol. 8, no. 3, Article ID e1002552, 2012.

[7] R. Bergholdt, C. Brorsson, A. Palleja et al., “Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression,” *Diabetes*, vol. 61, no. 4, pp. 954–962, 2012.

[8] J. Storling and C. A. Brorsson, “Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes,” *Current Diabetes Reports*, vol. 13, no. 5, pp. 633–641, 2013.

[9] T. Floyel, S. Kaur, and F. Pociot, “Genes affecting beta-cell function in type 1 diabetes,” *Current Diabetes Reports*, vol. 15, article 97, 2015.

[10] A. K. Steck, R. Wong, B. Wagner et al., “Effects of non-HLA gene polymorphisms on development of islet autoimmunity and type 1 diabetes in a population with high-risk HLA-DR,DQ genotypes,” *Diabetes*, vol. 61, no. 3, pp. 753–758, 2012.

[11] C. Winkler, J. Krumsie, J. Lempainen et al., “A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes,” *Genes and Immunity*, vol. 13, no. 7, pp. 549–555, 2012.

[12] M. L. M. Andersen, M. A. Rasmussen, S. Pörksen et al., “Complex multi-block analysis identifies new immunologic and genetic disease progression patterns associated with the residual beta-cell function 1 year after diagnosis of type 1 diabetes,” *PLoS ONE*, vol. 8, no. 6, Article ID e64632, 2013.

[13] L. B. Nielsen, H. B. Mortensen, F. Chiarelli et al., “Impact of IDDM2 on disease pathogenesis and progression in children with newly diagnosed type 1 diabetes: reduced insulin antibody titres and preserved beta cell function,” *Diabetologia*, vol. 49, no. 1, pp. 71–74, 2006.

[14] A. Petrone, M. Spoletini, S. Zampetti et al., “The PTN2822858T gene variant in type 1 diabetes is associated with reduced residual beta-cell function and worse metabolic control,” *Diabetes Care*, vol. 31, pp. 1214–1218, 2008.

[15] L. B. Nielsen, S. Pörksen, M. L. M. Andersen et al., “The PTN22858T gene variant is associated with proinsulin in newborn type 1 diabetes,” *BMC Medical Genetics*, vol. 12, article 41, 2011.

[16] T. Flyoe, C. Brorsson, L. B. Nielsen et al., “CTSH regulates beta-cell function and disease progression in newly diagnosed type 1 diabetes patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 28, pp. 10305–10310, 2014.

[17] R. Bergholdt, C. Brorsson, K. Lage, J. H. Nielsen, S. Brunak, and F. Pociot, “Expression profiling of human genetic and protein interaction networks in type 1 diabetes,” *PLoS ONE*, vol. 4, no. 7, Article ID e6250, 2009.

[18] K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCRand the 2−ΔΔCT method,” *Methods*, vol. 25, no. 4, pp. 402–408, 2001.

[19] H. B. Mortensen, P. G. Swift, R. W. Holli et al., “Multinational study in children and adolescents with newly diagnosed type 1 diabetes: association of age, ketoacidosis, HLA status, and autoantibodies on residual beta-cell function and glycemic control 12 months after diagnosis,” *Pediatric Diabetes*, vol. 11, no. 4, pp. 218–226, 2010.

[20] H. B. Mortensen, P. Hougaard, P. Swift et al., “New definition for the partial remission period in children and adolescents with type 1 diabetes,” *Diabetes Care*, vol. 32, no. 8, pp. 1384–1390, 2009.

[21] H. Mi, A. Muruganu, J. T. Casagrande, and P. D. Thomas, “Large-scale gene function analysis with the PANTHER classification system,” *Nature Protocols*, vol. 8, no. 8, pp. 1551–1566, 2013.

[22] E. A. Andersson, K. H. Allin, C. H. Sandholt et al., “Genetic risk score of type 2 diabetes risk variants associates with changes in plasma glucose and estimates of pancreatic beta-cell function over 5 years of follow-up,” *Diabetes*, vol. 62, no. 10, pp. 3610–3617, 2013.
[23] F. Renström, D. Shungin, I. Johansson et al., “Genetic predisposition to long-term nondiabetic deteriorations in glucose homeostasis: ten-year follow-up of the GLACIER study,” Diabetes, vol. 60, no. 1, pp. 345–354, 2011.

[24] S. T. Grey, M. B. Arvelo, W. Hasenkamp, F. H. Bach, and C. Ferran, “A20 inhibits cytokine-induced apoptosis and nuclear factor xB-dependent gene activation in islets,” Journal of Experimental Medicine, vol. 190, no. 8, pp. 1135–1146, 1999.
