Efficacy evaluation of abiotic elicitors for the management of black rot disease of cauliflower incited by *Xanthomonas campestris pv. campestris*

ABSTRACT

Aims: To find out the effective abiotic elicitor for management of black rot disease of cauliflower

Study design: completely randomized block design (Pot experiment in glasshouse condition)

Place and duration of the study: This experiment was conducted at glasshouse of Division of Plant Pathology, ICAR-IARI, New Delhi during the year 2021-22.

Methodology: Different abiotic elicitors were applied by spraying whole plants (45 days old) with the aid of a fine atomizer onto the upper leaf surfaces. Pathogen *X. campestris pv. campestris* was inoculated after 72 h of elicitor treatment, Control plants were treated with the distilled water. The disease assessment was done at 14 and 21 days after inoculation by using six-point scale and Percent Disease severity was calculated.

Results: In case of foliar spray of Salicylic acid before 72 h of inoculation of pathogen, minimum percent diseases severity (25.56) was recorded at the concentration of 3mM after 21 days of pathogen inoculation. In case of BABA, minimum percent disease severity (18.37) was observed at 800ug/ml concentration. INA helps to reduce the disease severity at 100uM concentration. ASM was found effective at 350ug/ml with 14.07% disease severity and 82.91% disease control efficiency. In case of MeJA, minimum percent disease severity (30.32) was observed at 2mM concentration.

Conclusion: Among all the tested abiotic elicitors at different concentration, ASM at the concentration of 350ug/ml was found very effective to manage the disease.

Black rot caused by *Xanthomonas campestris pv. campestris* (*Xcc*) is a very important and devastating disease of cauliflower (*Brassica oleracea var botrytis*) crop resulting into 10–50% yield losses every year. So for the management of black rot disease, five abiotic elicitors viz; salicylic acid (SA- 0.5, 1.0, 2.0, 3.0mM), methyl jasmonate (MeJA- 0.5, 1.0, 1.5, 2.0mM), β-Aminobutyric acid (BABA- 200, 400, 600, 800ug/ml), acibenzolar-S- methyl (ASM- 150, 250, 350, 450ug/ml) and dichloroisonicotinic acid (INA- 50, 100, 150, 200 uM) were tested to induce systemic resistance against the disease. The experiment was conducted under glasshouse condition at Division of Plant Pathology, ICAR-IARI, New Delhi during the year 2021-22 and foliar application of these abiotic elicitors was done on 45 days old plants of cauliflower black rot susceptible variety Pusa Sharad. Results from the study indicated that among all the tested chemical elicitors at different concentration, ASM at the concentration of 350ug/ml was found very effective to manage the disease.

Keywords: Cauliflower, black rot, abiotic elicitor, ASM, Management
1. INTRODUCTION

Cauliflower (Brassica oleracea var. botrytis) is an important vegetable crop, which is widely grown in China, India, Italy, and other Asian and European countries [1,2]. It is originated from North-east of the Mediterranean region. In India, it was introduced from England in 1822 by Dr. Jemson, In-charge of Company Bagh, Saharanpur, U.P. Cauliflower cultivation is done in almost all the states of our country, but the main states are West Bengal, Bihar, U.P., Odisha, Assam, M.P., Rajasthan, Gujarat, Haryana, Himachal Pradesh, Maharashtra and Karnataka. It is rich in minerals like K, Na, Ca, Fe, P and Mg and vitamins like A and C. Globally, India contributes about 13 percent to the world vegetable production and occupies second position in the cauliflower production. In India, it is cultivated on 473 thousand hectares area with annual production of 9225 thousand tonnes accounting the productivity of 19.50 tonnes/ha (Third Advance Estimates of Horticulture Crops 2020-21). This stagnation in yield and productivity over the year is affected by various bacterial, fungal and viral diseases which make serious inroads into cauliflower production in terms of curd yield by affecting seed germination, seedling mortality, killing the plants, rotting of curds and spoiling the quality of curds. Among the various bacterial diseases that affects crucifer crops, black rot caused by Xanthomonas campestris pv. campestris is one of the most devastating and widespread seed-borne bacterial disease [3,4] and has a widest geographical distribution.

Tropical, subtropical, and other places with warm, humid temperatures are particularly vulnerable to black rot disease. In favourable environmental circumstances like high relative humidity and increased temperature, the bacterium can cause losses of up to 50%. The typical leaf symptoms of black rot disease are V-shaped lesions manifested at leaf margin through hydathodes causing vein blackening and these V-shaped lesions enlarges towards the mid rib of leaf. Disease control is difficult due to systemic nature of pathogen. Management of the disease with chemicals relies upon the use of antibiotics (mostly streptomycin) and some copper compounds, which prevent bacterial multiplication and further infection in the plant. Unfortunately, the bacterial population develops resistance against the antibiotics. Now a day, use of antibiotics is banned or strictly limited in many countries all over the world. Copper compounds have very limited efficacy when favourable condition coincides with disease development. Thus, induction of plant resistance will be a useful method for management of this devastating disease. Induced protection of plants against various pathogens (bacterial, fungal or viral) by biotic or abiotic agents has been reported. Abiotic inducers of disease resistance play a key role for the integration of the systemic acquired resistance (SAR) concept in modern plant protection strategies [5]. Synthetic compounds are known to induce systemic acquired resistance which is generally effective against a very broad range of pathogens. The low impact of these abiotic elicitors on humans as well as on the environment makes these compounds suitable for use in field or greenhouse plant disease management. Knowledge about the disease resistance induction against Xanthomonas campestris pv. campestris in cauliflower might allow for the development of a novel environmental friendly method for disease protection, which also will improve quality and productivity of the crop. So for the management of black rot disease, efficacy of five abiotic elicitors (SA, BABA, ASM, INA and MeJA) was investigated at different concentration in
glasshouse condition with foliar application of these abiotic elicitors on 45 days old plants of Pusa Sharad variety of cauliflower.

2. MATERIAL AND METHODS

2.1 Plant material, bacterial culture and abiotic elicitor

Seeds of black rot susceptible variety (Pusa Sharad) of cauliflower were obtained from the Vegetable Science Division, ICAR-Indian Agricultural Research Institute, New Delhi. Black rot causing bacterial culture of *Xanthomonas campestris* pv. *campestris* (race-1) was used for inoculation. First seeds were grown in portrays. Twenty-one days old cauliflower seedlings of Pusa Sharad were transplanted in earthen pots of 15cm diameter having autoclaved soil mixture of peat moss, vermiculite and sand in the ratio 2:1:1. Five different abiotic elicitors viz; Salicylic acid (SA), β-Aminobutyric acid (BABA), Acibenzolar-S- methyl (ASM), dichloroisocoticin acid (INA) and methyl jasmonate (MeJA) were used for testing at four different concentrations on susceptible cauliflower plants.

S.No.	Abiotic elicitor	Concentration used
1.	Salicylic acid (SA)	0.5, 1.0, 2.0, 3.0 mM
2.	β-Aminobutyric acid (BABA)	200, 400, 600, 800ug/ml
3.	2,6-dichloroisocoticin acid (INA)	50, 100, 150, 200uM
4.	Acibenzolar-S-Methyl (ASM)	150, 250, 350, 450ug/ml
5.	Methyl Jasmonate (MeJA)	0.5, 1.0, 1.5, 2.0 mM

2.2 Elicitor application and pathogen inoculation

The chemical elicitors were applied by spraying whole plants (45 days old) with the aid of a fine atomizer onto the upper leaf surfaces. Xcc (race-1) was inoculated on to cauliflower seedlings after 72 h of elicitor treatment. Control plants were treated with the distilled water.

2.3 Disease scoring

The disease assessment was done at 14 and 21 days after inoculation by using six- point scale of 0-9 based on the relative lesion size given by Vicente et al. [6].

Scale	Relative lesion size
0	No symptoms
1	Small Necrosis or chlorosis surrounding the infection point
3	Typical small V-shaped lesion with black veins
5	Typical lesion half way to the middle vein
7	Typical lesion progressing to the middle vein
9	Lesion reaching the middle vein

Disease severity index (DSI) was calculated by using the formula:

\[
DSI (\%) = \left[\frac{\sum (rating _no. \times no._of_plants _in_rating)}{(Total_no._of_plants \times highest _rating)} \right] \times 100
\]
Protection against Xcc was assessed by comparing the disease severity values. Disease control efficacy (DCE) of chemical elicitors was determined as described formula by Guo et al. [7].

\[
BCE = \left[\frac{(DC - DT)}{DC}\right] \times 100
\]

Where DC is disease in control and DT is disease in treatment group.

3. RESULTS AND DISCUSSION

This experiment was conducted to find out the efficacy of five abiotic elicitors at different concentrations against black rot disease of cauliflower (var. Pusa Sharad) caused by X. campestris pv. campestris under glass-house conditions. Results (Table 2) from the study indicated that in case of foliar spray of Salicylic acid before 72 h of inoculation of pathogen, minimum percent disease severity (25.56) was recorded at the concentration of 3mM after 21 days of pathogen inoculation. In case of BABA, minimum percent disease severity (18.37) was observed at 800ug/ml concentration. INA helps to reduce the disease severity at 100uM concentration. There was no significant difference in disease control with the higher concentration i.e. 150 and 200uM. ASM was found effective at 350ug/ml with 14.07% disease severity and 82.91 disease control efficiency. There was no significant difference at the ASM concentration 350ug/ml and 450ug/ml. In case of MeJA, minimum percent disease severity (30.32) was observed at 2mM concentration. Among all the tested chemical elicitors, ASM at the concentration of 350ug/ml was found very effective to manage the disease.

In simple terms, plant disease resistance can be defined as the ability of a plant to prevent or restrict the particular pathogen growth and multiplication. The use of resistance inducers to speed up plant responses could give a physiologically, ecologically, and financially viable alternative to current disease management approaches. Some researchers have focused on developing novel synthetic chemical activators with increased efficacy [8]. Exogenous application of biotic and abiotic inducers or elicitors can improve plant resistance to pathogen invasion. Various chemicals have been reported to act at various points in the defense activating networks and mimic whole or parts of the biological activation of resistance, among these, only a few have reached up to commercialization. Several reviews have highlighted the potential of chemical elicitors to activate and enhance natural plant disease resistance [9-12]. Several compounds have been reported to induce SAR in a variety of plants against a wide range of microbial pathogens without having direct antimicrobial activity [13].

Name of elicitor	Concentration used	Percent Disease Severity	Disease control efficiency (%)		
		14 Days	21 days	Mean	
1. SA	Control	48.87±2.48^a	77.42±2.41^a	63.14	0.00
The use of an abiotic inducer to activate the plant's defensive mechanisms is an unique plant protection method. Induction of defense associated proteins makes the plant resistant to pathogen invasion and further invasion. Induction of these defense proteins has been correlated with pathogen invasion in various host-pathogen interactions. The severity of bacterial canker disease was reduced up to 75%, suppression of the bacterial growth was up to 68% with significant manifestation in the defense related enzymes with ASM treatment was reported by Soylu et al. [21]. The abiotic elicitor, ASM-treated seedlings challenged with *Clavibacter michiganensis* subsp. *michiganensis*, support the concept that a triggering signal produced by the pathogen is essential to enhance synthesis and accumulation of various defense-gene products. The study conducted by Boro et al. [22] also supported our results, in which control of bacterial leaf spot of yellow passion fruit was achieved by using the abiotic resistance inducer, acibenzolar-S-methyl (ASM) as seed immersion and spraying at the concentration of 12.5 μg a.i. mL⁻¹ with 70% protection. Results of the study conducted by Kuhn

Concentration	Control	0.5mM	1.0mM	2.0mM	3.0mM	
	48.27±3.75	42.27±3.96	35.58±2.56	27.78±2.00	18.82±2.09	
200ug/ml	75.46±4.17	55.27±2.58	46.13±4.92	38.41±2.58	25.56±1.00	
400ug/ml	61.87	49.31	40.85	33.09	22.19	
600ug/ml	0.00	28.09±4.78	24.21±1.03	21.16±1.83	15.38	
800ug/ml		62.21	43.21±1.78	24.44±2.00	75.65	
3. INA	Control	46.64±3.05	77.79±4.78	60.44±2.11	24.28±2.02	18.37±4.05
	62.21	50uM	75.31±3.33	25.38±2.57	21.35	
		17.46±1.00	24.34±1.78	21.16±1.83	15.38	
		18.60±2.25	24.44±2.00	21.35		
		18.25±0.78	24.44±2.00	21.35		
4. ASM	Control	44.17±2.93	82.37±2.91	63.27	0.00	
	63.27	150 ug/ml	43.16±1.41	21.16±1.83	15.38	
		28.09±1.68	43.16±1.41	21.16±1.83	15.38	
		18.18±1.65	35.47±4.19	21.16±1.83	15.38	
		8.78±1.49	14.07±2.02	21.16±1.83	15.38	
		7.75±2.31	14.07±2.02	21.16±1.83	15.38	
5. MeJA	Control	46.68±1.52	75.64±6.64	61.16	0.00	
	61.16	0.5 mM	43.26±1.99	57.31±3.23	21.16±1.83	15.38
		24.36±0.75	44.44±2.00	21.16±1.83	15.38	
		24.67±1.21	43.59±3.91	21.16±1.83	15.38	
		24.11±2.04	30.32±1.65	21.16±1.83	15.38	

The experimental data are the average of three replicates. Mean with different letters in the same column differ significantly at P ≤ 0.05 (Tukey’s test)
[23] is also in close conformity to our results that induction of resistance in bean plants against bacterial blight caused by *Xanthomonas axonopodis* pv. *phaseoli*, with the use of this SAR inducer was achieved only when low concentrations of ASM were applied. On the other hand, the fact that only the lowest concentration of ASM was active when directly sprayed on leaves in the pathosystem under study, confirms the statement of Kuć [24] that the protecting effect observed in plants is dependent on several factors, including the concentration of the inducer. Huang et al. [25] also found the significant reduction in the bacterial spot disease severity on tomato plants treated with ASM at 129 μM as compare to the untreated control.

4. CONCLUSION

The use of abiotic inducer to activate the plant’s defensive system is a unique and cost effective disease management strategy. Black rot disease incited by *Xanthomonas campestris* pv. *campestris* can be effectively managed with the foliar spray of Acibenzolar-S-methyl@350μg/ml on 45 days old crop. Timely management of this devastating disease will reduces the losses caused and also increase the yield and quality.

REFERENCES

1. Abdelkhalik A, Pascual B, Nájera I, Baixauli C, Pascual-Seva N. Deficit irrigation as a sustainable practice in improving irrigation water use efficiency in cauliflower under mediterranean conditions. Agronomy. 2019;9:732.
2. He F, Thiele B, Santhiraraja-Abresch S, Watt M, Kraska T, Ulbrich A, Kuhn AJ. Effects of root temperature on the plant growth and food quality of Chinese broccoli (*Brassica oleracea* var. *alboglabra* Bailey). Agronomy. 2020;10(5):702.
3. Williams PH. Black rot: A continuing threat to world crucifers. Plant Disease. 1980;64:736-742. https://doi.org/10.1094/PD-64-736
4. Singh D, Dhar S, Yadava DK. Genetic and pathogenic variability of Indian strains of *Xanthomonas campestris* pv. *campestris* causing black rot disease in crucifers. Current Microbiology. 2011;63:551-560.
5. Lyon GD, Newton AC. Do resistance elicitors offer new opportunities in integrated disease control strategies? Plant Pathology. 1997; 46(5):636-641.
6. Vicente JG, Taylor JD, Sharpe AG, Parkin IAP, Lydiate DJ, King GJ. Inheritance of race- specific resistance to *Xanthomonas campestris* pv. *campestris* in Brassica genomes. Phytopathology. 2002;92:1134-1141.
7. Guo M, Oh HS, Petnicki-Ocwieja T, Chen S, Tang X, Dickman MB, Collmer A, Alfano JR. Identification of *Pseudomonas syringae* type III effectors that suppress programmed cell death in plants and yeast. The Plant Journal. 2004;37:554-565.
8. Schweizer P, Buchala A, Metraux JP. Gene-expression patterns and levels of jasmonic acid in rice treated with the resistance inducer 2,6- dichlororiconitonic acid. Plant Physiology. 1997;11:61e70.
9. Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J. Induction of systemic acquired disease resistance in plants by chemicals. Annual Review of Phytopathology. 1994;32:439-459.
10. Kuc J. Phytoalexins, stress metabolism, and disease resistance in plants. Annual Review of Phytopathology. 1995;33:275-297.
11. Bektas Y, Eulgem T. Synthetic plant defense elicitors. Frontiers in plant science, 2015;5:804.
12. Tripathi D, Raikhy G, Kumar D. Chemical elicitors of systemic acquired resistance—Salicylic acid and its functional analogs. Current Plant Biology. 2019;17:48-59.
13. Barili E, Sillero JC, Rubiales D. Induction of Systemic Acquired Resistance in Pea against Rust (Uromyces pisi) by Exogenous Application of Biotic and Abiotic Inducers. Journal of Phytopathology. 2010;158:30-34.
14. Iriti M, Faoro F. Benzothiadiazole (BTH) induces cell death independent resistance in Phaseolus vulgaris against Uromyces appendiculatus. Journal of Phytopathology. 2003;151:171-180.
15. Guzzo SD, Harakava R, Lucon CMM, Tsai SM. Resistência sistêmica adquirida em cafeeiro contra Hemileia vastatrix e indução local e sistêmica de quitinases e β-1,3-glucanases por acibenzolar-S-metil. Summa Phytopathologica. 2004; 30:376-381.
16. Ishida AKN, Souza RM, Resende MLV, Cavalcanti FR, Oliveira DL, Pozza EA. Rhizobacterium and acibenzolar-Smethyl (ASM) in resistance induction against bacterial blight and expression of defense responses in cotton. Tropical Plant Pathology. 2008; 33:27-34.
17. Faize M, Faize L, Ishii H. Gene expression during acibenzolar-S-methyl-induced priming for potentiated responses to Venturia nashicola in japonese pear. Journal of Phytopathology. 2009; 157:137-144.
18. Obradovic A, Jones JB, Momol MT, Balgoh B, Olson SM. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Disease. 2004;88:736e40.
19. Cavalcanti FR, Resende MLV, Lima JPMS, Silveira JAG, Oliveira JTA. Activities of antioxidant enzymes and photosynthetic responses in tomato pre-treated by plant activators and inoculated by Xanthomonas vesicatoria. Physiological and Molecular Plant Pathology. 2007;68:198e208.
20. Gorlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH, et al. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates expression and disease resistance in wheat. Plant Cell 1996;8:629e43.
21. Soylu S, Baysal O, Soylu M. Induction of disease resistance by the plant activator, acibenzolare-S-methyl (ASM) against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato seedlings. Plant Science. 2003;165:1069e75.
22. Boro MC, Beriam LOS, Guzzo SD. Induced resistance against Xanthomonas axonopodis pv. passiflorae in passion fruit plants. Tropical Plant Pathology. 2011;36:74-80.
23. Kuhn OJ. Indução de resistência em feijoeiro (Phaseolus vulgaris) por acibenzolar-S-metil e Bacillus cereus: aspectos fisiológicos, bioquímicos e parâmetros de crescimento e produção. PhD Thesis. 2007. Universidade de São Paulo, ESALQ. Piracicaba SP.
24. Kuc J. Phytoalexins, stress metabolism, and disease resistance in plants. Annual Review of Phytopathology. 1995;33:275-297.
25. Huang CH, Vallad GE, Zhang S, Wen A, Balogh B, Figueiredo JFL, Behlau F, Jones JB, Momol MT, Olson SM. Effect of application frequency and reduced rates of acibenzolar-S-methyl on the field efficacy of induced resistance against bacterial spot on tomato. Plant Disease. 2012; 96(2):221-227.