In vitro antineurodegenerative activity and in silico predictions of blood-brain barrier penetration of Helichrysum plicatum flower extract

Miloš Jovanović1, Zorica Drinić1*, Dubrava Bigović1, Ana Alimpić Aradski2, Sonja Duletić-Laušević2, and Katarina Šavkin1

1Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
2University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, Takovska 43, 11000 Belgrade, Serbia

*Corresponding author:zdrinic@mocbilja.rs

Received: November 3, 2020
Accepted: December 16, 2020
Published on-line: December 21, 2020
Published: December 25, 2020

This study aimed to assess the antineurodegenerative and antioxidant activity of Helichrysum plicatum flower extract, as well as to identify extract ingredients with acceptable pharmacokinetic parameters such as gastrointestinal absorption, blood-brain barrier permeation, and P-glycoprotein-mediated effusion for optimal therapeutic brain exposure. Antioxidant activity was evaluated by ABTS, FRAP, and β-carotene bleaching assays, while antineurodegenerative activity was tested using acetylcholinesterase (AChE) and tyrosinase (TYR) inhibitory activity assays. In the ABTS test, the dry extract at the highest applied concentration (500 µg/mL) showed better or similar antioxidant activity compared to the standards. In the β-carotene assay, all applied concentrations of the extract showed significantly higher activity than vitamin C. No concentration-dependent activity was observed in the AChE assay, while in the TYR assay the lowest extract concentration (100 µg/mL) showed the highest percentage of inhibition (27.92 %). Pharmacokinetic parameters of compounds were predicted by in silico SwissADME online tool in accordance by the rules of drug-likeness. According to the pharmacokinetic properties, we concluded that pentoxymethoxylated flavones may represent CNS drug candidates for further studies.

Key words: antioxidant, neuroprotective, tyrosinase, acetylcholinesterase, in silico

http://dx.doi.org/10.5937/leksir2040045J

1. INTRODUCTION

Neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease have become a significant health problem in modern society. Their increased prevalence is associated with an increase in the life expectancy of the population (Pandey et al., 2020). In complex pathogenesis, persistent oxidative damage is recognized as one of the key factors of neuronal degeneration during aging (Vila, 2019). Namely, due to intensive metabolism, neurons are prone to increased production of highly reactive free radicals. Increased exposure to free radicals and oxidative denaturation of essential biomolecules (membrane lipids, proteins, enzymes, DNA) has led to disease progression (Ritter et al., 2020). The aging-related neuron loss in Parkinson’s disease correlates directly with the accumulation of neuromelanin which is produced by tyrosinase (TYR) activity or spontaneous non-enzymatic autoxidation of dopamine (Vila, 2019). Decreased cholinergic transmission due to increased acetylcholine degradation by acetylcholinesterase (AChE) exists in various neurodegenerative diseases and is associated with memory loss in Alzheimer’s patients. Therefore, both processes (oxidative damage and enhanced enzyme activity) may represent a potential target for novel antineurodegenerative therapy. Individual compounds have achieved modest symptomatic efficacy, with no causal action and poor safety that limit their chronic use (Ritter et al., 2020).

The traditional pharmacological approach of “one target - one disease” that addresses only a single target has evolved into the concept of “multitarget drug” (polypharmacology) with the idea that one drug modulates multiple targets simultaneously. In this context, plant extracts as a cocktail of pharmacologically active ingredients that act on multiple targets can realize better efficacy compared to highly specific compounds for individual targets (Morphy and Rankovic, 2008). Optimizing various activities and achieving acceptable distribution at the desired therapeutic target in brain tissue are major challenges in CNS multitarget drug discovery. An important limitation to drug distribution in the CNS is the existence of a blood-
Helichrysum plicatum DC. (Asteraceae) is a herbaceous plant native to the Anatolian Peninsula, Balkan, and Iran with a long tradition of use in the European ethnopharmacology (Bigović et al., 2017). It is traditionally used for wound healing, in the treatment of diabetes, kidney stones as a diuretic and litotripsy, and in gastrointestinal and liver diseases as a stimulator of gastric secretion, cholagogue, choleretic, and hepatoprotective (Aslan et al., 2007; Vujčić et al., 2020). In recent years, species has attracted the attention of scientists, and it has been confirmed that its extracts exhibit urolithic, nephroprotective, anti-hyperglycemic, antioxidant, antimicrobial, cytotoxic, and spasmodic activity by various in vitro, in vivo, and ex vivo methods (Apaydin Yıldırım et al., 2017; Aslan et al., 2007; Bayir et al., 2011; Bigović et al., 2010; 2017; 2011; Sezık et al., 2010). Flavones, flavanones, flavonols, and chalcones are probably the main contributors to the therapeutic activity of the extracts (Vujčić et al., 2020).

As H. plicatum is a valuable source of pharmacologically interesting compounds with a wide range of activities, this study aimed to assess the neuroprotective and antioxidant potential of its flower extract. Assessment bioassays included three different antioxidant activity tests (ABTS, FRAP, and β-carotene bleaching assay), as well as assays regarding CNS enzymes (AChE and TYR) to assess the neuroprotective potential by different mechanisms of action. Moreover, the aim of the study was to perform in silico screening of compounds with acceptable pharmacokinetics (gastrointestinal absorption, blood-brain barrier permeation and P-glycoprotein-mediated effusion) for optimal brain exposure. To the best of our knowledge, this is the first study of antineurodegenerative activity of H. plicatum flower extract.

2. MATERIALS AND METHODS

2.1. Extract preparation

Flowers heads of H. plicatum were purchased from Institute for Medicinal Plant Research “Dr. Josif Pančić”, Belgrade (batch number 29470605). Plant material was comminuted before extraction (degree of comminution 710 µm, according to European Pharmacopoeia 6.0). The dry extract was prepared according to the previously described procedure (Bigović et al., 2011). Briefly, extraction was performed with 50% ethanol (drug:solvent ratio 1:5 w/v) at room temperature by triple percolation. Evaporation of the obtained extract on 1/3 of its volume was performed on a vacuum evaporator (Buchi rotavapor R-114) at 80°C and then cooled to 8°C. The obtained extract was re-extracted with ethylacetate. The yellow-orange dry extract was obtained after evaporation of ethylacetate at 60°C.

In the extract prepared by this procedure, Bigović et al. (2011) quantified total phenols and three individual flavone aglycone. Content of total phenolics was 359.8 mg of gallic acid equivalent per dry weight (DW) of plant extract, while content of naringenin, apigenin and kaempferol were 17.4, 16.2, and 3.8 mg/g DW, respectively.

2.2. Evaluation of antioxidant activity

2.2.1. ABTS assay

Radical scavenging activity of the extract was evaluated by ABTS (2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) assay according to the Miller et al. (1993) procedure with slight modifications. The working solution was prepared 12-16 hours before the experiment by dissolving 7 mM of ABTS⁺ in 2.46 mM potassium-persulfate and kept in a dark place at room temperature. The working solution of ABTS⁺ (1000 µL) was mixed with extract (25 µL) in three different concentrations (100, 200, and 500 µg/mL) or positive controls of BHA, BHT, and the ascorbic acid in two different concentrations (50 and 100 µg/mL). The mixtures were incubated for 30 minutes at 30°C and then the absorbance was measured at 734 nm. The percentage of inhibition of ABTS⁺ radical was calculated using the equation:

\[\text{Inhibition of ABTS radical} \% = \frac{A_c - A_s}{A_c} \times 100\% \]

where \(A_c \) is the absorbance of the control (without test sample) and \(A_s \) is the absorbance of the test samples at different concentrations. All analytical measurements were performed in triplicate and the results were expressed as mean ± standard deviation.

2.2.2. Ferric-reducing ability of plasma (FRAP) assay

The total antioxidant capacity of the extract was evaluated by ferric-reducing ability of plasma (FRAP) assay according to the Benzie and Strain (1996) method with slight modifications. The ability of the extract to reduce ferric tripyridyltriazine (Fe(III)-TPTZ) complex to the ferrous tripyridyltriazine (Fe(II)-TPTZ) at low pH was measured. FRAP reagent was prepared by mixing sodium acetate buffer (300 mMol/L, pH 3.6), 10 mMol/L TPTZ in 40 mMol/L HCl, and FeCl₃ × 6H₂O solution (20 mMol/L) in proportion 10:1:1 (v/v/v), respectively. Extract sample (40 µL) dissolved in methanol (100, 200, and 500 µg/mL) were mixed with 1200 µL of freshly prepared FRAP reagent and absorbance was measured after 4 minutes at 593 nm. The calibration curve was constructed using a standard solution of FeSO₄ × 7H₂O (0.2-1.6 mmol/L), while as standards were used BHT, BHA, and ascorbic acid in concentrations of 50 and 100 µg/mL. Results were expressed as µmol FeSO₄ × 7H₂O/g dry extract. All analytical measurements were performed in triplicate and the results were expressed as mean ± standard deviation.

2.2.3. β-carotene bleaching assay

The capacity of H. plicatum flower extract to reduce oxidative degradation of β-carotene in a β-carotene / linoleic acid emulsion was evaluated according to the procedure of Dapkevicius et al. (1998) with slight modifications. The emulsion was prepared by dissolving β-carotene (1 mg), linoleic acid (50 µL), and Tween 40 (400 mg) in 2 mL of chloroform. This was followed by evaporation of the chloroform and the addition of 200 mL of distilled water with vigorous stirring. Extract samples (140 µL) dissolved in methanol in concentrations of 100, 200, and 500 µg/mL were mixed with 1000 µL of emulsion. BHA, BHT, and ascorbic acid in concentrations of 50 and 100 µg/mL were used as standards. Absorbances were measured at zero time and after an incubation period of 120 minutes at 490 nm. The antioxidant activity of the sample (expressed as a percentage of inhibition) was evaluated using the following equation:

\[\text{Inhibition} \% = \frac{A_{120} - C_{120}}{C_0 - C_{120}} \times 100\% \]

where \(A_{120} \) and \(C_{120} \) are the absorbances measured in t=120 minutes for sample and control, respectively, while \(C_0 \) is the absorbance of control in t=0 minutes. All analytical measurements were performed in triplicate and the results were expressed as mean ± standard deviation.

2.3. Evaluation of antineurodegenerative activities

2.3.1. Acetylcholinesterase (AChE) inhibitory activity assay

Antineurodegenerative activity of the obtained extract was determined using the spectrophotometric AChE inhibitory
activity, previously described by Ellman et al. (1961). The activity of *H. plicatum* flower extract was measured by spectroscopic monitoring of yellow color intensity increase produced from tiocholine after reaction with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) ion. The extract was used in three different concentrations (100, 200, and 500 µg/mL), while alkaloid galantamine (100 µg/mL) was used as a standard. The mixture without AChE solution was used as blank (B), while the control (C) did not contain extract. The reaction was initiated by adding 10 µL of acetylthiocholine iodide after an incubation period of 15 minutes at room temperature. Absorbance was measured using a Tecan Sunrise SN microplate reader equipped with XFluor4 software at 412 nm. The percentage of inhibition of AChE by samples was determined using the equation:

\[
\text{Inhibition of AChE} (%) = \frac{A_C - (A_S - A_B)}{A_C} \times 100%
\]

where \(A_S\) is the absorbance of the samples, while \(A_B\) and \(A_C\) are absorbances of blank and control solutions. All analytical measurements were performed in triplicate and the results were expressed as mean ± standard deviation.

2.3.2. Tyrosinase inhibitory activity assay

Antineurodegenerative activity of the obtained extract was also determined using the spectrophotometric tyrosinase inhibitory activity assay, previously described by Masuda et al. (2005). The experiment was designed so that wells A contain 120 µL of sodium buffer (0.1 M, pH 7.0) and 40 µL of 46 units/L tyrosinase in the same buffer; wells B contain only buffer; wells C contain 80 µL of a buffer, 40 µL of tyrosinase and 40 µL of extract sample; wells D contain 120 µL of buffer and 40 µL of extract sample. The extract dissolved in sodium phosphate buffer containing 5% DMSO was used in three different concentrations (100, 200, and 500 µg/mL), while kojic acid (100 µg/mL) was used as a standard. The absorbance was measured at 475 nm after the addition of L-DOPA (40 µL) and an incubation period of 30 minutes at room temperature, using Tecan Sunrise SN microplate reader equipped with XFluor4 software. Percentage of inhibition of tyrosinase was determined using the equation:

\[
\text{Inhibition of tyrosinase} (%) = \frac{(AA - AB) - (AC - AD)}{(AA - AB)} \times 100%
\]

, where AA, AB, AC and AD are absorbances of the mixtures that contained buffer and enzyme; only buffer; buffer, enzyme and sample; buffer and sample, respectively. All analytical measurements were performed in triplicate and the results were expressed as mean ± standard deviation.

2.4. *In silico* predicting of physicochemical and pharmacokinetic parameters by SwissADME

Physicochemical and pharmacokinetic properties of the compounds as potential drug candidates were screened using the computer online tool SwissADME (http://www.swissadme.ch/). Nineteen compounds from the group of flavonoids (chalcones, flavonols, flavanones, flavones) were analyzed. Detailed chemical analysis (Vujić et al., 2020) has shown that these compounds predominate in ethanol extract of *H. plicatum* flowers and are probably the main contributor to the therapeutic activity of the extract. Canonical SMILE of compounds from the PubChem database was entered into the SwissADME software. Pharmacokinetic parameters such as gastrointestinal (GI) absorption, blood-brain barrier (BBB) permeation, and P-glycoprotein-mediated (P-gp) effusion were predicted by software according to the rules of drug-likeness with physicochemical characteristics of successful CNS drugs candidates (Daina et al., 2017).

2.5. Statistical analysis

All results were reported as the mean ± standard deviation for three replicates in each set of experiments. All the statistical analyses were performed using the SPSS software package (trial version, Dublin, Ireland). Statistical analyses were based on one-way ANOVA and *post-hoc* Tukey tests. The level of statistical significance is a P-value less than 0.05.

3. RESULTS AND DISCUSSION

3.1. Evaluation of antioxidant activity

The results of antioxidant activity of different concentrations of *H. plicatum* flower extract (HFE) and standards investigated

Table 1. Antioxidant activity of *Helichrysum plicatum* flowers dry extract (HFE) compared with commercial preservatives

Samplea	Concentration [µg/mL]	ABTSa [% of inhibition]	FRAP [µmolFe(II)/g]	β-carotene [% of inhibition]
HFE	100	20.36 ± 0.99 a	139.48 ± 5.71 a	29.25 ± 0.94 b
	200	45.66 ± 0.51 d	357.41 ± 6.59 c	32.08 ± 1.89 b
	500	63.84 ± 1.03 f	547.95 ± 6.93 f	45.60 ± 2.23 c
BHA	50	56.18 ± 0.80 e	231.22 ± 4.71 b	50.79 ± 2.76 d
	100	64.95 ± 0.63 f	572.85 ± 5.71 g	57.70 ± 1.91 e
BHT	50	37.47 ± 0.67 c	364.05 ± 5.62 c	48.74 ± 1.79 cd
	100	55.11 ± 0.44 e	413.03 ± 3.13 d	56.29 ± 1.44 e
Ascorbic acid	50	35.14 ± 0.58 b	427.56 ± 5.18 e	1.73 ± 1.19 a
	100	55.70 ± 0.69 e	576.17 ± 7.61 a	2.99 ± 2.13 a

*a Values with the same letter (a-g) in each column showed no statistically significant difference (P<0.05) according to the *post-hoc* Tukey test

*b BHA, BHT, Ascorbic acid are commercial preservatives used as positive control
Table 2. Antineurodegenerative activity of Helichrysum plicatum flowers dry extract (HFE) compared with commercial preservatives

Sample	Conc. [μg/mL]	AChE [% of inhib.]	TYR [% of inhib.]
HFE	100	39.53 ± 2.12 a	27.92 ± 2.74 b
	200	40.99 ± 3.42 a	16.45 ± 1.21 a
	500	41.15 ± 1.68 a	19.24 ± 2.26 a
GAL	100	57.11 ± 1.68 b	-
Kojic acid	100	-	51.81 ± 2.55 c

* Values with the same letter (a-c) in each column showed no statistically significant difference (P>0.05) according to the post-hoc Tukey test

3.2. Evaluation of antineurodegenerative activities

Extract of H. plicatum was tested for antineurodegenerative activity at three different concentrations (100, 200, and 500 μg/mL), and the percentage of enzyme inhibition was compared with galantamine for AChE inhibitory activity or kojic acid for TYR inhibitory activity at a concentration of 100 μg/mL. The activities of the tested samples in all concentrations were lower than the standards (Table 2). The highest concentration of extract showed the strongest activity (41.15 %), but no statistically significant difference between applied concentrations of extract in AChE inhibitory activity was observed. On the other hand, the lowest concentration of the extract showed significantly better TYR inhibitory activity (27.92 %) than the remaining two concentrations.

In the aforementioned study, Acet et al. (2020) examined the AChE inhibitory activity of ethanol, methanol, and ethyl acetate flower extracts of H. plicatum from Turkey. The strongest inhibitory activity was shown by the ethyl acetate extract (17.75 %), weaker by the ethanol extract (15.3 %), while methanol extract activity was not detected, which indicates that the activity depends on the type of the used extraction solvent. In a recently published paper, Aydin (2020) proved AChE inhibitory activity of flower extract of H. plicatum and eight isolated components. To the best of our knowledge, this is the first report on the TYR inhibitory activity of H. plicatum flower extract.

The antineurodegenerative activity of the HFE could be attributed to the presence of various pharmacologically active polyphenols. Polyphenols, including naringenin, apigenin, and kaempferol as the major phytoconstituents of the HFE, are recognized as compounds that may exhibit significant neuroprotective effects as inhibitors of cholinesterase activity. This potent inhibitory potential can be explained by existence of multiple hydroxyl groups in polyphenol molecules. They can bind the amino acid sequence defining the active site of the enzyme via hydrogen bond, hydrophobic, and π–π interaction and thus interfere with the catalytic activity of the enzyme (Jafari et al., 2018; Athipornchai et al., 2020). Through similar in vitro studies, the antineurodegenerative activity of polyphenol-rich plant drugs has been confirmed (Zdunić et al., 2020; Šavikin et al., 2018).

3.3. Evaluation of physicochemical and pharmacokinetic parameters by SwissADME

Abandonment of drug candidates due to pharmacokinetic weaknesses in the later stage of drug development is relatively often, so it is desirable to perform preliminary screening at an early stage of drug research. In the absence of reliable in vitro or in vivo experimental models for estimating compound penetration through BBB, computational prediction models represent valid alternatives. The SwissADME software was used to determine the physicochemical descriptors and pharmacokinetic properties of selected compounds from H. plicatum flower extracts in accordance by the roles of drug-likeness. To predict GI absorption, this program uses Lipinski’s “rule of five” (Ro5). According to this rule, a compound shows high GI absorption if the n-octanol/water partition coefficient (logP) is ≤ 5, the molecular weight (MW) is ≤ 500 g/mol, the number of hydrogen bond acceptors (HBA) is ≤ 10, the number of hydrogen bond donors (HBD) is ≤ 5, and a number of rotatable bonds (NRB) is ≤ 10. In addition, it was experimentally determined that the compounds should have a topological polar surface (TPSA) ≤ 140 Å² (Daina and Zoete, 2016). Analogously, the ability of compounds to cross BBB is predicted based on physicochemical parameters that are more stringent than the prediction of absorption.
Table 3. Predicted physicochemical and pharmacokinetic parameters of selected phytochemical compounds from Helichrismum plicatum flower extract using SwissADME software

Compounds	Physicochemical properties (criteria for BBB permeability)	Pharmacokinetic parameters							
	Log P\(^a\) (0.4-6.0)	MW (≤450 g/mol)	HBA	HBD	NRB	TPSA (≤ 79 Å\(^2\))	GI absorption	BBB permeability	P-gp substrate
Standards									
galanthamine	1.91	287.35	4	1	1	41.93	High	Yes	Yes
kojic acid	-0.16	142.11	4	2	1	70.67	High	No	No
Chalcones									
helilupolone	5.97	462.62	4	2	10	74.60	Low	No	Yes
isosalipurposide aglycone	1.83	272.25	5	4	3	97.99	High	No	No
arenariumoside and tomaroside A aglycones	2.68	544.51	10	8	6	195.98	Low	No	No
Flavonols									
quercetin	1.23	302.24	7	5	1	131.36	High	No	No
kaempferol	1.58	286.24	6	4	1	111.13	High	No	No
helichrysoside	1.11	610.52	14	8	8	236.81	Low	No	No
tiliroside	1.52	594.52	14	7	8	216.58	Low	No	No
Flavanones									
naringenin	1.84	272.25	5	3	1	86.99	High	No	Yes
eriodictyol	1.45	288.25	6	4	1	107.22	High	No	Yes
Flavones									
apigenin	2.11	270.24	5	3	1	90.90	High	No	No
luteolin	1.73	286.24	6	4	1	111.13	High	No	No
3,5,6,7,8-pentamethoxyflavone	3.02	372.37	7	0	6	76.36	High	Yes	No
3',4',5,6,7-pentamethoxyflavone	1.10	372.37	7	0	6	76.36	High	Yes	No
dihydroxy-dimethoxyflavone	2.20	314.29	6	2	3	89.13	High	No	No
jaceosidin	2.11	330.29	7	3	3	109.36	High	No	No
chrysoeriol	2.18	300.26	6	3	2	100.13	High	No	No
5,7-dihydroxy-3-methoxyflavone	2.56	284.26	5	2	2	79.90	High	No	No
5,7,4-trihydroxy-3,6-dimethoxy-3'-prenylflavone	3.54	389.41	7	3	5	109.36	High	No	No
4',5,7-triethoxy-3',6-dimethoxyflavone	4.08	414.45	7	0	9	76.36	High	No	No

\(^a\)LogP - Partition coefficient; MW - Molecular weight; HBA - Hydrogen bond acceptor; HBD - Hydrogen bond donor; NRB - Number of rotatable bonds; TPSA - Topological polar surface area.
The ideal candidate for CNS drugs should have a logP from 0.4 to 6.0, MW ≤ 450 g/mol, HBA ≤ 7, HBD ≤ 3, NRB ≤ 8, and TPSA ≤ 79 Å² (Daina and Zoete, 2016; Ranković, 2015). Additional to the fact that BBB is a physical barrier to drug passage (tight junctions between endothelial cells defy drug penetration), it is also a biochemical barrier (P-gp pumps out xenobiotics from CNS). Therefore, the possibility of efflux of selected compounds by P-gp pump was considered. It was found that CNS drugs showed a significantly lower frequency of P-gp-mediated efflux compared to non-CNS drugs, indicating the importance of these transporters in CNS therapy (Ranković, 2015).

Most of the tested compounds showed high GI absorption (Table 3). Two chalcones and two flavonols noted at least one Lipinski’s violations, so they were predicted to have low GI absorption in the human body. On the other hand, it is predicted that only two of the nineteen tested compounds will be able to penetrate the blood-brain barrier. Both compounds are from the group of pentoxymethoxylated flavones (3,5,6,7,8-pentamethoxyflavone and 3’,4’,5,6,7-pentamethoxyflavone). It is interesting prediction that naringenin, apigenin and kaempferol as the three major ingredients of HFE have no ability to cross the blood-brain barrier due to the high value of TPSA, while kaempferol also shows a high value of HBD. These results are in line with the statement that the possibility of penetration cross blood-brain barrier is a key obstacle that is eliminatory for many compounds in CNS drug development (Ranković, 2015). It is also promising that these compounds did not exhibit substrate specificity for the P-gp transporter. Interestingly, according to this criterion, the mentioned compounds are better candidates than the galanthamine standard. A favorable circumstance is that most of the other compounds are better candidates than the galanthamine standard. It is also promising that these compounds are better candidates than the galanthamine standard.

CONCLUSION

In the present study, we examined the antioxidant and antineurodegenerative activities of Helichrysum plicatum flowers extract using in vitro models. The concentration-dependent activity was observed in all antioxidant assays. In the β-carotene assay, all tested concentrations of dry extract were significantly more potent than both concentrations of vitamin C standards. The dry extract showed better acetylcholinesterase (AChE) inhibitory activity compared to tyrosinase (TYR) inhibitory activity at all applied concentrations. Following confirmed activities, in silico pharmacokinetic screening of selected extract ingredients was performed to the reveal predictability of gastrointestinal absorption, blood-brain barrier permeation, and P-glycoprotein-mediated effusion. According to the pharmacokinetic parameters determined by in silico method, it was concluded that candidates for CNS drugs may be pentoxymethoxylated flavones. Further comprehensive studies in animal models are required to more accurately assess the applicability of this plant extract in treatment of neurodegenerative diseases.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, grant numbers 451-03-68/2020-14/200003 and 451-03-68/2020-14/200178.

REFERENCES

Acet, T., Ozcan, K. and Zengin, G. (2020). An assessment of phenolic profiles, fatty acid compositions, and biological activities of two Helichrysum species: H. plicatum and H. chionophilum, Journal of Food Biochemistry 44(2): e13128.

Apaydın Yıldırım, B., Kordali, S., Terim Kapakin, K. A., Yıldırım, F., Aktas Senocak, E. and Altun, S. (2017). Effect of Helichrysum plicatum DC. subsp. plicatum ethanol extract on gentamicin-induced nephrotoxicity in rats, Journal of Zhejiang University-SCIENCE B 18(6): 501–511.

Aslan, M., Deliorman Orhan, D., Orhan, N., Sezik, E. and Yesilada, E. (2007). In vivo anti diabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capillitums in streptozotocin-induced diabetic rats, Journal of Ethnopharmacology 109(1): 54–59.

Athipornchaisa, A., Ketpoo, P. and Saeng, R. (2020). Acetylcholinesterase inhibitor from Tabernaemontana pandacaqui flowers, Nat. Prod. Commun. 15(3): 1–5.

Šavikin, K., Živković, J., Alimpić, A., Zdunić, G., Janković, T., Duletić Laušević, S. and Menković, N. (2018). Activity guided fractionation of pomegranate extract and its antioxidant, antidiabetic and antineurodegenerative properties, Ind Crops Prod 113: 142–149.

Aydin, T. (2020). Secondary metabolites of Helichrysum plicatum DC. subsp. plicatum flowers as strong carbonic anhydrate, cholinesterase and α-glycosidase inhibitors, Zeitschrift für Naturforschung C 75(5): 153–159.

Bayir, Y., Halici, Z., Keles, M. S., Colak, S., Cakir, A., Kaya, Y. and Akçay, F. (2011). Helichrysum plicatum DC. subsp. plicatum extract as a preventive agent in experimentally induced urolithiasis model, Journal of Ethnopharmacology 138(2): 408–414.

Benzie, I. F. and Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay, Analytical Biochemistry 239(1): 70–76.

Bigović, D., Šavikin, K., Janković, T., Menković, N., Zdunić, G., Stanojović, T. and Djurić, Z. (2011). Antiradical and cytotoxic activity of different Helichrysum plicatum flower extracts, Natural Product Communications 6(6): 1934578X1100600.

Bigović, D., Branković, S., Kitić, D., Radenković, M., Janković, T., Šavikin, K. and Živanović, S. (2010). Relaxant effect of the ethanol extract of Helichrysum plicatum (Asteraceae) on isolated rat ileum contractions, Molecules 15(5): 3391–3401.

Bigović, D., Stević, T., Janković, T., Noveski, N., Radanović, D., Pjevljakusic, D. and Djuric, Z. (2017). Antimicrobial activity of Helichrysum plicatum DC, Hemijska industrija 71(4): 337–342.

Daina, A., Michielen, O. and Zoete, V. (2017). SwissADME: a web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Scientific Reports 7(1): 42717.

Daina, A. and Zoete, V. (2016). A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules, ChemMedChem 11(11): 1117–1121.

Dapkevicius, A., Venskutonis, R., van Beek, T. A. and Linssen, J. P. H. (1998). Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania, Journal of the Science of Food and Agriculture 77(1): 140–146.
Ellman, G. L., Courtney, K., Andres, V. and Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity, *Biochemical Pharmacology* 7(2): 88–95.

Jabir, N., Khan, F. and Tabrez, S. (2018). Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer’s disease, *CNS Neurosci Ther.* 24(9): 753–762.

Masuda, T., Yamashita, D., Takeda, Y. and Yonemori, S. (2005). Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from *Garcinia subelliptica*, *Bioscience, Biotechnology, and Biochemistry* 69(1): 197–201.

Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V. and Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates, *Clinical Science* 84(4): 407–412.

Moon, J.-K. and Shibamoto, T. (2009). Antioxidant assays for plant and food components, *Journal of Agricultural and Food Chemistry* 57(5): 1655–1666.

Morphy, R. and Rankovic, Z. (2008). Multitarget Drugs, *The practice of medicinal chemistry*, Elsevier, pp. 449–472.

Pandey, T., Smita, S. S., Mishra, A., Sammi, S. R. and Pandey, R. (2020). Swertiaimarin, a secoiridoid glycoside modulates nAChR and AChE activity, *Experimental Gerontology* 138: 111010.

Ranković, Z. (2015). CNS drug design: balancing physicochemical properties for optimal brain exposure, *Journal of Medicinal Chemistry* 58(6): 2584–2608.

Ritter, J., Flower, R., Henderson, G., Loke, Y., MacEWAN, D. and Rang, H. (2020). *Rang and Dale’s Pharmacology*, 9th edn, Elsevier.

Sezik, M., Aslan, M., Orhan, D. D., Erdemoglu, E., Pekcan, M., Mungan, T. and Sezik, E. (2010). Improved metabolic control and hepatic oxidative biomarkers with the periconception use of *Helichrysum plicatum* ssp. *plicatum*, *Journal of Obstetrics and Gynaecology* 30(2): 127–131.

Tepe, B. (2005). *In vitro* antioxidant activities of the methanol extracts of four *Helichrysum* species from Turkey, *Food Chemistry* 90(4): 685–689.

Vila, M. (2019). Neuromelanin, aging, and neuronal vulnerability in Parkinson’s disease, *Movement Disorders* 34(10): 1440–1451.

Vujić, B., Vidaković, V., Jadrarin, M., Novaković, I., Trifunović, S., Tešević, V. and Mandić, B. (2020). Composition, antioxidant potential, and antimicrobial activity of *Helichrysum plicatum* DC. various extracts, *Plants* 9(3): 337.

Zdunić, G., Alimpić Aradski, A., Godevac, D., Živković, D., Duletić Laušević, S., Krstić Milošević, D. and Šavikin, K. (2020). *In vitro* hypoglycemic, antioxidant and antineurodegenerative activity of chokeberry (*Aronia melanocarpa*) leaves, *Industrial Crops and Products* 148: 112328.