Cardiovascular shock is a clinical manifestation of circulatory failure related to insufficient blood flow to tissues. Despite advances in emergency care systems and treatments, including early revascularization and mechanical circulatory assist, the mortality rate in patients with cardiovascular shock remains high, approaching 30–50%. Shock is diagnosed by detecting the presence of systemic arterial hypotension, hyperlactatemia, and tissue hypoperfusion. Although arterial hypotension is usually observed in cardiovascular shock patients, its clinical sig-

Background: Consciousness disturbance is one of the major clinical signs associated with shock state, but its prognostic value has not been previously evaluated in cardiovascular shock patients. We aimed to evaluate the prognostic value of neurological status for 30-day mortality in cardiovascular shock patients without out-of-hospital cardiac arrest (OHCA).

Methods and Results: Patients with out-of-hospital onset cardiovascular shock were recruited from the Japanese Circulation Society Shock Registry. Neurological status upon hospital arrival was evaluated using the Japan Coma Scale (JCS). Patients were divided into 4 groups according to the JCS: alert, JCS 0; awake, JCS 1–3 (not fully alert but awake without any stimuli); arousable, JCS 10–30 (arousable with stimulation); and coma JCS 100–300 (unarousable). The primary endpoint was 30-day all-cause death. In total, 700 cardiovascular shock patients without OHCA were assessed. The coma group was associated with a higher incidence of 30-day all-cause death compared with other groups (alert, 15.3%; awake, 24.4%; arousable, 36.8%; coma, 48.5%, P<0.001). Similar trends were observed in etiologically divergent subgroups (acute coronary syndrome, non-ischemic arrhythmia, and aortic disease). On multivariate Cox regression analysis, arousable (hazard ratio [HR], 1.82; 95% CI: 1.16–2.85, P=0.009) and coma (HR, 2.72; 95% CI: 1.76–4.22, P<0.001) (reference: alert) independently predicted 30-day mortality.

Conclusions: Neurological status upon hospital arrival was useful to predict 30-day mortality in cardiovascular shock patients without OHCA.

Key Words: Cardiovascular shock; Mortality; Neurological status
There are clinical signs of tissue hypoperfusion, apparent significance varies depending on baseline blood pressure. An altered mental state, including obtundation, disorientation, and confusion, might facilitate early recognition of cardiovascular shock and can be assessed quantitatively using several coma scales. Although the consciousness disturbance in patients with out-of-hospital cardiac arrest (OHCA) has been acknowledged as a well-known predictor for in-hospital death, data are scarce regarding its prognostic value in cardiovascular shock patients without OHCA. Therefore, we hypothesized that the quantitative assessment of shock severity using neurological status would enable prediction of outcome in cardiovascular shock patients without OHCA. In the present study, we aimed to evaluate the predictive value of neurological status for 30-day mortality in cardiovascular shock patients without OHCA.

Methods

Patients diagnosed with cardiovascular shock between May 2012 and June 2014 were recruited from 82 centers of the Japanese Circulation Society Cardiovascular Shock Registry, a prospective, observational, multicenter, cohort study in Japan (University Hospital Medical Information Network Clinical Trials Registry, no.: UMIN000008441; http://www.umin.ac.jp/ctr/index.htm). This registry was approved by the ethics committee of each hospital, and the study was performed in accordance with the Declaration of Helsinki. Cardiovascular shock included acute coronary syndrome (ACS), non-ischemic arrhythmia, aortic disease, myocarditis, cardiomyopathy, pulmonary thromboembolism, valvular heart disease, infective endocarditis, and cardiac tamponade. Eligible patients for the Japanese Circulation Society Cardiovascular Shock Registry had out-of-hospital onset of cardiovascular shock and had to meet 1 major criterion and ≥1 minor criteria. Major criteria were:

Table. Patient Characteristics According to Neurological Status at Admission

Variables	Overall (n=700)	Alert (n=288)	Awake (n=201)	Arousable (n=114)	Coma (n=97)	P-value
Age (years)	74 (65–82)	72.0 (63–80)	75.0 (67–83)	75.0 (65–83)	75.0 (64–83)	0.012
Male	446 (63.7)	203 (70.5)	121 (60.2)	67 (58.8)	55 (56.7)	0.018
Onset to hospital arrival time (min) (n=561)	110 (47–363)	146 (51–465)	81 (48–282)	80 (44–429)	91 (40–291)	0.043
SBP (mmHg) (n=695)	80 (70–90)	82 (73–91)	79 (70–88)	76 (67–85)	76 (60–86)	<0.001
Heart rate (beats/min) (n=693)	82 (50–110)	80 (54–107)	81 (50–108)	80 (46–106)	94 (56–120)	0.398
CHF (n=699)	419 (59.9)	162 (56.4)	121 (60.2)	70 (61.4)	66 (68.0)	0.239
LVEF (%) (n=423)	45.0 (30.0–60.0)	49.0 (34.0–60.0)	47.0 (34.0–60.0)	42.0 (30.0–60.0)	33.0 (20.0–54.0)	0.011
Laboratory data						
pH (n=517)	7.35 (7.24–7.41)	7.38 (7.32–7.43)	7.35 (7.26–7.41)	7.30 (7.21–7.38)	7.23 (7.04–7.33)	<0.001
PO2 (mmHg) (n=516)	117 (67.5–198.5)	112.0 (51.9–170.0)	115.7 (74.2–215.5)	121.3 (72.5–223.0)	124.0 (68.6–235.6)	0.275
PCO2 (mmHg) (n=518)	27.8 (34.3–42.8)	33.7 (26.5–40.2)	34.0 (27.6–42.5)	33.2 (26.3–41.3)	39.6 (30.7–63.0)	<0.001
HCO3 (mmHg) (n=510)	18.3 (14.3–21.9)	19.6 (15.7–22.9)	18.8 (13.8–22.1)	16.5 (13.0–20.0)	16.7 (12.9–19.7)	<0.001
Lactate (mg/dL) (n=391)	28.0 (12.6–60.4)	21.0 (11.7–40.0)	26.0 (10.4–57.0)	42.3 (15.6–76.8)	55.0 (17.0–99.8)	<0.001
eGFR (mL/min/1.73m2) (n=687)	43.2 (29.3–56.6)	46.1 (32.9–60.3)	42.8 (28.3–56.0)	37.1 (22.5–53.8)	39.3 (29.0–52.5)	0.001

Data given as median (IQR) or n (%). Continuous variables were compared with the Kruskal-Wallis test, and binary and categorical variables were compared with the chi-squared test or Fisher’s exact test. CHF, congestive heart failure; eGFR, estimated glomerular filtration rate; LVEF, left ventricular ejection fraction; SPB, systolic blood pressure.
Neurological Status and Cardiovascular Shock Outcome and were compared using the Kruskal-Wallis test. Binary and categorical variables are given as n (%), and were compared with the chi-squared test or Fisher’s exact test. Survival curves were constructed for time-to-event variables using the Kaplan-Meier method, and compared using the log-rank test. Multivariate Cox regression analysis was performed for 30-day mortality and CPC 3–5 at hospital discharge. Clinically important variables, such as age, sex, SBP, heart rate, neurological status, congestive heart failure, renal function, and causes of shock, were entered as confounders into a multivariate model.

If the variables were missing in >5% of patients, they were excluded from the multivariate analysis. Two-tailed P-values were used, and P<0.05 was considered statistically significant in all analyses. Data were analyzed using SPSS version 23.0 (SPSS, Chicago, IL, USA).

Results

Of the 1,004 patients enrolled in the Japanese Circulation Society Shock Registry between May 2012 and June 2014, 304 were excluded because they had OHCA (n=298), did not have cardiovascular shock (n=2), or were missing JCS upon hospital arrival (n=4). Finally, 700 patients were assessed in the present study. The patients were divided into 4 groups according to neurological status on hospital arrival (alert, n=288; awake, n=201; arousable, n=114; coma, n=97).

Patient characteristics are listed in Table. The percentage of male patients, and levels of SBP, estimated glomerular filtration rate, and left ventricular ejection fraction (LVEF) were lower, while lactate level and the incidence of congestive heart failure were higher in coma patients than in others.

The incidence of 30-day mortality is shown in Figure 1. The 30-day mortality increased with worsening neurological status: alert, 15.3% (n=44/288); awake, 24.4% (n=49/201); arousable, 36.8% (n=42/114); coma, 48.5% (n=47/97); and were compared using the Kruskal-Wallis test. Binary and categorical variables are given as n (%), and were compared with the chi-squared test or Fisher’s exact test. Survival curves were constructed for time-to-event variables using the Kaplan-Meier method, and compared using the log-rank test. Multivariate Cox regression analysis was performed for 30-day mortality and CPC 3–5 at hospital discharge. Clinically important variables, such as age, sex, SBP, heart rate, neurological status, congestive heart failure, renal function, and causes of shock, were entered as confounders into a multivariate model.13–17 If the variables were missing in >5% of patients, they were excluded from the multivariate analysis. Two-tailed P-values were used, and P<0.05 was considered statistically significant in all analyses. Data were analyzed using SPSS version 23.0 (SPSS, Chicago, IL, USA).

Figure 1. Kaplan-Meyer curve for 30-day mortality overall according to neurological status in patients with cardiovascular shock without out-of-hospital cardiac arrest. SE, standard error.
Similar trends were observed in patients with ACS (alert, 15%, n=23/153; awake, 23.3%, n=24/103; arousable, 42.6%, n=23/54; coma, 53.3%, n=24/45), non-ischemic arrhythmia (alert, 2.1%, n=1/47; awake, 4.2%, n=1/24; arousable, 6.7%, n=1/15; coma, 30%, n=3/10), and aortic disease (alert, 21.6%, n=8/37; awake, 42.9%, n=15/35; arousable, 50%, n=14/28; coma, 57.9%, n=11/19; Figure 2). CPC scale at hospital discharge was available for 698 patients. Prevalence of CPC 3–5 at discharge in the alert group was lower than in the other groups (alert, 29.2%, n=84/288; awake, 53.8%, n=107/199; arousable, 58.8%, n=67/114; coma, 64.9%, n=63/97; Figure 3). The 30-day mortality stratified by neurological status (alert or non-alert) and SBP (SBP ≥80 or SBP <80 mmHg, based on the median: 79 mmHg; IQR, 64–89 mmHg) is shown in Figure 4. The 30-day mortality in each group gradually increased as SBP decreased and neurological status worsened (alert and SBP ≥80 mmHg, 11.5%; alert and SBP <80 mmHg, 21.1%; non-alert and SBP ≥80 mmHg, 26.9%; non-alert and SBP <80 mmHg, 37%).
Neurological Status and Cardiovascular Shock Outcome

Neurological Status and Cardiovascular Shock Outcome were independent predictors of 30-day mortality. Moreover, neurological status was also an independent predictor of CPC 3–5 at hospital discharge (awake: HR, 1.36; 95% CI: 1.01–1.84, P=0.041; arousable: HR, 1.78; 95% CI: 1.26–2.52, P=0.001; coma: HR, 2.37; 95% CI: 1.63–3.39, P<0.001).

Cox regression analysis of 30-day mortality and of CPC 3–5 at hospital discharge are shown in Figure 5 and Supplementary Figure, respectively. On multivariate analysis, arousable (hazard ratio [HR], 1.82; 95% CI: 1.16–2.85, P=0.009) and coma (HR, 2.72; 95% CI: 1.76–4.22, P<0.001) (reference: alert) were independent predictors of 30-day mortality. Moreover, neurological status was also an independent predictor of CPC 3–5 at hospital discharge (awake: HR, 1.36; 95% CI: 1.01–1.84, P=0.041; arousable: HR, 1.78; 95% CI: 1.26–2.52, P=0.001; coma: HR, 2.37; 95% CI: 1.63–3.39, P<0.001).

Table 1.

Variable	Unadjusted HR (95% CI)	P value	Adjusted HR (95% CI)	P value
Age (per 10-year increase)	1.28 (1.13–1.45)	<0.001	1.22 (1.05–1.41)	0.008
Male sex	0.86 (0.64–1.16)	0.324	1.10 (0.80–1.53)	0.550
Systolic blood pressure (per 10-mmHg decrease)	1.11 (1.05–1.17)	<0.001	1.10 (1.03–1.18)	0.004
Heart rate (per 10-beats/min decrease)	0.99 (0.95–1.03)	0.495	0.97 (0.92–1.02)	0.185
Neurologic status (reference: alert)				
Awake	1.67 (1.11–2.51)	0.013	1.26 (0.83–1.92)	0.275
Arousable	2.68 (1.76–4.10)	<0.001	1.82 (1.16–2.85)	0.009
Coma	3.96 (2.62–5.97)	<0.001	2.72 (1.76–4.22)	<0.001
Congestive heart failure	1.73 (1.26–2.39)	0.001	2.54 (1.63–3.95)	<0.001
eGFR (per 10-mL/min/1.73m² decrease)	1.20 (1.12–1.29)	<0.001	1.19 (1.09–1.29)	<0.001

Figure 5. Cox regression analysis of 30-day mortality in patients with cardiovascular shock without out-of-hospital cardiac arrest. Of the study patients, 97.4% (682/700) were entered into the multivariate model. ACS, acute coronary syndrome; CI, confidence interval; CPC, cerebral performance categories; eGFR, estimated glomerular filtration rate; HR, hazard ratio; IE, infective endocarditis; ACS, acute coronary syndrome; PE, pulmonary thromboembolism; VHD, valvular heart disease.

Figure 6. Kaplan-Meyer curve for 30-day mortality stratified by temporal change in neurological status from emergency medical service contact to hospital arrival, in patients with cardiovascular shock without out-of-hospital cardiac arrest.
Disturbance of consciousness level reflects systemic hypoperfusion leading to insufficient cerebral blood flow and hypoxia due to lung congestion. In the initial stage of shock, the cerebral circulation is protected by autoregulatory mechanisms. A previous animal study reported that cerebral blood flow in rats was maintained within a mean arterial pressure of 60–140 mmHg. Microcirculatory alterations increase peripheral resistance in order to maintain blood pressure and redistribute blood volume from the peripheral to the vital organs (heart and brain). Once the autoregulation system fails, shock progresses to the decompen-satory and refractory stage, resulting in irreversible organ failure. Neurological status could enable the detection of such dynamic changes of shock state, which are difficult to be evaluated by other “windows” (i.e., cutaneous and renal), as well as by blood pressure. In the present study, patients with preserved (≥80 mmHg) SBP, those with poor neurological status (non-alert) had higher 30-day mortality compared with those without (26.9% vs. 11.5%). Moreover, the failure of neurohumoral mechanisms following cerebral hypoperfusion, which preserve the viability of vital organs by maintaining perfusion pressure and microcirculation, might take part in the vicious cycle of shock.

In the present study, neurological status upon hospital arrival was also useful in patients with ACS, non-ischemic arrhythmia, or aortic disease. In particular, patients with non-ischemic arrhythmia, especially those who were alert, awake, and arousable, had an outstandingly better prognosis compared with those with ACS and aortic disease, most likely because of a rapid recovery from the shock state by means of anti-arrhythmic drugs, defibrillation, or temporary pacing.

The present study also demonstrated that temporal change in neurological status was useful to stratify short-term prognosis in cardiovascular shock patients. Interestingly, even patients with a poor initial neurological status had a relatively better outcome (arousable, 15.8%; coma, 18.2%) if neurological status improved over time, compared with those who had a good initial neurological status, but who had worsened over time (alert, 33.9%; awake, 44.1%). The etiology of cardiovascular shock and reactivity to the initial treatment during transportation are plausible explanations for these findings. Temporal change in neurological status should also be acknowledged when evaluating the severity of cardiovascular shock.

Study Limitations

The present study has several limitations. First, we used only the JCS to evaluate consciousness level. The GCS, which is more widely used than the JCS, was not available in the present study. Second, some variables, including onset to hospital arrival time, vital signs, blood lactate level, and LVEF, could be determinant variables of short-term mortality in patients with cardiovascular shock, but such variables were not available for all patients. Moreover, we could not incorporate these variables in the multivariate Cox regression analysis because of the lack of data, thus whether these clinically important variables are associated with 30-day mortality remains unknown. Third, the differences in medical staff organization and emergency service capacity between participating centers were not taken into account in the present study. Finally, we cannot address whether the change in neurological status after hospital arrival had an impact on prognosis. Future studies are...
required to determine whether or not neurological status can be a therapeutic target in cardiovascular shock patients.

Conclusions
Neurological status upon hospital arrival is useful to predict short-term mortality in cardiovascular shock patients without OHCA. Physicians should recognize consciousness level upon hospital arrival as an important predictor in cardiovascular shock patients.

Acknowledgments
We thank Makoto Kobayashi for the administrative work done for the subcommittee of the Japanese Circulation Society Cardiovascular Shock Registry; the staff of the participating hospitals, for data collection; and Hiroshi Imamura, for revising the article.

Sources of Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest
None.

References
1. Ueki Y, Mohri M, Matoba T, Tsujiy T, Yamasaki M, Tachibana E, et al. Characteristics and predictors of mortality in patients with cardiovascular shock in Japan: Results from the Japanese Circulation Society Cardiovascular Shock Registry. CIR J 2016; 80: 852–859.
2. Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich HG, Hausleiter J, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 2012; 367: 1287–1296.
3. Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, Talley JD, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med 1999; 341: 625–634.
4. Steg PG, James SK, Atar D, Badano LP, Blomstrom-Lundqvist C, Borger MA, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 2012; 33: 2569–2619.
5. Vincent JL, Ince C, Bakker J. Clinical review: Circulatory shock—an update: A tribute to Professor Max Harry Weil. Crit Care 2012; 16: 239.
6. Vincent JL, De Backer D. Circulatory shock. N Engl J Med 2013; 369: 1726–1734.
7. Lettieri C, Savonitto S, De Servi S, Guagliumi G, Belli G, Repetto A, et al. Emergency percutaneous coronary intervention in patients with ST-elevation myocardial infarction complicated by out-of-hospital cardiac arrest: Early and medium-term outcome. Am Heart J 2009; 157: 569–575.e1.
8. Ohta T, Waga S, Handa W, Saito I, Takeuchi K. New grading of level of disordered consciousness. No Shinkei Geka 1974; 2: 623–627 (in Japanese).
9. Shigemori M, Abe T, Aruga T, Ogawa T, Okudera H, Ono J, et al. Guidelines for the Management of Severe Head Injury; 2nd edition guidelines from the Guidelines Committee on the Management of Severe Head Injury, the Japan Society of Neurotraumatology. Neurol Med Chir 2012; 52: 1–30.
10. Shigematsu K, Nakano H, Watanabe Y. The eye response test alone is sufficient to predict stroke outcome—reintroduction of Japan Coma Scale: A cohort study. BMJ Open 2013; 3: e002736.
11. Brain Resuscitation Clinical Trial I Study Group. Randomized clinical study of thienopyridine loading in comatose survivors of cardiac arrest. N Engl J Med 1986; 314: 397–403.
12. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet 1975; I: 480–484.
13. Sleeper LA, Reynolds HR, White HD, Webb JG, Dzavik V, Hochman JS. A severity scoring system for risk assessment of patients with cardiogenic shock: A report from the SHOCK Trial and Registry. Am Heart J 2010; 160: 443–450.
14. Bagai A, Armstrong PW, Stebbins A, Mahaffey KW, Hochman JS, Weaver WD, et al. Prognostic implications of left ventricular end-diastolic pressure during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: Findings from the Assessment of Pexelizumab in Acute Myocardial Infarction study. Am Heart J 2013; 166: 913–919.
15. G eri G, Dumas F, Bougouni W, Varenne O, Daviaud F, Pene F, et al. Immediate percutaneous coronary intervention is associated with improved short- and long-term survival after out-of-hospital cardiac arrest. Circ Cardiovasc Interv 2015; 8: e002303.
16. Chien TM, Li WY, Wen H, Huang JW, Hsieh CC, Chen HM, et al. Stable haemodynamics associated with no significant electrocardiogram abnormalities is a good prognostic factor of survival for acute type A aortic dissection repair. Interact Cardiovasc Thorac Surg 2013; 16: 158–165.
17. Nakamura T, Ishida K, Taniguchi Y, Nakagawa T, Seguchi M, Wada H, et al. Prognosis of patients with fulminant myocarditis managed by peripheral venaocaval extracorporeal membranous oxygenation support: A retrospective single-center study. J Intensive Care 2015; 3: 5.
18. Deakin CD, Fothergill R, Moore F, Watson L, Whitbread M. Level of consciousness on admission to a heart attack centre is a predictor of survival from out-of-hospital cardiac arrest. Resuscitation 2014; 85: 905–909.
19. Edgren E, Hedstrand U, Kelsey S, Sutton-Tyrrell K, Safar P. Assessment of neurological prognosis in comatose survivors of cardiac arrest: BRCT I Study Group. Lancet 1994; 343: 1055–1059.
20. Kunadian V, Qu w, Ludman P, Redwood S, Curzen N, Stables R, et al. Outcomes in patients with cardiogenic shock following percutaneous coronary intervention in the contemporary era: An analysis from the BCIS database (British Cardiovascular Intervention Society). JACC Cardiovasc Interv 2014; 7: 1374–1385.
21. Hochman JS, Sleeper LA, Webb JG, Dzavik V, Buller CE, Aylward P, et al. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA 2006; 295: 2511–2515.
22. Ono K, Wada K, Takahara T, Shirotani T. Indications for com- plete neuroprotective therapy in patients with mild head injury. Neurol Med Chir (Tokyo) 2007; 47: 297–298.
23. Kovach AG, Sandor P. Cerebral blood flow and brain function during hypotension and shock. Annu Rev Physiol 1976; 38: 571–596.
24. Werner C, Lu H, Engelhardt K, Unbehaun N, Kochs E. Sevoflurane impairs cerebral blood flow autoregulation in rats: Reversal by nonselective nitric oxide synthase inhibition. Anesth Analg 2005; 101: 509–516.
25. Sun N, Luo W, Li LZ, Luo Q. Monitoring hemodynamic and metabolic alterations during severe hemorrhagic shock in rat brain. Acad Radiol 2014; 21: 175–184.
26. Rady MY, Verheijde JL. No-touch time in donors after cardiac death (nonheart-beating organ donation). Curr Opin Organ Transplant 2013; 18: 140–147.
27. Hall JE. Guyton and Hall textbook of medical physiology, 12th edn. Philadelphia: Saunders/Elsevier, 2011.

Supplementary Files
Please find supplementary file(s):
http://dx.doi.org/10.1253/circj.C3-18-1323