INHIBITION OF FATTY ACID SYNTHASE INDUCES CASPASE 8-MEDIATED TUMOR CELL APOPTOSIS BY UP-REGULATING DDIT4*

Lynn M. Knowles¹, Chen Yang², Andrei Osterman² and Jeffrey W. Smith²
Cancer Research Center¹, Infectious and Inflammatory Disease Center²
Burnham Institute for Medical Research, La Jolla, CA 92037

Running Title: Fatty Acid Synthase Inhibition Induces Caspase 8 Apoptosis

Address correspondence to: Jeffrey W. Smith, Cancer Research Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037. Tel: 858-646-3100; Fax: 858-713-9921; E-mail: jsmith@burnham.org.

Fatty acid synthase (FAS) is up-regulated in a broad range of cancers, including those of the breast, prostate and ovaries. In tumor cells, the inhibition of FAS elicits cell cycle arrest and apoptosis, so it is considered a potential drug target for oncology. Results from the present study show that the inhibition of FAS, by either knockdown with siRNA or by inhibition with the small molecule drug Orlistat, leads to activation of the receptor-mediated apoptotic cascade (caspase 8-mediated) and ultimately to cell death. However, knockdown of two enzymes upstream of FAS, acetyl-CoA carboxylase-α (ACC-α) or ATP-citrate lyase (ACL), failed to activate caspase 8, or to elicit apoptosis in tumor cells, even though palmitate synthesis was suppressed. Using differential gene analysis, we traced the unique apoptotic effect of FAS inhibition to up-regulation of DNA-damage-inducible transcript 4 (DDIT4), a stress response gene that negatively regulates the mTOR pathway. These findings indicate that suppression of palmitate synthesis is not sufficient for eliciting tumor cell death, and suggest that the unique effect of inhibition of FAS results from negative regulation of the mTOR pathway via DDIT4.

Eukaryotic fatty acid synthase (FAS)¹ synthesizes palmitate, the precursor of long chain fatty acids (1). FAS is up-regulated in a wide range of tumors (2-7), with levels increasing as tumor grade and severity increase (3,4). The up-regulation of FAS is associated with poor prognosis so the enzyme has become recognized in recent years as a target for anti-tumor therapy (2,5,6). In this regard, the targeted inhibition of FAS by the obesity drug Orlistat, or analogs of cerulenin, blocks tumor proliferation and induces apoptosis in cultured cells (8-11), and also suppresses growth of xenografts in mice (8,12,13). Inhibition of FAS has no effect on the survival of normal, differentiated cells in vitro and displays no signs of toxicity in vivo (8,14,15). This tumor selectivity stems from the increased reliance of tumor cells on de novo fatty acid synthesis to satisfy their metabolic needs, whereas normal cells obtain most lipids from the dietary supply (16).

Up-regulation of FAS in tumors represents an overall activation of genes involved in lipogenesis (17). Lipogenic enzymes which function upstream of FAS such as acetyl-CoA carboxylase-α (ACC-α) and ATP-citrate lyase (ACL) are elevated in cancer, and like FAS have been implicated as targets for tumor treatment, suggesting palmitate suppression can halt tumorigenesis (Supplementary Fig. 1) (17-23). Yet there are also other hypotheses on how inhibition of FAS elicits tumor cell death. Recent evidence has linked the inhibition of FAS to endoplasmic reticulum stress (24), the generation of reactive oxygen species (25), and ceramide accumulation (26). Nevertheless, an understanding for how inhibition of FAS leads to apoptosis remains elusive.

Here, we show that inhibition of FAS activates caspase 8 and induces tumor apoptosis, but that knockdown of ACC-α or ACL is without effect, even though their knockdown suppresses palmitate production. These findings indicate that suppression of palmitate biosynthesis alone is not sufficient to elicit tumor cell death, and reveal that inhibition of FAS has effects on tumor cells that extend beyond lipid biosynthesis. We traced these FAS specific effects to its unique ability to up-regulate the stress response gene DNA-damage-inducible transcript 4 (DDIT4; also known as

*JBC Papers in Press. Published on September 16, 2008 as Manuscript M803384200
Copyright 2008 by The American Society for Biochemistry and Molecular Biology, Inc.
RED1/RTP801/Dig2), which negatively regulates the mTOR pathway.

EXPERIMENTAL PROCEDURES

Cell Lines—The MDA-MB-435 cell line was obtained from Janet Price at the University of Texas Southwestern. MCF7, LNCaP, PC-3 and Hs 58.Fs cells were purchased from American Type Culture Collection (Manassas, VA). MDA-MB-435 and MCF7 tumor cells were maintained in Minimum Essential Medium Eagle (MEM) with Earl’s Salts (Mediatech, Inc., Herndon, VA) supplemented with 10% fetal bovine serum (FBS; Irvine Scientific, Santa Ana, CA), 2 mM L-glutamine (Invitrogen Life Technologies, Inc., Carlsbad, CA), MEM vitamins (Invitrogen Life Technologies, Inc.), nonessential amino acids (Mediatech, Inc.) and antibiotics (Omega Scientific, Inc., Tarzana, CA). LNCaP and PC-3 tumor cells were maintained in RPMI 1640 Medium (Mediatech, Inc.) supplemented with 10% FBS and antibiotics. Human fibroblast (Hs 58.Fs) cells were maintained in Dulbecco’s Modified Eagle’s Medium (Irvine Scientific) supplemented with 10% FBS and antibiotics. All cells were grown at 37°C under a humidified, 5% CO2 atmosphere.

Gene Silencing Using siRNA—All siRNAs were purchased from Dharmacon (Lafayette, CO). SMARTpool siRNA contains a pool of 4 siRNA sequences directed against the target gene. The siRNA sequences targeting FAS were designed and pooled as previously described (SMARTpool M-003954-02) (9). Fibroblast and tumor cells were plated at 3.91x10^3 cells/cm² and 7.81x10^3 cells/cm², respectively, and grown for 24-48 h. Media was subsequently removed, cells were washed with PBS, refed with fresh media containing Orlistat (0-50 μM), and grown for an additional 24-72 h.

Inhibition of Fatty Acid Synthase with Orlistat—Orlistat was extracted from Xenical™ capsules (Roche Applied Science, Indianapolis, IN) and stored as previously described (9). Fibroblast and tumor cells were plated at 3.91x10^3 cells/cm² and 7.81x10^3 cells/cm², respectively, and grown for 24-48 h. Media was subsequently removed, cells were washed with PBS, refed with fresh media containing Orlistat (0-50 μM), and grown for an additional 24-72 h.

Measuring Fatty Acid Biosynthesis—In vivo fatty acid synthesis was measured according to the method described by Lee et al. (27). MDA-MB-435 tumor cells were transfected with siRNA-targeting FAS, ACC-α or non-silencing control siRNA for 48 h, washed with media once, and labeled for 24 h in glutamine-free MEM media containing 0.5 g/L [U-13C]-Glucose (Cambridge Isotope Laboratories, Andover, MA) and 2.0 g/L unlabeled Glucose (Sigma). Labeled cells were harvested using a cell scraper, rinsed with PBS, and centrifuged at 2,000 rpm for 5 min. The cell pellet was saponified with 1 ml of 30% KOH: ethanol (v:v, 1:1) at 70°C overnight. Neutral lipids were removed with petroleum ether extraction. The aqueous layer was acidified and fatty acids were recovered with another petroleum ether extraction. The petroleum ether layer was backwashed with water and evaporated to dryness. Fatty acids were methylated with 0.5 N HCl in methanol (Supelco, Bellefonte, PA) for Gas Chromatography/Mass Spectrometry (GC/MS) analysis.

Fatty acid methyl esters were analyzed on the Trace GC/Trace MS Plus system (Thermo Electron Corporation, Waltham, MA) using an Rtx-5MS (fused silica, 15m×0.25mm×0.25μm) (Restek, Bellefonte, PA) column. GC conditions were as follows: Helium flow rate was 2 ml/min and the oven temperature was programmed from 180°C (1 min) to 210°C at 3°C/min. The interface temperature was maintained at 250°C and the source temperature at 200°C. Mass
spectra were obtained using electron ionization at -70 eV. Palmitate, stearate and oleate were monitored at m/z 270, 298 and 296, respectively. Mass isotopomer distribution was determined after correcting the contribution of labeling arising from natural abundances of carbon (13C), oxygen (17O, 18O), and hydrogen (2H) (28). The 13C enrichment of acetyl units and the de novo synthesis of fatty acids were determined from the distribution of mass isotopomers of palmitate (27). De novo synthesis of palmitate produces palmitate with 2, 4, or 6 13C atoms (m_2, m_4, and m_6). Thus, the enrichment of acetyl units was calculated from the m_4/m_2 or m_6/m_4 ratio using the formula $m_4/m_2 = (n - 1)/2 * (p/q)$ and $m_6/m_4 = (n - 2)/3 * (p/q)$, where n is the number of acetyl units in palmitate ($n = 8$), p is the labeled fraction, and q is the unlabeled fraction ($p + q = 1$). De novo synthesis was then calculated by dividing the observed to the predicted mass isotopomer fraction, i.e., $m_2 / (8 * p * q)$ or $m_4 / (28 * p^2 * q^2)$. Effects of knockdown on glucose uptake were excluded based on the ratio of [13C]acetyl-CoA to the naturally labeled [12C]acetyl-CoA. No changes were observed in the fraction of the acetyl-CoA pool labeled by [13C] in any experiments.

Measuring DNA Fragmentation—DNA fragmentation was measured using the Cell Death Detection ELISAplus kit (Roche) according to the manufacturer’s instruction.

Western Blot Analysis—Floating and adherent cell populations were harvested using a cell scraper and rinsed with PBS. Pellets were lysed in 2X SDS sample buffer, passed 10 times through an 18-gauge needle, boiled for 5 min and stored at -80°C. Insoluble material was removed by centrifugation (14,000 rpm) for 15 min at 4°C. Protein was separated by SDS-PAGE, transferred onto nitrocellulose, stained with 0.05% Ponceau S (Sigma-Aldrich) to ensure equivalent protein loading per lane, and probed overnight at 4°C with anti-caspase 8, anti-caspase 9, anti-acetyl-CoA carboxylase, anti-ATP citrate lyase, anti-eIF4E, anti-phospho-eIF4E (Ser209) (Cell Signaling Technology, Beverly, MA), anti-FAS (BD Transduction Laboratories, San Jose, CA), anti-FLIP (Dave-2; AXOORA, LLC, San Diego, CA), and anti-actin (Millipore, Billerica, MA). Immunoreactivity was detected using anti-mouse or anti-rabbit IgG conjugated peroxidase and visualized by enhanced chemiluminescence. Relative band density was determined using Alphalmager V.4.1.0 software (Alpha Innotech Corporation, San Leandro, CA).

Assessing the Activity of Caspase 3/7—The activity of caspase 3 and 7 was measured using the Apo-ONE® Homogeneous Caspase-3/7 Assay Kit (Promega Corporation, Madison, WI). Cells were incubated with the caspase 3/7 substrate Z-DEVD-R110 and fluorescence intensity ($485_{Ex}/538_{Em}$) was measured using a fluorescent plate reader (Molecular Devices, Sunnyvale, CA). The amount of Z-DEVD-R110 cleavage and fluorescence directly corresponded to caspase 3/7 activity.

Gene Analysis—MDA-MB-435 tumor cells were treated with Orlistat, ETOH, FAS, ACC-α, ACL or non-silencing control siRNA on four separate occasions to generate biologically-independent measurements for each treatment. Whole genome expression was examined 48 h following treatment. Total RNA was isolated from adherent cells using the Qiagen RNeasy kit (Qiagen, Inc, Valencia, CA) and hybridized to the HumanRef-8 v2 Expression BeadChip (>22,000 gene transcripts; Illumina, San Diego, CA) according to the manufacturer’s instructions. BeadChips were developed as previously described (29).

Expression data was filtered to identify genes expressed on the BeadChip at >0.99 confidence (10,859 genes), and normalized per chip using non-linear Normalize quantiles to remove array-to-array variability. Knockdown of the target genes were verified, leading to removal of one ACL treatment group from further analysis due to lack of gene suppression. Genes differentially expressed between treatments were identified using the GeneSpring GX 7.3.1 software package (Agilent Technologies, Palo Alto, CA). Briefly, chip normalized Normalize.quantiles data was imported into GeneSpring GX 7.3.1, and per gene normalized to the appropriate biological control for each treatment replicate. Genes that significantly changed in response to Orlistat or siRNA targeting FAS, ACC-α or ACL compared to control were identified using a one-way ANOVA with a Benjamini and Hochberg FDR.
of 0.05. Genes with a P-value ≤ 0.05 and with 1.5 fold changes occurring in 3 or more biological replicates for a given treatment were then overlapped using venn diagrams to identify a set of genes modified solely by ACC-α and ACL siRNAs, and those regulated by FAS siRNA and Orlistat.

Measuring Sensitivity to TRAIL — His6-FLAG–tagged recombinant soluble TRAIL was obtained from John Reed at the Burnham Institute for Medical Research (30). MCF7 tumor cells were exposed either to Orlistat (0-25 μM) or TOFA (25 μM; Sigma-Aldrich, St. Louis, MO) for 24 h or transfected with 25 nM FAS, ACC-α, ACL or non-silencing control siRNA for 48 h. TRAIL sensitization was subsequently determined by incubating the cells with TRAIL (200-500 ng/ml) for 4 h and measuring the level of DNA fragmentation as described above.

RESULTS

Knockdown of FAS is Unique in its Ability to Induce Tumor Cell Apoptosis—RNA interference (siRNA) was used to silence the expression of FAS, ACC-α and ACL and assess their effects on apoptosis in a panel of tumor cells lines (MDA-MB-435 and MCF7 mammary carcinoma cells; LNCaP and PC-3 prostate cancer cells). Off-target effects are a major concern when using siRNA-mediated gene silencing, especially when followed by gene expression analysis (31). We minimized off-target activity by using pools of four siRNA sequences (SMARTpools) (31). Measures of protein expression showed the targeted SMARTpool siRNAs to knockdown between 65 and 90% of cellular FAS, ACC-α and ACL; the non-silencing control siRNA had no impact on the expression of these enzymes when compared against Lipofectamine 2000 transfection alone (Fig. 1A right panels and Supplementary Fig. 2). Transfection with 25 nM FAS siRNA induced apoptosis in all four tumor cell lines (Fig. 1A). In contrast, knockdown of ACL failed to induce tumor cell death in MDA-MB-435, MCF7 and LNCaP cells, and had only minor apoptotic activity in PC-3 cells; knockdown of ACC-α also failed to induce DNA fragmentation. These results are consistent with the conclusion that knockdown of enzymes upstream of FAS is not sufficient to elicit an apoptotic response in tumor cells.

Anti-tumor effects of FAS inhibition are proposed to be mediated by suppression of palmitate production (32). So it is surprising that the knockdown of ACC-α and ACL had little effect on tumor cell death. To confirm that knockdown of the target enzymes resulted in suppression of palmitate biosynthesis, we compared knockdown of ACC-α or FAS on palmitate biosynthesis in MDA-MB-435 cells (Fig. 1B). Cells were transfected with 25 nM siRNA-targeting FAS or ACC-α and 48 h later cells were labeled with [U-13C]-Glucose for 24 h. The enrichment of [13C]acetyl-CoA and [13C]palmitate was assessed by GC/MS. As expected, the knockdown of FAS or ACC-α blocked palmitate biosynthesis to comparable levels (49 and 55%, respectively). A similar level of palmitate inhibition was previously reported following knockdown of ACL (22,23). The suppression in palmitate was not due to differences in the uptake or utilization of glucose because the ratio of [13C]acetyl-CoA to naturally occurring [12C]acetyl-CoA was unchanged in all experiments (Fig. 1B). Since the knockdown of FAS or ACC-α leads to an equivalent reduction in de novo palmitate biosynthesis, we conclude that suppression of fatty acid biosynthesis by itself is not sufficient to induce tumor cell apoptosis. It has also been suggested that inhibition of FAS induces apoptosis by increasing the concentration of malonyl-CoA, a substrate of FAS. If this were the case one might expect that simultaneous inhibition of ACC-α, which produces malonyl-CoA, would rescue tumor cells from apoptosis. However, neither inhibition of ACC-α nor ACL could rescue cells from the apoptotic effects of a knockdown of FAS (Supplementary Fig. 3).

Inhibition of FAS Induces Tumor Cell Apoptosis by Activating Caspase 8—To determine which apoptotic pathways are activated by inhibition of FAS, we examined the effects of FAS knockdown on the activation of caspase 8 (receptor-mediated apoptosis) and caspase 9 (stress-induced apoptosis) (33). MDA-MB-435 cells were incubated with either a titration range of Orlistat (0-50 μM) for 48 h, or with 100 nM FAS siRNA for 72 h. Cell
extracts were separated by SDS-PAGE and probed with antibodies specific for either full length or cleaved (activated) caspase 8 and 9. Inhibition of FAS by both FAS siRNA and Orlistat induced activation of caspase 8, but failed to activate caspase 9 (Fig. 2A).

Rescue experiments were conducted to verify that the apoptotic effects of FAS inhibition are elicited solely by caspase 8. Cells were co-transfected with siRNA targeting caspase 8 and 9, along with FAS. Cell death was gauged by measuring DNA fragmentation (Fig. 2B). Knockdown of caspase 8 rescued cells from FAS knockdown by 64%. Correspondingly, we observed a decrease in the activity of the executioner caspases 3/7 in response to the same treatment (Fig. 2C) (33). A knockdown of caspase 9 with siRNA failed to block apoptosis, or the activation of caspase 3/7 (Fig. 2B and C). Collectively, these findings demonstrate that ablation of FAS induces apoptosis through caspase 8. In contrast to the effects of a knockdown of FAS, knockdown of ACC-α or ACL were without effect on the activation of caspase 8 (Fig. 2D). Importantly though, the apoptotic effect is unique to tumor cells because it does not occur in normal fibroblasts (Fig. 2E). The unique effect of FAS ablation on caspase 8 was also observed in MCF7, LNCaP and PC-3 tumor cell lines (Supplementary Fig. 2).

Inhibition of FAS Up-regulates the Expression of DDIT4—To better understand the link between inhibition of FAS and the activation of caspase 8, we compared changes to gene expression induced by the knockdown of FAS. Changes to gene expression in response to ACC-α or ACL were used as comparisons. Genome-wide expression patterns were monitored in response to the knockdowns in the MDA-MB-435 cells.

Three filtering criteria were applied to identify gene expression changes unique to inhibition of FAS: i) only genes modified by at least at least 1.5 fold were considered, ii) target genes has to be affected by both the siRNA targeting FAS and by treatment with Orlistat, and iii) target genes could not be modified by knockdown of ACC-α nor ACL (meaning a change of less than 1.5-fold) because they are not linked to apoptosis. Three genes were identified that met these criteria (Table 1, Supplement): glutathione peroxidase 8, a sec24 homolog, and DNA damage-inducible transcript 4 (DDIT4).

We chose to test the hypothesis that DDIT4 is a link between FAS and caspase 8 because this gene was up-regulated the most by ablation of FAS, and because there is evidence in the literature showing that DDIT4 negatively regulates the mTOR pathway (34, 35). To test whether up-regulation of DDIT4 is necessary for the activation of caspase 8 in response to FAS inhibition, we treated MDA-MB-435 cells with siRNA targeting FAS and DDIT4. This experiment showed that knockdown of DDIT4 prevents activation of caspase 8 (Fig. 3A). Thus, DDIT4 is necessary for the activation of caspase 8 in response to FAS inhibition.

Inhibition of FAS Reduces Expression of eIF4E and the Anti-apoptotic Protein FLIP—DDIT4 is reportedly a negative regulator of the mTOR pathway, a pathway that controls protein biosynthesis through activation of the rate-limiting translation initiation factor eIF4E (36, 37). We found that knockdown of FAS and Orlistat reduced the phosphorylation of eIF4E (Fig. 3B), showing inhibition of FAS negatively regulates protein translation. Knockdown of ACC-α or ACL had no effect on eIF4E phosphorylation confirming that down-regulation of protein translation is specific to the inhibition of FAS. Suppression in protein translation by mTOR inhibition has been linked to a down-regulation in the synthesis of FLIP, an anti-apoptotic protein that blocks activation of caspase 8 (38). We also found that inhibition of FAS reduces the expression of both isoforms of FLIP, FLIPL and FLIPS (Fig. 3C).

Inhibition of FAS Sensitizes Tumor Cells to TRAIL-Induced Apoptosis—Interestingly, down-regulation of FLIP sensitizes tumor cells to TRAIL (39), a member of the tumor necrosis factor family that activates caspase 8. We tested whether inhibition of FAS could be exploited as a means to sensitize tumor cells to TRAIL. MCF7 tumor cells that are resistant to TRAIL were used as a model (30). Pre-treatment of MCF7 cells for 24 h with increasing concentrations of Orlistat sensitized the cells to TRAIL (Fig. 4A). Very little apoptosis occurred in cells exposed to TRAIL along with vehicle
Similar observations were observed using siRNA to inhibit FAS (Fig. 4B). In contrast, neither small molecule inhibition, nor siRNA knockdown of ACC-α or ACL, sensitized the tumor cells to TRAIL (Fig. 4B).

DISCUSSION

The salient conclusions of this study are that inhibition of FAS, but not other enzymes involved in fatty acid biosynthesis, (i) induces apoptosis in tumor cells by activating caspase 8; (ii) up-regulates the stress response gene DDIT4, which inhibits the mTOR pathway; and (iii) sensitizes tumor cells to the apoptotic protein TRAIL.

FAS is required for both tumor cell growth and survival (9,11), yet the mechanistic links between FAS and tumor cell death have not been unraveled. Here we show that knockdown of FAS, or its inhibition with Orlistat, induces tumor cell apoptosis through activation of caspase 8, with no detectable role for caspase 9. Hence the central mechanism of tumor cell apoptosis in response to inhibition of FAS is activation of caspase 8. Knockdown of FAS led to activation of caspase 8 in both breast and prostate carcinoma cells, and in both less aggressive, (MCF7 and LNCaP), and more aggressive (MDA-MB-435 and PC-3) tumor cell lines (40-43).

Perhaps most significantly though, knockdown of ACL or ACC-α failed to induce caspase 8-mediated apoptosis, even though their inhibition reduced palmitate production to the same level as the knockdown of FAS. These findings are consistent with the conclusion that a blockade of fatty acid biosynthesis alone is not sufficient to induce tumor cell apoptosis. Indeed, prior work showed that inhibition of ACL can inhibit tumor growth, but that this effect result from inhibition of cell cycle progression, not through tumor cell apoptosis (22). Similarly, a blockade of ACC-α by TOFA (5-(tetradecyloxy)-2-furoic acid) fails to induce tumor cell apoptosis even though it inhibits palmitate biosynthesis (13,44). Altogether then, there is a growing body of evidence that separates the apoptotic effects of FAS inhibitors, from the de novo synthesis of palmitate. Therefore, the simplest interpretation of our findings is that a reduction in the de novo synthesis of palmitate alone, is not sufficient for activation of caspase 8, or for tumor cell apoptosis.

Our observations support a model whereby inhibition of FAS up-regulates DDIT4 and as a result, interferes with mTOR signaling. DDIT4 is involved in a series of binding interactions that ultimately lead to mTORC1. DDIT4 binds 14–3–3, preventing 14-3-3 from sequestering TSC2 in a bound complex (46). Unbound TSC2 is therefore free to bind TSC1, and their complex acts as a negative regulator of Rheb, a positive upstream regulator of mTORC1 (47,48). Consequently, inhibition of FAS negatively regulates the mTORC1 signaling pathway (Fig. 5).

The connection between FAS and mTOR probably also explains why inhibition of the enzyme elicits apoptosis through caspase 8. The inhibition of mTOR suppresses protein translation, thereby reducing biosynthesis of FLICE-inhibitory protein (FLIP), which blocks the activation of caspase 8 (38). Hence, the reduction in mTOR signaling caused by knockdown of FAS, or by inhibiting FAS with Orlistat, releases a natural inhibition of caspase 8.

The down-regulation of FLIP was previously found to sensitize tumor cells to TRAIL (39), which probably explains how inhibition of FAS sensitizes tumor cells to TRAIL. TRAIL triggers apoptosis through engagement of death receptors (DRs) that trigger apoptosis by recruiting caspase 8 (49-51). Because the effects of TRAIL are rather selective for tumor cells, this protein is considered an attractive target for cancer treatment. Currently recombinant TRAIL and TRAIL receptor agonists are being tested in clinical trials, and are showing encouraging antitumor activity (52). However, the potential of TRAIL as a chemotherapeutic agent is limited due to the emergence of TRAIL resistance (53). Our findings suggest that such resistance could potentially be avoided, or overcome, by sensitizing tumor cells to this agent by combining it with an inhibitor of FAS. A similar strategy could also be applied to drug development programs aimed at inhibiting the mTOR pathway (54).
REFERENCES

1. Wakil, S. J. (1989) Biochemistry 28(11), 4523-4530
2. Alo, P. L., Visca, P., Marci, A., Mangoni, A., Botti, C., and Di Tondo, U. (1996) Cancer 77(3), 474-482
3. Swinnen, J. V., Roskams, T., Joniau, S., Van Poppel, H., Oyen, R., Baert, L., Heyns, W., and Verhoeven, G. (2002) Int J Cancer 98(1), 19-22
4. Piyathilake, C. J., Frost, A. R., Manne, U., Bell, W. C., Weiss, H., Heimburger, D. C., and Grizzle, W. E. (2000) Hum Pathol 31(9), 1068-1073
5. Innocenzi, D., Alo, P. L., Balzani, A., Sebastiani, V., Silipo, V., La Torre, G., Ricciardi, G., Bosman, C., and Calvieri, S. (2003) J Cutan Pathol 30(1), 23-28
6. Gansler, T. S., Hardman, W., 3rd, Hunt, D. A., Schaffel, S., and Hennigar, R. A. (1997) Hum Pathol 28(6), 686-692
7. Rashid, A., Pizer, E. S., Moga, M., Milgram, L. Z., Zahurak, M., Pasternack, G. R., Kuhajda, F. P., and Hamilton, S. R. (1997) Am J Pathol 150(1), 201-208
8. Kridel, S. J., Axelrod, F., Rozenkrantz, N., and Smith, J. W. (2004) Cancer Res 64(6), 2070-2075
9. Knowles, L. M., Axelrod, F., Browne, C. D., and Smith, J. W. (2004) J Biol Chem 279(29), 30540-30545
10. Kuhajda, F. P., Jenner, K., Wood, F. D., Hennigar, R. A., Jacobs, L. B., Dick, J. D., and Pasternack, G. R. (1994) Proc Natl Acad Sci U S A 91(14), 6379-6383
11. Pizer, E. S., Chrest, F. J., DiGiuseppe, J. A., and Han, W. F. (1998) Cancer Res 58(20), 4611-4615
12. Pizer, E. S., Wood, F. D., Heine, H. S., Romantsev, F. E., Pasternack, G. R., and Kuhajda, F. P. (1996) Cancer Res 56(6), 1189-1193
13. Pizer, E. S., Thupari, J., Han, W. F., Pinn, M. L., Chrest, F. J., Frehywot, G. L., Townsend, C. A., and Kuhajda, F. P. (2000) Cancer Res 60(2), 213-218
14. De Schrijver, E., Brusselmans, K., Heyns, W., Verhoeven, G., and Swinnen, J. V. (2003) Cancer Res 63(13), 3799-3804
15. Orita, H., Coulter, J., Lemmon, C., Tully, E., Vadlamudi, A., Medghalchi, S. M., Kuhajda, F. P., and Gabrielson, E. (2007) Clin Cancer Res 13(23), 7139-7145
16. Kuhajda, F. P. (2000) Nutrition 16(3), 202-208
17. Swinnen, J. V., Vanderhoydonc, F., Elgamal, A. A., Eelen, M., Vercaeren, I., Joniau, S., Van Poppel, H., Baert, L., Goossens, K., Heyns, W., and Verhoeven, G. (2000) Int J Cancer 88(2), 176-179
18. Szutowicz, A., Kwiatkowski, J., and Angielski, S. (1979) Br J Cancer 39(6), 681-687
19. Turyn, J., Schlichtholz, B., Dettlaff-Pokora, A., Presler, M., Goyke, E., Matuszewski, M., Kmiec, Z., Krajka, K., and Swierczynski, J. (2003) Horm Metab Res 35(10), 565-569
20. Milgraum, L. Z., Witters, L. A., Pasternack, G. R., and Kuhajda, F. P. (1997) Clin Cancer Res 3(11), 2115-2120
21. Thupari, J. N., Pinn, M. L., and Kuhajda, F. P. (2001) Biochem Biophys Res Commun 285(2), 217-223
22. Hatzivassiliou, G., Zhao, F., Bauer, D. E., Andreadis, C., Shaw, A. N., Dhanak, D., Hingorani, S. R., Tuveson, D. A., and Thompson, C. B. (2005) Cancer Cell 8(4), 311-321
23. Bauer, D. E., Hatzivassiliou, G., Zhao, F., Andreadis, C., and Thompson, C. B. (2005) *Oncogene* **24**(41), 6314-6322
24. Little, J. L., Wheeler, F. B., Fels, D. R., Koumenis, C., and Kridel, S. J. (2007) *Cancer Res* **67**(3), 1262-1269
25. Chajes, V., Cambot, M., Moreau, K., Lenoir, G. M., and Joulin, V. (2006) *Cancer Res* **66**(10), 5287-5294
26. Bandyopadhyay, S., Zhan, R., Wang, Y., Pai, S. K., Hirota, S., Hosobe, S., Takano, Y., Saito, K., Furuta, E., Iizumi, M., Mohinta, S., Watabe, M., Chalfant, C., and Watabe, K. (2006) *Cancer Res* **66**(11), 5934-5940
27. Lee, W. N., Bassilian, S., Guo, Z., Schoeller, D., Edmond, J., Bergner, E. A., and Byerley, L. O. (1994) *Am J Physiol* **266**(3 Pt 1), E372-383
28. Wittmann, C., and Heinzle, E. (1999) *Biotechnol Bioeng* **62**(6), 739-750
29. Knowles, L. M., and Smith, J. W. (2007) *BMC Genomics* **8**, 168
30. Hyer, M. L., Croxton, R., Krajewska, M., Krajewski, S., Kress, C. L., Lu, M., Suh, N., Sporn, M. B., Cryns, V. L., Zapata, J. M., and Reed, J. C. (2005) *Cancer Res* **65**(11), 4799-4808
31. Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., Li, B., Cavet, G., and Linsley, P. S. (2003) *Nat Biotechnol* **21**(6), 635-637
32. Pizer, E. S., Wood, F. D., Pasternack, G. R., and Kuhajda, F. P. (1996) *Cancer Res* **56**(11), 745-751
33. Fuentes-Prior, P., and Salvesen, G. S. (2004) *Biochem J* **384**(Pt 2), 201-232
34. Sofer, A., Lei, K., Johannessen, C. M., and Ellisen, L. W. (2005) *Mol Cell Biol* **25**(14), 5834-5845
35. Corradetti, M. N., Inoki, K., and Guan, K. L. (2005) *J Biol Chem* **280**(11), 9769-9772
36. Gingras, A. C., Kennedy, S. G., O'Leary, M. A., Sonenberg, N., and Hay, N. (1998) *Genes & development* **12**(4), 502-513
37. Kleijn, M., Scheper, G. C., Voorma, H. O., and Thomas, A. A. (1998) *Eur J Biochem* **253**(3), 531-544
38. Panner, A., James, C. D., Berger, M. S., and Pieper, R. O. (2005) *Mol Cell Biol* **25**(20), 8809-8823
39. Siegmund, D., Hadwiger, P., Pfizenmaier, K., Vormlocher, H. P., and Wajant, H. (2002) *Mol Med* **8**(11), 725-732
40. Price, J. E., Polyzos, A., Zhang, R. D., and Daniels, L. M. (1990) *Cancer Res* **50**(3), 717-721
41. Shafie, S. M., and Liotta, L. A. (1980) *Cancer Lett* **11**(2), 81-87
42. Kurebayashi, J., McLeskey, S. W., Johnson, M. D., Lippman, M. E., Dickson, R. B., and Kern, F. G. (1993) *Cancer Res* **53**(9), 2178-2187
43. Koshida, K., Konaka, H., Imao, T., Egawa, M., Mizokami, A., and Namiki, M. (2004) *Int J Urol* **11**(12), 1114-1121
44. Zhou, W., Simpson, P. J., McFadden, J. M., Townsend, C. A., Medghalchi, S. M., Vadamudri, A., Pinn, M. L., Ronnett, G. V., and Kuhajda, F. P. (2003) *Cancer Res* **63**(21), 7330-7337
45. Tang, W., Yuan, J., Chen, X., Gu, X., Luo, K., Li, J., Wan, B., Wang, Y., and Yu, L. (2006) *J Biochem Mol Biol* **39**(5), 626-635
46. DeYoung, M. P., Horak, P., Sofer, A., Sgroi, D., and Ellisen, L. W. (2008) *Genes & development* **22**(2), 239-251
47. Inoki, K., Li, Y., Xu, T., and Guan, K. L. (2003) *Genes & development* **17**(15), 1829-1834
48. Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C., and Blenis, J. (2003) *Curr Biol* **13**(15), 1259-1268
49. Sprick, M. R., Weigand, M. A., Rieser, E., Rauch, C. T., Juo, P., Blenis, J., Krammer, P. H., and Walczak, H. (2000) *Immunity* **12**(6), 599-609
50. Kischkel, F. C., Lawrence, D. A., Chontharakai, A., Schow, P., Kim, K. J., and Ashkenazi, A. (2000) *Immunity* **12**(6), 611-620
51. Bodmer, J. L., Holler, N., Reynard, S., Vinciguerra, P., Schneider, P., Juo, P., Blenis, J., and Tschope, J. (2000) *Nature cell biology* **2**(4), 241-243
52. Carlo-Stella, C., Lavazza, C., Locatelli, A., Vigano, L., Gianni, A. M., and Gianni, L. (2007) *Clin Cancer Res* **13**(8), 2313-2317
53. LeBlanc, H. N., and Ashkenazi, A. (2003) *Cell death and differentiation* **10**(1), 66-75
54. Faivre, S., Kroemer, G., and Raymond, E. (2006) *Nat Rev Drug Discov* **5**(8), 671-688

FOOTNOTES

* This work was supported by NIH Grants CA108959, RR020843, and HL080718; Department of Defense Grant DAMD17-02-0693; and California Breast Cancer Research Program Grants CA6982713 and CA69306 (to J.W.S.) and Grant 8FB-0107 (to L.M.K.).

The abbreviations used are: FAS, fatty acid synthase; ACC-α, acetyl-CoA carboxylase-α; ACL, ATP-citrate lyase; DDIT4, DNA-damage-inducible transcript 4; FLIP, FLICE-like inhibitory protein; HMFN0839, lysophosphatidic acid acyltransferase theta; GC/MS, Gas Chromatography/Mass Spectrometry; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand.

FIGURE LEGENDS

Figure 1. Knockdown of FAS, but not ACC-α or ACL, induces tumor cell apoptosis.

A, Cell death was monitored by measuring the level of DNA fragments present within immuno-captured nucleosomes. Tumor cells were exposed to 25 nM siRNA-targeting FAS, ACC-α, ACL or non-silencing control siRNA for 72 h (MDA-MB-435 and PC-3 cells) or 96 h (MCF7 and LNCaP). Cells were lysed and DNA fragmentation was measured by ELISA. Values are normalized to LipofectAMINE 2000 (MOCK) transfected controls and are the mean ± S.E. of at least three replicates per treatment. The knockdown of ACC-α and ACL was verified by Western blotting (MDA-MB-435 cells, right panels; MCF7, PC-3, LNCaP, see supplementary Fig. 1).

B, The de novo synthesis of palmitate and the enrichment of acetyl-CoA were measured by GC/MS in MDA-MB-435 cells transfected with 25 nM siRNA targeting either FAS, ACC-α or a non-silencing control and labeled with [U-13C]-Glucose. Values are the mean ± S.E. of two independent experiments.

Figure 2. Knockdown of FAS induces caspase 8-dependent cell death.

A, The effect of MOCK, non-silencing control siRNA or siRNA-targeting FAS (100 nM; left panel) and Orlistat (0-50 µM; right panel), on the cleavage of caspase 8 and caspase 9 was analyzed in MDA-MB-435 cells by Western blotting. Camptothecin (1.4 µM) served as a positive control for induction of the proteolytic processing of caspase 9. Equivalent protein loading per lane was ensured by staining blots with Ponceau.

B,C, MDA-MB-435 cells were co-transfected with 50 nM FAS siRNA together with 50 nM of non-silencing control, caspase 8 or caspase 9 siRNA. DNA fragmentation (B) and caspase 3/7 activity (C)
were measured 72 h after transfection. Transfection with 100 nM non-silencing control siRNA was used to indicate the basal level of apoptosis occurring in response to transfection. The knockdown of caspase 8 and caspase 9 was verified by Western blotting (boxed panels). Values are the mean ± S.E. of at least three replicates per treatment.

D, The effect of 100 nM siRNA targeting FAS, ACC-α or ACL on cleavage of caspase 8 was measured in MDA-MB-435 cells 96 h after transfection by Western blotting using antibody against caspase 8.

E, Hs58.5s fibroblasts were exposed to MOCK, non-silencing control or FAS siRNA (100 nM) for 96 h and assessed for cleavage of caspase 8. Camptothecin served as a positive control.

Figure 3. Knockdown of FAS induces activation of caspase 8, the expression of DDIT4, suppression of eIF4E phosphorylation and a reduction in the anti-apoptotic protein FLIP.

A, MDA-MB-435 cells were co-transfected with 25 nM FAS duplex #9 siRNA together with 25 nM of non-silencing control duplex #1 or DDIT4 duplexes #9-11 siRNAs. Caspase 8 cleavage was measured 96 h after transfection by Western blotting. Transfection with 50 nM non-silencing control siRNA was used to indicate the basal level of caspase 8 cleavage occurring in response to siRNA transfection.

B, The effect of non-silencing control siRNA or siRNA-targeting FAS, ACC-α or ACL (25 nM; left panel) and Orlistat (0-50 µM; right panel), on phosphorylation and expression levels of the translation protein eIF4E (p-eIF4E and eIF4E) were measured by Western blotting in MDA-MB-435 cells 96 h after transfection.

C, MDA-MB-435 cells were transfected with non-silencing control or FAS siRNA (25 nM) and analyzed 48 to 96 h post-transfection for changes in the expression of the anti-apoptotic protein FLIP. Actin is used as a loading control.

Figure 4. Inhibition of FAS sensitizes MCF7 tumor cells to TRAIL.

A, MCF7 cells were treated with a concentration range of Orlistat (0-25 uM) for 24 h prior to the addition of 200 ng/ml of His6-FLAG–tagged recombinant TRAIL or PBS control. After 4 h, cell death was monitored by measuring the level of DNA fragmentation. Values are the mean ± S.E. of four replicates per treatment normalized to TRAIL or PBS treatment alone.

B, TRAIL sensitization was monitored in MCF7 cells transfected with 25 nM siRNA targeting FAS, ACC-α, ACL or a non-silencing control siRNA for 48 h, or treated with 25 µM Orlistat or an ACC-α inhibitor (TOFA) for 24 h. DNA fragmentation was measured 4 h after the addition of TRAIL (200-500 ng/ml); values were normalized to background. TRAIL sensitization was calculated by dividing treatment + TRAIL by treatment + PBS. Values are the mean ± S.E. of eight replicates per treatment from two independent experiments.

Figure 5. Connections between FAS, caspase 8 and TRAIL.

The inhibition of FAS induces the transcription of the stress response gene DNA damage-inducible transcript 4 (DDIT4, also known as REDD1/RTP801/Dig2). DDIT4 binds to 14–3–3, causing the dissociation of the TSC2 from the 14–3–3 complex. TSC2 is then able to complex with TSC1 and reduce the activity of Rheb, which activates mTORC1 (mTOR, raptor, and mLST8). Consequently, protein translation (indicated by phosphorylation of eIF4E) and the level FLIP are reduced.
Figure 1

A

DNA Fragmentation (A405nm/A490nm)

Control siRNA
FAS siRNA
ACC-α siRNA
ACL siRNA

435 MCF7 PC-3 LNCaP

B

[U-13C]-Glucose Incorporation

Control siRNA
ACC-α siRNA
FAS siRNA

Palmitate
Acetyl-CoA

De Novo Synthesis
Enrichment

250 kDa
265 kDa
125 kDa
Figure 3

A

Caspase 8

Actin

Control siRNA FAS siRNA DDIT4#9 siRNA DDIT4#10 siRNA DDIT4#11 siRNA FAS + DDIT4#9 siRNA FAS + DDIT4#10 siRNA FAS + DDIT4#11 siRNA

B

p-eIF4E

eIF4E

Control siRNA FAS siRNA ACC-α siRNA ACL siRNA

Orlistat [μM]

0 50

C

FLIP L

FLIP S

Actin

Control siRNA

48 72 96

FAS siRNA

48 72 96

58 kDa

30 kDa
Inhibition of FAS

- DDIT4

14-3-3
TSC2

TSC2
TSC1

Rheb

mTOR

mLST8
Raptor

eIF4E

Caspase 8-mediated Apoptosis

FLIP

Sensitivity to TRAIL
Inhibition of fatty acid synthase induces caspase 8-mediated tumor cell apoptosis by Up-regulating DDIT4
Lynn M. Knowles, Chen Yang, Andrei Osterman and Jeffrey W. Smith
J. Biol. Chem. published online September 16, 2008

Access the most updated version of this article at doi: 10.1074/jbc.M803384200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2008/09/16/M803384200.DC1