Reconciling results of LSND, MiniBooNE and other experiments with soft decoherence

Yasaman Farzan,

Thomas Schwetz,

and Alexei Yu Smirnov

Abstract

We propose an explanation of the LSND signal via quantum-decoherence of the mass states, which leads to damping of the interference terms in the oscillation probabilities. The decoherence parameters as well as their energy dependence are chosen in such a way that the damping affects only oscillations with the large (atmospheric) Δm^2 and rapidly decreases with the neutrino energy. This allows us to reconcile the positive LSND signal with MiniBooNE and other null-result experiments. The standard explanations of solar, atmospheric, KamLAND and MINOS data are not affected. No new particles, and in particular, no sterile neutrinos are needed. The LSND signal is controlled by the 1-3 mixing angle θ_{13} and, depending on the degree of damping, yields $0.0014 < \sin^2\theta_{13} < 0.034$ at 3σ. The scenario can be tested at upcoming θ_{13} searches: while the comparison of near and far detector measurements at reactors should lead to a null-result a positive signal for θ_{13} is expected in long-baseline accelerator experiments. The proposed decoherence may partially explain the results of Gallium detector calibrations and it can strongly affect supernova neutrino signals.
I. INTRODUCTION

Reconciling the LSND signal for $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ transitions [1] with the by now fully established existence of neutrino oscillations [2, 3, 4, 5, 6] on the one hand side and bounds on oscillations [7, 8, 9, 10, 11, 12, 13] on the other is a long-standing problem in neutrino physics. Recently the MiniBooNE experiment [14] failed to confirm the oscillation interpretation of the LSND signal [15], putting further pressure on its interpretation. Usually the LSND result is considered as an indication for sterile neutrino oscillations, despite difficulties of the corresponding models to explain the global data [16] including cosmological observations (see Ref. [17] for a recent analysis including the MiniBooNE results). Triggered by these problems many ideas and scenarios have been proposed in order to explain LSND, some of them involving very exotic physics. This includes sterile neutrino decay [18, 19], violation of the CPT [20] and/or Lorentz [21] symmetries, mass-varying neutrinos [22], short-cuts of sterile neutrinos in extra dimensions [23], a non-standard energy dependence of the sterile neutrino parameters [24], or sterile neutrinos interacting with a new gauge boson [25].

In the present paper, we revisit the possibility that the origin of the LSND signal might be quantum decoherence in neutrino oscillations [26, 27]. Such effects can be induced by interactions with a stochastic environment; a possible source for this kind of effect might be quantum gravity [28, 29, 30], see Ref. [31] for a recent discussion. We take a phenomenological approach and determine the form and magnitude of the new effects from observations without reference to possible origins of the decoherence. Neutrino oscillations, being a quantum interference effect over macroscopic distances, provide a sensitive test for decoherence. The possibility to use neutrinos as a probe of quantum decoherence has been explored for atmospheric neutrinos [32], solar neutrinos [33], KamLAND [33, 34], future long-baseline experiments [35, 36], and neutrino telescopes [37]. See also Ref. [38]. Other quantum systems which have been considered to search for decoherence include, for example, $K\bar{K}$ [29, 39, 40] and $B\bar{B}$ [41, 42] oscillations or neutron interferometry [43]. Throughout this paper we will assume that quantum decoherence affects only the neutrino sector.

Previous attempts to explain the LSND signal by quantum decoherence [26, 27] seem to be in conflict with the present data. Indeed, for the set-up of NuTeV with a baseline of ~ 1 km and the average energy of 75 GeV the model in [27] predicts $P(\nu_\mu \rightarrow \nu_e) = P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) = 3 \times 10^{-3}$ while the one in [26] yields $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) = 0.2$. Both of these predictions strongly violate the upper bound on the neutrino and anti-neutrino oscillation probabilities from NuTeV: $P(\nu_\mu \rightarrow \nu_e), P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) < 5 \times 10^{-4}$ (90% C.L.) [13]. Furthermore, the model of [26] (where in addition to decoherence, also CPT-violation is also introduced) cannot account for the spectral distortion in the anti-neutrino signal observed by KamLAND. The scenario of [27] is also disfavored by the absence of a signal in KARMEN [9], NOMAD [12] and MiniBooNE [14]. In the present paper we propose a different set of decoherence parameters with a special energy dependence. As a result, the problems outlined above can be avoided. In our scenario, the decoherence effects become more significant with decreasing the energy; thus, we refer to this scenario as “soft decoherence”.

The paper is organized as follows. In sec. III we describe our scenario of the decoherence effect and discuss how the LSND signal is explained. In sec. IV we show that by selecting
suitable parameters, within this scenario the LSND result can be reconciled with all other oscillation results (both positive and negative). In sect. IV, we discuss how this scenario can be checked in forthcoming and future experiments. Discussions and conclusions will be presented in sect. V.

II. THE SCENARIO: DECOHERENCE AND THE LSND RESULT

A. Soft decoherence

Let us describe the neutrino system by the density matrix ρ in the mass state basis, ν_i, $i = 1, 2, 3$. The decoherence effects in the evolution of the density matrix can be parameterized by introducing a new term $D[\rho]$ as

$$\frac{d\rho}{dt} = -i[H, \rho] - D[\rho].$$

(1)

This term violates the conservation of $\text{Tr}(\rho^2)$ and, hence, leads to the evolution of pure states into mixed states. As mentioned in introduction, such a term can be induced by interaction with a stochastic environment; a possible source for this kind of effect might be quantum gravity [28, 29, 30]. The form of the operator $D[\rho]$ can be constrained by imposing some general requirements on the evolution of the system. First, complete positivity implies the so-called Lindblad form for $D[\rho]$ [44, 45]:

$$D[\rho] = \sum_n \left[\{\rho, D_n^\dagger D_n\} - 2D_n^\dagger \rho D_n \right].$$

(2)

where D_n are some general complex matrices. This form arises from “tracing away” the dynamics of the environment [30, 46]. Second, with general complex D_n unitarity is violated, i.e., $d\text{Tr}(\rho)/dt$ can be nonzero. Therefore, we require that D_n are Hermitian, $D_n^\dagger = D_n$. In addition to $d\text{Tr}(\rho)/dt = 0$, the Hermiticity of D_n guarantees that the entropy [i.e., $S(\rho) = -\text{Tr}(\rho \ln \rho)$] cannot decrease [45, 47]. Finally, we require that the average energy of the system, $\text{Tr}(\rho H)$, is conserved. It is straightforward to check that this can be achieved by demanding $[H, D_n] = 0$. In other words, unitarity and conservation of the energy-momentum imply that D_n and H can be simultaneously diagonalized. In the neutrino mass basis, we can therefore write

$$H = \text{Diag}[h_1, h_2, h_3] \quad \text{and} \quad D_n = \text{Diag}[d_{n,1}, d_{n,2}, d_{n,3}],$$

(3)

where $h_i^2 \equiv p^2 + m_i^2$, and $d_{n,i}$ are real quantities of dimension $[\text{mass}]^{1/2}$ whose energy-dependence is unknown. In this paper we adopt a phenomenological approach and determine $d_{n,i}$ from observations without discussing their possible origins.

Solving the evolution equation Eq. (1), with H and D_n given in (3) we find

$$\rho(t) = \begin{bmatrix}
\rho_{11}(0) & \rho_{12}(0)e^{-(\gamma_{12}-i\Delta_{12})t} & \rho_{13}(0)e^{-(\gamma_{13}-i\Delta_{13})t} \\
\rho_{21}(0)e^{-(\gamma_{21}-i\Delta_{21})t} & \rho_{22}(0) & \rho_{23}(0)e^{-(\gamma_{23}-i\Delta_{23})t} \\
\rho_{31}(0)e^{-(\gamma_{31}-i\Delta_{31})t} & \rho_{32}(0)e^{-(\gamma_{32}-i\Delta_{32})t} & \rho_{33}(0)
\end{bmatrix},$$

(4)
where $\rho_{ij}(0)$ are the elements of the density matrix at the initial moment,

$$\gamma_{ij} \equiv \sum_n (d_{n,i} - d_{n,j})^2 \quad \text{and} \quad \Delta_{ji} \equiv h_j - h_i \approx \frac{\Delta m^2_{ji}}{2E_\nu}.$$ \hspace{1cm} (5)

Notice that $\gamma_{ij} = \gamma_{ji}$ whereas $\Delta_{ij} = -\Delta_{ji}$, and the diagonal elements of ρ do not depend on time.

Let us consider the transitions between the flavor states, $\nu_\alpha = \sum_i U_{\alpha i} \nu_i$, where $U_{\alpha i}$ are the elements of the PMNS mixing matrix. The probability of finding a neutrino with flavor β is given by $\langle \nu_\beta | \rho | \nu_\beta \rangle$. Hence, the oscillation probability $\nu_\alpha \rightarrow \nu_\beta$ in vacuum is equal to

$$P_{\alpha\beta} = \langle \nu_\beta | \rho^{(\alpha)}(t) | \nu_\beta \rangle = \sum_{ij} U_{\beta i}^* U_{\beta j} \rho^{(\alpha)}_{ij}(t),$$ \hspace{1cm} (6)

where $\rho^{(\alpha)}_{ij}(t)$ is given by Eq. (4) with $\rho_{ij}(0) = \rho^{(\alpha)}_{ij}(0) = U_{\alpha i} U_{\alpha j}^*$, which corresponds to the initial state ν_α.

In this paper, we consider the most economic scenario that describes all the data. As we will show in the following, only one matrix D_n with

$$d_1 = d_2 \neq d_3$$ \hspace{1cm} (7)

is sufficient. Note that a similar pattern exists between neutrino masses ($m_1 \simeq m_2 \neq m_3$), so it will be inspiring to build a model that links the patterns of H and D. Eq. (7) leads to

$$\gamma_{12} = 0 \quad \text{and} \quad \gamma = \gamma_{13} = \gamma_{32}.$$ \hspace{1cm} (8)

In the ranges of energy and baseline (L) for which $\Delta_{21}L = \Delta m^2_{21}L/(2E_\nu) \ll 1$, the oscillations due to Δm^2_{21} can be neglected, and Eq. (6) yields

$$P_{\mu e}(\gamma, L) = P_{e\mu}(\gamma, L) = 2|U_{\mu 3}|^2 |U_{e 3}|^2 \left[1 - e^{-\gamma L} \cos(\Delta_{31}L) \right],$$
$$P_{e\beta}(\gamma, L) = 1 - 2|U_{e 3}|^2 \left[1 - |U_{\beta 3}|^2 \right] \left[1 - e^{-\gamma L} \cos(\Delta_{31}L) \right],$$
$$P_{\mu\mu}(\gamma, L) = 1 - 2|U_{\mu 3}|^2 \left[1 - |U_{\mu 3}|^2 \right] \left[1 - e^{-\gamma L} \cos(\Delta_{31}L) \right].$$ \hspace{1cm} (9)

Notice that although the new term $\mathcal{D}[\rho]$ explicitly breaks the time reversal symmetry, still within the framework of the two-neutrino oscillation the equality $P_{e\mu} = P_{\mu e}$ holds. In principle, the decoherence effects can give rise to the CPT violation; however, in this paper we assume that the decoherence effects in the neutrino and antineutrino sectors are the same.

The energy dependence of the decoherence parameter γ in Eq. (8) is not known; it should follow from a microscopic theory of decoherence. In the absence of such a theory we assume a power law: $\gamma \propto E_\nu^{-r}$, and for convenience parameterize it as

$$\gamma = \frac{\mu^2}{E_\nu} \left(\frac{40 \, \text{MeV}}{E_\nu} \right)^{r-1},$$ \hspace{1cm} (10)

where 40 MeV is the typical neutrino energy in LSND. We will estimate the allowed ranges of parameters r and μ^2 in sec. [III] and in particular, show that all the data can be described if

$$r = 4,$$ \hspace{1cm} (11)
which we will use as the reference value in our estimations. The fast decrease of \(\gamma \), and consequently, the decoherence effect with energy, is the key feature of the proposed scenario which allows us to reconcile the LSND result with results of other experiments. Notice that for any value of \(r \neq 1 \), the Lorentz symmetry is explicitly violated.

B. Explaining LSND events

Let us now discuss the interpretation of the positive LSND result through soft decoherence. For the LSND parameters, \(E \sim 40 \) MeV and \(L \simeq 30 \) m, the oscillation phase \(\Delta_{31} L \sim 5 \cdot 10^{-3} \), so that the oscillation effect is negligible and according to (9) the appearance probability is equal to

\[
P_{\mu e}(\gamma, L) = 2 |U_{\mu3}|^2 |U_{e3}|^2 (1 - e^{-\gamma L}) \approx |U_{e3}|^2 (1 - e^{-\gamma L}).
\] (12)

Hence, the LSND signal is determined by the 1-3 mixing and the degree of decoherence given by the factor \((1 - e^{-\gamma L}) \). In the case of strong decoherence, \(\gamma L \gg 1 \), this factor converges to its maximum and

\[
P_{\mu e}(\gamma, L) \approx |U_{e3}|^2.
\] (13)

The LSND signal is simply given by the 1-3 mixing parameter, and therefore the LSND probability provides a lower bound on the 1-3 mixing:

\[
|U_{e3}|^2 \geq P_{\mu e}^{LSND} = (2.6 \pm 0.8) \cdot 10^{-3}.
\] (14)

For a small decoherence effect, \(\gamma L \ll 1 \), we obtain

\[
P_{\mu e}(\gamma, L) \approx |U_{e3}|^2 \gamma L.
\] (15)

Therefore \(|U_{e3}|^2 \) can be as large as the upper bound obtained from the reactor experiments and other observations, \((|U_{e3}|^2)^{\text{upper}} \). In this case the LSND result gives a lower bound on \(\gamma \) at typical LSND energies:

\[
\gamma \geq \frac{P_{\mu e}^{LSND}}{(|U_{e3}|^2)^{\text{upper}} L_{\text{LSND}}}.
\] (16)

In Fig. 1 we show the \(L/E \) dependence of the excess of the LSND events. The points with error bars are the LSND data and the histograms show the prediction of the decoherence scenario (added to the background) for various values of the power \(r \), see Eq. (10). To draw each histogram, the corresponding best fit value for \(\mu^2 \) is assumed. For comparison we show the spectrum expected due to oscillations in the model with a light sterile neutrino. The decoherence reproduces the observed spectrum quite well. It leads to a softer energy spectrum than the oscillation spectrum. Furthermore, with increase of \(r \) the softness increases and the maximum shifts to lower energies. Unfortunately these differences are small and with the LSND statistics and uncertainties it is not possible to distinguish decoherence and oscillation effects or substantially restrict \(r \) for \(r \geq 4 \). For \(\gamma L \sim 1 \), \(L \simeq 30 \) m and typical LSND neutrino energies \(E_\nu \sim 40 \) MeV, the relevant scale for the parameter \(\mu \) introduced in Eq. (10) is \(\mu^2 \sim 0.1 \) eV\(^2\).
FIG. 1: Spectrum of $\bar{\nu}_e$ excess events in LSND. The histograms correspond to the prediction of the decoherence scenario for various values of r, see Eq. (10). The best fit value for μ^2 in each case is assumed.

Thus, in the proposed scenario the LSND $\bar{\nu}_\mu \to \bar{\nu}_e$ signal is explained by the decoherence of the mass state ν_3, whose mixing with ν_μ and ν_e are given by $\cos \theta_{13} \sin \theta_{23}$ and $\sin \theta_{13}$, respectively. The oscillation effect is negligible and plays no role here. Linking the LSND signal with the last unknown mixing angle, θ_{13}, is an exciting feature of the model. We will discuss the implications of this relation in sec. IV.

III. RECONCILING LSND WITH OTHER OBSERVATIONS

To simultaneously accommodate the positive LSND signal and the lack of any evidence for flavor transitions from other short-baseline experiments, the value and energy-dependence of γ have to be properly chosen. In what follows, we demonstrate that since the neutrino energy and baseline for each experiment are different, such a choice is possible without affecting the successful description of solar, atmospheric, KamLAND, and MINOS data in terms of neutrino oscillations.

A. Short baseline and reactor experiments

In short-baseline experiments, $\Delta m^2_{ij} L/(2E_\nu) \ll 1$ and we can neglect oscillations. Therefore, for a given power r there are three parameters to describe these experiments: μ^2, $|U_{e3}|^2 \equiv \sin^2 \theta_{13}$ and $|U_{\mu 3}|^2 \equiv \cos^2 \theta_{13} \sin^2 \theta_{23}$ [see Eq. (9)]. Hence, this scenario involves the same number of parameters as the (3+1) sterile neutrino oscillation schemes. We have performed a fit to the data from LSND [1] (decay-at-rest data), KARMEN [9],...
FIG. 2: Allowed regions in the plane of $|U_{e3}|^2$ and the decoherence parameter μ^2 for $r = 4$. Shaded regions: global data at 90% and 99% CL. Curves: 99% CL regions from LSND, KARMEN, MiniBooNE and reactor data (Bugey, Chooz, Palo Verde). The star marks the global best fit point. We marginalize over $\sin^2 \theta_{23}$ taking into account the constraint from atmospheric neutrinos.

MiniBooNE [14, 48], NOMAD [12], CDHS [10], and the reactor experiments Bugey [11], Chooz [7], and Palo Verde [8]. For technical details, see Refs. [17, 49]. Results of the fit are shown in the μ^2-$|U_{e3}|^2$ plane in Fig. 2.

The LSND signal can be reconciled with the null-result from KARMEN (which has the same neutrino energy as LSND) due to the somewhat shorter baseline in KARMEN ($L \approx 18$ m) and the exponential dependence of the decoherence effect on the distance. The solid and dashed curves in Fig. 2 show the allowed regions from LSND and KARMEN, respectively. At 99% C.L., there is a significant overlap left, though there remains some tension between the two results. Notice that a similar tension exists in other scenarios developed to explain the LSND results such as the case of oscillations [15, 50] or sterile neutrino decay [19], the latter having the same exponential L dependence as in the decoherence model.

The baseline and energy of neutrinos at MiniBooNE are one order of magnitude larger than in LSND. As a result, the oscillation phase $\Delta m^2 L/(2E_\nu)$ for the two experiments are of the same order and oscillations can be neglected. We find that for $r > 2$, at MiniBooNE $\gamma L \ll 1$ and therefore the decoherence effects are negligible, rendering the new effects at MiniBooNE unobservable and explaining the non-observation of an appearance signal. As visible in Fig. 2, for MiniBooNE the decoherence becomes important only for $\mu^2 \gtrsim 20$ eV2.
and is completely negligible for values of μ relevant for LSND. Similarly to the case of standard oscillations, the soft decoherence cannot account for the event excess observed in MiniBooNE below 475 MeV. Therefore, following Ref. [14], we rely on a yet to be identified explanation of this excess and use only the data above 475 MeV in the analysis.

At the reference value $r = 4$ any decoherence effect for short baseline experiments with energies substantially larger than 40 MeV is suppressed. This implies no flavor transitions in the “high energy” experiments ($E_{\nu} \gtrsim 0.5$ GeV) MiniBooNE, NOMAD, NuTeV, and CDHS.\(^1\) Therefore, our scenario is trivially consistent with the null-result of these experiments.

The energies of reactor neutrinos are relatively low (of order 4 MeV). As a result, for these neutrinos γ is quite large:

$$\gamma \sim 2.5 \frac{\mu^2}{0.2 \, \text{eV}^2} \left(\frac{4 \, \text{MeV}}{E_{\nu}} \right)^4 \, \text{cm}^{-1}.$$ \hspace{1cm} (17)

Thus, already after a few centimeters coherence is completely lost and the survival probability in Eq. (9) becomes independent of the energy and baseline:

$$P_{\text{reactor}} \simeq 1 - 2 |U_{e3}|^2 (1 - |U_{e3}|^2).$$ \hspace{1cm} (18)

Thus, the Chooz bound on $P_{\bar{e}e}$, which is derived by comparing the measured $\bar{\nu}_e$ flux at a distance of 1 km from the source with the estimated flux from the consideration of the power of the reactor can be directly translated into an upper bound on $|U_{e3}|^2$. The upper bound on $|U_{e3}|^2$ from the combination of Chooz, Bugey and Palo Verde data is shown in Fig. 2. We find $|U_{e3}|^2 < 0.04$ at 3σ (1 d.o.f.).

The shaded regions in Fig. 2 show the results of the global analysis of the short-baseline experiments. We include $\sin^2 \theta_{23}$ as a free parameter in the fit, taking into account the standard constraint from the Super-Kamiokande atmospheric neutrino data [2], which is hardly affected by decoherence (see next section for a more detailed discussion). For $r = 4$ we find the best fit point at

$$|U_{e3}|^2 = 6.1 \times 10^{-3}, \quad \sin^2 \theta_{23} = 0.5, \quad \mu^2 = 0.27 \, \text{eV}^2,$$ \hspace{1cm} (19)

with $\chi^2_{\text{min}} = 89/(107 - 3)$ d.o.f. For these values of the parameters, the averaged probability in LSND equals $P_{\mu e}^{\text{LSND}} = 2.3 \cdot 10^{-3}$ which is within one sigma of the experimental value $(2.6 \pm 0.8) \cdot 10^{-3}$. The allowed range for $|U_{e3}|^2$ is

$$(1.4) \, 2.3 \times 10^{-3} < |U_{e3}|^2 < 2.1 \, (3.4) \times 10^{-2} \quad \text{at} \ 2 (3) \, \sigma \ (1 \, \text{d.o.f.})$$. \hspace{1cm} (20)

Here the lower bound follows from the LSND result in the limit of strong decoherence, see Eq. (14). The upper bound comes from the reactor experiments.

Let us evaluate the quality of the fit in more detail, and compare it to the case of sterile neutrino oscillations in a (3+2) scheme [51]. To this aim we divide the data into sub-sets

\(^1\) A similar strategy to reconcile low and high energy short-baseline data has been pointed out in Ref. [24] in the context of sterile neutrinos with a non-standard energy dependence.
and check the consistency of these data sets by using the so-called Parameter Goodness-of-fit (PG) criterion \([16, 52]\). It is based on the \(\chi^2\) function

\[
\chi^2_{\text{PG}} = \chi^2_{\text{tot,min}} - \sum_{i} \chi^2_{i,\text{min}},
\]

where \(\chi^2_{\text{tot,min}}\) is the \(\chi^2\) minimum of all data sets combined and \(\chi^2_{i,\text{min}}\) is the minimum of the data set \(i\). This \(\chi^2\) function measures the “price” one has to pay by the combination of the data sets compared to fitting them independently. It should be evaluated for the number of d.o.f. corresponding to the number of parameters in common to the data sets, see Ref. \([52]\) for a precise definition.

First we test the consistency of LSND with all the other null-result short-baseline experiments (NEV). The numbers given in Tab. I show that for (3+2) oscillations LSND is consistent with NEV only with a probability of 0.08%, whereas in the decoherence scenario the probability improves to 1.4%. Note that in the (3+2) case short-baseline data depend on 7 parameters, whereas for decoherence only 3 parameters are available to fit the data.\(^2\) The reason for the still relatively low probability of 1.4% is the aforementioned tension between the LSND and KARMEN results. In order to illustrate this effect we perform a second test, dividing the data into appearance experiments (LSND, KARMEN, NOMAD, MiniBooNE) and disappearance experiments (CDHS, Bugey, Chooz, Palo Verde). In this approach, LSND and KARMEN data are summed into the same data set and therefore, by assumption they are taken to be consistent. As a result, the remaining tension between them does not show up in the PG test. Note that it is reasonable to combine LSND and MiniBooNE into the same data set, because in both cases considered here they are consistent: for (3+2) oscillations they can be reconciled \([17]\) by invoking CP violation \([19, 53]\), whereas in the decoherence scenario the energy dependence of \(\gamma\) guarantees the null-result of MiniBooNE. As shown in Tab. I we find an excellent fit in the decoherence model (PG of 74%), whereas (3+2) oscillations suffer from a sever tension between appearance and disappearance experiments, allowing for compatibility with a probability of only 0.18%.

In summary, the soft decoherence proposed here provides an excellent fit to short-baseline experiments, allowing for full consistency of LSND and MiniBooNE, as well as appearance

\(^2\) As before we work at fixed \(r = 4\) and do not consider the energy exponent as a free parameter.
and disappearance experiments. Only the well-known tension between LSND and KARMEN remains unresolved.

B. Other phenomenological consequences

In this section, we show that our scenario is compatible with the standard description of the solar [5], KamLAND [6], atmospheric [2], K2K [4] and MINOS [3] data in terms of neutrino oscillations.

Solar and long-baseline reactor neutrino data: In Ref. [33], decoherence effects on solar and KamLAND neutrino data have been studied (see also Ref. [34] for the case of KamLAND only). The decoherence scenario in [33] differs from the one in the present paper: While we take $\gamma_{12} = 0 \,(d_1 = d_2)$ and discuss the effects of $\gamma = (d_1 - d_3)^2$, the authors of [33] focused on the effects of $\gamma_{12} \equiv (d_1 - d_2)^2$. Our assumption $d_1 = d_2$ in Eq. (7) ensures that oscillations in the 1-2 sector are not affected by decoherence. This leaves the dominant oscillations due to Δm^2_{21} and θ_{12} unchanged and guarantees the standard oscillation explanations for the solar and KamLAND data. Within our scenario, the effects of the damping factor on the solar neutrino flux and KamLAND neutrinos are suppressed by $|U_{e3}|^2$. The current uncertainties do not allow to resolve the effects of $|U_{e3}|^2$. Moreover, in these experiments oscillations due to Δm^2_{31} are completely averaged out and therefore decoherence effects in the 1-3 sector are unobservable.

We can use results of [33] to put an upper bound on $\gamma_{12} = (d_1 - d_2)^2$. Writing $\gamma_{12} \equiv \gamma_0 (1 \text{ GeV}/E_\nu)^r$, in Ref. [33] bounds on γ_0 have been derived from solar and KamLAND data assuming $r = 0, \pm 1, \pm 2$. Extrapolating these results to $r = 4$, one finds $\gamma_0 < 10^{-32} \text{ GeV}$. Using the parametrization shown in Eq. (10), one has $\gamma_0 = 6.4 \cdot 10^{-23} \text{ GeV} (\mu^2_{12}/\text{eV}^2)$, and

$$\mu^2_{12} < 10^{-10} \text{ eV}^2 \ll \mu^2.$$ \hfill (22)

Atmospheric neutrinos: First, we note that because of the smallness of $|U_{e3}|^2$, the decoherence effects do not considerably change the ν_e flux at low energies where the Earth matter effect can be neglected. For high energies (multi-GeV sample) where the 1-3 mixing is enhanced the decoherence effect becomes negligible. However, the muon neutrino disappearance probability can be significantly affected. In order to have a detectable effect of decoherence, the neutrino energies and baselines should be in a range for which $\gamma L \gtrsim 1$ and $\Delta_{31} L \lesssim 2\pi$. For $\Delta_{31} L \gg 2\pi$, regardless of the value of γ, the interference term $e^{-\gamma L} \cos(\Delta_{31} L)$ averages out and the sensitivity to the new effects is lost. Putting the two conditions together, we find that the effects can be noticeable only for $E_\nu < 400 \text{ MeV}$. On the other hand, for $E_\nu < 200 \text{ MeV}$, the produced muons cannot be detected in Super-Kamiokande.

In Fig. 3 we show dependence of the survival probability $\nu_\mu \to \nu_\mu$ on the neutrino zenith angle for different energy ranges. In the lowest energy range, $200 \text{ MeV} < E_\nu < 400 \text{ MeV}$, the oscillation length $L_{\text{osc}} = 2\pi E_\nu/\Delta m^2_{31} \sim 100 \text{ km}$. Hence, the condition $\Delta_{31} L \sim \pi$ implies that only for neutrinos arriving from above (for zenith angles smaller than 90°) the damping
FIG. 3: The zenith angle dependence of the ν_μ survival probability relevant for atmospheric neutrinos in three different energy intervals for $r = 3, 4$ and for the case of oscillations without decoherence. The horizontal dashed lines show the corresponding probabilities averaged over all zenith angles.

effects are significant. As follows from Fig. 3 in the vertical direction for $r = 4$ and $r = 3$ the effect can reach 10% and 30%, correspondingly. However, for these low energies the direction of the initial neutrino is not related to the muon direction and hence, the distribution of μ-like events is averaged over the zenith angle. As a result, the decoherence leads to a zenith angle independent decrease of the sub-GeV μ-like events. The size of the effect is illustrated by the horizontal dashed lines in Fig. 3 which correspond to the zenith angle averaged survival probability. For $200 \text{ MeV} < E_\nu < 400 \text{ MeV}$, we find a suppression of 5% (18%) for $r = 4$ ($r = 3$). This effect can be detected as a decrease of the ratio of the μ-like to e-like events. We find that for $r \geq 4$ this decrease is below the 5% experimental uncertainty on this ratio [2]. Essentially this effect determines the lower bound on r. Let us note that at these low energies, there is some excess of e-like events in Super-K, which can be interpreted as renormalization and deficit of μ-like events and the latter can be explained by the decoherence in our scenario.

In the energy interval $400 \text{ MeV} < E_\nu < 1.3 \text{ GeV}$ the event suppression due to the decoherence effect is below 5% even for $r = 3$. The decoherence leads to a flattening of the zenith angle dependence. However, the averaging over the zenith angle in the μ-like events—though incomplete—is still strong. So uncertainties in the extraction of the zenith angle in the Super-Kamiokande experiment do not allow us to identify the effect of decoherence for $r > 3$. In the multi-GeV range the decoherence effect is strongly suppressed. In the Soudan experiment [54], in addition to the energy of the produced muon, the recoil energy of proton (in quasi-elastic interaction) is also measured. As a result, the zenith angle of the incoming neutrino can be deduced. However, in this experiment, the statistical error is larger than 10% and the decoherence effects cannot be resolved. We conclude that for $r \geq 4$ our scenario is consistent with the oscillation interpretation of atmospheric neutrino data.\(^3\)

\(^3\) We thank Michele Maltoni for communication on this point.
Long-baseline accelerator experiments: At MINOS\(^\text{[3]}\) experiment with \(E_\nu \gtrsim 2\) GeV and \(L = 730\) km, the damping effect is very small, \((1 - e^{-\gamma L}) \approx \gamma L < 0.03\), and the present uncertainties do not allow to resolve the effect. In the K2K experiment\(^\text{[4]}\) the energies of the neutrinos are smaller and the decoherence factor is slightly larger. However, still the statistics below GeV is too low for the experiment to be sensitive to the soft decoherence.

In Ref.\(^\text{[32]}\), the decoherence effects in the atmospheric and K2K neutrino data have been studied. However, the bounds derived in\(^\text{[32]}\) do not apply here because we assume a steeper decrease of \(\gamma\) with energy.

Radioactive source experiments: In calibrations of the Gallium solar neutrino detectors SAGE\(^\text{[55]}\) and GALLEX/GNO\(^\text{[56]}\) with artificial radioactive \(^{51}\)Cr and \(^{37}\)Ar sources deficits of the signals have been reported in Ref.\(^\text{[55]}\): the weighted average of the ratio of the observed to expected event numbers equals \(R_{\text{Ga}} = 0.88 \pm 0.05\)\(^\text{[55]}\). This result was interpreted as an indication of electron neutrino disappearance due to oscillations into sterile neutrinos\(^\text{[57]}\). For the energies of the radioactive sources employed in these experiments, \(E_\nu \sim 0.8\) MeV, the damping parameter \(\gamma\) is huge [see Eq.\(^\text{(17)}\)] and the decoherence length \(\sim 1/\gamma \sim 5 \cdot 10^{-4}\) cm. So, complete decoherence occurs over a small fraction of a millimeter and the survival probability is given by Eq.\(^\text{(18)}\). For the best fit value of \(|U_{\text{e3}}|^2\) shown in Eq.\(^\text{(19)}\), we find a small effect: \(P_{ee} \simeq 0.99\). However, if \(|U_{\text{e3}}|^2\) is at its 3\(\sigma\) upper bound given in Eq.\(^\text{(20)}\) we obtain \(P_{ee} \simeq 0.93\). The latter is within the 1\(\sigma\) range of \(R_{\text{Ga}}\) and therefore the results of the calibration experiments can be at least partially explained.

IV. FUTURE TESTS OF THE SCENARIO

A. Reactors versus accelerators

The possibility to test decoherence effects at future long-baseline experiments has been discussed in\(^\text{[33, 36]}\). In our scenario, an explanation of the LSND signal implies a lower bound on the mixing angle \(\theta_{13}\). Therefore, upcoming oscillation experiments aiming at the measurement of this mixing angle will provide a crucial test.

The next generation of reactor experiments like Double-Chooz\(^\text{[58]}\), Daya Bay\(^\text{[59]}\) and Reno\(^\text{[60]}\) will search for \(\theta_{13}\) by comparing the anti-neutrino flux measured at a near and far detector. As discussed in sec.\(^\text{III A}\) a remarkable consequence of our decoherence scenario is that for baselines larger than a few centimeters the interference disappears, and \(P_{\bar{\nu}e}\) does not vary with \(L\) or \(E_\nu\), see Eq.\(^\text{(18)}\). As a result, the comparison of signals in near and far detectors at reactors will not reveal oscillations. The model predicts a \(\bar{\nu}_e\) flux reduction already at the near detector with respect to the initial flux emitted from the reactor. However, establishing this reduction would rely on the ability to determine the original flux with better than 1\% accuracy. This seems difficult to achieve.

In contrast to the reactors, in the future long-baseline accelerator experiments T2K\(^\text{[61]}\) and NO\(\nu\)A\(^\text{[62]}\) the damping effect will be quite small, \((1 - e^{-\gamma L}) \simeq \gamma L \sim 0.02\), due to smallness of \(\gamma\) in the GeV energy range. Consequently, the sensitivity of these experiments to \(|U_{e3}|^2\) through measurements of \(P_{\mu e}\) will be basically unaffected by decoherence. The
sensitivity of T2K and NOνA is in the range $\sin^2 2\theta_{13} \gtrsim 0.01$, and therefore these experiments can probe the best fit point of our scenario, Eq. (19), and large part of the allowed range Eq. (20), though the lower end of the 3σ interval for $|U_{e3}|^2$ may escape detection. Hence, by comparing the results of T2K and the upcoming reactor experiments, the validity of the present scenario can be tested. The following three situations are of particular interest.

- Comparing the flux at far and near detectors, the reactor experiments such as Double-Chooz and Daya Bay would establish a non-zero value of $|U_{e3}|^2$ in agreement with the value extracted from T2K and NOνA measurements of $P_{\mu e}$. In this case, our scenario would be ruled out because, as discussed above, $P_{\bar{\nu} e}$ at the near and far detectors should be the same.

- Neither the reactor experiments nor the long baseline experiments find any evidence for nonzero $|U_{e3}|^2$ and put an upper bound of 0.0025 on its value ($\sin^2 2\theta_{13} < 0.01$). In this case, the constraints on our scenario become quite tight, and the allowed region for $|U_{e3}|^2$ shifts to the lower end of the 3σ interval given in Eq. (20). This shifts μ^2 to larger values, of order 1 eV2 (see Fig. 2) and increases the tension between LSND and KARMEN data. In order to fully rule out the model, the 3σ bound on $|U_{e3}|^2$ has to be pushed below 0.0014 ($\sin^2 2\theta_{13} < 0.0056$), which probably requires to go beyond the initial phases of T2K and NOνA.

- While comparing the reactor neutrino fluxes at near and far detectors reveals no evidence for missing $\bar{\nu}_e$, T2K and/or NOνA consistently report a value of $|U_{e3}|^2$ in the range (0.0014, 0.034). This situation cannot happen within the standard oscillation scenario. Thus, such an outcome can be considered as a strong hint in favor of our scenario. A way to confirm or refute this hint is to compare the measured reactor neutrino flux with the original flux estimated from the power considerations, as it had been done in the analysis of the CHOOZ data. Of course, to do this the systematical uncertainties in the flux estimations have to be overcome.

Currently the MiniBooNE experiment is taking data in the anti-neutrino mode. Since our model invokes neither CP nor CPT violation, the prediction for anti-neutrinos is the same as for neutrinos. Hence one expects a null result for MiniBooNE anti-neutrino run. For the low energy experiment proposed in Ref. [63] using the LENS detector, the situation is similar to the one in the Gallium calibration experiments mentioned above. After very short distances decoherence sets in, leading to a constant event suppression according to Eq. (18). No distance dependent effect would be observed, and the measurement has to rely on the comparison of expected and predicted numbers of events, which might be difficult due to the normalization uncertainties.

The phase I of T2K is planned to be followed by a phase II which can probe the effects of Δm^2_{21} and, for relatively large values of $|U_{e3}|^2$ as predicted in our model, measure the Dirac CP-violating phase δ. The energy of the neutrino flux in the second phase of T2K will be around 750 MeV for which $\gamma \sim \Delta m^2_{21}/E_\nu$. Thus, the decoherence parameter is $(1 - e^{-\gamma L}) \simeq \gamma L \sim \Delta m^2_{21}/\Delta m^2_{31} \simeq 0.03$. Hence, one expects a distortion of the energy
spectrum at the level of a few percent. The effect might be difficult to observe in the appearance signal, since in this case, the number of events expected in T2K-II is of order of 1000, i.e., the statistical error is a few percent. Moreover, from Eqs. [9], we observe that the decoherence effects on the appearance probability, $P_{\mu e}$, is further suppressed with a factor of $|U_{e3}|^2$. However, a spectral distortion due to decoherence is also expected for the ν_μ disappearance signal, where statistics is much larger.

Future projects for superbeam (SPL) or Beta Beam experiments from CERN to a megaton scale detector in Frejus [64] have very good sensitivity to probe our scenario. These experiments will have neutrino energies roughly a factor two smaller than T2K, which enhances γ by a factor 2\(^{\gamma}\) and therefore, $\gamma L \sim O(1)$. Thus, the experiments would operate in the regime that the decoherence effect is significant and this would lead to very different spectral signatures as compared to standard oscillations.

Ref. [65] suggests to use so-called Mössbauer neutrinos to measure θ_{13}. The energy of such neutrinos is low (for example, for neutrinos from Tritium decay, $E_\nu = 18.60$ keV). For such neutrinos, our scenario predicts Eq. (18), while within the standard oscillation scenario, $P_{ee} = 1 - 4|U_{e3}|^2(1 - |U_{e3}|^2) \sin^2 \Delta_{31} L/2 \ [66]$. Considering that the energy spectrum of the Mössbauer neutrinos is monochromatic, it will not be possible to discriminate between the two scenarios by studying the energy dependence of P_{ee}. However, by measuring the flux at several distances it will be possible to make a distinction. If the soft decoherence is realized in nature and the measurement is done at a distance L with $\sin^2 \Delta_{31} L/2 \neq 1/2$, neglecting the decoherence effects will cause a disagreement between the results of T2K and NOνA with this measurement.

B. Decoherence in matter; Supernova neutrinos

In matter, the total Hamiltonian includes the interaction term described by the matrix of potentials V: $H \rightarrow H + V$. In the neutrino mass basis V is non-diagonal, and therefore $[H, D_{ni}] \neq 0$. The fact that the decoherence matrix does not commute with V and consequently with the total Hamiltonian leads to a new effect: statistical equilibration of flavors and masses. This means that after sufficient time ($t \gtrsim ([V, D])^{-1/2}$), ρ converges to unit matrix times a normalization factor and consequently, in the case of two neutrino mixing, the probabilities of finding neutrinos with the mass m_1 and m_2 in the course of evolution converge to $P_1 = P_2 = 1/2$. Similarly for mixed flavors as a result of long enough evolution $P_e = P_x = 1/2$, where x is some combination of ν_μ and ν_τ neutrinos with which ν_e mixes. This phenomenon is similar to the flavor equilibration in the presence of mixing and inelastic collisions which destroys coherence. Such a type of equilibration has been considered for the active-sterile neutrino oscillations in the Early Universe.

In our scenario non-trivial interplay of the decoherence and matter effect should take place for solar, atmospheric and supernova neutrinos. No significant effect is expected for the solar neutrinos inside the Sun as well the Earth and also for the atmospheric neutrinos inside the Earth. Indeed, for solar neutrinos due to low energies the matter effect on 1-3 mixing is negligible. For atmospheric neutrinos inside the earth the matter effect on 1-3
mixing is substantial in the multi GeV range where decoherence is negligible. In contrast, for supernova neutrinos ($E = 5 - 40$ MeV, and huge densities) both matter and decoherence effects are strong.

Let us estimate qualitatively the decoherence effect on supernova neutrinos. In our scenario the 1-3 mixing should be relatively large so that without decoherence the conversion in the H-resonance region (due to 1-3 mixing and mass splitting) should be highly adiabatic. In the case of normal mass hierarchy that would lead to the transition $\nu_e \rightarrow \nu_3$ inside the star. As a consequence, no earth matter effect is expected in the neutrino channel. In contrast, in the presence of decoherence and equilibration of mass states only half of ν_e’s will end up as ν_3 and another half will transform in the H-resonance region to ν_{2m} - the second eigenstate in matter. Soft decoherence leads to features in supernova neutrinos similar to the ones expected within standard oscillations with $\sin^2 2\theta_{13} < 10^{-4}$; i.e., non-adiabatic conversion in the H-resonance \cite{67}. In particular, the earth matter effect should show up. Thus, one expects mismatch of the 1-3 mixing measured at the accelerators and bound from studies of supernova neutrinos.

Detailed analysis of the decoherence in matter and effects on supernova neutrinos are beyond the scope of this paper. Here we will present a simplified consideration which shows that the statistical equilibration is achieved already before the 1-3 resonance. Recall that in matter the mass states are not the eigenstates of propagation and therefore oscillate. In particular, ν_3 should oscillate into a certain combination of ν_1 and ν_2, ν_a, which depends on the density. In our soft decoherence scenario, the decoherence length for supernova neutrinos ($E \sim (10 - 20)$ MeV) is rather small: $L_{\text{decoh}} = 1/\gamma \sim 1$ m. The oscillation length in matter is determined by the refraction length: $l_m \approx 2\pi/V$. Therefore for not very large V we have $L_{\text{decoh}} \ll l_m$. In this limit, the oscillation effect can be considered in the following way. The neutrino trajectory can be divided into intervals of size L_{decoh}. A given mass state, ν_3 oscillates on the first interval L_{decoh} $\nu_3 \rightarrow \sqrt{1 - \alpha_i^2}\nu_3 + \alpha_i \nu_a$, where $|\alpha_i|^2 = P_i$ is the transition probability. At the end of this interval the coherence between ν_3 and ν_a components of the state is destroyed and in the next interval, L_{decoh}, they will oscillate independently. At the end of the second interval we will have split of the states again, and so forth. The probability of transition $\nu_3 \rightarrow \nu_a$ in the ith interval, $P_i \ll 1$ can be estimated as

$$P_i \sim \sin^2 2\theta_{\text{mass}}^m (V_i) \sin^2 \phi_i \approx \sin^2 2\theta_{\text{mass}}^m (V_i) \phi_i^2 \approx \sin^2 2\theta_{13} (V_i L_{\text{decoh}})^2,$$

(23)

where $\theta_{\text{mass}}^m = \theta_{13}^m - \theta_{13}$ is the mixing angle of the mass states in matter (θ_{13}^m is the mixing angle of the flavor states in matter), V_i is the matter potential in the ith interval, ϕ_i is the half-phase of oscillations in the ith interval. Notice that to derive Eq. (23) we have used the constant density approximation for the oscillation probability within each interval of size L_{decoh}. We have then used $\phi_i \ll 1$ which follows from $L_{\text{decoh}} \ll l_m$.

Since the initial flux is mainly composed of ν_3, the flux transition $\nu_3 \rightarrow \nu_a$ will dominate over the opposite transition $\nu_a \rightarrow \nu_3$, and eventually this will lead to the equilibration of the ν_3 and ν_a fluxes. The total transition probability after passing n intervals is given by

$$P \approx \sum_i^n P_i = \sum_i^n \sin^2 2\theta_{13} V_i^2 L_{\text{decoh}}^2.$$
This formula is valid when $P \ll 1$ (linear regime) for which the inverse transition still can be neglected. Still the condition $P \sim 1$ allows to evaluate the length (numbers of intervals) over which the equilibration is achieved. Substituting summation in (24) by integration we obtain

$$P \approx \sin^2 2\theta_{13} L_{\text{decoh}} \int_{r_0}^{r_R} V(r)^2 dr,$$

(25)

where $r_R \sim 10^7$ m is the radius of the resonance layer. (Recall we are estimating the distance from the resonance layer in the direction of center of a star on which equilibration is reached.) Taking $V = V_R(r_R/r)^3$ we obtain from (25)

$$P \approx \sin^2 2\theta_{13} [L_{\text{decoh}} V(r_0)]^2 \frac{r_0}{5L_{\text{decoh}}}.$$

(26)

Taking $V_R \sim \Delta m^2_{13}/E_\nu$, from Eq. (25), we find that for the whole range of θ_{13} within our scenario [see Eq. (20)], propagating from $r_0 \sim 0.1 r_R$ to r_R the equilibration condition ($P \sim 1$) is fulfilled.

V. CONCLUSIONS

Clearly there is no simple explanation of the LSND result which is consistent with other neutrino data. According to some proposals it requires the combination of two exotic mechanisms. One can ask if any yet unknown mechanism exists which can provide a description of (reconcile) all the data. One can take the bottom up approach and try to uncover properties (energy and distance dependence) of this unknown mechanism. Our proposal is essentially along this line.

We have proposed an explanation of the LSND signal as manifestation of the quantum decoherence of mass states associated to the 1-3 mixing and mass splitting. The decoherence leads to a complete or partial damping of the interference terms in the oscillation probabilities. Our phenomenological scenario is based on the three-neutrino framework (without any sterile neutrinos) and makes use of a single decoherence parameter γ with a sharp energy dependence (soft decoherence). The main features of our scenario, which allow us to reconcile the LSND signal with the results of other experiments are:

- zero or negligible decoherence effect on the 1-2 mixing and splitting ($\gamma_{12} = 0$);
- decoherence of only the ν_3 mass eigenstate;
- a strong decrease of the decoherence effect with the neutrino energy:

$$\gamma \equiv \gamma_{13} = \gamma_{23} \propto E_\nu^{-r}.$$

The strong decrease of γ with energy allows us to accommodate the LSND signal, while being consistent with the null-results of experiments at higher energies, such as MiniBooNE, CDHS, NOMAD, and NuTeV. At the same time this energy dependence guarantees standard neutrino oscillations in the atmospheric and MINOS experiments. The lower bound on the energy exponent, $r \gtrsim 4$, follows from the low energy atmospheric neutrino data; $r = 4$ can be
considered as an optimal reference value. The assumption $\gamma_{12} = 0$ ensures that oscillations in the 1-2 sector relevant for solar neutrinos and the KamLAND experiment are not affected.

The LSND signal is determined by the mixing angle θ_{13}, and the degree of decoherence. It implies a lower bound on 1-3 mixing, $\sin^2 2\theta_{13} > 0.006 (3\sigma)$, which corresponds to complete decoherence. This in turn, leads to testable predictions for upcoming experimental searches of 1-3 mixing. For reactor experiments (MeV energies) like Double-Chooz or Daya Bay we predict full decoherence already after a few centimeters, leading to no oscillation effect when results from near and far detectors are compared. In contrast, the long-baseline accelerator experiments (GeV energy range) like T2K or NOνA are practically not affected by decoherence and a signal for θ_{13} should show up. Hence, a mismatch in the θ_{13} measurements of upcoming reactor and accelerator long baseline experiments would be a clear indication for the proposed scenario. At low-energy long-baseline experiments such as the CERN SPL superbeam or a Beta Beam with a relativistic γ-factor of 100, our decoherence scenario will lead to a distinct energy spectrum of the appearance as well as disappearance signals. The soft decoherence can also show up as a distortion in the energy dependence of disappearance probability in the second phase T2K. This scenario can also partially account for the anomaly found in Gallium radioactive source experiments $^{[55]}$, though explaining the full effect might be difficult. Soft decoherence can also affect the supernova neutrinos. Despite relatively large θ_{13}, decoherence leads to a neutrino composition similar to the case of non-adiabatic conversion which takes place in the case of the standard oscillation with $\sin^2 2\theta_{13} < 10^{-4}$. Thus, comparing θ_{13} measured by T2K and NOνA and supernova bound on this mixing angle can be considered as another way to test the present scenario.

The energy dependence of the decoherence effect has to be explained by an underlying theory that gives rise to quantum decoherence. In this paper we considered the simplest power law dependence of γ in the whole energy range. In general γ may have a more complicated dependence. Indeed, the fact that $\gamma \to \infty$ for $E_\nu \to 0$ indicates that there should be some low energy cut-off below which the dependence of γ on E_ν becomes modified. The restrictions on γ come from neutrino data in the energy range from ~ 10 MeV to multi-GeV. With a general energy dependence, it is possible that for $E_\nu < 10$ MeV, γ remains constant or even becomes small again. Such a behavior could modify our predictions for low energy experiments, especially reactor neutrinos. Note, however, that under the power law assumption the coherence for reactor neutrinos is lost already within a few cm, whereas the close detectors are at several hundred meters. So, if γ is constant below LSND energies or even decreases not very fast, we still will have decoherence. Hence, most probably at least partial decoherence will be observed and in this case still 1-3 mixing will be different in reactor and accelerator experiments. Only in the case of a very sharp cut-off below $E_\nu \sim 10$ MeV (a behavior which appears quite unnatural) one will see the same 1-3 mixings in both cases. In any case the decoherence can be still probed by studies of the energy spectrum in the phase II of T2K, and CERN beta beam and SPL experiments. Moreover, we still expect a disagreement between θ_{13} measurements by T2K and NOνA and the bounds from supernova data.
Acknowledgments

We thank Michele Maltoni for useful communications. A.Yu.S. acknowledges some early discussions of the decoherence and LSND result with Srubabati Goswami. Y.F. thanks ICTP where part of this work has been done for its support and the hospitality of its staff. She is also grateful to Ashoke Sen for useful discussions. T.S. would like to thank Alexander Sakharov for discussions on decoherence due to quantum gravity.

[1] A. Aguilar et al. [LSND Collaboration], Phys. Rev. D 64, 112007 (2001) (hep-ex/0104049).
[2] Y. Ashie et al., [Super-Kamiokande Collaboration], Phys. Rev. D 71, 112005 (2005) (hep-ex/0501064).
[3] D. G. Michael et al. [MINOS Collaboration], Phys. Rev. Lett. 97 (2006) 191801 (hep-ex/0607088).
[4] M. H. Ahn et al. [K2K Collaboration], Phys. Rev. D 74 (2006) 072003 (hep-ex/0606032).
[5] Q. R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett. 89, 011301 (2002) (nucl-ex/0204008).
[6] T. Araki et al., [KamLAND Collaboration], Phys. Rev. Lett. 94, 081801 (2005) (hep-ex/0406035).
[7] M. Apollonio et al., Eur. Phys. J. C 27, 331 (2003) (hep-ex/0301017).
[8] F. Boehm et al., Phys. Rev. D 64, 112001 (2001) (hep-ex/0107009).
[9] B. Armbruster et al. [KARMEN Collaboration], Phys. Rev. D 65, 112001 (2002) (hep-ex/0203021).
[10] F. Dydak et al., Phys. Lett. B 134, 281 (1984).
[11] Y. Declais et al., Nucl. Phys. B 434, 503 (1995).
[12] P. Astier et al. [NOMAD Collaboration], Phys. Lett. B 570 (2003) 19 (hep-ex/0306037).
[13] S. Avvakumov et al., Phys. Rev. Lett. 89 (2002) 011804 (hep-ex/0203018).
[14] A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. Lett. 98, 231801 (2007) (hep-ex/0704.1500).
[15] A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], 0805.1764 (hep-ex).
[16] M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, Nucl. Phys. B 643, 321 (2002) (hep-ph/0207157).
[17] M. Maltoni and T. Schwetz, Phys. Rev. D 76 (2007) 093005 (0705.0107).
[18] E. Ma, G. Rajasekaran and I. Stancu, Phys. Rev. D 61, 071302 (2000) (hep-ph/9908489); E. Ma and G. Rajasekaran, Phys. Rev. D 64, 117303 (2001) (hep-ph/0107203).
[19] S. Palomares-Ruiz, S. Pascoli and T. Schwetz, JHEP 0509, 048 (2005) (hep-ph/0505216).
[20] H. Murayama and T. Yanagida, Phys. Lett. B 520, 263 (2001) (hep-ph/0010178); G. Barenboim, L. Borissov, J. D. Lykken and A. Y. Smirnov, JHEP 0210 (2002) 001 (hep-ph/0108199); G. Barenboim, L. Borissov and J. Lykken, (hep-ph/0212116); M. C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Phys. Rev. D 68, 053007 (2003) (hep-ph/0306226); V. Barger, D. Marfatia and K. Whisnant, Phys. Lett. B 576, 303 (2003) (hep-ph/0308299).
[21] V. A. Kostelecky and M. Mewes, Phys. Rev. D 70, 076002 (2004) [hep-ph/0406255]; A. de Gouvea and Y. Grossman, Phys. Rev. D 74, 093008 (2006) [hep-ph/0602237]; T. Katori, A. Kostelecky and R. Taylor, Phys. Rev. D 74, 105009 (2006) [hep-ph/0606154].
[22] D. B. Kaplan, A. E. Nelson and N. Weiner, Phys. Rev. Lett. 93, 091801 (2004) [hep-ph/0401099]; K. M. Zurek, JHEP 0410, 058 (2004) [hep-ph/0405141]; V. Barger, D. Marfatia and K. Whisnant, Phys. Rev. D 73, 013005 (2006) [hep-ph/0509163].
[23] H. Pas, S. Pakvasa and T. J. Weiler, Phys. Rev. D 72, 095017 (2005) [hep-ph/0504096].
[24] T. Schwetz, JHEP 0802 (2008) 011 [0710.2985].
[25] A. E. Nelson and J. Walsh, 0711.1363 [hep-ph].
[26] G. Barenboim and N. E. Mavromatos, JHEP 0501 (2005) 034 [hep-ph/0404014].
[27] G. Barenboim, N. E. Mavromatos, S. Sarkar and A. Waldron-Lauda, Nucl. Phys. B 758 (2006) 90 [hep-ph/0603028].
[28] S. W. Hawking, Commun. Math. Phys. 43 (1975) 199; Phys. Rev. D 14 (1976) 2460.
[29] J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos and M. Srednicki, Nucl. Phys. B 241 (1984) 381.
[30] S. B. Giddings and A. Strominger, Nucl. Phys. B 307 (1988) 854.
[31] N. E. Mavromatos and S. Sarkar, hep-ph/0612193.
[32] E. Lisi, A. Marrone and D. Montanino, Phys. Rev. Lett. 85 (2000) 1166 [hep-ph/0002053]; G. L. Fogli, E. Lisi, A. Marrone and D. Montanino, Phys. Rev. D 67 (2003) 093006 [hep-ph/0303064].
[33] G. L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Phys. Rev. D 76 (2007) 033006 [0704.2568].
[34] T. Schwetz, Phys. Lett. B 577, 120 (2003) [hep-ph/0308003].
[35] M. Blennow, T. Ohlsson and W. Winter, JHEP 0506 (2005) 049 [hep-ph/0502147]; N. E. Mavromatos, A. Meregaglia, A. Rubbia, A. Sakharov and S. Sarkar, Phys. Rev. D 77 (2008) 053014 [0801.0872].
[36] D. V. Ahluwalia, Mod. Phys. Lett. A 16 (2001) 917 [hep-ph/0104316]; D. Hooper, D. Morgan and E. Winstanley, Phys. Lett. B 609 (2005) 206 [hep-ph/0410094]; L. A. Anchordoqui et al., Phys. Rev. D 72 (2005) 065019 [hep-ph/0506168]; Y. Farzan and A. Y. Smirnov, 0803.0495 [hep-ph].
[37] C. P. Sun and D. L. Zhou, hep-ph/9808334; A. M. Gago, E. M. Santos, W. J. C. Teves and R. Zukanovich Funchal, [hep-ph/0208166].
[38] P. Huet and M. E. Peskin, Nucl. Phys. B 434 (1995) 3 [hep-ph/9403257]; J. R. Ellis, J. L. Lopez, N. E. Mavromatos and D. V. Nanopoulos, Phys. Rev. D 53 (1996) 3846 [hep-ph/9505340]; F. Benatti and R. Floreanini, Phys. Lett. B 389 (1996) 100 [hep-th/9607059]; R. A. Bertlmann, W. Grimus and B. C. Hiesmayr, Phys. Rev. D 60 (1999) 114302 [hep-ph/9902427].
[39] R. Adler et al. [CLEAR Collaboration], Phys. Lett. B 364 (1995) 239 [hep-ex/9511001]; F. Ambrosino et al. [KLOE Collaboration], Phys. Lett. B 642 (2006) 315 [hep-ex/0607027].
[40] A. Go et al. [Belle Collaboration], Phys. Rev. Lett. 99 (2007) 131802 [quant-ph/0702267].
[41] F. Benatti and R. Floreanini, Phys. Lett. B 451 (1999) 422 [quant-ph/9902026].
[44] G. Lindblad, Commun. Math. Phys. 48 (1976) 119.
[45] T. Banks, L. Susskind and M. E. Peskin, Nucl. Phys. B 244 (1984) 125.
[46] S. L. Adler, Phys. Lett. A 265 (2000) 58.
[47] F. Benatti and H. Narnhofer, Lett. Math. Phys. 15 (1988) 325.
[48] Technical data on the MiniBooNE oscillation analysis is available at the webpage http://www-boone.fnal.gov/for_physicists/april07daterelease/
[49] W. Grimus and T. Schwetz, Eur. Phys. J. C 20, 1 (2001) hep-ph/0102252.
[50] E. D. Church, K. Eitel, G. B. Mills and M. Steidl, Phys. Rev. D 66 (2002) 013001 hep-ex/0203023.
[51] M. Sorel, J. M. Conrad and M. Shaevitz, Phys. Rev. D 70, 073004 (2004) hep-ph/0305255.
[52] M. Maltoni and T. Schwetz, Phys. Rev. D 68, 033020 (2003) hep-ph/0304176.
[53] G. Karagiorgi et al., Phys. Rev. D 75, 013011 (2007) hep-ph/0609177; J. T. Goldman, G. J. Stephens and B. H. J. McKellar, Phys. Rev. D 75 (2007) 091301 nucl-th/0703023.
[54] M. C. Sanchez et al. [Soudan 2 Collaboration], Phys. Rev. D 68 (2003) 113004 hep-ex/0307069.
[55] D. N. Abdurashitov et al., Phys. Rev. Lett. 77 (1996) 4708; J. N. Abdurashitov et al. [SAGE Collaboration], Phys. Rev. C 59 (1999) 2246 hep-ph/9803418; J. N. Abdurashitov et al., Phys. Rev. C 73 (2006) 045805 nucl-ex/0512041.
[56] P. Anselmann et al. [GALLEX Collaboration], Phys. Lett. B 342 (1995) 440; W. Hampel et al. [GALLEX Collaboration], Phys. Lett. B 420 (1998) 114.
[57] C. Giunti and M. Laveder, Mod. Phys. Lett. A 22, 2499 (2007) hep-ph/0610352; M. A. Acero, C. Giunti and M. Laveder, 0711.4222 [hep-ph].
[58] F. Ardellier et al. [Double Chooz Collaboration], hep-ex/0606025.
[59] X. Guo et al. [Daya Bay Collaboration], hep-ex/0701029.
[60] http://neutrino.snu.ac.kr/RENO/INTRO/intro.html
[61] Y. Itow et al. [The T2K Collaboration], hep-ex/0106019.
[62] D. S. Ayres et al. [NOvA Collaboration], hep-ex/0503053.
[63] C. Grieb, J. Link and R. S. Raghavan, Phys. Rev. D 75, 093006 (2007) hep-ph/0611178.
[64] J. E. Campagne, M. Maltoni, M. Mezzetto and T. Schwetz, JHEP 0704 (2007) 003 hep-ph/0603172.
[65] R. S. Raghavan, hep-ph/0511191.
[66] E. K. Akhmedov, J. Kopp and M. Lindner, 0802.2513 [hep-ph]; 0803.1424 [hep-ph]; see however, S. M. Bilenky, F. von Feilitzsch and W. Potzel, 0803.0527 [hep-ph]; 0804.3409 [hep-ph].
[67] A. S. Dighe and A. Y. Smirnov, Phys. Rev. D 62 (2000) 033007 hep-ph/9907423.