The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa. However, the irreversible post-mortem degradation of ancient DNA has so far limited its recovery—outside permafrost areas—to specimens that are not older than approximately 0.5 million years (Myr)\(^3\). By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I\(^4,5\), and suggested the presence of protein residues in fossils of the Cretaceous period\(^5\)—although with limited phylogenetic use\(^6\).

In the absence of molecular evidence, the speculation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch\(^7-9\), using the proteome of dental enamel from a *Stephanorhinus* tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)\(^10\). Molecular phylogenetic analyses place this *Stephanorhinus* as a sister group to the clade formed by the woolly rhinoceros (*Coelodonta antiquitatis*) and Merck’s rhinoceros (*Stephanorhinus kirchbergensis*). We show that *Coelodonta* evolved from an early *Stephanorhinus* lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus *Stephanorhinus* is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel—which is the hardest tissue in vertebrates\(^11\), and is highly abundant in the fossil record—can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.

The phylogenetic placement of extinct species relies increasingly on the sequencing of ancient DNA. Efforts to improve the molecular tools that underlie the recovery of ancient DNA have enabled the reconstruction of approximately 0.4-Myr-old and approximately 0.7-Myr-old DNA sequences from temperate deposits\(^12\) and subpolar regions\(^13\), respectively. However, no ancient DNA data have so far been generated from species that became extinct beyond this time range. By contrast, ancient proteins represent a more-durable source of genetic information, and have been reported\(^13\) to survive (in eggshell) for up to 3.8 Myr. Ancient protein sequences can carry taxonomic and phylogenetic information that is useful for tracing the evolutionary relationships between extant and extinct species\(^14,15\). However, the recovery of ancient mammal proteins from sites that are too old or too warm to be compatible with the preservation of ancient DNA has so far mostly been limited to collagen type I (COL1). This protein is not an ideal phylogenetic marker, as it is highly conserved\(^16\). For example, regardless of endogeneity\(^7\), the phylogenetic placement of Dinosauria in relation to extant Aves on the basis of collagen appears to be unstable\(^8\).

This suggests that the exclusive use of COL1 constrains deep-time molecular phylogenetics. Here we sought to overcome these limitations by testing whether dental enamel can be used as an abundant source of larger, and more phylogenetically informative, sets of ancient proteins that are preserved longer than COL1.

The archaeological site of Dmanisi (South Caucasus, Georgia) (Fig. 1a) has been dated to approximately 1.77 Myr ago by a combination of \(^{40}\)Ar/\(^{39}\)Ar dating, palaeomagnetism and biozonation\(^18,19\), this age represents a context that is currently considered to be outside the scope of the recovery of ancient DNA. This site has been excavated since 1983, which has resulted in the discovery—along with stone tools and contemporaneous fauna (Supplementary Table 1)—of almost 100 hominin fossils, including 5 skulls, that represent the ‘georgicus’ palaeodeme within *Homo erectus*\(^10\). These are the earliest fossils of the genus *Homo* outside of Africa.

The geology of the Dmanisi deposits favours the preservation of faunal material (see Supplementary Information), as the primary aeolian deposits provide rapid burial in fine-grained calcareous sediments. We studied 11 bone, 1 dentine and 14 enamel samples (these enamel samples were occasionally associated with traces of dentine (enamel + dentine))
from 23 specimens of large mammals from multiple excavation units within stratum B1 (Fig. 1b, Extended Data Fig. 1, Extended Data Table 1, Supplementary Table 3). This is an ashfall deposit that contains faunal remains in a range of geomorphic contexts that are firmly dated to between 1.85 and 1.76 Myr ago19. High-resolution tandem mass spectrometry was used to confidently sequence ancient proteins from the set of faunal remains, after proteolytic digestion-based (protocols A and B) or digestion-free (protocol C) preparation of samples (for details of protocols, see Methods, Supplementary Information). Analysis of ancient DNA was attempted, unsuccessfully, on a subset of five bone and dentine specimens (Methods).

We recovered endogenous proteins from 15 out of the 23 specimens that we studied. Digestion-based peptide extraction from bone, dentine and enamel + dentine specimens led to the sporadic recovery (6 out of 19) of a limited number of collagen fragments. By contrast, digestion-free peptide extraction of enamel + dentine and bone specimens resulted in high rates of recovery of the enamel proteome (13 out of 14 specimens) (Extended Data Table 1).

The small proteome20,21 of mature dental enamel consists of structural proteins (amelogenin (multiple species express the X isoform, AMELX; and males also express the Y isoform, AMELY), enamelin (ENAM), amelotin (AMTN) and ameloblastin (AMBN)) as well as enamel-specific proteases that are secreted during amelogenesis (matrix metalloproteinase-20 (MMP20) and kallikrein 4 (KLK4)). The presence of non-specific proteins—such as serum albumin (ALB)—has also previously been reported in mature dental enamel20,22,23. The limited availability of free water in the enamel hydroxyapatite matrix, a spontaneous form of hydrolytic damage that is consistently observed in ancient samples, is generally much less frequent in the control sample. Similarly, unlike in the control sample, the distribution of peptide lengths in the Dmanisi dataset is dominated by shorter fragments that are generated by advanced, diagenetically induced terminal hydrolysis22,23. These modifications are absent or much less frequent in the control sample. Together, these independent lines of evidence clearly define the substantial biomolecular damage that has affected the enamel proteomes that we retrieved independently support the authenticity of the amino acid sequences that we reconstructed. To demonstrate beyond reasonable doubt the correct peptide sequence assignments of our tandem mass spectra, we performed manual validation of peptide–spectrum matches, conducted fragment-ion intensity predictions and generated synthetic peptides for a range of phylogenetically informative and phosphorylated peptides (Methods, Supplementary Data).

Multiple lines of evidence support the authenticity and the endogenous origin of the sequences that we recovered. Dental enamel proteins are extremely tissue-specific, and are confined to this mineral matrix20. The amino acid composition of the intra-crystalline protein fraction (measured by amino acid racemization analysis) indicates that the dental enamel behaves as a closed system, and is unaffected by exchanges of amino acids and protein residues with the burial environment (Extended Data Fig. 4). The measured rate of asparagine and glutamine deamidation, which is a spontaneous form of hydrolytic damage that is consistently observed in ancient samples, is particularly advanced. Deamidation in enamel from Dmanisi is higher than in the control sample of enamel, which provides support for the antiquity of the peptides that we recovered (Fig. 2a, Supplementary Information). Other forms of non-enzymatic modifications are abundantly present as well. Tyrosine (Y) experienced mono- and di-oxidation, and tryptophan (W) was extensively converted into multiple oxidation products (Fig. 2b, Supplementary Information). The oxidative degradation of histidine (H) and conversion of arginine (R), leading to the accumulation of ornithine, were also observed (Supplementary Information). These modifications are absent or much less frequent in the control sample. Similarly, unlike in the control sample, the distribution of peptide lengths in the Dmanisi dataset is dominated by shorter fragments that are generated by advanced, diagenetically induced terminal hydrolysis22,23. These modifications are absent or much less frequent in the control sample. Together, these independent lines of evidence clearly define the substantial biomolecular damage that has affected the enamel proteomes that we retrieved independently support the authenticity of the amino acid sequences that we reconstructed. To demonstrate beyond reasonable doubt the correct peptide sequence assignments of our tandem mass spectra, we performed manual validation of peptide–spectrum matches, conducted fragment-ion intensity predictions and generated synthetic peptides for a range of phylogenetically informative and phosphorylated peptides (Methods, Supplementary Data).

We confidently detected site-specific phosphorylation (Fig. 3, Extended Data Figs. 2, 5), a physiological post-translational modification that is highly stable and tightly regulated in vivo and that has previously been detected in dental enamel proteins24,25. Most of the phosphorylated sites that we identified belong to the S-X-E or S-X-phosphorylated S motifs, which are recognized by the secreted kinases of the FAM20C family; these kinases are involved in the phosphorylation of extracellular proteins and regulation of biomineralization26. Spectra that supported the identification of serine phosphorylation were validated manually and by comparison with tandem mass spectra recorded from synthetic peptides (Supplementary Information), which confirmed the automated identifications from MaxQuant software. Phosphorylated serine and threonine residues may be subjected to spontaneous dephosphorylation. However, by complexing with the Ca$^{2+}$ ions in the enamel hydroxyapatite matrix, the peptide-bound phosphate groups can remain stable over millennia, as recently observed for ancient bone27. Previous studies have demonstrated that when complexed with the mineral matrix, approximately 3.8-Myr-old protein remains can be retrieved from sub-tropical environments13. The limited availability of free water in the enamel matrix further reduces spontaneous dephosphorylation via β-elimination. These observations demonstrate that the heavily modified proteome of the dental enamel retrieved from the approximately 1.77-Myr-old faunal material from Dmanisi is endogenous and almost complete.
bone proteome, enabled us to confirm or improve the morphological reconstructions place the Dmanisi specimen closer to rhinoceros (C. antiquitatis) and Merck's rhinoceros (C. etruscus). The proteomes of four tooth specimens—Dm.6/151.4.A4.12–16630 (Pseudodama), Dm.5/157–16635, a lower molar assigned to a Stephanorhinus of the hundsheimensis group that includes S. ex gr. etruscus/hundseheimensis (Stephanorhinus ex gr. etruscus/hundseheimensis) (Fig. 1c, Supplementary Information), returned the highest product identification of peptides of origin (Extended Data Fig. 6, Supplementary Information), as an early divergent sister lineage (Fig. 4, Extended Data Fig. 8).

Our phylogenetic reconstruction confidently recovered the expected differentiation of the Rhinoceros genus from other genera that we considered, and is consistent with previous cladistic28 and genetic analyses35 (Supplementary Information). This topology defines two-horned products, measured as relative spectral counts. c. Alignment of deamidated (de) peptides (positions 124–137, ENAM) retrieved by digestion-free acid demineralization from specimen Dm.5/157–16635. Numbers to the right refer to stage-tip (see Supplementary Table 3 in the Supplementary Information) and MS/MS scan (see 'Data availability' in Methods) numbers. d. Bar plot of distribution of peptide lengths in undigested proteomes from the dental enamel of specimen Dm.5/157–16635 and of a control (mediaeval sheep or goat).

We used the proteome-sequence information that we recovered to improve taxonomic assignment and achieve sex attribution for some of the faunal remains from Dmanisi. Phylogenetic analysis of the five largest enamel + dentine proteomes, and of a moderately large bone proteome, enabled us to confirm or improve the morphological identification of their specimens of origin (Extended Data Fig. 6, Supplementary Figs. 10–15). Our confident identification of peptides specific for isof orm Y of amelogenin (AMELY), which is encoded on the non-recombinant portion of the Y chromosome, indicates that the non-recombinant portion of the Y chromosome, indicates that four tooth specimens—Dm.6/151.4.A4.12–16630 (Pseudodama) (Dm. code refers to the accession number in the Georgian National Museum (GNM) and the appended five-digit number refers to the reference code of the sample from the Centre for GeoGenetics (CGG)), Dm.69/64.3.B1.53–16631 (Cervidae), Dm.8/154.4.A4.22–16639 (Bovidae) and Dm.67/7.IL.296–16856 (Cervidae)—belonged to male individuals21 (Extended Data Fig. 7a–d).

An enamel + dentine fragment from specimen Dm.5/157–16635, a lower molar assigned to a Stephanorhinus of the group that includes Stephanorhinus etruscus and Stephanorhinus hundsheimensis (Stephanorhinus ex gr. etruscus/hundseheimensis) (Fig. 1c, Supplementary Information), returned the highest proteome-sequence coverage, which encompassed a total of 875 amino acids across 987 peptides (6 proteins) (Extended Data Fig. 2, Supplementary Information). Following the alignment of the enamel protein sequences retrieved from Dm.5/157–16635 against their homologues from all extant rhinoceros species plus the extinct woolly rhinoceros (C. antiquitatis) and Merck's rhinoceros (S. kirchbergenisis), phylogenetic reconstructions place the Dmanisi specimen closer to these two extinct rhinoceroses than to the extant Sumatran rhinoceros (Dicerorhinus sumatrensis), as an early divergent sister lineage (Fig. 4, Extended Data Fig. 8).

Our phylogenetic reconstruction confidently recovered the expected differentiation of the Rhinoceros genus from other genera that we considered, and is consistent with previous cladistic28 and genetic analyses35 (Supplementary Information). This topology defines two-horned products, measured as relative spectral counts. c. Alignment of deamidated (de) peptides (positions 124–137, ENAM) retrieved by digestion-free acid demineralization from specimen Dm.5/157–16635. Numbers to the right refer to stage-tip (see Supplementary Table 3 in the Supplementary Information) and MS/MS scan (see 'Data availability' in Methods) numbers. d. Bar plot of distribution of peptide lengths in undigested proteomes from the dental enamel of specimen Dm.5/157–16635 and of a control (mediaeval sheep or goat).

We used the proteome-sequence information that we recovered to improve taxonomic assignment and achieve sex attribution for some of the faunal remains from Dmanisi. Phylogenetic analysis of the five largest enamel + dentine proteomes, and of a moderately large bone proteome, enabled us to confirm or improve the morphological identification of their specimens of origin (Extended Data Fig. 6, Supplementary Figs. 10–15). Our confident identification of peptides specific for isof orm Y of amelogenin (AMELY), which is encoded on the non-recombinant portion of the Y chromosome, indicates that four tooth specimens—Dm.6/151.4.A4.12–16630 (Pseudodama) (Dm. code refers to the accession number in the Georgian National Museum (GNM) and the appended five-digit number refers to the reference code of the sample from the Centre for GeoGenetics (CGG)), Dm.69/64.3.B1.53–16631 (Cervidae), Dm.8/154.4.A4.22–16639 (Bovidae) and Dm.67/7.IL.296–16856 (Cervidae)—belonged to male individuals21 (Extended Data Fig. 7a–d).

An enamel + dentine fragment from specimen Dm.5/157–16635, a lower molar assigned to a Stephanorhinus of the group that includes Stephanorhinus etruscus and Stephanorhinus hundsheimensis (Stephanorhinus ex gr. etruscus/hundseheimensis) (Fig. 1c, Supplementary Information), returned the highest proteome-sequence coverage, which encompassed a total of 875 amino acids across 987 peptides (6 proteins) (Extended Data Fig. 2, Supplementary Information). Following the alignment of the enamel protein sequences retrieved from Dm.5/157–16635 against their homologues from all extant rhinoceros species plus the extinct woolly rhinoceros (C. antiquitatis) and Merck's rhinoceros (S. kirchbergenisis), phylogenetic reconstructions place the Dmanisi specimen closer to these two extinct rhinoceroses than to the extant Sumatran rhinoceros (Dicerorhinus sumatrensis), as an early divergent sister lineage (Fig. 4, Extended Data Fig. 8).

Our phylogenetic reconstruction confidently recovered the expected differentiation of the Rhinoceros genus from other genera that we considered, and is consistent with previous cladistic28 and genetic analyses35 (Supplementary Information). This topology defines two-horned products, measured as relative spectral counts. c. Alignment of deamidated (de) peptides (positions 124–137, ENAM) retrieved by digestion-free acid demineralization from specimen Dm.5/157–16635. Numbers to the right refer to stage-tip (see Supplementary Table 3 in the Supplementary Information) and MS/MS scan (see 'Data availability' in Methods) numbers. d. Bar plot of distribution of peptide lengths in undigested proteomes from the dental enamel of specimen Dm.5/157–16635 and of a control (mediaeval sheep or goat).
rhinoceroses as monophyletic and the one-horned condition as plesiomorphic, as previously proposed (Supplementary Information). We caution, however, that the higher-level relationships that we observe between the rhinoceros monophyletic clades might be affected by demographic events such as incomplete lineage sorting and/or gene flow between groups, owing to the limited number of markers that we considered. A confident and stable reconstruction of the structure of the Rhinocerotidae family needs the strong support that only high-resolution whole-genome sequencing can provide. Regardless, the highly supported placement of the Dmanisi rhinoceros in the clade formed by Stephanorhinus, the woolly rhinoceros and the Sumatran rhinoceros will remain unaffected, should the deeper phylogenetic relationships between the Rhinoceros genus and other family members be revised (Extended Data Fig. 8).

The phylogenetic relationships of the genus Stephanorhinus within the family Rhinocerotidae—as well as those of the several species recognized within this genus—are contentious. Stephanorhinus was initially included in the extant southeast Asian genus Dicerorhinus, which is represented by D. sumatrensis. This hypothesis has been rejected, and Stephanorhinus has been identified on the basis of morphological data as a sister taxon of the woolly rhinoceros. Furthermore, analysis of ancient DNA supports a sister relationship between the woolly rhinoceros and D. sumatrensis.

As the Stephanorhinus ex gr. etruscus/hundsheimensis sequences from Dmanisi branch off basal to the common ancestor of the woolly rhinoceros and Merck’s rhinoceros, these two species most probably derived from an early Stephanorhinus lineage that expanded eastward from western Eurasia. Throughout the Pliocene and Pleistocene epochs, Coelodonta adapted to continental and, later, to cold-climate habitats in central Asia. The earliest representative of this genus, Coelodonta thibetana, displayed some clear Stephanorhinus-like anatomical features. The genus Stephanorhinus was present in eastern Europe and Anatolia at least since the late Miocene epoch, and the Dmanisi specimen most probably represents an Early Pleistocene descendant of the western-Eurasian branch of this genus.

Our phylogenetic reconstructions show that, as currently defined, the genus Stephanorhinus is paraphyletic, which is consistent with previous morphological and palaeo-biogeographical evidence (Supplementary Information). Accordingly, a systematic revision of the genera Stephanorhinus and Coelodonta, as well as their closest relatives, is needed.

In this study, we show that the mass spectrometric sequencing of the enamel proteome can overcome the time limitations of the preservation of ancient DNA, as well as the reduced phylogenetic content of COL1 sequences. Given the abundance of teeth in the palaeontological record, the approach presented here holds the potential to address a wide range of questions that pertain to the Early and Middle Pleistocene evolutionary history of a large number of mammals (including hominins), at least in temperate climates.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-019-1555-y.

Received: 16 October 2018; Accepted: 12 August 2019; Published online 11 September 2019.

1. Cappellini, E. et al. Ancient biomolecules and evolutionary inference. Annu. Rev. Biochem. 87, 1029–1060 (2018).
2. Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013).
3. Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).
4. Wadsworth, C. & Buckley, M. Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone. Rapid Commun. Mass Spectrom. 28, 605–615 (2014).
5. Schweitzer, M. H. et al. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science 316, 277–280 (2007).
6. Schroeter, E. R. et al. Expansion for the Biaxiphylusous canadensis collagen I sequence and additional evidence of the preservation of Cretaceous protein. J. Proteome Res. 16, 920–932 (2017).
7. Willerslev, E. et al. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution. BMC Evol. Biol. 9, 95 (2009).
8. Welker, F. et al. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae. PeerJ 5, e3033 (2017).
9. Kirilova, I. et al. Discovery of the skull of Stephanorhinus kirchbergensis (Jäger, 1839) above the Arctic Circle. Quat. Res. 88, 537–550 (2017).
10. Lendvianide, D. et al. A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo. Science 342, 326–331 (2013).
11. Eastoe, J. E. Organic matrix of tooth enamel. Nature 187, 411–412 (1960).
12. Orlando, L. et al. Recalibrating the approach presented here holds the potential to address a wide range of questions that pertain to the Early and Middle Pleistocene evolutionary history of a large number of mammals (including hominins), at least in temperate climates.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-019-1555-y.

Received: 16 October 2018; Accepted: 12 August 2019; Published online 11 September 2019.

1. Cappellini, E. et al. Ancient biomolecules and evolutionary inference. Annu. Rev. Biochem. 87, 1029–1060 (2018).
2. Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013).
3. Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).
4. Wadsworth, C. & Buckley, M. Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone. Rapid Commun. Mass Spectrom. 28, 605–615 (2014).
5. Schweitzer, M. H. et al. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science 316, 277–280 (2007).
6. Schroeter, E. R. et al. Expansion for the Biaxiphylusous canadensis collagen I sequence and additional evidence of the preservation of Cretaceous protein. J. Proteome Res. 16, 920–932 (2017).
7. Willerslev, E. et al. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution. BMC Evol. Biol. 9, 95 (2009).
8. Welker, F. et al. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae. PeerJ 5, e3033 (2017).
9. Kirilova, I. et al. Discovery of the skull of Stephanorhinus kirchbergensis (Jäger, 1839) above the Arctic Circle. Quat. Res. 88, 537–550 (2017).
10. Lendvianide, D. et al. A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo. Science 342, 326–331 (2013).
11. Eastoe, J. E. Organic matrix of tooth enamel. Nature 187, 411–412 (1960).
12. Orlando, L. et al. Recalibrating the approach presented here holds the potential to address a wide range of questions that pertain to the Early and Middle Pleistocene evolutionary history of a large number of mammals (including hominins), at least in temperate climates.
23. Catak, S., Monard, G., Aviyente, V. & Ruiz-López, M. F. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid. J. Phys. Chem. A 112, 8752–8761 (2008).
24. Hunter, T. Why nature chose phosphate to modify proteins. Phil. Trans. R. Soc. Lond. B 367, 2513–2516 (2012).
25. Hu, J. C. C., Yamakoshi, Y., Yamakoshi, F., Krebsbach, P. H. & Simmer, J. P. Proteomics and genetics of dental enamel. Cells Tissues Organs 181, 219–231 (2005).
26. Tagliabracci, V. S. et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 336, 1150–1153 (2012).
27. Cleland, T. P. Solid digestion of demineralized bone as a method to access potentially insoluble proteins and post-translational modifications. J. Proteome Res. 17, 536–542 (2018).
28. Antoine, P.-O. et al. A revision of Aceratherium blanfordi Lydekker, 1884 (Mammalia: Rhinocerotidae) from the Early Miocene of Pakistan: postcranials as a key. Zool. J. Linn. Soc. 160, 139–194 (2010).
29. Steiner, C. C. & Ryder, O. A. Molecular phylogeny and evolution of the Perissodactyla. Zool. J. Linn. Soc. 163, 1289–1303 (2011).
30. Hobolth, A., Dutheil, J. Y., Hawks, J., Schierup, M. H. & Mailund, T. Incomplete lineage sorting patterns among human, chimpanzee, and orangutan suggest recent orangutan speciation and widespread selection. Genome Res. 21, 349–356 (2011).
31. Rieseberg, L. H. Evolution: replacing genes and traits through hybridization. Curr. Biol. 19, R119–R122 (2009).
32. Guérin, C. Les Rhinocéros (Mammalia, Perissodactyla) du Miocène Terminal au Pléistocène Supérieur en Europe occidentale, Comparaison avec les Espèces Actuelles (Documents du Laboratoire de Geologie de la Faculte des Sciences de Lyon, volume 79) (Univ. Claude-Bernard, 1980).
33. Deng, T. et al. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science 333, 1285–1288 (2011).
34. Orlando, L. et al. Ancient DNA analyses reveals woolly rhino evolutionary relationships. Mol. Phylogenet. Evol. 28, 485–499 (2003).
35. Yuan, J. et al. Ancient DNA sequences from Coelodonta antiquitatis in China reveal its divergence and phylogeny. Sci. China Earth Sci. 57, 388–396 (2014).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. © The Author(s), under exclusive licence to Springer Nature Limited 2019
METHODS
Dmanisi and sample selection. Dmanisi is located about 65 km southwest of Tbilisi, in the Kvemo Kartli region of Georgia, at an elevation of 910 m above sea level (41° 20' N, 44° 20' E)10,11. The 23 fossil specimens that we analysed were retrieved from stratum B1, in excavation blocks M17, M6, block 2 and area R11 (Extended Data Fig. 1, Extended Data Table 1). Stratum B deposits date to between 1.78 and 1.76 Myr ago12. All of the specimens that we analysed were collected between 1998 and 2010, and their taxonomic identification was based on traditional comparative anatomy.

After the sample preparation and data analysis for the Dmanisi specimens was concluded, we applied the whole experimental procedure to a mediaeval-period enamel + dentine specimen from a sheep or goat (ovicaprine); this was used as control. For this sample, we used extraction protocol C (see ‘Extraction protocol C (digestion-free acid demineralization)’) and generated tandem mass spectrometry data using a Q Exactive HF mass spectrometer (Thermo Fisher Scientific). The data were searched against the goat proteome, downloaded from the NCBI Reference Sequence Database (RefSeq) archive on 31 May 2017 (Supplementary Information). The ovicaprine specimen was found at the ‘Hotel Skandinavia’ site (Århus) and stored at the Natural History Museum of Denmark (Copenhagen).

Biomolecular preservation. We assessed the potential for preservation of ancient proteins before proteomic analysis by measuring the extent of amino acid racemization in a subset of samples (6 out of 23)11. Enamel chips with all dentine removed were powdered, and two subsamples per specimen were subjected to analysis of their free and total hydrolysable amino acid fractions. Samples were analysed in duplicate by reverse-phase high-performance liquid chromatography, with standards and blanks done on each plate (Supplementary Information). The values of the D over L ratios of aspartic acid plus asparagine, glutamic acid plus glutamine, phenylalanine and alanine were assessed (Extended Data Fig. 4) to provide an overall estimate of intra-crystalline protein degradation.

Proteomics. All of the sample preparation procedures for mass spectrometric analysis of ancient proteins were conducted in laboratories dedicated to the analysis of ancient DNA and ancient proteins, in clean rooms fitted with filtered ventilation and positive pressure (consistent with recent recommendations for ancient protein analysis)13. A mock ‘extraction blank’, containing no starting material, was prepared, processed and analysed together with each batch of ancient samples.

Sample preparation. The external surface of bone samples was gently removed, and the remaining material was subsequently powdered. Enamel fragments, occasionally mixed with small amounts of dentine, were removed from teeth with a cutting disc and subsequently crushed into a rough powder. Unless otherwise specified, ancient protein residues were extracted from approximately 180–220 mg of mineralized material using three different extraction protocols: protocols A, B and C (see below and Supplementary Information for more detailed descriptions of protocols). Extraction protocol A (filter-aided sample preparation). Tryptic peptides were generated using filter-aided sample preparation approach14, as previously performed on ancient samples39. Extraction protocol B (GuHCl solution and digestion). Bone or enamel + dentine powder was demineralized in 1 ml 0.5 M EDTA pH 8.0. After removal of the supernatant, all demineralized pellets were resuspended in a 300 μl solution containing 2 M guanidine hydrochloride (GuHCl, Thermo Scientific), 100 mM Tris pH 8.0, 20 mM 2-chloroacetamide (CAA), 10 mM Tris (2-carboxyethyl)phosphine (TCEP) in ultrapure water40,41. A total of 0.2 μg of mass-spectrometry-grade rLyS(C) Promega P/N V1671) enzyme was added before the samples were incubated for 3–4 h at 37°C with agitation. Samples and negative controls were subsequently diluted to 0.6 M GuHCl, and 0.8 μg of mass-spectrometry-grade trypsin (Promega P/N V5111) was added. Next, samples and negative controls were incubated overnight under mechanical agitation at 37°C. On the following day, samples were acidified, and the tryptic peptides were purified on C18 stage-tips, as previously described42. Extraction protocol C (digestion-free acid demineralization). Dental enamel powder, with possible trace amounts of dentine, was demineralized in 1.2 M HCl at room temperature, after which the solubilized protein residues were directly cleaned and concentrated on stage-tips (Supplementary Information, section 5.1). The sample prepared on stage-tip no. 1217 was processed with 10% trifluoroacetic acid (TFA) instead of 1.2 M HCl. All other parameters and procedures were identical to those used for all other samples extracted with protocol C.

Tandem mass spectrometry. Different sets of samples (Supplementary Information, sections 5.1, 5.2) were analysed by nanoflow liquid chromatography coupled to tandem mass spectrometry (MS/MS) on an EASY-nLC 1000 or 1200 system connected to a Q-Exactive, a Q-Exactive Plus or a Q-Exactive HF (Thermo Scientific) mass spectrometer. Before and after each MS/MS run measuring ancient or extraction blank samples, two successive MS/MS runs were included in the same acquisition to remove contaminating peptides from the sample. These consisted of an MS/MS run with an injection exclusively of the buffer used to resuspend the samples (0.1% TFA and 5% acetonitrile) (‘MS/MS blank’), followed by a second MS/MS run with no injection (‘MS/MS wash’).

Data analysis. Raw data files generated during MS/MS spectral acquisition were searched using MaxQuant43 version 1.5.3.30 and PEAKS44 version 7.5. A two-stage peptide–spectrum matching approach was adopted (Supplementary Information, section 5.3). Raw files were initially searched against a target and reversed database of collagen and enamel proteins retrieved from the UniProt and RefSeq45,46 archives11,12, taxonomically restricted to mammalian species. A database of partial COL1A1 and COL1A2 sequences from cervid species47 was also included. The results from these peptide analysis were used for a first provisional reconstruction of protein sequences (MaxQuant search 1, MQ1). For specimens with a dataset that resulted in a narrower—although not fully resolved—initial taxonomic placement, a second MaxQuant search (MQ2) was performed using a new protein database taxonomically restricted to the ‘order’ taxonomic rank, as determined after MQ1. For the MQ2 matching of the MS/MS spectra from specimen Dm.5/157–16635, partial sequences of serum albumin and enamel proteins from Sumatran rhinoceroses (D. sumatrensis), Javan rhinoceros (Rhinoceros sondaicus), Indian rhinoceroses (Rhinoceros unicornis), woolly rhinoceroses (C. antiquitatis), Merck’s rhinoceroses (S. kirchbergensis) and black rhinoceroses (Diceros bicornis) were also added to the protein database. All of the protein sequences from these species were reconstructed from draft genomes for each species (Supplementary Information, L. Dalen and M. T. P. Gilbert, unpublished data).

For each MaxQuant and PEAKS search, enzymatic digestion was set to ‘unspecific’ and the following variable modifications were included: oxidation (for M), deamidation (for N and Q), N-terminal pyro-Glu (for Q), N-terminal pyro-Glu (for E), hydroxylation (for P) and phosphorylation (for S). The error tolerance was set to 5 ppm for the precursor and to 20 ppm (or 0.05 Da) for the fragment ions in MaxQuant and FAMS, respectively. For searches of data generated from the sample fractions partially or exclusively digested with trypsin, another MaxQuant and PEAKS search was conducted using the ‘enzyme’ parameter set to ‘Trypsin/P’. Carbamidomethylation (for C) was set: (i) as a fixed modification, for searches of data generated from sets of sample fractions exclusively digested with trypsin or (ii) as a variable modification, for searches of data generated from sets of sample fractions partially digested with trypsin. For searches of data generated exclusively from undigested sample fractions, carbamidomethylation was not included as a modification.

The datasets that were re-analysed with MQ2 search were also processed with the PEAKS software using the entire workflow (PEAKS de novo to PEAKS SPIDER) to detect hitherto unreported single-amino-acid polymorphisms. Any amino acid substitution detected by the SPIDER homology search algorithm was validated by repeating the MaxQuant search (MQ3). In MQ3, the protein database used for MQ2 was modified to include the amino acid substitutions detected by the SPIDER algorithm.

Reconstruction of ancient protein sequences. The peptide sequences confidently identified by the MQ1, MQ2 and MQ3 were aligned using the software Geneious® (v.12.1.2, in the maximization module). The peptide sequences confidently identified by the PEAKS searches were aligned using an in-house-generated R-script. A consensus sequence for each protein from each specimen was generated in FASTA format, without filtering on depth of coverage. Amino acid positions that were not confidently reconstructed were replaced by an X. Newly identified single-amino-acid polymorphisms discovered through PEAKS were only accepted if these were further validated by repeating the MaxQuant search (MQ3). All isoalleles were converted into leucines, as standard MS/MS cannot differentiate between these two isobaric amino acids. For possible deamidated sites, we checked whether there were positions in our reference sequence database at which both Q and E or both N and D occurred in the same position, and for which we also had ancient sequences matching. For specimen Dm.5/157–16635, only one such position existed, and this was replaced by an X in our consensus sequence. Based on parsimony, for other Q, E and N positions we called the amino acid present in the reference proteome, regardless of the phylogenetic relevance. The output of MQ2 and MQ3 was used to extend the coverage of the ancient protein sequences initially identified in MQ1. For specimen Dm.5/157–16635, all of the experimentally identified peptides—as well as the respective best-matching MS/MS spectra covering the sites informative for Rhinocerotidae phylogenetic inference—are provided as Supplementary Data. All of the reported MS/MS spectra are annotated using the advanced annotation mode of MaxQuant. Selected spectra matching peptides that cover phylogenetically informative amino acid positions were manually inspected, validated and annotated by an experienced mass spectrometrist, in all cases in full agreement with bioinformatic sequence assignment (Supplementary Data). We used MS/MS fragment-ion spectral-intensity prediction48 (version v.20190312, model version 20190107 HCD) to demonstrate that the experimentally observed fragment-ion intensities are highly correlated with the theoretical ones (Supplementary Fig. 3). Finally, we generated a list of 19 selected peptides covering Rhinocerotidae single-amino-acid polymorphisms in DM.5/157–16635.

Post-translational modifications. Deamidation. After removal of likely contaminants, the extent of glutamine and asparagine deamidation was estimated for...
individual specimens using the MaxQuant output files, as previously published41 (Supplementary Information).

Other spontaneous chemical modifications. Spontaneous post-translational mod-
ications (PTMs) associated with chemical protein damage were searched using the PEAKS PTM tool and the dependent-peptide search model50 in MaxQuant. In the PEAKS PTM search, all modifications in the Unimod database were con-
sidered. The mass error was set to 0.0 ppm and 0.5 Da for precursor and fragment, respectively. For PEAKS, the de novo average-locus-confidence (ALC) score was set to a threshold of 15% and the peptide hit threshold was set to 30. The results were filtered with a false discovery rate of 5%, de novo ALC score of 50% and a protein hit threshold of ≥ 20. The MaxQuant-dependent-peptide search was carried out with the same search settings as described in ‘Data analysis’ and with a dependent-peptide false discovery rate of 1% and a mass bin size of 0.0065 Da.

Phylogenetic analysis. Reference datasets. We assembled a reference dataset that consisted of publicly available protein sequences from representative ungulate species belonging to the following families: Equidae, Rhinocerotidae, Suidae and Bovidae (Supplementary Information, sections 7, 8). As Cervidae and carnivores are absent from protein sequence databases to varying extents, we did not attempt phylogenetic placement of samples from these taxa. Instead, we conducted our phylogenetic analysis on the five best-performing enamel pro-
tomes (Dm.5/154.2.A4.38–16632, Dm.5/157–16635, Dm.5/154.1.B1.1–16638, Dm.8/154.4.A4.22–16639 and Dm.8/152.3.B1.2–16641) and the largest bone proteome (Dm.BXL.North.B1a.collection–16658) that we recovered (Extended Data Table 2).

We extended this dataset with the protein sequences from extinct and extant rhinoceros species, including wooly rhinoceros (C. antiquitatis), Merck’s rhino-
ceros (S. kirchbergensis), Sumatran rhinoceros (D. sumatrensis), Javan rhinoceros (R. sondaicus), Indian rhinoceros (R. unicornis) and black rhinoceros (D. bicornis). Their corresponding protein sequences were obtained following translation of high-throughput DNA sequencing data, after filtering reads with mapping quality lower than 30 and nucleotides with base quality lower than 20, and calling the majority rule consensus sequence using ANGSD52. For the woolly rhinoceros and Merck’s rhinoceros, we excluded the first and last five nucleotides of each DNA fragment to minimize the effect of post-mortem damage to the ancient DNA53. Each consensus sequence was formatted as a separate blast nucleotide database. We then performed a blastx54 alignment using the corresponding white rhinoceros sequence as a query, favouring ungapped alignments to recover translated and spliced protein sequences. The resulting alignments were processed using ProSPhylo, the inhouse R script used to align the peptide sequences confidently identified by the PEAKS searches is available to everyone upon request to the corresponding authors.

Analysis of ancient DNA. The samples were processed using strict ancient DNA guidelines in a clean laboratory facility at the Natural History Museum of Denmark (University of Copenhagen). DNA extraction was attempted on five of the ancient animal samples (Supplementary Information, sections 9, 13). Powdered samples (120–140 mg) were extracted using a silica-in-solution method12,14. To prepare the samples for next-generation sequencing, 20 μl of DNA extract was built into a blunt-end library using the NEBNext DNA Sample Prep Master Mix Set 2 (E6070) with specific adapters. The libraries were PCR-amplified with primers forward primers and custom-designed reverse primers with a six-nucleotide index55. Two extracts (MA399 and MA2481, from specimens D4–16859 and Dm.5/157–16635, respectively) yielded detectable DNA concentrations (Supplementary Table 9). The libraries generated from specimen 16859 and 16635 were processed on different flow cells. They were pooled with others for sequencing on an Illumina 2000 platform (MA399_L1 and MA399_L2) using 100 bp single-read chemistry, and on an Illumina 2500 platform (MA2481_L1) using 81-bp single-read chemistry.

The data were base-called using the Illumina software CASAVA 1.8.2 and were demultiplexed with a requirement of a full match of the six nuc-
ootide indexes that were used. Raw reads were processed using the PALEOMIX pipeline following published guidelines46, mapping against the cow nuclear genome (Bo taurus 4.6.1, accession GCA_000002055.4), the cow mitochondrial genome (Bos taurus), the red deer mitochondrial genome (Cervus elaphus, accession AB245427.2) and the human nuclear genome (GRCh37/hg19) using BWA back-
track55 v0.5.10 with the seed disabled. All other parameters were set as default. PCR duplicates from mapped reads were removed using the picard tool MarkDuplicate (http://broadinstitute.github.io/picard).

Morphological measurements of specimen Dm.5/157–16635. We followed a pre-
viously published methodology32. The maximal length of the tooth was measured with a digital calliper at the lingual side of the tooth and parallel to the occlusal sur-
face. All measurements are given in mm (Supplementary Information, section 3).

Data availability

All of the mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium (https://proteomecentral.proteomexchange. org) via the PRIDE partner repository with the dataset identifier PXD011008.

Genomic BAM files used for Rhinocerotidae protein sequence translation and protein sequence alignments used for phylogenetic reconstruction are available on Figshare (https://doi.org/10.6084/m9.figshare.7212746).

Code availability

The in-house R script used to align the peptide sequences confidently identified by the PEAKS searches is available to everyone upon request to the corresponding authors.

36. Penkman, K. E. H., Kaufman, D. S., Maddy, D. & Collins, M. J. Closed-system
behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quat.
Geomorphol. 3, 2–25 (2008).
37. Hendy, J. et al. A guide to ancient protein studies. Nat. Ecol. Evol. 2, 791–799
(2018).
38. Wanienski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample
preparation method for proteomics analysis. Nat. Meth. 6, 359–362 (2009).
39. Cappellini, E. et al. Resolution of the type material of the Asian elephant, Elephas
maximus Linnaeus, 1758 (Proboscidea, Elephantidae). Zool. J. Linn. Soc. 170, 222–232 (2014).
40. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated
proteomic-sample processing applied to copy-number estimation in eukaryotic
cells. Nat. Methods 11, 319–324 (2014).
41. Mackie, M. et al. Palaeoproteomic profiling of conservation layers on a 14th
century Indian wall painting. Angew. Chem. Int. Ed. 57, 7369–7374 (2018).
42. Cappellini, E. et al. Proteomic analysis of a Pleistocene mammoth femur reveals
more than one hundred ancient bone proteins. J. Proteome Res. 11, 917–926
(2012).
43. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein
quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
44. Zhang, J. et al. PEAKS DB: de novo sequencing assisted database search for
sensitive and accurate peptide identification. Mol. Cell. Proteomics 11, M111.010587
(2012).
45. The UniProt Consortium, UniProt: the universal protein knowledgebase. Nucleic
Acids Res. 45, 1318–1368 (2017).
46. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current
status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44,
D733–D745 (2016).
47. Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins
associated with the Châtelheraultian at the Grotte du Renne. Proc. Natl Acad. Sci.
USA 113, 11162–11167 (2016).
48. Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

49. Gabriels, R., Martens, L. &Degroote, S. Updated MS²PPI web server delivers fast and accurate MS² peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques. Nucl. Acids Res. 47, W295–W299 (2019).

50. Tyanova, S., Tumé, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protocols 11, 2301–2319 (2016).

51. Colaert, N., Helnens, K., Martens, L., Vandekerckhove, J. & Gevaert, K. Improved visualization of protein consensus sequences by iceLogo. Nat. Methods 6, 786–787 (2009).

52. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSDD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

53. Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010).

54. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

55. Sea Urchin Genome Sequencing Consortium. The genome of the sea urchin Strongylocentrotus purpuratus. Science 314, 941–952 (2006).

56. Katoh, K. & Frith, M. C. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28, 3144–3146 (2012).

57. Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

58. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

59. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

60. Rohland, N. & Hofreiter, M. Comparison and optimization of ancient DNA extraction. Biotechniques 42, 343–352 (2007).

61. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly sensitive amino acid racemization dating: a closed system approach. Quat. Geochronol. 50, 29–46 (2019).

Acknowledgements E.C. and F.W. are supported by the VILLUM FONDEN (grant number 17649) and by the European Commission through a Marie Sklodowska Curie (MSC) Individual Fellowship (grant number 795569). E.W. is supported by the Lundbeck Foundation, the Danish National Research Foundation, the Novo Nordisk Foundation, the Carlsberg Foundation, KU2016 and the Wellcome Trust. E.C., C.K., J.V.O., P.R. and D.S. are supported by the European Commission along with the MSC European Training Network ‘TEMPERA’ (grant number 722606). M.M. and R.R.J.-C. are supported by the University of Copenhagen KU2016 (UCPH Excellence Programme) grant. M.M. is also supported by the Danish National Research Foundation award PROTEOS (DNRF128). Work at the Novo Nordisk Foundation Center for Protein Research is funded in part by a donation from the Novo Nordisk Foundation (grant number NNF14CC0001), M.R.D. is supported by a PhD DTA studenthip from NERC and the Natural History Museum (NE/K000987/1 & NE/L501761/1). K.P. is supported by the Leverhulme Trust (PLP -2012-116), L.R. and L.P. are supported by the Italian Ministry for Foreign Affairs (MAECI, DGSF-VI). L.P. was also supported by the EU-SYNTHESYS project (AT-TAF-2550, DE-TAF-3049, GB-TAF-2825, HU-TAF-3593 and ES-TAF-2997) funded by the European Commission. L.D. is supported by the Swedish Research Council (grant number 2017-04647) and FORMAS (grant number 2015-676). M.T.P.G. is supported by ERC Consolidator Grant ‘Extinction genomics’ (grant number 681396). L.O. is supported by the ERC Consolidator Grant ‘PEGASUS’ (grant agreement number 681605). B.S., J.K. and P.D.H. are supported by the Gordon and Betty Moore foundation. B.M.-N. is supported by the Spanish Ministry of Sciences (grant number CGL2016-80975-P) and the Generalitat de Catalunya, Spain (grant number 2017SGR 859). J.A. is supported by the Spanish Ministry of Sciences (grant number CGL2016-800000-P). R.F. is supported by National Science Foundation (grant number 1025245). The ancient DNA analysis was carried out using the facilities of the University of Luxembourg, the Swedish Museum of Natural History and UC Santa Cruz. We acknowledge support from the Science for Life Laboratory, the National Genomics Infrastructure (Sweden) and UPPMAX for providing assistance with massive parallel sequencing and computational infrastructure. Research at Dmanisi is supported by the John Templeton Foundation (grant number 52935), and the Shota Rustaveli Science Foundation (grant number 18-27262). We thank B. Tiozzi and K. Murphy Gregersen for technical support.

Author contributions E.C., D. Lordkipanidze and E.W. designed the study. A.K.F., M.M., M.T., R.F., E.P., T.W.S., Jr, Y.L.C., A. Götherström, S.K.S.S.N., P.D.H., J.D.K., I.K., Y.M., J.A., R.-D.K., G.K., B.M.-N., M.-H.S.S., S.L., M.S.V., B.S., L.D., M.T.P.G. and D. Lordkipanidze provided ancient samples or modern reference material. E.C., F.W., L.P., J.R.-M., D. Lyon, J.V.M.-M., D.S., C.D.K., A. Ginoihac, L.O., L.R., J.V.O., P.L.R., M.R.D. and K.P. performed analyses and data interpretation. E.C., F.W., J.R.-M., L.P. and E.W. wrote the manuscript with contributions from all authors.

Competing interests The authors declare no competing interests.

Additional information Supplementary information is available for this paper at https://doi.org/10.1038/s41386-019-1555-y.

Correspondence and requests for materials should be addressed to E.C., J.V.O. or E.W.

Peer review information Nature thanks Benedikt Kessler, Tina Warinner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | Generalized stratigraphic profiles for Dmanisi, indicating origins of the specimens. **a**, Type section of the Dmanisi M5 excavation block. **b**, Stratigraphic profile of excavation area M6. M6 preserves a larger gully associated with the pipe–gully phase of stratigraphic–geomorphic development in stratum B1. The thickness of the stratum B1 gully fill extends to the basalt surface but includes 'rip-ups' of strata A1 and A2, showing that the deposits in stratum B1 post-date those of stratum A. **c**, Stratigraphic section of excavation area M17. Here, Stratum B1 was deposited after the erosion of stratum A deposits.

The stratigraphic position of specimen Dm.5/157–16635 is highlighted with a red diamond. The Masavara basalt is about 50 cm below the base of the profile shown. **d**, Northern section of block 2. Following the collapse of a pipe and erosion to the basalt, the deeper part of this area was filled with local gully fill of strata B1x, B1y and B1z. Note the uniform burial of all stratum B1 deposits by strata B2, B3 and B4. The sampled specimens are indicated by the five-digit CGG numbers. Extended Data Table 1 provides both the CGG and GNM specimen numbers.
Extended Data Fig. 2 | Proteome-sequence coverage for specimen Dm.5/157-16635. a, c, e, g, i, j. Peptide–spectrum match (PSM) sequence coverage of the proteins AMBN (a), ENAM (c), AMELX (e), AMTN (g), MMP20 (i) and ALB (j). Annotations include ‘amino acid position, amino acid called in that position (number of PSMs and peptides covering that position)’ for the phylogenetically informative single-amino-acid polymorphisms within Rhinocerotidae. b, d, f, h. Frequency (per cent) of phosphorylated (green) and unphosphorylated (red) PSMs per amino acid position for AMBN (b), ENAM (d), AMELX (f) and AMTN (h). Numbers within the bars provide the PSM counts. k. Violin plot of distribution of PSM coverage for all covered sites (n = 693), and for sites of phylogenetic relevance (single-amino-acid polymorphisms, n = 30). The box plots define the range of the data, with whiskers extending to 1.5 × interquartile range, boxes denoting the 25th and 75th percentiles and dots indicating the median. All panels are based only on MaxQuant search results. The Supplementary Data contains examples of MS/MS spectra, and fragment-ion series alignments for each of the marked single-amino-acid polymorphisms.
Extended Data Fig. 3 | Peptide and fragment-ion coverage of AMELX isoform 1 and isoform 2 from specimen Dm.M6/7.II.296–16856.

Peptides specific to AMELX isoform 1 and isoform 2 appear in the top and bottom parts of the figure, respectively. No AMELX isoform 2 is currently reported in public databases for the Cervidae group. Accordingly, the AMELX-isoform-2-specific peptides were identified by MaxQuant spectral matching against bovine (Bos taurus) AMELX isoform 2 (UniProt accession number P02817-2). AMELX isoform 2 (also known as leucine-rich amelogenin peptide (LRAP)) is a naturally occurring isoform of AMELX from the translation product of an alternatively spliced transcript.
Extended Data Fig. 4 | Amino acid racemization. Extent of intra-crystalline racemization in enamel for the free amino acid (FAA, x axis) fraction and the total hydrolysable amino acids (THAA, y axis) fraction for four amino acids (Asp plus Asn (here denoted Asx), Glu plus Gln (here denoted Glx), Ala and Phe). Note the differences in axis scale. Intra-crystalline data from Proboscidea enamel from a range of sites in the UK have been shown for comparison (grey crosses). Taxa from both Dmanisi and the UK exhibit a similar relationship between FAA and THAA racemization, and R^2 values have been calculated on the basis of a polynomial relationship (order = 2, all >0.93).
Extended Data Fig. 5 | Phosphorylation in the proteome of ancient enamel. Annotated spectra including phosphorylated (here denoted ph) serine (S). a, Phosphorylation in the S-X-E motif of AMELX. b, Phosphorylation in the S-X-phosphorylated S motif of AMBN. Phosphorylation was independently observed in all three separate analyses of Dm.5/157–16635, including multiple spectra and peptides (Extended Data Fig. 2).
Extended Data Fig. 6 | Phylogenetic relationships between the comparative reference dataset and specimen Dm.bXI–16857. Consensus tree from Bayesian inference. The posterior probability of each bipartition is shown as a percentage to the left of each node.
Extended Data Fig. 7 | AMELY–specific matches. a, Specimen Dm.6/151.4.A4.12–16630. b, Specimen Dm.69/64.3.B1.53–16631. c, Specimen Dm.8/154.4.A4.22–16639. d, Specimen Dm.6/7.II.296–16856. Note the presence of deamidated glutamine (deQ) and asparagine (deN), oxidated methionine (oxM) and phosphorylated serine (phS).
Extended Data Fig. 8 | Effect of the missingness in the tree topology.

a, Maximum-likelihood phylogeny obtained using PhyML and the protein alignment that excludes Dm.5/157–16635. b, Topologies obtained from 100 random replicates of the woolly rhinoceros (C. antiquitatis). In each replicate, the number of missing sites was similar to that observed for the Dm.5/157–16635 specimen (72.4% missingness). The percentage shown for each topology indicates the number of replicates in which that particular topology was recovered. c, As in b, but for the Javan rhinoceros (R. sondaicus). d, As in b, but for the black rhinoceros (D. bicornis).
Extended Data Table 1 | Genome and proteome survival in 23 specimens of fossil fauna from Dmanisi

CGG ref. number	GNM specimen number	Morphological identification*	Anatomy	Ancient DNA	Protein extr. Method A	Protein extr. Method B	Protein extr. Method C	Phylogenetic analysis
16486	Dm.bXI.sqA6.V._	Canis etruscus	P4 sin.	o	o B	o E+D		
16626	Dm.6/154.2/4.A4.17	Artiodactyla	tibia sin.	o	o B	o E+D		
16628	Dm.7/154.2.A2.27	Cervidae	mc III&IV dext.	• B†	• E+D	• E+D		
16629	Dm.5/154.3.A4.32	Cervidae	hemimandible sin. with dp2, dp3, dp4, m1	o B	o B	o D, • E		
16630	Dm.6/151.4.A4.12	Pseudodama nesti	hemimandible dext. with p2-m3	o B	o B	o D, • E		
16631	Dm.69/64.3.B1.53	Cervidae	maxilla sin. with P3	o B	o B	o D, • E		
16632	Dm.5/154.2.A4.38	Equus stenonis	i3 dext.	o B†	• E+D	Fig. S10		
16633	Dm.5/153.3.A2.33	Equus stenonis	mc III & mc II sin.	o B	o B	o D, • E		
16634	Dm.7/151.2.B1/A4.1	Equus stenonis	m/1 or m/2 dext.	o D, • E	Fig. 4, Fig. S11			
16635	Dm.5/157.profile cleaning	Stephanorhinus sp.	m/1 sin.	o	o B	o D, • E		
16636	Dm.6/153.1.A4.13	Rhinocerotidae	tibia dext.	o B	o B	o D, • E		
16637	Dm.7/154.2.A4.8	Bovidae	mt III&IV sin.	o B	o B	o D, • E		
16638	Dm.5/154.1.B1.1	Bovidae	hemimandible dext. with p3-m3	o B	o D, • E	Fig. S12		
16639	Dm.8/154.4.A4.22	Bovidae	maxilla dext. with P2-M2	o D, • E	Fig. S13			
16640	Dm.6/151.2.A4.97	Bison georgicous	mt III&IV sin.	o B	o B	o D, • E		
16641	Dm.8/152.3.B1.2	Bison georgicous	m3 dext.	o D, • E	Fig. S14			
16642	Dm.8/153.4.A4.5	Canis etruscus	hemimandible sin. with p1-m2	o D, • E	Fig. S15, EDF6			
16656	Dm.M6/7.II.296	Cervidae	m2 sin.	o	o D†	o D, • E	o E+D	
16657	Dm.bXI.profile cleaning	Indet.	long bone fragment of a herbivore	o	o B	o B	o B	
16658	Dm.bXI.North.B1a. collection	Cervidae	metapodium fragment	o	o B	o B	o B	
16659	D4.collection	Indet.	fragments of pelvis and ribs of a large mammal	o	o B	o B	o B	
16660	Dm.65/62.1.A1. collection	Cervidae	P4 sin.	o	o D, • E	o D, • E		
16661	Dm.64/63.1.B1z. collection	Equus stenonis	fragment of an upper tooth	o	o D, • E	o D, • E		

Neg. contr. (blank) | NC | NC | NC

The CGG reference number and the GNM specimen field number are reported for each specimen. B, bone; D, dentine; E, enamel. Extractions of enamel might include some residual dentine. Accordingly, both tissues are either listed separately (in cases with no collagen preservation) or together (in cases with collagen preservation). Open circles indicate no molecular preservation; closed circles indicate molecular preservation.

* Or the narrowest possible taxonomic identification achievable using comparative anatomy methods.
† Only collagens survive.
Extended Data Table 2 | Proteome composition and coverage

Specimen	Protein Name	Sequence length	Razor and unique peptides	Matched spectra	Coverage after MaxQuant searches (%)	Final coverage after MaxQuant and PEAKS searches (%)	Final coverage (aa)		
Collagen alpha-(1)	1158	5	8	3.2	3.2	37			
Amelogenin X	209	79	190	36.8	36.8	77			
Ameloblastin	440	51	84	25.0	25.0	110			
Enamelin	1129	58	133	6.2	6.5	73			
Collagen alpha-(1)	1463	3	3	2.0	2.0	26			
Collagen alpha-(1)(III)	1464	2	3	1.4	1.4	20			
Amelitin	212	2	2	4.7	4.7	10			
Enamelin	1129	180	3	530	5	11.6	2.7	15.4	174
Ameloblastin	440	105	231	30.9	31.4	138			
Amelogenin X	213	116	529	62.0	62.9	134			
Ameloblastin	192	4	9	13.0	22.9	44			
Amelitin	212	5	6	8.0	8.0	17			
Enamelin	916	175	751	11.0	11.7	107			
Ameloblastin	213	156	598	48.8	61.5	131			
Amelogenin Y	90	5	18	15.6	25.6	23			
Ameloblastin	440	71	133	24.1	25.2	111			
MMP20	452	2	2	3.9	3.9	19			
Enamelin	1144	401	2160	17.9	19.1	219			
Ameloblastin	607	11	18	6.1	6.1	37			
MMP20	452	2	2	3.9	3.9	19			
Amelogenin X	1513	4	4	2.6	2.6	40			
Ameloblastin	185	68	157	53.5	53.5	99			
Enamelin	920	33	87	4.0	4.0	41			
MMP20	453	4	4	5.6	5.6	27			
Amelogenin X	206	394	3	2793	5	73.8	7.8	85.9	177
Enamelin	1150	362	2	2666	2	18.3	1.6	25.1	289
Ameloblastin	442	131	463	31.3	39.3	198			
Ameloblastin	267	26	148	9.9	9.9	20			
Serum albumin	807	34	64	18.5	24.5	149			
MMP20	463	15	25	11.8	15.3	74			
Collagen alpha-(1)	1463	2	2	1.7	1.7	25			
Collagen alpha-(1)(III)	1462	2	2	1.6	1.6	23			
Amelogenin X	192	185	3	734	5	52.0	10.9	60.4	116
Ameloblastin	440	64	2	120	4	30.0	5.7	36.4	160
MMP20	461	6	7	8.1	9.1	44			
Ameloblastin	213	167	624	59.2	67.6	144			
Amelogenin Y	192	13	13	18.8	18.8	36			
Enamelin	213	91	251	64.3	65.3	139			
Ameloblastin	440	69	122	28.9	28.9	127			
Enamelin	1129	24	75	7.8	7.8	88			
Ameloblastin	212	3	3	7.1	7.1	15			
Ameloblastin	185	89	245	42.7	42.7	79			
Enamelin	733	14	19	2.5	2.5	18			
Ameloblastin	421	3	3	7.1	7.1	30			
MMP20	483	2	2	3.5	3.5	17			
Amelogenin X	209	66	4	365	25	38.8	45.5	95	
Enamelin	916	58	13	153	70	6.2	10.2	93	
Ameloblastin	440	21	31	14.8	14.8	85			
Collagen alpha-(1)	1047	8	10	9	11	14.5	16.9	177	
Collagen alpha-(2)	1064	4	8	5	9	10.6	10.6	112	
Serum albumin	593	0	8	0	12	16.6	16.6	97	
Amelogenin Y	92	3	7	10.0	10.0	9			
Collagen alpha-(1)	1047	18	14	24	18	21.7	23.4	245	
Collagen alpha-(2)	1274	16	11	17	11	17.7	24.3	310	
Ameloblastin	192	46	98	30.7	32.3	62			
Ameloblastin	440	19	37	9.1	9.1	47			
Enamelin	900	15	25	3.8	3.8	34			
Amelogenin X	185	14	15	38.8	38.9	72			
Ameloblastin	343	2	2	4.4	4.4	15			
Enamelin	915	2	2	1.2	1.2	11			

Aggregated data from different extraction methods and/or tissues from the same specimen are shown. In table cells that report two values separated by the | symbol, the left value refers to MaxQuant searches performed selecting unspecific digestion and the right value refers to MaxQuant searches performed selecting trypsin digestion. For those cells that include one value only, this value refers to MaxQuant searches performed selecting unspecific digestion. Final amino acid (aa) coverage, incorporating both the MaxQuant and PEAKS searches, is reported in the final column. Extended Data Table 1 provides the tissue sources per specimen, and the CGG and GNM specimen numbers.

Supporting all peptides.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

- [] The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- [] An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- [] The statistical test(s) used AND whether they are one- or two-sided
- [] Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- [] A description of all covariates tested
- [] A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- [] A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- [] For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- [] Give P values as exact values whenever suitable.
- [] For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- [] For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- [] Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
- [] Clearly defined error bars
- [] State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection
Mass spectrometric data were acquired using the Xcalibur™ Software, controlling the Thermo Scientific™ LC-MS systems.

Data analysis
MaxQuant (versions 1.5.3.30, for main searches, and 1.6.0.16, for the dependent peptides searches)
PEAKS (version 7.5)
Geneious (version 5.4.4)
ANGSD (version 0.915)
ProSplign
MAFFT
Phangorn (R package)
PHyML (version 3.1)
MrBayes (version 3.2.6)
CASAVA (version 1.8.2)
PALEOMIX (version 1.2.6)
AdapterRemoval (version 1.5)
BWA backtrack (versions 0.5.10, 0.7.12 and 0.7.15)
BWA aln (version 0.7.7)
MarkDuplicate (http://picard.sourceforge.net/)
HiSeq Control Software 2.0.12.0/RTA 1.17.21.3
SAMtools (version 0.1.19)
SeqPrep (https://github.com/jstjohn/SeqPrep)
PRINSEQ-lite (v0.20.4)
BEDTools (version 2.25)
mapDamage2 (version 2.0.5)
Exonerate (version 2.2)
IceLogo (version 1.3.8)
MS2PIP (version 20190312)
IPSA tools (version 1.0)
MSConvert tool, part of ProteoWizard (version 3.0)
In-house developed R-script used to align the sequences identified by PEAKS (available upon request to the corresponding authors)
deamidation.py (publicly available at: https://github.com/dblyon/deamidation)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All the mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the data set identifier PXD011008. Genomic BAM files used for Rhinocerotidae protein sequence translation and protein sequence alignments used for phylogenetic reconstruction are included in the compressed archive named “Supplementary_Data_1.zip”.

Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences

All studies must disclose on these points even when the disclosure is negative.

Sample size
No sample size calculation was required. All available faunal specimen samples (23) were analyzed. Sample size includes numerous bone, dentine, and enamel samples, that therefore collectively allow us to estimate proteome survival in each of these tissues at the Dmanisi site.

Data exclusions
No data was excluded from the study.

Replication
Phylogenetic trees were reproduced using three different algorithms, and found consistent results (see Methods and SI). Proteomic results were replicated for several samples using repeated LC-MS/MS runs, and we observed consistent results within and between samples.

Randomization
Samples were injected in the LC-MS/MS system in randomised order.

Blinding
Ancient samples and control blanks were anonymised before the operator injected them in the LC-MS/MS system.

Reporting for specific materials, systems and methods

Materials & experimental systems

n/a	Involved in the study
x	Unique biological materials
x	Antibodies
x	Eukaryotic cell lines
x	Palaeontology
x	Animals and other organisms
x	Human research participants

Methods

n/a	Involved in the study
x	ChiP-seq
x	Flow cytometry
x	MRI-based neuroimaging
Section	Description
--------------------------	--
Specimen provenance	Studied specimens derive from the Dmanisi archaeological/palaentological site in Georgia (see Methods). Export of specimens to the Centre of GeoGenetics, Natural History Museum of Denmark, University of Copenhagen was regulated by approval of D. Lordkipanidze, Director of the Georgian National Museum and co-author.
Specimen deposition	Specimens are available upon request to E. Willerslev, E. Cappellini (Natural History Museum of Denmark), or D. Lordkipanidze, (Georgian National Museum).
Dating methods	No new dates obtained.

[] Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.