Targeting Lactate Dehydrogenase A Improves Radiotherapy Efficacy in Non-Small Cell Lung Cancer: From Bedside to Bench

Yang Yang (yangyang@zjcc.org.cn) Zhejiang Cancer Hospital https://orcid.org/0000-0001-6088-5435

Yu Chong State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 21512

Mengyuan Chen Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China. Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China

Wumin Dai Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China. Department of Clinical Lab, Cancer Hospital of University of Chinese Academy of Sciences Hangzhou 310022, China

Xia Zhou Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China. Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China

Yongling Ji Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China. Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China

Guoqin Qiu Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China. Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China

Xianghui Du Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China. Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
Abstract

Background

LDHA is overexpressed in many kinds of cancer, and associated with poor prognosis. In the current study, we evaluated the prognostic value of LDHA expression in non-small cell lung cancer (NSCLC), and tested whether LDHA inhibition might improve radiotherapy efficacy in NSCLC.

Methods

LDHA mRNA expression was investigated in NSCLC patients, using online database and further verified by immunohistochemistry. The prognostic value of LDHA was evaluated using Kaplan-Meier plotter database. In vitro, two NSCLC cell lines were pretreated with oxamate, an inhibitor of LDHA, and colony formation method was performed to determine cellular radiosensitivity. Comet assay was used to detect DNA damage after irradiation. Flow cytometry was applied to test cell cycle progression and apoptosis, and autophagy was examined by monodansylcadaverin (MDC) staining.

Results

Both mRNA and protein levels of LDHA expression were up-regulated in NSCLC tissues. High LDHA expression was a poor prognostic factor and associated with radioresistance in NSCLC patients. LDHA inhibition by oxamate remarkably increased radiosensitivity in both A549 and H1975 cancer cells, and enhanced ionizing radiation (IR)-induced apoptosis and autophagy, accompanied by cell cycle distribution alternations. Furthermore, LDHA inhibition induced reactive oxygen species (ROS) accumulation and cellular ATP depletion, which might increase DNA injury and hinder DNA repair activity.

Conclusions

Our study suggests inhibition of LDHA may be a potential strategy to improve radiotherapy efficacy in NSCLC patients, which needs to be further tested by clinical trials.

Background

Lung cancer is the most common malignancy, making up almost 25% of all cancer deaths around the world[1]. Radiotherapy plays a vital role in lung cancer treatment, almost three quarters of all lung cancer patients need to receive radiotherapy at some point in their lives, and concurrent chemo-radiotherapy is now the cornerstone of curative treatment for unresectable locally advanced lung cancer[2]. However, radio-resistance often lead to local failure and tumor progression, the outcomes of stage III patients after CRT is still disappointed, with a 5-year survival rate of 15–20% approximately, although immunotherapy has further improved the survival recently[3]. There is still an urgent need to find new strategy to enhance radiotherapy efficiency in NSCLC patients.
High metabolism has been recognized as a new hallmark of cancer, and emerged as a potential target for anti-cancer drugs[4]. LDHA is a key enzyme evolved in glycolysis, and has been reported to be up-regulated in many kinds of cancer, and associated with poor prognosis[5–9]. Accumulating evidence indicates that LDHA inhibition exhibits promising anti-cancer effects through various mechanisms, as well as synergistically enhances the efficacy of other treatments, including chemotherapy, radiotherapy and target drugs[10, 11]. We previously reported that diverse responses were observed in NSCLC cells after LDHA inhibition, including autophagy or apoptosis, accompanied with different cell cycle distribution alternations[12]. However, the role of LDHA in regulating radiosensitivity of NSCLC has not been elucidated.

In this study, we firstly explored the LDHA mRNA expression in NSCLC patients using online database, and further verified by immunohistochemistry. Then, the prognostic value of LDHA in NSCLC was evaluated using Kaplan-Meier plotter database. In the following experiments in vitro, two NSCLC cell lines were pretreated with oxamate, a widely used inhibitor of LDHA as a structural analogue of pyruvate, and then were exposed to different doses of irradiation, colony formation method was performed to determine cellular radiosensitivity and the possible underlying mechanism was also investigated.

Methods

Online Database

Levels of LDHA mRNA expression in NSCLC tumor and normal tissue were compared by GEPIA browser (http://gepia.cancer-pku.cn/), a newly developed interactive web server for analyzing the RNA sequencing expression data of 9,736 tumors and 8,587 normal samples from the TCGA and the GTEx projects, which provides customizable functions such as tumor/normal differential expression analysis, profiling according to cancer types or pathological stages, patient survival analysis, similar gene detection, correlation analysis and dimensionality reduction analysis[13]. The association among LDHA mRNA expression level and survival of NSCLC patients was investigated by data mining in the Kaplan-Meier plotter database (http://kmplot.com), an online database integrating gene expression and survival information simultaneously download from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). The detailed GEO information included are as follows: CaArray, GSE14814, GSE19188, GSE29013, GSE30219, GSE31210, GSE3141, GSE31908, GSE37745, GSE4573, and GSE50081. Overall survival (OS) and progression-free survival (PFS) were calculated by the Kaplan-Meier method and compared with log-rank test.

Gene set enrichment analysis (GSEA)

GSEA analyses of lung adenocarcinoma and normal lung tissue samples from the TCGA database were performed to determine the enriched genes. Based on the median expression value, lung adenocarcinoma samples were subdivided into high and low LDHA expression groups, and the functional gene set file “msigdb.v7.1.symbols.gmt” was used to determine the enriched genes. The p value for all the pathways was calculated after 1000 permutations, and pathway enrichment score was obtained in a weighted
manner. The pathways and genes with a P-value < 0.05 and false discovery rate (FDR) < 0.25 were considered significantly enriched.

Cell culture and Reagents

All cell lines were purchased from the American Type Culture Collection (ATCC, Manassas, USA), and cultured in DMEM medium (Gibco; Gaithersburg, MD, United States) containing 10% fetal bovine serum, 100 µ/mL penicillin and 100 µg/mL streptomycin at 37°C under 5% CO₂. Oxamate sodium was bought from SigmaAldrich Corp (St. Louis, MO, USA).

Patient samples and immunohistochemical (IHC) assay

All specimens were collected from NSCLC patients who received radical resection from January 2014 to December 2018 without preoperative treatment in Zhejiang Cancer Hospital. Final diagnosis was confirmed by pathological examination. The expression of LDHA in tumor tissues and adjacent normal tissues was determined by IHC analysis. Briefly, paraffin-embedded tissues cut at 4µm were rehydrated, treated with 3% H₂O₂, and blocked with 3% BSA. Subsequently, the tissue sections were incubated with anti-LDHA antibody (1:200, ab101562) or with control IgG overnight at 4°C. The immunoreactivity of LDHA was evaluated by the LDHA histo-score, calculated by adding the score for the percentage of positive cells (0–100%) and the staining intensity score (0: no staining, 1: weak, 2: moderate, and 3: strong). Tissues with immunoreactivity scores of 0–4 were considered as low expression, and those with scores ≥ 4 were designated high expression. All sections were evaluated by two independent pathologists.

Colony formation assay

Cells treated with 20mmol oxamate or negative control were incubated for 48 h and then were subjected to a range doses of irradiation, including 0, 0.5,1,3,6,9Gy. Next, the cells were incubated at 37°C in 5% CO₂. Two weeks later, colonies were washed twice with PBS, fixed with methanol for 30 min, and stained with crystal violet. Colonies with ≥ 50 cells were counted. Plating efficiency (PE) was calculated as colony number/plating cell number)× 100% and the surviving fraction (SF) was equal to colony number/(cells seeded× plating efficiency) . The multi-target single-hit model was applied to fit survival curves using the formula: SF = 1-(1-e⁻⁰⁻^D_0^N), in which D = radiation dose, D₀ = mean death dose; N = extrapolate number, Dq = quasi-threshold dose. The sensitization enhancing ratio (SER) was calculated as a ratio of D₀ between treatment and control groups.

Cell cycle analysis and apoptotic assay

Cells were collected and fixed with 70% pre cooled ethanol overnight, after staining with propidium iodide (10 µg/ml; Sigma-Aldrich) in the dark for 30 min. Flow cytometry was performed on the FACS Calibursystem (Becton Dickinson, San Jose, CA, USA) and cell cycle distribution was analyzed by means of ModFit LT software (Becton Dickinson, CA, USA). AnnexinV-FITC apoptosis kit (BD Biosciences, San Jose, CA, USA) was employed to test apoptosis. Cells were harvested after 24h irradiation, then stained
with AnnexinV/PI for 30 min. The results were analyzed by the FACS Calibur system with ModFit’s LT software.

Comet assay

Single cell gel electrophoresis (Neutral) was performed with Comet Assay kit (cat.4250-050-K; Trevigen) according to manufacturer’s instructions. Briefly, A549 cells were irradiated at 6 Gy and were collected at 0, 2 and 24 hr after irradiation, followed by washing and resuspension in 4°C PBS. 1–2 x 104 cells were mixed in 1% low fusion point agarose and placed on a slide. The cells were then treated with lysis solution for 30 minutes, and rinsed in EDTA unwinding solution, and then subjected to alkaline electrophoresis for 30 minutes (25V, 300mA). The samples were then analyzed under fluorescence microscopy (Olympus FV1000). The length of tail, the percentage of DNA in the tail of each comet were measured using CASP software (Version1.2.3; available at http://casp.sourceforge.net).

ATP and ROS detection

Intracellular ATP and ROS levels were detected using commercial assay kits (Beyotime, Haimen, China), according to the manufacturer’s instructions. Results were expressed as a percentage of the control group.

Statistical analysis

All results were presented as the mean ± SD (standard deviation of the mean) from three independent experiments. Differences between two groups were examined by the Student’s t-test, and ANOVA test was utilized to assess differences between multiple groups. The survival rates were calculated by the Kaplan-Meier method and compared with log-rank test. P-value < 0.05 was considered statistically significant. Statistical analysis was performed using the GraphPad Prism 5.0 and the SPSS 22.0 (SPSS Inc., Chicago, IL, USA) packages.

Results

LDHA is up-regulated in NSCLC tissue and associated with high glycolysis level.

Firstly, GEPIA browser (http://gepia.cancer-pku.cn/), an online tool for estimating mRNA expression based on The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) projects, was employed to compare mRNA expression level of LDHA in NSCLC tumor and normal tissues. Box and stage plotting analyses were processed on this database. The cutoff p value was defined as 0.01. As showed in Fig. 1A, LDHA mRNA expression levels were significantly elevated in both squamous and adenoma of lung cancer. Further, the mRNA levels displayed significant correlation with the tumor stage in patients with lung adenocarcinoma (LUAD) but not lung squamous carcinoma (LUSC) (Fig. 1B-C). To confirm the findings from online database, 35 NSCLC and 20 normal adjacent tissues in our biological sample bank were collected and ICH was performed, the results demonstrated the protein levels of LDHA were also increased in both LUAD and LUSC tumor tissues, compared to adjacent normal tissues (Fig. 1D-E). Then, we used GEPIA to explore the gene expression correlation between LDHA and glycolysis
markers, including GLUT-1 (also named SLC2A1) and HIF1A, which play critical roles in glycolysis and tumor microenvironment. The results showed that LDHA expression was positively associated with both the expressions of HIF1A and SLC2A1 (Fig. 1F-G). Accordingly, using GSEA analysis, high LDHA expression in lung adenocarcinoma tissues was also positively correlated with hallmark gene sets of glycolysis and hypoxia (Fig. 1H-I), indicating the reliability of the results.

High LDHA expression is associated with radioresistance and worse survival in NSCLC

To explore the association between mRNA expression of LDHA and survival in NSCLC patients, Kaplan-Meier plotter database was utilized, which generated gene expression and clinical data from a total of 1928 NSCLC patients, from the following databases: CaArray, GSE14814, GSE19188, GSE29013, GSE30219, GSE31210, GSE3141, GSE31908, GSE37745, GSE4573, and GSE50081. The cutoff point was automatically selected by the database, to reduce false discovery rate. Overall survival (OS) and progression-free survival (PFS) were calculated using the Kaplan-Meier method and compared with log-rank test. As shown in Fig. 2, the number-at-risk cases, hazard ratios (HRs) with 95% confidence intervals (CIs), and P-values were presented accordingly. The results showed that higher levels of LDHA mRNA expression were associated with worse OS and PFS in the overall population. Multivariate analysis further verified the inverse association between LDHA expression and overall survival of NSCLC, with a HR of 2.36 (95% CI: 1.37–4.05, p < 0.05). Especially, in the subgroup analysis, we found that LDHA was also associated with inferior PFS in patients who received radiotherapy, with an HR of 2.19 (1.21–3.95, p < 0.05), even in a relatively small sample. Our results preliminarily indicated that high LDHA expression was a poor prognostic factor for NSCLC patients and might be associated with radioresistance.

LDHA inhibition increased sensitivity of NSCLC cells to irradiation

In vitro study, colony formation assay was used to examine the impact of LDHA inhibition on the radiosensitivity of NSCLC cell lines. According to our previous study[12], A549 and H1975 cell lines were pre-treated with or without a low concentration of 20mmol/L oxamate for 24h, which exerted slight influence on cell viability, and then were irradiated at 0, 0.5, 1, 3.6 and 9 Gy. After further incubation for 2 weeks, the multi-target single-hit model was adopted to fit the survival curves. As shown in Fig. 3, the survival rates were significantly lower in the combination groups than those in the irradiation groups alone, and the survival curves decreased in a dose-dependent manner in both A549 and H1975 cells. However, the radiosensitive effect of LDHA inhibition was more obvious in H1975 cells, the sensitivity enhancement ratios (SERs) were 1.10 and 1.43 in A549 and H1975, respectively.

LDHA inhibition altered cell cycle distribution after irradiation
To further investigate the underlying mechanism of the radiosensitive effect induced by LDHA inhibition, cells were pretreated with or without 20mmol oxamate and irradiated with 6Gy X-ray, after 24h incubation, flow cytometry was performed to detect alternations in cell cycle distribution. As shown in Fig. 4, irradiation induced G2/M cell arrest significantly while LDHA inhibition alone led to a substantial increase of cells at G0/G1 phase, and a reduction of cells at S phase. When combined with irradiation, LDHA inhibition reduced the ratios of cells entering G2/M cycle after irradiation significantly. The ratios of cells in G2/M cycle were 43.65 ± 2.80% and 30.25 ± 2.27% in A549 and H1975 respectively after irradiation alone, and the ratios dropped to 25.35 ± 0.22% and 16.90 ± 1.66% (p < 0.05) respectively, when combined with 20mmol oxamate.

LDHA inhibition and IR combination induced both apoptosis and autophagy

Apoptosis is one of the main biological effects triggered by both LDHA inhibition and irradiation[14, 15]. Subsequently, we examined whether LDHA inhibition influenced the IR-induced cell apoptosis. Cells were pretreated with 20mmol oxamate for 24h and then received 6Gy irradiation of X-ray, AnnexinV/ PI double staining assay was employed to detect apoptosis. As shown in Fig. 5(A-C), significant apoptosis was observed in H1975 cells after oxamate treatment, while little cells underwent apoptosis in A549 cells, consistent with our previous findings[12]. Oxamate pretreatment enhanced apoptosis in both A549 and H1975 cells after irradiation. To explore other potential mechanism in A549 cells, MD/PI double staining was used to detect autophagy in A549 cells after oxamate treatment. We observed that oxamate stimulated autophagic vacuoles and interacted with apoptosis induced by irradiation in A549 cells (Fig. 5D). Interestingly, similar phenomenon was also found when targeting pyruvate kinase M2 combined with irradiation in A549 cells[16].

LDHA inhibition increased DNA injury through ROS production and hindered DNA repair by ATP depletion.

It is well known that ionizing radiation causes nuclear DNA damage, largely mediated by ROS (reactive oxygen species), and relevant DNA repair mechanisms will also be initiated responding to irradiation, all these factors contribute to the modulation of cell radiosensitivity [17]. We next explored whether LDHA inhibition influence DNA injury using a single cell gel electrophoresis COMET assay, which provided a qualitative method to measure DNA damage by testing tails of fragmented DNA behind cell nuclei [18]. As shown in Fig. 6A-C, oxamate increased both comet tail length and percentage of DNA in the tail significantly after irradiation, indicating that LDHA inhibition slowed the kinetics of X-ray-induced DSB repair. GSEA analysis also supported that LDHA expression was associated with DNA repair capability, as well as G1/S DNA damage checkpoints signaling pathway (Fig. 6F-G). Furthermore, we found that the combination of oxamate and IR decreased intracellular ATP concentration significantly (Fig. 6D). As reported previously [14], LDHA inhibition induced accumulation of reactive oxygen species (ROS) by mitochondrial oxidative phosphorylation pathway, which might increase DNA damage. In our study, N-acetylcysteine(NAC), a thiol antioxidant, was used to pretreat A549 cells with oxamate together. As shown
in Fig. 6E, NAC partly reversed the inhibitive effect of oxamate combined with irradiation, suggesting that ROS induced by LDHA inhibition was involved in the synergistic effect with irradiation.

Discussion

Quite a number of lung cancer patients undergo tumor recurrence and metastasis after radiotherapy, and almost one half of loco-regional failure occur within the radiation field, indicating that radioresistance is widely existed in NSCLC patients\[19\]. Many factors might be involved in the poor response to radiotherapy, including hypoxia, cancer stem cell phenotype, cell cycle redistribution and activated DNA repair ability\[20, 21\]. Cancer cells exhibited higher glucose intake and enhanced glycolysis, which providing energy and nutrients rapidly, known as Warburg effect\[22\]. LDHA also known as LDH5, is a key enzyme involving in the glycolysis, and play a vital role in tumor initiation, maintenance, progression, and metastasis\[10\]. LDHA is reported to be up-regulated in many kinds of cancer, and associated with poor prognosis, including breast cancer\[23\], colorectal cancer\[7\], liver cancer\[24\], bladder cancer\[8\] and prostate cancer\[5, 9\], etc. Especially, in the era of immune therapy treatment, serum LDH levels seem also to be associated with the efficiency of PD1/PDL1 efficiency \[25\].

In our study, we found that LDHA were up-regulated in NSCLC cells using online data, veried by IHC in tumor tissues. Then, we further confirmed that LDHA overexpression was associated with worse survival in NSCLC patients and those received radiotherapy. Using GESA analysis, LDHA expression is positively related to enhanced glucose intake and glycolysis, which promote cancer cell growth and progression. In fact, cancer cell mitochondria and metabolism, also take part in mediating the response to irradiation in tumor, as they regulate multiple processes involved in DNA damage and repair\[26\]. LDHA overexpression also remodels tumor microenvironment with activated HIF-1 signaling pathways, which is associated with resistance to radiotherapy and resulted in poorer clinical outcomes \[21, 27\]. Therefore, LDHA up-regulation in NSCLC leads to increased levels of glycolysis and hypoxic microenvironment, which further contribute to development of resistance to radiotherapy.

The mechanism underlying the radiosensitive effect of LDHA inhibition might involve multiple biological processes, for example, reactive oxygen species (ROS) accumulation, cell cycle redistribution, increased DNA damage and DNA repair repression. As we know, LDHA inhibition drives cancer cells metabolism from glycolysis to mitochondrial respiration, which results in enhanced oxygen consumption and increased mitochondrial ROS production\[14\]. High levels of ROS not only induce cell apoptosis or autophagy, but also significantly lead to DNA injury and influence DNA damage response\[17\]. In our study, the synergistic effect of LDHA inhibition and irradiation are compensated to some extent after NAC treatment, indicating that ROS played a pivotal role in the effect.

Generally, DNA damage repair efficiency is considered as a major determinant of cell radiosensitivity. Especially, double-strand breaks (DSBs) tend to trigger genomic instability and always induce cell-killing effects\[28\]. In our study, reduced capacity of DNA repair was observed by COMET assay when LDHA expression was inhibited, and further theoretically verified using GSEA analysis. According to previous
studies[29, 30], the process might be mediated by PI3K-Akt signaling pathway, which both involves in metabolic reprogramming and tumor cell responsiveness to radiation. Consequently, up-regulation of PI3K-Akt signaling pathway results in acquired radioresistance by enhancing aerobic glycolysis[31]. In fact, PI3K-Akt signaling pathway was indeed down-regulated in A549 cells treated with oxamate in our earlier study[32]. In addition, LDHA controls a most potent pathway of rapid ATP production in cancer cells and its blockage deprives cancer cells from a major energy pathway, which may shift cell metabolism from glycolysis to mitochondrial oxidative phosphorylation (OXPHOS) and generate more ROS[33]. Combination of oxamate with radiation becomes more efficient in suppressing ATP formation and reducing DNA repair ability[34, 35]. Of particular interest, one recent study revealed that tumor metabolites, including 2-hydroxyglutarate, fumarate hydratase, and α-ketoglutarate, hindered DNA repair by disrupting local chromatin signaling[36], demonstrating the importance of metabolism in DNA repair activity. Yet, the molecular crosstalk between glycolysis and DNA repair still needs to be further explored.

As for cell cycle distribution, we found that in both A549 and H1975 cells, after oxamate pretreatment, more cells entered G0/G1 cell cycle and fewer cells were found at S phase, while the ratios of cells at G2/M phase were not significantly influenced. As reported by our previous study, G0/G1 arrest was dependent on the activation of GSK-3β, accompanied by the inhibition of PI3K-Akt pathway[12]. Generally speaking, cells at S phase are the most resistant to radiation, while cells at G2/M phase are the most radiosensitive, and G0/G1 redistribution usually favors radioresistance[37]. Thus, the reduction of cells at radiation-resistant S phase might contribute to increased radiosensitivity in our study. Moreover, using GSEA analysis, we found that LDHA inhibition was associated with inactivation of G1/S DNA Damage Checkpoints signaling pathway[38], which further validated our hypothesis. Similarly, glycolysis inhibitor dichloroacetate was also reported to induce G0/G1 arrest and increase cell sensitivity to the X-ray irradiation in A549 cells [39, 40]. Of note, G2/M arrest was also observed in other cancer cell lines exposed to glycolysis inhibitors and reported to be associated with increased cell radiosensitivity[12, 41]. Therefore, the role of cell cycle re-distribution induced by glycolysis inhibition in modulation of radiosensitivity is still unclear, it's might be an accompanying consequence, instead of upstream signaling initiation, and less critical than the sensitizing effects of energy deprivation[42].

In summary, LDHA inhibition by oxamate suppressed glycolysis and reduced cellular ATP levels, shifted cell metabolism from glycolysis to mitochondrial oxidative phosphorylation (OXPHOS) and generated more ROS, which might increase DNA injury and hinder DNA repair activity. LDHA inhibition also induced cell apoptosis and autophagy accompanied by cell cycle alternations. All these factors contributed to enhanced radiosensitivity in NSCLC cells (Fig. 7).

Of note, although inhibition of LDHA mainly induces cell apoptosis by generating ROS, different responses to glycolysis inhibition were observed in different cancer cells[12, 43, 44]. Many efforts are being made to identify biomarkers to predict the sensitivity of glycolysis inhibitors (including LDHA inhibitors), several genetic mutations have been reported to be associated with the efficiency of glycolysis inhibitors, including Kras[45], PI3K[46], AMPK-mTOR[47], and mitochondrial DNA (mtDNA) mutations[48]. Our results showed the A549 cells with Kras mutation was less sensitive to the combination of LHDA
inhibition and radiotherapy than H1975, reflecting the heterogeneity of lung cancer. In addition, it's recently reported that only a part of NSCLC cell lines may benefit from the combination of radiotherapy and metabolic inhibition[49]. Thus, the radiosensitive effects of LDHA inhibition seems to be different in different cancer cells, efforts are still needed to identify predictive biomarkers and tested by clinical trials.

Conclusions

In this translational study, we found LDHA is up-regulated in both lung adenoma and squamous cells in both mRNA and protein levels. Higher LDHA expression is associated with enhanced glycolysis, hypoxia microenvironment, radioresistance and worse survival in NSCLC. Targeting LDHA might increase radiosensitivity by enhancing DNA damage though ROS and hinder DNA repair by energy deprivation, which give implications for further clinical study and drug development.

Abbreviations

NSCLC, non-small cell lung cancer; LDHA, lactate dehydrogenase A; RT radiotherapy; ROS, reactive oxygen species; GSEA, gene set enrichment analysis; LUAD, lung adenocarcinoma; LUSC, lung squamous carcinoma; HR, hazard ratios; OS, overall survival; PFS, progression-free survival; OXPHOS, oxidative phosphorylation.

Declarations

Ethics approval and consent to participate

The ethics committee of Zhejiang Cancer Hospital approved this work. All participating patients provided their written informed consent.

Consent for publication

Not applicable.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article.

Competing interests

The authors disclose no conflicts.

Funding

This work was supported by the fund of National Natural Science Foundation of China (No. 81702968) and Zhejiang Province National Natural Science Foundation (No. LY20H160006). All authors declared no conflicts of interests related to this work.
Contributions

Yang Y and DU XH conceived the ideas. Yang Y, Chong Y, Chen MY and Dai WM designed and the experiments. Yang Y, Zhou X and Ji YL analyzed and interpreted the data. Qiu GQ provided critical materials. Yang Y wrote the manuscript. All authors commented on drafts of the paper and approved the final manuscript.

Acknowledgements

Thanks for all the contributors and participants.

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70: 7-30.
2. Vinod SK, Hau E. Radiotherapy treatment for lung cancer: Current status and future directions. Respirology 2020.
3. Antonia SJ, Villegas A, Daniel D et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N Engl J Med 2017; 377: 1919-1929.
4. Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab 2016; 23: 27-47.
5. Koukourakis MI, Giatromanolaki A, Panteliadou M et al. Lactate dehydrogenase 5 isoenzyme overexpression defines resistance of prostate cancer to radiotherapy. Br J Cancer 2014; 110: 2217-2223.
6. Koukourakis MI, Giatromanolaki A, Sivridis E et al. Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. Br J Cancer 2003; 89: 877-885.
7. Koukourakis MI, Giatromanolaki A, Sivridis E et al. Prognostic and predictive role of lactate dehydrogenase 5 expression in colorectal cancer patients treated with PTK787/ZK 222584 (vatalanib) antiangiogenic therapy. Clin Cancer Res 2011; 17: 4892-4900.
8. Koukourakis MI, Kakouratos C, Kalamida D et al. Hypoxia-inducible proteins HIF1alpha and lactate dehydrogenase LDH5, key markers of anaerobic metabolism, relate with stem cell markers and poor post-radiotherapy outcome in bladder cancer. Int J Radiat Biol 2016; 92: 353-363.
9. Lv J, Zhou Z, Wang J et al. Prognostic Value of Lactate Dehydrogenase Expression in Different Cancers: A Meta-Analysis. Am J Med Sci 2019; 358: 412-421.
10. Feng Y, Xiong Y, Qiao T et al. Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med 2018; 7: 6124-6136.
11. Miao P, Sheng S, Sun X et al. Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life 2013; 65: 904-910.
12. Yang Y, Su D, Zhao L et al. Different effects of LDH-A inhibition by oxamate in non-small cell lung cancer cells. Oncotarget 2014; 5: 11886-11896.

13. Tang Z, Li C, Kang B et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017; 45: W98-W102.

14. Le A, Cooper CR, Gouw AM et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 2010; 107: 2037-2042.

15. Sia J, Szmyd R, Hau E, Gee HE. Molecular Mechanisms of Radiation-Induced Cancer Cell Death: A Primer. Front Cell Dev Biol 2020; 8: 41.

16. Meng MB, Wang HH, Guo WH et al. Targeting pyruvate kinase M2 contributes to radiosensitivity of non-small cell lung cancer cells in vitro and in vivo. Cancer Lett 2015; 356: 985-993.

17. Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol 2019; 25: 101084.

18. Olive PL, Banath JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 2006; 1: 23-29.

19. E J, V I, D G et al. Patterns of locoregional failure in locally advanced non-small cell lung cancer treated with definitive conformal radiotherapy: Results from the Gating 2006 trial. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 2018; 126: 291-299.

20. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 2015; 15: 409-425.

21. Meijer TW, Kaanders JH, Span PN, Bussink J. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res 2012; 18: 5585-5594.

22. Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci 2016; 41: 211-218.

23. Dong T, Liu Z, Xuan Q et al. Tumor LDH-A expression and serum LDH status are two metabolic predictors for triple negative breast cancer brain metastasis. Sci Rep 2017; 7: 6069.

24. Guo Y, Li X, Sun X et al. Combined Aberrant Expression of NDRG2 and LDHA Predicts Hepatocellular Carcinoma Prognosis and Mediates the Anti-tumor Effect of Gemcitabine. Int J Biol Sci 2019; 15: 1771-1786.

25. Mezquita L, Auclin E, Ferrara R et al. Association of the Lung Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced Non-Small Cell Lung Cancer. JAMA Oncol 2018; 4: 351-357.

26. McCann E, O'Sullivan J, Marcone S. Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Transl Oncol 2020; 14: 100905.

27. Sorensen BS, Horsman MR. Tumor Hypoxia: Impact on Radiation Therapy and Molecular Pathways. Front Oncol 2020; 10: 562.
28. Pavlopoulou A, Bagos PG, Koutsandrea V, Georgakilas AG. Molecular determinants of radiosensitivity in normal and tumor tissue: A bioinformatic approach. Cancer Lett 2017; 403: 37-47.

29. Lien EC, Lyssiotis CA, Cantley LC. Metabolic Reprogramming by the PI3K-Akt-mTOR Pathway in Cancer. Recent Results Cancer Res 2016; 207: 39-72.

30. Toulany M, Rodemann HP. Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation. Semin Cancer Biol 2015; 35: 180-190.

31. Shimura T, Noma N, Sano Y et al. AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells. Radiother Oncol 2014; 112: 302-307.

32. Chang L, Graham PH, Hao J et al. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death Dis 2014; 5: e1437.

33. Ždralević M, Brand A, Di Ianni L et al. Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect" restricting tumor growth to oxidative metabolism. J Biol Chem 2018; 293: 15947-15961.

34. Ampferl R, Rodemann HP, Mayer C et al. Glucose starvation impairs DNA repair in tumour cells selectively by blocking histone acetylation. Radiother Oncol 2018; 126: 465-470.

35. Liu J, Hou M, Yuan T et al. Enhanced cytotoxic effect of low doses of metformin combined with ionizing radiation on hepatoma cells via ATP deprivation and inhibition of DNA repair. Oncol Rep 2012; 28: 1406-1412.

36. Sulkowski PL, Oeck S, Dow J et al. Oncometabolites suppress DNA repair by disrupting local chromatin signalling. Nature 2020; 582: 586-591.

37. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004; 59: 928-942.

38. Neganova I, Vilella F, Atkinson SP et al. An important role for CDK2 in G1 to S checkpoint activation and DNA damage response in human embryonic stem cells. Stem Cells 2011; 29: 651-659.

39. Allen KT, Chin-Sinex H, DeLuca T et al. Dichloroacetate alters Warburg metabolism, inhibits cell growth, and increases the X-ray sensitivity of human A549 and H1299 NSC lung cancer cells. Free Radic Biol Med 2015; 89: 263-273.

40. Yenerall P, Das AK, Wang S et al. RUVBL1/RUVBL2 ATPase Activity Drives PAQosome Maturation, DNA Replication and Radioresistance in Lung Cancer. Cell Chem Biol 2020; 27: 105-121 e114.

41. Lin Y, Zhai H, Ouyang Y et al. Knockdown of PKM2 enhances radiosensitivity of cervical cancer cells. Cancer Cell Int 2019; 19: 129.

42. Icard P, Fournel L, Wu Z et al. Interconnection between Metabolism and Cell Cycle in Cancer. Trends Biochem Sci 2019; 44: 490-501.

43. Maximchik P, Abdrahamanov A, Inozemtseva E et al. 2-Deoxy-D-glucose has distinct and cell linespecific effects on the survival of different cancer cells upon antitumor drug treatment. FEBS J 2018; 285: 4590-4601.
44. Giammarioli AM, Gambardella L, Barbati C et al. Differential effects of the glycolysis inhibitor 2-deoxy-D-glucose on the activity of pro-apoptotic agents in metastatic melanoma cells, and induction of a cytoprotective autophagic response. Int J Cancer 2012; 131: E337-347.

45. Yun J, Rago C, Cheong I et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 2009; 325: 1555-1559.

46. Kalaany NY, Sabatini DM. Tumours with PI3K activation are resistant to dietary restriction. Nature 2009; 458: 725-731.

47. Boudreau A, Purkey HE, Hitz A et al. Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nat Chem Biol 2016; 12: 779-786.

48. Birsoy K, Possemato R, Lorbeer FK et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 2014; 508: 108-112.

49. Meijer TWH, Peeters WJM, Dubois LJ et al. Targeting glucose and glutamine metabolism combined with radiation therapy in non-small cell lung cancer. Lung Cancer 2018; 126: 32-40.