An 8-dimensional non-formal simply connected symplectic manifold

Marisa Fernández and Vicente Muñoz

November 4, 2006

Abstract

We answer in the affirmative the question posed by Babenko and Taimanov [3] on the existence of non-formal simply connected compact symplectic manifolds of dimension 8.

1 Introduction

Simply connected compact manifolds of dimension less than or equal to 6 are formal [18, 11], and there are simply connected compact manifolds of dimension greater than or equal to 7 which are non-formal [20, 10, 9, 6, 12]. If we are treating the symplectic case, the story is not so straightforward. Lupton and Oprea [15] conjectured that any simply connected compact symplectic manifold is formal. Babenko and Taimanov [2, 3] disproved this conjecture giving examples of non-formal simply connected compact symplectic manifolds of any dimension bigger than or equal to 10, by using the symplectic blow-up [16]. They raise the question of the existence of non-formal simply connected compact symplectic manifolds of dimension 8. The techniques of construction of symplectic manifolds used so far [1, 3, 6, 7, 11, 14, 21, 22] have not proved fruitful when addressing this problem. In this note, we answer the question in the affirmative by proving the following.

Theorem 1.1 There is a simply connected compact symplectic manifold of dimension 8 which is non-formal.

To construct such a manifold, we introduce a new technique to produce symplectic manifolds, which we hope can be useful for obtaining examples with interesting properties. We consider a non-formal compact symplectic 8-dimensional manifold with a symplectic non-free action of a finite group such that the quotient space is a non-formal orbifold which is simply connected. Then we resolve symplectically the singularities to produce a smooth symplectic 8-manifold satisfying the required properties. The origin of the idea stems from our study of Guan’s examples [13] of compact holomorphic symplectic manifolds which are not Kähler.

2 A simply-connected symplectic 8-manifold

Consider the complex Heisenberg group $H_{\mathbb{C}}$, that is, the complex nilpotent Lie group of complex matrices of the form

$$\begin{pmatrix}
1 & u_2 & u_3 \\
0 & 1 & u_1 \\
0 & 0 & 1
\end{pmatrix},$$

1
and let \(G = H_C \times C \), where \(C \) is the additive group of complex numbers. We denote by \(u_4 \) the coordinate function corresponding to this extra factor. In terms of the natural (complex) coordinate functions \((u_1, u_2, u_3, u_4)\) on \(G \), we have that the complex 1-forms \(\mu = du_1, \nu = du_2, \theta = du_3 - u_2 du_1 \) and \(\eta = du_4 \) are left invariant, and

\[
d\mu = d\nu = d\eta = 0, \quad d\theta = \mu \wedge \nu.
\]

Let \(\Lambda \subset C \) be the lattice generated by 1 and \(\zeta = e^{2\pi i/3} \), and consider the discrete subgroup \(\Gamma \subset G \) formed by the matrices in which \(u_1, u_2, u_3, u_4 \in \Lambda \). We define the compact (parallelizable) nilmanifold

\[
M = \Gamma \backslash G.
\]

We can describe \(M \) as a principal torus bundle

\[
T^2 = C/\Lambda \hookrightarrow M \rightarrow T^6 = (C/\Lambda)^3,
\]

by the projection \((u_1, u_2, u_3, u_4) \mapsto (u_1, u_2, u_4)\).

Now introduce the following action of the finite group \(\mathbb{Z}_3 \)

\[
\rho : G \to G
\]

\[
(u_1, u_2, u_3, u_4) \mapsto (\zeta u_1, \zeta u_2, \zeta^2 u_3, \zeta u_4).
\]

This action satisfies that \(\rho(p \cdot q) = \rho(p) \cdot \rho(q) \), for \(p, q \in G \), where the dot denotes the natural group structure of \(G \). The map \(\rho \) is a particular case of a homothetic transformation (by \(\zeta \) in this case) which is well defined for all nilpotent simply connected Lie groups with graded Lie algebra. Moreover \(\rho(\Gamma) = \Gamma \), therefore \(\rho \) induces an action on the quotient \(M = \Gamma \backslash G \). The action on the forms is given by

\[
\rho^* \mu = \zeta \mu, \quad \rho^* \nu = \zeta \nu, \quad \rho^* \theta = \zeta^2 \theta, \quad \rho^* \eta = \zeta \eta.
\]

The complex 2-form

\[
\omega = i \mu \wedge \bar{\mu} + \nu \wedge \theta + \bar{\nu} \wedge \bar{\theta} + i \eta \wedge \bar{\eta}
\]

is actually a real form which is clearly closed and which satisfies \(\omega^4 \neq 0 \). Thus \(\omega \) is a symplectic form on \(M \). Moreover, \(\omega \) is \(\mathbb{Z}_3 \)-invariant. Hence the space

\[
\tilde{M} = M/\mathbb{Z}_3
\]

is a symplectic orbifold, with the symplectic form \(\tilde{\omega} \) induced by \(\omega \). Our next step is to find a smooth symplectic manifold \(\tilde{M} \) that desingularises \(\tilde{M} \).

Proposition 2.1 There exists a smooth compact symplectic manifold \((\tilde{M}, \tilde{\omega}) \) which is isomorphic to \((\tilde{M}, \tilde{\omega})\) outside the singular points.

Proof : Let \(p \in M \) be a fixed point of the \(\mathbb{Z}_3 \)-action. Translating by a group element \(g \in G \) taking \(p \) to the origin, we may suppose that \(p = (0, 0, 0, 0) \) in our coordinates. At \(p \), the symplectic form is

\[
\omega_0 = i du_1 \wedge d\bar{u}_1 + du_2 \wedge du_3 + d\bar{u}_2 \wedge d\bar{u}_3 + i du_4 \wedge d\bar{u}_4.
\]

Take now \(\mathbb{Z}_3 \)-equivariant Darboux coordinates around \(p, \Phi : (B, \omega) \to (B_{C^1}(0, \epsilon), \omega_0) \), for some \(\epsilon > 0 \). This means that \(\Phi^* \omega_0 = \omega \) and \(\Phi \circ \rho = d\rho_p \circ \Phi \), where we interpret \((B_{C^1}(0, \epsilon), \omega_0) \subset \)
(\mathcal{T}_p M, \omega_0) \cong (\mathbb{C}^4, \omega_0)$ in the natural way. (The proof of the existence of usual Darboux coordinates in \cite{17} pp. 91–93 carry over to this case, only being careful that all the objects constructed should be \mathbb{Z}_3-equivariant.) We denote the new coordinates given by Φ as (u_1, u_2, u_3, u_4) again (although they are not the same coordinates as before).

Now introduce the new set of coordinates:

$$ (w_1, w_2, w_3, w_4) = \left(u_1, \frac{1}{\sqrt{2}}(u_2 + \bar{u}_3), \frac{i}{\sqrt{2}}(u_3 - \bar{u}_2), u_4 \right). $$

Then the symplectic form ω can be expressed as

$$ \omega = i (dw_1 \wedge d\bar{w}_1 + dw_2 \wedge d\bar{w}_2 + dw_3 \wedge d\bar{w}_3 + dw_4 \wedge d\bar{w}_4). $$

Moreover, with respect to these coordinates, the \mathbb{Z}_3-action ρ is given as

$$ \rho(w_1, w_2, w_3, w_4) = (\zeta w_1, \zeta w_2, \zeta^2 w_3, \zeta w_4). $$

With this Kähler model for a neighbourhood B of p, we may resolve the singularity of B/\mathbb{Z}_3 with a non-singular Kähler model. Basically, blow up B at p to get \tilde{B}. This replaces the point with a complex projective space \mathbb{P}^3 in which \mathbb{Z}_3 acts as

$$ [w_1, w_2, w_3, w_4] \mapsto [\zeta w_1, \zeta w_2, \zeta^2 w_3, \zeta w_4] = [w_1, w_2, w_3, w_4]. $$

Therefore there are two components of the fix-point locus of the \mathbb{Z}_3-action on \tilde{B}, namely the point $q = [0, 0, 1, 0]$ and the complex projective plane $H = \{[w_1, w_2, 0, w_4]\} \subset F = \mathbb{P}^3$. Next blow up \tilde{B} at q and at H to get $\tilde{\mathbb{Z}_3}$. The point q is substituted by a projective space $H_1 = \mathbb{P}^3$. The normal bundle of $H \subset \tilde{B}$ is the sum of the normal bundle of $H \subset F$, which is $\mathcal{O}_{\mathbb{P}^2}(1)$, and the restriction of the normal bundle of $F \subset \tilde{B}$ to H, which is $\mathcal{O}_{\mathbb{P}^3(-1)}|_{\mathbb{P}^2} = \mathcal{O}_{\mathbb{P}^2}(-1)$. Therefore the second blow-up replaces the plane H by the \mathbb{P}^1-bundle over \mathbb{P}^2 defined as $H_2 = \mathbb{P}(\mathcal{O}_{\mathbb{P}^2}(-1) \oplus \mathcal{O}_{\mathbb{P}^2}(1))$. The strict transform of $F \subset \tilde{B}$ under the second blow-up is the blow up \tilde{F} of $F = \mathbb{P}^3$ at q, which is a \mathbb{P}^1-bundle over \mathbb{P}^2, actually $\tilde{F} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(1))$. See Figure 1 below.

![Figure 1: Desingularisation process](image)

The fix-point locus of the \mathbb{Z}_3-action on \tilde{B} are exactly the two disjoint divisors H_1 and H_2. Therefore the quotient \tilde{B}/\mathbb{Z}_3 is a smooth Kähler manifold \cite{4} page 82). This provides a symplectic resolution of the singularity B/\mathbb{Z}_3. To glue this Kähler model to the symplectic form in the complement of the singular point we use Lemma 2.2 below. We do this at every fixed point to get a smooth symplectic resolution of \tilde{M}.

\[\boxed{\text{QED}} \]
Lemma 2.2 Let \((B, \omega_0)\) be the standard Kähler ball in \(\mathbb{C}^n, n > 1\), and let \(\Pi\) be a finite group acting linearly (by complex isometries) on \(B\) whose only fixed point is the origin. Let \(\phi : (\tilde{B}, \omega_1) \to (B/\Pi, \omega_0)\) be a Kähler resolution of the singularity of the quotient. Then there is a symplectic form \(\Omega\) on \(\tilde{B}\) which coincides with \(\omega_0\) near the boundary, and with a positive multiple of \(\omega_1\) near the exceptional divisor \(E = \phi^{-1}(0)\). Moreover \(\Omega\) is tamed by the complex structure.

Proof: Since \(\phi : (\tilde{B}, \omega_1) \to (B/\Pi, \omega_0)\) is holomorphic, \(\omega_0\) and \(\omega_1\) are Kähler forms in \(\tilde{B} - E = B - \{0\}\) with respect to the same complex structure \(J\). Therefore \((1 - t)\omega_0 + t\omega_1\) is a Kähler form on \(\tilde{B}\), for any number \(0 < t < 1\). (Note that \(\omega_0|_E = 0\), where we denote again by \(\omega_0\) the pull-back to \(\tilde{B}\).

Fix \(\delta > 0\) small and let \(A = \{z \in B | \delta < |z| < 2\delta\} \subset B\). Since \(A\) is simply connected, we may write \(\omega_1 - \omega_0 = d\alpha\), with \(\alpha \in \Omega^1(A)\), which we can furthermore suppose \(\Pi\)-invariant.

Let \(\rho : [0, \infty) \to [0, 1]\) be a smooth function whose value is \(1\) for \(r \leq 1.1\delta\) and \(0\) for \(r \geq 1.9\delta\). Define

\[\Omega = \omega_0 + \epsilon \, d(\rho(|z|)\alpha).\]

This equals \(\omega_0\) for \(|z| \geq 1.9\delta\), and \(\omega_0 + \epsilon (\omega_1 - \omega_0) = (1 - \epsilon)\omega_0 + \epsilon \omega_1\) for \(|z| \leq 1.1\delta\). For \(1.1\delta \leq |z| \leq 1.9\delta\), let \(C > 0\) be a bound of \(d(\rho\alpha)(u,Ju)\), for any \(u\) unitary tangent vector (with respect to the Kähler form \(\omega_0\)). Choose \(0 < \epsilon < \min\{1, C^{-1}\}\). Then \(\Omega(u,Ju) > 0\) for any non-zero \(u\).

Proposition 2.3 The manifold \(\tilde{M}\) is simply connected.

Proof: Fix the base points: let \(p_0 \in M = \Gamma \backslash G\) be the image of \((0,0,0,0) \in G\) and let \(\tilde{p}_0 \in \tilde{M}\) be the image of \(p_0\) under the projection \(M \to \tilde{M}\). There is an epimorphism of fundamental groups

\[\Gamma = \pi_1(M) \to \pi_1(\tilde{M}),\]

since the \(\mathbb{Z}_3\)-action has a fixed point \([5, \text{Corollary 6.3}]\). Now the nilmanifold \(M\) is a principal 2-torus bundle over the 6-torus \(T^6\), so we have an exact sequence

\[\mathbb{Z}^2 \hookrightarrow \Gamma \to \mathbb{Z}^6.\]

Let \(\tilde{p}_0 = \pi(p_0)\), where \(\pi : M \to T^6\) denotes the projection of the torus bundle. Clearly, \(\mathbb{Z}_3\) acts on \(\pi^{-1}(\tilde{p}_0) \cong T^2 = \mathbb{C}/\Lambda\) with 3 fixed points, and the quotient space \(T^2/\mathbb{Z}_3\) is a 2-sphere \(S^2\). So the restriction to \(\mathbb{Z}^2 = \pi_1(T^2) \subset \pi_1(M) = \Gamma\) of the map \(\Gamma \to \pi_1(\tilde{M})\) factors through \(\pi_1(T^2/\mathbb{Z}_3) = \{1\}\), hence it is trivial. Thus the map \(\Gamma \to \pi_1(\tilde{M})\) factors through the quotient \(\mathbb{Z}^0 \to \pi_1(\tilde{M})\). But \(M\) contains three \(\mathbb{Z}_3\)-invariant 2-tori, \(T_1, T_2\), and \(T_3\) (which are the images of \(\{(u_1,0,0,0)\}, \{(0,u_2,0,0)\}\) and \(\{(0,0,0,u_4)\}\), respectively) such that \(\pi_1(\tilde{M})\) is generated by the images of \(\pi_1(T_1), \pi_1(T_2)\), and \(\pi_1(T_3)\). Again, each quotient \(T_i/\mathbb{Z}_3\) is a 2-sphere, hence \(\pi_1(\tilde{M})\) is generated by \(\pi_1(T_1/\mathbb{Z}_3) = \{1\}\), which proves that \(\pi_1(\tilde{M}) = \{1\}\).

Finally, the resolution \(\tilde{M} \to M\) consists of substituting, for each singular point \(p\), a neighbourhood \(B/\mathbb{Z}_3\) of it by a non-singular model \(\tilde{B}/\mathbb{Z}_3\). The fiber over the origin of \(\tilde{B}/\mathbb{Z}_3 \to B/\mathbb{Z}_3\) is simply connected: it consists of the union of the three divisors \(H_1 = \mathbb{P}^3, H_2 = \mathbb{P}(O_{\mathbb{P}^3}(-1) \oplus O_{\mathbb{P}^3}(1))\) and \(\tilde{F}/\mathbb{Z}_3 = \mathbb{P}(O_{\mathbb{P}^2} \oplus O_{\mathbb{P}^2}(3))\), all of them are simply connected spaces, and their intersection pattern forms no cycles (see Figure 1). Therefore, a simple Seifert-Van Kampen argument proves that \(\tilde{M}\) is simply connected.

Lemma 2.4 The odd degree Betti numbers of \(\tilde{M}\) are \(b_1(\tilde{M}) = b_3(\tilde{M}) = b_5(\tilde{M}) = b_7(\tilde{M}) = 0.\)
Proof: As \(\widetilde{M} \) is simply connected, then \(b_1(\widetilde{M}) = 0 \). Next, using Nomizu’s theorem \([19]\) to compute the cohomology of the nilmanifold \(M \), we easily find that \(H^3(M) = W \oplus \overline{W} \), where

\[
W = \langle [\mu \wedge \bar{\mu} \wedge \eta], [\nu \wedge \bar{\nu} \wedge \eta], [\mu \wedge \nu \wedge \eta], [\mu \wedge \bar{\nu} \wedge \eta], [\nu \wedge \eta \wedge \bar{\eta}], [\mu \wedge \nu \wedge \theta],
\]

\[
\quad [\mu \wedge \bar{\nu} \wedge \bar{\theta}], [\bar{\mu} \wedge \nu \wedge \bar{\theta}], [\mu \wedge \bar{\mu} \wedge \bar{\theta}], [\nu \wedge \bar{\nu} \wedge \theta], [\mu \wedge \eta \wedge \bar{\theta}], [\mu \wedge \eta \wedge \theta], [\nu \wedge \eta \wedge \bar{\theta}], [\nu \wedge \eta \wedge \theta], [\bar{\mu} \wedge \bar{\nu} \wedge \theta], [\bar{\mu} \wedge \bar{\nu} \wedge \bar{\theta}] \rangle
\]

and \(\overline{W} \) is its complex conjugate. (Here \(H^*(X) \) denotes cohomology with complex coefficients.) Clearly \(\rho \) acts as multiplication by \(\zeta \) on \(W \) and as multiplication by \(\zeta^2 = \bar{\zeta} \) on \(\overline{W} \). Therefore \(H^3(\overline{M}) = H^3(M)^{\overline{\mathbb{Z}}} = 0 \).

The desingularisation process of Proposition \(2.1\) consists on removing contractible neighborhoods of the form \(B_i/\mathbb{Z}_3 \), \(B_i \cong B_{\mathbb{C}^3}(0, \epsilon) \), around each fixed point \(p_i \), and inserting a non-singular Kähler model \(\widetilde{B}_i/\mathbb{Z}_3 \) which retracts to the “exceptional divisor” \(E_i = \phi^{-1}(0) \), \(\phi : \widetilde{B}_i/\mathbb{Z}_3 \to B_i/\mathbb{Z}_3 \). We glue along the region \(A/\mathbb{Z}_3 \) which retracts into \(S^7/\mathbb{Z}_3 \), a rational homology 7-sphere. An easy Mayer-Vietoris argument then shows that \(H^j(\widetilde{M}) = H^j(M) \oplus (\bigoplus H^j(E_i)) \) for \(0 < j < 7 \). All the \(E_i \) are diffeomorphic to the 6-dimensional complex manifold depicted in Figure 1, which consists of the union of \(H_1 = \mathbb{P}^3 \), \(H_2 = \mathbb{P}(O_{\mathbb{P}^2}(-1) \oplus O_{\mathbb{P}^2}(1)) \) (a \(\mathbb{P}^1 \)-bundle over \(\mathbb{P}^3 \)) and \(F/\mathbb{Z}_3 = \mathbb{P}(O_{\mathbb{P}^2} \oplus O_{\mathbb{P}^2}(3)) \) (another \(\mathbb{P}^1 \)-bundle over \(\mathbb{P}^2 \)), intersecting in copies of the complex projective plane. So \(H^3(E_i) = 0 \) and hence \(H^3(\overline{M}) = 0 \).

The statement \(b_5(\overline{M}) = b_7(\overline{M}) = 0 \) follows from Poincaré duality. \(\Box \)

3 Non-formality of the constructed manifold

Formality for a simply connected manifold \(M \) means that its rational homotopy type is determined by its cohomology algebra. Let us recall its definition (see \([8, 22]\) for more details). Let \(X \) be a simply connected smooth manifold and consider its algebra of differential forms \((\Omega^*(X), d) \). Let \(\psi : (\bigwedge V, d) \to (\Omega^*(X), d) \) be a minimal model for this algebra \([8]\). Then \(X \) is formal if there is a quasi-isomorphism \(\psi' : (\bigwedge V, d) \to (H^*(X), d) = 0 \), i.e. a morphism of differential algebras, inducing the identity on cohomology.

Lemma 3.1 Let \(X \) be a simply connected smooth manifold with \(H^3(X) = 0 \), and let \(a, x_1, x_2, x_3 \in H^2(X) \) be cohomology classes satisfying that \(a \cup x_i = 0 \), \(i = 1, 2, 3 \). Choose forms \(\alpha, \beta_i \in \Omega^2(X) \) and \(\xi_i \in \Omega^3(X) \), with \(a = [\alpha] \), \(x_i = [\beta_i] \) and \(\alpha \wedge \beta_i = d\xi_i \), \(i = 1, 2, 3 \). If the cohomology class

\[
[\xi_1 \wedge \xi_2 \wedge \beta_3 + \xi_2 \wedge \xi_3 \wedge \beta_1 + \xi_3 \wedge \xi_1 \wedge \beta_2] \in H^5(X)
\]

is non-zero, then \(X \) is non-formal.

Proof: First, notice that

\[
d(\xi_1 \wedge \xi_2 \wedge \beta_3 + \xi_2 \wedge \xi_3 \wedge \beta_1 + \xi_3 \wedge \xi_1 \wedge \beta_2) = \alpha \wedge \beta_1 \wedge \xi_2 \wedge \beta_3 - \xi_1 \wedge \alpha \wedge \beta_2 \wedge \beta_3 +
\]

\[
+ \alpha \wedge \beta_2 \wedge \xi_3 \wedge \beta_1 - \xi_2 \wedge \alpha \wedge \beta_3 \wedge \beta_1 + \alpha \wedge \beta_3 \wedge \xi_1 \wedge \beta_2 - \xi_3 \wedge \alpha \wedge \beta_1 \wedge \beta_2 = 0,
\]

so \(1\) is a well-defined cohomology class.

Second, let us see that the cohomology class \(1\) does not depend on the particular forms \(\alpha, \beta_i \in \Omega^2(X) \) and \(\xi_i \in \Omega^3(X) \) chosen. If we write \(a = [\alpha + df] \), with \(f \in \Omega^1(X) \), then \((\alpha + df) \wedge \beta_i = d(\xi_i + f \wedge \beta_i) \) and

\[
(\xi_1 + f \wedge \beta_1) \wedge (\xi_2 + f \wedge \beta_2) \wedge \beta_3 + (\xi_2 + f \wedge \beta_2) \wedge (\xi_3 + f \wedge \beta_3) \wedge \beta_1 + (\xi_3 + f \wedge \beta_3) \wedge (\xi_1 + f \wedge \beta_1) \wedge \beta_2 = \]
so the cohomology class (1) does not change by changing the representative of \(a \). If we change the representatives of \(x_i \), say for instance \(x_1 = [\beta_1 + df] \), \(f \in \Omega^1(X) \), then \(\alpha \wedge (\beta_1 + df) = d(\xi_1 + \alpha \wedge f) \) and

\[
(\xi_1 + \alpha \wedge f) \wedge \xi_2 \wedge \beta_3 + \xi_2 \wedge \xi_3 \wedge (\beta_1 + df) + \xi_3 \wedge (\xi_1 + \alpha \wedge f) \wedge \beta_2 = \\
= \xi_1 \wedge \xi_2 \wedge \beta_3 + \xi_2 \wedge \xi_3 \wedge \beta_1 + \xi_3 \wedge \xi_1 \wedge \beta_2 + d(f \wedge \xi_2 \wedge \xi_3),
\]

so the cohomology class (1) does not change again. Finally, if we change the form \(\psi \) and \(\hat{\psi} \), balls into the fixed points. It induces a map \(\hat{\psi} : \Omega^3(X) \) closed, hence exact since \(H^3(X) = 0 \). Also in this case the cohomology class (1) does not change.

To see that \(X \) is non-formal, consider the minimal model \(\psi : (\wedge V, d) \to (\Omega^*(X), d) \) for \(X \). Then there are closed elements \(\hat{a} \), \(\hat{x}_i \in (\wedge V)^3 \) whose images are 2-forms \(\alpha, \beta_i \) representing \(a, x_i \). Since \([\hat{a} \cdot \hat{x}_i] = 0 \), there are elements \(\hat{\xi}_i \in (\wedge V)^3 \) such that \(d\hat{\xi}_i = \hat{a} \cdot \hat{x}_i \). Let \(\hat{\xi}_i = \psi(\hat{\xi}_i) \in \Omega^3(X) \). So \(d\hat{\xi}_i = \alpha \wedge \beta_i, i = 1, 2, 3 \).

If \(X \) is formal, then there exists a quasi-isomorphism \(\psi' : (\wedge V, d) \to (H^*(X), 0) \). Note that \(\psi'(\hat{\xi}_i) = 0 \) since \(H^3(X) = 0 \). Then

\[
[\xi_1 \wedge \xi_2 \wedge \beta_3 + \xi_2 \wedge \xi_3 \wedge \beta_1 + \xi_3 \wedge \xi_1 \wedge \beta_2] = \psi'(\hat{\xi}_1 \wedge \hat{\xi}_2 \wedge \hat{x}_3 + \hat{\xi}_2 \wedge \hat{\xi}_3 \wedge \hat{x}_1 + \hat{\xi}_3 \wedge \hat{\xi}_1 \wedge \hat{x}_2) = 0,
\]

contradicting our assumption. This proves that \(X \) is non-formal.

Theorem 3.2 The manifold \(\tilde{M} \) is non-formal.

Proof: We start by considering the nilmanifold \(M \). Consider the closed forms:

\[
\alpha = \mu \wedge \tilde{\mu}, \quad \beta_1 = \nu \wedge \tilde{\nu}, \quad \beta_2 = \nu \wedge \tilde{\eta}, \quad \beta_3 = \tilde{\nu} \wedge \eta.
\]

Then

\[
\alpha \wedge \beta_1 = d(-\theta \wedge \mu \wedge \nu), \quad \alpha \wedge \beta_2 = d(-\theta \wedge \mu \wedge \tilde{\eta}), \quad \alpha \wedge \beta_3 = d(\theta \wedge \mu \wedge \eta).
\]

All the forms \(\alpha, \beta_1, \beta_2, \beta_3 \), \(\xi_1 = -\theta \wedge \mu \wedge \nu \), \(\xi_2 = -\theta \wedge \mu \wedge \tilde{\eta} \) and \(\xi_3 = \tilde{\theta} \wedge \mu \wedge \eta \) are \(\mathbb{Z}_3 \)-invariant. Hence they descend to the quotient \(\tilde{M} = M / \mathbb{Z}_3 \). Let \(q : M \to \tilde{M} \) denote the projection, and define \(\hat{\alpha} = q_* \alpha \), \(\hat{\beta}_i = q_* \beta_i \), \(\hat{\xi}_i = q_* \xi_i \), \(i = 1, 2, 3 \). Now take a \(\mathbb{Z}_3 \)-equivariant map \(\varphi : M \to M \) which is the identity outside some small balls around the fixed points, and contracts some smaller balls into the fixed points. It induces a map \(\hat{\varphi} : \tilde{M} \to \tilde{M} \) such that \(\varphi \circ q = q \circ \varphi \). The forms \(\hat{\alpha} = \hat{\varphi}^* \hat{\alpha}, \hat{\beta}_i = \hat{\varphi}^* \hat{\beta}_i, \hat{\xi}_i = \hat{\varphi}^* \hat{\xi}_i, i = 1, 2, 3 \), are zero in a neighbourhood of the fixed points, therefore they define forms on \(\tilde{M} \), by extending them by zero along the exceptional divisors. Note that \(\hat{\alpha}, \hat{\beta}_i \in \Omega^2(\tilde{M}) \) are closed forms and \(\hat{\xi}_i \in \Omega^3(\tilde{M}) \) satisfies \(d\hat{\xi}_i = \hat{\alpha} \wedge \hat{\beta}_i, i = 1, 2, 3 \).

By Lemma 2.3, \(H^2(\tilde{M}) = 0 \), so we may apply Lemma 3.1 to the cohomology classes \(a = [\alpha], b_i = [\beta_i] \in H^2(\tilde{M}), i = 1, 2, 3 \). The cohomology class

\[
[\hat{\xi}_1 \wedge \hat{\xi}_2 \wedge \hat{\beta}_3 + \hat{\xi}_2 \wedge \hat{\xi}_3 \wedge \hat{\beta}_1 + \hat{\xi}_3 \wedge \hat{\xi}_1 \wedge \hat{\beta}_2] = [\hat{\varphi}^* q_* (\xi_1 \wedge \xi_2 \wedge \beta_3 + \xi_2 \wedge \xi_3 \wedge \beta_1 + \xi_3 \wedge \xi_1 \wedge \beta_2)] = \hat{\varphi}^* q_* (2[\theta \wedge \mu \wedge \nu \wedge \eta \wedge \theta \wedge \mu \wedge \tilde{\nu} \wedge \tilde{\eta}]) \neq 0,
\]

QED
since its integral is
\[
\int_{\tilde{M}} \varphi^* q_*(2[\theta \wedge \mu \wedge \nu \wedge \eta \wedge \bar{\theta} \wedge \bar{\mu} \wedge \bar{\nu} \wedge \bar{\eta}]) = \int_{\tilde{M}} \varphi^* q_*(2[\theta \wedge \mu \wedge \nu \wedge \eta \wedge \bar{\theta} \wedge \bar{\mu} \wedge \bar{\nu} \wedge \bar{\eta}]) \\
= 3 \int_{\tilde{M}} \varphi^*(2[\theta \wedge \mu \wedge \nu \wedge \eta \wedge \theta \wedge \mu \wedge \nu \wedge \eta]) \\
= 6 \int_{\tilde{M}} [\theta \wedge \mu \wedge \nu \wedge \eta \wedge \bar{\theta} \wedge \bar{\mu} \wedge \bar{\nu} \wedge \bar{\eta}] \neq 0.
\]

By Lemma 3.3, \(\tilde{M}\) is non-formal.

Remark 3.3 The symplectic manifold \((\tilde{M}, \tilde{\omega})\) is not hard-Lefschetz. The \(\mathbb{Z}_3\)-invariant form \(\nu \wedge \bar{\nu}\) on \(M\) is not exact, but \(\omega^2 \wedge \nu \wedge \bar{\nu} = 2d(\theta \wedge \mu \wedge \eta \wedge \eta \wedge \bar{\theta} \wedge \bar{\mu})\). This form descends to the quotient \(\tilde{M}\) and can be extended to \(\tilde{M}\) via the process done at the end of the proof of the previous theorem. Therefore the map \([\omega]^2: H^2(\tilde{M}) \to H^6(\tilde{M})\) is not injective.

Cavalcanti [7] gave the first examples of simply connected compact symplectic manifolds of dimension \(\geq 10\) which are hard Lefschetz and non-formal. Yet examples of non-formal simply connected compact symplectic 8-manifolds satisfying the hard Lefschetz property have not been constructed.

Acknowledgments. We are very grateful to the referee for useful comments that helped to simplify the exposition in Section 3. We also thank Dominic Joyce for suggesting us to look at [13] and Gil Cavalcanti, Ignasi Mundet and John Oprea for conversations and helpful suggestions. This work has been partially supported through grants MCyT (Spain) MTM2004-07090-C03-01, MTM2005-08757-C04-02 and Project UPV 00127.310-E-15909/2004.

References

[1] I.K. Babenko, I.A. Taimanov, *On the formality problem for symplectic manifolds*, Contemporary Math. **288**, 1–9, Amer. Math. Soc., Providence, Rhode Island, 2001.

[2] I.K. Babenko, I.A. Taimanov, *On existence of non-formal simply connected symplectic manifolds*, *Russ. Math. Surv.* **53** (1998), 1082–1083.

[3] I.K. Babenko, I.A. Taimanov, *On non-formal simply connected symplectic manifolds*, *Siberian Math. J.* **41** (2000), 204–217.

[4] W. Barth, C. Peters, A. Van de Ven, *Compact complex surfaces*, Springer-Verlag, Berlin, 1984.

[5] G. Bredon, *Introduction to compact transformation groups*, Academic Press, New York, 1972.

[6] G.R. Cavalcanti, *Formality of \(k\)-connected spaces in \(4k + 3\) and \(4k + 4\) dimensions*, *Math. Proc. Cam. Phil. Soc.* **141** (2006), 101–112.

[7] G.R. Cavalcanti, *The Lefschetz property, formality and blowing up in symplectic geometry*, *Trans. Amer. Math. Soc.* **359** (2007), 333–348.

[8] P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, *Real homotopy theory of Kähler manifolds*, *Invent. Math.* **29** (1975), 245–274.

[9] A. Dranishnikov, Y. Rudyak, *Examples of non-formal closed \((k - 1)\)-connected manifolds of dimensions \(4k - 1\) and more*, *Proc. Amer. Math. Soc.* **133** (2005), 1557–1561.

[10] M. Fernández, V. Muñoz, *On non-formal simply connected manifolds*, *Topol. Appl.* **135** (2004), 111–117.
[11] M. Fernández, V. Muñoz, Formality of Donaldson submanifolds, *Math. Zeit.* **250** (2005), 149–175.

[12] M. Fernández, V. Muñoz, Non-formal compact manifolds with small Betti numbers, Proceedings of the Conference Contemporary Geometry and Related Topics (Belgrade 2005), to appear. Preprint [math.AT/0504396](http://arxiv.org/abs/math.AT/0504396).

[13] D. Guan, Examples of compact holomorphic symplectic manifolds which are not Kählerian II, *Invent. Math.* **121** (1995), 135–145.

[14] R. Ibáñez, Y. Rudyak, A. Tralle, L. Ugarte, On certain geometric and homotopy properties of closed symplectic manifolds, *Topol. Appl.* **127** (2002), 33–45.

[15] G. Lupton, J. Oprea, Symplectic manifolds and formality, *J. Pure Appl. Algebra* **91** (1994), 193–207.

[16] D. McDuff, Examples of symplectic simply connected manifolds with no Kähler structure, *J. Diff. Geom.* **20** (1984), 267–277.

[17] D. McDuff, D. Salamon, *Introduction to symplectic geometry*, second edition, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1998.

[18] J. Neisendorfer, T.J. Miller, Formal and coformal spaces. *Illinois. J. Math.* **22** (1978), 565–580.

[19] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, *Ann. Math.* **59** (1954), 531–538.

[20] J. Oprea, The Samelson space of a fibration, *Mich. Math. J.* **34** (1987), 127–141.

[21] Y. Rudyak, A. Tralle, On Thom spaces, Massey products and nonformal symplectic manifolds, *Int. Math. Res. Notices* **10** (2000), 495–513.

[22] A. Tralle, J. Oprea, *Symplectic manifolds with no Kähler structure*, Lecture Notes in Math. **1661**, Springer–Verlag, 1997.

M. Fernández: Departamento de Matemáticas, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain.

E-mail: marisa.fernandez@ehu.es

V. Muñoz: Departamento de Matemáticas, Consejo Superior de Investigaciones Científicas, C/ Serrano 113bis, 28006 Madrid, Spain.

Facultad de Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain.

E-mail: vicente.munoz@imaff.cfmac.csic.es