ISOPERIMETRIC INEQUALITIES FOR THE LOGARITHMIC
POTENTIAL OPERATOR

MICHAEL RUZHANSKY AND DURVUDKHAN SURAGAN

Abstract. In this paper we prove that the disc is a maximizer of the Schatten p-norm of the logarithmic potential operator among all domains of a given measure in \mathbb{R}^2, for all $2 \leq p \leq \infty$. We also show that the equilateral triangle has the largest Schatten p-norm among all triangles of given area. For the logarithmic potential operator on bounded open or triangular domains, we also obtain analogues of the Rayleigh-Faber-Krahn or Pólya inequalities, respectively. The logarithmic potential operator can be related to a nonlocal boundary value problem for the Laplacian, so we obtain isoperimetric inequalities for its eigenvalues as well.

1. Introduction

Let $\Omega \subset \mathbb{R}^2$ be an open bounded set. We consider the logarithmic potential operator on $L^2(\Omega)$ defined by

$$L_\Omega f := \int_{\Omega} \frac{1}{2\pi} \ln \frac{1}{|x-y|} f(y) dy, \quad f \in L^2(\Omega),$$

where \ln is the natural logarithm and $|x-y|$ is the standard Euclidean distance between x and y. Clearly, L_Ω is compact and self-adjoint. Therefore, all of its eigenvalues and characteristic numbers are discrete and real. We recall that the characteristic numbers are inverses of the eigenvalues. The characteristic numbers of L_Ω may be enumerated in ascending order of their modulus,

$$|\mu_1(\Omega)| \leq |\mu_2(\Omega)| \leq ...$$

where $\mu_i(\Omega)$ is repeated in this series according to its multiplicity. We denote the corresponding eigenfunctions by $u_1, u_2, ...$, so that for each characteristic number μ_i there is a unique corresponding eigenfunction u_i,

$$u_i = \mu_i(\Omega) L_\Omega u_i, \quad i = 1, 2, ...$$

It is known, see for example Mark Kac [Kac51] (see also [KS09]), that the equation

$$u(x) = L_\Omega f(x) = \int_{\Omega} \frac{1}{2\pi} \ln \frac{1}{|x-y|} f(y) dy$$

is equivalent to the equation

$$-\Delta u(x) = f(x), \quad x \in \Omega,$$

1991 Mathematics Subject Classification. 35P99, 47G40, 35S15.

Key words and phrases. Logarithmic potential, characteristic numbers, Schatten class, isoperimetric inequality, Rayleigh-Faber-Krahn inequality, Pólya inequality.

The first author was supported in parts by the EPSRC grant EP/K039407/1 and by the Leverhulme Grant RPG-2014-02. The second author was supported by the MESRK grant 5127/GF4.
with the nonlocal integral boundary condition
\begin{equation}
\frac{1}{2} u(x) + \int_{\partial \Omega} \frac{1}{\partial_n y} \ln \frac{|x - y|}{2\pi} u(y) dS_y - \int_{\partial \Omega} \frac{1}{\partial_n y} \ln \frac{|x - y|}{2\pi} \partial u(y) dS_y = 0, \quad x \in \partial \Omega,
\end{equation}
where \(\frac{\partial}{\partial_n y}\) denotes the outer normal derivative at a point \(y\) on the boundary \(\partial \Omega\), which is assumed piecewise \(C^1\) here.

In [KS09] by using the boundary condition (1.3) the eigenvalues and eigenfunctions of the logarithmic potential for (1.2) were calculated in the 2-disk. The boundary value problem (1.2)-(1.3) has several interesting applications (see, Kac [Kac51, Kac80] and Saito [Sai08]).

Spectral properties of the logarithmic potential have been considered in many papers (see [AKL92], [AK92], [BS77], [Kac70], [Tro67], [Tro69]). In this paper we are interested in isoperimetric inequalities of the logarithmic potential \(L_\Omega\), that is also, in isoperimetric inequalities of the nonlocal Laplacian (1.2)-(1.3). For a recent general review of isoperimetric inequalities for the Dirichlet, Neumann and other Laplacians we refer to Benguria, Linde and Loewe in [BLL12]. Isoperimetric inequalities for Schatten norms for double layer potentials have been recently considered by Miyaniishi and Suzuki [MS15].

In Rayleigh’s famous book “Theory of Sound” (first published in 1877), by using some explicit computation and physical interpretations, he stated that the disc minimizes (among all domains of the same area) the first eigenvalue of the Dirichlet Laplacian. The proof of this conjecture was obtained about 50 years later, simultaneously (and independently) by G. Faber and E. Krahn. Nowadays, the Rayleigh-Faber-Krahn inequality has been established for many other operators; see e.g. [Hen06] for further references (see also [Ban80] and [PS51]). Among other things, in this paper we also prove the Rayleigh-Faber-Krahn theorem for the integral operator \(L_\Omega\), i.e. it is proved that the disc is a minimizer of the first eigenvalue of the Laplacian (1.2)-(1.3) among all domains of a given measure in \(\mathbb{R}^2\).

By using the Feynman-Kac formula and spherical rearrangement Luttinger [Lut73] proved that the disc \(D\) is a maximizer of the partition function of the Dirichlet Laplacian among all domains of the same area as \(D\) for all positive values of time, i.e.
\[
\sum_{i=1}^{\infty} \exp(-t\mu_i^D(\Omega)) \leq \sum_{i=1}^{\infty} \exp(-t\mu_i^D(D)), \quad \forall t > 0, \quad |\Omega| = |D|,
\]
where \(\mu_i^D, i = 1, 2, \ldots, \) are the eigenvalues of the Dirichlet Laplacian. From here by using the Mellin transform one obtains
\begin{equation}
\sum_{i=1}^{\infty} \frac{1}{[\mu_i^D(\Omega)]^p} \leq \sum_{i=1}^{\infty} \frac{1}{[\mu_i^D(D)]^p}, \quad |\Omega| = |D|,
\end{equation}
when \(p > 1, \Omega \subset \mathbb{R}^2\). We prove an analogy of this Luttinger’s inequality for the integral operator \(L_\Omega\). In our note [RS15] we obtained similar results for convolution type integral operators with positive nonincreasing kernels. In the present setting the main difficulty arises from the fact that the logarithmic potential is not positive and that we can not use the Brascamp-Lieb-Luttinger type rearrangement inequalities directly.
In Section 2, we present the main result of this paper. Its proof will be given in Section 4. Among other things, we establish the Rayleigh-Faber-Krahn type inequality in Section 3. In Section 5 we discuss shortly about isoperimetric inequalities for polygons and show that the Schatten p-norm is maximized on the equilateral triangle centred at the origin among all triangles of a given area.

2. MAIN RESULT AND EXAMPLES

Let H be a separable Hilbert space. By $S^\infty(H)$ we denote the space of compact operators $P : H \to H$. Recall that the singular numbers $\{s_n\}$ of $P \in S^\infty(H)$ are the eigenvalues of the positive operator $(P^*P)^{1/2}$ (see [GK69]). The Schatten p-classes are defined as

$$S^p(H) := \{P \in S^\infty(H) : \{s_n\} \in \ell^p\}, \quad 1 \leq p < \infty.$$

In $S^p(H)$ the Schatten p-norm of the operator P is defined by

$$\|P\|_p := \left(\sum_{n=1}^{\infty} s_n^p\right)^{1/p}, \quad 1 \leq p < \infty.$$

For $p = \infty$, we can set

$$\|P\|_\infty := \|P\|$$

to be the operator norm of P on H. As outlined in the introduction, we assume that $\Omega \subset \mathbb{R}^2$ is an open bounded set and we consider the logarithmic potential operator on $L^2(\Omega)$ of the form

$$\mathcal{L}_\Omega f = \int_{\Omega} \frac{1}{2\pi} \ln \frac{1}{|x - y|} f(y) dy, \quad f \in L^2(\Omega).$$

It is known that \mathcal{L}_Ω is a Hilbert-Schmidt operator. By $|\Omega|$ we will denote the Lebesgue measure of Ω.

Theorem 2.1. Let D be a disc centred at the origin. Then

$$\|\mathcal{L}_\Omega\|_p \leq \|\mathcal{L}_D\|_p$$

for any $2 \leq p \leq \infty$ and any bounded open domain Ω with $|\Omega| = |D|$.

Let us give several examples calculating explicitly values of the right hand side of (2.3) for different values of p.

Example 2.2. Let $D \equiv U$ be the unit disc. Then by Theorem 2.1 we have

$$\|\mathcal{L}_\Omega\|_p \leq \|\mathcal{L}_U\|_p = \left(\sum_{m=1}^{\infty} \frac{3}{j_{l,m}^2} + \sum_{l=1}^{\infty} \sum_{m=1}^{\infty} \frac{2}{j_{l,m}^2}\right)^{1/p},$$

for any real $2 \leq p < \infty$ and any bounded open domain Ω with $|\Omega| = |D|$. Here j_{km} denotes the m^{th} positive zero of the Bessel function J_k of the first kind of order k.

The right hand sight of the formula (2.4) can be confirmed by a direct calculation of the logarithmic potential eigenvalues in the unit disc, see Theorem 3.1 in [AKL92].

We also obtain when $p = \infty$:
Example 2.3. Let $D \equiv U$ be the unit disc. Then by Theorem 2.1 we have

\[(2.5) \quad \|L_\Omega\| \leq \|L_U\| = \frac{1}{\beta_0}\]

for any bounded open domain Ω with $|\Omega| = |D|$. Here $\| \cdot \|$ is the operator norm on the space L^2.

From Corollary 3.2 in [AKL92] we calculate explicitly the operator norm in the right hand sight of (2.5).

3. On Rayleigh-Faber-Krahn theorem

In this section we prove the following analogy of the Rayleigh-Faber-Krahn theorem for the integral operator L_Ω.

Theorem 3.1. The disc D is a minimizer of the characteristic number of the logarithmic potential L_Ω with the smallest modulus among all domains of a given measure, i.e.

\[0 < |\mu_1(D)| \leq |\mu_1(\Omega)|\]

for an arbitrary bounded open domain $\Omega \subset \mathbb{R}^2$ with $|\Omega| = |D|$.

We will use this result later in the proof of Theorem 2.1.

Remark 3.2. In Landkof [Lan72] the positivity of the operator L_Ω is proved in domains $\Omega \subset U$, where U is the unit disc. In general, L_Ω is not a positive operator. For any bounded open domain Ω the logarithmic potential operator L_Ω can have at most one negative eigenvalue, see Troutman [Tro67] (see also Kac [Kac70]).

Remark 3.3. In other words Theorem 3.1 says that the operator norm of L_Ω is maximized in a disc among all Euclidean bounded open domains of a given area.

Lemma 3.4. The characteristic number μ_1 of the logarithmic potential L_Ω with the smallest modulus is simple, and the corresponding eigenfunction u_1 can be chosen nonnegative.

Proof of Lemma 3.4. The eigenfunctions of the logarithmic potential L_Ω may be chosen to be real as its kernel is real. First let us prove that u_1 cannot change sign in the domain Ω, that is,

\[u_1(x)u_1(y) = |u_1(x)u_1(y)|, \ x, y \in \Omega.\]

In fact, in the opposite case, by virtue of the continuity of the function $u_1(x)$, there would be neighborhoods $U(x_0, r) \subset \Omega$ such that

\[|u_1(x)u_1(y)| > u_1(x)u_1(y), \ x, y \in U(x_0, r) \subset \Omega.\]

On the other hand we have

\[(3.1) \quad \int_\Omega \frac{1}{2\pi} \ln \frac{1}{|x_0 - z|} \frac{1}{2\pi} \ln \frac{1}{|z - x_0|} \, dz > 0, \quad x_0 \in \Omega.\]

From here by continuity it is simple to check that there exists $\rho > 0$ such that

\[(3.2) \quad \int_\Omega \frac{1}{2\pi} \ln \frac{1}{|x - z|} \frac{1}{2\pi} \ln \frac{1}{|z - y|} \, dz > 0, \quad x, y \in U(x_0, \rho) \subset U(x_0, r).\]
Now let us introduce a new function

\[
\tilde{u}_1(x) := \begin{cases}
|u_1(x)|, & x \in U(x_0, \rho), \\
u_1(x), & x \in \Omega \setminus U(x_0, \rho).
\end{cases}
\]

Then we obtain

\[
\left(L_\Omega^2 \tilde{u}_1, \tilde{u}_1 \right) = \frac{1}{\|\tilde{u}_1\|^2} \int_\Omega \int_\Omega \frac{1}{2\pi} \ln \frac{1}{|x-z|} \frac{1}{2\pi} \ln \frac{1}{|z-y|} dz \tilde{u}_1(x) \tilde{u}_1(y) dx dy > \frac{1}{\|u_1\|^2} \int_\Omega \int_\Omega \int_\Omega \frac{1}{2\pi} \ln \frac{1}{|x-z|} \frac{1}{2\pi} \ln \frac{1}{|z-y|} dz u_1(x) u_1(y) dx dy = \frac{1}{\mu_1^2},
\]

where \(\mu_1^2 \) is the smallest characteristic number of \(L_\Omega^2 \) and \(u_1 \) is the eigenfunction corresponding to \(\mu_1^2 \), i.e.

\[
u_1 = \mu_1^2 L_\Omega^2 u_1.
\]

Therefore, by the variational principle we also have

\[
\frac{1}{\mu_1^2} = \sup_{f \in L^2(\Omega)} \left(\frac{L_\Omega^2 f, f}{\|f\|^2} \right).
\]

This means that the strong inequality (3.4) contradicts the variational principle (3.5) because \(\|\tilde{u}_1\|_{L^2} = \|u_1\|_{L^2} < \infty \).

Since \(u_1 \) is nonnegative it follows that \(\mu_1 \) is a simple. Indeed, if there were an eigenfunction \(v_1 \) linearly independent of \(u_1 \) and corresponding to \(\mu_1 \), then for all real \(c \) the linear combination \(u_1 + cv_1 \) also would be an eigenfunction corresponding to \(\mu_1 \) and therefore, by what has been proved, it could not become negative in \(\Omega \). As \(c \) is arbitrary, this is impossible. \(\square \)

Proof of Theorem 3.1. Let \(\Omega \) be a bounded open set in \(\mathbb{R}^2 \). Its symmetric rearrangement \(\Omega^* \equiv D \) is an open disc centred at 0 with the measure equal to the measure of \(\Omega \), i.e. \(|D| = |\Omega| \). Let \(u \) be a nonnegative measurable function in \(\Omega \), so that all its positive level sets have finite measure,

\[
\text{Vol} \left(\{ x : u(x) > t \} \right) < \infty, \quad (\forall t > 0).
\]

In the definition of the symmetric-decreasing rearrangement of \(u \) one can use the so-called layer-cake decomposition (see [LL01]), which expresses a nonnegative function \(u \) in terms of its level sets as

\[
u(x) = \int_0^\infty \chi_{\{ u(x) > t \}} dt,
\]

where \(\chi \) is the characteristic function of the corresponding domain.

Definition 3.5. Let \(u \) be a nonnegative measurable function in \(\Omega \). A function

\[
u^*(x) := \int_0^\infty \chi_{\{ u(x) > t \}} dt
\]

is called a symmetric-decreasing rearrangement of a nonnegative measurable function \(u \).
As in the proof of Lemma 3.4, \(\mu^2_1(\Omega) \) is the smallest characteristic number of \(L^2_\Omega \) and \(u_1 \) is the eigenfunction corresponding to \(\mu^2_1 \), i.e.

\[
u_1 = \mu^2_1(\Omega)L^2_\Omega u_1.
\]

By Lemma 3.4 the first characteristic number \(\mu_1 \) of the operator \(L_\Omega \) is simple; the corresponding eigenfunction \(u_1 \) can be chosen positive in \(\Omega \). Recall the rearrangement inequality for the logarithmic kernel (cf. Lemma 2 in \[CL92\])

\[
\int \Omega \int \Omega \int \Omega u_1(y) \frac{1}{2\pi} \ln \frac{1}{|y-z|} \frac{1}{2\pi} \ln \frac{1}{|z-x|} u_1(x)dzdydx \leq \int D \int D \int D u_1^*(y) \frac{1}{2\pi} \ln \frac{1}{|y-z|} \frac{1}{2\pi} \ln \frac{1}{|z-x|} u_1^*(x)dzdydx.
\]

In addition, for each nonnegative function \(u \in L^2(\Omega) \) we have

\[
\|u\|_{L^2(\Omega)} = \|u^*\|_{L^2(D)}.
\]

Therefore, from (3.8), (3.9) and the variational principle for the positive operator \(L^2_D \), we get

\[
\mu^2_1(\Omega) = \frac{\int \Omega |u_1(x)|^2dx}{\int \Omega \int \Omega u_1(y) \frac{1}{2\pi} \ln \frac{1}{|y-z|} \frac{1}{2\pi} \ln \frac{1}{|z-x|} u_1(x)dzdydx} \geq \frac{\int D |u_1^*(x)|^2dx}{\int D \int D u_1^*(y) \frac{1}{2\pi} \ln \frac{1}{|y-z|} \frac{1}{2\pi} \ln \frac{1}{|z-x|} u_1^*(x)dzdydx} \geq \inf_{v \in L^2(D)} \frac{\int D |v(x)|^2dx}{\int D \int D v(y) \frac{1}{2\pi} \ln \frac{1}{|y-z|} \frac{1}{2\pi} \ln \frac{1}{|z-x|} v(x)dzdydx} = \mu_1^2(D).
\]

Finally, note that 0 is not a characteristic number of \(L_D \) (cf. Corollary 1 in [Tro67]). Therefore,

\[
0 < |\mu_1(D)|.
\]

This completes the proof. \(\square \)

4. PROOF OF THEOREM 2.1

First we prove the Brascamp-Lieb-Luttinger type rearrangement inequality for the logarithmic kernel (cf. [BL74]).

Lemma 4.1. Let \(D \) be a disc centred at the origin. Then

\[
\int \Omega \ldots \int \frac{1}{2\pi} \ln \frac{1}{|y_1-y_2|} \ldots \frac{1}{2\pi} \ln \frac{1}{|y_p-y_1|} dy_1 \ldots dy_p \leq \int D \ldots \int D \frac{1}{2\pi} \ln \frac{1}{|y_1-y_2|} \ldots \frac{1}{2\pi} \ln \frac{1}{|y_p-y_1|} dy_1 \ldots dy_p,
\]

for any \(p = 2, 3, \ldots \), and for any bounded open set \(\Omega \) with \(|\Omega| = |D| \).

1 For the proof of the rearrangement inequality for the logarithmic kernel (3.8) see Lemma 5.3. The proof is the same with the difference that in this case the symmetric decreasing rearrangement is used instead of the Steiner symmetrization.
Proof of Lemma 4.1. Here we prove it for $p = 2$ and the proof is based on the proof of Lemma 2 in [CL92]. The proof for arbitrary p is essentially the same as the case $p = 2$. Let us fix $r_0 > 0$ and consider the function

$$f(r) := \begin{cases} \frac{1}{2\pi} \ln \frac{1}{r}, & r \leq r_0, \\ \frac{1}{2\pi} \ln \frac{1}{r_0} - \frac{1}{2\pi} \int_{r_0}^{r} s^{-1} \frac{1 + r_0^2}{1 + s^2} ds, & r > r_0. \end{cases}$$

(4.2)

Let us see that the function $f(r)$ is strictly decreasing and has a limit as $r \to \infty$. If $r \leq r_0$ then

$$f(r_1) = \frac{1}{2\pi} \ln \frac{1}{r_1} > \frac{1}{2\pi} \ln \frac{1}{r_2} = f(r_2)$$

for $r_1 < r_2$. If $r > r_0$ then

$$f(r) = \frac{1}{2\pi} \ln \frac{1}{r_0} - \frac{1}{2\pi} \int_{r_0}^{r} s^{-1} \frac{1 + r_0^2}{1 + s^2} ds = \frac{1}{2\pi} \ln \frac{1}{r_0} - \frac{1}{2\pi} (1 + r_0^2) [\ln r - \frac{1}{2} \ln(1 + r^2) - \ln r_0 + \frac{1}{2} \ln(1 + r_0^2)].$$

(4.3)

Thus $f(r_1) > f(r_2)$ for $r_1 < r_2$, that is, $f(r)$ is strictly decreasing. From (4.3) it is easy to see that

$$\lim_{r \to \infty} f(r) = \frac{1}{2\pi} \ln \frac{1}{r_0} - \frac{1}{2\pi} (1 + r_0^2) [-\ln r_0 + \frac{1}{2} \ln(1 + r_0^2)].$$

(4.4)

We use the notation

$$f_\infty := \frac{1}{2\pi} \ln \frac{1}{r_0} - \frac{1}{2\pi} (1 + r_0^2) [-\ln r_0 + \frac{1}{2} \ln(1 + r_0^2)].$$

By construction $\frac{1}{2\pi} \ln \frac{1}{r} - f(r)$ is decreasing. Thus if we define

$$h_1(r) = f(r) - f_\infty$$

we have the decomposition

$$\frac{1}{2\pi} \ln \frac{1}{r} = h_1(r) + h_2(r)$$

where h_1 is positive strictly decreasing function and h_2 is decreasing. Hence by the Brascamp-Lieb-Luttinger rearrangement inequality we have

$$\int_{\Omega} \int_{\Omega} h_1(|y_1 - y_2|) h_1(|y_2 - y_1|) dy_1 dy_2 \leq \int_D \int_D h_1(|y_1 - y_2|) h_1(|y_2 - y_1|) dy_1 dy_2$$

(4.5)

and

$$\int_{\Omega} \int_{\Omega} h_2(|y_1 - y_2|) h_2(|y_2 - y_1|) dy_1 dy_2 \leq \int_D \int_D h_2(|y_1 - y_2|) h_2(|y_2 - y_1|) dy_1 dy_2.$$

(4.6)
Thus it remains to show
\[
\int_{\Omega} \int_{\Omega} h_1(|y_1 - y_2|)h_2(|y_2 - y_1|)dy_1dy_2 \leq \int_{D} \int_{D} h_1(|y_1 - y_2|)h_2(|y_2 - y_1|)dy_1dy_2
\]
which does not follow directly from the Brascamp-Lieb-Luttinger rearrangement inequality since \(h_2\) is not positive. Define for \(R > 0\)
\[
q_{R}(r) := \begin{cases} h_2(r) - h_2(R), & r \leq R, \\ 0, & r > R, \end{cases}
\]
and note that by monotone convergence
\[
I_\Omega(h_1, h_2) = \lim_{R \to \infty} I_\Omega(h_1, q_R) + h_2(R) \int_{\Omega} \int_{\Omega} h_1(|y_1 - y_2|)dy_1dy_2
\]
with the notation
\[
I_\Omega(f, g) = \int_{\Omega} \int_{\Omega} f(|y_1 - y_2|)g(|y_2 - y_1|)dy_1dy_2.
\]
Since \(h_1\) and \(q_R\) are positive and nonincreasing
\[
I_\Omega(h_1, q_R) \leq I_D(h_1, q_R)
\]
by the Brascamp-Lieb-Luttinger rearrangement inequality. Noting that
\[
\int_{\Omega} \int_{\Omega} h_1(|y_1 - y_2|)dy_1dy_2 \leq \int_{D} \int_{D} h_1(|y_1 - y_2|)dy_1dy_2
\]
we obtain
\[
I_\Omega(h_1, h_2) = \lim_{R \to \infty} [I_\Omega(h_1, q_R) + h_2(R) \int_{\Omega} \int_{\Omega} h_1(|y_1 - y_2|)dy_1dy_2] \leq \lim_{R \to \infty} [I_D(h_1, q_R) + h_2(R) \int_{D} \int_{D} h_1(|y_1 - y_2|)dy_1dy_2] = I_D(h_1, h_2),
\]
completing the proof.

Now for integer values of \(p\) we obtain:

Lemma 4.2. Let \(D \subset \mathbb{R}^2\) be a disc centred at the origin, then
\[
\sum_{j=1}^{\infty} \frac{1}{\mu_j^p(\Omega)} \leq \sum_{j=1}^{\infty} \frac{1}{\mu_j^p(D)},
\]
for any integer \(p \geq 2\) and an arbitrary bounded open domain \(\Omega\) with \(|\Omega| = |D|\).

Proof of Lemma 4.2. We have for \(p \geq 2\), \(p \in \mathbb{N},\)
\[
\sum_{j=1}^{\infty} \frac{1}{\mu_j^p(\Omega)} = \int_{\Omega} \ldots \int_{\Omega} \frac{1}{2\pi} \ln \frac{1}{|y_1 - y_2|} \ldots \frac{1}{2\pi} \ln \frac{1}{|y_p - y_1|}dy_1 \ldots dy_p.
\]
Recalling the inequality (4.11) stating that
\[
\int_{\Omega} \ldots \int_{\Omega} \frac{1}{2\pi} \ln \frac{1}{|y_1 - y_2|} \ldots \int_{\Omega} \frac{1}{2\pi} \ln \frac{1}{|y_p - y_1|} dy_1 \ldots dy_p \leq
\]
(4.14)
\[
\int_{D} \ldots \int_{D} \frac{1}{2\pi} \ln \frac{1}{|y_1 - y_2|} \ldots \int_{D} \frac{1}{2\pi} \ln \frac{1}{|y_p - y_1|} dy_1 \ldots dy_p,
\]
we obtain
(4.15)
\[
\sum_{j=1}^{\infty} \frac{1}{\mu_j^{(\Omega)}} \leq \sum_{j=1}^{\infty} \frac{1}{\mu_j^{(D)}}, \quad p \geq 2, \ p \in \mathbb{N},
\]
for any bounded open domain \(\Omega \subset \mathbb{R}^2 \) with \(|\Omega| = |D| \).

Let \(p \) be an even number in the inequality (4.12). Then one can take
(4.16)
\[
\mu_i = |\mu_i|, \ i = 1, 2, \ldots.
\]
As a consequence of Lemma 4.2 we obtain:

Lemma 4.3. We have
(4.17)
\[
\sum_{i=1}^{\infty} \frac{2|\mu_i(\Omega)|}{|\mu_i(\Omega)|^{p-1}(|\mu_i(\Omega)|^2 - \varsigma^2)} \leq \sum_{i=1}^{\infty} \frac{2|\mu_i(D)|}{|\mu_i(D)|^{p-1}(|\mu_i(D)|^2 - \varsigma^2)}, \ |\varsigma| < \mu_1(D),
\]
for any even integer \(p \geq 2 \).

Proof of Lemma 4.3. By Theorem 5.11, \(|\mu_1(D)| \) is the smallest of all \(|\mu_i(D)| \) and \(|\mu_i(\Omega)| \), \(|\Omega| = |D|, \ i = 1, 2, \ldots \). Therefore, for real \(\varsigma \) such that \(|\varsigma| < |\mu_1(D)| \) we have
\[
\sum_{i=1}^{\infty} \frac{|\mu_i(\Omega)|}{|\mu_i(\Omega)|^{p-1}(|\mu_i(\Omega)|^2 - \varsigma^2)} = \sum_{i=1}^{\infty} \frac{1}{|\mu_i(\Omega)|^{p-1}(|\mu_i(\Omega)|^2 - \varsigma^2)} = \sum_{i=1}^{\infty} \frac{1}{\mu_i(\Omega)|^{p-1}(|\mu_i(\Omega)|^2 - \varsigma^2)} = \sum_{i=1}^{\infty} \frac{1}{|\mu_i(D)|^{p-1}(|\mu_i(D)|^2 - \varsigma^2)} = \sum_{i=1}^{\infty} \frac{1}{|\mu_i(D)|^{p-1}(|\mu_i(D)|^2 - \varsigma^2)}.
\]
Here we have used Taylor series and Lemma 4.2.

As a consequence of Lemma 4.3 we have the following inequality:

Lemma 4.4.
(4.18)
\[
\sum_{i=1}^{\infty} \frac{e^{-|\mu_i(\Omega)|t}}{|\mu_i(\Omega)|^{p-1}} \leq \sum_{i=1}^{\infty} \frac{e^{-|\mu_i(D)|t}}{|\mu_i(D)|^{p-1}}, \ \forall t > 0,
\]
for any bounded open domain \(\Omega \) with \(|\Omega| = |D| \) and any even integer \(p \geq 2 \).
Proof of Lemma 4.4. Let \(\mathbf{L} \) be the bilateral Laplace transform
\[
\mathbf{L}\{f(t)\}(\varsigma) = \int_{-\infty}^{\infty} e^{-\varsigma t} f(t) dt.
\]
Using the inverse bilateral Laplace transform (frequency shift of unit step) we have
\[
\mathbf{L}^{-1}\left\{ \frac{2|\mu_i|}{|\mu_i|^2 - \varsigma^2} \right\} = e^{-|\mu_i||t|}, \quad \varsigma < |\mu_i|.
\]
We obtain (4.18) by acting on both sides of (4.17) by \(\mathbf{L}^{-1} \). \(\Box \)

Proof of Theorem 2.1. For \(p = \infty \), see Remark 3.3, so that we can assume \(2 \leq p < \infty \).
The proof of Theorem 2.1 now follows directly from Lemma 4.4. Applying the Mellin transform
\[
\frac{1}{|\mu_i|^l} = \frac{1}{\Gamma(l)} \int_0^\infty \exp(-|\mu_i|t)t^{l-1}dt, \quad \text{for any real } l > 1,
\]
to the inequality (4.18) leads to
\[
(4.19) \quad \sum_{i=1}^{\infty} \frac{1}{|\mu_i(\Omega)|^{p-1+l}} \leq \sum_{i=1}^{\infty} \frac{1}{|\mu_i(D)|^{p-1+l}}
\]
for any real \(l > 1 \) and any even integer \(p \geq 2 \). Since \(l \) is an arbitrary real number \(> 1 \), from (4.19) we obtain
\[
(4.20) \quad \sum_{i=1}^{\infty} \frac{1}{|\mu_i(\Omega)|^p} \leq \sum_{i=1}^{\infty} \frac{1}{|\mu_i(D)|^p}
\]
for any real \(p > 2 \) and arbitrary bounded open set \(\Omega \) with \(|\Omega| = |D| \). In addition, by Lemma 4.2 we confirm that the inequality is also true when \(p = 2 \). This completes the proof of Theorem 2.1. \(\Box \)

Remark 4.5. It follows from the properties of the kernel that the Schatten \(p \)-norm of the operator \(\mathcal{L}_\Omega \) is finite when \(p > 1 \) see e.g. the criteria for Schatten classes in terms of the regularity of the kernel in [DR14]. The above techniques do not allow us to prove Theorem 2.1 for \(1 < p < 2 \). In view of the Dirichlet Laplacian case, it seems reasonable to conjecture that the Schatten \(p \)-norm is still maximized on the disc also for \(1 < p < 2 \).

5. ON THE CASE OF POLYgons

We can ask the same question of maximizing the Schatten \(p \)-norms in the class of polygons with a given number \(n \) of sides. We denote by \(\mathcal{P}_n \) the class of plane polygons with \(n \) edges. We would like to identify the maximizer for Schatten \(p \)-norms of the logarithmic potential \(\mathcal{L}_\Omega \) in \(\mathcal{P}_n \). According to the Section 2, it is natural to conjecture that it is the \(n \)-regular polygon. Currently, we can prove this only for \(n = 3 \):

Theorem 5.1. The equilateral triangle centred at the origin has the largest Schatten \(p \)-norm of the operator \(\mathcal{L}_\Omega \) for any \(2 \leq p \leq \infty \) among all triangles of a given area. More precisely, if \(\Delta \) is the equilateral triangle centred at the origin, we have
\[
(5.1) \quad \|\mathcal{L}_\Omega\|_p \leq \|\mathcal{L}_\Delta\|_p
\]
for any \(2 \leq p \leq \infty \) and any bounded open triangle \(\Omega \) with \(|\Omega| = |\Delta| \).
Let u be a nonnegative, measurable function on \mathbb{R}^2, and let l be a line through the origin of \mathbb{R}^2. Choose an orthogonal coordinate system in \mathbb{R}^2 such that the x^1-axis is perpendicular to l.

Definition 5.2 ([BLL74]). A nonnegative, measurable function $u^*(x|l)$ on \mathbb{R}^2 is called a Steiner symmetrization with respect to l of the function $u(x)$, if $u^*(x^1,x^2)$ is a symmetric decreasing rearrangement with respect to x^1 of $u(x^1,x^2)$ for each fixed x^2.

The Steiner symmetrization (with respect to the x^1-axis) Ω^* of a measurable set Ω is defined in the following way: if we write (x^1,z) with $z \in \mathbb{R}$, and let $\Omega_z = \{x^1|(x^1,z) \in \Omega\}$, then

$$\Omega^* = \{(x^1,z) \in \mathbb{R} \times \mathbb{R}|x^1 \in \Omega^*_z\}$$

where Ω^*_z is a symmetric rearrangement of Ω (see the proof of Theorem (3.1)). We obtain:

Lemma 5.3. For a positive function u and a measurable $\Omega \subset \mathbb{R}^2$ we have

$$\int_{\Omega^*} \int_{\Omega^*} \int_{\Omega^*} u^*(y) \frac{1}{2\pi} \ln \frac{1}{|y - z|} \frac{1}{2\pi} \ln \frac{1}{|z - x|} u(x) dz dy dx \leq \int_{\Omega^*} \int_{\Omega^*} \int_{\Omega^*} u^*(y) \frac{1}{2\pi} \ln \frac{1}{|y - z|} \frac{1}{2\pi} \ln \frac{1}{|z - x|} u^*(x) dz dy dx,$$

where Ω^* and u^* are Steiner symmetrizations of Ω and u, respectively.

Proof of Lemma 5.3. The proof is based on the proof of Lemma 2 in [CL92]. Let us fix $r_0 > 0$ and consider the function

$$f(r) := \begin{cases} \frac{1}{2\pi} \ln \frac{1}{r}, & r \leq r_0, \\
\frac{1}{2\pi} \ln \frac{1}{r_0} - \frac{1}{2\pi} \int_{r_0}^r s^{-1 + \frac{r^2}{1 + sr^2}} ds, & r > r_0. \end{cases}$$

The function $f(r)$ is strictly decreasing and has a limit as $r \to \infty$ (see the proof of Lemma 4.1)

$$\lim_{r \to \infty} f(r) = f_\infty.$$

Since $f(r)$ is strictly decreasing $\frac{1}{2\pi} \ln \frac{1}{r} - f(r)$ is decreasing. Thus if we define

$$h_1(r) = f(r) - f_\infty$$

we have the decomposition

$$\frac{1}{2\pi} \ln \frac{1}{r} = h_1(r) + h_2(r)$$

where h_1 is positive strictly decreasing function and h_2 is decreasing. Hence by the Brascamp-Lieb-Luttinger rearrangement inequality for the Steiner symmetrization (see Lemma 3.2 in [BLL74]) we have

$$\int_{\Omega^*} \int_{\Omega^*} \int_{\Omega^*} u(y) h_1(|y - z|) h_1(|z - x|) u(x) dz dy dx \leq \int_{\Omega^*} \int_{\Omega^*} \int_{\Omega^*} u^*(y) h_1(|y - z|) h_1(|z - x|) u^*(x) dz dy dx.$$
Thus it remains to show that

\begin{equation}
\int_{\Omega} \int_{\Omega} \int_{\Omega} u(y)h_2(|y-z|)h_2(|z-x|)u(x)dzdydx \leq \int_{\Omega'} \int_{\Omega} \int_{\Omega} u^*(y)h_2(|y-z|)h_2(|z-x|)u^*(x)dzdydx
\end{equation}

and

\begin{equation}
\int_{\Omega} \int_{\Omega} \int_{\Omega} u(y)h_1(|y-z|)h_2(|z-x|)u(x)dzdydx \leq \int_{\Omega'} \int_{\Omega} \int_{\Omega} u^*(y)h_1(|y-z|)h_2(|z-x|)u^*(x)dzdydx,
\end{equation}

which does not follow directly from the Brascamp-Lieb-Luttinger rearrangement inequality since \(h_2\) is not positive. Define for \(R > 0\)

\begin{equation}
q_R(r) := \begin{cases}
 h_2(r) - h_2(R), & r \leq R, \\
 0, & r > R,
\end{cases}
\end{equation}

and note that by monotone convergence we have

\begin{equation}
I_{\Omega}(u, h_2) = \lim_{R \to \infty} [I_{\Omega}(u, q_R) + 2h_2(R)J_{\Omega}(u, q_R) + h_2^2(R)\left(\int_{\Omega} u(x)dx\right)^2]
\end{equation}

with the notations

\begin{equation}
I_{\Omega}(u, g) = \int_{\Omega} \int_{\Omega} \int_{\Omega} u(y)g(|y-z|)g(|z-x|)u(x)dzdydx
\end{equation}

and

\begin{equation}
J_{\Omega}(u, g) = \int_{\Omega} \int_{\Omega} \int_{\Omega} u(y)g(|z-x|)u(x)dzdydx.
\end{equation}

Since \(q_R\) is positive and nonincreasing and noting that

\[
\int_{\Omega} u(x)dx = \int_{\Omega'} u^*(x)dx
\]

we obtain

\[
I_{\Omega}(u, q_R) \leq I_{\Omega'}(u^*, q_R),
\]

\[
J_{\Omega}(u, q_R) \leq J_{\Omega'}(u^*, q_R),
\]

by the Brascamp-Lieb-Luttinger rearrangement inequality. Therefore,

\begin{equation}
I_{\Omega}(u, h_2) = \lim_{R \to \infty} [I_{\Omega}(u, q_R) + 2h_2(R)J_{\Omega}(u, q_R) + h_2^2(R)\left(\int_{\Omega} u(x)dx\right)^2] \leq \lim_{R \to \infty} [I_{\Omega'}(u^*, q_R) + 2h_2(R)J_{\Omega'}(u^*, q_R) + h_2^2(R)\left(\int_{\Omega'} u^*(x)dx\right)^2] = I_{\Omega'}(u^*, h_2).
\end{equation}

This proves the inequality \([5.5]\). Similarly, now let us show that the inequality \([5.6]\) is valid. We have

\begin{equation}
\bar{I}_{\Omega}(u, h_2) = \lim_{R \to \infty} [\bar{I}_{\Omega}(u, q_R) + h_2(R)\tilde{J}_{\Omega}(u, h_1)]
\end{equation}
with the notations
\begin{equation}
\tilde{I}_\Omega(u, g) = \int_\Omega \int_\Omega \int_\Omega u(y)h_1(|y-z|)g(|z-x|)u(x)dzdydx
\end{equation}
and
\begin{equation}
\tilde{J}_\Omega(u, h_1) = \int_\Omega \int_\Omega \int_\Omega u(y)h_1(|y-x|)u(x)dzdydx.
\end{equation}

Since both \(q_R\) and \(h_1\) are positive and nonincreasing
\begin{equation}
\tilde{I}_\Omega(u, q_R) \leq \tilde{I}_\Omega^\star(u^\star, q_R),
\end{equation}
\begin{equation}
\tilde{J}_\Omega(u, h_1) \leq \tilde{J}_\Omega^\star(u^\star, h_1),
\end{equation}
by the Brascamp-Lieb-Luttinger rearrangement inequality. Therefore, we obtain
\begin{equation}
\tilde{I}_\Omega(u, h_2) = \lim_{R \to \infty} [\tilde{I}_\Omega(u, q_R) + h_2(R)\tilde{J}_\Omega(u, h_1)] \leq \\
\lim_{R \to \infty} [\tilde{I}_\Omega^\star(u^\star, q_R) + h_2(R)\tilde{J}_\Omega^\star(u^\star, h_1)] = \tilde{I}_\Omega^\star(u^\star, h_2).
\end{equation}
This proves the inequality (5.6). \(\square\)

Lemma 5.3 implies the following analogy of the Pólya theorem [Pó55] for the operator \(L_\Omega\).

Theorem 5.4. The equilateral triangle \(\Delta\) centred at the origin is a minimizer of the first characteristic number of the logarithmic potential \(L_\Omega\) among all triangles of a given area, i.e.
\begin{equation}
0 < |\mu_1(\Delta)| \leq |\mu_1(\Omega)|
\end{equation}
for any triangle \(\Omega \subset \mathbb{R}^2\) with \(|\Omega| = |\Delta|\).

Remark 5.5. In other words Theorem 5.4 says that the operator norm of \(L_\Omega\) is maximized in an equilateral triangle among all triangles of a given area.

Proof of Theorem 5.4. By Theorem 3.1 and Lemma 3.4 the first characteristic number \(\mu_1\) of the operator \(L_\Omega\) is positive and simple; the corresponding eigenfunction \(u_1\) can be chosen positive in \(\Omega\). Using the fact that by applying a sequence of the Steiner symmetrizations with respect to the mediator of each side, a given triangle converges to an equilateral one (see Figure 3.2. in [Hen06]), from (5.2) we obtain
\begin{equation}
\int_\Omega \int_\Omega \int_\Omega u_1(y)\frac{1}{2\pi} \ln \frac{1}{|y-z|} \frac{1}{2\pi} \ln \frac{1}{|z-x|} u_1(x)dzdydx \\
\leq \\
\int_\Delta \int_\Delta \int_\Delta u_1^\star(y)\frac{1}{2\pi} \ln \frac{1}{|y-z|} \frac{1}{2\pi} \ln \frac{1}{|z-x|} u_1^\star(x)dzdydx.
\end{equation}

Therefore, from (5.17) and the variational principle for the positive operator \(L_\Delta^2\), we get
\begin{equation}
\mu_1^2(\Omega) = \frac{\int_\Omega |u_1(x)|^2 dx}{\int_\Delta \int_\Delta u_1^\star(y)\frac{1}{2\pi} \ln \frac{1}{|y-z|} \frac{1}{2\pi} \ln \frac{1}{|z-x|} u_1^\star(x)dzdydx} \\
\geq \\
\frac{\int_\Omega |u_1(x)|^2 dx}{\int_\Delta \int_\Delta u_1^\star(y)\frac{1}{2\pi} \ln \frac{1}{|y-z|} \frac{1}{2\pi} \ln \frac{1}{|z-x|} u_1^\star(x)dzdydx}.
\end{equation}
\[
\inf_{v \in L^2(\Delta)} \frac{\int_{\Delta} |v(x)|^2 \, dx}{\int_{\Delta} \int_{\Delta} \ln \frac{1}{|y-x|} \ln \frac{1}{|z-x|} \, dz \, dy \, dx} = \frac{\mu_1^2(\Delta)}{\pi^2}.
\]

Here we have used the fact that the Steiner symmetrization preserves the \(L^2\)-norm. \(\square\)

Proof of Theorem 5.1. The proof of Theorem 5.1 relies on the same technique as the proof of Theorem 2.1 with the difference that now the Steiner symmetrization is used. Since the Steiner symmetrization has the same property (4.1) as the symmetric-decreasing rearrangement, it is clear that any Steiner symmetrization increases (or at least does not decrease) the Schatten \(p\)-norms (cf. Lemma 4.2) for integer \(p \geq 2\). Thus, for the proof we only need to recall the fact that a sequence of Steiner symmetrizations with respect to the mediator of each side, a given triangle converges to an equilateral one. The rest of the proof is exactly the same as the proof of Theorem 2.1. \(\square\)

Remark 5.6. A sequence of three Steiner symmetrizations allows us to transform any quadrilateral into a rectangle (see Figure 3.3. in [Hen06]). Therefore, it suffices to look at the maximization problem among rectangles for \(p_4\). Unfortunately, for \(p_5\) (pentagons and others), the Steiner symmetrization increases, in general, the number of sides. This prevents us from using the same technique for general polygons.

References

[AK92] J. Arazy and D. Khavinson. Spectral estimates of Dauchy’s transform in \(L^2(\Omega)\). *Integral Equations Operator Theory*, 15(6):901–919, 1992.

[AKL92] J. M. Anderson, D. Khavinson, and V. Lomonosov. Spectral properties of some integral operators arising in potential theory. *Quart. J. Math. Oxford Ser. (2)*, 43(172):387–407, 1992.

[Ban80] C. Bandle. *Isoperimetric inequalities and applications*, volume 7 of *Monographs and Studies in Mathematics*. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980.

[BLL74] H. J. Brascamp, E. H. Lieb, and J. M. Luttinger. A general rearrangement inequality for multiple integrals. *J. Funct. Anal.*, 17:227–237, 1974.

[BLL12] R. D. Benguria, H. Linde, and B. Loewe. Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrödinger operator. *Bull. Math. Sci.*, 2(1):1–56, 2012.

[BS77] M. Š. Birman and M. Z. Solomjak. Estimates for the singular numbers of integral operators. *Uspehi Mat. Nauk*, 32(1(193)):17–84, 271, 1977.

[CL92] E. Carlen and M. Loss. Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on \(S^n\). *Geom. Funct. Anal.*, 2(1):90–104, 1992.

[DR14] J. Delgado and M. Ruzhansky. Schatten classes on compact manifolds: kernel conditions. *J. Funct. Anal.*, 267(3):772–798, 2014.

[GK69] I. C. Gohberg and M. G. Kreĭn. *Introduction to the theory of linear nonselfadjoint operators*. Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18. American Mathematical Society, Providence, R.I., 1969.

[Hen06] A. Henrot. *Extremum problems for eigenvalues of elliptic operators*. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.

[Kac51] M. Kac. On some connections between probability theory and differential and integral equations. In *Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950*, pages 189–215. University of California Press, Berkeley and Los Angeles, 1951.

[Kac70] M. Kac. On some probabilistic aspects of classical analysis. *Amer. Math. Monthly*, 77:586–597, 1970.
ISOPERIMETRIC INEQUALITIES

[Kac80] M. Kac. Integration in function spaces and some of its applications. Accademia Nazionale dei Lincei, Pisa, 1980. Lezioni Fermiane. [Fermi Lectures].

[KS09] T. S. Kal’menov and D. Suragan. On spectral problems for the volume potential. Dokl. Akad. Nauk, 428(1):16–19, 2009.

[Lan72] N. S. Landkof. Foundations of modern potential theory. Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180.

[LL01] E. H. Lieb and M. Loss. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2001.

[Lut73] J. M. Luttinger. Generalized isoperimetric inequalities. Proc. Nat. Acad. Sci. U.S.A., 70:1005–1006, 1973.

[MS15] Y. Miyanishi and T. Suzuki. Eigenvalues and eigenfunctions of double layer potentials. arXiv:1501.03627, 2015.

[Pö155] G. Pólya. On the characteristic frequencies of a symmetric membrane. Math. Z., 63:331–337, 1955.

[PS51] G. Pólya and G. Szegő. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, no. 27. Princeton University Press, Princeton, N. J., 1951.

[RS15] M. Ruzhansky and D. Suragan. On Schatten norms of integral operators of convolution type. to appear in Russ. Math. Surv., 2015.

[Sai08] N. Saito. Data analysis and representation on a general domain using eigenfunctions of Laplacian. Appl. Comput. Harmon. Anal., 25(1):68–97, 2008.

[Tro67] J. L. Troutman. The logarithmic potential operator. Illinois J. Math., 11:365–374, 1967.

[Tro69] J. L. Troutman. The logarithmic eigenvalues of plane sets. Illinois J. Math., 13:95–107, 1969.

Michael Ruzhansky:
Department of Mathematics
Imperial College London
180 Queen’s Gate, London SW7 2AZ
United Kingdom
E-mail address m.ruzhansky@imperial.ac.uk

Durvudkhan Suragan:
Institute of Mathematics and Mathematical Modelling
125 Pushkin str.
050010 Almaty
Kazakhstan
E-mail address durvudkhan.suragan@kcl.ac.uk