Hecke algebras for p-adic reductive groups and local Langlands correspondences for Bernstein blocks
Anne-Marie Aubert, Yujie Xu

To cite this version:
Anne-Marie Aubert, Yujie Xu. Hecke algebras for p-adic reductive groups and local Langlands correspondences for Bernstein blocks. Advances in Mathematics, In press, 10.48550/arXiv.2202.01305. hal-03817265

HAL Id: hal-03817265
https://hal.science/hal-03817265v1
Submitted on 17 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ON HECKE ALGEBRAS FOR p-ADIC REDUCTIVE GROUPS:
THE EXAMPLE OF G_2

ANNE-MARIE AUBERT AND YUJIE XU

ABSTRACT. We study the endomorphism algebras attached to Bernstein components of reductive p-adic groups. By using recent results of Solleveld, we prove a reduction to depth zero case result for the components attached to regular supercuspidal representations of Levi subgroups, and construct a correspondence with the appropriate set of enhanced L-parameters.

In particular, for Levi subgroups of maximal parabolic of the split exceptional group of type G_2, we compute the explicit parameters for the corresponding Hecke algebras, and show that they satisfy a conjecture of Lusztig's. We also give examples for a generalized version of Yu's conjecture using type theory for G_2.

1. INTRODUCTION

Let G be the group of F-points of a reductive connected group G, defined over a local non-archimedean field F of residual characteristic p.

Let M be the Levi subgroup of a parabolic subgroup P of G. We denote by M_1 the subgroup of M generated by all its compact subgroups. We recall that a character of M is said to be unramified if it is trivial on M_1, and denote by $X_{nr}(M)$ the group of unramified characters of M.

Let $s = [M, \sigma]_G$ be the inertial class of a supercuspidal irreducible representation σ of G (that is, s is the G-conjugacy class of $(M, X_{nr}(M) \cdot \sigma)$ where $X_{nr}(M) \cdot \sigma$ is the orbit of σ under $X_{nr}(M)$). We denote by $\text{Irr}^s(G)$ the Bernstein series of irreducible representations of G attached to s.

Let W_G^s denote the extended finite Weyl group $N_G(s_M)/M$, where

$$(1.0.1) \quad N_G(s_M) := \{ g \in M : g^g M = M \text{ and } g \sigma \simeq \chi \otimes \sigma, \text{ for some } \chi \in X_{nr}(M) \},$$

and let W_G^s be the the stabilizer in W_G^s of $x \in \text{Irr}^s_M(M)$. Solleveld has constructed in [Sol21a] a collection of 2-cocycles

$$(1.0.2) \quad \xi^s_x : W_G^{s,x} \times W_G^{s,x} \to \mathbb{C},$$

for $x \in \text{Irr}^s_M(M)$ and a bijection

$$(1.0.3) \quad \xi^s_{G_2} : \text{Irr}^s(G) \to (\text{Irr}^s_M(M)/W_G^s),$$

where $s_M = [M, \sigma]_M$, and $(\text{Irr}^s_M(M)/W_G^s)$ is the twisted extended quotient in the sense of [ABPS17a, §2.1], the definition of which is recalled in (1.0.7).

A parallel picture to (1.0.2) exists on the Galois side. We denote by W_F the absolute Weil group of F and by I_F its inertia subgroup. Let M^\vee be the Langlands
dual group of M (a complex Lie group with root system dual to that of M) equipped with an action of W_F, and we write $L_M := M^* W_F$. The group M^\vee acts on the set of cuspidal M-relevant enhanced L-parameters for M (a terminology which is based on Lusztig’s notion of cuspidal pairs, see Definition 3.1.5) and we denote by $\Phi_e^c(M)$ the set of M^\vee-conjugacy classes of these enhanced parameters for M.

Let $Z_{M^\vee \rtimes I_F}$ be the center of $M^\vee \rtimes I_F$. The group $\mathfrak{X}_{nr}(L_M) := (Z_{M^\vee \rtimes I_F})^I_{W_F}$, which is naturally isomorphic to the group $X_{nr}(M)$ (see [Hai14, §3.3.1]), acts naturally on the set of cuspidal M-parameters for M. We denote by $\mathfrak{g}^\vee = [L_M, \varphi_c, \theta_c]_{G^\vee}$ the G^\vee-conjugacy class of the orbit of $(\varphi_c, \theta_c) \in \Phi_e^c(M)$ under the action of $\mathfrak{X}_{nr}(L_M)$ and by $\mathfrak{B}^\vee(G)$ be the set of these \mathfrak{g}^\vee.

In [AMS18], a partition à la Bernstein of the set of G-relevant enhanced Langlands parameters was constructed:

\begin{equation}
\Phi_e(G) = \bigcup_{\mathfrak{g}^\vee \in \mathfrak{B}^\vee(G)} \Phi_e^\vee(G).
\end{equation}

We write $\mathfrak{g}^\vee_M := [L_M, \varphi_c, \theta_c]_{M^\vee}$, and, analogously to (1.0.1), denote by $W_{G^\vee}^{\mathfrak{g}^\vee_M}$ the stabilizer in $N_{G^\vee}(M^\vee)/M^\vee$ of \mathfrak{g}^\vee_M and by $W_{G^\vee}^{\mathfrak{g}^\vee_M}(y)$ the stabilizer in $W_{G^\vee}^{y}$ of $y \in \Phi_e^{\mathfrak{g}^\vee_M}(M)$. Then [AMS18, Theorem 9.3] provides a bijection

\begin{equation}
\xi_{G^\vee}^{\mathfrak{g}^\vee_M} : \Phi_e^{\mathfrak{g}^\vee}(G) \longrightarrow (\Phi_e^{\mathfrak{g}^\vee_M}(M)/W_{G^\vee}^{\mathfrak{g}^\vee_M})_{L_2},
\end{equation}

where $(\Phi_e^{\mathfrak{g}^\vee_M}(M)/W_{G^\vee}^{\mathfrak{g}^\vee_M})_{L_2}$ is a twisted extended quotient with respect to a collection of 2-cocycles

$L_{L_2} : W_{G^\vee}^{y} \times W_{G^\vee}^{y} \rightarrow \mathbb{C}^\times$.

Assuming the existence of a map

\begin{equation}
\Omega_{\mathfrak{g}^\vee_M} : \text{Irr}^{\mathfrak{g}^\vee_M}(M) \longrightarrow \Phi_e^{\mathfrak{g}^\vee_M}(M)
\end{equation}

such that the following properties are satisfied for any $\sigma \in \text{Irr}^{\mathfrak{g}^\vee_M}(M)$:

(1) For any $\chi \in \mathfrak{X}_{nr}(M)$, we have

\[(\varphi_\chi \otimes \sigma, \theta_\chi \otimes \sigma) = \chi^\vee \cdot (\varphi_\sigma, \theta_\sigma), \]

where $\chi \mapsto \chi^\vee$ is the canonical isomorphism $\mathfrak{X}_{nr}(M) \isom \mathfrak{X}_{nr}(L_M)$.

(2) For any $w \in W(M)$, we have

\[w^\vee(\varphi_\sigma, \theta_\sigma) \simeq (\varphi_{w \sigma}, \theta_{w \sigma}), \]

where $w \mapsto w^\vee$ is the canonical isomorphism $W(M) \isom W(M^\vee)$.

we establish the following result.

Theorem 1. (See Theorem 3.1.15)

We have a natural isomorphism

\[e : \text{Irr}^{\mathfrak{g}^\vee_M}(M)/W_{G^\vee}^{\mathfrak{g}^\vee_M} \longrightarrow \Phi_e^{\mathfrak{g}^\vee_M}(M)/W_{G^\vee}^{\mathfrak{g}^\vee_M}. \]
We suppose in the rest of this Introduction that the group G splits over a tamely ramified extension of F and that p does not divide the order of the Weyl group of G. Then there exists a compact mod center subgroup $\tilde{\mathcal{K}}_M$ of M and an irreducible representation ρ_M^d of M such that $\sigma = \text{ind}_{\tilde{\mathcal{K}}_M}^M \rho_M^d$, see [Yu01, Fin21]. Kim and Yu constructed in [KY17] an s-type in the sense of Bushnell-Kutzko [BK98] (K_D, ρ_D), formed of an open compact subgroup K_D of G and irreducible representation of ρ_D of K_D. Here D, as defined in (2.3.2), is a 5-tuple which includes a finite sequence $\mathfrak{G} = (G^0, G^1, \ldots, G^d)$ of twisted E-Levi subgroups of G, with E a tamely ramified finite extension of F. Attached to D there is also a depth zero supercuspidal irreducible representation σ^0 of a Levi subgroup M^0 of G^0. We denote by $s^0 = [M^0, \sigma^0]_{G^0}$ the inertial class of σ^0.

Let $\mathcal{H}^s(G)$ denote the endomorphism algebra of the Bernstein progenerator of s (see (2.1.3)) and let $\mathcal{H}(G, \rho_D)$ be the intertwining algebra of (K_D, ρ_D). We prove in Proposition 2.3.15 that the algebras $\mathcal{H}^s(G)$ and $\mathcal{H}(G, \rho_D)$ are isomorphic.

We suppose that σ is regular in the terminology of [Kal19a]. Then Kaletha has attached to σ a supercuspidal Langlands parameter $\varphi_\sigma: W_F \rightarrow L_M$.

By applying Theorem 1 to the map $L_s: \sigma \mapsto (\varphi_\sigma, 1)$, we obtain the following result.

Theorem 2. (See Theorem 3.1.19)

We suppose that the collections of 2-cocycles \natural and L_s are both trivial and the characteristic of F is 0 then the map

$$(1.0.5) \quad \mathfrak{L} := (\xi_{G^0})^{-1} \circ \varepsilon \circ \xi_G^s: \text{Irr}^s(G) \rightarrow \Phi_{\sigma}^s(G)$$

is a bijection.

We expect that the bijection \mathfrak{L} from (1.0.5) satisfies the desired properties of the local Langlands correspondence, which include the properties described in [AP22, Definition 3.25] and in [Kal22], and hence provides new cases of the latter.

Theorem 3. (See Theorem 2.4.9)

We suppose that p is good for G (in the sense of [Car93]) and does not divide the order of the fundamental group of G_{der}, and that the representation σ is regular in the terminology of [Kal19a]. Then there is a bijection $\varphi^s_{\sigma^0}: \text{Irr}^s(G) \rightarrow \text{Irr}(G^0)_{\sigma^0}$.

It induces a bijection

$$\text{Irr}(\mathcal{H}^s(G)) \rightarrow \text{Irr}(\mathcal{H}^s_0(G^0))$$

between the sets of equivalence classes of simple modules of the algebras $\mathcal{H}^s(G)$ and $\mathcal{H}^s_0(G^0)$.

Theorem 3 proves the validity of [AM21, Conjecture 1.1], under the above assumption on p, for all regular supercuspidal representations of M. The bijection $\varphi^s_{\sigma^0}$ is defined as

$$(1.0.6) \quad \varphi^s_{\sigma^0} := (\xi_G^{s^0})^{-1} \circ \varepsilon \circ \xi_G^{s},$$
where \((\text{Irr}^{sM^0}(M^0)/W_{G^0})^0\) is the twisted extended quotient with respect to a certain collection \(\varsigma^0\) of 2-cocycles, the definition of which is recalled in (2.4.8), and

\[
I_\sigma: \text{(Irr}^{sM}(M)//W_G)_{\varsigma} \longrightarrow (\text{Irr}^{sM^0}(M^0)/W_{G^0})_{\varsigma^0}
\]

is the isomorphism constructed by Adler and Mishra in [AM21].

In Section 4, we study in more details the case when \(G\) is the exceptional group of type \(G_2\). The case where \(M\) is a torus being known thanks to the work of Roche for principal series of split \(p\)-adic groups [Roc98], it suffices to consider the cases where \(M \simeq \text{GL}_2(F)\) is a maximal Levi subgroup. The \(G_2\)-covers of the supercuspidal types in \(M\) were computed explicitly in [Blo99] when \(M\) corresponds to the long simple root, and in [Des21] when \(M\) corresponds to the short simple root, but the intertwining algebras of these types were still unknown. We compute these latter in §4.5, and in particular, by computing their parameters explicitly, we show that they satisfy the expectation made by Lusztig in [Lus20, 1.(a)].

Twisted extended quotients. Let \(\Gamma\) be a group acting on a topological space \(X\) and let \(\Gamma_x\) denote the stabilizer in \(\Gamma\) of \(x \in X\). Let \(\varsigma\) be a collection of 2-cocycles

\[
\varsigma_x: \Gamma_x \times \Gamma_x \to \mathbb{C}^\times,
\]

such that \(\varsigma_{\gamma x}\) and \(\gamma \varsigma_x\) define the same class in \(H^2(\Gamma_x, \mathbb{C}^\times)\), where \(\gamma_x: \Gamma_x \to \Gamma_x\) sends \(\alpha\) to \(\gamma \alpha \gamma^{-1}\). Let \(\mathbb{C}[\Gamma_x, \varsigma_x]\) be the group algebra of \(\Gamma_x\) twisted by \(\varsigma_x\). We set

\[
\tilde{X}_\varsigma := \{(x, \tau) : x \in X, \tau \in \text{Irr} \mathbb{C}[\Gamma_x, \varsigma_x]\},
\]

and topologize \(\tilde{X}_\varsigma\) by decreeing that a subset of \(\tilde{X}_\varsigma\) open if its projection to the first coordinate is open in \(X\).

We require, for every \((\gamma, x) \in \Gamma \times X\), a definite algebra isomorphism

\[
\phi_{\gamma, x}: \mathbb{C}[\Gamma_x, \varsigma_x] \to \mathbb{C}[\Gamma_{\gamma x}, \varsigma_{\gamma x}]
\]

satisfying the conditions

(a) if \(\gamma x = x\), then \(\phi_{\gamma, x}\) is conjugation by an element of \(\mathbb{C}[\Gamma_x, \varsigma_x]^\times\);
(b) \(\phi_{\gamma', x} \circ \phi_{\gamma, x} = \phi_{\gamma', \gamma x}\) for all \(\gamma', \gamma \in \Gamma\) and \(x \in X\).

Define a \(\Gamma\)-action on \(\tilde{X}_\varsigma\) by \(\gamma \cdot (x, \tau) := (\gamma x, \tau \circ \phi_{\gamma, x}^{-1})\). The twisted extended quotient of \(X\) by \(\Gamma\) with respect to \(\varsigma\) is defined to be

(1.0.7) \(X//\Gamma_\varsigma := \tilde{X}_\varsigma / \Gamma\).

In the case when the 2-cocycles \(\varsigma_x\) are trivial, we write simply \(X//\Gamma\) for \((X//\Gamma_\varsigma)\) and refer to it as the (spectral) extended quotient of \(X\) by \(\Gamma\).

Acknowledgements. The authors would like to thank Julee Kim for helpful mathematical conversations and Maarten Solleveld for valuable comments on a previous version of the manuscript. This collaboration started at WIN5, and the authors would like to heartily thank the organizers and participants of WIN5.
HECKE ALGEBRAS FOR p-ADIC GROUPS

Contents

1. Introduction 1
2. Hecke algebras and Bernstein Center 6
 2.1. General framework 6
 2.2. Theory of types 8
 2.3. The Kim-Yu types 10
 2.4. Regular Bernstein blocks 13
3. A Langlands correspondence for non-supercuspidal Bernstein blocks 16
 3.1. The construction of the correspondence 16
 3.2. Matching of simple modules of extended affine Hecke algebras 20
4. The G_2 case 21
 4.1. Some background 21
 4.2. Explicit parameters for G_2 25
 4.3. Intertwining algebras of Kim-Yu types for G_2 28
 4.4. The intertwining algebras of types attached to G^0 29
 4.5. The intertwining algebras of types attached to G 30
References 34

Notations. Let F be a local non-archimedean field. Let \mathfrak{o}_F denote the ring of integers of F, \mathfrak{p}_F the maximal ideal in \mathfrak{o}_F and $k_F := \mathfrak{o}_F/\mathfrak{p}_F$ the residue field of F. We assume that k_F is finite and denote by $q = q_F$ its cardinality. Let $v_F : F \to \mathbb{Z} \cup \{\infty\}$ be a valuation of F.

We fix a separable closure F_{sep} of F and denote by $W_F \subset \text{Gal}(F_{\text{sep}}/F)$ the absolute Weil group of F and let $I_F = \text{Gal}(F_{\text{sep}}/F)$ be its inertia subgroup. We denote by F_{nr} the maximal unramified extension of F inside F_{sep} and by Fr_F the element of $\text{Gal}(F_{\text{nr}}/F)$ that induces the automorphism $a \mapsto a^q$ on the residue field k_F. Then $W_F = I_F \rtimes (\text{Fr}_F)$. We take $W'_F := W_F \times \text{SL}_2(\mathbb{C})$ for the Weil-Deligne group of F.

Let G be the F-rational points of a connected reductive algebraic group \mathbf{G} defined over F. We denote by \mathbf{G}_{der} the derived group of \mathbf{G}, and by \mathbf{G}_{sc} and \mathbf{G}_{ad} the simply connected cover and adjoint quotient of \mathbf{G}_{der}. Let Z_G be the center of \mathbf{G} and A_G the maximal F-split torus contained in Z_G.

Suppose that H is a group, H_1 a subgroup of H and h an element of H. We set $^hH_1 := hH_1h^{-1}$. If π is a representation of H_1, we denote by $^h\pi$ the representation $h_1 \mapsto \pi(h^{-1}h_1h)$ of hH_1. We denote by $\text{Irr}(H)$ the set of of equivalence classes of irreducible representations of H.

The category of right modules over an algebra \mathcal{A} is denoted $\mathcal{A}-\text{Mod}$. We write $\text{Irr}(\mathcal{A})$ for the set of equivalence classes of simple modules of \mathcal{A}.
2. Hecke algebras and Bernstein Center

2.1. General framework. Let $\mathcal{R}(G)$ denote the category of all smooth complex representations of G. This is an abelian category admitting arbitrary coproducts. Let M be a Levi subgroup of a parabolic subgroup P of G, and let $X_{un}(M)$ be the group of unramified characters of M. Let σ be an irreducible supercuspidal smooth representation of M. We write $s := [M, \sigma]_G$ for the G-conjugacy class of the pair $(M, X_{un}(M) \cdot \sigma)$ and $\mathfrak{B}(G)$ for the set of such classes s. We set $s_M := [M, \sigma]_M$.

Let $\mathcal{R}(G)$ be the full subcategory of $\mathcal{R}(G)$ whose objects are the representations (π, V) such that every G-subquotient of π is equivalent to a subquotient of a parabolically induced representation $i^G_P(\sigma')$, where i^G_P is the functor of normalized parabolic induction and $\sigma' \in X_{un}(M) \cdot \sigma$. We write $\operatorname{Irr}(s_G)$ for the class of irreducible objects in $\mathcal{R}(s_G)$.

The categories $\mathcal{R}(s_G)$ are indecomposable and split the full smooth category $\mathcal{R}(G)$ in a direct product (see [Ber84]):

$$\mathcal{R}(G) = \prod_{s \in \mathfrak{B}(G)} \mathcal{R}(s_G).$$

If Π^s is a progenerator of $\mathcal{R}(s_G)$, then the functor $V \mapsto \operatorname{Hom}_G(\Pi^s, V)$ is an equivalence from $\mathcal{R}(s_G)$ to the algebra $\operatorname{End}_G(\Pi^s)$ (see for instance [Roc02, § 1.1]).

Let $s = [M, \sigma]_G \in \mathfrak{B}(G)$ and let M_1 denote the subgroup of M generated by all compacts subgroups, M_1 is the intersection of kernels of unramified characters of M. Let V be the underlying vector space for the supercuspidal representation σ of M and σ_1 an irreducible component of the restriction of σ to M_1. We denote by $\operatorname{ind}^M_{M_1}$ the functor of compact induction. As noticed in [Roc02, § 1.2], the isomorphism class of

$$\Pi^s_M := \operatorname{ind}^M_{M_1}(\sigma_1)$$

is independent of the choice of σ_1. It was shown by Bernstein that

$$\Pi^s_G := i^G_P(\Pi^s_M)$$

is a progenerator of $\mathcal{R}(s_G)$ (see [Roc02, §1.6]). We write

$$\mathcal{H}(s_G) := \operatorname{End}_G(\Pi^s_G).$$

Hence we have an equivalence of categories of right modules

$$\mathcal{R}(s_G) \simeq \mathcal{H}(s_G) - \operatorname{Mod}.\)$$

We set $B := \mathbb{C}[M/M_1]$ and $V_B := V \otimes_{\mathbb{C}} B$. Then $i^G_P(V_B)$ is also a progenerator of $\mathcal{R}(s_G)$. Thus we have the equivalence of categories of right modules

$$\mathcal{E} : \mathcal{R}(s_G) \to \operatorname{End}_G(i^G_P(V_B)) - \operatorname{Mod}$$

$\mathcal{V} \mapsto \operatorname{Hom}_G(i^G_P(V_B), \mathcal{V})$.

We write

$$X_{un}(M, \sigma) := \{ \chi \in X_{un}(M) : \chi \otimes \sigma \simeq \sigma \}.$$

It is a finite subgroup of $X_{un}(M)$.
Remark 2.1.7. In the case where $M = \text{GL}_n(F)$ with n a positive integer, the supercuspidal representation σ contains a simple type (J, λ) (as defined in [BK93, (5.5.10)]) and the order of $X_{\text{nr}}(M, \sigma)$ is $n/\epsilon(L|F)$, where $\epsilon(L|F)$ is the ramification index of the extension L/F involved in the definition of (J, λ) (see [BK93, (6.0.1)] and (6.2.5)).

We denote by O the orbit of σ under the action of $X_{\text{nr}}(M)$. The map $\chi \mapsto \chi \otimes \sigma$ defines a bijection

$$X_{\text{nr}}(M)/X_{\text{nr}}(M, \sigma) \rightarrow O = \{\chi \otimes \sigma : \chi \in X_{\text{nr}}(M)\} = \text{Irr}^S(M).$$

We set $W(M) := N_G(M)/M$ and define

$$W^G_{\sigma} := W(M, O) := \{n \in N_G(M) : nO \simeq O\}/M.$$

Recall that A_M is the maximal split torus contained in the center of M. We denote by $\Sigma(A_M) \subset X^*(A_M)$ the set of nonzero weights occurring in the adjoint representation of A_M on the Lie algebra of G, and by $\Sigma_{\text{red}}(A_M)$ be the set of indivisible elements therein.

For every $\gamma \in \Sigma_{\text{red}}(A_M)$, let $M_\gamma \supset M$ denote the centralizer of $\ker \gamma$ in G (it is a Levi subgroup of G whose semisimple rank is one higher than that of M). Let μ^G be the Harish-Chandra μ-function for G (see [Sil79, §1] or [Wal03, §V.2]). The restriction of μ^G to O is a rational $W(M, O)$-invariant function on O [Wal03, Lemma V.2.1]. The set

$$\Sigma_{\Omega, \mu} := \{\gamma \in \Sigma_{\text{red}}(A_M) : \mu^G M_\gamma \text{ has a zero on } O\},$$

is a root system (see [Hei11, Proposition 1.3]). Let W_Ω denote the Weyl group of $\Sigma_{\Omega, \mu}$.

Let $P = MN$ be a parabolic subgroup of G with Levi factor M. The group $W(M, O)$ decomposes as

$$W(M, O) = W_\Omega \rtimes R(O),$$

where

$$R(O) := \{w \in W(M, O) : w(\Sigma_{\Omega, \mu}(P)) = \Sigma_{\Omega, \mu}(P)\},$$

with $\Sigma_{\Omega, \mu}(P)$ the set of positive roots of $\Sigma_{\Omega, \mu}$ determined by P (see [Hei11, 1.12]).

The action of every element w of W^G_{σ} can be lifted to a transformation \tilde{w} of $X_{\text{nr}}(M)$. Let $W(M, \sigma, X_{\text{nr}}(M))$ be the group of permutations of $X_{\text{nr}}(M)$ generated by $X_{\text{nr}}(M, \sigma)$ and the \tilde{w}'s. It satisfies

$$W(M, \sigma, X_{\text{nr}}(M))/X_{\text{nr}}(M, \sigma) \simeq W^G_{\sigma}.$$

Let $K(B) := \mathbb{C}[X_{\text{nr}}(M)]$ denote the quotient field of $B := \mathbb{C}[X_{\text{nr}}(M)]$. Solleveld showed in [Sol21a, Corollary 5.8] the existence of a 2-cocycle

$$\kappa : W(M, \sigma, X_{\text{nr}}(M))^2 \rightarrow \mathbb{C}^\times$$

(defined in [Sol21a, Lemma 5.7], where it is denoted by ι) and of an algebra isomorphism

$$K(B) \otimes_B \text{End}_G(i_B^G(V_B)) \simeq K(B) \rtimes \mathbb{C}[W(M, \sigma, X_{\text{nr}}(M)), \kappa],$$
where $\mathbb{C}[W(M, \sigma, X_{\text{nr}}(M)), \kappa]$ is the twisted group algebra of $W(M, \sigma, X_{\text{nr}}(M))$ (it has basis elements $t_{ww'}$ that multiply as $t_{ww'} = \kappa(w, w')t_{ww'}$) and the symbol \times denotes a crossed product: as vector space it just means the tensor product, and the multiplication rules on that are determined by the action of $W(M, \sigma, X_{\text{nr}}(M))$ on $K(B)$. The cocycle κ is trivial on W_0.

Remark 2.1.14. If $R(O)$ has order at most 2, then the intertwining operators can be normalized such that the cocycle κ is trivial (see [Sol21a, Proposition 5.2 & above Lemma 5.7]).

For any $\chi \in X_{\text{nr}}(M)$, let $W_{\text{G}}^{\chi, \sigma}$ denote the stabilizer in W_{G}^{σ} of $\chi \otimes \sigma$ and $\tilde{\zeta}_\chi$ the restriction to $W_{\text{G}}^{\chi, \sigma}$ of the 2-cocycle $\tilde{\zeta}_\sigma$ defined in [Sol21a, (6.18)].

Let $(\text{Irr}^s_{\text{M}}(M) // W_{\text{G}}^s)_2$ be the twisted extended quotient with respect to the collection $\tilde{\zeta}$ of the 2-cocycles $\tilde{\zeta}_\chi$.

Proposition 2.1.15. There is a bijection
\[(2.1.16)\] $\xi^s_\chi : \text{Irr}^s(G) \rightarrow (\text{Irr}^s_{\text{M}}(M) // W_{\text{G}}^s)_2$.

Proof. First [Sol21a, Theorem 9.7], provides bijections
\[\text{Irr}^s(G) \xrightarrow{\mathcal{E}} \text{Irr}(\text{End}_G(\mathcal{I}_G^s(V_B))) \xrightarrow{\zeta} \text{Irr}(\mathbb{C}[X_{\text{nr}}(M)] \rtimes \mathbb{C}[W(M, \sigma, X_{\text{nr}}(M)), \kappa]),\]
where \mathcal{E} is induced by the equivalence of categories defined in (2.1.5). On the other hand, [Sol21a, Lemma 9.8] shows that $\text{Irr}(\mathbb{C}[X_{\text{nr}}(M)] \rtimes \mathbb{C}[W(M, \sigma, X_{\text{nr}}(M)), \kappa]$ is canonically isomorphic to $(\text{Irr}^s_{\text{M}}(M) // W_{\text{G}}^s)_2$, where $s_M := [M, \sigma]_M$. \hfill \square

Corollary 2.1.17. Let $s = [M, \sigma]_G \in \mathcal{B}(G)$. There is a bijection
\[\text{Irr}(\mathcal{H}^s(G)) \rightarrow (\text{Irr}^s_{\text{M}}(M) // W_{\text{G}}^s)_2.\]

Proof. The result follows from the proof of Proposition 2.1.15 by using (2.1.4). \hfill \square

Remark 2.1.18. As observed in [Sol21a, (10.12)], if the restriction of σ to M_1 is multiplicity free, we have
\[\Pi^s_G = (\mathcal{I}_G^s(V_B)) \rtimes_{X_{\text{nr}}(M, \sigma)} \text{End}_G(\mathcal{I}_G^s(V_B)) \simeq \mathcal{H}^s(G) \otimes_{\mathbb{C}} \text{M}_{[M: M_1]}(\mathbb{C}).\]

Note that if σ is generic, then its restriction to M_1 is multiplicity free (see [Roc09, Remark 1.6.1.3]). In particular, if σ is a supercuspidal irreducible representation of a proper Levi subgroup M of G_2, then its restriction to M_1 is multiplicity free.

2.2. **Theory of types.** We fix a Haar measure on G, write $\mathcal{H}(G)$ for the space of locally constant, compactly supported functions $f : G \rightarrow \mathbb{C}$ and view $\mathcal{H}(G)$ as a \mathbb{C}-algebra via convolution relative to the Haar measure.

Let (ρ, V_ρ) be a smooth representation of a compact open subgroup K of G, and let $(\tilde{\rho}, V_{\tilde{\rho}})$ denote its contragredient. We define $\mathcal{H}(G, \rho)$ to be the space of compactly supported functions $f : G \rightarrow \text{End}_G(V_\rho)$ such that
\[(2.2.1) f(kgk') = \tilde{\rho}(k)f(g)\tilde{\rho}(k'), \quad \text{where } k, k' \in K \text{ and } g \in G.\]

The convolution product gives $\mathcal{H}(G, \rho)$ the structure of a unitary associative \mathbb{C}-algebra.
Let $e_\rho \in \mathcal{H}(G)$ be the function defined by

$$e_\rho(g) := \begin{cases} \dim \rho \cdot \text{meas}(K) \cdot \text{tr}(\rho(g^{-1})) & \text{if } g \in K, \\ 0 & \text{if } g \in G, g \notin K. \end{cases}$$

Then e_ρ is idempotent, and $e_\rho \star \mathcal{H}(G) \star e_\rho$ is a sub-algebra of $\mathcal{H}(G)$ with unit e_ρ.

Bushnell and Kutzko defined in [BK98, (2.12)] a canonical isomorphism:

$$\mathcal{H}(G, \rho) \otimes_{\mathbb{C}} \text{End}_C(V_\rho) \rightarrow e_\rho \star \mathcal{H}(G) \star e_\rho.$$

The algebras $\mathcal{H}(G, \rho)$ and $e_\rho \star \mathcal{H}(G) \star e_\rho$ are therefore canonically Morita equivalent.

Hence, we get an equivalence of categories:

\[(2.2.2) \quad \mathcal{H}(G, \rho) \dashv \text{Mod} \simeq e_\rho \star \mathcal{H}(G) \star e_\rho - \text{Mod} \cdot \]

We write $\mathfrak{R}_\rho(G)$ for the full sub-category of $\mathfrak{R}(G)$ whose objects are those V satisfying $V = \mathcal{H}(G) \star e_\rho \star V$, that is, $\mathfrak{R}_\rho(G)$ is generated over G by the subspace $e_\rho \star V$.

Definition 2.2.3. The pair (K, ρ) is called an \mathfrak{s}-type for G if the category $\mathfrak{R}_\rho(G)$ is closed by subquotients. A supercuspidal type for G is an \mathfrak{s}-type such that $\mathfrak{s} = [G, \sigma]_G$.

If (K, ρ) is an \mathfrak{s}-type for G, then we have $\mathfrak{R}_\rho(G) = \mathfrak{R}^\mathfrak{s}(G)$ (see [BK98, (4.1)–(4.2)]) and the latter is equivalent to the category of modules of $\mathcal{H}(G, \rho)$ (see [BK98, Theorem 3.5]):

\[(2.2.4) \quad \mathfrak{R}^\mathfrak{s}(G) \simeq \mathcal{H}(G, \rho) - \text{Mod}.\]

By combining (2.2.4) and (2.1.4), we obtain an equivalence

\[(2.2.5) \quad \mathcal{H}^\mathfrak{s}(G) - \text{Mod} \simeq \mathcal{H}(G, \rho) - \text{Mod}.\]

Let (K_M, ρ_M) be a \mathfrak{s}_M-type for $\mathfrak{s}_M \in \mathfrak{B}(M)$. If the pair (K, ρ) is a G-cover of (K_M, ρ_M) as defined in [BK98, Definition 8.1], then K decomposes with respect to M in the sense of [BK98, Definition 6.1] (in particular, $K_M = K \cap M$ and $\rho_M = \rho|_{K_M}$) and the equivalence of categories (2.2.4) commutes with parabolic induction and parabolic restriction in the appropriate sense (see [BK98, Corollary 8.4]).

Proposition 2.2.6. Let (K_M, ρ_M) be a \mathfrak{s}_M-type for $\mathfrak{s}_M \in \mathfrak{B}(M)$, which has the property that $\Pi_M^{\mathfrak{s}_M} \simeq \text{c-Ind}_{K_M}^M(\rho_M, V_{\rho_M})$, and let (K, ρ) be a G-cover of (K_M, ρ_M).

Then we have

$$\Pi_G^{\mathfrak{s}} \simeq \text{c-Ind}_K^G(\rho, V_{\rho}),$$

and, as a consequence,

\[(2.2.7) \quad \mathcal{H}^\mathfrak{s}(G) := \text{End}_G(\Pi_G^{\mathfrak{s}}) \simeq \mathcal{H}(G, \rho).\]

Proof. See [BS21, Lemma B.3].
2.3. The Kim-Yu types.

In this section we suppose that \(G \) splits over a tamely ramified extension of \(F \) and that \(p \) does not divide the order of the Weyl group of \(G \). By a Levi subgroup of \(G \), we mean an \(F \)-subgroup of \(G \) which is a Levi factor of a parabolic \(F \)-subgroup of \(G \). Let \(L/F \) be a finite extension. By twisted \(L \)-Levi subgroup of \(G \) we mean an \(F \)-subgroup \(G' \) of \(G \) such that \(G' \otimes_F L \) is a Levi subgroup of \(G \otimes_F L \). If \(L/F \) is tamely ramified, the \(G' \) is called a tamely ramified twisted Levi subgroup of \(G \). A tamely ramified twisted Levi sequence in \(G \) is a finite sequence \(\mathcal{G} = (G^0, G^1, \cdots, G^d) \) of twisted \(E \)-Levi subgroups of \(G \), with \(E/F \) tamely ramified [Yu01, p 586].

Let \(\mathcal{B}(G, F) \) denote the (enlarged) building of \(G \):

\[
\mathcal{B}(G, F) = \mathcal{B}(G/Z_G, F) \times X_*(Z_G) \otimes \mathbb{R},
\]

where \(X_*(Z_G) \) is the set of \(F \)-algebraic cocharacters of \(Z_G \). We recall that if \(G' \) is a ramified twisted Levi subgroup of \(G \), then there is a family of natural embeddings of \(\mathcal{B}(G', F) \) into \(\mathcal{B}(G, F) \).

If \(x \) is a point in \(\mathcal{B}(G, F) \), we denote by \(G_{x,0} \) the associate parahoric subgroup, and by \(G_{x,0}^+ \) the pro-unipotent radical of the latter. In general, for \(r \) a positive real number, \(G_{x,r} \) is the corresponding Moy-Prasad filtration subgroup of \(G_{x,0} \).

As in [KY17, § 7.1], a **depth-zero \(G \)-datum** is a triple \(((G, M), (y, \iota), (K_M, \rho_M)) \) such that

- \(G \) is a connected reductive group over \(F \) and \(M \) a Levi subgroup of \(G \);
- \(y \in \mathcal{B}(M) \) is such that \(M_{y,0} \) is a maximal parahoric subgroup of \(M \), and \(\iota: \mathcal{B}(M) \hookrightarrow \mathcal{B}(G) \) is a 0-generic embedding relative to \(y \) (see [KY17, Definition 3.2]);
- \(K_M \) is a compact open subgroup of \(M \) containing \(M_{y,0} \), and \(\rho_M \) is an irreducible smooth representation of \(K_M \) such that \(\rho_M|_{M_{y,0}} \) contains a cuspidal representation of \(M_{y,0}/M_{y,0}^+ \).

Let \(\mathcal{G} = (G^0, G^1, \cdots, G^d) \) be a tamely ramified twisted Levi sequence in \(G \). To \(\mathcal{G} \), we associate a sequence of Levi subgroups \(\mathcal{M} = (M^0, \cdots, M^d) \), where \(M^0 \) is a Levi subgroup of \(G^1 \) given as the centralizer of \(A_{M^0} \) in \(G^1 \), with \(A_{M^0} \) the maximal \(F \)-split torus of the center \(Z_{M^0} \) of \(M^0 \).

Then a **\(G \)-datum** is a 5-tuple

\[
\mathcal{D} = ((\mathcal{G}, M^0), (y, \{\iota\}), \tilde{r}, (K_{M^0}, \rho_{M^0}), \tilde{\phi})
\]

satisfying the following:

D1. \(\mathcal{G} = (G^0, G^1, \cdots, G^d) \) is a tamely ramified twisted Levi sequence in \(G \), and \(M^0 \) a Levi subgroup of \(G^0 \). Let \(\mathcal{M} \) be associated to \(\mathcal{G} \) as above;

D2. \(y \) is a point in \(\mathcal{B}(M^0) \) and \(\{\iota\} \) is a commutative diagram of \(\tilde{s} \)-generic embeddings of buildings relative to \(y \) (see [KY17, Definition 3.5]), where \(\tilde{s} = (0, r_0/2, \cdots, r_{d-1}/2) \);

D3. \(\tilde{r} = (r_0, r_1, \cdots, r_d) \) is a sequence of real numbers satisfying \(0 < r_0 < r_1 < \cdots < r_{d-1} \leq r_d \) if \(d > 0 \), and \(0 \leq r_0 \) if \(d = 0 \);

D4. \((K_{M^0}, \rho_{M^0}) \) is such that \(\mathcal{D}^0 := ((\mathcal{G}^0, M^0), (y, \iota), (K_{M^0}, \rho_{M^0})) \) is a depth zero datum.
D5. \(\vec{\phi} = (\phi_0, \phi_1, \ldots, \phi_d) \) is a sequence of quasi-characters, where \(\phi_i \) is a quasi-character of \(G^i \) such that \(\phi_i \) is \(G^{i+1} \)-generic of depth \(r_i \) relative to \(x \) for all \(x \in B(G^i) \) (in the terminology of [Yu01, § 9]).

The construction. For a given \(G \)-datum \(D \) as above, we write

\[
(2.3.3) \quad K^0_D := K^0 M y G^i_{\iota(y,0)}.
\]

We have

\[
(2.3.4) \quad K^0_D / G^i_{\iota(y,0)}, \bar{y} \simeq K^0 M y M y_0 \bar{y},
\]

and we define \(\rho_D \) to be the representation of \(K^0_D \) obtained by composing the isomorphism (2.3.4) with \(\rho_M \).

Following the recipe in [Yu01], Kim and Yu constructed in [KY17, §7.4] a pair \((K_D, \rho_D)\) formed by an open compact subgroup

\[
(2.3.5) \quad K_D := K^0_D G^i_{\iota(y,0)} \cdots G^i_{\iota(y,0)},
\]

and an irreducible representation \(\rho_D \) of \(K^d \).

To \(\tilde{G} \), we associate a tamely ramified twisted Levi sequence \(\tilde{M} = (M^0, \ldots, M^d) \) of \(M \), where \(M^i \) is the centralizer of \(A_M \) in \(G^i \). Then we write

\[
(2.3.6) \quad \mathcal{D}_M := (\tilde{M}, \bar{y}, \bar{r}, \rho_M, \vec{\phi}).
\]

It is a datum for constructing a supercuspidal type in \(M \).

Let \(K^d_M := K_D \cap M \) and let \(\tilde{K}^d_M \) denote the normalizer in \(M \) of \(K^d_M \), this is a compact mod center subgroup of \(M \). We write \(\rho_M := \rho_D | K^d_M \) and

\[
(2.3.7) \quad \sigma_M := \text{ind}_{K^d_M}^M \rho^d_M.
\]

Theorem 2.3.8. ([KY17, Fin21]) Suppose that \(K^0_M = M^0_y \). Then

1. \((K^d_M, \rho^d_M)\) is a supercuspidal type on \(M^d \) (as defined in Definition 2.2.3) and \(\sigma_M \) is an irreducible supercuspidal representation of \(M \);
2. \((K_D, \rho_D)\) is a \(G \)-cover of \((K^d_M, \rho^d_M)\) and hence it is an \(s \)-type, where \(s = [M, \sigma_M]_G \).

Proposition 2.3.9. Let \(D \) and \(\hat{D} \) be two \(G \)-data

\[
D = ((\tilde{G}, M^0), (y, \iota), \bar{r}, (K^0_M, \rho_M, \vec{\phi})) \quad \text{and} \quad \hat{D} = ((\tilde{G}, \tilde{M}^0), (y, \iota), \bar{r}, (K^0_M, \rho_M, \vec{\phi}))
\]

such that \(K^0_M = M^0_y \) and \(K^0_{\tilde{M}} = \tilde{M}^0_y \). Let \(s := [M, \sigma_M]_G \) and \(\hat{s} := [M, \sigma_M]_G \).

Then we have \(s = \hat{s} \) if and only if there exists \(g \in G \) such that

\[
(2.3.10) \quad g K^0_M = K^0_{\tilde{M}} \quad \text{and} \quad g (\rho_M \otimes \phi) \simeq \rho_{\tilde{M}} \hat{\phi},
\]

where \(\phi := \prod_{x=0}^d (\phi_x | M^0) \) and \(\hat{\phi} := \prod_{x=0}^d (\hat{\phi}_x | M^0) \).

Proof. It is a reformulation of [KY17, Theorem 10.3]. Indeed, due to the conditions \(K^0_M = M^0_y \) and \(K^0_{\tilde{M}} = \tilde{M}^0_y \), we have \(s = \hat{s} \) if and only the types \((K_D, \rho_D)\) and \((K_{\hat{D}}, \rho_{\hat{D}})\) are equivalent in the sense of [KY17, Definition 10.1].
Note that [KY17, Theorems 10.2 and 10.3] still hold without assuming the hypothesis $C(\hat{G})$ of [HM08, Remark 2.49 & above], since [Kal19a, §3.5] shows that [HM08, Theorems 6.6 and 6.7] are valid without assuming $C(\hat{G})$. \hfill \Box

Remark 2.3.11. If $G = M$, it follows from [HM08, Theorems 6.6 and 6.7] that $s_M = \hat{s}_M$ if and only the $D_M = (\bar{M}, y, \bar{\sigma}, \rho_{\bar{M}^0}, \phi)$ and $\hat{D}_M = (\bar{M}, \bar{y}, \bar{\sigma}, \rho_{\bar{M}^0}, \phi)$ are equivalent in the sense of [HM08, Definition 5.3].

For any $s = [M, \sigma] \in B(G)$, we define
\begin{equation}
N_{G}^{s} := \{n \in N_{G}(M)(F) : n \sigma \simeq \chi \otimes \sigma \text{ for some } \chi \in \mathfrak{X}_{n}(M)\}.
\end{equation}

Corollary 2.3.13. For every $n \in N_{G}^{s}$ there exists $m \in M$ such that
\begin{equation}
mn K_{M^0} = K_{M^0} \quad \text{and} \quad mn (\rho_{M^0} \otimes \phi) \simeq \rho_{M^0} \otimes \phi,
\end{equation}
where $\phi := \prod_{i=0}^{d}(\phi_{i}|_{M^0})$.

Proof. We have $\sigma = \sigma_{D_M}$, for an M-datum $D_M = (\bar{M}, y, \bar{\sigma}, \rho_{\bar{M}^0}, \phi)$. Let $n \in N_{G}^{s}$. Thus $n \sigma \simeq \chi \otimes \sigma$ for some $\chi \in \mathfrak{X}_{n}(M)$. We write $\hat{D}_M := (\bar{M}, \bar{y}, \bar{\sigma}, \rho_{\bar{M}^0} \otimes \chi|_{K_{M^0}}, \phi)$. From (2.3.7), we have
\begin{equation}
\chi \otimes \sigma = (\text{ind}_{K_{M^0}}^{M} \rho_{\bar{M}^0}^{d}) \otimes \chi \simeq \text{ind}_{K_{M^0}}^{M} (\rho_{\bar{M}^0}^{d} \otimes \chi|_{K_{M^0}}).
\end{equation}
Since χ is unramified, we have $\text{ind}_{K_{M^0}}^{M} (\rho_{\bar{M}^0}^{d} \otimes \chi|_{K_{M^0}}) = \sigma_{D_M}$, and hence $\chi \otimes \sigma \simeq \sigma_{D_M}$. By applying Remark 2.3.11 to the M-data $\bar{n}D_M$ and \hat{D}_M, we see that these data are equivalent. Hence there exists $m \in M$ such that
\begin{equation}
mn K_{M^0} = K_{M^0} \quad \text{and} \quad mn (\rho_{M^0} \otimes \phi) \simeq \rho_{M^0} \otimes \chi|_{K_{M^0}} \otimes \phi = \rho_{M^0} \otimes \phi,
\end{equation}
since χ is trivial on K_{M^0}, where $\phi := \prod_{i=0}^{d}(\phi_{i}|_{M^0})$. \hfill \Box

As shown in [HM08], it follows from Yu’s construction [Yu01] that $\rho_{\bar{M}^0}^{d}$ is of the form $\rho_{\bar{M}^0}^{d} = \rho_{M^0} \otimes \kappa$, where the representation $\kappa = \kappa_{G}$ depends only on ϕ.

Recall that we have assumed that $K_{\bar{M}^0}$ is the fixator of y in M^0. We denote by \bar{K}_{M^0} the normalizer in M^0 of K_{M^0}, and define
\begin{equation}
\sigma^{0} := \text{ind}_{K_{M^0}}^{M^0} \rho_{M^0}^{d}.
\end{equation}
The representation σ^{0} is a depth-zero irreducible supercuspidal representation of M^0.

We write $s^{0} = [M^0, \sigma^{0}]_{G^0}$ and define $\Pi^{0}_{G^0}$ as in (2.1.2): it a progenator of the category $\mathfrak{H}^{0}(G^0)$. We set $\mathfrak{H}(G^0) := \text{End}(\Pi^{0}_{G^0})$.

Proposition 2.3.15.

1. The algebras $\mathfrak{H}^{0}(G^0)$ and $\mathfrak{H}(G^0, \rho_{\mathfrak{D}^0})$ are isomorphic.

2. The algebras $\mathfrak{H}^{0}(G)$ and $\mathfrak{H}(G, \rho_{\mathfrak{D}})$ are isomorphic.

Proof. We will check that the assumptions in Proposition 2.2.6 are satisfied. Firstly, $(K_{\mathfrak{D}}, \rho_{\mathfrak{D}})$ is a G^0-cover of (K_{M^0}, ρ_{M^0}) (see [KY17, §7.1]) and $(K_{\mathfrak{D}}, \rho_{\mathfrak{D}})$ is a G-cover of (K_{M}, ρ_{M}) (see [KY17, Theorem 7.5]).
Secondly, since \(\sigma^0 \) and \(\sigma \) are supercuspidal irreducible representations, an element \(m^0 \) of \(M^0 \) intertwines \(\rho_{M^0} \) if and only if \(m^0 \in K_{M^0} \), and an element \(m \) of \(M \) intertwines \(\rho_M \) if and only if \(m \in K_M \). Then the proof of [BS21, Lemma B.4] applies, and shows that \(\Pi^M_{M^0} \simeq c\text{-Ind}^M_{K_M}(\rho_M, V_{\rho_M}) \). Then the result follows from Proposition 2.2.6.

Proposition 2.3.16. If \(W_G^\emptyset = \{1\} \), then there is an algebra isomorphism

\[
\mathcal{H}(G, \rho_D) \simeq \mathcal{H}(M, \rho_M^D),
\]

which preserves support of functions, and the algebra \(\mathcal{H}(G, \rho_D) \) is commutative.

Proof. Since \(W_G^\emptyset = \{1\} \), we have \(N_G(s) \subset M \). Then the first assertion follows from [BK98, (12.1)]. On the other hand, the algebra \(\mathcal{H}(M, \rho_M^D) \) is commutative (see for instance [BK98, (5.6)]).

Remark 2.3.17. Applying Proposition 2.3.16 to the group \(G^0 \) shows that, if \(W_{G^0}^\emptyset = \{1\} \), then there is an algebra isomorphism

\[
\mathcal{H}(G^0, \rho_{D^0}) \simeq \mathcal{H}(M^0, \rho_{M^0}^0),
\]

which preserves support of functions, and the algebra \(\mathcal{H}(G^0, \rho_{D^0}) \) is commutative.

2.4. Regular Bernstein blocks

We assume that \(p \) is odd, good for \(G \) and does not divide the order of the fundamental groups of \(G_{\text{der}} \). Let \(M \) be an \(F \)-rational Levi subgroup of an \(F \)-rational parabolic subgroup of \(G \). Then \(p \) satisfies the same assumptions relative to \(M \).

Let \((S, \theta)\) be a pair consisting of a tamely ramified torus \(S \) in \(M \) and a character \(\theta: S \to \mathbb{C}^\times \). For any positive real number \(r \), we set

\[
(2.4.1) \quad \Sigma^S_{r, \theta} := \{ \gamma \in \Sigma(M, S) : (\theta \circ N_{E/F})(\gamma^\vee(E_r^\times)) = 1 \}.
\]

We have \(\Sigma^S_{r, \theta} \subset \Sigma^S_r \) for \(s < r \), and we set \(\Sigma^S_{r^+} := \bigcap_{s > r} \Sigma^S_{s, \theta} \). Then \(r \mapsto \Sigma^S_{r, \theta} \) defines a \(\text{Gal}(\overline{F}_\text{sep}/F) \)-invariant filtration. Let \(r_{d-1} > r_{d-2} > \cdots > r_0 > 0 \) denote the breaks of the filtration, that is, the \(r \) such that \(\Sigma^S_{r^+} \neq \Sigma^S_{r^+} \). We set \(r_{-1} := 0 \) and write \(r_d \) for the depth of \(\theta \). We have \(r_d \geq r_{d-1} \).

For each \(i \) such that \(0 \leq i \leq d \), we denote by \(M^i \) the connected reductive subgroup of \(M \) with maximal torus \(S \) and root system \(\Sigma^S_{r_{i+1}} \). By definition the root system of \(M^d \) is \(\Sigma^S_0 \), so \(M^d = M \). The \(M^i \)'s are tame twisted Levi subgroups of \(M \) by [Kal19a, Lemma 3.6.1]. We write \(M^i := M^i(F) \). Moreover, the root system of \(M^0 \) is \(\Sigma^S_{0^+} \), and, if the latter is empty, then we have \(M^0 = S \).

As proved by Kaletha in [Kal19a, Proposition 3.6.7], the pair \((S, \theta)\) has a Howe factorization with respect of a sequence \((\phi_{-1}, \phi_0, \ldots, \phi_d)\) of characters \(\phi_{-1}: S \to \mathbb{C}^\times \) and \(\phi_i: M^i \to \mathbb{C}^\times \) for \(0 \leq i \leq d \). It means that

\[
(2.4.2) \quad \theta = \prod_{i=-1}^{d} \phi_i,
\]

where the character \(\phi_i \) is trivial on \((M^i)_{\text{sc}}\) for any \(i \in \{0, \ldots, d\} \), has depth \(r_i \) and is \(M^{i+1} \)-generic for any \(i \neq d \), and \(\phi_d \) if trivial if \(r_d = r_{d-1} \) and has depth \(r_d \) otherwise.
From now one we assume that S is an elliptic maximal torus of M, the splitting extension of S is tamely ramified, S is maximally unramified inside M^0 (that is, S coincides with its maximal unramified subtorus, see [Kal19a, Definition 3.4.2]), and θ is k_F-regular with respect to M^0 in the sense of [Kal19b, Definition 3.1.1].

For any point x in the building of M, we denote by $[x]$ the projection of x on the reduced building $B_{\text{red}}(M)$, and by M_x (resp. $M_{[x]}$) the subgroup of M fixing x (resp. $[x]$). Recall that $M_{[x]} = N_M(M_{x,0})$, [Yu01, Lemma 3.3].

Then we can associate to S a vertex $[y]$ of $B_{\text{red}}(M)$ (see [Kal19a, Lemma 3.4.3]), which is the unique $\text{Gal}(F^\text{nr}/F)$-fixed point in the apartment $A_{\text{red}}(S,F^\text{nr})$ of the reduced Bruhat-Tits building of M.

Let S_b be the unique maximal bounded subgroup of S (which is also the unique maximal compact subgroup of S). Denoting by \mathcal{S} the connected Neron model of S, we write $S_0 := \mathcal{S}(\mathcal{O}_F) \subset S_b$ (see [Kal19a, §3.1] for more details).

We write $G^0 := G^0$ and $M^0 := M^0$, and we denote by \mathfrak{m}^0_y the connected reductive k_F-group such that
\begin{equation}
(2.4.3) \quad M^0_{y,0} := \mathfrak{m}^0_y(k_F) = M^0_{y,0}/M^0_{y,0+}.
\end{equation}

There exists an elliptic maximal k_F-torus S of \mathfrak{m}^0_y such that for every unramified extension F' of E, the image of $S(F')_0$ in $M(F')_{y,0}/M(F')_{y,0+}$ is equal to $S(k_F')$, see [Kal19a, Lemma 3.4.4].

By [Kal19a, Lemma 3.4.14], the character $\varphi_{-1}|_{S_b}$ factors through a regular character φ_{-1} of $S := S(k_F)$ as defined in [Kal19a, Definition 3.4.16] (in particular, φ_{-1} is in general position in [DL76, Definition 5.15] terminology). Then it follows from [DL76, Proposition 7.4, Theorem 8.3] that the Deligne-Lusztig character
\begin{equation}
(2.4.4) \quad (-1)^{r(\varphi_{-1}^0)} R_{S_{\varphi_{-1}}^0}(\overline{\varphi_{-1}})
\end{equation}
can be represented by a cuspidal $M^0_{y,0}$-module $\kappa_{S,\varphi_{-1}}$, where $r(\varphi_{-1})$ denotes the k_F-rank of φ_{-1}. Then $\kappa_{S,\varphi_{-1}}$ is irreducible (see [DL76, Definition 5.15]), and its pull-back to $M^0_{y,0}$ extends uniquely to a representation $\kappa_{S,\varphi_{-1}}$ of $SM^0_{y,0}$, and we define
\begin{equation}
(2.4.5) \quad \rho_{S,\varphi_{-1}} := \text{Ind}_{S_{\varphi_{-1}}^0}^{M^0_{y,0}} \kappa_{S,\varphi_{-1}} \quad \text{and} \quad \sigma^0 := c \text{-Ind}_{M^0_{y,0}}^{M^0_{y,0}} \rho_{S,\varphi_{-1}}.
\end{equation}

Then σ^0 is a depth-zero irreducible regular supercuspidal representation of M^0 (see [Kal19a, Definition 3.4.19 & Proposition 3.4.20]). We set $\mathfrak{s}_{M^0} := [M^0,\sigma^0]_{M^0}$.

More generally, we define an irreducible supercuspidal representation σ of M by using the twisted Yu construction of [FKS21]. As observed in [Kal19b, §3.4], it has the same effect as using the original Yu construction from [Yu01] applied to the character $\theta \cdot \epsilon$, where $\epsilon : S \to \{\pm 1\}$ is the product of the characters ϵ_M^{M/M^1} of [FKS21, Theorem 3.4]. The representation σ is regular (i.e., satisfies [Kal19a, Definition 3.7.13]). Then $\chi \otimes \sigma$ is regular for any $\chi \in \Xi_{\text{irr}}(M)$, and we say that $\mathfrak{s} := [M,\sigma]_G$ is regular.

For $\mathfrak{s}_M = [M,\sigma]_M$ and $\mathfrak{s}_{M^0} = [M^0,\sigma^0]_{M^0}$, the map
\begin{equation}
(2.4.6) \quad \mathfrak{f} : \text{Irr}^{\mathfrak{s}_M}(M) \to \text{Irr}^{\mathfrak{s}_{M^0}}(M^0), \quad \chi \otimes \sigma \mapsto \sigma^0 \otimes \chi|_{M^0}, \quad \chi \in \Xi_{\text{irr}}(M),
\end{equation}

is an isomorphism of varieties (see for [Mis19, Theorem 6.1]). We denote by \(O^0 \) the orbit of \(\sigma^0 \) under the action of \(X_{M_0} M^0 \) and write \(W_{G_0}^{\sigma^0} = W_{O^0} R(O^0) \) for the decomposition analogous to (2.1.11). Then (2.4.6) and (2.1.8) (applied to both \(s_M \) and \(s_{M_0} \)) show that the orbits \(O \) and \(O^0 \) are isomorphic.

The following result is a combination of [AM21, Theorem 7.3] and [AM21, Theorem 9.3].

Theorem 2.4.7. (Adler-Mishra) We suppose that that \(p \) is good for \(G \) and does not divide the order of the fundamental group of \(G_{\text{der}} \).

Let \(s = [M, \sigma]_G \in \mathcal{B}(G) \) be a regular inertial class.

Then

1. there is a group isomorphism
 \[
 \mathfrak{m}_\sigma : W_G^s \rightarrow W_{G_0}^{s^0},
 \]
 where \(s^0 = [M^0, \sigma^0]_{G_0} \), and \(f \) is equivariant with respect to \(\mathfrak{m}_\sigma \).

2. there is an isomorphism
 \[
 l_\sigma : (\text{Irr}^{s_M}(M) / W_G^s)_{\zeta} \rightarrow (\text{Irr}^{s_M^0}(M^0) / W_{G_0}^{s^0})_{\zeta^0}.
 \]

The collection \(\xi^0 \) of 2-cocycles is defined as follows. For \(x \in \text{Irr}^{s_M}(M) \), let \(W_G^{s,x} \) denote the stabilizer of \(x \) in \(W_G^s \). Since \(f \) is equivariant with respect to \(\mathfrak{m}_\sigma \), the latter induces an isomorphism

\[
\mathfrak{m}_\sigma|_{W_G^{s,x}} : W_G^{s,x} \rightarrow W_{G_0}^{s^0, f(x)},
\]

and every 2-cocycle

\[
\eta_x : W_G^{s,x} \times W_G^{s,x} \rightarrow \mathbb{C}^\times
\]

defines a 2-cocycle

(2.4.8)

\[
\nu^0_{\xi(x)} : W_{G_0}^{s^0, f(x)} \times W_{G_0}^{s^0, f(x)} \rightarrow \mathbb{C}^\times.
\]

As a consequence, we prove in Theorem 2.4.9(2) new instances of [AM21, Conjecture 1.1].

Theorem 2.4.9. We suppose that \(p \) is good for \(G \) and does not divide the order of the fundamental group of \(G_{\text{der}} \).

Let \(s = [M, \sigma]_G \in \mathcal{B}(G) \) be a regular inertial class.

Then

1. Then
 \[
 (\xi_{G_0}^0)^{-1} \circ l_\sigma \circ \xi_G^0 : \text{Irr}(G) \rightarrow \text{Irr}(G^0)^{s^0}
 \]
 is a bijection.

2. We have a bijection
 \[
 \text{Irr}(\mathcal{H}^s(G)) \rightarrow \text{Irr}(\mathcal{H}^{s^0}(G^0)).
 \]

Proof. (1) It follows from the fact that the map \(\xi_G \) defined in (2.1.16) and the analogous map

\[
\xi_G^0 : \text{Irr}(G)^{s^0} \rightarrow (\text{Irr}^{s_M^0}(M^0) / W_{G_0}^{s^0})_{\xi^0}
\]

are isomorphisms.
(2) By [Sol21a, Theorem 9.7] applied to G and G^0, we have

$$\text{Irr}^s(G) \cong \text{Irr} (\text{End} (i_P^G(V_B))) \quad \text{and} \quad \text{Irr}^s(G^0) \cong \text{Irr} (\text{End} (i_P^{G^0}(V_{B^0}))).$$

Thus by (1), we have

$$\text{Irr} (\text{End} (i_P^G(V_B))) \cong \text{Irr}^s(G) \cong \text{Irr}^s(G^0) \cong \text{Irr} (\text{End} (i_P^{G^0}(V_{B^0}))).$$

Then the result follows by applying Corollary 2.1.17 to both s and s^0. \hfill \square

Remark 2.4.10. The algebras $\mathcal{H}^s(G)$ and $\mathcal{H}^s(G^0)$ are not always isomorphic as $[\text{GR05, Example 11.8}]$ shows for $G = \text{SL}_n(F)$. However, we will show in Theorem 4.5.2 that they are isomorphic in the case $G = G_2$ and M is a maximal Levi subgroup.

3. A Langlands correspondence for non-supercuspidal Bernstein blocks

3.1. The construction of the correspondence.

Let G^\vee denote the Langlands dual group of G, that is, the complex Lie group with root system dual to that of G. Let Z_{G^\vee} be the center of G^\vee and G^\vee_{ad} the quotient G^\vee/Z_{G^\vee}. The L-group of G is defined to be $^L G := G^\vee \rtimes W_F$.

Similarly, M^\vee denotes the Langlands dual group of M. We write $Z_{M^\vee \rtimes I_F}$ for the center of $M^\vee \rtimes I_F$, and define

$$(3.1.1) \quad \chi_m(L M) := (Z_{M^\vee \rtimes I_F})^0_{\text{ad}}.$$

The group $\chi_m(L M)$ is naturally isomorphic to the group $\chi_m(M)$. We will denote the isomorphism $\chi_m(M) \to \chi_m(L M)$ by $\chi \mapsto \chi^\vee$.

An L-parameter is a continuous morphism $\varphi : W'_F \to ^L G$ such that $\varphi(w)$ is semisimple for each $w \in W_F$, and the restriction $\varphi|_{\text{SL}_2(C)}$ is a morphism of complex algebraic groups. An L-parameter φ is said to be discrete if $\varphi(W'_F)$ is not contained in any proper Levi subgroup of G^\vee. The group G^\vee acts on the set of L-parameters and we denote by $\Phi(G)$ the set of G^\vee-classes of G-relevant L-parameters.

We attach to each L-parameter φ for G, several (possibly disconnected) complex reductive groups. We write $Z_{G^\vee}(\varphi) := Z_{G^\vee}(\varphi(W'_F))$ and denote by $Z_{G^\vee}(\varphi)$ the inverse image under the quotient map $G^\vee_{\text{sc}} \to G^\vee_{\text{ad}}$ of $Z_{G^\vee}(\varphi)/Z_{G^\vee}(\varphi) \cap Z_{G^\vee}$ (viewed as a subgroup of G^\vee_{ad}). Then we set

$$(3.1.2) \quad G_\varphi := Z_{G^\vee}(\varphi|_{W'_F}).$$

We define the following component group

$$(3.1.3) \quad S_\varphi := Z_{G^\vee}(\varphi)/Z_{G^\vee}(\varphi).$$

An enhancement of φ is an irreducible representation ϱ of S_φ. The pairs (φ, ϱ) are called enhanced L-parameters (for G and its inner forms).

We let G^\vee act on the set of enhanced L-parameters by

$$(3.1.4) \quad g \cdot (\varphi, \varrho) = (g \varphi g^{-1}, g \cdot \varrho).$$
We define an action of $X_m(L_M)$ on $\Phi_\iota(M)$ as follows. Given $(\varphi, g) \in \Phi_\iota(M)$, and $\xi \in X_m(L_M)$, we define $(\xi \varphi, g) \in \Phi_\iota(M)$ by $\xi \varphi := \varphi$ on $I_F \times \mathrm{SL}_2(\mathbb{C})$ and $(\xi \varphi)(\mathrm{Fr}_F) := \tilde{\xi} \varphi(\mathrm{Fr}_F)$, where $\tilde{\xi} \in \mathbb{Z}[\mu, \nu] \times I_F$ represents z.

For φ an L-parameter for G, we denote by u_φ the image under φ of $(1, (1, 1))$. Then we have $u_\varphi \in \mathcal{G}_\varphi^0$ and $S_\varphi \simeq \mathcal{Z}_{\mathcal{G}_\varphi}(u_\varphi) / \mathcal{Z}_{\mathcal{G}_\varphi}(u_\varphi)$ (see [AMS18, (92)]).

Let g be an irreducible representation of $A_{Gc}(u_\varphi)$. The pair (u_φ, g) is called cuspidal if it determines a G^ι-equivariant cuspidal local system on the $G^\iota_{\iota_\iota}$-conjugacy class of u_φ as defined by Lusztig in [Lus84].

Definition 3.1.5. An enhanced L-parameter (φ, g) is called cuspidal if φ is discrete and (u_φ, g) is a cuspidal pair in G_ι.

Let (φ_c, g_c) be a cuspidal enhanced L-parameter for M, we write

$$s^\varphi := [L_M, \varphi_c, g_c]_{G^\varphi}$$

for the G^φ-conjugacy class of (L_M, O^φ), where O^φ is the orbit of (φ_c, g_c) under the action of $X_m(L_M)$. We denote by $\mathfrak{B}^\varphi(G)$ the set of such s^φ. We write $s^\varphi_M := [L_M, \varphi_c, g_c]_{M^\varphi}$.

We define

$$N_{\iota_\iota_\iota}^\varphi := \{ n \in N_{G^\varphi}(M^\varphi) : n(\varphi_c, g_c) \simeq (\varphi_c, g_c) \otimes \chi^\varphi \text{ for some } \chi^\varphi \in X_m(L_M) \},$$

and we write

$$W_{G^\varphi}^\varphi = W(M^\varphi, O^\varphi) = N_{\iota_\iota_\iota}^\varphi / M^\varphi.$$

The group $W_{G^\varphi}^\varphi$ is a finite extended Weyl group, i.e., it decomposes as

$$W_{G^\varphi}^\varphi = W_{O^\varphi} \rtimes R(O^\varphi),$$

where W_{O^φ} is a finite Weyl group and $R(O^\varphi)$ is a finite abelian group.

Let $\Phi^c_\iota(M)$ denote the set of M^φ-conjugacy classes of cuspidal enhanced L-parameters for M. From [AMS18, (115)], we have a partition of $\Phi_\iota(G)$ into series of enhanced L-parameters indexed by the set $\mathfrak{B}^\varphi(G)$:

$$\Phi_\iota(G) = \bigsqcup_{s^\varphi \in \mathfrak{B}^\varphi(G)} \Phi^c_\iota^s(G),$$

such that, for any $(\varphi_c, g_c) \in \Phi^c_\iota(M)$, we have

$$\Phi^c_\iota^s(M) = X_m(L_M) \cdot (\varphi_c, g_c).$$

For $s^\varphi = [L_M, \varphi_c, g_c]_{G^\varphi} \in \mathfrak{B}^\varphi(G)$, [AMS18, Theorem 9.3] provides a bijection

$$\xi_{G^\varphi}^s : \Phi^c_\iota^s(G) \longrightarrow (\Phi^c_\iota^s(M) / W_{G^\varphi}^\varphi)_{\mathbb{Z}_2},$$

where $L_{\mathbb{Z}_2} : W_{G^\varphi}^\varphi \times W_{G^\varphi}^\varphi \rightarrow \mathbb{C}^\times$ is a 2-cocycle, that is is trivial on W_{G^φ}.

Let $\text{Irr}^{sc}(M) \subset \text{Irr}(M)$ denote the set of equivalence classes of irreducible super-cuspidal representations of M. Let $g \in N_G(M)(F)$. We have $g^\sigma \in \text{Irr}^{sc}(M)$ for any $\sigma \in \text{Irr}^{sc}(M)$. We denote by c_g the isomorphism $c_g : (M, \sigma) \cong (M, g^\sigma)$. It induces a
map \(c_g^\vee : M^\vee \to M^\vee \) as in [Spr79, §1-2] and hence an L-isomorphism \(Lc_g : LM \to LM \) defined by \(Lc_g(m^\vee, v) := (c_g^\vee(m^\vee), v) \) for any \(m^\vee \in M^\vee \) and \(v \in W_F \).

We have \(c_{n_w}(m^\vee) = n_w \cdot m^\vee \), where \(w \mapsto w^\vee \) is the canonical isomorphism from \(W(M) := NG(M)(F)/M \) to \(W(M^\vee) := NG^\vee(M^\vee)/M^\vee \) (see [ABPS17a, Proposition 3.1]), and \(n_w, n_{w^\vee} \) are representatives of \(w \) and \(w^\vee \) in \(NG(M)(F) \) and \(NG^\vee(M^\vee) \), respectively. Since for \(\sigma \in \text{Irr}(M) \), the equivalence class of \(n_w \sigma \) does not depend on the choice of the representative \(n_w \), we will write it simply as \(w \sigma \). Similarly denote \(w^\vee \) instead of \(n_{w^\vee} \) for the action of \(NG^\vee(M^\vee) \) on \(\Phi_e(M) \). We state the following property.

Property 3.1.12. Let \(M \) be a Levi subgroup of \(G \) and \(s_M := [M, \sigma]_M \in \mathcal{B}(M) \). Then there exists a map

\[
\mathfrak{L}^{s_M} : \text{Irr}^{s_M}(M) \to \Phi_e^s(M)
\]

such that the following properties are satisfied for any \(\sigma \in \text{Irr}^{s_M}(M) \):

1. For any \(\chi \in \mathfrak{X}_{irr}(M) \), we have
 \[
 (\varphi_{\chi \otimes \sigma}, \theta_{\chi \otimes \sigma}) = \chi^\vee \cdot (\varphi_{\sigma}, \theta_{\sigma}),
 \]
 where \(\chi \mapsto \chi^\vee \) is the canonical isomorphism \(\mathfrak{X}_{irr}(M) \to \mathfrak{X}_{irr}(LM) \).
2. For any \(w \in W(M) \), we have
 \[
 w^\vee(\varphi_{\sigma}, \theta_{\sigma}) \simeq (\varphi_{w \sigma}, \theta_{w \sigma}),
 \]
 where \(w \mapsto w^\vee \) is the canonical isomorphism \(W(M) \to W(M^\vee) \).

Remark 3.1.13. Property 3.1.12(1) is closely related to Borel’s desiderata [Bor79, 10.3.(2)]. Property 3.1.12(2) implies [Bor79, 10.3.(5)] for \(\eta = c_g \), and can be viewed as an analogue for enhanced L-parameters of [Hai14, Conjecture 5.24] for supercuspidal representations.

Lemma 3.1.14. Let \(s = [M, \sigma]_M \in \mathcal{B}(G) \) satisfy Property 3.1.12. Then there is a group isomorphism

\[
\rho : W_G^s \cong W_{G^\vee}^s,
\]

where \(s^\vee := [LM, \mathfrak{L}^{s_M}(\sigma)]_{G^\vee} \), and \(\mathfrak{L}^{s_M} \) is equivariant with respect to \(\rho \).

Proof. Let \(w \in W_G^s \subset W(M) \). By definition of \(W_G^s \), we have \(w^\sigma \simeq \chi \otimes \sigma \) for some \(\chi \in \mathfrak{X}_{irr}(M) \). By Property 3.1.12, we get

\[
w^\vee(\varphi_{\sigma}, \theta_{\sigma}) \simeq (\varphi_{w \sigma}, \theta_{w \sigma}) \simeq (\varphi_{\chi \otimes \sigma}, \theta_{\chi \otimes \sigma}) \simeq \chi^\vee \cdot (\varphi_{\sigma}, \theta_{\sigma}).
\]

Thus \(w^\vee \in W_{G^\vee}^s \), and \(w \mapsto w^\vee \) defines a group morphism from \(W_G^s \) to \(W_{G^\vee}^s \). By reversing the argument, we see that it is an isomorphism.

Theorem 3.1.15. Suppose that Property 3.1.12 holds. Then we have a canonical isomorphism

\[
e : \text{Irr}^{s_M}(M)//W_G^s \cong \Phi_e^{s_M}(M)//W_{G^\vee}^s.
\]
Proof. Let $s = [M, \sigma]_G$. We write $(\varphi_\sigma, \theta_\sigma) := \mathfrak{L}^s_M(\sigma)$. Then, the isomorphism $X_{nr}(M) \simeq X_{nr}(L^M)$ combined with (3.1.10) shows that
\[
\Phi^s_{eM}(M) = \{\chi^\vee \otimes (\varphi_\sigma, \theta_\sigma) : \chi \in X_{nr}(M)\}.
\]
By using Property 3.1.12(1), we obtain
\[
\Phi^s_{eM}(M) = \{(\varphi_\otimes \chi, \theta_\otimes \chi) : \chi \in X_{nr}(M)\} \simeq \text{Irr}^s_M(M),
\]
thanks to (2.1.8).

Recall that $W^s_{\chi \otimes \sigma}$ denotes the stabilizer of $\chi \otimes \sigma$ in W^s_G. We have
\[
\text{Irr}^s_M(M) = \bigcup_{\chi \in X_{nr}(M)} \text{Irr}(W^s_{\chi \otimes \sigma})/W^s_{\chi \otimes \sigma}.
\]
For $\chi \in X_{nr}(X)$, we denote by $W^s_{\chi \otimes \sigma}$ the stabilizer of $\chi \otimes \sigma$ in W^s_G. Then we get
\[
\Phi^s_{eM}(M) = \bigcup_{\chi \in X_{nr}(M)} \text{Irr}(W^s_{\chi \otimes \sigma})/W^s_{\chi \otimes \sigma}.
\]
Let $w \in W^s_{\chi \otimes \sigma}$. Thanks to Property 3.1.12 we have
\[
w^\vee(\chi \otimes \sigma, (\varphi_\sigma, \theta_\sigma)) = (w^\chi(\varphi_\otimes \chi, \theta_\otimes \chi)) = (\varphi^w(\chi \otimes \sigma), \theta^w(\chi \otimes \sigma)) = (\varphi_\otimes \chi, \theta_\otimes \chi).
\]
Thus, the morphism τ restricts to an isomorphism between $W^s_{\chi \otimes \sigma}$ and $W^s_{\chi \otimes \sigma}$, and we obtain an isomorphism,
\[
\epsilon: \text{Irr}^s_M(M) = \Phi^s_{eM}(M) \longrightarrow \text{Irr}^s_M(M) = \Phi^s_M(M).
\]
\]

Remark 3.1.16. When G is a split classical group, F has characteristic zero and \mathfrak{L}^s_M is the LLC defined by Arthur in [Art13], then Lemma 3.1.14 was proved by Moussaoui in [Mou17a, Theorem 4.1] and Theorem 3.1.15 follows from [Mou17b, §3.2 & 3.3].

Corollary 3.1.17. We assume that the collections of 2-cocycles \sharp and L^\sharp are both trivial and that Property 3.1.12 holds. Then we have a bijection
\[
\mathcal{L} := (\xi^\vee_G)^{-1} \circ \epsilon \circ \xi^\vee_G: \text{Irr}^s(G) \longrightarrow \Phi^s_{eM}(M).
\]
Proof. It follows directly from the combination of Theorem 3.1.15, Proposition 2.1.15 and (3.2.11). □

Remark 3.1.18. The 2-cocycles involved in \sharp and L^\sharp are expected to be often trivial. In particular, they are trivial if the groups $R(O)$ and $R(O^\vee)$ have cardinality at most 2, and hence when M is a Levi subgroup of a maximal parabolic subgroup of G. They are trivial also when G is a symplectic group or a special orthogonal group [Hei11] and [Mou17b], and for principal series representations of split groups [Roc98] and [ABPS17c]. However, there exist cases when they are not trivial (see [ABPS17b, Example 5.5] for \sharp and [AMS18, Example 9.4] for L^\sharp).
Theorem 3.1.19. Let σ be a regular supercuspidal irreducible representation of M and $\varphi: W_F \rightarrow \mathcal{L}M$ its L-parameter, as defined in [Kal19b]. Let $s = [M, \sigma]_G$ and $s^\vee = [M^\vee, (\varphi|\sigma, 1)]_{G^\vee}$.

If the collections of 2-cocycles ξ and η are both trivial and the characteristic of F is 0, then the map
\[
\mathcal{L}: \text{Irr}^s(G) \rightarrow \Phi_{s}^{\vee}(G)
\]
is a bijection.

Proof. Let \mathcal{L}^s_{G} be the map
\[
\mathcal{L}^s_{G}: \sigma \mapsto (\varphi|\sigma, 1).
\]
Property 3.1.12 (1) follows from the construction of σ in [Kal19a]. Since σ is regular, its L-packet for G is a singleton, and hence Property 3.1.12 (2) follows from the functoriality result established in [BM21].

\[\square\]

3.2. Matching of simple modules of extended affine Hecke algebras.

The goal of this section is to use Corollary 3.1.17 in order to get a bijection between simple modules of extended affine Hecke algebras. We suppose that Property 3.1.12 is satisfied. A (possibly twisted) extended affine Hecke algebra $H^s(G^\vee)$ was constructed in [AMS17]. We recall the definition below. We write
\[
\mathcal{M}_{\varphi_c} := \mathcal{Z}_{M^\vee}(\varphi_c(W_F)),
\]
and denote by \mathcal{A}_{φ_c} the identity component of the center of \mathcal{M}_{φ_c}. We set
\[
\mathcal{J}_{\varphi} = \mathcal{J}^{G^\vee}_{\varphi} := \mathcal{Z}_{G^\vee}(\varphi(I_F)),
\]
and define $\Sigma(\mathcal{J}_{\varphi}, \mathcal{A}_{\varphi_c})$ as the set of $\alpha \in X^*(\mathcal{A}_{\varphi_c}) \setminus \{0\}$ which appear in the adjoint action of \mathcal{A}_{φ_c} on the Lie algebra of \mathcal{J}_{φ}. It is a root system (see [AMS17, Proposition 3.9]). We denote by $\Sigma(\mathcal{J}_{\varphi}, \mathcal{A}_{\varphi_c})^+$ the positive system defined by an F-rational Borel subgroup of \mathcal{J}_{φ}. Let Δ be a basis of the reduced root system $\Sigma(\mathcal{J}_{\varphi}, \mathcal{A}_{\varphi_c})_{\text{red}}$, and let $a \in \mathcal{A}_{\varphi_c}$ such that $\alpha(a^{-1})$ is an eigenvalue of $\text{Ad}(\varphi(F))$ for any $\alpha \in \Delta$. Then we define $\varphi_a \in \Phi(M)$ by
\[
\varphi_a|_{I_F \times \text{SL}_2(C)} := \varphi_c|_{I_F \times \text{SL}_2(C)} \quad \text{and} \quad \varphi_a(F) := a \cdot \varphi_c(F).
\]
We have $\Sigma(G_{\varphi}, \mathcal{A}_{\varphi_c})_{\text{red}} = \Sigma(\mathcal{J}_{\varphi}, \mathcal{A}_{\varphi_c})_{\text{red}}$, where $G_{\varphi} = \mathcal{Z}_{G^\vee}(\varphi_a(W_F))$ (see [AMS17, Proposition 3.9]).

We write
\[
\mathfrak{X}_{\text{irr}}(M^\vee, \varphi_a) := \{ x \in \mathfrak{X}_{\text{irr}}(M^\vee) : (z\varphi_a)_{M^\vee} = (\varphi_a)_{M^\vee} \}
\]
and $T_{\Sigma^\vee} := \mathfrak{X}_{\text{irr}}(M^\vee)/\mathfrak{X}_{\text{irr}}(M^\vee, \varphi_a)$. For each $\alpha \in \Sigma(\mathcal{J}_{\varphi}, \mathcal{A}_{\varphi_c})_{\text{red}}$, letting $m_\alpha \in \mathbb{Z}_{>0}$ be the smallest integer such that
\[
\ker(m_\alpha \alpha) \supset \{ a' \in \mathcal{A}_{\varphi_c} : (a' \varphi_a)_{M^\vee} = (\varphi_a)_{M^\vee} \},
\]
we set
\[
\Sigma_{\Sigma^\vee} := \{ m_\alpha : \alpha \in \Sigma(\mathcal{J}_{\varphi}, \mathcal{A}_{\varphi_c})_{\text{red}} \} \subset X^*(T_{\Sigma^\vee}).
\]
Then W_{O^\vee} is the finite Weyl group of Σ_{O^\vee}, and
\begin{equation}
R(O^\vee) := \{ w \in W(M^\vee, O^\vee) : w \cdot \Sigma(J^0_\varphi, A_\varphi)^+ = \Sigma(J^0_\varphi, A_\varphi)^+ \}.
\end{equation}
Let
\begin{equation}
\lambda^\vee : \Sigma_{O^\vee} \to \mathbb{Z}_{\geq 0} \quad \text{and} \quad \lambda^*_{O^\vee} : \{ m_\alpha \alpha \in \Sigma_{O^\vee} : (m_\alpha \alpha)^\vee \in 2X_*(T^0_{O^\vee}) \} \to \mathbb{Z}_{\geq 0}
\end{equation}
be the two parameter functions defined as in the proof of Lemma 3.12 in [AMS17].
We recall from [AMS17, (28)] that $\lambda^*_{O^\vee}(\alpha) = \lambda^\vee(\alpha)$ unless α is a short root in a type B root subsystem of R_{O^\vee}.

Then the algebra $H^s_{O^\vee}(G^\vee)$ is defined to be
\begin{equation}
H^s_{O^\vee}(G^\vee) := H^{aff}_{O^\vee}(O^\vee, \Sigma_{O^\vee}, \lambda^\vee, \lambda^*_{O^\vee}, z) \rtimes C[R(O^\vee), \kappa^\vee],
\end{equation}
where z is a positive real number, $H^{aff}_{O^\vee}(G^\vee, s^\vee) := H^{aff}_{O^\vee}(O^\vee, \Sigma_{O^\vee}, \lambda^\vee, \lambda^*_{O^\vee}, z)$ is the corresponding affine Hecke algebra with affine Weyl group $W_{O^\vee} \rtimes X^*(T^0_{O^\vee})$, and κ^\vee a 2-cocycle on $R(O^\vee)$.

Theorem 3.2.8. Let $s = [M, \sigma]_G$. If $s^\vee = [L^0 M, \varphi_\sigma, 1]_{G^\vee}$, then there is a bijection
\begin{equation}
\text{Irr}(H^s(G)) \cong \text{Irr}(H^s_{O^\vee}(G^\vee)).
\end{equation}

Proof. From Corollary 2.1.17, we have a bijection
\begin{equation}
\text{Irr}(H^s(G)) \cong (\text{Irr}^{s^M}(M)/W^s_G)_{\sharp}.\end{equation}
By Lemma 3.1.14, we have
\begin{equation}
(\text{Irr}^{s^M}(M)/W^s_G)_{\sharp} \cong (\Phi^s_{e^M}(M)/W^s_{G^\vee})_{L^\sharp}.
\end{equation}
On the other hand, from (3.11), we get a bijection
\begin{equation}
(\Phi^s_{e^M}(M)/W^s_{G^\vee})_{L^\sharp} \cong \Phi^s_{e^\vee}(G).
\end{equation}
Finally, [AMS17, Theorem 3.18] shows that there is a bijection
\begin{equation}
\Phi^s_{e^\vee}(G) \cong \text{Irr}(H^s_{O^\vee}(G^\vee)).
\end{equation}
Combining equations 3.2.9, 3.2.10, 3.2.11 and 3.2.12, we obtain the desired bijection. \hfill \Box

Corollary 3.2.13. With the same assumption as in Theorem 3.2.8.
\begin{equation}
\text{Irr}(H^s_{O^\vee}(G^\vee)) \cong \text{Irr}(H^s_{O^\vee}(G^0))^\vee).
\end{equation}

Proof. This follows from combining Theorems 3.2.8 and 2.4.9. \hfill \Box

4. The G_2 case

4.1. Some background.
The aim of the sequel this section is to introduce notation and background in view of studying the G_2 case.
4.1.1. General background.

We denote by \mathfrak{a}_M the real Lie algebra of A_M, by \mathfrak{a}_M^* its dual, by $\mathfrak{a}_M^*\otimes\mathbb{C}$ the complexification of the latter, by $| \cdot |_F$ the modulus of F, and by H_M the map $M \to \mathfrak{a}_M$ which satisfies $q^{-\langle H_M(m), \alpha \rangle} = |\alpha(m)|_F$ for every rational character α of M and every $m \in M$. The kernel of H_M is equal to M_1. If s is a complex number, we denote by χ_s the character defined by

\begin{equation}
\chi_s(m) := |\det(m)|_F^{|s|} \quad \text{for any } m \in M.
\end{equation}

We have $\chi_s \in \mathcal{X}_{\nr}(M)$. The group

\begin{equation}
M_\sigma := \bigcap_{\chi \in \mathcal{X}_{\nr}(M, \sigma)} \ker \chi
\end{equation}

has finite index in M_1. We have

\[\text{Irr}(M_\sigma/M_1) \simeq \mathcal{X}_{\nr}(M)/\mathcal{X}_{\nr}(M, \sigma) \quad \text{and} \quad \mathbb{C}[M_\sigma/M_1] \simeq \mathbb{C}[\mathcal{X}_{\nr}(M)/\mathcal{X}_{\nr}(M, \sigma)]. \]

We write $(M_\sigma/M_1)^\vee := \text{Hom}_\mathbb{Z}(M_\sigma/M_1, \mathbb{Z})$. Composition with H_M and \mathbb{R}-linear extension of maps $H_M(M_\sigma/M_1) \to \mathbb{Z}$ determines an embedding

\[H_M^\vee : (M_\sigma/M_1)^\vee \to \mathfrak{a}_M^*. \]

For $m \in M$, let b_m be the element of $\mathbb{C}[\mathcal{X}_{\nr}(M)]$ defined by $b_m(\chi) := \chi(m)$ for any $\chi \in \mathcal{X}_{\nr}(M)$. Let h_α be the unique generator of M_σ/M_1 such that $v_F(\alpha(h_\alpha)) > 0$. We define $X_\alpha \in \mathbb{C}(\mathcal{X}_{\nr}(M))/\mathcal{X}_{\nr}(M, \sigma)$ by

\begin{equation}
X_\alpha(\chi) := \chi(h_\alpha),
\end{equation}

where $\chi \in \mathcal{X}_{\nr}(M)/\mathcal{X}_{\nr}(M, \sigma)$. In particular, we have

\begin{equation}
X_\alpha(\chi_s) = |\det(h_\alpha)|_F^{|s|},
\end{equation}

where χ_s is the unramified character defined in (4.1.1). Let $\tilde{\alpha}$ be the element of \mathfrak{a}_M^* defined as $\tilde{\alpha} := \langle p_F, \alpha^\vee \rangle^{-1} p_F$, where p_F is half the sum of the roots of A_M in Lie N, with $P = MN$. Then $s\tilde{\alpha} \in \mathfrak{a}_M^* \otimes \mathbb{R} \otimes \mathbb{C}$.

We recall the description of the Plancherel measure from [Sil79] (see also [Sol21b] or [Hei11] for the notations used here): for $\alpha \in \Sigma_{\mathcal{O}, \mu}$, where is $\Sigma_{\mathcal{O}, \mu}$ is the root system defined in (2.1.10), there exists $q_\alpha, q_\alpha^* \in \mathbb{R}_{\geq 1}, c_{s\alpha}^\prime \in \mathbb{R}_{> 0}$ for $\alpha \in \Sigma_{\mathcal{O}, \mu}$, such that

\begin{equation}
\mu_{M_\alpha}(\sigma \otimes \cdot) = c_{s\alpha}^\prime \frac{(1 - X_\alpha)(1 - X_\alpha^{-1})}{(1 - q_\alpha^{-1} X_\alpha)(1 - q_\alpha^{-1} X_\alpha^{-1})} \cdot \frac{(1 + X_\alpha)(1 + X_\alpha^{-1})}{(1 + q_\alpha^{-1} X_\alpha)(1 + q_\alpha^{-1} X_\alpha^{-1})}.
\end{equation}

Let $\alpha \in \Sigma_{\mathcal{O}, \mu}$. Then there is a unique $\alpha^z \in (M_\sigma/M_1)^\vee$ such that $H_M^\vee(\alpha^z) \in \mathbb{R}\alpha$ and $\langle h_\alpha, \alpha^z \rangle = 2$ (see [Sol21a, Proposition 3.1]). We set

\[\Sigma_{\mathcal{O}} := \left\{ \alpha^z : \alpha \in \Sigma_{\mathcal{O}, \mu} \right\} \quad \text{and} \quad \Sigma_{\mathcal{O}}^\vee := \left\{ \alpha^z : h_\alpha \in \Sigma_{\mathcal{O}, \mu} \right\}. \]

The quadruple $(\Sigma_{\mathcal{O}}^\vee, M_\sigma/M_1, \Sigma_{\mathcal{O}}, (M_\sigma/M_1)^\vee)$ is a root datum with Weyl group $W_{\mathcal{O}}$, the group $W(M, \mathcal{O})$ acts naturally on it, and $R(\mathcal{O})$ is the stabilizer of the basis.
determined by P (see [Sol21a, Proposition 3.1]). We endow this based root datum with the parameter $q = q_F$ and the labels

\begin{equation}
\lambda(\alpha) := \log(q_\alpha q_\alpha^\ast)/\log(q_F) \quad \text{and} \quad \lambda^*(\alpha) := \log(q_\alpha q_\alpha^{-1})/\log(q_F).
\end{equation}

To the above data we associate the affine Hecke algebra

\begin{equation}
\mathcal{H}_{\text{aff}}^s(\lambda, \lambda^*, q_F) := \mathcal{H}_{\text{aff}}(\Sigma_\mathcal{O}^\vee, \mathcal{M}_\sigma/M_1, \Sigma_\mathcal{O}, (\mathcal{M}_\sigma/M_1)^\vee, \lambda, \lambda^*, q_F).
\end{equation}

By definition it is the vector space $\mathbb{C}[W_\mathcal{O}] \otimes_{\mathbb{C}} \mathbb{C}[M_\sigma/M_1]$ with multiplication given by the following rules:

- $\mathbb{C}[W_\mathcal{O}] = \text{span}\{T_w : w \in W_\mathcal{O}\}$ is embedded as the Iwahori-Hecke algebra $\mathcal{H}(W_\mathcal{O}, q_F^1)$, that is,
 \begin{align*}
 T_w T_v &= T_{wv} \quad \text{if } \ell(w) + \ell(v) = \ell(wv), \\
 (T_{s_\alpha} + 1)(T_{s_\alpha} - q_F^{\lambda(\alpha)}) &= 0 \quad \text{if } \alpha \in \Delta_\mathcal{O,\mu},
 \end{align*}
 where $\ell(w)$ is the word length of w;

- $\mathbb{C}[M_\sigma/M_1] \simeq \mathbb{C}[O]$ is embedded as a subalgebra,

- for $\alpha \in \Delta_\mathcal{O,\mu}$ and $x \in M_\sigma/M_1$ (corresponding to $\theta_x \in \mathbb{C}[M_\sigma/M_1]$):
 \begin{equation}
 \theta_x T_{s_\alpha} - T_{s_\alpha} \theta_{s_\alpha(x)} = \left(q_F^{\lambda(\alpha)} - 1 + X_{\alpha}^{-1}(q^{\frac{\lambda(\alpha)}{2}} - q^{-\lambda(\alpha)} - q^{\frac{\lambda^*(\alpha)}{2}}) \right) \frac{\theta_x - \theta_{s_\alpha(x)}}{1 - X_{\alpha}^2}.
 \end{equation}

We set

\begin{equation}
W_{\text{aff}}^s := W_\mathcal{O} \rtimes \mathbb{Z}\Sigma_\mathcal{O}^\vee.
\end{equation}

From now on we assume that the parabolic subgroup P is maximal. Then we have $M_\alpha = G$, and $W(M)$ is either trivial or of order 2.

Remark 4.1.9.

1. The groups $W(M, \mathcal{O})$, $W_\mathcal{O}$, and $R(\mathcal{O})$ are either trivial or of order 2. In particular, $\Sigma_{\mathcal{O},\mu}$ is either empty or $\{\alpha, -\alpha\}$.
2. For $G = G_2$, if $\sigma \not\simeq \sigma^\vee$, then $W(M, \mathcal{O}) = 1$. It suffices to only check the case where $\sigma \simeq \sigma^\vee$.

In general, if $W(M, \mathcal{O}) = 1$, then the parabolically induced representation is irreducible, so we do not need to work with the case. In the case of G_2, the condition $W(M, \mathcal{O}) \neq 1$ happens to be characterized by the condition that σ is self-dual. See [Sha89] for more details.

If $\Sigma_{\mathcal{O},\mu} \neq \emptyset$, then $W(M) \neq \{1\}$ and the group $W_\mathcal{O}$ is generated by the unique non-trivial element of $W(M)$, say s_M, and then we get $W_\mathcal{O} = W(M, \mathcal{O}) = W(M)$. In particular, if $\Sigma_{\mathcal{O},\mu} \neq \emptyset$, we have $R(\mathcal{O}) = \{1\}$.

The condition $\Sigma_{\mathcal{O},\mu} = \emptyset$ is equivalent to the following

\begin{equation}
\mu^G(\chi \otimes \sigma) \neq 0 \quad \text{for any } \chi \in X_{w}(M).
\end{equation}

We recall the following Harish-Chandra theorem.

\footnote{i.e., $\ell(w)$ is the smallest integer $\ell \geq 0$ such that w is a product of ℓ generators s_α.}
Theorem 4.1.11. (Harish-Chandra) [Sil79, 5.4.2.2 and 5.4.2.3] Let M be a Levi subgroup of a maximal parabolic subgroup of G and let σ be a supercuspidal irreducible representation of M.

(a) If $\mu^G(\sigma) = 0$, then $W(M) = \{1, s_M\} \neq \{1\}$ and $s_M \sigma \simeq \sigma$.

(b) Suppose that $W(M) \neq \{1\}$. Then, in order that $\mu^G(\sigma) \neq 0$, it is necessary and sufficient that the representation $i^G_P(\sigma)$ is reducible. The representation $i^G_P(\sigma)$ is then the direct sum of two non-isomorphic irreducible representations.

Corollary 4.1.12. Suppose that $W(M) \neq \{1\}$. Then $W_G = \{1\}$ if and only if, for any $\chi \in X_{\text{ir}}(M)$, the representation $i^G_P(\chi \otimes \sigma)$ is reducible.

4.1.2. Some background on the group G_2. In our specific case where G is the split G_2, we can obtain more precise results. Denote by T a maximal split torus in G, and by R the set of roots of G with respect to T. Let $(\epsilon_1, \epsilon_2, \epsilon_3)$ be the canonical basis of \mathbb{R}^3, equipped with the scalar product $(\cdot | \cdot)$ for which this basis is orthonormal. Then $\alpha := \epsilon_1 - \epsilon_2$, $\beta := -2\epsilon_1 + \epsilon_2 + \epsilon_3$ defines a basis of R and

$$R^+ = \{\alpha, \beta, \alpha + \beta, 2\alpha + \beta, 3\alpha + \beta, 3\alpha + 2\beta\}$$

is a subset of positive roots in R. We have

$$(\alpha | \alpha) = 2, \quad (\beta | \beta) = 6 \quad \text{and} \quad (\alpha | \beta) = -3.$$

Hence, α is short root, while β is long root.

Following [Mui97], we fix an isomorphism $\eta_\alpha : T \xrightarrow{\sim} F^\times \times F^\times$:

$$t \longmapsto ((2\alpha + \beta)(t), (\alpha + \beta)(t)).$$

Under this identification we have

$$\alpha^\vee(a) = \eta^{-1}_\alpha(a, a^{-1}) \quad \text{and} \quad \beta^\vee(a) = \eta^{-1}_\alpha(1, a) \quad \text{for any} \ a \in F^\times.$$

Let G^\vee be the dual group of G over \mathbb{C} obtained via an identification of the roots of G^\vee with the coroots of G_2 and vice versa. Then G^\vee is a complex reductive group of type G_2, with simple roots α^\vee and β^\vee. Notice that α^\vee is the long root of G^\vee and β^\vee the short root. The torus T^\vee dual to T is a maximal torus of G^\vee. We fix an isomorphism $\eta_{\beta^\vee} : T \xrightarrow{\sim} \mathbb{C}^\times \times \mathbb{C}^\times$:

$$t \longmapsto ((\alpha^\vee + 2\beta^\vee)(t), (\alpha^\vee + \beta^\vee)(t)).$$

We have that

$$\alpha^\vee(a) = \eta^{-1}_{\beta^\vee}(1, a) \quad \text{and} \quad \beta^\vee(a) = \eta^{-1}_{\beta^\vee}(a, a^{-1}) \quad \text{for any} \ a \in F^\times.$$

For each root $\gamma \in R(G)$, we fix root groups homomorphisms $x_\gamma : F \to G$ and \mathbb{Z}-homomorphisms $\zeta_\gamma : \text{SL}_2(F) \to G$ for $\gamma \in R$ as in [BT72, (6.1.3) (b)]. We have

$$x_\gamma(u) = \zeta_\gamma \left(\begin{array}{cc} 1 & u \\ 0 & 1 \end{array} \right), \quad x_{-\gamma}(u) = \zeta_{-\gamma} \left(\begin{array}{cc} 1 & 0 \\ u & 1 \end{array} \right) \quad \text{and} \quad \gamma^\vee(t) = \zeta_\gamma \left(\begin{array}{cc} t & 0 \\ 0 & t^{-1} \end{array} \right).$$

For $\gamma \in \{\alpha, \beta\}$, let P_γ be the maximal standard parabolic subgroup of G generated by γ, and M_γ be the centralizer of the image of $(\gamma')^\vee$ in G, where γ' is the unique
positive root orthogonal to γ, i.e.

$$
\gamma' := \begin{cases}
3\alpha + \beta & \text{if } \gamma = \alpha, \\
3\alpha + 2\beta & \text{if } \gamma = \beta.
\end{cases}
$$

Then M_{γ} is a Levi factor for P_{γ}, and M_{α}, M_{β} are representatives of the two conjugacy classes of maximal Levi subgroups of G.

We extend $\zeta_{\gamma} : \text{SL}_2(F) \to M_{\gamma}$ to an isomorphism $\zeta_{\gamma} : \text{GL}_2(F) \to M_{\gamma}$ by

$$
\zeta_{\gamma} \left(\begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} \right) := \zeta_{\gamma'} \left(\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \right), \quad \text{for } t \in F^\times.
$$

Then the restriction to T of the inverse map of ζ_{γ} coincides with the isomorphism

$$
\eta_{\gamma} : T \to F^\times \times F^\times,
$$

where η_{α} has been defined in (4.1.14), while

$$
\eta_{\beta} : t \mapsto ((\alpha + \beta)(t), \alpha(t)).
$$

4.2. Explicit parameters for G_2.

4.2.1. The long root case. Let ψ be a fixed nontrivial additive character of F, and $\overline{\psi}$ be the dual of ψ. Assume the Levi factor M of $P = MN$ is generated by the long root of G. Let σ be an irreducible unitary supercuspidal representation of M. We denote by $\omega = \omega_{\phi}$ the central character of σ. Let L/F be a quadratic extension and χ be a character of L^\times. Let χ' be the conjugate of χ, i.e. $\chi'(a) = \chi(\overline{a})$. Let $\Pi(\sigma)$ denote the Gelbart-Jacquet lift of σ as defined in [GJ78]. Our notations follow [Sha89]. The Plancherel measure $\mu(s\tilde{\alpha}, \sigma)$ has the following four possibilities ([AEF+21]).

4.2.2. Case I. If ω is unramified, and if $\sigma = \sigma(\tau)$ with $\tau = \text{Ind}_{W_L}^{W_F} \chi$, with $\chi'\chi$ unramified, then

$$
\mu(s\tilde{\alpha}, \sigma) = \gamma(G/P)^2 q_F^n(\omega + n(\sigma \times \Pi(\sigma)) - n(\sigma)) \frac{(1 - \omega(\overline{\varpi}) q_F^{-2s})(1 - \omega^{-1}(\varpi) q_F^{2s})}{(1 - \omega^{-1}(\varpi) q_F^{1+2s})(1 - \omega(\varpi) q_F^{1-2s})} \frac{(1 - \chi'^{-1}(\overline{\varpi} L) q_L^{-s})(1 - \chi^{-2}\chi'(\overline{\varpi} L) q_L^s)}{(1 - \chi^2\chi'^{-1}(\overline{\varpi} L) q_L^{-1-s})(1 - \chi^{-2}\chi'(\overline{\varpi} L) q_L^{1+s})}
$$

Comparing to the Plancherel formula in (4.1.5), we have

$$
\begin{cases}
X_\alpha(s) = \omega(\varpi_F) q_F^{-2s} \\
X_\alpha(s) = -\chi^2\chi'^{-1}(\varpi_L) q_L^{-s}
\end{cases}
$$

which implies that

$$
(4.2.1) \quad \omega(\varpi_F) q_F^{-2s} + \chi^2\chi'^{-1}(\varpi_L) q_L^{-s} = 0
$$

Since $q_L = q^{f(L/F)}$, the above only has a solution when $f(L/F) = 2$ and

$$
\omega(\varpi_F) + \chi^2\chi'^{-1}(\varpi_L) = 0
$$

which is satisfied in our case. In particular, we have

$$
(4.2.2) \quad q_\alpha = q_F, \quad q_{\alpha^*} = q_L = q_F^{f(L/F)}
$$
Thus
\[\lambda(\alpha) = \log(q_\alpha q_{\alpha^*})/\log(q_F) = 1 + f(L/F), \quad \lambda^*(\alpha) = \log(q_\alpha q_{\alpha^*})/\log(q_F) = |1 - f(L/F)|. \]
Hence the parameters for the Hecke algebra in this case are \(q_F^{1+f(L/F)} \) and \(q_F^{-f(L/F)} \).

4.2.3. Case II. If \(\omega_\sigma \) is ramified and \(\sigma = \sigma(\tau) \) with \(\tau = \Ind_{W_L}^{W_F} \chi \), and \(\chi^2 \chi' \) unramified,
\begin{equation}
(4.2.3) \quad \mu(s\tilde{\alpha}, \sigma) = \gamma(G/P)^2 q_F^{n(\sigma \times \Pi(\sigma)) - n(\sigma)} \frac{(1 - \chi^2 \chi'^{-1}(L_L \chi_L^-)^s)(1 - \chi^{-2} \chi'(L_L \chi_L^-)^{s})}{(1 - \chi^{-2} \chi'^{-1}(L_L \chi_L^-)^{1-s})(1 - \chi^{-2} \chi'(L_L \chi_L^-)^{1+s})}
\end{equation}
We compare (4.2.3) to the Plancherel formula (4.1.5) and get
\begin{equation}
(4.2.4) \quad q_{\alpha^*} = 1, \quad q_\alpha = q_L = q_F^{f(L/F)}
\end{equation}
Recall the definition of \(X_\alpha \) as
\begin{equation}
(4.2.5) \quad X_\alpha(\chi) := \chi(h_\alpha^\vee)
\end{equation}
where \(\chi \in \mathcal{X}^{nr}(M)/\mathcal{X}^{nr}(M, \sigma) \). Since the map \(\psi_s : m \mapsto |\det(m)|_F^s \) is an unramified character of \(M \), we have
\begin{equation}
(4.2.6) \quad X_\alpha(\psi_s) = (\chi^2 \chi'^{-1}(L_L \chi_L^-)^{-s})
\end{equation}
Recall from (4.1.6) that
\begin{equation}
(4.2.7) \quad q_F^{\lambda(\alpha)} = q_\alpha q_{\alpha^*} \in \mathbb{R}_{>1}.
\end{equation}
Thus by (4.2.4), we have \(q_F^{\lambda(\alpha)} = q_L = q_F^{f(L/F)} \), where \(f(L/F) \) is the residue degree and is thus 1 if \(L/F \) is ramified, and 2 if \(L/F \) is unramified. In particular
\begin{equation}
(4.2.8) \quad \lambda(\alpha) = f(L/F), \quad \lambda^*(\alpha) = f(L/F).
\end{equation}
Note that for \(w \in W(M, \mathcal{O}) \), one may check that
\begin{equation}
(4.2.9) \quad w(X_\alpha) = X_{w(\alpha)}
\end{equation}
Since \(w(\alpha) = \alpha \) for \(w \in W(M, \mathcal{O}) \) in the \(G = G_2 \) case, (4.2.9) is simply \(w(X_\alpha) = X_\alpha \).
On the other hand, by [Sol21b, Prop 1.1] we have
\[w(X_\alpha(\chi)) = w(X_\alpha(\chi)) = w(h_\alpha^\vee) = \chi(h_\alpha^\vee) = \chi(h_\alpha^\vee) = X_\alpha(\chi) \]
Thus \(wX_\alpha = X_\alpha = X_{w(\alpha)} \). This reduces to check, in the long root case, that
\begin{equation}
(4.2.10) \quad s_{2\alpha + \beta}(L_L \chi_L^-)^{s} = \chi^2 \chi'^{-1}(L_L \chi_L^-)^{-s}
\end{equation}
Since \(\Sigma_{\sigma}^\vee = \{1, 2\alpha + \beta\} \) in the long root \(M = M^\beta \) case, we have
\begin{equation}
(4.2.11) \quad W(\Sigma_{\sigma}^\vee) = \{1, s_{2\alpha + \beta}\}.
\end{equation}
Thus the spherical Hecke algebra is given by
\begin{equation}
(4.2.12) \quad \mathcal{H}(W(\Sigma_{\sigma}^\vee), q_F^{\lambda}) = \begin{cases}
\mathcal{H}(\{1, s_{2\alpha + \beta}\}, q_F), & L/F \text{ is ramified} \\
\mathcal{H}(\{1, s_{2\alpha + \beta}\}, q_F^2), & L/F \text{ is unramified}
\end{cases}
\end{equation}
Therefore, the affine Hecke algebra in this case is given by
\begin{equation}
\mathcal{H}_{\text{aff}}(M_{\beta}) = \mathcal{H}(\{1, s_{2\alpha+\beta}\}, q_F^{(L/F)}) \times \mathbb{C}[O]
\end{equation}

4.2.4. Case III. If \(\omega \) is unramified and \(\sigma \neq \sigma(\tau) \) or \(\chi^2 \chi' \) is ramified,
\begin{equation}
\mu(s\tilde{\alpha}, \sigma) = \gamma(G/P)^2 q_F^{n(\omega)+n(\sigma \times \Pi(\sigma))} \frac{(1 - \omega(\varpi) q_F^{-2s})(1 - \omega^{-1}(\varpi) q_F^{2s})}{(1 - \omega^{-1}(\varpi) q_F^{-1+2s})(1 - \omega(\varpi) q_F^{-1-2s})}
\end{equation}

In this case, we have
\begin{equation}
X_{\alpha}(s) = \omega(\varpi) q_F^{-2s}
\end{equation}
and
\begin{equation}
q_{\alpha^*} = 1, \quad q_\alpha = q_F
\end{equation}
Thus \(\lambda(\alpha) = 1 \) and \(\lambda^*(\alpha) = 1 \). The parameters in this case are simply \(q_F \).

4.2.5. Case IV. If \(\omega \) ramified and \(\sigma \neq \sigma(\tau) \) or \(\chi^2 \chi' \) is ramified,
\begin{equation}
\mu(s\tilde{\alpha}, \sigma) = \gamma(G/P)^2 q_F^{n(\sigma \times \Pi(\sigma))} \frac{(1 - \omega(\varpi) q_F^{-2s})(1 - \omega^{-1}(\varpi) q_F^{2s})}{(1 - \omega^{-1}(\varpi) q_F^{-1+2s})(1 - \omega(\varpi) q_F^{-1-2s})}
\end{equation}

In this case, we have
\begin{equation}
q_\alpha = 1, \quad q_{\alpha^*} = 1
\end{equation}
Thus \(\lambda(\alpha) = 0 \) and \(\lambda^*(\alpha) = 0 \). Thus the parameters in this case are trivial.

4.2.6. The short root case.

As an example, we also give an explicit computation in the short root case. Assume the Levi factor \(M \) of \(P = MN \) is generated by the short root of split \(G_2 \). Let \(\sigma \) be an irreducible unitary supercuspidal representation of \(M \). Let \(\omega = \omega_\sigma \) be its central character. Then by [Sha91, Proposition 6.2] the Plancherel measure \(\mu(s\tilde{\alpha}, \sigma) \) is given by the formula
\begin{equation}
\mu(s\tilde{\alpha}, \sigma) = \left\{ \begin{array}{ll}
\gamma(G/P)^2 q_F^{n(\sigma)+n(\sigma \times \omega)} & \text{if } \omega \text{ is unramified} \\
\gamma(G/P)^2 q_F^{n(\sigma)+n(\omega)+n(\sigma \times \omega)} & \text{otherwise}
\end{array} \right.
\end{equation}
Here \(n(\sigma), n(\omega) \) and \(n(\sigma \otimes \omega) \) are the corresponding conductors.

4.2.7. Case I. If \(\omega \) is unramified,
\begin{equation}
\mu(s\tilde{\alpha}, \sigma) = \gamma(G/P)^2 q_F^{n(\sigma)+n(\sigma \otimes \omega)} \frac{(1 - \omega(\varpi) q_F^{-2s})(1 - \omega^{-1}(\varpi) q_F^{2s})}{(1 - \omega(\varpi) q_F^{-1+2s})(1 - \omega^{-1}(\varpi) q_F^{-1-2s})}
\end{equation}
We compare \(4.2.20 \) to \(4.1.5 \). This implies that
\begin{equation}
q_\alpha = q_F, \quad q_{\alpha^*} = 1
\end{equation}
Since \(\chi_s \) is an unramified character of \(M \), we have
\begin{equation}
X_{\alpha}(\chi_s) = \omega(\varpi) q_F^{-2s}.
\end{equation}
Recall from (4.1.6) that
\[q_F^{\lambda(\alpha)} = q_{\alpha} q_{\alpha^*} \in \mathbb{R}_{> 1}. \]
Thus by 4.2.21, we have \(q_F^{\lambda(\alpha)} = q_F \) and thus \(\lambda(\alpha) = 1 \) and \(\lambda^*(\alpha) = 1 \).

Note that for \(w \in W(M, \mathcal{O}) \), one may check that
\[w(X_\alpha) = X_{w(\alpha)}. \]
Since \(w(\alpha) = \alpha \) for \(w \in W(M, \mathcal{O}) \) in the \(G = G_2 \) case, (4.2.24) is simply \(w(X_\alpha) = X_\alpha \). On the other hand, by [Sol21b, Prop 1.1] we have
\[w(X_\alpha(\chi)) = w(X_\alpha(h_\alpha)) = \chi(w(h_\alpha)) = X_\alpha(h_\alpha) = X_\alpha(\chi) \]
Thus \(wX_\alpha = X_\alpha = X_{w(\alpha)} \). Since \(\Sigma^\vee_\mathcal{O} = \{ 2\alpha + \beta \} \) in the short root \(M = M_\alpha \) case,
\[W(\Sigma^\vee_\mathcal{O}) = \{ 1, s_{2\alpha + \beta} \} \]
Therefore we have the affine Hecke algebra
\[\mathcal{H}_{\text{aff}}(M_\alpha) = \mathcal{H}(\{ 1, s_{2\alpha + \beta} \}, q_F) \times \mathbb{C}[\mathcal{O}]. \]

4.2.8. Case II. In the other case,
\[\mu(s_{\tilde{\alpha}}, \sigma) = \gamma(G/P)^2 q^{n(\sigma) + n(\omega) + n(\sigma \otimes \omega)} \]
Comparing (4.2.27) and (4.1.5) gives us
\[q_\alpha = 1, \quad q_{\alpha^*} = 1. \]
Therefore we have \(q_\alpha^2 = 1 \) and thus \(\lambda(\alpha) = 0 \) and \(\lambda^*(\alpha) = 0 \). Therefore the affine Hecke algebra in this case is given by
\[\mathcal{H}_{\text{aff}}(M_\alpha) = \mathcal{H}(\{ 1, s_{2\alpha + \beta} \}, 1) \times \mathbb{C}[\mathcal{O}]. \]

Remark 4.2.30. The computations of Hecke algebras with explicit parameters in this section will be collected into tables in the next section.

4.3. Intertwining algebras of Kim-Yu types for \(G_2 \).

For \(b \in F^*/F^{x^2} \), let \(U_b(1, 1) \) be the quasi split unitary group and \(U_b(2) \) be the compact unitary group in two variables in \(F(\sqrt{b}) \). Writing as \(F^*/F^{x^2} = \{ 1, \varepsilon, \varpi, \varepsilon \varpi \} \), the possible unitary groups in 2 variables are:
\[U_\varepsilon(1, 1), \ U_\varepsilon(2), \ U_\varpi(1, 1), \ U_\varpi(2), \ U_{\varepsilon \varpi}(1, 1), \ U_{\varepsilon \varpi}(2). \]
The group \(U_\varepsilon(1, 1) \) is an unramified group, and \(U_\varpi(1, 1) \) is ramified where \(\varpi' \in \{ \varpi, \varepsilon \varpi \} \).

We now enumerate the twisted Levi sequences in \(G_2 \) (up to conjugacy) such that \(M = M_\gamma \) with \(\gamma \in \{ \alpha, \beta \} \):

1. Essentially depth zero case [AEF+21]: If \(\rho_{\Sigma_M} \) is an essentially depth zero supercuspidal type on \(M \), then \(\Sigma_M \) is of the form \((M, y, \phi, r, \rho_M) \) (hence in particular \(M^0 = M \)), where \(K_{\Sigma_M} = M_{y,0} \simeq \text{GL}_2(\mathfrak{o}_F) \) is a maximal compact subgroup of \(\text{GL}_2(F) \) and \(r = \text{depth}(\rho_{\Sigma_M}) \) is an integer. If \(r = 0 \), we may assume that \(\phi = 1 \) without loss of generality.
(a) $\mathcal{G} = (G)$ (here $G^0 = G$, it is a depth zero case: $r = 0$),
(b) $\mathcal{G} = (M^0, G)$ (here $G^0 = M = M^0$ and $r \neq 0$).

(2) Positive depth cases [AEF+21]:
(a) $\mathcal{G} = (U_{\varepsilon}(1, 1), G)$,
(b) $\mathcal{G} = (U_{\varepsilon'}(1, 1), G)$, with $\varepsilon' \in \{\varepsilon, \varepsilon \varepsilon\}$,
(c) $\mathcal{G} = (M^0, G)$,
(d) $\mathcal{G} = (M^0, M, G)$,
where M^0 is a torus in G^0.

When $M = M_\gamma$, we have three possibilities for M^0, denoted $T_{\gamma, \varepsilon}$, $T_{\gamma, \varepsilon'}$ and $T_{\gamma, \varepsilon' \varepsilon}$.

Remark 4.3.1. The central character ω_σ of σ can be either ramified or unramified.
It is unramified if and only if ω_σ^0 is trivial. In the case when ω_σ is ramified, ω_σ^0 is quadratic.

Lemma 4.3.2. We have
$$W^G \simeq W_{G^0}^G.$$

Proof. The representation σ is regular and p is good for G (that is, $p \neq 2, 3$) and does not divide the order (= 1) of the fundamental group of G_{der}. Hence Theorem 2.4.7 applies.

4.4. The intertwining algebras of types attached to G^0.

4.4.1. The case $G^0 = M^0$. It occurs in both the essentially depth-zero case with $r \neq 0$ and in the positive depth cases. We have two possibilities for M^0: either $M^0 \simeq GL_2(F)$ or M^0 is a torus. In both cases, the algebra $\mathcal{H}(G^0, \rho_{D^0}) = \mathcal{H}(M^0, \rho_{D^0})$ is commutative by [BK98, 5.5,5.6].

4.4.2. The case $G^0 = U_{\varepsilon}(1, 1)$. If $W_{G^0}^{\tilde{\rho}_0} = \{1\}$, then $\mathcal{H}(G^0, \rho_{D^0})$ as seen in Remark 2.3.17 is commutative.

We suppose from now on that $W_{G^0}^{\tilde{\rho}_0} \neq \{1\}$. We write $a \mapsto \bar{a}$ for the non-trivial element of Gal(L/F), and set
$$w^0 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad w_1 := \begin{pmatrix} 0 & \varepsilon^{-1} \\ \varepsilon L & 0 \end{pmatrix}, \quad \text{and} \quad \mathfrak{p} := \begin{pmatrix} \sigma_L^x & \sigma_L \\ p_L & \sigma_L^x \end{pmatrix} \cap G^0.$$
Recall that $\tilde{\rho}_{D^0}$ denotes the contragredient representation of ρ^0. Then the Iwahori-Matsumoto presentation of $\mathcal{H}(U_{\varepsilon}(1, 1), \rho_{D^0})$ is the following (see [Bad20, §3.1]): $\mathcal{H}(U_{\varepsilon}(1, 1), \rho_{D^0})$ is the space spanned by the functions
$$T_{w_i} : G^0 \to \text{End}_G(V_{\tilde{\rho}_{D^0}}), \quad \text{for } i \in \{0, 1\},$$
such that
\begin{equation}
T_{w_t}(pp') = \tilde{\rho}_{\mathcal{O}^0}(p)T_{w_t}(g)\tilde{\rho}_{\mathcal{O}^0}(p'), \quad \text{where } p, p' \in \mathfrak{P} \text{ and } g \in G^0,
\end{equation}

where T_{w_t} is supported on $\mathfrak{P}w_t\mathfrak{P}$ and satisfies the quadratic relation
\begin{equation}
(T_{w_t} - q_F)(T_{w_t} + 1) = 0.
\end{equation}

We can deduce the Bernstein presentation of H using [Lus89, §3]. In particular, we have $q_F^{\lambda(\alpha)} = q_F$.

4.5. The intertwining algebras of types attached to G.

4.5.1. Long root essentially depth zero case.

(a) $r = 0$, $\chi^3 = 1$ case and $\sigma = \sigma(\tau)$ for $\tau = \text{Ind}_{W_L}^W \chi$.

We have ρ_M self-dual, σ and τ correspond via LLC for $\text{GL}_2(F)$. Since σ has depth zero, L/F is unramified (so $e(L/F) = 1$ and $f(L/F) = 2$). We have the following four cases:

- The central character $\omega_\sigma = 1$ and $\chi^2 \chi^{-1}$ unramified. This corresponds to Case 4.2.2, in which case the Plancherel formula has a zero, and the Hecke algebra is affine non-commutative, with parameters q_F^3 and q_F. We have $W_\mathcal{O} \neq 1$ and $R(\mathcal{O}) = 1$. Since $G = G^0$ in this case, $W_\mathcal{O} = W_{\mathcal{O}^0}$ and $R(\mathcal{O}) = R(\mathcal{O}^0)$.

- The central character $\omega_\sigma \neq 1$ is ramified, and $\chi^2 \chi^{-1}$ is unramified. This corresponds to Case 4.2.3, in which case the Plancherel formula has a zero, and the Hecke algebra is affine non-commutative, with parameters q_F^2. We have $W_\mathcal{O} \neq 1$ and $R(\mathcal{O}) = 1$. Since $G = G^0$ in this case, $W_\mathcal{O} = W_{\mathcal{O}^0}$ and $R(\mathcal{O}) = R(\mathcal{O}^0)$.

- The central character $\omega_\sigma = 1$ and $\chi^2 \chi^{-1}$ ramified. This corresponds to Case 4.2.4, in which case the Plancherel formula has a zero, and the Hecke algebra is affine non-commutative, with parameter q_F. We have $W_\mathcal{O} \neq 1$ and $R(\mathcal{O}) = 1$. Since $G = G^0$ in this case, $W_\mathcal{O} = W_{\mathcal{O}^0}$ and $R(\mathcal{O}) = R(\mathcal{O}^0)$.

- The central character $\omega_\sigma \neq 1$ is ramified, and $\chi^2 \chi^{-1}$ is ramified. This corresponds to Case 4.2.5, in which case the Plancherel formula has no zero, and the Hecke algebra is affine commutative of the form $\mathbb{C}[R(\mathcal{O})]$ plus the translation part $\mathbb{C}[O]$. We have $W_\mathcal{O} = 1$ (and we don’t know what $R(\mathcal{O})$ is in this case). Since $G = G^0$ in this case, $W_\mathcal{O} = W_{\mathcal{O}^0}$ and $R(\mathcal{O}) = R(\mathcal{O}^0)$.

(b) $r = 0$ and $\sigma \neq \sigma(\tau)$: We have $\sigma = \sigma(\tau')$ where $\tau' = \text{Ind}_{W_L}^W \zeta$ for ζ such that $\zeta^{-1} = \overline{\zeta}$ (the Galois conjugate). Since σ is still depth zero, we still have L/F unramified.
4.2.4. The central character $\omega_{\pi} = 1$. This corresponds to Case 4.2.4, in which case the Plancherel formula has a zero, and the Hecke algebra is affine non-commutative, with parameters q_F. We have $W_O \neq \{1\}$ and $R(O) = \{1\}$. Since $G = G^0$ in this case, $W_O = W_{G^0}$ and $R(O) = R(O^0)$.

4.2.5. The central character $\omega_{\pi} \neq 1$ ramified. This corresponds to Case 4.2.5, in which case the Plancherel formula has no zero, and the Hecke algebra is affine commutative of the form $\mathbb{C}[R(O)]$ plus the translation part $\mathbb{C}[O]$. We have $W_O = \{1\}$ (and we don’t know what $R(O)$ is in this case). Since $G = G^0$ in this case, $W_O = W_{G^0}$ and $R(O) = R(O^0)$.

(c) $r \neq 0$ essentially depth zero case: Recall from §4.4.1 that $G^0 = M = M^0$. Thus we have

\[W_{G^0}^0 \subset N_{G^0}(M^0)/M^0 = N_{M^0}(M)/M = \{1\}. \]

By Lemma 4.3.2, we get $W_G^0 = \{1\}$. In this case, $W(M, O) = W(M^0, O^0) = 1$. Thus the algebras $\mathcal{H}(G, \rho)$ and $\mathcal{H}(G^0, \rho^0)$ are both of the form $\mathbb{C}[O]$, and they are isomorphic.

4.5.2. Table for long root essentially depth zero cases.

r	D	ω_{π}	$\chi \gamma^{-1}$	$R(O)$	$R(O^0)$	L/F	$\#X_m(M, \sigma)$	W_O	W_{G^0}	$\mathcal{H}(G, \rho)$	$\mathcal{H}(G^0, \rho^0)$
0	$((G, M), (y, \iota), (M_{\rho}, \rho_M))$	$= 1$	unramified	$= 1$	unramified	2	$\neq 1$	$\neq 1$	non-comm, q_F^0, q_F	non-comm, q_F^0, q_F	
		$\neq 1$	unramified	$= 1$	unramified	$\neq 1$	$\neq 1$	non-comm, q_F^0	non-comm, q_F^0		
		$= 1$	ramified	$= 1$	unramified	$\neq 1$	$\neq 1$	non-comm, q_F^0	non-comm, q_F^0		
		$\neq 1$	ramified	$= 1$	unramified	$\neq 1$	$\neq 1$	non-comm, q_F^0	non-comm, q_F^0		
		$= 1$	χ cubic	$= 1$	unramified	2	$= 1$	$= 1$	$\mathbb{C}[R(O)] \times \mathbb{C}[O]$	$\mathbb{C}[R(O)] \times \mathbb{C}[O]$	
		$\neq 1$	χ cubic	$= 1$	$= 1$	2	$= 1$	$= 1$	$\mathbb{C}[R(O)] \times \mathbb{C}[O]$	$\mathbb{C}[R(O)] \times \mathbb{C}[O]$	

Table 4.5.2.

4.5.3. Long root positive depth case.

(a) $U_{\mathfrak{c}'}(1, 1)$ case: $\sigma = \sigma(\tau') \neq \sigma(\tau)$, where τ' is induction of some quadratic character. (Note that the cubic character only occurs in depth zero, because we are assuming $p \neq 2, 3$. There are two possibilities, $\phi_0|_{Z^0_M}$ could be either trivial or non-trivial:

- When $\phi_0|_{Z^0_M} = 1$ unramified, since $\sigma = \sigma(\tau') \neq \sigma(\tau)$, this corresponds to Case 4.2.4, in which case the Plancherel formula has a zero, and the Hecke algebra is affine non-commutative, with parameters q_F. We have $W_O \neq \{1\}$ and $R(O) = 1$. By 4.4.3, the Hecke algebra for G^0 also has q_F parameter. Thus we have $W_{G^0} \neq \{1\}$ and $R(O^0) = 1$.
- When $\phi_0|_{Z^0_M} = \text{sign}$ character ramified, since $\sigma = \sigma(\tau') \neq \sigma(\tau)$, this corresponds to Case 4.2.5, in which case the Plancherel formula has no zero, and the Hecke algebra is of the form $\mathbb{C}[R(O)] \times \mathbb{C}[O]$. We have $W_O = \{1\}$. By 4.4.3, we have $W_{G^0} = \{1\}$ and $R(O^0) \neq 1$. Thus $R(O) \cong R(O^0) \neq 1$ by 2.4.7.
(b) $U_r(1, 1)$ case: $\sigma = \sigma(\tau') \neq \sigma(\tau)$, where τ' is the induction of some quadratic character.

- When $\phi_0|_{Z_M^0} = 1$ unramified, since $\sigma = \sigma(\tau') \neq \sigma(\tau)$, this corresponds to 4.2.4, in which case the Plancherel formula has a zero, and the Hecke algebra for G is affine non-commutative, with parameters q. We have $W_O \neq \{1\}$ and $R(O) = \{1\}$. From 4.4.2, we have $W_{O^0} \neq \{1\}$ and $R(O^0) = \{1\}$. Note that the cardinality of $X_n(M, \sigma(\tau'))$ is 2 (see Remark 2.1.7).

4.5.4. Table for long root positive depth cases.

We summarize the above in the following table:

| M^0 | $\phi_0|_{Z_M^0}$ | G | $R(O)$ | $R(O^0)$ | L/F | $\#X_n(M, \sigma)$ | W_O | W_{O^0} | $H(G, \rho)$ | $H(G^0, \rho^0)$ |
|-------|------------------|-----|--------|----------|--------|-------------------|------|----------|----------------|----------------|
| $T_{\beta, \omega'}$ | = 1 | = 1 | (U$_{\omega'}, (1, 1), G$) | = 1 | = 1 | ramified | 1 | = 1 | = 1 | non-comm. q_F | non-comm. q_F |
| = sign character | $\neq 1$ | | | $\neq 1$ | = 1 | ramified | 1 | = 1 | = 1 | $\mathbb{C}[R(O)] \times \mathbb{C}[O]$ | $\mathbb{C}[R(O)] \times \mathbb{C}[O]$ |
| \neq sign character | = 1 | = 1 | (M^0, G) | = 1 | = 1 | ramified | 1 | = 1 | = 1 | $\mathbb{C}[O]$ | $\mathbb{C}[O^0]$ |
| both | $\neq 1$ | (M$^0, M, G$) | = 1 | = 1 | ramified | 1 | = 1 | = 1 | $\mathbb{C}[O]$ | $\mathbb{C}[O^0]$ |
| $T_{\beta, \epsilon}$ | = 1 | = 1 | (U$_{(1, 1), G}$) | = 1 | = 1 | unramified | 2 | $\neq 1$ | = 1 | non-comm. q_F | non-comm. q_F |
| $\neq 1$ | (M$^0, G$) | = 1 | = 1 | unramified | 2 | = 1 | = 1 | $\mathbb{C}[O]$ | $\mathbb{C}[O^0]$ |
| both | $\neq 1$ | (M$^0, M, G$) | = 1 | = 1 | unramified | 2 | = 1 | = 1 | $\mathbb{C}[O]$ | $\mathbb{C}[O^0]$ |

Table 4.5.4.

4.5.5. Short root essentially depth zero case.

(a) $r = 0$, there are only two cases:

- When $\rho_M|_{Z_M^0} = 1$, this corresponds to the central character being unramified case, and in this case the Plancherel formula in 4.2.7 has a zero. Thus thus $W_O \neq 1$ and thus $R(O) = 1$. In this case the Hecke algebra is non-commutative, and the q-parameter is just $q = q_F$. The case for G^0 again follows from 4.4.3.

- When $\rho_M|_{Z_M^0} \neq 1$, this corresponds to the central character being ramified case, and in this case the Plancherel formula in 4.2.8 has no zero, and thus $W_O = \{1\}$. In this case the Hecke algebra is commutative, and the q-parameter is trivial.

(b) $r \neq 0$ essentially depth zero case. The same argument as in §4.5.1(c) applies here.

4.5.6. Table for short root essentially depth zero cases.

r	D	ω_p	$R(O)$	$R(O^0)$	L/F	$\#X_n(M, \sigma)$	W_O	W_{O^0}	$H(G, \rho)$	$H(G^0, \rho^0)$
= 1	= 1	= 1	$\neq 1$	= 1	unramified	2	$\neq 1$	= 1	non-comm. q_F, q_F	non-comm. q_F, q_F
$\neq 1$	(M, (y, i), (M$^0, \rho_M$))	= 1	= 1	unramified	2	= 1	= 1	$\mathbb{C}[R(O)] \times \mathbb{C}[O]$	$\mathbb{C}[R(O)] \times \mathbb{C}[O]$	

Table 4.5.6.
4.5.7. **Short root positive depth case.**

(a) $G^0 = \text{U}_\alpha(1, 1)$ case:

- When $\phi_0|_{Z_M^0} = 1$, the Plancherel formula on the G_2 side in 4.2.7 has a zero, and thus $W_0 \neq \{1\}$ and thus $R(0) = \{1\}$. In this case the Hecke algebra $\mathcal{H}(G, \rho)$ is non-commutative, and the q-parameter is just $q = q'_F$. By 2.4.7, we have $W(M^0, 0^0) \neq 1$, and since $W_0 \neq 1$ by 4.4.3, we have $R(0) = 1$. Moreover, the Hecke algebra $\mathcal{H}(G^0, \rho^0)$ has parameter q_F by 4.4.3.

- When the central character (of $\text{GL}_2^{\text{short}}$) $\phi_0|_{Z_M^0} = \text{sign character} \neq 1$ is ramified, the Plancherel formula on the G_2 side in 4.2.8 has no zero, and thus $W_0 = \{1\}$. In this case the Hecke algebra $\mathcal{H}(G, \rho) = \mathbb{C}[R(0)] \ltimes \mathbb{C}[O]$ has trivial q-parameter. On the other hand, since $I(\sigma)$ is reducible by [Sha91, Proposition 6.2], we have $R_\sigma \neq 1$. Since $W_\sigma \times R_\sigma = W(M, \sigma) \subseteq W(M, O) = W_0 \times R(0)$ and $W_0 = 1$, we have $R_\sigma \subseteq R(0)$ and thus $R(0) \neq 1$. By 2.4.7, we also have $R(0^0) \neq 1$ since $W_0 = 1$ by 4.4.3.

(b) $G^0 = \text{U}_\varepsilon(1, 1)$ case: When $\phi_0|_{Z_M^0} = 1$ the Plancherel formula on the G_2 side in 4.2.7 has a zero, and thus $W_0 \neq \{1\}$ and thus $R(0) = \{1\}$. In this case the Hecke algebra $\mathcal{H}(G, \rho)$ is non-commutative, and the q-parameter is just $q = q'_F$. From 4.4.2, we have $W_0 \neq \{1\}$ and $R(0^0) = \{1\}$.

M^0	$\phi_0	_{Z_M^0}$	ϕ_1	G	$R(0)$	W_0	W_0^0	$\mathcal{H}(G, \rho)$	$\mathcal{H}(G^0, \rho^0)$		
$T_{\alpha, \varepsilon}$	= 1	= 1	$(U_\varepsilon(1, 1), G)$	= 1	= 1	ramified	1	= 1	= 1	non-comm., q_F	non-comm., q'_F
	= sign character	= 1	(M^0, G)	= 1	= 1	ramified	1	= 1	= 1	$\mathbb{C}[R(0)] \ltimes \mathbb{C}[O]$	$\mathbb{C}[R(0^0)] \ltimes \mathbb{C}[O^0]$
	= 1	= 1	(M^0, M, G)	= 1	= 1	ramified	1	= 1	= 1	$\mathbb{C}[O]$	$\mathbb{C}[O^0]$
	= sign character	= 1	$(U_\varepsilon(1, 1), G)$	= 1	= 1	unramified	2	= 1	= 1	non-comm., q_F	non-comm., q'_F
	= 1	= 1	(M^0, G)	= 1	= 1	unramified	2	= 1	= 1	$\mathbb{C}[O]$	$\mathbb{C}[O^0]$
	= sign character	= 1	(M^0, M, G)	= 1	= 1	unramified	2	= 1	= 1	$\mathbb{C}[O]$	$\mathbb{C}[O^0]$
	both	= 1	$(U_\varepsilon(1, 1), G)$	= 1	= 1	unramified	2	= 1	= 1	$\mathbb{C}[O]$	$\mathbb{C}[O^0]$
	both	= 1	(M^0, G)	= 1	= 1	unramified	2	= 1	= 1	$\mathbb{C}[O]$	$\mathbb{C}[O^0]$
	both	= 1	(M^0, M, G)	= 1	= 1	unramified	2	= 1	= 1	$\mathbb{C}[O]$	$\mathbb{C}[O^0]$

Table 4.5.8.

4.5.1. We keep the notations of §2.1. The following Theorem establishes the validity for G_2 of an extension of a conjecture of Yu's [Yu01, Conjecture 0.2] for supercuspidal types, which was proved by Ohara in [Ohn21].

The following result shows that a stronger version of Theorem 2.4.9(2) holds for the group G_2.

Theorem 4.5.2. We assume $p \neq 2, 3$. Then the algebras $\mathcal{H}^s(G) = \text{End}_G(\Pi^s_G)$ and $\mathcal{H}^{O^0}(G^0) = \text{End}_{G^0}(\Pi^{O^0}_{G^0})$ are isomorphic.
Proof. From Proposition 2.3.15, it equivalent to show that the algebras \(H(G, \rho_D) \) and \(H(G^0, \rho_{D^0}) \) are isomorphic. The latter can be read directly from the tables 4.5.2, 4.5.4, 4.5.6 and 4.5.8. □

The following corollary is a stronger version of Lemma 4.3.2 (i.e. [AM21, Theorem 7.3]) for \(G = G_2 \).

Corollary 4.5.3. The groups \(R(O) \simeq R(O^0) \) and \(W_O \simeq W_{O^0} \).

Proof. This can be read directly from our tables 4.5.2, 4.5.4, 4.5.6 and 4.5.8, with explanations given in the sections before them. □

4.5.9. On Lusztig’s conjecture.

Let \(L^s : W^s_{\text{aff}} \to \mathbb{N} \) be the weight function\(^2\) on \(W^s_{\text{aff}} \) defined by

\[
(L^s(s_\alpha)) := \lambda(\alpha) \quad \text{and} \quad (L^s(s'_\alpha)) := \lambda^*(\alpha).
\]

In [Lus20, §1.a], Lusztig made the following conjecture.

Conjecture 4.5.5. (Lusztig) The function \(L^s \) on the affine Weyl group \(W^s_{\text{aff}} \) is in the collection of weight functions described in [Lus91, Lus95, Lus02].

Solleveld has proved the validity of Conjecture 4.5.5 in many cases, including the representation in the principal series of \(G \), in [Sol21b].

Theorem 4.5.6. Conjecture 4.5.5 holds for the group \(G_2 \).

Proof. It follows from Tables 4.5.2, 4.5.4, 4.5.6 and 4.5.8. □

References

[ABPS17a] Anne-Marie Aubert, Paul Baum, Roger Plymen, and Maarten Solleveld, Conjectures about \(p \)-adic groups and their noncommutative geometry, Around Langlands correspondences (Orsay, 2015), Contemp. Math., vol. 691, Amer. Math. Soc., 2017, pp. 15–51.

[ABPS17b] ________, Hecke algebras for inner forms of \(p \)-adic special linear groups, J. Inst. Math. Jussieu 16 (2017), no. 2, 351–419.

[ABPS17c] ________, The principal series of \(p \)-adic groups with disconnected center, Proc. London Math. Soc. 114 (2017), 798–854.

[AEF+21] Anne-Marie Aubert, Melissa Emory, Maria Fox, Ju-Lee Kim, and Yujie Xu, Notes from WIN5.

[AM21] Jeffrey Adler and Manish Mishra, Regular Bernstein blocks, J. reine angew. Math. (2021), no. 775, 71–86.

[AMS17] Anne-Marie Aubert, Ahmed Moussaoui, and Maarten Solleveld, Affine Hecke algebras for Langlands parameters, arXiv:1701.03593 (2017).

[AMS18] ________, Generalizations of Springer correspondence and cuspidal Langlands parameters, Manuscripta Math. 157 (2018), 121–192.

[AP22] Anne-Marie Aubert and Roger Plymen, Comparison of the depths on both sides of the local Langlands correspondence for Weil-restricted groups (with an appendix by Jessica Fintzen), J. Number Theory (2022), no. 233, 24–58.

[Art13] James Arthur, The endoscopic classification of representations: orthogonal and symplectic groups, Colloquium Publications, vol. 61, American Mathematical Society, 2013.

\(^2\)i.e., \(L^s(w) > 0 \) for all \(w \in W^s_{\text{aff}} - \{1\} \), and \(L^s(wu') = L^s(w) + L^s(w') \) for any \(w, w' \in W^s_{\text{aff}} \) such that \(\ell(wu') = \ell(w) + \ell(w') \).
HECKE ALGEBRAS FOR p-ADIC GROUPS

[Bad20] Peter Badea, Hecke algebras for covers of principal series Bernstein components in quasisplit unitary groups over local fields, PhD. thesis Radboud Universiteit Nijmegen (2020).

[Ber84] J. N. Bernstein, Le “centre” de Bernstein, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, Edited by P. Deligne, pp. 1–32. MR 771671

[BK93] Colin Bushnell and Philip Kutzko, The admissible dual of $GL(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, N.J., 1993.

[BK98] Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–634. MR 1643417

[Blo99] Corinne Blondel, Une méthode de construction de types induits et son application à G_2, J. Algebra (1999), no. 213, 231–271.

[BM21] Adèle Bourgeois and Paul Mezo, Functoriality for supercuspidal L-packets, arXiv:2109.09552 (2021).

[Bor79] Armand Borel, Automorphic L-functions, Proc. Symp. Pure Math 33, Amer. Math. Soc., 1979, pp. 27–61.

[BS21] Petar Bakić and Gordan Savin, The Gelfand–Graev representation of $SO(2n+1)$ in terms of Hecke algebras, arXiv:2011.02456 (2021).

[BT72] François Bruhat and Jacques Tits, Groupes réductifs sur un corps local, I: Données radicielles valuées, Publ. Math. I.H.E.S. 41 (1972), 1–251.

[Car93] Roger W. Carter, Finite Groups of Lie Type: Conjugacy Clases and Complex Characters, Wiley Classics Library, 1993.

[Des21] Romain Deseine, Autour des représentations complexes et modulaires des groupes réductifs p-adiques, Thèse Université Paris-Saclay (2021).

[DL76] Pierre Deligne and George Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (1976), no. 103, 103–161.

[Fin21] Jessica Fintzen, Types for tame p-adic groups, Ann. of Math. 193 (2021), no. 2, 303–346. MR 4199732

[FKS21] Jessica Fintzen, Tasho Kaletha, and Loren Spice, A twisted Yu construction, Harish-Chandra characters, and endoscopy, arXiv:2106.09120 (2021).

[GJ78] Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $GL(2)$ and $GL(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066

[GR05] David Goldberg and Alan Roche, Hecke algebras and SL_n-types, Proc. London Math. Soc. (3) 90 (2005), no. 1, 87–131. MR 2107039

[Hai14] Thomas Haines, The stable Bernstein center and test functions for Shimura varieties, Automorphic Forms and Galois Representations, London Mathematical Society Lecture Note Series, vol. 415, Cambridge University Press, 2014, pp. 118–186.

[Hei11] Volker Heiermann, Opérateurs d’entrelacement et algèbres de Hecke avec paramètres d’un groupe réductif p-adique: le cas des groupes classiques, Selecta Math. (N.S.) 17 (2011), no. 3, 713–756. MR 2827179

[HM08] Jeffrey Hakim and Fiona Murnaghan, Distinguished tame supercuspidal representations, Int. Math. Res. Pap. IMRP (2008), no. 2, Art. ID rpm005, 166. MR 2431732

[Kal19a] Tasho Kaletha, Regular supercuspidal representations, J. Amer. Math. Soc. 32 (2019), no. 4, 1071–1170. MR 4013740

[Kal19b] , Supercuspidal L-packets, arXiv:1912.03274 (2019).

[Kal22] , Representations of reductive groups over local fields, arXiv:2201.07741 (2022).

[KY17] Jü-Lee Kim and Ji-Jiang Yu, Construction of tame types, Representation theory, number theory, and invariant theory, Progr. Math., vol. 323, Birkhäuser/Springer, Cham, 2017, pp. 337–357.
George Lusztig, *Intersection cohomology complexes on a reductive group*, Invent. Math. (1984), no. 75, 205–272.

[**Lus89**] George Lusztig, *Affine Hecke algebras and their graded version*, J. Amer. Math. Soc. **2** (1989), no. 3, 599–635. MR 991016

[**Lus91**] George Lusztig, *Intersection cohomology methods in representation theory*, Proc. Int. Congr. Math. (Kyoto 1990), Math. Soc. Japan, Springer Verlag, 1991, pp. 155–174.

[**Lus95**] George Lusztig, *Classification of unipotent representations of simple p-adic groups*, Int. Math. Res. Notices (1995), no. 11, 517–589.

[**Lus02**] George Lusztig, *Classification of unipotent representations of simple p-adic groups. ii*, Represent. Theory (2002), no. 6, 243–289.

[**Lus20**] George Lusztig, *Open problems on Iwahori-Hecke algebras*, arXiv:2006.08535 (to appear in the European Math.Soc. Newsletter) (2020).

[**Mis19**] Manish Mishra, *Bernstein center of supercuspidal blocks*, J. reine angew. Math. (2019), no. 748, 297–304.

[**Mou17a**] Ahmed Moussaoui, *Centre de Bernstein dual pour les groupes classiques*, Representation Theory (2017), no. 21, 172–246.

[**Mou17b**] Ahmed Moussaoui, *Proof of the Aubert-Baum-Plymen-Solleveld conjecture for split classical groups*, Around Langlands correspondences (Orsay, 2015), Contemp. Math., vol. 691, Amer. Math. Soc., 2017, pp. 257–281.

[**Mui97**] Goran Muic, *The unitary dual of p-adic G_2*, Duke Math. J. **90** (1997), no. 3, 465–493. MR 1480543

[**Oha21**] Kazuma Ohara, *Hecke algebras for tame supercuspidal types*, arXiv:2101.01873 (2021).

[**Roc98**] Alan Roche, *Types and Hecke algebras for principal series representations of split reductive p-adic groups*, Ann. Sci. École Norm. Sup. (4) **31** (1998), no. 3, 361–413. MR 1621409

[**Roc02**] Alan Roche, *Parabolic induction and the Bernstein decomposition*, Compositio Math. **134** (2002), no. 2, 113–133. MR 1934305

[**Roc99**] Alan Roche, *The Bernstein decomposition and the Bernstein centre*, Ottawa lectures on admissible representations of reductive p-adic groups, Fields Inst. Monogr., vol. 26, Amer. Math. Soc., Providence, RI, 2009, pp. 3–52.

[**Sha89**] Freydoon Shahidi, *Third symmetric power L-functions for $GL(2)$*, Compositio Math. **70** (1989), no. 3, 245–273. MR 1002045

[**Sha91**] Freydoon Shahidi, *Langlands' conjecture on Plancherel measures for p-adic groups*, Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 277–295. MR 1168488

[**Sil79**] Allan J. Silberger, *Introduction to harmonic analysis on reductive p-adic groups*, Mathematical Notes, vol. 23, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979, Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971–1973. MR 544991

[**Sol21a**] Maarten Solleveld, *Endomorphism algebras and Hecke algebras for reductive p-adic groups*, updated version of arXiv:2005.07899 (see webpage of the author) (2021).

[**Sol21b**] Maarten Solleveld, *Parameters of Hecke algebras for Bernstein components of p-adic groups*, arXiv:2103.13113 (2021).

[**Spr79**] Tonny Springer, *Reductive groups*, Automorphic forms, representations and L-functions, Part 1, Proc. Sympos. Pure Math., vol. XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–27.

[**Wal03**] Jean-Loup Waldspurger, *La formule de Plancherel pour les groupes p-adiques (d’après Harish-Chandra)*, J. Inst. Math. Jussieu **2** (2003), no. 2, 235–333. MR 1989693

[**Yu01**] Jiu-Kang Yu, *Construction of tame supercuspidal representations*, J. Amer. Math. Soc. (2001), no. 3, 579–622.
Sorbonne Université and Université de Paris, CNRS, IMJ-PRG, F-75005 Paris, France
Email address: anne-marie.aubert@imj-prg.fr

Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138, USA
Email address: yujie@math.harvard.edu