Microcanonical conditioning of Markov processes on time-additive observables

Cécile Monthus*

Université Paris Saclay, CNRS, CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette, France
E-mail: cecile.monthus@cea.fr

Received 11 November 2021
Accepted for publication 20 January 2022
Published 22 February 2022

Online at stacks.iop.org/JSTAT/2022/023207
https://doi.org/10.1088/1742-5468/ac4e81

Abstract. The recent study by De Bruyne et al (2021 J. Stat. Mech. 123204), concerning the conditioning of the Brownian motion and of random walks on global dynamical constraints over a finite time-window \(T \), is reformulated as a general framework for the ‘microcanonical conditioning’ of Markov processes on time-additive observables. This formalism is applied to various types of Markov processes, namely discrete-time Markov chains, continuous-time Markov jump processes and diffusion processes in arbitrary dimension. In each setting, the time-additive observable is also fully general, i.e. it can involve both the time spent in each configuration and the elementary increments of the Markov process. The various cases are illustrated via simple explicit examples. Finally, we describe the link with the ‘canonical conditioning’ based on the generating function of the time-additive observable for finite time \(T \), while the regime of large time \(T \) allows us to recover the standard large deviation analysis of time-additive observables via the deformed Markov operator approach.

Keywords: Brownian motion, diffusion, large deviations in non-equilibrium systems, stochastic processes

*Author to whom any correspondence should be addressed.
Microcanonical conditioning of Markov processes on time-additive observables

Contents

1. Introduction ... 4

2. Microcanonical conditioning on a time-additive observable 5
 2.1. Notion of time-additive observable $A(t)$ for the Markov process $x(t)$ 5
 2.2. Notion of microcanonical conditioning for the Markov process $x(t)$ and its time-additive observable $A(t)$.. 5
 2.3. Joint propagator $P_{t,t_0}(x,A|x_0,A_0)$ for the Markov process and its time-additive observable .. 5
 2.4. Conditional probability $P_{t_0}^\text{cond}(x,A)$ if starting at (x_0,A_0) at time $t=0$ and ending at (x_T,A_T) at time $t=T$.. 6
 2.5. Markov dynamics for the conditional probability $P_{t_0}^\text{cond}(x,A)$ 6

3. Application to discrete-time Markov chains 6
 3.1. Dynamics of the joint propagator $P_{t,t_0}(x,A|x_0,A_0)$ 7
 3.2. Forward Markov dynamics for the conditional probability $P_{t}^\text{cond}(x,A)$ with a time-dependent generator .. 8
 3.3. Backward Markov dynamics for the conditional probability $P_{t}^\text{cond}(x,A)$ with a time-dependent generator .. 9
 3.4. Illustration with a simple example: conditioning the Sisyphus random walk on the number of resets .. 10
 3.4.1. Explicit form of the joint propagator $P_{t,t_0}(x,A|x_0,A_0)$ 10
 3.4.2. Forward generator of the conditioned dynamics: resetting probabilities depending on time and configuration 11

4. Application to continuous-time Markov jump processes 12
 4.1. Dynamics of the joint propagator $P_{t,t_0}(x,A|x_0,A_0)$ 12
 4.2. Markov dynamics for the conditional probability $P_{t}^\text{cond}(x,A)$ with a time-dependent generator .. 13
 4.3. Simple example: conditioning the Sisyphus Markov Jump process on the number of resets .. 16
 4.3.1. Joint propagator $P_{t,t_0}(x,A|x_0,A_0)$.. 16
 4.3.2. Forward generator of the conditioned dynamics ... 17

5. Application to diffusion processes in dimension d 18
 5.1. Dynamics of the joint propagator $P_{t,t_0}(\vec{x},A|\vec{x}_0,A_0)$ 18
 5.2. Markov dynamics for the conditional probability $P_{t}^\text{cond}(\vec{x},A)$ with time-dependent additional forces .. 20
 5.3. Stratonovich stochastic differential equations for the conditioned process $(\vec{x}^*(t),A^*(t))$.. 22
 5.4. Simple example: Brownian $B(t)$ as time-additive observable of the diffusion process $x(t)$.. 23

https://doi.org/10.1088/1742-5468/ac4e81
5.4.1. Brownian motion $B(t)$ conditioned on the value of the diffusion process $x(t)$...23
5.4.2. Explicit solution when $x(t)$ is the Ornstein–Uhlenbeck process24

6. Conclusion ..28

Appendix A. Links with the canonical conditioning on a time-additive observable for finite time T 28

A.1. Generating function $Z_{t,t_0}^{[k]}(x|x_0)$ of the total increment $A(t) - A(t_0) = A[x(t_0 \leq s \leq t)]$...28
A.1.1. Dynamics of the generating function $Z_{t,t_0}^{[k]}(x|x_0)$ for discrete-time Markov chains of section 3 ...29
A.1.2. Dynamics of the generating function $Z_{t,t_0}^{[k]}(x|x_0)$ for continuous-time Markov jump processes of section 429
A.1.3. Dynamics of the generating function $Z_{t,t_0}^{[k]}(\vec{x}|\vec{x}_0)$ for diffusion processes of section 5 ..30

A.2. Conditional probability $P_{t}^{\text{Cond}[k]}(x)$ if starting at x_0 at time $t = 0$ and ending at x_T at time $t = T$...31

A.3. Markov dynamics for the conditional probability $P_{t}^{\text{Cond}[k]}(x)$32
A.3.1. Forward dynamics of the conditional probability $P_{t}^{\text{Cond}[k]}(x)$ for discrete-time Markov chains of section 3 ...32
A.3.2. Forward dynamics of the conditional probability $P_{t}^{\text{Cond}[k]}(x)$ for continuous-time Markov jump processes of section 432
A.3.3. Forward dynamics of the conditional probability $P_{t}^{\text{Cond}[k]}(\vec{x})$ for diffusion processes of section 533

Appendix B. Reminder on the conditioning for large T when there is a normalizable steady state $P_{\text{st}}(x)$ 33

B.1. Asymptotic analysis of the generating function $Z_{t,t_0}^{[k]}(x|x_0)$ for large time interval $(t - t_0)$...34
B.2. Asymptotic analysis of the conditional probability $P_{t}^{\text{Cond}[k]}(x)$ at some interior time $0 \ll t \ll T$...34
B.3. Physical meaning of the canonical k-conditioning in terms of the large deviations properties of $A(t)$...35
B.4. Corresponding time-independent generators of the conditioned dynamics for $1 \ll t \ll T$...36
B.4.1. Forward dynamics of the conditional probability $P_{t}^{\text{Cond}[k]}(x)$ for discrete-time Markov chains of section 3 ...36
B.4.2. Forward dynamics of the conditional probability $P_{t}^{\text{Cond}[k]}(x)$ for continuous-time Markov jump processes of section 436

https://doi.org/10.1088/1742-5468/ac4e81
1. Introduction

Time-additive observables of Markov processes have attracted a lot of interest recently, in particular in the field of non equilibrium steady states in order to characterize their dynamical fluctuations over a large time-window T. From the point of view of the large deviation theory (see the reviews [1–3] and references therein), time-additive observables belong to level 1 and can be thus analyzed via the contraction from higher levels. For instance, the large deviations at level 2 for the empirical density allows us to analyze the time-additive observables that only depend on the time spent in each configuration, but level 2 is usually not closed for non-equilibrium processes with steady currents. By contrast, level 2.5 concerning the joint distribution of the empirical density and of the empirical flows can be written in closed form for general Markov processes, including discrete-time Markov chains [3–8], continuous-time Markov jump processes [4, 7–28] and diffusion processes [7, 8, 12, 13, 16, 26, 29–31]. In addition, this level 2.5 is necessary to analyze via contraction the general case of time-additive observables that involve not only the time spent in each configuration but also the elementary increments of the Markov process. Another standard method to characterize the statistics of a time-additive observables is to study its generating function via the appropriate deformed Markov operator that does not conserve the probability [16, 31–74], while the probability-conserving Markov process corresponding to this ‘canonical conditioning’ can be written from the generalization of Doob’s h-transform.

On the other hand, the ‘microcanonical conditioning’ of one-dimensional stochastic processes on time-additive observables has been considered recently in order to have efficient methods to generate stochastic trajectories satisfying global dynamical constraints over a finite time window T. The conditioning on the area has been studied via various methods for Brownian processes or bridges [75] and for Ornstein–Uhlenbeck bridges [76] (see also [77–79] for the discussion of other types of conditioning). The conditioning on the area and on other time-additive observables has been then analyzed for the Brownian motion and for discrete-time random walks [80], building on previous works [81–86] concerning the standard Doob conditioning, where the goal was to generate stochastic trajectories ending in a specific configuration at time T.

In the present paper, the approach of the recent study [80] is reformulated as a general framework for the ‘microcanonical conditioning’ of Markov processes on time-additive observables, where the Markov process can be either a discrete-time Markov chain, a continuous-time Markov jump process or a diffusion process in arbitrary dimension, while the time-additive observable can involve both the time spent in each configuration and the increments of the Markov process. This general formulation allows us to make the link with the ‘canonical conditioning’ framework mentioned above.
The paper is organized as follows. In section 2, we summarize the general ideas that allow to analyze the microcanonical conditioning of a Markov process on a time-additive observable. The specific applications to discrete-time Markov chains, to continuous-time Markov jump processes and to diffusion processes are then described in sections 3–5 respectively. Our conclusions are summarized in section 6. The links with the canonical conditioning on a time-additive observable are discussed for finite time T in appendix A and for large T in the large deviation regime for the time-additive observable in appendix B.

2. Microcanonical conditioning on a time-additive observable

In this section, we summarize the general ideas and notations that will be useful in the whole paper. The equations will be written for discrete variables (x,A), but the adaptation to continuous variables (x,A) is of course straightforward: one just needs to replace sums by integrals, and discrete delta functions by continuous delta functions.

2.1. Notion of time-additive observable $A(t)$ for the Markov process $x(t)$

For the Markov process $x(t)$, the observable $A(t)$ is called time-additive if the difference $(A(t_2) - A(t_1))$ between the value $A(t_2)$ at time t_2 and the value $A(t_1)$ at time t_1 is a deterministic function $A[.]$ of the Markov trajectory $x(t_1 \leq s \leq t_2)$ between $s = t_1$ and $s = t_2$

\[
A(t_2) - A(t_1) = A[x(t_1 \leq s \leq t_2)].
\]

(1)

2.2. Notion of microcanonical conditioning for the Markov process $x(t)$ and its time-additive observable $A(t)$

In the main text, we will focus on the ‘microcanonical conditioning’ where both the initial values (x_0,A_0) at time $t = 0$ and the final values (x_T,A_T) at time $t = T$ are fixed for the Markov process $x(t)$ and its time-additive observable $A(t)$. In order to analyze what happens at intermediate times $t \in [0,T]$, the approach described in [80] can be decomposed in the three steps described in the following three subsections.

2.3. Joint propagator $P_{t,0}(x,A|x_0,A_0)$ for the Markov process and its time-additive observable

The first step concerns the joint propagator $P_{t,0}(x,A|x_0,A_0)$ of the Markov process $x(t)$ and of its time-additive observable $A(t)$

\[
P_{t,0}(x,A|x_0,A_0) \equiv \langle \delta_{x(t),x} \delta_{A(t),A} \delta_{x(t_0),x_0} \delta_{A(t_0),A_0} \rangle.
\]

(2)

Since the time-additive observable is a deterministic function $A[.]$ of the Markov trajectory $x(t_0 \leq s \leq t)$ (see equation (1)), the joint propagator $P_{t,0}(x,A|x_0,A_0)$ satisfies:

\[
\text{https://doi.org/10.1088/1742-5468/ac4e81}
\]
(a) Some Markov forward dynamics with respect to its final variables \((x, A)\) at time \(t\)
(b) Some Markov backward dynamics with respect to its initial variables \((x_0, A_0)\) at time \(t_0\).

2.4. Conditional probability \(P_{t}^{\text{Cond}}(x, A)\) if starting at \((x_0, A_0)\) at time \(t = 0\) and ending at \((x_T, A_T)\) at time \(t = T\)

The second step concerns the conditional probability \(P_{t}^{\text{Cond}}(x, A)\) to be at the values \((x, A)\) at some intermediate time \(t \in]0, T[\) if starting at the values \((x_0, A_0)\) at time \(t = 0\) and ending at the values \((x_T, A_T)\) at time \(t = T\). The probability \(P_{T,0}(x_T, A_T|x_0, A_0)\) to end at \((x_T, A_T)\) at time \(t = T\) when starting at \((x_0, A_0)\) at time \(t = 0\) satisfies the Chapman–Kolmogorov equation with respect to any internal time \(t \in]0, T[\)

\[
P_{T,0}(x_T, A_T|x_0, A_0) = \sum_x \sum_A P_{T,t}(x_T, A_T|x, A)P_{t,0}(x, A|x_0, A_0). \tag{3}
\]

So the conditional probability \(P_{t}^{\text{Cond}}(x, A)\) to see the values \((x, A)\) at the internal time \(t \in]0, T[\) is simply given by the ratio

\[
P_{t}^{\text{Cond}}(x, A) = \frac{P_{T,t}(x_T, A_T|x, A)P_{t,0}(x, A|x_0, A_0)}{P_{T,0}(x_T, A_T|x_0, A_0)}. \tag{4}
\]

It is normalized as a consequence of equation (3)

\[
\sum_x \sum_A P_{t}^{\text{Cond}}(x, A) = 1 \tag{5}
\]

and it satisfies the fixed boundary conditions at time \(t = 0\) and at time \(t = T\)

\[
P_{0}^{\text{Cond}}(x, A) = \frac{P_{T,0}(x_T, A_T|x, A)P_{0,0}(x, A|x_0, A_0)}{P_{T,0}(x_T, A_T|x_0, A_0)} = \delta_{x,x_0}\delta_{A,A_0}
\]

\[
P_{T}^{\text{Cond}}(x, A) = \frac{P_{T,T}(x_T, A_T|x, A)P_{T,0}(x, A|x_0, A_0)}{P_{T,0}(x_T, A_T|x_0, A_0)} = \delta_{x,x_T}\delta_{A,A_T}. \tag{6}
\]

2.5. Markov dynamics for the conditional probability \(P_{t}^{\text{Cond}}(x, A)\)

The third step consists in deriving the Markov dynamics of the conditional probability \(P_{t}^{\text{Cond}}(x, A)\) from the Markov dynamics satisfied by the two joints propagators in the numerator of equation (4), namely:

(a) The Markov forward dynamics of the joint propagator \(P_{t,0}(x, A|x_0, A_0)\) with respect to its final variables \((x, A)\) at time \(t\)

(b) The Markov backward dynamics of the joint propagator \(P_{T,t}(x_T, A_T|x, A)\) with respect to its initial variables \((x, A)\) at time \(t\).

In the three following sections, the Markov dynamics for the conditional probability \(P_{t}^{\text{Cond}}(x, A)\) is written explicitly for discrete-time Markov chains (section 3), for continuous-time Markov jump processes (section 4) and for diffusion processes (section 5).
3. Application to discrete-time Markov chains

In this section, we focus on the Markov chain dynamics where the probability \(P_t(x) \) to be in the configuration \(x \) at time \(t \) evolves according to

\[
P_{t+1}(x) = \sum_{x'} W(x; x') P_t(x'). \tag{7}
\]

The matrix element \(W(x; x') \in [0, 1] \) represents the probability to be in the configuration \(x \) at time \((t+1) \) if in the configuration \(x' \) at \(t \), with the normalization for any \(x' \)

\[
\sum_x W(x; x') = 1. \tag{8}
\]

The time-additive observable \(A(t) \) of the trajectory \(x(t_1 \leq s \leq t_2) \) of equation (1) can be parametrized by some function \(\beta(x, y) \)

\[
A(t_2) - A(t_1) = \mathcal{A}[x(t_1 \leq s \leq t_2)] = \sum_{s=t_1+1}^{t_2} \beta(x(s), x(s - 1)). \tag{9}
\]

Since the time \(t \) and the space \(x \) are both discrete, the equations will be written below for the case of a discrete variable \(A \), but the adaptation to a continuous variable \(A \) is of course straightforward: one just needs to replace sums by integrals, and discrete delta functions by continuous delta functions.

3.1. Dynamics of the joint propagator \(P_{t,t_0}(x, A|x_0, A_0) \)

Since the increment between \(t \) and \((t+1) \) of the time-additive observable \(A(t) \) of equation (9) reduces to

\[
A(t+1) - A(t) = \beta(x(t+1), x(t)) \tag{10}
\]

one just needs to introduce the joint generator

\[
W(x, A; x', A') = W(x; x') \delta_{A,A'} + \beta(x, x') \tag{11}
\]

that involves the initial Markov matrix \(W(x; x') \) of equation (7), while the delta function in \(A \) describes the deterministic evolution of the time-additive observable once the configurations \(x \) and \(x' \) are given. The normalization of equation (8) ensures the normalization of the joint generator for any \((x', A') \)

\[
\sum_x \sum_A W(x, A; x', A') = \sum_x W(x; x') = 1. \tag{12}
\]

The joint propagator \(P_{t,t_0}(x, A|x_0, A_0) \) of equation (2) satisfies

(a) The forward dynamics with respect to the final variables \((x, A)\)

\[
P_{t+1,t_0}(x, A|x_0 A_0) = \sum_{x'} \sum_{A'} W(x, A; x', A') P_{t,t_0}(x', A'|x_0 A_0) \tag{13}
\]
(b) The backward dynamics with respect to the initial variables \((x_0, A_0)\)

\[
P_{t,t_0-1}(x, A|x_0A_0) = \sum_{x_0'} \sum_{A_0'} P_{t,t_0}(x, A|x_0'A_0') W(x_0', A_0'; x_0, A_0).
\]

(14)

3.2. Forward Markov dynamics for the conditional probability \(P^\text{Cond}_t(x, A)\) with a time-dependent generator

Let us plug the forward dynamics of equation (13) for \(P_{t+1}(x, A|x_0, A_0)\) into the conditional probability of equation (4) at time \((t+1)\)

\[
P^\text{Cond}_{t+1}(x, A) = \frac{P_{t+1}(x_T, A_T|x, A)}{P_{t}(x_T, A_T|x_0, A_0)} P_{t+1,0}(x, A|x_0, A_0)
\]

\[
\quad = \frac{P_{t+1}(x_T, A_T|x, A)}{P_{t}(x_T, A_T|x_0, A_0)} \sum_{x'} \sum_{A'} W(x, A; x', A') P_{t,0}(x', A'|x_0A_0).
\]

(15)

Let us now use the conditional probability at time \(t\) of equation (4) to replace \(P_{t,t_0}(x', A'|x_0A_0)\)

\[
P_{t,0}(x', A'|x_0, A_0) = \frac{P_{T,0}(x_T, A_T|x_0, A_0)}{P_{T,t}(x_T, A_T|x', A') P^\text{Cond}_t(x', A')}
\]

(16)

in order to rewrite equation (15) as the forward Markov dynamics

\[
P^\text{Cond}_{t+1}(x, A) = \frac{P_{T,t+1}(x_T, A_T|x, A)}{P_{T,0}(x_T, A_T|x_0, A_0)}
\]

\[
\quad \times \sum_{x'} \int dA' W(x, A; x', A') \frac{P_{T,0}(x_T, A_T|x_0, A_0)}{P_{T,t}(x_T, A_T|x', A')} P^\text{Cond}_t(x', A')
\]

\[
\quad \equiv \sum_{x'} \int dA' W^{\text{Cond}}_{t+1/2}(x, A; x', A') P^\text{Cond}_t(x', A'),
\]

(17)

where the generator associated to this forward conditioned dynamics

\[
W^{\text{Cond}}_{t+1/2}(x, A; x', A') \equiv \frac{P_{T,t+1}(x_T, A_T|x, A) W(x, A; x', A')}{P_{T,t}(x_T, A_T|x', A')}
\]

(18)

is time-dependent because the joint generator \(W(x, A; x', A')\) of equation (11) is conjugated with the full propagators \(P_{T,t+1}(x_T, A_T|x, A)\) and \(P_{T,t}(x_T, A_T|x', A')\) up to the imposed final values \((x_T, A_T)\) at time \(T\). The normalization for any \((x', A')\) of this conditional forward generator

https://doi.org/10.1088/1742-5468/ac4e81
Microcanonical conditioning of Markov processes on time-additive observables

\[\sum_{x} \sum_{A} W_{t+1/2}^{\text{Forw}[x_{T}, A_{T}]}(x, A; x', A') = 1 \]

(19)

is ensured by the backward recursion of equation (14).

The physical meaning of the generator of equation (18) is that in the conditioned dynamics, the possible transitions are the same as in the initial dynamics (an impossible transition \(W(x, A; x', A') = 0 \) in the initial dynamics remains impossible \(W_{t+1/2}^{\text{Forw}[x_{T}, A_{T}]}(x, A; x', A') = 0 \) in the conditioned dynamics), but the possible transitions have different probabilities that have changed from \(W(x, A; x', A') \) to \(W_{t+1/2}^{\text{Forw}[x_{T}, A_{T}]}(x, A; x', A') \).

In practice, if one wishes to use these new probabilities \(W_{t+1/2}^{\text{Forw}[x_{T}, A_{T}]}(x, A; x', A') \) to generate stochastic trajectories of the conditioned dynamics, one needs to know the explicit form of the joint propagator \(P_{t,0}(x, A|x_0, A_0) \) of equation (2) satisfying the joint forward dynamics of equation (13).

3.3. Backward Markov dynamics for the conditional probability \(P_t^{\text{Cond}}(x, A) \) with a time-dependent generator

Let us write the backward recursion of equation (14) for \(P_{t,j}(x_T, A_T|x, A) \)

\[P_{t,j}(x_T, A_T|x, A) = \sum_{x'} \sum_{A'} P_{t+1,j}(x_T, A_T|x', A') W(x', A'; x, A) \]

(20)

and use the conditional probability of equation (4) at time \((t+1)\) to make the replacement

\[P_{t+1,j}(x_T, A_T|x', A') = P_{t+1,0}^{\text{Cond}}(x', A') \frac{P_{t,0}(x_T, A_T|x_0, A_0)}{P_{t+1,0}(x', A'|x_0, A_0)} \]

(21)

into order to rewrite the conditional probability of equation (4) as

\[P_t^{\text{Cond}}(x, A) = \sum_{x'} \sum_{A'} P_{t+1,j}(x_T, A_T|x', A') \frac{P_{t,0}(x_T, A_T|x_0, A_0)}{P_{t+1,0}(x', A'|x_0, A_0)} \]

\[= \sum_{x'} \sum_{A'} P_{t+1,0}^{\text{Cond}}(x', A') \frac{P_{t,0}(x_T, A_T|x_0, A_0)}{P_{t+1,0}(x', A'|x_0, A_0)} W(x', A'; x, A) \]

\[\equiv \sum_{x'} \sum_{A'} P_{t+1,0}^{\text{Cond}}(x', A') W_{t+1/2}^{\text{Backw}[x_0, A_0]}(x', A'; x, A), \]

(22)

where the generator associated with these backward conditioned dynamics

\[W_{t+1/2}^{\text{Backw}[x_0, A_0]}(x', A'; x, A) \equiv \frac{1}{P_{t+1,0}(x', A'|x_0, A_0)} W(x', A'; x, A) P_{t,0}(x, A|x_0, A_0) \]

(23)

https://doi.org/10.1088/1742-5468/ac4e81
Microcanonical conditioning of Markov processes on time-additive observables

3.4. Illustration with a simple example: conditioning the Sisyphus random walk on the number of resets

In the field of stochastic resetting (see the review [87] and references therein), one of the simplest example is the Sisyphus random walk [88] defined on the semi-infinite lattice \(x = 0, 1, 2, \ldots\) with the Markov matrix

\[
W(x; x') = R\delta_{x,0} + (1 - R)\delta_{x,x' + 1}.
\]

The physical meaning is that when Sisyphus is at position \(x\) at time \(t\), he can either return to the origin \(x = 0\) with the reset probability \(R \in]0, 1]\) or he can move forward to the next position \((x + 1)\) with the complementary probability \((1 - R)\).

As time-additive observable of equation (9), we will choose the function

\[
\beta(x; x') = \delta_{x,0}
\]

in order to count the total number of resets to the origin during the time interval

\[
A(t_2) - A(t_1) = A[x(t_1 \leq s \leq t_2)] \equiv \sum_{s=t_1+1}^{t_2} \delta_{x(s),0}.
\]

3.4.1. Explicit form of the joint propagator \(P_{t_1,0}(x, A|x_0A_0)\). The joint generator of equation (11)

\[
W(x, A; x', A') = W(x; x')\delta_{A,A'} + \delta_{x,0} = R\delta_{x,0}\delta_{A,A'+1} + (1 - R)\delta_{x,x'+1}\delta_{A,A'}
\]

governs the forward dynamics of equation (13) for the joint propagator

\[
P_{t+1,0}(x, A|x_0A_0) = \sum_{x'=0}^{+\infty} \sum_{A'=A_0}^{A} W(x, A; x', A') P_{t,t_0}(x', A'|x_0A_0)
\]

\[
= R\delta_{x,0}\theta(A > A_0) \sum_{x'=0}^{+\infty} P_{t,t_0}(x', A - 1|x_0A_0) + \theta(x > 0)(1 - R)P_{t,t_0}(x - 1, A|x_0A_0),
\]

where the notation \(\theta\) is used to denote the inequalities that need to be satisfied. The solution can be directly written from the renewal analysis of the dynamics

\[
P_{t,t_0}(x, A|x_0A_0) = (1 - R)^{(t-t_0)}\delta_{A,A_0}\delta_{x,x_0+(t-t_0)} + R^{A-A_0}(1 - R)^{(t-t_0)-(A-A_0)}
\]

\[
\times \frac{\theta(1 \leq A - A_0 \leq (t - t_0) - x)}{[(A - A_0) - 1]! \ (t - t_0) - (A - A_0) - x]!}.
\]

https://doi.org/10.1088/1742-5468/ac4e81
The summation of equation (29) over the variable x allows us to recover that the propagator for the variable A alone corresponds to the binomial distribution for $(A - A_0)$ and is independent of x_0

$$
\sum_{x=0}^{+\infty} P_{t,t_0}(x, A|x_0A_0) = R^{A-A_0}(1-R)^{(t-t_0)-(A-A_0)} \left(\frac{(t-t_0)!}{(A-A_0)![(t-t_0)-(A-A_0)]!}\right)
\times \theta(0 \leq A - A_0 \leq (t - t_0))
\equiv P_{t,t_0}(A|A_0).
$$

The summation of equation (29) over the variable A yields the propagator for the initial Sisyphus random walk $x(t)$ alone

$$
\sum_{A=A_0}^{+\infty} P_{t,t_0}(x, A|x_0A_0) = (1-R)^{(t-t_0)}\delta_{x,x_0+(t-t_0)} + R(1-R)^{x}\theta(0 \leq x \leq (t - t_0) - 1)
\equiv P_{t,t_0}(x|x_0)
$$

that converges toward the steady state corresponding to the geometric distribution

$$
P_{t,t_0}(x|x_0) \simeq R(1-R)^x\theta(0 \leq x) \equiv P_{\infty}(x).
$$

3.4.2. Forward generator of the conditioned dynamics: resetting probabilities depending on time and configuration. For the conditioned dynamics, the forward generator of equation (18) reads using the joint generator of equation (24)

$$
W_{t+1/2}^{\text{Form}[x,T,A;\mathcal{T}]}(x, A; x', A') = P_{T+1}(x_T, A_T|x, A)W(x, A; x', A') \left(\frac{1}{P_{T}(x_T, A_T|x', A')}\right)
= R\delta_{x,0}\delta_{A,A' + 1} P_{T+1}(x_T, A_T|0, A) \frac{P_{T+1}(x_T, A_T|x, A)}{P_{T}(x_T, A_T|x', A')}
+ (1-R)\delta_{x,x'+1}\delta_{A,A'} P_{T+1}(x_T, A_T|x, A)
\equiv \delta_{x,0}\delta_{A,A' + 1} R_{t+1/2}^{\text{Form}[x,T,A;\mathcal{T}]}(x', A') + \delta_{x,x'+1}\delta_{A,A'} \left(1 - R_{t+1/2}^{\text{Form}[x,T,A;\mathcal{T}]}(x', A')\right),
$$

where the effective resetting probability toward the origin $x = 0$ depends on the time t and on the values (x', A') at time t via

$$
R_{t+1/2}^{\text{Form}[x,T,A;\mathcal{T}]}(x', A') = R\frac{P_{T+1}(x_T, A_T|0, A' + 1)}{P_{T}(x_T, A_T|x', A')}.
$$

One can plug the explicit form of equation (29) for the joint propagator to obtain the explicit form of the effective resetting probability of equation (33).

In summary, the conditioned dynamics corresponds to a Sisyphus random walk with modified resetting probabilities: when Sisyphus is in the configuration (x', A') at time t, he can either return to the origin $x = 0$ and increment the observable $A = A' + 1$ with the reset probability $R_{t+1/2}^{\text{Form}[x,T,A;\mathcal{T}]}(x', A')$ or he can move forward to the next position $(x' + 1)$ and keep the observable $A = A'$ with the complementary probability $[1 - R_{t+1/2}^{\text{Form}[x,T,A;\mathcal{T}]}(x', A')]$.

https://doi.org/10.1088/1742-5468/ac4e81
The ‘canonical conditioning’ (see the reminder in the two appendices) of the Sisyphus random walk has been studied in [7] for the more general case where the reset probabilities of the initial model are space-dependent \(R_x \) (instead of being given by the constant value \(R \)) and where the time-additive observable involves an arbitrary function \(\beta(x, x') \).

As a final remark, let us stress that other explicit examples of microcanonical conditioning for discrete-time random walks on time-additive observables can be found in [80].

4. Application to continuous-time Markov jump processes

In this section, we consider the continuous-time dynamics in discrete configuration space defined by the master equation

\[
\partial_t P_t(x) = \sum_{x' \neq x} \left[w(x; x') P_t(x') - w(x'; x) P_t(x) \right],
\]

where \(w(x; x') \geq 0 \) represents the transition rate from \(x' \) toward \(x \neq x' \).

The time-additive observable \(A(t) \) of the trajectory \(x(t_1 \leq s \leq t_2) \) of equation (1) can be parametrized by the two functions \(\alpha(x) \) and \(\beta(x, y) \)

\[
A(t_2) - A(t_1) = A[x(t_1 \leq s \leq t_2)] = \int_{t_1}^{t_2} ds \alpha(x(s)) + \sum_{s \in [t_1, t_2] : x(s^+) \neq x(s)} \beta(x(s^+), x(s)).
\]

(36)

Whenever the function \(\alpha(.) \) is present, the observable \(A \) is continuous, so the equations will be written for continuous \(A \) in the following general subsections, while an example with discrete variable \(A \) will be given in the last subsection.

4.1. Dynamics of the joint propagator \(P_{t,t_0}(x, A|x_0, A_0) \)

Between \(t \) and \((t + dt) \), the elementary increment of the time-additive observable of equation (36) reduces to

\[
A(t + dt) - A(t) = dt \alpha(x(t)) + \delta_{x(t+dt) \neq x(t)} \beta(x(t + dt), x(t)).
\]

(37)

As a consequence, the function \(\alpha(.) \) corresponds to a deterministic drift for the continuous observable \(A \), while the function \(\beta(.,.) \) will appear via the following delta function in the joint jump rates from \(x' \) to \(x \neq x' \)

\[
w(x, A; x', A') \equiv w(x; x') \delta(A - A' - \beta(x, x')).
\]

(38)

So the joint propagator \(P_{t,t_0}(x, A|x_0, A_0) \) of equation (2) satisfies:

https://doi.org/10.1088/1742-5468/ac4e81
(a) The forward jump-drift dynamics with respect to the final values \((x, A)\) at time \(t\)

\[
\partial_t P_{t,t_0}(x, A|x_0, A_0) = -\partial_A [\alpha(x) P_{t,t_0}(x, A|x_0, A_0)] + \sum_{x' \neq x} \int dA' [w(x, A; x', A') P_{t,t_0}(x', A'|x_0, A_0)]
\]

\[
- w(x', A'; x, A) P_{t,t_0}(x, A|x_0, A_0)
\] (39)

(b) The backward jump-drift dynamics with respect to the initial values \((x_0, A_0)\) at time \(t_0\)

\[
-\partial_{t_0} P_{t,t_0}(x, A|x_0, A_0) = \alpha(x_0) \partial_A P_{t,t_0}(x, A|x_0, A_0) + \sum_{x_0' \neq x_0} \int dA_0' [P_{t,t_0}(x, A|x_0', A_0')]
\]

\[
- P_{t,t_0}(x, A|x_0, A_0) w(x', A'; x_0, A_0).
\] (40)

4.2. Markov dynamics for the conditional probability \(P_{t}^{\text{Cond}}(x, A)\) with a time-dependent generator

Let us now focus on the dynamics for the conditional probability \(P_{t}^{\text{Cond}}(x, A)\) of equation (4). Its time-derivative involves the derivatives of the two propagators of the numerator

\[
\partial_t P_{t}^{\text{Cond}}(x, A) = [\partial_t P_{T,t}(x_T, A_T|x, A)] P_{t,0}(x, A|x_0, A_0) P_{T,0}(x_T, A_T|x_0', A_0')
\]

\[
+ \frac{P_{T,t}(x_T, A_T|x, A)}{P_{T,0}(x_T, A_T|x_0, A_0)} [\partial_t P_{t,0}(x, A|x_0, A_0)].
\] (41)

Since the propagator \(P_{t,0}(x, A|x_0, A_0)\) satisfies the forward dynamics of equation (39), and since the propagator \(P_{T,t}(x_T, A_T|x, A)\) satisfies the backward dynamics of equation (40)

\[
-\partial_t P_{T,t}(x_T, A_T|x, A) = \alpha(x) \partial_A P_{T,t}(x_T, A_T|x, A) + \sum_{x' \neq x} \int dA' [P_{T,t}(x_T, A_T|x', A')]
\]

\[
- P_{T,t}(x_T, A_T|x, A) w(x', A'; x, A)
\] (42)

equation (41) becomes

https://doi.org/10.1088/1742-5468/ac4e81
\[\partial_t \mathcal{P}_t^{\text{Cond}}(x, A) = -\alpha(x) \frac{P_{t,0}(x, A|x_0, A_0)}{P_{T,0}(x_T, A_T|x_0, A_0)} \partial_A P_{T,t}(x_T, A_T|x, A) \]
\[- \alpha(x) \frac{P_{T,t}(x_T, A_T|x, A)}{P_{T,0}(x_T, A_T|x_0, A_0)} \partial_A P_{t,0}(x, A|x_0, A_0) \]
\[- \frac{P_{t,0}(x, A|x_0, A_0)}{P_{T,0}(x_T, A_T|x_0, A_0)} \sum_{x' \neq x} \int dA' P_{T,t}(x_T, A_T|x, A') w(x', A'; A) \]
\[+ \frac{P_{T,t}(x_T, A_T|x, A)}{P_{T,0}(x_T, A_T|x_0, A_0)} \sum_{x' \neq x} \int dA' w(x, A'; x', A') P_{t,0}(x', A'|x_0, A_0). \]

Equation (43)

(a) Forward perspective: equation (4) allows us to replace all the propagators on \([0, t]\)

\[P_{t,0}(x, A|x_0, A_0) = \mathcal{P}_t^{\text{Cond}}(x, A) \frac{P_{T,0}(x_T, A_T|x_0, A_0)}{P_{T,t}(x_T, A_T|x, A)} \]

in equation (43) to obtain the forward dynamics

\[\partial_t \mathcal{P}_t^{\text{Cond}}(x, A) = -\alpha(x) \partial_A \mathcal{P}_t^{\text{Cond}}(x, A) \]
\[+ \sum_{x' \neq x} \int dA' \left[w_t^{\text{Forw}[x_T, A_T; T]}(x, A; x', A') \mathcal{P}_t^{\text{Cond}}(x', A') \right. \]
\[\left. - w_t^{\text{Forw}[x_T, A_T; T]}(x', A'; x, A) \mathcal{P}_t^{\text{Cond}}(x, A) \right]. \]

Equation (45)

The difference with respect to the initial forward joint dynamics of equation (39) is in the time-dependent forward rates

\[w_t^{\text{Forw}[x_T, A_T; T]}(x, A; x', A') \equiv P_{T,t}(x_T, A_T|x, A) w(x, A; x', A') \frac{1}{P_{T,t}(x_T, A_T|x', A')} \]

Equation (46)

that involve the conjugation of the joint rates \(w(x, A; x', A') \equiv w(x; x')\) \(\delta(A - A' - \beta(x, x'))\) of equation (38) with the full propagators \(P_{T-t-1}(x_T, A_T|x, A)\) and \(P_{T,t}(x_T, A_T|x', A')\) up to the imposed final values \((x_T, A_T)\) at time \(T\). Equation (46) is the analog of equation (18) concerning discrete-time Markov chains.

(b) Backward perspective: equation (4) allows us to replace all the propagators on \([t, T]\)

\[P_{T,t}(x_T, A_T|x, A) = \mathcal{P}_t^{\text{Cond}}(x, A) \frac{P_{T,0}(x_T, A_T|x_0, A_0)}{P_{t,0}(x, A|x_0, A_0)} \]

in equation (43) to obtain
(d) The half-difference between the two dynamical equations of equations (45) and (48) yields the new dynamical equation

\[-\partial_t P_t^{\text{Cond}}(x, A) = \alpha(x) \partial_A P_t^{\text{Cond}}(x, A) \]

\[+ \sum_{x' \neq x} \int dA' \left[P_t^{\text{Cond}}(x', A') w_t^{\text{Back}[x_0, A_0]}(x', A'; x, A) \right. \]

\[- P_t^{\text{Cond}}(x, A) w_t^{\text{Back}[x_0, A_0]}(x, A; x', A') \]

(48)

where the time-dependent backward rates

\[w_t^{\text{Back}[x_0, A_0]}(x', A'; x, A) \equiv \frac{1}{P_{t,0}(x', A'|x_0, A_0)} w(x', A'; x, A) P_{t,0}(x, A|x_0, A_0) \]

(49)

involve the conjugation of the joint rates \(w(x, A; x', A') \equiv w(x; x') \delta(A - A' - \beta(x, x')) \) of equation (38) with the full propagators \(P_{t,0}(x', A'|x_0, A_0) \) and \(P_{t,0}(x, A|x_0, A_0) \) up to the imposed initial values \((x_0, A_0) \) at time \(t = 0 \). Equation (49) is the analog of equation (23) concerning discrete-time Markov chains.

(c) The compatibility between the two dynamical equations of equations (45) and (48) can be checked via their sum

\[0 = \sum_{x' \neq x} \int dA' \left[w_t^{\text{For}[x_T, A_T]}(x, A; x', A') P_t^{\text{Cond}}(x', A') \right. \]

\[- w_t^{\text{For}[x_T, A_T]}(x', A'; x, A) P_t^{\text{Cond}}(x, A) \]

\[+ \sum_{x' \neq x} \int dA' \left[P_t^{\text{Cond}}(x', A') w_t^{\text{Back}[x_0, A_0]}(x', A'; x, A) \right. \]

\[- P_t^{\text{Cond}}(x, A) w_t^{\text{Back}[x_0, A_0]}(x, A; x', A') \]

(50)

that is found to vanish using equations (46), (49) and (4).

(d) The half-difference between the two dynamical equations of equations (45) and (48) yields the new dynamical equation

\[\partial_t P_t^{\text{Cond}}(x, A) = -\alpha(x) \partial_A P_t^{\text{Cond}}(x, A) \]

\[+ \sum_{x' \neq x} \int dA' \left[w_t^{[x_T, A_T],[x_0, A_0]}(x, A; x', A') P_t^{\text{Cond}}(x', A') \right. \]

\[- w_t^{[x_T, A_T],[x_0, A_0]}(x', A'; x, A) P_t^{\text{Cond}}(x, A) \]

(51)

with the time-dependent rates
4.3. Simple example: conditioning the Sisyphus Markov Jump process on the number of resets

Let us now consider the continuous-time analog of the Sisyphus random walk discussed in subsection 3.4. The Sisyphus Markov Jump process defined on the half-line \(x = 0, 1, 2, \ldots \) is defined as follows: when Sisyphus is at position \(x \) at time \(t \), he can return to the origin \(x = 0 \) with the reset rate \(r \), he can move forward to the next position \((x + 1) \) with rate \(w \), and otherwise he remains at its position \(x \).

As time-additive observable \(A \), we will choose the number of resets, so that the joint generator of equation (53) becomes

\[
\begin{align*}
\partial_t P_{t,0}(x, A|x_0, A_0) = & \sum_{(x',A') \neq (x,A)} [w(x, x', A') P_{t,0}(x', A'|x_0, A_0)] \\
- & w(x', A'; x, A) P_{t,0}(x, A|x_0, A_0) \\
= & r \delta_{x,0} \theta(A > A_0) \sum_{x' = 0}^{\infty} P_{t,0}(x', A - 1|x_0, A_0) \\
+ & w \theta(x > 0) P_{t,0}(x - 1, A|x_0, A_0) - (r + w) P_{t,0}(x, A|x_0, A_0).
\end{align*}
\]

The solution can be directly written by the renewal analysis of the dynamics

\[
P_{t,0}(x, A|x_0, A_0) = e^{-r \tau(t-t_0)} \delta_{A,A_0} \theta(x \geq x_0) \frac{[w(t-t_0)]^{(x-x_0)}}{(t-t_0)!} e^{-w \tau(t-t_0)} \\
+ \theta(A > A_0) \theta(x \geq 0) \frac{r^{(A-A_0)}}{(A-A_0-1)!} e^{-r \tau(t-t_0)} \frac{w^x}{x!} \\
\times \int_0^{\tau(t-t_0)} d\tau [(t-t_0) - \tau]^{(A-A_0)-1} \tau^x e^{-\tau \tau}.
\]

https://doi.org/10.1088/1742-5468/ac4e81
The summation of equation (55) over the variable x allows us to recover that the propagator for the variable A alone corresponds to the Poisson distribution for $(A - A_0)$ and is independent of x_0

$$\sum_{x=0}^{+\infty} P_{t,t_0}(x, A|x_0 A_0) = \theta(A \geq A_0) \frac{[r(t - t_0)](A - A_0)}{(A - A_0)!} e^{-r(t-t_0)} \equiv P_{t,t_0}(A|A_0). \quad (56)$$

The summation of equation (55) over the variable A yields the propagator for the initial Markov process $x(t)$ alone

$$\sum_{A=A_0}^{+\infty} P_{t,t_0}(x, A|x_0 A_0) = e^{-r(t-t_0)} \theta(x \geq x_0) \frac{[w(t-t_0)](x-x_0)}{(t-t_0)!} e^{-w(t-t_0)}$$

$$+ \theta(x \geq 0) r^x \frac{w^x}{x!} \int_0^{(t-t_0)} \tau^x e^{-(w+r)\tau}$$

$$\equiv P_{t,t_0}(x|x_0) \quad (57)$$

that converges toward the steady state corresponding to the geometric distribution

$$P_{t,t_0}(x|x_0) \xrightarrow{(t-t_0) \to +\infty} \theta(x \geq 0) r^x \frac{w^x}{x!} \int_0^{+\infty} \tau^x e^{-(w+r)\tau} = \frac{r}{w + r} \left(\frac{w}{w + r}\right)^x \equiv P_{st}(x). \quad (58)$$

4.3.2. Forward generator of the conditioned dynamics. For the conditioned dynamics, the forward generator of equation (46) reads using the joint generator of equation (53) for $(x, A) \neq (x', A')$

$$w_t^{\text{Forw}[x, A; T]}(x, A; x', A') = P_{T,T}(x_T, A_T|x, A)w(x, A; x', A') \frac{1}{P_{T,T}(x_T, A_T|x', A')}$$

$$= \delta_{x,0} \delta_{A,A'+1} \frac{P_{T,T}(x_T, A_T|x, A' + 1)}{P_{T,T}(x_T, A_T|x', A')}$$

$$+ \delta_{x,x'+1} \delta_{A,A'} w \frac{P_{T,T}(x_T, A_T|x' + 1, A')}{P_{T,T}(x_T, A_T|x', A')}$$

$$\equiv \delta_{x,0} \delta_{A,A'+1} w_t^{\text{Forw}[x, A; T]}(x', A')$$

$$+ \delta_{x,x'+1} \delta_{A,A'} w_t^{\text{Forw}[x, A; T]}(x', A'). \quad (59)$$

So the conditioned dynamics corresponds to a Sisyphus Markov Jump process, where the initial reset rate r and the initial forward jump rate w have been replaced by reset rates and forward jump rates that depend on the time t and on the configuration (x', A').
Microcanonical conditioning of Markov processes on time-additive observables

\[r_{T}^{\text{Form}[x_{T},A_{T}]}(x',A') = r \frac{P_{T,t}(x_{T},A_{T}|x,A'+1)}{P_{T,t}(x_{T},A_{T}|x',A')} \]

\[w_{T}^{\text{Form}[x_{T},A_{T}]}(x',A') = w \frac{P_{T,t}(x_{T},A_{T}|x'+1,A')}{P_{T,t}(x_{T},A_{T}|x',A')} , \quad (60) \]

where one can plug the explicit form of the joint propagator given in equation (55).

The ‘canonical conditioning’ (see the reminder in the two appendices) of the Sisyphus Markov Jump process has been studied in [7] for the more general case where the reset rates of the initial model are space-dependent \(r_{x} \) (instead of being given by the constant value \(r \)) and where the time-additive observable involve two arbitrary functions \(\alpha(x) \) and \(\beta(x,x') \).

5. Application to diffusion processes in dimension \(d \)

In this section, we consider the diffusion process \(\vec{x}(t) \), where the \(d \) components \(x_{i}(t) \) for \(i = 1, \ldots, d \) follow the Langevin stochastic differential equations involving the functions \((f_{i}[\vec{x}],g_{i}[\vec{x}]) \) and \(d \) independent Brownian motions \(B_{i}(t) \)

\[dx_{i}(t) = f_{i}[\vec{x}(t)]dt + g_{i}[\vec{x}(t)]dB_{i}(t) \quad (61) \]

in the Stratonovich interpretation. Equivalently, the dynamics can be defined via the Fokker–Planck equation for the probability \(P_{t}(\vec{x}) \) to be at position \(\vec{x} \) at time \(t \)

\[\partial_{t}P_{t}(\vec{x}) = \sum_{i=1}^{d} \partial_{x_{i}} \left[-F_{i}[\vec{x}]P_{t}(\vec{x}) + D_{i}[\vec{x}]\partial_{x_{i}}P_{t}(\vec{x}) \right] \quad (62) \]

with the following components for the force and for the diffusion coefficient

\[F_{i}[\vec{x}] = f_{i}[\vec{x}] - \frac{g_{i}[\vec{x}]\partial_{x_{i}}g_{i}[\vec{x}]}{2} \]

\[D_{i}[\vec{x}] = \frac{g_{i}^{2}[\vec{x}]}{2} . \quad (63) \]

The time-additive observable \(A(t) \) of the trajectory \(\vec{x}(t_{1} \leq s \leq t_{2}) \) of equation (1) can be parametrized by the function \(\alpha[\vec{x}] \) and by the field \(\vec{\beta}[\vec{x}] \) in the Stratonovich interpretation

\[A(t_{2}) - A(t_{1}) = A[x(t_{1} \leq s \leq t_{2})] = \int_{t_{1}}^{t_{2}} \left[\alpha[\vec{x}(s)]ds + \vec{\beta}[\vec{x}(s)]d\vec{x}(s) \right] . \quad (64) \]

5.1. Dynamics of the joint propagator \(P_{t_{0}}(\vec{x},A|\vec{x}_{0},A_{0}) \)

Since the increment between \(t \) and \((t + dt) \) of the time-additive observable \(A(t) \) of equation (64) can be rewritten in terms of the \(d \) Langevin increments \(dx_{i}(t) \) of
one can consider that $A(t)$ is a supplementary $(d+1)$ coordinate for the Langevin system in the Stratonovich interpretation of equation (61), that involves the d previous Brownian motions $B_i(t)$. As a consequence, one can write the Fokker–Planck equations generalizing equation (62) as follows:

(a) The forward generator

$$ F = -\alpha[\vec{x}]\partial_A - \sum_{i=1}^{d} \left(\partial_{x_i} + \beta_i[\vec{x}]\partial_A \right) F_i[\vec{x}] + \sum_{i=1}^{d} \left(\partial_{x_i} + \beta_i[\vec{x}]\partial_A \right) D_i[\vec{x}] \left(\partial_{x_i} + \beta_i[\vec{x}]\partial_A \right) $$

(66)

governs the forward Fokker–Planck equation of the joint propagator $P_{t,0}(\vec{x}, A|\vec{x}_0, A_0)$ with respect to the final variables (\vec{x}, A) at time t

$$ \partial_t P_{t,0}(\vec{x}, A|\vec{x}_0, A_0) = F P_{t,0}(\vec{x}, A|\vec{x}_0, A_0) = -\alpha[\vec{x}]\partial_A P_{t,0}(\vec{x}, A|\vec{x}_0, A_0) $$

$$ - \sum_{i=1}^{d} \left(\partial_{x_i} + \beta_i[\vec{x}]\partial_A \right) \left[F_i[\vec{x}] P_{t,0}(\vec{x}, A|\vec{x}_0, A_0) \right] $$

$$ + \sum_{i=1}^{d} \left(\partial_{x_i} + \beta_i[\vec{x}]\partial_A \right) \left[D_i[\vec{x}] \left(\partial_{x_i} + \beta_i[\vec{x}]\partial_A \right) P_{t,0}(\vec{x}, A|\vec{x}_0, A_0) \right] $$

(67)

(b) The backward generator corresponding to the adjoint differential operator of equation (66)

$$ F^\dagger = \alpha[\vec{x}]\partial_A + \sum_{i=1}^{d} F_i[\vec{x}] \left(\partial_{x_i} + \beta_i[\vec{x}]\partial_A \right) + \sum_{i=1}^{d} \left(\partial_{x_i} + \beta_i[\vec{x}]\partial_A \right) D_i[\vec{x}] \left(\partial_{x_i} + \beta_i[\vec{x}]\partial_A \right) $$

(68)

governs the backward Fokker–Planck equation for the joint propagator $P_{T,t}(\vec{x}_T, A_T|\vec{x}, A)$ with respect to the initial variables (\vec{x}, A) at time t
Microcanonical conditioning of Markov processes on time-additive observables

\[-\partial_t P_{T,t} (\vec{x}_T, A_T | \vec{x}, A) = \mathcal{F}^\dagger P_{T,t} (\vec{x}_T, A_T | \vec{x}, A) = \alpha [\vec{x}] \partial_A P_{T,t} (\vec{x}_T, A_T | \vec{x}, A) + \sum_{i=1}^d F_i [\vec{x}] (\partial_{x_i} + \beta_i [\vec{x}] \partial_A) P_{T,t} (\vec{x}_T, A_T | \vec{x}, A) + \sum_{i=1}^d (\partial_{x_i} + \beta_i [\vec{x}] \partial_A) [D_i [\vec{x}] (\partial_{x_i} + \beta_i [\vec{x}] \partial_A) P_{T,t} (\vec{x}_T, A_T | \vec{x}, A)].\]

(69)

5.2. Markov dynamics for the conditional probability \(P^\text{Cond} T (\vec{x}, A) \) with time-dependent additional forces

Let us now focus on the dynamics for the conditional probability of equation (4)

\[P^\text{Cond} T (\vec{x}, A) = \frac{P_{T,t} (\vec{x}_T, A_T | \vec{x}, A) P_{T,0} (\vec{x}, A | \vec{x}_0, A_0)}{P_{T,0} (\vec{x}_T, A_T | \vec{x}_0, A_0)}. \]

(70)

Its dynamics with respect to the time \(t \) involves the forward dynamics with generator \(\mathcal{F} \) of equation (67) for the propagator \(P_{T,0} (\vec{x}, A | \vec{x}_0, A_0) \) and the backward dynamics with generator \(\mathcal{F}^\dagger \) of equation (69) for the propagator \(P_{T,t} (\vec{x}_T, A_T | \vec{x}, A) \). So the time-derivative of the conditional probability of equation (70) reads

\[\partial_t P^\text{Cond} T (\vec{x}, A) = [\partial_t P_{T,t} (\vec{x}_T, A_T | \vec{x}, A)] \frac{P_{T,0} (\vec{x}, A | \vec{x}_0, A_0)}{P_{T,0} (\vec{x}_T, A_T | \vec{x}_0, A_0)} + \frac{P_{T,t} (\vec{x}_T, A_T | \vec{x}, A)}{P_{T,0} (\vec{x}_T, A_T | \vec{x}_0, A_0)} [\partial_t P_{T,0} (\vec{x}, A | \vec{x}_0, A_0)] \]

\[= - \frac{P_{T,0} (\vec{x}, A | \vec{x}_0, A_0)}{P_{T,0} (\vec{x}_T, A_T | \vec{x}_0, A_0)} [\mathcal{F}^\dagger P_{T,t} (\vec{x}_T, A_T | \vec{x}, A)] + \frac{P_{T,t} (\vec{x}_T, A_T | \vec{x}, A)}{P_{T,0} (\vec{x}_T, A_T | \vec{x}_0, A_0)} [\mathcal{F} P_{T,0} (\vec{x}, A | \vec{x}_0, A_0)] \]

(71)

(a) Forward perspective: equation (70) allows us to plug the propagator

\[P_{T,0} (\vec{x}, A | \vec{x}_0, A_0) = P^\text{Cond} T (\vec{x}, A) \frac{P_{T,0} (\vec{x}_T, A_T | \vec{x}_0, A_0)}{P_{T,t} (\vec{x}_T, A_T | \vec{x}, A)} \]

(72)

into equation (71) to obtain

\[\partial_t P^\text{Cond} T (\vec{x}, A) = - \frac{P^\text{Cond} T (\vec{x}, A)}{P_{T,t} (\vec{x}_T, A_T | \vec{x}, A)} [\mathcal{F}^\dagger P_{T,t} (\vec{x}_T, A_T | \vec{x}, A)] + P_{T,t} (\vec{x}_T, A_T | \vec{x}, A) \frac{P^\text{Cond} T (\vec{x}, A)}{P_{T,t} (\vec{x}_T, A_T | \vec{x}, A)} \]

(73)

or more explicitly using the forms of equations (66) and (68) for the differential generator \(\mathcal{F} \) and its adjoint \(\mathcal{F}^\dagger \)

https://doi.org/10.1088/1742-5468/ac4e81
\[\partial_t P^\text{Cond}_t(\vec{x}, A) = -\alpha[\vec{x}] \partial_A P^\text{Cond}_t(\vec{x}, A) - \sum_{i=1}^{d} (\partial_x + \beta_i[\vec{x}] \partial_A) \]

\[\times \left[\left(F_i[\vec{x}] + F_i^\text{Forward}[\vec{x}, A_0; t] \right) P^\text{Cond}_t(\vec{x}, A) \right] \]

\[+ \sum_{i=1}^{d} (\partial_x + \beta_i[\vec{x}] \partial_A) \left[D_i[\vec{x}] (\partial_x + \beta_i[\vec{x}] \partial_A) P^\text{Cond}_t(\vec{x}, A) \right], \quad (74) \]

where the only differences with respect to the forward joint Fokker–Planck dynamics of equation (67) are the additional time-dependent forces

\[F_i^\text{Forward}[\vec{x}, A_0; t][\vec{x}, A; t] \equiv 2D_i[\vec{x}] (\partial_x + \beta_i[\vec{x}] \partial_A) \ln P_{T,T}(\vec{x}_T, A_T|\vec{x}, A) \quad (75) \]

that involve the propagator \(P_{T,T}(\vec{x}_T, A_T|\vec{x}, A) \) up to the imposed final values \(\vec{x}_T, A_T \) at time \(T \). Equation (75) is the analog of equations (18) and (46).

(b) Backward perspective: equation (70) allows us to plug the propagator

\[P_{T,T}(\vec{x}_T, A_T|\vec{x}, A) = P^\text{Cond}_t(\vec{x}, A) \frac{P_{T,0}(\vec{x}_T, A_T|\vec{x}_0, A_0)}{P_{t,0}(\vec{x}, A|\vec{x}_0, A_0)} \quad (76) \]

into equation (71) to obtain

\[-\partial_t P^\text{Cond}_t(\vec{x}, A) = P_{t,0}(\vec{x}, A|\vec{x}_0, A_0) \left[\mathcal{F}^\dagger \frac{P^\text{Cond}_t(\vec{x}, A)}{P_{t,0}(\vec{x}, A|\vec{x}_0, A_0)} \right] \]

\[- \frac{P^\text{Cond}_t(\vec{x}, A)}{P_{t,0}(\vec{x}, A|\vec{x}_0, A_0)} \left[\mathcal{F} P_{t,0}(\vec{x}, A|\vec{x}_0, A_0) \right] \quad (77) \]

or more explicitly using the forms of equation (66) and (68) for the differential generator \(\mathcal{F} \) and its adjoint \(\mathcal{F}^\dagger \)

\[-\partial_t P^\text{Cond}_t(\vec{x}, A) = \alpha[\vec{x}] \partial_A P^\text{Cond}_t(\vec{x}, A) + \sum_{i=1}^{d} (\partial_x + \beta_i[\vec{x}] \partial_A) \]

\[\times \left[\left(F_i[\vec{x}] + F_i^\text{Backward}[\vec{x}_0, A_0; t] \right) P^\text{Cond}_t(\vec{x}, A) \right] \]

\[+ \sum_{i=1}^{d} (\partial_x + \beta_i[\vec{x}] \partial_A) \left[D_i[\vec{x}] (\partial_x + \beta_i[\vec{x}] \partial_A) P^\text{Cond}_t(\vec{x}, A) \right], \quad (78) \]

where the time-dependent forces

\[F_i^\text{Backward}[\vec{x}_0, A_0; t][\vec{x}, A; t] \equiv -2D_i[\vec{x}] (\partial_x + \beta_i[\vec{x}] \partial_A) \ln P_{t,0}(\vec{x}, A|\vec{x}_0, A_0) \quad (79) \]

involve the propagator \(P_{t,0}(\vec{x}, A|\vec{x}_0, A_0) \) up to the imposed initial values \(\vec{x}_0, A_0 \) at time \(t = 0 \) equation (79) is the analog of equations (23) and (49).
(c) The compatibility between the two dynamical equations of equations (74) and (77) can be checked via their sum that can be evaluated using the explicit expressions of equations (75) and (79) for the additional forces

$$0 = \sum_{i=1}^{d} (\partial_{x_i} + \beta_i[\vec{x}]\partial_A) \left[\left(F_i^{\text{Backw}[\vec{x}_0,A_0]}[\vec{x},A;t] - F_i^{\text{Forw}[\vec{x}_T,A_T;T]}[\vec{x},A;t] \right) P_t^{\text{Cond}}(\vec{x},A) + 2D_i[\vec{x}] (\partial_{x_i} + \beta_i[\vec{x}]\partial_A) P_t^{\text{Cond}}(\vec{x},A) \right]$$

$$= \sum_{i=1}^{d} (\partial_{x_i} + \beta_i[\vec{x}]\partial_A) 2D_i[\vec{x}] P_t^{\text{Cond}}(\vec{x},A) \left[(\partial_{x_i} + \beta_i[\vec{x}]\partial_A) \ln \frac{P_t^{\text{Cond}}(\vec{x},A)}{P_{T,0}(\vec{x}_T,A_T|\vec{x}_0,A_0)} \right]$$

$$= \sum_{i=1}^{d} (\partial_{x_i} + \beta_i[\vec{x}]\partial_A) 2D_i[\vec{x}] P_t^{\text{Cond}}(\vec{x},A) \left[(\partial_{x_i} + \beta_i[\vec{x}]\partial_A) \ln \frac{1}{P_{T,0}(\vec{x}_T,A_T|\vec{x}_0,A_0)} \right] = 0, \quad (80)$$

where we have used equation (70) to obtain the propagator $P_{T,0}(\vec{x}_T,A_T|\vec{x}_0,A_0)$ that does not depend upon (\vec{x},A).

(d) The half-difference between the two dynamical equations of equations (74) and (77) leads to the new dynamical equation involving only drift contributions

$$\partial_t P_t^{\text{Cond}}(\vec{x},A) = -\alpha[\vec{x}]\partial_A P_t^{\text{Cond}}(\vec{x},A) - \sum_{i=1}^{d} (\partial_{x_i} + \beta_i[\vec{x}]\partial_A) \sum_{j=1}^{d} \left(F_{ij}[\vec{x}] + F_{ij}^{[\vec{x}_T,A_T;T]}[\vec{x},A];t \right) P_t^{\text{Cond}}(\vec{x},A), \quad (81)$$

where the time-dependent additional forces

$$F_{ij}^{[\vec{x}_T,A_T;T]}[\vec{x},A];t \equiv \frac{F_{ij}^{\text{Forw}[\vec{x}_T,A_T;T]}[\vec{x},A];t + F_{ij}^{\text{Backw}[\vec{x}_0,A_0]}[\vec{x},A];t}{2}$$

$$= D_{ij}[\vec{x}] (\partial_{x_i} + \beta_i[\vec{x}]\partial_A) \ln \frac{P_{T,0}(\vec{x}_T,A_T|\vec{x}_0,A_0)}{P_{T,0}(\vec{x}_T,A_T;\vec{x}_0,A_0)} \quad (82)$$

involves both propagators $P_{T,0}(\vec{x}_T,A_T|\vec{x}_0,A_0)$ and $P_{T,0}(\vec{x}_T,A_T;\vec{x}_0,A_0)$.

5.3. Stratonovich stochastic differential equations for the conditioned process $\vec{x}^*(t), A^*(t)$

The forward Fokker–Planck dynamics of equation (74) can be translated into the following Stratonovich stochastic differential equations for the joint conditioned process $(\vec{x}^*(t), A^*(t))$. The d components $x^*_i(t)$ for $i = 1, \ldots, d$ of $\vec{x}^*(t)$ satisfy the Stratonovich stochastic differential equations in terms of d independent Brownian motions $B_i(t)$

$$\text{d}x^*_i(t) = \left(f_i[\vec{x}_i^*(t)] + F_i^{\text{Forw}[\vec{x}_T,A_T;T]}[\vec{x}_i^*(t),A^*(t);t] \right) \text{d}t + g_i[\vec{x}_i^*(t)] \text{d}B_i(t), \quad (83)$$

where the only differences with respect to the unconditioned case of equation (61) are the additional time-dependent forces $F_i^{\text{Forw}[\vec{x}_T,A_T;T]}[\vec{x}_i^*(t),A^*(t);t]$ given in equation (75).
Since the increment between t and $(t + dt)$ of the time-additive observable $A^*(t)$ can be rewritten in terms of $\vec{x}^*(t)$ and of the d Langevin increments $dx^*_i(t)$ of equation (83), the Stratonovich stochastic differential equation for $A^*(t)$ reads

$$
\mathrm{d}A^*(t) = A^*(t + dt) - A^*(t) = \alpha[\vec{x}^*(t)]\mathrm{d}t + \sum_{i=1}^d \beta_i[\vec{x}^*(t)]dx^*_i(t)
$$

$$
= \left[\alpha[\vec{x}^*(t)] + \sum_{i=1}^d \beta_i[\vec{x}^*(t)] \left(f_i[\vec{x}^*(t)] + F_{i\text{Forw}}[\vec{x}^*(t), A^*(t); t] \right) \right] \mathrm{d}t
$$

$$
+ \sum_{i=1}^d \beta_i[\vec{x}^*(t)]g_i[\vec{x}^*(t)]\mathrm{d}B_i(t)
$$

(84)

The Stratonovich stochastic differential equations of equations (83) and (84) can be then used to generate stochastic trajectories of the conditioned process $(\vec{x}^*(t), A^*(t))$.

5.4. Simple example: Brownian $B(t)$ as time-additive observable of the diffusion process $x(t)$

5.4.1. Brownian motion $B(t)$ conditioned on the value of the diffusion process $x(t)$.

Let us consider the one-dimensional diffusion process of equation (61)

$$
\mathrm{d}x(t) = f[x(t)]\mathrm{d}t + g[x(t)]\mathrm{d}B(t)
$$

(85)

associated to the Fokker–Planck equation (62)

$$
\partial_t P_t(x) = \partial_x \left[-F[x]P_t(x) + D[x]\partial_x P_t(x) \right]
$$

(86)

with the force and the diffusion coefficient of equation (63)

$$
F[x] = f[x] - \frac{g[x]g'[x]}{2}
$$

$$
D[x] = \frac{g^2[x]}{2}.
$$

(87)

As time-additive observable, let us choose the Brownian motion $B(t)$ satisfying equation (85)

$$
\mathrm{d}B(t) = -\frac{f[x(t)]}{g[x(t)]}\mathrm{d}t + \frac{1}{g[x(t)]}\mathrm{d}x(t)
$$

(88)

i.e. the two functions α and β are present in the parametrization of equation (64)
Brownian motion process (that appear in the Stratonovich stochastic differential equations for the conditioned time-additive observable x) of equation (93) as using equations (88) and (89) while the Stratonovich stochastic differential equation of equation (84) for $x(t)$ involves a Wiener process $W(t)$

$$\partial_t P_{t,t_0}(x,B|x_0,B_0) = \partial_x \left[-F[x]P_{t,t_0}(x,B|x_0,B_0) + D[x]\partial_x P_{t,t_0}(x,B|x_0,B_0)
+ \sqrt{2D[x]\partial_B P_{t,t_0}(x,B|x_0,B_0)} \right] + \frac{1}{2}\partial_B^2 P_{t,t_0}(x,B|x_0,B_0).$$

(90)

Since in the microcanonical conditioning framework one considers the joint process $(x(t),B(t))$, one can rephrase the ‘conditioning of the diffusion process $x(t)$ on its time-additive observable $B(t)$’ described above as the ‘conditioning of Brownian motion $B(t)$ on the diffusion process $x(t)$’. This rephrasing is interesting because the diffusion process $x(t)$ generated via equation (85) is not a time-additive observable of the Brownian motion $B(t)$.

When the joint propagator $P_{t,t_0}(x,B|x_0,B_0)$ of equation (90) is explicit, one can compute the additional time-dependent force of equation (75)

$$F_{\text{Forw}}[x,T] = 2D[x](\partial_x + \beta[x]\partial_B)\ln P_T(x,T|x,B)$$

(91)

that appear in the Stratonovich stochastic differential equations for the conditioned process $(x^*(t),B^*(t))$ as follows. The Stratonovich stochastic differential equation of equation (83) for $x^*(t)$ involves a Wiener process $W(t)$

$$dx^*(t) = \left(f[x^*(t)] + F_{\text{Forw}}[x^*,B^*;T]dx^*(t),B^*(t);t\right)dt + g[x^*(t)]dW(t)$$

(92)

while the Stratonovich stochastic differential equation of equation (84) for $B^*(t)$ reads using equations (88) and (89)

$$dB^*(t) = \frac{-f[x^*(t)]dt + dx^*(t)}{g[x^*(t)]}
= \frac{F_{\text{Forw}}[x^*,B^*;T]dx^*(t),B^*(t);t}{g[x^*(t)]}dt + dW(t).$$

(93)

The dynamics of equation (92) can also be rewritten in terms of the increment $dB^*(t)$ of equation (93) as

$$dx^*(t) = f[x^*(t)]dt + g[x^*(t)]dB^*(t).$$

(94)

5.4.2. Explicit solution when $x(t)$ is the Ornstein–Uhlenbeck process. In order to have a simple Gaussian solution for the joint propagator, let us now consider the case of the

https://doi.org/10.1088/1742-5468/ac4e81 24
Microcanonical conditioning of Markov processes on time-additive observables

Ornstein–Uhlenbeck process for \(x(t) \) corresponding to the constant diffusion coefficient and the linear restoring force:

\[
D[x] = D \\
F[x] = -x
\]

so that the corresponding stochastic differential equation reads

\[
dx(t) = -x(t)dt + \sqrt{2D} dB(t)
\]

both in the Stratonovich and in the Ito interpretations, since the diffusion constant is space-independent.

The forward Fokker–Planck equation (90) for the joint propagator \(P_{t,t_0}(x, B|x_0, B_0) \)

\[
\partial_t P_{t,t_0}(x, B|x_0, B_0) = \partial_x [xP_{t,t_0}(x, B|x_0, B_0)] + D \partial_x^2 P_{t,t_0}(x, B|x_0, B_0) \\
+ \sqrt{2D} \partial_x P_{t,t_0}(x, B|x_0, B_0) + \frac{1}{2} \partial_B^2 P_{t,t_0}(x, B|x_0, B_0)
\]

(97)

can be translated via the double Fourier transform

\[
\hat{P}_{t,t_0}(q, k|x_0, B_0) \equiv \int_{-\infty}^{\infty} dx e^{iqx} \int_{-\infty}^{\infty} dB e^{ikB} P_{t,t_0}(x, B|x_0, B_0)
\]

(98)

into the dynamical equation

\[
\partial_t \hat{P}_{t,t_0}(q, k|x_0, B_0) = -q \partial_q \hat{P}_{t,t_0}(q, k|x_0, B_0) - \left[Dq^2 + \sqrt{2D} qk + \frac{k^2}{2} \right] \hat{P}_{t,t_0}(q, k|x_0, B_0)
\]

(99)

and the initial conditions at \(t = t_0 \)

\[
\hat{P}_{t=t_0,t_0}(q, k|x_0, B_0) = \int_{-\infty}^{\infty} dx e^{iqx} \int_{-\infty}^{\infty} dB e^{ikB} \delta(x - x_0) \delta(B - B_0) = e^{iqx_0} e^{ikB_0}.
\]

(100)

The solution

\[
\hat{P}_{t,t_0}(q, k|x_0, B_0) = e^{-q^2 D[1-e^{-2(t-t_0)}]-q^2D\frac{t-t_0}{1-e^{-(t-t_0)}}+iqx_0e^{-t-t_0}+ikB_0}
\]

(101)

corresponds via the double-inverse Fourier transform of equation (98) to the bivariate Gaussian distribution

https://doi.org/10.1088/1742-5468/ac4e81
with the two variances

\[
\sigma^2(t, t_0) = D \left[1 - e^{-2(t-t_0)} \right] \\
v^2(t, t_0) = (t - t_0)
\]

and the rescaled correlation

\[
c(t, t_0) = \sqrt{\frac{2 \left[1 - e^{-(t-t_0)} \right]}{(t - t_0) \left[1 + e^{-(t-t_0)} \right]}}.
\]

The conditioned forward dynamics is then governed by the Fokker–Planck equation (74)

\[
\partial_t P_{t,0}^\text{Cond}(x, B) = -\partial_x \left[\left(-x + F_t^\text{Forw}[x_T,B_T:T](x, B) \right) P_{t,0}(x, B|x_0, B_0) \right] \\
\quad + D \partial_x^2 P_{t,0}(x, B|x_0, B_0) + \sqrt{2D} \partial_B P_{t,0}(x, B|x_0, B_0) \\
\quad + \frac{1}{2} \partial_B^2 P_{t,0}(x, B|x_0, B_0),
\]

where the only difference with respect to the forward Fokker–Planck dynamics of equation (97) is the additional time-dependent force of equation (75)

\[
F_t^\text{Forw}[x_T,B_T:T](x, B) \equiv 2D \left(\partial_x + \frac{1}{\sqrt{2D}} \partial_B \right) \ln P_{T,t}(x_T, B_T|x, B).
\]

Using the explicit form of equation (102) for the propagator, one obtains

\[
\ln P_{T,t}(x_T, B_T|x, B) = -\ln \left(2\pi \sigma(T, t) v(T, t) \sqrt{1 - c^2(T, t)} \right) \\
\quad - \frac{1}{2\left[1 - c^2(T, t) \right]} \left[\frac{x e^{-(T-t)} - x_T}{\sigma(T, t)} \right]^2 + \left(\frac{B - B_T}{v(T, t)} \right)^2 \\
\quad - 2c(T, t) \left(\frac{x e^{-(T-t)} - x_T}{\sigma(T, t)} \right) \left(\frac{B - B_T}{v(T, t)} \right)
\]

with the corresponding partial derivatives with respect to \(x \)
and with respect to

\[\partial_x \ln P_{T,t}(x_T, B_T|x, B) = \frac{e^{-(T-t)}}{\sigma(T, t)[1 - c^2(T, t)]} \left[\frac{\left(x e^{-(T-t)} - x_T \right)}{\sigma(T, t)} \right] + c(T, t) \left(\frac{B - B_T}{v(T, t)} \right) \] (108)

and with respect to \(B \)

\[\partial_B \ln P_{T,t}(x_T, B_T|x, B) = \frac{1}{v(T, t)[1 - c^2(T, t)]} \left[-\left(\frac{B - B_T}{v(T, t)} \right) \right] + c(T, t) \left(\frac{x e^{-(T-t)} - x_T}{\sigma(T, t)} \right) \] (109)

As a consequence, the additional time-dependent force of equation (106) is linear with respect to \(x \) and with respect to \(B \)

\[F_{t}^{\text{Forw}[x_T, B_T; T]}[x, B] = \left[\sqrt{2D} \partial_x \ln P_{T,t}(x_T, B_T|x, B) + \partial_B \ln P_{T,t}(x_T, B_T|x, B) \right] \]

\[= \frac{\sqrt{2D}}{[1 - c^2(T, t)]} \left[\frac{c(T, t)}{v(T, t)} - \frac{\sqrt{2D} e^{-(T-t)}}{\sigma(T, t)} \right] \left(\frac{x e^{-(T-t)} - x_T}{\sigma(T, t)} \right) + \frac{\sqrt{2D} c(T, t) e^{-(T-t)}}{\sigma(T, t)} - \frac{1}{v(T, t)} \left(\frac{B - B_T}{v(T, t)} \right) \] (110)

while the time-dependence is governed by the functions introduced in equations (103) and (104)

\[\sigma(T, t) = \sqrt{D \left[1 - e^{-2(T-t)} \right]} \]

\[v(T, t) = \sqrt{T-t} \]

\[c(T, t) = \frac{2 \left[1 - e^{-(T-t)} \right]}{(T-t) \left[1 + e^{-(T-t)} \right]} \] (111)

The explicit time-dependent force \(F_{t}^{\text{Forw}[x_T, B_T; T]}[x, B] \) of equation (110) can be then plugged into the stochastic differential equation of equation (93) involving a Wiener process \(W(t) \)

\[dB^*(t) = \frac{[x^*(t)dt + dx^*(t)]}{\sqrt{2D}} = \frac{F_{t}^{\text{Forw}[x_T, B_T; T]}[x^*(t), B^*(t); t]}{\sqrt{2D}} dt + dW(t) \] (112)

while the stochastic differential equation for \(x^*(t) \) can be written either as equation (92)

\[dx^*(t) = \left(-x^*(t) + F_{t}^{\text{Forw}[x_T, B_T; T]}[x^*(t), B^*(t); t] \right) dt + \sqrt{2D} dW(t) \] (113)
or as equation (94)
\[dx^*(t) = -x^*(t)dt + \sqrt{2D} dB^*(t) \quad (114) \]
in order to generate stochastic trajectories of the conditioned process \((x^*(t), B^*(t))\).

As a final remark, let us stress that other explicit examples of microcanonical conditioning for the Brownian motion or the Ornstein–Uhlenbeck process on various time-additive observables can be found in [75, 76, 80].

6. Conclusion

In this paper, the recent studies concerning the conditioning of one-dimensional diffusion processes or discrete-time random walks on global dynamical constraints over a finite time-window \(T\) [75, 76, 80] have been generalized to analyze the ‘microcanonical conditioning’ of Markov processes on time-additive observables. We have described the application to various types of Markov processes, namely discrete-time Markov chains, continuous-time Markov jump processes and diffusion processes in arbitrary dimension. In each setting, we have considered the most general time-additive observable that can involve both the time spent in each configuration and the elementary increments of the Markov process. We have illustrated the various cases via simple explicit examples. In the two appendices, we describe the link with the ‘canonical conditioning’ based on the generating function of the time-additive observable, that has been much studied recently in the field of non-equilibrium steady states [16, 31–74] as recalled in the introduction.

We hope that the present general formulation of the ‘microcanonical conditioning’ of Markov processes on time-additive observables will be helpful to identity new soluble cases besides the various explicit solutions given in the recent works [75, 76, 80].

Appendix A. Links with the canonical conditioning on a time-additive observable for finite time \(T\)

As recalled in more details in the introduction, the ‘canonical conditioning’ of Markov processes has been much studied recently in the field of non-equilibrium steady states [16, 31–74]. In this appendix, it is thus interesting to describe the links with the microcanonical conditioning considered in the main text.

A.1. Generating function \(Z_{t_0}^{[k]}(x|x_0)\) of the total increment \(A(t) − A(t_0) = A[x(t_0 ≤ s ≤ t)]\)

Here the basic object is the generating function \(Z_{t_0}^{[k]}(x|x_0)\) of the total increment \(A(t) − A(t_0) = A[x(t_0 ≤ s ≤ t)]\) over the Markov trajectories \(x(t_0 ≤ s ≤ t)\) starting at \(x(t_0) = x_0\) and ending at \(x(t) = x\)

\[Z_{t_0}^{[k]}(x|x_0) \equiv \langle \delta_{x(t),x} e^{kA[x(t_0 ≤ s ≤ t)]} \delta_{x(t_0),x_0} \rangle. \quad (A1) \]
For fixed k, the generating function $Z^{[k]}_{t,t_0}(x|x_0)$ satisfies

(a) Some forward k-dependent dynamics with respect to the final state x at time t, that can be obtained from the forward dynamics of the joint propagator $P_{t,t_0}(x, A|x_0, A_0)$ of equation (2) via

$$Z^{[k]}_{t,t_0}(x|x_0) = \sum_A e^{kA} P_{t,t_0}(x, A|x_0, A_0 = 0)$$ \hspace{1cm} (A2)

(b) Some backward k-dependent dynamics with respect to the initial state x_0 at time t_0, that can be obtained from the backward dynamics of the joint propagator $P_{t,t_0}(x, A|x_0, A_0)$ of equation (2) via

$$Z^{[k]}_{t,t_0}(x|x_0) = \sum_{A_0} e^{-kA_0} P_{t,t_0}(x, A = 0|x_0, A_0).$$ \hspace{1cm} (A3)

Here it is important to stress that these two dynamics are not probability-conserving Markov dynamics, since $Z^{[k]}_{t,t_0}(x|x_0)$ is a generating function and not a probability.

A.1.1. Dynamics of the generating function $Z^{[k]}_{t,t_0}(x|x_0)$ for discrete-time Markov chains of section 3. The joint generator $W(x, A; x', A')$ of equation (11) is in correspondence with the k-tilted matrix

$$W^{[k]}(x; x') = \sum_A W(x, A; x', A') e^{k(A-A')} = W(x; x') e^{k\beta(x,x')}.$$ \hspace{1cm} (A4)

(a) The forward dynamics of equation (13) for the joint propagator $P_{t,t_0}(x, A|x_0, A_0)$ translates into the following forward dynamics for the generating function $Z^{[k]}_{t,t_0}(x|x_0)$ via equation (A2)

$$Z^{[k]}_{t+1,t_0}(x|x_0) = \sum_{x'} W^{[k]}(x; x') Z^{[k]}_{t,t_0}(x'|x_0)$$ \hspace{1cm} (A5)

(b) The backward dynamics of equation (14) for the joint propagator $P_{t,t_0}(x, A|x_0, A_0)$ translates into the following backward dynamics for the generating function via equation (A3)

$$Z^{[k]}_{t,t_0-1}(x|x_0) = \sum_{x_0'} Z_{t,t_0}(x|x_0') W^{[k]}(x_0'; x_0)$$ \hspace{1cm} (A6)

A.1.2. Dynamics of the generating function $Z^{[k]}_{t,t_0}(x|x_0)$ for continuous-time Markov jump processes of section 4. The jump-drift dynamics of equations (36) and (38) is in correspondence with the k-tilted matrix

$$w^{[k]}(x; x) \equiv k\alpha(x) - \sum_{x' \neq x} w(x'|x)$$

$$w^{[k]}(x; x') \equiv w(x; x') e^{k\beta(x,x')} \quad \text{for } x \neq x'$$ \hspace{1cm} (A7)

https://doi.org/10.1088/1742-5468/ac4e81 29
(a) The forward dynamics of equation (39) for the joint propagator $P_{t,t_0}(x, A|x_0, A_0)$ translates into the following forward dynamics for the generating function $Z^{[k]}_{t,t_0}(x|x_0)$ via equation (A2)
\[
\partial_t Z^{[k]}_{t,t_0}(x|x_0) = \sum_{x'} w^{[k]}(x;x') Z^{[k]}_{t,t_0}(x'|x_0)
\] (A8)

(b) The backward dynamics of equation (40) for the joint propagator $P_{t,t_0}(x, A|x_0, A_0)$ translates into the following backward dynamics for the generating function via equation (A3)
\[
-\partial_0 Z^{[k]}_{t,t_0}(x|x_0) = \sum_{x'_0} Z^{[k]}_{t,t_0}(x|x'_0) w^{[k]}(x'_0;x_0).
\] (A9)

A.1.3. Dynamics of the generating function $Z^{[k]}_{t,t_0}(\vec{x}|\vec{x}_0)$ for diffusion processes of section 5.

(a) The forward generator of equation (66) corresponds to the k-tilted differential operator
\[
\mathcal{F}_k = k\alpha[\vec{x}] - \sum_{i=1}^d (\partial_i - k\beta_i[\vec{x}]) F_i[\vec{x}] + \sum_{i=1}^d (\partial_i - k\beta_i[\vec{x}]) D_i[\vec{x}] (\partial_i - k\beta_i[\vec{x}]).
\] (A10)

The forward dynamics of equation (67) for the joint propagator $P_{t,t_0}(\vec{x}, A|\vec{x}_0, A_0)$ translates for the generating function via equation (A2) into the forward dynamics
\[
\partial_t Z^{[k]}_{t,t_0}(\vec{x}|\vec{x}_0) \equiv \mathcal{F}_k Z^{[k]}_{t,t_0}(\vec{x}|\vec{x}_0)
\]
\[
= k\alpha[\vec{x}] Z^{[k]}_{t,t_0}(\vec{x}|\vec{x}_0) - \sum_{i=1}^d (\partial_i - k\beta_i[\vec{x}]) \left[F_i[\vec{x}] Z^{[k]}_{t,t_0}(\vec{x}|\vec{x}_0) \right]
\]
\[
+ \sum_{i=1}^d (\partial_i - k\beta_i[\vec{x}]) \left[D_i[\vec{x}] (\partial_i - k\beta_i[\vec{x}]) \left(Z^{[k]}_{t,t_0}(\vec{x}|\vec{x}_0) \right) \right].
\] (A11)

(b) The backward dynamics of equation (69) for the joint propagator $P_{t,t}(\vec{x}_T, A_T|\vec{x}, A)$ can be translated for the generating function via equation (A3) into the backward dynamics
\[-\partial_t Z_{T,j}^k(x_T|x) = k\alpha[x] Z_{T,j}^k(x_T|x) + \sum_{i=1}^d F_i[x] (\partial_i + k\beta_i[x]) Z_{T,j}^k(x_T|x) \]
+ \sum_{i=1}^d (\partial_i + k\beta_i[x]) \left[D_i[x] (\partial_i + k\beta_i[x]) Z_{T,j}^k(x_T|x) \right]
\equiv F_k^\dagger Z_{t,0}^k(x|x_0) \]
(A12)

involving the adjoint operator of equation (A10)

\[F_k^\dagger = k\alpha[x] + \sum_{i=1}^d F_i[x] (\partial_i + k\beta_i[x]) + \sum_{i=1}^d (\partial_i + k\beta_i[x]) D_i[x] (\partial_i + k\beta_i[x]). \]
(A13)

A.2. Conditional probability \(P_{t}^{\text{Cond}[k]}(x) \) if starting at \(x_0 \) at time \(t = 0 \) and ending at \(x_T \) at time \(t = T \)

Even if it is not a conserved probability, the generating function \(Z_{T,0}^k(x_T|x_0) \) satisfies nevertheless some analog of the Chapman–Kolmogorov equation (3) as a consequence of the additivity property of equation (1)

\[\mathcal{A}[x(0 \leq s \leq T)] = \mathcal{A}[x(0 \leq s \leq t)] + \mathcal{A}[x(t \leq s \leq T)] \]
(A14)

that can be plugged into the definition of equation (A1) to obtain

\[Z_{T,0}^k(x_T|x_0) = \left< \delta_{x(T),x_T} e^{kA[x(t \leq s \leq T)]} \left[\sum_x \delta_{x(t),x} \right] e^{kA[x(0 \leq s \leq t)]} \delta_{x(0),x_0} \right> \]
\[= \sum_x Z_{T,j}^k(x_T|x) Z_{t,0}^k(x|x_0). \]
(A15)

For each \(k \), one can thus introduce the conditional probability \(P_{t}^{\text{Cond}[k]}(x) \) to see the value \(x \) at the internal time \(t \in]0, T[\)

\[P_{t}^{\text{Cond}[k]}(x) = \frac{Z_{t,j}^k(x_T|x) Z_{t,0}^k(x|x_0)}{Z_{T,0}^k(x_T|x_0)}. \]
(A16)

It is normalized as a consequence of equation (A15)

\[\sum_x P_{t}^{\text{Cond}[k]}(x) = 1 \]
(A17)

and it satisfies the fixed boundary conditions at time \(t = 0 \) and at time \(t = T \)
\[p_{t_0}^{\text{Cond}[k]}(x) = \frac{Z_{t_0}^{[k]}(xT|x_0)Z_{0,0}^{[k]}(x|x_0)}{Z_{t_0}^{[k]}(xT|x_0)} = \delta_{x,x_0} \]

\[p_{t}^{\text{Cond}[k]}(x) = \frac{Z_{tT}^{[k]}(xT|x)Z_{T,0}^{[k]}(x|x_0)}{Z_{T,0}^{[k]}(xT|x_0)} = \delta_{x,x_T}. \]

(A18)

A.3. Markov dynamics for the conditional probability \(p_{t}^{\text{Cond}[k]}(x) \)

The Markov dynamics of the conditional probability \(p_{t}^{\text{Cond}[k]}(x) \) can be derived from the Markov dynamics satisfied by the two generating functions in the numerator of equation (A16), namely:

(a) The forward dynamics of the generating function \(Z_{t_0}^{[k]}(xT|x_0) \) with respect to its final variable \(x \) at time \(t \)

(b) The backward dynamics of the generating function \(Z_{T,t}^{[k]}(xT|x) \) with respect to its initial variable \(x \) at time \(t \).

A.3.1. Forward dynamics of the conditional probability \(p_{t}^{\text{Cond}[k]}(x) \) for discrete-time Markov chains of section 3. For the case of discrete-time Markov chains of section 3, the conditional probability of equation (A16) satisfies the forward dynamics

\[p_{t+1}^{\text{Cond}[k]}(x) = \sum_{x'} W_{t+1/2}^{\text{Forw}[k;xT,T]}(x; x') p_{t}^{\text{Cond}[k]}(x'), \]

(A19)

where the effective probabilities

\[W_{t+1/2}^{\text{Forw}[k;xT,T]}(x; x') = Z_{t+1}^{[k]}(xT|x) W_{t}^{[k]}(x'; x) \frac{1}{Z_{T,t}^{[k]}(xT|x')} \]

(A20)

involve the conjugation of the \(k \)-tilted matrix \(W^{[k]}(x'; x) \) of equation (A4) with the generating functions \(Z_{t+1}^{[k]}(xT|x) \) and \(Z_{T,t}^{[k]}(xT|x') \) up to the imposed final value \(x_T \) at time \(T \). Equation (A20) is the analog of equation (18) concerning the microcanonical conditioning.

A.3.2. Forward dynamics of the conditional probability \(p_{t}^{\text{Cond}[k]}(x) \) for continuous-time Markov jump processes of section 4. For the case of continuous-time Markov jump processes of section 4, the conditional probability of equation (A16) satisfies the forward dynamics

\[\partial_t p_{t}^{\text{Cond}[k]}(x) = \sum_{x' \neq x} \left[w_{t}^{\text{Forw}[k;xT,T]}(x; x') p_{t}^{\text{Cond}[k]}(x') \right. \\

\left. - w_{t}^{\text{Forw}[k;xT,T]}(x'; x) p_{t}^{\text{Cond}[k]}(x) \right], \]

(A21)

https://doi.org/10.1088/1742-5468/ac4e81
where the effective rates
\[w^\text{Forw}[k; x_T; T](x; x') = Z_T^{|k|}_T(x_T|x) w^{|k|}(x; x') \frac{1}{Z_T^{|k|}_T(x_T|x')} \quad \text{for } x \neq x' \quad (A22) \]
involve the conjugation of the \(k \)-tilted matrix of equation (A7) with the generating functions \(Z_T^{|k|}_T(x_T|x) \) and \(Z_T^{|k|}_T(x_T|x') \) up to the imposed final value \(x_T \) at time \(T \). Equation (A22) is the analog of equation (46) concerning the microcanonical conditioning.

A.3.3. Forward dynamics of the conditional probability \(P^\text{Cond}[k]_t(\vec{x}) \) for diffusion processes of section 5. For the case of diffusion processes of section 5, the conditional probability of equation (A16) satisfies the forward dynamics
\[
\partial_t P^\text{Cond}[k]_t(\vec{x}) = -\sum_{i=1}^{d} \partial_{x_i} \left[\left(F_i[\vec{x}] + F^\text{Forw}[k; \vec{x}_T; T][\vec{x}'; t] \right) P^\text{Cond}[k]_t(\vec{x}) \right]
+ \sum_{i=1}^{d} \partial_{x_i} \left[D_i[\vec{x}] \partial_{x_i} P^\text{Cond}[k]_t(\vec{x}) \right], \quad (A23)
\]
where the additional time-dependent force
\[
F^\text{Forw}[k; \vec{x}_T; T]_i[\vec{x}'; t] \equiv 2D_i[\vec{x}] \left[k \beta_i[\vec{x}] + \partial_{x_i} \ln Z_T^{|k|}(\vec{x}_T|\vec{x}) \right] \quad (A24)
\]
is the analog of equation (75) concerning the microcanonical conditioning.

The forward Fokker–Planck dynamics of equation (A23) can be translated into the following Stratonovich stochastic differential equations for the \(d \) components \(x^*_i(t) \) for \(i = 1, \ldots, d \) in terms of \(d \) independent Brownian motions \(B_i(t) \)
\[
dx_i^*(t) = \left(f_i[\vec{x}^*_t(t)] + F^\text{Forw}[k; \vec{x}_T; T][\vec{x}^*_t(t); t] \right) dt + g_i[\vec{x}^*_t(t)] dB_i(t), \quad (A25)
\]
where the only differences with respect to the unconditioned case of equation (61) are the additional time-dependent forces \(F^\text{Forw}[k; \vec{x}_T; T][\vec{x}'; t] \) given in equation (A24).

Appendix B. Reminder on the conditioning for large \(T \) when there is a normalizable steady state \(P_{st}(x) \)

In this appendix, the Markov processes \(x(t) \) is assumed to converge toward some normalizable steady-state \(P_{st}(x) \). This steady state \(P_{st}(x) \) can be interpreted as the positive eigenvector \(\langle x|r_0 \rangle = r_0(x) \) associated to the highest eigenvalue of the Markov generator
\[
P_{st}(x) = \langle x|r_0 \rangle = r_0(x) \quad (B1)
\]
while the corresponding positive left eigenvector is constant
\[
\langle l_0|x \rangle = l_0(x) = 1. \quad (B2)
\]
When the time interval \((t - t_0)\) becomes large, the propagator \(P_{t,t_0}(x,x_0)\) is dominated by this highest eigenvalue contribution

\[
P_{t,t_0}(x,x_0) \xrightarrow{(t-t_0) \to +\infty} \langle x | r_0 \rangle \langle l_0 | x_0 \rangle = r_0(x)l_0(x) = P_{st}(x)
\]

and describes the convergence toward the steady state \(P_{st}(x)\) for any initial condition \(x_0\).

B.1. Asymptotic analysis of the generating function \(Z_{t,t_0}^k(x|x_0)\) for large time interval \((t - t_0)\)

For \(k = 0\), the generating function of equation (A1) coincides with the propagator \(P_{t,t_0}(x,x_0)\) discussed above

\[
Z_{t,t_0}^{[k=0]}(x|x_0) = P_{t,t_0}(x,x_0).
\]

As a consequence for \(k \neq 0\), at least in some region around \(k = 0\), one expects that for large time-interval \((t - t_0)\), the generating function will be similarly dominated by the contribution of the highest eigenvalue of the appropriate \(k\)-deformed generator

\[
Z_{t,t_0}^{[k]}(x|x_0) \xrightarrow{(t-t_0) \to +\infty} e^{(t-t_0)G(k)} \langle x | r_k \rangle \langle l_k | x_0 \rangle = e^{(t-t_0)G(k)} r_k(x)l_k(x_0)
\]

with its positive right eigenvector \(r_k(x) \geq 0\) and its positive left eigenvector \(l_k(x) \geq 0\) satisfying the normalization

\[
1 = \langle l_k | r_k \rangle = \sum_x \langle l_k | x \rangle \langle x | r_k \rangle = \sum_x r_k(x)l_k(x)
\]

while \([(t - t_0)G(k)]\) represents the generating function of the cumulants of the time-additive observable \(A_{t,t_0}\), i.e. \(G(k)\) corresponds to the scaled cumulants generating function in the large deviations theory, as recalled in more details below in subsection B.3.

B.2. Asymptotic analysis of the conditional probability \(\mathcal{P}_t^{Cond|k}(x)\) at some interior time \(0 \ll t \ll T\)

For large \(T\), if one is interested at some interior time \(t\) satisfying \(0 \ll t \ll T\), one can plug the asymptotic behavior of equation (B5) into the three generating functions of equation (A16) to obtain the asymptotic behavior of the conditional probability

\[
\mathcal{P}_t^{Cond|k}(x) \xrightarrow{0 \ll t \ll T} \frac{e^{(T-t)G(k)} r_k(x_T)l_k(x) e^{G(k)} r_k(x)l_k(x_0)}{e^{TG(k)} r_k(x_T)l_k(x_0)} = l_k(x) r_k(x).
\]

Since it is independent of the interior time \(t\) as long as \(0 \ll t \ll T\), it is useful to introduce the notation

\[
\rho_k(x) \equiv l_k(x) r_k(x)
\]

for the stationary density of the conditional probability \(\mathcal{P}_t^{Cond|k}(x)\) in the interior time region \(0 \ll t \ll T\).
B.3. Physical meaning of the canonical k-conditioning in terms of the large deviations properties of $A(t)$

Since the time-additive observable $A(t)$ of equation (1) is extensive with respect to the time-interval, it is useful to introduce its rescaled intensive counterpart

$$a_{t,t_0} \equiv \frac{A(t) - A(t_0)}{t - t_0} = \frac{A[x(t_0 \leq s \leq t)]}{t - t_0} \quad (B9)$$

that will converge toward its steady value a_{st} that can be computed from the steady state $P_{st}(x)$ and from the corresponding steady flows

$$a_{t,t_0} \underset{(t-t_0) \to \infty}{\sim} a_{st} \quad (B10)$$

The probability $P_{t,t_0}(a)$ to see the value a different from this steady value a_{st} displays the large deviations form with respect to the time interval $(t-t_0)$

$$P_{t,t_0}(a) \underset{(t-t_0) \to +\infty}{\sim} e^{-\int (t-t_0) I(a)}, \quad (B11)$$

where the positive rate function $I(a) \geq 0$ vanishes only for the steady value a_{st} of equation (B10)

$$I(a_{st}) = 0. \quad (B12)$$

The generating function of the additive observable $A[x(t_0 \leq s \leq t) = A(t) - A(t_0) = (t-t_0)a_{t,t_0}$ can be evaluated from equation (B11) via the saddle-point method for large $(t-t_0)$

$$\langle e^{kA[x(t_0 \leq s \leq t)} \rangle = \langle e^{k(t-t_0)a_{t,t_0}} \rangle \equiv \int da e^{k(t-t_0)a} P_{t,t_0}(a) \underset{(t-t_0) \to +\infty}{\sim} \int da e^{(t-t_0)|ka-I(a)|} \underset{(t-t_0) \to +\infty}{\sim} e^{(t-t_0)G(k)}. \quad (B13)$$

So the scaled cumulants generating function $G(k)$ that has been introduced in equation (B5) is the Legendre transform of the rate function $I(a)$

$$ka - I(a) = G(k)$$
$$k - I'(a) = 0 \quad (B14)$$

while the reciprocal Legendre transform reads

$$ka - G(k) = I(a)$$
$$a - G'(k) = 0. \quad (B15)$$

As a consequence, the canonical k-conditioning discussed around equation (B8) can be considered as asymptotically equivalent to the microcanonical conditioning on the intensive additive variable at the corresponding Legendre value $a = G'(k)$ of equation (B15).
B.4. Corresponding time-independent generators of the conditioned dynamics for $1 \ll t \ll T$

B.4.1. Forward dynamics of the conditional probability $P^{\text{Cond}[k]}_t(x)$ for discrete-time Markov chains of section 3. For the case of discrete-time Markov chains of section 3, the asymptotic form of equation (B5) for the generating function yields that the effective probabilities of equation (A20) become time-independent in the regime $1 \ll t \ll T$

$$W_{t+1/2}^{\text{Forw}[k; x_T; T]}(x; x') \simeq \frac{1}{1 \ll t \ll T} e^{(T-t-1)G(k)l_k(x_T)} l_k(x) W^{[k]}(x; x') \frac{1}{e^{(T-t)G(k)l_k(x_T)} l_k(x')} \frac{1}{e^{G(k)l_k(x)}} \frac{1}{l_k(x')},$$

where $e^{G(k)}$ is the highest eigenvalue of the k-tilted matrix $W^{[k]}(x; x')$ of equation (A4), while $l_k(\cdot)$ is the corresponding positive eigenvector

$$e^{G(k)}l_k(x') = \sum_x l_k(x) W^{[k]}(x; x').$$

The corresponding positive right eigenvector $r_k(\cdot)$

$$e^{G(k)}r_k(x) = \sum_{x'} W^{[k]}(x; x') r_k(x'),$$

appears in the conditioned steady state of equation (B8) together with the left eigenvector $l_k(\cdot)$.

B.4.2. Forward dynamics of the conditional probability $P^{\text{Cond}[k]}_t(x)$ for continuous-time Markov jump processes of section 4. For the case of continuous-time Markov jump processes of section 4, the asymptotic form of equation (B5) for the generating function yields that the effective rates of equation (A22) become time-independent in the regime $1 \ll t \ll T$

$$w^{\text{Forw}[k; x_T; T]}_t(x; x') \simeq \frac{1}{1 \ll t \ll T} l_k(x) w^{[k]}(x; x') \frac{1}{l_k(x')} \frac{1}{l_k(x')} \frac{1}{l_k(x')} \text{ for } x \neq x',$$

where $l_k(\cdot)$ is the positive eigenvector associated to the highest eigenvalue $G(k)$ of the k-tilted matrix $w^{[k]}(x; x')$ of equation (A7)

$$G(k)l_k(x') = \sum_x l_k(x) w^{[k]}(x; x') = l_k(x') w^{[k]}(x'; x') + \sum_{x \neq x'} l_k(x) w^{[k]}(x; x').$$

Via the conservation of probability, the diagonal element can be computed in terms of the off-diagonal elements of equation (B19) using the eigenvalue equation (B20)
Microcanonical conditioning of Markov processes on time-additive observables

\[w_t^{\text{Forw}[k;x_T;T]}(x'; x) = - \sum_{x \neq x'} w_t^{\text{Forw}[k;x_T;T]}(x; x') \]

\[\simeq \frac{1}{l_k(x')} \left[\sum_{x \neq x'} l_k(x) w^k(x; x') \right] \]

\[= - \left[G(k) l_k(x') - l_k(x') w^k(x'; x') \right] \frac{1}{l_k(x')} \]

\[= w^k(x'; x') - G(k) \] \hspace{1cm} (B21)

so that it involves the diagonal element \(w^k(x'; x') \) and the eigenvalue \(G(k) \).

The positive right eigenvector \(r_k(\cdot) \) of the \(k \)-tilted matrix \(w^k(x; x') \)

\[G(k) r_k(x) = \sum_{x'} w^k(x; x') r_k(x') \] \hspace{1cm} (B22)

appears in the conditioned steady state of equation (B8) together with the left eigenvector \(l_k(\cdot) \).

B.4.3. Forward dynamics of the conditional probability \(\mathcal{P}_{\text{Cond}}^{[k]}(\vec{x}) \) for diffusion processes of section 5. For the case of diffusion processes of section 5, the asymptotic form of equation (B5) for the generating function yields that the effective additional force of equation (B24) becomes time-independent in the regime \(1 \ll t \ll T \)

\[F_t^{\text{Forw}[k;\vec{x}_T;T]}(\vec{x}; t) \simeq 2D_1[\vec{x}] \left(k \beta_1[\vec{x}] + \partial_x \ln \left[e^{(T-t)G(k)} r_k(\vec{x}_T) l_k(\vec{x}) \right] \right) \]

\[= 2D_1[\vec{x}] \left(k \beta_1[\vec{x}] + \partial_x \ln \left[l_k(\vec{x}) \right] \right), \] \hspace{1cm} (B23)

where \(l_k(\cdot) \) is the positive eigenvector associated to the highest eigenvalue \(G(k) \) of the adjoint differential operator \(\mathcal{F}_k^\dagger \) of equation (A13)

\[G(k) l_k(\vec{x}) = \mathcal{F}_k^\dagger l_k(\vec{x}) = k \alpha[\vec{x}] l_k(\vec{x}) + \sum_{i=1}^d F_i[\vec{x}] \left(\partial_i + k \beta_i[\vec{x}] \right) l_k(\vec{x}) \]

\[+ \sum_{i=1}^d \left(\partial_i + k \beta_i[\vec{x}] \right) \left[D_i[\vec{x}] \left(\partial_i + k \beta_i[\vec{x}] \right) l_k(\vec{x}) \right]. \] \hspace{1cm} (B24)

The corresponding positive eigenvector \(r_k(\cdot) \) of the operator \(\mathcal{F}_k \) of equation (A13)

\[G(k) r_k(\vec{x}) = \mathcal{F}_k r_k(\vec{x}) = k \alpha[\vec{x}] r_k(\vec{x}) - \sum_{i=1}^d \left(\partial_i - k \beta_i[\vec{x}] \right) [F_i[\vec{x}] r_k(\vec{x})] \]

\[+ \sum_{i=1}^d \left(\partial_i - k \beta_i[\vec{x}] \right) \left[D_i[\vec{x}] \left(\partial_i - k \beta_i[\vec{x}] \right) r_k(\vec{x}) \right]. \] \hspace{1cm} (B25)

https://doi.org/10.1088/1742-5468/ac4e81
appears in the conditioned steady state of equation (B8) together with the left eigenvector $l_k(\cdot)$.

References

[1] Oono Y 1989 Prog. Theor. Phys. Suppl. 99 165
[2] Ellis R S 1999 Physica D 133 106
[3] Touchette H 2009 Phys. Rep. 478 1
[4] de La Fortelle A 2000 Contributions to the theory of large deviations and applications PhD Thesis INRIA Rocquencourt
[5] Fayolle G and de La Fortelle A 2002 Probl. Inf. Transm. 38 354
[6] Monthus C 2019 Revisiting classical and quantum disordered systems from the unifying perspective of large deviations Eur. Phys. J. B 92 149
[7] Monthus C 2021 J. Stat. Mech. 033204
[8] Monthus C 2021 J. Stat. Mech. 063211
[9] de La Fortelle A 2001 Probl. Inf. Transm. 37 120
[10] Maes C and Netočný K 2008 Europhys. Lett. 82 30003
[11] Maes C, Netočný K and Wynants B 2008 Markov Proc. Rel. Fields. 14 445
[12] Wynants B 2010 Structures of nonequilibrium fluctuations PhD Thesis Catholic University of Leuven
[13] Barato A C and Chétrite R 2015 J. Stat. Phys. 160 1154
[14] Bertini L, Faggionato A and Gabrielli D 2015 Ann. Inst. Henri Poincare B 51 867
[15] Bertini L, Faggionato A and Gabrielli D 2015 Stoch. Process. Appl. 125 2786
[16] Chétrite R 2018 Pérégrinations sur les phénomènes aléatoires dans la nature HDR Thesis Laboratoire J.A. Dieudonné, Université de Nice
[17] Monthus C 2019 J. Stat. Mech. 023206
[18] Monthus C 2019 J. Phys. A: Math. Theor. 52 135003
[19] Monthus C 2019 J. Phys. A: Math. Theor. 52 025001
[20] Monthus C 2019 J. Phys. A: Math. Theor. 52 485001
[21] Barato A C and Chétrite R 2018 J. Stat. Mech. 053207
[22] Chabane L, Chétrite R and Verley G 2020 J. Stat. Mech. 033208
[23] Monthus C 2021 J. Stat. Mech. 083212
[24] Monthus C 2021 J. Stat. Mech. 083205
[25] Monthus C 2021 J. Stat. Mech. 03202
[26] Monthus C 2022 J. Stat. Mech. 013206
[27] Monthus C 2022 arXiv:2109.05924
[28] Monthus C 2022 J. Stat. Mech. 123205
[29] Maes C, Netočný K and Wynants B 2008 Physica A 387 2675
[30] Hoppenau J, Nickelsen D and Engel A 2016 New J. Phys. 18 083010
[31] Monthus C 2021 J. Stat. Mech. 033303
[32] Giardinà C, Kurchan J and Peliti L 2006 Phys. Rev. Lett. 96 120603
[33] Derrida B 2007 J. Stat. Mech. P07023
[34] Giardinà C, Kurchan J, Leconte V and Tailleur J 2011 J. Stat. Phys. 145 787
[35] Jack R L and Sollich P 2015 Eur. Phys. J. Spec. Top. 224 2351
[36] Lazarescu A 2015 J. Phys. A: Math. Theor. 48 503001
[37] Lazarescu A 2017 J. Phys. A: Math. Theor. 50 254004
[38] Jack R L 2020 Eur. Phys. J. B 93 74
[39] Leconte V 2007 Thermodynamique des histoires et fluctuations hors d’équilibre PhD Thesis Université Paris
[40] Leconte V, Appert-Rolland C and van Wijland F 2005 Phys. Rev. Lett. 95 010601
[41] Leconte V, Appert-Rolland C and van Wijland F 2007 J. Stat. Phys. 127 51
[42] Leconte V, Appert-Rolland C and van Wijland F 2007 C. R. Phys. 8 609
[43] Garrahan J P, Jack R L, Leconte V, Pitard E, van Duijvendijk K and van Wijland F 2007 Phys. Rev. Lett. 98 195702
[44] Garrahan J P, Jack R L, Leconte V, Pitard E, van Duijvendijk K and van Wijland F 2009 J. Phys. A: Math. Theor. 42 075007
[45] van Duijvendijk K, Jack R L and van Wijland F 2010 Phys. Rev. E 81 011110
[46] Jack R L and Sollich P 2010 Prog. Theor. Phys. Suppl. 184 304

https://doi.org/10.1088/1742-5468/ac4e81
Microcanonical conditioning of Markov processes on time-additive observables

[47] Simon D 2009 J. Stat. Mech. P07017
[48] Popkov V, Schütz G M and Simon D 2010 J. Stat. Mech. P10007
[49] Simon D 2011 J. Stat. Phys. 142 931
[50] Popkov V and Schütz G M 2011 J. Stat. Phys. 142 627
[51] Belitsky V and Schütz G M 2013 J. Stat. Phys. 152 93
[52] Hirschberg O, Mukamel D and Schütz G M 2015 J. Stat. Mech. P11023
[53] Schuetz G M 2015 From Particle Systems to Partial Differential Equations II (Springer Proceedings in Mathematics and Statistics) vol 129 ed P Goncalves and A J Soares (Berlin: Springer) pp 371–93
[54] Chétrite R and Touchette H 2013 Phys. Rev. Lett. 111 120601
[55] Chétrite R and Touchette H 2015 Ann. Henri Poincare 16 2005
[56] Chétrite R and Touchette H 2015 J. Stat. Mech. P07017
[57] Nyawo P T and Touchette H 2016 Phys. Rev. E 94 032101
[58] Touehette H 2018 Physica A 504 5
[59] Angeletti F and Touchette H 2013 Phys. Rev. Lett. 111 120601
[60] Angeletti F and Touchette H 2015 Ann. Henri Poincare 16 2005
[61] Angeletti F and Touchette H 2015 J. Stat. Mech. P12001
[62] Nyawo P T and Touchette H 2016 Phys. Rev. E 94 032101
[63] Touchette H 2018 Physica A 504 130
[64] Roldan E and Vivo P 2019 Phys. Rev. E 100 042108
[65] Lazarescu A, Cossetto T, Falasco G and Esposito M 2019 J. Chem. Phys. 151 064117
[66] Derrida B and Sadjdu T 2019 J. Stat. Phys. 176 773
[67] Derrida B and Sadjdu T 2019 J. Stat. Phys. 177 151
[68] Garrahan J P 2019 Physica A 504 130
[69] du Buisson J and Touchette H 2020 Phys. Rev. E 102 012148
[70] Mallmin E, du Buisson J and Touchette H 2021 J. Phys. A: Math. Theor. 54 295001
[71] Carollo F, Garrahan J P, Lesanovsky I and Perez-Espigares C 2018 Phys. Rev. A 98 010103
[72] Carollo F, Jack R L and Garrahan J P 2019 Phys. Rev. Lett. 122 130605
[73] Carollo F, Garrahan J P and Jack R L 2021 J. Stat. Phys. 184 13
[74] Muzzo A 2017 J. Stat. Mech. 023203
[75] Muzzo A 2017 J. Math. Phys. 58 0953302
[76] Garbaczewski P 2017 Phys. Rev. E 96 032104
[77] Muzzo A 2018 J. Stat. Mech. 073204
[78] Larmier C, Muzzo A and Zoia A 2019 J. Stat. Mech. 113208
[79] De Bruyne B, Majumdar S N, Orland H and Schehr G 2021 J. Stat. Mech. 123204
[80] Orland H 2011 J. Chem. Phys. 134 174114
[81] Delarue M, Koehler P and Orland H 2017 J. Chem. Phys. 147 152703
[82] De Bruyne B, Majumdar S N and Schehr G 2021 J. Phys. A: Math. Theor. 54 385004
[83] Grell J, Majumdar S N and Schehr G 2021 J. Stat. Phys. 183 1
[84] Evans M R, Majumdar S N and Schehr G 2020 J. Phys. A: Math. Theor. 53 193001
[85] Montero M and Villarroel J 2016 Phys. Rev. E 94 032132

https://doi.org/10.1088/1742-5468/ac4e81