Awareness of Emergency Eye Diseases and Red Flag Symptoms in Population of Western Province

Abdulaziz Shehri a, Atheer Ayad Alharthi b*, Bushra Faisal Alshehri b*, Ahlam Mohammed Aljuaid b*, Hanan Riziq Aluthuali b*, Razan Abadel Algethami b*, Razan Abdullah Alhamyani b* and Khames T. Alzahrani c

a Department of Ophthalmology, Taif University, Taif, Saudi Arabia.
b Taif University, Taif, Saudi Arabia.
c Ministry of Health, Kingdom of Saudi Arabia.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i60A34462

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/80927

Received 14 October 2021
Accepted 17 December 2021
Published 19 December 2021

ABSTRACT

Background: Emergency eye disease can lead to visual loss when the patient delay seeking medical care quickly due to poor knowledge and awareness of red flags and symptoms that eventually end by late diagnosis then possibly devastating outcomes for example permanent visual loss. This study aims to examine the level of awareness and knowledge regarding different emergency eye diseases in Western Province, kingdom of Saudi Arabia.

Methodology: This is a cross sectional study conducted via online questionnaire and approved by research ethics of Taif university. SPSS version 25 was used for statistical analysis. Chi-squared, Mann-Whitney and Kruskal Wallis tests were applied, and a P-value of <0.05 was considered as statistically significant.

Result: A total of 702 participants to the online questionnaire from the western province of Kingdom of Saudi Arabia, with 565 (80.5%) females and 137 (19.5%) males. Regarding the awareness of different emergent ocular diseases, acute angle closure glaucoma has the highest awareness level (41.7%) and the least was giant cell arteritis (12.4%).

* Corresponding author: E-mail: dr.atheer30@gmail.com;
Conclusion: This study reflected the awareness and knowledge of retinal detachment, giant cell arteritis, and central retinal occlusion in average population of the western province, Kingdom of Saudi Arabia which was extremely low. This will have an impact on seeking medical care early with delay in diagnosis and implementation of treatment that results in significant visual complications. So, we need to raise awareness of society about different emergency ocular conditions and red flags to help overcome the negative outcomes.

Keywords: Emergency Eye Disease; Red Flag Symptoms; Makkah Region.

1. INTRODUCTION

Emergency eye disease is considered one of the important ophthalmological diseases because patients usually fail to recognize the symptoms quickly or to understand the severity and that will lead to late recognition and diagnosis which will lead subsequently to progressive, rapid and irreversible visual loss and eventually blindness [1,2]. First is the chemical injury in which the eye comes in contact with chemical agent either liquid or gas is a common way by which the eye is exposed to chemicals, eye injury from alkali agent is more dangerous than acids and the severity depends on the chemical’s PH concentration. Chemical injury is the only ocular emergency in which the treatment should not be delayed to evaluate the visual acuity of the patient [3–5]. Retinal Detachment (RD) is the second eye emergency in which separation of the neurosensory layer of the retina from the underlying pigmented epithelium and choroid occurs. Although RD is uncommon (affecting one in every 10000 person/year) it can lead to a rapid degeneration of the photoreceptors due to ischemia and results in permanent vision loss and this can be prevented by early diagnosis and treatment [6,7]. Red eye which is the fourth emergency we involved in our assessment is a clinical problem encountered on a daily basis in most emergency departments. The majority of cases are benign and self-limiting, which is good; however, many conditions that are potentially vision threatening and associated with high morbidity may manifest as a red eye [8]. The fifth condition included in our assessment is Central retinal artery occlusion (CRAO), it is an ophthalmic emergency and the ocular analogue of cerebral stroke. In CRAO occlusion of the central retinal artery which supplies blood to Inner retinal layers will lead to ischemia and severe visual loss. Best evidence confirms that over three-quarters of patients has a poor visual acuity of 20/400 or worse which results in a reduced functional capacity and quality of life [9]. The other similar researches focused on common causes of progressive visual loss and other eye diseases. These Studies have reported consistently low levels of knowledge and varying levels of awareness [10,11].

These emergent conditions are clinically important. Patient may come in late presentation, which can lead to delayed medical attention, with rapid and irreversible visual loss and blindness. Many patients delay medical attention after onset of symptoms, which leads to low visual acuity and blindness that can affect and decrease patient quality of life and could lead to significant economic costs to the patient. So, it’s important to increase the level of awareness and knowledge of the patients and the whole society. Awareness and knowledge of these emergent ophthalmic diseases may help to preserve quality of life and achieve the best possible visual outcome for patients [12].

A study that was conducted in New York in 2016 assessing the public awareness and knowledge about the emergent eye diseases found that the overall awareness and knowledge were low where only (27.7%) of participants were aware of retinal detachment, (14.6%) were aware of Acute angle closure glaucoma, (5.1%) were aware of Giant cell arteritis, and (4.6%) were aware of Central retinal artery occlusion [1]. There are few articles discussing the public awareness of common eye diseases, and a fewer one discussing the awareness of emergency vision threatening conditions. There have been no studies undertaken in the Kingdom of Saudi Arabia, Makkah region in particular to evaluate the public knowledge and awareness about the emergent ocular situations. In this study we aimed to assess the general population awareness and knowledge about the common ophthalmological emergencies in Western Province, Kingdom of Saudi Arabia.

2. MATERIALS AND METHODS

A descriptive cross-sectional study was conducted from November 2020 to April 2021 at Western Province. The study conducted by
online questionnaire distributed to general public via WhatsApp, Facebook, and Twitter, in western region of Saudi Arabia. The questionnaire included questions directed to collect information regarding demographics, levels of awareness and knowledge of different emergency eye disease.

Information obtained from all the online questioner respondent after giving consent. We included all adults, both gender and who accepts to answer the questionnaire. we excluded who refused or didn’t complete answering the questionnaire, and those who were not able to read or understand the questionnaire.

2.1 Data Analysis

All data entered in Microsoft EXCEL software and coded for management statistical analysis performed using SPSS software package, version 25. Qualitative data was expressed as numbers and percentages, and applied Chi-squared test (χ^2) to test the relationship between variables. Quantitative data was expressed as mean and standard deviation (Mean ± SD), while Mann-Whitney and Kruskal Wallis Tests were applied for non-parametric variables. A p-value of <0.05 was considered as statistically significant.

3. RESULTS AND DISCUSSION

This study aimed to assess the awareness and knowledge related to various ocular emergencies among the people residing in the Western province of Saudi Arabia. A total of 702 participants from three cities who gave consent to participate were included in our analysis. The sociodemographic details of the participants are given in Table 1.

The most common disease that participants were aware of was Angle-closure glaucoma (41.7 percent), while the least knowledgeable was Temporal arteritis (giant cell arteritis) (12.4 percent) [Table 2].

Parameter	Frequency	Percent
Gender		
Male	137	19.5
Female	565	80.5
Age (in years)		
18-30	395	56.3
31-50	234	33.3
51-60	69	9.8
>60	4	0.6
Income level		
3000-5000	49	7
6000-15000	444	63.2
>15000	209	29.8
Education		
Uneducated	1	0.1
Elementary	6	0.9
Middle school	11	1.6
Secondary	125	17.8
University or more	559	79.6
Residence city		
Taif	531	75.6
Makkah	78	11.1
Jeddah	93	13.2
Job sector		
Non-health sector	567	80.8
Health sector	135	19.2

Table 2. Awareness of different eye disorders

Parameter	Frequency	Percent
Eye disorders		
Retinal detachment	185	26.4
Angle-closure glaucoma	293	41.7
Temporal arteritis (giant cell arteritis)	87	12.4
Central retinal artery occlusion	98	14.0
Table 3. Awareness regarding ocular diseases and its relationship with sociodemographic details

Parameter	Retinal detachment is	P value	Angle-closure glaucoma	P value	Temporal arteritis	P value	Central retinal artery occlusion	P value							
	No	Yes		No	Yes		No	Yes		No	Yes		No	Yes	
Gender															
Male	N	98	39	0.531	64	73	0.002	100	37	<0.001	110	27	0.030		
	%	71.5	28.5	46.7	53.3	515	50	91.2	8.8	87.4	12.6				
Female	N	419	146	74.2	25.8	61.1	38.9	91.2	8.8	87.4	12.6				
Age															
18-30	N	273	122	0.002	214	181	0.088	317	78	<0.001	310	85	<0.001		
	%	69.1	30.9	54.2	45.8	80.3	19.7	78.5	21.5	226	8				
31-50	N	181	53	77.4	22.6	147	87	97.0	3.0	96.6	3.4				
	%	61.8	38.2	62.8	37.2	45	24	68	1	65	4				
51-60	N	61	8	88.4	11.6	65.2	34.8	98.6	1.4	94.2	5.8				
	%	77.5	22.5	75	25	3	1	3	1	3	1				
>60	N	2	2	50.0	50.0	75.0	25.0	75.0	25.0	75.0	25.0				
City															
Taif	N	395	136	0.657	301	230	0.167	470	61	0.087	461	70	0.143		
	%	74.4	25.6	56.7	43.3	88.5	11.5	86.8	13.2	69	9				
Makkah	N	57	21	73.1	26.9	53	25	70	8	69	9				
	%	75.0	25.0	67.9	32.1	89.7	10.3	88.5	11.5	74	19				
Jeddah	N	65	28	69.9	30.1	55	38	75	18	74	19				
	%	75.8	24.2	59.1	40.9	80.6	19.4	79.6	20.4	100	0.061				
Education															
Uneducated	N	0	1	0.246	0	1	0.267	0	1	0.045	0	1	0.061		
	%	0.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0		
Elementary	N	6	0	100.0	0.0	83.3	16.7	100.0	0.0	83.3	16.7				
	%	50.0	50.0	5	1	11	8	11	0	10	1				
Middle school	N	8	3	72.7	27.3	72.7	27.3	100.0	0.0	90.9	9.1				
	%	72.7	27.3	72.7	27.3	78	47	111	14	102	23				
Secondary	N	95	30	76.0	24.0	62.4	37.6	88.8	11.2	81.6	18.4				
	%	76.0	24.0	318	241	487	72	487	72	87.1	12.9				
University or more	N	408	151	73.0	27.0	56.9	43.1	87.1	12.9	87.1	12.9				
Job sector															
Non-Health	N	452	115	0.140	381	186	<0.001	545	22	<0.001	523	44	<0.001		
Parameter	Retinal detachment is	P value	Angle-closure glaucoma	P value	Temporal arteritis	P value	Central retinal artery occlusion	P value							
---------------------------	-----------------------	---------	------------------------	---------	--------------------	---------	---------------------------------	---------							
	No	Yes													
Sector	%	%													
Health sector	N	65	70	28	107	70	65	81	54						
sector	%	48.1	51.9	20.7	79.3	51.9	48.1	60.0	40.0						
Table 4. Knowledge regarding eye orders and its relationship with sociodemographic details

Parameter	Knowledge	Total	P value		
	Poor	Average	Good		
Gender					
Male	N 88	38	11	137	0.002
	% 64.2	27.7	8.0	100.0	
Female	N 394	160	11	565	
	% 69.7	28.3	1.9	100.0	
Age					
18-30	N 244	133	18	395	<0.001
	% 61.8	33.7	4.6	100.0	
31-50	N 175	56	3	234	
	% 74.8	23.9	1.3	100.0	
51-60	N 59	9	1	69	
	% 85.5	13.0	1.4	100.0	
>60	N 4	0	0	4	
	% 100.0	0.0	0.0	100.0	
Education level				0.413	
Uneducated	N 1	0	0	1	
	% 100.0	0.0	0.0	100.0	
Elementary	N 3	3	0	6	
	% 50.0	50.0	0.0	100.0	
Middle school	N 9	2	0	11	
	% 81.8	18.2	0.0	100.0	
Secondary	N 88	37	0	125	
	% 70.4	29.6	0.0	100.0	
University or more	N 381	156	22	559	
	% 68.2	27.9	3.9	100.0	
Job sector					
Non- Health sector	N 431	128	8	567	<0.001
	% 76.0	22.6	1.4	100.0	
Health sector	N 51	70	14	135	
	% 37.8	51.9	10.4	100.0	
Diagnosed with ocular					
diseases	Yes	N 105	46	155	<0.001
	% 67.7	29.7	2.6	100.0	
	No	N 377	152	18	547
	% 68.9	27.8	3.3	100.0	

Table 5. Responses to knowledge items related to different ocular diseases.

Parameter	Wrong (%)	Correct (%)
Retinal detachment	63	37
Seeing bright flashing lights can be a symptom of retinal detachment.	62.7	37.3
Retinal detachment can be cured if you take medication (pills or eye drops) immediately after it happens	71.2	28.8
Acute angle-closure glaucoma	56.3	43.7
Pain and blurry vision are common symptoms in acute angle-closure glaucoma	54.0	46
All patients with acute angle-closure glaucoma must have emergency surgery.	85.9	14.1
Temporal arteritis	88.3	11.7
Pain in your jaw while eating and scalp pain (for example, pain while brushing your hair) may be symptoms of a disease that can cause blindness	84.2	15.8
Blindness from temporal arteritis in one eye may be permanent but you can prevent blindness in the other eye by taking steroids	81.8	18.2
Central retinal	85.3	14.7
People with central retinal artery occlusion often have a	93.6	6.4
We also assessed the knowledge regarding different ocular disorders based on the response given for questions asked. There was a total of 27 items that assessed the knowledge related to ocular disorders. Each correct response was given a score of '1' and the wrong response a score of '0'. The total knowledge score was then calculated by adding the scores of all the 27 items and then converted to percentages, which were then classified as Good (>75%), Average (50-75%), and Poor (<50%). It was found that only 3.1% had 'Good' knowledge regarding different ocular diseases, and 68.7% showed poor knowledge regarding the same. There was no statistically significant association seen with awareness related to different ocular diseases and city of residence (p<0.05). When we compared the participants' awareness and educational level, it was found that only awareness related to GCA showed a statistically significant association, in which participants who had university or higher educational level had more awareness (p=0.04). Participants who worked in the health sector showed better awareness related to different ocular diseases and showed a statistically significant relationship with all diseases except with GCA (p=0.140) [Table 3].

When we evaluated this knowledge's relationship with various sociodemographic characters, it was found that gender, age, job sector, and history of ocular disease showed a statistically significant relationship. The male participants showed comparatively more 'good' knowledge (8%) than females’ participants (1.9%) (p=0.002). Participants aged 18-30 years demonstrated more 'good' knowledge than other age groups (p<0.001). Participants working in the health sector were 19.5% (n=135), and among this, 10.4% (n=14) had shown 'good' knowledge compared to those working in the non-health sector (n=8) (p<0.001). It was also found that participants who had been previously diagnosed with some ocular diseases had more 'good' knowledge than those who had no history of the same (p<0.001) [Table 4]. The participants' responses related to some of the knowledge items are given in Table 5.

4. DISCUSSION
In this study we aimed to assess the awareness and knowledge of different ocular conditions among population of the western province, Kingdom of Saudi Arabia. Data from studies around the world has shown variable level of awareness, where data from the Middle East regarding this topic is unfortunately insufficient. In general, the level of awareness in our study of different emergency eye disease is very low. Our result shows that AACG has higher percent of awareness (41.7%). In contrast there is a study conducted at Mount Sinai Hospital showed that RD had higher percent of awareness than AACG. While GCA is considered one of the least emergency eye diseases in our study in terms of awareness (12.4%). When comparing males to females regarding their awareness, males had a better awareness of each disease. There was research conducted in 2016 revealed that the rate of female awareness was higher than the rate of males which corresponds to our findings [1]. However, such results can be attributed to the large number of female participants as compared to males. Awareness of eye diseases was higher among those with a university education than among those with a secondary education. As it is expected because the higher the educational level, the greater the awareness.

The level of awareness of RD, GCA and CRAO was significantly associated with age. The age group between 18-30 years are the most aware of these conditions that could be related to the lifestyle of this young age and the increase of level of awareness in general by using the electronic devices and the social networking. On the other hand, AACG was not significantly associated with age, with high levels of
Nearly 91% got the correct definition, 84% know the Chemicals that cause serious eye injury were found to have relatively excellent knowledge. This study reflected that awareness and knowledge of RD, GCA and CRAO are extremely low in the average population of the western province, Kingdom of Saudi Arabia across all segments of society. Lack of awareness about this serious disease has an important significance for obtaining eye care. The delaying of getting medical care may lead to permanent visual impairment, which could have been avoided. Furthermore, it can affect patient's quality of life and the essential economic costs of the individuals and society. Therefore, the need for educating the public about these diseases and red flags symptoms are critical to increase awareness and knowledge.
CONSENT

Informed consent was obtained from all participants included in the study.

ETHICAL APPROVAL

Ethical approval was obtained from Research Ethics Committee at Taif University.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Uhr JH, Mishra K, Wei C, Wu AY. Awareness and Knowledge of Emergent Ophthalmic Disease Among Patients in an Internal Medicine Clinic. JAMA Ophthalmol. 2016 Apr;134(4):424–31.
2. Hamilton WD, Henderson PA, Moran NA. Fluctuation of environment and coevolved antagonist polymorphism as factors in the maintenance of sex. Nat Sel Soc Behav (Eds R D Alexander D W Tinkle), Chiron Press New York. 1981;311(18):363–81.
3. Pokhrel PK, Loftus SA. Ocular emergencies. Am Fam Physician. 2007 Sep;76(6):829–36.
4. Davis AR, Ali QH, Aclimandos WA, Hunter PA. Topical steroid use in the treatment of ocular alkali burns. Br J Ophthalmol. 1997;81(9):732–4.
5. Bagley DM, Casterton PL, Dressler WE, Edelhauser HF, Kruszewski FH, McCulley JP, et al. Proposed new classification scheme for chemical injury to the human eye. Regul Toxicol Pharmacol. 2006;45(2):206–13.
6. Feltgen N, Walter P. Rissbedingte netzhautablösung - Ein ophthalmologischer notfall. Dtsch Arztebl Int. 2014;111(1–2):12–22.
7. IOLs T, Alio JL. Symposium on the treatment of traumatic optic neuropathy resolved: corticosteroids should not be used. Ophthalmology. 1999;106:1268–77.
8. Mahmood AR, Narang AT. Diagnosis and management of the acute red eye. Emerg Med Clin North Am. 2008 Feb;26(1):35–55, vi.
9. Varma DD, Cugati S, Lee AW, Chen CS. A review of central retinal artery occlusion: Clinical presentation and management. Eye [Internet]. 2013;27(6):688–97. Available: http://dx.doi.org/10.1038/eye.2013.25
10. Katibeh M, Ziaei H, Panah E, Moein HR, Hosseini S, Kalantarion M, et al. Knowledge and awareness of age related eye diseases: A population-based survey. J Ophthalmic Vis Res. 2014;9(2):223–31.
11. Casini G, Sartini F, Loidice P, Benini G, Menchini M. Ocular siderosis: a misdiagnosed cause of visual loss due to ferrous intraocular foreign bodies—epidemiology, pathogenesis, clinical signs, imaging and available treatment options. Doc Ophthalmol. 2020;1–20.
12. Morris B, Imrie F, Armbricht AM, Dhillon B. Age-related macular degeneration and recent developments: New hope for old eyes? Postgrad Med J. 2007;83(979):301–7.
13. Wilson DL, Beyth RJ, Linn P, Berger P. Systematic review of public education and policy for stroke prevention. Curr Drug Targets. 2007 Jul;8(7):874–9.