Growth promotion of *Spirulina* by steelmaking slag: application of solubility diagram to understand its mechanism

Reijiro Nogami¹, Haruo Nishida¹, Dang Diem Hong² and Minato Wakisaka¹

Abstract

A solubility diagram was employed to understand growth promotion of *Arthrospira* (*Spirulina*) *platensis* by steelmaking slag (SMS). The growth promotion effect of 112 % of freshwater microalgae *A. platensis* was obtained using 5 g/L SMS. However, metabolites, such as pigments, and protein content of *A. platensis* were not significantly affected.

Several metals dissolved in Spirulina–Ogawa–Terui medium were detected by inductively coupled plasma atomic emission spectrometry just after the addition of SMS. The solubility diagram provides information on the chemical speciation of metal elements based on pH and concentration. It is a useful tool to understand the effect of metals on microalgal growth. The metal elements used to control microalgal growth are essential minerals but also act as a source of oxidative stress. Regarding the affecting mechanism of SMS, iron may be the primary element regulating microalgal growth via pathway involving reactive oxygen species, as revealed by superoxide dismutase assay.

Keywords: Steelmaking slag, Growth promotion, *Spirulina*, Solubility diagram, Oxidative stress

Introduction

Microalgae are potential sources of cosmetic, food and pharmaceutical products, and biofuels (Xi et al. 2016; Tasić et al. 2016; Santos et al. 2016). However, the productivity of microalgal cultures must be improved for scale-up application.

To improve the productivity of microalgal culture, various efforts, such as screening of better strain selection (Chen et al. 2009; Pereira et al. 2011; Chen et al. 2012; Bajhaiya et al. 2016) and optimization of culture conditions, have been made (Kim et al. 2012; Kanaga et al. 2016). The enhancement of microalgal growth and accumulation of high value products can be achieved by simply adding various chemical substances (Fábregas et al. 1987; Sasaki et al. 1995; Valenzuela-Enrique et al. 2002; Moed et al. 2015; Nayak et al. 2016). Steelmaking slag (SMS), a by-product of iron-making process, is an effective fertilizer for seaweed bed restoration (Takahashi and Yabuta 2002; Yabuta et al. 2006; Miyata et al. 2009; Hayashi et al. 2011; Yamamoto et al. 2012). SMS contains minerals, such like Fe, P, Mg, Ca, Mn, that are essential for algal growth (Yokoyama et al. 2010; Zhang et al. 2012; Mombelli et al. 2014). The growth promotion effect of SMS has been reported in not only macroalgae but also in certain seawater microalgae (Nakamura et al. 1998; Haraguchi et al. 2003; Sugie and Taniguchi 2011). However, investigations on freshwater microalgae required for the commercial production of valuable products are fewer than those on marine microalgae. In our previous study, we demonstrated growth promotion effect of SMS to *Spirulina*, a freshwater microalgae (Nogami 2016). However, the growth promotion mechanism of SMS is still unclear. Although there are current prevailing opinions, such as the fertilization effect of eluted iron necessary for photosynthesis (Yamamoto et al. 2016) or the contribution of dissolved CO₂ via increase in the pH of the medium (Takahashi et al. 2012), there are no unified views to explain growth promotion effect of SMS.

On the other hand, the dissolution behavior of various elements from SMS in seawater and freshwater were demonstrated using solubility diagram (Futatsuka et al. 2016).
Materials and methods
Materials
The cyanobacterium *Arthrospira platensis* (Nordstedt) Gomez NIES-39 strain was purchased from the National Institute for Environmental Studies, Tsukuba, Japan. *A. platensis* was cultured in 300 mL flasks containing 200 mL of Spirulina–Ogawa–Terui (SOT) medium with the following composition (mg L−1): NaHCO3, 16,800; K2HPO4, 500; NaNO3, 500; K2SO4, 1000; NaCl, 1000; MgSO4·7H2O, 200; CaCl2·2H2O, 40; FeSO4·7H2O, 10; Na2EDTA·2H2O, 80; H3BO3, 2.86; MnSO4·5H2O, 2.5; ZnSO4·7H2O, 0.22; CuSO4·5H2O, 0.08; and Na2MoO4·2H2O, 0.02. SMS, 2 mm in diameter, was added to SOT medium at 0, 0.05, 0.5, and 5 g L−1 in microalgal cultures and blanks. *A. platensis* was cultivated under the following conditions: a light intensity of 12,000 Lux from a white fluorescent lamp, with 12 h/12 h light/dark cycles and a temperature of 25 °C. All flasks were cultured under static conditions and were shaken by hand twice a day.

Cell growth and metabolite analysis
Cell growth was determined by measuring the dry weight of the biomass. Cells were filtered using filter paper (GC-50, ADVANTEC), oven dried at 105 °C for 2 h, and were placed in a desiccator for 1 h before measuring the weight. Biomass weight was calculated by subtracting the dry weight of the blank. Chlorophyll a and phycocyanin were repeatedly extracted using 80 % acetone and 0.01 M potassium phosphate buffer of pH 7.8, respectively. Pigment contents was calculated by measuring their absorbance at 750 nm using spectrophotometer (UV–vis 1200, Shimadzu). Protein was extracted by salting out, and its concentration was determined by Lowry et al. (1951).

Solubility diagram
The culture medium was sampled every 7 days to monitor pH and metal elution from SMS. After filtering the culture medium, the pH of the filtrate was measured using a pH meter (LAQUA twin, Horiba), and metal elution was detected using Simultaneous ICP Atomic Emission Spectrometer (ICPE-9800, Shimadzu). The solubility diagram of eluted elements was obtained based on the calculation of solubility product and chemical potential (Futatsuka et al. 2004).

SOD activity assay
Superoxide dismutase (SOD) activity was measured to determine the microalgal response to metals eluted from SMS. Microalgal cells were harvested by centrifugation and homogenized with potassium phosphate buffer. The homogenates were then centrifuged at 12,000 rpm for 10 min at 4 °C. Xanthine oxidase was used to generate O2·−, and SOD assay was followed.

Statistical analysis
All experiments were performed in triplicates, and the data has been presented as mean ± standard deviation. Data were statistically analyzed using Kruskal–Wallis test, with the level of significance at p < 0.05.

Results
Growth promotion of *A. platensis* by SMS
The growth promotion effect of SMS on the freshwater microalgae *A. platensis* was comparable to that of other marine microalgae, which was previously reported. Figure 1a shows the growth profile of *A. platensis*. Its growth significantly increased by the addition of 5 g/L SMS during the latter half of culture. The maximum growth promotion of 1.12-fold higher than that of control was obtained at 21 days. Figure 1b shows the pH change during culture period. pH increased corresponding to the increase in culture time until 20 days, when maximum growth was observed that stabilized at pH 11.5 in control and with 0.05 g/L SMS. The trend in increase in culture period. pH increased corresponding to the increase in culture time until 20 days, when maximum growth was observed that stabilized at pH 11.5 in control and with 0.05 g/L SMS. The trend in increase in growth differed based on the amount of SMS, i.e., it proportionally increased with 0.5 and 5 g/L SMS, with rapid increase observed after 15 days in control and with 0.05 g/LSMS.

Metabolite analysis of *A. platensis*
Metabolites, such as pigment, and protein content of *A. platensis* were not significantly affected by SMS. Figure 2 shows pigment contents [(a) chlorophyll a, (b) phycocyanin] of *A. platensis*. Pigment contents did not significantly differ until 14 days, but at the end of culture, the pigment contents were decreased in SMS.
concentration-dependent manner compared with those of the control. There was no significant difference in total protein content observed as shown in Fig. 2c.

Metal elution from SMS to culture medium
The dissolution of metals in SOT medium was detected using inductively coupled plasma atomic emission spectrometry just after the addition of SMS. Figure 3 shows the concentrations of the dissolved metals in SOT medium compared between samples with and without microalgal cells. The dissolution of Ca, Mg, and Fe from SMS was evident at 0 day without microalgal cells, and the concentrations of all dissolved metals decreased with the increase in microalgal cells. In the case with microalgal cells, the concentrations of dissolved Ca, Mg, and Fe decreased over time, but trends in this decrease differed for each metal. The concentration of dissolved Mg sharply decreased to almost zero after 15 days. Change in Fe concentration was observed in SMS concentration-dependent manner. The concentration of dissolved Fe exhibited a more severe decrease after 15 days in the control without SMS than in that with SMS. Samples without microalgal cells exhibited initial decreases in the Ca and Mg concentrations, which subsequently stabilized; however, Fe concentration exhibited a decreasing trend with 5 g/L SMS.

Solubility diagram applied for metal elution from SMS
The solubility diagram is a useful tool for understanding the chemical speciation of metals and thus their bioavailability during microalgal culture. Figure 4 shows the solubility diagram of Ca, Mg, and Fe for *A. platensis* culture. Correlation between the concentration of dissolved metal and pH during culture period was plotted in each solubility diagram. Ca precipitated as CaCO$_3$ soon after elution from SMS in the SOT medium during the culture period, whereas Mg and Fe changed to their respective hydroxides. Fe was considered to be the primary element controlling growth or *A. platensis* since highest decrease of concentration among three elements was observed.

![Fig. 1](image1.png) Effects of steelmaking slag on *Arthrospira platensis* culture. **a** Growth profile, **b** pH change during culture. (●) Control, (▲) 0.05 g/L SMS, (□) 0.5 g/L SMS, (○) 5 g/L SMS

![Fig. 2](image2.png) Effects of steelmaking slag on the metabolites of *Arthrospira platensis*. **a** Chlorophyll a, **b** phycocyanin, **c** protein content of (●) Control, (▲) 0.05 g/L SMS, (□) 0.5 g/L SMS, (○) 5 g/L SMS.
Oxidative stress by Fe and growth control of A. platensis
To understand the growth control mechanism of Fe from SMS, the biological response to oxidative stress by metal elution from SMS was investigated. Figure 5 shows the SOD activity of A. platensis at 21 days after exposure to SMS. The SOD activity of 5 g/L SMS significantly decreased corresponding to the considerable decrease in Fe concentration compared with that of the other SMS concentrations.

Discussion
The growth profile results (Fig. 1a) are consistent with the reported values (Carvalho et al. 2004; Chen et al. 2006; Gökşan et al. 2007; Markou et al. 2012). This could be due to initial pH of 9.0 achieved by adding SMS was optimal for A. platensis (Fig. 1b).

A. platensis pigment contents in SMS decreased compared with those in the control at the end of culture (Fig. 2a, b). This may be explained by the pH dependency of pigments, with a reported maximum content at pH 8.5 for chlorophyll a and 9.0 for phycocyanin (Ismaiel et al. 2016). Another reason could be due to iron deficiency. The decrease in pigment contents was also reported with another type of cyanobacterium, Aphanocapsa (SANDMANN 1985).
Changes in the concentration of each concentration in Fig. 3 may be explained by iron hydroxide precipitation followed by calcium hydroxide formation. Thus, Fe eluted from SMS is considered as the primary element controlling microalgal growth. The solubility diagram, which provides information on the chemical speciation of each element based on pH and concentration provides insight on this.

The results of SOD activity (Fig. 5) were consistent with the results in another report which stated that SOD activity is dependent on iron concentration (Ismail et al. 2014). Enzymatic activity involving antioxidation, such as that of catalase (CAT), peroxidase (POD), and SOD, of A. platensis is known to be dependent on pH level. Optimal pH of 9 was reported for CAT, 10 for POD, and 10.5 for SOD (Ismail et al. 2016). The antioxidative capacity of A. platensis supposedly diminished due to increase in pH during the culture period. Reactive oxygen species resulting from this lack of antioxidative capacity reacted with Fe ion eluted from SMS, which is thought to result in the changes in concentration and speciation. Thus, we established a hypothetic scheme to comprehensively understand the correlation between A. platensis growth, Fe speciation and pH, as shown in Fig. 6.

Firstly, enzymatic activity relating to antioxidation, such as that of POD, CAT, and SOD, decreased in this order corresponding with the increase in pH during culture. Subsequently, hydrogen peroxide, not thoroughly treated by antioxidative enzymes, leaked out from the cell into the culture medium. Fenton reaction occurred between hydrogen peroxide and ferrous iron eluted from SMS to produce hydroxide ion and hydroxyl radical, which damages the cells. Finally, hydroxide ion reacted with ferrous iron and precipitated as iron hydroxide. This hypothesis explains the experimental results found by adding 5 g/L SMS, which exhibited maximum growth, iron depletion, and loss of SOD activity due to the increase in pH at 21 days. The application of solubility diagrams contributes to the understanding of microalgal growth regulation mechanism in aquatic condition.

Fig. 6 Schematic illustrations of the biological mechanism of *Arthrospira platensis* respond to steelmaking slag
Hayashi A, Tozawa H, Shimada K, Takahashi K, Kaneko R, Tsukihashi F, Inoue R, Aryama T (2011) Effects of the seaweed bed construction using the mixture of steelmaking slag and dredged soil on the growth of seaweeds. ISIJ Int 51:1919–1928. doi:10.2355/isijinternational.51.1919

Ismaiel MMS, El-Ayouty YM, Piercey-Normore M (2016) Role of pH on anti-oxidants production by Spirulina (Arthrospira) platensis. Braz J Microbiol 47:298–304. doi:10.1016/j.bjm.2016.01.003

Kanaga K, Pandey A, Kumar S (2016) Multi-objective optimization of media nutrients for enhanced production of algae biomass and fatty acid biosynthesis from Chlorella pyrenoidosa NCIM 2738. Bioresearch Technol 200:940–950. doi:10.1016/j.biotech.2015.11.017

Kim W, Park JM, Gim GH, Jeong S-H, Kang CM, Kim D-J, Kim SW (2012) Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess Biosyst Eng 35:19–27. doi:10.1007/s00449-011-0612-1

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

Markou G, Chatzipavlidis I, Georgakakis D (2012) Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World J Microbiol Biotechnol 28:2661–2670. doi:10.1007/s11274-012-0764-6

Miki T, Futatsuka T, Shigodien K, Nagasaka T, Hino M (2004) Dissolution behavior of environmentally regulated elements from steelmaking slag into seawater. ISIJ Int 44:762–769. doi:10.2355/isijinternational.44.762

Miya Y, Sato Y, Shimizu S, Oyamada K (2009) Environment Improvement in the Sea Bottom by Steelmaking Slag. JFE Technical Report. http://www.j-fe-steel.co.jp/en/research/report/013/09.html. Accessed 5 Aug 2016

Moed NM, Lee D-J, Chang J-S (2015) Struvite as alternative nutrient source for cultivation of microalgae Chlorella vulgaris NCIM 2738. Bioresour Technol 200:940–950. doi:10.1016/j.biortech.2015.11.017

Nakamura Y, Taniguchi A, Okada S, Tokuda M (1998) Positive growth of phytoplankton under conditions enriched with steel-making slag. ISIJ Int 38:390–398. doi:10.2355/isijinternational.38.390

Nayak M, Karamea A, Sen R (2016) Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Res 16:216–223. doi:10.1016/j.algal.2016.03.020

Nogami, R, Tam LT, Anh HTL, Quynh HTH, Thörn LT, Nhat PV, Thu NTH, Hong N (2016) Growth promotion effect of steelmaking slag on Spirulina platensis. J Ferment Bioeng 121:656–665. doi:10.1016/j.jfbi.2016.03.020

Perreira H, Barreira L, Mozes A, Florindo C, Polo C, Duarte CV, Custódio L, Varela J (2011) Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae. Biotechnol Biofuels 4:1. doi:10.1186/1754-6834-4-61

Sandmann G (1985) Consequences of iron deficiency on photosynthetic and respiratory electron transport in blue-green algae. Photosynth Res 6:261–271. doi:10.1007/BF00049262

Santos TD, de Freitas BC, Moreira JB, Zenfotato K, Costa JAV (2016) Development of powdered food with the addition of Spirulina for food supplementation of the elderly population. Innov Food Emerg. doi:10.1016/j.ifset.2016.07.016

Sasaki K, Marquez FJ, Nishio N, Nagai S (1995) Promotive effect of 5-amino-7-oxoheptanoic acid on the growth and photosynthesis of Spirulina platensis. J Ferment Bioeng 79:453–457. doi:10.1002/9783527305126-3

Sugie K, Taniguchi A (2011) Continuous supply of bioavailable iron for marine diatoms from steelmaking slags. ISIJ Int 51:513–520. doi:10.2355/isijinternational.51.513

Takahashi T, Yabuta K (2002) New Application of Iron and Steelmaking Slag. JFE Technical Report. http://www.j-fe-steel.co.jp/archives/en/nkk_giho/87/07.html. Accessed 5 Aug 2016

Takaki A, Ogura Y, Ogawa A, Kanematsu H, Yokoyama S (2012) An effective and economic strategy to restore acidified freshwater ecosystems with steel industrial byproducts. J Water Environ Technol 10:347–362. doi:10.2965/jwet.2012.347

Tasić MB, Pinto LFR, Klein BC, Veljkové VB, Maciel Filho RM (2016) Botryococcus braunii for biodiesel production. Renew Sust Energ Rev 64:260–270. doi:10.1016/j.rser.2016.06.009

Valenzuela-Enrique E, Millán-Núñez R, Núñez-Cebreiro F (2002) Protein, carbohydrate, lipid and chlorophyll a content in Isochrysis aff. galbana (clone T-iso) cultured with a low cost alternative to the f/2 medium. Aquacult Eng 25:207–216. doi:10.1016/S0144-8609(01)00184-X

Xi T, Kim DG, Roh SW, Choi J-S, Choi Y-E (2016) Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy. Appl Microbiol Biotechnol 100:1–8. doi:10.1007/s00253-016-7301-6

Yabuta K, Tozawa H, Takahashi T (2006) New applications of iron and steelmaking slag contributing to a recycling-oriented Society. JFE Technical Report. http://www.j-fe-steel.co.jp/en/research/report/008/03.html. Accessed 5 Aug 2016

Yamamoto M, Fukushima M, Liu D (2012) The effect of humic substances on iron elution in the method of restoration of seaweed beds using steelmaking slag. ISIJ Int 52:1900–1913. doi:10.2355/isijinternational.52.1900

Yamamoto T, Osawa K, Asaoka S, Madinabteita I, Liao LM, Hirata S (2016) Enhancement of marine phytoplankton growth by steel-making slag as a promising component for the development of algal biofuels. ISIJ Int 56:708–713. doi:10.2355/isijinternational.ISIJINT-2015-341

Yokoyama S, Suzuki A, Nik HBNN, Kanematsu H, Ogawa A, Takahashi T, Izaki M, Unemoto M (2010) Serial batch elution of electric arc furnace oxidizing slag discharged from normal steelmaking process into fresh water. ISIJ Int 50:630–638. doi:10.2355/isijinternational.50.630

Yokoyama S, Shimomura T, Hisayamud MNN, Takahashi T, Izaki M (2012) Influence of amount of oxidizing slag discharged from stainless steelmaking process of electric arc furnace on elution behavior into fresh water. IOP Publishing PhysicsWeb. http://iopscience.iop.org/article/10.1088/1742-6596/352/1/012051/meta. Accessed 5 Aug 2016

Zhang X, Matsuura H, Tsukihashi F (2012) Dissolution mechanism of various elements into seawater for recycling of steelmaking slag. ISIJ Int 52:928–933. doi:10.2355/isijinternational.52.928

Submit your manuscript to a SpringerOpen journal and benefit from:
▶ Convenient online submission
▶ Rigorous peer review
▶ Immediate publication on acceptance
▶ Open access: articles freely available online
▶ High visibility within the field
▶ Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com