Phase transitions study in Ba_{(1-x)}Mn_{x}TiO_{3} and BaMn_{x}Ti_{(1-x)}O_{3} ceramics

E D Rumyantseva\(^1\), V G Zalessky\(^2\) and N V Zaitseva\(^2\)
\(^1\)Student, University ITMO (National Research University), Kronverksky prospect 49, Saint-Petersburg, 197101, Russia
\(^2\)Ioffe Physical-Technical Institute RAS, Politekhnicheskaya 26, Saint-Petersburg, 194021, Russia

E-mail: ska-kotya@mail.ru

Abstract. Dielectric properties of the ceramics Ba\(_{(1-x)}\)Mn\(_x\)TiO\(_3\) and BaMn\(_x\)Ti\(_{(1-x)}\)O\(_3\) of the compositions \(x=0.01, 0.03, \) and 0.1 have been studied at temperatures 77 – 450 K and at frequencies 10 Hz -100 kHz. The phase transitions diagram and parameters of the both system have been presented and compared. Dielectric relaxations in BaMn\(_x\)Ti\(_{(1-x)}\)O\(_3\) with \(x=0.1\) have been shown.

1. Introduction

Barium titanate (BT) solid solutions, BaTiO\(_3\) -ABO\(_3\) (where A = Ba, Ca, Sr, Pb, Mn and B = Ti, Zr, Sn, Hf, Mn), have been intensively studied due to very interesting electric, piezoelectric, and optic properties [1]. Every solid solution is characterized by a phase diagram \(T - x\), as a phase transition temperature versus second component concentration. The \(T - x\) diagrams of barium titanate solid solutions consist of the three lines phase transitions: \(O_h^1\) - \(C_{4v}^1\), \(C_{4v}^1\) – \(C_{2v}^{14}\), and \(C_{2v}^{14}\) - \(C_{3v}^5\). In SrTiO\(_3\)-BaTiO\(_3\) [2] and CoTiO\(_3\)-BaTiO\(_3\) [3] where ions Sr\(^{2+}\) and Co\(^{2+}\) substitute for Ba\(^{2+}\) (A-substitution) the three lines converge to a multiphase point. The multiphase points are also observed for solid solutions with B-substitution: BaZrO\(_3\) [4, 5], BaSnO\(_3\) [6], Ba(Mg\(_{1/3}\)Nb\(_{2/3}\))O\(_3\), and Ba(Mg\(_{1/3}\)Ta\(_{2/3}\))O\(_3\) [7], and both with A- and B-substitution: KTaO\(_3\) [8], and KNbO\(_3\) [6]. However, the \(T - x\) diagrams with non converged lines are known in the system CaTiO\(_3\), PbTiO\(_3\) [6], and MnTiO\(_3\) [9]. All of them are the solid solutions with the A-substitution excepting MnTiO\(_3\), where Mn ions can occupy the both A- and B- sites.

The studies of the system Ba\(_{(1-x)}\)Mn\(_x\)TiO\(_3\) with concentration \(x<0.01\) were reported in [10, 11]. However the \(T - x\) diagram of this solid solution still remains indefinite because technological difficulties of the sample preparation. It is also known that Mn\(^{2+}\) ions with concentration \(x>0.15 - 0.18\) produce the hexagon phase in BT [10, 11]. We decided to fabricate the specimens of solid solutions both with A- and B- substitutions: Ba\(_{(1-x)}\)Mn\(_x\)TiO\(_3\) and BaMn\(_x\)Ti\(_{(1-x)}\)O\(_3\) with \(x>0.01\), study their phase transitions, and compare dielectric properties.

2. Experimental techniques and results

Samples of Ba\(_{(1-x)}\)Mn\(_x\)TiO\(_3\) and BaMn\(_x\)Ti\(_{(1-x)}\)O\(_3\) solid solutions with \(x=0.01, 0.03, \) and 0.1 were prepared by standard ceramic technology [7, 8]. The starting materials were high purity BaCO\(_3\), TiO\(_2\), and MnO. There were the two step of the solid solution preparation. Primary, it was synthesized BT. After pressing, the mixture of the powdered BaTiO\(_3\) and MnO was calcined at 1200 - 1400°C for 2-3 days.
The material was reground and the pellets were formed by pressing for 9 mm diameter discs at 50 MPa. After pressing, the samples were fired at 1370-1420°C for 1 hour. The phase content was monitored by X-ray diffraction study (CuKα and CoKα lines) and indicated the tetragonal perovskite single phase. Relative density of the samples was measured to be 90-93%.

The samples were coated with silver-burned electrodes for dielectric measurements. The dielectric spectroscopy study was performed by impedance meter Goodwill LCR – 819 at the frequency range 12 Hz -100 kHz and amplitude of ac electric field 1 V. Temperature dependence of dielectric parameters measurement was performed by heating or cooling at a constant rate 1 K/min between 77 K and 450 K.

2.1. \(\text{Ba}(1-x)\text{Mn}_x\text{TiO}_3 \) (A -substitution)

The temperature dependences of real \(\varepsilon'(T) \) and imaginary \(\varepsilon''(T) \) part of the dielectric permittivity in \(\text{Ba}(1-x)\text{Mn}_x\text{TiO}_3 \) solid solution with \(x = 0.01, 0.03, \) and \(0.1 \) are shown in figures 1 and 2. One can see that composition at the range from \(x = 0 \) to 0.03 changes the high temperature phase transition parameters such as: Curie temperature \(T_C \), Curie-Weiss temperature \(T_{CW} \), and Curie-Weiss constant \(C_{CW} \) (see table 1 and inset figure 1). The sequence of the low temperature phase transitions at \(T_1 \) and \(T_2 \) are also shifted down to lower values (figure 1). The \(T - x \) diagram in figure 3 shows the three non converged lines.

\(x \)	\(T_C \) (K)	\(T_{CW} \) (K)	\(C_{CW} \) (K)
0	392	378	1.2 \times 10^5
0.01	387	358	1.3 \times 10^5
0.03	383	340	9 \times 10^4

The composition with the concentration \(x = 0.1 \) changes the temperature dependence \(\varepsilon'(T) \) drastically. All the peaks disappear excepting smeared maximum at \(T_2 = 186 \) K, that is 4 K below the temperature upon the orthorhombic-rhombohedral phase transition in pure BT.

The temperature dependence \(\sigma(T) \) in \(\text{Ba}(1-x)\text{Mn}_x\text{TiO}_3 \) solid solutions doesn’t show an evidence of a dielectric relaxation (figures 1 and 2). Increasing of real and imaginary parts of the dielectric permittivity in the case \(x = 0.1 \) is related to the thermal activated conductivity in the sample (Figure 2). The ac conductivity can be described using the relationship \(\sigma = \sigma_0 \exp(E_a/kT) \), where \(E_a \) is the activation energy and \(k \) is the Boltzmann constant. The activation energy is estimated to be \(E_a = 0.46 \) eV. This value can be characterized the acceptors or donors charge carriers activated in the energy gap bound.

2.2. \(\text{BaMn}_x\text{Ti}(1-x)\text{O}_3 \) (B -substitution)

The temperature dependence of the real part of the dielectric permittivity \(\varepsilon'(T) \) of \(\text{BaMn}_x\text{Ti}(1-x)\text{O}_3 \) with \(x = 0.01, 0.03, \) and 0.1 is shown in figure 4. One can see that the high temperature phase transition parameters are also changed by manganese doping at the range \(x = 0 - 0.01 \) (see table 2 and inset figure 4). The rest two phase transitions peaks at low temperatures \(T_1 \) and \(T_2 \) are also shifted down to lower value. The \(T - x \) diagram in figure 3 shows the three non converged lines. Despite the diffuseness, this material does not exhibit the strong frequency dispersion of the dielectric permittivity as the evidence of the relaxor behavior [1].
Figure 1. The temperature dependence of the real part of the dielectric permittivity \(\varepsilon' (T) \) at 1kHz in Ba\(_{1-x}\)Mn\(_x\)TiO\(_3\) solid solution with \(x=0.01, 0.03, \) and \(0.1 \). Inset reciprocal permittivity fitted by the Curie-Weiss law.

Figure 2. The temperature and frequency dependence of the imaginary part of the dielectric permittivity \(\varepsilon'' (T) \) in Ba\(_{1-x}\)Mn\(_x\)TiO\(_3\) with \(x = 0.1 \). Dashed line is the imaginary permittivity fitted by the thermal activated conductivity.

Figure 3. Phase transition temperatures vs. second component concentration \(x \) in Ba\(_{1-x}\)Mn\(_x\)TiO\(_3\) and BaMn\(_x\)Ti\(_{1-x}\)O\(_3\) solid solutions (phase transition diagram).
In comparison to BT with A-substitution, the concentration $x = 0.03$ makes the significant changes in the temperature dependence $\varepsilon'(T)$ (figure 4). All the peaks disappear excepting smeared maximum T_2 that is 14 K below the temperature upon the orthorhombic-rhombohedral phase transition in pure BT.

For the composition with concentration $x = 0.1$ any maxima at the temperature dependence of the real permittivity $\varepsilon'(T)$ (figure 5) cannot be recognized. However, the temperature dependence of the imaginary part $\varepsilon''(T)$ shows an evidence of a dielectric relaxation. At the low temperatures range 150-250 K it can be recognized the maximum $\varepsilon''(T)$ that shifts up to higher temperature with frequency increasing. In the other range 250-450 K one can also see the maximum upon monotonic increased background curve (figure 5). The maximum is also shifted to higher temperatures as the frequency increases. The relationship between the frequency f (or cycling frequency $\omega = 2\pi f$) and the temperature of maximum can be described using the Arrhenius relationship $\omega = \omega_0 \exp (-E_a/kT_m)$, where ω_0 is Debye frequency, T_m is the temperature of the imaginary dielectric maximum at the given frequency, E_a is the activation energy, and k is the Boltzmann constant. As a result, we estimate the values for both relaxations: for low temperatures $\omega_0 = 1.4 \cdot 10^{12}$ s$^{-1}$ and $E_a = 0.3$ eV, and for high temperatures $\omega_0 = 4 \cdot 10^{15}$ s$^{-1}$ and $E_a = 0.8$ eV.

x	T_C (K)	T_CW (K)	C_{CW} (K)
0	392	378	1.2 \cdot 10^5
0.01	385	370	7.1 \cdot 10^4

In comparison to BT with A-substitution, the concentration $x = 0.03$ makes the significant changes in the temperature dependence $\varepsilon'(T)$ (figure 4). All the peaks disappear excepting smeared maximum T_2 that is 14 K below the temperature upon the orthorhombic-rhombohedral phase transition in pure BT.

For the composition with concentration $x = 0.1$ any maxima at the temperature dependence of the real permittivity $\varepsilon'(T)$ (figure 5) cannot be recognized. However, the temperature dependence of the imaginary part $\varepsilon''(T)$ shows an evidence of a dielectric relaxation. At the low temperatures range 150-250 K it can be recognized the maximum $\varepsilon''(T)$ that shifts up to higher temperature with frequency increasing. In the other range 250-450 K one can also see the maximum upon monotonic increased background curve (figure 5). The maximum is also shifted to higher temperatures as the frequency increases. The relationship between the frequency f (or cycling frequency $\omega = 2\pi f$) and the temperature of maximum can be described using the Arrhenius relationship $\omega = \omega_0 \exp (-E_a/kT_m)$, where ω_0 is Debye frequency, T_m is the temperature of the imaginary dielectric maximum at the given frequency, E_a is the activation energy, and k is the Boltzmann constant. As a result, we estimate the values for both relaxations: for low temperatures $\omega_0 = 1.4 \cdot 10^{12}$ s$^{-1}$ and $E_a = 0.3$ eV, and for high temperatures $\omega_0 = 4 \cdot 10^{15}$ s$^{-1}$ and $E_a = 0.8$ eV.

Figure 4. The temperature dependence of the real part of the dielectric permittivity $\varepsilon'(T)$ at 1 kHz in BaMn$_x$Ti$_{1-x}$O$_3$ solid solution with $x=0.01$, 0.03, and 0.1. Inset reciprocal permittivity fitted by the Curie-Weiss low.

Figure 5. The temperature and frequency dependence of the imaginary part of the dielectric permittivity $\varepsilon''(T)$ in BaMn$_x$Ti$_{1-x}$O$_3$ with $x=0.1$.

Table 2. BaMn$_x$Ti$_{1-x}$O$_3$ (B -substitution).

x	T_C (K)	T_CW (K)	C_{CW} (K)
0	392	378	1.2 \cdot 10^5
0.01	385	370	7.1 \cdot 10^4
We attribute the low temperature relaxation to impurity centers \{\text{Mn}^{2+} - \text{Vo}\} in BT as well as in SrTiO$_3$ [12, 13]. In strontium titanate the Mn$^{2+}$ impurity ion substitutes the Ti$^{4+}$ ion and produces oxygen vacancy \text{Vo} in oxygen rhombohedra to compensate the charge. As a result, the dipole impurity centers \{\text{Mn}^{2+} - \text{Vo}\} is formed. It is known [12-14] that the thermally activated dipole reorientation via the vacancy jumping in SrTiO$_3$ is observed with $E_a \approx 0.1 - 0.3$ eV and $\tau_0 \approx 10^{-10} - 10^{-12}$ s. Therefore, the estimated parameters $E_a = 0.3$ eV and $\omega_0 = 1.4 \cdot 10^{12}$ s$^{-1}$ evidence for the same relaxation mechanism in BT.

The high temperature relaxation can be related to electronic subsystem because the high value of Debye frequency $\omega_0 = 4 \cdot 10^{15}$ s$^{-1}$. The estimated activation energy $E_a = 0.8$ eV is of the same order as in SrTiO$_3$ $E_a = 0.8$ eV [14] and can be determined by energy of donor or acceptors in the band gap. On the other hand, it is well known [14, 15] that the thermal activated conductivity in ceramic grains and boundaries produces a strong dielectric relaxation. Therefore, we can associate the high temperature relaxation with the Maxwell-Wagner mechanism due to the heterogeneous nature of the ceramics with grain and boundary layers.

3. Conclusion
We studied the BT ceramic with A and B substitution: Ba$_{(1-x)}$Mn$_x$TiO$_3$ and BaMn$_x$Ti$_{(1-x)}$O$_3$ with manganese concentration $x = 0.01, 0.03$ and 0.1. The phase diagrams ($T-x$) was plotted according to the temperature dependence of the dielectric permittivity Compositions dependences of the phase transition parameters were obtained. Debye relaxation associated with impurity polar centers and relaxation Maxwell - Wagner due to grain and boundary layers in ceramic BaMn$_x$Ti$_{(1-x)}$O$_3$ with $x = 0.1$ were investigated.

Acknowledgements
The authors would like to acknowledge E. P. Smirnova and A.V. Sotnikov for helpful comments. They thank V. V. Krasovskaya and V. A. Yankovskaya for preparing samples.

References
[1] Smolenskii G, Bokov V., Isupov V, Krainik N, Pasynkov R and Sokolov A 1984 Ferroelectrics and Related Materials (New York: Gordon and Breach Science Publishers)
[2] Lemanov V, Smirnova E, Syrkiv P and Tarakano V 996 Phys. Rev. B 52 3151
[3] Benguigui L and Beaucamps Y 1981 Phys. Rev. B23 5866
[4] Simon A, Ravez J and Maglione M 2004 J. Phys. Cond. Matt. 1693
[5] Zhi Yu, Chen Ang, Ruyan Guo and Bhalla A 2002 J. Appl. Phys. B 92 1489
[6] Jaffe B, Cook W and Jaffe H 1971 Piezoelectric Ceramics (New York: Academic Press)
[7] Zaleskii V, Lemanov V, Smirnova E, Sotnikov A and Zaitseva N 2007 Phys. of the Solid State 49 113
[8] Lemanov V, Zaitseva N, Smirnova E and Sirkiv P 1995 Ferroelectric Letters, 19 7
[9] Wang X, Gu M, Yang B, Zhu S and Cao W 2003 Microelectronic Engineering 66 855
[10] Langhammer H, Muller T, Felgner K and. Abicht H, 2000 Mater. Lett. 42 21
[11] Wang S, Hsu Y, Chu J and Cheng-Hui Wu 2006 Appl. Phys. Lett. 88 042909
[12] Iuguhi E and Lee K 1993 J. Mater. Sci. 28, 5809
[13] Lemanov V, Sotnikov A, Smirnova E and Weinacht M 2002 Phys. of the Solid State 44 2039
[14] Neuman H and Arlt G 1986 Ferroelectrics 69 179
[15] O’Neill D, Bowman R and Gregg J 2000 Appl. Phys. Lett. 77 1520-1522