Universal power law in the orientational relaxation in thermotropic liquid crystals

Dwaipayan Chakrabarti, Prasanth P. Jose, Suman Chakrabartty, and Biman Bagchi
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
(Dated: March 23, 2022)

We observe a surprisingly general power law decay at short to intermediate times in orientational relaxation in a variety of model systems (both calamitic and discotic, and also discrete) for thermotropic liquid crystals. As all these systems transit across the isotropic-nematic phase boundary, two power law relaxation regimes, separated by a plateau, emerge giving rise to a step-like feature (well-known in glassy liquids) in the single-particle second-rank orientational time correlation function. In contrast to its probable dynamical origin in supercooled liquids, we show that the power law here can originate from the thermodynamic fluctuations of the orientational order parameter, driven by the rapid growth in the second-rank orientational correlation length.

Thermotropic liquid crystals are known to exhibit interesting, often exotic, dynamical properties which are subjects of great fundamental and practical interests 1, 2. For calamitic liquid crystals that comprise rod-like molecules, the approach to increasingly ordered mesophases on lowering temperature involves an isotropic to nematic (I-N) transition and then a nematic to smectic-A (N-A) transition that are both believed to be only weakly first order with considerable characteristics of continuous transitions 1, 2, 3, 4. On the other hand, discotic liquid crystals that consist of disc-like molecules exhibit a transition from an isotropic to a nematic-discotic phase, and onward to a columnar phase rather than a smectic phase 1, 2.

Surprisingly, dynamics across the I-N phase transition appears to have been investigated mostly at low frequencies or long times (milliseconds to nanoseconds) 1. However, optical Kerr effect (OKE) measurements 7 by Fayer et al. have recently revealed a power law relaxation near the I-N phase boundary as well as in the nematic phase of rod-like molecules having aspect ratios in between 3 and 4 8, 9. While the power law decay appears at short (a few picoseconds) to intermediate (a few hundred nanoseconds) times in the isotropic phase near the I-N transition 8, multiple power laws persist even at long times in the nematic phase 8. Although a few theoretical analyses exist in the literature 8, 9, the origin and the scope of this dominant power law relaxation are poorly understood at present.

In order to understand this power law decay, we have carried out a long and extensive molecular dynamics (MD) simulation study of orientational relaxation in a variety of model systems for thermotropic liquid crystals, both continuous and discrete. The continuous systems in our study consist of ellipsoids of revolution 12. For a representative calamitic system, we have considered a system of 576 prolate ellipsoids of revolution with an aspect ratio of 3 that is comparable to those of the rod-like molecules recently studied experimentally by Fayer and coworkers. We have investigated the system along an isotherm at several densities.

In the quest of a universal power law behavior, if at all there is any, we have in addition undertaken simulations of 500 oblate ellipsoids of revolution with an aspect ratio of 0.345. We have used in this case a Gay-Berne pair potential that has been modified for disc-like molecules by Bates and Luckhurst 13. The discotic system has been studied here along an isobar at several temperatures.

The well-known Lebwohl-Lasher (LL) model is a prototype of lattice models 14, where the particles are assumed to have uniaxial symmetry and represented by three-dimensional spins, located at the sites of a simple cubic lattice, interacting through pair potential of the form $U_{ij} = -\epsilon_{ij} P_2(\cos\theta_{ij})$. Here ϵ_{ij} is a positive constant ϵ for nearest neighbor spins i and j and zero otherwise, P_2 is the second rank Legendre polynomial and θ_{ij} is the angle between the spins i and j. In this work, we have also considered a 1000-particle LL lattice system to study pure orientational dynamics across the I-N transition. The simplicity of the model allows us to study a larger system size. In our MD simulations, the system undergoes a transition from the isotropic to nematic phase at the temperature $T \approx 0.14$.

In Figs. 1(a), 1(b), and 1(c), we show in log-log plots the time evolution of the single-particle, second rank orientational time correlation function (OTCF) observed for the calamitic, discotic and lattice systems, respectively, across the I-N phase transition 17. The I-N transition is marked by a jump in the orientational order parameter S, defined for an N-particle system as the largest eigenvalue of the ordering matrix Q: $Q_{\alpha\beta} = \frac{1}{N} \sum_{i=1}^{N} e_{i\alpha} e_{i\beta} - \delta_{\alpha\beta}$, where $e_{i\alpha}$ is the α-component of the unit orientation vector \mathbf{e}_i along the principal symmetry axis of the i-th ellipsoid of revolution in the space-fixed frame 17. Thy single-particle second rank OTCF
$T = 2$

$P = (b)$ Along an isobar at $T = 0$ the I-N transition density is bracketed by $\rho = 0$ and $\rho = 0.315$ with $\rho = 0.31$ falling on the transition region.

$P = (b)$ Along an isotherm at $T = 25.0$ at several temperatures: $T = 2.991, 2.693, 2.646$, and 2.594. The I-N transition temperature is bracketed by $T = 2.693$ and $T = 2.646$. $P = (c)$ At several temperatures: $T = 1.213, 1.176, 1.160, 1.149, 1.134$. $C_2^s(t)$ is defined by

$$C_2^s(t) = \frac{\sum_i P_2(\hat{e}_i(0) \cdot \hat{e}_i(t))}{\sum_i P_2(\hat{e}_i(0) \cdot \hat{e}_i(0))},$$

(1)

where the angular brackets stand for statistical averaging. Note in these figures the emergence of the power law decay at short to intermediate times near the I-N phase boundary. Figures 1(a), 1(b), and 1(c) further show that as the systems transit across the I-N phase boundary, two power law relaxation regimes, separated by a plateau, appear giving rise to a step-like feature. The intriguing feature is the universality in qualitative behavior given that widely different model systems are under consideration. Although the values of the power law exponents vary considerably from one system to another, certain trends are apparent. The power law exponent values decrease monotonically for all the systems on approaching the I-N phase boundary from the isotropic side and undergo a rather sharp drop to a value below 0.45 on crossing the boundary. The only exception to this is the early power law exponent for the LL lattice system where the two power law relaxation regimes are evident even in the isotropic phase with a rather weak temperature sensitivity for the early power law exponent. In this case, a hump appears in the plateau region on approaching the I-N phase boundary. This can be attributed to the inertial effects because of low damping of the orientational motion. Near the I-N phase boundary where the continuous systems show a single power law relaxation regime, the exponent has a value above (1.582) or below (0.848) unity depending upon whether system is calamitic or dis- cotic. The values of the exponents in these systems seem to rule out grouping them together in a common universality class. The weakly first order nature of the I-N transition also precludes the existence of such strict universality. Note that the overall relaxation behavior looks surprisingly similar to the decay of self-intermediate scattering function in supercooled liquids where such power laws are well-known

In experiments, one can probe orientational relaxation through the decay of the OKE signal, which is given by the negative of the time derivative of the collective second rank OTCF $C_2^s(t)$. The latter, which is defined by

$$C_2^s(t) = \frac{\sum_i \sum_j P_2(\hat{e}_i(0) \cdot \hat{e}_j(t))}{\sum_i \sum_j P_2(\hat{e}_i(0) \cdot \hat{e}_j(0))},$$

(2)

is computationally demanding, particularly at long times. In order to set a direct link with experimental results, we show the temporal behavior of the OKE signal in the log-log plots in the respective systems across the
I-N phase transition in Figs. 2(a), 2(b), and 2(c). The short-to-intermediate-time power law regime is evident in the OKE signal for all the three systems. While a power law decay of the OKE signal has been recently observed experimentally in calamitic systems near the I-N phase boundary and in the nematic phase (8-9,18), our prediction for the discotic systems could be tested in experiments.

We now address the origin of this general power law relaxation with two plausible explanations. The first originates from the observation that such power laws are well-known in supercooled liquids where an elegant expression is provided by the mode coupling theory (MCT) [19,20]. In the MCT description [19], a non-linear dependence of the memory function (the longitudinal viscosity) on the density-density time correlation function and the feedback between the viscosity and the dynamic structure factor lead to the power law relaxation, which is, therefore, purely dynamical in origin. Since the memory function involved here pertains to orientational motion, as a first approximation, we may replace it by the rotational friction, which can be obtained from the evaluation of the torque-torque time correlation function (TCF) by using the time dependent density functional theory. In this approach, the Y_{lm}-th component of the wavenumber (k) and orientation dependent fluctuating density of the mesogen is the natural slow-variable. The following expression for the singular part of the memory function can then be obtained for axially symmetric mesogens:

$$
\Gamma^{Sing}(z) = \frac{3k_BT\rho}{8\pi^3I} \int_0^\infty dkk^2 \sum_{l,m} c_{l,l,m}^2 S_{l,m}(k,z),
$$

where $c_{l,l,m}(k)$ is the (l,l,m) component of the spherical harmonic expansion of the two particle direct correlation function, $S_{l,m}(k,z)$ is the same for the (l,m) component of the orientational dynamic structure factor, and z is the Laplace frequency [21,22]. Near the I-N transition dynamic structure factor $S_{20}(k,z)$ slows down dramatically due to the rapid and diverging growth of $S_{20}(k)$ in the long wavelength limit [22]. It can be shown that this leads to a power law behavior of the memory function: $\Gamma^{Sing}(z) = A'z^{-1/2}$, A' being a constant, at short to intermediate times. Use of this memory function in the Mori-Zwanzig continued fraction representation of the dynamic structure factor gives $S_{20}(t) = exp(a't)erfc(a't^{1/2})$, where a is a constant. This has the required power law behavior. Thus, here the power law arises due to diverging correlation length unlike in supercooled liquids where no such divergence of correlation length is involved. Near the I-N phase boundary, on the other hand, the free energy surface can play a direct role in the short time power law. Near the I-N transition, an equation of motion for the fluctuating orientational order parameter (δS), a non-conserved vari-

FIG. 2: Time evolution of the collective second rank OTCF at short to intermediate times in log-log plots for the (a) calamitic system, (b) discotic system, and (c) lattice system. The black lines are simulation data corresponding to increasing order parameter from bottom to top. For all the three cases, the blue solid lines show the fits to the data over the time regimes, if any, where the decay follows a power law: $t^{-\alpha}$. The values of the power law exponent are given below in the parenthesis. (a) Along an isotherm at $T = 1.0$ at several densities: $\rho = 0.285$, $\rho = 0.3$, $\rho = 0.305$ ($\alpha = 0.26$), $\rho = 0.31$ ($\alpha = 0.18$), $\rho = 0.315$ ($\alpha = 0.16$), $\rho = 0.32$ ($\alpha = 0.13$), and $\rho = 0.33$ ($\alpha = 0.12$). (b) Along an isobar at $P = 25.0$ at several temperatures: $T = 2.991$, $T = 2.693$ ($\alpha = 0.208$), $T = 2.646$ ($\alpha = 0.194$), and $T = 2.594$ ($\alpha = 0.178$). (c) At two temperatures: $T = 1.176$ ($\alpha = 0.374$) and $T = 1.149$ ($\alpha = 0.33$).
The parameter has nonzero finite value (of the order of $N^{-1/2}$) even in the isotropic phase. While the distribution of S is unimodal in both the isotropic and nematic phases, it becomes bimodal near the I-N phase boundary with two peaks at S_i and S_n ($S_i < S_n$) corresponding to an isotropic-like and a nematic-like configuration, respectively. The dominant peak shifts from S_i to S_n and then the distribution becomes unimodal as the system settles into the nematic phase. In the same figure, we have also shown the order parameter dependence of the free energy obtained from the distribution. Such a bimodal distribution could be observed only because of the weakly first order nature of the I-N transition (that is, the requirement of nucleation is not stringent). Note that the free energy barrier between isotropic and nematic phases is only of the order of $0.01k_B T$ per particle. Resulting large fluctuations in S can give rise to power law decay of $\langle \Delta S(0) \rangle / \langle \Delta S(t) \rangle$ as discussed above.

If the power law decay is driven by the growth of the orientational correlation length, then its duration is expected to increase with the aspect ratio of the mesogens. We have, therefore, carried out a study of rod-like mesogens with aspect ratio 3.8 and confirmed this expectation. The emergence of the power law relaxation in the all three systems under consideration here near the I-N transition is due to the rapid growth of the orientational correlation length, which is also responsible for the universal features. Unlike in glassy systems, the power law decay may reflect large thermodynamic fluctuations of the order parameters, as shown in Fig. 3. Finally, our prediction of power law decay for discotic liquid crystals could be tested in experiments.

This work was supported by the grant from DST, India. DC acknowledges UGC, India for providing Research Fellowship.

* Electronic address: bbagchi@sscu.iisc.ernet.in

[1] P. G. de Gennes and J. Prost, *The Physics of Liquid Crystals* (Clarendon Press, Oxford, 1993).
[2] S. Chandrasekhar, *Liquid Crystals* (Cambridge University Press, Cambridge, 1992).
[3] W. L. McMillan, Phys. Rev. A 4, 1238 (1971).
[4] P. G. de Gennes, Solid State Commun. 10, 753 (1972).
[5] B. I. Halperin, T. C. Lubensky, and S.-K. Ma, Phys. Rev. Lett. 32, 292 (1974).
[6] A. Yethiraj and J. Bechhoefer, Phys. Rev. Lett. 84, 3642 (2000).
[7] Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6240 (1987); 87, 6257 (1987).
[8] S. D. Gottke, H. Cang, B. Bagchi, and M. D. Fayer, J. Chem. Phys. 116, 6339 (2002).
[9] J. Li, I. Wang, and M. D. Fayer, J. Chem. Phys. B 109, 6514 (2005).
[10] P. P. Jose and B. Bagchi, J. Chem. Phys. 120, 11256 (2004).
[11] J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316
(1981).

[12] J. T. Brown, M. P. Allen, E. M. del Río, and E. de Miguel, Phys. Rev. E 57, 6685 (1998).

[13] M. A. Bates and G. R. Luckhurst, J. Chem. Phys. 104, 6696 (1996).

[14] P. A. Lebwohl and G. Lasher, Phys. Rev. A 6, 426 (1972).

[15] All the quantities reported here for prolate and oblate ellipsoids of revolution are given in reduced units defined in terms of the Gay-Berne potential parameters ϵ_0 and σ_0: length in units of σ_0, temperature in units of ϵ_0/k_B, k_B being the Boltzmann constant, and time in units of $(\sigma_0^2m/\epsilon_0)^{1/2}$, m being the mass of the ellipsoids of revolution. We set the mass as well as the moment of inertia of each of the ellipsoids of revolution equal to unity. In the case of the lattice system, temperature is scaled by ϵ/k_B. The moment of inertia of each particle has been set equal to unity.

[16] C. Zannoni, Advances in the Computer Simulations of Liquid Crystals (eds. P. Pasini and C. Zannoni) (Kluwer Academic Publishers, Dordrecht, 2000).

[17] W. Kob, J. Phys.: Condens. Matter 11, R85 (1999).

[18] H. Cang, J. Li, V. N. Novikov, and M. D. Fayer, J. Chem. Phys. 118, 9303 (2003).

[19] U. Bengtzelins, W. Götze, and A. Sjölander, J. Phys. C 17, 5915 (1984).

[20] W. Götze and M. Sperl, Phys. Rev. Lett. 92, 105701 (2004).

[21] C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids (Clarendon Press, Oxford, 1984), Vol. 1.

[22] B. Bagchi and A. Chandra, Adv. Chem. Phys. 80, 1 (1991).

[23] M. P. Allen and M. A. Warren, Phys. Rev. Lett. 78, 1291 (1997).

[24] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).