On Kinks and Bound States in the Gross-Neveu Model

Joshua Feinberg
Theory Group, Department of Physics
The University of Texas at Austin, RLM5.208, Austin, Texas 78712
and
Theory Group, Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, IL 60510
e-mail joshua@utaphy.ph.utexas.edu

Abstract

We investigate static space dependent $\sigma(x) = \langle \bar{\psi} \psi \rangle$ saddle point configurations in the two dimensional Gross-Neveu model in the large N limit. We solve the saddle point condition for $\sigma(x)$ explicitly by employing supersymmetric quantum mechanics and using simple properties of the diagonal resolvent of one dimensional Schrödinger operators rather than inverse scattering techniques. The resulting solutions in the sector of unbroken supersymmetry are the Callan-Coleman-Gross-Zee kink configurations. We thus provide a direct and clean construction of these kinks. In the sector of broken supersymmetry we derive the DHN saddle point configurations. Our method of finding such non-trivial static configurations may be applied also in other two dimensional field theories.

PACS numbers: 11.10.Lm, 11.15.Pg, 11.10.St, 11.10.Kk

* Supported by a post doctoral Rothchild Fellowship and in part by the Robert A. Welch Foundation and NSF Grant PHY 9009850.
I Introduction

The Gross-Neveu model \[\text{[1]}\] is a well known two dimensional field theory of \(N\) massless Dirac fermions \(\psi_a (a = 1, \ldots, N)\) with \(\mathcal{U}(N)\) invariant self interactions, whose action is given by

\[
S = \int d^2 x \left[\sum_{a=1}^{N} \bar{\psi}_a i \partial \psi_a + \frac{g^2}{2} \left(\sum_{a=1}^{N} \bar{\psi}_a \psi_a \right)^2 \right].
\] (1)

We are interested in the large \(N\) limit of (1) in which \(N \to \infty\) while \(N g^2\) is held fixed. Decomposing each Dirac spinor into two Majorana spinors one observes that \(S\) is invariant under \(\mathcal{O}(2N)\) flavour symmetry containing the \(\mathcal{U}(N)\) mentioned above as a subgroup \[\text{[2]}\]. The field theory defined by (1) is a renormalisable field theory exhibiting asymptotic freedom, dynamical symmetry breaking and dimensional transmutation. Its spectrum was calculated semiclassically (in the large \(N\) limit) in \[\text{[2]}\]. It contains the fermions in (1) which become massive, as well as a rich collection of bound states thereof (the so called "DHN states"). The spectrum of (1) contains also kink configurations \[\text{[4, 5]}\]. We refer to these as the Callan-Coleman-Gross-Zee (CCGZ) kinks in the sequel. These kinks are expected to be part of the spectrum of the Gross-Neveu model since dynamical breaking of the discrete chiral symmetry in the Gross-Neveu model suggests that there should be extremal field configurations that interpolate between the two minima of the effective potential associated with (1) in much the same way that such configurations arise in classical field theories whose potential term has two or more equivalent minima.

The Gross-Neveu model has also a system of infinitely many (non-local) conservation laws which (presumably) forbid particle production in scattering processes and enables the exact calculation of \(S\)-matrix elements in the various sectors of the model \[\text{[6]}\]. Results of such calculations are in agreement with the "Large N" calculation of the spectrum.

In this paper we discuss static space dependent \(\sigma(x) = \langle \bar{\psi} \psi \rangle\) configurations that are solutions of the saddle point equation governing the effective action corresponding to (1) as \(N \to \infty\). Such \(\sigma(x)\) configurations correspond to non-trivial excitations of
the vacuum and are therefore important in determining the entire spectrum of
the field theory in question and its finite temperature behaviour as well. Such
configurations are important also in discussing the behaviour of the $\frac{1}{N}$ expansion of
at large orders.

Our discussion makes use of supersymmetric quantum mechanics and simple prop-
erties of the diagonal resolvent of one dimensional Schrödinger operators. Using these
two basic tools we are able to solve the saddle point condition for static $\sigma(x)$ config-
urations explicitly. The supersymmetry alluded to above relates the upper and lower
components of spinors, implying that the square of the Dirac operator may be decom-
posed into two isospectral Schrödinger operators. It is closely related to the soliton
degeneracy discussed in, where the soliton is considered as a degenerate doublet
having fermion numbers $\pm \frac{1}{2}$. Our explicit solution of the saddle point condition in
the sector of unbroken supersymmetry consists of the CCGZ kink configurations and
it therefore provides a clean and direct construction of these kinks. In the sector
of broken supersymmetry, our explicit solution reproduces the so called DHN saddle
point configurations.

In a recent paper, we have applied a similar method to the anharmonic $O(N)$
oscillator and the two dimensional $O(N)$ vector model in the limit $N \to \infty$. In the
latter case we have found that the effective action sustains in the large temperature
limit extremal bilinear condensates of the $O(N)$ vector field that are analogous to the
CCGZ kinks in the Gross-Neveu model.

The paper is organised as follows: In Section II we analyse the saddle point equa-
tion for static $\sigma(x)$ configurations employing supersymmetric quantum mechanics.
Using simple manipulations, we show that the latter equation may be expressed in
terms of the hamiltonian of only one of the supersymmetric sectors. In Section III.1
we resolve the saddle point equation into frequencies and demand that the extremum
condition be satisfied by each Fourier component separately. This strong condition
turns out to leave us always in the sector of unbroken supersymmetry. This corre-
sponds physically to $\sigma(x)$ configurations that interpolate between the two vacua of
the Gross-Neveu model at the two ends of the world, which are the CCGZ kinks that we find as explicit solutions of the saddle point equation. In Section III.2 we solve the saddle point equation without separating it into frequencies, under the assumption that there is only one bound state. This leads to the DHN $\sigma(x)$ configurations which belong to the sector of broken supersymmetry. We conclude our discussion in section IV.
II The Saddle Point Equation for Static Solutions

Following [1] we rewrite (1) as

\[S = \int d^2 x \left[i \bar{\psi} \partial \psi - g \sigma \bar{\psi} \psi - \frac{1}{2} \sigma^2 \right] \]

(2)

where \(\sigma(x) \) is an auxiliary field [13].

Thus, the partition function associated with (2) is

\[Z = \int \mathcal{D} \sigma \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left\{ i \int \infty_{-\infty} dt \int \infty_{-\infty} dx \left[\bar{\psi} i \partial \psi - g \sigma \bar{\psi} \psi - \frac{1}{2} \sigma^2 \right] \right\} \]

(3)

Gaussian integration over the grassmannian variables is straightforward, leading to

\[Z = \int \mathcal{D} \sigma \exp \{ i S_{\text{eff}}[\sigma] \} \]

where the bare effective action is [13]

\[S_{\text{eff}}[\sigma] = -\frac{1}{2} \int \infty_{-\infty} dt \int \infty_{-\infty} dx \sigma^2 - i \frac{N}{2} \text{Tr} \ln \left[-(i \partial - g \sigma)(i \partial + g \sigma) \right] . \]

(4)

The ground state of the Gross-Neveu model (1) is described by the simplest extremum of \(S_{\text{eff}}[\sigma] \) in which \(\sigma = \sigma_0 \) is a constant that is fixed by the (bare) gap equation

\[-g \sigma_0 + i Ng^2 \text{tr} \int \frac{d^2 k}{(2\pi)^2} \frac{1}{k - g \sigma_0} = 0 . \]

(5)

Therefore, the dynamically generated mass of small fluctuations of the Dirac fields around this vacuum is

\[m = g \sigma_0 = \mu e^{1 - \frac{\pi}{N g^2(\mu)}} \]

(6)

where \(\mu \) is an arbitrary renormalisation scale, and the renormalised coupling \(g_R(\mu) \) is related to the cut-off dependent bare coupling via \(\Lambda e^{-\frac{\pi}{N g^2(\Lambda)}} = \mu e^{1 - \frac{\pi}{N g^2(\mu)}} \) where \(\Lambda \) is an ultraviolet cutoff. Since \(m \) is the physical mass of the fermions it must be a renormalisation group invariant, and this fixes the scale dependence of the renormalised coupling \(g_R \), namely, equation (3). From now on we will drop the subscript \(R \) from the renormalised coupling and simply denote it by \(Ng^2 \).

As was explained in the introduction, we are interested in more complicated extrema of \(S_{\text{eff}} \), namely, static space dependent solutions of the extremum condition on
This condition reads generally
\[
\frac{\delta S_{\text{eff}}}{\delta \sigma(x,t)} = -\sigma(x,t)
\]
\[
-\frac{N}{2} \text{tr} \left\{ \left[2g^2 \sigma(x,t) + ig\gamma^{\mu} \partial_{\mu} \right] \langle x,t | \left[\Box + g^2 \sigma^2 - ig\gamma^{\mu} \partial_{\mu} \sigma \right]^{-1} | x,t \rangle \right\} = 0
\]
(7)
where “tr” is a trace over Dirac indices.

Specialising to static \(\sigma(x) \) configurations, and using the Majorana representation \(\gamma^1 = i\sigma_3, \gamma^0 = \sigma_2 \) for \(\gamma \) matrices, (7) becomes
\[
\frac{2i}{Ng} \sigma(x) = \text{tr} \left[\left(\begin{array}{cc} 2g\sigma - \partial_x & 0 \\ 0 & 2g\sigma + \partial_x \end{array} \right) \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left(\begin{array}{cc} R_+(x,\omega^2) & 0 \\ 0 & R_-(x,\omega^2) \end{array} \right) \right] =
\]
\[
\int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left[(2g\sigma - \partial_x) R_+(x,\omega^2) + (2g\sigma + \partial_x) R_-(x,\omega^2) \right]
\]
(8)
where
\[
R_\pm(x,\omega^2) = \langle x | \frac{1}{h_\pm - \omega^2} | x \rangle
\]
(9)
are the diagonal resolvents of the one dimensional Schrödinger operators
\[
h_\pm = -\partial_x^2 + g^2 \sigma^2 \pm g\sigma'(x)
\]
(10)
evaluated at spectral parameter \(\omega^2 \).

Note that \(h_\pm \) are positive semidefinite isopectral (up to zero-modes) hamiltonians, since (10) may be brought into the form [19, 20]
\[
h_+ = Q^\dagger Q, \quad h_- = QQ^\dagger \quad \text{where}
\]
\[
Q = -\frac{d}{dx} + g\sigma, \quad Q^\dagger = \frac{d}{dx} + g\sigma.
\]
(11)
These operators may be composed into a supersymmetric hamiltonian \(H = \begin{pmatrix} h_+ & 0 \\ 0 & h_- \end{pmatrix} \) describing one bosonic and one fermionic degrees of freedom [19], which we identify with the upper and lower components of the spinors. Supersymmetry implies here
that an interchange of the bosonic and fermionic sectors of H leaves dynamics unchanged, as can be seen from the fact that Eqs. (8)-(11) are invariant under the simultaneous interchanges

$$\sigma \rightarrow -\sigma, \quad h_\pm \rightarrow h_\mp, \quad R_\pm \rightarrow R_\mp.$$

Isospectrality of h_+ and h_- alluded to above means that to each eigenvector ψ_n of h_- with a positive eigenvalue E_n, there is a corresponding eigenvector ϕ_n of h_+ with the same eigenvalue and norm, and vice-versa. The precise form of this pairing relation is

$$\phi_n = \frac{1}{\sqrt{E_n}} Q^\dagger \psi_n, \quad \psi_n = \frac{1}{\sqrt{E_n}} Q \phi_n \quad ; \quad E_n > 0.$$

(13)

It is clear that the pairing in (13) fails when $E_n = 0$. Thus, in general one cannot relate the eigenvectors with zero-eigenvalue (i.e.-the normalisable zero-modes) of one hamiltonian in (10) to these of the other. Should such a normalisable zero-mode appear in the spectrum of one of the positive semidefinite operators in (10), it must be the ground state of that hamiltonian. In this case the lowest eigenvalue of the supersymmetric hamiltonian H is zero, which is the case of unbroken supersymmetry. If such a normalisable zero-mode does not appear in the spectrum, all eigenvalues of H, and in particular-its ground state energy, are positive, and supersymmetry is broken. Since the ground state of a Schrödinger operator is non-degenerated, h_\pm can have each no more than one such a normalisable zero-mode. Moreover, it is clear from (10) that in our one dimensional case, only one operator in (10) may have a normalisable zero-mode, since it must be annihilated either by Q or by Q^\dagger. In cases of unbroken supersymmetry, we will take such a normalisable zero-mode to be an eigenstate of h_-, namely, the real function

$$\Psi_0 (x) = \mathcal{N} e^{-g \int_0^x \sigma(y) dy}$$

(14)
which is the normalisable solution of the differential equation

\[Q^\dagger \Psi_0 = 0 \quad (15) \]

where \(\mathcal{N} \) is a normalisation coefficient.

Note that a necessary condition for the normalisability of \(\Psi_0 \) is that \(\sigma(x) \) have the opposite behaviour at \(\pm \infty \). Thus, physically, cases of unbroken supersymmetry lead to \(\sigma(x) \) configurations that interpolate between the two vacua of (4) at the two ends of the world, while cases of broken supersymmetry yield \(\sigma(x) \) configurations that leave and return to the same vacuum state.

Assigning the zero-mode to \(h_- \) poses no loss of generality, since the other possible case is related to this one via (12). In what follows we will denote the right hand side of (14) by \(\Psi_0 \) also in cases of broken supersymmetry where it is non-normalisable. This should not cause any confusion, since the ground state will be denoted by \(\psi_0 \), which will be equal to \(\Psi_0 \) when supersymmetry is unbroken.

By definition, the diagonal resolvents in (9) are given by the eigenfunction expansions

\[
R_-(x) = \sum_{n=0}^{\infty} \frac{|\psi_n(x)|^2}{E_n - \omega^2},
\]

\[
R_+(x) = \sum_{n>0}^{\infty} \frac{|\phi_n(x)|^2}{E_n - \omega^2} \quad (16)
\]

where the sums extend over all eigenstates, including the continua of scattering states where they are understood as integrals.

Using (13), \(R_+ \) may be expressed in terms of the \(\psi_n \)'s as

\[
R_+(x, \omega^2) = \sum_{n>0}^{\infty} \frac{1}{E_n \Psi_0^2(x)} \frac{|W_n(x)|^2}{E_n - \omega^2} \quad (17)
\]

where \(W_n(x) = \Psi_0(x) \psi_n'(x) - \Psi_0'(x) \psi_n(x) \) is the wronskian of \(\Psi_0 \) and \(\psi_n \). An elementary consequence of the Schrödinger equation is that \(W_n'(x) = -E_n \Psi_0(x) \psi_n(x) \).

Using this relation, (16) and (17) imply the important relation

\[
(2g\sigma - \partial_x) R_+ + (2g\sigma + \partial_x) R_- = 2 \left(2g\sigma + \frac{d}{dx} \right) \langle x | \mathcal{P} \frac{1}{h_- - \omega^2} | x \rangle. \quad (18)
\]
Here \mathcal{P} is the projector

$$\mathcal{P} = 1 - \lambda |\psi_0\rangle\langle\psi_0| \quad (19)$$

that projects out the ground state of h_- when supersymmetry is unbroken ($\lambda = 1$), and is just the unit operator otherwise ($\lambda = 0$). We can also use (5) to make a frequency resolution of unity as

$$\frac{i}{Ng^2} = \int_{-\Lambda}^{\Lambda} \frac{d\omega}{\pi} x |\frac{1}{-\partial_x^2 + m^2 - \omega^2 - i\epsilon}|x\rangle. \quad (20)$$

Moreover, from (18), (20) and the elementary relation

$$\langle x |\frac{1}{-\partial_x^2 + m^2 - \omega^2 - i\epsilon}|x\rangle = \frac{1}{2\sqrt{m^2 - \omega^2 - i\epsilon}}, \quad (21)$$

the frequency resolution of (8) becomes

$$\frac{d}{dx} \langle x |\mathcal{P} \frac{1}{h_- - \omega^2}|x\rangle = 2g\sigma(x) \left[\frac{1}{2\sqrt{m^2 - \omega^2}} - \langle x |\mathcal{P} \frac{1}{h_- - \omega^2}|x\rangle \right].$$

Substituting (19) into the last equation, all dependence on λ cancels out and the extremum condition (8) is shaped into its final form

$$\int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left\{ \frac{dR_- (x, \omega^2)}{dx} - 2g\sigma(x) \left[\frac{1}{2\sqrt{m^2 - \omega^2}} - R_- (x, \omega^2) \right] \right\} \quad (22)$$

which has to be satisfied regardless of whether supersymmetry is broken or not.
III Static Solutions to the Extremum Condition

III.1 Case of Unbroken Supersymmetry

The simplest way to look for solutions of the static saddle point equation (22) is to demand that it be satisfied by each frequency mode separately, namely restricting R_- by the differential condition

$$
\frac{dR_-(x,\omega^2)}{dx} = 2g\sigma(x) \left[\frac{1}{2\sqrt{m^2 - \omega^2}} - R_-(x,\omega^2) \right].
$$

(23)

Now, $R_-(x,\omega^2)$, being the diagonal resolvent of h_- at spectral parameter ω^2 is subjected to the so-called ”Gel’fand-Dikii” equation\[17\]\[18\]

$$
-2R_-(x,\omega^2)R''_-(x,\omega^2) + \left(R'_-(x,\omega^2) \right)^2 + 4R^2_-(x,\omega^2) \left[g^2\sigma^2 - g\sigma' - \omega^2 \right] = 1.
$$

(24)

Therefore, both equations (23) and (24) must hold and they form a system of coupled non-linear differential equations in the unknowns $\sigma(x)$, and $R_-(x,\omega^2)$. Substituting R'_- and R''_- from (23) into (24) we obtain a quadratic equation for R_- whose solutions are

$$
R_-(x,\omega^2) = \frac{-g\sigma' \pm \sqrt{(g\sigma')^2 + 4\omega^2 g^2\sigma^2 - 4\omega^2 (m^2 - \omega^2)}}{4\omega^2 \sqrt{m^2 - \omega^2}}.
$$

(25)

To see what the two signs of the square root correspond to we observe that the solution with the negative sign in front of the square root has a simple pole as a function of ω^2 at $\omega^2 = 0$ with a negative residue, while the other solution is regular and positive at $\omega^2 = 0$. Therefore, from (16) it is clear that the negative sign root corresponds to the case of unbroken supersymmetry, where the simple pole signals the existence of a normalisable zero-mode in the spectrum of h_-, while the positive root solution corresponds, for similar reasons, to cases in which h_- lacks such a zero-mode. We will see below that the latter solution corresponds also to the case of unbroken supersymmetry, where the zero-mode is in the spectrum of h_+. We concentrate now on the branch cut singularity in (25) at $\omega^2 = m^2$ which signals the threshold of the continuous part of the spectrum of h_-. Clearly, h_- can
have no continuous spectrum other than that starting at $\omega^2 = m^2$, thus leading to the conclusion that R_- in (23) can have no other branch points in the ω^2 plane. Therefore, the expression under the square root in (23) must be a perfect square as a polynomial in ω^2, namely,

$$\pm g\sigma'(x) = g^2\sigma^2(x) - m^2. \quad (26)$$

From (26) we find straightforwardly the solutions

$$g\sigma(x) = \pm m \tanh [m (x - x_0)] \quad (27)$$

which are exactly the CCGZ kinks and anti-kinks. Here the parameter x_0 is an integration constant that implies translational invariance of (27) since it is the arbitrary location of the kinks. Clearly, both cases in (27), and therefore both cases in (25), lead to h_\pm operators that do not break supersymmetry, since (14),(27) imply that

$$\Psi_0 = \left(\frac{m}{2} \right)^{\frac{1}{2}} e^{-g \int_{x_0}^x \sigma(y) dy} = \left(\frac{m}{2} \right)^{\frac{1}{2}} \sech[m(x - x_0)] \quad (28)$$

is the normalisable zero-mode of h_- for the kink configuration, and of h_+ when $\sigma(x)$ is the anti-kink. Due to zero binding energy, fermions trapped in this potential do not react back on the $\sigma(x)$ field [2].

Note that in deriving (27) above we have not set any apriori restrictions on R_-, thus, it is a very interesting question whether (27) are the only possible static extremal $\sigma(x)$ configurations in the sector of unbroken supersymmetry or not.

As it stands, our frequency decomposition of the extremum condition (23) seems to lead always to extremal $\sigma(x)$ configurations that do not break supersymmetry. We are thus unable to find in this manner the extremal $\sigma(x)$ configurations found in [4] in which $\sigma(x)$ has the shape of kink anti-kink pair that are very close to each other. Such a configuration evidently breaks supersymmetry [19]. They will be discussed in the next subsection.

When $\sigma(x)$ is a kink (23) becomes

$$R_-(x, \omega^2) = -\frac{m^2 \sech^2[m(x - x_0)]}{2\omega^2 \sqrt{m^2 - \omega^2}} + \frac{1}{2\sqrt{m^2 - \omega^2}} \quad (29)$$
while for anti-kinks it is just the expression on the right hand side of (21).

These statements on R_- are consistent with the explicit form of the hamiltonians h_{\pm}. Using (10), (27) we find in the kink case

$$h_+ = -\partial_x^2 + g^2 \sigma^2 + g \sigma' = -\partial_x^2 + m^2 \quad \text{and}$$

$$h_- = -\partial_x^2 + g^2 \sigma^2 - g \sigma' = -\partial_x^2 + m^2 - 2m^2 \sech^2 [m(x - x_0)] \quad (30)$$

while in the anti-kink case h_{\pm} interchange their roles. Thus, in the latter case, h_- becomes the Schrödinger operator of a freely moving particle in a constant potential m^2 which is the reason why R_- is given by the simple expression in (21) in the anti-kink case. Indeed, that expression is the x independent solution of the Gel’fand-Dikii equation (24) corresponding to the constant potential $g^2 \sigma^2 - g \sigma' = m^2$ that is positive at $\omega^2 = 0$.

In the kink case, we have obtained the explicit form (29) for R_- by substituting (27) into (25). As an independent check, we may deduce this expression for the diagonal resolvent for the potential $g^2 \sigma^2 - g \sigma' = m^2 - 2m^2 \sech [m(x - x_0)]$ in other ways. The simplest one is to apply an ansatz of the form $R_\pm = \alpha \sech^2 (\beta x) + \gamma$ to the Gel’fand-Dikii equation. Another way to derive it is to use the general formula $R(x) = G(x, y)|_{x=y} = \frac{\psi_1(x_>)\psi_2(x_<)}{W(\psi_1, \psi_2)}|_{x=y}$ where the ψ’s are the so called Jost functions of the problem. In this case they are hypergeometric functions multiplied by \sech factors. The wronskian in this expression is a ratio of Γ functions dependent on ω^2 and m^2[8].

We can deduce from (25) the CCGZ solution (27) to the extremum condition (23), (24) by yet another method which does not rely upon the brach-cut structure of R_- but rather on its pole structure. Considering the case where the zero-mode is in the spectrum of h_- we make a Laurent expansion of the appropriate expression for R_- in (25) around the simple pole at $\omega^2 = 0$. The leading term in this expansion is

$$R_- \sim -\frac{1}{\omega^2} \left[\frac{g \sigma'}{2m} + O(\omega^2) \right]. \quad (31)$$
Comparing (31) to (14) and (16) we find

$$\Psi_0^2(x) = N^2 \exp \left(-2g \int_0^x \sigma(y) dy \right) = \frac{g \sigma'}{2m}$$

which yields

$$N^2 e^{-2\phi} = \frac{\phi''}{2m} ; \quad \phi(x) = g \int_0^x \sigma(y) dy .$$

Solving (33) we find

$$\phi(x) = \ln \cosh[m(x - x_0)] + c$$

where c and x_0 are integration constants and we have imposed the normalisation condition $\int_{-\infty}^{\infty} \Psi_0^2 dx = 1$ to fix $N = \sqrt{\frac{m}{2c}}$. Clearly, then, (34) yields the CCGZ kinks upon differentiation.

We are now in a position to verify briefly that the CCGZ kink configuration leads to an h_- operator that has indeed a single normalisable zero-mode as the explicit form (29) for R_- suggests. Our discussion follows [20]. In the kink sector (30) implies that the eigenstates of h_+ are simply these of freely moving particles $\phi_k(x) = e^{ikx}$, with a continuum of strictly positive eigenvalues $E_+ = k^2 + m^2 \geq m^2$. These states are isospectral to the eigenstates of h_-,

$$\psi_k(x) = \frac{1}{\sqrt{k^2 + m^2}} Q \phi_k(x) = \left\{ \frac{m \tanh[m(x - x_0)] - ik}{\sqrt{k^2 + m^2}} \right\} e^{ikx}$$

which are therefore the scattering states of h_-. The S matrix associated with h_- is thus

$$S(k) = \frac{ik - m}{ik + m} = \exp \left[i \left(\pi - 2 \arctan \frac{k}{m} \right) \right] .$$

Since h_+ in (30) has only scattering states, h_- can have no bound states other than its zero-mode (28) which must therefore be its ground state. This single normalisable state of h_- corresponds to the single pole of $S(k)$ in (30) at $k = im$. Note further that there are no reflected waves in any of the scattering eigenstates (33) of the Schrödinger operators in (30). This is also the case for the supersymmetry breaking
σ(x) configurations in [3] as well as in other exactly soluble models in two space-time dimensions [2].

The fact that \(h_\pm \) evaluated at the extremal point must be reflectionless can be deduced even without solving the extremum condition (23) explicitly, provided one makes apriori an assumption that \(h_- \) has only a single bound state (namely, its ground state) regardless of whether supersymmetry is broken or not.

To this end we consider (23), in which \(R_- \) may be replaced by \(R_P = \langle x | \mathcal{P} \frac{1}{h_- - \omega} | x \rangle \) as mentioned in the discussion preceding (23). Since \(h_- \) is assumed to have a single bound state, \(R_P \) contains only scattering states of \(h_- \), whose corresponding continuous eigenvalues \(E = k^2 + m^2 \) start at \(E = m^2 \). We may therefore write the spectral resolution of \(R_P \) as

\[
R_P = \int_{m^2}^{\infty} dE \frac{\psi_E(x) |^2}{E - \omega^2} = \int_{-\infty}^{\infty} dk \frac{\rho_k(x)}{k^2 + m^2 - \omega^2} \tag{37}
\]

where \(\rho_k(x) = 2\pi |k||\psi_k(x)|^2 \). In terms of \(\rho_k \) the extremum condition (23) becomes

\[
\frac{d}{dx} \frac{\rho_k(x)}{\Psi_0^2(x)} = \frac{d}{dx} \frac{1}{\Psi_0^2(x)} \tag{38}
\]

whose general solution is

\[
\rho_k(x) = 1 + c_k \Psi_0^2(x) \tag{39}
\]

where \(c_k \) is an integration constant. Since by definition \(\rho_k(x) \) cannot blow up at infinity, we must set \(c_k = 0 \) in the case of broken supersymmetry. Whether supersymmetry is broken or not \(\rho_k(x) \) obviously obtains the asymptotic value of 1 as \(x \to \pm \infty \). Therefore, the scattering states \(\psi_k(x) \) of \(h_- \) are given by

\[
\psi_k(x) = \sqrt{1 + c_k \Psi_0^2(x)} \ e^{i\alpha_k(x)} \tag{40}
\]

where \(\alpha_k \) is a real phase. Substituting these functions into the eigenvalue equation for \(h_- \) and considering its asymptotic behaviour as \(x \to \pm \infty \) we see, using the boundary condition \(g\sigma(\pm \infty) = \pm m \) that the phase becomes that of a free particle, which is obvious, but unimodularity of the phase factor implies further that there be only right moving or only left moving wave in \(\psi_k(x) \). Therefore, \(h_- \) must be reflectionless.
The physical significance of the CCGZ kinks is as follows: As was mentioned in the introduction, the dynamical properties of (1) are consequences of the fact that the ("large N") effective potential \(V_{\text{eff}}(\sigma) \) extracted from (2) has two symmetric equivalent minima at \(\langle \sigma \rangle_{\text{vac}} = \pm \sigma_0 \neq 0 \). This causes a dynamical breakdown of the discrete \((Z_2)\) chiral symmetry of (2) under the transformation \(\psi \rightarrow \gamma_5 \psi, \sigma \rightarrow -\sigma \), where the fermions fluctuating near the \(\langle \sigma \rangle_{\text{vac}} = \pm \sigma_0 \) ground state acquire dynamical mass \(m = \pm g \sigma_0 \). In a similar manner to the appearance of kinks in classical field theories with potentials exhibiting spontaneous symmetry breaking, one should expect similar configurations to appear in field theories whose effective potential implies dynamical symmetry breaking. The CCGZ kinks (anti-kinks) are precisely such static space-dependent \(\sigma(x) \) configurations that interpolate between the two minima of \(V_{\text{eff}}(\sigma) \), and our calculations provide an explicit proof that they are indeed extremal points of (4). The various states appearing in the background of the CCGZ kink may be deduced by calculating the "partition function" of the Dirac field fluctuations in that specific \(\sigma(x) \) configuration for a finite time lapse \(T \) (i.e.-the trace over the time evolution operator \(e^{-iHT} \)). This has been done explicitly in [2]. The result is

\[
\text{Tr} \ e^{-iHT} = \sum_{n=0}^{2N} \frac{(2N)!}{(n)!(2N-n)!} \cdot \exp \left[-\int_0^T \int_{-\infty}^{\infty} dx \left(\sigma_{\text{kink}}^2 - \sigma_0^2 \right) \right] \cdot \exp \left\{ iNT \left(\sum_i \omega_i [\sigma_{\text{kink}}] - \sum_i \omega_i [\sigma_0] \right) - i n \omega_b [\sigma_{\text{kink}}] T \right\} .
\]

In this equation \(n \) is the total number of fermions and anti-fermions that are trapped in the single bound state of the kink, \(\omega_i [\sigma] = \sqrt{E_i} \) is the energy of the \(i \)-th state in the background of \(\sigma \) [21] and \(\omega_b \) is the energy of the bound state, which is zero for the CCGZ kinks. Using this and also the fact that in this background \(h_{\pm} \) in (30) are isospectral, we see that all terms in the second exponent in (41) are cancelled, leaving only the first exponent which is the mass of the kink, namely [22],

\[
M_{\text{kink}} = \frac{1}{2} \int_{-\infty}^{\infty} \left[\sigma_0^2 - \sigma_{\text{kink}}^2 \right] = \frac{mN}{Ng^2} .
\]

Therefore, we see that all states contributing to (41) are degenerate in energy (all
having the kink mass as energy) which is a direct result of the fact that \(\omega_b = 0 \). Clearly there are \(2^{2N} \) states in all, that form a huge reducible supermultiplet of \(\mathcal{O}(2N) \). Its decomposition into irreducible components is clear from the combinatorial prefactors in (11) that simply tell us that the various bound states in the kink fall into anti-symmetric tensor representations of \(\mathcal{O}(2N) \) (where the integer \(n \) is the rank of the tensor)[2].

We close this subsection by checking explicitly that the CCGZ kink configurations obtained above indeed extremise the effective action in (4). Substituting the kink configuration in (27) and the explicit expressions (29) and (21) for \(R_- \) and \(R_+ \) into the extremum condition (8) we find that the pole at \(\omega^2 = 0 \) disappears from the right hand side of (8) in accordance with (18) leaving in the sum over frequencies only contributions from the scattering states. Thus, Eq.(8) becomes

\[
\left[1 + iNg^2 \int_{-\Lambda}^{\Lambda} \frac{d\omega}{2\pi} \frac{1}{\sqrt{m^2 - \omega^2 - i\epsilon}} \right] g\sigma(x) = 0, \tag{43}
\]

implying that the term in the square brackets on the left hand side must vanish. But vanishing of the latter is precisely the Minkowsky space gap-equation of the Gross-Neveu model \(\mathcal{E} \) for the dynamical mass \(m \) and it must therefore hold, confirming that the kinks in (27) are indeed solutions of the extremum condition (8).
III.2 Case of Broken Supersymmetry

Enforcing the saddle point condition at each frequency component in (23) led us directly to the sector of unbroken supersymmetry without any further assumptions on \(R_-(x, \omega^2) \). Therefore, in order to find static extremal \(\sigma(x) \) configurations that lead to supersymmetry breaking, we must solve (22) as a whole. At a first sight this seems to be unmanageable\(^{[23]}\), since we apparently cannot use the Gel’fand-Dikii equation (24) for \(R_- \) which was so crucial for our treatment in the previous section. However, assuming (as in \([2]\)) that the required \(\sigma(x) \) configuration yields an \(h_- \) operator with a single bound state at positive energy \(E_b = \omega_b^2 < m^2 \), in addition to the obvious continuum of unbound fermions of mass \(m \), our experience gained in the previous section leads us to the most general form of \(R_-(x, \omega^2) \) consistent with (24) and the preassumed form of the spectrum of \(h_- \). This generic form of \(R_- \) contains enough information in order to solve (22).

In order to construct this generic form of \(R_- \), we note the following points:

1. \(R_- \) has scale dimension \(-1\) in mass units as can be seen from its definition (9) or from the explicit expressions (25) and (29).

2. Clearly, \(g\sigma(x) \) must reach asymptotically either one of the vacua, namely, \(|g\sigma(\pm \infty)| = m, g\sigma'(\pm \infty) = 0 \) (actually, since we will end up indeed in the sector of broken supersymmetry, the two asymptotic values of \(g\sigma \) will turn out to be equal). Thus, the \(h_- \) operator resulting from such a \(\sigma(x) \) configuration must have the asymptotic form \(-\partial_x^2 + m^2 \) as \(|x| \to \infty \). Correspondingly, its resolvent must have the asymptotic form (21).

3. The assumption that \(h_- \) has a single bound state at positive energy \(0 < \omega_b^2 < m^2 \) implies that the analytic structure of \(R_-(x, \omega^2) \) in the complex \(\omega \) plane must include in addition to the branch cuts along the real rays \((-\infty, -m \) and \((m, \infty)\) only two simple poles on the real axis at \(\omega = \pm \omega_b \).

4. Any ansatz for \(R_- \) must obey the Gel’fand-Dikii equation (24).
Points number 1 and number 3 lead immediately to the general form

$$R_-(x, \omega^2) = \frac{Ag\sigma' + B(g\sigma)^2 + C(\omega_b^2 - \omega) + Dm^2}{(\omega_b^2 - \omega^2) \sqrt{m^2 - \omega^2}}$$ \hfill (44)

where A, B, C and D are dimensionless numbers yet to be determined. Point number 2 imply then that $C = \frac{1}{2}$ and $B = -D$.

In order to comply with point number 4, we substitute (44) into the Gel’fand-Dikii equation (24). Multiplying the resultant expression through by $(\omega_b^2 - \omega^2)^2 (m^2 - \omega^2)$ we obtain an even quartic polynomial in ω which must vanish. This yields three non-linear differential equations for $g\sigma(x)$ stemming from nullification of the coefficients of ω^4, ω^2 and ω^0 in that polynomial. The condition which results from setting the coefficient of ω^4 to zero reads

$$(4A - 1)(g\sigma)' + (1 - 4D) [(g\sigma)^2 - m^2] = 0$$ \hfill (45)

which can be used to eliminate A and D from (44). Doing so (44) becomes

$$R_-(x, \omega^2) = \frac{g\sigma' + m^2 - (g\sigma)^2}{4(\omega_b^2 - \omega^2) \sqrt{m^2 - \omega^2}} + \frac{1}{2\sqrt{m^2 - \omega^2}}.$$ \hfill (46)

This expression is evidently very similar to expressions (23) and (29), the only difference being that the double pole at $\omega = 0$ in those equations is resolved here into the two simple poles at $\omega = \pm \omega_b$.

We must further subject (10) to the two remaining differential equations mentioned above. It turns out that the equation resulting from setting the coefficient of ω^2 to zero is simply the derivative (with respect to x) of the equation associated with the coefficient of ω^0 (25). The latter is the differential equation for $g\sigma(x)$ we are looking for, which must be solved subjected to the boundary conditions mentioned in point number 2 above. Equivalently, and this is what we do below, we can read off the expression for the normalised bound state wave function $\psi_b(x)$ in terms of $g\sigma(x)$ from (16). The Schrödinger equation for $\psi_b(x)$ provides than the required condition for $g\sigma(x)$.

17
As can be seen from (16) and in a similar manner to our discussion following (31) in the previous subsection, we identify the residue of the simple pole of $R(x, E \equiv \omega^2)$ in (46) at $E = \omega_b^2$ as $-\psi_b^2(x)$. Thus,

$$\psi_b(x) = \sqrt{\frac{\sqrt{g^2 g^\prime - (g^2)^2 + m^2}}{4\sqrt{m^2 - \omega_b^2}}} = \sqrt{\frac{m^2 - V}{4\sqrt{m^2 - \omega_b^2}}}$$

(47)

where

$$V(x) = g^2 \sigma^2 - g \sigma'$$

(48)

is the potential of h_-. Imposing the Schrödinger equation on (47) we have

$$\left[-\partial_x^2 + V(x) \right] \sqrt{m^2 - V(x)} = \omega_b^2 \sqrt{m^2 - V(x)}.$$

(49)

The solution to this equation, compatible with boundary conditions at infinity is

$$V(x) = m^2 - 2\kappa^2 \text{sech}^2[\kappa(x - x_0)]$$

(50)

where $\kappa^2 \equiv m^2 - \omega_b^2$ and x_0 is an integration constant. The corresponding bound state and resolvent are therefore

$$\psi_b(x) = \sqrt{\frac{\kappa}{2} \text{sech}[\kappa(x - x_0)]}$$

$$R_-(x, \omega^2) = \frac{\kappa^2 \text{sech}^2[\kappa(x - x_0)]}{2 (\omega_b^2 - \omega^2) \sqrt{m^2 - \omega^2}} + \frac{1}{2 \sqrt{m^2 - \omega^2}}$$

(51)

which solve (24) and (49) as can be checked explicitly. It is not surprising at all that (51) reproduces (29) as $\omega_b \to 0$.

Finally, in order to find $g \sigma(x)$ we substitute (50) into (48). This is equivalent to solving

$$\left\{ -\partial_x^2 + m^2 - 2\kappa^2 \text{sech}^2[\kappa(x - x_0)] \right\} \Psi_0(x) = 0$$

(52)

where $\Psi_0(x)$ is defined in terms of $g \sigma(x)$ in (14). For $\kappa^2 \neq m^2$ the Schrödinger operator in (52) has no normalisable zero-mode and supersymmetry is broken. Nevertheless, one can find non-normalisable solutions of the differential equation (52), which can be transformed into an hypergeometric equation [8], and extract $g \sigma(x)$ in this way.
The resulting $g\sigma(x)$ configurations are those found in \cite{2}. The specific $g\sigma(x)$ given in \cite{2} corresponds to setting $\kappa x_0 = \frac{1}{4} \ln \frac{m + \kappa}{m - \kappa}$ in (50), namely,

$$g\sigma(x) = m + \kappa \left\{ \tanh \left[\kappa x - \frac{1}{4} \ln \frac{m + \kappa}{m - \kappa} \right] - \tanh \left[\kappa x + \frac{1}{4} \ln \frac{m + \kappa}{m - \kappa} \right] \right\}$$

(53)

Note at this stage that we have yet to impose the saddle point condition (22). This will quantise ω_b and constrain it to the discrete set of values found by DHN \cite{3} as we now show.

Substituting (46) into the generic static saddle point condition (22) we obtain

$$\left[(2g\sigma + \frac{d}{dx}) (g\sigma' + m^2 - g^2\sigma^2) \right] \int_{C, n} \frac{d\omega}{2\pi} \frac{1}{(\omega_b^2 - \omega^2) \sqrt{m^2 - \omega^2}} = 0$$

(54)

where we now integrate over ω along a contour C in the complex ω plane, and the subindex n counts the number of fermions trapped in the single bound state of h_- produced by $g\sigma$. The contour C is precisely the one used to define the Feynman propagator of a free Dirac particle of mass m, and in addition, it runs right below both simple poles of R_- at $\omega = \pm \omega_b$ \cite{26}.

The resulting static saddle point condition (54) is solved by requiring either that the term in the square brackets vanishes, or that the integral over frequencies vanishes. The differential equation resulting from the first possibility is

$$g\sigma'' = 2g\sigma(g^2\sigma^2 - m^2)$$

(55)

which reproduces the kink configuration (27) discussed in the previous section with $\omega_b = 0$. We thus focus on the other possibility, namely, that the integral in (54) vanishes.

The integral in (54) is U.V. finite. We can therefore deform it by folding its $\omega > \omega_b$ wing right on top of the remaining part of the real ω axis to the left of ω_b. This can be further deformed into two circles wrapped around the simple poles at $\pm \omega_b$ and a “hair-pin” configuration wrapped around the left hand cut of R_-, picking up its discontinuity across the cut \cite{26}. In other words, this integral picks up contributions from the completely filled Dirac sea (including the pole at $\omega = -\omega_b$), where each
energy state (of the Dirac operator $i\bar{\psi} - g\sigma$ rather than h_-) is occupied by N fermion flavours, and the single bound state at $\omega = +\omega_b$, which is occupied by $n < N$ fermions.

Because we have pulled out a factor of N in deriving (22) we have to weigh the contribution of the simple pole of R_- at $\omega = \omega_b$ by n/N in (54) while the other contributions are weighed simply by 1. Performing the integration, we find that the contribution from the cut is $-\frac{i}{m^2 \sin 2\theta} (1 - \frac{2\theta}{\pi})$ while the poles at $\omega = \pm \omega_b$ yield, respectively, $\mp \frac{i}{m^2 \sin 2\theta}$ where, following [2] we have defined

$$\omega_b = m \sin \theta \quad \text{and} \quad \kappa = \sqrt{m^2 - \omega_b^2} = m \cos \theta.$$ \tag{56}

Gathering all contributions to the integral (properly weighed), (54) yields

$$\int_{c,n} \frac{d\omega}{2\pi} \frac{1}{(\omega_b^2 - \omega^2) \sqrt{m^2 - \omega^2}} = \frac{i}{m^2 \sin 2\theta} \left[\frac{2\theta}{\pi} - \frac{n}{N} \right] = 0$$

namely,

$$\theta_n = \frac{\pi n}{2N} \tag{57}$$

which is precisely the result of [2]. The simple poles in R_- occur therefore at

$$\omega_b = m \sin \left(\frac{\pi n}{2N} \right). \tag{58}$$

One can now repeat the same analysis as in the previous subsection, of the partition function associated with fluctuations of fermions interacting with these static $\sigma(x)$ configurations. One finds again $\mathcal{O}(2N)$ supermultiplets, where the n'th supermultiplet has mass $M_n = \frac{2Nm}{\pi} \sin \left(\frac{\pi n}{2N} \right)$, ($n < N$) and contains all $\mathcal{O}(2N)$ completely antisymmetric tensors of rank $n_0 \leq n$, where n_0 has the same parity of n [2].
IV Conclusion

In this paper we have solved the extremum condition on the effective action of the two dimensional Gross-Neveu model for static $\sigma(x)$ configurations in the large N limit. Our method of calculation was direct, making use of elementary properties of one dimensional Schrödinger operators. The natural scale that appears in the Gross-Neveu model is that of its dynamically generated mass m. Because the latter is the natural scale of the CCGZ kink configurations as well, our derivation of these kink configurations was relatively simple and straight forward. It therefore may be considered as a clean and constructive proof that the CCGZ kinks are indeed static extrema of the effective action. We have also rederived the DHN extremal $\sigma(x)$ configurations in a very simple manner. To this end, however, we had to introduced their scale into the saddle point condition by hand, since it does not appear explicitly in the effective action.

Our method may be applied also to a host of other two dimensional field theories, and in particular, to field theories that do not involve reflectionless static configurations, where inverse scattering methods are useless\cite{27}.

I would like to thank the Theory Group at Fermilab where part of this work has been completed for their kind hospitality. I would also like to thank Joe Lykken for inviting me to Fermilab and for valuable discussions on topics related to this work. I am also indebted to the Theory Group at the University of Texas at Austin for partial support of this visit.
Note Added in Proof: After submitting this paper for publication I have realised that Avan and de Vega [27] have already used the diagonal resolvent of a one dimensional Schrödinger operator to discuss solitons in “Large N” vector models. However, their discussion was limited to single particle quantum mechanics (0 + 1 dimensional quantum field theory). Moreover, they did not make an explicit use of the Gel’fand-Dikii equation as was done here. I thank the referee for bringing this reference to my attention and for his useful remarks.
References

[1] D.J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).

[2] R.F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D 12, 2443 (1975).

[3] R.F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D 10, 4130 (1974).

[4] C.G. Callan, S. Coleman, D.J. Gross and A. Zee, unpublished (as referred to by
 2 and the reference below).

[5] A. Klein, Phys. Rev. D 14, 558 (1976), who reproduced these kink configurations
 as well as part of the results of 2 using the canonical formalism and Hartree-
 Fock techniques. However, in order to do so some simplifying assumptions had
 to be made in that paper, unlike the case we present here. The work of A. Klein
 was partly reproduced in
 R. Pausch, M. Thies and V.L. Dolman, Zeits. Phys. A 338, 441 (1991) where
 the exact solvability of the Gross-Neveu model was used to investigate certain
 properties of the Hartree-Fock approximation.

[6] A.B. Zamolodchikov and Al.B. Zamolodchikov, Phys. Lett. B72, 481 (1978);
 E. Witten, Nucl. Phys. B142, 285 (1978); R. Shankar and E. Witten, Nucl.
 Phys. B141, 349 (1978).
 For a comprehensive discussion of the exact S matrix for all sectors of the Gross-
 Neveu model see M. Karowski and H.J. Thun, Nucl. Phys. B190, 61 (1981).
 The infinitely many conserved non-local charges associated with the integrability
 of the Gross-Neveu model are discussed in
 T.L. Curtright and C. K. Zachos, Phys. Rev. D 24, 2661 (1981).

[7] J.M. Cornwal, R. Jackiw, and E. Tomboulis, Phys. Rev. D 10, 2428 (1974).

[8] J. Goldstone and R. Jackiw, Phys. Rev. D 11, 1486 (1975).
 See also P. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-
 Hill, New-York, 1953) p.1650, referred to in that paper.
[9] R.F. Dashen, S. Ma and T. Rajaraman, Phys. Rev. D 11, 1499 (1975);
F. Karsch, J. Kogut and H.W. Wyld, Nucl. Phys. B280, 289 (1987);
M.G. Mitchard, A.C. Davis and A.J. Macfarlane, Nucl. Phys. B325, 470 (1989).

[10] S. Hikami and E. Brézin, J. Phys. A (Math. Gen.) 12, 759 (1979).

[11] H.J. de Vega, Commun. Math. Phys. 70, 29 (1979).
J. Avan and H.J. de Vega, Phys. Rev. D 29, 2891 and 1904 (1984)

[12] I thank E. Brézin for pointing the importance of this issue to me.

[13] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1975).
See also the last section in the paper by A. Klein cited above.

[14] J. Feinberg, Nucl. Phys. B433, 625 (1995).

[15] From this point to the end of this paper flavour indices are suppressed. Thus
\(i\bar{\psi}\partial/\psi \) should be understood as \(i \sum_{a=1}^{N} \bar{\psi}_a \partial/\psi_a \). Similarly \(\bar{\psi}\psi \) stands for \(\sum_{a=1}^{N} \bar{\psi}_a \psi_a \).

[16] Here we have used the fact that \(D_1 = i\partial - g\sigma \) and \(D_2 = -(i\partial + g\sigma) \) are isospectral
(up to zero-modes) since \(\gamma_5 D_1 = D_2 \gamma_5 \).

[17] I.M. Gel’fand : and L.A. Dikii, Russian Math. Surveys 30, 77 (1975).

[18] For a simple derivation of the Gel’fand-Dikii equation see the appendix of [14].

[19] E. Witten, Nucl. Phys. B188, 513 (1981).

[20] W. Kwong and J. L. Rosner, Prog. Theor. Phys. (Suppl.) 86, 366 (1986), and
references therein.

[21] Note that we used the term ”energy” in refering to eigenvalues of the Schrödinger
operators \(h_{\pm} \), but clearly \(\omega_i \) is really the physical energy of the fermion.

[22] It is customary to choose the renormalisation point at \(\mu = m \) such that \(Ng^2 = \pi \).
Indeed, the original analysis in [2] was carried out using sophisticated inverse scattering techniques rather than a direct calculation of the resolvent of the static Dirac operator. See also the comments made by these authors in [3] (p. 4136, first paragraph starting below fig.2) prior to their analysis in [2].

Note that we multiply through by a polynomial of degree six in ω. However, the coefficient of ω^6 in the resulting polynomial vanishes identically.

This result is a special case of the recurrence relations discussed in [17].

That is, C runs right below the left branch cut of R_- in the complex ω plane, continuing right below the real ω axis up to the right most pole at $\omega = \omega_b$ and then crossing the real ω axis and continuing to run right above the right branch cut of R_-. This is precisely the contour used in [3]. See figures 1 through 3 (and especially the last two figures) in that reference.

J. Avan and H.J. de Vega, Nucl. Phys. B224, 61 (1983).