Identification of pigment profiles and antioxidant activity of *Rhizophora mucronata* mangrove leaves origin Lembeh, North Sulawesi, Indonesia

ANTONIUS PETRUS RUMENGAN1,2, ELVI SISKA MANDIANGAN2, WENDY ALEXANDER TANOD3, DARUS SAADAH JOHANIS PARANSA1, CAROLUS PAULUS PARUNTU1, DESY MARIA HELENA MANTIRI1

1Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Sam Ratulangi. Jl. Kampus UNSRAT Bahu, Manado 95115, North Sulawesi, Indonesia. Tel./fax: +62-852-4027-3030, *email: antonius_rumengan@unsrat.ac.id*

2Research and Development Agency of North Sulawesi Province. Jl. 17 Agustus, Bumi Beringin, Wenang, Manado 95113, North Sulawesi, Indonesia

3Department of Fisheries and Marine, Politeknik Negeri Nusa Utara. Jl. Kesehatan, Mahena, Tahuna, Kepulauan Sangihe 95812, North Sulawesi, Indonesia

Manuscript received: 23 May 2021. Revision accepted: 21 June 2021.

Abstract. Rumengan AP, Mandiangan ES, Tanod WA, Paransa DSJ, Paruntu CP, Mantiri DMH. 2021. Identification of pigment profiles and antioxidant activity of *Rhizophora mucronata* mangrove leaves origin Lembeh, North Sulawesi, Indonesia. *Biodiversitas* 22: 2805-2816. Mangrove plants contain unique pigments which can serve both nutraceutical and pharmaceutical purpose. Therefore, this preliminary study aims to identify the pigment profiles of *R. mucronata* mangrove leaves (HPLC method) and to computationally evaluate the antioxidant mechanism of the pigments (PASS and STITCH analysis). Furthermore, it evaluated the antioxidant capacity of *R. mucronata* leaves extracts (DPPH method), and the pigment profiles detected using HPLC were chlorophyll a (68.61%), chlorophyll b (27.69%), lutein (29.94%), beta-carotene (14.05%), pheophytin a (8.72), violaxanthin (5.19%), and neoxanthin (3.65%). Beta-carotene, lutein, neoxanthin, and violaxanthin were predicted to have potential as antioxidants properties using PASS analysis. While neoxanthin and violaxanthin were predicted as free radical scavengers, beta-carotene was an Nrf-2 stimulant. The STITCH analysis showed that the pigments contained in the leaves interacted synergistically by activating as antioxidant enzymes and inhibiting the expression of oxidative stress proteins. The ethanol extract of *R. mucronata* leaves may be a potent antioxidant with an IC50 20.99 ± 0.33 μg/mL. Therefore, the pigment contained in *R. mucronata* leaves is a potential source of antioxidants.

Keywords: Beta-carotene, chlorophyll, lutein, neoxanthin, violaxanthin

INTRODUCTION

Mangrove plants live in low tide areas, and they play a critical role in the coastal ecosystem by supporting fisheries, tourism, and a genetic reservoir (Liu 2012). It functions as a protector of the coastline, preventing seawater abrasion, the habitat of various aquatic biota, and acts best carbon storage ecosystem (Kepel et al. 2017; Rumengan et al. 2018; Saptiani et al. 2018; Tidore et al. 2018). Furthermore, coastal communities have also used mangroves for house construction, charcoal making materials (Dahdouh-Guebas et al. 2000), functional foodstuffs (Jariyah et al. 2014; Kardiman et al. 2017; Analuddin et al. 2019), textile dyes (Pringgenies et al. 2017), and traditional medicine (Revathi et al. 2014; Rout and Basak 2014; Alhaddad et al. 2019; Andriani et al. 2020). These plants have a self-defense mechanism because they live in areas with fluctuations in salinity and temperature (Dewanto et al. 2018). The mechanism designed consists of enzymatic and non-enzymatic antioxidants defense (Sarker et al. 2018a; Sarker and Oba 2018a; 2020a). Pigments in mangroves significantly affect photosynthetic reactions, stress avoidance, and defense mechanisms (Croft and Chen 2017).

Previous studies reported that leaves are the natural sources of pigments such as chlorophyll a, chlorophyll b, betacyanins, betaxanthins, betalains (Sarker et al. 2014; 2015a; 2015b; 2017). These are potential sources of carotenoids pigments such as beta-carotene, alpha-carotene, xanthophylls including lutein, neoxanthin, zeaxanthin, and violaxanthin (Sarker and Oba 2021). In addition, leaves consist of other pigments such as phenolics and different groups of flavonoids, including flavonols, flavones, flavanones (Sarker and Oba 2019a; 2020b; 2020c), and they all exhibit high antioxidant capacity (Sarker et al. 2018b).

Previous studies also showed that mangroves contain unique pigments which may serve nutraceutical and pharmaceutical functions (Banerjee et al. 2017). One of the mangroves has the potential to use its pigment content such as *Rhizophora mucronata* (Pringgenies et al. 2018). Prabhuj and Bhtue (2015) reported that the brown pigment from the stem of *R. mucronata* was used as a textile dye. Furthermore, it was previously reported that the leaves contain chlorophyll and carotenoid pigments (Flores-de-Santiago et al. 2016; Ridio et al. 2017). However, no study has reported the complete profile of the pigments in the mangrove leaves of *R. mucronata*. The pigments can be used as a source of functional and natural food coloring (Mapari et al. 2005).

The mangrove *Rhizophora mucronata* showed medicinal potential for coastal communities. Meanwhile, the fruit, leaves, bark, and flowers of *R. mucronata* were used to treat various diseases, such as cognitive function...
(Suganthy and Pandima Devi 2016), diabetes (Bandaranayake 1998; Aljaghthmi et al. 2017), diarrhea (Puspitasar et al. 2012), hepatitis (Ravikumar and Gnanadesigan 2012), and inflammation (Rohini and Das 2009). The antioxidant capacity of the leaves obtained from India and Asia was widely reported (Imdadul et al. 2011).

This is a preliminary study to identify the pigment profiles of Rhizophora mucronata mangrove leaves using the high-performance liquid chromatography method and to computationally evaluate the antioxidant mechanism of the pigments. Furthermore, it evaluated the antioxidant capacity of R. mucronata leaves extracts using the DPPH method.

MATERIALS AND METHODS

Sampling and extraction

Mangrove leaves sample (1000 g) was obtained from Lembeh Island, North Sulawesi, Indonesia. Rhizophora mucronata leaves were documented and put in a cool temperature container. They were collected in summer with hot sunny conditions (in July 2019) and were taken to the laboratory for extraction. The leaves were finely mashed to a powder, and the extraction was performed three times with ethanol pure grade (Merck) solvent. In addition, the R. mucronata leaves powder (100 g) was macerated using ethanol (1:3 w/v) for 48 hours, with occasional shaking. The resultant maceration product was filtered through filter paper to separate the filtrate from the residue. Furthermore, the filtrate was evaporated (rotary vacuum evaporator Buchi R-300) at 40°C during 4-6 hours to obtain a crude extract (Dewanto et al. 2018). According to Lichtenthaler (1987), the chlorophyll and carotenoid groups have a phytol chain attached to the porphyrin ring system. The possession of the phytol side chain, which is esterified to the ring carboxyl group, gives chlorophyll and carotenoids their lipid character. Therefore, ethanol is one of the polar solvents used to extract fat-soluble pigments from living plant tissues containing water. Figure 1 showed the location of mangrove leaves sampling.

Identification of pigment profiles

The identification of mangrove leaves pigments was conducted on a High-Performance Liquid Chromatography (HPLC-20AD-Shimadzu) with SPD-M20A photodiode array detector (PDA). The Pigment analysis was based on the method by Hegazi et al. (1998), and the Shimadzu UV-1800 spectrophotometer was used in determining the wavelength. Meanwhile, the detection of mangrove leaves pigments was conducted by HPLC at 450 nm (carotenoids detection) and 660 nm (chlorophyll detection) respectively. The analytical column was a LiChroCART 250×4 mm I.D. packed with Lichrospher 100, RP-18e (5µm spherical particles), and the precolumn was an ODS-hypersil (C18) with a diameter of 5µm, 20×4 mm.

Figure 1. Location of Rhizophora mucronata mangrove leaves sampling in Lembeh Island, North Sulawesi, Indonesia (1° 27’ 8.78” N and 125° 14’ 41.90” E)
Dry pigment crude extract was dissolved in 5 mL acetone (Paransa et al. 2014) and filtered using a filter membrane (0.2 μm), then 20 μL was injected into HPLC. The pigment elution was conducted at a 1 mL/min flow rate at 30 °C using a gradient elution system from a mixture of methanol, acetone, and ammonium acetate (1 M) solutions. Acetone was used in the pigment extraction because of its amphipathic nature of having a polar and a nonpolar end. Also, it has a significant partial negative and positive charge on the oxygen and carbonyl atom with two nonpolar alpha carbons. However, it is less polar than water and ethanol and can dissolve nonpolar substances. The nature of its small polarity allows it to dissolve polar substances and has fewer properties than water and ethanol. Therefore, acetone is an appropriate solvent, which allows more excellent resolution for detecting pigments using chromatography. It breaks chlorophyll lipid bonds to plant thylakoid structures and suspends pigments in solution (Henriques et al. 2007).

Computational analysis

The pigment detected with HPLC predicted biological activity-related antioxidants using the PASS (prediction of activity spectra for substances) analysis http://www.pharmaexpert.ru/passonline/index.ph. PASS is a tool used for predicting the biological activity of compounds (Riyadi et al. 2020). The predicted activity requires a structural formula in the form of canonical SMILE obtained from the National Center for Biotechnology Information https://pubchem.ncbi.nlm.nih.gov/. The pigments were analyzed for their interactions with the STITCH database (search tool for interactions of chemicals) http://stitch.embl.de/.

Antioxidant assay

Measurement of the antioxidant capacity of mangrove leaves was carried out using the DPPH method (Oke and Hamburger 2002), and the assays were conducted using 96 well plate microplates. The ethanol extract of *Rhizophora mucronata* leaves was prepared in series concentrations of 10, 20, 40, 80 μg/mL in methanol solution (Merck). Then, 160 μL of extract from each concentration series was fed into the microplate well. Furthermore, 40 μL of DPPH (Merck) 0.76 mM solution was added to each well that contained a sample. A comparison control used vitamin C with a concentration series of 4, 6, 8, 10 μg/mL. As a control sample, each series of dilutions (160 μL) was added to the microplate well before adding 40 μL of methanol. A negative control (without extract) was made by adding 160 μL methanol with 40 μL DPPH, and 200 μL methanol was blank. The microplate was incubated in a dark room at 25-28 °C for 30 minutes, and after that, the absorbance of each well was measured with the Multiskan GO Microplate Spectrophotometer (Thermo Scientific) at a wavelength of 517 nm. The IC50 determination was measured from the inhibition percentage data in units of μg/mL, and a probit analysis was used to determine the IC50 value. The following equation was used to determine the percentage of DPPH inhibition:

\[
\% \text{Inhibition} = \left(\frac{(C - D) - (A - B)}{(C - D)} \right) \times 100\%
\]

Where :

A: Sample absorbance
B: Absorbance control sample
C: Absorbance of negative control
D: Absorbance blank

RESULTS AND DISCUSSION

The dry extract of *Rhizophora mucronata* mangrove leaves was detected for pigment profiles by HPLC at a wavelength of 450 and 660 nm, with a retention time of 20 to 40 minutes. Table 1 and Figure 2 showed the pigment profiles, and the chromatogram for the leaves extract.

Table 1 showed that the *R. mucronata* leaves extract detected seven pigments dominated by chlorophyll a (68.61%) and chlorophyll b (27.69%). Chlorophyll is a unique green pigment in almost every green part of plants, such as leaves (İnanç 2011). Chlorophyll a is a pigment with a chlorine ring, where magnesium is surrounded by four nitrogen atoms (Taiz et al. 2006). Meanwhile, in chlorophyll b, the –CHO group replaces –CH3 on the C7 atom (Pareek et al. 2017). There is also chlorophyll a and b epimer at 11.69% and 5.19%, and Limantara and Heriyanto (2012) stated that they always accompany the presence of chlorophyll. Chlorophyll a and b are common and dominant pigments in the leaves of green plants, such as mangroves (Liu 2012; Dou et al. 2018). Ridlo et al. (2017) reported *R. mucronata* leaves to contain chlorophyll and carotenoid pigments. Furthermore, Flores-de-Santiago et al. (2016) also reported that *Rhizophora mangle* leaves contain chlorophyll a and b. Their levels depend on the season and physiological conditions of the mangroves. Bohn and Walczyk (2004) detected chlorophyll a and the epimer at the wavelength spectrum of 429, 664 nm, while chlorophyll b and the epimer were discovered at 456, 648 nm. Kusmita et al. (2015) detected chlorophyll-b at the wavelength spectrum of 456, 596, 645 nm.

Lutein is a member of the xanthophyll and carotenoid family (Al-ali et al. 2020), and it has a yellowish-orange color, called macular pigment, which is not in abundance (Landrum and Bone 2001; Aruldass et al. 2018). Ngginak et al. (2017) reported detecting lutein on the wavelength spectrum of 417, 443, and 472 nm, while Kurniawan et al. (2020) reported detected it at 447, 451, 472 nm. Also, Sarkar and Oba (2021) reported that leaves contain good macular pigment lutein. Previously, no study has detected lutein pigment in mangrove leaves. The detection was conducted using random sampling of old mangrove leaves that were yellowish in color.
Table 1. Identification of pigment profiles from Rhizophora mucronata leaves with HPLC

Wavelength detection (nm)	Retention time (min)	Area (%)	Wavelength spectrum (nm)	Pigment profiles	References	
450	20.06	4.65	415, 437, 465	Neoxanthin	–	415.1, 438.5, 467.1
450	21.72	5.19	417, 442, 470	Violaxanthin	21.32	416, 440, 470
450	29.29	24.94	421, 447, 475	Lutein	27.65	422, 446, 475
450	33.91	20.65	462, 598, 647	Chlorophyll b	31.62	462, 599, 648
460		7.04				
450	34.20	5.19	461, 599, 648	Chlorophyll b epimer	31.87	462, 599, 650
450	35.53	11.30	430, 617, 663	Chlorophyll a	33.15	431, 617, 662
460	35.53	57.31				
450	35.89	2.08	430, 617, 663	Chlorophyll a epimer	33.48	430, 615, 664
460	35.89	9.61	430, 616, 663			
460	37.63	8.72	409, 505, 535	Pheophytin a	–	409.5, 505.3, 534.7, 608.9, 665.5
			608, 664			
450	38.39	14.05	453, 479	Beta-carotene	35.95	426, 452, 477

Beta-carotene is one of the red-yellow, orange or red-orange carotenoids in natural plants that carry out photosynthesis (Kusbandari and Susanti 2017). It may be fat-soluble, insoluble in water, easily damaged, unstable at high temperatures, and precursor of vitamin A (Strobel et al. 2007). Furthermore, carotenoids including beta-carotene act as an antioxidant. Previous studies showed that they have strong DPPH and ABTS antioxidant activity in different amaranth species such as drought-tolerant amaranth (Sarker and Oba 2020d), A. gangeticus (Sarker et al. 2020a), A. hypochondriacus (Sarker and Oba 2020c), stem amaranth (Sarker et al. 2020b), A. blitum (Sarker and Oba 2020f), green amaranth (Sarker et al. 2020c), weedy amaranth (Sarker and Oba 2019b), and red amaranth (Sarker and Oba 2019c). Furthermore, carotenoids including beta-carotene protect the photosynthetic tissue through direct quenching of triplet chlorophyll. This prevents the generation of singlet oxygen from oxidative damage in abiotic stress like salinity and drought (Sarker and Oba 2020a). It also detoxifies various forms of reactive oxygen species (ROS) (Sarker and Oba 2018b; 2018c) through increasing beta-carotene concentration (Sarker and Oba 2018d; 2018e; 2019d). Beta-carotene is a pigment synthesized by plants (Bogacz-Radomska and Harasym 2018). Radu et al. (2012) reported detecting this pigment on a wavelength spectrum of 445, 472, 498 nm. Meanwhile, it was detected by Mangunsong et al. (2019) at a wavelength spectrum of 460 nm. Beta-carotene was also detected on the wavelength spectrum of 450.20 and 477.60 nm (Kusbandari and Susanti 2017). The literature showed that this pigment was detected in the leaves and roots of mangroves Avicennia officinalis, Exocoetaria agallocha, Kandelia candela, and Rhizophora mucronata (Ravindran et al. 2012). In addition, it was also detected in the mangroves of Bruguiera gymnorrhiza, Sonneratia alba, and Xylocarpus granatum (Analuddin et al. 2019).

Pheophytin a pigment is a chlorophyll a without Mg$^{2+}$ ion, and it is dominant in fresh green leaves, which is degraded due to heating and storage processes (Hsu et al. 2013). It is produced naturally by plant leaves and acts as an intermediary for the first electron carrier in the transfer pathway for photosystem II plants (Eijkelhoff and Dekker 1997). Bohn and Walczak (2004) detected pheophytin-a on the wavelength spectrum of 405, 661 nm while Kusmita et al. (2015) were on wavelength spectrum of 408, 505, 535, 609, 665 nm.

Violaxanthin is a natural xanthophyll pigment with an orange color found in various plants (Giossi et al. 2020). It is biosynthesized from zeaxanthin by an epoxidation reaction and has a 5,6-epoxy double group found in orange fruits, green vegetables, and microalgae (Melendez-Martinez et al. 2008). Furthermore, it plays a role in photocatalytic mechanisms such as the ability of plants to adapt to contrasting light environments (Bowen-O’Connor et al. 2013). Wang et al. (2018) detected violaxanthin pigments at the wavelength spectrum of 417.6, 440.9, and 470.1 nm while Ruban et al. (2001) detection was at 470 nm. These pigments were also reported in mangroves with high salinity (Falqueto et al. 2008).

Neoxanthin pigments are carotenoids of xanthophylls groups. It acts as an intermediary for the biosynthesis of the hormone abscisic acid in plants (Perreau et al. 2020). Furthermore, it serves as a protection against photooxidative stress (Dall’Osto et al. 2018). Neoxanthin is the primary xanthophyll pigment found in green plants (Giossi et al. 2020). Chandrika et al. (2005) detected neoxanthin in the wavelength spectrum of 413, 436, 465 nm, and was detected by Gupta et al. (2015) at 415, 437, 465 nm. In mangroves, the neoxanthin pigment was found in mangroves Avicennia alba (Sasamoto et al. 2020).

The pigment detected in R. mucronata leaves extract predicted its probability to be active (Pa) value as an antioxidant. Bioactivity prediction was conducted using PASS analysis (Filimonov et al. 2014). The Pa value describes the potential activity of a compound. When the Pa > 0.7, it is estimated to have a high bioactivity potential, both for computational and laboratory assays. Meanwhile, when the value is 0.3 ≤ Pa ≤ 0.7, the compound has the computational ability as an antioxidant, but it has not been proven in the laboratory. Also, when the Pa < 0.3, it is predicted that the compound has a low bioactivity potential (Aisiah et al. 2020; Riyadi et al. 2021). However, the
bioactivity of chlorophyll a and b may not be predicted by PASS analysis because they have a metal element in their structure. The pigments beta-carotene, lutein, neoxanthin, pheophytin-a, and violaxanthin have their potential bioactivity as antioxidants, free radical scavengers, and NF-E2-related factor (Nrf-2) stimulant. Figure 3 showed the probability to be active as the antioxidant of the pigment in the *R. mucronata* leaves extract.

Figure 3 showed that beta-carotene, lutein, neoxanthin, and violaxanthin are predicted to have potential as general antioxidants. Neoxanthin and violaxanthin were also predicted to be free radical scavengers. Meanwhile, beta-carotene was predicted as an Nrf-2 stimulant, which regulates antioxidant protein as protection from oxidative damage (Ma 2013; Cui et al. 2016; Riyadi et al. 2019). Chlorophyll cannot be predicted by PASS analysis as an antioxidant, even though it has antioxidant properties as predicted by previous studies (İnanç 2011; Keleş et al. 2016; Sarker et al. 2018c; 2018d). Durga et al. (2015) reported chlorophyll a and b from medicinal plants with high potential antioxidants. Pérez-gálvez et al. (2020) stated that chlorophyll b showed higher antioxidant activity than chlorophyll a.

Kurniawan et al. (2020) stated that lutein can act as an antioxidant and maintaining organs such as the eyes, brain, and skin. The content in marigold plant (*Tagetes* spp.) was reported to have a DPPH radical inhibition ability of 89.90% (Ingkasupart et al. 2015). Furthermore, it was reported to work as an antioxidant in the photo-stressed retina (Kamoshita et al. 2016).

Beta-carotene is also reported to be an antioxidant and an anti-carcinogen (Paolini et al. 2003). Berti et al. (2014) stated that it is effective as a radioprotective agent and acts as an antioxidant. Mueller and Boehm (2011) reported that beta-carotene and its derivatives showed antioxidant properties measured by the αTEAC, chemiluminescence (CL), and ferric reducing activity (FRAP) methods.

Figure 2. HPLC Chromatogram of *Rhizophora mucronata* leaves ethanol extract

Figure 3. Probability to be active of pigments contain in *Rhizophora mucronata* leaves as an antioxidant with PASS analysis
Furthermore, Figure 3 showed the prediction of beta-carotene bioactivity as an Nrf-2 stimulant. The literature showed beta-carotene can activate the Nrf2-ARE (antioxidant response element) pathway to provide a neuroprotective effect from traumatic brain injury (Chen et al. 2019). Ben-dor et al. (2005) reported that beta-carotene stimulates Nrf-2 in the leukemia promyelocytic core body and regulates phase II enzyme expression (associated with cancer-preventing gene activation).

Dall’Osto et al. (2007) stated that neoxanthin acts as an antioxidant in the photosystem II supercomplex in plant thylakoid to protect membrane lipids photooxidation. In addition, Giossi et al. (2020) reported that neoxanthin was directly involved in photoprotection as an antioxidant to increase the activity of ROS scavenging under extreme light conditions. Sarker and Oba (2020) reported that the neoxanthin contained in Amaranthus tricolor showed DPPH radical scavenging activity. Neoxanthin reduces oxidative-induced DNA base damage by less than 50%. In lower concentrations than lutein, it is a better inhibitor of oxidative-induced DNA damage (Şahin et al. 2020).

Dall’Osto et al. (2007) also reported the antioxidant properties of violaxanthin as photoprotection, even though it is lower than neoxanthin. The literature also reports the antioxidant properties of violaxanthin and its derivatives isolated from mangoes, with strong lipid peroxidation inhibition capabilities (Araki et al. 2016). Furthermore, violaxanthin isolated from microalgae Eustigmatos cf. polyphem was also reported to have radical scavenger capabilities with 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azobis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical assays (Wang et al. 2018). However, Figure 2 showed that pheophytin a has a low Pa value as an antioxidant, and it prevents oxidative DNA damage and lipid peroxidation. It works by reducing reactive oxygen species, such as DPPH, and by chelation of metal ions, such as Fe (II) (Hsu et al. 2013). Kusmita et al. (2015) also reported that pheophytin a contained in green tea has an antioxidant capacity (DPPH method) with IC50 = 573 ± 0.23 mg/L.

The mechanism of antioxidant action of the pigments in R. mucronata leaves extract should be properly understood. Furthermore, the pigments in Table 1 were evaluated by STITCH. This is a tool for integrating information about the interactions of metabolic pathways, crystal structure, binding experiments, and relationships between chemicals (Kuhn et al. 2008). Figure 4 showed the interactions between the pigments.

Figure 4 showed the interaction between the working mechanism of the pigments in the R. mucronata leaves extract. Chlorophyll a, chlorophyll b, neoxanthin, and violaxanthin support the performance of lutein and beta-carotene. Furthermore, Beta-carotene pigments activate and catalyze the transcriptional regulation of the BCMO1 protein (beta, beta-Carotene 15,15-monoxygenase-1), which is a key enzyme in vitamin A metabolism (Lietz et al. 2010). BCMO1 was reported to be expressed in intestinal tissue and plays a role in lipid metabolism (Lietz et al. 2012). It affects the RBP2 protein (Retinol-binding protein 2), which plays a role in the absorption and metabolism of intracellular vitamin A (Blaner et al. 2020).

Figure 4 also showed that lutein affects BDNF (Brain-derived neurotrophic factor) expression and is a gene in the brain that promotes the survival of nerve cells (neurons) by playing a role in the growth, maturation (differentiation), and maintenance of neuron cells. Wu et al. (2016) reported that BDNF increases superoxide dismutases and glutathione reductase expression. It also reduces the oxidative protein damage index (Lee et al. 2009), reduces antioxidant protein expression (Wu et al. 2012), restores reduced mitochondrial electron-coupling capacity, and increases mitochondrial uncoupling protein 2 (UCP2). It acts as an antioxidant by reducing the production of superoxide anions (Chan et al. 2010). Figure 4 also showed that beta-carotene and lutein inhibit the activation of the protein MMP9 (Matrix Metalloproteinase-9) through increased BDNF expression. Furthermore, the MMP9 gene regulates the tissue remodeling process by activating cytokines and chemokines, causing inflammation and fibrosis in the tissue (Yabluchanskiy et al. 2013). Figure 4 showed that beta-carotene activates FN1 (Fibronectin 1) action to inhibit the enzyme lipoxygenases (LOX) and MMP9 expression. LOX enzyme oxidizes fatty acids and causes inflammation in tissues (Ratnasari et al. 2017). Meanwhile, FN1 is activated through the Nrf-2 pathway (Prestigiacomo and Suter-Dick 2018) to bind LOX. Oxidation and inflammation in the tissue can be inhibited (Fogelgren et al. 2005). In summary, the pigments in the leaves of R. mucronata work synergistically by activating antioxidant enzymes and inhibiting the expression of oxidative stress proteins.

The extract of R. mucronata leaves was evaluated for its antioxidant capacity as a free radical scavenger using the DPPH method. Meanwhile, DPPH is a stable free radical which accepts electrons or hydrogen atoms to form...
stable diamagnetic molecules (Tanod et al. 2019a). The antioxidant capacity was evaluated by calculating DPPH purple light intensity level proportional to the decrease in DPPH concentration. This reduction was caused by the reaction of the 2,2-diphenyl-1-picrylhydrazyl molecule with the hydrogen atoms released by the components of the sample molecule. It formed hydrazine diphenyl picril compound and caused DPPH to change color from purple to yellow (Tanod et al. 2019b). The reactivity of the *R. mucronata* leaves extract with stable free radicals was also evaluated, and the antioxidant capacity was compared with vitamin C (Figure 5). In addition, Vitamin C is commonly used to compare assaying antioxidant activity because it is cheaper and easier to obtain (Lung and Destiani 2014).

Figure 5 showed that the *R. mucronata* leaves extract has antioxidant activity because hydrogen atoms or electrons were donated to react with DPPH radicals. Increased concentration of the extract also increased the percentage of DPPH free radical inhibition. Table 2 showed that the inhibition percentage was evaluated for IC$_{50}$ determination by probit analysis. According to the Blois (1958) category, antioxidant activity can be categorized as very strong (IC$_{50}$ < 50 µg/mL), strong (50 ≤ IC$_{50}$ ≤ 100 µg/mL), moderate (100 ≤ IC$_{50}$ ≤ 150 µg/mL), weak (150 ≤ IC$_{50}$ ≤ 200 µg/mL), and very weak (IC$_{50}$ > 200 µg/mL).

Table 2. The IC$_{50}$ value of the *Rhizophora mucronata* leaves extract using the DPPH method was compared with vitamin C

Sample	IC$_{50}$ (µg/mL)
R. mucronata leaves	20.99 ± 0.33
Vitamin C	9.62 ± 0.09

Figure 4. Mechanism action as an antioxidant of pigments in *Rhizophora mucronata* leaves with STITCH analysis.
Table 2 showed that the R. mucronata leaves extract and vitamin C had very strong antioxidant activity, with a DPPH concentration of 0.76 mM. Literature studies showed that the IC50 of the same sample can vary depending on the DPPH concentration, sample origin, conditions, and the solvent used (Dewanto et al. 2019). Furthermore, fractionation and crude extract of R. mucronata mature leaves from Penunggul, East Java, Indonesia showed IC50 from 82.97 ± 51.15 to 491.78 ± 427.59 µg/mL, while the IC50 ascorbic acid (vitamin C) was 12.36 µg/mL, with a DPPH concentration of 0.4 mM (Sasmito et al. 2016). The ethanol extract obtained from Sunderban, India, was reported to show DPPH radical scavenging (IC50) 6.65 ± 0.10 µg/mL, with a DPPH concentration of 0.135 mM (Adhikari et al. 2016). Two compounds isolated from the methanol extract of the leaves from Vallarpadam, India, showed IC50 of 0.76-0.84 mg/mL, with DPPH 0.1 mM (Chakraborty and Raola 2017). Furthermore, the leaves extract from Tugurejo, Central Java, Indonesia, was reported to have IC50 of 113.41 ppm (methanol), 151.13 ppm (n-hexane), 184.78 ppm (ethyl acetate), with a DPPH concentration of 0.1 mM (Ridlo et al. 2017). The ethanol extract obtained from the coast of Palu Bay showed an IC50 of 103.95 ± 0.38 µg/mL, with a DPPH concentration of 50 µM (Dewanto et al. 2018). Furthermore, stick balm preparations from methanol extract of R. mucronata showed IC50 of 77.32, 47.07, 51.15, and 77.32 ppm, with a DPPH concentration of 0.004% (Faiqoh et al. 2020).

Figure 5. DPPH radical inhibition from the Rhizophora mucronata leaves extract compared to vitamin C.
as a food source for coastal communities in the Rawa Aopa Watomboai National Park, Southeast Sulawesi, Indonesia. Int J Fruit Sci 19 (4): 423-436. DOI: 10.1080/155358362.2018.1555507.

Andirani D, Revianti S, Pranungrang W. 2020. Identification of compounds isolated from a methanolic extract of Anacardium occidentale leaves and study of their antiinflammatory and antioxidant activity. Biodiversitas 21 (6): 2521-2525. DOI: 10.13057/biodiv/d201625.

Araki M, Kaku N, Harada M, Ando Y, Yamaguchi R, Shindo K. 2016. Production of auroxanthin from violaxanthin and 9-cis-violaxanthin by acidic treatment and the antioxidant activities of violaxanthin, 9-cis-violaxanthin, and auroxanthin. J Agric Food Chem 64 (49): 9352-9355. DOI: 10.1021/acs.jafc.6b03406.

Aruldua CA, Dufossé L, Ahmad WA. 2018. Current perspective of yellowish-orange pigments from microorganisms-a review. J Cleaner Prod 180: 168-182. DOI: 10.1016/j.jclepro.2018.01.093.

Bandaranayake WM. 1998. Traditional and medicinal uses of mangroves. Mangroves Salt Marshes 2 (3): 133-148. DOI: 10.1023/A:1009988607044.

Baneree J, Chowdhary GR, Mitra A. 2017. Astaxanthin level in the dominant mangrove floral species in Indian Sundarbans. MJ Bioorg Chem 1 (2): 1-5. DOI: 10.15406/mjbio.2017.01.00008.

Ben-dor A, Steiner M, Ghever L, Danilenko M, Dult N, Linwewel K, Zick A, Sharoni Y, Levy J. 2005. Carotenoids activate the antioxidant response element transcription system. Mol Cancer Ther 4 (1): 177-187.

Berti AP, Düsman E, Mariucci RG, Lopes NB, Vicentini VEP. 2014. Retinol and carotene provides neuro protection after cerebral ischemia and reperfusion injury. PPAR Res 2012: 10.4238/2014.March.31.5.

Blenner WS, Brun PJ, Calderon RM, Golczak M. 2020. Retinol-binding protein 2 (RBPF2): biology and pathobiology. Crit Rev Biochem Mol Biol 55 (12): 197-218. DOI: 10.1080/10409238.2020.1768207.

Blois M. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181 (4617): 1199-1200. DOI: 10.1038/1811199a0.

Bogacz-Radomiska L, Harasym J. 2018. β-Carotene-properties and production methods. Food Qual Saf 2 (6): 69-74. DOI: 10.1016/j.fqsap.2014.02.003.

Boln T, Walczyk T. 2004. Determination of chlorophyll in plant samples by liquid chromatography using zinc-phthalocyanine as an internal standard. J Chromatogr A 1024 (1-2): 123-128. DOI: 10.1016/j.chroma.2003.10.067.

Bowen-O’Connor CA, VanLeeuwen DM, Bettmann G, Lister EM, Hilaire RST. 2013. Variation in violaxanthin and lutien cycle components in two provenances of Acer grandidentatum L. exposed to contrasting light. Acta Physiol Plant 35 (2): 541-548. DOI: 10.1007/s11738-012-1095-7.

Chakraborty K, Raola VK. 2017. Identification of antioxidant and anti-inflammatory compounds from mangrove leaf extract using DPPH method. J Cleaner Prod 25: 168-170. DOI: 10.1016/j.jclepro.2016.12.013.

Chen SHH, Wu CWJ, Chang AYW, Hsu Ksen, Chan JYH. 2010. Transcriptional upregulation of brain-derived neurotrophic factor in rostral ventrolateral medulla by angiotensin II: significance in supersoxide homeostasis and neural regulation of arterial pressure. Circ Res 107 (9): 1127-1139. DOI: 10.1161/CIRCRESAHA.110.225573.

Chandrika UG, Jansz ER, Warnasooriya ND. 2005. Identification and HPLC quantification of carotenoids of the fruit pulp of Chrysophyllum rosburgii. J Nat Sci Found Sri Lanka 33 (1): 93-98. DOI: 10.4038/jnsf.v33i2.2317.

Chen P, Li L, Gao Y, Xie Z, Zhang Y, Pan Z, Tu Y, Wang H, Han Q, Hu X, Xin X. 2019. β-carotene provides neuro protection after experimental traumatic brain injury via the Nrf2–ARE pathway. J Integ Neurosci 18: 153-161. DOI: 10.3108/j.inn.2019.02.120.

Croft C, Ham E, Chen JM. 2017. Leaf Pigment Content. Elsevier Inc, Canada. DOI: 10.1016/B978-0-12-409548-9.10547-0.

Cui T, Lai Y, Janicki JS, Wang X. 2016. Nuclear factor erythroid-2 related factor 2 (Nrf2)-mediated protein quality control in cardiomyocytes. Front Biosci 21: 192-202. DOI: 10.2741/4384.

Dahlouh-Guebas M, Mathenge C, Kairo JG, Kodesh N. 2000. Utilization of mangrove wood products around Mida Creek “Kenya” amongst subsistence and commercial users. Econ Bot 54 (5): 513-527. DOI: 10.1007/BF02866549.

Dall’Osto L, Cazzaniga S, North H, Marion-Poll A, Bassia R. 2007. The antioxidant and radioprotective reveals a specific function for neoxanthin in protection against photooxidative stress. Plant Cell 19 (3): 1048-1064. DOI: 10.1105/tpc.106.049114.
Imadul H, Wiraaramn S, Koshy P, Arash R, Shariff HABM, Mat TR. 2011. Valuable antioxidant and antimicrobial extracts from *Rhizophora macrorhiza* of Asian mangrove forests. *Res J Biotechnol 6* (1): 10-14.

İnaç AL. 2011. Chlorophyll: structural properties, health benefits and its coloring agent or a co-carcinogen? *Mut Res Rev Nutr Sci 54* (1): 3-19. DOI: 10.1016/j.mrns.2004.02.001.

Johri H. 2011. Importance of β,β-carotene antioxidant activity of *Camellia sinensis* (L.) Kuntze. *Procedia Chem 14* (1): 31-38. DOI: 10.1016/j.poc.2014.03.033.

Kusumawan J, Yusuf MM, Herianto, Pantingjati TH, Brotosudarmo. 2020. Literature review on the potential of lutein from *Aspilia africana* (Pers.) C.D. Adams (Asteraceae). *Niger J Pharm Sci 28* (1): 26-32. DOI: 10.15416/ijnps.v28i1.264.

Kurniawan JT, Bone RA. 2001. Lutein, zeaxanthin, and the macular pigment. *Arch Biochem Biophys 385* (1): 28-40. DOI: 10.1006/abbi.2000.2171.

Lee B, Cao R, Choi YS, Cho HY, Rhee AD, Hah CK, Hoyt KR, Obrietan K. 2009. The CREB/CRE transcriptional pathway: protection against oxidative stress-mediated neuronal cell death. *J Neurochem 108* (5): 1251-1265. DOI: 10.1111/j.1471-4159.2008.05864.x.

Lichtenhaker HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic membranes. In: Khan MU, Mitchell K (eds) Methods in Enzymology. Academic Press Inc., Cambridge. DOI: 10.1016/0076-6879(87)48036-1.

Lietz G, Lange J, Rimbach G. 2010. Molecular and dietary regulation of β,β-carotene 15,15′-monooxygenase 1 (BCMO1). *Arch Biochem Biophys 502* (1): 8-16. DOI: 10.1016/j.abb.2010.06.032.

Lietz G, Osley A, Boesch-Saadatmandi C, Kobayashi D. 2012. Importance of β,β-carotene 15,15′-monooxygenase 1 (BCMO1) and β,β-carotene 9,9′-dioxygenase 2 (BCDO2) in nutrition and health. *Mol Nutr Food Res 56* (2): 241-250. DOI: 10.1002/mnr.2100387.

Limantara L. 2011. Pigment composition and content of *koosokastin* brown seaweed from madagascar waters with high performance liquid chromatography. *Ilmu Kelautan: Indones J Mar Sci 15* (1): 23-32. DOI: 10.14710/ikjm.15.1.23-32. [Indonesian]

Liu Y. 2012. Spectral response to varying levels of leaf pigments collected from a degraded mangrove forest. *J Appl Remote Sens 6* (1): 063501. DOI: 10.1117/1.jrs.6.063501.

Lund AK, Destenn PP. 2014. Antioxidant activity test of vitamins A, C, E with the DPPH method. *Farmaka 14* (1): 1-10. [Indonesian]

Ma Q. 2013. Role of Nr2f in oxidative stress and toxicity. *Annu Rev Pharmacol Toxicol 53* : 401-426. DOI: 10.1146/annurev-pharmaco-09261114140320. Role.

Mangunsong S, Asisidoria S, Sari EP, Marpung PN, Sari RA. 2019. Determination of β-carotene in carrots (*Daucus carota*) by high performance liquid chromatography (*HPLC*). *AcIon: Acc Chem Nut J 3* (3): 46-41. DOI: 10.30867/action.v4i1.151. [Indonesian]

Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyers AS, Thrane, U. 2005. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. *Curr Opin Biotechnol 16* (2): 231-238. DOI: 10.1016/j.copbio.2005.03.004.

Menendez-Martinez AJ, Britton G, Vicario IM, Heredia FJ. 2008. The complex carotenoid pattern of orange juices from concentrate. *Food Chem 109* (3): 546-553. DOI: 10.1016/j.foodchem.2008.01.003.

Mozan E, Ding L, Wang Z, Cheng R, Chen Q, Moore R, Takahashi Y, Ma JX. 2014. Protective and antioxidant effects of PPARα the ischemic retina. *Invest Ophthalmol Vis Sci 55* (7): 4568-4576. DOI: 10.1167/iovs.13-13127.

Mueller L, Boehm V. 2011. Antioxidant activity of β-carotene compounds in different in vitro assays. *Molecules 16* (2): 1055-1069. DOI: 10.3390/molecules16020105.

Najihudin A, Chaerunisaa A, Subarnas A. 2017. Antioxidant activity of trengguli (*Cassia Fistula L*) bark extract and fraction using the DPPH method. *Ind J Pharm Sci 79* (3): 415-419. DOI: 10.1016/j.indjps.2014.07.004.

Nginkaj N, Mangibilude JC, Rondonuwu FS. 2017. The identification of carotenoids and testing of carotenoid antioxidants from sand lobster (*Panulirus homarus*) egg extract. *Ilmu Kelautan 22* (3): 155-160. DOI: 10.14710/ikjm.22.3.155-160. [Indonesian]

Oelkug R, Goetz N, Meyer CW, Jastroc M. 2014. Antioxidant properties of UCPI are evolutionarily conserved in mammals and buffer mitochondrial reactive oxygen species. *Free Radic Biol Med 77*: 210-216. DOI: 10.1016/j.freeradbiomed.2014.09.004.

Oke JM, Hamburger O. 2002. Screening of some Nigerian medicinal plants for antioxidant activity using 2,2-diphenyl-1-picryl-hydrazyl radical. *Af J Biomed Res 5* (1-2): 77-79.

Paolini M, Abdel-Rahman SZ, Sapone A, Pedulli GF, Perocco P, Cantelli-Forti G, Legator MS. 2003. β-carotene: a cancer chemopreventive agent or a co-carcinogen? *Mut Res Rev Nutr Sci Mut Res 543* (1): 195-200. DOI: 10.1016/S1383-5742(03)00002-4.

Paransa TSJ, Kerner K, Gontungan AP, Mantri DM. 2014. Pigment type analysis and antibacterial activity assay of xanthophyll pigment extract on brown algae *Sargassum polycystum* (C. Agardh). *Jurnal LPPM Bidang Sains dan Teknologi 1* (1): 90-96. [Indonesian]

Pareek S, Nagar S, Sharma S, Kumar V, Agarwal T, González GA, Yahia EM. 2017. Chlorophylls: chemistry and biological functions. In: Yahia EM (ed) Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition (Vol. 1, 2nd ed). John Wiley & Sons Ltd, New Jersey. DOI: 10.1002/97811191195804.ch14.

Pérez-gálvez A, Viera I, Roca M. 2020. Carotenoids and chlorophylls as antioxidants. *Antioxidants 9* (6): 1-39. DOI: 10.3390/antiox9060605.

Perrera F, Frey A, Effroy-Cuzzi D, Savane P, Berger A, Gissot L, Marion-Poll A. 2020. Abscisic acid-deficient4 has an essential function in both cis-violaxanthin and cis-neoxanthin synthesis. *Plant Physiol 184* (3): 1303-1316. DOI: 10.1104/pp.2019.00947.

Prabhu KH, Bhatu AS. 2015. Plant based dyes and mordant: a review. *J Nat Prod Plant Resour 2* (4): 649-664.

Pratiwi D, Waldaningsih S, Isinard. 2013. The test of antioxidant activity from bawang mekah leaves (*Eleutherine americana* Merr.) using DPPH (2,2-diphenyl-1-picryl-hydrazyl) method. *Trad Med J 18* (1): 9-16. DOI: 10.1007/s13398-014-0173-7.

Prestigiacomo V, Suter-Dick L. 2018. Nrf2 protects stellate cells from Smad-dependent cell activation. *PLoS ONE 13* (7): 1-18. DOI: 10.1371/journal.pone.0201044.

Pringenes D, Pratiwi AH, Yudiati A, Ezzahar R, Susilo ES. 2017. Bispectral imaging of mangrove *Rhizophora mucronata* leaf and bark waste and its application in batik fabrics with various fixation methods. In: Dhramawan HA (eds) *Proceedings Book The 7th Basic
Sarker U, Islam T, Rabbani G, Oba S. 2015b. Genotype variability in composition of antioxidant vitamins and minerals in vegetable amaranth. Genetika 47 (1): 85-96. DOI: 10.2298/GENSIR1501085S.

Sarker U, Islam MT, Rabbani MG, Oba S. 2017. Genotypic diversity in vegetable amaranth for antioxidant, nutrient and agronomic traits. Indian J Genet Plant Breed 77: 173-176. DOI: 10.5958/0975-9066.2017.00025.6.

Sarker U. 2018a. Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biol 18 (1): 1-15. DOI: 10.1186/s12870-018-01484-1.

Sarker U. 2018b. Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci Rep 8 (1): 1-12. DOI: 10.1038/s41598-018-34944-0.

Sarker U, Oba S. 2018c. Drought stress effects on growth, ros markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Appl Biochem Biotechnol 186 (4): 999-1016. DOI: 10.1007/s12010-018-2784-5.

Sarker U, Oba S. 2018d. Augmentation of leaf color parameters, pigments, phenolics, acidic phenols, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Sci Rep 8 (1): 1-9. DOI: 10.1038/s41598-018-30897-6.

Sarker U, and Oba S. 2018e. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content. Food Chem 252: 72-83. DOI: 10.1016/j.foodchem.2018.01.097.

Sarker U, Islam MT, Rabbani MG, Oba S. 2019a. Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLoS ONE 13 (11): e0206388. DOI: 10.1371/journal.pone.0206388.

Sarker U, Islam MT, Rabbani MG, Oba S. 2019b. Phenotypic divergence in vegetable amaranth for total antioxidant capacity, antioxidant profile, dietary fiber, nutritional and agronomic traits. Acta Agric Scand Sect B: Soil Plant Sci 68 (1): 67-76. DOI: 10.1080/09064710.2017.1367029.

Sarker U, Islam MT, Rabbani MG, Oba S. 2018c. Antioxidant leaf pigments and variability in vegetable amaranth. Genetika 50 (1): 209-220. DOI: 10.2298/GENSIR1801200S.

Sarker U, Islam MT, Rabbani MG, Oba S. 2018d. Variability in total antioxidant capacity, antioxidant leaf pigments and foliage yield of vegetable amaranth. J Integrative Agric 17 (5): 1145-1153. DOI: 10.1016/S2095-3119(17)61778-7.

Sarker U, Oba S. 2019a. Antioxidant constituents of three selected red and green color Amaranthus leafy vegetable. Sci Rep 9 (1): 1-11. DOI: 10.1038/s41598-019-52033-8.

Sarker U, Oba S. 2019b. Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Spec Rep 9 (1): 1-10. DOI: 10.1038/s41598-019-50977-5.

Sarker U, Oba S. 2019c. Protein, dietary fiber, minerals, antioxidant pigments and phytochemicals, and antioxidant activity in selected red morph Amaranthus leafy vegetable. PLoS ONE 14 (12): e0222517. DOI: 10.1371/journal.pone.0222517.

Sarker U, Oba S. 2019d. Salinity stress enhances color parameters, bioactive leaf pigments, vitamins, polyphenols, flavonoids and antioxidant activity in selected Amaranthus leafy vegetables. J Sci Food Agric 99 (5): 2275-2284. DOI: 10.1002/jsfa.9423.

Sarker U, Hossain MN, Iqbal MA. Oba S. 2020a. Bioactive components and radical scavenging activity in selected advance lines of salt-tolerant vegetable amaranth. Front Nutr 7: 1-15. DOI: 10.3389/fnut.2020.587257.

Sarker U, Oba S, Daramy MA. 2020b. Nutrients, minerals, antioxidant pigments and phytochemicals, and antioxidant capacity of the leaves of stem amaranth. Sci Rep 10 (1): 1-10. DOI: 10.1038/s41598-020-06025-7.

Sarker U, Hossain MM. Oba S. 2020c. Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Sci Rep 10 (1): 1-10. DOI: 10.1038/s41598-020-07667-3.

Sarker U, Oba S. 2020a. The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front Plant Sci 11: 1-14. DOI: 10.3389/fpls.2020.559876.

Sarker U, Oba S. 2020b. Phenolic profiles and antioxidant activities in selected drought-tolerant leafy vegetable amaranth. Sci Rep 10 (1): 1-11. DOI: 10.1038/s41598-020-71772-y.
Sarker U, Oba S. 2020c. Polyphenol and flavonoid profiles and radical scavenging activity in leafy vegetable *Amaranthus gangeticus*. BMC Plant Biol 20 (1): 1-12. DOI: 10.1186/s12870-020-02700-0.

Sarker U, Oba S. 2020d. Nutraceuticals, phytochemicals, and radical quenching ability of selected drought-tolerant advance lines of vegetable amaranth. BMC Plant Biol 20 (1): 1-16. DOI: 10.1186/s12870-020-02780-y.

Sarker U, Oba S. 2020c. Nutritional and bioactive constituents and scavenging capacity of radicals in *Amaranthus hypochondriacus*. Sci Rep 10 (1): 1-10. DOI: 10.1038/s41598-020-71714-3.

Sarker U, Oba S. 2020f. Nutrients, minerals, pigments, phytochemicals, and radical scavenging activity in *Amaranthus blitum* leafy vegetables. Sci Rep 10 (1): 1-9. DOI: 10.1038/s41598-020-59848-w.

Sarker U, Oba S. 2020g. Leaf pigmentation, its profiles and radical scavenging activity in selected *Amaranthus tricolor* leafy vegetables. Sci Rep 10 (1): 1-10. DOI: 10.1038/s41598-020-66376-0.

Sarker U, Oba S. 2021. Color attributes, betacyanin, and carotenoid profiles, bioactive components, and radical quenching capacity in selected *Amaranthus gangeticus* leafy vegetables. Sci Rep 11: 1-14. DOI: 10.1038/s41598-021-91157-8.

Sasamoto H, Hayatsu M, Suzuki S. 2020. High allelopathic activity of carotenoid-accumulating callus of a halophilic mangrove plant, *Avicennia alba*: protoplast co-culture method with digital image analysis. J Plant Stud 9 (1): 1-12. DOI: 10.5539/jps.v9n1p1.

Sasmtoo BB, Puspitasari YE, Hardoko H. 2016. Antidiabetic and antioxidant activities of tannin extract of *Rhizophora mcrurata* leaves. J Chem Pharm Res 8 (3): 143-148.

Shabulina IG, Petrovic N, Kramarovka TV, Hoeks J, Cannon B, Nedergaard J. 2006. UCPI and defense against oxidative stress: 4-hydroxy-2-nonenal effects on brown fat mitochondria are uncoupling protein 1-independent. J Biol Chem 281 (20): 13882-13893. DOI: 10.1074/jbc.M601387200.

Soron H, Schofield JD, Darrington PN. 2015. Antioxidant properties of HDL. Front Pharmacol 6 (22): 1-6. DOI: 10.3389/fphar.2015.00222.

Strobel M, Tinj J, Biesalski HK. 2007. The importance of β-carotene as a source of vitamin A with special regard to pregnant and breastfeeding women. Eur J Nutr 46 (1): 1-20. DOI: 10.1007/s00394-007-1001-z.

Suganthy N, Pandima Devi K. 2016. In vitro antioxidant and anti-cholinesterase activities of *Rhizophora mcrurata*. Pharma Biol 54 (1): 118-129. DOI: 10.3109/13880209.2015.1071886.

Taiz L, Zeiger E, Muller IM, Murphy A. 2006. Plant Physiology (Fifth). Sinauer Associates Inc., Massachusetts.

Tanod WA, Yanihar U, Mafutch, Wahyudi D, Risjani Y. 2019a. DPPIV scavenging property of bioactive compounds from soft corals origin Palu bay, Central Sulawesi, Indonesia. JOP Conf Ser: Earth Environ Sci 236 (1): 012121. DOI: 10.1088/1755-1315/236/1/012121.

Tanod WA, Dewanto DK, Ndobe S, Riyadi PH, Putra MY. 2019b. Screening of antibacterial and antioxidant activity of soft corals *Simularella* sp. and *Sarcophyton* sp. from Palu bay, Central Sulawesi, Indonesia. Squalen: Bull Mar Fish Postharvest Biotechnol 14: 73-83. DOI: 10.15578/squalen.v14i2.394.

Thatori PN, Patra JK, Das SK. 2014. Free radical scavenging and antioxidant potential of mangrove plants: a review. Acta Physiol Plant 36 (3): 561-579. DOI: 10.1007/s11738-013-1438-z.

Tidore F, Rumengan AP, Sondak CFA, Mangindaan REP, Runtuwene HCC, Pratasik SB. 2018. Estimation of carbon (C) content in mangrove leaves from Lansa village, Wori sub-district, North Minahasa district. Jurnal Pesisir dan Laut Tropos 6 (2): 53-58. DOI: 10.35800/jplt.6.2.2018.21529. [Indonesian]

Wang F, Huang L, Gao B, Zhang C. 2018. Optimum production conditions, purification, identification, and antioxidant activity of violaxanthin from Microalgia *Eustigmatos* cf. *polyphem* (Eustigmatophyceae). Mar Drugs 16 (6): 190-203. DOI: 10.3390/md16060190.

Widyowati H, Ulfah M, Sumantri. 2014. Antioxidant activity test of the herba alfalfa ethanolic extract (*Medicago sativa* L.) with the DPPIV method (1,1-Diphenyl-2-Picrylhydrazyl). Jurnal Ilmu Farmasi dan Farmasi Klinik 11: 25-33. [Indonesian]

Wu CL, Chen SD, Yin JH, Hwang CS, Yang DL. 2016. Nuclear factor-kappaB-dependent sestrin2 induction mediates the antioxidant effects of BDNF against mitochondrial inhibition in rat cortical neurons. Mol Neurobiol 53 (6): 4126-4142. DOI: 10.1007/s12035-015-9357-1.

Wu CL, Yin JH, Hwang CS, Chen SD, Yang DY, Yang DL. 2012. C-Jun-dependent sulfiredoxin induction mediates BDNF protection against mitochondrial inhibition in rat cortical neurons. Neurobiol Dis 46 (2): 450-462. DOI: 10.1016/j.nbd.2012.02.010.

Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. 2013. Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology 28 (6): 391-403. DOI: 10.1152/physiol.00029.2013.

Zapata M, Rodriguez F, Garrido JL. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195: 29-45. DOI: 10.3354/meps195029.

Zhang T, Wang Z, Wang X, Sun W, Cui X, Li R, Li G. 2019. Effects of vitamin A on antioxidant functions, immune functions and production performance in male sika deer (*Cervus nippon*) during the first antler growth period. Ital J Anim Sci 18: 98-104. DOI: 10.1080/1828051X.2018.1456978.