Figure S1 Morphological features of 58 endophytic strains (Red box: SH-1.2-R-15).
NO.	Strains	Host plant	Parts	Closest sequences by BlastN	Percent Identity	Genbank accession
1	SH-1.1-R-1		Root	Bacillus sp. (in: Bacteria) strain 12D6	97.14%	MN784185
2	SH-1.1-R-2		Root	Stenotrophomonas rhizophila strain PgBE58	99.72%	MN784186
3	SH-1.1-R-3		Root	Bacillus sp. BS98	99.90%	MN784187
4	SH-1.1-R-4		Root	Streptomyces sp. strain SHP 1-2	99.80%	MN784188
5	SH-1.1-R-5		Root	Streptomyces sp. strain H9	100.00%	MN784189
6	SH-1.1-R-6		Root	Streptomyces sp. SR3-82 gene	99.85%	MN784190
7	SH-1.1-R-7		Root	Bacillus thuringiensis strain ZLynn1000-39	97.59%	MN784191
8	SH-1.1-R-8		Root	Same as 5	-	-
9	SH-1.1-R-9		Root	Aerococcus viridans strain NBRC 12219	99.78%	MN784192
10	SH-1.1-L-1	Leaf	Leaf	Bacillus cereus strain BC2	99.90%	MN784193
11	SH-1.1-L-2	Leaf	Leaf	Bacillus thuringiensis strain GA-A07	99.90%	MN784194
12	SH-1.1-L-3		Leaf	Same as 58	-	-
13	SH-1.1-S-1	Stem	Stem	Stenotrophomonas sp. Strain FB14	99.93%	MN784195
14	SH-1.2-R-1	Root	Root	Streptomyces sp. NK04104	96.58%	MN784196
15	SH-1.2-R-2	Root	Root	Streptomyces sp. CdTB01	97.13%	MN784197
16	SH-1.2-R-3	Root	Root	Pseudomonas sp. BMS12	99.33%	MN784198
17	SH-1.2-R-4	Root	Root	Streptomyces sp. g2b	99.79%	MN784199
18	SH-1.2-R-5	Root	Root	Streptomyces sp. HF-2	96.82%	MN784200
19	SH-1.2-R-6	Root	Root	Pseudomonas sp. Strain IAE244	99.92%	MN784201
20	SH-1.2-R-7	Root	Root	Streptomyces sp. LCB 0297	97.94%	MN784202
21	SH-1.2-R-8	Root	Root	Streptomyces sp. strain QJSt8	97.47%	MN784203
22	SH-1.2-R-9	Root	Root	Same as 7	-	-
23	SH-1.2-R-10	Root	Root	Same as 8	-	-
24	SH-1.2-R-11	Root	Root	Same as 21	-	-
25	SH-1.2-R-12	Root	Root	Bacillus cereus strain ULT15	99.60%	MN784204
26	SH-1.2-R-13	Root	Root	Streptomyces sp. TM-74	97.51%	MN784205
27	SH-1.2-R-14	Root	Root	Streptomyces fulvissimus strain DSM 40593	97.64%	MN784206
28	SH-1.2-R-15	Root	Root	Streptomyces chartreusis strain ISP 5085	99.21%	MN784207
29	SH-1.2-R-16	Root	Root	Streptomyces variabilis strain NRRL B-3984	97.52%	MN784208
30	SH-1.2-R-17	Root	Root	Streptomyces sp. strain TM-A158	99.86%	MN784209
31	SH-1.2-R-18	Root	Root	Bacillus thuringiensis strain GA-A07 chromosome	99.93%	MN784210
32	SH-1.2-R-19	Root	Root	Same as 58	-	-
33	SH-1.2-L-1	Leaf	Leaf	Micromonospora aurantiaca strain IMB16-201	99.92%	MN784211
34	SH-3.1-R-1	Root	Root	Bacillus sp. (in: Bacteria) strain 12D6	98.67%	MN784212
35	SH-3.1-R-2	Root	Root	Same as 36	-	-
36	SH-3.1-R-3	Root	Root	Streptomyces sp. GSENDO-0578	96.80%	MN784213
37	SH-3.1-R-4	Root	Root	Same as 50	-	-
38	SH-3.1-R-5	Root	Root	Streptomyces sp. 13-22	96.92%	MN784214
39	SH-3.1-R-6	Root	Root	Streptomyces sp. MI02-7b	99.58%	MN784215
40	SH-3.1-R-7	Root	Root	Streptomyces anulatus strain 174456	97.06%	MN784216
41	SH-3.1-R-8	Root	Root	Same as 38	-	-
42	SH-3.1-R-9	Root	Root	Streptomyces sp. DSM 40835 clone K12	99.70%	MN784217
43	SH-3.1-R-10	Root	Root	Bacillus thuringiensis strain JW-1	99.81%	MN784218
44	SH-3.1-R-11	Root	Root	Bacillus thuringiensis strain GA-A07	100.00%	MN784219

Table S1 16S rRNA analysis of 58 endophytic strains.
45	SH-3.1-R-12	Root	Same as 66	-	-	
46	SH-3.1-R-13	Root	*Bacillus* sp. JAS24-2 chromosome	100.00%	MN784220	
47	SH-3.1-R-14	Root	*Streptomyces* sp. strain MUSC11	98.46%	MN784221	
48	SH-3.1-R-15	Root	Same as 66	-	-	
49	SH-3.1-R-16	Root	*Streptomyces* sp. strain BOR09	93.69%	MN784222	
50	SH-3.1-R-17	Root	*Viridibacillus* sp. strain TM-B117	99.69%	MN784223	
51	SH-3.1-R-19	Root	*Streptomyces* sp. SR3-82	96.17%	MN784224	
52	SH-3.1-R-20	Root	*Bacillus thuringiensis* strain GCU1	99.79%	MN784225	
53	SH-3.1-R-21	Root	*Streptomyces prunicolor* NBRC 13075	99.80%	MN784226	
54	SH-3.1-R-22	Root	*Streptomyces* sp. strain GDMCC 60254	96.51%	MN784227	
55	SH-3.1-L-1	Leaf	Same as 59	-	-	
56	SH-3.1-L-2	Leaf	Same as 65	-	-	
57	SH-3.1-L-3	Leaf	Same as 60	-	-	
58	SH-3.1-S-1	Stem	*Streptomyces* sp. strain GDMCC 60254	96.92%	MN784228	
59	SH-3.1-S-2	Stem	*Bacillus cereus* strain NRRL B-23957	98.73%	MN784229	
60	SH-3.1-S-3	Stem	*Streptomyces* sp. SM17	99.31%	MN784230	
61	SH-3.1-S-4	Stem	Same as 65	-	-	
62	SH-3.2-R-1	Dendrobium officinale - three years old-2	Root	*Bacillus* sp. HT-Z74-B2	98.55%	MN784231
63	SH-3.2-R-2	Root	Same as 50	-	-	
64	SH-3.2-R-3	Root	Same as 60	-	-	
65	SH-3.2-R-4	Root	*Bacillus cereus* strain GE16	98.78%	MN784232	
66	SH-3.2-R-5	Root	*Streptomyces* sp. GKY 867	100.00%	MN784233	
67	SH-3.2-R-6	Root	*Bacillus thuringiensis* strain QZL38 chromosome	100.00%	MN784234	
68	SH-3.2-R-7	Root	*Streptomyces rochei* 7434AN4 DNA	99.79%	MN784235	
69	SH-3.2-R-8	Root	*Streptomyces* sp. Endophyte N2 chromosome	100.00%	MN784236	
70	SH-3.2-R-9	Root	*Bacillus cereus* strain Sneb2000	100.00%	MN784237	
71	SH-3.2-R-10	Root	*Brevundimonas* sp. strain 7002-176	100.00%	MN784238	
72	SH-3.2-R-11	Root	*Corynebacterium* sp. strain ABYHD3-2	99.85%	MN784239	
73	SH-3.2-R-12	Root	*Streptomyces* sp. TJ-27	97.98%	MN784240	
74	SH-3.2-R-13	Root	*Bacillus* sp. AR4-2 chromosome	100.00%	MN784241	
75	SH-3.2-L-1	Leaf	*Bacillus thuringiensis* strain GA-A07	100.00%	MN784242	
Figure S2 Scatterplot of 75 cultured endophytic strains screened in triplicate at 25 or 50 µg/mL in Hep3B2.1-7 cell viability assay. Data are shown normalized to percent max response of the high control (Medium only group). Each data point represents the mean and standard deviation of three replicates in 96 wells. The hit cutoff calculated as the average percent inhibition plus three times the standard deviation of the low control wells, is shown as the black line at 11.7%.

Table S2. Strains showed inhibition against Hep3B2.1-7 cell more than the hit cutoff (>11.7%).

No.	Endophytic strains	%Inhibition	No.	Endophytic strains	%Inhibition
2	SH-1.1-R-2	22.14±4.46	54	SH-3.1-R-22	35.74±2.31
4	SH-1.1-R-4	44.24±1.39	56	SH-3.1-L-2	18.64±1.16
16	SH-1.2-R-3	14.67±1.99	58	SH-3.1-S-1	14.87±3.17
18	SH-1.2-R-5	97.24±0.38	59	SH-3.1-S-2	47.80±0.99
19	SH-1.2-R-6	89.27±9.58	61	SH-3.1-S-4	12.00±1.38
24	SH-1.2-R-11	23.97±4.63	62	SH-3.2-R-1	33.77±2.22
27	SH-1.2-R-14	98.44±0.36	63	SH-3.2-R-2	41.40±1.71
28	SH-1.2-R-15	20.30±3.76	64	SH-3.2-R-3	31.27±4.01
31	SH-1.2-R-18	34.47±2.74	65	SH-3.2-R-4	12.30±3.31
33	SH-1.2-L-1	14.47±1.28	66	SH-3.2-R-5	47.07±1.86
42	SH-3.1-R-9	23.14±1.77	67	SH-3.2-R-6	62.20±6.76
43	SH-3.1-R-10	26.37±2.21	68	SH-3.2-R-7	98.67±0.62
44	SH-3.1-R-11	12.17±4.47	69	SH-3.2-R-8	89.50±2.46
47	SH-3.1-R-14	45.34±1.71	73	SH-3.2-R-12	49.97±1.41
Figure S3 Scatterplot of 75 cultured endophytic strains screened in triplicate at 25 or 50 µg/mL in *S. aureus* inhibitory assay. Data are shown normalized to percent max response of the high control (Bacterial treated with 100 µg/mL Ampicillin). Each data point represents the mean and standard deviation of three replicates in 96 wells. The hit cutoff calculated as the average percent inhibition plus three times the standard deviation of the low control wells, is shown as the black line at 36.2%.

Table S3 Strains showed inhibition against *S. aureus* more than the hit cutoff (>36.2%).

No.	Endophytic strains	%Inhibition	No.	Endophytic strains	%Inhibition
12	SH-1.1-L-3	41.86±3.50	37	SH-3.1-R-4	51.50±1.96
13	SH-1.1-S-1	50.13±5.59	44	SH-3.1-R-11	41.81±8.64
14	SH-1.2-R-1	36.70±6.74	48	SH-3.1-R-15	40.45±21.15
15	SH-1.2-R-2	40.17±5.94	50	SH-3.1-R-17	48.24±15.86
18	SH-1.2-R-5	95.12±3.34	52	SH-3.1-R-20	47.21±7.18
23	SH-1.2-R-10	54.04±7.21	56	SH-3.1-L-2	46.37±3.41
24	SH-1.2-R-11	72.75±6.14	57	SH-3.1-L-3	38.59±3.27
26	SH-1.2-R-13	51.38±3.27	68	SH-3.2-R-7	100.00±0.24
27	SH-1.2-R-14	99.66±0.58	69	SH-3.2-R-8	99.32±0.53
28	SH-1.2-R-15	100.12±0.09	70	SH-3.2-R-9	51.01±6.67
29	SH-1.2-R-16	40.21±5.97			
Figure S4 Scatterplot of 75 samples screened in triplicate at 25 or 50 µg/mL in *E. coli* inhibitory assay. Data are shown normalized to percent max response of the high control (Bacterial treated with 100 µg/mL Ampicillin). Each data point represents the mean and standard deviation of three replicates in 96 wells. The hit cutoff calculated as the average percent inhibition plus three times the standard deviation of the low control wells, is shown as the black line at 26.4%.

Table S4 Strains showed inhibition against *E. coli* more than the hit cutoff (>26.4%).

No.	Endophytic strains	%Inhibition
59	SH-3.1-S-2	31.49±6.86
Scheme S1 Work-up scheme for the *Streptomyces* sp. SH-1.2-R-15.

Streptomyces sp. 1.2-R-15
8 L (shaker), using Medium Bran
7 days (28°C, 200 rpm)

Culture broth → Centrifugation

Supernatant
XAD-16 RESIN (4%), mixing 6-8 hours
Filtration
Extraction with MeOH (3 x 500 mL)
evap. in vac.

54.8 g of brown crude extract

Mycelium
MeOH (3 x 2 L) evap. in vac.

82.3 g crude extract

MCI (9 x 40 cm, aqueous MeOH: 20%-100%)

A (49.6 g)

B (1.51 g) C (0.99 g) D (1.95 g) E (3.13 g) F (1.24 g) G (0.57 g) H (0.99 g) I (3.44 g)

Sephadex LH-20 5x110cm, 80% MeOH

B (1.51 g)

Bl (1.47 g) B2 (1.74 g)

HPLC
5 (2 mg) 6 (3 mg)

C (0.99 g)

D (1.95 g)

Sephadex LH-20 5x110cm, MeOH

D (1.95 g)

D1 (120 mg) D2 (206 mg)

HPLC
4 (29 mg)

1 (1 mg) 2 (16 mg)
Figure S5. (+) and (−)-ESI-MS of compound 1.

Figure S6. HRESI-MS spectrum of compound 1.
Figure S7. 1H NMR (500 MHz, DMSO-d_6) spectrum of compound 1.

Figure S8. 1H NMR (500 MHz, CDCl$_3$) spectrum of compound 1.
Figure S9. 13C NMR (125 MHz, CDCl$_3$) spectrum of compound 1.

Figure S10. 1H-1H COSY (500 MHz, CDCl$_3$) spectrum of compound 1.
Figure S11. HSQC (500 MHz, CDCl₃) spectrum of compound 1.

Figure S12. HMBC (500 MHz, CDCl₃) spectrum of compound 1.
Figure S13. ROESY (500 MHz, CDCl₃) spectrum of compound 1.

Figure S14. (+) and (−)-ESI-MS of compound 2.
Figure S15. HRESI-MS spectrum of compound 2.

Figure S16. 1H NMR (500 MHz, DMSO-d_6) spectrum of compound 2.
Figure S17. 1H NMR (500 MHz, CDCl$_3$) spectrum of compound 2.

Figure S18. 13C NMR (125 MHz, CDCl$_3$) spectrum of compound 2.
Figure S19. 1H-1H COSY (500 MHz, CDCl$_3$) spectrum of compound 2.

Figure S20. HSQC (500 MHz, CDCl$_3$) spectrum of compound 2.
Figure S21. HMBC (500 MHz, CDCl₃) spectrum of compound 2.

Figure S22. ROESY (500 MHz, CDCl₃) spectrum of compound 2.
Figure S23. (+) and (−)-ESI-MS of compound 3.

Figure S24. HRESI-MS spectrum of compound 3.
Figure S25. 1H NMR (500 MHz, DMSO-d_6) spectrum of compound 3.

Figure S26. 13C NMR (125 MHz, DMSO-d_6) spectrum of compound 3.
Figure S27. 1H-1H COSY (500 MHz, DMSO-d_6) spectrum of compound 3.

Figure S28. HSQC (500 MHz, DMSO-d_6) spectrum of compound 3.
Figure S29. HMBC (500 MHz, DMSO-d$_6$) spectrum of compound 3.

Figure S30. (+) and (−)-ESI-MS of compound 4.
Figure S31. HRESI-MS spectrum of compound 4.

Figure S32. 1H NMR (500 MHz, DMSO-d_6) spectrum of compound 4.
Figure S33. 13C NMR (125 MHz, DMSO-d_6) spectrum of compound 4.
Figure S34. (+) and (‒)-ESI-MS of compound 5.
Figure S35. HRESI-MS spectrum of compound 5.

Figure S36. 1H NMR (500 MHz, CDOD$_3$) spectrum of compound 5.
Figure S37. 13C NMR (125 MHz, CDOD$_3$) spectrum of compound 5.
Figure S38. (+) and (‒)-ESI-MS of compound 6.
Figure S39. HRESI-MS spectrum of compound 6.

Figure S40. 1H NMR (500 MHz, CDOD$_3$) spectrum of compound 6.
Figure S41. 13C NMR (125 MHz, CDOD$_3$) spectrum of compound 6.

Figure S42. (+) and (‒)-ESI-MS of compound 7.
Figure S43. HRESI-MS spectrum of compound 7.

Figure S44. 1H NMR (500 MHz, DMSO-d_6) spectrum of compound 7.
Figure S45. 13C NMR (125 MHz, DMSO-d_6) spectrum of compound 7.