GreyReID: A Two-stream Deep Framework with RGB-grey Information for Person Re-identification

LEI QI, The State Key Laboratory for Novel Software Technology, Nanjing University, China
LEI WANG, School of Computing and Information Technology, University of Wollongong, Australia
JING HUO, The State Key Laboratory for Novel Software Technology, Nanjing University, China
YINGHUAN SHI, The State Key Laboratory for Novel Software Technology, Nanjing University, China
YANG GAO, The State Key Laboratory for Novel Software Technology, Nanjing University, China

In this paper, we observe that most false positive images (i.e., different identities with query images) in the top ranking list usually have the similar color information with the query image in person re-identification (Re-ID). Meanwhile, when we use the greyscale images generated from RGB images to conduct the person Re-ID task, some hard query images can obtain better performance compared with using RGB images. Therefore, RGB and greyscale images seem to be complementary to each other for person Re-ID. In this paper, we aim to utilize both RGB and greyscale images to improve the person Re-ID performance. To this end, we propose a novel two-stream deep neural network with RGB-grey information, which can effectively fuse RGB and greyscale feature representations to enhance the generalization ability of Re-ID. Firstly, we convert RGB images to greyscale images in each training batch. Based on these RGB and greyscale images, we train the RGB and greyscale branches, respectively. Secondly, to build up connections between RGB and greyscale branches, we merge the RGB and greyscale branches into a new joint branch. Finally, we concatenate the features of all three branches as the final feature representation for Re-ID. The extensive experiments on multiple benchmark datasets fully show that the proposed method can outperform the state-of-the-art person Re-ID methods. Furthermore, using greyscale images can indeed improve the person Re-ID performance.

CCS Concepts:
• Computer systems organization → Embedded systems; Redundancy; Robotics; • Networks → Network reliability.

Additional Key Words and Phrases: person re-identification, greyscale person images

ACM Reference Format:
Lei Qi, Lei Wang, Jing Huo, Yinghuan Shi, and Yang Gao. . GreyReID: A Two-stream Deep Framework with RGB-grey Information for Person Re-identification. In .. ACM, New York, NY, USA, 17 pages. https://doi.org/~

1 INTRODUCTION

Person re-identification (Re-ID) aims at finding the interesting person from a large-scale gallery set which consists of many person images with different illumination, pose, resolution and background from many non-overlapping camera views [5, 17, 19]. These discrepancies of different camera views result in challenges in person Re-ID. In addition, the similarity among many different person images is also a great challenge for person Re-ID. For example, many person images with different identities could have a similar appearance, especially for the color information.
Fig. 1. Person retrieval samples of the PCB model [26] on CUHK03 and Market1501, respectively. Note that the first image of each row is the query image and other images are “Rank-1 to Rank-10” in the ranking list. The green (red) boxes denote the positive (negative) images with the query image. As seen in this figure, the negative samples in the top positions have similar color information with the query image.

Many methods have been developed to deal with the above challenges [7, 11, 15, 16, 23, 28, 30, 39, 46]. In recent years, using extra information, such as person attribute [7, 16, 37] and the image-segmentation information [11, 23, 28], has significantly improved the Re-ID performance. Particularly, using image segmentation can effectively reduce the impact of the cluttered background. Besides, to avoid the model over-fitting, some extra images are generated by GANs-based methods to enhance the diversity of training data [15, 24, 46]. Furthermore, the local-based methods can effectively boost the Re-ID performance, which include the part-based methods [25, 26, 33] and the attention-based methods [14, 30, 39]. However, the above methods mainly focus on the challenges caused by the discrepancy of different camera views, which have not paid particular attention to the similarity of the color information among different identities.

In practical applications, there are many similar person images with different identities on the Re-ID dataset, especially in terms of the color information. Thus, for a query image, these similar images with different identities may appear at the top positions of the ranking list. For example, Fig. 1 visualizes the ranking list of the PCB model [26], which has obtained the state-of-the-art results on two Re-ID datasets. As seen, for most false positive images in the top ranking list, they have similar color information with query images, which is called the color over-fitting of person Re-ID in this paper. Thus, many existing methods could overly depend on color information and neglect some structure information in person images.

To solve this issue, we utilize greyscale images to conduct the person Re-ID task. Compared with RGB images, greyscale images remove the potentially disturbing color information, and thus using them may make deep models better focus on other information besides the color information, such as structure and texture information. Through the experiments, we find that using greyscale images to conduct the person Re-ID task can generate the complementary results with RGB images,
GreyReID: A Two-stream Deep Framework with RGB-grey Information for Person Re-identification

Fig. 2. Person retrieval samples of greyscale and RGB images in the PCB model [26] on CUHK03 and Market1501, respectively. In particular, PCB is trained on greyscale and RGB images, respectively. Top (bottom) of each pair is retrieval samples of RGB (greyscale) images. Note that the first image of each row is the query image and other images are "Rank-1 to Rank-10" in the ranking list. The green (red) boxes denote the positive (negative) images with the query image. As seen in this figure, there is the complementarity between RGB and greyscale images.

as shown in Fig. 2. Some hard query images may fail by using features of RGB images, but utilizing greyscale images can achieve better results. Therefore, we argue that RGB and greyscale images have the complementarity in the person Re-ID task.

In this paper, to exploit the complementarity between RGB and greyscale images, we propose a two-stream deep framework with RGB-grey information for person Re-ID. Firstly, a two-stream network is designed with RGB-greyscale image pairs as inputs. In particular, greyscale images are generated by simply converting RGB images. Then, we fuse the RGB and greyscale branches into a joint branch, which can further extract a more robust feature than RGB and grey features alone. Finally, we concatenate the greyscale, RGB and joint features as the final person representation. Moreover, to further enhance the generalization ability of all three branches, an independent loss function is used for each branch in the training stage. In addition, we also employ a global loss to further optimize the final concatenated feature. The proposed method can adequately explore the complementary information between RGB and greyscale images to boost the person Re-ID performance.

In summary, we observe that greyscale information has an important role in person Re-ID and put forward an end-to-end deep framework to combine RGB and Greyscale information in person image. Our contribution in this work is threefold. First, we find that RGB and greyscale images are complementary in person Re-ID. To the best of our survey, the proposed method is the first to consider the color over-fitting issue in person Re-ID and employs greyscale person images to mitigate this issue. Second, to fully explore the complementary information in RGB and greyscale images, we develop a two-stream network with RGB and greyscale information for
person Re-ID, and employ an independent loss function for each branch in the proposed framework. Last, extensive experiments on multiple benchmark datasets demonstrate the efficacy of greyscale images in the person Re-ID task. Furthermore, the proposed method can also obtain competitive performance when compared with the state-of-the-art methods.

The rest of this paper is organized as follows. The related work is reviewed in Section 2. The framework proposed in this work is elaborated and discussed in Section 3. Experimental results and analysis are presented in Section 4, and the conclusion is drawn in Section 5.

2 RELATED WORK

In this section, we review the most related work with this paper in the person Re-ID community.

2.1 Person Re-ID with extra information

In person Re-ID, extra information, such as person attribute [7, 16, 27] and the image-segmentation information [11, 18, 23, 28], can effectively help to improve the Re-ID performance. Liu et al. [16] present a novel Contextual-attentional Attribute-appearance Network (CA³NET) for person Re-ID, which simultaneously exploits the complementarity between semantic attributes and visual appearance. In [7], a novel Attribute-Aware Attention Model (A³M) is developed, which can learn local attribute representation and global category representation simultaneously in an end-to-end manner. In addition, due to the diverse background clutters from different camera views, the segmentation information can alleviate background clutters for pedestrian images, and improve the performance of person Re-ID. In [11], the proposed method integrates human semantic parsing in person Re-ID and not only considerably outperforms its counter baseline, but also achieves state-of-the-art performance. Besides, Song et al. [23] introduce the binary segmentation masks to construct synthetic RGB-Mask pairs as inputs, then they design a Mask-guided Contrastive Attention Model (MGCAM) to learn features separately from the body and background regions. Unlike the above methods, considering the color over-fitting issue in person Re-ID, we introduce the greyscale information to enhance the generalization ability of person Re-ID, which is trivially captured by converting RGB images.

2.2 Person Re-ID with extra images

To enrich training samples, some extra images can be generated by GANs-based methods [15, 31, 40, 45, 46], which can reduce the model over-fitting. Zheng et al. [40] employ GAN [20] to generate unlabeled extra images in the Re-ID task. To use them, a uniform label distribution is assigned to these generated images, which regularizes the supervised model and improves the baseline. Considering the pose variation in different camera views, Liu et al. [15] propose a pose-transferable person Re-ID framework which utilizes pose-transferred sample augmentations to enhance Re-ID model training. Besides, person Re-ID also suffers from image style variations caused by different cameras. Zhong et al. [46] implicitly address this problem by learning a camera-invariant descriptor subspace. In particular, the method explicitly considers this challenge by introducing camera style adaptation which can serve as a data augmentation approach that smooths the camera style disparities. Different from the above methods, we introduce the greyscale images to learn features separately from the body and background regions. Unlike the above methods, we introduce the greyscale information to enhance the generalization ability of person Re-ID, which is trivially captured by converting RGB images.

2.3 The local-based person Re-ID

In recent years, the local-based methods can significantly improve the performance of person Re-ID, which include the part-based methods [25, 26, 33, 40] and the attention-based methods [22, 30, 39]. Due to the huge variance of human pose and the misalignment of detected human images, Wei
et al. [33] propose a Global-Local-Alignment Descriptor (GLAD) which explicitly leverages the local and global cues in human body to generate a discriminative and robust representation. Su et al. [25] develop a Pose-driven Deep Convolutional (PDC) model to learn improved feature extraction and matching models from end to end, which employs the human part cues to alleviate the pose variations and learn robust feature representations from both the global image and different local parts. Instead of using external cues, such as pose estimation, Sun et al. [26] propose a network named Part-based Convolutional Baseline (PCB) which outputs a convolutional descriptor consisting of several part-level features. Besides, the attention-based model can also locate the local regions. Wang et al. [30] present a novel deep network called ManCS which utilizes the attention mechanism for the person misalignment problem and properly sampling for the ranking loss to obtain a more stable person representation. Zheng et al. [39] propose the Consistent Attentive Siamese Network (CASN), which enforces attention consistency among images of the same identity. Compared with the above methods, the proposed method integrates the different attention regions of greyscale and RGB images to learn the robust feature representations for person Re-ID.

3 THE PROPOSED METHOD

In this part, we first present the complementarity between RGB and greyscale images in Section 3.1. Then the proposed two-stream deep framework with RGB-grey information is described in Section 3.2. Lastly, we further discuss some components of the proposed method in Section 3.3.

3.1 The complementarity between RGB and greyscale images

In person Re-ID, most existing methods utilize RGB color images to train and test models. However, these methods may overly depend on the color information (i.e., the color over-fitting). For example, we show person retrieval samples of PCB [26] in the top-10 ranking list in Fig. 1. As seen, most of false positive images have similar color information with the query images. Particularly, we remove the color information by making the testing images greyscale. When we evaluate the RGB model (i.e., the model is trained on RGB images) on these greyscale images, mAP decreases by 54.3% (78.5 vs. 24.2), 50.8% (68.5 vs. 17.7) and 44.5% (61.0 vs. 16.5) on Market1501, DukeMTMC-reID and CUHK03, respectively, as shown in Fig. 3 (orange bars vs. blue bars). On one hand, this declares that the color information is important to identify one person. On the other hand, this also implies that the RGB models focus too much on the color information of person images. In this case, using RGB images for person Re-ID may neglect some extra information besides the color information, such as the texture and structure information.

Furthermore, we also observe that RGB and greyscale images for person Re-ID have the complementarity from three different views. First, according to person retrieval samples illustrated in Fig. 2, by employing greyscale images, some hard query images can achieve better performance than the case of employing RGB images. For example, in Fig. 2, some query images cannot find any true positive samples in the top-10 ranking list, while using greyscale images can successfully find some. Second, we also train ResNet-50 [8] on greyscale person images (i.e., the greyscale model). The results are shown in Fig. 3 (grey bars). For evaluating the greyscale model on the greyscale data, although the performance has a gap with the RGB model tested on RGB images as shown in Fig. 3 (orange bars), it has a great improvement compared with the RGB model evaluated on greyscale data (blue bars in Fig. 3). For example, the greyscale model significantly gains 33.4% (79.8 vs. 46.4), 35.3% (66.2 vs. 30.9) and 34.1% (48.9 vs. 14.8) in Rank-1 accuracy on Market1501, DukeMTMC-reID and CUHK03, respectively. Thus, we can reasonably deduce that the significant improvements could be from the extra information besides the color information, such as the texture or structure information that may not be sufficiently focused by the RGB model. This further confirms the complementarity of RGB and greyscale models. Third, according to feature response maps, we
Fig. 3. The evaluation of the greyscale and RGB models on Market1501, DukeMTMC-reID and CUHK03, respectively. Note that orange (grey) bars denote using RGB (greyscale) images to train and test ResNet-50. Blue bars represent using RGB and greyscale images to train and test the ResNet-50 model, respectively.

Fig. 4. Feature response maps of the last convolution layer in the greyscale and RGB models on CUHK03. The greyscale (RGB) model represents that ResNet-50 is trained on greyscale (RGB) images. The response map of each person image is calculated by the mean of all feature maps. First and third rows denote the RGB and greyscale images, respectively, and second and fourth rows are their corresponding feature response maps.

observe that greyscale and RGB images can guide the neural network to focus on different regions. Fig. 4 shows feature response maps of greyscale and RGB images in greyscale and RGB models, respectively. As seen, some RGB images neglect the bag regions, while these regions have strong responses in greyscale images.
Considering the complementarity of RGB and greyscale images, our goal is to jointly use greyscale and RGB images to improve the person Re-ID performance by mitigating the color over-fitting issue. Particularly, unlike the GANs-based methods which generate extra images, the greyscale images in our method can be trivially obtained by converting RGB images as

\[ \text{Grey}(i, j) = 0.299 \times R(i, j) + 0.587 \times G(i, j) + 0.114 \times B(i, j), \]

where \( \text{Grey}(i, j) \) denotes the pixel value of greyscale images in the \( i \)-th row and the \( j \)-th column. \( R \), \( G \) and \( B \) are three channels in RGB images. As usual, to use ResNet50, we expand greyscale images to three channels with the same pixel values.

### 3.2 Two-stream deep framework with RGB-grey information

To effectively use greyscale person images, we propose a two-stream deep framework with RGB-grey information for person Re-identification, as illustrated in Fig. 5. The detailed information is described as follows.

**The Network Framework.** In this paper, we develop a two-stream deep learning framework to fuse RGB and greyscale feature representations, whose backbones are the pre-trained ResNet-50 on ImageNet [4]. In our framework, we first feed RGB images to the RGB branch, and convert RGB images to greyscale images that are fed into the greyscale branch. Second, in the last convolutional layer of ResNet-50, we merge the tensors of the greyscale and RGB branches into a new joint branch to connect them. Particularly, for the joint branch, we adopt the part-based scheme to divide the tensor into two parts, whose effectiveness has been validated in the literature [25, 26, 33]. Concretely, given a joint tensor \( T_{\text{joint}} \in \mathbb{R}^{2048 \times 24 \times 8} \), we divide it into two single non-overlapping sub-tensors (i.e., \( T_{\text{sub1}} \) and \( T_{\text{sub2}} \) \( \in \mathbb{R}^{2048 \times 12 \times 8} \)). Then, the global average pooling (GAP) is employed in all branches. After this, we add a fully connected (FC) layer to form the feature representation of each branch. Finally, we concatenate the features of all branches as the testing feature for Re-ID. In particular, in each branch, we use an independent loss function to train the proposed
model simultaneously. Besides, a global loss function is used to fine-tune the concatenated feature, which can further boost the person representation discrimination. Considering that the greyscale performance is poor when compared with RGB, as shown in Fig. 3, we set the greyscale branch to have the lower feature dimension than the RGB and joint branches. In this work, we set 256-, 512- and 512-d (dimensional) features for the greyscale, RGB, and joint branches, respectively.

**Loss Function.** In person Re-ID, the existing methods construct the classification [3, 13, 34, 36] or discrimination [1, 2, 29, 35] tasks to train deep models. In particular, the effectiveness of simultaneously optimizing the classification and discrimination tasks is demonstrated in [42]. For example, in the discrimination task, the loss function (e.g., contrastive loss [6] or triplet loss [9]) directly calculates the Euclidean distance between two embeddings. In the classification task, the input is independent to each other. But there is implicit relationship between the learned embeddings built by the cross-entropy loss. Thus, we incorporate this joint task to optimize the proposed network. The loss function of the proposed method consists of a cross-entropy loss and a triplet loss with hard sample mining [9]. For the cross-entropy loss of the classification task, it can be defined as

\[
L_{\text{Cross}}(X, Y) = - \sum_{i=1}^{N} \sum_{c=1}^{C} \delta(y_i - c) \log p(c|x_i),
\]

where \( \delta(\cdot) \) is the Dirac delta function. For a sample \( x_i \) belonging to the \( y_i \)-th person class, \( p(c|x_i) \) denotes its predicted probability for the \( c \)-th person class. \( N \) is the batch size, and \( C \) represents the total number of person classes.

In each batch, we randomly select \( P \) persons and each person has \( K \) images. \( N = P \times K \) is the total number of images in a batch. The triplet loss with hard sample mining can be described as

\[
L_{\text{Triplet}}(X, Y) = \sum_{i=1}^{P} \sum_{a=1}^{K} \left[ m + l(x^i_a) \right]_{+},
\]

where

\[
l(x^i_a) = \max_{p=1\ldots K} D(f(x^i_a), f(x^i_p)) - \min_{n=1\ldots P, \ j \neq i} D(f(x^i_a), f(x^j_n)),
\]

and \( m \) denotes the margin. \( f(x^i_a) \) is the feature of sample \( x^i_a \) and \( D(\cdot, \cdot) \) indicates Euclidean distance.

In summary, the loss function of each branch can be written as

\[
L(X, Y) = L_{\text{Triplet}}(X, Y) + L_{\text{Cross}}(X, Y).
\]

In our framework, each branch has an independent loss. Besides, we also utilize a global loss to further fine-tune the concatenated features consisting of the greyscale, RGB and joint features, as shown in Fig. 5.

### 3.3 Discussion

**Why does the proposed framework not use the adaptive weight fusion scheme?** To obtain better joint tensor, we investigate different tensor fusion schemes in our framework, which include element-wise plus, element-wise multiply, concatenated operation and the adaptive weighting scheme. However, through our experiments, the performance of these tensor fusion schemes does not have enough difference. The main reason is that jointly optimizing the independent loss function of each branch can obtain robust features from all branches. Moreover, the global loss function
has been able to automatically adjust the importance of the greyscale, RGB and joint features in the concatenated feature representation. In some sense, this is equivalent to having an adaptive weighting method for the greyscale, RGB and joint branches in the proposed framework.

Why does the proposed framework not use the part-based scheme in other branches? In our framework, we only employ the part-based scheme in the joint branch. Since the joint branch is the fused part of the greyscale and RGB branches, using the part-based scheme in the joint branch not only improves the performance of the joint branch, but also helps to improve the generalization ability of the RGB and greyscale branches. This has been validated in our experiments. In practice, we also test the case of using the part-based scheme to the RGB branch. However, it cannot bring a significant improvement with respect to our design.

4 EXPERIMENTS

In this part, we first introduce the experimental datasets and settings in Section 4.1. Then, we compare the proposed method with baseline and the state-of-the-art methods in Sections 4.2 and 4.3, respectively. To validate the effectiveness of various components in the proposed framework, we conduct ablation studies in Section 4.4. Lastly, we further analyze the property of the proposed network in Section 4.5.

4.1 Datasets and settings

We evaluate our approach on four large-scale datasets: Market1501 [38], DukeMTMC-reID (Duke) [21, 41], CUHK03-NP [43] and MSMT17 [32]. Market1501 contains 1,501 persons with 32,668 images from six cameras. Among them, 12,936 images of 751 identities are used as training set. For evaluation, there are 3,368 and 19,732 images in the query set and the gallery set, respectively. DukeMTMC-reID has 1,404 persons from eight cameras, with 16,522 training images, 2,228 queries, and 17,661 gallery images. CUHK03-NP is a new training-testing split protocol for CUHK03. CUHK03 [12] datasets contain two subsets which provide labeled and detected (from a person detector) person images. The detected CUHK03 set includes 7,365 training images, 1,400 query images and 5,332 gallery images. The labeled set contains 7,368 training, 1,400 query and 5,328 gallery images respectively. The new protocol in [43] splits the training and testing sets into 767 and 700 identities. MSMT17 is collected from a 15-camera network deployed on campus. The training set contains 32,621 images of 1,041 identities. For evaluation, 11,659 and 82,161 images are used as query and gallery images, respectively. For all datasets, we employ CMC accuracy and mAP for Re-ID evaluation [38]. On Market1501, there are single- and multi-query evaluation protocols. We use the more challenging single-query protocol in our experiments.

In the training process, we set $P$ and $K$ to 32 and 4, respectively. The margin of triplet loss, $m$, is 0.3. The proposed model is trained with the SGD optimizer in a total of 300 epochs. The initial learning rate is set to 0.01, and decreases to 0.001 and 0.0001 at the 100-th and 200-th epochs, respectively. During training, the input images are resized to $384 \times 128$ and then pre-processed by random horizontal flip, normalization, and random erasing [44]. Particularly, all experiments in this paper utilize the same setting on all datasets.

Note that the baseline model in this experiment represents the pre-trained ResNet-50 [8] on ImageNet [4] with the loss in Eq. (5). Particularly, for fair comparison, we set different feature dimensions in the baseline model for different experiments. Baseline-grey and Baseline-rgb denote that the baseline model is trained on greyscale and RGB images, respectively.

4.2 Comparison with the baseline

In this section, we compare the proposed methods and the baseline method, as shown in Fig. 6. 1280-d features are extracted for all methods. Particularly, we conduct the baseline method on
Fig. 6. Comparison of the baseline and our method on Market1501, DukeMTMC-reID and CUHK03-NP, respectively. Particularly, the baseline model is trained on grey and RGB images, respectively. Note that all methods extract 1280-dimensional features.

greyscale and RGB images, respectively. First, fusing RGB and greyscale features can achieve better results than the features of RGB or greyscale images alone. As seen in Fig. 6, when compared with Baseline-rgb, our method can significantly improve mAP by 7.1% (85.6 vs. 78.5), 8.0% (76.5 vs. 68.5) and 8.9% (69.9 vs. 61.0) on Market1501, DukeMTMC-reID and CUHK03-NP-detect, respectively. This validates the effectiveness of the proposed two-stream deep framework. Second, using greyscale images only to conduct the Re-ID task has poor performance compared with employing RGB images. This can be excerpted because the color information is also important to identify a person. Therefore, the proposed framework also utilizes the RGB branch to extract color information.

4.3 Comparison with the-state-of-the-art methods

We compare the proposed methods with the state-of-art methods including attribute-based person Re-ID (A³M [7], AANet [27], CA³NET [16]), segmentation-based methods (MGCAM [23], MaskReID [18], SPReID [11]), GANs-based methods (Pose-transfer [15], CamStyle+RE [46]), part-based methods (PDC [33], GLAD [25], PCB+RPP [26]), and attention-based methods (Mancs [30], CASN [39]) on Market1501, Duke, CUHK03-NP and MSMT17, respectively. The experimental results are reported in Tables 1, 2 and 3. Compared with A³M [7], CA³NET [16], MGCAM [23], and SPReID [11], which use extra information such as person attribute or the image-segmentation information, the proposed method achieves considerable improvement on all datasets. In particular, compared with SPReID, which uses the ResNet-152 as the backbone, our method still can improve mAP by 2.2% (85.6 vs. 83.4) and 3.2% (76.5 vs. 73.3) on Market-1501 and Duke, respectively. Although Pose-transfer [15] and CamStyle+RE [46] generate many extra images to alleviate the model over-fitting, they still show an inferior performance to our method. For example, on CUHK03-Detect and CUHK03-Label, the gap between Pose-transfer and our method is about 30% in both mAP and Rank-1 accuracy. The effectiveness of part-based methods (PDC [33], GLAD [25], PCB+RPP [26]) and attention-based methods (Mancs [30], CASN [39]) has been validated in recent years. Compared with these methods, our method can still achieve the competitive results on all datasets. Particularly, on MSMT17, the proposed method improves PCB by 11.8% (55.0 vs. 43.2) and 8.3% (78.6 vs. 70.3) in mAP and Rank-1 accuracy, respectively. These results well demonstrate the effectiveness and advantage of the proposed method by smartly integrating the greyscale and color information of person images.
Table 1. Comparison with the state-of-the-art methods on Market1501 and DukeMTMC-reID, respectively. “-” denotes that the result is not provided. The best performance is shown in **bold**.

| Methods          | Market1501 | DukeMTMC-reID |
|------------------|------------|---------------|
|                  | mAP        | Rank-1        | mAP    | Rank-1    |
| A³M [7]          | 69.0       | 86.5          | 70.2   | 84.6      |
| CA³NET [16]      | 80.0       | 93.2          | 70.2   | 84.6      |
| AANet [27]       | 82.5       | 93.9          | 72.6   | 86.4      |
| MGCAM [23]       | 74.3       | 83.8          | -      | -         |
| MaskReID [18]    | 75.4       | 90.4          | 61.9   | 78.9      |
| SPReID [11]      | 83.4       | 93.7          | 73.3   | 86.0      |
| Pose-transfer [15]| 68.9       | 87.7          | 56.9   | 78.5      |
| CamStyle+RE [46] | 71.6       | 89.5          | 57.6   | 78.3      |
| PDC [33]         | 63.4       | 84.1          | -      | -         |
| GLAD [25]        | 73.9       | 89.9          | -      | -         |
| PCB [26]         | 77.3       | 92.4          | 65.3   | 81.9      |
| PCB+RPP [26]     | 81.6       | 93.8          | 69.2   | 83.3      |
| Manes [30]       | 82.3       | 93.1          | 71.8   | 84.9      |
| CASN [39]        | 82.8       | 94.4          | 73.7   | 87.7      |
| GreyReID (ours)  | **85.6**   | **94.5**      | **76.5** | **88.0** |

Table 2. Comparison with the state-of-the-art methods on CUHK03-NP. The results are reported on both the labeled and detected CUHK03 set. “-” denotes that the result is not provided. The best performance is shown in **bold**.

| Methods          | CUHK03-Detect | CUHK03-Label |
|------------------|---------------|--------------|
|                  | mAP Rank-1    | mAP Rank-1   |
| MGCAM [23]       | 46.9 46.7     | 50.2 50.1    |
| Pose-transfer [15]| 38.7 41.6     | 42.0 45.1    |
| PCB [26]         | 54.2 61.3     | - -          |
| PCB+RPP [26]     | 56.7 62.8     | - -          |
| Manes [30]       | 60.5 65.5     | 63.9 69.0    |
| CASN [39]        | 64.4 71.5     | 68.0 73.7    |
| GreyReID (ours)  | **69.9** 73.3 | **73.9** 76.6|

Table 3. Comparison with the state-of-the-art methods on MSMT17. In this table, we report Rank-1, 5, 10 of CMC accuracy and mAP. “-” denotes that the result is not provided. The best performance is shown in **bold**.

| Methods          | MSMT2017     |
|------------------|--------------|
|                  | mAP Rank-1 | Rank-5 | Rank-10 |
| PDC [33]         | 29.7 58.0 | 73.6   | 79.4    |
| GLAD [25]        | 34.0 61.4 | 76.8   | 81.6    |
| PCB [26]         | 43.2 70.3 | 82.9   | 86.7    |
| GreyReID (ours)  | **55.0** 78.6 | **88.3** | **91.2** |
4.4 Ablation studies

Table 4. Performance of the feature combination of different branches on Market1501, DukeMTMC-reID (Duke), CUHK03-NP-Detect (CUHK03) and MSMT17, respectively. Note that in this table, "+" denotes the concatenated operation. Two-part (one-part) indicates the proposed framework with (without) the part-based scheme in the joint branch. The best performance is **bold**.

| Different branches | Market1501 | Duke | CUHK03 | MSMT17 |
|--------------------|------------|------|--------|--------|
|                    | mAP Rank-1 | mAP Rank-1 | mAP Rank-1 | mAP Rank-1 |
| Baseline           |            |      |        |        |
| Baseline-grey(256) | 57.0       | 78.7 | 43.8   | 63.7   |
| Baseline-rgb(512)  | 77.8       | 90.6 | 68.4   | 83.0   |
| Baseline-grey+rgb  | **81.8**   | **91.9** | **70.7** | **84.3** |

| One-part           |            |      |        |        |
|--------------------|------------|------|--------|--------|
| Grey(256)          | 59.0       | 80.1 | 46.2   | 64.6   |
| RGB(512)           | 79.2       | 90.7 | 70.0   | 84.1   |
| Joint(512)         | 82.4       | 92.4 | 71.8   | 85.1   |
| Grey+Joint         | 80.6       | 92.1 | 68.5   | 82.2   |
| RGB+Joint          | 82.5       | 92.3 | 72.8   | **85.4** |
| Grey+RGB           | 83.1       | 92.8 | 72.6   | 85.0   |
| Grey+RGB+Joint     | **83.5**   | **93.0** | **73.1** | **85.2** |

| Two-part           |            |      |        |        |
|--------------------|------------|------|--------|--------|
| Grey(256)          | 59.5       | 79.8 | 46.2   | 67.9   |
| RGB(512)           | 80.0       | 91.3 | 71.0   | 84.4   |
| Joint(512)         | 84.3       | **94.2** | 74.9   | 87.0   |
| Grey+Joint         | 83.5       | 93.6 | 73.2   | 86.7   |
| RGB+Joint          | 85.0       | 94.1 | 75.8   | **87.8** |
| Grey+RGB           | 83.7       | 93.4 | 73.9   | 87.3   |
| Grey+RGB+Joint     | **85.3**   | 94.1 | **75.9** | **87.8** |

To adequately validate the effectiveness of the proposed method, we remove the global loss to train the model with the one-part scheme (i.e., without the part-based scheme in the proposed network) and the two-part scheme, respectively. We report the feature combination results of different branches on Market1501, Duke, CUHK03 and MSMT17, as shown in Table 4. "Baseline-grey" and "Baseline-rgb" denote that the baseline model is trained on greyscale and RGB images, respectively. For a fair comparison, we set the baseline model to have the same feature dimension with the RGB and greyscale branches in our framework, respectively. Moreover, we concatenate the features of "Baseline-grey" and "Baseline-rgb" to generate new features (Baseline-grey+rgb”) to conduct person Re-ID. Besides, we also validate the efficacy of the loss function in our framework, as reported in Tables 5 and 6.

**Effectiveness of each branch in the proposed network.** In Table 4, “Baseline-grey+rgb” improves “Baseline-rgb” by 4.0% (81.8 vs. 77.8), 2.3% (70.7 vs. 68.4), 4.8% (62.8 vs. 58.0) and 4.7% (49.0 vs. 44.3) in mAP on Market1501, Duke, CUHK03 and MSMT17, respectively. Besides, in our framework, the concatenated feature of the RGB and greyscale branches (“Grey+RGB”) can also enhance the performance when compared with the single RGB branch (“RGB”) for both the one-part and two-part schemes. This demonstrates the effectiveness of greyscale branch in the proposed framework. Moreover, the joint branch can achieve better performance than both the greyscale and RGB branches. This further confirms the effectiveness of fusing the RGB and greyscale branches. Particularly, compared with “Joint”, “Grey+Joint” is slightly poorer in all experiments. This is
because i) the joint feature has contained the greyscale information; ii) although the greyscale information is important for Re-ID, it also exists some noises.

**Effectiveness of the part-based scheme.** As shown in Table 4, using the part-based scheme not only improves the performance of the joint branch, but also enhances the generalization ability of the RGB and greyscale branches on most datasets. For example, for Gery+RGB+Joint, the two-part method can gain 1.8% (85.3 vs. 83.5), 2.8% (75.9 vs. 73.1), 3.4% (69.6 vs. 66.2) and 2.9% (54.5 vs. 51.6) in mAP on Market1501, Duke, CUHK03 and MSMT17, respectively.

**Effectiveness of joint learning framework.** First, jointly learning RGB and greyscale task is effective to improve the performance of both the greyscale and RGB branches. For example, both “Grey” and “RGB” have some improvements when compared with “Baseline-grey” and “Baseline-rgb”, respectively. For the one-part scheme, compared with “Baseline-rgb”, the performance of the RGB branch in our framework can gain 1.4% (79.2 vs. 77.8), 1.6% (70.0 vs. 68.4), 3.0% (61.0 vs. 58.0) and 1.5% (45.8 vs. 44.3) in mAP on Market1501, Duke, CUHK03 and MSMT17, respectively. Moreover, when using the two-part scheme in our framework, the improvements become more significant. Second, through concatenating the features of all branches, we can obtain the more robust feature representation for Re-ID. As shown in Table 4, “Grey+RGB+Joint” consistently outperforms other feature combinations on most datasets.

**Evaluation of the loss function.** To validate the effectiveness of jointly optimizing the classification and discrimination tasks, we separately use the cross-entropy loss and the triplet loss to train the proposed network on CUHK03, as reported in Table 5. As seen, the joint loss functions can achieve the best performance. Besides, we also validate the effectiveness of using the independent loss in all branches. We remove the losses of all branches and the global loss from the proposed framework respectively, which are “w/o branch loss” and “w/o global loss” in Table 6. As seen, “w/o branch loss” has the poorest performance on all datasets. This confirms that the loss in each branch is crucial to fully optimize the proposed network. In addition, using global loss can further boost the robust of the concatenated feature.

| Loss Function                  | CUHK03-NP-Detect |
|-------------------------------|------------------|
|                               | mAP   | Rank-1 | Rank-5 | Rank-10 |
| Cross-entropy                 | 61.9  | 64.9   | 81.7   | 87.9    |
| Triplet                       | 60.8  | 63.3   | 80.1   | 87.2    |
| Cross-entropy + Triplet (ours)| **69.9** | **73.3** | **87.5** | **92.1** |

### Table 5. Evaluation of different components in the loss function on CUHK03. In this table, we report Rank-1, 5, 10 of CMC accuracy and mAP. The best performance is **bold**.

#### 4.5 Further analysis

**Algorithm Convergence.** To investigate the convergence of our algorithm, we record the mAP and Rank-1 accuracy of the proposed method during the iterating on a validated set of MSMT17 in Fig. 7. As seen, we can observe that our proposed method can almost converge after 200 epochs.

**The evaluation of different inputs in the proposed framework.** To further validate the efficacy of greyscale images, we utilize the RGB-RGB pair and the RGB-grey pair as the input of the proposed network, respectively. Note that all settings are the same in this experiment. The experimental results are reported in Table 7. As seen, using the RGB-grey pair as input can achieve a consistent improvement on all datasets. For example, on existing largest person Re-ID dataset (i.e., MSMT17), the RGB-grey pair gains 1.4% (55.0 vs. 53.6) and 1.3% (78.6 vs. 77.3) in mAP and Rank-1 accuracy.
Table 6. Evaluation of the branch and global losses in our framework on Market1501, DukeMTMC-reID (Duke), CHUK03-NP-Detect and MSMT17, respectively. “w/o global loss” (“w/o branch loss”) denotes that our framework without the global loss (the losses of all branches). The best performance is **bold**.

| Different losses | Market1501 | Duke       |
|------------------|------------|------------|
|                  | mAP | Rank-1    | mAP | Rank-1    |
| w/o branch loss  | 79.1| 91.1      | 69.5| 82.9      |
| w/o global loss  | 85.3| 94.1      | 75.9| 87.8      |
| GreyReID (ours)  | **85.6** | **94.5**  | **76.5** | **88.0**  |

| Different losses | CUHK03-NP-Detect | MSMT17 |
|------------------|-----------------|-------|
|                  | mAP | Rank-1    | mAP | Rank-1    |
| w/o branch loss  | 58.4| 60.9      | 44.8| 69.8      |
| w/o global loss  | 69.6| 73.1      | 54.5| 78.4      |
| GreyReID (ours)  | **69.9** | **73.3**  | **55.0** | **78.6**  |

Fig. 7. Convergence curves of the proposed method on MSMT17.

Table 7. Evaluation of different inputs in the proposed framework on Market1501, DukeMTMC-reID (Duke), CUHK03-NP-Detect (CHUK03) and MSMT17, respectively. The best performance is **bold**.

| Input             | Market1501 | Duke       | CUHK03     | MSMT17      |
|-------------------|------------|------------|------------|-------------|
|                   | mAP | Rank-1    | mAP | Rank-1    | mAP | Rank-1    | mAP | Rank-1    |
| RGB-RGB pair      | 85.1| 94.0      | 75.7| 87.5      | 69.6| 72.4      | 53.6| 77.3      |
| RGB-grey pair     | **85.6** | **94.5**  | **76.5** | **88.0**  | **69.9** | **73.3**  | **55.0** | **78.6**  |

**The evaluation of different fusion schemes.** As discussed in Section 3.3, we also investigate different tensor fusion schemes in our framework, which include element-wise plus, element-wise multiply, concatenated operation and the adaptive weighting method. Particularly, for the concatenated operation, we also employ the SE-block [10] to compress the channels. The experimental results are reported in Table 8. In addition, to implement the adaptive weighting method, we embed
GreyReID: A Two-stream Deep Framework with RGB-grey Information for Person Re-identification

(a) CUHK03
(b) DukeMTMC-reID

Fig. 8. Feature response maps of the last convolutional layer in the RGB and greyscale branches of the proposed method, respectively. Note that these images are from the testing set of CUHK03 and DukeMTMC-reID. Top denotes RGB images. Middle and bottom are feature response maps of the greyscale and RGB branches, respectively. Note that the complementarity between them.

A weighted network into the proposed framework, which consists of two FC layers that are simultaneously trained with the proposed framework. Given a RGB tensor $T_{rgb} \in \mathbb{R}^{2048 \times 24 \times 8}$ or a greyscale tensor $T_{grey} \in \mathbb{R}^{2048 \times 24 \times 8}$, the input is the 2048-d feature from GAP of $T_{rgb}$ or $T_{grey}$, and output is the weight value for greyscale or RGB tensors, respectively. We employ softmax to normalize them (i.e., $w_{rgb}$ and $w_{grey}$), and generate the joint tensor $T_{joint} = w_{grey} \times T_{grey} + w_{rgb} \times T_{rgb}$. This method is implemented by ourselves. As seen in Table 8, all results do not achieve significantly better performance than the proposed one. This is because the joint learning framework, using the independent loss in each branch and a global loss for the concatenated feature, has guaranteed the proposed network can obtain the robust features for person Re-ID, as discussed in Section 3.3.

| Methods       | Market1501 mAP | Market1501 Rank-1 | DukeMTMC-reID mAP | DukeMTMC-reID Rank-1 |
|---------------|----------------|-------------------|-------------------|---------------------|
| Concatenate   | 85.5           | 94.2              | 76.2              | 87.9                |
| Concatenate+SE| 85.5           | 94.1              | 75.5              | 87.1                |
| Multiply      | 85.8           | 94.3              | 76.4              | 88.2                |
| Adaptive weight| 85.6           | 94.5              | 75.7              | 87.1                |
| Plus (ours)   | 85.6           | 94.5              | 76.5              | 88.0                |

Table 8. Evaluation of different fusion schemes on Market1501 and DukeMTMC-reID, respectively. The best performance is bold.

The visualization of the RGB and greyscale branches. To further validate the complementarity between RGB and greyscale images, we visualize feature maps of the last convolutional layer in the greyscale and RGB branches of the proposed method, as shown in Fig. 8. Since the conventional methods mainly focus on the color information, most false positive samples are caused by the color similarity among many different person images, as shown in Fig. 1. By removing the color information, the greyscale branch can enforce the network to pay more attention to other information besides color. For example, in Fig. 8, we can observe that the greyscale and
RGB branches of the proposed method focus on different regions. The complementarity further demonstrates that greyscale is great in the person Re-ID task.

5 CONCLUSION

In this paper, we point out that there is a complementarity between RGB and greyscale images in person Re-ID. To fully exploit the information in greyscale and RGB images, we propose a two-stream network with RGB-grey information. It can effectively combine the color and structure information to produce a robust representation for person Re-ID. The extensive experiments demonstrate not only the superiority of the proposed framework, but also the complementarity between RGB and greyscale images in person Re-ID on four large-scale benchmark datasets. It is hoped that this work can inspire more work on fully exploiting the greyscale information to help feature representation learning in person Re-ID.

REFERENCES

[1] Chen, W., Chen, X., Zhang, J., and Huang, K. Beyond triplet loss: a deep quadruplet network for person re-identification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017).
[2] Cheng, D., Gong, Y., Zhou, S., Wang, J., and Zheng, N. Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In IEEE conference on computer vision and pattern recognition (CVPR) (2016).
[3] Dai, Z., Chen, M., Zhu, S., and Tan, P. Batch feature erasing for person re-identification and beyond. arXiv (2018).
[4] Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F. Imagenet: A large-scale hierarchical image database. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2009).
[5] Fan, H., Zheng, L., Yan, C., and Yang, Y. Unsupervised person re-identification: clustering and fine-tuning. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) (2018).
[6] Hadsell, R., Chopra, S., and LeCun, Y. Dimensionality reduction by learning an invariant mapping. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2006).
[7] Han, K., Guo, J., Zhang, C., and Zhu, M. Attribute-aware attention model for fine-grained representation learning. In ACM Multimedia Conference on Multimedia Conference (ACM MM) (2018).
[8] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016).
[9] Hermans, A., Beyer, L., and Leibe, B. In defense of the triplet loss for person re-identification. arXiv (2017).
[10] Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).
[11] Kalayeh, M. M., Basaran, E., Gökmen, M., Kamasak, M. E., and Shah, M. Human semantic parsing for person re-identification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).
[12] Li, W., Zhao, R., Xiao, T., and Wang, X. Deepreid: Deep filter pairing neural network for person re-identification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).
[13] Li, W., Zhu, X., and Gong, S. Person re-identification by deep joint learning of multi-loss classification. arXiv (2017).
[14] Liu, H., Feng, J., Qi, M., Jiang, J., and Yan, S. End-to-end comparative attention networks for person re-identification. IEEE Transactions on Image Processing (TIP) (2017).
[15] Liu, J., Ni, B., Yan, Y., Zhou, P., Cheng, S., and Hu, J. Pose transferrable person re-identification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).
[16] Liu, J., Zha, Z., Xie, H., Xiong, Z., and Zhang, Y. C3anet: Contextual-attentional attribute-appearance network for person re-identification. In ACM Multimedia Conference on Multimedia Conference (ACM MM) (2018).
[17] Qi, L., Huo, J., Fan, X., Shi, Y., and Gao, Y. Unsupervised joint subspace and dictionary learning for enhanced cross-domain person re-identification. IEEE Journal of Selected Topics in Signal Processing (JSTSP) (2018).
[18] Qi, L., Huo, J., Wang, L., Shi, Y., and Gao, Y. Maskreid: A mask based deep ranking neural network for person re-identification. arXiv (2018).
[19] Qi, L., Wang, L., Huo, J., Zhou, L., Shi, Y., and Gao, Y. A novel unsupervised camera-aware domain adaptation framework for person re-identification. arXiv (2019).
[20] Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. In International Conference on Learning Representations (ICLR) (2016).
[21] Ristani, E., Solera, F., Zou, R., Cucchiara, R., and Tomasi, C. Performance measures and a data set for multi-target, multi-camera tracking. In The European Conference on Computer Vision (ECCV) (2016).
[22] St, J., Zhang, H., Li, C.-G., Kuen, J., Kong, X., Kot, A. C., and Wang, G. Dual attention matching network for context-aware feature sequence based person re-identification. In IEEE Conference on Computer Vision and Pattern
GreyReID: A Two-stream Deep Framework with RGB-grey Information for Person Re-identification

Recognition (CVPR) (2018).

[23] Song, C., Huang, Y., Ouyang, W., and Wang, L. Mask-guided contrastive attention model for person re-identification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

[24] Song, S., Zhang, W., Liu, J., and Mei, T. Unsupervised person image generation with semantic parsing transformation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019).

[25] Su, C., Li, J., Zhang, S., Xing, J., Gao, W., and Tian, Q. Pose-driven deep convolutional model for person re-identification. In IEEE International Conference on Computer Vision (CVPR) (2017).

[26] Sun, Y., Zheng, L., Yang, Y., Tian, Q., and Wang, S. Beyond part models: Person retrieval with refined part pooling (and A strong convolutional baseline). In The European Conference on Computer Vision (ECCV) (2018).

[27] Tay, C.-P., Roy, S., and Yap, K.-H. Aanet: Attribute attention network for person re-identifications. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019).

[28] Tian, M., Yi, S., Li, H., Li, S., Zhang, X., Shi, J., Yan, J., and Wang, X. Eliminating background-bias for robust person re-identification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

[29] Varior, R. R., Shuai, B., Lu, J., Xu, D., and Wang, G. A siamese long short-term memory architecture for human re-identification. In European conference on computer vision (ECCV) (2016).

[30] Wang, C., Zhang, Q., Huang, C., Liu, W., and Wang, X. Mancs: A multi-task attentional network with curriculum sampling for person re-identification. In The European Conference on Computer Vision (ECCV) (2018).

[31] Wei, L., Zhang, S., Gao, W., and Tian, Q. Person transfer GAN to bridge domain gap for person re-identification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

[32] Wei, L., Zhang, S., Gao, W., and Tian, Q. Person transfer gan to bridge domain gap for person re-identification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

[33] Wei, L., Zhang, S., Gao, W., and Tian, Q. GLAD: global-local-alignment descriptor for pedestrian retrieval. In ACM Multimedia Conference on Multimedia Conference (ACM MM) (2017).

[34] Xiao, T., Li, H., Ouyang, W., and Wang, X. Learning deep feature representations with domain guided dropout for person re-identification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016).

[35] Yi, D., Lei, Z., Liao, S., and Li, S., Z. Deep metric learning for person re-identification. In International Conference on Pattern Recognition (ICPR) (2014).

[36] Zhao, H., Tian, M., Sun, S., Shao, J., Yan, J., Yi, S., Wang, X., and Tang, X. Spindle net: Person re-identification with human body region guided feature decomposition and fusion. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017).

[37] Zhao, Y., Shen, X., Jin, Z., Lu, H., and Hua, X.-s. Attribute-driven feature disentangling and temporal aggregation for video person re-identification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019).

[38] Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., and Tian, Q. Scalable person re-identification: A benchmark. In IEEE International Conference on Computer Vision (CVPR) (2015).

[39] Zheng, M., Karanam, S., Wu, Z., and Radke, R. J. Re-identification with consistent attentive siamese networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019).

[40] Zheng, Z., Zheng, L., and Yang, Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In IEEE International Conference on Computer Vision (ICCV) (2017).

[41] Zheng, Z., Zheng, L., and Yang, Y. Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In IEEE International Conference on Computer Vision (ICCV) (2017).

[42] Zheng, Z., Zheng, L., and Yang, Y. A discriminatively learned cnn embedding for person reidentification. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) (2018).

[43] Zhong, Z., Zheng, L., Cao, D., and Li, S. Re-ranking person re-identification with k-reciprocal encoding. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017).

[44] Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y. Random erasing data augmentation. arXiv (2017).

[45] Zhong, Z., Zheng, L., Li, S., and Yang, Y. Generalizing a person retrieval model hetero-and homogeneously. In The European Conference on Computer Vision (ECCV) (2018).

[46] Zhong, Z., Zheng, L., Zheng, Z., Li, S., and Yang, Y. Camera style adaptation for person re-identification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).