A NOTE ON THE BUCHSBAUM-RIM MULTIPLICITY OF A PARAMETER MODULE

FUTOSHI HAYASAKA AND EERO HYRY

(Communicated by Bernd Ulrich)

Abstract. In this article we prove that the Buchsbaum-Rim multiplicity $e(F/N)$ of a parameter module N in a free module $F = A^r$ is bounded above by the colength $\ell_A(F/N)$. Moreover, we prove that once the equality $\ell_A(F/N) = e(F/N)$ holds true for some parameter module N in F, then the base ring A is Cohen-Macaulay.

1. Introduction

Let (A, \mathfrak{m}) be a Noetherian local ring with the maximal ideal \mathfrak{m} and $d = \dim A > 0$. Let $F = A^r$ be a free module of rank $r > 0$, and let M be a submodule of F such that F/M has finite length and $M \subseteq \mathfrak{m}F$.

In their article [5] from 1964 Buchsbaum and Rim introduced and studied a multiplicity associated to a submodule of finite colength in a free module. This multiplicity, which generalizes the notion of Hilbert–Samuel multiplicity for ideals, is nowadays called the Buchsbaum-Rim multiplicity. In more detail, it first turns out that the function

$$\lambda(n) := \ell_A(S_n(F)/R_n(M))$$

is eventually a polynomial of degree $d + r - 1$, where $S_A(F) = \bigoplus_{n \geq 0} S_n(F)$ is the symmetric algebra of F and $R(M) = \bigoplus_{n \geq 0} R_n(M)$ is the image of the natural homomorphism from $S_A(M)$ to $S_A(F)$. The polynomial $P(n)$ corresponding to $\lambda(n)$ can then be written in the form

$$P(n) = \sum_{i=0}^{d+r-1} (-1)^i e_i \binom{n + d + r - 2 - i}{d + r - 1 - i}$$

with integer coefficients e_i. The Buchsbaum-Rim multiplicity of M in F, denoted by $e(F/M)$, is now defined to be the coefficient e_0.

Buchsbaum and Rim also introduced in their article the notion of a parameter module (matrix), which generalizes the notion of a parameter ideal (system of parameters). The module N in F is said to be a parameter module in F if the following three conditions are satisfied: (i) F/N has finite length, (ii) $N \subseteq \mathfrak{m}F$,

Received by the editors August 17, 2008, and, in revised form, July 14, 2009.
2000 Mathematics Subject Classification. Primary 13H15; Secondary 13D25.
Key words and phrases. Buchsbaum-Rim multiplicity, parameter module, Euler-Poincaré characteristic, generalized Koszul complex.
and (iii) $\mu_A(N) = d + r - 1$, where $\mu_A(N)$ is the minimal number of generators of N.

Buchsbaum and Rim utilized in their study the relationship between the Buchsbaum-Rim multiplicity and the Euler-Poincaré characteristic of a certain complex and proved the following:

Theorem 1.1 (Buchsbaum-Rim [5, Corollary 4.5]). Let (A, m) be a Noetherian local ring of dimension $d > 0$. Then the following statements are equivalent:

1. A is a Cohen-Macaulay local ring.
2. For any rank $r > 0$, the equality $\ell_A(F/N) = e(F/N)$ holds true for every parameter module N in $F = A^r$.

Then it is natural to ask the following:

Question 1.2.

1. Does the inequality $\ell_A(F/N) \geq e(F/N)$ hold true for any parameter module N in F?
2. Does the equality $\ell_A(F/N) = e(F/N)$ for some parameter module N in F imply that the ring A is Cohen-Macaulay?

The purpose of this article is to give a complete answer to Question 1.2. Our results can be summarized as follows:

Theorem 1.3. Let (A, m) be a Noetherian local ring of dimension $d > 0$.

1. For any rank $r > 0$, the two inequalities $\ell_A(F/N) \geq e(F/N)$ and $\ell_A(A/I(N)) \geq e(F/N)$ always hold true for every parameter module N in $F = A^r$, where $I(N)$ is the 0-th Fitting ideal of F/N.
2. The following statements are equivalent:
 i. A is a Cohen-Macaulay local ring.
 ii. For some rank $r > 0$, there exists a parameter module N in $F = A^r$ such that the equality $\ell_A(F/N) = e(F/N)$ holds true.
 iii. For some rank $r > 0$, there exists a parameter module N in $F = A^r$ such that the equality $\ell_A(A/I(N)) = e(F/N)$ holds true.

When this is the case, the equality $\ell_A(F/N) = \ell_A(A/I(N)) = e(F/N)$ holds true for all parameter modules N in $F = A^r$ of any rank $r > 0$.

Note that the equality $\ell_A(F/N) = \ell_A(A/I(N))$ is known by [1, 2.10].

The proof of our Theorem 1.3 will be completed in section 4. Section 2 is of a preliminary character. In that section we will recall the definition and some basic facts about the generalized Koszul complex. In order to prove Theorem 1.3 we will investigate in section 3 the higher Euler-Poincaré characteristics of the generalized Koszul complex and show that they are non-negative. Finally, in section 4, we will obtain Theorem 1.3 as a corollary of a more general result (Theorem 1.1).

2. Preliminaries

In this section we will recall the definition and some basic facts about the generalized Koszul complex introduced in [3, 8] (for more details, see also [7, Appendix A.2.6]).

Let A be a commutative Noetherian ring, and let $n \geq r > 0$ be integers. Let $a = (a_{ij})$ be an $r \times n$ matrix over A, and let $I_r(a)$ denote the ideal generated by
the maximal minors of \(a \). Let \(F \) and \(G \) be free modules with bases \(\{ f_1, \ldots, f_r \} \) and \(\{ c_1, \ldots, c_n \} \), respectively. Let \(S \) be the symmetric algebra of \(F \), and let \(S^t \) be the \(t \)-th symmetric power of \(F \). Let \(\wedge \) be the exterior algebra of \(G \), and let \(\wedge^t \) be the \(t \)-th exterior power of \(G \). Associated with the \(i \)-th row \([a_{i1} \cdots a_{in}] \) of \(a \), there is a differentiation homomorphism \(\delta_i : \wedge \rightarrow \wedge \) given by

\[
\delta_i(f_{j1} \wedge \cdots \wedge f_{jp}) = \sum_{k=1}^{p} (-1)^{k-1} a_{ijk} f_{j1} \wedge \cdots \wedge \widehat{f_{jk}} \wedge \cdots \wedge f_{jp}.
\]

Let \(f_i : S \rightarrow S \) and \(f_i^{-1} : S \rightarrow S \) denote the multiplication and division maps by \(f_i \), respectively, i.e.,

\[
f_i^{-1}(f_1^{\mu_1} \cdots f_i^{\mu_i} \cdots f_r^{\mu_r}) = \begin{cases} f_1^{\mu_1} \cdots f_i^{\mu_i-1} \cdots f_r^{\mu_r} & (\mu_i > 0) \\ 0 & (\mu_i = 0). \end{cases}
\]

Then the generalized Koszul complex \(K_\bullet(a; t) \) associated to a matrix \(a \) and an integer \(t \) is the complex

\[
K_\bullet(a; t) : \cdots \rightarrow K_{p+1}(a; t) \xrightarrow{d_{p+1}} K_p(a; t) \xrightarrow{d_p} K_{p-1}(a; t) \rightarrow \cdots
\]

defined by

\[
K_p(a; t) = \begin{cases} \wedge^{r-p-1} \otimes_A S_{p-t-1} & (p \geq t+1) \\ \wedge^p \otimes_A S_{t-p} & (p \leq t) \end{cases}
\]

and

\[
d_{p+1} = \begin{cases} \sum_{j=1}^{r} \delta_j \otimes f_j^{-1} & (p > t) \\ \delta_{p+1} \cdots \delta_1 \otimes 1 & (p = t) \\ \sum_{j=1}^{r} \delta_j \otimes f_j & (p < t). \end{cases}
\]

The generalized Koszul complex \(K_\bullet(a; t) \) is a free complex of \(A \)-modules. We note that it is of length \(n-r+1 \) when \(-1 \leq t \leq n-r+1 \). Also recall that \(K_\bullet(a; t) \) coincides with the ordinary Koszul complex for any \(t \) in the case \(r = 1 \), whereas \(K_\bullet(a; 0) \) is the Eagon-Northcott complex and \(K_\bullet(a; 1) \) is the Buchsbaum-Rim complex. Moreover, the generalized Koszul complex has the following important properties (see [8, 10] and [7, Appendix A2.6]):

Proposition 2.1. Let \(a \) be an \(r \times n \) matrix over \(A \) with \(n \geq r > 0 \). Then

1. [8, Theorem 1] For any \(t, p \in \mathbb{Z} \), \(I_t(a) H_p(K_\bullet(a; t)) = (0) \).
2. [7, Theorem A2.10] If the grade of \(I_t(a) \) is at least \(n-r+1 \), then \(K_\bullet(a; t) \) is acyclic for all \(-1 \leq t \leq n-r+1 \). Furthermore, if \(a \) is a generic matrix, then \(K_\bullet(a; t) \) is acyclic for all \(t \geq -1 \).

3. Higher Euler-Poincaré Characteristics

In this section we will investigate higher Euler-Poincaré characteristics of a generalized Koszul complex.

Throughout this section, let \((A, \mathfrak{m}) \) be a Noetherian local ring of dimension \(d > 0 \). Let \(F = A^r \) be a free module of rank \(r > 0 \) with a basis \(\{ f_1, \ldots, f_r \} \). Let \(M \) be a submodule of \(F \) generated by \(c_1, c_2, \ldots, c_n \), where \(n = \mu_A(M) \) is the minimal number of generators of \(M \). Writing \(c_j = c_{ij} f_1 + \cdots + c_{rj} f_r \) for some \(c_{ij} \in A \), we have an \(r \times n \) matrix \((c_{ij}) \) associated to \(M \). We call this matrix the matrix of \(M \) and denote it by \(\tilde{M} \). Let \(I(M) = \text{Fitt}_0(F/M) \) be the 0-th Fitting ideal of \(F/M \). We assume that \(F/M \) has finite length and \(M \subseteq \mathfrak{m} F \). Then \(I(M) \) is an \(\mathfrak{m} \)-primary ideal, because \(\sqrt{I(M)} = \sqrt{\text{Ann}_A(F/M)} \). Hence each homology
module $H_p(K_\bullet(\widetilde{M}; t))$ has finite length by Proposition 2.11. So the Euler-Poincaré characteristics of $K_\bullet(\widetilde{M}; t)$ can be defined as follows:

Definition 3.1. For any integer $q \geq 0$, we set
\[
\chi_q(K_\bullet(\widetilde{M}; t)) := \sum_{p \geq q} (-1)^{p-q} \ell_A(H_p(K_\bullet(\widetilde{M}; t)))
\]
and call it the q-th partial Euler-Poincaré characteristic of $K_\bullet(\widetilde{M}; t)$. When $q = 0$, we simply write $\chi(K_\bullet(\widetilde{M}; t))$ for $\chi_0(K_\bullet(\widetilde{M}; t))$ and call it the Euler-Poincaré characteristic of $K_\bullet(\widetilde{M}; t)$.

Buchsbaum and Rim studied in [5] the Euler-Poincaré characteristic of the Buchsbaum-Rim complex in analogy with the Euler-Poincaré characteristic of the ordinary Koszul complex in the case of usual multiplicities. In 1985 Kirby investigated in [9] Euler-Poincaré characteristics of the complex $K_\bullet(\widetilde{M}; t)$ for all t and proved the following:

Theorem 3.2 (Buchsbaum-Rim, Kirby). For any integer $t \in \mathbb{Z}$, we have
\[
\chi(K_\bullet(\widetilde{M}; t)) = \begin{cases}
 e(F/M) & (n = d + r - 1), \\
 0 & (n > d + r - 1),
\end{cases}
\]
where $n = \mu_A(M)$ is the minimal number of generators of M. In particular, $\chi(K_\bullet(\widetilde{M}; t)) \geq 0$ for all $t \in \mathbb{Z}$.

The last statement holds for the higher Euler-Poincaré characteristics, too:

Theorem 3.3. For any $q \geq 0$ and any $t \geq -1$, we have
\[
\chi_q(K_\bullet(\widetilde{M}; t)) \geq 0.
\]

Proof. We use ideas from [6]. Let $\widetilde{M} = (c_{ij}) \in \text{Mat}_{r \times n}(A)$ be the matrix of M, and let $X = (X_{ij})$ be the generic matrix of the same size $r \times n$. Let $A[X] = A[X_{ij} \mid 1 \leq i \leq r, 1 \leq j \leq n]$ be a polynomial ring over A, and let $B = A[X]_{(m,n)}$. We will consider the ring A as a B-algebra via the substitution homomorphism $\phi : B \to A ; X_{ij} \mapsto c_{ij}$. Let
\[
b = \text{Ker} \phi = (X_{ij} - c_{ij} \mid 1 \leq i \leq r, 1 \leq j \leq n)B.
\]
We note here that $K_\bullet(X; t) \otimes_B A \cong K_\bullet(\widetilde{M}; t)$, because the generalized Koszul complex is compatible with the base change. Let $C_t(X) := H_0(K_\bullet(X; t))$. By Proposition 2.12, the complex $K_\bullet(X; t)$ is a B-free resolution of the B-module $C_t(X)$ for any $t \geq -1$. By tensoring with A and taking the homology, we have that
\[
H_p(K_\bullet(\widetilde{M}; t)) \cong H_p(K_\bullet(X; t) \otimes_B A) \cong \text{Tor}^B_p(C_t(X), A)
\]
for all $p \geq 0$. On the other hand, since the ideal b in B is generated by a regular sequence of length rn, the ordinary Koszul complex $K_\bullet(b)$ associated to the sequence b is a B-free resolution of A. Hence, by tensoring with $C_t(X)$, we can compute the Tor as follows:
\[
\text{Tor}^B_p(C_t(X), A) \cong H_p(K_\bullet(b) \otimes_B C_t(X)).
\]
Therefore, for any $p \geq 0$, we have
\[
H_p(K_\bullet(\widetilde{M}; t)) \cong H_p(K_\bullet(b) \otimes_B C_t(X)).
\]
It follows that for any \(t \geq -1 \) and any \(q \geq 0 \) we have the equality
\[
\chi_q(M(t; t)) = \chi_q(M(b) \otimes_B C_t(X)).
\]
Here the right hand side is non-negative by Serre’s Theorem ([12, Ch. IV, Appendix II]). Therefore \(\chi_q(M(t; t)) \geq 0 \).

4. Proof of Theorem 4.1

Theorem 4.1 will be a consequence of the following more general result:

Theorem 4.1. Let \((A, \mathfrak{m}) \) be a Noetherian local ring of dimension \(d > 0 \).

1. For any rank \(r > 0 \), the inequality \(\ell_A(H_0(K_\bullet(M(N; t))) \geq e(F/N) \) holds true for any integer \(t \geq -1 \) and any parameter module \(N \) in \(F = A^r \).

2. The following statements are equivalent:
 (i) \(A \) is a Cohen-Macaulay local ring.
 (ii) For some rank \(r > 0 \), there exists an integer \(-1 \leq t \leq d \) and a parameter module \(N \) in \(F = A^r \) such that the equality \(\ell_A(H_0(K_\bullet(M(N; t))) = e(F/N) \) holds true.

When this is the case, the equality \(\ell_A(H_0(K_\bullet(M(N; t))) = e(F/N) \) holds true for any integer \(-1 \leq t \leq d \) and any parameter module \(N \) in \(F = A^r \) of any rank \(r > 0 \).

Proof. (1): Let \(N \) be a parameter module in \(F = A^r \), and let \(t \geq -1 \). By Theorem 3.2 we obtain that
\[
e(F/N) = \chi(M(N; t)) = \ell_A(H_0(K_\bullet(M(N; t) - \chi_0(K_\bullet(M(N; t)).
\]

Since \(\chi_0(K_\bullet(M(N; t)) \geq 0 \) by Theorem 3.3, the desired inequality follows.

2: Assume that \(A \) is Cohen-Macaulay. Let \(N \) be any parameter module in \(F = A^r \) of any rank \(r > 0 \). Let \(n = \mu_A(N) = d + r - 1 \). Then grade \(I(N) = \text{ht} I(N) = d = n - r + 1 \). Hence, by Proposition 2.12, \(K_\bullet(N; t) \) is acyclic for all \(-1 \leq t \leq n - r + 1 = d \). Therefore, by Theorem 3.2 we have \(e(F/N) = \chi(K_\bullet(N; t)) = \ell_A(H_0(K_\bullet(M(N; t))). \) This proves the implication (i) \(\Rightarrow \) (ii) and also the last assertion.

It remains to show the implication (ii) \(\Rightarrow \) (i). Assume that there exist integers \(r > 0 \), \(-1 \leq t \leq d \), and a parameter module \(N \) in \(F = A^r \) such that \(\ell_A(H_0(K_\bullet(M(N; t))) = e(F/N) \). Arguing as in the proof of Theorem 3.3 and using the same notation, we get
\[
\chi_1(K_\bullet(b) \otimes_B C_t(X)) = \chi_0(K_\bullet(M(N; t)) = \ell_A(H_0(K_\bullet(M(N; t))) - e(F/N) = 0.
\]

We observe here that \(\sqrt{\text{Ann}_B C_t(X)} = \sqrt{I_t(X)} \) (see [14, Lemma 2.7]). Thus \(\text{dim}_B C_t(X) = \text{dim} B/I_t(X) = d + (n + 1)(r - 1) = rn \) (see [2] (5.12), Corollary). Therefore \(b \) is a parameter ideal of \(C_t(X) \). Hence we have the equality
\[
\ell_B(C_t(X)/bC_t(X)) - e(b; C_t(X)) = \chi_1(K_\bullet(b) \otimes_B C_t(X)) = 0,
\]
where \(e(b; C_t(X)) \) is the multiplicity of the module \(C_t(X) \) with respect to an ideal \(b \). Since \(\ell_B(C_t(X)/bC_t(X)) = e(b; C_t(X)) \), this implies that \(C_t(X) \) is a Cohen-Macaulay \(B \)-module. On the other hand, \(\text{pd}_B C_t(X) = d \), because the complex
$K_\bullet(X; t)$ is a minimal B-free resolution of $C_t(X)$ of length $n - r + 1 = d$. Hence, by the Auslander-Buchsbaum formula, we have

\begin{align*}
 d + rn &= pd_B C_t(X) + \text{depth}_B C_t(X) \\
 &= \text{depth} B \\
 &\leq \dim B \\
 &= d + rn.
\end{align*}

Thus depth $B = \dim B$ so that B is Cohen-Macaulay. Therefore A is also a Cohen-Macaulay local ring. □

Taking $t = 0, 1$ in Theorem 4.1 now readily gives Theorem 1.3.

We want to close this article with a question. For that, let us first recall the notion of a Buchsbaum local ring, which was introduced by Stückrad and Vogel (for more details on Buchsbaum rings, we refer the reader to [13]). Let A be a Noetherian local ring. Then A is said to be a Buchsbaum ring if the difference

\[\ell_A(A/Q) - e(A/Q) \]

between the colength and multiplicity of a parameter ideal Q in A is independent of the choice of Q. This difference, which is an invariant of a Buchsbaum ring A, is denoted by $I(A)$. The ring A is Cohen-Macaulay if and only if it is Buchsbaum and $I(A) = 0$. In this sense, the notion of a Buchsbaum ring is a natural generalization of that of a Cohen-Macaulay ring. In Theorem 4.1, the inequality $\ell_A(F/N) \geq e(F/N)$, for any parameter module N in F, is an analogue of the well-known inequality $\ell_A(A/Q) \geq e(A/Q)$ for any parameter ideal Q in A. Also, the characterization of the Cohen-Macaulay property of A based on the equality $\ell_A(F/N) = e(F/N)$ generalizes the usual one using parameter ideals. With these remarks in mind, it is natural to ask the following question:

Question 4.2. Let F be a fixed free module of rank $r > 0$. Is it then true that the difference

\[\ell_A(F/N) - e(F/N) \]

between the colength and multiplicity of a parameter module N in F is independent of the choice of N if the ring A is Buchsbaum?

References:

[1] W. Bruns and U. Vetter, Length formulas for the local cohomology of exterior powers, Math. Z. 191 (1986), 145–158. MR812608 (87c:13016)

[2] W. Bruns and U. Vetter, Determinantal Rings, Lecture Notes in Math., 1327, Springer-Verlag, Berlin-Heidelberg, 1988. MR953963 (89j:13001)

[3] D. A. Buchsbaum and D. Eisenbud, Generic free resolutions and a family of generically perfect ideals, Adv. in Math. 18 (1975), 245–301. MR0396528 (53:391)

[4] D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex, Bull. Amer. Math. Soc. 69 (1963), 382–385. MR0148720 (26:6226)

[5] D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197–224. MR0159860 (28:3076)

[6] D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex. III. A remark on generic acyclicity, Proc. Amer. Math. Soc. 16 (1965), 555–558. MR0177020 (31:1285)

[7] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995. MR1322960 (97a:13001)

[8] D. Kirby, A sequence of complexes associated with a matrix, J. London Math. Soc. 7 (1974), 529–530. MR0377939 (49:2708)
[9] D. Kirby, On the Buchsbaum-Rim multiplicity associated with a matrix, J. London Math. Soc. (2) 32 (1985), no. 1, 57–61. MR813385 (87d:13025)
[10] D. Kirby, Generalized Koszul complexes and the extension functor, Comm. Algebra 18 (1990), no. 4, 1229–1244. MR1059948 (91e:13015)
[11] A. G. Rodicio, On the rigidity of the generalized Koszul complexes with applications to Hochschild homology, J. Algebra 167 (1994), no. 2, 343–347. MR1282991 (95e:13011)
[12] J-P. Serre, Local Algebra (translated from the French by CheeWhye Chin), Springer Monographs in Mathematics, Springer-Verlag, Berlin-Heidelberg, 2000. MR1771925 (2001b:13001)
[13] J. St"uckrad and W. Vogel, Buchsbaum Rings and Applications, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo, 1986. MR881220 (88k:13011a)

Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214–8571, Japan
E-mail address: hayasaka@isc.meiji.ac.jp

Department of Mathematics and Statistics, University of Tampere, 33014 Tampereen yliopisto, Finland
E-mail address: Eero.Hyry@uta.fi