Abstract

In the present paper, different Autoregressive Integrated Moving Average (ARIMA) models were developed to forecast the tea production by using time series data of twenty-four years from 1990-2013. The performance of these developed models was assessed with the help of different selection measure criteria and the model having minimum value of these criteria considered as the best forecasting model. Based on findings, it has been observed that out of eleven ARIMA models, ARIMA (1,1,2) is the best fitted model in predicting the production of tea in Bangladesh and the forecasted value of tea production in Bangladesh, for the year 2014, 2015 and 2016 as obtained from ARIMA (1,1,2) was obtained as 65.568 Million Kilogram, 67.867 Million Kilogram and 60.997 Million Kilogram.

Keywords: ARIMA; Time series; Tea; Modeling; Forecast

Introduction

Tea serves as the most important and popular drink for two-thirds of the world population not only because of its attractive aroma and taste but also because of its many pharmacological effects, like suppressing tumor cell growth, reducing cardiovascular diseases, anti-obesity and decrease the risk of atherosclerosis says Wang et al. [1] and Dhake et al. [2]. The role of Bangladesh tea industry in global context is insignificant. It is only 0.68% of the global tea production and 0.58% of the world tea export. It seems that its export is gradually declining. If this trend continues, Bangladesh will turn into a tea importing country by 2015 discussed by Monjur [3] and Baten et al. [4]. As a result, international comparisons of the tea industry’s efficiency have been of great interest to firms in the industry as well as policymakers. The large tea producing countries like India and Sri Lanka produce more than Bangladesh, where India and Sri Lanka’s production level is 16 and 12 times higher than Bangladesh discussed in BCS [5]. It was found that in 1998, on an average only 1,145 kg of tea was produced per hectare in Bangladesh. Whereas, in the same year, production level per hectare in India and Sri Lanka was 1708 and 2030 kg respectively found Monjur [3] and Majumder [6].

In Bangladesh, on average the area of a tea estate is around 337 hectares. At present there are very few newly established smallholding tea gardens operating in the north-western part of Bangladesh. They have very significant contribution to the tea industry of Bangladesh. The first tea garden was established in 1857 at Malnicherra discussed Monjur [7] and Khisa and Iqbal [8], two miles away from Sylhet town, situated in the north-eastern part of Bangladesh. The British companies were the pioneer of tea plantation in Bangladesh. By 1903, there were 15 European planters in Northern Sylhet, 102 in Southern Sylhet and 26 in Habiganj district of Sylhet discussed Sana [9]. At present Bangladesh has 162 tea gardens and among them Sterling companies operate 28 gardens and 128 gardens are operated by Bangladeshi owners (National Tea Company, Bangladesh Tea Board, Private limited companies and proprietary owners). Besides, six gardens are operated by smallholders which are situated in the north-western part of Bangladesh discussed Huque [10].

Tea cultivation in Bangladesh is spread over the hilly zones on the eastern part mainly in four districts (Sylhet, Moulvibazar, Habiganj and Chittagong). About 96% annual productions (of which 63% is of Moulvibazar district) is contributed by greater Sylhet obtained from 93% (of which 62% is of Moulvibazar district) of plantation area discussed. Islam et al. It is to be noted that Sterling companies produce about 50% of annual crop from about 42% of plantation area discussed BBS [12].

Materials

In the present study, time series secondary data on production (Million Kilogram) of tea in Bangladesh were considered for the period 1990 to 2013 from Bangladesh Tea Board (BTB) [13], Ministry of Commerce, and Government of People’s Republic of Bangladesh. The time series secondary data were analyzed with the help of various ARIMA models.

Methods

ARIMA is one of the most traditional methods of non-stationary time series analysis. In contrast to the regression models, the ARIMA model allows time series to be explained by its past or lagged values and stochastic error terms. The models developed by this approach are usually called ARIMA models because they use a combination of autoregressive (AR), integration (I)-referring to the reverse process of differencing to produce the forecast and moving average (MA) operations discussed by Box [14].

The ARIMA model is denoted by ARIMA (p,d,q) where ‘p’ stands for the order of the auto regressive process, ‘d’ is the order of the data stationary and ‘q’ is the order of the moving average process. The general form of the ARIMA (p,d,q) can be written as which discussed Judge et al. [15]

$$\Delta^d y_t = \alpha + \theta \Delta^d y_{t-1} + \theta_2 \Delta^d y_{t-2} + \ldots + \theta_p \Delta^d y_{t-p} + \epsilon(t-1) - \alpha_1 \epsilon(t-2) - \alpha_2 \epsilon(t-3)$$

References

[1] Wang et al. [1]
[2] Dhake et al. [2]
[3] Monjur [3]
[4] Baten et al. [4]
[5] BCS [5]
[6] Majumder [6]
[7] Monjur [7]
[8] Khisa and Iqbal [8]
[9] Sana [9]
[10] Huque [10]
[11] BBS [12]
[12] Islam et al. [12]
[13] BTB [13]
[14] Box [14]
[15] Judge et al. [15]
Where, Δ^d denotes differencing of order d, i.e., $\Delta^d y_t = y_t - y_{t-d}$, and $\Delta^d y_t = \Delta y_{t-1}$, Δy_{t-2}, and so forth. y_{t-1}, y_{t-2},, y_{t-p} are past observations (lags), $\delta, \theta_1, \ldots, \theta_q$ are parameters (constant and coefficient) to be estimated similar to regression coefficients of the Auto Regressive process (AR) of order "p" denoted by AR (p) and is written as,

$$Y_t = \delta + \theta_1 Y_{t-1} + \theta_2 Y_{t-2} + \ldots + \theta_p Y_{t-p} + \epsilon_t$$

(2)

Where, ϵ_t is forecast error, assumed to be independently distributed across time with mean θ and variance θ^2. The ARIMA (1,1,2) was best out of all, ARIMA (2,1,0) is second and ARIMA (1,1,1) is third while remaining ARIMA models are not as good as these three.

ARIMA (1,1,2) was best out of all. ARIMA (2,1,2) and ARIMA (2,1,0) are among the top three. ARIMA (1,1,3), ARIMA (1,1,4) and Rahman et al. [18].

After making the series stationary, different parametric combinations of ARIMA (p,q) model were tried to analyze the tea production series. The results of different ARIMA (p,q) models are applicable only. Comparison among family of different parametric combination of ARIMA (p,q) was done on the basis of minimum value of selection criteria which are Root Mean Squared Error (RMSE), Mean percentage error (MPE), Mean absolute percentage error (MAPE), Maximum absolute percentage error (MAPE), Maximum absolute standard error (MASE) and Bayesian information criteria discussed Kumari et al. [17] and Rahman et al. [18].

Result and Discussion

In Table 1, the performance of tea production in Bangladesh is presented for the year 2014, 2015 and 2016 as obtained from Upper production limit (UPL) and Lower production limit (LPL) are 72.021 Million Kilogram and 59.115 Million Kilogram, 74.799 Million Kilogram and 60.934 Million Kilogram, 72.021 Million Kilogram and 59.115 Million Kilogram with 74.799 Million Kilogram and 60.934 Million Kilogram, 72.021 Million Kilogram and 59.115 Million Kilogram with 74.799 Million Kilogram and 60.934 Million Kilogram, 72.021 Million Kilogram and 59.115 Million Kilogram with 74.799 Million Kilogram and 60.934 Million Kilogram respectively.

Table 1: Performances of different ARIMA (p,q) models of tea production in Bangladesh.

Models	RMSE	MAE	MPE	MAPE	MASE	BIC
ARIMA(1,0)	4.350	3.421	4.491	8.798	9.865	137.01
ARIMA(0,1)	4.335	3.474	4.815	8.524	9.734	139.99
ARIMA(1,1)	3.998	3.386	4.316	8.781	9.49	140.03
ARIMA(0,3)	3.770	3.102	4.126	7.865	8.694	140.79
ARIMA(1,0)	4.326	3.497	4.958	8.991	9.799	140.91
ARIMA(1,1)	4.226	3.422	4.523	8.907	9.59	142.43
ARIMA(1,2)	3.095	2.465	2.073	6.462	6.91	136.11
ARIMA(2,0)	4.206	3.330	3.803	8.781	9.49	140.03
ARIMA(2,1)	3.759	2.824	1.464	7.788	7.91	140.79
ARIMA(2,2)	3.103	2.494	2.151	6.563	6.99	138.96
ARIMA(3,0)	3.793	3.232	2.687	8.271	9.06	140.84

Figure 1: Autocorrelation and partial autocorrelation graph.
Conclusion

This paper aimed to modeling the production of tea during 2013 in Bangladesh, by Autoregressive Integrated Moving Average (ARIMA) Approach. On basis of results obtained it is concluded that ARIMA (1,1,2) model having minimum value of all measures of selection criteria was found to be the appropriate model amongst all for predicting the tea production in Bangladesh. The model showed a good performance in case of explaining variability in the data series and also, it’s predicting ability. The forecasting of tea can help tea garden owners as well as the policy makers for future planning.

Acknowledgement

We would like to acknowledge Bangladesh Tea Board (BTB) to provide us data and Professor Md. Ahmed Kabir Chowdhury, Statistics Department, Shahjalal University of Science and Technology, Sylhet-3114, for supporting me.

References

1. Wang H, Wen Y, Du Y, Yan X, Guo H, et al. (2010) Effects of Catechin Enriched Green Tea on Body Composition. Obesity 18: 773-779.
2. Dhekale BS, Sahu PK, Vishwajith KM, Mishra P, Noman MD (2014) Modeling and forecasting of tea production in West Bengal. Journal of Crop and Weed 10: 94-103.
3. Monjur M (2004) Tea in a New Brew. The Daily Star (Bangladeshi National News Paper).
4. Baten A, Kamil AA, Haque MA (2010) Productive efficiency of tea industry: A stochastic frontier approach. African Journal of Biotechnology 9: 3808-3816.
5. BCS (1997-98) Bangladeshio Cha Sangsad (BCS). Annual Report. Agargaon, Dhaka, Bangladesh.
6. Majumder PP (2003) Working Conditions in the Bangladesh Tea Plantation Industry.
7. Monjur H (2011) An overview of Bangladesh tea. Two and a Bud 58: 19-26.
8. Khisa P, Iqbal M (2001) Tea Manufacturing in Bangladesh: Problems and Prospects. 4th International Conference on Mechanical Engineering, pp: 85-91.
9. Sana DL (1989) Tea science. Dhaka: Ashraffia Boi Ghar.
10. Huque SMR (2001) Strategic Cost Management of Tea Industry: Adoption of Japanese Tea Model in Developing Country Based on Value Chain Analysis. Yokohama Journal of Social Sciences 11: 561-577.
11. Islam GMR, Iqbal M, Quddus KG, Ali MY (2005) Present Status and Future Needs of Tea Industry in Bangladesh. Proc Pakistan Acad Sci 42: 305-314.
12. BBS (2000) Statistical Year Book of Bangladesh. Bangladesh Bureau of Statistics. Ministry of Planning, Government of People’s Republic of Bangladesh.
13. Bangladesh Tea Board (BTB) Ministry of Commerce, Government of People’s Republic of Bangladesh.
14. Box, GEP, Jenkins GM (1970) Time series analysis: forecasting and control. San Francisco: Holden-Day.
15. Judge GG, Hill RC, William EG, Helmut I (1988) Introduction to the Theory and Practice of Econometrics. (2ndedn), John Wiley and Son, INC. New York, Toronto, Singapore.
16. Box GEP, Jenkins, GM, Reinsel GC (1994) Time Series Analysis, Forecasting and Control. (3rdedn), Prentice Hall, Englewood Cliffs, NJ.
17. Kumari P, Mishra GC, Pant AK, Shukla G, Kujur SN (2014) Autoregressive Integrated Moving Average (ARIMA) Approach for Prediction of Rice (Oryza Sativa L.) Yield in India. An International Quarterly Journal of Life Science. The Bioscan 9: 1063-1066.
18. Rahman F, Rahman MM, Baten A (2013) Modeling for Growth and Forecasting of Pulse Production in Bangladesh, Research Journal of Applied Sciences, Engineering and Technology 5: 5578-5587.