An explanation for the slopes of stellar cusps in galaxy spheroids

Philip F. Hopkins* and Eliot Quataert

Department of Astronomy and Theoretical Astrophysics Centre, University of California Berkeley, Berkeley, CA 94720, USA

Accepted 2010 November 19. Received 2010 November 8; in original form 2010 September 19

ABSTRACT

The stellar surface mass density profiles at the centres of typical ~L*, and lower mass spheroids exhibit power-law 'cusps' with $\Sigma \propto R^{-\eta}$, where $0.5 \lesssim \eta \lesssim 1$ for radii ~1–100 pc. Observations and theory support models in which these cusps are formed by dissipative gas inflows and nuclear starbursts in gas-rich mergers. At these comparatively large radii, stellar relaxation is unlikely to account for, or strongly modify, the cuspy stellar profiles. We argue that the power-law surface density profiles observed are a natural consequence of the gravitational instabilities that dominate angular momentum transport in the gravitational potential of a central massive black hole. The dominant mode at these radii is an $m = 1$ lopsided/eccentric disc instability, in which stars torquing the gas can drive rapid inflow and accretion. Such a mode first generically appears at large radii and propagates inwards by exciting eccentricities at smaller and smaller radii, where $M_*(< R) \ll M_{\text{BH}}$. When the stellar surface density profile is comparatively shallow with $\eta < 1/2$, the modes cannot efficiently propagate to $R = 0$ and so gas piles up and star formation steepens the profile. But if the profile is steeper than $\eta = 1$, the inward propagation of eccentricity is strongly damped, suppressing inflow and bringing η down again. Together these results produce an equilibrium slope of $1/2 \lesssim \eta \lesssim 1$ in the potential of the central black hole. These physical arguments are supported by non-linear numerical simulations of gas inflow in galactic nuclei. Together, these results naturally explain the observed stellar density profiles of 'cusp' elliptical galaxies.

Key words: galaxies: active – galaxies: bulges – galaxies: evolution – galaxies: nuclei – quasars: general – cosmology: theory.

1 INTRODUCTION

Observations have established that typical ~L* ellipticals and bulges exhibit steep central 'cusps' in their surface luminosity density and stellar mass density profiles – i.e. a continued rise in a power-law-like fashion towards small radii (Lauer et al. 1991, 1992; Crane et al. 1993; Ferrarese et al. 1994; Kormendy et al. 1994; Lauer et al. 1995; Kormendy 1999). Faber et al. (1997) showed that power-law nuclear profile ellipticals also tend to have higher degrees of rotational support and discyness. This, together with other observations (Kormendy 1999; Quillen, Bower & Strizinger 2000; Rest et al. 2001; Ferrarese et al. 2006; Côté et al. 2007; Lauer et al. 2007), has supported the idea that the cusp ellipticals are the direct product of gas-rich mergers and nuclear star formation during such mergers. Quantitatively, power-law cusps have

$$I \propto \Sigma \propto R^{-\eta}$$

with $0.5 \lesssim \eta \lesssim 1$ representing the typical observed slopes; the power-law profile extends from the smallest radii observed in nearby spheroids (~1 pc) to anywhere from ~10 to ~100 pc (Ferrarese et al. 1994; Kormendy et al. 2009).\footnote{The most massive spheroids deviate from this behaviour and exhibit flattened nuclear profiles, or 'cores'. This is, however, widely believed to be due to 'scouring' by a binary black hole in a gas-poor environment (see e.g. Begelman, Blandford & Rees 1980) and thus does not reflect the initial formation history of the central stars that we focus on here.}

Barnes & Hernquist (1991) and Mihos & Hernquist (1994) showed in simulations that tidal torques in mergers can drive rapid gas inflows, providing the fuel to power intense nuclear starbursts and build up the central stellar surface densities (see also Hopkins et al. 2009; Kormendy 1999). This is observed in local ultraluminous infrared galaxies (ULIRGs), whose nuclei constitute the most rapidly star-forming environments in the local Universe. Moreover, the observed central gas densities and star formation rates in ULIRGs will leave them with typical power-law-like cusps when the starburst is complete (Hibbard & Yun 1999; Tacconi et al. 2002).

Despite this progress, no theoretical explanation exists for why spheroid cusps should have a power-law-like form in the range observed. The scales of the observed cusps are comparable to, or less than, the black hole (BH) radius of influence, and the potential is thus quasi-Keplerian. At these radii, stars almost certainly formed

\footnote{Provided it is defined over the same dynamic range, this is non-parametric and the same logarithmic slopes are recovered when Sérsic fits are used.}
primarily dissipatively in a gas-rich disc, rather than via violent relaxation of a pre-existing stellar disc. On the very smallest scales, two-body relaxation is expected to drive the system to a Bahcall & Wolf (1976) cusp; however, outside of \(\sim 1 \) pc the relaxation time is \(\gg \)\(t_{\text{Hubble}} \). Moreover, the fact that the observed central cusps are discy and elliptical, often with significant rotational support (see references above), suggests that two-body relaxation has not had a large effect. Instead, an understanding of the observed stellar cusps appears to require the combined effects of angular momentum redistribution and star formation in discy, gas+stellar+BH systems.

Recently, we have shown that the formation of lopsided, eccentric discs within the BH radius of influence is a ubiquitous feature in hydrodynamic simulations of massive gas inflows in galaxies; such lopsided discs lead to efficient angular momentum transfer from the gas to the stars, powering BH accretion rates of up to \(\sim 10 \, M_{\odot} \, \text{yr}^{-1} \) (Hopkins & Quataert 2010c). Moreover, the stellar relics of these discs are reasonably similar to the nuclear discs observed on \(\lesssim 10 \) pc scales around nearby supermassive BHs (Hopkins & Quataert 2010b), particularly the well-studied case at the centre of M31 (Lauer et al. 1993). There are also many candidate nuclear discs observed in other systems (Lauer et al. 1996, 2005; Thatte, Tecza & Genzel 2000; Afanasiev & Sil'chenko 2002; Debattista et al. 2006; Houghton et al. 2006; Ledo et al. 2010; Seth et al. 2010).

Fig. 1 (top panel) shows the stellar surface density profiles at the end of the ‘nuclear-scale’ and ‘ultrahigh’ resolution simulations of Hopkins & Quataert (2010c), which extend inwards from \(\gtrsim 10 \) to 100 pc with \(\sim 0.1 \) pc resolution; we show results in the quasi-steady state phase of all simulations with significant inflows, \(\gtrsim 0.3 \, M_{\odot} \, \text{yr}^{-1} \) into \(< 1 \) pc, sustained for \(> 10^5 \) yr. These SPH simulations include gas, stars, star formation and a black hole as an additional collisionless particle; the simulations are idealized problems focused on studying the non-linear evolution of gravitationally unstable systems in the potential of a massive black hole. Hopkins & Quataert (2010a) show that the central dynamics and inflows are dominated by the nuclear \(m = 1 \) modes. In Fig. 1 the absolute stellar mass densities depend on the initial conditions (e.g. total gas mass), but the slopes are more robust; the simulations shown span a wide range in initial gas fractions, prescriptions for star formation and gas physics, initial stellar and gas mass profiles and bulge-to-disc ratios (see tables 1–3 in Hopkins & Quataert 2010c), but converge to similar slopes. Comparing with the observed power-law slopes of ellipticals (bottom panel), the agreement is reasonable. In this Letter, we provide a physical explanation for these results.

2 PROPAGATION OF INSTABILITIES

Physically, the lopsided or eccentric disc mode (azimuthal wavenumber \(m = 1 \) or amplitude \(\propto \cos \phi \)) is unique in any nearly Keplerian potential (Tremaine 2001). Gravitational torques from other modes are suppressed by the gravity of the BH. However, the resonant response between the epicyclic and orbital frequencies allows for global, low-frequency \(m = 1 \) modes that can exert strong torques on the gas by inducing orbit crossing and shocks (e.g. Chang et al. 2007; Hopkins & Quataert 2010a). Because of the importance of the \(m = 1 \) modes for redistributing gas inside the potential of the BH, we now focus on the physics of these \(m = 1 \) modes, in particular their propagation to smaller radii.

2.1 The WKB limit

Consider an initially axisymmetric, thin, planar disc (surface density \(\Sigma \)) with a BH of mass \(M_{\text{BH}} \) at the coordinate centre; we use cylindrical coordinates throughout \((R, \phi, z) \). The initial potential in the disc plane can be written as \(\Phi_0 = \Phi_0 (R) \), and other properties are defined in standard terms:

\[
V_c^2 = R \frac{\partial \Phi}{\partial R} \approx \frac{GM_{\text{BH}}(< R)}{R},
\]

(2)

\[
\Omega \equiv t_{\text{dyn}}^{-1} = V_c / R,
\]

(3)

\[
\kappa^2 = R \frac{d \Omega^2}{dR} + 4 \Omega^2 = \frac{\partial^2 \Phi}{\partial R^2} + 3 \Omega^2,
\]

(4)

where \(V_c \) is the circular velocity, \(\Omega \) is the angular velocity and \(\kappa \) is the epicyclic frequency. We use \(c_s \) to denote the sound speed in a gaseous disc and \(\sigma_z \) is the vertical dispersion in a stellar disc.

We consider a linear perturbation \(\Sigma \rightarrow \Sigma_0 (R, \phi, z) + \Sigma_1 (R, \phi, z) \) (where \(\Sigma \) is the total gas+stellar disc surface density) in a frame rotating with the perturbation pattern speed \(\Omega_p \), and decompose the perturbation into linearly independent modes:

\[
\Sigma_m \equiv \Sigma_0 (R) \exp \{ i (m \phi - \omega t) \},
\]

(5)

\[
\Sigma_0 (R) \equiv |a_0 (R)| \Sigma (R) \exp \left\{ i \int_R^R k \, dR \right\},
\]

(6)
where m is the azimuthal wavenumber, $|a| = |a(R)|$ is the effective mode amplitude, k is the radial wavenumber and the complex ω is the mode frequency. With these definitions, the mode pattern speed $\Omega_p \equiv \Re(\omega)/m$ and the mode growth rate $\gamma \equiv \Im(\omega)$.

We adopt a power-law disc as a convenient reference model:

$$\Sigma \propto R^{-\eta} = \Sigma_0 \left(\frac{R}{R_0} \right)^{-\eta} .$$

(7)

It is straightforward to show that then

$$\Omega^2 = \frac{GM_{BH}}{r^2} + \frac{2\pi a G}{R_0} \left(\frac{R}{R_0} \right)^{-(\eta+1)} ,$$

(8)

where $a = (\Gamma[1-\frac{\eta}{2}]^2/(\Gamma[\frac{\eta}{2}]^2))$ for $0 < \eta < 2$.

We first consider modes in the WKB limit of tight-winding (i.e. local modes), where $|kR| \gg m$. We caution that this limit does not, in fact, hold for many of the global modes of most interest, but it is nevertheless instructive. We follow the derivation of Tremaine (2001) for a slow mode ($\Omega_p \ll \Omega$) in which the non-Keplerian part of the potential is small, i.e. $\Phi = \Phi_{BH} + \Phi_a$ where $\Phi_a/\Phi_{BH} \sim M_a/M_{BH} < 1$. Expanding the equations of motion in terms of $O(\Phi_a/\Phi_{BH})$ gives the WKB dispersion relation (to leading order in $|kR|^{-1}$) of quasi-Keplerian slow modes,

$$\omega = \varpi + \pi G \Sigma |k| \Omega^{-1} - c_s^2 k^2 \Omega^{-1}$$

(9)

for a gas disc, or

$$\omega = \varpi + \pi G \Sigma |k| \Omega^{-1} \mathcal{F}$$

\[(10)\]

\[\approx \varpi + \pi G \Sigma |k| \Omega^{-1} \exp(-\beta |kR|)\]

for a stellar disc, where we define

$$\varpi = \frac{\Omega^2 - k^2}{2 \Omega} = -\frac{1}{2} \left(\frac{d}{r} \right) \frac{d}{dr} \Phi_a .$$

In the dispersion relation for a stellar disc (equation 10), \mathcal{F} is the standard reduction factor (Binney & Tremaine 1987), and the latter equality in equation (10) is a convenient approximation for softened gravity, with $\beta \approx \sigma_c/V_c \approx h/R$ (the stellar disc scaleheight).

The $m = 1$ slow modes are stable in the limit $M_a \ll M_{BH}$ (Tremaine 2001). Because of this physical constraint, the $m = 1$ modes first appear at large radii—the radius R_{crit} where $M_a/M_{BH} \approx 1$, i.e. where the potential is transitioning to Keplerian (Hopkins & Quataert 2010c; Hopkins 2010). The pattern speed Ω_p of the unstable mode is $\sim \Omega(R_{\text{crit}})$. But if the mode can propagate inwards at constant Ω_p, it will eventually be a slow mode, relative to the local Ω at smaller radii.

How does this propagation occur? The wave packets propagate with approximate group velocity $\sim V_c(R_{\text{crit}})$, so the time-scale for the mode to travel is just the dynamical time at R_{crit}. However, if these modes are forming in realistic ‘initial’ discs, and if they are the dominant source of angular momentum transport, then the initial disc surface density profile cannot already be steep. Dimensionally, $\varpi \sim (1/R)\Omega d\Omega/dR \sim G \Sigma / \Omega R$ (exactly true if the disc has a local power-law profile: $\varpi = -\alpha (2 - \eta) \pi G \Sigma / \Omega R$). Since Ω diverges $\sim r^{-3/2}$ at small radii, if the surface density profile is sufficiently shallow (and the dispersion is finite) then the right-hand side of equation (9) becomes arbitrarily small as $r \to 0$, and finite ω cannot be supported— the wave will refract back at some minimum radius R_{min}. From equation (9), this Q-barrier occurs when

$$|\Omega_p| \geq \varpi + \frac{\pi(G \Sigma a^2)}{4 c_s^2} \Omega$$

(11)

in gas or

$$|\Omega_p| \geq \varpi + \frac{\pi G \Sigma}{c \beta R \Omega^2} \approx \varpi + \frac{\pi G \Sigma}{\varepsilon \sigma_c}$$

(12)

© 2010 The Authors, MNRAS 411, L61–L65

Monthly Notices of the Royal Astronomical Society. © 2010 RAS

Galaxy cusps L63

in stars. Since $\varpi \sim G \Sigma / \Omega R \propto R^{1/2-\eta}$ at small radii, for systems with finite c_s, or constant β and a shallow $\Sigma \propto R^{-\eta}$ with $\eta \lesssim 1/2$, the initial waves cannot reach $R = 0$. Note that Ostriker, Shu & Adams (1992) show that the same restriction applies for modes in a pure fluid disc with a hard outer edge.

If the slope is too shallow, but the $m = 1$ modes are present, they will drive gaseous inflows that will ‘pile up’ near the refraction radius. This will steepen the mass profile and increase the self-gravity at this radius, eventually allowing further mode propagation (in both gas and stars). Once $\eta \gtrsim 1/2$, then the right-hand side of equation (9) no longer vanishes as $r \to 0$, and the modes can propagate through to $R = 0$. Physically, the propagation can be understood as the eccentric mode at larger radii exciting strong eccentric perturbations at smaller radii.

Consider two nearly adjacent annuli at radii R and R_i; the material at R_i is part of the $m = 1$ mode, the material at $\leq R$ remains unperturbed. In the WKBLimit the mode behaviour at larger radii is swamped by the nearest asymmetric term— i.e. just inside R_i, the perturbing potential is $\approx \Phi_i(R_i) = \pi G \Sigma_i(R_i) |k|^{-1}$ (since there is no local corrugation to cancel this out). In the global limit the result is similar: at small radii inside an eccentric ring at radius R_i having mass M_{ring} and $m = 1$ amplitude $|a|$, the magnitude of the local perturbed potential is $\approx |a| G M_{\text{ring}}/R_i \propto \pi G \Sigma_i(R_i) R_i$, i.e. the same as the WKB result with $|k| \sim R_i^{-1}$. To estimate the velocity induced at smaller radii by this perturbed potential, we note that for a cold gas or stellar disc, the local pattern speed of the $m = 1$ mode is just $\omega \sim \pi G \Sigma |k|^{-1}$. Together, this leads to the result that the response (in both gas and stars) at smaller radii $\sim R_i$ to the eccentric disc at large radii is given by $|v_i/V_c| \sim (\Sigma_i/\Sigma_0) |kR_i|^{-1} \sim |a|$. In other words, for a non-negligible mode amplitude $|a| \sim \Sigma_i/\Sigma_0$ and a global mode with $|kR| \sim 1$, large eccentricities and hence large coherent $m = 1$ mode amplitudes, can be induced. The induced modes at these somewhat smaller radii can, in turn, excite large coherent eccentricities in the material at yet smaller radii, and so on, allowing the perturbation to grow even at arbitrarily small R.

The above derivation also implies, however, that there is a regime in which the inward propagation of eccentricity will be inefficient. For a global mode at R_i, the perturbed potential is $\sim \pi G \Sigma_i(R_i) R_i$, so the response $|a| \sim \Sigma_i(R_i) R_i / (\pi G \Sigma_i(R_i) R_i)$. For a sufficiently flat mass profile $\Sigma_i(R_i) R_i \propto |\mathcal{R}|$ at $\eta < 1$ for $\Sigma_i \propto R^{-\eta}$, the induced perturbation is large down to arbitrarily small R. But if the mass profile is too steep, $\Sigma_i(R_i) R_i \lesssim |\mathcal{R}|$, then although the mode can formally be supported even at small radii, the induced amplitude will decline as one moves to $R \to 0$. Crudely, we expect the propagation efficiency defined as $\log(|a(R_i)|/|a(R_i)|)$ to decline $\sim \ln R$, for $\eta > 1$. This is explicitly demonstrated for a very large sample of models by Zakamska & Tremaine (2004) in the context of eccentricity propagation from an external perturber to the inner planets in planetary systems (the cut-off at $\eta < 1/2$ is not evident in this approach, however, because of the discrete nature of the problem). If $\eta > 1$ is established by some means, the low efficiency of eccentricity propagation to small radii implies that gas will not inflow sufficiently at small radii. This will flatten the gas density profile and star formation will do the same for the stellar density profile, providing a mechanism for the system to self-adjust to have $\eta \lesssim 1$.

2.2 Linear global modes

The WKB results above are not exact, especially when the modes of interest are global and the disc mass is significant relative to
M_{BH} (both of which are typically the case!). To show that our conclusions are robust, we also demonstrate the same points regarding the propagation of modes using exact linear solutions for particular global normal modes. Our methodology is described in detail in Hopkins (2010), which we briefly summarize here. We define R_0 for the power-law disc model (equation 7) so that $M_d(<R_0) = M_{\text{BH}}/[\alpha(2 - \eta)]$ – i.e. $\Sigma_0 = M_{\text{BH}}/(2\pi\alpha R_0^2)$. Unlike in the WKB analysis we do not expand the equations to linear order in M_d/M_{BH} but keep the full linear perturbation equations. We consider a stellar dominated (collisionless) disc since in our numerical results, the dominant torques in the gas are due to the stellar modes. The resulting equations of motion for linear perturbations are

\begin{align*}
0 &= -(\Omega - \omega) \Sigma_0 \\
&\quad + \frac{\sum}{r^2} \left[2 \Omega (v_x + v_\Omega - v_\Delta) - (\Omega - \omega) \right] \Phi_x \\
&\quad + \frac{\sum}{r^2} \left[(\Omega - \omega) (1 + v_x - v_\Delta) + \Omega (2 + v_\Omega) - \frac{\kappa^2}{2 \Omega} \right] \Phi_y \\
&\quad + \frac{\sum}{\Delta} \left[\Omega - \omega \right] \Phi_z,
\end{align*}

where $\Phi_x = \int_0^\infty \frac{d}{\Delta} r' r \ P(r, r') \ \Sigma_0(r')$ follows from Poisson’s equation, $v_x \equiv \frac{\partial \ln \Sigma}{\partial \ln R}$, and $\Delta \equiv \kappa^2 - (\Omega - \omega)^2$.

It is straightforward to solve equation (13) for the eigenfunctions (normal modes) of the system. For convenience and realism we modify the disc mass profiles with a steep outer power-law cut-off ($\Sigma \propto R^{-\eta}$) so that they have finite total mass $M_d = M_{\text{BH}}$; Hopkins (2010) shows that the exact choice of M_d and/or the cut-off radius has no affect on any of our conclusions.

Fig. 2 shows some of the resulting normal modes for a stellar disc. The growth rates γ and pattern speeds Ω_ν are indicated on each panel, in units of $\Omega(R_0)$. For any choice of disc parameters, there is a large variety of normal modes; here, we focus on the most rapidly growing ‘global’ modes in each model. The results are qualitatively similar for all global modes (local modes, potentially supported at all radii but localized in radius, are not of interest here). We take $\beta = 0.1$ for the softening, but our conclusions are essentially identical for a wide range of β; in Hopkins (2010) we show that this extends to $\beta \gtrsim 0.3$, i.e. nearly spherical configurations. This is because the manner in which $\Sigma(R)$ enters the equations means that the important dimensional parameter is really $M_{\text{enc}}(<R)$ at a given radius, so puffier systems and even multiple overlapping discs making a quasi-spherical configuration give a qualitatively identical result. The important parameter we focus on here is the power-law index of the disc mass profile η, for which we show various choices in Fig. 2: $\eta = 0.05, 0.50, 0.80, 1.10$ and 1.85.

For each value of η, Fig. 2 shows the absolute value and real component of the surface density perturbation $a(R) = \Sigma(R)/\Sigma$ and the induced eccentricity K_0/R, where K_0 is the magnitude of the radial perturbation from the linear equations of motion. The modes are normalized so that $\text{MAX}(|a(R)|) = 1$. Where the eccentricities are significant, there can be orbit crossings and shocks in the gas. This dissipation helps drive rapid inflow; see Hopkins & Quataert (2010a) for a detailed discussion of this physics.

\footnote{The kernel $P(r, r') = -\pi G b_{1/2}(r - r')/r^2 + \pi G r/r^2$ and includes the direct and indirect components of the potential, respectively. The Laplace coefficient $b_{1/2}$ is given by

\begin{equation}
b_{1/2}(x) = \frac{2}{\pi^2} \int_0^\pi \cos \theta \ d\theta \ \frac{1 - 2 \sin \theta \ + \kappa^2 \ + \beta^2}{(1 - x - 2 \sin \theta \ + \kappa^2 \ + \beta^2)^{1/2}},
\end{equation}

where β represents the gravitational softening, as it appeared in the WKB approximation. For $\beta > 0$, the disc potential and Ω are slightly modified accordingly, but this is a minor effect.}

Figure 2. Global linear normal modes for gravitational perturbations to a nuclear stellar disc around a BH; the total disc-to-BH mass ratio is 1. Each row highlights one mode for a mass profile slope $\Sigma \propto R^{-\eta}$ and scaleheight $\beta \sim h/R = 0.1$; the pattern speed Ω_ν and growth rate γ of the mode are labelled on the right in units of $\Omega(R_0)$. Radii are in units of R_0, the BH radius of influence, ~ 10–100 pc. Left-hand column: mode amplitude – black is absolute value, blue is $\text{Re}((\Sigma(R))/\Sigma)$. Right-hand column: real and absolute value of the induced eccentricity. Shallow surface density profiles ($\eta < 1/2$) cannot support modes at small R and so are spatially localized. For larger η, the modes propagate to $R \rightarrow 0$. For $\eta > 1$, however, the inward propagation of eccentricity is less efficient (the disc is ‘stiffer’ against external perturbations), which would suppress shocks and gas inflow at small R. The characteristic profile shapes can therefore self-adjust to have $1/2 < \eta \leq 1$.

The key result in Fig. 2 is how the structure of the global modes changes with η; this confirms our intuition derived from the WKB approximation. When the disc surface density profile is shallow ($\eta \lesssim 1/2$), the modes cannot propagate inwards efficiently – they are confined to a moderate range of radii. At $\eta = 1/2$, the modes are suddenly able to propagate to arbitrarily small R. Going to somewhat larger $\eta = 0.7$–0.8, the structure of the modes is quite similar. For $\eta > 1$, the induced eccentricity is strongly suppressed at small radii (see Section 2.1) even though the mode formally has non-zero amplitude to arbitrarily small R. As a consequence, the induced gas inflow would also be strongly suppressed.

3 DISCUSSION AND CONCLUSIONS

The general interpretation of the stellar density profiles of $\lesssim \mathcal{L}_\odot$ ellipticals is that violent relaxation produces the outer ‘wings’ of the mass profile, while a nuclear starburst similar to that observed in nearby ULIRGs and many high-redshift galaxies produces a dense stellar relic that dominates the mass profile inside the central $\sim kpc$ (e.g. Faber et al. 1997). The mass profile at smaller radii is thus set by the physics of angular momentum redistribution and star formation. This inner dissipative region is no longer sensitive to large-scale torques such as those that are produced in a merger. Instead, the inflow is likely due to secondary gravitational
instabilities that develop as the discy component of gas and stars becomes self-gravitating on small scales (Shlosman, Frank & Begelman 1989).

In previous work (Hopkins & Quataert 2010c) we have demonstrated that inside a radius from one to several times the BH radius of influence, the character of the instabilities that dominate angular momentum redistribution changes: the non-axisymmetry is dominated by an eccentric/lopsided disc or one-armed spiral mode – a ‘slow’ $m = 1$ mode, unique to quasi-Keplerian potentials.

If the stellar and gaseous density profiles are relatively shallow (e.g. as might be the case absent from an earlier epoch of gas inflow) the $m = 1$ modes cannot be supported down to $R \to 0$, but reflect off of a Q-boundary at a finite radius. Between this inner boundary and corotation, however, the modes will drive accretion, steepening the gas density profile; star formation will steepen the corresponding stellar density profile. As the mass profile steepens, the $m = 1$ modes can propagate deeper in the potential, until a critical slope is reached, at which point the modes can propagate to, and drive inflow to, $R = 0$; for a power-law disc with $\Sigma \propto R^{-\alpha}$, the critical slope is $\eta = 1/2$.

If gas is driven to small radii very efficiently, star formation will likely ensure that both the gas and stellar mass profiles further steepen. The surface density profile can, however, eventually become sufficiently steep that the inward propagation of eccentricity is inefficient: the outer asymmetric perturbation is weak compared to the local disc self-gravity at small radii. For a power-law disc with $\Sigma \propto R^{-\alpha}$, this occurs at $\eta = 1$. The resulting pile-up of mass at larger radii, together with continued star formation, will flatten the gas and stellar mass profiles.

The net result is a plausible equilibrium: in the presence of significant gas inflow from larger radii, star formation and the propagation of the $m = 1$ modes will self-adjust so that the surface density profile satisfies $1/2 \leq \eta \leq 1$ inside the potential of the central black hole. Remarkably, this range of slopes is comparable to what is observed in the centres of ‘cusp’ ellipticals (Fig. 1).

On the smallest scales near the BH, dynamical relaxation plays an important role in setting the stellar density profile (see Bahcall & Wolf 1976). Such effects are, however, unlikely to be important outside of ~ 1 pc because the N-body relaxation time becomes long compared to the Hubble time. The presence of massive perturbers can significantly accelerate stellar relaxation, but it is unclear how disturbed the nuclei of these (now) gas-poor galaxies are. Moreover, the observational evidence for discy structures in ‘cusp’ galaxies suggests weak/incomplete relaxation, which would have to be very extreme to operate out to $10–100$ pc in any case. Even a merger of binary black holes tends to leave these structures if it is gas rich (Hopkins & Quataert 2010c), because most of the nuclear gas inflows tend to follow the BH binary coalescence, regenerating the disc, and multiple overlapping generations of discs can be formed [which will give the same mass profile, since each individually must satisfy the same $\Sigma(R), M_{\text{in}}(R)$ scaling]. And our conclusions are robust to a number of variations in e.g. the disc thickness and detailed structure. In the potential of the BH, relaxation can be enhanced by the very same resonance between orbital and epicyclic motion that is so critical for the presence of the $m = 1$ modes (Kocsis & Tremaine 2010). Scalar resonant relaxation, which modifies the eccentricity axes of stellar orbits, is, however, inefficient at the radii of interest. Vector resonant relaxation is likely to be important, but this only changes the inclination angles of the discy orbits; this may wash out some of the observable discyness or introduce warps into the nuclear kinematics, but it will not significantly affect the mass profiles.

The combined effects of star formation and gas inflow driven by the $m = 1$ modes provide a plausible explanation for the stellar mass profiles of ‘cusp’ ellipticals at $\lesssim 10–100$ pc. This explanation links such cuspy profiles to the physics of angular momentum transport and BH growth. It also makes observational predictions: (1) the characteristic radii of those slopes should be correlated with the radii of influence of the BH (or radii enclosing comparable mass); (2) non-negligible radial anisotropy should be difficult to remove from the stellar orbits; (3) similar profile shapes should be observable in late-stage merger remnants, provided sufficient new stars have formed in the central regions.

ACKNOWLEDGMENTS
We thank Scott Tremaine for useful conversations. Support for PFH was provided by the Miller Institute for Basic Research in Science, University of California Berkeley.

REFERENCES
Afanasiev V. L., Sii\’chenko O. K., 2002, A&A, 388, 461
Bahcall J. N., Wolf R. A., 1976, ApJ, 209, 214
Barnes J. E., Hernquist L. E., 1991, ApJ, 370, L65
Begelman M. C., Blandford R. D., Rees M. J., 1980, Nat, 287, 307
Binney J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press, Princeton, NJ
Chang P., Murray-Clay R., Chiang E., Quataert E., 2007, ApJ, 668, 236
Côté P. et al., 2007, ApJ, 671, 1456
Crane P. et al., 1993, AJ, 106, 1371
Debattista V. P. et al., 2006, ApJ, 651, L97
Faber S. M. et al., 1997, AJ, 114, 1771
Ferrarese L. et al., 1994, AJ, 108, 1598
Ferrarese L. et al., 2006, ApJS, 164, 334
Hibbard J. E., Yun M. S., 1999, ApJ, 522, L93
Hopkins P. F. et al., 2009, ApJS, 181, 135
Hopkins P. F., 2010, MNRAS, submitted (arXiv:1009.4702)
Hopkins P. F., Quataert E., 2010a, MNRAS, preprint (arXiv:1007.2647)
Hopkins P. F., Quataert E., 2010b, MNRAS, 405, L41
Hopkins P. F. et al., 2010, MNRAS, 407, 1529
Houghton R. C. W. et al., 2006, MNRAS, 367, 2
Kocsis B., Tremaine S., 2010, MNRAS, preprint (arXiv:1006.0001)
Kormendy J., 1999, in Merritt D. R., Valluri M., Sellwood J. A., eds, ASP Conf. Ser. Vol. 182, Galaxy Dynamics – A Rutgers Symposium. Astron. Soc. Pac., San Francisco, p. 124
Kormendy J. et al., 1994, in Meylan G., Prugniel P., eds, Dwarf Galaxies. ESO, Garching, p. 147
Kormendy J., Fisher D. B., Cornell M. E., Bender R., 2009, ApJS, 182, 216
Lauer T. R., et al., 1991, ApJ, 369, L41
Lauer T. R. et al., 1992, AJ, 104, 552
Lauer T. R. et al., 1993, AJ, 106, 1436
Lauer T. R. et al., 1995, AJ, 110, 2622
Lauer T. R. et al., 1996, ApJ, 471, L79
Lauer T. R. et al., 2005, AJ, 129, 2138
Lauer T. R. et al., 2007, ApJ, 664, 226
Ledo H. R., Sarzi M., Dotti M., Khochfar S., Morelli L., 2010, MNRAS, 407, 969
Mihos J. C., Hernquist L., 1994, ApJ, 431, L9
Ostriker E. C., Shu F. H., Adams F. C., 1992, ApJ, 399, 192
Quillen A. C., Bower G. A., Stritzinger M., 2000, ApJS, 128, 85
Rest A. et al., 2001, AJ, 121, 2431
Seth A. C. et al., 2010, ApJ, 714, 713
Shlosman I., Frank J., Begelman M. C., 1989, Nat, 338, 45
Tacconi L. J. et al., 2002, ApJ, 580, 73
Thatte N., Tecza M., Genzel R., 2000, A&A, 364, L47
Tremaine S., 2001, AJ, 121, 1776
Zakamska N. L., Tremaine S., 2004, AJ, 128, 869

This paper has been typeset from a TeX/LaTeX file prepared by the author.