Vibration analysis of structural elements using differential quadrature method

Mohamed Nassar a, Mohamed S. Matbuly b,*, Ola Ragb b

a Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University, Giza, Egypt
b Department of Engineering Mathematics and Physics, Faculty of Engineering, Zagazig University, P.O. 44519, Zagazig, Egypt

KEYWORDS
Vibration; Differential quadrature; Crack; Irregular boundaries

Abstract The method of differential quadrature is employed to analyze the free vibration of a cracked cantilever beam resting on elastic foundation. The beam is made of a functionally graded material and rests on a Winkler–Pasternak foundation. The crack action is simulated by a line spring model. Also, the differential quadrature method with a geometric mapping are applied to study the free vibration of irregular plates. The obtained results agreed with the previous studies in the literature. Further, a parametric study is introduced to investigate the effects of geometric and elastic characteristics of the problem on the natural frequencies.

Introduction

In recent years, differential quadrature method (DQM) has become increasingly popular in the numerical solution of initial and boundary value problems. The advantages of this method lie in its easy use and flexibility with regard to arbitrary grid spacing. Also, DQM method can yield accurate results with relatively much fewer grid points compared with the previous numerical techniques such as the finite element and finite difference methods. The present work aims to realize the ability of DQM to solve two complicated problems. The first one concerns with the free vibration of elastically supported cracked beams and the second problem concerns with the free vibration of irregular plates.

In general, there are two approaches to analyze the free vibration of the cracked beams. The first one employs the variational principles through a continuous model, see for example, those in [1,2]. The second approach employs the line spring models (LSMs) to simulate existence of the cracks. Shen and Pierre [3] analyzed the free vibration of beams with pairs of symmetric open cracks. Yokoyama and Chen [4] examined the vibration characteristics of a Bernoulli–Euler beam with an edge crack. Qian et al. [5] explained the dynamic behavior and crack detection of a beam with a crack by using the finite element method. Gudmundson [6,7] discussed the dynamic model for beams with cross sectional crack and predicted the changes in resonance frequencies of a structure.
resulting from the crack. Rizos et al. [8] analyzed the cracked structures by measuring the modal characteristics. All of these works [3–8] concerned with the cracked beams made of an isotropic materials.

Also, there are several publications concerned with the vibration analysis of plates. Leissa [9] derived exact solutions for the free vibration problems of the rectangular plates. Xiang et al. [10] used Ritz method to analyze the vibration of rectangular Mindlin plates resting on elastic edge supports. More recently, DQM is extensively applied for solving vibration problems. Bert and Malik [11] introduced a review on the early stages of the method development and its applications. Also, they [12] made the first attempt to apply DQM for vibration analysis of irregular plates. Liew et al. [13] and Han and Liew [14] also used a similar approach to analyze irregular quadrilateral thick plates. Lam [15] introduced a mapping technique to apply the DQ method to conduction, torsion, and heat flow problems with arbitrary geometries.

Functionally graded materials (FGMs), a novel class of macroscopically nonhomogeneous composites with spatially continuous material properties, have attracted considerable research efforts over the past few years due to their increasing applications in many engineering fields. Numerous studies have been conducted on FGM beams and plates, dealing with a variety of subjects such as thermal elasticity [16,17], fracture mechanics [18,19], and vibration analysis [20–25].

The present work aims to extend the applications of DQM to solve two difficult problems. The first one concerns with the free vibration of an elastically supported cracked beam. The beam is made of a FGM and rests on a Winkler–Pasternak foundation. The line spring model is employed to simulate the crack actions. In the second problem, the DQM with a mapping technique are applied to analyze the free vibration of irregular plates. The obtained results are agreed with the previous similar ones. Further, a parametric study is introduced to explain the effects of elastic and geometric characteristics of the problem on the values of natural frequencies.

Methodology

Free vibration analysis of cracked beams

Consider an elastically cantilever beam of length L and thickness h, containing an edge crack of depth a located at a distance L_1 from the left end, as shown in Fig. 1. The beam is made of a FGM, such that shear modulus, Young’s modulus, and mass density of the beam vary in the thickness direction only as follows [28]:

$$
\mu(z) = \mu_0 e^{az}, \quad E(z) = E_0 e^{az}, \quad \rho(z) = \rho_0 e^{az},
$$

where μ_0, E_0, and ρ_0 are shear modulus, Young’s modulus, and mass density at the mid-plane, $(z = 0)$, of the beam. z is a constant characterizing the beam material grading, $z = \ln(E_z/E_0)/h$, where E_1 and E_2 are the values of Young’s modulus at the lower and upper beam surfaces, respectively.

It is assumed that the crack is always open and its surfaces are free of traction, such that the beam can be treated as a two sub-beams connected by an elastic rotational spring at the cracked section which has no mass and no length. The bending stiffness of the cracked section, K_F, is related to the flexibility G by:

$$
K_F = \frac{1}{G}
$$

Referring to Broek’s approximation [26], one can find that flexibility is governed by:

$$
da G = \frac{2\pi(1 - \nu^2)K_F^2}{E(z)M_1^2},
$$

where ν is Poisson’s ratio. M_1 is bending moment at the cracked section. K_F is mode I stress intensity factor, which can be obtained as a special case of the results introduced by Erdogan and Wu [27].

The governing equations, for the prescribed cracked FGM beam, can be written as [28]:

$$
A_i \frac{\partial^2 w_i}{\partial x^2} - B_{11} \frac{\partial^2 w_i}{\partial x^2} = 0 \quad (i = 1, 2),
$$

$$
\left(D_{11} - \frac{B_{11}^2}{A_{11}} \right) \frac{\partial^2 w_i}{\partial x^2} + K_{11} - k \frac{\partial w_i}{\partial x} + I_{11} \frac{\partial^2 w_i}{\partial x^2} = 0, \quad (i = 1, 2),
$$

where the subscript $i = 1$ stands for the left sub-beam in $(0 \leq x \leq L_1)$, while $i = 2$ holds true for the right sub-beam occupying $(L_1 \leq x \leq L)$, see Fig. 1.

w_i, u_i are the components of displacement vector in the directions of z and x, respectively. t is time. K, k are elastic and shear modules of the foundation reaction, respectively.

$$
(A_{11}, B_{111}, D_{11}) = \int_{-h/2}^{h/2} \frac{E(z)}{1 - \nu^2} (1, z, z^2) dz, \quad I_1 = \int_{-h/2}^{h/2} \rho(z) dz
$$

The normal force $N_i(X, t)$, bending moment $M_i(X, t)$, and transverse shear force $Q_i(X, t)$ are related to the displacement components as follows [28]:

$$
N_i(X, t) = A_{11} \frac{\partial u_i}{\partial X} - B_{11} \frac{\partial^2 w_i}{\partial X^2}, \quad (i = 1, 2),
$$

$$
M_i(X, t) = B_{11} \frac{\partial u_i}{\partial X} + D_{11} \frac{\partial^2 w_i}{\partial X^2}, \quad (i = 1, 2),
$$

$$
Q_i(X, t) = B_{11} \frac{\partial u_i}{\partial X^2} - D_{11} \frac{\partial^2 w_i}{\partial X^2}, \quad (i = 1, 2).
$$

Let x be a normalized parameter defined as:

$$
x = \begin{cases}
X/L_1 & i = 1 \\
(X - L_1)/L_2 & i = 2
\end{cases}, \quad L_2 = L - L_1.
$$

Also for free vibration analysis, let the prescribed field quantities can be expressed as:

$$
u_i(x, t) = U_i(x) \sin \omega t, \quad w_i(x, t) = W_i(x) \sin \omega t,
$$

$$
N_i(x, t) = N_i(x) \sin \omega t, \quad M_i(x, t) = M_i(x) \sin \omega t, \quad Q_i(x, t) = Q_i(x) \sin \omega t, \quad (i = 1, 2),
$$

where ω is the natural frequency of the cracked FG beam.
Then, by substituting from Eq. (10) into Eqs. (4), (5), and (7)-(9), the problem can be reduced to a quasi-static one as follows:

\[A_{ij} \frac{d^{2}U_{j}}{dx^{2}} - B_{ij} \frac{dW_{j}}{dx} = 0, \quad (i = 1, 2), \quad (11) \]

\[\left(D_{11} - A_{11} \right) \frac{1}{L_{1}} \frac{d^{3}W_{1}}{dx^{3}} + KW_{1} - k \frac{1}{L_{1}} \frac{d^{2}W_{1}}{dx^{2}} = \alpha^{2}I_{1}W_{1}, \quad (i = 1, 2), \quad (12) \]

The boundary conditions (at the clamped and free ends), can be written as:

\[U_{i}(0) = W_{i}(0) = \left. \frac{dW_{i}}{dx} \right|_{x=0} = 0, \quad (13) \]

\[N_{2}(1) = Q_{2}(1) = M_{2}(1) = 0, \quad (14) \]

The boundary conditions, (at the cracked section), can be described through a line spring model as follows [28]:

\[U_{i}(1) = U_{2}(0), \quad W_{i}(1) = W_{2}(0), \quad (15) \]

\[N_{1}(1) = N_{2}(0), \quad M_{1}(1) = M_{2}(0), \quad Q_{1}(1) = Q_{2}(0), \quad (16) \]

\[\frac{1}{L_{1}} \frac{dW_{1}}{dx} - \frac{1}{L_{2}} \frac{dW_{2}}{dx} = \frac{1}{K_{f}}M_{1}(1), \quad (17) \]

Differential quadrature solution

The method of DQ requires to discretize the domain of the problem into N points. Then the derivatives at any point are approximated by a weighted linear summation of all the functional values along the discretized domain, as follows [29–32]:

\[\frac{d^{m}f(x)}{dx^{m}} \approx \sum_{j=1}^{N} C_{ij}f(x_{j}), \quad (i = 1, N), \quad (m = 1, M), \quad (18) \]

where M is the order of the highest derivative appearing in the problem.

\[f(x_{i}) \] are the values of the function at the sampling points \(x_{i} \), \((i = 1, N); N > M, \) \(C_{ij} \), \((i, j = 1, N) \), are the weighting coefficients relating the mth derivative to the functional values at \(x_{j} \). These coefficients can be determined by making use of Lagrange interpolation formula as follows [29,30]:

\[f(x) = \sum_{j=1}^{N} \frac{L(x)}{(x-x_{j})L(x_{j})}f(x_{j}), \quad (19) \]

where \(L(x) = \prod_{j=1}^{N} (x-x_{j}), \) \(L_{j}(x) = \prod_{j=1}^{N} (x_{j}-x_{i}), \) \((i = 1, N). \)

On substitution from Eq. (19) into (18), the weighting coefficients relating the 1st order derivative to the functional values at \(x_{j} \) can be obtained as [29,30]:

\[C_{ij}^{(i)} = \begin{cases} \frac{L_{j}(x)}{L_{j}(x_{i})}, & \text{when } (i \neq j), \\ - \sum_{j=1}^{N} C_{ik} \quad & \text{when } (i = j), \end{cases}, \quad (i, j = 1, N). \quad (20) \]

Further, \(C_{ij}^{m} \) relating the higher order derivatives can be obtained as [29,30]:

\[C_{ij}^{m} = \sum_{k=0}^{m} C_{k}^{m} C_{ij}^{m-k}, \quad (m = 1, M), \quad (i, j = 1, N) \quad (21) \]

The accuracy of DQ results, is affected by choosing of the number, \(N \), and type of the sampling points, \(x_{i} \). It is found that the optimal selection of the sampling points in vibration problems, is the normalized Gauss–Chebyshev–Lobatto points [29,30,33]:

\[x_{i} = \frac{1}{2} \left[1 - \cos \left(\frac{i - 1}{N-1} \pi \right) \right], \quad (i = 1, N). \quad (22) \]

On suitable substitution from Eqs. (18)-(22) into (11)-(17), one can reduce the problem to the following system of linear algebraic equations:

\[A_{11} \sum_{j=1}^{N} C_{ij}U_{j}(x_{i}) - B_{11} \sum_{j=1}^{N} C_{ij}W_{j}(x_{i}) = 0, \quad (i = 1, N), \quad (23) \]

\[A_{11} \sum_{j=1}^{N} C_{ij}U_{j}(x_{i}) - B_{11} \sum_{j=1}^{N} C_{ij}W_{j}(x_{i}) = 0, \quad (i = 1, N), \quad (24) \]

\[\sum_{j=1}^{N} \left[C_{ij}^{2} \frac{A_{11}}{L_{1}^{2}} \left(A_{11}D_{11} - B_{11}^{2} \right) C_{ij}^{2} \right] W_{j}(x_{i}) = i^{4} W_{j}(x_{i}), \quad (i = 1, N), \quad (25) \]

\[\sum_{j=1}^{N} \left[C_{ij}^{2} \frac{A_{11}}{L_{2}^{2}} \left(A_{11}D_{21} - B_{11}^{2} \right) C_{ij}^{2} \right] W_{j}(x_{i}) = i^{4} W_{j}(x_{i}), \quad (i = 1, N), \quad (26) \]

where

\[x_{i}^{4} = \frac{A_{11}(I_{1} \alpha^{2} - K)}{A_{11}D_{11} - B_{11}^{2}} \quad (27) \]

The boundary conditions can be rewritten using the DQM as follows:

At the clamped end:

\[U_{i}(x_{1}) = 0, \quad W_{i}(x_{1}) = 0, \quad (28) \]

\[\sum_{j=1}^{N} C_{ij}W_{j}(x_{1}) = 0. \quad (29) \]

At the free end:

\[A_{11} \sum_{j=1}^{N} C_{ij}U_{j}(x_{1}) - B_{11} \sum_{j=1}^{N} C_{ij}W_{j}(x_{1}) = 0. \quad (30) \]

\[A_{11} \sum_{j=1}^{N} C_{ij}U_{j}(x_{1}) - B_{11} \sum_{j=1}^{N} C_{ij}W_{j}(x_{1}) = 0. \quad (31) \]

At the crack location:

\[U_{i}(x_{N}) = U_{2}(0), \quad W_{i}(x_{N}) = W_{2}(0), \quad (32) \]

\[A_{11} \sum_{j=1}^{N} C_{ij}U_{j}(x_{N}) - B_{11} \sum_{j=1}^{N} C_{ij}W_{j}(x_{N}) = 0. \quad (33) \]

\[A_{11} \sum_{j=1}^{N} C_{ij}U_{j}(x_{N}) - B_{11} \sum_{j=1}^{N} C_{ij}W_{j}(x_{N}) = 0. \quad (34) \]

\[A_{11} \sum_{j=1}^{N} C_{ij}U_{j}(x_{N}) - B_{11} \sum_{j=1}^{N} C_{ij}W_{j}(x_{N}) = 0. \quad (35) \]
Consider a curvilinear quadrilateral plate in Cartesian \(x-y \) plane, see Fig. 2a. A geometric mapping can be applied to transform this irregular plate into a rectangular one in \(\xi - \eta \) plane, as in Fig. 2. The following blending function may be applied to do for this mapping [12,34,35]:

\[
s = \frac{1}{2} \left[(1-\eta)\tilde{s}_i(\xi) + (1+\xi)\tilde{s}_2(\eta) + (1+\eta)\tilde{s}_3(\xi) + (1-\xi)\tilde{s}_4(\eta) \right] - \frac{1}{4} \left[(1-\xi)(1-\eta)s_1 + (1+\xi)(1-\eta)s_2 + (1+\xi)(1+\eta)s_3 + (1-\xi)(1+\eta)s_4 \right],
\]

where \(s = x, y, \tilde{s}_i(\xi), \tilde{s}_i(\eta), \tilde{y}_i(\xi), \tilde{y}_i(\eta), \ (i = 1, 4) \), are the parametric forms of the curvilinear boundaries, \(x_i, y_i, (i = 1, 4) \), are the Cartesian coordinates of the corner points of the physical domain, as shown in Fig. 2a.

It is noted that Eq. (38) achieves exact geometric transformation for the boundaries of the curvilinear quadrilateral domain [12,35]. To apply the DQM, one must discretize the computational domain to a grid of dimensions \(N_\xi \times N_\eta \), where \(N_\xi \) and \(N_\eta \) are the number of sampling points in the \(\xi \) and \(\eta \) directions, respectively. The first order partial derivatives at a sampling point \((\xi_i, \eta_j)\), \((i = 1, N_\xi, \text{and } j = 1, N_\eta) \), can be written as [29–32]:

\[
\frac{\partial f}{\partial x_{ij}} = \frac{1}{|J|} \left[\left(\frac{\partial y}{\partial \eta} \right)_j \sum_{k=1}^{N_\xi} P_{ik} f_k - \left(\frac{\partial x}{\partial \eta} \right)_j \sum_{i=1}^{N_\eta} R_{ij} f_i \right],
\]

\[
\frac{\partial f}{\partial y_{ij}} = \frac{1}{|J|} \left[- \left(\frac{\partial x}{\partial \eta} \right)_j \sum_{k=1}^{N_\xi} P_{ik} f_k + \left(\frac{\partial y}{\partial \eta} \right)_j \sum_{i=1}^{N_\eta} R_{ij} f_i \right],
\]

that can be rewritten as [12,35]:

\[
\frac{\partial f}{\partial x_{m}} = \sum_{n=1}^{N_\eta} G_{mn} f_n, \quad \frac{\partial f}{\partial y_{m}} = \sum_{n=1}^{N_\xi} H_{mn} f_n,
\]

where \(N_\xi = N_\xi \times N_\eta \), \(m, n = (i-1)N_\eta + j, \ (i = 1, N_\xi \text{ and } j = 1, N_\eta) \).
$G^{(1)}_{mn}$ and $H^{(1)}_{mn}$ are the weighting coefficients of the first order partial derivatives with respect to x and y, respectively. Similarly, one can find

$$\frac{\partial f}{\partial x} = \sum_{n=1}^{N_{x}} G^{(r)}_{mn} f_{n}, \quad \frac{\partial f}{\partial y} = \sum_{n=1}^{N_{y}} H^{(r)}_{mn} f_{n}, \quad \frac{\partial^{r+s} f}{\partial x^{r} \partial y^{s}} = \sum_{n=1}^{N_{x}} V^{(r+s)}_{mn} f_{n},$$

in which the weighting coefficients can be obtained as [12,35]:

$$[G^{(r)}] = [G^{(1)}]^{r}, \quad r \geq 2,$$

$$[H^{(s)}] = [H^{(1)}]^{s}, \quad s \geq 2,$$

$$[V^{(r+s)}] = [G^{(r)}][H^{(s)}], \quad r, s \geq 1.$$

The equation of motion governing the free harmonic vibration of a thin isotropic plate in a dimensionless form, can be written as [33,35]:

Fig. 3 Variation of the fundamental frequency ratio with elastic and geometric characteristics of the problem.
where $X, Y = x/a, y/a$ are dimensionless Cartesian coordinates in the plane of the mid-surface of the plate. $W = W(X, Y)$ is the mode function of plate deflection. $\Omega = \omega a^2 \sqrt{\rho h/D}$ is the dimensionless frequency, where ω is a natural frequency, a is a characteristic plate dimension, ρ is the plate material density, h is the plate thickness, and $D = E h^3/(1 - \nu^2)$, is the flexural rigidity of the plate, E and ν being Young’s modulus and Poisson’s ratio of the plate material, respectively.

The boundary conditions, (at the clamped edges), can be written as:

$$W = 0, \quad \cos \theta \frac{\partial W}{\partial X} + \sin \theta \frac{\partial W}{\partial Y} = 0,$$

(45)

The boundary conditions, (at simply supported edges), can be written as:
\[W = 0, \quad (\cos^2 \theta + \nu \sin^2 \theta) \frac{\partial^2 W}{\partial X^2} + \left(\sin^2 \theta + \nu \cos^2 \theta \right) \frac{\partial^2 W}{\partial Y^2} \]
\[\times \frac{\partial^2 W}{\partial X \partial Y} + (1 - \nu) \sin 2\theta \frac{\partial^2 W}{\partial X \partial Y} = 0, \quad (46) \]

where \(\theta \) is the angle between normal to the plate boundary and the \(x \)-axis. Using the quadrature rules in Eq. (42), the equation of motion can be reduced to

\[\sum_{n=1}^{N_{na}} \left[G_{mn}^1 + 2V_{mn}^{22} + H_{mn}^1 \right] W_n = \Omega^2 W_m, \quad (47) \]

At the clamped edges, the boundary conditions reduces to

\[W_m = 0, \quad \sum_{n=1}^{N_{na}} \left[(\cos \theta_n)G_{mn}^1 + (\sin \theta_n)H_{mn}^1 \right] W_n = 0, \quad (48) \]
Table 2 Natural frequencies of a clamped rectangular plate \((N_x = N_y = 11)\).

\(\lambda = a/b\)	Mode	\(\omega_1\)	\(\omega_2\)	\(\omega_3\)	\(\omega_4\)	\(\omega_5\)				
	Leissa [9]	Present								
2/5	23.648	23.645	27.817	27.815	35.446	35.399	46.702	47.500	61.554	63.067
2/3	27.010	27.007	41.716	41.706	66.143	66.108	66.552	66.354	79.850	79.831
1.0	35.992	35.987	73.413	73.383	73.413	73.383	108.270	108.248	131.640	131.706
3/2	60.772	60.764	93.860	93.840	148.820	148.743	149.740	149.296	179.660	179.619
5/2	147.800	147.784	173.850	173.847	221.540	221.245	291.890	293.885	384.710	389.163

Table 3 Natural frequencies of a simply supported rectangular plate \((N_x = N_y = 11)\).

\(\lambda = a/b\)	Mode	\(\omega_1\)	\(\omega_2\)	\(\omega_3\)	\(\omega_4\)	\(\omega_5\)				
	Leissa [9]	Present								
2/5	11.4487	11.4487	16.1862	15.83103	24.0818	24.0813	35.1358	36.160	41.0576	41.0307
2/3	14.2561	14.2561	27.4156	26.7598	43.8649	43.8395	49.3480	49.1034	57.0244	56.0732
1.0	19.7361	19.7392	49.3480	49.325	78.9568	78.3735	98.6960	98.6713	128.3049	126.1394
3/2	32.0762	32.0762	61.6850	61.6674	98.6960	97.7441	111.0330	110.4827	128.3049	126.1394
5/2	71.5564	71.5547	101.1634	101.1529	150.5115	150.1146	229.5987	230.1461	256.6097	255.6151

At simply supported edges, the boundary conditions reduces to
\[
W_m = 0, \quad \sum_{n=1}^{N_x} \left[(\cos^2 \theta_n + v \sin^2 \theta_n)G_{nm}^2 + (\sin^2 \theta_n + v \cos^2 \theta_n) \right] \times H_{nm}^2 + \left[(1 - v) \sin 2\theta_n \right] u_{nm}^1, W_m = 0,
\]

On suitable substitutions from Eqs. (48) and (49) into (47), the problem be reduced to eigenvalue one of dimensions \((N_x - 4)(N_y - 4)\). A Matlab program has been designed to solve the problem.

Results and discussions

Cracked beam results

For practical purposes the values of the natural frequencies of the concerned cracked FG beam are divided by that of the un-cracked isotropic beam, such that one can define the fundamental frequency ratio as: \(\omega_{C1}/\omega_1\), where \(\omega_{C1}\) is the fundamental frequency of the cracked FG beam. \(\omega_1\) is that of the un-cracked isotropic beam. A parametric study is introduced to investigate the effects of crack location, crack depth, Young’s modulus gradation ratio, \((E_x/E_y)\), and the foundation moduli, \((K, k)\), on the values of the fundamental frequency ratio, \((\omega_{C1}/\omega_1)\) and the mode shapes. Eqs. (23)–(37) are solved with \(N = (6, 20)\). It is observed that the results for \(N = 10\) are the same as those corresponding to \(N = (11, 20)\). Therefore, the present results are implemented with \(N = 10\).

To examine the validity of the obtained results, the problem of a clamped – free cracked beam made of an isotropic material is considered. It corresponds to a special case of the present analysis when \(E_1 = E_2\) and \(K = k = 0\). This problem was previously solved by Yokoyama and Chen [4], Yang and Chen [28]. Table 1 shows the agreement between the present results and the previous ones in [4,28].

Further, Figs. 3–5 explain the effects of geometric and elastic characteristics of the problem on the values of fundamental frequency ratio and the mode shapes. Fig. 3 show that the values of natural frequencies increase with increasing both of foundation elastic modulus \((K)\) and the distance of crack site from the clamped end \((L_1/L)\). While, these values decrease with increasing of foundation shear modulus \((k)\), the crack depth \((a/b)\), and the gradation of Young’s modulus, \((E_x/E_y)\) across the beam depth as shown. Fig. 4a and b shows the first three mode shapes of the instantaneous lateral and longitudinal displacements, \((w(L_1, t), u(L_1, t))\) at the crack tip when \(L_1/L = 0.35\). At the crack location, Fig. 4c shows that the values of instantaneous lateral fundamental amplitude increase with decreasing of the crack depth. Fig. 5 report that existence of cracks affects on the local flexibility of the beam. Further, these figures show that the values of the lateral amplitude, (along the whole beam), increase with the decreasing both of foundation elastic modulus \((K)\) and the distance of crack site from the clamped end \((L_1/L)\). While, these values are increased with increasing of Young’s graded modulus, \((E_x/E_y)\) ratio.

Irregular plate results

To examine the validity of DQ results, the free vibration problem of rectangular plate is considered. Tables 2 and 3 show the first five natural frequencies \(\omega\) for different aspect ratios \(\lambda = a/b = 2/5, 2/3, 13/2, 5/2\), where \(a\) and \(b\) are lengths of the rectangular plate. Table 2 also, shows the results corresponding to all of the plate edges are clamped (CCCC), while Table 3 shows the results corresponding to all of the plate edges are simply supported (SSSS). For a numerical scheme with \(N_x = N_y = 11\), the DQ results agreed with the previous ones were obtained by Leissa [9].

Further, DQM with a geometric mapping are applied to solve a free vibration problem of an irregular parabolic plate, as in Fig. 6. Referring to Eq. (38), one can find a blending
function for such mapping as: \((x, y) = \frac{1}{1+\eta} \sqrt{b^2 - (b^2 - c^2)} \)

Furthermore, Fig. 6 explain the effects of aspect ratio \(\lambda = a/b \), vortex angle \(\theta = 2 \tan^{-1}(2ac/(b^2 - c^2)) \), and the flexural rigidity of the plate \(D \) on values of the fundamental frequency ratio \(\omega_{1r}/\omega_1 \), where \(\omega_1 \) is the fundamental frequency of the irregular plate while the \(\omega_1 \) is that of the rectangular one with \(\lambda = 1 \). Fig. 6 show that (for such irregular parabolic plate), the values of \(\omega_{1r}/\omega_1 \) increase with increasing both of \(\lambda \) and \(D \), while the converse is true with the vortex angle \(\theta \).

Conclusion

The method of DQ is applied to analyze the free vibration of an elastically supported cracked beam. Also, the method of DQ with a geometric mapping are employed to solve the free vibration problem of an irregular plate. The new trends in this work are the method of solution (DQM), material of the beam (FGM), elastic foundation model (Winkler–Pasternak), and the irregular boundaries of the plate. So, this work can be considered as an extension for the applications of DQM. Further, the obtained results may be employed to detect, locate, and quantify the extent of the cracks or damages in FG beams.

References

[1] Li QS. Vibratory characteristics of multi-step beams with an arbitrary number of cracks and concentrated masses. Appl Acoust 2001;62:691–706.
[2] Binici B. Vibration of beams with multiple open cracks subjected to axial force. J Sound Vib 2005;227:277–95.
[3] Shen MHH, Pierre C. Natural modes of Bernoulli Euler beams with symmetric cracks. J Sound Vib 1990;138:115–34.
[4] Yokoyama T, Chen MC. Vibration analysis of edge-cracked beams using a line-spring model. Eng Fract Mech 1998;59:403–9.
[5] Qian GL, Gu SN, Jiang JS. The dynamic behaviour and crack detection of a beam with a crack. J Sound Vib 1990;138:233–43.
[6] Gudmundson P. Eigen frequency changes of structures due to cracks, notches or other geometrical changes. J Mech Phys Solids 1982;30:339–53.
[7] Gudmundson P. The dynamic behavior of slender structures with cross-sectional cracks. J Mech Phys Solids 1983;31:329–45.
[8] Rizos PF, Aspragathos N, Dimarogonas AD. Identification of crack location and magnitude in a cantilever beam from the vibration modes. J Sound Vib 1990;138:381–8.
[9] Leissa AW. The free vibration of rectangular plates. J Sound Vib 1973;31:257–93.
[10] Xiang Y, Liew KM, Kitipornchai S. Vibration analysis of rectangular Mindlin plates resting on elastic edge supports. J Sound Vib 1997;204:1–16.

[11] Bert CW, Malik M. Differential quadrature method in computational mechanics: a review. Appl Mech Rev 1996;49:1–27.

[12] Bert CW, Malik M. The differential quadrature method for irregular domains and applications to plate vibration. Int J Mech Sci 1996;38:589–606.

[13] Liew KM, Han JB, Xiao ZM, Du H. Differential quadrature method for Mindlin plates on Winkler foundations. Int J Mech Sci 1996;38:405–21.

[14] Han JB, Liew KM. An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates. Comput Method Appl M 1997;141:265–80.

[15] Lam SSE. Application of the differential quadrature method to two-dimensional problems with arbitrary geometry. Comput Struct 1993;47:459–64.

[16] Xiang HJ, Yang J. Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Composites Part B 2008;39:292–303.

[17] Feng Y, Jin Z. Thermal fracture of functionally graded plate with parallel surface cracks. Acta Mech Solida Sin 2009;22:453–64.

[18] Jagan U, Chauhan PS, Parameswaran V. Energy release rate for interlaminar cracks in graded laminates. Compos Sci Technol 2008;68:1480–8.

[19] Matbuly MS, Ragb Ola, Nassar M. Natural frequencies of a functionally graded cracked beam using the differential quadrature method. Appl Math Comput 2009;215:2307–16.

[20] Li XF. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J Sound Vib 2008;318:1210–29.

[21] Yang Li, Zhifei Shi. Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature. Compos Struct 2009;87:257–64.

[22] Yang J, Chen Y, Xiang Y, Jia XL. Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. J Sound Vib 2008;312:166–81.

[23] Nie GJ, Zhong Z. Vibration analysis of functionally graded annular sectorial plates with simply supported radial edges. Compos Struct 2008;84:167–76.

[24] Farid M, Zahedinejad P, Malekzadeh P. Three-dimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method. Mater Des 2010;31:2–13.

[25] Gunes R, Apalak MK, Yildirim M, Ozkes I. Free vibration analysis of adhesively bonded single lap joints with wide and narrow functionally graded plates. Compos Struct 2010;92:1–17.

[26] Broek D. Elementary engineering fracture mechanics. 4th ed. Netherlands: Martinus Nijhoff Publishers; 1986, p. 118–22.

[27] Erdogan F, Wu BH. The surface crack problem for a plate with functionally graded properties. ASME J Appl Mech 1997;64:448–56.

[28] Yang J, Chen Y. Free vibration and buckling analysis of functionally graded beams with edge cracks. Compos Struct 2008;83:48–60.

[29] Shu C, Du H. Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates. Int J Solids Struct 1997;34:819–35.

[30] Shu C. Differential quadrature and its application in engineering. London: Springer-Verlag; 2000.

[31] Chen CN. Discrete element analysis methods of generic differential quadrature, Lecture notes in applied and computational mechanics, vol. 25. Springer; 2006.

[32] Quan JR, Chang CT. New insights in solving distributed system equations by the quadrature methods. Comput Chem Eng 1989;13:779–88.

[33] Bert CW, Malik M. Free Vibration analysis of tapered rectangular plates by differential quadrature method, a semi-analytical approach. J Sound Vib 1996;190:41–63.

[34] Gordon WJ, Hall CA. Construction of curvilinear co-ordinate systems and application to mesh generation. Int J Numer Method Eng 1973:7:461–77.

[35] Shu C, Chen W, Du H. Free vibration analysis of curvilinear quadrilateral plates by the differential quadrature method. J Comput Phys 2000;163:452–66.