Characterisation of Glasgow/CNM double-sided 3D sensors

Aaron Mac Raighnea; K. Akibag, J. P. Balbuenac, R. Batesa, M. van Beuzekomg, J. Buytaertd, P. Collinsd, M. Crossleyd, R. Dumpsd, L. Eklunda, C. Fletac, A. Gallase, M. Gersabecka, V.V. Gligorova, M. Johnf, M. Köhlerb, M. Lozanoc, D. Maneuskia, U. Parzefallb, D. Quirionc, R. Plackettd, C. Parkesa, G. Pellegrinic, E. Rodriguesa, G. Stewarta.

a School of Physics and Astronomy, University of Glasgow, Scotland, U.K.
b Physikalisches Institut, Universität Freiburg, Germany
c Instituto de Microelectrónica de Barcelona, IMB-CNM-CSIC, Barcelona, Spain
d CERN CH-1211, Genève 23, Switzerland
e Facultad de Fisica, University of Santiago de Compostela, Santiago de Compostela, Spain
f Dept. of Physics, University of Oxford, Oxford, U.K.
g Nationaal Instituut Voor Subatomaire Fysica, Amsterdam, Netherlands

TIPP, Chicago, June 2011.
Motivation for radiation hard sensors

- Fact of 10 luminosity upgrade of LHC to HL-LHC to extend physics programme
- Radiation damage increase in proportion to integrated luminosity
- Need to optimise silicon detector design to survive

Radiation hardness requirements (including safety factor of 2)
- $2 \times 10^{16}\ \text{n}_{\text{eq}}/\text{cm}^2$ for the innermost pixel layers
- $1 \times 10^{15}\ \text{n}_{\text{eq}}/\text{cm}^2$ for the innermost strip layers
3D sensors

- **Greater signal charge** due to faster collection time (less trapping)
- **Reduced power consumption** due to lower depletion voltages
- **Reduced charge sharing**
- Active edge technology: large-area tiled ‘edge-less’ detectors

Drawbacks
- Increased complexity, *yield* issues
- Areas of *inefficiency*
Double sided 3D sensors

- Reduce fabrication complexity
- Increase yield
- All regions of sensor have active Silicon

Double depletion
Lateral depletion ~4V
Full depletion~40V
Precision scans of a 3D pixel cell

Timepix Telescope

- TimePix/Medipix chips: 256*256 55µm square pixels
- Energy deposition provided by Time over Threshold in TimePix
- 120 GeV pion beam from SPS
- Device under test (DUT): double sided 3D N-type pixel sensor
- DUT on high resolution rotational and translational stage

For more details on telescope see
- # 147 - The LHCb VELO upgrade. Daniel Hynds
- Charged Particle Tracking with the Timepix ASIC. arXiv:1103.2739
Precision scans: Charge deposition

Mean energy deposited mapped onto pixel cell

- **Area removed from columns exhibits standard Landau shape**
- **Charge deposition full/column ration = 35/285µm ratio**
- **Full cluster energy reconstruction**
Precision scans: Efficiency

Full efficiency, $99.8\pm0.5\%$, reached at an angle of 10° to the incident beam.
Timepix Telescope

Binary resolution = \(\frac{55\mu m}{\sqrt{12}} = 15.9\mu m \)

3D	Planar *			
Degrees	0°	10°	0°	10°
Spatial resolution	15.8±0.1	9.18±0.1	10.15±0.1	5.86±0.1

* Resolutions shown can be and have been improved with eta corrections and the removal of track extrapolation error

- Hits that only affect one pixel have limited resolution
- Tilting the sensor means all tracks charge share
- Can use ToT information in centroid, CoG calculations
- Maximum spatial resolution at 10° *
59% of incident particles multiple pixel hits in the **planar** sensor.
14% of incident particles multiple pixel hits in the **3D** sensor.
Electrical measurements

Fluence (1x10^{15} 1MeV n_{eq} cm^{-2})	Lateral depletion voltage (V)
0	4
0.5	15 ± 5
5	100 ± 10
10	145 ± 10

Strip devices

3D devices

P-stop isolation before and after irradiation to 10x10^{15}

Inter-strip resistance 100MΩ

Leakage current scales as expected

Karlsruhe Institute of Technology, -20°C, 26 MeV protons

Fluence: 0.5 1,2,5,10,20 \times 10^{15} 1 \text{ MeV} n_{eq} \text{ cm}^{-2} (±20\%)

Planar

3D

80 µm

285 µm

80 µm

74.5 µm

320 µm
Silicon Beam Telescope

- Resolution before and after irradiation close to binary resolution
- Summer 2011 – highly irradiated sensors in TimePix Telescope

3D binary resolution = $74.5\mu m / \sqrt{12} = 23.1\mu m$

The spatial resolutions contain telescope alignment error
Sr-90 electrons

- Large charge collection at high fluences and modest voltages
- 3D charge collection of 47% of Q_0 at 10^{16} fluence at 150V
- This has been simulated using TCAD without any high field effects present and shows very good agreement
- Noise is constant giving a signal to noise value of >10 @ 10^{16} fluence at 150V
- Compared to planar sensor higher charge collected
- Planar charge collection, 30% of Q_0 at 10^{16} fluence at 1000V

Charge collection studies and electrical measurements of heavily irradiated 3D Double-Sided sensors and comparison to planar strip detectors. R. Bates et al., submitted to IEEE
Charge collection efficiencies (~250-300V)

Sr-90 electrons

Charge multiplication through impact ionisation

- 52% of Q_o collected at 20×10^{15} $1\text{ MeV n}_{eq}\text{ cm}^{-1}$
- Charge Multiplication when bias $>150\text{V}$ (10^{15})
- Noise \sim constant until $> 250\text{V}$
- 3D Signal $>>$ Planar Signal (higher voltage)

* M. Koehler et al., 6th Trento Workshop 2011
Experimental setup:
- Space-resolved relative signal
- Motorised x-y stages, 4μm laser spot scanned in 2μm steps
- IR laser, 974 nm wavelength, absorption length: ~90μm (in Si, T=-20°C)

Laser scanning

- 3D un-irradiated @ 77V
- p+ column evident
- Uniform charge collection outside of column position
Laser scanning

Bias: 260V
Fluence: 2×10^{15} 1 MeV $n_{eq} \text{ cm}^{-2}$
Sr-90 measured $\sim 137\%$ of Q_o collected

- **p+ column evident**
- **Non-uniform charge collection outside of column position**
- **Area of low charge collection** between the n+ contacts were a low field is present, greater probability of charge trapping
Charge Multiplication - simulations

TCAD

\[V_{\text{bias}} = 300 \text{ V} \mid \text{Fluence} = 2 \cdot 10^{15} \text{ n/cm}^2 \mid T = -10^\circ\text{C} \]

- Charge multiplication occurs along column length
- Work on-going on low field region

3D silicon strip detector

- Fluence \(10^{15} \text{ MeV } n_{eq} \text{ cm}^{-1}\)
- Collected charge (electrons)

NSS 2011 - "Simulations of charge multiplication effect in 3D-DDTC silicon strip detectors"
Conclusions

- Precision scans of the pixel performed, charge deposition mapped
 - Full charge collection from 35\(\mu\)m active Si above column
- High efficiency across pixel matrix
 - 93.0±0.5% @ 0\(^\circ\), **Full pixel efficiency, 99.8±0.5%**, at an angle of 10\(^\circ\)
- Large decrease in charge sharing compared to planar
 - MIPs that create clusters in sensor: 59% in planar, 14% in 3D
- Good electrical performance after irradiation
 - Inter-strip resistance of 100M\(\Omega\)
- Higher collected charge at modest voltages for 3D
 - 47% of \(Q_o\) collected in 3D @150V, 30% in planar @1,000V
- Charge multiplication in 3D irradiation device.
- Spatially resolved laser scanning uniform charge collection after irradiation
- Simulations can predict charge multiplication in irradiated devices
Mapped CCE with scanned laser

Laser scanning

Bias: 150V
Fluence: $1 \times 10^{15}\,\text{MeV}\,\text{n}_{\text{eq}}\,\text{cm}^{-2}$
Sr-90 measured ~100% of Q_0 collected

- Two p+ columns evident
- Non-uniform charge collection outside of column position
- Area of low charge collection between the n+ contacts were a low field is present
- Low field areas have greater probability of charge trapping
X-ray test beam: Pixel Maps

- 77.5\(\mu\)m square scans
- 2.5\(\mu\)m steps
- Background subtracted
- Interpolated
TCAD model physics used

Physics	Model
Mobility	Doping dependance, High Electric field saturation
Generation and Recombination	Doping dependant Shockley-Read-Hall Generation recombination, Surface recombination model
Impact ionization	University of Bologna impact ionization model
Tunneling	Band-to-band tunneling, Hurkx trap-assisted tunneling
Oxide physics	Oxide as a wide band gap semiconductor for mips (irradiated), interface charge accumulation
Radiation model	Acceptor/Donor states in the band gap (traps)

P-Type Radiation Damage Model

Defect’s energy (eV)	Introduction rate (cm^{-1})	Electron capture cross-section (cm^{-2})	Hole capture cross-section (cm^{-2})
$E_c - 0.42$	1.613	2.e-15	2e-14
$E_c - 0.46$	0.9	5e-15	5e-14
$E_c - 0.10$	100	2e-15	2.5e-15
$E_v + 0.36$	0.9	2.5e-14	2.5e-15

J.P. Balbuena et al., 6th Trento Workshop 2011
Precision scans of the Pixel cell response of double sided 3D Pixel detectors to pion and X-ray beams. 2011 JINST 6 P05002
SI Beam Telescope

Fig. 2. Normalized signal distributions for different irradiation fluences (a) measured with planar detectors and (b) measured with 3D detectors. The fit superimposed is a convolution of a Landau function and a Gaussian.

Fig. 3. Signal as a function of the applied bias voltage for different irradiation fluences (a) measured with the planar sensors and (b) measured with the 3D sensors. The errors are dominated by a systematic contribution due to the calibration uncertainty.
Irradiated devices: double depletion

Fig. 6. Strip to back plane capacitance as a function of bias voltage measured after four different irradiation levels, namely; 0, 0.5, 5 and $10 \times 10^{15} \text{ cm}^{-2}$ 1 MeV n_{eq}. The four curves are labeled on the figure.