REVIEW
STAT5 and CD4⁺ T Cell Immunity [version 1; referees: 4 approved]

David L. Owen, Michael A. Farrar
Center for Immunology, Masonic Cancer Center, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA

Abstract
STAT5 plays a critical role in the development and function of many cell types. Here, we review the role of STAT5 in the development of T lymphocytes in the thymus and its subsequent role in the differentiation of distinct CD4⁺ helper and regulatory T-cell subsets.

Open Peer Review
Referee Status: ✓ ✓ ✓ ✓

Invited Referees
1 2 3 4
version 1 published
11 Jan 2017

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty. In order to make these reviews as comprehensive and accessible as possible, peer review takes place before publication; the referees are listed below, but their reports are not formally published.

1 Thomas Malek, Miller School of Medicine, University of Miami USA

2 John O'Shea, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health USA, Alejandro Villarino, NIAMS, National Institutes of Health USA

3 Demin Wang, Blood Center of Wisconsin USA

4 Mark Kaplan, Indiana University School of Medicine USA, Wells Center for Pediatric Research USA

Discuss this article
Comments (0)
Introduction

The transcription factor STAT5 is expressed in all lymphocytes and plays a key role in multiple aspects of lymphocyte development and function. STAT5 is a modular transcription factor that consists of an N-terminal domain that allows for homotypic interactions and tetramerization, a DNA binding domain, and an SH2 domain involved in recruitment to phosphorylated receptors and ultimately homodimerization, and a C-terminal transactivation domain. STAT5 was initially identified as a transcription factor activated by prolactin in mammary gland epithelial cells. Subsequent studies identified STAT5 binding activity in T cells, and it was later established that STAT5 was expressed in multiple cell types and activated by a number of cytokines, including the common gamma chain (γc)-dependent cytokines interleukin 2 (IL2), IL4, IL7, IL13, and IL15 as well as a number of γc-independent cytokines, including thymic stromal lymphopoietin (TSLP), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL27. Molecular characterization of the Stat5 gene demonstrated that Stat5 was encoded by two closely linked genes that encoded Stat5a and Stat5b. These two genes are likely the result of gene duplication and are highly homologous. Initial studies showed that Stat5a and Stat5b bound to a similar DNA core motif, although there were subtle differences in their DNA binding preferences. Subsequent chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-Seq) studies suggest that there may be differences in the subsets of genes bound by Stat5a and Stat5b. However, these two transcription factors appear to be functionally redundant if expressed at similar levels. Substantial work has focused on the role of STAT5 in both lymphocyte development and function. These studies have clearly established a critical role for STAT5 in early T-cell development and pointed to critical functions for STAT5 in distinct T-cell subsets. Here, we will briefly review the role of STAT5 in T-cell development and then focus on advances in our understanding of the role that STAT5 plays in the differentiation of distinct T-cell subsets.

STAT5 in T-cell development

The observation that STAT5 is activated by multiple cytokines in T cells suggested that it might play a critical role in the development or function (or both) of these cells. Disruption of Stat5a or Stat5b genes alone resulted in relatively modest phenotypes; for example, Stat5a−/− mice had defects in mammary gland development and lactation while Stat5b−/− mice had defects in response to growth hormone in male mice and natural killer cell proliferation. To determine whether combined deletion of Stat5a and Stat5b might result in more profound immunodeficiencies, subsequent studies deleted the first coding exons of both Stat5a and Stat5b. This intervention resulted in the production of truncated forms of Stat5a and Stat5b that acted as functional hypomorphs. These mice too had surprisingly mild defects in lymphocyte development, although T cells were grossly dysfunctional, as they could no longer proliferate in response to IL2. Subsequent studies using mice expressing a constitutively active form of Stat5b suggested that Stat5 might play a more critical role in lymphocytes than suggested by the studies of Stat5 hypomorphs. These mice exhibited significant expansion of progenitor B cells, CD8+ memory T cells, and CD25+ regulatory T (Treg) cells. Finally, complete deletion of Stat5a and Stat5b using Cre-LoxP approaches demonstrated that Stat5a and Stat5b are absolutely required for lymphocyte development, as Stat5ab−/− mice had profound blocks in lymphocyte development, which mimicked that observed in Il7r−/− mice. These studies definitively demonstrated that STAT5 hypomorph mice retained significant STAT5 function. Studies with Stat5 knockout mice demonstrated that STAT5 plays a critical role in the development of γδ T cells, as it regulates T-cell receptor (TCR) γ gene rearrangement. Likewise, STAT5 is required for expansion of double-negative thymocytes. Finally, IL7R/STAT5 signaling plays an important role in CD8 versus CD4 lineage choice, and increased STAT5 signaling promotes CD8 T-cell differentiation. The mechanism by which STAT5 regulates early B- and T-cell development is still somewhat unclear, but there is clearly a key role for STAT5 in driving the expression of the pro-survival gene Mcl1. In addition, STAT5 promotes CD8 differentiation by upregulating the transcription factor Runx3. Additional work is required to obtain a more complete understanding of the molecular mechanisms by which STAT5 entrains lymphocyte development.

STAT5 promotes development of specific T-cell subsets

The availability of both STAT5 gain-of-function and complete loss-of-function mice allowed for a more refined examination of the role of STAT5 in various T-cell subsets. STAT5 was found to play an important role in the development of T helper type 1 (TH1), TH2, TH9, T helper type GM-CSF (TH9), and Treg cell subsets.

T helper type 1

TH1 polarization is driven by IL12 signaling and T-bet expression leading to production of TH1 cytokines, such as interferon gamma (IFNγ). Naïve T cells, however, do not express the IL12 receptor β2 subunit (IL12Rβ2) and thus are unable to respond to IL12. Early studies observed that T cells deficient in Jak3, the kinase required for STAT5 activation downstream of γc-containing receptors, failed to produce IFNγ under TH1 polarizing conditions. Furthermore, this study observed that IL2 blockade inhibited TH1 differentiation. Subsequent studies revealed that IL2 signaling, via STAT5 activation, potentiates the TH1 fate by inducing IL12Rβ2 and T-bet expression, thereby allowing the cell to respond to IL12 and polarize toward the TH1 fate.

T helper type 2

Similar paradigms have been observed with respect to TH2 polarization, which requires IL4 signaling and GATA3 expression. Early studies hinted at a role for STAT5 in TH2 development as T-cell production of IL4 was diminished without IL2. Subsequent studies demonstrated that STAT5 binds to the Il4 locus and drives IL4 production independently of GATA3; however, GATA3 expression is still critical for the adoption of the TH2 fate. It was later revealed that STAT5 mediates TCR-induced IL4 receptor alpha (IL4Rα) expression and this role was critical for TH2 induction. This latter study suggested that STAT5 was induced by IL2 in differentiating TH2 cells. Additional studies have shown that TSLP-dependent activation of STAT5 can also contribute to proliferation, survival, and function of TH2 cells. In a more recent study, another unique role of STAT5 was observed in TH2 polarization. This study indicated that STAT5 activation drove expression of...
NLRP3, a component of the inflammasome, in T cells. Moreover, this expression of NLRP3 was required for efficient TH2 polarization, an effect that was due to the ability of NLRP3 to form a complex with IRF4, which in turn induced the expression of TH2 cytokines such as IL4, IL5, and IL13. Unlike STAT5 deficiency, however, NLRP3 deficiency did not reduce IL4Ra expression. These studies have illustrated that STAT5 plays a unique role in TH2 development and function.

T helper type 9

TH9 T cells, a subset closely related to the TH2 lineage, differentiate in the presence of transforming growth factor beta (TGFβ) and IL4 and are defined by prominent IL9 production. Initially, it was observed that the presence of IL4 inhibits TGFβ-driven induction of FOXP3 via a STAT6/GATA3-dependent mechanism. This initial study found that instead of generating suppressive induced Treg cells, the combination of TGFβ and IL4 formed effector cells that produced IL9 and IL10, and thus resembled TH9 T cells. Thus, much like in TH2 cell differentiation, STAT5 plays a key role in TH9 development and function. The idea that STAT5 plays an important role in TH9 development is supported by the fact that TSLP/STAT5 induces IL9 production, which was required for allergic airway inflammation induced by TSLP. Consistent with this idea, two recent studies demonstrated that activated STAT5 binds to the IL9 promoter and facilitates IL9 transcription by driving an activated chromatin configuration characterized by reduced H3K9 histone methylation. This effect was reversed by IL21-driven induction of BCL6, which also interacts at adjacent locations in the IL9 promoter. Subsequent studies demonstrated that IL6-mediated activation of STAT3 opposes STAT5-driven differentiation of TH9 cells; however, this effect was mediated by inhibition of STAT5 activation through diminished IL2 production and not via induction of BCL6. Thus, STAT5 activation and pathways that intersect with STAT5 signaling play important roles in TH9 differentiation.

Whereas the precise mechanisms by which STAT5 contributes to specific T helper subset differentiation are unique, the general mode by which STAT5 acts is very similar. Namely, STAT5 functions to prime T cells such that they are competent to respond to the cytokine milieu and differentiate into a particular T helper subset. This suggests a model whereby appropriately activated T cells, receiving TCR and co-stimulation, upregulate IL2 production and via autocrine signaling activate STAT5. Activated STAT5 then induces the expression of polarizing cytokine receptor genes, such as IL12Rβ2 and IL4Ra, allowing these cells to integrate the local cytokines into an appropriate differentiation decision. A similar mechanism may hold for Treg cell differentiation, as STAT5 can upregulate CD25 expression, which is required for efficient Treg cell differentiation. Furthermore, STAT5 acts in all of these T-cell subsets to drive the expression of T helper subset cytokines. Thus, STAT5 activation plays a crucial role in the differentiation and function of TH1, TH2, and TH9 subsets.

T helper type GM-CSF

Recently, another unique T helper subset which produces GM-CSF and IL3 was observed: the TH9am subset. A 2014 study observed that TH9am cells were critical mediators of disease progression in a murine model of autoimmune neuroinflammation: experimental autoimmune encephalomyelitis. This article observed that IL7-driven, not IL2-driven, STAT5 activation is required for the formation of these GM-CSF-producing pathogenic T cells. The authors also provide evidence that TH1 and TH17 differentiation cues are inhibitory to the development of TH9am, similar to findings in a human study which observed that IL17 antagonistically regulated GM-CSF-producing T cells that also trafficked to the central nervous system of patients with multiple sclerosis. Furthermore, the study by Sheng et al. showed that the TH9am cells are a unique T helper subset, as their expression profile is distinct from those of both TH1 and TH17 cells. Interestingly, another study observed that IL2Ra polymorphisms associated with multiple sclerosis potentiated IL2-mediated GM-CSF production in TH cells; however, the production of IFNγ and IL17 was unaffected. Thus, STAT5 activation has an important role in the development of TH9am cells and may contribute to their pathogenicity in neuroinflammation.
into Treg cells. This effect was due to IFNγ/IFNβ enhancement of STAT5 activation, either directly or indirectly. Thus, multiple pathways all impinge on STAT5 in developing Treg cells to regulate the number of Treg cells generated in the thymus.

A distinct type of Treg progenitor cell population was also recently proposed. These progenitor cells express low levels of FOXP3 but no detectable CD25 (CD4+CD25 FOXP3-). However, differentiation of this population into mature Treg cells was still dependent on IL2/STAT5 activation. A subsequent study suggested that the formation of CD25 FOXP3+ Treg progenitor cells was more dependent on IL15 than the parallel CD25-FOXP3+ Treg progenitor subset. Future studies will need to extend these observations and determine whether there are distinct roles for IL2 and IL15 in Treg progenitor cell formation and determine whether these effects are also dependent on STAT5 activation.

In addition to Treg cells, there is another well-accepted class of Treg cells that differentiate from naïve CD4+ T cells outside the thymus (peripheral Treg, or pTreg, cells). Multiple studies have established that this class of Treg cells is important for maintaining complete tolerance, particularly at mucosal sites interacting with commensal microbes. Conversion of naïve T cells to pTreg cells is driven by TGFβ ligation; however, this conversion is also dependent on STAT5 activation via IL2 signaling. IL2/STAT5-dependent signals are required not only for the conversion of naïve T cells into pTreg cells in vitro but also to generate these cells in vivo. Further studies indicated that without IL2 the stability of TGFβ-induced Treg cells was greatly diminished. A more recent study has provided some mechanistic details on the convergence of TGFβ and STAT5 in controlling pTreg cell differentiation. Specifically, hydrogen sulfide is required to activate TET1 and TET2 demethylases and maintain Treg cell homeostasis. Furthermore, these authors observed that activated SMAD3, downstream of TGFβ signaling, and STAT5, downstream of the IL2 receptor, targeted TET1 and TET2 to the Foxp3 locus and initiated a hypomethylated state, which facilitated stable expression of Foxp3 in Treg cells.

STAT5 in regulatory T-cell function

In addition to its role in the differentiation of both Treg and pTreg cells, a critical role for STAT5 has been observed in Treg cell maintenance and function. For example, Blazar and colleagues demonstrated that in the context of graft-versus-host disease, Treg cells expressing a constitutively active Stat5b transgene provide better protection than wild-type Treg cells. One proposed mechanism by which STAT5 enhances Treg cell functionality is via binding sites within the Foxp3 gene locus, functioning to stabilize expression of Foxp3 and thus the suppressor phenotype. More recent studies have provided support for such a function. Specifically, the Cns2 enhancer region, which binds several transcription factors, including STAT5, was shown to be required for the maintenance of Foxp3 expression. This study further demonstrated that STAT5 binding to Cns2 enhanced the stability of Treg cells within inflammatory contexts. A subsequent study provided additional evidence that STAT5 plays a central role in maintaining Treg cell homeostasis. First, using histocytometric analysis of whole lymph nodes, the authors observed that Treg cells which contain activated STAT5 are clustered around IL2-producing effector cells that are being stimulated by self-antigen. Taking this observation further, the authors demonstrated that Treg cells are unable to properly restrain IL2-deficient effector cells and that the IL2-deficient effector T cells had longer interaction times with dendritic cells. This study also provided data that this suppressive function was dependent on TCR signaling in the Treg cells, a conclusion that was supported by a study by Rudensky and colleagues. To further understand the role of STAT5 activation in mature Treg cells, another study used Foxp3-Cre to drive deletion of the IL2Rβ chain in mature Treg cells. These experiments largely recapitulated the severe autoimmune observed in Il2rb-/- mice. To understand whether this effect was due to an inability to activate STAT5 or another pathway downstream of the IL2 receptor, the authors generated mice in which a Stat5b-CA transgene was integrated into the ROSA26 locus preceded by a loxp flanked Stop cassette. Importantly, the Rosa26-Stat5b-CA transgene was able to rescue the autoimmune symptoms observed in Foxp3-Cre x Il2rb-/- mice. Similar to the report by Blazar and colleagues, this latter study also observed that Treg cells expressing Stat5b-CA were more potent suppressor cells. Interestingly, RNA-Seq studies comparing wild-type and Stat5b-CA-expressing Treg cells revealed that the Stat5b-CA gene signature was unique and not simply an enhancement of the baseline Treg gene profile. Thus, STAT5 plays a multifunctional role in Treg cell biology. Initially, STAT5 acts as a central effector in initiating the differentiation of Treg cells but, in mature Treg cells, drives their suppressive capabilities and maintains FOXP3 expression. Thus, STAT5 acts as a bridge between effector and suppressor responses, via integration with TCR signaling, to prevent effector responses toward self-antigens while permitting responses to non-self-antigens.

STAT5 inhibits the development of other T helper subsets

Although STAT5 is required for the development and function of some T helper subsets, it also plays an important role in blocking the development of other T helper subsets, most notably Th17 and T follicular helper (Tfh) cells. Th17 cells can be generated by stimulation with cytokines that activate STAT3, consistent with a role for STAT5 in Th17 generation. Subsequent studies demonstrated that the inflammation observed in IL2-deficient mice stemmed from not only a lack of Treg cells but also the fact that IL2 and STAT5 signaling was no longer able to counter the development of inflammatory Th17 cells. ChIP-Seq studies of STAT3 and STAT5 in CD4+ T cells showed that these two transcription factors bound to identical sites within the Il17 gene locus and exerted opposite effects on gene transcription. Other studies demonstrated that IL2/STAT5 signaling can also affect Th17 development by downregulating expression of the IL6R, which is required to activate STAT3. Although the molecular mechanisms by which STAT5 repressed Il17 transcription have not been completely defined, it appeared that at least three mechanisms could exist. First, STAT5 directly competed with STAT3 for DNA binding and thereby prevented STAT3 from directly inducing Il17 transcription. Second, STAT5 binding also correlated with binding of the co-repressor NCOA2 and thus might actively repress gene transcription by altering histone methylation or acetylation. Third, STAT5 repressed expression of the IL6R, leading to reduced activation of STAT3. Further studies are needed to clarify the mechanisms by which STAT5 represses or prevents gene transcription.
Figure 1. Model outlining how STAT5 activation (pSTAT5) contributes to the differentiation of naïve CD4 T cells into various T helper (TH) subsets. In TH1 development, STAT5 drives interleukin 12 receptor beta 2 subunit (IL12Rβ2) expression. For TH2, STAT5 drives upregulation of IL4Rα. For TH9, STAT5 activation is required for IL9 production. In TH type granulocyte-macrophage colony-stimulating factor (TH_GM), STAT5 is critical for granulocyte-macrophage colony-stimulating factor (GM-CSF) production. STAT5 opposes the activation of STAT3, which is required for TH17 differentiation. STAT5 downregulates Bcl6 expression to inhibit T follicular helper (TFH) cell differentiation, and in regulatory T cells STAT5 turns on Foxp3 as well as CD25.

Figure 2. Model outlining the roles STAT5 plays in T regulatory biology in both the thymus and the periphery. STAT5 activation (pSTAT5) is required to complete the differentiation of thymic regulatory T (tTreg) cells and initiate the differentiation of peripherally induced regulatory T (pTreg) cells. STAT5 is also critical for the maintenance of Foxp3 expression, via binding the Cns2 regulatory region in Foxp3, and the suppressor phenotype of regulatory T cells.
In addition to suppressing TH17 differentiation, STAT5 inhibits the development of Tfh cells. Tfh cells require STAT3-inducing cytokines, such as IL21 and IL6, for their differentiation. In contrast, the STAT5-inducing cytokine IL2 was initially shown to inhibit Tfh cell development. Moreover, these studies demonstrated that the effect of IL2 required STAT3 activation. This effect appears to involve negative regulation of Bcl6, a key transcription factor required for Tfh cell differentiation. The mechanism by which STAT5 prevents Bcl6 gene transcription remains unclear, although it is possible that this once again involves competition between STAT5 and STAT3 for common binding sites in the Bcl6 gene. More recent studies have found that IL7 also plays an important role in Tfh cell differentiation. These studies demonstrated that TH1 cells which lack IL2R expression eventually upregulate both the IL6R and the IL7R. This results in a bi-potent state, in which cells that are stimulated with IL7 activate STAT5, block Tfh cell differentiation, and preferentially give rise to central memory T cells. In contrast, preferential exposure to IL6 induces Bcl6 transcription via a STAT3-dependent process and promotes Tfh cell differentiation. A subsequent study demonstrated that this also involves additional feedback loops, as BCL6 has been shown to bind to many STAT5 binding sites (including in the Il7r gene) in Tfh cells and inhibit the expression of these STAT5-dependent genes.

Future directions
It is now clear that STAT5 plays important roles in both T-cell development and shaping the CD4+ T-cell immune response. However, major gaps remain in our knowledge. First, substantial evidence now supports the idea that STAT5 competes for binding sites with opposing effectors (for example, STAT3 and BCL6), but the molecular mechanisms by which STAT5 alters the epigenome to enhance or repress transcription remain unclear. Second, we know that STAT5 can interact with co-activators or co-repressors, but we do not know whether these known interactors are critical for STAT5 function. Moreover, very little is known about what determines whether STAT5 induces or represses transcription at specific gene loci. One study suggested that this may be due to STAT5 binding as a dimer versus a tetramer. In contrast, other reports, using STAT5 mutant mice in which STAT5 cannot form tetramers, primarily reported defects in STAT5-dependent gene activation and not repression. Thus, key future questions will be to resolve the molecular mechanisms by which STAT5 alters chromatin structure and promotes or represses gene transcription and to establish what determinants result in STAT5 promotion versus repression of gene transcription.

Abbreviations
γc, gamma chain; ChIP-Seq, chromatin immunoprecipitation sequencing; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFNγ, interferon gamma; IL, interleukin; IL4Rα, interleukin 4 receptor alpha; IL12Rβ2, interleukin 12 receptor beta 2 subunit; pTreg, peripheral-induced regulatory T cell; TCR, T-cell receptor; Tfh, T follicular helper; TGFβ, transforming growth factor beta; TH, T helper; THinf, T helper type granulocyte-macrophage colony-stimulating factor; Treg, regulatory T cell; TSLP, thymic stromal lymphopoietin; iTreg, thymus-derived regulatory T cell.

Competing interests
The authors declare that they have no competing interests.

Grant information
DLO is funded by a National Institutes of Health (NIH) T32 fellowship (T32 AI 007313). MAF is supported by grants from the NIH (R01 AI113138, R01 CA151845, R01 CA154998, and R01 CA185062).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References
1. Ota N, Brett TJ, Murphy TL, et al.: N-domain-dependent nonphosphorylated STAT4 dimers required for cytokine-driven activation. Nat Immunol. 2004; 5(2): 208–15. Published Abstract | Publisher Full Text
2. Grimley PM, Dong F, Rui H: Stat5α and Stat5β: Fraternal twins of signal transduction and transcriptional activation. Cytokine Growth Factor Rev. 1999; 10(2): 131–67. Published Abstract | Publisher Full Text
3. Wakao H, Schmitt-Ney M, Groner B: Mammary gland-specific nuclear factor is present in lactating rodent and bovine mammary tissue and composed of a single polypeptide of 89 kDa. J Biol Chem. 1992; 267(03): 16365–70. Published Abstract
4. Schmitt-Ney M, Hopp B, Hofer P, et al.: Mammary gland-specific nuclear factor activity is positively regulated by lactogenic hormones and negatively by milk stasis. Mol Endocrinol. 1992; 6(12): 1988–97. Published Abstract | Publisher Full Text
5. Beadling C, Guschin D, Wiltum BA, et al.: Activation of JAK kinases and STAT proteins by interleukin-2 and interferon alpha, but not the T cell antigen receptor, in human T lymphocytes. EMBO J. 1994; 13(23): 5605–15. Published Abstract | Publisher Full Text
6. Lin J, Migone T, Tsang M, et al.: The role of shared receptor motifs and common STAT proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity. 1995; 2(4): 331–8. Published Abstract | Publisher Full Text
7. Isaksson DE, Baumann H, Trobridge PA, et al.: Requirement for stat5 in thymic stromal lymphopoietin-mediated signal transduction. J Immunol. 1999; 163(11): 5971–7. Published Abstract | Publisher Full Text
8. Wu AL, Wakao H, O’Farrell AM, et al.: Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J. 1995; 14(6): 1166–75. Published Abstract | Publisher Full Text
9. Barahmand-Pour F, Meinke A, Iellers A, et al.: Colony-stimulating factors and interferon-gamma activate a protein related to MGF-Stat5 to cause formation of the differentiation-induced factor in myeloid cells. FEBS Lett. 1995; 369(1): 29–33. Published Abstract | Publisher Full Text
10. Gouilleux F, Pallard C, Dusant-Fourt I, et al.: Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. EMBO J. 1995; 14(9): 2005–13. Published Abstract | Publisher Full Text
11. Lucas S, Ghilardi N, Li J, et al.: IL-27 regulates IL-12 responsiveness of
naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc Natl Acad Sci U S A. 2003; 100(25): 15047–52.

12. Liu X, Robinson GW, Gouilleux F, et al.: Cloning and expression of Stat1 and an additional homologue (Statp) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci U S A. 1995; 92(19): 8831–5.

13. Lin JX, Metz J, Mod WS, et al.: Cloning of human Stat5B. Reconstitution of interleukin-2-induced Stat5 and Stat5B DNA binding activity in CD4+ T cells. J Biol Chem. 1996; 271(18): 10738–44.

14. Copeland NG, Gilbert SJ, Schindler C, et al.: Distribution of the mammalian Stat gene family in mouse chromosomal. Genomics. 1995; 29(1): 225–8.

15. Soldan E, John S, Moro S, et al.: DNA binding site selection of dimeric and tetrameric Stat5a Stat5b reveals a large repertoire of divergent tetrameric Stat5a Stat5b target genes in human T cells. PLoS One. 2014; 9(11): e88790.

16. Villarino A, Laurence A, Robinson GW, et al.: Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions. elife. 2016; 5: pii: e08384.

17. Karali T, Seki S, Jenkins JA, et al.: Identification of STAT5A and STAT5B target genes in human T cells. PLoS One. 2014; 9(11): e88790.

18. Yao Z, Cui Y, Watford WT, et al.: STAT5b are essential for normal lymphoid development and function. Proc Natl Acad Sci U S A. 2004; 101(4): 1347–55.

19. Cui Y, Riedlinger G, Miyoshi K, et al.: Role of IL-2 in regulation of T cell differentiation. J Immunol. 1998; 191(7): 3297–304.

20. Liu X, Robinson GW, Wagner KU, et al.: Stat5 is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997; 11(2): 179–86.

21. Tegslund S, McCartney S, Schuetz E, et al.: Stat5 and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998; 93(5): 411–50.

22. Morigi R, Topham DJ, Tegslund S, et al.: Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity. 1999; 10(2): 249–59.

23. Burchill MA, Goetz CA, Pric M, et al.: Direct Binding to the TCRgamma Locus. J Immunol. 2015; 196(6): 1804–14.

24. Park J, Adorio S, Guinter T, et al.: Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat Immunol. 2003; 171(11): 1157–65.

25. Main S, McKinley S, Cobaleda C, et al.: Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat Immunol. 2010; 11(2): 171–9.

26. Shih M, Lin TH, Appel KC, et al.: Janus-kinase-3-dependent signals induce chromatin remodeling at the fetal liver during T cell development. Immunity. 2008; 28(6): 595–603.

27. Liu W, Lin JX, Wang L, et al.: Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol. 2011; 12(6): 551–9.

28. Le Gros G, Ben-Sasson SZ, Seder R, et al.: Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med. 1990; 172(3): 921–9.

29. Le Gros G, Ben-Sasson SZ, Seder R, et al.: IL-4+ cells are required for IL-4 production. J Immunol. 1990; 145(4): 1127–36.

30. Cote-Sierra J, Fournas G, Guo L, et al.: Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci U S A. 2004; 101(11): 3880–5.

31. Yamane H, Zhu J, Paul WE: Independent roles for IL-2 and GATA-3 in stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. J Exp Med. 2005; 202(6): 793–804.

32. Yu J, Cote-Sierra J, Guo L, et al.: Stat5 activation plays a critical role in Th2 differentiation. Immunity. 2003; 19(5): 795–81.

33. Zhang Y, Jabeen R, Bassil R, et al.: Conditional deletion of Gata3 shows its essential function in T,1, T,2 responses. Nat Immunol. 2004; 5(11): 1157–65.

34. Liu W, Schones DE, Oh J, et al.: Priming for T helper type 2 differentiation by interleukin-2-mediated induction of interleukin 4 receptor alpha-chain expression. Nat Immunol. 2008; 9(12): 1289–96.

35. Kitaoka M, Lee HG, Nakayama T, et al.: TSLPR and TSLPR-Stat3 enhances the function of helper type 2 cells. Eur J Immunol. 2011; 41(7): 1862–71.

36. Bruchard M, Rebé C, Daréangé V, et al.: The receptor NLRP3 is a transmembrane regulator of T,2 differentiation. Nat Immunol. 2015; 16(8): 859–70.

37. Liao W, Schones DE, Oh J, et al.: Priming for T helper type 2 differentiation by interleukin-2-mediated induction of interleukin 4 receptor alpha-chain expression. Nat Immunol. 2008; 9(12): 1341–6.

38. O’connor MR, Verdan FF, Hufford MM, et al.: STAT3 Impairs STAT5 Activation in the Development of IL-9- and IL-22-Producing T Cells and, together with TGF-beta, generates IL-9-10 Foxp3+ effector T cells. Nat Immunol. 2008; 9(12): 1347–55.

39. Yao W, Zheng Y, Jabeen R, et al.: Interleukin-9 is required for allergic airway inflammation mediated by the cytokine TSLP. Immunity. 2013; 38(2): 360–72.

40. Liao W, Spitzki R, U.P, et al.: Opposing actions of IL-2 and IL-21 on Th9 cell development correlate with their differential regulation of BCL6 expression. Proc Natl Acad Sci U S A. 2014; 111(9): 3508–13.

41. Basol R, Orent W, Olah M, et al.:篼BCL-2 controls T cell development by repressing I9 transcription. J Immunol. 2014; 193(1): 198–207.

42. Olson MR, Verdan FF, Hufford MM, et al.: IL-21 plays a central role in Th2 differentiation and in inflammation mediated by the cytokine TSLP. Immunity. 2013; 38(2): 360–72.

43. Liu W, Spitzki R, U.P, et al.: Opposing actions of IL-2 and IL-21 on Th9 cell development correlate with their differential regulation of BCL6 expression. Proc Natl Acad Sci U S A. 2014; 111(9): 3508–13.

44. Nester R, Riedel R, Mastreghi MF, et al.: IL-17 and GM-CSF expression are antagonistically regulated by human T helper cells. Sci Transl Med. 2014; 6(241): 241ra80.

45. Harthmann FJ, Khadem M, Aram J, et al.: Multiple sclerosis-associated IL2RA polymorphism controls GM-CSF production in human T cells. Nat Commun. 2014; 5: 5056.

46. Sheng W, Yang F, Zhou Y, et al.: TSLPR programs a distinct subset of GM-CSF-producing T helper cells that is essential for autoimmune neuroinflammation. Cell Res. 2014; 24(12): 1387–402.

47. Cohen A, Nadeau K, Tu W, et al.: Decreased Generation and Function of CD4+ CD25+ Foxp3+ T regulatory cells by Stat5 and histone acetylation. J Immunol. 2005; 175(4): 1841–50.

48. Liu W, Spitzki R, U.P, et al.: Opposing actions of IL-2 and IL-21 on Th9 cell development correlate with their differential regulation of BCL6 expression. Proc Natl Acad Sci U S A. 2014; 111(9): 3508–13.

49. Sa.86. Decreased Generation and Function of CD4+ CD25+ Foxp3+ T regulatory cells by Stat5 and histone acetylation. J Immunol. 2005; 175(4): 1841–50.
Burchill MA, Yang J, Vogtenhuber C, et al.: IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol. 2007; 178(1): 280–90. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Yao Z, Kanno Y, Kernery M, et al.: Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood. 2007; 109(12): 4368–73. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Soper DM, Kaspricow DJ, Ziegler SF: IL-2Rbeta links IL-2R signaling with Foxp3 expression. Eur J Immunol. 2007; 37(7): 1817–26. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Liu CW, Hshieh C: A two-step process for thymic regulatory T cell development. Immunity. 2008; 28(1): 100–11. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Mahmut SA, Manlove LS, Schmitz HM, et al.: Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat Immunol. 2014; 15(5): 473–81. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Yi Z, Lin WW, Sunz LL, et al.: The adaptor TRAF3 restrains the lineage determination of thymic regulatory T cells by modulating signaling via the receptor for IL-2. Nat Immunol. 2014; 15(9): 866–74. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Medjed A, Riether SA, Glass DD, et al.: IFN-γ receptor signaling promotes regulatory T cell development and function under stress conditions. J Immunol. 2015; 194(4): 4265–72. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Tai X, Eman R, Alag A, et al.: Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals. Immunity. 2013; 38(6): 1135–46. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Marshall D, Sinclair C, Tung S, et al.: Differential requirement for IL-2 and IL-15 during bifunctional development of thymic regulatory T cells. J Immunol. 2014; 191(11): 5225–33. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Hanbaib D, Williams JB, Jia S, et al.: A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunol. 2011; 35(1): 109–22. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Lathrop SK, Bloom SM, Rao SM, et al.: Peripheral education of the immune system by commensal microbiota. Nature. 2011; 478(7368): 250–4. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Zheng SQ, Wang J, Wang P, et al.: IL-2 is essential for TGF-beta to convert naive CD4+CD25− cells to CD45RBP Foxp3+ regulatory T cells and for expansion of these cells. J Immunol. 2007; 178(4): 2018–27. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Kneechl B, Lörh J, Kahr E, et al.: Sequential development of interleukin 15-dependent effector and regulatory T cells in response to endogenous systemic antigen. J Exp Med. 2005; 202(10): 1375–86. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Chen Q, Kim YC, Laurence A, et al.: IL-2 controls the stability of Foxp3 expression in TGF-beta-induced Foxp3+ T cells in vitro. J Immunol. 2011; 186(11): 6329–37. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Yang R, Qu C, Zhou Y, et al.: Hydrogen Sulphide Promotes T1- and T2E2-Mediated Foxp3 Demethylation to Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis. Immunity. 2015; 43(2): 251–63. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Vogtenhuber C, Bucher C, Highfield SL, et al.: Constitutively active Stat5b in CD4+ T cells inhibits graft-versus-host disease lethality associated with increased regulatory T-cell potency and decreased T effector cell responses. Blood. 2010; 116(2): 466–74. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Feng Y, Arvey A, Chimn T, et al.: Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell. 2014; 154(6): 749–63. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Liu Z, Gerner MY, van Pauwys N, et al.: Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature. 2015; 526(7581): 225–30. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Levine AG, Arvey A, Jin W, et al.: Continuous requirement for the TCR in regulatory T cell function. Nat Immunol. 2014; 15(10): 1070–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Chinen T, Kannan AK, Levine AG, et al.: A distinct role for the IL-2 receptor in T cell function. Nat Immunol. 2016; 17(11): 1322–33. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Suzuki H, Kundig TM, Furlonger C, et al.: Deregulated T cell activation and autoimmune mice lacking interleukin-2 receptor beta. Science. 1995; 268(5216): 1472–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Zhou L, Ivanov II, Spolnik R, et al.: IL-6 programs T₁₇ cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007; 8(3): 967–77. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Yang XO, Panopoulos AD, Nureva RI, et al.: STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007; 282(13): 9358–63. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Mathur AN, Chang H, Ziosulis DG, et al.: STAT3 and Stat4 direct development of IL-17-secreting Th cells. J Exp Med. 2007; 198(6): 4901–7. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Laurence A, Toto CM, Davidson TS, et al.: Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007; 26(3): 371–81. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Yang XP, Goreschi K, Steward-Tharp SM, et al.: Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011; 12(3): 247–54. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Liao W, Lin JX, Wang L, et al.: Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol. 2011; 12(6): 551–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Nureva RI, Chung Y, Hwang D, et al.: Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 2008; 28(1): 112–21. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Nureva RI, Chung Y, Martinez GJ, et al.: Bcl6 mediates the development of T follicular helper cells. Science. 2009; 325(5943): 1001–5. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Yi D, Rao S, Tsai LM, et al.: The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity. 2009; 31(3): 457–68. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Walker SR, Nelson EA, Frank DA: STAT3 represses BCL6 expression by binding to a regulatory region frequently mutated in lymphomas. Oncogene. 2007; 26(2): 224–33. PubMed Abstract | Publisher Full Text | F1000 Recommendation

McDonald PW, Read KA, Baker CE, et al.: IL-7 signalling in T₁₇ cells: a key role for Stat5. Nat Immunol. 2012; 13(2): 1028–35. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Liu X, Liu H, Chen T, et al.: Genome-wide Analysis Identifies Bcl6-Controlled Regulatory Networks during T Follicular Helper Cell Differentiation. Cell Rep. 2015; 14(7): 1735–47. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Pfizter E, Jähne R, Wissler M, et al.: s300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transcriptional activation domain of Stat5, but does not participate in the Stat5-mediated suppression of the glucocorticoid response. Mol Endocrinol. 1998; 12(10): 1582–93. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Zhu M, John S, Berg M, et al.: Functional association of Nmi with Stats and Stat5 in IL-2- and IFNgamma-mediated signaling. Cell. 1999; 96(1): 121–30. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Nakajima H, Bindke PK, Handa M, et al.: Functional interaction of STAT5 and nuclear receptor co-repressor SMRT: implications in negative regulation of STAT5-dependent transcription. EMBO J. 2001; 20(23): 6936–44. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Mandal P, Powers SE, Maienschine-Cline M, et al.: Epigenetic repression of the Ilk locus by STAT3-mediated recruitment of the histone methytransferase Ezh2. Nat Immunol. 2011; 12(10): 1082–92. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Lin J, Liu P, Liu D, et al.: Critical Role of STAT5 transcription factor hypermethylation for cytokine responses and normal immune function. Immunity. 2012; 36(4): 586–99. PubMed Abstract | Publisher Full Text | F1000 Recommendation
Open Peer Review

Current Referee Status: ✓ ✓ ✓ ✓

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

1. **Mark Kaplan**, 1,2 1 Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
 2 Department of Pediatrics, Wells Center for Pediatric Research, Indianapolis, IN, USA

 Competing Interests: No competing interests were disclosed.

2. **Demin Wang**, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA

 Competing Interests: No competing interests were disclosed.

3. **John O'Shea**, 1, **Alejandro Villarino** 2 1 Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD, USA
 2 Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda, USA

 Competing Interests: No competing interests were disclosed.

4. **Thomas Malek**, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA

 Competing Interests: No competing interests were disclosed.