Review Article

Exploring chromatin structural roles of non-coding RNAs at imprinted domains

David Llères1,2, Yui Imaizumi1,2 and Robert Feil1,2

1Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), Montpellier, France; 2University of Montpellier (UM), Montpellier, France

Correspondence: Robert Feil (robert.feil@igmm.cnrs.fr)

Different classes of non-coding RNA (ncRNA) influence the organization of chromatin. Imprinted gene domains constitute a paradigm for exploring functional long ncRNAs (lncRNAs). Almost all express an lncRNA in a parent-of-origin dependent manner. The mono-allelic expression of these lncRNAs represses close by and distant protein-coding genes, through diverse mechanisms. Some control genes on other chromosomes as well. Interestingly, several imprinted chromosomal domains show a developmentally regulated, chromatin-based mechanism of imprinting with apparent similarities to X-chromosome inactivation. At these domains, the mono-allelic lncRNAs show a relatively stable, focal accumulation in cis. This facilitates the recruitment of Polycomb repressive complexes, lysine methyltransferases and other nuclear proteins – in part through direct RNA–protein interactions. Recent chromosome conformation capture and microscopy studies indicate that the focal aggregation of lncRNA and interacting proteins could play an architectural role as well, and correlates with close positioning of target genes. Higher-order chromatin structure is strongly influenced by CTCF/cohesin complexes, whose allelic association patterns and actions may be influenced by lncRNAs as well. Here, we review the gene-repressive roles of imprinted non-coding RNAs, particularly of lncRNAs, and discuss emerging links with chromatin architecture.

Introduction

Diverse genetic and epigenetic systems of mono-allelic expression have evolved in mammals, together controlling thousands of genes [1]. These mono-allelic gene expression mechanisms provide unique identities to cells, such as in hematopoietic cells or olfactory neurons, or critically modulate the dosage of gene expression, such as in X-chromosome inactivation in females [1]. The epigenetic phenomenon of genomic imprinting is exceptional in that this kind of mono-allelic expression depends entirely on the parental origin of the gene [2]. Some imprinted genes are expressed from the maternally inherited copy only, others only from the paternal copy. About 150 genes are known to be imprinted in humans and mice [3,4] and their correct expression levels are important for fetal growth, development, homeostasis and behavior [5,6].

Imprinting is controlled by oocyte- and sperm-derived DNA methylation marks put onto specialized CpG islands called ‘imprinting control regions’ (ICRs). After fertilization, these epigenetic ‘imprints’ are maintained in the somatic lineages and bring about imprinted expression through diverse mechanisms [2,7,8].

Recent studies have shown that oocyte-acquired histone methylation, particularly histone H3 lysine-27 tri-methylation (H3K27me3), can give rise to parentally biased gene expression as well [9,10]. This non-canonical imprinting is limited to the pre-implantation embryo, and is maintained at only a handful of genes in the extra-embryonic lineages [11–16].

Virtuality all the ‘classical’ imprinted genes that are controlled by DNA methylation imprints are clustered in large domains. Most of these imprinted chromosomal domains express one or more long non-coding RNAs (lncRNAs), defined as being more than 200 nucleotides in length [17,18].
Accumulating evidence indicates that these IncRNAs contribute to bringing about imprinted gene expression at close by and distant protein-coding genes. Here, we discuss how imprinted non-coding RNAs control gene expression in cis, with a particular emphasis on their putative roles in chromatin structure. We also discuss emerging insights into trans-regulatory functions.

Numerous non-coding RNAs are controlled by genomic imprinting

It is often not well appreciated that numerous non-coding RNAs are imprinted in mammals. For instance, about seven percent of all microRNAs (miRNAs) are imprinted in humans, more than hundred in total. These are mostly transcribed by large host transcription units, each expressing multiple miRNAs [19,20]. One example is the DLK1-DIO3 imprinted domain on human chromosome 14 (mouse chromosome 12), which expresses 53 miRNAs from a 220 kb polycistronic transcription unit, on the maternal chromosome only. Several of these miRNAs control the levels and/or the translation of miRNAs transcribed by other imprinted genes [21–23]. This highlights the considerable interconnectivity between imprinted loci that has arisen during evolution [24,25]. Another large cluster of imprinted miRNAs maps to human chromosome 19. Interestingly, this ‘C19MC’ cluster is primate-specific and expressed in the placenta predominantly [19,26].

Members of one class of small nucleolar RNAs (snoRNAs) are imprinted as well. These so-called C/D-box snoRNAs are thought to guide 2′-O-methylation on specific RNAs, but their precise roles have remained unclear despite recent functional studies [27–29]. The snoRNA DNA sequences are embedded within large transcription units, similarly as the imprinted miRNAs, each expressing multiple C/D-box snoRNAs [19]. One such a host locus is the imprinted DLK1-DIO3 domain, which besides many miRNAs, expresses 38 C/D-box snoRNAs from its maternally expressed ncRNA polycistron. The best-studied cluster of imprinted snoRNAs resides within the SNRPN-UBE3A imprinted domain, which expresses 81 C/D-box snoRNAs from a large polycistronic gene expressed on the paternal chromosome only [19,30].

With respect to chromatin regulation, the most relevant non-coding RNAs are the IncRNAs [2]. In fact, imprinted IncRNAs were amongst the first discovered long non-coding RNAs and have provided many broadly relevant insights [17]. Most imprinted chromosomal domains express at least one IncRNA and these are RNA Polymerase-II transcribed. The very first example was H19 at the imprinted Igf2-H19 domain. This maternally expressed IncRNA was originally described as one of the most highly expressed RNAs during embryonic development, exerting growth-regulating functions [31]. More recent, mechanistic studies revealed that it produces a miRNA (miR-675) that influences muscle development and exerts growth-repressive effects in the placenta [32–34].

Most imprinted IncRNAs originate from their domain’s ICR, which acts as a promoter on the unmethylated parental copy. Some are spliced, others not, and several imprinted IncRNAs are retained in the nucleus. These nuclear IncRNAs show different degrees of cis-accumulation onto their locus and exert long-range repressive effects, at some loci across several megabases of chromatin [3,17,35].

Gene regulatory roles of imprinted IncRNAs

In general, IncRNA expression can influence the transcription of protein-coding genes in many different ways [36]. Despite tremendous efforts, however, it has remained complicated to conclude whether observed effects are due to an IncRNA itself or to its transcription [37].

Extensive research during the last years has evoked different models of how IncRNA transcription could interfere with the expression of close by other genes [36,38–40]. As concerns imprinted IncRNAs one transcription-linked mechanism is interference with an overlapping gene transcribed in the opposite orientation (Figure 1A). A well-studied example of this is the imprinted Snrpn-Ube3a domain, where a paternally expressed IncRNA crosses almost one megabase of chromatin, including a distally positioned protein-coding gene called Ube3a. Transcriptional stalling caused by the collision of RNA pol-II complexes coming from opposite directions may explain the lack of Ube3a expression on the paternal chromosome. IncRNA ablation, or expression of truncated forms of the IncRNA that do not overlap Ube3A, cause aberrant activation of this gene on the paternal chromosome [41,42]. Similarly, topoisomerase inhibitors that prevent unwinding of the DNA during transcription — and thereby prevent transcriptional elongation of the IncRNA — reactivation the paternal Ube3A gene [43]. Concordantly, antisense oligonucleotides against the long transcript crossing the domain result in
the activation of the paternal UBE3A gene, and such an approach is currently used in different clinical trials to treat Angelman Syndrome, a neuro-behavioural syndrome caused by loss of UBE3A expression [44,45].

A similar model has emerged from detailed studies on the imprinted IGF2-receptor (Igf2r) locus on mouse chromosome 17, which expresses a 117 kb non-spliced lncRNA called Airn that is transcribed oppositely to the Igf2r gene and overlaps its promoter [2]. The allelic lncRNA transcription across the paternal Igf2r promoter blocks RNA polymerase II recruitment, initially in the absence of repressive chromatin marks. Although in differentiating cells there is acquisition of DNA methylation and histone H3 lysine-9 trimethylation (H3K9me3), which provide an additional layer of repression, continued Airn expression is required to keep the paternal Igf2r promoter repressed [46–49].

At other imprinted domains, lncRNA transcription through promoters induces chromatin repression at promoters early in development [17]. At the Gnas locus on mouse chromosome 2, for instance, an IncRNA transcription unit called ‘Nesp-antisense’ (Nespas) overlaps an oppositely transcribed protein-coding gene called Nesp [50]. Diverse targeting studies in the mouse, including Nespas truncations, led to activation of the normally silent paternal Nesp allele. This highlights the importance of transcriptional overlap in the promoter repression (Figure 1B), which involves both histone and DNA methylation [51,52]. In a similar manner, at the imprinted Zdbf2 locus on mouse chromosome 1, transient transcription during preimplantation development of a lncRNA (called Liz) brings about DNA methylation, close to the Zdbf2 gene [53,54]. As part of the

Figure 1. IncRNA-transcription-mediated interference mechanisms.

(A) One model of transcriptional interference involves collision of RNA Polymerase-II complexes (blue circles). High transcription of an imprinted lncRNA prevents elongation at an overlapping protein-coding gene (black rectangle) transcribed in the opposite direction. In this unidirectional repression model, the promoter of the target gene may show recruitment of transcription factors (TFs, green circles) on both the parental chromosomes. (B) Research on several imprinted genes has evoked another unidirectional model, involving promoter occlusion and repression. IncRNA transcription through a protein-coding gene mediates H3K36me3. This involves SETD2, a KMT brought to the chromatin through interaction with RNA-PolII. This induces de novo DNA methylation by DNMT3B, a methyltransferase that recognizes H3K36me3 through its PWWP domain. Chromatin associated with the target promoter/CpG island may acquire other covalent histone modifications as well — particularly H3K9me3 — with the combined modifications preventing TF binding.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
mechanism, RNA polymerase-II could bring the KMT SETD2 to the chromatin, which induces histone H3 lysine-36 tri-methylation (H3K36me3) across the transcribed region. This histone modification is recognized by the DNA methyltransferase DNMT3B (through its PWWP domain) subsequently, which induces de novo DNA methylation [55–57].

LncRNA-controlled genes at several imprinted domains are located hundreds to thousands of kilobases away from the lncRNA gene [3,58]. These ‘long-distance’ effects have given rise to models in which the lncRNA itself brings about gene repression (Figure 2). Developmental studies have shown that such long-distance repression occurs in a tissue-specific manner at several of the domains [35]. At the Igf2r domain, in the extra-embryonic lineages, the paternally expressed *Airn* mediates the allelic repression of several non-overlapping genes positioned up to several megabases away [3,58]. Upon trunctions of this lncRNA, this long-distance repressive effect no longer occurs [46,58,59].

At Dlk1-Dio3, similarly, the allelic expression of an lncRNA called *Meg3* is required to repress a distant protein-coding gene involved in Notch signaling, called *Dlk1*, in different somatic tissues [60–62]. Knock-out and overexpression studies have suggested that *Meg3* expression controls genes on other chromosomes as well, including TGF-B and p53 pathway genes in human cancer cells [63–67]. A similar *trans* effect has been reported for the lncRNA IPW generated from the *SNHG14* gene at the SNRPN-UBE3A domain (chromosome 15q11–13). This lncRNA dampens *in trans* the promoter of the *MEG3* non-coding polycistron at the *DLK1-DIO3* domain, a process that seems to involve repressive H3K9me3 [68]. This provides yet another example of the intricate regulatory links that exist between imprinted loci [25,69–71].

Another locus showing long-range repressive effects of an lncRNA is the Kcnq1 domain on mouse chromosome 7. The integrity of a 91 kb lncRNA called *Kcnq1ot1*, particularly a 900 bp region at its 5’ end, is important for the allelic repression of no fewer than eight genes at the proximal and distal parts of this multi-megabase domain [72–76]. Several of the target genes show placental-specific imprinting, indicating that lineage-specific factors likely contribute to the long-range repressive effects of this essential lncRNA [3,58,77]. Combined, the above examples illustrate that several imprinted lncRNAs repress protein-coding genes *in cis*, and that some control genes on other chromosomes as well.

Imprinted LncRNAs that mediate long-range chromatin repression

Genome-wide reporter-based studies have revealed that many non-imprinted lncRNA genes exert a positive effect on the expression of other genes in their neighborhood [78,79]. These ‘enhancer-like’ effects of lncRNA genes promoters contrast with the observed effects of imprinted lncRNAs, which mostly repress neighboring genes, through nucleation and spreading of repressive histone modifications across large regions [17].

For the imprinted lncRNAs *Kcnq1ot1*, *Airn* and *Meg3* evidence has been obtained for a direct role in chromatin repression. All three are retained in the nucleus and show a certain degree of *cis*-accumulation onto their imprinted domains. This focal accumulation is still detected hours after chemical inhibition of RNA polymerase-II, concordant with the reported intermediate stabilities of these nuclear lncRNAs [58,75,80,81].

Another similarity between *Kcnq1ot1*, *Airn* and *Meg3* is their reported interaction with components of chromatin regulatory complexes (Table 1). In preimplantation embryonic cells and in the placenta, the paternally expressed, 91 kb *Kcnq1ot1* (Kcnq1 domain) co-localizes and interacts with components of the Polycomb repressor complexes 1 (PRC1) and -2 (PRC2) [74,75,82,83]. It also interacts with EHMT2 (also called G9A) [74], a lysine methyltransferase (KMT) that methylates lysine-9 on histone H3. Concordantly, there is allelic acquisition of EZH2 (PRC2)-mediated H3K27me3, RING1B (PRC1)-mediated H2AK119u1 and EHMT2-mediated H3K9me2 across the paternally repressed genes in trophoblast cells and in the placenta [58,75,77]. In trophoblast stem cells (TSCs) that expressed a truncated form of *Kcnq1ot1*, H3K27me3 levels were strongly reduced across the entire *Kcnq1* imprinted domain [58,74]. *Ehmt2* knock-out in mice gave biallelic expression of several of the placental-specific *Kcnq1ot1* targets in the placenta [84], and, similarly, the essential PRC2 component EED contributes to the process as well [85].

A recent study suggests that the *Kcnq1ot1* lncRNA interacts with the nuclear matrix protein hnRNPK. This RNA-interacting protein is essential for the PRC2-mediated H3K27me3 across the imprinted *Kcnq1* domain in TSCs [58]. One emerging model (Figure 2) is that hnRNPK enhances the recruitment and spreading of PRC1 complexes, a process that initiates at CpG islands that were already bound by PRC complexes beforehand [58,86].
A similar picture has emerged for the paternally expressed, 117 kb lncRNA Airn (Igf2r domain), which in the extraembryonic lineages represses multiple genes across several megabases. In murine TSCs and in placenta, a truncated form of this lncRNA no longer gave gene repression in *cis* [3,58,59]. Recent gene targeting studies in mice show that the long-range repressive effects of Airn are not mediated by regulatory sequence elements within the Airn lncRNA gene, excluding transcriptional interference mechanisms at the distant non-overlapping genes controlled by Airn. Rather, these repressive effects correlate with the broad spreading of PRC2-mediated H3K27me3 and PRC1-mediated H2A-lysine-119 mono-ubiquitination (H2AK119u1) on the paternal chromosome predominantly [58,87]. Airn levels are crucial for the allelic recruitment of RING1B (PRC1) and EZH2 (PRC2). Enhancing lncRNA Airn copy numbers per cell, by CRISPR-VP16 mediated transcriptional activation, gave enhanced recruitment of PRC complexes onto the paternal chromosome [58]. Airn had been shown earlier to facilitate EHMT2 recruitment, which correlates with paternal allele-specific H3K9me3 enrichment [59]. Also Airn lncRNA seems to interact with hnRNPK and this could enhance recruitment of PRC complexes to the chromatin [88]. In agreement with this hypothesis, the allelic enrichment and spreading of H3K27me3 across the large Igf2r domain requires continued expression of the hnRNPK protein in TSCs [58].

Meg3 lncRNA seems to have a similar mode of action, in somatic tissues. Its expression represses in *cis* a developmental gene called Dlk1, located on the proximal side of the imprinted domain [61]. Different studies have reported Meg3 association with PRC2 components (EZH2 and JARID2) and RNA precipitation assays on cross-linked chromatin suggest binding to hnRNPK as well. Also Meg3 lncRNA seems to interact with the Methyl CpG Binding Domain-1 (MBD1) complex and its associated KMTs. In the absence of Meg3 lncRNA, there is no longer acquisition of allelic Dlk1 repression, and this is observed following depletion of EZH2 (PRC2 complex) as well [61]. Similarly as for Airn and Kcnq1ot1 [58], the combined data suggest that Meg3 lncRNA

Table 1 Chromatin repressive functions of imprinted lncRNAs

lncRNA	Imprinted gene domain	Chromatin repressive effect(s) of the lncRNA	References
Kcnq1ot1	Kcnq1 domain	* Gene repression in cis.	[58,74,75,83,84]
		* Enhances allelic recruitment of PRC1/2, EHMT2 and hnRNPK.	
		* Allelic enrichment of H3K27me3, H2AK119u1 and H3K9me2 across broad regions.	
		* Interacts with CTCF and influences higher-order chromatin features.	
Airn (previously called Air)	Igf2r domain	* Mediates gene repression in cis.	[3.46–48,58,59,87]
		* Enhances allelic recruitment of PRC2, EHMT2 and hnRNPK.	
		* Allelic enrichment of H3K27me3, H2AK119ub and H3K9me2 across broad regions.	
		* Interacts with CTCF and influences higher-order chromatin features.	
Meg3 (also called Gtl2)	Dlk1-Dio3 domain	* Its expression mediates gene silencing in cis.	[61,63,65,82,83,131]
		* Likely represses genes in trans as well.	
		* Interacts with PRC2 components (EZH2, JARID2) and possibly also with hnRNPK.	
		* Maintains allelic H3K27me3 enrichment at target genes.	
IPW (?)	SNRPN-UBE3A domain	* Exerts a repressive effect in trans.	[68]
		* Influences H3K9me3 levels at its trans target (Meg3 gene).	
H19 (?)	Igf2-H19 domain	* Gene repressive effects in trans, on other imprinted loci.	[130]
		* Modulates recruitment of the Methyl CpG Binding Domain-1 (MBD1) complex and its associated KMTs.	
		* Modulates H3K9me3 levels at putative target loci.	

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
enhances in an allelic manner the histone modifying activities and possibly also the spreading of PRC complexes, through still poorly understood mechanisms (Figure 2).

The above examples evoke similarities with X-chromosome inactivation in females, which is a cis repressive mechanism controlled by an lncRNA (called Xist) that involves PRC1, PRC2, EHMT2 and hnRNPK, and other proteins not yet been explored in genomic imprinting [1,88,89]. However, care needs to be taken before drawing firm conclusions. The methodologies used to explore Xist, for instance, have been more focused on the lncRNA itself, with functional identification of chromatin-binding RNA motifs. Complementary technologies have also confirmed a direct interaction between Xist and hnRNPK, which has not yet been shown for Airn, Kcnq1ot1 or Meg3 [90–93].

Emerging roles of imprinted IncRNAs in chromatin architecture

Because of the parental allele-specific DNA methylation imprints, at several imprinted domains there is allelic association of chromatin structural proteins. At several ICRs, and also at secondary DMRs at which the allelic methylation is acquired during development, there is binding of CCCTC-binding factor (CTCF) to the unmethylated allele only (the protein does not bind methylated DNA) [94–97]. This allelic CTCF binding and the CTCF-associated cohesin complexes contribute to imprinted gene expression [98]. Particularly, CTCF mediates long-range chromatin loops with distant other regions on the CTCF bound parental chromosome. Recent studies have explored these structural interactions by using allelic ‘chromosome conformation capture’ (3C) and 3D DNA FISH-based approaches [98].
At the *Igf2-H19* locus, CTCF binding to the unmethylated copy of the ICR brings this region in close proximity to distal regions on the maternal chromosome. Both in mice and humans, this insulates the *Igf2* gene from its distally located enhancers, thus leading to the imprinted *Igf2* expression from the paternal chromosome mostly [96,99–102].

At the *Dlk1-Dio3* domain, CTCF binds the promoter–CpG island of the *Meg3* gene, on its unmethylated maternal copy only [96,103]. Also here, allelic CTCF recruitment brings about specific long-distance structural interactions on the maternal chromosome predominantly. Particularly, the *Dlk1* gene shows close proximity to the lncRNA focus on the maternal chromosome, and this proximity effect contributes to its imprinted expression from the paternal chromosome predominantly [96]. Interestingly, 3D distance measurements between FISH probes show that the imprinted domain is more loosely compacted on the maternal chromosome (compared with the paternal chromosome), which may facilitate the observed CTCF-mediated looping patterns [96,104].

A similar picture has emerged for the *Kcnq1* imprinted domain. Here, CTCF binds the unmethylated paternal copy of the ICR, which also comprises the promoter that drives *Kcnq1ot1* expression on this parental chromosome [105]. The allelic CTCF binding mediates specific long-range interactions on the paternal chromosome, detected by 3C-based technology, that correlate with the allelic expression of several genes within the domain [75,102,106]. Another locus that shows both allelic CTCF binding and allelic lncRNA expression is the imprinted *Zdbf2* domain [107].

Could the allelic lncRNA expression and the allelic binding of CTCF be mechanistically linked? Possibly, transcription factor binding and lncRNA promoter activity keep CTCF binding sites unmethylated, thus ensuring the continued allelic association of this chromatin structural protein (which does not bind methylated DNA [97]). Continued promoter activity at *Meg3* protects indeed against the acquisition of *de novo* DNA methylation in early embryonic cells [108,109]. Point mutations within transcription-factor binding sites at the ICRs of the human *IGF2-H19* and *KCNQ1* domains have provided evidence for such a scenario as well [110–114]. Conversely, CTCF itself may protect the unmethylated allele against *de novo* DNA methylation [110,111,115,116], thus ensuring continued transcription of the lncRNA from the unmethylated parental allele only.

Since *Meg3*, *Kcnq1ot1* and *Airn* show a relatively stable focal accumulation onto their locus [58,61,75,80], this could locally influence CTCF-linked higher-order chromatin structure. CTCF comprises indeed a putative RNA binding domain (RBD) that is functionally important [117,118]. Recent studies suggest that binding of locally transcribed RNAs to the RBD is important for CTCF’s association to many of its recognition sites in the genome. This impacts the 3D organization of the genome through the formation of specific chromatin loops [117,118]. It remains to be explored in mice on an F1 background between two phylogenetically distant strains whether there are direct allelic interactions between CTCF and imprinted lncRNAs and to what extent these may influence chromatin loop formation.

How and when lncRNA–protein compartments are formed at imprinted loci, and what controls their developmental regulation, remains unclear. Structural RNA features could be important. Several recent studies explored in detail the structure of *MEG3 in vitro* and in cells [63,119], and interacting RNA loops within the lncRNA were shown to be essential for the trans effects of *MEG3* on the p53 pathway in cancer cells [63]. Whilst the RNA sequences of imprinted lncRNAs are generally not well conserved, specific secondary and tertiary structures may be comparable between different mammalian species, and may be important as docking sites for RNA–protein interactions.

Specific RNA sequence elements could be important as well; for instance in the association of lncRNAs to specific target genes in trans. In one interesting study on human cancer cells, expression of *MEG3* modulated the expression of TGF-B pathway genes, and this was linked to the formation of RNA–DNA triplex structures across several of these target genes [65]. Although further studies are required, such a process could provide specificity to the trans roles of lncRNAs.

The non-imprinted lncRNAs *MALAT1* and *NEAT1* are linked to the formation of membrane-less nuclear bodies called speckles and paraspeckles in specific cell types and under particular conditions [120–122]. Furthermore, emerging evidence on the heterochromatin-linked satellite RNAs and other non-imprinted RNAs suggest that RNA–protein aggregates can potentially form through liquid-liquid phase separation (LLPS) mechanisms (reviewed in [123]), an aspect that has not yet been explored in the context of imprinted domains.

Sub-nuclear localization could impact the process as well, given that at the *Dlk1-Dio3*, *Kcnq1* and other imprinted domains, the lncRNA-expressing parental chromosome displays a more central localization in the
nucleus than the opposite parental chromosome [80,124]. The available data so far evoke a model in which focal accumulation of lncRNA and associated chromatin-regulatory complexes creates an aggregate-like organization that brings specific loci in close proximity through protruding chromatin-loop formation and mediates gene repression (Figure 3). At some imprinted domains, interestingly, lncRNA/protein compartments seem to exclude RNA polymerase-II [75], which could be an important aspect of the imprinting process as well. LncRNA-mediated gene repression at imprinted domains is a rather complicated business, and we are only at the beginning of understanding its intricacies.

Perspectives

- Imprinted gene domains have provided strong paradigms for exploring the regulation and roles of lncRNAs in mammals. Ongoing research efforts unravel *cis*-regulatory chromatin mechanisms and explore how these compare to emerging *trans* roles of imprinted lncRNAs.

- Besides transcriptional interference mechanisms mediated by the expression of lncRNA genes, it is now well accepted that several imprinted lncRNAs themselves control gene repression. These *cis*-repressive actions of lncRNAs likely impact chromatin architecture, involve lncRNA–protein interactions, and specific RNA secondary and tertiary structures could be essential as well. In principle, reported *trans* effects involve the lncRNAs themselves as well [63,65,66,68]. One possibility is that *trans* targets would be transiently positioned in close proximity to lncRNA–protein aggregates, and several recent studies have started to explore this intriguing possibility [102,125].
Novel CRISPR technologies may help to distinguish between the effects of lncRNA transcription and those of the imprinted lncRNA transcripts per se [126,127]. Future research should also unravel which sequence motifs and secondary structures within lncRNAs are important for chromatin repression and architecture, and how these control association of specific lncRNA-interacting proteins. Finally, it is timely to determine the importance of lncRNAs and chromatin architecture in human imprinting disorders (IDs) [4,69]. Initial studies have reported altered chromatin structural interactions within the KCNQ1 and IGF2-H19 domains in the growth disorders Beckwith-Wiedemann Syndrome (BWS) and Silver-Russell Syndrome (SRS) [102,128,129].

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Author Contribution
R.F., D.L. and Y.I. wrote the manuscript.

Acknowledgements
This review is dedicated to the memory of Denise Barlow, who pioneered research on functional long non-coding RNAs. We thank the reviewers for their excellent comments and suggestions and acknowledge grant funding from the Agence National de Recherche through project ANR-18-CE12-0022-02 (‘IMP-REGULOME’) and the Laboratory of Excellence EpiGenMed programme (ANR-10-LABX-12-01). Y.I. acknowledges Fellowship funding from the TOYOBO Biotechnology Foundation, Japan (2019-01) and the Japan Society for the Promotion of Science (JSPS-202160732).

Abbreviations
3C, chromosome conformation capture; CTCF, CCCTC-binding factor; DMR, differentially methylated domain; FISH, fluorescence in situ hybridization; ICR, imprinting control region; LLPS, liquid-liquid phase separation; MBD, Methyl CpG Binding Domain; PRC, Polycomb Repressive Complex; TAD, topologically associating domain.

References
1 Khamlichi, A.A. and Feil, R. (2018) Parallels between mammalian mechanisms of monoallelic gene expression. Trends Genet. 34, 954–971 https://doi.org/10.1016/j.tig.2018.08.005
2 Barlow, D.P. and Bartolomei, M.S. (2014) Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6, a018382 https://doi.org/10.1101/cshperspect.a018382
3 Andergassen, D., Dotter, C.P., Wenzel, D., Sigl, V., Bammer, P.C., Muckenhuber, M. et al. (2017) Mapping the mouse allelome reveals tissue-specific regulation of allelic expression. elife 6, e25125 https://doi.org/10.7554/elifel.25125
4 Monk, D., Mackay, D.J.G., Eggermann, T., Maher, E.R. and Riccio, A. (2019) Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat. Rev. Genet. 20, 235–248 https://doi.org/10.1038/s41576-018-0092-0
5 Tucci, V., Isles, A.R., Kelsey, G., Ferguson-Smith, A.C. and Grp, E.I. (2019) Genomic imprinting and physiological processes in mammals. Cell 176, 952–965 https://doi.org/10.1016/j.cell.2019.01.043
6 Peters, J. (2014) The role of genomic imprinting in biology and disease: an expanding view. Nat. Rev. Genet. 15, 517–530 https://doi.org/10.1038/nrg3766
7 Kelsey, G. and Feil, R. (2013) New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20110326 https://doi.org/10.1098/rstb.2011.0326
8 Pathak, R. and Feil, R. (2018) Environmental effects on chromatin repression at imprinted genes and endogenous retroviruses. Curr. Opin. Chem. Biol. 45, 139–147 https://doi.org/10.1016/j.cbpa.2018.04.015
9 Chen, Z.Y. and Zhang, Y. (2020) Maternal H3K27me3-dependent autosomal and X chromosome imprinting. Nat. Rev. Genet. 21, 555–571 https://doi.org/10.1038/s41576-020-0245-9
10 Pathak, R. and Feil, R. (2017) Oocyte-derived histone H3 lysine 27 methylation controls gene expression in the early embryo. Nat. Struct. Mol. Biol. 24, 685–686 https://doi.org/10.1038/nsmb.3456
11 Hanna, C.W., Perez-Palacios, R., Gahurova, L., Schubert, M., Krueger, F., Biggins, L. et al. (2019) Endogenous retroviral insertions drive non-canonical imprinting in extra-embryonic tissues. Genome Biol. 20, 225 https://doi.org/10.1186/s13059-019-1833-x
12 Chen, Z.Y., Yin, Q.Z., Inoue, A., Zhang, C.X. and Zhang, Y. (2019) Allelic H3K27me3 to allelic DNA methylation switch maintains noncanonical imprinting in extraembryonic cells. Sci. Adv. 5, eaay7246 https://doi.org/10.1126/sciadv.aay7246
Inoue, A., Jiang, L., Lu, F., Suzuki, T. and Zhang, Y. (2017) Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419–424 https://doi.org/10.1038/nature23262

Inoue, A., Chen, Z.Y., Yin, Q.Z. and Zhang, Y. (2018) Maternal Eed knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes Dev. 32, 1525–1536 https://doi.org/10.1101/gad.318675.118

Wangasuriya, I., Gouli, O., Kinkel, S.A., del Ferro, A.T., Beck, T., Roper, E.A. et al. (2020) Smc1h is a maternal effect gene required for genomic imprinting. eLife 9, e55529 https://doi.org/10.7554/eLife.55529

Santini, L., Halbritter, F., Titz-Teixeira, F., Suzuki, T., Asami, M., Ma, X. et al. (2021) Genomic imprinting in mouse blastocysts is predominantly associated with H3K27me3. Nat. Commun. 12, 3804 https://doi.org/10.1038/s41467-021-23510-4

MacDonald, W.A. and Mann, M.R.W. (2020) Long noncoding RNA functionality in imprinted domain regulation. PLoS Genet. 16, e1008930 https://doi.org/10.1371/journal.pgen.1008930

Barlow, D.P. (2011) Genomic imprinting: a mammalian epigenetic discovery model. Annu. Rev. Genet. 45, 379–403 https://doi.org/10.1146/annurev-genet-110410-132459

Girardot, M., Cavaille, J. and Feil, R. (2012) Small regulatory RNAs controlled by genomic imprinting and their contribution to human disease. Epigenetics 7, 1341–1348 https://doi.org/10.4161/epi.22884

Malnou, E.C., Umlauf, D., Mouysset, M. and Cavaille, J. (2019) Imprinted microRNA gene clusters in the evolution, development, and functions of placental mammal. Front. Genet. 10, 706 https://doi.org/10.3389/fgene.2018.00706

Whipple, A.J., Breton-Provencher, V., Jacobs, H.N., Chitta, U.K., Sur, M. and Sharp, P.A. (2020) Imprinted maternally expressed microRNAs antagonize paternal-driven gene programs in neurons. Mol. Cell 78, 85–95 https://doi.org/10.1016/j.molcel.2020.01.020

Gao, Y.Q., Chen, X., Wang, P., Lu, L., Zhao, W., Chen, C. et al. (2015) Regulation of DLK1 by the maternally expressed miR-379/miR-544 cluster may underlie callipyge polar overdominance inheritance. Proc. Natl Acad. Sci. U.S.A. 112, 13627–13632 https://doi.org/10.1073/pnas.1511448112

Davis, E., Cairnet, F., Tordoir, X., Cavaille, J., Ferguson-Smith, A., Cockett, N. et al. (2005) RNA–mediated allelic trans-interaction at the imprinted Rtl1/PEG11 locus. Curr. Biol. 15, 743–749 https://doi.org/10.1016/j.cub.2005.02.060

Ghousein, A. and Feil, R. (2020) Imprinted small RNAs unraveled: maternal MicroRNAs antagonize a paternal-genome-driven gene expression network. Mol. Cell 78, 5–9 https://doi.org/10.1016/j.molcel.2020.03.019

Patton, M.M., Cowley, M., Oakley, R.J. and Feil, R. (2016) Regulatory links between imprinted genes: evolutionary predictions and consequences. Proc. Biol. Sci. 283, 20152760 https://doi.org/10.1098/rspb.2015.276

Noguer-Dance, M., Abu-Amoro, S., Al-Khtib, M., Lefevre, A., Coulin, P., Moore, G.E. et al. (2010) The C19MC microRNA gene cluster (C19MC) is imprinted in the placenta. Hum. Mol. Genet. 19, 3566–3582 https://doi.org/10.1093/hmg/ddq272

Labiaie, S., Marty, V., Bortolin-Cavaille, M.L., Hoareau-Osman, M., Pradere, J.P., Valet, P. et al. (2014) The miR-379/miR-410 cluster at the imprinted Dlk1-Dio3 locus enhances anxiety-related behaviour. Hum. Mol. Genet. 25, 728–739 https://doi.org/10.1093/hmg/ddu510

Hebras, J., Marty, V., Personnaz, J., Mercier, P., Krogh, N., Nielsen, H. et al. (2020) Reassessment of the imprinting of Srd5a115 in the serotonin 2c receptor pathway in a genetically relevant mouse model. eLife 9, e60862 https://doi.org/10.7554/eLife.60862

Bortolin-Cavaille, M.L. and Cavaille, J. (2012) The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader-Willi locus generate canonical box C/D snoRNAs. Nucleic Acids Res. 40, 6800–6807 https://doi.org/10.1093/nar/gks321

Gabory, A., Jammes, H. and Dandolo, L. (2010) The H19 locus is dynamically regulated during embryonic and extraembryonic cell differentiation. Bioessays 32, 473–480 https://doi.org/10.1002/bies.200901170

Brannan, C.I., Dees, E.C., Ingrain, R.S. and Tilghman, S.M. (1990) The product of the H19 gene may function as an RNA. Mol. Cell Biol. 10, 28–36 https://doi.org/10.1128/mcb.10.1.28-36.1990

Keniry, A., Oxley, D., Monnier, P., Kyba, M., Dandolo, L., Smits, G. et al. (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat. Cell Biol. 14, 659–665 https://doi.org/10.1038/ncl.2012.105

Day, B.K., Pfiefer, K. and Dutta, A. (2014) The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev. 28, 491–501 https://doi.org/10.1101/gad.234419.113

Sanli, I. and Feil, R. (2015) Chromatin mechanisms in the developmental control of imprinted gene expression. Int. J. Biochem. Cell Biol. 67, 139–147 https://doi.org/10.1016/j.biocel.2015.04.004

Statelle, L., Guo, C.J., Chen, L.L. and Huarte, M. (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 https://doi.org/10.1038/s41580-020-00315-9

Bassett, A.R., Akhtar, A., Barlow, D.P., Bird, A.P., Brockdorff, N., Duboule, D. et al. (2014) Considerations when investigating IncRNA function in vivo. eLife 3, e03058 https://doi.org/10.7554/eLife.03058

Kalkkinen, M.U. and Adelman, K. (2018) Emerging roles of Non-Coding RNA transcription. Trends Biochem. Sci. 43, 654–667 https://doi.org/10.1016/j.tibs.2018.06.002

Pouler, F.M., Barlow, D.P. and Hudson, D.J. (2012) Mechanisms of long range silencing by the imprinted macro non-coding RNAs. Curr. Opin. Genet. Dev. 22, 283–289 https://doi.org/10.1016/j.gde.2012.02.005

Komienko, A.E., Guerd, P.M., Barlow, D.P. and Pouler, F.M. (2013) Gene regulation by the imprinted long non-coding RNA transcription. BMC Biol. 11, 59 https://doi.org/10.1186/1471-2105-11-59

Meng, L.Y., Person, R.E., Huang, W., Zhu, P.J., Costa-Mattioni, M. and Beaudet, A.L. (2013) Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet. 9, e1004039 https://doi.org/10.1371/journal.pgen.1004039

Hsiao, J.S., Germain, N.D., Wilderseman, A., Stoddard, C., Weijers, L.A., Villafane, G.J. et al. (2019) A biparental boundary element restricts UBE3A imprinting to mature neurons. Proc. Natl Acad. Sci. U.S.A. 116, 2181–2186 https://doi.org/10.1073/pnas.1815279116

Powell, W.T., Oxilson, R.L., Gonzales, M.L., Crary, F.K., Wong, S.S., Adams, S. et al. (2013) R-loop formation at Sndr116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc. Natl Acad. Sci. U.S.A. 110, 13938–13943 https://doi.org/10.1073/pnas.1305428110
Meng, L.Y., Ward, A.J., Chun, S., Bennett, C.F., Beaudet, A.L. and Rigo, F. (2015) Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518, 409–412 https://doi.org/10.1038/nature13975

Lalevee, S. and Feil, R. (2015) Long noncoding RNAs in human disease: emerging mechanisms and therapeutic strategies. Epigenomics 7, 877–879 https://doi.org/10.2217/epi.15.55

Sleutels, F., Zwart, R. and Barlow, D.P. (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 https://doi.org/10.1038/415810a

Lato, P.A., Pauer, F.M., Koerner, M.V., Sengerin, H.B., Hudson, O.J., Stocsits, R.R. et al. (2012) Airn transcriptional overlap, but not its IncRNA expression, explains imprinting at the DLK1-MEG3 cluster on mouse chromosome 12. Genes Dev. 26, 463–478 https://doi.org/10.1101/gad.232058.113

Greenberg, M.V., Glaser, J., Borsos, M., Marjou, F.E., Walter, M., Teissandier, A. et al. (2017) Transient transcription in the early embryo sets an epigenetic state that programs postnatal growth. Nat. Genet. 49, 110–118 https://doi.org/10.1038/ng.3718

Baubec, T., Colombo, D.F., Wirbelauer, C., Schmidt, J., Burger, L., Krebs, A.R. et al. (2015) Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 https://doi.org/10.1038/nature14176

Meng, L.Y., Ward, A.J., Chun, S., Bennett, C.F., Beaudet, A.L. and Rigo, F. (2015) Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Epigenomics 7, 877–879 https://doi.org/10.2217/epi.15.55

Lato, P.A., Stricker, S.H., Steenpass, L., Pauer, F.M., Huang, R., Sengerin, B.H. et al. (2009) An in vitro ES cell imprinting model shows that imprinting expression of the Igf2r gene arises from an allele-specific expression bias. Development 136, 437–448 https://doi.org/10.1242/dev.088848

Peters, J. and Williamson, C.M. (2007) Control of imprinting at the Gnas cluster. EMBO Rep. 8, 518–523 https://doi.org/10.15252/embr.20073380

Santoro, F., Mayer, D., Klement, R.M., Warczok, K.E., Stukalov, A., Barlow, D.P. et al. (2013) Imprinted Igf2r silencing depends on continuous Airn IncRNA expression and is not restricted to a developmental window. Development 140, 1184–1195 https://doi.org/10.1242/dev.088849

Mohammad, F., Pandey, G.K., Mondal, T., Enroth, S., Redrup, L., Gyllenstein, U. et al. (2012) Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development 139, 2792–2803 https://doi.org/10.1242/dev.079566

Pandey, R.R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., Komorowski, J. et al. (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 https://doi.org/10.1016/j.molcel.2008.08.022
Greenberg, M., Teissandier, A., Walter, M., Noorlander, D. and Bourc'his, D. (2019) Dynamic enhancer partitioning instructs activation of a growth-related gene during exit from naive pluripotency. eLife 8, e44057 https://doi.org/10.7554/eLife.44057

Das, P.P., Hendrix, O.A., Apostolou, E., Buchner, A.H., Canver, M.C., Beyaz, S. et al. (2015) PRC2 is required to maintain expression of the maternal Gtl2-Rian-Mirg locus by preventing de novo DNA methylation in mouse embryonic stem cells. Cell Rep. 12, 1456–1470 https://doi.org/10.1016/j.celrep.2015.07.053

Luo, Z., Lin, C., Woodfin, A.R., Bartom, E.T., Gao, X., Smith, E.R. et al. (2016) Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity. Genes Dev. 30, 92–101 https://doi.org/10.1101/gad.270413.115

Habib, W.A., Aziz, S., Brionieu, F., Steunov, V., Thibaud, N., Das Neves, C. et al. (2014) Extensive investigation of the IGF2/H19 imprinting control region reveals novel OCT4/SOX2 binding site defects associated with specific methylation patterns in Beckwith-Wiedemann syndrome. Hum. Mol. Genet. 23, 5763–5773 https://doi.org/10.1093/hmg/ddu290

Demars, J., Shmela, M.E., Khan, A.W., Lee, K.S., Aziz, S., Dehais, P. et al. (2014) Genetic variants within the second intron of the KCNQ1 gene affect CTCF binding and confer a risk of Beckwith-Wiedemann syndrome upon maternal transmission. J. Med. Genet. 51, 502–511 https://doi.org/10.1136/jmedgenet-2014-102368

Hori, N., Kubo, S., Sakasegawa, T., Sakurai, C. and Hatsuzawa, K. (2021) OCT3/4-binding sequence-dependent maintenance of the unmethylated state of CTCF-binding sequences with DNA demethylation and suppression of de novo DNA methylation in the H19 imprinting control region. Gene 769, 144923 https://doi.org/10.1016/j.gene.2020.144923

Kubo, S., Murata, C., Okamura, H., Sakasegawa, T., Sakurai, C., Hatsuzawa, K. et al. (2020) Oct motif variants in Beckwith-Wiedemann syndrome patients disrupt maintenance of the hypomethylated state of the H19/GF2 imprinting control region. FEBS Lett. 594, 1517–1531 https://doi.org/10.1002/1873-4368.13750

Kim, J.D., Kim, H., Ekram, M.B., Yu, S., Faulk, C. and Kim, J. (2011) Rex1/Zfp42 as an epigenetic regulator for genomic imprinting. Genes Dev. 25, 1353–1362 https://doi.org/10.1101/gad.191017

Hori, N., Kubo, S., Sakasegawa, T., Sakurai, C. and Hatsuzawa, K. (2020) OCT3/4-binding sequence-dependent maintenance of the unmethylated state of CTCF-binding sequences with DNA demethylation and suppression of de novo DNA methylation in the H19 imprinting control region. Cell 744, 134 https://doi.org/10.1016/j.cell.2020.144606

Schönherr, C.J., Leiverse, J.M. and Tilghman, S.M. (2003) CTCF maintains differential methylation at the Igf2/H19 locus. Nat. Genet. 33, 66–69 https://doi.org/10.1038/ng1057

Saldana-Meyer, R., Rodríguez-Hernáez, J., Escobar, T., Nishana, M., Jacome-Lopez, K., Nora, E.P. et al. (2019) RNA interactions are essential for CTCF-mediated genome organization. Mol. Cell. 76, 412–422 https://doi.org/10.1016/j.molcel.2019.08.015

Hansen, A.S., Hsieh, T.H.S., Cattaglio, C., Pustova, I., Saldana-Meyer, R., Reinberg, D. et al. (2019) Distinct classes of chromatin loops revealed by deletion of an OCT4 binding site in CTCF. Mol. Cell. 76, 395–411 e13 https://doi.org/10.1016/j.molcel.2019.07.039

Sherpa, C., Rausch, J.W. and Le Grice, S.F.J. (2018) Structural characterization of maternally expressed gene 3 RNA reveals conserved motifs and activity. Genes Dev. 32, 1499–1511 https://doi.org/10.1101/gad.260356.117

Boyd, C.S. and Fox, A.H. (2009) Para-peaklets: nuclear bodies built on long noncoding RNA. J. Cell Biol. 186, 637–644 https://doi.org/10.1083/jcb.200906113

West, J.A., Davis, C.P., Sunwoo, H., Simon, M.D., Sadreyev, R.I., Wang, P.I. et al. (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell. 55, 791–802 https://doi.org/10.1016/j.molcel.2014.07.012

Nakagawa, S., Isobe, Y., Shido, G., Tripathi, V., Zong, X.Y., Hinose, T. et al. (2012) Malat1 is not an essential component of nuclear speckles in mice. RNA 18, 1487–1499 https://doi.org/10.1016/j.rna.2011.033217.112

Thakur, J. and Henikoff, S. (2020) Architectural RNA in chromatin organization. Biochem. Soc. Trans. 48, 1967–1978 https://doi.org/10.1042/BST20191226

Grigorieva, V., Hochledinger, K., Hata, K., Li, E. and Jaenisch, R. (2003) Asynchronous replication timing of imprinted loci is independent of DNA methylation, but consistent with differential subnuclear localization. Genes Dev. 17, 759–773 https://doi.org/10.1101/gad.1059603

Liu, Y., Song, S., Zhang, X., Gong, P., Pan, H., Spica, L. et al. (2016) Expressed alleles of imprinted IGF2, DLK1 and ME33 colocalize in 3D-visualized nucleoli of porcine fetal cells. BMC Cell Biol. 17, 35 https://doi.org/10.1186/s12955-016-0113-9

Perez-Pinera, P., Kocak, D.D., Vockley, C.M., Adler, A.F., Kabadi, A.M., Polstein, L.R. et al. (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10, 973–976 https://doi.org/10.1038/nmeth.2600

Wang, H.W., Xu, X.S., Nguyen, C.M., Liu, Y.X., Gao, Y.C., Lin, X.Q. et al. (2018) CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell 175, 1405–1417 https://doi.org/10.1016/j.cell.2018.09.013

Nativio, R., Sparago, A., Ito, Y., Weksberg, R., Riccio, A. and Murrell, A. (2011) Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith-Wiedemann syndrome and Silver-Russell syndrome. Hum. Mol. Genet. 20, 1363–1374 https://doi.org/10.1093/hmg/ddr018

Navé, N.S.S., Deegan, D.F., Huhn, J., Traxler, E., Lan, Y., Weksberg, R. et al. (2021) The role of CTCF in the organization of the centromeric 11p15 imprinted domain interactome. Nucleic Acids Res. 49, 6315–6330 https://doi.org/10.1093/nar/gkab475

Monnier, P., Martinet, C., Pontis, J., Stancheva, I., Alt-Si-Ali, S. and Dando, L. (2013) H19 IncRNA controls gene expression of the imprinted gene network by recruiting MBD1. Proc. Natl Acad. Sci. U.S.A. 110, 20693–8 https://doi.org/10.1073/pnas.1302101110

Terashima, M., Tange, S., Ishimura, A. and Suzuki, T. (2017) MEG3 long noncoding RNA contributes to the epigenetic regulation of epithelial-mesenchymal transition in lung cancer cell lines. J. Biol. Chem. 292, 62–99 https://doi.org/10.1074/jbc.M116.750950