Complete open Kähler manifolds with non-negative bisectional curvature and non-maximal volume growth

James W. Ogaja

Abstract. It is still an open problem that a complete open Kähler manifold with positive bisectional curvature is Stein. This paper partially resolve the problem by putting a restriction to volume growth condition. The partial solution here improves the observation in ([8], page 341). The improvement is based on assuming a weaker volume growth condition that is is not sufficiently maximal.

Mathematics Subject Classification (2010). Primary 53C21; Secondary 53C55.

Keywords. Cone of rays, volume growth comparison, nonnegative Ricci curvature, positive bisectional curvature, Kähler manifold, Stein manifold, Busemann function.

1. Introduction

One of the most useful tool in studying structures of nonnegatively curved complete open manifolds is the Busemann function. The spherical Busemann function is defined as

\[b_p(x) = \lim_{r \to \infty} \{r - d(x, \partial(B(p, r)))\}, \]

In the process of proving soul theorem in [3], Cheeger and Gromoll proved that a complete open Riemaniann manifold with nonnegative sectional curvature admits a convex and exhaustion Busemann function, \(b_p \).

It still remains unknown whether complete open manifolds with non-negative Ricci curvature admit exhaustion Busemann function, except with the restriction to maximum volume growth as was proved by Shen in [7]. In this paper we drop the maximum volume growth condition and adapt a weaker condition.
Let $S_p M \subset T_p M$ be a unit tangent sphere in the tangent space $T_p M$ for a point $p \in M$. For any subset $N \subset S_p M$, define

$$C(N) = \{q \in M \mid \text{there is a minimizing geodesic } \gamma \text{ from } p \text{ to } q \text{ such that } \gamma'(0) \in N\}$$

to be the cone over N. The restriction of a geodesic ball of radius r centered at p to $C(N)$ is denoted by

$$B_N(p, r) = B(p, r) \cap C(N)$$

Let $\Sigma = \{v \subset S_p M \mid \exp_p(rv) : [0, \infty) \to M \text{ is a ray}\}$. A cone of rays is defined by $C(\Sigma)$. Consequently,

$$B_\Sigma(p, r) = B(p, r) \cap C(\Sigma).$$

From lemma 4 in [5] we have

Lemma 1.1 ([5] Ordway-Stephens-Yang]). Let M^n be a complete open manifold with $\text{Ric}_M \geq 0$. Suppose that M has a maximum volume growth i.e

$$\lim_{r \to \infty} r^{-n} \text{Vol}(B(p, r)) = \alpha_M, \ \alpha_M > 0$$

then

$$\lim_{r \to \infty} r^{-n} \text{Vol}(B_\Sigma(p, r)) = \alpha_M$$

By limit properties, we obtain the following corollary

Corollary 1.2. Let M^n be a complete open manifold with $\text{Ric}_M \geq 0$. Suppose that M has a maximum volume growth. Then

$$\text{Vol}(B_\Sigma(p, r)) \sim \text{Vol}(B(p, r)),$$

\sim means asymptotic

It is essential to note that nonnegative Ricci curvature ensures that the volume growth condition in corollary 1.2 above is independent of the base point: let $p, q \in M^n$ and $d = d(p, q)$. Then it is clear that $B(p, r) \subset B(q, r+d)$ and $B(q, r) \subset B(p, r+d)$. By Bishop-Gromov volume comparison theorem,

$$\lim_{r \to \infty} \inf \frac{\text{Vol}(B_\Sigma(p, r))}{\text{Vol}(B(p_1, r))} \geq \lim_{r \to \infty} \inf \left\{ \left[\frac{r}{r+d} \right]^n \frac{\text{Vol}(B_\Sigma(p, r+d))}{\text{Vol}(B(p_1, r))} \right\}$$

$$\geq \lim_{r \to \infty} \inf \left\{ \left[\frac{r}{r+d} \right]^n \frac{\text{Vol}(B_\Sigma(q, r))}{\text{Vol}(B(p_1, r))} \right\}$$

$$\geq \lim_{r \to \infty} \left[\frac{r}{r+d} \right]^n \lim_{r \to \infty} \inf \frac{\text{Vol}(B_\Sigma(q, r))}{\text{Vol}(B(p_1, r))}$$

$$= \lim_{r \to \infty} \inf \frac{\text{Vol}(B_\Sigma(q, r))}{\text{Vol}(B(p_1, r))}$$
Likewise
\[
\lim_{r \to \infty} \inf \frac{\text{Vol}(B_\Sigma(p, r))}{\text{Vol}(B(p_1, r))} \leq \lim_{r \to \infty} \inf \frac{\text{Vol}(B_\Sigma(q, r))}{\text{Vol}(B(p_1, r))}
\]

Lemma 1.3. Let \(M^n \) be a complete open manifold with \(\text{Ric}_M \geq 0 \). For a fixed \(p_1 \in M \), the volume growth
\[
\lim_{r \to \infty} \inf \left[\frac{\text{Vol}(B_\Sigma(p, r))}{\text{Vol}(B(p_1, r))} \right]^{-1} = \alpha(n)
\]
is independent of the base point \(p \in M \).

The converse to corollary 1.2 above is not true. In other words, the volume growth condition
\[
\text{Vol}(B_\Sigma(p, r)) \sim \text{Vol}(B(p, r)), \quad (1.1)
\]
does not necessarily imply maximum volume growth.

For example, the vertex 0 of a paraboloid \(M \subset \mathbb{R}^{n+1} \) has an empty cut locus. Thus volume growth condition (1.1) holds at 0 and extends to other points by lemma 1.3 above. On the other hand, as a special case of lemma 4.1 in [6], the paraboloid \(M \) in \(\mathbb{R}^{n+1} \) defined by
\[
M = \{(x_1, x_2, \ldots, x_n, z) : z = x_1^2 + x_2^2 + \cdots + x_n^2\}
\]
has a volume growth of at most \(r^{n+1} \) which is not maximal. Furthermore, we can create a non-empty cut locus of the point 0 at the same time maintaining positive curvature and manifesting volume growth conditions like that of (1.1).

Example 1.4. Consider \(M = \{(x_1, x_2, \ldots, x_n, z) : z = x_1^2 + x_2^2 + \cdots + x_n^2\} \subset \mathbb{R}^{n+1} \). \((M, ds_M^2)\) is a complete open manifold with positive Ricci curvature \((n > 2)\). Here, \(ds_M^2 \) is an induced Euclidean metric. For \(0 \neq q \in M \), let \(D_l(q) \) be a geodesic ball of radius \(l \) centered at \(q \). Consider a smooth function \(f : D_l(q) \to \mathbb{R} \). For a small neighborhood \(U \) of \(D_l(q) \), there exists a smooth function \(h : M \to \mathbb{R} \) such that \(h|_{D_l(q)} = f \) and \(\text{supp } h \subset U \). For \(\varepsilon > 0 \), denote \(M_\varepsilon = (M, ds_M^2 + \varepsilon h ds_M^2) \). We can choose \(\varepsilon \) small enough such that the Ricci curvature remains positive throughout \(M \) and an extension \(\gamma : [0, \infty) \to M_\varepsilon \) of a minimizing geodesic from 0 to \(q \) leaves \(D_l(q) \) and intersect a ray at a point. It follows that the cut locus of the point 0 is no longer empty. Since only rays intersecting and neighboring \(D_l(q) \) are affected in this new manifold, for a fixed \(a \approx 1, a \leq 1 \), we can choose \(l > 0 \) and \(\varepsilon > 0 \) small enough such that
\[
\lim_{r \to \infty} \left[\frac{\text{Vol}(B_\Sigma(p, r))}{\text{Vol}(B(p, r))} \right]^{-1} = a
\]

Given two real valued functions \(f, g : \mathbb{R} \to \mathbb{R} \). Denote the limit
\[
\lim_{r \to \infty} f(r)[g(r)]^{-1} = a, \quad a > 0
\]
if it exists by \(f \sim_a g \).

Now we extend the result by Shen in [7] by replacing the maximum volume growth condition with a weaker volume growth condition.
Lemma 1.5. Let M be a complete open manifold with $\text{Ric}_M \geq 0$. Let $[9^n - 1]9^{-n} < a \leq 1$ where $n = \text{dim}_\mathbb{R} M$. If
\[
\lim_{r \to \infty} \inf \left[\text{Vol}(B_\Sigma(p, r))]\text{Vol}(B(p, r))\right]^{-1} = a,
\]
then for any $t \in \mathbb{R}$, $b_p^{-1}(t)$ is compact.

The following theorem is the main result in this paper:

Theorem 1.6. Let M be a complete open Kähler manifold with nonnegative bisectional curvature. Then M is a Stein manifold if the followings holds
(a) The bisectional curvature is positive outside a compact set
(b) \[
\text{Vol}(B_\Sigma(p, r)) \sim_a \text{Vol}(B(p, r)),
\]
where $[9^{2n} - 1]9^{-2n} < a \leq 1$ and $n = \text{dim}_\mathbb{C} M$

2. Proofs

We will prove Lemma 1.5 first then Theorem 1.6.

Proof of Lemma 1.5. Proving by contradiction, we assume that $b^{-1}(t)$ is non-compact and then show that the assumed volume growth condition doesn’t hold.

Define the excess function for two points p, q as
\[
e_{p,q} = d(p, x) + d(x, q) - d(p, q).
\]

By the triangle inequality, we have that
\[
e_{p,q}(x) \leq 2h(x) \tag{2.1}
\]

Denote $r_p(x) = d(p, x)$.
Assume that the minimizing geodesic between p and q is part of a ray emanating from p. Now, taking the limit of inequality (2.1) as q goes to infinity, we end up with the following inequality
\[
r_p(x) - \lim_{t \to \infty} \{t - d(x, \gamma(t))\} \leq 2h_\gamma(x), \tag{2.2}
\]

where $h_\gamma(x)$ is a distance from x to a ray γ emanating from p. Since
\[
r_p(x) - b_p(x) \leq r_p(x) - \lim_{t \to \infty} \{t - d(x, \gamma(t))\},
\]

for each ray γ emanating from p, inequality (2.2) implies that
\[
r_p(x) - b_p(x) \leq 2h_\gamma(x) \tag{2.3}
\]

Let $h_p(x) = d(x, Rp)$, where Rp is a union of rays emanating from p. Since inequality (2.3) holds for any ray γ, we have that
\[
r_p(x) - b_p(x) \leq 2h_p(x) \tag{2.4}
\]

Next, note that
\[
C(\Sigma) \cap C(\Sigma^c) = \emptyset.
\]
Therefore, for any \(r > 0 \) and \(p \in M \), we have that

\[
B_\Sigma(p, r) \cap B_{\Sigma^c}(p, r) = \emptyset
\]

Observe that \(B(x, h_p(x)) \subset C(\Sigma^c) \). It follows that \(B(x, h_p(x)) \subset B_{\Sigma^c}(p, r_p(x) + h_p(x)) \).

Since \(b_p \) is exhaustion whenever \(h_p \) is bounded, we assume that \(h_p \) is unbounded. Due to noncompactness of \(b_p^{-1}(t) \), we can construct a diverging sequence \(\{x_m\} \subset b_p^{-1}(t) \). Consequently, \(\{h_p(x_m)\} \) is a divergence sequence.

Denote \(h_m = h_p(x_m) \) and \(r_m = r(x_m) \). By Bishop-Gromov volume comparison theorem,

\[
\frac{Vol(B_{\Sigma^c}(p, r_m - h_m))}{Vol(B_{\Sigma^c}(p, r_m + h_m))} \geq \left[\frac{r_m - h_m}{r_m + h_m} \right]^n
\]

It is easy to verify that

\[
B(x_m, h_m) \subset B_{\Sigma^c}(p, r_m + h_m) \setminus B_{\Sigma^c}(p, r_m - h_m) \quad (2.5)
\]

and that

\[
Vol(B(x_m, h_m)) \leq Vol(B_{\Sigma^c}(p, r_m + h_m)) - Vol(B_{\Sigma^c}(p, r_m - h_m))
\]

\[
\leq \left\{ \left[\frac{r_m - h_m}{r_m + h_m} \right]^n \right\} Vol(B_{\Sigma^c}(p, r_m + h_m))
\]

\[
\leq Vol(B_{\Sigma^c}(p, 3h_m + a)) \quad (2.6)
\]

Inequality 2.6 is due to the fact that \(h \leq r \) and

\[
r_p(x) - b_p(x) \leq 2h_p(x)
\]

In particular

\[
r_p(x) + h(x) \leq 3h(x) + a, \text{ when } x \in b_p^{-1}(a)
\]

Now, denote \(r_1(x) = d(x_1, x) \). By triangle inequality and (2.4),

\[
\lim_{m \to \infty} \sup_{h_p(x_m)} \frac{r_1(x_m)}{h_p(x_m)} \leq \lim_{m \to \infty} \sup_{h_p(x_m)} \frac{r_1(p)}{h_p(x_m)} + \lim_{l \to \infty} \sup_{h_p(x_m)} \frac{r_p(x_m)}{h_p(x_m)}
\]

\[
\leq 2 \quad (2.7)
\]

Also note that

\[
B(x_1, h_m) \subset B(x_m, h_m + r_1(x_m)) \quad (2.8)
\]

By volume comparison theorem we obtain

\[
Vol(B(x_m, h_m)) \geq \left[\frac{h_m}{h_m + r_1(x_m)} \right]^n Vol(B(x_m, h_m + r_1(x_m)) \quad (2.9)
\]
Denote \(f_p(r) = Vol(B(p,r)) \) for a fixed \(p \in M \). From (2.7), (2.8), and (2.9), we have

\[
\lim_{m \to \infty} \inf \frac{Vol(B(x_m, h_m))}{f_p(h_m)} \geq \lim_{m \to \infty} \inf \left[\frac{h_m}{(h_m + r_1(x_m))} \right]^n \frac{Vol(B(x_m, h_m + r_1(x_m)))}{f_p(h_m)} \geq \lim_{m \to \infty} \inf \left[\frac{h_m}{(h_m + r_1(x_m))} \right]^n \frac{Vol(B(x_1, h_m))}{f_p(h_m)} \geq \lim_{m \to \infty} \inf \left[\frac{1}{(1 + \frac{r_1(x_m)}{h_m})^n} \right] \lim_{m \to \infty} \inf \frac{Vol(B(x_1, h_m))}{f_p(h_m)} \geq 3^{-n} \]

(2.10)

The last inequality is due to the fact that the volume growth

\[
\lim_{m \to \infty} \inf [Vol(B(x_1, h_m))] \left[f_p(h_m) \right]^{-1}
\]

is independent of the base point \(x_1 \).

From inequalities (2.6), (2.10), and the volume comparison theorem, we have

\[
3^{-n} \leq \lim_{m \to \infty} \inf \frac{Vol(B(x_m, h_m))}{f_p(h_m)} \leq \lim_{m \to \infty} \inf \frac{Vol(B_{\Sigma^c}(p, 3h_m + a))}{f_p(h_m)} \leq 3^n \lim_{m \to \infty} \inf \frac{Vol(B_{\Sigma^c}(p, h_m))}{f_p(h_m)} \]

(2.11)

Which leads to the inequality

\[
\lim_{m \to \infty} \inf [Vol(B_{\Sigma^c}(p, h_m))] \left[f_p(h_m) \right]^{-1} \geq 9^{-n} \]

(2.12)

Since

\[
Vol(B(p, r) = Vol(B_{\Sigma^c}(p, r)) + Vol(B_{\Sigma^c}(p, r)),
\]

the volume growth condition assumption implies that

\[
\lim_{r \to \infty} \inf [Vol(B_{\Sigma^c}(p, r))] \left[f_p(r) \right]^{-1} < 9^{-n} \]

(2.13)

Evidently, inequality (2.12) contradicts inequality (2.13). Hence \(b_p^{-1}(t) \) must be compact.

\[\Box \]

Proof of Theorem 1.6. The Ricci curvature is nonnegative and positive outside a compact set because the bisectional curvature is assumed. The Busemann function \(b_p \) is a continuous plurisubharmonic exhaustion by lemma 1.5 and a result by H.Wu in [9]. In the same paper (Theorem C [9]), it follows that
there exist a strictly plurisubharmonic exhaustion function. This completes the proof.

3. Applications

Let $H_k(M, \mathbb{Z})$ denote the k-th singular homology group of M with integer coefficients. It is well known that if M is a complete proper Riemannian n-dimensional manifold with $\text{Ric}_M \geq 0$, then using Morse theorem, M has the homotopy type of a CW complex with cells each of dimension $\leq n-2$ and $H_i(M, \mathbb{Z}) = 0$, $i \geq n - 1$. ([6], [4])

As an application of lemma 1.5, we have the following result.

Corollary 3.1. Let (M, g) be a complete open manifold with $\text{Ric}_M \geq 0$. If $\text{Vol}(B_S(p, r)) \sim_a \text{Vol}(B(p, r))$, where $[9^n - 1]9^{-n} \leq a < 1$, then M has the homotopy type of a CW complex with cells each of dimension $\leq n - 2$. In particular, $H_i(M, \mathbb{Z}) = 0$, $i \geq n - 1$.

It is also known that if M is a Stein manifold of n-complex dimension, then the homology groups $H_k(M, \mathbb{Z})$ are zero if $k > n$ and $H_n(M, \mathbb{Z})$ is torsion free (theorem 1 [1]), [2]. As an application of theorem 1.6, we have the following result.

Corollary 3.2. Let M be a complete open Kähler manifold with nonnegative bisectional curvature. If the followings holds

(a) The bisectional curvature is positive outside a compact set
(b) $\text{Vol}(B_S(p, r)) \sim_a \text{Vol}(B(p, r))$, where $[9^{2n} - 1]9^{-2n} \leq a < 1$ and $n = \text{dim}_C M$

then $H_k(M, \mathbb{Z}) = 0$, for $k > n$ and $H_n(M, \mathbb{Z})$ is torsion free

Acknowledgement: Thanks to Professor Bun Wong for his advice.

References

[1] A. Andreoti A. and T. Frankel, *The Lefchetz theorem on hyperplane sections*. Annals of Math. 69 (1959), 713-717
[2] Andreoti A. and R. Narasimhan, *A topological property of Runge pairs*. Annals of Math. 76 (1962), 499-509
[3] J.Cheeger and D. Gromoll, *On the structure of complete manifolds of nonnegative curvature*. Ann. of Math. (2) 96 (1972), 413-443
[4] J. Milnor, *Morse theory*, Notes by M. Spivak and R. Wells. Princeton University Press, Princeton NJ 1963.
[5] D. Ordway, B. Stephens, and D. G. Yang, *Large volume growth and finite topological type*. Proceedings of AMS Vol.128, No.4 (1999), 1191-1196.

[6] Zhongmin Shen and Guofang Wei, *Volume growth and finite topology type*. Proceedings of Symposia in Pure Math. Vol.54 (1993), part 3.

[7] Zhongmin Shen, *Complete manifolds with nonnegative Ricci curvature and large volume growth*. Invent. math.125, (1996), 393-404

[8] B. Wong and Q.-S. Zhang, *Refined gradient bounds, poisson equations and some applications to open Kähler manifolds*. Asian J. Math Vol.7, No. 3 (2003), 337-364.

[9] H. Wu, *An elementary method in the study of nonnegative curvature*. Acta. Math.142 (1979), 57-78

James W. Ogaja
University of California Riverside
900 University Avenue
Riverside, CA 92521, USA
e-mail: jogaj001@ucr.edu