Classification of Invariant Differential Operators for Non-Compact Lie Algebras via Parabolic Relations

V.K. Dobrev
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria
E-mail: dobrev@inrne.bas.bg

Abstract. In the present paper we review the progress of the project of classification and construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we called earlier 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduced recently the new notion of parabolic relation between two non-compact semisimple Lie algebras \(G \) and \(G' \) that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra \(E_7(7) \) which is parabolically related to the CLA \(E_7(-25) \). Other interesting examples are the orthogonal algebras \(so(p, q) \) all of which are parabolically related to the conformal algebra \(so(n, 2) \) with \(p + q = n + 2 \), the parabolic subalgebras including the Lorentz subalgebra \(so(n - 1, 1) \) and its analogs \(so(p - 1, q - 1) \). Further we consider the algebras \(sl(2n, \mathbb{R}) \) and for \(n = 2k \) the algebras \(su^*(4k) \) which are parabolically related to the CLA \(su(n, n) \). Further we consider the algebras \(sp(r, r) \) which are parabolically related to the CLA \(sp(2r, \mathbb{R}) \). We consider also \(E_6(0) \) and \(E_6(2) \) which are parabolically related to the hermitian symmetric case \(E_6(-14) \).

1. Introduction

Invariant differential operators play very important role in the description of physical symmetries - starting from the early occurrences in the Maxwell, d’Allembert, Dirac, equations, to the latest applications of (super-)differential operators in conformal field theory, supergravity and string theory (for reviews, cf. e.g., [1], [2]). Thus, it is important for the applications in physics to study systematically such operators. For more relevant references cf., e.g., [3–60], and others throughout the text.

In a recent paper [61] we started the systematic explicit construction of invariant differential operators. We gave an explicit description of the building blocks, namely, the parabolic subgroups and subalgebras from which the necessary representations are induced. Thus we have set the stage for study of different non-compact groups.

Since the study and description of detailed classification should be done group by group we

\[\text{E-mail: dobrev@inrne.bas.bg} \]

\[\text{Abstract. In the present paper we review the progress of the project of classification and construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we called earlier 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduced recently the new notion of parabolic relation between two non-compact semisimple Lie algebras } G \text{ and } G' \text{ that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra } E_7(7) \text{ which is parabolically related to the CLA } E_7(-25) \text{. Other interesting examples are the orthogonal algebras } so(p, q) \text{ all of which are parabolically related to the conformal algebra } so(n, 2) \text{ with } p + q = n + 2, \text{ the parabolic subalgebras including the Lorentz subalgebra } so(n - 1, 1) \text{ and its analogs } so(p - 1, q - 1). \text{ Further we consider the algebras } sl(2n, \mathbb{R}) \text{ and for } n = 2k \text{ the algebras } su^*(4k) \text{ which are parabolically related to the CLA } su(n, n). \text{ Further we consider the algebras } sp(r, r) \text{ which are parabolically related to the CLA } sp(2r, \mathbb{R}). \text{ We consider also } E_6(0) \text{ and } E_6(2) \text{ which are parabolically related to the hermitian symmetric case } E_6(-14). \]
had to decide which groups to study. One first choice would be non-compact groups that have discrete series of representations. By the Harish-Chandra criterion [62] these are groups where holds:

$$\text{rank} \ G = \text{rank} \ K,$$

where K is the maximal compact subgroup of the non-compact group G. Another formulation is to say that the Lie algebra \mathfrak{g} of G has a compact Cartan subalgebra.

Example: the groups $SO(p, q)$ have discrete series, except when both p, q are odd numbers.

This class is rather big, thus, we decided to consider a subclass, namely, the class of Hermitian symmetric spaces. The practical criterion is that in these cases, the maximal compact subalgebra K is of the form:

$$K = \mathfrak{so}(2) \oplus \mathfrak{K}.'$$

(1)

The Lie algebras from this class are:

$$\mathfrak{so}(n, 2), \mathfrak{sp}(n, R), \mathfrak{su}(m, n), \mathfrak{so}^*(2n), \mathfrak{E}_{6(-14)}, \mathfrak{E}_{7(-25)}$$

(2)

These groups/algebras have highest/lowest weight representations, and relatedly holomorphic discrete series representations.

The most widely used of these algebras are the conformal algebras $\mathfrak{so}(n,2)$ in n-dimensional Minkowski space-time. In that case, there is a maximal Bruhat decomposition [63]: that has direct physical meaning:

$$\mathfrak{so}(n, 2) = \mathfrak{M} \oplus \mathfrak{A} \oplus \mathfrak{N} \oplus \tilde{\mathfrak{N}}, \quad \mathfrak{M} = \mathfrak{so}(n-1, 1), \quad \dim \mathfrak{A} = 1, \quad \dim \mathfrak{N} = \dim \tilde{\mathfrak{N}} = n$$

(3)

where $\mathfrak{so}(n-1, 1)$ is the Lorentz algebra of n-dimensional Minkowski space-time, the subalgebra $\mathfrak{A} = \mathfrak{so}(1, 1)$ represents the dilatations, the conjugated subalgebras $\mathfrak{N}, \tilde{\mathfrak{N}}$ are the algebras of translations, and special conformal transformations, both being isomorphic to n-dimensional Minkowski space-time.

The subalgebra $\mathfrak{P} = \mathfrak{M} \oplus \mathfrak{A} \oplus \mathfrak{N}$ ($\cong \mathfrak{M} \oplus \mathfrak{A} \oplus \tilde{\mathfrak{N}}$) is a maximal parabolic subalgebra.

There are other special features which are important. In particular, the complexification of the maximal compact subgroup is isomorphic to the complexification of the first two factors of the Bruhat decomposition:

$$\mathfrak{K}^C = \mathfrak{so}(n, \mathbb{C}) \oplus \mathfrak{so}(2, \mathbb{C}) \cong \mathfrak{so}(n-1, 1)^C \oplus \mathfrak{so}(1, 1)^C = \mathfrak{M}^C \oplus \mathfrak{A}^C.$$

(4)

In particular, the coincidence of the complexification of the semi-simple subalgebras:

$$\mathfrak{K}^C = \mathfrak{M}^C$$

(*)

means that the sets of finite-dimensional (nonunitary) representations of \mathfrak{M} are in 1-to-1 correspondence with the finite-dimensional (unitary) representations of \mathfrak{K}'. The latter leads to the fact that the corresponding induced representations are representations of finite \mathfrak{K}-type [62].

It turns out that some of the hermitian-symmetric algebras share the above-mentioned special properties of $\mathfrak{so}(n, 2)$. This subclass consists of:

$$\mathfrak{so}(n, 2), \mathfrak{sp}(n, \mathbb{R}), \mathfrak{su}(n, n), \mathfrak{so}^*(4n), \mathfrak{E}_{7(-25)}$$

(5)

the corresponding analogs of Minkowski space-time V being:

$$\mathbb{R}^{n-1,1}, \text{Sym}(n, \mathbb{R}), \text{Herm}(n, \mathbb{C}), \text{Herm}(n, \mathbb{Q}), \text{Herm}(3, \mathbb{O})$$

(6)
In view of applications to physics, we proposed to call these algebras 'conformal Lie algebras', (or groups).

The corresponding groups are also called 'Hermitian symmetric spaces of tube type' [64]. The same class was identified from different considerations in [65] called there 'conformal groups of simple Jordan algebras'. In fact, the relation between Jordan algebras and division algebras was known long time ago. Our class was identified from still different considerations also in [66] where they were called 'simple space-time symmetries generalizing conformal symmetry'.

We have started the study of the above class in the framework of the present approach in the cases: $\mathfrak{so}(n,2)$, $\mathfrak{su}(n,n)$, $\mathfrak{sp}(n,\mathbb{R})$, $E_7(-25)$, [67], [68], [69], [70], resp., and we have considered also the algebra $E_6(-14)$, [71].

Lately, we discovered an efficient way to extend our considerations beyond this class introducing the notion of 'parabolically related non-compact semisimple Lie algebras' [72].

- **Definition:** Let G, G' be two non-compact semisimple Lie algebras with the same complexification $G^C \cong G'^C$. We call them parabolically related if they have parabolic subalgebras $P = M \oplus A \oplus N$, $P' = M' \oplus A' \oplus N'$, such that: $M^C \cong M'^C (\Rightarrow P^C \cong P'^C)$.

Certainly, there are many such parabolic relationships for any given algebra G. Furthermore, two algebras G, G' may be parabolically related via different parabolic subalgebras.

We summarize the algebras parabolically related to conformal Lie algebras with maximal parabolics fulfilling ($*$) in the following table:
Table of conformal Lie algebras (CLA) G with M-factor fulfilling (\ast) and the corresponding parabolically related algebras G'

G	K'	M	G'	M'
$so(n, 2)$	$so(n)$	$so(n - 1, 1)$	$so(p, q)$,	$so(p - 1, q - 1)$
$n \geq 3$			$p + q = n + 2$; $sl(4, \mathbb{R}), n = 4$	$sl(2, \mathbb{R}) \oplus sl(2, \mathbb{R})$
$su(n, n)$	$su(n) \oplus su(n)$	$sl(n, \mathbb{C})_{\mathbb{R}}$	$sl(2n, \mathbb{R})$	$sl(n, \mathbb{R}) \oplus sl(n, \mathbb{R})$
$n \geq 3$			$su^*(2n), n = 2k$	$su^*(2k) \oplus su^*(2k)$
$sp(2r, \mathbb{R})$	$su(2r)$	$sl(2r, \mathbb{R})$	$sp(r, r)$	$su^*(2r)$
rank $= 2r \geq 4$				
$so^*(4n)$	$su(2n)$	$su^*(2n)$	$so(2n, 2n)$	$sl(2n, \mathbb{R})$
$n \geq 3$			$n(2n - 1)$	
$E_7(-25)$	e_6	$E_6(-26)$	$E_7(7)$	$E_6(6)$

where we display only the semisimple part K' of K; $sl(n, \mathbb{C})_{\mathbb{R}}$ denotes $sl(n, \mathbb{C})$ as a real Lie algebra, (thus, $(sl(n, \mathbb{C})_{\mathbb{R}})^c = sl(n, \mathbb{C}) \oplus sl(n, \mathbb{C})$); e_6 denotes the compact real form of E_6; and we have imposed restrictions to avoid coincidences or degeneracies due to well known isomorphisms: $so(1, 2) \cong sp(1, \mathbb{R}) \cong su(1, 1)$, $so(2, 2) \cong so(1, 2) \oplus so(1, 2)$, $su(2, 2) \cong so(4, 2)$, $sp(2, \mathbb{R}) \cong so(3, 2)$, $so^*(4) \cong so(3) \oplus so(2, 1)$, $so^*(8) \cong so(6, 2)$.

After this extended introduction we give the outline of the paper. In Section 2 we give the preliminaries, actually recalling and adapting facts from [61]. In Section 3 we consider the case of the pseudo-orthogonal algebras $so(p, q)$ which are parabolically related to the conformal algebra $so(n, 2)$ for $p + q = n + 2$. In Section 4 we consider the CLA $su(n, n)$ and the parabolically related $sl(2n, \mathbb{R})$, and for $n = 2k$: $su^*(4k)$. In Section 5 we consider the CLA $sp(n)$ and - for $n = 2r$ - the parabolically related $sp(r, r)$. In Section 6 we consider the CLA $E_7(-25)$ and the parabolically related $E_7(7)$. In Section 7 we consider the hermitian symmetric case $E_6(-14)$ and the parabolically related $E_6(6)$ and $E_6(2)$.

2. Preliminaries

Let G be a semisimple non-compact Lie group, and K a maximal compact subgroup of G. Then we have an Iwasawa decomposition $G = K A_0 N_0$, where A_0 is Abelian simply connected vector subgroup of G, N_0 is a nilpotent simply connected subgroup of G preserved by the action of A_0. Further, let M_0 be the centralizer of A_0 in K. Then the subgroup $P_0 = M_0 A_0 N_0$ is a minimal parabolic subgroup of G. A parabolic subgroup $P = M' A' N'$ is any subgroup of G which contains a minimal parabolic subgroup.

Further, let $\mathcal{G}, \mathcal{K}, \mathcal{P}, \mathcal{M}, \mathcal{A}, \mathcal{N}$ denote the Lie algebras of G, K, P, M, A, N, resp.

For our purposes we need to restrict to maximal parabolic subgroups $P = MAN$, i.e. rank $A = 1$, resp. to maximal parabolic subalgebras $\mathcal{P} = \mathcal{M} \oplus \mathcal{A} \oplus \mathcal{N}$ with dim $\mathcal{A} = 1$.

Let ν be a (non-unitary) character of A, $\nu \in \mathcal{A}^*$, parameterized by a real number d, called the conformal weight or energy.

Further, let μ fix a discrete series representation D^{μ} of M on the Hilbert space V_μ, or the finite-dimensional (non-unitary) representation of M with the same Casimirs.

We call the induced representation $\chi = \text{Ind}_H^G(\mu \otimes \nu \otimes 1)$ an elementary representation of G [73]. (These are called generalized principal series representations (or limits thereof) [74].)

Their spaces of functions are:

$$C_\chi = \{ \mathcal{F} \in C^\infty(G, V_\mu) \mid \mathcal{F}(g) \text{man} = e^{-\nu(H)} \cdot D^{\mu}(m^{-1}) \mathcal{F}(g) \}$$

where $a = \exp(H) \in A'$, $H \in \mathcal{A}'$, $m \in M'$, $n \in N'$. The representation action is the left regular action:

$$(T^\lambda(g)\mathcal{F})(g') = \mathcal{F}(g^{-1}g') \ , \ g, g' \in G \ .$$

• An important ingredient in our considerations are the highest/lowest weight representations of \mathcal{G}^C. These can be realized as (factor-modules of) Verma modules \bar{V}^Λ over \mathcal{G}^C, where $\Lambda \in (\mathcal{H}^C)^*$, \mathcal{H}^C is a Cartan subalgebra of \mathcal{G}^C, weight $\Lambda = \Lambda(\chi)$ is determined uniquely from χ [75].

Actually, since our ERs may be induced from finite-dimensional representations of \mathcal{M} (or their limits) the Verma modules are always reducible. Thus, it is more convenient to use generalized Verma modules \bar{V}^Λ such that the role of the highest/lowest weight vector v_0 is taken by the (finite-dimensional) space $V_\mu v_0$. For the generalized Verma modules (GVMs) the reducibility is controlled only by the value of the conformal weight d. Relatedly, for the intertwining differential operators only the reducibility w.r.t. non-compact roots is essential.

• Another main ingredient of our approach is as follows. We group the (reducible) ERs with the same Casimirs in sets called multiplets [75]. The multiplet corresponding to fixed values of the Casimirs may be depicted as a connected graph, the vertices of which correspond to the reducible ERs and the lines (arrows) between the vertices correspond to intertwining operators. The explicit parametrization of the multiplets and of their ERs is important for understanding of the situation. The notion of multiplets was introduced in [76], [77] and applied to representations of $SO_n(p, q)$ and $SU(2, 2)$, resp., induced from their minimal parabolic subalgebras. Then it was applied to the conformal superalgebra [78], to infinite-dimensional (super-)algebras [79], to quantum groups [80]. (For other applications we refer to [81].)

In fact, the multiplets contain explicitly all the data necessary to construct the intertwining differential operators. Actually, the data for each intertwining differential operator consists of the pair (β, m), where β is a (non-compact) positive root of \mathcal{G}^C, $m \in \mathbb{N}$, such that the BGG Verma module reducibility condition (for highest weight modules) is fulfilled:

$$(\Lambda + \rho, \beta^\vee) = m \ , \ \beta^\vee = 2\beta/(\beta, \beta) \ .$$
\(\rho \) is half the sum of the positive roots of \(G^C \). When the above holds then the Verma module with shifted weight \(V^{\Lambda-m\beta} \) (or \(\tilde{V}^{\Lambda-m\beta} \) for GVM and \(\beta \) non-compact) is embedded in the Verma module \(V^\Lambda \) (or \(\tilde{V}^\Lambda \)). This embedding is realized by a singular vector \(v_s \) determined by a polynomial \(P_{m,\beta}(G^-) \) in the universal enveloping algebra \((U(G_-))_0 \). More explicitly, \(v^s_{m,\beta} = \mathcal{P}_{m,\beta} v_0 \) for GVMs. Then there exists [75] an intertwining differential operator

\[
D_{m,\beta} : \mathcal{C}_\chi(\Lambda) \longrightarrow \mathcal{C}_\chi(\Lambda-m\beta)
\]

(10)
given explicitly by:

\[
D_{m,\beta} = \mathcal{P}_{m,\beta}(\hat{G}^-)
\]

(11)
where \(\hat{G}^- \) denotes the right action on the functions \(F \).

In most of these situations the invariant operator \(D_{m,\beta} \) has a non-trivial invariant kernel in which a subrepresentation of \(G \) is realized. Thus, studying the equations with trivial RHS:

\[
D_{m,\beta} f = 0 , \quad f \in \mathcal{C}_\chi(\Lambda) ,
\]

(12)
is also very important. For example, in many physical applications in the case of first order differential operators, i.e., for \(m = m_{\beta} = 1 \), these equations are called conservation laws, and the elements \(f \in \ker D_{m,\beta} \) are called conserved currents.

The above construction works also for the subsingular vectors \(v_{ssv} \) of Verma modules. Such a vector is also expressed by a polynomial \(\mathcal{P}_{ssv}(G^-) \) in the universal enveloping algebra: \(v^s_{ssv} = \mathcal{P}_{ssv}(G^-) v_0 \), cf. [83]. Thus, there exists a conditionally invariant differential operator given explicitly by: \(D_{ssv} = \mathcal{P}_{ssv}(\hat{G}^-) \), and a conditionally invariant differential equation, for many more details, see [83]. (Note that these operators (equations) are not of first order.)

Below in our exposition we shall use the so-called Dynkin labels:

\[
m_i = (\Lambda + \rho, \alpha_i^\vee) , \quad i = 1, \ldots, n ,
\]

(13)
where \(\Lambda = \Lambda(\chi) \), \(\rho \) is half the sum of the positive roots of \(G^C \).

We shall use also the so-called Harish-Chandra parameters:

\[
m_{\beta} = (\Lambda + \rho, \beta) ,
\]

(14)
where \(\beta \) is any positive root of \(G^C \). These parameters are redundant, since they are expressed in terms of the Dynkin labels, however, some statements are best formulated in their terms. (Clearly, both the Dynkin labels and Harish-Chandra parameters have their origin in the BGG reducibility condition (9).)

3. Conformal algebras \(so(n,2) \) and parabolically related

Let \(G = so(n,2) \), \(n > 2 \). We label the signature of the ERs of \(G \) as follows:

\[
\chi = \{ n_1, \ldots, n_{\tilde{h}} ; c \} , \quad n_j \in \mathbb{Z}/2 , \quad c = d - \frac{n}{2} , \quad \tilde{h} \equiv \left[\frac{d}{2} \right] ,
\]

(15)
\(|n_1| < n_2 < \cdots < n_{\tilde{h}} , \quad n \text{ even} , \)
\(0 < n_1 < n_2 < \cdots < n_{\tilde{h}} , \quad n \text{ odd} ,
\)

where the last entry of \(\chi \) labels the characters of \(\mathcal{A} \), and the first \(\tilde{h} \) entries are labels of the finite-dimensional nonunitary irreps of \(\mathcal{M} \cong so(n-1,1) \).
The reason to use the parameter \(c \) instead of \(d \) is that the parametrization of the ERs in the multiplets is given in a simple intuitive way (cf. [84], [67]):

\[
\begin{align*}
\chi^\pm_1 &= \{en_1, \ldots, n_{\tilde{h}}; \pm n_{\tilde{h}+1}\}, \quad n_{\tilde{h}} < n_{\tilde{h}+1}, \\
\chi^\pm_2 &= \{en_1, \ldots, n_{\tilde{h}-1}, n_{\tilde{h}+1}; \pm n_{\tilde{h}}\} \\
\chi^\pm_3 &= \{en_1, \ldots, n_{\tilde{h}-2}, n_{\tilde{h}}, n_{\tilde{h}+1}; \pm n_{\tilde{h}-1}\} \\
&\quad \ldots \\
\chi^\pm_{h-1} &= \{en_1, n_3, \ldots, n_{\tilde{h}}, n_{\tilde{h}+1}; \pm n_1\} \\
\chi^\pm_{h+1} &= \{en_2, \ldots, n_{\tilde{h}}, n_{\tilde{h}+1}; \pm n_{\tilde{h}}\} \\
\epsilon &= \begin{cases}
\pm, & n \text{ even} \\
1, & n \text{ odd}
\end{cases}
\end{align*}
\] (16)

Further, we denote by \(\tilde{C}^\pm_i \) the representation space with signature \(\chi^\pm_i \).

The number of ERs in the corresponding multiplets is equal to:

\[
|W(G^C, H^C)| / |W(M^C, H^C_m)| = 2(1 + \tilde{h})
\] (17)

where \(H^C, H^C_m \) are Cartan subalgebras of \(G^C, M^C \), resp. This formula is valid for the main multiplets of all conformal Lie algebras.

We show some examples of diagrams of invariant differential operators for the conformal groups \(so(5,1) \), resp. \(so(4,2) \), in 4-dimensional Euclidean, resp. Minkowski, space-time. In Fig. 1. we show the simplest example for the most common using well known operators. In Fig. 2. we show the same example but using the group-theoretical parity splitting of the electromagnetic current, cf. [85]. In Fig. 3. we show the general classification for \(so(5,1) \) given in [85]. These diagrams are valid also for \(so(4,2) \) [86] and for \(so(3,3) \cong sl(4, \mathbb{R}) \) [72].
Fig. 1. Simplest example of diagram with conformal invariant operators (arrows are differential operators, dashed arrows are integral operators)

\[\partial_\mu = \frac{\partial}{\partial x^\mu} \] electromagnetic potential, \(\partial_\mu \phi = A_\mu \)

\(F \) electromagnetic field, \(\partial_\lambda A_\mu = \partial_\lambda A_\mu - \partial_\mu A_\lambda = F_{\lambda \mu} \)

\(J_\mu \) electromagnetic current, \(\partial_\lambda F_{\lambda \mu} = J_\mu \), \(\partial_\mu J_\mu = \Phi \)
Fig. 2. More precise showing of the simplest example, $F = F^+ \oplus F^-$ shows the parity splitting of the electromagnetic field, d_2, d_3 linear invariant operators.

Fig. 3. The general classification of invariant differential operators valid for $so(4, 2), so(5, 1)$ and $so(3, 3) \cong sl(4, \mathbb{R})$. p, ν, n are three natural numbers, the shown simplest case is when $p = \nu = n = 1$, d^n_ν is a linear differential operator of order ν, similarly d^0_0, d^0_2, d^0_3.

p, ν, n are three natural numbers, the shown simplest case is when $p = \nu = n = 1$, d^n_ν is a linear differential operator of order ν, similarly d^0_0, d^0_2, d^0_3.

$ \phi \rightarrow \Phi$

$\partial_\mu \rightarrow \partial^\mu$

$A_\mu \rightarrow J_\mu$

$d_2 \rightarrow d_3 \rightarrow d_3 \rightarrow d_2$

$F_{[\lambda, \mu]} \rightarrow F^*_{[\lambda, \mu]}$
Next in Fig. 4, we show the general even case $so(p, q), p + q = 2h + 2$-even, [84], [67], while in Fig. 5, we show an alternative view of the same case:

Fig. 4. The general classification of invariant differential operators in 2h-dimensional space-time. By parabolic relation the diagram above is valid for all algebras so(p, q), $p + q = 2h + 2$, even.

Fig. 5. Alternative showing of the case $so(p, q), p + q = 2h + 2$, showing only the differential operators, while the integral operators are assumed as symmetry w.r.t. the bullet in the centre.
Next in Fig. 6, we show the general odd case \(so(p, q), p + q = 2h + 3 \)-odd, \([84], [67]\), while in Fig. 7, we show an alternative view of the same case:

![Diagram](image)

Fig. 6. The general classification of invariant differential operators in \(2h + 1 \) dimensional space-time. By parabolic relation the diagram above is valid for all algebras \(so(p, q), p + q = 2h + 3 \)-odd.

![Diagram](image)

Fig. 7. Alternative showing of the case \(so(p, q), p + q = 2h + 3 \), showing only the differential operators, while the integral operators are assumed as symmetry w.r.t. the bullet in the centre.
The ERs in the multiplet are related by intertwining integral and differential operators. The integral operators were introduced by Knapp and Stein [87]. They correspond to elements of the restricted Weyl group of \(G \). These operators intertwine the pairs \(\tilde{C}_i^\pm \):

\[
G_i^\pm : \tilde{C}_i^\pm \longrightarrow \tilde{C}_i^\pm, \quad i = 1, \ldots, 1 + \hat{h}
\]

(18)

The intertwining differential operators correspond to non-compact positive roots of the root system of \(so(n + 2, \mathbb{C}) \), cf. [75]. [In the current context, compact roots of \(so(n + 2, \mathbb{C}) \) are those that are roots also of the subalgebra \(so(n, \mathbb{C}) \), the rest of the roots are non-compact.] The degrees of these intertwining differential operators are given just by the differences of the \(c \) entries [84]:

\[
\begin{align*}
\deg d_i &= \deg d_i' = n_{k+2-i} - n_{k+1-i}, \quad i = 1, \ldots, \hat{h}, \quad \forall n \\
\deg d_{\hat{h}+1} &= n_2 + n_1, \quad n \text{ even}
\end{align*}
\]

where \(d_{\hat{h}} \) is omitted from the first line for \((p + q) \) even.

Matters are arranged so that in every multiplet only the ER with signature \(\chi_1^- \) contains a finite-dimensional unitary subrepresentation in a subspace \(E \). The latter corresponds to the finite-dimensional unitary irrep of \(so(n+2) \) with signature \(\{ n_1, \ldots, n_{\hat{h}}, n_{\hat{h}+1} \} \). The subspace \(E \) is annihilated by the operator \(G_1^+ \), and is the image of the operator \(G_1^- \).

Although the diagrams are valid for arbitrary \(so(p, q) \) \((p+q \geq 5)\) the contents is very different. We comment only on the ER with signature \(\chi_1^+ \). In all cases it contains an UIR of \(so(p, q) \) realized on an invariant subspace \(D \) of the ER \(\chi_1^+ \). That subspace is annihilated by the operator \(G_1^- \), and is the image of the operator \(G_1^+ \). (Other ERs contain more UIRs.)

If \(pq \in 2\mathbb{N} \) the mentioned UIR is a discrete series representation. (Other ERs contain more discrete series UIRs.)

And if \(q = 2 \) the invariant subspace \(D \) is the direct sum of two subspaces \(D = D^+ \oplus D^- \), in which are realized a holomorphic discrete series representation and its conjugate anti-holomorphic discrete series representation, resp. Note that the corresponding lowest weight GVM is infinitesimally equivalent only to the holomorphic discrete series, while the conjugate highest weight GVM is infinitesimally equivalent to the anti-holomorphic discrete series.

Note that the \(\deg d_i, \deg d_i' \), are Harish-Chandra parameters corresponding to the non-compact positive roots of \(so(n + 2, \mathbb{C}) \). From these, only \(\deg d_1 \) corresponds to a simple root, i.e., is a Dynkin label.

Above we considered \(so(n, 2) \) for \(n > 2 \). The case \(n = 2 \) is reduced to \(n = 1 \) since \(so(2, 2) \cong so(1, 2) \oplus so(1, 2) \). The case \(so(1, 2) \) is special and must be treated separately. But in fact, it is contained in what we presented already. In that case the multiplets contain only two ERs which may be depicted by the top pair \(\chi_1^\pm \) in the pictures that we presented. And they have the properties that we described for \(so(n, 2) \) with \(n > 2 \). The case \(so(1, 2) \) was given already in 1946-7 independently by Gel’fand et al [88] and Bargmann [89].

4. The Lie algebra \(su(n, n) \) and parabolically related

Let \(G = su(n, n), \ n \geq 2 \). The maximal compact subgroup is \(K \cong u(1) \oplus su(n) \oplus su(n) \), while \(M = sl(n, \mathbb{C})_R \). The number of ERs in the corresponding multiplets is equal to

\[
\frac{|W(G^C, H^C)|}{|W(M^C, H_m^C)|} = \binom{2n}{n}
\]
The signature of the ERs of G is:

$$\chi = \{n_1, \ldots, n_{n-1}, n_{n+1} \ldots, n_{2n-1}; c\}, \quad n_j \in \mathbb{N}, \quad c = d - n$$

The Knapp–Stein restricted Weyl reflection is given by:

$$G_{KS} : C_{\chi} \rightarrow C_{\chi'}, \quad \chi' = \{(n_1, \ldots, n_{n-1}, n_{n+1}, \ldots, n_{2n-1}); -c\}$$

Below in Fig. 8 and in Fig. 9 we give the diagrams for $su(n, n)$ for $n = 3, 4$, [68]. (The case $n = 2$ is already considered since $su(2, 2) \cong so(4, 2)$.) These are diagrams also for the parabolically related $sl(2n, \mathbb{R})$, and for $n = 2k$ these are diagrams also for the parabolically related $su^*(4k)$, [72].

We use the following conventions. Each intertwining differential operator is represented by an arrow accompanied by a symbol $i_{j\ldots k}$ encoding the root $\beta_{j\ldots k}$ and the number $m_{\beta_{j\ldots k}}$ which is involved in the BGG criterion.

Fig. 8. Pseudo-unitary symmetry $su(3, 3)$

The pseudo-unitary symmetry $su(n, n)$ is similar to conformal symmetry in n^2 dimensional space, for $n = 2$ coincides with conformal 4-dimensional case. By parabolic relation the $su(3, 3)$ diagram above is valid also for $sl(6, R)$.

13
Fig. 9. Pseudo-unitary symmetry in 16-dimensional space.

By parabolic relation the $su(4,4)$ diagram above is valid also for $sl(8,R)$ and $su^*(8)$.
5. The Lie algebras $sp(n, \mathbb{R})$ and $sp(\frac{n}{2}, \frac{n}{2})$ ($n-$even)

Let $n \geq 2$. Let $G = sp(n, \mathbb{R})$, the split real form of $sp(n, \mathbb{C}) = G^\mathbb{C}$. The maximal compact subgroup is $K \cong u(1) \oplus su(n)$, while $M = sl(n, \mathbb{R})$. The number of ERs in the corresponding multiplets is:

$$|W(G^\mathbb{C}, H_m^\mathbb{C})| / |W(M^\mathbb{C}, H_m^\mathbb{C})| = 2^n$$

The signature of the ERs of G is:

$$\chi = \{ n_1, \ldots, n_{n-1}; c \}, \quad n_j \in \mathbb{N} ,$$

The Knapp-Stein Weyl reflection acts as follows:

$$G_{KS} : C_\chi \rightarrow C_{\chi'}, \chi' = (n_1, \ldots, n_{n-1})^*; -c \}, \quad (n_1, \ldots, n_{n-1})^* \equiv (n_{n-1}, \ldots, n_1)$$

Below in Fig. 10, Fig. 11, Fig. 12 and Fig. 13 we give pictorially the multiplets for $sp(n, \mathbb{R})$ for $n = 3, 4, 5, 6$, [69]. (The case $n = 2$ is already considered since $sp(2, \mathbb{R}) \cong so(3, 2)$.) For $n = 2r$ these are also multiplets for $sp(r, r)$, $r = 1, 2, 3$, [72]. (The case $n = 2, r = 1$ is already considered due to $sp(1, 1) \cong so(4, 1)$ and the parabolic relation between $so(3, 2)$ and $so(4, 1)$.)

![Diagram](image-url)

Fig. 10. Symplectic symmetry $sp(3, \mathbb{R})$ with diagram coinciding with 6-dimensional conformal case

15
Fig. 11. Main multiplets for $sp(4, \mathbb{R})$ and $sp(2, 2)$.
Fig. 12. Main multiplets for $sp(5, \mathbb{R})$
Fig. 13. Main multiplets for $sp(6, \mathbb{R})$ and $sp(3, 3)$.

18
6. The Lie algebras $E_7(-25)$ and $E_7(7)$

Let $G = E_7(-25)$. The maximal compact subgroup is $K \cong e_6 \oplus \mathfrak{so}(2)$, while $\mathcal{M} \cong E_6(-6)$.

The Satake diagram \cite{90} is:

- \bullet_{α_2}
- \circ_{α_1} \bullet_{α_3} \bullet_{α_4} \circ_{α_5} \circ_{α_6} \circ_{α_7}

The signatures of the ERs of G are:

$\chi = \{ n_1, \ldots, n_6 ; c \}$, \quad $n_j \in \mathbb{N}$.

expressed through the Dynkin labels:

$n_i = m_i$, \quad $c = -\frac{1}{2}(m_\delta + m_\gamma) = -\frac{1}{2}(2m_1 + 2m_2 + 3m_3 + 4m_4 + 3m_5 + 2m_6 + 2m_7)$

The same signatures can be used for the parabolically related exceptional Lie algebra $E_7(7)$ (with \mathcal{M}-factor $E_6(6)$).

The noncompact roots of the complex algebra E_7 are:

- α_7, α_{17}, \ldots, α_{67}
- $\alpha_{1,37}$, $\alpha_{2,47}$, $\alpha_{17,4}$, $\alpha_{27,4}$
- $\alpha_{17,34}$, $\alpha_{17,35}$, $\alpha_{17,36}$, $\alpha_{17,45}$, $\alpha_{17,46}$
- $\alpha_{27,45}$, $\alpha_{27,46}$
- $\alpha_{17,25,4}$, $\alpha_{17,26,4}$, $\alpha_{17,35,4}$, $\alpha_{17,36,4}$, $\alpha_{17,36,45}$
- $\alpha_{17,26,35,4}$, $\alpha_{17,26,45,4}$
- $\alpha_{17,16,35,4} = \tilde{\alpha}$

given through the simple roots α_i:

$\alpha_{ij} = \alpha_i + \alpha_{i+1} + \cdots + \alpha_j$, \quad $i < j$

$\alpha_{ij,k} = \alpha_{k,ij} = \alpha_i + \alpha_{i+1} + \cdots + \alpha_j + \alpha_k$, \quad $i < j$, \quad etc.

The multiplets of the main type are in 1-to-1 correspondence with the finite-dimensional irreps of E_7, i.e., they will be labelled by the seven positive Dynkin labels $m_i \in \mathbb{N}$.

The number of ERs in the corresponding multiplets is equal to

$|W(G^C, \mathcal{H}^C)| / |W(K^C, \mathcal{H}^C)| = 56$

The multiplets are given in Fig. 14, \cite{70,72}.

The Knapp-Stein operators G_χ^\pm act pictorially as reflection w.r.t. the bullet intertwining each T_χ^- member with the corresponding T_χ^+ member.
Fig. 14. Main multiplets for $E_{7(-25)}$ and $E_{7(7)}$.
7. The Lie algebras $E_6(-14)$, $E_6(6)$ and $E_6(2)$

Let $G = E_6(-14)$. The maximal compact subalgebra is $K \cong so(10) \oplus so(2)$, while $M \cong su(5, 1)$.

The Satake diagram [90] is:

$$
\circ \quad - - - \quad \bullet \quad - - - \quad \bullet \quad - - - \quad \circ
$$

(20)

The signature of the ERs of G is:

$$
\chi = \{ n_1, n_3, n_4, n_5, n_6, c \}, \quad c = d - \frac{11}{2}.
$$

(21)

expressed through the Dynkin labels as:

$$
n_i = m_i, \quad -c = \frac{1}{2}m_\tilde{\alpha} = \frac{1}{2}(m_1 + 2m_2 + 2m_3 + 3m_4 + 2m_5 + m_6)
$$

(22)

The same signatures can be used for the parabolically related exceptional Lie algebras $E_6(6)$ and $E_6(2)$ with M–factors $sl(6, \mathbb{R})$ and $su(3, 3)$, resp.

Further, we need the noncompact roots of the complex algebra E_6 :

$$
\alpha_2, \alpha_{14}, \alpha_{15}, \alpha_{16}, \alpha_{24}, \alpha_{25}, \alpha_{26}, \alpha_{2.4}, \alpha_{2.45}, \alpha_{2.46}, \alpha_{25.4}, \alpha_{15.4}, \alpha_{26.4}, \alpha_{16.4}, \alpha_{15.34}, \alpha_{26.45}, \alpha_{16.34}, \alpha_{16.45}, \alpha_{16.35}, \alpha_{16.35.4}, \alpha_{16.25.44} = \tilde{\alpha}
$$

(23)

The multiplets of the main type are in 1-to-1 correspondence with the finite-dimensional irreps of G, i.e., they will be labelled by the six positive Dynkin labels $m_i \in \mathbb{N}$.

Since these algebras do not belong to the class of conformal Lie algebras (CLA) the number of ERs/GVMs in the multiplet is not given by formula (17). It turns out that each such multiplet contains 70 ERs/GVMs - see Fig. 15, [71, 72]. Another difference with the CLA class is that pictorially the the Knapp-Stein operators G_{χ}^\pm act as reflection w.r.t. the dotted line separating the T^-_χ members from the T^+_χ members (and not as reflection w.r.t. a central dot (bullet) as in the CLA cases).

Note that there are five cases when the embeddings correspond to the highest root $\tilde{\alpha}$: $V^{\Lambda^-} \longrightarrow V^{\Lambda^+}$, $\Lambda^+ = \Lambda^- - m_\tilde{\alpha} \tilde{\alpha}$. In these five cases the weights are denoted as: $\Lambda_{k\nu}^\pm$, Λ_{k}^\pm, Λ_{k}^\pm, $\Lambda_{k}\pm$, then: $m_\tilde{\alpha} = m_1, m_3, m_4, m_5, m_6$, resp. Thus, their action coincides with the action of the Knapp-Stein operators G_{χ}^\pm which in the above five cases degenerate to differential operators as we discussed for $so(3, 2)$.

Note that the figure has the standard E_6 symmetry, namely, conjugation exchanging indices $1 \longleftrightarrow 6, 3 \longleftrightarrow 5$.

Fig. 15. Main multiplets for $E_6(-14)$, $E_6(6)$ and $E_6(2)$.
Acknowledgments

It is a pleasure to thank the organizers of the VIII International Symposium "Quantum Theory and Symmetries", and in especially Kurt Bernardo Wolf, for the hospitality. The author has received partial support from COST action MP-1210.

References

[1] Maldacena J 2005 Large N Field Theories, String Theory and Gravity, in: Lectures on Quantum Gravity, Series of the Centro De Estudios Científicos, eds A Gomberoff and D. Marolf (New York: Springer) p. 91-150.
[2] Terning J 2005 Modern Supersymmetry: Dynamics and Duality, International Series of Monographs on Physics # 132 (Oxford University Press).
[3] Harish-Chandra 1966 Ann. Math. 116 1-111.
[4] Bernstein I N, Gel'fand I M and Gel'fand S I 1971 Funkts. Anal. Prilozh. 5 (1) 1-9; English translation: Funct. Anal. Appl. 5 1-8.
[5] Warner G 1972 Harmonic Analysis on Semisimple Lie Groups I (Berlin: Springer).
[6] Langlands R P 1988 On the classification of irreducible representations of real algebraic groups, Math. Surveys and Monographs, Vol. 31 (AMS), (first as IAS Princeton preprint (1973)).
[7] Ferrara S, Wess J and Zumino B 1974 Phys. Lett. B35 239; Ferrara S and Zumino B 1974 Nucl. Phys. B79 413; Ferrara S and Zumino B 1975 Nucl. Phys. B87 207.
[8] Zhelobenko D P 1974 Harmonic Analysis on Semisimple Complex Lie Groups (Moscow: Nauka, in Russian).
[9] Kostant B 1975 in: Lecture Notes in Math., Vol. 466, eds A Dold and B Eckmann (Berlin: Springer) p. 101-128.
[10] Sokatchev E 1975 Nucl. Phys. B99 96; Sokatchev E 1986 Phys. Lett. B169 209; Sokatchev E 1987 Class. Quant. Grav. 4 237.
[11] Freedman D Z, van Nieuwenhuizen P and Ferrara S 1976 Phys. Rev. D13 3214; Ferrara S and van Nieuwenhuizen P 1978 Phys. Lett. B74 333.
[12] Wolf J 1976 Unitary Representations of Maximal Parabolic Subgroups of the Classical Groups, Memoirs Amer. Math. Soc. 180 (AMS).
[13] Ademollo M, Brink L, D’Adda A, D’Auria R, Napolitano E, Sciuto S, Del Giudice E, Di Vecchia P, Ferrara S, et al. 1976 Phys. Lett. B62 105; Nucl. Phys. B111 77.
[14] Fayet P and Ferrara S 1977 Phys. Rept. 32 249.
[15] Wolf J 1979 Classification and Fourier inversion for parabolic subgroups with square integrable nilradical, Memoirs Amer. Math. Soc. 225 (AMS).
[16] Knapp A W and Zuckerman G J 1977 in: Lecture Notes in Math., Vol. 587 (Berlin: Springer) p. 138-159; Knapp A W and Zuckerman G J 1982 Ann. Math. 116 389-501.
[17] Dobrev V K, Mack G, Petkova V B, Petrova S G and Todorov I T 1976 Rept. Math. Phys. 9 219-246; Dobrev V K, Petkova V B, Petrova S G and Todorov I T 1976 Phys. Rev. D13 887-912.
[18] Ogievetsky V and Sokatchev E 1977 Nucl. Phys. B124 309; Ogievetsky V and Sokatchev E 1978 Phys. Lett. B79 222.
[19] Cremmer E, Scherk J and Ferrara S 1978 Phys. Lett. B74 61; Cremmer E, Ferrara S, Girardello L and Van Proeyen A 1982, Phys. Lett. B116 231.
[20] Speh B and Vogan D 1980 Acta Math. 145 227-299.
[21] Vogan D 1981 Representations of Real Reductive Lie Groups, Progr. Math., Vol. 15 (Boston-Basel-Stuttgart: Birkhäuser).
[22] Enright T, Howe R and Wallach N 1983 in: Representations of Reductive Groups, ed P Trombi (Boston: Birkhäuser) p. 97-143.
[23] Galperin A, Ivanov E, Kaliysyn S, Ogievetsky V and Sokatchev E 1984 Class. Quant. Grav. 1 469; Galperin A, Ivanov E, Ogievetsky V and Sokatchev E 1986 Commun. Math. Phys. 103 515; Galperin A and Sokatchev E 1992 Phys. Rev. D46 714.
[24] Dobrev V K and Petkova V B 1985 Phys. Lett. B162 127-132; Dobrev V K and Petkova V B 1987 Fortsch. Phys. 35 537-572.
[25] Delduc F and Sokatchev E 1992 Class. Quant. Grav. 9 361; Delduc F, Galperin A and Sokatchev E 1992 Nucl. Phys. B368 143; Delduc F, Galperin A, Howe P S and Sokatchev E 1993 Phys. Rev. D47 578.
[26] Truini P and Varadarajan V S 1993 Rev. Math. Phys. 5 363; in: "Symmetries in Science VI", B Gruber (ed), (New York: Plenum Press), p. 731; in: CGTMP Salamanca 92 Proc. Anales de Física, Monografías, eds M.A. del Olmo et al (Madrid: CIEMAT/RSEF) Vol. I, p. 208.
[28] Jakobsen H P 1986 in: Lect. Notes in Phys., Vol. 261 (Berlin: Springer) p. 253-265.
[29] Kac V G and Wakimoto M 1994 in: "Lie Theory and Geometry", Progr. Math., vol. 123 (Boston: Birkhäuser) p. 415-456.
[30] Kobayashi T S 1994 Inv. Math. 117 181-205.
[31] Witten E 1994 Int. J. Mod. Phys. A9 4783-4800; Witten E 2004 in: 'From Fields to Stings: Circumnavigating Theoretical Physics', eds M Shifman et al (Singapore: World Scientific) vol. 2, p. 1173-1200. Witten E 2007 preprint arXiv:0712.0157.
[32] Argyres P C, Presser M, Seiberg N and Witten E 1996 Nucl. Phys. B461 71-84.
[33] Ferrara S, Harvey J A, Strominger A and Vafa C 1995 Phys. Lett. B361 59; Ferrara S, Kallosh R and Strominger A 1995 Phys. Rev. D52 5412; Ferrara S and Kallosh R 1996 Phys. Rev. D54 p. 1514 & p. 1525.
[34] Ceresole A, D'Auria R and Ferrara S 1996, Nucl. Phys. Proc. Suppl. 46 67; Ceresole A, Dall’Agata G, D’Auria R and Ferrara S 2000 Phys. Rev. D61 066001.
[35] Antoniadis I, Ferrara S and Taylor T R 1996 Nucl. Phys. B460 489; Antoniadis I, Ferrara S, Minasian R and Narain K S 1997 Nucl. Phys. B507 571.
[36] Branson T P, Olafsson G and Orsted B 1996 J. Funct. Anal. 135 163-205.
[37] Andrianopoli L, Bertolini M, Ceresole A, D’Auria R, Ferrara S, Fre P and Magri T 1997, J. Geom. Phys. 23 111; Andrianopoli L, D’Auria R and Ferrara S 1998 Int. J. Mod. Phys. A 13 431; Andrianopoli L, Ferrara S, Sokatchev E and Zuaznuk B 2000 Adv. Theor. Math. Phys. 4 1149.
[38] Ferrara S and Maldacena J M 1998 Class. Quant. Grav. 15 749.
[39] Ferrara S and Fronsdal C 1998 Class. Quant. Grav. 15 B332 153; Ferrara S and Gunaydin M 1998 Int. J. Mod. Phys. A13 2075.
[40] Howe P S, Sokatchev E and West P C 1998 Phys. Lett. B444 341.
[41] Aharony O, Gubser S S, Maldacena J, Ooguri H and Oz Y 2000 Phys. Rept. 323 184-386.
[42] Eden B, Howe P S, Schubert C, Sokatchev E and West P C 1999 Nucl. Phys. B557 355; Phys. Lett. B466 20; Eden B, Schubert C and Sokatchev E 2000 Phys. Lett. B482 309; Eden B, Petkou A C, Schubert C and Sokatchev E 2001 Nucl. Phys. B607 191.
[43] Dolan L, Nappi C R and Witten E 2001 JHEP 0110:016.
[44] Arutyunov G, Eden B, Petkou A C and Sokatchev E 2002 Nucl. Phys. B620 380.
[45] Knapp A W 2002 Lie Groups Beyond an Introduction, 2nd ed., Progr. Math., vol. 140 (Boston-Basel-Stuttgart: Birkhäuser).
[46] Kac V, Roan S S and Wakimoto M 2003 Comm. Math. Phys. 241 307-342.
[47] Ferrara S and Sokatchev E 2000 JHEP 0005:038; Lett. Math. Phys. 52 247-262; Int. J. Mod. Phys. B14 2315-2333.
[48] Costant B 2004 Inv. Math. 158 181-226.
[49] Baur K and Wallach N 2005 Represent. Theory, 9 1-29.
[50] Gannon T and Vasudevan M 2005 JHEP 0507:035.
[51] Carmeli C, Cassinelli G, Toigo A and Varadarajan V S 2006 Comm. Math. Phys. 263 217.
[52] Duff M J and Ferrara S 2007 Phys. Rev. D76 124023.
[53] Faraggi A E, Kounnas C and Rizos J 2007 Nucl. Phys. B774 208-231.
[54] Kinney J, Maldacena J, Minwalla S and Raju S 2007 Comm. Math. Phys. 275 209-254.
[55] Gurrieri G, Lukas L and Micu A 2007 JHEP 0712:081.
[56] Hofman D M and Maldacena J 2008 JHEP 0805:012.
[57] Bernardoni F, Cacciatori S L, Cerchiai B L and Scorti A 2008 J. Math. Phys. 49 012107.
[58] Kallosh R and Surush M 2008 Nucl. Phys. B801 25-44; Kallosh R and Kugo T 2009 JHEP 0901:072.
[59] Mizoguchi S 2008 JHEP 0811:022.
[60] Ferrara S, Kallosh R and Marrani A 2012 JHEP 1206:074.
[61] Dobrev V K 2008 Rev. Math. Phys. 20 407-449.
[62] Harish-Chandra 1955 Am. J. Math. 77 743-777; Harish-Chandra 1956 Am. J. Math. 78 1-41.
[63] Bruhat F 1956 Bull. Soc. Math. France, 84 97-205.
[64] Faraut J and Korányi A 1994 Analysis on Symmetric Cones, Oxford Mathematical Monographs, (Oxford: Clarendon Press).
[65] Gunaydin M 1993 Mod. Phys. Lett. A8 1407-1416.
[66] Mack G and de Riese M 2007 J. Math. Phys. 48 052304.
[67] Dobrev V K 2008 J. Phys. A41 425026.
[68] Dobrev V K 2013 Physics of Atomic Nuclei, 76, No 8, 983-990.
[69] Dobrev V K 2013 in: Proceedings of the 9. International Workshop Lie Theory and Its Applications in Physics, (Varna, Bulgaria, June 2011), "Springer Proceedings in Mathematics and Statistics" Vol. 36 (Tokyo-Heidelberg: Springer) p. 311-335 (preprint CERN-PH-TH/2012-143).
[70] Dobrev V K 2009 J. Phys. A42 285203.
[71] Dobrev V K 2009 Proceedings, eds B Dragovich and Z Rakic, (Institute of Physics, Belgrade, 2009) p. 95-124.
[72] Dobrev V K 2013 J. High Energy Phys. 1302:015 (preprint CERN-PH-TH/2012-215).
[73] Dobrev V K, Mack G, Petkova V B, Petrova S G and Todorov I T 1977 Harmonic Analysis on the n-Dimensional Lorentz Group and Its Applications to Conformal Quantum Field Theory, Lecture Notes in Physics, Vol. 63 (Berlin: Springer).
[74] Knapp A W 1986 Representation Theory of Semisimple Groups (An Overview Based on Examples), (Princeton Univ. Press).
[75] Dobrev V K 1988 Rept. Math. Phys. 25 159-181 (first as ICTP Trieste preprint IC/86/393 (1986)).
[76] Dobrev V K 1985 Lett. Math. Phys. 9 205-211.
[77] Dobrev V K 1985 J. Math. Phys. 26 235-251.
[78] Dobrev V K and Petkova V B 1985 Lett. Math. Phys. 9 287-298.
[79] Dobrev V K 1986 Lett. Math. Phys. 11 225-234 (first as ICTP Trieste preprint IC/85/9 (1985); Dobrev V K 1986 in: Proc. XIII Int. Conf. Diff.-Geom. Meth. Theor. Phys., Shumen (1984), eds H-D Doebner and T D Palev, (Singapore: World Sci) p. 348-370; Dobrev V K 1986 in: Proc. Int. Symp. Topol. Geom. Methods Field Theory, Espoo (1986), eds J Hietarinta et al, (Singapore: World Sci) p. 93-102.
[80] Dobrev V K 1991 in: Proceedings Int. Group Theory Conf. (St. Andrews, 1989), eds C M Campbell et al, Vol. 1, London Math. Soc. Lecture Note Series 159 (Cambridge University Press) p. 87-104.
[81] Dobrev V K 1991 Lett. Math. Phys. 22 251-266; Dobrev V K 1994 J. Phys. A27 4841; Dobrev V K 2007 Phys. Part. Nucl. 38 564-609; Dobrev V K and Ganchev A Ch 1988 Mod. Phys. Lett. A3 127-137; Dobrev V K and Moylan P J 1993 Phys. Lett. B315 292-298.
[82] Dixmier J 1977 Enveloping Algebras, (New York: North Holland).
[83] Dobrev V K 1995 J. Phys. A28 7135-7155; Dobrev V K 1997 in: Proceedings, Symposium "Symmetries in Science IX", Bregenz, Austria, (August 1996), eds B Gruber and M Ramek, (New York: Plenum Press) pp. 47-80.
[84] Dobrev V K 1996 Suppl. Rendiconti Circolo Matematici di Palermo, Serie II, Numero 43 15-56.
[85] Dobrev V K and Petkova V B 1978 Rept. Math. Phys. 13 233-277.
[86] Petkova V B and Sotkov G M 1984 Lett. Math. Phys. 8 217-226.
[87] Knapp A W and Stein E M 1971 Ann. Math. 93 489-578; Knapp A W and Stein E M 1980 Inv. Math. 60 9-84.
[88] Gelfand I M and Naimark M A 1946 Acad. Sci. USSR. J. Phys. 10 93-94.
[89] Bargmann V 1947 Annals Math. 48 568-640.
[90] Satake I 1960 Ann. Math. 71 77-110.