Significant strain-rate dependence of sensing behavior in TiO$_2$@carbon fibre/PDMS composites for flexible strain sensors

Fan ZHANGa, Hailong HUb,c,*, Simin HUb, Jianling YUEb

aSchool of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
bSchool of Aeronautics & Astronautics, Central South University, Changsha 410083, China
cResearch Center in Intelligent Thermal Structures for Aerospace, Central South University, Changsha 410083, China

Received: February 15, 2021; Revised: June 3, 2021; Accepted: June 24, 2021
© The Author(s) 2021.

Abstract: Carbon fibre (CF) embedded into elastomeric media has been attracting incredible interest as flexible strain sensors in the application of skin electronics owing to their high sensitivity in a very small strain gauge. To further improve the sensitivity of CF/PDMS composite strain sensor, the relatively low temperature prepared TiO$_2$ nanowire via hydrothermal route was employed herein to functionalize CF. The results showed a significant increase in the sensitivity of the TiO$_2$@CF/PDMS composite strain sensors which was reflected by the calculated gauge factor. As the prepared TiO$_2$ nanowire vertically embraced the surroundings of the CF, the introduced TiO$_2$ nanowire contributed to a highly porous structure which played a predominant role in improving the sensitivity of strain sensors. Moreover, the significant strain rate dependent behavior of TiO$_2$@CF/PDMS strain sensor was revealed when performing monotonic tests at varied strain rate. Therefore, introducing TiO$_2$ nanowire on CF offers a new technique for fabricating flexible strain sensors with improved sensitivity for the application of flexible electronics.

Keywords: composites; dependence of strain rate; sensitivity; flexible strain sensors

1 Introduction

Wearable strain sensors capable of detecting the strain with a high sensitivity have been attracting tremendous interest in the application of skin electronics, which can be used for health monitoring, human robotics interaction, and tactile perception [1–5]. Compared to conventional strain sensors made of metal or semiconductors [6], stretchable strain sensors demonstrate a superior property, showing a strain limit (can reach $\geq 50\%$) with alterable sensitivity [7–9].

However, there remain challenges in achieving the practical applications. For instance, the expense with respect to the complicated processes for designing a structure or pattern in wearable strain sensors makes the cost very high [10]. Moreover, when performing the integration of strain sensors, irregular or rough surface will appear instead of flat surface in thin film sensors [7,11]. Therefore, to meet the practical applications in complicated configuration design, a fibre based strain sensor is of great prospects [12,13].

Fibre strain sensors have the advantages of lightweight, flexibility, and long-lasting, which can be developed through either single fibre, thread, yarn, or
multiple fibre level components [14,15]. For instance, one-dimensional strain sensing yarn wearable textile sensor made of polyurethane/Ag nanoparticle/graphene-microsheets/silicone encapsulation was introduced to achieve the real-time monitoring of human motions [4]. A flexible strain sensor was achieved from core-spun threads with the integrated electrode and sensing cell, where carbon black/silver paste/poly(sodium-p-styrenesulfonate) and single-walled carbon nanotubes/carbon black were used as electrode and sensing cell, respectively [8]. A coaxial structured sensing component made of thermoplastic elastomer-wrapped carbon nanotube fibres was proposed to be used in deformable cable and wearable textiles [12]. A multifunctional sensor array formed through a woven fabric structure with fibre sensor was designed to reach the great potential of scalable manufacturability of e-textile products [16].

The helically wrapped carbon yarn was put forward to detect motion with low strain level [17]. To serve the application of personal healthcare or activity monitoring, a variety of sensors including physical sensors, chemical sensors, and sensors in reaction to environmental stimuli have been developed [18–20]. Meanwhile, a multilayered carbon nanotube/thermal plastic elastomer composite strain sensor was fabricated, and this kind of fibre sensor showed a sensitivity of 21.3 at a wide strain range of 0–150% [3]. Zhong et al. [2] reported a stretchable self-powered fibre based strain sensor by coiling a fibre based generator and a silicone fibre. However, to achieve a largely improved strain sensitivity at a small strain gauge for specific practical application, there still exist some issues to be resolved, where aspects of the evolution of conductive network, surface modification strategy in shaping the sensing property, and relationship of configurated structure/property are worthwhile to be further explored.

cell, where carbon black/silver paste/poly(sodium-p-styrenesulfonate) and single-walled carbon nanotubes/carbon black were used as electrode and sensing cell, respectively [8]. A coaxial structured sensing component made of thermoplastic elastomer-wrapped carbon nanotube fibres was proposed to be used in deformable cable and wearable textiles [12]. A multifunctional sensor array formed through a woven fabric structure with fibre sensor was designed to reach the great potential of scalable manufacturability of e-textile products [16].

The helically wrapped carbon yarn was put forward to detect motion with low strain level [17]. To serve the application of personal healthcare or activity monitoring, a variety of sensors including physical sensors, chemical sensors, and sensors in reaction to environmental stimuli have been developed [18–20]. Meanwhile, a multilayered carbon nanotube/thermal plastic elastomer composite strain sensor was fabricated, and this kind of fibre sensor showed a sensitivity of 21.3 at a wide strain range of 0–150% [3]. Zhong et al. [2] reported a stretchable self-powered fibre based strain sensor by coiling a fibre based generator and a silicone fibre. However, to achieve a largely improved strain sensitivity at a small strain gauge for specific practical application, there still exist some issues to be resolved, where aspects of the evolution of conductive network, surface modification strategy in shaping the sensing property, and relationship of configurated structure/property are worthwhile to be further explored.

TiO$_2$ is a chemically stable semiconducting material with a wide band gap [21]. It is also cost-effective and available with abundant sources. For nanostructured TiO$_2$, great attention has been paid to study the fabrication of TiO$_2$ in a variety of forms, such as nanowires, nanorods, and nanoparticles, which is targeted in the application of photo catalysts, solar cells, resistance switching, and gas sensing owing to its desired chemical and physical properties. In addition to the investigation of TiO$_2$ as surface modifier, ZnO nanowire on the surface of a CF was designed to achieve a hybrid structure by packing with flexible substrate PDMS, this piezoelectric strain sensors demonstrated desired sensitivity under applied strain, which was attributed to the change in Schottky height owing to the strain induced piezoelectric potential [22].

Herein, TiO$_2$ nanowires grown on CF offer an easy and cost-effective strategy to fabricate a high-performance stretchable strain sensor for the application of flexible electronics. By introducing TiO$_2$ nanowires, effects due to the properties of interfaces formed between two materials (TiO$_2$ and CF) with pronounced characteristics. Moreover, the coating TiO$_2$ with high aspect ratio offers a highly porous structure and enables the effective tuning of conductive network. On the other hand, semiconductor TiO$_2$ with an increasing density can cause agglomerated fillers to form percolating pathways, which are effective in tuning the sensing performance in a semiconducting way. Therefore, TiO$_2$@CF provides a highly porous structure for rationally designing the electrically conductive path in a three-dimensional way. CF not only acts as a supporting conducive path, but also enhances the stability of flexible strain sensors during stretching. Consequently, the TiO$_2$@CF/PDMS composite strain sensors were prepared and investigated under single loading, repeated loading or unloading, followed by studying their sensing mechanism and performance stability.

2 Experimental

2.1 Materials

CFs were purchased from Toray Industries, Japan. PDMS silicone kit including both base and agent (Sylgard 184, USA) was provided by Dow Corning Incorporation.

2.2 Fabrication

The fabrication process of TiO$_2$@CF/PDMS composites can be described as follows: Firstly, pretreatment was conducted on the pristine CF by washing in ethyl alcohol and deionized water for a certain amount of time to reduce the effect of polymer organics and trace impurities deposited on its surface. Subsequently, the TiO$_2$ nanowires were prepared onto the CF to obtain TiO$_2$@CF via hydrothermal technique, where source materials of 100 mL deionized water, 25 mL hydrochloric acid, and 1.7 mL titanium butoxide were taken to perform the fabrication process under the conditions of relatively low temperature of 150 °C with 3 h.
be referred to our previous research work [23]. After this, PDMS was used to immerse the TiO$_2$@CF to achieve the final TiO$_2$@CF/PDMS composites. Figure 1 shows the detailed fabrication process of TiO$_2$@CF, where hydrothermal approach was taken to achieve this kind of coated CF. Subsequently, by using this prepared surface functionalized TiO$_2$@CF, PDMS was employed as the elastomer matrix to prepare TiO$_2$@CF/PDMS nanocomposite strain sensors, showing its great capability in the application of detecting a small strain range with high sensitivity, which will be discussed in Section 3.

2.3 Characterization

Surface morphology and energy dispersive X-ray spectroscopy (EDX) spatial mapping of nanocomposites were characterised by a scanning electron microscope (FEI Nova SEM 450, USA). To reveal the mechanism occurred in TiO$_2$@CF/PDMS composites, in situ tension tests were performed using a mechanical loading stage inside a scanning electron microscope (FEI Nova SEM230, USA). Both quasi-static and repeated cyclic loadings were measured to evaluate the piezoresistive performance of the sensors via a tensile testing machine (Instron Model 3369, USA) under displacement control mode. The same strain rate of 1.25% s^{-1} was employed for all quasi-static tension and cyclic loading. Meanwhile, a variety of strain rate within a range of 0 to 5% s^{-1} were used to study the strain rate influence of quasi-static tension test. The electrical measurement was performed at the same time with mechanical measurement to in situ record the change of resistance for a sensor via a precision LCR meter (E4980AL, Keysight Technologies, USA). The response time and relaxion time measurements were proceeded by stretching the sensors at a very high strain rate of 40% s^{-1}, followed by a dwelling time of 30 s and then unloading at the same strain rate.

3 Results and discussion

Figure 2 shows the surface morphology and EDX spatial mapping of TiO$_2$ nanowires grown on the surface of CF. TiO$_2$ nanowires represent a very high uniformity with the average size of 165 nm in diameter and 1.5 μm in length. Moreover, TiO$_2$ nanowires show a very compact growth mode. Both the first and second characterizations of TiO$_2$@CF show a well consistent result, demonstrating the high-quality growth of TiO$_2$ nanowires. This can be verified by the uniform elements of Ti and O evenly distributing around the CF, as shown in Figs. 2(g) and 2(h).

Figures 3(a)–3(c) show the response and relaxation properties of the strain sensor based on TiO$_2$@CF/PDMS composites. The response time was measured to be about 0.3701 s, including the time required for the strain sensor ramping to 5% strain (0.125 s). The response time is determined by the length of time occupied from the starting point to ending point when reacting to a given stimulus, as shown in Fig. 3. This shows a very rapid response behavior for the strain sensors based on...
TiO$_2$@CF/PDMS composites. However, some level creep was observed, showing a sharp overshoot and a relatively long relaxation time of 0.1068 s based on the curve fitting of exponential Eq. (1) (Fig. 3), which can be attributed to the viscoelasticity of the PDMS. The relaxation time can be determined as follows:

$$\frac{\Delta R}{R_0} = a + (b - a)e^{-t/\tau}$$ \hspace{1cm} (1)

where constant τ is called the relaxation time. The parameters a, b, and t can be obtained through the curve fitting of experimental data, as shown in Fig. 3(c).

In addition, compared to those of reported results in literature, the response and relaxation properties of the strain sensor based on TiO$_2$@CF/PDMS composites showed superior property [24–27]. Sensing properties of strain sensors prepared in this work were also compared to that of reported results in literature, as revealed in Table 1.
The working mechanism for resistive type strain sensors is based on the piezoresistive effect, where electrical resistance of strain sensors changes upon the external applied strain. Two factors affecting the resistance change shall be considered, that is, geometrical effect and intrinsic piezoresistive effect [43]. The equation for gauge factor of strain sensors to quantitively reveal its sensitivity can be expressed as followings [44]:

\[
\frac{\Delta R}{R_0} = (1 + 2\nu)\varepsilon + \frac{\Delta \rho}{\rho}
\]

(2)

\[
k = \frac{\Delta R / R_0}{\varepsilon}
\]

(3)

where \(\Delta R / R_0\) is the resistance change, \(\nu\) is the Poisson ratio, \(\varepsilon\) is the applied strain, \(\Delta \rho\) is the resistive change, \(\rho\) is the initial resistivity, and \(k\) is the gauge factor.

It is generally acknowledged that metal materials are substantially determined by the geometrical effect upon deformation, which is the first part of Eq. (1) without the second part, gauge factor \(k = 1 + 2\nu\). For our studied composites, as the Poisson ratio of PDMS is about 0.5, thus, the first part contributing to the final gauge factor can be neglected owing to its small value. Therefore, the gauge factor of the studied system in this work is determined by the intrinsic piezoresistive effect, which is described in Eq. (2). To reveal its strain–sensing performance and durability under repeated cycling, cyclic loading and unloading at a maximum strain of 5% was performed on the TiO₂@CF/PDMS composite strain sensor (Fig. 4). The variation in resistance change, which is the difference between the maximum resistance change \(\left(\frac{\Delta R}{R_0}\right)_{\text{max}}\) and minimum resistance change \(\left(\frac{\Delta R}{R_0}\right)_{\text{min}}\), was used here to assess the stability of this strain sensor. The results show that this newly developed TiO₂@CF/PDMS composite strain sensors exhibit a relatively stable performance with a slight drift under this long-term cyclic test. To explain the underlying mechanism in relation to this obtained ultra-high sensitivity, the micro-cracks formed, and propagated inside the strain sensors were put forward. High sensitivity induced by micron-scale cracks was demonstrated in

![Range of cyclic performance of TiO₂@CF/PDMS composite strain sensors.](https://www.springer.com/journal/40145)
printable sensors with a gauge factor up to 647 [45]. The controllable parallel microcracks in composite thin films were also contributed to high sensitivity [46]. Therefore, by introducing the controllable microcracks [1,6,47], it is practical to design and achieve strain sensors with high sensitivity. Therefore, it can be concluded that a rather high sensitivity can be achieved in TiO$_2$@CF/PDMS composite strain sensors.

To reveal the piezoresistive mechanism, *in situ* tension tests were performed on the fabricated TiO$_2$@CF/PDMS composite strain sensors. *In situ* SEM images for TiO$_2$@CF/PDMS composite strain sensors obtained under subsequent strains of 0%, 1%, 3%, 5%, and 10% are shown in Fig. 5. As can be seen from Figs. 5(a)–5(c), some microcracks along the direction of stretching started to emerge and the debonding phenomenon between CF and PDMS matrix gradually occurred when the strain was applied from 0% to 10%, which were indicated by the red arrows and yellow rectangular. In particular, the debonding between CF and PDMS matrix completely appeared and the CF experienced a twisting process with more cracks appearing on its surface under a 10% applied strain. When the strain was released from 10% to 0% (Figs. 5(c)–5(e)), the gap of microcracks was narrowed and the debonding level between CF and PDMS matrix was reduced. It can be concluded from Fig. 5 that TiO$_2$@CF/PDMS composite strain sensors undertake a maximum loading strain up to an effective range of 5%–10%. Moreover, one-dimensional TiO$_2$ nanowire shows the characteristic of enhanced specific surface area/aspect ratio. By growing TiO$_2$ nanowire at the surroundings of CF, a three-dimensional porous structure is formed, showing a tunable structural configurated composite for strain sensors. This can be verified by the comparison between currently achieved results and our formerly reported results, where failure strain and sensitivity of CF/PDMS composite strain sensor show the values of 31.3%–55.5% and 20–100 (strain gauge below 10%), respectively [44]. However, in this work, the failure strain and sensitivity of TiO$_2$@CF/PDMS can be up to 55.2% (shown as below) and 1000, respectively, showing a pronounced improvement in both mechanical and sensing properties.

To ascertain the factors of strain rate affecting the behavior of strain sensors, stretching–holding tests with a variety of strain rates of 0.625% s$^{-1}$, 1.25% s$^{-1}$, 2.50% s$^{-1}$, and 5.0% s$^{-1}$ were performed on TiO$_2$@CF/PDMS composite strain sensors. Figure 6(a) shows the fixed maximum strain of 5% versus time at different strain rates. Figure 6(b) shows the resistance change as a function of time at different strain rates, which is corresponding to the plots of strain versus time in Fig. 6(a). To reveal the effect of strain rate on the gauge factor of this TiO$_2$@CF/PDMS composite strain sensor, the calculated dynamic gauge factor based on Eq. (3) is shown in Fig. 6(c), showing the variation of gauge factor as a function of applied strain at different strain rates. When the applied strain rate was over 0.625% s$^{-1}$,
such as 1.25% s\(^{-1}\), 2.50% s\(^{-1}\), and 5.0% s\(^{-1}\), a peak value of gauge factor at each strain rate can be observed (Fig. 6(c)), demonstrating the significant dependence of strain rate behavior. Moreover, a rather high peak value was demonstrated in both strain rates of 1.25% s\(^{-1}\) and 2.50% s\(^{-1}\). Therefore, gauge factor calculated in TiO\(_2@\)CF/PDMS composite strain sensors showed strong dependence on strain rate. This was also verified by a three-dimensional plot of resistance change, time, and applied strain in Fig. 6(d) at different strain rates, showing a large difference of resistance change at varied strain rates when performing a monotonic test. To further assure...

Fig. 6 (a) Strain versus time at different strain rates; (b) resistance variation as a function of time under varied strain rates; (c) gauge factor as a function of applied strain at different strain rates; and (d) a 3D plot of resistance change, time, and applied strain at different strain rates.

Table 2 Analysis of strain-rate dependent behavior in various composite strain sensors

Material system	Strain rate	Gauge factor	Linearity	Hysteresis	Reference
GO–AgNW–C60	Increasing (0.2–0.8 mm·s\(^{-1}\))	No significant effect	No significant effect	Smaller	[48]
Graphene/TPU	Increasing (0.1–0.5 min\(^{-1}\))	Substantially increased	No significant effect	NA	[49]
Ferroelectric P(VDF–TrFE)	Increasing (10–500 mm·s\(^{-1}\))	Significantly increased voltage generation	NA	NA	[50]
SWNT/MWNT/TPU composites	Increasing (5–25 mm·min\(^{-1}\))	Weakly affected	Weakly affected	NA	[51]
Graphene based natural rubber composites	Increasing (4.5, 9.0, 18 mm·min\(^{-1}\))	Substantially increased (6.8, 22.9, 57.5)	Weakly affected	Increased	[52]
GNPs based multiscale composites	Increasing (2–10 mm·min\(^{-1}\))	Weakly affected	Weakly affected	NA	[53]
Graphene polyimide nanocomposites	Increasing (10%–1000% min\(^{-1}\))	Substantially increased	Weakly affected	Substantially increased	[54]
rGO/CNFs/PDMS nanocomposites	Increasing (0.005–0.1 s\(^{-1}\))	Weakly affected	NA	NA	[28]
CNFs/SCFs/PDMS composites	Increasing (0.0002–0.1 s\(^{-1}\))	Substantially increased	NA	NA	[44]
Carbon sponge/PDMS composites	Frequency (0.01–10 Hz)	Substantially increased	NA	NA	[55]
Carbon paper/PDMS composites	Frequency (0.01–10 Hz)	Substantially increased	NA	NA	[56]

www.springer.com/journal/40145
the mechanism of the strain-rate dependent behavior in our fabricated strain sensors, we made a thoroughly analysis by comparing our results with recently reported results in literature. As shown in Table 2, a variety of fillers combined with varied polymers as matrix were employed to prepare composite strain sensors. When switching the strain rate from low to high value, PDMS polymer matrix based composite strain sensors showed a strong strain-rate dependent behavior, owing to its high viscosity property, while other strain sensors with thermoplastic polyurethanes (TPU) or natural rubbers as polymer matrix indicate a weak dependence on strain rate. Therefore, the polymer matrix plays a predominant role in the occurrence of strain-rate dependent effect in strain sensors.

To demonstrate the strain sensing performance of TiO₂@CF/PDMS composite strain sensors as wearable electronics, a sensor was subject to cyclic stretching and releasing with different roughly calculated maximum strains of 3.75%, 5%, and 10% by using the home-made designed linear stage (Fig. 7). After cyclic stretching and releasing, good durability was indicated although a slight increase of resistance change was observed owing to the unrecovered network damage formed during stretching, showing the successful achievement in designing TiO₂@CF/PDMS composite strain sensors. Therefore, the results confirm that strain sensors made of TiO₂@CF/PDMS composites are very promising for detecting small strain gauge as wearable electronic devices.

4 Conclusions

TiO₂ nanowires are uniformly deposited on the surroundings of the CF to achieve a hybrid porous structure via hydrothermal technique. By embedding into the PDMS polymer matrix, flexible TiO₂@CF/PDMS composite strain sensors are developed to meet the practical application as wearable electronics. A very rapid response of TiO₂@CF/PDMS composite strain sensors is obtained with the measured response time about 0.3701 s, including the time required for the strain sensor ramping to 5% strain (0.125 s). In situ tension tests are performed on the TiO₂@CF/PDMS composite strain sensors to reveal the mechanism of strain sensors under deformation, showing the debonding behavior between CF and PDMS matrix at a gradually increasingly applied strain up to 10%. Strong dependence of strain rate is revealed when performing monotonic test of TiO₂@CF/PDMS composite strain sensors at varied strain rates. Moreover, a rather high gauge factor is demonstrated in both strain rates of 1.25% s⁻¹ and 2.50% s⁻¹. This can be attributed to the predominant role of polymer matrix for its high viscosity property, especially for the employed PDMS as polymer matrix. Therefore, the prepared TiO₂@CF/PDMS composite strain sensors demonstrate its great potential in the application of flexible electronics at a relatively small strain gauge.

Acknowledgements

The research was supported by the Start-Up Funds for Outstanding Talents in Central South University through Project Nos. 202045007 and 202044017. Moreover, the authors would like to appreciate the assistance from Dr. Yin Yao for the help of SEM characterisation.

Fig. 7 Cyclic stretching and releasing of a TiO₂@CF/PDMS composite strain sensor under various of maximum applied strains: (a) cyclic performance under varied maximum strain levels and (b) distribution of relative resistance change under different maximum strain levels by colormapped line.
References

[1] Liao XQ, Liao QL, Yan XQ, et al. Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. *Adv Funct Mater* 2015, **25**: 2395–2401.

[2] Zhong JW, Zhong QZ, Hu QY, et al. Stretchable self-powered fiber-based strain sensor. *Adv Funct Mater* 2015, **25**: 1798–1803.

[3] Li LH, Xiang HY, Xiong Y, et al. Ultrastretchable fiber sensor with high sensitivity in whole workable range for wearable electronics and implantable medicine. *Adv Sci* 2018, **5**: 1800558.

[4] Li XT, Hu HB, Hua T, et al. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. *Nano Res* 2018, **11**: 5799–5811.

[5] Heo JS, Eom J, Kim YH, et al. Recent progress of textile-based wearable electronics: A comprehensive review of materials, devices, and applications. *Small* 2018, **14**: 1703034.

[6] Atalay O, Atalay A, Gafford J, et al. A highly stretchable capacitive-based strain sensor based on metal deposition and laser rastering. *Adv Mater Technol* 2017, **2**: 1700081.

[7] Liao XQ, Wang WS, Wang L, et al. Controllably enhancing stretchability of highly sensitive fiber-based strain sensors for intelligent monitoring. *ACS Appl Mater Interfaces* 2019, **11**: 2431–2440.

[8] Liu P, Pan WD, Liu Y, et al. Fully flexible strain sensor from core-spin elastic threads with integrated electrode and sensing cell based on conductive nanocomposite. *Compos Sci Technol* 2018, **159**: 42–49.

[9] Montazerian H, Rashidi A, Milani AS, et al. Integrated sensors in advanced composites: A critical review. *Crit Rev Solid State Mater Sci* 2020, **45**: 187–238.

[10] Yu SL, Wang XP, Xiang HX, et al. Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. *Carbon* 2018, **140**: 1–9.

[11] Liu ZY, Qi DP, Hu GY, et al. Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable strain sensors. *Adv Mater* 2018, **30**: 1704229.

[12] Zhou J, Xu XZ, Xin YY, et al. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. *Adv Funct Mater* 2018, **28**: 1705591.

[13] Huang T, He P, Wang RR, et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. *Adv Funct Mater* 2019, **29**: 1903732.

[14] Ryu J, Kim J, Oh J, et al. Intrinsically stretchable multifunctional fiber with energy harvesting and strain sensing capability. *Nano Energy* 2019, **55**: 348–353.

[15] Jang Y, Kim SM, Spinks GM, et al. Carbon nanotube yarn for fiber-shaped electrical actuators, and energy storage for smart systems. *Adv Mater* 2020, **32**: 1902670.

[16] Kapoor A, McKnight M, Chatterjee K, et al. Toward fully manufacturable, fiber assembly-based concurrent multimodal and multifunctional sensors for e-textiles. *Adv Mater Technol* 2019, **4**: 1800281.

[17] Yan T, Zhou H, Niu HT, et al. Highly sensitive detection of subtle movement using a flexible strain sensor from helically wrapped carbon yarns. *J Mater Chem C* 2019, **7**: 10049–10058.

[18] Trung TQ, Le HS, Dang TML, et al. Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring. *Adv Healthc Mater* 2018, **7**: 1800074.

[19] Luo JC, Gao SJ, Luo H, et al. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. *Chem Eng J* 2021, **406**: 126898.

[20] Lin LW, Wang L, Li B, et al. Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. *Chem Eng J* 2020, **385**: 123391.

[21] Nguyen NT, Ozkan S, Hwang I, et al. Spaced TiO2 nanotube arrays allow for a high performance hierarchical supercapacitor structure. *J Mater Chem A* 2017, **5**: 1895–1901.

[22] Liao Q, Mohr M, Zhang X, et al. Carbon fiber-ZnO nanowire hybrid structures for flexible and adaptable strain sensors. *Nanoscale* 2013, **5**: 12350–12355.

[23] Hu SM, Yue JL, Jiang C, et al. Resistive switching behavior and mechanism in flexible TiO2@CF memristor crossbars. *Ceram Int* 2019, **45**: 10182–10186.

[24] Jia YY, Yue XY, Wang YL, et al. Multifunctional stretchable strain sensor based on polydopamine/reduced graphene oxide/electrosynthetic polyeurethane fibrous mats for human motion detection and environment monitoring. *Compos B: Eng* 2020, **183**: 107696.

[25] Zhu PY, Xie XB, Sun XP, et al. Distributed modular temperature-strain sensor based on optical fiber embedded in laminated composites. *Compos B: Eng* 2019, **168**: 267–273.

[26] Lau KT, Hung PY, Zhu MH, et al. Properties of natural fibre composites for structural engineering applications. *Compos B: Eng* 2018, **136**: 222–233.

[27] Kwon DJ, Shin PS, Kim JH, et al. Detection of damage in cylindrical parts of carbon fiber/epoxy composites using electrical resistance (ER) measurements. *Compos B: Eng* 2016, **99**: 528–532.

[28] Wu SY, Peng SH, Wang CH. Stretchable strain sensors based on PDMS composites with cellulose sponges containing one- and two-dimensional nanocarbons. *Sens Actuat A: Phys* 2018, **279**: 90–100.

[29] Ma ZH, Xu R, Wang W, et al. A wearable, anti-bacterial strain sensor prepared by silver plated cotton/spandex blended fabric for human motion monitoring. *Colloids Surf A: Physicochem Eng Asp* 2019, **582**: 123918.

[30] Wang L, Chen Y, Lin LW, et al. Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. *Chem Eng J* 2019, **362**: 89–98.

[31] Guo DJ, Pan XD, He H. A simple and cost-effective method for improving the sensitivity of flexible strain sensors based on conductive polymer composites. *Sens
Actuat A Phys 2019, 298: 111608.

[32] Hántzsche E, Matthes A, Noeke A, et al. Characteristics of carbon fiber based strain sensors for structural-health monitoring of textile-reinforced thermoplastic composites depending on the textile technological integration process. Sens Actuat A Phys 2013, 203: 189–203.

[33] Yang YN, Cao ZR, He P, et al. Ti3C2T, MXene–graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 2019, 66: 104134.

[34] Min S, Asrulnizam AM, Atsunori M, et al. Properties of stretchable and flexible strain sensor based on silver/PDMS nanocomposites. Mater Today 2019, 17: 616–622.

[35] Anderson N, Szcoc N, Gunasekaran V, et al. Highly sensitive screen printed strain sensors on flexible substrates via ink composition optimization. Sens Actuat A Phys 2019, 290: 1–7.

[36] Gao ZJ, Li YF, Shang XL, et al. Bio-inspired adhesive and self-healing hydrogels as flexible strain sensors for monitoring human activities. Mater Sci Eng C 2020, 106: 110168.

[37] Huang JY, Li DW, Zhao M, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors. J Chem Eng 2019, 373: 1357–1366.

[38] Zhu P, Zhao ZM, Nie JH, et al. Ultra-high sensitivity strain sensor based on piezotronic bipolar transistor. Nano Energy 2018, 50: 744–749.

[39] Lu ST, Chen DS, Liu C, et al. A 3-D finger motion measurement system via soft strain sensors for hand rehabilitation. Sens Actuat A Phys 2019, 285: 700–711.

[40] Liu Y, Shi XL, Liu SR, et al. Biomimetic printable nanocomposite for healable, ultrasensitive, stretchable and ultradurable strain sensor. Nano Energy 2019, 63: 103898.

[41] Ma LF, Yang W, Wang YS, et al. Multi-dimensional strain sensor based on carbon nanotube film with aligned conductive networks. Compos Sci Technol 2018, 165: 190–197.

[42] Bessonov A, Kirikova M, Haque S, et al. Highly reproducible printable graphite strain gauges for flexible devices. Sens Actuat A Phys 2014, 206: 75–80.

[43] Quo AD, Li PL, Yang ZK, et al. A path beyond metal and silicon: Polymer/nanomaterial composites for stretchable strain sensors. Adv Funct Mater 2019, 29: 1806306.

[44] Zhang F, Wu SY, Peng SH, et al. The effect of dual-scale carbon fibre network on sensitivity and stretchability of wearable sensors. Compos Sci Technol 2018, 165: 131–139.

[45] Song HL, Zhang JQ, Chen DB, et al. Superfast and high-sensitivity printable strain sensors with biosinspired micron-scale cracks. Nanoscale 2017, 9: 1166–1173.

[46] Amjadi M, Turan M, Clementson CP, et al. Parallel microcracks-based ultrasensitive and highly stretchable strain sensors. ACS Appl Mater Interfaces 2016, 8: 5618–5626.

[47] Gao Y, Fang X, Tan J, et al. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites. Nanotechnology 2018, 29: 235501.

[48] Shi XL, Liu SR, Sun Y, et al. Lowering internal friction of 0D–1D–2D ternary nanocomposite-based strain sensor by fullerene to boost the sensing performance. Adv Funct Mater 2018, 28: 1800850.

[49] Liu H, Li YL, Dai K, et al. Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J Mater Chem C 2016, 4: 157–166.

[50] Sato J, Sekine T, Wang YF, et al. Ferroelectric polymer-based fully printed flexible strain rate sensors and their application for human motion capture. Sens Actuat A Phys 2019, 295: 93–98.

[51] Li YH, Zhou B, Zheng GQ, et al. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composed electrospun thermoplastic polyurethane yarns for wearable sensing. J Mater Chem C 2018, 6: 2258–2269.

[52] Lin Y, Dong X, Liu S, et al. Graphene-elastomer composites with segregated nanostructured network for liquid and strain sensing application. ACS Appl Mater Interfaces 2016, 8: 24143–24151.

[53] Moriche R, Jiménez-Suárez A, Sánchez M, et al. Sensitivity, influence of the strain rate and reversibility of GNPs based multiscale composite materials for high sensitive strain sensors. Compos Sci Technol 2018, 155: 100–107.

[54] Qin Y, Peng Q, Ding Y, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 2015, 9: 8933–8941.

[55] Li YQ, Zhu WB, Yu XG, et al. Multifunctional wearable device based on flexible and conductive carbon sponge/polydimethylsiloxane composite. ACS Appl Mater Interfaces 2016, 8: 33189–33196.

[56] Li YQ, Samad YA, Taha T, et al. Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain Chem Eng 2016, 4: 4288–4295.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.