Decreased β-catenin Expression Contributes to IFNγ-induced Chemokine Secretion and Lymphocyte Infiltration in Hashimoto’s Thyroiditis

Fei Wu¹², Chaoming Mao²*, Xiao Mou², Chengcheng Xu², Tingting Zheng², Ling Bu³, Xuan Luo², Qingyan Lu¹, Xuefeng Wang²

¹Department of Nuclear Medicine, Yancheng City No.1 People’s Hospital, Yancheng, 224001, China
²Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
³Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, 210032, China
⁴Department of Laboratory Medicine, Xuzhou Central Hospital, Xuzhou, 221009, China

*Correspondence: Chaoming Mao; jq1001@ujs.edu.cn; 438 Jiefang Road, Zhenjiang 212001, China

short title: Autoimmune Pathology of HT

Key words: β-catenin, Hashimoto’s thyroiditis, lymphocyte infiltration, IFN-γ, chemokine

Word count: 3355 words (excluding references and figure legends)
Abstract

Hashimoto’s thyroiditis (HT) is a very common organ-specific autoimmune disease characterized by lymphocyte infiltration and the destruction of thyroid follicular cells, in which IFN-γ and chemokines play pivotal roles. Moreover, β-catenin has been implicated in the regulation of T cell infiltration. However, whether β-catenin is involved in Hashimoto’s thyroiditis is unknown. Here, we examined β-catenin expression in thyroid tissues and investigated its role in the pathogenesis of HT. The results showed that β-catenin expression was markedly reduced in the thyroid tissues of HT patients; more importantly, IFN-γ treatment markedly reduced the expression of β-catenin and was accompanied by the secretion of chemokines such as CCL5, CXCL16, GRO-β, and GRO-γ in thyroid follicular cells (TFCs) in vitro, which was attributed to GSK-3β/β-catenin signaling pathway activation. Collectively, the decreased expression of β-catenin might contribute to IFNγ-induced chemokine secretion and lymphocyte infiltration in the development of HT.

Introduction

Hashimoto’s thyroiditis (HT) is a very common organ-specific autoimmune disease in which the Th1-mediated immune response contributes to the destruction of thyroid follicular cells (TFCs)[1]. In recent years, many studies have shown that HT development depends on an immune defect in an individual with genetic susceptibility together with environmental factors [2], such as iodine, selenium, smoking and medications (e.g., amiodarone, alumtuzumab, iplimumab, interferon alpha and other cytokines).
However, the pathogenesis of HT is still not fully clear. One of the histopathological hallmarks of HT is lymphocyte infiltration into the thyroid gland. The recruitment of these lymphocytes into the site of inflammation is a multistep event mediated by leukocytes, cytokines, and adhesion molecules [3].

IFN-\(\gamma\), as an important Th1-type cytokine, is produced intrathyroidally by infiltrating inflammatory cells, acting in a paracrine manner [4, 5]. IFN-\(\gamma\) can potentiate the expression of major histocompatibility complex class II molecules and adhesion molecules in TFCs [5]. Importantly, a direct role of IFN-\(\gamma\) in autoimmune thyroid destruction has been documented in thyroid-specific IFN-\(\gamma\) transgenic mice [6]. Furthermore, it has been reported that thyrocytes responding to IFN-\(\gamma\) are essential for developing lymphocytic spontaneous autoimmune thyroiditis and inhibition of thyrocyte proliferation in NOD. H-2h4 mice [7]. Recently, a group of low-molecular-weight peptides, namely, chemokines, were demonstrated to play a crucial role in leukocyte infiltration [8]. Chemokines are small (~8–14 kDa), secreted proteins structurally similar to cytokines, responsible for attracting and recruiting different cell types during physiological processes of maturation and trafficking of immune cells throughout different lymphoid organs [9]. Most of the attention has been devoted to understanding their activities as proinflammatory mediators [10-12], making them and their receptors classical targets for therapeutic interventions in inflammatory autoimmune diseases [9, 13, 14]. The role of IFN-\(\gamma\) in directing chemokine production and leukocyte infiltration to the central nervous system (CNS) in experimental autoimmune encephalomyelitis (EAE) has been demonstrated. However, the relationship between IFN-\(\gamma\) and chemokines in HT is not clear.
A recent study demonstrated that tumor-intrinsic β-catenin signaling might result in the lack of T cell infiltration by decreasing chemokine CCL4 gene expression in melanoma models and patient-derived biopsies[15]. As a central signaling molecule in the canonical Wnt pathway, β-catenin activates target genes in a complex with lymphoid enhancer factor (T cell factor transcription factors) in the nucleus. The regulation of β-catenin activity is thought to occur via a cytoplasmic multiprotein complex that includes the serine/threonine kinase glycogen synthase kinase-3β (GSK-3β) that phosphorylates β-catenin, marking it for degradation by the proteasome[16]. Lithium is known to prevent β-catenin degradation and, therefore, mimics canonical Wnt signaling[17].

The inverse relationship of active β-catenin signaling and T cell infiltration in both human melanoma samples and transgenic melanoma mouse models by Spranger and colleagues provides a first insight into a potential new mechanism of immune resistance. Until now, no research has been performed to determine whether β-catenin expression affects lymphocyte infiltration in HT. In the present study, we found that IFN-γ induced decreased expression of β-catenin, which contributed to the chemokine secretion of TFCs, and then affected the lymphocyte infiltration. In view of the potential importance of β-catenin in lymphocyte infiltration, β-catenin may have a key role in the autoimmune pathology of HT.

Materials and Methods

2.1. Cell culture and samples
Human thyroid follicular epithelium (Nthy-ori 3-1) was purchased from the European Collection of Animal Cell Cultures and cultivated in RPMI-1640 (Biological Industries, Kibbutz Beit Haemek, Israel) supplemented with 10% fetal bovine serum (Gibco, Gaithersburg, MD, USA) in the presence of 5% CO₂ and 37 °C. Thyroid tissue samples were obtained from 10 HT patients and 5 patients with a simple goiter. HT diagnosis was made based on clinical evaluations and Japanese guidelines as described previously [18, 19]. All samples were obtained after obtaining written informed consent, in accordance with the regulations and approval of the Institutional Review Board of the Affiliated Hospital of Jiangsu University. This study was approved by the Ethics Committee of the Affiliated Hospital of Jiangsu University and conducted in accordance with the Declaration of Helsinki.

2.2. Immunohistochemistry (IHC) detection

Thyroid tissues were obtained from the Department of Pathology of The Affiliated Hospital to Jiangsu University. Tissue sections were prepared as follows: samples were fixed in 10% neutralized formalin, embedded in paraffin, cut into 4-μm sections, and mounted on slides. After deparaffinization and rehydration, antigen retrieval was performed by boiling samples in 10 mmol/L citrate buffer (pH 6.0) for 10 min and then washing the slides with phosphate-buffered saline (PBS). After inhibition of endogenous peroxidase activity for 10 min with methanol containing 3% H₂O₂, sections were blocked with 2% bovine serum albumin in PBS for 30 min. It was then incubated at 4 °C (the corresponding isotype antibody was used as a negative control). After three washes with PBS, the sections were treated with horseradish peroxidase (HRP)-conjugated secondary antibody (Maixin Biotechnology
Co., Ltd.). Tissue sections were then counterstained with 3,3’-diaminobenzidine (DAB) and hematoxylin and observed under an optical microscope. HT showed effacement of thyroid architecture by diffuse lymphocyte infiltration and residual thyroid follicles. Then, the number of lymphocytes in each HT specimen was calculated. The results of quantitative analysis for all IHC samples by Image-Pro plus 6.0 software are presented graphically. The number of lymphocytes in the thyroid tissues per high-power field of β-catenin assessment was counted to evaluate the relationship between β-catenin expression and infiltrating lymphocytes \[20\]. All statistics were based on data collected by independent pathologists blinded to the experimental conditions.

2.3. Reagents and antibodies

Nthy-ori 3-1 cells were treated with exogenous recombinant human IFN-γ (Peprotech, Rocky Hill, NJ, USA) in the culture medium at a gradient concentration (0, 250, 500, 1000 U/mL). The control group included cells without any treatment. GSK-3β inhibition studies were performed by adding 10 mM Lithium (Sigma, Aldrich, USA) to the culture medium. Control cells were treated with the vehicle. The following primary antibodies and secondary antibodies were used: rabbit anti-human β-catenin, rabbit anti-human GSK-3β, rabbit anti-human p-GSK-3β, rabbit anti-β-actin (Cell Signaling Technology, Dan-vers, MA, USA), and goat anti-rabbit IgG-HRP (Santa Cruz, CA, USA).

2.4. Western blot analysis

Briefly, whole cell lysates, cytoplasm, and nuclear lysates were prepared with a protein extraction kit (Merck Millipore) as previously described by Dr. Xu\[21\]. Protein concentration was determined using
a BCA protein concentration kit (Beyotime, Shanghai, China). First, 5 μg of protein was subjected to electrophoresis on a 10%-15% acrylamide gel by SDS–PAGE and then transferred onto a polyvinylidenedifluoride membrane (Merck Millipore, Billerica, MA, USA) by electrophoresis. After blocking for 1 h in 5% bovine serum albumin, the membranes were incubated with antibodies against proteins or β-actin (standard controls), followed by HRP-conjugated secondary antibodies. The signals were detected using the Pierce ECL-plus substrate (Thermo Fisher Scientific, Waltham, MA, USA) and scanned with a Fluor Chem FC3 camera system (Protein-Simple, California, USA). Images were analyzed using AlphaView software (AIC, California, USA), and the results of quantitative analyses were presented graphically.

2.5. RT-PCR analysis

Total RNA was extracted from Nthy-ori 3-1 cells with TRIzol reagent (Invitrogen, USA) according to the manufacturer’s instructions after treatment with IFN-γ for 6 h. RNA was eluted with RNase-free water, and the RNA concentrations were determined using a BioMate 3S analyzer (Thermo Fisher Scientific, USA). RT–PCR was performed using the RNA PCR Kit ver. 3.0 (Takara Biotechnology, RR019B, China). One µg of total RNA was reverse transcribed in a 20-µl volume with the PrimeScript® RT reagent Kit (Perfect Real Time) using random hexamers and oligo dT as primers. The qRT–PCR was performed with SYBR® Premix Ex Taq™ (TliRNaseH Plus) in a real-time PCR Mx3000PTM System (Genetimes Technology, China). For mRNA detection, the primers were as follows: β-catenin (forward: 5’-CAA CTA AAC AGG AAG GGA TGG A-3’; reverse: 5’-CTA TAC
CAC CCA CTT GGC AGA C-3’); GRO-β (forward: 5’-CTG CGC CCA AAC CGA AGT CAT A-3’; reverse: 5’-TTC AGG AAC AGC CAC CAA TAA GC-3’); GRO-γ (forward: 5’-GCA GGG AAT TCA CCT CAA GA-3’; reverse: 5’-GGT GCT CCC CTT GTT CAG TA-3’); CXCL16 (forward: 5’-GGG GGC AGT CAC CGC AGT CCT-3’; reverse: 5’-AAT AGC CGG GTG TGG TGG TGA GCA-3’); CCL5 (forward: 5’-CAC GCC TCG CTG TCA TCC TCA-3’; reverse: 5’-TTG GCG GTT CTT TCG GTT GAC-3’); GAPDH (forward: 5’-AGG TGA AGG TCG GAG TCA AC-3’; reverse: 5’-GGG TGG AAT CAT ATT GGA ACA-3’). GAPDH was used as the internal control. The 2^−ΔΔCt method was used to calculate the relative gene expression levels.

2.6. Chemokine array

The levels of chemokines in the supernatants of the TFC cultures were determined using a RayBio Human Chemokine Antibody Array Kit (RayBiotech; Norcross, GA, USA). Briefly, TFCs were cultured in a 6-well plate (2 × 10^5 cells/well) with 2 ml/well serum-free medium for 16 h and then treated with or without 500 U/ml recombinant human IFN-γ and 10 mM LiCl for 24 h. The treated and untreated supernatants were harvested and analyzed according to the manufacturer’s instructions. The array was scanned by a laser scanner (InnoScan30Microarray Scanner, INNOPSIS, France) using a green channel (excitation frequency 532 nm).

2.7. Transfection with siRNA
Knockdown of GSK-3β or β-catenin was performed by transfection with small interfering RNA (GenePharma, Shanghai, China). The targeted sequences GSK-3β were as follows: sense, 5'-GGA CUA UGU UCC GGA AAC ATT -3'; antisense, 5’-UGU UUC CGG AAC AUA GUC CTT -3’. The targeted β-catenin sequences were as follows: sense, 5’-GCA GUU GUA AAC UUG AUU ATT -3’; antisense, 5’-UAA UCA AGU UUA CAA CUG CTT-3’. A total of 3×10⁵ cells were plated in 6-well plates for 16 h and then transfected with 80 pMol siRNA using Lipofectamine 2000 (Invitrogen, USA) in serum-free medium for 5 h. Then, the medium was replaced with serum-supplemented medium for 24 h. Negative controls using nontransfected cells and empty vector were performed in parallel. Cells were then used for functional assays based on RNA and protein extraction.

2.8. Overexpression of β-catenin

β-catenin is a protein that in humans is encoded by the CTNNB1 gene. Nthy-ori 3-1 cells were infected with adenovirus-expressing CTNNB1 (Hanbio Biotechnology, China) at a multiplicity of infection of 100 for approximately 6 h. The control group included cells with control adenovirus Ad-RFP.

2.9. Statistical analyses

Statistical analyses were performed using GraphPad Prism 5 software (GraphPad Software, Inc., San Diego, CA, USA). Descriptive data are expressed as the mean ± standard deviation (SD), and numerical data between two groups were compared using the homogeneity of variance test or Wilcoxon Mann–Whitney test, as appropriate. Differences in various groups' mean values were
analyzed using one-way ANOVA with Tukey–Kramer multiple comparison tests. Correlations between variables were determined by Pearson’s correlation coefficient. $P < 0.05$ was considered statistically significant.

3. Results

3.1 Decreased β-catenin and enhanced IFN-γ expression in thyroid tissues from HT patients

To evaluate the expression of β-catenin and IFN-γ in thyroid tissues of HT patients, we used IHC analysis. The results indicated that both HT and goitrous tissues expressed β-catenin and IFN-γ. However, HT tissues (n = 10) expressed low levels of β-catenin and high levels of IFN-γ compared with goiters, while goiter-adjacent normal tissues (n = 5) expressed a high level of β-catenin ($P < 0.01$) and a low level of IFN-γ ($P < 0.01$). Our results suggested the occurrence of reduced β-catenin and increased IFN-γ in HT tissues compared with goiter-adjacent normal tissues (Fig. 1A). The results of IHC quantification from all samples are shown in Fig. 1B. Further analysis suggested that the level of β-catenin expression was negatively correlated with the number of infiltrating lymphocytes in the same tissue area of HT patients by IHC analysis ($n = 10$, $P < 0.05$; Fig. 1C).

3.2 IFN-γ downregulated β-catenin expression in TFCs

Nthy-ori 3-1 cells, a human immortalized thyroid follicular cell line, were treated with gradient concentrations of exogenous recombinant human IFN-γ, and the expression of β-catenin was detected by Western blot and RT–PCR analysis. The results showed that the protein levels of β-catenin
significantly decreased in IFN-γ-treated Nthy-ori 3-1 cells in a concentration-dependent manner ($P < 0.01$; Fig. 2A) but not in the mRNA levels of β-catenin (Fig. 2B). Further analysis showed that the level of nuclear β-catenin (n-β-catenin) was decreased in IFN-γ-treated Nthy-ori 3-1 cells, along with a decrease in the level of cytoplasmic β-catenin (c-β-catenin) by Western blot (Fig. 2C).

3.3 GSK-3β/β-catenin signaling contributes to IFN-γ-induced chemokine secretion in TFCs

The culture supernatant from Nthy-ori 3-1 cells was analyzed using the RayBio Human Chemokine Antibody Array (AAH-CHE-G1) to investigate the change in the IFN-γ-induced chemokine profile in the TFCs. The results showed that the expression of five chemokines (CCL2, CCL5, CXCL10, CXCL16, and GRO) was increased significantly in the presence of IFN-γ compared with the control ($P < 0.05$; Fig. 3A).

To further determine the mechanism of IFN-γ-induced chemokine secretion, GSK-3β/β-catenin protein, the important molecules of Wnt signaling pathway, which play a key role in many biological aspects, were analyzed after IFN-γ treatment in Nthy-ori 3-1 cells. Western blot analysis was performed to examine the protein expression levels of phosphorylated and total GSK-3β and total β-catenin in IFN-γ-treated Nthy-ori 3-1 cells at different times. The results showed that IFN-γ treatment induced the phosphorylation of GSK-3β in Nthy-ori 3-1 cells, and the increased phosphorylated protein levels were significant at 6 h (Fig. 3B). Similarly, the expression of β-catenin began to decrease at 6 h (Fig. 3B). These findings suggested that IFN-γ could activate GSK-3β, which is
Inhibition of GSK-3β with 10 mM lithium, which was reported to inhibit GSK-3β fully\cite{17}, particularly reduced the expression of chemokines CCL5, CXCL16, and GRO (Fig. 3A). Similarly, pretreatment with the GSK3β inhibitor lithium inhibited changes in chemokine (CCL5, CXCL16, GRO-β, and GRO-γ) gene expression in Nthy-ori 3-1 cells in the presence of IFN-γ, as shown by RT–PCR analysis (Fig. 3C). To exclude the indeterminate effects of the GSK-3β inhibitor, GSK-3β expression was silenced in Nthy-ori 3-1 cells, and then the cells were treated with IFN-γ. RT–PCR analysis showed that silencing the GSK-3β gene significantly also reduced IFN-γ-induced chemokine (CCL5, CXCL16, GRO-β, and GRO-γ) expression (Fig. 3D). To prove the effect of β-catenin, we found that IFN-γ-induced chemokines were decreased by adenovirus-mediated CTNNB1 overexpression (Fig. 3E). Additionally, silencing β-catenin expression in Nthy-ori 3-1 cells enhanced IFN-γ-induced chemokines (Fig. 3F). These results suggested that the production of IFN-γ-induced chemokines (CCL5, CXCL16, GRO-β, and GRO-γ) was mediated by the GSK-3β/β-catenin pathway.

4. Discussion

HT is characterized by the destruction of thyroid cells and the tendency to hypothyroidism, the unique pathologic feature of which is the infiltration of many lymphocytes. Chemokines, inflammatory cytokines, and lymphocytes work together to attract lymphocytes to inflammatory sites. Most studies have found a significantly higher expression of IFN-γ in HT patients’ serum and thyroid tissue, suggesting that the cytokine profile in HT has a Th1 bias \cite{22-24}. Our IHC data revealed a significantly
decreased expression of β-catenin and an increased expression of IFN-γ in the thyroid tissue of HT patients compared to goiter-adjacent normal tissues. This suggested that IFN-γ was associated with the decreased expression of β-catenin in the thyroid tissue of HT patients. This finding is consistent with other autoimmune inflammatory diseases, such as rheumatoid arthritis (RA) and multiple sclerosis (MS). A study showed that Treg depletion renders thyroiditis-resistant IL-17 KO, but not IFN-γR KO, NOD-H2h4 mice susceptible to thyroiditis[25], suggesting that IFN-γ plays an important role in the development of thyroiditis; however, the mechanism of this is not clear. More interestingly, our study found that IFN-γ-induced expression of five chemokines (CCL2, CCL5, CXCL10, CXCL16, and GRO) increased significantly in TFCs. As reported by Caturegli[26], IFN-γ is able to directly affect thyroid function independently of the destructive effect of infiltrating lymphocytes. In this nonclassical model, hypothyroidism results from chronic inhibition of thyroid function induced by exposure of thyrocytes to proinflammatory cytokines such as IFN-γ. On the other hand, IFN-γ, by stimulating the intrathyroidal secretion of chemokines, which in turn recruit Th1 lymphocytes secreting IFN-γ, also plays a role in the classical model of hypothyroidism, which results from the loss of thyroid follicles due to massive lymphocytic infiltration [6]. Our data thus cast new light on the mechanism of IFN-γ as a primary regulator of chemokine profiles in the development of HT.

Wnt signaling has been demonstrated to play crucial roles in several biological aspects, including cellular proliferation, embryonic development, tissue homeostasis, development of the immune system, and other systemic effects [27]. In addition to its dispensable roles in the development of T
cells and the immune system, mounting evidence has recently suggested that this signaling pathway is involved in the pathogenesis of many types of autoimmune diseases, such as RA, SLE, and ankylosing spondylitis (AS) \cite{28-34}. However, the role of Wnt signaling in the development of HT remains unclear. Spranger and colleagues recently reported an inverse relationship between melanoma intrinsic β-catenin signaling and intratumoral T cell infiltration, providing an explanation for potential mechanisms of T cell exclusion\cite{15}. In contrast, with the infiltration of a large number of lymphocytes in HT thyroid tissue, our results showed the occurrence of reduced β-catenin expression. We also found that β-catenin at the protein level was significantly decreased in IFN-γ-treated TFCs in a concentration-dependent manner but not at the mRNA level. More importantly, this decrease was accompanied by an increase in GSK-3β, suggesting that IFN-γ-induced chemokine secretion was associated with a reduction in β-catenin expression and activation of GSK-3β and that GSK-3β activation was responsible for the degradation of the β-catenin protein. To further determine the relationship, application of the GSK-3β inhibitor LiCl to mimic the effect of canonical Wnt activation \cite{17} was particularly able to reduce the expression of chemokines (CCL5, CXCL16, and GRO) in IFN-γ-stimulated TFCs. This study provided evidence that the GSK-3β/β-catenin pathway might regulate IFN-γ-induced chemokine secretion of TFCs in the development of HT.

In conclusion, our findings showed that in the pathogenesis of Hashimoto's thyroiditis, IFN-γ, an important inflammatory cytokine, activates GSK-3β signaling molecules, increases β-catenin degradation, restrains the Wnt signaling pathway. It also promotes the secretion of chemokines,
lymphocyte infiltration and chemotactic thyroid tissue, which contribute to the development of Hashimoto's thyroiditis. The decreased expression of β-catenin might play an important role in determining the nature of the infiltrating lymphocytes in HT.

Conflicts of Interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81370889).

Author contribution statement

FW performed most of the experiments, analyzed the data, and wrote the manuscript. CM designed the project, evaluated and interpreted data, wrote the manuscript, as well as financed and supervised the study. XM, CX, and TZ helped with the experimental design. LB, XL, and QL performed some of the experiments and evaluated the data. XW edited various parts of the manuscript.

Acknowledgements

The authors like to acknowledge the patients who participated in the study.
References

1. Phenekos C, Vryonidou A, Gritzapis AD, Baxevanis CN, Goula M, Papamichail M. Th1 and Th2 serum cytokine profiles characterize patients with Hashimoto's thyroiditis (Th1) and Graves' disease (Th2). *Neuroimmunomodulation* 2004 11 209-213.

2. Bosowski A, Moniuszko M, Dąbrowska M, Bosowski A. Analysis of T regulatory cells in the peripheral blood in children and adolescents with Graves’ disease and Hashimoto’s thyroiditis. *Endokrynologia Pediatryczna* 2011 34 37–48.

3. Weetman AP. Cellular immune responses in autoimmune thyroid disease. *Clin Endocrinol (Oxf)* 2004 61 405-413.

4. Heuer M, Aust G, Ode-Hakim S, Scherbaum WA. Different cytokine mRNA profiles in Graves' disease, Hashimoto's thyroiditis, and nonautoimmune thyroid disorders determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR). *Thyroid* 1996 6 97-106.

5. Weetman AP. The potential immunological role of the thyroid cell in autoimmune thyroid disease. *Thyroid* 1994 4 493-499.

6. Caturegli P, Hejazi M, Suzuki K, Dohan O, Carrasco N, Kohn LD, Rose NR. Hypothyroidism in transgenic mice expressing IFN-gamma in the thyroid. *Proc Natl Acad Sci U S A* 2000 97 1719-1724.

7. Yu S, Sharp GC, Braley-Mullen H. Thyrocytes responding to IFN-gamma are essential for development of lymphocytic spontaneous autoimmune thyroiditis and inhibition of thyrocyte hyperplasia. *J Immunol* 2006 176 1259-1265.

8. Rotondi M, Coperchini F, Pignatti P, Sideri R, Groppelli G, Leporati P, La Manna L, Magri F, Mariotti S, Chiovato L. Interferon-gamma and tumor necrosis factor-alpha sustain secretion of specific CXC chemokines in human thyrocytes: a first step toward a differentiation between autoimmune and tumor-related inflammation? *J Clin Endocrinol Metab* 2013 98 308-313.

9. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. *N Engl J Med* 2006 354 610-621.

10. Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. *Nat Immunol* 2006 7 311-317.

11. Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. *J Exp Med* 2000 192 1075-1080.

12. Karpus WJ, Kennedy KJ, Kunkel SL, Lukacs NW. Monocyte chemotactic protein 1 regulates oral tolerance induction by inhibition of T helper cell 1-related cytokines. *J Exp Med* 1998 187 733-741.
13. Proudfoot AE. Chemokine receptors: multifaceted therapeutic targets. *Nat Rev Immunol* 2002 2 106-115.
14. Schall TJ, Proudfoot AE. Overcoming hurdles in developing successful drugs targeting chemokine receptors. *Nat Rev Immunol* 2011 11 355-363.
15. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. *Nature* 2015 523 231-235.
16. M Caspi AZ, H Eldar-Finkelman and R Rosin-Arbesfeld. Nuclear GSK-3β inhibits the canonical Wnt signalling pathway in a β-catenin phosphorylation-independent manner. *Oncogene* 2008 27 3546–3555.
17. Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. *Dev Biol* 1997 185 82-91.
18. Chen MP, Chung FM, Chang DM, Tsai JC, Huang HF, Shin SJ, Lee YJ. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. *J Clin Endocrinol Metab* 2006 91 295-299.
19. Liu H, Zheng T, Mao Y, Xu C, Wu F, Bu L, Mou X, Zhou Y, Yuan G, Wang S, et al. gammadelta Tau cells enhance B cells for antibody production in Hashimotos thyroiditis, and retinoic acid induces apoptosis of the gammadelta Tau cell. *Endocrine* 2016 51 113-122.
20. Trovato, Maria. A historical excursus of diagnostic methods for Hashimoto thyroiditis and Graves’ disease. *Gazzetta medica italiana* 2020 179 479-485.
21. Xu C, Wu F, Mao C, Wang X, Zheng T, Bu L, Mou X, Zhou Y, Yuan G, Wang S, et al. Excess iodine promotes apoptosis of thyroid follicular epithelial cells by inducing autophagy suppression and is associated with Hashimoto thyroiditis disease. *J Autoimmun* 2016 75 50-57.
22. Karanikas G, Schuetz M, Wahl K, Paul M, Kontur S, Pietschmann P, Kletter K, Dudczak R, Willheim M. Relation of anti-TPO autoantibody titre and T-lymphocyte cytokine production patterns in Hashimoto's thyroiditis. *Clin Endocrinol (Oxf)* 2005 63 191-196.
23. Mazzotti G, Sorvillo F, Naclerio C, Farzati A, Cioffi M, Perna R, Valentini G, Farzati B, Amato G, Carella C. Type-1 response in peripheral CD4+ and CD8+ T cells from patients with Hashimoto's thyroiditis. *Eur J Endocrinol* 2003 148 383-388.
24. Fisfalen ME, Soltani K, Kaplan E, Palmer EM, van Seventer GA, Straus FH, Diaz M, Ober C, DeGroot LJ. Evaluating the role of Th0 and Th1 clones in autoimmune thyroid disease by use of Hu-SCID chimeras. *Clin Immunol Immunopathol* 1997 85 253-264.
25. Horie I, Abiru N, Sakamoto H, Iwakura Y, Nagayama Y. Induction of autoimmune thyroiditis by depletion of CD4+CD25+ regulatory T cells in thyroiditis-resistant IL-17, but not interferon-gamma receptor, knockout nonobese diabetic-H2h4 mice. *Endocrinology* 2011 152 4448-4454.
26. Caturegli P, Kimura H. A nonclassical model of autoimmune hypothyroidism. *Thyroid* 2010 20 3-5.
27. Nusse R. Cell signalling: Disarming Wnt. *Nature* 2015 **519** 163-164.
28. Beyer C, Schramm A, Akhmetshina A, Dees C, Kireva T, Gelse K, Sonnylal S, de Crombrugge B, Taketo MM, Distler O, et al. beta-catenin is a central mediator of profibrotic Wnt signaling in systemic sclerosis. *Ann Rheum Dis* 2012 **71** 761-767.
29. Hauck SM, Hofmaier F, Dietter J, Swadzba ME, Blindert M, Amann B, Behler J, Kremmer E, Ueffing M, Deeg CA. Label-free LC-MSMS analysis of vitreous from autoimmune uveitis reveals a significant decrease in secreted Wnt signalling inhibitors DKK3 and SFRP2. *J Proteomics* 2012 **75** 4545-4554.
30. Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies. *Nat Rev Genet* 2004 **5** 691-701.
31. Schett G, Zwerina J, David JP. The role of Wnt proteins in arthritis. *Nat Clin Pract Rheumatol* 2008 **4** 473-480.
32. Tveita AA, Rekvig OP. Alterations in Wnt pathway activity in mouse serum and kidneys during lupus development. *Arthritis Rheum* 2011 **63** 513-522.
33. Wang XD, Huang XF, Yan QR, Bao CD. Aberrant activation of the WNT/beta-catenin signaling pathway in lupus nephritis. *PLoS One* 2014 **9** e84852.
34. Yuan S, Shi Y, Tang SJ. Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic pain. *J Neuroimmune Pharmacol* 2012 **7** 904-913.

Figure 1. β-catenin and IFN-γ expression in HT tissues and goiter-adjacent normal tissues.

(A) Representative results of immunohistochemical staining for β-catenin and IFN-γ in HT tissues (n=10) and goiter-adjacent normal tissues (n=5) are shown. Goiter-adjacent normal tissues were obtained from patients with simple goiter of the thyroid gland. Brown regions represent positive expression (original magnification, 400×). (B) The results of IHC quantification from all samples are shown. The Mann–Whitney U tests was used to calculate significant differences and P values. **P < 0.01 vs. controls.** (C) The relationship between β-catenin expression and the number of infiltrating lymphocytes in the same tissue area of HT patients by IHC analysis is shown (n=10).

Figure 2. Effects of IFN-γ exposure on the expression of β-catenin in Nthy-ori 3-1 cells. Nthy-ori 3-1 cells were treated with gradient concentrations of IFN-γ. (A) Cell lysates were harvested after 24 h of IFN-γ treatment. The images presented are Western blots (left upper panel) probed for β-catenin (β-actin served as the loading control). The mean values of all three
replicates are shown (right upper panel). (B) Relative expression levels of β-catenin mRNA were examined by RT–PCR assay after 5 h of IFN-γ treatment. The analysis of the CT values of Nthy-ori 3-1 cells was normalized to GAPDH for each sample. The normalized values (ΔCT) of all samples were compared with the control in each group (ΔΔCT). The results are expressed as $2^{-\Delta\Delta CT}$, and the resulting data were derived from at least three independent experiments. (C) Western blot results showed the changes in n-β-catenin and c-β-catenin expression levels in Nthy-ori 3-1 cells treated with IFN-γ for 24 h. Histone 4 and β-actin were used as protein loading controls. Significant differences and P values were calculated with one-way ANOVA. ns, not significant. *$P < 0.05$ vs. controls.

Figure 3. The effects of GSK-3β/β-catenin signaling on the expression of IFN-γ-induced chemokines in Nthy-ori 3-1 cells.

(A) Effect of IFN-γ on chemokine expression: Nthy-ori 3-1 cells were treated with IFN-γ (500 U/mL) for 24 h. The supernatants were then collected for chemokine antibody array analysis. The relative signal intensity of each of the indicated chemokines is shown. (B) Western blot results showed the changes in GSK-3β, p-GSK-3β and β-catenin expression levels in Nthy-ori 3-1 cells treated with IFN-γ (500 U/mL) at different time points. (C) and (D) The changes in GRO-β and GRO-γ, CCL5, and CXCL16 expression in the presence of IFN-γ (500 U/mL) after pretreatment with LiCl (10 mM) or with siRNA targeting GSK-3β by RT–PCR analysis. (E) and (F) Changes in GRO-β and GRO-γ, CCL5, and CXCL16 expression in the presence of IFN-γ (500 U/mL) after pretreatment with overexpression of Ad-CTNNB1 or siRNA targeting β-catenin by RT–PCR analysis. Significant differences and P values were calculated with one-way ANOVA. *$P < 0.05$, ** $P < 0.01$ vs. controls.
Figure 1. β-catenin and IFN-γ expression in HT tissues and goiter-adjacent normal tissues.

(A) Representative results of immunohistochemical staining for β-catenin and IFN-γ in HT tissues (n=10) and goiter-adjacent normal tissues (n=5) are shown. Goiter-adjacent normal tissues were obtained from patients with simple goiter of the thyroid gland. Brown regions represent positive expression (original magnification, 400×). (B) The results of IHC quantification from all samples are shown. The Mann–Whitney U tests was used to calculate significant differences and P values. **P < 0.01 vs. controls. (C) The relationship between β-catenin expression and the number of infiltrating lymphocytes in the same tissue area of HT patients by IHC analysis is shown (n=10).
Figure 2. Effects of IFN-γ exposure on the expression of β-catenin in Nthy-ori 3-1 cells. Nthy-ori 3-1 cells were treated with gradient concentrations of IFN-γ. (A) Cell lysates were harvested after 24 h of IFN-γ treatment. The images presented are Western blots (left upper panel) probed for β-catenin (β-actin served as the loading control). The mean values of all three replicates are shown (right upper panel). (B) Relative expression levels of β-catenin mRNA were examined by RT–PCR assay after 5 h of IFN-γ treatment. The analysis of the CT values of Nthy-ori 3-1 cells was normalized to GAPDH for each sample. The normalized values (△CT) of all samples were compared with the control in each group (△△CT). The results are expressed as 2-△△CT, and the resulting data were derived from at least three independent experiments. (C) Western blot results showed the changes in n-β-catenin and c-β-catenin expression levels in Nthy-ori 3-1 cells treated with IFN-γ for 24 h. Histone 4 and β-actin were used as protein loading controls. Significant differences and P values were calculated with one-way ANOVA. ns, not significant. *P < 0.05 vs. controls.
Figure 3. The effects of GSK-3β/β-catenin signaling on the expression of IFN-γ-induced chemokines in Nthy-ori 3-1 cells. (A) Effect of IFN-γ on chemokine expression: Nthy-ori 3-1 cells were treated with IFN-γ (500 U/mL) for 24 h. The supernatants were then collected for chemokine antibody array analysis. The relative signal intensity of each of the indicated chemokines is shown. (B) Western blot results showed the changes in GSK-3β, p-GSK-3β and β-catenin expression levels in Nthy-ori 3-1 cells treated with IFN-γ (500 U/mL) at different time points. (C) and (D) The changes in GRO-β and GRO-γ, CCL5, and CXCL16 expression in the presence of IFN-γ (500 U/mL) after pretreatment with LiCl (10 mM) or with siRNA targeting GSK-3β by RT–PCR analysis. (E) and (F) Changes in GRO-β and GRO-γ, CCL5, and CXCL16 expression in the presence of IFN-γ (500 U/mL) after pretreatment with overexpression of Ad-CTNNB1 or siRNA targeting β-catenin by RT–PCR analysis. Significant differences and P values were calculated with one-way ANOVA. *P < 0.05, ** P < 0.01 vs. controls.

169x149mm (600 x 600 DPI)