Heavy Quark Production at HERA

Ian C. Brock
University of Bonn

On behalf of the H1 and ZEUS Collaborations

24th June 2008
Outline

- Introduction
- Charm via D*
- Beauty via semileptonic decays to μ
- Charm and Beauty via semileptonic decays to e
- Beauty correlations
- F_{2}^{bb}, F_{2}^{cc}
- Conclusions & Outlook
Boson-gluon fusion (BGF) is main production mechanism

Concentrate on studies of production mechanism:
- Test QCD (different hard scales, m_Q, p_T, Q^2)
- Gluon Parton Density Function?
Life (QCD) is not quite so simple 😞
Heavy Flavour Production at HERA

- HERA (ep):
 - p: 920 (820) GeV
 - e: 27.5 GeV
- $Q^2 = -q^2 = (k-k')^2$
- $Q^2 < 1 \text{ GeV}^2$
 - Photoproduction
- $Q^2 > 1 \text{ GeV}^2$
 - DIS
Methods to tag HF:
- Reconstruct D* (or other D mesons)
- Tag semileptonic decay to e, \(\mu \)
- Use long B,D hadron lifetime
- Jet properties

Different tags probe different kinematic regions
The Theory

- QCD Leading Order + Parton Shower Monte Carlo
 - PYTHIA, RAPGAP, HERWIG, CASCADE
 - Massless & massive matrix elements for charm
 - Massive for beauty
 - Used for acceptance corrections

- QCD NLO programs
 - Weighted events
 - Do not include parton shower
 - FMNR for Photoproduction
 - HVQDIS for DIS
 - Usually compare with experiment by applying hadronic corrections from LO Monte Carlo
Luminosity & Detectors

HERA I 1996-2000
HERA II 2004-2007

Integrated luminosity on tape
~0.5 fb$^{-1}$ per experiment

Forward
$\eta = -\ln \tan \theta/2 > 0$
Charm Production

- HERA II data
- Two recent H1 analyses using new Fast Track Trigger
 - Photoproduction
 - 93 pb$^{-1}$ (2006/7)
 - DIS at low Q^2
 - 247 pb$^{-1}$ (2004-7)

“Golden” Decay of D^*

$D^{*-} \rightarrow \bar{D}^0 \pi^- \rightarrow K^+ \pi^- \pi^-$
Charm Production

- Earlier ZEUS measurements include very low Q^2
- Single function to describe γp cross-section over full Q^2 range

HVQDIS describes data over 5 orders of magnitude cross-section variation.
Charm Production

- **Photoproduction:**
 - $Q^2 < 2 \text{ GeV}^2$

- **DIS:**
 - $Q^2 > 5 \text{ GeV}^2$

\[D^{*-} \rightarrow \bar{D}^0 \pi^- \rightarrow K^+ \pi^- \pi^- \]
Charm Production

- Cross-section as a function of
 - Q^2
 - P_T, η of D^*
- Photoproduction:
 - W (γp CM energy)
- DIS
 - y (inelasticity)
- Compared to MC and NLO predictions

Different PDFs show very similar Q^2 behaviour

Heavy Flavour Production at HERA
Ian C. Brock
24/06/08
Slide 12
Charm in DIS

- **Compare with MC**
 - Significant changes for different PDFs
 - Cascade agrees very well with data

- **Compare with NLO**
 - Data overshoot prediction at large η
 - Some sensitivity to gluon: MRST vs CTEQ
Charm in Photoproduction

- **Compare with MC**
 - **D* in Photoproduction**
 - **H1 Preliminary HERA II**
 - **MC scaled by**
 - $\frac{d\sigma}{d\eta}$
 - $\frac{d\sigma}{d\eta}$

 - **Data overshoot prediction at large η**

 - **Significant changes for different MCs**
 - Pythia with massless charm agrees very well with data

- **Compare with NLO**
 - **D* in Photoproduction**
 - **H1 Preliminary HERA II**
 - **MC scaled by**
 - $\frac{d\sigma}{d\eta}$
 - $\frac{d\sigma}{d\eta}$

 - **Data overshoot prediction at large η**

Heavy Flavour Production at HERA
Ian C. Brock
Slide 14
Beauty in Photoproduction

- HERA II data
 - 124 pb\(^{-1}\) (2005)
- Photoproduction
- Dijet events
 - \(P_T^{\text{jet}} > 7(6)\) GeV
- Semileptonic decays to muons (\(p_T^{\mu} > 2.5\) GeV)
- Include lifetime information
Beauty in Photoproduction

- p_T^{rel}

- Impact parameter

![Diagram showing Beauty in Photoproduction with p_T^{rel} and impact parameter](image-url)
Beauty in Photoproduction

\[\sigma_{\text{vis}} = 46.8 \pm 4.0 \text{ (stat.)}^{+6.1}_{-7.2} \text{ (syst.)} \text{ pb} \]

\[\sigma_{\text{NLO}} = 41.5^{+13.9}_{-8.9} \text{ pb} \]

Renormalisation/factorisation scales

Renormalisation/factorisation scales

Good agreement between HERA I and HERA II cross-sections

\[P_T^\mu > 2.5 \text{ GeV} \]
b & c in Photoproduction

- HERA I data
 - 120 pb\(^{-1}\) (1996-2000)
- Dijet photoproduction events
 - \(E_T^{\text{jet}} > 7(6)\) GeV
- Semileptonic decays to electrons (\(p_T^e > 0.9\) GeV)
- Look for more variables to determine b and c quark fractions separately
b & c in Photoproduction

- Use a likelihood ratio method to separate b, c and light flavour

- Visible cross-section

![Graph showing the visible cross-section for b and c in Photoproduction](attachment:graph.png)
b & c in Photoproduction

- LO Monte Carlo scale factors:
 - $b \times 1.75$
 - $c \times 1.28$
- NLO absolute predictions

$P_T^e > 0.9$ GeV
b\bar{b} Production

- Double tag events
 - Low background 😊
 - Larger kinematic range 😊
 - Low statistics 😞
- \(E_T > 8\) GeV
- Two identified muons
- PhP + DIS
- Measure b\bar{b} correlations
 - Probe NLO effects
b\bar{b} Production

- $\Delta \phi$ between muons from different quarks
- Correlations reasonably well described

$m_{\mu\mu} > 4$ GeV
Summary of b Photoproduction

No sign of large excess seen in first b production measurements

Plot actually shows ratio of measurement to FMNR prediction

$Q^2<1\text{GeV}^2$, $0.2<y<0.8$, $|\eta^b|<2$
- HERA II data
- 54 pb$^{-1}$ (2006)
- DIS
 - $Q^2 > 12$ GeV2
- Use lifetime information
b & c in DIS

- **Significance:** \(\delta / \sigma_\delta \)
 - \(S_1 \) highest
 - \(S_2 \) 2\(^{nd} \) highest

- **Subtracted significance**

Measurement of \(F_2^{c\bar{c}} \) and \(F_2^{b\bar{b}} \)

- H1 Data (Prel.)
- Total MC
- uds
- c
- b

Reject events when \(S_1 \) and \(S_2 \) have opposite sign

Measurement of \(F_2^{c\bar{c}} \) and \(F_2^{b\bar{b}} \)

- H1 Data (Prel.)
- Total MC
- uds
- c
- b

Dominated by charm

More beauty at high significance
Split data into $Q^2 - x$ (Bjorken) bins

Extract F_2 from reduced cross-sections:

$$\bar{\sigma}^{c\bar{c}}(x, Q^2) = F_2^{c\bar{c}} - \frac{y^2}{(1 + (1 - y)^2)} F_L^{c\bar{c}}$$

Combine HERA I & HERA II measurements
b & c in DIS
Conclusions

- Small selection of HERA heavy flavour measurements presented:
 - D* production
 - Beauty production via semileptonic decays to e,\(\mu\)
 - Double \(\mu\) tags
 - \(F_{2}^{cc}, F_{2}^{bb}\)
- General agreement with NLO QCD predictions
- LO Monte Carlos usually describe shape well
- Data often overshoot predictions in forward direction

MC@NLO for HERA?
Outlook

- Several HERA I measurements still to be published
- Expand kinematic region:
 - Double tags
 - Semileptonic decays to electrons
 - Lifetime tags
 - Combine tags
- Go forward! (sensitivity to gluon PDF)
 - Use improved HERA II forward tracking
- Many results with complete HERA II dataset still to come
Backup
dE/dx in ZEUS
b & c in Photoproduction

- Electron identification variables

Graphs showing distributions in arbitrary units for different processes:

- $b \rightarrow e X$
- $c \rightarrow e X$
- Bkg
b & c in Photoproduction

- LO Monte Carlo scale factors:
 - b x 1.75
 - c x 1.28
- NLO absolute predictions
b\bar{b} Production

- Split into different charge combinations
- Also use $\mu\mu$ invariant mass to separate signal and background
- Most of background can be estimated from the data
Significance (1 track events)

Significance (2nd highest significance track)

Reject events when S_1 and S_2 have opposite sign
b & c in DIS

Subtracted significance distributions

Measurement of $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

- H1 Data (Prel.)
- Total MC
- uds
- c
- b

H1
Reduced Cross-Section

\[\tilde{\sigma}^{c\bar{c}}(x, Q^2) = \frac{d^2 \sigma^{c\bar{c}}}{dx \, dQ^2} \frac{xQ^4}{2\pi \alpha^2 (1+(1-y)^2)} \]

\[\tilde{\sigma}^{c\bar{c}}(x, Q^2) = \tilde{\sigma}(x, Q^2) \frac{P_c N_c^{MC gen}}{P_c N_c^{MC gen} + P_b N_b^{MC gen} + P_{LF} N_{LF}^{MC gen}} \]

\[\tilde{\sigma}^{c\bar{c}}(x, Q^2) = F_2^{c\bar{c}} - \frac{y^2}{(1+(1-y)^2)} F_L^{c\bar{c}} \]