Supporting Information

Enhanced Optical, Magnetic and Hydrogen Evolution Reaction Properties of Mo$_{1-x}$Ni$_x$S$_2$ Nanoflakes

Levna Chacko1, Pankaj Kumar Rastogi2, T. N. Narayanan2, M. K. Jayaraj3 and P. M. Aneesh1*

1Department of Physics, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, India- 671316

2Tata Institute of Fundamental Research - Hyderabad, Sy. No. 36/P Serilingampally Mandal, Gopanapally Village, Hyderabad - 500 107, India.

3Centre for Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi, Kerala, India-682022

* Corresponding Author E-mail: aneeshpm@cukerala.ac.in
Figure S1. Cyclic voltammograms of (A) pristine MoS_2 and (B) 3% Ni-MoS_2 in a 0.5 M H_2SO_4 solution at different scan rates (10-100 mVs^{-1}). (C) Relations of difference between anodic and cathodic currents (ΔJ = J_a - J_c) at 0.2 V with various scan rates.

The C_{dl} can be calculated from the plot (C), where the slope of the ΔJ vs. scan rate curve is 2C_{dl}. The high C_{dl} value leads to larger electrochemical surface area and more active sites for better HER performance.
Figure S2. Low (a,c) and high (b,d) magnification SEM images of 3% Ni-MoS$_2$ film on GC before (a, b) and after (c, d) the durability measurements.

Figure S3. Raman spectra of 3% Ni-MoS$_2$ film on GC before and after the durability measurements.
Figure S4. LSVs of MoS$_2$ and 3% Ni-MoS$_2$ modified electrodes in (a) alkaline (1 M KOH) and in (b) neutral (0.5 M Na$_2$SO$_4$) electrolytes at 2 mV s$^{-1}$ scan rate.

Figure S5. Polarization curves showing the comparison of the 3% Ni-MoS$_2$ electrode with Pt wire (black) and graphite rod (red) as counter electrodes.
Table S1. Summary of the valuable parameters of the MoS$_2$ and various Mo$_{1-x}$Ni$_x$S$_2$ electrocatalysts in acidic medium.

Samples	Overpotential (at 1 mAcm$^{-2}$) (mV)	R$_{ct}$ (KΩ)	Tafel slope (mV/decade)	Exchange current density (J_0) (mAcm$^{-2}$)	C$_{dl}$ (mFcm$^{-2}$)
MoS$_2$	418	3.402	162	2.2 x 10$^{-3}$	3.7
1% Ni-MoS$_2$	392	2.519	146	3.2 x 10$^{-3}$	5.5
3% Ni-MoS$_2$	297	0.730	94	8.5 x 10$^{-3}$	8.2
5% Ni-MoS$_2$	370	1.400	130	4.6 x 10$^{-3}$	7.6