SLE: reconciling heterogeneity

Michael D Lockshin, 1 Medha Barbhaiya, 1 Peter Izmirly, 2 Jill P Buyon, 2 Mary K Crow 3

Patients with SLE experience multiple, varied symptoms and laboratory abnormalities that occur in different combinations, at different points in time. 1 A result of the heterogeneity is that studies on SLE employ several, sometimes conflicting, definitions of the illness. Investigators disagree about when SLE begins; how SLE relates to similar and overlapping rheumatic illnesses; whether SLE-like illnesses of known genetic causes count as SLE; and whether the same diagnosis name should apply when investigators describe stratified populations, for instance, SLE with and without renal disease. Inconsistent definitions lead stakeholders—patients, practising physicians, administrators, epidemiologists and investigators—to count different patients and to develop different opinions about the mechanisms and treatment of SLE.

To advocate a consensus vocabulary and conceptual model, in this paper we deconstruct the process of making a diagnosis of SLE by examining its classification and diagnostic criteria, definitions and illness models. We discuss the ways by which stratification biases conclusions and how the purpose for which a stakeholder names a diagnosis determines whom they accept as having this disease.

DEFINITIONS
Classification and diagnostic criteria

When in the mid-19th century Cazenave first used the name lupus erythematosus, SLE was a rare and life-threatening illness. 2 3 A century later, as new technologies identified more patients, 4–10 physicians found SLE to be more clinically diverse, and often less severe, than they once believed. To improve homogeneity of patient populations identified for clinical studies, investigators developed classification criteria that are specific, binary (SLE is present or not) and time limited (valid only for the extent of a study). The homogeneity of classification criteria is implied but not real. The American College of Rheumatology (ACR) criteria allow 330 different combinations of symptoms and laboratory tests to affirm a diagnosis of SLE. 11 Classification criteria are insensitive; they exclude patients who, despite disabling and treatable symptoms, fall below criteria thresholds and those who have overlapping or changing forms of SLE, whom practising physicians treat according to rules established for typical SLE. 12–21 Diagnostic criteria, which would be more sensitive, if less specific, time independent and scalar rather than binary, do not exist for SLE. (An internet search (23 September 2018) for SLE diagnostic criteria identified references only to classification criteria. Many published papers fail to distinguish diagnostic from classification criteria. 21)

Exclusive and inclusive definitions

Many clinical and basic science investigators use an exclusive definition of SLE that accepts only classification criteria-defined patients and rejects (for ethical and practical reasons) patients with dementia, pregnancy, comorbid illness or specific forms of treatment. 22–24 Practising physicians use an inclusive definition that gathers under one name all patients with lupus spectrum illness, including those with typical SLE (criteria fulfilling), overlap syndromes (typical SLE associated with another definable autoimmune illness), undifferentiated autoimmune syndrome (UAS) (lupus-like illness that does not fulfill criteria), 25–27 SLE-associated antibodies only (diagnostic autoantibodies but no clinical illness) 28 and cutaneous SLE (skin disease without systemic manifestations). 29

In rheumatology practice, only 35% of patients with lupus spectrum have typical SLE. Compared with patients with atypical forms of lupus spectrum disease, patients with typical SLE differ demographically, have different involved organ systems and receive different treatments. 30–31 Although differences between typical and atypical patients may result in different disease mechanisms and outcomes, many SLE studies include atypical patients with neither comment nor subanalysis. 32
Studies differ in how they define onset of SLE, which may be first appearance of ANA, anti-DNA antibody, symptoms, ACR criteria or diagnosis by a physician. In animal model studies, onset may be first appearance of glomerulonephritis, anti-DNA antibodies, biomarkers, gene expression profiles or disease-inducing intervention. A study that defines SLE as first appearance of symptoms, ACR criteria or diagnosis by a physician. Practising doctors and their patients mostly ask what, epidemiologists who, when and where (to suggest answers to how and why) and investigators how and why. Most scientific research on SLE focuses on typical postdiagnosis SLE (clear area at the centre), but ignores prediagnosis (shaded area left), atypical illness (shaded area top) and transition illness (shaded area right). Practising physicians are more likely to consider SLE to be the entire spectrum (whole figure); epidemiologists, prediagnosis and typical SLE; investigators and administrators only postdiagnosis, typical SLE. UAS, undifferentiated autoimmune syndrome.

ILLNESS MODELS

One can reduce the complexity of making a diagnosis of SLE by using conceptual models. There are two such models, one separate illnesses, the other linear illness: both cluster SLE’s disparate elements. The separate illnesses model posits that typical, overlap, UAS and antibody-only SLE are separate but related illnesses. A strength of this model is that it assigns different, targetable biological mechanisms to each diagnosis. Another strength is that a diagnosis, once made, does not change. Weaknesses of this model are that, in clinical practice, ambiguous diagnoses occur often, blurring the separating lines, and that diagnoses do sometimes change. Clinical protocols that rigidly adhere to sharp distinctions among diagnoses may remove options available to the treating physician. Another weakness is that insights suggested by evolving phenotypes may be unseen if an investigator believes that change of diagnosis cannot occur.

The linear illness model posits that UAS, overlap, antibody-only and typical SLE reside within a continuum of a single pathogenic process. This model applies throughout a patient’s lifetime, during which the diagnosis name may change. The model’s strengths are that it suggests common pathogeneses and flexible treatment protocols for all lupus spectrum illnesses; it highlights potential causes for phenotype changes. A weakness is that boundaries among diagnoses are vague, gathering under one name, like lupus spectrum, patients who have distinctly different phenotypes.

When the cause of a chronic illness is unknown, the separate illnesses model usually applies. Using this model, investigators mostly ask how for narrowly defined populations in order to discover mechanisms that will become the basis for targeted, ameliorative treatments. Investigators who ask why hope to find a single cause for a disease. When why is answered, syndromes will be seen to be different phases of a linear illness and treatment will be directed to prevention or cure.

For example, in the separate illness model, the syndrome consisting of an abnormal venereal disease research laboratory blood test, rash, aortic aneurysm and tabes dorsalis, lacking a known cause, consists of related different illnesses, mechanistically different, with mechanism-based ameliorative treatments. When the cause is
known—infection by *Treponema pallidum*—the separate symptoms are seen to be phases in a linear model of syphilis, amenable to aetiology-based cure. Similarly, anaemia and neuropsychiatric symptoms are separate illnesses until deficiency of vitamin B₁₂ is recognised, at which time they become linear illness phases of pernicious anaemia; and pigment change, neuropathy, haematuria and cytopenia are separate illnesses until arsenic poisoning is found.

The cause(s) of a chronic illness can be one or many things. Whether the cause is infection, deficiency, intoxication or autoimmunity, how one conceptualises the illness is important. The separate illness model favours mechanism-based management, the linear illness model aetiology-based cure. The choice depends mostly on whether the cause is or is not known.

STRATIFICATION

When studies stratify SLE populations, conclusions drawn from one subpopulation may differ from those drawn from another. Stratification by *clinical and serological phenotypes, demography and habits* is qualitative, on *disease activity measures* quantitative.50–57 Stratification on sex, race, socioeconomic status,58–62 access to medical care, medication choice and adherence,63 willingness to participate in clinical trials, doctor–patient interactions,64 patient preferences and perceptions,65 lifestyle choices,66–67 physician choices,58–71 environmental triggers,72–76 poverty,77 social disparities,78 and life events,79 smoking80 and the gut pathobiont81 all affect manifestations and outcomes in ways that dictate who participates in a study on SLE and in ways that cannot be examined in animal models.82 Stratification on *gene expression*, quantitative, predicts risk and possibly phenotype83–85; SLE-like illnesses (the autoinflammatory diseases),94 Aicardi-Goutières syndrome,95 96 Canale-Smith syndrome97 and SLE associated with immunodeficiency98 suggest mechanisms for primary illness, and for phenotype diversity. Stratification by *molecular biomarkers* predicts fulfilment of classification criteria,99 organ involvement and development of SLE in relatives of patients.100–104 Stratifying by *time* will offer insight about how SLE diagnoses change.105 *New computational techniques*, like multidimensional models, cluster analyses, machine learning, the word cloud, personalised immunomonitoring and transancestral mapping, are modern ways to stratify.106–111 Many of today’s mechanistic studies compare one dependent against one independent variable. *Three-dimensional stratification* can quantify combinations of biomarkers, severity indices, phenotypes, microscopic pathology, immunopathology, gene patterns, epidemiological variables, microorganisms or gradations of biological sex. *Four-dimensional* studies can compare non-calendric variables at different points in time.

Studies on stratified populations of patients with SLE that demonstrate different mechanisms among the groups validate the separate illness model of SLE; studies that identify common mechanisms validate the linear illness model. Although stratification by itself cannot explain the origins of SLE, its ability to show population differences enhances understanding and treatment of the disease.

STAKEHOLDERS’ PURPOSES

How different stakeholders use the name SLE and which definition they use depends on the purpose for which they assign the name (table 1).

Table 1 Types and purposes of SLE definitions used by different stakeholders. The types of definitions, illness models, modes of diagnosis and time considerations are described in the text

Stakeholder	Purpose of naming a diagnosis	Definition	Illness model	Mode	Time limited?
Payer	Determine reimbursement.	Exclusive	Separate	Binary	Yes
Administrator	Count affected persons.	Exclusive	Separate	Binary	Yes
Epidemiologist	Count affected persons.	Inclusive or exclusive	Separate >linear	Binary	Yes
Clinical researcher	Identify homogeneous populations to identify risk, measure outcomes, study mechanisms, develop and test treatments.	Exclusive	Separate	Binary	Yes
Basic/translational researcher	Identify affected persons to study mechanisms and/or causes.	Inclusive or exclusive	Separate or linear	Binary or scalar	Yes or no
Editor	Classify published articles.	Inclusive or exclusive	Separate or linear	Not considered	Not considered
Physician	Identify cause of symptoms, prognosticate and treat.	Inclusive	Linear	Scalar	No
Patient	Know prognosis, choose among diagnostic and treatment options.	Inclusive	Linear	Scalar	No

Lockshin MD, *et al.* *Lupus Science & Medicine* 2019;6:e000280. doi:10.1136/lupus-2018-000280
The purpose for which payers and administrators use the name SLE is to guide reimbursement and regulatory policy. Epidemiologists do so to identify disparities among populations that may identify the exogenous and endogenous factors that drive the illness and that demarcate boundaries by which clinical and basic science researchers can study mechanisms, causes, treatments and outcomes. Office physicians use the name SLE to anchor prognoses, justify interventions and enhance patients’ confidence (and their own). Patients use it to understand their options and their futures. Editors of medical journals use it to flag articles for readers’ attention.

Payers, administrators, clinical researchers and some basic science researchers mostly select the separate illness model and the exclusive, binary and time-limited definition of SLE. Physicians, patients and other basic researchers choose the inclusive, scalar and time-variable definition and linear illness model. Journal editors consider the definition and disease models irrelevant if the published report can be indexed and identified by a keyword. A result of this choice is that literature and internet searches on SLE yield studies of patients and animals defined in many different ways, with little attention to distinctions among the definitions.

Until recently American physicians used common language diagnosis names in medical charts, biasing recorded diagnoses towards the exclusive definition. Quality monitors did not challenge common language diagnoses, payers reimbursed expenses and patients with ambiguous diagnoses usually did not participate in studies of SLE. New administrative rules require American physicians to use International Classification of Diseases (ICD) code numbers that disregard the uncertainty of lupus spectrum illness. Because when diagnoses are ambiguous payers often refuse to reimburse costs of SLE-relevant tests and medications, American physicians now assign the ICD code for typical SLE to patients they previously diagnosed with UCTD, overlap or other lupus spectrum disease, and these patients may now participate in studies that select patients by ICD code.

A CONSENSUS DEFINITION

Although many investigators suggest improvements to the available SLE criteria, the argument for more precise and more exclusive criteria is circular. Studies that exclude patients who do not fulfil criteria cannot prospectively examine phenomena that antedate diagnosis or that cause patients to develop non-criteria variants within lupus spectrum. Deconstructing the process of diagnosis—its definitions, models, stratifications and purposes—can help solve this problem. A consensus vocabulary is the first step to an agreed concept of SLE, including consensus answers to these questions:

1. When does SLE begin?
2. Do persons with autoantibodies only, UAS or overlap illness have ‘SLE’?
3. Do persons with predisposing genetic abnormalities have ‘SLE’?
4. Do patients with mild and severe ‘SLE’ have the same illness?
5. When ‘SLE’ changes course or changes to a different illness, does the change represent alteration of a continuous process or introduction of a new process?

Is SLE a clinical syndrome, having doctor-defined symptoms and specific organ system abnormalities? An abnormal biologic state, defined by laboratory phenomena that may or may not accompany clinical illness? A state of susceptibility, determined by genes and environment? Can it fully subside? What exogenous and/or endogenous factors trigger its onset or its change?

There are no definitive answers to these questions, but they will be better addressed when stakeholders agree on consensus definitions. Which definition, illness model or stratification we choose is less important than is consensus about the vocabulary that describes which patients we study, and to whom the results of our inquiries apply.

REFERENCES

1. Fritzler MJ, Mahler M. Redefining systemic lupus erythematosus - SMAARTT proteomics. Nat Rev Rheumatol 2018;14:451–2.
2. Pierre Louis Alphéa Cazenave. 2018. Available from: https://www.revovery.com/main/index.php?s=Pierre%20Louis%20Alph%C3%A9a%20Cazenave
3. Wallace DJ, Lyon I, Pierre Cazenave and the first detailed modern description of lupus erythematosus. Semin Arthritis Rheum 1999;29:305–13.
4. Hargraves MM, Richmond H, Morton R. Presentation of two bone marrow elements; the tar cell and the L.E. cell. Proc Staff Meet Mayo Clin 1948;23:25–8.
5. Holborow EJ, Weir DM, Johnson GD. A serum factor in lupus erythematosus with affinity for tissue nuclei. Br Med J 1957;2:732–4.
6. Robbins WC, Holman HR, Deicher H, et al. Complement fixation with cell nuclei and DNA in lupus erythematosus. Exp Biol Med 1957;96:575–9.
7. Tan EM, Kunkel HG. Characteristics of a soluble nuclear antigen precipitating with sera of patients with systemic lupus erythematosus. J Immunol 1966;96:464.
8. Keil H. Dermatomyositis and systemic lupus erythematos. II. A comparative study of the essential clinicopathologic features. Arch Intern Med 1940;66:339–83.
9. Bowie EJ, THOMPSON JH, Pascuzzi CA, et al. Thrombosis in systemic lupus erythematosus despite circulating anticoagulants. J Lab Clin Med 1965;82:416–30.
10. Nilsson IM, Åstedt B, Hedner U, et al. Intrauterine death and circulating anticoagulant (‘antithromboplastin’). Acta Med Scand 1975;197:153–9.
11. Combinations and Permutations Calculator. 2018. Available from: http://stattrek.com/online-calculator/combinations-permutations.aspx

12. Aggarwal R, Ringold S, Khanna D, et al. Distinctions between diagnostic and classification criteria? Arthritis Care Res 2018;70:981–9.

13. Aringer M, Dörner T, Leuchten N, et al. Toward new criteria for systemic lupus erythematosus—a standpoint. Lupus 2016;25:805–11.

14. Cohen AS, Reynolds WE, Franklin EC. Preliminary criteria for the classification of systemic lupus erythematosus. Bull Rheum Dis 1971;21:643–8.

15. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997;40:1725.

16. Petri M, Orbai AM, Alarcón GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 2012;64:2677–86.

17. Clough JD, Elrazak M, Calabrese LH. Weighted criteria for the diagnosis of systemic lupus erythematosus. Arch Intern Med 1984;144:281–5.

18. Costenbader KH, Karlson EW, Mandl LA. Defining lupus cases for clinical studies: the Boston weighted criteria for the classification of systemic lupus erythematosus. J Rheumatol 2002;29:2545–50.

19. Aringer M, Costenbader KH, Brinks R. Validation of new systemic lupus erythematosus classification criteria. Ann Rheum Dis 2018;77(suppl 2).

20. Izmirli PM, Buyon JP, Wan I. The incidence and prevalence of adult primary Sjögren's syndrome in New York County. Arthritis Care Res 2018.

21. Yu C, Gershwin ME, Chang C. Diagnostic criteria for systemic lupus erythematosus: a critical review. J Autoimmun 2014;48–49:10–13.

22. Dall’Era M, Cisternas MG, Snipes K, et al. The incidence and prevalence of systemic lupus erythematosus in San Francisco County, California: The California lupus surveillance project. Arthritis Rheumatol 2017;69:1996–2005.

23. Aberle T, Bourn RL, Chen H, et al. Use of SLICC criteria in a large, diverse lupus registry enables SLE classification of a subset of ACR-designated subjects with incomplete lupus. Lupus Sci Med 2017;4:e000176.

24. Izmirli P, Wan I, Sahl S. The incidence and prevalence of systemic lupus erythematosus in New York County (Manhattan), New York. Arthritis Rheumatol 2017;69:2006–17.

25. Ferreira S, D’Cruz DP, Hughes GRV. Multiple sclerosis, neuropsychiatric lupus and antiphospholipid syndrome: where do we stand? Rheumatology 2005;44:432–44.

26. Sharp GC. MCTD: a concept which stood the test of time. Lupus 2002;11:333–9.

27. Ungpraserat P, Crowson CS, Chowdhary VR, et al. Epidemiology of Mixed Connective Tissue Disease, 1985-2014: A Population-Based Study. Arthritis Care Res 2016;68:1843–8.

28. Wu Z, Casciola-Rosen L, Shah AA, et al. Estimating autoantibody signatures to detect autoimmune disease patient subsets. Biostatistics 2017.

29. Drenkard C, Parker S, Aspey LD, et al. Racial disparities in the incidence of primary chronic cutaneous lupus erythematosus in the Southern United States: the georgia lupus registry. Arthritis Care Res 2018.

30. Lockshin MD, Levine AB, Erkan D. Patients with overlap autoimmune disease differ from those with ‘pure’ disease. Lupus Sci Med 2015;2:e000084.

31. Jia L, Levine AB, Lockshin MD. American College of Rheumatology criteria for systemic lupus erythematosus exclude half of all systemic lupus erythematosus patients. Arthritis Rheumatol 2017;69:1952–3.

32. Jia L, Sevim E, Barbhaiya M. What do we mean when we say SLE? Lupus Science & Medicine 2018;5(Suppl 2):A37.

33. McCormick N, Marra CA, Sadatsafavi M, et al. Incremental direct medical costs of systemic lupus erythematosus patients in the years preceding diagnosis: A general population-based study. Lupus 2018;27:1247–58.

34. Li W, Titov AA, Morel L. An update on lupus animal models. Curr Opin Rheumatol 2017;29:434–41.

35. Richard ML, Gilkeson G. Mouse models of lupus: what they tell us and what they don’t. Lupus Sci Med 2018;5:e000199.

36. Arbuckle MR, Vidal MT, Rubertone MV, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med Overseas Ed 2003;349:1526–33.
Individuals with systemic lupus erythematosus. Curr Rheumatol Rep 2018;70:417–26.

Arat S, Lenaerts JL, De Langhe E, et al. Illness representations of systemic lupus erythematosus and systemic sclerosis: a comparison of patients, their rheumatologists and their general practitioners. Lupus Sci Med 2017;4:e000232.

Falasinnu T, Chaichian Y, Bass MB, et al. Gender and race/ethnic groups in randomized clinical trials of systemic lupus erythematosus. Arthritis Care Res 2017;69:384–92.

Lupus medication decision-making facilitators: the importance of patient context. Arthritis Care Res 2016;68:1787–94.

Qu H, Shewchuk RM, Alarcon G, et al. Mapping perceptions of lupus medication decision-making facilitators: the importance of patient context. Arthritis Care Res 2016;68:1787–94.

Ryu J, Lee TH. The Waiting Game — Why providers may fail to reduce wait times. N Engl J Med Overseas Ed 2017;376:2309–11.

Raj P, Pilchilige-Reto R, Dzomorov I. Immune repertoire and genetic risk alleles in healthy pediatric populations with autoimmune indicators. Lupus Sci & Med 2018;5(Suppl 2):A58.

Wang NW, Little CS, Mortensen JM, et al. A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk. Cell 2013;155:70–80.

Phillips D, 2015. Multiple autoimmune diseases share same genetic risk factors. Medscape. Available from: http://www.medscape.com/viewarticle/895043.

Boycott KM, Innes AM. When One Diagnosis Is Not Enough. N Engl J Med Overseas Ed 2017;376:83–5.

Posney JE, Harel T, Liu P, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med Overseas Ed 2017;376:21–31.

Point 5. Brief report: deficiency of complement 1r subcomponent in early-onset systemic lupus erythematosus: the role of disease-modifying alleles in a monogenic disease. Arthritis & Rheumatology 2017;69:1832–9.

Boycott KM, Zoller EE, Ben J, et al. The IRFS-TNP30 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Hum Mol Genet 2015;24:582–96.

Char DS, Shah NH, Magnus D. Implementing Machine Learning in Health Care - Addressing Ethical Challenges. N Engl J Med 2018;378:981–3.

Tag cloud. 2018. Available from: https://en.wikipedia.org/wiki/Tag_cloud.

Mok CC. Systemic lupus erythematosus: Withdrawing standard of care therapies in SLE trials? Nat Rev Rheumatol 2017;13(6):328–330.
111. Barturen G, Beretta L, Cervera R, et al. Moving towards a molecular taxonomy of autoimmune rheumatic diseases. *Nat Rev Rheumatol* 2018;14:75–93.

112. Weckerle CE, Franck BS, Kelly JA, et al. Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus. *Arthritis Rheum* 2011;63:1044–53.

113. Langefeld CD, Ainsworth HC, Cunninghame Graham DS, et al. Transancestral mapping and genetic load in systemic lupus erythematosus. *Nat Commun* 2017;8:16021.

114. Bernstein S, 2018. Experts discuss the latest precision medicine research. The Rheumatologist. Available from: http://www.therheumatologist.org/article/experts-discuss-latest-precision-medicine-research-2/

115. Castrejón I, Tari C, Jolly M. Indices to assess patients with systemic lupus erythematosus in clinical trials, long-term observational studies, and clinical care. *Clin Exp Rheumatol* 2014;32(Suppl. 85):S85–S95.

116. Amezua-Guerra LM, Higuera-Ortiz V, Arteaga-García U, et al. Performance of the 2012 systemic lupus International collaborating clinics and the 1997 American college of rheumatology classification criteria for systemic lupus erythematosus in a real-life scenario. *Arthritis Care Res* 2015;67:437–41.

117. Inês L, Silva C, Galindo M. Classification of systemic lupus erythematosus: Systemic lupus international collaborating clinics vs American college of rheumatology criteria. A comparative study of 2,055 patients from a real-life, international systemic lupus erythematosus cohort. *Arthritis Care Res* 2015;67:1180–5.

118. Isenberg D, Sturgess J, Allen E, et al. Study of flare Assessment in systemic lupus erythematosus based on patient. *Arthritis Care Res* 2018;70:98–103.

119. Sanz I. New perspectives in rheumatology: may you live in interesting times. Challenges and opportunities in lupus research. *Arthritis Rheum* 2017;69:1552–9.

120. Aberle T, Bourn RL, Munroe ME, et al. Clinical and serologic features in patients with incomplete lupus classification versus systemic lupus erythematosus patients and controls. *Arthritis Care Res* 2017;69:1790–8.

121. Raymond SC, Hanrahan LM, Merrill J. Lupus classification criteria effort is going in the wrong direction. Dermatology News, 2017.

122. Merrill JT, Manzi S, Aranow C, et al. Lupus community panel proposals for optimising clinical trials: 2018. *Lupus Sci Med* 2018;5:e000258.

123. International Statistical Classification of Diseases and Related Health Problems. 2018. Available from: https://en.wikipedia.org/wiki/International_Statistical_Classification_of_Diseases_and_Related_Health_Problems

124. Systemic lupus erythematosus, unspecified. 2018. Available from: http://www.icd10data.com/ICD10CM/ Codes/M00-M99/M30-M36/M32.-M32.9

125. Leuchten N, Milke B, Winkler-Rohlfling B, on behalf of the SLE Classification Criteria Steering Committee. Early symptoms of systemic lupus erythematosus (SLE) recalled by 339 SLE patients. *Lupus* 2018;27:1431–6.

126. Lu R, Munroe ME, Guthridge JM, et al. Dysregulation of innate and adaptive serum mediators precedes systemic lupus erythematosus classification and improves prognostic accuracy of autoantibodies. *J Autoimmun* 2016;74:182–93.

127. Mosca M, Costenbader KH, Johnson SR. New SLE classification criteria for clinical research are being developed, sponsored by EULAR and ACR. How Do Patients with Newly Diagnosed Systemic Lupus Erythematosus Present? A Multicenter Cohort of Early Systemic Lupus Erythematosus to Inform the Development of New Classification Criteria. *Arthritis Rheumatol* 2018. Epub ahead of print 23 Jul 2018.

128. Munroe ME, Lu R, Zhao YD, et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. *Ann Rheum Dis* 2016;75:2014–21.

129. Olsen NJ, McAloose C, Carter J, et al. Clinical and immunologic profiles in incomplete lupus erythematosus and improvement with hydroxychloroquine treatment. *Autoimmune Dis* 2016;2016:1–9.

130. Schmajuk G, Hoyer BF, Aringer M, et al. multicenter Delphi exercise to identify important key items for classifying systemic lupus erythematosus. *Arthritis Rheumatol* 2018;70:1488–94.

131. Tedeschi SK, Johnson SR, Boumpas D, et al. Developing and refining new candidate criteria for systemic lupus erythematosus classification: An international collaboration. *Arthritis Care Res* 2018;70:571–81.