The Phytochemical analysis, Metabolic profiling, Anti-bacterial and Anti-oxidant activity of *Nepeta cataria*

Authors and Affiliations:

Corresponding Author; Ali Nadeem\(^1\),

Tel: +92 334 5254580

Email; itsmealinadeem@gmail.com

Co-Authors Bashir Ahmad\(^1\), Muhammad Imran\(^1\), Aisha Tabassum\(^{1,2}\), Lyle E Craker\(^3\)

\(^1\)Department of Biological Sciences International Islamic University, Islamabad.

\(^2\)Department of Biochemistry, University of Sialkot, Sialkot

\(^3\)University of Massachusetts, Amherst, USA.
Abstract

Introduction: *Nepeta cataria* is a naturally growing plant in the regions of Pakistan, in English name is Catnip mint and the local name is Badranj boya. This plant has immense pharmacological and medical importance. It is used in herbal and traditional medicine as an antipathogenic agent. However detailed phytochemical analyses in a wide spectrum of solvents and their antimicrobial analysis against both Gram-positive and negative limited studied.

Objectives: This study aimed to identify phytochemicals, metabolome, antimicrobial potential, and antioxidant analysis of *Nepeta cataria* (Pakistani plant).

Methods: Plant collection, identification, cleaning, and grinding were performed followed by extract preparation in five solvents i.e. methanol, ethanol, water, acetone, and hexane. Qualitative phytochemical analysis was performed by general biochemical tests. GC/MS was used to identify metabolic compounds in all extracts. Antibacterial analysis for both gram-positive and negative bacteria was performed by Kirby’s Disc method, 96 well test, and Resazurin test. The antioxidant activity was determined by DPPH assay.

Results:

Kirby disk diffusion method results indicated that *Nepeta cataria* extracts in different solvents maximum inhibition percentage against tested bacteria was 250-1000 µg/ml. Resazurin method inhibition against bacterial strains was 6.25-100 µl/ml. The Phytochemical analysis for Phenolic Compounds, Flavonoids, Terpenoids, Cardiac Glycosides, Free
Anthraquinones, Combined Anthraquinones, Tannins, Alkaloids, and DPPH was positive in the different extracts. The ORAC was 133759.021um/100ml in concentration. GC/MS analysis of methanolic extract (71 identified + 48 unknown), ethanol-based extract (80 known + 31 unknown), water-based extract (28 known + 11 unknown), acetone-based extract (13 known + 9 unknown), hexane based extract (11 known + 8 unmatched) phytochemicals were detected.

Conclusion: Current study concludes the remarkable antibacterial and antioxidant potential of *Nepeta cataria* extracts.

Key words: *Nepeta cataria*, Extremophile, GS/MS
Introduction

Extremophile plants grow in harsh environments with a high degree of abiotic stress. The plant growth and development of secondary metabolites are determined by environmental conditions besides the plant genome. These plants required drought, heat, cold, and soil salinity, pH, pressure, and water shortage [1]. Medicinal plants are known as drug candidates [2]. Different plants used in the medicine range is 4 -20% in various regions of the world, 2500 species are being traded [3].

Plant-derived flavonoids and their analogs possess antioxidant, pharmacological, antiviral, anti-carcinogenic, therapeutic, and cytotoxic properties [4], flavonoids are biologically active compounds which explored against Alzheimer’s disease, Parkinson’s disease, and hepatic injury [5,6].

Nepeta cataria is an extensively studied medicinal plant, with key importance in pharmacological and various researchers as antifungal, antibacterial, antioxidant, insecticidal, anti-inflammatory, anti-nociceptive, and spasmodylic potential agents. This plant contains essential oils, flavonoids, phenolic acid, steroids, terpenoids, and terpenoid hydrocarbons [7].

In a recent study, water-based extracts of *Nepeta cataria* significantly inhibited the replication of the herpes virus in humans. Moreover, various phenolic compounds and flavonoids were detected by NMR technology [8]. A few other studies have been reported secondary
metabolites[9-11]. However, complete metabolomics profiling of this plant has not reported yet.

[30]. Diarrhea is characterized as increased gastrointestinal motility, decreased fluid absorption, and electrolytes. *Nepeta cataria* is widely used to treat diarrhea [12].

Aims and Objectives

Nepeta cataria extremophile collection, screening (antimicrobial), Characterization of active metabolites by GC-MS/NMR were the main objectives of this study.

Method

Collection of Plant

Nepeta cataria is collected from the Himalayas. This plant was brought to the AMLB Laboratory, IIU Islamabad, Pakistan.

Plant Extractions

Fresh parts (Stem and leaves) of *Nepeta cataria* plant cleaned with tap water and then washed with distilled water, shade dried for 1 hour. After drying cut into small pieces and grinded. Fine powder particles extract prepared by using methanol, ethanol, water, acetone, and hexane. Plant powder separately macerated in each of the solvents at room temperature for 24 to 48 h and then filter(Whatman No. 41 filter paper), all solvent mixed with crude extracts in 1: 10 ratio. The percentage yield of plant extracts in different solvents is given in Table 1.1 (See appendices) [13].
Screening of Nepeta Cataria for Antimicrobial Activities by Minimum Inhibitory Concentration (MIC) 96 Well Plate Method

Plant Extracts Concentrations Preparation

For the Kirby disc diffusion method, plant extract in each solvent was maintained at 67µg/µL and 20µL of each prepared concentration used in each cell of the test plate.

Culture Media and Bacterial Inoculum Preparation

Tryptic Soy Broth (TSB) medium (Thermo Fisher Scientific, USA) used for the cultivation of bacterial agents. The ingredients of the TSB medium are given as under in Table 2 (See Appendices). Bacterial agents used in this study were *Shigella sonnei* (25931), *Micrococcus luteus* (4698), *Bacillus subtilis* (6051), *Staphylococcus aureus* (25923), *Klebsiella oxytoca* (43863), *Lactococcus lactis* (LMO230), *Escherichia coli* (25922), *Citrobacter freundii* (8090), *Salmonella enterica* (14028) and *Listeria monocytogenes* (LM21). These bacterial agents were cultured on LB medium (for mass culturing) (Table 3; See Appendices) containing sterilized tubes, placed on a rotatory shaker for 24 hours. The concentration of each bacterium was maintained at 10^5 to 10^6 CFU/ml before inoculating in the well-containing tray.

Kirby-Bauer Disk Diffusion Method
Kirby disk diffusion method was applied for antimicrobial efficacy testing of plant extracts under in vitro conditions [14]. Solidified agar containing plates were swabbed with bacterial inoculum (10^6 CFU/mL) in standard concentration. Paper discs soaked in plant extract and placed on the solidified medium under aseptic conditions followed by incubation at $26 \pm 2 \, ^{\circ}C$. The inhibition zone was measured in millimeters (mm) after 24 h of inhibition to confirm the susceptibility of bacterial agents against control discs. Kirby's experiment was carried out in the Food Sciences Department of UMASS, Massachusetts USA. The experiment was carried out in three replications for each treatment and obtained results were averaged to get mean values. Standard errors of the mean values were calculated.

Well Plate Test Procedure

A 96 well sterile microtiter tray labeled, added 100 µL of TSB medium in each well. 100 µL of each plant extract fraction at 5 dilutions such as $(1000 \mu g, 500 \mu g, 250 \mu g, 125 \mu g, \text{and} 62.5 \mu g)$ were loaded in each well followed by inoculation with 50 µL of each bacterial culture separately at 10^5 to 10^6 CFU/ml concentration, control wells contain only TSB medium to check sterility of medium and negative control wells contain only TSB medium and bacterial inoculation. Plates coved with lids and sealed with tape, incubated at room temperature for 24 h. Standard readings for MIC were taken at 570 nm absorbance by using Elx 800 plate reader. Kirby's experiment was carried out in the Food Sciences Department of UMASS, Massachusetts
USA. The following formula was used for the calculation percentage of bacterial inhibition by each plant extract:

\[
\text{Percentage Inhibition} = 100 - 100 \times \frac{OD \text{ of sample}}{OD \text{ of control}}
\]

Resazurin based Well Plate Microdilution Method

Plant Extracts Concentrations and Bacterial Inoculum preparation

Plant extracts of *Nepeta cataria* prepared in different solvents mixed in 5% DMSO to observe the effects of plant extracts against tested microbes. Pure bacterial cultures of *S. sonnei*, *B. subtilis*, *K. oxytoca*, *E. coli*, *S. enterica*, *M. luteus*, *S. aureus*, *L. lactis*, *S. cerevisiae*, and *L. monocytogenes* were maintained (10⁶ CFU/ml) on TSB medium.

Preparation of Resazurin Solution

Resazurin (7-Hydroxy-3H-phe-noxazin-3-one 10-oxide) is a blue color dye which reduced in pink and highly red fluorescent resorufin by an oxidoreductase. Resazurin solution was firstly prepared by adding 121.1 mg of resazurin powder in 18 mL sterile distal water and mixed by a vortex mixer for 1 h. Resazurin solution was prepared in dark and stored in a brown bottle to avoid its light exposure. The pH of the solution was maintained at 7.4 by using PSB buffer.

Resazurin based Well Plate Test Procedure
For this test, 100 µL of TSB liquid medium was dispensed in each well, and 100 µL of plant extract concentrations were added to the wells (five wells/dilution). Bacterial inoculum (10^6 CFU/mL) was added to each well. Un-inoculated wells contain TSB medium confirmed the sterility of the medium while negative control contains only the application of TSB, bacterial agents, and Resazurin dye. After overnight at room temperature, 20 µL of Resazurin dye was added to wells and again incubated for 2 – 4 h for color change. Standard reading was taken at 550-590 nm absorbances on SPECTRA MAX M2e plate reader. The resazurin-based experiment was carried out in the Food Sciences Department of UMASS, Massachusetts USA [15].

Qualitative Phytochemical Analysis

Qualitative Test for Saponin

For this test, plant extract (1 mL) mixed in 1 ml of distilled water, shaken vigorously, and left for 15 min for the formation of Persistent frothing. Emulsion formation on adding 3 drops of olive oil showed positive results [16].

Qualitative test for Phenolic compounds

The Phenolic compounds in the plant extract sample were tested by adding 2 mL (3 % aqueous Na₂CO₃) solution in 200 µL plant extract. In the reaction mixture, 200 µL of Folin Ciocalteu reagent was added and left for 30 mint. The development of blue/grey color indicated the presence of Phenolic compounds in plant extract samples [17].
Qualitative test for Water Soluble Phenol

To indicate the presence of water-soluble phenol in the plant extract sample, 2 drops of 1% ferric chloride solution added in plant extract (500 µL). Red color development confirmed the presence of water-soluble phenol in the test sample [18].

Qualitative test for Water Insoluble Phenol

For the analysis of water-insoluble phenol, 500 µL of plant extract added in 500 µL of CH₂Cl₂, 3 drops of ferric chloride, and 1 drop of Pyridine was added to this solution. The appearance of any color change confirmed the presence of water-insoluble phenols.

Qualitative test for Flavonoids

For this test, 100 µL of aqueous NaOH was added in the plant extract sample (1 mL) and intense yellow color development confirmed the presence of flavonoids in the tested sample [19].

Qualitative test for Poly steroid

Liebermann-Burchard’s test was performed to detect the presence of Poly steroid in plant extract sample, 500 µL of plant extract was added with 3 drops of acetic anhydride and concentrated H₂SO₄ and allowed to stand for 5 min. The development of blue-green color confirmed the positive result [20].

Qualitative test for Terpenoids
Added 1 mL plant extract sample, a mixture of 400 µL Chloroform and 400 µL Concentrated H$_2$SO$_4$ was added. Reddish-brown coloration was noted in positive test results [21].

Qualitative test for Cardiac Glycosides

Cardiac glycosides in the test plant samples were confirmed by treating 500 µL plant extract separately with 500 µL of glacial acetic acid and a few drops of 1% aqueous FeCl$_3$ and H$_2$SO$_4$. Green-blue color development confirmed the cardiac glycosides in plant extract [22].

Qualitative test for Free Anthraquinones

For this test 1 ml of the extract was added in 20 ml of chloroform followed by heating for 5 min on steam bath then the filtrate was allowed to cool, 20 ml of 10% Ammonia solution was added and shaken. Rose pink color development in the upper layer indicated a positive result [20].

Qualitative test for Combined Anthraquinones

Combined anthraquinones in plant extracts were confirmed by treating 450 µL of plant extract of each sample with 500 µL of chloroform and 50 µL of concentrated HCl. The appearance of rose-pink color confirmed the positive test results [20].

Qualitative test for Tannins

For this test 2 drops of 1%, ferric chloride (FeCl$_3$) were added to the 500 µL plant extract sample. Development of blue, green, or black color confirmed positive test results [23].
Qualitative test for Alkaloids

Alkaloids were confirmed in the plant extract sample by treating 200 µL of a plant extract with few drops of aqueous HCl followed by treatment with 500 µL of Mayer’s reagent. White precipitation confirmed the alkaloids in plant extract samples [16].

Quantitative Phytochemical Analysis

Quantitative Analysis for Phenols (96 well plate method)

In this assay, 75 µL of double distilled water (DDW) was added in well followed by 25 µL sample or standard was added. Folin C (F–C reagent) 25 µL/well (diluted 1: 1 (v/v) with DDW) added , left for 6 min. After that 100 µL of Na₂CO₃ (75 g/L) was added, mixing, plates were put in dark for 90 mins. Absorbance was measured at 765 nm by using a SPECTRA MAX M2e plate reader. Readings for sample control (sample and DDW) were taken before proceeding further. Gallic acid was taken as a standard at 12.5–400 µg/ml produces a calibration curve. The standard and plant extract solution was analyzed in three replications and averaged before making standard curves. Phenols were determined as µg of gallic acid equivalents / mL; calculated by the formula, $y = 0.6053 x - 0.0567$, where y is the absorbance at 765 nm and x is representing the amount of gallic acid equivalent in µg/Ml[24].

Quantitative Analysis for Flavonoids (96 well plate method)
To quantify flavonoids in plant extract sample, 100 µL of double distilled water (DDW) was dispensed in 96 wells, 10 µL of NaNO$_2$ (50 g/L), and 25 µL of standard or plant extract sample added in wells followed by incubation for 5 mint at room temperature. After this, 15 µL of AlCl$_3$ (100 g/L) was added to the mixture and left for 6 mint. After that, 50 µL of NaOH (1 mol/L) and 50 µL of DDW were added to each well and the plate was shaken for the 30s and absorbance was measurement at 510 nm. Catechin was used as a standard at 5–500 µg/mL to draw a calibration curve. All standards and plant extract samples were analyzed by using SPECTRA MAX M2e plate reader in triplicates and obtained readings were averaged before making standard curves. A standard curve of Catechin obtained and flavonoids of plant sample were expressed in µg of Catechin equivalents / mL, and were calculated by the formula, $y = 0.5377 \times + 0.316$, where y is the absorbance at 510 nm and x is representing the amount of Catechin equivalent in µg/mL[24].

Quantitative Analysis for DPPH (96 well plate method)

For this, 200 µL of DPPH (DPPH; Sigma-Aldrich, Germany) solution (150 mmol/L) was added to each well except blank wells. The plant extract, control, or standard solutions were added 25 µL in the wells, mixed and left to react in dark for 6 h, and absorbance measured at 517 nm by using SPECTRA MAX M2e plate reader. Ascorbic acid is used as a standard at 50–500 µmol/L concentrations to draw a calibration curve. All the standards and plant extract samples were
analyzed in triplicates and obtained readings were averaged before making standard curves. An ascorbic acid-based standard curve was obtained and DPPH in plant sample was expressed as µmol of Ascorbic acid equivalents / L and were calculated by the formula, \(y = 0.0319 \times + 0.1007 \), where \(y \) is the absorbance at 517 nm and \(x \) is taken the amount of Ascorbic acid equivalent in µmol / L[24].

Quantitative Analysis for Alkaloids

Plant extracts(10 ml), \(\text{H}_2\text{SO}_4 \) (10 %) 1 ml, \(\text{NH}_3 \) (10 %) 2 ml, Chloroform 3 ml. 10 ml of plant extracts separately mixed with 1 mL of \(\text{H}_2\text{SO}_4 \) (10 %), 2 mL of \(\text{NH}_3 \) (10 %) and 3 mL of Chloroform, thoroughly mixed, and passed through filter paper to get residues. These residues were dried and weighted [20].

Quantitative Analysis for ORAC

Various dilutions of Trolox (75 mM concentration) and plant extract were made in 10 mM phosphate buffer with pH 7.6. Plant extract sample (20 µL) was added to each well with the pipette. In each working well, 40 µL Fluorescein of 10 nM concentration was added. Phosphate buffer (25 µL) was used as blank. Sealed microplates were incubated in a spectrophotometer at 37 °C for 30 min. Initial fluorescence was measured after every 90 s at a wavelength of 485 nm and an emission wavelength of 520 nm by using a SPECTRA MAX M2e plate reader. After 3 cycles, 140 µL of 2,2'-Azobis(2-amidopropane) dihydrochloride (AAPH) was added to the
sample containing well. After adding AAPH, the test was run again, and readings were taken up to 120 min. The ORAC value for each plant extract was calculated against standard Trolox concentration by constructing a regression equation and standard curve [25].

Gas Chromatography/Mass Spectrometry (GC/MS) Analysis

Gas Chromatography / Mass Spectrometry (GC/MS) analysis was performed to analyze the phytochemical constituents based on the spectral output of all the compounds that get separated from plant extract sample [26].

Plant Extracts Preparation

Plant extracts of *Nepeta cataria* were prepared in 5 different solvents including Methanol, Ethanol, Water, Acetone, and Hexane. Plant extracts concentrated by sing rotary evaporator and obtained products were considered as crude solvent extracts and 2 µL of the prepared sample solution used in GC/MS.

GC/MS Spectroscopy

GC/MS analysis of all the plant extract samples was carried out by using SHAMIDZU GC/MS system, Model (SH-Rxi-5ms), and catalog No. (221-75940-30) (Shimadzu Corporation, Japan). Helium (He) (99.9 %) used as a carrier gas at a flow rate of 1 ml/min, and a volume of 2 µl was injected (split ratio of 10:1, 15:1 or 20:1) by using the split sampling technique, while injection
temperature was kept 250 °C and the oven temperature was set from 60 °C for 5 min, increased at a rate of 20 °C per min to 200°C, then finally to 330 °C at the rate of 10 °C per min to 330 °C for 5 min. The total pressure was maintained up to 66.7 kPa and the total flow was 32.9 mL/min while column flow was 1.12 mL/min with a linear velocity of 38.6 cm/sec. The total GC/MS analysis time was 40 min. The relative percentage of the constituent was found out by comparing its average peak area to the total areas. Mass spectrum results of plant extract fraction were intenerated by using the database of NIST and phytochemicals were characterized and identified.

NMR-based plant metabolomics analysis

Nuclear magnetic resource analysis is a powerful tool used to detect and measure all the metabolites present in test samples both on a qualitative and quantitative basis under certain conditions. NMR is used to detect a variety of secondary metabolites along with primary metabolites. Signals generated in the NMR spectrum are proportional to the molar concentration of the compounds present, and it directly compares the concentrations of all the present compounds without making calibration curves of each compound. This technique is very helpful for structure elucidation. The following procedure is adopted to carry out this analysis.

Harvesting of Plants

Leaves from the plants were carefully harvested and were transferred to the tubes containing liquid nitrogen.
Freeze Dried sample Preparation

Frozen leaves were grind in a pre-cooled pestle and mortar in liquid nitrogen and powdered material was transferred into plastic tubes by using a spatula. Before freeze-drying, samples were kept in the deep freezer. After that, samples were put in the freeze-dryer for 24 to 48 h.

Sample Preparation and NMR Analysis

The freeze-dried sample was weighed in an Eppendorf tube. 0.75 ml of CH$_3$OH-d$_4$ and 0.75 ml of KH$_2$PO$_4$ buffer in D$_2$O (pH 6.0) containing 0.1% (wt/wt) TSP were added to the sample and vortexed for 1 min at room temperature. The prepared sample was ultrasonicated for 10 – 20 min at room temperature. The clear supernatant was obtained by centrifugation (17,000 g) of the sample for 5 – 10 min at room temperature in a microtube centrifuge. The supernatant was shifted to a 1.5 ml Eppendorf tube and 800 μl of supernatant was shifted to a 5 mm NMR tube. It was then placed into the spectrometer at 25 ºC. Spectrometer frequency was locked to the deuterium resonance arising from the NMR solvents and the most suitable experiment model was used. NMR signals are considered as directly proportional to the molar concentration of the characteristic of a metabolite and the concentration of detected metabolites can be obtained by comparing the peak intensity with an internal standard (TSP).

STATISTICAL ANALYSIS
The results of all the experiments were analyzed under a complete randomized design (CRD) with three replications for each treatment. Results were statistically analyzed using Statistix 8.1 and Microsoft office excel 2010 version. Means were calculated and a One-way analysis of variance (ANOVA) test was performed for multiple comparisons of all the mean values. Mean differences were calculated by least significant difference (LSD) at 0.05 probability.

RESULTS

Kirby-Bauer Disk Diffusion Method for Anti-Microbial Activities

Kirby disk diffusion method used for measuring antimicrobial efficacy of plant extracts under in vitro conditions. Chloramphenicol was used as a standard antibiotic. Results indicated that *Nepeta cataria* ethanol-based extract showed maximum inhibition of *B. subtilis* followed by *C. freundii* and *M. luteus* while methanol-based extracts also showed maximum efficacy against *S. sonnei, E. coli, M. luteus,* and *C. freundii.* Water, acetone, and Hexane based extracts were equally effective against tested bacterial isolates as shown in Figure:1.
Figure: 1. Antimicrobial efficacy of *Nepeta cataria* based plant extracts in different solvents against bacterial isolates.

Determination of Minimum Inhibitory Concentration (MIC) by Well Plate Method

Percentage growth inhibition of each tested bacteria viz, *Shigella sonnei, Bacillus subtilis, Klebsiella oxytoca, Escherichia coli, Salmonella enterica, Micrococcus luteus, Staphylococcus aureus, Lactococcus lactis, Listeria monocytogenes,* and *Citrobacter freundii* was computed by the formula:

\[
\% \text{ bacterial growth inhibition} = \frac{\text{Optical density in control} - \text{Optical density in treatment}}{\text{Optical density in control}}
\]

Percentage growth inhibition of bacterial isolates is given in Figure 2. Among all, ethanol-based extracts of *Nepeta cataria* showed maximum inhibition percentage of all tested
bacteria at 250-1000 µg/ml concentration followed by methanolic extracts at 500-1000 µg/ml dose levels and water-based extracts at 1000 and 500 µg/ml dose levels, acetone and hexanes-based extracts of *Nepeta cataria* did not show significant inhibition against all bacterial isolates as compared to control treatments Figure: 2.

Figure: 2. *Nepeta cataria* plant extracts a percentage of bacterial strains growth inhibition in different solvents at different dose levels.

Resazurin based Well Plate Microdilution Method

The Resazurin method is used to check the antimicrobial efficacy of each prepared plant extract against tested bacterial agents. Chloramphenicol was used as a positive control at 6.25 – 100 µl/ml dose levels and data on percentage bacterial growth inhibition was recorded. Plant extract of *N. cataria* showed a varied level of efficacy against all tested bacterial isolates in comparison to positive and negative control. *N. cataria* plant extract at
the dose level of 12.5 µl/ml showed maximum inhibition followed by 6.25 µl/ml. Plant extract at 100 µl/ml showed maximum inhibition against *L. lactis* and *E. coli* Figure 3.

![Figure 3](image)

Figure 3. Resazurin based well plate Microdilution assay of *N. cataria* against bacterial strains.

Qualitative Phytochemical Analysis of N. cataria

Qualitative Test for Saponin

Water-based extracts of *N. cataria* were positive for saponin.

Qualitative Test for Phenolic Compounds

Water-based, methanol, ethanol, and acetone based extracts showed positive results while hexane showed the negative result.

Qualitative Test for Water Soluble Phenol
Water-based and methanol extracts showed positive results while ethanol, acetone, and hexane showed negative results.

Qualitative Test for Water Insoluble Phenol

Methanol, ethanol, and acetone based extracts showed positive results while hexane and water-based showed a negative result.

Qualitative Test for Flavonoids

Test for flavonoids was carried out and the development of intense yellow color is positive test results indicate. Methanol and acetone-based extracts showed positive results while hexane, ethanol, and water-based showed negative result.

Qualitative Test for Terpenoids

For the triterpenoids testing, reddish-brown coloration development confirms the positive test results. Water-based, methanol, ethanol, acetone, and hexane-based extracts were positive.

Qualitative Test for Cardiac Glycosides
In the cardiac glycosides test, the development of green-blue color is the confirmation of positive results. Acetone-based extracts were positive while water-based, methanol, ethanol, and hexane-based extracts were negative.

Qualitative Test for Free Anthraquinones

The water-based extracts, methanol, ethanol, and acetone based extract were positive while hexane-based extracts were negative.

Qualitative Test for Combined Anthraquinones

This test was performed to confirm the presence of combined anthraquinone in the test plant sample. water-based extracts extract were positive, while methanol, ethanol, acetone, and hexane-based extracts were negative.

Qualitative Test for Tannins

In this test, water-based, methanol, and ethanol extracts were positive, while acetone and hexane-based extracts were negative

Qualitative Test for Alkaloids

In this test, water-based, methanol, ethanol, acetone, and hexane-based extracts were positive.
Quantitative Phytochemical Analysis

Quantitative Analysis for Phenols (96 well plate method)

The methanol, ethanol, water, acetone, and hexane extracts of *Nepeta cataria*, were examined in terms of μg of Gallic Acid Equivalents per mL. Methanol, acetone, and ethanol-based extracts showed the maximum presence of phenols as compared to water and hexane-based extracts. The order of phenol presence in the sample was Methanol extracts > ethanol extracts > acetone extracts > water extracts > hexane extracts showed in Figure 4.

![Figure 4 Concentration of phenols in *Nepeta cataria* extracts in different solvents.](image)

4.5.2 Quantitative Analysis for Flavonoids (96 well plate method)

The Flavonoids in methanol, ethanol, water, acetone, and hexane extracts of *Nepeta cataria* was quantified in terms of μg of Catechin equivalents/mL. Hexane, acetone, and water-based
Extracts showed a high level of flavonoids which as compared to methanol and ethanol-based extracts. Flavonoids results are summarized in Figure: 5.

![Figure 5. The concentration of Flavonoids in Nepeta cataria extracts in different solvents.](image)

4.5.3 Quantitative Analysis for DPPH (96 well plate method)

The presence of 2, 2-diphenyl-1-picrylhydrazyl DPPH was determined in *Nepeta cataria* extracts by using different solvents viz., methanol, ethanol, water, acetone, and hexane which measured by Spectrophotometrically and results are drawn as µmol of ascorbic acid equivalents / L and results are given in Figure 6. Results showed that acetone-based plant extract contained a high concentration of DPPH followed by water-based extracts and results compared with hexane extracts, ethanol, and methanol-based extracts. The presence of DPPH was in order acetone extracts > water extracts > ethanol extracts > methanol extracts > hexane extracts.
Figure 6. The concentration of DPPH in *Nepeta cataria* plant extracts prepared in different solvents.

Quantitative Analysis for Alkaloids

The alkaloid percentage method was used to quantify the alkaloids in plants. Alkaloids quantity in tested plant extracts was varied from 0.204 / 0.5 g plant.

Oxygen Radical Absorbance Capacity (ORAC)

Oxygen Radical Absorbance Capacity Assay (ORAC) was performed to study the antiradical activity of *Nepeta cataria* prepared in methanol extract. The results of the ORAC test was 133759.021μm/100ml in concentration.

Gas Chromatography/Mass Spectrometry (GC/MS) ANALYSIS

Gas Chromatography/Mass Spectrometry (GC/MS) is the widely adopted technique for the detection of biologically active compounds. Plant extracts of *Nepeta cataria* in 5 different solvents viz., methanol, ethanol, water, acetone, and hexane were subjected to GC/MS
analysis to detect bioactive phytochemicals. Phytochemical compounds were identified and presented with their compound names, molecular formulas, molecular weight, and retention time (RT).

GC/MS analysis of a methanolic extract of *Nepeta cataria* showed (71 identified phytochemicals + 48 un-matched] chemicals (Table 1). Analysis of ethanol-based extracts confirmed the existence of 80 known phytochemical constituents while 31 unmatched chemicals were detected (Table 2). Water-based extracts of *Nepeta cataria* contain 28 known phytochemicals while 11 un-matched chemicals were also detected (Table 3). Acetone-based extract confirmed the existence of 13 known compounds extract while 9 chemical constituents were unmatched (Table 4). Analysis of hexane based extract confirmed the presence of 11 known chemical constituents while 8 unmatched chemicals were detected as given in Table 5. GCMS spectral chromatograms of all the solvent-based extracts are given in Figure; 7-11.
Figure: 7. GCMS Spectral Chromatogram of Methanolic Extract of *Nepeta cataria*

Table 1 GC-MS Analysis for the Identification of Phytochemicals in the Methanolic Extract of *Nepeta criteria*.

S. No.	Compound	Mol. Formula	Amount / Con.	Mol. weight	RT
1	2-Furanmethanol, 5-ethenylte	-	0.287	-	6.078
2	endo-Borneol	C_{10}H_{16}O	0.623	154.25 g/mol	8.246
3	1,5,7-Octatrien-3-ol, 3,7-di	C_{10}H_{20}O	0.390	152.2334 g/mol	8.782
4	Bicyclo [2.2.1] heptane, 7,7-d	C_{9}H_{16}	0.240	124.22 g/mol	9.955
5	2-Cyclohexen-1-one, 3-methyl	C_{9}H_{16}O	0.230	110.15 g/mol	11.529
6	1-Isopropylcyclohex-1-ene	C_{9}H_{16}	27.376	124.22 g/mol	12.402
7	Bicyclo [3.1.0] hexane-2-undec	C_{9}H_{18}	2.974	82.14 g/mol	13.804
8	3,5-Dimethylcyclohex-1-ene-4	C_{9}H_{14}	0.542	110.2 g/mol	14.226
9	2-Butyl-5-methyl-3-(2-methyl	C_{15}H_{20}O	0.645	222.37 g/mol	14.281
10	Caryophyllene oxide	C_{15}H_{20}O	1.916	220.35 g/mol	15.129
11	Methyl octadec-6,9-dien-12-y	C_{15}H_{20}O	0.149	280.4 g/mol	15.763
12	Caryophylla-4(12),8(13)-dien	C_{15}H_{20}O	0.358	220.3505 g/mol	15.937
13	1-Chlorosulfonyl-3-methyl-1-	C_{9}H_{14}ClNO_{3}S	0.823	251.73 g/mol	16.173
14	trans-Z-, alpha. -Bisabolene e	-	1.312	-	16.216
15	Caryophylla-4(12),8(13)-dien	C_{15}H_{20}O	0.632	220.3505 g/mol	16.429
16	2H-1-Benzopyran-2-one, 7-met	C_{13}H_{18}NO_{2}	0.826	217.26 g/mol	17.040
17	6-Hydroxy-4,4,7a-trimethyl-5	C_{11}H_{16}O_{3}	0.258	196.24 g/mol	17.648
18	Tricyclo [20.8.0.0(7,16)] tria	-	0.413	-	18.261
19	Neophytadiene	C_{20}H_{38}	0.313	278.5 g/mol	18.782
20	2-Pentadecanone, 6,10,14-tri	C_{18}H_{36}O	0.386	268.4778 g/mol	18.826
21	(3S,3aS,6R,7R,9aS)-1,1,7-Tri	-	0.562	-	19.087
22	Hexadecanoic acid, methyl es	C_{17}H_{34}O_{2}	0.954	270.5 g/mol	19.887
23	n-Hexadecanoic acid	C_{16}H_{32}O_{2}	7.973	256.4241 g/mol	20.364
24	9,12-Hexadecadienoic acid, m	C_{16}H_{32}O_{2}	0.273	252.39 g/mol	21.796
25	Methyl 8,11,14-heptadecatrie	-	0.920	-	21.853
26	Phytol	C_{20}H_{40}O	1.179	128.1705 g/mol	21.998
	Name	Formula	Mol. Wt	Mol. %	
---	--	-----------------	---------	-------	---
27	9,12,15-Octadecatrienoic acid	C_{18}H_{30}O_{2}	278.43	6.401	22.304
28	Octadecanoic acid	C_{18}H_{36}O_{2}	284.48	0.970	22.623
29	Hexadecanoic acid, 2-hydroxy	C_{16}H_{32}O_{3}	272.42	0.744	26.101
30	5-Cholestene-3-ol, 24-methyl	C_{28}H_{46}O	400.7	0.344	31.863
31	beta. -Sitosterol	C_{29}H_{54}O	414.71	5.461	32.541
32	Olean-12-en-3-ol, acetate, (C_{32}H_{52}O_{2}	468.8	0.486	32.724
33	beta. -Guaiene	C_{15}H_{34}	204.351	0.271	32.882
34	alpha. -Amyrin	C_{30}H_{56}O	426.729	2.691	33.062
35	Ursolic aldehyde	C_{30}H_{58}O_{2}	440.7	1.302	34.718
36	Urs-12-en-28-al	C_{30}H_{46}O	424.7	0.654	35.305
37	Betulin	C_{30}H_{56}O_{2}	442.72	0.910	35.472
38	Eucalyptol	C_{10}H_{16}O	154.249	8.505	5.112
39	2-Furanmethanol, 5-ethenylte	-	6.840	-	6.165
40	Ethyl 2-(5-methyl-5-vinyltet)	-	5.845	-	6.551
41	Bicyclo [2.2.1] heptan-2-one,	C_{7}H_{12}O	110.15	20.437	7.728
42	1,6-Octadien-3-ol, 3,7-dimet	C_{10}H_{16}O	154.25	5.855	9.981
43	Pentane, 1-chloro-5- (methylene)	-	3.739	-	10.696
44	Pregnan-18-ol, 20-methyl-20-	C_{22}H_{50}O	333.6	2.640	13.916
45	Caryophyllene oxide	C_{15}H_{25}NO	220.35	12.423	15.140
46	Cyclohexene,1-propyl-	C_{8}H_{16}	124.22	0.483	11.611
47	1-Isopropylcyclohex-1-ene	C_{5}H_{16}	124.22	6.144	13.699
48	Coumarin	C_{3}H_{6}O_{2}	146.147	0.878	13.867
49	1-Methyl-2-methylene cyclohex	C_{8}H_{14}	110.197	0.622	14.461
50	Caryophyllene oxide	C_{15}H_{24}O	220.35	2.144	16.143
51	Megastigmatrieneone	C_{13}H_{16}O	190.28	0.560	16.780
52	11,11-Dimethyl-4,8-dimethyle	C_{15}H_{26}O	220.35	0.429	16.954
53	(1R,7S, E)-7-Isopropyl-4,10-d	C_{15}H_{26}O	220.35	0.702	17.243
54	Caryophylla-4(12),8(13)-dien	C_{15}H_{26}O	220.35	0.603	17.450
55	2H-1-Benzopyran-2-one, 7-met	C_{13}H_{16}NO_{2}	217.26	1.381	18.071
56	11,14-Octadecadienoic acid,	C_{18}H_{34}O_{2}	280.4	0.364	22.811
57	Methyl 8,11,14-heptadecatrie	-	1.220	-	22.864
58	Eicosanoic acid	C_{20}H_{40}O_{2}	312.530	0.515	25.775
	Name	Molecular Formula	MW	Density	MP (°C)
---	--	-------------------	----	---------	---------
59	Phenol, 2,4-bis (1-methyl-1-pentyloxy)	C_{24}H_{36}O	330.5 g/mol	26.725	
60	Tritetracontane	C_{43}H_{88}	605.2 g/mol	27.798	
61	Methyl 2-hydroxy-octadeca-9,10-dimethoxy ether	C_{19}H_{20}O_{3}	308.5 g/mol	28.775	
62	Hentriacontane	C_{31}H_{64}	436.85 g/mol	30.023	
63	alpha-Tocopherol B	C_{29}H_{56}O_{4}	462.7049 g/mol	30.777	
64	alpha-Tocopherol A	C_{29}H_{56}O_{4}	462.7 g/mol	30.208	
65	Campesterol	C_{27}H_{48}O	400.68 g/mol	32.877	
66	Stigmasterol	C_{29}H_{48}O	412.69 g/mol	33.091	
67	gamma-Sitosterol	C_{29}H_{50}O	414.7 g/mol	33.566	
68	beta-Amyrin	C_{30}H_{50}O	426.729 g/mol	33.739	
69	1,1,4a-Trimethyl-5,6-dimethy-1,2-dihydrosutchin	C_{15}H_{24}	204.35 g/mol	33.896	
70	Urs-12-en-28-oic acid, 3-hydroxy-28-oxo	C_{30}H_{46}O_{3}	456.7 g/mol	35.636	
71	Uvaol	C_{30}H_{50}O_{2}	442.7 g/mol	36.319	
72	No Match	-	1.279	7.678	
73	No Match	-	0.447	11.436	
74	No Match	-	0.323	11.703	
75	No Match	-	0.549	11.886	
76	No Match	-	0.937	12.007	
77	No Match	-	0.875	12.736	
78	No Match	-	1.179	12.826	
79	No Match	-	3.063	12.903	
80	No Match	-	0.717	13.206	
81	No Match	-	1.148	13.285	
82	No Match	-	0.579	13.446	
83	No Match	-	3.008	13.718	
84	No Match	-	1.080	13.897	
85	No Match	-	0.325	14.381	
86	No Match	-	0.363	15.481	
87	No Match	-	0.566	15.531	
88	No Match	-	1.498	16.925	
89	No Match	-	0.304	17.223	
		0.394	17.818		
---	-----	-------	------		
		2.074	21.141		
		0.322	21.365		
		1.975	25.235		
		1.013	26.209		
		6.419	6.933		
		1.807	11.016		
		2.619	11.726		
		4.148	13.303		
		0.356	34.665		
		1.659	34.964		
		1.326	35.143		
		0.997	35.231		
		0.688	35.270		
		1.430	35.912		
		0.447	12.434		
		0.543	12.559		
		0.553	12.880		
		0.486	13.019		
		1.447	14.094		
		0.585	14.134		
		2.430	14.296		
		2.021	14.919		
		1.245	17.965		
		3.893	22.205		
		0.545	22.421		
		2.786	26.376		
		0.419	26.522		
		1.436	27.233		
		0.616	27.717		
Figure 8. GCMS Spectral Chromatogram of Ethanolic Extract of *Nepeta cataria*.

Table 2. GC-MS Analysis for the Identification of Phytochemicals in the Ethanolic Extract of *Nepeta cataria* (A1).

S. No.	Compound	Mol. formula	Amount/Con.	Mol. weight	RT
1	2,4-Dihydroxy-2,5-dimethyl-3	C₈H₁₀O₄	0.284	144.12 g/mol	3.404
2	1-Isopropylcyclohex-1-ene	C₉H₁₆	14.940	124.22 g/mol	9.585
3	Coumarin	C₆H₈O₂	2.940	146.1427 g/mol	9.646
4	Hexadecanoic acid, ethyl est	C₁₈H₃₂O₂	3.361	284.4727	15.865
5	Oleic Acid	C₁₈H₃₄O₂	0.653	282.47 g/mol	16.515
6	Phytol	C₂₀H₄₀O₂	3.068	128.1705 g/mol	16.907
7	9,12,15-Octadecatrienoic acid	C₁₈H₃₀O₂	27.308	278.43 g/mol	17.266
8	Ethyl 9.cis.,11. trans.-octadecanoic acid	C₁₈H₃₂O₂	2.045	-	-
9	Octadecanoic acid	C₁₈H₃₂O₂	3.620	284.48 g/mol	17.464
10	Octadecanoic acid, 17-methyl	C₂₀H₄₀O₂	0.982	312.5 g/mol	17.680
11	Eicosanoic acid	C₂₀H₄₀O₂	1.138	312.5304 g/mol	19.118
12	Tetracontane, 3,5,24-trimeth	C₃₁H₆₄	1.194	605.2 g/mol	20.201
13	Hentriacontane	C₃₁H₆₄	1.197	436.85 g/mol	20.740
14	Methyl 2-hydroxy-octadeca-9	C₁₈H₃₂O₃	0.895	308.5 g/mol	21.548
15	Sulfurous acid, butyl tetrad	C₂₁H₄₄O₃S	0.667	376.6 g/mol	22.185
16	alpha.-Tocospiro A	C₂₉H₅₀O₄	0.654	462.7 g/mol	22.498
17	Sulfurous acid, butyl tridec	C₁₇H₅₀O₃S	0.572	320.5 g/mol	22.897
No.	Name	Formula	MW/mol	Molar Mass	
-----	--	-----------	---------------	---------------	
18	3,7,11,15-Tetramethyl-2-hexa	C₂₀H₄₆O	0.444	296.5 g/mol	23.191
19	Sulfurous acid, butyl tetrad	C₂₁H₄₄O₃S	1.134	376.6 g/mol	23.243
20	Sulfurous acid, butyl tridec	C₁₇H₃₆O₃S	0.399	320.5 g/mol	24.233
21	Stigmasterol	C₂₉H₅₀O	0.630	412.69 g/mol	24.507
22	beta.-Sitosterol	C₂₉H₅₀O	13.312	414.71 g/mol	24.939
23	alpha.-Amyrin	C₃₀H₅₀O	6.667	426.729 g/mol	25.504
24	2-Methylindoline	C₈H₁₃N	133.19 g/mol	8.120	
25	2-Cyclohexen-1-one, 4,5-dime	-	0.113	-	10.585
26	1-Isopropylethylhex-1-ene	C₈H₁₆	25.854	124.22 g/mol	11.456
27	Bicyclo[3.1.0] hexane-2-undec	C₈H₁₀	1.108	82.14 g/mol	12.837
28	Methyl 13,14-octadecadienoan	C₁₉H₃₄O₂	3.793	294.472 g/mol	13.689
29	Azulene, 1,2,3,3a,4,5,6,7-octadecadienoate	C₁₅H₃₄	0.170	204.3511 g/mol	15.056
30	1-Chlorosulfonyl-3-methyl-1-tetralan	C₈H₁₄ClNO₃S	2.175	251.73 g/mol	15.242
31	Cholestan-3-ol, 2-methylene-	C₂₀H₄₀O	0.515	400.7 g/mol	15.446
32	2H-1-Benzopyran-2-one, 7-methyl	C₁₂H₁₄NO₂	1.381	217.26 g/mol	16.049
33	6-Hydroxy-4,4,7a-trimethyl-5-7a-octadecadienoate	C₁₁H₁₆O₃	0.367	196.24 g/mol	16.663
34	[1,1'-Bicyclopropyl]-2-octan	C₂₁H₃₀O₂	0.823	322.5 g/mol	16.857
35	2-Pentadecanone, 6,10,14-tri	C₁₈H₃₀O₂	0.298	268.4778 g/mol	17.839
36	4,4,8-Trimethyltricyclo[6.3.3]	C₁₅H₂₆O₂	1.458	238.366 g/mol	18.101
37	n-Hexadecanoic acid	C₁₆H₃₂O₂	10.300	256.4241 g/mol	19.386
38	11,14-Octadecadienoic acid,	C₁₉H₃₂O₂	0.819	280.4 g/mol	21.561
39	Ethyl 9,12,15-octadecatrieno	C₂₀H₄₂O₂	3.315	306.5 g/mol	21.626
40	6-Octadecanoic acid, methyl	-	1.149	-	24.253
41	Tetracontane, 3,5,24-trimethyl	C₄₂H₈₈	0.506	605.2 g/mol	25.112
42	24-Noroleana-3,12-diene	C₂₉H₄₆	0.537	394.6755 g/mol	31.418
43	1R,4S,7S,11R-2,2,4,8-Tetramer	C₁₅H₃₀O₂	0.419	222.366 g/mol	31.553
44	Ursolic aldehyde	C₃₀H₅₀O₂	2.109	440.7 g/mol	33.113
45	Betulin	C₃₀H₅₀O₂	0.802	442.72 g/mol	33.839
46	2,4-Dihydroxy-2,5-dimethyl-3	C₆H₁₀O₄	0.032	144.12 g/mol	3.230
47	2-Methylindoline	C₈H₁₃N	0.490	133.19 g/mol	6.580
48	5-Hydroxymethylfurfural	C₆H₁₀O₃	0.768	126.11 g/mol	6.985
49	2-Cyclohexen-1-one, 3-methyl	C₇H₁₀O₂	0.083	110.15 g/mol	8.592
	Name	Formula	MW	Molecular Weight (g/mol)	Molecular Weight (g/mol)
----	--	----------	--------	--------------------------	--------------------------
50	1-Isopropylcyclohex-1-ene	C₈H₁₆	128.25	142.25	17.33
51	Cyclopentanecarboxylic acid,	C₆H₁₀O₂	0.008	114.14	9.434
52	Coumarin	C₈H₆O₂	1.727	146.1427	9.618
53	Methyl 10,11-tetradecadienoa	-	0.573	-	10.069
54	2(4H)-Benzofuranone, 5,6,7,7	C₁₁H₁₂O₂	0.319	180.2435	10.757
55	(4aS,7S,7aR)-4,7-Dimethyl-2,	C₁₀H₁₄O₂	0.169	166.2170	10.885
56	n-Propyl 9,12-hexadecadienoa	C₁₅H₃₀O₂	0.262	294.5	11.116
57	12-Methyl-E, E-2,13-octadecad	C₁₈H₃₂O	0.113	280.48854	11.164
58	Fumaric acid, ethyl 2-methyl	C₁₀H₁₄O₄	0.179	198.22	11.356
59	Bicyclo [4.4.0] dec-1-ene, 2-i	C₁₅H₃₄	0.116	204.35	11.540
60	Megastigmatrienone	C₁₃H₁₆O	0.081	190.28	11.924
61	10,10-Dimethyl-2,6-dimethylene	C₁₅H₃₄	0.199	204.351	12.067
62	tau. -Cadinol	C₁₅H₂₀O	0.335	222.37	12.143
63	2H-1-Benzopyran-2-one, 7-met	C₁₃H₁₈NO₂	0.893	217.26	12.956
64	cis-5,8,11,14,17-Eicosapenta	C₂₀H₃₈O₂	0.148	302.5	13.276
65	Carbamic acid, N- [1,1-bis (tr	-	0.124	-	13.319
66	Tetradecanoic acid	C₁₄H₃₀O₂	0.250	228.3709	13.552
67	1-Heptatriacetonol	C₇H₁₆O	0.432	537	13.943
68	2-Pentadecanone, 6,10,14-tri	C₁₈H₃₀O	0.286	268.4778	14.346
69	Ethyl 9,cis.,11. trans.-octad	-	0.340	-	17.345
70	Tetracontane, 3,5,24-trimeth	C₄₃H₈₈	0.304	605.2	20.193
71	Tritetracontane	C₄₃H₈₈	0.177	605.2	22.180
72	Urs-12-en-28-oic acid, 3-hyd	C₃₈H₆₄O₃	0.722	456.7	23.776
73	Urs-12-en-28-ol	C₃₈H₆₀O	4.295	426.7	23.833
74	Glycine, N- [3. alpha.,5. beta	C₃₀H₅₃NO₄Si	0.313	519.8	24.109
75	Ergost-5-en-3-ol, (3. beta.)-	C₂₈H₄₆O	0.180	400.7	24.141
76	Stigmasterol	C₂₉H₄₆O	0.102	412.69	24.241
77	Uvaol	C₃₆H₆₀O₂	1.125	442.7	24.513
78	Tricyclo [20.8.0.0(7,16)] tria	-	0.647	-	25.158
79	Neophytadiene	C₂₆H₃₈	0.294	278.5	25.337
80	Tetracosamethyl-cyclododecas	-	1.000	-	27.703
81	No Match	-	42.916	-	2.039
	Match	Value 1	Value 2	Value 3	
---	-------	---------	---------	---------	
82	No Match	-	57.084	-	2.058
83	No Match	-	4.606	-	16.278
84	No Match	-	0.481	-	16.473
85	No Match	-	0.369	-	23.972
86	No Match	-	0.884	-	11.045
87	No Match	-	1.950	-	11.165
88	No Match	-	0.742	-	11.881
89	No Match	-	0.665	-	11.947
90	No Match	-	0.865	-	13.906
91	No Match	-	0.836	-	15.628
92	No Match	-	1.756	-	15.716
93	No Match	-	1.456	-	15.943
94	No Match	-	0.395	-	16.248
95	No Match	-	0.457	-	8.924
96	No Match	-	0.534	-	9.470
97	No Match	-	1.660	-	9.685
98	No Match	-	1.199	-	9.727
99	No Match	-	0.406	-	10.249
100	No Match	-	0.435	-	10.634
101	No Match	-	0.643	-	11.217
102	No Match	-	0.562	-	12.242
103	No Match	-	0.754	-	12.601
104	No Match	-	0.727	-	12.675
105	No Match	-	0.984	-	12.821
106	No Match	-	0.939	-	12.875
107	No Match	-	0.424	-	13.117
108	No Match	-	0.772	-	19.585
109	No Match	-	0.517	-	22.775
110	No Match	-	0.375	-	25.618
111	No Match	-	0.501	-	26.914
Figure 9. GCMS Spectral Chromatogram of Water Extract of *Nepeta cataria*.

Table 3 GC-MS Analysis for the Identification of Phytochemicals in the Water Extract of *Nepeta cataria*

S. No.	Compound	Mol. formula	Amount/Con.	Mol. weight	RT
1	Conhydrin	C₈H₁₇NO	0.212	143.23 g/mol	7.847
2	(E)-2,6-Dimethylocta-3,7-die	C₁₀H₁₈O₂	0.670	170.25 g/mol	8.078
3	2-Methylindoline	C₉H₁₁N	0.825	133.19 g/mol	8.353
4	Benzofuran, 2,3-dihydro-	C₈H₈O	4.002	120.15 g/mol	8.480
5	1H-Pyrrole-2,5-dione, 3-ethy	-	0.250	-	8.690
6	3-Oxo-4-phenylbutyronitrile	C₁₀H₈NO	0.371	159.18 g/mol	8.825
7	1,7-Octadiene-3,6-diol, 2,6-	C₁₀H₁₄O₂	0.238	170.25 g/mol	9.271
8	2-Methoxy-4-vinyl phenol	-	0.530	-	9.845
9	Cyclopentanecarboxylic acid,	C₆H₁₀O₂	2.165	114.14 g/mol	10.486
10	1-Isopropylcyclohex-1-ene	C₉H₁₆	22.387	124.22 g/mol	10.657
11	(R)-(+-)-14-Methyl-8-hexadecy	-	5.106	-	10.790
12	Hydrocoumarin	C₉H₆O₂	3.699	148.1586 g/mol	10.843
13	7-Methylhexahydrocyclopenta [1]	C₉H₁₂O₂	5.399	154.21 g/mol	11.265
14	(4R,4aR,7S,7aR)-4,7-Dimethyl	C₁₀H₁₈O	1.170	154.25 g/mol	11.326
15	Ethanone, 1-(2-hydroxyphenyl)	C₆H₈O₂	0.559	136.15 g/mol	11.463
16	Coumarin	C₉H₆O₂	2.265	146.1427 g/mol	11.545
	Name	Formula	MW	Molar Mass (g/mol)	RF
---	---	----------	------	-------------------	------
17	13-Tetradec-11-yn-1-ol	C₁₄H₂₄O	2.146	208.34 g/mol	11.581
18	Homovanillyl alcohol	C₉H₁₂O₃	1.118	168.19 g/mol	12.621
19	S-(2-((1R,4R)-4-Methyl-2-oxo)		1.274		12.723
20	Bicyclo [3.1.0] hexane-2-undec	C₆H₁₀	3.100	82.14 g/mol	12.831
21	Methyl 7,8-octadecadienoate		0.206		12.898
22	3-Acetylthymine		0.402		13.283
23	2-Cyclohexen-1-one, 4-(3-hyd		0.997		13.984
24	1H-Indene, 1-ethylideneoctah	C₁₁H₁₀	0.070	142.2 g/mol	14.737
25	2H-1-Benzopyran-2-one, 7-met	C₁₀H₁₅NO₂	5.336	217.26 g/mol	14.950
26	6-Hydroxy-4,4,7a-trimethyl-5	C₁₁H₁₆O₃	0.496	196.24 g/mol	15.394
27	7-Oxabicyclo [4.1.0] heptan-3-	C₅H₁₀O₂	0.295	114.14 g/mol	16.821
28	n-Hexadecanoic acid	C₁₆H₃₂O₂	0.263	256.4241 g/mol	17.288
29	No Match		0.469		3.652
30	No Match		0.337		4.368
31	No Match		0.437		5.652
32	No Match		0.562		11.045
33	No Match		1.738		11.098
34	No Match		0.932		13.036
35	No Match		2.942		13.861
36	No Match		1.630		14.825
37	No Match		1.472		15.575
38	No Match		4.917		15.825
39	No Match		0.404		16.262

Figure 10. GCMS Spectral Chromatogram of Acetone Extract of Nepeta cataria
Table 4. GC-MS Analysis for the Identification of Phytochemicals in the Acetone Extract of *Nepeta cataria* (A1).

S. No.	Compound	Mol. formula	Amount/Con.	Mol. weight	RT
1	Oxime-, methoxy-phenyl-	C₈H₉NO₂	2.849	151.16 g/mol	3.685
2	Eucalyptol	C₁₀H₁₈O	1.513	154.249 g/mol	5.004
3	alpha. -Methyl- alpha. - [4-me	C₈H₁₄NO₂	1.026	129.16 g/mol	5.292
4	(+)-2-Bornanone	C₁₀H₁₆O	6.365	152.2334 g/mol	5.984
5	endo-Borneol	C₁₀H₁₈O	3.083	154.25 g/mol	6.191
6	(E)-2,6-Dimethylocta-3,7-die	C₁₀H₁₈O₂	2.572	170.25 g/mol	6.217
7	1,7-Octadiene-3,6-diol, 2,6-	C₁₀H₁₈O₂	0.819	170.25 g/mol	7.049
8	Cyclohexene,1-propyl-	C₉H₁₆	1.093	124.22 g/mol	7.507
9	Hotrienol	C₁₀H₁₆O	2.947	152.23 g/mol	7.692
10	Cyclopentanecarboxylic acid,	C₆H₁₀O₂	2.496	114.14 g/mol	8.040
11	1-Isopropylcyclohex-1-ene	C₉H₁₆	29.552	124.22 g/mol	8.206
12	Caryophyllene oxide	C₁₅H₂₄O	6.868	220.35 g/mol	11.452
13	n-Hexadecanoic acid	C₁₆H₃₂O₂	5.337	256.4241 g/mol	17.237
14	No Match	-	1.196	-	7.749
15	No Match	-	1.947	-	8.127
16	No Match	-	2.038	-	8.424
17	No Match	-	2.007	-	8.530
18	No Match	-	2.570	-	8.885
19	No Match	-	1.844	-	9.297
20	No Match	-	2.289	-	9.631
21	No Match	-	3.443	-	10.391
22	No Match	-	2.573	-	13.475

Figure 11 GCMS Spectral Chromatogram of Hexane Extract of *Nepeta cataria*
Table 5. GC-MS Analysis for the Identification of Phytochemicals in the Hexane Extract of *Nepeta cataria* (A1).

S. No.	Compound	Mol. formula	Amount/Con.	Mol. weight	RT
1	(+)-2-Bornanone	C_{10}H_{16}O	6.809	152.2334 g/mol	9.187
2	endo-Borneol	C_{10}H_{18}O	3.719	154.25 g/mol	9.774
3	Benzoic acid, 4-ethoxy-, eth	C_{11}H_{14}O	2.535	194.23 g/mol	15.905
4	Methyl 6,9,12,15,18-heneicos	-	11.008	-	16.663
5	Diethyl Phthalate	C_{13}H_{14}O	17.465	222.24 g/mol	16.828
6	Benzophenone	C_{13}H_{10}O	3.591	182.217 g/mol	17.321
7	7,9-Di-tert-butyl-1-oxaspiro	C_{17}H_{24}O	1.956	276.4 g/mol	20.957
8	Dibutyl phthalate	C_{18}H_{22}O	5.877	278.34 g/mol	21.611
9	Tetracotane, 3,5,24-trimeth	C_{26}H_{38}	2.939	605.2 g/mol	8.975
10	1,2-Benzenedicarboxylic acid	C_{8}H_{16}O	8.551	166.14 g/mol	10.181
11	7,9-Di-tert-butyl-1-oxaspiro	C_{17}H_{24}O	6.924	276.4 g/mol	10.338
12	No Match	-	1.421	-	12.210
13	No Match	-	2.756	-	12.391
14	No Match	-	4.075	-	12.537
15	No Match	-	3.172	-	12.675
16	No Match	-	5.199	-	12.947
17	No Match	-	1.176	-	17.730
18	No Match	-	3.472	-	18.437
19	No Match	-	3.969	-	19.713

DISCUSSION

Nepeta cataria is a naturally growing plant in the regions of Pakistan, known as Catnip mint (English) and the local name is Badranj boya. This plant has an immense pharmacological and medical characteristics. It is historically used in herbal and traditional medicine due to
antipathogenic activity. However detailed phytochemical analysis in a wide spectrum of solvents and their antimicrobial analysis against both Gram-positive and negative bacteria has limited studied yet.

Nepeta cataria is reported excellent agent against Gastrointestinal and respiratory hyperactive disorders, antibacterial, antifungal, and analgesic, bronchodilatory related disease [27-29].

Various laboratory procedures were adapted to investigate the antimicrobial efficacy of *Nepeta cataria* extracts against pathogenic bacteria such as *Shigella sonnei, Bacillus subtilis, Klebsiella oxytoca, Escherichia coli, Salmonella enterica, Micrococcus luteus, Staphylococcus aureus, Lactococcus lactis, Saccharomyces cerevisiae, Listeria monocytogenes*. Minimum inhibitory concentration (MIC) of leaf extracts of *Nepeta cataria* was studied. Extracts were prepared in 5 different solvents: methanol, ethanol, water, acetone, and hexane.

These solvent-based extracts of *Nepeta cataria* showed diverse levels of MIC against all tested bacteria ranging from 62.5 -750 µg/mL. Methanol based extracts MIC was 93.7 µg/mL against *B. subtilis* and *E. coli* while ethanolic extracts inhibited the *E. coli, S. enterica, M. luteus,* and *L. lactis* growth at MIC 62.5 µg/mL. Water-based extracts MIC was
62.5 µg/mL against *B. subtilis, S. enterica, and S. cerevisiae* while acetone and hexane extracts showed MIC 62.5 µg/mL against *S. aureus, S. cerevisiae, and L. monocytogenes*.

The phytochemical qualitative Analysis of *N. cataria* shown in water-based extracts, water, methanol, ethanol, and acetone based extracts showed positive results for phenolic compounds, water, and methanol-based extracts showed positive results for water-soluble phenol, methanol, ethanol, and acetone based extracts showed positive results for water-insoluble phenol, methanol, and acetone-based extracts showed positive results for flavonoids, water-based, methanol, ethanol, acetone, and hexane-based extracts were positive for Terpenoids, acetone-based extracts were positive for cardiac glycosides, water-based extracts, methanol, ethanol, and acetone based extract were positive for free Anthraquinones, water-based extracts extract were positive for Combined Anthraquinones, water-based, methanol, and ethanol extracts were positive for Tannins, water-based, methanol, ethanol, acetone, and hexane-based extracts were positive for Alkaloids. The quantitative analysis for phenols showed maximum levels in methanol, acetone, and ethanol-based extracts. The hexane, acetone, and water-based extracts showed a high level of flavonoids. The quantitative analysis for the high concentration of DPPH showed in the acetone-based plant extract. Alkaloids quantity in tested plant extracts was varied from 0.204 / 0.5 g plant. *Nepeta cataria* in methanol extract results for ORAC test was 133759.021um/100ml. Gas Chromatography/Mass Spectrometry (GC/MS) is used for *Nepeta cataria* extract to detect
the bioactive phytochemicals in 5 different solvents viz., methanol, ethanol, water, acetone, and hexane.

GC/MS analysis of a methanolic extract of *Nepeta cataria* showed the presence of 71 identified phytochemicals while 48 un-matched chemicals were detected which needed to be explored further. Analysis of ethanol-based extracts confirmed the existence of 80 known phytochemical constituents while 31 unmatched chemicals were also detected. Water-based extracts of *Nepeta cataria* contain 28 known phytochemicals while 11 un-matched chemicals were also detected. A total of 13 known compounds were detected in acetone-based extract while 9 chemical constituents were unmatched. Analysis of hexane based extract confirmed the presence of 11 known chemical constituents while 8 unmatched chemicals were also detected.

The current study result was remarkable against the antibacterial and antioxidant activity. This plant is a natural source of various pharmacological and organic compounds that can be used against several bacterial infections after processing. It may help out to treat different antibiotic-resistant pathogens. Its chemicals may be used in pharmacology industries as a cheaper and easily available source.

Conclusion
The current study concludes remarkable antibacterial and antioxidant potential in *Nepeta cataria* extracts. This plant is a natural source of various pharmacological and organic compounds that can be used against several bacterial infections after processing.

Conflict of Interest

The authors declare that they have no conflict of interest in the publication.

Reference

1. Lamaoui, M., Jemo, M., Datla, R. and Bekkaoui, F., (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in chemistry, 6, p.26.

2. Bernhoft, A. (2010). A brief review on bioactive compounds in plants. A. Bernhoft, 11-17.

3. Schippmann U, Leaman DJ, and Cunningham AB (2002). Impact of cultivation and gathering of medicinal plants on biodiversity: global trends and issues. In Biodiversity and the Ecosystem Approach in Agriculture, Forestry and Fisheries. Ninth Regular session of the commission on Genetic Resources for Food and Agriculture. FAO, Rome, Italy, pp 1-21.
4. Brodowska, K.M., 2017. Natural flavonoids: classification, potential role, and application of flavonoid analogues. European Journal of Biological Research, 7(2), pp.108-123.

5. Hussain, G., Zhang, L., Rasul, A., Anwar, H., Sohail, M.U., Razzaq, A., Aziz, N., Shabbir, A., Ali, M. and Sun, T., 2018. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: An update of recent data. Molecules, 23(4), p.814.

6. Wan, L. and Jiang, J.G., 2018. Protective effects of plant-derived flavonoids on hepatic injury. Journal of Functional Foods, 44, pp.283-291.

7. Sharma, A., Nayik, G.A. and Cannoo, D.S., 2019. Pharmacology and toxicology of Nepeta cataria (Catmint) species of genus Nepeta: A review. In Plant and Human Health, Volume 3 (pp. 285-299). Springer, Cham.

8. Hinkov, A., Angelova, P., Marchev, A., Hodzhev, Y., Tsvetkov, V., Dragolova, D., Todorov, D., Shishkova, K., Kapchina-Toteva, V., Blundell, R. and Shishkov, S., 2020. Nepeta nuda ssp. nuda L. water extract: Inhibition of replication of some strains of human alpha herpes virus (genus simplex virus) in vitro, mode of action and NMR-based metabolomics. Journal of Herbal Medicine, p.100334.

9. Oskouie, A.A., Yekta, R.F., Tavirani, M.R., Kashani, M.S. and Goshadrou, F., 2018. Lavandula angustifolia effects on rat models of alzheimer’s disease through the investigation
of serum metabolic features using NMR metabolomics. Avicenna journal of medical biotechnology, 10(2), p.83.

10. Dinda, B., 2019. Chemistry and Biosynthesis of Iridoids. In Pharmacology and Applications of Naturally Occurring Iridoids (pp. 119-143). Springer, Cham.

11. Khan, A.K., 2019. Phytochemical screening on the constituents of Rumex Obtusifolius (Doctoral dissertation, Gomal University, DI Khan.).

12. Sarin, R. V., & Bafna, P. A. (2012). Herbal antidiarrhoeals: a review. Int J Res Pharmaceut Biomed Sci, 3, 637-49.

13. Packialakshmi, N. and Naziya, S., (2014). Phytochemical and Antimicrobial Screening of the Polar and Non-Polar Solvent Stem Extract of CarallumaFimbriyata. Int. J. Pure App. Biosci, 2(4), pp.32-37.

14. Dunkelberg, W., (1981). Kirby-Bauer Disk Diffusion Method. American Journal of Clinical Pathology, 75(2), pp.273-273.

15. Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R. and Banat, I.M., (2016). Resazurin-based 96-well plate microdilution method for the determination of the minimum inhibitory concentration of biosurfactants. Biotechnology Letters, 38(6), pp.1015-1019.
16. Mir, M.A., Parihar, K., Tabasum, U., and Kumari, E., (2016). Estimation of alkaloid, saponin, and flavonoid, content in various extracts of Crocus sativa. J Med Plants Stud, 4(5), pp.171-174.

17. Salar, R.K., Certik, M. and Brezova, V., 2012. Modulation of phenolic content and antioxidant activity of maize by solid state fermentation with *Thamnidium elegans* CCF 1456. Biotechnology and bioprocess engineering, 17(1), pp.109-116.

18. Stoughton, R.W., 1936. A method for the quantitative determination of phenols. Journal of biological chemistry, 115(1), pp.293-298

19. Prashant, T., Bimlesh, K., Mandeep, K., Gurpreet, K. and Harleen, K., (2011). Phytochemical screening and extraction: A review. Internationale pharmaceutica sciencia, 1(1), pp.98-106.

20. Auwal, M.S., Saka, S., Mairiga, I.A., Sanda, K.A., Shuaibu, A. and Ibrahim, A., 2014. Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). In Veterinary research forum: an international quarterly journal (Vol. 5, No. 2, p. 95). Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

21. Cowan, M.M., (1999). Plant products as antimicrobial agents. Clinical microbiology reviews, 12(4), pp.564-582.
22. Gul, R., Jan, S.U., Faridullah, S., Sherani, S. and Jahan, N., 2017. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. The Scientific World Journal, 2017.

23. Mamta, S. and Jyoti, S., 2012. Phytochemical screening of *Acorus calamus* and Lantana camara. International Research Journal of Pharmacy, 3(5), pp.324-326.

24. Herald, T.J., Gadgil, P. and Tilley, M., (2012). High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. Journal of the Science of Food and Agriculture, 92(11), pp.2326-2331.

25. Franka, G., (2014). ORAC assay to determine antioxidant capacity. BMG Labtech. Allmendgrün 8, 77799 Ortenberg, Germany.

26. Rukshana, M.S., Doss, A. and Kumari, P.R., (2017). Phytochemical screening and GC-MS ANALYSIS of leaf extract of *Pergularia daemia* (Forssk) Chiov. Asian J. Plant Sci. Res, 7, pp.9-15.

27. Baranauskiene, R., Venskutonis, R. P., and Demyttenaere, J. C. (2003). Sensory and instrumental evaluation of catnip (*Nepeta cataria* L.) aroma. Journal of agricultural and food chemistry, 51(13), 3840-3848.

28. Duke, J.A., (2002). Handbook of Medicinal Herbs. CRC Press, London.

29. Gilani, A.H., Shah, A.J., Zubair, A., Khalid, S., Kiani, J., Ahmed, A., Rasheed, M. and Ahmad, V.U., (2009). Chemical composition and mechanisms underlying the spasmolytic
and bronchodilatory properties of the essential oil of *Nepeta cataria* L. Journal of ethnopharmacology, 121(3), pp.405-411

30. Haque, M. A., Abdullah, C. S., Romana, B., Rafique, M. B., Zia-ul-Huda, G. M., Hossain, S. F., & Begum, B. (2013). Evaluation of anti-diarrheal and anti-diabetic activities of the stem, barks and leaves of the plant Vernonia cinerea (Family: Asteraceae). Journal of Applied Pharmaceutical Science, 3(1), 69.

Appendix

Table 1.1 Percentage yield of *Nepeta cataria* extracts in different solvents.

Plant	Methanol %	Ethanol %	Distilled Water %	Acetone %	Hexane %
Nepeta cataria	14	20.6	9.06	0.13	2.27

Table 1.2 Ingredients of The TSB Medium Used for Bacterial Culturing.
Ingredient	Quantity	Ingredient	Quantity
Casein Peptone	17.0 g	Dextrose	2.5 g
Sodium Chloride	5.0 g	Dipotassium Phosphate	2.5 g
Soy Peptone	3.0 g	Distilled water	1000 ml

pH 7.3 ± 0.2 @ 25 ºC.

Table 1.3 Ingredients of The LB Medium Used for Bacterial Mass Culturing.

Ingredient	Quantity	Ingredient	Quantity
Tryptone	10.0 g	NaCl	5.0 g
Yeast extract	5.0 g	Distilled water	1000 ml