The environmental hypersensitivity symptom inventory: metric properties and normative data from a population-based study

Steven Nordin1*, Eva Palmquist1, Anna-Sara Claeson1 and Berndt Stenberg2

Abstract

Background: High concomitant intolerance attributed to odorous/pungent chemicals, certain buildings, electromagnetic fields (EMF), and everyday sounds calls for a questionnaire instrument that can assess symptom prevalence in various environmental intolerances. The Environmental Hypersensitivity Symptom Inventory (EHSI) was therefore developed and metrically evaluated, and normative data were established. The EHSI consists of 34 symptom items, requires limited time to respond to, and provides a detailed and broad description of the individual's symptomology.

Methods: Data from 3406 individuals who took part in the Västerbotten Environmental Health Study were used. The participants constitute a random sample of inhabitants in the county of Västerbotten in Sweden, aged 18 to 79 years, stratified for age and gender.

Results: Exploratory factor analysis identified five significant factors: airway symptoms (9 items; Kuder-Richardson Formula 20 coefficient, KR-20, of internal consistency = 0.74), skin and eye symptoms (6 items; KR-20 = 0.60), cardiac, dizziness and nausea symptoms (4 items; KR-20 = 0.55), head-related and gastrointestinal symptoms (5 items; KR-20 = 0.55), and cognitive and affective symptoms (10 items; KR-20 = 0.80). The KR-20 was 0.85 for the entire 34-item EHSI. Symptom prevalence rates in percentage for having the specific symptoms every week over the preceding three months constitute normative data.

Conclusions: The EHSI can be recommended for assessment of symptom prevalence in various types of environmental hypersensitivity, and with the advantage of comparing prevalence rates with normality.

Keywords: Chemical intolerance, Electromagnetic fields, Hyperacusis, Idiopathic environmental intolerance, Prevalence, Sick building syndrome

Background

Health symptoms attributed to environmental agents are an extensive occupational and public health problem. Apart from toxic and allergenic substances, symptoms are commonly attributed to chemicals and biological materials (e.g., mold) that generate odor and sensory irritation (e.g., pungency), to electrical equipment that generate electromagnetic fields (EMF), and to mechanical phenomena that generate sound. Health effects of exposure to strong EMF are well documented, and such exposure is controlled by regulations and guidelines [1]. However, there is no existing evidence for health effects from low-level EMF exposure. Instead there is evidence for a nocebo effect in triggering acute health effects [2-4]. Nevertheless, health problems evoked in the presence of electrical equipment is a concern.

Clinical diagnoses for these environmental intolerances (EI) include multiple chemical sensitivity (MCS) [5], nonspecific building-related symptoms (sick building syndrome) [6], idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) [7], and sound sensitivity (hyperacusis) [8]. As many as 6.3% of a general Swedish population report having a physician-based diagnosis of at least one of these four intolerances, and 21.6% report an intolerance (not necessarily...
intolerance attributed to odorous/pungent chemicals, certain buildings, EMF, and sounds is common [9,12,28]. This motivates simultaneous investigation of these intolerances, which requests a questionnaire instrument that includes relevant symptoms in all these intolerances.

An objective of the current study was to develop and psychometrically evaluate a questionnaire instrument, referred to as the Environmental Hypersensitivity Symptom Inventory (EHSI), for assessment of symptomology in persons with symptoms attributed to odorous/pungent chemicals, certain buildings, EMF, and everyday sounds. The EHSI consists of 34 symptom items, requires limited time to respond to (about 5 min), yet it provides a detailed and broad description of the individual’s symptomology. The metric evaluation included investigation of dimensionality (factor structure) and reliability (internal consistency). The dimensionality was assessed with factor analysis to accomplish appropriate symptom categories. Thus, it is useful to group the symptoms into appropriate categories to enhance the responders’ evaluation of their symptom prevalence and the administrator’s interpretation of symptom pattern in the responses.

Another objective was to establish normative data for the EHSI. In addition to normative data for the general population, reference data were provided for combinations of specific age groups (young, middle-aged and elderly adults) and gender. These data referred to having had the specific symptom on a weekly basis over the preceding three months.

There can be a large difference in symptomology between individuals with EI. This suggests that a questionnaire-based instrument aimed at providing a detailed yet broad description of the individual’s symptom picture should provide the respondent with the possibility to also report symptoms that are not specifically listed in the questionnaire. The EHSI was therefore designed to also include open-ended questions about additional symptoms pertaining to certain symptom categories as well as to symptoms pertaining to additional, unspecified categories. The objectives of this study were addressed by means of data from a population-based study, the Västerbotten Environmental Health Study.

Methods

Population and sample

The Västerbotten Environmental Health Study is an embracing name for different investigations on the same general population regarding various forms of environmental hypersensitivity in Sweden. The study population, inhabitants in the county of Västerbotten in Northern Sweden, has an age and gender distribution that is very similar to that of Sweden in general [29]. A random sample, drawn from the municipal register, of 8600 individuals aged 18 to 79 years was invited to
participate. The sample was stratified for age and gender according to the following age strata: 18–29, 30–39, 40–49, 50–59, 60–69, and 70–79 years. Of the 8600 individuals, 8520 could be reached, among whom 3406 (40.0%) agreed to participate. Age and gender distributions for the responders are given in Table 1. The sample is described in Table 2 with respect to demographics, smoking, and health conditions of relevance to symptomology in EI.

The environmental hypersensitivity symptom inventory

The EHSI is to a large extent based on the IEISI that was developed for assessment of symptom prevalence attributed specifically to odorous/pungent chemicals [10]. The 27 specific symptoms in the IEISI were those reported by at least 20% of a sample with moderate to severe chemical intolerance. Many of these 27 symptoms are also commonly found in nonspecific building-related symptom [6,30], IEI-EMF [12,31,32], and sound sensitivity [13]. However, certain modifications and additions to the IEISI were made to better cover the symptomology of intolerance to certain buildings, EMF, and sounds. Thus, “skin irritation/redness” was replaced with the four items “facial itching/stinging/tightness/heat”, “facial redness”, “dry facial skin”, and “body itching”; and “head fullness/pressure” was replaced with the two items “head fullness” and “head pressure”. Furthermore, “nasal mucosa irritation/dryness”, “dry eyes”, and “general discomfort” were added. In total, the EHSI consists of 34 specific symptoms.

Open-ended questions about additional symptoms pertaining to the symptom categories as well as to symptoms pertaining to additional, unspecified categories are also included in the EHSI. Since the likelihood of remembering to report a certain condition increases when that condition is provided to the respondent [33], examples of additional symptoms are given after each open-ended question in the EHSI. These examples were adopted from the IEISI. The final version of the EHSI is presented in Figure 1.

For the normative data, the frequency and time interval for a symptom to be considered as prevalent was having had the symptom every week over the preceding three months. This was partly based on the fact that this is typically used for the definition for nonspecific building-related symptoms [34], partly due to the three-month period being long enough to avoid memory effects and short enough to permit efficient follow-up studies after remedial measures have been taken [27].

Procedure

A questionnaire was used that included the EHSI and questions regarding demographics, smoking, and health conditions (Table 2). The responders were mailed the questionnaire, to be returned by mail with prepaid postage. Non-responders received up to two reminders. All participants responded to the questionnaire during the period March-April, 2010, before the onset of the pollen season in Västerbotten. The study was conducted in

Age strata (years)	Women	Men
18-29	307 (32.7%)	179 (17.7%)
30-39	266 (40.9%)	177 (25.2%)
40-49	288 (40.7%)	230 (31.3%)
50-59	367 (51.0%)	295 (39.7%)
60-69	405 (58.6%)	356 (50.7%)
70-79	265 (53.8%)	271 (63.9%)
18-79	1898 (45.2%)	1508 (34.9%)

Table 2 Sample characteristics (n = 3406)

Age, mean years (SD)	51.2 (16.8)
Women/men, n (%)	1898/1508 (55.7/44.3)
Education (highest), n (%)	823 (24.5)
Primary school	1137 (33.8)
High school	1405 (41.8)
University	298 (8.8)
Smoker, n (%)	1349 (40.0)
Very good or excellent	1515 (44.3)
General health status, n (%)	868 (25.8)
Diagnosis1, n (%)	838 (24.6)
Hypertension	186 (5.5)
Diabetes	147 (4.3)
Rheumatic disease	492 (14.4)
Disease in back, joints or muscles	107 (3.1)
Multiple chemical sensitivity	47 (1.4)
Nonspecific building-related symptoms	15 (0.4)
IEI-EMF2	15 (0.4)
Sound sensitivity	96 (2.8)
Asthma due to allergy	164 (4.8)
Asthma other than allergy	129 (3.8)
Allergic rhinitis	298 (8.7)
Atopic dermatitis	88 (2.6)
Migraine	151 (4.4)
Generalised anxiety disorder	32 (1.0)
Depression	170 (5.0)

1 Self-report of having been given a diagnosis by a physician.
2 Idiopathic environmental intolerance attributed to electromagnetic fields.
accordance with the Helsinki Declaration and approved by the Umeå Regional Ethics Board. All responders gave their informed consent to participate.

Statistical analysis

An exploratory factor analysis with Promax rotation and Kaiser normalization was conducted to study...
dimensionality of the 34 specific EHSI symptoms for categorization into symptom groups. An oblique factor rotation was chosen since prior studies of environmental hypersensitivity suggest strong commonalities among various types of somatic symptoms [4]. A scree test plot was made to identify the number of factors to be extracted [35]. The Kuder-Richardson Formula 20 coefficient (KR-20), comparable with the Cronbach alpha coefficient, was used for assessing internal consistency. Normative data for symptom prevalence were expressed in percentages among combinations of specific age groups [young (18–34 years), middle-aged (35–54 years), and elderly (55–79 years)] and gender, for the three age groups separately, for gender separately, and for the total sample. Since the response-rate in different age and gender strata varied, weighted prevalence rates for the entire sample were calculated as well. The weights used were calculated based on the inverse of the probability of respondents in each age and gender strata to participate [36].

Results
Dimensionality of the EHSI
The factor analysis of the data for the 34 specific symptoms identified nine factors with an eigenvalue above 1. Their eigenvalues were 6.09 (17.90% explained variance), 2.60 (7.66%), 1.57 (4.61%), 1.36 (4.01%), 1.31 (3.86%), 1.09 (3.20%), 1.06 (3.12%), 1.05 (3.09%), and 1.01 (2.95%). However, a scree-test plot suggests only five factors to be extracted (Figure 2; the number of factors preceding the last “elbow”; [35]). The factor loadings of each EHSI item on each of the five factors are presented in Table 3.

The ten items that loaded strongest on Factor 1 can be referred to as cognitive and affective symptoms; the nine items that loaded strongest on Factor 2 can be referred to as airway symptoms; the six items that loaded strongest on Factor 3 can be referred to as skin and eye symptoms; the four items that loaded strongest on Factor 4 can be referred to as cardiac, dizziness and nausea symptoms; and the five items that loaded strongest on Factor 5 can be referred to as head-related and gastrointestinal symptoms.

Reliability and normative data of the EHSI
The KR-20 coefficient was 0.74 for airway symptoms, 0.60 for skin and eye symptoms, 0.55 for cardiac,

Table 3 Factor loadings with the strongest loading for each symptom item given in bold

Symptom Item	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Concentration difficulties	.695	.145	.273	.216	.260
Depressed	.667	.084	.149	.235	.248
Worried	.649	.072	.154	.298	.239
Tensed/hnervous	.644	.046	.189	.317	.210
Absent-minded	.613	.159	.210	.107	.223
General discomfort	.607	.080	.152	.428	.182
Irritable/edgy	.599	.090	.170	.174	.322
Memory difficulties	.564	.205	.263	.172	.142
Fatigue	.545	.142	.243	.102	.466
Sleep disturbance	.402	.163	.209	.101	.299
Coughing	.119	.683	.106	.240	.072
Throat irritation/hoarseness	.119	.665	.176	.239	.122
Shortness of breath	.174	.656	.124	.528	.131
Excessive mucus production	.141	.587	.196	.246	.057
Postnasal drip	.128	.564	.273	.106	.137
Nasal congestion/discharge	.133	.555	.194	.059	.327
Sneezing	.139	.555	.175	.064	.349
Irritation/dryness of the nasal mucosa	.145	.497	.408	.061	.236
Asthma or wheezing	.044	.476	.093	.397	.253
Facial itching/stinging/tightness/heat	.205	.184	.691	.201	.076
Facial redness	.221	.136	.689	.134	.074
Dry facial skin	.259	.133	.599	.057	.266
Dry eyes	.090	.238	.509	.169	.213
Body itching	.207	.197	.478	.154	.147
Eye irritation/burning	.192	.350	.460	.173	.247
Chest discomfort	.238	.188	.143	.602	.106
Heart pounding	.264	.126	.206	.567	.136
Nausea	.270	.167	.107	.493	.424
Dizziness/lightheadedness	.238	.159	.254	.476	.313
Abdominal gas	.217	.167	.216	.040	.581
Abdominal swelling/bloating	.267	.114	.220	.195	.562
Headache	.273	.129	.069	.173	.535
Head fullness	.359	.187	.215	.307	.438
Head pressure	.281	.078	.162	.367	.399
dizziness and nausea symptoms, 0.55 for head-related and gastrointestinal symptoms, 0.80 for cognitive and affective symptoms, and 0.85 for the entire 34-item EHSI. Normative data are given in Table 4 for prevalence of specific symptoms expressed in percentages of subpopulations who report having each symptom every week over the preceding three months.

Discussion
An objective of the present study was to develop and psychometrically evaluate a questionnaire-based instrument, the EHSI, for assessment of symptom prevalence in persons with common types of environmental hypersensitivity. The instrument was aimed at requiring limited time to respond to, yet provide a detailed and broad description of the symptomology of the individual or group under study. Although the symptomology was focused on persons who attribute their symptoms to odorous/pungent chemicals, certain buildings, EMF, and sounds, the wide range of symptoms in the EHSI is likely to cover the symptomology of several other types of environmental hypersensitivity, including asthma and allergy.

The evaluation of the EHSI suggests a factor structure of five factors: airway symptoms, skin and eye symptoms, cardiac, dizziness and nausea symptoms, head-related and gastrointestinal symptoms, and cognitive and affective symptoms. The grouping of the cardiac, dizziness and nausea symptoms can be explained by sympathetic activity such that extensive heart pounding can cause chest discomfort, nausea and dizziness. Grouping of head-related and gastrointestinal symptoms can be referred to both types of symptoms being common psychosomatic symptoms. As would be expected, the head-related and gastrointestinal symptoms were found to load relatively high on the cognitive and affective factor. The outcome from the factor analysis was similar to that reported by Miller and Mitzel [37] and by Andersson and associates [10], also using factor analysis, for those symptoms that were in common between studies.

The internal consistency of the entire EHSI and the symptom category cognitive and affective symptoms can be considered as good, the symptom category airway symptoms can be considered as acceptable, the symptom category skin and eye symptoms can be considered as questionable, and the symptom categories cardiac, dizziness and nausea symptoms, and head-related and gastrointestinal symptoms from the EHSI should be supplemented with inspection of whether there is a large variability between the symptoms in this category. The validity of the EHSI was not investigated in this study. One reason for this is that the majority of its symptoms have been validated in a prior study of environmental hypersensitivity [10]. Another reason is the simplicity of assessment with the EHSI: having a specific symptom or not. Thus, the face validity [38] of the EHSI can be considered as good.

Another objective of the study was to provide normative data for various subgroups of age and gender, and for the general adult population. The population-based nature of the Västerbotten Environmental Health Study and the fact that the study population has an age and gender distribution that is very similar to that of Sweden in general [29] enhances the representativeness. However, among the randomly selected individuals only 40% volunteered, which compromises the representativeness. Research ethical regulations for conducting research in Sweden do not allow asking the selected individuals why they chose not to participate or about certain characteristics they may possess [39]. However, information on age and gender was available for those who declined participation in this study, and the largest proportion of non-responders was found among young men (Table 1). The generally low response rate increases the risk of a selection bias. Thus, the special topic of the study (environmental health) may have attracted, in particular, respondents with health problems attributed to environmental aspects [40], which may have resulted in the prevalence rates being higher than otherwise would have been the case. Comparisons with data from prior Swedish population-based studies do only partly support the notion that the current prevalence rates are too high. Whereas Eriksson and Stenberg [34] reported prevalence rates for adults aged 18–64 years that were generally lower than in the present study, Andersson and Norlén [41] reported rates based on all ages that were generally higher. The generally higher prevalence rates in women than in men (Table 4) accord with typical results on gender differences [42], and the pattern of age-related differences corresponds in general with prior Swedish population-based data for young and middle-aged adults [34].

The applicability of the EHSI is not limited to assessment of having had the specific symptoms every week over the preceding three months, or to assessment of prevalence (yes/no), for which the normative data are valid. The instrument can also be used for assessing the prevalence of symptoms as a direct result of the environmental exposure. Furthermore, the respondent can rate to what extent he/she experiences each symptom. An example of an appropriate rating scale for such a
Table 4 Percentage reporting having had symptoms every week over the preceding three months, constituting normative data

	Young women	Young men	Middle-aged women	Middle-aged men	Elderly women	Elderly men	All young	All middle-aged	All elderly	All women	All men	Total unweighted	Total weighted
Airway symptoms													
Asthma or wheezing	5.0	6.0	6.9	7.7	11.0	11.4	5.4	7.2	11.2	8.3	9.4	8.8	8.1
Shortness of breath	7.7	6.4	8.2	7.5	11.6	12.2	7.2	7.9	11.9	9.6	9.7	9.7	9.0
Nasal congestion/discharge	28.1	21.9	25.0	21.8	25.1	29.2	25.8	23.6	27.1	25.8	25.7	25.7	25.0
Postnasal drip	8.4	6.8	9.0	6.8	12.2	9.4	7.8	8.1	10.8	10.3	8.2	9.3	8.7
Excessive mucus production	3.4	3.8	4.2	5.7	8.1	8.8	3.5	4.8	8.4	5.8	7.0	6.3	5.7
Nasal mucosa irritation/dryness	13.8	8.7	22.8	12.5	28.8	17.8	11.9	18.3	23.5	23.4	14.6	19.5	17.3
Sneezing	27.9	20.4	24.1	23.7	30.8	26.8	25.1	24.0	28.9	28.0	24.7	26.6	25.6
Coughing	15.4	12.5	17.3	16.0	23.3	20.8	14.3	16.7	22.1	19.5	17.9	18.8	17.4
Throat irritation/hoarseness	11.6	9.8	12.7	10.8	19.8	17.1	10.9	11.9	18.5	15.6	13.9	14.9	13.8
Skin and eye symptoms													
Facial itching/stinging/tightness/heat	5.9	0.4	6.5	3.3	7.2	3.8	3.8	5.1	5.6	6.7	3.1	5.1	4.6
Facial redness	7.0	3.0	8.2	4.2	7.2	4.1	5.5	6.5	5.7	7.5	3.9	5.9	5.5
Dry facial skin	37.2	15.1	24.3	13.4	20.0	8.5	28.9	19.6	14.5	25.3	11.1	19.1	19.1
Body itching	14.3	3.7	14.1	13.2	14.5	12.4	11.0	13.7	13.5	14.3	11.5	13.1	12.2
Eye irritation/burning	8.6	7.5	14.4	9.9	18.8	13.5	8.2	12.5	16.3	15.1	11.3	13.4	12.1
Dry eyes	11.8	7.2	14.7	8.8	21.6	11.3	10.1	12.2	16.7	17.2	9.8	13.9	12.5
Cardiac, dizziness and nausea symptoms													
Heart pounding	8.8	1.9	8.9	6.4	12.1	7.0	6.2	7.8	9.6	10.3	5.9	8.4	7.5
Chest discomfort	6.8	3.4	5.4	5.3	7.6	7.4	5.5	5.3	7.5	6.7	6.0	6.4	6.0
Dizziness/lightheadedness	10.9	1.5	8.9	3.3	10.6	7.6	7.4	6.5	9.2	10.1	5.2	8.0	6.9
Nausea	14.3	2.3	7.2	5.5	5.8	2.8	9.8	6.5	4.4	8.2	3.5	6.1	6.1
Head-related and gastrointestinal symptoms													
Headache	41.0	23.8	36.3	24.0	23.1	9.9	34.6	31.0	16.8	31.5	16.6	24.9	25.9
Head pressure	10.7	3.8	9.5	5.5	4.9	2.7	8.1	7.8	3.8	7.7	3.7	5.9	6.0
Head fullness	19.0	9.8	15.1	10.5	11.9	6.0	15.6	13.1	9.0	14.5	8.0	11.7	11.9
Abdominal gas	44.9	32.5	37.7	37.1	37.0	30.8	40.2	37.5	34.0	39.0	33.0	36.4	36.5
Abdominal swelling/bloating	29.7	7.2	21.9	11.2	17.1	8.8	21.2	17.3	13.1	21.5	9.2	16.1	15.8
Table 4 Percentage reporting having had symptoms every week over the preceding three months, constituting normative data (Continued)

Cognitive and affective symptoms	Young = 18–34 years	Middle-aged = 35–54 years	Elderly = 55–79 years
Memory difficulties	13.4	9.8	20.3
Concentration difficulties	24.9	16.6	22.3
Absent-minded	33.8	23.8	35.3
General discomfort	12.2	3.8	8.5
Sleep disturbance	26.1	16.6	32.3
Fatigue	62.8	41.1	55.6
Irritable/edgy	31.7	21.5	26.3
Worried	29.3	18.1	21.4
Tensed/nervous	23.4	8.3	16.2
Depressed	31.5	16.2	18.1

Young = 18–34 years, middle-aged = 35–54 years, elderly = 55–79 years.
purpose is the Environmental Annoyance Scale, which is a
category scale with seven semantic descriptors [Not at
all (0), a little (1), partly (2), pretty much (3), rather
much (4), to a large extent (5), and extremely much (6)],
and with ratio-scale properties and good reliability and
validity [43].

Conclusions
The 34-item EHSI for assessment of symptoms in vari-
rions types of environmental hypersensitivity requires lim-
ited time to respond to, yet provides a detailed and
broad description of the symptomology, including air-
way, skin, eye, cardiac, dizziness, nausea, head-related,
gastrointestinal, cognitive and affective symptoms. Mea-
sures of internal consistency suggest that symptom
prevalence can reliably be combined for a composite
measure for the entire EHSI and for the symptom cat-
egories airway symptoms, skin and eye symptoms, and
cognitive and affective symptoms. In contrast, caution
should be taken when combining items for the symptom
categories cardiac, dizziness and nausea symptoms, and
head-related and gastrointestinal symptoms. Normative
data for various subgroups of age and gender, and for
the general adult population are available for having had
the specific symptoms every week over the preceding
three months.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed in planning the study. SN and EP
organized the data collection. SN drafted the article, and EP, ASC and BS read and approved the
text. All authors contributed in planning the study. SN and EP organized the data

Acknowledgements
This study was supported by grants from the European territorial
cooperation program Botnia-Atlantica, Region Västerbotten (Sweden), and the
Regional Council of Ostrobotnia (Finland). We gratefully acknowledge
Annika Gläder for supervising the TEMA project of which this work was part.

Author details
1Department of Psychology, Umeå University, Umeå SE-90187, Sweden.
2Department of Public Health and Clinical Medicine, Umeå University, Umeå
414 SE-90187, Sweden.

Received: 20 April 2013 Accepted: 27 June 2013
Published: 9 July 2013

References
1. International Commission on Non-Ionizing Radiation Protection: Guidelines
for limiting exposure to time-varying electric, magnetic, and
electromagnetic fields (up to 300 GHz). Health Phys 1998, 74:494–522.
2. Rubin GJ, Rosa Nieto-Hernandez R, Wessely S: Idiopathic environmental
intolerance attributed to electromagnetic fields (formerly ‘electromagnetic
hypersensitivity’): an updated systematic review of
provocation studies. Bioelectromagnetics 2010, 31:1–11.
3. Szemerszky R, Köteles F, Líhi R, Bárócs G: Polluted places or polluted
minds? An experimental sham-exposure study on background
psychological factors of symptom formation in ‘idiopathic Environmental
Intolerance attributed to electromagnetic fields’. Int J Hyg Environ Health
2010, 213:387–394.
4. Wittfoht M, Rubin GJ: Are media warnings about the adverse health
effects of modern life self-fulfilling? An experimental study on idiopathic
environmental intolerance attributed to electromagnetic fields (EI-EMF).
J Psychosom Res 2013, 74:206–212.
5. Labarge AS, McCaffrey RJ: Multiple chemical sensitivity: a review of the
theoretical and research literature. Neuropsychological Review 2010,
10:183–211.
6. Hodgson MJ, Addorios MR: Exposures in indoor environments. In
Textbook of Clinical Occupational and Environmental Medicine. 2nd edition.
Edited by Rosenvold L, Cullen MR, Brodkin CA, Redlich CA. Philadelphia: Elsevier Saunders; 2005:1113–1142.
7. Genius SJ, Lipp CT: Electromagnetic hypersensitivity: fact or fiction?
Sci Total Environ 2012, 414:103–112.
8. Baguley DM. Hyperacusis. J Royal Soc Med 2003, 96:S82–S85.
9. Nordin S, Söderholm A, Palmquist E, Andersson L, Claeson A-S, Nordin M: Miljöklänskhet: den osynliga folksjukdomen. Ett detektivarbete kring orsakerna till miljörelaterad överkänslighet. I Byggvärnswinkeln: ohälso i kvarkenregionen – nä detprojekt om miljöklänskhet, luktfärd och sjuka hus
her ett tvåvärderingskapet perspektiv håll. Editet av Otterberg M. Vasa: Novia produktion och publikation; 2012:30–43. Series R. Report no.
10. Andersson ME, Andersson L, Bendé M, Millqvist E, Nordin S. The idiopathic
environmental intolerance symptom inventory: development, evaluation
and application. J Occup Environ Med 2009, 51:S38–S47.
11. Edvardsson B, Stenberg B, Bergdahl J, Eriksson N, Lindén G, Widman L:
Medical and social prognoses of non-specific building-related symptoms
(Sick Building Syndrome): a follow-up study of patients previously
referred to hospital. Int Arch Occup Environ Health 2008, 81:805–812.
12. Hillert L, Berglund N, Arnetz BB, Bellander T: Prevalence of self-reported
hypersensitivity to electric or magnetic fields in a population-based
questionnaire survey. Scand J Work Environ Health 2002, 28:33–41.
13. Andersson G, Lindvall N, Hurst J, Carlson P: Hyposensitivity to sound
(hyperacusis): a prevalence study conducted via the internet and post.
Int J Audiol 2002, 41:545–54.
14. Bergdahl J, Stenberg B, Eriksson N, Lindén G, Widman L: Coping and self-
image in patients with visual display terminal-related skin symptoms
and perceived hypersensitivity to electricity. Int Arch Occup Environ Health
2004, 77:338–342.
15. Johansson A, Nordin S, Heiden M, Sandström M: Symptoms, personality
traits, and stress in people with mobile phone-related symptoms and
electromagnetic hypersensitivity. J Psychosom Res 2010, 68:37–45.
16. Lipson JG: Multiple chemical sensitivities: stigma and social experiences.
Med Anthropol 2004, 18:200–213.
17. Larsson C, Mårtensson L: Experiences of problems in individuals with
hypersensitivity to odours and chemicals. J Clin Nurs 2009, 18:377–444.
18. Skovbjerg S, Bronson S, Rasmussen A, Johansen JD, Eberling J: Impact of
self-reported multiple chemical sensitivity on everyday life: a qualitative
study. Scand J Publ Health 2009, 37:621–626.
19. Gibson PR: Of the world but not in it: barriers to community access and
education for persons with environmental sensitivities. Health Care Women
Int 2010, 31:3–16.
20. Söderholm A, Söderberg A, Nordin S: The experience of living with
sensory hyperreactivity: accessibility, financial security and social
relationships. Health Care Women Int 2011, 32:686–707.
21. Shepherd D, Welch D, Dirks KN, Mathews R: Exploring the relationship
between noise sensitivity, annoyance and health-related quality of life in
a sample of adults exposed to environmental noise. Int J Environ Res Publ
Health 2010, 7:3379–3394.
22. Nordin M, Andersson L, Nordin S: Coping strategies, social support and
responsibility in chemical intolerance. J Clin Nurs 2010, 19:2162–2173.
23. Stenberg B, Bergdahl J, Edvardsson B, Eriksson N, Lindén G, Widman L:
Medical and social prognosis for patients with perceived hypersensitivity
to electricity and skin symptoms related to the use of visual display
terminals. Scand J Work Environ Health 2002, 28:340–357.
24. Millqvist E: Mechanisms of increased airway sensitivity to occupational
chemicals and odors. Curr Opin Allergy Clin Immunol 2008, 8:135–139.
25. Fidler N, Kelly-McNeil K, Ohman-Strickland P, Zhang J, Ottenweller J, Kipen
HM: Negative affect and chemical intolerance as risk factors for building-
related symptoms: a controlled exposure study. Psychosom Med 2008,
70:254–262.
26. Miller CS, Phrada T: The environmental exposure and sensitivity
inventory (EESI): a standardized approach for measuring chemical
intolerances for research and clinical applications. Toxicol Ind Health 1999, 15:370–385.

27. Andersson K: Epidemiological approach to indoor air problems. Indoor Air 1998, 4(Suppl):32–39.

28. Carlsson F, Karlsson B, Orbaek P, Österberg K, Östergren PO: Prevalence of annoyance attributed to electrical equipment and smells in a Swedish population, and relationship with subjective health and daily function. Public Health 2005, 119:568–577.

29. Statistics Sweden: Tables of Sweden’s population 2009: I.3.1 Population by sex, age, marital status by county Dec. 31, 2009 according to the administrative subdivisions of January 1, 2010. 2013. http://www.scb.se/statistik/_publikationer/BE0101_2009A01_BR_05_BE0110TA.pdf.

30. World Health Organization (WHO): Indoor air quality and research. Euro Reports and Studies 103. Geneva: WHO; 1986.

31. Röösli M, Moser M, Baldini N, Meier M, Braun-Fahrländer C: Symptoms of ill health ascribed to electromagnetic field exposure: a questionnaire survey. Int J Hyg Environ Health 2004, 207:141–150.

32. World Health Organization (WHO): Electromagnetic fields and public health. Fact sheet No 296. Geneva: WHO Media Centre; 2005.

33. Schwarz N: Self-reports: how the questions shape the answers. Am Psychol 1999, 54:93–105.

34. Eriksson NM, Stenberg BGT: Baseline prevalence of symptoms related to indoor environment. Scand J Publ Health 2006, 34:387–396.

35. Cattell RB: The scree test for the number of factors. Multivar Behav Res 1966, 1:245–276.

36. Höfler M, Pfister H, Lieb R, Wittchen H-U: The use of weights to account for non-response and drop-out. Soc Psychiatry Psychiatr Epidemiol 2004, 40:291–299.

37. Miller C, Mitzel HC: Chemical sensitivity attributed to pesticide exposure versus remodeling. Arch Environ Health 1995, 50:119–129.

38. Anastasia A: Psychological testing. New York: Macmillan; 1988.

39. Proposition 2007/08:44: Vissa etikprövningsfrågor m.m. http://www.regeringen.se/content/1/c6/09/48/06/a497e80c.pdf.

40. Groves RM, Couper MP, Presser S, Singer E, Tourangeau R, Acosta GP, Nelson L: Experiments in producing nonresponse bias. Publ Opin Quart 2006, 70:720–736.

41. Andersson K, Norlén U: Indoor climate and health effects: The indoor climate in the Swedish housing stock. In Indoor air quality in practice: moisture and cold climate solutions. Edited by Flatholm G, Berg K, Edvardsen K. Oslo: Norwegian Society of Chartered Engineers; 1995:23–28.

42. Gijsbergs van Wijk CMT, Kolk AM: Sex differences in physical symptoms: the contribution of symptom perception theory. Soc Sci Med 1977, 15:231–246.

43. Nordin S, Lidén E, Giilöf-Gunnarsson A: Development and evaluation of a category ratio scale with semantic descriptors: the environmental annoyance scale. Scand J Psychol 2009, 50:93–100.

doi:10.1186/0778-7367-71-18
Cite this article as: Nordin et al.: The environmental hypersensitivity symptom inventory: metric properties and normative data from a population-based study. Archives of Public Health 2013 71:18.