Review article

Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production – a threat around the world

Josman Dantas Palmeira a,b,1,*, Helena Maria Neto Ferreira a,b

a Microbiology - Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal
b UCIBIO - Research Unit on Applied Molecular Biosciences, REQUIMTE, Portugal

ARTICLE INFO

Keywords: Microbiology Food microbiology Cattle Antibiotic resistance Antibiotic resistant bacteria

ABSTRACT

Food producing animal is a global challenge in terms of antimicrobial resistance spread. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are relevant opportunistic pathogens that may spread in many ecological niches of the One Health approach as human, animal and environment due to intestinal selection of antimicrobial resistant commensals in food production animals. Cattle production is a relevant ecological niche for selection of commensal bacteria with antimicrobial resistance from microbiota. Enterobacteriaceae show importance in terms of circulation of resistant bacteria and antimicrobial resistance genes via food chain creating a resistance reservoir, setting up a threat for colonization of humans and consequent health risk. ESBL-producing Enterobacteriaceae are a threat in terms of human health responsible for life threatening outbreaks and silent enteric colonization of community populations namely the elder population. Food associated colonization is a difficult to handle and control. In a time of globalization of food trading, population intestinal colonization is a mirror of food production and in that sense this work aims to make a picture of ESBL-producing Enterobacteriaceae in animal production for food over the world in order to make some light in this reality of selection of resistant threats in food producing animal.

1. Introduction

Extended-spectrum beta-lactamas (ESBL) are enzymes responsible for the hydrolysis of oxyimino-beta-lactam antibiotics, which are important therapeutic agents for the treatment of serious human and animal infections. ESBL were first described in 1983 in Enterobacteriaceae (new taxonomy Enterobacterales) and since then, with the research of the scientific community, it has been observed that ESBL-producing Enterobacteriaceae (E-ESBL) are a real threat to human health, being responsible for 1700 deaths in the USA due to therapeutic failure in severe infections in 2013 (Adeolu et al., 2016; CDC, 2013; Knothe et al., 1983). However, E-ESBL are not only limited to hospital environment, they are also present as human intestinal commensals (Gonçalves et al., 2016; Karanika et al., 2016). The presence of E-ESBL in several ecological niches, as commensals in humans and animals and as environmental contaminants, is reported worldwide, however, in the last decades a niche that has raised great concern, for being able to function as a reservoir and vehicle of transmission and dissemination of E-ESBL is the production animals due to their direct connection with the food chain (Madec et al., 2017).

Cattle are one of the main sources of animal protein, becoming one of the most consumed meat around the world and milk, one of the main constituents of the human food chain (Alexandratos and Bruinsma, 2012). It is also one of the main sources of biological fertilizers, due to the high production of faecal mass of these animals (Smith and Williams, 2016). All this, highlights the importance of cattle production in the context of the food chain and the contaminated environment as reservoir and transmitting/disseminating vehicle of E-ESBL, thus configuring a threat to the world public health. This circulation of E-ESBL within our ecosystem creates a consensual concern of the scientific community and of the authority involved in the One health approach (Robinson et al., 2016).

The ESBL are enzymes that are classified in several types, being CTX-M, SHV and TEM the most prevalent around the world (Paterson and Bonomo, 2005). However, there are other ESBL such as OXA, PER, VEB, BES, GES, SFO, TLA, and IBC (Paterson and Bonomo, 2005). The CTX-M
are enzymes with environmental origins which are currently the most widespread type of ESBL and are commonly associated with E-ESBL reports (Cantón et al., 2012). Variants such as CTX-M-15, responsible for infectious outbreaks around the world, are associated with a clone responsible for extraintestinal *E. coli* infections resistant to antibiotics, the ST131 (Price et al., 2013).

The objective of this study was to make an insight about the epidemiology of the spread of E-ESBL and the ESBL genes distribution in cattle around the world, in order to update the current scenario of E-ESBL dissemination through cattle production in all continents.

2. ESBL producing *Enterobacteriaceae* in cattle - a global view

The first description of an E-ESBL in cattle was in Japan, where a CTX-M-2 *E. coli* producer was detected in cattle faeces from an important region close to the centre of the country (Shiraki et al., 2004). From the first description to the present, E-ESBL has already been described in cattle production in 39 countries, with more concentration in Europe (n = 16) and Asia (n = 13) as shown in Figure 1. The origins of E-ESBL are diverse, being isolated from healthy animals (faecal samples) or from veterinary clinical origin (mastitis, diarrheal processes, infections or with any other pathological picture). The countries with the highest reports on E-ESBL in cattle, are the United Kingdom (n = 14), Germany (n = 11), France (n = 9) and the United States (n = 9), the last one being the world’s largest cattle producer, and the 3 Europeans, 4th, 3rd and 1st, respectively, in number of cattle in Europe (Eurostat, 2016; USDA et al., 2017). Within the 5 world largest cattle producers (United States, Brazil, the European Union, China and India) there have been reports of animals harbouring commensal or clinical E-ESBL. The Table 1 shows all the descriptions of E-ESBL in cattle around the World, including the source, species and ESBL gene.

The most frequent ESBL types in E-ESBL in cattle, as expected, were the ones of CTX-M-1 group with higher prevalence for CTX-M-1, CTX-M-14 and CTX-M-15. CTX-M-1 was reported in 20 countries, most frequently in Europe (n = 14), being found in Germany, Denmark, Spain, Finland, France, Hungary, Portugal, Netherlands, United Kingdom, Czech Republic, Slovakia, Sweden, Switzerland and Turkey. CTX-M-1 was first described in human E-ESBL in 1989 in Germany, and it has also been reported in other European countries such as Spain, France, Italy and United Kingdom as well as in Asia and North America (Cantón and Coque, 2006; Moosavian and Ahmadkhojastehsvay, 2016; Wang et al., 2013).

CTX-M-15 and CTX-M-14 are the most important CTX-M enzymes due to their large diffusion and relation to outbreaks and severe extraintestinal infections (Cantón et al., 2012; Matsumura et al., 2015; Price et al., 2013). CTX-M-14 was described in E-ESBL in cattle in 13 countries, mainly in Europe (Germany, Belgium, France, Netherlands, United Kingdom, and Switzerland) and in Asia (China, South Korea, Hong Kong, Japan, and Taiwan), as well as the United States and Oceania. CTX-M-15 was first described in 2002 in E-ESBL from a hospital in China (Chana-wong et al., 2002; Ma et al., 2002). E-ESBL producers isolated from human of CTX-M-14 type are described in Europe, Asia, North and South America, Africa and Oceania, many times related to pandemic clones such as *E. coli* ST131 responsible for outbreaks in the last years (Cantón et al., 2008; Chen et al., 2014; Giedraitiene et al., 2017; Peirano et al., 2010, 2011; Pitout et al., 2005; Shin et al., 2011; Silva and Lincopan, 2012; Zong et al., 2009).

CTX-M-15 was first described in 2001 in E-ESBL isolate in a hospital in New Delhi, India, and today is the most widespread ESBL in the various niches and the most important of all, due to its high relation to important, for human health, E-ESBL clones (Cantón et al., 2012; Clermont et al., 2008; Karim et al., 2001; Kim et al., 2017; Price et al., 2013; Woodford et al., 2004). E-ESBL producing CTX-M-15 in cattle were described in 21 countries around the world, present in most of Europe, being reported in Germany, France, Italy, Netherlands, United Kingdom, Sweden, Switzerland and Turkey. In Asia they were described in China, South Korea, India, Israel, Japan, Lebanon and Taiwan and also reported in North and South America (Brazil, Canada and United States) and Africa (Egypt, Tanzania and Tunisia).

CTX-M-15 has been reported in all continents (Europe, North America, South America, Asia, Africa, Oceania and Antarctica with reports in all major ecological niches (humans, animals, and environment), these E-ESBL producers of CTX-M-15 are an excellent example of the public health threat that involves circulation of resistant Enterobacteriaceae and resistance genes among the different ecological niches that is currently evidenced under the prism of the “One Health” approach (Chen et al.,

Figure 1. World map illustrating the countries with description of E-ESBL in cattle.
Beta-lactamase	Enterobacteriaceae	Country	Source	Reference
CTX-M-1	*Escherichia coli*	Europe	Faecal	(Wieler et al., 2011)
		Germany	Mastitis	(Freitag et al., 2017; Michael et al., 2017)
			Diarrheic	(Swers et al., 2014)
			Sick	(Michael et al., 2017)
			Infection	(Brennan et al., 2016)
		Denmark	Commensal	(Kjeldsen et al., 2015)
			ND	(Garcia-Fernandez et al., 2011; Jakobsen et al., 2015)
		Spain	Mastitis	(Britias et al., 2005)
		Finland	Faecal	(Pälvarinta et al., 2016)
		France	Faecal	(Haenni et al., 2014; Hartmann et al., 2012; Madec et al., 2008; Meunier et al., 2006)
			Mastitis	(Dahmen et al., 2013)
			Diarrheic	(Hartmann et al., 2012)
			Sick	(Madec et al., 2006; Valat et al., 2016)
			Infection	(Meunier et al., 2006)
		Hungary	Infection	(Toth et al., 2013)
		Portugal	Faecal	(Ramos et al., 2013)
		Mayotte	ND	(Gay et al., 2018)
		Netherlands	Faecal	(Cecarelli et al., 2019; Heuvelink et al., 2019; Hoerdijk et al., 2013a, b, c)
		United Kingdom	Faecal	(Velasova et al., 2019)
			Infection	(Hunter et al., 2010)
			ND	(Stokes, 2014)
		Czech Republic	Faecal	(Dolejska et al., 2011b)
			Sick	(Dolejska et al., 2013)
		Réunion	ND	(Gay et al., 2018)
		Slovakia	Faecal	(Kmei and Bujňáková, 2018)
		Sweden	Faecal	(Dane et al., 2019)
		Switzerland	Faecal	(Indimiani et al., 2012; Genser et al., 2012a; Zurfsh et al., 2015)
		Turkey	Faecal	(Atalantaş et al., 2017; Pehlivanoglu et al., 2016)
		North America	Canada	(Cormier et al., 2019)
			USA	(Mir et al., 2016; Mollenkopf et al., 2012; Wittum et al., 2010)
		Asia	China	(Ali et al., 2016, 2017)
			South Korea	(Park et al., 2017)
			Indonesia	(Sudarwanto et al., 2016)
		Japan	Mastitis	(Ohnishi et al., 2013b)
	Klebsiella pneumoniae		Europe	
		Italy	Mastitis	(Locatelli et al., 2010)
	Klebsiella oxytoca	Italy	Faecal	(Stefani et al., 2014)
	Salmonella enterica	Germany	ND	(Rodríguez et al., 2009)
CTX-M-1/61	*E. coli*	Europe	Faecal	(Dahms et al., 2015)
		Germany		
CTX-M-2	*E. coli*	South America	Brazil	(Palmeira et al., 2018)
		Europe		
		Germany	Mastitis	(Eisenberger et al., 2017; Freitag et al., 2017; Michael et al., 2017)
			Sick	(Michael et al., 2017)
		Netherlands	Faecal	(Cecarelli et al., 2019; Heuvelink et al., 2019)
		North America	Canada	(Cormier et al., 2016)
		Asia	Japan	(Shiraki et al., 2004)
			Diarrheic	(Ohnishi et al., 2013a)
			Infection	(Asai et al., 2011)
	K. pneumoniae	Japan	Mastitis	(Ohnishi et al., 2013a, b; Saishu et al., 2018)
	Klebsiella oxytoca	Japan	Mastitis	(Ohnishi et al., 2013b)
	Citrobacter freundii	Japan	Mastitis	(Ohnishi et al., 2013a)
Beta-lactamase	Enterobacteriaceae	Country	Source	Reference
----------------	--------------------	---------	--------	-----------
CTX-M-2/97	*Citrobacter koseri*	Japan	Mastitis	(Ohnishi et al., 2013b)
	Enterobacter cloacae	Japan	Mastitis	(Ohnishi et al., 2013a)
	Enterobacter aerogenes	Japan	Mastitis	(Ohnishi et al., 2013b)
CTX-M-3	*E. coli*	Europe	Faecal	(Hordijk et al., 2013a, b, c)
CTX-M-8	*E. coli*	Europe	Faecal	(Ceccarelli et al., 2019)
CTX-M-9	*E. coli*	Europe	Faecal	(Ceccarelli et al., 2019)
	S. enteric	Australia	ND	(Sparham et al., 2017)
CTX-M-14	*E. coli*	Europe	Faecal	(Ceccarelli et al., 2019)
				(Heuvelink et al., 2019)
				(Hordijk et al., 2013a, b, c)

(continued on next page)
Beta-lactamase	Enterobacteriaceae	Country	Source	Reference	
K. pneumoniae	Australia	Sick	(Abraham et al., 2015)		
	Europe				
	France	Mastitis	(Dahmen et al., 2013)		
	Asia				
	Japan	Mastitis	(Ohnishi et al., 2013b)		
CTX-M-15	E. coli	South America	Brazil	Faecal	(Sartori et al., 2017)
	Europe				
	Germany	Faecal	(Fischer et al., 2014; Wieler et al., 2011)		
	Mastitis	(Eisenberger et al., 2017; Freitag et al., 2017; Michael et al., 2017)			
	Sick	(Michael et al., 2017)			
	France	Faecal	(Haenni et al., 2014)		
	Sick	(Madec et al., 2008)			
	Infection	(Madec et al., 2012; Meunier et al., 2006)			
	Madagascar	ND	(Gay et al., 2018)		
	Mayotte	ND	(Gay et al., 2018)		
	Netherlands	Faecal	(Cecarelli et al., 2019; Heuvelink et al., 2019; Hoedijk et al., 2013a, b, c)		
	United Kingdom	Faecal	(Horton et al., 2011; Randall et al., 2014; Watson et al., 2012)		
	Mastitis	(Timofte et al., 2014)			
	Infection	(Hunter et al., 2010)			
	Sweden	Faecal	(Duse et al., 2015)		
	Switzerland	Faecal	(Endimiani et al., 2012; Genser et al., 2012a; Zurfluh et al., 2015)		
	Turkey	Faecal	(Adalatça et al., 2017; Pehlivanoglu et al., 2016)		
Asia	China	Faecal	(Zheng et al., 2019)		
	Mastitis	(Ali et al., 2016, 2017)			
	Israel	ND	(Lifshitz et al., 2018)		
	South Korea	Faecal	(Tamang et al., 2013a)		
	Mastitis	(Tark et al., 2017)			
	Japan	Faecal	(Unu et al., 2013)		
	Mastitis	(Ohnishi et al., 2013b)			
	Diarrheic	(Ohnishi et al., 2013a)			
	Lebanon	Faecal	(Diab et al., 2016)		
	Taiwan	Mastitis	(Su et al., 2016)		
North America	Canada	ND	(Cormier et al., 2019)		
	Faecal	(Cormier et al., 2016)			
	USA	Faecal	(Mir et al., 2016; Mollenkopf et al., 2012)		
Africa	Egypt	Faecal	(Braun et al., 2016)		
	Tanzania	Faecal	(Seni et al., 2016)		
	Tunisia	Faecal	(Graimi et al., 2014)		
	Mastitis	(Saidani et al., 2018)			
K. oxytoca	Europe				
	France	Faecal	(Haenni et al., 2014)		
	Asia				
	India	Mastitis	(Kovapra et al., 2016)		
K. ozaenae	Europe				
	Italy	Faecal	(Stefani et al., 2014)		
K. oxytoca	Asia				
	Egypt	Mastitis	(Ahmed and Shimamoto, 2011)		
CTX-M-15/28	E. coli	Europe			
CTX-M-17	E. coli	Asia	China	Faecal	(Zheng et al., 2019)
CTX-M-17/18	E. coli	Europe	United Kingdom	Faecal	(Liebana et al., 2006)

(continued on next page)
Beta-lactamase	Enterobacteriaceae	Country	Source	Reference
CTX-M-20	E. coli	Europe	Infection	(Hunter et al., 2010)
		United Kingdom		
CTX-M-22	E. coli	Europe	Faecal	(Heuvelink et al., 2019)
CTX-M-24	E. coli	North America	Faecal	(Cormier et al., 2016)
		Canada		
CTX-M-27	E. coli	Europe	Faecal	(Ceccarelli et al., 2019)
		Netherlands		
		USA	Faecal	(Tadesse et al., 2018)
		ND		(Afema et al., 2018)
		Canada	Faecal	(Cormier et al., 2016)
			ND	(Cormier et al., 2019)
CTX-M-28	E. coli	Asia	Faecal	(Ho et al., 2011)
CTX-M-32	E. coli	Europe	Faecal	(Haenni et al., 2014)
		France		
		Germany	Mastitis	(Eisenberger et al., 2017)
		Mayotte	ND	(Gay et al., 2018)
		Netherlands	Faecal	(Ceccarelli et al., 2019; Heuvelink et al., 2019; Hordijk et al., 2013a, b, c)
		Portugal	Faecal	(Ramos et al., 2013)
		United Kingdom	Infection	(Hunter et al., 2010)
		North America		
		Canada	Faecal	(Cormier et al., 2016)
		ND		(Cormier et al., 2019)
		USA	Faecal	(Cottell et al., 2013; Poole et al., 2017)
		Asia	Faecal	(Tamang et al., 2013a)
CTX-M-55	E. coli	Europe	Sick	(Haenni et al., 2018; Lupo et al., 2018)
		France	Faecal	(Ceccarelli et al., 2019; Heuvelink et al., 2019)
		Spain	Faecal	(Hernández et al., 2017)
		North America	Faecal	
		Canada	Faecal	(Cormier et al., 2016)
		ND		(Cormier et al., 2019)
		Asia	Faecal	(Tamang et al., 2013a)
		China	Faecal	(Zheng et al., 2012, 2019)
		Mastitis	(Ali et al., 2016, 2017)	
		Hong Kong	Faecal	(Ho et al., 2011, 2013)
		Taiwan	Mastitis	(Su et al., 2016)
CTX-M-57	E. coli	Europe	Faecal	(Haenni et al., 2014)
CTX-M-61	E. coli	North America	Faecal	(Cormier et al., 2016)
CTX-M-63	K. pneumoniae	Asia	Faecal	(Koovapra et al., 2016)
		India	Mastitis	
CTX-M-65	E. coli	Europe	Faecal	(Ceccarelli et al., 2019; Heuvelink et al., 2019)
		Netherlands	Faecal	(Cormier et al., 2016)
		North America	Faecal	
		Canada	Faecal	(Cormier et al., 2016)
		ND		(Cormier et al., 2019)
		S. enterica	ND	(Tate et al., 2017)
CTX-M-79	E. coli	Europe	Faecal	(Hordijk et al., 2013c)
		Netherlands	Faecal	(Hordijk et al., 2013c)
		North America	Faecal	(Wittum et al., 2010)
		USA	Faecal	(Wittum et al., 2010)
CTX-M-98	E. coli	Asia	Faecal	(Ho et al., 2011)

(continued on next page)
Beta-lactamase	Enterobacteriaceae	Country	Source	Reference
CTX-M-115	*E. coli*	North America	Faecal	Cormier et al., 2016
CTX-M-117	*E. coli*	Europe	Faecal	(Hächler et al., 2013; Zurfluh et al., 2015)
CTX-M-123	*E. coli*	Asia	Faecal	Ho et al., 2015
CTX-M-132	*E. coli*	Asia	Faecal	Ho et al., 2015
CTX-M-172	*E. coli*	North America	Faecal	Cormier et al., 2016
CTX-M – without variant description	*E. coli*	Europe	Faecal	Wu et al., 2013
		France	Diarrheic	Valat et al., 2012
		Netherlands	Faecal	Wu et al., 2013
		United Kingdom	Faecal	Wu et al., 2013
		Switzerland	Faecal	Geser et al., 2011
		North America	Faecal	Awosile et al., 2018
		USA	Faecal	Davis et al., 2015
		Asia	Faecal	Yang et al., 2016
		Saudi Arabia	ND	Hassan et al., 2015
	K. pneumoniae	South America	Mastitis	Nobrega et al., 2013
		Asia	Mastitis	Das et al., 2017
	Salmonella sp	North America	Sick	Frye and Fedorka-Cray, 2007
SHV-2	*E. coli*	North America	Faecal	Cormier et al., 2016
SHV-5	*E. coli*	Europe	Faecal	Kurukbasmacı et al., 2008
		Turkey	Faecal	Kurukbasmacı et al., 2008
	C. freundii	Turkey	Faecal	Kurukbasmacı et al., 2008
	C. brakii	Turkey	Faecal	Kurukbasmacı et al., 2008
SHV-11	*E. coli*	Asia	Diarrheic	Ohnishi et al., 2013a
	K. pneumoniae	Japan	Diarrheic	Ohnishi et al., 2013a
SHV-12	*E. coli*	Europe	Sick	Michael et al., 2017
		Germany	Faecal	Haenni et al., 2014; Madec et al., 2008
		France	Faecal	Haenni et al., 2014; Madec et al., 2008
		Netherlands	Faecal	Cecarelli et al., 2019; Hordijk et al., 2013c
		Turkey	Faecal	Kurukbasmacı et al., 2008; Pehlivanoglu et al., 2016
	K. pneumoniae	Asia	Mastitis	Ali et al., 2016, 2017
		Egypt	Mastitis	Ahmed and Shimamoto, 2011

(continued on next page)
Beta-lactamase	Enterobacteriaceae	Country	Source	Reference
K. oxytoca	Egypt Mastitis	Ahmed and Shimamoto, 2011		
E. cloacae	Egypt Mastitis	Ahmed and Shimamoto, 2011		
SHV-28	Serratia marcescens	Egypt Mastitis	Ahmed and Shimamoto, 2011	
K. pneumoniae	Asia	India Mastitis	Koovapra et al., 2016	
SHV – without variant description	E. coli	Europe	Faecal	(Wu et al., 2015)
	Asia Faecal	(Borah et al., 2014)		
	Israel Faecal	(Kar et al., 2015)		
	K. pneumoniae	South America	Mastitis	Nobrega et al., 2013
Salmonella spp.	North America	USA Sick	Frye and Fedorka-Cray, 2007	
TEM-20	E. coli	Europe	Faecal	(Hordijk et al., 2013c)
TEM-24	K. ozaenae	Europe	Faecal	Stefani et al., 2014
TEM-52	E. coli	Europe	Faecal	(Wiener et al., 2011)
	Germany Faecal	Michael et al., 2017		
	France Diarrheic	Haenni et al., 2012		
	Netherlands Faecal	Cecarelli et al., 2019; Heuvelink et al., 2018; Hordijk et al., 2013a, b, c		
TEM-71	E. coli	Europe	Faecal	Hartmann et al., 2012
	France Diarrheic	Hartmann et al., 2012		
TEM-126	E. coli	Europe	Faecal	Madec et al., 2008
TEM-186	E. coli	Europe	Faecal	Geser et al., 2012a
TEM-190	E. coli	Europe	Faecal	Cecarelli et al., 2019
TEM – without variant description	E. coli	North America	USA Faecal	Donaldson et al., 2006; Mir et al., 2016
	Asia	(Borah et al., 2014)		
	Thailand Mastitis	Hinthong et al., 2017		
	Africa	Egypt Faecal	Braun et al., 2016	
OXA-10	E. coli	Europe	Faecal	Kurkbasnaci et al., 2008
	C. freundii	Kurkbasnaci et al., 2008		
	C. braakii	Kurkbasnaci et al., 2008		
OXA-30	K. oxytoca	Africa	Mastitis	Ahmed and Shimamoto, 2011
	Egypt Mastitis	Ahmed and Shimamoto, 2011		
ESBL producers - without beta-lactamase description (ND-ESBL)	E. coli	South America	Brazil Mastitis	Santos, 2006
	Chile Mastitis	Gonzalez, 2006		
	Peru Faecal	Mendoza, 2017		
	Europe	Germany Faecal	Friese et al., 2013	
	Spain Faecal	Britas et al., 2005		
	Países de Gales	ND	Teale et al., 2005	
	Netherlands Faecal	Goeppgrijp et al., 2016		
	Switzerland Faecal	Reint et al., 2013		
	North America			

(continued on next page)
Table 1 (continued)

Beta-lactamase	Enterobacteriaceae	Country	Source	Reference
Canada	Faecal		Lussier, 2010	
Asia				
Iran	Faecal	Barzan et al., 2017		
Thailand	Mastitis	Hinthong et al., 2017		
Africa				
Nigeria	Faecal	Ogefere et al., 2017		
Tanzania	Faecal	Mkala and Azizi, 2017		
E. pneumoniae	Asia			
Israel	Faecal	Adler et al., 2015		
Klebsiella spp.	Africa			
Nigeria	Faecal	Ogefere et al., 2017		
Salmonella spp.	Nigeria	Ogefere et al., 2017		
C. youngae	Europe			
Switzerland	Faecal	Reist et al., 2013		
E. cloacae	South America			
Peru	Faecal	Mendoza, 2017		
Europe				
Switzerland	Faecal	Reist et al., 2013		
Proteus mirabilis	Africa			
Nigeria	Faecal	Ogefere et al., 2017		
Proteus vulgaris	Nigeria	Ogefere et al., 2017		
Providencia spp.	Nigeria	Ogefere et al., 2017		
Shigella spp.	Nigeria	Ogefere et al., 2017		

Source: ND – Not described isolate source.

Figure 2. Illustrative map of Europe showing countries with description of E-ESBL in cattle and beta-lactamas type.
2014; Dia et al., 2016; Fam et al., 2011; Hasan et al., 2016; Hernández et al., 2012; Liao et al., 2017; Poirel et al., 2013; Ruiz et al., 2011; Sidjabat et al., 2010).

The virulent and multi-resistant CTX-M-15-producing E. coli O25b-ST131 clone is certainly one of the most well adapted circulant clones among E-ESBL, which is responsible for outbreaks and deaths around the world and is not related only to infectious processes, but is also reported in human intestinal colonization (elderly, adults and children) and animals (terrestrial and aquatic) and environmental contamination (Badran et al., 2016; Brahmi et al., 2015; Dolejska et al., 2011a; Ewers et al., 2010; Gonçalves et al., 2016; Namaei et al., 2017; Naseer et al., 2007; Olesen et al., 2013; Oteo et al., 2009; Owens et al., 2011; Zhong et al., 2015).

3. Europe

Europe is the continent with more number of countries (n = 16) with description of E-ESBL in cattle, Figure 2 shows all countries. Belgium, Czech Republic, Denmark, Finland, France, Germany, Hungary, Italy, Netherlands, Portugal, Slovakia, Spain, Sweden, Switzerland, Turkey and United Kingdom, presented at least one report of E-ESBL in cattle (Aslantaş et al., 2017; Briñas et al., 2005; Dolejska et al., 2011b; Duse et al., 2015; Hordijk et al., 2013c; Hunter et al., 2010; Kjeldsen et al., 2015; Kmet and Bujňáková, 2018; Michael et al., 2017; Páivärinta et al., 2016; Pardon et al., 2017; Ramos et al., 2013; Stefáni et al., 2014; Toth et al., 2013; Valat et al., 2016; Zurfluh et al., 2015). CTX-M-1 was described in 14 of the 16 countries with E-ESBL in cattle, CTX-M-15 present in 7, CTX-M-14 in 6 and CTX-M-3 and SHV-12 in 5 (Aslantaş et al., 2017; Briñas et al., 2005; Dolejska et al., 2011b; Duse et al., 2015; Gay et al., 2018; Haenni et al., 2014; Hordijk et al., 2013b; Hordijk et al., 2013c; Hunter et al., 2010; Kjeldsen et al., 2015; Kmet and Bujňáková, 2018; Michael et al., 2017; Páivärinta et al., 2016; Pardon et al., 2017; Pehlivanoglu et al., 2016; Ramos et al., 2013; Timofte et al., 2014; Toth et al., 2013; Valat et al., 2016; Zurfluh et al., 2015).

Germany presented the description of CTX-M-1, CTX-M-1/61, CTX-M-2, CTX-M-3, CTX-M-14, CTX-M-15, CTX-M without the variant description (CTX-M), SHV-12, TEM-52 and E-ESBL without the description or detection of beta-lactamase (ND-ESBL) described in E. coli and Salmonella enterica from faecal and clinical samples (Dahms et al., 2015; Friese et al., 2013; Michael et al., 2017; Wieler et al., 2011; Wu et al., 2013). CTX-M-1, CTX-M-3, CTX-M-14, CTX-M-15 and SHV-12 have already been reported in E-ESBL in humans in Germany associated with infections (Gerhold et al., 2016; Mshana et al., 2009; Schmitt et al., 2007).

The Netherlands, German neighbours, also presented high diversity and number of reports of E-ESBL in cattle. There were identified CTX-M-1, CTX-M-2, CTX-M-2/97, CTX-M-8, CTX-M-9, CTX-M-14, CTX-M-15, CTX-M-22, CTX-M-32, CTX-M-55, CTX-M-65, CTX-M-79, CTX-M, SHV-12, SHV without description of variant (SHV), TEM-20, TEM-52, TEM-190 and ND-ESBL, all of them described in faecal E. coli. CTX-M-1, CTX-M-2, CTX-M-14, CTX-M-15, SHV-12 and TEM-52 have already been described in E-ESBL of human (faecal and hospital) origin in the Netherlands (Naïemi et al., 2006; Overdevest et al., 2011).

The biggest European cattle producer, France, including 2 French departments in Africa (Mayotte and Réunion) has reported E-ESBL in cattle with CTX-M-1, CTX-M-3, CTX-M-14, CTX-M-15, CTX-M-32, CTX-M, SHV-12, TEM-52, TEM-71 and TEM-126 reported in E. coli and K. pneumoniae of faecal and clinical origin. All of the described beta-lactamases (CTX-M-1, CTX-M-3, CTX-M-14, CTX-M-15, CTX-M-32, CTX-M-57, CTX-M-57, CTX-M, SHV-12, TEM-52, TEM-71 and TEM-126) in cattle have been reported in E-ESBL from humans of hospital origin in France (De Champs et al., 2004; Robin et al., 2017).

The United Kingdom was the European country with the highest number of reported CTX-M variants. The CTX-M-1, CTX-M-3, CTX-M-14, CTX-M-15, CTX-M-15/28, CTX-M-17/18, CTX-M-20, CTX-M-32, CTX-M, SHV-12 and ND-ESBL were reported in E-ESBL in cattle. E. coli and K. pneumoniae were the species that harbour the genes and these are of...
faecal and clinical origin. CTX-M-3, CTX-M-14, CTX-M-15, CTX-M-17/18 and SHV-12 have already been described in humans in E-ESBLs (Batchelor et al., 2005; Doumith et al., 2012).

Switzerland presented E-ESBL in cattle with CTX-M-1, CTX-M-14, CTX-M-15, CTX-M-117, CTX-M, TEM-186 and ND-ESBL (Geser et al., 2011, 2012a; Reist et al., 2013; Zurfluh et al., 2015). They were reported in 3 species: *E. coli*, *C. youngae* and *E. cloacae*. All reports were of faecal origin, with the exception of 1 case of mastitis (CTX-M-14) (Geser et al., 2012a). E-ESBL of human origin have been reported to harbour CTX-M-1, CTX-M-15 and TEM-24 in Switzerland (Geser et al., 2012b).

CTX-M-1, CTX-M-15 and TEM-24 were described in E-ESBL in cattle in Italy. Reported in *K. pneumoniae* (mastitis) and *K. ozaenae* (faecal carriage). The three types of ESBL described in cattle, CTX-M-1, CTX-M-15 and TEM-24, have also been described in human clinical isolates (Mugnaioli et al., 2006; Perilli et al., 2011).

Turkey is the second largest cattle producer in Europe and presented E-ESBL in cattle with CTX-M-1, CTX-M-3, CTX-M-15, SHV-5, SHV-12 and OXA-10 in *E. coli*, *C. freundii* and *C. brakii* of faecal origin (Aslantaş et al., 2017; Kucukbasmaci et al., 2008; Pehlivanoglu et al., 2016). CTX-M-1, CTX-M-3, CTX-M-15, SHV-5 and SHV-12 were reported in human clinical isolates in Turkish hospitals (Gur et al., 2008; Tasli and Bahar, 2005).

The Nordic countries have few reports and diversity of beta-lactamases, with E-ESBL in cattle harbouring CTX-M-1 in Denmark and Finland and CTX-M-1 and CTX-M-15 in Sweden all in *E. coli* and of intestinal origin (Duse et al., 2015; Kjeldsen et al., 2015; Päivärinta et al., 2016). When analysed the description in E-ESBL of human origin, CTX-M-1 has been described in Denmark, Finland and Sweden and CTX-M-15 in Sweden (Brolund et al., 2014; Forssten et al., 2010; Jakobsen et al., 2015).

In the Iberian Peninsula, Spain and Portugal also presented E-ESBL in cattle, with descriptions on Spain of CTX-M-1, CTX-M-55 and ND-ESBL and in Portugal of CTX-M-1 and CTX-M-32 (Brinas et al., 2005; Hernandez et al., 2017; Ramos et al., 2013). The descriptions in both countries were in *E. coli*, but in Spain they were of faecal and clinical

![Figure 4. Map of South America illustrating the countries with description of E-ESBL in cattle and the diversity of beta-lactamases presented.](image-url)

J. Dantas Palmeira, H.M.N. Ferreira Heliyon 6 (2020) e03206
origin and in Portugal only faecal. CTX-M-1 has already been described in E-ESBL in human in Spain and CTX-M-1 and CTX-M-32 in Portugal (Fernandes et al., 2014; Novais et al., 2007). CTX-M-1 was described in Hungary, Czech Republic and Slovakia and CTX-M-14 in Belgium in E-ESBL in cattle. All in E. coli and with faecal and clinical origins (Dolejska et al., 2013; Kmet and Bujnáková, 2018; Pardon et al., 2017; Toth et al., 2013). In E-ESBL of human origin, CTX-M-1 has already been reported in Hungary, Czech Republic and CTX-M-14 in Belgium (Dolejska et al., 2013; Ebrahimi, 2016; Rodriguez-Villalobos et al., 2011).

4. North America

In North America only 2 countries registered E-ESBL description in cattle, Canada and the United States, the last one being the world’s largest cattle producer (USDA et al., 2017). CTX-M-15, CTX-M-32 and CTX-M-65 were the only beta-lactamases described in both countries, the Figure 3 shows the complete described ESBL from cattle in the North America (Cormier et al., 2016; Mir et al., 2016; Poole et al., 2017; Tate et al., 2017; Wittum et al., 2010). CTX-M-1, CTX-M-14, CTX-M-15 and CTX-M-65 were reported in E-ESBL isolates from humans (Chen et al., 2014; Li et al., 2015; Tate et al., 2017; Wang et al., 2013).

CTX-M-1, CTX-M-2, CTX-M-14, CTX-M-15, CTX-M-24, CTX-M-27, CTX-M-32, CTX-M-55, CTX-M-65, CTX-M-115, CTX-M-172, CTX-M, SHV-2 and ND-ESBL were described in E-ESBL in cattle in Canada, which was the country where the largest variety of CTX-M’s types were described (Awosile et al., 2018; Cormier et al., 2016; Lussier, 2010). All E-ESBLs were E. coli of faecal origin. In E-ESBL of human origin in Canada were detected similarly to cattle the CTX-M-2, CTX-M-15, CTX-M-24, CTX-M-27, CTX-M-55 and SHV-2 (Denisuil et al., 2013, 2015; Peirano et al., 2010; Pitout et al., 2008).

5. South America

In South America E-ESBL is still poorly described, being few and incomplete, from the molecular point of view, the reports of E-ESBL in cattle in the countries of this continent. Only Brazil, Chile and Peru present reports of E-ESBL in cattle. Figure 4 shows what E-ESBL has already been described in these countries.
Brazil is the world’s second largest cattle producer and the world’s second largest exporter of cattle (USDA et al., 2017). The presence of E-ESBL in cattle with CTX-M-2, CTX-M-15, CTX-M, SHV and ND-ESBL has already been described in the country (Nóbrega et al., 2013; Palmeira et al., 2018; Santos, 2006; Sartori et al., 2017). Originated from mastitis or with faecal origin in E. coli and K. pneumoniae. There are several reports in human clinical E-ESBL of CTX-M-2, CTX-M-15, CTX-M and SHV in Brazil (Sampaio and Gales, 2016).

Chile and Peru describe the presence of E-ESBL, but not described the enzymes responsible for ESBL phenotype. These reports were in E. coli in mastitis in Chile and in E. coli and E. cloacae of faecal origin in Peru (Gonzalez, 2006; Mendoza, 2017). Both countries have reports of E-ESBL in humans (Colquechagua Aliaga et al., 2015; Hernandez et al., 2013).

6. Asia

The second continent with the highest number of countries reporting E-ESBL in cattle is Asia, which shows description of E-ESBL in 13 countries (China, Hong Kong, India, Indonesia, Iran, Israel, Japan, Lebanon, Malaysia, Saudi Arabia, South Korea, Thailand and Taiwan), highlighting China and India which are the fourth and fifth largest cattle producers in the world (Adler et al., 2015; Ali et al., 2017; Barzan et al., 2017; Diab et al., 2016; Hassan et al., 2015; Hinthong et al., 2017; Ho et al., 2015; Kamaruzzaman, 2015; Koovapra et al., 2016; Ohnishi et al., 2013a; Su et al., 2016; Sudarwanto et al., 2016; Tark et al., 2017). They have different roles in the import and export scenario, as India is the world’s largest exporter of cattle and China the largest importer, since its internal production is not sufficient for internal consumption (USDA et al., 2017). Figure 5 shows the countries and the diversity of beta-lactamases found in each of them.

China presents a description of E-ESBL in cattle harbouring CTX-M-1, CTX-M-2, CTX-M-14, CTX-M-15, CTX-M-17, CTX-M-28, CTX-M-55, CTX-M-65, CTX-M-88, CTX-M-98, CTX-M-102, CTX-M-103, CTX-M-123, CTX-M and SHV-12. All descriptions were in E. coli and faecal origin and mastitis (Ali et al., 2017; Yang et al., 2018; Zheng et al., 2019). CTX-M-3, CTX-M-14, CTX-M-15, CTX-M-55 and SHV-12 were described isolated from E-ESBL of human origin in China (Hu et al., 2013; Tian et al., 2012).

In India CTX-M-15, CTX-M-63, CTX-M, SHV-180, SHV and TEM in E-ESBL from cattle have already been described. Faecal origin and mastitis, being detected in E. coli and K. pneumoniae (Borah et al., 2014; Das et al., 2017; Koovapra et al., 2016). The presence of CTX-M-15 and SHV in E-ESBL in India has been reported in humans (Hawkey, 2008).

Japan and South Korea, the 3rd and 4th largest world importers of cattle, presented E-ESBL in cattle, respectively, with CTX-M-1, CTX-M-2, CTX-M-14, CTX-M-15 and SHV-11 and CTX-M-1, CTX-M-3, CTX-M-14, CTX-M-15, CTX-M-32, and CTX-M. These were detected in faecal E-ESBL and clinical in the animals and in Japan in E. coli, K. pneumonia, K. oxytoca, C. freundii, C. koseri, E. cloacae and E. aerogenes and in South...
Korea only in E. coli (Ohnishi et al., 2013a, b; Shiraki et al., 2004; Tamang et al., 2013a, b; Tark et al., 2017). In Japan CTX-M-14, CTX-M-15 and SHV-11 have been described in E-ESBL of human origin (Kuroda et al., 2012; Saito et al., 2014). The CTX-M-3, CTX-M-14, CTX-M-15 and CTX-M-32 beta-lactamases have already been described in E-ESBL of human origin in South Korea (Lee et al., 2009).

Hong Kong and Taiwan presented an E-ESBL profile in cattle only with reports of beta-lactamases of the CTX-M type. Hong Kong with CTX-M-3, CTX-M-14, CTX-M-28, CTX-M-55, CTX-M-98, CTX-M-123, CTX-M-132 and CTX-M (Duan et al., 2006; Ho et al., 2011, 2013, 2015). Taiwan already has CTX-M-14, CTX-M-15 and CTX-M-55 (Su et al., 2016). All in E. coli of faecal origin and mastitis. In Hong Kong the E-ESBL description of human origin has been reported well for CTX-M-14 and in Taiwan for CTX-M-14 and CTX-M-15 (Yan et al., 2006; Yeung, 2011).

Indonesia, Malaysia, and Thailand reported E-ESBL in cattle, respectively, for CTX-M-1 and CTX-M-9; CTX-M; and TEM and ND-ESBL. All in E. coli of origin in mastitis or faecal (Hinthong et al., 2017; Kamaruzaman, 2015; Sudarwanto et al., 2016). In humans, reports of E-ESBL have been described for CTX-M-1 in Indonesia, CTX-M in Malaysia and ND-ESBL in Thailand (Bagus Wasito et al., 2017; Ho et al., 2012; Kiratesis et al., 2008).

In the Middle East region there is a description of E-ESBL in cattle in Saudi Arabia (CTX-M), Iran (ND-ESBL), Israel (CTX-M-15, CTX-M, SHV and ND-ESBL) and in Lebanon (CTX-M-15). They were identified in E. coli and K. pneumoniae in faecal samples (Adler et al., 2015; Barzan et al., 2017; Diab et al., 2016; Hassan et al., 2015; Lifshitz et al., 2018). All E-ESBL profiles in cattle described above in these countries are also found described in humans (Bazzaz et al., 2009; Chmelitsky et al., 2005; Hassan and Abdalhamid, 2014; Moubareck et al., 2005).

7. Africa

In Africa, only 6 countries presented reports of E-ESBL in cattle. They were Egypt, Madagascar, Nigeria, South Africa, Tanzania and Tunisia (Braun et al., 2016; Gay et al., 2018; Iweriebor et al., 2015; Mkala and Azizi, 2017; Olowe et al., 2015; Saidani et al., 2018; Seni et al., 2016). There are not numerous nor descriptive reports on this continent. They are also not very prominent countries within the world economic cattle cycle, highlighting only Egypt which is the 8th biggest importer of cattle in the world (USDA et al., 2017). Figure 6 shows the countries with E-ESBL reported in cattle and what beta-lactamase type has been described in them.

In Egypt E-ESBL was described in cattle harbouring CTX-M-9, CTX-M-15, SHV-12, SHV-28, TEM and OXA-30. Described in E. coli, K. pneumoniae, K. oxytoca, E. cloacae and S. marcescens of faecal origin and mastitis (Ahmed and Shimamoto, 2011; Braun et al., 2016). There are reports in human E-ESBL also with CTX-M-9, CTX-M-15 and SHV-12 (Fam et al., 2011; Hamdy Mohammed et al., 2016; Newire et al., 2013).

South Africa (CTX-M), Madagascar (CTX-M-15), Nigeria (CTX-M and ND-ESBL), Tanzania (CTX-M-15) and Tunisia (CTX-M-15) also presented reports of E-ESBL in cattle. The reports were E. coli, Klebsiella sp, Salmonella sp, P. mirabilis, P. vulgaris, Providencia sp e Shigella spp (Gay et al., 2018; Iweriebor et al., 2015; Ogefere et al., 2017; Olowe et al., 2015; Saidani et al., 2018; Seni et al., 2016). In all countries the origin was faecal (except Tunisia, with mastitis also). All types of descriptions presented in these 5 countries for E-ESBL in cattle also present reports in humans (Abbassi et al., 2008; Iroha et al., 2012; Manyahi et al., 2017; Ouedraogo et al., 2016).
8. Oceania

In Oceania as one might imagine, due to its size and number of countries, there exist few reports of E-ESBL in cattle production. The only country with reports is Australia, which is the 6th largest world producer country and the 3rd biggest exporter (USDA et al., 2017). Figure 7 shows the countries with the E-ESBL description in cattle and what ESBL type has been described in them.

Australia presented a description of CTX-M-9 and CTX-M-14 in E-ESBL in cattle. The description was carried out in clinical isolated and in E. coli and in S. enterica (Abraham et al., 2015; Sparham et al., 2017). Both variants, CTX-M-9 and CTX-M-14, have already been described in human clinical isolates in Australia (Zong et al., 2008).

9. Conclusion

E-ESBL are a threat to human health and are now scattered around the world in intestinal colonization and clinical processes of cattle in Europe, the Americas, Asia, Africa and Oceania. These are described in 6 of the 7 major world cattle producers and certainly these E-ESBLs are contributing to the circulation of these and the ESBL genes through the ecosystems. A circulation that does not only concern the internal level of each country, since the circulation trade of cattle and their derivatives between countries is increasing, with E-ESBL being found in the animals of the world’s 5 largest meat exporters.

Further studies in the various areas of each country, as well as in other countries without data, are necessary for a better understanding of the presence and circulation of these E-ESBL through cattle and the food chain to assist in the implementation of measures to help in the surveillance and control of the E-ESBL dissemination and propagation.

Declarations

Author contribution statement

Josman Dantas Palmeira, Helena Maria Neto Ferreira: Analyzed and interpreted the data; Wrote the paper.

Funding statement

This work was supported by a scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Abraham, S., Jordan, D., Wong, H.S., Johnson, J.R., Toleman, M.A., Wakeham, D.L., Gordon, D.M., Turnidge, J.D., Mollinger, J.L., Gibson, J.S., Trotter, D.J., 2015. First detection of extended-spectrum-lactamase-producing Escherichia coli in Australian food-producing animals. J. Glob. Antimicrob. Resist. 3, 273–277.

Adeloju, M., Alhajer, S., Naushad, S., R.S.G., 2016. Genome-based phylogeny and taxonomy of the Enterobacteriaceae: proposal for Enterobacteriales ord. nov. into the families Enterobacteriaceae, Erwiniae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Magonellaceae fam. nov., and Huviiticae fam. nov. Int. J. Syst. Evol. Microbiol. 66, 5375–5399.

Adler, A., Stursle, N.A., Falkhå, N., Zilberman-Bazillii, D., Hunein, O., Blum, S.E., Klement, E., Schwaber, M.J., Carmeli, V., 2015. Prevalence, risk factors, and transmission dynamics of extended-spectrum-β-lactamase-producing enterobacteriaceae: a national survey of cattle farms in Israel in 2013. J. Clin. Microbiol. 53, 3515–3521.

Afema, J.A., Ahmed, S., Beser, T.E., Jones, L.P., Sitcho, W.M., Davis, M.A., 2018. Molecular epidemiology of dairy cattle-associated Escherichia coli carrying blacaCTX-M genes in Washington state. Appl. Environ. Microbiol. 84.

Ahmed, A.M., Shimamoto, T., 2011. Molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Egypt. Microbiol. Immunol. 55, 318–327.

Alexandrovos, N., Brunissen, J., 2012. World agriculture towards 2030/2050 - the 2012 revision. In: Global Perspective Studies Team. Food and Agriculture Organization of the United Nations.

Ali, T., ur Rahman, S., Zhang, L., Shahid, M., Zhang, S., Liu, G., Gao, J., Han, B., 2016. ESB-producing Escherichia coli from cows suffering mastitis in China contain clinical class I integrons with CTX-M linked to ISCR1. Front. Microbiol. 7.

Ali, T., Rahman, S.U., Zhang, L., Shahid, M., Han, D., Gao, J., Zhang, S., Riehl, P.L., Siddique, U., Han, B., 2017. Characteristics and genetic diversity of multi-drug resistant extended-spectrum-lactamase producing Escherichia coli isolated from bovine mastitis. Oncotarget 8, 9014–90163.

Asai, T., Masani, K., Sato, C., Hiki, M., Usui, M., Baba, K., Ozawa, M., Harada, K., Aoki, H., Savada, T., 2011. Phylogenetic groups and cephalosporin resistance genes of Escherichia coli from diseased food-producing animals in Japan. Acta Vet. Scand. 53, 52.

Aslanç, O., ElmaciGül, S., Yilmaz, E.S., 2017. Prevalence and characterization of ESBL- and AmpC-producing Escherichia coli from cattle. Kafkas Universities Veteriner Fakultesi Dergisi 23, 63–67.

Awouisle, B., McClure, J., Rodriguez-Lecompte, J.C., Keefe, G., Heider, L.C., 2018. Salmonella enterica and extended-spectrum cephalosporin-resistant Escherichia coli recovered from Holstein dairy calves from 8 farms in New Brunswick, Canada. J. Dairy Sci. 101, 3271–3284.

Badran, E.F., Qamer Din, R.A., Shehabi, A.A., 2016. Low intestinal colonization of Escherichia coli clone ST313 producing CTX-M-15 in Jordanian infants. J. Med. Microbiol. 65, 137–141.

Bagus Wastowo, E., Shimazu, K., Ozawa, K., Farahah, A., Kanaida, A., Raharjo, D., Kuntanian, K., Hadi, U., Harjisono, S., Martu Sudarmo, S., Nakamura, T., Sibhayama, K., Fujisawa, M., Shirakawa, T., 2017. Antibiotic susceptibilities and genetic characteristics of extended-spectrum beta-lactamase-producing Escherichia coli isolates from stools of pediatric diabetes patients in Surabaya, Indonesia. Jpn. J. Infect. Dis. 70, 378–382.

Bandopadhyay, S., Samanta, I., B Chattacharya, D., Nanda, P.K., Kar, D., Chowdhury, J., Dandapat, P., Das, A.K., Batal, N., Mondal, B., Dutta, T.K., Das, G., Das, B.C., 2013. Limited similarity between plasmids carrying CTX-M-15- lactamase in Escherichia coli and Klebsiella pneumoniae from a Korean hospital. Diagn. Microbiol. Infect. Dis. 70, 1020.

Batchelor, M., Hopkins, K., Threlfall, E.J., Batchelor, M., Hopkins, K., Threlfall, E.J., Clifton-Hadley, F.A., Stallwood, A.D., 2005. Monitoring and characterization of extended-spectrum β-lactamase E. coli and Klebsiella pneumoniae among clinical isolates from a general hospital in England and Wales from 1992 to 2003. Antimicrob. Agents Chemother. 49, 1319–1324.

Barzan, M., Gharibi, D., Ghorbanpoor, M., Haji Hajikolaei, M., Pourmehdi-Boroujeni, M., 2017. Phylogenetic grouping and phenotypic detection of extended-spectrum β-lactamases among Escherichia coli from calves and dairy cows in Khuzistan, Iran. Int. J. Enteric. Pathog. 5, 24–29.

Batechol, M., Hopkins, K., Threlfall, E.J., Clifton-Hadley, F.A., Stalwood, A.D., Davies, R.H., Liebana, E., 2005. blaCTX-M genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob. Agents Chemother. 49, 1319–1322.

Bazaran, B.S., Naderinasab, M., Mohamadpoor, A.H., Farshadzadeh, Z., Ahmadi, S., 2015. Characterisation of CTX-M-117, a Pro174Gln variant of CTX-M-15 ß-lactamase in Escherichia coli from a bovine mastitis isolate. Int. J. Antimicrob. Agents 41, 94–95.

Brahmi, S., Danyach-Remy, C., Touati, A., Alavie, J.P., 2015. CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae from bovine animals, Europe. Emerg. Infect. Dis. 22, 1650–1652.

Briañas, L., Moreno, M.A., Teshager, T., Saenz, Y., Porrocco, M.C., Domínguez, L., Torres, C., 2005. Monitoring and characterization of extended-spectrum-β-lactamases in...
Escherichia coli strains from healthy and sick animals in Spain in 2003. Antimicrob. Agents Chemother. 49, 1262–1264.

Broumand, A., Edged, J.P., Wens P., B. Olsson-Liljequist, B., Söderblom, T., Wesl, K.T., Giske, C.G., 2014. Epidemiology of extended-spectrum β-lactamase-producing Escherichia coli in Sweden 2007–2011. Clin. Microbiol. Infect. 20, 0344–0352.

Cant, R., Nosui, A., Valverde, A., Machado, E., Peixe, L., Baquero, F., Cotter, M., 2008. Prevalence of extended-spectrum β-lactamase-producing enterobacteriaceae in Europe. Clin. Microbiol. Infect. 14, 144–153.

Cant, R., Gonzalez-Alma, J.M., Galan, J.C., 2012.CTX-M enzymes: origin and diffusion. Microbiol. 3, 110.

Cant, R., Cotter, M., 2006. The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol. 9, 466–475.

CDD, C.C.D.C.P., 2013. Antibiotic Resistance Threats in United States in 2013. U. S. Department of Health and Human Services.

Cecarelli, D., Kant, A., van Esen-Zandenbergs, A., Dieriek, C., Hardijk, J., Wit, B., Mevius, D.J., Veldman, K.T., 2019. Diversity of plasmids and genes encoding resistance to extended spectrum cephalosporin in commensal Escherichia coli from Dutch livestock in 2007. Front. Microbiol. 10, 733.

Chanawong, A., M’Sial, F.H., Heritage, J., Xiong, J.-H., Hawkey, P.M., 2002. Three extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of sequence and molecular epidemiology of IncK epidemic plasmid encoding bla(CTX-M-14). Emerg. Infect. Dis. 17, 645–652.

Clermont, O., Lavollay, M., Vimont, S., Deschamps, C., Forestier, C., Branger, C., Cant, O., Chmelnitsky, I., Carmeli, Y., Leavitt, A., Schwaber, M.J., Navon-Venezia, S., 2005. CTX-M-15-producing Escherichia coli clone B2-G55-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. Antimicrob. Agents Chemother. 49, 2784–2790.

Cotter, M., Jurickova, Z., Literik, I., Pokluda, L., Bures, J., Hera, A., Kourohova, L., Smola, J., Cizk, A., 2011b. IncN plasmids carrying blaCTX-M-1 in Escherichia coli isolated from residents of a dairy. Vet. Microbiol. 149, 513–516.

Cotter, M., Villa, L., Hansen, H., Larsen, L., Carstensen, A., 2011. Characterization of IncN plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli and Salmonella from animals, the environment and humans. J. Antimicrob. Chemother. 68, 1163–1169.

Cotter, M., Coenen, D.C., Slavta, B.A., Hegdahl, L., Sawin, J.R., Weiskel, C., Jayarao, B.M., 2000. Molecular epidemiology of ceftiofur-resistant Escherichia coli isolates from animals in the southeastern United States. Antimicrob. Agents Chemother. 44, 4745–4750.

Cotter, J.J., Wall, M., Vliegenthart, R., Fouad, S., Aboul-Fadl, L., Marcon, E., Desouky, D., El-Le. (Accessed 21 October 2017).

Cotter, J.J., Kooli, A., Arison, A., Kooli, A., Van-Genne, P., 2013. Characterization of the extended-spectrum beta-lactamase-producing Escherichia coli clone from animals, the environment and humans. J. Antimicrob. Chemother. 68, 333–339.

Cotter, J.J., Kooli, A., Arison, A., Kooli, A., Van-Genne, P., 2013. Characterization of the extended-spectrum beta-lactamase-producing Escherichia coli clone from animals, the environment and humans. J. Antimicrob. Chemother. 68, 333–339.

Cotter, J.J., Kooli, A., Arison, A., Kooli, A., Van-Genne, P., 2013. Characterization of the extended-spectrum beta-lactamase-producing Escherichia coli clone from animals, the environment and humans. J. Antimicrob. Chemother. 68, 333–339.

Cotter, J.J., Kooli, A., Arison, A., Kooli, A., Van-Genne, P., 2013. Characterization of the extended-spectrum beta-lactamase-producing Escherichia coli clone from animals, the environment and humans. J. Antimicrob. Chemother. 68, 333–339.

Cotter, J.J., Kooli, A., Arison, A., Kooli, A., Van-Genne, P., 2013. Characterization of the extended-spectrum beta-lactamase-producing Escherichia coli clone from animals, the environment and humans. J. Antimicrob. Chemother. 68, 333–339.

Cotter, J.J., Kooli, A., Arison, A., Kooli, A., Van-Genne, P., 2013. Characterization of the extended-spectrum beta-lactamase-producing Escherichia coli clone from animals, the environment and humans. J. Antimicrob. Chemother. 68, 333–339.

Cotter, J.J., Kooli, A., Arison, A., Kooli, A., Van-Genne, P., 2013. Characterization of the extended-spectrum beta-lactamase-producing Escherichia coli clone from animals, the environment and humans. J. Antimicrob. Chemother. 68, 333–339.
Hänni, M., Saras, E., Gur, D., Gulay, Z., Akan, O.A., Aktas, Z., Kayacan, C.B., Cakici, O., Erac, B., Gultekin, M., J. Dantas Palmeira, H.M.N. Ferreira Heliyon 6 (2020) e03206

Grami, R., Dahmen, S., Mansour, W., Mehri, W., Hänni, M., Aouni, M., Madec, J.Y., Heuvelink, A.E., Gonggrijp, M.A., Buter, R.G.J., ter Bogt-Kappert, C.C., van Schaik, G., Gonzalez, C.M.A., 2006. Susceptibilidad microbiana: Un test rapido para el analisis de Grami, R., Dahmen, S., Mansour, W., Mehri, W., Hänni, M., Aouni, M., Madec, J.Y., Heuvelink, A.E., Gonggrijp, M.A., Buter, R.G.J., ter Bogt-Kappert, C.C., van Schaik, G., Gonzalez, C.M.A., 2006. Susceptibilidad microbiana: Un test rapido para el analisis de...
spread of community- and hospital-acquired extended-spectrum beta-lactamase (CTX-M-15)-producing Enterobacteriaceae in Lebanon. J. Clin. Microbiol. 43, 683-686.

Mishna, S.E., Imirzalioglu, C., Hossain, H., Hain, T., Domann, E., Chakraborty, T., 2009. Conjugative IncF plasmids carrying CTX-M-15 among Escherichia coli ESBL producing isolates at a University hospital in Germany. BMC Infect. Dis. 9, 57. MGandou, Luzzaro, F., De Luca, F., Brigantini, M., Amicosante, G., Stefani, S., Tonio, A., Rossolini, G.M., 2006. CTX-M-type extended-spectrum β-lactamases in Italy: molecular epidemiology of an emerging countrywide problem. Antimicrob. Agents Chemother. 50, 6310-6316.

Nairns, N., Bart, A., de Jong, M.D., Vandenbergh, C.M., Rietra, P.J.G.M., 2017. First report of prevalence of CTX-M-15-producing Escherichia coli O25b-ST131 from Iran. Microb. Drug Resist. 23, 879-884.

Nairns, N., Nakh, O.B., Haldorson, B.C., Bae, B., Grundi, H., Walsh, T.R., Sundsfjord, A., 2007. Nosocomial outbreak of CTX-M-15-producing E. coli in Norway. PNAS 114, 120-126.

Newirth, E.A., Gupte, S., House, B., Valiente, E., Pimentel, G., 2013. Detection of new SHV-12, SHV-5 and SHV-2a variants of extended-spectrum β-lactamase in Klebsiella pneumoniae in Egypt. Ann. Clin. Microbiol. Antimicrob. 12, 16.

Nobre, A.B., D’agostino, M.S., Guimarães, F.F., Riboli, D.F., Cunha, M.L.R.S., Vandenbergh, C.M., Rietra, P.J.G.M., 2016. Molecular epidemiology and extended-spectrum β–lactamase-producing Klebsiella pneumoniae isolated from cases of bovine mastitis. J. Clin. Microbiol. 54, 6039-6044.
15 and CTX-M-14 among extended-spectrum β-lactamase-producing Escherichia coli isolates from Canada. Antimicrob. Agents Chemother. 54, 1327–1330.

Peirano, G., van Gruenemen, C.H., Pitout, J.D.D. 2011. Characterization of infections caused by extended-spectrum beta-lactamase-producing Escherichia coli from community hospitals in South Africa. Diagn. Microbiol. Infect. Dis. 69, 449–453.

Perilli, M., Segatore, B., Mugnaioli, C., Celenza, G., Rosoloni, G.M., Stefani, S., Ludoviti, L.A., Pini, A., Pellacani, G., 2011. TEM-52/TEM-53 and SHV-12 extended-spectrum beta-lactamases in clinical isolates of Enterobacteriaceae in Italy. Microb. Drug Resist. 17, 521–524.

Pitout, J.D.D., Gregory, D.R., Church, D.L., Elsayed, S., Laupland, K.B., 2005. Community-wide outbreaks of closely related CTX-M-14 beta-lactamase-producing Escherichia coli strains in the calgary health region. J. Clin. Microbiol. 43, 2844–2849.

Pitout, J.D.D., Le, P., Church, D.L., Gregson, D.B., Laupland, K.B., 2008. Antimicrobial susceptibility of wetfed and multirresistant CTX-M-producing Escherichia coli: failure of automated systems to detect resistance to piperacillin/tazobactam. Int. J. Antimicrob. Agents. Agents 32, 333–338.

Poirel, L., Nordmann, P., Ducroz, S., Boulouis, H.-J., Arnoult, G., 2014. First report of KPC-2 carbapenemase-producing Klebsiella pneumoniae in Brazil: focus on 2-lactams and polymyxins. Braz. J. Microbiol. 47, 2372–2375.

Poole, T.L., Callaway, T.R., Norman, K.N., Scott, H.M., Loneragan, G.H., Ison, S.A., Tate, H., Folster, J.P., Hsu, C.H., Chen, J., Hoffmann, M., Li, C., Morales, C., Tyson, G.H., Teale, C.J., Barker, L., Foster, A.P., Liebana, E., Batchelor, M., Livermore, D.M., 2017. Antimicrobial susceptibility and characterization of extended-spectrum beta-lactamase-producing Enterobacteriaceae in food-producing animals in Northern Ireland. New Microb. New Infect. 16, 91–99.

Smith, K.A., Williams, A.G., 2016. Production and management of cattle manure in the UK and implications for land application practice. Soil Use Manag. 32, 73–82.

Snow, L.C., Wearing, H., Beale, T., Cieza, J.D., Coldham, N.G., 2011. Investigation of the presence of ESBL-producing Escherichia coli in the North West and West Midlands areas of the UK in 2007 to 2008 using scanning surveillance. Vet. Rec. 169, 656.

Sparks, S.H., Kwong, J.C., Valcin, R., Easton, M., Tont, D.J., Seemant, J., Hinterz, V., Howden, B., 2016. Emergence of non-fermenting subtypes of Pseudomonas aeruginosa in a locally-acquired patient. J. Antimicrob. Chemother. 71, 338–340.

Sparham, S.J., Kwong, J.C., Valcin, R., Easton, M., Tont, D.J., Seemant, J., Hinterz, V., Howden, B., 2016. Emergence of non-fermenting subtypes of Pseudomonas aeruginosa in a locally-acquired patient. J. Antimicrob. Chemother. 71, 338–340.

Sparham, S.J., Kwong, J.C., Valcin, R., Easton, M., Tont, D.J., Seemant, J., Hinterz, V., Howden, B., 2016. Emergence of non-fermenting subtypes of Pseudomonas aeruginosa in a locally-acquired patient. J. Antimicrob. Chemother. 71, 338–340.

Sparks, S.H., Kwong, J.C., Valcin, R., Easton, M., Tont, D.J., Seemant, J., Hinterz, V., Howden, B., 2016. Emergence of non-fermenting subtypes of Pseudomonas aeruginosa in a locally-acquired patient. J. Antimicrob. Chemother. 71, 338–340.

Stinear, T.P., Howden, B., 2009. Extensive-spectrum β-lactamase-producing Escherichia coli from the milk of cows with clinical mastitis in Southern Taiwan. J. Microbiol. Immunol. Infect. 49, 892–901.

Suzumura, M.B., Lukman, D.W., Latif, H., Piestrych, Y., Sukwamivat, E., Akineden, O., Uisleber, E., 2016. CTX-M-producing Escherichia coli isolated from cattle feces in Bogor slaughterhouse, Indonesia. Asian Pac. J. Trop. Biomed. 6, 605–608.

Tedeste, D.A., Li, C., Mukherjee, S., Hsu, C.H., Bodie, J.S., Gaines, S.A., Kabera, C., Lonser, G.H., Torrence, M., Hartlay, D.M., McFerrin, P.F., Zhao, S., 2018. Whole-Genome sequence analysis of CTX-M-containing Escherichia coli isolates from retail meats and cattle in the United States. Microb. Drug Resist. 24, 939–948.

Tang, M.D., Nam, H.-M., Gurung, M., Jiang, G.-C., Kim, S.-R., Jung, S.-C., Park, Y.H., Lim, S.-J., 2013a. Molecular characterization of CTX-M-15 β-lactamases in cattle feces in Bogor slaughterhouse, Indonesia. Asian Pac. J. Trop. Biomed. 3, 389–390.

Tang, M.D., Nam, H.-M., Gurung, M., Jiang, G.-C., Kim, S.-R., Jung, S.-C., Park, Y.H., Lim, S.-J., 2013b. Molecular characterization of CTX-M-15 β-lactamases in cattle feces in Bogor slaughterhouse, Indonesia. Asian Pac. J. Trop. Biomed. 3, 389–390.
Klebsiella pneumoniae SHV-12 β-lactamases from bovine mastitis isolates in the United Kingdom. Antimicrob. Agents Chemother. 58, 789–794.

Toth, A., Juhan-Kastaniityzki, E., Mag, T., Hajbei-Vekony, G., Paszti, J., Damjanov, I., 2013. Characterization of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli strains isolated from animal and human clinical samples in Hungary in 2006-2007. Acta Microbiol. Immunol. Hung. 60, 175–185.

Tyrrell, J.M., Wootton, M., Toleman, M.A., Howe, R.A., Woodward, M., Walsh, T.R., 2016. Genetic & virulence profiling of ESBL-positive E. coli from nosocomial & veterinary sources. Vet. Microbiol. 186, 37–43.

USDA, United, State, Departament, Agriculture, o., 2017. Livestock and Poultry: World Markets and Trade.

Usui, M., Iwasa, T., Fukuda, A., Sato, T., Okubo, T., Tamura, Y., 2013. The role of flies in spreading the extended-spectrum beta-lactamase gene from cattle. Microb. Drug Resist. 19, 415–420.

Valat, C., Anzuy, F., Forest, K., Métayer, V., Gay, E., Peytavin de Garam, C., Madec, J.-Y., Haenni, M., 2012. Phylogenetic grouping and virulence potential of extended-spectrum β-lactamase-producing Escherichia coli strains in cattle. Appl. Environ. Microbiol. 78, 4677–4682.

Valat, C., Goldstone, R.J., Hirchaud, E., Haenni, M., Smith, D.G.E., Madec, J.-Y., 2016. Draft genome sequences of enterohemorrhagic Escherichia coli encoding extended-spectrum beta-lactamases. Genome Announc. 4.

Velasova, M., Randall, L.P., 2019. Detection of extended-spectrum β-lactamase, AmpC and carbapenem resistance in Enterobacteriaceae in beef cattle in Great Britain in 2015. J. Appl. Microbiol. 126, 1081–1095.

Wang, G., Huang, T., Surendraiah, P.K.M., Wang, K., Komal, R., Zhuge, J., Chern, C.-R., Kryszuk, A.A., King, C., Wormser, G.P., 2013. CTX-M β-lactamase-producing Klebsiella pneumoniae in Suburban New York city, New York, USA. Emerg. Infect. Dis. 19, 1803–1810.

Watson, E., Jeckel, S., Snow, I., Stubbs, R., Teale, C., Wearing, H., Horton, R., Toszeghy, M., Tearne, O., Ellis-Iversen, J., Coldham, N., 2012. Epidemiology of extended spectrum beta-lactamase E. coli (CTX-M-15) on a commercial dairy farm. Microb. Drug Resist. 18, 346.

Yan, J.-J., Hsueh, P.-R., Lu, J.-J., Chang, F.-Y., Shyr, J.-M., Wan, J.-H., Liu, Y.-C., Chuang, Y.-C., Yang, Y.-C., Tsao, S.-M., Wu, H.-H., Wang, L.-S., Lin, T.-P., Wu, H.-M., Chen, H.-M., Wu, J.-J., 2006. Extended-spectrum β-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob. Agents Chemother. 50, 1861–1864.

Yang, P., Zhang, S., Shang, X., Wang, L., Li, H., Wang, X., 2018. Characteristics of quinolone-resistant Escherichia coli isolated from bovine mastitis in China. J. Dairy Sci.

Yeung, M.-k., 2011. Epidemiology of CTX-M Type Extended-Spectrum Beta-Lactamaseproducing escherichia Coli Among Blood Culture Isolates in Hong Kong. Master. University of Hong Kong.

Zhou, H., Zhang, Z., Shen, X., Liu, Y., Yao, Q., Deng, Y., Chen, X., Lv, L., Zhuo, C., Chen, Z., Liu, J.-H., 2012. Prevalence and characterisation of CTX-M β-lactamases amongst Escherichia coli isolates from healthy food animals in China. Int. J. Antimicrob. Agents. 39, 305–310.

Zhu, Y., Xu, X., Guo, L., Jiang, X., Song, X., 2019. Detection and characterization of ESBL-producing Escherichia coli expressing mcr-1 from dairy cows in China. J. Antimicrob. Chemother. 74, 321–325.

Zong, Y.-M., Liu, W.-E., Liang, X.-H., Li, Y.-M., Jian, Z.-J., Hawkey, P.M., 2015. Emergence and spread of O16-ST131 and O25b-ST131 clones among faecal CTX-M-producing Escherichia coli in healthy individuals in Hunan Province, China. J. Antimicrob. Chemother. 70, 2225–2227.

Zong, Z., Partridge, S.R., Thomas, L., Iredell, J.R., 2008. Dominance of bla(TX-M) within an Australian extended-spectrum β-lactamase gene pool. Antimicrob. Agents Chemother. 52, 4198–4202.

Zürfluh, K., Cerneila, N., Stephan, R., 2015. Quinolone resistance mechanisms among extended-spectrum beta-lacta-mese (ESBL)-producing Escherichia coli isolated from farm animals in Switzerland. Schweizer Archiv fur Tierheilkunde 157, 59–62.