A feasibility study of treatment verification using EPID cine images for hypofractionated lung radiotherapy

Xiaoli Tang1,2, Tong Lin1,3, and Steve Jiang1

1Department of Radiation Oncology, University of California San Diego, La Jolla, CA 92093, USA
2Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC 27514, USA
3Key Laboratory of Machine Perception (Ministry of Education), School of EECS, Peking University, Beijing 100871, China

E-mail: sbjiang@ucsd.edu

Abstract. We propose a novel approach for potential on-line treatment verification using cine EPID (Electronic Portal Imaging Device) images for hypofractionated lung radiotherapy based on a machine learning algorithm. Hypofractionated radiotherapy requires high precision. It is essential to effectively monitor the target to ensure that the tumor is within the beam aperture. We modeled the treatment verification problem as a two-class classification problem and applied an Artificial Neural Network (ANN) to classify the cine EPID images acquired during the treatment into corresponding classes—with the tumor inside or outside of the beam aperture. Training samples were generated for the ANN using digitally reconstructed radiographs (DRRs) with artificially added shifts in tumor location—to simulate cine EPID images with different tumor locations. Principal Component Analysis (PCA) was used to reduce the dimensionality of the training samples and cine EPID images acquired during the treatment. The proposed treatment verification algorithm was tested on five hypofractionated lung patients in a retrospective fashion. On average, our proposed algorithm achieved a 98.0\% classification accuracy, a 97.6\% recall rate, and a 99.7\% precision rate.

1. Introduction

In the United States, lung cancer is the second most prevalent cancer and the leading cause of cancer death, accounting for about 30\% of all cancer mortality (Jemal \textit{et al} 2005). Hypofractionated lung radiotherapy is being increasingly employed as an alternate modality for the treatment of primary and secondary lung cancers. This therapy has the important advantages of allowing shortened treatment times while delivering higher effective radiobiological doses. However, normal tissues surrounding the tumors are also exposed to high-dose levels of radiation. Furthermore, cancerous tissue can occasionally move outside the irradiation field, e.g. when the patient has sudden irregular breathing or episodes of coughing. Under these circumstances, malignant tissue will be missed, and even more normal tissue than planned will be

8 This work was first presented at the Seventh International Conference on Machine Learning and Applications, San Diego, CA USA, December 11-13, 2008.
irradiated. A very large fractional dose (e.g., 10 Gy per fraction) is commonly applied in hypofractionated lung radiotherapy. This is in many ways an ablative therapy, both to the tumors and to the normal tissues surrounding them. Consequently, the precision requirement of hypofractionated lung radiotherapy is high. It is absolutely critical to effectively monitor the target to ensure maximal irradiation of the tumor with minimal irradiation of surrounding normal tissue.

The major uncertainty in treating lung cancer is the respiratory lung tumor motion, which can be clinically significant for some patients (e.g., of the order of 2 – 3cm) (Jiang 2006). This uncertainty must be dealt with when delivering hypofractionated lung radiotherapy. Typically, margins are added to accommodate respiratory motion. However, even with margins, tumors, or portions of them, will occasionally move outside the irradiation field. Abrupt coughing, dramatically changing breathing patterns, and sudden occurrences of pain, can all occur during treatment. Any one of these events can result in moving the tumor (or portions of it) outside the irradiation field. It is therefore, critically important to constantly monitor the patients’ treatment—and when the tumor is detected outside the irradiation field, the treatment must be interrupted. The treatment should be resumed only when the tumor returns to the irradiation field or, in extreme cases, after patient re-setup.

EPID acquisition in *cine* mode does not require any additional radiation dose, and yet the technique generates images that carry valuable information indicating tumor position. Several methods for monitoring radiation therapy have been developed using *cine* EPID images, with or without implanted markers.

Berbeco *et al* developed a matching technique for respiratory-gated liver radiotherapy treatment verification with an EPID in *cine* mode (Berbeco *et al* 2005, Berbeco *et al* 2007). Implanted radio opaque fiducial markers inside or near the target were required for this technique. The markers were contoured on a planning CT set, enabling users to create digitally reconstructed radiographs (DRRs) for each treatment beam. During the treatment, a sequence of EPID images could be acquired without disrupting the treatment routine. Implanted markers were visualized in the images and their positions in the beam’s eye view (BEV) were calculated off-line and compared to the reference position by matching the field apertures in corresponding EPID and DRR images. Tumor displacement was calculated for one patient with three implanted markers. The case study demonstrated the feasibility of the proposed method.

For lung cancer patients, implantation of fiducial markers is not widely acceptable due to the risk of pneumothorax (Laurent *et al* 2000, Arslan *et al* 2002, Geraghty *et al* 2003, Topal and Ediz 2003, Berbeco *et al* 2005). Arimura *et al* considered using *cine* EPID images for measurement of displacement vectors of tumor positions in lung radiotherapy without implanted markers (Arimura *et al* 2007). A template matching technique based on cross-correlation coefficients was proposed to calculate the similarity between a reference portal image and each *cine* EPID image. 5 patients with non-small cell lung cancer and one patient with metastasis were included for a validation study. The proposed method worked well for 4 cases but not well for the other 2.

To develop a more robust system, we propose an alternative approach for treatment verification of hypofractionated lung radiotherapy using *cine* EPID images without implanted markers. Artificial Neural Network (ANN) based technique will be developed to classify the *cine* EPID images into two classes: images with the tumor inside the radiation field and images with the tumor outside the radiation field.
This paper is organized as follows: section 2 will introduce methods and materials used in this work, including a brief introduction of ANN and a detailed description of how to apply ANN to our treatment verification problem. Section 3 presents experimental results. Section 4 will conclude this work and plan future work.

2. Methods and materials

The goal of on-line treatment verification is to monitor the tumor’s position, to verify that it remains inside the radiation field (or beam aperture). If it is inside, the treatment can go on. Otherwise, the treatment beam should be turned off. This observation provides us with a clue that the on-line treatment verification problem can in fact be modeled as a classification problem. EPID cine images corresponding to the tumor inside the aperture can be treated as one class, and EPID cine images corresponding to the tumor outside the aperture can be treated as another. In this work, we apply a machine learning algorithm, ANN, for treatment verification. We will test its feasibility off-line retrospectively for hypofractionated lung radiotherapy.

2.1. Artificial Neural Network

An Artificial Neural Network is a mathematical model inspired by the way biological nervous systems process information. An ANN incorporates massively parallel systems with large numbers of interconnected simple processors, and it can solve many challenging computational problems. For a classification problem, an ANN will learn examples (training samples) of each class to extract corresponding patterns and detect unique trends. A trained ANN can therefore classify new samples into corresponding classes with high accuracy. More details on applying ANN on cancer research can be found in work by (Naquib and Sherbet 2001).

2.2. Training ANN

The first step of using any ANN is learning, training from samples. A trained neural network can be thought of as “expert” in the category of information it has been given to analyze. In our application of hypofractionated lung radiotherapy verification using cine EPID images, the ideal training samples would naturally be cine EPID images. There are, however, two problems. First, the ANN requires a large number of training samples to achieve reasonable results, and there aren’t enough cine EPID images generated during treatment to meet that standard. Second, to be able to verify the treatment using cine EPID images during treatment, the ANN training has to be completed before the treatment, when the cine EPID images are not yet available. For these reasons, cine EPID images cannot be used as training samples.

We generate training images from DRR—to simulate cine EPID images with various artificially altered tumor locations. The DRRs were created in the BEV for each field. The field edges (MLC contours) were superimposed on these images. The first image in Figure 1 illustrates an example of DRR of a treatment field. The solid red contour is the MLC contour. By shifting the MLC contour, the sub-image defined by the contour changes accordingly. If each sub-image is treated as a simulated cine EPID image, we can simulate cine EPID images with different tumor locations. Once again, consider the first image of Figure 1: the blue and green dashed contours are two examples of MLC contour at different locations. Tumor locations are different in the sub-images outlined by the corresponding contours. In this fashion, we can simulate cine EPID images with different tumor locations. The two images on the right side of Figure 1 are the enlarged versions of the sub-images defined by the blue and green dashed contours in the first image, respectively. If we limit the MLC contour to move inside of an $m \times n$ pixel sized window at the step size of one pixel, we can generate mn training images.
The clinical target volume (CTV) is defined by the physician on 4DCT and is projected onto each DRR. Based on the location of the CTV, we can calculate what percentage of the tumor is in the beam aperture of each training image. With a user-defined threshold $p\%$, we associate class 1 to the training image if more than $p\%$ of the tumor is in MLC and class -1 otherwise.

From the total of mn training images, the ANN can learn what features indicate class 1 and what features indicate class -1. It can create its own organization or representation of the information it receives during the learning time. The trained network can therefore analyze the cine EPID images obtained during the treatment and classify them into the corresponding class 1 or -1. It is worth to emphasize again that we used DRR to simulate cine EPID images for training, and the classification was done on real cine EPID images.

2.3. Image processing

As we stated above, we used DRR instead of cine EPID images for neural network training. However, DRR and cine EPID images are different image modalities. Their pixel resolutions might be different, and their intensity values might be in different ranges. To enhance the ANN’s performance, we applied image processing techniques to the DRR to make DRR and cine EPID images more closely resemble each other. First we either sub-sample or interpolate DRR to make its resolution the same as cine EPID image, depending on the original resolution of DRR. Then, histogram equalization was applied on each DRR and cine EPID image to enhance image contrast. Finally, the intensity value of DRR was mapped to the same range of cine EPID images. Based on our experience, pre-processing the images can significantly improve the ANN performance.

2.4. Principal Component Analysis (PCA)
A typical cine EPID image might have an approximate size of 100×100 pixels. This means the dimensionality of a training sample would be $100 \times 100 = 10,000$. Significant computational time and resources would be needed to train the ANN with these high dimensional samples. This is simply not practical for on-line treatment verification. Consequently, PCA was applied to reduce the dimensionality of the training images. PCA is a classical statistical method. It involves a mathematical procedure that transforms original correlated variables into a small number of uncorrelated variables called principal components. The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible. In our application, we keep the first 15 principal components. Training 451 images with a reduced dimensionality of 15 using an un-optimized MatLab program on a regular PC (Intel Xeon CPU with 2 GB RAM) resulted in a running time of less than 3 seconds, demonstrating the effectiveness of this refinement.

3. Experimental results

All hypofractionated lung radiotherapy patients included in this study were treated on a Varian Trilogy Linac (Varian Medical Systems, Palo Alto, CA, USA) equipped with an electronic portal imaging device. During the treatment, the EPID was set to acquire images in the cine mode at a frame rate of 0.625 Hz. Figure 2 shows two sample cine EPID images. The corresponding DRR was shown in Figure 1.

Figure 2. Examples of two original cine EPID images.

Figure 3. Original DRR and cine EPID image.

Five patients each treated with 4 or 5 fractions were included in our feasibility study. Table 1 lists the related patient information. The average patient age is 70, and the average tumor volume is 10.04 cm^3. The total number of cine EPID images of each patient varies from 84 to 329
depending on the treatment time. The examples of the DRR and cine EPID images of patient 1 were displayed in Figure 1 and Figure 2. Figure 3 shows examples of the DRR and cine EPID image of patient 4. The red contour on the DRR defines the beam aperture. Window size of 40×10 pixels was used on each DRR to generate the training images. A radiation oncologist read the cine EPID images and manually classified them into classes 1 and -1, and this serves as our ground truth. A three level feed-forward back propagation neural network was used. The network has a single hidden layer of 10 neurons, and the network is trained for up to 50 epochs to a error goal of 0.01. The ANN was applied on the training images to build the neural network. We set in this study—if more than 95% of the tumor projection is inside the irradiation field, the corresponding training image is said in class 1. For each treatment field, one neural network needs to be built.

Table 1. Patient information.

Patient number	Age	Gender	Tumor location	Tumor volume (cm³)
1	77	F	RUL	5.02
2	75	M	RUL	17.23
3	65	M	RUL	2.23
4	46	F	LLL	1.39
5	85	F	RLL	24.35
Average	70	-	-	10.04

We would like to test if the proposed algorithm can successfully classify the cine EPID images corresponding to tumor outside the irradiation field obtained during the treatment. Those cine EPID images are category -1 images and also called true-negative images. However, since we were using real patient data retrospectively, we had very limited number of category -1 images. Therefore we simulated category -1 cine EPID images using the existing patient images.

Two patients whose tumor sizes were relatively small and treatment margins were large were selected for the simulation of category -1 images. For each treatment field, first we manually generated a sub-field inside the original field. As shown in figure 4 (a), the yellow contour defines the sub-field which covers the tumor. Then we trained the ANN model based on this new simulated sub-field MLC contour. Since the sub-field is much smaller than the original field, there was enough room to simulate other sub-fields with the same size but different locations. Figure 4 (b) and (c) are two examples of sub-fields with different locations, and they are examples of simulated category -1 cine EPID images. Figure 4 (b) corresponds to the situation that approximately half of the tumor is outside of the beam aperture, and figure 4 (c) corresponds to the situation that most of the tumor is not in the sub-field. The test cine EPID images include the simulated category -1 images as well as the category 1 images—images corresponding to tumor inside the treatment sub-field as shown in Figure 4 (a). The trained ANN model will classify the test images into corresponding categories. The two cases with simulated category -1 cine EPID images are called case 6 and 7.
We measure the accuracy, recall rate and precision of the classification results. They are defined as:

\[
\text{accuracy} = \frac{\text{true positive} + \text{true negative}}{\text{all}}
\]
(1)

\[
\text{precision} = \frac{\text{true positive}}{\text{true positive} + \text{false positive}}
\]
(2)

\[
\text{recall} = \frac{\text{true positive}}{\text{true positive} + \text{false negative}}
\]
(3)

Accuracy measures the degree of exactness or fidelity, precision measures the degree of reproducibility, and recall measures the degree of completeness. False positive is defined as when the tumor projection was not in the beam aperture, but the classification result was category 1. False negative is defined as when the tumor projection was in the beam aperture, but the classification result was category -1.

Table 2 lists the classification results of all five patients and case 6 and 7. Each number was averaged over all treatment fields. The average accuracy, precision, and recall numbers over all the patients are also listed in the last row of the table.

Patient	Accuracy	Precision	Recall
1	94.12	100.00	94.12
2	99.87	98.86	98.89
3	97.00	100.00	97.00
4	98.86	99.87	98.89
5	98.91	100.00	98.91
Case 6	99.00	100.00	98.77
Case 7	98.13	99.08	96.43
Average	97.98	99.69	97.57
For all cases, the results are good; the numbers are in high nineties most of the time. Note all the
precisions are either 100% or close to 100%. This means the reproducibility is high, and the
proposed algorithm is stable. On average, the proposed algorithm achieved accuracy of 97.98%,
precision of 99.69%, and recall of 97.57%.

4. Conclusion and future work

We have proposed a novel approach for on-line treatment verification for hypofractionated
radiotherapy. The DRR was used to simulate cine EPID images for the ANN training. Image
processing techniques were applied on the DRR to make the DRR and cine EPID images closely
resemble each other. The PCA was also applied on training samples and cine EPID images
acquired during the treatment to reduce their dimensionality in order to shorten the process time.
We have tested our proposed algorithm on seven hypofractioned lung patient cases off-line in a
retrospective fashion. The average accuracy and recall numbers are high, and the average
reproducibility is close to 100%.

We intend to achieve even better results. More sophisticated image processing techniques will be
applied to preprocess the DRR. We have already experienced a significant performance boost
from pre-processing the images with the techniques described. Better image processing
techniques should bring the classification accuracy rate even higher. All the ANN parameters
were not optimized. We will investigate different combinations of parameters to find the set that
yields the best performance. We used an empirical number 15 of principal components in this
study. Research will be done to minimize the number of principal components while still achieve
comparable results. Now we use kV beam DRR. We are developing software to generate MV
beam DRR with scattering effect which will better resemble cine EPID images obtained during
the treatment. The number of cases tested is relatively small. We are collecting more patient data,
hopefully with implanted fiducial markers, to further validate our proposed algorithm. Patients
with variety of tumor volumes and locations will be collected. The performance of the algorithm
will be analyzed based on tumor volume and location. Comparison will be made on different
tumor volumes and locations.

5. References

Arimura H, Anai S, Yoshidome S, Nakamura K, Shioyama Y, Nomoto S, Honda H, Onizuka Y and
Terashima H 2007 Computerized method for measurement of displacement vectors of target
one positions on EPID cine images in stereotactic radiotherapy Medical Imaging 6512
Arslan S, Yilmaz A, Bayramqurler B, Uzman O, Nver E and Akkaya E 2002 CT-guided transthoracic fine
needle aspiration of pulmonary lesions: accuracy and complications in 294 patients Med. Sci.
Monit. 8 CR493-7
Berbeco R I, Hacker F, Ionascu D and Mamon H J 2007 Clinical feasibility of using an EPID in cine mode
for image-guided verification of stereotactic body radiotherapy Int. J. Radiation Oncology Biol.
Phys. 69 258-266
Berbeco R I, Mostafavi H, Sharp G C and Jiang S B 2005 Towards fluoroscopic respiratory gating for lung
tumours without radiopaque markers Int. of Phys. Pub. 50 4481-90
Geraghty P R, Kee S T, Mefcarlane G, Razavi M K, Sze D Y and Dake M D 2003 CT-guided transthoracic
needle aspiration biopsy of pulmonary nodules: accuracy and 475-81
Jemal A, Murray T, Ward E, Samuels A, Tiwari R C, Ghafoor A, Feuer E J and Thun M J 2005 Cancer
statistics CA Cancer J. Clin. 55 10-30
Jiang S B 2006 Radiotherapy of mobile tumors Semin Radiat. Oncol. 16 239-48
Laurent F, Latrabe V, Vergier B, Montaudon M, Vernejoux J M and Dubrez J 2000 CT-guided
transthoracic needle biopsy of pulmonary nodules smaller than 20 mm: results with an automated
20-gauge coaxial cutting needle Clin. Radiol. 55 281-7
Naquib R N and Sherbet G V 2001 *Artificial neural networks in cancer diagnosis, prognosis, and patient management* CRC Press

Topal U and Ediz B 2003 Transthoracic needle biopsy: factors effecting risk of pneumothorax *Eur. J. Radiol.* 48 263-7