Improving Grammatical Error Correction for Multiword Expressions

SHIVA TASLIMPOOR, CHRISTOPHER BRYANT, ZHENG YUAN

MWE 2022 @ LREC
Background

- Grammatical Error Correction (GEC)

 by the other side \[\rightarrow\] on the other hand
 in the other hand

 A dream becomes true \[\rightarrow\] A dream come true

- Multiword Expression Identification
MWEs are challenging for language learners (Christiansen & Arnon, 2017; Meunier & Granger, 2008).

Mizumoto et al. (2015) merged the tokens in a MWE into a single unit before applying phrase-based MT.

Dahlmeier & Ng (2011) use L1-induced paraphrases to correct erroneous use of collocations.
GEC models

- Transformer-based NMT systems
 1. Multi-encoder decoder system
 (Yuan et al. 2021)
MWE-incorporated GEC model

- Transformer-based NMT systems
 1. Multi-encoder decoder system
 (Yuan et al. 2021)
MWE-incorporated GEC model

- Transformer-based NMT systems
 1. Multi-encoder decoder system

 2. BART-based GEC model (Katsumata and Komachi, 2020)
 - Add special tokens to input data
MWE-incorporated GEC model

- Transformer-based NMT systems
 1. Multi-encoder decoder system

 2. BART-based GEC model (Katsumata and Komachi, 2020)
 - Add special tokens to input data

S: ... and they also [MWE] made talks [/MWE] and presentations about the earth ’s problems , like ...
T: ... and they also [MWE] give talks [/MWE] and presentations about the earth ’s problems , like ...

S: I ’m writing to [MWE] inform you some advice [/MWE] on travelling and working in my country .
T: I ’m writing to [MWE] give you some advice [/MWE] on travelling and working in my country .
Multiword Expression Identification

- Following MTLB-STRUCT
 - Using ELECTRA pre-trained model for sequence labelling
 - Fine-tuned on STREUSLE and PARSEME 2018
Multiword Expression Identification

Following MTLB-STRUCT

- Using ELECTRA pre-trained model for sequence labelling
- Fine-tuned on STREUSLE and PARSEME

	MWE LinkAvg	Verbal MWE-based			
# Gold	433.5	66			
Liu et al. (2021)	82.0	64.3	72.0	63.9	
Our system	90.7	66.8	76.7	68.2	66.7

Results on STREUSLE test set
GEC Data

- BEA 2019 shared task data for GEC
- Multi-encoder decoder system trained on CLC, NUCLE, FCE, and W&I data
- BART model fine-tuned on W&I data
- Evaluation based on P, R, F0.5
Experiment 1

Model: Encoder-decoder

Model	P	R	F0.5
Baseline	57.95	31.22	49.48
MWE-augmented (3-class)	57.80	33.60	50.53
MWE-augmented (23-class)	58.53	33.98	**51.14**

B, I, O

B-VPC, I-VPC, B-LVC, I-LVC, B-PP, I-PP, ..., O
Model: BART	P	R	F0.5
Baseline	56.08	37.73	51.11
MWE-augmented (1)	56.88	35.36	50.71
MWE-augmented (2)	57.21	36.71	**51.46**

MWE tagging on the original side, then mapped to corrected side

MWE tagging on the corrected side, then mapped to the original side
Performance on fine-grained MWE types

MWE type	#	Baseline GEC	MWE-augmented GEC				
		P	R	F₀.₅	P	R	F₀.₅
Encoder-decoder							
V.IAV	41	60.7	41.5	55.6	55.2	39.0	51.0
V.LVC.full	55	34.6	16.4	28.3	45.8	20.0	36.4
V.VID	47	55.6	21.3	42.0	62.5	21.3	45.1
V.VPC.full	25	38.5	20.0	32.5	54.6	24.0	43.5
V.VPC.semi	12	50.0	25.0	41.7	60.0	25.0	46.9
BART GEC							
V.IAV	41	57.7	36.6	51.7	56.7	41.5	52.8
V.LVC.full	55	43.3	23.6	37.1	42.9	21.8	35.9
V.VID	47	55.6	21.3	42.0	78.6	23.4	53.4
V.VPC.full	25	31.6	24.0	29.7	41.7	40.0	41.3
V.VPC.semi	12	50.0	16.7	35.7	50.0	8.3	25.0
Original	the course was fantastic and I am looking forward to **signing** it again next year.						
----------	--						
Enc-dec	the course was fantastic and I am looking forward to signing it again next year.						
baseline							
MWE-augmented	the course was fantastic and I am looking forward to **signing up** for it again next year.						
BART	the course was fantastic and I am looking forward to **signing up** for it again next year.						
baseline							
MWE-augmented	the course was fantastic and I am looking forward to **signing up** for it again next year.						
Original	**it could allow you to communicate with people**, know different cultures ...						
BART	it could allow you to communicate with people, know different cultures ...						
Baseline	it could allow you to communicate with people, know different cultures ...						
MWE-augmented	it could allow you to communicate with people, **get to know** different cultures ...						
Conclusions

We proposed two approaches to incorporate MWE information into GEC systems.

1) Automatically detecting MWEs
2) Adding an extra encoder
3) Adding special tokens to the data

We see improvements in the performance of the two GEC systems especially in correcting specific types of verbal MWE errors.
Thank you!