A Review on the Formation of Carcinogenic/Mutagenic Heterocyclic Aromatic Amines

Mevlüde Kizil1*, Fatih Oz2 and H Tanju Besler1

1Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Ankara, Turkey
2Department of Food Engineering, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey

Abstract
Mutagenic and/or carcinogenic heterocyclic aromatic amines (HCAs) have been found in meat and fish cooked at temperatures over 150°C. To date, more than 25 HCAs have been isolated and identified in cooked meat and meat products as potent mutagens in the Ames/Salmonella test. HCAs are potent mutagens at ng/g levels in cooked foods and play an important role in the etiology of human cancer. Major precursors of HCAs are creatine and/or creatinine, amino acids and reducing sugars. IQ-type HCAs are formed by heat induced non enzymatic browning known as Maillard reaction which involves creati(ni)ne, amino acid and sugars whereas amino-carbolines are mainly formed by pyrolysis of amino acids and proteins at higher temperatures above 300°C. Concentrations and variety of HCAs can be dependent on many factors such as precursor level, meat type, cooking method, cooking duration, pH and water activity, heat and mass transfer, lipid level, lipid oxidation and antioxidants. Due to better understanding, formation of HCAs has been studied both in model systems and cooked foods and this review gives an overview of the studies on the formation of carcinogenic and/or mutagenic HCAs.

Introduction
Human epidemiologic and animal studies have shown that diet plays an important role in cancer development [1,2]. It has been reported that one third of human cancers are related to foods. Heterocyclic aromatic amines (HCAs) are potent mutagens at ng/g levels in cooked foods and play an important role in the etiology of human cancer [3]. The International Agency for Research on Cancer (IARC) regards some of the HCAs as possible human carcinogens. Heterocyclic aromatic amines (HCAs) have two major classes: aminoimidazoazoarenes (AIAs) and aminocarbolines [14]. AIAs are the most important class in cooked foods. They have an imidazo group linked to a quinoline, a quinoxaline or a pyridine [16]. AIAs are also called imidazoquinoline (IQ)-type compounds or thermic HCAs and generated from the reaction of free amino acids, creatine, creatinine and hexoses during cooking of foods at conventional cooking temperatures (150–300°C). The other amines, aminocarbolines, are formed at temperatures above 300°C [17]. Aminocarbolines are also called non-IQ-type compounds or pyrolytic HCAs. They are formed in the pyrolytic reaction of amino acids and proteins at higher temperatures [10]. Some of these carbolines contain a 2-aminopyridine moiety as a common structure. Harman and norharman are not mutagenic but are co-mutagenic since they enhance the genotoxicity of mutagenic HCAs. These compounds are included among the aminocarbolines, also sometimes grouped as polar and nonpolar according to their chemical behavior [18]. Table 1 (included as supplementary data) shows the classification of HCAs.

Structures and Formation of HCAs
HCAs have two major classes: aminoimidazoazoarenes (AIAs) and aminocarbolines [14]. AIAs are the most important class in cooked foods. They have an imidazo group linked to a quinoline, a quinoxaline or a pyridine [16]. AIAs are also called imidazoquinoline (IQ)-type compounds or thermic HCAs and generated from the reaction of free amino acids, creatine, creatinine and hexoses during cooking of foods at conventional cooking temperatures (150–300°C). The other amines, aminocarbolines, are formed at temperatures above 300°C [17]. Aminocarbolines are also called non-IQ-type compounds or pyrolytic HCAs. They are formed in the pyrolytic reaction of amino acids and proteins at higher temperatures [10]. Some of these carbolines contain a 2-aminopyridine moiety as a common structure. Harman and norharman are not mutagenic but are co-mutagenic since they enhance the genotoxicity of mutagenic HCAs. These compounds are included among the aminocarbolines, also sometimes grouped as polar and nonpolar according to their chemical behavior [18]. Table 1 (included as supplementary data) shows the classification of HCAs.

Precursors and factors of HCAs formation
Several studies reported that major precursors of HCAs creatine and/or creatinine, amino acids and reducing sugars [20,21]. But some studies have shown that sugar is not obligatory for the formation of AIAs [22,23]. Adding small amount of reducing sugar to model systems...
and meat before cooking resulted in increased production of mutagens [24]. On the other hand, the addition of glucose in amounts greater than half the molar concentration of amino acids and creatine has been shown to reduce the formation of cooked food mutagens in model systems [24,25]. Creatine, free amino acids and hexoses, present in raw meat, were suggested to be precursors of IQ-compounds. Creatine was postulated to form the 2-amino-3-methylimidazo (2-aminoimidazo) moiety of AIAs by cyclization and water elimination, a reaction that takes place spontaneously when the temperature is raised above 100ºC. This part of the molecule is a common moiety of all IQ-compounds and is also responsible for the mutagenicity of IQ substances. Without this part, and especially its 2-amino group, the mutagenicity becomes almost negligible [11,26].

The remaining parts of IQ-compounds are assumed to arise from Strecker degradation products, such as pyridines or pyrazines, formed in the Maillard reaction between hexoses and amino acids. Aldol condensation is believed to link the two parts together via an aldehyde [12]. Figure 1 shows suggested pathway for the formation of IQ-type and IQx-type compounds.

Muscle meats contain creatine and creatinine, which can react with free amino acids and sugars during cooking [28]. Creatine is therefore basically responsible for the mutagenic activity of meat [29]. During cooking of meat or fish, creatine is converted to creatinine, which then forms the imidazo part of AIAs [26]. Higher cooking temperatures lead to a more rapid decrease in creatine and increase in creatinine. In addition, creatinine has been shown to produce about 50% more mutagenicity than creatine when heated with certain amino acids and glucose in model systems [10,24]. Mutagen production is strongly dependent on the amount of moisture initially present in the meat above approximately 40% [30]. Water-soluble mutagenic agent precursors migrate with water toward the surface of food [29].

Imidazoquinoline type HCA's are formed in the model mixture consist of glucose, glycine and creatinine through free radical Maillard intermediates, a pyrazine cation radical and carbon-centered radicals [31-34]. In the initial stage of Maillard reaction of glucose with glycine, both pyrazine cation radical and cation centered radicals are generated and in the presence of phenolic antioxidants they are scavenged [31]. In the model mixture composed of glucose, glycine and creatinine has shown that epigallocatechin gallate and flavonoids prevent the formation of IQ-compounds [35]. Moreover, iron is a well-known catalyst of lipid oxidation at lower temperatures and Johansson and Jägerstad [33] reported that the addition of iron (Fe²⁺ and Fe³⁺) to creatine, glycine, glucose model system, increased the formation of IQx, MeIQx and DiMeIQx approximately two fold.

Several studies have reported that natural and synthetic antioxidants decreased mutagenic activity or inhibited the formation of HCA's. Spices are source of natural antioxidants and their effects on the formation of HCA's were investigated. Rosemary oleoresin [35], rosemary extract added to virgin olive oil [36], oleoresin or grape seed extract [37], spice-containing marinades [38], adding red and black pepper [39,40] can be effective inhibitors of HCA's formation. Marinating is another method can decrease the concentration of HCA's and several studies have shown reduced effect of marinated chicken before grilling on concentration of HCA's [41,42].

Figure 1: Suggested pathway for the formation of IQ-type and IQx-type compounds [27].
It was shown that phenylalanine, creatinine and glucose were probable precursors of PhIP [27]. PhIP may also be produced from creatine heated together with leucine, isoleucine and tyrosine. Glucose seems not to be a necessary precursor using dry heating conditions [34]. But glucose have a considerable influence, either enhancing or inhibiting depending on its concentration, on the formation of PhIP from phenylalanine and creatine in both a liquid model system and during dry heating [24]. It has been reported that erythrose is the most active in the formation of PhIP, when phenylalanine and creatinine dissolved in water is heated at temperatures of 37 and 60°C. The other carbohydrates namely arabinose, ribose, glucose and galactose are not as active [43].

Although mutagenic activity was first reported in proteinaceous foods, no mutagenic activity was detected when proteins instead of amino acids were reflux-boiled in a model system [12]. Studies with model systems showed that amino acids or short-chain peptides were absolutely necessary for the formation of AIAs [45]. Knize and others [46] reported that different amino acids were precursors for one mutagenic compound. Refluxing carnosine (b-alanine + L-histidine) with creatinine and glucose at 130°C for 2 h produced similar mutagenic activity to many other amino acids. This result showed that a dipeptide can contribute to the mutagenic activity. However, the highest mutagenic activity was reported for threonine, followed by glycine and lysine [10]. The presence of sugars is necessary for the formation of mutagenic activity in meat. Very low mutagenic was detected in the crust of meat after beef patties (with low glucose) were fried. The patties lacked the meat aroma and also a brown color was not developed in the crust as a result of the Maillard reaction. However, the mutagenic activity increased twofold to threefold when a small amount of glucose was added to the meat before frying [10].

Dolara and others [47] reported that the external surface of cooked meat show greater levels of mutagenic activity than the inner parts. It has been reported that cooking temperature and duration have a much greater influence on the formation of HCAs than the present of precursors (creatine, sugars, and free amino acids) or the amount of water of food [48,49]. Cooking temperature has been reported to be the most important parameter [34,50]. The concentrations of AIAs generally increased with cooking temperature [34,50]. In aqueous model system consisted of creatine, glucose and a blend of amino acids were heated at 150-225°C for 0.5 to 120 min in order to investigate the relation between temperature and time in the formation of HCAs led to rapid formation of IQx, MeIQx, 4,8DiMeIQx and PhIP but not IQ or MeIQ [50]. Most model system studies have been performed at 125-300°C. In liquid model systems for the formation of PhIP from phenylalanine, creatinine and glucose, the concentration of PhIP was increase when the temperature was increased from 180 to 225 C [51]. In meat or model systems, mutagenic activity or the formation of AIAs increased with processing time at 150–170°C. However, the concentrations of HCAs increased during the initial period of processing and then decreased at higher temperatures (190–250°C) [24,52]. Formation of HCAs can be minimized if the cooking temperature is kept low and constant. In domestic cooking, temperature is generally below 200°C. Increase in cooking time and temperature lead to increase the amounts of HCAs and PhIP level is higher at higher cooking temperatures and in longer cooking time [12,50,53,54]. Bjeldanes and others [30,55] reported that mutagenic activity in grilled meat increased rapidly during the initial 10 min and then decreased. They declared that the decreasing might be due to the formation of an obvious, distinct crust on the meats, which appears to inhibit further heat transfer to the interior of the meat. In addition coating foods with breadcrumbs before frying may reduce the formation of HCAs because of the insulating effect of coating [50].

Cooking method is another factor for the HCAs formation [56]. Investigations of various cooking methods have shown pan-frying and grilling/barbecuing to generally yield higher levels of HAAs than oven roasting, deep-fat frying, boiling or microwaving [57,58]. High concentrations of HAAs are formed during pan-frying, especially at temperatures, above 225°C [21]. Similarly Oz and others [59] reported that the highest total HCAs amount found in pan fried fish and no HCAs detected in fish fillet cooked with microwave or hot plate. Microwave, oven and hot plate cooking to all various doneness degrees in beef samples did not cause HCAs formation whereas barbecuing and pan frying led to HCAs formation in beef samples [60]. The heat transfer by air may be the explanation of the lower amounts of HAAs formed during oven cooking. In oven cooking also less mutagenic activity was formed in the presence of steam which affected the heat transport and decreased the surface temperature of products [34]. Oz et al. [61] found that microwaved cooked chicken had the lowest total HCAs amount and emphasized microwave pretreatment instead of direct microwave cooking. Microwave pretreatment of meat before frying decreases HCAs formation due to loss of HCAs precursors with the meat juice [28].

The lipid content of meat is also important for the formation of mutagenic activity in crust. However, the role played by lipids is not clear in the development of mutagenic activity. Most authors agree that there is an optimum lipid level for maximum formation of HCAs; in the case of ground meat, this level is between 10% and 20% [44]. Using added fats (butter, margarine or oils) in cooking dramatically increased the amounts of mutagenic compounds at above 200°C [62]. This also indicates that lipids are effective heat transfer agents.

Conclusion

HCAs are potent mutagens and/or carcinogens at ng/g levels in cooked foods and play an important role in the etiology of human cancer. Their formation is highly dependent on various factors such as cooking temperature, cooking method, cooking time, type of meat, fat, moisture content, pH, sugar, free amino acid and creatinine content of meat. In addition, heat and mass transfer, lipid oxidation and antioxidants have effect on concentration of HCAs. After evaluations based on high dose, long term animal studies and in vitro and in vivo genotoxicity tests IARC concluded that several HCAs present in cooked foods are possibly (2B) and probably (2A) carcinogenic to humans. Their formation is highly dependent on various factors such as lipids, protein content, sugar content, and cooking method.

References

1. Goldman R, Shields PG (2003) Food mutagens. J Nutr 133: 965S-973S.
2. Kulp KS, Fortson SL, Knize MG, Felton JS (2003) An in vitro model systems to predict the bioaccessibility of heterocyclic amines from a cooked meat matrix. Food and Chem Toxicol 41: 1701-1710.
3. Sugimura T (2002) Food and cancer. Toxicology 182: 17–21.
4. International Agency for Research on Cancer (1993) IARC monographs on the evaluation of carcinogenic risks to humans. In Some Natural Occurring Substances: Food Items and Constituents. Heterocyclic Amines and Mycotoxins, International Agency for Research on Cancer, Lyon 56: 163–242.
5. Knize MG, Sinha R, Rothman N, Brown ED, Salmon CP, et al. (1995) Heterocyclic amino acid content in fast-food meat products. Food Chem Toxicol 33: 545–551.

6. Stavric B (1994) Biological significance of trace levels of mutagenic heterocyclic aromatic amines in human diet: A critical review. Food Chem Toxicol 32: 977–994.

7. Nagao M, Honda M, Seino Y, Yahagi T, Sugimura T (1977) Mutagenicities of smoked condensates and the charred surface of fish and meat. Cancer Lett 2: 221–226.

8. Sanz AM, Ayala JH, González V, Afonso AM (2008a) Analytical methods applied to the determination of heterocyclic aromatic amines in foods. J Chromatogr B Analyt Technol Biomed Life Sci 862: 15–42.

9. Busquets R, Bordas M, Toribio F, Puignou L, Galceran MT (2004) Occurrence of heterocyclic amines in several home-cooked meat dishes of the Spanish diet. J Chromatogr B Analyt Technol Biomed Life Sci 802: 79–86.

10. Jägerstad M, Laser Reutersward A, Olsson R, Grivas S, Nyhammar T (1983) Formation of heterocyclic aromatic amines in cooked skillet chicken legs. J Food Process Pres 35: 433–441.

11. Skog K, Jägerstad M (1996) Effect of antioxidants in virgin olive oil on the formation of heterocyclic amines in fried beef patties. Food Chem Toxicol 34: 725–730.

12. Balogh Z, Gray JJ, Gomaa EA, Booren AM (2000) Reduction of heterocyclic aromatic amines in fast-food meat products. J Food Process Pres 22: 596–600.

13. Persson E, Graziani G, Ferracane R, Fogliano V, Skog K (2003) Influence of antioxidants in virgin olive oil on the formation of heterocyclic amines in fried beef products. Food Chem Toxicol 41: 1587–1597.

14. Ahn J, Grun IU (2006) Heterocyclic amines: 2. Inhibitory effects of natural extracts on the formation of polar and nonpolar heterocyclic amines in cooked beef. Journal of Food Science 70: 263–268.

15. Smith JS, Amer F, Gadgil P (2008) Effect of marinades on the formation of heterocyclic amines in grilled beef steaks. Journal of Food Science 73: 100–105.

16. Oz F, Yamaoka M (2011a) The inhibitory effect of red pepper on the formation of heterocyclic amines in fried beef. J Food Process Pres doi:10.1111/j.1745-4549.2011.00532.x.

17. Oz F, Yamaoka M (2011b) The inhibitory effect of red pepper on the formation of heterocyclic aromatic amines in high-fat meatballs. Food Control 22: 596–600.

18. Tikkkanen LM, Latva-Kala KJ, Henriko R-L (1996) Effect of commercial marinades on the mutagenic activity of fried ground beef patties. Food Chem Toxicol 34: 725–730.

19. Balogh Z, Gray JI, Hargraves WA (1995) Effects of time and temperature on the formation of mutagenic heterocyclic amines of two different species of trout. Food Chem 104: 67–72.

20. Knize MG, Dolbeare FA, Carroll KL, Moore DH, Felton JS (1994) Effect of cooking time and temperature on the heterocyclic amine content of fried beef patties. Food Chem Toxicol 32: 595–603.

21. Chiu CP, Yang DY, Chen BH (1998) Formation of heterocyclic amines in cooked chicken legs. J Food Prot 61: 712–719.

22. Övervikt E, Kleman M, Berg I, Gustafsson JA (1989) Influence of creativity, amino acids and water on the formation of heterocyclic aromatic amines found in cooked meat. Carcinogenesis 10: 2293–2301.

23. Felton JS, Knize MG (1991) Occurrence, identification and bacterial mutagenicity of heterocyclic aromatic amines in cooked food. Mutat Res 235: 205–217.

24. Skog K, Jägerstad M (1996) Effects of time and temperature on the formation of MelIQx and DiMeIQx in a model system containing threonine, glucose, and creatine. J Agric Food Chem 43: 1678–1684.

25. Kato T, Harashima T, Moriya N, Kokugawa K, Hiramoto K (1996) Formation of the mutagenic/carcinogenic imidazopyrazine type heterocyclic amines through unstable free radical Maillard intermediates and its inhibition by phenolic antioxidants. Carcinogenesis 17: 2469–2476.

26. Milić BL, Djilas SM, Canadanović-Brunet JM (1993) Synthesis of some heterocyclic amines. J Chromatogr A 694: 129–134.

27. Kizil M, Oz F, Besler HT (2011) A Review on the Formation of Carcinogenic/Mutagenic Heterocyclic Aromatic Amines. J Food Process Technol 2: 120. doi:10.4172/2157-7110.1000120
49. Lan CM, Kao TH, Chen BH (2004) Effects of heating time and antioxidants on the formation of heterocyclic amines in marinated foods. J Chromatogr B Analyt Technol Biomed Life Sci B 802: 27–37.

50. Skog K, Augustsson K, Steineck G, Stenberg M, Jägerstad M (1997) Polar and non-polar heterocyclic amines in cooked fish and meat products and their corresponding pan residues. Food Chem Toxicol 35: 555–565.

51. Arvidsson P, Van Boekel MAJS, Skog K, Jagerstad M (1997) Kinetics of formation of polar heterocyclic amines in a meat model system. Journal of Food Science 62: 911-916.

52. Skog K, Jägerstad M (1991) Effects of glucose on the formation of PhIP in a model system. Carcinogenesis 12: 2297-2300.

53. Gross GA, Gruter A (1992) Quantitation of mutagenic/carcinogenic heterocyclic aromatic amines in food products. J Chromatogr 592: 271–278.

54. Johansson M, Fredholm L, Bjerna I, Jagerstad M (1995) Influence of frying fat on the formation of heterocyclic amines in fried beefburgers and pan residues. Food and Chemical Toxicology 33: 993-1004.

55. Bjeldanes LF, Moms MM, Felton JS, Healy S, Stuermer D, et al. (1992) Mutagens from the cooking of food. II. Survey by Ames/Salmonella test of mutagen formation in the major protein-rich foods of the American diet. Food Chem Toxicol 20: 357–363.

56. Oz F, Kaya M (2011c) Heterocyclic aromatic amines in meat. J Food Process Pres doi:10.1111/j.1745-4549.2011.00524.

57. Sinha R, Rothman N, Brown ED, Salmon CP, Knize MG, et al. (1995) High concentrations of the carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) occur in chicken but are dependent on the cooking method. Cancer Research 55: 4516-4519.

58. Sinha R, Rothman N, Salmon CP, Knize MG, Brown ED, et al. (1998) Heterocyclic amine content in beef cooked by different methods to varying degrees of doneness and gravy made from meat drippings. Food Chem Toxicol 36: 278-287.

59. Oz F, Kaban G, Kaya M (2010) Effects of cooking techniques and levels on the formation of heterocyclic aromatic amines in chicken and fish. J Anim Vet Adv 9: 1259-1264.

60. Oz F, Kaban G, Kaya M (2010b) Heterocyclic aromatic amine contents of beef and lamb chops cooked by different methods to varying levels. J Anim Vet Adv 9: 1436-1440.

61. Oz F, Kaban G, Kaya M (2010) Effects of cooking methods and levels on formation of heterocyclic amines in chicken and fish with Oasis extraction method. Food Science and Technology 43: 1345-1350.

62. Nilsson L, Övervik E, Fredholm L, Levin O, Nord CE, et al. (1986) Influence of frying fat on mutagenic activity in lean pork meat. Mutat Res 171: 115–121.