Living cockroach genus *Anaplecta* discovered in Chiapas amber (Blattaria: Ectobiidae: *Anaplecta vega* sp.n.)

Peter Barna¹, **Lucia Šmídová** Correspond., ², **Marco Antonio Coutiño José**³

¹ Slovak Academy of Sciences, Earth Science Institute, Bratislava, Slovakia
² Institute of Geology and Paleontology, Charles University, Prague, Czech Republic
³ Secretaria de Medio Ambiente e Historia Natural, Museo de Paleontología Eliseo Palacios Aguilera, Tuxtla Gutiérrez Chiapas, México

Corresponding Author: Lucia Šmídová
Email address: smidovaluc@natur.cuni.cz

Cenozoic cockroaches are recent and with two indigenous exceptions, based on their fragmentary preservation state, they cannot be discriminated formally from representatives of living genera. *Anaplecta vega* sp.n. – the second described cockroach from Miocene (23 Ma) Simojovel amber (Mexico: Chiapas: Los Pocitos) is characterized by a slender, under 5 mm long body, prolonged mouthparts bearing long maxillary palps with a distinct flattened triangular terminal palpomere, large eyes and long slender legs with distinctly long tibial spines. Some leg and palpal segments differ in dimensions on the left and right sides of the body, indicating (sum of length of left maxillary palpomeres 65% longer than right; right cercus 13% longer than left cercus) dextro-sinistral asymmetry. The asymmetrically monstrous left palp is unique and has no equivalent. In concordance with most Cenozoic species, the present cockroach does not show any significantly primitive characters such as a transverse pronotum characteristic for stem Ectobiidae. The genus is cosmopolitan and 10 species live also in Mexico, including Chiapas, today. Except for indigenous taxa and those characteristic for America, this is the first Cenozoic American cockroach taxon representing a living cosmopolitan genus, in contrast with representaties of *Supella* Shelford, 1911 from the same amber source that are now extinct in the Americas.
Living cockroach genus *Anaplecta* discovered in Chiapas amber

*(Blattaria: Ectobiidae: *Anaplecta vega* sp.n.)*

PETER BARNA¹, LUCIA ŠMÍDOVÁ²* and MARCO ANTONIO COUTIÑO JOSÉ³

1 Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, P.O. BOX 105, 840 05 Bratislava 45, Slovakia; peter.barna@savba.sk

2 Charles University, Institute of Geology and Palaeontology, Albertov 6, 128 43, Prague, Czech Republic; smidovaluc@natur.cuni.cz

3 Secretaria de Medio Ambiente e Historia Natural, Museo de Paleontología Eliseo Palacios Aguilera, Tuxtla Gutiérrez Chiapas, México; coutinojma@hotmail.com

* corresponding author

ABSTRACT

Cenozoic cockroaches are recent and with two indigenous exceptions, based on their fragmentary preservation state, they cannot be discriminated formally from representatives of living genera. *Anaplecta vega* sp.n. – the second described cockroach from Miocene (23 Ma) Simojovel amber (Mexico: Chiapas: Los Pocitos) is characterized by a slender, under 5 mm long body, prolonged mouthparts bearing long maxillary palps with a distinct flattened triangular terminal palptomere, large eyes and long slender legs with...
distinctly long tibial spines. Some leg and palpal segments differ in dimensions on the left and right sides of the body, indicating (sum of length of left maxillary palpomeres 65% longer than right; right cercus 13% longer than left cercus) dextro-sinistral asymmetry. The asymmetrically monstrous left palp is unique and has no equivalent. In concordance with most Cenozoic species, the present cockroach does not show any significantly primitive characters such as a transverse pronotum characteristic for stem Ectobiidae. The genus is cosmopolitan and 10 species live also in Mexico, including Chiapas, today. Except for indigenous taxa and those characteristic for America, this is the first Cenozoic American cockroach taxon representing a living cosmopolitan genus, in contrast with representaties of *Supella* Shelford, 1911 from the same amber source that are now extinct in the Americas.

Introduction.

The stem Dictyoptera, containing all cockroaches, originated in the Late Carboniferous (Zhang *et al.* 2012, Calisto & Piñeiro, 2019) and adapted during their evolution to various environments, leading to diverse morphological adaptations including diversification of the Order Mantodea (mantises) during the Late Jurassic/Early Cretaceous (Legendre *et al.*, 2015; Vršanský & Aristov 2014).

Anaplecta is a cockroach genus currently placed within Ectobiidae, a family that evolved during the Mesozoic (Vršanský, 1997). Species in the subfamily Anaplectinae are small, beetle-like and mostly active during the night (Rentz, 2014). Both sexes are fully winged and can be found in the leaf litter of rainforests (Foottit & Adler, 2017).
There are several works concerning cockroaches and termites preserved in Mesozoic ambers written by Grimaldi & Ross (2004), Vršanský (2004, 2008ab, 2009, 2010), Anisyutkin & Gorochov (2008), Poinar (2009), Vršanský et al. (2011, 2013ab, 2014, 2018abc, 2019), Vršanský & Bechly (2015), Bai et al. (2016, 2018), Poinar & Brown (2017), Sendi & Azar (2017), Šmídová & Lei (2017), Vršanský & Wang (2017), Kočárek (2018ab), Li & Huang, (2018), Mlynský et al., 2019 and Podstrelená & Sendi (2018), Sidorchuk & Khaustov (2018), Qui et al. (2019 ab). In total, we know 11 families recorded in Mesozoic ambers out of which 3 are still living. There are 59 Cenozoic cockroaches (including the newly described *A. vega*) as listed in Table 1. (TABLE 1 NEAR HERE)

The Miocene Mexican amber originated from resinous exudates of *Hymenaea* sp., a leguminose tree developed near the ancient coast, in estuarine environments, very similar to mangroves (Poinar 1992) and is well studied with precise dating at 23Ma (Vega et al. 2009) and with more than 110 currently cataloged insect species (EDNA fossil insect database active 20/11/2018 and Vršanský et al. 2011). Cockroaches are represented by the genus *Ischnoptera* Burmeister, 1838 reported by Solórzano-Kraemer (2007, although the identification needs further support) and *Supella miocenica* (Vršanský et al. 2011).

The extant genus *Anaplecta* is today a widely distributed circumtropic taxon (see Beccaloni 2014) and its ecology remains very little known. Fossils of the genus *Anaplecta*, aside from Mexican amber are also known from Eocene Baltic amber and Chinese ambers (P. Barna; 1.11. – 20.11.2013, Moscow, PIN RAS and private collection V. Gusakov, specimen number PIN 964/1322; personal observation) and undescribed *Anaplecta* are also reported from Dominican
amber (Gutiérrez & Pérez-Gelabert 2000), but it is unclear whether the mentioned specimens do not represent the common *Plectoptera electrina* Gorokhov et Anisyutkin in Gorokhov (2007) – locations are marked in Fig. 1E.

(Figure 1 Near Here)

Material and methods.

The studied holotype of *Anaplecta vega*, sp.n. (catalogue number IHNFG-5323) comes from Miocene (23Ma) Simojovel amber (Mexico: Chiapas), Los Pocitos (92°43’46”W, 17°08’53”N). The specimen is stored in Paleontological Collection of the Museo de Paleontología “Eliseo Palacios Aguilera”, ascribed to Secretaría de Medio Ambiente e Historia Natural (SEMAHN) of the Chiapas Government, Mexico under the catalogue number IHNFG-5323.

The specimens *Anaplecta xanthopeltis* Hebard, 1921 (MNHN-EP-EP1398) and *Anaplecta maronensis* Hebard, 1921 (MNHN-EP-EP1385), used for comparison with living *Anaplecta*, are deposited at the National Museum of Natural History in Paris, France.

Photographs were taken with a KEYENCE digital microscope, which took pictures from different locations and focal depth and then automatically combined them into a single stacked photo. This type of picture was also used as a basis for making a highly detailed line drawing in CorelDrawX3, where we used additional photographs of separate parts of the cockroach body. These were taken with a LEICA MZ6 binocular loupe and LEICA EC3 camera. The dorsal drawing was manually made using a drawing ink pen applied over a transparent paper.

Abbreviations used: l= length; w= width (all in mm).
The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: [article: urn:lsid:zoobank.org:pub:FD6F76DB-BF88-4FBA-8737-F00B408C54E1]. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central and CLOCKSS.

SYSTEMATIC PALAEONTOLOGY

Order Blattaria Latreille, 1810 (= Blattodea Brunner von Wattenwyl, 1882)

Family Ectobiidae Brunner von Wattenwyl, 1865

Subfamily Anaplectinae Walker, 1868

Genus *Anaplecta* Burmeister, 1838

Type species: *Anaplecta lateralis* Burmeister, 1838

Composition. An up-to date list can be found in the online database ‘Cockroach Species File Online’, which was founded by George Beccaloni (2014) based on the world catalogue of cockroaches compiled by Karlis Princis (1962, 1963, 1964, 1965, 1966, 1967, 1969).
Occurrence. Circumtropical; during Eocene also in Baltic, Dominican and China areas (in preparation by authors), which had a subtropical climate that time. Stratigraphic range: Eocene-living.

Anaplecta vega sp.n.

(Figs. 1A-D, 2A-C)

Types. One complete adult specimen (Holotype kept in Paleontological Museum in Tuxtla, Mexico) with folded wings, probably male, enclosed in a small piece of amber. Catalogue number IHNFG-5323.

Type horizon and locality. Lower Miocene, Mazantic Shale. Los Pocitos locality NW from Simojovel de Allende in Chiapas, Mexico. 92°43'46"W, 17°08'53"N.

Material. Type only.

Etymology. After VEGA (Vedecká Grantová Agentúra – Research grant agency of the Slovak Republic) and also after Dr. Francisco Vega (UNAM, Mexico city) who did so much for progressing research on Chiapas amber.

Differential diagnosis. Small slender roach with body l= 4.89 (excluding antennae and cerci) and w= 2.00; subtriangular rounded pronotum; prolonged head with unique large eyes and huge asymmetrical maxillary palps; antennae similar in length as the body; tegmina reaching apex of abdomen; long slender legs bearing long tibial spines.
Differs from all species, except for *A. xanthopeltis*, in having a derived simplified form of the pronotum (without paranotalia and transverse shape) and, except for *A. maronensis*, a derived reticulated forewing venation.

Differs from recent species from Mexico (since this genus contains a large number of species worldwide and no other fossil species of this genus were described from this area): *A. azteca* Saussure, 1868 is larger, its pronotum is double the length and width of the pronotum of *A. vega*, the pronotum length is 1/3 of tegmina length, while in *A. vega* it is 1/4.

A. fallax Saussure, 1862 has quite a similar tegmina length and total body length, but the pronotum is distinctly larger, can reach almost two times the dimension of the pronotum of *A. vega*; the pronotum length can be more than 1/3 or even 1/2 of the tegmina length. Anterior margin ascending under sharper angle from the distal third of tegmen length forming a rounded angle, while in *A. vega* it is at the beginning of the most distal fifth of the tegmen length.

A. mexicana Saussure, 1868; while having a similar tegmina length and pronotum length ratio, the whole body is significantly larger and the tegmina length is double the tegmina length of *A. vega*. The shape of tegmina differs with the anterior margin slightly sinusoid without any pronounced angulation, the tegmina apex is more broadly rounded and positioned around the middle of the tegmen width. *A. nahua* Saussure, 1868 is larger, the tegmina length: pronotum length ratio is quite similar to that of *A. vega*.

A. otomia Saussure, 1869 is larger, dark colored, pronotum with nearly opaque lateral margins, tegmina in apical third strongly narrowed unlike *A. vega*. Its anterior margin does not look angular in the apical fifth and is curved smoothly, and the radius area of the tegmina is much narrower.
A. saussurei Hebard, 1921 has a similar size and similar shaped tegmina as A. vega, but the tegmina reach slightly beyond the cercal apices, are slightly wider, their anterior margin in the basal part is almost straight, the clavus is distinctly longer and wider, the pronotum is larger and the pronotum length is 1/3 of the tegmina length.

A. tolteca Saussure, 1868 is larger but the tegmina length: pronotum length ratio is the same as in A. vega.

A comparison of dimensions of A. vega n. sp. and the above mentioned Mexican species is presented in Tab. 2A; a comparison of A. vega n. sp. dimensions and an average of the mentioned Mexican species dimensions is shown in Tab 2C.

(Figure 2 near here)

Description.

Detailed measurements are in the Table 2.

Body small and slender (l= 4.89, w= 2.00), tegmina reaching apex of abdomen, legs long and slender carrying large tibial spines, antennae similar in length to the body.

Pronotum subtriangular, rounded, cranially arched over head (l= 1.00, w= 1.27), long erect setae sparsely distributed along pronotum margin and on its dorsal surface. Pronotum length is 1/4 of tegmina length.

Scutellum triangular, cranio-caudally prolonged (length of scutellum part not covered by pronotum= 0.29, w= 0.14).
Tegmina total l = 4.04, l of part not covered by pronotum = 3.89, left tegmen w = 1.28; visible left clavus l = 1.16, w = 0.67. Basal half of tegmina inflated with exception of anterior peripheral areas (costal area, part of radial area). Anterior margin in the apical fifth of tegmen length starts to tilt posteriad more strongly, which gives it an angular look. Apex postero-apically sharpened. Costal area wide. Radial field in apical half wide, branches of radius almost all simple (one secondary dichotomy observed in right tegmen, left tegmen veins weakly visible). Surface sclerotized, but not fully elytrized, without prominent structures. Sparsely distributed medium sized setae occur at anterior and apical margins of tegmina and medium sized to long setae on tegminal veins. Only a very small portion of right tegmen is covered by left tegmen. Clavus l = 1.16 (only the visible uncovered part), w = 1.23.

Hind wings covered by tegmina, folded in half as standard for the genus.

Head with prolonged mouthparts and large eyes, which in lateral view cover almost the entire head excluding mouthparts; head w = 0.76, length from top of vertex to distal part of mandibles = 0.91, distance from occipital foramen to top of frons = 0.47; eyes subovoid in lateral view, eye length (parallel to head length) = 0.42, eye width (perpendicular to eye l) = 0.34, interocular w = 0.4 mm. Three medium-sized setae positioned between left eye ommatidia near gena. Vertex sparsely covered by setae ranging from short to very long; frons and clypeus with few distinctly long setae, gena posteriorly with three distinct medium sized setae and smaller thin setae along eye margin. Maxillary palps long with broad triangular terminal segment; dimensions of palpomeres of right and left maxillary palp differ (right 1st palpomere l = 0.13, w = 0.06; left 1st palpomere l = 0.13, w = 0.09; right 2nd palpomere l = 0.1, w = 0.05; left 2nd palpomere l = 0.14, w = 0.07; right 3rd palpomere l = 0.31, w = 0.06; left 3rd palpomere l = 0.4, w = 0.09; right 4th palpomere l = 0.17, w = 0.07; left 4th palpomere l = 0.29, w = 0.14; right 5th palpomere l = 0.27, w
unmeasurable due to position of the cockroach body in the amber; left 5th palpomere l= 0.34, w= 0.21, apical contacting surface 0.34; plot of left and right palpomeres length comparison is shown in Tab. 2B. Labial palps considerably smaller than maxillary palps, terminal palpomere triangular, distally widened. Only 2nd and 3rd left labial palpomere sufficiently visible to be measured: 2nd left palpomere l= 0.11, 3rd left labial palpomere l= 1.13.

Antennae length similar to body length. First three antennomeres only with few setae, more distal antennomeres are richly covered by distinct setae, which exceed and in some parts double the width of antennomeres.

Scape large (left l= 0.33; right l= 0.29) with wide proximal half (left w= 0.13) and sharp transition into narrower distal half (w= 0.09), distal ending oblique with five setae.

Pedicel cylindrical (left l= 0.21, left w= 0.08; right l= 0.2), distal end oblique with distinct sharp angle at one side and wider than proximal end. Proximal third swollen on one side. Setae very few in number.

Segments of flagellum, 32 in left antenna, 28 in right antenna. Each segment is more or less wider in its distal part than in its proximal part. Setae longer than the width of flagellar segments.

First flagellar segment (third antennomere) slightly elongated, length is almost two times as its largest width (left l= 0.14, w= 0.07). Following basal flagellomeres are short almost square shaped flagellomeres only slightly longer than wide. The subsequent row of flagellomeres has a lengthening trend distad.

Tab. 2E shows a chart that compares left and right antennomeres lengths of individuals.
Cerci 7-segmented. 1st cercomere and 7th cercomere thinner than the rest, while the 7th distinctly tapers distally forming a sharp end, cercomeres 2-6 sublenticullar, being similar in shape and size. Left cercus total l= 1.00, right cercus total l= 1.13; Setae on cercomeres have different dimensions, from small ones ranging from 1/3 or 1/4 of the cercomere length to thicker prominent setae approximately the size of the cercomere length (maximal l= 0.21, but majority around 0.14) and long thin setae the size of two or three cercomeres which occur at the rate of 1 or 2 per cercomere. The entire surface of the cerci is also covered by very small short microsetae.

Legs slender and very long (hind legs longer than body) with large spines (longer than tarsomeres, except the 1st tarsomere) on tibia and distal end of femur.

Fore coxae subtrigonal with convex anterior margin, widest before middle, more slender in distal half. Few setae present along the posterior margin.

Fore trochanteri very thin, barely visible.

Fore femora slender (left fore femur l= 1.29, w= 0.2, right fore femur l= 0.67, maybe more, visibility obscured by damage of amber) with subparallel ventral and dorsal margins, which are only slightly convex, narrower in proximal part and in distal third of their length. Anteroventral margin in distal half with 20± shorter spines, posterovenetal margin with 13 (observed) longer setae sparsely distributed along fore femur length, two thicker spines present on anterior surface of proximal half of fore femur. Terminally three long serrated spines present: anteroventral, posteroventral, anterodorsal. Rest of forefemoral surface covered only by a low number of shorter setae, mostly concentrated in dorsal part.
Fore tibiae distinctly more slender than fore femora, generally retaining similar width (w = 0.07) throughout its length (left fore tibia l = 0.89, right fore tibia l = 0.73), except for the thinner arched proximalmost spineless part (w = 0.06), and neglectable changes of width due to elevations around large, articulated, serrated spines; these spines are up to 0.29 long and 0.01 wide with three spines in the middle third of the tibial length and two peripheral spines facing dorsad, the middle one facing posteriad. Four large spines are at the distal end of the tibia (1 anteroventral, 1 anterior, 1 dorsal, 1 posterior). Distribution of large spines is the same on both right and left fore tibiae. Along dorsal and ventral side and distal half of anterior surface are sparsely distributed medium-sized setae.

Fore tarsi being 5-segmented, very slender, covered by setae exceeding their width (w = 0.04), terminated by trilobal arolium and two thin arcuate, more or less symmetrical claws with widened bases.

Middle coxae (distal part obscured by damage in amber and another leg) larger and wider than fore coxae, on posterior margin few setae present; distal end has distinct smaller lobe with 6 longer setae.

Middle trochanteri wide (width is only a little less than length), slightly curved.

Middle femora elongated with slightly convex dorsal and ventral side (ventral side being almost straight) with bigger width around the middle of length (left middle femur l = 1.44, w = 0.22 mm; right middle femur l = 0.91, w = 0.17). Setae sparsely distributed around dorsal margin, ventral margin with 6 larger thick setae and 1 – 2 medium-sized setae between each two consequent larger setae; on proximal half of middle femur present anteroventrally two longer, anterad facing
spines; on distal end of middle femur present 3 large serrated spines, one anteroventrally, one
posteroventrally and one dorsally.

Middle tibiae similar in length (left tibia l= 1.16, right tibia= 1.11), but left tibia 1/6 shorter than
left middle femur, right tibia 1/5 longer than right middle femur; width varying along tibial
length as result of elevations at the bases of spines (minimum w= 0.07, maximum w= 0.1); 10
large serrated spines (maximal l= 0.36, w= 0.01) facing differently (on left middle tibia 1
anteroventral, 1 posteroventral, 4 anterodorsal 4 posterodorsal) along tibial length, 4 terminal
large serrated spines (anteroventral, posteroventral, posterodorsal, anterodorsal) and one shorter
spine (posteroventral).

Middle tarsi 5-segmented, slender, covered by medium sized setae exceeding tarsal width (w=
0.04 mm), terminated by two arched slender claws with widened bases and trilobal arolium.

Hind coxae badly visible.

Hind trochanteri slender, slightly curved with few setae, left hind trochanter l= 0.43, w= 0.11;
right hind trochanter l= 0.46, w= 0.09.

Hind femora larger than fore and mid femur (l= 1.4, w of right hind femur= 0.31, left one in
wrong position to be measured) with biggest width in the middle of their length, distal end
slightly widened, ventral side only slightly convex, dorsal side more convex. Numerous short
setae scattered through whole surface of femur. Setae sized from short to long present along
dorsal femoral margin, getting longer distad; at anterior surface setae with dark bases present at
an arched line subparallel to the dorsal side of femur, which proximally starts around the middle
of hind femur width, approaching dorsal side of hind femur distad. Dorsal and anterior setae are
longer on left fore femur. Anteroventral edge with medium-sized setae and two large spines in
the middle third of hind femur length. Posteroventral edge with five long setae (left hind femur) and shorter setae between them. Terminally three long serrated spines present: anteroventral, posteroventral, anterodorsal.

Hind tibiae longer than fore and mid tibiae (left hind tibia l= 1.89, right hind tibia l= 2.13) near double length of middle tibiae, width of hind tibiae is weakly varying due to elevations at bases of larger spines, but not showing a significant narrowing or widening trend (maximal w= 0.13), exception is the proximal 1/6 which is more slender (w= 0.1 mm). Each hind tibia has along its length 17 long serrated spines (3 anteroventral, 2 posteroventral, 7 anterodorsal, 5 posterodorsal) and 5 long serrated terminal spines (1 anteroventral, 2 posteroventral, 1 posterodorsal, 1 anterodorsal), which makes together 22 spines on one hind tibia (maximal spine l= 0.5 mm maximal w= 0.02). Medium sized seatae are sparsely distributed along ventral and dorsal margin (up to 4 between two spines).

Hind tarsi larger than fore and mid tarsi, 5-segmented, slender, covered by medium sized setae most of which equal in size or exceeding tarsal width (w= 0.06), terminated by two arched slender claws with widened bases and trilobal arolium (pulvilli absent or indistinct). 1st tarsomere very long with almost same width throughout its length, in proximal part slightly thinner; covered by distinct medium sized setae, most prominent is the ventral row of setae, other areas have less densely distributed thinner setae; subsequent tarsomeres have the same length on left and right hind leg.

Comparison of length of each leg femora, tibiae and tarsomeres is visible in Tab. 2D.

Occurrence. Lower Miocene, 23Ma. Chiapas amber, Mexico.
The assignment of the herein described specimen to the subfamily Anaplectinae is in accordance with Grandcolas (1996). The majority of autapomorphies listed there are observable also in *A. vega*. Long, straight setae on pronotum, strong sharp apophysis on the anterior arch and transverse folding of hind wings are present. However, the vannus with short successive dichotomies on its first vein was not observed. The studied specimen was assigned to the genus *Anaplecta* on the basis of the overall body shape, shape of the pronotum, smooth dorsal half of the body, large axe-like terminal mandibular palpomere (however, it does not have the same length as the former palpomere, as mentioned in the original description of the genus), coriaceous tegmina, hind wings folded in half, arrangement of femoral setae and spines, large cerci, and tarsomeres without pulvilli. The specimen is most similar to and compared with the holotypes of South American *A. xanthopeltis* Hebard, 1921 and *A. maronensis* Hebard, 1921, which have the same type of pronotum, overall tegmina shape, tegmina type of venation and hind wings folding. Anaplectinae is usually considered a problematic group with an interesting systematic background. It is manifested both in morphological and molecular analysis as a “long branch”, the most basal, earliest derived group among extant standard cockroaches according to the molecular analyses (Klass & Meier, 2006; Legendre et al., 2015). In contrast, the fossil record reveals earlier branched Ectobiidae and Blattidae (Sendi & Azar, 2017) and *Anaplecta* is considered more recent.
It is an interesting fact, that the evolution of this group is accelerated, which is not only reflected in sclerotisation of the fore wing, but also in simplification of venation, which probably happened due to miniaturization of the body. The large asymmetry in leg dimensions on the left and right sides of the body (Tab. 2D) and distinctly larger left maxillary palpomere (Tab. 2B) are also evidence of nonstandard evolution of the genus *Anaplecta*.”

The coriaceous tegmina are not sclerotized completely enough to be considered as elytrised, which is also seen in living *A. maronensis*.

In respective descriptions of living Mexican species the data about the ecology of *Anaplecta* are missing. The diversity of the genus is very high in rainforest areas. Evangelista et al. (2015) highlight 4 species in Amazonas (Venezuela), 4 species in Guyana, 10 species in Suriname, 9 species in French Guiana, 10 species in Ampa (Brazil); Vidlička (2013) mentions 10 species in Ecuador; 8 species (including the new species) are known from Mexico based on the works of Saussure (1862, 1868, 1869) and Hebard (1921).

The genus *Anaplecta* has presently a circumtropical distribution, and the (sub)tropical climate supports the newly described species as well. Fossil *Anaplecta* species are also known from Eocene Baltic Kaliningrad and Chinese ambers - the climate during Eocene in these areas was subtropical (Grimaldi 1996), and from the related Dominican amber (nevertheless, the Dominican species are undescribed and taxonomical placement needs confirmation - see above).

The palaeogeographical inferences are principal, as it has been shown that the Eocene North American fauna (major locality Green River, Colorado, U.S.A. but also more northern localities in Canada – Greenwood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna of Chiapas amber was cosmopolitan, while younger Dominican amber contains modern,
American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information on whether *Anaplecta*, inhabiting Americas today, is a native trace of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigation.

The detailed phylogenetic study of Djernaes *et al.* (2014) and Vidlička *et al.* (2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and Isoptera based on what seems to be a very primitive taxon. However, according to our morphological and taphonomical (i.e., absence in the rich Mesozoic record counting 30,000 sedimentary and over 3,000 amber specimens) observations, *Anaplecta* is a modern (plesiomorphy such as non-fully elytrised tegmina of the present species are also shared with some living representatives – see above) and developed genus typical of the Cenozoic.

The asymmetry of genitalia is common and appeared repeatedly during the insect evolution (Huber *et al.* 2007), it is even part of the original ground plan in the whole order Dictyoptera. Asymmetries in left-right axis of other body parts can be also found among insects (Smith *et al.* 1997). The fluctuating asymmetry can predict developmental instability of the individual (Dongen, 2006). In that case, the studied individual was vital and the unevenness of certain body parts did not affect the fitness or if it did, not fatally. The difference between left and right hind legs is neglectable (Femur (F)=1.014[r]/ Tibia (T)=1.12[r]/ Tarsomere (Ta1=1.08[l]/ Ta2=1/ Ta3=1/ Ta4=1/ Ta5=1). It explains the importance of the hind leg in the movement (Hughes, 1951). In contrast, the front femur leg (also important in the movement) is highly asymmetrical. The biggest difference can be found between the left and right femur (the left femur is almost twice as big). Also, the overall asymmetry is more evident (F= 1.93[l]/
T=1.2[l]/ Ta1= 1.03[r]/ Ta2=1.14[r]/ Ta3=1/ Ta4=1.16[l]/ Ta5=1.81[r]). The most asymmetrical tarsomeres can be observed in the middle leg (F=1.41[l]/ T=1.25[l]/ Ta1=1.65[r]/ Ta2=1.71[r]/ Ta3=1.33[r]/ Ta4=1.75[l]/ Ta5=1.63[r]).

The expansion of extremities longitudinally could have been caused *post mortem*, by tension of polymerizing resin. The structure of resin can be modified due to conditions such as temperature, humidity change, etc. These changes can affect the state of preservation of the inclusion (Poinar & Mastalerz, 2000).

The irregularity in length of extremities could have also happened while attempting to escape after being embedded in resin, which often even leads to disarticulation (Martínez-Delclòs et al. 2004).

CONCLUSIONS

The Miocene cockroach *Anaplecta vega* sp.n. represents an extinct species of an extant genus and is consistent with a cosmopolitan pattern of Cenozoic occurrences. Its closest relatives live in South America, with which it shares the pronotum shape, tegmina shape and venation, and hind wing folding. Since the living representatives of *Anaplecta* prefer warm climates, *Anaplecta vega* probably also lived in warm (sub)tropical areas. It is the second cockroach species described from Chiapas amber, Mexico and belongs to the subfamily Anaplectinae, family Ectobiidae. The described individual shows noticeable asymmetries in maxillary palpomeres length, right cercus and some leg segments. The asymmetry regarding the genotypic or phenotypic origin remains obscure and needs further study.

REFERENCES
ANISYUTKIN, L.N. 2008. *Paraeuthyrrhapha groehni* gen. et sp. nov., a new genus of the family Polyphagidae (dictyoptera) from Baltic amber and its phylogenetical position. *Alavesia* 2, 77-85.

ANISYUTKIN, L.N. & GOROCHOV, A.V. 2008. A new genus and species of the cockroach family Blattulidae from Lebanese amber (Dictyoptera, Blattina). *Paleontological Journal* 42(1), 44-47.

ANISYUTKIN, L.N. & GRÖHN, C. 2012. New cockroaches (Dictyoptera: Blattina) from Baltic amber, with the description of a new genus and species: *Stegoblatta irmgardgroehni*. *Trudy Zoologicheskogo Instituta* 316(3), 193–202.

ARCHIBALD, S.B, MATHEWES, R.W. 2000. Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. *Canadian Journal of Zoology* 78(8), 1441–1462.

BAI, M., BEUTEL, R.G., KLASS, K.D., ZHANG, W., YANG, X. & WIPFLER, B. 2016. †Alienoptera — A new insect order in the roach–mantodean twilight zone, *Gondwana Research* 39, 317–326.

BAI, M., BEUTEL, R. G., ZHANG, W., WANG, S., HÖRNIC, M., GRÖHN, C., YAN, E., YANG, X., WIPFLER, B. 2018 New Cretaceous Insect with a Unique Cephalo-thoracic Scissor Device. *Current Biology* 28(3), 438–443.

BECCALONI, G.W. 2014. *Cockroach Species File Online*. Version 5.0/5.0. World Wide Web electronic publication. <http://Cockroach.SpeciesFile.org> [accessed 06 February 2017].
BERENDT, G.C. 1836. Memoire pour servir a l'histoire des Blattes Antediluviennes. *Annales de la Societe Entomologique de France (Serie 1)*, 5, 539–546.

BRUNNER VON WATTENWYL, C. 1865. *Nouveau Systume des Blattaires*. 426 pp. Vienna, Austria.

BURMEISTER, H. 1938. *Handbuch der Entomologie*, vol. 2, part 2a. 312 pp. G. Reimer, Berlin.

CALISTO, V., PIÑEIRO, G. 2019. A large cockroach from the mesosaur-bearing Konservat-Lagerstatte (Mangrullo Formation), Late Paleozoic of Uruguay. *PeerJ* e6289.

CUI, Y., EVANGELISTA, D., BÉTHOUX, O. 2018. Prayers for fossil mantis unfulfilled: *Prochaeradodis enigmaticus* Piton, 1940 is a cockroach (Blattodea). *Geodiversitas* 10, 355–362.

COCKERELL, T.D.A. 1920. Fossil Arthropods in the British Museum, I. *Annals and Magazine of Natural History* (series 9) 5, 273–279.

DJERNAES, M., KLASS, K.D. & EGGLETON, P. 2014. Identifying possible sister groups of Cryptocercidae + Isoptera: A combined molecular and morphological phylogeny of Dictyoptera. *Molecular Phylogenetics and Evolution* 84, 284–303.

DONGEN, S.V. 2006. Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. *Journal of Evolutionary Biology* 19, 1727–1743.

EVANGELISTA, D.A., CHAN, K., KAPLAN, K.L., WILSON, M.M. & WARE, J.L. 2015. The Blattodea s.s. (Insecta, Dictyoptera) of the Guiana Shield. *Zookeys* 457, 37–87.

FOOTTIT, R., AND PETER H. Adler. 2009. *Insect biodiversity: science and society*. Chichester, UK: Wiley-Blackwell.
Foster, B. 1891. Die Insekten des "plattigen Steinmergels" von Brunnstatt. *Abhandlungen zur geologischen Spezialkarte von Elsass-Lothringen* 3, 333–594.

Germer, E.F. 1813. Insekten in Bernstein eingeschlossen, beschrieben aus dem academischen Mineralien-Cabinet zu Halle. *Magazin der Entomologie* 1, 11–18.

Germer, E.F. & Berendt, G.C. 1856. Die im Bernstein befindlichen Hemipteren und Orthopteren der Vorwelt, 1–40. In Berendt, G.C. (ed.) *Die im Bernstein befindlichen organischen Resten der Vorwelt*. Berlin.

Giebel, C.G.A. 1856. *Fauna der Vorwelt, Bd II. Die Insecten und Spinnen der Vorwelt*. 511 pp., F.U. Brodhaus, Leipzig.

Giebel, C.G.A. 1862. Wirbelthier- und Insektenreste im Bernstein. *Zeitschrift für die gesammten Naturwissenschaften* 2(1), 311–322.

Gorokhov, A.V. 2007. New and Little Known Orthopteroid Insects (Polyneoptera) from Fossil Resins: Communication 2. *Paleontological Journal* 41(2), 156–166.

Gorokhov, A. V., Anisyutkin, L. N. 2007. Taxonomic names, in New and little known orthopteroid insects (Polyneoptera) from fossil resins: communication 2. *Paleontological Journal* 41, 156–166.

Greenwalt, D.E. & Vidlička, Ľ. 2015. *Latiblattella avita* sp. nov. (Blattaria: Ectobiidae) from the Eocene Kishenehn Formation, Montana, USA. *Palaeontologia Electronica* 18, 1.

Greenwood, G.R., Archibald, S.B., Mathewes, R.W. & Moss, P.T. 2005. Fossil biotas from the Okanagan highlands, southern British Columbia and northeastern Washington state:
climates and ecosystems across an Eocene landscape. *Canadian Journal of Earth Science*

42(2), 167–185.

Grimaldi, D.A. 1996. *Amber: Window to the Past: Harry N. Abrams, American Museum of Natural History.* 216 pp.

Grimaldi, D.A. & **Ross, A.J.** 2004. *Raphidiomimula,* an enigmatic new cockroach in Cretaceous amber from Myanmar (Burma) (Insecta: Blattodea: Raphidiomimidae). *Journal of Systematic Palaeontology* 2(2), 101–104.

Gutiérrez, E. & **Pérez-Gelabert, D.E.** 2000. Annotated Checklist of Hispaniolan Cockroaches. *Transactions of the American Entomological Society* 126(3/4), 423–446.

Haupt, H. 1956. Beiträge zur Kenntuis der eozänen Arthropodenfauna des Geiseltales. *Nova Acta Leopoldina NS* 18, 1–90.

Hebard, M. 1921. Mexican records of Blattidae (Orthoptera). *Transactions of the American Entomological Society* 47(3), 199–220.

Heer, O. 1849. *Die Insektenfauna der Tertiargebilde von Oeningen und von Radoboj in Croatien Vol 2. Heuschreken, Florfliegen, Alderflugen, Schmetterlinge, und Fliegen.* 264 pp. Engelmann, Leipzig.

Heer, O. 1864. *Die Urwelt der Schweiz.* 366 pp. Friedrich Schulthess, Zurich.

Heer, O. 1868. Fossile Insecten von Nordgrönland. Flora Fossilis Arctica: Die Fossile Flora der Polarländer 1, 129–130.
HEER, O. 1870. Die Miocene Flora und Fauna Spitzbergens. Mit einen Anhang über die Diluvialen Ablagerungen Spitzbergens. Kongliga Svenska Vetenskapsakademiens Avhandlingar I Naturskyddsarenden 8(7), 1–98.

HEYDEN, C.H.G. von. 1862. Gliedertiere aus der Braunkohle des Niederrheins, der Wetterau und der Rhon. Palaeontographica 10, 62–82.

HÖRNIG, M.K., SOMBKE, A., HAUG, C., HARZSCH, S. & HAUG, J.T. 2016. What nymphal morphology can tell us about parental investment - a group of cockroach hatchlings in Baltic amber documented by a multi-method approach. Palaeontologia electronica 19, 1, A6-A6.

HONG, Y.C. 2002. Amber Insects of China [In Chinese]. 653 pp. Scientific and Technical Publishing House.

HUBER, B. A., SINCLAIR, B. J. & SCHMITT, M. 2007. The evolution of asymmetric genitalia in spiders and insects. Biological Reviews 82(4), 647–698.

HUGHES, G. M. 1952. The Co-ordination of Insect Movements. Journal of Experimental Biology 29, 267–285.

KOČÁREK, P. 2018a. Alienopterella stigmatica gen. et sp. nov.: the second known species and specimen of Alienoptera extends knowledge about this Cretaceous order (Insecta: Polyneoptera). Journal of Systematic Palaeontology https://doi.org/10.1080/14772019.2018.1440440.

KOČÁREK, P. 2018b. The cephalo-thoracic apparatus of Caputoraptor elegans may have been used to squeeze prey. Current Biology 28(15), 824–825.
SOLÓRZANO KRAEMER, M. M., DELCLÓS, X., CLAPHAM, M. E., ARILLO, A., PERIS, D., JÄGER, P., STEBNER, F., PEÑALVER, E. 2018. Arthropods in modern resins reveal if amber accurately recorded forest arthropod communities. PNAS 115, 6739–6744.

LEGENDRE, F., NEL, A., SVENSON, G.J., ROBILLARD, T., PELLENS, R., GRANDCOLAS, P. 2015. Phylogeny of Dictyoptera: Dating the Origin of Cockroaches, Praying Mantises and Termites with Molecular Data and Controlled Fossil Evidence. PLoS One 10(7): e0130127.

LI, X.-R., HUANG, D. 2018. A new Cretaceous cockroach with heterogeneous tarsi preserved in Burmese amber (Dictyoptera, Blattodea, Corydiidae). Cretaceous Research 92, 12–17.

MARTÍNEZ-DELCLÓS, X., BRIGGS, D.E.G. & PEÑALVER, E. 2004. Taphonomy of insects in carbonates and amber. Palaeogeography Palaeoclimatology Palaeoecology 203(1-2), 19–64.

MAEKAWA, K., LO, N., ROSE, H.A. & MATSUMOTO, T. 2003. The evolution of soil-burrowing cockroaches (Blattaria : Blaberidae) from wood-burrowing ancestors following an invasion of the latter from Asia into Australia. Proceedings of the Royal Society B-Biological Sciences 270(1521), 1301–1307.

MEUNIER, F. 1921. Die Insektenreste aus dem Lutetien von Messel bei Darmstadt. Abhandlungen der Hessischen geologischen Landesanstalt zu Darmstadt 7(3), 2–15.

MLYNSKÝ, T., WU, H., KOUBOVÁ, I., 2018. Dominant Burmite cockroach Jantaropterix ellenbergeri sp.n. might laid isolated eggs together. Paleontographica Abteilung A 311. https://doi.org/10.1127/pala/2019/0091.
NAJARRO, M., PENALVER, E., ROSALES, I., PEREZ-DE LA FUENTE, R., DAVIERO-GOMEZ, V. & DELCLOS X. 2009. Unusual concentration of Early Albian arthropod-bearing amber in the Basque-Cantabrian Basin (El Soplao, Cantabria, Northern Spain): Palaeoenvironmental and palaeobiological implications. *Geologica Acta* 7(3), 363–387.

ORUŽINSKÝ, R., VRŠANSKÝ, P. 2017. Cockroach forewing area and venation variabilities relate. *Biologia* 72(7), 814–818.

PERRICHOT, V. 2004. Early Cretaceous amber from south-western France: insight into the Mesozoic litter fauna. *Geologica Acta* 2(1), 9–22.

PITON, L.E. 1936. Les Orthopteres tertiaires d'Auvergne. *Miscellanea Entomologica* 37, 77–79.

PITON, L.E. 1940. Paleontologie du gisement eocene de Menat (Puy-de-Dom) (Flore et Faune). *Memoires de la Societé d'Histoire Naturelle d'Auvergne* 1, 1–303.

POIDRELENÁ, L., SENDI, H. 2018. *Cratovitisma* Bechly, 2007 (Blattaria: Umenocoleidae) recorded in Lebanese and Myanmar ambers. *Palaeontographica Abteilung A* 310(3-6), 121–129.

POINAR G. JR. 1992: *Life in Amber*. *Stanford University Press, Stanford*, 1–350.

POINAR, G. JR. & BROWN, A.E. 2017. An exotic insect *Aethiocarenus burmanicus* gen. et sp. nov. (Aethiocarenodea ord. nov., Aethiocarenidae fam. nov.) from mid-Cretaceous Myanmar amber. *Cretaceous Research* 72, 100–104.

POINAR, G. JR., MASTALERZ, M., 2000. Taphonomy of fossilized resins: Determining the biostratinomy of amber. In: Martínez-Delclòs, X., Nel, A. (Eds.), *Studies on Mesozoic and Pe
Tertiary Insects: Systematics, Phylogeny and Taphonomy. *Acta Geologica Hispanica* 35, 171–182.

Poinar, G. Jr., Buckley, R. 2006. Nematode (Nematoda: Mermithidae) and hairworm (Nematomorpha: Chordodidae) parasites in Early Cretaceous amber. *Journal of Invertebrate Pathology* 93(1), 36–41.

Poinar, G. Jr. 2009. Early Cretaceous protist flagellates (Parabasalia: Hypermastigia: Oxymonada) of cockroaches (Insecta: Blattaria) in Burmese amber. *Cretaceous Research* 30(5):1066-1072.

Princis, K. 1962. Blattariae: Subordo Polyphagoidea: Fam. Polyphagidae, 1–74. *In: Beier, M. (ed.) Orthopterorum Catalogus, Pars 3. W. Junk's-Gravenhage.*

Princis, K. 1963 Blattariae: Suborde [sic] Polyphagoidea: Fam.: Homoeogamiidae, Euthyrraphidae, Latindiidae, Anacompsidae, Atticolidae, Attaphilidae. Subordo Blaberoidea: Fam. Blaberidae, 76–172. *In: Beier, M. (ed.) Orthopterorum Catalogus, Pars 4. W. Junk, 's-Gravenhage,*

Princis, K. 1964. Blattariae: Subordo Blaberoidea: Fam.: Panchloridae, Gynopeltididae, Derocalyrmidae, Perisphaeriidae, Pycnoscelididae, 174–281. *In: Beier, M. (ed.), Orthopterorum Catalogus, Pars 6. W. Junk, 's-Gravenhage.*

Princis, K. 1965. Blattariae: Subordo Blaberoidea: Fam.: Oxyhaloidae, Panesthiidae, Cryptocercidae, Chorisoneuridae, Oulopterygidae, Diplopteridae, Anaplectidae, Archiblattidae, Nothoblattidae, 284–400. *In: Beier, M. (Ed.), Orthopterorum Catalogus, Pars 7: W. Junk, 's-Gravenhage.*
PRINCIS, K. 1966. Blattariae: Subordo [sic] Blattoidea. Fam.: Blattidae, Nocticolidae, 402–614.

In: BEIER, M. (ed.), Orthopterorum Catalogus, Pars 8. W. Junk, 's-Gravenhage.

PRINCIS, K. 1967. Blattariae: Subordo [sic] Epilamproidea. Fam.: Nyctiboridae, Epilampridae, 617–710. In: BEIER, M. (ed.), Orthopterorum Catalogus, Pars 11. W. Junk's-Gravenhage.

PRINCIS, K. 1969. Blattariae: Subordo Epilamproidea. Fam.: Blattellidae, 712–1038. In: BEIER, M. (ed.), Orthopterorum Catalogus, Pars 13. W. Junk, 's-Gravenhage.

PRINCIS, K. 1971. Blattariae: Subordo Epilamproidea. Fam.: Ectobiidae, 1041–1224. In: BEIER, M. (Ed.), Orthopterorum Catalogus, Pars 14. W. Junk, 's-Gravenhage.

QIU, L., WANG, Z.-Q., CHE, Y.-L. 2019a. A new corydiid cockroach with large holoptic eyes in Upper Cretaceous Burmese amber (Blattodea: Corydiidae: Euthyrraphinae). Cretaceous Research 96, 179-183.

QIU, L., WANG, Z.-Q., CHE, Y.-L. 2019b. First record of Blattulidae from mid-Cretaceous Burmese amber (Insecta: Dictyoptera). Cretaceous Research 99, 281–290.

RENTZ, D. C. 2014. A Guide to the Cockroaches of Australia. 326pp. CSIRO Publishing. Collingwood.

SAUSSURE, H. de 1862. Orthoptera Nova Americana (Diagnoses praeliminares). Series III. Revue et Magasin de Zoologie Pure et Applique 2(14), 163-171, 227–234.

SAUSSURE, H. de 1868. Orthopterorum species novae aliquot. Revue et Magasin de Zoologie Pure et Appliquée 2(20), 97-101, 354–357.
SAUSSURE, H. de 1869. Mélanges Orthoptérologiques. IIème Fascicule. Memoires de la Société de Physique et d'Histoire Naturelle de Genève 20, 227–326.

SCUDDER, S.H. 1876. Brief synopsis of North American earwigs with an appendix on the fossil species. Bulletin of the United States Geological and Geographical surveys of the Territories 2, 249–260.

SCUDDER, S.H. 1890. The Tertiary insects of North America. Report of the United States Geological Survey of the Territories 13, 1–734.

SENDI, H. & AZAR, D. 2017. New aposematic and presumably repellent bark cockroach from Lebanese amber. Cretaceous Research 72, 13–17.

SIDORCHUK, E. A., KHAUSTOV, A. A. 2018. A parasite without host: The first fossil pterygosomatid mite (Acari: Prostigmata: Pterygosomatidae) from French Lower Cretaceous amber. Cretaceous Research 91, 131–139.

SMITH, D. R., CRESPI, B. J., BOOKSTEIN, F. L. 1997. Fluctuating asymmetry in the honey bee, Apis mellifera: effects of ploidy and hybridization. Journal of Evolutionary Biology 10, 551–574.

SOLÓRZANO-KRAEMER, M.M.S. 2007. Systematic, palaeoecology, and palaeobiogeography of the insect fauna from Mexican amber. Paleontographica Abteilung A 282, 1–6, 1–133.

STATZ, G. 1939. Geradflugler und Wasserkäfer der Oligocanen Ablagerungen von Rott". Decheniana A: Geologische Abteilung 99, 1–102.

ŠMÍDOVÁ, L. & LEI, X. 2017. The earliest amber-recorded type cockroach family was aposematic (Blattaria: Blattidae). Cretaceous Research 72, 189–199.
VEGA, F.J.T., NYBORG T., COUTINO, M.A., SOLÍ, J. & HERNENDEZ-MONZYN, O. 2009. Neogene Crustacea from southeastern Mexico. Bulletin of Mizunami Fossil Museum 35, 51–69.

VIDLIČKA, I. 2013. Cockroaches (Blattaria) of Ecuador - checklist and history of research. Zootaxa 3599(5), 401–445.

VIDLIČKA, I., VRŠANSKÝ, P., KUDELOVÁ, T., KÜDELA, M., DEHARVENG, L. & HAIN, M. 2017. New genus and species of cavernicolous cockroach (Blattaria, Nocticolidae) from Vietnam. Zootaxa 4232(3), 361–375.

VRŠANSKÝ, P. 1997. Piniblattella gen. nov.—the most ancient genus of the family Blattellidae (Blattodea) from the Lower Cretaceous of Siberia. Entomological Problems 28, 67–79.

VRŠANSKÝ, P. 2002. Origin and Early Evolution of Mantises. Amba projekty 6(1), 1–16.

VRŠANSKÝ, P. 2004. Cretaceous Gondwanian Cockroaches (Insecta, Blattaria). Entomological Problems 34 (1–2), 49–54.

VRŠANSKÝ, P. 2008a. Mesozoic relative of the common synanthropic German cockroach (Blattodea). Deutsche Entomologische Zeitschrift 55(2), 215–221.

VRŠANSKÝ, P. 2008b. A complete larva of a Mesozoic (Early Cenomanian) cockroach (Insecta: Blattaria: Blattulidae) from the Sisteron amber (Alpes de Haute Provence, SE France). Geologica Carpathica 59(3), 269–272.

VRŠANSKÝ, P. 2009. Albian cockroaches (Insecta, Blattida) from French amber of Archingeay. Geodiversitas 31(1), 73–98.
VRŠANSKÝ, P. 2010. Cockroach as the earliest eusocial animal. *Acta Geologica Sinica* (english edition) 84(4), 793–808.

VRŠANSKÝ, P. & ARISTOV, D. 2014. Termites (Isoptera) from the Jurassic/Cretaceous boundary: Evidence for the longevity of their earliest genera. *European Journal of Entomology 111*(1), 137–141.

VRŠANSKÝ, P. & BECHLY, G. 2015. New predatory cockroaches (Insecta: Blattaria: Manipulatoridae fam.n.) from the Upper Cretaceous Myanmar amber. *Geologica Carpathica 66*(2), 133–138.

VRŠANSKÝ, P., CIFUENTES-RUIZ, P., VIDLIČKA, j., ČIAMPOR jr, F.J. & VEGA, F.J. 2011. Afro-Asian cockroach from Chiapas amber and the lost Tertiary American entomofauna. *Geologica Carpathica 62*(5), 463–475.

VRŠANSKÝ, P., CHORVÁT, D., FRITZSCHE, I., HAIN, M. & ŠEVCÍK R. 2012a. Light-mimicking cockroaches indicate Tertiary origin of recent terrestrial luminescence. *Naturwissenschaften 99*(9), 739–749.

VRŠANSKÝ, P., VIDLIČKA, j., ČIAMPOR, F. Jr. & MARSH, F. 2012b. Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA. *Insect Science 19*(2), 143–152.

VRŠANSKÝ, P., VIDLIČKA, j., BARNA, P., BUGDAEVA, E., & MARKEVICH, V. 2013a. Paleocene origin of the cockroach families Blaberidae and Corydiidae: Evidence from Amur River region of Russia. *Zootaxa 3635*(2), 117–126.
Cockroaches probably cleaned up after dinosaurs. *PLOS ONE* 8(12), AN e80560.

Native Ectobius (Blattaria: Ectobiidae) From the Early Eocene Green River Formation of Colorado and Its Reintroduction to North America 49 Million Years Later. *Annals of the Entomological Society of America* 107(1), 28–36.

Early-derived Eocene Cockroaches (Blattaria: Ectobiidae: Pseudophyllodromiinae, Blattelinae) from the Green River Formation, Colorado, U.S.A. *Proceedings of the Entomological Society of Washington*.

Origin of origami cockroach reveals long-lasting (11 Ma) phenotype instability following viviparity. *Naturwissenschaften* 103(9–10), 78.

A new cockroach, with bipectinate antennae, (Blattaria: Olidae fam. nov.) further highlights the differences between the Burmite and other faunas. *Biologia* 72(11), 1327–1333.

Parasitic cockroaches indicate complex states of earliest proved ants. *Biologia* https://doi.org/10.2478/s11756-018-0146-y.
Batesian insect-insect mimicry-related explosive radiation of ancient alienopterid cockroaches. *Biologia* **73**(10), 987–1006.

Pathogenic DWV infection symptoms in a Cretaceous cockroach. *Paleontographica Abteilung A* https://doi.org/10.1127/0375-0442/2018/0000/008 (in press).

Ancient roaches further exemplify ‘no land return’ in aquatic insects. *Gondwana Research* (68), 22-33.

1868. *Catalogue of the Specimens of Blattaria in the Collection of the British Museum*, 239 pp. British Museum, London, UK.

1989. *Fossil insects from Shanwang, Shandong, China*. [Chinese with English abstract], 459 pp. Shandong Science and Technology Publishing House, Jinan, China.

1994. *Miocene Insects and spiders from Shanwang, Shandong*. [In Chinese, English summary], 298 pp. Science Press Beijing, Beijing.

2012. The most ancient roach (Blattida): A new genus and species from the earliest Late Carboniferous (Namurian) of China, with
discussion on the phylomorphogeny of early blattids. *Journal of Systematic Paleontology*, 11(1), 27–40.

Link for the specimen records “MNHN-EP-EP1398” and “MNHN-EP-EP1385” [available on 18/11/2018] here:

- https://science.mnhn.fr/institution/mnhn/collection/ep/item/ep1398?lang=en_US.
- https://science.mnhn.fr/institution/mnhn/collection/ep/item/ep1385.
Figure 1

Photos of amber inclusion and map of distribution of genus *Anaplecta* spp.

(A) Partial 3D extraction. (B) Ventral view. (C) Dorsal view. (D) Whole piece of amber, ventral view. Specimen overall length head-abdomen, 4.89 mm. (E) Distribution map of amber *Anaplecta* spp. with the Baltic amber reaching out of the present range.
Figure 2

Line drawing of *Anaplecta vega* sp.n.
Table 1 (on next page)

List of Cenozoic cockroaches with respective literature.

1- Germar (1813), 2- Berendt (1836), 3- Heer (1849), 4- Germar & Berendt (1856), 5- Giebel (1856), 6- Giebel (1862), 7- Heyden (1862) 8- Heer (1864), 9- Heer (1868), 10- Heer (1870), 11- Scudder (1876), 12- Scudder (1890), 13- Foster (1891), 14- Cockerell (1920), 15- Meunier (1921), 16- Piton (1936), 17- Statz (1939), 18- Piton (1940), 19- Haupt (1956), 20- Zhang (1989), 21- Zhang et al. (1994), 22- Hong (2002), 23- Maekawa et al. (2003), 24- Gorokhov et Anisyutkin (2007), 25- Anisyutkin (2008), 26- Vršanský et al. (2011), 27- Vršanský et al. (2012a), 28- Vršanský et al. (2012b), 29- Vršanský et al. (2013a), 30- Vršanský et al. (2014), 31- Vršanský et al. (2016), 32- Anisyutkin & Gröhn (2012), 33- Greenwalt & Vidlička (2015), 34- Hönnig et al. (2016), 35-Ciu et al., (2018).
Species known from sediment	Species known from amber/copal	
Blaberites rhenana Statz 1939¹⁷	*Blatta baltica* Germar et Berendt 1856⁴	
Blatta colorata Heer 1864⁸	*B. berendti* Giebel 1856⁵	
B. hyperborea Heer 1870¹⁰	*B. didyma* Germar et Berendt 1856⁴	
B. pauperata Heyden 1862⁷	*B. elliptica* Giebel 1862⁶	
B.sundgaviensis Foster 1891¹³	*B. gedanensis* Germar et Berendt 1856⁴	
Blattidium fragile Heer 1868⁹	*B. ruficeps* Giebel 1862⁶	
Cariblattoides labandeirae Vršanský et al. 2011^{26, 28}	*B. succinea* Germar 1813¹	
Chopardia spinipes Piton 1940¹⁸	*Erucoblatta semicaeca* Gorokhov et Anisyutkin 2007²⁴	
Diploptera Vladimir Vršanský 2016³¹	*Holocompsa nigra* Gorokhov et Anisyutkin 2007²⁴	
D. gemini Barna 2016³¹	*H. abbreviata* Gorokhov et Anisyutkin 2007²⁴	
D. savba Šmídová 2016³¹	*Latiblatta orientalis* Hong 2002²²	
Ectobia arverniensis Piton 1940¹⁸	*L. spinosa* Hong 2002²²	
Scientific Name	Authors and Year	
---	-----------------------------------	
E. menatensis Piton 1940¹⁸	*Nyctibora elongate* Statz 1939¹⁷	
Ectobius glabellus Statz 1939¹⁷	*Paraeuthyrhapha groehni* Anisyutkin 2008^{25,32}	
E. kohlsi Vršanský, Oružinský, Barna, Vidlička et Labandeira 2014³⁰	*Polyzosteria parvula* Germar et Berendt 1856⁴	
Elisama pyrula Zhang 1989²⁰	*P. tricuspidata* Berendt 1836²	
“*Gyna*” obesa Piton 1940¹⁸	*Supella (Nemospella) miocenica* Vršanský, Cifuentes-Ruiz, Vidlička, Čiampor et Vega 2011²⁶	
Heterogamia antiqua Heer 1849³	*Stegoblatta irmgardgroehni* Anisyutkin et Gröhn 2012³²	
Homoeogamia ventriosa Scudder 1876¹¹		
Isoplates longipennis Haupt 1956¹⁹		
Latiblattella avita Greenwalt et Vidlička, 2015³³		
Morphna paleo Vršanský, Vidlička, Barna, Bugdaeva et Markevich 2013²⁹		
Paralatindia saussurei Scudder 1890¹²		
Species	Author	Year
---------------------------------	-------------------------	------
Parallelophora acuta	Haupt 1956	19
P. anomala	Haupt 1956	19
Periplaneta eocaenica	Meunier 1921	15
P. houlberti	Piton 1940	18
P. hylecoeta	Zhang 1989	20
P. lacera	Zhang 1989	20
P. relicta	Meunier 1921	15
P. sphodra	Zhang, Sun et Zhang 1994	21
Phantocephalus meridionalis	Zhang 1989	20
Prochaeradodis enigmaticus	Piton 1940	18, 35
Protectobia primordialis	Piton 1940	18
Protostylopyga gigantea	Piton 1940	18
Pycnoscelus gardneri	Cockerell 1920	14
Telmablatta impar	Haupt 1956	19
Zetobora brunneri	Scudder 1890	12
Zeunera madeleinae	Piton 1936	16
Z. superba Piton 1940¹⁸		

2

3

4

5
Table 2 (on next page)

Measurements of *Anaplecta vega*.

(A) Body measurements of *Anaplecta vega* sp.n. and different *Anaplecta* species. (B) Comparison of *Anaplecta vega* sp.n. left and right maxillary palpomere lengths. (C) Comparison of *A. vega* sp.n. dimensions and average of living Mexican *Anaplecta* species dimensions. (D) Comparison of length of each leg femur, tibia and tarsomeres of *Anaplecta vega* sp.n. (E) Left and right antennomeres length comparison including scape and pedicel present in *Anaplecta vega* sp.n.
	Body l	Tegmina l	Pronotum l	Tegmina l/pronotum l	Pronotum l/pronotum w	
A. vega including tegmina	4,89	4,04	1	1,27	4,04	0,79
A. azteca	6,5	5,8	2	2,5	2,9	0,8
A. fallax	4,6	4	1,5	2,25	2,67	0,67
A. decipiens male incl. tegmina	4,8	3,5	2	2,4	1,75	0,83
A. decipiens female incl. tegmina	5,8	4,6	2	2,4	2,3	0,83
A. mexicana	8	8,5	2	3,5	4,25	0,57
A. gemma	6,7	6,8	1,7	2,3	4	0,74
A. nahus incl. tegmina	6	5,5	1,5	2,4	3,67	0,63
A. otomia	6,5	6	1,75	2,4	3,43	0,73
A. saussurei	4,1	3,8	1,3	1,9	2,92	0,68
A. tolteca	6	6,5	1,6	2,5	4,06	0,64

	Right maxillary palp	Left maxillary palp
1	0,13	0,13
2	0,1	0,14
3	0,31	0,4
4	0,17	0,29
5	0,27	0,34

	A. vega length (including tegmina)	Avarage Mexican Anaplecta length				
Body l	4,89	5,9				
Tegmina l	4,04	5,5				
Pronotum l	1	1,74				
Pronotum w	1,27	2,48				
Tegmina l/pronotum l	4,04	3,19				
Pronotum l/pronotum w	0,79	0,71				
	Front L	Front R	Middle L	Middle R	Hind L	Hind R
----------------	---------	---------	----------	----------	--------	--------
Femur	1,29	0,67	1,29	0,91	1,38	1,4
Tibia	0,89	0,73	0,89	1,11	1,89	2,13
Tarsomere 1	0,34	0,33	0,34	0,56	0,91	0,84
Tarsomere 2	0,07	0,08	0,07	0,12	0,19	0,19
Tarsomere 3	0,06	0,06	0,06	0,08	0,11	0,11
Tarsomere 4	0,07	0,06	0,07	0,04	0,1	0,1
Tarsomere 5	0,11	0,2	0,11	0,18	0,18	0,18

	Left antenna	Right antenna
1	0,33	0,29
2	0,22	0,2
3	0,16	0,16
4	0,09	0,09
5	0,09	0,07
6	0,09	0,07
7	0,09	0,1
8	0,1	0,1
9	0,11	0,12
10	0,12	0,11
11	0,12	0,12
12	0,13	0,14
13	0,14	0,13
14	0,14	0,14
15	0,14	0,13
16	0,14	0,14
17	0,16	0,16
18	0,16	0,16
19	0,16	0,16
20	0,16	0,14
21	0,14	0,17
22	0,17	0,17
23	0,18	0,17
24	0,17	0,17
25	0,16	0,13
26	0,17	0,16
---	---	---
27	0,16	0,18
28	0,16	0,19
29	0,16	0,17
30	0,16	0,16
31	0,16	
32	0,15	
33	0,14	
34	0,1	