I. INTRODUCTION

Titanium dioxide nanotube arrays, formed by self-organizing anodization, have attracted considerable attention. These 1D structures are used in wide range of applications such as electrodes in catalysis, photocatalysis, dye-synthesized solar cells, gas sensors, photoelectrochemical water splitting, in batteries, or for CO₂ reduction. Biocompatible Ti₆₄Si₄₂O₁₂ nanostructured surfaces can be used to enhance cell attachment and proliferation. This outstanding flexibility is a consequence of different electronic, chemical and ionic properties of anatase, brookite and rutile. Anatase is often more interesting for applications, such as solar cells, due to the larger electron mobility compared to rutile. Amorphous and polycrystalline single nanotubes were isolated and contacted for measurements of the electrical resistance. Non-linear current-voltage characteristics were explained using the fluctuation induced tunneling conduction model. A clear enhancement of the conductance was induced in an insulating anatase nanotube through low-energy Ar/H⁺ ion irradiation. Confocal Raman spectroscopy shows that the annealed samples were in an anatase phase and a blueshift due to phonon confinement was observed.

PACS numbers: 73.63.Fg,78.30.Fs

Recently, fluctuation induced tunneling conductance (FITC) has been proposed as a responsible mechanism in ZnO nanowires, in bundles of double-walled carbon nanotubes, and in nanoporous TiO₂ thin films. The FITC model predicts non-linear current-voltage I – V curves due to intrinsic barriers between grains in the sample. Other frequently used mechanisms include variable-range hopping and thermally activated processes. However, they cannot explain the non-linear behavior of I – V curves and the saturation of the resistivity at low temperature.

In this work, procedures to isolate single TiO₂ nanotubes and to establish barrier free contacts for electrical transport measurements are presented. The resistance of amorphous and polycrystalline anatase samples were investigated in a broad temperature range. A FITC mechanism contributes to the conductivity in all measured samples with non-linear I – V curves. Additionally, the electrical transport of a highly insulating anatase nanotube was modified by means of defect production at the surface using low-energy ion irradiation.
Annealing temperatures of 350 °C. 0.15 M ammonium fluoride and 1 M H₂O. The titanium foil was anodized with a potential of 60 V applied for approximately 120 nm. Figure (b) displays a single TiO₂ nanotube, in (c) the nanotube after WCₓ deposition and in (d) the contacted TiO₂ nanotube ready for measurement can be seen. In (e) a Raman image of the investigated sample is shown, the bright region corresponds to the Raman E_g band at 148 cm⁻¹.

II. EXPERIMENTAL

The TiO₂ nanotubes have been separated from nanotubular layers anodically grown on titanium foil (Advent Research Materials Ltd., 99.6 % purity) in an electrochemical cell with ethylene glycol electrolyte containing 0.15 M ammonium fluoride and 1 M H₂O. The titanium foil was anodized with a potential of 60 V applied for 5 hours. Finally, the nanotubular array was placed in ethanol and dried with nitrogen gas. The grown nanotubes (see FIG. I(a)) are initially in the amorphous phase and were annealed in air using a Rapid Thermal Annealer (Jet-first Rapid Thermal Annealer, Jipielec, France) in order to obtain polycrystalline anatase samples. The heating/cooling rate was 15°C/min with annealing temperatures of 350°C and 450°C. After annealing, the nanotubes were polycrystalline and exhibited anatase morphology, for more detailed information please refer to Refs. 22–24. Annealing at higher temperatures results in mixed phases of anatase and rutile, eventually, the single nanotubes would collapse. Therefore, only pure amorphous and anatase nanotubes were investigated.

Bundles of nanotubes were scratched off the foil onto commercial, p-boron doped silicon substrates (5 × 5 mm) with a 150 nm SiNₓ coating, see FIG. I(b). By applying pressure and a slow circular motion using a second substrate, some single nanotubes break off the bundles and were stuck to the substrates because of electrostatic attraction. Suitable tubes were selected using an optical microscope. In order to fix the nanotubes on the substrate and to prepare them for contacting, electron beam induced deposition (EBID) of tungsten carbide was used, see FIG. I(c). The deposited WCₓ is nearly insulating and provides the necessary steps to compensate the height difference between contacts and nanotube. The substrates were covered with a positive working resist (ALL-RESIST, PMMA 950 K, AP-R 671-05) and, by means of electron beam lithography (EBL), the structures of the contacts were printed into the resist. After developing, a bilayer film composed of Cr (5 nm) and Au (35 nm) was sputtered. The PMMA was later removed by acetone. The width of the contacts exceeds the WCₓ steps, in order to get a potential barrier-free electrical connection. A prepared nanotube can be seen in FIG. I(d). An overview of the structural properties and dimensions of the nanotubes can be seen in Table I.

For the transport measurements, each sample was contacted on a chip carrier placed on the cold head of a standard closed cycle cooling system inside a vacuum bell with a minimum temperature of T ≈ 30 K. The electrical resistance was measured using the four-point probe configuration with a current source (Keithley 6221) and a nano-voltmeter (Keithley 2182). The high resistance measurements were performed with a constant applied voltage using a DC source (Yokogawa 7651). The current was monitored with a shunt resistance of Rₛ = 9.101 MΩ in series with the samples. For low temperature measurements down to T = 5 K, a commercial ⁴He cryostat (Oxford Instruments) was used.

The Ar ion irradiation was done in a self-made plasma chamber with a parallel plate (copper) setup at room temperature. The chamber was evacuated to a pressure of P ≈ 0.1 mbar with an Ar/H gas mixture (Ar: 90 % and H: 10 %, Air Liquide) flowing through the chamber. The chip carriers with samples were mounted ≈ 12 cm away

ID	Phase	Contacts Length (µm)	ρ(T = 300 K) (Ω cm)	
NT1	Anatase	4	0.5 ± 0.1	0.026
NT2	Anatase	4	1.5 ± 0.1	0.044
NT3	Amorph	2	3.3 ± 0.2	5.31
NT4	Anatase	2	6.9 ± 0.2	34

FIG. 1. In (a) a TiO₂ nanotubular array grown on Ti foil is shown. The nanotubes have an average diameter of approximately 120 nm. Figure (b) displays a single TiO₂ nanotube, in (c) the nanotube after WCₓ deposition and in (d) the contacted TiO₂ nanotube ready for measurement can be seen. In (e) a Raman image of the investigated sample is shown, the bright region corresponds to the Raman E_g band at 148 cm⁻¹.
from the plasma center and a bias voltage of $U_{\text{bias}} = 50$ V was used to accelerate the ions towards the sample, while connected to ground, and the bias current was measured. The energy used is too low to produce any relevant sputtering, which could induce a composition variation. Previously, the substrate was covered with PMMA and a window was opened to shield the contacts using electron beam lithography. The number of ions hitting the sample was estimated to be $\approx 2.2 \times 10^{14}$ Ar ions.

Information about the sample structure was obtained using the confocal Raman microscope alpha300R+ from WITec with an incident laser light of wavelength $\lambda = 532$ nm. The device has a lateral resolution of ≈ 300 nm and a depth resolution of ≈ 900 nm. The energy was kept at ≈ 3 mW to avoid damage caused by heating effects in the sample.

III. RESULTS

Using XRD, it was shown that the as-prepared nanotube bundles are amorphous and they transform into anatase after annealing\(^23,40\). However, some single nanotubes could remain in the amorphous state. Using confocal Raman spectroscopy, single isolated samples can be investigated. According to Ohsaka et al.\(^{43}\) for bulk anatase, Raman peaks can be found at 639 cm$^{-1}$, 197 cm$^{-1}$ and 144 cm$^{-1}$, assigned as E_g modes. B_{1g} modes are at 513 cm$^{-1}$ and 399 cm$^{-1}$, and the band at 519 cm$^{-1}$ corresponds to the A_{1g} mode. The Raman E_g band at 144 cm$^{-1}$ is the most intense peak. Our results are presented in FIG. 1(e), the peaks correspond to the E_g band, the obtained values are 148 cm$^{-1}$ and 633 cm$^{-1}$, respectively, which are different compared to the above mentioned results for the bulk anatase. This band shift is known as blueshift and is caused due to the above mentioned results for the bulk anatase. B_{1g} was estimated to be $\approx 350^\circ$ C, which is in agreement with the annealing temperature used for the TiO$_2$ nanotube. From the blueshift, a crystallite size of ≈ 8 nm could be obtained\(^{44}\), which is in agreement with XRD results.\(^{40}\) A $(x-y)$ Raman scan is shown in the inset of FIG. 1(e), where the bright shades correspond to the Raman E_g band at 148 cm$^{-1}$.

The electrical properties of the nanotubes depend strongly upon the phase and structural quality. A defect free TiO$_2$ anatase nanotubes is electrical insulating. However, due to growth conditions, defects can be introduced resulting in an electrical conductive material. For example, such defects are oxygen vacancies (self doping) produced by a reduction of TiO$_2$, e.g. through electrochemical reactions, gas annealing or exposure to vacuum \(^{45,46,47}\), due to a separation of O$_2$ or H$_2$O from terminal oxide or hydroxide groups and bridged oxide and Ti$^{4+}$

\begin{align*}
R^{-1}_{\text{VRH}}(T) &= \left\{ R_2 \exp \left(\frac{T}{T_b} \right)^{\gamma_1/d} \right\}^{-1} + R_0^{-1}, \\
&= \left\{ R_2 \exp \left(\frac{T}{T_b} \right)^{\gamma_1/d} \right\}^{-1} + R_0^{-1}, \quad (1)
\end{align*}

where R_2 is an arbitrary prefactor, R_0 is a temperature independent term, the dimensionality $d = 3$

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{fig2}
\caption{The temperature dependent resistance of nanotube NT1 is shown. In the inset the linear $I - V$ curves can be seen. The continuous line was obtained from Eq. (1).}
\end{figure}
and \(T_h \) is a characteristic temperature. From the fit, \(T_h = (3450 \pm 29) \) K; similar values have already been reported in the literature\(^{30}\). The density of states (DOS) at the Fermi level \(N(E_F) \) can then be calculated:

\[
T_h = \frac{18}{k_B \xi^3 N(E_F)},
\]

where \(k_B \) is Boltzmann constant and the localization length is assumed to be in the order of \(\xi = 1 \) nm\(^{49}\). A DOS of \(N(E_F) \approx 6.1 \times 10^{28} \text{eV}^{-1} \text{m}^{-3} \) was found, which agrees very well with the literature\(^{30,50}\). The resistivity, see Table I, is very low compared to other investigated samples. The low resistivity might be a consequence of doping due to a large density of defects present in the sample.

B. Non-linear \(I - V \) curves

The current-voltage characteristics using Mott VRH and activated transport processes correspond to linear \(I - V \) curves (ohmic regime). Therefore, they fail to explain non-linear \(I - V \) curves as well as \(R(T) \) for such samples. The conduction of the polycrystalline nanotube depends on the intragrain and intergrain conductivity. When there is no doping, the grains are insulating with an energy gap of \(\approx 3 \) eV. At intermediate doping, the charge carriers move to the crystal defects/boundaries between the grains, which are acting as electronic traps, and thus a depletion layer is formed with a potential barrier. In this case non-linear \(I - V \) curves can be observed also when measuring with four-point probes method. At high doping levels, the material is saturated and the barrier vanishes again.

The nanotube NT2 was measured using four contacts and shows non-linear \(I - V \) curves, see inset FIG. 3. The \(I - V \) measurements were performed from \(T = 50 \) K to \(T = 300 \) K, where non-linear behavior can be observed at temperatures \(T \leq 175 \) K and below. This can also be seen in the temperature dependent resistance measurements, which were done using \(I = 100 \) nA and \(I = 200 \) nA, at \(T \leq 175 \) K the curves split. The non-linearity of the \(I - V \) curves and the temperature dependence can be explained using the fluctuation induced tunneling conductance (FITC) model, which was already used to describe similar materials such as nanoporous TiO\(_2\) thin films\(^{36}\), ZnO nanowires\(^{27}\), oxide nanostructures\(^{31,32}\), double walled carbon nanotube bundles\(^{35}\) or disordered semiconductors\(^{34}\). According to the FITC model, at small applied electric fields, the temperature dependent resistance across a junction is given by\(^{34}\)

\[
R_{\text{FITC}}^{-1} = \left(R_\infty \exp \left(\frac{T_1}{T_0 + T} \right) \right)^{-1} + R_0^{-1},
\]

where \(R_\infty \) is a free, temperature independent parameter,

\[
I_{\text{FITC}} = I_s \exp \left[-a(T) \left(1 - \frac{V}{V_c} \right)^2 \right], |V| < V_c,
\]

where \(I_s \) and \(V_c \) are the saturation current and critical

![FIG. 3. The temperature dependent measurements at two applied currents of sample NT2 are presented. The resistance at room temperature is \(R_{\text{RT}} = 100 \) k\(\Omega \). The inset shows the \(I - V \) curves at different temperatures. The continuous lines are the fits obtained following Eq. (3) for \(R(T) \) and Eq. (4) for the \(I - V \) curves.](image-url)
voltage, respectively, and $a(T)$ is given as:

$$a(T) = \frac{T_1}{T_0 + T}.$$ \hspace{1cm} (6)

As can be seen from these equations, the characteristic temperatures can be obtained through fitting the $I - V$ curves and the temperature dependent resistance $R(T)$. However, in order to fit the data, a temperature independent term R_0 in parallel to the FITC conduction process, has to be added. The parallel contribution is due to disorder and impurities present in the TiO$_2$ nanotubes.

In order to fit the data and to reduce the amount of free parameters, all curves were fitted simultaneously ($I - V$ curves and $R(T)$) and the corresponding parameters were taken as shared parameters for all curves. This means, that V_c and I_s (which depend only weakly on the temperature) are shared among the data of the $I - V$ curves, and that T_1 and T_0 are shared among the $I - V$ curves and $R(T)$ results. The data and the fits can be seen in FIG. 3 the FITC model describes very well both the $I - V$ curves and $R(T)$ results. From the fit results, a saturation current of $I_s \approx 2.8 \times 10^{-7}$ A and a critical voltage of $V_c \approx 0.29$ V are obtained. The characteristic temperatures are $T_1 \approx 853$ K and $T_0 \approx 59$ K. Similar values have already been reported in the literature.27,52,53,55 Although, the samples were measured using the four-point probes method, non-linear $I - V$ curves were measured as consequence of barriers formed at the intergrain boundaries. This effect could be avoided by employing long term annealing at intermediate temperatures, as high temperature annealing would result in a collapse of the TiO$_2$ nanotubes.40,41,56,57

C. Amorphous nanotube

The temperature dependent resistance of an amorphous TiO$_2$ nanotube NT3 is shown in FIG. 4. The room temperature resistance is $R(295$ K) = 29 MQ, and thus much higher than the previously shown samples. Therefore, the resistance was measured with a constant applied voltage of $V = 10$ V and the current was monitored with a shunt resistance. This implies a two point-probes technique to be used. However, a large influence of the contacts is not expected, due to the very high resistance of the TiO$_2$ nanotube itself. This assumption is supported by the result of a four-point probes measurement at room temperature, which yields the same resistance as for the two-point measurement. Therefore, the influence of the contacts will be neglected. The data as well as the fits are shown in FIG. 4 in the inset the $I - V$ curves can be seen. As before, all measurements were fitted simultaneously. In order to fit the $R(T)$ data, not only the FITC model has to be assumed but also a VRH hopping contribution in parallel was needed, see Eq. 1. The shared parameters were: $I_s = 5.5 \pm 0.1 \times 10^{-5}$ A, $V_c = 144 \pm 3$ V, $T_1 = 6545 \pm 50$ and $T_0 = 272 \pm 7$ K. With the characteristic temperature $T_h \approx 70000$ K and using Eq. 2, the DOS at E_F is $N(E_F) \approx 3 \times 10^{27}$ eV$^{-1}$m$^{-3}$. This value is one order of magnitude smaller than what was obtained for TiO$_2$ nanotube with linear $I - V$ curves. This together with the large values of T_1 and T_0, i.e. large barrier height, explain the high resistance of this sample. At low temperature, the constant R_0 term in parallel which is due to impurities/defects, dominates the transport.

D. Ar ion irradiated nanotube

In order to investigate the influence of defects on the transport properties of polycrystalline anatase TiO$_2$ nanotubes, an almost insulating sample was chosen (see results in FIG. 4), indicating a high quality of the crystalline structure. The sample NT4 has been irradiated using an Ar/H plasma. The results after irradiation of the temperature dependent resistance measurements and $I - V$ curves can be seen in FIG. 5 and its inset. The used energy of the plasma ions of 50 V and, according to SRIM simulations, the resulting penetration depth is ≈ 5 nm, implying that the nanotube is modified only at the surface.23,27 The sample consists then of an insulating polycrystalline nanotube surrounded by a conduct-
The resistance before ion irradiation was measured at constant applied voltage of sample NT4 after Ar ion irradiation are presented. The resistance at RT is \(R_{RT} = 500 \text{ M}\Omega \). The inset shows the \(I - V \) curves at different temperatures. The continuous lines are the fits obtained following Eq. (3) for \(R(T) \) and Eq. (4) for the \(I - V \) curves. The resistance before ion irradiation was \(R_0 = 36 \text{ G}\Omega \) at \(T = 240 \text{ K} \) and is indicated with blue crosses.

![Graph showing normalized resistance vs. temperature and applied voltage](image)

FIG. 5. The results of the temperature dependent measurements at constant applied voltage of sample NT4 after Ar/H ion irradiation are presented. The resistance at RT is \(R_{RT} = 500 \text{ M}\Omega \). The inset shows the \(I - V \) curves at different temperatures. The continuous lines are the fits obtained following Eq. (3) for \(R(T) \) and Eq. (4) for the \(I - V \) curves. The resistance before ion irradiation was \(R_0 = 36 \text{ G}\Omega \) at \(T = 240 \text{ K} \) and is indicated with blue crosses.

The resistance before ion irradiation was \(R_0 = 36 \text{ G}\Omega \) at \(T = 240 \text{ K} \) and is indicated with blue crosses.

Several anodically grown amorphous and polycrystalline TiO\(_2\) nanotubes were isolated and prepared for the measurement of their electrical transport properties. Raman spectroscopy reveals that the investigated anatase samples are homogeneous and polycrystalline with a grain size of a few nanometers. For nanotubes with linear \(I - V \) characteristics a VRH transport mechanism explains the measured behavior. In order to describe the \(R(T) \) and non-linear \(I - V \) curves, the FITC model is suitable to describe the resistance results as well as the VRH model are used. Using four contacts, non-linear \(I - V \) curves were measured, which can be explained considering a barrier formed at the interfaces between the grains. The fluctuation induced tunneling conductance describes the resistance results as well as the non-linear \(I - V \) curves for the polycrystalline TiO\(_2\) nanotubes. A combination of the FITC model and VRH was used for the analysis of the resistance of an amorphous nanotube. The contacts on the crystalline samples are ohmic, i.e. there is no barrier, which is important for future studies and applications. An insulating sample was irradiated with low-energy Ar/H plasma, and a large change in the resistivity was produced. This provides the possibility to modify the electrical transport properties of individual TiO\(_2\) nanotubes through controlled irradiation with ions. In this work, the preparation of single TiO\(_2\) nanotubes with ohmic contacts for electrical transport measurements was demonstrated, which opens new possibilities for future applications.

ACKNOWLEDGMENTS

This work was supported by DFG through the Collaborative Research Center SFB 762 “Functionality of Oxide Interfaces”.

BIBLIOGRAPHY

1. K. I. Hadjiivanov and D. G. Klissurski, Chem. Soc. Rev 25, 61 (1996)

markus@mstiller.org
A. Fujishima and K. Honda, Nature 238, 37 (1972).
B. O’Regan and M. Grätzel, Nature 353, 737 (1991).
M.-H. Seo, M. Yuasa, T. Kida, J.-S. Huh, K. Shimanoee, and N. Yamazoe, Sen. and Act. B: Chemical 137, 512 (2009).
M. Momeni and Y. Ghayeb, J. of Alloys and Compounds 637, 393 (2015).
M. M. Momeni and Y. Ghayeb, J. of Appl. Electrochem. 45, 557 (2015).
A. S. Aricó, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. van Schalkwijk, [Nature 4, 366 (2005)]
T. W. Woolerton, S. Sheikh, E. Reisner, E. Pierce, S. W. Ragsdale, and F. A. Armstrong, J. of Am. Chem. Soc. 132, 2132 (2010).
O. K. Varghese, M. Paulose, T. J. LaTempa, and C. A. Grimes, Nano Lett. 9, 731 (2009).
D. Zhao, C. Chen, K. Yao, X. Shi, Z. Wang, H. Hahn, H. Gleiter, and N. Chen, J. of All. and Comp. (2016). 10.1016/j.jallcom.2016.09.183
U. Diebold, Surf. Sci. Rep. 45, 63 (2003).
X. Chen and S. S. Mao, Chem. Rev. 107, 2891 (2007).
H. Tang, K. Prasad, R. Sanjines, P. Schmidt, and F. Levy, J. Appl. Phys. 75, 2042 (1994).
M. Momeni, Y. Ghayeb, and S. Gheibee, Ceramics International 43, 564 (2017).
M. M. Momeni and Y. Ghayeb, Ceramics International 42, 7014 (2016).
M. Momeni, Y. Ghayeb, and M. Davarzadeh, J. of Electroanalytical Chemistry 739, 149 (2015).
M. M. Momeni and Y. Ghayeb, J. of Mol. Catal. A: Chemical 417, 107 (2016).
M. M. Momeni, Y. Ghayeb, and Z. Ghonchegi, Ceramics International 41, 8735 (2015).
M. Momeni and T. Ahadzadeh, Mat. Res. Innov. 20, 44 (2016).
G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, Sol. En. Mat. and Sol. Cel. 90, 211 (2006).
Y. Lai, L. Sun, C. Chen, C. Nie, J. Zuo, and C. Lin, Appl. Surf. Sci. 252, 1101 (2005).
B. Choudhury and A. Choudhury, J. Appl. Physics 114, 203906 (2013).
M. Stiller, J. Barzola-Quiquía, P. Esquinazi, D. Speumann, J. Meijer, M. Lorenzen, and M. Grundmann, AIP Advances 6, 125009 (2016).
R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, and F. Levy, J. of Appl. Phys. 75, 2945 (1994).
J. Pascual, J. Camassel, and H. Mathieu, Phys. Rev. B 18, 5606 (1978).
A. Munoz, Electrochimica Acta 52, 4167 (2007).
M. Stiller, J. Barzola-Quiquía, M. Zoraghi, and P. Esquinazi, Nanotechnology 26, 395703 (2015).
K. D. Sattler, ed., Handbook of Nanophysics: Nanotubes and Nanowires (CRC Press, New York, USA, 2011).
A. Tighineanu, T. Ruff, S. Albu, R. Hahn, and P. Schmuki, Chem. Phys. Lett. 494, 260 (2010).
M. Stiller, J. Barzola-Quiquía, I. Lorite, P. Esquinazi, R. Kirchgeorg, S. P. Albu, and P. Schmuki, Appl. Phys. Lett. 103, 173108 (2013).
C. Fabrega, F. Hernández-Ramírez, J. D. Prades, R. Jiménez-Díaz, T. Andreu, and J. R. Morante, Nanotechnology 21, 445703 (2010).
A. Akl, H. Kamal, and K.A.-Hady, Appl. Surf. Sci. 252, 8651 (2006).
B. Huber, H. Gnaer, and C. Ziegler, Surf. Sci. 566-568, 419 (2004).
P. Sheng, Phys. Rev. B 21, 2180 (1980).
J. Barzola-Quiquía, P. Esquinazi, M. Lindel, D. Speumann, M. Mualem, and G. Nessim, Carbon 86, 16 (2015).
S. J. Konezny, C. Richter, R. C. Snoeberger, A. R. Parent, G. W. Brudvig, C. A. Schmuttenmaer, and V. S. Batista, Phys. Chem. Let. 2, 1931 (2011).
A. Hassan, N. Chaure, A. Ray, A. Nabok, and S. Habesch, J. Phys. D: Appl. Phys. 36, 1120 (2003).
E. Barborini, G. Bongiornoa, A. Forleob, L. Franciosob, P. Milanab, I. Kolmanovc, P. Piseria, P. Sicilianob, A. Taurinob, and S. Vinatia, Sensors and Actuators B: Chemical 111–112, 22 (2005).
S. P. Albu, H. Tsuchiya, S. Fujimoto, and P. Schmuki, Eur. J. Inorg. Chem. 2010, 4351 (2010).
K. Lee, A. Mazare, and P. Schmuki, Chemical Reviews 114, 9385 (2014).
S. Soa, I. Hwangia, F. Ribonia, J. Yooa, and P. Schmuki, Electrochem. Comm. 71, 73 (2016).
D. Spoddig, K. Schindler, P. Rödiger, J. Barzola-Quiquía, K. Frische, H. Mulders, and P. Esquinazi, Nanotechnology 18, 495202 (2007).
T. Ohsaka, F. Izumi, and Y. Fuji, J. of Raman Spec. 7, 321 (1978).
W. Zhang, Y. He, M. Zhang, Z. Yin, and Q. Chen, J. of Phys. D: Appl. Phys. 33, 912 (2000).
N. Liu, C. Schneider, D. Freitag, M. Hartmann, U. Venkatesan, J. Miller, E. Speicker, and P. Schmuki, Nano Lett. 14, 3309 (2014).
I. Paramasivam, H. Jha, N. Liu, and P. Schmuki, small 8, 3073 (2012).
A. Ghicov, H. Tsuchiya, J. M. Macak, and P. Schmuki, phys. stat. sol. a. 203, R28 (2006).
S.-P. Chiu, Y.-H. Lin, and J.-J. Lin, Nanotechnology 20, 015203 (2009).
L. X. Chen, T. Rajh, Z. Wang, and M. C. Thurnauer, J. Phys. Chem B 101, 10688 (1997).
A. Yildiz, S. S. Lisesivdin, M. Kasap, and D. Mardare, Optoelectronics and Advanced Materials - Rapid Communications 1, 1.
C. Filipi, A. Levstik, Z. Kutnjak, P. Umek, and D. Aron, J. Appl. Phys. 101, 084308 (2007).
Y.-H. Lin, S.-P. Chiu, and J.-J. Lin, Nanotechnology 19, 365201 (2008).
Y.-H. Lin and J.-J. Lin, J. of Appl. Phys. 110, 064318 (2011).
D. Redfield, Advances in Phys. 24, 463 (1975).
H. Xie and P. Sheng, Phys. Rev. B 79, 165419 (2009).
S. P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G. E. Thompson, J. M. Macak, and P. Schmuki, Adv. Mat. 20, 4135 (2008).
F. Mohammadpour, M. Altmare, S. So, K. Lee, and M. Mokhtar, Semicond. Sci. and Techn. 31, 014010 (2016).