Double-critical graph conjecture for claw-free graphs

Martin Rolek
College of William & Mary

Joint work with
Sarah Loeb, Hampden-Sydney College
Zi-Xia Song, University of Central Florida
Gexin Yu, College of William & Mary

31st Cumberland Conference on Combinatorics, Graph Theory, and Computing
University of Central Florida
May 18-19, 2019
A graph is **t-colorable** if there exists a function \(c : V(G) \to \{1, \ldots, t\} \) such that \(c(u) \neq c(v) \) for all edges \(uv \in E(G) \).
A graph is \textbf{t-colorable} if there exists a function $c : V(G) \rightarrow \{1, \ldots, t\}$ such that $c(u) \neq c(v)$ for all edges $uv \in E(G)$.

$\chi(G) := \min\{t : G \text{ is } t\text{-colorable}\}$.

A graph G is \textbf{t-chromatic} if $\chi(G) = t$.
A graph is \textbf{\textit{t-colorable}} if there exists a function
\[c : V(G) \rightarrow \{1, \ldots, t\} \]
such that \(c(u) \neq c(v) \) for all edges \(uv \in E(G) \).

\[\chi(G) := \min\{ t : G \text{ is } t\text{-colorable} \} \]

A graph \(G \) is \textbf{\textit{t-chromatic}} if \(\chi(G) = t \).

A graph \(G \) is \textbf{\textit{t-critical}} if \(\chi(G) = t \), but any proper subgraph of \(G \) is \((t - 1)\)-colorable.
A graph is **t-colorable** if there exists a function $c : V(G) \rightarrow \{1, \ldots, t\}$ such that $c(u) \neq c(v)$ for all edges $uv \in E(G)$.

- $\chi(G) := \min\{t : G \text{ is } t\text{-colorable}\}$.
- A graph G is **t-chromatic** if $\chi(G) = t$.
- A graph G is **t-critical** if $\chi(G) = t$, but any proper subgraph of G is $(t - 1)$-colorable.

- $\omega(G) := \max\{t : K_t \subseteq G\}$.

Martin Rolek

Double-critical graph conjecture for claw-free graphs
• A graph is **t-colorable** if there exists a function
 \(c : V(G) \to \{1, \ldots, t\} \) such that \(c(u) \neq c(v) \) for all edges
 \(uv \in E(G) \).

• \(\chi(G) := \min\{t : G \text{ is } t\text{-colorable}\} \).

• A graph \(G \) is **t-chromatic** if \(\chi(G) = t \).

• A graph \(G \) is **t-critical** if \(\chi(G) = t \), but any proper subgraph
 of \(G \) is \((t-1)\)-colorable.

• \(\omega(G) := \max\{t : K_t \subseteq G\} \).

• \(\alpha(G) := \max\{t : \overline{K}_t \subseteq G\} \).
Proposition

If \(\chi(G) = 3t \), then \(G \) contains \(t \) vertex-disjoint odd cycles.
Proposition

If $\chi(G) = 3t$, then G contains t vertex-disjoint odd cycles.

- $(3t - 2)$-critical graphs may not have t vertex-disjoint odd cycles (Gallai 1968, $t = 2$).
Proposition

If $\chi(G) = 3t$, then G contains t vertex-disjoint odd cycles.

- $(3t - 2)$-critical graphs may not have t vertex-disjoint odd cycles (Gallai 1968, $t = 2$).

Question - Erdős (1968)

Is it true for $t \geq 2$ that every $(3t - 1)$-critical graph with sufficiently many vertices contains t vertex-disjoint odd cycles?
Proposition

If $\chi(G) = 3t$, then G contains t vertex-disjoint odd cycles.

- $(3t - 2)$-critical graphs may not have t vertex-disjoint odd cycles (Gallai 1968, $t = 2$).

Question - Erdős (1968)

Is it true for $t \geq 2$ that every $(3t - 1)$-critical graph with sufficiently many vertices contains t vertex-disjoint odd cycles?

- Is it true that every 5-critical graph with sufficiently many vertices contains two vertex-disjoint odd cycles?
Proposition

If $\chi(G) = 3t$, then G contains t vertex-disjoint odd cycles.

- $(3t - 2)$-critical graphs may not have t vertex-disjoint odd cycles (Gallai 1968, $t = 2$).

Question - Erdős (1968)

Is it true for $t \geq 2$ that every $(3t - 1)$-critical graph with sufficiently many vertices contains t vertex-disjoint odd cycles?

- Is it true that every 5-critical graph with sufficiently many vertices contains two vertex-disjoint odd cycles?
- If a 5-chromatic graph contains two vertex disjoint odd cycles, then it has two disjoint 3-chromatic subgraphs.
Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G) > \omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G) = s + t - 1$. Then G contains two disjoint subgraphs H_1 and H_2 such that $\chi(H_1) \geq s$ and $\chi(H_2) \geq t$.
Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G) > \omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G) = s + t - 1$. Then G contains two disjoint subgraphs H_1 and H_2 such that $\chi(H_1) \geq s$ and $\chi(H_2) \geq t$.

- If we fix $s = 2$, the conjecture claims there exists an edge uv such that $\chi(G - u - v) \geq \chi(G) - 1$.
Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G) > \omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G) = s + t - 1$. Then G contains two disjoint subgraphs H_1 and H_2 such that $\chi(H_1) \geq s$ and $\chi(H_2) \geq t$.

- If we fix $s = 2$, the conjecture claims there exists an edge uv such that $\chi(G - u - v) \geq \chi(G) - 1$.
- A connected graph G is **double-critical** if for every edge $uv \in E(G)$, $\chi(G - u - v) = \chi(G) - 2$.
Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G) > \omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G) = s + t - 1$. Then G contains two disjoint subgraphs H_1 and H_2 such that $\chi(H_1) \geq s$ and $\chi(H_2) \geq t$.

- If we fix $s = 2$, the conjecture claims there exists an edge uv such that $\chi(G - u - v) \geq \chi(G) - 1$.
- A connected graph G is **double-critical** if for every edge $uv \in E(G)$, $\chi(G - u - v) = \chi(G) - 2$.

Double-Critical Graph Conjecture - Erdős and Lovász (1968)

For every $t \geq 1$, the only double-critical, t-chromatic graph is K_t.
Double-Critical Graph Conjecture - Erdős and Lovász (1968)

For every $t \geq 1$, the only double-critical, t-chromatic graph is K_t.

- True for $t \leq 5$ (Brown and Jung 1969; Mozhan 1987; Stiebitz 1987)
Double-Critical Graph Conjecture - Erdős and Lovász (1968)

For every $t \geq 1$, the only double-critical, t-chromatic graph is K_t.

- True for $t \leq 5$ (Brown and Jung 1969; Mozhan 1987; Stiebitz 1987)
- Open for $t \geq 6$.
Double-Critical Graph Conjecture - Erdős and Lovász (1968)

For every $t \geq 1$, the only double-critical, t-chromatic graph is K_t.

- True for $t \leq 5$ (Brown and Jung 1969; Mozhan 1987; Stiebitz 1987)
- Open for $t \geq 6$.
- True for line graphs, quasi-line graphs, and true for graphs with $\alpha(G) = 2$ (Kostochka and Stiebitz 2008; Balogh, Kostochka, Prince, and Stiebitz 2009)
A graph is **claw-free** if it does not contain $K_{1,3}$ as an induced subgraph.
A graph is **claw-free** if it does not contain $K_{1,3}$ as an induced subgraph.

Theorem - Huang and Yu (2016+)

If G is a claw-free, double-critical, 6-chromatic graph, then $G = K_6$.
A graph is **claw-free** if it does not contain $K_{1,3}$ as an induced subgraph.

Theorem - Huang and Yu (2016+)

If G is a claw-free, double-critical, 6-chromatic graph, then $G = K_6$.

Theorem - R. and Song (2017)

For $t \in \{6, 7, 8\}$, if G is a claw-free, double-critical, t-chromatic graph, then $G = K_t$.
Proposition - Kawarabayashi, Pedersen, and Toft (2011)

If G is a non-complete, double-critical, t-chromatic graph, then

- $\delta(G) \geq t + 1$,
- $\omega(G) \leq t - 2$,
- every edge belongs to at least $t - 2$ triangles, and
- no two vertices of degree $t + 1$ are adjacent.
Proposition - Kawarabayashi, Pedersen, and Toft (2011)

If G is a non-complete, double-critical, t-chromatic graph, then
- $\delta(G) \geq t + 1$,
- $\omega(G) \leq t - 2$,
- every edge belongs to at least $t - 2$ triangles, and
- no two vertices of degree $t + 1$ are adjacent.

Theorem - R. and Song (2017)

If G is a non-complete, double-critical, t-chromatic graph, then no vertex of degree $t + 1$ is adjacent to any vertex of degree $\leq t + 3$.
Proposition - R. and Song (2017)

If G is a non-complete, double-critical, t-chromatic, claw-free graph, then $\Delta(G) \leq 2t - 4$. Furthermore, if $d(x) < |V(G)| - 1$, then $d(x) \leq 2t - 6$.
Proposition - R. and Song (2017)

If G is a non-complete, double-critical, t-chromatic, claw-free graph, then $\Delta(G) \leq 2t - 4$. Furthermore, if $d(x) < |V(G)| - 1$, then $d(x) \leq 2t - 6$.
Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in \{6, 7, 8\}$, then $G = K_t$.

Proof sketch.
Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in \{6, 7, 8\}$, then $G = K_t$.

Proof sketch.

- For $x \in V(G)$, $t + 1 \leq d(x) \leq 2t - 6$, and so $t \geq 7$.
Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in \{6, 7, 8\}$, then $G = K_t$.

Proof sketch.

- For $x \in V(G)$, $t + 1 \leq d(x) \leq 2t - 6$, and so $t \geq 7$.
- If $t = 7$, then G is 8-regular, contradicting that vertices of degree $t + 1$ are not adjacent.
Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in \{6, 7, 8\}$, then $G = K_t$.

Proof sketch.

- For $x \in V(G)$, $t + 1 \leq d(x) \leq 2t - 6$, and so $t \geq 7$.
- If $t = 7$, then G is 8-regular, contradicting that vertices of degree $t + 1$ are not adjacent.
- If $t = 8$, then G is 10-regular, and a claw can be found in $N[x]$.
Theorem - Chudnovsky and Seymour (2008)

If G is a claw-free graph, then G is either

- obtained from the icosahedron,
- a circular interval graph,
- antiprismatic,
- covered by three cliques, or
- constructed from certain classes of claw-free “building blocks” in a precise fashion.
Theorem - Chudnovsky and Seymour (2008)

If G is a claw-free graph, then G is either
- obtained from the icosahedron,
- a circular interval graph,
- antiprismatic,
- covered by three cliques, or
- constructed from certain classes of claw-free “building blocks” in a precise fashion.

Theorem - Loeb, R., and Yu (2019+)

If G is a non-complete, double-critical, t-chromatic, claw-free graph, then $\alpha(G) = 3$. In particular, either G is antiprismatic or $V(G)$ is the union of three cliques.
Each “building block” is a claw free graph
Each block has 1 or two "handles"
- Group together handles
The neighborhoods of each group become cliques
Lemma

If G is a double-critical, claw-free graph constructed in this manner, then there are at most two “handle groups,” and every “handle” belongs to one of these groups.
Lemma

If G is a double-critical, claw-free graph constructed in this manner, then there are at most two “handle groups,” and every “handle” belongs to one of these groups.

Lemma

If G is a double-critical, claw-free graph constructed in this manner, then there is at most one “building block” which is not a clique.
Lemma

If G is a double-critical, claw-free graph constructed in this manner, then there are at most two “handle groups,” and every “handle” belongs to one of these groups.

Lemma

If G is a double-critical, claw-free graph constructed in this manner, then there is at most one “building block” which is not a clique.

- Both proofs rely on the property of double-critical graphs that every edge belongs to $t - 2$ triangles.
A graph G is **prismatic** if for every triangle T in G and every vertex $x \in V(G) \setminus V(T)$, x has exactly one neighbor in T.
A graph G is prismatic if for every triangle T in G and every vertex $x \in V(G) \setminus V(T)$, x has exactly one neighbor in T.

A graph is antiprismatic if its complement is prismatic.
A graph G is **prismatic** if for every triangle T in G and every vertex $x \in V(G) \setminus V(T)$, x has exactly one neighbor in T.

A graph is **antiprismatic** if its complement is prismatic.

Equivalently, G is antiprismatic if for every $X \subseteq V(G)$ with $|X| = 4$, there are at least two pairs of vertices in X which are adjacent in G.

Lemma: If G is antiprismatic and double-critical, then $\alpha(G) \leq 3$.

Lemma: If G is the union of three cliques, then $\alpha(G) \leq 3$.

Martin Rolek
Double-critical graph conjecture for claw-free graphs
A graph G is **prismatic** if for every triangle T in G and every vertex $x \in V(G) \setminus V(T)$, x has exactly one neighbor in T.

A graph is **antiprismatic** if its complement is prismatic.

Equivalently, G is antiprismatic if for every $X \subseteq V(G)$ with $|X| = 4$, there are at least two pairs of vertices in X which are adjacent in G.

Lemma

If G is antiprismatic and double-critical, then $\alpha(G) \leq 3$.
A graph G is **prismatic** if for every triangle T in G and every vertex $x \in V(G) \setminus V(T)$, x has exactly one neighbor in T.

A graph is **antiprismatic** if its complement is prismatic.

Equivalently, G is antiprismatic if for every $X \subseteq V(G)$ with $|X| = 4$, there are at least two pairs of vertices in X which are adjacent in G.

Lemma

If G is antiprismatic and double-critical, then $\alpha(G) \leq 3$.

Lemma

If G is the union of three cliques, then $\alpha(G) \leq 3$.
Question

Can it be shown that there are no antiprismatic double-critical graphs or three-cliqued double-critical graphs?
Question

Can it be shown that there are no antiprismatic double-critical graphs or three-cliqued double-critical graphs?

- Chudnovsky and Seymour (2008) provide additional structural results for these classes of graphs
Question
Can it be shown that there are no antiprismatic double-critical graphs or three-cliqued double-critical graphs?

- Chudnovsky and Seymour (2008) provide additional structural results for these classes of graphs

Question
Can it be shown that there are no double-critical graphs G with $\alpha(G) = 3$?
Thank you!