On some non-periodic groups whose cyclic subgroups are GNA-subgroups

Aleksandr A. Pypka

11.10.2017

Abstract. In this paper we obtain the description of non-periodic locally generalized radical groups whose cyclic subgroups are GNA-subgroups.

Introduction

Let G be a group. Recall that a subgroup H of G is called abnormal in G if $g \in \langle H, H^g \rangle$ for every element $g \in G$. Recall also that a subgroup H of G is self-normalizing in G if $N_G(H) = H$. It is well known that every abnormal subgroup of G is self-normalizing in G. Clearly abnormal and self-normalizing subgroups are antipodes of normal subgroups. On the one hand, a subgroup H of G is both normal and abnormal in G iff $H = G$. On the other hand, if H is a normal subgroup of G, then $N_G(H) = G$. This reminds shows that the properties of normal subgroups and abnormal (respectively, self-normalizing) subgroups are diametrically opposite.

In the same time, there are subgroups that combine the concepts of normality and abnormality. Recall that a subgroup H of a group G is called pronormal in G if for every element $g \in G$ the subgroups H and H^g are conjugate in $\langle H, H^g \rangle$. Thus, every normal and abnormal subgroup of G is pronormal in G. Note that the normalizer $N_G(H)$ of pronormal subgroup H is abnormal in G (see, for example, [1]), and hence self-normalizing in G.

2010 Mathematics Subject Classification: 20F16, 20F18, 20F19, 20F22.

Key words and phrases: normal subgroup, abnormal subgroup, pronormal subgroup, self-normalizing subgroup, GNA-subgroup, locally nilpotent radical, locally finite radical, (generalized) radical group.
In the paper [6] the authors introduced the following generalization of normal and abnormal subgroups.

Definition 1. A subgroup H of a group G is called a GNA-subgroup of G if for every element $g \in G$ either $H^g = H$ or $N_K(N_K(H)) = N_K(H)$, where $K = \langle H, g \rangle$.

Clearly every pronormal subgroup is a GNA-subgroup. Moreover, example from [6] shows that there are GNA-subgroups, which are not pronormal.

In the paper [6], the authors obtained the description of locally finite groups whose all subgroups are GNA-subgroups. Later, in the paper [5], it has been obtained the description of locally finite groups whose cyclic subgroups are GNA-subgroups.

In this article, we continue to study the influence of GNA-subgroups on the group structure. More precisely, we investigate the structure of some non-periodic groups whose cyclic subgroups are GNA-subgroups.

First, we recall some definitions. A *locally nilpotent radical* of a group G is a subgroup generated by all normal locally nilpotent subgroups of G. We will denote this subgroup by $L_{nr}(G)$. We recall also that a *locally finite radical* of a group G is a subgroup generated by all normal locally finite subgroups of G. We will denote this subgroup by $L_{nf}(G)$.

A group G is called *radical* if G has an ascending series whose factors are locally nilpotent. A group G is called *generalized radical* if G has an ascending series whose factors are locally nilpotent or locally finite. Hence a generalized radical group G either has an ascendant locally nilpotent subgroup or an ascendant locally finite subgroup. In the first case, the locally nilpotent radical $L_{nr}(G)$ of G is non-identity. In the second case, it is not hard to see that G contains a non-identity normal locally finite subgroup. Clearly, in every group G the subgroup $L_{fr}(G)$ is the largest normal locally finite subgroup. Thus, every generalized radical group has an ascending series of normal subgroups with locally nilpotent or locally finite factors.

Observe also that a periodic generalized radical group is locally finite, and hence periodic locally generalized radical group is also locally finite.

The main result of this paper is the following

Theorem 1. Let G be a non-periodic locally generalized radical group. Suppose that R is a locally nilpotent radical of G. If every cyclic subgroup of G is a GNA-subgroup, then either G is abelian or $G = R\langle b \rangle$, where R is abelian, $b^2 \in R$ and $a^b = a^{-1}$ for each element $a \in R$. Moreover, in the second case, the following conditions hold:

(i) if $b^2 = 1$, then the Sylow 2-subgroup D of R is elementary abelian;
(ii) if \(b^2 \neq 1\), then either \(D\) is elementary abelian or \(D = E \times \langle v \rangle\), where \(E\) is elementary abelian and \((b, v)\) is a quaternion group.

Conversely, if a group \(G\) satisfies the above conditions, then every cyclic subgroup of \(G\) is a GNA-subgroup.

1. Preliminary results

Lemma 1. Let \(G\) be a group whose cyclic subgroups are GNA-subgroups.

(i) If \(H\) is a subgroup of \(G\), then every cyclic subgroup of \(H\) is a GNA-subgroup.

(ii) If \(H\) is a normal subgroup of \(G\), then every cyclic subgroup of \(G/H\) is a GNA-subgroup.

Proof. It follows from the definition of GNA-subgroups.

In the paper [3], B.H. Neumann proved the following classical result: if the factor-group \(G/\zeta(G)\) is finite, then the derived subgroup \([G, G]\) is also finite. As a corollary, we can come to the following generalization: if the factor-group \(G/\zeta(G)\) is locally finite, then the derived subgroup \([G, G]\) is also locally finite.

Lemma 2. Let \(G\) be a generalized radical group. If every cyclic subgroup of \(G\) is a GNA-subgroup, then \(G\) is soluble of class at most 3.

Proof. Suppose that the locally finite radical \(Lfr(G) = F\) of \(G\) is non-identity. Then \([F, F]\) is abelian [5, Corollary 14]. It follows that in any case the locally nilpotent radical \(Lnr(G) = R\) of \(G\) is non-identity. We will prove that \(G\) is a radical group. Suppose the contrary. Then \(G\) includes the normal subgroups \(T\) and \(S\) such that \(R \leq T \leq S\), \(T\) is radical, \(S/T\) is locally finite and \(Lnr(S/T) = \langle 1 \rangle\). By [5, Corollary 4], \(R\) is a Dedekind group. Corollary 1 from [5] shows that every subgroup of \(R\) is \(G\)-invariant. Then \(S/C_S(R)\) is abelian (see, for example [7, Theorem 1.5.1]). We observe that \(C_S(R) \cap T \leq R\) (see [4, Lemma 4]). Suppose first that \(R\) is periodic. Then

\[
C_S(R)/(C_S(R) \cap R) = C_S(R)/(C_S(R) \cap T) \cong C_S(R)T/T \leq S/T.
\]

In particular, \(C_S(R)/(C_S(R) \cap R)\) is locally finite. Since \(R\) is periodic and locally nilpotent, \(C_S(R)\) is locally finite. Being locally finite, \(C_S(R)\) is metabelian by [5, Corollary 14]. Since \(S/T\) does not include non-identity normal abelian subgroups, \(C_S(R) \leq T\). We have now

\[
S/T \cong (S/C_S(R))/(T/C_S(R)).
\]
We have remarked above that the factor-group $S/C_S(R)$ is abelian, and therefore S/T is abelian. Contradiction.

Suppose now that R is not periodic. Corollary 4 from [5] shows that R is abelian. Let V be the periodic part of R and put $C = C_S(R)$. By proved above, $C/R \cong C/(C \cap R)$ is locally finite. Also, the inclusion $R \leq \zeta(C)$ implies that $[C, C]$ is a locally finite subgroup. Using [5, Corollary 14], we obtain that C is soluble. It follows that $C_S(R) \leq T$, and using the arguments from above, we again obtain a contradiction. This contradiction shows that G is a radical group.

Then $C_G(R) \leq R$ [4, Lemma 4]. By [5, Corollary 4], R is a Dedekind group, in particular, R is metabelian. Corollary 1 from [5] shows that G is soluble if $G/C_G(R)$ is soluble (see, e.g., Theorem 1.5.1 in [7]). The inclusion $C_G(R) \leq R$ implies that G/R is soluble, so that G is soluble and $\text{scl}(G) \leq 3$. \hfill \Box

Corollary 1. Let G be a locally generalized radical group. If every cyclic subgroup of G is a GNA-subgroup, then G is soluble of class at most 3.

Lemma 3. Let G be a group and A be a normal abelian subgroup of G. Suppose that $G = A(b)$ where $b^2 \in A$ and $a^b = a^{-1}$ for each element $a \in A$. If the subgroup $\langle b \rangle$ is a GNA-subgroup, then

(i) if $b^2 = 1$, then the Sylow 2-subgroup D of A is elementary abelian;

(ii) if $b^2 \neq 1$, then either D is elementary abelian or $D = E \times \langle v \rangle$ where E is elementary abelian and $\langle b, v \rangle$ is a quaternion group.

Proof. Suppose that $a \in C_A(b)$, then $a^b = a$. On the other hand, by our conditions, $a^b = a^{-1}$, that is $a^{-1} = a$ and $1 = a^2$. Thus $C_A(b)$ is an elementary abelian 2-subgroup. If $c = b^2 \neq 1$, then $c \in C_A(b)$, and by proved above, $1 = c^2 = b^4$. Conversely, if $|a| = 2$, then $a \in C_A(b)$.

Note that if $a \in \langle b \rangle$, then $\langle b \rangle = \langle b \rangle$. Let a be an arbitrary element of A. Then $b^{-1}a^{-1}ba = aa = a^2$, and $b^2 = a^{-1}ba = ba^2$. Furthermore, $b^{-1}ab = a^{-1}$ and $ab = ba^{-1}$. Then we have

$$(ba)(ba) = b(ab)a = b(ba^{-1})a = b^2.$$

Since this is valid for arbitrary element a, we obtain $(ba)^2 = b^2$.

Since $\langle b \rangle$ is a GNA-subgroup, we have two possibilities: either $\langle b \rangle$ or $N_K(\langle b \rangle) = N_K(N_K(\langle b \rangle))$, where $K = \langle \langle b \rangle, a \rangle = \langle b, a \rangle$, $a \in A$. In the first case, we obtain that a subgroup

$$\langle b \rangle = \langle b \rangle = \langle b^2 \rangle = \langle b, a^2 \rangle$$
is a 2-subgroup, in particular, a^2 (and hence a) is a 2-element. In the second case, we again obtain that a subgroup

$$\langle b \rangle = N_K(\langle b \rangle) = N_K(N_K(\langle b \rangle))$$

is a 2-subgroup.

Suppose first $|b| = 2$. Then $\langle b \rangle \cap A = \langle 1 \rangle$. Assume that A has an element u of order 4. By proved above $u^{-1}bu = bu^2$. Since $|u^2| = 2$, $u^2 \in C_A(b)$. It follows that $\langle b, u^2 \rangle$ is abelian. On the other hand, $\langle b \rangle \neq \langle b \rangle u$. On the other hand $N_K(\langle b \rangle) = \langle b, u^2 \rangle \neq \langle b \rangle$, $K = \langle (b, u) = \langle b, u \rangle$. So that $N_K(\langle b \rangle) \neq N_K(N_K(\langle b \rangle))$, and we obtain a contradiction. This contradiction shows that a Sylow 2-subgroup of A is elementary abelian.

Suppose now that $c = b^2 \neq 1$. Let D be a Sylow 2-subgroup of A. Since the subgroup $\langle c \rangle$ is normal in G, its image in the factor-group $G/\langle c \rangle$ is a GNA-subgroup. As proved above, $D/\langle c \rangle$ is an elementary abelian 2-subgroup. Then either D is elementary abelian or D has an element v of order 4 such that $v^2 = c = b^2$. Consider the last situation. Since v has a maximal order among all the elements of D, $D = E \times \langle v \rangle$. Since $\langle v \rangle$ is $\langle b \rangle$-invariant, we have

$$|\langle b \rangle \langle v \rangle| = (|\langle b \rangle||\langle v \rangle|)/(\langle b \rangle \cap \langle v \rangle) = 8.$$

Furthermore, as proved above, $v^{-1}bv = bu^2 = bb^2 = b^3$. Hence $\langle b, v \rangle$ is a product of two normal cyclic subgroups of order 4. It follows that $\langle b, v \rangle$ is a quaternion group. \square

Corollary 2. Let G be a group and A be a normal abelian non-periodic subgroup of G. Suppose that $G = A\langle b \rangle$ where $b^2 \in A$, and $a^b = a^{-1}$ for each element $a \in A$. Then G has a subgroup, which is not a GNA-subgroup.

Proof. Indeed, let h be an element of A of infinite order. Put $H = \langle h^4 \rangle$. Then H is normal in G, the element hH has order 4, and $\langle hH \rangle \cap \langle bH \rangle = H$. Lemma 3 shows that the subgroup $\langle b, h^4 \rangle$ can not be a GNA-subgroup. \square

Lemma 4. Let G be a non-periodic finitely generated soluble group. Suppose that R is a locally nilpotent radical of G. If every cyclic subgroup of G is a GNA-subgroup, then either G is abelian or $G = R\langle b \rangle$ where R is abelian, $b^2 \in R$, and $a^b = a^{-1}$ for each element $a \in R$.

Proof. By [5, Corollary 4], R is a Dedekind group. Corollary 1 from [5] shows that every subgroup of R is G-invariant. Then $G/C_G(R)$ is abelian (see, for example [7, Theorem 1.5.1]). The inclusion $C_G(R) \leq R$
[4, Lemma 4] implies that G/R is abelian. Being abelian and finitely generated G/R is finitely presented. It follows that R has the elements x_1, \ldots, x_k such that $R = \langle x_1 \rangle^G \ldots \langle x_k \rangle^G$ (see, for example, [2, p. 421]). Since every subgroup of R is G-invariant, $\langle x_j \rangle^G = \langle x_j \rangle$, $1 \leq j \leq k$. It follows that R is finitely generated. If we suppose that R is periodic, then R is finite. The inclusion $C_G(R) \leq R$ [4, Lemma 4] implies that G/R is also finite, and hence G is finite. This contradiction proves that R is non-periodic.

Then Corollary 2 and 3 from [5] shows that R is abelian. Suppose that there exists an index s such that $u_s \notin \zeta(G)$. Then there exists an element g such that $v_m^g = v_m^r \neq v_m$ where r is a certain positive integer. Consider the element u_1v_m. We have

$$ (u_1v_m)^g = u_1^g v_m^g = u_1 v_m^r \neq u_1 v_m. $$

We remark that u_1v_m has infinite order. By [5, Corollary 1], a subgroup $\langle u_1v_m \rangle$ is G-invariant. Then the fact that $g \notin C_G(u_1v_m)$ implies $\langle u_1v_m \rangle^g = \langle u_1v_m \rangle^{-1} = u_1^{-1}v_m^{-1}$. On the other hand, we have $(u_1v_m)^g = u_1 v_m^r$, which implies that $u_1 = u_1^{-1}$. Contradiction. So, there exists an index j such that $u_j \notin \zeta(G)$. Without loss of generality we can suppose that $j = 1$. Let b be an element of G such that $G = \langle b \rangle C_G(\langle u_1 \rangle)$. Then $u_1^b = u_1^{-1}$, and $b^2 \in C_G(\langle u_1 \rangle)$. Suppose now that there exists an index s, $1 < s \leq n$, such that $[b, u_s] = 1$. Then

$$ (u_1u_s)^b = u_1^b u_s^b = u_1^{-1} u_s \neq u_1 u_s. $$

On the other hand, an infinite cyclic subgroup $\langle u_1 u_s \rangle$ is G-invariant by [5, Corollary 1]. Then it follows that

$$ (u_1 u_s)^b = (u_1 u_s)^{-1} = u_1^{-1} u_s^{-1}. $$

Hence $u_s = u_1^{-1}$, and we obtain a contradiction. This contradiction shows that $u_j^b = u_j^{-1}$ for all j, $1 \leq j \leq n$. Using the same arguments we can
prove that \(v_j^b = v_j^{-1}\) for all \(j, 1 \leq j \leq t\). It follows that \(a^b = a^{-1}\) for all elements \(a \in R\).

With the help of similar arguments we can prove that

\[
C_G(\langle u_1 \rangle) = C_G(R) = R.
\]

Hence \(G = R(b)\) and \(b^2 \in R\).

Corollary 3. Let \(G\) be a non-periodic locally generalized radical group. Suppose that \(R\) is a locally nilpotent radical of \(G\). If every cyclic subgroup of \(G\) is a \(GNA\)-subgroup, then either \(G\) is abelian or \(G = R(b)\) where \(R\) is abelian, \(b^2 \in R\), and \(a^b = a^{-1}\) for each element \(a \in R\).

Proof. By Corollary 1, \(G\) is soluble. Suppose that \(G\) is not abelian. Then \(G\) includes a non-periodic finitely generated non-abelian subgroup \(K\). By Lemma 4, \(K = \text{Lnr}(K)(b)\), where \(\text{Lnr}(K)\) is abelian, \(b^2 \in \text{Lnr}(K)\), \(b^4 = 1\), and \(a^b = a^{-1}\) for each element \(a \in \text{Lnr}(K)\).

Choose in \(G\) a local family \(\mathfrak{L}\) of finitely generated subgroups containing \(K\), and let \(L \in \mathfrak{L}\). Using again Lemma 4 we obtain that \(L = \text{Lnr}(L)(b_1)\), where \(\text{Lnr}(L)\) is abelian, \(b_1^2 \in \text{Lnr}(L)\), \(b_1^4 = 1\), and \(a^{b_1} = a^{-1}\) for each element \(a \in \text{Lnr}(L)\). Since \(K\) is not locally nilpotent, \(\text{Lnr}(L) \cap K \neq K\). On the other hand,

\[
|K : \text{Lnr}(L) \cap K| \leq |L : \text{Lnr}(L)| = 2,
\]

so that \(\text{Lnr}(K) = \text{Lnr}(L) \cap K\). In particular, \(b \not\in \text{Lnr}(L)\). It follows that \(b = b_1u\) for some element \(u \in \text{Lnr}(L)\). As in the proof of Lemma 3, we can show that \(b^2 = (b_1u)^2 = b_1^2\). So, instead of \(b_1\) we can put \(b\). In other words, if \(L\) is an arbitrary subgroup of the family \(\mathfrak{L}\), then \(L = \text{Lnr}(L)(b)\), where \(\text{Lnr}(L)\) is abelian, \(b^2 \in \text{Lnr}(L)\), \(b^4 = 1\), and \(a^b = a^{-1}\) for each element \(a \in \text{Lnr}(L)\). Since \(\mathfrak{L}\) is a local family, \(G = \text{Lnr}(G)(b)\), where \(\text{Lnr}(G)\) is abelian, \(b^2 \in \text{Lnr}(G)\), \(b^4 = 1\) and \(a^b = a^{-1}\) for each element \(a \in \text{Lnr}(G)\).

2. Proof of main result

Proof of Theorem 1. The necessity follows from Lemma 3 and Corollary 3.

Conversely, let a group \(G\) satisfies the theorem conditions and let \(x\) be an arbitrary element of \(G\). If \(x \in R\), then \(\langle x \rangle\) is normal in \(G\), in particular, \(\langle x \rangle\) is a \(GNA\)-subgroup. Suppose that \(x \not\in R\). Then \(x = bu\) for some element \(u \in R\). In this case, \(G = R(\langle x \rangle)\). As in the proof of Lemma 3, we can show that \(x^2 = (bu)^2 = b^2\). Since \(R\) is abelian, \(a^x = a^b = a^{-1}\) for each element \(a \in R\).
Let g be an arbitrary element of G, then $g = x^k a$ for some element $a \in R$. It follows that $g^{-1} x g = a^{-1} x a$. We have $x^{-1} a^{-1} x a = a a = a^2$, and $a^{-1} x a = x a^2$. Furthermore, $x^{-1} a x = a^{-1}$, and $a x = x a^{-1}$. Then we have $(x a)(x a) = x(ax) a = x(xa^{-1}) a = x^2$.

Consider $\langle x \rangle^a$. We have $\langle x \rangle^a = \langle xa^2 \rangle = \langle x, a^2 \rangle$. In particular, it shows that $\langle x \rangle^a$ is a 2-subgroup. In turn, it follows that a^2 is a 2-element, so that a is also a 2-element. Then $a =vc$ where $c^2 = 1$. A subgroup $\langle b, v \rangle$ is a quaternion group, so that $\langle b \rangle$ is $\langle v \rangle$-invariant. It follows that $\langle x \rangle$ is $\langle v \rangle$-invariant. Since $c^2 = 1$, $[c, x] = 1$. It follows that $\langle x \rangle^a = \langle x \rangle$, which shows that $\langle x \rangle$ is a GNA-subgroup.

The following result follows directly from Theorem 1 and Corollary 2.

Corollary 4. Let G be a non-periodic locally generalized radical group. Then every subgroup of G is a GNA-subgroup if and only if G is abelian.

References

[1] M.S. Ba, Z.I. Borevich, *On arrangement of intermediate subgroups*, Rings and Linear Groups, Kubansk. Univ., Krasnodar (1988), 14–41.

[2] P. Hall, *Finiteness conditions for soluble groups*, Proc. London Math. Soc. 4 (1954), 419–436.

[3] B.H. Neumann, *Groups with finite classes of conjugate elements*, Proc. London Math. Soc. 1 (1951), 178–187.

[4] B.I. Plotkin, *Radical groups*, Math. Sb. 37 (1955), 507–526.

[5] A.A. Pypka, *On locally finite groups whose cyclic subgroups are GNA-subgroups*, Algebra and Discrete Math., to appear.

[6] A.A. Pypka, N.A. Turbay, *On GNA-subgroups in locally finite groups*, Proc. of Francisk Scorina Gomel state university 93 (2015), no. 6, 97–100.

[7] R. Schmidt, *Subgroup lattices of groups*, Walter de Gruyter, Berlin, 1994.

Contact information

A.A. Pypka
Department of Geometry and Algebra, Faculty of Mechanics and Mathematics, Oles Honchar Dnipro National University, Gagarin ave., 72, Dnipro, 49010, Ukraine

E-Mail: pypka@ua.fm
URL: