Automated Topical Component Extraction Using Neural Network Attention Scores from Source-based Essay Scoring

Haoran Zhang
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260
colinzhang@cs.pitt.edu

Diane Litman
Department of Computer Science & LRDC
University of Pittsburgh
Pittsburgh, PA 15260
litman@cs.pitt.edu

Abstract

While automated essay scoring (AES) can reliably grade essays at scale, automated writing evaluation (AWE) additionally provides formative feedback to guide essay revision. However, a neural AES typically does not provide useful feature representations for supporting AWE. This paper presents a method for linking AWE and neural AES, by extracting Topical Components (TCs) representing evidence from a source text using the intermediate output of attention layers. We evaluate performance using a feature-based AES requiring TCs. Results show that performance is comparable whether using automatically or manually constructed TCs for 1) representing essays as rubric-based features, 2) grading essays.

1 Introduction

Automated essay scoring (AES) systems reliably grade essays at scale, while automated writing evaluation (AWE) systems additionally provide formative feedback to guide revision. Although neural networks currently generate state-of-the-art AES results (Alikaniotis et al., 2016; Taghipour and Ng, 2016; Dong et al., 2017; Farag et al., 2018; Jin et al., 2018; Li et al., 2018; Tay et al., 2018; Zhang and Litman, 2018), non-neural AES create feature representations more easily usable by AWE (Roscoe et al., 2014; Foltz and Rosenstein, 2015; Crossley and McNamara, 2016; Woods et al., 2017; Madnani et al., 2018; Zhang et al., 2019). We believe that neural AES can also provide useful information for creating feature representations, e.g., by exploiting information in the intermediate layers.

Our work focuses on a particular source-based essay writing task called the response-to-text assessment (RTA) (Correnti et al., 2013). Recently, an RTA AWE system (Zhang et al., 2019) was built by extracting rubric-based features related to the use of Topical Components (TCs) in an essay. However, manual expert effort was first required to create the TCs. For each source, the TCs consist of a comprehensive list of topics related to evidence which include: 1) important words indicating the set of evidence topics in the source, and 2) phrases representing specific examples for each topic that students need to find and use in their essays.

To eliminate this expert effort, we propose a method for using the interpretable output of the attention layers of a neural AES for source-based essay writing, with the goal of extracting TCs. We evaluate this method by using the extracted TCs to support feature-based AES for two RTA source texts. Our results show that 1) the feature-based AES with TCs manually created by humans is matched by our neural method for generating TCs, and 2) the values of the rubric-based essay features based on automatic TCs are highly correlated with human Evidence scores.

2 Related Work

Three recent AWE systems have used non-neural AES to provide rubric-specific feedback. Woods et al. (2017) developed an influence estimation process that used a logistic regression AES to identify sentences needing feedback. Shibani et al. (2019) presented a web-based tool that provides formative feedback on rhetorical moves in writing. Zhang et al. (2019) used features created for a random forest AES to select feedback messages, although human effort was first needed to create TCs from a source text. We automatically extract TCs using neural AES, thereby eliminating this expert effort.

Others have also proposed methods for pre-processing source information external to an essay. Content importance models for AES predict the parts of a source text that students should include when writing a summary (Klebanov et al., 2018).
Methods for extracting important keywords or keyphrases also exist, both supervised (unlike our approach) (Meng et al., 2017; Mahata et al., 2018; Florescu and Jin, 2018) and unsupervised (Florescu and Caragea, 2017). Rahimi and Litman (2016) developed a TC extraction LDA model (Blei et al., 2003). While the LDA model considers all words equally, our model takes essay scores into account by using attention to represent word importance. Both the unsupervised keyword and LDA models will serve as baselines in our experiments.

In the computer vision area, attention cropped images have been used for further image classification or object detection (Cao et al., 2015; Yuxin et al., 2018; Ebrahimpour et al., 2019). In the NLP area, Lei et al. (2016) proposed to use a generator to find candidate rationale and these are passed through the encoder for prediction. Our work is similar in spirit to this type of work.

3 RTA Corpus and Prior AES Systems

The essays in our corpus were written by students in grades 4 to 8 in response to two RTA source texts (Correnti et al., 2013): \(RTA_{MV} \) (2970 essays) and \(RTA_{SP} \) (2076 essays). Table 1 shows an excerpt from \(RTA_{MV} \), the associated essay writing prompt, and a student essay. The bolding in the source indicates evidence examples that experts manually labeled as important for students to discuss (i.e., TC phrases). Evidence usage in each essay was manually scored on a scale of 1 to 4 (low to high). The distribution of Evidence scores is shown in Table 2. The essay in Table 1 received a score of 3, with the bolding indicating phrases semantically related to the TCs from the source text.

To date, two approaches to AES have been proposed for the RTA: \(AES_{rubric} \) and \(AES_{neural} \). To support the needs of AWE, \(AES_{rubric} \) (Zhang and Litman, 2017) used a traditional supervised learning framework where rubric-motivated features were extracted from every essay before model training - Number of Pieces of Evidence (NPE) \(^1\), Concentration (CON), Specificity (SPC) \(^2\), Word Count (WOC). The two aspects of TCs introduced in Section 1 (topic words, specific example phrases) were used during feature extraction.

Motivated by improving stand-alone AES performance (i.e., when an interpretable model was not needed for subsequent AWE), Zhang and Litman (2018) developed \(AES_{neural} \), a hierarchical neural model with the co-attention mechanism in the sentence level to capture the relationship between the essay and the source. Neither feature engineering nor TC creation were needed before training.

4 Attention-Based TC Extraction: \(TC_{attn} \)

In this section we propose a method for extracting TCs based on the \(AES_{neural} \) attention level outputs. Since the self-attention and co-attention mechanisms were designed to capture sentence and phrase importance, we hypothesize that the attention scores can help determine if a sentence or phrase is important. We consider a sentence important if the \(TC_{attn} \) score associated with it is greater than a threshold.

Table 1: A source excerpt for the \(RTA_{MV} \) prompt and an essay with score of 3.

Prompt	\(RTA_{MV} \)	\(RTA_{SP} \)
Score 1	852	538
Score 2	1197	789
Score 3	616	512
Score 4	305	237
Total	2970	2076

Table 2: The Evidence score distribution of RTA.

\(^1\)An integer feature based on the list of topic words for each topic.

\(^2\)A vector of integer values indicating the number of specific example phrases (semantically) mentioned in the essay per topic.
phrase has important source-related information.

To provide intuition, Table 3 shows examples sentences from the student essay in Table 1. Bolded are phrases with the highest self-attention score within the sentence. Italicics are specific example phrases that refer to the manually constructed TCs for the source. $Attn_{sent}$ is the text to essay attention score that measures which essay sentences have the closest meaning to a source sentence. $Attn_{phrase}$ is the self-attention score of the bolded phrase that measures phrase importance. A sentence with a high attention score tends to include at least one specific example phrase, and vice versa. The phrase with the highest attention score tends to include at least one specific example phrase if the sentence has a high attention score.

Based on these observations, we first extract the output of two layers from the neural network: 1) the $attn_{sent}$ of each sentence, and 2) the output of the convolutional layer as the representation of the phrase with the highest $attn_{phrase}$ in each sentence (denoted by cmn_{phrase}). We also extract the plain text of the phrase with the highest $attn_{phrase}$ in each sentence (denoted by $text_{phrase}$). Then, our TC_{attn} method uses the extracted information in 3 main steps: 1) filtering out $text_{phrase}$ from sentences with low $attn_{sent}$, 2) clustering all remaining $text_{phrase}$ based on cmn_{phrase}, and 3) generating TCs from clusters.

The first filtering step keeps all $text_{phrase}$ where the original sentences have $attn_{sent}$ higher than a threshold. The intuition is that lower $attn_{sent}$ indicates less source-related information.

The second step clusters these $text_{phrase}$ based on their corresponding representations cmn_{phrase}. We use k-medoids to cluster $text_{phrase}$ into M clusters, where M is the number of topics in the source text. Then, for $text_{phrase}$ in each topic cluster, we use k-medoids to cluster them into N clusters, where N is the number of the specific example phrases we want to extract from each topic. The outputs of this step are $M \times N$ clusters.

The third step uses the topic and example clustering to extract TCs. As noted earlier, TCs include two parts: topic words, and specific example phrases. Since our method is data-driven and students introduce their vocabulary into the corpus, essay text is noisy. To make the TC output cleaner, we filter out words that are not in the source text. To obtain topic words, we combine all $text_{phrase}$ from each topic cluster to calculate the word frequency per topic. To make topics unique, we assign each word to the topic cluster in which it has the highest normalized word frequency. We then include the top K_{topic} words based on their frequency in each topic cluster. To obtain example phrases, we combine all $text_{phrase}$ from each example cluster to calculate the word frequency per example, then include the top $K_{example}$ words based on their frequency in each example cluster.

5 Experimental Setup and Results

Figure 1 shows an overview of four TC extraction systems. PositionRank is not designed for TC extraction methods to be evaluated. TC_{manual} (upper bound) uses a human expert to extract TCs from a source text. TC_{attn} is our proposed method and automatically extracts TCs using both a source text and student essays. TC_{lda} (Rahimi and Litman, 2016) (baseline) builds on LDA to extract TCs from student essays only, while TC_{pr} (baseline) builds on PositionRank (Florescu and Caragea, 2017) to instead extract TCs from only the source text.
Component

TC

we put them into only one topic and remove all word to a higher dimension with word embedding.

(2018) for neural training as shown in Table 4. Ta-

(NPE and sum of SPC features)

3 Zhang and Litman, 2017 will perform compara-

tion itself.

Downstream AES using our proposed TC extraction method on the

TC and will be stronger than when using

TC or

TC

will perform worse when using

TC or

TC

pr

the human Evidence score and the feature values

H1) the

AESrubric

model for scoring Evidence (Zhang and Litman, 2017) will perform comparably when extracting features using either

TC

attn

or

TC

manual

and will perform worse when using

TC

lda

or

TC

pr

H2) the correlation between the human Evidence score and the feature values (NPE and sum of SPC features) will be comparable when extracted using

TCattn

and

TCmanual

and will be stronger than when using

TCllda

and

TCpr

The experiment for H1 tests the impact of using our proposed TC extraction method on the downstream

AESrubric

task, while the H2 experiment examines the impact on the essay representation itself.

Following Zhang and Litman (2017), we stratify essay corpora: 40% for training word embeddings and extracting TCs, 20% for selecting the best embedding and parameters, and 40% for testing. We use the hyper-parameters from Zhang and Litman (2018) for neural training as shown in Table 4. Table 5 shows all other parameters selected using the development set.

Results for H1. H1 is supported by the results in Table 6, which compares the Quadratic Weighted Kappa (QWK) between human and

AESrubric Evidence scores (values 1-4) when

AESrubric

uses

TCmanual

versus each of the automatic methods.

TCattn

always yields better performance, and even significantly better than

TClmanual

Results for H2. The results in Table 7 support

H2. TCattn outperforms the two automated base-

lines, and for NPE even yields stronger correlations than the manual TC method.

Qualitative Analysis. The manually-created topic words for

RTAMVP

represent 4 topics, which are “hospital”, “malaria”, “farming” and “school”4. Although Table 5 shows that the automated list has more topics for topic words and might have broken one topic into separate topics, a good automated list should have more topics related to the 4 topics above. We manually assign a topic for each of the topic words from the different automated methods. TCllda has 4 related topics out of 9 (44.44%),

TCllda

has 6 related topics out of 19 (31.58%), and

TCllda

has 10 related topics out of 16 (62.50%). Obviously,

TCllda

preserves more related topics than our baselines.

Moving to the second aspect of TCs (specific example phrases), Table 8 shows the first 10 specific example phrases for a manually-created category that introduces the changes made by the MVP project5. This category is a mixture of different topics because it talks about the “hospital”, “malaria”, “school”, and “farming” at the same time.

TCattn

has overlap with

TCmanual

on different topics. However, TCllda mainly talks about “hospital”, because the nature of the LDA model doesn’t allow mixing specific example phrases about different topics in one category. Unfortunately, TCap

Table 5: Parameters for different models.

Prompt	Component	Parameter	TCllda	TCllda	TCllda
RTAMVP	Topic Words	Number of Topics	9	19	16
Number of Words	30	20	25		
Example Phrases	Number of Topics	20	18		
Number of Phrases	15	20	15		
RTA_{Space}	Topic Words	Number of Topics	15	20	10
Number of Words	10	10	20		
Example Phrases	Number of Topics	10	4	9	
Number of Phrases	20	50	20		

Table 6: The performance (QWK) of

AESrubric

using different TC extraction methods for feature creation. The numbers in the parentheses show the model numbers over which the current model performs significantly better ($p < 0.05$). The best results between automated methods in each row are in bold.

Prompt	Feature	TClmanual (1)	TCllda (2)	TCllda (3)	TCllda (4)
RTAMVP	NPE	0.598	0.588	0.567	0.679
SPC (sum)	0.625	0.574	0.533	0.598	
RTA_{Space}	NPE	0.484	0.513	0.494	0.625
SPC (sum)	0.601	0.574	0.533	0.598	

Table 7: Pearson’s r comparing feature values computed using each TC extraction method with human (gold-standard) Evidence essay scores. All correlation values are significant ($p \leq 0.05$). The best results between automated methods in each row are in bold.

4All Specific Example Phrases generated by different models can be found in the Appendix A.2.

5All Specific Example Phrases generated by different models can be found in the Appendix A.1.

These features are extracted based on TCs.
Table 8: Specific example phrases for the $RT^A_{MV P}$ progress topic.

T_{Comp}	T_{lda}	T_{pr}	T_{attn}
medicine most common diseases	water connected hospital generator electricity	millennium villages project	electricity running water irrigation set
running water electricity	patients afford	unpaved dirt road	farmers could afford bed electricity hospital
hospital generator electricity	patients probably	bar sauri primary school	better fertilizer medicine enough also
bed nets used every sleeping site	share beds	future hannah	rooms packed patients
hunger crisis addressed fertilizer seeds	receive treatment	sauri primary school	food fertilizer crops get supply
tools needed maintain food supply	doctors clinical	villages project	five net costs 5
no school fees	doctors clinical	millennium development goals	nets net bed free
school attendance rate way up	water fertilizer knowledge	village leaders	running water supplies schools almost
kids go school now	receive treatment	dirt road	

does not include any overlapped specific phrase in the first 10 items; they all refer to some general example phrases from the beginning of the source article. Although there are some related specific example phrases in the full list, they are mainly about school. This is because the PositionRank algorithm tends to assign higher scores to words that appear early in the text.

6 Conclusion and Future Work

This paper proposes TC_{attn}, a method for using the attention scores in a neural AES model to automatically extract the Topical Components of a source text. Evaluations show the potential of TC_{attn} for eliminating expert effort without degrading AES_{rubric} performance or the feature representations themselves. TC_{attn} outperforms baselines and generates comparable or even better results than a manual approach.

Although TC_{attn} outperforms all baselines and requires no human effort on TC extraction, annotation of essay evidence scores is still needed. This leads to an interesting future investigation direction, which is training the AES_{neural} using the gold standard that can be extracted automatically.

One of our next steps is to investigate the impact of TC extraction methods on a corresponding AWE system (Zhang et al., 2019), which uses the feature values produced by AES_{rubric} to generate formative feedback to guide essay revision.

Currently, the TC_{lda} are trained on student essays, while the TC_{pr} only works on the source article. However, TC_{attn} uses both student essays and the source article for TC generation. It might be hard to say that the superior performance of TC_{attn} is due to the neural architecture and attention scores rather than the richer training resources. Therefore, a comparison between TC_{attn} and a model that uses both student essays and the source article is needed.

Acknowledgments

We would like to show our appreciation to every member of the RTA group for sharing their pearls of wisdom with us. We are also immensely grateful to all members of the PETAL group and reviewers for their comments on an earlier version of the paper.

The research reported here was supported, in whole or in part, by the Institute of Education Sciences, U.S. Department of Education, through Grant R305A160245 to the University of Pittsburgh. The opinions expressed are those of the authors and do not represent the views of the Institute or the U.S. Department of Education.

References

Dimitrios Alikaniotis, Helen Yannakoudakis, and Marek Rei. 2016. Automatic text scoring using neural networks. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 715–725.

David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. Journal of machine Learning research, 3(Jan):993–1022.

Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu, Jiang Wang, Zilei Wang, Yongzhen Huang, Liang Wang, Chang Huang, Wei Xu, et al. 2015. Look and think twice: Capturing top-down visual attention with feedback convolutional neural networks. In Proceedings of the IEEE International Conference on Computer Vision, pages 2956–2964.

Richard Correnti, Lindsay Clare Matsumura, Laura Hamilton, and Elaine Wang. 2013. Assessing students’ skills at writing analytically in response to texts. The Elementary School Journal, 114(2):142–177.

Scott A Crossley and Danielle S McNamara. 2016. Adaptive educational technologies for literacy instruction. Routledge.
Fei Dong, Yue Zhang, and Jie Yang. 2017. Attention-based recurrent convolutional neural network for automatic essay scoring. In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 153–162.

Mohammad K Ebrahimpour, Jiayun Li, Yen-Yun Yu, Jackson Reesee, Azadeh Moghtaderi, Ming-Hsuan Yang, and David C Noelle. 2019. Ventral-dorsal neural networks: Object detection via selective attention. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 986–994. IEEE.

Youmna Farag, Helen Yannakoudakis, and Ted Briscoe. 2018. Neural automated essay scoring and coherence modeling for adversarially crafted input. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 263–271.

Corina Florescu and Cornelia Caragea. 2017. Position-rank: An unsupervised approach to keyphrase extraction from scholarly documents. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1105–1115.

Corina Florescu and Wei Jin. 2018. Learning feature representations for keyphrase extraction. In Thirty-Second AAAI Conference on Artificial Intelligence.

Peter W Foltz and Mark Rosenstein. 2015. Analysis of a large-scale formative writing assessment system with automated feedback. In Proceedings of the Second (2015) ACM Conference on Learning@ Scale, pages 339–342. ACM.

Cancan Jin, Ben He, Kai Hui, and Le Sun. 2018. Tdnn: a two-stage deep neural network for prompt-independent automated essay scoring. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1088–1097.

Beata Beigman Klebanov, Nitin Madnani, Jill Burstein, and Swapna Somasundaran. 2014. Content importance models for scoring writing from sources. In Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 247–252.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016. Rationalizing neural predictions. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 107–117.

Xia Li, Minping Chen, Jianyun Nie, Zhenxing Liu, Ziheng Feng, and Yingdan Cai. 2018. Coherence-based automated essay scoring using self-attention. In Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data, pages 386–397. Springer.

Nitin Madnani, Jill Burstein, Norbert Elliot, Beata Beigman Klebanov, Diane Napolitano, Slava Andreyev, and Maxwell Schwartz. 2018. Writing mentor: Self-regulated writing feedback for struggling writers. In Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, pages 113–117.

Debanjan Mahata, John Kuriakose, Rajiv Ratn Shah, and Roger Zimmermann. 2018. Key2vec: Automatic ranked keyphrase extraction from scientific articles using phrase embeddings. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 634–639.

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He, Peter Brusilovsky, and Yu Chi. 2017. Deep keyphrase generation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 582–592.

Zahra Rahimi and Diane Litman. 2016. Automatically extracting topical components for a response-to-text writing assessment. In Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications, pages 277–282.

Rod D Roscoe, Laura K Allen, Jennifer L Weston, Scott A Crossley, and Danielle S McNamara. 2014. The writing pal intelligent tutoring system: Usability testing and development. Computers and Composition, 34:39–59.

Antonette Shibani, Simon Knight, and Simon Buckingham Shum. 2019. Contextualizable learning analytics design: A generic model and writing analytics evaluations. In Proceedings of the 9th International Conference on Learning Analytics & Knowledge, pages 210–219. ACM.

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural approach to automated essay scoring. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1882–1891.

Yi Tay, Minh C Phan, Luu Anh Tuan, and Siu Chuen Hui. 2018. Skipflow: incorporating neural coherence features for end-to-end automatic text scoring. In Thirty-Second AAAI Conference on Artificial Intelligence.

Bronwyn Woods, David Adamson, Shayne Miel, and Elijah Mayfield. 2017. Formative essay feedback using predictive scoring models. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 2071–2080. ACM.

Peng Yuxin, He Xiangteng, and Zhao Junjie. 2018. Object-part attention model for fine-grained image classification. IEEE transactions on image processing: a publication of the IEEE Signal Processing Society, 27(3):1487–1500.
Haoran Zhang and Diane Litman. 2017. Word embedding for response-to-text assessment of evidence. In *Proceedings of ACL 2017, Student Research Workshop*, pages 75–81.

Haoran Zhang and Diane Litman. 2018. Co-attention based neural network for source-dependent essay scoring. In *Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications*, pages 399–409.

Haoran Zhang, Ahmed Magooda, Diane Litman, Richard Correnti, Elaine Wang, LC Matsmura, Emily Howe, and Rafael Quintana. 2019. erevise: Using natural language processing to provide formative feedback on text evidence usage in student writing. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pages 9619–9625.
A Appendices

A.1 Topic Words Results
Table 9 shows all topic words for the RTA_{MVP} from TC_{manual}. Table 10 shows all topic words for the RTA_{MVP} from TC_{lda}. Table 11 shows all topic words for the RTA_{MVP} from TC_{pr}. Table 12 shows all topic words for the RTA_{MVP} from TC_{attn}.

A.2 Specific Example Phrases Results
Table 13 shows all specific example phrases for the RTA_{MVP} from TC_{manual}. Table 14 shows all specific example phrases for the RTA_{MVP} from TC_{lda}. Table 15 shows all specific example phrases for the RTA_{MVP} from TC_{pr}. Table 16 shows all specific example phrases for the RTA_{MVP} from TC_{attn}.
Topic 1	Topic 2	Topic 3	Topic 4
care	bed	farmer	school
health	net	fertilizer	supplies
hospital	malaria	irrigation	fee
treatment	infect	dying	student
doctor	bednet	crop	midday
electricity	mosquito	seed	meal
disease	bug	water	lunch
water	sleeping	harvest	supply
sick	die	hungry	book
medicine	cheap	feed	paper
generator	infect	food	pencil
no	biting		energy
die			free
kid			children
bed			kid
patient			go
clinical			attend

Table 9: Topic words of TC_{manual}.
Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9
help	kenya	poverty	food	money	school	people	hospital	years
poor	like	think	fertilizer	need	kids	sauri	medicine	africa
world	better	author	crops	nets	supplies	malaria	hospitals	project
good	know	lifetime	water	thing	children	sick	water	villages
things	life	article	farmers	afford	schools	2008	free	sauri
time	help	possible	needed	donate	lunch	disease	electricity	village
work	think	convinced	grow	right	education	2004	diseases	helped
hard	sauri	fight	dying	dollar	afford	nets	medicines	change
going	live	poverty	problem	treatment	energy	mosquitoes	doctors	lives
alot	clothes	said	family	survive	learn	getting	2008	goals
reason	states	achievable	families	needs	students	says	gave	improved
happen	place	time	stop	stuff	went	years	doctor	2015
helping	health	convince	lack	person	adults	progress	examples	help
goal	important	believe	hunger	cause	fees	died	2004	changed
believe	feel	hannah	tools	patients	parents	text	shape	year
problems	happy	shows	seeds	provide	2004	away	cure	changes
countries	tell	reasons	plants	cost	lunches	mosquitos	running	started
difference	care	convincing	fertilizers	beds	books	prevent	treat	great
places	shoes	fighting	farming	means	home	treated	support	millennium
change	story	wrote	able	dont	wanted	dieing	common	progress
little	america	story	solved	dollars	chores	said	beds	came
improve	ways	agree	supply	medical	meal	come	patients	girl
country	wants	saying	irrigation	jobs	wood	night	said	2025
achieve	makes	opinion	wont	everyday	materials	bite	generator	place
hope	clothing	winning	afford	gone	learning	death	clean	program
helps	community	Sachs	hungry	doctors	able	sleep	electricity	tells
everybody	economy	progress	plant	lots	supplies	impoverished	giving	small
start	history	conclusion	look	sickness	meals	living	drink	millenium
easy	paragraph	says	farms	live	paper	amazing	cures	read
making	thats	future	feed	fact	attendance	easily	evidence	happened

Table 10: Topic words of T_{lda}.
Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9	Topic 10	Topic 11	Topic 12	Topic 13	Topic 14	Topic 15	Topic 16	Topic 17	Topic 18	Topic 19														
irrigation	fertilizer	road	disease	medicine	adults	light	development	villages	project	joy	people	kids	middle	school	fees	village	millennium	backs	plenty	access	care	medicine	schools	today	supply	areas	kind	family				
farmers	bright	future	malaria	disease	lifetime	villages	project	goals	plan	economics	quality	supporters	dancing	help	health	advice	items	targets	death	night	costs	die	knowledge	food	parents							
crops	plant	seed	mosquitoes	sick	school	kids	village	millennium	backs	plenty	access	care	medicine	schools	today	supply	areas	kind	family	dancing	help	health	advice	items	targets	death	night	costs	die	knowledge	food	parents
Hannah	car	sauri	disease	disease	village	millennium	backs	plenty	access	care	medicine	schools	today	supply	areas	kind	family	dancing	help	health	advice	items	targets	death	night	costs	die	knowledge	food	parents		
outcome	market	year	time	place	years	life	communities	leaders	glimpse	africa	chemicals	solutions	millions	dancing	help	health	advice	items	targets	death	night	costs	die	knowledge	food	parents						

Table 11: Topic words of $T_{C_{pr}}$.
Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9	Topic 10	Topic 11	Topic 12	Topic 13	Topic 14	Topic 15	Topic 16
poverty	way	years	lunch	goals	electricity	supplies	afford	many	free	school	hospital	bed	project	supply	fertilizer
fight	would	four	serves	problems	water	food	lifetime	people	medicine	plants	2004	nets	world	maintain	seeds
winning	rate	villages	parents	day	generator	net	could	kenya	crops	fees	disease	used	millennium	diseases	address
attendance	help	progress	passed	cloth	running	rooms	achievable	sauri	charge	students	yala	every	village	hunger	irrigation
	kids	last	three	also	packed	together	pencils	farmers	africa	medicines	site	work	adults	tools	
	enough	occurred	books	energy	needed	patients	malaria	yet	medicines						
	better	year	2015	connected	5	future	sachs								
	go	changes	knowledge			keep	worked	though							
	get	outcome	learn			poor	care	feed							
	place	today	one			five	family	two							
	solutions	first				like	hard	health							
	really	along				come	good	set							
	targets					little	doctor	crisis							
	see	treatment				minimal	either	areas							
	die	minimal				whole	items								
	hungry	harvest				almost	save								
	dancing	showed				easy									
	walked	cheap				met									
	bare	ever													
	feet	around													
	hannah	mosquitoes													
	impoverished	encouraging													
	probably														

Table 12: Topic words of T_{attr}.
Category 1	Category 2	Category 3	Category 4
unpaved roads	united nations intervention	yala sub district hospital	malaria common disease preventable treatable
tattered clothing	safer healthier better life	three kids bed two adults rooms packed patients	mosquitoes carry malaria infect people biting
bare feet	out poverty stabilize economy quality life communities	not medicine treatment could afford	kids die malaria adults sick 20,000 day
less than 1 dollar day	africa kenya sauri	no doctor only clinical officer running hospital	bed nets mosquitoes away people save millions lives
	goals met 2015 2025	no running water electricity	bed nets cost 5 dollar
	80 villages across sub-sahara africa	sad people dying near death preventable	cheap medicines treat malaria
Category 5	Category 6	Category 7	Category 8
crops dying	kids not attend go school	progress just four years	progress encouraging supporters
not afford fertilizer irrigation	not afford school fees	yala sub district hospital has medicine	solutions problems keep people impoverished
outcome poor crops	kids help chores fetching water wood	medicine free charge	change poverty stricken areas good
lack fertilizer water	schools minimal supplies books paper pencils	water connected hospital	poverty history not easy task hard
enough food crops harvest feed whole family hungry sick	concentrate not energy	hospital generator electricity	winning against poverty possible achievable lifetime
	no midday meal lunch	bed nets used every sleeping site	
		hunger crisis addressed fertilizer seeds	
		tools needed maintain food supply	
		kids go school now	
		no school fees	
		now serves lunch students	
		school attendance rate way up	

Table 13: Specific example phrases of $T_{textual}$.
Category 1	Category 2	Category 3	Category 4	Category 5
work hard	full-time	author convinces winning fight poverty achievable lifetime	children adults	easy task
better place	united states	author convinces winning fight poverty achievable lifetime	disease called malaria	fixed dollar
better health	life communities	author convinces winning fight poverty achievable lifetime	come night	thing history
brighter future	like books paper parch	winning fight poverty achievable lifetime	malaria mosquitoes	stuff food
things like	learn life keep a	winning fight poverty achievable lifetime	easily adults sick	earn money
things need	important kids	article states	solutions problems people impoverished	
fighting poverty	things important	winning fight poverty achievable	mosquitoes away	
hard work	wants know	winning fight poverty achievable	infect people biting	
age or author	working hard	article states	away sleeping	
working hard	bored	author provided		
author convince	winning fight poverty	author thinks		
winning fight poverty	convincing	based article		
achievable lifetime	poverty achievable lifetime			
reading article	things changed			

attendance rate	amazing progress years	good shape	kids adults	donate money
midday meal	text says	good education	2015-2025	targeted clothing
serves lunch students	text said	went school	hungry sick	targeted clothing
midday meals	year girl	areas good	cheap medicines	
served lunch	year 2004	trying help	goals supposed	
students wanted lunch	paragraph says	worked hard		
books pencils	progress shows winning fight poverty achievable	second reason		
kids attend school	paragraph states	second example		
schools minimal	progress encouraging supporters millennium villages	girl went		
schools hospitals				
school school fees				
practical items				
kids want attend school parents afford school fees				
attendance rate				
promote money				

Category 11	Category 12	Category 13	Category 14	Category 15	
clean water	grow crops	millennium village project	stop poverty	running water electricity	
water wood	needed help	millennium village project	long time	water connected hospital generator electricity	
fresh water	famers worry	millennium village project helped	world work change	patients afford	
masks help		change dramatically	beat poverty	rooms packed patients probably	
medicines free charge	crops dying affordable necessary fertilizer irrigation	dramatic changes occurred villages subsaharan africa	ending poverty		
crops dying affordable necessary fertilizer irrigation		place free			
fertilizer knowledge	hunger crisis addressed fertilizer seeds tools needed maintain food supply	happened years			
hunger crisis addressed fertilizer seeds tools needed maintain food supply					
for families	dramatic changes occurred villages				
hunger crisis addressed					
family plant seeds					
outcome poor					
farmers wanted					

Category 16	Category 17	Category 18	Category 19	Category 20	
yala subdistrict hospital medicine free charge common diseases	nets sleeping site earn	plan people poverty	achieve goal	years later	
yala district	afford nets	stabilizes economy quality life communities	reach goal	took years	
poor sustainable		assure access healthcare help	going school	started 2004	
common area		people people	story says		
diseases like		wear deaths			
common disease africa		poor crops lack			
hospital good shape		homeless people			
divided hospital					

Table 14: Specific example phrases of $T^{C_{lda}}$.
Table 15: Specific example phrases of TC_{pr}.

Category 1
brighter future hannah
millennium villages project
unpaved dirt road
bar sauri primary school
future hannah
sauri primary school
villages project
millennium development goals
village leaders
dirt road
car jump
little kids
preventable diseases people
many kids
diseases people
kids die
school supplies
primary school
school fees
infect people
