Research Article

Rational Type Fuzzy-Contraction Results in Fuzzy Metric Spaces with an Application

Saif Ur Rehman, Ronnason Chinram, and Chawalit Boonpok

1. Introduction

The theory of fixed point is one of the most interesting areas of research in mathematics. In the last decades, a lot of work was dedicated to the theory of fixed point. A point \(\mu \) belonging to a nonempty set \(U \) is called a fixed point of a mapping \(\ell : U \rightarrow U \) if and only if \(\ell \mu = \mu \). In 1922, Stefan Banach, a well-known mathematician, proved a Banach contraction principle in [1], which is stated as "A self-mapping in a complete metric space satisfying the contraction condition has a unique fixed point." After the publication of this principle, many researchers contributed their ideas to the theory of fixed point and proved different contractive type mapping results for single and multivalued mappings in the context of metric spaces for fixed point, coincidence point, and common fixed point. Some of these results can be found in [2–13].

In 1965, the theory of fuzzy set was introduced by Zadeh [14]. Recently, this theory is used, investigated, and applied in many directions. One direction is the evaluation of test results which is the application of fuzzy logic in the processing of students evaluation; moreover, the application is expected to represent the mechanisms of human thought processes capable of resolving the problem of evaluation of students, which can be directly monitored by the teacher (for example, see [15–19]). Many researchers have extensively developed the theory of fuzzy sets and their applications in different fields. Some of their results can be found in [20–29] the references therein.

The other direction is the generalization of metric spaces to fuzzy metric spaces. In [30], Kramosil and Michalek introduced the concept of fuzzy metric spaces (FM-space) and some more notions. Later on, the stronger form of the metric fuzziness was given by George and Veeramani [31]. In 2002, Gregory and Sapena [32] proved some contractive type fixed point theorems in FM-spaces. Some more fixed point results in the said space can be found in [33–41].

This research work aims to present the new concept of rational type fuzzy-contraction mappings in \(G \)-complete FM-spaces. We use the concept of Gregory and Sapena [32] and the "triangular property of fuzzy metric" presented by Bari and Vetro [33] and prove some unique fixed point
theorems under the rational type fuzzy-contraction conditions in G-complete FM-spaces with some illustrative examples. This new theory will play a very important role in the theory of fuzzy fixed point results and can be generalized for different contractive type mappings in the context of fuzzy metric spaces. Moreover, we present an integral type application in the sense of Jabeen et al. [42] to prove a result for a unique solution to support our work. The application section of the paper is more important; one can use this concept and present different types of nonlinear integral type equations for the existence of unique solutions for their results. Some integral type application results in the theory of fixed point can be found in [43–46].

2. Preliminaries

Definition 1 (see [47]). An operation $*$: $[0,1]^2 \rightarrow [0,1]$ is called a continuous t-norm, if

(i) $*$ is commutative, associative, and continuous.

(ii) $1 * \xi_1 = \xi_1$ and $\xi_1 * \xi_2 \leq \xi_2 * \xi_1$, whenever $\xi_1 \leq \xi_2$ and $\xi_2 \leq \xi_4$, $\forall \xi_1, \xi_2, \xi_3, \xi_4 \in [0,1]$.

The basic t-norms, the minimum, the product, and the Lukasiewicz continuous t-norms are defined as follows (see [47]):

$$\xi_1 * \xi_2 = \min\{\xi_1, \xi_2\}, \quad \xi_1 * \xi_2 = \xi_1 \xi_2,$$
$$\xi_1 * \xi_2 = \max\{\xi_1 + \xi_2 - 1, 0\}. \quad (1)$$

Definition 2 (see [31]). A 3-tuple $(U, M_r, *)$ is said to be a FM-space if U is an arbitrary set, $*$ is a continuous t-norm, and M_r is a fuzzy set on $U^2 \times (0, \infty)$ satisfying the following conditions:

(i) $M_r(\mu_1, \mu^*, t) > 0$ and $M_r(\mu_1, \mu^*, t) = 1 \iff \mu_1 = \mu^*$

(ii) $M_r(\mu_1, \mu^*, t) = M_r(\mu^*, \mu_1, t)$

(iii) $M_r(\mu_1, \mu^*, t) \leq M_r(\mu_1, \mu^*, t+s)$

(iv) $M_r(\mu_1, \mu^*, t): (0, \infty) \rightarrow [0,1]$ is continuous,

$\forall \mu_1, \mu^* \in U$ and $t, s \in (0,\infty)$.

Lemma 1 (see [31]). $M_r(\mu_1, \mu^*, *)$ is nondecreasing $\forall \mu_1, \mu^* \in U$.

Definition 3 (see [31]). Let $(U, M_r, *)$ be a FM-space, $\nu_j \in U$, and a sequence (μ_j) in U is

(i) Converges to ν_j if $\xi \in (0,1)$ and $t > 0 \exists j \in \mathbb{N}$, such that $M_r(\mu_j, \nu_j, t) > 1 - \xi, \forall j \geq j_1$. We may write this $\lim_{j \rightarrow \infty} \mu_j = \nu_j$ or $\mu_j \rightarrow \mu_j$ as $j \rightarrow \infty$.

(ii) Cauchy sequence if $\xi \in (0,1)$ and $t > 0 \exists j_1 \in \mathbb{N}$ such that $M_r(\mu_j, \nu_k, t) > 1 - \xi, \forall j, k \geq j_1$.

(iii) $(U, M_r, *)$ is complete if every Cauchy sequence is convergent in U.

(iv) [32] fuzzy-contractive if $\exists a \in (0,1)$ such that

$$\frac{1}{M_r(\mu_j, \mu_{j+1}, t)} - 1 \leq a \left(\frac{1}{M_r(\mu_{j+1}, \mu_j, t)} - 1 \right), \quad \text{for } t > 0, j \geq 1. \quad (2)$$

In the sense of Gregori and Sapena [32], a sequence (μ_j) in a FM-space is said to be G-Cauchy if $\lim M_r(\mu_j, \mu_j, p, t) = 1$, for $t > 0$ and $p > 0$. A FM-space $(U, M_r, *)$ is called G-complete if every G-Cauchy sequence is convergent.

Throughout this paper, \mathbb{N} represents the set of natural numbers.

Lemma 2 (see [31]). Let $(U, M_r, *)$ be a FM-space and let a sequence (μ_j) in U converge to a point $\nu_j \in U$ iff $M_r(\mu_j, \nu_j, t) \rightarrow 1$, as $j \rightarrow \infty$, for $t > 0$.

Definition 4 (see [33]). Let $(U, M_r, *)$ be a FM-space. The fuzzy metric M_r is triangular, if

$$\frac{1}{M_r(\mu_1, \mu^*, t)} - 1 \leq \left(\frac{1}{M_r(\mu_1, \mu^*, t)} - 1 \right) - \left(\frac{1}{M_r(\mu_1, \mu^*, t)} - 1 \right), \quad \forall \mu, \mu^* \in U, t > 0. \quad (3)$$

Definition 5 (see [32]). Let $(U, M_r, *)$ be a FM-space and $\ell: U \rightarrow U$. Then, ℓ is said to be fuzzy-contractive if $\exists a \in (0,1)$ such that

$$\frac{1}{M_r(\ell \mu_1, \ell \mu^*, t)} - 1 \leq a \left(\frac{1}{M_r(\ell \mu_1, \ell \mu^*, t)} - 1 \right), \quad \forall \mu, \mu^* \in U, t > 0. \quad (4)$$

In the following, we present some rational type fixed point results under the rational type fuzzy-contraction conditions in G-complete FM-spaces by using the “triangular property of fuzzy metric.” We present illustrative examples to support our results. In the last section of this paper, we present an integral type application for a unique solution to support our work.

3. Main Result

In this section, we define rational type fuzzy-contraction mappings and prove some unique fixed point theorems under the rational type fuzzy-contraction mappings in G-complete FM-spaces.
Definition 6. Let \((U, M_r, *)\) be a FM-space; a mapping \(\ell : U \rightarrow U\) is called a rational type fuzzy-contraction if there exist constants \(a, b \in [0, 1)\) such that
\[
\frac{1}{M_r(\ell u, \ell u^\ast, t)} - 1 \leq a \left(\frac{1}{M_r(\ell u^\ast, \ell u, t)} - 1 \right) + b \left(\frac{M_r(\ell u, \ell u^\ast, t)}{M_r(\ell u^\ast, \ell u, t) \ast M_r(\ell u^\ast, \ell u^\ast, 2t)} - 1 \right).
\]
\(\forall \mu_1, \mu^\ast \in U, \ t > 0.\)

Theorem 1. Let \((U, M_r, *)\) be a G-complete FM-space in which \(M_r\) is triangular and a mapping \(\ell : U \rightarrow U\) is a rational type fuzzy-contraction satisfying (5) with \(a + b < 1\). Then, \(\ell\) has a unique fixed point in \(U\).

Proof. Fix \(\mu_0 \in U\) and let \(\mu_{j+1} = \ell \mu_j, j \geq 0\). Then, by (5), for \(t > 0, j \geq 1\),
\[
\frac{1}{M_r(\mu_{j+1}, \mu_{j+1}, t)} - 1 = \frac{1}{M_r(\mu_{j+1}, \mu_{j+1}, t)} - 1
\]
\[
\leq a \left(\frac{1}{M_r(\mu_{j+1}, \mu_{j+1})} - 1 \right) + b \left(\frac{M_r(\mu_{j+1}, \mu_{j+1})}{M_r(\mu_{j+1}, \mu_{j+1}) \ast M_r(\mu_{j+1}, \mu_{j+1}, 2t)} - 1 \right)
\]
\[
= a \left(\frac{1}{M_r(\mu_{j+1}, \mu_{j+1})} - 1 \right) + b \left(\frac{M_r(\mu_{j+1}, \mu_{j+1})}{M_r(\mu_{j+1}, \mu_{j+1}) \ast M_r(\mu_{j+1}, \mu_{j+1}, 2t)} - 1 \right).
\]
and after simplification,
\[
\frac{1}{M_r(\mu_j, \mu_{j+1}, t)} - 1 \leq a \left(\frac{1}{M_r(\mu_{j-1}, \mu_{j+1}, t)} - 1 \right), \quad \text{for } t > 0.
\]
(7)
Similarly,
\[
\frac{1}{M_r(\mu_{j+1}, \mu_{j+1}, t)} - 1 \leq a \left(\frac{1}{M_r(\mu_{j+1}, \mu_{j+1}, t)} - 1 \right), \quad \text{for } t > 0.
\]
(8)

Now, from (7) and (8) and by induction, for \(t > 0\), we have that
\[
\frac{1}{M_r(\mu_j, \mu_{j+1}, t)} - 1 \leq a \left(\frac{1}{M_r(\mu_{j-1}, \mu_{j+1}, t)} - 1 \right) \leq a^2 \left(\frac{1}{M_r(\mu_{j-2}, \mu_{j+1}, t)} - 1 \right) \leq \cdots \leq a^j \left(\frac{1}{M_r(\mu_{j-q}, \mu_{j+1}, t)} - 1 \right) \rightarrow 0, \quad \text{as } j \rightarrow \infty.
\]
(9)

Hence, \((\mu_j)\) is a fuzzy-contractive sequence in \((U, M_r, *)\); therefore,
\[
\lim_{j \rightarrow \infty} M_r(\mu_j, \mu_{j-1}, t) = 1, \quad \text{for } t > 0.
\]
(10)

Now, we show that \((\mu_j)\) is a G-Cauchy sequence; let \(j \in \mathbb{N}\), and there is a fixed \(q \in \mathbb{N}\) such that
\[
M_r(\mu_{j+1}, \mu_{j+1}, q, t) = M_r\left(\mu_{j+1}, \mu_{j+1}, \frac{t}{q} \right) \ast M_r\left(\mu_{j+1}, \mu_{j+1}, \frac{t}{q} \right) \ast \cdots \ast M_r\left(\mu_{j+1}, \mu_{j+1}, \frac{t}{q} \right)
\]
\[
\rightarrow 1 \ast 1 \ast \cdots \ast 1, \quad \text{as } j \rightarrow \infty.
\]

Hence, it is proved that \((\mu_j)\) is a G-Cauchy sequence. Since \((U, M_r, *)\) is \(G\)-complete, \(\exists v_1 \in U\) such that \(\mu_j \rightarrow v_1\), as \(j \rightarrow \infty\), i.e.,
\[
\lim_{j \rightarrow \infty} M_r(\mu_j, v_1, t) = 1, \quad \text{for } t > 0.
\]
(12)
Since \(M_r\) is triangular, from (5), (10), and (12), for \(t > 0\), we have
\[
\frac{1}{M_r(v_1, \ell v_1, t)} - 1 \leq \frac{1}{M_r(v_1, \mu_{j+1}, t)} - 1 + \frac{1}{M_r(\mu_j, \ell v_1, t)} - 1 \\
\leq \frac{1}{M_r(v_1, \mu_{j+1}, t)} - 1 + a \left(\frac{1}{M_r(\mu_j, v_1, t)} - 1 \right) \\
+ b \left(\frac{M_r(\mu_j, v_1, t)}{M_r(\mu_j, \mu_{j+1}, t) * M_r(v_1, \mu_{j+1}, 2t) - 1} \right)
\]

Hence, \(M_r(v_1, \ell v_1, t) = 1 \Rightarrow \ell v_1 = u_1\), for \(t > 0\).

Uniqueness. Let \(\exists z_1 \in U\) such that \(\ell z_1 = z_1\) and \(\ell v_1 = v_1\); then, from (5) and by using Definition 2 (iii), for \(t > 0\), we have

\[
\frac{1}{M_r(v_1, z_1, t)} - 1 = \frac{1}{M_r(\ell v_1, \ell z_1, t)} - 1 \\
\leq a \left(\frac{1}{M_r(v_1, z_1, t)} - 1 \right) + b \left(\frac{M_r(v_1, z_1, t)}{M_r(v_1, \ell v_1, t) * M_r(z_1, \ell v_1, 2t) - 1} \right)
\]

Hence, it is proved that \(M_r(v_1, z_1, t) = 1\), and this implies that \(v_1 = z_1\). \(\square\)

Corollary 1 (fuzzy Banach contraction principle). Let \((U, M_r, \ast)\) be a \(G\)-complete FM-space in which \(M_r\) is triangular and a mapping \(\ell: U \rightarrow U\) is a fuzzy-contraction satisfying (4) with \(a \in (0, 1)\). Then, \(\ell\) has a unique fixed point in \(U\).

Example 1. Let \(U = [0, \infty), \ast\) be a continuous \(t\)-norm, and \(M_r: U^2 \times (0, \infty) \rightarrow [0, 1]\) be defined as
Then, one can easily verify that M_r is triangular and (U, M_r, \ast) is a G-complete FM-space. Now we define a mapping $\ell: U \rightarrow U$ as

$$
\ell(\mu_1) = \begin{cases}
\frac{3\mu_1}{4}, & \text{if } \mu_1 \in [0, 1], \\
\frac{2\mu_1}{3} + 8, & \text{if } \mu_1 \in (1, \infty).
\end{cases}
$$

Hence, all the conditions of Theorem 1 are satisfied with $a = (3/4)$ and $b = (2/9)$. A mapping ℓ has a fixed point, i.e., $\ell(24) = 24 \in [0, \infty)$.

Next, we present a generalized rational type fuzzy-contraction theorem.

Then, we have

$$
\frac{1}{M_r(\ell\mu_1, \ell\mu^*, t)} - 1 = \frac{3}{4} \left(\frac{1}{M_r(\mu_1, \mu^*, t)} - 1 \right), \quad \forall \mu_1, \mu^* \in U, t > 0.
$$

Hence, a mapping ℓ is a fuzzy contraction. Now, from Definition 2 (iii), for $t > 0$,

$$
\frac{M_r(\mu_1, \mu^*, t)}{M_r(\mu_1, \mu^*, t) + M_r(\mu^*, \ell\mu_1, 2t)} - 1 \leq \frac{1}{M_r(\mu_1, \mu^*, t) + M_r(\mu^*, \ell\mu_1, 2t)} - 1
$$

$$
= \frac{\left(\frac{1}{M_r(\mu_1, \mu^*, t)} - 1 \right)}{\left(\frac{1}{M_r(\mu_1, \mu^*, t)} - 1 \right) + \left(\frac{2\mu_1}{5t} \left(\frac{\mu_1}{5} + t \right) \right)}.
$$

Theorem 2. Let (U, M_r, \ast) be a G-complete FM-space in which M_r is triangular and a mapping $\ell: U \rightarrow U$ satisfies

$$
\frac{1}{M_r(\ell\mu_1, \ell\mu^*, t)} - 1 \leq a \left(\frac{1}{M_r(\mu_1, \mu^*, t)} - 1 \right) + b \left(\frac{M_r(\mu_1, \mu^*, t) * M_r(\mu^*, \ell\mu^*, t)}{M_r(\mu_1, \mu^*, t) * M_r(\mu_1, \ell\mu^*, 2t)} - 1 \right)
$$

$$
+ c \left(\frac{M_r(\mu_1, \ell\mu_1, t)}{M_r(\mu_1, \ell\mu_1, 2t)} - 1 + \frac{M_r(\mu^*, \ell\mu^*, t)}{M_r(\mu^*, \ell\mu^*, 2t)} - 1 \right)
$$

$$
+ d \left(\frac{1}{M_r(\mu_1, \ell\mu_1, t)} - 1 + \frac{1}{M_r(\mu^*, \ell\mu^*, t)} - 1 \right).
$$
∀ μ_1, μ* ∈ U, t > 0, a, b, c, d ≥ 0 with (a + b + 2c + 2d) < 1. Then, ℓ has a unique fixed point.

Proof. Fix μ_0 ∈ U and μ_{j+1} = ℓμ_j, j ≥ 0. Then, by (19), for t > 0, j ≥ 1,

\[
\frac{1}{M_r(μ_j, μ_{j+1}, t)} - 1 = \frac{1}{M_r(ℓμ_j, ℓμ_j, t)} - 1
\]

\[
\leq a \left(\frac{1}{M_r(μ_{j-1}, μ_j, t)} - 1 \right) + b \left(\frac{M_r(μ_{j-1}, μ_j, t) * M_r(μ_j, ℓμ_j, t)}{M_r(μ_{j-1}, ℓμ_j, t)} - 1 \right) + c \left(\frac{M_r(μ_{j-1}, ℓμ_j, t)}{M_r(μ_{j-1}, ℓμ, 2t)} - 1 \right) + d \left(\frac{1}{M_r(μ_{j-1}, ℓμ_j, t)} - 1 + \frac{1}{M_r(μ_j, ℓμ_j, t)} - 1 \right).
\]

From Definition 2 (iii), M_r(μ_{j-1}, μ_{j+1}, 2t) ≥ M_r(μ_{j-1}, μ_j, t) * M_r(μ_j, μ_{j+1}, t), for t > 0, and after simplification, we have

\[
\frac{1}{M_r(μ_j, μ_{j+1}, t)} - 1 ≤ β \left(\frac{1}{M_r(μ_{j-1}, μ_j, t)} - 1 \right), \quad \text{where } β = \frac{a + b + c + d}{1 - c - d} < 1.
\]

Similarly, for t > 0, we have

\[
\frac{1}{M_r(μ_{j-1}, μ_j, t)} - 1 ≤ β \left(\frac{1}{M_r(μ_{j-2}, μ_{j-1}, t)} - 1 \right), \quad \text{where } β = \frac{a + b + c + d}{1 - c - d} < 1.
\]
Now, from (21) and (22) and by induction, for \(t > 0 \), we have

\[
\frac{1}{M_r(\mu_j, \mu_{j+1}, t)} - 1 \leq \beta \left(\frac{1}{M_r(\mu_{j-1}, \mu_j, t)} - 1 \right) \leq \beta^2 \left(\frac{1}{M_r(\mu_{j-2}, \mu_{j-1}, t)} - 1 \right) \\
\leq \cdots \leq \beta^j \left(\frac{1}{M_r(\mu_0, \mu_1, t)} - 1 \right) \rightarrow 0, \quad \text{as } j \rightarrow \infty.
\]

(23)

Hence, \((\mu_j)\) is a rational type fuzzy-contractive sequence in \(U \) such that

\[
\lim_{j \rightarrow \infty} M_r(\mu_j, \mu_{j+1}, t) = 1, \quad \text{for } t > 0. \tag{24}
\]

Now we have to show that \((\mu_j)\) is a \(G \)-Cauchy sequence; let \(j \in \mathbb{N} \), and there is a fixed \(q \in \mathbb{N} \) such that

\[
M_r(\mu_j, \mu_{j+q}, t) = M_r \left(\mu_j, \mu_{j+q}, \frac{1 + 1 + \cdots + 1}{q} t \right) \geq M_r \left(\mu_j, \mu_{j+1}, \frac{t}{q} \right) \ast M_r \left(\mu_{j+1}, \mu_{j+2}, \frac{t}{q} \right) \ast \cdots \ast M_r \left(\mu_{j+q-1}, \mu_{j+q}, \frac{t}{q} \right) \rightarrow 1 \ast \frac{1}{q} \ast \cdots \ast \frac{1}{q} = 1, \quad \text{as } j \rightarrow \infty.
\]

(25)

Hence, it is proved that \((\mu_j)\) is a \(G \)-Cauchy sequence. Since \((U, M_r, \ast)\) is \(G \)-complete, then \(\exists v_1 \in U \) such that \(\mu_j \rightarrow v_1 \), as \(j \rightarrow \infty \), i.e.,

\[
\lim_{j \rightarrow \infty} M_r(\mu_j, v_1, t) = 1, \quad \text{for } t > 0. \tag{26}
\]

Since \(M_r \) is triangular,

\[
\frac{1}{M_r(v_1, \ell v_1, t)} - 1 \leq \left(\frac{1}{M_r(v_1, \mu_{j+1}, t)} - 1 \right) + \left(\frac{1}{M_r(\mu_{j+1}, \ell v_1, t)} - 1 \right), \quad \text{for } t > 0.
\]

(27)

Now from (19), (24), and (26), for \(t > 0 \), we have

\[
\frac{1}{M_r(\mu_{j+1}, \ell v_1, t)} - 1 = \frac{1}{M_r(\mu_j, \ell v_1, t)} - 1 \\
\leq a \left(\frac{1}{M_r(\mu_j, v_1, t)} - 1 \right) + b \left(M_r(\mu_j, v_1, t) \ast M_r(v_1, \ell v_1, t) \right) - 1 \\
+ c \left(M_r(\mu_j, \ell v_1, t) \right) \left(M_r(\mu_j, \ell v_1, 2t) - 1 \right) \\
+ d \left(\frac{1}{M_r(\mu_j, v_1, t)} - 1 \right) + M_r(\mu_j, \ell v_1, 2t) - 1 \\
= a \left(\frac{1}{M_r(\mu_j, v_1, t)} - 1 \right) + b \left(M_r(\mu_j, v_1, t) \ast M_r(v_1, \ell v_1, t) \right) - 1 \\
+ c \left(M_r(\mu_j, \mu_{j+1}, t) \right) \left(M_r(\mu_{j+1}, \ell v_1, t) \right) - 1 \\
+ d \left(\frac{1}{M_r(\mu_j, v_1, t)} - 1 \right) + M_r(v_1, \ell v_1, t) - 1.
\]

(28)
From Definition 2 (iii), \(M_r(\mu_j, \ell v_1, 2t) \geq M_r(\mu_j, v_1, t) \star M_r(v_1, \ell v_1, t) \), for \(t > 0 \), and we have

\[
\frac{1}{M_r(\mu_j, \ell v_1, t)} - 1 \leq a \left(\frac{1}{M_r(\mu_j, v_1, t)} - 1 \right) + b \left(\frac{M_r(\mu_j, v_1, t) \star M_r(\mu_j, v_1, t)}{M_r(\mu_j, \mu_j, t) \star M_r(\mu_j, v_1, t) \star M_r(v_1, \ell v_1, t)} - 1 \right) + c \left(\frac{M_r(\mu_j, \mu_j, t)}{M_r(\mu_j, v_1, t) \star M_r(v_1, \ell v_1, t)} - 1 \right) + d \left(\frac{1}{M_r(\mu_j, \mu_j, t)} - 1 \right) + e \left(\frac{1}{M_r(\mu_j, v_1, t) \star M_r(v_1, \ell v_1, t)} - 1 \right)
\]

which (29)

\[
\frac{1}{M_r(\mu_j, v_1, t)} - 1 \leq (c + d) \frac{1}{M_r(\mu_j, v_1, t) - 1}, \quad \text{for } t > 0,
\]

(30)

Then,

\[
\limsup \frac{1}{M_r(\mu_j, v_1, t)} - 1 \leq (c + d) \frac{1}{M_r(\mu_j, v_1, t) - 1}, \quad \text{for } t > 0.
\]

Now, from (26), (27), and (30), as \(j \to \infty \), we get that

\[
\frac{1}{M_r(v_1, z_1, t)} - 1 = \frac{1}{M_r(\ell v_1, \ell z_1, t)} - 1
\]

\[
\leq a \left(\frac{1}{M_r(\mu_j, v_1, t)} - 1 \right) + b \left(\frac{M_r(\mu_j, v_1, t) \star M_r(z_1, \ell z_1, t)}{M_r(\mu_j, v_1, t) \star M_r(\mu_j, \ell z_1, 2t)} - 1 \right) + c \left(\frac{M_r(\mu_j, v_1, t)}{M_r(v_1, \ell z_1, 2t)} - 1 \right) + d \left(\frac{1}{M_r(v_1, \ell z_1, t)} - 1 \right) + e \left(\frac{1}{M_r(\mu_j, \mu_j, t) \star M_r(v_1, \ell z_1, 2t)} - 1 \right)
\]

(32)

\[
= a \left(\frac{1}{M_r(\mu_j, v_1, t)} - 1 \right) + b \left(\frac{M_r(\mu_j, v_1, t) \star M_r(z_1, \ell z_1, t)}{M_r(\mu_j, v_1, t) \star M_r(\mu_j, \ell z_1, t)} - 1 \right) + c \left(\frac{1}{M_r(v_1, z_1, 2t)} - 1 \right) + d \left(\frac{1}{M_r(\mu_j, \mu_j, t)} - 1 \right) + e \left(\frac{1}{M_r(\mu_j, \ell z_1, 2t)} - 1 \right)
\]

\[
= (a + 2c) \left(\frac{1}{M_r(\mu_j, v_1, t)} - 1 \right) = (a + 2c) \left(\frac{1}{M_r(\mu_j, v_1, t)} - 1 \right)
\]

\[
\leq (a + 2c)^k \left(\frac{1}{M_r(\mu_j, v_1, t)} - 1 \right) \leq \cdots \leq (a + 2c)^l \left(\frac{1}{M_r(\mu_j, v_1, t)} - 1 \right)
\]

\[
\to 0, \quad \text{as } j \to \infty, \text{ where } (a + 2c) < 1.
\]
Hence, \(M_r(v_1, z_1, t) = 1\), and this implies that \(v_1 = z_1\), for \(t > 0\).

Corollary 2. Let \((U, M_r, \star)\) be a G-complete FM-space in which \(M_r\) is triangular and a mapping \(\ell: U \rightarrow U\) satisfies
\[
\frac{1}{M_r(\ell \mu_1, \ell \mu^*, t)} - 1 \leq a \left(\frac{1}{M_r(\mu_1, \mu^*, t)} - 1 \right) + b \left(\frac{M_r(\mu_1, \mu^*, t) \ast M_r(\mu^*, \ell \mu^*, t)}{M_r(\mu_1, \mu^*, t) \ast M_r(\mu, \ell \mu^*, 2t)} - 1 \right) + d \left(\frac{1}{M_r(\mu_1, \ell \mu_1, t)} - 1 + \frac{1}{M_r(\mu^*, \ell \mu^*, t)} - 1 \right),
\]
(33)

\(\forall \mu_1, \mu^* \in U, t > 0, a, b, d \geq 0\) with \(a + b + 2d < 1\). Then, \(\ell\) has a unique fixed point.

Example 2. From Example 1, we define \(M_r\) as
\[
M_r(\mu_1, \mu^*, t) = \frac{t}{t + |(\mu_1 - \mu^*)/2|}, \quad \forall \mu_1, \mu^* \in U, t > 0.
\]
(36)

Then, one can easily show that \(M_r\) is triangular and \((U, M_r, \star)\) is G-complete FM-space. Now we define a mapping \(\ell: U \rightarrow U\) as
\[
\ell(\mu_1) = \begin{cases}
3\mu_1, & \text{if } \mu_1 \in [0, 1], \\
3\mu_1 + 1, & \text{if } \mu_1 \in (1, \infty).
\end{cases}
\]
(37)

Corollary 3. Let \((U, M_r, \star)\) be a G-complete FM-space in which \(M_r\) is triangular and a mapping \(\ell: U \rightarrow U\) satisfies
\[
\frac{1}{M_r(\ell \mu_1, \ell \mu^*, t)} - 1 \leq a \left(\frac{1}{M_r(\mu_1, \mu^*, t)} - 1 \right) + b \left(\frac{M_r(\mu_1, \ell \mu_1, t)}{M_r(\mu_1, \ell \mu_1, t) \ast M_r(\mu, \ell \mu^*, 2t)} - 1 \right) + d \left(\frac{1}{M_r(\mu_1, \ell \mu_1, t)} - 1 + \frac{1}{M_r(\mu^*, \ell \mu^*, t)} - 1 \right).
\]
(34)

Then, we have
\[
\frac{1}{M_r(\ell \mu_1, \ell \mu^*, t)} - 1 = \frac{3}{7} \left(\frac{1}{M_r(\mu_1, \mu^*, t)} - 1 \right), \quad \forall \mu_1, \mu^* \in U, t > 0.
\]
(38)

A mapping \(\ell\) satisfies (4), and hence \(\ell\) is a fuzzy contraction. Now, from Definition 2 (iii), \(M_r(\mu_1, \ell \mu^*, 2t) \geq M_r(\mu_1, \mu^*, t) \ast M_r(\mu^*, \ell \mu^*, t)\) for \(t > 0\), and after simplification, we get the following:

\[
\frac{M_r(\mu_1, \mu^*, t) \ast M_r(\mu^*, \ell \mu^*, t)}{M_r(\mu_1, \ell \mu_1, t) \ast M_r(\mu, \ell \mu^*, 2t)} - 1 \leq \frac{1}{M_r(\mu_1, \ell \mu_1, t)} - 1 = \frac{2\mu_1}{7t},
\]
\[
\left(\frac{M_r(\mu_1, \ell \mu_1, t)}{M_r(\mu_1, \ell \mu^*, 2t)} - 1 \right) \left(\frac{M_r(\mu^*, \ell \mu_1, t)}{M_r(\mu^*, \ell \mu^*, 2t)} - 1 \right) \leq \frac{10}{7} \left(\frac{1}{M_r(\mu_1, \ell \mu_1, t)} - 1 \right) = \frac{5|\mu_1 - \mu^*|}{7t},
\]
(39)
\[
\left(\frac{1}{M_r(\mu_1, \ell \mu_1, t)} - 1 + \frac{1}{M_r(\mu^*, \ell \mu^*, t)} - 1 \right) = \frac{2|\mu_1 + \mu^*|}{7t}.
\]
Hence, all the conditions of Theorem 2 are satisfied with $a = (3/7)$, $b = c = (1/9)$, and $d = (1/12)$, and ℓ has a unique fixed point, i.e., $\ell(4) = 4 \in [0, \infty)$.

4. Application

In this section, we present an integral type application to support our work. Let $U = C([0, \eta], \mathbb{R})$ be the space of all \mathbb{R}-valued continuous functions on the interval $[0, \eta]$, where $0 < \eta \in \mathbb{R}$. The nonlinear integral equation is

$$
\mu_1(t) = \int_0^t \Gamma(t, \tau, \mu_1(\tau)) d\tau, \quad \forall \mu_1 \in U,
$$

where $\tau, \nu \in [0, \eta]$ and $\Gamma: [0, \eta] \times [0, \eta] \times \mathbb{R} \rightarrow \mathbb{R}$. The induced metric $m: U^2 \rightarrow \mathbb{R}$ can be defined as

$$
m(\mu_1, \mu^*) = \sup_{\tau \in [0, \eta]} |\mu_1(\tau) - \mu^*(\tau)| = \|\mu_1 - \mu^*\|,
$$

where $\mu_1, \mu^* \in C([0, \eta], \mathbb{R}) = U$.

The binary operation $*$ is defined by $\alpha * \lambda = \alpha \lambda$, $\forall \alpha, \lambda \in [0, \eta]$. A standard fuzzy metric $M_r: U^2 \times (0, \infty) \rightarrow [0, 1]$ can be defined as

$$
M_r(\mu_1, \mu^*, t) = \frac{t}{t + m(\mu_1, \mu^*)}, \quad \text{for } t > 0, \forall \mu_1, \mu^* \in U.
$$

Then, one can easily verify that M_r is triangular and $(U, M_r, *)$ is a G-complete FM-space.

Theorem 3. Let the integral equation be defined in (40), and there exists $\beta \in (0, 1)$, satisfying

$$
m(\ell \mu_1, \ell \mu^*) \leq \beta N(\ell, \mu_1, \mu^*) \quad \forall \mu_1, \mu^* \in U,
$$

where

$$
N(\ell, \mu_1, \mu^*) = \max\{\|\mu_1 - \mu^*\|, 2\|\mu_1 - \ell \mu_1\|\}, \quad \forall \mu_1, \mu^* \in U.
$$

Then, the integral equation in (40) has a unique solution in U.

Proof. Define the integral operator $\ell: U \rightarrow U$ by

$$
\ell \mu_1(t) = \int_0^t \Gamma(t, \tau, \mu_1(\tau)) d\tau, \quad \forall \mu_1 \in U.
$$

Notice that ℓ is well defined and (40) has a unique solution if and only if ℓ has a unique fixed point in U. Now we have to show that Theorem 1 applies to the integral operator ℓ. Then, $\forall \mu_1, \mu^* \in U$, we have the following two cases:

(a) If $N(\ell, \mu_1, \mu^*) = \|\mu_1 - \mu^*\|$ in (44), then, from (42) and (43), we have

$$
\frac{1}{M_r(\ell \mu_1, \ell \mu^*, t)} - 1 = \frac{m(\ell \mu_1, \ell \mu^*)}{t} \leq \beta \frac{N(\ell, \mu_1, \mu^*)}{t}
$$

and this implies that

$$
\frac{1}{M_r(\ell \mu_1, \ell \mu^*, t)} - 1 \leq \beta \left(\frac{1}{M_r(\mu_1, \mu^*, t)} - 1\right), \quad \text{for } t > 0,
$$

$\forall \mu_1, \mu^* \in U$ such that $\ell \mu_1 \neq \ell \mu^*$. Inequality (47) holds if $\ell \mu_1 = \ell \mu^*$. Thus, the integral operator ℓ satisfies all the conditions of Theorem 1 with $\beta = a$ and $b = 0$ in (5). The integral operator ℓ has a unique fixed point, i.e., (40) has a solution in U.

(b) If $N(\ell, \mu_1, \mu^*) = \|\mu_1 - \ell \mu_1\|$ in (44), then, from (42) and (43), we have

$$
\frac{1}{M_r(\ell \mu_1, \ell \mu^*, t)} - 1 = \frac{m(\ell \mu_1, \ell \mu^*)}{t} \leq \beta \frac{N(\ell, \mu_1, \mu^*)}{t}
$$

and this implies that

$$
\frac{1}{M_r(\ell \mu_1, \ell \mu^*, t)} - 1 \leq \beta \left(\frac{1}{M_r(\mu_1, \mu^*, t)} - 1\right), \quad \text{for } t > 0.
$$

Here, we simplify the term $(M_r(\mu_1, \mu^*, t)/M_r(\mu_1, \ell \mu_1, t) \ast M_r(\mu^*, \ell \mu_1, 2t)) - 1$, and by using Definition 2 (iii) and (42), for $t > 0$, we have
\[
\frac{M_r(\mu_1, \mu^*, t)}{M_r(\mu_1, \ell\mu_1, t) \ast M_r(\mu^*, \ell\mu_1, 2t)} - 1 \leq \frac{M_r(\mu_1, \mu^*, t)}{M_r(\mu_1, \ell\mu_1, t) \ast M_r(\mu^*, \ell\mu_1, t) \ast M_r(\mu_1, \ell\mu_1, t)} - 1
\]

\[
= \frac{1}{(M_r(\mu_1, \ell\mu_1, t))^2} - 1 = \frac{(t + m(\mu_1, \ell\mu_1))^2 - t^2}{t^2}
\]

\[
= \frac{2m(\mu_1, \ell\mu_1)}{t} + \left(\frac{m(\mu_1, \ell\mu_1)}{t}\right)^2
\]

\[
= \frac{2\|\mu_1 - \ell\mu_1\|}{t} + \left(\frac{\|\mu_1 - \ell\mu_1\|}{t}\right)^2,
\]

and this implies that

\[
\frac{M_r(\mu_1, \mu^*, t)}{M_r(\mu_1, \ell\mu_1, t) \ast M_r(\mu^*, \ell\mu_1, 2t)} - 1 \leq \frac{2\|\mu_1 - \ell\mu_1\|}{t} + \left(\frac{\|\mu_1 - \ell\mu_1\|}{t}\right)^2, \quad \text{for } t > 0.
\]

Now from (49) and (51), we have

\[
\frac{1}{M_r(\ell\mu_1, \ell\mu^*, t)} - 1 \leq \beta \left(\frac{M_r(\mu_1, \mu^*, t)}{M_r(\mu_1, \ell\mu_1, t) \ast M_r(\mu^*, \ell\mu_1, 2t)} - 1\right), \quad \text{for } t > 0,
\]

∀\(\mu_1, \mu^* \in U\) such that \(\ell\mu_1 \neq \ell\mu^*\). Inequality (52) holds if \(\ell\mu_1 = \ell\mu^*\). Thus, the integral operator \(\ell\) satisfies all the conditions of Theorem 1 with \(\beta = b\) and \(a = 0\) in (5). The integral operator \(\ell\) has a unique fixed point, i.e., (40) has a solution in \(U\).

5. Conclusion

In this paper, we have presented the concept of rational type fuzzy-contraction maps in FM-spaces and proved some rational type fixed point theorems in \(G\)-complete FM-spaces under the rational type fuzzy-contraction conditions by using the “triangular property of fuzzy metric.” In the last section, we presented an integral type application for rational type fuzzy-contraction maps and proved a result of a unique solution for an integral operator in FM-space. In this direction, one can prove more rational type fuzzy-contraction results in \(G\)-complete FM-spaces with different types of applications.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors contributed equally to this study.

Acknowledgments

This research was financially supported by Mahasarakham University.

References

[1] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales,” Fundamenta Mathematicae, vol. 3, pp. 133–181, 1922.
[2] J. Ahmad and M. Arshad, “On multi-valued contraction in cone metric spaces without normality,” The Scientific World Journal, vol. 2013, 3 pages, 2013.
[3] I. A. Bakhtin, “The contraction mapping principle in quasi-metric spaces,” Functional Analysis, vol. 30, no. 1, pp. 26–37, 1989, in Russian.
[4] H. Covitz and S. B. Nadler, “Multi-valued contraction mappings in generalized metric spaces,” Israel Journal of Mathematics, vol. 8, no. 1, pp. 5–11, 1970.
[5] S. B. Nadler, “Multi-valued contraction mappings,” Pacific Journal of Mathematics, vol. 30, no. 2, pp. 475–488, 1969.
[6] J. J. Nieto and R. Rodriguez-Lopez, “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations,” Order, vol. 22, no. 3, pp. 223–239, 2005.
[7] J. J. Nieto and R. Rodríguez-López, “Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations,” Acta Mathematica Sinica, English Series, vol. 23, no. 12, pp. 2205–2212, 2007.

[8] D. Paesano and P. Vetro, “Suzuki’s type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces,” Topology and its Applications, vol. 159, no. 3, pp. 911–920, 2012.

[9] A. C. M. Ran and M. C. Reurings, “A fixed point theorem in partially ordered sets and some applications to metric equations,” Proceedings of the American Mathematical Society, vol. 132, pp. 1435–1443, 2004.

[10] S. U. Rehman, S. Jabeen, Muhammad, and H. Ullah, “Hanifullah, Some multi-valued contraction theorems on H–cone metric,” Journal of Advanced Studies in Topology, vol. 10, no. 2, pp. 11–24, 2019.

[11] R. Saadati, S. M. Vaezpour, P. Vetro, and B. E. Rhoades, “Fixed point theorems in generalized partially ordered G-metric spaces,” Mathematical and Computer Modelling, vol. 52, pp. 797–801, 2010.

[12] F. Y. Shaddad and A. Latif, “Fixed point results for multi-valued maps in cone metric spaces,” Fixed Point Theory and Applications, vol. 2010, no. 1. Article ID 941371, 2010.

[13] P. P. Zabrejko, “K-metric and K-normed linear spaces: survey,” Collectanea Mathematica, vol. 48, pp. 825–859, 1997.

[14] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3. pp. 338–353, 1965.

[15] S. Fahad and A. Shah, “Intelligent testing using fuzzy logic,” in Innovations in E-Learning, Instruction Technology, Assessment, and Engineering Education, M. Iskander, Ed., Springer, Dordrecht, The Netherlands, 2007.

[16] V. Ivanova and B. Zlatanov, “Implementation of fuzzy functions aimed at fairer grading of students’ tests,” Education Sciences, vol. 9, no. 3, p. 214, 2019.

[17] V. Ivanova and B. Zlatanov, “Application of fuzzy logic in online test evaluation in English as a foreign language at university level,” Proceedings of the 45th International Conference on Application of Mathematics in Engineering and Economics (Amee’19), Sozopol, Bulgaria, June 2019.

[18] N. Rusmiari, D. Putra, and A. Sasmita, “Fuzzy logic method for evaluation of difficulty level of exam and student graduation,” International Journal of Computer Science, vol. 10, no. 2, pp. 223–229, 2013.

[19] A. Sobrino, “Fuzzy logic and education: teaching the basics of fuzzy logic through an example (by way of cycling),” Education Sciences, vol. 3, no. 2, pp. 75–97, 2013.

[20] C. Agwu, M. H. Olya, and L. Monplaisir, “Modeling of fuzzy-based voice of customer for business decision analytics,” Knowledge-Based Systems, vol. 125, pp. 136–145, 2017.

[21] R. Ariz, C. K. Verma, and N. Srivastava, “A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data,” Genomics Data, vol. 8, pp. 4–15, 2016.

[22] A. Bajpai and V. S. Kushwah, “Importance of fuzzy logic and application areas in engineering research,” International Journal of Recent Technology and Engineering (IJRTE), vol. 7, pp. 1467–1471, 2019.

[23] M. Bakhshi, M. H. Holakoee, and A. Rabiee, “Fuzzy based damping controller for TCSC using local measurements to enhance transient stability of power systems,” International Journal of Electrical Power & Energy Systems, vol. 85, pp. 12–21, 2017.

[24] K. Maji and D. K. Pratihar, “Forward and reverse mappings of electrical discharge machining process using adaptive network-based fuzzy inference system,” Expert Systems with Applications, vol. 37, no. 12, pp. 8566–8574, 2010.

[25] M. G. C. Patel, P. Krishna, and M. B. Parappagoudar, “Prediction of secondary dendrite arm spacing in squeeze casting using fuzzy logic based approaches,” Archives of Foundry Engineering, vol. 15, no. 1, pp. 51–68, 2015.

[26] H. Singh, M. M. Gupta, T. Meitzler et al., “Real-life applications of fuzzy logic,” Advances in Fuzzy Systems, vol. 2013, Article ID 581879, 3 pages, 2013.

[27] B. Surekha, P. R. Vundavilli, M. B. Parappagoudar, and A. Srinath, “Design of genetic fuzzy system for forward and reverse mapping of green sand mould system,” International Journal of Cast Metals Research, vol. 24, no. 1, pp. 53–64, 2011.

[28] B. K. Wong and V. S. Lai, “A survey of the application of fuzzy set theory in production and operations management: 1998–2009,” International Journal of Production Economics, vol. 129, no. 1, pp. 157–168, 2011.

[29] M. A. Yurdusev and M. Firat, “Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: an application to Izmir, Turkey,” Journal of Hydrology, vol. 365, no. 3–4, pp. 225–234, 2009.

[30] O. Kramosil and J. Michalek, “Fuzzy metric and statistical metric spaces,” Kybernetika, vol. 11, pp. 336–344, 1975.

[31] A. George and P. Veeramani, “On some results in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 64, no. 3, pp. 395–399, 1994.

[32] V. Gregori and A. Sapena, “On fixed-point theorems in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 125, no. 2, pp. 245–252, 2002.

[33] C. D. Bari and C. Vetro, “Fixed points, attractors and weak fuzzy contractive mappings in a fuzzy metric space,” Journal of Fuzzy Mathematics, vol. 1, pp. 973–982, 2005.

[34] M. Grabiec, “Fixed points in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 27, no. 3, pp. 385–389, 1988.

[35] O. Hadzic and E. Pap, “Fixed point theorem for multi-valued mappings in probabilistic metric spaces and applications in fuzzy metric spaces,” Fuzzy Sets and System, vol. 127, pp. 333–344, 2002.

[36] M. Imdad and J. Ali, “Some common fixed point theorems in fuzzy metric spaces,” Mathematical Communications, vol. 11, pp. 153–163, 2006.

[37] F. Kiyani and A. Amini-Harandi, “Fixed point and endpoint theorems for set-valued fuzzy contraction maps in fuzzy metric spaces,” Fixed Point Theory and Applications, vol. 94, no. 1, 2011.

[38] B. D. Pant and S. Chauhan, “Common fixed point theorems for two pairs of weakly compatible mappings in menger spaces and fuzzy metric spaces,” Scientific Research, Series Mathematics and Informatics, vol. 21, pp. 81–96, 2011.

[39] J. Rodriguez-Lopez and S. Romaguera, “The Hausdorff fuzzy metric on compact sets,” Fuzzy Sets and Systems, vol. 147, pp. 273–283, 2008.

[40] Z. Sadeghi, S. M. Vaezpour, C. Park, R. Saadati, and C. Vetro, “Set–valued mappings in partially ordered cone metric spaces with application to the Urysohn type integral equation,” Journal of Inequalities and Applications, vol. 2009, Article ID 581879, 3 pages, 2009.

[41] T. Som, “Some results on common fixed point in fuzzy metric spaces,” Journal of the Mathematical Society of Japan, vol. 52, pp. 797–801, 2010.

[42] O. Kramosil and J. Michalek, “Fuzzy metric and statistical metric spaces,” Kybernetika, vol. 11, pp. 336–344, 1975.
equations,” *Advances in Difference Equations*, vol. 2020, no. 1, 2020.

[43] R. P. Agarwal, N. Hussain, and M. A. Taoudi, “Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations,” *Abstract and Applied Analysis*, vol. 201215 pages, Article ID 245872, 2012.

[44] H. Aydi, M. Jellali, M. Jellali, and E. Karapınar, “On fixed point results for a-implicit contractions in quasi-metric spaces and consequences,” *Nonlinear Analysis: Modelling and Control*, vol. 21, pp. 40–56, 2016.

[45] G.-X. Chen, S. Jabeen, S. U. Rehman et al., “Coupled fixed point analysis in fuzzy cone metric spaces with an application to nonlinear integral equations,” *Advances in Difference Equations*, vol. 2020, no. 1, p. 25, 2020.

[46] N. Hussain and M. A. Toudi, “Krasnosel’skii-type fixed point theorems with application Volterra integral equations,” *Fixed Point Theory and Applications*, vol. 2013, no. 1, 2013.

[47] B. Schweizer and A. Sklar, “Statical metric spaces,” *Pacific Journal of Mathematics*, vol. 10, pp. 314–334, 1960.