BinarizedAttack: Structural Poisoning Attacks to Graph-based Anomaly Detection

Yulin Zhu*, Yuni Lai*, Kaifa Zhao*, Xiapu Luo*, Mingquan Yuan†, Jian Ren‡, Kai Zhou*

*Dept. of Computing, The Hong Kong Polytechnic University, HKSAR
yulinzhu@polyu.edu.hk, lenalotus97@gmail.com, cszkzhao@comp.polyu.edu.hk,
csxluo@comp.polyu.edu.hk, kaizhou@comp.polyu.edu.hk
‡Sam’s Club Innovation Center, Dallas, TX, USA, mingquan.yuan@samsclub.com
†Dept. of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA, renjian@msu.edu

Abstract—Graph-based Anomaly Detection (GAD) is becoming prevalent due to the powerful representation abilities of graphs as well as recent advances in graph mining techniques. These GAD tools, however, expose a new attacking surface, ironically due to their unique advantage of being able to exploit the relations among data. That is, attackers now can manipulate those relations (i.e., the structure of the graph) to allow some target nodes to evade detection. In this paper, we exploit this vulnerability by designing a new type of targeted structural poisoning attacks to a representative regression-based GAD system termed OddBall. Specifically, we formulate the attack against OddBall as a bi-level optimization problem, where the key technical challenge is to efficiently solve the problem in a discrete domain. We propose a novel attack method termed BinarizedAttack based on gradient descent. Comparing to prior arts, BinarizedAttack can better use the gradient information, making it particularly suitable for solving combinatorial optimization problems. Furthermore, we investigate the attack transferability of BinarizedAttack by employing it to attack other representation-learning-based GAD systems. Our comprehensive experiments demonstrate that BinarizedAttack is very effective in enabling target nodes to evade graph-based anomaly detection tools with limited attacker’s budget, and in the black-box transfer attack setting, BinarizedAttack is also tested effective and in particular, can significantly change the node embeddings learned by the GAD systems. Our research thus opens the door to studying a new type of attack against security analytic tools that rely on graph data.

Index Terms—Graph-base anomaly detection, Graph learning and mining, Data poisoning attack, Adversarial machine learning, Discrete optimization

I. INTRODUCTION

Anomaly detection is a long-standing task in the field of data science and engineering with the goal to spot unusual patterns from the massive amount of data. Recently, due to the powerful representation abilities of graphs as well as the advances in graph mining and learning techniques, Graph-based Anomaly Detection (GAD) is becoming prevalent across a wide spectrum of domains. Various GAD systems are proposed and deployed as an indispensable security component in detecting, for example, fake accounts in social networks [1], fraudulent transactions in the financial industry [2], and Botnets in communication networks [3].

Those GAD systems, however, expose a new attacking surface, ironically due to their unique advantage of being able to exploit the connections among data (i.e., edges in graphs). For example, in social network analysis, an attacker can proactively manage her social ties, by adding or deleting friendship connections, to reduce the probability of being detected as malicious. That is, adversaries now can evade GAD via manipulating the graph structure; we term this class of attacks as structural attacks.

We thus initiate the study of structural attacks on GAD with the goal of answering to what extent an attacker can evade the detection of prevalent GAD tools by solely manipulating graph structures. Studying such structural attacks has significant practical implications. Previous research on evading detection tools (e.g., PDF/Android malware detection [4]) primarily operate in a feature space, where attackers manipulate the extracted feature vectors. Consequently, it is known that the manipulated feature vectors are hard to be mapped back to real entities (e.g., PDF/Android software), affecting the effectiveness of the actual attacks. In contrast, altering the structure of a graph always corresponds to manipulating actual connections among entities (e.g., friendships in social networks), making structural attacks highly realizable in practice. Besides, there
are scenarios where an attacker could have control of the whole graph structure, allowing the global optimization of the attacks. A representative example is the Command & Control center in Botnets [3], which can coordinate the communication among Bots, i.e., globally optimizing the structure of the communication graph, to evade Botnets detection tools. These practical threats imposed by structural attacks motivate us to systematically study the attacker’s ability to evade GAD.

In this paper, we instantiate our study by attacking a family of regression-based GAD algorithms termed OddBall [5]. In a nutshell (illustrated in Fig. 1), OddBall first extracts structural features of each node in the graph, then builds regression models over those features, and finally computes the node anomaly scores. We focus on OddBall mainly due to the following reasons. First, OddBall stands for a class of simple while effective approaches that require much less information from data, thus are widely adopted in practice. Second, the hand-crafted features in OddBall are the results of domain-specific knowledge, which well captures the intrinsic structural characterizes of anomalies in the graph. In fact, the features extracted in OddBall are also used as input in other unsupervised deep-learning-based methods. In light of this, attacking OddBall can also serve as a good proxy for attacking other GAD tools. Indeed, we conducted such transfer attacks in Section VI. Fig 1 illustrates the main idea of attacking OddBall. By modifying the graph structure, an attacker is equivalently changing the node features extracted by OddBall. Consequently, the regression model built upon those features would falsely output node anomaly scores.

However, attacking GAD systems such as OddBall faces several challenges. First, GAD systems naturally feature an unsupervised/semi-supervised setting, where all nodes reside in a single graph. Attacking GAD thus is poisoning the data from which the detection model is built, which is in strong contrast to those attacks that are manipulating the inputs to a fixed trained model. These poisoning attacks are mathematically modeled as bi-level optimization problems, which are notoriously hard to solve in the literature. Second, structural attacks operate in a discrete domain, resulting in a strategy space exponential in the graph size. Furthermore, the discrete nature makes it hard to adopt gradient-descent-based attack methods [6], [7], as the attacker now needs to make binary decisions on deleting or keeping the connections in the graph. Indeed as we will show later, trivially utilizing the gradient information may result in non-effective attacks.

To tackle these challenges, we propose BinarizedAttack, which is inspired by Binarized Neural Networks (BNN) [8] designed for model compression. Specifically, BNN transforms the real-valued model weights to discrete values $+1/-1$ to reduce the model size. To find the discrete optimal weights, BNN uses a continuous version of the weights when computing the gradients in the backward propagation. In light of this, BinarizedAttack associates a discrete as well as a continuous decision variable for each edge/non-edge in the graph and uses a novel gradient-descent-based approach to solve the resulting discrete optimization problem. Specifically, in the forward pass, the discrete decision variables are used to evaluate the objective function. In the backward pass, the continuous decision variables are firstly updated based on the fractional gradients, and the discrete ones are then updated accordingly. In essence, BinarizedAttack could better use the gradient information to guide the search for the optimal graph structure. Comprehensive experiments demonstrate that BinarizedAttack can effectively solve the discrete optimization problem and outperforms other gradient-descent-based approaches.

We further study the attack transferability of BinarizedAttack to other GAD systems. In practice, the actual deployed GAD system could possibly be sensitive information that could not be accessible to attackers. Thus, it is of practical interests and significance to know how an attack method purposely designed for a target system would perform against other systems. In this paper, we use BinarizedAttack designed for OddBall to attack two other GAD systems (GAL [9] and ReFeX [10]) in a black-box manner. Our intuition is that as OddBall can well capture the structural patterns that are generically important for identifying anomalies, BinarizedAttack has the ability to obfuscate those patterns thus possibly evading any GAD systems that rely on graph structures. Comprehensive experiments in Section VIII-C demonstrate good attack transferability of BinarizedAttack.

Finally, we summarize the main contributions of this paper as follows:

- **New Vulnerability.** We identify and initiate the study of a new vulnerability of graph-based anomaly detection systems. Our results show that by slightly modifying the graph structure, attackers can successfully evade GAD systems. The research opens the door to studying this new type of attacks against graph-based learning systems.

- **Effective Structural Poisoning Attacks.** We model structural poisoning attacks as bi-level discrete optimization problems. Technically, we propose a novel gradient-descent-based approach BinarizedAttack that can effectively solve discrete optimization problems, outperforming existing methods.

- **Attack Transferability.** We conduct comprehensive experiments demonstrating that BinarizedAttack is also effective in attacking other GAD systems in a black-box setting, making BinarizedAttack highly practical.

The rest of the paper is organized as follows. The related works are highlighted in Section II. We introduce the target GAD system in Section III and formulate the poisoning structural attacks in Section IV. The attack methods are introduced in Section V. We further investigate the attack transferability of the proposed method and explore possible countermeasures in Section VI and Section VII, respectively. We conduct comprehensive experiments to evaluate our methods from several aspects in Section VIII. Finally, we conclude in Section IX.

II. Related Works

Graph-based anomaly detection. The essential task of Graph-based Anomaly Detection (GAD) is to identify anomalous patterns from graph data. It becomes prevalent due to...
the powerful representation ability of graphs as well as the advances in graph mining and learning techniques. Our focus is anomaly detection on static graphs [11], where the graph structure and node features would be fixed over time. Representative GAD can be roughly classified into four classes. Specifically, feature-based methods [5, 12] extract hand-crafted features from the graph and use typical machine learning approaches to analyze those features. Proximity-based methods [13] exploit the graph structure to measure the distances among nodes and anomalous nodes are assumed to have larger distances to other nodes. Community-based methods [14] employ community detection approaches to cluster normal nodes. Relational-learning-based methods [15, 16] design graphical models to capture the relations among nodes and cast anomaly detection as a classification problem. Importantly, all these methods rely on the graph structure as an essential input. More recently, there are methods based on graph representation learning [9, 10], whose key component is to learn the node embeddings via various technical as such graph neural networks. We refer to [11] for a thorough discussion of these GAD methods.

Adversarial graph analysis Our work belongs to a long line of research that studies the adversarial robustness of various graph analysis tasks, such as node classification [6, 7, 17], link prediction [18, 19], community detection [20], etc. For instance, [18] and [19] investigated structural attacks against a wide range of similarity-based link prediction algorithms. [6] and [7] initiated the study of the robustness of graph neural networks under both targeted and untargeted attacks. [20] investigated how an attacker can evade community detection tools in social networks. On the defence side, a lot of efforts have been devoted to enhancing the robustness of those analytic tools under attacks. Representative approaches include adding regularization terms [21] into the learning objective function, robust optimization [17], injecting random noises to create ensembled classifiers [22], purifying the poisoned graphs [23, 24], and so on. All of the above works are task-specific and the developed methods cannot be easily applied to other tasks.

III. TARGET GAD SYSTEM

In this section, we introduce OddBall [5] as the representative target GAD system of our attack. OddBall is an unsupervised feature engineering approach. Given a graph, OddBall extracts some carefully crafted features for each node in the graph, and computes an anomaly score for each node based on those features, where a larger score indicates that the node is more likely to be anomalous.

To formalize, we denote a graph as $G = (V, E)$, where V denotes a set of n nodes and E represents the edges. We consider a simple unweighted graph with the adjacency matrix $A \in \{0, 1\}^{n \times n}$. OddBall focuses on the local structural information of the nodes for anomaly detection. Especially, for a node $v_i \in V$, OddBall examines an Egonet ego_i centered at v_i, where ego_i is the reduced sub-graph contains v_i and its one-hop neighbors. An important finding of OddBall is that the Egonets for anomalous nodes tend to appear in either a near-clique or near-star structure (as shown in Fig. 2a). To detect such anomalous structures (i.e., near-clique or near-star), OddBall identifies two critical features E_i and N_i among others from the Egonet ego_i, where E_i and N_i denote the number of edges and nodes in ego_i, respectively. It was observed that E_i and N_i follow an Egonet Density Power Law [5]: $E_i \propto N_i^\alpha$, $1 \leq \alpha \leq 2$. The nodes that significantly deviate from this law are thus flagged as anomalous.

![Feature distribution](attachment:image.png)

Fig. 2: (a) The near-clique (left) and near-star (right) structural patterns. (b) The distribution of node features and the regression line along the vertical axis.

OddBall uses a regression-based approach to quantify the deviation. Specifically, let vectors $E = (E_1, E_2, \cdots, E_n)$ and $N = (N_1, N_2, \cdots, N_n)$ be the collected features of all nodes. Based on the power law observation, one can use the following linear model to fit the pair of features (E_i, N_i) for a node i:

$$\ln E_i = \beta_0 + \beta_1 \ln N_i + \epsilon,$$

where the model parameters β_0 and β_1 are given by the Ordinary Least Square (OLS) [25] estimation as:

$$[\beta_0, \beta_1] = ([1, \ln N]^T [1, \ln N])^{-1}[1, \ln N]^T \ln E,$$

where 1 is an n-dimensional vector of all 1’s.

The anomaly score $S_i(A)$ for the node v_i is then computed as

$$S_i(A) = \frac{\max(E_i, e^{\beta_0 N_i^{\beta_1}})}{\min(E_i, e^{\beta_0 N_i^{\beta_1}})} \ln(|E_i - e^{\beta_0 N_i^{\beta_1}}| + 1).$$

Note that we made the dependency of $S_i(A)$ on A explicit as all of $\beta_0, \beta_1, E_i, N_i$ rely on A. As illustrated in Fig. 2b the anomaly score $S_i(A)$ intuitively measures the distance between the point (N_i, E_i) and the regression line along the vertical axis. Finally, nodes with high anomaly scores (e.g., exceeding a certain threshold) are determined as anomalous by OddBall.

IV. FORMULATION OF STRUCTURAL POISONING ATTACKS

In this section, we formally formulate the structural poisoning attacks against OddBall [5].
A. Threat Model

We consider a system consisting of three parties: a defender, an attacker, and the outside environment, the interplay among which is illustrated in Fig. 3. Specifically, a defender deploys OddBall to detect anomalous nodes in an existing network. In practice, the network is not readily available; instead, the defender will need to construct the network via data collection. We model data collections as a querying process where the defender sends queries consisting of pairs of nodes \((u, v)\) to the environment, which responds with the existence of the relation between \(u\) and \(v\) (i.e., whether there is an edge between \(u\) and \(v\)). Then, based on the query results the defender can construct an observed network. This querying process widely models real-world scenarios such as taking surveys on friendships, conducting field experiments to measure the communication channels, etc.

An attacker, sitting between the defender and the outside environment, can tamper with the above data collection procedure by modifying the query results sent from the environment. For example, as shown in Fig. 3 the defender makes a query “Is there a relation between \(C\) and \(D\)” to the environment; an attacker can change the query result \("\{C, D\} = 0\" (non-existence) to \("\{C, D\} = 1\" (existence), which is obtained by the defender. Consequently, the attacker is inserting an edge in the network constructed by the defender. That is, by modifying the query results, the attacker is equivalently manipulating the network topology, resulting in structural attacks. We state the attacker’s goal, knowledge, and capability as follows.

- **Attacker’s Goal.** We assume that the attacker has a set of target nodes within the network, which are risky nodes that have relatively high anomaly scores initially. The attacker’s goal is thus to enable these target nodes to evade the detection.

- **Attacker’s Knowledge.** By Kerckhoffs’s principle, we assume a worst-case scenario where the attacker has full knowledge of the network structure as well as the GAD system (i.e., OddBall) deployed by the defender. That is, the attacker knows all the queries sent out by the defender as well as the results to all those queries. Later when considering transfer attacks, we relax this second assumption and attack other GAD systems in a black-box setting.

- **Attacker’s Capability.** Again, we consider a worst-case scenario where the attacker can modify the query results at her choice. That is the attacker has control of the global structure of the graph and is able to add/delete edges from the graph. To further constrain the attacker’s ability, we assume that the attacker can add/delete up to \(B\) edges.

B. Attack Problem

We now formulate the attacks against GAD systems with OddBall as an instantiation. We use \(\mathcal{G}_0 = (V_0, E_0)\) to represent the ground-truth graph in the environment. An attacker, knowing the graph \(\mathcal{G}_0\), has a set of target nodes \(T \subset V_0\), and her goal is to reduce the probabilities that the nodes in \(T\) are detected as anomalous. To this end, the attacker is allowed to add or delete at most \(B\) edges in the graph \(\mathcal{G}_0\) via tampering with the data collection process. As a result, a manipulated graph \(\mathcal{G} = (V_0, E)\) is observed by the defender, who will use a GAD system to detect anomalous nodes based on \(\mathcal{G}\). We use \(A_0\) and \(A\) to denote the adjacency matrices of \(\mathcal{G}_0\) and \(\mathcal{G}\), respectively.

We emphasize that the graph manipulation process (i.e., changing \(\mathcal{G}_0\) to \(\mathcal{G}\)) occurs before anomaly detection, resulting in a poisoning attack, which more suitably captures the nature of GAD in an unsupervised setting. Notably, the regression model (more precisely, \(\beta_0\) and \(\beta_1\) changes as the graph is modified. This also dramatically differentiates our structural attacks to previous evasion attacks where the detection model is fixed, and significantly complicates the design and realization of structural attacks.

To evade detection, the attacker tries to minimize the anomaly scores of the target nodes in \(T\). In our formulation, we consider the weighted sum of scores, i.e., \(S_T(A) = \sum_{i:v_i \in T} \kappa_i S_i(A) = \sum_{i:v_i \in T} \kappa_i \max(E_i, e^{\beta_0 N_i^T} + 1) \ln(\frac{E_i}{e^{\beta_0 N_i^T} + 1})\). For simplicity, in this paper, we consider the equal weight case, i.e., \(\forall i, \kappa_i = 1\), and our methods can be easily extended to the case with unequal weights. Then the attack can be formulated as the following optimization problem:

\[
A^* = \arg\min_A S_T(A) \\
\text{s.t.} \quad \beta_0^*, \beta_1^* = \text{Regression}(A), \\
\frac{1}{2}||A_0 - A||_1 \leq B, \quad A \in \{0, 1\}^{n \times n}
\]

where \(\text{Regression}(A)\) denotes the function of deriving the parameters of the regression model from the graph \(A\), the constraint \(\frac{1}{2}||A_0 - A||_1 \leq B\) ensures that the attacker can modify at most \(B\) edges, and \(A^*\) is the optimal adversarial graph structure that the attacker aims to find.

To solve the optimization problem \(\text{[4]}\), we re-formulate it from several aspects. First, we note that the anomaly score
$S_i(A)$ for node v_i is a normalized distance to the regression line. To reduce the non-linearity and ease optimization, we omit the normalization term and use a proxy $\tilde{S}_i(A) = \ln((E_i - e^{\beta_0 N_i^T})^2 + 1)$ to approximate $S_i(A)$. Consequently, we will use an objective function $\tilde{S}(A) = \sum_{i \in T} (E_i - e^{\beta_0 N_i^T})^2$ acting as the surrogate of $S(A)$ in the optimization process. We emphasize that $\tilde{S}(A)$ is only used in the optimization process and we use the true anomaly scores $S(A)$ for evaluation. Second, for OLS point estimation, the regression parameters β_0 and β_1 have closed-form solutions (Eqn. (2)), allowing us to directly substitute β_0^* and β_1^* with functions of A. At last, we can explicitly write the features N_i and E_i as $N_i = \sum_{j=1}^n A_{ij}$, $E_i = N_i + \frac{1}{2} A_{ii}^3$. Finally, we can re-formulate the attack problem as:

$$A^* = \arg \min_A \tilde{S}(A)$$

$$= \arg \min_A \sum_{i \in T} (E_i - e^{\{(1, \ln N_i)^T \}^T (1, \ln N)^T (1, \ln N)^T \ln E})$$

s.t. $N_i = \sum_{j=1}^n A_{ij}$, $E_i = N_i + \frac{1}{2} A_{ii}^3$,

$$\frac{1}{2}||A_0 - A||_1 \leq B, \quad A \in \{0, 1\}^{n \times n}.$$

Solving the above discrete optimization problem leads to optimal a structural attack.

V. ATTACK METHODS

In this section, we introduce three methods, GradMaxSearch, ContinuousA, and BinarizedAttack, to solve the optimization problem (6). Specifically, the first two proposed methods GradMaxSearch and ContinuousA are adapted from typical approaches in the literature for solving similar problems. We further propose BinarizedAttack to address their limitations.

A. Conventional Methods

Solving the optimization problem (6) to obtain the optimal graph structure is hard in general, mainly due to the integer variables involved. Thus a common approach is to relax the integral constraints, transforming the optimization problem to its continuous counterpart, for which gradient-descent-based optimization techniques could be employed. Ideally, a continuous optimal solution \tilde{A}^* is obtained, which is then transformed to a discrete solution A^*. This approach faces two central challenges: i) how to use the gradient information for the guidance of searching for A^*, and ii) how to discretize \tilde{A}^* to obtain A^*. Based on the previous works in the literature, we propose two methods.

1) GradMaxSearch: Most of the previous works on structural attacks utilize a greedy strategy to solve the optimization problem in an iterative way. Specifically, the integer constraints on A are relaxed and in each iteration, the gradients of the objective with respect to each entry of A are calculated. Then, the entry with the largest gradient is picked for alternation (either deleting or adding an edge). Intuitively, a larger gradient indicates a bigger impact on the objective value. The iteration continues until budget constraint B is reached. We implement this idea and term the resulting algorithm as GradMaxSearch.

Regarding the implementation of GradMaxSearch, we note that when picking the entry associated with the largest gradient, one should pay attention to the signs of the gradients. For example, when $A_{ij} = 0$ we need to ensure that the corresponding gradient $\frac{\partial \tilde{S}(v_a)}{\partial A_{ij}} < 0$ (and vice versa) to make the operation (add or delete) valid. In addition, to avoid repeatedly adding and deleting the same edge, we maintain a pool to record the edges that have not been modified. Meanwhile, we also avoid the operations that would result in singleton nodes.

2) ContinuousA: An apparent shortcoming of GradMaxSearch is that the objective function is only optimized through B steps, where B is the attacker’s budget. An alternative way is thus to totally treat A as continuous variables $A \in [0, 1]^{n \times n}$ and optimize the objective function until it converges. We term this method as ContinuousA.

In detail, by solving the optimization problem in the continuous domain using gradient-descent, we obtain the sub-optimal continuous solution \tilde{A}^*. We then calculate the differences in absolute values between the original A and \tilde{A}^*, and pick those edges associated with the top-B absolute differences to modify.

B. BinarizedAttack

Both GradMaxSearch and ContinuousA have their own limitations. For GradMaxSearch, one major limitation is that the gradient only indicates a relatively small fractional update on the corresponding entry in A; while a discrete update (± 1) is actually updated. This would not necessarily optimize the objective. Moreover, due to budget constraint B, the objective is only optimized through B steps. ContinuousA treating A as continuous in the whole process of optimization, totally ignoring the effect of discrete updates on the objective function. Furthermore, without careful design, converting from the fractional optimal solution \tilde{A}^* to A^* may lead to arbitrary bad performances.

We propose BinarizedAttack to mitigate these limitations. At a high level, BinarizedAttack is a gradient-descent-based approach that optimizes the objective in iterations. Each iteration consists of a forward pass, where the objective function is evaluated on some decision variables, and a backward pass, where the decision variables are updated based on calculated gradients. The core idea of BinarizedAttack lies in the design of two sets of decision variables as well as the way of utilizing gradient information. Specifically, we associate each entry A_{ij} with a discrete dummy (the use of dummy will be explained later) decision variable $Z_{ij} \in \{-1, +1\}$, where $Z_{ij} = -1$ indicates that the corresponding entry A_{ij} will be modified and vice versa. For example, if $A_{ij} = 1$ and $Z_{ij} = -1$, we will change A_{ij} to 0. Let A_0 and A be the original and modified adjacency matrix, respectively, which are connected through the decision variables Z by

$$A = (A_0 - 0.5 \cdot 1^{n \times n}) \odot Z + 0.5,$$ \hspace{1cm} (6)
Algorithm 1: BinarizedAttack

Input: clean graph A^0, anomaly score function AS, target set $V = \{v_a\}_{a=1}^K$, budget B, hyper-parameter set $\Lambda = \{\lambda_k\}_{k=1}^K$, iteration number T, learning rate η.

Parameter: Perturbation \tilde{Z}.

1. Let $t = 0$ and initialize \tilde{Z}.
2. for $k \leftarrow 1, 2, ..., K$ do
3. while $t \leq T$ do
4. **Forward Pass:**
5. Calculate $Z = -\text{binarized}(2 \cdot \tilde{Z} - 1)$.
6. Calculate $A = (A^0 - 0.5 \cdot 1^{n \times n}) \odot Z + 0.5$.
7. Calculate $N_i = \sum_{j=1}^n A_{ij}$, $E_i = N_i + \frac{1}{2} A_{ii}^3$.
8. Obtain goal function $L(\{v_a\}_{a=1}^T)$ according to (8a).
9. **Backward Pass:**
10. $\forall i, j \in 1, 2, ..., n$, calculate the gradient of the goal function $L(\{v_a\}_{a=1}^T)$ w.r.t Z_{ij}, i.e., $\frac{\partial L(\{v_a\}_{a=1}^T)}{\partial Z_{ij}}$.
11. **Projection Gradient Descent:**
12. $Z \rightarrow \prod_{(0, 1)}(Z - \eta \frac{\partial L(\{v_a\}_{a=1}^T)}{\partial Z_{ij}})$
13. end while
14. return Z
15. end for
16. for $b \leftarrow 1, 2, ..., B$ do
17. Pick out $Z = \min L(\{v_a\}_{a=1}^T)$ satisfies $\sum Z = -b$.
18. Get poisoned graph $A^b = (A^0 - 0.5 \cdot 1^{n \times n}) \odot Z + 0.5$.
19. return A^b.
20. end for

where \odot denotes element-wise multiplication between two matrices.

We further associate each entry A_{ij} with a continuous soft decision variable $Z \in [0, 1]$ to facilitate gradient computation. The two sets of decision variables \tilde{Z} and Z are related by

$$Z = -\text{binarized}(2 \cdot \tilde{Z} - 1), \quad (7)$$

where we define the function $\text{binarized}(x)$ as $\text{binarized}(x) = +1$ if $x \geq 0$ and $\text{binarized}(x) = -1$ otherwise. Since our objective function $\hat{S}_T(A)$ depends on A, we can easily rewrite it as a function relying on the decision variables \tilde{Z} and Z as $\hat{S}_T(Z, \tilde{Z})$.

We proceed to handle budget constraint (5c). Our goal is to transform this constraint as part of the objective function so that we can thoroughly optimize the objective beyond B steps. To this end, we impose a LASSO penalty [26] on the continuous soft decision variables \tilde{Z}. Our choice of LASSO comes from the fact that LASSO can obtain sparser solutions compared with the L2 penalty [27]. Based on Eqn (7), we can observe that a larger \tilde{Z}_{ij} indicates that it is more likely to modify the entry A_{ij} (i.e., $Z_{ij} = -1$). As a result, in the optimization process, while the LASSO penalty term pushes the entries in \tilde{Z} to zero, it is also restricting the modifications made to A, achieving a similar effect of the budget constraint.

Now, we can reformulate the attack problem as an optimization problem with \tilde{Z} and Z as decision variables:

$$\hat{Z}^* = \arg \min_{\tilde{Z}} \sum_{a=1}^T (E_a - \epsilon)^2 + \lambda ||Z||_1 $$ \quad (8a)$$

s.t. $\rho = (1, \ln N_0)^T ([1, \ln N]^T [1, \ln N])^{-1} [1, \ln N]^T \ln E$

$$N_i = \sum_{j=1}^n A_{ij}, \quad E_i = N_i + \frac{1}{2} A_{ii}^3,$$

$$A = (A^0 - 0.5) \odot Z + 0.5;$$ \quad (8c)

$$Z = -\text{binarized}(2 \cdot \tilde{Z} - 1).$$ \quad (8e)

Note that we used a parameter λ to tune the relative importance of the adversarial objective and the penalty term.

Now, we can solve (8) through iteration. Specifically, in the forward pass, we will evaluate the objective by the discrete dummy variables Z. Intuitively, this will more accurately measure the effect of discrete updates of the graph structure on the objective. In the backward pass, we can compute the gradients with respect to \tilde{Z}, and update Z from (8c). In this way, by observing \tilde{Z}, we can obtain the entries in A that the attacker needs to modify. We note that the discrete variables Z are only used to evaluate the objective function for optimization; the final decisions are made from the soft variables \tilde{Z}, thus the reason why Z are called dummy variables. The pseudo-code of BinarizedAttack is presented in Alg. 1.

VI. ATTACK TRANSFERABILITY

In this section, we investigate the attack transferability of BinarizedAttack to two other GAD systems that are based on representation learning.

A. Representation-learning-based GAD

Recently, graph analysis based on representation learning has attracted extensive research attention. Graph representation learning [28] aims to learn a low-dimensional latent vector for each node (called embedding) that could capture the feature as well as the structural information of the graph. Those learned embeddings are then used in a wide range of downstream tasks such as node classification and link prediction. Following this trend, graph representation learning has also been used as the core technique for anomaly detection. These techniques entitle the defender the freedom to choose different GAD systems in practice, which raises a practical question: could an attack method that is specifically designed for a target GAD system be effective to other GAD systems? We investigate this problem of attack transferability by using BinarizedAttack to attack two other GAD systems (GAL [9] and ReFeX [10]) based on graph representation learning.

At a high level, representation-learning-based GAD systems have two components: representation learning and classification. First, given a graph as input, the system learns the embeddings of nodes using various methods (e.g., graph neural networks, random walk, etc.). These embeddings are then fed into classifiers such as Multi-Layer Perceptron (MLP)
which will classify nodes as anomalous or benign. These GAD systems differ mainly in the methods used for learning the node embeddings. We focus on two representative systems as below.

1) GAL [9]: GAL utilizes Graph Neural Networks (GNNs) to learn the node embeddings. In particular, GAL replaced the loss function in typical GNNs with a graph anomaly loss that is specially designed for anomaly detection. It is a class-distribution-aware margin loss which solves the imbalanced problem in anomaly detection via automatically adjusting the margins for the minority class (i.e., anomaly). Specifically, the loss on node \(u \) is computed as:

\[
L(u) = \mathbb{E}_{u_+ \sim \mathcal{U}_{u+}, u_- \sim \mathcal{U}_{u-}} \max\{0, g(u, u_-) - g(u, u_+) + \Delta_{y_u}\}
\]

where \(\Delta_{y_u} = \frac{C}{n_{y_u}^{1/4}}. \) (9)

Here \(\mathcal{U}_{u+} \) denotes the set of nodes share the same label with \(u \), and vice versa. \(g(u, u') = f(\mathbf{u})^T f(\mathbf{u}') \) measures the similarity of the representation of two nodes \(u \) and \(u' \). Here, \(f \) is the GNN. \(C \) is the constant hyperparameter to be tuned. \(\Delta_{y_u} \) is proved to best weigh up between the improvement of the generalization of minority class and the sub-optimal margin for the frequent class.

2) ReFeX [10]: ReFeX (Recursive Feature eXtraction) is a novel algorithm that combines node-based local features with neighborhood (ego-based) features recursively, and output regional features which can capture the behavior information in large social networks. ReFeX aggregates the local and ego-based features and uses them to create recursive features. Local features are essentially node degree measures. Egonet features are \(\mathbf{N} \) and \(\mathbf{E} \) as mentioned in Section III. ReFeX recursively explores the local and ego-based features by calculating their means and sums. Next ReFeX implements the pruning method using vertical logarithmic binning. At last, ReFeX transforms the pruned recursive features to binary-valued embeddings. The pruned recursive features proved to efficiently capture the inner structural information provided by the graph. In this paper, we make use of these features for node anomaly detection.

B. Transfer attack methodology

Our transfer attack to both GAL and ReFeX consists of four steps: data pre-processing, targets identification, graph poisoning and evaluation.

1) Data pre-processing: OddBall operates in an unsupervised setting while both GAL and ReFeX are supervised methods. We thus pre-process the data by assigning anomaly labels to a set of nodes. Specifically, given a graph, we first use OddBall to compute the anomaly scores for all the nodes and label those nodes with high anomaly scores as anomalous. We then randomly split the nodes into training and testing sets.

2) Targets identification: As BinarizedAttack is a targeted attack, the goal of our transfer attack is not to decrease the prediction accuracies of the GAD systems. Instead, we are interested in changing the prediction results of a set of nodes – those nodes that are initially predicted as anomalous by the GAD systems. Thus, we feed the pre-process data into GAL or ReFeX and obtain the predicted labels of the test nodes and pick those nodes predicted as anomalous as our attack targets.

3) Graph poisoning: With the targeted nodes identified from the previous step, we directly use BinarizedAttack to generate a poisoned graph. We emphasize that the attack occurred in a black-box setting, where we do not need any information from GAL nor ReFeX.

4) Evaluation: We provide the clean graph and poisoned graph separately as input to GAL and ReFeX. We evaluate the performance of transfer attack mainly from two aspects: 1) whether the target nodes can successfully evade the detection of GAL or ReFeX; 2) the changes of node embeddings generated by GAL and ReFeX before and after attack.

We present the detailed experiment settings and results in Section VIII.

VII. Possible Countermeasures

Defense approaches against data poisoning attacks have been extensive studied mainly in the computer vision domain. Typical methods include sanitizing the dataset by identifying and removing the maliciously injected data points, training robust models that could still perform well on poisoned data, and so on. More recently, there are also works that explore defense approaches in the graph learning domain. For example, based on the observation that netattack tends to increase the rank of the adjacency matrix, [24] proposed the low-rank approximation of the adjacency matrix by SVD for defense. Graph variational autoencoder is used in [30] to generate a smooth adjacency matrix to defend two popular attacks metattack and netattack. A robust GCN [29] model is proposed in [31] by formulating the Gaussian distribution based on the hidden features of GCN and penalizing the high variance to enhance the robustness. [32] and [33] introduced the attention mechanism to decrease the effect of adversarial links in the attacked graph.

In this paper, we further explore possible countermeasures to defend against BinarizedAttack. Our key observation is that, since OLS estimation is sensitive to poisoned data in the training process, we can use robust estimators instead to estimate the regression parameters. Huber [34] proposed the Huber loss function to replace the mean square loss:

\[
\rho_{\text{Huber}}(t) = \begin{cases}
\frac{1}{2} t^2, & \text{if } |t| \leq k \\
\frac{1}{2} k^2, & \text{if } |t| > k,
\end{cases}
\] (10)

where \(k \) is the hyper-parameter to penalize the outliers linearly instead of quadratically.

Random Sample Consensus (RANSAC [35]) uses Huber loss with \(k = 1 \) for robust estimation. It was known that RANSAC is able to estimate the model parameters that achieve high accuracy even when the dataset contains a significant number of outliers. In light of this, we adopt the robust estimation method from RANSAC to estimate the parameters of OddBall (thus a robust version of OddBall) from the poisoned graph generated by BinarizedAttack. Our experiments
show that this robust estimation approach can slightly mitigate the attack effect. The defense of structural poisoning attack remains as an important future work.

VIII. EXPERIMENTS

A. Datasets and Experiment Settings

We evaluate the algorithms on two synthetic and three real-world datasets:

1) Synthetic datasets: We use two random graph models, Erdos-Renyi (ER) [36] and Barabasi-Albert (BA) [37], to generate graphs with a node number of 1000. For ER graphs, we set the link probability as 0.02. We create BA graphs with $m = 5$, where m is the number of edges attaching from a new node to existing nodes.

2) Real-world datasets: Blogcatalog [38] is a social network indicating follower/followee relationships among bloggers in a blog sharing website. The network has 88,800 nodes and 2.1M edges. Wikivote [39] contains all the Wikipedia voting data from the inception of Wikipedia till January 2008. Nodes in the network represent Wikipedia users and the edge represents that user i voted on user j. The dataset contains around 7000 nodes and 0.1M edges. Bitcoin-Alpha [40] is a who-trusts-whom social network of traders who trade Bitcoin on the Bitcoin-Alpha platform. It is a weighted signed network with weights ranging from $+10$ to -10. It has more than 3000 nodes and 24186 edges. We pre-process the data by removing all the negative edges and erasing the weights of all the remaining edges, resulting in an unsigned unweighted version of Bitcoin-Alpha. For all the three real datasets, we randomly sample the connected sub-graph with around 1000 nodes from the whole graph. The statistics of the real datasets are summarized in Table I.

![Table I: Statistics of datasets](image)

3) Settings: For all datasets we determine our target set by sampling 10 or 30 target nodes from the top-50 nodes based on AScore (From now on we denote anomaly score as AScore for simplicity) rankings. For each experiment we sample target nodes 5 times individually and report the mean values to measure the efficacy of the structural attack on OddBall. For structural attack (add/delete edges) on node anomaly detection, we aim to minimize the AScore sums for target set V under different budget constraint. We determine the max budget B for each case by the convergence of AScore for the three structural attack. We stop attacking until the changes of AScore saturated.

B. Attack Performance of BinarizedAttack

1) Effectiveness of attack: Our main focus is to investigate whether the proposed attack methods can effectively decrease AScores of the target nodes. We use the Decreasing Percentage of Anomaly Score denoted as τ_{as} as the evaluation metric. Specifically, let S^T_0 and S^T_B be the sum of AScores of the target nodes before attack and after an attack with a budget B, respectively. Then, τ_{as} is defined as $\tau_{as} = (S^T_0 - S^T_B)/S^T_0$.

Fig. 4 presents the τ_{as} of three attack methods, BinarizedAttack, GradMaxSearch, and ContinuousA, with varying attack power. In particular, the attack power is measured as a percentage $B/|E|$, where $|E|$ is the number of edges in the clean graph. We note that in all the cases, the attacker has modified very limited edges in the graph: less than 2% when $|V| = 10$ and less than 5% when $|V| = 30$. On average, for each target node, the number of modified edges is around 4 for Bitcoin-Alpha, 5 for Blogcatalog and 9 for Wikivote.

We can observe from Fig. 4 that both BinarizedAttack and GradMaxSearch can significantly (up to 90%) decrease AScores with very limited power while ContinuousA is not effective in several cases. This demonstrated the unpredictable feature of ContinuousA when converting continuous solutions
Fig. 5: Attacker implemented BinarizedAttack method on the three target nodes v_{603}, v_{657} and v_{554}. In the case 1, the attacker adds edges to the clean graph, the AScore decreases from 6.05 to 0.69; in the case 2, the attack delete the edges to the clean graph, the AScore decreases from 8.4 to 0.29; in the case 3, the attacker add and delete edges simultaneously to decrease the anomaly node v_{554}’s AScore from 5.34 to 0.42. We observe that in these three cases BinarizedAttack indeed force the near-star and near-clique Egonets to become ‘normal’ ones, i.e., the edges density inside the Egonets is at a rational level to discrete ones. Our main method BinarizedAttack consistently achieves the best performance in all cases. We note that the margin between BinarizedAttack and GradMaxSearch is significant (with a >10% performance improvement) when the attack power is high (although the two lines look close in the figures). For example, in Fig. 4B when the attack power is 2.77%, BinarizedAttack outperforms GradMaxSearch by 13.32%. One intriguing observation is that the gap between BinarizedAttack and GradMaxSearch becomes larger when we increase the attacker’s budget. The reason is that GradMaxSearch is a greedy strategy in nature and should performs well when modifying a few edges; meanwhile, it is also myopic when the budget is large.

We further show in Fig. 5 how BinarizedAttack will actually modify the structure of a real-world graph (Wikivote as the example). We demonstrated three cases, where the attacker deletes edges only, adds edges only, and deletes and adds edges simultaneously. It shows that BinarizedAttack will indeed break the anomalous structural patterns (i.e., near-star and near-clique) in the graph.

2) Preferences of attack: In the previous experiment evaluation, we select a set of target nodes that have relatively high AScores and measure the attack performance by the decreasing percentage of the score sum as a whole. It is also important to investigate the different attack effects on individual targets. We thus group the nodes according to their initial AScores in the clean graph. Specifically, we assign the 10% percentile and 90% percentile (q_1 and q_2) for AScores histogram as thresholds. Using the thresholds q_1 and q_2, we split all the nodes into three groups: low level, medium level, and high level, based on their AScores. We randomly pick out 10 nodes from each group and treat the 30 nodes as the target set T. We report the decreasing percentage r_{as} as under BinarizedAttack for each group separately in Fig. 6. We observe that the changes of the distance between high-level nodes and the regression lines with clean graph and poisoned graph is larger than that of low-level and medium-level nodes. This phenomenon supports the saying that BinarizedAttack tends to exert more influence on high-level anomaly nodes.

3) Side effect of attack: BinarizedAttack is a poisoning targeted attack that aims to mislead the predictions of a small set of target nodes. A desirable feature is that the attack would not significantly change the data distribution to the extent that the poisoned data would look abnormal for a defender. In other words, an attacker wants to make the attack unnoticeable.

In our context, BinarizedAttack modifies the features (N_i, E_i) of the ego-net centered at node i. By design, BinarizedAttack will significantly modify the features of targeted nodes; however, an inevitable side effect is that BinarizedAttack would also change the features of the rest of the nodes. In the worst case, the shift of the feature distributions caused by an attack is so large that the attacked graph would appear abnormal and be rejected by the defender. Thus, ideally, we would expect the side effect of BinarizedAttack is reasonably small to achieve an unnoticeable attack.

We thus experiment to investigate the distribution shift of the features (N, E) before and after BinarizedAttack. Specifically, we use the permutation test [41], which is a non-parametric test to check whether two different groups follow the same distribution. However, it will be NP-hard if we consider all kinds of perturbations in the concatenation of two group data, we instead use the Monte Carlo method to approximate the p-value, which is computed as:

\[p(t \geq t_0) = \frac{1}{M} \sum_{j=1}^{M} I(t_j \geq t_0), \]

where t_0 is the observed value of test statistic and t is the statistic calculated from the re-samples, i.e.,
\[t(x_1', x_2', \ldots, x_n', y_1', y_2', \ldots, y_n') = |\bar{x}' - \bar{y}'|, \]
M is the Monte Carlo samples. The p-value is the probability that BinarizedAttack will also change the features of the rest of the nodes.
Carlo sampling times (in the experiment we set $M = 100000$). x and y can be either N^{clean} and $N^{poisoned}$ or E^{clean} and $E^{poisoned}$. x' and y' are re-samples of Concat[N^{clean}] or Concat[E^{clean}] or Concat[$E^{poisoned}$].

We report the p-value of ego-features N and E on three real datasets: Bitcoin-Alpha, Blogcatalog and Wikivote. The results are shown in Tab. II where we consider ego-features of the poisoned graph with maximum perturbations and $|V| = 30$.

![Image of probability density function](image)

TABLE II: p-values for ego-features.

p	Bitcoin-Alpha N	Bitcoin-Alpha E	Blogcatalog N	Blogcatalog E	Wikivote N	Wikivote E
1	0.72 0.04	0.72 0.12	0.76 0.02	0.56 0.06	0.56 0.02	0.56 0.02
2	0.66 0.03	0.65 0.06	0.58 0.02	0.56 0.01		
3	0.75 0.04	0.67 0.06	0.56 0.01	0.57 0.02	0.56 0.005	
4	0.72 0.04	0.71 0.12	0.57 0.02	0.56 0.01	0.56 0.005	
5	0.71 0.03	0.7 0.14	0.56 0.01	0.57 0.02	0.56 0.005	

From Tab. II we notice that under 99% significant level we cannot reject the null hypothesis that N^{clean} and $N^{poisoned}$ follows the same distribution, that is, we can draw the conclusion that BinarizedAttack does not manipulate the distribution of N. For ego-feature E, in most cases, we cannot reject the null hypothesis. However, in experiment 5 for Wikivote the p-value is less than 1%, so we reject the null hypothesis, that is, in Wikivote experiment 5 BinarizedAttack manipulate the distribution of E under the significant null 99%. The probability density function of N^{clean} and $N^{poisoned}$ and E^{clean} and $E^{poisoned}$ are presented in Fig. 7 (we take Bitcoin-Alpha as an example).

![Graphs of probability density function](image)

Fig. 7: The probability density function of ego-features N and E for clean and poisoned graphs of Bitcoin-Alpha

C. Attack Transferability

We follow the procedure in Section VI-B to conduct transfer attacks against GAL and ReFeX on Bitcoin-Alpha and Wikivote. We use the configurations in [9] and [10] to implement GAL and ReFeX, respectively. We measure the attack effects on classification results as well as node embeddings.

1) **Classification results:** BinarizedAttack is a targeted attack. To evaluate the effects more comprehensively, we measure both the global and targeted classification accuracies of GAL and ReFeX under attack. Specifically, for global classification accuracies, we compare the AUC and F1 scores on all test nodes before and after attack. For targeted classification accuracies, we use the changes in soft labels [42].

![Graph of edge changed percentage](image)

TABLE II: Classification accuracy for the ReFeX embeddings provided for the anomaly classification task.

Edge changed (%)	Bitcoin-Alpha AUC	F1	δ_B (%)	Wikivote AUC	F1	δ_B (%)
0	0.72	0.85	0	0.68	0.77	0
0.2	0.71	0.84	10.87	0.67	0.74	19.49
0.4	0.71	0.84	14.20	0.65	0.72	19.43
0.6	0.68	0.82	14.46	0.68	0.76	23.29
0.8	0.69	0.83	16.30	0.65	0.72	24.55
1.0	0.67	0.82	20.00	0.65	0.76	26.61
1.2	0.68	0.83	18.42	0.59	0.69	28.02
1.4	0.68	0.82	18.76	0.65	0.72	26.00
1.6	0.65	0.81	23.16	0.66	0.74	23.97
1.8	0.66	0.82	21.60	0.66	0.75	26.45
2.0	0.65	0.81	25.69	0.6	0.71	25.25

2) **Node embeddings:** As both GAL and ReFeX are representation-learning-based methods, it is important to see the qualities of the node embeddings under attack. We thus further provide the visualization of node embeddings before...
and after attack to highlight the differences. To this end, we use a dimension reduction method t-SNE [43] to visualize the penultimate hidden features of the classifier MLP of the testing nodes in 2-D space. Referring to [44], the penultimate hidden features of the MLP will form the linear separable space in 2-D space after dimension reduction (PCA [45] or t-SNE [43]).

Ideally, we can expect that before attack, there is a clear linear decision boundary between the anomalous nodes and the benign nodes. After the attack, the anomalous nodes are mixed in the benign ones. Fig. 8 and Fig. 9 shows that BinarizedAttack can indirectly influence the quality of the node embeddings and thus break the linear separable decision boundary of the anomaly detection system.

In this part, we further analyze the possible defense method against BinarizedAttack. We retrain the linear model based on the clean graph and poisoned graphs with different perturbations by Huber regressor [34] and RANSAC [35] method. We compare the AScores of two robust estimations with OLS estimation. The experiments are implemented based on the two real datasets: Bitcoin-Alpha and Wikivote. The attack method is BinarizedAttack. We randomly select 10 nodes as our target nodes for BinarizedAttack. For each of the dataset, we implement the experiments 5 times respectively and report the percentage of the decreasing of the total AScores for the target set. The experimental results are shown in Fig. 10.

From Fig. 10 we observe that both Huber regression and RANSAC can slightly mitigate the attack. But overall, BinarizedAttack remains a very effective attack. We leave the defense of BinarizedAttack as future work.

IX. Conclusion

In this paper, we initiate the study to investigate the vulnerability of graph-based anomaly detection under structural poisoning attacks. Specifically, we use OddBall as a representative target GAD system and mathematically formulate the attacks against it as a bi-level optimization problem. To address the technical challenge of solving the combinatorial optimization problem, we propose a novel gradient-descent-based method BinarizedAttack, which effectively enables target nodes to evade anomaly detection, significantly outperforming existing methods. We further use BinarizedAttack to attack other representation-learning-based GAD systems in a black-box setting. Results show that BinarizedAttack can also evade those systems that it is not designed for, greatly relaxing the information requirement for the attackers. Overall, our study demonstrates that current GAD systems are indeed vulnerable to structural poisoning attacks. Our research also opens the door to investigating the adversarial robustness of other graph-based security analytic tools under this new type of attacks. We leave the defense of structural attacks as an important direction of future work.
