Indoor microbiome, environmental characteristics and asthma among junior high school students in Johor Bahru, Malaysia

Xi Fu¹, Dan Norbäck², Qianqian Yuan³,⁴, Yanling Li³,⁴, Xunhua Zhu³,⁴, Yiqun Deng³,⁴, Jamal Hisham Hashim⁵,⁶, Zailina Hashim⁷, Yi-Wu Zheng⁸, Xu-Xin Lai¹, Michael Dho Spangfort⁸, Yu Sun³,⁴,⁸*

¹Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.
²Occupational and Environmental Medicine, Dept. of Medical Science, University Hospital, Uppsala University, 75237 Uppsala, Sweden.
³Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
⁴Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
⁵United Nations University-International Institute for Global Health, Kuala Lumpur, Malaysia.
⁶Department of Community Health, National University of Malaysia, Kuala Lumpur, Malaysia
⁷Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
⁸Asia Pacific Research, ALK-Abello A/S, Guanzhou, China

*To whom corresponds should be addressed: Yu Sun sunyu@scau.edu.cn.

Key words: bacteria, fungi, microbial community, absolute quantity, wheezing, breathlessness, adolescence, dampness/visible mold
Abstract

Indoor microbial diversity and composition are suggested to affect the prevalence and severity of asthma, but no microbial association study has been conducted in tropical countries. In this study, we collected floor dust and environmental characteristics from 21 classrooms, and health data related to asthma symptoms from 309 students, in junior high schools in Johor Bahru, Malaysia. Bacterial and fungal composition was characterized by sequencing 16s rRNA gene and internal transcribed spacer (ITS) region, and the absolute microbial concentration was quantified by qPCR. In total, 326 bacterial and 255 fungal genera were characterized. Five bacterial \((Sphingobium, Rhodomicrobium, Shimwellia, Solirubrobacter, Pleurocapsa)\) and two fungal \((Torulaspora and Leptosphaeriaceae)\) taxa were protective for asthma severity. Two bacterial taxa, \(Izhakiella\) and \(Robinsoniella\), were positively associated with asthma severity. Several protective bacterial taxa including \(Rhodomicrobium, Shimwellia\) and \(Sphingobium\) has been reported as protective microbes in previous studies, whereas other taxa were first time reported. Environmental characteristics, such as age of building, size of textile curtain per room volume, occurrence of cockroaches, concentration of house dust mite allergens transferred from homes by the occupants, were involved in shaping the overall microbial community but not asthma-associated taxa; whereas visible dampness and mold, which did not change the overall microbial community for floor dust, decreased the concentration of protective bacteria \(Rhodomicrobium\) \((\beta=-2.86, p=0.021)\) of asthma, indicating complex interactions between microbes, environmental characteristics and asthma symptoms. Overall, this is the first indoor microbiome study to characterize the asthma-associated microbes and their environmental determinant in tropical area, promoting the understanding of microbial exposure and respiratory
health in this region.

Introduction

Asthma prevalence has been rising globally in the past few decades (Eder, Ege et al. 2006). It is suggested that the changing of life style and microbial exposure during the industrialization and urbanization process are associated with the increasing prevalence of asthma symptoms (Bello, Knight et al. 2018). Nowadays, more people live in city than rural area and they spend most of the time in the indoor environment (Klepeis, Nelson et al. 2001), thus it is necessary to identify the beneficial and risk exposure in various indoor environment. Progresses have been made in the past few years that several culture-independent microbiome studies revealing the association between indoor microbial exposure and human respiratory health. It was reported that high bacterial richness in homes of the farm area protected against childhood asthma compared with urban families (Ege, Mayer et al. 2011). Similarly, high diversity of fungal exposure is protective for childhood asthma development (Dannemiller, Mendell et al. 2014). However, there are also studies suggest that the asthma prevalence is related to the abundance of specific taxa rather than microbial richness (Kirjavainen, Karvonen et al. 2019). The number of microbiome surveys is limited and they adopted various study designs, sampling strategies and technique applications, thus the identified microbes generally varied between studies. For example, two microbiome studies used absolute quantification approaches identified only one protective or risk microbe for asthma symptoms (Dannemiller, Gent et al. 2016, Pekkanen, Valkonen et al. 2018), but one study in United States using relative abundance from 16s rRNA identified a few hundreds of potential associated microbes for inner-city children (O'Connor, Lynch et al. 2018). Furthermore, current
microbiome studies are all from middle and high latitude areas, mainly from developed countries in Europe and United States. Indoor microbial composition is geographically patterned, especially for fungi, that significant community variation can be detected across different climate, latitude and geographic regions (Amend, Seifert et al. 2010, Barberan, Dunn et al. 2015). The associated-microbes identified in middle and high latitude provides little information regarding the microbial exposure and health in the tropical area. Thus, it is necessary to conduct indoor microbiome exposure and health effect for respiratory health in this region.

There are many epidemic studies on and childhood asthma, which usually have groups as 2-3 years, 3-5 years, and older than 5 years (Castro-Rodriguez, Forno et al. 2016, de Benedictis and Attanasi 2016, Bao, Chen et al. 2017). Most of the studies focus the groups younger than 5 years, and only a small amount of studies were conducted in adolescence. Some epidemic studies identified a list of common risk factors for asthma in adolescence, including furry per sensitization, early airway obstruction, parental rhinitis and asthma, the concentration of mold and endotoxins (Cai, Hashim et al. 2011, Norback, Markowicz et al. 2014, Norback, Hashim et al. 2017). In addition, perinatal familial stress, extreme preterm birth, and low birth weight may increase asthma risk during puberty (de Benedictis and Bush 2017). There are no studies investigating indoor microbiome in junior high schools and the association with asthma symptoms.

In this study, we conducted the first microbiome survey in a tropical area to screen protective and risk microbes associated with asthma symptoms. The aim of this study is to: 1) characterize
microbiome composition in the floor dust from 21 classrooms in 7 randomly selected junior high schools in Johor Bahru, Malaysia; 2) quantitatively analyze the association between microbial taxa and prevalent of asthma; 3) identify indoor environmental characteristics influencing microbial community and asthma-associated taxa in the classrooms.

Materials and Methods

Floor dust were collected from 8 junior high schools in Johor Bahru, Malaysia, 4 classes in each school. In total 32 dust samples were collected, but 11 of them failed to amplify adequate DNA for amplicon sequencing thus only dust samples of 21 classes could be sequenced. Health data were collected by self-reported questionnaires from 15 randomly selected students in each class. The ethical permission was approved by the Medical Research and Ethics Committee of the National University of Malaysia, and all participants gave their informed consent.

Assessment of Health Data

Questions about doctor diagnosed asthma and current asthma was obtained from the European Community Respiratory Health Study (ECRHS). The questions included asthma symptoms and related information during last 12 months, including wheeze, breathlessness during wheeze, feeling of chest tightness, shortness of breath during rest, shortness of breath during exercise, woken by attack of shortness of breath, ever had asthma, attack of asthma, and current asthma medication use.

A validated asthma score including eight items were calculated to measure asthma severity (Pekkanen, Sunyer et al. 2005) were calculated, and then re-defined as 0, 1, 2, >=3. Questions
about current smoking and parental asthma/allergy were also included. Details about the questions were described in previous study (Norback, Markowicz et al. 2014).

Dust Sampling and Building Inspection

Floor dust in the classroom were collected by a 400 W vacuum cleaner with a dust sampler (ALK Abello, Copenhagen, Denmark) through a Milipore filter (pore size 6 µm). The total vacuum sampling procedure lasted 4 minutes, 2 minutes on the floor and 2 minutes on other surfaces above the floor like chairs and desks. Each classroom was divided into corridor part and window part, which were sampled separately into two samplers. The dust was then sieved in the lab, through a 0.3-mm mesh screen to fine dust, and were stored in the freezer at -80°C. In this study, dust from the two parts of the classroom were combined. Environmental characteristics, including relative humidity, indoor CO₂ and outdoor NO₂ concentration, size of curtain, concentration of house dust mite and cockroach allergen, were measured, and information about the construction year, visible dampness and mold were noted (Norback, Markowicz et al. 2014).

DNA extraction and sequencing

Total genome DNA were extracted for sequencing by Soil DNA Kit for all dust samples with bead beating and spin filter technology. A separate extraction of 10mg dust were conducted for real-time PCR. DNA quality and concentration was analyzed with a NanoDrop One spectrophotometer. Amplicons were generated by primers of v3 and v4 regions on the 16s ribosome RNA (16s rRNA) gene for bacteria, and internal transcript space 2 (ITS2) region for fungi.
Bioinformatics analysis and statistics

The forward and reverse reads were joined and assigned to samples by barcoding information, and the quality filter was set as sequence length \(\geq 200 \text{bp} \). The sequences were then assigned to operational taxonomic units (OTUs) with a sequence similarity of 97% and annotated against Silva and Unite database, respectively. Principle component analysis (PCoA) and Adonis analysis were performed to assess the influence of environmental characteristics to microbial richness and composition based on the distance matrix including UniFrac distance and Bray-Curtis analysis. Analyses were mainly conducted with the Quantitative Insights Into Microbial Ecology (QIIME, v1.8.0) platform (Caporaso, Kuczynski et al. 2010, Lawley and Tannock 2017). Two level hierarchical ordinal regression models were performed to analyze associations between microbial richness (number of observed taxonomic units, OTUs) and asthma score, and between quantity of single bacterial or fungal phylum, class, and genus (in log10 format) and asthma score. The latter analysis only included microbial taxa presented in at least five classrooms. In all analyses, gender, race, smoking, and parental asthma/allergy were included as adjustment. Parallel line assumption test were performed for the ordinal regression models, and those which violated the parallel line assumption were then calculated in a multi-nominal regression model. Association of single environmental characteristics with asthma score were assessed by hierarchical ordinal regression model. All hierarchical models and parallel line test were conducted by StataSE 15.0 (StataCorp LLC), and other statistics were conducted with IBM SPSS software 21.0 (IBM). Association between environmental characteristics and microbial richness and community variation were conducted by Adonis in R.
Results

The response rate of the questionnaire was 96% (n=462). The students were aged from 14 to 16 years, and 52% were girls. In total, 309 (66.9%) of the participants were included, consisted of Malay (43%), Chinese (42%), and Indian (15%). The detailed demographic data were described in previous studies (Norback 2014, Cai 2011). The prevalence of asthma symptoms and asthma score is presented in Table 1.

Sequencing statistics and microbial taxa

The bacterial 16s rRNA dataset was rarefied to the depth of 27,000 reads for each samples, and fungal ITS was rarefied to 35,000 reads. The rarefaction curves indicate the sequencing depth is deep enough to capture the majority of operational taxonomic units (OTUs) in the floor dust (Figure S1). In total, 895 bacterial and 1,512 fungal OTUs were obtained, and distinct distribution patterns were observed. For bacteria, 36.8% of bacterial OTUs were presented in all samples, whereas only 10.3% of fungal OTUs were presented in all samples and approximately half of the OTUs were presented in ten or less samples (Figure 1A and 1B). The result suggests that many fungal taxa are presented in a few classrooms and are more locally distributed compared to bacterial taxa.

The major phylum included Proteobacteria (35.0±7.3%, mean and standard deviation), Actinobacteria (21.2±6.3%), Cyanobacteria (17.6±7.3%) and Firmicutes (17.3±8.6%; Figure 1C
and Table S1). The top genus mainly included environmental taxa such as *Bacillus* (4.2±5.8%), *Paracoccus* (3.2±1.2%), *Sphingomonas* (2.8±0.9%) and *Saccharopolyspora* (2.5±2.0%), and human skin taxa *Staphylococcus* (3.4±2.5%; Figure 1D, S2 and Table S2). The fungal phylum was dominated by Ascomycota (72.5±11.6%), followed by Basidiomycota (17.8±8.9%; Figure 1E). The top fungal genus included common mold taxa such as *Aspergillus* (16.6±7.9%), *Penicillium* (10.2±15.7%) and *Cladosporium* (7.8±8.2%), as well as outdoor environmental fungi such as *Hortaea* (8.0±7.5%), *Wallernia* (6.6±9.2%) and *Emericella* (4.1±9.6%) (Figure 1F, S3 and Table S3 and S4).

Environmental characteristics associated with overall microbial richness/composition

In this study, we collected eight environmental characteristics and tested their association with overall microbial richness and composition (Table S5 and S6). High concentration of house dust mite and cockroach allergens and higher textile factor (size of textile curtain per room volume) reduced the number of fungal observed OTUs (Adonis, p < 0.05; Table S5). The environmental characteristics had no associations with bacterial richness. Bacterial community composition was structured by the concentration of house dust mite allergens and textile factor in the classroom; fungal community was structured by age of building, concentration of house dust mite and cockroach allergens (Adonis, p < 0.05; Table 2). The results indicating the importance of textile material, occurrence of cockroaches in the indoor environment, and the concentration of house dust mite allergens transferred from homes in shaping the overall microbial composition. The role of textile factor in structuring microbial community was also illustrated by the principle
coordinate analysis (PCoA) (Figure 1G and 1H). The bacterial composition was deviating along the first axis for classrooms with large or small curtain size per room volume.

Identifying protective and risk microbes for asthma

The prevalence of asthma symptoms is presented in Table 1. Asthma score was calculated based on all eight symptoms to represent the severity of asthma. There were no associations between the number of OTUs within the major phylum and class and asthma severity, suggesting microbial richness in the indoor environment was not significantly affecting asthma symptoms (Table S6). Although Proteobacteria (95% CI 0.92-1.01, p=0.09) and Cyanobacteria (0.95-1.0, p=0.07) showed marginally protective associations with the asthma score.

We screened associations between absolute bacterial and fungal quantity for genus and asthma score with a hierarchical ordinal regression model. To be conservative, p value <0.01 was set as cutoff to screen associated microbes. Six bacterial genera were negatively associated with asthma score (p<0.01), including Sphingobium, Rhodomicrobium and Shinwellia in Proteobacteria, Solirubrobacter in Actinobacteria, Pleurocapsa in Cyanobacteria, and JGI_0001001_H03 in Acidobacteria. Two genera, including Izhakiella in Proteobacteria and Robinsoniella in Firmicutes were positively associated with asthma score (Table 3). Two fungal genera in Ascomycota phylum were negatively associated with asthma score (p<0.01) (Table 3), including Torulaspora, and an unidentified genus in Leptosphaeriaceae family. The model for Robinsoniella and Leptosphaeriaceae violated the parallel line test (p<0.01), and the associations
were then assessed by multi-nominal regression. Associations were observed between *Robinsoniella* and asthma score 0 to 1 (RRR=1.34, p<0.0001) and 0 to 2 (RRR=1.39, p=0.006), and between Leptosphaeriaceae and asthma score 0 to 1 (RRR=0.51, p=0.0001).

Recent studies claimed that absolute abundance approaches for microbial quantification should be used to link correct microbes to phenotypes and quantitative features, and the relative abundance approach can produce some erroneous identification and false positive results (Dannemiller, Mendell et al. 2014, Vandeputte, Kathagen et al. 2017). However, very few studies compare the absolute abundance with relative abundance in indoor microbiome survey studies. In addition to absolute abundance, we also conducted the association analysis between microbial relative abundance and asthma score with the same regression model, and found large variations between the two approaches. Among the eight associated microbes identified by absolute quantification, only three were identified by the relative abundance approach. Two additional genera, including *Wolbachia* and *Nocardiopsis*, were identified by the relative approach (Table S7). Similarly, only one fungal genus was identified by the relative abundance (Table S8).

Environmental characteristics associated with protective microbes

We investigated the associations between the environmental characteristics and the protective or risk microbes of asthma, and found that although the indoor dampness/visible mold was not a significant characteristic changing the overall indoor microbial composition for settled dust, it decreased the concentration of protective microbes, including *Rhodomicrobium* (β=-2.86,
p=0.021) and *Solirubrobacter* (β=-1.62, p=0.07). Thus, high indoor dampness can not only increase the prevalence of asthma by releasing submicron-sized cellular fragments and Microbial Volatile Organic Compounds (MVOCs) (Nevalainen, Taubel et al. 2015), it could also affect the respiratory health of occupants by suppressing the abundance of protective bacteria of asthma. To our knowledge, this is a new finding.

Discussion

We identified 326 bacterial and 255 fungal genera from the indoor floor dust in seven junior high schools of Johor Bahru, Malaysia. Eight microbial taxa were quantitatively negatively associated with asthma severity, and two microbial taxa were positively associated. Visible indoor dampness and mold were not involved in shaping the overall microbial composition, but were negatively associated with the concentration of protective bacteria.

Advantages and limitations

This is the first study to investigate the association between bacterial and fungal taxa and asthma symptoms in a tropical region. The study applied culture-free high-throughput sequencing and quantitative PCR to characterize the absolute concentration of microbial exposure in the classroom environment for adolescence in junior high schools. We systematically investigated the correlation between microbial exposure, environmental characteristics and asthma symptoms, revealing the complex relationship between these factors. There are also some limitations in our study. We used amplicon sequencing to characterize microbial composition in settle dust. Due to
the technical limitation of amplicon sequencing, we can only identify the microbes down to the genus level, rather than more taxonomically resolved species and strain level. It is common that species within a genus or even strains from the same species could have different virulent factors thus posing different health effect for human. Thus, more taxonomically resolved technique, such as shotgun metagenomics, will improve the identification accuracy for future indoor microbiome survey. We identified several genus quantitatively associated with an asthma score, but due to the limitation of the cross-sectional study design, we can only report the association instead of a conclusion of causal effect. Further longitudinal studies are needed to disentangle the causal effect and temporal dynamic of the indoor microbiome.

In our study, we observed six bacterial genera protectively associated with asthma score (p<0.01) among students, including *Sphingobium*, *Rhodomicrobium*, *Shimwellia* in Proteobacteria, *Solirubrobacter* in Actinobacteria, *Pleurocapsa* in Cyanobacteria, and JGI_0001001_H03 in Acidobacteria. Except JGI_0001001_H03. The protective effect of these taxa has been previously reported in a microbiome study from farm and non-farm rural homes in Finland and Germany. In our study, the relative abundance of family Hyphomicrobiaceae (including *Rhodomicrobium*), Enterobacteriaceae (including *Shimwellia*), Sphigomonadaceae (including *Sphingobium*), the class Thermoleophilia (including *Solirubrobacter*), and the phylum Cyanobacteria (including *Pleurocapsa*) were higher in the farm home environment, which had protective effect for asthma symptoms (Kirjavainen 2019). The consistent result in tropical and European countries indicates a possible universal protective effect of these taxa across large geographic regions and in various climate conditions.
The other associated microbes identified in this study were not reported to be associated with respiratory health in previous studies. It is possible that the presence of these microbes is geographically restricted in tropical areas. *Izhakiella* is a newly identified genus, and recently isolated from mired bug and Australian desert soil (Ji, Tang et al. 2017). The genus of *Robinsoniella* belongs the class of Clostridia. We found no research articles about this genus, but many other taxa in Clostridia class associated with asthma and human health. For example, *Clostridium cluster XI* in home environment was shown to be protectively associated with asthma prevalence among adults (Pekkanen, Valkonen 2018). Several families in Clostridia, including Phascolarctobacterium, Mogibacterium and Proteiniclasticum, were more abundant in rural farm homes, where there were lower asthma prevalence and healthier indoor microbiomes as compared to non-farm rural homes (Kirjavainen, 2019). In addition, *Clostridium butyricum* was suggested to be a potential therapeutic microbe combined with specific immunotherapy for asthma treatment (Clostridium butyricum in combination with specific immunotherapy converts antigen-specific B cells to regulatory B cells in asthmatic patients). However, harmful effect of Clostridia taxa has also been reported, such as *Clostridium difficile*, which can cause serious diarrhea to life-threatening colitis (Borali and De Giacomo 2016, Smits, Lyras et al. 2016).

Previous culture-dependent studies have reported *Aspergillus, Penicillium, Alternaria* and Cladosporium as risk fungal taxa for asthma symptoms (Sharpe, Bearman et al. 2015). However, very few studies applies culture-independent approaches to systematically screen fungal
microbes studies for asthma symptoms. Dannemiller et al. identified *Volutella* was positively and *Kondoa* was protectively associated with asthma severity among atopic and nonatopic children in the Northeast of United States (Dannemiller, Gent et al. 2016). In this study, we identified one protective fungi taxa, *Torulaspora*. *Torulaspora delbrueckii* has been shown to have probiotic potential that can be used as supplement in food production to regulate intestinal response and promote human health (Zivkovic, Cadez et al. 2015). The family of Leptosphaeriaceae has not been previously reported to be associated with human health.

Among the building characteristics related to asthma, only indoor dampness/visible mold were associated with genus related to asthma. Indoor dampness/visible mold was negatively associated with bacterial genera protective to asthma severity, *Solirubrobacter* and *Rhodomicrobium*. This is new to our knowledge. Dampness and mold have been proved as risk factors for respiratory health, including asthma, for a few years (Quansah, Jaakkola et al. 2012, Castro-Rodriguez, Forno et al. 2016). A recent study has reported that indoor dampness and mold increase onset of asthma symptoms and reduce remission from asthma among adults (Wang, Pindus et al. 2019).

Previous studies on dampness and mold in buildings established the direct association between mold species, fungal cellular fragment and MVOCs and related airway inflammation (Nevalainen, Taubel et al. 2015, An and Yamamoto 2016, Zhang, Reponen et al. 2016). Our results suggest that, despite the direct harmful effect from fungi, mold growth may suppress the concentration of beneficial bacteria that are protective for asthma symptoms. It has been reported that in floor dust, the absolute concentration of most mold taxa, including *Aspergillus*, *Penicillium* and *Alternaria*, keeps increasing with elevated humidity, whereas the concentration
of certain bacterial taxa, including Pasteurellaceae, *Prevotella* and *Cytophaga*, decreases with elevated humidity (Dannemiller, Weschler et al. 2017). However, the dynamics of fungal and bacterial growth is a complex issue, the detailed interaction among microbes are still unclear. As the majority of fungal and bacterial species are non-culturable, new study designs such as shotgun metagenomics sequencing strategy combined with in silico growth rate analysis, such as tools like GRiD (Emiola and Oh 2018), holds promising solution for the issue.

In our study, we used absolute taxonomic quantities to assess the associations with asthma score, while some previous studies used relative abundance (O'Connor, Lynch et al. 2018, Kirjavainen, Karvonen et al. 2019). An issue of relative abundance is that the abundance change of one of the taxa will lead to abundance changes of all other taxa, which may lead to over-identification or mis-identification. O’Connor et al. have identified 201 risk and 171 protective microbes from household dust associated with prevalent asthma among children (O'Connor, Lynch et al. 2018). Among these microbes, some common human skin bacteria have been identified as risky microbes for childhood asthma, including *Staphylococcus, Corynebacterium, Haemophilus* and *Sphingomonas*, but they are unlikely to be risk agents since these taxa are universally present around human occupants. One study on quantification profiling of gut microbiome has reported that absolute abundance of microbes significantly differ from the rank by relative abundance, which affects the result of association analysis for phenotypes (Vandeputte, Kathagen et al. 2017).

In this study, only 3 bacteria identified by relative approach were consistent with absolute approach, indicating the discrepancy between the two approaches. From our results, we observed that most the identified taxa related to health were minor taxa with a relative abundance <0.2%
in all samples. The relative abundance of these minor microbes can be impacted by the variation of dominant microbes, and their concentration is more appropriately presented by absolute approach.

Conclusion

In this study, we reported a list of minor bacterial and fungal taxa that were associated with asthma severity in classrooms in junior high school students in Johor Bahru, Malaysia. Environmental characteristics associated with overall microbial community were not associated with the protective or risk microbes, but indoor dampness/ visible mold decreased the quantity of bacteria protective to asthma. This is the first study to reveal the complex interaction between microbiome, environmental characteristics and asthma symptoms in a tropical area. The study contributes to new knowledge on how to promote the establishment of a healthy building microbiome in this region.
Table 1. Prevalence of asthma symptoms and asthma score

Symptoms	Number (n=309)	Prevalence (%)
Wheeze and breathlessness during wheeze	20	6.56
Feeling of chest tight	16	5.18
Attack of shortness of breath during rest	28	9.1
Attack of shortness of breath during exercise	114	36.9
Woken by attack of shortness of breath	23	7.4
Ever asthma	39	12.6
Attack of asthma	7	2.3
Current medication for asthma	11	3.6

Asthma score

Score	Number	Prevalence (%)
0	148	47.9
1	101	32.7
2	28	9.1
>=3	32	10.3

Table 2. Association between outdoor/indoor characteristics and microbial community variation based on weighted unifrac and Bray-Curtis distance (beta diversity). P value was calculated based on 10,000 permutation bivariate Adonis analysis.

Characteristic	Bacteria	Fungi		
	R²	p	R²	p
Relative humidity	0.05	0.39	0.06	0.25
Indoor CO₂	0.02	0	0.02	.99
Outdoor NO₂	0.09	0.06	0.04	0.6
Building age	0.06	0.29	0.1	0.03
Visible indoor dampness/mold	0.03	0.84	0.03	0.81
Textile curtain factor	0.16	0.005	0.09	0.06
Concentration of house dust mite allergen in dust	0.2	0.004	0.15	0.009
---	-----	-------	------	-------
Concentration of cockroach allergen in dust	0.05	0.4	0.17	0.04
Table 3. Microbial taxa associated with asthma severity status in junior high school by ordinal regression analysis (p<0.01). Taxonomic information of the associated microbes were listed.

Kingdom	Phylum	Class	Genus	GM, GSD (copies / g dust)	Range of relative abundance (%)	Number of classrooms with presence (N=21)	OR (95% CI)	p value
Bacteria	Proteobacteria	Alphaproteobacteria	Sphingobium	156, 1.4	0.02-0.15	21	0.368 (0.187-0.724)	0.004
			Rhodomicrobium	53, 7.5	0.01-0.13	17	0.837 (0.749-0.939)	0.002
		Gammaproteobacteria	Shimwellia	167, 2.0	0.01-1.65	21	0.560 (0.385-0.813)	0.002
			Izhakiella	3, 8.0	0.01-0.13	5	1.187 (1.051-1.342)	0.006
	Actinobacteria	Thermoleophilia	Solirubrobacter	66, 4.1	0.01-0.04	19	0.787 (0.672-0.923)	0.003
	Cyanobacteria	Oxyphotobacteria	Pleurocapsa	140, 1.6	0.01-0.26	21	0.465 (0.275-0.788)	0.005
	Firmicutes	Clostridia	Robinsoniella	17, 9.4	0.01-0.11	13	1.182 (1.054-1.326)	0.004
Fungi	Ascomycota	Saccharomycetes	Torulaspora	2, 2.2	0.01	7	0.643 (0.476-0.870)	0.004
		Dothideomycetes	f_Leptosphaeriaceae	2, 2.5	0.01-0.12	7	0.672 (0.505-0.893)	0.006

Significance level: p<0.01.

Sex, race, smoking, and parental asthma or allergy were adjusted for in the association analyses.
References

Amend, A. S., K. A. Seifert, R. Samson and T. D. Bruns (2010). "Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics." Proc Natl Acad Sci U S A 107(31): 13748-13753.

An, C. and N. Yamamoto (2016). "Fungal compositions and diversities on indoor surfaces with visible mold growths in residential buildings in the Seoul Capital Area of South Korea." Indoor Air 26(5): 714-723.

Bao, Y., Z. Chen, E. Liu, L. Xiang, D. Zhao and J. Hong (2017). "Risk Factors in Preschool Children for Predicting Asthma During the Preschool Age and the Early School Age: a Systematic Review and Meta-Analysis." Curr Allergy Asthma Rep 17(12): 85.

Barberan, A., R. R. Dunn, B. J. Reich, K. Pacifici, E. B. Laber, H. L. Menninger, J. M. Morton, J. B. Henley, J. W. Leff, S. L. Miller and N. Fierer (2015). "The ecology of microscopic life in household dust." Proc Biol Sci 282(1814).

Bello, M. G. D., R. Knight, J. A. Gilbert and M. J. Blaser (2018). "Preserving microbial diversity." Science 362(6410): 33-34.

Borali, E. and C. De Giacomo (2016). "Clostridium Difficile Infection in Children: A Review." J Pediatr Gastroenterol Nutr 63(6): e130-e140.

Cai, G. H., J. H. Hashim, Z. Hashim, F. Ali, E. Bloom, L. Larsson, E. Lampa and D. Norback (2011). "Fungal DNA, allergens, mycotoxins and associations with asthmatic symptoms among pupils in schools from Johor Bahru, Malaysia." Pediatr Allergy Immunol 22(3): 290-297.

Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N.
Fierer, A. G. Pena, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld and R. Knight (2010). "QIIME allows analysis of high-throughput community sequencing data." Nat Methods 7(5): 335-336.

Castro-Rodriguez, J. A., E. Forno, C. E. Rodriguez-Martinez and J. C. Celedon (2016). "Risk and Protective Factors for Childhood Asthma: What Is the Evidence?" J Allergy Clin Immunol Pract 4(6): 1111-1122.

Dannemiller, K. C., J. F. Gent, B. P. Leaderer and J. Peccia (2016). "Indoor microbial communities: Influence on asthma severity in atopic and nonatopic children." J Allergy Clin Immunol 138(1): 76-83.e71.

Dannemiller, K. C., M. J. Mendell, J. M. Macher, K. Kumagai, A. Bradman, N. Holland, K. Harley, B. Eskenazi and J. Peccia (2014). "Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development." Indoor Air 24(3): 236-247.

Dannemiller, K. C., C. J. Weschler and J. Peccia (2017). "Fungal and bacterial growth in floor dust at elevated relative humidity levels." Indoor Air 27(2): 354-363.

de Benedictis, D. and A. Bush (2017). "Asthma in adolescence: Is there any news?" Pediatr Pulmonol 52(1): 129-138.

de Benedictis, F. M. and M. Attanasi (2016). "Asthma in childhood." Eur Respir Rev 25(139): 41-47.

Eder, W., M. J. Ege and E. von Mutius (2006). "The asthma epidemic." N Engl J Med 355(21):
Ege, M. J., M. Mayer, A. C. Normand, J. Genuneit, W. O. Cookson, C. Braun-Fahrlander, D. Heederik, R. Piarroux and E. von Mutius (2011). "Exposure to environmental microorganisms and childhood asthma." N Engl J Med 364(8): 701-709.

Emiola, A. and J. Oh (2018). "High throughput in situ metagenomic measurement of bacterial replication at ultra-low sequencing coverage." Nature Communications 9(1): 4956.

Ji, M., S. Tang and B. C. Ferrari (2017). "Izhakiella australiensis sp. nov. isolated from an Australian desert soil." Int J Syst Evol Microbiol 67(11): 4317-4322.

Kirjavainen, P. V., A. M. Karvonen, R. I. Adams, M. Taubel, M. Roponen, P. Tuoresmaki, G. Loss, B. Jayaprakash, M. Depner, M. J. Ege, H. Renz, P. I. Pfefferle, B. Schaub, R. Lauener, A. Hyvarinen, R. Knight, D. J. J. Heederik, E. von Mutius and J. Pekkanen (2019). "Farm-like indoor microbiota in non-farm homes protects children from asthma development." Nat Med 25(7): 1089-1095.

Klepeis, N. E., W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern and W. H. Engelmann (2001). "The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants." J Expo Anal Environ Epidemiol 11(3): 231-252.

Lawley, B. and G. W. Tannock (2017). "Analysis of 16S rRNA Gene Amplicon Sequences Using the QIIME Software Package." Methods Mol Biol 1537: 153-163.

Nevalainen, A., M. Taubel and A. Hyvarinen (2015). "Indoor fungi: companions and contaminants." Indoor Air 25(2): 125-156.

Norback, D., J. H. Hashim, Z. Hashim, G. H. Cai, V. Sooria, S. A. Ismail and G. Wieslander
(2017). "Respiratory symptoms and fractional exhaled nitric oxide (FeNO) among students in Penang, Malaysia in relation to signs of dampness at school and fungal DNA in school dust." *Sci Total Environ* **577**: 148-154.

Norback, D., P. Markowicz, G. H. Cai, Z. Hashim, F. Ali, Y. W. Zheng, X. X. Lai, M. D. Spangfort, L. Larsson and J. H. Hashim (2014). "Endotoxin, ergosterol, fungal DNA and allergens in dust from schools in Johor Bahru, Malaysia- associations with asthma and respiratory infections in pupils." *PLoS One* **9**(2): e88303.

O'Connor, G. T., S. V. Lynch, G. R. Bloomberg, M. Kattan, R. A. Wood, P. J. Gergen, K. F. Jaffee, A. Calatroni, L. B. Bacharier, A. Beigelman, M. T. Sandel, C. C. Johnson, A. Faruqi, C. Santee, K. E. Fujimura, D. Fadrosh, H. Boushey, C. M. Visness and J. E. Gern (2018). "Early-life home environment and risk of asthma among inner-city children." *J Allergy Clin Immunol* **141**(4): 1468-1475.

Pekkanen, J., J. Sunyer, J. M. Anto and P. Burney (2005). "Operational definitions of asthma in studies on its aetiology." *Eur Respir J* **26**(1): 28-35.

Pekkanen, J., M. Valkonen, M. Täubel, C. Tischer, H. Leppänen, P. M. Kärkkäinen, H. Rintala, J.-P. Zock, L. Casas, N. Probst-Hensch, B. Forsberg, M. Holm, C. Janson, I. Pin, T. Gislason, D. Jarvis, J. Heinrich and A. Hyvärinen (2018). "Indoor bacteria and asthma in adults: a multicentre case–control study within ECRHS II." *European Respiratory Journal* **51**(2): 1701241.

Quansah, R., M. S. Jaakkola, T. T. Hugg, S. A. Heikkinen and J. J. Jaakkola (2012). "Residential dampness and molds and the risk of developing asthma: a systematic review and meta-analysis." *PLoS One* **7**(11): e47526.
Sharpe, R. A., N. Bearman, C. R. Thornton, K. Husk and N. J. Osborne (2015). "Indoor fungal diversity and asthma: a meta-analysis and systematic review of risk factors." J Allergy Clin Immunol **135**(1): 110-122.

Smits, W. K., D. Lyras, D. B. Lacy, M. H. Wilcox and E. J. Kuijper (2016). "Clostridium difficile infection." Nat Rev Dis Primers **2**: 16020.

Vandeputte, D., G. Kathagen, K. D'Hoe, S. Vieira-Silva, M. Valles-Colomer, J. Sabino, J. Wang, R. Y. Tito, L. De Commer, Y. Darzi, S. Vermeire, G. Falony and J. Raes (2017). "Quantitative microbiome profiling links gut community variation to microbial load." Nature **551**(7681): 507-511.

Wang, J., M. Pindus, C. Janson, T. Sigsgaard, J. L. Kim, M. Holm, J. Sommar, H. Orru, T. Gislason, A. Johannessen, R. J. Bertelsen and D. Norback (2019). "Dampness, mould, onset and remission of adult respiratory symptoms, asthma and rhinitis." Eur Respir J **53**(5).

Zhang, Z., T. Reponen and G. K. Hershey (2016). "Fungal Exposure and Asthma: IgE and Non-IgE-Mediated Mechanisms." Curr Allergy Asthma Rep **16**(12): 86.

Zivkovic, M., N. Cadez, K. Uroic, M. Miljkovic, M. Tolnacki, P. Dousova, B. Kos, J. Suskovic, P. Raspor, L. Topisirovic and N. Golic (2015). "Evaluation of probiotic potential of yeasts isolated from traditional cheeses manufactured in Serbia and Croatia." J Intercult Ethnopharmacol **4**(1): 12-18.
Figure 1. (A) Bacterial OTUs distribution. (B) Fungal OTUs distribution. (C) The major phylum of bacteria. (D) The top genus of bacteria. (E) The major phylum of fungi. (F) The top genus of fungi. (G) The principle coordinate analysis (PCoA) of bacteria structured by textile factor. (H) The principle coordinate analysis (PCoA) of fungi structured by textile factor.
Figure S1. The rarefaction curves.

Figure S2. Bar of genus of bacteria in 21 samples.
Figure S3. Bar of genus of fungi in 21 samples.
Taxon	average abundance	standard deviation
Proteobacteria	35.03524	7.285408
Actinobacteria	21.95524	6.337985
Cyanobacteria	17.62381	7.344191
Firmicutes	17.32333	8.616899
Bacteroidetes	4.511429	3.88505
Deinococcus-Thermus	1.494762	0.614318
Acidobacteria	0.760952	0.335915
Chloroflexi	0.589048	0.292522
Fusobacteria	0.162381	0.350598
Gemmatimonadetes	0.123333	0.106176
Armatimonadetes	0.11619	0.064224
Unclassified	0.107143	0.097373
Patescibacteria	0.104286	0.346635
Verrucomicrobia	0.052381	0.075359
Epsilonbacteraeota	0.03381	0.130172
WPS-2	0.00381	0.004976
Spirochaetes	0.002381	0.007003
	3.550951	
Taxon	average abundance	standard deviation
--	-------------------	--------------------
Unclassified	20.06381	7.264851
Bacillus	4.220476	5.811346
Staphylococcus	3.371429	2.545251
Paracoccus	3.131905	1.206837
Sphingomonas	2.760476	0.911359
Saccharopolyspora	2.5	2.010614
Acinetobacter	2.21	1.118356
Enterobacter	2.209048	3.850878
Lactobacillus	1.956667	5.736908
f__Chroococcidiopsaceae_Unclassified	1.909524	1.041088
Corynebacterium_1	1.77381	0.550141
Bacteroides	1.670952	2.302336
Rubellimicrobium	1.654286	0.73516
Pantoea	1.56381	1.778096
Streptococcus	1.45	1.072632
Kocuria	1.43	0.901604
Brevibacterium	1.419048	0.959041
Methylobacterium	1.32619	0.571222
Rubrobacter	1.116667	0.969924
Haemophilus	1.013333	2.024256
Pseudonocardia	0.963333	0.824902
Deinococcus	0.949524	0.585025
Chroococcidiops_SAG_2023	0.938571	0.586313
Enterococcus	0.921429	1.990752
Micrococcus	0.819048	0.363619
Calothrix_PCC-6303	0.808571	0.810138
Pseudomonas	0.801429	0.266407
Massilia	0.76381	0.57256
Klebsiella	0.747143	0.932063
Nephrolepis_biserrata_var._furcans	0.720476	0.498944
Brachybacterium	0.709524	0.362967
Skermanella	0.706667	0.392012
Parabacteroides	0.661905	0.868617
Janibacter	0.644286	0.369697
Roseomonas	0.640476	0.337868
Actinomycetospora	0.589524	0.256622
Escherichia-Shigella	0.575714	0.409836
Truepera	0.544286	0.183618
MN_122.2a	0.54381	0.28521
Geodermatophilus	0.53381	0.297497
Curtobacterium	0.508095	0.312404
Scytonema_UCFS19	0.491429	0.683339
Arthrobacter	0.484762	0.735484
Chroococcidiops_PCC_7203	0.461429	0.277043
Nocardioides	0.457143	0.241974
Leptolyngbya_PCC-6306	0.455238	0.246427
Nesterenkonia	0.435714	0.371451
CENA359	0.431905	0.28326
Marmoricola	0.428571	0.354363
Clostridium_sensu_stricto_1	0.420952	0.264611
Brevundimonas	0.407619	0.162447
Blastococcus	0.406667	0.251044
Species	Score1	Score2
--	--------	--------
Enhydrobacter	0.392857	0.216128
Exiguobacterium	0.374286	0.331927
1174-901-12	0.369048	0.152935
Scytonema_VB-61278	0.367143	0.270576
Gordonia	0.359048	0.243493
Hymenobacter	0.356667	0.193864
Dapisostemonum_CCIBt_3536	0.34619	0.338681
Lachnoclostridium	0.324286	0.617985
Pseudokineococcus	0.322381	0.325775
Allorhizobium-Neorhizobium-Parahiz	0.291905	0.665016
Neisseria	0.253333	0.262723
Ignatzschineria	0.249524	0.842659
Weissella	0.244286	0.079093
Kurthia	0.241429	0.669659
Romboutsia	0.231429	0.346342
Glutamicibacter	0.225238	0.25901
Bryum_argenteum_var._argenteum	0.221905	0.277685
Scytonema UTEX_2349	0.217619	0.277685
Rotthia	0.205238	0.159738
Mastigocladopsis_PCC-10914	0.20381	0.179902
Shimwellia	0.203333	0.441784
Quadrisphaera	0.202381	0.107931
Aeromonas	0.196667	0.170421
Novosphingobium	0.193333	0.092376
f__Blastocatellaceae_Unclassified	0.193333	0.11547
Bryobacter	0.191905	0.150686
Desulfovibrio	0.189524	0.384233
Qipengyuania	0.187143	0.122969
Odoribacter	0.181429	0.281377
Spirosonoma	0.179048	0.130073
Scytonema_PCC-7110	0.175714	0.135262
Serratia	0.169048	0.230432
Barrientiosimonas	0.170476	0.1059
Aliterella_CENA595	0.169048	0.105826
Gardnerella	0.167143	0.507909
Chryseobacterium	0.167619	0.164375
Catellicoccus	0.164286	0.28067
Lactococcus	0.163333	0.189719
Cellulosimicrobium	0.159524	0.105758
endosymbionts8	0.152857	0.149704
Kosakonia	0.150476	0.278253
Actinomyces	0.147143	0.231951
Micromonospora	0.147619	0.124535
Alishewanella	0.145714	0.097753
Jeotgalicoccus	0.145714	0.258777
Moraxella	0.144286	0.322127
f__Corynebacteriaceae_Unclassified	0.145238	0.483111
Megamonas	0.144286	0.386815
f__Ilumatobacteriaceae_Unclassified	0.143333	0.088788
Organism	0.06619	0.057138
--	---------	----------
Granulicatella	0.06619	0.057138
Comamonas	0.065238	0.047919
Dermacoccus	0.064286	0.036135
Sandaracinobacter	0.064286	0.043078
Alicococcus	0.063333	0.037327
Kineococcus	0.063333	0.043397
Eggerthella	0.061429	0.062951
Aetokthonos_AEL04	0.061905	0.070825
Candidatus_Alysiosphaera	0.06	0.036878
Streptomyces	0.059524	0.039176
Lysinibacillus	0.056667	0.084222
f__Coleofasciculaceae_Unclassified	0.057143	0.079633
Adhaeribacter	0.055714	0.218942
Bryocella	0.054762	0.026574
f__Archangiaceae_Unclassified	0.052381	0.062921
Pleurocapsa_PCC-7327	0.053333	0.053041
Rheinheimera	0.053333	0.033066
Akkermansia	0.052381	0.075359
Haloechinothrix	0.051905	0.171977
Abiotrophia	0.05	0.161245
[Ruminococcus]_torques_group	0.049048	0.067743
Saccharibacillus	0.05	0.094128
Flavisolibacter	0.049048	0.041941
Fictibacillus	0.049048	0.024475
Craurococcus	0.048095	0.052021
Altererythrobacter	0.048571	0.035112
Marinilactibacillus	0.04619	0.164118
Aerococcus	0.04619	0.048423
Sphingobacterium	0.047143	0.045841
Belnapia	0.047619	0.016705
Rikenella	0.045238	0.074607
Chakia_8	0.046667	0.094675
Bifidobacterium	0.045238	0.066379
Shewanella	0.04619	0.038533
Eubacterium	0.04381	0.058007
Listeria	0.042381	0.124776
Actinoplanes	0.042381	0.038588
[Ruminococcus]_gnavus_group	0.041429	0.091939
Vittaria_lineata__[shoestring_fern]	0.041905	0.035443
Gemella	0.041905	0.041787
Rhodomicrobium	0.04	0.043818
Dialister	0.040476	0.180928
Achromobacter	0.042381	0.027185
f__Xanthobacteraceae_Unclassified	0.040476	0.043529
Defluviicoccus	0.039048	0.027911
f__A4b_Unclassified	0.036667	0.055438
Savagea	0.036667	0.112798
Lawsonella	0.03619	0.028368
Leptolyngbya_VRUC_135	0.035714	0.039316
Devosia	0.03619	0.026547
Roseburia	0.03619	0.028892
Campylobacter	0.03381	0.130172
Microcoleus_SAG_1449-1a	0.034286	0.059209
Peptoniphilus	0.033333	0.06491
Species	w0	w1
--	-----	-----
Wohlfahrtimonas	0.033333	0.106317
Finegoldia	0.034286	0.030095
Nocardiopsis	0.033333	0.053417
Paenibacillus	0.033333	0.054985
f__Nostocaceae_Unclassified	0.031905	0.039322
Cedecea	0.032381	0.035726
Sphingoaurantiacus	0.031905	0.028039
Vibrio	0.029524	0.051911
Turicella	0.03	0.084083
[Eubacterium]_fissicaten_group	0.029048	0.04979
f__Ambiguous_taxa_Unclassified	0.029524	0.021325
Thauera	0.028095	0.05335
Megaphaera	0.027143	0.057284
Nakamurella	0.027143	0.013836
Pseudoxanthomonas	0.026667	0.01278
Luteimonas	0.02619	0.020119
Antricoccus	0.02619	0.018835
Microcoleus_Es-Yyy1400	0.024286	0.005259
f__Caldilineaceae_Unclassified	0.024762	0.033559
YB-42	0.02381	0.028719
Segniliparss	0.02381	0.010684
Bilophila	0.024286	0.003641
Anaerostipes	0.02381	0.004544
Alistipes	0.02381	0.0051524
Cloacibacterium	0.024286	0.021112
Plesiomonas	0.022381	0.008628
Acidothermus	0.021905	0.0038421
Cyanothece_PCC-7424	0.021905	0.002542
Tatumella	0.021905	0.002205
Porphyrobacter	0.020952	0.0019211
f__Euzetbaceae_Unclassified	0.02	0.041231
Vagococcus	0.019048	0.0038458
Microseira_Carmichael-Alabama	0.019048	0.0022114
Solirubrobacter	0.019048	0.0013002
Granulicella	0.018571	0.0014243
f__Rhizobiaceae_Unclassified	0.017619	0.0014341
EcFYyy–200	0.019048	0.002427
Solibacillus	0.016667	0.0031198
Muclaginibacter	0.016667	0.0037594
Blastocatella	0.016667	0.0038123
Ochrobactrum	0.016667	0.0020083
Mesorhizobium	0.015238	0.0016619
[Eubacterium]_coprostanoligenes_group	0.015714	0.001886
Robinsoniella	0.014762	0.0024211
GCA-900066225	0.014762	0.002272
Terrisporobacter	0.014762	0.0019905
Flavobacterium	0.01381	0.0061031
Anaerobiospirillum	0.013333	0.005209
f__uncultured_Chloroflexi_bacterium	0.012857	0.007838
Izhakiella	0.012381	0.0031608
Sporosarcina	0.011905	0.0015368
JSC-12	0.012381	0.00148
Lysobacter	0.012381	0.0012611
Rubritepida	0.010476	0.009735
Rubrivirga 0.01 0.01		
Actinocatenispora 0.010476 0.048008		
metagenome 0.009524 0.010713		
Larkinella 0.009524 0.09207		
Ruminococcaceae_UCG-014 0.009524 0.030574		
f__Coriobacteriales_Incertae_Sedis_ 0.008095 0.026762		
Wilmottia_Ant-Ph58 0.008095 0.017782		
Acidiphilium 0.009524 0.09735		
Johnsonella 0.008095 0.030433		
JGI_0001001-H03 0.00619 0.00669		
Phascolarctobacterium 0.006677 0.011972		
Limnobacter 0.006677 0.009661		
Candidatus_Chloroploca 0.00619 0.015961		
Rudanella 0.005714 0.010757		
f__Acetobacteraceae_Unclassified 0.005714 0.008701		
f__uncultured_soil_bacterium_Unclassified 0.004762 0.009284		
Jan-59 0.004762 0.006016		
f__Family_XIII_Unclassified 0.005238 0.021822		
Alloiococcus 0.004762 0.014359		
DTU089 0.004762 0.008136		
Nubsella 0.005238 0.006016		
Garicola 0.00381 0.01244		
Cupriavidus 0.003333 0.006583		
Labrys 0.002857 0.007171		
Candidatus_Solibacter 0.002857 0.004629		
f__Leptolyngbyaceae_Unclassified 0.003333 0.005774		
Xylochloris_irregularis 0.002857 0.004629		
Verticia 0.002857 0.004629		
F0332 0.002857 0.011019		
Corynebacterium 0.002857 0.005606		
Myroides 0.002381 0.007003		
Luedemannella 0.002857 0.006437		
Xanthobacter 0.002381 0.004364		
Murinocardiopsis 0.002857 0.009024		
Chromobacterium 0.002381 0.010911		
Rickettsiella 0.002381 0.00539		
FFCH7168 0.001905 0.004024		
Oribacterium 0.001429 0.003586		
Treponema 0.002381 0.007003		
f__Sandaracinaeae_Unclassified 0.001905 0.006796		
Bulleidia 0.001905 0.008729		
Planktothrix_NIVA-CYA_15 0.001905 0.006796		
Algoriphagus 0.001429 0.003586		
f__P30B-42_Unclassified 0.001429 0.003586		
f__Chitinophagaceae_Unclassified 0.000476 0.02182		
Pleurocapsa_PCC-7319 0.000476 0.002182		
Alloprevotella 0.000952 0.004364		
Longimicrobium 0.000952 0.004364		
Chitinimonas 0.000952 0.004364		
f__AKIW781_Unclassified 0.001429 0.004781		
Collinsella 0.001429 0.003586		
Papillibacter 0.000952 0.004364		
Christensenellaceae_R-7_group 0.000476 0.002182		
f__Deinococcaceae_Unclassified 0.000952 0.003008		
Species	Value1	Value2
-------------------------------	---------	---------
f__Geminicoccaceae_Unclassified	0.000476	0.002182
f__Paracaeidibacteraceae_Unclassified	0.000476	0.002182
Chloronema	0.000476	0.002182
f__Erysipelotrichaceae_Unclassified	0.000476	0.002182
	69.067617	
Taxon	average abundance	standard deviation
--------------------	-------------------	--------------------
Ascomycota	72.46238	11.63144
Basidiomycota	17.76048	8.932234
Unclassified	8.815238	10.52488
k__Fungi_Unclassi	0.56619	0.295643
Zygomycota	0.350476	0.339521
Chytridiomycota	0.04381	0.198481
Glomeromycota	0.000476	0.002182
	9.77714	
Taxon	average abundance	standard deviation
-----------------------------	-------------------	-------------------
Unclassified	23.48952	10.86516
Aspergillus	16.59381	7.938729
Penicillium	10.15476	15.70518
Hortaea	7.98	7.510961
Cladosporium	7.811429	8.167595
Wallemia	6.569048	9.166376
Emericella	4.059048	9.633092
f_unidentified_Unclassified	3.18381	1.156601
Penidiella	3.02381	4.149829
Khuskia	1.647619	1.178541
Candida	1.256667	0.841406
Grammothele	0.598095	0.376757
Sagenomella	0.540476	0.569555
Nigrospora	0.488095	0.390572
Schizophyllum	0.411429	0.19171
Bipolaris	0.377619	0.416808
Eurotium	0.362381	0.576731
Mycosphaerella	0.342857	0.230242
Fusarium	0.339048	0.457569
Coprinellus	0.328571	0.558957
Trichosporon	0.309524	0.19916
Resinicium	0.30381	0.175171
Corynespora	0.302381	0.198038
Letendraea	0.291429	0.095827
Trichomonascus	0.277619	1.269921
Kodamaea	0.251429	0.380398
Choanephora	0.240952	0.317976
Phellinus	0.238095	0.279224
Devriesia	0.23619	0.529136
Aureobasidium	0.214286	0.123068
Gloeotinia	0.209048	0.44579
Auricularia	0.208571	0.118671
Lentinus	0.187143	0.206571
Phoma	0.177619	0.425193
Cerrena	0.176667	0.128154
Sympodiomycopsis	0.172857	0.254463
Hyphodontia	0.169048	0.103533
Coprinopsis	0.168095	0.188563
Leptosphaerulina	0.162381	0.133825
Lasiiodiplodia	0.162381	0.125893
Ganoderma	0.161905	0.100081
Curvularia	0.158095	0.140236
Guignardia	0.151905	0.076264
Exidia	0.14381	0.112003
Leptosphaeria	0.140476	0.091677
Cryptococcus	0.14	0.114586
Phlebiopsis	0.136667	0.109011
Neurospora	0.132381	0.083
Ceratobasidium	0.132857	0.404093
Phanerochaete	0.13381	0.102395
Pestalotiopsis	0.126667	0.061427
Eutypa	0.120952	0.055128
Species	LogOdds	P value
---------------------------------	---------	---------
Marasmiellus	0.11851	0.09481
f__Corticiaceae_Unclassified	0.11667	0.09281
Termitomyces	0.11429	0.07659
Phaeosphaeriopsis	0.10952	0.05744
Peniophora	0.10871	0.06552
Endocarpon	0.10904	0.12259
Malassezia	0.10333	0.08014
f__Herpotrichiellaceae	0.10191	0.11531
Saccharomyces	0.10333	0.13896
Pycnoporus	0.09095	0.11357
Limonospora	0.08857	0.10487
Pleurotus	0.08286	0.05780
Periconia	0.07857	0.12256
f__Trichocomaceae_Unclassified	0.07191	0.14814
Diaporthe	0.07048	0.11007
Myrothecium	0.06905	0.06394
Pseudozyma	0.07048	0.08084
Cochliobolus	0.06905	0.06942
Trechispora	0.06714	0.17447
Hyphoderma	0.06619	0.04341
Rigidoporus	0.06619	0.05911
Curreya	0.06381	0.09303
Megasporoporia	0.05286	0.03180
Clavispora	0.05095	0.03846
Gibberella	0.04476	0.02676
Alternaria	0.04523	0.04467
Rhizophylyctis	0.04381	0.19841
Acremonium	0.03952	0.04248
Gymnopilus	0.03857	0.03953
Meyerozyma	0.04047	0.03930
Rhodotorula	0.03857	0.02393
Tritirachium	0.03809	0.04749
Psathyrella	0.03809	0.02581
Debaryomyces	0.03619	0.09129
Stagonospora	0.03476	0.03586
Trametes	0.03619	0.03892
Nakaseomyces	0.03333	0.15275
Cryptodiscus	0.03286	0.03716
Dinemasporium	0.03381	0.04598
f__Russulaceae_Unclassified	0.03381	0.02578
Phialophora	0.03238	0.09375
Dokmaia	0.03095	0.02119
Yamadazyma	0.03047	0.03879
Pilidiella	0.03095	0.02321
Blakeslea	0.02952	0.04779
f__Pleosporaceae_Unclassified	0.02714	0.02148
Microsphaeriopsis	0.02619	0.01986
Basidiobolus	0.02476	0.04895
Waitea	0.02523	0.04728
Trichothecium	0.02523	0.01721
Amphiloga	0.02476	0.01778
Cercospora	0.02476	0.01990
Marasmius	0.02381	0.02012
Species	Value1	Value2
-----------------------------	----------	----------
Trichaptum	0.022381	0.017862
Lopharia	0.021905	0.016619
Pluteus	0.020952	0.022339
Meira	0.021905	0.023371
Colletotrichum	0.022381	0.011792
Eutypella	0.021905	0.012891
Laetisaria	0.020476	0.066819
Coriolopsis	0.02	0.022804
Zasmidium	0.019524	0.064612
Hypochnicium	0.018095	0.013645
Xylaria	0.018571	0.020563
Microdochium	0.018095	0.024004
Polychaeton	0.017619	0.031923
Physalacria	0.017619	0.009952
Daldinia	0.016667	0.02331
Fusidium	0.01619	0.032936
Plectosphaerella	0.01619	0.013956
Psilocybe	0.01619	0.014992
Phlebia	0.014762	0.013274
Oudemansiella	0.015714	0.01165
f__Botryobasidiaceae_Ur	0.015714	0.01399
Trichoderma	0.015238	0.018873
Leptoxypodium	0.014762	0.022499
Verrucaria	0.01381	0.04153
Orbilia	0.013333	0.024152
Parasymphidiella	0.014286	0.013628
Lophiostoma	0.01381	0.011609
Mucor	0.012857	0.054511
Corticium	0.013333	0.011972
Flavodon	0.01381	0.014992
Ramichloridium	0.012857	0.017647
Sistotremastrum	0.012857	0.011464
Hypoxylon	0.011905	0.018335
Sporobolomyces	0.012381	0.013749
Paraphaeosphaeria	0.012381	0.012209
Tetraplosphaeria	0.011429	0.011952
f__Leptosphaeriaceae_Ur	0.011905	0.029261
Panus	0.011429	0.02756
Eremascus	0.011905	0.040696
Blastobotrys	0.011429	0.050128
Microporus	0.012381	0.014108
Hymenochaete	0.011429	0.011526
Hypholoma	0.010476	0.022688
Camillea	0.011429	0.012364
Exidiopsis	0.1	0.008944
Geosmithia	0.1	0.045826
Truncatella	0.1	0.043589
Phaeococcus	0.1	0.017889
Poitrasia	0.010476	0.023765
Gerronema	0.1	0.008944
Capnodium	0.1	0.037749
Hannaealla	0.008571	0.014928
Dirinaria	0.009048	0.018683
Nigroporus	0.009524	0.009735
Paecilomyces 0.009048 0.013381		
Sydowia 0.009048 0.030316		
Valsa 0.008095 0.009284		
Dendryphiella 0.008571 0.023725		
Parasola 0.007619 0.009437		
Ochrocladosporium 0.008095 0.037097		
Botryosphaeria 0.008095 0.008729		
Inonotus 0.007143 0.009024		
Kazachstania 0.007143 0.013093		
f__Elsinoaceae_Unclassified 0.008095 0.008136		
Passalora 0.008095 0.012891		
Phialemonium 0.007619 0.019469		
Pyrenochaeta 0.008095 0.010305		
Preussia 0.007143 0.010071		
Xenastmatella 0.007143 0.011019		
Sporisorium 0.007143 0.016169		
Humicola 0.007619 0.015781		
Monographella 0.007143 0.006437		
f__Polyporaceae_Unclassified 0.006667 0.007958		
Coniothyrium 0.006667 0.011972		
Chaetomium 0.006667 0.009129		
Eichleriella 0.008095 0.008136		
Mycrmeclidium 0.005714 0.013256		
Thielaviopsis 0.006667 0.009129		
Arthrobotrys 0.005714 0.026186		
Polyergus 0.00619 0.00669		
Phaeosaccardinula 0.005238 0.014359		
Sterigmatomyces 0.004762 0.009284		
Vascellum 0.006667 0.006583		
Sporidiobolus 0.004762 0.009808		
Magnaporthe 0.005714 0.007464		
Glomerella 0.005238 0.011233		
Gibellulopsis 0.004762 0.013645		
Dissoconium 0.005714 0.006761		
Meripilus 0.005714 0.008106		
Brycekeidickomyces 0.005714 0.010282		
Perenniporia 0.005238 0.011233		
Phaeosphaeria 0.005238 0.01504		
Bullera 0.005238 0.006016		
Annulohypoxylon 0.005714 0.007464		
f__Microbotryaceae_Unclassified 0.005238 0.006016		
f__Massarinaceae_Unclassified 0.00381 0.005896		
Echinochaoete 0.004762 0.009808		
Pichia 0.004286 0.008106		
Stilbohypoxylon 0.004762 0.007496		
Moesziomyces 0.005238 0.006796		
f__Arthopyreniaceae_Unclassified 0.004762 0.006016		
Chaetomella 0.005238 0.008136		
Saccharomyces 0.004286 0.01964		
Tilletiopsis 0.004762 0.006016		
Stenella 0.004286 0.006761		
Emericellopsis 0.00381 0.009735		
Biscogniauxia 0.003333 0.013166		
Fomitopsis 0.00381 0.004976		
Taxonomy	ika	ika
----------------------------------	------	------
Volutella	0.003333	0.013166
f__Phaeosphaeriaceae_Unclassif.	0.00381	0.00483
Torulaspora	0.003333	0.015275
Mortierella	0.003333	0.011547
Ceriporiopsis	0.003333	0.009129
Aplosporella	0.003333	0.00539
Isaria	0.002381	0.00483
f__Bionectriaceae_Unclassif.	0.002857	0.004629
Camarosporium	0.002857	0.005024
Rhizopus	0.002857	0.005024
Gymnopus	0.002857	0.005024
Calyptrella	0.002857	0.009562
Rhodosporidium	0.002381	0.008729
Microascus	0.002857	0.009024
Podospora	0.002857	0.009024
Lodderomyces	0.001429	0.003586
Harpophora	0.001905	0.004024
Septobasidium	0.001905	0.008729
Xenostigmina	0.001905	0.006016
Tremella	0.001905	0.008729
Zygoascus	0.001429	0.006547
Sporothrix	0.001905	0.006796
Hanseniaspora	0.001905	0.006796
Berkleasmium	0.001429	0.003586
Ascopolus	0.001429	0.004781
Bysschlamys	0.001429	0.004781
Resupinatus	0.000952	0.003008
Hohenbuehelia	0.001429	0.004781
Rhizomucor	0.001429	0.003586
f__Amphisphaeriaceae_Unclassif.	0.002857	0.003008
f__Valsaceae_Unclassif.	0.002857	0.004364
Infundibulomyces	0.000476	0.002182
Cryptotrichosporon	0.000952	0.003008
f__Agaricaceae_Unclassif.	0.000476	0.002182
Neodeightonia	0.000952	0.003008
f__Ascobolaceae_Unclassif.	0.000952	0.004364
f__Cortinariaceae_Unclassif.	0.000952	0.003008
Acanthostigma	0.000476	0.002182
Cladonia	0.000476	0.002182
Hemibeltrania	0.000476	0.002182
Teratosphaeria	0.000476	0.002182

46.831905
Table S5. Association between outdoor/indoor characteristics and microbial observed OTU (alpha diversity). P value was calculated based on 10,000 permutation bivariate Adonis analysis.

Characteristic	Median (p25-p75)	R²	P	Median (p25-p75)	R²	P
Relative humidity	**bacteria**			**fungi**		
Low	678.95 (647.3-682.7)	0.04	0.39	672.85 (626.1-736.175)	0.03	0.48
High	691.5 (615.5-700.4)			783.9 (560.6-853.25)		
CO₂ indoor	**bacteria**	0.02	0.6	**fungi**	0.07	0.25
Low	679.2 (647.3-685.8)			659 (618.875-712.125)		
High	683.3 (667.1-700.4)			806 (582.825-985.95)		
NO₂ outdoor	**bacteria**	0.1	0.16	**fungi**	0.001	0.87
Low	676.9 (645.3-686.7)			662.3 (614.9-773.3)		
High	683.2 (640.9-704.575)			781.5 (560.6-830.95)		
Building age	**bacteria**	0	0.99	**fungi**	0.004	0.79
Low	676.9 (656.8-687.3)			721.7 (643.25-792.6)		
High	685 (615.5-696.925)			778.6 (400.7-848.43)		
Dampness	**bacteria**	0	0.9	**fungi**	0.01	0.63
Low	678.95 (647.3-682.7)			672.85 (625.1-736.18)		
High	691.5 (615.5-700.4)			783.9 (560.6-853.25)		
	0.03	0.42	0.33	0.006		
-------------	-------	------	------	-------		
Curtain						
low	682.15		814			
	(663.7-691.28)		(774.8-848.43)			
high	681.5		655.7			
	(638.9-697)		(400.7-731.35)			
House dustmite	0.09	0.18	0.28	0.02		
low	689.1		826.8			
	(676.25-696.93)		(774.78-855.5)			
high	676.9		662.3			
	(638.9-682.3)		(400.7-731.35)			
Cockroach	0.002	0.84	0.41	0.002		
low	683.3		779.2			
	(673.9-698.3)		(761-857.8)			
high	678.95		659			
	(638.9-691.825)		(400.7-789.43)			
	Odds Ratio	p值	95CI			
---------------------	------------	------	------------			
bac_phylum_Actinobacteria_138_otu	1.016937	0.518	0.966246	1.070087		
bac_phylum_Cyanobacteria_156_otu	0.9771775	0.071	0.953032	1.001935		
bac_phylum_Firmicutes_139_otu	0.9986067	0.951	0.954921	1.044291		
bac_phylum_Proteobacteria_242_otu	0.9639052	0.089	0.923883	1.005661		
bac_phylum_Bacteroidetes_95_otu	1.014582	0.408	0.980408	1.049948		
bac_phylum_Deinococcus_Thermus_26	1.024335	0.627	0.929640	1.128676		
bac_phylum_other_125_otu	0.9939591	0.678	0.965921	1.022811		
bac_total_otu_895	0.9957413	0.411	0.985670	1.005916		
bac_class__Actinobacteria	0.9916803	0.805	0.927885	1.059862		
bac_class__Alphaproteobacteria	0.9434536	0.122	0.876368	1.015675		
bac_class__Oxyphotobacteria	0.980741	0.16	0.954504	1.007699		
bac_class__Gammaproteobacteria	0.9944438	0.888	0.920043	1.074861		
bac_class__Bacteroidia	1.016516	0.388	0.979391	1.055048		
bac_class__Bacilli	0.9847966	0.724	0.904411	1.072327		
fu_phylum_Ascomycota_763_otu	0.9992615	0.748	0.994768	1.003775		
fu_phylum_Basidiomycota_453_otu	0.9987332	0.681	0.992713	1.00479		
fu_phylum_unidentified_36	0.946967	0.127	0.882949	1.015626		
fu_phylum_other_260	0.9995034	0.941	0.986452	1.012728		
fu_total_otu_1512	0.9996034	0.72	0.997438	1.001773		
fu_class__Agaricomycetes	0.9984552	0.734	0.989587	1.00741		
fu_class__Eurotiomycetes	1.008482	0.547	0.981139	1.036587		
fu_class__Dothideomycetes	1.000539	0.93	0.988527	1.012697		
fu_class__Sordariomycetes	0.9862998	0.215	0.965023	1.008049		
fu_class__Tremellomycetes	0.9988693	0.962	0.953175	1.046754		
fu_class__Saccharomycetes	0.9841009	0.624	0.923101	1.049132		
Table S7 Bacterial absolute abundance vs relative abundance.

Relative abundance	Absolute abundance		
RAbac1	Unclassified	0.516	0.715
RAbac10	f__Chroococcidiopsaceae_Unc	0.578	0.386
RAbac100	Terriglobus	0.132	0.91
RAbac101	Dolosigranulum	0.332	0.78
RAbac102	f__uncultured_bacterium_Unc	0.664	0.605
RAbac103	Amaricoccus	0.183	0.044
RAbac104	Leptolyngbya_ANT.L52.2	0.487	0.243
RAbac105	f__Roseiflexaceae_Unclassif	0.648	0.929
RAbac106	Blautia	0.212	0.282
RAbac107	f_Caulobacteraceae_Unclassif	0.5	0.699
RAbac108	Chalicogloea_CCALA_975	0.199	0.091
RAbac109	Fusobacterium	0.223	0.048
RAbac11	Corynebacterium_1	0.964	0.225
RAbac110	Microvirga	0.01	0.075
RAbac111	Ornithinimicrobium	0.776	0.798
RAbac112	RB41	0.804	0.904
RAbac113	Cellulomonas	0.832	0.921
RAbac114	Alkanindiges	0.903	0.556
RAbac115	Dietzia	0.765	0.921
RAbac116	Pseudocitrobacter	0.822	0.55
RAbac117	Piscicoccus	0.406	0.642
RAbac118	Kineosporia	0.474	0.962
RAbac119	Halomonas	0.354	0.508
RAbac12	Bacteroides	0.852	0.72
RAbac120	Sphingobium	0.142	0.004
RAbac121	Aureimonas	0.596	0.415
RAbac122	Comamonas	0.688	0.412
RAbac123	Dermacoccus	0.086	0.122
RAbac124	Sandaracinobacter	0.578	0.912
RAbac125	Kineococcus	0.483	0.555
RAbac126	Streptomyces	0.838	0.79
RAbac127	Bryocella	0.574	0.913
RAbac128	Pleurocapsa_PCC-7327	0.002	0.004
RAbac129	Rheinheimera	0.949	0.367
RAbac13	Rubellimicrobium	0.482	0.997
RAbac130	Flavisolibacter	0.158	0.2
RAbac131	Fictibacillus	0.677	0.472
RAbac132	Altererythrobacter	0.461	0.548
RAbac133	Aerococcus	0.41	0.21
RAbac134	Sphingobacterium	0.097	0.867
RAbac135	Belnapia	0.496	0.467
RAbac136	Shewanella	0.406	0.929
RAbac137	Achromobacter	0.366	0.818
RAbac138	Devosia	0.205	0.24
RAbac139	Finegoldia	0.489	0.342
RAbac14	Pantoae	0.995	0.916
RAbac140	Nakamurella	0.817	0.362
RAbac141	Arthrobacter	0.503	0.704
RAbac142	Mastigocladopsis_PCC-10914	0.429	0.109
RAbac143	Scytonema_PCC-7110	0.509	0.16
RAbac144	Serratia	0.719	0.083
RAbac145	endosymbionts8	0.487	0.368
RAbac146 Megamonas 0.658 0.634			
RAbac147 Hungatella 0.025 0.446			
RAbac148 Salinicoccus 0.528 0.621			
RAbac149 Wolbachia 0.005 0.762			
RAbac15 Streptococcus 0.129 0.085			
RAbac150 Prevotella_7 0.591 0.57			
RAbac151 Cnuella 0.134 0.319			
RAbac152 Granulicatella 0.171 0.032			
RAbac153 Aliicoccus 0.347 0.972			
RAbac154 Candidatus_Alysiosphaera 0.864 0.288			
RAbac155 Gemella 0.881 0.04			
RAbac156 Sphingopausartiacus 0.909 0.454			
RAbac157 Pseudoxanthomonas 0.451 0.972			
RAbac158 Antricoccus 0.732 0.413			
RAbac159 Scytonema_UTEX_2349 0.316 0.416			
RAbac16 Kocuria 0.574 0.836			
RAbac160 Veillonella 0.363 0.432			
RAbac161 Paeniclostridium 0.155 0.946			
RAbac162 Lysinibacillus 0.535 0.994			
RAbac163 f_Coleofasciculaceae_Uncla 0.164 0.658			
RAbac164 f_Archiangiacea_Unclassifi 0.147 0.064			
RAbac165 Actinoplanes 0.709 0.269			
RAbac166 Vittaria_lineata_[shoestri 0.083 0.11			
RAbac167 Defluviococcus 0.171 0.18			
RAbac168 Lawsonella 0.631 0.259			
RAbac169 Leptolyngbya_VRUC_135 0.919 0.872			
RAbac17 Brevibacterium 0.438 0.393			
RAbac170 Roseburia 0.24 0.829			
RAbac171 Peptoniphilus 0.263 0.911			
RAbac172 f_Ambiguous_taxa_Unclassif 0.786 0.761			
RAbac173 Cloacibacterium 0.677 0.582			
RAbac174 Solirubrobacter 0.057 0.003			
RAbac175 Odoribacter 0.313 0.381			
RAbac176 Catellicoccus 0.113 0.832			
RAbac177 Marinococcus 0.609 0.283			
RAbac178 Faecalibacterium 0.661 0.709			
RAbac179 Lautropia 0.505 0.029			
RAbac18 Methylobacterium 0.456 0.835			
RAbac180 Eggerthella 0.095 0.174			
RAbac181 Aetokthonos_AEL04 0.788 0.902			
RAbac182 Paenibacillus 0.113 0.454			
RAbac183 Luteimonas 0.805 0.828			
RAbac184 Tatumella 0.946 0.422			
RAbac185 Porphyrobacter 0.659 0.036			
RAbac186 f_uncultured_Chloroflexi_t 0.176 0.34			
RAbac187 f_Saccharimonadaceae_Uncla 0.595 0.529			
RAbac188 Peptoclostridium 0.275 0.695			
RAbac189 Porphyromonas 0.378 0.826			
RAbac19 Rubrobacter 0.43 0.453			
RAbac190 Akkermansia 0.642 0.062			
RAbac191 Bifidobacterium 0.607 0.212			
RAbac192 Rhodomicrobium 0.942 0.002			
RAbac193 Granulicella 0.526 0.574			
RAbac194 Proteus 0.315 0.766			
RAbac195	_f__Corynebacteriaceae_Unclassified_	0.668	0.924
RAbac196	Providencia	0.144	0.283
RAbac197	_f__Lachnospiraceae_Unclassified_	0.833	0.092
RAbac198	Peptostreptococcus	0.195	0.361
RAbac199	[Ruminococcus]_torques_group	0.434	0.212
RAbac2	Bacillus	0.418	0.407
RAbac20	Haemophilus	0.318	0.04
RAbac200	Saccharibacillus	0.488	0.825
RAbac201	Eubacterium	0.55	0.57
RAbac202	_f__Xanthobacteraceae_Unclassified_	0.486	0.986
RAbac203	Thauera	0.01	0.615
RAbac204	YB-42	0.875	0.054
RAbac205	EcFVyy-200	0.492	0.333
RAbac206	Moraxella	0.247	0.105
RAbac207	Craurococcus	0.266	0.072
RAbac208	[Ruminococcus]_gnavus_group	0.178	0.277
RAbac209	Microcoleus_SAG_1449-la	0.653	0.014
RAbac21	Pseudonocardia	0.853	0.929
RAbac210	Nocardiopsis	0.001	0.276
RAbac211	Cedecea	0.864	0.165
RAbac212	[Eubacterium]_fissicatena_g	0.681	0.522
RAbac213	Blastocatella	0.218	0.275
RAbac214	Ochrobactrum	0.614	0.546
RAbac215	Mesorhizobium	0.641	0.521
RAbac216	Lyso bacter	0.795	0.95
RAbac217	Rubritepida	0.231	0.082
RAbac218	Larkinella	0.091	0.097
RAbac219	Gardnerella	0.088	0.119
RAbac22	Deinococcus	0.211	0.753
RAbac220	Gemmatirosa	0.055	0.156
RAbac221	_f__Caldilineaceae_Unclassif_	0.866	0.607
RAbac222	[Eubacterium]_coprostanolig	0.679	0.855
RAbac223	Terrisporobacter	0.178	0.252
RAbac224	Rubrivirga	0.621	0.28
RAbac225	Bounagaea	0.541	0.032
RAbac226	Leptotrichia	0.39	0.73
RAbac227	_f__Nostocaceae_Unclassified_	0.674	0.591
RAbac228	Vibrio	0.349	0.322
RAbac229	Acidothermus	0.615	0.131
RAbac23	Chroococcidiopsis_SAG_2023	0.913	0.806
RAbac230	Microseira_Carmichael-Alabama	0.674	0.735
RAbac231	Robinsoniella	0.001	0.004
RAbac232	Acidiphilium	0.047	0.315
RAbac233	Haliangium	0.21	0.171
RAbac234	Aggregatibacter	0.578	0.726
RAbac235	Adhaeribacter	0.219	0.138
RAbac236	Abiotrophia	0.54	0.075
RAbac237	_f__A4b_Unclassified_	0.826	0.795
RAbac238	Megasphaera	0.132	0.41
RAbac239	Bilophila	0.426	0.045
RAbac24	Enterococcus	0.426	0.206
RAbac240	Anaerostipes	0.668	0.676
RAbac241	Alistipes	0.47	0.1
RAbac242	JSC-12	0.589	0.341
RAbac243	metagenome	0.775	0.275
RAbac244	Capnocytophaga	0.381	0.409
RAbac245	Prauserella	0.381	0.731
RAbac246	Rikenella	0.027	0.07
RAbac247	Microcoleus_Es-Yyy1400	0.289	0.236
RAbac248	Cyanothece_PCC-7424	0.236	0.339
RAbac249	Vagococcus	0.889	0.855
RAbac25	Micrococcus	0.707	0.582
RAbac250	Solibacillus	0.631	0.181
RAbac251	GCA-900066225	0.941	0.95
RAbac252	Sporosarcina	0.235	0.772
RAbac253	_JGI_0001001-H03	0.048	0.003
RAbac254	Chakia_8	0.831	0.77
RAbac255	Listeria	0.761	0.16
RAbac256	f__Rhizobiaceae_Unclassifie	0.623	0.407
RAbac257	Nubsella	0.883	0.428
RAbac258	Prevotella_2	0.524	0.762
RAbac259	Wohlfahrtiimonas	0.093	0.971
RAbac26	Calothrix_PCC-6303	0.84	0.547
RAbac260	Limnobacter	0.342	0.614
RAbac261	21551	0.135	0.207
RAbac262	Marinilactibacillus	0.834	0.158
RAbac263	Turicella	0.897	0.805
RAbac264	Mucilaginibacter	0.15	0.126
RAbac265	f__Acetobacteraceae_Unclass	0.658	0.395
RAbac266	Ignatzschineria	0.402	0.991
RAbac267	f__Euzebyaceae_Unclassified	0.803	0.583
RAbac268	Phascolarctobacterium	0.794	0.989
RAbac269	Rudanella	0.702	0.452
RAbac27	Pseudomonas	0.643	0.366
RAbac270	f__uncultured_soil_bacteriu	0.636	0.953
RAbac271	DTU089	0.075	0.472
RAbac272	Campylobacter	0.502	0.12
RAbac273	Plesiomonas	0.218	0.798
RAbac274	Wilmottia_Ant-Ph58	0.531	0.518
RAbac275	Candidatus_Solibacter	0.153	0.158
RAbac276	f__Leptolyngbyaceae_Unclass	0.687	0.827
RAbac277	Xylochloris_irregularis	0.774	0.766
RAbac278	Verticia	0.425	0.398
RAbac279	Anaerobiospirillum	0.201	0.433
RAbac28	Massilia	0.055	0.129
RAbac280	Izhakiella	0.103	0.006
RAbac281	Candidatus_Chloroploca	0.773	0.817
RAbac282	Cupriavidus	0.924	0.546
RAbac283	Corynebacterium	0.219	0.072
RAbac284	Xanthobacter	0.469	0.405
RAbac29	Klebsiella	0.239	0.788
RAbac3	Staphyloccoccus	0.875	0.42
RAbac30	Nephrolepis_biserrata_var._	0.668	0.954
RAbac31	Brachybacterium	0.742	0.553
RAbac32	Skermanella	0.614	0.904
RAbac33	Parabacteroides	0.554	0.8
RAbac34	Janibacter	0.266	0.308
RAbac35	Roseomonas	0.11	0.576
RAbac36	Actinomycetespora	0.582	0.865
RAbac37	Escherichia-Shigella	0.333	0.164
RAbac38	Truepera	0.428	0.237
RAbac39	MN_122.2a	0.88	0.565
RAbac4	Paracoccus	0.184	0.129
RAbac40	Geodermatophilus	0.174	0.308
RAbac41	Curtobacterium	0.305	0.35
RAbac42	Scytonema_UCFS19	0.557	0.169
RAbac43	Chroococcidiopsis_PCC_7203	0.749	0.362
RAbac44	Nocardioides	0.384	0.291
RAbac45	Leptolyngbya_PCC-6306	0.619	0.98
RAbac46	Nesterenkonia	0.405	0.242
RAbac47	CENA359	0.368	0.271
RAbac48	Marmoricola	0.62	0.272
RAbac49	Clostridium_sensu_stricto_1	0.434	0.883
RAbac5	Sphingomonas	0.473	0.634
RAbac50	Brevundimonas	0.358	0.196
RAbac51	Blastococcus	0.652	0.908
RAbac52	Enhydrobacter	0.048	0.04
RAbac53	Exiguobacterium	0.859	0.822
RAbac54	1174-901-12	0.104	0.891
RAbac55	Scytonema_VB-61278	0.903	0.417
RAbac56	Gordonia	0.832	0.378
RAbac57	Hymenobacter	0.608	0.882
RAbac58	Dapisostemonum_CCIBt_3536	0.559	0.453
RAbac59	Lachnoclostridium	0.808	0.517
RAbac6	Saccharopolyspora	0.975	0.535
RAbac60	Pseudokineococcus	0.817	0.474
RAbac61	Allorhizobium-Neorhizobium-	0.757	0.355
RAbac62	Neisseria	0.445	0.14
RAbac63	f__uncultured_Unclassified	0.47	0.634
RAbac64	Weissella	0.093	0.292
RAbac65	Kurthia	0.174	0.18
RAbac66	Stenotrophomonas	0.691	0.986
RAbac67	Mycobacterium	0.757	0.415
RAbac68	Romboutsia	0.041	0.58
RAbac69	Glutamicibacter	0.822	0.634
RAbac7	Acinetobacter	0.136	0.892
RAbac70	Bryum_argenteum_var._argent	0.388	0.269
RAbac71	f__uncultured_cyanobacteriu	0.75	0.684
RAbac72	Rothia	0.226	0.067
RAbac73	Shimwellia	0.002	0.002
RAbac74	Quadriraphaera	0.059	0.542
RAbac75	Aeromonas	0.255	0.191
RAbac76	Novosphingobium	0.432	0.272
RAbac77	f__Blastocatellaceae_Unclas	0.762	0.613
RAbac78	Bryobacter	0.802	0.799
RAbac79	Desulfovibrio	0.964	0.418
RAbac8	Enterobacter	0.247	0.994
RAbac80	Qipengyuania	0.02	0.025
RAbac81	Spirosoma	0.641	0.661
RAbac82	Barrientosilimonas	0.189	0.683
RAbac83	Aliterella_CENA595	0.275	0.255
RAbac84	Chryseobacterium	0.217	0.106
RAbac85	Lactococcus	0.404	0.244
RAbac86	Cellulosimicrobium	0.581	0.724
RAbac87	Kosakonia	0.609	0.181
RAbac88	Actinomyces	0.526	0.153
RAbac89	Micromonospora	0.379	0.986
RAbac9	Lactobacillus	0.438	0.756
RAbac90	Alishewanella	0.2	0.849
RAbac91	Jeotgalicoccus	0.108	0.251
RAbac92	f__Ilumatobacteracea_Unclassified	0.663	0.333
RAbac93	f__Beijerinckiaceae_Unclassified	0.889	0.397
RAbac94	f__Unknown_Family_Unclassified	0.165	0.621
RAbac95	f__JG30-KF-CM45_Unclassified	0.67	0.702
RAbac96	Kytococcus	0.49	0.394
RAbac97	PMMR1	0.537	0.985
RAbac98	Empedobacter	0.412	0.083
RAbac99	Modestobacter	0.141	0.369
Table S8: Fungal absolute abundance vs relative abundance.

RAfu	Relative abundance	Absolute abundance	
RAfu1	0.389	0.433	
RAfu2	0.749	0.877	
RAfu3	0.264	0.564	
RAfu4	0.074	0.627	
RAfu5	0.427	0.42	
RAfu6	0.468	0.615	
RAfu7	0.52	0.229	
RAfu8	0.22	0.437	
RAfu9	0.129	0.557	
RAfu10	0.741	0.546	
RAfu11	0.55	0.478	
RAfu12	0.282	0.372	
RAfu13	0.7	0.769	
RAfu14	0.593	0.512	
RAfu15	0.543	0.483	
RAfu16	0.078	0.152	
RAfu17	0.043	0.868	
RAfu18	0.691	0.603	
RAfu19	0.431	0.163	
RAfu20	0.848	0.625	
RAfu21	0.405	0.522	
RAfu22	0.073	0.03	
RAfu23	0.021	0.176	
RAfu24	0.276	0.925	
RAfu25	0.685	0.512	
RAfu26	0.826	0.636	
RAfu27	0.681	0.579	
RAfu28	0.045	0.071	
RAfu29	0.213	0.433	
RAfu30	0.366	0.444	
RAfu31	0.751	0.325	
RAfu32	0.915	0.538	
RAfu33	0.53	0.783	
RAfu34	0.886	0.676	
RAfu35	0.358	0.881	
RAfu36	0.826	0.838	
RAfu37	0.283	0.278	
RAfu38	0.817	0.637	
RAfu39	0.111	0.355	
RAfu40	0.4	0.488	
RAfu41	0.584	0.984	
RAfu42	0.44	0.509	
RAfu43	0.799	0.732	
RAfu44	0.651	0.477	
RAfu45	0.751	0.723	
RAfu46	0.739	0.849	
RAfu47	0.762	0.688	
RAfu48	0.286	0.434	
RAfu49	0.034	0.094	
RAfu50	0.552	0.266	
RAfu51	0.241	0.105	
RAfu52	0.043	0.076	
RAfu53	Pseudozyma	0.178	0.466
RAfu54	Hyphoderma	0.487	0.413
RAfu55	Megasporoporia	0.923	0.86
RAfu56	Gibberella	0.998	0.781
RAfu57	Alternaria	0.704	0.423
RAfu58	Psathyrella	0.043	0.237
RAfu59	Colletotrichum	0.02	0.126
RAfu60	Coprinellus	0.468	0.756
RAfu61	Choanephora	0.938	0.979
RAfu62	Gloeotinia	0.793	0.728
RAfu63	Lentinus	0.785	0.938
RAfu64	Sympodiomycopsis	0.947	0.385
RAfu65	Phanerochaete	0.574	0.908
RAfu66	Phaeosphaeriopsis	0.563	0.821
RAfu67	Limonomyces	0.093	0.113
RAfu68	Periconia	0.168	0.809
RAfu69	Rhodotorula	0.571	0.952
RAfu70	Dokmaia	0.335	0.803
RAfu71	Pilidiella	0.474	0.576
RAfu72	Devriesia	0.866	0.752
RAfu73	Endocarpon	0.337	0.732
RAfu74	f__Herpotrichiellaceae_	0.235	0.989
RAfu75	Pycnoporus	0.807	0.617
RAfu76	Trechispora	0.73	0.716
RAfu77	Rigidoporus	0.469	0.549
RAfu78	Curreya	0.512	0.637
RAfu79	Clavispora	0.833	0.805
RAfu80	Tritirachium	0.067	0.578
RAfu81	Trametes	0.643	0.808
RAfu82	Cryptodiscus	0.212	0.25
RAfu83	Dinemasporium	0.955	0.767
RAfu84	f__Russulaceae_Unclassi	0.439	0.691
RAfu85	Blakeslea	0.082	0.719
RAfu86	f__Pleosporaceae_Unclas	0.431	0.903
RAfu87	Amphilogia	0.051	0.319
RAfu88	Marasmius	0.197	0.267
RAfu89	Ceratobasidium	0.581	0.385
RAfu90	Cochliobolus	0.406	0.846
RAfu91	Acremonium	0.334	0.61
RAfu92	Meyerozyma	0.365	0.641
RAfu93	Phialophora	0.687	0.282
RAfu94	Trichotheicum	0.169	0.196
RAfu95	Lopharia	0.878	0.926
RAfu96	Eutypella	0.753	0.719
RAfu97	Hypochnicium	0.188	0.817
RAfu98	Xylaria	0.42	0.278
RAfu99	Physalacria	0.581	0.963
RAfu100	Stagonospora	0.945	0.186
RAfu101	Yamadazyma	0.268	0.078
RAfu102	Microsphaeropsis	0.512	0.463
RAfu103	Cercospora	0.54	0.319
RAfu104	Trichaptum	0.577	0.593
RAfu105	Meira	0.79	0.382
RAfu106	Oudemansiella	0.039	0.149
RAfu107 Flavodon 0.018 0.012			
RAfu108 Sistotremastrum 0.55 0.205			
RAfu109 Sarcinomyces 0.541 0.862			
RAfu110 Gymnopilus 0.36 0.086			
RAfu111 Debarromyces 0.087 0.675			
RAfu112 Coriolopsis 0.364 0.479			
RAfu113 Microdochium 0.186 0.122			
RAfu114 Plectosphaerella 0.618 0.735			
RAfu115 Psilocybe 0.032 0.027			
RAfu116 f__Botryobasidiaceae_Un 0.392 0.526			
RAfu117 Lophioestroma 0.252 0.066			
RAfu118 f__Trichocomaceae_Uncla 0.68 0.754			
RAfu119 Phlebia 0.374 0.988			
RAfu120 Corticiuim 0.029 0.282			
RAfu121 Sporabolomyces 0.908 0.374			
RAfu122 Basidiobolus 0.075 0.644			
RAfu123 Pluteus 0.27 0.269			
RAfu124 Parasympodiella 0.718 0.744			
RAfu125 Paraphaeosphaeria 0.935 0.867			
RAfu126 Hymenochaete 0 0.733			
RAfu127 Camillea 0.52 0.239			
RAfu128 Exidiopsis 0.322 0.07			
RAfu129 Gerronema 0.585 0.755			
RAfu130 Waitea 0.23 0.136			
RAfu131 Daldinia 0.617 0.997			
RAfu132 Ramichloridium 0.773 0.34			
RAfu133 Tetraplosphaeria 0.664 0.344			
RAfu134 Microporus 0.422 0.685			
RAfu135 Nigroporus 0.426 0.542			
RAfu136 f__Elsinoaceae_Unclassi 0.908 0.795			
RAfu137 Monographella 0.041 0.233			
RAfu138 Eichleriella 0.878 0.681			
RAfu139 Trichoderma 0.055 0.353			
RAfu140 Hypoxylon 0.987 0.434			
RAfu141 Paecilomyces 0.831 0.295			
RAfu142 Valsa 0.021 0.109			
RAfu143 Botryosphaeria 0.15 0.201			
RAfu144 Vascellum 0.532 0.32			
RAfu145 Leptoxyphium 0.083 0.237			
RAfu146 Phaeococcus 0.418 0.451			
RAfu147 f__Polyporaceae_Unclass 0.971 0.666			
RAfu148 Polyporus 0.116 0.315			
RAfu149 Zasmidium 0.64 0.444			
RAfu150 Poitrasia 0.311 0.542			
RAfu151 Parasola 0.763 0.635			
RAfu152 Inonotus 0.796 0.538			
RAfu153 Pyrenomycetes 0.225 0.545			
RAfu154 Chaetomium 0.569 0.385			
RAfu155 Dissoconium 0.765 0.668			
RAfu156 Bullera 0.669 0.52			
RAfu157 f__Microbotryaceae_Uncl 0.298 0.234			
RAfu158 Polychaeton 0.386 0.357			
RAfu159 Dirinaria 0.546 0.372			
RAfu160 Passalora 0.249 0.396			
Accession	Species	Distance	Similarity
-----------	----------------------------	----------	------------
RAfu161	Preussia	0.685	0.271
RAfu162	Xenasmatella	0.292	0.2
RAfu163	Thielaviopsis	0.331	0.234
RAfu164	Magnaporthe	0.754	0.625
RAfu165	Annullohypoxylon	0.514	0.601
RAfu166	Moesziomyces	0.228	0.363
RAfu167	f__Arthopyreniaceae_Unc	0.046	0.018
RAfu168	Tillitiopsis	0.943	0.597
RAfu169	Orbilia	0.202	0.48
RAfu170	Dendryphiella	0.837	0.903
RAfu171	Phialemonium	0.863	0.728
RAfu172	Humicola	0.657	0.865
RAfu173	Coniothyrium	0.832	0.157
RAfu174	Meripilus	0.943	0.912
RAfu175	Stilbohypoxylon	0.958	0.629
RAfu176	Chaetomella	0.141	0.592
RAfu177	Fomitopsis	0.534	0.693
RAfu178	Fusidium	0.08	0.021
RAfu179	f__Leptosphaeriaceae_Un	0.016	0.009
RAfu180	Hannaela	0.4	0.36
RAfu181	Kazachstania	0.751	0.41
RAfu182	Sporisorium	0.088	0.52
RAfu183	Myrmecridium	0.956	0.39
RAfu184	Sterigmatomyces	0.454	0.168
RAfu185	Brycekendrickomyces	0.471	0.964
RAfu186	Perenniporia	0.248	0.763
RAfu187	f__Massarinaceae_Unclas	0.694	0.76
RAfu188	Stenella	0.542	0.614
RAfu189	f__Phaeosphaeriaceae_Un	0.55	0.386
RAfu190	Torulaspora	0.007	0.005
RAfu191	f__Bionectriaceae_Uncla	0.784	0.934
RAfu192	Verrucaria	0.639	0.444
RAfu193	Sydowia	0.104	0.911
RAfu194	Sporidiobolus	0.194	0.812
RAfu195	Pichia	0.563	0.293
RAfu196	Camarosporium	0.343	0.277
RAfu197	Rhizopus	0.925	0.797
RAfu198	Gymnopus	0.192	0.207
RAfu199	Hypholoma	0.119	0.171
RAfu200	Capnodium	0.145	0.691
RAfu201	Glomerella	0.702	0.926
RAfu202	Echinochaete	0.181	0.357
Genus	Presence frequency (n=21)	Range of relative abundance (%)	
--------------------	----------------------------	----------------------------------	
Bacteria			
Sphingobium	21	0.02-0.15	
Rhodobacterium	17	0-0.13	
Shimwellia	21	0.01-1.65	
Izhakiella	5	0-0.13	
Solirubrobacter	19	0-0.04	
Pleurocapsa	_PCC-2337	0.01-0.26	
Robinsoniella	13	0-0.11	
JGI_0001001_H03	11	0-0.02	
Fungi			
Torulaspora	7	0-0.01	
f_Leptosphaeriacea	g_unidentified	0-0.12	