Level of Biosecurity Adoption Practices in Beef Cattle Farmers in South Sulawesi, Indonesia

V S Lestari¹, S N Sirajuddin¹, I M Saleh¹ and K I Prahesti²

¹Department of Socio-Economics/Faculty of Animal Husbandry, Hasanuddin University, Makassar, Indonesia
²Department of Animal Production/Faculty of Animal Husbandry, Hasanuddin University, Makassar, Indonesia

E-mail: veronicasllestari@unhas.ac.id

Abstract. The aim of this study was to determine the level of adoption of a range of standard biosecurity practices in beef cattle farmers in Soppeng Regency, South Sulawesi. Data were collected from 45 beef cattle farmers through observation and in-depth interview by using questionnaire. There were 26 questions which consisted of biosecurity practices: sanitation, isolation and traffic control. Data were analyzed descriptively using mean and percentage. The results showed that a level of partial adoption of biosecurity had been achieved by the beef cattle farmers. The implication is that beef cattle farmers could be motivated to enhance their level of biosecurity practices.

Keywords: adoption, biosecurity practices; beef cattle farmers

1. Introduction

Biosecurity is an important action taken by beef cattle farmers. The purpose of biosecurity measures is to prevent the transmission of disease from sick to healthy livestock, and as such, it is government policy in many countries. According to Government Regulation of the Republic of Indonesia No. 47 (June 12th, 2014), it was decided that biosafety and biosecurity must be applied at least in nurseries, cultivation, animal shelters, animal markets, animal slaughterhouses, animal transport equipment, animal health services, conservation units, and veterinary laboratories (Article 36). Cattle farms in Indonesia generally, and in South Sulawesi in particular, are maintained traditionally or semi-intensively. Feeding relies on field grass. Beef cattle are sometimes released during the day and impounded in the afternoon. This is one of the ways in which cattle can contract disease, and is difficult to control. The cattle population in the province of South Sulawesi decreased from 2,100,137 to 1,289,444 animals from 2014 to 2015 [1]. South Sulawesi is a beef cattle supplier. The decline in the population was caused by several factors, one of them being the application of biosecurity that is not yet effective. The Soppeng district is one of the regencies in South Sulawesi. Even though the beef cattle population increased significantly from 2103 to 2015, by 51.64% [2], it should be noted that it is important to apply biosecurity in beef cattle farms in order to produce healthy meat. The purpose of
this study was to determine the level of biosecurity adoption in beef cattle farms in the district of Soppeng.

2. Methodology
This study was conducted in Soppeng Regency, South Sulawesi in 2019. The sample was chosen purposively, and totalled 45 beef cattle farmers. Data were collected through observation and in-depth interview using a questionnaire and checklist consisting of 30 biosecurity practices. A technical scoring system was developed from the biosecurity indicators (measures), ranging from 0 to 1. A biosecurity measure was coded as 1 if this measure was present (implemented), or 0 if the measure was absent (not implemented). To obtain the final score for each measure, all the values recorded on the farms (either 0 or 1 per farm) were summed. The measures were grouped into sections, each section corresponding to a biosecurity component (isolation, traffic control, and sanitation). Since each component was made up of several measures, the scores of the individual measures were added up to generate the mean score for the component, by dividing the total score by the total number of measures within a component. Data were analyzed descriptively, using means and percentages. To determine the level of adoption, a score was assigned for the adoption of each of the practices in the following way (Table 1):

Adoption Pattern	Score
Non-adoption	0
Partial adoption	1
Complete adoption	2

The adoption level of the respondents was measured by making use of the adoption index developed by Karthikeyan in [3].

\[
Adoption\; index = \frac{\text{Respondents' total score}}{\text{Total possible score}} \times 100
\]

Depending upon the extent of adoption of improved technologies, the respondents were categorized as follows:
1) Low adopters (up to 33%);
2) Partial adopters (34–66%); and
3) High adopters (67–100%).

3. Result and Discussion
Characteristics of the respondents
The characteristics of the respondents can be seen in Table 2.

Characteristics	Minimum	Maximum	Mean	Percentage
a. Age (years)	17	65	43.56	
b. Education level				
Elementary School			35.56	
Junior High School			26.67	
Senior High School			37.78	
c. Farm experience (years)	1	30	9.01	
d. Number of beef cattle (animals)	2	27	6.49	

Based on Table 2, the average age of the respondents was 43.55 years. This showed that the respondents were at a productive age. According to [4], there are three groups of age distributions – young (< 15 years old), productive (15–64 years old), and old (> 65 years old). This means that the respondents were still young and strong enough to manage their farms. On beef cattle farms, a strong
body is needed to clean the pen, to bathe the cattle, to look for grass, to feed and to provide drink. The age of the farmer is closely related to the ability of the farmer to receive or remember knowledge. This is in accordance with the opinion of [5], who stated that an increase in one's age can affect the increase in knowledge gained, but at certain ages, or before old age, the ability to accept or remember something will decrease.

In terms of the education level of the respondents, the majority had graduated from senior high school (37.78%). This indicates that the education level of the respondents was relatively high. Farmers with low levels of education have hampered knowledge. This is consistent with the opinion of [6], who stated that education is an activity or learning process for developing or improving certain abilities so that the educational goals can stand alone. The level of education also determines the ease with which someone absorbs and understands the knowledge they get. In general, the higher the education level of a person, the better their knowledge.

Table 2 shows that the average number of cattle was 6.49 animals. This suggests that these were small-scale beef cattle farmers. This is in accordance with the opinion of [7] who found that more than 90% of smallholder farms that had characteristics such as business scale that were relatively small, ranging from 1–8, meaning these were traditional household and maintenance businesses.

Level of Biosecurity Adoption

The aim of implementing biosecurity measures on cattle farms is: 1) to preserve high health status in the animals by protecting them from new and existing pathogens; and 2) to ensure the production of safe food. General biosecurity measures should be implemented in any farm, regardless of any specific problem [8]. The main components of biosecurity are isolation, traffic control and sanitation [9].

According to the diffusion of innovation theory, developed by Rogers in 1962 [10], is one of the oldest social science theories. It originated in communication to explain how, over time, an idea or product gains momentum and diffuses (or spreads) through a specific population or social system. The end result of this diffusion is that people, as part of a social system, adopt a new idea, behavior, or product. Adoption means that a person does something differently than how they had previously done it (i.e., purchasing or using a new product, acquiring and performing a new behavior, etc.). The key to adoption is that the person must perceive the idea, behavior, or product as new or innovative. It is through this that diffusion is possible.

Based on Table 3, the highest adoption index for biosecurity practices was sanitation (59.53). This is in agreement with [11]. On average, the level of biosecurity adoption practices was 54.10%, which was lower than [8] found, which was 61.7%. This means that only a view biosecurity practices had been adopted by the beef cattle farmers. This is similar to the finding of [12].

Among sanitation practices, 77.78% of the respondents used the same equipment to feed and clean the barn, or did not wash the equipment between uses. This means that the respondents' knowledge of sanitation was low.

The majority of respondents did not provide a clean area for the treatment and isolation of sick animals (82.22%). This indicates that the knowledge of the respondents concerning isolation was low. A majority of respondents (55.56%) cleaned their equipment and cleaned action already provided.

For the traffic control variable, the respondents mostly did not know the health history of the cattle purchased (71.11%); if they did know, this could prevent disease transmission. Records of every person visiting the cattle accommodations was adopted by 48.89%, which is a good start.

According to [13], 86.7% of biosecurity adoption was influenced by age, education, number of family and herd size (adjusted R²); thus, 13.3% were influenced by other factors which were not involved in the model. Simultaneously, all variables affected significantly the level of biosecurity adoption (P < 0.05). Partially, education level and herd size affected significantly the level of biosecurity adoption in beef cattle farms (P < 0.01 and P < 0.05, respectively).
Characteristics of biosecurity	Non-adoption (%)	Partial adoption (%)	Average adoption index
Sanitation			
There was an effort to prevent contamination of feed and equipment by cattle manure	48.89	51.11	59.53
Cleaning equipment	44.44	55.56	
Separation of sick and healthy cattle	46.67	53.33	
Conducted routine evaluation of sanitation treatment	53.33	46.67	
If livestock manure was related to feed or drinking water, cleaning action was already provided	44.44	55.56	
Used different equipment to feed and clean cages or washed equipment between uses	77.78	22.22	
Never stepped on animal feed	57.78	42.22	
Never left the equipment to clean the dirt in the cowshed	60.00	40.00	
Cleaned vehicles and equipment before use on healthy livestock	57.78	42.22	
Routinely cleaned and disinfected food and other equipment for livestock	55.56	44.44	
Routinely cleaned and disinfected equipment for treating livestock	55.56	44.44	
Isolation			
Provided a clean area for the treatment and isolation of sick animals	82.22	17.78	47.50
Provided facilities to prevent contamination of water, livestock manure, feed, or equipment	64.44	35.56	
Had a plan to regulate livestock based on body size and age for reduced disease transmission	64.44	35.56	
Handled the healthiest cattle first, before young, old, or sick cows	51.11	48.89	
Everyone on the farm applied strict sanitation	75.56	24.44	
All dead animals were examined by a veterinarian	64.44	35.56	
Veterinarians collected blood samples from sick cattle	66.67	33.33	
Cleaned contaminated vehicles and equipment before using for healthy livestock	55.56	44.44	
Traffic control			
Knew the health history of the cattle purchased	71.11	28.89	50.16
Carried cattle with a clean vehicle	68.89	31.11	
Had a control program for outside animals that could spread disease	55.56	44.44	
Limited the number of visitors to the place where feed was mixed and stored	68.89	31.11	
Place to dip and lower the cattle away from the candlestick	68.89	31.11	
Dead animals immediately removed from cages	60.00	40.00	
Recorded every person who visited the cowshed	51.11	48.89	
Average			54.10
4. Conclusion
Based on the results, it can be concluded that the level of biosecurity adoption in beef cattle farmers in Soppeng regency can be categorized as 'partial adopter'.

Acknowledgments
A big appreciation to Hasanuddin University who provide funding for this research.

References
[1] South Sulawesi Statistics Bureau 2017 South Sulawesi in Figure Makassar
[2] South Sulawesi Statistics Bureau 2018 South Sulawesi in Figure Makassar.
[3] R. Roy and R. Tiwari 2017 Farmers’ knowledge and adoption level on goat healthcare management practices in selected areas of India Bang J Anim Sci 46 (2):95-101.
[4] P. Tjiptoherijanto. 2001. Proyeksi Penduduk, Angkatan Kerja, Tenaga Kerja dan Peran Serikat Pekerja dalam Peningkatan Kesejahteraan. Majalah Perencanaan Pembangunan Edisi 23.
[5] Notoatmadjojo. 2003. Pengertian Pengetahuan. Fakultas Peternakan Universitas Diponegoro Semarang.
[6] W. Lukman. 2008. Pengetahuan Peternak Sebagai Prospek Pengembangan Usaha Peternakan Sapi Potong di Kecamatan Surade Kabupaten Sukabumi. Skripsi Fakultas Peternakan Institut pertanian Bogor, Bogor.
[7] H. Rasali, Matondang and S. Rusdiana. 2013. Langkah-Langkah Strategis dalam Mencapai Swasembada Daging Sapi/Kerbau 2014 Pusat Penelitian dan Pengembangan Peternakan Departemen Pertanian Bogor.
[8] Ge Valergakis, G. Arsenos and G Oikonomou 2018. Biosecurity measures on cattle farms. Journal of the Hellenic Veterinary Medical Society 59(1):9-22.
[9] W. W. La Morte. 2018. Diffusion of Innovation Theory. Boston University School of public Health.
[10] V. S. Lestari, D P Rahardja and S. N. Sirajuddin. 2019. Identification of biosecurity on beef cattle farms. IOP Conf. Series: Earth and Environmental Science 247 (2019) 012005 doi:10.1088/1755-1315/247/1/012005.
[11] S. Sarrazin, A. B. Cay, J. Laureyns and J. A. Dewulf. 2004. Survey on biosecurity and management practices in selected Belgian cattle farms Preventive Veterinary Medicine. 117(1):129–139
[12] V. S. Lestari, S. N. Sirajuddin, I. M. Soleh and K. I. Prahesti. 2019. Some factors influencing the level of biosecurity adoption in beef cattle farms Book of Abstract Internasional Conference on Environment and Sustainability Issues (ICESI) Semarang 18-19 July.