Random Matrix Theory of Resonances: an Overview

Yan V. Fyodorov*

* King’s College London, Department of Mathematics, London WC2R 2LS, United Kingdom
e-mail: yan.fyodorov@kcl.ac.uk

Abstract—Scattering of electromagnetic waves in billiard-like systems has become a standard experimental tool of studying properties associated with Quantum Chaos. Random Matrix Theory (RMT) describing statistics of eigenfrequencies and associated eigenfunctions remains one of the pillars of theoretical understanding of quantum chaotic systems. In a scattering system coupling to continuum via antennae converts real eigenfrequencies into poles of the scattering matrix in the complex frequency plane and the associated eigenfunctions into decaying resonance states. Understanding statistics of these poles, as well as associated non-orthogonal resonance eigenfunctions within RMT approach is still possible, though much more challenging task.

I. INTRODUCTION AND FORMALISM

Scattering of electromagnetic waves in billiard-like microwave resonators or, in optical range, dielectric microcavities, has become a standard experimental tool of studying properties associated with Quantum Chaos, see e.g. reviews [1]–[4]. Random Matrix Theory (RMT) describing statistics of eigenfrequencies (referred to as “energy levels” in the quantum mechanical context, the terminology to be used in the rest of the review) and associated eigenfunctions is one of the pillars of theoretical understanding of quantum chaotic systems. Scattering set up drastically changes the system properties by coupling to the continuum via antennae, thereby converting discrete energy levels into decaying resonance states. Such states can be associated with poles of the scattering matrix in the complex energy plane. Understanding statistics of such poles, as well as associated residues related to non-orthogonal eigenfunctions is one of the pillars of RMT approach is still possible, though much more challenging task.

The starting point is an RMT model introduced in [5] and described in detail in [6], and more recently in [7], [8]. The model deals with the unitary $M \times M$ energy-dependent scattering matrix $S(E)$ for quantum-chaotic system with M open channels

$$S(E) = \frac{1-iK}{1+iK},$$

where

$$K = W \frac{1}{E-H} W^\dagger,$$

with $N \times N$, $N \gg 1$ random Gaussian (real symmetric GOE, $\beta = 1$, Hermitian GUE, $\beta = 2$, or real quaternion GSE, $\beta = 4$) matrix H used to model spectral properties of the Hamiltonian of closed system of quantum-chaotic nature. The columns of $N \times M$ matrix W of coupling amplitudes to M open scattering channels can be taken either as fixed orthogonal vectors satisfying $\sum_{i=1}^{N} W_{ai} W_{bi} = \delta_{ab}, \gamma_a > 0$ $\forall a = 1, \ldots, M$ or alternatively the entries are chosen to be independent random Gaussian $\psi_i \psi_i^\dagger = M\beta/2$ provide poles of the scattering matrix in the complex energy plane, commonly referred to as the resonances. The goal is to describe the statistics of positions of these poles in the complex plane, as well as statistics of the associated residues related to non-orthogonal eigenvectors of non-Hermitian Hamiltonian H_{eff}, using the random matrix statistics for H as an input.

II. STATISTICS OF S-MATRIX POLES IN SOME LIMITING CASES.

A. Weak-coupling regime and Porter-Thomas distribution

When $W \to 0$ the anti-Hermitian part $-iW W^\dagger$ can be treated as a perturbation of the Hermitian part H. The latter matrix is characterized by real eigenvalues E_n and orthonormal eigenvectors $|n\rangle$ which are random vectors uniformly spanning the N-dimensional unit sphere. In this regime one expects the resonances to be largely non-overlapping, that is $\Gamma_n \ll \Delta$, where Δ is the mean spacing between neighbouring real eigenvalues for H. To the first order

$$E_n \to z_n = E_n - i\frac{\Gamma_n}{2}, \quad \text{with} \quad \Gamma_n = 2 \langle |n\rangle W W^\dagger |n\rangle$$

implying for M equivalent channels with coupling constants $\gamma_a = \gamma \ll 1$ the x^2 distribution of scaled resonance widths $y_n = \pi \Gamma_n / \Delta \ll 1$.

$$P_M^{(\beta)}(y) = \frac{(\beta/2)^{M\beta/2}}{\gamma \Gamma(M\beta/2)} \left(\frac{y}{\gamma} \right)^{M\beta/2-1} e^{-\frac{y^2}{\gamma}}$$

This expression known as the Porter-Thomas distribution favourably agrees with a lot of experimental data in billiards, from [10] to recent experiments [11] in a stadium billiard
embedded into a two dimensional photonic crystal realized on a silicon-on-insulator substrate. Note however recently reported deviations in high-precision neutron scattering [12], see also discussion below and references in [13].

B. Limiting case of very many open channels

On the other hand when couplings $\gamma > 0$ are fixed and the number M of open channels is very large and comparable with the number $N \gg 1$ of internal states we expect that typically resonances overlap strongly: $\Gamma_n \gg \Delta$. The mean density of complex eigenvalues of $H_{\text{eff}} = H - i\Gamma$, $\Gamma = WW^\dagger$ for many channels $0 < m = M/N < 1$ was found analytically in [14], [15]. Generically, the density of resonances has the form of a cloud separated by a gap from the real axis. For larger couplings γ second cloud emerges, as depicted in Fig.1 taken from [13]. The gap has the physical meaning of a

$$\text{Fig. 1. The density of resonances in RMT model with many open channels, from [15].}$$

correlation length in energy-dependent scattering observables, see [15] and also matches semiclassical considerations [16] and is observed experimentally in microwave billiards [17].

III. NON-PERTURBATIVE RESULTS FOR STATISTICS OF S-MATRIX POLES

The first systematic non-perturbative investigation of resonances within RMT was undertaken by Sokolov & Zelevinsky [15] for the special case $M = 1$. They provided an explicit expression for the joint probability density of positions z_1, \ldots, z_N of all N eigenvalues of $H_{\text{eff}} = H - iWW^\dagger$ in the complex energy plane assuming random Gaussian coupling amplitudes $\langle W_iW_j \rangle = \gamma^2/N$ with fixed $\gamma > 0$. For $\beta = 1$ they found

$$P_{M=1}^{(\beta=1)}(z_1, \ldots, z_N) \propto \prod_{k<l} \frac{e^{-\frac{N}{\Delta} \text{Im} z_k} \prod_{i<j} |z_i - z_j|^2}{\sqrt{\text{Im} z_k \text{Im} z_j}} \times e^{-\frac{N}{\Delta} \sum_{k=1}^N (\text{Re} z_k)^2} - \frac{N}{\Delta} \sum_{k<l} \text{Im} z_k \text{Im} z_l}$$

This density was then used to predict that for γ large enough the resonances ”reorganize” into one short-lived resonances and a cloud of $N-1$ long lived ones (analogue of Dicke superradiance), see recent optical experiments in [19].

Similar, but somewhat simpler expression can be derived for $\beta = 2$. In that case the limiting distribution of the resonance widths Γ_n can be derived non-perturbatively for any fixed number of channels $M \ll N \to \infty$ [20]. To that end one defines “renormalized coupling strengths” $g_a = \frac{1}{2} (\gamma_a + \frac{1}{\gamma_a})$ for all channels $a = 1, \ldots, M$. Then the probability density of the scaled resonance widths $y_n = \frac{\pi}{\beta} \Gamma_n/\Delta$ is given for M equivalent channels with $g_1 = \ldots = g_M \equiv g$ by [20]

$$P_{M}^{(\beta)}(y) = \frac{(-1)^M}{(M-1)!} y^{M-1} \frac{d^M}{dy^M} \left\{ e^{-g y} \left(\sinh y \right) \right\}$$

For weak coupling $\gamma \ll 1$ we have $g \sim \gamma^{-1} \gg 1$ hence typically $y \sim g^{-1} \ll 1$ and we are back to the Porter-Thomas distribution [7]. In contrast, for the perfect coupling case $g = 1$ the power-law tail emerges $P_{M}^{(\beta)}(y) \propto 1/y^2$ so that some resonances may overlap strongly. This favourably agrees with the numerics for quantum chaotic graphs [21], see Fig.2. In fact not only the mean density of resonances, but also all

$$\text{Fig. 2. Top: 5000 resonances for a single realization of $\beta = 2$ chaotic scattering in quantum graphs (taken from T. Kottos and U. Smilansky [21]), Bottom: Resonance widths distribution as compared with the RMT analytical prediction (6).}$$

higher correlation functions can be found explicitly [22] as resonances form for $\beta = 2$ a determinantal process in the complex plane. For $\beta = 1$ only the mean density of resonances in the complex plane is known explicitly for $1 \leq M < \infty$ [23] and is given by a rather complicated expression. E.g. in the simplest case $M = 1$ the probability density of the scaled resonance widths y_n is given by

$$P_{M=1}^{(\beta=1)}(y) = \frac{1}{4\pi} \frac{d^2}{dy^2} \int_{-1}^1 (1 - \lambda^2) e^{2\lambda y (g - \lambda)} F(\lambda, y) d\lambda$$

where

$$F(\lambda, y) = \int_{g}^{\infty} dp_1 \frac{e^{-yp_1}}{(\lambda - p_1)^2 \sqrt{p_1^2 - 1}(p_1 - g)}$$

$$\times \int_{1}^{g} dp_2 (p_1 - p_2) \frac{e^{-yp_2}}{(\lambda - p_2)^2 \sqrt{(p_2^2 - 1)(g - p_2)}}$$

That formula was confirmed in microwave experiments by Kuhl et al. [24], see Fig.3.
Recently reported deviations from Porter-Thomas distribution in neutron scattering by Koechler et al. [12] stimulated many heuristic proposals to modify Porter-Thomas distribution beyond the small widths region. Motivated by that we analyzed the exact formulae for $\beta = 1$ in order to extract a non-perturbative asymptotics of $P(y)$ valid for $g \gg 1$ and any scaled widths y. For $M = 1$ and $y \sim (2\gamma)^{-1} \gg 1$ we have found [13]

$$P_{\beta=1}(y) = -\frac{d}{dy} \left(\Phi(y) \text{erfc}\sqrt{g y / 2} \right)$$

where $\text{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_z^\infty e^{-t^2} dt$ and the correction factor

$$\Phi(y) = \frac{1}{2} \left(K_0 \left(\frac{y}{2} \right) \cosh y - \sinh y \right) + K_1 \left(\frac{y}{2} \sinh y \right)$$

For small widths $\Phi(y \ll 1) \approx 1$ and we are back to the Porter-Thomas distribution [4].

Finally, due coupling to continuum statistics of the real parts Re z_n is significantly modified in comparison with eigen-frequencies E_n of the closed systems. Although no results derived from the first principles are yet available, an interesting generalization of the Wigner surmise to open system was suggested in [25], and compared with experimental data.

IV. RESONANCE EIGENFUNCTION NON-ORTHOGONALITY

The effective non-Hermitian Hamiltonian $H_{\text{eff}} = H - iWW^\dagger$ has a set of "right" $|R_n\rangle$ and "left" $|L_n\rangle$ eigenvectors:

$$H_{\text{eff}} |R_n\rangle = z_n |R_n\rangle, \quad H_{\text{eff}} |L_n\rangle = z_n |L_n\rangle$$

with bi-orthogonality properties:

$$\langle L_n | R_m \rangle = \delta_{mn}, \quad \sum_{n=1}^N |R_n\rangle \langle L_n | = 1$$

Note however that $\langle L_n | L_m \rangle \neq \delta_{mn} \neq \langle R_n | R_m \rangle$ showing that the eigenmodes of open systems are no longer orthogonal. The corresponding non-orthogonality overlap matrix

$$O_{mn} = \langle L_m | L_n \rangle \langle R_m | R_n \rangle$$

shows up in various physical observables of quantum chaotic systems, such as e.g. decay laws [26], "Petterman factors" describing excess noise in open laser resonators [27], as well as in sensitivity of the resonance widths to small perturbations [28]. RMT can be most efficiently applied to statistics of O_{mn} in the weak coupling regime $\gamma \ll 1$ of isolated resonances [27]–[29], or in the opposite case of strongly overlapping resonances in extremely open systems with number of open channels $M \sim N$ [30], [31]. Non-perturbative results for finite M are scarce and available only for $\beta = 2$ [27], [32].

A. Resonance widths "shifts" as a signature of non-orthogonality

Suppose we slightly perturb the scattering system: $H_{\text{eff}} \to H_{\text{eff}} + \alpha V$ (e.g. by moving scatterers, or billiard walls) with a Hermitian $V = V^\dagger$ and $\alpha \to 0$. The width of each resonance Γ_n changes typically linearly in the perturbation strength: $\delta \Gamma_n \propto \alpha$, and one can show that such "shifts" are non-vanishing only due to non-orthogonality of the resonance eigenfunctions [28]. In the regime of non-overlapping resonances one can further show that

$$\delta \Gamma_n = i \alpha \sum_{m \neq n} \frac{\langle m | G | m \rangle}{E_n - E_m}$$

where real eigenvalues E_n and orthonormal eigenvectors $|n\rangle$ characterize the "closed" chaotic system and

$$G = WW^\dagger |n\rangle \langle n| + V \langle n | V + V | n \rangle \langle n | WW^\dagger$$

One can use RMT results for E_n and $|n\rangle$ to derive the distribution of "shifts" $\delta \Gamma_n$, which shows a power-law tail [28] $\sim (\delta \Gamma_n)^{-1}\beta$. For experimental verification see [33].

![Fig. 4. Resonance widths "shifts" distribution for $\beta = 1, M = 1$ scattering in a microwave resonator.](image-url)
Resonances in systems with Anderson localization [45], see also references in [47].

Finally we mention growing interest in these questions in pure mathematics community, see e.g. [48].

REFERENCES

[1] U. Kuhl, O. Legrand, and F. Mortessagne, "Microwave experiments using open chaotic cavities in the realm of the effective Hamiltonian formalism," *Fortschr. Phys.*, vol. 61, pp. 414–419, February 2013

[2] G. Gradoni, J.-H. Yeh, B. Xiao, T.-M. Antonsen, S.-M. Anlage, and E. Ott, "Predicting the statistics of wave transport through chaotic cavities by the Random Coupling Model: a review and recent progress" *Wave Motion*, vol. 51, 606–621, June 2014

[3] B. Dietz and A. Richter, "Stadium and wave dynamical chaos in superconducting microwave billiards" *Chaos*, vol. 25, 097601, September 2015

[4] H. Cao and J. Wiersig, "Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics." Rev. Mod. Phys., vol. 87, 61—111, January-March 2015

[5] J. J. M. Verbaarschot, H.A. Weidenmüller and M.R. Zirnbauer, "Gaussian Orthogonal Ensemble: the case of compound-nucleus scattering" *Phys. Rev.*, vol. 129, pp.367–438, December 1985

[6] Y. V. Fyodorov and H.-J. Sommers, "Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance" *J. Math. Phys.*, vol. 38, pp. 1918–1981, April 1997

[7] Y.V. Fyodorov, D.V. Savin, and H.-J. Sommers, "Scattering, reflection and impedance of waves in chaotic and disordered systems with absorption". *J. Phys. A: Math. Gen.*, vol. 38, 10731, November 2005

[8] Y.V. Fyodorov and D.V. Savin, "Resonance scattering in chaotic systems." in: *The Oxford Handbook of Random Matrix Theory*, editors: G. Akemann, J. Baik and P. Di Francesco. (Oxford: Oxford University Press, 2011) chapter 34, p 703

[9] C.E. Porter and R.G. Thomas, "Fluctuations of nuclear reaction widths" *Phys. Rev.*, vol. 104 483–491, October 1956

[10] H. Cao and J. Wiersig, "Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics." Rev. Mod. Phys., vol. 87, 61—111, January-March 2015

[11] C. Poli, G.A. Luna-Acosta, and H.-J. Stöckmann, "Nearest Level Spacing Statistics in Open Chaotic Systems: Generalization of the Wigner Surmise." *Phys. Rev. Lett.*, v.108, 174101, April 2012

[12] D.V. Savin, V.V. Sokolov, "Quantum versus classical decay laws in open chaotic systems" *Phys. Rev. E.*, vol.56, R48301, November 1997

[13] H. Schomerus, K.M. Frahm, M. Patra, C.W.J. Beenakker, "Quantum limit of the laser line width in chaotic cavities and statistics of residues of scattering matrix poles" *Physica A*, vol.278, 469–496, April 2000

[14] Y.V. Fyodorov and D.V. Savin, "Statistics of Resonance Width Shifts as a Signature of Eigenfunction Nonorthogonality" *Phys. Rev. Lett.*, v. 108, 184101, May 2012

[15] C. Poli, D.V. Savin, O. Legrand, F. Mortessagne, “Statistics of resonance states in open chaotic systems: A perturbative approach" *Phys. Rev. E*, vol. 80, 046203, October 2009

[16] R.A. Junik, W. Windl, G. Bereby, M. A. Nowak, G. Papp, I. Zahed, "Correlations of Eigenvalues for Non-Hermitian Random-Matrix Models." *Phys. Rev. E*, vol. 60, 2699, September 1999

[17] B. Mehlig and M. Santer, "Universal eigenvalue statistics in a quantum scattering ensemble." *Phys. Rev. E*, vol. 63, 020105(R), January 2001

[18] Y.V. Fyodorov and B. Mehlig, "Statistics of resonances and nonorthogonal eigenfunctions in a model for single-channel chaotic scattering," *Phys. Rev. E.*, vol. 66, 045202(R), October 2002

[19] J.-B. Gros, U. Kuhl, O. Legrand, F. Mortessagne, E. Richalot, and D. V. Savin, "Experimental width shift distribution: a test of nonorthogonality for local and global perturbations" *Phys. Rev. Lett.*, vol. 113, 224101, November 2014

[20] K. Zyczkowski and H-J. Sommers, "Truncations of random unitary matrices", *J. Phys. A: Math.Gen.*, vo.33, 2045 – 2057, March 2000

[21] H. Schomerus, K.M. Frahm, M. Patra, C.W.J. Beenakker, "Quantum limit of the laser line width in chaotic cavities and statistics of residues of scattering matrix poles" *Physica A*, vol. 278, 469–496, April 2000

[22] Y.V. Fyodorov and D.V. Savin, "Statistics of Resonance Width Shifts as a Signature of Eigenfunction Nonorthogonality" *Phys. Rev. Lett.*, v. 108, 184101, May 2012

[23] J.-B. Gros, U. Kuhl, O. Legrand, F. Mortessagne, E. Richalot, and D. V. Savin, "Experimental width shift distribution: a test of nonorthogonality for local and global perturbations" *Phys. Rev. Lett.*, vol. 113, 224101, November 2014

[24] B. Mehlig and M. Santer, "Universal eigenvalue statistics in a quantum scattering ensemble." *Phys. Rev. E*, vol. 63, 020105(R), January 2001

[25] Y.V. Fyodorov and H.-J. Sommers, "Spectra of random contractions and scattering theory for discrete-time systems." *JETP Lett.*, vol.72, 422-426, October 2000.

[26] M.R. Glück, A.R. Kolovsky, H.-J. Korsch, "Wannier–Stark resonances in optical and semiconductor superlattices." Phys. Rep., vol. 366, 103—182 August 2002

[27] J.P. Keating, M. Novaes, and H. Schomerus, "Model for chaotic dielectric microresonators." *Phys. Rev. A.*, vol. 77, 013834, January 2008

[28] W. T. Lu, S. Sridhar, and Maciej Zworski, "Fractal Weyl Laws for Chaotic Open Systems" *Phys. Rev. Lett.*, vol. 91, 154101, October 2003

[29] M. Novaes, "Resonance widths in quantum maps." *J. Phys. A: Math. Theor.* vol. 46, 143001 (28pp), 2013

[30] L. Wang, D. Lippolis, Z.-Y. Li, X.-F. Jiang, Q. Gong, and Y.-F. Xiao, "Statistics of Chaotic Resonances in an Optical Microcavity", *Phys. Rev. E* vol. 93, 040201(R), April 2016

[31] F. Borgonovi, I. Guarneri, D. Smalansky, "Statistics of quantum lifetimes in a classically chaotic system." *Phys. Rev. A*, vol. 43, 4517–4520, April 1991

[32] S. E. Skippetov and B. A. van Tiggelen, "Dynamics of Anderson Localization in Open 3D Media" *Phys. Rev. Lett.*, vol. 96, 043002, February 2006

[33] A. Goetschy and S. E. Skipetrov, "Non-Hermitian Euclidean random matrix theory". *Phys. Rev. E*, vol.84, 041130, July 2011

[34] G. L. Celardo, N. Auerbach, F. M. Izrailev, and G. Z. Velezinsky, "Distribution of Resonance Widths and Dynamics of Continuum Coupling". *Phys. Rev. Lett.*, v.106, 045201, January 2011

[35] M. Titov and Y.V. Fyodorov, "Time-delay correlations and resonances in one-dimensional disordered systems." *Phys. Rev. B*, vol. 61, R2444, January 2000

[36] M. Weiss, J. A. Mendez-Bermudez, and T. Kottos, "Resonance width distribution for high-dimensional random media." *Phys. Rev. B*, vol.73, 045103, January 2006

[37] E. Gurarie and B. Shapiro, "Statistics of resonances in one-dimensional disordered systems." *Lith. J. Phys.* vol.52, 115–125, February 2012

[38] R. Kozhan, "Rank one non-Hermitian perturbations of Hermitian Matrix ensembles." available at: http://arxiv.org/pdf/1510.04545.pdf