Comparison of four models for end-stage liver disease in evaluating the prognosis of cirrhosis

Ming Jiang, Fei Liu, Wu-Jun Xiong, Lan Zhong, Xi-Mei Chen

Abstract

AIM: To investigate the prognostic value of the model for end-stage liver disease (MELD) and three new MELD-based models combination with serum sodium in decompensated cirrhosis patients-the MELD with the incorporation of serum sodium (MELD-Na), the integrated MELD (iMELD), and the MELD to sodium (MESO) index.

METHODS: A total of 166 patients with decompensated cirrhosis were enrolled into the study. MELD, MELD-Na, iMELD and MESO scores were calculated for each patient following the original formula on the first day of admission. All patients were followed up at least 1 year. The predictive prognosis related with the four models was determined by the area under the receiver operating characteristic curve (AUC) of the four parameters. Kaplan-Meier survival curves were made using the cut-offs identified by means of receiver operating characteristic (ROC).

RESULTS: Out of 166 patients, 38 patients with significantly higher MELD-Na (28.84 ± 2.43 vs 14.72 ± 0.60), iMELD (49.04 ± 1.72 vs 35.52 ± 0.67), MESO scores (1.59 ± 0.82 vs 0.99 ± 0.42) compared to the survivors died within 3 mo (P < 0.001). Of 166 patients, 75 with markedly higher MELD-Na (23.01 ± 1.51 vs 13.78 ± 0.69), iMELD (44.06 ± 1.19 vs 34.12 ± 0.69), MESO scores (1.37 ± 0.70 vs 0.93 ± 0.40) than the survivors died within 1 year (P < 0.001). At 3 mo of enrollment, the iMELD had the highest AUC (0.841), and was followed by the MELD-Na (0.766), MESO (0.723), all larger than MELD (0.773); At 1 year, the iMELD still had the highest AUC (0.783), the difference between the iMELD and MELD was statistically significant (P < 0.05). Survival curves showed that the three new models were all clearly discriminated the patients who survived or died in short-term as well as intermediate-term (P < 0.001).

CONCLUSION: Three new models, changed with serum sodium (MELD-Na, iMELD, MESO) can exactly predict the prognosis of patients with decompensated cirrhosis for short and intermediate period, and may enhance the prognostic accuracy of MELD. The iMELD is better prognostic model for outcome prediction in patients with decompensated cirrhosis.

© 2008 The WJG Press. All rights reserved.

Key words: Cirrhosis; Model for end-stage liver disease; Serum sodium; Prognosis; Survival time

Peer reviewer: Jia-Yu Xu, Professor, Shanghai Second Medical University, Rui Jin Hospital, 197 Rui Jin Er Road, Shanghai 200025, China

Jiang M, Liu F, Xiong WJ, Zhong L, Chen XM. Comparison of four models for end-stage liver disease in evaluating the prognosis of cirrhosis. World J Gastroenterol 2008; 14(42): 6546-6550 Available from: URL: http://www.wjgnet.com/1007-9327/14/6546.asp DOI: http://dx.doi.org/10.3748/wjg.14.6546

INTRODUCTION

The model for end-stage liver disease (MELD) was developed as a prognostic model of short-term mortality in patients with cirrhosis treated with transjugular intrahepatic portosystemic shunt (TIPS)[1]. The scoring system has been widely applied in recent years and shown to predict mortality across a broad spectrum of liver diseases in most studies. But, there is not any parameter correlated with complications of cirrhosis in this formula. Its ability of prognosis is decreased. Some studies have indicated that serum sodium is the independent predictor of mortality in patients with cirrhosis[2,3]. And the incorporation of Na into the MELD may enhance its prognostic accuracy[4,5]. Then some scholars had successively introduced three new mathematical equations based on both MELD and Na,
known as the MELD with the incorporation of serum sodium (MELD-Na)\(^6\), the integrated MELD (iMELD) score\(^7\) and the MELD to sodium (MESO) index\(^8\). In this study, we compared the value of MELD and three new MELD-based models in combination with serum sodium in to evaluate the short-term and intermediate-term prognosis of decompensated cirrhosis patients through retrospective analysis of 166 decompensated cirrhosis cases.

MATERIALS AND METHODS

Patients

From October, 2005 to May, 2007, 166 patients with decompensated cirrhosis who had been in Department of Gastroenterology of Shanghai East Hospital affiliated to Tongji University were evaluated, and their medical profiles were retrospectively analyzed in this study. The clinical diagnosis was all based on the program of 2000 for the prevention and treatment of virus hepatitis established in Xi'an Congresses\(^9\). We excluded patients with past or current hepatocellular carcinoma, serious diseases in other systems, admission to hospital repeatedly and incomplete case records. This study included 105 (63.7\%) males and 61 (36.3\%) females, with mean age 62.3 ± 12.9 (range 29-87) years.

Clinical data

Baseline laboratory results of all the patients obtained at admission (i.e. serum bilirubin, serum creatinine, serum sodium, INR) were retrieved from the medical records. All patients were followed up for 1 year. The outcome was assessed as the 3-, 6- and 12-mo mortality.

Calculation of the MELD, MELD-Na, iMELD and MESO index

All prognostic models were calculated based on laboratory results obtained on the first day of admission. The MELD equation was used to calculate the severity score: \[9.6 \times \log_e(\text{creatinine (mg/dL)}) + 3.8 \times \log_e(\text{bilirubin (mg/dL)}) + 11.2 \times \log_e(\text{INR}) + 6.43\]\(^{10}\). The MELD-Na equation was based on the MELD and Na: \[\text{MELD} + 1.59 \times (135 - \text{Na})\]\(^9\), with maximum and minimum Na values of 135 and 120 mmol/L, respectively. The iMELD equation was based on the MELD score, age (years), and Na (mmol/L): \[\text{MELD} + (0.3 \times \text{age}) - (0.7 + \text{Na}) + 100\]\(^7\). The MESO index was defined as [MELD/Na (mmol/L)] × 10\(^9\).

Statistical analysis

All statistical analyses were conducted with the SPSS for Windows version 13 release. Categorical variables were compared by Pearson Chi-squared test and continuous variables were compared by Student's t-test. To assess the ability of the four MELD-based models in predicting the risk of mortality at 3, 6 and 12 mo, our analysis was performed by the measurement of the \(\hat{c}\)-statistic equivalent to the area under the receiver operating characteristic curve (AUC). The cumulative transplant-free survival at different cut-offs were performed by Kaplan-Meier analysis and compared by log rank test. \(P < 0.05\) was considered statistically significant.

RESULTS

Clinical features between the survival group and the death group

Thirty-eight (22.9\%) patients died at 3 mo, and 75 (45.2\%) patients died at 1 year. At 3 mo of enrollment, 38 patients with significantly higher MELD-Na (28.84 ± 2.43 vs 14.72 ± 0.60), iMELD (49.04 ± 1.72 vs 35.52 ± 0.67), MESO scores (1.59 ± 0.82 vs 0.99 ± 0.42) compared to the survivors died (\(P < 0.001\)). At 1 year of enrollment, 75 patients with markedly higher MELD-Na (23.01 ± 1.51 vs 13.78 ± 0.69), iMELD (44.06 ± 1.19 vs 34.12 ± 0.69), MESO scores (1.37 ± 0.70 vs 0.93 ± 0.40) than the survivors died within 1 year (\(P < 0.001\)). The differences of age and serum sodium, two parameters incorporated into three new models, between the survival group and the death group, were also statistically significant at 3 mo and 1 year, especially serum sodium (\(P < 0.001\)) (Table 1).

Comparison of the AUC and predictive accuracy between four MELD-based prognostic models

At 3 mo of enrollment, the iMELD had the highest AUC (0.841), followed by the MELD-Na (0.766), MESO (0.723) and MELD (0.712) (Figure 1A). At 6 mo and 1 year, the iMELD still had the highest AUC (0.806 and 0.783, respectively), followed by the MELD-Na (0.738 and 0.714, respectively), MESO (0.715 and 0.694, respectively) and MELD (0.708 and 0.689, respectively) (Figure 1B and C). The iMELD had a significantly higher AUC in comparison with MELD at 3 mo, 6 mo and 1 year (\(P < 0.05\)).

Kaplan-Meier fractional survival curves of MELD-Na, iMELD and MESO

The most discriminative cut-offs from the ROC with the \(\hat{c}\)-statistic and 1 year mortality for MELD-Na, iMELD and MESO were 20, 40 and 1.6, respectively. According to these cut-offs, survival curves are given in Figure 2. The cut-offs of three new models were indicated to discern between the patients who would be survived and dead in 3 mo and 1 year (\(P < 0.001\)).

DISCUSSION

MELD was initially created to predict survival following elective placement of TIPS\(^1\). The MELD scoring system has been widely applied in recent years and shown to predict mortality across a broad spectrum of liver diseases in most studies\(^11-14\). MELD has been demonstrated to have a better ability in short-term or intermediate-term outcome prediction in comparison with the Child-Turcotte-Pugh (CPT) system\(^15-17\). Nonetheless, MELD still has potential limitations\(^18-21\). Hepatic encephalopathy, esophageal varice bleeding and spontaneous bacterial peritonitis are common
complications with cirrhosis, which had been considered one of the allocation policies of liver providing. The patients with these complications all had relatively ideal long-term survival rates. But, there is no parameter correlated with these complications in MELD. Portal hypertension is responsible for above-mentioned complications\(^\text{[22,23]}\). Hyponatremia is a common event in liver cirrhosis. It develops primarily as a result of free water retention, which is positively correlated with the severity of portal hypertension\(^\text{[24]}\). Consequently, the serum sodium (SNa) level may inversely reflect the severity of portal hypertension. Those with low MELD scores who have persistent ascites and low SNa are at a disadvantage. This group of patients has a higher mortality than that predicted by the MELD score alone\(^\text{[15]}\). Many studies have proposed serum sodium can be used to exactly evaluate the prognosis and mortality of patients with cirrhosis, which is objective, quantitative, and reproducible. The incorporation of Na into the MELD may enhance prognostic accuracy\(^\text{[4,5,25]}\).

In 2006, Biggins et al\(^\text{[6]}\) first established “MELD-Na”. Under the new system, a patient with serum Na of...
showed no significant differences. The research should be improved more thoroughly and objectively using larger series of patients.

In conclusion, three new models combination with serum sodium (MELD-Na, iMELD, MESO) can all exactly predict the prognosis of patients with decompensated cirrhosis for short and intermediate period, and may enhance the prognostic accuracy of MELD. The iMELD is better prognostic model for outcome prediction in patients with decompensated cirrhosis.

ACKNOWLEDGMENTS

The authors thank all colleagues in the Medical Record Library and the Department of Clinical Laboratory of Shanghai East Hospital Affiliated to Tongji University for their help in the work of data collection.

COMMENTS

Background

The model for end-stage liver disease (MELD) has been widely applied in recent years and shown to predict mortality across a broad spectrum of liver diseases. But MELD still has potential limitations and its ability of prognosis is decreased. In order to further improve the formula, many researches have been performed recent years.

Research frontiers

Some studies have indicated that serum sodium is the independent predictor of mortality in patients with cirrhosis. And the incorporation of Na into the MELD may enhance its prognostic accuracy. Some scholars had successively introduced three new mathematical equations based on both MELD and Na.

Innovations and breakthroughs

Limited data are available for a direct comparison of the performance of the MELD-Na and MELD, and the predictive ability of the other models has not yet been confirmed. In this study, authors compare the short- and intermediate-term prognostic ability of the 4 models-MELD, MELD-Na, IMELD, and MESO index - in a single institute to determine if Na-containing MELD systems have a better predictive accuracy in patients with cirrhosis.

Applications

The result of our study showed the prognostic value of the four models for end-stage liver disease. It will provide us the ideal formula which can exactly evaluate the prognosis of cirrhosis in clinic.

Terminology

The area under a receiver operating characteristic (ROC) curve (AUC) is a commonly used index for summarizing the ability of a continuous diagnostic test to discriminate between healthy and diseased subjects.

Peer review

This is a good paper with some practical value. The authors investigated the prognostic value of MELD and three new MELD-based models combination with serum sodium in decompensated cirrhosis patients.

REFERENCES

1 Kamath PS, Wiesner RH, Malinchoc M, Kremers W, Therneau TM, Kosberg CL, D’Amico G, Dickson ER, Kim WR. A model to predict survival in patients with end-stage liver disease. Hepatology 2001; 33: 464-470

2 Wang YW, Zhao TI, Yang YY, Hou MC, Lee PC, Lin HC, Lee FY, Chi CW, Lee SD. Correlation and comparison of the model for end-stage liver disease, portal pressure, and serum sodium for outcome prediction in patients with liver cirrhosis. J Clin Gastroenterol 2007; 41: 706-712

3 Selcuk H, Urcu I, Temel MA, Ocal S, Huddam B, Korkmaz M, Unal H, Kanbay M, Savas N, Gur G, Yilmaz U, Haberal M. Factors prognostic of survival in patients awaiting liver
transplantation for end-stage liver disease. Dig Dis Sci 2007; 52: 3217-3223

4. Biggs SW, Rodriguez HJ, Bacchetti P, Bass NM, Roberts JP, Terrault NA. Serum sodium predicts mortality in patients listed for liver transplantation. Hepatology 2005; 41: 32-39

5. Ruf AE, Kremers WK, Chavez LL, Descalzi VI, Podesta LG, Villamil FG. Addition of serum sodium into the MELD score predicts waiting list mortality better than MELD alone. Liver Transpl 2005; 11: 336-343

6. Biggs SW, Kim WR, Terrault NA, Saab S, Balan V, Schiano T, Benson J, Therneau T, Kremers W, Wiesner R, Kamath P, Klintmalm G. Evidence-based incorporation of serum sodium concentration into MELD. Gastroenterology 2006; 130: 1652-1660

7. Luca A, Angermayr B, Bertolini G, Koenig F, Vizzini G, Ploner M, Peck-Radosavljevic M, Gridelli B, Bosch J. An integrated MELD model including serum sodium and age improves the prediction of early mortality in patients with cirrhosis. Liver Transpl 2007; 13: 1174-1180

8. Huo TI, Wang YW, Yang YY, Lin HC, Lee FC, Hou MC, Lee FY, Lee SD. Model for end-stage liver disease score to serum sodium ratio index as a prognostic predictor and its correlation with portal pressure in patients with liver cirrhosis. Liver Int 2007; 27: 498-506

9. The societies of communicable diseases and parasitic diseases of Chinese Medical Association. The program for the prevention and treatment of virus hepatitis. Zhonghua Ganzuorong Za Zhi 2000; 8: 324-329

10. Wiesner R, Edwards E, Freeman R, Harper A, Kim R, Kamath P, Kremers W, Lake J, Howard T, Merion RM, Wolfe RA, Krom R. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 2003; 124: 91-96

11. Dunn W, Jamil LH, Brown LS, Wiesner RH, Kim WR, Menon KV, Malinchoc M, Kamath PS, Shah V. MELD accurately predicts mortality in patients with alcoholic hepatitis. Hepatology 2005; 41: 353-358

12. Ahmad J, Downey KK, Akoad M, Cacciarelli TV. Impact of the MELD score on waiting time and disease severity in liver transplantation in United States veterans. Liver Transpl 2007; 13: 1564-1569

13. Huo TI, Wu JC, Lin HC, Lee FY, Hou MC, Lee PC, Chang FY, Lee SD. Evaluation of the increase in model for end-stage liver disease (DeltaMELD) score over time as a prognostic predictor in patients with advanced cirrhosis: risk factor analysis and comparison with initial MELD and Child-Turcotte-Pugh score. J Hepatol 2005; 42: 826-832

14. Yu JW, Wang GQ, Li SC. Prediction of the prognosis in patients with acute-on-chronic hepatitis using the MELD scoring system. J Gastroenterol Hepatol 2006; 21: 1519-1524

15. Srikureja W, Kyulo NL, Runyon BA, Hu KQ. MELD score is a better prognostic model than Child-Turcotte-Pugh score or Discriminant Function score in patients with alcoholic hepatitis. J Hepatol 2005; 42: 700-706

16. Durand F, Valla D. Assessment of the prognosis of cirrhosis: Child-Pugh versus MELD. J Hepatol 2005; 42 Suppl: S100-S107

17. Liu F, Xiong WJ, Liu YB. The value of delta model of end stage liver disease in predicting the prognosis of patients with decompensated liver cirrhosis. Zhonghua Xiaohua Za Zhi 2007; 27: 371-373

18. Mishra P, Desai N, Alexander J, Singh DP, Sawant P. Applicability of MELD as a short-term prognostic indicator in patients with chronic liver disease: an Indian experience. J Gastroenterol Hepatol 2007; 22: 1232-1235

19. Neuberger J. Allocation of donor livers--is MELD enough? Liver Transpl 2004; 10: 908-910

20. Freeman RB. MELD: the holy grail of organ allocation? J Hepatol 2005; 42: 16-20

21. Cholongitas E, Senzolo M, Triantos C, Samonakis D, Patch D, Burroughs AK. MELD is not enough--enough of MELD? J Hepatol 2005; 42: 475-477; author reply 478-479

22. Bosch J, Garcia-Pagan JC. Complications of cirrhosis. I. Portal hypertension. J Hepatol 2000; 32: 141-156

23. Ripoll C, Banares R, Rincon D, Catalina MV, Lo Iacono O, Salcedo M, Clemente G, Nunez O, Matilla A, Molinero LM. Influence of hepatic venous pressure gradient on the prediction of survival of patients with cirrhosis in the MELD Era. Hepatology 2005; 42: 793-801

24. Freeman RB, Wiesner RH, Edwards E, Harper A, Merion R, Wolfe R. Results of the first year of the new liver allocation plan. Liver Transpl 2004; 10: 7-15

25. Heuman DM, Abou-Assi SG, Habib A, Williams LM, Stravitz RT, Sanyal AJ, Fisher RA, Mihas AA. Persistent ascites and low serum sodium identify patients with cirrhosis and low MELD scores who are at high risk for early death. Hepatology 2004; 40: 802-810

26. Kim SY, Yim HJ, Lee J, Lee BJ, Kim DL, Jung SW, Han WS, Lee JS, Koo JS, Seo YS, Yoon JE, Lee HS, Lee SW, Um SH, Byun KS, Choi JH, Ryu HS. [Comparison of CTP, MELD, and MELD-Na scores for predicting short term mortality in patients with liver cirrhosis] Korean J Gastroenterol 2007; 50: 92-100

27. Wong VW, Chion AM, Wong GL, Sung JJ, Chan HL. Performance of the new MELD-Na score in predicting 3-month and 1-year mortality in Chinese patients with chronic hepatitis B. Liver Transpl 2007; 13: 1228-1235

28. Huo TI, Lin HC, Huo SC, Lee PC, Wu JC, Lee FY, Hou MC, Lee SD. Comparison of four model for end-stage liver disease-based prognostic systems for cirrhosis. Liver Transpl 2008; 14: 837-844

29. Gines P, Quintero E, Arroyo V, Teres J, Bruguera M, Rimola A, Caballeria J, Rodes J, Rozman C. Compensated cirrhosis: natural history and prognostic factors. Hepatology 1987; 7: 122-128

30. de Jongh FE, Janssen HL, de Man RA, Hop WC, Schalm SW, van Blankenstein M. Survival and prognostic indicators in hepatitis B surface antigen-positive cirrhosis of the liver. Gastroenterology 1992; 103: 1630-1635

31. D’Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol 2006; 44: 217-231

S-Editor Li DL L-Editor Kumar M E-Editor Ma WH