Abstract

High school students are very seldomly, if at all, taught that race is a social rather than biological construct, and this pedagogical omission has led to biological essentialism. Biological essentialism is the belief that race can be used in predictable ways to determine intellect and/or behavior. Biological essentialism can result in the belief that unscientifically proven racial stereotypes are true. Much work is needed to support the teaching of a scientifically accurate understanding of human diversity in high school biology courses. It is of paramount importance that students are engaged in instruction that addresses racial misconceptions before they graduate from high school and enter society as leaders, lawmakers, and civically active members. Missed instructional opportunities can result in the perpetuation of racial stereotypes that fuel systemic racism. The following is a culturally responsive 5E lesson “Reimagining a Culture of Equality” (R.A.C.E.). R.A.C.E. lessons are lesson models designed by the author to promote accurate teaching and understanding of human diversity, ultimately resulting in a more tolerant and scientifically literate learner.

Key Words: race; genetics; 5E; secondary biology lesson; argumentation.

Introduction

The year 2020 was quite a historic year for several reasons. This was the year the world became aware of two global pandemics—one being COVID-19 and the second being systemic racism (Laurencin & Walker, 2020). The end of 2020 saw progress with COVID-19 as scientists made huge gains in the production of vaccine to treat the viral epidemic; however, the remedy for the racial pandemic is still unresolved. Unlike a viral infection, the solution for racism cannot be manufactured in a lab and injected into people’s bodies; as it is a social issue rather than a biological one, it will require social interventions to reach a solution.

Racial stereotypes are often perpetuated by misconceptions about the variations or differences among humans and the idea that these differences are related to a person’s intelligence, behavior, and/or attitudes (Dar-Nimrod & Heine, 2011; Donovan, 2016a, 2016b; Donovan et al., 2019; Hubbard, 2017). The concepts of race and racial stereotypes are not based on scientific evidence. It is important to note that the way genetics is currently taught within high school biology courses has been shown to reinforce misconceptions about race (Donovan, 2016b; Donovan et al., 2019), contributing to the belief that there are inherent differences between humans based on the color of their skin. Many biology textbooks and curriculum do not accurately reflect modern scientific knowledge that distinguishes race (i.e., social grouping based on skin color) from human biological diversity (i.e., naturally occurring differences among members of human species) (Donovan, 2015; Morning, 2008).

For example, areas that are hot and moist, such as tropical environments, can be a great habitat for mosquitoes. People in areas that have higher numbers of mosquitoes due to environmental conditions are more susceptible to diseases that can be spread by mosquitoes such as malaria. Having sickle cell anemia, a genetic condition that causes red blood cells to have an irregular shape, can reduce an individual’s chances of contracting malaria. Therefore, people living in parts of the world where malaria cases are higher (e.g., Mediterranean regions, Sub-Saharan Africa, the Middle East, Asia, and the Caribbean) have experienced selective pressures that have increased the number of individuals with sickle cell anemia. This as an evolutionary response of adapting to one’s environment that is not based on race or the color of a person’s skin (Jarrett et al., 2016). However, many high school biology textbooks simply state that sickle cell anemia is prevalent among African Americans without explaining the environmental conditions related to the disease (Donovan, 2016b, p. 380). Research shows that diseases, such as sickle cell anemia, are taught to be more prevalent among certain racial groups (African Americans) this can lead to misconceptions (Jarrett et al., 2016). The result of such teaching is that students then believe that other traits (e.g., intelligence or behavior) can also be linked to race (Donovan, 2015; Donovan et al., 2019).
Belief in racial stereotypes has led to unfair segregation laws (Welton et al., 2015), overpolicing of people of color (Adedoyin et al., 2019), and even harsher school discipline outcomes for students of color when compared to their white counterparts (Laurencin & Walker, 2020). Therefore, it is necessary that science teachers engage in instruction that addresses the racial misconceptions students possess before they graduate high school and enter society as leaders, lawmakers, and civicly active members of the community. Missed instructional opportunities can result in the perpetuation of racial stereotypes that fuel systemic racism.

It is in the interest of those seeking to support students’ knowledge with accurate instruction on race and human diversity to revisit the ways in which the topic of race is being taught, or not taught, in high school biology courses. Researchers have hypothesized that because the secondary science course serves as the basis of many students’ understandings of complex issues related to human biology, this course is the ideal place for lessons addressing unscientific ideas about race (Dawson & Venville, 2013; Donovan, 2015, 2016a; Donovan et al., 2019).

R.A.C.E. Lessons

Reimagining a Culture of Equality lessons, or R.A.C.E. lessons, allow students to explore the social construction of race alongside science academic content. This R.A.C.E. lesson is the first of a series of lessons developed by educational researcher Uchenna Emenaha to promote students’ ability to critically think about the ways racial stereotypes impact society. R.A.C.E. lessons are comprised of three main components: establishing norms, providing students with appropriate language to communicate, and encouraging student usage of evidence-based resources to support claims and ideas. Additionally, R.A.C.E. lessons are grounded in culturally responsive pedagogy (CRP) and social constructivism.

CRP is a framework of teaching whereby the teacher adheres to three core tenets: first, the belief that all students can learn; next, the incorporation of students’ lived experiences into instruction; and finally, the development of students’ sociopolitical consciousness (Ladson-Billings, 1995). Within this R.A.C.E. lesson, students will be encouraged to examine their own ideas about race and how these ideas have impacted the way they view themselves and others. It is highly recommended that students already have covered Next Generation Science Standards on “Inheritance and Variations of Traits” prior to engaging in this R.A.C.E. lesson. “Using Pop Culture to Teach Genetics: Revisiting Patterns of Inheritance Using Students’ Favorite Celebrity Couples” is an example of a lesson that can be taught prior to this lesson (Emenaha, 2020) (see also Teaching Resources in this article). The lesson in this article can serve as a great way to extend what students have learned about inheritance and variations of traits.

R.A.C.E. lessons also utilize social constructivism, as they allow students to build upon previous knowledge and acquire new knowledge through small and whole-group discussions (Chapinich et al., 2015). Discussing race might appear controversial or intimidating; the aim of this article is to provide teachers with tools to make discussing race in the classroom less intimidating.

Setting the Stage

The first step in any R.A.C.E. lesson is to set the stage by ensuring students approach the lesson respectful of the ideas and identities of their fellow classmates. One way to develop a safe and inclusive classroom space is to set norms for student interactions. Norms are guidelines that govern student expectations throughout the lesson (Rabin & Grinell, 2016). Teachers can use current classroom behavioral expectations as a springboard for setting the R.A.C.E. lesson norms.

NORMS should include three major components. First, students should know that the lessons are not designed to change their beliefs or influence their value system. Rather these lessons aim to develop and refine their scientific thinking. Second, students should use appropriate language when making statements and ask questions by utilizing appropriate sentence stems. Providing students with sentence stems such as “I am struggling to understand…” instead of “I don’t want to sound racist but …” are examples that Amelia Hubbard (2017, p. 517) recommends in her work on discussing race in the classroom setting. R.A.C.E. lessons go beyond the textbook and incorporate authentic sources within instruction, such as current news articles, interviews with researchers, or student-friendly science journals. This helps with the third component of R.A.C.E. lessons, which features students using evidence when making statements or claims during class discourse. This is an important step as it helps students shift away from opinions and rely more on scientific evidence.

It is important to facilitate instruction that makes the classroom a safe space for students to share ideas. R.A.C.E. lessons are designed to consider students’ socioemotional needs and allow students to freely exchange academic ideas as well as personal experiences related to race and society. As students engage in instruction, they might realize that some ideas they hold about race might be inaccurate; this can cause backfiring, or the rejecting of information being presented as a personal defense mechanism (Lewandowsky et al., 2012). Teachers can implement strategies to reduce the likelihood of this occurring by removing students from the center of the conversation. The use of fictional characters aids in student conversation and allows more freedom to ask questions; students are not presenting questions from their perspective but rather asking as a scientist analyzing the views of others. One activity presented in this article uses three characters as a springboard to support students in questioning and discussing within the lesson.

Finally, when teaching R.A.C.E. lessons it is important for teachers to affirm students’ worldviews, such as their cultural and ethnic affiliations or traditions. This can be done by acknowledging that although race is a social construct and not scientifically based, social constructs are not inherently negative. It is perfectly fine for someone to identify with a particular race or group, but the important thing to keep in mind is that racial groups are socially based and are not reliable ways to predict intellect, behavior, or make judgments about others. Explain to students that using race to make assumptions about others is problematic because this can result in ethnocentrism, inaccurate understanding of inheritable and/or noninheritable traits, implicit bias promotion, and ignoring of individual differences in others (Ames et al., 2012; McCauley et al., 1980; Starck et al., 2020). By presenting lessons in an affirming way, educators will be teaching in a culturally responsive manner.

Lesson Sequence

Instruction for the lesson was written using a 5E lesson framework (Bybee & Landes, 1990). The 5E lesson structure consists of five distinct parts taught in the following order: engage (i.e., create interest in the topic), explore (i.e., allow students to construct
Table 1. Summary of lesson on race and human diversity.

SE Lesson Component	Description of Activities & Content	Approximate Duration
Engage	Activity 1: “How Are They Similar?” game Activity 2: Comparing images	20 minutes 20 minutes
Explore	Activity 3: Sorting People game	15 minutes
Explain	Activity 4: “There’s No Scientific Basis for Race” reading and activity sheet Activity 5: The Biology of Skin Color video Activity 6: The Myth about Race Debunked in 3 Minutes video	60 minutes 20 minutes 15 minutes
Elaborate	Activity 7: Each group will be provided with articles to research evidence to support or refute the big question. Activity 8: “Race and Human Diversity Discussion Questions” handout	120 minutes 30 minutes
Evaluate	“CER Final Prompt”	45 minutes

meaning from previous experience), explain (i.e., provide academic language associated with the lesson), elaborate (i.e., give opportunities to students to apply what they know to a different but similar scenario), and evaluate (i.e., assess student learning independently) (Idsardi et al., 2019). The 5E lesson design was used to support student inquiry and appropriate scaffolding of content (see Table 1). This lesson is designed to support students in applying genetics content they have learned to real-life issues. Supplemental Material mentioned within the lesson can be found with the online version of this article.

○ Engage

Activity 1

Place students in cooperative groups of three to four students. Each group will need one set of cards from the “How Are They Similar?” activity (see Supplemental Material). Provide students with five to ten minutes to create a grouping system to categorize the people on their cards before calling on each group to share the system they created. Next have students review the terms phenotype and genotype. Guide students to provide examples of phenotypes that can distinguish one person from another—popular answers might include eye color, hair texture, or skin color. Proceed by asking students, “From the list of phenotypes, which one are often used to group or categorize people?” Acknowledge students’ answers and point out commonalities in students’ responses.

Activity 2

Ask students, “Can siblings with the same parents be different races?” Allow students to answer without affirming or negating any responses, but do show appreciation for their contributions. Next display the image of twins with different skin colors (Figure 1). You might also opt to show students the National Geographic April 2019 special edition cover story of the same twins as an additional resource for this portion of the lesson. Allow students to change or add to their previous responses by asking, “Are these sisters the same race? Why, or why not?” Once students have shared their responses ask students, “Can parents who are the same race have a child who is a different race?” After posing the question, show students a picture with a child and parents who have completely different skin colors; a good example of this can be found in the New York Post article,
“Black Parents Give Birth to White Baby” (Solis, 2010). Restate the last question and continue to have students expound on their answer to the question. Finally, have students attempt to define the term race. Students may or may not be able to provide a simple definition, and that is fine. This can be challenging because the definition of what constitutes race is fluid and has changed based on time, location, and other factors. The goal of this activity is to get students to start to question the notion that race is fixed and easily defined.

○ Explore

Activity 3

Ask students to consider how easy or difficult it is to determine someone’s race just by looking at them. Have students choose between “always easy,” “sometimes easy,” or “always difficult.” Explain to students that they will play a game to see how good they are at determining an individual’s race. When teaching this lesson, I have observed that students tend to overestimate their abilities to determine someone’s racial group by their appearance. Challenge students to show off their skills at identifying people by playing the Sorting People game (see Teaching Resources), one of the online resources for the PBS series RACE: The Power of an Illusion. The teacher may opt to allow students to play the game as a class or individually and report their scores (note, game requires Flash Media Player). During the game, students will be shown a series of individuals and will be asked to match them to a racial or ethnic group. At the conclusion of the game, students are given a score that tells them how accurate they were at sorting people by race.

The typical score for the game is often low because the individuals are not always the race or ethnic groups that one may assume. During the game remind students they are learning to talk in more scientific ways and to avoid making inappropriate stereotypical statements. Provide students with the following sentence stems: “I believe he/she is ______ because they have phenotypic features that I believe are common to people of that racial group” and “I believe he/she is ______ because they remind me of someone I know who is in that racial group.” These sentence stems can be helpful in replacing stereotypical or opinion-based phrases, such as “He/she looks Native American because that’s how they all look,” or “He/she is white because they have a white nose.” It is important to note that students do not have to provide justification for why they assign people to groups during the game; but providing these sentence stems can support students if they do choose to share their responses with their classmates.

The aim of the activity is to further challenge students’ ideas about the social construct of race. At the conclusion of the activity, explain to students that if they are starting to have questions on what exactly race is, they are not the first ones to face such challenges. Transition to the next part of the lesson by explaining that they will explore the historical context of race and that can shed some light on why it is not always so easy to place people into the one group or another.

○ Explain

Activity 4

Tell students that they will have an opportunity to learn more about the challenges facing society when people are grouped by their physical appearance. Place students in pairs and provide each group with a copy of the article “There’s No Scientific Basis for Race—it’s a Made-Up Label,” published in National Geographic magazine’s spring 2018 special issue on race. In addition to this article, also provide students with a copy of the corresponding student handout to complete as they read the article (see Supplemental Material). Instruct students to alternate reading each paragraph aloud. After reading each paragraph students should respond to question prompts. When they are finished, call on volunteers to share their answers.

Activity 5

A recommendation for independent practice during class or as an outside class activity is for students to watch the YouTube video The Biology of Skin Color and answer viewing questions (see Teaching Resources).

Activity 6

After students have completed the Activity 4 reading and/or Activity 5 viewing, have students watch the short YouTube video, The Myth of Race, Debunked in 3 Minutes. When playing videos in class, it is helpful to prime students (Emenaha & Perry, 2019) by letting them know what they should be looking for while watching the video. For this clip, students should be looking for how and why the definition of race has changed over time. Next students can answer the following statements: “Something new I have learned about race and human diversity is _______. According to scientists, the concept of race and human diversity is _______. A misconception that people in society believe about race is _______. I think it is/is not important to talk about race and human diversity in science class because _______.” This informal assessment of students’ understanding is important because it provides insights into questions and ideas that students possess at this point in the R.A.C.E. lesson.

○ Elaborate

Activity 7

Place students in groups of four to complete a jigsaw activity. Assign each group one of the recommended articles (see Readings for Activity 6) to read, and hand out copies of the reading to group members. Explain to students that they will become experts on their group article and will share that expertise with their classmates later on in the activity. As students read, they will be tasked with summarizing the author’s claims and identifying the evidence that is given to support the author’s claims using the “Reading Analysis Chart” student handout (see Supplemental Material). Have students alternate reading and pausing to discuss after each paragraph. Provide enough time for students to read, complete the handout, and review answers with their group. When groups are ready, place students in new groups ideally composed of one student from each of the article groups. Provide each student expert five minutes to share with their new group the information they read in their assigned article.

Activity 8

Lastly provide each group with the “Race and Human Diversity Discussion Questions” student handout (see Supplemental Material) to discuss and answer as a group. This activity provides students with three fictional characters with varying viewpoints on how society should view the topic of race and human diversity.
in conversation from the viewpoint of the characters in the reading will allow students to remove themselves from the conversation, while still being able to explore their ideas through the lens of the characters.

○ Evaluate

Students are now ready to complete their Claims, Evidence, Reasoning (CER) model prompt (see Supplemental Material) to assess what they have learned from this R.A.C.E. lesson. CER is an effective argumentation framework that allows students to scaffold their ideas as they develop a scientific claim (McNeill & Krajcik, 2011). Students will create a CER response to the following questions, “Should people in society classify one another by race? If so, why or why not?” Students’ answers may vary. Some students might believe that due to the historical use of race it is important to use it as a classification system to identify marginalized groups. Other students might argue that the use of race is not scientifically based and has caused more harm than good, thereby making a case against racial classification systems. Students should have the freedom to arrive at a claim they feel is reasonable and fair, as long as they provide scientific evidence from the articles and videos that support it.

○ Recommendations

Students might question what exactly is meant to say that race is a social construct and not biological. They might wonder, “If my skin tone is a social construct, then how did I inherit it from my parents?” To clarify this, explain that skin color (and other traits) is passed from parent to offspring; however, the use of this particular trait to group people and make assumptions about their similarities or differences is an idea that people have constructed in society (refer to Activity 2).

When explaining this to students, teachers may want to illustrate this concept with a similar and simpler scenario. For example, if society grouped people based on height today, we might have a tall-people group and a short-people group. Imagine if this scenario were true and one group was treated unfairly over many years because of their height. As a result, people today might have ideas and stereotypes that all tall people think and behave one way, that all short people think and behave in another way, and all members of each group think and behave in the same way as their groupmates. This obviously sounds ridiculous, but it is a very similar concept to grouping people by skin color.

In teaching this lesson it is important to realize that although race is a socially constructed grouping system, the realities of racism and racial tension are very real and are a part of many students’ lived experiences. It is important to stress that it is not bad for students to identify strongly with one’s racial category—however, it is important to know that differences are only skin deep. There is no race gene that makes people of one racial group all biologically the same or biologically different from other racial groups (Rosenburg, 2011). All humans share a common ancestry and are 99.9% genetically similar. A difference in skin color is just one of the many human variations such as height, eye color, and blood type that exists.

○ Conclusions

The four walls of the science classroom should not just teach content but also work to find ways to embed social issues such as race and human diversity into instruction; in doing so, teaching and learning take on a more culturally responsive approach. To say that an accurate understanding of race and human diversity is important is quite an understatement given the enormous impact that it has had on our society. To ensure outdated ways of seeing and understanding human diversity are addressed, learning and relearning must take place. One lesson does not completely solve all the challenges that are associated with stereotypes surrounding race in America, but it can make an impact in challenging students’ ways of thinking, as can be seen in previous research that provides evidence of reduced belief in racial stereotypes in the direct instruction on race and human diversity in high school biology instruction (Donovan, 2015, 2016a; Donovan et al., 2019). With the power that science has to shape society it is of paramount importance that science education, particularly in foundational science courses such as biology, be taught as accurately as possible.

○ Teaching Resources

Activities & Simulation

- Sorting People, PBS interactive website, https://www.pbs.org/race/002_SortingPeople/002_00-home.htm.
- “Using Pop Culture to Teach Genetics: Teaching Patterns of Inheritance Using Students’ Favorite Celebrity Couples,” The Science Teacher, 88(1), https://www.nsta.org/science-teacher/science-teacher-septemberoctober-2020/using-pop-culture-teach-genetics.

Videos

Segments of each video can easily be located on YouTube.
- The Biology of Skin Color, Nina Jablonski (HHMI BioInteractive, 2015) (19 min.)
- The Myth of Race, Debunked in 3 Minutes, Jenée Desmond Harris & Estelle Caswell (Vox, 2015) (3 min.)

Reading

- Kolbert, E. (2018, March 12). “There’s No Scientific Basis for Race—It’s a Made-Up Label,” National Geographic, https://www.nationalgeographic.com/magazine/2018/04/race-genetics-science-africa.

Readings for Activity 6

Race—The Power of an Illusion, Larry Adelman (California Newsreel & PBS, 2003), https://www.pbs.org/race/000_General/000_00-Home.htm.
- Race Timeline—Go Deeper (located in Background Readings in the society section).
- Racial Preference for Whites: The Houses That Racism Built (located in Background Readings in the society section).
- The Hidden Cost of Being African American (located in Background Readings in the society section).
- Suh, M. Classifying Race and Ethnicity, Pew Research Center (April 16, 2012), https://www.pewresearch.org/2012/04/16/classifying-race-and-ethnicity.
Supplemental Material

Supplemental resources can be found with the online version of this article.

References

Adedoyin, A.C., Moore, S.E., Robinson, M.A., Clayton, D.M., Boamah, D.A. & Harmon, D.K. (2019). The dehumanization of Black males by police: Teaching social justice—Black life really does matter! Journal of Teaching in Social Work, 39(2), 111–31.

Ames, D.R., Weber, E.U. & Zou, X. (2012). Mind-reading in strategic interaction: The impact of perceived similarity on projection and stereotyping. Organizational Behavior and Human Decision Processes, 117(1), 96–110.

Bybee, R. & Landes, N.M. (1990). Science for life and living: An elementary school science program from biological sciences improvement study. American Biology Teacher, 52(2), 92–98.

Chaipichit, D., Jantharajit, N. & Chookhampaen, S. (2015). Development of learning management model based on constructivist theory and reasoning strategies for enhancing the critical thinking of secondary students. Educational Research and Reviews, 10(16), 2329–30.

Clark, M., Stitt, C.L. & Segal, M. (1980). Stereotyping: From prejudice to prediction. Psychological Bulletin, 87(1), 195–208.

Dar-Nimrod, I. & Heine, S.J. (2011). Genetic essentialism: On the deceptive determinism of DNA. Psychological Bulletin, 137(5), 800–18.

Dawson, V. & Venville, G. (2013). Introducing high school biology students to argumentation about socioscientific issues. Canadian Journal of Science, Mathematics, and Technology Education, 13(4), 356–72.

Donovan, B.M. (2015). Reclaiming race as a topic of the U.S. biology textbook curriculum. Science Education, 99(6), 1092–117.

Donovan, B.M. (2016a). Framing the genetics curriculum for social justice: An experimental exploration of how the biology curriculum influences beliefs about racial difference. Science Education, 100(3), 586–616.

Donovan, B.M. (2016b). Learned inequality: Racial labels in the biology curriculum can affect the development of racial prejudice. Journal of Research in Science Teaching, 54(3), 379–411.

Donovan, B.M., Semmens, R., Keck, P., Brimhall, E., Busch, K.C., et al. (2019). Towards a more humane genetic education: Learning about the social and quantitative complexities of human genetic variations research could reduce bias in adolescents and adult populations. Science Education, 103(3), 529–60.

Emenaha, U. (2020). Using pop culture to teach genetics: Teaching patterns of inheritance using students’ favorite celebrity couples. Science Teacher 88(1).

Emenaha, U. & Perry, A.A. (2019). Lights, camera, and a call to action: Women in media help promote science identity in female students. Journal of Virginia Science Education, 12(2), 6–9.

Hubbard, A.R. (2017). Teaching race (bioculturally) matters: A visual approach for college biology courses. American Biology Teacher, 79(7), 516–24.

Idsardi, R., Hahn, A.D., Bokor, J.R. & Luft, J.A. (2019). Modifying scientific research into introductory science course lessons using a 5E lesson format: An active learning approach. Journal of College Science Teaching, 48(5), 14–21.

Jarrett, K., Williams, M., Horn, S., Radford, D. & Wyss, J.M. (2016). “Sickle cell anemia: Tracking down a mutation”: An interactive learning laboratory that communicates basic principles of genetics and cellular biology. Advances in Physiology Education, 40(1), 110–15.

Ladson-Billings, G. (1995). Toward a theory of culturally relevant pedagogy. American Educational Research Journal, 32(3), 465–91.

Laurencin, C.T. & Walker, J.M. (2020). A pandemic on a pandemic: Racism and COVID-19 in Blacks. Cell Systems, 11(1), 9–10.

Lewandowsky, S., Ecker, U.K., Seifert, C.M., Schwarz, N. & Cook, I. (2012). Misinformation and its correction: Continued influence and successful debiasing. Psychological Science in the Public Interest, 13(3), 106–31. https://doi.org/10.1177/1529100612451018.

McCauley, C., Stitt, C.L. & Segal, M. (1980). Stereotyping: From prejudice to prediction. Psychological Bulletin, 87(1), 195–208. https://doi.org/10.1037/0033-2909.87.1.195.

McNeill, K.L. & Krajcik, J.S. (2011). Supporting Grade 5–8 Students in Constructing Explanations in Science: The Claim, Evidence, and Reasoning Framework for Talk and Writing. Pearson.

Morning, A. (2008). Race in science and society: Biology textbooks, 1952–2002. American Journal of Sociology, 114(S1), 106–37.

Rabin, C. & Smith, G. (2016). My lesson plan was perfect until I tried to teach: Care ethics into practice in classroom management. Journal of Research in Childhood Education, 25(1), 111–21.

Rosenburg, N.A. (2011). A population-genetic perspective on the similarities and the differences among worldwide human population. Human Biology, 83(6), 659–69.

Soltis, Andy. “Black Parents Give Birth to White Baby.” New York Post, 21 July 2010. https://www.foxnews.com/top-news/1529100612451018.

Starck, J.G., Riddle, T., Sinclair, S. & Warikoo, N. (2020). Teachers are people too: Examining the racial bias of teachers compared to other American adults. Educational Researcher, 49(4), 273–84.

Welton, A.D., Harris, T.O., La Londe, P.G. & Moyer, R.T. (2015). Social justice education in a diverse classroom: Examining high school discussions about race, power, and privilege. Equity & Excellence in Education, 48(4), 549–70.

UCHENNA EMENAHA (uchenna.emenaha@utsa.edu, www.uchennaemenaha.com) is an assistant professor at The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249.