Commutators from a hyperplane of matrices

Clément de Seguins Pazzis∗†

May 7, 2014

Abstract

Denote by $M_n(K)$ the algebra of n by n matrices with entries in the field K. A theorem of Albert and Muckenhoupt states that every trace zero matrix of $M_n(K)$ can be expressed as $AB - BA$ for some pair $(A, B) \in M_n(K)^2$. Assuming that $n > 2$ and that K has more than 3 elements, we prove that the matrices A and B can be required to belong to an arbitrary given hyperplane of $M_n(K)$.

AMS Classification: 15A24, 15A30

Keywords: commutator; trace; hyperplane; matrices

1 Introduction

1.1 The problem

In this article, we let K be an arbitrary field. We denote by $M_n(K)$ the algebra of square matrices with n rows and entries in K, and by $\mathfrak{sl}_n(K)$ its hyperplane of trace zero matrices. The trace of a matrix $M \in M_n(K)$ is denoted by $\text{tr} M$. Given two matrices A and B of $M_n(K)$, one sets

$$[A, B] := AB - BA,$$

known as the commutator, or Lie bracket, of A and B. Obviously, $[A, B]$ belongs to $\mathfrak{sl}_n(K)$. Although it is easy to see that the linear subspace spanned by the

∗Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Mathématiques de Versailles, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
†e-mail address: dsp.prof@gmail.com
commutators is $\mathfrak{sl}_n(\mathbb{K})$, it is more difficult to prove that every trace zero matrix is actually a commutator, a theorem which was first proved by Shoda \cite{9} for fields of characteristic 0, and later generalized to all fields by Albert and Muckenhoupt \cite{1}. Recently, exciting new developments on this topic have appeared: most notably, the long-standing conjecture that the result holds for all principal ideal domains has just been solved by Stasinski \cite{10} (the case of integers had been worked out earlier by Laffey and Reams \cite{5}).

Here, we shall consider the following variation of the above problem:

Given a (linear) hyperplane \mathcal{H} of $M_n(\mathbb{K})$, is it true that every trace zero matrix is the commutator of two matrices of \mathcal{H}?

Our first motivation is that this constitutes a natural generalization of the following result of Thompson:

Theorem 1 (Thompson, Theorem 5 of \cite{11}). Assume that $n \geq 3$. Then, $[\mathfrak{sl}_n(\mathbb{K}), \mathfrak{sl}_n(\mathbb{K})] = \mathfrak{sl}_n(\mathbb{K})$.

Another motivation stems from the following known theorem:

Theorem 2 (Proposition 4 of \cite{8}). Let \mathcal{V} be a linear subspace of $M_n(\mathbb{K})$ with codim $\mathcal{V} < n - 1$. Then, $\mathfrak{sl}_n(\mathbb{K}) = \text{span}\{[A, B] \mid (A, B) \in \mathcal{V}^2\}$.

Thus, a natural question to ask is whether, in the above situation, every trace zero matrix is a commutator of two matrices of \mathcal{V}. Studying the case of hyperplanes is an obvious first step in that direction (and a rather non-trivial one, as we shall see).

An additional motivation is the corresponding result for products (instead of commutators) that we have obtained in \cite{8}:

Theorem 3 (Theorem 3 of \cite{8}). Let \mathcal{H} be a (linear) hyperplane of $M_n(\mathbb{K})$, with $n > 2$. Then, every matrix of $M_n(\mathbb{K})$ splits up as AB for some $(A, B) \in \mathcal{H}^2$.

1.2 Main result

In the present paper, we shall prove the following theorem:

Theorem 4. Assume that $\# \mathbb{K} > 3$ and $n > 2$. Let \mathcal{H} be an arbitrary hyperplane of $M_n(\mathbb{K})$. Then, every trace zero matrix of $M_n(\mathbb{K})$ splits up as $AB - BA$ for some $(A, B) \in \mathcal{H}^2$.
Let us immediately discard an easy case. Assume that \(\mathcal{H} \) does not contain the identity matrix \(I_n \). Then, given \((A, B) \in M_n(\mathbb{K})^2 \), we have

\[
[\lambda I_n + A, \mu I_n + B] = [A, B]
\]

for all \((\lambda, \mu) \in \mathbb{K}^2\), and obviously there is a unique pair \((\lambda, \mu) \in \mathbb{K}^2\) such that \(\lambda I_n + A\) and \(\mu I_n + B\) belong to \(\mathcal{H}\). In that case, it follows from the Albert-Muckenhoupt theorem that every matrix of \(\mathfrak{sl}_n(\mathbb{K})\) is a commutator of matrices of \(\mathcal{H}\). Thus, the only case left to consider is the one when \(I_n \in \mathcal{H}\). As we shall see, this is a highly non-trivial problem. Our proof will broadly consist in refining Albert and Muckenhoupt’s method.

The case \(n = 2\) can be easily described over any field:

Proposition 5. Let \(\mathcal{H} \) be a hyperplane of \(M_2(\mathbb{K}) \).

(a) If \(\mathcal{H} \) contains \(I_2 \), then \([\mathcal{H}, \mathcal{H}]\) is a 1-dimensional linear subspace of \(M_2(\mathbb{K}) \).

(b) If \(\mathcal{H} \) does not contain \(I_2 \), then \([\mathcal{H}, \mathcal{H}] = \mathfrak{sl}_2(\mathbb{K}) \).

Proof. Point (b) has just been explained. Assume now that \(I_2 \in \mathcal{H} \). Then, there are matrices \(A \) and \(B \) such that \((I_2, A, B)\) is a basis of \(\mathcal{H}\). For all \((a, b, c, a', b', c') \in \mathbb{K}^6\), one finds

\[
[aI_2 + bA + cB, a'I_2 + b'A + c'B] = (bc' - b'c)[A, B].
\]

Moreover, as \(A \) is a \(2 \times 2\) matrix and not a scalar multiple of the identity, it is similar to a companion matrix, whence the space of all matrices which commute with \(A \) is \(\text{span}(I_2, A)\). This yields \([A, B] \neq 0\). As obviously \(\mathbb{K} = \{bc' - b'c \mid (b, c, b', c') \in \mathbb{K}^4\} \), we deduce that \([\mathcal{H}, \mathcal{H}] = \mathbb{K}[A, B] \) with \([A, B] \neq 0\).

1.3 Additional definitions and notation

- Given a subset \(\mathcal{X} \) of \(M_n(\mathbb{K}) \), we set

\[
[\mathcal{X}, \mathcal{X}] := \{[A, B] \mid (A, B) \in \mathcal{X}^2\}.
\]

- The canonical basis of \(\mathbb{K}^n \) is denoted by \((e_1, \ldots, e_n)\).

- Given a basis \(\mathcal{B} \) of \(\mathbb{K}^n \), the matrix of coordinates of \(\mathcal{B} \) in the canonical basis of \(\mathbb{K}^n \) is denoted by \(P_\mathcal{B} \).
Given i and j in $[1, n]$, one denotes by $E_{i,j}$ the matrix of $M_n(\mathbb{K})$ with all entries zero except the one at the (i, j)-spot, which equals 1.

A matrix of $M_n(\mathbb{K})$ is cyclic when its minimal polynomial has degree n or, equivalently, when it is similar to a companion matrix.

The n by n nilpotent Jordan matrix is denoted by

$$J_n = \begin{bmatrix}
0 & 1 & (0) \\
& \ddots & \ddots \\
& & \ddots & 1 \\
(0) & & & 0
\end{bmatrix}.$$

A Hessenberg matrix is a square matrix $A = (a_{i,j}) \in M_n(\mathbb{K})$ in which $a_{i,j} = 0$ whenever $i > j + 1$. In that case, we set

$$\ell(A) := \{j \in [1, n - 1]: a_{j+1,j} \neq 0\}.$$

One equips $M_n(\mathbb{K})$ with the non-degenerate symmetric bilinear form

$$b : (M, N) \mapsto \text{tr}(MN),$$

to which orthogonality refers in the rest of the article.

Given $A \in M_n(\mathbb{K})$, one sets

$$\text{ad}_A : M \in M_n(\mathbb{K}) \mapsto [A, M] \in M_n(\mathbb{K}),$$

which is an endomorphism of the vector space $M_n(\mathbb{K})$; its kernel is the centralizer

$$\mathcal{C}(A) := \{M \in M_n(\mathbb{K}) : AM = MA\}$$

of the matrix A. Recall the following nice description of the range of ad_A, which follows from the rank theorem and the basic observation that ad_A is skew-symmetric for the bilinear form $(M, N) \mapsto \text{tr}(MN)$:

Lemma 6. Let $A \in M_n(\mathbb{K})$. The range of ad_A is the orthogonal of $\mathcal{C}(A)$, that is the set of all $N \in M_n(\mathbb{K})$ for which

$$\forall B \in \mathcal{C}(A), \text{ tr}(BN) = 0.$$
In particular, if A is cyclic then its centralizer is $\mathbb{K}[A] = \text{span}(I_n, A, \ldots, A^{n-1})$, whence $\text{Im}(\text{ad}_A)$ is defined by a set of n linear equations:

Lemma 7. Let $A \in M_n(\mathbb{K})$ be a cyclic matrix. The range of ad_A is the set of all $N \in M_n(\mathbb{K})$ for which

$$\forall k \in [0, n - 1], \, \text{tr}(A^k N) = 0.$$

Remark 1. Interestingly, the two special cases below yield the strategy for Shoda’s approach and Albert and Muckenhoupt’s, respectively:

(i) Let D be a diagonal matrix of $M_n(\mathbb{K})$ with distinct diagonal entries. Then, the centralizer of D is the space $D_n(\mathbb{K})$ of all diagonal matrices, and hence Imad_D is the space of all matrices with diagonal zero. As every trace zero matrix that is not a scalar multiple of the identity is similar to a matrix with diagonal zero [4], Shoda’s theorem of [9] follows easily.

(ii) Consider the case of the Jordan matrix J_n. As J_n is cyclic, Lemma [7] yields that $\text{Im}(\text{ad}_{J_n})$ is the set of all matrices $A = (a_{i,j}) \in M_n(\mathbb{K})$ for which

$$\sum_{k=1}^{n-\ell} a_{k+\ell,k} = 0 \quad \text{for all } \ell \in [0, n - 1].$$

In particular, if $A = (a_{i,j}) \in M_n(\mathbb{K})$ is Hessenberg, then this condition is satisfied whenever $\ell > 1$, and hence $A \in \text{Im}(\text{ad}_{J_n})$ if and only if $\text{tr} A = 0$ and $\sum_{k=1}^{n-1} a_{k+1,k} = 0$. Albert and Muckenhoupt’s proof is based upon the fact that, except for a few special cases, the similarity class of a matrix must contain a Hessenberg matrix A that satisfies the extra equation $\sum_{k=1}^{n-1} a_{k+1,k} = 0$.

2 Proof of the main theorem

2.1 Proof strategy

Let \mathcal{H} be a hyperplane of $M_n(\mathbb{K})$. We already know that $[\mathcal{H}, \mathcal{H}] = \mathfrak{sl}_n(\mathbb{K})$ if $I_n \not\in \mathcal{H}$. Thus, in the rest of the article, we will only consider the case when $I_n \in \mathcal{H}$.

Our proof will use three basic but potent principles:

(1) Given $A \in \mathfrak{sl}_n(\mathbb{K})$, if some $A_1 \in \mathcal{H}$ satisfies $A \in \text{Im}(\text{ad}_{A_1})$ and $C(A_1) \not\subset \mathcal{H}$, then $A \in [\mathcal{H}, \mathcal{H}]$. Indeed, in that situation, we find $A_2 \in M_n(\mathbb{K})$ such that
A = [A_1, A_2], together with some A_3 ∈ C(A_1) for which A_3 ∉ H. Then, the affine line A_2 + K A_3 is included in the inverse image of {A} by ad_{A_1} and it has exactly one common point with H.

(2) Let (A, B) ∈ sl_n(ℤ)^2 and λ ∈ ℤ. If there are matrices A_1 and A_2 such that A = [A_1, A_2] and tr(B A_1) = tr(B A_2) = 0, then we also have tr((B − λ A_1) A_2) = 0.

Indeed, equality A = [A_1, A_2] ensures that tr(A A_1) = tr(A A_2) = 0 (see Lemma 6).

(3) Let (A, B) ∈ M_n(ℤ)^2 and P ∈ GL_n(ℤ). Setting G := {B}^⊥, we see that the assumption A ∈ [G, G] implies PAP^−1 ∈ [PGP^−1, PGP^−1], while PGP^−1 = \{PBP^−1\}^⊥.

Now, let us give a rough idea of the proof strategy. One fixes A ∈ sl_n(ℤ) and aims at proving that A ∈ [H, H]. We fix a non-zero matrix B such that H = \{B\}^⊥.

Our basic strategy is the Albert-Muckenhoupt method: we try to find a cyclic matrix M in H such that A ∈ Im(ad_M); if A ∉ ad_M(H), then we learn that C(M) ⊂ H (see principle (1) above), which yields additional information on B. Most of the time, we will search for such a cyclic matrix M among the nilpotent matrices with rank n − 1. The most favorable situation is the one where A is either upper-triangular or Hessenberg with enough non-zero sub-diagonal entries: in these cases, we search for a good matrix M among the strictly upper-triangular matrices with rank n − 1 (see Lemma 8). If this method yields no solution, then we learn precious information on the simultaneous reduction of the endomorphisms X ↦ AX and X ↦ BX. Using changes of bases, we shall see that either the above method delivers a solution for a pair (A', B') that is simultaneously similar to (A, B), in which case Principle (3) shows that we have a solution for (A, B), or (I_n, A, B) is locally linearly dependent (see the definition below), or else n = 3 and A is similar to λI_3 + E_{2,3} for some λ ∈ ℤ.

When (I_n, A, B) is locally linearly dependent and A is not of that special type, one uses the classification of locally linearly dependent triples to reduce the situation to the one where B = I_n, that is H = sl_n(ℤ), and in that case the proof is completed by invoking Theorem 1. Finally, the case when A is similar to λI_3 + E_{2,3} for some λ ∈ ℤ will be dealt with independently (Section 2.5) by applying Albert and Muckenhoupt’s method for well-chosen companion matrices instead of a Jordan nilpotent matrix.
Let us finish these strategic considerations by recalling the notion of local linear dependence:

Definition 1. Given vector spaces U and V, linear maps f_1, \ldots, f_n from U to V are called locally linearly dependent (in abbreviated form: LLD) when the vectors $f_1(x), \ldots, f_n(x)$ are linearly dependent for all $x \in U$.

We adopt a similar definition for matrices by referring to the linear maps that are canonically associated with these matrices.

2.2 The basic lemma

Lemma 8. Let $(A, B) \in \mathfrak{sl}_n(\mathbb{K})^2$ be with $B = (b_{i,j}) \neq 0$, and set $\mathcal{H} := \{ B \}^\perp$. In each one of the following cases, A belongs to $[\mathcal{H}, \mathcal{H}]$:

(a) $\# \mathbb{K} > 2$, A is upper-triangular and B is not Hessenberg.

(b) $\# \mathbb{K} > 3$, A is Hessenberg and there exist $i \in [2, n - 1]$ and $j \in [3, n] \setminus \{ i \}$ such that $\{ 1, i \} \subset \ell(A)$ and $b_{j,1} \neq 0$.

Proof. We use a *reductio ad absurdum*, assuming that $A \not\in [\mathcal{H}, \mathcal{H}]$. We write $A = (a_{i,j})$.

(a) Assume that $\# \mathbb{K} > 2$, that A is upper-triangular and that B is not Hessenberg. We choose a pair $(l, l') \in [1, n]^2$ such that $b_{l,l'} \neq 0$, with $l - l'$ maximal for such pairs. Thus, $l - l' > 1$. Let $(x_1, \ldots, x_{n-1}) \in (\mathbb{K}^*)^{n-1}$, and set

$$
\beta := \frac{\sum_{k=1}^{n-1} b_{k+1,k} x_k}{b_{l,l'}} \quad \text{and} \quad M := \sum_{k=1}^{n-1} x_k E_{k,k+1} - \beta E_{l,l'}.
$$

We see that M is nilpotent of rank $n - 1$, and hence it is cyclic. One notes that $M \in \mathcal{H}$. Moreover, $\text{tr}(AM^k) = 0$ for all $k \geq 1$, because A is upper-triangular and M is strictly upper-triangular, whereas $\text{tr}(A) = 0$ by assumption. Thus, $A \in \text{Im}(\text{ad}_M)$. As it is assumed that $A \not\in \text{ad}_M(\mathcal{H})$, one deduces from principle (1) in Section 2.1 that $C(M) \subset \mathcal{H}$; in particular $\text{tr}(M^{l-l'}B) = 0$, which, as $b_{i,j} = 0$ whenever $i - j > l - l'$, reads

$$
b_{l-l'+1,1} x_1 x_2 \cdots x_{l-l'} + b_{l-l'+2,2} x_2 x_3 \cdots x_{l-l'+1} + \cdots + b_{n-n+l-l'+1} x_{n-l+l'} \cdots x_{n-1} = 0.
$$
Here, we have a polynomial with degree at most 1 in each variable x_i, and this polynomial vanishes at every $(x_1, \ldots, x_{n-1}) \in (\mathbb{K}^*)^{n-1}$, with $\#\mathbb{K}^* \geq 2$. It follows that $b_{i,j} = 0$ for all $(i, j) \in [1, n]^2$ with $i - j = l - l'$, and the special case $(i, j) = (l, l')$ yields a contradiction.

(b) Now, we assume that $\#\mathbb{K} > 3$, that A is Hessenberg and that there exist $i \in [2, n]$ and $j \in [3, n] \setminus \{i\}$ such that $\{1, i\} \subset \ell(A)$ and $b_{j,1} \neq 0$. The proof strategy is similar to the one of case (a), with additional technicalities. One chooses a pair $(l, l') \in [1, n]^2$ such that $b_{l,l'} \neq 0$, with $l - l'$ maximal for such pairs (again, the assumptions yield $l - l' \geq j - 1 > 1$). As $a_{2,1} \neq 0$, no generality is lost in assuming that $a_{2,1} = 1$. We introduce the formal polynomial

$$p := \sum_{k=1}^{n-2} a_{k+2,k+1} x_k \in \mathbb{K}[x_1, x_2, \ldots, x_{n-2}].$$

Let $(x_1, \ldots, x_{n-2}) \in (\mathbb{K}^*)^{n-2}$, and set

$$\alpha := p(x_1, \ldots, x_{n-2}) \quad \text{and} \quad \beta := \frac{\alpha b_{2,1} - \sum_{k=1}^{n-2} x_k b_{k+2,k+1}}{b_{l,l'}}.$$

Finally, set

$$M := -\alpha E_{1,2} + \sum_{k=1}^{n-2} x_k E_{k+1,k+2} + \beta E_{l,l'}.$$

The definition of M shows that $\text{tr}(MA) = \text{tr}(MB) = 0$, and in particular $M \in \mathcal{H}$. Assume now that $p(x_1, \ldots, x_{n-2}) \neq 0$. Then, M is cyclic as it is nilpotent with rank $n - 1$. As A is Hessenberg, we also see that $\text{tr}(M^k A) = 0$ for all $k \geq 2$. Thus, $\text{tr}(M^k A) = 0$ for every non-negative integer k, and hence Lemma 7 yields $A \in \text{Im}(\text{ad}_M)$. It ensues that $\mathcal{C}(M) \subset \mathcal{H}$, and in particular $\text{tr}(M^{j-1}B) = 0$. As $l - l' > 1$, we see that, for all $(a, b) \in [1, n]^2$ with $b - a \leq l - l'$, and every integer $c > 1$, the matrices M^c and $\left(-\alpha E_{1,2} + \sum_{k=1}^{n-2} x_k E_{k+1,k+2}\right)^c$ have the same entry at the (a, b)-spot; in particular, for all $k \in [2, n - j + 1]$, the entry of M^{j-1} at the $(k, j + k - 1)$-spot is $x_{k-1} x_k \cdots x_{k-3+j}$, and the entry of M^{j-1} at the $(1, j)$-spot is $-\alpha x_1 \cdots x_{j-2}$; moreover, for all $(a, b) \in [1, n]^2$ with $b - a \leq l - l'$ and $b - a \neq j - 1$, the entry of M^{j-1} at the (a, b)-spot is 0. Therefore, equality
We conclude that we have established the following identity: for the polynomial

\[q := p \times (-b_{j,1} p x_1 \cdots x_{j-2} + b_{j+1,2} x_1 \cdots x_{j-1} + b_{j+2,3} x_2 \cdots x_j + \cdots + b_{n,n-j+1} x_{n-j} \cdots x_{n-2}), \]

we have

\[\forall (x_1, \ldots, x_{n-2}) \in (K^*)^{n-2}, \quad q(x_1, \ldots, x_{n-2}) = 0. \]

Noting that \(q \) has degree at most 3 in each variable, we split the discussion into two main cases.

Case 1. \(\#K > 4 \).

Then, \(\#K^* > 3 \) and hence \(q = 0 \). As \(p \neq 0 \) (remember that \(a_{i+1,i} \neq 0 \)), it follows that

\[-b_{j,1} p x_1 \cdots x_{j-2} + b_{j+1,2} x_1 \cdots x_{j-1} + b_{j+2,3} x_2 \cdots x_j + \cdots + b_{n,n-j+1} x_{n-j} \cdots x_{n-2} = 0. \]

As \(b_{j,1} \neq 0 \), identifying the coefficients of the monomials of type \(x_1 \cdots x_{j-2} x_k \) with \(k \in [1, n-2] \setminus \{j \} \) leads to \(a_{k+2,k+1} = 0 \) for all such \(k \). This contradicts the assumption that \(a_{i+1,i} \neq 0 \).

Case 2. \(\#K = 4 \).

A polynomial of \(K[t] \) which vanishes at every non-zero element of \(K \) must be a multiple of \(t^4 - 1 \). In particular, if such a polynomial has degree at most 3, we may write it as \(\alpha_3 t^3 + \alpha_2 t^2 + \alpha_1 t + \alpha_0 \), and we obtain \(\alpha_3 = -\alpha_0 \).

From there, we split the discussion into two subcases.

Subcase 2.1. \(i > j \).

Then, \(q \) has degree at most 2 in \(x_{i-1} \). Thus, if we see \(q \) as a polynomial in the sole variable \(x_{i-1} \), the coefficients of this polynomial must vanish for every specialization of \(x_1, \ldots, x_{i-2}, x_i, \ldots, x_{n-2} \) in \(K^* \); extracting the coefficients of \((x_{i-1})^2 \) leads to the identity

\[\forall (x_1, \ldots, x_{i-2}, x_i, \ldots, x_{n-2}) \in (K^*)^{n-3}, \quad -b_{j,1} (a_{i+1,i})^2 x_1 \cdots x_{j-2} + r(x_1, \ldots, x_{n-2}) = 0 \]

where \(r = \sum_{k=i-j+1}^{n-j} a_{i+1,i} b_{j+k,k+1} x_k \cdots x_{i-2} x_i \cdots x_{j-2+k} \). Noting that the degree of \(-b_{j,1} (a_{i+1,i})^2 x_1 \cdots x_{j-2} + r \) is at most 1 in each variable, we deduce
that this polynomial is zero. This contradicts the fact that the coefficient of
\(x_1 \cdots x_{j-2}\) is \(-b_{j,1}(a_{i+1,i})^2\), which is non-zero according to our assumptions.

Subcase 2.2. \(i < j\).

Let us fix \(x_1, \ldots, x_{i-2}, x_i, \ldots, x_{n-2}\) in \(K^*\). The coefficient of \(q(x_1, \ldots, x_{i-2}, x_i, \ldots, x_{n-2})\) with respect to \((x_i)^3\) is

\[-b_{j,1}(a_{i+1,i})^2 x_1 \cdots x_{i-2} x_i \cdots x_{j-2}.

One the other hand, with

\[s := \sum_{i \leq k \leq n-j} b_{j+k,k+1} \prod_{\ell=k}^{j-2+k} x_\ell,
\]

the coefficient of \(q(x_1, \ldots, x_{i-2}, x_i, \ldots, x_{n-2})\) with respect to \((x_i)^0\) is

\[s(x_1, \ldots, x_{i-2}, x_i, \ldots, x_{n-2}) \sum_{k \in \{1, n-2\} \setminus \{i-1\}} a_{k+2,k+1} x_k.
\]

Therefore,

\[\forall (x_1, \ldots, x_{n-2}) \in (K^*)^{n-2},\]

\[b_{j,1}(a_{i+1,i})^2 x_1 \cdots x_{i-2} x_i \cdots x_{j-2} = s(x_1, \ldots, x_{i-2}, x_i, \ldots, x_{n-2}) \times \sum_{k \in \{1, n-2\} \setminus \{i-1\}} a_{k+2,k+1} x_k.
\]

On both sides of this equality, we have polynomials of degree at most 2 in each variable. As \(#(K^*) > 2\), we deduce the identity

\[b_{j,1}(a_{i+1,i})^2 x_1 \cdots x_{i-2} x_i \cdots x_{j-2} = s \times \sum_{k \in \{1, n-2\} \setminus \{i-1\}} a_{k+2,k+1} x_k.
\]

However, on the left-hand side of this identity is a non-zero homogeneous polynomial of degree \(j - 3\), whereas its right-hand side is a homogeneous polynomial of degree \(j\). There lies a final contradiction.
2.3 Reduction to the case when \(I_n, A, B \) are locally linearly dependent

In this section, we use Lemma 8 to prove the following result:

Lemma 9. Assume that \(\#\mathbb{K} > 3 \), let \((A, B) \in \text{sl}_n(\mathbb{K})^2 \) be such that \(B \neq 0 \), and set \(\mathcal{H} := \{B\}^\perp \). Then, either \(A \in [\mathcal{H}, \mathcal{H}] \), or \((I_n, A, B)\) is LLD, or \(A \) is similar to \(\lambda I_3 + E_{2,3} \) for some \(\lambda \in \mathbb{K} \).

In order to prove Lemma 9, one needs two preliminary results. The first one is a basic result in the theory of matrix spaces with rank bounded above.

Lemma 10 (Lemma 2.4 of [6]). Let \(m, n, p, q \) be positive integers, and \(\mathcal{V} \) be a linear subspace of \(M_{m+n}^p \mathbb{K} \times M_{p+n}^q \mathbb{K} \) in which every matrix splits up as

\[
M = \begin{bmatrix}
A(M) & [?]_{m \times q} \\
[0]_{p \times n} & B(M)
\end{bmatrix}
\]

where \(A(M) \in M_{m,n}(\mathbb{K}) \) and \(B(M) \in M_{p,q}(\mathbb{K}) \). Assume that there is an integer \(r \) such that \(\forall M \in \mathcal{V} \), \(\text{rk} M \leq r < \#\mathbb{K} \), and set \(s := \max\{\text{rk} A(M) \mid M \in \mathcal{V}\} \) and \(t := \max\{\text{rk} B(M) \mid M \in \mathcal{V}\} \). Then, \(s + t \leq r \).

Lemma 11. Assume that \(\#\mathbb{K} \geq 3 \). Let \(\mathcal{V} \) be a vector space over \(\mathbb{K} \) and \(u \) be an endomorphism of \(\mathcal{V} \) that is not a scalar multiple of the identity. Then, there are two linearly independent non-eigenvectors of \(u \).

Proof of Lemma 11. As \(u \) is not a scalar multiple of the identity, some vector \(x \in \mathcal{V} \setminus \{0\} \) is not an eigenvector of \(u \). Then, the 2-dimensional subspace \(P := \text{span}(x, u(x)) \) contains \(x \). As \(u|_P \) is not a scalar multiple of the identity, \(u \) stabilizes at most two 1-dimensional subspaces of \(P \). As \(\#\mathbb{K} > 2 \), there are at least four 1-dimensional subspaces of \(P \), whence at least two of them are not stable under \(u \). This proves our claim. \(\square \)

Now, we are ready to prove Lemma 9.

Proof of Lemma 9. Throughout the proof, we assume that \(A \not\in [\mathcal{H}, \mathcal{H}] \) and that there is no scalar \(\lambda \) such that \(A \) is similar to \(\lambda I_3 + E_{2,3} \). Our aim is to show that \((I_n, A, B)\) is LLD.

Note that, for all \(P \in \text{GL}_n(\mathbb{K}) \), no pair \((M, N) \in M_n(\mathbb{K})^2\) satisfies both \([M, N] = P^{-1}AP\) and \(\text{tr}((P^{-1}BP)M) = \text{tr}((P^{-1}BP)N) = 0 \).
Let us say that a vector $x \in \mathbb{K}^n$ has order 3 when $\text{rk}(x, Ax, A^2x) = 3$. Let $x \in \mathbb{K}^n$ be of order 3. Then, (x, Ax, A^2x) may be extended into a basis $\mathbf{B} = (x_1, x_2, x_3, x_4, \ldots, x_n)$ of \mathbb{K}^n such that $A' := P_\mathbf{B}^{-1} A P_\mathbf{B}$ is Hessenberg\footnote{One finds such a basis by induction as follows: one sets $(x_1, x_2, x_3) := (x, Ax, A^2x)$ and, given $k \in [4, n]$ such that x_1, \ldots, x_{k-1} are defined, one sets $x_k := Ax_{k-1}$ if $Ax_{k-1} \not\in \text{span}(x_1, \ldots, x_{k-1})$, otherwise one chooses an arbitrary vector $x_k \in \mathbb{K}^n \setminus \text{span}(x_1, \ldots, x_{k-1})$.}. Moreover, one sees that $\{1, 2\} \subset \ell(A')$. Applying point (a) of Lemma \ref{LemmaHessenberg} one obtains that the entries in the first column of $P_\mathbf{B}^{-1} B P_\mathbf{B}$ are all zero starting from the third one, which means that $Bx \in \text{span}(x, Ax)$.

Let now $x \in \mathbb{K}^n$ be a vector that is not of order 3. If x and Ax are linearly dependent, then x, Ax, Bx are linearly dependent. Thus, we may assume that $\text{rk}(x, Ax) = 2$ and $A^2x \in \text{span}(x, Ax)$. We split $\mathbb{K}^n = \text{span}(x, Ax) \oplus F$ and we choose a basis (f_3, \ldots, f_n) of F. For $\mathbf{B} := (x, Ax, f_3, \ldots, f_n)$, we now have, for some $(\alpha, \beta) \in \mathbb{K}^2$ and some $N \in M_{n-2}(\mathbb{K})$,

$$P_\mathbf{B}^{-1} A P_\mathbf{B} = \begin{bmatrix} K & [?]_{2 \times (n-2)} \\ [0]_{(n-2) \times 2} & N \end{bmatrix}$$

where $K = \begin{bmatrix} 0 & \alpha \\ 1 & \beta \end{bmatrix}$.

From there, we split the discussion into several cases, depending on the form of N and its relationship with K.

Case 1. $N \not\in \mathbb{K} I_{n-2}$.

Then, there is a vector $y \in \mathbb{K}^{n-2}$ for which y and Ny are linearly independent. Denoting by z the vector of F with coordinate list y in (f_3, \ldots, f_n), one obtains $\text{rk}(x, Ax, z, Az) = 4$, and hence one may extend (x, Ax, z, Az) into a basis \mathbf{B}' of \mathbb{K}^n such that $A' := P_\mathbf{B}'^{-1} A P_\mathbf{B}'$ is Hessenberg with $\{1, 3\} \subset \ell(A')$. Point (b) of Lemma \ref{LemmaHessenberg} shows that, in the first column of $P_\mathbf{B}'^{-1} B P_\mathbf{B}'$, all the entries must be zero starting from the fourth one, yielding $Bx \in \text{span}(x, Ax, z)$. As $N \not\in \mathbb{K} I_{n-2}$, we know from Lemma \ref{LemmaIdeal} that we may find another vector $z' \in F \setminus \mathbb{K} z$ such that $\text{rk}(x, Ax, z', Az') = 4$, which yields $Bx \in \text{span}(x, Ax, z')$. Thus, $Bx \in \text{span}(x, Ax, z) \cap \text{span}(x, Ax, z') = \text{span}(x, Ax)$.

Case 2. $N = \lambda I_{n-2}$ for some $\lambda \in \mathbb{K}$.

Subcase 2.1. λ is not an eigenvalue of K.

Then, $G := \text{Ker}(A - \lambda I_n)$ has dimension $n - 2$. For $z \in \mathbb{K}^n$, denote by p_z the monic generator of the ideal $\{q \in \mathbb{K}[t] : q(A)z = 0\}$. Recall that, given y and z in \mathbb{K}^n for which p_y and p_z are mutually prime, one has $p_{y+z} = p_y p_z$. In particular, as p_z has degree 2, p_z has degree 3 for every $z \in (\mathbb{K} x \oplus G) \setminus (\mathbb{K} x \cup G)$, that is every z in $(\mathbb{K} x \oplus G) \setminus (\mathbb{K} x \cup G)$ has order 3; thus, $\text{rk}(z, Az, Bz) \leq 2$ for all such z. Moreover, it is obvious that $\text{rk}(z, Az, Bz) \leq 2$ for all $z \in G$.

12
Let us choose a non-zero linear form φ on $\mathbb{K}x \oplus G$ such that $\varphi(x) = 0$. For every $z \in \mathbb{K}x \oplus G$, set

$$M(z) = \begin{bmatrix} \varphi(z) & 0 & 0 & 0 \\ 0_{n \times 1} & z & Az & Bz \end{bmatrix} \in \mathbb{M}_{n+1,4}(\mathbb{K}).$$

Then, with the above results, we know that $\text{rk} M(z) \leq 3$ for all $z \in \mathbb{K}x \oplus G$. On the other hand, $\max\{\text{rk} \varphi(z) \mid z \in (\mathbb{K}x \oplus G)\} = 1$. Using Lemma 10, we deduce that $\text{rk}(z, Az, Bz) \leq 2$ for all $z \in \mathbb{K}x \oplus G$. In particular, $\text{rk}(x, Ax, Bx) \leq 2$.

Subcase 2.2. λ is an eigenvalue of K with multiplicity 1.

Then, there are eigenvectors y and z of A, with distinct corresponding eigenvalues, such that $x = y + z$. Thus, (y, z) may be extended into a basis B' of \mathbb{K}^n such that $P_{B'}^{-1}AP_{B'}$ is upper-triangular. It follows from point (a) of Lemma 8 that $P_{B'}^{-1}BP_{B'}$ is Hessenberg, and in particular $By \in \text{span}(y, z)$. Starting from (z, y) instead of (y, z), one finds $Bz \in \text{span}(y, z)$. Therefore, all the vectors $y + z$, $A(y + z)$ and $B(y + z)$ belong to the 2-dimensional space $\text{span}(y, z)$, which yields $\text{rk}(x, Ax, Bx) \leq 2$.

Subcase 2.3. λ is an eigenvalue of K with multiplicity 2.

Then, the characteristic polynomial of A is $(t - \lambda)^n$.

- Assume that $n \geq 4$. One chooses an eigenvector y of A in $\text{span}(x, Ax)$, so that (y, x) is a basis of $\text{span}(x, Ax)$. Then, one chooses an arbitrary non-zero vector $u \in F$, and one extends (y, x, u) into a basis B' of \mathbb{K}^n such that $P_{B'}^{-1}AP_{B'}$ is upper-triangular. Applying point (a) of Lemma 8 once more yields $Bx \in \text{span}(y, x, u) = \text{span}(x, Ax, u)$. As $n \geq 4$, we can choose another vector $v \in F \setminus \mathbb{K}u$, and the above method yields $Bx \in \text{span}(x, Ax, v)$, while x, Ax, u, v are linearly independent. Therefore, $Bx \in \text{span}(x, Ax, u) \cap \text{span}(x, Ax, v) = \text{span}(x, Ax)$.

- Finally, assume that $n = 3$. As A is not similar to $\lambda I_3 + E_{2,3}$, the only remaining option is that $\text{rk}(A - \lambda I_3) = 2$. Then, we can find a linear form φ on \mathbb{K}^3 with kernel $\text{Ker}(A - \lambda I_3)^2$. Every vector $z \in \mathbb{K}^3 \setminus \text{Ker}(A - \lambda I_3)^2$ has order 3. Therefore, for every $z \in \mathbb{K}^3$, either $\varphi(z) = 0$ or $\text{rk}(z, Az, Bz) \leq 2$. With the same line of reasoning as in Subcase 2.1, we obtain $\text{rk}(x, Ax, Bx) \leq 2$. This completes the proof.
Thus, only two situations are left to consider: the one where \((I_n, A, B)\) is LLD, and the one where \(A\) is similar to \(\lambda I_3 + E_{2,3}\) for some \(\lambda \in \mathbb{K}\). They are dealt with separately in the next two sections.

2.4 The case when \((I_n, A, B)\) is locally linearly dependent

In order to analyze the situation where \((I_n, A, B)\) is LLD, we use the classification of LLD triples over fields with more than 2 elements (this result is found in [7]; prior to that, the result was known for infinite fields [2] and for fields with more than 4 elements [3]).

Theorem 12 (Classification theorem for LLD triples). Let \((f, g, h)\) be an LLD triple of linear operators from a vector space \(U\) to a vector space \(V\), where the underlying field has more than 2 elements. Assume that \(f, g, h\) are linearly independent and that \(\text{Ker} f \cap \text{Ker} g \cap \text{Ker} h = \{0\}\) and \(\text{Im} f + \text{Im} g + \text{Im} h = V\). Then:

(a) Either there is a 2-dimensional subspace \(P\) of \(\text{span}(f, g, h)\) and a 1-dimensional subspace \(D\) of \(V\) such that \(\text{Im} u \subset D\) for all \(u \in P\);

(b) Or \(\dim V \leq 2\);

(c) Or \(\dim U = \dim V = 3\) and there are bases of \(U\) and \(V\) in which the operator space \(\text{span}(f, g, h)\) is represented by the space \(\Lambda_3(\mathbb{K})\) of all \(3 \times 3\) alternating matrices.

Corollary 13. Assume that \(#\mathbb{K} > 2\), and let \(A\) and \(B\) be matrices of \(M_n(\mathbb{K})\), with \(n \geq 3\), such that \((I_n, A, B)\) is LLD. Then, either \(I_n, A, B\) are linearly dependent, or there is a 1-dimensional subspace \(D\) of \(\mathbb{K}^n\) and scalars \(\lambda\) and \(\mu\) such that \(\text{Im}(A - \lambda I_n) = D = \text{Im}(B - \mu I_n)\).

Proof. Assume that \(I_n, A, B\) are linearly independent. As \(\text{Ker} I_n = \{0\}\) and \(\text{Im} I_n = \mathbb{K}^n\), we are in the position to use Theorem 12. Moreover, \(\text{rk} I_n > 2\) discards Cases (b) and (c) altogether (as no \(3 \times 3\) alternating matrix is invertible). Therefore, we have a 2-dimensional subspace \(P\) of \(\text{span}(I_n, A, B)\) and a 1-dimensional subspace \(D\) of \(\mathbb{K}^n\) such that \(\text{Im} M \subset D\) for all \(M \in P\). In particular \(I_n \notin P\), whence \(\text{span}(I_n, A, B) = \mathbb{K}I_n \oplus P\). This yields a pair \((\lambda, M_1)\) in \(\mathbb{K} \times P\) such that \(A = \lambda I_n + M_1\), and hence \(\text{Im}(A - \lambda I_n) \subset D\). As \(A - \lambda I_n \neq 0\) (we have assumed that \(I_n, A, B\) are linearly independent), we deduce that \(\text{Im}(A - \lambda I_n) = D\). Similarly, one finds a scalar \(\mu\) such that \(\text{Im}(B - \mu I_n) = D\).

\[\square\]
Lemma 14. Assume that \(\#\mathbb{K} > 3 \) and \(n \geq 3 \). Let \((A, B) \in \mathfrak{sl}_n(\mathbb{K})^2\) be with \(B \neq 0 \), and set \(\mathcal{H} := \{B\}^\perp \). Assume that \((I_n, A, B)\) is LLD and that \(A \) is not similar to \(\lambda I_3 + E_{2,3} \) for some \(\lambda \in \mathbb{K} \). Then, \(A \in \mathcal{H梦想的和} \).

Proof. We use a reductio ad absurdum by assuming that \(A \notin [\mathcal{H}, \mathcal{H}] \). By Corollary 13, we can split the discussion into two main cases.

Case 1. \(I_n, A, B \) are linearly dependent.
Assume first that \(A \in \mathbb{K}I_n \). Then, \(P^{-1}AP \) is upper-triangular for every \(P \in \text{GL}_n(\mathbb{K}) \), and hence Lemma \(\square \) yields that \(P^{-1}BP \) is Hessenberg for every such \(P \). In particular, let \(x \in \mathbb{K}^n \setminus \{0\} \). For every \(y \in \mathbb{K}^n \setminus \mathbb{K}x \), we can extend \((x, y)\) into a basis \((x, y, y_3, \ldots, y_n)\) of \(\mathbb{K}^n \), and hence we learn that \(Bx \in \text{span}(x, y) \). Using the basis \((x, y_3, y_4, \ldots, y_n)\), we also find \(Bx \in \text{span}(x, y_3) \), whence \(Bx \in \mathbb{K}x \). Varying \(x \), we deduce that \(B \in \mathbb{K}I_n \), whence \(\mathcal{H} = \mathfrak{sl}_n(\mathbb{K}) \). Theorem \(\square \) then yields \(A \in [\mathcal{H}, \mathcal{H}] \), contradicting our assumptions.

Assume now that \(A \notin \mathbb{K}I_n \). Then, there are scalars \(\lambda \) and \(\mu \) such that \(B = \lambda A + \mu I_n \). By Theorem \(\square \) there are trace matrices \(M \) and \(N \) such that \(A = [M, N] \). Thus \(\text{tr}((B - \lambda A)M) = \text{tr}((B - \lambda A)N) = 0 \). Using principle (2) of Section 23, we deduce that \((M, N) \in \mathfrak{h}^2 \), whence \(A \in [\mathcal{H}, \mathcal{H}] \).

Case 2. \(I_n, A, B \) are linearly independent.
By Corollary 13 there are scalars \(\lambda \) and \(\mu \) together with a 1-dimensional subspace \(\mathcal{D} \) of \(\mathbb{K}^n \) such that \(\text{Im}(A - \lambda I_n) = \text{Im}(B - \mu I_n) = \mathcal{D} \). In particular, \(A - \lambda I_n \) has rank 1, and hence it is diagonalisable or nilpotent. In any case, \(A \) is triangularizable; in the second case, the assumption that \(A \) is not similar to \(\lambda I_n + E_{2,3} \) leads to \(n \geq 4 \).

Let \(x \) be an eigenvector of \(A \). Then, we can extend \(x \) into a triple \((x, y, z)\) of linearly independent eigenvectors of \(A \) (this uses \(n \geq 4 \) in the case when \(A - \lambda I_n \) is nilpotent). Then, we further extend this triple into a basis \((x, y, y_3, \ldots, y_n)\) in which \(v \mapsto Av \) is upper-triangular. Point (a) in Lemma \(\square \) yields \(Bx \in \text{span}(x, y) \). With the same line of reasoning, \(Bx \in \text{span}(x, z) \), and hence \(Bx \in \text{span}(x, y) \cap \text{span}(x, z) = \mathbb{K}x \). Thus, we have proved that every eigenvector of \(A \) is an eigenvector of \(B \). In particular, \(\text{Ker}(A - \lambda I_n) \) is stable under \(v \mapsto Bv \), and the resulting endomorphism is a scalar multiple of the identity. This provides us with some \(\alpha \in \mathbb{K} \) such that \((B - \alpha I_n)z = 0 \) for all \(z \in \text{Ker}(A - \lambda I_n) \). In particular, \(\alpha \) is an eigenvalue of \(B \) with multiplicity at least \(n - 1 \), and since \(\mu \) shares this property and \(n < 2(n - 1) \), we deduce that \(\alpha = \mu \). As \(\text{rk}(A - \lambda I_n) = \text{rk}(B - \mu I_n) = 1 \), we
deduce that \(\ker(A - \lambda I_n) = \ker(B - \mu I_n) \). Thus, \(A - \lambda I_n \) and \(B - \mu I_n \) are two rank 1 matrices with the same kernel and the same range, and hence they are linearly dependent. This contradicts the assumption that \(I_n, A, B \) be linearly independent, thereby completing the proof.

\[\square \]

2.5 The case when \(A = \lambda I_3 + E_{2,3} \)

Lemma 15. Assume that \(\# \mathbb{K} > 2 \). Let \(\lambda \in \mathbb{K} \). Assume that \(A := \lambda I_3 + E_{2,3} \) has trace zero. Let \(B \in \mathfrak{s}_3(\mathbb{K}) \setminus \{0\} \), and set \(\mathcal{H} := \{B\}^\perp \). Then, \(A \in [\mathcal{H}, \mathcal{H}] \).

Proof. We assume that \(A \notin [\mathcal{H}, \mathcal{H}] \) and search for a contradiction. By point (a) in Lemma 8 for every basis \(\mathbf{B} = (x, y, z) \) of \(\mathbb{K}^3 \) for which \(P_B^{-1}AP_B \) is upper-triangular, we find \(Bx \in \text{span}(x, y) \). In particular, for every basis \((x, y) \) of \(\text{span}(e_1, e_2) \), the triple \((x, y, e_3) \) qualifies, whence \(Bx \in \text{span}(x, y) = \text{span}(e_1, e_2) \). It follows that \(\text{span}(e_1, e_2) \) is stable under \(B \). As \(z \mapsto Az \) is also represented by an upper-triangular matrix in the basis \((e_2, e_3, e_1) \), one finds \(Be_2 \in \text{span}(e_2, e_3) \), whence \(Be_2 \in \mathbb{K}e_2 \). Thus, \(B \) has the following shape:

\[
B = \begin{bmatrix}
a & 0 & d \\
b & c & e \\
0 & 0 & f
\end{bmatrix}.
\]

From there, we split the discussion into two main cases.

Case 1. \(\lambda = 0 \).
Using \((e_2, e_1, e_3) \) as our new basis, we are reduced to the case when

\[
A = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix}
? & ? & ? \\
0 & ? & ? \\
0 & 0 & ?
\end{bmatrix}.
\]

Then, one checks that \([J_2, E_{2,3}] = A \), and \(\text{tr}(J_2B) = 0 = \text{tr}(E_{2,3}B) \). This yields \(A \in [\mathcal{H}, \mathcal{H}] \), contradicting our assumptions.

Case 2. \(\lambda \neq 0 \).
As we can replace \(A \) with \(\lambda^{-1}A \), which is similar to \(I_3 + E_{2,3} \), no generality is lost in assuming that \(\lambda = 1 \). According to principle (2) of Section 2.1 no further generality is lost in subtracting a scalar multiple of \(A \) from \(B \), to the effect that we may assume that \(f = 0 \) and \(B \neq 0 \) (if \(B \) is a scalar multiple of \(A \), then the same principle combined with the Albert-Muckenhoupt theorem shows that
$A \in [\mathcal{H}, \mathcal{H}]$. As $\text{tr} \ B = 0$, we find that

$$B = \begin{bmatrix} a & 0 & d \\ b & -a & e \\ 0 & 0 & 0 \end{bmatrix}.$$

Note finally that \mathbb{K} must have characteristic 3 since $\text{tr} \ A = 0$.

Subcase 2.1. $b \neq 0$.

As the problem is unchanged in multiplying B with a non-zero scalar, we can assume that $b = 1$. Assume furthermore that $d \neq 0$. Let $(\alpha, \beta) \in \mathbb{K}^2$, and set

$$C := \begin{bmatrix} 0 & 1 & 0 \\ \alpha & 0 & 1 \\ \beta & 0 & 0 \end{bmatrix}.$$

Note that C is a cyclic matrix and

$$C^2 = \begin{bmatrix} \alpha & 0 & 1 \\ \beta & \alpha & 0 \\ 0 & \beta & 0 \end{bmatrix}.$$

Thus, $\text{tr}(AC) = 0$, $\text{tr}(BC) = \beta d + 1$, $\text{tr}(AC^2) = 2\alpha + \beta = \beta - \alpha$ and $\text{tr}(BC^2) = e\beta$. As $d \neq 0$, we can set $\beta := -d^{-1}$ and $\alpha := \beta$, so that $\beta \neq 0$ and $\text{tr}(A) = \text{tr}(AC) = \text{tr}(AC^2) = 0$. Thus, $A \in \text{Im}(\text{ad}_C)$ by Lemma 7 and on the other hand $C \in \mathcal{H}$. As $A \notin [\mathcal{H}, \mathcal{H}]$, it follows that $C(C) \subset \mathcal{H}$, and hence $\text{tr}(BC^2) = 0$. As $\beta \neq 0$, this yields $e = 0$.

From there, we can find a non-zero scalar t such that $d + ta \neq 0$ (because $\# \mathbb{K} > 2$). In the basis $(e_1, e_2, e_3 + te_1)$, the respective matrices of $z \mapsto Az$ and $z \mapsto Bz$ are $I_3 + E_{2,3}$ and

$$\begin{bmatrix} a & 0 & d + ta \\ 1 & -a & t \\ 0 & 0 & 0 \end{bmatrix}.$$

As $d + ta \neq 0$ and $t \neq 0$, we find a contradiction with the above line of reasoning.

Therefore, $d = 0$. Then, the matrices of $z \mapsto Az$ and $z \mapsto Bz$ in the basis $(e_1, e_2, e_3 + e_1)$ are, respectively, $I_3 + E_{2,3}$ and

$$\begin{bmatrix} a & 0 & a \\ 1 & -a & e + 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Applying the above proof in that new situation yields $a = 0$. Therefore,

$$B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & e \\ 0 & 0 & 0 \end{bmatrix}.$$
With \((e_3 - e e_1, e_1, e_2)\) as our new basis, we are finally left with the case when

\[
A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.
\]

Set

\[
C := \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}
\]

and note that \(C\) is cyclic and

\[
C^2 = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.
\]

One sees that \(\tr(A) = \tr(AC) = \tr(AC^2) = 0\), and hence \(A \in \Im(\text{ad}_C)\) by Lemma 7. On the other hand, \(\tr(BC) = 0\). As \(A \not\in [\mathcal{H}, \mathcal{H}]\), one should find \(\tr(BC^2) = 0\), which is obviously false. Thus, we have a final contradiction in that case.

Subcase 2.2. \(b = 0\).

Assume furthermore that \(a \neq 0\). Then, in the basis \((e_1 + e_2, e_2, e_3)\), the respective matrices of \(z \mapsto Az\) and \(z \mapsto Bz\) are \(I_3 + E_{2,3}\) and

\[
\begin{bmatrix}
 a & 0 & d \\
 -2a & -a & e - d \\
 0 & 0 & 0
\end{bmatrix}.
\]

This sends us back to Subcase 2.1, which leads to another contradiction. Therefore, \(a = 0\).

If \(d = 0\), then we see that \(B \in \text{span}(I_3, A)\), and hence principle (2) from Section 2.1 combined with Theorem 4 shows that \(A \in [\mathcal{H}, \mathcal{H}]\), contradicting our assumptions. Thus, \(d \neq 0\). Replacing the basis \((e_1, e_2, e_3)\) with \((d e_1 + e_2, e_2, e_3)\), we are reduced to the case when

\[
A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.
\]

In that case, we set

\[
C := \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}
\]

18
which is a cyclic matrix with
\[C^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & -1 & 1 \end{bmatrix}, \]
so that \(\text{tr}(A) = \text{tr}(AC) = \text{tr}(AC^2) = 0 \) and \(\text{tr}(BC) = 0 \). As \(\text{tr}(BC^2) \neq 0 \), this contradicts again the assumption that \(A \notin [H, H] \). This final contradiction shows that the initial assumption \(A \notin [H, H] \) was wrong.

2.6 Conclusion

Let \(A \in M_n(K) \) and \(B \in M_n(K) \setminus \{0\} \), where \(n \geq 3 \) and \(\#K \geq 4 \). Set \(H := \{B\}^\perp \) and assume that \(\text{tr}(A) = 0 \) and \(\text{tr}(B) = 0 \). If \(A \) is similar to \(\lambda I_3 + E_{2,3} \), then we know from Lemma 15 and principle (3) of Section 2.1 that \(A \in [H, H] \). Otherwise, if \((I_n, A, B) \) is LLD then we know from Lemma 14 that \(A \in [H, H] \). Using Lemma 9, we conclude that \(A \in [H, H] \) in every possible situation. This completes the proof of Theorem 4.

References

[1] A. A. Albert, B. Muckenhoupt, *On matrices of trace zero*, Michigan Math. J. 4 (1957) 1-3.

[2] M. Brešar, P. Šemrl, *On locally linearly dependent operators and derivations*, Trans. Amer. Math. Soc. 351 (1999) 1257-1275.

[3] M. Chebotar, P. Šemrl, *Minimal locally linearly dependent spaces of operators*, Linear Algebra Appl. 429 (2008) 887-900.

[4] P. A. Fillmore. *On similarity and the diagonal of a matrix*, Amer. Math. Monthly 76 (1969) 167-169.

[5] T. Laffey, R. Reams, *Integral similarity and commutators of integral matrices*, Linear Algebra Appl. 197-198 (1994) 671-689.

[6] C. de Seguins Pazzis, *Local linear dependence seen through duality I*, preprint, 2013, arXiv: http://arxiv.org/abs/1306.1845

[7] C. de Seguins Pazzis, *Local linear dependence seen through duality II*, preprint, 2013, arXiv: http://arxiv.org/abs/1306.5722
[8] C. de Seguins Pazzis, To what extent is a large space of matrices not closed under product? Linear Algebra Appl. 435 (2011) 2708-2721.

[9] K. Shoda, Einige Sätze über Matrizen, Jap. J. Math. 13 (1936) 361-365.

[10] A. Stasinski, Similarity and commutators of matrices over principal ideal rings, preprint, 2012, arXiv: http://arxiv.org/abs/1211.6872

[11] R. C. Thompson, Matrices with zero trace, Israel J. Math. 4 (1966) 33-42.