Diagnostic Performance of the New Version (v2.0) of GenoType MTBDRsl Assay for Detection of Resistance to Fluoroquinolones and Second-Line Injectable Drugs: a Multicenter Study

Elisa Tagliani,a Andrea M. Cabibbe,a Paolo Miotto,a Emanuele Borroni,a Juan Carlos Toro,b Mikael Mansjö,b Sven Hoffner,b Doris Hillemann,a Aksana Zalutskaya,c Alena Skrahina,c Daniela M. Cirilloa

Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; bUnit for Highly Pathogenic Bacteria, Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden; cDiagnostic Mycobacteriology, Research Center Borstel, Borstel, Germany; dRepublican Research and Practical Centre for Pulmonology and TB, Minsk, Belarus

Resistance to fluoroquinolones (FLQ) and second-line injectable drugs (SLID) is steadily increasing, especially in eastern European countries, posing a serious threat to effective tuberculosis (TB) infection control and adequate patient management. The availability of rapid molecular tests for the detection of extensively drug-resistant TB (XDR-TB) is critical in areas with high rates of multidrug-resistant TB (MDR-TB) and XDR-TB and limited conventional drug susceptibility testing (DST) capacity. We conducted a multicenter study to evaluate the performance of the new version (v2.0) of the Genotype MTBDRsl assay compared to phenotypic DST and sequencing on a panel of 228 Mycobacterium tuberculosis isolates and 231 smear-positive clinical specimens. The inclusion of probes for the detection of mutations in the embB promoter region in the MTBDRsl assay resulted in a higher sensitivity for detection of kanamycin resistance for both direct and indirect testing (96% and 95.4%, respectively) than that seen with the original version of the assay, whereas the test sensitivities for detection of FLQ resistance remained unchanged (93% and 83.6% for direct and indirect testing, respectively). Moreover, MTBDRsl v2.0 showed better performance characteristics than v1.0 for the detection of XDR-TB, with high specificity and sensitivities of 81.8% and 80.4% for direct and indirect testing, respectively. MTBDRsl v2.0 thus represents a reliable test for the rapid detection of resistance to second-line drugs and a useful screening tool to guide the initiation of appropriate MDR-TB treatment.

Resistance to fluoroquinolones (FLQ) and second-line injectable drugs (SLID) is becoming more common, especially in eastern European countries, posing a serious threat to effective tuberculosis (TB) infection control. According to the most recent World Health Organization (WHO) report, extensively drug-resistant TB (XDR-TB) had been reported by 100 countries by the end of 2013. On average, an estimated 9.0% (95% confidence interval [CI], 6.5% to 11.5%) of people with multidrug-resistant TB (MDR-TB) have XDR-TB (1, 2). To date, only 8 countries among the 36 with a high TB and/or MDR-TB burden have established a national surveillance system for resistance to second-line drugs among patients with MDR-TB (1, 2).

Efforts should be made to ensure that all patients diagnosed with MDR-TB undergo testing of susceptibility to FLQ and SLID in order to initiate early effective treatment and appropriate measures of infection control. Conventional phenotypic methods take weeks to months to fully define the drug resistance profile of Mycobacterium tuberculosis isolates due to the low growth rate of the bacterium (3, 4). The development and implementation of rapid molecular assays for the detection of resistance to anti-TB drugs promise more-rapid drug resistance detection, which can be critical in areas with high rates of MDR-TB and XDR-TB and settings with limited conventional DST capacity. Several molecular tests are available today to detect resistance to first-line drugs. In contrast, the choice of molecular assays for second-line drugs is far more limited. To date, GenoType MTBDRsl (Hain Lifescience, Nehren, Germany) is one of the few commercially available molecular tests for detection of resistance to the main second-line anti-TB drugs. It is a qualitative test for the identification of Mycobacterium tuberculosis complex (MTBC) and its resistance to FLQ, to aminoglycosides and cyclic peptides (AG/CP), and to ethambutol (EMB) as either clinical isolates or pulmonary smear-positive clinical specimens (5–7). Diagnosis of FLQ resistance is enabled by the detection of mutations in the quinolone resistance-determining regions (QRDR) of the gyrA gene (coding for the A-subunit of the DNA gyrase). Resistance to AG/CP is detected by targeting a region of the 16S rRNA gene (encoded by the rrs gene), whereas identification of mutations in the embB gene enable detection of EMB resistance.

Received 12 May 2015 Returned for modification 4 June 2015 Accepted 6 July 2015 Accepted manuscript posted online 15 July 2015 Citation Tagliani E, Cabibbe AM, Miotto P, Borroni E, Toro JC, Mansjö M, Hoffner S, Hillemann D, Zalutskaya A, Skrahina A, Cirillo DM. 2015. Diagnostic performance of the new version (v2.0) of GenoType MTBDRsl assay for detection of resistance to fluoroquinolones and second-line injectable drugs: a multicenter study. J Clin Microbiol 53:2961–2969. doi:10.1128/JCM.01257-15. Editor: K. C. Carroll Address correspondence to Daniela M. Cirillo, cirillo.daniela@hsr.it. Supplemental material for this article may be found at http://dx.doi.org/10.1128/JCM.01257-15. Copyright © 2015 Tagliani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited. doi:10.1128/JCM.01257-15
Several studies have been conducted to evaluate the test performances in different settings and have demonstrated generally good performance characteristics and high confidence for resistance results (2). However, sensitivities varied significantly among studies depending on the genetic background of the strains and were frequently suboptimal for kanamycin (KAN), in particular, with eastern European strains (8–10). In eastern Europe and Russia, where the Beijing subfamily is largely diffused, assays using the rrs gene alone failed to detect a large proportion of KAN-resistant isolates (11). In line with this observation, Huang et al. showed that the low sensitivity of the GenoType MTBDRsl assay was due to the presence of specific mutations not detected by the test, located in the eis promoter region (12).

The eis gene encodes an aminoglycoside acetyltransferase specific to KAN. Polymorphisms in the eis promoter region lead to an increased synthesis of the enzyme and the subsequent inactivation of itraconazole (5). On the basis of published evidence, the WHO decided in 2013 not to endorse the second-line Line Probe assay (LPA) given that, with the test’s low pooled sensitivity, negative results cannot be considered to reliably rule out resistance. The WHO Expert Group thus concluded that the assay can be used only as a method to rule in diagnosis of XDR-TB but not as a replacement for conventional phenotypic DST to rule out resistance (16).

To improve the overall performance of GenoType MTBDRsl, in particular its sensitivity for KAN resistance, a new version of the assay (i.e., MTBDRsl v2.0) has been recently developed. GenoType MTBDRsl v2.0 includes two new target genetic regions: the eis promoter region −10 to −14 (in addition to rrs) and the gyrB quinolone-resistance-determining region (QRDR) (in addition to gyrA) for the detection of mutations at codons 536 to 541. The target region for EMB (embB) has been removed. MTBDRsl v2.0 thus includes a total of 27 probes for the detection of resistance to second-line drugs.

We have conducted an international study to assess the performance of the new version of the GenoType MTBDRsl assay for detection of resistance to FLQ and SLID. The performance of the test was evaluated by comparison to DST and sequencing using a panel of 228 clinical isolates and 231 clinical specimens from subjects referred to the different study sites (three TB Supranational Reference Laboratories [SRL] in Europe: SRL Milan, Italy; SRL Solna, Sweden; and SRL Borstel, Germany) from countries with a high MDR-TB prevalence.

MATERIALS AND METHODS

A collection of MTBC clinical isolates and specimens obtained from the National and Supranational Reference Laboratories involved in the FP7 project Pan-European Network for Study and Clinical Management of Drug-Resistant Tuberculosis (TB PAN-NET) (funded by a European Union grant) were considered for the evaluation of the test performances. The collection includes strains isolated in Italy and Sweden and clinical specimens collected in Italy, Germany, and Moldova. Samples were collected from 2009 to 2013. All tests were performed at a TB Supranational Reference Laboratory (SRL) (SRL Milan, Milan, Italy; SRL Solna, Solna, Sweden; or SRL Borstel, Borstel, Germany).

Clinical isolates. The study included 228 mycobacterial strains isolated on liquid (BBL MGIT; BD, Franklin Lakes, NJ, USA) or solid (BBL Löwenstein-Jensen; BD, Franklin Lakes, NJ, USA) media and identified according to standard biochemical test and sequencing, as previously recommended (3). All MTBC strains were phenotypically resistant to rifampin (RIF) and isoniazid (INH), harboring different patterns of mutations in rpoB and katG or inhA genes. The profiles of susceptibility to second-line drugs were determined by conventional phenotypic testing. Two different panels were tested and analyzed independently, one that included 128 samples at SRL Milan, Milan, Italy, and another that included 100 samples at SRL Solna, Solna, Sweden.

Clinical specimens. DNA was obtained from 231 clinical specimens from patients with pulmonary MDR-TB during standard clinical management who were referred to the different study sites (SRL Milan, Milan, Italy; SRL Borstel, Borstel, Germany; and NRI Minsk, Minsk, Belarus) for retesting. All respiratory specimens were classified as acid-fast bacillus (AFB) positive by sputum smear microscopy. Samples were decontaminated according to international guidelines using an N-acetyl-cysteine–NaOH procedure (17). The drug susceptibility profile of the corresponding strains was obtained using a conventional phenotypic assay according to international guidelines.

Development and validation of the MTBDRsl v2.0 assay. The performance of the assay was approved by the Ethical Committee of the San Raffaele Hospital given the role of SRL Milan as the coordinating institution.

DST. Determinations of susceptibility to FLQ (ofloxacin, levofloxacin, and moxifloxacin) and SLID (amikacin, kanamycin, and capreomycin) were performed either on a Bectec MGIT 960 system (MGIT) (BD Bioscience, Erebodegem, Belgium) or on Lowenstein–Jensen (LJ) media using the proportional method according to international guidelines (18). The DST critical concentrations used for MGIT are as follows: for ofloxacin, 2 μg/ml; for levofloxacin, 1.5 μg/ml; for moxifloxacin, 0.5 μg/ml; for amikacin, 1 μg/ml; for kanamycin, 2.5 μg/ml; and for capreomycin, 2.5 μg/ml. The DST critical concentrations used for solid LJ media are as follows: for ofloxacin, 4 μg/ml; for levofloxacin, 1.5 μg/ml; for moxifloxacin, 0.5 μg/ml; for amikacin, 1 μg/ml; for kanamycin, 2.5 μg/ml; and for capreomycin, 40 μg/ml.

DNA extraction. Genomic DNA was extracted from isolates and decontaminated specimens by thermal lysis and sonication as described elsewhere (19). Alternatively, a commercially available kit, GenoLyse (Hain Lifescience, Nehren, Germany), was used to extract DNA from clinical specimens according to the manufacturer’s instructions.

GenoType MTBDRsl assay. Amplification and hybridization of DNA extracted from isolates and clinical specimens were performed according to the manufacturer’s instructions.

Sequencing. Genomic regions harboring drug resistance mutations were amplified and sequenced (9) by the Sanger method using the designed internal primers for each region. Results were visualized as electropherograms and analyzed by ClustalW application (BioEdit Software; Ibis Biosciences/Abbott Company, Carlsbad, CA), aligning sequences with the corresponding reference strain (M. tuberculosis H37Rv; GenBank accession no. AL123456).

Statistical analysis. The performance of the MTBDRsl v2.0 assay was evaluated using conventional phenotypic DST and Sanger sequencing as reference standards, following the Standards for Reporting of Diagnostic Accuracy (STARD) recommendations (20). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), likelihood ratio, and diagnostic accuracy values were calculated according to the Wilson score. All statistical analyses were carried out using Open Source Epidemiologic Statistics for Public Health version 3.03 (21).

RESULTS

Performance characteristics of the GenoType MTBDRsl v2.0 assay for detection of FLQ resistance on clinical isolates. The panel included a total of 73 strains phenotypically resistant to at least one FLQ (ofloxacin or moxifloxacin) and 155 susceptible ones (Table 1). The GenoType MTBDRsl v2.0 assay correctly identified 61 (83.6%) FLQ-resistant isolates, missing 12 (16.4%) phenotypically resistant strains. All phenotypically susceptible strains were identified as nonmutated by the assay. Eleven phenotypically re-
susceptible strains showed a mix of wild-type (WT) and mutated bands at the level of the gyrA gene, suggesting a mixed infection.

The distribution of gene mutations in the 73 FLQ-resistant isolates is shown in Table 2. The predominant mutations detected by MTBDR/sl 2.0 as conferring FLQ resistance are the gyrA MUT1 A90V and MUT3C D94G mutations, identified in 26 (35.6%) and 15 (20.5%) resistant strains, respectively. Nine additional strains (12%) showed a mix of wild-type sequence and A90V or D94G mutations. gyrA mutations MUT3A (D94A) and MUT3B (D94N/D94Y) were detected in 4 (5.5%) and 2 (2.7%) resistant strains, respectively. The gyrA mutation MUT2 (S91P) was detected in 3 (4.1%) samples either alone or together with other mutations as a mix of wild-type and mutated bands. In three cases, the lack of the gyrA wild-type 3 (WT3) probe was used to infer a mutation at the level of codon 94. By sequencing the gyrA gene, we confirmed the presence of mutations D94Y and D94A in two and one resistant strains, respectively.

Mutations in the gyrB gene were very rare and were identified in only 1 out of 73 (1.4%) resistant strains. In this unique case, the mutation could be inferred by the lack of the gyrB wild-type probe on the GenoType MTBDRsl 2.0 strip. DNA sequencing revealed the presence of the N538T mutation, thus confirming the MTBDRsl test result.

Overall, the test sensitivity for FLQ resistance measured against culture-based DST was 83.6% (95% confidence interval [CI], 73.4% to 90.3%) whereas the test specificity was 100% (95% CI, 97.6% to 100%). The concordance between phenotypic DST and the MTBDR/sl 2.0 test was 94.7% (95% CI, 91.0% to 97.0%) (Table 3). We also calculated MTBDRsl 2.0 test performance by looking separately at each single FLQ tested, namely, ofloxacin or moxifloxacin. For ofloxacin, we obtained a test sensitivity and specificity of 84.7% (95% CI, 74.7% to 91.2%) and 100% (95% CI, 97.6% to 100%), respectively, whereas the test sensitivity and specificity for moxifloxacin were 90.0% (95% CI, 69.9% to 97.2%) and 97.4% (95% CI, 91.0% to 99.3%), respectively. Results are shown in Table S1 in the supplemental material.

The comparison between the MTBDRsl v2.0 test and gyrA QRDR sequencing showed an overall concordance of 98.3% (95% CI, 95.6% to 99.3%) (Table 4). Among the 11 phenotypically resistant strains showing a mix of wild-type and mutated bands at the level of the gyrA gene, sequencing showed a double-pattern profile in 9 out of 11 cases; it identified only the mutated nucleotide in 1 case, whereas it completely missed the mutation (D94G codon substitutions) in another case. Sequencing also missed one fully mutated sample (i.e., mutation at the level of codon D94 and absence of the corresponding wild-type 3 [WT3] probe) in one case. In contrast, MTBDRsl 2.0 missed a D94Y codon substitution and a D98N codon substitution in the gyrA gene in two distinct isolates that were instead detected as mixed populations by sequencing (see Table 2). Overall, the test sensitivity for FLQ resistance compared to gyrA gene sequencing was 96.7% (95% CI, 88.8% to 99.1%) and the specificity was 98.8% (95% CI, 95.8% to 99.7%) (Table 4).

Table 1. Phenotypic drug-susceptibility testing of 228 clinical isolates and 231 specimens used in the study

Drugs	No. of clinical isolates	No. of clinical specimens		
FQs	R	S	R	S
SLIDs	147	81	63	168

Table 2. Fluoroquinolone resistance and susceptibility results obtained by GenoType MTBDRsl v2.0 assay, phenotypic DST, and sequencing on 228 clinical isolates

Phenotypic DST result for M. tuberculosis clinical isolates	MTBDRsl v2.0 result	Sequencing result				
gyrA	gyrB	gyrA	gyrB	n	%	
R	A90V	WT	A90V	NP	25	11.0
R	D94G	WT	D94G	NP	14	6.1
R	D94A	WT	D94A	NP	4	1.8
R	WT/D94G	WT	WT/D94G	NP	3	1.3
R	No WT3	WT	D94Y	NP	2	0.9
R	No WT3	WT	D94G	NP	1	0.4
R	D94N/Y	WT	D94Y	NP	1	0.4
R	S91P	WT	S91P	NP	1	0.4
R	WT/D94N/Y + WT/A90V	WT	WT/D94N + WT/A90V	NP	1	0.4
R	WT/A90V	WT	WT/A90V	NP	2	0.9
R	WT/A90V + WT/D94G	WT	WT/A90V + WT/D94G	NP	1	0.4
R	WT/A90V + WT/S91P + WT/D94G	WT	WT/A90V + S91P + WT/D94G	NP	1	0.4
R	WT/S91P + WT/D94A	WT	WT/S91P + WT/D94A	NP	1	0.4
R	D94G	WT	D94G	NP	1	0.4
R	WT/D94G	WT	WT	NP	1	0.4
R	WT/D94G	WT	WT	NP	1	0.4
R	WT	WT	WT	NP	1	0.4
R	WT	WT	WT	NP	1	0.4
R	No WT	WT	WT	NP	1	0.4
R	WT	WT	WT	NP	10	4.4
S	WT	WT	WT	NP	155	68.0

* a DST, drug susceptibility testing; WT, wild type; R, resistant; S, susceptible; NP, not performed.
Performance characteristics of the GenoType MTBDRsl v2.0 assay for detection of SLID resistance in clinical isolates. Our panel included 147 isolates resistant to at least one SLID (aminocin, amikacin, or capreomycin). As determined by phenotypic DST and 81 strains susceptible to all the tested injectable drugs (Table 1). The GenoType MTBDRsl v2.0 assay correctly identified 127 out of 147 (86.4%) SLID-resistant isolates and 73 out of 81 (90.1%) fully susceptible ones. The distribution of gene mutations in the 127 SLID-resistant isolates identified by the MTBDRsl v2.0 test is shown in Table 5. The great majority of resistant strains carried mutations only at the level of the *rrs* gene, namely, 98 out of 127 (77.2%), including 12 (9.4%) strains with a mixed mutated and wild-type profile. Among these isolates, the most frequent mutation was *rrs* MUT1 A1401G, which was detected in 92 out of 98 (93.9%) cases; three (~3%) strains carried both A1401G and G1484T mutations, two (~2%) isolates carried the C1402T mutation, and one isolate carried the MUT2 G1484T mutation.

Two resistant strains carried mutations in both the *rrs* (MUT A1401G) and *eis* promoter regions, with one sample showing both mutated and wild-type bands. A total of 27 out of 127 (21.3%) SLID-resistant strains carried mutations only at the level of the *eis* promoter region. The most frequent mutation identified was the *eis* MUT1 C-14T mutation, which was detected in 12 out of 27 (44.4%) isolates, including one strain with a mixed profile. The absence of the wild-type 2 (WT2) probe in the *eis* region correlated with the presence of mutations G-10A, G-37T, and C-12T in 8, 4, and 3 cases, respectively. All strains with a mixed mutated and

Parameter	Phenotypic DST result	Sequencing result
	% or ratio 95% CI	
FLQ		
Sensitivity	83.6	94.9
Specificity	100	94.1
PPV	92.8	99.5
NPV	87.9	97.9
Positive likelihood ratio	0.2	0.1–0.2
Negative likelihood ratio	0.5	0.04–0.07
Diagnostic accuracy	94.7	91.0–97.0
SLID		
Sensitivity	86.4	94.9
Specificity	90.1	97.9
PPV	91.4	95.5
NPV	78.5	91.0
Positive likelihood ratio	8.7	6.8–11.2
Negative likelihood ratio	0.15	0.1–0.2
Diagnostic accuracy	87.7	82.8–91.4
Kanamycin		
Sensitivity	85.4	90.5
Specificity	91.4	95.5
PPV	93.4	98.1
NPV	97.4	99.1
Positive likelihood ratio	11.1	9.1–12.4
Negative likelihood ratio	0.05	0.04–0.07
Diagnostic accuracy	93.3	91.7–96.9
Diagnostic accuracy	94.7	91.0–97.0

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

TABLE 3 Performance of GenoType MTBDRsl v2.0 assay compared to phenotypic DST on 228 clinical isolates

Parameter	Phenotypic DST result	Sequencing result
	% or ratio 95% CI	
FLQ		
Sensitivity	83.6	94.9
Specificity	100	94.1
PPV	92.8	99.5
NPV	87.9	97.9
Positive likelihood ratio	0.2	0.1–0.2
Negative likelihood ratio	0.5	0.04–0.07
Diagnostic accuracy	94.7	91.0–97.0
SLID		
Sensitivity	86.4	94.9
Specificity	90.1	97.9
PPV	91.4	95.5
NPV	78.5	91.0
Positive likelihood ratio	8.7	6.8–11.2
Negative likelihood ratio	0.15	0.1–0.2
Diagnostic accuracy	87.7	82.8–91.4
Kanamycin		
Sensitivity	85.4	90.5
Specificity	91.4	95.5
PPV	93.4	98.1
NPV	97.4	99.1
Positive likelihood ratio	11.1	9.1–12.4
Negative likelihood ratio	0.05	0.04–0.07
Diagnostic accuracy	93.3	91.7–96.9

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

TABLE 4 Performance of GenoType MTBDRsl v2.0 assay compared to sequencing on 228 clinical isolates
remaining 4 cases. We excluded from the analysis one isolate showing the lack of the rrs WT1 probe since we were not able to obtain a readable sequence, which was probably due to the low quality or partial degradation of the DNA.

The comparison between MTBDRsl v2.0 and sequencing of the eis gene promoter region showed an overall concordance of 98.1% (95% CI, 94.6% to 99.4%).

The assay missed two mutations detected by sequencing at the level of codons H11002/10 and H11002/37. In both cases, the sequencing profile showed a double population with the coexistence of both wild-type and mutated nucleotides. In one case, the lack of the eis WT2 probe did not correspond to any mutation in the corresponding genetic region of the eis promoter by sequencing. Overall, the test sensitivity and specificity measured against eis sequencing were 94.9% (95% CI, 83.1% to 98.6%) and 99.2% (95% CI, 95.4% to 99.9%), respectively (Table 4).

Performance characteristics of the GenoType MTBDRsl v2.0 assay for detection of resistance to second-line drugs among clinical specimens. Of the 232 respiratory specimens tested with MTBDRsl v2.0, 231 showed an interpretable result, with only one sample not providing a valid hybridization profile for any of the 4 genomic regions. The performance for FLQ and SLID resistance detection was evaluated by comparison to DST. Gene sequencing, either direct or using the corresponding isolate, was performed uniquely on samples with a discordant genotypic/phenotypic profile. Results are summarized in Table 6.

Fluoroquinolones. Our panel included a total of 57 clinical specimens phenotypically resistant to at least one FLQ (ofloxacin, levofloxacin, or moxifloxacin) and 174 fully susceptible ones (Table 1). The test correctly identified 53 (92.9%) of the FLQ-resis-
TABLE 7 Fluoroquinolone resistance and susceptibility results obtained by GenoType MTBDRsl v2.0 assay and phenotypic DST on 231 clinical specimensa

Phenotypic DST result for M. tuberculosis clinical isolates	MTBDRsl v2.0 result	gyrA	gyrB	n	%
R	D94G	WT	13	5.6	
R	WT/D94G	WT	6	2.6	
R	A90V	WT	9	3.9	
R	WT/A90V	WT	3	1.3	
R	D94A	WT	5	2.2	
R	S91P	WT	3	1.3	
R	WT/S91P	WT	3	1.3	
R	WT/D94N/Y	WT	2	0.9	
R	WT/D94G/D94N/Y	WT	2	0.9	
R	No WT2	WT	3	1.3	
R	WT/D94G/A90V	WT	1	0.4	
R	D94G/D94A	WT	1	0.4	
R	WT/A90V/S91P/D94N/Y	WT	1	0.4	
R	WT	No WT	1	0.4	
R	WT	WT	4	1.7	
S	WT/D94G	WT	2	0.9	
S	WT	No WT	1	0.4	
S	WT	WT	171	74.0	

a DST, drug susceptibility testing; WT, wild type; R, resistant; S, susceptible.

TABLE 8 Second-line injectable drug resistance and susceptibility results obtained by GenoType MTBDRsl v2.0 assay and phenotypic DST on 231 clinical specimensa

Phenotypic DST result for M. tuberculosis clinical isolates	MTBDRsl v2.0 result	rrs	eis	n	%
R	A1401G	WT	35	15.2	
R	WT/A1401G	WT	10	4.3	
R	A1401G	C-12T/G-10A/C-15G	1	0.4	
R	C1402T	WT	1	0.4	
R	WT	C-12T/G-10A/C-15G	7	3.0	
R	WT	C-14T	2	0.9	
R	WT	WT	7	3.0	
R	WT/A1401G	WT	1	0.4	
R	WT/G1484T	WT	2	0.9	
S	WT	C-12T/G-10A/C-15G	8	3.5	
S	WT	C-14T	3	1.3	
S	WT	WT	154	66.7	

a DST, drug susceptibility testing; WT, wild type; R, resistant; S, susceptible.

Second-line injectable drugs. Our panel included a total of 63 clinical specimens phenotypically resistant to at least one SLID (kanamycin, amikacin, or capreomycin) and 168 fully susceptible ones (Table 1). The test correctly identified 56 (88.9%) of the SLID-resistant samples and 154 out of 168 (91.7%) of the fully susceptible ones. Among the 7 SLID-resistant specimens missed by the assay, 5 were susceptible to kanamycin and resistant to capreomycin or amikacin or both.

Thirty-five out of 56 (62.5%) samples classified as resistant by MTBDRsl v2.0 carried the A1401G mutation at the level of the rrs gene, with an additional 10 samples (17.5%) showing a mixed wild-type and mutated (MUT A1401G) profile, whereas only one sample carried the rrs CI402T substitution. Mutations at the level of the eis promoter region were detected in 9 SLID-resistant specimens, with an additional sample showing a double mutation at the levels of both the rrs and eis regions.

MTBDRsl v2.0 test detected mutations within the eis promoter region in 11 out of 168 (6.5%) SLID-susceptible samples and mutations in the rrs region in 3 out of 168 (1.8%) SLID-susceptible specimens. The lack of an eis WT2 probe was the most prevalent mutation, detected in 8 out of 14 susceptible specimens. Direct gene sequencing of these 8 samples confirmed the presence of the C-12T and G-10A mutations in 7 samples, with an additional sample showing a double mutation at the levels of both the rrs and eis regions.

Second-line injectable drug resistance and susceptibility results obtained by GenoType MTBDRsl v2.0 assay and phenotypic DST on 231 clinical specimens. The GenoType MTBDRsl v2.0 assay correctly
identified 37 out of 46 (80.4%) phenotypically identified XDR-TB isolates, thus missing 9 (19.6%) cases. In particular, the test detected only SLID resistance, missing FLQ resistance, in 7 out of 9 (77.8%) XDR-TB isolates and detected only FLQ resistance, missing SLID resistance, in the remaining two cases (22%). In contrast, the test gave a positive XDR-TB result for 8 isolates resistant uniquely to FLQ by detecting mutations at the level of the \textit{eis} promoter region. Overall, the test accuracy for detection of XDR-TB was 92.5% (95% CI, 88.4% to 95.3%), whereas the test sensitivity and specificity were 80.4% (95% CI, 66.8% to 89.4%) and 96.6% (95% CI, 91.6% to 97.8%), respectively (Table 9).

The GenoType MTBDR\textit{sl} v2.0 assay correctly identified 18 out of 22 (81.8%) phenotypically identified XDR-TB clinical specimens, while it missed FLQ resistance in 2 cases, SLID resistance in 1 case, and both FLQ resistance and SLID resistance in 1 case. However, the test also gave a positive XDR-TB result for 3 specimens that were FLQ resistant only by detecting mutations at the level of the \textit{eis} promoter region and for one sample that was SLID resistant only by failing to detect the \textit{gyrB} WT probe. Overall, MTBDR\textit{sl} v2.0 diagnostic accuracy for detection of XDR-TB was 96.5% (95% CI, 93.3% to 98.2%), with a sensitivity and specificity of 81.8% (95% CI, 61.5% to 92.7%) and 98.1% (95% CI, 91.6% to 97.8%), respectively (Table 9).

DISCUSSION

This was the first multicenter study to assess the diagnostic accuracy of the novel version (v2.0) of the GenoType MTBDR\textit{sl} test for detection of resistance to FLQ (ofloxacin, moxifloxacin, and levofloxacin) and SLID (amikacin, kanamycin, and capreomycin).

Similarly to GenoType MTBDR\textit{sl} v1.0, the concordance between MTBDR\textit{sl} v2.0 and gene sequencing was $>$97% for all the genomic regions analyzed. Discrepancies were mainly observed in cases of isolates showing a double-pattern profile (15% for \textit{gyrA} and 8.2% for \textit{rrs}), which could be explained by the known lower sensitivity of Sanger sequencing in detecting heteroresistance (22, 23). All heteroresistant strains were phenotypically resistant, thus confirming the presence of the mutated strain.

Second-line injectable drugs. The inclusion of probes for the detection of mutations in the \textit{eis} promoter region increased the overall sensitivity of MTBDR\textit{sl} v2.0 for the detection of SLID resistance to 86.4% (95% CI, 79.9% to 91.0%) and the sensitivity for the detection of kanamycin resistance to 96% for both the isolates and the clinical specimens, which is higher than the pooled sensitivity values for MTBDR\textit{sl} v1.0 (66.9%; 95% CI, 44.1% to 83.8) (2). Notably, the assay primarily missed strains that are resistant uniquely to capreomycin, namely, 13 out of 20 (65%) among isolates and 4 out of 7 (57%) among clinical specimens, which is expected given that the mechanisms of resistance to capreomycin partly differ from those causing resistance to aminoglycosides (13).

If, on the one side, the inclusion of the \textit{eis} promoter region increased the test sensitivity, on the other, it negatively affected its specificity, which decreased from 99.5% (95% CI, 97.1% to 99.9%) in MTBDR\textit{sl} v1.0 (2) to 91.1% (95% CI, 86.43% to 94.9%) and 90.1% (95% CI, 81.7% to 94.9%) in MTBDR\textit{sl} v2.0 for direct and indirect testing, respectively. As expected, the discordance between the results from the SLID-resistant samples as defined by this molecular test and phenotypic DST involved primarily samples carrying mutations in the \textit{eis} promoter region: 8 out of 8 among isolates and 11 out of 14 (78.6%) among clinical specimens. The majority of isolates with a discordant phenotypic/ genotypic profile carried the G-10A mutation (62.5%), whereas the most frequent \textit{eis} mutation among the discordant clinical specimens was C-12T (6 of 11; 54.4%), followed by mutations C-14T (27.3%) and G-10A (18.2%). In line with published data, the C-12T \textit{eis} mutation was more often found in sensitive strains and thus appears to be a nonspecific marker of resistance to SLID (24, 25). In contrast, the G-10A nucleotide substitution was reported to correlate well with kanamycin resistance in several studies (13, 24, 25), whereas only Engström et al. found it in 85% of their susceptible strains (26).

More evidence is thus required to univocally define the role of each mutation within the \textit{eis} promoter region in the development of resistance to kanamycin and of cross-resistance to the other classes of injectable drugs. This also implies the necessity to include in the assay specific probes able to discriminate between \textit{eis} mutations at the level of different nucleotides, in particular, in positions $-$12 and $-$10. In addition, since resistance to capreomycin and amikacin cannot be automatically inferred on the basis of the presence of \textit{eis} mutations, results from MTBDR\textit{sl} v2.0 testing for SLID resistance should be reported accordingly.

If, on the one hand, our understanding of the role of specific mutations within the \textit{eis} promoter region and SLID resistance is still limited, on the other, phenotypic DST might be a suboptimal gold standard for the assessment of the test performance. Data from a recent publication by the Alland group strongly suggest that \textit{eis} promoter mutants should be considered to have low to moderate kanamycin resistance even if resistance is not detected by LJ-based or even MGIT-based susceptibility tests (27).

Concerning the \textit{rrs} gene, in line with previous observations (9, 24, 28), we found a high correlation between mutations in this genetic region and SLID resistance, with 100 out of 100 mutated isolates and 47 out of 50 (94%) clinical specimens being phenotypically resistant to at least one SLID. Notably, the three specimens giving false SLID resistance results were characterized by a

TABLE 9 Performance of GenoType MTBDR\textit{sl} v2.0 assay for detection of XDR-TB against phenotypic DST on 228 clinical isolates and 231 clinical specimens

XDR-TB detection	Phenotypic DST result	
	% or ratio	95% CI
Clinical isolates		
Sensitivity	80.4	66.8–89.4
Specificity	95.6	91.6–97.8
PPV	82.2	68.7–90.7
NPV	95.1	90.9–97.4
Positive likelihood ratio	18.3	14.1–23.7
Negative likelihood ratio	0.2	0.2–0.3
Diagnostic accuracy	92.5	88.4–95.3
Clinical specimens		
Sensitivity	81.8	61.5–92.7
Specificity	98.1	95.2–99.3
PPV	81.8	61.5–92.7
NPV	98.1	95.2–99.2
Positive likelihood ratio	42.8	25.6–71.5
Negative likelihood ratio	0.2	0.1–0.3
Diagnostic accuracy	96.5	93.3–98.2

a CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
double-pattern profile compatible with a mixed infection, which could explain the discrepancy with the phenotypic DST result. In such cases, the presence of a predominant susceptible strain might have in fact concealed the resistance (29).

Also, in line with published data (9, 24, 28, 30), we found a high correlation between *rrs* mutations and cross-resistance to amikacin, kanamycin, and capreomycin, with 90% of mutated strains and 98% of mutated clinical specimens being resistant to both aminoglycosides and capreomycin. Notably, the two strains and one clinical specimen carrying the *rrs* mutation C1402T were resistant to all injectable drugs. Overall, the incidence of the *rrs* C1402T and G1484T mutations in our panel was very low, with only 3 strains out of 228 and 3 specimens out of 231 carrying uniquely the G1484T and C1402T substitutions. Given the low prevalence of these mutations (24), *rrs* codons 1484 and 1402 have a low positive predictive value of SLID resistance and are thus unlikely to provide strong clinical significance.

Fluoroquinolones. The inclusion of probes for the detection of mutations in the QRDR of the *gyrB* gene did not significantly improve the overall sensitivity and specificity of the MTBDR sl v2.0 test compared to MTBDR sl v1.0. Indeed, the incidence of *gyrB* mutations, all inferred by the lack of the *gyrB* WT probe, was very low, with only 1 case among 228 strains tested and 2 cases among 231 clinical specimens. Mutations found in *gyrB*, in the absence of *gyrA* substitutions, correlated with phenotypic FLQ resistance in 2 out of 3 cases. Given the very low prevalence of *gyrB* mutations (31–33) and thus their low positive predictive value for FLQ resistance, the inclusion of *gyrB* probes in the new version of the test is unlikely to be clinically relevant.

Clinical consequences. To date, GenoType MTBDR sl has been one of the few rapid molecular assays available on the market for the detection of resistance to second-line drugs. Given its high positive predictive value (PPV) and specificity, a positive result for FLQ resistance, SLID resistance, or XDR-TB can be treated with confidence (2). However, the low sensitivity, especially for detection of kanamycin resistance and its low negative predictive value (NPV), makes it necessary to confirm by conventional DST all cases classified as susceptible.

The inclusion of probes for the detection of mutations at the level of the *eis* promoter region in the new version of the assay, MTBDR sl v2.0, leads to a significant increase in test sensitivity for the detection of kanamycin resistance compared to the original version. Importantly, these mutations allow the identification of strains with low or moderate kanamycin resistance which might be erroneously classified as susceptible by conventional phenotypic testing alone. If, on the one hand, this raises the problem of dealing with a suboptimal gold standard when assessing the performance of a new diagnostic test, on the other, it highlights the necessity to understand whether this low-level resistance has a real impact on the treatment efficacy. Therefore, we need to further investigate the correlation between specific mutations and the level of drug responsiveness in *vivo* by routinely collecting clinical data on treatment outcomes. This will be essential for improving our capacity to correctly interpret the mutations identified by genotypic testing.

Summarizing, the MTBDR sl v2.0 assay has better performance characteristics for the detection of XDR-TB when performed either directly or indirectly on samples, by correctly identifying more than 80% of XDR-TB cases, than version 1.0, which misses the XDR phenotype in between one in four and one in three cases (2). On clinical specimens, MTBDR sl v2.0 showed a PPV and a NPV of 81.8% (95% CI, 61.5% to 92.7%) and 98.1% (95% CI, 95.2 to 99.2), respectively. Notably, the prevalence of XDR-TB cases in our panel of clinical specimens (i.e., a setting with high prevalence of MDR-TB) is around 9.5%, which corresponds to the WHO-estimated prevalence of XDR-TB among MDR-TB cases (2). Therefore, our sample panel provides an evaluation of the diagnostic performance of MTBDR sl v2.0 in a real-world setting. Indeed, the use of this rapid assay in countries with a high rate of drug resistance, especially kanamycin resistance, will further increase the test PPV and will reduce the number of XDR-TB cases missed by the test.

Despite some limitations, such as the fact that we tested smear-positive clinical samples only, the fact that FLQ resistance was measured primarily against ofloxacin phenotypic DST, and the lack of data on the MIC for isolates carrying mutations in the *eis* promotor region, this report provides an accurate evaluation of the diagnostic performances of the new version of the GenoType MTBDR sl assay based on standardized testing of a large set of samples from different settings. We show that the MTBDR sl v2.0 test has better performance characteristics in terms of increased sensitivity for detecting SLID and kanamycin resistance and better accuracy for detecting XDR-TB than the original version of the test. MTBDR sl v2.0 thus represents a better screening tool for the rapid detection of resistance to second-line drugs, and it should be recommended in countries with a high burden of MDR/XDR-TB or in settings with high reported rates of resistance to ofloxacin in new and retreatment cases. In such contexts, the test can rapidly identify patients for whom MDR treatment regimens that include earlier-generation fluoroquinolones are likely to fail or who may not be good candidates for the shorter MDR treatment currently being tested in western and central Africa (34).

ACKNOWLEDGMENTS

This study was supported by the European Community’s Seventh Framework Programme (EU FP7/2007–2013) under grant agreement FP7-223681 (to D.M.C.) and the TB-PANNET Consortium.

We thank Hain Lifesciences (Nehren, Germany) for providing the GenoType MTBDR sl assay free of charge.

REFERENCES

1. World Health Organization. 2014. Global tuberculosis report 2014. World Health Organization, Geneva, Switzerland.

2. Theron G, Peter J, Richardson M, Barnard M, Donegan S, Warren R, Steingart KR, Dheda K. 2014. The diagnostic accuracy of the GenoType sl (MTBDR sl) assay for the detection of resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst Rev 10:CD010705.

3. Kent PT, Kubica GP. 1985. Public health mycobacteriology: a guide for the level III laboratory. U.S Dept of Health and Human Services. Public Health Service, Centers for Disease Control, Atlanta, GA.

4. Kim SJ. 2005. Drug-susceptibility testing in tuberculosis: methods and reliability of results. Eur Respir J 25:564–569. http://dx.doi.org/10.1183/09031936.05.0011304.

5. Hillelemann D, Rüsch-Gerdes S, Richter E. 2007. Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 45:2623–2626. http://dx.doi.org/10.1128/JCM.00521-07.

6. Kiet KS, Lan NT, An DD, Dung NH, Hau DV, van Vinh Chau N, Chinh NT, Farrar J, Caws M. 2010. Evaluation of the MTBDR sl test for detection of second-line-drug resistance in Mycobacterium tuberculosis. J Clin Microbiol 48:2934–2939. http://dx.doi.org/10.1128/JCM.00201-10.

7. Miotto P, Piana F, Cirillo DM, Migliori GB. 2008. Genotype MTBDRplus: a further step toward rapid identification of drug-resistant Mycobacterium tuberculosis. J Clin Microbiol 46:393–394. http://dx.doi.org/10.1128/JCM.01066-07.
12. Rohlín A, Wernersson J, Engwall Y, Wiklund I, Björk J, Nordling M. 2009. Parallel sequencing used in detection of mosaic mutations: comparison with four diagnostic DNA screening techniques. Hum Mutat 30: 1012–1020. http://dx.doi.org/10.1002/humu.20980.

13. Eilertson B, Maruri F, Blackman A, Herrera M, Samuels DC, Sterling TR. 2014. High proportion of heteroresistance in gyrA and gyrB in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother 58:3270–3275. http://dx.doi.org/10.1128/AAC.02066-13.

14. Georgiou SB, Magana M, Garfein RS, Catanzaro DG, Catanzaro A, Rodwell TC. 2012. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS One 7e33275. http://dx.doi.org/10.1371/journal.pone.0033275.

15. Zimenkov DV, Antonova OV, Kuz’mín AV, Iseave YD, Krylova LY, Popov SA, Zasedatelev AS, Mikhailovich VM, Gryadunov DA. 2013. Detection of second-line drug resistance in Mycobacterium tuberculosis using oligonucleotide microarrays. BMC Infect Dis 13:240. http://dx.doi.org/10.1186/1471-2334-13-240.

16. Enström A, Morcillo N, Imperiale B, Hoffner SE, Jurečn P. 2012. Detection of first- and second-line drug resistance in Mycobacterium tuberculosis clinical isolates by pyrosequencing. J Clin Microbiol 50:2026–2033. http://dx.doi.org/10.1128/JCM.00664-11.

17. Chakravorty S, Lee JS, Cho EJ, Roh SS, Smith LE, Lee J, Kim CT, Via LE, Cho SN, Barry CE, Alland D. 2015. Genotypic susceptibility testing of Mycobacterium tuberculosis isolates for amikacin and kanamycin resistance by use of a rapid sloppy molecular beacon-based assay identifies more cases of low-level drug resistance than phenotypic Lowenstein-Jensen testing. J Clin Microbiol 53:43–51. http://dx.doi.org/10.1128/JCM.02059-14.

18. Albani K, Nikam C, Kazi M, Gray C, Boehme C, Balan K, Shetty A, Rodrigues C. 2012. Evaluation of genotype MTBDRsl assay to detect drug resistance associated with fluoroquinolones, aminoglycosides and ethambutol on clinical sediments. PLoS One 7e94933. http://dx.doi.org/10.1371/journal.pone.0094933.

19. Hillelmen D, Rüsch-Gerdès S, Richter E. 2009. Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 47:1767–1772. http://dx.doi.org/10.1128/JCM.00081-09.

20. Maus CE, Pliskaivy BS, Shinnick TM. 2005. Molecular analysis of cross-resistance to capreomycins, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49:3192–3197. http://dx.doi.org/10.1128/AAC.49.8.3192-3197.2005.

21. Maruri F, Sterling TR, Kaiga AW, Blackman A, van der Heijden YF, Mayer G, Cambau E, Aubry A. 2012. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrage numbering system. J Antimicrob Chemother 67:819–831. http://dx.doi.org/10.1093/jac/dkr566.

22. Malik S, Willby M, Sikes D, Tsodikov OV, Posey JE. 2012. New insights into fluoroquinolone resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB mutations. PLoS One 7e39754. http://dx.doi.org/10.1371/journal.pone.0039754.

23. Nebenzahl-Guimaraes H, Jacobson KR, Farhat MR, Murray MB. 2014. Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 69:331–342. http://dx.doi.org/10.1093/jac/dkt358.

24. Van Deun A, Maug AK, Salim MA, Das PK, Sarker MR, Daru P, Rieder HL. 2010. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med 182:684–692. http://dx.doi.org/10.1164/rcmm.201001-0077OC.