Source monitoring for continuous-variable quantum key distribution

Jian Yang, Xiang Peng∗ and Hong Guo†
CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
E-mail: ∗xiangpeng@pku.edu.cn
E-mail: †hongguo@pku.edu.cn

Abstract. The noise in optical source needs to be characterized for the security of continuous-variable quantum key distribution (CVQKD). Two feasible schemes, based on either active optical switch or passive beamsplitter are proposed to monitor the variance of source noise, through which, Eve’s knowledge can be properly estimated. We derive the security bounds for both schemes against collective attacks in the asymptotic case, and find that the passive scheme performs better.
1. Introduction

Continuous-variable quantum key distribution (CVQKD) encodes information into the quadratures of optical fields and extracts it with homodyne detection, which has higher efficiency and repetition rate than that of the single photon detector [1]. CVQKD, especially the GG02 protocol [2], is hopeful to realize high speed key generation between two parties, Alice and Bob.

Besides experimental demonstrations [3, 4], the theoretical security of CVQKD has been established against collective attacks [5, 6], which has been shown optimal in the asymptotical limit [7]. The practical security of CVQKD has also been noticed in the recent years, and it has been shown that the source noise in state preparation may be undermine the secure key rate [8]. In GG02, the coherent states should be displaced in phase space following Gaussian modulation with variance V. However, due to the imperfections in laser source and modulators, the actual variance is changed to $V + \chi_s$, where χ_s is the variance of source noise.

An method to describe the trusted source noise is the beamsplitter model [8, 9]. This model has a good approximation for source noise, especially when the transmittance of beamsplitter T_A approaches 1, which means that the loss in signal mode is negligible. However, this method has the difficulty of parameter estimation to the ancilla mode of the beamsplitter, without the information of which, the covariance matrix of the system are not able to determine. In this case, the optimality of Gaussian attack [10, 11] should be reconsidered [12], and we have to assume that the channel is linear to calculate the secure key rate. To solve this problem, we proposed an improved source noise model with general unitary transformation [12]. Without extra assumption on quantum channel and ancilla state, we are able to derive a tight security bound for reverse reconciliation, as long as the variance of source noise χ_s can be properly estimated. The optimality of Gaussian attack is kept within this model.

The remaining problem is to estimate the variance of source noise properly. Without such a source monitor, Alice and Bob can not discriminate source noise from channel excess noise, which is supposed to be controlled by the eavesdropper (Eve) [13]. In practice, source noise is trusted and is not controlled by Eve. So, such untrusted source noise model just overestimates Eve’s power and leads to an untight security bound. A compromised method is to measure the quadratures of Alice’s actual output states each time before starting experiment. However, this work is time consuming, and in QKD running time, the variance of source noise may fluctuate slowly and deviate from preliminary result. In this paper, we propose two real-time schemes, that the active switch scheme and the passive beamsplitter scheme to monitor the variance of source noise, with the help of which, we derive the security bounds asymptotically for both of them against collective attacks, and discuss their potential applications when finite size effect is taken into account.
2. Source monitoring in CVQKD

In this section, we introduce two real-time schemes to monitor the variance of source noise for the GG02 protocol, based on our general model. Both schemes are implemented in the so-called prepare and measurement scheme (P&M scheme) [14], while for the ease of theoretical research, here we analyze their security in the entanglement-based scheme (E-B scheme). The covariance matrix, used to simplify the calculation, is defined by [14]

$$\gamma_{ij} = \text{Tr}[\rho((\hat{r}_i - d_i)(\hat{r}_j - d_j))],$$

where operator $$\hat{r}_{2i-1} = \hat{x}_i$$, $$\hat{r}_{2i} = \hat{p}_i$$, mean value $$d_i = \langle \hat{r}_i \rangle = \text{Tr}[\rho \hat{r}_i]$$, $$\rho$$ is the density matrix, and $$\{\}$$ denotes the anticommutator.

In E-B scheme, Alice prepares EPR pairs, measuring the quadratures of one mode with two balanced homodyne detectors, and then send the other mode to Bob. It is easy to verify that the covariance matrix of an EPR pair is

$$\gamma_{AB0} = \begin{pmatrix} \frac{V^2}{\sqrt{V^2 - 1}} & \frac{\sqrt{V^2 - 1} \sigma_z}{\sqrt{V^2 - 1}} \\ \frac{\sqrt{V^2 - 1} \sigma_z}{\sqrt{V^2 - 1}} & \frac{V^2}{\sqrt{V^2 - 1}} \end{pmatrix},$$

where $$V = V_A + 1$$ is the variance of the EPR modes, and $$V_A$$ corresponds to Alice’s modulation variance in the P&M scheme. However, due to the effect of source noise, the actual covariance matrix is changed to

$$\gamma_{AB0} = \begin{pmatrix} \frac{V^2}{\sqrt{V^2 - 1}} & \frac{\sqrt{V^2 - 1} \sigma_z}{\sqrt{V^2 - 1}} \\ \frac{\sqrt{V^2 - 1} \sigma_z}{\sqrt{V^2 - 1}} & \frac{(V + \chi_s)^2}{\sqrt{V^2 - 1}} \end{pmatrix},$$

where $$\chi_s$$ is the variance of source noise. As mentioned in [12], we assume this noise is introduced by a neutral party, Fred, who purifies $$\rho_{AB}$$ and introduces the source noise with arbitrary unitary transformation. In this section, we show how to monitor $$\chi_s$$ with our active and passive schemes, and derive the security bounds in the infinite key limit.

2.1. Active switch scheme

A method of source monitoring is to use an active optical switch, controlled by a true random number generator (TRNG), combined with a homodyne detection. The entanglement-based version [15] of this scheme is illustrated in Fig. 1, where we randomly select parts of signal pulses, measure their quadratures and estimate their variance. In the infinite key limit, the pulses used for source monitor should have the same statistical identities with that sent to Bob. Comparing the estimated value with the theoretical one, we are able to derive the variance of source noise, and the security bound can be calculated by [12]

$$K_{OS} = (1 - r) \times [\beta \times I(a : b) - S(E : b)],$$

where $$r$$ is the sampling ratio of source monitoring, $$I(a : b)$$ is the classical mutual information between Alice and Bob, $$S(E : b)$$ is the quantum mutual information between Eve and Bob,
and β is the reconciliation efficiency. After channel transmission, the whole system can be described by covariance matrix γ_{FAB}

$$
\gamma_{FAB} = \begin{pmatrix}
F'_{11} & F'_{12} & F'_{13} & F'_{14} \\
F'_{12} & F'_{22} & F'_{23} & F'_{24} \\
F'_{13} & F'_{23} & V & \sqrt{\eta(V^2 - 1)\sigma_z} \\
(F'_{14})^T & (F'_{24})^T & \sqrt{\eta(V^2 - 1)\sigma_z} & \eta(V + \chi + \chi_s)I
\end{pmatrix},
$$

(5)

where χ_s is the variance of source noise, 2×2 matrix F_{ij} is related to Fred’s two-mode state, η is the transmittance and $\chi = (1 - \eta)/\eta + \epsilon$ is the channel noise and ϵ is the channel excess noise. In practice, the covariance matrix can be estimated with experimental data with source monitor and parameter estimation. Here, for the ease of calculation, we assume that parameters η and ϵ have known values.

Given γ_{FAB}, the classical mutual information $I(a : b)$ can be directly derived, while $S(E : b)$ can not, since the ancilla state F is unknown in our general model. Fortunately, we can substitute γ_{FAB} with another state γ'_FAB when calculating $S(E : b)$ [12], where

$$
\gamma'_{FAB} = \begin{pmatrix}
I & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & (V + \chi_s)I & \sqrt{\eta(V + \chi_s)^2 - 1}\sigma_z \\
0 & 0 & \sqrt{\eta(V + \chi_s)^2 - 1}\sigma_z & \eta(V + \chi + \chi_s)I
\end{pmatrix},
$$

(6)

and we have shown that such substitution provides a tight bound for reverse reconciliation.

Here, we have assumed that the pulses generated in Alice is i.i.d., and the true random number plays an important role in this scheme, without which, the sampled pulses may have different statistical characters from signal pulses sent to Bob. The asymptotic performance of this scheme will be analyzed in sec. III.

2.2. Passive beam splitter scheme

Though the active switch scheme is intuitive in theoretical research, it is very not convenient in the experimental realization, since the high speed optical switch and an extra TRNG are
needed. Also, it lowers the secure key rate with $(1 - r)$ due to the sampling ratio. Inspired by [16], we propose a passive beam splitter scheme to simplify the implementation. As illustrated in Fig. 2 a beamsplitter is used to separate mode B_1 into two parts. One mode, M, is monitored by Alice, and the other, B_2, is sent to Bob.

The security bound of passive beam splitter scheme can be calculated in a similar way that we substitute the whole state $\rho_{FAB_1M_0}$ with $\rho'_{FAB_1M_0}$. The covariance of its subsystem, $\rho_{AB_1M_0}$, can be written as

$$
\gamma'_{AB_1M_0} = \begin{pmatrix}
\frac{(V + \chi_s)^2}{(V + \chi_s)^2 - I} & \sqrt{(V + \chi_s)^2 - I} & 0 \\
\sqrt{(V + \chi_s)^2 - I} & (V + \chi_s)^2 & 0 \\
0 & 0 & \sqrt{I - T}\sqrt{T}
\end{pmatrix},
$$

(7)

where mode M_0 is initially in the vacuum state. The covariance matrix after beam splitter is

$$
\gamma'_{AB_2M} = (\mathbb{I}^A \otimes S_{BS}^{BM})^T \gamma_{AB_1M_0}(\mathbb{I}^A \otimes S_{BS}^{BM}),
$$

(8)

where

$$
\mathbb{I}^A \otimes S_{BS}^{BM} = \begin{pmatrix}
\mathbb{I} & 0 & 0 \\
0 & \sqrt{T} & \sqrt{1 - T}
\end{pmatrix}
\begin{pmatrix}
0 & \sqrt{1 - T}
\end{pmatrix}.
$$

Then, mode B_2 is sent to Bob through quantum channel, characterized by (η, χ). The calculation of $S(E : b)$ in this scheme is a little more complex, since an extra mode M is introduced by the beamsplitter. We omit the detail of calculation here, which can be derived from [14]. The performance of this scheme is discussed in the next section.

3. Simulation and Discussion

In this section, we analyze the performance of both schemes with numerical simulation. As mentioned above, the simulation is restricted to the asymptotic limit. The case of finite size will be discussed later. To show the performance of source monitor schemes, we illustrate the secure key rate in Fig. 3 in which the untrusted noise scheme is included for comparison. For the ease of discussion, the imperfections in practical detectors are not included in our simulation, the effect of which have been studied previously [4].

![Figure 2](source_monitoring.png)

Figure 2. (color online). Entanglement-based model for the beamsplitter scheme. The optical switch in Fig.1 is replaced by a beamsplitter. Alice and Bob are able to estimate the source noise by measuring mode M with the homodyne detection.
As shown in Fig. 3, secure key rate of each scheme is limited within 30km, where large excess noise $\epsilon \sim 0.1$ is used. Under state-of-the-art technology, the excess noise can be controlled less than a few percent of the shot noise. So, our simulation is just a conservative estimation on the secure key rate. The untrusted source noise scheme has the shortest secure distance, because it ascribes the source noise into channel noise, which is supposed to be induced by the eavesdropper. In fact, source noise is neutral and can be controlled neither by Alice and Bob, nor by Eve. So, this scheme just overestimates Eve’s power by supposing she can acquire extra information from source noise, which lower the secure key rate of this scheme.

Both the active and passive schemes have longer secure distance than the untrusted noise scheme, since they are based on the general source noise model, which does not ascribe source noise into Eve’s knowledge. The active switch scheme has lower secure key rate in the short distance area. This is mainly because that the random sampling process intercepts parts of the signal pulses to estimate the variance of source noise, which reduces the repetition rate with ratio r. Nevertheless, it does not overestimate Eve’s power \[12\]. As a result, the secure key distance is improved.

Both the secure key rate and secure distance of beam splitter scheme are superior than that of other schemes, when the transmittance is set to be 0.5, equal to the sampling rate r in optical switch scheme, where no extra vacuum noise is introduced. This phenomena is quite similar to the ”noise beat noise” scheme \[14\], which improves the secure key rate by introduce an extra noise into Bob’s side. Though such noise lowers the mutual information
Figure 4. (color online). Secure key rate as a function of distance d and transmittance T, in which T varies from 0.01 to 0.99. The colored parts illustrates the area with positive secure key rate, the empty parts illustrates to insecure area, and the abscissa values of boundary points corresponds to the secure distance.

between Alice and Bob, it also makes Eve more difficult to estimate Bob’s measurement result. With the help of simulation, we find a similar phenomenon in the beam splitter scheme, the vacuum noise reduces mutual information $S(b : E)$ more rapidly than its effect on $I(a : b)$. A preliminary explanation is that the sampled pulse in optical switch scheme is just used to estimate the noise variance, while in beam splitter model it increases Eve’s uncertainty on Bob’s information. Combined with advantages in experimental realization, beam splitter scheme should be a superior choice.

To optimize the performance of passive beam splitter scheme, we illustrate the secure key rate in Fig. 4 for different beam splitter transmittance T_A. The maximal secure distance about 34km is achieved when $T \sim 0.1$, about 10 km longer than that when $T \sim 0.5$. Combined with the discussion above, this result can be understood as a balance between the effects of the noise on $I(a : b)$ and $S(b : E)$, induced by beamsplitter. When T_A is too small, $I(a : b)$ also decreases rapidly, which limits the secure distance.

4. Finite size effect

The performance of source monitor schemes above is analyzed in asymptotical limit. In practice, the real-time monitor will concern the finite-size effect, since the variance of source noise may change slowly. A thorough research in finite size effect is beyond the scope of this paper, because the security of CVQKD in finite size is still under development, that the
optimal Gaussian attack and collective attack has not been shown in the finite size case. Nevertheless, we are able to give a rough estimation on the effect of block size, for a given distance. Taking the active optical switch scheme for example, with a similar method in [17], the maximum-likelihood estimator $\hat{\sigma}_s^2$ is given by

$$\hat{\sigma}_s^2 = \left(\frac{1}{m} \sum_{i=1}^{m} y_i^2 - V \right),$$

where $(m\hat{\sigma}_s^2/\sigma_s^2) \sim \chi^2(m-1)$, y_i is the measurement result of source monitor, and $\sigma_s^2 = \chi_s$ is the expected value of the variance of source noise. For large m, the χ^2 distribution converges to a normal distribution. So, we have

$$\sigma_{\text{min}}^2 \approx \hat{\sigma}_s^2 - z_{\epsilon_{\text{SM}}} \frac{\hat{\sigma}_s \sqrt{2}}{\sqrt{m}},$$

where $z_{\epsilon_{\text{SM}}}$ is such that $1 - \text{erf}(z_{\epsilon_{\text{SM}}}/\sqrt{2}) = \epsilon_{\text{SM}}$, and ϵ_{SM} is the failure probability. The reason why we choose $\hat{\sigma}_{\text{min}}$ is that given the values of $\eta(V + \chi_s + \chi)$ and η, estimated by Bob, the minimum of χ_s corresponds to the maximum of channel noise χ, which may be fully controlled by Eve. The extra variance $\Delta_m\chi_s$ due to the finite size effect in source monitor is

$$\Delta_m\chi_s \approx \frac{z_{\epsilon_{\text{SM}}} \hat{\sigma}_s \sqrt{2}}{\sqrt{m}}.$$ (11)

For $\epsilon_{\text{SM}} \sim 10^{-10}$, we have $z_{\epsilon_{\text{SM}}} \approx 6.5$. As analyzed in [17], if the distance between Alice and Bob is 50 km ($T \sim 10^{-1}$), the block length should be at least 10^8, which corresponds to $\Delta_m\chi_s \sim 10^{-6}$ induced by the finite size effect in source monitor. Compared with the channel excess noise of 10^{-2}, the effect of finite size in source monitor is very slight. Due to the high repetition rate in CVQKD, Alice and Bob are able to accumulate such a block within several minutes, during which the source noise may change slightly.

5. Concluding Remarks

In conclusion, we propose two schemes, the active optical switch scheme and the passive beamsplitter scheme, to monitor the variance of source noise χ_s. Combined with previous general noise model, we derive tight security bounds for both schemes with reverse reconciliation in the asymptotic limit. Both schemes can be implemented under current technology, and the simulation result shows an better performance of our schemes, compared with the untrusted source noise model. Further improvement in secure distance can be achieved, when the transmittance T_A is optimized.

In practise, the source noise varies slowly. To realize real-time monitoring, the finite size effect should be taken into account, that the block size should not be so large, that the source noise has changed significantly within this block, and the block size should not be too small, that we can not estimate the source noise accurately. The security proof of CVQKD with finite block size has not been established completely, since the optimality of collective attack and Gaussian attack has not been shown in finite size. Nevertheless, we derive the effective source noise induced by the finite block size, and find its effect is not significant in our scheme. So, our schemes may be helpful to realize real-time source monitor in the future.
Acknowledgments

This work is supported by the Key Project of National Natural Science Foundation of China (Grant No. 60837004), National Hi-Tech Research and Development (863) Program. The authors thank Yujie Shen, Bingjie Xu and Junhui Li for fruitful discussion.

References

[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, and Peev M 2009 Rev. Mod. Phys. 81 1301
[2] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[3] Grosshans F, Van Assche G, Wenger J, Brou ri R, Cerf N J, and Grangier Ph. 2003 Nature 421 238
[4] Lodewyck J et al 2007 Phys. Rev. A 76 042305
[5] Grosshans F 2005 Phys. Rev. Lett. 94 020504
[6] Navascués M and Acín A 2003 Phys. Rev. Lett. 94 020505
[7] Renner R and Cirac J 2009 Phys. Rev. Lett. 102 110504
[8] Filip R 2008 Phys. Rev. A 77 022310
[9] Usenko V C and Filip R 2010 Phys. Rev. A 81 022318
[10] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[11] Navascués M, Grosshans F, and Acín A 2006 Phys. Rev. Lett. 97 190502
[12] Shen Y, Peng X, Yang J, and Guo H 2011 Phys. Rev. A 83 052304
[13] Shen Y, Yang J, and Guo H 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235506
[14] García-Patrón R 2007 Ph.D. thesis ULB Bruxelles
[15] Grosshans F, Cerf N J, Wenger J, Tualle-Brou ri R, and Grangier P 2003 Quantum Inf. Comput. 3 535
[16] Peng X, Jiang H, Xu B, Ma X, and Guo H 2008 Opt. Lett. 33 2077
[17] Leverrier A, Grosshans F, and Grangier P 2010 Phys. Rev. A 81 062343