Electroacupuncture regulates inflammation, collagen deposition and macrophage function in skeletal muscle through the TGF-β1/Smad3/p38/ERK1/2 pathway

HONG HAN1*, MING LI2*, HUILIN LII3 and HAOHAN LII4

1Department of Rehabilitation Medicine, Wuhan Fourth Hospital, Wuhan, Hubei 430000; 2Department of Rehabilitation, Hubei Provincial Hospital, Wuhan, Hubei 430071; 3Department of Neurological Physical Therapy, China Rehabilitation Research Center, Bo Ai Hospital, Beijing 100068, P.R. China; 4The Facility of Business and Law, Deakin University Health Faculty, Geelong, Victoria 3220, Australia

Received March 1, 2021; Accepted September 1, 2021

DOI: 10.3892/etm.2021.10892

Abstract. Skeletal muscle injury is one of the most common sports injury, which accounts for ~40% of all sports-related injuries among the elderly. In addition, cases of full recovery from treatment are rare. Although electroacupuncture (EA) is an integral aspect of traditional Chinese medicine, the effects of EA on skeletal muscle fibrosis and the possible underlying mechanism remain unclear. To investigate the effect and potential mechanism of EA on skeletal inflammation, collagen deposition and macrophage function, a skeletal muscle injury model was established by injecting 100 µl cardiotoxin into the anterior tibial muscle of Sprague Dawley rats. The animals were randomly divided into the following three groups: Control, model and EA. The expression of inflammation-related factors (IL-6, IL-4, IL-33, IL-10 and TNF-α) were measured using ELISA. H&E staining, Masson's staining and immunohistochemistry (collagen II, Axin2 and β-catenin) were performed to assess collagen deposition and fibrosis in the muscle tissues. Additionally, immunofluorescence was performed to measure the ratio of M1 to M2 macrophages. Western blotting was performed to examine the activity of the TGF-β1/Smad3/p38/ERK1/2 pathway. Compared with that in the control rats, the mental state, such as the degree of activity and excitement, of the model rats deteriorated, with clear activity limitations. Compared with those in the model rats, EA-treated rats exhibited improved mental status and activity, reduced levels of IL-6, IL-4 and TNF-α, reduced collagen deposition and fibrosis, in addition to increased expression of IL-33 and IL-10. This improvement became increasingly evident with prolonged intervention time. EA also promoted the transformation of macrophages from the M1 into the M2 sub-type, where the M1/M2 ratio on day 7 was lower compared with that on day 14. Western blotting results showed that compared with that in the model rats, the expression of TGF-β1, MMP-2, MMP-7 and the activation of Smad3 and p38 was decreased in EA-treated rats, whilst the activation of ERK1/2 was significantly elevated. In conclusion, EA can inhibit inflammation and collagen deposition whilst promoting the transformation of macrophages from the M1 into the M2 sub-type. The underlying mechanism was found to be associated with TGF-β1/Smad3/p38/ERK1/2 signaling.

Introduction

Skeletal muscle injury is one of the most common type of injury in sports, which accounts for ~40% of all sports-related injuries among the elderly (1). Currently available therapeutic strategies to promote skeletal muscle healing after an injury remain unsatisfactory, which is mainly due to skeletal muscle fibrosis, which frequently hinders full functional recovery (2-4). In addition, skeletal muscle fibrosis results in limited movement, resulting in dysfunction and severely affects the quality of life (5). Therefore, it is of clinical importance to study the mechanism underlying fibrosis after skeletal muscle injury and to explore novel treatment methods.

Skeletal muscle injury repair is regulated by the balance between muscle fiber regeneration and fibrosis, where recovery depends on the development of completely regenerated muscle fibers, extracellular matrix and fibrosis (6). The process of injured skeletal muscle repair can be divided into the following three stages: Inflammatory response; repair; and shaping (7). TGF-β1 is a key factor in the development of kidney, liver, lung and skeletal muscle fibrosis (8). In skeletal muscles, TGF-β1 can inhibit myogenic differentiation and activate MAPK signaling, which eventually lead to skeletal muscle
fibrosis at the injury site (9,10). Inflammation and immune cells also serve key roles in the regeneration of the skeletal muscle (11,12). TGF-β1 inhibits the conversion of M₁ macrophages into the M₂ type, where growth factors produced by M₁ macrophages, including TGF-β1, platelet-derived growth factor, fibroblast growth factor-2 and VEGF, can subsequently lead to extracellular matrix production (13). Previous studies have shown that the exogenous treatment of M₁ macrophages significantly reduced muscle fibrosis whilst enhancing muscle fiber regeneration (14,15).

Acupuncture is an integral aspect of traditional Chinese medicine and is frequently applied to treat rheumatoid arthritis, acute gastritis and other immune-related diseases (16). It can improve immunity, alleviate inflammation, mediate CD4⁺ T cell differentiation and dendritic cell maturation, reduce fibrous tissue proliferation and inhibit fibrosis (17). Electroacupuncture (EA, weak electrical stimulation using acupuncture needles) is a type of acupuncture that (18), when combined with exercise therapy, has been demonstrated to exert therapeutic effects on lower back pain due to acute lumbar sprain (19). However, the effects of EA on skeletal muscle fibrosis and the possible underlying mechanism remain unclear. Therefore, in the present study, the potential effects of EA on inflammatory cell infiltration, injury and fibrosis in a model of skeletal muscle injury were evaluated. In addition, the possible mechanism underlying the effects of EA on skeletal muscle fibrosis was also investigated. It is hoped that data from the present study can provide a theoretical basis for the use of EA in treating skeletal muscle fibrosis following injury.

Materials and methods

Animals. A total of 20 Sprague-Dawley rats (sex, nine male and nine female; age, 12 weeks; weight, 250±20 g) were obtained from the Hubei Experimental Animal Research Center (license no. 42000600032492). The animals were housed in a specific-pathogen-free environment in opaque polypropylene cages in a standard 12-h light/dark cycle, at 23±3°C and 50-60% humidity. Food and water were available ad libitum. The rats were allowed to adapt to the aforementioned conditions for 7 days before experimentation.

Following the method previously described by Zhang et al (20), 100 µl cardiotoxin (CTX; 10 µM; 0.028 mg/kg) was injected (1 mg; cat. no. SML1754; Sigma-Aldrich; Merck KGaA) into the anterior tibial muscle of the rats to establish a model of acute rat tibial anterior muscle injury. After 24 h of CTX injection, two rats were sacrificed and the successful model establishment was assessed by H&E staining and the rats were randomly divided into the following three groups (n=6 per group): Control; model; and EA. Rats in the control group was injected with 100 µl normal saline. In the EA group, the ‘Shenyu’ (the lower side of the second lumbar vertebral) and ‘Housanli’ (posterior lateral knee joint, ~5 mm below the fibular capitulum) acupoints were selected as sites for stimulation according to ‘Experimental Acupuncture’ and ‘Handbook of Acupuncture for Experimental Animals’. The rat's limbs were then fixed whilst the eyes of the rats were covered using a hood and the acupoints were punctured with a straight stainless-steel millineedle (0.22×15 mm). The EA therapeutic apparatus (Electronic acupuncture instrument SDZ II; Suzhou Medical Products Factory Co., Ltd.; https://www.hwato-med.com/product/detail.html?id=743) was then connected to the needles and the acupoints were stimulated at a frequency of 100-120 times/min at 2 mA under 100 Hz with a needle retention time of 20 min. The rats were stimulated once a day and intervention continued for 1 or 2 weeks. During this time, the rats were assessed for their mental, behavioral (mental: Excitement and movement; behavioral: Paralysis, flaccid disorder, spasticity, disorder and claudication), dietary and water intake. The rats in the model and control groups were not given additional stimulation. After 7 or 14 consecutive days of EA, nine rats were anesthetized with 3% sodium pentobarbital (40 mg/kg) before cervical dislocation under anesthesia. Rat tibialis anterior muscle tissues and blood samples were then collected and stored at -80°C. All experimental procedures in the present study were performed in accordance with the requirements of the Ethics of Animal Experiments and approved by the Animal Care and Use Committee of Wuhan Myhalic Biotechnology Co. Ltd. (approval no. HLK-20181118-01).

H&E and Masson staining. Anterior tibial muscular tissues were fixed in 4% paraformaldehyde at 25°C for 24 h and gradually rehydrated in a descending ethanol gradient. The tissues were then embedded in paraffin and sectioned at 3 µm per slice. The sections were baked in an oven at 60°C for 40 min, followed by incubation in xylene for 10 min in an oven at 60°C. The sections were then replaced with clean xylene and soaked again at 25°C for 5 min, before being incubated in a decreasing ethanol gradient. For H&E staining, the sections were stained with hematoxylin for 5 min at room temperature and immersed in a 1% ethanolic hydrochloric acid solution for 30 sec to remove excess hematoxylin. Subsequently, the sections were counterstained with 5% eosin for 5 min at room temperature. For Masson staining, the sections were stained with a mixture of hematoxylin staining solution and aqueous ferric chloride solution for 10 min, washed with a hydrochloric acid-ethanol fractionation solution in water for 15 sec and Masson bluing solution for 5 min, before being washed with distilled water for 1 min. They were then stained with Lichon red magenta staining solution for 5 min, washing with aqueous an acetic acid solution, aqueous phosphomolybdic acid solution and aqueous acetic acid solution in turn for 1 min each before staining with aniline blue. After staining for 2 min and washing again for 1 min, they were treated with anhydrous ethanol and xylene and mounted with neutral resin. All staining processes were performed at 25°C. All prepared sections were observed under a light microscope at x200 magnification.

ELISA. Blood was collected and placed at 37°C for 1-2 h, centrifuged at 1000 x g for 10 min at 4°C and the supernatant was collected as serum. The levels IL-6, IL-4, IL-33, IL-10 and TNF-α in the serum were evaluated by ELISA. IL-6 (cat. no. RA20607), IL-4 (cat. no. RA20088), IL-33 (cat. no. RA21016), IL-10 (cat. no. RA20090), and TNF-α (cat. no. RA20035) ELISA kits were obtained from Bioswamp Life Science Lab; Wuhan Bein Lai Biotechnology Co., Ltd. The assay was performed according to the manufacturer's protocol and the optical density was measured at 450 nm using a microplate reader (Multiskan MS; Thermo Fisher Scientific, Inc.).
Immunohistochemistry. The formalin-fixed paraffin-embedded tissue blocks were placed at -20°C for ≥30 min to increase hardness before slicing at a thickness of 4-μm. Before primary antibody incubation, the sections were dehydrated and dewaxed using the procedure identical to that of H&E staining aforementioned. They were then rehydrated in a descending ethanol gradient and heated and dewaxed using the procedure identical to that of H&E staining aforementioned. They were then hydrated in a descending ethanol gradient and treated with 0.01 mmol/l sodium citrate buffer solution for 23 min at high pressure (125°C and 103 kPa) for antigen retrieval. Elimination of endogenous peroxidase activity was performed by a colorimetric reaction using the enhanced chemiluminescence substrate buffer (EMD Millipore). The membranes were scanned using Gel Doz EZ imager (Bio-Rad Laboratories, Inc.). The gray value of the relevant bands was quantified using the TANON GIS software (version 4.2; Tanon Science & Technology Co., Ltd.).

Western blotting. The relative protein expression levels were detected by western blotting. Protein was extracted by lysing muscle tissue cells using RIPA buffer (cat. no. PAB180006; Wuhan Bein Lai Biotechnology Co., Ltd.) and 20 μg of protein was quantified using the BCA protein concentration assay kit. The protein was resuspended in SDS sample buffer and boiled at 100°C for 5 min. Equal amounts of total protein were then separated by 12% SDS-PAGE and then transferred onto PVDF membranes. The membranes were then incubated with 5% skimmed milk at 25°C for 2 h before being incubated overnight at 4°C with the following primary antibodies: TGF-β1 (1:2,000; cat. no. PAB33215; Wuhan Bein Lai Biotechnology Co., Ltd.), MMP-2 (1:2,000; cat. no. PAB30618; Wuhan Bein Lai Biotechnology Co., Ltd.), MMP-7 (1:2,000; cat. no. PAB30191; Wuhan Bein Lai Biotechnology Co., Ltd.), phosphorlated (p-) Smad3 (1:1,000; cat. no. ab193297; Abcam), Smad3 (1:2,000; cat. no. PAB30705; Wuhan Bein Lai Biotechnology Co., Ltd.), p-ERK1/2 (1:2,000; cat. no. PAB36355-P; Wuhan Bein Lai Biotechnology Co., Ltd.), ERK1/2 (1:2,000; cat. no. PAB37327; Wuhan Bein Lai Biotechnology Co., Ltd.), p-p38 (1:2,000; cat. no. PAB43139-P; Wuhan Bein Lai Biotechnology Co., Ltd.), p38 (1:2,000; cat. no. PAB38871; Wuhan Bein Lai Biotechnology Co., Ltd.) and GAPDH (1:2,000; cat. no. PAB36264; Wuhan Bein Lai Biotechnology Co., Ltd.). The membranes were then washed with TBS and incubated with HRP-conjugated goat anti-rabbit IgG secondary antibody (1:20,000, cat. no. PAB160011; Bioswamp Life Science Lab; Wuhan Bein Lai Biotechnology Co., Ltd.) for 2 h at 25°C. Finally, the immunoreactivity was visualized by a colorimetric reaction using the enhanced chemiluminescence substrate buffer (EMD Millipore). The membranes were scanned using Gel Doz EZ imager (Bio-Rad Laboratories, Inc.). The gray value of the relevant bands was quantified using the TANON GIS software (version 4.2; Tanon Science and Technology Co., Ltd.).

Statistical analysis. Statistical analysis was performed with SPSS 19.0 software (IBM Corp.) using one-way analysis of variance followed by Tukey’s test. Data are expressed as the mean ± standard deviation. P<0.05 was considered to indicate a statistically significant difference.

Results

General condition. After 7 days of adaptive feeding, a muscle injury model was constructed by injecting CTX. EA intervention was performed before the mental state, diet and activity of the rats were observed. None of the rats died during the experimental period. The weights of all rats remained stable without significant difference, and there was no significant difference among the treatment groups in terms of diet and water intake (data not shown). Compared with the control rats the mental state of the model rats gradually deteriorated, where their activity became limited. Compared with the model rats, the mental state and activity of the EA-treated rats were improved, which became more notable with intervention time (data not shown). Subsequently, 24 h after injection of CTX, HE staining revealed clear inflammatory cell infiltration in the tissues isolated from rats in the model group compare with those in the control group (Fig. 1). Since this cell type was
EA alleviates skeletal muscle inflammation and fibrosis. To examine the effect of EA on the inflammatory response in rats with skeletal muscle injury, the degree of inflammatory infiltration in skeletal muscle tissues was assessed. Compared with that in the control group, the model group showed notable inflammatory infiltration (Fig. 2A). By contrast, after EA treatment, inflammatory infiltration was alleviated (Fig. 2A). Subsequently, changes in the levels of inflammation-related factors in the serum were measured (Fig. 2B). Compared...
with those in the control group, the levels of IL‑33 and IL‑10 were significantly decreased in the model group, whilst that of IL‑6, IL‑4 and TNF‑α was significantly increased on both days 7 and 14 (Fig. 2B). Compared with those in the model group, EA significantly increased the levels of IL‑33 and IL‑10 on day 14 whilst significantly reducing those of IL‑6, IL‑4 and TNF‑α on both days 7 and 14 (Fig. 2B).

EA promotes the transformation of macrophages from the M1 into the M2 sub‑type. Immunofluorescence was next performed to detect the expression of surface markers of M1 (CD86) and M2 (CD163) macrophages in the muscle tissue (Fig. 3). On days 7 and 14, the average optical density of M1 in the model group was significantly lower compared with that in the control group and EA groups (Fig. 3), whereas the trend of the mean optical density of M2 at day 7 was similar to that of M1 at day 7 (Fig. 3). In addition, the M1/M2 ratio was significantly increased by EA compared with model at both time points (Fig. 3).

EA suppresses collagen deposition and fibrosis in skeletal muscle. As shown in Fig. 4A, the model group showed greater levels of collagen II deposition in muscle tissues compared with that in the control and EA groups, suggesting that EA inhibited collagen deposition in muscle tissues. Immunohistochemistry was then performed to detect the expression of muscle fibrosis‑related proteins Axin2, collagen II, β‑catenin and collagen II in muscle tissues (Fig. 4B). Compared with those in the control group, the expression levels of Axin2, β‑catenin and collagen II were significantly increased in the model group at both days 7 and 14 (Fig. 4B). However, compared with those in the model group, the expression levels of these muscle fibrosis‑related proteins were significantly decreased after the EA intervention both at day 7 and day 14.

EA reduces skeletal muscle fibrosis through TGF‑β1/Smad3/p38/ERK1/2 signaling. Western blotting was then performed to measure the protein expression of TGF‑β1, MMP‑2, MMP‑7 and the activation of Smad3, p38 and ERK1/2 (Fig. 5). Compared with that in the control, the protein levels of TGF‑β1, MMP‑2, MMP‑7 and p‑p38 were significantly increased in the model at 7 and 14 days. By contrast, p‑ERK1/2 levels were significantly higher in the model compared with those in the control at 7 days, whilst the opposite trend was observed at 14 days. The levels of p‑Smad3 were decreased at both time points in the model compared with those in the control. The EA group had higher levels of p‑ERK1/2 and p‑Smad3 activation compared with those in the model group (Fig. 5), whilst the expression of TGF‑β1, MMP‑2, MMP‑7 and p‑p38 activation was significantly lower. These results remained consistent at day 7 and 14 (Fig. 5). This suggests that EA reduced skeletal muscle fibrosis through the TGF‑β1/Smad3/p38/ERK1/2 pathway.

Discussion

Acute skeletal muscle injury is common in sports and is typically caused by blunt trauma or stretch-induced injury (21). Previous studies have reported the ability of skeletal muscle fibers to regenerate and repair after acute skeletal muscle injury. However, muscle cell death would occur and the ability
to regenerate would be lost if a blunt trauma injury causes the skeletal muscle fibers to break, which can cause connective tissue proliferation, which in turn leads to bruise repair and skeletal muscle fibrosis (22,23). Due to the continuous infiltration by inflammatory cells, myoblasts can laterally differentiate into myofibroblasts, the excessive activation and proliferation of which can result in the production of a large quantities of extracellular matrix (24). This can lead to the continuous aggregation of collagen fibers, an important feature of skeletal muscle fibrosis (24). In the present study, it was revealed that EA significantly reduce collagen deposition in the skeletal muscle. Skeletal muscle fibrosis is generally irreversible and can lead to varying degrees of functional impairment and decreased exercise capacity (23). Therefore, targeting fibrosis has been a major research focus in the field of sports medicine.

As important cells in the innate immune system, macrophages exist in different subtypes based on the surrounding environment, which can in turn exert different roles (25). The most important subtypes are the M$_1$ and M$_2$ types (26). M1 macrophages are classically activated and mainly mediate immune functions (25). By contrast, M$_2$ macrophages serve an anti-inflammatory role by secreting anti-inflammatory cytokines, such
as IL-10 (14). Acupuncture has been found to selectively regulate the phagocytic function of macrophages (27). Under normal physiological conditions, EA has little effect on the phagocytic function of macrophages (28). However, under pathological conditions, such as obesity, it can enhance phagocytosis, but when phagocytosis becomes excessive, the phagocytic index is reduced (28). Zhang et al (29) observed that in acupuncture-treated mice, the body mass was reduced, blood lipid levels and proinflammatory mediator release were decreased, whilst anti-inflammatory mediator release was promoted, iNOS expression was decreased and M2 marker (CD206) expression was increased, compared with those in the model group. This suggests that acupuncture promoted the transformation of macrophages from M1 to the M2 subtype and reduced the inflammatory response in the epididymal white fat tissues (29). Data in the present study found that EA effectively upregulated expression of the M1 and M2 markers. In addition, the levels of IL-33 and IL-10 in the serum were increased by EA but the serum levels of IL-6, IL-4 and TNF-α were reduced.

MMPs are matrix-degrading enzymes that exert a variety of effects on the extracellular matrix. In total, 26 members of the MMP family have been identified to date, the majority of which share similar structures (30-33). The increased expression of MMPs assists in the formation of new muscle fibers at the injured site (33). According to their substrates, MMPs can be divided into the following four categories: Collagenase (MMP-1, -8, -13 and -18), gelatinase (MMP-2 and -9), interstitial lysin (MMP-3, -7, -10, -11 and -12), and membrane metalloproteinase (MMP-14, -15, -16 and -17) (34). A number of studies have shown that MMP-2 in skeletal muscle satellite cell migration and differentiation both in cultured muscle cells in vitro and in animal models in vivo (35,36), promoting tissue regeneration further (37). In addition, numerous studies have indicated that MMP-2 and MMP-7 serve an important role in myotube formation, such that they can regulate the degeneration and regeneration of muscle fibers in dystrophic muscle (37,38). Studies have also shown that MMP-2 participates in the migration of muscle-specific stem cells and myoblasts (39), where the elimination of MMP-2 from the

Figure 5. Effect of EA on the TGF-β1/Smad3/P38/ERK1/2 pathway in muscle tissues. Expression levels of TGF-β1, MMP-2, MMP-7 and the phosphorylation levels of SMAD3, ERK1/2 and p38 were measured by western blotting. n=3 rats per group. *P<0.05. EA, electroacupuncture; ns, not significant.
skeletal muscle of Mdx-mice led to reduced angiogenesis and impaired muscle regeneration (40). Zheng et al (41) found that the expression of MMP-2 is related to CD206, suggesting that inhibiting the expression of MMP-2 can delay the progression of skeletal muscle fibrosis. In the present study, the expression of MMP-2 and TGF-β1 decreased significantly after EA. TGF-β1 inhibits myogenic cell proliferation in vitro and promotes the lateral differentiation of muscle cells into myofibroblasts (42). Macrophages M₁ can secrete TGF-β₁, and the mRNA expression of which is increased after skeletal muscle injury (43). In the absence of macrophages, fewer new muscle fibers are formed, which then increases the fibrotic area (34). Therefore, macrophages may regulate the lateral differentiation of myoblasts by secreting TGF-β₁, inhibiting the proliferation of muscle cells and participating in the occurrence and development of skeletal muscle fibrosis. EA may interfere with these processes and inhibit fibrosis.

TGF-β1 is the core regulatory factor in skeletal muscle fibrosis, such that the inhibition of TGF-β1 signaling has been shown to effectively inhibit skeletal muscle fibrosis (44). The upregulation of periositin can activate TGF-β signaling, where knocking out the periostin gene in mice with muscular dystrophy has been shown to significantly reduce skeletal muscle fibrosis (45). Bedair et al (46) used decorin to interfere with the function of TGF-β and observed that post-injury, regeneration of the skeletal muscle was promoted and the formation of fibrous tissues was reduced. Halofuginone is an antagonist of Smad3 phosphorylation that has been demonstrated to significantly suppress the expression of collagen and promote myogenesis in the skeletal muscle of mdx-mice whilst enhancing regeneration and functional recovery (47,48). In the present study, EA significantly reduced the activity of TGF-β1 and p38 and upregulated the expression of ERK1/2 and Smad3, suggesting that EA may exert therapeutic effects by regulating the activity of the TGF-β1/Smad3/p38/ERK1/2 signaling axis. However, there are some limitations in the present study, since no inhibitor of the TGF-β pathway was added, whether the regulation of this pathway by EA is influenced by other factors cannot be ruled out. Therefore, in further studies, this aspect should be considered to make the mechanistic role of EA in this signaling pathway clearer.

In conclusion, inhibit collagen deposition in skeletal muscle and alleviate inflammatory responses post-injury. The effect of EA may be achieved by regulating the TGF-β1/Smad3/p38/ERK1/2 signaling pathway.

Authors’ contributions
HH and ML conceptualized and designed the study. HuL analyzed data. HaL performed the experiments. All authors have read and approved the final version of the manuscript. HH and ML confirm the authenticity of all the raw data.

Ethics approval and consent to participate
All experimental procedures in the present study were performed in accordance with the requirements of the Ethics of Animal Experiments and approved by the Animal Care and Use Committee of Wuhan Myhelic Biotechnology Co. Ltd. (approval no. HLK-20181118-01).

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Liao CH, Lin LP, Yu TY, Hsu CC, Pang JS and Tsai WC. Ibuprofen inhibited migration of skeletal muscle cells in association with downregulation of p130cas and CrkI1 expressions. Skelet Muscle 9: 23, 2019.
2. Huard J, Li Y and Fu FH: Muscle injuries and repair: Current trends in research. J Bone Joint Surg Am 84: 822-832, 2002.
3. Baoge L, Van Den Steen E, Rimbaud S, Philips N, Witvrouwen E, Almqvist KF, Vanderstraeten G and Vandenn Bossche LC: Treatment of skeletal muscle injury: A review. ISRN Orthop 2012: 689012, 2012.
4. Garg K, Corona BT and Walters TJ: Therapeutic strategies for preventing skeletal muscle fibrosis after injury. Front Pharmacol 6: 87, 2015.
5. McDermott MM, Dayanidhi S, Kosmac K, Saini S, Syltz J, Leeuwenburgh C, Hartnell L, Sult R and Ferucci L. Walking Exercise Therapy Effects on Lower Extremity Skeletal Muscle in Peripheral Artery Disease. Circ Res 128: 1851-1867, 2021.
6. Mahdy MAA: Skeletal muscle fibrosis: An overview. Cell Tissue Res 375: 575-588, 2019.
7. Tsai WC, Yu TY, Chang GJ, Lin LP, Lin MS, Pang JS. Platelet-Rich Plasma Releasate Promotes Regeneration and Decreases Inflammation and Apoptosis of Injured Skeletal Muscle. Am J Sports Med Jul 46: 1980-1986, 2018.
8. Border WA and Noble NA: Transforming growth factor beta in tissue fibrosis. N Engl J Med 331: 1286-1292, 1994.
9. Delaney K, Kasprzycka P, Ciempuch M and Zimowska M: The role of TGF-β1 during skeletal muscle regeneration. Cell Biol Int 41: 706-715, 2017.
10. Fang H, Judd RL: Adiponectin Regulation and Function. Compr Physiol 8: 1031-1063, 2018.
11. Delos D, Leineweber MJ, Chaudhury S, Al佐oaae S, Gao Y and Rodeo SA: The effect of platelet-rich plasma on muscle contusion healing in a rat model. Am J Sports Med 42: 2067-2074, 2014.
12. Li H, Hicks JJ, Wang L, Oyster N, Philippou M, Hurwitz S, Hogan MV and Huard J: Customized platelet-rich plasma with transforming growth factor β1 neutralization antibody to reduce fibrosis in skeletal muscle. Biomaterials 87: 147-156, 2016.
13. Wehling-Henricks M, Jordan MC, Gotoh T, Grody WW, Roos Kp and Tibballs JG: Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS One 5: e10763, 2010.
14. Nozaki M, Ota S, Terada S, Li Y, Uehara K, Gharaibe B, Fu FH and Huard J: Timing of the administration of suramin treatment after muscle injury. Muscle Nerve 46: 70-79, 2012.
15. Hirim Chen F, Antochi AD, Barbilian AG. Acupuncture and the retrospect of its modern research. Rom J Morphol Embryol 60: 411-418, 2019.
16. Martins L, Gallo CC, Honda TSB, Alves PT, Stilhano RS, Rosa DS, Koh TJ and Han SW: Skeletal muscle healing by M1-like macrophages produced by transient expression of exogenous GM-CSF. Stem Cell Res Ther 11: 473, 2020.

17. Li JP, Xu T and Xu SS: Expression and significance of TNF-α and MMP-1 in acupuncture to inhibit skeletal muscle fibrosis. Annual Meeting of Sports Physiology Committee of Chinese Physiological Society and Academic Seminar on ‘Sports and Health’. 2013.

18. Chen JDZ, Ni M, Yin J. Electroacupuncture treatments for gut motility disorders. Neurogastroenterol Motil 30: e13393, 2018

19. Han H and Li M: Clinical observation of acupuncture combined with exercise therapy for acute lumbar sprain. Lishizhen Med Mater Med Res 23: 244-245, 2012.

20. Zhang J, Xiao Z, Qu C, Cui W, Wang X and Du J: CD8 T cells are involved in skeletal muscle regeneration through facilitating MCP-1 secretion and Gr1(high) macrophage infiltration. J Immunol 193: 5149-5160, 2014.

21. Bayer ML, Magnusson SP, Kjaer M, Tendon Research Group: Endurance exercise of different intensity on cardiac collagen of rats and skeletal muscle regeneration: The roles of pro-fibrotic factors, TGF-β1 and Wnt in the systemic regulation and aging of satellite cell responses. Ageing Cell 8: 676-689, 2009.

22. Chen X and Li Y: Role of matrix metalloproteinases in skeletal muscle: Migration, differentiation, regeneration and fibrosis. Cell Adhes Migr 3: 337-341, 2009.

23. Zheng LF, Chen LF, Chen PJ and Xiao WH: Fat deposition in skeletal muscle and its regulatory mechanism. Acta Physiologica Sinica 69: 344-350, 2017 (in Chinese).

24. Miyazaki D, Nakamura A, Fukushima K, Yoshida K, Takeda S and Ikeda S: Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers. Hum Mol Genet 20: 1787-1799, 2011.

25. Zheng LF: Study on the role and mechanism of macrophages in the repair of skeletal muscle contusion. Shanghai university of sport, 2018 (in Chinese).

26. Carlson ME, Conboy MJ, Hsu M, Barchus L, Jeong J, Agrawal A, Mikels AJ, Agrawal S, Schafer DV and Conboy IM: Relative roles of TGF-beta1 and Wnt in the systemic regulation and aging of satellite cell responses. Cell 144: 595-607, 2011.

27. Liu RM: PMI-1 Regulation of TGF-β1-induced Alveolar Type II Cell Senescence, SASP Secretion, and SASP-mediated Activation of Alveolar Macrophages. Am J Respir Cell Mol Biol 62: 319-330, 2020.

28. Lorts A, Schwaneckamp JA, Baudino TA, McNally EM and Molkentin JD: Deletion of peristin reduces muscular dystrophy and fibrosis in mice by modulating the transforming growth factor-β pathway. Proc Natl Acad Sci USA 109: 10978-10983, 2012.

29. Bedair HS, Karthikeyan T, Quintero A, Li Y and Huard J: Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am J Sports Med 36: 1548-1554, 2008.

30. Roffe S, Hagai Y, Pines M and Haley O: Halofuginone inhibits Sma3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion. Exp Cell Res 316: 1061-1069, 2010.

31. Hubein KD, Jassal DS, Haley O, Pines M and Anderson JE: Functional resolution of fibrosis in mdx mouse dystrophic heart and skeletal muscle by halofuginone. Am J Physiol Heart Circ Physiol 294: H1550-H1561, 2008.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.