Transcriptional mapping of the macaque retina and RPE-choroid reveals conserved inter-tissue transcription drivers and signaling pathways

Ameera Mungale1#, David M. McGaughey2#, Congxiao Zhang3, Sairah Yousaf1, James Liu1, Brian P. Brooks4, Arvydas Maminishkis3, Temesgen D. Fufa1, Robert B. Hufnagel1*

1Medical Genetics and Ophthalmic Genomics Unit, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health
2Bioinformatics Group, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health
3Section on Epithelial and Retinal Physiology and Disease, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health
4Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health

#Equal contributors

*Correspondence: Robert B. Hufnagel (robert.hufnagel@nih.gov): 10 Center Drive, rm 10N109, Bethesda, MD 10N109.

Funding: National Eye Institute intramural funds.

Running title: Conserved primate macular transcriptome
Abstract

Purpose: The macula and fovea comprise a highly sensitive visual detection tissue that is susceptible to common disease processes like age-related macular degeneration (AMD). Our understanding of the molecular determinants of high acuity vision remains unclear, as few model organisms possess a human-like fovea. We explore transcription factor networks and receptor-ligand interactions to elucidate tissue interactions in the macula and peripheral retina and concomitant changes in the underlying retinal pigment epithelium (RPE)/choroid.

Methods: Poly-A selected, 100 bp paired-end RNA-sequencing (RNA-seq) was performed across the macular/foveal, perimacular, and temporal peripheral regions of the neural retina and RPE/choroid tissues of four adult Rhesus macaque eyes to characterize region- and tissue-specific gene expression. RNA-seq reads were mapped to both the macaque and human genomes for maximum alignment and analyzed for differential expression and Gene Ontology (GO) enrichment.

Results: Comparison of the neural retina and RPE/choroid tissues indicated distinct, contiguously changing gene expression profiles from fovea through perimacula to periphery. Top GO enrichment of differentially expressed genes in the RPE/choroid included cell junction organization and epithelial cell development. Expression of transcriptional regulators and various disease-associated genes show distinct location-specific preference and retina-RPE/choroid tissue-tissue interactions.

Conclusions: Regional gene expression changes in the macaque retina and RPE/choroid is greater than that found in previously published transcriptome analysis of the human retina and RPE/choroid. Further, conservation of human macula-specific transcription factor profiles and gene expression in macaque tissues suggest a conservation of programs required for retina and RPE/choroid function and disease susceptibility.
Introduction

The retina is a thin tissue of the posterior eye (range: 166.9 ± 20.9 μm - 271.4 ± 19.6 μm)[1] essential for processing light and transmitting information to the brain through the optic nerve. It is composed of multiple layers, which contain seven cell classes including rod and cone photoreceptors, in apposition with the retinal pigment epithelium (RPE), which is underlaid by the choroid. The choroid is a vascular structure that supports the outer retina, the RPE is necessary for maintaining healthy photoreceptors, and rods mediate dark-adapted vision while cones are responsible for color vision[2, 3]. The relative composition of cell types varies across the retina, and provides visual function specializations, such as high acuity color vision at the fovea, which is cone photoreceptor rich and rod depleted. Furthermore, the neural retinal layers change in thickness and morphology, including the inner and outer nuclear layers of the photoreceptors, whereas the choroidal layer has increased thickness at the macula but the morphology of the entire layer remains relatively unchanged[4, 5]. Many genes have varied expression in different cell types and tissue layers, with 819 genes implicated in heritable retinal degenerations as of 2022 (RetNet, https://sph.uth.edu/RetNet/)[6, 7]. While retinal degeneration may initiate in a single tissue layer, eventually the disease progresses across all tissue layers [8]. Importantly, retinal manifestations in many diseases are region specific. For example, Stargardt disease and Best disease primarily affect the macula and cause loss of central vision first, whereas retinitis pigmentosa initiates in the rod-rich periphery[9-12]. We hypothesize that this location-specific disease susceptibility of the retina is due to cellular specialization and region-dependent molecular interactions, which we can assess by regional layer-specific gene expression profiling of healthy retinae.

Previous investigations of the transcriptomic landscape of the human retina support a significant differential gene expression between the retina and the RPE/choroid/sclera tissue layers as well as across macular and peripheral regions, as described by Li et al., 2014[13]. Comparison of gene expression between the nasal and temporal peripheries of retina and RPE/choroid/sclera tissues indicated little to no variability, yet macular and peripheral profiles remained distinct in each tissue[13]. Gene expression across the retina has shown to be consistent with the spatial distribution of photoreceptors and ganglion cells, and RPE-specific genes appear to be enriched in the periphery over the macula as outlined by Whitmore et al., 2014[14]. Further characterization of gene expression between foveal and peripheral retina has been conducted using single-cell RNA sequencing in both primate (Macaca fascicularis) by Peng et al., 2019[15] and human retina by Voight et al., 2019[16]. These studies showed variability in both cell type distribution and gene expression between foveal and peripheral retina[15, 16]. While it has been well established that regional differences exist across tissue layers in the primate retina, the molecular drivers of these differences remain unclear.

Here we generate an RNA-seq dataset from adult Rhesus macaque (Macaca mulatta) eyes that reflect the changing photoreceptor composition of the contiguous macular/foveal, perimacular, and peripheral regions to determine tissue- and location-dependent differential gene expression of the neural retina and RPE/choroid. The use of matched retina and RPE/choroid tissue biopsies in this analysis with an additional perimacular sample provides a contiguous assessment of gene expression across location as opposed to a binary macular vs periphery comparison and allows for a more comprehensive look at patterns of gene expression and their related pathways and...
ontologies. We additionally explore conservation of these shared and distinct pathways through a meta-analysis comparing our macaque datasets to previously published human data. Finally, we examine gene regulation via transcription factors and tissue-tissue interactions using ligand/receptor analysis to understand differences in the macular and peripheral retina and the affiliated changes in the RPE/choroid.

Methods

Animal Care

All experimental protocols were approved by the National Eye Institute Animal Care and Use Committee. Procedures were performed in accordance with the United States Public Health Service policy on the humane care and use of laboratory animals.

Tissue Acquisition

Postmortem eyes were enucleated from two adult Rhesus monkeys (*Macaca mulatta*), aged 13 and 18 years. Two-millimeter punch biopsies were removed from macular/foveal, perimacular, temporal, and nasal regions of the retina. Following the biopsy, the tissues were separated into layers of neural retina and RPE/choroid using microdissection techniques. Biopsies were optimized for smallest diameter in other macaque samples in order to obtain the minimal number of cells required for RNA-sequencing. Optimization was performed by measuring total RNA yield in different sized biopsy samples as below and requiring a minimum of 200 ng as input for RNA-seq.

RNA Extraction

Total RNA was isolated from fresh tissues using the PicoPure™ RNA Isolation Kit (Applied Biosystems, Waltham, Massachusetts, USA) following mortar and pestle tissue homogenization. Extracted RNA samples were checked for quality using the 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and only samples with RIN value > 6.5 were used (Range 1 – 10).

RNA sequencing

Extracted RNA was prepared into 100 bp libraries for paired-end, poly-A-selected RNA sequencing on the Illumina HiSeq4000 at the NIH Intramural Sequencing Center. The raw sequence data is available at the Gene Expression Omnibus under accession GSE194285.

Bioinformatic Analysis

Briefly, reads were quantified against the macaque genome Mmul_8.0.1 using Salmon pseudo-alignment transcript quantification tool (version 0.13.0; Patro et al., 2017)[17], imported into R with tximport[18] and analyzed for differential expression using DESeq2, using the Rhesus macaque sample as a covariate [19]. Transcript reads were additionally aligned to the human genome (GRCH38, gencode version 30 [20], to supplement any unquantified genes. To select the gene name for each macaque transcript, we used the HGNC Comparison of Orthology Predictions[21] data, aggregated by the hcop R package (https://github.com/stephenturner/hcop). We counted the number of sources supporting each gene ID to transcript and selected the gene ID with the most support, as detailed in https://github.com/davemcg/macaque_macula_RNA-seq/blob/master/analysis/01_QC_prelim_analysis.Rmd.
Genes were considered to be differentially expressed based on IHW[22] corrected p value < 0.05. Gene lists were then assigned gene ontologies using the clusterProfiler “enrichGO” function[23].

For the heatmap visualizations, we used length-scaled transcripts per million (TPM) quantification from tximport scaled by library size with the edgeR[24] “calcNormFactors” function. The heatmaps were made with the R package ComplexHeatmap[25].

Human single cell transcriptome data from the scEiaD resource at plae.nei.nih.gov was searched for machine predicted RPE cells from fovea or peripheral punches. We found 217 cells, 159 from the fovea and 58 from the periphery, across four studies[26-30]. The Seurat object was downloaded on 2022-01-14 from plae.nei.nih.gov and subbed to these 217 cells. The Seurat object was converted to a SingleCellExperiment object to run wilcox and t tests with the scran “findMarkers” test and used the study as a covariate. Genes were kept which had both a wilcox AUC (area under curve) greater than 0.7 (1 is best), an abs(log2)fold change greater than 0.7, and a FDR corrected p value < 0.01. For the overlap testing we kept genes that had a padj < 0.01 in each comparison (single cell human RPE, bulk human RPE-choroid, or bulk macaque RPE-choroid) and the direction of the fold change between fovea and peripheral was the same. The venn diagram was created with the R package eulerr (https://cran.r-project.org/web/packages/eulerr/citation.html).

For the exact commands used in the analysis of this data, we make our Snakemake[31] reproducible workflow available at https://github.com/davemcg/macaque_macula_RNA-seq.

Results

We performed RNA-seq on 2 mm retina and RPE/choroid tissues of 4 adult Rhesus macaque eyes in each of the central macular (foveal), perimacular, and peripheral regions (Fig. S1). Tissue dissections and RNA extractions were optimized for minimal input samples (<1 μg) to maximize spatial resolution. Principle component analysis (PCA) visualization indicates that samples group primarily by tissue. Foveal and peripheral samples generally cluster furthest from each other, and perimacular samples cluster in between (Fig. S2). We assessed overall gene expression by tissue layer and location as well as differential gene expression between foveal samples and other peripheral samples (Table 1).

Analysis of the foveal versus peripheral regions in the retina and RPE/choroid depicted distinct sets of differentially expressed genes in each tissue layer, with 9644 and 7925 differentially expressed genes in the retina and RPE/choroid, respectively (Padj < 0.05) (Table 1). Many of the significantly differentially expressed genes are known to have tissue-specific roles in development and disease (Fig. 1A, 1B). Retinal diseases also manifest uniquely at particular regions of the RPE or retina. For example, Age-Related Macular Degeneration (AMD) is thought to begin in the macular RPE[32], Late Onset Retinal Degeneration manifests in the peripheral RPE[33], Retinitis Pigmentosa causes photoreceptor loss in the peripheral retina[10], and finally, Cone-Rod Dystrophies primarily affect photoreceptors in the central retina[34].
In order to confirm that the differentially expressed genes across locations further reflect cellular composition of different tissues, we used expression patterns of published rod-enriched genes as identified in Holt et al., 2015[6] and Mustafi et al., 2016[35]. We observed correlated gene expression between eyes and animals, as well as a progressive increase in rod-enriched gene expression from the fovea to the perimacula and then to the periphery, reflecting changes in neural retina composition (Fig. S3A). In this list of rod enriched genes, we find that our peripheral retina samples are 2.8 fold enriched in rod signal relative to the fovea (t test p < 3.5 e-12). The perimacular region was enriched in rod signal by 1.7 fold over the fovea (p < 1.1 e-09). The enrichment of cone gene expression between the fovea and peripheral retina samples was 1.6 fold (p < 0.02) (Fig. S3B, Table S1). Among the RPE samples the enrichment of rod and cone markers was less substantial and not significant (Figure S3C).

Next, we performed an unfiltered analysis of the differentially expressed, contiguously changing genes from fovea to perimacula to periphery in the RPE/choroid. This analysis highlights stepwise changes due to changing photoreceptor composition in the cone-predominant macula, rod-predominant periphery, and admixed perimacula, and how these morphological changes in the neural retina may affect changing gene expression in the RPE/choroid. Differential expression analysis revealed distinct blocks of genes with low expression in the fovea that increase moving outward through the perimacula to the periphery, and other genes that are highly expressed in the fovea but progressively decrease moving outwards (Fig. 1C). We observe enrichment for gene ontologies including cell junction organization and epithelial cell development, as well as urogenital and renal system development (Fig. 1D).

Next, we sought to understand the transcriptional regulators driving the spatial and inter-tissue differences in gene expression. Using a list of all known transcription factors in humans, we identified a subset which is differentially expressed by location in each of the retina (Fig. S4B) and RPE/choroid datasets (Fig. 1E). After conducting a literature review, we further identified transcription factors with known associations in the respective tissues. In the retina and RPE, distinct sets of fovea-enriched and periphery-enriched transcription were elucidated. Our data shows three transcription factors, \textit{NFRF1}, \textit{IRX2}, and \textit{ZFHX4}, to be differentially expressed in both neural retina and RPE/choroid and show a similar pattern in independent human data curated from eyeIntegration[36] (Fig. S5). Interestingly, \textit{ZFHX4} appears to be enriched in the macular neural retina and the peripheral RPE/choroid, whereas \textit{NFRF1} and \textit{IRX2} expression is present in both tissues.

We then analyzed tissue-tissue interactions using ligand and receptor characterizations from the CellPhoneDB database[37]. After converting protein names from the database to gene names via the Uniprot conversion tool and merging the data with our location-based differential expression, we generated lists of distinct up- and down-regulated interactions in which both interacting partners in each tissue were either up- or downregulated in the fovea over the periphery (Table 2). Pathway analysis on these gene lists shows enrichment in the upregulated interactors for cell adhesion pathways (Fig. 2A, C) and that downregulated interactors were highly enriched for Wnt signaling in kidney disease and the ErbB signaling pathway, both of which are heavily involved in tissue development, including ocular development (Fig. 2B, D, Fig. S7C-D).
To determine the conservation of location-specific differential expression of transcriptional regulators across fovea to periphery, we performed a meta-analysis comparing our macaque data to previously published human datasets[13, 14]. We see generally conserved patterns of expression from fovea to periphery in neural retina and to a lesser extent, RPE/choroid (Fig. 3A-B). We performed the same analysis on unfiltered gene lists from the human and macaque and found approximately 700 genes that follow similar differential expression patterns from fovea to periphery in both species. (Fig. 3A, Table 1S). GO terms for this list of conserved genes involve neuronal connectivity and cellular morphogenesis (Fig. 3C), similar to the GO terms for the macaque retina data seen previously in this study. In one case, we see a distinct block of macula-specific transcription factors in the Rhesus monkey neural retina including HR, MYC, $EBF3$, AR, $EBF2$, $EBF1$, $TWIST1$, $IRX2$, $POU4F2$, $IRX1$, and $SHOX2$ that seem to also correlate to macula-specific transcription factors in the human data (Fig. S6B). Overall, this supports a conservation of gene expression and function across monkey and human species.

To test whether there was any correspondence between our macaque tests and an independent single cell RPE cells taken from either the fovea or periphery, we extracted 219 cells from the scEiaD resource at plae.nei.nih.gov. We found ten genes that overlap between our macaque resource and the scEiaD resource, including VIM, $S100B$, and $PMEL$. Of these overlapping genes, $CXCL4$, $SULF4$, and $WFDC1$ are shown to be enriched in the macula (Figure 4).

Discussion

Using the Rhesus macaque as a model to study the transcriptome landscape of higher primate retina, we conducted RNA-sequencing across neural retina and RPE/choroid tissue layers. The small RNA punch size and bulk processing of the tissues allowed for high resolution and sensitivity of transcript quantification due to the decreased likelihood of variability from extended amplification, gene dropouts, and biological noise. Furthermore, it allows for the ability to profile rare and low-expressed transcripts as compared to single-cell RNAseq such as the 10x Genomics Chromium platform, in which only the top 20-30% of expressed genes are captured, or Drop-seq, which requires a more manual approach. Unlike previous studies, our approach included the perimacular retina to define contiguously changing gene expression across the retinal landscape, thereby reflecting the stepwise differences in the ratio of cone and rod composition. By doing this, we isolated the critical pathways regulating changes in retinal connectivity and RPE/choroid function necessary to support different photoreceptor mosaics.

The macaque gene expression changes observed in our data are orthogonally confirmed in human datasets. Furthermore, our findings also indicate conservation of contiguously changing gene expression patterns from the central to peripheral retina between Rhesus monkeys and humans, establishing a more available model system for future human transcriptomic studies. Rhesus monkeys offer an accessible model in which conditions of tissue acquisition can be further controlled, including age, optimization of biopsy and RNA extraction, and reduced time from enucleation to tissue dissection and RNA extraction.

PCA of gene expression data by tissue type predicts the distinct nature of the neural retina and RPE/choroid tissues, and further clustering by location confirms there are transcriptomic differences between regions of the retina. The grouping of transcriptomes by animal highlights
the genetic variability observed between individuals. The lower number of differentially expressed genes in fovea vs perimacular comparisons versus fovea vs periphery indicates a continuum of gene expression. The highly variable patterns of gene expression across the neural retina corresponds to the changing composition of cell types based on location.

In contrast, the presence of distinct changing RPE/choroid gene expression suggests variability in the cell processes occurring across the retina in the RPE and choroid. Due to the relatively unchanged morphology of these tissues across the retina save for increased RPE diameter and choroidal thickness in the macula, the contiguous changes in gene expression observed may be a factor in driving changes in cell processes across the entire retina. GO terms enriched for the contiguously changing genes in the retina involved neuron projection and axon development as well as regulation of cell morphogenesis, supporting known findings that there are differences in circuitry and cone packing across the neural retina[10]. Furthermore, the changing gene expression across the RPE/choroid is enriched for GO terms such as cell junction organization and epithelial cell development, supporting reported findings that RPE diameter is smaller in the fovea/macula as compared to the periphery[38]. It is known that RPE cells form tight junctions, creating the outer blood-retinal barrier. These tight junctions serve as regulators of cell proliferation, polarity, and transport, as well as transducers of signals responsible for regulating cell size and shape[39]. Therefore, genes involved in cell junction organization and epithelial cell development may play a role in varied cell sizes across the RPE. GO terms involving urogenital and renal system development are also enriched in the RPE/choroid gene list, and interestingly, there are several heritable genetic conditions that affect both the eye and kidney, and there is also a link between chorioretinal thinning and chronic kidney disease, thought to be due to inflammation and endothelial dysfunction[40, 41]. In addition to observing greater levels of gene expression variability across location in the RPE-choroid than expected, several disease-relevant genes known to play roles in various ocular disorders including TIMP3 (various retinopathies[42]), ABCA4 (Stargardt disease[12]), and TYRP1 (oculocutaneous albinism[43]), were found to be significantly differentially expressed by location.

Differential expression of particular transcription factors, including neural retina- and RPE/choroid show conserved patterns of expression between macaque and human datasets, with IRX2 being upregulated in the macula. Other differentially expressed transcription factors that show conservation with past human studies include FOXI3, which is upregulated in the periphery, and POU4F2, POU4F1, as well as its target, RIT2, all of which are enriched in the macula in both monkey and human datasets[7]. Additional transcription factors following similar gene expression patterns across species in the RPE/choroid include VEZF1 and NR2F1, which are thought to be involved in retinal and vascular development[44, 45]. Identifying conserved location-specific transcription factors can provide insight into the regulatory landscape of the two tissues and how they relate to patterns of differential gene expression. It may be inferred then, that these changes in global gene expression across location and tissue, driven by distinct sets of transcription factors, likely reflect location-specific cellular processes and interactions.

Beyond patterns of transcriptional regulators, location-based tissue-tissue interactions are also indicative of specific pathways being up- or downregulated by location, suggesting specific roles in different locations of the tissues. The enrichment for Wnt signaling in kidney disease in the downregulated interactions in the macula may be connected to the GO enrichment for renal
development in the RPE/choroid. Furthermore, ErbB signaling and peptide G-protein coupled receptor signaling are required for retinal development, with ErbB involved in neural crest development and adult pigment formation[46] and GCPR signaling involved in light processing in photoreceptors[47]. The tissue-tissue interaction analysis suggests these pathways are upregulated in the peripheral tissues of the eye. Certain pathways were enriched for tissue-tissue interactions both up- and downregulated in the macula, including Hippo signaling. Hippo-YAP signaling is known to play roles in both ocular development as well as disease, as it regulates retinogenesis, photoreceptor cell differentiation, and retinal vascular development, but misregulation also has associations with coloboma and optic fissure closure, uveal melanoma, and retinal degeneration[48]. The widespread enrichment of this pathway informs the many roles it plays in regulating the retinal landscape across location.

The three-way comparison of single cell, bulk human, and Rhesus macaque data showed many more differentially expressed genes detected in our macaque dataset than the other two sequencing methods. Furthermore, identifying differentially expressed genes in the Rhesus monkey data that intersect with the single cell data allows us to identify known RPE-specific genes that are conserved between the datasets including VIM[39], and PMEL[49], which we have shown to change contiguously by location. Of the three macula-enriched genes in the overlapping set, CXCL14 and WFDC1 have been previously identified as enriched in the macula compared to peripheral retina via RNA microarray[50], and WFDC1 enrichment in the macula was independently confirmed by both expression and immunostaining[51]. As such, our data shows the known macula-enrichment of WFDC1 to be conserved. As a serine protease inhibitor, mediator of endothelial cell migration and promoter of angiogenesis, its enrichment in the RPE and specifically, the macula, may suggest a role for WFDC1 in age-related macular degeneration [52], in which neovascularization beneath the macula is characteristic[50].

Considering the differential gene expression patterns across contiguous regions of the neural retina and especially the RPE/choroid allows for a combined approach in which we assessed the drivers of change as well as gross changes in gene expression by location. We identified highly enriched gene ontologies associated with each tissue location and layer, highlighted sets of contiguously changing transcription factors, determined important tissue-tissue interactions that highlight various up- and down-regulated location-specific pathways, and examined the conservation of gene expression patterns across multiple independent studies. In addition to the previous RNA-sequencing studies performed on human and non-human primate retinas, the data and findings presented here provide valuable resources for future studies aimed at identifying regional specialization of the retina and understanding disease mechanisms.

Acknowledgements

We would like to thank Bob Wurtz, Bruce Cumming, James Cavanaugh, Mitch Smith of the Laboratory of Sensorimotor Research, National Eye Institute for providing non-human primate samples. We would also like to thank the NEI/NIMH Animal Program, including Jim Raber and Ginger Tansey, the National Institutes of Health Intramural Sequencing Center, where RNA sequencing was performed, and Dr. Sheldon Miller for helpful comments and advice about the experiments and manuscript.
Table 1. A summary of the differential gene expression (padj < 0.05) in retina and RPE/choroid by location.

Tissue	Location	# Genes
Retina	Fovea	6,921
	Perimacula	6,926
	Periphery	10,517
	Fovea vs Perimacula	4,633
	Fovea vs Periphery	9,644
RPE/Choroid	Fovea	6,775
	Perimacula	7,465
	Periphery	10,983
	Fovea vs Perimacula	414
	Fovea vs Periphery	7,925

Table 2. Ligand-Receptor interactions across neural retina and RPE/choroid in the macula.

Upregulated Interactions in the Macula	Downregulated Interactions in the Macula		
RPE/Choroid	Neural Retina	RPE/Choroid	Neural Retina
NOTCH2	JAG2	EPHB2	EFNB1
FGFR1	NCAM1	WNT2B	FZD4
NTF3	NTRK3	EFNA1	EPHA2
IGF2	IGF1R	EPHB1	EFNB1
EPHA2	EFNA3	CCR1	CCL26
NOTCH1	JAG2	NRG2	ERBB3
PLXNB2	SEMA4D	CD48	CD244
NTF3	NTRK2	FLT3	FLT3LG
TNFSF10	TNFRSF10D	DSC1	DSG2
EPHA3	EFNA3	EFNA1	EPHA3
TEK	ANGPT1	PTPRC	CD22
VEGFA	FLT1	CCR5	CCL8
PLXNB2	SEMA4G	LGALS9	HAVCR2
NOTCH3	JAG2	MDK	ALK
WNT1	FZD1	PLXNC1	SEMA7A
NRP1	VEGFA	ANXA1	FPR2
EGFR	EGF	FGFR1	NCAM1
EPHA4	EFNB1	CCR1	CCL26
NRP2	SEMA3C	NGF	NTRK1
ERBB4	HBE GF	CD48	CD244
IGF2	IGF2R	FZD7	WNT3
EFNA1	EPHA2	CCR6	CCL20
EPHB1	EFNB1	CCR2	CCL26
TNF	TNFRSF1A	CCR2	CCL8
Gene 1	Gene 2	Gene 3	Gene 4
--------	--------	--------	--------
IGF2	IGF2R	PLXNB2	SEMA4C
EFNA3	EPHA4	PVR	CD96
CD55	ADGRE5	NRG1	ERBB4
CD44	SELE	ERBB3	NRG1
ERBB4	NRG4	PTPRC	CD22
CADM3	CADM1	SEMA5A	PLXNB3
EFNA1	EPHA3	CSF1R	IL34
CADM3	EPB41L1	CCR5	CCL8
VEGFA	FLT1	PDCD1	PDCD1LG2
VEGFA	KDR	CCR1	CCL8
NRP2	PGF	EREG	ERBB4
DPP4	CXCL12		
EPHB6	EFNB1		
NRP2	VEGFA		
FLT1	PGF		
EFNA1	EPHA4		
NRP2	SEMA3F		
Figure 1. (A) A volcano plot depicting differentially expressed genes between foveal and peripheral tissues in the neural retina. Colored genes show significant up- or down-regulation with several labeled genes having known tissue-specific roles in development and disease including PDE6B. (B) A volcano plot showing RPE fovea vs periphery differential expression, with key genes labeled, including ABCA4 and TIMP3. (C) Unfiltered differential expression analysis of contiguously changing genes from fovea to perimacula to periphery in the RPE/choroid exhibits distinct blocks of lowly expressed genes in the fovea with a progressive increase in expression in peripheral tissues as well as blocks of genes with progressive downregulation moving outwards through the tissue despite less obvious morphologic changes in the tissue as compared to neural retina. (D) Top 10 enriched gene ontology (GO) terms from the RPE/choroid differentially expressed gene set include cell junction organization and epithelial cell development. VEGF is enriched in multiple of these ontologies and has increased expression in the macula over the periphery. (E) A subset of genes identified as differentially expressed transcription factors by location in the RPE/choroid. Changes in transcriptional regulators can be a factor in driving gene expression changes. *These transcription factors have published associations with the respective tissue in the literature.
Figure 2. Tissue-tissue interactions showing receptor/ligand pairs in the central retina. (A) Upregulated macular receptors in the RPE/choroid are linked to their upregulated ligand in the macular neural retina. Interactors are grouped by signaling pathway and the width is scaled by average log2 fold change. (B) Downregulated macular receptors in the RPE/choroid and their respective downregulated ligand in the macular neural retina. (C) Upregulated macular ligands in the RPE/choroid are linked to their upregulated receptor in the macular neural retina. (D) Downregulated macular ligands in the RPE/choroid and their corresponding downregulated receptors in the macular neural retina.
Figure 3. (A) Heatmap displaying the comparison of differential gene expression in the neural retina between published data from a human macula vs periphery set (Li et al., 2014, Whitmore et. al, 2014) and the macaque data presented here, with 664 genes following similar expression patterns. (B) A comparison of conserved differential expression to the human studies in the RPE/choroid tissue. Fewer genes follow similar patterns of differential expression. (C) GO enrichment for conserved differentially expressed genes between human and macaque datasets in the neural retina. Terms including neuronal connectivity and cellular morphogenesis are highly enriched.
Figure 4. (A) Venn diagram of overlaps between differentially expressed genes between the fovea and periphery in three systems: human single cell RPE, bulk human RPE-choroid, and bulk macaque RPE-choroid. (B) Violin plot of the single cell expression with the ten genes which overlap between the human single cell RPE testing and bulk macaque RPE-choroid testing. (C) Heatmap of the same ten genes in our macaque RPE-choroid punches.
Supplemental Data

Figure S1. (A) Layout of punch biopsies taken from the Rhesus monkey eyes, including foveal (F), perimacular (PM), and peripheral (P) samples. (B) Diagram of the retina, highlighting the cell types in the neural retina as well as the RPE and choroid tissues (made in Biorender).
Figure S2. PCA clustering for the 1000 most variable genes sequenced. (A) Samples primarily cluster by tissue type, with RPE/choroid samples clustering away from retina samples. (B) Within the retina and RPE/choroid, foveal and peripheral samples tend to cluster furthest apart with perimacular samples clustering less tightly between.
Figure S3. (A) Heatmap depicting macaque expression of published rod-enriched gene expression (Holt et al. 2015, Mustafi et al. 2016) across the neural retina reflects cellular composition of rods in the retina. Genes are highly expressed in the periphery, where rod composition is highly enriched, and lowly expressed in the fovea/macular which is highly cone-enriched. (B) Peripheral and perimacular retinal samples express rod-enriched genes at a 2.8- and 1.7-fold increase compared to foveal retinal samples. The periphery is 1.6-fold enriched in cone signal compared to the fovea in the neural retina (Table S1). (C) Changes in rod- and cone-enriched gene expression do not vary greatly by location in RPE/choroid.
Figure S4. (A) Heatmap showing contiguous differential expression across location of the neural retina tissue, also exhibiting distinct blocks of progressive up and down regulated gene expression as seen for RPE/choroid in Fig. 1C. (B) A subset of genes identified as differentially expressed transcription factors by location in the neural retina. Changes in transcriptional regulators can be a factor in driving gene expression changes. *These transcription factors have published associations with the respective tissue in the literature. (C) Top 10 enriched gene ontology (GO) terms from the retina differentially expressed gene set, including neuron projection, axon development, regulation of cell morphogenesis, and protein localization and transport.
Figure S5. (A) Expression of commonly expressed transcription factors between the neural retina and the RPE/choroid. While NR2F1 and IRX2 follow similar expression patterns across location, ZFHX4 actually displays opposite expression patterns in the retina and RPE/choroid tissues. (B) Expression of these three transcription factors from the publicly available EyeIntegration database (Swami and McGaughey et al., 2019) showing similar expression levels of each gene in both tissue types with whole blood for comparison.
Figure S6. (A) A comparison of conserved transcription factor differential expression in the neural retina between published data from a human macula vs periphery set (Li et al., 2014, Whitmore et. al, 2014) and the macaque data presented here. (B) A similar comparison of human conservation of transcription factor differential expression in the RPE/choroid tissue. (C) Top enriched GO terms for the conserved gene expression across fovea to periphery in the RPE/choroid. Top terms include regulation of neurotransmitter levels and metabolic processes as well insulin secretion.
Figure S7. (A) Enrichr bar graph depicting highly enriched pathways via the WikiPathways 2019 Human database for the downregulated ligand/receptor interactions in the macula. Top enriched pathways include Wnt signaling in kidney disease and ErbB signaling. (B) Enrichr clustergram depicts the genes contributing to the enriched pathway terms including WNT, FZD4, and ERBB3. (C) Enrichr bar graph for upregulated ligand/receptor interactions in the macula. Top enriched pathways include PI3K-Akt signaling and Focal Adhesion-PI3K-Akt-mTOR, both of which are involved in the VEGF signaling pathway. (D) Enrichr clustergram is enriched for genes including VEGFA, FLT1, and KDR, all of which are key components of VEGF signaling.
Table S1. Rod- and Cone-Enriched gene expression in Retina and RPE/choroid compared across location

Tissue	Comparison	GeneSet	estimate	enrichment	statistic	p.value	parameter	conf.low	conf.high
Retina	Fovea vs Fovea	Rod	-0.7821306	-1.7196686	-7.4071987	1.11E-09	52	-0.9940137	-0.5702476
Retina	Fovea vs Periphery	Rod	-1.4620671	-2.7550282	-8.9989078	3.48E-12	52	-1.7880902	-1.1360439
Retina	Fovea vs Fovea	Cone	0.20531647	1.15293923	1.46077663	0.15045974	49	-0.0771353	0.48776821
Retina	Fovea vs Periphery	Cone	0.6492966	1.56840332	2.441338	0.01829112	49	0.11483133	1.18376187
RPE	Fovea vs Fovea	Rod	0.47748612	1.39231546	3.3946687	0.00132244	52	0.1952359	0.75973635
RPE	Fovea vs Periphery	Rod	-0.4613632	-1.3768422	-1.8370341	0.07192272	52	-0.9653239	0.0425975
RPE	Fovea vs Fovea	Cone	0.13785476	1.10026784	1.27906465	0.20689857	49	-0.0787328	0.35444235
RPE	Fovea vs Periphery	Cone	0.14454836	1.10538455	0.76617502	0.44724757	49	-0.2345828	0.52367948

Table S2. List of conserved genes between human and macaque data as seen in the heatmap (Fig. 3A)

AACS	CCDC88C	ELOVL6	IPT22	MTA2	POLR2G	SHKBP1	TMEM189		
ABCA1	CCDC92	EMB	IGIP	MTMR4	POPDC3	SHOX2	TMEM246		
ABCG1	CCER2	EMC8	IK	MTURN	PPARG	SIAE	TMEM26		
ABHD10	CCM2	EML4	IKBKE	MVD	PP1F	SIAH2	TMEM37		
ABHD17A	CCNYL1	ENOD1	IKBKG	MX1	PPM1K	SIGMAR1	TMEM41A		
ABHD6	CD109	ENOX1	IL17RD	MYADM	PPP1R12C	SIRT5	TMEM71		
ABR	CD151	ENPP1	IL17RE	MYB	PPP1R1C	SIX2	TMEM97		
ACACA	CD274	ENTPD3	INCENP	MYC	PPP1R3C	SLC15A3	TMOD2		
ACAT2	CD4	EPB41L1	INF2	MYCBP2	PPP1R3D	SLC16A7	TMTC1		
ACER3	CD5	EPB41L2	INHBA	MYLIP	PPP2R2C	SLC16A9	TNAFIP2		
ACLY	CD8A	EPB41L3	INPP4A	MYO1C	PPP2R5B	SLC22A18	TNFRSF21		
ALDH1B1	CLIC5	FAMB9	KCTD21	NEUB1	PFPH	SORBS2	TUBA1B		
---------	-------	-------	--------	-------	------	--------	--------		
ALDH1L1	CLIP2	FAMB9	KCTD20	NEUF1	PND1	SORL1	TUBB		
ALKBH3	CLSN2	FAMB8	KCTD21	NFIC	PNGM	SNRPD3	TUBB		
ALPK3	CLTC	FAMB8A	KMD5B	NIPK1	PRPT	SNW1	TUBB4A		
AMER1	CLTCL1	FAMB9A	KIAA1324L	NIPK2	QRPR	SNX16	TUBGCP5		
AMPD2	CLU	FARB	KIF21A	NIPK3	QRIC1	SNX9	TULP2		
ANK1	CMAS	FASN	KIF3C	NKPAPD1	QSOX1	SORBS2	UBASH3B		
ANK3	CMC2	FAT1	KIF5A	NKD2	RAB11FIP4	SORL1	UBE2E2		
ANKRD11	CMK1	FBLL1	KIFAP3	NKRFR	RAB11FIP5	SOX5	UBE2N		
Gene1	Gene2	Gene3	Gene4	Gene5	Gene6	Gene7	Gene8	Gene9	Gene10
-------	-------	-------	-------	-------	-------	-------	-------	-------	--------
ANKR13A	CNBP	FBLN1	KIFC2	NLRP1	RAB15	SPI1	UBE2O		
ANKR13D	CNN3	FBR5	KLC1	NMNAT2	RAB33A	SPARCL1	UBE2T		
ANKR24	CNM1	FBXO2	KLF13	NMRK2	RAB35	SPATA20	UBFD1		
ANKR27	CNOT2	FBXW5	KLF7	NOTCH4	RAB37	SPATS2	UBL4A		
ANKR40	CNST	FBXW7	KLF8	NOVA1	RAB3D	SPHK1	UCHL1		
ANKR50	CNTNAP1	FCHO1	KNDC1	NPHP1	RAB5B	SPINT1	UCHL2		
ANKR52	COL11A1	FFAR1	LAMC1	NR4A	RAB6A	SPNS2	URM1		
ANKR9	COL14A1	FEZ1	KRI1	PTPN	RAB6B	SPOCK2	USB1		
ANO4	COL15A1	FFAR1	LAMC2	NR4A	RAB6C	SPOCK2	USB1		
ANO5	COL23A1	FGF10	LACC1	NRAS	RABGGTA	SPTSSB	USP25		
ANX7	COL4A3	FHD1	LAR1	NR4A	RAC3	SQUEL	USP31		
APIM1	COL4A4	FHL2	LATS2	NT5M	RASA3	SRPX	UTRN		
APB1	COLCA2	FIGN	LDLR	NUAK1	RASGRP2	SSSH3	UXS1		
AP3M1	COPZ1	FKB1	LGALS1	NUDT10	RASGRP3	ST14	VAMP1		
AP5S1	CORO1C	FKB1	LGALS3	NUDT18	RASSF2	ST3GAL2	VANG1L		
APBA1	CORO2A	FLOT1	LGALS8	NUDT13	RBF2X2	ST3GAL6	VAPB		
APBA2	CORO2B	FLYWCH2	LGALS1	NUMB	RBPM5	ST5	VASH1		
APOBEC3C	CORO6	FMNL1	LGI1	NUP214	RBPM2	ST6GAL1	VIM		
APOD	COX42	FMO3	LGI3	NUP37	RCAN2	ST6GALNA	VOPP1		
APOE	CPEB1	FNBP1	LHFPL2	NUP93	RDH10	ST6GALNC	VPS35		
APOL2	CPED1	FND10	LIMK1	NNX	REEP1	STSSIA4	VSI10		
APP	CPLX1	FNDC11	LIM9	ODF3B	REEP5	STAC2	VSTM2L		
AR	CPNE3	FOCA	LIN7A	OGDH	REL2	STARD13	VWC2		
ARAF	CPNE9	FOXD1	LITAF	OPA1	REPS2	STARD4	WDR20		
ARAP2	CPZ	FOXF2	LIX1L	OPLA	RET	STAT4	WDR72		
ARFGEF3	CREG1	FOXN3	LM02	OPN3	RETREG1	STAT6	WDVYH1		
ARFI1	CRYAB	FRZ	LNX1	OPTN	RFL	STEAP4	WEE1		
ARHGAP42	CRYL1	FXD3	LPIN1	OSBPL10	RFLNA	STK32A	YAP1		
ARHGAP44	CSDC2	FYD6- FYD2	LRFN5	OSBPL5	RFX5	STMN2	YBX1		
ARHGAP6	CSMK1G3	GABBR1	LRP11	OXCT2	RGS6	STMN3	YWAB		
ARHGAP9	CSR2	GALNT10	LRP2	OXR1	RGS7BP	STS	YWAG		
ARHGEF17	CTDSPI	GALNT9	LRP3	OXTR	RHON1	SUC2G2	YWAB		
ARHGEF7	CTIF	GAREM2	LRPAP1	PAD2	RHOC	SULF2	ZBTB7C		
ARHL8B	CTNNA	GAS2L3	LRRPRC	PAFAH1B1	RHOD	SULT4A1	ZC2HC1A		
ARMCX3	CTNBP2	GATB	LRRRC36	PAFAH1B2	RHOF	SURF2	ZCCHC24		
ARNT	CTNND2	GCNT4	LRRRC4B	PAIP2B	RHOJ	SUSD1	ZDHHC23		
Gene1	Gene2	Gene3	Gene4	Gene5	Gene6	Gene7			
-------	-------	-------	-------	-------	-------	-------			
ARPC2	CTSH	GCOM1	LRRC4C	PALM3	RIC8B	SV2C			
ARRB1	CYB561	GDI1	LRRC8C	PALMD	RNASEH2B	SVEP1			
AS3MT	CYB5A	GFOD1	LRRFIP1	PAM	RNF112	SYDE1			
ASAP1	CYB5R3	GIPC2	LRRK2	PANK1	RNF121	SYN2			
ASAP2	CYFIP1	GLI3	LSS	PANX1	RNF144B	SYN3			
ATAT1	CYGB	GLRB	LUZP1	PANX2	RNLS	SYNGR3			
ATL1	DAP	GNA12	LYNX1-SLURP2	PAQR8	ROBO1	SYN2			
ATOH8	DBNDD1	GNB1	MAD1L1	PARP16	ROBO2	SYNPO2			
ATP10A	DCBLD1	GNG12	MAGEE1	PATJ	RPL11	SYS1			
ATP13A	DCDC2	GNG5	MAL	PBXIP1	RPL12	SYT1			
ATP1B1	DCTN1	GOLIM4	MAO8	PC	RPL22	SYT7			
ATP2B2	DCTN2	GOT1	MAP1A	PCEBP2	RPL36	SYTL2			
ATP2B3	DAHA1	GPATCH1	MAP1B	PCDH9	RPL4	TACC3			
ATP8B2	DHHD2	GPC4	MAPIK3K20	PCDHB15	RPL41	TAF4B			
ATRNL1	DDR2	GPCPD1	MAP3K9	PCMT1	RPS6KA4	TAP6			
ATXN7L3	DEAF1	GPM6B	MAP4	PCNX2	RRAGA	TANC1			
B3GNT8	DESI1	GPR143	MAP4K4	PCYT2	RRAS2	TANGO2			
B3GNT9	DEXI	GPR161	MAP7D1	PDE4A	RREB1	TATDN3			
B4GALNT1	DGKA	GPRC5B	MAPK10	PDE8B	RRP1B	TBCID30			
B4GALT5	DGKQ	GPX3	MAPK8IP3	PDLIM3	RTN1	TBCID4			
BASP1	DHCR24	GPX8	MAPK9	PDLIM4	RTN3	TBCID9B			
BBC3	DIP2C	GRP8	MAPRE2	PDP1	RUFY2	TBRG1			
BBS12	DISC1	GRK3	MARCH2	PDP2	RUNDC3B	TC2N			
BBS9	DKK3	GRSF1	MARCKS	PDXK	RUSC1	TCAF1			
BCAN	DLC1	GSK3B	MARF1	PDXP	RXRG	TCEAL7			
BCAS4	DLG1	GSTA4	MAR1K	PDZD7	RYR2	TCF25			
BCL2	DMTN	GSTO1	MARGVLD	PERM1	S100A10	TCF7L2			
BCL2L11	DNAJC22	GTPBP1	MAST3	PERP	S100A13	TCI RG1			
BCL2L2	DNAJC27	GYG1	MCF2	PGM2L1	S100A16	TCTN1			
BDNF	DNM1L	GZMK	MCF2L	PGRMC2	SACM1L	TCTN3			
BEAN1	DOCK11	H2AFY	MCTP1	PHACTR3	SACS	TEDC2			
BHMT2	DOCK5	H3F3B	MDH1	PHF12	SAE1	TENM3			
BICD2	DOK7	HABP4	MDK	PHF24	SAMD14	TESC			
BLOC1S2	DPYS	HADHB	MED8	PHILDA2	SBF2	TEC261			
BLVRB	DPYSL2	HAGHL	MEI1	PHOSPHO1	SBSPON	TFCP2			
BMP1R1B	DSG2	HARS	MESD	PI16	SC5D	TFCP2L1			
BRSK1	DSP	HBEGF	METTL7B	PI4KA	SCAMP3	TGF B111			
BTD	DTNB	HECA	MHHAS1	PICK1	SCD	TGFBR3L			
C1QTNF1	DTX4	HECW2	MFSD6	PID1	SCG5	TGFIF2			

The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license.
Gene	Gene	Gene	Gene	Gene	Gene
CA2	DUSP14	HEPH	MGLL	PIEZO1	SCN1A
CA5B	DUSP1	HERC5	MGST2	PIK3CD	SCN1B
CABLES1	DYN1CH1	HERPUD2	MGST3	PIP4K2A	SCN8A
CABLES2	DYNC1I1	HES6	MICAL2	PITHD1	SCUBE2
CACFD1	DYNC1I1	HEY2	MICAL3	PITPN1	SDHA
CACNA2D3	DYNC1I2	HINT1	MICU1	PITX2	SEC23B
CACNB3	DYNLL2	HMGC	MIGA2	PKHD1	SELENBP1
CALM3	DYNLT3	HMOX2	MITF	PLA2G4A	SEMA6D
CAMK1	DYSF	HNRNPC	MLLT11	PLCB1	SEPT3
CAMKK2	E2F5	HOPX	MLPH	PLC1	TJP2
CAMTA2	EBF1	HPGD	MMP15	PLD1	TLR3
CAP2	EE1AKMT3	HPS1	MOAP1	PLEKHA6	SERP2
CAPNS1	EFEMP2	HR	MPP1	PLK2	SERPINE2
CASP2	EFR3B	HSD17B1	MPP3	PLS3	SFRP2
CAST	EFS	HSP90A1	MPST	PLSCR4	SFN1
CAV1	EGFL7	HSPA12A	MRFA1	PLVAP	SGCD
CAV2	EIF2AK2	HR	MRFA1	PLXDC2	SGF29
CAVIN1	EIF4EBP1	HTR1F	MROH1	PMEPA1	SGSH
CBF2	EIF5A2	HYAL3	MRPS15	PNMA3	SH3BGR1
CBLN3	ELAVL2	ICA1	MRVI1	POC5	SH3BGR3
CCDC191	ELAVL3	ID3	MSI2	PODXL	SH3GL2
CCDC69	ELAVL4	ID1	MSL3	POFUT1	SH3RF1
CCDC85A	ELMO1	IFIT3	MSRB3	POLR2C	SHANK3
CAV1	ELMO1	IFIT3	MSRB3	POLR2C	SHANK3

References

1. Grover, S., et al., *Comparison of retinal thickness in normal eyes using Stratus and Spectralis optical coherence tomography*. Invest Ophthalmol Vis Sci, 2010. 51(5): p. 2644-7.

2. Purves, D., et al., *Neuroscience 2nd edition. sunderland (ma) sinauer associates. Types of Eye Movements and Their Functions*, 2001.

3. Nickla, D.L. and J. Wallman, *The multifunctional choroid*. Prog Retin Eye Res, 2010. 29(2): p. 144-68.

4. Bagci, A.M., et al., *Thickness profiles of retinal layers by optical coherence tomography image segmentation*. Am J Ophthalmol. 2008. 146(5): p. 679-87.

5. Mori, K., J. Kanno, and P.L. Gehlbach, *Retinochoroidal Morphology Described by Wide-Field Montage Imaging of Spectral Domain Optical Coherence Tomography*. Retina, 2016. 36(2): p. 375-84.

6. Holt, R., et al., *Identification of rod- and cone-specific expression signatures to identify candidate genes for retinal disease*. Exp Eye Res, 2015. 132: p. 161-73.
28. Yan, W., et al., *Cell atlas of the human fovea and peripheral retina*. Scientific reports, 2020. 10(1): p. 1-17.
29. Voigt, A.P., et al., *Bulk and single-cell gene expression analyses reveal aging human choriocapillaris has pro-inflammatory phenotype*. Microvascular Research, 2020. 131: p. 104031.
30. Swamy, V.S., et al., *Building the mega single cell transcriptome ocular meta-atlas*. bioRxiv, 2021.
31. Köster, J. and S. Rahmann, *Snakemake—a scalable bioinformatics workflow engine*. Bioinformatics, 2012. 28(19): p. 2520-2522.
32. Boulton, M. and P. Dayhaw-Barker, *The role of the retinal pigment epithelium: topographical variation and ageing changes*. Eye, 2001. 15(3): p. 384-389.
33. Milam, A.H., et al., *Dominant late-onset retinal degeneration with regional variation of sub-retinal pigment epithelium deposits, retinal function, and photoreceptor degeneration*. Ophthalmology, 2000. 107(12): p. 2256-2266.
34. Hamel, J.-F., *Les ruines du progrès chez Walter Benjamin: anticipation futuriste, fausse reconnaissance et politique du présent*. Protée, 2007. 35(2): p. 7-14.
35. Mustafi, D., et al., *Transcriptome analysis reveals rod/cone photoreceptor specific signatures across mammalian retinas*. Human molecular genetics, 2016. 25(20): p. 4376-4388.
36. Swamy, V. and D. McGaughey, *Eye in a disk: eyeIntegration human pan-eye and body transcriptome database version 1.0*. Investigative ophthalmology & visual science, 2019. 60(8): p. 3236-3246.
37. Efremova, M., et al., *CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes*. Nature protocols, 2020. 15(4): p. 1484-1506.
38. R Sparrow, J., D. Hicks, and C. P Hamel, *The retinal pigment epithelium in health and disease*. Current molecular medicine, 2010. 10(9): p. 802-823.
39. Zou, H., et al., *Polarity and epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy*. PeerJ, 2020. 8: p. e10136.
40. Paterson, E.N., et al., *Association of reduced inner retinal thicknesses with chronic kidney disease*. BMC nephrology, 2020. 21(1): p. 1-12.
41. Balmforth, C., et al., *Chorioretinal thinning in chronic kidney disease links to inflammation and endothelial dysfunction*. JCI insight, 2016. 1(20).
42. Dewing, J.M., et al., *The Diverse Roles of TIMP-3: Insights into degenerative diseases of the senescent retina and brain*. Cells, 2020. 9(1): p. 39.
43. Simeonov, D.R., et al., *DNA variations in oculocutaneous albinism: an updated mutation list and current outstanding issues in molecular diagnostics*. Human mutation, 2013. 34(6): p. 827-835.
44. Zou, Z., et al., *Targeted Vezf1-null mutation impairs vascular structure formation during embryonic stem cell differentiation*. Arteriosclerosis, thrombosis, and vascular biology, 2010. 30(7): p. 1378-1388.
45. Tang, K., et al., *COUP-TFs regulate eye development by controlling factors essential for optic vesicle morphogenesis*. Development, 2010. 137(5): p. 725-734.
46. Budi, E.H., L.B. Patterson, and D.M. Parichy, *Embryonic requirements for ErbB signaling in neural crest development and adult pigment pattern formation*. 2008.
47. Martemyanov, K.A., G protein signaling in the retina and beyond: the Cogan lecture. Investigative ophthalmology & visual science, 2014. 55(12): p. 8201-8207.

48. Lee, M., et al., Hippo-yap signaling in ocular development and disease. Developmental Dynamics, 2018. 247(6): p. 794-806.

49. Reyes, A.P., et al., Identification of cell surface markers and establishment of monolayer differentiation to retinal pigment epithelial cells. Nature communications, 2020. 11(1): p. 1-15.

50. Radeke, M.J., et al., Disease susceptibility of the human macula: differential gene transcription in the retinal pigmented epithelium/choroid. Experimental eye research, 2007. 85(3): p. 366-380.

51. van Soest, S., et al., Comparison of human RPE gene expression in macula and periphery highlights potential topographic differences in Bruch’s membrane. Mol Vis, 2007. 13: p. 1608-1617.

52. Zhu, S., et al., Molecular structure, gene expression and functional role of WFDC1 in angiogenesis and cancer. Cell Biochemistry and Function, 2021.