Synthesis and Biological Evaluation of Chalcones Possessing Ring Activating Groups as Potent of Anticancer Agents

M.M. Khanusiya¹*, Z.M. Gadhawala¹

¹Department of Chemistry, The HNSB Ltd Science College Himatnagar, Hemchandracharya North Gujrat University, Gujarat-380 001, India

* khanusiya.mali@gmail.com

Keywords: Chalcones, Anticancer, Cancer cell lines, Cytotoxicity, Normal cell.

Abstract. Some novel anticancer agents based on chalcone scaffold were synthesized with potential therapeutic application for many types of cancer. Hydroxy and methoxy substitution on aryl ring of chalcone, depending upon positions in aryl ring influence anticancer and other activities. These chalcone molecules were evaluated for their in vitro cytotoxic activity against five cancer cell lines including human chronic myelogenous leukemia K-562, human breast adenocarcinoma MCF-7, human prostate carcinoma DU-145, human lung adenocarcinoma A-549 and normal VERO cell line. Most of the compounds being active cytotoxic agents and were shown to be non-toxic to normal cells. The synthesized compounds were characterized by means of their FT-IR, MASS and ¹HNMR spectral study.

1. Introduction

Cancer is very tremendous disease with superfluous and stout biological network. Due to the structural uniqueness and potent bioactivity, the synthesis of novel chalcones has attracted much attention in recent years. Chemically chalcones can be considered open chain flavonoids bearing 1,3-diphenyl prop-2-en 1-one as a basic template, play a vital role in identification of bioactive molecules. Most of the anticancer agents of natural or synthetic origin, exhibit enone function in their structure [1, 2].

Many naturally occurring chalcones with potent anticancer efficacy against a variety of cancer lines have been reported. Some prominent examples of this series of chalcones are Xanthohumol, Butein, Flavokawain A, B and C, Dimethyl amino chalcone etc. [3]

![Chemical Structure of bioactive naturally occurring chalcones possessing ring activating groups.](https://example.com/structure.png)

Figure 1. Chemical Structure of bioactive naturally occurring chalcones possessing ring activating groups.

Xanthohumol(1), a prenylated chalcone isolated from the hop cones, is suggested to exhibited broad spectrum anticancer properties against different types of human cancer cells like 40-16 human colon cancer cell through inhibition of the proliferation and induction of human cancer cell apoptosis [4,5]. Butein(2), isolated from the stems of Rhus verniciflua, has been shown to inhibit human colon adenocarcinoma cell proliferation and also it induces apoptosis in HL-60 cells [6].
Flavokawain A, B and C(3) isolated from kava extracts have been shown to possess strong antiproliferative and apoptotic effect in human bladder cancer cells [7]. Other natural chalcones such as Dimethyl amino chalcone(4) and cardamonin(5) have been reported to possess anticancer and anti-inflammatory activities [8]. The anticancer activity of chalcone is believed to be a result of binding to the tubulin assembly and thereby preventing it from polymerisation to microtubule [9].

The majority of these are naturally occurring chalcones substituted with ring activating hydroxyl and/or methoxy groups at various positions. The interesting implication of naturally occurring chalcones as a potent of anticancer agents have invigorated numerous synthetic efforts to develop a novel synthetic chalcone containing electron donating groups with anticancer properties. The present chemist and pharmacist focus on medicinal chemistry strategies for design and development of anticancer chalcones.

2. Experiments

2.1 Material and Measurement

The all starting materials and solvents were purchased from Sigma-Aldrich and SD Fine and used without further purification. Melting points were determined by conventional method and then by electro capillary apparatus and are uncorrected. All the synthesized compounds were inspected by thin layer chromatography on silica gel (E-Merck) and the spots were identified by UV lamp. IR spectra and proton 1H NMR spectra in DMSO at 500 MHz were recorded at CSMCRI Bhavnagar.

2.2 General procedure of synthesis of chalcone

The synthesis of chalcone analogs was conducted according to the procedure reported in the reference [10-12]. Aminoaacetophenone derivative (2.5 milimole) and substituted aldehydes (2.5milimole) were dissolved in 30 ml methanol. To the solution, 10 ml NaOH (20%) solution was added drop wise and reaction mixture was stirred for 1-2 hour at room temperature by magnetic stirrer and kept for overnight. Subsequently, it was poured in ice water and neutralized by HCl. The solid precipitates were filtered off and recrystallized from methanol or ethyl acetate.

\[
\text{Ar-CHO} + \text{NaOH} \rightarrow \text{Ar} \text{C=O} \text{Ar}
\]

Figure 2. Synthesis of Chalcone analogs possessing ring activating groups 1a-1e.

2.2.1. (2E)-1-(4-aminophenyl)-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-one(1a)

Yellow solid, Yield 58.9 %. M.P 105-107 °C, Rf 0.71

FT-IR (\(\nu, \text{ cm}^{-1}\)): 3395(-OH), 3330, 3225 (-NH\(_2\)), 3063(aromatic C-H), 1649 (>C=O), 1590(-HC=CH-), 1277, 1305 (C-N str)

1H NMR (500 MHz DMSO, Me\(_4\)Si): 3.50 (br, s, -NH\(_2\)), 3.85(s, -OCH\(_3\)), 6.027(s,1H, H\(_2\)), 6.62(d, 1H\(_\alpha\)), 7.66 (d, 1H\(_\beta\)).

GC-MS (EI, m/z): 269(M\(^+\)), 266, 239, 214, 191, 171, 99, 62.
2.2. (2E)-1-(4-aminophenyl)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-en-1-one (1b)

Yellow solid, Yield 57.5%, M.P 98-100°C, Rf 0.66
FT-IR (v, cm⁻¹): 3396(−OH), 3331, 3225(−NH₂), 3064(amine C-H), 1648(−C=O), 1590(−H⁻C−CH⁻), 1276, 1304(C-N str)
¹H NMR (500 MHz DMSO, Me₄Si): 3.49(br, s, −NH₂), 3.71(s, −OCH₃), 3.82(s, −OCH₃), 6.028(s, 1H, H₁ₓ), 6.58(d, 1H₀), 7.68(d, 1H₀).
GC-MS (EI, m/z): 299(M⁺), 266, 229, 214, 181, 166, 62.

2.2.3. (2E)-1-(4-aminophenyl)-3-(2-hydroxyphenyl)prop-2-en-1-one (1c)

Pale Yellow solid, Yield 62.5%, M.P 110-112°C, Rf 0.68
FT-IR (v, cm⁻¹): 3570(−OH), 3338, 3328(−NH₂), 3050(amine C-H), 1676(−C=O), 1595(−H⁻C−CH⁻), 1270,1364(C-N str)
¹H NMR (500 MHz DMSO, Me₄Si): 3.47(br, s, −NH₂), 6.57(d, 1H₀), 7.51(d, 1H₀), 7.013(m, H₂), 7.72(m, H₃, H₄).
GC-MS (EI, m/z): 239(M⁺), 214, 166, 122, 62.

2.2.4. (2E)-1-(4-aminophenyl)-3-(2,4-dihydroxyphenyl)prop-2-en-1-one (1d)

Yellow solid, Yield 87.0%, M.P 98-100°C, Rf 0.72
FT-IR (v, cm⁻¹): 3680(−OH), 3652(−OH), 3370, 3325(−NH₂), 3062(amine C-H), 1673(−C=O), 1596(−H⁻C−CH⁻), 1270,1364(C-N str)
¹H NMR (500 MHz DMSO, Me₄Si): 3.48(br, s, −NH₂), 6.32(s,1H, H₂), 6.55(d, 1H₀), 7.48(d, 1H₀), 7.55(d, 1H₀, H₅), 7.76(d,1H₁, H₂).
GC-MS (EI, m/z): 257(M⁺), 243, 196, 176, 155, 139, 116, 102.

2.2.5. (2E)-1-(4-aminophenyl)-3-(2,4-dihydroxynapthalen-1-yl)prop-2-en-1-one (1e)

Brick Red solid, Yield 73.6%, M.P 182-185°C, Rf 0.53
FT-IR (v, cm⁻¹): 3652(−OH), 3322, 3335(−NH₂), 3044(amine C-H), 1668(−C=O), 1587(−H⁻C−CH⁻), 1267,1349(C-N str)
¹H NMR (500 MHz DMSO, Me₄Si): 3.49(br, s, −NH₂), 6.58(d, 1H₀), 7.68(d, 1H₁), 7.42(m, C-H₂), 7.85(d,1H₁, H₃), 8.05(d,1H₁, H₂).
GC-MS (EI, m/z): 290(M⁺), 248, 211, 156, 122, 102, 74, 58.

3. Result and Discussion

3.1 Chemistry

A novel target chalcone scaffolds 1a-1e were synthesized using the base-catalysed Claisen-Schmidt condensation of various electron donating group possessing substituted aromatic aldehydes with 4-Aminoacetophenone. Ring activating group like hydroxy and methoxy possessing chalcones, depending upon positions in aryl ring, were synthesized to influence anticancer and other activities. Structures of all the synthesized chalcones were characterized by ¹H NMR spectra which showed double doublet in the range of δ 6-7.50 ppm indicating that prop-2-ene linkage was formed. In the 1H NMR spectral analysis, two singlets at δ 3.71 and δ 3.82 ppm were assigned to two methoxy protons on aromatic ring. Also 1H NMR spectrum showed the disappearance of the singlet at δ 2.47 corresponding to keto group of 4-aminoacetophenone indicate formation of chalcone linkage. The IR spectra of synthesized compounds exhibited absorption bands of C=O and CH=CH of chalcone linkage at 1650 cm⁻¹ and 1590 cm⁻¹ respectively. Further, structures of the entire compound were supported by molecular ion peaks corresponding to the molecular formula.

3.2 In-Vitro Cytotoxicity

In the present investigation, cytotoxicity of all the synthesized chalcone derivatives were investigated against selected human cancer cell lines; MCF-7(breast carcinoma), DU-145 (prostate carcinoma), K-562 (chronic myelogenous leukemia) and A-549 (lung carcinoma) at different
concentration, as summarized in Tables 1-4. These compounds were also evaluated for non-cancerous cell line (Vero) derived from African green monkey kidney, as well as standard anticancer drug Doxorubicin. Dose Response Curve (DRC) against all cell lines was plotted with 10 analysis point i.e. with 10 different drug concentrations. The concentration causing 50% cell growth inhibition (IC_{50}) was determined from DRC using Graph Pad Prism software (Ver. 5.04) (Graph Pad Software, Inc., USA) and Microsoft Excel 2007 (Microsoft Corporation, USA) application.

Result showed that most of the tested chalcone molecules exerted significant in-vitro cytotoxicity. It was found that compound 1b showed a potent activity against human breast cancer line MCF-7 while compound 1e showed almost two time higher activity than Doxorubicin against human prostate cancer cell DU-145. Compounds 1b, 1c and 1e exhibited more potent activity against human myogenous leukaemia cancer cell K-562. Furthermore, 1b and 1c chalcones showed good potency against human lung adenocarcinoma epithelial cell line A-549.

Table 1. Cytotoxicity of synthesized compounds against human breast cancer cell line MCF-7 at different concentration.

Conc. µg/ml	Log conc.	% Cell Inhibition	1a	1b	1c	1d	1e	STD
0.01	-2.29	7.880	-0.789	1.410	2.130	2.050	9.230	
0.02	-1.82	9.400	-1.760	6.280	8.180	10.070	13.530	
0.05	-1.34	8.470	3.320	3.230	12.040	9.330	14.300	
0.14	-0.86	18.210	8.110	-1.930	13.110	11.210	18.320	
0.41	-0.39	22.460	12.370	2.790	13.940	15.170	28.080	
1.23	0.09	24.350	26.140	0.000	19.240	21.420	33.910	
3.70	0.57	26.270	38.220	10.630	18.090	26.010	41.250	
11.11	1.05	30.340	40.110	23.850	21.310	28.940	47.020	
33.33	1.52	58.990	41.130	39.450	51.210	53.170	69.320	
100.00	2.00	67.960	87.900	72.790	66.340	76.190	82.010	

Log IC_{50} (µM/ml)	20.58	8.377	56.57	39.53	32.65	7.940
R^2	0.9288	0.9362	0.9837	0.9460	0.9569	0.9430

Table 2. Cytotoxicity of synthesized compounds against human prostate cancer cell line DU-145 at different concentration.

Conc. µg/ml	Log conc.	% Cell Inhibition	1a	1b	1c	1d	1e	STD
0.01	-2.29	0.23	-22.44	-27.93	-30.25	-34.46	-39.665	
0.02	-1.82	1.10	-19.54	-27.93	-22.88	-33.44	-35.5214	
0.05	-1.34	4.29	-19.54	-25.78	-30.25	-31.94	-22.9854	
0.14	-0.86	11.71	-12.34	-23.88	-12.41	-27.84	-19.3512	
0.41	-0.39	23.18	-11.54	-17.95	-22.88	-23.15	-13.8918	
1.23	0.09	27.05	-0.69	-3.71	-6.54	-7.18	-12.7835	
3.70	0.57	32.09	0.11	-0.82	-1.98	-3.42	-10.3969	
11.11	1.05	48.12	2.21	0.22	7.52	-0.56	48.80412	
33.33	1.52	52.10	33.00	60.53	51.90	26.38	65.69072	
100.00	2.00	68.02	36.26	60.53	52.65	31.41	78.20103	

Log IC_{50} (µM/ml)	10.33	13.24	17.34	13.23	5.137	9.034
R^2	0.9621	0.9182	0.9229	0.9380	0.9347	0.9551
Table 3. Cytotoxicity of synthesized compounds against human myelogenous leukaemia cell line K-562 at different concentration.

Conc. µg/ml	Log conc.	% Cell Inhibition					
		1a	1b	1c	1d	1e	STD
0.01	-2.29	-12.57	-35.18	-23.47	-21.37	-24.68	-40.87
0.02	-1.82	-11.07	-24.16	-23.47	-18.89	-11.14	-32.81
0.05	-1.34	-9.02	-17.68	-13.63	-11.63	-12.74	-29.69
0.14	-0.86	-6.69	-13.14	-7.64	-10.93	-3.21	-17.63
0.41	-0.39	-6.69	-6.70	5.84	1.26	6.43	-14.34
1.23	0.09	-4.17	-2.60	3.57	4.52	6.97	-12.55
3.70	0.57	-1.97	6.81	16.37	11.22	14.71	-11.17
11.11	1.05	-0.07	7.91	13.16	11.22	15.19	48.35
33.33	1.52	36.83	46.01	49.39	48.41	51.22	71.32
100.00	2.00	45.34	49.05	53.60	53.22	53.82	86.69
Log IC₅₀ (µM/ml)	34.52	9.722	7.455	12.00	9.705	10.33	
R²	0.9476	0.9975	0.973	0.9054	0.9755	0.9621	

Table 4. Cytotoxicity of synthesized compounds against human lung adenocarcinoma epithelial cell line A-549 at different concentration.

Conc. µg/ml	Log conc.	% Cell Inhibition					
		1a	1b	1c	1d	1e	STD
0.01	-2.29	1.06	7.29	0.07	0.12	-0.32	6.96
0.02	-1.82	1.56	16.98	1.25	0.35	0.06	10.36
0.05	-1.34	2.36	14.34	1.63	0.98	0.78	16.22
0.14	-0.86	4.63	2.87	4.56	0.55	2.05	24.05
0.41	-0.39	3.25	13.75	17.23	1.05	4.30	29.31
1.23	0.09	10.22	11.77	22.70	1.56	9.31	38.87
3.70	0.57	13.56	30.63	32.45	2.06	17.28	44.86
11.11	1.05	28.31	56.95	42.31	5.35	28.69	50.32
33.33	1.52	31.25	61.20	48.64	6.35	42.65	71.35
100.00	2.00	42.36	49.56	65.23	32.12	66.34	85.33
Log IC₅₀ (µM/ml)	8.061	4.283	2.809	>100	21.11	5.052	
R²	0.9797	0.8908	0.9562	0.9736	0.9842	0.9178	
Table 5. Cytotoxicity of synthesized compounds against normal Vero cell line at different concentration.

Conc. µg/ml	Log conc.	% Cell Inhibition
0.01	-2.29	1a 0.32 1b 0.21 1c -0.89 1d 0.25 1e -0.98 STD -0.98
0.02	-1.82	1a -0.65 1b 0.65 1c -0.55 1d 0.35 1e 0.25 STD -0.65
0.05	-1.34	1a 0.22 1b 1.12 1c 0.05 1d 0.87 1e 1.05 STD 0.05
0.14	-0.86	1a 0.58 1b 1.85 1c 0.23 1d 1.15 1e 2.36 STD 0.56
0.41	-0.39	1a 1.02 1b 2.15 1c 0.65 1d 2.01 1e 4.11 STD 0.98
1.23	0.09	1a 1.65 1b 3.65 1c 1.05 1d 2.36 1e 5.36 STD 1.15
3.70	0.57	1a 1.85 1b 4.35 1c 1.85 1d 3.11 1e 8.37 STD 1.68
11.11	1.05	1a 2.10 1b 6.22 1c 2.14 1d 4.30 1e 15.24 STD 2.46
33.33	1.52	1a 2.65 1b 15.35 1c 3.62 1d 11.20 1e 28.71 STD 5.51
100.00	2.00	1a 22.10 1b 45.35 1c 21.35 1d 44.21 1e 56.38 STD 29.38
Log IC₅₀ (µM/ml)		>100 >100 >100 >100 79.71 >100

R² 0.9402 0.9957 0.9645 0.9885 0.9902 0.9738

Figure 3. Effect of dose response of synthesized five chalcones against (1) MCF-7 (2) DU-145 (3) K-562 and (4) A-549 cell line using MTT assay. Dose Response Curve against all cell lines was plotted with 10 different drug concentrations and determined using Graph Pad Prism software.

A deep look to the structure activity relationship of the results in Tables 1-5, it was found that significant cytotoxic activity towards MCF-7 cell line was noted for 4-hydroxy-3-methoxy group on phenyl ring 1b (IC₅₀ = 8.377 µM). Aside from it, compound 1e showed inhibitory effect against human prostate cancer cells. Among these, 2-hydroxy or 4-hydroxy analogs 1b, 1c and 1e were shown to be more potent cytotoxic compounds against human myelogenous leukaemia cell line K-562 with IC₅₀ value 9.72, 7.45 and 9.70 µM respectively. Table 4 showed that 4-hydroxy-3,4-dimethoxy analog 1b and 4-hydroxy analog 1c chalcones were exhibited higher inhibitory activity.
against lung cancer cell lines A-549. Further the activity of all effective compounds series were tested against normal cell line (VERO cell line) and it was concluded that most of compounds were non-toxic to normal cell as they showed IC\textsubscript{50} values more than 100\,µM/ml except 1e (IC\textsubscript{50} value 79.71\,µM/ml) was found to be slight toxic for normal cell.

It should be noted that chalcones 1b and 1c showed cytotoxicity in broad spectrum of cancer cells i.e. K-562, DU-145 and MCF-7 with IC\textsubscript{50} value less than the range of standard drug doxorubicin without affecting normal cells.

4. Conclusion

In conclusion, cytotoxic activity testing revealed that most of the synthesized chalcones displayed cytotoxic activity against several cancer cell lines. In particular, compound 1b exhibited a significant cytotoxicity against MCF-7 cell line, compound 1e showed potent inhibitory effect on DU-145 cell line (IC\textsubscript{50} = 5.13 \,µM), but unfortunately it was toxic towards non-cancerous Vero cells. Compounds 1b and 1c displayed higher cytotoxicity against leukaemia cell lines K-562 and lung cancer cell line A-549, also non-toxic to Vero cells. Hence from this data it can be concluded that chalcone moieties possessing ring activating group on phenyl ring has not only enhanced the anticancer activity but has provided an insight in the design of such conjugates.

Acknowledgement

The author M. M. Khanusiya gratefully acknowledges CSIR, New Delhi for MANF. The authors are also expressing their sincere thanks to The HNSB Ltd Science College for performing research work and faculty of Pharmacy, DDU Nadiad for anticancer tests.

References

[1] C.A. Colliste et al., Chalcone structural requirements for antioxidant, estrogenic and antiproliferative activities, Anticancer Res. 21 (2001) 3949-3956.
[2] B. Ngameni, V. Kuete, P. Ambassa, Synthesis and evaluation of anticancer activity of O-allychalchone derivatives, Medicinal Chemistry. 3 (2013) 233-237.
[3] K. Chandrabose et al., Advances in chalcones with anticancer activities, Recent Patents on Anticancer Drug Discovery. 10(1) (2015) 97-115.
[4] S.Lust et al., Xanthohumol kills B-chronic lymphocytic leukemia cells by an apoptotic mechanism, Mol. Nutr. Food Res. 49 (2005) 844-850.
[5] L. Pan, H. Becker, C. Gerhauser, Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cell by activation of the death receptor and mitochondrial pathway, Molecular Nutrition and Food Research. 49(9) (2005) 873-843.
[6] C.C. Yit, N.P. Das, Cytotoxic effect of butein on human colon adenocarcinoma cell proliferation, Cancer Lett. 82(1) (1994) 65-72.
[7] X. Zi, A.R. Simmoneau, A. Flavokawain, A novel chalcone from kava extract induces apoptosis in bladder cancer cell by involvement of Bax protein dependent and mitochondrial dependent apoptosis and suppresses tumour growth in mice, Cancer Res. 65 (2005) 3479-3486.
[8] F. Chimenti et al., Chalcones: A valid scaffold for monoamine oxidases inhibitors, J. Med. Chem. 52(9) (2009) 2818-2824.
[9] S. Ducki, Antimitotic chalcones and related compounds as inhibitors of tubulin assembly, Anti-Cancer Agents in Medicinal Chemistry. 9(3) (2009) 336-347.
A. Kamal et al., Synthesis and anticancer activity of chalcone-pyrrolobenzodiazepine conjugates linked via 1, 2, 3-triazole ring side-armed with alkane spacers, European Journal of Medicinal Chemistry. 46(9) (2011) 3820-3831.

T. Narender et al., A new chemical access for 3′-acetyl-4′-hydroxychalcones using boron trifluoride–etherate via a regioselective Claisen-Schmidt condensation and its application in the synthesis of chalcone hybrids, Tetrahedron Lett. 52(44) (2011) 5794-5798.

P. Rajakumar, S. Raja, Synthesis, optical and thermal studies of dendritic architectures with chalcone surface groups, Tetrahedron Lett. 49(46) (2008) 6539-6542.

S. Syam et al., Synthesis of chalcones with anticancer activities, Molecules. 17(6) (2012) 6179-6195.

R. Pingaew et al., Synthesis, biological evaluation and molecular docking of novel chalcone–coumarin hybrids as anticancer and antimalarial agents, Eur. J. Med. Chem. 85 (2014) 65-76.

M.M. Khanusiya, Z.M. Gadhawala, Synthesis and characterisation of biologically potent novel chalcone moieties, Oriental Journal of Chemistry. 32(2) (2016) 1181-1186.

H. Iqbal et al., Synthesis, anti-inflammatory and antioxidant activity of ring-A-monomosubstituted chalcone derivatives, Med. Chem. Res. 23(10) (2014) 4383-4394.

G. Thirunarayanan, K. Ravi, Synthesis and spectral correlation study of some 3-(3,4-dichlorophenyl)-5-(substituted Phenyl)-4,5-dihydro-1H-Pyrazole-1-yl-Ethanones, International Letters of Chemistry, Physics, and Astronomy. 19 (2013) 44-57.

K.G. Sekar, G. Thirunarayanan, Synthesis and spectral studies of some N-[(E)-Phenylmethylidene]benzenesulfonamides, International Letters of Chemistry, Physics, and Astronomy. 13 (2013) 249-258.

C.A. Calliste et al., Chalcones: structural requirements for antioxidant, estrogenic and antiproliferative activities, Anticancer Res. 21 (2001) 3949-3956.

S.K. Kumar et al., Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents, Journal of Medicinal Chemistry. 46(14) (2003) 2813-2815.

S.P. Bahekar et al., Synthesis of some sulfonamide chalcones of biological interest, International Journal of Chemical and Physical Science. 4 (2015) 99-104.

N.M. Hamada, N.Y.M. Abdo, Synthesis, characterization, antimicrobial screening and free-radical scavenging activity of some novel substituted pyrazoles, Molecules. 20(6) (2015) 10468-10486.

A.M. Abdula, Synthesis, characterization and antibacterial activity of (E)-chalcone derivatives, European Journal of Chemistry. 4(3) (2013) 207-210.

R. Arulkumaran et al., Spectral correlations and antimicrobial activities of some 1-pyrenyl chalcones, International Letters of Chemistry, Physics, and Astronomy. 10 (2013) 21-38.

K. Ranganathan et al., Electrochemical reduction potential correlation of some insect antifeedant potent 2-phenothiazinyl chalcones, International Letters of Chemistry, Physics, and Astronomy. 4 (2012) 66-75.

S.D. Tala et al., Synthesis and biological study of some new chalcone and pyrazole derivatives, Indian Journal of Chemistry. B. 52 (2013) 807-809.

R.S. Dhivare, S.S. Rajput, Microwave assisted synthesis and antimicrobial screening of novel 9-(N-phenyl) - 4, 5-(2”, “-methoxyphenyl)-9H-1,3,6,8,9-hexa-azo-fluorene-2,7-diamine derivatives using bis-heterocyclic chalcones, International Journal of Advances in Pharmacy, Biology and Pharmaceutical Research. 4(4) (2015) 863-870.

H. Suwito et al., Chalcones: Synthesis, structure diversity and pharmacological aspects, Journal of Chemical and Pharmaceutical Research. 6(5) (2014) 1076-1088.