Transcriptional profiling of single tumour cells from pleural effusions reveals heterogeneity of epithelial to mesenchymal transition and extra-cellular matrix marker expression

Dear Editor,

Malignant pleural effusions (MPE) in advanced non-small-cell lung cancer (NSCLC) offer a rich source of tumour-derived material for liquid biopsy. However, molecular monitoring of NSCLC is largely dependent on tumour biopsies. Previous NSCLC MPE studies either did not transcriptionally evaluate the tumour cell compartment of MPEs or relied on a positive selection of epithelial (EPCAM expressing) cells. This strategy excludes cells transitioning to an invasive, mesenchymal phenotype through epithelial to mesenchymal transition (EMT). Here, we molecularly characterize single EPCAM-negative and -positive MPE tumour cells (TCs) to investigate the potential of an MPE liquid biopsy.

Our study included 11 MPEs from nine NSCLC patients (Table 1 and Supporting Information). 1468 single TCs and 131 pools of 10–15 white blood cells (WBCs) were identified by flow cytometry [median of 146 TCs per patient (range 48–230)] (Figure 1A). Among 584 TCs passing quality control (QC), 483 completed staining for EPCAM, revealing that 67% (322 of 483) were EPCAM-negative (Figure 1B). The proportion of EPCAM-positive TCs ranged considerably from patient to patient (median 24%; range 0% - 80%). Importantly, UPENN-1 had no detected EPCAM-positive TCs. This suggests that EPCAM based TC isolation may under-represent the number and phenotypic diversity of TCs. t-distributed stochastic neighbour embedding analysis revealed that TCs clustered away from WBCs (Figure 1C). Index sorting linked the transcriptional profile of each cell to its protein expression, demonstrating that cells in the WBC cluster were EPCAM-negative but CD45-positive (Figure 1C). We confirmed high expression of tumour specific genes KRT7 and KRT8 and epithelial gene EPCAM among cells in the TC but not the WBC cluster (Figure S1).

We performed differential gene expression analysis to identify TC specific genes. 185 genes were significantly differentially expressed in MPE TCs versus WBCs (adjusted p-value [p-adj] <0.05 and log2 fold-change log2FC>1.5; Figure S2A and Table S1). Genes significantly upregulated in TCs include NSCLC tumour markers NAPSA, SFTPB, CEACAM6, C3, KRT7, KRT18, and KRT1 (Figure S2B). Gene Ontology (GO) revealed enrichment for gene signatures including extracellular matrix structural constituent (Figure S2C and Tables S2–4). Expression of tumour markers and lack of expression of immune markers suggest the lung tumour origin of the MPE TCs.

We sought to identify differentially expressed genes between EPCAM-positive and EPCAM-negative TCs. Sixty one genes were significantly differentially regulated in EPCAM-positive TCs versus EPCAM-negative TCs (p-adj <0.05 and log2 fold-change log2FC>1.5; Figure 2A and Table S5). Epithelial cell transcripts MUC1, KRT7, CEACAM6 and NAPSA were significantly enriched in EPCAM-positive TCs versus EPCAM-negative TCs (Figure 2A) and expressed in the majority (62%–75%) of EPCAM-positive TCs (Figure 2C). Importantly, KRT7, CEACAM6 and NAPSA are expressed in only 11%–30% of EPCAM-negative TCs implying routine pathological analysis of NSCLC samples with these markers may inadvertently overlook a large number of NSCLC cells undergoing the EMT process. Extracellular matrix (ECM) genes COL1A1, COL1A2, COL3A1 and SPARC were significantly enriched in 52%–65% of EPCAM-negative TCs (Figure 2A,C) while minimal expression of the ECM genes was observed in 3%-28% of EPCAM-positive TCs. GO analysis of genes...
TABLE 1 Clinical characteristics for nine patients from whom 11 PE samples were obtained

Patient	Histology	Sex	Race	Age at diagnosis (years)	Weeks on therapy at time of PE	Driver mutations	Therapy at time of PE	Smoking Status
UPENN-1	Adenocarcinoma	F	White	56	4	EGFR ex19 del	Chemo + Avastin	Former
UPENN-2	Adenocarcinoma	F	Asian	70	19	EGFR L858R	TKI + Avastin	Never
UPENN-3A	Adenocarcinoma	F	White	64	1	BRAF V600E	Chemo	Former
UPENN-3B	Adenocarcinoma	F	White	64	1	BRAF V600E	IO	Former
UPENN-4	Adenocarcinoma	F	White	53	11	EGFR ex19 del	TKI + Avastin	Never
UPENN-5A	Adenocarcinoma	F	White	78	9	None detected	IO	Current
UPENN-5B	Adenocarcinoma	F	White	78	17	None detected	IO	Current
UPENN-6	Adenocarcinoma	M	White	74	2	KRAS G12C	IO	Former
UPENN-7	Adenocarcinoma	F	White	64	12	EGFR Exon 18	TKI	Never
UPENN-8	Adenocarcinoma	F	White	55	36	EGFR ex19 del	TKI + Avastin + Chemo	Former
UPENN-9	Adenocarcinoma	F	White	55	3	EGFR L858R	TKI	Former

Abbreviations: IO, immunotherapy; TKI, tyrosine kinase inhibitor.

FIGURE 1 Isolation and characterization of pleural effusion tumour cells (TCs) and WBCs by single-cell RNA sequencing. (A) Representative scatter plots demonstrating the flow cytometric gating strategy for the detection of TCs in the pleural effusion sample from patient UPENN-9. 1468 single TCs and 131 pools of 10–15 WBCs from 11 malignant pleural effusions (MPE) samples were index sorted into 96 well plates for whole transcriptome RNA sequencing. B) Number of TCs and WBC pools that were sorted and passed QC are shown. C) t-distributed stochastic neighbour embedding (t-SNE) analysis of gene expression of 584 TCs with recorded EPCAM protein expression (483 TCs) and WBCs (86 pools) coloured by cell type (left), log10 mean fluorescence intensity (MFI) of EPCAM (TCs: square, WBCs: circle) (middle) and CD45 (right) shows WBCs cluster away from TCs and TCs have a heterogenous expression of EPCAM. Cells in grey are negative for EPCAM (middle) or CD45 (right) protein expression respectively. 18% (89/483) of TCs express CD45, albeit at 5.6 fold lower MFI than WBCs, consistent with previous studies demonstrating the occurrence of CTCs expressing leukocyte markers in patients with solid tumours.10

enriched in EPCAM-positive TCs revealed enrichment for gene signatures including growth and cellular homeostasis, whereas gene signatures enriched in EPCAM-negative TCs included wounding and wound healing (Tables S6–8) (Figure 2B).

We assessed the expression of a curated list of additional ECM, EMT and tumour specific genes to investigate single-cell heterogeneity among TCs (Figure 2D). The majority of TCs expressed KRT78, KRT18, KRT79, and mesenchymal gene VIM with considerable heterogeneity in the
Characterization of EPCAM-positive and EPCAM-negative TCs and assessment of single-cell heterogeneity of malignant pleural effusions (MPE) TCs. (A) Volcano plot of differentially expressed genes between EPCAM-positive TCs and EPCAM-negative TCs. Previously established non-small-cell lung cancer (NSCLC) tumour specific or epithelial to mesenchymal transition (EMT)/extracellular matrix (ECM) genes with log2-fold change >1.5 and adjusted p-value <0.05 are labeled (adjusted p-value $<0.05; \log_2$-fold change >1.5) in the volcano plot. (B) GO (gene ontology) pathways significantly enriched in EPCAM-positive TCs compared to EPCAM-negative TCs by gene set enrichment analysis (FDR <0.05). (C) Violin plot of the log10 read counts of extracellular matrix-associated genes SPARC, COL1A1 and
expression of other epithelial and ECM genes. Next, we constructed a Z score to assess the relationship between the expression of epithelial, keratin and ECM genes. Epithelial (sum of the log2 Z scores of 11 epithelial genes), ECM (sum of the log2 Z scores of seven ECM genes) and keratin (sum of the log2 Z scores of three keratin genes) Z scores were calculated (genes listed in the figure legend). Scatter plot analysis verified that the expression of ECM and epithelial genes are largely mutually exclusive (Figure 2E). In contrast, EPCAM-negative TCs with a high ECM Z score have a wide range of keratin expressions (Figure 2F).

Single-cell heterogeneity within each patient sample was assessed by intracluster correlation coefficients (ICC score) using a curated gene set (Table S9). Lower ICC scores reflect higher heterogeneity. Eight of nine samples had high heterogeneity (ICC score range 0.012–0.261) and one sample (UPENN-7) had low heterogeneity (ICC score 0.663) (Table S10). Thus, considerable single-cell heterogeneity exists within patients.

Previously, we demonstrated that an EMT score calculated from RNA sequencing of bulk NSCLC tissue was significantly lower (more epithelial) in patients who respond
to immunotherapy versus non-responders. We sought to demonstrate the feasibility of measuring an EMT score from MPEs. The median single-cell EMT score ranged from 4.61 for UPENN-1 to -1.43 for UPENN-5A, with considerable intra-patient heterogeneity between the minimum and maximum single-cell EMT scores (Figure 3A). All patients with a high EMT score (UPENN-1, 7, 4, 2, and 9) had a high proportion of EPCAM-negative TCs (range 76%–100%). In contrast, all patients with a low EMT score had a low proportion of EPCAM-negative TCs (range = 26%–46%; Figure 3B). A similar inverse relationship between EMT score and EPCAM protein expression was detected at the single-cell level (Correlation -0.322, p-value 3.96e-13) (Figure 3C,D, and Figure S3) in MPE TCs. A paired t-test analysis revealed a significant difference between the EMT scores of EPCAM+ and EPCAM- TCs (p-value < 0.0001) (Figure 3D).

CONCLUSION

Thus, through single-cell transcriptional analysis, we show that the majority of MPE TCs did not express EPCAM and likely escaped detection in previous studies. The unbiased analysis of TCs allowed the identification of transcriptional differences in EPCAM-positive and EPCAM-negative TCs and uncovered significant intra-patient heterogeneity in gene expression and EMT score. We establish the feasibility of an MPE liquid biopsy assay with a potential future diagnostic value as a liquid biopsy in NSCLC patients.

ACKNOWLEDGEMENTS

Cell sorting was performed in the Abramson Cancer Center Flow Cytometry and Cell Sorting Shared Resource Laboratory and partially supported by BD Biosciences. This work was also supported, in part, by the National Cancer Institute at the National Institute of Health (RO1 CA207643 and CA234225), V Foundation (T2017-009), and the LUNGevity Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

CONFLICT OF INTEREST

Erica L. Carpenter received speaker’s fees from Guardant Health, Imedex and AstraZeneca, research funding from UHG, Janssen, Becton Dickinson and Merck, and an honorarium for membership in the advisory board from BMS. All funding outside the submitted work. Jeffrey C. Thompson has a consulting/advisory board role for AstraZeneca. Scott J. Bornheimer is an employee of and holds stock in BD Biosciences. Moen Sen, Ryan M. Hausler, Keely Dulmage, Taylor A. Black, William Murphy, Charles H. Pletcher, Ling Wang, Chang Chen, Stephanie S. Yee, Kara N. Maxwell, Ben Z. Stanger, and Jonni S. Moore have no competing interests.

Moen Sen1
Ryan M. Hausler1
Keely Dulmage2
Taylor A. Black1
William Murphy3
Charles H. Pletcher Jr3
Ling Wang2
Chang Chen2
Stephanie S. Yee1
Scott J. Bornheimer4
Kara N. Maxwell1
Ben Z. Stanger5
Jonni S. Moore3
Jeffrey C. Thompson6
Erica L. Carpenter1

1Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
2Life Science Innovation, BD Technologies and Innovations, Durham, North Carolina, USA
3Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
4BD Biosciences, San Jose, California, USA
5Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
6Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Thoracic Oncology Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA

Correspondence

Erica L. Carpenter, Research Assistant Professor, Hematology-Oncology, Perelman Center for Advanced Medicine South Pavilion, 8th Floor, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA.
Email: erical@upenn.edu

Jeffrey C. Thompson and Erica L. Carpenter contributed equally to this work

ORCID

Moen Sen https://orcid.org/0000-0002-6538-1903
REFERENCES

1. Thomas JM, Musani AI. Malignant pleural effusions: a review. Clin Chest Med. 2013;34(3):459-471. https://doi.org/10.1016/J.CCM.2013.05.004

2. Kim N, Kim HK, Lee K, et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun. 2020;11(1):1-15. https://doi.org/10.1038/s41467-020-16164-1

3. Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897-6904. https://doi.org/10.1158/1078-0432.CCR-04-0378

4. Thompson JC, Fan R, Black T, et al. Measurement and immunophenotyping of pleural fluid EpCAM-positive cells and clusters for the management of non-small cell lung cancer patients. Lung Cancer. 2019;127:25-33. https://doi.org/10.1016/j.lungcan.2018.11.020

5. Aiello N, Maddipati R, Norgard R, et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev Cell. 2018;45(6):681-695.e4. https://doi.org/10.1016/J.DEVCEL.2018.05.027

6. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2018;20(2):69-84. https://doi.org/10.1038/s41580-018-0080-4

7. Min Y, Aditya B, Ben S W, et al. Circulating breast tumour cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339(6119):580-584. https://doi.org/10.1126/SCIENCE.1238522

8. Bhagwat N, Dulmage K, Pletcher C, et al. An integrated flow cytometry-based platform for isolation and molecular characterization of circulating tumour single cells and clusters. Sci Rep. 2018;8(1):5035. https://doi.org/10.1038/S41598-018-23217-5

9. Thompson JC, Hwang W-TT, Davis C, et al. Gene signatures of tumour inflammation and epithelial-to-mesenchymal transition (EMT) predict responses to immune checkpoint blockade in lung cancer with high accuracy. Lung Cancer. 2020;139:1-8. https://doi.org/10.1016/j.lungcan.2019.10.012

10. Carolina R, Marta V, Lorenzo G, et al. The curious phenomenon of dual-positive circulating cells: Longtime overlooked tumour cells. Semin Cancer Biol. 2020;60:344-350. https://doi.org/10.1016/J.SEMCANCER.2019.10.008

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.