Hadron structure at small-x via unintegrated gluon densities

A. Dafne Bolognino
Dipartimento di Fisica, Università della Calabria and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza, Italy.
e-mail: ad.bolognino@unical.it

F. Giovanni Celiberto
European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT), I-38123 Villazzano, Trento, Italy Fondazione Bruno Kessler (FBK), I-38123 Povo, Trento, Italy, INFN-TIFPA Trento Institute of Fundamental Physics and Applications, I-38123 Povo, Trento, Italy.*
e-mail: fceliberto@ectstar.eu

M. Fucilla
Dipartimento di Fisica, Università della Calabria and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza, Italy.
e-mail: michael.fucilla@unical.it

D. Yu. Ivanov
Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia.
e-mail: d-ivanov@math.nsc.ru

A. Papa
Dipartimento di Fisica, Università della Calabria and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza, Italy.
e-mail: alessandro.papa@fis.unical.it

W. Schäfer
Institute of Nuclear Physics Polish Academy of Sciences ul. Radzikowskiego 152, PL-32-342, Kraków, Poland.
e-mail: wolfgang.schafer@ifj.edu.pl

A. Szczurek
College of Natural Sciences, Institute of Physics, University of Rzeszów, ul. Pigoriona 1, PL-35-310 Rzeszów, Poland, Institute of Nuclear Physics Polish Academy of Sciences ul. Radzikowskiego 152, PL-32-342, Kraków, Poland.
e-mail: antoni.szczurek@ifj.edu.pl

Received 16 January 2022; accepted 24 February 2022

Inclusive as well as exclusive emissions in forward and central directions of rapidity are widely recognized as excellent channels to access the proton structure at small x. In this regime, to describe nucleons structure, it is necessary to use k_T-unintegrated distributions. In particular, at large transverse momenta, the x-evolution of the so-called unintegrated gluon distribution is driven by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation, within the framework of the high-energy factorization (HEF).

Recent analyses on the diffractive electroproduction of ρ mesons have corroborated the underlying assumption that the small-size dipole scattering mechanism is at work, thus validating the use of the HEF formalism. Nonetheless, a significant sensitivity of polarized cross sections to intermediate values of the meson transverse momenta, where, in the case of inclusive emissions, a description at the hand of the transverse momentum dependent (TMD) factorization starts to be the most appropriate framework, has been observed.

In this work, we will review the formal description of the unintegrated gluon density UGD within the BFKL approach and present some UGD models that have been proposed, then we will describe the state of the art of some recent phenomenological analyses.

Keywords: Hadron structure; Quantum Chromodynamics at small x.

DOI: https://doi.org/10.31349/SuplRevMexFis.3.0308109
1. Introduction

After almost fifty years since Quantum Chromodynamics (QCD) was proposed, and subsequently recognized as the theory of the interaction between quarks and gluons, a correct and complete description of the proton structure, in terms of its constituents, remains a challenge for the scientific community. Examples, which allows to understand the complexity of such a description, are the mass-gap and the proton spin puzzle problems. Apart from the purely theoretical interest in the problem, the description of the hadronic structure is essential to understand many of modern problems of the Standard Model (SM). As we know, in fact, many of modern colliders, such as the Large Hadron Collider (LHC) and the Electron-Ion Collider (EIC), use proton or nuclei (as projectile and/or target); therefore an accurate description of the proton structure is essential to unveil signals of physics beyond the Standard Model.

In understanding the behavior of a hadron in high-energy collisions, we are always faced with the need to describe both perturbative and non-perturbative aspects of QCD. Thanks to the factorization theorems, we are often able to separate the two dynamics, in such a way as to be able to apply the computation techniques of perturbative quantum field theory to the so-called hard parts of processes and to reabsorb the part concerning the non-perturbative dynamics in some parton densities. Among these densities, the most general one is the integrated gluon distribution, even if its applicability area is much wider.

Differently from collinear PDFs, the UGD is not well known and several types of models for it do exist, which lead to very different shapes in the \((x, \vec{b}_T)\)-plane. In the following, we use the \(\rho\)-meson leptoproduction to discriminate among different models of UGD.

2. Models of unintegrated gluon density

We start by giving the original definition of UGD in terms of the BFKL Green function. Let’s consider the total \(\gamma^* p\) cross section in \(k_T\)-factorization:

\[
\sigma_\lambda(x, Q^2) = \frac{G}{(2\pi)^2} \int \frac{d^2 \vec{E}_1}{\vec{k}_1^2} \times \int \frac{d^2 \vec{E}_2}{\vec{k}_2^2} \Phi_\lambda(\vec{k}_1) \Phi_\rho(\vec{k}_2) F(x, \vec{k}_1, \vec{k}_2) ,
\]

where \(\lambda\) is the virtual photon polarization, \(G\) incorporates color constants, \(\Phi_\lambda\) and \(\Phi_\rho\) are respectively the photon and proton impact factor and

\[
F(x, \vec{k}_1, \vec{k}_2) = \sum_{n=0}^{\infty} \int d\nu \left(\frac{k_1^2}{k_2^2} \right)^{iv \nu} \frac{\alpha_s(x, \nu) \ln(\frac{1}{x})}{2\pi^2|\vec{k}_1||\vec{k}_2|} F \equiv \frac{x^{-\omega_0}}{\sqrt{\ln(\frac{1}{x})}}, \quad \omega_0 = 4\alpha_s \ln 2 .
\]

We define the unintegrated gluon density, \(\mathcal{F}(x, \vec{k})\), as

\[
\mathcal{F}(x, \vec{k}) \equiv \frac{1}{(2\pi)^3} \int \frac{d^2\vec{k}'}{\vec{k}'^2} \Phi_\rho(\vec{k}') \vec{k}^2 F(x, \vec{k}, \vec{k}') .
\]

Then, it is clear that

\[
\sigma_\lambda(x, Q^2) = \frac{G}{(2\pi)^2} \int \frac{d^2 \vec{E}_1}{(\vec{k}_1^2)^2} \Phi_\lambda(\vec{k}_1) \mathcal{F}(x, \vec{k}_1) .
\]

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations [1, 3]. To realistically describe the structure of the proton, we must introduce a \(\vec{k}_T\) unintegrated gluon density (UGD), whose evolution at small-\(x\) is governed by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [4–7]. BFKL became famous owing to the prediction of the rapid growth of the \(\gamma^* p\) cross section at increasing energy, subsequently discovered experimentally. Therefore, the BFKL equation is usually associated with the evolution of the unintegrated gluon distribution, even if its applicability area is much wider.
(known perturbatively) and a proton impact factor (non-perturbative object) that has to be modeled. Some modelizations, as we shall see, follow this scheme, while others parametrize directly $F(x, \vec{k})$.

Models that will be considered in this work are:

- Gluon momentum derivative (toy model)
 \[F(x, k^2) = \frac{d(xg(x, k^2))}{dk^2}. \]
 \[(6) \]

- The ABIPSW model [9]
 \[F(x, k^2) = \frac{A}{(2\pi)^2 M^2 k^2 + M^2}. \]
 \[(7) \]

This is an x-independent model.

- The IN model [10]
 \[F(x, k^2) = F_{\text{soft}}(x, k^2) + F_{\text{hard}}(x, k^2). \]
 \[(8) \]

This is a soft-hard model developed with the purpose of probing different regions of transverse momentum.

- The HSS model [11]
 \[F(x, k^2) = F(x, \vec{k}) \times \Phi_p(\vec{k}). \]
 \[(9) \]

\otimes means convolution in the transverse momenta \vec{k}. This model is exactly based on the construction of the UGD shown above.

- The GBW model [12]
 This UGD parametrization derives from the effective dipole cross section $\sigma(x, r)$ for the scattering of a $q\bar{q}$ pair off a nucleon.

- The WMR model [13]
 The unintegrated parton distributions are determined by imposing angular-ordering constraints on gluon emission. This UGD model satisfy the famous Catani-Ciafaloni-Fiorani-Marchesini (CCFM) evolution equation [14–16].

- The BCRT model [17]
 It is a small-x improved model for the unpolarized gluon TMD based on the quark spectator model idea.

3. ρ-meson leptonproduction: Theoretical set-up

The second ingredient needed to build our prediction is the impact factor for the transition $\gamma_\lambda \rightarrow \rho_\lambda$. We want to resolve this process in helicity, hence we will need more than one impact factor. Dominant helicity amplitudes are those corresponding to $\gamma_L \rightarrow \rho_L$ and $\gamma_T \rightarrow \rho_T$ transitions. Labelling by $T_{\lambda, \lambda'}$, the helicity amplitudes one has the following hierarchy:

\[T_{00} \gg T_{11} \gg T_{10} \gg T_{01} \gg T_{-11}. \]

In general, the impact factor for the photoproduction of a ρ-meson is a convolution between an hard coefficient function and a distribution amplitude (DA). In [8] this object is expressed through a twist-expansion, achieved by Taylor expanding the hard part. At leading twist we have two parton correlators connecting the hard and the soft part, at the next-to-leading twist we have an additional gluon, and so on.

- $\gamma_L \rightarrow \rho_L$ impact factor
 This impact factor starts at the leading twist (twist two) and it is known up to next-to-leading order. The LO expression is [8]

}\[\Phi_{\gamma_L \rightarrow \rho_L}(k, \mu^2) = 2B \frac{\sqrt{N_c^2 - 1}}{Q N_c} \times \int_0^1 dy \varphi_1(y; \mu^2) \left(\frac{\alpha}{\alpha + y\bar{y}} \right), \]

where $\alpha = k^2/Q^2$, $B = 2\pi\alpha_s \frac{c}{\sqrt{2}} f_\rho$ and

\[\varphi_1(y; \mu^2) = 6y\bar{y} \left(1 + a_2(\mu^2) \frac{3}{2}(5(y - \bar{y})^2 - 1) \right), \]

is the twist-2 DA.

- $\gamma_T \rightarrow \rho_T$ impact factor
 This impact factor starts at the next-to-leading twist (twist three) and it is known up to leading order. Its expression can be found in [19].

4. ρ-meson leptonproduction: phenomenology

In this section we present some predictions for the ρ-meson leptonproduction in kinematical conditions typical of HERA collider and of the future EIC collider. In the case of HERA we show and discuss comparison with data.

The $T_{\lambda, \lambda'}$ can be expressed as

\[T_{\lambda, \lambda'} = is \int \frac{d^2k}{(k^2)^2} \Phi^{\gamma^*(\lambda_\gamma) \rightarrow \rho(\lambda')} F(x, k^2), \]

\[(13) \]

For reasons of space, we limit ourselves to mentioning the models used in this work. For a more complete review see [8].
4

A. DAFNE BOLOGNINO et al.,

Figure 1. Longitudinal cross-section as a function of the squared photon virtuality, Q^2, at $W = 75$ GeV (left) and at $W = 30$ GeV (right).

Figure 2. Transverse cross-section as a function of the squared photon virtuality, Q^2, at $W = 75$ GeV (left) and at $W = 30$ GeV (right).

where $x = Q^2/s$. We stress that the amplitude in the semi-hard regime is dominated by its imaginary part. In the so-called Wandzura-Wilczek (WW) approximation, in which genuine terms are neglected, we have (for the two leading amplitudes):

$$T_{11} = i s \frac{2BC}{Q^2} \int \frac{d^2k}{(k^2)^2} F(x, \vec{k}^2) \times \int \frac{dy}{y^2} \frac{\alpha}{(\alpha + y)^2} \varphi_{WW}^{+}(y, \mu^2), \quad (14)$$

$$T_{00} = i s \frac{4BC}{Q^2} \int \frac{d^2k}{(k^2)^2} F(x, \vec{k}^2) \times \int \frac{dy}{y^2} \frac{\alpha}{(\alpha + y)^2} \varphi_{as}^{+}(y, \mu^2), \quad (15)$$

where $C = \sqrt{4\pi \alpha_{em}}$. The expression of DAs $\varphi_{WW}^{+}(y, \mu^2)$ and $\varphi_{as}^{+}(y, \mu^2)$ can be found in [20]. In the same work also the generalization of Eqs. (14) and (15) to massive quark case is given. We will investigate the longitudinal and the transverse cross section,

$$\sigma_L(\gamma^* p) = \frac{1}{16\pi b(Q^2)} \left| T_{00}(s, t = 0) \right|^2, \quad (16)$$

$$\sigma_T(\gamma^* p) = \frac{1}{16\pi b(Q^2)} \left| T_{11}(s, t = 0) \right|^2. \quad (16)$$

Here, $W^2 \equiv s$ and

$$b(Q^2) = \beta_0 - \beta_1 \ln \left(\frac{Q^2 + m_{J/\Psi}^2}{m_{J/\Psi}} \right) + \frac{\beta_2}{Q^2 + m_V^2} \quad (17)$$

is the slope function for light vector mesons. For ρ-meson we have

$$\beta_0 = 6.5 \text{ GeV}^2, \quad \beta_1 = 1.2 \text{ GeV}^2, \quad \beta_2 = 1.1 \text{ GeV}^2. \quad (18)$$

In Figs. 1 and 2 we show the longitudinal (transverse) cross section for the σ_L (σ_T) as a function of the squared photon virtuality, Q^2; a more comprehensive phenomenological study can be found in [8]. All cross sections fall at increasing Q^2 as it is expected from the high-energy analysis. Left
panels refer to a typical HERA kinematics ($W = 75$ GeV2), while in the right panels there are predictions for measurements that can be made at the EIC. From comparison with data we can understand that none of the models is capable of describing the entire Q^2-spectrum of HERA. In particular, at small value of Q^2 (between 2 and 3 GeV2) only the ABIPSW model fits data, while above 6 GeV2 only the GBW model can describe data. As can be seen, these considerations remain true for both transverse and longitudinal cross sections. An intriguing possibility for future developments, motivated by the analysis presented above, is to consider a new UGD model, which contains a low-k_T TMD input and encodes the small-x evolution, to try to describe the entire HERA Q^2-spectrum.

1. Y. L. Dokshitzer, “Calculation of the Structure Functions for Deep Inelastic Scattering and e+e− Annihilation by Perturbation Theory in Quantum Chromodynamics,” Sov. Phys. JETP 46 (1977) 641.
2. V. N. Gribov and L. N. Lipatov, “Deep inelastic e p scattering in perturbation theory,” Sov. J. Nucl. Phys. 15 (1972) 438. IPI-381-71.
3. G. Altarelli and G. Parisi, “Asymptotic Freedom in Parton Language,” Nucl. Phys. B 126 (1977) 298.
4. V. S. Fadin, E. A. Kuraev and L. N. Lipatov, “On the Pomeronchuk Singularity in Asymptotically Free Theories,” Phys. Lett. B 60 (1975) 50.
5. E. A. Kuraev, L. N. Lipatov and V. S. Fadin, “Multi - Reggeon Processes in the Yang-Mills Theory,” Sov. Phys. JETP 44 (1976) 443-450.
6. E. A. Kuraev, L. N. Lipatov and V. S. Fadin, “The Pomeronchuk Singularity in Nonabelian Gauge Theories,” Sov. Phys. JETP 25 (1977) 199.
7. I. I. Balitsky and L. N. Lipatov, “The Pomeronchuk Singularity in Quantum Chromodynamics,” Sov. J. Nucl. Phys. 28 (1978) 822.
8. A. D. Bolognino, F. G. Celiberto, D. Y. Ivanov, A. Papa, W. Schäfer and A. Szczurek, “Exclusive production of ρ-mesons in high-energy factorization at HERA and EIC,” Eur. Phys. J. C 81 (2021) 9.
9. I. V. Anikin, A. Besse, D. Y. Ivanov, B. Pire, L. Szymanowski and S. Wallon, “A phenomenological study of helicity amplitudes of high energy exclusive leptoproduction of the ρ meson,” Phys. Rev. D 84 (2011) 054004.
10. I. P. Ivanov and N. N. Nikolaev, “Anatomy of the differential gluon structure function of the proton from the experimental data on $F(2p)(x, Q^2)$,” Phys. Rev. D 65 (2002) 054004.
11. M. Hentschinski, A. Sabio Vera and C. Salas, “Hard to Soft Pomeron Transition in Small-x Deep Inelastic Scattering Data Using Optimal Renormalization,” Phys. Rev. Lett. 110 (2013) 041601.
12. K. J. Golec-Biernat and M. Wusthoff, “Saturation effects in deep inelastic scattering at low Q^2 and its implications on diffraction,” Phys. Rev. D 59 (1998) 014017.
13. G. Watt, A. D. Martin and M. G. Ryskin, “Unintegrated parton distributions and inclusive jet production at HERA,” Eur. Phys. J. C 31 (2003) 73-89.
14. M. Ciafaloni, “Coherence Effects in Initial Jets at Small q^2/s,” Nucl. Phys. B 296 (1988) 49-74.
15. S. Catani, F. Fiorani and G. Marchesini, “Small x Behavior of Initial State Radiation in Perturbative QCD,” Nucl. Phys. B 336 (1990) 18-85.
16. G. Marchesini, “QCD coherence in the structure function and associated distributions at small-x,” Nucl. Phys. B 445 (1995) 49-80.
17. A. Bacchetta, F. G. Celiberto, M. Radici and P. Taels, “A spectator-model way to transverse-momentum-dependent gluon distribution functions.”
18. I. V. Anikin, D. Y. Ivanov, B. Pire, L. Szymanowski and S. Wallon, “QCD factorization of exclusive processes beyond leading twist: $\gamma^* \rightarrow \rho(T)$ impact factor with twist three accuracy,” Nucl. Phys. B 828 (2010) 1-68.
19. A. D. Bolognino, F. G. Celiberto, D. Y. Ivanov and A. Papa, “Unintegrated gluon distribution from forward polarized ρ-electroproduction,” Eur. Phys. J. C 78 (2018) 1023.
20. A. D. Bolognino, A. Szczurek and W. Schäfer, “Exclusive production of ϕ meson in the $\gamma^* p \rightarrow \phi p$ reaction at large photon virtualities within k_T-factorization approach,” Phys. Rev. D 101 (2020) 054041.