Gallium-67 radiotoxicity in human U937 lymphoma cells

A.R. Jonkhoff¹, P.C. Huijgens¹, R.T. Versteegh², E.B. van Dieren², G.J. Ossenkoppele¹, H.J.M. Martens³ & G.J.J. Teule²

Departments of ¹Haematology, ²Nuclear Medicine, ³Pharmacology, Free University Hospital, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.

Summary Promising clinical results have been obtained with radiolabeled antibodies in lymphoma patients. The higher uptake by lymphomas of ⁶⁷Gallium (⁶⁷Ga) compared with monoclonal antibodies makes selective radiotherapy by the widely available ⁶⁷Ga appealing. However, the gamma radiation of ⁶⁷Ga used in scintigraphy is considered to be almost non-toxic to lymphoma cells. However, in addition to photon radiation ⁶⁷Ga emits low energy Auger electrons and 80–90 keV conversion electrons which could be cytotoxic. The objective of the present study was the assessment of radiotoxicity of ⁶⁷Ga on a lymphoid cell line: U937. Proliferation (MTT-assay) and clonogenic capacity (CFU-assay) were measured after 3 and 6 days incubation with 10, 20 and 40 µCi ml⁻¹ ⁶⁷Ga.

Growth inhibition was 36% after 3 days incubation and 63% after 6 days incubation with 40 µCi ⁶⁷Ga ml⁻¹. Clonogenic capacity was reduced by 51% after 3 days and 72% after 6 days incubation with 40 µCi ml⁻¹ ⁶⁷Ga. A survival curve showed an initial shoulder and became steeper beyond 200–250 µCi cell⁻¹ (low linear energy transfer type). Iso-effect doses of ⁶⁷Ga and ⁹⁹Yttrium (⁹⁹Y) were determined. The iso-effect dose of 40 µCi ⁶⁷Ga ml⁻¹ (cumulative dose of conversion electrons 306 cGy) was 2.5 µCi ⁹⁹Y ml⁻¹ (cumulative dose 494 cGy) and the iso-effect dose of 80 µCi ⁶⁷Ga ml⁻¹ was 5.0 µCi ⁹⁹Y ml⁻¹. The main cytotoxic effect of ⁶⁷Ga seems to be induced by the 80 keV conversion electrons. We conclude that the conversion electrons of ⁶⁷Ga have a cytotoxic effect on U937 cells and that in our experiments a 16-fold higher µCi-dose of ⁶⁷Ga than of ⁹⁹Y was needed for the same cytotoxic effect. We believe that ⁶⁷Ga holds promise for therapeutic use.

Materials and methods

Radioisotopes

⁶⁷Gallium (⁶⁷Ga) is being used in diagnostic imaging to detect sites of infection and is well known for its ability to accumulate in many malignant tissues, especially lymphomas (Watson et al., 1973; Nelson et al., 1972).

To a large extent this accumulation resembles the antibody mediated uptake of ⁹⁹Yttrium and ¹³¹Iodine in lymphomas in the clinical studies of Vriesendorp et al. (1989, 1991), Press et al. (1989) and Goldenberg et al. (1991). In these studies very promising tumour reductive effects were obtained in lymphoma patients. Selective radiotherapy by the widely available ⁶⁷Ga is an appealing idea. However, the gamma radiation of ⁶⁷Ga used in scintigraphy is considered to be almost non-toxic to lymphoma cells because only very little energy is absorbed by the tissue (low Linear Energy Transfer). Besides gamma radiation, however, ⁶⁷Ga emits very low energy 0.1–8.0 keV Auger electrons and low energy 80–90 keV conversion electrons and these electrons could very well be cytotoxic to lymphoma cells (high Linear Energy Transfer). On the other hand, Auger electrons have to be localised inside each cell, probably in association with the DNA to exert a cytotoxic effect.

In the present study we investigated the cytotoxic effect of ⁶⁷Ga on a lymphoma cell line: U937. Iso-effect doses of ⁶⁷Ga and ⁹⁹Yttrium (⁹⁹Y) were sought to relate the cytotoxic effect of ⁶⁷Ga to the well known cytotoxic effect of ⁹⁹Y.

Correspondence: A.R. Jonkhoff.
Received 14 September 1992; and in revised form 23 November, 1992
counts, colony forming units and MTT optical densities was calculated as follows: 100- (mean value after incubation with 67Ga/mean value control * 100%). Cytosins (350 r.p.m., 10 min, Cytospin 2, Shandon) were prepared for May Giemsa Grunwald staining. Cell cultures were regularly checked to be negative for mycoplasma using a gen probe kit (Lab Serv Benelux).

Cellular uptake of 67Ga

Aliquots of 0.3 ml were taken from the cell suspensions incubated with 67Ga. Cells were washed three times with cold phosphate buffered saline (PBS, pH = 7.4) and subsequent supernatants and cell pellets were counted with a gamma scintillation counter (compugamma 1282, Wallac). 67Ga uptake was determined as follows: $\%^{67}$Ga uptake = bound c.p.m. + bound + free c.p.m. Cellular 67Ga content was determined as follows: initial 67Ga concentration * elapsed time * $\%^{67}$Ga uptake + cell number/ml. In separate experiments the dependency of the 67Ga uptake on transferrin concentrations was studied. In these experiments 67Ga uptake of U937 cells (0.5 * 106 cells/ml$^{-1}$) was measured using 1 μCi. 67Ga added to RPMI-1640-L-glycine supplemented with different concentrations of human apotransferrin (Sigma: T1147, 98% iron free, St. Louis, USA) and in RPMI-1640-L-glutamine supplemented with 1% human serum or 15% foetal calf serum. After 6 h incubation at 37°C uptake of 67Ga was measured as described above.

MTT-Assay

Inhibition of proliferation after incubation with 67Ga was measured in a colorimetric MTT-assay as previously described (Twente et al., 1989; Price & McMillan, 1990). Cells incubated with or without 67Ga were washed and resuspended in fresh RPMI 1640-1% human serum medium and 200 μl aliquots containing 3,000 viable cells were plated in triplicate in 96 wells round-bottomed micro-culture plates (Costar 3490). After 1, 4 and 7 days of culture at 20 ml MTT (3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide [Sigma MTT M2128; 5 mg ml$^{-1}$]) was added to each well. Plates were incubated in the dark for 4 h at 37°C after which the plates were centrifuged at 275 g for 5 min. The supernatants were aspirated and the formazan crystals dissolved in 175 ml DMSO/glycine buffer (150 μl DMSO, Sigma D 8779 ACS + 25 μl glycine buffer (0.1 M glycine, pH 10.5)). Complete solubilisation was achieved by vigorously shaking on a microplate shaker for 15 min. The absorbance (Optical Density: OD) was measured on an eight channel spectrophotometer (Titertek Multiscan MCC 340, Flow Laboratory) at a wavelength of 540 nm.

** Colony forming unit (CFU-C) assay**

Fifty μl of a 1.0 * 108 cells/ml$^{-1}$ vital cell suspension was suspended in 2.5 ml placenta conditioned medium (manufactured at the Central Laboratory of the Netherlands Red Cross, Amsterdam, NL), 0.9% methylcellulose (final concentration) and 723 μl Iscove's modified Dulbecco's medium (supplemented with L-glutamine, without NaHCO$_3$, dissolved in 500 ml H$_2$O; Gibco 704022200A, Breda, NL). After mixing, 220 μl of the suspension was plated (double) in a 24 wells culture plate (Costar, 3424 Mark II, One Aalewile center, Cambridge, UK). The surrounding wells were filled with sterile water to prevent dehydration. After 7 days of culture clusters (>8, <40 cells) and colonies (>40 cells) were counted with an inverted microscope. Total CFU count is defined as the sum of clusters and colonies. Plating efficiency for the control cells was 40-50%.

Absorbed dose calculations

The absorbed dose in the cells originating from β-particles, gamma rays, X-rays and internal conversion electrons was calculated with the assumption that the radioactivity is distributed homogeneously, according to the MIRD (Medical Internal Radiation Dose Committee) Loewinger & Berman (1976). For the β-particles, as well as for the internal conversion electrons, an absorbed dose fraction of 1.0 in the cell culture was assumed. The absorbed dose fractions for the gamma rays and X-rays were estimated by a Monte Carlo simulation (100,000 events). For the energy of the Auger electrons in the emission spectrum of 67Ga, a complete, uniform absorption in the cell (diameter of 12.5 μm) was assumed.

The residence time in the 5 ml culture flask was estimated on the basis of physical decay and a constant uptake of 1% per 500,000 cells ml$^{-1}$. Residence times in the wells were based on the assumption that the uptake of 1% per 500,000 cells ml$^{-1}$ remains inside the cells (for 67Ga), or that the radio-activity cannot be separated from the cells (for 90Y). To calculate the residence time in the cells for 67Ga, a mono-exponential curve was used which describes the concentration decrease because of cell division.

Statistics

Two sample analysis was performed with the Stat-Graphs 2.6 statistical computer program. A 95% confidence interval was computed for the hypothesis: difference in means = 0. If the hypothesis was not rejected at α = 0.05 the difference was considered statistically significant. Error bars shown in figures indicate the standard error of the mean (s.e.m.).

Results

67Ga-Gallium uptake

67Ga uptake was found to be rather constant (1.0-1.5%) at a medium transferrin concentration ranging from 0 to 1 μg ml$^{-1}$ (Figure 1). A slightly higher uptake (not significant) was found for a transferrin concentration of 0.5 μg ml$^{-1}$. Transferrin concentrations over 100 μg ml$^{-1}$ caused a sharp decline in 67Ga uptake. 67Ga uptake in 1% human serum supplemented serum (1.74% ± 0.54) was higher than in 15% foetal calf serum supplemented medium (0.76% ± 0.18) (Figure 1).

In the experiments measuring 67Ga cytotoxicity, U937 cells were incubated in a 1% human serum supplemented medium. 67Ga uptake was measured in each experiment after 3 and 6 days incubation. Mean 67Ga uptake values after 3 days were 1.9%, 1.69% and 1.9% for 40 μCi ml$^{-1}$, 20 μCi ml$^{-1}$ and 10 μCi ml$^{-1}$ concentration respectively. The mean 67Ga uptake after 6 days incubation measured 0.92%, 1.9% and 1.3% for the same concentrations. Cells incubated with 40 μCi 67Ga/ml$^{-1}$ had a statistically significant lower 67Ga cellular uptake after 6 vs 3 days.

Proliferation after exposure to 67Gallium

Cell counts were performed after 3 and 6 days of culture with 67Ga (Table I). No significant difference was found between control cells and cells incubated with non-radioactive sodium-citrate.

After 3 days incubation with 67Ga a proliferation inhibition of 7.4%, 7.4% and 18% was seen for 10 μCi ml$^{-1}$, 20 μCi ml$^{-1}$ and 40 μCi ml$^{-1}$ concentration of 67Ga respectively. Cell counts after 6 days incubation with 67Ga showed a reduction compared with control cells of 7%, 21% and 22% for 10, 20 and 40 μCi ml$^{-1}$ respectively. The reduction in cell number compared with control cells after incubation with 40 μCi 67Ga/ml$^{-1}$ was statistically significant after both incubation periods. A concentration of 20 μCi 67Ga/ml$^{-1}$ showed a statistically significant effect compared with control cells only after 6 days incubation with 67Ga.

Viability tended to be slightly lower in cultures incubated with 20 μCi ml$^{-1}$ and 40 μCi ml$^{-1}$ of 67Ga (Table I).
After 3 and 6 days of incubation with ^{67}Ga cells were washed and replated in a microplate culture to assess the residual growth capacity. MTT measurements were made after 1, 4 and 7 days of microplate subculture. The optical densities show a clear growth inhibition by ^{67}Ga (Table I and Figure 2a and b). Cells incubated with ^{67}Ga were still able to grow but seem to proliferate more slowly. Figure 3a and b shows the proliferation profile in a representative experiment. Figure 2a and b shows the relative inhibition of ^{67}Ga incubated cells vs the control cells in each experiment. No statistically significant differences were observed between control cells and citrate incubated cells. Proliferation was reduced, after 3 days incubation with 10 μCi ml$^{-1}$ and 20 μCi ml$^{-1}$ of ^{67}Ga, with 4% and 20% respectively (MTT-culture: day 7). This difference was not statistically different from control cells. After 6 days incubation with 10 μCi ml$^{-1}$ and 20 μCi ml$^{-1}$ ^{67}Ga the observed reduction of proliferation was 12% for both concentrations (MTT-culture: day 7) (no statistically significant difference from control cells). Incubation with 40 μCi ^{67}Ga ml$^{-1}$ for 3 days resulted in a growth inhibition of 23% (day 4) and 36% (day 7) (significantly different from control cells). Incubation with 40 μCi ^{67}Ga ml$^{-1}$ for 6 days resulted in an even more pronounced inhibition: 51% (day 4) and 63% (day 7) (significantly different from control cells).

MTT-assay

Table 1 Proliferation U937 cells after incubation with Gallium-67

3 Days ^{67}Ga	Cell counts /106 ml$^{-1}$	Viability %	MTT-optical density day = 7
Control	1.45 (1.2–1.9)	91%	1.052 (0.453–1.56)
Citrate	1.45 (1.2–2.1)	91%	1.003 (0.404–1.41)
10 μCi	1.3 (1.17–1.7)	90%	0.76 (0.434–0.97)
20 μCi	1.4 (1.17–1.6)	90%	0.736 (0.424–0.91)
40 μCi	1.2* (0.8–1.6)	89%	0.383* (0.371–0.99)

6 Days ^{67}Ga	Cell counts /106 ml$^{-1}$	Viability %	MTT-optical density day = 7
Control	1.2 (0.7–1.4)	92%	1.052 (0.556–2.62)
Citrate	1.1 (0.6–1.5)	91%	1.125 (0.275–2.36)
10 μCi	1.14 (0.7–1.3)	89%	0.579 (0.343–0.78)
20 μCi	0.92* (0.7–1.2)	89%	0.564 (0.354–0.76)
40 μCi	0.96* (0.4–1.2)	83%	0.53* (0.160–0.97)

Proliferation of U937 cells after 3 and 6 days of incubation with different concentrations of ^{67}Ga was measured with cell counts and MTT-optical density after 7 days of microtiter culture. Sodium citrate in a concentration equal to the 40 μCi ^{67}Ga ml$^{-1}$ concentration was used as extra control. Median values are shown of 11 experiments. Numbers in parentheses indicate range. Statistically significant differences compared with control cells are indicated with an asterisk (*).

CFU-assay

 Colony forming units (CFU's) assays were performed of the control cells and the 3 and 6 days ^{67}Ga incubated cultures. In comparison with the control cells the CFU counts after 3 days incubation with 40 μCi ^{67}Ga ml$^{-1}$ were as follows: 51% of clusters, 46% of colonies and 49% of total CFU's (Figure 4a). After 6 days incubation with 40 μCi ^{67}Ga ml$^{-1}$ 30% of clusters, 27% of colonies and 28% of total CFU's were found (Figure 4b). The reduction of CFU's compared with control cells after incubation with 40 μCi ^{67}Ga ml$^{-1}$ for 3 or 6 days periods was statistically significant. No statistically significant differences in CFU counts were found after incubation with 10 μCi ml$^{-1}$ or 20 μCi ml$^{-1}$ ^{67}Ga.

The mean ^{67}Ga content (pCi cell$^{-1}$) was estimated using the ^{67}Ga-uptake results and this ^{67}Ga content in each experiment was related to the total CFU's of the same experiment. Figure 5 shows a dose-effect curve with a bend around 200–250 pCi cell$^{-1}$.
Figure 2 Residual growth capacity after incubation with 67Ga was measured in a MTT assay. Data represent the relative optical densities vs control values at 1, 4 and 7 days of subculture after 3 days incubation with 67Ga a, and after 6 days incubation with 67Ga b. Sodium citrate: (---), 10 μCi 67Ga ml$^{-1}$: (---O---), 20 μCi 67Ga ml$^{-1}$: (---△---), 40 μCi 67Ga ml$^{-1}$: (...V...). * = P<0.05. (Median ± s.e.m.; n = 11).

Figure 3 Optical densities (MTT-assay) are shown of a representative experiment. Control: (---+---), sodium citrate: (---●---), 10 μCi 67Ga ml$^{-1}$: (---O---), 20 μCi 67Ga ml$^{-1}$: (---△---), 40 μCi 67Ga ml$^{-1}$: (...V...). Optical densities were measured 1, 4 and 7 days after 3 days incubation with 67Ga a, and after 6 days incubation with 67Ga b.

67Gallium compared with 90Yttrium-colloid

In three experiments the cytotoxicity of 67Ga and 90Y on U937 cells were compared. Uptake studies showed that 99% of 90Yttrium (90Y)-colloid was cell associated or could not be separated by centrifugation. However, the high energy of the β-particles (max 2.3 deV) of 90Y implicate that the radiation dose is not influence by the location of the radionuclide in this in vitro model.

In the MTT-assay a concentration of $\geq 5 \mu$Ci 90Y ml$^{-1}$ seemed necessary to prevent proliferation (data not shown).
GALLIUM-67 RADIOTOXICITY

Figure 4 Percentage of total colony forming units (CFU's) vs control cells in the CFU-assay. Sodium citrate: (), 10 µCi 67Ga ml⁻¹; (), 20 µCi 67Ga ml⁻¹; () 40 µCi 67Ga ml⁻¹; (). Percentage CFU's are shown after 3 days incubation with 67Ga a, and after 6 days incubation with 67Ga b. * = P<0.05. (Median ± s.e.m.; n = 8).

Figure 5 Surviving fraction of U937 cells measured by the CFU-assay related to the intracellular content of 67Ga (pCi cell⁻¹). The curve shows a typical low LET profile with a broad initial shoulder.

The inhibitory effect of 80 µCi 67Ga ml⁻¹ in the MTT-assay was comparable with a concentration of 90Y between 2.5 µCi ml⁻¹ and 5.0 µCi ml⁻¹ (data not shown).

The CFU-assay after 3 days incubation with 67Ga showed a reduction of 38% and 60% for 40 µCi 67Ga ml⁻¹ and 80 µCi 67Ga ml⁻¹ dose respectively. The 40 µCi ml⁻¹ concentration of 67Ga was comparable with 2.5 µCi 90Y ml⁻¹ (38% vs 38% reduction in CFU's) and 80 µCi ml⁻¹ of 67-Ga was comparable with an 90Y concentration between 2.5 and 5.0 µCi ml⁻¹ (60% vs 38%–83% reduction in CFU's) (Figure 6a). After 6 days (Figure 6b) 40 µCi 67Ga ml⁻¹ equalled 2.5 µCi 90Y ml⁻¹ (64% vs 70% reduction in CFU's) and 80 µCi 67Ga ml⁻¹ equalled 5.0 µCi 90Y ml⁻¹ (97% vs 98% reduction in CFU's). In these experiments further culturing after 3 days of the 20 µCi 90Y ml⁻¹ incubated cells was prevented by low vital cell counts.

Morphology

Control cells as well as 67Ga incubated U937 cells showed enhanced granularity, probably a culture artefact. After 3 and 6 days cells, that had been incubated with citrate, or with 10 µCi ml⁻¹, 20 µCi ml⁻¹, 40 µCi ml⁻¹ and 80 µCi ml⁻¹ of 67Ga showed no clear differences compared with control cells. The only apparent difference after 6 days incubation with 80 µCi 67Ga ml⁻¹ seemed to be a higher number of cells with two or more nuclei, and somewhat more apoptotic cells, but otherwise the cells looked quite normal.
with the same number of mitotic figures. In contrast, even after incubation with 1.25 µCi 90Y ml−1 for 3 days cells showed already signs of necrosis with smearing of nuclear material. Incubation for 3 days with 2.5 µCi ml−1, 5.0 µCi ml−1, 10 µCi ml−1 and 20 µCi ml−1 of 90Y resulted in 50%, 80%, 90% and 100% necrotic cells respectively.

Absorbed dose calculations

Table II shows the comparative dosimetry for 67Ga (40 µCi ml−1) and 90Y (2.5 µCi ml−1). Initial dose rates (cGy h−1) and cumulative dose (cGy, in parentheses) are given.

Discussion

The present study shows an inhibitory effect of 67Ga on proliferation of the lymphocytic cell line U937. Six days incubation with 40 µCi 67Ga ml−1 resulted in an inhibition of 22% in cell number and 63% in MTT optical density signal. The CFU-assay showed a 72% reduction in clonogenic capacity of U937 cells after incubation with 40 µCi 67Ga ml−1 for 6 days. After incubation with 80 µCi 67Ga ml−1 an even greater reduction in CFU's of 97% was observed. The inhibitory effect on proliferation (MTT-assay) does not necessarily indicate cell killing and could also be explained by mitotic delay (Cole et al., 1980). However, the reduced clonogenic capacity after incubation with 67Ga clearly shows a cytotoxic effect on clonogenic cells, probably the most important cells to be killed. A dose-effect relation of 67Ga could be established with a broad initial ‘shoulder’ fitting a low Linear Energy Transfer (LET) type of cytotoxicity (Kassiss et al., 1988). The bending of the curve was around the 200–250 pCi cell−1 and the cellular activity required to reduce the clonogenic capacity to 37% (D0) was 350 pCi cell−1. This D0 is substantially higher than those of DNA-associated auger emitters as [125I] or [77Br]-BrdU with a high

![Figure 6](https://example.com/figure6.png) Colony forming units (CFU) counts after incubation with 40 µCi ml−1 and 80 µCi ml−1 of 67Ga and various concentrations of 90Y (1.25–20 µCi ml−1). CFU counts are shown after an incubation period of 3 days a, and after 6 days b. * = P < 0.05.

(Median ± s.e.m.; n = 3).

Table II	Comparative dosimetry of 67Ga and 90Y		
90Y 2.5 µCi ml−1	67Ga (Augers excluded) 40 µCi ml−1	67Ga (Augers included) 40 µCi ml−1	
5 ml culture (3 days)	5.0 (247)	2.9 (153)	20.6 (792)
5 ml culture (6 days)	5.0 (494)	2.9 (306)	20.6 (1584)
Small wells (MTT, 7 days)	0.034 (2.63)	0.0004 (0.04)	6.4 (220)
Large wells (CFU, 7 days)	0.015 (1.12)	0.0002 (0.016)	6.3 (315)

Initial dose rates (cGy h−1) of 40 µCi 67Ga ml−1 and 2.5 µCi 90Y ml−1 during different experimental conditions were calculated according to the MIRD, (Loevinger, 1976). The absorbed dose fractions for the gamma rays and X-rays were estimated by a Monte Carlo simulation (100,000 events). Absorbed dose calculations of 67Ga were calculated with and without Auger electrons. Numbers in parentheses indicate the cumulative dose (cGy), 1 µCi = 0.037 MBq.
LET type of cytotoxicity with a D$_{50}$ of 0.13 pCi cell$^{-1}$ or cyttoplasmic localized auger emitters with a low LET type cytotoxicity as $^{[99m}Tc$-selenomethionine (D$_{50}$ = 3.9 pCi cell$^{-1}$) (Kassiss et al., 1988; 1989). A possible explanation for the extremely broad shoulder could be that the cellular 68Ga concentration, which induces a radiation dose dependent on Auger electrons, underestimates the radiation dose that the cell receives from the 68Ga in the medium (conversion electrons). This is in accordance with our dosimetry results, which indicate that the Auger electrons seem to add relatively little to the cytotoxic effect (see below). On the other hand Hofer et al. needed a high 68Ga dose to induce a minimal cytotoxic effect of 68Ga on mice bearing peritoneal L1210 leukemia cells labelled with $^{[99m}Tc$-H-UDR (Hofer et al., 1975). For a 50% cell-lability 50 KeV cell$^{-1}$ h$^{-1}$ $^{[99m}Tc$-H-UDR was needed, compared with 325 KeV cell$^{-1}$ h$^{-1}$ (10 CGy h$^{-1}$) for $[^3H]$-Thymidine and 2250 KeV cell$^{-1}$ h$^{-1}$ (69 CGy h$^{-1}$) for 68Ga. In our experiments a cytotoxic effect of 68Ga was already observed at an initial dose rate of 20 CGy h$^{-1}$. In another study on 68Ga cytotoxicity, Martin et al. (1988) studied the effects of a 68Ga-DNA-ligand as well as 68Ga-citrate on isolated DNA and observed double-stranded DNA breaks with both substrates, the ligand being more effective than the 68Ga-citrate.

In our attempt to place the data in perspective we comparatively assessed the cytotoxicity and dose effect relationships of 68Ga-citrate and 90Y-colloid. We selected this radionuclide because its well known cytotoxicity in animal and human studies (Vriezen dorpe et al., 1989, 1991; Bloomer et al., 1984) and the comparable half-lives of 68Ga (78 h) and 90Y (64 h). We found that after a 6 days incubation period the cytotoxicity of 40 pCi 68Ga ml$^{-1}$ equaled 2.5 90Y ml$^{-1}$ (64% vs 70% reduction in CFU's) and 80 pCi 68Ga ml$^{-1}$ equaled 5.0 90Y ml$^{-1}$ (97% vs 98% reduction in CFU's). In our experiments an about 16 times higher 68Ga 90Y seems to induce the same cytotoxic effect. Whether a cytotoxic concentration of 68Ga can be reached in vivo should be addressed in a clinical study. A 16 times higher 68Ga dose would be needed as a comparison. For that a therapeutic effect dose 320-640 mCi 68Ga is needed, as 20-40 mCi 90Y was required for a clinical effect in the studies of Vriesendorp et al. However, the high uptake of 68Ga in malignant tissues (0.01%–0.025% of the injected dose per gram) after intravenous administration (Nelson, 1972) compared with radionlabelled antibodies (uptake generally <0.012% ID/g) (Press et al., 1989; Carrasquillo et al., 1986; Bunn et al., 1984), suggests that in vivo possibly less than 16 times the 90Y dose might be needed for the same cytotoxic effect. An additional advantage, as compared with monoclonal antibodies would be that 68Ga-citrate does not induce immunological phenomena which might preclude repeated treatments.

Surprisingly, cells incubated for 6 days with 80 pCi 68Ga ml$^{-1}$ looked quite normal, as contrasted with cells incubated with 90Y, showing necrosis. However, effects on clonogenic capacity were very similar. These observations might indicate either delayed cell death as reported by others (Shipley et al., 1981) or a more pronounced effect of 68Ga on clonogenic cells.

Differences in emission spectrum, only high energy β-radiation (2.27 MeV) for 90Y and gamma-radiation, Auger electrons (0.1–8 keV) and conversion electrons (80–90 keV) for 68Ga make a valid comparison difficult, although the absorbed energy during the experimental conditions could be estimated. Comparative dosimetry for iso-effect doses of 68Ga (40 pCi ml$^{-1}$) and 90Y (2.5 pCi ml$^{-1}$) after 6 days showed a cumulative dose of 90Y of 494 CGy (an initial dose rate of 5.0 CGy h$^{-1}$) and cumulative dose of 68Ga (Auger electrons) of 306 CGy (initial dose rate 2.9 CGy h$^{-1}$). The calculated dose of 68Ga with Augers included was much higher (1584 CGy). These data indicate that the Auger electrons seems to add relatively little to the cytotoxic effect. Most likely, the main cytotoxic effect of 68Ga can be attributed to the 80 keV conversion electrons.

In conclusion our results show a substantial cytotoxic effect of 68Ga on proliferation and clonogenic capacity of human U937 cells. This cytotoxic effect is most probably induced by 80 keV conversion electrons. We think further research is worthwhile to explore the therapeutic potential of this widely available isotope.

This study was supported by a grant of the Dutch Cancer Society (IKA 91-07).

References

BLOOMER, W.D., MC LAUGHLIN, W.H., LAMBRICHT, R.M., AT-CHER, R.W, MRZADEH, S., MADARA, J.L., MILLUS, R.A., ZAL-UTSKY, M.R., ADELSTEIN, S.J. & WOLF, A.P. (1984). 211-As radiolabeled monoclonal antibody. In: MIRD Pamphlet No. 11. Revised. Society of Nuclear Medicine, New York.

COLE, A., MEYN, R.E., CHEN, R., CORRY, P.M. & HITTTELMAN, W. (1980). Mechanisms of cell injury. In: Radiat. Biol. Cancer Res., Meyn, R.E. & Withers, H.R. (eds), pp. 34–56, Raven Press: New York.

GOLDENBERG, D.M., HOROWITZ, J.A., SHARKEY, R.M., HALL, T.C., MURTHY, S., GOLDENBERG, L., LEE, R.E., STEIN, R., SEGEL, J.A., IZON, D.O., BURGER, K., SWAYNE, L., BELISSE, E., HAN-SEN, H.J. & PINSKY, C.M. (1991). Targeting, dosimetry, and radioimmunotherapy of B-cell lymphomas with iodine-131-labeled L2 monoclonal antibody. J. Clin. Oncol., 9, 548–564.

HARRIS, K.G., HARRIS, C.R. & SMITH, T.J. (1975). Radioactivity of intracellular 67Ga-125-I and 3-H nuclear versus cytoplasmic radiation effects in murine L-1210 leukemia. Int. J. Radiat. Biol., 28, 225–241.

KASSISS, A.I., HOWELL, R.W., SASTRY, K.S.R. & ADELSTEIN, S.J. (1988). Positional effects of Auger decays in malignant cells in culture. In DNA Damage by Auger Emitters, Baverstock, K.F. & Chariton, D.E. (eds), pp. 1–13, Taylor & Francis Publ: Philadelphia, USA.

KASSISS, A.I., FAYAT, F., KINSEY, B.M., SASTRY, K.S.R. & ADEL-STEIN, S.J. (1989). Radiotoxicity of an 125-I-labeled DNA intercalator in mammalian cells. Radiat. Res., 118, 283–294.

LOEVENING, R. & BERNAN, M. (1976). A revised scheme for calculating the absorbed dose from biologically distributed radio- nuclides; MIRD pamphlet no 1 (revised). Society of Nuclear Medicine, New York.

MARTIN, R.E., ALLEN, B.J., D'UNIHA, G., GIBBS, R., MURRAY, R. & PARDEE, M. (1988). DNA damage by Auger emitters. In DNA Damage by Auger Emitters, Baverstock, K.F. & Chariton, D.E. (eds) pp. 63–64, Taylor & Francis Publ: Philadelphia, USA.

NELSON, B., HAYES, R.L., EDWARDS, C.L., KINSEY, R.M. & AN-DRUES, G.A. (1972). Distribution of gallium in human tissues, after intravenous administration. J. Nucl. Med., 13, 92–100.

PRESS, O.W., EARY, J.F., BADGER, C.C., MARTIN, P.J., APPELBAUM, F.R., LEVY, R., MILLER, R., BROWN, S., NELP, W.B., KROHN, K.A., FISHER, D., DESANTES, K., PORTER, B., KIDD, P., THOMAS, E.D. & NERNSTEIN, l.D. (1989). Treatment of refractory Non-Hodgkin's Lymphoma with radiolabeled MB-1 (anti-CD37) anti-body. J. Clin. Oncol., 7, 1027–1038.

PRICE, P. & MCMILLAN, T.J. (1990). Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radia- tion. Cancer Res., 50, 1392–1396.
SHIPLEY, W.V., JENNINGS, M., GERWICK, L.E. & LING, C.C. (1981). Prolonged “ultra” low dose rate irradiation: effects on Chinese hamster cell population growth, survival, and radiation sensitivity. Radiat. Res., 85, 150–160.

TWENTYMAN, P.R., FOX, N.E. & REES, K.H. (1989). Chemosensitivity testing of fresh leukemia cells using the MTT colorimetric assay. Br. J. Haematol., 71, 19–24.

VRIESENDORP, H.M., HERPST, J.M., LEICHERN, P.K., KLEIN, J.L. & ORDER, S.E. (1990). Polyclonal 90-Yttrium labelled antiferritin for refractory Hodgkin’s disease. Int. J. Radiat. Oncol. Biol. Phys., 17, 815–821.

VRIESENDORP, H.M., HERPST, J.M., GERMACK, M.A., KLEIN, J.L. LEICHERN, P.K., LOUDENSLAGER, D.W. & ORDER, S.E. (1991). Phase I–II studies of Yttrium-labelled antiferritin treatment for end stage Hodgkin’s disease, including radiation therapy oncology group 87-01. J. Clin. Oncol., 9, 918–928.

WATSON, E.E., CLOUTIER, R.J. & GIBBS, W.D. (1973). Whole-body retention of 67Ga-citrate. J. Nucl. Med., 14, 840–842.