Power-free values, repulsion between points, differing beliefs and the existence of error

Harald Andrés Helfgott

Abstract. Let f be a cubic polynomial. Then there are infinitely many primes p such that $f(p)$ is square-free.

An integer n is said to be square-free if it is not divisible by any squares other than 1. More generally, n is free of kth powers if $d \in \mathbb{Z}, d^k|n \Rightarrow d = \pm 1$; square-freeness is what we get in the case $k = 2$. Being square-free – or at least free of kth powers for some k – is a desirable property: many things are easier to prove for square-free numbers. Thus, given a set of integers, it is good to know whether infinitely many of them – or a positive proportion of them – are square-free.

Let f be a polynomial with integer coefficients. Is there an infinite number of integers n such that $f(n)$ is free of kth powers? There are some polynomials for which the answer is clearly “no”: say $k = 2$ and $f(n) = 4n$ or $f(n) = n^2$. Slightly more subtly, consider $f(n) = n(n + 1)(n + 2)(n + 3) + 4$, which is always divisible by 4. Assume, then, that f has no factors repeated k times and that the following local condition holds:

\[(*) \text{ for every prime } p, f(x) \not\equiv 0 \mod p^k \text{ has at least one solution in } \mathbb{Z}/p^k\mathbb{Z}.\]

(Both conditions are obviously necessary, and both can be checked easily in bounded time.) Then, it is believed, there must be an infinite number of integers n such that $f(n)$ is free of kth powers.

If $\deg(f) \leq k$, it is not hard to prove as much. If $\deg(f) > k + 1$, the problem is too hard, at least when k is small. For $\deg(f) = k + 1$, the statement was proven by Erdős in 1953. In particular, if f is a cubic polynomial without repeated factors and f satisfies the local condition (*), then there are infinitely many integers n such that $f(n)$ is square-free.

Like many proofs in analytic number theory, Erdős’s proof is rather tricky, in that it uses the fact that most integers are not prime in order to avoid certain essential issues.

\[\text{[12]}\]

1If a technique is strong enough to prove that infinitely many numbers in the bag are square-free, it is generally also strong enough to show that a positive proportion are, and even to show which proportion are divisible by certain specific squares and no others. This is certainly the case for all the techniques discussed here. Results of this strength are necessary for applications in which, for example, we need to go from the discriminant of an elliptic curve to its conductor, which is essentially the product of the prime factors of the discriminant. See [12] for some general machinery.
Perhaps because of this, Erdős asked: for f cubic, are there infinitely many primes p such that $f(p)$ is square-free? (More generally, for f of degree $k+1$, are there infinitely many primes p such that $f(p)$ is free of kth powers?) He conjectured that there are, but, as might be expected, most tricks used before break down.

Hooley ([10], [11]) proved Erdős’s conjecture for $k \geq 51$. At about the same time, Nair [13] proved the conjecture for $k \geq 7$, using rather different methods. (He was also the first to treat polynomials with $\deg(f) \geq k + 2$, k large; Heath-Brown ([4]) has attained further progress in this front.) In both approaches, k small is harder than k large; in particular, the case $k \leq 6$ remained open.

In [5], I proved Erdős’s conjecture for all polynomials f with high entropy, in particular, the proof works when $k = 2$, $\deg(f) = 3$ and $\text{Gal}(f) = A_3$. However, most cubic polynomials have Galois group S_3, and their case remained open until now.

I have now managed to prove Erdős’s conjecture for general cubics.

Main Theorem. Let $f \in \mathbb{Z}[x]$ be a cubic polynomial without repeated roots. Assume that, for every prime q, there is a solution $x \in (\mathbb{Z}/q^2\mathbb{Z})^*$ to $f(x) \not\equiv 0 \mod q^2$. Then there are infinitely many primes p such that $f(p)$ is square-free.

In fact, $f(p)$ is square-free for a positive proportion C_f of all primes p — where C_f is exactly what we would expect (an infinite product of local densities).

The tools used, developed and sharpened in the proof are mostly from diophantine geometry and probabilistic number theory; there is a key use of the modularity of elliptic curves. Let us take a quick walk through the proof. (A full account shall appear elsewhere.)

It is not hard to show that

\[
\{|p \leq N : f(p) \text{ is square-free}\| = C_f \frac{N}{\log N} \cdot (1 + o(1))
\]

\[
+ O(|\{x, y \leq N, d \leq N(\log N)^\epsilon : x, y \text{ prime}, dy^2 = f(x)\}|),
\]

where $|S|$ is the number of elements of a set S and C_f is the (non-zero) constant we would expect. This (well-known) initial step goes roughly as follows. Small square factors can be sieved out because we know how many primes there are in arithmetic progressions to small moduli; medium-sized square factors amount to a small error term, since $\sum_{d > m} N/d^2$ is quite small with respect to N as soon as m is moderately large. Large square factors cannot be brushed aside by the same argument as medium-sized square factors simply because there are so many of them: an additional term that is overshadowed by N/d^2 in the medium range comes to the fore here. This is why the contribution of the large square factors figures in $O(\cdot)$ as the error term within $O(\cdot)$. The sole problem from now on, then, is to show that the expression within $O(\cdot)$ is $o(N/\log N)$.

As you can tell from the notation, we intend to see this as a problem of bounding the number of integer points (x, y) on curves $dy^2 = f(x)$, f a fixed cubic polynomial. The issues are two. First, we need very good bounds — almost as good as $O(1)$ for the number of points for each d, or at least for every typical d. Second, even a bound of $O(1)$ would not be enough! There are $N(\log N)^\epsilon$ curves to consider, and a bound of $O(1)$ per curve would amount to a total bound of $O(N(\log N)^\epsilon)$, whereas we need $o(N/\log N)$.

Let us begin with the first issue: we want good bounds on the number of integer points (x, y), $x, y \leq N$, on the curve C_d described by $dy^2 = f(x)$, d fixed. Most techniques for
bounding the number of points on curves are based on some kind of repulsion: if there are bees in a room, and each bee stays a yard or more away from every other bee, there cannot be too many bees in the room. Repulsion may happen in the visible geometry of the curve, viz., its graph, as in [1]; such a perspective, unfortunately, would not be nearly enough in our case. Alternatively, we may look at repulsion in the Mordell-Weil lattice corresponding to the curve.

Rational and integer points on curves. Let C be a curve of genus $g > 0$ over \mathbb{Q} (or a number field K). The curve C can be embedded in its Jacobian J_C. The rational points $J_C(K)$ in the Jacobian form a finitely generated abelian group under the group law of the Jacobian; they are, furthermore, endowed with a natural norm given by the square root of the canonical height. Hence $J_C(K)$ can be naturally embedded in \mathbb{R}^r, where r is the rank of $J_C(K)$. We thus have an (almost) injective map

$$\iota : C(K) \rightarrow L \subset \mathbb{R}^r,$$

where $C(K)$ is the set of rational points on C and L is a lattice in \mathbb{R}^r. What can be said about the image $\iota(C(K))$?

If the genus g is 1, $\iota(C(K))$ is all of L. However, if $g > 1$, then $\iota(C(K))$ looks quite sparse within L. Mumford [14] proved that the points of $\iota(C(K))$ repel each other: for any $P_1, P_2 \in \iota(C(K))$ at about the same distance from the origin O, the angle $\angle P_1OP_2$ separating P_1 from P_2 is at least 60° (for $g = 2$), 70.5° (for $g = 3$), 75.5° (for $g = 4$), \ldots – in general, $\angle P_1OP_2 \geq \arccos \frac{1}{g}$.

Assume now that the points P_1 and P_2 come from integer points on C. Then, as I pointed out in my thesis ([8, Ch. 4] or [7, Lem. 4.16]; see also the earlier work of Silverman [15, 3 Prop. 5], which seems to have originated from the same observation) the angle $\angle P_1OP_2$ is larger than if P_1 and P_2 were merely rational: the angle is at least 60° for $g = 1$, 75.5° for $g = 2$, \ldots – in general, at least $\arccos \frac{1}{g}$. We obtain better bounds as a consequence. (If $g = 1$, we obtain bounds where Mumford’s work does not by itself give any.) The bounds are obtained by means of results on sphere-packing; indeed, the number of points fitting at a certain distance from the origin and at a separation of $\geq 60^\circ$ from each other is precisely the number of solid spheres that can fit around a sphere of the same size in the given dimension.

In the case of the curve $E_d : dy^2 = f(x)$, the bounds we obtain are of the form $c_1^{\omega(d)}$, $c_1 > 1$ fairly small (< 2). This is still not good enough, as, on the average, it amounts to about $(\log N)^{c_2}$, c_2 a small but fixed non-zero constant, for $d \sim N$; what we would like is a bound of the form $(\log N)^c$.

Visible vs. Mordell-Weil geometry. In [9], we remark upon the following phenomenon. Let P_1, P_2 be two integer (or rational) points on $C(K)$ at about the same distance from the origin. Suppose that their coordinates $(x_1, y_1), (x_2, y_2)$ are close to each other, either in the real place (that is, $|x_1 - y_1|$ and $|x_2 - y_2|$ are small) or p-adically (that is, $x_1 \equiv x_2 \mod d$ and $y_1 \equiv y_2 \mod d$ for a large integer d). Then the angle $\angle P_1OP_2$ in the Mordell-Weil lattice is even larger than it would already have to be. In other words: if two points are close to each other in the graph of the curve in \mathbb{R}^2, they must be especially far from each other in the Mordell-Weil lattice. Thus, if we partition the set of all rational points into sets of points close to each other in the graph of the curve, we shall obtain an especially...
good bound on the number of elements of each such set. The main concern is then to keep the number of such sets small.

In the case of the curve $E_d : dy^2 = f(x)$, we have that any two points $(x_1, y_1), (x_2, y_2)$ on E_d induce points $P_1 = (x_1, d^{1/2}y_1)$, $P_2 = (x_2, d^{1/2}y_2)$ on $E : y^2 = f(x)$. The y-coordinates of P_1 and P_2 are already close to each other modulo d (that is, modulo the prime ideals in $\mathbb{Q}(d^{1/2})$ dividing d). The congruence classes mod d into which x_1 and x_2 may fall are rather restricted, as $f(x_1) \equiv 0 \mod d$ and $f(x_2) \equiv 0 \mod d$; the total number of congruence classes x modulo d for which $f(x) \equiv 0 \mod d$ is at most $3^{\omega(d)}$. If P_1 and P_2 have x-coordinates in the same congruence class modulo d, then the angle $\angle P_1 OP_2$ turns out to be at least 90°, or $90^\circ - \epsilon$. Very few points can fit in \mathbb{R}^2 lying at about the same distance from the origin and subtending angles of $90^\circ - \epsilon$ or more from each other.

There is the problem that $3^{\omega(d)}$ is too large – a power of $(\log N)$, on the average, since $\omega(d)$ is usually about $\log \log N$. However, with probability 1, an integer $d \leq N$ has a large divisor $d_0 (> N^{1-\epsilon})$ with few prime divisors $(< \epsilon \log \log N)$. We may thus consider points P_1, P_2 congruent to each other modulo d_0, rather than d, and obtain angles $\angle P_1 OP_2$ of size at least $90^\circ - \epsilon$ while considering at most $3^{\omega(d_0)}$ possible congruence classes. The total bound on the number of integer points (x, y) on $E_d : dy^2 = f(x)$ with $x, y \leq N$ is $O((\log N)^{\epsilon})$ for every typical d, that is, for each $d \leq N$ outside a set of size at most $N/(\log N)^{1000}$.

This is almost as good as $O(1)$. The problem, as said before, is that this is not good enough; since there are N integers $d = 1, 2, \ldots, N$ to consider, the total bound would be $O(N)$. The issue, then, is how to eliminate most d. Probabilistic number theory has just made its first appearance; it shall play a crucial role in what follows.

The perspective of the value and the perspective of the argument. Our task is still to show that

$$ (2) \quad |\{x, y \leq N, d \leq N(\log N)^\epsilon : x, y \text{ prime, } dy^2 = f(x)\}| $$

is at most $o(N/\log N)$. We have a good bound for each d, namely, $O((\log N)^\epsilon)$ for each d outside a small set, and a reasonable bound for each d inside that small set. The idea will now be to consider, in a solution to $dy^2 = f(x)$, what kind of integer $d = f(x)/y^2$ typically is, and whether it looks much like a typical integer d. We will show that, for most x, the integer $d = f(x)/y^2$ must look rather strange, and that thus there can be few such d. Stated otherwise: we shall prove that every prime $x \leq N$ must either lie within a fixed set of size $o(N/\log N)$ or be such that, if $dy^2 = f(x)$ for some prime y and some integer $d \leq N(\log N)^\epsilon$, then d must lie within a fixed set of size $O(N/(\log N)^{1+10\epsilon})$. Combined with our bound for each d, this will yield immediately that (2) is indeed $o(N/\log N)$.

What are, then, the ways in which $f(x)$ will tend to be strange for a random prime x? And which of those ways of strangeness will carry over to d, if $f(x)$ can be written in the form dq^2, where q is a large prime?

As far as the second question is concerned: since q is prime, $f(x)$ and d have almost the same number of prime divisors. Thus, if we can show that the number of prime divisors of $f(x)$ is strange for x random, we will have shown that the number of prime divisors of d is strange for x random.
Now, for \(x \) random, the number of prime divisors \(w(f(x)) \) will be about \(\log \log N \). Thus, \(w(d) \) will also be about \(\log \log N \). Unfortunately, this is typical, not strange, for an integer of the size of \(d \).

Consider, however, primes of different kinds. Let \(K = \mathbb{Q}(\alpha) \), where \(\alpha \) is a root of \(f(x) = 0 \). Then some primes \(p \) will split completely in \(K/\mathbb{Q} \), some primes will not split at all, and some primes may split yet not split completely. We can write \(w_1(n) \), \(w_2(n) \) and \(w_3(n) \) for the number of prime divisors of \(n \) of each kind. Then, as we shall see, \(w_j(f(x)) \) (and thus \(w_3(d) \)) will tend to be strange for \(x \) random.

Suppose first that \(K/\mathbb{Q} \) has Galois group \(A_3 \). Then every prime \(p \) must either split completely or not split at all. If \(p \) does not split at all, then \(f(x) \equiv 0 \mod p \) has no solutions. Hence \(w_2(f(x)) = 0 \), and so \(w_2(d) = 0 \). This is certainly atypical for an integer \(d \leq N \).

(Usually \(w_2(d) \sim \frac{2}{3} \log \log N \).) Now suppose \(p \) splits completely. Then \(f(x) \equiv 0 \mod p \) has three solutions \(\mod p \). Thus, for a random prime \(x \), we shall have \(f(x) \equiv 0 \mod p \) with probability \(3/p \). Hence \(w_2(f(x)) \) will most likely be about \(\sum \text{splits completely} \frac{3}{p} \sim \log \log N \).

Thus \(w_2(d) \sim \log \log N \), whereas an integer \(d \leq N \) usually has \(w_2(d) \sim \frac{1}{2} \log \log N \).

It is not enough, however, to show that \(d \) is strange (i.e., in a set of size \(o(N) \)); we must show that \(d \) is strange enough (i.e., in a set of size \(O(N/(\log N)^{1+\epsilon}) \)). How odd is it for a random integer \(d \leq N \) to have \(w_1(d) \equiv 0 \) and \(w_2(d) \sim \log \log N \)? The number \(w_1(d) \) equals \(\sum \text{does not split} \ X_p \), where \(X_p \) is a random variable taking the value 1 when \(p/d \) and 0 otherwise. Similarly, \(w_2(d) = \sum \text{splits completely} \ X_p \). Now \(X_p \) is 1 with probability \(1/p \) and 0 with probability \(1 - 1/p \). Suppose the variables \(X_p \) to be mutually independent. Then the theory of large deviations (Cramer’s theorem, or, more appropriately, Sanoff’s theorem) offers the upper bound

\[
\text{Prob} \left(\sum_{p \text{ does not split}} X_p = 0 \land \sum_{p \text{ splits completely}} X_p > (1 - \epsilon) \log \log N \right) \ll \frac{1}{(\log N)^{\log 3 - \epsilon'}}.
\]

Now, of course, the variables \(X_p \) are not actually mutually independent; the variables \(X_{p_1}, X_{p_2}, \ldots, X_{p_k} \) can be assumed to be (approximately) mutually independent only when \(p_1 p_2 \cdots p_k < N \). However, the fact that \(X_p \) has only a small probability of being non-zero allows us to use the main technique from Erdős and Kac’s Gaussian paper [2] to show that we may treat the variables \(X_p \), for our purposes, as if they were mutually independent. Thus we do obtain

\[
\text{Prob} \left(w_1(d) = 0 \land w_2(d) > (1 - \epsilon) \log \log N \right) \ll \frac{1}{(\log N)^{\log 3 - \epsilon'}} \sim O(N/(\log N)^{1+\epsilon''}),
\]

as desired.

We are done proving the main theorem when \(\text{Gal}_f = A_3 \). What happens when \(\text{Gal}_f = S_3 \)? While our analysis is in the main still valid, the exponent that we obtain instead of \(\log 3 \) is \(\frac{1}{2} \log 3 \), which is less than 1, and thus insufficient. (In general, for \(d y^k = f(x) \), \(\deg(f) = k + 1 \), the exponent we get may be expressed as an entropy, which will depend on \(\text{Gal}(f) \) alone. Sometimes entropy(\(\text{Gal}(f) \)) > 1, and we are done, and sometimes, as in the case of \(\text{Gal}(f) = S_3 \), the entropy is < 1.)

The reason is that, when \(\text{Gal}_f = S_3 \), half of the primes split in \(K/\mathbb{Q} \). These primes divide \(f(x) \) with exactly the same probability that they would divide a random integer,
and thus they are useless. What is to be done, then? How can one bridge a gap of size $1/(\log N)^{1-\frac{1}{2}\log 3}$?

The existence of error. Modularity. Again: what is a way of strangeness such that, if $f(x)$ is strange and $d = f(x)/q^2$, q a prime, then d must be strange as well? Having too few or too many prime factors of some kind is one way. Is there another one?

We have used the fact that q^2 has only one prime factor; let us now use the fact that q^2 is a square. For any prime modulus p, the integer d will be a square mod p if and only if $f(x)$ is a square mod p. Now, a random integer is as likely to be a square mod p as a non-square mod p. How likely is $f(x)$ to be a square mod p for a random integer x (or a random prime x)?

By the Weil bounds, there are $p+O(\sqrt{p})$ points on the curve $y^2 = f(x)$ mod p. Hence the probability that $f(x)$ will be a square mod p is $\frac{1}{2} + O(p^{-1/2})$. This is not good, as $\frac{1}{2}$ would be the probability if there were nothing amiss to be exploited. Let us show that an error of size about $p^{-1/2}$ is in fact present a positive proportion of the time.

Write the number of points on the curve $y^2 = f(x)$ mod p as $p+1 - a_p$. Then the probability that $f(x)$ will be a square mod p is precisely $\frac{1}{2} - \frac{|a_p|}{2p} + O(1/p)$; we have to give a lower bound, on the average, for the size of $|a_p|/2p$ (or, rather, a_p^2/p^2, since we shall later use a variance bound). Now, the L-function of $E : y^2 = f(x)$ is $\sum a_n n^{-s}$. By the modularity of elliptic curves (proven by Wiles et al.), there is a modular form g associated to L. We may, in turn, define a Rankin-Selberg L-function $L_{g\otimes g}$ associated to g, and use the standard facts that $L_{g\otimes g} = \sum a_n^2 n^{-s}$ and that $L_{g\otimes g}$ has a simple pole at $s = 2$. By some Tauberian work (or proceeding as in the proof of the prime number theorem) we deduce that $\sum_{p \leq z} |a_p|^2/p^2$ is asymptotic to $\log \log z$; in other words, a_p^2 is of size about p on the average.

It is somewhat unpleasant to have to use modularity here, as we need not know the behaviour of L_E (or $L_{g\otimes g}$) inside the critical strip. Still, it is hard to see how to do without modularity or some strong kindred result. Marc Hindry and Mladen Dimitrov have pointed out to me that, if one wants to give a (conditional) statement on kth-power-free values of polynomials of degree $k + 1$, $k > 2$, it may be simpler and more proper to work assuming Tate’s conjecture on $L_{C \times C}$ rather than automorphicity.

Using many small differences. Exponential moments and high moments. Now, how may we use these small differences between the probability of d being a square (for d a random integer) and the probability of d being a square (for $d = f(x)/q^2$, x a random prime)?

Suppose I am throwing a fair coin in the air. A gentle wind blows; it may change directions very often, but becomes gradually milder. I know that the wind has a slight effect on the way the coin lands: if the wind blows from the east, then, I posit, heads are more likely, whereas, if the wind blow from the west, tails are more likely. You, however, will not believe me. How shall I make my point?

Let us assume I can measure the strength and direction of the wind before every coin throw. I shall throw the coin in the air many times, betting on heads or tails according to what I reckon to be more likely, given the wind. If, at the end, I have collected statistically significant winnings, you will have to acknowledge that I am in the right.
Our situation is analogous. Instead of wind, we have \(a_p \); instead of a coin, we have whether or not \(f(x) \) is a square mod \(p \) for a random prime \(x \). (The prime \(x \) stays fixed as \(p \) varies.) If \(f(x) \) (and thus \(d \)) lands on the more likely side of squareness or non-squareness for significantly more than one-half of all primes \(p \), then \(d \) will be sufficiently strange.

We can let \(X_p \) be a random variable taking the value \(\frac{a_p}{p} \) when \(f(x) \) is a square mod \(p \), and the value \(\frac{-a_p}{p} \) when \(f(x) \) is a non-square mod \(p \). Then \(X_p \) is \(\frac{a_p}{p} \) with probability \(\frac{1}{2} \), \(\frac{-a_p}{p} \) with probability \(\frac{1}{2} \). It can be seen easily that the expected value of \(\sum_{p \leq z} X_p \) is \(\sum_{p \leq z} \frac{a_p^2}{p^2} \sim \log \log z \). We may assume pairwise independence and obtain

\[
\text{Var}(\sum_{p \leq z} X_p) = \sum_{p \leq z} \left(\frac{a_p^2}{p^2} - \frac{4}{p^4} \right) \sim \log \log z - O(1) \sim \log \log z.
\]

Thus, Chebyshev gives us that \(\sum_{p \leq z} X_p \) is \((1-o(1)) \log \log z \) a proportion 1 of the time. Now let \(Y_p \) be \(\frac{-a_p}{p} \) when a random integer \(d \leq x \) is a square residue modulo \(p \); let \(Y_p \) be \(\frac{a_p}{p} \) otherwise. What is the probability that \(\sum_{p \leq z} Y_p \) be larger than \((1-o(1)) \log \log z \)?

The probability that \(Y_p \) take either of its two possible values is \(1/2 \). Suppose that the variables \(Y_p \) were mutually independent. Then the expected value \(\mathbb{E}\left(e^{\sum_{p \leq z} Y_p}\right) \) of \(e^{\sum_{p \leq z} Y_p} \) would be the product of the expected values of \(e^{Y_p} \). We can use this as follows. First of all,

\[
\mathbb{P}(\sum_{p \leq z} Y_p > (1-o(1)) \log \log z) \leq \mathbb{P}(e^{\sum_{p \leq z} Y_p} > (\log z)^{1-o(1)}) \leq \frac{\mathbb{E}(e^{\sum_{p \leq z} Y_p})}{(\log z)^{1-o(1)}}.
\]

Now, as we were saying,

\[
\mathbb{E}(e^{\sum_{p \leq z} Y_p}) = \mathbb{E}(\prod_{p \leq z} e^{Y_p}) = \prod_{p \leq z} \mathbb{E}(e^{Y_p}) = \prod_{p \leq z} \left(\frac{1}{2} e^{\frac{a_p}{p}} + \frac{1}{2} e^{-\frac{a_p}{p}} \right)
\]

\[
= \prod_{p \leq z} \left(1 + \frac{1}{2} \frac{a_p^2}{p^2} + \frac{1}{2} \frac{a_p^2}{4! p^4} + \ldots \right) \ll \prod_{p \leq z} e^{\frac{a_p^2}{2 p^2}}
\]

\[
= e^{\sum_{p \leq z} \frac{a_p^2}{p^2}} = e^{(1+o(1)) \log \log z} = (\log z)^{1+o(1)}.
\]

Hence

\[
(3) \quad \mathbb{P}(\sum_{p \leq z} Y_p > (1-o(1)) \log \log z) \ll \frac{1}{(\log z)^{1/2-o(1)}},
\]

which is the bound we desire.

Now, the variables \(Y_p \) are not in fact mutually independent, and, since the probabilities we are dealing with are close to 1/2 rather than to 0, we cannot apply the tricks in Erdős-Kac. A simpler approach will in fact do. Let \(z = N^{\frac{1}{3}\log \log N} \) and \(k = \frac{1}{2} \log \log z \). Then, while the variables \(Y_p \) are not mutually independent, they are more than pairwise independent: any \(2k \) of them are mutually independent (with a small error term). We can thus proceed as in the proof of Chebyshev’s theorem, taking a \((2k) \)th power instead of a square. The bound thus obtained is essentially as good as \((3) \): we obtain that the probability that \(\sum_{p \leq z} Y_p / \sqrt{p} \) be larger than \((1-o(1)) \log \log z \) is \(O(1/(\log z)^{1/2-o(1)}) = O(1/(\log N)^{1/2-o(1)}) \).
We conclude that, if \(d \) is strange in the two ways we have considered – having numbers of prime divisors differing from the norm, and “agreeing with the wind” for considerably more than half of all \(p \)’s – then it lies in a set of cardinality at most

\[
O\left(N \cdot \frac{1}{(\log N)^{1/2} \log 3 + \frac{1}{2} + \epsilon} \right) = O\left(\frac{N}{(\log N)^{1.0493\ldots - \epsilon}} \right).
\]

This is smaller than \(o\left(\frac{N}{\log N} \right) \), which was the goal we set ourselves in the discussion after (2). Thus (2) is indeed at most \(o(N/\log N) \), and we are done proving the main theorem.

References

[1] Bombieri, E., and J. Pila, The number of integral points on arcs and ovals, *Duke Math. J.* **59** (1989), no. 2, 337–357.

[2] Erdős, P., and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, *Amer. J. Math.* **62** (1940), 738–742.

[3] R. Gross and J. Silverman, \(S \)-integer points on elliptic curves, *Pacific J. Math.* **167** (1995), 263–288.

[4] Heath-Brown, R., Counting rational points on algebraic varieties, *C. I. M. E. lecture notes*, to appear.

[5] Helfgott, H. A., Power-free values, large deviations, and integer points on irrational curves, to appear in *J. Théor. Nombres Bordeaux*.

[6] Helfgott, H. A., On the behaviour of root numbers in families of elliptic curves, submitted, [math.NT/0408141](http://arxiv.org/abs/math.NT/0408141).

[7] Helfgott, H. A., On the square-free sieve, *Acta Arith.* **115** (2004) 349–402.

[8] Helfgott, H. A., *Root numbers and the parity problem*, Ph.D. thesis, Princeton Univ., [http://www.arxiv.org/abs/math.NT/0305435](http://arxiv.org/abs/math.NT/0305435).

[9] Helfgott, H. A., and A. Venkatesh, Integral points on elliptic curves and \(3 \)-torsion in class groups, *J. Amer. Math. Soc.* **19** (2006), 527–550.

[10] Hooley, C., On power-free numbers and polynomials. I, *J. reine angew. Math.* **293/294** (1977), 67–85.

[11] Hooley, C., On power-free numbers and polynomials. II, *J. reine angew. Math.* **295** (1977), 1–21.

[12] Helfgott, H. A., On the square-free sieve, *Acta Arith.* **115** (2004) 349–402.

[13] Nair, M., Power-free values of polynomials, II, *Proc. London Math. Soc. (3)* **38** (1979), no. 2, 353–368.

[14] Mumford, D., A remark on Mordell’s conjecture, *Amer. J. Math.* **87** (1965), 1007–1016.

[15] Silverman, J. H., A quantitative version of Siegel’s theorem: integral points on elliptic curves and Catalan curves, *J. Reine Angew. Math.* **378** (1987), 60–100.

H. A. HELFGOTT, MATHEMATICS DEPARTMENT, UNIVERSITY OF BRISTOL, BRISTOL, BS8 1TW, UNITED KINGDOM

E-mail address: h.andres.helfgott@bristol.ac.uk