Photodynamic Therapy Using Endogenous Photosensitization for Gastrointestinal Tumors

John Webber, David Kessel, and David Fromm

Departments of Surgery and Pharmacology, Wayne State University, Detroit, Michigan

(Received June 28, 1996; returned for revision October 14, 1996; accepted November 20, 1996)

Photodynamic therapy (PDT) is a novel approach in the treatment of carcinomas of the gastrointestinal tract. This review defines PDT, discusses means of photosensitization and considers the mechanisms by which PDT causes cell death of the target tissue while at the same time avoid damage to normal tissues. Additional considerations include the time of PDT application, activation of the photosensitizer, effectiveness and toxicity of PDT, potential need for additional modalities of treatment and concludes with application of PDT principals to the early detection of malignancy. Data regarding the long term effectiveness of PDT for digestive tract adenocarcinomas are lacking because this field is still in its infancy.

WHAT IS PHOTODYNAMIC THERAPY?

Photodynamic therapy (PDT)b, a relatively new and potentially important form of adjuvant treatment for cancers of the digestive tract, initially involves the preferential accumulation of a photosensitizing compound by malignant tissues. Suitable photodynamic sensitizers exhibit no spontaneous toxicity unless and until they are excited by light at a wavelength corresponding to an absorbance band of the sensitizer. Excitation leads to cellular destruction, primarily mediated by singlet oxygen [1-8]. This form of molecular oxygen is toxic and results in both direct tumor cell kill as well as lethal effects due to vascular occlusion. A number of reports indicate that PDT is effective in treating malignant tumors in experimental animals. There also are an increasing number of preliminary reports of PDT use for the treatment of human tumors, including carcinoma of the oral cavity, esophagus, stomach, rectum, biliary tract, tracheobronchial tree, lung, skin, breast, brain, bladder, female genital tract, Kaposi’s sarcoma, retroperitoneal sarcomas, mesothelioma and carcinomatosis of the peritoneal cavity [1, 9-24]. Previous treatment of tumors with radiation therapy and/or chemotherapy does not appear to alter responsiveness to PDT. Similarly, application of PDT does not preclude the subsequent use of radiation therapy and/or chemotherapy.

PHOTOSENSITIZATION

There are two approaches to the administration of photosensitizers. One is exogenous and involves administration of the photosensitizer intravenously and relies on selective uptake of the drug by the target tissue, or tumor. The second is to rely on endogenous photosensitization whereby the target tissue converts a “precursor drug” into a photoreactive compound.

aTo whom all correspondence should be addressed: David Fromm, M.D., Department of Surgery, 6C-University Health Center, 4201 St. Antoine, Detroit, MI 48201. Tel.: 313-745-8778; Fax: 313-745-1873; E-mail: dfsurg@aol.com.
bAbbreviations: PDT, photodynamic therapy; ALA, 5-aminolevulinic acid; PpIX, protoporphyrin IX.
Exogenous photosensitization:

The most frequently used exogenous sensitizer in clinical studies of PDT for gastrointestinal tumors is Photofrin, a somewhat purified proprietary preparation of “hematoporphyrin derivative,” a complex mixture of various porphyrin monomers, dimers and polymers derived from mammalian blood. This photosensitizer, which is given intravenously, is efficacious. However, Photofrin can lead to anaphylactic reactions [23] and prolonged photosensitization of normal skin. (“Photofrin” is used in this review to refer both to hematoporphyrin derivative and Photofrin II).

Endogenous photosensitization:

An alternative approach to photosensitization of a cancer is the induction of a chemical porphyria, a novel means whereby PDT is effective as a result of endogenous production of the photosensitizer [25]. This involves the oral administration of 5-aminolevulinic acid (ALA), which is absorbed into the blood stream and converted by cellular enzymes to protoporphyrin IX (PpIX). ALA is a naturally occurring five carbon amino acid [26] and is the first committed intermediate in the heme biosynthetic pathway (which occurs in mitochondria) [27]. This reaction has been observed in cultured cells, whole animals and selected tumors of humans. ALA per se is not a photosensitizer but rather its end product, PpIX, is the photoreactive species.

By normal feedback control, heme inhibits the activity of ALA synthase, the first and rate-limiting enzyme of the biosynthetic pathway, thereby preventing the cell from drowning in an excess production of its own porphyrins. This negative feedback control can be bypassed in certain types of malignant cells exposed to an excess amount of exogenous ALA. The ALA is continuously metabolized by these cells, leading to an over-production of several porphyrins, predominantly PpIX. Excess accumulation of PpIX occurs because of the enzyme make up of certain malignant cells. The latter have a relatively low activity of ferrochelatase [28-32], which catalyzes the insertion of an iron atom into PpIX. This forms heme (which is not photoreactive), thereby inhibiting photodynamic activity. Another factor leading to augmented PpIX synthesis is the increased activity of the rate limiting enzyme porphobilinogen deaminase in various malignant tissues [1, 33-35]. Hepatic synthesis of PpIX from ALA is quite efficient and it is likely that there is subsequent transport of PpIX by the blood stream to peripheral sites. However, isolated cells can synthesize PpIX upon exposure to ALA and PpIX is limited to a subcutaneous injection site of ALA in mice and humans [27, 36].

HOW DOES ACTIVATION OF THE PHOTOSENSITIZER KILL CELLS?

Photosensitizers exhibit a characteristic absorption spectrum. Upon irradiation of cells containing the photosensitizer with a specific wave length of light corresponding to the absorbance maxima of the sensitizer, the electronic configuration of the sensitizer is raised to a higher energy level (excited state). This excess energy can be converted to heat, to fluorescence emission, or via an intersystem crossing to the “triplet” state from which energy can be transferred to oxygen in tissues. This results in the formation of “singlet” molecular oxygen, a highly reactive, short-lived (half life: 10^-6 sec) cytotoxic agent [37, 38]. The latter reacts with amino acids, unsaturated fatty acids and nucleic acids, resulting in cell damage [1]. Other reactive oxygen species can be formed (superoxide, hydrogen peroxide and the hydroxyl radical) [39-41], but PDT effects on tumor tissue appear
to be mediated largely by singlet oxygen [41, 42]. The yield of singlet oxygen depends on the oxygen concentration in the tissues [43]. While cells exposed to ionizing radiation in the absence of oxygen are 2-3 times less sensitive than cells exposed under aerated conditions, isolated cells are completely insensitive to PDT in the absence of oxygen [43]. The nature of cellular changes produced by PDT are also different than X-irradiation [6].

Cellular effects:

The oxidative injury mediated by PDT involves various subcellular targets. PDT increases the expression of stress proteins and heme-oxygenase (a rate limiting enzyme in heme metabolism) as well as the release or increased production of eicosanoids, tumor necrosis factor, interleukins, serotonin and histamine [44-47]. Depending on the photosensitizer used, PDT can affect mitochondria and lysosomes, although lysosomal hydrolases are inactivated by the photochemical treatment before escaping the lysosomal compartment [48]. Photodamage can also be detected at the plasma and endoplasmic reticulum membranes, and can affect DNA, resulting in the rapid initiation of apoptosis [43, 49-55, 56]. Photofrin appears to mediate oxidative stress through protein kinase-mediated signal transduction pathway(s) to activate early response genes [57]. ALA-induced porphyrin formation is more specifically localized to the mitochondria of certain types of normal and malignant cells in laboratory animals, and this includes mitochondria of endothelial cells of tumor tissue [28]. However, various photosensitizers act differently as a result of different patterns of intracellular localization of the sensitizers [43], since singlet oxygen reacts at its sites of origin. The subcellular distribution of sensitizers has been studied mainly in in vitro systems, although it has been proposed that patterns of biodistribution matter little with respect to in vivo effectiveness [44].

Vascular effects:

Eventual vessel occlusion seems to be a general phenomenon associated with PDT using Photofrin [44]. The time frame that a decrease in blood occurs is variable, ranging from within 10 sec to 10 min in experimental tumors [58, 59]. It is not clear if this range is due to characteristics of the specific tumor model and/or technical features related to the application of PDT. Nevertheless, phototoxicity from Photofrin appears to involve the destruction of the tumor vasculature, an effect which appears to be selective, even in regions of tumor where the photosensitizer concentration is similar to that in normal adjacent tissue [43]. Thus, the effect of Photofrin may be mainly an indirect one, derived from the destruction of the tumor vasculature [60]. Vascular destruction itself, without any contribution from direct tumor cell kill, can lead to cures of experimental tumors. Given the importance of oxygen availability on phototoxicity, the rapid formation of hypoxic cells resulting from vascular damage increases the likelihood that some tumor cells will escape direct photodestruction [61, 62]. If a photodynamic agent has primarily vascular effects, there is a theoretical disadvantage of hypoxic, but still viable, cells persisting at the interface of necrotic and surrounding well perfused regions [63].

A proposed advantage of chemically-induced porphyria with ALA is that the phototoxic effect relies primarily on direct cell kill, whereas other photosensitizing agents appear to rely more on vascular effects [64, 65-67]. However, it is becoming apparent that ALA has definite vascular effects but the data are difficult to compare because of the number of confounding technical variables involved in these studies. For example, the vascular effects are related to the duration and intensity of the light source used to activate PpIX derived from ALA [68, 69]. Adding to the controversy are magnetic resonance spectroscopic studies suggesting that direct cellular damage from PDT per se occurs well before the changes observed with tumor hypoxia, which usually occur later.
and are mostly attributable to vascular damage [70]. If this is the case, it suggests that cellular destruction caused by PDT occurs by a dual synergistic mechanism.

On the one hand, distinction between a direct cell killing effect and a vascular effect of PDT may appear to be an academic argument, as long as destruction of the tumor occurs. Hypoxic regions exist in many experimental tumors due to variability in vascularization, yet PDT is still effective [71]. Thus, cell death may not occur immediately from photodynamic effects, but later as a result of a local circulatory effect. On the other hand, the distinction has importance to the technical aspects of PDT. The shift of cells into hypoxia does not necessarily imply that they are protected from further PDT damage. Hypoxia may be reversible, depending on light treatment dose and activating light fractionation schemes that permit re-establishment of blood flow during short intervals (but this may depend on the individual tumor, sensitizer dose, etc) [44]. Thus, reoxygenation permits additional PDT treatment which might be more efficient in destroying remaining viable tumor cells.

HOW CAN PDT AVOID DESTRUCTION OF NORMAL TISSUE?

Since ALA-induced PpIX is not completely specific for malignant tissue, there will always be some PpIX-induced photosensitization of normal tissues. This effect is mainly caused by the relatively slow conversion of PpIX to heme and might place normal tissues at risk for photodestruction. However, such damage can be avoided by relying on bleaching of the photosensitizer. ALA-induced PpIX is rapidly photobleached; that is, PpIX is destroyed by auto-oxidation. Thus, a low concentration of tissue PpIX can be photobleached before the photodynamic threshold for tissue damage occurs. This phenomenon makes it possible to "overdose" the treatment field to get maximum light penetration without causing serious damage to normal tissue. However, malignant cells will only be destroyed if sufficient PpIX accumulates so that there is a loss of viability before photobleaching can reduce the PpIX concentration to a non-toxic level [27, 64, 72, 73].

HOW SOON AFTER ADMINISTRATION OF ALA IS PDT APPLIED?

A very practical issue is knowing when the concentration of PpIX in the target tissue reaches not only a sufficient level for PDT to be effective but also a level substantially greater than the surrounding normal tissue. Our studies of actual tissue concentrations of PpIX after administration of ALA indicate that the time of peak PpIX levels occurring in both normal and malignant tissues can vary by several hours among patients [74]. The importance of this observation is that it may explain why some adenocarcinomas of the gastrointestinal tract appear to be unresponsive to PDT using ALA [8]. Serial measurements of actual PpIX tissue concentrations prior to PDT treatment is impractical because of the involved time for such determinations. However, advantage can be taken of the fact that photosensitizers fluoresce. PpIX fluoresces to a salmon pink color in response to blue light. In humans, it has been shown that more than 96 percent of fluorescing porphyrin after administration of ALA is PpIX [13, 75]. Gross visualization of porphyrin fluorescence does not always correlate with the actual tissue concentrations [76]. This is related to tissue pigmentation, fluorescence quenching and the lack of quantitative sensitivity of the human eye. However, changes in tissue concentrations of PpIX can be quantitated in humans by applying spectrophotometric methodology [77]. The advantage of the latter is that it offers a practical means for determining the most favorable time for starting PDT because relative changes in fluorescent signals correlate with changes in tissue concentrations of PpIX [77]. At the time of surgery, we use a sterile dual fiber optic cable (one fiber for delivery of blue activating light and one fiber for detection of fluorescence) connected to a spectrophotofluorometer.
Our studies with ALA in humans indicate that significantly greater concentrations of PpIX occur in adenocarcinomas of the gastrointestinal tract than in skin, skeletal muscle, intestinal muscle, mucosa and fat [74].

It is not yet known if the ratios between tumor and normal tissue concentrations can be improved in humans with intravenously administered ALA, although experimental studies show that the temporal kinetics of either oral or intravenous administration are similar [75]. Presently, oral intake of ALA by patients is preferable to intravenous administration, because the latter requires buffering to avoid adverse side effects. ALA is also poorly soluble in water and is chemically unstable at pH 7.4. However, there are several experimental ways to increase PpIX synthesis in response to ALA [22, 78], which may ultimately become clinically applicable. Intravenous administration of pure PpIX is also presently impractical because PpIX is only slightly soluble in water at physiological pH [27].

ACTIVATION OF THE PHOTOSENSITIZER

Porphyrrins absorb light at several wavelengths, but the most effective excitation wavelength is in the 405 nm (visible blue light) range. However, 630 nm (visible red light) is most often used for PDT because of its greater penetration in tissues [10, 79, 80]. The light source most often used to activate PpIX is a laser, not only because of its sharply defined wavelength, but also because the light bundle of a laser shows little divergence, making it possible to focus sharply. Specific laser photoactivation of sensitized cells is not one of either photocoagulation or photothermal ablation (vaporization) [64, 81], but rather like a switch to activate PpIX.

The optimal dose of light used to activate a photosensitizer in human cancers is not known and consideration of this issue is complex. Light dose is expressed as the delivered quantity (exposure dose) in J/cm², but the absorbed dose depends on the spectrum of the light source, irradiation geometry, depth in the tissue, light scattering in the tissue, concentration of the photosensitizer in the tissue, hemorrhage within the tumor as well as other factors [82, 83], making the absorbed dose difficult to calculate.

The PDT response is dependent on both the drug concentration and the light dose (conc*J/cm²) [72, 78, 84-86]. A “threshold” PDT dose must be exceeded for necrosis to occur. Since porphyrins are degraded (bleached) by light, a weaker response occurs at low drug concentrations. In order to obtain a PDT response at lower cellular drug concentrations, the light exposure must be increased. If a proper photosensitizer dose is used, then differential uptake by tumor should allow destruction of tumor and protection of normal tissue even at very high light doses because the level of photosensitizer in normal tissue would be below the photodynamic threshold for necrosis [73]. Thus there are at least 3 variables: degradation of the sensitizer (bleaching), differential tissue uptake, and threshold effects.

There is also controversy concerning total light dose and cell kill; some investigators have proposed that cell kill is proportional to the light dose which is independent of the power of the laser [87, 88]. Others suggest that the effect of PDT is inversely related to the strength of the light source [37, 89, 90], but this may be a characteristic of specific tumor types.

IS PDT EFFECTIVE IN DESTROYING DIGESTIVE TRACT TUMORS?

There is no question that proper application of PDT results in destruction of adenocarcinomas of the digestive tract [7, 8, 24, 91]. However, it is only recently that PDT has been systematically applied to these tumors and thus, necessary long term data relating to effectiveness are not yet available. However, there are limits to PDT and the major limiting factor is the depth of tumor kill.
The depth of penetration of 630 nm light in tissue ranges from 0.2 to 2 cm [15, 22, 43, 92, 93]. The mean depth of destruction of rectal and sigmoid adenocarcinomas in patients receiving Photofrin amounts to 0.6 cm with a range of 0.3 to 1.5 cm following intraluminal insertion of an optical fiber 1 mm into the tumor [94]. Among factors that limit light penetration are the presence of blood clot and necrosis within the tumor and absorption of light by the photosensitizer itself (a phenomenon called "self-shielding"). These factors may also limit the effectiveness of an interstitial light delivery system in which the laser light fibers are directly inserted into the tumor.

It appears that the main benefit of PDT at present for gastrointestinal tumors may be fourfold: 1) local control of microscopic deposits remaining after what seems to be a curative resection; 2) removal of relatively small deposits remaining after debulking surgery; 3) primary treatment for small mucosal lesions; or 4) palliative treatment. While PDT is not the stick of dynamite that everyone wishes to have available, it still may have an important, albeit somewhat, limited role. More promising are newer experimental photoreactive agents that are sensitive to longer wavelengths of light (> 660 nm), which will result in deeper tissue penetration. An important aspect of using PDT for palliation is that PDT can be repeated in multiple successive sessions.

TOXICITY OF PDT AND PHOTOSENSITIZERS

The toxicity of PDT is site-specific, being dependent upon the organ being irradiated and the selectivity of the photosensitizer for target tissue over normal tissue. A universal and clinically important adverse effect of PDT is skin photosensitization that leads to sun burns [11]. Most photosensitizing agents are not concentrated _per se_ in the skin, but low concentrations can be found in the skin for several weeks. For example, Photofrin cannot be bleached sufficiently to achieve photoprotection of the skin [95]. Although the mean duration of photosensitization with Photofrin injection is 3 months, true sunburns have been observed as late as 9 months [9, 11]. In contrast, ALA-induced PpIX is almost completely cleared from human plasma by 72 hr of oral administration. An occasional patient has been reported to develop mild cutaneous phototoxicity as late as 48 hr after receiving ALA [91]. However, by keeping patients in subdued light for 48 hr, preventing exposure to photodiode monitors (for example, a pulse oximeter) and filtering operating room lights to prevent nonspecific photoactivation of PpIX, we have not observed any phototoxic reactions after ALA administration.

An initial concern about administration of ALA is that it might mimic a genetic disorder of heme metabolism known as acute intermittent porphyria. This condition is characterized by increased levels of ALA in plasma and cerebrospinal fluid. Clinical manifestations include vomiting, tachycardia, abdominal pain, peripheral neuropathy and, to a lesser extent, central neuropathy [97]. Yet, there is minimal systemic dark toxicity (that is, in the absence of light) of ALA given orally. Except for mild nausea and vomiting, which occurs in almost a quarter of patients after oral intake of ALA, these other manifestations of porphyria have not been reported following ingestion of ALA. Experimental studies show that high ALA concentrations may lead to changes in behavior, cell membrane function as well as neuromuscular and spinal cord transmission. These effects have not been observed in humans. No clinically significant renal, cardiac, hepatic, pulmonary or metabolic adverse drug reactions have been reported in humans to date [11]. However, transient and variable abnormalities of liver function tests occur in about a third of patients given ALA.

If there is poor differential localization of the photosensitizer between malignant and normal tissue, there exists the potential for unwanted tissue damage [91, 77]. This may be more likely with the use of Photofrin than ALA, but there are also more clinical studies
involving use of Photofrin. For example, esophageal strictures occurred in 35 percent of patients who were given hematoporphyrin derivative as the photosensitizer for PDT involving esophageal cancers [91]. We have not to date observed any clinically significant unwanted tissue damage in patients who receive ALA and focal applications of PDT within the peritoneal cavity.

WILL PDT AVOID THE NEED FOR ADDITIONAL CANCER TREATMENT?

Nuclear damage and/or repair is not believed to be a dominant factor in PDT induced cytotoxicity in cells sensitized with Photofrin [43]. However, PDT may cause indirect damage to DNA, which might explain in part why different sensitizers and cell lines behave so differently with respect to induction of mutations [43]. There has been some suggestions that mutagenesis may occur as a result of PDT [44] and incomplete tumor destruction by PDT may lead to clonal emergence of more malignant cells [96]. Spontaneous mutation of tumors may also make them resistant to PDT. A case report of multiple cutaneous metastases from a breast cancer indicated that all but one site were sensitive to PDT using hematoporphyrin derivative [98].

APPLICATION OF PRINCIPALS OF PDT TO TUMOR DETECTION

Another use for chemically-induced porphyria with ALA relates to the detection of malignant tissues by fluorescence. Excitation of a photosensitizer by an incident photon produces re-emission of a fluorescent photon, which can be used to localize the reaction [11]. This might enable detection of metastases not ordinarily evident [10]. There appears to be a correlation between the presence of local tumor and local fluorescence. Success has been reported in examining potential treatment fields exposed to Photofrin using UV light [10, 17, 27]. Gross detection of fluorescence using UV light works with Photofrin and ALA-induced PpIX, but this requires subjective assessment using the eye and the UV spectrum does not include the peak excitation wavelength (410 nm) of PpIX [99]. More sensitive detection of PpIX can be accomplished in patients using spectrophotofluorometric technology using specific excitation wave lengths [56]. Application of this principle may ultimately lead to a relatively simple method for detecting tumor spread and directing site specific, rather than random, biopsies in order to more accurately determine the stage of the tumor.

REFERENCES

1. Wilson, J.H.P., Van Hillegersberg, R., and Van Den Berg, J.W.O., et al. Photodynamic therapy for gastrointestinal tumors. Scand. J. Gastroenterol. 26(Suppl 188):20-25, 1991.
2. Konig, K., Wabnitz, H., Dietel, W. Variation in the fluorescence decay properties of hematoporphyrin derivative during its conversion into photoproducts. J. Photochem. Photobiol. B: Biol 8:103-111, 1990.
3. Weishaupt, K.R., Gomer, C.J., and Dougherty, T.J. Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor. Cancer Res. 36:2326-2329, 1976.
4. Foote, C.S. Mechanisms of photosensitized oxidation. Science 162:963-970, 1968.
5. Dougherty, T.J., Grindey, G.B., Fiel, R., et al. Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J. Natl. Canc. Inst. 55:115-121.
6. Moan, J., Pettersen, E.O., and Christensen, T. The mechanism of photodynamic inactivation of human cells in vitro in the presence of hematoporphyrin. Br. J. Canc. 39:398-407, 1979.
7. Fromm, D., Kessel, D., and Webber, J. Feasibility of photodynamic therapy using endogenous photosensitization for colon cancer. Arch. Surg. 131:667-669, 1996.
8. Regula, J., MacRobert, A.J., Gorchein, A., et al. Photosensitisation and photodynamic therapy of oesophageal, duodenal and colorectal tumours using 5 aminolaevulinic acid induced protoporphyrin IX — a pilot study. Gut 36:67-75, 1995.
9. Kennedy, J.C., Pottier, R.H., and Pross, D.C. Photodynamic therapy with endogenous protoporphyrin IX: Basic principles and present clinical experience. J. Photochem. Photobiol. B:Biol 6:143-148, 1990.
10. Herrera-Ornelas, L., Petrelli, N.J., Mittelman, A., et al. Photodynamic therapy in patients with colorectal cancer. Cancer 57:677-684, 1986.
11. Evrard, S., Aprahamian, M., and Marescaux, J. Intra-abdominal photodynamic therapy: from theory to feasibility. Br. J. Surg. 80:298-303, 1993.
12. Grant, W.E., Hopper, C., MacRobert, A.J., Speight, P.M., and Brown, S.G. Photodynamic therapy of oral cancer: photosensitization with systemic aminolaevulinic acid. Lancet 342:147-148, 1993.
13. DeLaney, T.F., Sindelar, W.F., Tochner, Z., et al. Phase I study of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors. Int. J. Rad. Oncol. Biol. Phys. 25:445-457, 1993.
14. Sindelar, W.F., DeLaney, T.F., Tochner, Z., et al. Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Arch. Surg. 126:318-324, 1991.
15. Edell, E.S. and Cortese, D.A. Photodynamic therapy in the management of early superficial squamous cell carcinoma as an alternative to surgical resection. Chest 102:1319-1322, 1992.
16. Pass, H.I., DeLaney, T.F., Tochner, Z., et al. Intraperitoneal photodynamic therapy: Results of a phase I trial. Ann. Surg. Oncol. 1:28-37, 1994.
17. Nambisan, R.N., Karakousis, C.P., Holyoke, E.D., and Dougherty, T.J. Intraoperative photodynamic therapy for retroperitoneal sarcomas. Cancer 61:1248-1251, 1988.
18. Dougherty, T.J., Kaufman, J.E., Goldfarb, A., et al. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 38:2628-2635, 1978.
19. Benson, R.C., Jr. The use of hematoporphyrin derivative (Hpd) in the localization and treatment of transitional cell carcinoma (TCC) of the bladder. In: Doiron, D.R. and Gomer, C.J., eds. Porphyrin localization and treatment of tumors. New York: Alan R. Liss, 1984; pp. 795-804.
20. Sutedja, T., Kwa, B., van Kamp, H., and van Zandwijk, N. Photodynamic therapy as an alternative treatment for surgery in a patient with lung cancer undergoing bone marrow transplantation. Chest 103:1908-1909, 1993.
21. McCaughan, J.D., Nims, T.A., Guy, J.T., et al. Photodynamic therapy for esophageal tumors. Arch. Surg. 124:74-80, 1989.
22. Schoenfeld, N., Mamet, R., Nordenberg, Y., et al. Protoporphyrin biosynthesis in melanoma B16 cells stimulated by 5-aminolaevulinic acid and chemical inducers: Characterization of photodynamic inactivation. Int. J. Canc. 56:106-112, 1994.
23. Imamura, S., Kusunoki, Y., Takifuji, N., et al. Photodynamic therapy and/or external beam radiation therapy for roentgenologically occult lung cancer. Cancer 73:1608-1614, 1994.
24. Gossner, L., Hahn, E.G., and Ell, C. Oral administration of 5-aminolaevulinic acid for photodynamic therapy in patients with gastrointestinal carcinomas: preliminary results. Gastroenterol. 106(abstract):387, 1994.
25. Bedwell, J., MacRobert, A.J., Phillips, D., and Brown, S.G. Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMH rat colonic tumour model. Br. J. Canc. 65:818-824, 1992.
26. Rebeiz, N., Rebeiz, C.C., Arkins, S., Kelley, K.W., and Rebeiz, C.A. Photodestruction of tumor cells by induction of endogenous accumulation of protoporphyrin IX: enhancement by 1,10-phenanthroline. Photochem. Photobiol. 55:431-435, 1992.
27. Kennedy, J.C. and Pottier, R.H. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J. Photochem. Photobiol. B: Biol 14:275-292, 1992.
28. Peng, O., Moan, J., Warloe, T., Nesland, J.M., and Rimington, C. Distribution and photosensitizing efficiency of porphyrins induced by application of exogenous 5-aminolaevulinic acid in mice bearing mammary carcinoma. Int. J. Canc. 52:433-443, 1992.
29. Van Hillegersberg, R., Van Den Berg, J.W.O., Kort, W.J., et al. Selective accumulation of endogenously produced porphyrins in a liver metastasis model in rats. Gastroenterol. 103:647-551, 1992.
30. El-Sharabasy, M.M.H., El-Waseef, A.M., Hafez, M.M., and Salim, S.A. Porphyrin metabolism in some malignant diseases. Br. J. Canc. 65:409-412, 1992.
31. Daily, H.A., and Smith, A. Differential interaction of porphyrins used in photoradiation therapy with ferrochelatase. Bioch. J. 223:441-445, 1986.
32. Schoenfeld, N., Epstein, O., Lahav, M., et al. The heme biosynthetic pathway in lymphocytes of patients with malignant proliferative disorders. Canc. Lett. 43:43-48, 1991.
33. Leibovici, L., Schoenfeld, N., Yehoshua, H.A., et al. Activity of porphobilinogen deaminase in peripheral blood mononuclear cells of patients with metastatic cancer. Cancer 62:2297-2300, 1988.

34. Lahav, M., Epstein, O., Schoenfeld, N., et al. Increased porphobilinogen deaminase activity in patients with malignant lymphoproliferative disease. JAMA 257:39-42, 1987.

35. Navone, N.M., Polo, C.F., Frisardi, A.L., et al. Heme biosynthesis in human breast cancer--mimetic "in vitro" studies and some heme enzymatic activity levels. Int. J. Biochem. 22:1407-1411, 1990.

36. Sima, A.A.F., Kennedy, J.C., Blakeslee, D., and Robertson, D.M. Experimental porphyrin neuropathy: a preliminary report. Can. J. Neurol. Sci. 8:105-114, 1981.

37. Cincotta, L., Foley, J.W., MacEachern, T., et al. Novel photodynamic effects of a benzoporphyrin derivative on two different murine sarcomas. Can. Res. 54:1249-1258, 1994.

38. Truscott, T.G., McLean, A.J., Phillips, A.M.R., and Foulds, W.S. Detection of haematoporphyrin derivative and hematoporphyrin excited states in cell environments. Can. Lett. 41:31-45, 1980.

39. Vasvari, G., Elzemzam, S., and Gal, D. Physico-chemical modeling of the role of free radicals in photodynamic therapy. II. Interactions of ground state sensitzers with free radicals studied by chemiluminescence spectrometry. Biochem. Biophys. Res. Comm. 197:1536-1542, 1993.

40. Spikes, J.D. and Straight, R. Sensitized photochemical processes in biological systems. Annu. Rev. Phys. Chem. 18:409-436, 1967.

41. Spikes, J.D. Photochemotherapy: molecular and cellular processes involved. Advances Photochemotherapy, Proc. SPIE 997:92-100, 1988.

42. Ortel, B., Tanew, A., and Honigsmann, H. Lethal photosensitization by endogenous porphyrins of PAM cells—modification by desferrioxamine. J. Photochem. Photobiol. B: Biol 17:273-278, 1993.

43. Moan, J., and Berg, K. Photochemotherapy of cancer: Experimental research. Photochem. Photobiol. 55:931-948, 1992.

44. Henderson, B.W. and Dougherty, T.J. How does photodynamic therapy work? Photochem. Photobiol. 55:145-157, 1992.

45. Nseyo, U.O., Whalen, R.K., Duncan, M.R., et al. Urinary cytokines following photodynamic therapy for bladder cancer. A preliminary report. Urology 36:167-171, 1990.

46. Evans, S., Matthews, W., Perry, R., et al. Effect of photodynamic therapy on tumor necrosis factor production by murine macrophages. J. Natl. Canc. Inst. 82:34-39, 1990.

47. Moan, J. and Berg, K. Photochemotherapy of cancer: experimental research. Photochem. Photobiol. 55:931-948, 1992.

48. Berg, K., Prydz, K., and Moan, J. Photochemical treatment with the lysosomally localized dye tetra(4-sulfonatophenyl)porphine results in lysosomal release of the dye but not of β-N-acetyl-D-glucosaminidase activity. Biochim. Biophys. Acta 1158:300-306, 1993.

49. Kessel, D. Sites of photosensitization by derivative of hematoporphyrin. Photochem. Photobiol. 44:489-494, 1986.

50. Agarwal, M.L., Clay, M.E., Harvey, E.J., et al. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res. 51:5993-5996, 1991.

51. Gomez, C.J., Rucker, N., Ferrario, A., and Wong, S. Properties and applications of photodynamic therapy. Radiat. Res. 120:1-18, 1989.

52. Gomez, C.J., Luna, M., Ferrario, A., and Rucker, N. Increased transcription and translation of heme oxygenase in Chinese hamster fibroblasts following photodynamic therapy or Photofrin incubation. Photochem. Photobiol. 53:275-279, 1991.

53. Gomez, C.J., Ferrario, A., Rucker, N., et al. Glucose regulated protein (GRP–78) induction and cellular resistance to oxidative stress mediated by porphyrin photosensitization. Cancer Res. 51:6574-6579, 1991.

54. Penning, L.C., Keirse, M.J.N.C., Van Steveninck, J., and Dubbelman, T.M.A.R. Calcium mediated PGE2 induction reduces haematoporphyrin-derivative-induced cytotoxicity of T24 human bladder transitional carcinoma cells in vitro. Biochem. J. 292:237-240, 1993.

55. Henderson, B.W. and Donovan, J.M. Release of prostaglandin E2 from cells by photodynamic treatment in vitro. Cancer Res. 49:6896-6900, 1989.

56. Webber, J., Luo, Y., Crilly, R., Fromm, D., and Kessel, D. An apoptotic response to photodynamic therapy with endogenous protoporphyrin in vivo. J. Photochem. Photobiol. B: Biol. 35:209-211, 1996.

57. Luna, M.C., Wong, S., and Gomez, C.J. Photodynamic therapy mediated induction of early response genes. Cancer Res. 54:1374-1380, 1994.

58. Weiman, T.J., Mang, T.S., Fingar, V.H., et al. Effect of photodynamic therapy on blood flow in normal and tumor vessels. Surgery 104:512-517, 1988.
59. Selman, S.H., Keck, R.W., Klaunig, J.E., et al. Acute blood flow changes in transplantable FANFT-induced urothelial tumors treated with hematoporphyrin derivative and light. Surg. Forum 34:676-678, 1983.

60. Star, W.M., Martijnissen, H.P.A., van den Berg-Blok, A.E., et al. Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res. 46:2532-2540, 1986.

61. Henderson, B.W. and Fingar, V.H. Oxygen limitation of direct tumor cell kill during photodynamic treatment of a murine tumor model. Photochem. Photobiol. 49:299-304, 1989.

62. van Geel, I.P.J., Oppelaar, H., Oussoren, Y.G., and Stewart, F.A. Changes in perfusion of mouse tumours after photodynamic therapy. Int. J. Canc. 56:224-228, 1994.

63. Thomlinson, R.H. and Gray, L.H. The histological structure of some human lung cancers and the possible implication for radiotherapy. Br. J. Canc. 9:539-549, 1955.

64. Loh, C.S., Bedwell, J., MacRobert, A.J., et al. Photodynamic therapy of normal rat stomach: a comparative study between di-sulfonated aluminium phthalocyanine and 5-aminolaevulinic acid. Br. J. Canc. 66:452-462, 1992.

65. Mattielo, J., Evelhoch, J.L., Brown, E., et al. Effect of photodynamic therapy on RIF-1 tumor metabolism and blood flow examined by 31P and 2H NMR spectroscopy. NMR Biomed. 3:64-70, 1990.

66. West, C.M.L., West, D.C., Kumar, S., and Moore, J.V. A comparison of the sensitivity to photodynamic treatment of endothelial and tumour cells in different proliferative states. Int. J. Radiat. Biol. 58:145-156, 1990.

67. Leunig, M., Goetz, A.E., Gamarra, F., et al. Photodynamic therapy-induced alterations in interstitial fluid pressure, volume and water content of an amelanotic melanoma in the hamster. Br. J. Canc. 69:101-103, 1994.

68. Roberts, D.J.H., Cairnduff, F., Driver, I., et al. Tumour vascular shutdown following photodynamic therapy based on polyhaematoporphyrin or 5-aminolaevulinic acid. Int. J. Oncol. 5:763-768, 1994.

69. Roberts, D.J.H., Cairnduff, F., Driver, I., Dixon, B., and Bown, S.B. Tumour vascular shutdown following photodynamic therapy based on polyhaematoporphyrin or 5-aminolaevulinic acid. Int. J. Oncol. 5:763-768, 1994.

70. Bremner, J.C.M., Bradley, J.K., Stratford, I.J., and Adams, G.E. Magnetic resonance spectroscopic studies on 'real-time' changes in RIF-1 tumour metabolism and blood flow during and after photodynamic therapy. Br. J. Canc. 69:1083-1087, 1994.

71. Moan, J., and Sommer, S. Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in NHIK 3025 cells. Cancer Res. 46:1608-1610, 1985.

72. Barr, H., Tralau, C.J., MacRobert, A.J., et al. Photodynamic therapy in the normal rat colon with phthalocyanine sensitisation. Br. J. Canc. 56:111-118, 1987.

73. Potter, W.R., Mang, T.S., and Dougherty, T.J. The theory of photodynamic therapy dosimetry: consequences of photodestruction of sensitizer. Photochem. Photobiol. 46:97-101, 1987.

74. Webber, J., Kessel, D., and Fromm, D. Unpublished observations.

75. Loh, C.S., MacRobert, A.J., Bedwell, J., et al. Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy. Br. J. Canc. 68:41-51, 1993.

76. Gomer, C.J. and Dougherty, T.J. Determination of $[\text{H}]$- and $[\text{C}]$-hematoporphyrin derivative distribution in malignant and normal tissue. Cancer Res. 39:146-151, 1979.

77. DeLaney, T.F., Sindelar, W.F., Tochner, Z., et al. Phase I study of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors. Int. J. Radiol. Oncol. Biol. Phys. 25:445-457, 1993.

78. Barr, H., Bown, S.G., Krasner, N., and Boulos, P.B. Photodynamic therapy for colorectal disease. Int. J. Colorect. Dis. 4:15-19, 1989.

79. Doiron, D.R., Svaasand, L.O., and Profio, A.E. Light dosimetry in tissue: application to photoradiation therapy. In: Advances in Experimental Medicine and Biology. Kessel, D. and Dougherty, T.J., eds. Plenum Press, New York. 160:63-77, 1983.

80. Kato, H., Kawaguchi, M., Konaka, C., et al. Evaluation of photodynamic therapy in gastric cancer. Lasers in Med. Sci. 1:67-74, 1986.

81. Sliney, D.H. and Trokel, S.L. Medical lasers and their safe use. Springer-Verlag; New York, 1992.

82. Profio, A.E. and Doiron, D.R. Dosimetry considerations in phototherapy. Med. Physics 8:190-196, 1981.

83. Svaasand, L.O. and Ellingsen, R. Optical penetration in human intracranial tumors. Photochem. Photobiol. 41:73-76, 1985.
84. Henderson, B.W. and Finger, V.H. Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse tumor. Cancer Res. 47:3110-3114, 1987.
85. Moan, J. Effect of bleaching of porphyrin sensitzers during photodynamic therapy. Cancer Lett. 33:45-53, 1986.
86. Bown, S.G., Tralau, C.J., Coleridge-Smith, P.D., et al. Photodynamic therapy with porphyrin and phthalocyanine sensitisation in normal rat liver. Br. J. Canc. 54:43-52, 1986.
87. Svaasand, L.O. Thermal and optical dosimetry for photonadiation therapy of malignant tumors. In: Porphyrins in tumor phototherapy. Andreoni, A. and Cubeddu, R., (eds). Plenum Press, New York, pp. 261-279, 1984.
88. Ferrario, A. and Gomer, C.J. Systemic toxicity in mice induced by localized porphyrin photodynamic therapy. Cancer Res. 50:539-543, 1990.
89. Gibson, S.L., Foster, T.H., Feins, R.H., et al. Effects of photodynamic therapy on xenografts of human mesothelioma and rat mammary carcinoma in nude mice. Br. J. Canc. 69:473-481, 1994.
90. Foster, T.H. and Gao, L. Dosimetry in photodynamic therapy: oxygen and the critical importance of capillary density. Radiat. Res. 130:379-383, 1992.
91. Sibille, A., Lambert, R., Souquet, J.-C., et al. Long-term survival after photodynamic therapy for esophageal cancer. Gastroenterol. 108:337-344, 1995.
92. Abulafi, A.M. and Williams, N.S. Photodynamic therapy for cancer: Still awaiting rigorous evaluation. BMJ 304:589-900, 1992.
93. van Gemert, J.C., Berenbaum, M.C., and Gijsbers, G.H.M. Wavelength and light-dose dependence in tumour phototherapy with haematoporphyrin derivative. Br. J. Canc. 52:43-49, 1985.
94. Barr, H., Krasner, N., Boulous, P.B., et al. Photodynamic therapy for colorectal cancer: a quantitative pilot study. Br. J. Surg. 77:93-96, 1990.
95. Roberts, W.G., Smith, K.M., McCullough, J.L., and Berns, M.W. Skin photosensitivity and photodestruction of several photodynamic sensitizers. Photochem. Photobiol. 49:431-438, 1989.
96. Foultier, M.-T., Vonarx-Coisman, V., de Brito, L.X., et al. DNA or cell kinetics flow cytometry analysis of 33 small gastrointestinal cancers treated by photodynamic therapy. Cancer 73:1595-1607, 1994.
97. Stein, J.A., Crul, F.D., Valsamis, M., and Tschudy, D.P. Abnormal iron and water metabolism in acute intermittent porphyria with new morphologic findings. Am. J. Med. 53:784-789, 1972.
98. Kennedy, J. HPD photoradiation therapy for cancer at Kingston and Hamilton. Porphyrin Photosensitization. Plenum Publishing Corp. pp. 53-62, 1983.
99. Goff, B.A., Bachor, R., Kollias, N., and Hasan, T. Effects of photodynamic therapy with topical application of 5-aminolevulinic acid on normal skin of hairless guinea pigs. J. Photochem. Photobiol. B:Biol 15: 239-251, 1992.