Distribution of Quercus species in the Altiplano Potosino-Zacatecano
Distribución de especies del género Quercus en el Altiplano Potosino-Zacatecano

Alejandra Cabrera-Rodríguez; Jorge A. Flores-Cano; Juan F. Martínez-Montoya; Jorge Palacio-Núñez; Genaro Olmos-Oropeza; Margarita Torres-Aquino

1Colegio de Postgraduados, Campus San Luis Potosí, Postgrado en Innovación en Manejo de Recursos Naturales, Iturbide núm. 73, Salinas de Hidalgo, San Luis Potosí, C. P. 78622. México.
2Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, km 14.5 carretera San Luis Potosí-Matehuala, apartado postal 32, Soledad de Graciano Sánchez, S. L. P., C. P. 78321. México.
*Corresponding author: altiplanooeste@gmail.com, tel: (496) 96 30240.

Abstract

The Altiplano Potosino-Zacatecano (Potosino-Zacatecano Highlands) is home to relict oak groves. Species of the genus Quercus are important ecologically, socially and economically. However, information about their richness and distribution is scarce. Therefore, the aim of this study is to determine the richness and distribution of Quercus species in four mountain ranges and two isolated hills of the Altiplano Potosino-Zacatecano. The oak groves were delimited using field-verified cartographic information. From March to July 2014 and from January to April 2015, 85 specimens were collected, identified and compared with collections held by the Universidad Autónoma de San Luis Potosí, the Universidad Nacional Autónoma de México and the Universidad Autónoma de Aguascalientes. Ten Quercus species were recorded. Only Q. tinkhamii, Q. potosina and Q. eduardii had been previously reported for the region, specifying the location. Of the others, two were found in Peñón Blanco, three in Guanamé, two in Sierra la Mojonera, one in Cerro Los Licenciados and one in Sierra de San Miguel. Q. saltillensis is a new record for the study area. Q. jonesii and Q. greggii are located in Cerro Peñón Blanco, Q. eduardii, Q. striatula, Q. pringlei in Sierra de Guanamé and Mesa la Difunta, and Q. grisea in Cerro Los Licenciados and Sierra San Miguel. Quercus saltillensis is a new record in Sierra de Guanamé, Venado, S.L.P.

Keywords: Relict oak groves, species distribution, new record of Quercus, arid and semi-arid regions.

Palabras clave: Encinares relictos, distribución de especies, nuevo registro de encino, regiones áridas y semiáridas.
Distribution of Quercus species...

Introduction

Oaks belong to the genus *Quercus* that groups together 350 to 500 species in the world (Nixon, 1993a). This species is distributed in most temperate forests of the northern hemisphere. In the Americas, oaks are distributed from southern Canada to Colombia (Nixon, 2006). In Mexico there are oak groves throughout the country, except in Quintana Roo, at altitudes ranging from 0 to 3 100 m (Valencia, 2004).

Quercus is one of the most studied genera in mainly tropical deciduous forests (Pompa-García, Sigala, & Jurado, 2017). *Quercus* species are found in temperate and tropical climates, with arboreal growth, forming forest communities. Relict oak populations are also found in arid conditions, along with shrub growth, forming dense thickets (Valencia, 2004; Rodríguez & Romero, 2007; Villarreal, Encina, & Carranza, 2008; Encina-Domínguez, Arévalo-Sierra, Estrada-Castillón, & Mellado-Bosque, 2018). Mexico is the country with the greatest richness and endemism of *Quercus* species (Valencia, 2004; Nixon, 2006) and is therefore considered a center of dispersion. Despite its wide diversity, or as a result of it, there is disagreement about the number of *Quercus* species, with estimates ranging between 135 and 213 (González, 1993; Nixon, 1993b; Zavala-Chávez, 1998; Valencia, 2004).

Oak groves are important because they protect and conserve the soil, they fix atmospheric CO₂ (Almeida et al., 2007; Arizaga, 2009; Pérez, López, García, Cuevas, & González, 2013), provide shelter and food for many faunal species (Arizaga, 2009), are a source of fuel and wood (González, 1993; Rzedowski, 2006; Pérez, López, García, Cuevas-Reyes, & González-Rodríguez, 2013) and maintain biological diversity through their ecological interactions with fungi, insects, vertebrates and plants (Pérez et al., 2013); in addition, oak groves are relevant for ecotourism (Almeida et al., 2007).

The distribution areas of the genus *Quercus* have been transformed for mainly agricultural purposes (Alfonso, Clark, & Mendoza, 2007), compromising their long-term conservation. In addition, sustainable use and management programs are incipient (Arizaga, 2009), perhaps due to the lack of information on their relevance, distribution and condition (Zavala-Chávez, 1998). For the Altiplano Potosino-Zacatecan, the presence of shrub or chaparral oaks is reported, characterized by a height of up to 5 m (Rzedowski, 1961). The relevance and threats of the oak groves of the Altiplano Potosino-Zacatecan are similar to those of other regions; however, research work on their diversity and distribution is scarce and imprecise (Instituto Nacional de Estadística [INEGI], 2014; Sabás, Sosa, & Luna, 2015; Secretaria de Medio Ambiente y Recursos Naturales [SEMARNAT], 2015); therefore, both

Introducción

Los encinos pertenecen al género *Quercus* que agrupa de 350 a 500 especies en el mundo (Nixon, 1993a). Esta especie se distribuye en la mayoría de los bosques templados del hemisferio norte. En el continente Americano, los encinos se distribuyen desde el sur de Canadá hasta Colombia (Nixon, 2006). En México hay encinares en todo el país, excepto en Quintana Roo; en altitudes de 0 a 3 100 m (Valencia, 2004).

Quercus es uno de los géneros más estudiados en selvas bajas, principalmente (Pompa-García, Sigala, & Jurado, 2017). A las especies de *Quercus* se les encuentra en climas templados y tropicales, con crecimiento arbóreo conformando comunidades boscosas; en condiciones áridas también se localizan poblaciones relicto de encino, con crecimiento arbustivo, formando matorrales densos (Valencia, 2004; Rodríguez & Romero, 2007; Villarreal, Encina, & Carranza, 2008; Encina-Domínguez, Arévalo-Sierra, Estrada-Castillón, & Mellado-Bosque, 2018). México es el país con mayor riqueza y endemismo de especies de *Quercus* (Valencia, 2004; Nixon, 2006) por lo que es considerado centro de dispersión. A pesar de su amplia diversidad, o derivado de ella, existe desacuerdo acerca del número de especies de *Quercus*, pues fluctúa entre 135 y 213 (González, 1993; Nixon, 1993b; Zavala-Chávez, 1998; Valencia, 2004).

Los encinares son importantes porque protegen y conservan al suelo, fijan CO₂ atmosférico (Almeida et al., 2007; Arizaga, 2009; Pérez, López, García, Cuevas, & González, 2013), proporcionan refugio y alimento para muchas especies faunísticas (Arizaga, 2009), son fuente de combustible y madera (González, 1993; Rzedowski, 2006; Pérez, López, García, Cuevas-Reyes, & González-Rodríguez, 2013) y mantienen la diversidad biológica por sus interacciones ecológicas con hongos, insectos, vertebrados y plantas (Pérez et al., 2013); además, los encinares son relevantes para el ecoturismo (Almeida et al., 2007).

Las áreas de distribución del género *Quercus* se han estado transformando con fines agropecuarios, principalmente (Alfonso, Clark, & Mendoza, 2007), comprometiendo su conservación a largo plazo. Además, los programas de manejo y aprovechamiento sustentable son incipientes (Arizaga, 2009), quizás debido a la falta de información sobre su relevancia, distribución y condición (Zavala-Chávez, 1998). Para el Altiplano Potosino-Zacatecan se reporta la presencia del encinar arbustivo o chaparral, caracterizados por una altura de hasta 5 m (Rzedowski, 1961). La relevancia y las amenazas de los encinares del Altiplano Potosino-Zacatecan son similares a las de otras regiones; sin embargo, los trabajos de investigación sobre su diversidad y distribución son escasos e imprecisos.
the species that make them up and their distribution are unknown. The objective was to determine the richness and distribution of species of the genus *Quercus* in the Altiplano Potosino-Zacatecano.

Materials and methods

Description of the study area

The study area comprised four mountain ranges (sierras) and two isolated hills within the Altiplano Potosino-Zacatecano (Figure 1). From the state of San Luis Potosí (SLP), we selected the oak groves of Cerro El Peñón Blanco (CPB), Sierra de Guanamé (SG) and Sierra La Mojonera (SM), located in the municipalities of Salinas, Venado and Vanegas, respectively; from the state of Zacatecas (Zac), we selected the oak groves of Sierra de San Miguel (SSM), Mesa La Difunta (MD) and Cerro Los Licenciados (CLL), belonging to the municipalities of Villa González Ortega, Pinos and Ojocaliente, respectively. The region’s climate is semi-dry temperate (BS1kw) and dry temperate (BS0kw(x')) (INEGI, 2010). Average annual precipitation varies from 320 to 446 mm and average annual temperature

![Study areas](image-url)
ranges from 16 to 19 °C (Comisión Nacional del Agua [CONAGUA], 2017). The dominant vegetation types are crasicaule, rosette and microphile scrub, as well as natural grassland (INEGI, 2014).

Delimitation of oak groves

The relict oak groves of the arid zones in the Altiplano Potosino-Zacatecano are located in isolated hills and mountain ranges (Rzedowski, 1961). Considering the above, the hills and mountain ranges with probable presence of oaks were located and delimited based on cartographic information in vectorial format, using ArcGIS 10.3. The study areas were established once the presence of oak groves was confirmed by comparing with the situation in the field. The cartographic information used to delimit the oak groves was: the Rzedowski SLP vegetation map (1961); the vegetation map modified by the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [CONABIO] (1999); the Series V land use and vegetation map (INEGI, 2014); the strategic forestry programs of SLP (SEMARNAT, 2008) and Zacatecas (SEMARNAT, 2013), as well as the state forest and soil inventories of SLP and Zac (Comisión Nacional Forestal [CONAFOR], 2015a, b).

Diversity of oaks

To determine the richness of oaks, the highlands, slopes and canyons with the presence of oaks were sampled (from March to July 2014 and from January to April 2015). The field tours in transects of 1 to 8 km depended on the topography and size of the area. From each possible oak species, we collected leaf, flower and fruit specimens, whenever possible; also, elevation, rock and vegetation data were recorded. A total of 85 specimens were collected; they were later identified with the keys of Zavala-Chávez (2003). In addition, the comparison was made by considering the collections of the Isidro Palacios Herbarium of the Universidad Autónoma de San Luis Potosí (SLPM), the National Herbarium of the Mexico (MEXU-UNAM) and the Herbarium of the Universidad Autónoma de Aguascalientes (HUAA).

Results and discussion

The diversity of oaks (Quercus sp.) in arid zones is due to their broad ecological tolerance (Nixon, 1993a, b). Ten species were recorded in the study areas (Table 1). Of these, Q. tinkhamii Muller., Q. potosina Trel. and Q. eduardii Trel. had only been reported by Rzedowski (1961) and Sabás et al. (2015); the other seven are newly reported for the region; of them, two were found in CPB, three in SG, one in CLL, one in SSM and two in SM; SG had the highest number of species (5), followed by CPB with 4, while in SSM, CLL and MD only two species were recorded in each.
La distribución de *Quercus potosina* y *Quercus eduardii* comprende hábitats heterogéneos, tales como las cadenas montañosas de la zona centro-norte del país (Alfonso, 2004). Estas dos especies fueron las más frecuentes y se localizaron en cuatro (CPB, SSM, MD y CLL) y en tres (CPB, SG y MD) sitios, respectivamente. *Quercus grisea* Liebm. fue registrada en SSM y CLL. *Quercus tinkhamii* y *Q. jonesii* Trel. se presentaron únicamente en S.L.P., CPB y SG. *Quercus greggii* (A. DC.) Trel., a pesar de ser considerada una especie de distribución amplia a mediana en el territorio nacional (Valencia, 2004), fue registrada únicamente en CPB. *Quercus striatula* Trel. se encontró en SG y SM. *Quercus pringlei* Seemen ex Loes. fue registrado en SG, coincidiendo con lo reportado por Rzedowski (1961). *Quercus saltillensis* Trel. se encontró en SG en un gradiente altitudinal de 2 254 a 2 354 m (Cuadro 2). *Quercus microphylla* Trel. fue registrada en SM.

The distribution of *Q. potosina* and *Q. eduardii* comprises heterogeneous habitats, such as the mountain ranges of the country's north-central zone (Alfonso, 2004). These two species were the most frequent and were located in four (CPB, SSM, MD and CLL) and three (CPB, SG and MD) sites, respectively. *Quercus grisea* Liebm. was recorded in SSM and CLL. *Quercus tinkhamii* and *Q. jonesii* Trel. were only found in S.L.P., CPB and SG. *Quercus greggii* (A. DC.) Trel., despite being considered a species of wide to medium distribution in the national territory (Valencia, 2004), was only recorded in CPB. *Quercus striatula* Trel. was found in SG and SM. *Quercus pringlei* Seemen ex Loes. was recorded in SG, which coincides with what Rzedowski (1961) reported. *Quercus saltillensis* Trel. was found in SG in an altitudinal gradient of 2 254 to 2 354 m (Table 2). *Quercus microphylla* Trel. was recorded in SM.

Table 1. Species recorded by site and author(s).

Site / Sitio	Species / Especie	Author(s) / Autor(es)
Cerro el Peñón Blanco, CPB	*Quercus jonesii* Trel.	sr
	Qu. eduardii Trel.	Rzedowski (1961)
	Q. potosina Trel.	Rzedowski (1961); Sabás et al. (2015)
	Q. greggii (A. DC.) Trel.	sr
Sierra de Guanamé, SG	*Q. tinkhamii* Muller.	Rzedowski (1961)
	Q. eduardii Trel.	sr
	Q. striatula Trel.	sr
	Q. pringlei Seemen ex Loes.	sr
	Q. saltillensis Trel.	New record / nuevo registro
Mesa de la Difunta, MD	*Q. eduardii* Trel.	sr
	Q. potosina Trel.	sr
Cerro Los Licenciados, CLL	*Q. grisea* Liebm.	sr
	Q. potosina Trel.	sr
Sierra de San Miguel, SSM	*Q. potosina* Trel.	sr
	Q. grisea Liebm.	sr
Sierra la Mojonera, SM	*Q. striatula* Trel.	sr
	Q. microphylla Trel.	sr

Note: sr = not reported or not mentioned by other authors for the Altiplano Potosino-Zacatecano.
Nota: sr = no reportada o sin mención por otros autores para el Altiplano Potosino-Zacatecano.
Distribution of Quercus species...

Table 2. Habitat characteristics of species of the genus Quercus (oaks).

Species / Especie	Altitude masl / Altitud, msnm *	Vegetation / Vegetación	Rock / Roca	Climate / Clima
Q. potosina	2,246 – 2,746	Pn, VSa/BQ, MC, VSa/MC	Gr, Ar-Cgp, Ig, R	BSₘkw
Q. eduardii	2,256 – 2,741	Pn, VSa/BQ, MC, MDR, MDM	Gr, Ar-Cgp, Cz-Lm, Cz-Lu, R	BSₘkw
Q. grisea	2,290 – 2,369	MC, VSa/MC	Ig, R	BSₘkw
Q. jonesii	2,635 – 2,758	Pn, VSa/BQ, MC	Gr, Ar-Cgp	BSₘkw
Q. tinkhamii	2,192 – 2,357	MDR, MDM, Pn	Cz-Lm, Cz-Lu	BSₘkw
Q. greggii	2,694 – 2,739	Pn, VSa/BQ, MC	Gr, Ar-Cgp	BSₘkw
Q. striatula	2,230 – 2,366	MDR, MDM, Pn, VSa/MDM	Cz-Lm, Cz-Lu, Cz-Lu	BSₘkw
Q. pringlei	2,300 – 2,330	MDR, MDM, Pn	Cz-Lm, Cz-Lu	BSₘkw
Q. saltillensis	2,254 – 2,354	MDR, MDM, Pn	Cz-Lm, Cz-Lu	BSₘkw
Q. microphylla	2,163 – 2,215	MDR, VSa/MDM, MDM	Cz-Lu, Cz-Lu	BSₘkw(x')

*Altitudinal gradient at which sampling and collection were performed.

Note: Pn: natural grassland; VSa/BQ: secondary shrub vegetation/oak forest; MC: crasicaule scrub; VSa/MC: secondary shrub vegetation/crasicaule scrub; MDR: rosette desert shrub; MDM: microphile desert scrub; VSa/MDM: secondary shrub vegetation/microphile desert scrub. Rock type: Gr: Granite; Ar-Cgp: Sandstone-polymictic conglomerate; Ig: Ignimbrite; R: Rhyolite; Cz-Lm: Limestone-lutite; Cz-Lu: Limestone-lutite. Climate: BSₘkw: semi-dry temperate; BSₘkw (x'): dry temperate.

INEGI (2014); INEGI (2010); SGM (2007).
altitudes from 2000 to 2900 masl (Valencia, 2004), in Sierra Catorce (area not included in our study) at altitudes from 2,600 to 3,200 masl (Sabás et al., 2015). *Quercus striatula* has been reported by Valencia (2004) and by Giménez and González (2011) in this region, without specifying where it was located.

Our results on the distribution of *Quercus striatula* coincide with what has been reported: in altitudinal gradients from 2 100 to 3 000 masl in Zacatecas (Valencia, 2004) and from 2 600 to 3 200 masl in SLP (Giménez & González, 2011). Likewise, the distribution results of *Quercus pringlei* coincide with that reported by Rzedowski (1961) in the case of SG. On the other hand, Giménez and González (2011) state that as altitude decreases, *Q. striatula* is usually replaced by *Q. pringlei*. This fact was observed in SG, since *Q. striatula* was found at 2 366 masl and *Q. pringlei* from 2 300 masl; this altitudinal gradient falls within the one indicated by Sabás et al. (2015) (1 259 to 2 900 masl) in the Altiplano Potosino. Information on the distribution of *Q. saltillensis* in San Luis Potosí and Zacatecas was not found in the literature; therefore, its recording is considered as new in San Luis Potosí. *Quercus saltillensis* was located in canyons of the Sierra de Guanamé at altitudinal gradients from 2 254 to 2 354 masl. In these sites, the average annual rainfall is 446 mm (Comisión Nacional del Agua [CONAGUA], 2017). What deserves to be mentioned is that *Q. saltillensis* is a species endemic to Mexico, whose specimens are 2 to 12 m high (Pérez-Mojica & Valencia-A., 2017) and grow as shrubs on hillsides, but in wetter places such as streams and canyons they can be of an arboreal type (Encina-Domínguez & Villarreal-Quintanilla, 2002; Encina-Domínguez, et al., 2018); the latter was observed in the Sierra de Guanamé. *Quercus saltillensis* was found in thin soils with a pH of 7.7; this is consistent with what was reported by Encina-Domínguez et al. (2018), who mentioned that the soils where their specimens grow are 20 to 50 cm deep, with pH 7.2, abundant mulch and littlestoniness. *Quercus saltillensis* was found in rosette and microphyll scrub, associated with *Q. tinkhamii*, *Q. eduardii*, *Q. striatula* and *Q. pringlei*. Other authors Encina-Domínguez and Villarreal-Quintanilla, 2002; Pérez-Mojica and Valencia-A., 2017 found this species in oak forest, pine-oak forest and xerophilous scrub. In the Zapalinañamé mountain range in Coahuila, *Q. saltillensis* is associated with *Quercus laeta* Liebm. (Encina-Domínguez et al., 2018) and in Tamaulipas with *Q. greggii*, Juniperus flaccida Schltd. and Pinus pinceana Gordon & Glend (Pérez-Mojica & Valencia-A, 2017). The results of our research on *Quercus microphylla* are consistent with those of Rzedowski (1961), who stated that *Q. microphylla* is common in the shrub scrub of the Altiplano Potosino, with those of Valencia (2004), who indicates that it is a species of wide distribution at altitudes from 2 000 to 2 500 masl and with those of *Q. jonesii* se localiza en sitios a altitudes de 1 085 a 2 740 msnm (Cuadro 2). *Quercus greggii* se distribuye en los gradientes de altitud reportados por diversos autores; esta especie se distribuye en el Altiplano Potosino, sin especificar el lugar, en altitudes de 2 000 a 2 900 msnm (Valencia, 2004), en Sierra Catorce (área no incluida en nuestro estudio) en altitudes de 2 600 a 3 200 msnm (Giménez & González, 2011) y de 1 980 a 2 891 msnm (Sabás et al., 2015). *Quercus striatula* ha sido reportada por Valencia (2004) y por Giménez y González (2011) en esta región, sin consignar dónde fue localizada.

Nuestros resultados sobre la distribución de *Quercus striatula* coinciden con lo reportado: en gradientes altitudinales de 2 100 a 3 000 msnm en Zacatecas (Valencia, 2004) y de 2 600 a 3 200 msnm en SLP (Giménez & González, 2011). Asimismo, los resultados de distribución de *Quercus pringlei* coinciden con lo reportado por Rzedowski (1961) en el caso de la SG. Por otra parte, Giménez y González (2011) mencionan que a medida que disminuye la altitud, *Q. striatula* suele ser sustituido por *Q. pringlei*. Este hecho se observó en SG, ya que *Q. striatula* se presentó a 2 366 msnm y *Q. pringlei* a partir de 2 300 msnm; este gradiente altitudinal está comprendido dentro del señalado por Sabás et al. (2015) (1 259 a 2 900 msnm) en el Altiplano Potosino. Información sobre la distribución de *Q. saltillensis* en San Luis Potosí y Zacatecas no fue encontrada en la literatura; por lo tanto, su registro se considera como nuevo en San Luis Potosí. *Quercus saltillensis* se localizó en cañadas de la Sierra de Guanamé a gradientes altitudinales de 2 254 a 2 354 msnm. En estos sitios, la precipitación promedio anual es de 446 mm (Comisión Nacional del Agua [CONAGUA], 2017). Lo que merece ser mencionado es que *Q. saltillensis* es una especie endémica de México, cuyos especímenes presentan de 2 a 12 m de altura (Pérez-Mojica & Valencia-A., 2017) y crecen como arbustos en laderas, pero en lugares más húmedos como arroyos y cañones pueden ser de tipo arbóreo (Encina-Domínguez & Villarreal-Quintanilla, 2002; Encina-Domínguez, et al., 2018); esto último fue observado en la Sierra de Guanamé. *Quercus saltillensis* se encontró en suelos delgados con pH de 7.7; ello concuerda con lo reportado por Encina-Domínguez et al. (2018), quienes mencionaron que los suelos donde sus especímenes crecen tienen de 20 a 50 cm de profundidad, pH de 7.2, mantillo abundante y poca pedregosidad. *Quercus saltillensis* se encontró en matorral desértico rosetófilo y micrófilo, asociado a *Q. tinkhamii*, *Q. eduardii*, *Q. striatula* y *Q. pringlei*. Otros autores Encina-Domínguez y Villarreal-Quintanilla, 2002; Pérez-Mojica y Valencia-A., 2017 encontraron a esta especie en bosque de encino, bosque de pinencino, bosque de pino y matorral xerófilo. En la sierra de Zapalinañamé, Coahuila, *Q. saltillensis* se asocia a *Quercus laeta* Liebm. (Encina-Domínguez et al., 2018) y en Tamaulipas se asocia a *Q. greggii*, Juniperus flaccida.
Sabás et al. (2015), who found it at altitudes from 2 000 to 2 900 masl. The presence of Q. potosina, Q. tinkhamii and Q. pringlei in arid and semi-arid conditions can be related to their capacity to adapt to different habitats (Sabás et al., 2015).

Conclusions

A richness of ten species of the genus Quercus was recorded in relict oak groves in the Altiplano Potosino-Zacatecan. Nine species were recorded in San Luis Potosi and four in Zacatecas. For the first time, the study of six of these species was specified within the study area: Q. jonesii and Q. greggii were found in the Cerro Peñón Blanco (Salinas, SLP); Q. eduardii, Q. striatula, Q. pringlei were located in Sierra de Guanamé and Mesa la Difunta (Venado, SLP and Pinos, Zac); Q. grisea was found in Cerro Los Licenciados and Sierra San Miguel (Ojocaliente and Villa González Ortega, Zac). Quercus saltillensis corresponds to a new record in the study area; this species is located in Guanamé, Venado, SLP. Quercus eduardii and Q. potosina are the most distributed species in the oak groves of Altiplano Potosino-Zacatecan.

References / Referencias

Alfonso, C. C. (2004). Ecología, manejo y conservación de Quercus potosina y Q. eduardii en Sierra Fria, Aguascalientes. Tesis Doctoral. Instituto de Ecología. Universidad Nacional Autónoma de México. México. 108 p.

Alfonso, C. C., Clark, T. R., & Mendoza, A. (2007). Demography and management of two clonal oaks: Quercus eduardii and Q. potosina (Fagaceae) in central Mexico. Forest Ecology and Management, 251, 129–141. doi: org/10.1016/j.foreco.2006.11.004

Almeida, L. L., Ramos, A., Espinosa, M., Jujnovsky, J., Nava, M., & Ordoñez, M. (2007). Servicios ecosistémicos en la cuenca del río Magdalena, Distrito Federal, México. Instituto Nacional de Ecología. México.

Arizaga, S. (2009). Manual de la biodiversidad de encinos michoacanos. Instituto Nacional de Ecología. México. 147 p.

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). (1999). Uso de suelo y vegetación modificado por CONABIO. México. Retrieved from http://www.conabio.gob.mx/informacion/metadata/gis/usw731mgw.xml?_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no

Comisión Nacional Forestal (CONAFOR). (2015a). Inventario estatal forestal y de suelos-San Luis Potosí 2014. Secretaría de Medio Ambiente y Recursos Naturales. 189 p. Retrieved from http://www.segam.gob.mx/descargas/IEFYS%20San%20Luis%20Potosí%202014.pdf

Comisión Nacional Forestal (CONAFOR). (2015b). Inventario estatal forestal y de suelos-Zacatecas 2014. Secretaría de Medio Ambiente y Recursos Naturales. 161p Retrieved from https://www.academia.edu/21064373/IEFYS_Zacatecas_2014?auto=download

Comisión Nacional del Agua (CONAGUA). (2017). Red de estaciones climatológicas por estación. Retrieved from http://smn.cna.gob.mx/es/climatologia/informacion-climatologica.

Encina-Domínguez, J. A., & VillarrealQuintanilla, J. Á. (2002). Distribución y aspectos ecológicos del género Quercus (Fagaceae), en el estado de Coahuila, México. Polibotánica, 13:1-23.

Encina-Domínguez, J.A., Arévalo-Sierra, J.R., Estrada-Castillón, E., & Mellado-Bosque, M. (2018). Environmental and soil variables affecting the structure and floristic woody composition of oak forests of northeastern Mexico. Turkish Journal of Agriculture and Forestry, 42(4):262-271. doi:10.3906/tar-1711-31.

Jiménez, A. J., & González, O. C. (2011). Pisos de vegetación...
de la Sierra de Catorce y territorios circundantes (San Luis Potosí, México). Acta Botánica Mexicana. 94, 91–123. Retrieved from http://www.scielo.org.mx/pdf/abm/n94/n94a4.pdf

González, R. (1993). La diversidad de los encinos mexicanos. Revista de la Sociedad Mexicana de Historia Natural, 44, 125–142. Retrieved from http://repositorio.fciencias.unam.mx:8080/jspui/bitstream/11154/143391/1/44VIdiversidadEncinos.pdf

Instituto Nacional de Estadística y Geografía (INEGI). (2010). Anuario Estadístico del Estado de San Luis Potosí. Instituto Nacional de Estadística y Geografía. México. p. 585.

Instituto Nacional de Estadística y Geografía (INEGI). (2014). Conjunto de datos vectoriales de uso del suelo y vegetación escala 1:250 000, Serie V. INEGI. México. Retrieved from http://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/default.aspx

Nixon, K. C. (1993a). Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Annales Des Sciences Forêtières, 50, 25–34. Doi: doi.org/10.1051/forest:19930701

Nixon, K. C. (1993b). The genus Quercus in México. In: T. P. Ramamoorthy, R. Bye, A. Lot, & J. Fa. (Eds.). Biological diversity of Mexico: origins and distribution. (Pp. 447-458). Oxford University Press, Nueva York.

Nixon, K. C. (2006). Ecology and Conservation of Neotropical Montane Oak. Ed. Springer-Verlag Berlin Geidelberg: Germany. pp. 3-15.

Pérez, L. P., López B. F., García O. F., Cuevas-Reyes P., & González-Rodríguez A. (2013). Procesos de regeneración natural en bosques de encinos: factores facilitadores y limitantes. Biológicas, Publicación Especial 1:18–24. Retrieved from enhttps://www.biologicas.umich.mx/index.php/biologicas/article/view/148/pdf

Pérez Mojica, E., & Valencia-A., S. (2017). Estudio preliminar del género Quercus (Fagaceae) en Tamaulipas, México. Acta Botánica Mexicana, 120: 59-111. DOI: http://dx.doi.org/10.21829/abm.120.2017.1264.

Pompa-García, M., Sigala R. J. A., & Jurado E. (2017). Some tree species of ecological importance in Mexico: a documentary review. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(2), 185-219. doi.org/10.5154/r.chsfcfa.2016.05.032.

Rodríguez, R. I. S., & Romero, R. S. (2007). Arquitectura foliar de diez especies de encino (Quercus, Fagaceae) de México. Acta Botánica Mexicana, 81, 9–34. Retrieved from http://www.redalyc.org/pdf/574/57408102.pdf

Rzedowski, J. (1961). La vegetación del estado de San Luis Potosí. Tesis de doctorado. Facultad de Ciencias, Universidad Nacional Autónoma de México. México. D.F. 228 p.

Rzedowski, J. (2006). Vegetación de México. 1ra. Edición digital. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México. 504 p. Retrieved from http://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMx_Cont.pdf

Sabás, L., Sosa, J., & Luna, J. (2015). Diversidad, distribución y caracterización básica del hábitat de los encinos (Quercus: Fagaceae) del Estado de San Luis Potosí. México. Botanical Sciences. 93, 881–897. doi:dx doi.org/10.17129/botsci.205.

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2008). Programa estratégico forestal del estado de San Luis Potosí (PEFE-SLP) 2006-2025. Vol. 1. Comisión Nacional Forestal. México. 204 p. Retrieved from http://www.conafor.gob.mx

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2013). Programa estratégico forestal del estado de Zacatecas 2012-2030. Comisión Nacional Forestal. México. 208 p.

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2015). Programa de manejo del área de protección de flora y fauna Sierra La Mojonera. 164 p. Retrieved from http://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/2015/Sierrala_Mojonera.pdf.

Servicio Geológico Mexicano (SGM). (2007). Carta Geológico-Minera. Retrieved from http://www.sgm.gob.mx/cartas/Cartas_Ed50.jsp.

Valencia, C. S. (2004). Diversidad del género Quercus (Fagaceae) en México. Boletín de la Sociedad Botánica de México. 75, 33-53. Retrieved from http://www.redalyc.org/articulo.oa?id=57707503

Villarreal, J. A., Encina, J. A., & Carranza, M. A. (2008). Los encinos (Quercus: Fagaceae) de Coahuila, México. Journal of the Botanical Research Institute of Texas. 2(2), 1235–1278. Retrieved from http://biostor.org/reference/157739/page/1

Zavala-Chávez, F. (1998). Observaciones sobre la distribución de encinos en México. Polibotánica, 8, 47–64. Retrieved from http://www.redalyc.org/articulo.oa?id=62100805

Zavala-Chávez, F. (2003). Identificación de encinos de México. Segunda edición. División de Ciencias Forestales, Universidad Autónoma Chapingo. Estado de México. 190 p.