Generic stability, regularity, and quasi-minimality

Anand Pillay∗
University of Leeds

Predrag Tanović†
Mathematical Institute SANU, Belgrade

December 6, 2009

Abstract
We study the notions generic stability, regularity, homogeneous pregeometries, quasiminimality, and their mutual relations, in arbitrary first order theories. We prove that “infinite-dimensional homogeneous pregeometries” coincide with generically stable strongly regular types ($p(x), x = x$). We prove that in a theory without the strict order property, regular types are generically stable, and prove analogous results for quasiminimal structures. We prove that the “generic type” of a quasiminimal structure is “locally strongly regular”.

1 Introduction
The first author was motivated partly by hearing Wilkie’s talks on his program for proving Zilber’s conjecture that the complex exponential field is quasiminimal (definable subsets are countable or co-countable), and wondering about the first order (rather than infinitary) consequences of the approach. The second author was partly motivated by his interest in adapting

∗Supported by EPSRC grant EP/F009712/1
†Supported by Ministry of Science and Technology of Serbia
his study of minimal structures (definable subsets are finite or cofinite) and his dichotomy theorems ([5]), to the quasiminimal context.

Zilber’s conjecture (and the approach to it outlined by Wilkie) is closely related to the existence of a canonical pregeometry on the complex exponential field. In fact in section 5 of this paper we discuss to what extent a pregeometry can be recovered just from quasi-minimality, sometimes assuming the presence of a definable group structure. This continues in a sense an earlier study of the general model theory of quasi-minimality by Itai, Tsuboi, and Wakai [2].

A pregeometry is a closure relation on subsets of a not necessarily saturated structure M satisfying usual properties (including exchange). We will also assume “homogeneity” ($tp(b/A)$ is unique for $b \notin \text{cl}(A)$) and “infinite-dimensionality” ($\dim(M)$ is infinite). One of the points of this paper then is that the canonical “generic type” p of the pregeometry is “generically stable” and regular. This includes the statement that on realizations of p, the closure operation is precisely forking in the sense of Shelah. See Theorem 3 of section 4.

Generic stability, the stable-like behavior of a given complete type vis-à-vis forking, was studied in several papers including [4] and [1], but mainly in the context of theories with NIP (i.e. without the independence property). Here we take the opportunity, in section 2, to give appropriate definitions in an arbitrary ambient theory T, as well as discussing generically stable (strongly) regular types.

The notion of a regular type is central in stability theory and classification theory, where the counting of models of superstable theories is related to dimensions of regular types. Here (section 3) we give appropriate generalizations of (strong) regularity for an arbitrary theory T (although it does not agree with the established definitions for simple theories). In section 6 a local version of regularity is given and applied to the analysis of quasiminimal structures (see Corollaries 2 and 3).

The current paper is a revised and expanded version of a preprint “Remarks on generic stability, pregeometries, and quasiminimality” by the first author, which was written and circulated in June 2009. The first author would like to thank Clifton Ealy, Krzysztof Krupinski, and Alex Usvyatsov for various helpful conversations and comments. After seeing the first author’s preliminary results (and talk at a meeting in Lyon in July 2009), Ealy pointed out that the commutativity of invariant-regular groups is problematic.
(see our Question at the end of section 3) and suggested possible directions towards a counterexample. Krupinski independently came up with examples such as Example 3 of the current paper. And after a talk by the first author on the same subject in Bedlewo in August 2009, Usvyatsov pointed out examples such as Example 1 and 2 of the current paper.

We now give our conventions and give a few basic definitions relevant to the paper.

T denotes an arbitrary complete 1-sorted theory in a language L and \bar{M} denotes a saturated (monster) model of T. As a rule a, b, c, \ldots denote elements of \bar{M}, and $\bar{a}, \bar{b}, \bar{c}$ denote finite tuples of elements. (But in some situations a, b, \ldots may denote elements of \bar{M}^{eq}.) A, B, C denote small subsets, and M, M_0, \ldots denote small elementary submodels of \bar{M}. A global type $p(\bar{x}) \in S(\bar{M})$ is said to be A-invariant if p is $\text{Aut}(\bar{M}/A)$-invariant; p is invariant if it is A-invariant for some small A. For A-invariant p we can form a Morley sequence $I = (\bar{a}_i : i < \omega)$ of p over A, by letting $\bar{a}_n \models p|(A, \bar{a}_0, \ldots, \bar{a}_{n-1})$, similarly for any ordinal λ in place of ω. The A-invariance of $p(\bar{x})$ implies that Morley sequences are indiscernible and that $\text{tp}(I/A)$ depends only on $p(\bar{x})$ and A; in particular, $p^{(n)}(\bar{x}_1, \ldots, \bar{x}_n)$ is well defined as a global type of a Morley sequences in p of length n. Note that the $p^{(n)}$’s are all invariant.

We will say that p is symmetric if $p^{(2)}(\bar{x}_1, \bar{x}_2) = p^{(2)}(\bar{x}_2, \bar{x}_1)$, otherwise p is asymmetric. The symmetry of p is equivalent to: every Morley sequence in p over (any small) A is totally indiscernible, in which case all the $p^{(n)}$’s are invariant under permutations of (tuples) of variables.

Recall that (P, cl), where cl is an operation on subsets of P, is a pregeometry (or cl is a pregeometry on P) if for all $A, B \subseteq P$ and $a, b \in P$ the following holds:

- **Monotonicity:** $A \subseteq B$ implies $A \subseteq \text{cl}(A) \subseteq \text{cl}(B)$;
- **Finite character** $\text{cl}(A) = \bigcup\{\text{cl}(A_0) \mid A_0 \subseteq A \text{ finite}\}$;
- **Transitivity** $\text{cl}(A) = \text{cl}(\text{cl}(A))$, and
- **Exchange (symmetry)** $a \in \text{cl}(A \cup \{b\}) \setminus \text{cl}(A)$ implies $b \in \text{cl}(A \cup \{a\})$.

cl is called a closure operator if it satisfies the first three conditions.

\section{Generic stability}

Definition 1. A non-algebraic global type $p(\bar{x}) \in S(\bar{M})$ is generically stable if, for some small A, it is A-invariant and:
if \((\bar{a}_i : i < \omega)\) is a Morley sequence in \(p\) over \(A\) then for any formula \(\phi(\bar{x})\) (with parameters from \(M\)) \(\{i : \models \phi(\bar{a}_i)\}\) is either finite or co-finite.

Remark 1. If \(p\) is generically stable then as a witness-set \(A\) in the definition we can take any small \(A\) such that \(P\) is \(A\)-invariant.

Proposition 1. Let \(p(\bar{x}) \in S(M)\) be generically stable and \(A\)-invariant. Then:

(i) For any formula \(\phi(\bar{x}, \bar{y}) \in L\) there is \(n_\phi\) such that for any Morley sequence \((\bar{a}_i : i < \omega)\) in \(p\) over \(A\), and any \(\bar{b}\):

\[
\phi(\bar{x}, \bar{b}) \in p \iff \bigvee_{w \subseteq \{0, 1, \ldots, 2n_\phi\}, |w| = n_\phi + 1} \bigwedge_{i \in w} \phi(\bar{a}_i, \bar{b}).
\]

(ii) \(p\) is definable over \(A\) and almost finitely satisfiable in \(A\).

(iii) Any Morley sequence of \(p\) over \(A\) is totally indiscernible.

(iv) \(p\) is the unique global nonforking extension of \(p|A\).

Proof. This is a slight elaboration of the proof of Proposition 3.2 from [1].

(i) By compactness, for any \(\phi(\bar{x}, \bar{y}) \in L\) there is \(n_\phi\) such that for any Morley sequence \((\bar{a}_i : i < \omega)\) in \(p\) over \(A\), and any \(\bar{b}\) either at most \(n_\phi\) many \(\bar{a}_i\)’s satisfy \(\phi(\bar{x}, \bar{b})\) or at most \(n_\phi\) many \(\bar{a}_i\)’s satisfy \(\neg \phi(\bar{x}, \bar{b})\).

(ii) By (i) \(p\) is definable (over a Morley sequence), so by \(A\)-invariance \(p\) is definable over \(A\). Let \(M\) be a model containing \(A\), \(\phi(\bar{x}, \bar{c}) \in p\) and let \(I = (\bar{a}_i : i < \omega)\) be a Morley sequence in \(p\) over \(A\) such that \(tp(I/M\bar{c})\) is finitely satisfiable in \(M\). Then, by (i), \(\phi(\bar{x}, \bar{c})\) is satisfied by some \(\bar{a}_i\) hence also by an element of \(M\).

(iii) This follows from (i) exactly as in the proof of the Proposition 3.2 of [1] (where NIP was not used).

(iv) It is clearly enough to prove it for \(B = A\). Let \(q(\bar{x})\) be a global nonforking extension of \(p|A\). We will prove that \(q = p\).

Claim. Suppose \((\bar{a}_0, \ldots, \bar{a}_n, \bar{b})\) are such that \(\bar{a}_0 \models q|A\), \(\bar{a}_{i+1} \models q|(A, \bar{a}_0, \ldots, \bar{a}_i)\) and \(b \models q|(A, \bar{a}_0, \ldots, \bar{a}_n)\). Then \((\bar{a}_0, \ldots, \bar{a}_n, \bar{b})\) is a Morley sequence in \(p\) over \(A\).

Proof. We prove it by induction. Suppose we have chosen \(\bar{a}_0, \ldots, \bar{a}_n\) as in the claim and we know (induction hypothesis) that \((\bar{a}_0, \ldots, \bar{a}_n)\) begins a Morley sequence \(I = (\bar{a}_i : i < \omega)\) in \(p\) over \(A\). Suppose that \(\phi(\bar{a}_0, \ldots, \bar{a}_n, \bar{x}) \in q\). Then we claim that \(\phi(\bar{a}_0, \ldots, \bar{a}_{n-1}, \bar{a}_i, x) \in q\) for all \(i > n\). For otherwise, without
loss of generality \(\neg \phi(\bar{a}_0, ..., \bar{a}_{n-1}, \bar{a}_{n+1}, \bar{x}) \in q \). But then, by indiscernibility of \(\{\bar{a}_i\bar{a}_{i+1} : i = n, n+2, n+4, ... \} \) over \((A, \bar{a}_0, ..., \bar{a}_{n-1}) \), and the nondividing of \(q \) over \(A \), we have that

\[
\{ \phi(\bar{a}_0, ..., \bar{a}_{n-1}, \bar{a}_i, x) \land \neg \phi(\bar{a}_0, ..., \bar{a}_{n-1}, \bar{a}_{i+1}, \bar{x}) : i = n, n+2, n+4, ... \}
\]

is consistent, which contradicts Definition\[\text{[1]}\]. Hence \(\models \phi(\bar{a}_0, ..., \bar{a}_{n-1}, \bar{a}_i, \bar{b}) \) for all \(i > n \). So by part (i), \(\phi(\bar{a}_0, ..., \bar{a}_{n-1}, \bar{x}, \bar{b}) \in p(\bar{x}) \). The inductive assumption gives that \(\text{tp}(\bar{a}_0, ..., \bar{a}_{n-1}, \bar{x}) = \text{tp}(\bar{a}_0, ..., \bar{a}_{n-1}, \bar{b}/A) \), so by \(A \)-invariance of \(p \), \(\phi(\bar{a}_0, ..., \bar{a}_{n-1}, \bar{x}, \bar{a}_n) \in p(\bar{x}) \). Thus \(\models \phi(\bar{a}_0, ..., \bar{a}_{n-1}, \bar{a}_{n+1}, \bar{a}_n) \) and, by total indiscernibility of \(I \) over \(A \) (part (iii)), \(\models \phi(\bar{a}_0, ..., \bar{a}_{n-1}, \bar{a}_n, \bar{a}_{n+1}) \). We have shown that \(q|(A, \bar{a}_0, ..., \bar{a}_n) = p|(A, \bar{a}_0, ..., \bar{a}_n) \), which allows the induction process to continue. The claim is proved.

Now suppose that \(\phi(\bar{x}, \bar{c}) \in q(\bar{x}) \). Let \(\bar{a}_i \) for \(i < \omega \) be such that \(\bar{a}_i \) realizes \(q|(A, \bar{c}, \bar{a}_0, ..., \bar{a}_{i-1}) \) for all \(i \). By the claim \((\bar{a}_i : i < \omega) \) is a Morley sequence of \(p \) over \(A \). But \(\phi(\bar{a}_i, \bar{c}) \) for all \(i \), hence by the proof of (i), \(\phi(\bar{x}, \bar{c}) \in p \). So \(q = p \).

Let us restate the notion of generic stability for groups from \[\text{[1]}\] in the context of connected groups. Recall that a definable (or even type-definable) group \(G \) is connected if it has no relatively definable subgroup of finite index.

A type \(p(x) \in S_G(M) \) is left \(G \)-invariant iff for all \(g \in G \):

\[
(g \cdot p)(x) = \text{def} \{ \phi(g^{-1} \cdot x) : \phi(x) \in p(x) \} = p(x);
\]

likewise for right \(G \)-invariant.

Definition 2. Let \(G \) be a definable (or even type-definable) connected group in \(M \). \(G \) is generically stable if there is a global complete 1-type \(p(x) \) extending \('x \in G' \) such that \(p \) is generically stable and left \(G \)-invariant.

As in the NIP context, we show that a generically stable left invariant type is also right invariant and is unique such (and we will call it the generic type):

Lemma 1. Suppose that \(G \) is generically stable, witnessed by \(p(x) \). Then \(p(x) \) is the unique left-invariant and also the unique right-invariant type.

Proof. First we prove that \(p \) is right invariant. Let \((a, b) \) be a Morley sequence in \(p \) over (any small) \(A \). By left invariance \(g = a^{-1} \cdot b \models p|A \). By total indiscernibility we have \(\text{tp}(a, b) = \text{tp}(b, a) \), so \(g^{-1} \cdot b^{-1} \cdot a \models p|A \). This proves that \(p = p^{-1} \). Now, for any \(g \in G \) we have
\[p = g^{-1} \cdot p = p^{-1} = (g^{-1} \cdot p)^{-1} = p^{-1} \cdot g = p \cdot g, \]

so \(p \) is also right-invariant.

For the uniqueness, suppose that \(q \) is a left invariant global type and we prove that \(p = q \). Let \(\phi(x) \in q \) be over \(A \), let \(I = (a_i : i \in \omega) \) be a Morley sequence in \(p \) over \(A \), and let \(b \models q(A, I) \). Then, by left invariance of \(q \), for all \(i \in \omega \) we have \(\models \phi(a_i \cdot b) \). By Proposition 1(i) we get \(\phi(x \cdot b) \in p(x) \) and, by right invariance, \(\phi(x) \in p(x) \). Thus \(p = q \).

\(\square \)

3 Global regularity

For stable \(T \), a stationary type \(p(x) \in S(A) \) is said to be regular if for any \(B \supseteq A \), and \(b \) realizing a forking extension of \(p \) over \(B \), \(p|B \) (the unique nonforking extension of \(p \) over \(B \)) has a unique complete extension over \(B, b \).

Appropriate versions of regularity (where we do not have stationarity) have been given for simple theories for example. Here we give somewhat different versions for global “invariant” types in arbitrary theories.

Definition 3. Let \(p(\bar{x}) \) be a global non-algebraic type.

(i) \(p(\bar{x}) \) is said to be **invariant-regular** if, for some small \(A \), it is \(A \)-invariant and for any \(B \supseteq A \) and \(\bar{a} \models p|A \): either \(\bar{a} \models p|B \) or \(p|B \vdash p|B \bar{a} \).

(ii) Suppose \(\phi(\bar{x}) \in p \). We say that \((p(\bar{x}), \phi(\bar{x})) \) is **invariant-strongly regular** if, for some small \(A \), it is \(A \)-invariant and for all \(B \supseteq A \) and \(\bar{a} \) satisfying \(\phi(\bar{x}) \), either \(\bar{a} \models p|B \) or \(p|B \vdash p|B \bar{a} \).

(iii) Likewise we have the notions **definable -(strongly) regular** and **generically stable - (strongly) regular**.

Remark 2. If \(p \) is invariant-regular then as a witness-set \(A \) in the definition we can take any small \(A \) such that \(p \) is \(A \)-invariant. Likewise for strongly regular types.

Definition 4. Let \(N \) be a submodel of \(\bar{M} \) (possibly \(N = \bar{M} \)), and let \(p(x) \in S_1(N) \). The operator \(\text{cl}_p \) is defined on (all) subsets of \(N \) by:

\[\text{cl}_p(A) = \{ a \in N \mid a \not\models p|A \} \]

Remark 3. (i) Let \(p \in S_1(\bar{M}) \) be \(\emptyset \)-invariant and \(\phi(x) \in p_0(x) = p(x)|\emptyset \). Then regularity of \(p \) can be expressed in terms of \(\text{cl}_p \):

- \((p(x), x = x)\) is invariant-strongly regular iff \(p|A \vdash p|\text{cl}_p(A) \) for any small \(A \).
- \((p(x), \phi(x))\) is invariant-strongly regular iff \(p|A \vdash p|A \cup (\text{cl}_p(A) \cap \phi(\bar{M}))\)
 for any small \(A\).

- \(p\) is invariant-regular iff \(p|A \vdash p|A \cup (\text{cl}_p(A) \cap p_0(\bar{M}))\)
 for any small \(A\). If we consider \(\text{cl}_p\) only as an operation on subsets of \(p_0(\bar{M})\) we have that \(p\)
 is invariant-regular just if \(p|A \vdash p|\text{cl}_p(A)\) for all \(A \subset p_0(\bar{M})\).

(ii) \(\text{cl}_p\) satisfies the monotonicity and has finite character, but in general it
 is not a closure operator. \(\text{cl}_p(\text{cl}_p(\emptyset)) = \bar{M}\) can easily happen with \(RM(p) = 2\)
 (and \(T\) is \(\omega\)-stable).

Lemma 2. Suppose \(p \in S_1(\bar{M})\) is \(\emptyset\)-invariant and let \(p_0 = p|\emptyset\).

(i) If \(p\) is invariant-regular then:

- (the restriction of) \(\text{cl}_p\) is a closure operator on \(p_0(\bar{M})\).
- \(\text{cl}_p\) is a pregeometry operator on \(p_0(\bar{M})\) iff every Morley sequence in \(p\)
 over \(\emptyset\) is totally indiscernible.

(ii) \((p(x), x = x)\) is strongly regular iff \(\text{cl}_p\) is a closure operator on \(\bar{M}\).

(iii) Suppose that \((p(x), x = x)\) is strongly regular. Then \(\text{cl}_p\) is a pre-
 geometry operator on \(\bar{M}\) iff every Morley sequence in \(p\) over \(\emptyset\) is totally
 indiscernible.

Proof. (i) Suppose that \(p\) is invariant-regular and consider \(\text{cl}_p\) only as an
 operation on subsets of \(p_0(\bar{M})\). Let \(A \subset p_0(\bar{M})\) and let \(a \models p_0\). Then:

\[
a \notin \text{cl}_p(A) \iff a \models p|A \iff a \models p|\text{cl}_p(A) \iff a \notin \text{cl}_p(\text{cl}_p(A));
\]

The first and the last equivalence follow from the definition of \(\text{cl}_p\), and the
middle one is by Remark 3(i). Thus \(\text{cl}_p(A) = \text{cl}_p(\text{cl}_p(A))\). The other clause
is proved as in (iii) below.

(ii) As in (i), for any \(A \subset \bar{M}\) we have:

\[
a \notin \text{cl}_p(A) \iff a \models p|A \iff a \models p|\text{cl}_p(A) \iff a \notin \text{cl}_p(\text{cl}_p(A));
\]
and \(\text{cl}_p\) is a closure operator on \(\bar{M}\).

(iii) Suppose that every Morley sequence in \(p\) over \(\emptyset\) is symmetric. To
 show that \(\text{cl}_p\) is a pregeometry operator, by part (ii), it suffices to verify
 the exchange property over finite \(A \subset \bar{M}\). Since, by (ii), \(\text{cl}_p\) is a closure
 operator on \(\bar{M}\) there is a Morley sequence in \(p\) (over \(\emptyset\)) \((a_1, ..., a_n) \in A^n\)
 such that \(\text{cl}_p(A) = \text{cl}_p(a_1, ..., a_n)\). Now, let \(a \models p|A\) and let \(b \in \bar{M}\).
 Note that \((a_1, ..., a_n, a)\) is a Morley sequence and that \(\text{cl}_p(aA) = \text{cl}_p(a_1, ..., a_n, a)\).
 We have:
\(b \notin \text{cl}_p(aA) \) iff \(b \notin \text{cl}_p(a_1,\ldots,a_n,a) \) iff \((a_1,\ldots,a_n,a,b)\) is a Morley sequence iff \((a_1,\ldots,a_n,b,a)\) is a Morley sequence iff \(a \notin \text{cl}_p(\bar{A}b)\).

The exchange follows. The other direction is similar. \(\square\)

Theorem 1. Suppose that \(p(x) \in S_1(\bar{M})\) is \(\emptyset\)-invariant and regular. Then exactly one of the following cases holds:

1. \(p\) is symmetric, in which case \(\text{cl}_p\) is a pregeometry operator on \((p|\emptyset)(\bar{M})\), and if \((p(x),\phi(x))\) is strongly regular then \(\text{cl}_p\) is a pregeometry operator on \(\phi(\bar{M})\).

2. \(p\) is asymmetric, in which case there exists a finite \(A\) and a \(A\)-definable partial order \(\leq\) such that every Morley sequence in \(p\) over \(A\) is strictly increasing.

Proof. If \(p\) is symmetric then every Morley sequence in \(p\) over \(\emptyset\) is totally indiscernible and (1) follows from Lemma 2(i). So suppose that \(p\) is asymmetric. Then there exists an asymmetric Morley sequence in \(p\) over some finite \(A'\), and let \((c_1,c_2,\ldots,c_n,a,b)\) be the shortest possible and let \(A = A'c\).

By \(\emptyset\)-invariance we have \(\text{tp}(a,b/A) \neq \text{tp}(b,a/A)\). Then \((a,b)\) is an asymmetric Morley sequence over \(A\) so let \(\phi(x,y) \in \text{tp}(a,b/A)\) be asymmetric: \(\models \phi(x,y) \rightarrow \neg \phi(y,x)\). Then from \(a \in \text{cl}_p(bA)\) and \(b \notin \text{cl}_p(aA)\) it follows that \(\phi(a,x)\) is large while \(\phi(x,b)\) is small. By invariance, \(\phi(x,a)\) is small, too. We claim that

\[
(p|\bar{A})(t) \cup \{\phi(t,a)\} \cup \{\neg \phi(t,b)\}
\]

is inconsistent. Otherwise, there is \(d\) realizing \(p|\bar{A}\) such that \(\models \phi(d,a) \land \neg \phi(d,b)\). Then \(d\) does not realize \(p|(\bar{A},a)\) (witnessed by \(\phi(x,a)\)) so, by regularity, \(p|(A,a) \vdash p|(A,a,d)\) and thus \(b \models p|(A,a,d)\). In particular \(b \models p|(A,d)\) and since, by invariance, \(\phi(d,x)\) is large we conclude \(\models \phi(d,b)\). A contradiction.

From the claim, by compactness, we find \(\theta(t) \in p|\bar{A}\) such that

\(\models (\forall t)(\phi(t,a) \land \theta(t) \rightarrow \phi(t,b))\).

Let \(x \preceq y\) be \((\forall t)(\phi(t,x) \land \theta(t) \rightarrow \phi(t,y))\). Clearly, \(\preceq\) defines a quasi order and \(a \preceq b\). Also:

\(\models \phi(a,b) \land \theta(a) \land \neg \phi(a,a)\);
The first conjunct follows by our choice of \(\phi \), the second from \(a \models p|A \), and the third from the asymmetry of \(\phi \). Altogether they imply \(b \not\geq a \). Thus if \(x < y \) is \(x \leq y \land y \not\geq x \) we have \(a < b \).

The next examples concern issues of whether symmetric regular types are definable or even generically stable. But we first give a case there this is true (although it depends formally on Theorem 3 of the next section).

Corollary 1. Suppose that \((p(x), x = x) \) is invariant-strongly regular and symmetric. Then \(p(x) \) is generically stable.

Proof. If \((p(x), x = x) \) is invariant-strongly regular then, by Theorem \(\pi(1) \) \(cl_p \) is a pregeometry operator on \(\bar{M} \), and then \(p(x) \) is generically stable by Theorem \(3(ii) \).

Example 1. A symmetric, definable - strongly regular type which is not generically stable.

Let \(L = \{U, V, E\} \) where \(U, V \) are unary and \(E \) is a binary predicate. Consider the bipartite graph \((M, U^M, V^M, E^M) \) where \(U^M = \omega \), \(V^M \) is the set of all finite subsets of \(\omega \), \(M = U^M \cup V^M \), and \(E^M = \{(u, v) : u \in U^M, v \in V^M, u \not\leq v\} \). Let \(A \subset M \) be finite. Then:

If \((c_1, \ldots, c_n), (d_1, \ldots, d_n) \in (U^M)^n \) have the same quantifier-free type over \(A \) then \(tp(c_1, \ldots, c_n/A) = tp(d_1, \ldots, d_n/A) \),

since the involution of \(\omega \) mapping \(c_i \)'s to \(d_i \)'s respectively, and fixing all the other elements of \(\omega \) is an \(A \)-automorphism of \(M \). Note that this is expressible by a set of first-order sentences, so is true in the monster.

Further, if \(e_1, \ldots, e_n \in U^M \) are distinct and have the same type over \(A \) then, since every permutation of \(\omega \) which permutes \(\{e_1, \ldots, e_n\} \) and fixes all the other elements of \(\omega \) is an \(A \)-automorphism of \(M \), \((e_1, \ldots, e_n) \) is totally indiscernible over \(A \). This is also expressible by a set of first-order sentences.

Let \(p(x) \in S_1(M) \) be the type of a “new” element of \(U \) which does not belong to any element of \(V^M \). Then, by the above, \(p \) is definable, its global heir \(\bar{p} \) is symmetric, and \((\bar{p}(x), U(x)) \) is strongly regular.

Example 2. A symmetric invariant - strongly regular type which is not definable.

Consider the bipartite graph \((M, U^M, V^M, E^M) \) where \(U^M = \omega \), \(V^M \) consists of all finite and co-finite subsets of \(\omega \), \(M = U^M \cup V^M \), and \(E^M \) is \(\in \).
Let \bar{M} be the monster and let $p(x) \in S_1(\bar{M})$ be the type of a new element of $U^{\bar{M}}$, which belongs to all co-finite members of $V^{\bar{M}}$ (and no others). Arguing as in the previous example $(p(x), U(x))$ is strongly regular and symmetric. Since 'being a co-finite subsets of $U^{\bar{M}}$' is not definable, p is not definable.

Definition 5. Let G be a definable (or even type-definable) group in \bar{M}. G is called **invariant-regular group** if for some global type $p(x) \in S_G(\bar{M})$, $(p(x), "x \in G")$ is invariant-strongly regular.

We will see in Example 3 that asymmetric invariant-regular groups, and even fields, exist.

Theorem 2. Suppose that G is a definable, invariant-regular group, witnessed by $p(x) \in S_G(\bar{M})$. Then:

(i) $p(x)$ is both left and right translation invariant (and in fact invariant under definable bijections).

(ii) A formula $\phi(x)$ is in $p(x)$ iff two left (right) translates of $\phi(x)$ cover G iff finitely many left (right) translates of $\phi(x)$ cover G. (Hence $p(x)$ is the unique generic type of G.)

(iii) $p(x)$ is definable over \emptyset; in particular, G is a definable-regular group.

(iv) $G = G^0$ (i.e. G is connected).

Proof. (i) Suppose that $f : G \rightarrow G$ is a B-definable bijection and $a \models p|B$. Since $p|B \models p|(B, f(a))$ is not possible, by strong regularity, we get $f(a) \models p|B$. Thus p is invariant under f.

(ii) Suppose that $D \subseteq G$ is defined by $\phi(x) \in p(x)$ which is over A. Let $g \models p|A$ and we show $G = D \cup g \cdot D$. If $b \in G \setminus D$ then b does not realize $p|A$ so, by strong regularity, $g \models p|(A, b)$. By (i) $g^{-1} \models p|(A, b)$, thus $g^{-1} \in D \cdot b^{-1}$ and $b \in g \cdot D$. This proves $G = D \cup g \cdot D$.

For the other direction, if finitely many translates of $\psi(x)$ cover G then at least one of them belongs to $p(x)$ and, by (i), $\psi(x) \in p(x)$.

(iii) and (iv) follow immediately from (ii).

Question. Is every regular-invariant group commutative?
4 Homogeneous pregeometries

If \((M, \text{cl})\) is a pregeometry then, as usual, we obtain notions of independence and dimension: for \(A, B \subseteq M\) we say that \(A\) is independent over \(B\) if \(a \notin \text{cl}(A \setminus \{a\} \cup B)\) for all \(a \in A\). Given \(A\) and \(B\), all subsets of \(A\) which are independent over \(B\) and maximal such, have the same cardinality, called \(\text{dim}(A/B)\). \((M, \text{cl})\) is infinite-dimensional if \(\text{dim}(M/\emptyset) \geq \aleph_0\).

Remark 4. (i) If \(\bar{c}\) is a tuple of length \(n\) then \(\text{dim}(\bar{c}/B) \leq n\) for any \(B\).

(ii) If \(l(\bar{c}) = n\), \(|A| \geq n + 1\) and \(A\) is independent over \(B\) then there is \(a \in A\) such that \(a \notin \text{cl}(B \cup \bar{c})\).

Definition 6. We call an infinite-dimensional pregeometry \((M, \text{cl})\) homogeneous if for any finite \(B \subseteq M\), the set of all \(a \in M\) such that \(a \notin \text{cl}(B)\) is the set of realizations in \(M\) of a complete type \(p_B(x)\) over \(B\).

Note that Definition 6 relates in some way the closure operation to the first-order structure. But note that it does not say anything about automorphisms, and nothing is being claimed about the homogeneity of \(M\) as a first-order structure.

Lemma 3. Suppose \((M, \text{cl})\) is a homogeneous pregeometry.

(i) \(p_{\text{cl}}(x) = \bigcup \{p_B(x) : B \text{ finite subset of } M\}\) is a complete 1-type over \(M\), which we call the generic type of the pregeometry \((M, \text{cl})\).

(ii) \(a \notin \text{cl}(B)\) iff \(a \models p_{\text{cl}}(x)|B\). In particular \(\text{cl} = \text{cl}_{p_{\text{cl}}}\).

(iii) \(I = (a_i : i < \omega)\) is independent over \(B\) iff \(a_i \models p_{\text{cl}}|(B, a_0, ..., a_{i-1})\) for all \(i\). In particular, if \(M = \bar{M}\) and \(p\) is \(B\)-invariant then \(I\) is independent over \(B\) iff it is a Morley sequence in \(p\) over \(B\).

Proof. (i) Consistency is by compactness: given \(A_1, ..., A_n\) finite subsets of \(M\) and \(B = A_1 \cup ... \cup A_n\), clearly \(p_{\text{cl}}(x)\) \(\subseteq p_B(x)\) and the later is consistent. Completeness is clear.

(ii) and (iii) are easy. \(\square\)

Lemma 4. Suppose \((M, \text{cl})\) is a homogeneous pregeometry. Let \((a_i : i \in \omega)\) be an \(\emptyset\)-independent subset of \(M\). Then for any \(L\)-formula \(\phi(x, \bar{y})\) with \(l(\bar{y}) = n\), and \(n\)-tuple \(\bar{b}\) from \(M\):

\[\phi(x, \bar{b}) \in p_{\text{cl}}(x) \iff \bigwedge_{i \in \omega} \phi(a_i, b)\] for some \(w \subseteq \{1, ..., 2n\}\), \(|w| = n + 1\).
In particular \(p_{cl}(x) \) is definable.

Proof. If \(\phi(x, b) \) is large (namely in \(p_{cl} \)), then its negation is small, and thus if \(M \models \lnot \phi(a, b) \) then \(a \in cl(b) \). By Remark 1(ii), at most \(n \) many \(a_i \)'s can satisfy \(\lnot \phi(x, b) \), hence at least \(n+1 \) among the first \(2n+1 \) \(a_i \)'s satisfy \(\phi(x, b) \).

Conversely, if at least \(n+1 \) \(a_i \)'s satisfy \(\phi(x, b) \) then, again by Remark 1(ii), \(\phi(x, b) \) can not be small, so it is large. \(\Box \)

Proposition 2. Suppose \((M, cl) \) is a homogeneous pregeometry. Let \(p(x) \) be the generic type and let \(\bar{p}(x) \) be its (unique by definability) global heir.

(i) \((\bar{M}, cl_{\bar{p}}) \) is a homogeneous pregeometry and \(cl \) is the restriction of \(cl_{\bar{p}} \) to \(M \).

(ii) If \((a_1, \ldots, a_n) \) (from \(\bar{M} \)) is independent over \(A \) then:

\[
\text{tp}(b_1, \ldots, b_n/A) = \text{tp}(a_1, \ldots, a_n/A) \quad \text{iff} \quad (b_1, \ldots, b_n) \text{ is independent over } A.
\]

(iii) \(\bar{p}(x) \) is \(\emptyset \)-invariant and generically stable.

(iv) \((\bar{p}(x), x = x) \) is strongly regular

Proof. (i) is an easy exercise, using the fact that \(\bar{p} \) is defined by the same schema which defines \(p \).

(ii) We prove it by induction on \(n \). For \(n = 1 \), by definition, we have \(a_1, b_1 \models \bar{p}|A \). Now assume true for \(n \) and prove for \(n+1 \). Without loss of generality \(A = \emptyset \). Suppose first that \(\text{tp}(b_1, \ldots, b_{n+1}) = \text{tp}(a_1, \ldots, a_{n+1}) \). Let \(a' \) realize \(p|(a_1, \ldots, a_{n+1}, b_1, \ldots, b_{n+1}) \). So \(\text{tp}(a_1, \ldots, a_n, a_{n+1}) = \text{tp}(a_1, \ldots, a_n, a') \).

On the other hand, by the induction assumption (over \(\emptyset \)), \((b_1, \ldots, b_n) \) is independent, so independent over \(a' \) (by symmetry). By induction assumption applied over \(a' \), \(\text{tp}(b_1, \ldots, b_n, a') = \text{tp}(a_1, \ldots, a_n, a') \). Hence \(\text{tp}(b_1, \ldots, b_n, a') = \text{tp}(b_1, \ldots, b_n, b_{n+1}) \). As \(a' \not\in cl_{\bar{p}}(b_1, \ldots, b_n) \), also \(b_{n+1} \not\in cl_{\bar{p}}(b_1, \ldots, b_n) \). Thus \((b_1, \ldots, b_n, b_{n+1}) \) is independent.

The converse (if \((b_1, \ldots, b_{n+1}) \) is independent then it realizes \(\text{tp}(a_1, \ldots, a_{n+1}) \)) is proved in a similar fashion and left to the reader.

(iii) By part (i), Lemma 11 also applies to the pregeometry \(cl_{\bar{p}} \). Let \((a_i : i \in \omega) \) be \(cl_{\bar{p}} \)-independent. Then \(\bar{p}(x) \) is defined over \((a_i : i \in \omega) \) as in Lemma 11. But if \((b_i : i \in \omega) \) has the same type as \((a_i : i \in \omega) \) then, by (ii), it is also \(cl_{\bar{p}} \)-independent, hence \(\bar{p}(x) \) is defined over \((b_i : i \in \omega) \) in the same way. This implies that \(\bar{p} \) is \(\emptyset \)-invariant. Thus, by Lemma 11(iii) a Morley sequence in \(\bar{p} \) is the same thing as an infinite \(cl_{\bar{p}} \)-independent set. By Lemma 11 and Definition 11 \(\bar{p} \) is generically stable.
(iv) By part (i) \((\bar{M}, \text{cl}_p)\) is a pregeometry so, by Lemma 2(ii), \((\bar{p}(x), x = x)\) is strongly regular.

We now drop (for a moment) all earlier assumptions and summarize the situation:

Theorem 3. Let \(T\) be an arbitrary theory.

(i) Let \(p(x)\) be a global \(\emptyset\)-invariant type such that \((\bar{p}(x), x = x)\) is strongly regular. Then \((\bar{M}, \text{cl}_p)\) is a homogeneous pregeometry.

(ii) On the other hand, suppose \(M \models T\) and \((M, \text{cl})\) is a homogeneous pregeometry. Then there is a unique global \(\emptyset\)-invariant generically stable type \(p(x)\) such that \((\bar{p}(x), x = x)\) is strongly regular, and such that the restriction of \(\text{cl}_p\) to \(M\) is precisely \(\text{cl}\).

5 Quasiminimal structures

Recall that a 1-sorted structure \(M\) in a countable language is called quasiminimal if \(M\) is uncountable and every definable (with parameters) subset of \(M\) is countable or co-countable; the definition was given by Zilber in [6]. Here we investigate the general model theory of quasiminimality, continuing an earlier work by Itai, Tsuboi and Wakai [2].

Throughout this section fix a quasiminimal structure \(M\) and its monster model \(\bar{M}\). The set of all formulas (with parameters) defining a co-countable subset of \(M\) forms a complete 1-type \(p(x) \in S_1(M)\); we will call it the generic type of \(M\). If \(p(x)\) happens to be definable we will denote its (unique) global heir by \(\bar{p}(x)\).

Definition 7. (i) \(p(x)\) (or \(M\)) is **countably based** if there is a countable \(A \subset M\) such that \(p\) does not split over \(A\); i.e. whenever \(\bar{b}_1 \equiv \bar{b}_2(A)\) we have \((\phi(x, \bar{b}_1) \leftrightarrow \phi(x, \bar{b}_2)) \in p(x)\) for all \(\phi(x, \bar{y})\) over \(A\).

(ii) If \(p\) does not split over \(A\) then we say that \((a_1, \ldots, a_n)\) is a weak Morley sequence in \(p\) over \(A\) if \(a_k\) realizes \(p\) \((A, a_1, \ldots, a_{k-1})\) for all relevant \(k\).

As in the case of global invariant types weak Morley sequences are indiscernible over \(A\).

Remark 5. (i) In quasiminimal structures Zilber’s countable closure operator \(\text{ccl}\) is defined via \(\text{cl}_p\):
\[\text{cl}_p^n(A) = \text{cl}_p(A), \quad \text{cl}_p^{n+1}(A) = \text{cl}_p(\text{cl}_p^n(A)) \quad \text{and} \quad \text{ccl}(A) = \bigcup_{n \in \omega} \text{cl}_p^n(A). \]

(ii) If \(A \) is countable then \(\text{ccl}(A) \) is countable, too. \(\text{ccl} \) is a closure operator on \(M \).

(iii) \(\text{cl}_p \) is a closure operator iff \(\text{cl}_p = \text{ccl} \) (which is in general not the case, see Example 3).

Lemma 5. Suppose that \(p(x) \) is countably based, witnessed by \(A \). Then

(i) \(\text{cl}_p \) is a closure operator on \(M \).

(ii) \((M, \text{cl}_p)\) is a pregeometry iff every weak Morley sequence in \(p \) over \(A \) is totally indiscernible.

Proof. (i) Without loss of generality suppose that \(A = \emptyset \). Assuming that \(\text{cl}_p \neq \text{ccl} \) we will find a non-indiscernible weak Morley sequence over some countable \(C \subseteq M \), which is in contradiction with \(\emptyset \)-invariance. So suppose that \(\text{cl}_p \neq \text{ccl} \). Then there are a (countable) \(C \subseteq M \) and \(a \in M \) such that \(a \in \text{cl}_p^3(C) \setminus \text{cl}_p(C) \). Since \(a \notin \text{cl}_p(C) \) we have \(a \models p \) and let \(a_1, a_2 \notin \text{ccl}(aC) \) be such that \((a, a_1, a_2) \) is a weak Morley sequence over \(C \). We will prove that it is not indiscernible.

Witness \(a \in \text{cl}_p^3(C) \) by a small formula \(\varphi(x, b) \in tp(a/Cb) \) such that \(\varphi(x, y_1, ..., y_n) \) is over \(C \) and \((b_1, ..., b_n) = b \in \text{cl}_p(C)^n \). Choose \(\theta_i(y_i) \in tp(b_i/C) \) witnessing \(b_i \in \text{cl}_p(C) \) and let \(x_1 \equiv_{\varphi} x_2 \) denote the formula

\[(\forall \bar{y}) \left(\bigwedge_{1 \leq i \leq n} \theta_i(y_i) \rightarrow (\varphi(x_1, \bar{y}) \leftrightarrow \varphi(x_2, \bar{y})) \right). \]

It is, clearly, over \(C \) and we show \(a \not\equiv_{\varphi} a_2 \): from \(\models \varphi(a, b) \) (witnessing \(a \in \text{cl}_p^3(C) \)) and \(a_2 \notin \text{ccl}(C) \) we derive \(\models \neg \varphi(a_2, b) \) and thus \(a \not\equiv_{\varphi} a_2 \). On the other hand, since all realizations of \(\theta_i \)'s are in \(\text{cl}_p(C) \), and since \(tp(a_1/\text{cl}_p(C)) = tp(a_2/\text{cl}_p(C)) \), we have \(a_1 \equiv_{\varphi} a_2 \). Therefore \((a, a_1, a_2) \) is not indiscernible.

(ii) Having proved (i), the proof of Lemma 2(iii) goes through. \(\square \)

Let us note that if \((M, \text{cl}_p)\) is a pregeometry, then as infinite-dimensionality and homogeneity are automatic (for quasiminimal \(M \)), we can apply Theorem 3(ii).

Theorem 4. If \(p(x) \) does not split over \(\emptyset \) then exactly one of the following two holds:

1. Every weak Morley sequence in \(p \) over \(\emptyset \) is totally indiscernible; in this case \(\text{cl}_p \) is a pregeometry operator on \(M \), \(p \) is definable, \(\overline{p} \) is generically stable and \((\overline{p}(x), x = x) \) is strongly regular.
(2) There exists an asymmetric weak Morley sequence in p (over some domain); then for some finite A there is an A-definable partial order \leq such that every weak Morley sequence in p is strictly increasing.

Proof. First suppose that every weak Morley sequence in p over \emptyset is symmetric. Then, by Lemma 3(i), cl_p is a closure operator and, by Lemma 2(ii), it is a pregeometry operator. Thus (M, cl_p) is a homogeneous pregeometry and the conclusion follows from Proposition 2.

Now suppose that there is an asymmetric weak Morley sequence in p over some finite A. By invariance it is indiscernible, so after adding an initial part to A we get a weak Morley sequence (a, b) over A which is not symmetric. Let $\phi(x, y) \in \text{tp}(ab/A)$ be asymmetric ($\models \phi(x, y) \rightarrow \neg \phi(y, x)$). Then $\phi(a, x)$ is large and $\phi(x, b)$ is small; by invariance $\phi(x, a)$ is small, too. Every weak Morley sequence of length 2 satisfies this conditions, so (a, b) can be found such that each of a, b realizes $p|\text{cl}(A)$, and there is a countable, ccl-closed $M_0 \prec M$ containing A such that $a \in M_0$ and $b \notin M_0$ (i.e b realizes $p|M_0$).

We claim:

$$\models (\forall t)(\phi(t, a) \rightarrow \phi(t, b)).$$

Let $d \in M$ be such that $\models \phi(d, a)$. Then $d \in \text{ccl}(Aa)$, because $\phi(x, a)$ is small, and so $d \in M_0$ (M_0 is ccl-closed). Now, if $d \in \text{ccl}(A)$ then $a \equiv b(\text{ccl}(A))$ implies $\models \phi(d, b)$. Otherwise $d \models p|\text{ccl}(A)$ so, since $p|M_0$ does not split over \emptyset, we have $(a, b) \equiv (d, b)(A)$. In particular $\models \phi(d, b)$. In both cases we have $\models \phi(d, b)$ proving the claim.

Let $x \lessdot y$ be $(\forall t)(\phi(t, x) \land \theta(t) \rightarrow \phi(t, y))$. Clearly, \lessdot defines a quasi order and, as in the proof of Theorem 1 we have $\models \phi(a, b) \land \theta(b) \land \neg \phi(a, a)$ and $a < b$.

Theorem 5. Suppose that M is a quasiminimal group. Then $p(x)$ is definable over \emptyset, both left and right translation invariant, and M is a connected, definable-regular group witnessed by $\bar{p}(x)$.

Proof. Let $X \subseteq M$ be definable. First we claim that X is uncountable iff $X \cdot X = M$. If X is uncountable, then X is co-countable, as is X^{-1}. So for any $a \in M$, $a \cdot X^{-1}$ is co-countable, so has nonempty intersection with X. If $d \in X \cap a \cdot X^{-1}$ then $a \in X \cdot X$, proving the claim.

It follows that $p(x)$ is definable over \emptyset. In particular, it is countably based and, by Lemma 5, cl_p is a closure operator on M. Then cl_p is also a closure operator.
operator and \((p(x), x = x)\) is strongly regular by Lemma 2(ii). The rest follows from Theorem 6.

\[\] Example 3. An asymmetric quasiminimal field.
In fact, every strongly minimal structure of size \(\aleph_1\) can be expanded to become asymmetric quasiminimal. Let \(I = \omega_1 \times Q\) and let \(<\) be a (strict) lexicographic order on \(I\). Further, let \(B = \{b_i \mid i \in I\}\) be a maximal acl-independent subset of \(M\). For each \(a \in M\) let \(i \in I\) be \(<\)-maximal for which there are \(i_1, \ldots, i_n \in I\) such that \(a \in acl(b_{i_1}, \ldots, b_{i_n}, b_i) \setminus acl(b_{i_1}, \ldots, b_{i_n})\); Clearly, \(i = i(a)\) is uniquely determined. Now, expand \((M, ..)\) to \((M, <, ...)\) where \(b < c\) iff \(i(b) < i(c)\). We will prove that \((M, <, ...)\) is quasiminimal. Suppose that \(M_0 < M\) is a countable, \(<\)-initial segment of \(M\) and that \(B \setminus M_0\) does not have \(\leq\)-minimal elements, and let \(a, a' \in M \setminus M_0\). Then there is an automorphism of \((B, <)\) fixing \(B \cap M_0\) pointwise and moving \(b_i(a)\) to \(b_i(a')\). It easily extends to an \(M_0\)-automorphism of \((M, <, ...)\), so \(b_{i(a)} \equiv b_{i(a')(M_0)}\) (in the expanded structure). Note that replacing \(b_{i(a)}\) by \(a\) in \(B\) (in the definition of \(<\) does not affect \(<\), so \(a \equiv a'\)(\(M_0\)) and there is a single 1-type over \(M_0\) realized in \(M \setminus M_0\). Since every countable set is contained in an \(M_0\) as above, \((M, <, ...)\) is quasiminimal.

\[\] Question Is every quasiminimal field algebraically closed?

The following is an example of a quasiminimal structure, whose quasiminimality does not look like regularity at all: \(cl_p(A) \neq cl_p(cl_p(A))\) for arbitrarily large countable \(A\)'s.

\[\] Example 4. (A quasiminimal structure where \(cl_p \neq ccl\))
Peretyatkin in [3] constructed an \(\aleph_0\)-categorical theory of a 2-branching tree. Our quasiminimal structure will be its model.

The language consists of a single binary function symbol \(L = \{\text{inf}\}\). Let \(\Sigma\) be the class of all finite \(L\)-structures \((A, \text{inf})\) satisfying:

(i) \((A, \text{inf})\) is a semilattice;

(ii) \((A, <)\) is a tree (where \(x < y\) iff \(\text{inf}(x, y) = x \neq y\));

(iii) (2-branching) No three distinct, pairwise \(<\)-incompatible elements satisfy: \(\text{inf}(x, y) = \text{inf}(x, z) = \text{inf}(y, z)\).

Then the Fraissé limit of \(\Sigma\) exists and its theory, call it \(T_2\), is \(\aleph_0\)-categorical and has unique 1-type. If we extend the language to \(\{\text{inf}, <, \perp\}\), where \(x \perp y\) stands for \(x \not< y \land y \not< x\), then \(T_2\) has elimination of quantifiers.
Let \((\bar{M}, <)\) be the monster model of \(T_2\), let \(<\) be a lexicographic order on \(I = \omega_1 \times Q\), and let \(C = \{c_i | i \in \omega_1 \times Q\}\) be \(<\)-increasing. Then we can find a sequence of countable models \(\{M_i | i \in \omega_1 \times Q\}\) satisfying:

1. \(M_i \prec M_j\) for all \(i < j\);
2. \(M_i \cap C = \{c_j \in C | j \leq i\}\) for all \(i\);
3. \(M_i \cap C < M_j \setminus M_i\) for all \(i < j\).

Finally, let \(M = \bigcup \{M_i | i \in I\}\). Clearly, \(C\) is an uncountable branch in \(M\). Moreover, by (3), any other branch is completely contained in some \(M_i\), and is so countable. This suffices to conclude that \(M\) is quasiminimal and that the generic type is determined by \(C < x\).

Fix \(c_i \in C\) and \(a \in M \setminus C\) with \(c_i < a\). Note that \(x \not\approx c_i\) is small, so \(M_j \subset \text{cl}_p(c_i)\) for all \(j < i\). Also, \(x \perp a\) is large so \(\text{cl}_p(a)\) is the union of branches containing \(a\). Since \(c_i \in \text{cl}_p(a)\) then \(M_j \subseteq \text{cl}_p(c_i) \subset \text{cl}_p^2(a)\). Since \(M_j \not\subseteq \text{cl}_p(a)\) we conclude that \(\text{cl}_p(a) \neq \text{cl}_p^2(a)\) and \(\text{cl}_p\) is not a closure operator. Similarly, for any countable \(A \subset M\) we can find \(a,c_i\) as above much bigger than \(A\), and thus both realizing \(p|A\). Then \(x \perp a \land \neg(x \perp c_i) \in p(x)\) witness that \(p(x)\) is not countably invariant.

6 Local regularity

In this section we study conditions under which a type \(p(x) \in S_1(M)\) (where \(M\) is not necessarily saturated) has a global, strongly regular, \(M\)-invariant extension. From the definition of strong regularity and Remark 2 \(p(x)\) has to satisfy the following:

Definition 8. A non-isolated type \(p(x) \in S_1(A)\) is **locally strongly regular via** \(\phi(x) \in p(x)\) if \(p(x)\) has a unique extension over \(M\overline{b}\) whenever \(\overline{b}\) is a finite tuple of realizations of \(\phi(x)\) no element of which realizes \(p\).

For simplicity, we will be working with types which are locally strongly regular via \(x = x\) and it is not hard to reformulate the results below with \(x = x\) replaced by \(\phi(x)\).

Proposition 3. Suppose that \(p(x) \in S_1(M)\) is definable and locally strongly regular via \(x = x\), and let \(\overline{p}(x)\) be its global heir. Then \((\overline{p}(x), x = x)\) is definable-strongly regular.
Proof. Suppose that \((\bar{p}(x), x = x)\) is not strongly regular and let \(B \supset M\) be such that \(\bar{p}|B \not\models \bar{p}|\text{cl}(B)\). Then, without loss of generality, \(B = M\bar{b}\) and there are \(a \in \text{cl}(B)\) and \(c \models \bar{p}|B\) such that \(c\) does not realize \(\bar{p}|Ba\). Witness \(a \in \text{cl}(B)\) by \(\theta(y, \bar{z})\) which is over \(M\) and \(\models \theta(a, \bar{b}) \land \neg(d_p\theta)(\bar{b})\) (where \(d_p\) is the defining schema of \(p\)). Similarly, find \(\phi(x, y, \bar{z})\) over \(M\) such that \(\models \phi(c, a, \bar{b}) \land \neg(p\phi)(a, \bar{b})\).

\[
\models (\exists y)(\theta(y, \bar{b}) \land \neg(d_p\theta)(\bar{b}) \land \phi(c, y, \bar{b}) \land \neg(d_p\phi)(y, \bar{b})).
\]

Since \(\text{tp}(c/M\bar{b})\) is an heir of \(p(x)\) there is \(\bar{m} \in M\) and \(a'\) such that

\[
\models \theta(a', \bar{m}) \land \neg(d_p\theta)(\bar{m}) \land \phi(c, a', \bar{m}) \land \neg(d_p\phi)(a', \bar{m}).
\]

The first two conjuncts witness \(a' \notin p(M)\) while the last two witness that \(c\) is not a realization of \(\bar{p}|Ma'\). A contradiction.

For the next proposition, recall that if \(p(x) \in S_1(M)\) then by a coheir sequence in \(p\) we mean a Morley sequence in \(p'\) over \(M\) for some global coheir of \(p\).

Proposition 4. Suppose that \(p(x) \in S_1(M)\) is locally strongly regular via \(x = x\) and that there exists an infinite, totally indiscernible (over \(M\)) coheir-sequence in \(p\). Then \(p\) is definable, its global heir \(\bar{p}\) is generically stable and \((\bar{p}(x), x = x)\) is strongly regular.

Proof. Let \(I = \{a_i : i \in \omega\}\) be a symmetric coheir sequence in \(p\), let \(p_n(x) = \text{tp}(a_{n+1}/(Ma_1...a_n))\) \(p_I = \cup_{n \in \omega}p_n(x) \in S_1(MI)\). We will prove that \(p_I\) is locally strongly regular via \(x = x\), then, by standard arguments, it follows that \(p\) has a global coheir \(\bar{p}\) which extends \(p_I\) and that \((\bar{p}(x), x = x)\) is invariant-strongly regular and symmetric; the conclusion follows by Theorem \(\square\)

Suppose, on the contrary, that \(p_I\) is not locally strongly regular. Then some \(p_n\) is not locally strongly regular, so there are \(b_1...b_k = \bar{b}\), with none realizing \(p_n(x)\), such that \(p_n\) has at least two extensions in \(S_1(M\bar{a}\bar{b})\) (here \(\bar{a} = a_1...a_n\)). Let \(\varphi(x, \bar{z}, \bar{y})\) be over \(M\) and such that both \(\varphi(x, \bar{a}, \bar{b})\) and \(\neg\varphi(x, \bar{a}, \bar{b})\) are consistent with \(p_n(x)\).

Choose \(\theta_i(y, \bar{a}) \in \text{tp}(b_i/M\bar{a})\) witnessing that \(b_i\) does not realize \(p_n\) and let \(\phi(x_1, x_2, \bar{a})\) be \n
\[
(\exists \bar{y})((\land_{1 \leq i \leq n}(\theta_i(y, \bar{a}) \land \neg\theta_i(x_2, \bar{a})) \land \neg(\varphi(x_1, \bar{a}, \bar{y})) \leftrightarrow (\varphi(x_2, \bar{a}, \bar{y}))).
\]

18
It is, clearly, over M and we show $\models \phi(a_{n+2}, a_{n+1}, \bar{a})$. By our assumptions on φ and \bar{b}, there is $\bar{b}' \equiv \bar{b}(\bar{M} \bar{a})$ such that $\models - (\varphi(a_{n+1}, \bar{a}, \bar{b}) \leftrightarrow (\varphi(a_{n+1}, \bar{a}, \bar{b}'))$.

Also $\models \bigwedge_{1 \leq i \leq n} (\theta_i(b_i, \bar{a}) \land \theta_i(b_i', \bar{a}) \land - \theta_i(a_{n+1}, \bar{a}))$. Thus for any $c \in M$ either \bar{b} or \bar{b}' in place of \bar{y} witnesses $\models \phi(c, a_{n+1}, \bar{a})$ and, since $\text{tp}(a_{n+2}/\bar{M} \bar{a} a_{n+1})$ is a coheir of p, we conclude $\models \phi(a_{n+2}, a_{n+1}, \bar{a})$.

By total indiscernibility, $\text{tp}(\bar{a}/\bar{M} a_{n+1} a_{n+2})$ is a coheir of p, so there are $\bar{m} \in M$ and \bar{d} such that

$$\bigwedge_{1 \leq i \leq n} (\theta_i(d_i, \bar{m}) \land - \theta_i(a_{n+1}, \bar{m})) \land - (\varphi(a_{n+2}, \bar{m}, \bar{d}) \leftrightarrow (\varphi(a_{n+1}, \bar{m}, d))$$

The first conjunct witnesses that each d_i does not realize p, and the second witnesses that p does not have a unique extension over $\bar{M} \bar{d}$. A contradiction.

$$\square$$

Our next goal is to prove that the generic type of a quasiminimal structure is locally strongly regular via $x = x$. This we will do in a more general situation, for any $(M$ and $p \in S_1(M)$ for which the closure operator induced by cl_p (we will call it Cl_p) 'does not finitely generate M'. So, fix for now M and $p \in S_1(M)$.

$$\text{Cl}_p(A) = \bigcup \{ \text{cl}_p^n(A) \mid n \in \omega \} \text{ where } \text{cl}_p^0(A) = \text{cl}_p(A), \text{ cl}_p^{n+1}(A) = \text{cl}_p(\text{cl}_p^n(A))$$

Call $A \subseteq M$ finitely Cl_p-generated if there is finite $A_0 \subset A$ such that $A \subseteq \text{Cl}_p(A_0)$. $\{a_i \mid i \in \alpha\}$ is a Cl_p-free sequence over $B \subseteq M$ if $a_i \notin \text{Cl}_p(A_i B)$ for all $i \leq \alpha$ \quad (A_i = (\{a_i \mid j < i\})). Cl_p-free means Cl_p-free over \emptyset.

(1) $a \notin \text{cl}_p(B)$ implies $a \models p \upharpoonright B$; $a \notin \text{Cl}_p(B)$ implies $a \models p \upharpoonright \text{Cl}_p(B)$.

(2) If $A = \{a_i \mid i \in \alpha\}$ is Cl_p-free then $p \upharpoonright \text{Cl}_p(A) = \bigcup_{i \in \alpha} p \upharpoonright \text{Cl}_p(A_i)$

(3) If $A = \{a_i \mid i \in \alpha\}$ is Cl_p-free and α is a limit ordinal then $p \upharpoonright \text{Cl}_p(A)$ is non-algebraic and finitely satisfiable in A.

(4) Maximal Cl_p-free sequences always exists. If $M_0 \subseteq M$ is not finitely Cl_p-generated and $\{a_i \mid i \in \alpha\} \subseteq M_0$ is a maximal Cl_p-free sequence such that α is minimal possible, then α is a limit ordinal (otherwise, take the last a_i, put it on the first place ...)

Proposition 5. Suppose $p \in S_1(M)$ and M is not finitely Cl_p-generated. Then p is locally strongly regular via $x = x$.

Proof. Suppose, on the contrary, that there are $d_1, d_2 \in p(M)$, a formula $\phi(x, \bar{y})$, and a tuple $\bar{b} = b_1 b_2 \ldots b_n \in M^n$ such that none of b_i’s realize p and:
Corollary 3.

Proof. Let \(I = \{a_i : i \in \omega \} \) be a symmetric ccl-free sequence. Let \(M_0 = \text{ccl}(a_0) \) and \(M_{i+1} = \text{ccl}(M_i a_{i+1}) \). Then \(M_0 \prec M_1 \prec \ldots \prec M \) are ccl-closed and \(p|M_\omega \) is almost strongly regular via \(x = x \) (where \(M_\omega = \cup_{i<\omega} M_i \)). Let \(J \) be an infinite indiscernible sequence over \(M_\omega \) extending \(I \). Then \(J \) is symmetric and the conclusion follows by Proposition 4 applied to \(p|M_\omega \).

\(\square \)
Theorem 6. Suppose that \(G \subseteq M \) is a definable group and \(p(x) \in S_G(M) \) is locally strongly regular via “\(x \in G \)”. Then:

(i) \(p(x) \) is both left and right translation invariant (and in fact invariant under definable bijections).

(ii) A formula \(\phi(x) \) is in \(p(x) \) iff two left (right) translates of \(\phi(x) \) cover \(G \) iff finitely many left (right) translates of \(\phi(x) \) cover \(G \). (Hence \(p(x) \) is the unique generic type of \(G \).)

(iii) \(p(x) \) is definable over \(\emptyset \) and \(G \) is connected.

(iv) If, in addition, \(p(x) \) is locally strongly regular via \(x = x \) then \((\bar{p}(x), x = x) \) is strongly regular and \(\bar{G} \) is a definable-regular group. (Here \(\bar{p} \) is the unique heir of \(p(x) \) and \(\bar{G} \subseteq \bar{M} \) is defined by “\(x \in G \)”.)

Proof. (i) Suppose that \(f : \bar{G} \rightarrow \bar{G} \) is an \(M \)-definable bijection and \(a \models p \). Since \(p \vdash p(M, f(a)) \) is not possible, by local strong regularity we get \(f(a) \models p \). Thus \(p \) is invariant under \(f \).

(ii) The local strong regularity of \(p(x) \) implies that whenever \(g, g' \in \bar{G} \) do not realize \(p \) then \(g \cdot g' \) does not realize \(p \) either. It follows that \(a \cdot g \models p \) whenever \(a \models p \) and \(g \in \bar{G} \) does not realize \(p \). Thus:

\[
\phi(x) \in p(x) \iff (\forall y \in \bar{G})(\neg \phi(y) \rightarrow \phi(y \cdot x)) \in p(x),
\]

and \(\phi(x) \in p(x) \iff \phi(G) \cup a^{-1} \cdot \phi(G) = \bar{G} \).

(iii) follows immediately from (ii), and then (iv) follows from Proposition 3.

\[\square \]

References

[1] E.Hrushovski, A.Pillay, On NIP and invariant measures, preprint 2009 (revised version).

[2] M.Itai, A.Tsuboi, K.Wakai, Constructions of saturated quasi-minimal structure, J.Symbolic Log. vol.69, pp. 9-22 (2004).

[3] M.G.Peretyatkin, On complete theories with a finite number of countable models (in Russian), Algebra i Logika vol.12(1973), pp.550-576.

[4] S. Shelah, Dependent first order theories, continued, to appear in Israel J. Math.
[5] P. Tanović, Some questions concerning minimal structures, Publications de l’Institut Mathematique, 82(96), (2007), p. 79-83.

[6] B. Zilber, Dimensions and homogeneity in mathematical structures, Quaderni di matematica, vol. 6, Seconda Univ. di Napoli, 2000.
Generic stability, regularity, and quasiminimality

Anand Pillay∗
University of Leeds

Predrag Tanović†
Mathematical Institute SANU, Belgrade

September 19th, 2010

Abstract

We study the notions generic stability, regularity, homogeneous pregeometries, quasiminimality, and their mutual relations, in arbitrary first order theories. We prove that “infinite-dimensional homogeneous pregeometries” coincide with generically stable strongly regular types \((p(x), x = x)\). We prove that quasiminimal structures of cardinality at least \(\aleph_2\) are “homogeneous pregeometries”. We prove that the “generic type” of an arbitrary quasiminimal structure is “locally strongly regular”. Some of the results depend on a general dichotomy for “regular-like” types: generic stability, or the existence of a suitable definable partial ordering.

1 Introduction

The first author was motivated partly by hearing Wilkie’s talks on his program for proving Zilber’s conjecture that the complex exponential field is

∗Supported by EPSRC grant EP/F009712/1
†Supported by the Ministry of Science and Technology of Serbia
quasiminimal (definable subsets are countable or co-countable), and wondering about the first order (rather than infinitary) consequences of the approach. The second author was partly motivated by his interest in adapting his study of minimal structures (definable subsets are finite or cofinite) and his dichotomy theorems ([6]), to the quasiminimal context.

Zilber’s conjecture (and the approach to it outlined by Wilkie) is closely related to the existence and properties of a canonical pregeometry on the complex exponential field. See the end of section 4 for a more detailed discussion. Also in section 5 of this paper we discuss to what extent a pregeometry can be recovered just from quasiminimality, sometimes assuming the presence of a definable group structure. This continues in a sense an earlier study of the general model theory of quasiminimality by Itai, Tsuboi, and Wakai [2].

A pregeometry is a closure relation on subsets of a not necessarily saturated structure M satisfying usual properties (including exchange). We will also assume “homogeneity” (tp(b/A) is unique for $b \notin \text{cl}(A)$) and “infinite-dimensionality” (dim(M) is infinite). One of the points of this paper then is that the canonical “generic type” p of the pregeometry is “generically stable” and regular. This includes the statement that on realizations of p, the closure operation is precisely forking in the sense of Shelah (see Theorem 3). Another main point of the paper is that a quasiminimal structure of cardinality at least \aleph_2 carries, in a canonical fashion, a homogeneous (in the above sense), infinite-dimensional pregeometry, improving on results in [2].

Generic stability, the stable-like behavior of a given complete type vis-a-vis forking, was studied in several papers including [5] and [11], but mainly in the context of theories with NIP (i.e. without the independence property). Here we take the opportunity, in section 2 to give appropriate definitions in an arbitrary ambient theory T, as well as discussing generically stable (strongly) regular types.

The notion of a regular type is central in stability theory and classification theory, where the counting of models of superstable theories is related to dimensions of regular types. Here (section 3) we give appropriate generalizations of (strong) regularity for an arbitrary theory T (although it does not agree with the established definitions for simple theories). In section 3 a basic dichotomy theorem (Theorem 1) is proved for global regular types p; roughly speaking, either p is generically stable, or there is certain definable partial ordering on the set of realizations of p. A generalization of this theorem is given in section 6 (Theorem 6), which lies behind our result on quasiminimal structures of cardinality $\geq \aleph_2$.

2
In section 7 a local version of regularity is given and applied to the analysis of quasiminimal structures (see Corollaries 3 and 4).

The current paper is a revised and expanded version of a preprint “Remarks on generic stability, pregeometries, and quasiminimality” by the first author, which was written and circulated in June 2009.

The first author would like to thank Clifton Ealy, Krzysztof Krupinski, and Alex Usvyatsov for various helpful conversations and comments. After seeing the first author’s preliminary results (and talk at a meeting in Lyon in July 2009), Ealy pointed out that the commutativity of regular groups is problematic (see our Question at the end of section 3) and suggested possible directions towards a counterexample. Krupinski independently came up with examples such as Example 5.1 of the current paper. And after a talk by the first author on the same subject in Bedlewo in August 2009, Usvyatsov pointed out examples such as Example 3.1 and 3.2 of the current paper. Both authors would like to thank Jonathan Kirby for helpful comments and questions, and for clarifying the connection to exponential algebraicity (see the end of section 4).

We now give our conventions and give a few basic definitions relevant to the paper. As the referee kindly mentioned this paper maybe of interest to readers who are not so familiar with stability-style model theory, and so following his/her suggestion, we give more details than we usually would concerning some standard constructions.

T denotes an arbitrary complete 1-sorted theory in a language L and \bar{M} denotes a saturated (monster) model of T. As a rule $a, b, c, ...$ denote elements of \bar{M}, and $\bar{a}, \bar{b}, \bar{c}$ denote finite tuples of elements. (But in some situations $a, b, ...$ may denote elements of \bar{M}^{eq}.) A, B, C denote small subsets, and $\bar{M}, M_0, ...$ denote small elementary submodels of \bar{M}. By a “global type” we mean morally a complete type over a sufficiently saturated model. In practise we will mean a complete type $p(\bar{x}) \in S(\bar{M})$ over the “monster model”. Such a type p is said to be A-invariant if p is Aut(\bar{M}/A)-invariant; and p is said to be invariant if it is A-invariant for some small A. Notice that by saturation/homogeneity of \bar{M}, the A-invariance of p is equivalent to p not splitting over A, in the sense that for any L-formula $\phi(\bar{x}, \bar{y})$ and \bar{b} from \bar{M}, whether or not $\phi(\bar{x}, \bar{b}) \in p$ depends on tp(\bar{b}/A). So an A-invariant type $p(\bar{x})$ comes with a kind of “infinitary” defining schema d_p over A. Namely for a given L-formula $\phi(\bar{x}, \bar{y})$, $d_p(\phi(\bar{x}, \bar{y}))$ is the set of $q(\bar{y}) \in S(A)$ such that for
some (any) \(b \) realizing \(q, \phi(x, b) \in p \).

We now explain how to build the “nonforking iterates” \(p^{(n)}(\bar{x}_1, ..., \bar{x}_n) \in S(M) \) of \(p \). Let \(\phi(\bar{x}_1, \bar{x}_2, \bar{c}) \) be a formula over \(M \) (with witnessed parameters \(\bar{c} \)). We will put such a formula in \(p^{(2)}(\bar{x}_1, \bar{x}_2) \) if for some (any) \(\bar{a}_1 \) realizing \(p|A, \bar{c} \) (the restriction of \(p \) to \(A, \bar{c} \)), the formula \(\phi(\bar{a}_1, \bar{x}_2, \bar{c}) \) is in \(p(\bar{x}_2) \).

Having defined \(p^{(n)} \), we put a formula \(\phi(\bar{x}_1, ..., \bar{x}_n, \bar{x}_{n+1}, \bar{c}) \) in \(p^{(n+1)} \) if for for some (any) \((\bar{a}_1, ..., \bar{a}_n) \) realizing \(p^{(n)}|A, \bar{c} \), the formula \(\phi(\bar{a}_1, ..., \bar{a}_n, \bar{x}_{n+1}, \bar{c}) \) is in \(p(\bar{x}_{n+1}) \). This construction depends only on the defining schema \(d \) of \(p \). It is clear that \(p^{(n)}(\bar{x}_1, ..., \bar{x}_n) \subseteq p^{(n+1)}(\bar{x}_1, ..., \bar{x}_{n+1}) \), and we let \(p^{(\omega)} \) be the increasing union of the \(p^{(n)} \)'s. It is not hard to see that any realization \((\bar{a}_i : i = 1, 2, ... \) of \(p^{(\omega)} \) (in an elementary extension of the monster model) is an indiscernible sequence over \(M \).

Assuming the global type \(p \) to be \(A \)-invariant, by a Morley sequence in \(p \) over \(A \) we mean a realization, in \(M \), \((\bar{a}_i : i = 1, 2, ... \) of \(p^{(\omega)}|A \). Clearly this can also be obtained by choosing \(\bar{a}_1 \) to realize \(p|A \), choosing \(\bar{a}_2 \) to realize \(p|A, \bar{a}_1 \) etc. So a Morley sequence in \(p \) over \(A \) is among other things an \(A \)-indiscernible sequence, and can be stretched to an \(A \)-indiscernible sequence of any ordinal length \(\alpha \) (a Morley sequence in \(p \) over \(A \) of length \(\alpha \)). In any case clearly the type over \(A \) of any Morley sequence of length \(\alpha \) in \(p \) over \(A \) depends only on \(p \) and \(A \).

An invariant global type \(p(\bar{x}) \) is said to be symmetric if for any \(n \), formula \(\phi(\bar{x}_1, ..., \bar{x}_n) \) over \(M \) and permutation \(\pi \) of \(\{1, ..., n\} \), \(\phi(\bar{x}_1, ..., \bar{x}_n) \in p^{(n)}(\bar{x}_1, ..., \bar{x}_n) \) if and only if \(\phi(\bar{x}_{\pi(1)}, ..., \bar{x}_{\pi(n)}) \in p^{(n)}(\bar{x}_1, ..., \bar{x}_n) \).

It is not hard to see that the condition for \(n = 2 \) implies it for all \(n \). Also note that \(p \) is symmetric if and only if for any small \(A \) such that \(p \) is \(A \)-invariant, any Morley sequence in \(p \) over \(A \) is totally indiscernible.

In some parts of this paper we will be considering analogous notions for complete types over “large” but not necessarily saturated or homogeneous (in the sense of model theory) structures \(M \), where we are no longer able to use the expression “invariant” type.

Some other basic notions used in this paper are definable type, heir, coheir, almost finitely satisfiability. A definable type (over \(A \)) refers usually to a complete type \(p(x) \) say over a model \(M \) such that for any \(\phi(x, \bar{y}) \in L, \{ \bar{b} \in M : \phi(x, \bar{b}) \in p \} \) is a definable set (over \(A \)) in \(M \). If \(p(x) \) is a complete type over a model \(M \) and \(N \) is a larger model (elementary extension) then an heir of \(p \) over \(N \) is an extension \(q(x) \in S(N) \) of \(p \) such that for any formula \(\phi(x, \bar{y}) \) with parameters from \(M \), if \(\phi(x, \bar{c}) \in q(x) \) for some \(\bar{c} \) from \(N \), then \(\phi(x, \bar{b}) \in p \) for some \(\bar{b} \in M \). A basic and easy fact is that if \(p(x) \in S(M) \) is
a definable type, then it has a unique heir over any larger model (which is precisely given by applying the defining schema for \(p \) to the larger model).

In the same context, with \(p(x) \in S(M) \), and \(q(x) \in S(N) \) an extension of \(p \), \(q \) is said to be a coheir of \(p \) if \(q \) is finitely satisfiable in \(M \) (any formula \(\phi(x) \) in \(q(x) \) is realized by some element of \(M \), even though the formula may have parameters outside \(M \)). Finally if \(q(x) \) is a global complete type and \(A \) a small set of parameters, \(q \) is said to be almost finitely satisfiable in \(A \) if \(q \) is finitely satisfiable in any model (elementary substructure) of \(\bar{M} \) which contains \(A \).

Of course pervasive notions are dividing and forking in the sense of Shelah. A formula \(\phi(x,b) \) (with witnessed parameters \(b \)) is said to divide over \(A \) if for some \(A \)-indiscernible sequence \((b_i : i < \omega) \) of realizations of \(\text{tp}(b/A) \), \(\{\phi(x,b_i : i < \omega)\} \) is inconsistent. The formula is said to fork over \(A \) if it implies a finite disjunction of formulas \(\psi_j(x,c_j) \) each of which divides over \(A \). The notions extend naturally to (partial, or complete) types in place of formulas.

In stable theories, the above notions cohere in the following senses:

1. Given a type \(p(x) \in S(M) \) over a model and \(N \supseteq M \), \(p \) has a unique nonforking extension over \(N \) which coincides with its unique heir over \(N \) as well as with its unique coheir over \(N \).

2. Any complete type over a model is definable (in particular any global type is invariant).

3. A global type \(p(x) \) does not fork over \(A \) iff it is definable over \(\text{acl}^{eq}(A) \)

4. Moreover any global type is definable in a specific way over some (any) Morley sequence. (See Proposition 2.1(i) below.)

Although stable theories were originally the main environment for studying forking, we saw subsequently the fundamental role of forking in simple theories, and more recently its importance for \(NIP \) theories, including o-minimal theories and valued fields. In the current paper we are concerned to a large extent with the role of forking in “pregeometries” in general first order theories.

Recall that \((P, \text{cl})\), where \(\text{cl} \) is an operation on subsets of \(P \), is a pregeometry (or \(\text{cl} \) is a pregeometry on \(P \)) if for all \(A, B \subseteq P \) and \(a, b \in P \) the following hold:
Monotonicity A ⊆ B implies A ⊆ cl(A) ⊆ cl(B);
Finite character cl(A) = ∪{cl(A₀) | A₀ ⊆ A finite};
Transitivity cl(A) = cl(cl(A));
Exchange (symmetry) a ∈ cl(A ∪ {b}) \ cl(A) implies b ∈ cl(A ∪ {a}).

cl is called a closure operator if it satisfies the first three conditions.

2 Generic stability

Definition 2.1. A non-algebraic global type p(¯x) ∈ S(¯M) is generically stable if, for some small A, it is A-invariant and:

if (¯aᵢ : i < α) (any α, not only ω) is a Morley sequence in p over A then for any formula φ(¯x) (with parameters from ¯M) \{i : φ(¯aᵢ)\} is either finite or co-finite.

Remark 2.1. If p is generically stable then as a witness-set A in the definition we can take any small A such that P is A-invariant.

Proposition 2.1. Let p(¯x) ∈ S(¯M) be generically stable and A-invariant. Then:

(i) For any formula φ(¯x, ¯y) ∈ L there is n₀ such that for any Morley sequence (¯aᵢ : i < ω) in p over A, and any ¯b:

\[\phi(\bar{x}, \bar{b}) \in p \iff \bigvee_{w \subseteq \{0,1,...,2n₀\}, |w|=n₀+1} \bigwedge_{i \in w} \phi(\bar{a}_i, \bar{b}). \]

(ii) p is definable over A and almost finitely satisfiable in A.

(iii) Any Morley sequence of p over A is totally indiscernible.

(iv) p is the unique global nonforking extension of p | A.

Proof. This is a slight elaboration of the proof of Proposition 3.2 from [1].

(i) First note that for any φ(¯x, ¯y) ∈ L there is n₀ such that for any Morley sequence (¯aᵢ : i < ω) in p over A, and any ¯b either at most n₀ many ¯aᵢ’s satisfy φ(¯x, ¯b) or at most n₀ many ¯aᵢ’s satisfy ¬φ(¯x, ¯b). For if not,
then by compactness we can find a Morley sequence in \(p \) over \(A \) of length \(\omega + \omega \) which violates Definition 2.1. Note that if at most \(n_\phi \) \(\bar{a}_i \)'s satisfy \(\neg \phi(\bar{x}, \bar{b}) \) then \(\phi(\bar{x}, \bar{b}) \in p \): for otherwise we could let \((\bar{a}_{\omega + j} : j < \omega) \) realize \(p(\omega) \) restricted to \(A \cup \{ \bar{a}_i : i < \omega \} \cup \{ \bar{b} \} \), in which case \((\bar{a}_i : i < \omega + \omega) \) is a Morley sequence in \(p \) over \(A \) such that all but finitely many \(\bar{a}_i \) for \(i < \omega \) satisfy \(\phi(\bar{x}, \bar{b}) \) and all \(\bar{a}_{\omega + j} \) satisfy \(\neg \phi(\bar{x}, \bar{b}) \), again a contradiction.

(ii) By (i) \(p \) is definable (over a Morley sequence), so by \(A \)-invariance \(p \) is definable over \(A \). (If \(\psi(\bar{y}, \bar{d}) \) is the \(\phi(\bar{x}, \bar{y}) \) definition of \(p \), then by \(A \)-invariance of \(p \), this formula is preserved, up to equivalence, by automorphisms which fix \(A \) pointwise, hence is equivalent to a formula over \(A \).) Let \(M \) be a model containing \(A \), \(\phi(\bar{x}, \bar{c}) \in p \) and let \(I = (\bar{a}_i : i < \omega) \) be a Morley sequence in \(p \) over \(A \) such that \(\text{tp}(I/M\bar{c}) \) is finitely satisfiable in \(M \). Then, by (i), \(\phi(\bar{x}, \bar{c}) \) is satisfied by some \(\bar{a}_i \) hence also by an element of \(M \).

(iii) This follows from (i) exactly as in the proof of the Proposition 3.2 of [1] (where NIP was not used).

(iv) Let \(q(\bar{x}) \) be a global nonforking extension of \(p | A \). We will prove that \(q = p \).

Claim. Suppose \((\bar{a}_0, \ldots, \bar{a}_{n}, \bar{b}) \) are such that \(\bar{a}_0 \models q | A \), \(\bar{a}_{i+1} \models q | (A, \bar{a}_0, \ldots, \bar{a}_i) \) and \(\bar{b} \models q | (A, \bar{a}_0, \ldots, \bar{a}_n) \). Then \((\bar{a}_0, \ldots, \bar{a}_n, \bar{b}) \) is a Morley sequence in \(p \) over \(A \).

Proof. We prove it by induction. Suppose we have chosen \(\bar{a}_0, \ldots, \bar{a}_n \) as in the claim and we know (induction hypothesis) that \((\bar{a}_0, \ldots, \bar{a}_n) \) begins a Morley sequence \(I = (\bar{a}_i | i < \omega) \) in \(p \) over \(A \). Suppose that \(\phi(\bar{a}_0, \ldots, \bar{a}_n, \bar{x}) \in q \). Then we claim that \(\phi(\bar{a}_0, \ldots, \bar{a}_{n-1}, \bar{a}_i, x) \in q \) for all \(i > n \). For otherwise, without loss of generality \(\neg \phi(\bar{a}_0, \ldots, \bar{a}_{n-1}, \bar{a}_{i+1}, x) \in q \). But then, by indiscernibility of \(\{ \bar{a}_i : i = n, n + 2, n + 4, \ldots \} \) over \((A, \bar{a}_0, \ldots, \bar{a}_{n-1}) \), and the nondividing of \(q \) over \(A \), we have that

\[
\{ \phi(\bar{a}_0, \ldots, \bar{a}_{n-1}, \bar{a}_i, x) \wedge \neg \phi(\bar{a}_0, \ldots, \bar{a}_{n-1}, \bar{a}_{i+1}, x) : i = n, n + 2, n + 4, \ldots \}
\]

is consistent, which contradicts Definition 2.1. Hence \(\models \phi(\bar{a}_0, \ldots, \bar{a}_{n-1}, \bar{a}_i, \bar{b}) \) for all \(i > n \). So by part (i), \(\phi(\bar{a}_0, \ldots, \bar{a}_{n-1}, \bar{x}, \bar{b}) \in p(\bar{x}) \). The inductive assumption gives that \(\text{tp}(\bar{a}_0, \ldots, \bar{a}_{n-1}, \bar{a}_n/A) = \text{tp}(\bar{a}_0, \ldots, \bar{a}_{n-1}, \bar{b}/A) \), so by \(A \)-invariance of \(p \), \(\phi(\bar{a}_0, \ldots, \bar{a}_{n-1}, \bar{x}, \bar{a}_n) \in p(\bar{x}) \). Thus \(\models \phi(\bar{a}_0, \ldots, \bar{a}_{n-1}, \bar{a}_{n+1}, \bar{a}_n) \) and, by total indiscernibility of \(I \) over \(A \) (part (iii)), \(\models \phi(\bar{a}_0, \ldots, \bar{a}_{n-1}, \bar{a}_n, a_{n+1}) \).

We have shown that \(q \models (A, \bar{a}_0, \ldots, \bar{a}_n) = p \models (A, \bar{a}_0, \ldots, \bar{a}_n) \), which allows the induction process to continue. The claim is proved.
Now suppose that $\phi(\bar{x}, \bar{c}) \in q(\bar{x})$. Let \bar{a}_i for $i < \omega$ be such that \bar{a}_i realizes $q \upharpoonright (A, \bar{c}, \bar{a}_0, ..., \bar{a}_{i-1})$ for all i. By the claim $(\bar{a}_i; i < \omega)$ is a Morley sequence of p over A. But $\phi(\bar{a}_i, \bar{c})$ for all i, hence by the proof of (i), $\phi(\bar{x}, \bar{c}) \in p$. So $q = p$. \hfill \Box

Let us note for the record that for a global type p, generically stable implies definable implies invariant, and these are strict implications.

Now we restate the notion of generic stability for groups from [1] in the context of connected groups. Recall that a definable (or even type-definable) group G is connected if it has no relatively definable subgroup of finite index. A type $p(x) \in S_G(\bar{M})$ is left G-invariant iff for all $g \in G$:
\[(g \cdot p)(x) \overset{\text{def}}{=} \{ \phi(g^{-1} \cdot x) : \phi(x) \in p(x) \} = p(x);\]
laterly for right G-invariant.

Definition 2.2. Let G be a definable (or even type-definable) connected group in \bar{M}. G is **generically stable** if there is a global complete 1-type $p(x)$ extending $'x \in G'$ such that p is generically stable and left G-invariant.

As in the NIP context, we show that a generically stable left invariant type is also right invariant and is unique such (and we will call it the generic type):

Lemma 2.1. Suppose that G is generically stable, witnessed by $p(x)$. Then $p(x)$ is the unique left-invariant and also the unique right-invariant type.

Proof. First we prove that p is right invariant. Let (a, b) be a Morley sequence in p over (any small) A. By left invariance $g = a^{-1} \cdot b \models p \upharpoonright A$. By total indiscernibility we have $\text{tp}(a, b) = \text{tp}(b, a)$, so $g^{-1} = b^{-1} \cdot a \models p \upharpoonright A$. This proves that $p = p^{-1}$. Now, for any $g \in G$ we have
\[p = g^{-1} \cdot p = (g^{-1} \cdot p)^{-1} = p^{-1} \cdot g = p \cdot g,\]
so p is also right-invariant.

For the uniqueness, suppose that q is a left invariant global type and we prove that $p = q$. Let $\phi(x) \in q$ be over A, let $I = (a_i : i \in \omega)$ be a Morley sequence in p over A, and let $b \models q \upharpoonright (A, I)$. Then, by left invariance of q, for all $i \in \omega$ we have $\models \phi(a_i \cdot b)$. By Proposition 2.1(i) we get $\phi(x \cdot b) \in p(x)$ and, by right invariance, $\phi(x) \in p(x)$. Thus $p = q$. \hfill \Box
3 Global regularity

For stable \(T \), a stationary type \(p(x) \in S(A) \) is said to be regular if for any \(B \supseteq A \), and \(b \) realizing a forking extension of \(p \) over \(B \), \(p|B \) (the unique nonforking extension of \(p \) over \(B \)) has a unique complete extension over \((B, b) \). Appropriate versions of regularity (where we do not have stationarity) have been given for simple theories for example. Here we give somewhat different versions for global “invariant” types in arbitrary theories. So the reader should be aware that our definitions below are not consistent with usual terminology for simple theories, although they are of course consistent with the stable case.

Definition 3.1. Let \(p(\bar{x}) \) be a global non-algebraic type.

(i) \(p(\bar{x}) \) is said to be *regular* if, for some small \(A \), it is \(A \)-invariant and for any \(B \supseteq A \) and \(\bar{a} \) realizing a forking extension of \(p \) over \(B \), \(\bar{a} \models p|A \): either \(\bar{a} \models p|B \) or \(p|B \vdash p|B \bar{a} \).

(ii) Suppose \(\phi(\bar{x}) \in p \). We say that \((p(\bar{x}), \phi(\bar{x}))\) is *strongly regular* if, for some small \(A \) over which \(\phi \) is defined, \(p \) is \(A \)-invariant and for all \(B \supseteq A \) and \(\bar{a} \) satisfying \(\phi(\bar{x}) \), either \(\bar{a} \models p|B \) or \(p|B \vdash p|B \bar{a} \).

Remark 3.1. If \(p \) is regular then as a witness-set \(A \) in the definition we can take any small \(A \) such that \(p \) is \(A \)-invariant. Similarly for strongly regular types. Also note that strongly regular implies regular.

Definition 3.2. Let \(N \) be any submodel of \(\bar{M} \) (possibly \(N = \bar{M} \)), and let \(p(x) \in S_1(N) \). The operator \(\text{cl}_p \) is defined on (all) subsets of \(N \) by:

\[
\text{cl}_p(X) = \{a \in N \mid a \not\models p|X\}.
\]

Also define \(\text{cl}_p^A(X) = \text{cl}_p(X \cup A) \) for any \(A \subset N \) (and \(X \subseteq N \)).

Intuitively, having fixed \(p(x) \in S(N) \) and \(B \subset N \) then realizations of \(p|B \) are considered as ‘generic over \(B \)’ so formulas in \(p(x) \) should be considered as defining ‘large’ subsets of \(N \) and their negations as defining ‘small’ subsets. In this way, \(\text{cl}_p(B) \) is the union of all ‘small’ definable subsets. In the rest of this section we will be interested in the case where \(N = \bar{M} \). But later in the paper we will consider other \(N \).

Remark 3.2. Let \(p(x) \in S_1(\bar{M}) \) be \(A \)-invariant, where \(A \) is small.

(i) Strong regularity of \((p(x), x = x)\) translates into a simpler expression using \(\text{cl}_p \):
(p(x), x = x) is strongly regular iff \(p \upharpoonright B \vdash p \upharpoonright \text{cl}_p(B) \) for any small \(B \supseteq A \).

Since \(a \models p \upharpoonright B \) is the same as \(a \notin \text{cl}_p(B) \), another equivalent way of expressing strong regularity of \((p(x), x = x)\) is:

\[
\begin{align*}
 a \models p \upharpoonright B & \iff a \models p \upharpoonright \text{cl}_p(B) & \text{(for all } a \in \bar{M} \text{ and small } B \supseteq A) \end{align*}
\]

(ii) The corresponding expression is not so concise when \((p(x), \phi(x))\) is strongly regular or when \(p \) is just regular. For example:

\[
\begin{align*}
p \text{ is regular} & \iff p \upharpoonright AB \vdash p \upharpoonright A \cup B \cup (\text{cl}_p^A(B) \cap (p \upharpoonright A)(\bar{M})) & \text{for any small } B.
\end{align*}
\]

We can also consider the restriction of \(\text{cl}_p^A \) to \(A \cup (p \upharpoonright A)(\bar{M}) \). Formally we define (for \(B \) a small subset of \(A \cup (p \upharpoonright A)(\bar{M}) \)) \(\text{cl}_{p_A}(B) = A \cup (\text{cl}_p^A(B) \cap (p \upharpoonright A)(\bar{M})) \). Then we have a simple consequence of regularity; \(p \) is regular implies

\[
p \upharpoonright AB \vdash p \upharpoonright \text{cl}_{p_A}(B) & \text{ for any small } B \subset (p \upharpoonright A)(\bar{M}).
\]

As in (i) this is translated to: if \(p \) is regular then

\[
a \models p \upharpoonright AB & \iff a \models p \upharpoonright \text{cl}_{p_A}(B) & \text{(for any } a \in \bar{M} \text{ and small } B \subset (p \upharpoonright A)(\bar{M})).
\]

(iii) Note that in (i) and (ii) we took into account only small \(B \)'s, while Definition 3.1 mentions all \(B \)'s. But this does not matter, since in all of them the statements with and without ‘small’ are easily seen to be equivalent.

Lemma 3.1. Suppose that \(A \) is small and \(p \in S_1(\bar{M}) \) is \(A \)-invariant.

(i) \((p(x), x = x)\) is strongly regular iff \(\text{cl}_p^A \) is a closure operator on \(\bar{M} \).

(ii) Suppose that \((p(x), x = x)\) is strongly regular. Then \(\text{cl}_p^A \) is a pregeometry operator on \(\bar{M} \) iff every Morley sequence in \(p \) over \(A \) is totally indiscernible.

(iii) Suppose that \(p \) is regular. Then \(\text{cl}_{p_A} \) is a closure operator on \(A \cup (p \upharpoonright A)(\bar{M}) \); it is a pregeometry operator iff every Morley sequence in \(p \) over \(A \) is totally indiscernible.

Proof. (i) Assume that \((p(x), x = x)\) is strongly regular. Then for any small \(B \supseteq A \) we have:

\[
a \notin \text{cl}_p(B) & \iff a \models p \upharpoonright B & \iff a \models p \upharpoonright \text{cl}_p(B) & \iff a \notin \text{cl}_p(\text{cl}_p(B)).
\]
The first and the last equivalence follow from the definition of cl_p and the middle one is by Remark 3.2(i). Thus $\text{cl}_p(B) = \text{cl}_p(\text{cl}_p(B))$ so cl_p is a closure operator on \bar{M}. The other direction is similar.

(ii) Suppose that $(p(x), x = x)$ is strongly regular and that every Morley sequence in p over A is totally indiscernible. To show that cl_p is a pre-geometry operator, by part (i), it suffices to verify the exchange property over finite extensions $B \supset A$. Let $(a_1, ..., a_n) \in B^n$ be a maximal Morley sequence in p over A; note that it is finite since it is in $B \setminus A$, which is finite. Then $B \subseteq \text{cl}_p^A(a_1, ..., a_n)$ (otherwise any element in the difference would contradict the maximality) and, since cl_p is a closure operator, we get

$$\text{cl}_p^A(B) \subseteq \text{cl}_p^A(a_1, ..., a_n)$$

and thus $\text{cl}_p^A(B) = \text{cl}_p^A(a_1, ..., a_n)$.

To verify exchange, let $a \models p | B$ (so $a \notin \text{cl}_p^A(B)$) and let $b \in \bar{M}$. Note that $(a_1, ..., a_n, a)$ is a Morley sequence in p over A and $\text{cl}_p^A(Ba) = \text{cl}_p^A(a_1, ..., a_n, a)$.

We have:

$$b \notin \text{cl}_p^A(Ba) \iff b \notin \text{cl}_p^A(a_1, ..., a_n, a) \iff (a_1, ..., a_n, a, b) \text{ is a Morley sequence} \iff (a_1, ..., a_n, b, a) \text{ is a Morley sequence} \iff (b \notin \text{cl}_p^A(B) \text{ and } a \notin \text{cl}_p^A(Bb)).$$

In particular $b \notin \text{cl}_p^A(Ba)$ implies $a \notin \text{cl}_p^A(Bb)$. This proves exchange.

(iii) This is similar to (i) and (ii). Suppose that p is regular, let $B \subset (p | A)\bar{M}$ be small and let $a \models p | A$. Then:

$$a \notin \text{cl}_{p,A}^A(B) \iff a \models p | AB \iff a \models p | \text{cl}_{p,A}^A(B) \iff a \notin \text{cl}_{p,A}^{p,A}(\text{cl}_{p,A}^A(B)),$$

the first equivalence and the last equivalence follow from the definition of $\text{cl}_{p,A}$ and the middle one is by Remark 3.2(ii). Thus $\text{cl}_p(B) = \text{cl}_p(\text{cl}_p(B))$.

The other clause is proved as in part (ii).

Theorem 1. Suppose that A is small and $p(x) \in S_1(\bar{M})$ is A-invariant and regular.

(i) If p is symmetric, then $\text{cl}_{p,A}$ is a pre-geometry operator on $A \cup (p | A)\bar{M}$.

In the case where $a \models (p(x), x = x)$ is strongly regular, cl_p is a pre-geometry operator on \bar{M}.

(ii) If p is not symmetric, then there exists a finite extension A_0 of A and a A_0-definable partial order \leq such that every Morley sequence in p over A_0 is strictly increasing.
Proof. If \(p \) is symmetric then every Morley sequence in \(p \) over \(A \) is totally indiscernible and (i) follows from Lemma 3.1.

Now suppose that \(p \) is not symmetric. Then, as mentioned in the introduction, there is a finite extension \(A_0 \supset A \) and a Morley sequence \((a,b) \) of length 2 in \(p \) over \(A_0 \) such that \(\text{tp}(a,b/A_0) \neq \text{tp}(b,a/A_0) \). Choose \(\phi(x,y) \in \text{tp}(a,b/A_0) \) witnessing the “asymmetry”: \(\models \phi(x,y) \to \neg \phi(y,x) \). Then \(\phi(a,x) \land \neg \phi(x,a) \in \text{tp}(b/aA_0) \subset p(x) \) so \(\phi(x,a) \not\in p(x) \). We claim that

\[
(p \vert A_0)(t) \cup \{ \phi(t,a) \} \cup \{ \neg \phi(t,b) \}
\]

is inconsistent. Otherwise, there is \(d \) realizing \(p \vert A_0 \) such that \(\models \phi(d,a) \land \neg \phi(d,b) \). Then \(d \) does not realize \(p \vert (A_0,a) \) (witnessed by \(\phi(x,a) \)) so, by regularity, \(p \vert (A_0,a) \vdash p \vert (A_0,a,d) \) and thus \(b \models p \vert (A_0,a,d) \). In particular \(b \models p \vert (A_0,d) \) and since, by invariance, \(\phi(d,x) \in p(x) \) we conclude \(\models \phi(d,b) \). A contradiction.

By this claim, and compactness, we find \(\theta(t) \in p \vert A_0 \) such that

\[
(\forall t)(\phi(t,a) \land \theta(t) \to \phi(t,b)).
\]

Let \(x \lesssim y \) be \((\forall t)(\phi(t,x) \land \theta(t) \to \phi(t,y)) \). Clearly, \(\lesssim \) defines a quasi order and \(a \lesssim b \). Also:

\[
\models \phi(a,b) \land \theta(a) \land \neg \phi(a,a);
\]

The first conjunct follows by our choice of \(\phi \), the second from \(a \models p \vert A_0 \), and the third from the asymmetry of \(\phi \). Altogether they imply \(b \neq a \). Thus if \(x < y \) is \(x \lesssim y \land y \not\lesssim x \) we have \(a < b \).

The next examples concern issues of whether symmetric regular types are definable or even generically stable. But we first give a case where this is true (although it depends formally on Theorem 3 of the next section).

Corollary 1. Suppose that \(p(x) \) is strongly regular and symmetric. Then \(p(x) \) is generically stable.

Proof. If \(p(x) \) is invariant-strongly regular then, by Theorem 1(i) \(\text{cl}_p \) is a pregeometry operator on \(M \), and then \(p(x) \) is generically stable by Theorem 3(ii).

Example 3.1. A symmetric, definable, strongly regular type which is not generically stable: Let \(L = \{U,V,E\} \) where \(U,V \) are unary and \(E \) is a binary predicate. Consider the bipartite graph \((M,U^M,V^M,E^M) \) where \(U^M = \omega \).
V^M is the set of all finite subsets of ω, $M = U^M \cup V^M$, and $E^M = \{(u, v) : u \in U^M, v \in V^M, \text{ and } u \in v\}$. Let $A \subset M$ be finite. Then:

If $(c_1, ..., c_n), (d_1, ..., d_n) \in (U^M)^n$ have the same quantifier-free type over A then $tp(c_1, ..., c_n/A) = tp(d_1, ..., d_n/A)$, since the involution of ω mapping c_i’s to d_i’s respectively, and fixing all the other elements of ω is an A-automorphism of M. Note that this is expressible by a set of first-order sentences, so is true in the monster.

Further, if $e_1, ..., e_n \in U^M$ are distinct and have the same type over A then, since every permutation of ω which permutes $\{e_1, ..., e_n\}$ and fixes all the other elements of ω is an A-automorphism of M, $(e_1, ..., e_n)$ is totally indiscernible over A. This is also expressible by a set of first-order sentences.

Let $p(x) \in S_1(M)$ be the type of a “new” element of U which does not belong to any element of V^M. Then, by the above, p is definable, its global heir \bar{p} is symmetric, and $(\bar{p}(x), U(x))$ is strongly regular.

Example 3.2. A symmetric, strongly regular type which is not definable: Consider the bipartite graph (M, U^M, V^M, E^M) where $U^M = \omega$, V^M consists of all finite and co-finite subsets of ω, $M = U^M \cup V^M$, and E^M is \in. Let \bar{M} be the monster and let $p(x) \in S_1(\bar{M})$ be the type of a new element of U^M, which belongs to all co-finite members of V^M (and no others). Arguing as in the previous example $(p(x), U(x))$ is strongly regular and symmetric. Since “being a co-finite subset of U^M” is not definable, p is not definable.

Definition 3.3. Let G be a definable group in \bar{M}. G is called an **regular group** if for some global type $p(x) \in S_G(\bar{M})$, $(p(x), “x \in G”) \text{ is strongly regular } \text{(in particular invariant over some small set).}$

We will see in Example 5.1 that non symmetric regular groups, and even fields, exist.

Theorem 2. Suppose that G is a group definable over \emptyset, which is regular, witnessed by $p(x) \in S_G(\bar{M})$. Then:

(i) $p(x)$ is both left and right translation invariant (and in fact invariant under definable bijections).

(ii) A formula $\phi(x)$ is in $p(x)$ iff two left (right) translates of $\phi(x)$ cover G iff finitely many left (right) translates of $\phi(x)$ cover G. (Hence $p(x)$ is the unique “generic type” of G.)
(iii) $p(x)$ is definable over \emptyset.

(iv) $G = G^0$ (i.e. G is connected).

Proof. (i) Suppose that $f : G \to G$ is a B-definable bijection and $a \models p | B$. Since $p | B \vdash p | (B, f(a))$ is not possible, by strong regularity, we get $f(a) \not\models p | B$. Thus p is invariant under f.

(ii) Suppose that $D \subseteq G$ is defined by $\phi(x) \in p(x)$ which is over A. Let $g \models p | A$ and we show $G = D \cup g \cdot D$. If $b \in G \setminus D$ then b does not realize $p | A$ so, by strong regularity, $g \models p | (A, b)$. By (i) $g^{-1} \models p | (A, b)$, thus $g^{-1} \in D \cdot b^{-1}$ and $b \in g \cdot D$. This proves $G = D \cup g \cdot D$.

For the other direction, if finitely many translates of $\psi(x)$ cover G then at least one of them belongs to $p(x)$ and, by (i), $\psi(x) \in p(x)$.

(iii) and (iv) follow immediately from (ii). \qed

Question. Is every regular group commutative?

4 Homogeneous pregeometries

If (M, cl) is a pregeometry then, as usual, we obtain notions of independence and dimension: for $A, B \subseteq M$ we say that A is independent over B if $a \notin \text{cl}(A \setminus \{a\} \cup B)$ for all $a \in A$. Given A and B, all subsets of A which are independent over B and maximal such, have the same cardinality, called $\dim(A/B)$. (M, cl) is infinite-dimensional if $\dim(M/\emptyset) \geq \aleph_0$.

Remark 4.1. (i) If \bar{c} is a tuple of length n then $\dim(\bar{c}/B) \leq n$ for any B.

(ii) If $l(\bar{c}) = n$, $|A| \geq n + 1$ and A is independent over B then there is $a \in A$ such that $a \notin \text{cl}(B \cup \bar{c})$.

Definition 4.1. We call an infinite-dimensional pregeometry (M, cl) homogeneous if for any finite $B \subseteq M$, the set of all $a \in M$ such that $a \notin \text{cl}(B)$ is the set of realizations in M of a complete type $p_B(x)$ over B.

Note that Definition 4.1 relates in some way the closure operation to the first-order structure. But it does not say anything about automorphisms, and nothing is being claimed about the homogeneity or strong homogeneity of M as a first-order structure. In particular we do not want to assume M to be a saturated structure.
Lemma 4.1. Suppose \((M, \text{cl})\) is a homogeneous pregeometry.

(i) \(p_{\text{cl}}(x) = \bigcup \{p_B(x) : B \text{ finite subset of } M\}\) is a complete 1-type over \(M\), which we call the generic type of the pregeometry \((M, \text{cl})\).

(ii) \(a \notin \text{cl}(B)\) iff \(a \models p_{\text{cl}}(x)|_B\). In particular \(\text{cl} = p_{p_{\text{cl}}}\).

(iii) \(I = (a_i : i < \omega)\) is independent over \(B\) iff \(a_i \models p_{\text{cl}}|(B, a_0, ..., a_{i-1})\) for all \(i\). In particular, if \(M = \bar{M}\) and \(p_{\text{cl}}\) is \(B\)-invariant then \(I\) is independent over \(B\) iff it is a Morley sequence in \(p_{\text{cl}}\) over \(B\).

Proof. (i) Consistency is by compactness: given \(A_1, ..., A_n\) finite subsets of \(M\) and \(B = A_1 \cup ... \cup A_n\), clearly \(p_{A_1}(x) \cup ... \cup p_{A_n}(x) \subseteq p_B(x)\) and the later is consistent. Completeness is clear.

(ii) and (iii) are easy. \(\square\)

Lemma 4.2. Suppose \((M, \text{cl})\) is a homogeneous pregeometry. Let \((a_i : i < \omega)\) be an \(\emptyset\)-independent subset of \(M\). Then for any \(L\)-formula \(\phi(x, \bar{y})\) with \(l(\bar{y}) = n\), and \(n\)-tuple \(\bar{b}\) from \(M\):

\[
\phi(x, \bar{b}) \in p_{\text{cl}}(x) \iff \land_{i \in w} \phi(a_i, b) \text{ for some } w \subset \{1, ... 2n\}, |w| = n + 1.
\]

In particular \(p_{\text{cl}}(x)\) is definable.

Proof. If \(\phi(x, \bar{b})\) is large (namely in \(p_{\text{cl}}\)), then its negation is small, and thus if \(M \models \neg \phi(a, \bar{b})\) then \(a \in \text{cl}(\bar{b})\). By Remark 3.4(ii), at most \(n\) many \(a_i\)'s can satisfy \(\neg \phi(x, \bar{b})\), hence at least \(n + 1\) among the first \(2n + 1\) \(a_i\)'s satisfy \(\phi(x, \bar{b})\). Conversely, if at least \(n + 1\) \(a_i\)'s satisfy \(\phi(x, \bar{b})\) then, again by Remark 3.4(ii), \(\phi(x, \bar{b})\) can not be small, so it is large. \(\square\)

In the next Proposition we make use of Definition 3.2 from the previous section.

Proposition 4.1. Suppose \((M, \text{cl})\) is a homogeneous pregeometry. Let \(p(x)\) be the generic type and let \(\bar{p}(x)\) be its (unique by definability) global heir.

(i) \((\bar{M}, \text{cl}_{\bar{p}})\) is a homogeneous pregeometry and \(\text{cl}\) is the restriction of \(\text{cl}_{\bar{p}}\) to \(M\).

(ii) If \((a_1, ..., a_n)\) (from \(\bar{M}\)) is independent over \(A\) then:

15
Lemma 4.2. But if (b) (the same way. This implies that \bar{p} by (ii), it is also cl \bar{p} is proved in a similar fashion and left to the reader.

As exchange holds inside M, with parameters \bar{b} witnessed. To prove exchange it suffices to see that $\phi(x_1, x_2, \bar{b}) \in \bar{p}(x_1, x_2)$ iff $\phi(x_2, x_1, \bar{b}) \in \bar{p}(x_1, x_2)$. By definability of $\bar{p}(x)$, there are formulas $\delta_1(\bar{z})$ and $\delta_2(\bar{z})$ over M such that for any \bar{b}' from M, we have

$$\phi(x_1, x_2, \bar{b}') \in \bar{p}(x_1, x_2) \text{ iff } \delta_1(\bar{b}'), \text{ and}$$

$$\phi(x_2, x_1, \bar{b}') \in \bar{p}(x_1, x_2) \text{ iff } \delta_2(\bar{b}').$$

As exchange holds inside M, we have $M \models \forall \bar{z}(\delta_1(\bar{z}) \leftrightarrow \delta_2(\bar{z}))$. Hence this also holds in M.

(ii) We prove it by induction on n. For $n = 1$, by definition, we have $a_1, b_1 \models \bar{p} \mid A$. Now assume true for n and prove for $n + 1$. Without loss of generality $A = \emptyset$. Suppose first that $\text{tp}(b_1, ..., b_{n+1}) = \text{tp}(a_1, ..., a_{n+1})$. Let a' realize $p \mid (a_1, ..., a_{n+1}, b_1, ..., b_{n+1})$. So $\text{tp}(a_1, ..., a_n, a') = \text{tp}(a_1, ..., a_n, a')$. On the other hand, by the induction assumption (over \emptyset), $(b_1, ..., b_n)$ is independent, so independent over a' (by symmetry). By induction assumption applied over a', $\text{tp}(b_1, ..., b_n, a') = \text{tp}(a_1, ..., a_n, a')$. Hence $\text{tp}(b_1, ..., b_n, a') = \text{tp}(b_1, ..., b_n, b_{n+1})$. As $a' \notin \text{cl}_p(b_1, ..., b_n)$, also $b_{n+1} \notin \text{cl}_p(b_1, ..., b_n)$. Thus $(b_1, ..., b_n, b_{n+1})$ is independent.

The converse (if $(b_1, ..., b_{n+1})$ is independent then it realizes $\text{tp}(a_1, ..., a_{n+1})$) is proved in a similar fashion and left to the reader.

(iii) By part (i), Lemma 4.2 also applies to the pregeometry cl_p. Let $(a_i : i \in \omega)$ be cl_p-independent. Then $\bar{p}(x)$ is defined over $(a_i : i \in \omega)$ as in Lemma 4.2. But if $(b_i : i \in \omega)$ has the same type as $(a_i : i \in \omega)$ then, by (ii), it is also cl_p-independent, hence $\bar{p}(x)$ is defined over $(b_i : i \in \omega)$ in the same way. This implies that \bar{p} is \emptyset-invariant. Thus, by Lemma 4.1(iii)
a Morley sequence in \bar{p} is the same thing as an infinite cl_p-independent set. By Lemma 4.2 and Definition 2.1, \bar{p} is generically stable.

(iv) By part (i) (\bar{M}, cl_p) is a pregeometry so, by Lemma 3.1(i), $(\bar{p}(x), x = x)$ is strongly regular.

We now drop (for a moment) all earlier assumptions and summarize the situation:

Theorem 3. Let T be an arbitrary theory.

(i) Let $p(x)$ be a global \emptyset-invariant type such that $(p(x), x = x)$ is strongly regular. Then (\bar{M}, cl_p) is a homogeneous pregeometry.

(ii) On the other hand, suppose $M \models T$ and (M, cl) is a homogeneous pregeometry. Then there is a unique global \emptyset-invariant generically stable type $p(x)$ such that $(p(x), x = x)$ is strongly regular, and such that the restriction of cl_p to M is precisely cl.

We end this section by pointing out the connection to exponential fields, as mentioned to us by Kirby. In [3], Jonathan Kirby proved that $\text{ecl}(-)$, “exponential algebraic closure”, as originally defined by Macintyre, gives a pregeometry on any exponential field, and this result extends those of Wilkie [7] for the complex exponential field. It is an open question whether for the complex exponential field, $\text{ecl}(-)$ is homogeneous in the sense of Definition 4.1 above. A positive answer would yield quasiminimality for the complex exponential field as well as generic stability and strong regularity of its (unique) exponentially transcendental type. On the other hand, a positive answer does exist for Zilber’s pseudoexponentiation and some other exponential fields.

5 Quasiminimal structures

Recall that a 1-sorted structure M in a countable language is called quasiminimal if M is uncountable and every definable (with parameters) subset of M is countable or co-countable; the definition was given by Zilber in [8]. Here we investigate the general model theory of quasiminimality, continuing an earlier work by Itai, Tsuboi and Wakai [2].

Throughout this section fix a quasiminimal structure M and let \bar{M} be a saturated elementary extension. The set of all formulas (with parameters)
defining a co-countable subset of M forms a complete 1-type $p(x) \in S_1(M)$; we will call it the generic type of M. If $p(x)$ happens to be definable we will denote its (unique) global heir by $\bar{p}(x)$.

Remark 5.1. (i) In quasiminimal structures Zilber’s countable closure operator ccl is defined via cl_p:

$$\text{cl}_p^0(A) = \text{cl}_p(A), \quad \text{cl}_p^{n+1}(A) = \text{cl}_p(\text{cl}_p^n(A)) \quad \text{and} \quad \text{ccl}(A) = \bigcup_{n \in \omega} \text{cl}_p^n(A).$$

(ii) If A is countable then $\text{ccl}(A)$ is countable, too. ccl is a closure operator on M.

(iii) cl_p is a closure operator iff $\text{cl}_p = \text{ccl}$ (which is in general not the case, see Example 5.2).

In Section 2 of [2] Itai, Tsuboi and Wakai, studied the case when M is strongly \aleph_1-homogeneous, in the model theoretic sense, namely, any partial elementary map between countable subsets extends to an automorphism of M. They proved in Proposition 2.10 there that if ccl is not a pregeometry operator then some uncountable subset of M is totally ordered by a formula, and they also remark that Maesono has strengthened in one direction the conclusion to: Th(M) has the strict order property (Remark 2.16 there). They also proved (assuming model-theoretic strong \aleph_1-homogeneity) that ccl is a pregeometry operator whenever $|M| \geq \aleph_2$.

In Theorem 4 below we will use a weaker assumption than strong \aleph_1-homogeneity, which we call countable basedness, and derive a stronger dichotomy similar to the one for strongly regular types in Theorem 1. Then, in Corollary 2 we prove that any quasiminimal structure of size at least \aleph_2 must be of symmetric type; in particular, (M, ccl) is a homogeneous pregeometry (in the sense of the previous section) after possibly countably many parameters from M into the language. In Theorem 5 we will prove that the failure of countable basedness implies the strict order property.

Recall from the introduction that p does not split over A, if $(\phi(x, \bar{b}_1) \leftrightarrow \phi(x, \bar{b}_2)) \in p(x)$ for all $\phi(x, \bar{y})$ over A and all $\bar{b}_1, \bar{b}_2 \in M$ realizing the same type over A. We talk explicitly about splitting rather than invariance, because M need not be saturated/homogeneous. Remember that in this section we are taking $p(x) \in S_1(M)$ to be the unique “generic” type of M consisting of all formulas defining co-countable sets.

Definition 5.1. (i) $p(x)$ is based on A if:

\[p \text{ does not split over } A \text{ and } \text{ccl}(AC) \subsetneq M \text{ for all finite } C \subset M \]

(ii) \(p(x) \) (or \(M \)) is \textit{countably based} if there is a countable \(A \subset M \) such that it is based on \(A \).

The technical condition \(\text{ccl}(AC) \subsetneq M \) is satisfied by any countable \(A \), so countable baseness is equivalent to the existence of a countable subset \(A \) over which \(p \) does not split. In the proof of Corollary 2 we will use an uncountable base set, and this is why it is added: it describes a relative smallness of \(A \) in \(M \).

If \(p \) does not split over \(A \) then we say that \((a_1, \ldots, a_n) \) is a weak Morley sequence in \(p \) over \(A \) if \(a_k \) realizes \(p \upharpoonright (A, a_1, \ldots, a_{k-1}) \) for all relevant \(k \). As in the case of global invariant types weak Morley sequences are indiscernible over \(A \). Now we can state one of our main theorems, whose proof will be presented in a somewhat more general context in the next section, and then draw an important Corollary.

Theorem 4. Suppose that \(p(x) \) is based on \(A \subset M \). Then \(\text{cl}^A_p \) is a closure operator and exactly one of the following two holds:

1. Every (some) weak Morley sequence in \(p \) over \(A \) is totally indiscernible; in this case \((M, \text{cl}^A_p) \) is a homogeneous pregeometry, \(p \) is definable over \(A \), \(\bar{p} \) (its unique global heir) is generically stable and \((\bar{p}(x), x = x) \) is strongly regular.

2. There exists a weak Morley sequence in \(p \) over \(A \) which is not totally indiscernible; in this case there is a finite extension \(A_0 \) of \(A \) and an \(A_0 \)-definable partial order \(\leq \) such that every weak Morley sequence in \(p \) over \(A_0 \) is strictly increasing.

Corollary 2. If \(|M| \geq \aleph_2 \) then \(p \) is definable (hence countably based) and the first case of Theorem 4 holds.

Proof. Suppose \(|M| \geq \aleph_2 \) and let \(M_0 \subset M \) be ccl-closed of size \(\aleph_1 \). First we show that \(p(x) \) is finitely satisfiable in \(M_0 \) (actually it is finitely satisfiable in any uncountable subset of \(M \)): for any \(\phi(x) \in p(x) \) \(\phi(M) \) is co-countable, so \(\phi(M) \) intersects \(M_0 \). Thus \(p \) does not split over \(M_0 \) and, since \(|\text{ccl}(M_0C)| = \aleph_1 \) for any countable \(C \), \(p \) is based on \(M_0 \). Theorem 4 applies; we will show that Case (1) holds. Otherwise, there is a definable \(< \) and a strictly increasing
sequence \(\{a_i \mid i < \omega_2\} \subset M \). Then \(x < a_{\omega_1} \) and \(a_{\omega_1} < x \) define uncountable mutually disjoint subsets of \(M \). A contradiction. Thus Case (1) holds and the conclusion follows.

Theorem 5. If \(p \) is not countably based then there exists a definable partial order (on some \(M^n \)) which has uncountable strictly increasing chains.

Proof. Suppose that \(p \) is not countably based. Then \(p \) is finitely satisfiable in no countable subset of \(M \) and, inductively, we can find a sequence \((M_i \mid i < \omega_1)\) of countable ccl-closed submodels and a sequence \((\bar{a}_i \mid i < \omega_1)\) of tuples such that for all \(i < \omega_1\):

1. \(M_i \prec M_{i+1} \) and \(M_\alpha = \bigcup_{j < \alpha} M_j \) for \(\alpha < \omega_1 \) a limit ordinal;
2. \(\bar{a}_i \in M_{i+1} \);
3. \(p \mid M_i \bar{a}_i \) is not finitely satisfiable in \(M_i \).

For each \(i < \omega_1 \) witness (3) by an \(L \)-formula \(\phi_i(x, \bar{y}, \bar{z}) \) and \(\bar{m}_i \in M_i \) such that \(\phi_i(x, \bar{m}_i, \bar{a}_i) \in p(x) \) is not satisfied in \(M_i \). Thus \(\neg \phi_i(M, \bar{m}_i, \bar{a}_i) \) is countable and contains \(M_i \). Since \(M_{i+1} \supset M_i \bar{a}_i \) is ccl-closed we have:

\[
M_i \subseteq \neg \phi_i(M, \bar{m}_i, \bar{a}_i) \subseteq M_{i+1}.
\]

We will now find uncountable \(S \subset \omega_1 \), and \(\phi(x, \bar{y}, \bar{z}) \in L \) and \(\bar{m} \) from \(M \), such that for all \(i \in S \) such that for all \(i \in S \) \(\phi(x, \bar{y}, \bar{z}) = \phi(x, \bar{y}, \bar{z}) \) and \(\bar{m}_i = \bar{m} \): Without loss of generality assume that the universe of \(M \) is \(\omega_1 \). Then \(C = \{ \alpha \in \omega_1 \mid M_\alpha = \alpha \} \) is a club subset of \(\omega_1 \). By the Pressing Down Lemma the function \(\alpha \mapsto \bar{m}_\alpha \) is constant on a stationary \(S_1 \subset C \), so the \(\bar{m}_i \)'s are the same for all \(i \in S_1 \) (say \(\bar{m} \)). Since there are only countably many possibilities for the \(\phi_i \) there is uncountable \(S \subset S_1 \) such that \(\phi_i \)'s are the same for all \(i \in S \) (say \(\phi \)). The family \((\neg \phi(M, \bar{m}, \bar{a}_i) \mid i \in S) \) is a strictly increasing chain of definable subsets of \(M \), yielding the Theorem.

As we see now the existence of a definable group operation on a quasiminimal structure has strong (but easy) consequences.

Theorem 6. Suppose that \(M \) is a quasiminimal group. Then \(p(x) \) is definable over \(\emptyset \), both left and right translation invariant, and \(\bar{M} \) is a regular group, in the sense of Definition \(3.5 \), witnessed by \(\bar{p}(x) \), where \(\bar{p} \) is the unique global heir of \(p \).
Proof. Let $X \subseteq M$ be definable. First we claim that X is uncountable iff $X \cdot X = M$. If X is uncountable, then X is co-countable, as is X^{-1}. So for any $a \in M$, $a \cdot X^{-1}$ is co-countable, so has nonempty intersection with X. If $d \in X \cap a \cdot X^{-1}$ then $a \in X \cdot X$, proving the claim.

It follows that $p(x)$ is definable over \emptyset. In particular it is based on \emptyset and, by Theorem 4, cl_p is a closure operator on M. The definability of p implies that cl_p is also a closure operator and $(\bar{p}(x), x = x)$ is strongly regular by Lemma 3.1(i). The rest follows from Theorem 2.

Several examples of quasiminimal structures with “bad” properties are given in [2]. For example $\omega_1 \times \mathbb{Q}$ equipped with the lexicographic order is quasiminimal, its generic type is definable over \emptyset, but which is non symmetric in the sense that Case (2) of Theorem 4 holds. We give here some other examples, including algebraic ones.

Example 5.1. A quasiminimal field with countably based “generic type”, which is “asymmetric”: In fact, every strongly minimal structure M of size \aleph_1 can be expanded to such a quasiminimal structure. Let again $I = \omega_1 \times \mathbb{Q}$ and let $<$ be the strict lexicographic order on I. Further, let $B = \{b_i \mid i \in I\}$ be a basis of the strongly minimal structure M. For each $a \in M$ let $i \in I$ be $<$-maximal for which there are $i_1, \ldots, i_n \in I$ such that $a \in \text{acl}(b_{i_1}, \ldots, b_{i_n}, b_i) \setminus \text{acl}(b_{i_1}, \ldots, b_{i_n})$; Clearly, $i = i(a)$ is uniquely determined. Now, expand (M, \ldots) to $(M, <, \ldots)$ where $b < c$ iff $i(b) < i(c)$. We will prove that $(M, <, \ldots)$ is quasiminimal. Suppose that $M_0 < M$ is a countable, $<\text{-initial}$ segment of M and that $B \setminus M_0$ does not have \leq-minimal elements, and let $a, a' \in M \setminus M_0$. Then there is an automorphism of $(B, <)$ fixing $B \cap M_0$ pointwise and moving $b_{i(a)}$ to $b_{i(a')}$. It easily extends to an M_0-automorphism of $(M, <, \ldots)$, so $b_{i(a)} \equiv b_{i(a')(M_0)}$ (in the expanded structure). Note that replacing $b_{i(a)}$ by a in B (in the definition of $<$) does not affect $<$, so $a \equiv a'(M_0)$ and there is a single 1-type over M_0 realized in $M \setminus M_0$. Since every countable set is contained in an M_0 as above, $(M, <, \ldots)$ is quasiminimal. The remaining details are left to the reader.

Question. Is every quasiminimal field algebraically closed?

The following is an example of a quasiminimal structure, which is very far from being regular: $\text{cl}_p(A) \neq \text{cl}_p(\text{cl}_p(A))$ for arbitrarily large countable A’s. In particular the generic type is not countably based.
Example 5.2. A quasiminimal structure where $\text{cl}_p \neq \text{ccl}$: Peretyatkin in [4] constructed an \aleph_0-categorical theory of a 2-branching tree. Our quasiminimal structure will a model of this theory. The language consists of a single binary function symbol $L = \{\text{inf}\}$. Let Σ be the class of all finite L-structures (A, inf) satisfying:

1. (A, inf) is a semilattice;
2. $(A, <)$ is a tree (where $x < y$ iff $\text{inf}(x, y) = x \neq y$);
3. (2-branching) No three distinct, pairwise $<$-incompatible elements satisfy: $\text{inf}(x, y) = \text{inf}(x, z) = \text{inf}(y, z)$.

Then the Fraïssé limit of Σ exists and its theory, call it T_2, is \aleph_0-categorical and has unique 1-type. If we extend the language to $\{\text{inf}, <, \perp\}$, where $x \perp y$ stands for $x \not\equiv y \land y \not\equiv x$, then T_2 has elimination of quantifiers.

Let $\bar{M}, <)$ be the monster model of T_2, let \triangleright be a lexicographic order on $I = \omega_1 \times Q$, and let $C = \{c_i | i \in \omega_1 \times Q\}$ be \triangleright-increasing. Then we can find a sequence of countable models $\{M_i | i \in \omega_1 \times Q\}$ satisfying:

(a) $M_i \prec M_j$ for all $i \prec j$;
(b) $M_i \cap C = \{c_j \in C | j \leq i\}$ for all i;
(c) $M_i \cap C < M_j \setminus M_i$ for all $i \prec j$.

Finally, let $M = \bigcup\{M_i | i \in I\}$. Clearly, C is an uncountable branch in M. Moreover, by (c), any other branch is completely contained in some M_i, and is so countable. This suffices to conclude that M is quasiminimal and that the generic type is determined by $C < x$.

Fix $c_i \in C$ and $a \in M \setminus C$ with $c_i < a$. Note that $x \not\equiv c_i$ is small, so $M_j \subseteq \text{cl}_p(c_i)$ for all $j < i$. Also, $x \perp a$ is large so $\text{cl}_p(a)$ is the union of branches containing a. Since $c_i \in \text{cl}_p(a)$ we have $M_j \subseteq \text{cl}_p(c_i) \subseteq \text{cl}_p^2(a)$; since $M_j \not\subseteq \text{cl}_p(a)$ we conclude that $\text{cl}_p(a) \neq \text{cl}_p^2(a)$ and cl_p is not a closure operator. Similarly, for any countable $A \subset M$ we can find a, c_i as above much bigger than A, and thus both realizing $p | A$. Then $x \perp a \land \neg(x \perp c_i) \in p(x)$ witness that $p(x)$ splits over A.

22
6 A general dichotomy theorem

In this section we outline a dichotomy theorem, which yields Theorem \(^4\) (the countably based quasiminimal case), and also subsumes the global strongly regular case (Theorem \(^1\)). Our set up will also apply to \(\kappa\)-quasiminimal structures, for \(\kappa\) regular (defined in the obvious way). We fix an arbitrary model \(N\) (allowing the possibility that \(N = \bar{M}\)), and a complete 1-type \(p(x)\) over \(N\). The operator \(\text{cl}_p\) defined on subsets of \(N\) may not be a closure operator, but generates one:

\[
\text{cl}_p \text{ defined on subsets of } N \text{ may not be a closure operator, but generates one:
}
\]

Definition 6.1. For \(X \subseteq N\) define: \(\text{Cl}_p(X) = \bigcup \{\text{cl}^n_p(X) \mid n \in \omega\}\) where \(\text{cl}^0_p(X) = X\), \(\text{cl}^{n+1}_p(X) = \text{cl}_p(\text{cl}_p^n(X))\).

Note that \(\text{Cl}_p\) is a closure operator and that \(\text{cl}_p\) is a closure operator if and only if \(\text{cl}_p = \text{Cl}_p\). If \(N\) is quasiminimal and \(p\) is the generic type, then \(\text{Cl}_p\) agrees with \(\text{cl}\). However, in the general case we can easily have \(\text{Cl}_p(\emptyset) = N\) which is not interesting at all; the interesting case is when \(N\) is ‘infinite dimensional’.

Definition 6.2. A \(A \subseteq N\) is **finitely \(\text{Cl}_p\)-generated over** \(B \subset N\) if there is a finite \(\bar{a} \subset A\) such that \(A \subseteq \text{Cl}_p(B\bar{a})\); if \(B = \emptyset\) then we simply say that \(A\) is finitely \(\text{Cl}_p\)-generated.

The interesting case for us is when \(N\) itself is not finitely \(\text{Cl}_p\)-generated, which **will be assumed from now on**. This is already a weak regularity assumption on \(p\), as we will see in the next section where it is proved that \(p\) is ‘locally strongly regular’. The ‘relative smallness’ of \(A \subset N\) is expressed by: \(N\) is not finitely \(\text{Cl}_p\)-generated over \(A\).

Definition 6.3. A sequence \(\{a_i \mid i \in \alpha\}\) is **\(\text{cl}_p\)-free over** \(B \subset N\) if for all \(i \leq \alpha\) \(a_i \notin \text{cl}_p(B \cup \{a_i \mid j < i\})\); \(\text{cl}_p\)-free means \(\text{cl}_p\)-free over \(\emptyset\). Similarly \(\text{Cl}_p\)-free sequences are defined.

Definition 6.4. \(p\) is **based on** \(A \subset N\) if \(p\) does not split over \(A\), and \(N\) is not finitely \(\text{Cl}_p\)-generated over \(A\).

Note that \(\text{Cl}_p\)-free sequences are also \(\text{cl}_p\)-free. Moreover, if \(A \subset N\) and \(p\) does not split over \(A\) then every \(\text{cl}_p\)-free sequence over (any domain containing) \(A\) is indiscernible, by the standard argument.

Lemma 6.1. Suppose that \(p(x)\) is based on \(A\). Then
(i) cl_p^A is a closure operator on N.

(ii) (N, cl_p^A) is a pregeometry iff every cl_p-free sequence over A is totally indiscernible.

Proof. Without loss of generality assume $A = \emptyset$.

(i) Assuming that cl_p is not a closure operator we will find a non-indiscernible cl_p-free sequence over C for some finite $C \subseteq N$, which is in contradiction with non-splitting over \emptyset. So suppose that cl_p is not a closure operator. Then there are a finite $C \subseteq N$ and $a \in N$ such that $a \in \text{cl}_p^2(C) \setminus \text{cl}_p(C)$. Since $a \notin \text{cl}_p(C)$ we have $a \models p \mid C$ so, since N is not finitely Cl_p-generated, there are $a_1, a_2 \in N$ such that (a_1, a_2) is a Cl_p-free sequence over Ca. We will prove that (a, a_1, a_2) is not indiscernible over C; since it is cl_p-free over C we have a contradiction as p does not split over C.

Witness $a \in \text{cl}_p^2(C)$ by a formula $\varphi(x, b) \in \text{tp}(a/C\bar{b})$ which is not in $p(x)$, where $\varphi(x, y_1, \ldots, y_n)$ is over C and $(b_1, \ldots, b_n) = \bar{b} \in \text{cl}_p(C)^n$. Choose $\theta_i(y_i) \in \text{tp}(b_i/C\bar{a})$ witnessing $b_i \in \text{cl}_p(C)$ (i.e. $\theta_i(y_i) \notin p(y_i)$) and let $x_1 \equiv_\varphi x_2$ denote the formula

$$(\forall \bar{y}) (\bigwedge_{1 \leq i \leq n} \theta_i(y_i) \rightarrow (\varphi(x_1, \bar{y}) \leftrightarrow \varphi(x_2, \bar{y}))).$$

It is clearly, over C and we show $a \not\equiv_\varphi a_2$: from $\models \varphi(a, \bar{b})$ (witnessing $a \in \text{cl}_p^2(C)$) and $a_2 \notin \text{Cl}_p(C)$ we derive $\models \neg \varphi(a_2, \bar{b})$ and thus \bar{b} witnesses $a \not\equiv_\varphi a_2$. On the other hand, since all realizations of θ_i’s are in $\text{cl}_p(C)$, and since $\text{tp}(a_1/\text{cl}_p(C)) = \text{tp}(a_2/\text{cl}_p(C))$, we have $a_1 \equiv_\varphi a_2$. Therefore (a, a_1, a_2) is not indiscernible over C.

(ii) Having proved (i), the proof of Lemma 3.1(ii) goes through: Let A_0 be finite, let $(a_1, \ldots, a_n) \in A_0^n$ be cl_p-free over \emptyset such that $\text{cl}_p(A_0) = \text{cl}_p(a_1, \ldots, a_n)$, let $a \models p \mid A_0$ and let $b \in N$. Then (a_1, \ldots, a_n, a) is cl_p-free over \emptyset and $\text{cl}_p(aA_0) = \text{cl}_p(a_1, \ldots, a, a)$. We have:

$b \notin \text{cl}_p(aA_0)$ iff $b \notin \text{cl}_p(a_1, \ldots, a_n, a)$ iff (a_1, \ldots, a_n, a, b) is cl_p-free over \emptyset iff (a_1, \ldots, a_n, b, a) is cl_p-free over \emptyset iff $(b \notin \text{cl}_p(A_0)$ and $a \notin \text{cl}_p(A_0b))$.

\square

Theorem 7. Suppose that $p(x)$ is based on $A \subseteq N$. Then cl_p^A is a closure operator and exactly one of the following two holds:
1. Every \(\text{cl}_p \)-free sequence over \(A \) is totally indiscernible; in this case \((N, \text{cl}_p^A)\) is a homogeneous pregeometry, \(p \) is definable over \(A \), \(\bar{p} \) (its unique global heir) is generically stable and \((\bar{p}(x), x = x)\) is strongly regular.

2. Otherwise. In which case there is a finite extension \(A_0 \) of \(A \) and an \(A_0 \)-definable partial order \(\leq \) such that every \(\text{cl}_p \)-free sequence over \(A_0 \) is strictly increasing.

Proof. To simplify the notation assume \(A = \emptyset \), it will not affect the generality. First suppose that every \(\text{cl}_p \)-free sequence over \(\emptyset \) is symmetric. Then, by Lemma 6.1(i), \(\text{cl}_p \) is a closure operator and, by Lemma 6.1(ii), it is a pregeometry operator. Since \(N \) is not finitely \(\text{cl}_p \)-generated it is infinite-dimensional so \((N, \text{cl}_p)\) is a homogeneous pregeometry and the conclusion follows from Proposition 4.1.

Now suppose otherwise. Then over some finite \(A_0 \) there is a \(\text{cl}_p \)-free sequence \((a, b)\) over \(A_0 \) such that \(\text{tp}(a, b/A_0) \neq \text{tp}(b, a)/A_0 \). So for some \(\phi(x, y) \) over \(A_0 \), we have:

1. \(a \models p|\text{cl}_p(A_0), \ b \models p|\text{cl}_p(A_0, a) \) and \(\models \phi(a, b) \);

2. \(\models \phi(x, y) \rightarrow \neg \phi(y, x) \).

We claim \(\phi(N, a) \not\subseteq \phi(N, b) \). To prove it, first note that \(\models \phi(a, b) \land \neg \phi(b, a) \) and \(b \not\in \text{cl}_p(A_0) \) imply \(\neg \phi(x, a) \in p(x) \), so \(\phi(N, a) \not\subseteq \text{cl}_p(A_0) \). Now suppose \(d \in \phi(N, a) \) and we will show \(d \in \phi(N, b) \). By the above \(d \in \text{cl}_p(A_0) \). We have two possibilities for \(d \). The first is \(d \in \text{cl}_p(A_0) \), where \(a \equiv b (\text{cl}_p(A_0)) \) and \(\models \phi(d, a) \) imply \(\models \phi(d, b) \) and we’re done. The second is \(d \not\in \text{cl}_p(A_0) \). Then \(a \) and \(d \) realize \(p|\text{cl}_p(A_0) \) and, since \(p \) does not split over \(A_0 \), we have \((\phi(a, x) \leftrightarrow \phi(d, x)) \in p(x) \); since \(d \in \text{cl}_p(A_0a) \) we have \((\phi(a, x) \leftrightarrow \phi(d, x)) \in p|\text{cl}_p(A_0a) \) and, since \(b \models p|\text{cl}_p(A_0a) \) we get \(\models \phi(a, b) \leftrightarrow \phi(d, b) \). Thus \(\models \phi(d, b) \). This proves \(\phi(N, a) \not\subseteq \phi(N, b) \).

Finally, the asymmetry of \(\phi(x, y) \) implies \(\models \neg \phi(a, a) \) so \(a \not\in \phi(N, a) \) and \(a \in \phi(N, b) \setminus \phi(N, a) \); this proves that the inclusion is proper.

\(\phi(N, x) \not\subseteq \phi(N, y) \) is an \(A_0 \)-definable strict-ordering relation \(x < y \) on \(N \) and we have \(a < b \). By non-splitting, \(a' < b' \) is true whenever \((a', b')\) is \(\text{cl}_p \)-free over \(A_0 \), so every \(\text{cl}_p \)-free sequence over \(A_0 \) is increasing. \(\square \)
7 Local regularity

Here we introduce and study “locally strongly regular types” and give applications to quasiminimal structures (see Corollary 4).

Given an arbitrary model M, $p(x) \in S_1(M)$ and $\phi(x) \in p$ we can ask when p extends to a global M-invariant \bar{p}, such that (\bar{p}, ϕ) is strongly regular. When T is stable the situation is well understood, but we are interested in the general case. Our definition of local strong regularity is actually a necessary condition for such an extension to exist. It is convenient to work with types over arbitrary sets (not just models).

Definition 7.1. A non-isolated type $p(x) \in S_1(A)$ is locally strongly regular via $\phi(x) \in p(x)$ if $p(x)$ has a unique extension over Ab whenever $b \in M$ is a finite tuple of realizations of $\phi(x)$ no element of which realizes p.

Proposition 7.1. Suppose that $p(x) \in S_1(M)$ is definable and locally strongly regular via $\phi(x) \in p(x)$, and let $\bar{p}(x)$ be its global heir. Then $(\bar{p}(x), \phi(x))$ is strongly regular (and of course definable).

Proof. Suppose that $(\bar{p}(x), \phi(x))$ is not strongly regular. Then there are $B = M\bar{b}$ and $a \in \text{cl}_p(B) \cap \phi(M)$ and $c \models \bar{p}|B$ such that c does not realize $\bar{p}|Ba$. Witness $a \in \text{cl}_p(B)$ by $\theta(y, \bar{z})$ which is over M, implies $\phi(y)$, and $\models \theta(a, \bar{b}) \land \neg(d_p\theta)(\bar{b})$ (where d_p is the defining schema of p). Similarly, find $\phi(x, y, \bar{z})$ over M such that $\models \phi(c, a, \bar{b}) \land \neg(d_p\phi)(a, \bar{b})$.

$$\models (\exists y)(\theta(y, \bar{b}) \land \neg(d_p\theta)(\bar{b}) \land \phi(c, y, \bar{b}) \land \neg(d_p\phi)(y, \bar{b}))$$

Since $\text{tp}(c/M\bar{b})$ is an heir of $p(x)$ there is $\bar{m} \in M$ and a' such that

$$\models \theta(a', \bar{m}) \land \neg(d_p\theta)(\bar{m}) \land \phi(c, a', \bar{m}) \land \neg(d_p\phi)(a', \bar{m}).$$

The first two conjuncts witness $a' \in \phi(M) \setminus p(M)$ while the last two witness that c is not a realization of $\bar{p}|Ma'$. A contradiction.

For the sake of this section we will call a sequence $(a_i \mid i \in \alpha)$ a coheir sequence over C if $\text{tp}(a_j/M(a_i \mid i < j))$ is finitely satisfiable in C for any $j < \alpha$. In particular $\text{tp}(a_0/C)$ is finitely satisfiable in C.

Proposition 7.2. Suppose that $p(x) \in S_1(C)$ is locally strongly regular via $x = x$ and that there exists an infinite, totally indiscernible (over C) sequence of realizations of p which is a coheir sequence over C. Then p has a global C-invariant extension \bar{p} such that $(\bar{p}(x), x = x)$ is strongly regular and generically stable.
Proof. Let $I = \{ a_i : i \in \omega \}$ be a totally indiscernible (over C) sequence of realizations of p which is a coheir sequence in C and let $p_n(x) = \text{tp}(a_{n+1}/Ca_1...a_n)$. We will first prove that each $p_n(x)$ is locally strongly regular via $x = x$. Suppose, on the contrary, that $p_n(x)$ is not locally strongly regular. Then there are $b_1...b_k = \bar{b}$, with none realizing $p_n(x)$, such that p_n has at least two extensions in $S_1(C\bar{b})$ (here $\bar{a} = a_1...a_n$). Let $\varphi(x, \bar{z}, \bar{y})$ be over C and such that both $\varphi(x, \bar{a}, \bar{b})$ and $\neg \varphi(x, \bar{a}, \bar{b})$ are consistent with $p_n(x)$.

Choose $\theta_i(y, \bar{a}) \in \text{tp}(b_i/C\bar{a})$ witnessing that b_i does not realize $p_n(y_i)$ and let $\phi(x_1, x_2, \bar{a})$ be

$$\exists \bar{y} \left(\bigwedge_{1 \leq i \leq n} (\theta_i(y_i, \bar{a}) \land \neg \theta_i(x_2, \bar{a})) \land \neg(\varphi(x_1, \bar{a}, \bar{y}) \leftrightarrow \varphi(x_2, \bar{a}, \bar{y})) \right).$$

It is, clearly, over C and we show $\models \phi(a_{n+2}, a_{n+1}, \bar{a})$. By our assumptions on φ and \bar{b}, there is $\bar{b}' \equiv \bar{b}(C\bar{a})$ such that $\models \neg(\varphi(a_{n+1}, \bar{a}, \bar{b}') \leftrightarrow \varphi(a_{n+1}, \bar{a}, \bar{b}'))$. Also $\models \bigwedge_{1 \leq i \leq n} (\theta_i(b_i, \bar{a}) \land \theta_i(b_i', \bar{a}) \land \neg \theta_i(a_{n+1}, \bar{a}))$. Thus for any $c \in C$ either \bar{b} or \bar{b}' in place of \bar{y} witnesses $\models \phi(c, a_{n+1}, \bar{a})$ and, since $\text{tp}(a_{n+2}/C\bar{a}a_{n+1})$ is finitely satisfiable in C, we conclude $\models \phi(a_{n+2}, a_{n+1}, \bar{a})$.

By total indiscernibility, $\text{tp}(\bar{a}/C\bar{a}a_{n+1}a_{n+2})$ is finitely satisfiable in C, so there are $\bar{c} \in C$ and \bar{d} such that

$$\bigwedge_{1 \leq i \leq n} (\theta_i(d_i, \bar{c}) \land \neg \theta_i(a_{n+1}, \bar{c})) \land \neg(\varphi(a_{n+2}, \bar{c}, \bar{d}) \leftrightarrow \varphi(a_{n+1}, \bar{c}, \bar{d})).$$

$$\bigwedge_{1 \leq i \leq n} (\theta_i(d_i, \bar{c}) \land \neg \theta_i(a_{n+1}, \bar{c}))$$

witnesses that no d_i realizes p, and $\neg(\varphi(a_{n+2}, \bar{c}, \bar{d}) \leftrightarrow \varphi(a_{n+1}, \bar{c}, \bar{d}))$ witnesses that p does not have a unique extension over Cd; a contradiction.

Therefore each $p_n(x)$ is locally strongly regular via $x = x$. It easily follows that $p_I(x) = \cup_{n \in \omega} p_n(x) \in S_1(CI)$ is locally strongly regular via $x = x$ as well. Moreover, the same is true whenever $I' \subset \bar{M}$ is an indiscernible (over C) extension of I; then I' is also totally indiscernible over C and $p_{I'}(x) \in S(CI')$, defined by:

$$\phi(x, \bar{a}') \in p_{I'} \ (\text{where } \phi(x, \bar{y}) \text{ is over } C \text{ and } \bar{a}' \in I') \text{ iff } \phi(x, \bar{a}) \in p_I(x) \text{ for some } \bar{a} \in I \text{ with } \bar{a} \equiv \bar{a}'(C)$$

is locally strongly regular via $x = x$ and does not split over C.

Now let $J \subset \bar{M}$ be a maximal indiscernible (over C) extension of I. By total indiscernibility and maximality of J no element of $\bar{M}\setminus CJ$ realizes $p_J(x)$, so the local strong regularity implies that p_J has a unique global extension \bar{p}. Since $p_J(x)$ does not split over C, it is easy to conclude that \bar{p} is C-invariant. To show that $(\bar{p}(x), x = x)$ is strongly regular let $A \supseteq CI$ be small and we
will prove that $\bar{p} \mid A \vdash \bar{p} \mid Ab$ for any b which does not realize $\bar{p} \mid A$. So fix such a b and let $A_0 \subseteq A$ be maximal such that $I_0 = I \cup A_0$ is a Morley sequence in \bar{p} over C. Then $\bar{p} \mid CI_0(x)$ is $p_{I_0}(x)$ (as defined above for $I' = I_0$), so is locally strongly regular via $x = x$. The maximality of A_0 implies that no $a \in A$ realizes $\bar{p} \mid CI_0$ so, by local strong regularity, $\bar{p} \mid CI_0 \vdash \bar{p} \mid A$. In particular, since b does not realize $\bar{p} \mid A$, we have that b does not realize $\bar{p} \mid CI_0$ either.

Having proved that $(\bar{p}(x), x = x)$ is strongly regular we can apply Corollary 1 to \bar{M} and \bar{p}. Note that I is a Morley sequence in \bar{p} over C, and is totally indiscernible, so \bar{p} is symmetric, and hence generically stable.

Our next goal is to prove that the generic type of a quasiminimal structure is locally strongly regular via $x = x$. This we will do in a more general situation, for any M and $p \in S_1(M)$ for which M is not finitely Cl_p-generated (with notation as in Section 6).

Proposition 7.3. Suppose $p \in S_1(M)$ and M is not finitely Cl_p-generated. Then:

(i) Whenever $I \subseteq M$ is a maximal Cl_p-free sequence then $(p \mid I)(x)$ is locally strongly regular via $x = x$, and $(p \mid I)(x) \vdash p(x)$.

(ii) $p(x)$ is locally strongly regular via $x = x$.

Proof. (i) Let $I \subseteq M$ be a maximal Cl_p-free sequence. We will prove that $(p \mid I)(x)$ is locally strongly regular via $x = x$. After passing to a subset and rearranging I if necessary we may assume that $I = \{a_i \mid i < \alpha\}$ where α is a limit ordinal.

Suppose, on the contrary, that there are $d_1, d_2 \in \bar{M}$ realizing $p \mid I$, a formula $\phi(x, \bar{y})$, and a tuple $\bar{b} = b_1b_2...b_n \in \bar{M}^n$ such that none of b_i’s realize $p \mid I$ and:

$$\models \neg \phi(d_1, \bar{b}) \land \phi(d_2, \bar{b})).$$

Choose $\theta_i(y_i) \in \text{tp}(b_i/I)$ such that $\theta_i(x) \notin p|I(x)$. To simplify notation we will assume that $\phi(x, \bar{y})$, as well as each $\theta_i(x)$, are over \emptyset (absorbing a few parameters from I into the language won’t hurt the generality). At least one of

$$\{i < \alpha \mid \models \phi(a_i, \bar{b})\} \quad \text{and} \quad \{i < \alpha \mid \models \neg \phi(a_i, \bar{b})\}$$

28
is cofinal in a. Assume the first one is cofinal and let $I_0 = \{ a_i \mid \models \phi(a_i, \bar{b}) \}$. The cofinality implies: first that $p|I$ is finitely satisfiable in I_0 (so $\text{tp}(d_1/I)$ is finitely satisfiable in I_0); second, that $p(x) \cup \{ \phi(x, \bar{b}) \}$ is finitely satisfiable in I_0, so there is a type containing it in $S_1(Id_1\bar{b})$ which is finitely satisfiable in I_0; wlog, let d_2 realizes it. Thus, both $\text{tp}(d_1/I)$ and $\text{tp}(d_2/Id_1\bar{b})$ are finitely satisfiable in I_0.

$$\models (\exists \bar{y})(\bigwedge_{1 \leq i \leq n} \theta_i(y_i) \land \neg \phi(d_1, \bar{y}) \land \phi(d_2, \bar{y})).$$

Since $\text{tp}(d_2/Id_1)$ is finitely satisfiable in I_0, there is $a_i \in I_0$ such that:

$$\models (\exists \bar{y})(\bigwedge_{1 \leq i \leq n} \theta_i(y_i) \land \neg \phi(d_1, \bar{y}) \land \phi(a_i, \bar{y})).$$

Since $\text{tp}(d_1/M)$ is finitely satisfiable in I_0, there is $a_j \in I_0$ such that:

$$\models (\exists \bar{y})(\bigwedge_{1 \leq i \leq n} \theta_i(y_i) \land \neg \phi(a_j, \bar{y}) \land \phi(a_i, \bar{y})).$$

Finally, since $a_i, a_j \in M$ there is $\bar{b} = b_1b_2...b_n \in M^n$ satisfying:

$$\models \bigwedge_{1 \leq i \leq n} (\theta_i(b_i') \land \neg \phi(a_j, \bar{b}') \land \phi(a_i, \bar{b}')).$$

But $\bigwedge_{1 \leq i \leq n} \theta_i(b_i')$ implies $\bar{b}' \in \text{cl}_p(\emptyset)$ and thus $\text{tp}(a_i/\text{cl}_p(\emptyset)) \neq \text{tp}(a_j/\text{cl}_p(\emptyset))$. A contradiction. Therefore $(p|I)(x)$ is locally strongly regular via $x = x$. The maximality of I implies $M = \text{cl}_p(I)$ so, by local strong regularity of $p|I$, we have $(p|I)(x) \models p(x)$.

(ii) $p|I$ is locally strongly regular and $(p|I)(x) \models p(x)$ implies that $p(x)$ is locally strongly regular via $x = x$. \hfill \Box

Corollary 3. The generic type of a quasiminimal structure is locally strongly regular via $x = x$.

Theorem 8. Suppose that $p \in S_1(M)$ and that (M, Cl_p) is an infinite dimensional pregeometry. Then p is definable and $(\bar{p}(x), x = x)$ is strongly regular and generically stable (where \bar{p} is the unique global heir of p).

Proof. First note that, by Proposition 7.3(ii), p is locally strongly regular via $x = x$. Now we will find an infinite, totally indiscernible sequence of realizations of p which is a coheir sequence over M. Towards this aim we first prove:

Claim. If $A \subset M$ and $a, b \in M$ are Cl$_p$-independent over A then $\text{tp}(a, b/A) = \text{tp}(b, a/A)$.

It suffices to prove the claim for A finite. Suppose, on the contrary, that $\phi(x, y)$ is over A and $\models \phi(a, b) \land \neg \phi(b, a)$. Since $b \notin \text{Cl}_p(Aa)$ we
have \(\phi(a, x) \in p(x) \) and, since \(a \notin \text{Cl}_p(Ab) \), we have \(\neg \phi(b, x) \in p(x) \). By infinite dimensionality and since \(Aab \) is finite, there is \(e \in M \setminus \text{Cl}_p(Aab) \). Then \(e \) realizes \(p|Aab \) so \(\models \phi(a, e) \land \neg \phi(b, e) \). But \(a \notin \text{Cl}_p(Ae) \) implies \(\phi(x, e) \in p(x) \) and \(b \notin \text{Cl}_p(Ae) \) implies \(\neg \phi(x, e) \in p(x) \). A contradiction. The claim is proved.

Now, let \(I \subseteq M \) be a maximal \(\text{Cl}_p \)-free sequence. We can find an infinite \(M \)-indiscernible sequence \(J = (a_i : i < \omega) \) such that for all \(i \) any formula satisfied by \(a_i \) over \(M \cup \{a_j : j < i\} \) is satisfied by some element of \(I \). Using the claim, we conclude that \(J \) is totally indiscernible over \(M \). Now apply Proposition 7.2.

Corollary 4. Suppose that \(M \) is quasiminimal and let \(p(x) \in S_1(M) \) be the “generic type” of \(M \) (consisting of formulas defining uncountable sets). Suppose that \((M, \text{ccl}) \) is a pregeometry. Then for some countable \(\text{ccl} \)-free sequence \(A \subseteq M \), \(p \) is based on \(A \), and after adding constants for elements of \(A \), is a homogeneous Then \(p \) is countably based and symmetric. Moreover, as a base set we can choose (some) infinite, countable, \(\text{ccl} \)-free sequence.

Proof. Clearly, \((M, \text{ccl}) \) is infinite-dimensional so, by Theorem 8 the generic type \(p \) is definable and symmetric. Countable baseness and symmetry follow. To prove the ‘moreover’ part, let \(M_0 \prec M \) be countable, of infinite \(\text{ccl} \)-dimension, such that \(p \) is definable over \(M_0 \) and such that \(p \) is the heir of \(p|M_0 \). Further, let \(I \subseteq M_0 \) be a maximal \(\text{ccl} \)-free subset of \(M_0 \). Then we can apply Proposition 7.3(i) to \(M_0 \) and \(I: p|I \models p|M_0 \). In particular, \(p \) is invariant over \(I \), so \(I \) is a base for \(p \). □

Thus if \(M \) is quasiminimal and \((M, \text{ccl}) \) is a pregeometry we know that the generic type is definable, but defining schema may involve parameters. In general parameters are needed as the following example shows.

Example 7.1. Quasiminimal structure where \(\text{ccl} \) is a pregeometry operator but the generic type is not \(\emptyset \)-invariant: This is a slight variation of an example from [2]. We have two unary predicates \(U, V \) and binary relation symbols \(E \) and \(f \). The domain \(M \) is the disjoint union \(U(M) \cup V(M) \). \(U(M) \) is uncountable and \(E \) is an equivalence relation on it having \(\aleph_0 \) many classes with all of them but one of size \(\aleph_0 \). \(V(M) \) is countable and contains ‘names’ for \(E \)-classes, while \(f: U(M) \longrightarrow V(M) \) is an onto projection (and \(f(a) = f(a') \iff E(a, a') \)). Let \(p(x) \) be the generic type: \(p(x) \) says that \(x \) is in the uncountable class. Then \(\text{c}_{p}^{1}(\emptyset) = V(M) \), while \(\text{c}_{p}^{2}(\emptyset) = \text{Cl}_p(\emptyset) \) contains
also all the countable E-classes. Also $\text{Cl}_p(X) = \text{Cl}_p(\emptyset) \cup X$ so (M, Cl_p) is an infinite-dimensional pregeometry. But p is not \emptyset-invariant: all the elements of $U(M)$ have the same type while $E(x,a) \land \neg E(x,b) \in p(x)$ for a in the uncountable class and b in a countable one. Therefore p is not definable over \emptyset.

Theorem 9. Suppose that $G \subseteq M$ is a definable group and $p(x) \in S_G(M)$ is locally strongly regular via “$x \in G$”. Then:

(i) $p(x)$ is both left and right translation invariant (and in fact invariant under definable bijections).

(ii) A formula $\phi(x)$ is in $p(x)$ iff two left (right) translates of $\phi(x)$ cover G iff finitely many left (right) translates of $\phi(x)$ cover G. (Hence $p(x)$ is the unique generic type of G.)

(iii) $p(x)$ is definable over \emptyset and G is connected.

(iv) $(\bar{p}(x), \text{“}x \in G\text{”})$ is strongly regular and \bar{G} is a definable-regular group. (Here \bar{p} is the unique heir of $p(x)$ and $\bar{G} \subseteq \bar{M}$ is defined by “$x \in G$”.)

Proof. (i) Suppose that $f : \bar{G} \longrightarrow \bar{G}$ is an M-definable bijection and $a \models p$. Since $p \models p | (M,f(a))$ is not possible, by local strong regularity we get $f(a) \models p$. Thus p is invariant under f.

(ii) The local strong regularity of $p(x)$ implies that whenever $g,g' \in \bar{G}$ do not realize p then $g \cdot g'$ does not realize p either. It follows that $a \cdot g \models p$ whenever $a \models p$ and $g \in \bar{G}$ does not realize p. Thus:

\[
\phi(x) \in p(x) \text{ iff } (\forall y \in \bar{G})(\neg \phi(y) \rightarrow \phi(y \cdot x)) \in p(x),
\]

and

\[
\phi(x) \in p(x) \text{ iff } \phi(\bar{G}) \cup a^{-1} \cdot \phi(\bar{G}) = \bar{G}.
\]

(iii) follows immediately from (ii), and then (iv) follows from Proposition 7.1.

\[\square\]

References

[1] E. Hrushovski, A. Pillay, *On NIP and invariant measures*, preprint: [arXiv:0710.2330v2](https://arxiv.org/abs/0710.2330), revised version, (2009).
[2] M. Itai, A. Tsuboi, K. Wakai, *Constructions of saturated quasi-minimal structure*, J. Symbolic Log. 69, (2004), 9–22.

[3] J. Kirby, *Exponential algebraicity in exponential fields*, Bull. Lond. Math. Soc. 42, (2010), 879–890.

[4] M. G. Peretyatkin, *On complete theories with a finite number of countable models* (in Russian), Algebra Logika 12, (1973), 550–576.

[5] S. Shelah, *Dependent first order theories*, Israel Jour. Math. 173, (2009), 1–60.

[6] P. Tanović, *Minimal first order structures*, to appear in Ann. Pure Appl. Logic.

[7] A. J. Wilkie, *Some local definability theory for holomorphic functions*. Model Theory with Applications to Algebra and Analysis, Vol. 1, pp. 197–213, Z. Chatzidakis, D. Macpherson, A. Pillay, A. J. Wilkie, eds., London Math. Soc. Lecture Note Ser. 349, Cambridge University Press, Cambridge (2008).

[8] B. Zilber, *Dimensions and homogeneity in mathematical structures*. Connections between Model Theory and Algebraic and Analytic Geometry, pp. 131–148, A. Macintyre ed., Quaderni di matematica 6, Seconda Univ. di Napoli, (2000).