MINI-REVIEW

Of bowels, brain and behavior: A role for the gut microbiota in psychiatric comorbidities in irritable bowel syndrome

Lars Wilmes1,2,3 | James M. Collins1,2 | Kenneth J. O’Riordan1 | Siobhain M. O’Mahony1,2 | John F. Cryan1,2 | Gerard Clarke1,3

1APC Microbiome Ireland, University College Cork, Cork, Ireland
2Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
3Department of Psychiatry and Behavioural Science, University College Cork, Cork, Ireland

Correspondence
Gerard Clarke, Department of Psychiatry and Neurobehavioural Science, Biosciences Building, University College Cork, College Road, Cork, Ireland.
Email: g.clarke@ucc.ie

Funding information
APC Microbiome Ireland is a research center funded by Science Foundation Ireland (SFI/12/RC/2273_P2). GC and JFC are funded by Horizon 2020 (848228 - DISCOvERIE).

Abstract

Background: The gastrointestinal microbiota has emerged as a key regulator of gut-brain axis signalling with important implications for neurogastroenterology. There is continuous bidirectional communication between the gut and the brain facilitated by neuronal, endocrine, metabolic, and immune pathways. The microbiota influences these signalling pathways via several mechanisms. Studies have shown compositional and functional alterations in the gut microbiota in stress-related psychiatric disorders. Gut microbiota reconfigurations are also a feature of irritable bowel syndrome (IBS), a gut-brain axis disorder sharing high levels of psychiatric comorbidity including both anxiety and depression. It remains unclear how the gut microbiota alterations in IBS align with both core symptoms and these psychiatric comorbidities.

Methods: In this review, we highlight common and disparate features of these microbial signatures as well as the associated gut-brain axis signalling pathways. Studies suggest that patients with either IBS, depression or anxiety, alone or comorbid, present with alterations in gut microbiota composition and harbor immune, endocrine, and serotonergic system alterations relevant to the common pathophysiology of these comorbid conditions.

Key results: Research has illustrated the utility of fecal microbiota transplantation in animal models, expanding the evidence base for a potential causal role of disorder-specific gut microbiota compositions in symptom set expression. Moreover, an exciting study by Constante and colleagues in this issue highlights the possibility of counteracting this microbiota-associated aberrant behavioral phenotype with a probiotic yeast, Saccharomyces boulardii CNCM I-745.

Conclusions and inferences: Such data highlights the potential for therapeutic targeting of the gut microbiota as a valuable strategy for the management of comorbid psychiatric symptoms in IBS.

KEYWORDS
anxiety, comorbidity, depression, IBS, microbiota-gut-brain axis

Abbreviations: AhR, aryl hydrocarbon receptor; ANS, autonomic nervous system; CNS, central nervous system; ENS, enteric nervous system; FMT, fecal microbiota transplantation; HPA, hypothalamic-pituitary-adrenal; IAA, indole-3-acetic acid; IBS, irritable bowel syndrome; IBS-D, diarrhea-predominant irritable bowel syndrome; IPA, indole-2,3-dioxygenase; PFC, prefrontal cortex; S. bou, Saccharomyces boulardii; SCFA, short-chain fatty acids; TLR, toll-like receptor.

Lars Wilmes and James M. Collins contributed equally to this work.
1 | INTRODUCTION

Irritable bowel syndrome (IBS), now regarded as a disorder of gut-brain axis interactions, is one of the most prevalent gastrointestinal disorders, with varying incidence rates around the globe, constituting 20–50% of the gastrointestinal workload.1,2 IBS is characterized by abdominal pain and altered bowel movement without overt structural or biochemical abnormalities.3 While the understanding of IBS has been improved in recent years, concurrent with some effective therapeutic options becoming available, many IBS patients present with psychiatric comorbidities, a subset that is much more difficult to treat. This significant cohort includes approximately 44% and 25% of IBS patients presenting at gastroenterology clinics with comorbid anxiety and depression respectively.4 Moreover, the co-occurrence of psychiatric comorbidities is associated with IBS symptom severity,5,6,7 while some studies show the efficacy of specific antidepressants in reducing IBS symptomatology.7

Psychiatric disorders, such as anxiety disorders (hereafter referred to as anxiety) and major depressive disorder (hereafter referred to as depression) are among the most prevalent mental health problems worldwide. It is estimated that approximately 10% of the global population suffers from these disorders each year.8,9 Although there has been extensive research into the pathophysiology of depression and anxiety, their diagnosis is still symptom based, with treatment options remaining suboptimal and stubbornly focused on targeting monoamine neurotransmitter pathways.10 Independently, IBS, depression, and anxiety are complex heterogenous disorders with an already difficult clinical management profile made more challenging when combined in comorbid gastrointestinal and psychiatric phenotypes.3,8,9

Research in the last decade or more points toward a role of the gut-brain axis in both IBS and psychiatric disorders.11–13 The gut is in continuous bidirectional communication with the brain through neuronal, endocrine, and immune signalling pathways. The important role the gut microbiota plays in regulating these routes of communication to influence brain function and behavior has seen this axis renamed to reflect this and it is now termed the microbiota-gut-brain axis.14

The clinical care of IBS patients with psychiatric comorbidity is complex with treatment failure common. Repositioning IBS as a disorder of gut-brain axis interactions, along with recognition of the important role played by the gut microbiota in symptom expression, has led to calls for integrated clinical management models that blend medical management with behavioral and dietary interventions.15 Here, we outline why the success of this approach for this particular subset of comorbid IBS patients demands greater focus on the common ground, and the diverging routes, that might explain why particular microbiota configurations lead to distinct clinical representations of IBS. As of now, the mechanisms underpinning these comorbidities are not fully known. A recent study also highlighted the bidirectional nature of this comorbidity by showing that psychiatric symptoms are predictive for the development of IBS, while IBS is also predictive of depression and anxiety later in life.16 Interestingly, most comorbid IBS patients develop gastrointestinal symptoms before psychiatric comorbidities.16 After a summary of the communication pathways of the microbiota-gut-brain axis, we will analyze the latest literature on psychiatric comorbidities in IBS. This review will focus in particular on alterations in the gut microbiota reported in IBS, depression, and anxiety and in IBS with comorbid anxiety and depression. We will discuss how gut microbiota signatures associated with these disorders might impact on gut-brain axis signalling pathways and the therapeutic implications of these observations.

2 | SIGNALLING PATHWAYS OF THE MICROBIOTA-GUT-BRAIN AXIS

Understanding the role of the gut microbiota in IBS and its psychiatric comorbidities requires an appreciation of the signalling pathways of the microbiota-gut-brain axis. The main routes of communication are summarized in Figure 1 and include neuronal, immune, and endocrine host signalling pathways, as well as the microbial production or regulation of bioactive molecules such as neurotransmitters, their precursors and short-chain fatty acids (SCFAs).

Neuronal communication along the microbiota-gut-brain axis is mostly mediated by the autonomic nervous system (ANS), with the enteric nervous system (ENS) arm regulating important mechanisms locally in the gastrointestinal tract. One of the most important routes of communication is the vagus nerve. The vagus nerve connects the brain to all visceral organs among others and relays information via 80% afferent and 20% efferent fibers.17–19 A portion of afferent axonal endings are located in the mucosa of the GI tract. These afferents are thought to contain a wide array of receptors, making them able to detect signals such as gut hormones, neurotransmitters, and bacterial metabolites.14

A major player in endocrine signalling of the microbiota-gut-brain axis is the hypothalamic-pituitary-adrenal (HPA) axis, the major stress axis of the body, whose activation results in the release of glucocorticoids. This endocrine signalling pathway can be restrained
at brain-level by negative feedback of glucocorticoids acting on glucocorticoid receptors. Both IBS and psychiatric disorders show dysregulation of the HPA axis.20,21 It is now appreciated that the microbiota plays a key role in the priming and regulation of this axis, shown initially by increased stress response in germ-free animals, which is reversed by colonization with specific bacteria or a more complete microbiota.22,23 In turn, it has long been known but recently reinforced in the preclinical literature that stress exposures can also modify gut microbiota composition and function.14,24

The crosstalk between the microbiota and the hosts’ immune system mostly takes place at the mucosa either by direct contact or through molecules secreted by the microbiota and is essential for priming and education of the immune system.25 The communication is facilitated by microbe-associated molecular patterns, which are sensed by colonocytes and immune cells through pattern recognition receptors such as toll-like receptors (TLRs), triggering an immune response by the secretion of cytokines. The impact of the gut microbiota on the immune system extends to the brain, shown by changes in microglia morphology and gene expression profile in germ-free animals.26,27

An important topic in the context of inflammation in the gut-brain axis is the integrity of the intestinal barrier. Changes in intestinal...
permeability create a passage for bacteria and their products from the lumen to the ENS, immune cells and systemic circulation, which can evoke an immune response. Increased intestinal permeability is associated with low-grade inflammation, a neurobiological feature of both IBS and depression.28,29

Another form of communication in the microbiota-gut-brain axis is via microbial metabolites, such as SCFAs and neurotransmitters. SCFAs are mostly used as an energy source by the host, for example, butyrate is the primary energy source for colonocytes. The SCFAs not utilized by colonocytes enter the systemic circulation and other tissues including the brain.30 SCFAs can activate a set of G-protein coupled receptors, FFAR2 and FFAR3 being the most investigated. They are found in tissues such as the colon, the heart, and immune cells. FFAR3 is also expressed in the peripheral nervous system in enteric plexi, the portal nerve and autonomic and sensory ganglia,31 which further implicates their involvement in gut-brain signalling.32

The microbiota can produce a wide range of neuroactive molecules that have implications for behavior, mood, and cognition. Many of these neurotransmitters (GABA, noradrenaline, serotonin) are involved in both gastrointestinal and brain function. One of the most important neurotransmitters in terms of the microbiota-gut-brain axis is serotonin. Serotonin is an important signalling molecule in both the central nervous system (CNS) and the ENS and is produced from the precursor tryptophan, an essential amino acid.33 The majority of serotonin is synthesized by enterochromaffin cells. However, most tryptophan is metabolized along the kynurenine pathway, whose end products have neuroactive properties and are N-methyl-D-aspartate (NMDA) receptor antagonists and agonists.34 In contrast to serotonin, both tryptophan and kynurenine can cross the blood brain barrier and are further metabolized in the brain by glial cells.35

The microbiota can directly modulate the levels of tryptophan and its metabolites by producing or utilizing tryptophan themselves.36 The third major pathway of tryptophan metabolism is microbial and results in indoles and its derivatives, such as indole-3-acetic acid (IAA), indole-3-propionic acid (IPA) ligands of the aryl hydrocarbon receptor (AhR).37 AhR is a key regulator of the immune system, involved in the function of macrophages, dendritic cells, and neutrophils.38 For example, a lack of AhR ligand-producing bacteria is associated with increased intestinal inflammation.39

Although the majority of serotonin is synthesized by the host, its production is strongly modulated by gut bacteria. Studies in germ-free animals showed that the levels of tryptophan, serotonin, and kynurenine are significantly different from conventional animals in the gut lumen, plasma, and the brain, both at baseline and following acute stress exposures.23,40–32 One of the theories involving the role of tryptophan in affective disorders is that the more tryptophan is converted into its alternative metabolites, the less tryptophan can enter the brain via the circulation, decreasing central levels of serotonin.43

Table 1: Gut signatures associated with IBS, depression, anxiety, and comorbid IBS.

Genus	Taxonomic rank	Phylum	Order	Family	Depression	Anxiety	Comorbid IBS and Depression
Bacteroides↑, 52	Firmicutes	Bacteroidetes↑, 58	Lactobacillaceae↑, 52	Enterobacteriales↑, 51	Actinobacteria↑, 51	Firmicutes↓, 45	
Bifidobacterium↑, 52	Enterobacteriales↑, 46	Enterobacteriaceae↑, 51	Prevotellaceae↑, 51	Enterobacteriaceae↑, 51	Bacteroides↑, 63	Enterobacteriales↑, 51	
Faecalibacterium↑, 52	Firmicutes						
Eubacterium↑, 58							
Bacteroides↑, 52	Firmicutes						
Bifidobacterium↓, 52	Firmicutes						
Coprococcus↓, 51	Firmicutes						
Escherichia/Shigella↑, 51	Firmicutes						
Lachnospiraceae↑, 63	Firmicutes						
Dialister↓, 51	Firmicutes						
Suturrella↓, 51	Firmicutes						
Subdoligranulum↓, 51	Firmicutes						
Faecalibacterium↓, 52	Firmicutes						
Prevotellaceae↓, 51	Firmicutes						
Ruminococcaceae↑, 45	Firmicutes						
Actinobacteria↓, 51	Firmicutes						
Dialister↓, 51	Firmicutes						
Suturrella↓, 51	Firmicutes						
Subdoligranulum↓, 51	Firmicutes						
Faecalibacterium↓, 52	Firmicutes						
Prevotellaceae↓, 51	Firmicutes						
Ruminococcaceae↑, 45	Firmicutes						

↑ indicates increase, ↓ indicates decrease.

There is a growing body of evidence suggesting alterations in gut microbiota composition or function in psychiatric disorders,44 which has been associated with increased levels of inflammation.45 It is generally thought that gastrointestinal and psychiatric disorders are associated with decreased alpha diversity (richness, evenness, and biodiversity of the microbiome).46–48 However, while some published articles show reduced alpha diversity in these disorders, other studies found no changes.49,50

Table 1 summarizes changes in relative abundance of specific bacteria associated with IBS, depression, and anxiety, based on the findings in these systematic reviews, in comparison with the relatively few studies looking at IBS with comorbid anxiety and depression. Overall, these disorders present an altered gut microbiota signature but likely due to the heterogeneity of these disorders, conflicting results are common. However, two recent metanalyses identified the gut microbiota signatures most consistently found in depression, anxiety, and IBS.51,52 These changes in microbial abundance were hypothesized to play functional roles in these disorders. For example, the increased abundance of strains such as Escherichia in anxiety has been hypothesized to lead to increased secretion of exotoxins potentially inducing inflammatory processes impacting on
the CNS. In relation to IBS, it was hypothesized that the metabolite products of the strains *Lactobacillaceae* and *Bacteroides*, such as organic acids or toxins respectively, may contribute to the IBS pathology by causing bloating or inflammation peripherally.

Fewer studies have investigated the microbiota using the more informative shotgun metagenomic approach. One such study found that numerous species of the genus *Bifidobacterium* such as *B. adolescentis*, *B. longum*, *B. dentium* are increased in depressed patients. This was unexpected because *Bifidobacterium* strains are commonly used as probiotics with preclinical evidence supporting their possible use for the treatment of psychiatric disorders, although whether a particular microbial member of the gut microbiota should be considered beneficial or harmful depends on context. The most recent study using metagenomic assessment identified 47 species with altered relative abundances in patients with depression compared to healthy controls. Most of the enriched species belonged to the genera *Bacteroides*, whereas the depleted species belonged to the genera *Blautia*, *Eubacterium* and *Clostridium*. The largest study to date, which included a discovery and validation cohort, showed that *Coprococcus* spp. and *Dialister* are both depleted in depression. In addition, the study by Valles-Colomer and colleagues conducted a module-based analysis, profiling microbial pathways with neuroactive potential involved in microbiota-gut-brain axis communication. They showed that depression and quality of life were associated with GABA and DOPAC, a metabolite of dopamine. Interestingly, GABA has also been linked to visceral pain perception.

Some studies aimed to subdivide IBS patients with and without distinct microbial signatures. For example, IBS patients characterized by an increased Firmicutes:Bacteroidetes ratio show increased abundance of strains of SCFA-producing eubacteria as well as flagellin producing bacteria, which are associated with increased visceral hypersensitivity and low-grade inflammation. Interestingly, it was the patients showing a similar gut microbiota signature compared to healthy controls were linked to comorbid depression. Similarly, a distinct gut microbiota signature was shown with increased IBS symptom severity. However, in this study, psychiatric comorbidities were associated with the gut microbiota signatures reported in severe cases of IBS.

Relatively few studies have directly assessed the gut microbiota signatures associated with psychiatric comorbidities in IBS. A recent study, analyzing the therapeutic effect of fecal microbiota transplantation (FMT), showed that IBS patients and healthy controls show higher alpha diversity compared to IBS with comorbid depression. Similarly, comorbid IBS patients clustered differently from IBS patients and healthy controls in a beta-diversity analysis. Research has also suggested that patients with IBS and depression show a similar gut microbiota imbalance characterized by either high levels of *Bacteroides* or *Prevotella*. Further analysis showed that comorbid patients show a similar enterotype to healthy controls, characterized by dominant genera including *Bacteroides*, *Faecalibacterium* and *Lachnospiraceae*. However, differences were shown in the composition of non-dominant bacteria. Of note is that the presence of depression at baseline was associated with lasting effect of FMT in IBS-related quality of life and fatigue in patients with non-constipated IBS.

There have not yet been extensive attempts to address the gut microbiota in IBS patients with comorbid anxiety. De Palma and colleagues identified indicator species, rather than taxonomic differences in relative abundances *per se*, of the genera *Eggerthella*, *Blautia*, *Coprooccus*, *Streptococcus* and *Clostridium*, which were associated with the disease state of comorbid anxiety. However, this was based on a small number of IBS subjects with and without anxiety, making definitive conclusions about a distinct comorbid anxiety related gut microbiota signature difficult.

While it is hard to confidently compare results derived from single studies to that of meta-analyses, it does appear possible that comorbid patients cluster differently than patients with one of the disorders alone. However, there is a greater need for studies including a clinical diagnosis of IBS patients with comorbid depression and anxiety rather than the more common approach of assessing depression and anxiety scores.

4 | SIGNALLING PATHWAYS ALTERED IN GASTROINTESTINAL AND PSYCHIATRIC DISORDERS

It has been theorized that the low-grade inflammation, such as increased cytokine levels associated with depression, stems from increased intestinal permeability, which in turn results in increased contact of the immune system to bacteria. Similarly, anxiety is associated with a distinct inflammatory state. Increased inflammatory signalling may dysregulate the HPA axis, which is associated with symptoms of anxiety and depression. Bacteria showing a higher relative abundance in depression and anxiety, including *Eggerthella* and *Enterobacterales*, are associated with increased intestinal inflammation and permeability. This low-grade inflammation can be further exacerbated by the loss of SCFA-producing bacteria, such as *Faecalibacterium*, which have anti-inflammatory properties.

IBS is similarly associated with low-grade intestinal and systemic inflammation. Studies showing an increased production of pro-inflammatory cytokines in IBS patient-derived PBMCs also indicate an association with anxiety symptoms. Low-grade intestinal inflammation characterized by increased eosinophil and mast cell numbers in the descending colon may drive the gastrointestinal pathology of IBS. Mucosal inflammation driven by changes in microbiota composition and strains including *Prevotella* is associated with overall immune dysregulation. In conjunction with this, it has been shown that IBS patients show altered tryptophan metabolism with a shift toward the kynurenine pathway. This change has been linked to an altered pro-inflammatory state via activation of TLRs. Kazemi et al. additionally showed an improved kynurenine/tryptophan ratio in the blood of the subjects using a probiotic mix containing *L. helveticus* and *B. longum*. Psychiatric comorbidities in IBS can potentially be linked to increased neuroinflammation triggered by the systemic inflammation seen in these.
disorders. These changes are thought to also be in part modulated by changes in SCFA production. In addition, microglia activation has been observed in animal models of stress-induced changes in the microbiota-gut-brain axis. Changes of the gut microbiota signature in these disorders could potentially evoke similar changes relevant for the pathophysiology.

Affective disorders are believed to be mainly caused by dysregulation of neurotransmitters in the brain. For example, the majority of current medications for depression and anxiety act by increasing the level of monoamines in the synapses. The level of these neurotransmitters in the brain is also strongly affected by the gut microbiome. Germ-free animals show altered neurotransmitter concentrations in the brain in addition to reduced anxiety-like behaviors and these serotonergic system alterations are differentially modulated by acute stress. Interestingly, one of the common therapeutic interventions for IBS are antidepressants. While tricyclic antidepressants (TCAs) are recognized to be an effective treatment in IBS, selective serotonin reuptake inhibitors are not as efficacious. However, serotonin plays an important role in gastrointestinal motility whereby antagonism of the serotonin 5-HT3 receptor improves stool quality and decreases motility in diarrhea-predominant IBS (IBS-D) patients. Serotonin is also a modulator of visceral pain as SHT-3 antagonism increased colonic compliance and agonism of SHT-4 reduced sensitivity to rectal distension. The involvement of serotonin in mood disorders has also been extensively studied, particularly in depression, however, its precise neurobiological role in psychiatric disorders is likely of greater complexity than heretofore appreciated. Overall, serotonin is a key signalling molecule in the gut-brain axis implicated in the core symptoms experienced by IBS and patients with psychiatric comorbidity.

IBS has frequently been associated with structural brain changes. For example, one study showed reduced volumes in multiple cortical and limbic structures in female IBS patients compared to healthy controls. However, the majority of the differences were associated with early-life trauma and not IBS alone per se, highlighting the importance of early-life stress in this disorder. Other studies showed alterations in white matter of IBS patients between basal ganglia, thalamus, and prefrontal cortex (PFC). Interestingly, when grouping IBS patients based on the microbiota profile, patients characterized by a reduced Firmicutes:Bacteriodetes ratio present alterations in the anterior insula, the motor cortex and the ventral PFC. Furthermore, increasing volume of the posterior insula, was associated with changes in SCFA metabolism and glutamate metabolism. Similarly, patients with depression show structural brain alterations such as reduced hippocampal volume. These alterations are accompanied by reduced expression of BDNF in the corresponding brain regions and in the serum. Interestingly, reduced serum levels of BDNF have also been reported in comorbid IBS patients. It has been shown that brain BDNF levels are modulated by the microbiota with germ-free animals showing reduced BDNF expression in the hippocampus. However, mechanisms behind the regulation of BDNF by the microbiota are still unclear. Future studies should identify brain regions and circuits, such as the thalamus or prefrontal areas important for the modulation of sensory information and emotions, common across these pathologies responsible for the symptom presentation.

5 | PRECLINICAL MODELS FOR COMORBID IBS

Part of the difficulty in gaining mechanistic insights in IBS with psychiatric comorbidity pertains to the limited availability of preclinical animal models of complex heterogenous behavioral phenotypes. Nevertheless, some options do go some way toward recapitulating a relevant constellation of gastrointestinal and psychiatric symptoms.

5.1 | Maternal separation

Maternal separation is a well-established rodent model of early-life stress and results in widespread changes across the microbiota-gut-brain axis. The maternal separation paradigm does not just model the animal behavioral correlates of one specific disorder but rather recapitulates several aspects of stress-induced psychiatric disorders and produces robust and reproducible changes across the microbiota-gut-brain axis. These alterations include perturbations in gut microbiota, which are detectable in adulthood, increases in anxiety- and depressive-like behaviors as well as development of visceral hypersensitivity, a hallmark of IBS thought to explain the abdominal pain which is a dominant characteristic of this disorder.

In terms of maternal separation-induced alterations in signalling pathways of the microbiota-gut-brain axis, this early-life stress exposure has also been shown to alter central neurotransmitter levels, particularly monoamines such as serotonin and noradrenaline. As serotonin plays an important role in gut to brain communication with respect to mood and descending pain pathways, changes in levels may adversely affect gut function and communication with the CNS. Interestingly, maternal separation has also been shown to alter central serotonin transporter expression. It has been seen that maternal separation also results in upregulation of TLR4 in the paraventricular nucleus of mice as well as visceral hypersensitivity, which is blocked by inhibition of TLR4 signalling supporting the notion of stress-induced dysregulation of gut-brain axis signalling.

Maternal separation has also been shown to cause reprogramming of the HPA axis, leading to profound effects on endocrine signalling whereby both baseline and stress-induced corticosterone levels are increased. Dysregulation of the HPA axis by maternal separation may be likened to clinical cases of IBS where stress reactivity and recovery is altered, and early-life stress is a known risk factor.
5.2 | Fecal microbiota transplantation

FMT studies in rodents currently provide the strongest evidence for an involvement of the gut microbiota, both in the expression of specific symptoms and the alterations in gut-brain axis signalling pathways of relevance to the pathophysiology of IBS and affective disorders. Multiple studies have used FMT to investigate gastrointestinal, behavioral and molecular alterations associated with IBS. Animals in receipt of a microbiota transplant from IBS patients with predominant constipation or patients with chronic constipation developed delayed GI transit and alterations in intestinal contractions, which was accompanied by decreased levels of SCFAs. Conversely, a study using fecal material from diarrhea-predominant IBS patients (IBS-D) developed increased gastrointestinal transit. Furthermore, they showed associations between the gut microbiota, IBS, and psychiatric comorbidities.

Studies showing a disturbed gut microbiota profile in patients with depression linked these alterations to disrupted tryptophan metabolism and intestinal low-grade inflammation. This was achieved by FMT of depressed patients to rats, which induced a similar behavioral and molecular phenotype to the donors. Two studies using a similar approach linked the microbiota-induced depression in mice to alterations in the CREB signalling pathway in the olfactory bulb and alterations of carbohydrate and amino acid metabolism. The latest study transferring the microbiome of depressed patients into mice showed alterations in neurotransmitter levels in the brain and inflammatory markers in the serum.

Earlier studies indicated the rodent-to-rodent transfer of anxiety-like hypersensitivity. Taken together, FMT studies confirm the individual adoptive transfer of both the cardinal features of IBS (visceral hypersensitivity, altered motility) as well as the psychiatric comorbidity (depression and anxiety-like behaviors). Germ-free mice colonized with fecal microbiota of IBS-D patients with comorbid anxiety showed, in addition to gastrointestinal motility alterations, increased anxiety-like behavior, which was absent in mice receiving the donor material from patients with IBS only and associated with increased immune activation in the colon. This study confirms the simultaneous transfer of multiple phenotypes via the gut microbiota, positioning FMT studies as a useful preclinical approach to study IBS with psychiatric comorbidity.

In this issue, leading on from their previous study, Constante and colleagues investigated the treatment of comorbid anxiety in IBS using FMT in germ-free mice treated with the probiotic Saccharomyces boulardii CNCM I-745 (S. bou). Treatment with S. bou improved anxiety-like behavior, but not gastrointestinal motility alterations in mice. These results go a step beyond implicating this microbiota configuration in comorbid symptom expression by confirming that an intervention targeting this microbiota can improve symptoms relevant to anxiety. The microbiota profiles revealed differences between the mice transplanted with material from the IBS patient and the healthy control, which were in part normalized by S. bou treatment. On the molecular level, they showed a role of indoles (microbial metabolites of tryptophan) and immune activation in IBS with comorbid anxiety. While no clear association was shown between the gut microbiota compositional differences and alterations in indole levels, they nicely linked the anxiolytic effect of S. bou to increased indole production. S. bou increased both the levels of IAA in the feces as well as the expression of bacterial genes relevant for indole alkaloid synthesis, possibly by increasing the abundance of indole producing bacteria, such as Lactobacillus. However, the associated increase in AhR activity failed to reach significance posing the questions of if, and by which mechanisms, the increased indole production induces the anxiolytic effects. Conversely, the authors reported increased expression of the capsaicin receptor TRPV1 in colonic tissue of mice with comorbid IBS-associated microbiota. This receptor, important for the modulation of nociception, is mainly found on neurons of the peripheral nervous system. While TRPV1 expression was associated with the anxiety-like behavior, it was not modulated by S. bou. Altogether, this study reports some interesting observations which are potentially relevant to comorbid IBS treatment.

As provocative and timely as the study is, the authors use a single donor for FMT into mice, in contrast to recommendations for the use of multiple individual donors made recently by Walter and colleagues. The authors previous work showed the successful transplantation of phenotypes via the use of multiple donors, providing strong evidence for the gut microbiota in both IBS specifically and its comorbidities. It is not clear from the current study whether the beneficial effects of S. bou are applicable to a wider range of microbiome compositions of different IBS patients or indeed how well it applies to different comorbidities such as depression. Gut microbial signatures of different donors could be differentially affected by S. bou, leading to different outcomes. It would also be interesting to see how effective S. bou treatment is against IBS patients without psychiatric comorbidities and whether some of the other cardinal features of IBS including visceral hypersensitivity were impacted. This raises the question of whether the mechanisms described are exclusively altered in comorbid patients or if they also generalize to other subgroups of IBS. The authors recommend that the first point of study in future clinical trials in IBS should be in the subpopulation with this psychiatric comorbidity. These considerations aside, this study brings important additional insights, expanding on the results reported in previous studies with mechanistic insights and highlighting the therapeutic possibilities of S. bou.

6 | THE GUT MICROBIOTA: A NOVEL TARGET FOR TREATING PSYCHIATRIC COMORBIDITIES IN IBS

Currently, treatment options for IBS revolve around symptom control. Some of the more common medications in the treatment of IBS are antispasmodics or TCAs. Antispasmodics, exerting their effects by relaxation of intestinal smooth muscle, are currently not recommended by the new clinical guidelines by the American
college of gastroenterology although only those currently available in the United States were evaluated. TCAs such as amitriptyline mainly improve visceral pain, possibly by acting on the - dopamine- and acetylcholine system. The dose of TCA used is often below that employed in the treatment of depression so the extent to which psychiatric comorbidities are potentially treated by gut-brain neuromodulatory agents is unclear. The integration of psychological behavioral approaches into gastroenterology practice is now more routinely considered, building on the success of gut-focused hypnotherapy as an option in treatment-refractory IBS. The use of food supplements and diet as treatment options has recently been evaluated in this journal. These varied approaches reflect a willingness to target multiple levels of the gut-brain axis to deliver gastrointestinal symptom relief.

One important implication of the study from Constante and colleagues is the potential for therapeutic targeting of the gut microbiota to alleviate the comorbid psychiatric symptoms. Does this mean that specific features of the comorbid gut microbiota lead independently to the cardinal and behavioral features of IBS? The use of a single probiotic strain then, based on the results of this study, is unlikely to be sufficient to improve the global symptom profile in IBS. It has of course long been appreciated that the beneficial effects of specific probiotics are strain specific and a number of therapeutic options can be considered for targeting the gut microbiota to improve gut-brain axis signalling pathways.

6.1 Prebiotics and probiotics

Consideration of probiotic (defined as “live microorganisms which when administered in adequate amounts confers a health benefit on the host”) and prebiotic (defined as “a substrate that is selectively utilized by host microorganisms conferring a health benefit”) use for treatment of IBS symptoms and associated psychiatric comorbidities has increased in recent years (for review see). Although the exact mechanisms of action of specific prebiotics and probiotics have not been fully elucidated, it has been seen that different prebiotic blends such as polydextrose, galactooligosaccharide and probiotics such as Lactobacillus rhamnosus GG ameliorated maternal separation-induced anxiety-like behavior as well as altering hippocampal levels of stress-related genes. Similarly, a probiotic blend combined with milk fat globule membrane, the bioactive fraction of breastmilk, attenuated maternal separation-induced visceral hypersensitivity and facilitated faster return to baseline of stress-induced corticosterone levels.

Evidence supporting the role of prebiotics and probiotics against IBS symptoms is not purely preclinical whereby IBS patients administered B. longum subsp. longum 35624 (formerly B. infantis 35624) for 8 weeks reported a reduction in IBS symptomatology with respect to abdominal pain, bloating and bowel movement difficulty as well as normalization of the anti-inflammatory: pro-inflammatory cytokine ratio. Several other studies have assessed the efficacy of this treatment with varying degrees of success (for review see). It can be seen above and from recent technical reviews and clinical guidelines that while some prebiotic and probiotics have shown promise in the symptomatic treatment of IBS specifically in the context of a single trial, the jury remains out on making strong recommendations. Additional and robust clinical studies are required to determine if we can achieve benefits for associated comorbid psychiatric conditions.

6.2 Therapeutic fecal microbiota transplantation

In recent years, evaluation of the use of FMT from healthy donors as a treatment option for gastrointestinal disorders has increased. There are multiple studies showing the benefits of FMT as a treatment for IBS, further supporting the role of the microbiota in this disorder. The use of a single FMT in IBS patients improved the gastrointestinal symptoms in a subset of patients for a prolonged duration. Furthermore, studies showed that the use of FMT additionally improved symptoms of affective disorders, providing evidence for a causal role of the microbiota in psychiatric comorbidities in IBS. A double-blind, randomized, placebo-controlled study investigating the effect of FMT in IBS patients showed the effectiveness of FMT as a treatment option and determined that the presence of depression at baseline is predictive of successful treatment. While these studies look promising for treatment, FMT is currently not recommended as a treatment option, as evidence is still limited and large double-blind, placebo-controlled trials are required to determine the treatment efficacy. There are a number of important factors to consider in the selection of suitable donors, including microbiota profile, in addition to FMT dose that may be critical to a successful FMT. Interestingly, European guidelines on donor selection for the use of FMT in clinical practice does recommend exclusion of subjects with a history of psychiatric conditions.

7 Conclusion

Evidence continues to accumulate in support of the view that the strong link between gastrointestinal and psychiatric disorders is mediated by the microbiota-gut-brain axis. Individually these disorders share similar pathophysiological mechanisms, such as increased pro-inflammatory states or changes in monoamine levels. Many questions remain surrounding the nature of the clinical entity that sits at the intersection between IBS, depression, and anxiety (Figure 2). It is plausible to conceptualize common dysfunctions in gut-brain axis signalling pathways that define this troublesome subset of patients. While this may be a preferable conclusion from a treatment perspective, the reality hinted at by Constante and colleagues is more complex and may develop around a number of diverging targets.
What this intriguing study does not answer is why specific microbiota configurations, compositional or functional, lead in some cases to IBS and in others IBS with psychiatric comorbidity. This is an important missing piece in the puzzle that requires increased research focus as the current evidence is insufficient to draw definitive conclusions. Animal models of IBS with psychiatric comorbidity hold promise to help disentangle the molecular mechanisms at play and to expand on the associations identified between the gut microbiota, psychiatric symptoms in IBS may be a strategy worth the effort involved.

DISCLOSURE

GC has spoken at meetings sponsored by food and pharmaceutical companies and received research funding from Pharmavite.

JFC has received research support from Mead Johnson, Cremo, 4D Pharma, Suntory Wellness, Pharmavite, and Nutricia and has spoken at meetings sponsored by food and pharmaceutical companies.

AUTHOR CONTRIBUTIONS

All authors devised the content of the review. LW and JMC carried out literature searches and wrote the manuscript. KJOR designed the figures with input from JMC, LW, GC and JFC. GC, SMOM and JFC edited the manuscript. All authors approved the final version.

ORCID

Lars Wilmes https://orcid.org/0000-0002-7259-0084

James M. Collins https://orcid.org/0000-0002-9390-8805

Kenneth J. O’Riordan https://orcid.org/0000-0003-0081-6010

Siobhain M. O’Mahony https://orcid.org/0000-0002-9597-9391

John F. Cryan https://orcid.org/0000-0001-5887-2723

Gerard Clarke https://orcid.org/0000-0001-9771-3979

REFERENCES

1. Sperber AD, Bangdiwala SI, Drossman DA, et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of a Rome foundation global study. *Gastroenterology*. 2021;160(1):99-114 e113.

2. Black CJ, Ford AC. Global burden of irritable bowel syndrome: trends, predictions and risk factors. *Nat Rev Gastroenterol Hepatol*. 2020;17(8):473-486.

3. Enck P, Aiz Q, Barbara G, et al. Irritable bowel syndrome. *Nat Rev Dis Primes*. 2016;2:16014.

4. Midenfjord Irina, Polster Annikka, Sjövall Henrik, Törnblom Hans, Simrén Magnus. Anxiety and depression in irritable bowel syndrome: Exploring the interaction with other symptoms and pathophysiology using multivariate analyses. *Neuropsychobiology* & *Motility*. 2019;31 (8);http://dx.doi.org/10.1111/nmo.13619.

5. Stasi Cristina, Caserta Anna, Nisita Cristiana, Cortopassi Sonia, Fani Bernardo, Salvadori Stefano, Pancetti Andrea, Bertani Lorenzo, Gambaccini Dario, Bortoli Nicola, Dell’Ossio Liliana, Blandizzi Corrado, Marchi Santino, Bellini Massimo. The complex interplay between gastrointestinal and psychiatric symptoms in irritable bowel syndrome: A longitudinal assessment. *Journal of Gastroenterology and Hepatology*. 2019;34 (4):713–719. http://dx.doi.org/10.1111/jgh.14375.

6. Black Christopher J., Yiannakou Yan, Houghton Lesley A., Shuweihdi Farag, West Robert, Guthrie Elspeth, Ford Alexander C.. Anxiety-related factors associated with symptom severity in irritable bowel syndrome. *Neuropsychobiology* & *Motility*. 2020;32 (8);http://dx.doi.org/10.1111/nmo.13872.

7. Ford Alexander C., Lacy Brian E., Harris Lucinda A., Quigley Eamonn M.M., Moayyedi Paul. Effect of Antidepressants and Psychological Therapies in Irritable Bowel Syndrome. *The American Journal of Gastroenterology*. 2019;114 (1):21–39. http://dx.doi.org/10.1038/s41395-018-0222-5.

8. Craske MG, Stein MB, Eley TC, et al. Anxiety disorders. *Nat Rev Dis Primes*. 2017;3:17024.

9. Otte C, Gold SM, Penninx BW, et al. Major depressive disorder. *Nat Rev Dis Primes*. 2016;2:16065.

10. Clarke G. The gut microbiome and depression: finding a way through troubled waters where the river meets the sea. *Expert Rev Gastroenterol Hepatol*. 2020;14(5):301-304.

11. Mayer EA, Labus JS, Tillisch K, Cole SW, Baldi P. Towards a systems view of IBS. *Nat Rev Gastroenterol Hepatol*. 2015;12(10):592-605.

12. Collins SM. A role for the gut microbiota in IBS. *Nat Rev Gastroenterol Hepatol*. 2014;11(8):497-505.
13. Bastiaannssen TFS, Cowan CSM, Claesson MJ, Dinan TG, Cryan JF. Making sense of ... the microbiome in psychiatry. Int J Neuropsychopharmacol. 2019;22(1):37-52.

14. Cryan JF, O’Riordan KJ, Cowan CSM, et al. The Microbiota-Gut-Brain Axis. Physiol Rev. 2019;99(4):1877-2013.

15. Chey William D., Keefer Laurie, Whelan Kevin, Gibson Peter R., Behavioral and Diet Therapies in Integrated Care for Patients With Irritable Bowel Syndrome. Gastroenterology. 2021;160 (1):47-62. http://dx.doi.org/10.1053/j.gastro.2020.06.099.

16. Koloski N. A., Jones M., Talley N. J., Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study. Alimentary Pharmacology & Therapeutics. 2016;44(6):592-600. http://dx.doi.org/10.1111/apt.13738.

17. Agostoni E, Chinnock JE, De Daly MB, Murray JG. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol. 1957;135(1):182-205.

18. Fulling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: what happens in vagus. Neuron. 2019;101(6):998-1002.

19. Bonaz B, Cezilly F, Cours DD, et al. Effects of the gut microbiota on the brain. Front Microbiol. 2018;9:485.

20. Dinan TG, Quigley EM, Ahmed SM, et al. The hypothalamus and the brain-gut axis: a potential biomarker for mental health disorders. Neuroendocrinology. 2011;93(5):309-315.

21. Stetler C, Miller GE. Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med. 2011;73(2):114-126.

22. Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263-275.

23. Clarke G, Gernham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18(6):666-673.

24. Tannock GW, Savage DC. Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect Immun. 1974;9(3):591-598.

25. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268-1273.

26. Thion MS, Low D, Silvin A, et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell. 2018;172(3):500-516 e516.

27. Erny D, Hrabe de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965-977.

28. Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189.

29. Slepchenko A, Maes M, Jacka FN, et al. Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom. 2017;86(1):31-46.

30. Frost G, Sleeth ML, Sahari-Arisoylu M, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611.

31. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332-1345.

32. Dailie B, Van Ouendhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461-478.

33. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32-48.

34. Schwarz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465-477.

35. Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA. Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med. 2006;8(20):1-27.

36. Li G, Young KD. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology (Reading). 2013;159(Pt 2):402-410.

37. Hubbard TD, Murray IA, Perdew GH. Indole and tryptophan metabolism: endogenous and dietary routes to adrenergic receptor activation. Drug Metab Dispos. 2015;43(10):1522-1535.

38. Lamas B, Natividad JM, Sokol H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol. 2018;11(4):1024-1038.

39. Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598-605.

40. Hata T, Asano Y, Yoshikura K, et al. Regulation of gut luminal serotonin by commensal microbiota in mice. PLoS One. 2017;12(7):e0180745.

41. Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009;106(10):3698-3703.

42. Lyte JM, Gheorghe CE, Goodson MS, et al. Gut-brain axis serotonergic responses to acute stress exposure are microbiome-dependent. Neurogastroenterol Motil. 2020;32(11):e13881.

43. Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology. 2017;112(Pt B):399-412.

44. Cruz-Pereira JS, Rea K, Nolan YM, O’Leary OF, Dinan TG, Cryan JF. Depression’s unholy trinity: dysregulated stress, immunity, and the microbiome. Annu Rev Psychol. 2020;71:49-78.

45. Clemente JC, Manasson J, Scher JU. The role of the gut microbiome in systemic inflammatory disease. BMJ. 2018;360:j1545.

46. Carroll IM, Ringel-Kulka T, Siddle JP, Ringel Y. Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2012;24(6):521-530, e248.

47. Kelly JR, Borre Y, O’ Brien C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109-118.

48. Huang Y, Shi X, Li Z, et al. Possible association of Firmicutes in the gut microbiota of patients with major depressive disorder. Neuropsychiatr Dis Treat. 2018;14:3329-3337.

49. Durban A, Abellán JJ, Jimenez-Hernandez N, et al. Structural alterations of faecal and mucosa-associated bacterial communities in irritable bowel syndrome. Environ Microb Rep. 2012;4(2):242-247.

50. Chahwan B, Kwan S, Isik A, van Hemert S, Burke C, Roberts L. Gut feelings: a randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J Affect Disord. 2019;253:317-326.

51. Simpson CA, Diaz-Arteche C, Elby D, Schwartz OS, Simmons JG, Cowan CSM. The gut microbiota in anxiety and depression - a systematic review. Clin Psychol Rev. 2020;83:101943.

52. Pittayanan R, Lau JT, Yuan Y, et al. Gut microbiota in patients with irritable bowel syndrome-a systematic review. Gastroenterology. 2019;157(1):97-108.

53. Yang J, Zheng P, Li Y, et al. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. Sci Adv. 2020;6(49):eaba8555.

54. Lai WT, Deng WF, Xu SX, et al. Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychol Med. 2019;1:12. https://doi.org/10.1017/S0033291719003027
55. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008;43(2):164-174.

56. Valles-Colomer M, Falony G, Darzi Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4(4):623-632.

57. Bienenstock J, Forsythe P, Karimi K, Kunze W. Neuroimmune aspects of food intake. Int Dairy J. 2010;20(4):253-258.

58. Jeffery IB, O’Toole PW, Öhman L, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61(7):997-1006.

59. Bourdu S, Dapoiny M, Chapuy E, et al. Rectal instillation of butyrate provides a novel clinically relevant model of non-inflammatory colonic hypersensitivity in rats. Gastroenterology. 2005;128(7):1996-2008.

60. Ohman L, Simren M. Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat Rev Gastroenterol Hepatol. 2010;7(3):163-173.

61. Tap J, Derrien M, Tornblom H, et al. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology. 2017;152(1):111-123 e118.

62. Kurokawa S, Kishimoto T, Mizuno S, et al. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: an open-label observational study. J Affect Disord. 2018;235:506-512.

63. Liu Y, Zhang L, Wang X, et al. Similar fecal microbiota signatures in patients with diarrhea-predominant irritable bowel syndrome and patients with depression. Clin Gastroenterol Hepatol. 2016;14(11):1602-1611 e1605.

64. Johnsen HS, Hilschmann F, Valle PC, Goll R. The effect of fecal microbiota transplantation on IBS related quality of life and fatigue in moderate to severe non-constipated irritable bowel: Secondary endpoints of a double blind, randomized, placebo-controlled trial. EBioMedicine. 2020;51:102562.

65. De Palma G, Lynch MD, Lu J, et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med. 2017;9(379):eaaf6397.

66. Maes M, Meltzer HY, Bosmans E, et al. Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J Affect Disord. 1995;34(4):301-309.

67. Calarge CA, Devaraj S, Shulman RJ. Gut permeability and depressive symptom severity in unmedicated adolescents. J Affect Disord. 2019;246:586-594.

68. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:192.

69. Vogelzangs N, Beekman AT, de Jonge P, Penninx BW. Anxiety disorders and inflammation in a large adult cohort. Transl Psychiatry. 2013;3:e249.

70. Vieira MM, Ferreira TB, Pacheco PA, et al. Enhanced Th17 phenotype in individuals with generalized anxiety disorder. J Neuroimmunol. 2010;229(1-2):212-218.

71. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety. 2013;30(4):297-306.

72. Pedersen C, Ijaz UZ, Gallagher E, et al. Fecal Enterobacteriales enrichment is associated with increased in vivo intestinal permeability in humans. Physiol Rep. 2018;6(7):e13649.

73. Vital M, Karch A, Pieper DH. Colonic butyrate-producing communities in humans. An overview using omics data. mSystems. 2017;2(6):e00130-17.

74. Burns G, Carroll G, Mathe A, et al. Evidence for local and systemic immune activation in functional dyspepsia and the irritable bowel syndrome: a systematic review. Am J Gastroenterol. 2019;114(3):429-436.

75. Liebregts T, Adam B, Bredack C, et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology. 2007;132(3):913-920.

76. Bashashati M, Moosavi S, Cremon C, et al. Colonic immune cells in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol Motil. 2018;30(1):e13192.

77. Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017;151(4):363-374.

78. Clarke G, Fitzgerald P, Cryan JF, Cassidy EM, Quigley EM, Dinan TG. Tryptophan degradation in irritable bowel syndrome: evidence of indoleamine 2,3-dioxygenase activation in a male cohort. BMC Gastroenterol. 2009;9:6.

79. Clarke G, Mckernan DP, Gaszner G, Quigley EM, Cryan JF, Dinan TG. A distinct profile of tryptophan metabolism along the kynurenine pathway downstream of toll-like receptor activation in irritable bowel syndrome. Front Pharmacol. 2012;3:90.

80. Kazemi A, Noorbala AA, Azam K, Eskandari MH, Djafariian K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: a randomized clinical trial. Clin Nutr. 2019;38(2):522-528.

81. Gracia-Rubio I, Moscoso-Castro M, Pozo OJ, Marcos J, Nadal R, Valverde O. Maternal separation induces neuroinflammation and long-lasting emotional alterations in mice. Proc Neuropsychopharmacol Biol Psychiatry. 2016;65:104-117.

82. Crumeyrolle-Arias M, Jaglin M, Bruneau A, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 2014;42:207-217.

83. Oh SJ, Takakura W, Rezaie A. Shortcomings of trials assessing antidepressants in the management of irritable bowel syndrome: a critical review. J Clin Med. 2020;9(9):2933.

84. Goldberg PA, Kamm MA, Sett-Carraro P, van der Sijp JR, Roth C. Modification of visceral sensitivity and pain in irritable bowel syndrome by 5-HT3 antagonism (ondansetron). Digestion. 1996;57(6):478-483.

85. Steadman CJ, Talley NJ, Phillips SF, Zinsmeister AR. Selective 5-hydroxytryptamine type 3 receptor antagonism with ondansetron as treatment for diarrhea-predominant irritable bowel syndrome: a pilot study. Mayo Clin Proc. 1992;67(8):732-738.

86. Wong BS, Manabe N, Camilleri M. Role of prucalopride, a serotonin (5-HT(4)) receptor agonist, for the treatment of chronic constipation. Clin Exp Gastroenterol. 2010;3:49-56.

87. Delvaux M, Louvel D, Mamet JP, Campos-Oriola R, Frexinos J. Effect of alosetron on responses to colonic distension in patients with irritable bowel syndrome. Aliment Pharmacol Ther. 1998;12(10):849-855.

88. Hoffman JM, Tyler K, MacEachern SJ, et al. Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology. 2012;142(4):844-854; e844.

89. Marazziti D. Understanding the role of serotonin in psychiatric diseases. P1000Res. 2017;6:180-180.

90. Labus JS, Dinov ID, Jiang Z, et al. Irritable bowel syndrome in female patients is associated with alterations in structural brain networks. Pain. 2014;155(1):137-149.

91. Ellingson BM, Mayer E, Harris RJ, et al. Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome. Pain. 2013;154(9):1528-1541.

92. Labus JS, Hollister EB, Jacobs J, et al. Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome. 2017;5(1):49.
130. Dale HF, Rasmussen SH, Asiller ÖÖ, Lied GA. Probiotics in irritable bowel syndrome: an up-to-date systematic review. *Nutrients*. 2019;11(9):2048.

131. McVey Neufeld KA, O’Mahony SM, Hoban AE, et al. Neurobehavioural effects of *Lactobacillus rhamnosus* GG alone and in combination with prebiotics polydextrose and galactooligosaccharide in male rats exposed to early-life stress. *Nutr Neurosci*. 2019;22(6):425-434.

132. O’Mahony SM, McVey Neufeld KA, Waworuntu RV, et al. The enduring effects of early-life stress on the microbiota-gut-brain axis are buffered by dietary supplementation with milk fat globule membrane and a prebiotic blend. *Eur J Neurosci*. 2019;51(4):1042-1058.

133. O’Mahony L, McCarthy J, Kelly P, et al. *Lactobacillus* and *Bifidobacterium* in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. *Gastroenterology*. 2005;128(3):541-551.

134. Su GL, Ko CW, Bercik P, et al. AGA clinical practice guidelines on the role of probiotics in the management of gastrointestinal disorders. *Gastroenterology*. 2020;159(2):697-705.

135. Preidis GA, Weizman AV, Kashyap PC, Morgan RL. AGA technical review on the role of probiotics in the management of gastrointestinal disorders. *Gastroenterology*. 2020;159(2):708-738 e704.

136. Mazzawi T, Lied GA, Sangnes DA, et al. The kinetics of gut microbial community composition in patients with irritable bowel syndrome following fecal microbiota transplantation. *PLoS One*. 2018;13(11):e0194904.

137. Mizuno S, Masaoaka T, Naganuma M, et al. *Bifidobacterium*-rich fecal donor may be a positive predictor for successful fecal microbiota transplantation in patients with irritable bowel syndrome. *Digestion*. 2017;96(1):29-38.

138. Huang HL, Chen HT, Luo QL, et al. Relief of irritable bowel syndrome by fecal microbiota transplantation is associated with changes in diversity and composition of the gut microbiota. *J Dig Dis*. 2019;20(8):401-408.

139. Ianiro G, Eusebi LH, Black CJ, Gasbarrini A, Cammarota G, Ford AC. Systematic review with meta-analysis: efficacy of faecal microbiota transplantation for the treatment of irritable bowel syndrome. *Aliment Pharmacol Ther*. 2019;50(3):240-248.

140. El-Salhy M, Hatlebakk JG, Gilja OH, Brathen Kristoffersen A, Hausken T. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. *Gut*. 2020;69(5):859-867.

141. Cammarota G, Ianiro G, Tilg H, et al. European consensus conference on faecal microbiota transplantation in clinical practice. *Gut*. 2017;66(4):569-580.

How to cite this article: Wilmes L, Collins JM, O’Riordan KJ, O’Mahony SM, Cryan JF, Clarke G. Of bowels, brain and behavior: A role for the gut microbiota in psychiatric comorbidities in irritable bowel syndrome. *Neurogastroenterology & Motility*. 2021;33:e14095. https://doi.org/10.1111/nmo.14095