Equilibrium fluid-solid coexistence of hard spheres

L. A. Fernandez,¹,² V. Martin-Mayor,¹,² B. Seoane,¹,² and P. Verrocchio³,⁴,⁵,²

¹Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain.
²Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Spain.
³Dipartimento di Fisica, Università di Trento, via Sommarive 14, I-38050 Povo, Trento, Italy.
⁴Istituto Sistemi Complessi (ISC-CRS), UOS Sapienza, Via dei Tarquini 19, 00185 Roma, Italy.
⁵Interdisciplinary Laboratory for Computational Physiscs (LISC), Trento, Italy.

We present a tethered Monte Carlo simulation of the crystallization of hard spheres. Our method boosts the traditional umbrella sampling to the point of making practical the study of constrained Gibbs’ free energies depending on several crystalline order-parameters. We obtain high-accuracy estimates of the fluid-crystal coexistence pressure for up to 2916 particles (enough to accommodate fluid-solid interfaces). We are able to extrapolate to infinite volume the coexistence pressure (p_{co} = 11.5727(10)k_B T/\sigma^3) and the interfacial free energy (\gamma_{(100)} = 0.636(11)k_B T/\sigma^2).

PACS numbers: 05.10.Ln,64.60.-i, 64.60.My, 64.70.D-.

Crystallization is a vast field of research, where experiments and theory cross-fertilize. Hard-spheres (HS) provide a celebrated example: the numerical finding of a fluid-solid phase transition [1] motivated experiments on colloids [2,3]. Finding an accurate procedure to locate the equilibrium phase boundaries for HS is a crucial step to address the self-assembly of complex molecules [4], as modeled by HS plus non-spherical interactions (e.g. patchy [5] and Janus particles [6]).

Up to now, numerical simulations of crystallization phase transitions have been well behind their fluid-fluid counterpart (e.g. vapor-liquid equilibria [7]). Actually, HS are the preferred benchmark for numerical approaches to crystallization. Yet, the lack of exact solutions enhances the importance of accurate numerical and/or experimental studies.

However, for preexisting numerical methods, a simulation whose starting configuration is a fluid never reaches the equilibrium crystal. Much as in experiments [3], the simulation gets stuck in a metastable crystal, or a defective crystal (or even a glass [8]). The proliferation of metastable states defeats optimized Monte Carlo (MC) methods that overcome free-energy barriers in simpler systems [9–11]. Besides, experimental and numerical determinations of the interfacial free energy are plainly inconsistent (maybe due to a small electrical charge in the colloidal particles [12]).

Since feasible numerical methods [13] could not form the correct crystalline phase spontaneously, choosing the starting particle configuration became an issue (e.g. crystalline or a carefully crafted mixture of solid and fluid phases). Methods can be classified as equilibrium or nonequilibrium. In the phase switch MC [14], one tries to achieve fluid-crystal equilibrium (only up to N = 500 HS [15]). An alternative is the separate computation of the fluid and solid free energies, supplemented with the conditions of equal pressure, temperature and chemical potential. For the fluid’s free energy, one resorts to thermodynamic integration, while choices are available for the crystal (Wigner-Seitz [16], Einstein crystal [17] [18], Einstein molecule [19]). The nonequilibrium direct coexistence method [20,21] handles larger systems [22].

As for the accuracy, in equilibrium computations the coexistence pressure p_{co} was obtained with precisions of ~ 0.1% (at finite N). Yet, the N values that can be simulated are rather small. An N → ∞ extrapolation is mandatory, which degrades the final accuracy to ~ 1% [14,15,19] (results are summarized in Table 1). The situation improves by an order of magnitude for the direct-coexistence method. With the exception of [15], the different estimations of p_{co} are compatible, although with widely differing accuracies.

The computation of the interfacial free energy, \gamma, is more involved, since the issue of spatially heterogeneous mixtures of fluid and solid can no longer be skipped (as done in equilibrium computations of p_{co}). Indeed, recent estimations are either precise but mutually incompatible [23,24], or of lesser accuracy [25].

Here, we introduce a tethered MC [26,27] approach to HS crystallization. The correct crystal appears in our simulation by constraining the value of two order parameters. At variance with preexisting methods, the crystal found is independent from the starting particle configuration. Tethered MC provides a major simplification for the standard umbrella sampling method [28,29]: chemical-potential differences among fluid and crystal are very precisely computed from a thermodynamic integration. In fact, our method resembles studies of liquid-vapor equilibria [30,31]. We go continuously from the fluid to the crystal by varying a reaction coordinate that labels the intermediate states. Rather than particle density, our reaction coordinate is a blend of bond-orientational crystal order parameters with different symmetries [32,33]. Very accurate determinations of the coexistence pressure and the interfacial free energy follow. The number of HS ranges 108 ≤ N = 4n^3 ≤ 4000, (n integer). Our largest systems do show the surface-driven geometric transitions characteristic of the asymptotic large N regime [35,37].

We consider N hard spheres of diameter \sigma, at constant pressure \rho, in a cubic box with periodic boundary conditions. The equilibrium crystal is face-centered cubic (FCC) [35]. With the shorthand R for the particle
positions, \(\{ r_i \}_{i=1}^N \), Gibbs free energy \(g(p, T) \) is given by

\[
e^{-N \beta g(p, T)} = \frac{p^\beta}{N! \Lambda^{3N}} \int_0^\infty dV e^{-\beta p V} \int dR H(R), \quad (1)
\]

(\(\Lambda \): de Broglie thermal wavelength, \(\beta = 1/(k_B T) \) and \(H(R) = 0 \) if any pair of spheres overlaps, or 1 otherwise).

We loosely constraint the values of two global order parameters, \(Q_6 \) and \(C \). The well-known \(Q_6 \) detects the spatially coherent alignment of nearest-neighbors bonds in a lattice [32, 33]. It is the \(l = 6 \) instance of

\[
Q_l \equiv \sqrt{\frac{4\pi}{2l + 1} \sum_{m=-l}^{l} \frac{N}{\sum_{i=1}^{N} N_0(i)} Y_l^m(\hat{r}_{ij})^2}, \quad (2)
\]

(\(Y_l^m(\hat{r}_{ij}) \): spherical harmonics; \(\hat{r}_{ij} \): unitary vector pointing from particle \(i \) to particle \(j \); \(N_0(i) \): number of neighbors of particle \(i \) [39]). \(Q_6 \) is positive in a crystal, while it is negligible (\(Q_6 \sim 1/\sqrt{N} \) in a fluid. Yet, \(Q_6 \)’s rotational invariance is a nuisance: enforcing a large \(Q_6 \) causes a crystal grain to grow in the fluid, but its orientation in the simulation box is arbitrary. In fact, when the grain finally hits itself through the periodic box’s boundaries, long-lived metastable helicoidal crystals appear. The cure is an order parameter with only cubic symmetry [34]:

\[
C = \frac{2288 \sum_{i=1}^{N} \sum_{j=1}^{N} c_6(\hat{r}_{ij}) - 64}{\sum_{i=1}^{N} N_0(i)}, \quad (3)
\]

where \(c_6(\hat{r}) = x^4 y^4 (1-z^4) + x^4 z^4 (1-y^4) + y^4 z^4 (1-x^4) \). \(C = 1 \) in an ideal, well aligned FCC, while \(C \approx 0 \) for a fluid. Constraining a large \(C \) value suffices to obtain a nice crystal, irrespectively of the starting configuration (either a gas or an FCC structure). Still, \(Q_6 \) helps us label unambiguously the intermediate states between the fluid and the FCC: some helicoidal crystals and the fluid-solid mixtures differ on their \(Q_6 \) values (but not on \(C \)).

To enforce the quasi-constraints \(C(R) \approx \hat{C}, \quad Q_6(R) \approx \hat{Q}_6 \) [26] [27], first multiply the integrand in Eq. (1) by

\[
1 = \frac{N\alpha}{2\pi} \int d\hat{Q}_6 d\hat{C} e^{-\frac{N}{2\pi}} \left[(\hat{Q}_6 - Q_6(R))^2 + (\hat{C} - C(R))^2 \right]. \quad (4)
\]

The tunable parameter \(\alpha \) tightens the quasi-constraints (we choose \(\alpha = 200 \) [27]). Exchanging the integration order in (1) yields

\[
e^{-N \beta \tilde{g}(p, T)} = \int d\hat{Q}_6 d\hat{C} e^{-N \Omega_N(\hat{Q}_6, \hat{C}, p)}, \quad (5)
\]

where the effective potential, \(\Omega_N(\hat{Q}_6, \hat{C}, p) \) is given by

\[
e^{-N \Omega_N} = \frac{p^\beta N \alpha}{2\pi N! \Lambda^{3N}} \int dR dV \omega(R, V; \hat{Q}_6, \hat{C}, p), \quad (6)
\]

\[
\omega(R, V; \hat{Q}_6, \hat{C}, p) \text{ being the tethered weight [40]}
\]

\[
\omega = H(R) e^{-\beta p V - \frac{p^2}{2\pi} \left[(\hat{Q}_6 - Q_6(R))^2 + (\hat{C} - C(R))^2 \right]}, \quad (7)
\]

\[\text{FIG. 1. (Color online) Vector field } \nabla \Omega_N \text{ as computed from Eq. (7), for a system of } N = 256 \text{ hard-spheres, at the coexistence pressure for the fluid-FCC phase transition (we scaled } \nabla \Omega_N \text{ with a factor } 1/\alpha \text{). Both the fluid and the FCC crystal are local minima of the effective potential, where } \nabla \Omega_N = 0 \text{. The BCC coordinates are from } N = 250.\]

Our method relies on Fluctuation-Dissipation formulas [26] [27], obtained by taking derivatives in Eq. (4). We compute the gradient of \(\Omega_N \) at fixed pressure from:

\[
\nabla \Omega_N(\hat{Q}_6, \hat{C}) = \alpha (\hat{Q}_6 - Q_6(R), \hat{C} - C(R)). \quad (8)
\]

Coordinates \((\hat{Q}_6, \hat{C}) \) of local minima of \(\Omega \) are located through \(\nabla \Omega_N = 0 \). Furthermore, differences \(\Omega_N(\hat{Q}_6, \hat{C}) - \Omega_N(\hat{Q}^*, \hat{C}^*) \) at fixed \(p \) are computed as the line integral of \(\nabla \Omega_N \) along any convenient path joining \((\hat{Q}_6, \hat{C}) \) with \((\hat{Q}^*, \hat{C}^*) \) in the \((\hat{Q}_6, \hat{C}) \) plane.

The chemical potential \(g(p, T) \) is obtained from a saddle-point expansion in Eq. (5). Up to corrections vanishing as \(1/N \), \(\beta g(p, T) \) is the absolute minimum of \(\Omega_N(p, \hat{Q}_6, \hat{C}) \). Yet, close to phase coexistence, \(\Omega_N \) has two relevant minima (i.e. the fluid and the FCC crystal). Therefore, the coexistence pressure \(p^\text{co}(N) \) follows from \(\Omega^\text{fluid} = \Omega^\text{FCC} \) (i.e. equal chemical potential).

Our Metropolis MC simulation follows standard methods [7]. We recast \(\omega \) in Eq. (7) as the Boltzmann factor for HS at fixed pressure with a fictive potential energy \(k_B T N \alpha [(\hat{Q}_6 - Q_6(R))^2 + (\hat{C} - C(R))^2]/2 \). Since \(\hat{Q}_6(R) \) and \(C(R) \) are built out of sums of local terms, the number of operations needed to compute their changes after a single-particle displacement does not grow with \(N \).

Our framework is illustrated in Fig. 2 where we show \(\nabla \Omega_N(\hat{Q}_6, \hat{C}) \) at \(p = p^\text{co}(N) \). We identify two local minima where \(\nabla \Omega_N = 0 \) [the fluid, close to \((\hat{Q}_6, \hat{C}) = (1/\sqrt{N}, 0) \), and the FCC minimum where both parameters are positive]. Note their distance to other local minima of \(\Omega_N \), such as the body centered cubic (BCC).

Our main goal is to compute \(\Delta \Omega(p) = \Delta \Omega^\text{FCC} - \Delta \Omega^\text{fluid} \), choosing the straight segment in Fig. 1 as integration path. The path is parameterized by our reaction coordinate, \(S \) (\(S = 0 \): fluid, \(S = 1 \): FCC). Actually, due to the additivity of \(Q_6 \) and \(C \), choosing this segment is a must if we are to compute the interfacial free energy [11]. Indeed, physical fluid-solid coexistence is a convex combination of the two pure phases [42], which provides a
physical interpretation for S as the fraction of particles in the coexisting solid phase: in the large N limit, v, C and Q_6 vary linearly with S (see Fig. 2—bottom).

Our simulation set up is as follows. We start by locating (Q_6, \bar{C}, p) for the FCC and liquid minima at $p \approx p_{co}^{(N)}$. The first guess is obtained from NpT simulations with crystalline/disordered starting configurations. We later refine by solving for ∇S_N, as a function of line parameter S. At large N, v becomes a linear function, as expected for a convex combination of pure phases [22].

Next, we introduce a uniform S grid on the liquid-FCC line and perform independent simulations at fixed (Q_6, \bar{C}, p) (see Appendix A for simulation details). As a test for equilibration, achieved for all N but $N = 4000$, every run was performed twice (starting from an ideal gas or from an ideal FCC crystal) [33].

Now, at variance with umbrella sampling, $\Delta \Omega(p)$ follows from the integral over $0 \leq S \leq 1$ of ∇S_N, the projection of ∇S_N along the straight-line, Fig. 2—top. We use reweighting extrapolations [27, 44] to obtain $\Delta \Omega(p)$ as a function of pressure. Then, it is easy to locate $p_{co}^{(N)}$, Fig. 2. Statistical errors are estimated as in [11].

We obtain $p_{co} = 11.5727(10)$ in units of $k_B T/\sigma^2$, in the large-N limit. This result is six times more accurate than the best nonequilibrium estimate, $p_{co} = 11.576(6)$ [22] and improves by a factor of 90 over the equilibrium estimate, $p_{co} = 11.49(9)$ [13]. We compute p_{co} through a fair fit (\(\chi^2 = 2.61\) for three degrees of freedom) of the $p_{co}^{(N)}$ listed in Table 1 to a second order polynomial in $1/N$ [13].

As for the interfacial free energy, γ, we need to consider inhomogeneous configurations [10]. In fact, due to the periodic boundary conditions, at intermediate S the surface energy is minimized by mixed configurations where a crystalline slab (or cylinder, or bubble) is surrounded by fluid, see the snapshots in Appendix B. As in vapor-liquid equilibria [31, 37], transitions among different geometries arise when S is varied. These transitions result in the cusps and steps that appear for large N in ∇S_N, Fig. 2—top, and can be detected as well through the fluctuations of the particle density [27]. Under these circumstances, γ may be computed using Binder’s method [47].

The effective potential has a local maximum along the line that joins the FCC and the fluid (the solution of $\nabla S_N = 0$ at $S^* \approx 0.5$, Fig. 2—top). The excess free energy is due to the two interfaces that the fluid presents with a crystalline slab parallel to the simulation box ($\{100\}$ planes). Then the interfacial free energy at $p_{co}^{(N)}$ is

$$\gamma^{(N)} = k_B T \frac{(\Omega_{s^*} - \Omega_{FCC})}{2 (N v)^{2/3}}.$$ (9)

The $\gamma^{(N)}$ (listed in Table 1) are extrapolated as [48]

$$\frac{\gamma^{(N)} a^2}{k_B T} = \frac{\gamma a^2}{k_B T} + \frac{a_2 - \log N}{6 N^{2/3}} + \frac{a_3}{N} + \frac{a_4}{N^{4/3}} + \cdots$$ (10)

A fit for $256 \leq N \leq 2916$ yields $\gamma = 0.636(11)$ in units of $k_B T/\sigma^2$ ($\chi^2 = 0.14$ for two degrees of freedom). We remark that the difference among the fit and $\gamma^{(N=4000)}$ is one fifth of the error bar (Table 1). Also, the extrapolation for $500 \leq N \leq 2916$ merely doubles the final error estimate. Our result is compatible with $\gamma = 0.642(2)$ [24] and $\gamma = 0.619(3)$ [24], but not with $\gamma = 0.5820(19)$ [23].

We remark that the $\gamma^{(N)}$ estimation is fairly sensitive to p [27], an effect not systematically considered in [23, 24]. Note that Eq. (10) holds if $\gamma^{(N)}$ is computed at $p_{co}^{(N)}$.

A final warning is in order. Not much is known about the effect of the ∇S_N’s cusps and steps, Fig. 2—top, in the large-N extrapolation $\gamma^{(N)} \to \gamma$. This non-smoothness is a consequence of the geometric transitions that arise in our larger systems. However, the analogy with simpler models [11] (e.g. the $D = 2$ Potts model, where comparison with exact solutions is possible), strongly suggests that these cusps and steps are inconsequential for the $p_{co}^{(N)} \to p_{co}$ extrapolation.
In summary, we have introduced a tethered MC approach to HS crystallization. We go continuously from the fluid to the crystal by varying a reaction coordinate. Tethered MC provides a major simplification to umbrella sampling, which makes it possible to study multi-constrained free energies. At variance with previous methods, our simulations equilibrate (i.e. we find results independent of the starting particle configuration), not only for the formation of the space-filling crystal, but even for the most difficult case of mixed states with fluid-crystal interfaces. Our estimation of the coexistence pressure is, by far, the most accurate to date. That of fluid-crystal interfaces. Our estimation of the coexistence pressure is, by far, the most accurate to date. Should one wish to reach the glass transition.

As shown in the Fig. 2, we take a segment of the straight line in the (\hat{Q}_6, \hat{C}) plane that joins the fluid and the FCC minima of the effective potential. This segment is divided evenly in a grid of N_S points ($N_S = 42$ for $N \leq 1372$, while $N_S = 82$ for $N \geq 2048$). All N_S points are simulated at the same pressure p (see Table I). We selected these p values by means of short, preliminary simulations.

At each of the N_S (\hat{Q}_6, \hat{C}, p) points, we run two independent simulations with different initial conditions, an ideal gas and a perfect FCC crystal. Each of the $2 \times N_S$ runs had a length of 10^5 MC steps (1 MC step is composed of N particle displacements followed by one volume-change attempt). In addition, we show in Table I some $N-$dependent observables computed in the simulation, as well as the large-N extrapolation. In order to ease comparison, we also tabulate the $p_{co}^{(N)}$ values obtained by other groups (using different approaches).

ACKNOWLEDGMENTS

We thank K. Binder, C. de Vega, L.G. MacDowell, B. Lucini and D. Yllanes for enlightening discussions. Simulations were carried out at BIFI. We acknowledge support from MICINN, Spain, through research contracts FIS2009-12648-C03, FIS2008-01323 and from UCM-Banco de Santander. B.S. was supported by FPU program.

Appendix A: Extended simulation details

We provide some additional details for the interested reader. In particular, we give information necessary to reproduce our analysis and/or our simulations.

Appendix B: Geometrical transitions

As discussed in the main text, in a system with periodic boundary conditions, geometrical transitions arise when the line parameter S varies from the liquid to the solid. In fact, the system struggles to minimize the surface energy while respecting the global constraints for Q_6 and C. Depending on the fraction of crystal phase, which is fixed by S, the minimizing geometry can be either a bubble, a cylinder or a slab of liquid in a crystal matrix (or vice versa). An example of each type of configuration is displayed in Fig. 4. As S varies, the minimizing geometry changes at definite S values. This phenomenon is named geometric transition, and has been previously studied in simpler models (for instance, first-order transitions in lattice magnetic systems, or fluid-gas phase-coexistence).
FIG. 4. Snapshots of mixed configurations for $N = 2916$ particles found as the line parameter S varies. We present projections in the three Cartesian directions. To improve visibility, the radii are a fraction of the real ones, and the darkness is an increasing function of the distance to the projection plane.

[1] B. J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1208 (1957); W. W. Wood and J. D. Jacobson, ibid. 27, 1207 (1957).
[2] P. N. Pusey and van Megen, Nature 320, 340 (1986).
[3] P. N. Pusey, W. van Megen, P. Bartlett, B. J. Ackerson, J. G. Rarity, and S. M. Underwood, Phys. Rev. Lett. 63, 2753 (1989).
[4] A. B. Manoharan, M. T. Elsesser, and D. J. Pine, Science 301, 483 (2003); S. Glotzer and M. J. Solomon, Nat. Mater. 6, 557 (2007).
[5] E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli, and F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006).
[6] F. Sciortino, A. Giacometti, and G. Pastore, Phys. Rev. Lett. 103, 237801 (2009).
[7] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, 2nd ed. (Oxford University Press, New York, 1989).
[8] E. Zaccarelli, C. Valeriani, E. Sanz, W. C. K. Poon, M. E. Cates, and P. N. Pusey, Phys. Rev. Lett. 103, 135704 (2009).
[9] B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992).
[10] F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
[11] V. Martin-Mayor, Phys. Rev. Lett. 98, 137207 (2007).
[12] V. J. Anderson and H. N. W. Lekkerkerker, Nature 416, 811 (2002).
[13] C. Vega, E. Sanz, J. L. F. Abascal, and E. G. Noya, J. Phys.: Condens. Matter 20, 153101 (2008).
[14] N. B. Wilding and A. D. Bruce, Phys. Rev. Lett. 85, 5138 (2000).
[15] J. R. Errington, J. Chem. Phys. 120, 3130 (2004).
[16] W. G. Hoover and F. H. Ree, J. Chem. Phys. 49, 3609 (1968).
[17] D. Frenkel and A. K. C. Ladd, J. Chem. Phys. 81, 3188 (1984).
[18] J. M. Polson, E. Trizac, S. Pronk, and D. Frenkel, J. Chem. Phys. 112, 5339 (2000).
[19] C. Vega and E. G. Noya, J. Chem. Phys. 127, 154113 (2007).
[20] J. C. Ladd and L. V. Woodcock, J. Chem. Phys. 51, 155 (1977).
[21] E. G. Noya, C. Vega, and E. de Miguel, J. Chem. Phys. 128, 154507 (2008).
[22] T. Zykova-Timan, J. Horbach, and K. Binder, J. Chem. Phys. 133, 014705 (2010).
[23] R. L. Davidchack, J. Chem. Phys. 133, 234701 (2010).
[24] A. Cacciuto, S. Auer, and D. Frenkel, J. Chem. Phys. 119, 7467 (2003).
[25] Y. Mu, A. Honk, and X. Song, J. Phys. Chem. B 109, 6500 (2005).
[26] L. A. Fernandez, V. Martin-Mayor, and D. Yllanes, Nucl. Phys. B 807, 424 (2009).
[27] V. Martin-Mayor, B. Seoane, and D. Yllanes, J. Stat. Phys. 144, 554 (2011).
[28] G. M. Torrie and J. P. Valleau, Chem. Phys. Lett. 28, 578 (1974); J. Comp. Physics. 23, 187 (1977); C. Bartels, Chem. Phys. Lett. 331, 446 (2000).
[29] P. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, Phys. Rev. Lett. 75, 2714 (1995).
[30] M. Schrader, P. Virnau, and K. Binder, Phys. Rev. E 79, 061104 (2009).
[31] K. Binder, B. Block, S. K. Das, P. Virnau, and D. Winter, (2011), arXiv:1103.2241
Particles i and j are neighbors if $r_{ij} < 1.5 \sigma$. In the ideal FCC structure, for all particle-densities relevant to us, this choice includes only the nearest neighbors shell.

Eq. (7) behaves as an animal’s tether: only if (say) $|\hat{Q}_6(R)| \gg 1/\sqrt{N}$ is the penalty large. Note as well that Eqs. (7,8) generalize straightforwardly to the case of more than two quasi-constraints.

A magnitude A is additive if NA is extensive: gluing together systems 1,2 (with $N^{(i)}$ particles and $A = A^{(i)}$, $i = 1,2$), results in a total system with $N = N^{(1)} + N^{(2)}$ particles and $NA = N^{(1)}A^{(1)} + N^{(2)}A^{(2)}$ (plus subdominant corrections such as surface effects $\sim N^{2/3}$). C is additive to a great accuracy for coexisting fluid and FCC phases, because the average number of neighbors N_b is very similar in both phases (5% difference, with negligible effects on additivity in our N range, as compared with surface effects). Q_6 is additive only if one of the subsystems, say $i = 1$, is a liquid so that $Q_6^{(1)} \sim 1/\sqrt{N^{(1)}}$ (Q_6 is a pseudo-order parameter, i.e. a strictly positive quantity which is of order $1/\sqrt{N}$ in a disordered phase). For studies of interfaces on larger systems, it would be advisable to choose exactly additive order parameters.

D. Ruelle, Statistical Mechanics (Benjamin, 1969).

Our runs for $N \leq 2916$ are, at least, 100τ long (\(\tau\) is the integrated autocorrelation time \[49\], computed for Q_6 and v \[27\]). For $N = 2916$, but only at $S = 0.4$, we find metastability with a helicoidal configuration (however, its contribution to final quantities is smaller than statistical errors). Metastabilities arise often for $N = 4000$, at intermediate S (yet, a careful selection of starting configurations yields a $\nabla \Omega_N$ with smooth S dependency).

A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).

C. Borgs and R. Kotecký, Phys. Rev. Lett. 68, 1734 (1992).

The tethering approach should not induce artificial interfaces. In fact, mathematically, the interfacial free-energy is defined though the ratio of two partition functions with different boundary conditions. The tethered potential does not change the partition function [with any boundary conditions, see Eq. (5)].

K. Binder, Phys. Rev. A 25, 1699 (1982).

A. Billoire, T. Neuhaus, and B. Berg, Nucl. Phys. B 413, 795 (1994).

A. D. Sokal, in Functional Integration: Basics and Applications (1996 Cargèse School), edited by C. DeWitt-Morette, P. Cartier, and A. Folacci (Plenum, N.Y., 1997).