Visual system and motor development in children: a systematic review

María Carmen Sánchez-González, Rocío Palomo-Carrión, Concepción De-Hita-Cantalejo, Rita Pilar Romero-Galisteo, Estanislao Gutiérrez-Sánchez and Elena Pinero-Pinto

1Department of Physics of Condensed Matter, Optics Area, University of Seville, Seville, Spain
2Department of Nursing, Physiotherapy and Occupational Therapy, Faculty of Physiotherapy, University of Castilla-La Mancha, Ciudad Real, Spain
3Department of Physiotherapy, Faculty of Science Health, University of Málaga, Málaga, Spain
4Department of Surgery, Ophthalmology Area, University of Seville, Seville, Spain
5Department of Physiotherapy, University of Seville, Seville, Spain

ABSTRACT.

Purpose.
The aim of this study was to review the available scientific literature on the possible relationship between the visual system and motor development in children.

Methods.
This study was performed according to the Preferred Reporting Items for Systematic Reviews (PRISMA) statement recommendations. The review protocol is available in PROSPERO (CRD42021245341). Four different databases, namely Scopus, PubMed, CINAHL and Web of Science, were assessed from April 2005 to February 2021. To determine the quality of the articles, we used the Critical Appraisal Skills Programme (CASP) Quality Appraisal Scale, and a protocol was followed to define the levels of evidence on the basis of the Centre for Evidence-Based Medicine Levels of Evidence. The search strategy included terms describing motor development in children and adolescents with visual disorders.

Results.
Among the identified studies, 23 were included in the study. All selected articles examined the relationship between the visual system and development in children. The quality of most of the studies was moderate–high, and they were between evidence levels 2 and 4.

Conclusions.
Our systematic review revealed that all included studies established a relationship between the visual system and development in children. However, the methods for measuring the visual system and motor skills lacked uniformity.

Key words: amblyopia – child development – motor skills – ocular motility disorders – visual disorders

Introduction

Infant motor development includes the acquisition of basic skills, such as moving the head and eyes to look around, moving the arms and hands to grasp objects and moving the body to sit or go somewhere. It also includes higher-order skills, such as wielding a hammer to hit a peg and stacking boxes to reach a high object. The opportunities for motor action depend on the current state of the body; therefore, the systems involved must remain in the correct state (Adolph & Hoch 2019).

In all these cases, vision plays a fundamental role in the correct acquisition of skills.

Normal visual development begins at birth and continues throughout childhood. It involves changes in visual acuity, convergence and accommodation until adequate binocular vision and stereopsis are achieved (Zimmermann et al. 2019). Binocular vision provides the visual information required to accurately perceive depth (stereopsis). In this way, the child will be able to adequately execute the movements of the upper and lower extremities (Goodale 2011; Chapman et al. 2012).

When a child suffers from visual disturbance, an alteration in motor development normally occurs. Vagge et al. (2021) reported that the presence of binocular dysfunction may be one of the factors that contribute to...
The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Liberati et al. 2009; Moher et al. 2009). The PRISMA statement has been designed for systematic reviews of studies that evaluate the effects of health interventions, irrespective of the design of the included studies. However, the checklist items are applicable to reports of systematic reviews evaluating other non-health-related interventions and many items are applicable to systematic reviews with objectives other than evaluating interventions (evaluating aetiology, prevalence, prognosis etc.). It includes a checklist to guide the reporting of systematic reviews (Page et al. 2021).

The revision was registered in PROSPERO (Registration No. CRD42021245341). For the interpretation of all results, p ≤ 0.05 was considered statistically significant.

Methods

This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Liberati et al. 2009; Moher et al. 2009). The PRISMA statement has been designed for systematic reviews of studies that evaluate the effects of health interventions, irrespective of the design of the included studies. However, the checklist items are applicable to reports of systematic reviews evaluating other non-health-related interventions and many items are applicable to systematic reviews with objectives other than evaluating interventions (evaluating aetiology, prevalence, prognosis etc.). It includes a checklist to guide the reporting of systematic reviews (Page et al. 2021).

The revision was registered in PROSPERO (Registration No. CRD42021245341). For the interpretation of all results, p ≤ 0.05 was considered statistically significant.

Search strategy

A systematic literature search was performed using the following databases: PubMed/MEDLINE (502 articles), Web of Science (27 articles), CINAHL (479 articles) and Scopus (27 articles).

The search strategy included terms describing a child’s developmental stage (toddlers OR children OR Infant [Medical Subject Headings, MeSH]), terms describing motor development (“motor development” OR “motor function” OR “early motor development” OR “motor outcomes” OR “motor system” OR “motor coordination” OR “coordination skills” OR “motor skills”) and terms describing visual development (“visual disorders” OR vision OR exophoria OR vergence OR exotropia OR esotropia OR heterophoria OR “ocular motility disorders” OR amblyopia OR stereoaucity OR “visual function” OR binocular OR accommodation OR accommodative OR “vertical deviation” OR “vertical disorder” OR “vertical anomalies” OR “vertical anomaly” OR “hyperdeviation” OR “strabismus” OR “eye movements” OR “visual complaints” OR “visual deterioration” OR phoria “visual development” OR stereovision OR “visual Skills” OR stereoaucity OR “Refractive errors” OR “visual acuity”). The search was updated from January to June 2021.

Inclusion criteria

Studies evaluating motor development in children with visual disorders were included. This evaluation had to be applied to children and adolescents with hyperopia, amblyopia and strabismus. The inclusion criteria were (1) studies with humans; (2) case reports; (3) case series, (4) cohort, cross-sectional and case-control studies and (5) randomized clinical trials.

Exclusion criteria

Articles were excluded if: (1) they did not report data on motor or visual development; (2) the patients included were adults; (3) the patients had undergone eye surgery; (4) the patients had any motor developmental disorder or were blind; (5) the article was a letter, conference abstract, study protocol or literary review; or (6) the article was not available in English or Spanish.

If full-text reading led to the conclusion that the article did not analyse motor and visual development in typically developing healthy children and adolescents, the article was excluded.

Quality of articles, levels of evidence and data extraction

Article grading and data extraction were independently performed by two authors: MCGS and EPP. To determine the quality of the articles, two reviewers with adequate reliability (EPP and MCGS) worked independently and blindly to create a summary table (Table 1) on the basis of the Critical Appraisal Skills Programme (CASP) Quality Appraisal Scale (“CASP CHECKLISTS – CASP – Critical Appraisal Skills Programme” n.d.). CASP is a tool that analyses the quality of the articles selected in a systematic review, and it also ensures sufficient representation of the items in case-control, cohort, randomized controlled trials, as well as in cross-sectional studies. Some of the elements analysed are as follows: theoretical basis for the study; appropriate methodological design; hiring information; description and representativeness of the participants; robustness of the research, including control or risk of bias; sufficiently appropriate and rigorous data analysis (including qualitative analysis, where appropriate); control of confounding factors; and clear discussion of the implications of the findings.

If the quality of the included articles was considered sufficient, a protocol was followed to define the levels of evidence on the basis of the Centre for Evidence-Based Medicine (CEBM) Levels of Evidence (“OCEBM Levels
of Evidence – Centre for Evidence-Based Medicine (CEBM), University of Oxford’ n.d.). The CEBM levels of evidence were produced to enable the process of finding appropriate evidence and making its results explicit.

Any disagreements between the two reviewers were solved by a third author. The main summary measures used in this systematic review were measures of visual development and assessment of motor development in all the included studies.

The quality of the included articles was classified into 3 outcome levels of equal measure: low (yes = 0–3), moderate (yes = 4–7) and high (yes = 8–12). For observational cohorts and cross-sectional studies, and low (yes = 0–3), moderate (yes = 4–7) and high (yes = 8–11) for case-control studies and controlled intervention studies. On the basis of this classification, we found that all case-control studies (Engel-Yeger 2008; Webber et al. 2008; Suttle et al. 2011; Niechwiej-Szwedo et al. 2017; Kelly et al. 2020) were moderate–high quality and that the single controlled intervention study (Webber et al. 2016) was of moderate quality. Regarding the cohort and cross-sectional studies, we found seven studies (Wilson & Welch 2013; Alramis et al. 2016; Fang et al. 2017; Zipori et al. 2018; Birch et al. 2020; Sá et al. 2021; Vagge et al. 2021) with high quality, and the remaining 10 (Atkinson et al. 2005; O’Connor et al. 2010; Chakraborty et al. 2017; Thompson et al. 2017; Birch et al. 2019a, 2019b; Hemptinne et al. 2020; Niechwiej-Szwedo et al. 2020a, 2020b; Pinero-Pinto et al. 2020) had moderate quality. On the basis of the classification of the Oxford CEBM Levels of Evidence (‘OCEBM Levels of Evidence – Centre for Evidence-Based Medicine (CEBM), University of Oxford’ n.d.), we obtained 12 articles (O’Connor et al. 2010; Alramis et al. 2016; Webber et al. 2016; Chakraborty et al. 2017; Fang et al. 2017; Zipori et al. 2018; Birch et al. 2019a, 2019b; Birch et al. 2020; Pinero-Pinto et al. 2020; Sá et al. 2021; Vagge et al. 2021) from level 2, 6 articles (Atkinson et al. 2005; Wilson & Welch 2013; Thompson et al. 2017; Hemptinne et al. 2020; Niechwiej-Szwedo et al. 2020a, 2020b) from level 3 and five articles (Engel-Yeger 2008; Webber et al. 2008; Suttle et al. 2011; Niechwiej-Szwedo et al. 2017; Kelly et al. 2020) from level 4.

Table 1 shows the representation of the agreed-upon ratings for the CASP Quality Appraisal Scale.

Results

A total of 1035 articles were identified. After removing duplicates, 865 articles were subjected to title and abstract reading by two authors, excluding 745 articles. If there was a conflict with the selection of an article, the third author decided the outcome. The full texts of the 120 articles were read, and 97 were excluded based on the exclusion criteria. A total of 23 articles were finally included in the review.

Figure S1 shows the Preferred Reporting Items for the Systematic Reviews and Meta-Analysis Flow Chart.

Characteristics of the studies

A total of 3980 children aged 2–18 years were evaluated for visual and motor development. The systematic review suggests that there is a relationship between the visual system and motor development. Among all the reviewed articles, 9 articles established a relationship between amblyopia and fine and gross motor skills (Engel-Yeger 2008; Webber et al. 2008; Suttle et al. 2011; Wilson & Welch 2013; Birch et al. 2019a, 2019b; Birch et al. 2020; Kelly et al. 2020; Sá et al. 2021), 10 articles associated binocular vision and motor development (O’Connor et al. 2010; Alramis et al. 2016; Chakraborty et al. 2017; Niechwiej-Szwedo et al. 2017; Thompson et al. 2017; Zipori et al. 2018; Hemptinne et al. 2020; Niechwiej-Szwedo et al. 2020a, 2020b; Pinero-Pinto et al. 2020; Vagge et al. 2021), 1 article associated the presence of hyperopia and the impairment of manual dexterity and balance (Atkinson et al. 2005), 1 article described how visual perception and motor coordination change in preschool children (Fang et al. 2017), and 1 article studied the state of binocular vision and the accommodative system in children with typical motor development (Niechwiej-Szwedo et al. 2020a, 2020b).

The only intervention study included in the review, Webber et al. (2016), describes the efficacy of a visual therapy treatment for 5 weeks in a group of children with amblyopia. In this research, they trained binocular vision skills by using an iPod game. Fine motor skills improved in all children, and the results were maintained over time.

Regarding the motor development assessment tests, five studies (Atkinson et al. 2005; Engel-Yeger 2008; Chakraborty et al. 2017; Kelly et al. 2020; Sá et al. 2021) used the Movement Assessment Battery for Children (MABC), and three studies (Webber et al. 2008; Webber et al. 2016; Zipori et al. 2018) used the Bruininks–Oseretsky Test of Motor Proficiency. Three studies (O’Connor et al. 2010; Suttle et al. 2011; Niechwiej-Szwedo et al. 2020a, 2020b) used tests that were specifically designed for the study, and seven studies (Wilson & Welch 2013; Alramis et al. 2016; Niechwiej-Szwedo et al. 2017; Birch et al. 2019a, 2019b; Birch et al. 2020; Hemptinne et al. 2020; Niechwiej-Szwedo et al. 2020a, 2020b) did not report the test they used or did not provide data. Regarding the remaining four studies (Fang et al. 2017; Thompson et al. 2017; Pinero-Pinto et al. 2020; Vagge et al. 2021), each study used a different test that has not been used in any other study.

Table 1. Quality appraisal of articles.

Author and date	Yes/total
Engel-Yeger (2008)	7/11
Webber et al. (2008)	8/11
Suttle et al. (2011)	7/11
Niechwiej-Szwedo et al. (2017)	6/11
Kelly et al. (2020)	7/11
Atkinson et al. (2005)	9/12
O’Connor et al. (2010)	8/12
Wilson and Welch (2013)	5/12
Alramis et al. (2016)	5/12
Chakraborty et al. (2017)	10/12
Fang et al. (2017)	7/12
Thompson et al. (2017)	9/12
Zipori et al. (2018)	6/12
Birch et al. (2019a)	9/12
Birch et al. (2019b)	9/12
Birch et al. (2020)	5/12
Hemptinne et al. (2020)	8/12
Niechwiej-Szwedo et al. (2020a)	9/12
Niechwiej-Szwedo et al. (2020b)	9/12
Pinero-Pinto et al. (2020)	8/12
Sá et al. (2021)	6/12
Vagge et al. (2021)	7/12
Webber et al. (2016)	7/11
Among all the articles, four articles reported data on gross motor development (Atkinson et al. 2005; Engel-Yeger 2008; Webber et al. 2008; Zipori et al. 2018), another four reported on fine motor development (O’Connor et al. 2010; Suttle et al. 2011; Webber et al. 2016; Fang et al. 2017), seven articles analysed fine and coarse motor development (Chakraborty et al. 2017; Thompson et al. 2017; Kelly et al. 2020; Niechwiej-Szewdo et al. 2020a, 2020b; Pinero-Pinto et al. 2020; Sá et al. 2021; Vagge et al. 2021), and eight did not report data on motor development (Wilson & Welch 2013; Alramis et al. 2016; Fang et al. 2017; Birch et al. 2020; Hemptinne et al. 2020; Niechwiej-Szewdo et al. 2020a, 2020b).

Table 2 provides the study characteristics of all included articles. The results of each study were classified by vision outcomes (Table 3) and motor outcomes (Table 4).

Discussion

The prevalence of visual dysfunction in the paediatric population has increased significantly in recent years (Cacho-Martínez et al. 2010; Jang & Park 2015; Hussaindeen et al. 2017). An early diagnosis of visual abilities in children is necessary to prevent the appearance of possible non-strabismic binocular and accommodative alterations that could affect motor development and quality of life. There are several symptoms and

Autor (date)	Design	Conflict of interest	Follow-up (months)	n (subjects)	Sex (F/M)	Age
Atkinson et al. (2005)	OC	NR	24	HG 1st: 110; 2nd: 99	CG 1st: 63/47; 2nd: 56/43	1st: 3 years, 7 ± 1.66MM
				CG 1st: 70/61; 2nd: 62/51		2nd: 5 years, 6 ± 1.76MM
Engel-Yeger (2008)	CC	NR	No	AG: 22	AG: 11/11	AG: 5.65 ± 0.91 years
Webber et al. (2008)	CC	NR	No	AG: 82	AG: 45/37	AG: 8.2 ± 1.7 years
				CG: 37	CG: 18/19	CG: 8.3 ± 1.3 years
O’Connor et al. (2010)	CS	NR	No	SG: 121	SG: 91/30	18.8 years (12-28)
				AG: 21	Not described	AG: 4-8 years
Wilson and Welch (2013)	OC	No	No	AG: 1032	AG: 493/539	CG: 4-8 years; 20-42 years
				CG: 52 Children	Children: 30/22	3-32 years
Alramis et al. (2016)	CS	NR	No	AG: 20	AG: 11/9	AG: 8.5 ± 1.3 years
				CG: 10	CG: 4/6	CG: 9.63 ± 1.6 years
Chakraborty et al. (2017)	CS	NR	No	AG: 17 weeks	AG: 287/319	4.5 years
				CG: 10	CG: 78/10	4-6 years
Fang et al. (2017)	CS	No	No	AG: 151	AG: 287/319	4.5 years
				CG: 19	CG: 78/10	4-6 years
Niechwiej-Szewdo et al. (2017)	CC	NR	No	AG: 19	AG: 8.68 ± 1.89 years	
				CG: 19	CG: 8.68 ± 1.89 years	
Thompson et al. (2017)	OC	No	No	AG: 375	AG: 31/19	AG: 10.6 ± 3.2 years
				CG: 16	CG: 10/10	AG: 8.5 ± 2.0 years
Zipori et al. (2017)	OC	NR	No	AG: 18	AG: 10/8	AG: 10.6 ± 3.2 years
				CG: 22	CG: 10/8	AG: 8.5 ± 2.0 years
				CG: 12/10	CG: 10/8	AG: 10.6 ± 3.2 years
Birch et al. (2019a)	CS	NR	No	AG: 17	AG: 5/10	AG: 8.5 ± 2.0 years
				CG: 20	CG: 5/10	AG: 8.5 ± 2.0 years
Birch et al. (2019b)	CS	Yes	28	AG: 60	AG: 16/14	AG: 8.5 ± 2.0 years
				NAG: 30	NAG: 16/14	AG: 8.5 ± 2.0 years
Birch et al. (2020)	CS	NR	No	AG: 15	AG: 11/9	AG: 10.6 ± 3.2 years
				CG: 20	CG: 11/9	AG: 10.6 ± 3.2 years
Hemptinne et al. (2020)	OC	NR	No	AG: 46	AG: 11/9	AG: 10.6 ± 3.2 years
				NAG: 47	NAG: 11/9	AG: 10.6 ± 3.2 years
Kelly et al. (2020)	CC	No	No	AG: 96	AG: 5/10	AG: 10.6 ± 3.2 years
				NAG: 47	NAG: 5/10	AG: 10.6 ± 3.2 years
Niechwiej-Szewdo et al. (2020a)	OC	No	No	AG: 96	AG: 5/10	AG: 10.6 ± 3.2 years
				NAG: 47	NAG: 5/10	AG: 10.6 ± 3.2 years
Niechwiej-Szewdo et al. (2020b)	OC	NR	No	AG: 226	AG: 5/10	AG: 10.6 ± 3.2 years
Pinero-Pinto et al. (2020)	CS	No	No	AG: 116	AG: 5/10	AG: 10.6 ± 3.2 years
				NAG: 97	NAG: 5/10	AG: 10.6 ± 3.2 years
Sá et al. (2021)	CS	No	No	AG: 37	AG: 22/15	AG: 10.6 ± 3.2 years
				NAG: 31	NAG: 22/15	AG: 10.6 ± 3.2 years
Vagge et al. (2021)	CS	No	No	AG: 23	AG: 9/14	AG: 10.6 ± 3.2 years
				NAG: 23	NAG: 9/14	AG: 10.6 ± 3.2 years

AG = amblyopic group, CAG = corrected-amblyopic group, CC = case-control study, CG = control group, CI = controlled Intervention study, CS = cross-sectional study, F/M = female/male, HG = hyperopic group, NAG = non-amblyopia group, NCAG = non-corrected-amblyopic group, NR = not reported, OC = observational cohort study, SG = strabismus group.
Table 3. Vision outcomes.

Author et al. (year)	Vision measures	Hyperopic group
Atkinson et al. (2005)	Refraction greatest axis D, mean (SD)	3 years, 7 months: +5.33 (1.48)
		5 years, 6 months: +5.30 (1.49)
Engel-Yeger (2008)	Not described	Ambylopia group (n = 82)
Webber et al. (2008)	Vision assessment	nil (61)
	Stereopsis	27 (33)
	sec arc	5 (6)
	≤40	0.31 (0.06)
	VA better eye (logMAR)	0.10 (0.01)
	VA worse eye (logMAR)	0.38 (0.05)
	Refractive error (D)	2.30 (0.25)
O'Connor et al. (2010)	Vision assessment	Strabismus group
	VA	of the poorer seeing eye ranged from 0.2 to 1.6 logMAR
		of the fellow eyes from 0.24 to 0.30 logMAR
	Worth 4 dot test	Fusion (n = 99) (a response of four lights)
		Suppression (n = 16) (a response of two or three lights)
	4 (D) base-out test	Bifoveal (n = 94)
		(Vergence movement of eye not under prism following conjugate version movements by both eyes)
		Central suppression (n = 6)
		(no vergence movement)
	Motor fusion	Prism bar
		Normal (n = 101)
		Reduced (n = 7)
		Nil (n = 13)
	Positive vergence (convergence)	Normal (n = 97)
		Reduced (n = 9)
		Nil (n = 15)
Suttle et al. (2011)	Vision assessment	Group normal child
	VA, binocular (logMar)	Amblyopic children
	Mean (SD)	–
	VA, dom eye (logMar)	–
	Mean (SD)	–
	VA, non-dom eye (logMar)	–
	Mean (SD)	–
	Intercocular difference (IOD)	–
	Mean (SD)	–
	Stereo acuity crossed (arc sec)	Mild amblyopia (IOD = 0.11–0.3)
	Mean (SD)	Moderate-to-severe amblyopia (IOD ≥0.31)
	Stereo acuity uncrossed (arc sec)	–
	Mean (SD)	–
	Stereo acuity (arc sec)	Mild amblyopia and Moderate-to-severe amblyopia
	Mean (SD)	Coarse and negative
Wilson and Welch (2013)

TNO best score (arc sec)	Amblyopia	Possible amblyopia	Recovered amblyopia	No amblyopia
Absent	6 (24%)	5 (20%)	1 (4%)	13 (52%)
480	0 (0%)	3 (27%)	1 (0%)	7 (64%)
240	2 (14%)	3 (22%)	0 (0%)	9 (64%)
120	1 (4%)	6 (24%)	1 (4%)	17 (68%)
60	5 (1%)	27 (6%)	6 (2%)	394 (91%)
30	1 (<1%)	19 (6%)	2 (1%)	313 (93%)
15	0 (0%)	0 (0%)	0 (0%)	33 (100%)
Mean (SD)	2.1(0.05)	3.7(0.19)	3.5(0.47)	4.3(0.03)

Alramis et al. (2016)

Vision assessment

- Group child
 - Monocular RE ≥0.1 log MAR
 - Monocular LE ≥0.1 log MAR
 - Binocular ≥0.1 log MAR

Stereoacuity
- Young = 20–70
- Middle = 20–70
- Older = 20–30

Webber et al. (2016)

Vision assessment

- Treated amblyopes
 - VA worst eye (logMAR)
 - Baseline = 0.46 (0.16)
 - 5 weeks (post-treatment) = 0.37 (0.16)
 - Mean (±SD) = 17 weeks (12 weeks after treatment ceased) = 0.36 (0.18)
 - VA both eyes (logMAR)
 - Baseline = −0.03 (0.09)
 - 5 weeks (post-treatment) = −0.06 (0.09)
 - Mean (±SD) = 17 weeks (12 weeks After Treatment Ceased) = −0.03 (0.06)
 - BF score (log stereoacuity)
 - Baseline = 3.44 (1.27)
 - 5 weeks (Post-treatment) = 2.88 (1.05)
 - Mean (±SD) = 17 weeks (12 weeks After Treatment Ceased) = 2.74 (1.06)

Chakraborty et al. (2017)

Vision assessment

- Group child
 - VA; N (%)
 - ≤0.3 logMAR = 578 (95.37)
 - >0.3 logMAR = 28 (4.62)
 - Stereocuity; N (%)
 - <100 = 476 (78.54)
 - >100–800 = 84 (13.86)
 - >800 = 46 (7.59)

Fang et al. (2017)

Vision assessment

- Group child
 - Visual motor integration
 - 4 years = 107.58 (10.98); Range = 83–141
 - 5 years = 112.38 (10.99); Range = 95–138
 - 6 years = 105.80 (10.46); Range = 90–138
 - Visual perception
 - 4 years = 111.53 (16.10); Range = 67–144
 - 5 years = 117.70 (11.45); Range = 92–146
 - 6 years = 115.07 (8.94); Range = 92–146

Niechwiej-Szwedo et al. (2017)

Vision assessment

- Group child
 - VA (logMAR) distance/near (n = 19)
 - Mean (±SD)
 - −0.01 ± 0.02 (<0.10 to 0.00)/0.01 ± 0.02 (0.00–0.10)
 - Snellen range: 20/15–20/25
 - Mean (±SD)
 - 28 ± 10 (20–50)
 - Stereopsis (sec of arc) (n = 19)
 - Mean (±SD) = 27 ± 12 (12–45)/17 ± 8 (8–30)
 - Positive fusional vergence (BO) (n = 17)
 - Mean (±SD) = 12 ± 5 (6–20)/9 ± 5 (2–20)
 - Negative fusional vergence (BI) (n = 17)
 - Mean (±SD) = 8 ± 3 (3–11.5)
 - Binocular accommodation facility (cpm) (n = 15)
 - Mean (±SD) = 8 ± 3 (3–13)/8 ± 3 (3–13)
 - Monocular accommodation facility (arc sec) (n = 15)
 - Mean (±SD) = 8 ± 3 (3–13)/8 ± 3 (3–13)
| Study | Vision assessment | Group child |
|-------|-------------------|-------------|
| Thompson et al. (2017) | **Vision assessment** | **Group child** |
| | Binocular visual acuity (LogMAR) | 0.06 (0.15) [−0.20, 1.00] |
| | Stereoaucuity (sec of arc) | 366 (196) [200, 1200] |
| | Vision impairment score, n (%) | n = 290 (77%) (normal) |
| | | n = 69 (18%) (internal or external ocular health problem or strabismus or abnormal motility or absence of stereopsis or binocular visual acuity worse than 0.5 logMAR) |
| | | n = 16 (4%) (two or more visual dysfunctions) |
| | Refractive error score, n (%) | n = 177 (90.5%) (normal) |
| | | n = 17 (9%) (Hyperopia (mean sphere [M] ≥ +4.00 diopter [D]) or myopia (M ≤ −1.00 D) or astigmatism (cylinder [C] ≤ −1.50 D in any meridian) or anisometropia (difference in M between eyes of ≥3.00 D in either the most positive or negative meridian) |
| | | n = 1 (0.5%) (two or more refractive errors) |
| Zipori et al. (2018) | **Vision assessment** | **Unilateral amblyopia** |
| | VA (logMAR) | BCVA between (0.3 logMAR) and (1.3 logMAR) in the amblyopic eye |
| | | VA of (0.1 logMAR) or better in the non-amblyopic eye |
| | Strabismus | – |
| | Stereoaucuity | 3000 (n = 2) |
| | (arcsecond) | 140 (n = 1) |
| Birch et al. (2019a) | **Vision assessment** | **Strabismus without amblyopia** |
| | VA (logMAR) | 0 (0%) |
| | ≤0.1 | 30 (60%) |
| | 0.2–0.3 | 12 (24%) |
| | 0.4–0.5 | 4 (8%) |
| | 0.6–0.7 | 4 (8%) |
| | >0.7 | – |
| | Mean (SD); (range) | 0.41 (0.33); (0.2–1.9) |
| | Fellow eye visual acuity (logMAR) | –0.01 (0.03); (−0.1 to 0.1) |
| | | –0.06 (0.06); (−0.1 to 0.1) |
| | | 34 (68%) |
| | | 13 (26%) |
| | | 3 (6%) |
| | | 7 (50%) |
| | | 5 (43%) |
| | | 1 (7%) |
| | Stereoacuity (log arcsec). | –0.06 (0.06); (−0.1 to 0.1) |
| | Median (range) | 34 (68%) |
| | | 13 (26%) |
| | | 3 (6%) |
| | | 7 (50%) |
| | | 5 (43%) |
| | | 1 (7%) |
| | | 0.00 (0.02); (−0.1 to 0.1) |
| | | 2.30 (1.6-nil) |

Note:
- **RE and LE (cpm)**
 - (Mean ± SD) [range]
 - Amplitude of accommodation
 - RE and LE (D) (n = 18)
 - (Mean ± SD) [range]
 - 12 ± 2 (8–16)/
 - 12 ± 2 (8–16)

Thompson et al. (2017)
- Vision assessment Group child
- Binocular visual acuity (LogMAR) mean (SD) [range]
- Stereoacuity (sec of arc) mean (SD) [range]
- Vision impairment score, n (%)
- Refractive error score, n (%)

Zipori et al. (2018)
- Vision assessment
- VA (logMAR) mean (SD) [range]
- Stereoaucuity (sec of arc) mean (SD) [range]
- Vision impairment score, n (%)
- Refractive error score, n (%)

Birch et al. (2019a)
- Vision assessment
- VA (logMAR) mean (SD) [range]
- Fellow eye visual acuity (logMAR) mean (SD) [range]
- Stereoacuity (log arcsec) Median (range)

Note:
- (Nil stereoaucuity was assigned a value of 4.0 log arc per second)
| Birch et al. (2019b) | VA (logMAR) | With Amblyopia | Without Amblyopia |
|----------------------|-------------|----------------|------------------|
| ≤0.1 | 0 (0%) | 30 (100%) | |
| 0.2–0.3 | 22 (37%) | 0 (0%) | |
| 0.4–0.5 | 21 (35%) | 0 (0%) | |
| 0.6–0.7 | 5 (8%) | 0 (0%) | |
| >0.7 | 12 (20%) | 0 (0%) | |
| Mean (SD); (Range) | 0.49 (0.27; [0.2–1.4]) | 0.04 (0.07); [−0.1 to 0.2] | |
| Fellow eye visual acuity (logMAR) | With amblyopia | Without amblyopia |
| −0.1 (20/16) | 12 (20%) | 5 (17%) | |
| 0.0 (20/20) | 27 (45%) | 18 (60%) | |
| 0.1 (20/25) | 21 (35%) | 7 (23%) | |
| Mean (SD) [range] | 0.01 (0.07); [−0.1 to 0.1] | 0.01 (0.06); [−0.1 to 0.1] | |
| Snellen equivalent | 20/20; [20/16–20/25] | 20/20; [20/16–20/25] | |
| Stereocuity (log arcsec). | Median (range) | Nil stereoacuity was assigned a value of 4.0 log arc per second |
| | 3.75 (0.58); [1.8 to nil] | 3.33 (0.83); [1.8 to nil] | |

Birchen et al. (2020)	Vision assessment	Amblyopia group
VA (logMAR)	0.4–2.0; (20/50–2000)	
Amblyopic eye BCVA	−0.1 to 0.2; (20/15–30)	
Mean (SD) [range]	−	
Fellow eye visual acuity		Nil
Mean (SD) [range]		
VA in each eye		
Stereocuity (arcsecond)		

Hemppinne et al. (2020)	Vision assessment	Strabismus type
Binocularity degree		Infantile esotropia (n = 13), secondary esotropia (n = 6), acquired esotropia (n = 21)
Deviation angle, corrected		normal (n = 6)
Distance VA (logMAR)		Nil
RE		
Hand motions (n = 1)		
0.0 (n = 22)	0.0 (n = 25)	
0.1 (n = 7)	0.1(n = 1)	
0.2 (n = 4)	0.2 (n = 6)	
0.3 (n = 3)	0.3 (n = 1)	
0.4 (n = 0)	0.4 (n = 3)	
0.5 (n = 1)	0.5 (n = 2)	

Kelly et al. (2020)	Vision assessment	Amblyopic	Non-amblyopic
BCVA (logMAR)	0.5 ± 0.3	0.1 ± 0.1	−0.1 to 0.3
(amblyopic eye)	0.1–1.9		
Mean ± SD; range	0.0 ± 0.1	0.1 ± 0.1	−0.1 to 0.3
BCVA (logMAR) (fellow eye)	−0.1 to 0.2		
Mean ± SD; range	3.4 ± 0.8	3.1 ± 1.0	
Stereocuity (arcsecond)	(1.8–4)	(1.6–4)	
Mean ± SD; range	0.4 ± 0.4	0.3 ± 0.6	
Extent of suppression (log deg)	(−0.2 to 1.2)	(−0.2 to 1.2)	
Mean ± SD; range	4.8 ± 3.6	3.0 ± 2.9	
Depth of suppression (CBI)	(0.2–11.0)	(0.2–11.0)	

Niechwiej-Szwedo et al. (2020a)	Vision assessment	Typically developing children. Mean ± SD (range)
Visual acuity (logMAR)	−0.02 ± 0.07 (−0.10–0.18)/	24 ± 7 (20–50)
distance/near	0.01 ± 0.03 (0.00–0.18)	24 ± 10 (8–45)/11 ± 11 (2–45)
Stereopsis (secof arc)		14 ± 4 (4–25)/11 ± 4 (4–20)
Phoria (PD) distance/near		
Negative fusional vergence (BI, divergence) near – break/recovery (PD)		
Vergence facility (cpm)		14 ± 4 (5–24)
Test	Typical values (range)	
--	--	
Binocular accommodative facility (cpm)	8 ± 3 (0.5–14.5)	
Amplitude of accommodation—RE and LE (D)	11 ± 2 (7–16)/11 ± 2 (6–16)	
Accuracy of accommodation (MEM)—RE and LE (D)	1.06 ± 0.40 (0.25–2.00)/21.06 ± 0.40 (0.25–2.00)	
Vision assessment	**Typically developing children.**	
Binocular visual acuity (logMAR) distance	0.00 ± 0.11 (–0.2 to 0)	
Monocular visual acuity (logMAR) distance	0.04 ± 0.12 (–0.1 to 0)	
Intercocular visual acuity difference (logMAR)	0.06 ± (0.10) (0.0–0.6)	
Stereoacuity (sec of arc)	45 ± 27 (20–200)	
Visual development parameter	**Gross motor quotient < 100**	
Visual acuity (CardiffTest—LogMAR) (RE)/(LE)	0.18 ± 0.10/0.18 ± 0.10	
Visual acuity (Broken Wheels—LogMAR) (RE)/(LE)	0.36 ± 0.05/0.36 ± 0.04	
Retinoscopy refraction (Diopters D) (RE)/(LE)	+1.27 ± 0.91/+1.35 ± 0.92	
Spherical equivalent refraction		
Kappa angle (negative/0/positive) (RE)	4 (10%)/7 (17.5%)/29 (72.5%)	
Kappa angle (negative/0/positive) (LE)	4 (10%)/8 (20%)/28 (70%)	
Hirshberg reflex (temporal/centred/nasal) (RE)	3 (7.7%)/7 (17.5%)/29 (72.5%)	
Hirshberg reflex (temporal/centred/nasal) (LE)	3 (7.9%)/8 (21.1%)/27 (71.1%)	
Krismky test (normal/deviated)	70 (87.5%)/10 (12.5%)	
Near point of convergence (centimetre, cm)	2.46 ± 4.07	
Base-out 6ΔPrism Test (prism diopters, Δ) (negative/positive)	27 (33.8%)/53 (66.3%)	
Base-In 6ΔPrism Test (prism diopters, Δ) (negative/positive)	60 (75%)/20 (25%)	
Stereopsis lang test (second arc)	303.89 ± 143.67	
Bruckner test (normal/deviated)	71 (88.8%)/9 (11.3%)	
Fixation test (passed/not passed)	64 (80%)/16 (20%)	
Reflection and head (saccades movements)	46 (57.5%)/34 (42.5%)	
Head (saccades movements) (motionless/slight/medium/strong)	12(15%)/33(41.3%)/24(30%)/11(13.85)	
Sá et al. (2021)	**Amblyopic group**	
Visual acuity values <0.7 on the Snellen scale in one or both eyes		
or difference in vision between the eyes greater than two lines		
on that scale.		
Vagge et al. (2021)	**Vision assessment**	
Strabismus group	**Normal (n = 11); absent (n = 12)**	
Stereopsis		
Amblyopia		
Non-amblyopia		
BCVA = best-corrected visual acuity, BCVA = monocular best-corrected visual acuity, BF = binocular function, BI = base-in, BO = base-out, CBI = Contrast Balance Index, CPM = cycles per minute, D = diopters, Dom Eye = dominant eye, LE = left eye, Log deg = log degrees (Extent of suppression scotoma), MEM = monocular estimate method, Non-dom eye = nondominant eye, PD = prism diopter; Positive fusional vergence (BO, convergence) near – break/recovery (PD), RE = right eye, SD = standard deviation, Δ = prism diopter.		
Table 4. Motor outcomes.

Author et al. (year)	Motor measures					
Atkinson et al. (2005)	Movement Assessment Battery for Children (MABC-2)					
	Parameters	Hyperopic group	Age 51/2 years			
		Parameters	Mean (SD)	Age 31/2 years		
Catch bean bag (bags caught)	6 (5.9)	8 (8.2)				
Roll ball (balls rolled into goal)	4 (3.9)	6 (6.4)				
Walk (steps walked)	5 (6.4)	13 (12.1)				
Jump score	0 (1.5)	0 (0.6)				
Balance (PL) (seconds balanced)	4 (4.3)	11 (9.5)				
Balance (NPL) (seconds balanced)	3 (4.5)	7 (7.9)				
Coin (PH) (seconds taken)	26 (26.3)	19 (19.8)				
Coin (NPH) (seconds taken)	28 (30.5)	22 (22.3)				
Beads: (6 beads) (seconds taken)	46 (49.2)	59 (63.0)				
Bicycle trail (errors made)	6 (7.0)	0 (0.6)				
Engel-Yeger (2008)	Balance and ball skills sub-tests from the Movement Assessment Battery for Children (MABC-2)					
Webber et al. (2008)	Worth 4 dot Vision assessment Pegboard	Bead task time (s)	Water task Mean (SD)			
Webber et al. (2008)	Worth 4 dot response	Fusion	16.8 ± 1.6	1.1 ± 0.0	43.4 ± 10.7	
	Suppression	15.2 ± 1.3	58.4 ± 7.0	72.3 ± 9.9	1.56 ± 1.09	46.1 ± 11.7
	Bifoveal	16.8 ± 1.5	48.9 ± 5.2	56.5 ± 7.4	1.1 ± 0.9	43.5 ± 10.7
	CS	15.3 ± 2.0	52.5 ± 3.8	66.7 ± 7.1	1.0 ± 0.6	48.0 ± 11.0
Prism fusion range total amplitude	Normal	16.7 ± 1.6	49.4 ± 5.3	57.1 ± 7.6	1.1 ± 1.0	43.2 ± 10.6
	Reduced	17.0 ± 1.3	51.7 ± 9.9	66.4 ± 11.0	1.4 ± 0.5	44.1 ± 11.6
	Nil	15.0 ± 1.4	58.5 ± 5.7	72.2 ± 11.0	1.5 ± 1.2	47.2 ± 12.1
Prism fusion-adjusted positive vergence measure	Normal	16.7 ± 1.6	49.2 ± 5.2	57.0 ± 7.6	1.1 ± 1.0	42.7 ± 10.2
	Reduced	17.3 ± 1.5	49.8 ± 5.9	62.1 ± 10.6	1.0 ± 0.7	51.7 ± 11.4
	Nil	15.1 ± 1.4	59.1 ± 6.7	72.0 ± 10.2	1.5 ± 1.1	45.3 ± 12.5
Suttle et al. (2011)	Binocular	Amblyopic group	Dom eye	Non-don eye		
Mean ± SD	Movement time (ms)	1056 ± 66	1122 ± 45	1118 ± 52		
Reaching	Peak velocity, mm/s	579 ± 25	549 ± 28	537 ± 25		
	Reach duration, ms	844 ± 52	877 ± 43	889 ± 46		
	Time to peak dec, ms	511 ± 21	512 ± 26	512 ± 22		
	Low velocity phase, ms	326 ± 47	355 ± 38	364 ± 42		
Grasping	Peak grip aperture, ms	73 ± 2	75 ± 2	75 ± 2		
	Grip size contact, mm	51 ± 1	54 ± 1	57 ± 2		
Study	Test Description	Amblyopia Group	Non-amblyopic Group			
---	--	---	---			
Fang et al. (2017)	Beery developmental test package (motor coordination task-MC task)	Motor coordination predicting the VMI skills of 4-6-year-old children	Motor coordination predicting the VMI skills of 4-year-old children			
		\(B = 0.27 \ (p < 0.001) \)	\(B = 0.40 \ (p < 0.01) \)			
			Motor coordination associated with the VMI skills of 5-year-old children			
			\(B = 0.20 \ (p < 0.1) \)			
Niechwiej-Szwedo et al. (2017)	ND					
Thompson et al. (2017)	Bayley Scales of Infant Development (Bayley III)	Subtest	Association with visual acuity			
		Composite motor	\(-0.04 \ (-0.60, -0.02) \)			
		Fine motor subtest	\(-0.05 \ (-0.07, -0.03) \)			
		Gross motor subtest	\(-0.02 \ (-0.04, 0.00) \)			
Zipori et al. (2018)	The Bruininks-Oseretsky Test of Motor Proficiency (Balance subtest)	Amblyopia group	Strabismus with amblyopia group			
		9.0 ± 3.1	8.6 ± 2.4			
			Esotropia			
			8.0 ± 1.7			
			9.9 ± 3.1			
Birch et al. (2019a)	NR					
Birch et al. (2019b)	NR					
Birch et al. (2020)	NR					
Hemptinne et al. (2020)	NR					
Kelly et al. (2020)	Movement Assessment Battery for Children, Second Edition	Total motor	7.4 ± 2.7			
		Manual dexterity	7.6 ± 2.7			
		Aiming & catching	8.8 ± 3.4			
		Balance	7.8 ± 3.1			
		Total movement time (ms)	1551 ± 302			
		Peak velocity (m/s)	0.886 ± 0.137			
		Reach duration (ms)	411 ± 48			
		Grasp duration (ms)	173 ± 78			
		Placement duration (ms)	559 ± 190			
		Reach-to-bead acceleration interval duration (ms)	182 ± 32			
		Reach-to-bead deceleration interval duration (ms)	236 ± 34			
		Reach-to-bead deceleration interval duration (ms)	212 ± 32			
		Reach-to-needle acceleration interval duration (ms)	193 ± 28			
Niechwiej-Szwedo et al. (2020a)	Bead threading measures					
	Mean ± SD					
Niechwiej-Szwedo et al. (2020b)	NR					
Pinero-Pinto et al. (2020)	Peabody Development Motor Scale-Second Version (PDMS-II)	Static percentile	72.04 ± 19.90 (9.00–99.00)			
	Mean ± SD (range)	Locomotion percentile	15.87 ± 11.08 (2.00–50.00)			
		Handling percentile	43.43 ± 21.20 (5.00–95.00)			
		Grasp percentile	73.53 ± 24.16 (5.00–99.00)			
		Coordination percentile	37.79 ± 18.76 (2.00–84.00)			
		Gross motor percentile	42.40 ± 21.00 (8.00–95.00)			
		Fine motor percentile	56.68 ± 24.33 (12.00–99.00)			
		Overall motor percentile	49.71 ± 22.32 (4.00–96.00)			
		Gross motor quotient	96.81 ± 9.15 (79.00–124.00)			
		Fine motor quotient	104.52 ± 14.90 (14.00–151.00)			
		Overall motor quotient	98.66 ± 14.55 (0.00–126.00)			
Amblyopia and development

Amblyopia is a decrease in visual acuity without any organic lesion to justify it. The involvement is generally unilateral and occurs as a consequence of a lack of adequate visual stimulation during the critical period of visual development. Amblyopia may affect both eyes, if both have suffered a long period of visual deprivation (DeSantis 2014), and it is related to the presence of an asymmetric refractive error that has not been detected or treated during childhood.

There is a close relationship between visual acuity deficit and motor delay. Several studies revealed the importance of vision in relation to balance and coordination (Atkinson et al. 2005; Chakraborty et al. 2017; Fang et al. 2017; Thompson et al. 2017; Zipori et al. 2018; Hempinne et al. 2020; Sá et al. 2021), although no study found significant results in this association (Wilson & Welch 2013).

Most of the studies indicated that fine motor skills may be affected if there is any alteration of vision, particularly in the case of amblyopia and strabismus, and can be improved in cases of correct binocular vision (O’Connor et al. 2010; Suttle et al. 2011; Alramis et al. 2016; Webber et al. 2016; Niechwiej-Szwedo et al. 2017; Webber 2018; Kelly et al. 2019; Niechwiej-Szwedo et al. 2020a, 2020b; Vagge et al. 2021). Gross and fine motor skills have been shown to be reduced in children with amblyopia (Engel-Yeger 2008; Webber et al. 2008).

Manual dexterity tasks require more time for execution and planning. Reading speed and hand–eye coordination are also affected (Suttle et al. 2011; Birch et al. 2019a, 2019b; Birch et al. 2020).

The deficiencies in motor performance were greater in manual dexterity tasks, which require speed and precision. Children with amblyopia are slower in planning and executing reaching movements and have a less precise grip than children without amblyopia.

In addition, children with amblyopia present postural instability, which is a consequence of poor static balance (Kelly et al. 2020; Sá et al. 2021). Children with amblyopia are more cautious when walking, take shorter steps and slow down as a result of poor visual perception (Buckley et al. 2010).

Several studies have identified that lower self-perception of peer acceptance and physical competence identity is associated with worse motor skills, which may be related to the wide-ranging effects of impaired visual development in children with amblyopia in their daily lives (Birch et al. 2019a, 2019b; Birch et al. 2020). One study also revealed that amblyopia can negatively affect children’s motor skills, as expressed by objective measures in daily life, whereas self-perception is less affected (Engel-Yeger 2008).
Binocular vision and development

Binocular vision is the ability to integrate two images into one. This requires both eyes to be perfectly aligned on the fixation point. Normal binocular vision positively influences the optimal development of fine motor skills and tasks related to reading. Niechwiej-Szwedo et al. (2017) assessed motor performance in a group of children with reading difficulties by using two tasks: threading beads and pegboard. Children with reading problems had difficulty in the task of threading beads but not with the pegboard. This group performed poorly on a single task that relied heavily on binocular information.

Chakraborty et al. (2017) and Thompson et al. (2017) evaluated binocular vision (visual acuity, stereopsis, alignment of visual axes, ocular motility and self-refraction) and showed that it is strongly related to motor function by using the MABC-2 scales, Peabody Developmental Motor Scale-2nd Version and Bayley Scales of Infant Development, all of which are valid and reliable for measuring infant motor development. In addition, Pinero-Pinto et al. (2020) performed a comprehensive study of binocular vision in a group of typically developing children. They confirmed that children with slower motor development had greater exophoria and a closer convergence point further away, which hindered fusion and binocular vision. In addition, other authors have highlighted the influence of age and affirm that the role of vision in the performance of fine motor skills depends on both the task and age (Alramis et al. 2016; Niechwiej-Szwedo et al. 2020a, 2020b).

Strabismus is an anomaly of binocular vision consisting of the loss of parallelism of both eyes. The lack of binocularity and stereopsis in children with strabismus is associated with the significant impairment of motor skills, particularly for static balance and capture tasks (Hemphine et al. 2020; Vagge et al. 2021). Furthermore, when normal binocular vision is interrupted in childhood due to strabismus and/or amblyopia, vision and posture are affected, and balance is reduced (Zipori et al. 2018).

Hyperopia and development

Toddlers typically have uncorrected hyperopes (Mayer et al. 2001). Uncorrected hyperopia presents a greater accommodative demand that causes a closure of the visual axes (endophoria) (Leone et al. 2010). A total of 20% of children with high hyperopia (>3.5 D) develop convergent strabismus (Anker et al. 2004; Babinsky and Candy 2013). Atkinson et al. (2005) compared motor skills in hyperopic and emmetropic children by using the MABC-2 as a motor development measurement tool. Hyperopic children performed worse on at least one test in each category (manual dexterity, balance and ball skills). This implies an impairment in fine motor skills in hyperopic children.

This review has several limitations, particularly with regard to the difficulty of extracting data via varied methodologies and different visual systems and motor development assessment tools. Furthermore, there could be some inherent bias due to the professional interests of the authors that are unknown to us. To the best of our knowledge, this is the first review to analyse the relationship between motor development and the visual system. Therefore, this review provides valuable information for the evaluation and treatment of children by professionals from different disciplines in relation to pediatrics.

Conclusions

All included studies confirmed a relationship between the visual system and development in children, although they also demonstrated a lack of uniformity in the methods of visual system measurement and developmental assessment.

References

Adolph KE & Hoch JE (2019, January 4): Motor development: embodied, embedded, enculturated, and enabling. Annu Rev Psychol 70: 141–164.

Alramis F, Roy E, Christian L & Niechwiej-Szwedo E (2016): Contribution of binocular vision to the performance of complex manipulation tasks in 5–13 years old visually-normal children. Hum Mov Sci 46: 52–62.

Anker S, Atkinson J, Braddock O, Nardin M & Ehrlich D (2004): Non-cycloptic refraction screening can identify infants whose visual outcome at 4 years is improved by spectacle correction. Strabismus 12: 227–245.

Atkinson J, Nardini M, Anker S, Braddock O, Hughes C & Rae S (2005): Refractive errors in infancy predict reduced performance on the movement assessment battery for children at 3 1/2 and 5 1/2 years. Dev Med Child Neurol 47: 242–251.

Babinsky E & Candy TR (2013): Why do only some hyperopes become strabismic. Invest Ophthalmol Vis Sci 54: 4941–4955.

Birch EE, Castañeda YS, Cheng-Patel CS, Morale SE, Kelly KR, Beauchamp CL & Webber A (2019a): Self-perception of school-aged children with amblyopia and its association with reading speed and motor skills. JAMA Ophthalmol 137: 167–174.

Birch EE, Castañeda YS, Cheng-Patel CS, Morale SE, Kelly KR, Beauchamp CL & Webber A (2019b): Self-perception in children aged 3 to 7 years with amblyopia and its association with deficits in vision and fine motor skills. JAMA Ophthalmol 137: 499–506.

Birch EE, Castañeda YS, Cheng-Patel CS, Morale SE, Kelly KR & Wang SX (2020): Self-perception in preschool children with deprivation amblyopia and its association with deficits in vision and fine motor skills. JAMA Ophthalmol 138: 1307–1310.

Buckley JG, Panaesar GK, MacLellan MJ, Pacey JE & Barrett BT (2010): Changes to control of adaptive gait in individuals with long-standing reduced stereocuity. Investig Ophthalmol Vis Sci 51: 2487–2495.

Cacho-Martínez P, Canto-Cerdán M, Carbonell-Bonete S & García-Muñoz Á (2015): Characterization of visual symptomatology associated with refractive, accommodative, and binocular anomalies. J Ophthalmol 2015: 895803.

Cacho-Martínez P, García-Muñoz Á & Ruiz-Cantero MT (2010): Do we really know the prevalence of accommodative and nonstrabismic binocular dysfunctions? J Optom 3: 185–197.

Cacho-Martínez P, García-Muñoz Á & Ruiz-Cantero MT (2014): Is there any evidence for the validity of diagnostic criteria used for accommodative and nonstrabismic binocular dysfunctions? J Optom 7: 2–21.

Caputo R, Tinelli F, Bancale A, Campa L, Frosini R, Guzzetta A, Mercuri E & Cioni G (2007): Motor coordination in children with congenital strabismus: effects of late surgery. Eur J Paediatr Neurol 11: 265–291.

CASP CHECKLISTS – CASP – Critical Appraisal Skills Programme (n.d.). Chakraborty A, Anstice NS, Jacobs RJ et al. (2017): Global motion perception is related to motor function in 4.5-year-old children born at risk of abnormal development. Vision Res 135: 16–25.

Chapman GJ, Scally A & Buckley JG (2012): Importance of binocular vision in foot placement accuracy when stepping onto a floor-based target during gait initiation. Exp Brain Res 216: 71–80.

DeSantis D (2014): Amblyopia. Pediatr Clin North Am 61: 505–518.

Engel-Yeger B (2008): Evaluation of gross motor abilities and self perception in children with amblyopia. Disabil Rehabil 30: 243–248.

Fang Y, Wang J, Zhang Y & Qin J (2017): The relationship of motor coordination, visual
Liberati A, Altman DG, Tetzlaff J et al. (2009, Moher D, Liberati A, Tetzlaff J, et al. (2009, Mayer DL, Hansen RM, Moore BD, Kim S &
Leone JF, Cornell E, Morgan IG, Mitchell P, Jang JU & Park IJ (2015): Prevalence of
Hussaindeen JR, Rakshit A, Singh NK, George
Goodale MA (2011): Transforming vision into
Kelly KR, Morale SE, Wang SX, Stager DRJ &
LM, Luu BA & Birch EE (2020): Factors
associated with impaired motor skills in
strabismic and anisometropic children.
Invest Ophthalmol Vis Sci 61: 43.
Kelly KR, Morale SE, Wang SX, Stager DRJ &
Birch EE (2019): Impaired fine motor skills in
children following extraction of a dense
congenital or infantile unilateral cataract.
J AAPOS Off Publ Am Assoc Pediatr Ophthal
strabismus. Br J Ophthalmol 94: 542–546.
Leone JF, Cornell E, Morgan IG, Mitchell P, Kifley A, Wang JJ & Rose KA (2010): Prevalence of heterophoria and associations with refractive error, heterotropia and eth
icity in Australian school children. Br J Ophthalmol 94: 542–546.
Liberati A, Altman DG, Tetzlaff J et al. (2009, July): The PRISMA statement for reporting
systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6: e1000100.
Mayer DL, Hansen RM, Moore BD, Kim S & Fulton AB (2001): Cycloplegic refractions in healthy children aged 1 through 48 months. Arch Ophthalmol 119: 1625–1628.
Moher D, Liberati A, Tetzlaff J, et al. (2009, July): Preferred reporting items for systematic
reviews and meta-analyses: the PRISMA statement. PLoS Med. 6: e1000097.
Niezchwiej-Szewed E, Alramis F & Christian LW (2017): Association between fine motor
skills and binocular visual function in chil
read with difficulties. Hum Mov Sci 56: 1–10.
Niezchwiej-Szewed E, Meier K, Christian L, Nouredanesh M, Tung J, Bryden P & Giaschi D (2020a): Concurrent maturation of visuomotor skills and motion perception in typically-developing children and adolescents. Dev Psychobiol 62: 353–367.
Niezchwiej-Szewed E, Thai G & Christian L (2020b): Contribution of stereopsis, ver
gence, and accommodative function to the performance of a precision grasping and placement task in typically developing chil
age 8–14 years. Hum Mov Sci 72: 102652.
O’Connor AR, Birch EE, Anderson S &
Draper H (2010): Relationship between binocular vision, visual acuity, and fine motor skills. Optom Vis Sci 87: 942–947.
OCEBM Levels of Evidence – Centre for Evidence-Based Medicine (CEBM), University of Oxford (n.d.).
Page MJ, Moher D, Bossuyt PM et al. (2021): PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 372: a160.
Pino-Pinto E, Pérez-Cabezas V, De-Hita-Cantalejo C, Ruiz-Molineró C, Gutiérrez-Sánchez E, Jiménez-Rejano J-J, Sánchez-González J-M & Sánchez-González MC (2020): Vision development differences between slow and fast motor development in typical developing toddlers: a cross-sectional study. Int J Environ Res Public Health 17: 3597.
Sá CSC, Luz C, Pombo A, Rodrigues LP &
Cordova R (2021): Motor competence in children with and without ambliopia. Percept Mot Skills 128: 746–765.
Suttle CM, Melmoth DR, Finlay AL, Sloper JJ & Grant S (2011): Eye-hand coordination
skills in children with and without ambliopia. Invest Ophthalmol Vis Sci 52: 1851–1864.
Thompson B, McKinlay CJD, Chakraborty A
et al. (2017): Global motion perception is associated with motor function in 2-year-old children. Neurosci Lett 658: 177–181.
Vagge A, Pellegrini M, Iester M, Musolinio M, Giannaccare G, Ansaldino R & Traverso CE (2021): Motor skills in children affected by strabismus. Eye 35: 544–547.
Webber AL (2018): The functional impact of amblyopia. Clin Exp Optom 101: 443–450.
Webber AL, Wood JM, Gole GA & Brown B (2008): The effect of amblyopia on fine motor skills in children. Invest Ophthalmol Vis Sci 49: 594–603.
Webber AL, Wood JM & Thompson B (2016): Fine motor skills of children with amblyopia improve following binocular treatment. Invest Ophthalmol Vis Sci 57: 4713–4720.
Wilson GA & Welch D (2013): Does amby
opia have a functional impact? Findings from the Dunedin Multidisciplinary Health and Development Study. Clin Experiment Ophthalmol 41: 127–134.
Zimmermann A, de Carvalho KMM, Ateie C, Zimmermann SMV & VLM R (2019): Visual development in children aged 0 to 6 years. Arq Bras Oftalmol 82: 173–175.
Zipori AB, Colpa L, Wong AMF, Cushing SL & Gordon KA (2018): Postural stability and visual impairment: assessing balance in chil
with strabismus and amblyopia. PLoS One 13: e0205857.

Received on August 8th, 2021; Accepted on January 20th, 2022.
Correspondence: María Carmen Sánchez-González, OD, PhD Department of Physics of Condensed Matter, Optics Area University of Seville 41012 Seville Spain Tel: +34 649532854 Fax: +34 954552870 Email: msanchez77@us.es

Supporting Information
Additional Supporting Information may be found in the online version of this article:
Figure S1. Flow chart.