Resource Assessment and Possible Industrial Applications of Bauxite Occurrences in Parts of the Mambila Plateau, NE Nigeria

Audu M. Daya, Ahmad I. Haruna, Abubakar S. Maigari, and Isah Yahuza

ABSTRACT

Bauxites are normally formed from underlying aluminosilicate rocks as a result of tropical weathering. In our previous two papers, we presented the Geology, possible host, mineralogy, and geochemistry of the bauxites of Mambila Plateau, NE Nigeria. The bauxite was formed from residual chemical weathering of trachyte and occurs as a blanket cover over saprolite. XRD results showed gibbsite as the major mineral with small amounts of hematite, kaolinite, and quartz. Geochemistry of the bauxite ore is characterized by enriched Al₂O₃ (39.50-78.20.0%), erratic amounts of SiO₂ (2.89-5.13%) and Fe₂O₃ (5.98-21.96%). In this study, the resources of Mambilla Bauxite Deposits (Block I and Block II) have been estimated to be 7,529,312.5 metric tons using block method of vertical geological cross-section bearing in mind that the Mambilla Bauxite Deposits have been explored by pitting on a regular grid pattern of 100 m × 100 m. The bauxite deposit in Block II has met the requirement for metallurgical grade bauxite as standard specification (IS: 5953-1985, Reaffirmed [1]). While, Block I deposit has not met such specifications. Sustained investment in bauxite exploration is required to upgrade the ore reserves for sustainable development of a mining enterprise.

Keywords: bauxite, gibbsite, Mambilla Plateau, metallurgical grade, metric tons, mining enterprise, resources, trachyte.

I. INTRODUCTION

The importance of bauxite in many industries including Iron and Steel industry and in production of Alumina (Al₂O₃) cannot be over-stressed. The lightness of metal aluminium, its high resistance to atmospheric corrosion and its electrical conductivity make it a popular metal. It is being used as household utensils, aero plane construction, automobile and electrical industry. The Aluminium metal being a good substitute for non-ferrous metals like copper, zinc, which are scarce and costly metals, has further necessitated development of aluminium industry throughout the world. Bauxite is typically classified according to its intended commercial application, such as abrasive, cement, chemical, metallurgical, and refractory. The demand for bauxite or aluminium is increasing day-by-day and since bauxite deposit has been suspected at Mambilla Plateau, Taraba state, Nigeria, this study is aimed at assessing the viability of the deposits through detailed quality and quantity assessments. The study area is bounded by latitudes 6°56’N and 7°130° N, longitudes 11°30’E and 11°6’30’E and covers approximately 770 square kilometers. Mambilla Plateau can be accessed through Makurdi – Katsina Ala – Takum – Baruwa – Maisamari to Nguroje or through Bauchi – Jalingo – Baruwa – Maisamari and then to Gurgu and Mayosumsum (Fig. 1). These routes are accessible throughout the year (Daya et al. [2]).

II. GEOLOGICAL FRAMEWORK

The area forms part of the Nigerian northeastern basement complex. Generally, the Pan-African granites represent diverse magmatic phase related to the Pan-African orogeny, which contribute about 70% of materials within the crustal domain [3]. Importantly, Falconer [4] introduced the term...
“Older Granite” to differentiate the granites, the basement complex granite from Younger Granites of the Jos Plateau. However, Dada [5] opines that the “Older Granites” be replaced with “Pan African Granitoids” as the former is solely synonymous to the age of emplacement while the latter covers a wider scope of petrological significance in the geological literature. The Nigerian Pan-African basement complex is categorized into three; the northern, western, and eastern basement complexes. In the northern section, there is an eastward abundant increase of the Pan-African granites, which forms the Nigerian northeastern basement complex constituting the Adamawa Massif, the Hawal Massif, and the Oban Massif [6], (Fig. 2). The Adamawa Massif and Oban Massif have relatively received considerable attention from various researchers (e.g., [7]-[14]). Similarly, the Hawal Massif was studied by several researchers (e.g., [15]-[23]). The abundant Pan-African granitoids in the area, which can serve as a natural geological laboratory for unraveling the intricacies of calc-alkaline granites has been poorly constrained.

![Geological map of Nigeria showing the study area (after Obaje [24]).](image)

Fig. 2. Geological map of Nigeria showing the study area (after Obaje [24]).

III. METHODOLOGY

A. Resource Estimation

The essence of this method is to estimate the resource of the Mambilla bauxite deposits (Blocks I and II).

B. Procedure

The mineral resource estimation of Mambilla Bauxite Deposits (Blocks I and II) was done using block method of vertical geological cross-section bearing in mind that the Mambilla Bauxite Deposits have been explored by pitting on a regular grid pattern of 100 m × 100 m.

In the estimation of the resource of the Mambilla bauxite Deposits, the following geological data/information were used:

1. Geological Map scale 1:5,000.
2. Geological cross sections along profiles I, II, III, IV, V, VI, VII, VIII, IX and X.
3. Geological logs of pits.
4. Result of chemical analysis.

C. Calculation of Resource

The weight of Bauxite of each block was calculated by using this formula:

\[Q = Vd \]

where

- \(Q \) = Weight of ore in metric tons;
- \(V \) = Volume of each block in cubic meters (m³);
- \(d \) = Bulk density of bauxite mineral in tons/m³.

IV. RESULTS

A. Resource Estimation

The block method of vertical cross section was employed. The polygon method was considered in the area calculation using ArcGIS software. The volume of the bauxite in each block is the product of area of each block by the average thickness of the ore body. The tonnage was derived by multiplying volume with density of the bauxite ore determined in the laboratory. The computed results are presented in Tables I and II. The two bauxite deposits have been classified according to degree of investigation. The resource classification for block 1 and block 2 bauxite resource are presented in Fig. 3 and 4.

V. DISCUSSIONS

A. Resource Estimation

In computing the resource of block 1 and block 2 of the Mambilla bauxite resource, JORC Standard of reporting exploration results was considered suitable in this report. This is because JORC uses same definitions as other 13 reporting codes/guidelines/standards do. Hence, a report written as per JORC code can be understood by industry professionals in another country (subject to reciprocity process). A report written as per JORC guidelines in Brazil can be used for raising funds in Hong Kong Stock exchange. An investor from another country where a CRIRSCO template based code is used can use the reports written as per JORC code in Nigeria. The two bauxite blocks have been classified according to degree of investigation (Fig. 3 and 4).

The measured resource is that part for which quantity, grade or quality, densities, shape, and physical characteristics are so well established and estimated with confidence sufficient to allow the appropriate application of technical and economic parameters, to support production planning and evaluation of the economic viability of the deposit. The estimate was based on detailed and reliable exploration, sampling and testing information gathered through pitting that are spaced closely enough to confirm both geological and grade continuity (Fig. 4).

The inferred resource is that part of resource for which quantity and grade or quality were estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not adequately verified. The estimate was based on limited information and sampling gathered from pits (Fig. 5).
TABLE I: RESOURCE ESTIMATION FOR BLOCK I OF THE MAMBILLA BAUXITE DEPOSIT

Block No.	Location of Block	Shape of ore body	Classification of Resource	Area of ore body within profile (m²)	Area of ore body in adjacent profile (m²)	Average area of ore body (m²)	Average thickness of ore body (m)	Volume of ore body in block (m³)	Bulk density of ore (Tons/m³)	Average Al₂O₃ content per block C (%)	Reserve of ore per block Q = VD tons	Total tonnage (B + C)
1	Between profile I and profile II	Prism	Measured (B)	35708	115617	75662.5	3	226987.5	45.20	567468.75	753952.5	
			Inferred (C)	14168	35561	24864.6	24864.6	24864.6	319418	74593.5	798545	
2	Between profile II and profile V	Prism	Measured (B)	35956	9837	22999	4	90796	46.26	226900	102535	
			Inferred (C)	44092	10943	10390	10390	10390	39142	41560	420130	
3	Between profile V and profile VI	Prism	Measured (B)	44092	9837	22999	4	90796	46.26	226900	102535	
			Inferred (C)	39934	39136	39535	39535	39535	36236	158140	393530	
4	Between profile VI and profile VII	Prism	Measured (B)	39136	132307	85721.5	4	342886	42.36	857215	971940	
			Inferred (C)	7175	15770	11472.5	4	45890	42.36	857215	971940	
5	Between profile VII and profile VIII	Prism	Measured (B)	132307	39136	85721.5	4	342886	42.36	857215	971940	
			Inferred (C)	15770	7175	11472.5	4	45890	42.36	857215	971940	

Measured = 3,895,923.75; Inferred = 837,413.75; Grand Total = 4,733,337.5 metric tons.

TABLE II: RESOURCE ESTIMATION FOR BLOCK II OF THE MAMBILLA BAUXITE DEPOSIT

Block No.	Location of Block	Shape of ore body	Classification of Resource	Area of ore body within profile (m²)	Area of ore body in adjacent profile (m²)	Average area of ore body (m²)	Average thickness of ore body (m)	Volume of ore body in block (m³)	Bulk density of ore (Tons/m³)	Average Al₂O₃ content per block C (%)	Reserve of ore per block Q = VD tons	Total tonnage (B + C)
1	Between profile I and profile II	Prism	Measured (B)	19510	3290	23851.5	4	95406	50.20	238515	254965	
			Inferred (C)	28193	28409	28301	1645	6580	50.20	283010	291955	
2	Between profile II and profile III	Prism	Measured (B)	28409	1789	28607.5	4	113204	46.26	8945	286075	304245
			Inferred (C)	28806	1845	115372	894.5	3578	46.26	18170	288430	
3	Between profile III and profile IV	Prism	Measured (B)	28806	1845	28843	4	115372	50.67	288430	297655	
			Inferred (C)	1845	2877	3690	28828.5	4	115372	50.67	288285	
4	Between profile IV and profile V	Prism	Measured (B)	28880	2877	28828.5	4	115372	50.67	288285	282825	
			Inferred (C)	2877	23973	26375	4	105500	43.40	263750	263750	
5	Between profile V and profile VI	Prism	Measured (B)	2877	23973	26375	4	105500	43.40	263750	263750	
			Inferred (C)	2877	23973	26375	4	105500	43.40	263750	263750	
6	Between profile VI and profile VII	Prism	Measured (B)	23973	17931	20952	4	83808	42.36	209520	271115	
			Inferred (C)	3569	8750	6159.5	20952	42.36	271115			
7	Between profile VII and profile VIII	Prism	Measured (B)	17931	22405	20168	4	80672	43.21	201680	270760	
			Inferred (C)	8750	5066	6908	20168	43.21	201680			
8	Between profile VIII and profile IX	Prism	Measured (B)	22405	1493	25649.5	4	102598	43.38	256495	289285	
			Inferred (C)	5066	1493	25649.5	4	102598	43.38	256495		
9	Between profile IX and profile X	Prism	Measured (B)	25649.5	1493	25649.5	4	102598	44.74	256495	263960	
			Inferred (C)	1493	1493	25649.5	4	102598	44.74	256495		

Measured = 2,572,255; Inferred = 223,720; Grand Total = 2,795,975 metric tons.
B. Summary of Mambilla Mineral Resource Estimate

Over the last three years, there have been great progress and increase in size of geological confidence in the Mambilla bauxite mineral resource and resource estimate, as the level of knowledge and geological understanding of the Project has grown. The general relationship between the exploration phase (Mineral Resources) and the development phase (Ore Reserves) is best illustrated by Fig. 5, which is taken from the JORC Code [25] and is populated with the updated Mineral Resource and Ore Reserve numbers of Mambilla bauxite.

VI. Conclusion

The block method of vertical geological cross-section was employed for mineral resource estimation of the Mambilla Bauxite Deposits (Block I and Block II) which have been explored by pitting on a regular grid pattern of 100 m × 100 m. This was done strictly in compliance with JORC reporting standard. The total mineral resource of Mambilla Bauxite Deposits has been estimated to be 7,529,312.5 metric tons – Block I (Mayosumsum area) stand at 4,733,337.5 metric tons with an area of 500,248 m² and Block 2 (Gurgu area) stand at 2,795,975 metric tons covering an area of 276,797 m². The bauxite deposit in Block 2 has met the requirement for metallurgical grade bauxite as compared to the standard specification. While, result of Block 1 show deficiency of such requirement and cannot be used in metallurgical industry but can be considered for other purposes with improvement in technology in the future.

ACKNOWLEDGMENT

This article is part of the PhD. Dissertation of the lead author (Audu Mohammed Daya). All the authors are grateful to the National Steel Raw Materials Exploration Agency and the Abubakar Tafawa Balewa University for their immense contributions towards the success of this study.

TABLE III: UPDATED MINERAL RESOURCE FOR MAMBLIA BAUXITE

Classification	Tons (Mt)	Al₂O₃	SiO₂	Fe₂O₃	TiO₂	LOI
Block 1						
Measured	3,895,923.7	45.45	22.5	21.50	4.0	20.0
Inferred	837,413.75	37.15	25.6	23.80	5.12	17.3
Total	4,733,337.5					

Block 2						
Measured	2,572,255	49.0	12.3	14.80	0.85	23.2
Inferred	223,720	45.80	14.5	15.50	0.98	20.2
Total	2,795,975					

Combined Block 1 and Block 2						
Total	6,468,178.7					
Measured	5					
Total	1,091,133.7					
Inferred	5					
Total	7,559,312.5					
CONFLICT OF INTEREST

Authors declare that they do not have any conflict of interest.

REFERENCES

[1] Indian Bureau of Mines. IS Specifications of Bauxite (52nd Edition) for Refractory Industry 2015 (IS: 10817-1984; Reaffirmed 2008).

[2] DAYA A.M.; HARUNA A.I; MAIGARI A.S.; IBRAHIM J.S. and YAHUZA I. Mineralogy and Geochemistry of Bauxite Ore of Mambilla Plateau, NE Nigeria. SSRG International Journal of Geo-informatics and Geological Science, 2021(8): 42-51. https://doi.org/10.14445/23939206/IJGGIS-V8E3P106

[3] Rahaman M.A.; Ajayi T.R.; Oshin I.O. and Asubiojo F.O.I. Trace Element Geochemistry and Geochotectonic Setting of Ile-Ilesha Schist Belt. Oluyide PO., Mbonu WC., Ogezi, A.E.; Eghunwe, I.G.; Ajibade, A.C. and Uneji, A.C. (eds). In: Precambrian Geology of Nigeria. Geological Survey of Nigeria. Publication 1988, pp. 241-256.

[4] Falconer DJ. The Geology and Geography of Northern Nigeria. Macmillan: London, 1911.

[5] Dada S.S. Proterozoic evolution of Nigeria. In: Oshi O (ed) The basement complex of Nigeria and its mineral resources (A Tribute to Prof. M. A. O. Rahaman). Akin Ijinad & Co. Ibadan, 2006, pp. 29–44.

[6] Ajibade A.C., Woakes M., Rahman MA. Proterozoic crustal development in the Pan-African regime of Nigeria. American Geophysical Union, 1987: 259–71.

[7] Bassey N.E., Maunde A. Structural deformational features of Suga Hills and Environ Adamawa Massif, Northeastern Nigeria. Journal of Applied Geology and Geophysics, 2017; 5(4):1-12.

[8] Ekwueme B.N. Precambrian geology and evolution of the Southeastern Nigeria Basement Complex. University of Calabar Press, Nigeria, 2003, p. 135.

[9] Haruna, I.V. Petrology and geochemistry of granitooids of the Northern Part of Adamawa Massif, N.E Nigeria. Journal of Geology and Geophysics 2014; (3), 177.

[10] Haruna I.V. Lithologic features and uranium possibilities of the granites of Papule, Adamawa Massif, NE Nigeria. Global Journal of Geology and Geophysics, 2017; 15:57-64.

[11] Haruna I.V., Ozarulike D.M and Otiulume A.B. Preliminary geological and radiometric studies of granitooids of Zing-Monkin area, Adamawa Massif, N.E Nigeria. Global Journal of Geological Sciences, 2011; 9(2).

[12] Haruna I.V., Ozarulike, D.M, Samaila, N.K. Trace and rare earth elements petrochemical constraint on tectonogenetic evolution of the granitooids of Zing-Monkin area, Adamawa Massif, N.E.Nigeria. Research Journal of Chemical Science 2013; 3(1):32–42.

[13] Opara K.D., Obioka Y.E., Onyekuru S.O., Okereke C., Ibeneme S.I. Petrology and geochotectonic of basement complex rocks in Okom-Ita Area, Oban Massif, Southeastern Nigeria. International Journal of Geoscience, 2014; 5:394–407.

[14] Ukagbegu V.U., Beka F.T. Petrochemistry and geotectonic significance of enderbite-charnockite association in the Pan-African Obudu plateau, southeastern Nigeria. J Min Geol., 2007; 43(1):1–14.

[15] Adekeye, J.LD and Niekim, E.E. The Geology of Song area in Southern Hawal Massif, N.E. Nigeria. Zama Journal of Pure and Applied Sciences, 2004; 6(2):5.

[16] Bassey N.E. Structure of Madagali Hills NE Nigeria from Airborne Magnetic and Satellite data. Global Journal of Geological Science, 2006a; 4(1): 47-54.

[17] Bassey N.E. Structural Geological Mapping and Landsat and Aeromagnetic Data Interpretation over Parts of Hawal Basement Complex, Northeast Nigeria. Doctoral Thesis 2006b, Abubakar Tafawa Balewa University, Bauchi (Unpublished).

[18] Bassey N.E., Dada S.S., Omotogun A.A. Preliminary structural study of satellite imagery over basement rocks of Northeast Nigeria and Northern Cameroon. J Min Geol, 2006; 42(1): 73–7.

[19] Bassey N.E. Digital filtering of aeromagnetic maps for Lineaments detection in Hawal Basement Complex of Hawal Area, N.E. Nigeria. Journal of Mining and Geology, 2012; 48(1):11–11.

[20] Bassey N.E. Kaigama, U., Oluwasegun A, Radiometric mapping of Song Area and Environs, Hawal Basement Complex, Northeast Nigeria. Int J Sci Tech, 2013; 2(9):692–9.

[21] Girei B.M. Geology, Geochemistry and petrogenesis of granite suites and pegmatites in the Northern Part of Mandara Hills Gwoza Sheet 114, Northeastern Nigeria. Unpublished M.Sc. Thesis, Ahmadu Bello University, Zaria 2015, 160 p.

[22] Kwache I.B, Niekim E.E. Geology of Dunne massif, Northeastern Hawal massif, Northeastern Nigeria. International Journal of Science and Technology, 2015; 4(11):2477-2482.

[23] Omontese, S.O., Millitus, J.V., Utuedor, E., Yikarebogha, Y. Major element geochemical characteristics of the granitic basement complex rocks of Wadili Area, North-Eastern Nigeria. International Journal of Research and Emerging Science Technology, 2015; 2(7):107–12.

[24] Obaje, N. J. Geology and mineral resources of Nigeria. Springer, Dordrecht Heidelberg, London New York 2009, 221p.

[25] JORC. Australasian Code for Reporting of Exploration Results. Mineral Resources and Ore Reserve, 2012: 3-36.

[26] DAYA A.M.; HARUNA A.I; MAIGARI A.S. and YAHUZA I. Geology and Possible Host for Bauxite Mineralization of Mambila Plateau, NE Nigeria. SSRG International Journal of Geo-informatics and Geological Science, 2021; a3(3): 22-28. https://doi.org/10.14445/23939206/IJGGIS-V8E3P104.

Audu M. Daya received BSc. Geology from University of Maiduguri – Nigeria in 1997, MSc. Economic Geology/Mineral Exploration from Abubakar Tafawa Tafawa University, Bauchi – Nigeria in 2006 and in 2021 defended his Ph.D Economic Geology/Mineral Exploration at the same institution. In 2014, he obtained Certificate in GIS/Remote Sensing from Korean Institute of Geoscience and Mineral Resources.

Mr. Daya is a registered member of Nigerian Mining and Geosciences Society (NMGS) and of the Nigerian Council of Mining Engineers and Geoscientists (COMEG).

Ahmad I. Haruna received BSc. Geology from Ahmadu Bello University Zaria – Nigeria in 1994, MSc. and Ph.D Economic Geology/Mineral Exploration from Abubakar Tafawa Balewa University, Bauchi – Nigeria in 1998 and 2011 respectively where he lectures as a Professor of Economic Geology/Mineral and current Head of the Department of Applied Geology.

He is engaged in researches on Nigerian Migmattes and Geosites with emphasis on Northern Parts of the country.

Prof. Haruna has 65 peer-reviewed research publications and conference papers to his credit and is a registered member of Nigerian Council of Mining Engineers and Geoscientists (COMEG) and of the Nigerian Mining and Geosciences Society (NMGS).

Abubakar S. Maigari received BSc. Geology from University of Maiduguri – Nigeria in 1991, MSc. and Ph.D Sedimentology/Petroleum Geology from Abubakar Tafawa Balewa University, Bauchi – Nigeria in 1998 and 2011 respectively where he lectures as a Professor of Sedimentology/Petroleum Geology.

He is currently engaged in a project titled Reservoir Potentials and Polylogy of the Lower Cretaceous Sediments of the Upper Benue Trough, NE Nigeria.

Prof. Maigari has 25 peer-reviewed research publications and 9 national and international conference papers to his credit and is a registered member of Nigerian Mining and Geosciences Society (NMGS) and of the Nigerian Council of Mining Engineers and Geoscientists (COMEG).

Isah Yahuza received B.Tech Applied Geology and MSc. Economic Geology/Mineral Exploration from Abubakar Tafawa Balewa University, Bauchi – Nigeria in 2014 and 2021 respectively.

He lectures at Air Force Institute of Technology, Kaduna – Nigeria.

Mr. Yahuza is a registered member of Nigerian Mining and Geosciences Society (NMGS).