Quantized $\Delta S = 2$ Excitation Spectra by Confinement in an $S = 1$ Spin Chain

Takafumi Suzuki and Sei-ichiro Suga

Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan

We calculate the dynamical spin-structure factor of the $S = 1$ Ising spin chain with single anisotropy and longitudinal magnetic fields using the infinite time-evolving-block-decimation algorithm. We show that when a transverse magnetic field is applied, both the $\Delta S = 2$ excitation continuum and one-magnon mode appear in the low-lying excitation. When a longitudinal magnetic field is further applied, the excitation continuum changes into quantized excitation spectra. The quantized $\Delta S = 2$ excitation spectra originate from the confinement of two domain walls, each of which carries $\Delta S = 1$. The quantized excitation energies are explained by the negative zeros in the Airy function.

In a seminal study for the $S = 1/2$ ferromagnetic (FM) Ising spin chain in weak transverse and longitudinal magnetic fields, it was unveiled that quantized excitation spectra appear by the confinement of the domain-wall excitation.\(^1\) The lowest excitation of the $S = 1/2$ FM Ising spin chain is achieved by flipping the spins of arbitrary lengths. Each domain wall of both ends carries $\Delta S = 1/2$, namely spinon. In the transverse magnetic field, two spinons travel in the chain and compose an excitation continuum. When the longitudinal magnetic field is further weakly applied, it works as a confinement potential between two spinons, yielding the quantized excitation spectra whose excitation energies are described by the series of negative zeros in the Airy function (NZAF).\(^1\) The quantized spectra described by the NZAF have been confirmed in an elastic neutron scattering (INS) experiment\(^2\) on CoNb$_3$O$_6$, which is a FM Ising-spin-chain compound.

The quantized excitation spectra of the quasi-one-dimensional (q1D) $S = 1/2$ antiferromagnetic (AF) Heisenberg spin system have also been elucidated.\(^3\) Recently, the quantized excitation spectra of the q1D $S = 1/2$ AF Ising-like XXZ magnets, (Ba/Sr)Co$_2$V$_2$O$_6$,\(^4\) have been observed in the INS experiments.\(^5,6\) In these q1D AF spin systems, the excitation continuum originating from spinons appears in the low-lying excitation above the Neél temperature (T_N). Below T_N, an effective staggered field that works as a confinement potential is induced in the spin chain. Thus, the observed quantized excitation energies\(^5,6\) are explained by the NZAF in the similar manner to the discussion of the FM Ising-spin chain. This scenario has been further applied to systems in which the excitation continuum is generated by quasiparticles. The $S = 1$ AF Heisenberg chain is a typical system where the excitation continuum is generated by multimagons.\(^7,13\) We calculated the dynamical spin structure factor (DSF) of the q1D $S = 1$ AF Heisenberg system with single anisotropy, and demonstrated that quantized excitation spectra appear.\(^1,13\) The quantized excitation energies are well described by the NZAF, when the single-anisotropy is negatively strong.

In the INS experiment, neutrons are scattered by changing spins in the target systems by $\Delta S = 1$, which makes it possible to detect the low-lying excitation that composes the excitation continuum. The quantized excitation spectra in $S = 1/2$ spin systems have been observed in the INS experiments,\(^2,5,6\) because the $\Delta S = 1$ excitation generates the original excitation continuum. The quantized excitation spectra in the q1D $S = 1$ AF Heisenberg system with single anisotropy are possibly observed in the INS experiment, because its excitation continuum is generated by the multimagons with each magnon carrying $\Delta S = 1$.\(^1,13\) In this Letter, we show that the quantized $\Delta S = 2$ excitation spectra are generated in the DSF of an $S = 1$ spin chain. The quantized $\Delta S = 2$ excitation spectra provide observations in the INS experiment.

We consider the $S = 1$ FM Ising spin chain with single anisotropy in weak transverse and longitudinal magnetic fields. The Hamiltonian is written as

$$\mathcal{H} = J \sum_i S_i^x S_{i+1}^x + D_z \sum_i (S_i^z)^2 - H_z \sum_i S_i^z - H_x \sum_i S_i^x,$$ \hspace{1cm} (1)

where $J < 0$ and the single-anisotropy $D_z < 0$. In the following calculations, we focus on the system whose ground state is in the FM state for $H_z = 0$.

We apply the infinite time-evolving-block-decimation algorithm\(^1,15\) to calculate the DSF. The DFS is defined as $S^{\text{ms}}(q, \omega) = \pi^{-1} \text{Im} \int \left(\langle S_{\vec{r}}^z(t) S_{\vec{r}'}^z(0) \rangle e^{i \omega t} \delta(\vec{r} - \vec{r}') \right) dt$, where $\mu = x, y, z$ and ε_z is the ground-state energy. The details of the numerical techniques have been discussed in Ref.\(^6\)

To reduce numerical noise, we combine the Gaussian filtering method\(^7\) with the Fourier transformation. In the following calculations, we set $\chi_{\text{max}} = 80$ and $N = 200$, where χ_{max} is the maximum bond dimension for tensors comprising the wave function and N is the real-space window size for the Fourier transformation, respectively.

In Figs. 1(a) and 1(c), $S^{\text{ms}}(q, \omega)$ is shown for $(J, D_z, H_z) = (-0.25, -0.1, 0.45)$. Note that the same behavior is observed for $S^{\text{ms}}(q, \omega)$. We investigate the phase transition between the FM and paramagnetic states driven by H_z. For $(J, D_z) = (-0.25, -1)$ and $H_z = 0$, we confirm that the phase transition occurs at $H_z \approx 0.75$. For $H_z = 0$, the excitation continuum appears below $\omega |D_z| < 1.5$. When H_z is switched on, the excitation continuum changes to the quantized spectra. We discuss the feature of the quantized spectra in $S^{\text{ms}}(q, \omega)$. For small H_z and H_x, we divide $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1$, where $\mathcal{H}_0 = \sum_i S_i^z S_{i+1}^z + D_z \sum_i (S_i^z)^2$ and $\mathcal{H}_1 = -H_z \sum_i S_i^z - H_x \sum_i S_i^x$. The ground state of \mathcal{H}_0 is the fully polarized state expressed by $\psi_{\text{GS}}^{\text{spin}} = \cdots \cdots |0 \cdots 1 \cdots 0 \cdots \cdots \rangle$ or $\psi_{\text{GS}}^{\text{oxy}} = \cdots \cdots |0 \cdots 0 \cdots 1 \cdots \cdots \rangle$, where $+1, 0$, and -1 in the ket denote $S_i^z = 1, 0,$ and -1, respectively. In the following discussion, we adopt the former ground state, $\psi_{\text{GS}}^{\text{spin}}$. The low-lying excitation in $S^{\text{ms}}(q, \omega)$ is described by the dynamics of the excited state whose initial
state is $\tilde S^i \psi^+_{GS} \propto S^i \psi^+_{GS}$. Thus, this initial state is interpreted as a one-magnon state, $|\cdots +++0+\cdots\cdotted
spinon confinement. Since the DSF can be observed by INS experiments, we expect the present quantized $\Delta S = 2$ excitation spectra to be detected by INS experiments.

Acknowledgment This work was supported by the CDMSI, CBSM2, and KAKENHI (Grant No. 16K17751) from MEXT, Japan. T.S. thanks the computational resources of the K computer provided by the RIKEN AICS through the HPCI System Research Project (hp170262, hp170263, hp180170, and hp180225). We are also grateful for the numerical resources at the ISSP Supercomputer Center at the University of Tokyo and the Research Center for Nano-Micro Structure Science and Engineering at University of Hyogo.

1) B. M. McCoy and T.-T. Wu, Phys. Rev. D 18, 1259 (1978).
2) R. Coldea, D. A. Tennant, E. M. Wheeler, E. Waerzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Seibdli, and K. Kiefer, Science 327, 177 (2010).
3) H. Shiba, Prog. Theor. Phys. 64, 466 (1980).
4) S. Kimura, H. Yashiro, K. Okunishi, M. Hagiwara, Z. He, K. Kindo, T. Taniyama, and M. Itoh, Phys. Rev. Lett. 99, 087602 (2007).
5) B. Grenier, S. Petit, V. Simonet, E. Canivet, L.-P. Regnauld, S. Raymond, B. Canals, C. Berthier, and P. Lejay, Phys. Lett. B 114, 017201 (2015).
6) Q. Faure, S. Takayoshi, S. Petit, V. Simonet, S. Raymond, L.-P. Regnauld, M. Boehm, J. S. White, M. Månsson, C. Rüegg, P. Lejay, B. Canals, T. Lorenz, S. C. Furuya, T. Giamarchi, and B. Grenier, Nat. Phys. 14, 716 (2018).
7) M. Takahashi, Phys. Rev. Lett. 62, 2131 (1989); Phys. Rev. B 48, 311 (1993); ibid. 50, 3045 (1994).
8) S. R. White, Phys. Rev. Lett. 69, 2863 (1992); S. R. White and D. A. Huse, Phys. Rev. B 48, 3844 (1993).
9) I. Affleck and R. A. Westin, Phys. Rev. B 45, 4667 (1992).
10) S. Yamamoto and S. Miyashita, Phys. Lett. A 235, 545 (1997).
11) M. D. P. Horton and I. Affleck, Phys. Rev. B 60, 11891 (1999).
12) F. H. L. Essler, Phys. Rev. B 62, 3264 (2000).
13) T. Suzuki and S. Suga, Phys. Rev. B 92, 240406 (2015).
14) G. Vidal, Phys. Rev. Lett. 80, 070201 (2007).
15) R. Orús and G. Vidal, Phys. Rev. B 78, 155117 (2008).
16) H. N. Phien, G. Vidal, and I. P. McCulloch, Phys. Rev. B 86, 245107 (2012).
17) S. R. White and A. E. Feiguin, Phys. Lett. B 93, 076401 (2004).

\[\sum \left(S^z_i S^z_{i+1} + S^+_i S^-_{i+1} \right)^{13.1} \]