Flavored Non-Minimal Left-Right Symmetric Model
Fermion Masses and Mixings

E. A. Garcés,1 Juan Carlos Gómez-Izquierdo,2,1 and F. Gonzalez-Canales3,4

1 Instituto de Física, Universidad Nacional Autónoma de México,
Apdo. Postal 20-364, CDMX 01000, México.
2 Departamento de Física, Centro de Investigación y de Estudios Avanzados del I. P. N.,
Apdo. Post. 14-740, 07000, Ciudad de México, México.
3 Fac. de Cs. de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542,
Puebla, Pue. 72000, México.
4 Centro Internacional de Física Fundamental, Benemérita Universidad Autónoma de Puebla.

(Dated: July 18, 2018)

A complete study on the fermion masses and flavor mixing is presented in a non-minimal left-right symmetric model (NMLRMS) where the $S_3 \otimes Z_2 \otimes Z_2^e$ flavor symmetry drives the Yukawa couplings. In the quark sector, the mass matrices possess a kind of the generalized Fritzsch textures that allow us to fit the CKM mixing matrix in good agreement to the last experimental data. In the lepton sector, on the other hand, a soft breaking of the $\mu \leftrightarrow \tau$ symmetry provides a non zero and non maximal reactor and atmospheric angles, respectively. The inverted and degenerate hierarchy are favored in the model where a set of free parameters is found to be consistent with the current neutrino data.

PACS numbers:

I. INTRODUCTION

In particle physics, flavor symmetries [1–4] have played an important role in the understanding of the quark and lepton flavor mixings through the CKM [5, 6] and PMNS [7, 8] mixing matrices, respectively. According to the experimental data, the values for the magnitudes of all CKM entries obtained from a global fit are [9]:

$$V_{\text{CKM}} = \begin{pmatrix}
0.97434^{\pm 0.00011}_{-0.00012} & 0.22506 \pm 0.00050 & 0.00357 \pm 0.00015 \\
0.22492 \pm 0.00050 & 0.97351 \pm 0.00013 & 0.0411 \pm 0.0013 \\
0.00875^{\pm 0.00032}_{-0.00033} & 0.0403 \pm 0.0013 & 0.99915 \pm 0.00005
\end{pmatrix}. \tag{1}
$$
The Jarlskog invariant is $J = (3.04_{-0.20}^{+0.21}) \times 10^{-5}$. In the lepton sector, on the other hand, we know that active neutrinos have a small, but not negligible mass which can be understood by type I see-saw mechanism \cite{10}. The mixings turn out to be non-trivial, so in the theoretical framework of three active neutrinos, the numerical values for the squared neutrino masses and flavor mixing angles obtained from a global fit to the current experimental data on neutrino oscillations \cite{13} are, at Best Fit Point (BFP) ±1σ and 3σ ranges, are \cite{16,19}

$$\Delta m^2_{21} \ (10^{-5} \text{eV}^2) = 7.60^{+0.19}_{-0.18}, \ 7.11 - 8.18; \ \quad |\Delta m^2_{31}| \ (10^{-3} \text{eV}^2) = \begin{cases} \ 2.48^{+0.05}_{-0.07}, \ 2.30 - 2.65 \\ \ 2.38^{+0.05}_{-0.06}, \ 2.20 - 2.54 \end{cases},$$

$$\sin^2 \theta_{12}/10^{-1} = 3.23 \pm 0.16, \ 2.78 - 3.75, \quad \sin^2 \theta_{23}/10^{-1} = \begin{cases} \ 5.67^{+0.32}_{-1.24}, \ 3.93 - 6.43 \\ \ 5.73^{+0.25}_{-0.39}, \ 4.03 - 6.40 \end{cases}, \quad (2)$$

$$\sin^2 \theta_{13}/10^{-2} = \begin{cases} \ 2.26 \pm 0.12, \ 1.90 - 2.62 \\ \ 2.29 \pm 0.12, \ 1.93 - 2.65 \end{cases}.$$

The upper and lower rows are for a normal and inverted hierarchy of the neutrino mass spectrum, respectively. At the same time, there is not yet solid evidence on the Dirac CP-violating phase. So, from these data it is obtained (for inverted ordering) that the magnitude of the leptonic mixing matrix elements have the following values at 3σ \cite{17}

$$\begin{pmatrix} 0.799 - 0.844 & 0.516 - 0.582 & 0.141 - 0.156 \\ 0.242 - 0.494 & 0.467 - 0.678 & 0.639 - 0.774 \\ 0.284 - 0.521 & 0.490 - 0.695 & 0.615 - 0.754 \end{pmatrix}. \quad (3)$$

Understanding the contrasted values between the CKM and PMNS mixing matrices is still a challenge in particle physics. In this line of thought, many flavor models such as S_3 \cite{20,62}, A_4 \cite{63,91}, S_4 \cite{92,103}, D_4 \cite{104,111}, Q_6 \cite{112,122}, T_7 \cite{123,131}, T_{13} \cite{132,135}, T' \cite{136,141}, $\Delta(27)$ \cite{142,159}, and A_5 \cite{160,170} have been proposed to face this open question.

From a phenomenological point of view, the CKM mixing matrix may be accommodated very well by the Fritzsch \cite{171,173} and the Nearest Neighbour Interaction textures (NNI) \cite{174,177}, however, only the latter can fit with good accuracy the CKM matrix. On the other hand, as can be seen from the PMNS values, the lepton sector seems to obey approximately the $\mu \leftrightarrow \tau$ symmetry \cite{103,178,181} since that $|V_{\mu i}| \approx |V_{\tau i}| \ (i = 1, 2, 3)$. At present, the Long-baseline energy experiment NOvA has disfavored the exact $\mu \leftrightarrow \tau$ symmetry, in this line of though some works have explored the breaking and other ideas on this appealing symmetry \cite{120,182,201}.

Along with this, $\mu \leftrightarrow \tau$ reflection symmetry has gained relevance since it predicts the CP violating Dirac phase ($\delta_{CP} = -90^\circ$), the atmospheric and the reactor angles are 45° and non-zero respectively \cite{202,209}.

Even though the quark and lepton sectors seem to obey different physics, we proposed a framework \cite{56} to simultaneously accommodate both sectors under the $S_3 \otimes Z_2 \otimes Z_2^5$ discrete symmetry within the left-right theory. So that, we will recover the fermion mass matrices, that were obtained previously \cite{56}, to make a complete study on fermion masses and mixings. In the present work, the quark sector will be studied in detail since this was only mentioned in \cite{54}. As we will see, the up and down mass matrices possess the generalized Fritzsch textures \cite{210} (which are not hierarchical \cite{211}), so that the CKM mixing matrix is parametrized by the quark masses and some free parameters that will be tuned by a χ^2 analysis in order to fit the mixings. In the lepton sector, on the other hand, the mixing angles can be understood by a soft breaking of the $\mu \leftrightarrow \tau$ symmetry in the effective neutrino mass matrix that comes
from type I see-saw mechanism. In the current analysis, we found a set of the free parameters that fit the PMNS mixing matrix for the inverted and degenerate hierarchy.

The paper is organized as follows: the fermion mass matrices will be introduced in Sec. II. The CKM and PMNS mixing matrices will be obtained in Sec. III and IV, respectively, besides of a χ^2 analysis is presented to fit the free parameters in the relevant mixing matrices for the quark and lepton sectors separately. Finally, in Sec. V, we present our conclusions.

II. FERMION MASSES

The following mass matrices were obtained in a particular model [56] where left-right theory [12, 212–215] and a $S_3 \otimes Z_2 \otimes Z_2$ symmetry are the main ingredients.

- Pseudomanifest left-right theory (PLRT).

\[M_q = \begin{pmatrix} a_q + b_q & b_q & c_q \\ b_q & a_q - b_q & c_q \\ c_q & c_q & g_q \end{pmatrix}, \quad M_\ell = \begin{pmatrix} a_\ell & 0 & 0 \\ 0 & b_\ell + c_\ell & 0 \\ 0 & 0 & b_\ell - c_\ell \end{pmatrix}, \quad M_{(L,R)} = \begin{pmatrix} a_{(L,R)} & b_{(L,R)} & b_{(L,R)} \\ b_{(L,R)} & c_{(L,R)} & 0 \\ b_{(L,R)} & 0 & c_{(L,R)} \end{pmatrix}. \] (4)

- Manifest left-right theory (MLRT).

\[M_q = \begin{pmatrix} a_q + b_q & b_q & c_q \\ b_q & a_q - b_q & c_q \\ c_q^* & c_q^* & g_q \end{pmatrix}, \quad M_\ell = \begin{pmatrix} a_\ell & 0 & 0 \\ 0 & b_\ell + c_\ell & 0 \\ 0 & 0 & b_\ell - c_\ell \end{pmatrix}, \quad M_{(L,R)} = \begin{pmatrix} a_{(L,R)} & b_{(L,R)} & b_{(L,R)} \\ b_{(L,R)} & c_{(L,R)} & 0 \\ b_{(L,R)} & 0 & c_{(L,R)} \end{pmatrix}. \] (5)

where $q = u, d$ stands for the label of up and down quark sector, and $\ell = e, D$ for the charged leptons and Dirac neutrinos. On the other hand, as was stated in [56], the fermion mass matrices are complex in the PLRT. In MLRT, the charged lepton and the Dirac neutrino mass matrices are reals and the Majorana neutrino is complex.

Let us point out that an analytical study on the lepton mixing, in the PLRT, was already made in detail in the particular case where the Majorana phases are CP parities, this means, these can be 0 or π [56]. In what follows, the theoretical PMNS mixing mass matrix is recovered but the Majorana phases can take any values, in general. At the same time, for the MLRT the neutrino mass matrix is easily included in the above framework as we will see below.

III. QUARK SECTOR

In this model, the quark mass matrices can be rotated to a basis in which these mass matrices acquire a form with some texture zeros. Also, in the PLRT and MLRT framework the quark mass matrices can be expressed in the following polar form

\[M_{qj} = U_{\pi/4}^T Q_{qj} \left(\mu_{qj} I_{3 \times 3} + M_{qj} \right) P_{qj} U_{\pi/4}, \] (6)

where

\[U_{\pi/4} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \quad \text{and} \quad M_{qj} = \begin{pmatrix} D_{qj} & B_{qj} & 0 \\ B_{qj} & A_{qj} & C_{qj} \\ 0 & C_{qj} & 0 \end{pmatrix}. \] (7)
The P_{qj} and Q_{qj} are diagonal matrices, whose explicit form depends on the theoretical framework in which we are working. In the above expressions, the j subscript denote to the PLRT and MLRT frameworks. Concretely, $j = 1$ refers to the PLRT framework, where we have that $\mu_{q1} = |g_q|$,

$$
Q_{q1} = P_{q1}^\dagger, \quad \text{and} \quad P_{q1} = \text{diag} \left(e^{i\alpha_{q1}}, e^{i\beta_{q1}}, e^{i\gamma_{q1}} \right).
$$

The phase factors in the P_{q1} matrix must satisfy the relations

$$
2\alpha_{q1} = \arg (a_q + b_q), \quad 2\beta_{q1} = \arg (a_q - b_q), \quad 2\gamma_{q1} = \arg (g_q),
$$

$$
\alpha_{q1} + \beta_{q1} = \arg (b_q), \quad \beta_{q1} + \gamma_{q1} = \arg (c_q).
$$

The entries of the M_{q1} matrix have the form $A_{q1} = |a_q + b_q| - |g_q|, B_{q1} = |b_q|, C_{1q} = \sqrt{2}|c_q|$, and $D_{q1} = |a_q - b_q| - |g_q|$. On the other hand, $j = 2$ refers to the MLRT framework in which $\mu_{q2} = |g_q|$,

$$
Q_{q2} = P_{q2}^\dagger, \quad \text{and} \quad P_{q2} = \text{diag} \left(1, 1, e^{i\gamma_{q2}} \right),
$$

where $\gamma_{q2} = \arg (c_q)$. The entries of the M_{q2} matrix have the form $A_{q2} = a_q + b_q - g_q, B_{q2} = b_q, C_{q2} = \sqrt{2}|c_q|, D_{q2} = a_q - b_q - g_q$.

The real symmetric matrix M_{q3} in eq. [4], with $j = 1, 2$, can be brought to its diagonal shape by means of the following orthogonal transformation

$$
M_{q1} = \mathbf{O}_{q1} \Delta_{q1} \mathbf{O}_{q1}^T,
$$

where \mathbf{O}_{q1} is a real orthogonal matrix, while

$$
\Delta_{q1} = \text{diag} \left(\sigma_{q1}^{(1)}, \sigma_{q2}^{(1)}, \sigma_{q3}^{(1)} \right).
$$

In the last matrix the $\sigma_{q1}^{(i)}$, with $i = 1, 2, 3$, are the shifted quark masses [11]. Now, it is easy conclude that quark mass matrices in both frameworks can be brought to its diagonal shape by means of the following transformations

$$
U_{q1} M_{q1} U_{q1}^T = \text{diag} \left(m_{q1}, m_{q2}, m_{q3} \right), \quad \text{for PLRT},
$$

$$
U_{q2} M_{q2} U_{q2}^T = \text{diag} \left(m_{q1}, m_{q2}, m_{q3} \right), \quad \text{for MLRT}.
$$

In the above expressions the m_{qi} are the physical quark masses, while

$$
U_{q1} \equiv \mathbf{O}_q^T P_{q1}^* U_{\pi/4} \quad \text{and} \quad U_{q2} \equiv \mathbf{O}_q^T P_{q2} U_{\pi/4}.
$$

The relation between the physical quark masses and the shifted masses is [38] [11]:

$$
\sigma_{q2}^{(i)} = m_{q1} - \mu_{qj}.
$$

From the invariants of the real symmetric matrix M_{q3}, tr $\{M_{q3}\}$, tr $\{M_{q3}^2\}$ and det $\{M_{q3}\}$, the parameters A_{q1}, B_{q1}, C_{q1} and D_{q1} can be written in terms of the quark masses and two parameters. In this way, we get that the entries of the M_{q1} matrix take the form

$$
\bar{A}_{q1} = \frac{A_{q1}}{\sigma_{q3}^{(j)}}, \quad \bar{B}_{q1} = \frac{B_{q1}}{\sigma_{q3}^{(j)}}, \quad \bar{C}_{q1} = \frac{C_{q1}}{\sigma_{q3}^{(j)}}, \quad \bar{D}_{q1} = \frac{D_{q1}}{\sigma_{q3}^{(j)}} = 1 - \delta_q,
$$

$$
\bar{A}_{q2} = \frac{A_{q2}}{\sigma_{q3}^{(j)}}, \quad \bar{B}_{q2} = \frac{B_{q2}}{\sigma_{q3}^{(j)}}, \quad \bar{C}_{q2} = \frac{C_{q2}}{\sigma_{q3}^{(j)}}, \quad \bar{D}_{q2} = \frac{D_{q2}}{\sigma_{q3}^{(j)}} = 1 - \delta_q.
$$

The real symmetric matrix M_{q3} in eq. [4], with $j = 1, 2$, can be brought to its diagonal shape by means of the following orthogonal transformation
where
\[
\xi^{(i)}_{q_1} = 1 - \sigma^{(i)}_{q_1} - \delta_q, \quad \xi^{(i)}_{q_2} = 1 + \sigma^{(i)}_{q_2} - \delta_q,
\]
\[
\bar{\sigma}^{(i)}_{q_1} = \sigma^{(i)}_{q_1} \frac{m_{q_1} - m_{q_2}}{1 - \mu_{q_1}}, \quad \bar{\sigma}^{(i)}_{q_2} = \sigma^{(i)}_{q_2} \frac{|m_{q_2} - m_{q_1}|}{1 - \mu_{q_1}}.
\]

In order to obtain the above parametrization we considered \(\sigma^{(i)}_{q_2} = -|\sigma^{(i)}_{q_2}|\). With the aid of the expressions in eqs. (16) and (17), we obtain that the parameters \(\delta_q\) and \(\bar{\mu}_{q_3}\) must satisfy the following relations
\[
\bar{m}_{q_1} > \bar{\mu}_{q_3} \geq 0 \quad \text{and} \quad 1 - \frac{\bar{m}_{q_1}}{1 - \bar{\mu}_{q_3}} > \delta_q > 0.
\]

From the conditions above, we conclude that parameter \(\bar{\mu}_{q_3}\) must be positive and smaller than one. As \(m_{q_3} > 0\) and \(\bar{\mu}_{q_3} \geq 0\) we have \(|g_q| = g_q\) which implies that \(\bar{\mu}_{q_1} = \bar{\mu}_{q_2}\).

Therefore, in this parameterization the difference between the quark flavor mixing matrix obtained in the PLRT framework and that obtained in the MLRT framework lies in the \(P_{q_3}\) matrix, which is a diagonal matrix of phase factors. From here we will suppress the \(j\) index in the expressions of eqs. (16) and (17), whereby \(\sigma^{(i)}_{q_1} = \sigma_{q_1}, \bar{\sigma}^{(i)}_{q_1,2} = \bar{\sigma}_{q_1,2},\) and \(\bar{\mu}_{q_1} = \bar{\mu}_{q_2} = \bar{\mu}_q\), thus \(\xi^{(i)}_{q_1,2} = \xi_{q_1,2}\). The real orthogonal matrix \(O_{q_3} \equiv O_q\) in terms of the physical quark mass ratios has the form:

\[
O_{q_3} = \begin{pmatrix}
\sqrt{\sigma_{q_1} \delta_{q_2} \xi_{q_1}} & -\sqrt{\sigma_{q_2} \delta_{q_1} \xi_{q_1}} & \sqrt{\xi_{q_1} \xi_{q_2}} \\
\sqrt{\sigma_{q_1} (1-\delta_{q_2}) \xi_{q_1}} & \sqrt{\sigma_{q_2} (1-\delta_{q_1}) \xi_{q_2}} & \sqrt{\sigma_{q_1} \sigma_{q_2} \delta_{q_3}} \\
-\sqrt{\sigma_{q_1} \xi_{q_2}} & -\sqrt{\sigma_{q_2} \xi_{q_1}} & \sqrt{\sigma_{q_1} \sigma_{q_2} \delta_{q_3}}
\end{pmatrix},
\]

where
\[
D_{q_1} = (1 - \bar{\sigma}_{q_1}) (\bar{\sigma}_{q_1} + \bar{\sigma}_{q_2}) (1 - \delta_q),
D_{q_2} = (1 + \bar{\sigma}_{q_2}) (\bar{\sigma}_{q_1} + \bar{\sigma}_{q_2}) (1 - \delta_q),
D_{q_3} = (1 - \bar{\sigma}_{q_1}) (1 + \bar{\sigma}_{q_2}) (1 - \delta_q).
\]

Quark Flavor Mixing Matrix

The quark flavor mixing matrix CKM emerges from the mismatch between the diagonalization of \(u\) - and \(d\)-type quark mass matrices. So, this mixing matrix is defined as \(V_{CKM} = U_u U_d\), where \(U_u\) and \(U_d\) are the unitary matrices that diagonalize to the \(u\) - and \(d\)-type quark mass matrices, respectively.

From eqs. (14) we obtain
\[
V_{CKM} = O_{u_1} P_{s_{u_1}} U_{\pi/4} (O_{d_{q_1}}^T P_{s_{d_{q_1}}} U_{\pi/4})^T = e^{i\zeta_1} O_{u_1} P_{s_{u_1}} U_{\pi/4}^T = e^{i\zeta_1} O_{u_1} P_{s_{u_1}}^u U_{\pi/4}^T = O_{u_1} P_{s_{u_1,2}}^u e^{i\zeta_1} O_{u_2} P_{s_{u_2}}^d U_{\pi/4}^T = O_{u_1} P_{s_{u_1,2}}^u O_{d_1},
\]

for PLRT,
\[
V_{CKM} = O_{u_2} P_{s_{u_2}} U_{\pi/4} (O_{d_{q_2}}^T P_{s_{d_{q_2}}} U_{\pi/4})^T = O_{u_2} P_{s_{u_2}} U_{\pi/4}^T = O_{u_2} P_{s_{u_2}}^u O_{d_2},
\]

for MLRT,

where
\[
P_{s_{j}}^{u-d} = \text{diag}(1, e^{i\Theta_j}, e^{i\Gamma_j}), \quad j = 1, 2,
\]

with
\[
\Theta_1 = -(\beta_{u_1} - \beta_{d_1} + \alpha_{d_1} - \alpha_{u_1}), \quad \Gamma_1 = -(\gamma_{u_1} - \gamma_{d_1} + \alpha_{d_1} - \alpha_{u_1})
\]
\[
\Theta_2 = 0, \quad \Gamma_2 = \gamma_{u_2} - \gamma_{d_2}, \quad \zeta_1 = -(\alpha_{u_1} - \alpha_{d_1}).
\]
For performing the likelihood test we define the \(\chi \) as a particular case of the matrix obtained in\(\sqrt{ } \) of phase factors which each one contains. From the model-independent point of view, the mixing matrix obtained in \(\sqrt{ } \) where \(\varepsilon \), \(\varepsilon \), \(\varepsilon \) and \(\varepsilon \) are values for the masses and flavor mixing in the quark sector are correctly reproduced by the model. To carry out the above, we perform a likelihood test \(\chi^2 \), in which we consider the values of the quark masses reported in Ref \(\sqrt{ } \) and using the \(\text{RunDec} \) program \(\sqrt{ } \), we obtain the following values for the quark mass ratios at the top quark mass scale:

\[
\begin{align*}
\tilde{m}_u &= (1.33 \pm 0.73) \times 10^{-5}, \\
\tilde{m}_c &= (3.91 \pm 0.42) \times 10^{-3}, \\
\tilde{m}_d &= (1.49 \pm 0.39) \times 10^{-3}, \\
\tilde{m}_s &= (2.19 \pm 0.53) \times 10^{-2}.
\end{align*}
\]

For performing the likelihood test we define the \(\chi^2 \) function as:

\[
\chi^2 = \sum_{i=d,s,b} \frac{\left(|V_{ui}^h| - |V_{ui}^{eR}| \right)^2}{\sigma_{V_{ui}}^2} + \frac{\left(|V_{cb}^h| - |V_{cb}^{eR}| \right)^2}{\sigma_{V_{cb}}^2}.
\]
The Jarlskog invariant is

\[J_{CP} = Im (V_{ud}V_{cs}V_{us}^*V_{cd}^*) = (2.92^{+0.38}_{-0.29}) \times 10^{-5}. \]
FIG. 1: Allowed regions in the parameter space at 70% CL (blue line) and 95% CL (red dashed line). Here, the black asterisk correspond to the BFP, while the Θ, $\bar{\mu}_u$, and $\bar{\mu}_d$ parameters are fixed to the values given in the first row of the table.

All these values are in good agreement with experimental data. Also, the results of the above likelihood test can be considered as predictions of the PLRT and MLRT theoretical frameworks. Because when $\Theta_1 = \Theta_2 = 0$ both schemes are equivalent.

IV. LEPTON SECTOR

As it can verified straightforward, the M_e charged lepton mass matrix is diagonalized by $U_{eL} = S_{23}P_e$ and $U_{eR} = S_{23}P_e^\dagger$ in the case of PLRT and $U_{eL} = S_{23}$ and $U_{eR} = S_{23}$ in the MLRT

$$S_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad P_e = \text{diag}\left(e^{i\eta_e/2}, e^{i\eta_\mu/2}, e^{i\eta_\tau/2}\right)$$

with $|m_e| = |a_e|$, $|m_\mu| = |b_e - c_e|$ and $|m_\tau| = |b_e + c_e|$ for the former framework and $m_e = a_e$, $m_\mu = b_e - c_e$ and $m_\tau = b_e + c_e$ in the second one.

The M_ν neutrino mass matrix, that comes from the type I see-saw mechanism, is parametrized as

$$M_\nu \approx \begin{pmatrix} A_\nu & -B_\nu(1 - \epsilon) & -B_\nu(1 + \epsilon) \\ -B_\nu(1 - \epsilon) & C_\nu(1 - 2\epsilon) & D_\nu \\ -B_\nu(1 + \epsilon) & D_\nu & C_\nu(1 + 2\epsilon) \end{pmatrix}$$

where A_ν, B_ν, C_ν and D_ν are complex parameters; ϵ is a complex and real free parameter in the LRSM and MLRT frameworks, respectively. Along with this, the ϵ parameter was considered as a perturbation to the effective mass matrix such that $|\epsilon| \leq 0.3$ in order to break softly the $\mu \leftrightarrow \tau$ symmetry. So that, the $|\epsilon|^2$ quadratic terms were neglected in the above matrix. Let us remark that the above neutrino mass matrix has been already rotated by the S_{23} orthogonal matrix. As it was shown in [56], the M_ν effective neutrino mass matrix is diagonalized by $U_\nu \approx S_{23}\mathcal{U}_\nu$ such that $\hat{M}_\nu = \text{diag}(m_{\nu_1}, m_{\nu_2}, m_{\nu_3}) \approx U_\nu^\dagger M_\nu U_\nu^* = U_\nu^0 \mathcal{M}_\nu \mathcal{U}_\nu^*$ where $U_\nu \approx U_\nu^0$ and \mathcal{U}_ν diagonalizes the M_ν^0 neutrino mass matrix with exact $\mu \leftrightarrow \tau$ symmetry ($|\epsilon| = 0$) this means $U_\nu^{0\dagger} M_\nu^0 U_\nu^0 = \hat{M}_\nu^0 = \text{diag}(m_{\nu_1}^0, m_{\nu_2}^0, m_{\nu_3}^0)$.
Along with this, the ϵ parameter breaks the $\mu \leftrightarrow \tau$ symmetry so that its contribution to the mixing matrix is contained in U'_ν.

$$U'_\nu = \begin{pmatrix}
\cos \theta_\nu \ e^{i(\nu + \pi)} & \sin \theta_\nu \ e^{i(\nu + \pi)} & 0 \\
-\sin \theta_\nu \ e^{i(\nu + \pi)} & \cos \theta_\nu & -\frac{1}{\sqrt{2}} \\
-\sin \theta_\nu & \cos \theta_\nu & \frac{1}{\sqrt{2}}
\end{pmatrix}, \quad U'_\nu \approx \begin{pmatrix}
N_1 & 0 & -N_3 \sin \theta_1 \epsilon \\
0 & N_2 & N_3 \cos \theta_\nu \epsilon \\
N_1 \sin \theta_\nu \epsilon & -N_2 \cos \theta_\nu \epsilon & N_3
\end{pmatrix}$$ (34)

where $r_{(1,2)} \equiv (m_{\nu_3}^0 + m_{\nu_{(1,2)}}^0)/(m_{\nu_3}^0 - m_{\nu_{(1,2)}}^0)$ and the N_i the normalization factors are given as

$$N_1 = (1 + \sin^2 \theta_\nu |r_{1}\epsilon|^2)^{-1/2}, \quad N_2 = (1 + \cos^2 \theta_\nu |r_{2}\epsilon|^2)^{-1/2}, \quad N_3 = (1 + \sin^2 \theta_\nu |r_{3}\epsilon|^2 + \cos^2 \theta_\nu |r_{2}\epsilon|^2)^{-1/2}.$$ (35)

Let us emphasize that two relative Majorana phases will be considered along this work in which the $m_{\nu_3}^0$ neutrino mass is kept positive. Explicitly, we have $M'_\nu = \text{diag}(m_{\nu_{v1}}^0, m_{\nu_{v2}}^0, m_{\nu_{v3}}^0) = \text{diag}(|m_{\nu_{v1}}^0 e^{i\alpha}|, |m_{\nu_{v2}}^0 e^{i\beta}|, |m_{\nu_{v3}}^0|)$ where the associate Majorana phase of $m_{\nu_{v3}}^0$ has been absorbed in the neutrino field.

Lepton Flavor Mixing Matrix

In the PLRT (MLRT) case, we found that $V_{PMNS} \approx P^\dagger \nu U'_\nu \nu \approx U'^\dagger \nu U'^\dagger \nu _\nu$. Explicitly,

$$V_{PMNS} \approx P^\dagger \nu \begin{pmatrix}
\cos \theta_\nu N_1 & \sin \theta_\nu N_2 & \sin 2\theta_\nu N_3 (r_{2} - r_{1}) \epsilon \\
-\sin \theta_\nu N_1 (1 - r_{1} \epsilon) & \cos \theta_\nu N_2 (1 + r_{2} \epsilon) & -N_3 \epsilon (1 - r_{3}) \\
-\sin \theta_\nu N_1 (1 + r_{1} \epsilon) & \cos \theta_\nu N_2 (1 - r_{2} \epsilon) & N_3 \epsilon (1 + r_{3})
\end{pmatrix}$$ (36)

with $r_3 \equiv r_2 \cos^2 \theta_\nu + r_1 \sin^2 \theta_\nu$ and $P^\dagger \nu = \text{diag}(e^{i(\nu_\beta/2 - \nu_\alpha - \pi)}, e^{i\nu_\alpha/2}, e^{i\nu_\beta/2})$. On the other hand, comparing the magnitude of entries V_{PMNS} with the mixing matrix in the standard parametrization of the PMNS, we obtain the following expressions for the lepton mixing angles

$$\sin^2 \theta_{13} = |V_{13}|^2 = \frac{\sin^2 2\theta_\nu N_3^2 |\epsilon|^2}{4} |r_2 - r_1|^2,$$

$$\sin^2 \theta_{23} = |V_{23}|^2 = \frac{N_3^2}{1 - |V_{13}|^2} \frac{|1 - r_3|^2}{2} \frac{1 - \sin^2 \theta_{13}}{1 - \sin^2 \theta_{13}},$$

$$\sin^2 \theta_{12} = |V_{12}|^2 = \frac{N_3^2 \sin^2 \theta_\nu}{1 - \sin^2 \theta_{13}}.$$ (37)

In these mixing angles there are four free parameters namely, the absolute neutrino masses, two relative Majorana phase, the ϵ parameter and the θ_ν angle. Some parameters could be reduced under certain considerations as follows: the θ_ν parameter, in good approximation, coincides with the solar angle θ_{12} since we are in the limit of a soft breaking $\mu \leftrightarrow \tau$ symmetry so the normalization factors, N_i, are expected to be of the order 1, then $\theta_{12} = \theta_\nu$. Along with this, the mixing angles may be written in terms of one relative Majorana phase to do so we just have to observe that the reactor angle is non negligible when $|r_2 - r_1|^2$ is large.

$$|r_2 - r_1|^2 = \frac{4 |m_{\nu_3}^0|^2 |m_{\nu_2}^0 - m_{\nu_1}^0|^2}{|m_{\nu_3}^0 - m_{\nu_1}^0|^2 |m_{\nu_3}^0 - m_{\nu_2}^0|^2}.$$ (38)

This happens if $\beta - \alpha = \pi$, then we have

$$|m_{\nu_2}^0 - m_{\nu_1}^0|^2 = |m_{\nu_2}^0| + |m_{\nu_1}^0|^2,$$

$$|m_{\nu_3}^0 - m_{\nu_1}^0|^2 = |m_{\nu_3}^0|^2 + |m_{\nu_1}^0|^2 - 2 |m_{\nu_1}^0| |m_{\nu_3}^0| \cos \alpha,$$

$$|m_{\nu_3}^0 - m_{\nu_2}^0|^2 = |m_{\nu_3}^0|^2 + |m_{\nu_2}^0|^2 + 2 |m_{\nu_2}^0| |m_{\nu_3}^0| \cos \alpha.$$ (39)
where the last two factors enhance the former one in order to get allowed values for the reactor angle. In addition, the factors r_2 and r_1 can be written in terms of the only relative Majorana phase, α. Then,

$$r_1 = \frac{|m_{\nu_1}^0| + |m_{\nu_3}^0| e^{i\alpha}}{|m_{\nu_1}^0| - |m_{\nu_3}^0| e^{i\alpha}}, \quad r_2 = \frac{|m_{\nu_1}^0| - |m_{\nu_2}^0| e^{i\alpha}}{|m_{\nu_1}^0| + |m_{\nu_2}^0| e^{i\alpha}}. \tag{40}$$

In this way, the Majorana phases are related by the expression already mentioned, $\beta - \alpha = \pi$. This analysis is valid for PLRT and MLRT, however, in the latter framework the ϵ parameter is real.

Likelihood Test χ^2

Once we fixed the θ_2 parameter to the solar neutrino mixing angle θ_{12}, the χ^2 analysis is carried out to find allowed values of the three remaining free parameters ϵ, the Majorana phase α and the mass of the lightest (common) neutrino $m_3(m_0)$. Two of the absolute neutrino masses can be written as a function of the the lightest mass and Δm_{ij}^2 as follows

$$|m_{\nu_2}^0| = \sqrt{\Delta m_{13}^2 + \Delta m_{21}^2 + |m_{\nu_3}^0|^2}, \quad |m_{\nu_2}^0| = \sqrt{\Delta m_{13}^2 + |m_{\nu_3}^0|^2}, \quad \text{Inverted Hierarchy}$$

$$|m_{\nu_3}^0| = \sqrt{\Delta m_{21}^2 + m_0^2}, \quad |m_{\nu_2}^0| = \sqrt{\Delta m_{21}^2 + m_0^2}, \quad \text{Degenerate Hierarchy} \tag{41}$$

where $|m_{\nu_3}^0|$ and $m_0 (> 0.1 \text{ eV})$ are the lightest and common neutrino masses for the inverted and degenerate ordering, respectively.

In this analysis, the normal hierarchy will be left out since this was discarded, for the NMLRMS model, in the previous analytical study [56]. The inverted and the degenerate hierarchies will be discussed next.

The χ^2 function is built as

$$\chi^2(\epsilon, \alpha, m_{0,3}) = \frac{\left(\sin^2 \theta_{13}^{\text{th}} - \sin^2 \theta_{13}^{\text{ex}}\right)^2}{\sigma_{13}^2} + \frac{\left(\sin^2 \theta_{23}^{\text{th}} - \sin^2 \theta_{23}^{\text{ex}}\right)^2}{\sigma_{23}^2}, \tag{42}$$

where the experimental data and theoretical expressions for the mixing angles are given in Eq. [2] and Eq. [37], respectively. We use the absolute neutrino masses in Eq. [41] as a function of $m_{0,3}$, fixing Δm_{ij}^2 to the central values of the global fit [16] and letting $m_{0,3}$ as a free parameter. For σ_{13} and σ_{23} we take the one sigma upper and lower uncertainties using summation in quadrature.

The results of the minimization of the χ^2 function are shown in Figures [2], [3] and [4], we show the allowed regions at 90% and 95% CL in the plane of pairs of the three parameters marginalizing the χ^2 function for the parameter not shown. In the left (right) panel is shown the case of degenerate (inverted) hierarchy for each figure. We can notice that the α parameter is more constrained in the case of inverted hierarchy than in the degenerate hierarchy case, and that the fit prefers smaller values of the ϵ parameter in the case of inverted hierarchy. For illustration purposes only we show the BFP in each case as a black dot.

From comparison of our χ^2 analysis with the qualitative analysis in [56] we find that a wide region of the parameter space is still statistically compatible with experimental data.

Prediction on the Effective Majorana Mass of the Electron Neutrino

From the neutrino oscillation experiments, we get information on the mass squared differences, but these experiments cannot say anything about the absolute neutrino mass scale. However, there are three processes that can address
FIG. 2: Allowed regions in the sin(\(\alpha\))-\(\epsilon\) plane, at 90\% CL (blue) and 95\% CL (red) for degenerate (left) and inverted (right) hierarchy. In this case the \(\theta_\nu\) parameter is fixed to the solar angle, and \(m_{0,3}\) is marginalized.

FIG. 3: Allowed regions in the sin(\(\alpha\))-\(\epsilon\) plane, at 90\% CL (blue) and 95\% CL (red) for degenerate (left) and inverted (right) hierarchy. The \(\theta_\nu\) parameter is fixed to the solar angle and \(\epsilon\) is marginalized.

directly the determination of this important parameter:

i) analysis of CMB temperature fluctuations \[217\],
ii) the single \(\beta\) decay \[218\] and
iii) neutrinoless double beta decay \(0\nu\beta\beta\) \[219\].

In here, we only focus on the last process which occurs if neutrinos are Majorana particles. With this decay process we can probe the absolute neutrino mass scale by measuring of the effective Majorana mass of the electron neutrino, which is defined as:

\[
|m_{ee}| = \left| \sum_{i=1}^{3} m_{\nu_i} V_{ei}^2 \right|.
\] (43)

The lowest upper bound on \(|m_{ee}| < 0.22\) eV was provided by GERDA phase-I data \[222\]. That value has been
FIG. 4: Allowed regions in the m_0-ϵ plane, at 90% CL (blue) and 95% CL (red) for degenerate (left) and inverted (right) hierarchy. Again, the θ_ν parameter is fixed to the solar angle and the α Majorana phase is marginalized.

FIG. 5: Effective mass $|m_{ee}|$ as a function of the common mass m_0 in the case of Degenerate Hierarchy or of the lightest neutrino mass $|m_{\nu_3}|$ for Inverted Hierarchy. The horizontal regions defined by the blue dotted and purple dashed lines correspond to the limits by GERDA phase II [220] and KamLAND-Zen [221] respectively.

Significantly reduced by GERDA phase-II data [223], see Fig. (5). According to our model, the above quantity can be performed directly using the fitted free parameters. Therefore, the plot in Fig. (5) shows the predicted regions for the effective Majorana mass of the electron neutrino.
V. CONCLUSIONS

We performed a complete study on the fermion masses and flavor mixing in the non-minimal left-right symmetric model where the scalar sector was extended by three Higgs bidoublets, three right-handed (left-handed) triplets. We do this analysis for the first time in the quark sector where the quark mass matrices comes out being symmetric and hermitian in the PLRT and MLRT framework, respectively. In the hadronic sector of PLRT (MLRT) framework, we write the quarks flavor mixing matrix, CKM, in terms of quark mass ratios, two shifted mass parameters $\tilde{\mu}_d$ and $\tilde{\mu}_u$, two parameters δ_d and δ_u, two (one) phase factors. So, the difference between the CKM matrices obtained in the PLRT and MLRT framework lies in the number of phase factors, namely in PLRT we have two phase factors, Γ_1 and Θ_1, while in MLRT only one, Θ_2. Whereby the quarks flavor mixing matrix in MRLT is a particular case of the CKM matrix obtained in PRLT, since we only need take $\Theta_2 = 0$. We performed a likelihood test χ^2, in which the Θ_2, $\tilde{\mu}_u$, and $\tilde{\mu}_d$ parameters are fixed to the values given in the first row of the table 1, thus the χ^2 function has one degree of freedom. All values obtained in this χ^2 analysis are in good agreement with experimental data. Also, these values can be considered as predictions of the PLRT and MLRT theoretical frameworks, because when $\Theta_1 = \Theta_2 = 0$ both schemes are equivalent.

In the lepton sector our results are in good agreement with the study previously reported in [56], with slight differences attributed to the new neutrino oscillation data used for the likelihood test in the present work. The rich phenomenology of the NMLRSM provides a region of the parameter space that is statistically compatible with experimental data.

Acknowledgements

This work was partially supported by the Mexican grants 237004, PAPIIT IN111518 and Conacyt 132059. JCGI thank the Department of Theoretical Physics at IFUNAM for the warm hospitality. Also, JCGI would like to make an especial mention to Gabriela Nabor, Marisol, Cecilia and Elizabeth Gómez for their financial and moral support during this long time. FGC acknowledges the financial support from CONACYT and PRODEP under Grant No. 511-6/17-8017.

[1] H. Ishimori et al., Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1–163, arXiv:1003.3552 [hep-th].
[2] W. Grimus and P. O. Ludl, Finite flavour groups of fermions, J. Phys. A45 (2012) 233001, arXiv:1110.6376 [hep-ph].
[3] H. Ishimori et al., An introduction to non-Abelian discrete symmetries for particle physicists, Lect. Notes Phys. 858 (2012) 1–227.
[4] S. F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201, arXiv:1301.1340 [hep-ph].
[5] N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys.Rev.Lett. 10 (1963) 531–533.
[6] M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652–657.
[7] Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog.Theor.Phys. 28 (1962) 870–880.
[8] B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP **26** (1968) 984–988, [Zh. Eksp. Teor. Fiz.53,1717(1967)].

[9] C. Patrignani et al. (Particle Data Group), Review of Particle Physics, Chin. Phys. **C40** (2016) 10 100001.

[10] P. Minkowski, $\mu \to e\gamma$ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. **B67** (1977) 421.

[11] M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf.Proc. **C790927** (1979) 315–321, arXiv:1306.4669 [hep-th].

[12] R. N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. **44** (1980) 912.

[13] J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) x U(1) Theories, Phys. Rev. **D22** (1980) 2227.

[14] R. N. Mohapatra and G. Senjanovic, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. **D23** (1981) 165.

[15] J. Schechter and J. W. F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. **D25** (1982) 774.

[16] P. F. de Salas et al., Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. **B782** (2018) 633–640, arXiv:1708.01186 [hep-ph].

[17] I. Esteban et al., Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP **01** (2017) 087, arXiv:1611.01514 [hep-ph].

[18] F. Capozzi, E. Lisi, A. Marrone and A. Palazzo, Current unknowns in the three neutrino framework (2018), arXiv:1804.09678 [hep-ph].

[19] Valencia-Globalfit, http://globalfit.astroparticles.es/ (2018).

[20] S. Pakvasa and H. Sugawara, Discrete Symmetry and Cabibbo Angle, Phys. Lett. **73B** (1978) 61–64.

[21] J. Kubo, A. Mondragon, M. Mondragon and E. Rodriguez-Jauregui, The Flavor symmetry, Prog. Theor. Phys. **109** (2003) 795–807 [Erratum: Prog. Theor. Phys.114,287(2005)], arXiv:hep-ph/0302196 [hep-ph].

[22] J. Kubo, Majorana phase in minimal S(3) invariant extension of the standard model, Phys. Lett. **B578** (2004) 156–164, [Erratum: Phys. Lett.B619,387(2005)], arXiv:hep-ph/0309167 [hep-ph].

[23] T. Kobayashi, J. Kubo and H. Terao, Exact S(3) symmetry solving the supersymmetric flavor problem, Phys. Lett. **B568** (2003) 83–91, arXiv:hep-ph/0303084 [hep-ph].

[24] S.-L. Chen, M. Frigerio and E. Ma, Large neutrino mixing and normal mass hierarchy: A discrete understanding, Phys. Rev. **D70** (2004) 073008, [Erratum: Phys. Rev.D70,079905(2004)], arXiv:hep-ph/0404084 [hep-ph].

[25] J. Kubo et al., A minimal S(3)-invariant extension of the standard model, J. Phys. Conf. Ser. **18** (2005) 380–384.

[26] A. Mondragon, Models of flavour with discrete symmetries, AIP Conf. Proc. **857** (2006) 2 266, arXiv:hep-ph/0609243 [hep-ph].

[27] O. Felix, A. Mondragon, M. Mondragon and E. Peinado, Neutrino masses and mixings in a minimal S(3)-invariant extension of the standard model, AIP Conf. Proc. **917** (2007) 383–389, arXiv:hep-ph/0610061.

[28] A. Mondragon, M. Mondragon and E. Peinado, Lepton masses, mixings and FCNC in a minimal S_3-invariant extension of the Standard Model, Phys. Rev. **D76** (2007) 076003, arXiv:0706.3545 [hep-ph].

[29] A. Mondragon, M. Mondragon and E. Peinado, $S(3)$-flavour symmetry as realized in lepton flavour violating processes, J. Phys. **A41** (2008) 304035, arXiv:0712.1799 [hep-ph].

[30] A. Mondragon, M. Mondragon and E. Peinado, Nearly tri-bimaximal mixing in the $S(3)$ flavour symmetry, AIP Conf. Proc. **1026** (2008) 164–169, arXiv:0712.2488 [hep-ph].

[31] D. Meloni, S. Morisi and E. Peinado, Fritzsch neutrino mass matrix from S_3 symmetry, J. Phys. **G38** (2011) 015003, arXiv:1005.3482 [hep-ph].

[32] D. A. Dicus, S.-F. Ge and W. W. Repko, Neutrino mixing with broken S_3 symmetry, Phys. Rev. **D82** (2010) 033005, arXiv:1004.3266 [hep-ph].

[33] G. Bhattacharyya, P. Leser and H. Pas, Exotic Higgs boson decay modes as a harbinger of S_3 flavor symmetry, Phys. Rev. **D83** (2011) 011701, arXiv:1006.5597 [hep-ph].
[34] F. Gonzalez Canales and A. Mondragon, The S_3 symmetry: Flavour and texture zeroes, J. Phys. Conf. Ser. 287 (2011) 012015 arXiv:1101.3807 [hep-ph].

[35] P. V. Dong, H. N. Long, C. H. Nam and V. V. Vien, The S_3 flavor symmetry in 3-3-1 models, Phys. Rev. D85 (2012) 053001 arXiv:1111.6360 [hep-ph].

[36] A. G. Dias, A. C. B. Machado and C. C. Nishi, An S_3 Model for Lepton Mass Matrices with Nearly Minimal Texture, Phys. Rev. D86 (2012) 093005 arXiv:1206.6362 [hep-ph].

[37] F. Gonzalez Canales, A. Mondragon, U. S. Salazar and L. Velasco-Sevilla, S_3 as a unified family theory for quarks and leptons, arXiv:1210.0288 (2012). arXiv:1210.0288 [hep-ph].

[38] F. Gonzalez Canales, A. Mondragon and M. Mondragon, The S_3 flavour symmetry: Neutrino Masses and Mixings, Fortsch.Phys. 61 (2013) 546–570 arXiv:1205.4755 [hep-ph].

[39] F. Gonzalez Canales and A. Mondragon, The flavour symmetry $S(3)$ and the neutrino mass matrix with two texture zeroes, J.Phys.Conf.Ser. 378 (2012) 012014.

[40] F. Gonzalez Canales et al., Fermion mixing in an S_3 model with three Higgs doublets, J.Phys.Conf.Ser. 447 (2013) 012053.

[41] F. Gonzalez Canales et al., Quark sector of S_3 models: classification and comparison with experimental data, Phys.Rev. D88 (2013) 096004 arXiv:1304.6644 [hep-ph].

[42] E. Ma and B. Melic, Updated S_3 model of quarks, Phys. Lett. B725 (2013) 402–406 arXiv:1303.6928 [hep-ph].

[43] Y. Kajiyama, H. Okada and K. Yagyu, Electron/Muon Specific Two Higgs Doublet Model, Nucl. Phys. B887 (2014) 358–370 arXiv:1309.6234 [hep-ph].

[44] A. E. Cárcamo Hernández, R. Martinez and F. Ochoa, Fermion masses and mixings in the 3-3-1 model with right-handed neutrinos based on the S_3 flavor symmetry, Eur. Phys. J. C76 (2016) 11 634 arXiv:1309.6567 [hep-ph].

[45] D. Das and U. K. Dey, Analysis of an extended scalar sector with S_3 symmetry, Phys. Rev. D89 (2014) 9 095025 [Erratum: Phys. Rev.D91,no.3,039905(2015)]. arXiv:1404.2491 [hep-ph].

[46] E. Ma and R. Srivastava, Dirac or inverse seesaw neutrino masses with $B - L$ gauge symmetry and S_3 flavor symmetry, Phys. Lett. B741 (2015) 217–222 arXiv:1411.5042 [hep-ph].

[47] A. E. Cárcamo Hernández, R. Martinez and J. Nisperuza, S_3 discrete group as a source of the quark mass and mixing pattern in 331 models, Eur. Phys. J. C75 (2015) 2 72 arXiv:1401.0937 [hep-ph].

[48] A. E. Cárcamo Hernández, E. Cataño Mur and R. Martinez, Lepton masses and mixing in $SU(3)C \otimes SU(3)L \otimes U(1)x$ models with a S_3 flavor symmetry, Phys. Rev. D90 (2014) 7 073001 arXiv:1407.5217 [hep-ph].

[49] S. Gupta, C. S. Kim and P. Sharma, Radiative and seesaw threshold corrections to the S_3 symmetric neutrino mass matrix, Phys. Lett. B740 (2015) 353–358 arXiv:1408.0172 [hep-ph].

[50] D. Das, U. K. Dey and P. B. Pal, S_3 symmetry and the quark mixing matrix, Phys. Lett. B753 (2016) 315–318 arXiv:1507.06509 [hep-ph].

[51] A. E. Cárcamo Hernández, I. de Medeiros Varzielas and E. Schumacher, Fermion and scalar phenomenology of a two-Higgs-doublet model with S_3, Phys. Rev. D93 (2016) 1 016003 arXiv:1509.02083 [hep-ph].

[52] A. E. Cárcamo Hernández, I. de Medeiros Varzielas and N. A. Neill, Novel Randall-Sundrum model with S_3 flavor symmetry, Phys. Rev. D94 (2016) 3 033011 arXiv:1511.07420 [hep-ph].

[53] C. Arbeláez, A. E. Cárcamo Hernández, S. Kovalenko and I. Schmidt, Radiative Seesaw-type Mechanism of Fermion Masses and Non-trivial Quark Mixing, Eur. Phys. J. C77 (2017) 6 422 arXiv:1602.03607 [hep-ph].

[54] A. E. Cárcamo Hernández, S. Kovalenko and I. Schmidt, Radiatively generated hierarchy of lepton and quark masses, JHEP 12 (2017) 125, arXiv:1611.09797 [hep-ph].

[55] S. Pramanick and A. Raychaudhuri, Neutrino mass model with S_3 symmetry and seesaw interplay, Phys. Rev. D94 (2016) 11 115028 arXiv:1609.06103 [hep-ph].

[56] J. C. Gómez-Izquierdo, Non-minimal flavored $S_3 \otimes Z_2$ left-right symmetric model, Eur. Phys. J. C77 (2017) 8 551 arXiv:1701.01747 [hep-ph].

[57] E. Barradas-Guevara, O. Felix-Beltran, F. Gonzalez-Canales and M. Zeleny-Mora, Lepton CP violation in a $\nu 2HDM$ with
symmetry, Int. J. Mod. Phys. A30 (2015) 21 1550117 [arXiv:1405.4665 [hep-ph]]

[81] B. Karmakar and A. Sil, Nonzero θ_{13} and leptogenesis in a type-I seesaw model with A_4 symmetry, Phys. Rev. D91 (2015) 013004 [arXiv:1407.5826 [hep-ph]]

[82] B. Karmakar and A. Sil, Spontaneous CP violation in lepton-sector: A common origin for θ_{13}, the Dirac CP phase, and leptogenesis, Phys. Rev. D93 (2016) 013006 [arXiv:1509.07090 [hep-ph]]

[83] A. S. Joshipura and K. M. Patel, Generalized $\mu - \tau$ symmetry and discrete subgroups of $O(3)$, Phys. Lett. B749 (2015) 159–166 [arXiv:1507.01235 [hep-ph]]

[84] A. E. Cárccamo Hernández and R. Martinez, A predictive 3-3-1 model with A_4 flavor symmetry, Nucl. Phys. B905 (2016) 337–358 [arXiv:1501.05937 [hep-ph]]

[85] S. Bhattacharya, B. Karmakar, N. Sahu and A. Sil, Unifying the flavor origin of dark matter with leptonic nonzero θ_{13}, Phys. Rev. D93 (2016) 11 115041 [arXiv:1603.04776 [hep-ph]]

[86] B. Karmakar and A. Sil, An A_4 realization of inverse seesaw: neutrino masses, θ_{13} and leptonic non-unitarity, Phys. Rev. D96 (2017) 1 015007 [arXiv:1610.01909 [hep-ph]]

[87] .

[88] P. Chattopadhyay and K. M. Patel, Discrete symmetries for electroweak natural type-I seesaw mechanism, Nucl. Phys. B921 (2017) 487–506 [arXiv:1703.09541 [hep-ph]]

[89] A. E. Cárccamo Hernández and H. N. Long, A highly predictive A_4 flavour 3-3-1 model with radiative inverse seesaw mechanism, J. Phys. G45 (2018) 045001 [arXiv:1705.05246 [hep-ph]]

[90] S. Centelles Chuli, R. Srivastava and J. W. F. Valle, Generalized Bottom-Tau unification, neutrino oscillations and dark matter: predictions from a lepton quarticity flavor approach, Phys. Lett. B773 (2017) 26–33 [arXiv:1706.00210 [hep-ph]]

[91] F. Bjorkeroth, E. J. Chun and S. F. King, Accidental Peccei-Quinn symmetry from discrete flavour symmetry and Pati-Salam, Phys. Lett. B777 (2018) 428–434 [arXiv:1711.05741 [hep-ph]]

[92] K. M. Patel, An SO(10)\timesS4 Model of Quark-Lepton Complementarity, Phys. Lett. B695 (2011) 225–230 [arXiv:1008.5061 [hep-ph]]

[93] R. N. Mohapatra and C. C. Nishi, S_4 Flavored CP Symmetry for Neutrinos, Phys. Rev. D86 (2012) 073007 [arXiv:1202.4012 [hep-ph]]

[94] P. S. Bhupal Dev, B. Dutta, R. N. Mohapatra and M. Severson, θ_{13} and Proton Decay in a Minimal SO(10) \times S4 model of Flavor, Phys. Rev. D86 (2012) 035002 [arXiv:1208.2875 [hep-ph]]

[95] I. de Medeiros Varzielas and L. Lavoura, Flavour models for TM1 lepton mixing, J. Phys. G40 (2013) 085002 [arXiv:1212.3247 [hep-ph]]

[96] G.-J. Ding, S. F. King, C. Luhn and A. J. Stuart, Spontaneous CP violation from vacuum alignment in S_4 models of leptons, JHEP 10 (2013) 084 [arXiv:1303.6180 [hep-ph]]

[97] H. Ishimori, Y. Shimizu, M. Tanimoto and A. Watanabe, Neutrino masses and mixing from S_4 flavor twisting, Phys. Rev. D83 (2011) 033004 [arXiv:1010.3805 [hep-ph]]

[98] G.-J. Ding and Y.-L. Zhou, Dirac Neutrinos with S_4 Flavor Symmetry in Warped Extra Dimensions, Nucl. Phys. B876 (2013) 418–452 [arXiv:1304.2645 [hep-ph]]

[99] C. Hagedorn and M. Serone, Leptons in Holographic Composite Higgs Models with Non-Abelian Discrete Symmetries, JHEP 10 (2011) 083 [arXiv:1106.4021 [hep-ph]]

[100] M. D. Campos, A. E. Cárccamo Hernández, H. Pas and E. Schumacher, $Higgs \rightarrow \mu\tau$ as an indication for S_4 flavor symmetry, Phys. Rev. D91 (2015) 11 116011 [arXiv:1408.1652 [hep-ph]]

[101] P. V. Dong, H. N. Long, D. V. Soa and V. V. Vien, The 3-3-1 model with S_4 flavor symmetry, Eur. Phys. J. C71 (2011) 1544 [arXiv:1009.2328 [hep-ph]]

[102] V. V. Vien, H. N. Long and D. P. Khoi, Neutrino Mixing with Non-Zero θ_{13} and CP Violation in the 3-3-1 Model Based on S_4 Flavor Symmetry, Int. J. Mod. Phys. A30 (2015) 17 1550102 [arXiv:1506.06063 [hep-ph]]
Tri-bimaximal neutrino mixing and the family symmetry semidirect product of $\mathbb{Z}(7)$

C. Luhn, S. Nasri and P. Ramond, [123] J. C. Gómez-Izquierdo, F. González-Canales and M. Mondragon, [124] J. C. Gómez-Izquierdo, F. González-Canales and M. Mondragon, [125] Q.-H. Cao, S. Khalil, E. Ma and H. Okada,

Lepton Mixing and Cancellation of the Dirac Mass Hierarchy in a Supersymmetric \mathbb{D}_4 Model for $\mu - \tau$ Symmetry

K. Babu and Y. Meng, [115] N. Kifune, J. Kubo and A. Lenz, [116] Y. Kajiyama, [117] K. Babu and Y. Meng, [118] T. Araki and Y. Li,

Flavor Violation in Supersymmetric $\mathbb{Q}(6)$ Model

K. Babu, K. Kawashima and J. Kubo, [119] Y. Kaburaki, K. Konya, J. Kubo and A. Lenz, [120] K. Babu and Y. Meng, [121] Y. Kajiyama,

Flavor Changing Neutral Higgs Bosons in a Supersymmetric Extension based on a $\mathbb{Q}(6)$ flavor symmetry and the breaking of $\mu \leftrightarrow \tau$ symmetry

K. Babu, K. Kawashima and J. Kubo, [122] Y. Kajiyama,

Flavor Symmetry for Neutrino Masses and Mixing

K. Babu and J. Kubo, [123] C. Luhn, S. Nasri and P. Ramond, [124] J. C. Gómez-Izquierdo, F. González-Canales and M. Mondragon,

Dihedral families of quarks, leptons and Higgses

K. Babu, K. Kawashima and J. Kubo, [125] Q.-H. Cao, S. Khalil, E. Ma and H. Okada,

Observeable T_7 Lepton Flavor Symmetry at the Large Hadron Collider
[126] C. Luhn, K. M. Parattu and A. Wingerter, A Minimal Model of Neutrino Flavor, JHEP 12 (2012) 096, arXiv:1210.1197 [hep-ph]

[127] Y. Kajiyama, H. Okada and K. Yagyu, T_7 Flavor Model in Three Loop Seesaw and Higgs Phenomenology, JHEP 10 (2013) 196, arXiv:1307.0480 [hep-ph]

[128] V. V. Vien and H. N. Long, The T_7 flavor symmetry in 3-3-1 model with neutral leptons, JHEP 14 (2014) 133, arXiv:1402.1256 [hep-ph].

[129] V. V. Vien, T_7 flavor symmetry scheme for understanding neutrino mass and mixing in 3-3-1 model with neutral leptons, Mod. Phys. Lett. A29 (2014) 28, arXiv:1507.03852 [hep-ph].

[130] A. E. Cárcamo Hernández and R. Martinez, Fermion mass and mixing pattern in a minimal T_7 flavor 331 model, J. Phys. G43 (2016) 4 045003, arXiv:1501.07261 [hep-ph].

[131] C. Arbeláez, A. E. Cárcamo Hernández, S. Kovalenko and I. Schmidt, Adjoint SU(5) GUT model with T_7 flavor symmetry, Phys. Rev. D92 (2015) 11 115015, arXiv:1507.03852 [hep-ph].

[132] G.-J. Ding, Tri-Bimaximal Neutrino Mixing and the T_{13} Flavor Symmetry, Nucl. Phys. B853 (2011) 635–662, arXiv:1105.5879 [hep-ph].

[133] C. Hartmann, The Frobenius group T_{13} and the canonical see-saw mechanism applied to neutrino mixing, Phys. Rev. D85 (2012) 013012, arXiv:1109.5143 [hep-ph].

[134] C. Hartmann and A. Zee, Neutrino Mixing and the Frobenius Group T_{13}, Nucl. Phys. B853 (2011) 105–124, arXiv:1106.0333 [hep-ph].

[135] Y. Kajiyama and H. Okada, $T_{(13)}$ Flavor Symmetry and Decaying Dark Matter, Nucl. Phys. B848 (2011) 303–313, arXiv:1011.5753 [hep-ph].

[136] S. Sen, Quark masses in supersymmetric SU(3)(color) x SU(3)(W) x U(1)(X) model with discrete T-prime flavor symmetry, Phys. Rev. D76 (2007) 115020, arXiv:0710.2734 [hep-ph].

[137] M.-C. Chen and K. T. Mahanthappa, CKM and Tri-bimaximal MNS Matrices in a SU(5) x T' Model, Phys. Lett. B652 (2007) 34–39, arXiv:0705.0714 [hep-ph].

[138] P. H. Frampton, T. W. Kephart and S. Matsuzaki, Simplified Renormalizable T-prime Model for Tribimaximal Mixing and Cabibbo Angle, Phys. Rev. D78 (2008) 073004, arXiv:0807.4713 [hep-ph].

[139] D. A. Eby, P. H. Frampton, X.-G. He and T. W. Kephart, Quartification with T' Flavor, Phys. Rev. D84 (2011) 037302, arXiv:1305.4402 [hep-ph].

[140] P. H. Frampton, C. M. Ho and T. W. Kephart, Heterotic discrete flavor model, Phys. Rev. D89 (2014) 2 027701, arXiv:1305.4402 [hep-ph].

[141] M.-C. Chen, J. Huang, K. Mahanthappa and A. M. Wijangco, Large θ_{13} in a SUSY SU(5) x T' Model, JHEP 1310 (2013) 112, arXiv:1307.7711 [hep-ph].

[142] E. Ma, Near tribimaximal neutrino mixing with $\Delta(27)$ symmetry, Phys. Lett. B660 (2008) 505–507, arXiv:0709.0507 [hep-ph].

[143] I. de Medeiros Varzielas, D. Emmanuel-Costa and P. Leser, Geometrical CP Violation from Non-Renormalisable Scalar Potentials, Phys. Lett. B716 (2012) 193–196, arXiv:1204.3633 [hep-ph].

[144] G. Bhattacharyya, I. de Medeiros Varzielas and P. Leser, A common origin of fermion mixing and geometrical CP violation, and its test through Higgs physics at the LHC, Phys. Rev. Lett. 109 (2012) 241603, arXiv:1210.0545 [hep-ph].

[145] E. Ma, Neutrino Mixing and Geometric CP Violation with $\Delta(27)$ Symmetry, Phys. Lett. B723 (2013) 161–163, arXiv:1304.1603 [hep-ph].

[146] C. C. Nishi, Generalized CP symmetries in $\Delta(27)$ flavor models, Phys. Rev. D88 (2013) 3 033010, arXiv:1306.0877 [hep-ph].

[147] I. de Medeiros Varzielas and D. Pidt, Towards realistic models of quark masses with geometrical CP violation, J. Phys. G41 (2014) 025004, arXiv:1307.0711 [hep-ph].

[148] E. Ma and A. Natale, Scotogenic Z_2 or $U(1)_D$ Model of Neutrino Mass with $\Delta(27)$ Symmetry, Phys. Lett. B734 (2014)
[149] M. Abbas and S. Khalil, Fermion masses and mixing in \(\Delta(27)\) flavour model, Phys. Rev. D91 (2015) 0 53003, arXiv:1406.6716 [hep-ph].

[150] M. Abbas, S. Khalil, A. Rashed and A. Sil, Neutrino masses and deviation from tribimaximal mixing in \(\Delta(27)\) model with inverse seesaw mechanism, Phys. Rev. D93 (2016) 0 13018, arXiv:1508.03727 [hep-ph].

[151] I. de Medeiros Varzielas, \(\Delta(27)\) family symmetry and neutrino mixing, JHEP 08 (2015) 157 arXiv:1507.00338 [hep-ph].

[152] F. Bjorkeroth, F. J. de Anda, I. de Medeiros Varzielas and S. F. King, Towards a complete \(\Delta(27) \times SO(10)\) SUSY GUT, Phys. Rev. D94 (2016) 0 16006, arXiv:1512.00850 [hep-ph].

[153] P. Chen et al., Warped flavor symmetry predictions for neutrino physics, JHEP 01 (2016) 0 07, arXiv:1509.06683 [hep-ph].

[154] V. V. Vien, A. E. Cárcamo Hernández and H. N. Long, The \(\Delta(27)\) flavor 3-3-1 model with neutral leptons, Nucl. Phys. B913 (2016) 792–814, arXiv:1601.03300 [hep-ph].

[155] A. E. Cárcamo Hernández, H. N. Long and V. V. Vien, A 3-3-1 model with right-handed neutrinos based on the \(\Delta(27)\) family symmetry, Eur. Phys. J. C76 (2016) 5 242, arXiv:1601.05062 [hep-ph].

[156] A. E. Cárcamo Hernández, S. Kovalenko, J. W. F. Valle and C. A. Vaquera-Araujo, Predictive Pati-Salam theory of fermion masses and mixing, JHEP 07 (2017) 118 arXiv:1705.06320 [hep-ph].

[157] I. de Medeiros Varzielas, G. G. Ross and J. Talbert, A Unified Model of Quarks and Leptons with a Universal Texture Zero, JHEP 03 (2018) 0 07 arXiv:1710.01741 [hep-ph].

[158] N. Bernal, A. E. Cárcamo Hernández, I. de Medeiros Varzielas and S. Kovalenko, Fermion masses and mixings and dark matter constraints in a model with radiative seesaw mechanism, JHEP 05 (2018) 053 arXiv:1712.02792 [hep-ph].

[159] A. E. Cárcamo Hernández, H. N. Long and V. V. Vien, Fermion masses and mixings in a \(\Delta(27)\) family symmetry and inverse seesaw mechanism (2018), arXiv:1803.01636 [hep-ph].

[160] L. L. Everett and A. J. Stuart, Icosahedral \(\{A(5)\}\) Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing, Phys. Rev. D79 (2009) 085005 arXiv:0812.1057 [hep-ph].

[161] F. Feruglio and A. Paris, The Golden Ratio Prediction for the Solar Angle from a Natural Model with \(A_5\) Flavour Symmetry, JHEP 03 (2011) 101 arXiv:1101.0393 [hep-ph].

[162] I. de Medeiros Varzielas and L. Lavoura, Golden ratio lepton mixing and nonzero reactor angle with \(A_5\), J. Phys. G41 (2014) 055005, arXiv:1312.0215 [hep-ph].

[163] J. Gehrlein, J. P. Oppermann, D. Schfer and M. Spinrath, An \(SU(5) \times A_5\) golden ratio flavour model, Nucl. Phys. B890 (2014) 539–568 arXiv:1410.2057 [hep-ph].

[164] J. Gehrlein, S. T. Petcov, M. Spinrath and X. Zhang, Leptogenesis in an \(SU(5) \times A_5\) Golden Ratio Flavour Model, Nucl. Phys. B896 (2015) 311–329 arXiv:1502.00110 [hep-ph].

[165] A. Di Iura, C. Hagedorn and D. Meloni, Lepton mixing from the interplay of the alternating group \(A_5\) and CP, JHEP 08 (2015) 037 arXiv:1503.04140 [hep-ph].

[166] P. Ballett, S. Pascoli and J. Turner, Mixing angle and phase correlations from \(A_5\) with generalized CP and their prospects for discovery, Phys. Rev. D92 (2015) 0 93008, arXiv:1503.07543 [hep-ph].

[167] J. Gehrlein, S. T. Petcov, M. Spinrath and X. Zhang, Leptogenesis in an \(SU(5) \times A_5\) Golden Ratio Flavour Model: Addendum, Nucl. Phys. B899 (2015) 617–630 arXiv:1508.07930 [hep-ph].

[168] J. Turner, Predictions for leptonic mixing angle correlations and nontrivial Dirac CP violation from \(A_5\) with generalized CP symmetry, Phys. Rev. D92 (2015) 11 116007 arXiv:1507.06224 [hep-ph].

[169] C.-C. Li and G.-J. Ding, Lepton Mixing in \(A_5\) Family Symmetry and Generalized CP, JHEP 05 (2015) 100 arXiv:1503.03711 [hep-ph].

[170] H. Fritzsch, Weak Interaction Mixing in the Six - Quark Theory, Phys. Lett. B73 (1978) 317–322.
[196] S. K. Garg, Consistency of perturbed Tribimaximal, Bimaximal and Democratic mixing with Neutrino mixing data (2017), arXiv:1712.02212 [hep-ph]

[197] H. Borgohain and M. K. Das, Perturbations to $\mu - \tau$ symmetry, lepton Number Violation and baryogenesis in left-right symmetric Model (2018), arXiv:1803.05710 [hep-ph]

[198] R. Samanta and M. Chakraborty, A minimally broken residual TBM-Klein symmetry and baryogenesis via leptogenesis (2018), arXiv:1802.04751 [hep-ph]

[199] E. R. L. Terrazas and A. Prez-Lorenzana, Dirac neutrino mixings from hidden $\mu - \tau$ symmetry (2018), arXiv:1802.02249 [hep-ph]

[200] S. K. Garg, A Systematic Analysis of Perturbations for Hexagonal Mixing Matrix (2018), arXiv:1806.06658 [hep-ph]

[201] S. K. Garg, Model independent Analysis of Dirac CP Violating Phase for some well known mixing scenarios (2018), arXiv:1806.08239 [hep-ph]

[202] Y. H. Ahn, S. K. Kang, C. S. Kim and T. P. Nguyen, Bridges of Low Energy observables with Leptogenesis in mu-tau Reflection Symmetry (2008), arXiv:0811.1458 [hep-ph]

[203] P. Chen, G.-J. Ding, F. Gonzalez-Canales and J. W. F. Valle, Generalized $\mu - \tau$ reflection symmetry and leptonic CP violation, Phys. Lett. B753 (2016) 644–652, arXiv:1512.01551 [hep-ph]

[204] P. Chen, G.-J. Ding, F. Gonzalez-Canales and J. W. F. Valle, Classifying CP transformations according to their texture zeros: theory and implications, Phys. Rev. D94 (2016) 3 033002, arXiv:1604.03510 [hep-ph]

[205] C. C. Nishi and B. L. Sanchez-Vega, Mu-tau reflection symmetry with a texture-zero, JHEP 01 (2017) 068, arXiv:1611.08282 [hep-ph]

[206] Z.-h. Zhao, Breakings of the neutrino $\mu - \tau$ reflection symmetry, JHEP 09 (2017) 023, arXiv:1703.04984 [hep-ph]

[207] Z.-C. Liu, C.-X. Yue and Z.-h. Zhao, Neutrino $\mu - \tau$ reflection symmetry and its breaking in the minimal seesaw, JHEP 10 (2017) 102, arXiv:1707.05535 [hep-ph]

[208] Z.-h. Zhao, Modifications to the neutrino mixing given by the mu-tau reflection symmetry (2018), arXiv:1803.04603 [hep-ph]

[209] N. Nath, Z.-z. Xing and J. Zhang, $\mu - \tau$ Reflection Symmetry Embedded in Minimal Seesaw, Eur. Phys. J. C78 (2018) 4 289, arXiv:1801.09931 [hep-ph]

[210] H. Fritzsch and Z.-z. Xing, Mass and flavor mixing schemes of quarks and leptons, Prog. Part. Nucl. Phys. 45 (2000) 1–81, arXiv:hep-ph/9912358

[211] R. Verma and S. Zhou, Quark Flavor Mixings from Hierarchical Mass Matrices, Eur. Phys. J. C76 (2016) 5 272, arXiv:1512.06638 [hep-ph]

[212] J. C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D10 (1974) 275–289, [Erratum: Phys. Rev.D11,703(1975)].

[213] R. N. Mohapatra and J. C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D11 (1975) 2558.

[214] G. Senjanovic and R. N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D12 (1975) 1502

[215] G. Senjanovic, Spontaneous Breakdown of Parity in a Class of Gauge Theories, Nucl. Phys. B153 (1979) 334–364.

[216] K. G. Chetyrkin, J. H. Kuhn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43–65, arXiv:hep-ph/0004189 [hep-ph]

[217] J. Lesgourgues and S. Pastor, Massive neutrinos and cosmology, Physics Reports 429 (2006) 6 307–379, ISSN 0370-1573.

[218] E. W. Otten and C. Weinheimer, Neutrino mass limit from tritium β decay, Reports on Progress in Physics 71 (2008) 8 086201.

[219] F. T. Avignone, S. R. Elliott and J. Engel, Double beta decay, majorana neutrinos, and neutrino mass, Rev. Mod. Phys. 80 (2008) 481–516

[220] M. Agostini et al. (GERDA), Improved Limit on Neutrinoless Double-β Decay of 76Ge from GERDA Phase II, Phys. Rev. Lett. 120 (2018) 13 132503, arXiv:1803.11100 [nucl-ex]
[221] A. Gando et al. (KamLAND-Zen), *Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen*, Phys. Rev. Lett. 117 (2016) 8 082503 [Addendum: Phys. Rev. Lett.117,no.10,109903(2016)], arXiv:1605.02889 [hep-ex]

[222] M. Agostini et al. (GERDA), *Results on Neutrinoless Double-β Decay of 76Ge from Phase I of the GERDA Experiment*, Phys. Rev. Lett. 111 (2013) 12 122503, arXiv:1307.4720 [nucl-ex]

[223] M. Agostini et al., *Background free search for neutrinoless double beta decay with GERDA Phase II*, Nature544,47(2017) (2017) [Nature544,47(2017)], arXiv:1703.00570 [nucl-ex]