Accuracy of Robotic Arm Assisted Total Hip Replacement Planning Tool

Rajitha Gunaratne 1,2, Yi Ying Heng2, Charlie Ironside1 and Arash Taheri 2 3

1 Curtin University, Kent Street, Bentley, WA, 6102, Australia
2 Joondalup Health Campus, Shenton Avenue, Joondalup, WA, 6027, Australia
3 Joondalup Orthopaedic Group, 60 Shenton Avenue, Joondalup, WA, 6027, Australia

Corresponding author: Rajitha Gunaratne, Curtin University, Kent Street, Bentley, WA, 6102, Australia, Tel: 0410990265; Fax: 08 9431 2701; E-mail: gunaratne.rajitha@gmail.com

Received date: October 24, 2018; Accepted date: November 10, 2018; Published date: November 13, 2018

Copyright: © 2018 Gunaratne R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Preoperative templating is an integral part of planning a successful total hip arthroplasty (THA), and helps minimize complications that can arise both intraoperatively and postoperatively. The aim of our study is to determine the reliability of the robotic arm assisted (MAKO fully enhanced) total hip replacement surgical system as a surgical planning tool (not to validate the robot in its execution as it has previously been done) in comparison to conventional acetate and digital templating.

Method: The planning stages of fifty consecutive uncemented THA performed by a single robotic orthopedic surgeon were analyzed against what was achieved during the surgery. The variables analyzed were cup inclination, cup anteversion, combined anteversion, hip length, hip combined offset, femur size, femur component neck angle and cup size.

Results: There was a significant correlation between planned and actual results. The component sizes were planned to accuracy within one size in 100% of femurs, 100% of femur neck-shaft angles and 98% of cups. Cup inclination, anteversion and combined anteversion were planned to accuracy within three degrees in 84%, 96% and 94% of cases respectively. Hip length and combined offset were planned to accuracy within three millimeters in 88% and 78% of cases respectively.

Conclusion: The robotic arm assisted total hip replacement surgical system is a predictable and accurate planning tool and is superior to conventional acetate and digital templating.

Keywords: Robotic arm assisted; MAKO; Robotic hip; Templating; Hip arthroplasty

Introduction

Preoperative templating is an integral part of planning a successful total hip arthroplasty (THA) and helps minimize complications that can arise both intraoperatively and postoperatively. These include instability, leg length discrepancy, intraoperative fractures, loss of bone stock, failure to achieve bone in growth and increased length of surgical procedure [1]. Between two to three per cent of THA patients suffer a hip dislocation postoperatively leading to significant cost and morbidity implications [2]. In some cases these complications necessitate surgical revision [3]. Planning also allows the team to prepare the instrumentation required for each operation and have the proper inventory of implants available [4]. Templating is traditionally done with template view X-rays of the pelvis and hip. These X-rays are magnified between 110 and 120% and printed to be used with overlay acetate templates. Alternatively, the X-rays are taken with a reference mark (i.e. template ball) and uploaded into templating software if digital templating is to be used.

When surgery is planned, optimal fit of the implant is crucial as this influences the reconstructing leg length, offset and the center of rotation [5]. Other considerations include cup inclination and cup anteversion. The surgeon has to think three-dimensionally to achieve the most reliable preoperative plan. During surgery, the acetabulum is serially reamed until the subchondral bone is exposed and a well-fitting acetabular cup is inserted (press fit or cemented). The optimal fitting femoral stem (uncemented or cemented) is inserted after the medullary canal is broached using sequentially larger broaches. Templating is a guide to this process and loose implants affect the survival of the prostheses [6].

Several studies have looked at the efficacy and accuracy of the different methods of templating (Table 1). Both digital and acetate templating of the cup and femur overall have less than 50% accuracy in exact match and less than 85% accuracy for being within one size.

Paper	Templating Method	Acetabular Cup Accuracy	Femoral Stem Accuracy	Femoral Offset Accuracy	
	Exact +/- 1 Size	Exact +/- 1 Size	Exact +/- 1 Size	Exact +/- 1 Size	
Rajamani et al. [6]	Acetate	78%	98%	56%	83%

Table 1: Accuracy of templating methods.
Also, conventional templating methods do not allow for reliable planning of optimal cup inclination, cup anteversion and hence combined anteversion. However, with new advances in robotic surgery, we have the ability to plan and execute total hip arthroplasty with increasing precision. The robotic arm assisted (RAA) system allows surgeons to preoperatively plan cup inclination and cup anteversion to an accuracy of one degree. The combined anteversion is set and the optimal range is planned after measuring the broach anteversion. The broach anteversion is set by the femur canal and the broach is free to find its own best fitting path. The cup anteversion can then be changed to achieve optimal combined anteversion. Hip length and offset change compared to ipsilateral preoperative and contralateral hip position can be adjusted to an accuracy of one millimeter. The component sizes (cup size, femur size and femur component neck angle) can also be templated as with conventional methods. Figure 1 demonstrates the flow of preoperative planning and final results with the RAA total hip replacement system.

Previous studies have validated this RAA total hip replacement system with postoperative CT scanning and X-rays [7-9]. The aim of our study was not to validate the system but to determine the reliability of the RAA total hip replacement surgical system as a surgical planning tool in comparison to conventional acetate and digital templating. Preoperative planning with templates has become an indispensable part of modern total hip arthroplasty [10].

Table 1: Review of the literature from January 2005 to June 2017 on accuracy of acetate and digital templating.

Authors	Method	Acetate 28%	Acetate 28%	Acetate 33%	Acetate 75%	Digital 28%	Digital 28%	Digital 25%	Digital 37%	
Petretta et al. [1]	Acetate	28%	77%	33%	75%	Digital	28%	70%	25%	60%
Si et al. [28]	Acetate	43.30%	78.90%	40%	84.40%	Digital	53%	87%	49%	92%
Riddick et al. [37]	Acetate	53%	87%	49%	92%	Digital	27%	67%	37%	53%
Kniesel et al. [38]	Digital	27%	67%	Digital						
Shaarani et al. [12]	Digital	38%	80%	36%	75%	91%				
Kearney et al. [2]	Acetate	27%	75%	37%	91%	91%	100%			
Bertz et al. [16]	Digital	60%	94%	64%	95%					
Whiddon et al. [27]	Acetate	31%	67%	33%	82%					
Gamble et al. [29]	Acetate	20%	60%	40%	85%					
Kumar et al. [32]	Digital	56%	91%	62%	78%	93%				
Steinberg et al. [33]	Digital	50%	88%	47%	87%	97%				
Iorio et al. [34]	Digital									
Crooijmans et al. [36]	Acetate	51.50%	89.70%	76.50%	97.10%					
	Digital	14.70%	36.80%	7.40%	55.90%					
	Acetate	42.20%	82.80%	32.80%	84.40%					
	Digital	25%	62.50%	10.90%	50%					
Unnanuntana et al. [50]	Acetate	42.20%	68.80%	98.20%	91%					
Gonzalez, Della Valle et al. [10]	Acetate	25%	81%	58%	94%	75%				
	Digital	51%	97%	69%	98%	86%				
The et al. [31]	Acetate	67%		56%						
	Digital			58%						
Davila et al. [35]	Digital	39%	86%	19%	72%					
The et al. [5]	Digital	36%	72%	35%	79%					
	Acetate	23%	73%	37%	89%					
	Digital	16%	72%	34%	79%					
	Acetate	34%	73%	30%	89%					

Also, conventional templating methods do not allow for reliable planning of optimal cup inclination, cup anteversion and hence combined anteversion. However, with new advances in robotic surgery, we have the ability to plan and execute total hip arthroplasty with increasing precision. The robotic arm assisted (RAA) system allows surgeons to preoperatively plan cup inclination and cup anteversion to an accuracy of one degree. The combined anteversion is set and the optimal range is planned after measuring the broach anteversion. The broach anteversion is set by the femur canal and the broach is free to find its own best fitting path. The cup anteversion can then be changed to achieve optimal combined anteversion. Hip length and offset change compared to ipsilateral preoperative and contralateral hip position can be adjusted to an accuracy of one millimeter. The component sizes (cup size, femur size and femur component neck angle) can also be templated as with conventional methods. Figure 1 demonstrates the flow of preoperative planning and final results with the RAA total hip replacement system.

Previous studies have validated this RAA total hip replacement system with postoperative CT scanning and X-rays [7-9]. The aim of our study was not to validate the system but to determine the reliability of the RAA total hip replacement surgical system as a surgical planning tool in comparison to conventional acetate and digital templating. Preoperative planning with templates has become an indispensable part of modern total hip arthroplasty [10].

Table 1: Review of the literature from January 2005 to June 2017 on accuracy of acetate and digital templating.

Figure 1: Key steps in MAKO fully enhanced THA planning and execution. A: Acetabular component preoperative planning. B: The hip length is the distance (mm) from the ASIS axis to the lesser trochanter landmarks with the femurs in mechanical axis alignment. Combined offset is the distance (mm) from the midline axis to the femoral canal axes with the femoral canal axes aligned vertically. C: Femoral component preoperative planning with planned implant details. D: After broaching, broach anteversion measured and acetabular component anteversion can be adjusted if required to achieve desired combined anteversion. E: Final readings after components implanted and hip enlocated.

Method

Data on fifty consecutive RAA (MAKO fully enhanced) THA were retrospectively analysed. All surgeries were performed by the same experienced robotic arthroplasty fellowship trained surgeon at a single
site. All cases analysed were primary THA for osteoarthritis with uncemented components. Components used were Stryker Accolade II stem and Stryker Tritanium cup. Preoperative variables analysed were cup inclination, cup anteverision, combined anteverision (after measuring broach anteverision), hip length versus pre-operative hip, hip combined offset vs pre-operative hip, femur size, femur component neck angle and cup size. The preoperative plan for these variables were analyzed against the final measurements recorded after the components were implanted and hip enlocated (Figure 1). The RAA THA system uses patient specific information gathered from a preoperative CT scan to plan the surgery. During surgery, the femur and acetabulum are correlated with the CT using three landmark points and 32 registration points for each. The accepted registration error is less than or equal to 0.5 mm. The registration is then verified by placing the probe on the surface of the bone. Verification is accepted only if the distance to bone is less than one millimeter. If more than one registration point is greater than one millimeter, the registration should be repeated.

To determine how far from the planned result each variable was, a difference score was calculated (actual minus planned). Positive differences show that the actual result was larger than the planned and negative differences show that actual result was smaller than the planned. All data were assessed for outliers (more than three standard deviations above or below the mean).

Results

Descriptive statistics are presented in Table 2 and accuracy of templated measurements in Table 3.

Variable	Planned	Actual	Diff
Cup inclination (deg)	40 to 45	36 to 47	-4 to 7
Mean	40.2	39.5	-0.74
SD	0.99	2.54	2.28
Cup anteverision (deg)	17 to 30	15 to 30	-4 to 4
Mean	21.6	21.4	-0.16
SD	2.9	3.33	1.77
Combined anteverision (deg)	14 to 45	14 to 43	-4 to 4
Mean	30.9	30.8	-0.18
SD	5.78	5.85	1.86

Table 2: Descriptive statistics including range (min to max), mean, and standard deviation (SD).

Cup inclination (deg)

- ±1 deg: 60%
- ±3 deg: 84%

Cup anteverision (deg)

- ±1 deg: 60%
- ±3 deg: 96%

Combined anteverision (deg)

- ±1 deg: 58%
- ±3 deg: 94%

Hip length vs pre-op hip (mm)

- ±1 deg: 60%
- ±3 deg: 84%

Cup inclination (deg)

- ±1 deg: 60%
- ±3 deg: 84%

Cup anteverision (deg)

- ±1 deg: 60%
- ±3 deg: 96%

Combined anteverision (deg)

- ±1 deg: 58%
- ±3 deg: 94%
Combined anteversion (degrees) was planned accurately in 58% of cases +/- 1° and 94% +/- 3°. There were no outliers present in the data. There was a significant strong correlation between planned and actual, t(50)=0.95, p=0.001. There was also no significant bias in the direction of the difference, t(50)=3.99, p<0.001.

cup inclination (degrees)

Cup inclination was planned accurately in 60% of cases +/- 1° and 84% +/- 3°. There were two outliers present (patient 18 and 50 had differences of +7) in the data. There was a significant moderate correlation between planned and actual, r(50)=0.45, p=0.001. There was a significant bias in the direction of the difference, t(49)=2.30, p=0.026, where the actual cup inclination was consistently smaller than planned.

combined anteversion (degrees)

Combined anteversion was planned accurately in 60% of cases +/- 1° and 96% +/- 3°. There were no outliers present in the data. There was a significant strong correlation between planned and actual, r(50)=0.95, p=0.001. There was also no significant bias in the direction of the difference, t(50)=1.53, p=0.13.

Hip length vs pre-operative hip (mm)

Hip length was planned accurately in 46% of cases +/- 1mm and 88% +/- 3mm. There were no outliers present in the data. There was a significant strong correlation between planned and actual, r(50)=0.77, p<0.001. There was a trend towards a significant bias in the direction of the difference, t(49)=1.95, p=0.057, with hip length in comparison to pre-operative hip being longer than planned.

Discussion

Preoperative templating for THA has been accepted as an essential step to facilitate the surgical process [11]. With increasing numbers of younger and more active patients the goals have evolved from pain relief to include restoration of high function [12]. The RAA THA system planning is able to achieve greater accuracy than conventional acetate and digital templating as can be seen by our results compared to the literature in Table 1.

Component size was planned with close to 100% accuracy within +/- one size. With increasing use of uncemented prostheses, more emphasis has been placed on choosing the correct implant size to avoid subsidence with too small a component or fracture with too large a component [12].

About one in every three patients reports a sensation of leg length discrepancy (LLD) after THA [13-15]. Edeen et al. [13] reported that even a small discrepancy could induce dissatisfaction. LLD is a common cause for postoperative dissatisfaction [16] and it is reported as the second most cited cause of medical malpractice litigation among American association of hip and knee surgeons [17]. Our results show that we were able to achieve our planned leg length to within 3mm in 78% of cases.

Femoral offset is the distance from the center of rotation of the femoral head to a line bisecting the long axis of the femur. Previous studies have shown that increasing femoral offset will improve hip abductor strength, enhance range of motion, reduce limping, decrease dislocation risks; cup strain and polyethylene wear [15,18,19]. Another study showed that a 15% or greater decrease in offset compared to the non-operated side was associated with an increased frequency of gait disorders [20]. We were able to achieve our planned offset to within 3mm in 78% of cases. The femoral neck-shaft angle determines the size of the anatomical femoral offset [21]. We were able to plan the correct neck-shaft angle of the final prosthesis in 100% of cases. Dislocation is

±1 mm	46%
±3 mm	88%
exact match	78%
±1 size	100%
exact match	100%
±1 size	100%
Cup size	92%
±1 size	98%

Table 3: Accuracy of templated measurements.
one of the more serious complications; one possible cause is decreased femoral offset. It is stated that femoral offset is restored in only 40% of THA patients however preoperative templating can lead to offset restoration in up to 90% of patients [2]. This may also be consequent to increased accuracy of femoral stem anteversion and acetabular cup anteversion. This is important to ensure the optimal relationship of the femoral head in the cup without impingement of the two throughout all body positions [22]. The sum of the cup and stem anteversion is known as the combined anteversion and this has been investigated by both mathematical models and clinical studies [23-26] to determine the optimal range for men and women. This concept is particularly important in un cemented components as the femoral anteversion is guided by the femoral bone geometry which is highly variable [22]. Hence the RAA system first measures the broach anteversion and the cup anteversion can be adjusted accordingly. We were able to achieve our planed combined anteversion in 94% of case +/- 3 degrees.

There were several limitations to our study. First, our study only included uncemented components. Cemented components could potentially lead to deviation away from the plan as the components have the flexibility to change orientation during the cementing process. Also, all the planning and surgery was performed by an experienced robotic orthopedic surgeon and the level of accuracy achieved could be different in less experienced hands. This study was a retrospective analysis and at the time of surgery the authors did not have an intention to write this paper hence the risk of bias on size matching was controlled. Finally, the component position was determined using the RAA system and not with postoperative CT analysis. However, two studies have previously performed cadaveric THA to validate this RAA system with postoperative CT scanning. The first study found the root mean square (RMS) error for the robotic-assisted surgery was within three degrees for cup placement and within one millimetre for leg length equalization and offset [7]. The second study found the Inclination to be 2.7 ± 2.2°, cup anteversion 2.2 ± 1.4°, hip length 1.6 ± 1.2 mm and combined offset 1.3 ± 0.8 mm [8]. Domb et al. analysed the cup position in 50 RAA THAs radiographically and found the cup positioning were placed 100% of the time within the Lewinkin’s “Safe Zone” for anteversion and inclination [9]. With this level of precision, we were satisfied to use the RAA system for our component position measurements.

Conclusion

The RAA total hip replacement surgical system is a predictable planning tool with superior accuracy compared to conventional acetate and digital templating. Although longevity of THA continue to improve, incidence of dislocation and impingement related failures continue to rise [7,15]. Compounded with increasing patient expectations, we are at an era where accurate planning and precise execution is crucial to prevent complications and meet the demands of our patients.

Source of Funding & Conflicts of Interest

None.

References

1. Petretta R, Srelozow J, Obly N, Misur P, Masri B (2015) Acetate templating on digital images is more accurate than computer-based templating for total hip arthroplasty. Clin Orthop Relat Res 473: 3752-3759.

2. Kearney R, Shaikh AH, O’Byrne JM (2013) The accuracy and inter-observer reliability of acetate templating in total hip arthroplasty. Ir J Med Sci 182: 409-414.

3. Benedetti MG, Catani F, Benedetti E, Berti L, Di Gioia A, et al. (2010) To what extent does leg length discrepancy impair motor activity in patients after total hip arthroplasty? Int Orthop 34: 1115-1121.

4. Della Valle A, Padgett D, Salvati E (2005) Preoperative planning for primary total hip arthroplasty. J Am Acad Orthop Surg 13: 453-462.

5. The B, Diercks RL, van Ooijen PM, van Horn JR (2005) Comparison of analog and digital preoperative planning in total hip and knee arthroplasties. A prospective study of 173 hips and 65 total knees. Acta Orthop 76: 78-84.

6. Perumal R, Krishnamoorthy VP, Poornoose PM (2017) Templating digital radiographs using acetate templates in Total Hip Arthroplasty. Journal of Arthroscopy and Joint Surgery.

7. Nawabi D, Conditt M, Ranawat A, Dunbar N, Jones J, et al. (2012) Haptically guided robotic technology in total hip arthroplasty – A cadaveric investigation. Proc Inst Mech Eng H 227: 302-309.

8. Jerabek S, Thompson M, Carroll K, Mayman D, Padgett D. Accuracy of Cup Positioning, COR Restoration and Achieving Desired Hip Length and Offset with Robotic Total Hip Arthroplasty.

9. Shaarani SR, McHugh G, Collins DA (2013) Accuracy of digital preoperative templating in 100 consecutive uncemented total hip arthroplasties: a single surgeon series. J Arthroplasty 28: 331-337.

10. Edeen J, Sharkey P, Alexander A (1995) Clinical significance of leg-length inequality after total hip arthroplasty. Am J Orthop 24: 347-351.

11. Konyves A, Bannister GC (2005) The importance of leg length discrepancy after total hip arthroplasty. J Bone Joint Surg Br 87: 155-157.

12. Flecher X, Ollivier M, Argenson JN (2016) Lower limb length and offset in total hip arthroplasty. Orthop Traumatol Surg Res 102: S9-20.

13. Bartz A, Indrekvam K, Ahmed M, Englund E, Sayed-Noor AS (2012) Validity and reliability of preoperative templating in total hip arthroplasty using a digital templating system. Skeletal Radiol 41: 1245-1249.

14. Upadhyay A, York S, Macaulay W, McGrory B, Robbenolt J, et al. (2007) Medical malpractice in hip and knee arthroplasty. J Arthroplasty 22: 3-7.

15. Lecerf G, Fessy MH, Philippot R, Massin P, Giraud F, et al. (2009) Femoral offset: anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg Res 95: 210-219.

16. McGrory B, Morrey B, Cahalan T, Kai-Nan A, Cabanela M (1995) Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg Br 77: 865-889.

17. Sariai E, Klouche S, Mouttet A, Pascal-Moussellard H (2014) The effect of femoral offset modification on gait after total hip arthroplasty. Acta Orthop 85: 123-127.

18. Charles M, Bourne R, Davey J, Greenwald A, Morrey B, et al. (2004) Soft-tissue balancing of the hip: the role of femoral offset restoration. J Bone Joint Surg Am 86: 1078-1088.

19. Dorr LD, Malik A, Dastane M, Wan Z (2009) Combined anteversion technique for total hip arthroplasty. Clin Orthop Relat Res 467: 119-127.

20. Maruyama M, Feiberg J, Capello W, D’Antonio J (2001) The Frank Stinchfield Award: Morphologic features of the acetabulum and femur: anteversion angle and implant positioning. Clin Orthop Relat Res 393: 52-65.

21. Ranawat C, Maynard M (1991) Modern Techniques of Cemented Total Hip Arthroplasty. Tech Orthopedics 6: 17-25.
25. Widmer K, Zurfluh B (2004) Compliant positioning of total hip components for optimal range of motion. J Orthop Res 22: 815-821.
26. Yoshimine F (2006) The safe-zones for combined cup and neck anteversions that fulfill the essential range of motion and their optimum combination in total hip replacements. J Biomech 39: 1315-1323.
27. Whiddon D, Bono J, Lang J, Smith E, Salyapongse A (2011) Accuracy of digital templating in total hip arthroplasty. Am J Orthop 40: 395-398.
28. Si Hb, Zeng Y, Cao F, Pei Fx, Shen B (2015) Accuracy of a Simple Digital Templating in Primary Uncemented Total Hip Arthroplasty. Chin Med Sci J 30: 150-155.
29. Gamble P, de Beer J, Petruccelli D, Winemaker M (2010) The accuracy of digital templating in uncemented total hip arthroplasty. J Arthroplasty 25: 529-532.
30. Unnanuntana A, Wagner D, Goodman S (2009) The accuracy of preoperative templating in cementless total hip arthroplasty. J Arthroplasty 24: 180-186.
31. The B, Veronschot N, Van Horn J (2007) Digital versus analogue preoperative planning of total hip arthroplasties. J Arthroplasty 22: 866-870.
32. Kumar P, Kirmani S, Humberg H (2009) Reproducibility and accuracy of templating uncemented THA with digital radiographic and digital TraumaCad templating software. Orthopedics 32: 815.
33. Steinberg E, Shasha N, Menahem A (2010) Preoperative planning of total hip replacement using TraumaCadTM system. Arch Orthop Trauma Surg 130: 1429-1432.
34. Iorio R, Siegel J, Specht LM, Tilzey JF, Hartman A, et al. (2009) A comparison of acetate vs digital templating for preoperative planning of total hip arthroplasty: is digital templating accurate and safe? J Arthroplasty 24: 175-179.
35. Davila JA, Kransdorf MJ, Duffy GP (2006) Surgical planning of total hip arthroplasty: accuracy of computer-assisted EndoMap software in predicting component size. Skeletal Radiol 35: 390-393.
36. Crooijmans HJ, Laumen AM, van Pul C, van Mourik JB (2009) A new digital preoperative planning method for total hip arthroplasties. Clin Orthop Relat Res 467: 909-916.
37. Riddick A, Smith A, Thomas P (2014) Accuracy of preoperative templating in total hip arthroplasty. J Orthop Surg (Hong Kong) 22: 173-176.
38. Kniesel B, Konstantinidis L, Hirschmuller A, Sudkamp N, Helwig P (2014) Digital templating in total knee and hip replacement: an analysis of planning accuracy. Int Orthop 38: 733-739.