Two PEL of cpDNA of Magnolia Accisa, a New Species (Magnoliaceae) from China

Da-Li Fu¹, 4, *, Hao Fu², Run-Mei Duan³, *

¹Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
²General Station of Forest and Grassland Pest Control of National Forestry and Grassland Administration, Shenyang, China
³Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
⁴Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou, China

Email address:
*Corresponding author
fu_dali@163.com (Da-Li Fu), duanrunmei@yeah.net (Run-Mei Duan)

To cite this article:
Da-Li Fu, Hao Fu, Run-Mei Duan. Two PEL of cpDNA of Magnolia Accisa, a New Species (Magnoliaceae) from China. American Journal of Agriculture and Forestry. Special Issue: The New Evolutionary Theory & Practice. Vol. 7, No. 5, 2019, pp. 234-238.
doi: 10.11648/j.ajaf.20190705.20

Received: August 31, 2019; Accepted: September 16, 2019; Published: September 23, 2019

Abstract: Magnolia sect. Rytidospermum Spach is an important taxon and has an important position in the evolutionary and taxonomic system of Magnoliaceae. A new species of the section was discovered in the investigation of the plant resources in China, named Magnolia accisa D. L. Fu, H. Fu et R. M. Duan, sp. nov. for its leaves with accisus apices and viridescent lower surfaces, which had been confused with M. officinalis var. biloba Rehd. & Wils. for many years. In order to determine its evolutionary taxonomic status, two similar species, M. officinalis Rehd. & Wils. with the variety M. officinalis var. biloba Rehd. & Wils, and M. rostrata W. W. Smith were also collected, and two partial sequences of chloroplast genome, matK and trnL-ndhJ, were amplified and sequenced respectively. The partial sequences were analyzed and compared with 39 samples of the chloroplast complete genomes of Magnoliaceae in the NCBI (National Center for Biotechnology Information, USA) database, and the results indicated that the new species Magnolia accisa has two PEL (particularly evolutionary loci): matK (...ACAAGGTGAGATTTCCA...) and trnL-ndhJ (...GTCTAGTCTAGAGGAGT...), for that the oppositely evolutionary loci of matK (...ACAAGGTGGGATTTCCA...) and trnL-ndhJ (...GTCTAGTCTATAGGAGT...) are possessed by all other contrasted samples including the experimental materials and the data of NCBI of Magnoliaceae. So, the new species is described and illustrated according International Code of Botanical Nomenclature, which will speed up the investigation of plant resources of Magnoliaceae. Rytidospermum Spach in China.

Keywords: PEL (Particularly Evolutionary Loci), Magnolia Accisa, matK, trnL-ndhJ, New Species, Magnoliaceae

1. Introduction

Magnolia sect. Rytidospermum Spach [1-3] is an important taxon and has an important position in the evolutionary and taxonomic system of Magnoliaceae, which was even regarded as a new genus, Houpoea N. H. Xia & C. Y. Wu [4, 5]. The species of the section had been cultivated more than 2,000 years in China, because its barks has been used as a Chinese medicine, commonly known as Houpo, a traditional Chinese herbal medicines and traditional Chinese exported medicines. The trees grow rapidly, adapt strongly, distribute and are cultivated widely, the flowers are big and fragrant, and the leaves gather at the end of perennial often non-divaricating branches as “umbrella tree” called in North America, so they have unique ornamental features and occupy an important position in the cultivation of Forestry. The species of Magnolia sect. Rytidospermum Spach native to China are mainly three species described: M. officinalis Rehd. & Wils.[6], M. rostrata W. W. Smith [1-4, 7], and M. chathayana D. L. Fu et T. B. Zhao [8]. In the investigation of
the plant resources of Magnolia sect. Rytidospermum in Henan, Hunan, Hubei, Sichuan, Yunnan, Xizang and other provinces in recent years, a new species, named Magnolia accisa D. L. Fu, H. Fu et R. M. Duan, sp. nov., had been found by the authors. The new species has the particularity of the leaves with accisus apices and viridescent lower surfaces, but it had been confused with M. officinalis var. biloba Rehd. & Wils.[6, 7, 9] for many years by botanists [3, 10-12]. In order to determine its evolutionary taxonomic status, along with two similar species, M. officinalis Rehd. & Wils. with its variety M. officinalis var. biloba Rehd. & Wils. from Beichuan County of Sichuan province, the other similar species Magnolia rostrata W. W. Smith from Gongshan and Tengchong County of Yunnan province (see Table 1).

2. Materials & Methods

2.1. Plant Materials

The leaves of 3 species and 1 variety of Magnolia sect. Rytidospermum Spach were collected from China: the new species of M. accisa D. L. Fu, H. Fu et R. M. Duan and the similar species M. officinalis Rehd. et Wils. from Beichuan County of Sichuan province, the other similar species Magnolia rostrata W. W. Smith from Gongshan and Tengchong County of Yunnan province (see Table 1).

2.2. PCR Primer Design

Two pairs of primers, matK-Y01-F and matK-Y01-R, and trnL-ndhJ-Y01-F and trnL-ndhJ-Y01-R were designed using Primer Premier 6, the sequences of primers and the length of amplification and sequencing of cpDNA, see Table 2.

Table 1. Experimental materials of Magnolia sect. Rytidospermum.

Species name	Experimental material	Collected place
Magnolia accisa	leaves	Beichuan, Sichuan, China
Magnolia officinalis var. biloba	leaves	Beichuan, Sichuan, China
Magnolia officinalis	leaves	Beichuan, Sichuan, China
Magnolia rostrata	leaves	Beichuan, Sichuan, China
Magnolia rostrata	leaves	Beichuan, Sichuan, China
Magnolia rostrata	leaves	Beichuan, Sichuan, China

Table 2. Two designed primers for amplification and sequencing of partial cpDNA of Magnoliaceae.

Primer name	Primer sequences	Length of amplification and sequencing /bp
matK_Y01	F: 5'-GAGCCAAAGTTCTAGCACGC-3' R: 5'-GAGCCAAAGTTCTAGCACGC-3'	832
trnL-ndhJ_Y01	F: 5'-TTTAGAAATCGTGAGGGTTCAAGTG-3' R: 5'-TTTAGAAATCGTGAGGGTTCAAGTG-3'	980

Table 3. Contrasted chloroplast genomes of Magnoliaceae in NCBI.

Species name	DNA number in NCBI	Species name	DNA number in NCBI
Liriodendron chinense	NC030504.1	Magnolia pyramidata	NC023236.1
Liriodendron tulipifera	DQ899947.1	Magnolia sinica	NC023241.1
Magnolia aromatica	NC037000.1	Magnolia tripetala	NC024027.1
Magnolia conifera	NC037001.1	Magnolia yunnanensis	NC024545.1
Magnolia dandyi	NC037004.1	Michelia cathcartii	NC023234.1
Magnolia dealbata	NC023235.1	Michelia laevifolia	NC035956.1
Magnolia duclouxii	NC037002.1	Michelia odorata	NC023239.1
Magnolia fordiana var. calcarea	MF990562.1	Michelia sp.	KY9121716.1
Magnolia glaucifolia	NC037003.1	Yulania acuminata	JX280391.1
Magnolia grandiflora	JN867584.1	Yulania biondii	KY085894.1
Magnolia grandiflora	JN867587.1	Yulania demudata	JN227740.1
Magnolia grandiflora	NC020318.1	Yulania demudata	JN867577.1
Magnolia insignis	MF990566.1	Yulania demudata	JX280394.1
Magnolia kwangsiensis	HM775382.1	Yulania diva?	NC023242.1
Magnolia officinalis	JN867579.1	Yulania kobus	NC023237.1
Magnolia officinalis	JN867581.1	Yulania liliflora	NC037005.1
Magnolia officinalis	JN867582.1	Yulania liliflora	NC023238.1
Magnolia officinalis	KY085916.1	Yulania liliflora	JX280397.1
Magnolia officinalis	NC020316.1	Yulania salicifolia	NC023240.1

2.3. PCR Amplification

Total genomic DNA was isolated from silica-dried leaves of 5 materials belong to 3 species and 1 variety of Magnolia sect. Rytidospermum using a modified CTAB method [13]. The primers of PCR amplification are matK_Y01 and trnL-ndhJ_Y01 (see Table 2) respectively. All PCR reactions were completed in T-gradient (Biometra). PCR amplifications were performed in 15 µL volume: 7.5 µL 2x
Es Taq MasterMix, 0.2 µL forward primer and 0.2 µL reverse primer, 6.1 µL ddH₂O, and 1µL genomic DNA, with the following cycles: 5 min initial denaturation at 94°C, 10 cycles of 30 s at 94°C, 45 s at 61°C and 2 min at 72°C, 27 cycles of 30 s at 94°C, 45 s at 56°C and 2 min at 72°C, and final extension 5 min at 72°C. The PCR products were extracted and purified using the Gel Extraction Kit (OMEGA).

2.4. DNA Sequencing

PCR amplifications were performed in 15 µL volume: 7.5 µL 2x Es Taq MasterMix, 0.2 µL forward primer and 0.2 µL reverse primer, and 1µL purified DNA, 6.1 µL ddH₂O, with the following cycles: 3 min initial denaturation at 95°C, 26 cycles of 10 s at 95°C, 10 s at 50°C and 4 min at 60°C, using ABI 3730 XL.

2.5. DNA Sequence Analysis

The absolutely coincident partial sequences using the forward primer and reverse primer were correct ones of the samples, which could be analyzed. The particularly evolutionary loci could be easily found out and verified using Microsoft Word or other software. Table 3 listed the contrasted chloroplast complete genomes of Magnoliaceae in the NCBI database.

3. Two PEL (Particularly Evolutionary Loci) of cpDNA of Magnolia Accisa

3.1. PEL of Partial Sequence of matK of the New Species

There are 706 bp absolutely coincident sequences of Magnolia accisa, using the forward primer and reverse primer of matK-Y01 respectively, which can be regarded as the correct partial cpDNA sequence of the new species. The sequence is as follow:

```
ACTTTATTCGATACAAAGTCTGTTTTTTTGAGGATCCACTGTGATAATGAGAAAGATTTCTGTATATCCGC
CCAAATCGATTGATAATATCAGAATCTGACGAATCGGCCCGGACCGACTTACTAATGGAATGGCCTTACTACGG
TTACAAAATTTCTCCTTTAGCACCCTGATCCACATCGAGGAATAATGGGACTAGGGCTGACGCTGAAATCCTAT
GAAGATATCTATTAGAAATGGAATTCCTGAGATATTAGAATAAATGGAATGATTTATATGGAATGGGAACTAG
TTACTCTTACACTTCAAAAGTCTTCTTTTTAGATTCAGATACATGACCTTTCTTTCTTCTTCTCTCTTTCTTTCT
TTTTTTGATTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
TTTTTTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
TTTTTTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
TTTTTTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
TTTTTTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
TTTTTTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
TTTTTTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
TTTTTTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
```

Compared to the similar species, Magnolia officinalis var. biloba, Magnolia officinalis and Magnolia rostrata, and the other DNA data of Magnoliaceae in NCBI, it can be concluded that the evolutionary locus (...ACAAGGTGGGATTTTCCA...) is particular because the oppositely evolutionary locus of transition (...ACAAGGTGAGATTCC...) is possessed by the similar species and variety in the research, and all other contrasted chloroplast complete genomes data of Magnoliaceae in NCBI.

3.2. PEL of Partial Sequence of trnL-ndhJ of the New Species

There are 765 bp absolutely coincident sequences of Magnolia accisa, using the forward primer and reverse primer of trnL-ndhJ_Y01 respectively, which can be regarded as the correct partial cpDNA sequence of the new species. The sequence is as follow:

```
AAATGTTTCTCTTCTTATCACAAAGTCTTTGGATAGATAATGAGAAAGATTTCTGTATATCCGC
CCAAATCGATTGATAATATCAGAATCTGACGAATCGGCCCGGACCGACTTACTAATGGAATGGCCTTACTACGG
TTACAAAATTTCTCCTTTAGCACCCTGATCCACATCGAGGAATAATGGGACTAGGGCTGACGCTGAAATCCTAT
GAAGATATCTATTAGAAATGGAATTCCTGAGATATTAGAATAAATGGAATGATTTATATGGAATGGGAACTAG
TTACTCTTACACTTCAAAAGTCTTCTTTTTAGATTCAGATACATGACCTTTCTTTCTTCTTCTCTCTTTCTTTCT
TTTTTTGATTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
TTTTTTTGATTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
TTTTTTTGATTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
TTTTTTTGATTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
TTTTTTTGATTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
TTTTTTTGATTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
TTTTTTTGATTTGATTTGGAATAGATATGGAATGATTTGGAATGATTTGGAATGATTTGGAATGATTTGGAATGAT
```

Compared to the similar species, Magnolia officinalis var. biloba, Magnolia officinalis and Magnolia rostrata, and the other DNA data of Magnoliaceae in NCBI, it can be concluded that the evolutionary locus (...GTCTAGTCTATAGGAGT...) is particular because the oppositely evolutionary locus of transversion (...GTCTAGTCTAGAGGAGT...) is possessed by all similar species and variety, and all contrasted data of Magnoliaceae in NCBI.

So it can be concluded that there are at least two particularly evolutionary loci of cpDNA of Magnolia accisa, which are matK (...ACAAGGTGGGATTTTCCA...) and trnL-ndhJ (...GTCTAGTCTATAGGAGT...). The new species is supported by cpDNA evolutionomy based on the evolutionary continuity principle [14] and the evolutionary particularity principle. According International Code of Botanical
Nomenclature [15], the new species is described and illustrated.

4. Magnolia Accisa D. L. Fu, H. Fu et R. M. Duan, sp. Nov., Figures 1, 2

Magnolia biloba (Rehd. et Wils.) Cheng, auct. non Rehd. et Wils. (1913): in Iconographia C ornophytorum Sinicorum 1: 787. figure.1574. 1972; Magnolia officinalis subsp. biloba (Rehd. et Wils.) Law, auct. non Rehd. et Wils. (1913): in Fl. Reipubl. Popul. Sin., 30 (1): figure 29 (2). 1996.

Magnolia officinalis Rehd. & Wils. var. punicea T. B. Zhao et Z. X. Chen, in L. G. Song et al., J. Henan For. Sci. & Techn., 18 (1): 6-7. 1998. Type: non designated.

Magnolia officinalis Rehd. & Wils. ssp. biloba (Rehd. & Wils.) Law var. rubicunda Yi, J. Sichuan For. Sci. & Techn., 35 (5): 1-2. 2014. Type: T. P. Yi 14003 SAUD (non vidi).

Figure 1. Magnolia accisa D. L. Fu, H. Fu et R. M. Duan, sp. nov. 1. branchlet with leaves and flower, 2. fruit aggregate, 3. beak of follicle (from Iconog. Cormophyt. Sin., 1972, misidentified as M. biloba [10]).

Arbor decidua 10 m alta. Ramuli crassi 1.2~1.8 cm diam., cinerei, partibus minute flavibus, glabri, stipuli-cicatricibus annulare manifestis. Gemmae juveniles conicae glabrae. Folia veris saepe 10~12 in veris ramulo conferta, crasse chartacea anguste subovato-elliptica 32.5~45.5 cm longa 14.0~20.5 cm lata, apice accisa 2.5~4.0 cm alto, basi cuneata margine integra, supra virida nitida glabra costis minute recavis glabris, subtus pallide viride albi-tomentosa, costis conspicue elevatis cinereo-albi-tomentosis, nervis lateralibus 22~32-jugis elevatis post trito-laevis bruneolis; petioli 3.0~6.0 cm longi flavo-virentes primo villosi post glabri vel interdum villosi; stipulae glabrae vel rare albi-pubescentes, cicatricibus stipularum longitudinem 1/2~2/3 petiolorum partes aequantibus. Folia helicalterna in ramulis aestivis usque autumnalis. Alabastra terminalia longi-ovoidea in ramulis veris 5.0~7.5 cm longa 2.5~3.5 cm diam., apice conica basin cylindrica; bractea spatheae una coriacea nitidi glabra; pedicelli grossi 2.5~4.0 cm longi et 1.0~1.5 cm diam. nitidi viridi glabi. Flores biseuales post folia aperti, fragrantes, purpureo-rubri, rubelli vel albi; tepala 12~13 in quoque flore, extrema 3 in florescentia reflexa, tenuer coriacea spathuli-elliptica vel oblongi-elliptica 7.5~9.0 cm longa 4.5~5.0 cm lata apice obtusa basi truncata, interna 9~10 coriacea elliptici-spathulata vel anguste elliptici-spathulata 6.5~9.5 cm longa 1.5~4.5 cm lata apice obtusa basi cuneata ad anguste cuneata. Stamina ca. ±260, 1.9~2.3 cm longa, filamentus purpureo-rubris 4~6 mm longis antheris albis 1.4~1.8 cm longis intorsi-longitudinalibus dehiscentibus connectivis apice triangularis mucronatis; Gynoecium longi-ovoidium 3.5~4.5 cm longum et 1.1~2.5 cm diam.; simpici-pistillis disjunctis ca. ±180, glabris, stylis et stigmatibus 4~5 mm longis apice revolutis minute flavo-viridibus; 2-ovulis in quoque simpici-pistillo. Fructus oblongo-ovoideus, 12.5~16.5 cm longus et 5.0~7.0 cm diam. apice rotundatus basi rotundatus vel truncatus. Folliculi lignei monosperma vel duosperma supra breviter rostratis rostro ca. 6 mm longo.

Sichuan: Beichuan county, Guixi town, Linfeng village, Yaowang Valley, D. L. Fu 2009051901 (Holotypus, hic designatus, CAF) collected in a secondary forest, alt. 1300 m. on May. 19, 2009.

This species had been confused with Magnolia officinalis Rehd. & Wils. or M. officinalis var. biloba Rehd. & Wils. [3, 10-12]. But with the complete materials it becomes obvious that they are taxonomically different. Magnolia officinalis Rehd. & Wils. and M. officinalis var. biloba Rehd. & Wils has the leaves often with rotund, short acuminate, obtuse, truncate, emarginate or even 3 cm bilobate apices and glaucescent lower surfaces often sparse villous (see Figure 2. left); flowers white and tepals carnose; fruit aggregates often with truncate apices and rotundate bases often with abruptly contract and follicles often with 3 mm long beak. But the new species has the leaves with 2.5~4 cm acciusis apices and viridescent lower surfaces often tomentose (see Figure 2. right); flowers purplish red, pink or white and tepals coriaceous; fruit aggregates often with rotundate apices and rotundate or truncate bases not with abruptly contract and follicles often with 6 mm long beak.

Figure 2. Lower surfaces of leaves of M. officinalis var. biloba and Magnolia accisa. (Left) glaucescent of Magnolia officinalis var. biloba Rehd. & Wils.; (Right) viridescent of Magnolia accisa D. L. Fu, H. Fu et R. M. Duan.
Magnolia accisa D. L. Fu, H. Fu et R. M. Duan is distributed in Sichuan, Hubei, Henan, Hunan, Jiangxi, Zhejiang, Fujian, Guangdong, Guangxi and Guizhou, and also cultivated as a main species for Houpo, a Chinese traditional medicine. It is also a good ornamental species for its congested leaves and beautiful, fragrant and red or white flowers.

5. Conclusion

The new species Magnolia accisa has at least two PEL of cpDNA, which are marK (...)ACAAGGTGGGATTTCCA...) and trnL-ndaJ (...)GTCTAGTCTA TAGGAGT...). The leaves with accisus apices and viridescent lower surfaces are also particular in Magnolia sect. Rytidospermum. So the new species is supported by genomic and morphological evolutionomy based on the evolutionary continuity principle and the evolutionary particularity principle. The description of the new species will speed up the investigation of plant resources of Magnolia sect. Rytidospermum Spach in China.

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Non-profit Research Institution of CAF (CAFYBB2016MA009). All sequencing was done by Beijing Boyoushun Biotechnology Limited Corporation.

References

[1] Y. W. Liu. “Magnoliaceae”. In W. J. Zheng (ed.). “Flora of trees of China”, vol 1. Beijing: Science Press, pp. 455-466. 1983.

[2] B. L. Chen, and H. P. Nooteboom. “Notes on Magnoliaceae III: The Magnoliaceae of China”. Annals of the Missouri Botanical Garden, 80 (4): 999-1104, 1993.

[3] Agendae ASE (ed.). “Flora Reipublicae Popularis Sinicae”, Tomus 30 (1). Beijing: Science Press, pp. 126-141. 1996.

[4] N. H. Xia, Y. H. Liu, and H. P. Nooteboom. Magnoliaceae. In: Wu Z Y, P. H. Raven, Hong D Y. “Flora of China”, Beijing: Science Press & St. Louis, MO: Missouri Botanical Garden Press, vol. 7, pp. 71-77, 2008.

[5] N. H. Xia. “A New classification System of the Family Magnoliaceae”. In: Xia N H, Zheng Q W, Xu F X, Wu Q G. Proceedings of the Second International Symposium on the Family Magnoliaceae. Wuhan: Huazhong University of Science & Technology Press. pp.12-38, 2009.

[6] C. S. Sargent. “Plantae Wilsonianae”. vol. 1. Cambridge: The university press, pp. 391-393, 1913.

[7] Y. H. Liu. “Magnolias of China”. Beijing: Science Press, 44-55, 2004.

[8] D. L. Fu and T. B. Zhao.“Magnolia cathayana - a New Species from China”. Nature &Science, vol. 1, no. 1, pp. 49, 2003.

[9] Y. H. Liu and R. F. Wu.‘Materials for Chinese Magnoliaceae’. Acta Phytotaxonomica Sinica, vol. 34, no. 1, pp.87-91, 1996.

[10] CASIB (Chinese Academy of Science Institute of Botany). “Iconographia Cormophytorum Sinicum”, vol. 1, pp. 787, 1972.

[11] L. G. Song, T. B. Zhao, Z. X. Chen, and D. L. Fu.“Study on the peculiar and precious species resources of Magnolia in Henan”. Journal of Henan Forestry Science & Technology, vol. 18, no. 1, pp. 3-7, 1998.

[12] T. P. Yi.“Magnolia officinalis Rehd. & Wils. ssp. biloba (Rehd. & Wils.) Law var. rubicunda Yi-A new variety of Magnolia Linn. (Magnoliaceae) from Sichuan, China”. Journal of Sichuan Forestry Science & Technology, vol. 35, no. 5, pp. 1-2, 2014.

[13] N. Li., W. Huang, Q. Shi, Y. Zhang, and L. Song. “A CTAB-assisted hydrothermal synthesis of VO2 (B) nanostructures for lithium-ion battery application”. Ceram. Int. vol. 39, pp. 6199-6206, 2013. DOI: 10.1016/j.ceramint.2013.01.039.

[14] D. L. Fu and H. Fu. “An evolutionary continuity principle for evolutionary system of organism divisions”. American Journal of Agriculture and Forestry, vol. 6, no. 3, pp. 60-64, 2018. DOI: 10.11648/j.ajaf.20180603.14.

[15] G. H. Zhu (translator). “International Code of Botanical Nomenclature (St. Louis Code)”. Beijing: Science Press /St. Louis, MO: Missouri Botanical Garden Press, pp. 1-100, 2001.