Polymorphisms of the Core, NS3, and NS5a Proteins of Hepatitis C Virus Genotype 1b Associate With Development of Hepatocellular Carcinoma

Ahmed El-Shamy,1,2* Michiko Shindo,3*** Ikuo Shoji,1 Lin Deng,1 Tadao Okuno,3 and Hak Hotta1

Hepatocellular carcinoma (HCC) is one of the common sequelae of hepatitis C virus (HCV) infection. It remains controversial, however, whether HCV itself plays a direct role in the development of HCC. Although HCV core, NS3, and NS5A proteins were reported to display tumorigenic activities in cell culture and experimental animal systems, their clinical impact on HCC development in humans is still unclear. In this study we investigated sequence polymorphisms in the core protein, NS3, and NS5A of HCV genotype 1b (HCV-1b) in 49 patients who later developed HCC during a follow-up of an average of 6.5 years and in 100 patients who did not develop HCC after a 15-year follow-up. Sequence analysis revealed that Gln at position 70 of the core protein (core-Gln70), Tyr at position 1082 plus Gln at 1112 of NS3 (NS3-Tyr1082/Gln1112), and six or more mutations in the interferon/ribavirin resistance-determining region of NS5A (NS5A-IRRDR≥6) were significantly associated with development of HCC. Multivariate analysis identified core-Gln70, NS3-Tyr1082/Gln1112, and α-fetoprotein (AFP) levels (>20 ng/L) as independent factors associated with HCC. Kaplan-Meier analysis revealed a higher cumulative incidence of HCC for patients infected with HCV isolates with core-Gln70, NS3-Tyr1082/Gln1112 or both than for those with non-(Gln70 plus NS3-Tyr1082/Gln1112). In most cases, neither the residues at position 70 of the core protein nor positions 1082 and 1112 of the NS3 protein changed during the observation period. Conclusion: HCV isolates with core-Gln70 and/or NS3-Tyr1082/Gln1112 are more closely associated with HCC development compared to those with non-(Gln70 plus NS3-Tyr1082/Gln1112). (HEPATOLOGY 2013;58:555-563)

See Editorial on Page 491

Hepatitis C virus (HCV) is a major etiologic agent of chronic hepatitis worldwide, with the estimated number of infected individuals being more than 180 million. Approximately 15% to 20% of chronically infected individuals undergo liver cirrhosis in a decade or so after infection, with hepatocellular carcinoma (HCC) arising from cirrhosis at an estimated rate of 1% to 4% per year.1-3 Several host factors such as male gender, older age, elevated α-fetoprotein (AFP) level, advanced liver fibrosis as well as nonresponsiveness to interferon (IFN) therapy have been reported as important predictors of HCC development.4,5 Recently, a host genetic factor, i.e., the DEPDC5 locus polymorphism, was reported to be associated with progression to HCC in HCV-infected individuals.6 On the other hand, it remains controversial as to whether HCV itself plays a direct role in the development of HCC. Experimental data suggest that HCV contributes to HCC by modulating pathways that promote malignant transformation of hepatocytes. HCV core, NS3, and NS5A proteins were shown to be involved in a
Patients and Methods

Ethics Statement. The study protocol, which conforms to the provisions of the 1975 Declaration of Helsinki, was approved beforehand by the Ethics Committees in Akashi City Hospital and Kobe University Graduate School of Medicine, and written informed consent was obtained from each patient enrolled in this study.

Patients. A total of 49 HCV-infected patients who developed HCC (HCC group) were retrospectively examined. They were followed up (from 1988 to 2003) with an average period until HCC development being 6.5 ± 2.9 years. Paired serum samples at the time of chronic hepatitis C (pre-HCC sample) and HCC development (post-HCC sample) were collected. As a control group, 100 HCV-infected patients who were followed up over a period of 15 years (from 1988 to 2003) without HCC development were retrospectively examined. Serum samples of the control group were available at the time of first visit to the clinic. All patients enrolled in this study were chronically infected with HCV genotype 1b (HCV-1b). HCV subtype was determined as reported previously. Serum HCV RNA titers were quantitated by reverse-transcription polymerase chain reaction (RT-PCR) with an internal RNA standard derived from the 5'-noncoding region of HCV (Amplicor HCV Monitor test, v. 2.0, Roche Diagnostics, Tokyo, Japan). All patients underwent liver biopsy and were diagnosed as chronic hepatitis. All HCC and 68% (68/100) of non-HCC patients received IFN-monotherapy, either natural IFN alpha (Sumiferon, Dainipponsumitomo Pharmaceutical, Osaka, Japan) at a dose of 6 million units (MU) or recombinant IFN alpha 2b (Intron A; Schering-Plough, Osaka, Japan) at a dose of 10 MU, 3 times a week for 6 months. All HCC patients were nonresponders (NR), who had detectable viremia during the entire course of IFN treatment. On the other hand, 18 (26%) of the 68 non-HCC patients treated with IFN achieved HCV RNA negativity at the end of treatment followed by rebound viremia within 6 months after the treatment and, therefore, they were referred to as relapers. The other 50 IFN-treated, non-HCC patients were NR. The remaining 32 non-HCC patients did not receive IFN. All patients were
seen every 2 months and tested for liver function markers during the follow-up period.

Sequence Analysis of HCV Core, NS3, and NS5A Proteins. HCV RNA was extracted from 140 µL of serum using a commercially available kit (QIamp viral RNA kit; Qiagen, Tokyo, Japan). The core, NS3, and NS5A regions of the HCV genome were amplified as described elsewhere. The sequences of the amplified fragments were determined by direct sequencing. The aa sequences were deduced and aligned using GENETYX Win software version 7.0 (GENETYX, Tokyo, Japan). The numbering of aa was according to the polyprotein of the prototype of HCV-1b; HCV-1.35

Statistical Analysis. Statistical differences in the baseline parameters of HCC and control groups were determined by Student’s t test for numerical variables and Fisher’s exact probability or chi-square tests for categorical variables. Likewise, statistical differences in viral mutations between HCC and control groups were determined by Fisher’s exact probability test. Kaplan-Meier analysis was performed to estimate the cumulative incidence of HCC. The data obtained were evaluated by the log-rank test. Univariate and multivariate logistic analyses were performed to identify variables that independently associated with HCC development. Variables with P < 0.1 in univariate analysis were included in a backward stepwise multivariate logistic regression analysis. The odds ratios and 95% confidence intervals (95% CI) were calculated. All statistical analyses were performed using SPSS v. 16 software (Chicago, IL). Unless otherwise stated, P < 0.05 was considered statistically significant.

Nucleotide Sequence Accession Numbers. The sequence data reported in this article have been deposited in the DDBJ/EMBL/GenBank nucleotide sequence databases with the accession numbers AB719460 through AB719842.

Results

Demographic Characteristics of HCC and Control Groups. The clinical characteristics of HCC and control groups are shown in Table 1. The HCC group had significantly higher titers of ALT, AST, and AFP, and higher fibrosis staging score than that of the control group. There was no significant difference in viremia titers between the two groups.

Correlation Between Core Protein Sequence Polymorphism and HCC Development. HCV core protein sequences were obtained from all (49/49) and 94% (94/100) of pre-HCC and control patients’ sera, respectively. Comparative sequence analysis revealed that 22 (45%) of 49 HCV isolates in the pre-HCC sera (pre-HCC isolates) and 59 (63%) of 94 HCV isolates from the control group (control isolates) had wild-core (Arg70/Leu91) (Table 2). The difference between HCC and control groups was hovering at a statistically significant level (P = 0.05). When the sequence pattern at position 70 alone was examined, a stronger association with HCC was observed. We found that 21 (43%) of 49 pre-HCC isolates had Gln70 while only 13 (14%) of 94 control isolates did (P = 0.0002). On the other hand, there was no significant correlation between sequence pattern at position 91 and HCC. Thus, a single mutation at position 70 (Gln70) was the only polymorphic factor within core protein that was significantly associated with HCC development. It should be noted that there was no significant correlation between Gln70 and the degree of fibrosis progression (data not shown).

Correlation Between NS3 Protein Sequence Polymorphism and HCC Development. Sequences of NS3 serine protease domain (aa 1027 to 1146) were obtained from 92% (45/49) and 93% (93/100) of pre-HCC and control isolates, respectively. We found that 29 (63%) of 46 pre-HCC isolates had Tyr and Gln at positions 1082 and 1112, respectively (Tyr1082/Gln1112), while 39 (42%) of 93 control isolates did (Table 2). The difference in the proportion between pre-HCC and control isolates was statistically significant (P = 0.029). On the other hand, there was no significant correlation between Tyr1082/Gln1112 and the degree of fibrosis progression (data not shown).

Correlation Between NS5A Protein Sequence Polymorphism and HCC Development. NS5A protein sequences were obtained from 92% (45/49) and 74% (74/100) of pre-HCC and control isolates, respectively. Twenty-four (53%) of 45 pre-HCC isolates had IRRDR of 6 or more mutations (IRRDR≥6)

Table 1. Demographic Characteristics of HCC and Control Groups

Factor	HCC	Control	P Value
Age	57.3 ± 7.0*	56.4 ± 8.3	0.54
Sex (male/female)	31/18	54/46	0.29
ALT (IU/L)	159.4 ± 79.8	129.7 ± 51.5	0.007
AST (IU/L)	113.0 ± 62.2	91.6 ± 44.1	0.017
AFP (ng/L)	29.1 ± 33.7	18.4 ± 4.4	0.002
Platelets (x 10^9/mm³)	16.2 ± 2.8	16.2 ± 2.4	0.88
Inflammation grading score	8.7 ± 0.9	8.4 ± 1.2	0.05
Fibrosis staging score	2.4 ± 0.5	2.2 ± 0.5	0.02
HCV-RNA (KIU/mL)	593.4 ± 112.3	618.1 ± 95.9	0.17

*Mean ± SD. HCC, hepatocellular carcinoma; ALT, alanine aminotransferase; AST, aspartate transaminase; AFP; α-fetoprotein.
Table 2. Correlation Between HCC and Sequence Polymorphic Factors of Core, NS3 and NS5A

HCV Protein	Factor	No. of Subjects / No. of Total*	HCC	Control	P Value
Core	Wild-core (Arg21/Leu21)	22/49 (45%)	59/94 (63%)	0.05	
	Non-wild-core	27/49 (55%)	35/94 (37%)		
	Gln70	21/49 (43%)	13/94 (14%)	0.0002	
	Non-Gln70	28/49 (57%)	81/94 (86%)	1.0	
	Leu91	37/49 (76%)	70/94 (74%)		
	Non-Leu91	12/49 (24%)	24/94 (26%)		
NS3	Tyr1082/Gln1112	29/48 (63%)	39/93 (42%)	0.029	
	Non-Tyr1082/Gln1112	17/46 (37%)	54/93 (58%)		
NS5A	IRRDR≥6	24/45 (53%)	15/74 (20%)	0.0003	
	IRRDR≤5	21/45 (47%)	59/74 (80%)		
	ISDR≥3	11/45 (24%)	8/74 (11%)	0.07	
	ISDR≤2	34/45 (76%)	66/74 (89%)		
	Asn2218	11/45 (24%)	3/74 (4%)	0.002	
	Non-Asn2218	34/46 (76%)	71/96 (76%)		

*Number of subjects with a given factor / total number of HCC or control.

HCC, hepatocellular carcinoma; Arg21/Leu21, arginine at position 70 of the core protein; Tyr1082/Gln1112, tyrosine at position 1082 of NS3 and glutamine at position 1112 of NS3; IRRDR, interferon/ribavirin resistance-determining region; ISDR, interferon sensitivity-determining region; Asn2218, asparagine at position 2218 of NS5A-ISRDR.

Table 3. Correlation Between HCC and Sequence Polymorphic Factors of Core, NS3 and NS5A

HCV Protein	Factor	No. of Subjects / No. of Total*	HCC	Control	P Value
Core	Wild-core (Arg21/Leu21)	22/49 (45%)	59/94 (63%)	0.05	
	Non-wild-core	27/49 (55%)	35/94 (37%)		
	Gln70	21/49 (43%)	13/94 (14%)	0.0002	
	Non-Gln70	28/49 (57%)	81/94 (86%)	1.0	
	Leu91	37/49 (76%)	70/94 (74%)		
	Non-Leu91	12/49 (24%)	24/94 (26%)		
NS3	Tyr1082/Gln1112	29/48 (63%)	39/93 (42%)	0.029	
	Non-Tyr1082/Gln1112	17/46 (37%)	54/93 (58%)		
NS5A	IRRDR≥6	24/45 (53%)	15/74 (20%)	0.0003	
	IRRDR≤5	21/45 (47%)	59/74 (80%)		
	ISDR≥3	11/45 (24%)	8/74 (11%)	0.07	
	ISDR≤2	34/45 (76%)	66/74 (89%)		
	Asn2218	11/45 (24%)	3/74 (4%)	0.002	
	Non-Asn2218	34/46 (76%)	71/96 (76%)		

*Number of subjects with a given factor / total number of HCC or control.

HCC, hepatocellular carcinoma; Arg21/Leu21, arginine at position 70 of the core protein; Tyr1082/Gln1112, tyrosine at position 1082 of NS3 and glutamine at position 1112 of NS3; IRRDR, interferon/ribavirin resistance-determining region; ISDR, interferon sensitivity-determining region; Asn2218, asparagine at position 2218 of NS5A-ISRDR.

while only 15 (20%) of 74 control isolates did (Table 2; P = 0.0003). We also found that pre-HCC isolates tended to have a higher degree of sequence heterogeneity in ISDR than control isolates, although not statistically significant due probably to the small number of cases examined; 11 (24%) of 45 pre-HCC isolates and 8 (11%) of 74 of control isolates had ISDR with three or more mutations (P = 0.07). Moreover, Asn at position 2218 (Asn2218) within the ISDR was found in 24% (11/45) of pre-HCC isolates and only in 4% (3/74) of the control isolates (P = 0.002), suggesting that Asn2218 is significantly associated with development of HCC.

Cumulative HCC Incidence on the Basis of Core-Gln70, NS3-Tyr1082/Gln1112, NS5A-IRRDR≥6, and NS5A-Asn2218. Follow-up study revealed that the cumulative HCC incidence in patients infected with HCV-1b isolates with core protein of Gln70 and those of non-Gln70, respectively, was 29% and 5% at the end of 5 years, 56% and 23% at the end of 10 years, and 63% and 26% at the end of 15 years (Fig. 1A), with the differences between the two groups being statistically significant (P < 0.0001; Log-rank test). Likewise, the cumulative HCC incidence in patients infected with HCV-1b isolates with NS3 of Tyr1082/Gln1112 and those of non-(Tyr1082/Gln1112), respectively, was 15% and 7% at the end of 5 years, 37% and 24% at the end of 10 years, and 45% and 24% at the end of 15 years (P = 0.02) (Fig. 1B). Also, the cumulative HCC incidence in patients infected with HCV-1b isolates of IRRDR≥6 and those of IRRDR≤5, respectively, was 18% and 10% at the end of 5 years, 59% and 22% at the end of 10 years, and 63% and 27% at the end of 15 years (P = 0.0002) (Fig. 1C). Similarly, the cumulative HCC incidence in patients infected with HCV-1b isolates of Asn2218 and those of non-Asn2218, respectively, was 31% and 9% at the end of 5 years, 77% and 28% at the end of 10 years, and 77% and 33% at the end of 15 years (P = 0.0003) (Fig. 1D).

Identification of Independent Factors Correlated With HCC Development by Univariate and Multivariate Logistic Regression Analyses. In order to identify significant independent factors associated with HCC development, all available data of baseline patients' parameters and core, NS3, and NS5A polymorphic factors were first analyzed by univariate logistic analysis. This analysis yielded eight factors that were significantly associated with HCC development: core-Gln70, NS3-(Tyr1082/Gln1112), NS5A-IRRDR≥6, NS5A-Asn2218, increased levels of ALT (>165 IU/L), AST (>65 IU/L), and AFP (>20 ng/L), and fibrosis staging score (≥3). Subsequently, those eight factors were entered in multivariate logistic regression analysis. This analysis identified two viral factors, core-Gln70 and NS3-(Tyr1082/Gln1112), and a host factor, AFP levels (>20 ng/L), as independent factors associated with HCC development (Table 3). The vast majority of pre-HCC isolates (85%; 39/46) had core-Gln70 and/or NS3-Tyr1082/Gln1112 and only 15% (7/46) had non-(Gln70 plus NS3-Tyr1082/Gln1112). By contrast, about a half of control isolates (52%; 46/89) had non-(Gln70 plus NS3-Tyr1082/Gln1112) (Fig. 2A). The difference in the proportion between HCC and control groups was statistically significant (P < 0.0001). Furthermore, the cumulative HCC incidence after 15-year follow-up was highest (63%) among patients with core-Gln70 plus NS3-(Tyr1082/Gln1112), whereas it was lowest (11%) among patients with non-(Gln70 plus NS3-Tyr1082/Gln1112) (Fig. 2B), with the difference being statistically significant (P < 0.0001; Log-rank test).

Evolution of the Sequences of the Core, NS3, and NS5A Proteins During the Follow-up Period From Chronic Hepatitis to HCC Development. Finally, we investigated sequence evolution of the core protein, NS3 and NS5A (IRRDR and ISDR) during the follow-up period from chronic hepatitis to HCC development by comparing the sequences between pre-HCC and
post-HCC isolates. The residue at position 70 of the core protein was conserved in 91% (41/45) of sequence pairs analyzed. The substitutions observed at this position were from Arg\(^{70}\) and His\(^{70}\) each to Gln\(^{70}\) in two cases and from Gln\(^{70}\) to Arg\(^{70}\) in the other two cases. The residues at positions 1082 and 1112 of NS3 were conserved in 95% (41/43) and 100% (43/43), respectively, of the sequence pairs analyzed.

Table 3. Univariate and Multivariate Regression Analyses to Identify Independent Factors Associated With HCC

Variable	Univariate	Multivariate
Core-Gln\(^{70}\)	0.23 (0.10 - 0.52)	0.0004
NS3-Tyr\(^{1082}\) / Gln\(^{1112}\)	2.4 (1.1 - 4.9)	0.029
NS5A-IRRDR≥6	4.5 (2.0 - 10.0)	0.0003
NS5A-Asn\(^{2218}\)	7.7 (2.0 - 29.0)	0.002
AFP (≥20 ng/L)	12 (5.1 - 30.0)	0.0001
ALT (>165 IU/L)	4.0 (1.8 - 8.6)	0.0006
AST (>65 IU/L)	3.9 (1.5 - 10.0)	0.003
Fibrosis staging score (≥3)	2.4 (1.1 - 4.9)	0.02

Gln\(^{70}\), glutamine at position 70 of the core protein; Tyr\(^{1082}\), tyrosine at position 1082 of NS3; Gln\(^{1112}\), glutamine at position 1112 of NS3; IRRDR, interferon/ribavirin resistance-determining region; Asn\(^{2218}\), asparagine at position 2218 of NS5A-ISRDR; ALT, alanine aminotransferase; AST, aspartate transaminase; AFP, γ-feto-protein; IFN, interferon.
IRRDR and ISDR showed a high degree of sequence evolution. IRRDR sequences were different between pre-HCC and post-HCC isolates in 66% (25/38) of cases analyzed (Fig. 3). IRRDR sequences tended to be more polymorphic at the time of HCC occurrence. Frequency of HCV isolates with IRRDR/C21 was significantly higher in post-HCC isolates than in pre-HCC isolates; IRRDR/C21 was found in 47% (18/38) of post-HCC isolates compared to 24% (9/38) of pre-HCC isolates (P = 0.03). On the other hand, ISDR/C21 was found in 21% (8/38) of post-HCC isolates compared to 11% (4/38) of pre-HCC isolates, with the difference between the two groups being not statistically significant (P = 0.3).

Discussion

HCC is one of the common long-term complications of HCV infection. However, whether HCV itself plays a direct role in the development of HCC and whether all HCV isolates are equally associated with HCC development remain to be determined. HCV core, NS3, and NS5A proteins have been reported to affect a wide variety of potentially oncogenic pathways in cell culture and experimental animal systems. In the present study, we demonstrated that HCV isolates with core-Gln⁷⁰, NS3-Tyr¹⁰⁸²/Gln¹¹¹² or NS5A-IRRDR≥6 were closely associated with HCC development. In addition, a follow-up study revealed that sequence patterns at position 70 of the core protein and positions 1082 and 1112 of NS3 did not significantly alter during the progression from chronic hepatitis to HCC while NS5A-IRRDR showed a significantly higher degree of sequence heterogeneity in post-HCC than in pre-HCC isolates.

Correlation between polymorphisms at positions 70 and 91 of HCV-1b core protein and IFN-based treatment outcome was extensively studied, especially in a Japanese population. Interestingly, the same mutations were also associated with progression to HCC in the Japanese population with HCV-1b infection. Results obtained in the present study confirmed and emphasized the significant association between the mutation at position 70 (core-Gln⁷⁰), but not at position 91, and HCC development (Tables 2, 3; Fig. 1A). Despite the clinical evidence that strongly supports the correlation between core-Gln⁷⁰ and HCC development, the molecular mechanism underlying this correlation is still obscure. Delhem et al. found that tumor-derived HCV core proteins, but not nontumor-derived ones, interact with and activate double-stranded RNA-dependent protein kinase (protein kinase R or PKR), which might modulate viral persistence and carcinogenesis. Gln⁷⁰ was found in two of the three tumor-derived sequences, whereas Arg⁷⁰ was found in two of the three nontumor-derived ones.

As for the NS3 protein of HCV, the possible link between an N-terminal portion of NS3 encoding viral serine protease (aa 1027 to 1146) and hepatocarcinogenesis was reported. However, information about the relationship between NS3 sequence diversity and HCC development is still limited. We previously reported a significant correlation between predicted secondary structure of an N-terminal portion of NS3 and HCC development. In the present study, we demonstrated that HCV patients infected with HCV isolates with NS3-(Tyr¹⁰⁸²/Gln¹¹¹²) were at a higher risk to develop HCC than those infected with HCV isolates with non-Tyr¹⁰⁸²/Gln¹¹¹² (Tables 2, 3; Fig. 2B). Computer-assisted secondary structure analysis of NS3 revealed that Tyr¹⁰⁸² was associated with the
presence of a turn structure at around position 1083 while Phe1082 was associated with the absence of the turn structure.34 Notably, the catalytic triad of NS3 serine protease consists of His1083, Asp1107, and Ser1165.37 Since positions 1082 and 1112 are in close vicinity of the catalytic triad, sequences diversity at these positions might influence the serine protease activity and also pathogenicity of HCV. Large-scale, multicenter clinical studies as well as more detailed experimental studies at the molecular and cellular levels are needed to clarify the importance of sequence diversity at positions 1082 and 1112 of NS3 in HCV-mediated hepatocarcinogenesis.

HCV heterogeneity in NS5A-ISDR and NS5A-IRRDR are correlated with IFN-responsiveness.17,18,25,26 As IFN-based therapy reduces the risk of HCC development,4,28-30 we were interested to investigate whether there is a correlation between sequence heterogeneity in NS5A and development of HCC. Our present results revealed that a high degree of sequence heterogeneity in IRRDR (IRRDR\geq6) was closely associated with HCC development (Table 2). We previously reported that IRRDR\geq6 was significantly associated with good responses to PEG-IFN/RBV combination therapy.26,27 These results collectively suggest that oncogenic properties and PEG-IFN/RBV responsiveness are independent viral characteristics and that PEG-IFN/RBV therapy helps eliminate oncogenic HCV isolates, thus reducing the risk of HCC development.

Position 2218 of NS5A, located within ISDR, appears to tolerate a wide range of aa substitutions as observed in different HCV-1b isolates.25,38,39 Interestingly, Asn at position 2218 (Asn2218) was detected significantly more frequently in pre-HCC isolates than in the control isolates. Further studies are needed to determine the possible importance of this residue in hepatocarcinogenesis.

Another focus of attention is how the sequences of the core protein, NS3, and NS5A-IRRDR evolve during the interval between chronic hepatitis and HCC development. One of the significant advantages of the
present study was that we could conduct a longitudinal investigation by analyzing the target sequences of pre- and post-HCC isolates. We found that core-Gln70 and NS3-(Tyr1082/Gln1112) were well conserved in each paired sample. This indicates that core-Gln70 and NS3-(Tyr1082/Gln1112) were already present before the development of HCC. Non-Gln70 of the core protein and non-Tyr1082 and non-Gln1112 of NS3 were also well conserved in each paired sample. These results imply the possibility that these sequence patterns were not a result of HCC but, rather, they were a possible causative factor for the development of HCC. We hypothesize, therefore, that HCV isolates with core-Gln70 and/or NS3-(Tyr1082/Gln1112) are highly oncogenic, whereas those with non-(Gln70 plus NS3-Tyr1082/Gln1112) are less oncogenic. It is not clear yet as to whether these oncogenic mutations were present from the very beginning of HCV infection or if they emerged at a certain timepoint (before the initiation of follow-up) during the long-term persistence through an adaptive viral evolution in the host. More comprehensive follow-up study is needed to address this issue. In any case, the core-Gln70 and NS3-(Tyr1082/Gln1112) would be considered an index for prediction of HCC development. On the other hand, IRRDR in NS5A is more tolerant for sequence evolution. IRRDR in post-HCC isolates showed a significantly higher degree of sequence heterogeneity compared with that in pre-HCC isolates. This observation suggests that IRRDR is under strong selective pressure during the course of HCV infection and that the high degree of IRRDR heterogeneity (IRRDR≥6) in HCV isolates from patients with HCC may not be a causative factor for development of HCC.

In conclusion, the present results suggest the possibility that patients infected with HCV isolates with core-Gln70 and/or NS3-(Tyr1082/Gln1112) are at a higher risk to develop HCC compared to those with non-(Gln70 plus NS3-Tyr1082/Gln1112).

References

1. Lauer GM, Walker BD. Hepatitis C virus infection. N Engl J Med 2001;345:41-52.
2. Niederau C, Lange S, Heiniges T, Erhardt A, Buschkamp M, Hurter D, et al. Prognosis of chronic hepatitis C: results of a large, prospective cohort study. Hepatology 1998;28:1687-1695.
3. Ikeda K, Saitoh S, Suzuki Y, Koida I, et al. Disease progression and hepatocellular carcinogenesis in patients with chronic viral hepatitis: a prospective observation of 2215 patients. J Hepatol 1998;28:930-938.
4. Yoshida H, Shiratori Y, Moriyama M, Arakawa Y, Ide T, Sata M, et al. Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. J Health Sci 1998;44:174-181.
5. Lok AS, Seeff LB, Morgan TR, di Bisceglie AM, Sterling RK, Curto TM, et al. Incidence of hepatocellular carcinoma and associated risk factors in hepatitis C-related advanced liver disease. Gastroenterology 2009;136:138-148.
6. Miki D, Ochi H, Hayes CN, Abe H, Yoshida T, Aikata H, et al. Variations in the DEPDC5 locus is associated with progression to hepatocellular carcinoma in chronic hepatitis C virus carriers. J Nat Genet 2011;43:797-800.
7. Banerjee A, Ray RB, Ray R. Oncogenic potential of hepatitis C virus proteins. Viruses 2010;2:2108-2133.
8. Matusawa H, Hijioka M, Chiba T, Shimotohno K. Hepatitis C virus core protein inhibits Fas- and tumor necrosis factor alpha-mediated apoptosis via NF-κB activation. J Virol 1999;73:4713-4720.
9. Ray RB, Meyer K, Ray R. Suppression of apoptotic cell death by hepatitis C virus core protein. Virology 1996;226:176-182.
10. Chang J, Yang SH, Cho YG, Hwang SB, Hahn YS, Sung YC. Hepatitis C virus core protein from two different genotypes has an oncogenic potential but is not sufficient for transforming primary rat embryo fibroblasts in cooperation with the H-ras oncogene. J Virol 1998;72:3060-3065.
11. Ray RB, Lagging LM, Meyer K, Ray R. Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype. J Virol 1996;70:4438-4443.
12. Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 1998;4:1065-1067.
13. Akuta N, Suzuki F, Kawamura Y, Yasuji H, Szekai H, Suzuki Y, et al. Amino acid substitutions in the hepatitis C virus core region are the important predictor of hepatocarcinogenesis. Hepatology 2007;46:1357-1364.
14. Akuta N, Suzuki F, Hikakura M, Kawamura Y, Szekai H, Suzuki Y, et al. Amino acid substitutions in hepatitis C virus core region predict hepatocarcinogenesis following eradication of HCV RNA by antiviral therapy. J Hepatol 2011;55:1016-1022.
15. Akuta N, Suzuki F, Kawamura Y, Yasuji H, Szekai H, Suzuki Y, et al. Substitution of amino acid 70 in the hepatitis C virus core region of genotype 1b is an important predictor of elevated alpha-fetoprotein in patients without hepatocellular carcinoma. J Med Virol 2008;80:1354-1362.
16. Kobayashi M, Akuta N, Suzuki F, Hosaka T, Szekai H, Kobayashi M, et al. Influence of amino-acid polymorphism in the core protein on progression of liver disease in patients infected with hepatitis C virus genotype 1b. J Med Virol 2010;82:41-48.
17. El-Shamy A, Shoji I, Saito T, Watanabe H, Ide YH, Deng L, et al. Sequence heterogeneity of NSSA and core proteins of hepatitis C virus and virological responses to peglated-interferon/ribavirin combination therapy. Microbiol Immunol 2011;55:418-426.
18. El-Shamy A, Kim SR, Ide YH, Sasaie N, Imoto S, Deng L, et al. Polymorphisms of hepatitis C virus non-structural protein 5A and core protein and clinical outcome of peglated-interferon/ribavirin combination therapy. Intervirology 2012;55:1-11.
19. Akuta N, Suzuki F, Szekai H, Suzuki Y, Hosaka T, Someya T, et al. Association of amino acid substitution pattern in core protein of hepatitis C virus genotype 1b amino acid substitutions in the core region and low-density lipoprotein cholesterol levels. J Hepatol 2007;46:403-410.
21. Sakamuro D, Furukawa T, Takegami T. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells. J Virol 1995;69:3893-3896.
22. Zemel R, Gerechet S, Greif H, Bachmatove L, Birk Y, Golan-Goldhirsh A, et al. Cell transformation induced by hepatitis C virus NS3 serine protease. J Viral Hepat 2001;8:96-102.
23. Fujita T, Ishido S, Muramatsu S, Itoh M, Hotta H. Suppression of actinomycin D-induced apoptosis by the NS3 protein of hepatitis C virus. Biochem Biophys Res Commun 1996;229:825-831.
24. Macdonald A, Harris M. Hepatitis C virus NS5A: tales of a promiscuous protein. J Gen Virol 2004;85:2485-2502.
25. Enomoto N, Sakuma I, Asahina Y, Kurosaki M, Murakami T, Yamamoto C, et al. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N Engl J Med 1996;334:77-81.
26. El-Shamy A, Nagano-Fujii M, Sasae N, Imoto S, Kim SR, Hotta H. Sequence variation in hepatitis C virus nonstructural protein 5A predicts clinical outcome of pegylated interferon/ribavirin combination therapy. Hepatology 2008;48:38-47.
27. Kim SR, El-Shamy A, Imoto S, Kim KI, Ide YH, Deng L, et al. Prediction of response to pegylated interferon/ribavirin combination therapy for chronic hepatitis C genotype 1b and high viral load. J Gastroenterol 2012;47:1143-1151.
28. Ikeda K, Saitoh S, Arase Y, Chayama K, Suzuki Y, Kobayashi M, et al. Effect of interferon therapy on hepatocellular carcinogenesis in patients with chronic hepatitis type C: A long-term observation study of 1,643 patients using statistical bias correction with proportional hazard analysis. Hepatology 1999;29:1124-1130.
29. Okamoto H, Sugiyama Y, Okada S, Kurai K, Akahane Y, Sugai Y, et al. Typing hepatitis C virus by polymerase chain reaction with type-specific primers: application to clinical surveys and tracing infectious sources. J Gen Virol 1992;73:673-679.
30. El-Shamy A, Sasayama M, Nagano-Fujii M, Sasae N, Imoto S, Kim SR, et al. Prediction of efficient virological response to pegylated interferon/ribavirin combination therapy by NS5A sequences of hepatitis C virus and anti-NS5A antibodies in pre-treatment sera. Microbiol Immunol 2007;51:471-482.
31. Ogata S, Nagano-Fujii M, Ku Y, Yoon S, Hotta H. Comparative sequence analysis of the core protein and its frameshift product, the F protein, of hepatitis C virus subtype 1b strains obtained from patients with and without hepatocellular carcinoma. J Clin Microbiol 2002;40:3625-3630.
32. Ogata S, Florese RH, Nagano-Fujii M, Hidajat R, Deng L, Ku Y, et al. Identification of hepatitis C virus (HCV) subtype 1b strains that are highly, or only weakly, associated with hepatocellular carcinoma on the basis of the secondary structure of an amino-terminal portion of the HCV NS3 protein. J Clin Microbiol 2003;41:2835-2841.
33. Kato N, Hijikata M, Oostuyama Y, Nakagawa M, Ohkoshi S, Sugimura T, et al. Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci U S A 1990;87:9524-9528.
34. Delhennem S, Sabile A, Gajardo R, Podevin P, Abadie A, Blaton MA, et al. Activation of the interferon-inducible protein kinase PKR by hepatocellular carcinoma derived-hepatitis C virus core protein. Oncogene 2001;20:5836-5845.
35. Love RA, Parge HE, Wickersham JA, Hostomsky Z, Habuka N, Moo-maw EW, et al. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 1996;87:331-342.
36. Saiz JC, Lopez-Labrador FX, Ampurdanes S, Dopazo X, Sanchez-Tapias JM, et al. The prognostic relevance of the nonstructural 5A gene interferon sensitivity determining region is different in infections with genotype 1b and 3a isolates of hepatitis C virus. J Infect Dis 1998;177:839-847.
37. Sarrazin C, Berg T, Lee JH, Teuber G, Dietrich CF, Roth WK, et al. Improved correlation between multiple mutations within the NS5A region and virological response in European patients chronically infected with hepatitis C virus type 1b undergoing combination therapy. J Hepatol 1999;30:1004-1013.