A MILD TCHEBOTAREV THEOREM FOR GL(n)

DINAKAR RAMAKRISHNAN

INTRODUCTION

As it is well known, the Tchebotarev density theorem implies that two irreducible \(\ell\)-adic representations \(\rho, \rho'\) of the absolute Galois group of a number field \(K\) are isomorphic if the corresponding characteristic polynomials of Frobenius elements agree on a set \(S\) of primes of density 1. It is then natural to ask, in view of the Langlands conjectures, whether an analogous assertion holds for cuspidal automorphic representations of \(GL_n(\mathbb{A}_K)\). The object of this Note is to establish such an automorphic analogue for a simple, but useful, class of \(S\) of density 1.

To be precise, we prove the following:

Theorem A  Let \(K/k\) be a cyclic extension of number fields of degree a prime \(p\), and let \(\Sigma_{1}^{1}_{K/k}\) denote the set of primes \(v\) of \(K\) which are of degree 1 over \(k\). Suppose \(\pi, \pi'\) are cusp forms on \(GL(n)/K\) such that \(\pi_v \simeq \pi'_v\), for all but a finite number of \(v\) in \(\Sigma_{1}^{1}_{K/k}\). Then \(\pi, \pi'\) are twist equivalent. More precisely, they have isomorphic base changes over the cyclotomic extension \(K(\zeta)\), where \(\zeta\) is a non-trivial \(p\)-th root of unity.

We refer to the book \([1]\) for facts on solvable base change for \(GL(n)\) due to Arthur and Clozel.

When we say that \(\pi, \pi'\) are twist equivalent, we mean \(\pi' \simeq \pi \otimes \chi\) for a finite order character \(\chi\) of (the idele classes of) \(K\). In particular, if \(n\) is relatively prime to \(p - 1\), or if the conductors of \(\pi, \pi'\) are prime to \(p\), we may conclude even that \(\pi, \pi'\) are isomorphic (over \(K\)). When \(p = 2\), we thus get the following:

Corollary B  Let \(K/k\) be a quadratic extension of number fields. Then any cuspidal automorphic representation \(\pi\) of \(GL_n(\mathbb{A}_K)\) is determined (up to isomorphism) by its components \(\pi_v\) for all (but a finite number of) places \(v\) of degree 1 over \(k\).

Clearly, Theorem A refines the strong multiplicity one theorem, which gives the desired global isomorphism if \(\pi_v \simeq \pi'_v\) for all but a

2000 Mathematics Subject Classification. 11F70; 11F80; 22E55.
Partly supported by the NSF grant DMS-0701089.
finite number of $v$. ([3]). For $GL(2)$, there is a stronger result known, requiring the isomorphism $\pi_v \simeq \pi'_v$ only for a set $S'$ of $v$ of density $> 7/8$ ([6]). For $GL(n)$ with $n > 2$, we conjectured elsewhere that such a stronger result should hold with $7/8$ replaced by $1 - 1/2n^2$, which is a theorem for $\pi$ attached to an $\ell$-adic representation $\rho_\ell$ by an elegant result of Rajan ([5]). We are far from such a precise result for those cusp forms $\pi$ on $GL(n)$, $n \geq 3$, which are not known to be associated to such a $\rho_\ell$.

Given a finite cyclic extension $K/k$, if $G$, resp. $\tilde{G}$, is a reductive group over $k$, resp. $K$, such that $\tilde{G} = G \times_k K$, let us say that a cuspidal automorphic representation $\pi$ of $G(k)$ admits a soft base change to $K$ if there is an automorphic representation $\Pi$ of $\tilde{G}(K)$ such that for all but a finite number of primes $v$ in $\Sigma_{K/k}$, we have $\Pi_v \simeq \pi_u$, where $u$ is the prime of $k$ below $v$. When $\tilde{G}$ is $GL(n)/K$, Theorem A says that a soft base change $\Pi$ is unique up to isomorphism when cuspidal. Theorem A has been used for $K/k$ quadratic and $G = U(n)$ by J. Getz and E. Wambach in their recent preprint. In a similar setup, it has been used by D. Whitehouse in his ongoing work concerning the pair $(GL(2n)/k, GL(n)/K)$, again with $K/k$ quadratic.

Now a few words about the proof of Theorem A. A well known, basic theorem of Luo, Rudnick and Sarnak ([4]), which is of importance to us, says that for any cusp form $\pi$ on $GL(n)/K$, the coefficient $a_v$ of $\pi$ at any unramified $v$ satisfies the bound $|a_v| < (Nv)^{1/2 - 1/(n^2+1)}$. (What is essential for us is that $a_v$ is bounded in absolute value by $(Nv)^{1/2 - t_n}$ for a fixed positive number $t_n$ independent of $v$, not the exact shape of $t_n$.) Feeding this into the framework of [6], we see that it suffices, under our hypotheses, to prove that for all but a finite number of $v$ whose degree lies in $[2, (n^2+1)/2]$, $\pi_v$ and $\pi'_v$ are isomorphic. We cannot achieve this directly, but can show, using some Kummer theory, that it holds for the base changes $\pi_L, \pi'_L$ to a carefully chosen solvable extension $L$ of $K' = K(\zeta)$, which will be a compositum (over $K$) of a finite number of disjoint $p$-extensions $L^{(1)}, L^{(2)}, \ldots$ with $2p^r > n^2 + 1$; each $L^{(j)}$ will be a nested chain of cyclic $p^2$-extensions (see section 4). From this data we prove by descent that $\pi_{K'}$ and $\pi'_K$ are isomorphic. There is an added subtlety if $\pi_{K'}$ or $\pi'_K$ is not cuspidal, and this forces us to work with isobaric sums of unitary cuspidal automorphic representations, which are analogues of semisimple Galois representations of pure weight. These steps together form the core of the argument.

We will investigate elsewhere this problem for more general extensions $K/k$. 
A MILD TCHEBOTAREV THEOREM FOR $GL(n)$

We thank Peter Sarnak, Jayce Getz and David Whitehouse for their interest. Thanks are also due to the NSF for partial support through the grant DMS-0701089.

1. Basic Facts: A Review

Let $F$ be a global field with adèle ring $\mathbb{A}_F$. Let $\Sigma_F$ denote the set of all places of $F$. If $v \in \Sigma_F$ is finite, let $q_v$ denote the cardinality of the residue field at $v$. For $n \geq 1$, let $A_0(n,F)$ denote the set of isomorphism classes irreducible unitary, cuspidal automorphic representations of $GL(n,\mathbb{A}_F)$. Every $\pi$ representing a class in $A_0(n,F)$ is (isomorphic to) a tensor product $\otimes_v \pi_v$, where $v$ runs over all the places of $F$, such that each $\pi_v$ is an irreducible generic representation of $GL(n,F_v)$ and such that $\pi_v$ is unramified at almost all $v$. The strong multiplicity one theorem ([3]) asserts that, for any finite subset $S$ of $\Sigma_F$, $\pi$ is determined up to isomorphism by the collection $\{\pi_v | v \not\in S\}$.

For any irreducible, automorphic representation $\pi$ of $GL(n,\mathbb{A}_F)$, let $L(s,\pi) = L(s,\pi_{\infty})L(s,\pi_f)$ denote the associated standard $L$–function of $\pi$; it has an Euler product expansion

$$L(s,\pi) = \prod_v L(s,\pi_v),$$

convergent in a right-half plane. If $v$ is a finite place where $\pi_v$ is unramified, there is a corresponding semisimple (Langlands) conjugacy class $A_v(\pi)$ (or $A(\pi_v)$) in $GL(n,\mathbb{C})$ such that

$$L(s,\pi_v) = \det(1 - A_v(\pi)T)^{-1}|_{T = q_v^{-s}}.$$ 

One may find a diagonal representative $\text{diag}(\alpha_{1,v}(\pi),...\alpha_{n,v}(\pi))$ for $A_v(\pi)$, which is unique up to permutation of the diagonal entries. Let $[\alpha_{1,v}(\pi),...\alpha_{n,v}(\pi)]$ denote the resulting unordered $n$–tuple. One knows (by Godement-Jacquet) that for any non-trivial cuspidal representation $\pi$ of $GL(n,\mathbb{A}_F)$, $L(s,\pi)$ is entire.

By Langlands’s theory of Eisenstein series, one has a sum operation $\boxplus$, called the isobaric sum ([3]): Given any $m$–tuple of cuspidal representations $\pi_1,...,\pi_m$ of $GL(n_1,\mathbb{A}_F),...GL(n_m,\mathbb{A}_F)$ respectively, there exists an irreducible, automorphic representation $\pi_1 \boxplus ... \boxminus \pi_m$ of $GL(n,\mathbb{A}_F)$, $n = n_1 + ... + n_m$, which is unique up to equivalence, such that for any finite set $S$ of places,

$$L^S(s,\boxplus_{j=1}^m \pi_j) = \prod_{j=1}^m L^S(s,\pi_j).$$
Call such a (Langlands) sum $\pi \simeq \boxplus_{j=1}^{m} \pi_j$, with each $\pi_j$ cuspidal, an isobaric representation.

Denote by $A(n, F)$ the set, up to equivalence, of isobaric automorphic representations of $GL_n(A_F)$, and by $A_u(n, F)$ the subset of isobaric sums of unitary cuspidal automorphic representations. If $\pi = \boxplus_{i=1}^{m} \pi_i$, resp. $\pi' = \boxplus_{j=1}^{r} \pi_j'$, is in $A_u(n, F)$, resp. $A_u(n', F)$, with $\pi_i, \pi_j'$ unitary cuspidal, we will need to consider the associated Rankin-Selberg $L$-function

$$L(s, \pi \times \pi') = \prod_{i,j} L(s, \pi_i \times \pi_j),$$

with

$$L(s, \pi_i,v \times \pi'_j,v) = \det(1 - A_v(\pi_i) \otimes A_v(\pi'_j)^{-1})|_{T=q_v^{-s}}.$$

If $L(s) = \prod_{v \in \Sigma \cap \Sigma_f} L_v(s)$ is any global $L$-function and $Y$ a set of places of $F$, then we will denote by $L^Y(s)$ (resp. $L_Y(s)$) the product of $L_v(s)$ over all $v$ outside $Y$ (resp. in $Y$). We have the following basic result (3):

**Theorem 1.1** (Jacquet–Piatetski-Shapiro–Shalika, Shahidi) Let $\pi = \boxplus_{i=1}^{m} \pi_i$, $\pi' = \boxplus_{j=1}^{r} \pi_j'$ be in $A_u(n, F)$, with $\pi_i, \pi'_j$ unitary cuspidal. Suppose $Y$ is a finite set of places of $F$ containing the archimedean places such that $\pi, \pi'$ are unramified outside $Y$. Then $L^Y(s, \pi \times \pi')$ has a pole at $s = 1$ iff for some $(i, j)$, $\pi_i$ is isomorphic to $\pi'_j$, in which case the pole is simple.

Here $\pi'$ denotes the complex conjugate representation of $\pi'$, which, by unitarity, is the contragredient of $\pi'$.

The general Ramanujan conjecture predicts that for any $\pi \in A_u(F)$, $\pi_v$ is tempered at all $v$. In particular, if $v$ is a finite place where $\pi$ is unramified, the unordered $n$-tuple $\{\alpha_{1,v}(\pi), ..., \alpha_{n,v}(\pi)\}$ representing $A_v(\pi)$ should satisfy $|\alpha_{i,v}| = 1$ for every $i$. This is far from being proved, and the best known bound to date (for general $n$) is given by the following:

**Theorem 1.2** (Luo–Rudnick–Sarnak [4]) Let $\pi \in A_u(n, F)$, and $v$ a finite place where $\pi$ is unramified, with $A_v(\pi) = \{\alpha_{1,v}(\pi), ..., \alpha_{n,v}(\pi)\}$. Then for every $j \leq n$, one has

$$|\alpha_{j,v}| < \frac{1}{q_v^{\frac{1}{2} - \frac{1}{n^2+1}}}.$$

To be precise, Luo, Rudnick and Sarnak only address the case of cusp forms. But for $\pi \in A_u(n, F)$, any $\alpha_j(\pi)$ must be associated to a
cuspidal isobaric constituent $\pi_i$ on $GL(n_i)/F$ with $n_i \leq n$, and so the assertion above follows immediately from [4].

We will also need the following (weak) version of the base change theorem for $GL(n)$:

**Theorem 1.3** (Arthur–Clozel [1]) Let $M/F$ be a finite extension of number fields obtained as a succession of cyclic extensions. Then for every $\pi \in \mathcal{A}_u(n, F)$, there exists a corresponding $\pi_M \in \mathcal{A}_u(n, M)$ such that for every finite place $v$ of $F$ where $\pi$ and $M$ are unramified, and for all places $w$ of $M$ dividing $v$, we have

$$A_v(\pi) = \{\alpha_{1,v}, ..., \alpha_{n,v}\} \implies A_w(\pi_M) = \{\alpha_{1,v}^{f_v}, ..., \alpha_{n,v}^{f_v}\},$$

where $f_v = [M_w : F_v]$.

A word of explanation may be helpful. In [1], it is proved that for every cuspidal $\pi$, the base change $\pi_M$ is equivalent to an isobaric sum of unitary cuspidal automorphic representations; when $M/F$ is cyclic of prime degree $p$, for example, $\pi_M$ is either cuspidal or of the form $\bigoplus_{j=0}^{p-1} (\eta \circ \tau^j)$, where $\tau$ is a generator of Gal$(M/F)$. Since base change is additive relative to isobaric sums, it follows that for any $\pi$ in $\mathcal{A}_u(n, F)$, $\pi_M$ lies in $\mathcal{A}_u(n, M)$.

### 2. A Preliminary Step

**Proposition 2.1** Let $F$ be a number field and $n \geq 1$ an integer. Suppose $\pi, \pi' \in \mathcal{A}_u(n, F)$ are such that for every positive integer $m \leq (n^2 + 1)/2$, and for all but a finite number of primes $v$ of $F$ of degree $m$, we have $\pi_v \simeq \pi'_v$. Then $\pi$ and $\pi'$ are isomorphic.

This is essentially an immediate consequence of the bound of Luo-Rudnick-Sarnak. For completeness, we quickly go through the relevant points of [6] to make it evident that they carry over, modulo the basic results cited in section 1 and induction on the number of cuspidal isobaric summands, from ($n = 2$; $\pi, \pi'$ cuspidal) to ($n$ arbitrary; $\pi, \pi'$ isobaric sums of unitary cuspidal representations).

**Proof.** Denote by $X$ the complement in $\sigma_F$ of the union of the archimedean places and the finite places where $\pi$ or $\pi'$ is ramified. Given any subset $Y$ of $X$ we set (as in [6]):

$$Z_Y(s) = L_Y(\pi \times \pi, s)L_Y(\pi' \times \pi', s)/L_Y(\pi \times \pi', s)L_Y(\pi' \times \pi, s).$$

Write

$$\pi = \bigoplus_{i=1}^{r} m_i \pi_i, \quad \pi' = \bigoplus_{j=1}^{r'} m'_j \pi'_j,$$

where $f_v = [M_w : F_v]$. 


with $m_i, m'_j \in \mathbb{N}$, and $\pi_i, \pi'_j$ unitary cuspidal, with $\pi_i \not\cong \pi_a$ if $i \neq a$ and $\pi'_j \not\cong \pi'_b$ if $j \neq b$.

Suppose $\pi_i \not\cong \pi'_j$ for all $i, j$. Then, using Theorem 1.1, we see that $Z_X(s)$ is holomorphic at every $s \neq 1$, with
\[(2.2 - a) \quad -\text{ord}_{s=1} Z_X(s) = \mu + \mu', \]
where
\[(2.2 - b) \quad \mu = \sum_{i=1}^{\ell} m_i^2, \quad \mu' = \sum_{j=1}^{r} m'_j^2. \]

We note that one knows (see [2]) that $Z_Y(s)$ is of positive type, i.e., log $Z_Y(s)$ is Dirichlet series with non-negative coefficients.

As the subproduct of an absolutely convergent Euler product is absolutely convergent, we have the following

**Lemma 2.3** Let $S$ denote the subset of $X$ consisting of finite places $v$ of degree $> \frac{n^2 + 1}{2}$. Then the incomplete Euler products $L_S(\bar{\pi} \times \pi, s)$ and $L_S(\bar{\pi} \times \pi', s)\overline{L_s(\bar{\pi}' \times \pi, s)}$ converge absolutely in $\{s \in \mathbb{C} | \Re(s) > 1\}$.

We may write
\[(2.4) \quad \log(L_Y(\bar{\pi} \otimes \pi, s)) = \sum_{m \geq 1} c_m(Y)m^{-s} \]
for all subsets $Y$ of $X$. Then $c_m(Y) = 0$ unless $m$ is of the form $N v^r$ for some $v \in Y$ and $r \in \mathbb{N}$, and when $m$ is of this form,
\[c_m(Y) = \sum_{M} \frac{1}{r} \sum_{1 \leq i, j \leq 2} \overline{\alpha_i v} \alpha_j v. \]
where $M$ is the set of pairs $(v, r) \in Y \times \mathbb{N}$ such that $m = N v^r$.

When $v \in S$, as $N v > \frac{n^2 + 1}{2}$, the Luo-Rudnick-Sarnak bound (Theorem 1.2) implies that $\sum_{m \geq 1} c_m(S)m^{-s}$ converges in $\{\Re(s) \geq 1\}$.

One has a similar statement for $\log(L_S(\bar{\pi}' \otimes \pi, s))$, $\log(L_S(\bar{\pi}' \otimes \pi, s))$, and $\log(L_S(\bar{\pi}' \otimes \pi, s))$. So we get the following

**Lemma 2.5** Let $S$ be as in Lemma 2.3. As $s$ goes to 1 from the right on the real line, we have
\[\log Z_S(s) = o \left( \frac{1}{s - 1} \right). \]
Now, since $\pi_v \simeq \pi'_v$ for all but a finite number of places of $X$ outside $S$, we get, thanks to this Lemma, the following:

\begin{equation}
\log Z_X(s) = 4 \log L_X(\overline{\pi} \otimes \pi, s) + o \left( \log \frac{1}{s - 1} \right) = 4 \log \left( \log \frac{1}{s - 1} \right).
\end{equation}

Applying (2.2-b), we then get

\begin{equation}
\mu = \mu',
\end{equation}

and

\begin{equation}
\log Z_X(s) = 4\mu \log \frac{1}{s - 1} + o \left( \log \frac{1}{s - 1} \right).
\end{equation}

This contradicts (2.2-a) since $\mu = \mu' \geq 1$.

Thus we must have $\pi_i \simeq \pi'_j$ for some $(i, j)$. If $\pi$ or $\pi'$ is cuspidal, then both will need to be cuspidal with $\pi = \pi_i \simeq \pi'_j = \pi'$, and so we are done in this case. We may assume that $\pi, \pi'$ are non-cuspidal. Consider then the isobaric automorphic representations $\Pi, \Pi'$ such that

$$\pi = \Pi \oplus \pi_i, \quad \pi' = \Pi' \oplus \pi'_j.$$ 

The $\Pi, \Pi'$ satisfy the hypotheses of Proposition 2.1, and we may find as before cuspidal isobaric summands $\pi_k$ of $\Pi$ and $\pi'_m$ of $\Pi'$ which are isomorphic. Continuing thus, by infinite decent, we arrive finally at the situation when one of the isobaric forms is cuspidal, which we have already taken care of. This proves Proposition 2.1.

\[\square\]

3. Central character and unitarity

Suppose $\pi$, $\pi'$ are cuspidal automorphic representations of $GL_n(\mathbb{A}_F)$ of respective central characters $\omega, \omega'$, such that $\pi_v \simeq \pi'_v$ for all but a finite number of primes $v$ of $F$ of degree 1. Then $\omega$ and $\omega'$ agree at all (but a finite number of) the degree one places $v$, which forces the global identity

\begin{equation}
\omega = \omega'.
\end{equation}

In fact, by Hecke, this conclusion will result as soon as $\omega$ and $\omega'$ agree at a set of primes of density $> 1/2$.

It is a standard fact that, given a cuspidal $\pi$, there is a unique real number $t(\pi)$ such that $\pi \otimes |\cdot|^{-t(\pi)}$ is unitary; here $|\cdot|$ denotes the 1-dimensional representation $g \mapsto |\text{det}(g)|$. Taking central characters,
we see then that $\omega \cdot |^{-nt(\pi)}$ is a unitary character. Thanks to (3.1), we will then get

\[(3.2) \quad t(\pi) = t(\pi').\]

This allows us, in the proof of Theorem A, to assume that $\pi, \pi'$ are unitary cuspidal automorphic representations.

4. Nested chains of cyclic $p^2$-extensions

Let $p$ be a prime. We will call an extension $L/F$ of number fields of degree $p^r$, for some $r \geq 2$, a nested chain of cyclic $p^2$-extensions if there is an increasing filtration of fields

\[(4.1) \quad F = L_0 \subset L_1 \subset L_2 \subset \cdots \subset L_{r-2} \subset L_{r-1} \subset L_r = L,\]

with

\[(4.2) \quad [L_j : L_{j-1}] = p, \ \forall j \in \{1, 2, \ldots, r\},\]

and

\[(4.3) \quad L_j/L_{j-2} : \text{cyclic}, \ \forall j \in \{2, \ldots, r\}.\]

An easy example is given by a cyclic $p^r$ extension, while a better example is the following. Let $\mu_{p^2}$ contain $\mu_{p^2}$. (As usual, we write $\mu_n$ for the group of $n$-th roots of unity in the algebraic closure of $F$.) Let $\alpha$ be an element of $F$ which is not a $p$-th power. Put $\alpha_0 = \alpha$ and define $\alpha_j$, for $j = 1, \ldots, r$, recursively by taking it to be a $p$-th root of $\alpha_{j-1}$, and set $L_j = L_{j-1}(\alpha_j)$ and $L_0 = F$. Note that for $j \geq 2$, $L_j/L_{j-2}$ is cyclic of order $p^2$ by Kummer theory, because $\alpha_j^{p^2} = \alpha_{j-2}$, and $\mu_{p^2} \subset L_{j-2}$, making all the conjugates of $\alpha_j$ over $L_{j-2}$ to lie in $L_j$. (For this example, it is in fact sufficient to have $\mu_p \subset L_1 = F(\mu_{p^2}).$)

**Lemma 4.4** Let $L/F$ be a nested chain of cyclic $p^2$-extensions (of number fields), with $[L : F] = p^r$ and filtration $\{L_j\}$ as above. Suppose $v_0$ is a finite place of $F$, unramified in $L$, which is inert in $L_1$. Then there exists, for each $j \geq 1$, a unique place $v_j$ of $F_j$ lying over $v_{j-1}$, so that $Nv_j = (Nv_{j-1})^p$. In particular, $Nv_r = (Nv_0)^{p^r}$.

**Proof.** Let us first treat the case when $r = 2$, i.e., when $L/F$ is cyclic of degree $p^2$. Since $v_0$ is inert in the intermediate field $L_1$, we need to check that $v_0$ does not split into $p$ places in $L$. Suppose, to the contrary, that it does split that way. Let $u$ be one of the $p$ places of $L$ above $v_0$. It must then be fixed by a subgroup $H$ of $\text{Gal}(L/F)$ of order $p$, with $H$ giving the local Galois group $\text{Gal}(L_u/F_{v_0})$. Since $v_0$
is inert in $L_1$ with divisor $v_1$, $u$ necessarily has degree 1 over $v_1$, and so $H = \text{Gal}(L_{1,v_1}/F_{v_0})$. If $\sigma$ is a non-trivial element of $H$, then it acts non-trivially on $L_{1,v_1}$, and hence on $L_1$. On the other hand, since $L/F$ is cyclic, it has a unique subgroup of order $p$, which forces $H$ to be $\text{Gal}(L/L_1)$, implying that $\sigma$ acts trivially on $L_1$, yielding a contradiction. Put another way, if $v_0$ has degree $p$ in $L$, then the corresponding Frobenius class $Fr_{v_0}$ is given by an element $\sigma$ of $\text{Gal}(L/F)$ of order $p$, which has trivial image in the quotient by $H = \langle \sigma \rangle$, making $v_0$ split in the fixed field $L^H$ of $H$. Clearly, $L^H$ must be $L_1$ by the cyclicity of $L/F$. Either way, the case $r = 2$ is now settled.

Now let $r > 2$, and assume by induction that the Lemma holds for $r - 1$. So for every $j \leq r - 1$, there is a unique place $v_j$ of $L_j$ above $v_{j-1}$ (of $L_{j-1}$). Now all we have to show is that $v_{r-1}$ is inert in $L = L_r$. Since $L_r/L_{r-2}$ is cyclic of order $p^2$, and since (by induction) the place $v_{r-2}$ of $L_{r-2}$ is inert in $L_{r-1}$, we conclude what we want by appealing again to the $r = 2$ scenario.

The assertion about the norm of $v_r$ follows.

□

Lemma 4.5 Let $L^{(i)}/F$, $1 \leq i \leq k$ be disjoint $p^r$-extensions. Suppose moreover that every $L^{(i)}$ is a nested chain of cyclic $p^2$-extensions with respective filtrations

$$F = L^{(i)}_0 \subset L^{(i)}_1 \subset \cdots \subset L^{(i)}_r = L^{(i)}.$$ 

Let $v^{(i)}_0$, $1 \leq i \leq k$, be distinct primes of $F$, unramified in the compositum $M := L^{(1)}L^{(2)}\ldots L^{(k)}$, such that each $v^{(i)}_0$ is inert in $L^{(i)}_1$. Then, if $\tilde{v}^{(i)}$ is a prime of $M$ lying above $v^{(i)}_0$, we have

$$N\tilde{v}^{(i)} \geq (Nv^{(i)}_0)^{p^r}, \ \forall \ i \leq k.$$ 

Proof. Fix any $i \leq k$. By Lemma 4.4, for each $j \geq 2$, there is a unique prime $v^{(i)}_j$, of $L^{(i)}_j$ lying above $v^{(i)}_{j-1}$. Then $\tilde{v}^{(i)}$ must lie above $v^{(i)}_r$ in the extension $M/L^{(i)}$. So

$$N\tilde{v}^{(i)} \geq Nv^{(i)}_r.$$ 

On the other hand, by Lemma 4.4, we have

$$Nv^{(i)}_r = (Nv^{(i)}_0)^{p^r}.$$ 

The assertion of Lemma 4.5 now follows by combining (4.6) and (4.7). □
Let $K/k$ be a cyclic $p$-extension. For $j \geq 1$, denote by $\Sigma^j_{K/k}$ the set of finite places $v$ of $K$ which are unramified over $k$ and of degree $j$ over $k$; of course this set is non-empty only for $j \in \{1, p\}$. Let $\pi, \pi'$ be cuspidal automorphic representations of $\text{GL}_n(\mathbb{A}_K)$ such that, as in the setup of Theorem A,

\begin{equation}
\pi_v \simeq \pi'_v, \forall v \in \Sigma^1_{K/k}.
\end{equation}

As noted in section 3, the central characters of $\pi$ and $\pi'$ must be the same, and moreover, we may assume that $\pi, \pi'$ are unitary.

If $p > (n^2 + 1)/2$, then Theorem A follows immediately from Proposition 2.1. In general, fix a positive integer $r$ such that

\begin{equation}
p^r > (n^2 + 1)/2.
\end{equation}

The object of this section is to prove the following:

**Proposition 5.3** Let $K/k, \pi, \pi'$ be as in Theorem A. Then there is a finite solvable extension $L/K$ containing $E := K(\mu_p)$ such that the base changes $\pi_L, \pi'_L$, satisfy

\[ \pi_L \simeq \pi'_L. \]

In fact $L/K$ will be much nicer than just being solvable. The extension $L/E$ will turn out to be the compositum of a finite number $L^{(i)}$ of $p^r$-extensions, with each $L^{(i)}$ a nested chain of cyclic $p^2$-extensions. The Galois closure of $L$ over $K(\mu_p)$ will again be a $p$-power extension, hence nilpotent. We will also have some freedom in the choice of the $L^{(i)}$, and their filtrations, which will become relevant in the next section when we descend to $E$.

Put $K' = K(\mu_p)$ and $k' = k(\mu_p)$. Then $K'/k'$ is still a cyclic $p$-extension. The following Lemma is clear since $K'/K$ and $k'/k$ are of degree dividing $p - 1$.

**Lemma 5.4** Let $v \in \Sigma^j_{K/k}$, for $j \in \{1, p\}$. Then, for every prime $v'$ of $K'$ above $v$, we have $v \in \Sigma^j_{K'/k'}$.

Consequently, the hypotheses of Theorem A are preserved for $K'/k'$, and we may assume from here on, after replacing $k$ (resp. $K$) by $k'$ (resp. $K'$), that

\begin{equation}
\mu_p \subset k.
\end{equation}
Proof of Proposition 5.3 when $K = E$

Since $\mu_p \subset k$, we may realize the cyclic $p$-extension $K$ as $k(\alpha^{1/p})$, for an element $\alpha$ in $k$ which is not a $p$-th power (in $k$). Choose a sequence of elements $\alpha_{-1} = \alpha, \alpha_0, \ldots, \alpha_r$ in the algebraic closure of $K$, and the corresponding chain of fields $k = L_{-1}, K = L_0, \ldots, L_r$ such that for each $j \geq 0$,

$$L_j = L_{j-1}(\alpha_j), \; \text{with} \; \alpha_j^p = \alpha_{j-1}.$$  \hfill (5.6)

Clearly, every $L_j/L_{j-1}$ is cyclic of order $p$, and so $[L_r : K] = p^r$. Moreover, since $\mu_{p^2} \subset E = K$, each $L_j/L_{j-2}$ is also cyclic by Kummer theory. In other words, $L_r/K$ is a nested chain of cyclic $p^2$-extensions. In fact, $L_r/k$ is also such a nested chain, but of degree $p^{r+1}$.

Now put $L = L_r$. Applying Lemma 4.4, we then see that for every prime $\overline{v}$ in $L$ lying over some $v$ in $\Sigma^p_{K/k}$, the degree of $\overline{v}$ is $p^r$ over $k$, hence has degree at least $p^r$ over $\mathbb{Q}$. On the other hand, every other prime $\overline{u}$ of $L$ unramified over $k$ lies above some $u$ in $\Sigma^1_{K/k}$. So the hypotheses of Theorem A imply (by base change $[\mathbb{I}]$) that $\pi_{L,\overline{u}} \simeq \pi_{L,\overline{u}}'$. (Such a $\overline{u}$ could have small degree, like $p$, over $K$, but nevertheless it must lie over a prime $u$ of degree 1 over $k$, which is all that matters to us.) Putting these together, and applying Proposition 2.1 over $L$, we get Proposition 5.3 when $K = E$. \hfill $\square$

Proof of Proposition 5.3 when $K \neq E$

Here we want to base change and consider the cyclic $p$-extension

$$E/F, \; \text{with} \; F = k(\mu_{p^2}), \; E = KF.$$  \hfill (5.7)

Clearly, the $(p, p)$-extension $E/k$ contains $p+1$ subfields $F^{(i)}$, $0 \leq i \leq p$, of degree $p$ over $k$, with one of them being $K$; say $K = F^{(0)}$. We need the following

Lemma 5.8 Let $v \in \Sigma^p_{K/k}$ be unramified in $E$. Then $v$ splits into $p$ places $v_1, \ldots, v_p$ in $E$, and there is a (unique) cyclic $p$-extension $F^{(i)}$ of $k$ (depending on $v$), $1 \leq i \leq p$, such that each $v_j$ lies in $\Sigma^p_{E/F^{(i)}}$. In other words, if $z$ is the unique place of $k$ below $v$, then $z$ splits into $p$ places in $F^{(i)}$, each of which is inert in $E$.

Proof of Lemma 5.8. Since $G := \text{Gal}(E/k)$ is $\mathbb{Z}/p \times \mathbb{Z}/p$, the decomposition groups are either trivial or of order $p$. So, if $z$ is the place of $k$ lying below $v$, its Frobenius class $Fr_z$ in $G$ is given by an element $\sigma$ of order $p$ (since $z$ is inert in $K$). So $v$ must split in $K$. If we put $H = \langle \sigma \rangle$, then $K^H$ is $F^{(i)}$ for a unique $i \in \{1, \ldots, p\}$. Then $z$ splits in $F^{(i)}$ and then becomes inert in $E$, as claimed. \hfill $\square$
Fix an index \(i \in \{1, \ldots, p\}\). As \(\mu_p \subset k \subset F^{(i)}\), we may find an element \(\alpha^{(i)}\) in \(F^{(i)}\) which is not a \(p\)-th power such that
\[
E = F^{(i)}((\alpha^{(i)})^{1/p}).
\]
Choose a sequence of elements \(\alpha^{(i)}_{-1} = \alpha^{(i)}, \alpha_0^{(i)}, \ldots, \alpha_{r}^{(i)}\) in the algebraic closure of \(E\), and the corresponding chain of fields \(F^{(i)} = L^{(i)}_0, E = L^{(i)}_1, \ldots, L^{(i)}_r\) such that for each \(j \geq 0\),
\[
L^{(i)}_j = L^{(i)}_{j-1}(\alpha^{(i)}_j), \quad \text{with } (\alpha^{(i)}_j)^p = \alpha^{(i)}_{j-1}.
\]
By construction, every \(L^{(i)}_j/L^{(i)}_{j-1}\) is cyclic of order \(p\), and so \([L^{(i)}_r : E] = p^r\). Moreover, since \(\mu_p^2 \subset E\), each \(L^{(i)}_j/L^{(i)}_{j-2}\) is also cyclic by Kummer theory. In other words, \(L^{(i)}_r/E\) is a nested chain of cyclic \(p^2\)-extensions. In fact, \(L^{(i)}_r/F^{(i)}\) is also such a nested chain (of degree \(p^{r+1}\)).

This way we get \(p\) nested chains \(L^{(i)}_j/E\), disjoint over \(K\) from each other. Let \(L\) be the compositum of the \(L^{(i)}_j\), as \(i\) runs over \(\{1, \ldots, p\}\). Pick any place \(v\) in \(\Sigma^p_{K/k}\). Then we know (by Lemma 5.8) that there is a unique \(i \leq p\) such that each the divisors \(v_k\) of \(v\) in \(E\), \(1 \leq k \leq p\), lies in \(\Sigma^p_{E/L^{(i)}_j}\). Then by the \(r = 2\) case of Lemma 4.4, \(v_k\) is inert in \(L^{(1)}\). Applying Lemma 4.5, we then see that every prime \(\tilde{v}\) of \(L\) lying over some \(v_k\) (and hence over \(v\)) is of degree \(\geq p^r > (n^2 + 1)/2\). So one may apply Lemma 2.1 and conclude that \(\pi_L\) and \(\pi'_L\) are isomorphic.

6. DESCENT TO \(E = K(\mu_p^2)\)

Let us preserve the notations of the previous section. Thanks to Proposition 5.3, we know that for the \(p\)-power extension \(L/E\) we constructed there, one has
\[
\pi_L \simeq \pi'_L.
\]
In order to prove Theorem A, we need to descend this isomorphism down to \(E\). For this we will make use of the fact that there is quite a bit of freedom in choosing \(L\).

Proof of descent when \(K = E\)

After realizing \(E\) as \(k(\alpha^{1/p})\) for some \(\alpha (= \alpha_{-1})\) in \(k\) which is not a \(p\)-th power, we chose a sequence of elements \(\alpha_j, 0 \leq j \leq r\), with \(\alpha_j = \alpha_{j-1}^{1/p}\), and set \(L_j = L_{j-1}(\alpha_j)\). We may replace \(\alpha\) by \(\alpha \beta^p\) for any \(\beta\) in \(k - k^p\), which will have the effect of leaving \(E = L_0\) intact, but changing \(L_1\) from \(E(\alpha_1)\) to \(E(\alpha_1\beta_1)\) for a \(p\)-th root \(\beta_1\) of \(\beta\). Using this we can
ensure, for a suitable choice of $\beta$, that the discriminant of $L_1/E$ is divisible by a prime $P_1$ not dividing the conductor of either $\pi_E$ or $\pi'_E$. Next we may choose a $\gamma \in k - k^p$ and put $\alpha_0 = \alpha_0 \beta p \gamma p^2$, which will not change $L_0$ and $L_1$, but will change $L_2$, and we may arrange for the discriminant of the new $L_2/L_1$ to be divisible by a prime $P_2$ of $L_1$ whose norm down to $E$ is relatively prime to $\mathfrak{c}(\pi_E)\mathfrak{c}(\pi'_E)P_1$. This way we may continue and modify all the $L_j$ so that at each stage $L_j/L_{j-1}$, the relative discriminant is divisible by a new prime $P_j$ of $L_{j-1}$ whose norm down to $E$ is relatively prime to $\mathfrak{c}(\pi_E)\mathfrak{c}(\pi'_E)P_1$.

Now look at the top stage $L_r/L_{r-1}$. Thanks to (6.1), we know by the properties of base change ([1]) that every cuspidal isobaric component $\eta$, say, of $\pi_{L_{r-1}}$ will be twist equivalent to a cuspidal isobaric component $\eta'$ of $\pi'_{L_{r-1}}$. More precisely, we will need to have, for some integer $j \mod p$,

$$\eta' \cong \eta \otimes \delta^j_r,$$

where $\delta_r$ is the character of order $p$ of (the idele classes of) $L_{r-1}$ attached to $L_r$. But the conductor of $\delta_r$ is divisible by the prime $P_r$, whose norm down to $E$ is, by construction, relatively prime to the conductors of $\pi_E$ and $\pi'_E$ and to the discriminant of $L_{r-1}/E$. This forces $j = 0$, i.e., $\eta \cong \eta'$. Peeling off this way isomorphic cuspidal components of $\pi_{L_{r-1}}$ and $\pi'_{L_{r-1}}$ one at a time, we conclude that $\pi_{L_{r-1}}$ is isomorphic to $\pi'_{L_{r-1}}$. Next, by an easy induction on $r - j$, we deduce similarly that, for every $j \in \{0, \ldots, r - 1\}$,

$$\pi_{L_j} \cong \pi'_{L_j},$$

which proves the assertion of Theorem A. $\Box$

**Proof of descent when** $K \neq E$

For each $i = \{1, \ldots, p\}$, we may modify the elements $\alpha_j^{(i)}$ and thus the fields $L_j^{(i)}$ as above, with a new prime divisor $P_j^{(i)}$ of the discriminant of $L_j/L_{j-1}$ popping up at stage $j$, which is prime to the conductors of $\pi_E$, $\pi'_E$, and the discriminant of $L_{j-1}/E$. Now we may, and we will, also choose these primes in such a way that the sets $\{P_1^{(i)}, \ldots, P_r^{(i)}\}$ and $\{P_1^{(k)}, \ldots, P_r^{(k)}\}$ are disjoint whenever $i \neq k$. Now we may realize $L$ as a sequence of cyclic $p$-extensions, such that at each stage there is a new prime divisor of the relative discriminant. We may then descend each step as above and finally conclude that

$$\pi_E \cong \pi'_E,$$

as asserted. $\Box$
7. Descent to $K(\mu_p)$

As before, we may assume that $\mu_p \subset k \subset K$. If $\mu_p^2 \subset K$, i.e., if $E = K$, then we have already seen above that we have an isomorphism $\pi \simeq \pi'$ over $K$.

So we may, and we will, assume below that $K \neq E$. Then

\[(7.1) \quad E = KF, \quad k = K \cap F, \text{ where } F = k(\mu_p^2),\]

with

$$[E : F] = [K : k] = [E : K] = [F : k] = p,$$

and by section 6,

\[(7.2) \quad \pi_E \simeq \pi'_E.\]

This implies that if $v$ is any prime of $K$ which splits into $p$ primes $w_1, \ldots, w_p$ in $E$, then by $[\mathbb{I}]$, we have ($\forall j \leq p$)

\[(7.3) \quad \pi_v \simeq \pi_{w_j} \simeq \pi'_{w_j} \simeq \pi'_v.\]

On the other hand, since $E/k$ is a $(p, p)$-extension, in particular not cyclic of order $p^2$, any prime $u$ of $k$ which is inert in $K$ must split in $E$ (assuming $u$ is unramified in $E$). This implies, thanks to (7.3), the following:

\[(7.4) \quad \pi_v \simeq \pi'_v, \quad \forall \ v \in \Sigma^p_{K/k} \text{ – finite set.}\]

When we combine (7.4) with the hypothesis of Theorem A that

\[(7.5) \quad \pi_v \simeq \pi'_v, \quad \forall \ v \in \Sigma^1_{K/k},\]

we immediately get the desired isomorphism

$$\pi \simeq \pi' \text{ (over } K).$$

We are now done with the proof of Theorem A. The assertion of Corollary B is obvious given Theorem A (since $\mu_2 \subset \mathbb{Q} \subset K$).

\[\square\]

References

[1] J. Arthur and L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. MR1007299 (90m:22041)

[2] J. Hoffstein and D. Ramakrishnan, Siegel zeros and cusp forms, Internat. Math. Res. Notices 6 (1995), 279–308, DOI 10.1155/S1073792895000225. MR1344349 (96h:11040)

[3] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), no. 4, 777–815, DOI 10.2307/2374050. MR623137 (82m:10050b)
[4] W. Luo, Z. Rudnick, and P. Sarnak, *On the generalized Ramanujan conjecture for GL(n)*, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), Proc. Sympos. Pure Math., vol. 66, Amer. Math. Soc., Providence, RI, 1999, pp. 301–310. MR1703764 (2000e:11072)

[5] C. S. Rajan, *On strong multiplicity one for l-adic representations*, Internat. Math. Res. Notices 3 (1998), 161–172, DOI 10.1155/S1073792898000142. MR1606395 (99c:11064)

[6] D. Ramakrishnan, *A refinement of the strong multiplicity one theorem for GL(2). Appendix to: “l-adic representations associated to modular forms over imaginary quadratic fields. II” by R. Taylor*, Invent. Math. 116 (1994), no. 1-3, 645–649, DOI 10.1007/BF01231576. MR1253208 (95h:11050b)

Dinakar Ramakrishnan
253-37 Caltech
Pasadena, CA 91125, USA.
dinakar@caltech.edu