Human Skeletal Muscle Nebulin Sequence Encodes a Blueprint for Thin Filament Architecture

SEQUENCE MOTIFS AND AFFINITY PROFILES OF TANDEM REPEATS AND TERMINAL SH3*

(Received for publication, May 15, 1995, and in revised form, November 27, 1995)

Kuan Wang‡, Marie Knipfer, Qi-Quan Huang, Ann van Heerden, Lillian Chi-Li Hsu, Gustavo Gutierrez, Xiao-Lan Quian§, and Hansel Stedman§

From the Department of Chemistry and Biochemistry, Biochemical Institute and Cell Research Institute, University of Texas, Austin, Texas 78712 and the Department of Surgery, Institute for Human Gene Therapy, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Analysis of deduced protein sequence and structural motifs of ~5500 residues of human fetal skeletal muscle nebulin reveals the design principles of this giant multifunctional protein in the sarcomere. The bulk of the sequence is constructed of ~150 tandem copies of ~35-residue modules that can be classified into seven types. The majority of these modules form 20 super-repeats, with each super-repeat containing a 7-module set (one of each type in the same order). These super-repeats are further divided into eight segments: with six segments containing adjacent, highly homologous super-repeats, one single repeat segment consisting of 8 nebulin modules of the same type, and a non-repeat segment terminating with a SH3 domain at the C terminus.

The interactions of actin, tropomyosin, troponin, and calmodulin with nebulin fragments consisting of either repeating modules or the SH3 domain support its role as a giant actin-binding coflament of the composite thin filament. Such affinity profiles also suggest that nebulin may bind to tropomyosin and troponin to form a composite calcium-linked regulatory complex on the thin filament. The modular construction, super-repeat structure, and segmental organization of nebulin sequence appear to encode thin filament length, periodicity, insertion, and sarcomere proportion in the resting muscle.

Although native nebulin is yet to be isolated and characterized, evidence for nebulin's interactions with actin have been demonstrated by analysis of partial cDNAs encoding nebulin and protein interactions of expressed nebulin fragments. The deduced amino acid sequence of nebulin shows an extensive tandem repeat of ~35-residue modules that are organized into 7-module super-repeats (4, 9, 10, 60). It has been proposed that the 35-residue module is the basic structural unit of the actin binding domains in nebulin and that the super-repeats reflect tropomyosin/troponin binding sites along the nebulin polypeptides (3, 4, 7, 11). Recombinant nebulin fragments containing 2 to 15 modules (7, 12), small native nebulin fragments (13), and 1-module synthetic peptides (11) all bind actin, consistent with this prediction. These experiments indicate that nebulin may contain a string of about 200 actin binding domains along its length. If all sites are operative in situ, then nebulin would act as a zipper in its lateral association with actin (12). A one to one matching between nebulin modules with actin protomers would allow nebulin to operate as a protein ruler to determine or stabilize the length of actin filaments (3, 4, 11).

Recent studies on the effect of nebulin fragments on actin-troponin-myosin interaction and its regulation by calmodulin raise the intriguing possibility that nebulin might have regulatory functions on active contraction (14). Nebulin fragments bind with high affinity to actin and the myosin head. Fragments from the N-terminal half of nebulin that are situated in the actomyosin overlap region of the sarcomere inhibit actomyosin ATPase activities as well as sliding velocities of actin over myosin during in vitro motility assays; while a nebulin fragment near the C terminus, which is localized to the Z line, does not prevent actin sliding. Significantly, calmodulin reverses the inhibition of ATPase and accelerates actin sliding in a calcium-dependent manner. Calmodulin with calcium greatly reduces the binding of nebulin fragments to both actin and myosin. Nebulin may hold the myosin heads close to actin in an orientation that prevents random interaction in resting muscles yet facilitates cross-bridge cycling upon activation by calcium and calmodulin. The data suggest that the nebulin-calmodulin system may function as a calcium-linked regulatory system.

Here, we report the determination and extensive sequence analysis of 5500 amino acids of human fetal skeletal muscle nebulin based on DNA sequencing of five partially overlapping cDNA clones in two open reading frames. Analysis of these sequences, which represent at least 70% of the complete coding sequence, shows that, with the exception of 163 residues at the C terminus, the sequence is arranged as 150 tandem copies of ~35-residue nebulin modules. These modules can be classified into seven types, based on sequence homologies. These modules can be grouped further into 20 super-repeats, with the 7 dis-
distinct types of modules in each super-repeat, plus a single repeat region containing 8 modules of the same type. Moreover, these super-repeats can be grouped further into six segments, each containing a small number of adjacent, highly homologous super-repeats. The C terminus of nebulin is distinct and contains a Src homology domain 3 (SH3) (15, 16).

The sequence analysis and protein binding studies of expressed nebulin fragments to be presented below suggest that the nebulin sequence encodes the blueprint for the structural and functional compartmentation of thin filaments in the sarcomere of skeletal muscles. The conclusions and implications of nebulin sequence analysis have been presented in a preliminary form (60).

MATERIALS AND METHODS
Isolation of Overlapping cDNA Clones
Human fetal nebulin cDNA clones were isolated from three human fetal skeletal muscle libraries: a digoxigenin-primed cDNA xgt10 and a xgt11 libraries were used in the original screening (9), and a size-fractionated xgt10 library of Koenig et al. (17) was used in later series of transcript-walking experiments (18).

The initial screening of xgt11 library led to the identification of two independent λ recombinants λHN1 and λHN2 containing nebulin cDNA fragments HN1 and HN2. Both are used as probes to perform “transcript walks” in the λgt10 libraries. Partial sequence analysis and restriction maps established the order and extent of overlap. Although the two walks have yet to overlap with each other, the outermost cDNA fragments all localize to human chromosome 2 (9), ruling out ligation artifacts in the original cDNA cloning. Five large cDNA clones: HNh20, HNd4 (from HN2 walks) and HNh19, HN6, and HNb2 (from HN1 walks) were selected for subcloning into pBluescript SK+ (Stratagene) and sequencing (Fig. 1).

FIG. 1. Cloning, sequencing, and expression of human fetal nebulin. Five cDNA clones, HNh20 (4.5 kb), HNd4 (4.5 kb), HNh19 (1.7 kb), HN6 (4.0 kb), and HNb2 (4.0 kb) are sequenced. Two open reading frames HNN (2468 residues) and HNC (3004 residues) are deduced, with HNN and HNC representing the N- and C-terminal sides of nebulin. Sequence numbers are assigned for each open reading frame, and the corresponding numbers for each CDNA clone are indicated. Seven nebulin fragments, NA4, NB5, NA3, NC17, ND66, ND8, and NSH3 are expressed, with their approximate positions within each open reading frame indicated (refer to Table I for details).

NA4, NA3, NC17, and ND8 have been described previously and were purified by improvements described in Root and Wang (14). Two additional fragments near or at the C-terminal region (ND66 and NSH3) were prepared as described below. The molecular parameters of these fragments are summarized in Table I.

ND66—A plasmid bearing a 1.9-kb subclone of the 3′-end clone HNb2 was digested by restriction enzyme DdeI, and a 372-bp fragment was purified from 1% agarose gel slice by Prep-a-Gene Matrix (Bio-Rad). This fragment was ligated sequentially to a linear pET3d that was double-digested with Ncol-BamHI, first with a synthetic oligodeoxynucleotide Ncol-DdeI initiation adaptor

\[5' - \text{CATGAAAGACCC} \quad \text{3'} - \text{TTCTTGAGGACT} - 5' \]

which directs an in-frame ligation of the 5′ end of the coding sequence to the ATG initiation codon in the vector sequence. Then a DdeI-BamHI adaptor

\[5' - \text{TGAGTACCCGAG} - 3' \quad \text{3'} - \text{ATCATGATCCGAG} - 5' \]

containing translation stop codons in all three reading frames was added to join the remaining DdeI-cut end of the insert to the BamHI-cut end of the vector. Transformation of BL21 (DE3)pLysS host cells (4 liters) with the resulting plasmid pHN2D66 led to a high level of expression of soluble ND66 in the cytoplasm upon IPTG induction (0.4 mM IPTG, 3.5 h at 37 °C). The bacteria were harvested at 5000 rpm in a Sorvall GSA rotor for 10 min and lysed in a French Press (1.500 p.s.i., 3 times) in 50 ml of lysis buffer (10 mM NaPi, 1 mM EDTA, 1 mM DTT, 2.5 μg/ml leupeptin, pH 7.0), followed by centrifugation at 14,000 rpm for 20 min in a Sorvall SS-34 rotor at 4 °C. The supernatant was made 35% saturated in ammonium sulfate at 4 °C for 1 h and spun at 13,000 × g for 30 min. The pellet was dissolved in 50 ml of lysis buffer and dialyzed overnight, clarified, and applied to a Whatman CM52 column (2 × 20 cm) equilibrated in lysis buffer. Elution by a linear NaCl gradient (0–1 × NaCl, 150 ml each) yielded 95–99% pure ND66 between 0.35 and 0.40 NaCl (40 mg per 4-liter culture).

NSH3—A cDNA fragment containing 174 bp of SH3 domain was cloned from a subclone of HNB2 by polymerase chain reaction with primer pairs containing an Ncol site and a BamHI site abutting the 5′ and 3′ ends of the coding sequence, respectively (CTCATCGGATC-CCATGGGAAAAAATCTTTCGTGCCATG and GTGATGCTTTGGGATC-CTTAAATAGCTTCAACG). The fragment was digested with Ncol-BamHI and was ligated to a Ncol-BamHI-cut pET3d vector by a one-step reaction with T4 ligase at 4 °C. Transformation of host cells with the recombinant pHN3SH3 plasmid resulted in the expression of soluble NSH3 upon IPTG induction (0.4 mM IPTG, 3.5 h at 37 °C). NSH3 was purified by a 4-liter culture by lysing host cells in a French Press in 10 ml Tris Cl, 1 ml phenylmethylsulfon fluoride, 1 ml EDTA, 0.1 ml DTT, 2.5 μg/ml leupeptin, pH 7.8, as described above for

1 The abbreviations used are: kb, kilobase(s); bp, base pair(s); IPTG, isopropyl-1-thio-β-D-galactopyranoside; DTT, dithiothreitol.
ND66. The supernatant was loaded directly to a DE52 column (2 x 20 cm) equilibrated in 10 mM Tris Cl, 1 mM EDTA, 0.1 mM DTT, pH 7.8. NSh3 was eluted between 0.4 and 0.6 M NaCl with a 0–1 M NaCl gradient (150 ml each). Pooled fractions were dialyzed against 10 mM KPi, 0.1 mM DTT, pH 7.0 at 4°C, and applied to a hydroxyapatite column (Bio-Gel HTP, 1 x 10 cm) at 4°C. The flow-through fractions containing NZsh3 were collected and loaded to an Accl QMA column (1 x 10 cm) (Millipore) equilibrated in the same buffer and then eluted with an 0–1 M NaCl gradient (150 ml each) at 4°C. NZsh3 was eluted between 0.20 and 0.35 M NaCl at 99% purity (40 mg per 4-liter culture).

Sds-gel Electrophoresis

Proteins were analyzed by either Laemmli gel (M, > 20,000) or a Tris-Tricine gel system (M, < 20,000) and stained with either Coomasie Blue or silver (21).

Quantitative Solid Phase Binding Assays

NA4, NA3, NC17, ND66, ND8, NZsh3—Cloned nebulin fragments were dialyzed against a calcium-containing folding buffer (14) either to remove urea and refold (NA4, NA3, NC17) or to exchange buffer (ND66, ND8, NZsh3). Prior to coating, fragments were diluted to 5 nm in 10 mM Tris Cl, 150 mM NaCl, pH 7.4 (TBS), added to microtiter plates (Nunc Polystyrene), incubated overnight at 4°C, and washed with 100 μl of TBS-blocking solution (10 mM Tris Cl, 150 mM NaCl, 0.05% bovine serum albumin, pH 7.4 for 1 h at 37°C. Each adsorbed nebulin fragment was incubated with 100 μl of actin, tropomyosin, tropomyosin, biotinylated-caldesmon, each ranging from 0.078 μM to 5.0 μM, and incubated overnight at 4°C. The amount of adsorbed protein is between 7.5 and 15 ng per well, as estimated on a duplicate plate by a copper stain procedure (14). Wells were blocked with 200 μl of TBS-blocking solution (10 mM Tris Cl, 150 mM NaCl, 0.05% Tween 20, 0.2% bovine serum albumin, pH 7.4) for 1 h at 37°C. Each adsorbed nebulin fragment was incubated with 100 μl of actin, tropomyosin, tropomyosin, biotinylated-caldesmon, each ranging from 0.078 μM to 5.0 μM, and incubated overnight at 4°C. Wells were blocked with 200 μl of TBS-blocking solution (10 mM Tris Cl, 150 mM NaCl, 0.05% Tween 20, 0.2% bovine serum albumin, pH 7.4) for 1 h at 37°C. Phallolidin (5 μM) was present in all actin solutions. After washing, specific antibodies (mouse monoclonal antibodies JLA20 against actin, CH1 against tropomyosin, and JLT2 against tropinin) (22) were incubated for 1 h at 37°C in TBS-blocking solution. Plates were washed three times with TBS-T (10 mM Tris Cl, 150 mM NaCl, 0.05% Tween 20, pH 7.4) and then incubated with a peroxidase-conjugated rabbit anti-mouse antibody (Zymed) for 1 h at 37°C in TBS-blocking solution, followed by five washes with TBS-T. Color development at 20°C by 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and H2O2 was monitored at 405 nm every minute with an EIA reader.

Results

Sequence Motifs of Human Fetal Muscle Nebulin—Partially overlapping cDNA clones were isolated from transcript walking, starting from two independent clones HN2 and HN3 that were obtained from immunological screening of a human fetal muscle λgt11 library (9). Five clones ranging from 1.7 to 4.5 kb in two groups of overlapping clones (GenBank™ accession numbers U35636 and U35637), were selected for sequence analysis. A total of ~19 kb has been sequenced to give two open reading frames designated as HNN and HNC with 2468 and 3004 amino acid residues, respectively (Fig. 1). The HNb2 clone contains the 3' end of nebulin transcript including the translation stop codon (TAG), a 422-bp untranscribed region and a 42-bp poly(A) tail (data not shown). The 5' walking from HNh20 has yet to give clones that signify the 5' end of the transcript and potential regulatory sequences. The protein sequences encoded by the two open reading frames show extensive tandem repeats of a sequence module that ranges from 31 to 40 residues, with an average of ~35 residues per module. These sequence repeats are easily detected visually by a hexapeptide SXXXY(K/R) and a single proline or a smaller cluster of 2–3 prolines that recur every ~35 residues. This module is repeated 69 times in the N-terminal side open reading frame (HNN) and 81 times in the C-terminal open reading frame (HNC), with no obvious linker sequences between modules. We have arbitrarily defined each module as starting at serine of the conserved hexapeptide. This repeating pattern however stops short near the C terminus. The C-terminal segment of 163 residues consists of a linker region of 105 residues enriched in acidic residues, serine, threonines, and a 58-residue SH3 motif which is highly homologous to those found in Src kinases and several cytoskeletal proteins (see below).

Nebulin Modules, Super-repeats, and Segments—Further analysis of sequence homology by protein matrix plots (Pustell et al., 2001) with the protein plot tool with PAM250 matrix (Macssoft) and a multiple alignment program (MACAW with PAM250 matrix) reveals that the majority of these modules can be classified and grouped further into two higher orders of organization: super-repeats consisting of seven types of modules and segments consisting of contiguous super-repeats that are highly homologous.

The 7-module super-repeat is best visualized by matrix plots with a window size of 8 to 15 with PAM250 scoring matrix. As shown in Fig. 2 (lower left plot, with a window size of 12), numerous off-diagonal lines of homologous modules are periodic with a spacing of ~245 residues between successive lines. For a given super-repeat, the intensity of off-diagonal lines

Table I

Protein fragment	cDNA clone	Sequence locus	Module	Amino acids	Mass	Isoelectric point	
NA4	HNd4	HNN 1209–1450	HNN	34–41	242	27,811	9.24
NB5	HNd4	HNN 1450–1673	HNN	41–47	224	25,866	9.16
NA3	HNd4	HNN 1673–1941	HNN	47–55	269	31,285	9.12
NC17	HNd4	HNN 1941–2184	HNN	55–62	244	28,434	9.07
ND66	HNd4	HNC 2594–2721	HNC	74–78	128	14,403	8.97
ND8	HNb2	HNC 2661–2726*	HNC	76–78	67	7,676	10.08
NSh3	HNb2	HNC 2947–3004	HNC	SH3	58	6,437	4.10

a ND8 contains transposed sequence modules and the expressed fragment consists of ME followed by 2691 to 2726 and 2661 to 2690 (19).
along the same vertical axis appears to diminish gradually toward the C terminus. These patterns indicate that nebulin modules are organized into 7-module super-repeats that extend nearly the entire sequences of HNN and HNC. Additionally, the degrees of similarity among nebulin modules are high near the N terminus side and diminish gradually toward the C terminus. The 7 types of modules are designated as type a to type g in Fig. 3. Each module is designated sequentially from N to C termini as HNN1 to HNC81 (Fig. 3).

Segmental organization of these super-repeats is detected by matrix analysis with a much wider window size that is comparable to the length of nebulin modules. As shown in Fig. 2 (upper right plot), with a window size of 30, the off-diagonal lines, 245 residues apart, display staircase steps of various lengths or heights. These patterns indicate a higher degree of homology for super-repeats within each step or segment. Closer examination of local similarity scores by MACAW allows the identification of six segments of homologous super-repeats which are designated as B, C1, C2, D, I1, I2, N, and Z (see "Discussion" for the choice of terminology). Within a given segment, each module type of super-repeats shows a higher similarity score with one another than with those of the same type from other segments. Modules from HNC74 to -81 are all of the same type (typed) and, as such, are designated as a single-repeat segment (N segment). Additionally, the C-terminal 163 residues are designated as Z segment, (Table II and Fig. 2).

Nebulin sequence, as presented in Fig. 3, is organized to highlight the 20 seven-module super-repeats that are evident from HNN1 to HNC73. The consensus sequence of each module type, based on a minimum of 50% identity or higher, is annotated on the top of each module and summarized in Fig. 4.

Nebulin Modules and Super-repeats—A consensus sequence of each of the 7 types of modules is deduced by allowing small gaps and identifying conserved residues that appear three or more times at a given position (Fig. 4). Each nebulin module appears to be constructed from two parts: one begins with SXXXY(K/R), that lasts 18–25 residues, followed by a second part starting with a conserved Pro, approximately 13–19 residues long. These conserved residues (Ser, Tyr, and Pro) are useful markers for sequence alignment and are highlighted by reverse contrast in the sequence (Fig. 3). Variations of this theme occur mostly by substitution or deletion of nonconserved residues. Even for the conserved ones, substitution occasionally occurs for serines and prolines. For example, 12 modules have asparagines substituting for serines in SXXXY. It is noted that Tyr is found at the fifth position in all but 1 module (HNC39 has a SXXXY) and is the key landmark for defining the spacing of each nebulin module. The ninth position of each module is also somewhat conserved among the various types. While Tyr is common in modules of types a and b, aromatic or nonpolar residues such as Trp, Phe (types f and g), Leu (types c and d), and Pro (type e) are found at this position, characteristic of each type. The sequences following the conserved prolines in the second half are more variable among module types. A shared feature is the presence of one or two K/R at the sixth or seventh position preceding the next SXXXY. The spacings from the conserved Tyr to the conserved Pro of the second half generally fall between 20 and 13 residues for the consensus sequences in Fig. 4: with type a modules being the longest at 20 residues; type g at 18 residues; type e and f at 17 residues; types c and d at 14 residues; and type b displaying the shortest at 13 residues. The middle conserved proline is missing in many type g modules. In contrast, some of the modules possess two or more prolines in close proximity (e.g. type f modules and HNC41, -48, -74--79). This unique distribution of helix-breaking residues may signal distinct folding patterns for these modules.

Charge Profiles—Another noteworthy feature of nebulin modules is the distribution of the abundant basic and acidic residues. As shown in Fig. 3, in which residues KRH and DE are in green and red, respectively, most of the conserved Ser, Tyr, and Pro residues adjoin charged groups: Ser is followed by either Asp or Glu. Tyr is flanked by at least one charged group, with KYK (type a), EYK (type b), XYK (types c, d, and f), LYK (type g), and KYR (type e) being the dominant ones. The ninth position (YW/L/P) precedes or follows an acidic group (types a, b, d, f, and g) or a basic group (types c and e). The conserved Pro
is frequently less than two residues away from a D/E. The basic groups generally appear as small clusters of 2 to 4 and alternate with one or two acidic groups. These charge groups are enriched in the SXYYY - containing half of each module. This trend is reversed however for type d, where about half of the residues after the conserved Pro are charged ones. Thus, the charge profiles of modules are characteristic of each module type.

The regularity of conserved sequences as well as charge profiles becomes less prominent in HNC, especially for the modules after HNC35. The number and location of prolines and charge group distribution in segments I2 and I1 are fairly variable and deviate frequently from the consensus. However, the conserved Tyr and some of the major grouping of basic and acidic groups are still conserved within each type despite sequence variability.

Single Repeats—The regularity reappears in the single repeat segment from HNC74 to -81 near the C terminus. Indeed, the 6 modules from HNC74 to -79 are highly homologous, starting with a unique SSVLY motif and share 12 identical residues (out of 31 per module). These modules are tentatively classified as a type d module based mainly on their charge profiles in the second half.

The modules bordering HNC74 and HNC79 are somewhat difficult to classify. HNC70 to -73 are tentatively classified as part of segment I1, but appear to be sufficiently homologous to be considered as single repeats. HNC80 is strikingly similar to a type d module HNN1. HNC81 starts with SXYYY, yet without the conserved Pro midway or other conserved residues of type d module.

C-terminal SH3 Domain and a Linker Domain—The C-terminal residues (HNC2947–3004) of nebulin shows significant homology with the consensus sequence of SH3 domain that is first identified near the N-terminal noncatalytic region of Src tyrosine kinase. Similar domains have since been found in a variety of enzymes and structural proteins that are important in signal transduction, cortical cytoskeleton, and membrane localization (for reviews, see Refs. 15, 16, and 24). Comparison of nebulin SH3 domain with other SH3-containing cytoskeletal proteins, such as chicken cortactin (p80/p85), human HS1 protein, yeast ABP-1, human amphiactin, Dictyostelium discoideum myosin 1, and c-Src, indicate extensive homology (Fig. 5). Particularly significant is the presence of highly conserved residues corresponding to Tyr-90, Tyr-92, Trp-118, Pro-132, and Tyr-135 of c-Src SH3. These hydrophobic residues define the three major hydrophobic binding pockets for proline-rich peptide ligands that bind SH3 (e.g. Refs. 25 and 26). Asp-99 of c-Src SH3 is replaced by another acidic residue Glu in this group of SH3s. This conservation of charge is important for SH3-ligand orientation, since the ligand orientation in the binding site is determined by the salt bridge between this acidic residue and arginine of the ligand (26). Another important residue, Tyr-131 in Src SH3, is replaced by Met in nebulin and by Phe, Leu, and Trp in other proteins (Fig. 5). This Tyr residue is situated at one end of the binding site on Src SH3 and is thought to form a fourth pocket that interacts with the flanking residues of the peptide ligand (26). The substitution of a methionine in nebulin suggests that this fourth pocket may be absent or altered to accommodate distinct ligand sequence in the flanking region. On the basis of sequence homology and the observation that the two sequences that correspond to 93–97 and 112–117 of Src SH3 are the same length, it is reasonable to expect that nebulin SH3 would fold similarly into two three-stranded β sheets with two loops from HNC residues 2957 to 2962 and 2976 to 2981 (27).

The 105 residues spanning HNC81 and the SH3 domain is designed as a linker. This linker begins with the SXYYY sequence characteristic of the first half of the nebulin module, but otherwise shares no homology or charge profile with the remaining portion of any of the 7 types of modules. It is highly enriched in acidic residues, serine and threonine totaling 39 mol %.

Segmental Organization and Isoelectric Point Profiles—In addition to similarity scores and charge profiles, another criterion is found useful in identifying the segmental construction of nebulin super-repeats: the profile of isoelectric points of each module along the sequence.

As shown in Fig. 6, the calculated pl values of these modules fall into three classes: basic (8.5 to 10), neutral (6.0 to 7.3), and acidic (4.5 to 5.9). A plot of pl along the sequence revealed striking periodicity throughout most of the HNN region. For example, within HNN modules 3 to 58, a 7-module super-repeat consisting of 5 basic, 1 neutral, and 1 acidic modules is repeated eight times. This pl distribution pattern became less regular from HNN59 to HNC23, with 2–3 basic, 2–3 neutral, and 2–3 acidic modules per super-repeat. From HNC38 to -73,
most modules are basic, with at most 1 acidic module per super-repeat. The single repeat segment (HNC74 to -81) is mostly basic and neutral with no acidic ones. The linker is nearly neutral (pI = 6.04) and the C-terminal SH3 is acidic (pl = 4.10). It is striking that this segmental variation in regularity of pl profiles corresponds closely to the staircase-like diagonal matrix plot based on sequence homology (Fig. 2). Taking these independent criteria into consideration, we group these super-repeats into segments that display higher degrees of sequence homology as well as similar pl profiles among the contiguous super-repeats. This segmental organization is illustrated in Fig. 6. Our earlier immunolocalization studies were useful to estimate the distance between HNN and HNC. It is known that HNN41–47 (as an expressed fragment NB5) is useful to estimate the distance between HNN and HNC. It is treated in Fig. 6. Our earlier immunolocalization studies were analyzed by the Robson and Garnier algorithm (MacVector) predicts a much higher α helix propensity (70% α helix and 2% β sheet). It is clear that both programs predict high α helix propensity in regions surrounding SXXXY, especially the preceding sequence (10–15 residues). Indeed, this region of the nebulin module can be induced to form α helix in the presence of anionic detergents and organic solvents (11, 28). In contrast, the regions surrounding the conserved prolines are less regular and devoid of α and β structures.

Phosphorylation Subsequences—The search for protein motifs turns up numerous phosphorylation consensus sites and other protein subsequences. Since nebulin is a major phosphoprotein and undergoes rapid turnover of protein-bound phosphate upon muscle stimulation by cAMP agonists (29), the following potential sites in the sequence are indicated (Fig. 3): tyrosine kinase (RKXXXDEXXX or RKXXXDEXXX), kinase C (RKSTX(RK)), cAMP kinase (kinase A) (RRX(ST) or RRX(ST)), H1 kinase (KST)PKK or K(ST)PKKK, and Ca2⁺-calmodulin-dependent kinase II (RXX(ST)(ILFYW)). The numerous sites for casein kinase 2 and glycogen synthase kinase are not included for the sake of clarity.

It is worth noting that 13 of the 34 tyrosine kinase consensus sites are found in the SXXXY motif of type b modules in HNN and HNC, with 2 to 6 sites in the same region of each of the other types of modules. None is found in the single repeat region. Interestingly, 14 of the 15 cAMP-dependent kinase sites are found in segment I1, a small adjacent region of segment I2 (starting at HNC34) and Z segment of HNC, with only 1 in HNN. In the short HNC linker region are localized 3 cAMP kinase sites and 1 Ca2⁺-calmodulin kinase site, perhaps reflecting its enrichment in serines and threonines. Of the 11 protein kinase C sites, 6 are in type e and f modules, 0 in type b module, and 1 is found in the NSH3 domain at RTGR (HNC residues 2989–2992). It should be noted that actual phosphorylation sites are unknown and may occur at only a small proportion of the possible sites identified in this manner.

Nebulin Homologs—A search of NCBI sequence data bases revealed that homologs of nebulin modules are present in two smaller proteins from human and other species. Cortactin, a cytoskeleton-associated protein substrate (p80/p85) of Src kinase in human platelets, and in chicken and mouse fibroblasts, is composed of 5½ (for a p80 variant) or 6½ (for a p85 variant) tandem repeats of a 37-amino acid module that are linked to a C-terminal SH3 domain by a region rich in proline, serine, and
Fig. 4. The consensus sequences of human fetal nebulin modules. The consensus of consensus sequences of seven types of modules (Cons Cons) is derived by selecting residues with 40% identity and allowing gaps (-) in order to align conserved SXXDYK residues and prolines. X represents nonconserved residues.

A. Nebulin homology

B. SH3 homology

Fig. 5. Nebulin homologs. A, homologs of nebulin modules are found in a hypothetical protein (25.7 kDa) in C. elegans (GenBank™ P34417, 221 amino acids). B, SH3 domain homologs. The sequence of nebulin SH3 (HNC) is compared with similar domains from chicken cortactin (GenBank™ G01406, 563 amino acids), human HS1 (GenBank™ P14317, 486 amino acids), yeast ABP1 (GenBank™ A48096, 550 amino acids), Dictyostelium discoideum (GenBank™ P34417, 967 amino acids), and c-Src kinase (GenBank™ P12931, 536 amino acids). Key residues of c-Src SH3 domain are numbered below. The consensus sequence of these SH3s is based on 60% identity and labeled on the top.

Threonine (30). All except one of the cortactin modules display the SXXDYK motif characteristics of the type c nebulin module, even though the bulk of the sequences is fairly distinct. Interestingly, the tandem repeats bind to F-actin with a stoichiometry of one p80 per 14 actin monomers and a Kd = 0.43 ± 0.08 μM. The SH3 domain of cortactin is highly homologous with that of human nebulin (Fig. 5). Wu and Parsons (30) concluded that SH3 is not directly involved in F-actin binding, based on the lack of cosedimentation of F-actin with a SH3-containing mutant that deletes all tandem repeats. A direct binding study of SH3 with actin, as reported here, however, was not presented.

Two cortactin homologs have been reported. Amplinex, a gene product of EMS1 gene that is located within the amplified chromosome 11q13 region in human carcinomas (31), exhibits 6/7 tandem repeats of cortactin-like modules and an SH3 domain at its C terminus. HS1, a hematopoietic lineage cell-maj or myofibrillar components, we are performing a systematic screening of protein interactions (affinity profiles) of expressed nebulin fragments by a solid phase binding assay. Seven nebulin fragments in two regions of nebulin sequences were cloned and expressed in E. coli as nonfusion proteins (19). These fragments contain 2 to 8 modules each, covering a total of ~1200 residues of nebulin (Table II). The SH3 domain is selected based on its sequence homology with SH3s with known three-dimensional structure. Three of these expressed fragments (ND66, ND8, and N SH3) are soluble in the bacterial cytoplasm and are purified by chromatographies in the absence of denaturants. The remaining four (NA4, NB5, NA3, and NC17) are expressed in the inclusion bodies and are solubilized and purified in the presence of urea (19). We have found that the presence of 1 mM Ca²⁺ in the dialysis buffer used to remove urea greatly improves the folding and solubility of these fragments (14).

As a first step, the binding of six nebulin fragments to three major thin filament proteins (actin, tropomyosin, troponin) and calmodulin was studied by solid phase binding assays at physiological ionic strength.

As shown in Fig. 8A, all tested nebulin fragments bind actin. Since phalloidin is included in the buffer to lower the critical concentration of actin polymerization, the binding curves reflect mainly F-actin interaction. The relative affinity of actin binding follows the order: NSH3 (Kd = 0.08 μM) > ND66, NA3, NA4 (Kd = 0.1 μM) > NC17, ND8 (unsaturated at 2 μM actin). This trend is consistent with our previous estimates by cosedimentation studies (NA3, NA4 > ND8) (7, 12, 14). The tight binding of NSH3 to actin is unexpected (see "Discussion") and provides the first evidence that a SH3 domain binds directly to actin.

The binding of tropomyosin to nebulin fragment is generally weaker than actin binding (Fig. 8B). It binds moderately strongly to ND66, NC17, and N SH3 (Kd ~0.5–1.0 μM). Its binding to NA3, NA4, and ND8 is not saturated even at 5 μM tropomyosin. Interestingly, the binding of troponin to nebulin fragments is much stronger than tropomyosin-nebulin interaction (Fig. 8C). NA4, N SH3, and ND8 are among the stronger ones (Kd ~0.1 μM) and NC17, ND66, and NA3 display relative weaker binding (Kd ~0.2 μM).

Calmodulin (as pinovalinated calmodulin), a calcium-mediator of the inhibitory effect of nebulin fragments on actomyosin interaction (14), binds to NA4, N SH3, ND8, and ND66 with higher affinity (Kd ~0.1 μM) than NC17 and NA3 (unsaturated up to 2 μM calmodulin). This profile thus follows a similar trend as troponin/nebulin affinity, except that the ND66-calmodulin interaction is somewhat stronger. We have previously deter-
might have led to the formation of the 7-module super-repeats to provide appropriately spaced sites for tropomyosin and troponin binding, thereby satisfying the spatial constraint of the actin-tropomyosin-troponin complex. The segmentation of super-repeats might be evolved to accommodate its interaction with A-band or I-band components which are themselves segmented in the sarcomere. This speculative idea arose from the following observations. i) The order and span of these segments appear to correlate with the morphological zones within the sarcomere. Close examination of the segmental organization suggests that, provided each super-repeat spans ~40 nm, the highly homologous segments of C1, C2, and D are expected to overlap with the C zone and D zone of the A-band in a resting muscle sarcomere of 2.3 μm (35). The binding to both actin and myosin by several nebulin fragments in this region (NA3, NA4, ND5, and NC17) supports this notion (14, 19). Interestingly, the combined span of I1 and I2 segments near the C terminus would be between 0.30 and 0.50 μm, corresponding to half the width of an I band of a 2.3- to 2.6-μm resting length sarcomere. (ii) The charge profile of modules in HNC display an abrupt transition between the D and I2 segments (demarcated at HNC24 module, Fig. 5). Most modules in segments I2, I1, and N lack the highly regular repeating pattern observed in segments B, C2, C1, and D (Fig. 5). This transition is also evident when primary sequences of nebulin modules on either side of this transition are compared (Fig. 3). Modules in the I2, I1, and N segments display significant variations, especially in the second half of each module. This is in great contrast to the highly homologous super-repeats in the C1, C2, and D segments. We speculate that these sharp transitions between D and I segments might signal the entry of thin filaments into the A band environment of a rest length sarcomere.

Near the C terminus, a short segment of eight tandem repeats of type d modules has been immunolocalized to the edge of the Z line (8) and probably corresponds to the N1 line to the Z region of the thin filaments which usually appears thicker and stiffer (36). Two nebulin fragments (ND66 and ND8) from this region bind actin but display no affinity toward myosin (14), reflecting a functional distinction from the super-repeat region.

The C-terminal segment of nebulin includes the linker and

DISCUSSION

Nebulin as a Blueprint of Thin Filament Architecture and Sarcomere Proportion—Sequence analysis of ~5500 residues of human fetal skeletal muscle nebulin reveals a wealth of structural information that can be used to understand its evolution and the design principles of this multifunctional protein in the sarcomere of striated muscles.

The bulk of the sequence is constructed of more than 150 copies of nebulin modules. Homology analysis of these modules reveal that most of these modules can be classified into seven types and that one of each type forms a 7-module set, to yield 20 super-repeats. Further analysis indicates that the similarity among modules diminishes toward the C terminus. This gradient of diminishing similarity is consistent with the idea that nebulin has evolved from tandem duplication of nebulin modules initiated from its C-terminal end, with the most recently duplicated and conserved ones near the N terminus. We speculate that the total number of duplicated nebulin modules would be determined by the length of thin filaments and the number of actin subunits per helical strand. Further evolution
an SH3 domain, both of which are distinct from nebulin modules. Significantly, the SH3 domain also binds actin (Fig. 8). This interaction may contribute to the anchoring of nebulin to the Z line (8).

If the basic premises of the foregoing speculative analysis are correct, then the nebulin sequence encodes not only a blueprint for the length and architecture of thin filaments, but also instructions for the degree of overlap of thin and thick filaments and sarcomere length in the resting muscle. Nebulin thus may impart a functional and structural compartmentation along the otherwise uniform actin/tropomyosin/troponin filaments. Remarkably, this task is accomplished mostly by modifying and duplicating a short yet versatile 35-residue building block.

Interaction of SH3 Domain with Thin Filament Proteins—The receptor proteins for SH3 domains in signal transduction pathways are being actively pursued by many laboratories, and recent activities have focused on a series of proline-rich peptides and proteins containing these consensus sequences (15, 24, 25, 37, 38). The receptors for SH3 domains in cytoskeletal proteins, however, have remained obscure. Our demonstration that expressed NSH3 domain of nebulin binds to actin with high affinity provides the first biochemical evidence that SH3 proteins and calmodulin.

Nebulin fragments NA3, NA4, NC17, ND66, ND8, and NSH3 (5 nM in 10 mM Tris Cl, 150 mM NaCl, pH 7.4) were adsorbed onto microtiter plates overnight at 4°C, washed, blocked, and incubated with actin (A), tropomyosin (B), troponin (C), and biotinylated calmodulin (b-CaM, D) in a binding buffer (10 mM imidazole, 4 mM MgCl2, 1 mM CaCl2, 150 mM NaCl, 0.05% bovine serum albumin, pH 7.0) for 2 h at 37°C. Phalloidin (5 μM) was present in actin solutions. The bound proteins were detected with peroxidase-conjugated antibodies (A, B, and C) or streptavidin (D). All solid curves were calculated using a one-class binding model. Dotted lines indicate binding isotherms that have not reached saturation.

Fig. 8. Affinity profiles of nebulin fragments toward thin filament proteins and calmodulin. Nebulin fragments NA3, NA4, NC17, ND66, ND8, and NSH3 (5 nM in 10 mM Tris Cl, 150 mM NaCl, pH 7.4) were adsorbed onto microtiter plates overnight at 4°C, washed, blocked, and incubated with actin (A), tropomyosin (B), troponin (C), and biotinylated calmodulin (b-CaM, D) in a binding buffer (10 mM imidazole, 4 mM MgCl2, 1 mM CaCl2, 150 mM NaCl, 0.05% bovine serum albumin, pH 7.0) for 2 h at 37°C. Phalloidin (5 μM) was present in actin solutions. The bound proteins were detected with peroxidase-conjugated antibodies (A, B, and C) or streptavidin (D). All solid curves were calculated using a one-class binding model. Dotted lines indicate binding isotherms that have not reached saturation.

Human Fetal Nebulin

2. C. L. Shih and K. Wang, manuscript in preparation.
are probably in close proximity with each other on actin, at least in the off state.

Functional and Structural Analogs of Nebulin—What has emerged from this and other studies is a picture of nebulin that is analogous functionally to caldesmon of smooth muscles (14). Both are putative thin filament-associated regulatory proteins that bind actin, myosin, calmodulin, and troponymosin and are thought to tether myosin heads to the actin filaments in relaxed muscles and to facilitate myosin-actin interaction in activated muscles (see, for example, Refs. 50–53). Both are phosphorylated in vivo. The abundant phosphorylation consensus subsequecnes in nebulin (see Fig. 3) and the rapid turnover of protein phosphate in vivo (29) suggest that, as is the case with caldesmon, phosphorylation may be an additional mechanism for modulating the inhibitory effect of nebulin on actomyosin interaction. Differences in molecular properties (size, sequence, and domain organization) may reflect the functional diversity of the thin filament-based regulatory mechanism in smooth muscles (which fine tune contraction) and skeletal muscles (which aim for force and speed).

In non-muscle cells, cortactin and its homologs share the same modular architecture as the C-terminal end of human nebulin (see Fig. 5) and may be considered as functional or structural analogs of a family of SH3-containing proteins which bind actin polymers to SH3 target sites in the cortical cytoskeleton or in the Z line. It would be of great interest to know if the short cortactin tandem repeats regulate the length of the attached actin oligomers or polymers.

Other proteins that contain nebulin modules are also being detected. The presence of nebulin-like modules in a hypothetical protein (25.7 kDa) in C. elegans demonstrates that nebulin modules are ancient and conserved. The similarity between these modules with HNCB1, found near the C-terminal of human nebulin also point to the importance of nebulin modules in this anchor region. In this connection, it is significant that at least 11 nebulin modules that are highly homologous to (HNC69 to -79) human nebulin are present in cardiac nebulin, a 107-kDa nebulin-like protein found in cardiomyocytes of human and chicken (58). This anchor region structure may be a theme upon which structural or functional variants evolve in non-muscle and cardiac muscle cells.

Human Adult Nebulin Sequence—The complete sequence of adult human nebulin was described (59) while this manuscript was in review. The adult nebulin sequence (EMBL accession number X83957) consists of 185 modules, with the central 154 copies grouped into 22 super-repeats and unique sequences at both the N and C termini. A detailed comparison of human adult and fetal nebulin sequences will be presented elsewhere.

Acknowledgments—We thank Drs. Russell F. Doolittle, Lawrence L. Poulsen, and James Sylvester for advice on sequence analysis and homology cloning techniques. We are grateful to John Wright for his expert help in aligning the sequence and preparing the illustrations, and to Qian Ming and Mark Smyer for the expression and preparation of nebulin fragments. We thank Dr. C. Monroe for her input in preparing this manuscript.

REFERENCES

1. Lodder, R. H., and Wild, D. J. C. (1986) J. Biochem. (Tokyo) **99**, 1473–1484
2. Wang, K., and Wright, J. (1988) J. Cell Biol. **107**, 2199–2212
3. Kruger, M., Wright, J., and Wang, K. (1991) J. Cell Biol. **115**, 97–107
4. Labeit, S., Gibson, T., Lakey, A., Leonard, K., Zeviani, M., Knight, P., Wardale, J., and Trinick, J. (1991) FEBS Lett. **282**, 313–316
5. Maruyama, K., Matsuno, A., Higuchi, H., Shimakawa, S., Kimura, S., and Shimizu, T. (1989) J. Muscle Res. Cell Motil. **10**, 350–359
6. Pierobon-Bormioli, S., Betto, R., and Salvati, G. (1989) J. Muscle Res. Cell Motil. **10**, 446–456
7. Jin, J.-P., and Wang, K. (1991) FEBS Lett. **281**, 93–96
8. Wright, J., Huang, Q.-Q., and Wang, K. (1993) J. Muscle Res. Cell Motil. **14**, 476–483
9. Steedman, H., Browning, K., Oliver, N., Orontz-Scott, M., Fischbeek, K., Sarkar, S., Sylvester, J., Schmickel, R., and Wang, K. (1988) Genomics **2**, 1–7
10. Zeviani, M., Darras, B. T., Rizzuto, R., Salvati, G., Betto, R., Bonilla, E., Miranda, A. F., Du, J., Samitt, C., Dickson, G., Walsh, F. S., Dimauro, S., Francke, U., and Schon, E. A. (1988) Genomics **2**, 249–256
11. Pfuhl, M., Winder, S. J., and Pastore, A. (1994) EMOB J. **13**, 1782–1789
12. Chen, M.-J., Shih, C.-L., and Wang, K. (1993) J. Biol. Chem. **268**, 20327–20334
13. Tatsuno, R., Hattori, A., and Takahashi, K. (1992) J. Biochem. (Tokyo) **112**, 780–785
14. Root, D. D., and Wang, K. (1994) Biochemistry **33**, 12581–12591
15. Mayer, B. J., and Baltimore, D. (1993) Trends Cell Biol. **3**, 8–13
16. Muschelli, A., Gibson, T., Lehto, V.-P., and Saraste, M. (1992) FEBS Lett. **307**, 55–61
Protein Chemistry and Structure:
Human Skeletal Muscle Nebulin Sequence
Encodes a Blueprint for Thin Filament
Architecture: SEQUENCE MOTIFS AND
AFFINITY PROFILES OF TANDEM
REPEATS AND TERMINAL SH3

Kuan Wang, Marie Knipfer, Qi-Quan Huang,
Ann van Heerden, Lillian Chi-Li Hsu,
Gustavo Gutierrez, Xiao-Lan Quian and
Hansel Stedman
J. Biol. Chem. 1996, 271:4304-4314.

Access the most updated version of this article at http://www.jbc.org/content/271/8/4304

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 59 references, 27 of which can be accessed free at
http://www.jbc.org/content/271/8/4304.full.html#ref-list-1