Evaluation of Antioxidant and Antimicrobial Activities of Ethanol Extracts of Three Kinds of Strawberries

Semeneh Seleshe¹, Jong Seok Lee², Sarah Lee², Hye Jin Lee², Ga Ryun Kim², Joohong Yeo², Jong Yea Kim³, and Suk Nam Kang¹

¹Department of Animal Resource, Daegu University, Gyeongbuk 38453, Korea
²National Institute of Biological Resources, Incheon 22689, Korea
³Department of Food Science and Biotechnology, Kangwon National University, Gangwon 24341, Korea

ABSTRACT: The antioxidant and antimicrobial activities of three kinds of strawberry ethanol extracts from Rubus corchorifolius L. f. (RCL), Rubus parvifolius L. var. parvifolius (RPL), and Duchesnea chrysantha Miq. (DCM) were investigated. The RPL was highest (P<0.05) in phenolic, flavonoid, and anthocyanin contents. 2,2-Diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activities of RPL and DCM extracts were higher than that of RCL (P<0.05). Hydrogen peroxide scavenging activity of RPL was high compared to DCM and RCL (P<0.05). RCL exhibited a significant (P<0.05) potent antioxidant activity in nitric oxide radical inhibition. Inhibition diameter zone (nearest mm) of extracts against the test bacteria ranged from 11.5 in RCL to 12.5 in DCM against Staphylococcus aureus, from 10.5 in RCL to 13.5 in DCM against Streptococcus pneumoniae, and from 8.5 in DCM to 10.5 in RCL against Escherichia coli, respectively. There was no inhibition against fungi Aspergillus niger and Candida albicans. Three of the extracts had the same minimum inhibitory concentration values of 12.50, 12.50, and 6.25 µg/mL against S. aureus, K. pneumoniae, and S. pneumoniae, respectively. On the other hand, MIC values of 12.50, 12.50, and 6.50 µg/mL were recorded for RPL, DCM, and RCL against E. coli, respectively. The result of present study revealed that extracts from three kinds of strawberries could be potential candidates as antioxidant and antimicrobial sources for functional food industries.

Keywords: strawberry, antioxidant, antimicrobial, NO inhibition, minimum inhibitory concentration

INTRODUCTION

Oxidation is one of the major causes of chemical spoilage, resulting in rancidity and/or deterioration of the nutritional quality, color, flavor, texture, and safety of foods (1). Hence, antioxidants have been widely used as food additives to provide protection against oxidative degradation of foods (2). The main characteristics of an antioxidant is its ability to trap free radicals (3). Antioxidants retard the progress of many chronic diseases as well as lipid peroxidation (4). A number of synthetic antioxidants have been added to foodstuffs but, because of toxicity issues (5) and their adverse reaction such as carcinogenicity (6), their use is being restricted (5). Attention has therefore been directed toward the development/isolation of natural antioxidants from botanical sources, especially edible plants that replace synthetic antioxidants. The spoilage and poisoning of foods by microorganisms is also a problem that has not yet been brought under adequate control despite the range of robust preservation techniques available. Alike the application of synthetic antioxidants in foods, consumers are increasingly avoiding foods prepared with preservatives of chemical origin, and natural alternatives are therefore needed to achieve sufficiently long shelf-life of foods and a high degree of safety with respect to foodborne pathogenic microorganisms (7). As a result, there has been an increasing interest in different medicinal and dietary plants for their antioxidant and antimicrobial potential because the antioxidant compounds are related to human health, as well as to pharmaceutical and food industries. It has been suggested that fruits, vegetables, and plants are the main source of antioxidants in the diet (8). Antioxidant compounds of plant sources like phenolic acids, polyphenols, and flavonoids scavenge free radicals such as peroxide, hydroperoxide, or lipid peroxyl and thus inhibit oxidation.
MATERIALS AND METHODS

Extract preparation
Dried samples of three kinds of strawberries were supplied by the National Institute of Biological Resources (Incheon, Korea). Each sample (100 g) was extracted with 1,000 mL of 70% ethanol at room temperature for 24 h. The extraction process was repeated three times. The extracted materials were filtered with Whatman No. 3 filter paper (Whatman International Ltd., Kent, UK), concentrated with a rotary evaporator (N-3000, Eyela, Tokyo, Japan), and freeze-dried using a freeze dryer (Biotron, Bucheon, Korea). The extracts were dissolved in dimethyl sulfoxide (DMSO) for analysis.

Measurement of total phenolic content
Total phenolic content was determined with the Folin-Ciocalteu reagent (Incheon, Korea). Each sample (100 g) was reacted with 2.5 mL of 0.2 mol/L Folin-Ciocalteu reagent for 4 min, and then 2 mL saturated sodium carbonate solution (about 75 g/L) was added into the reaction mixture. The absorbance readings were taken at 760 nm after incubation at room temperature for 2 h. Gallic acid was used as a reference standard, and the results were expressed as milligram gallic acid equivalent (mg GAE)/g dry weight.

Measurement of total flavonoid content
Total flavonoid was determined using the method of Meda et al. (19) with minor modifications. In brief, 0.25 mL of sample (1 mg/mL) was added to a tube containing 1 mL of double-distilled water. Next, 0.075 mL of 5% NaNO₂, 0.075 mL of 10% AlCl₃, and 0.5 mL of 1 M NaOH were added at 0, 5, and 6 min, sequentially. Finally, the volume of the reacting solution was adjusted to 2.5 mL with double-distilled water. The absorbance of the solution at a wavelength of 410 nm was detected using spectrophotometer (Ultrospec 2100 pro, Amersham Pharmacia Biotech Co., Piscataway, NJ, USA). Quercetin was used as a standard to quantify the total flavonoid content. Results were expressed in milligram quercetin equivalents (mg QE)/g dry weight.

Measurement of total anthocyanins
Total anthocyanin was measured using the pH differential method indicated by Giusti and Wrolstad (20). Two flasks were filled with 1 mL of extract each. The first flask was diluted with 4 mL of pH 1.0 buffer (potassium chloride, 0.025 M) and the second one diluted with pH 4.5 buffer (sodium acetate, 0.4 M), separately. Absorbance was measured at 520 and 700 nm in pH 1.0 and 4.5 buffers. A molar extinction coefficient of 26,900 L/cm/mol and a molecular weight of 449.2 were used for anthocyanin calculations. Results were expressed as mg of cyanidin 3-glucoside equivalents (mg CE) per g dry weight.

2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity
The free radical scavenging activity of samples (0.05 to 1 mg/mL in DMSO) was measured using the method of Brand-Williams et al. (21) with some modifications. L-ascorbic acid was used as a standard. The inhibition percentage was calculated from the following equation:

\[\% \text{Inhibition} = \frac{A_0 - A_1}{A_0} \times 100 \]

where \(A_0 \) is the absorbance of the control and \(A_1 \) is the absorbance of the sample and the standard compound.

The radical scavenging activity of the tested samples is expressed as the IC₅₀ value. The absorbance was measured by a spectrophotometer at 517 nm.

2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay
The ABTS radical scavenging was conducted using the method indicated by Re et al. (22). Briefly, the ABTS radical cation (ABTS⁺) was produced by reacting 7 mM stock solution of ABTS with 2.45 mM potassium persulfate
and allowing the mixture to stand in the dark, at room temperature, for 12 h before use. The ABTS\(^+\) solution was diluted with methanol to an absorbance of 0.70±0.02 at 734 nm. Next, 2.85 mL of this ABTS\(^+\) solution was added to 0.15 mL of different concentrations of the samples, and the decrease in absorbance at 734 nm was observed after mixing for up to 10 min. The radical scavenging activity of the tested samples is expressed as the IC\(_{50}\) value. The percentage inhibition of ABTS\(^+\) was calculated using the formula:

\[
\text{% Inhibition} = \frac{A_0 - A_1}{A_0} \times 100
\]

where \(A_0\) is the absorbance of the control and \(A_1\) is the absorbance of the sample and the standard compound.

Nitric oxide (NO) scavenging assay

NO radical inhibition was estimated by the Griess Ilosvay reaction according to Hyoung (23) with slight modifications. Briefly, Griess Ilosvay reagent was modified using naphthyl ethylene diamine dihydrochloride (0.1% w/v) instead of 1-naphthylamine (5%). The reaction mixture (3 mL) containing sodium nitroprusside (10 mM, 2 mL), phosphate buffer saline (0.5 mL), and the extract (0.2 ~ 1.0 mg/mL) were incubated at 25°C for 150 min. After incubation, 0.5 mL of the reaction mixture was mixed with 1 mL sulfanilic acid reagent (0.33% in 20% glacial acetic acid) and allowed to stand for 5 min for completion of the reaction process of diazotization. Then, 1 mL of naphthyl ethylene diamine dihydrochloride was added, mixed and was allowed to stand for 30 min at 25°C. The absorbance was measured at 546 nm. Butylated hydroxyanisole was used as a standard. The percent inhibition was calculated using the formula:

\[
\text{Scavenging effect (\%) = } \frac{A_0 - A_1}{A_0} \times 100
\]

where \(A_0\) is the absorbance of the control and \(A_1\) is the absorbance of the sample and the standard compound.

Antimicrobial test using the disc diffusion method

The samples were dissolved in DMSO and filtered through 0.45 μm Millipore membrane filters. The microbial strains used in the experiment were purchased as lyophilized samples from the Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea. Gram-positive bacteria [Staphylococcus aureus subsp. aureus (KCTC 1929) and Streptococcus pneumoniae (KCTC 5412)], Gram-negative bacteria [Klebsiella pneumoniae subsp. pneumoniae (KCTC 2208) and Escherichia coli (KCTC 1682)], and fungi [Aspergillus niger (KCTC 6971) and Candida albicans (KCTC 7007)] were used for antimicrobial tests of the extracts. The obtained strains were inoculated with tryptase soy broth and incubated at 37°C for 24 h. The antimicrobial test was then carried out using the disc diffusion method by Bauer et al. (24). One hundred μL of each bacterial suspension contained 10\(^5\) CFU/mL, and each fungal culture was standardized to 10\(^5\) CFU/mL and was spread on nutrient agar medium. Then, 10 to 80 μL (with 10 mg/mL stock samples) per disk was impregnated into 8 mm diameter sterile discs (Toyo Roshi Kaisha, Ltd., Tokyo, Japan), and the disks were allowed to dry for 24 h in the dark at room temperature. The impregnated discs were placed on the inoculated agar and incubated at 37°C for 24 h for clinical bacterial strains and 96 h for fungal strains. Antimicrobial activity was evaluated by measuring the zone of inhibition against the tested organisms. Each assay in this experiment was repeated two times.

Determination of the minimum inhibitory concentration (MIC)

The MIC values were defined as the lowest concentration of the extracts that inhibited the growth of the micro-organism. MIC of extracts was evaluated with resazurin based microtiter dilution assay as follow: under aseptic conditions, 96 well microtitre plates (Tarsons Products Pvt. Ltd., Kolkata, India) were used, and the first wells of the microtiter plate were filled with 100 μL of test materials (from 1,000 μg/mL extract stock solution). The 2nd to 10th wells of the microtitre plates were filled with 50 μL of sterile water. Two fold serial dilution (throughout 2nd to 10th wells) was achieved by transferring 50 μL test material from the first wells to the subsequent wells (the next well) of the same row so that each well had 50 μL of test material in serially descending concentrations. From the 10th wells, 50 μL was removed. The working solution of extracts (100 μg/mL) was diluted out across a 96-well in a two-fold serial dilution to give final testing concentrations of 50, 25, 12.5, 6.25, 3.12, 1.56, 0.78, 0.39, 0.195, and 0.098 μg/mL. Each microtiter plate had a set of 2 controls: (a) a control with test organism without test extract as positive control (11th wells) and (b) a control with all solutions except test organism (12th wells) to confirm that no contamination occurred while preparing the plate. Then, a volume of 20 μL was taken from bacterial and fungal suspensions (test organisms) and added to each well. The plates were incubated in a temperature controlled incubator at 37°C for 24 h for bacteria and 48 h for fungi. After the period of incubation, 80 μL resazurin dyes was added and re-incubated for 2 h for color development. Finally, the color change in the well was observed visually. The inhibitory concentration was indicated by the blue coloration of the wells following the addition of resazurin. A change of color from blue to red indicated the
The health benefits attributed to polyphenols in the diet have stimulated research to investigate the total antioxidant activity of different fruits and vegetables. Strawberries are a good source of dietary antioxidants (25). In this research, as shown in Table 1, the ethanolic extracts from three different kinds of strawberries showed significant differences in their total polyphenolic, flavonoid, and total anthocyanin contents (P<0.05). It is known that phenolic compounds are important plant constituents because of their free radicals scavenging ability facilitated by their hydroxyl group, and the total phenolic concentration could be used as basis for rapid screening of antioxidant activity (26). Of the three different kinds of strawberries extracts, a significant (P<0.05) total phenolic content was found in RPL extract; in their total polyphenolic content, extracts were ranked as follows: RPL (123.95 mg GAE/g)> DCM (36.44 mg CE/g)> RCL (24.56 mg CE/g). The extract from RPL had the highest (P<0.05) amount of antioxidants compared to RCL and DCM (Table 1).

RESULTS AND DISCUSSION

Total phenolic, total flavonoid, and total anthocyanin contents of extracts

The health benefits attributed to polyphenols in the diet have stimulated research to investigate the total antioxidant activity of different fruits and vegetables. Strawberries are a good source of dietary antioxidants (25). In this research, as shown in Table 1, the ethanolic extracts from three different kinds of strawberries showed significant differences in their total polyphenolic, flavonoid, and total anthocyanin contents (P<0.05). It is known that phenolic compounds are important plant constituents because of their free radicals scavenging ability facilitated by their hydroxyl group, and the total phenolic concentration could be used as basis for rapid screening of antioxidant activity (26). Of the three different kinds of strawberries extracts, a significant (P<0.05) total phenolic content was found in RPL extract; in their total polyphenolic content, extracts were ranked as follows: RPL (123.95 mg GAE/g)> DCM (36.44 mg CE/g)> RCL (24.56 mg CE/g). The extract from RPL had the highest (P<0.05) amount of antioxidants compared to RCL and DCM (Table 1).

Antioxidant activity of extracts

The DPPH radical and ABTS radical cation scavenging assays are widely used to determine the radical scavenging ability of samples (21,22). Therefore, the radical scavenging activities of ethanol extracts of strawberries were determined by these assays. Extracts had a similar trend of antioxidant activities under three concentrations levels (200, 100, and 50 µg/mL) used. Ethanolic extracts from three kinds of strawberries were significantly (P<0.05) different in their DPPH radical scavenging activities (Table 1). In the presence of 200 µg/mL concentration, the free DPPH radical inhibitions of extracts were ranked as follows: DCM (86.65%)> RPL (85.67%)> RCL (80.70%). The IC_{50}, the concentration of extract required to inhibit 50% of the initial DPPH radical, was found to be 79.67±0.06 µg/mL for RPL, 80.80±1.19 µg/mL for DCM, and 93.12±0.14 µg/mL for RCL. The IC_{50} values for ABTS radical scavenging activity were 70.57±1.66 µg/mL for RPL, 79.67±0.06 µg/mL for DCM, and 75.80±0.63 µg/mL for RCL.

Table 1. Total polyphenol, flavonoid, and anthocyanin contents of ethanol extracts from different kinds of strawberries

	RCL	RPL	DCM
Total polyphenol (mg GAE/g)	123.95±3.24^a	177.11±3.94^a	118.91±3.20^c
Total flavonoid (mg CE/g)	11.44±0.42^c	26.09±2.36^a	20.47±0.14^b
Total anthocyanin (mg QE/g)	24.56±4.02^c	66.00±5.31^a	36.44±3.80^b

Data represent mean±standard deviation. Different letters (a-c) within the row indicate significant differences at P<0.05. RCL, Rubus corchorifolius L.; RPL, Rubus parvifolius L. var. parvifolius; DCM, Duchesnea chrysantha Miq. GAE, gallic acid equivalent; QE, quercetin equivalent; CE, cyanidin-3-glucoside equivalent.

Table 2. Antioxidant capacities and nitric oxide (NO) inhibition of ethanol extracts from different kinds of strawberries (unit: %)

Con. (µg/mL)	RCL	RPL	DCM
DPPH			
200	80.70±0.64^a	85.67±0.17^a	86.65±0.09^a
100	74.37±3.00^a	79.67±0.06^a	80.80±1.19^a
50	49.16±2.59^a	47.39±1.54^a	48.66±1.29^a
ABTS			
200	88.51±4.52^a	93.12±0.14^a	93.06±0.07^a
100	74.37±3.00^a	79.67±0.06^a	80.80±1.19^a
50	49.16±2.59^a	47.39±1.54^a	48.66±1.29^a
NO inhibition			
1,000	68.11±0.74^b	63.07±0.99^b	62.28±0.59^b
500	50.24±1.97^b	40.99±1.66^b	42.80±0.90^b
250	38.38±0.35^b	26.73±2.07^b	22.83±1.45^c

Data represent mean±standard deviation. Different letters (a-c) within the row indicate significant differences at P<0.05. DPPH, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity; ABTS, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activity. RCL, RPL, and DCM are described in Table 1.
The IC₅₀ of antioxidant capacities of ethanol extracts from different kinds of strawberries (unit: µg/mL) are shown in Table 3. The IC₅₀ values of the standard (Ascorbic acid) were 8.84, 49.73, 51.38, and 53.86 µg/mL, respectively (Table 3). NO is a diffusible free radical, which plays many important roles as an effector molecule in diverse biological systems including vasodilation, neuronal messenger, and antimicrobial and antitumor activities (29). The result for NO radical scavenging activity of three kinds of strawberries is presented in Table 2. Extracts had significant differences (P<0.05) in their NO radical scavenging activity; among the three types of extracts, RCL had the highest scavenging activity at 1 mg/mL sample concentration. The NO radical scavenging ability (percentage) of extracts were ranked in descending order as follows: RCL (68.11%) > RPL (63.07%) > DCM (62.28%).

Disc diffusion antimicrobial activity of extracts

In present study, the antibacterial activity of extracts from three kinds of strawberries against four strains of bacteria; two Gram-positive (S. aureus and S. pneumoniae) and two Gram-negative (K. pneumoniae and E. coli) were evaluated using the disc diffusion assay. The inhibitory activity examined was at four concentration levels of samples: 800, 400, 200, and 100 µg/disc as shown in Table 4. The inhibitory activity of extracts showed a similar trend at different concentrations for the same test organisms, and their effectiveness increased as the sample concentration increased from 200 µg/disc. At the lowest concentration of 100 µg/disc, the extracts exhibited no inhibition for all test organisms. A comparison of the inhibitory effect among samples was done with 800 µg/mL concentration. Extracts from three kinds of strawberries exhibited potent antimicrobial activity against Gram-pos-

Table 3. IC₅₀ of antioxidant capacities of ethanol extracts from different kinds of strawberries (unit: µg/mL)

Standard (Ascorbic acid)	RCL	RPL	DCM	
DPPH	52.80±3.23¹	46.69±4.21¹	67.85±1.32²	1.64±0.38²
ABTS	53.86±5.13³	51.38±1.11³	49.73±1.12³	8.64±0.67³

Data represent mean±standard deviation.
Different letters (a-d) within the row indicate significant differences at P<0.05.
DPPH, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity; ABTS, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activity.

Table 4. The antimicrobial activities of ethanol extracts from different kinds of strawberries against 6 microorganisms

Con. (µg/disc)	SA	SP	KP	EC	AN	CA
RCL						
800	11.52±0.35⁵	10.51±0.71⁵	10.02±0.01⁵	10.52±0.31⁵	8.00±0.00	8.00±0.00
400	10.01±0.35⁵	9.04±0.35⁵	9.54±0.01⁵	10.03±0.30⁵	8.00±0.00	8.00±0.00
200	9.00±0.01⁵	9.01±0.71⁶	9.03±0.35⁶	9.53±0.02⁵	8.00±0.00	8.00±0.00
100	8.00±0.01	8.00±0.00	8.00±0.00	8.00±0.00	8.00±0.00	8.00±0.00
RPL						
800	12.03±0.21⁶	12.52±0.56⁶	10.01±0.25⁶	9.50±0.56⁶	8.00±0.00	8.00±0.00
400	10.53±0.15⁶	11.52±0.62⁶	10.00±0.04⁶	9.03±0.32⁶	8.00±0.00	8.00±0.00
200	10.01±0.05⁶	10.02±0.12⁶	10.05±0.24⁶	8.05±0.42⁶	8.00±0.00	8.00±0.00
100	8.00±0.00	8.00±0.00	8.00±0.00	8.00±0.00	8.00±0.00	8.00±0.00
DCM						
800	12.51±0.35⁶	13.51±0.18⁶	10.03±0.08⁶	8.53±0.08⁶	8.00±0.00	8.00±0.00
400	11.53±0.62⁶	12.03±0.52⁶	10.02±0.38⁶	8.51±0.04⁶	8.00±0.00	8.00±0.00
200	9.53±0.43⁶	10.02±0.16⁶	10.01±0.46⁶	8.00±0.00⁷	8.00±0.00	8.00±0.00
100	8.00±0.00	8.00±0.00	8.00±0.00	8.00±0.00	8.00±0.00	8.00±0.00

Data represent mean±standard deviation.
Means in column (a-c) are significant different within the same concentration and microorganism.
Means in row (A-D) are significant different with the different microorganisms within the same concentration.
RCL, RPL, and DCM are described in Table 1.
SA, Staphylococcus aureus; SP, Streptococcus pneumoniae; KP, Klebsiella pneumoniae; EC, Escherichia coli; AN, Aspergillus niger; CA, Candida albicans.
itive bacteria, S. aureus, and the inhibitory activity was significantly different (P<0.05) from other bacteria. It is known that S. aureus is one of the most common Gram-positive bacteria causing food poisoning. Its source is not food itself but humans who contaminate foods after they have been processed (7). Extracts from three kinds of strawberries affected this bacterium. Based on their effectiveness, they can be ranked as DCM> RPL> RCL with zone of inhibition of 12.5, 12.0, and 11.5 mm, respectively. Similarly, the extracts were found to possess high antimicrobial activity against Gram-positive S. pneumoniae and were significantly (P<0.05) varying in their antimicrobial activities. From three kinds of strawberry extracts, DCM and RPL had a significant (P<0.05) powerful inhibitory activity against S. pneumoniae compared to RCL with 13.5, 12.5, and 10.5 mm zone of inhibition, respectively. S. pneumoniae or Streptococcus pneumoniae, is a member of the genus Streptococcus. This Gram-positive bacteria is α-hemolytic and a bile soluble aerotolerant anaerobe (30). Extracts significantly differed (P<0.05) in the inhibitory effect against the two Gram-negative bacteria tested. Three kinds of strawberry extracts had the same inhibitory effect against K. pneumoniae with 10 mm zone of inhibition. The inhibition effect of extracts against E. coli was also significantly varying (P<0.05) from one to another. Based on their inhibitory effect, extracts can be ranked as RCL> RPL> DCM having the zone of inhibition of 10.5, 9.5, and 8.5 mm, respectively. In the present study, extracts were observed to have a more potent inhibitory activity against Gram-positive bacteria than Gram-negative and were inactive against fungi. This finding is agreement with previous studies conducted on different plants for antimicrobial activity (31,32). The reason for the difference in sensitivity between Gram-positive and Gram-negative bacteria may be related to their cell wall structure. The resistance of Gram-negative bacteria towards antibacterial substances may be due to the outer phospholipidic membrane carrying structural lipopolysaccharide components of a selective barrier to the hydrophilic solution (33). The antifungal effect of extracts was tested against two fungi strains, A. niger and C. albicans, and the results are shown in Table 4. Extracts from three kinds of strawberries did not have inhibitory activity against the tested fungi; this calls for further study using concentrations above 800 µg/disc which was used in the present study. Based on the antimicrobial activity results of the present study, it can be suggested that extracts from RCL, RPL, and DCM can be beneficial candidates as antibacterial sources for functional food industries. Moreover, their inhibitory activity was specially promising for potential against Gram-positive bacteria, S. pneumoniae and S. aureus.

MIC of extracts

In microbiology, the MIC is the lowest concentration of an antimicrobial (like an antifungal, antibiotic, or bacteriostatic) drug that will inhibit the viable growth of a microorganism after overnight incubation (34). The MICs for strawberry extracts against the examined bacterial strains and fungi are presented in Table 5. All three kinds of strawberry extracts (RPL, DCM, and RCL) exhibited marked antimicrobial potential after determining their MIC against the tested bacteria. The results showed that MIC of different extracts of strawberry against bacterial strains ranged from 6.25 µg/mL to 12.5 µg/mL and no inhibition was observed for fungi up to the highest concentration, 50 µg/mL. In this study, the extracts from RPL, DCM, and RCL had the same growth inhibitory activity for the two Gram-positive bacteria, S. pneumoniae and S. aureus, with MIC values of 6.25 and 12.5 µg/mL, respectively. MICs are defined as the lowest concentration of antimicrobial that will inhibit the visible growth of a micro-organism after overnight incubation. S. pneumoniae was found to be more susceptible to the action of all three kinds of strawberries; this bacterium can be inhibited with RPL, DCM, and RCL extracts at the same MIC values of 6.25 µg/mL concentration. Comparing the MIC values of extracts, the lowest value for the Gram-negative bacteria, E. coli, was exhibited by the RCL sample at 6.25 µg/mL concentration. Extracts from RPL and

Table 5. Minimum inhibitory concentration (MIC) values of ethanol extracts from different kinds of strawberries against 6 microorganisms

Test organisms	MIC (µg/mL)		
	RPL	DCM	RCL
Staphylococcus aureus	12.50±0.08	12.50±0.06	12.50±0.12
Streptococcus pneumoniae	6.25±0.25	6.25±0.12	6.25±0.08
Escherichia coli	12.50±0.24	12.50±0.06	6.25±0.24
Klebsiella pneumoniae	12.50±0.06	12.50±0.24	12.50±0.06
Aspergillus niger	>50.00	>50.00	>50.00
Candida albicans	>50.00	>50.00	>50.00

Data represent mean±standard deviation.
RCL, RPL, and DCM are described in Table 1.
>50: Inhibition is not found until up to 50 µg/mL.
DCM had the same MIC of 12.5 μg/mL for E. coli. For the other Gram-negative bacteria, K. pneumoniae, all three kinds of strawberries exhibited the same MIC values of 12.5 μg/mL of extracts. In the present study, the MIC values at 6.25 μg/mL concentration could be achieved against S. pneumoniae by the three extracts and against E. coli from RCL extract. For two bacteria strains, S. aureus and K. pneumoniae, the three extracts could exhibit the same MIC values at 12.5 μg/mL concentrations. The difference in MIC of extracts against different strains of bacteria is indicative of the importance of selecting specific kinds of strawberry extracts for target bacteria. For fungi, it was not possible to determine MIC values, due to the absence of, or only weak, antifungal activities.

The difference in MIC of extracts against different strains is indicative of the importance of selecting specific kinds of strawberry extracts for target bacteria. For fungi, it was not possible to determine MIC values, due to the absence of, or only weak, antifungal activities. Up to 50 μg/mL samples concentration used in the current study. However, extracts could have MIC values as the concentrations get stronger.

ACKNOWLEDGEMENTS

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR201628101).

AUTHOR DISCLOSURE STATEMENT

The authors declare no conflict of interest.

REFERENCES

1. Antolovich M, Prenzler PD, Patalsides E, McDonald S, Robards K. 2002. Methods for testing antioxidant activity. Analyst 127: 183-198.
2. Gülcin I, Berashvili D, Geptiremen A. 2005. Antiradical and antioxidant activity of total anthocyanins from Perilla pankinesis decne. J Ethnopharmacol 101: 287-293.
3. Wu YY, Li W, Xu Y, Jin EH, Tu YY. 2011. Evaluation of the antioxidant effects of four main theaflavin derivatives through chemiluminescence and DNA damage analyses. J Zhejiang Univ Sci B 12: 744-751.
4. Kinsella JE, Frankel E, German B, Kanner J. 1993. Possible mechanisms for the protective role of antioxidants in wine and plant foods. Food Technol 47: 85-89.
5. Valentão P, Fernandes E, Carvalho F, Andrade PB, Seabra RM, Bastos ML. 2002. Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorous acid. J Agric Food Chem 50: 4989-4993.
6. Anbudhasan P, Surendraraj A, Karkuzhali S, Sathishkumar S. 2014. Natural antioxidants and its benefits. Int J Food Nutr Sci 3: 225-232.
7. Rauha JP, Remes S, Heinonen M, Hopia A, Kähkönen M, Kujala T, Pihlaja K, Vuorela H, Vuorela P. 2000. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 56: 3-12.
8. Sravani T, Paarakh PM. 2012. Antioxidant activity of Hedychium spicatum Buch.-Ham rhizomes. Indian J Nat Prod Resour 3: 354-358.
9. Nascimento GGF, Locatelli J, Freitas PC, Silva GL. 2000. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz J Microbiol 31: 247-256.
10. Janssen AM, Scheffer JJ, Baerheim Swendsen A. 1987. Antimicrobial activity of essential oils: a 1976-1986 literature review. Aspects of the test methods. Planta Med 40: 395-398.
11. Saxena G, McCutcheon AR, Farmer S, Towers GHN, Hancock REW. 1994. Antimicrobial constituents of Rhus glabra. J Ethnopharmacol 42: 95-99.
12. Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J. 2015. Bioactive compounds and antioxidant activity in different types of berries. Int J Mol Sci 16: 24673-24706.
13. The World’s Healthiest Foods. 2017. Strawberries. http://whfoods.org/genpage.php?tname=foodspice&dbid=32 (accessed Jan 2017).
14. Aaby K, Ekeberg D, Skrede G. 2007. Characterization of phenolic compounds in strawberry (Fragaria x ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J Agric Food Chem 55: 4395-4406.
15. Buendía B, Gil MI, Tudela JA, Gady AL, Medina JJ, Soria C, López JM, Tomás-Barberán FA. 2010. HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry cultivars. J Agric Food Chem 58: 3916-3926.
16. Oliveira I, Coelho V, Baltasar R, Pereira JA, Baptista P. 2009. Scavenging capacity of strawberry leaf (Arbutus unedo L) leaves on free radicals. Food Chem Toxicol 47: 1507-1511.
17. Meyers KJ, Watkins CB, Pritts MP, Liu RH. 2003. Antioxidant and antiproliferative activities of strawberries. J Agric Food Chem 51: 6887-6892.
18. Singleton VL, Rossi JR. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158.
19. Meda A, Lamien CE, Romito M, Millogo J, Nacoumal GA. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem 91: 571-577.
20. Giusti MM, Wrolstad RE. 2001. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Current Protocols in Food Analytical Chemistry. Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Smith DM, Sporns P, eds. John Wiley & Sons, New York, NY, USA. p 1-13.
21. Brand-Williams W, Cuvelier ME, Berse C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28: 25-30.
22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237.
23. Lee HS. 1992. Antioxidative activity of browning reaction products isolated from storage-aged orange juice. J Agric Food Chem 40: 550-552.
24. Bauer AW, Kirby WM, Sherris JC, Turck M. 1996. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45: 493-496.
25. Sun J, Chu YF, Wu X, Liu RH. 2002. Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 50: 7449-7454.
26. Yi O, Jovel EM, Towers GH, Wahbe TR, Cho D. 2007. Antioxidant and antimicrobial activities of native Rosa sp. from British Columbia, Canada. Int J Food Sci Nutr 58: 178-189.
27. Miliauskas G, Venskutonis PR, van Beek TA. 2004. Screening of radical scavenging activity of some medicinal and aromatic...
plant extracts. Food Chem 85: 231-237.

28. Prior RL, Wu X, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53: 4290-4302.

29. Kalola J, Sha MB. 2006. Free radical scavenging activity of Inula capsa. Ars Pharmaceutica 47: 385-401.

30. Dagan R. 2000. Treatment of acute otitis media—challenges in the era of antibiotic resistance. Vaccine 19: S9-S16.

31. Rabanal RM, Arias A, Prado B, Hernández-Pérez M, Sánchez-Mateo CC. 2002. Antimicrobial studies on three species of Hypericum from the Canary Islands. J Ethnopharmacol 40: 287-292.

32. Pereira JA, Oliveira I, Sousa A, Valentão P, Andrade PB, Ferreira IC, Ferreres F, Bento A, Seabra R, Estevinho L. 2007. Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem Toxicol 45: 2287-2295.

33. Nikaido H, Vaara M. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49: 1-32.

34. Boundless Microbiology. 2016. Measuring Drug Susceptibility. https://www.boundless.com/microbiology/textbooks/boundless-microbiology-textbook/antimicrobial-drugs-13/measuring-drug-susceptibility-157/minimal-inhibitory-concentration-mic-790-10813/ (accessed Dec 2016).