ASSOCIAÇÃO DOS POLIMORFISMOS RS2435357 E RS1800858 NO PROTO-ONCOGENE RET COM DOENÇA DE HIRSCHSPRUNG: REVISÃO SISTEMÁTICA E METANÁLISE

Abdolhamid AMOOEE1, Mohamad Hosein LOOKZADEH2, Seyed Reza MIJRALIL1, Seyed Mohsen MIRESMAEILI1, Kazem AGHIL1, Masoud ZARE-SHEHNEH2, Hossein NEAMATZADEH3

Trabalho realizado no 1Shahid Sadoughi University of Medical Sciences, General Surgery; 2Shahid Sadoughi University of Medical Sciences, Pediatrics; 3Science and Art University, Biology; 4Shahid Sadoughi University of Medical Sciences, Radiology; 5Shahid Sadoughi University of Medical Sciences, Medical Genetics, Yazd, Yazd, Iran

ABSTRACT - Introduction: Many published studies have estimated the association of rs2435357 and rs1800858 polymorphisms in the proto-oncogene rearranged during transfection (RET) gene with Hirschsprung disease (HSCR). However, the results remain inconsistent and controversial. Aim: To perform a meta-analysis get a more accurate estimation of the association of rs2435357 and rs1800858 polymorphisms in the RET proto-oncogene with HSCR risk. Methods: The eligible literatures were searched by PubMed, Google Scholar, EMBASE, and Chinese National Knowledge Infrastructure (CNKI) up to June 30, 2018. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the susceptibility to HSCR.

Results: A total of 20 studies, including ten (1,136 cases 2,420 controls) for rs2435357 and ten (917 cases 1,159 controls) for rs1800858 were included. The overall results indicated that the rs2435357 (allele model: OR=0.230, 95% CI 0.178-0.298, p=0.001; homozygote model: OR=0.079, 95% CI 0.048-0.130, p=0.001; dominant model: OR=0.132, 95% CI 0.098-0.179, p=0.001 and recessive model: OR=0.239, 95% CI 0.161-0.353, p=0.001) and rs1800858 (allele model: OR=5.594, 95% CI 3.608-10.381, p=0.001) polymorphisms were associated with the increased risk of HSCR in overall. Conclusions: The results suggest that the rs2435357 and rs1800858 polymorphisms in the RET proto-oncogene might be associated with HSCR risk.

RESUMO - Introdução: Muitos estudos publicados estimaram a associação dos polimorfismos rs2435357 e rs1800858 no proto-oncogene rearranged durante a transfeccção (RET) com o risco de doença por Hirschsprung (HSCR). No entanto, os resultados permanecem inconsistentes e controversos. Objetivo: Realizar metanálise para obter estimativa mais precisa da associação dos polimorfismos rs2435357 e rs1800858 no proto-oncogene RET com risco de HSCR. Método: A literatura elege foi pesquisada pelo PubMed, Google Scholar, EMBASE e CNKI até 30 de junho de 2018. Resultados: Um total de 20 estudos, incluindo dez (1.136 casos 2.420 controles) para rs2435357 e dez (917 casos 1.159 controles) para rs1800858 foram incluídos. Os resultados globais indicaram que o rs2435357 (modelo alelo: OR=0.230, IC 95% 0.178-0.298, p=0.001; modelo homozigoto: OR=0.079, IC 95% 0.048-0.130, p=0.001; modelo dominante: OR=0.132, IC 95% 0.098-0.179, p=0.001 e modelo recessivo: OR=0.239, IC 95% 0.161-0.353, p=0.001) e rs1800858 (modelo alelo: OR=5.594, IC 95% 3.653-8.877, p=0.001; modelo homozigoto: OR=8.453, IC 95% 3.783-18.890, p=0.001; modelo dominante: OR=3.469, IC 95% 1.881-6.396, p=0.001 e modelo recessivo: OR=6.120, IC 95% 3.608-10.381, p=0.001) polimorfismos foram associados com o aumento do risco de HSCR em geral. Conclusões: Os resultados sugerem que os polimorfismos rs2435357 e rs1800858 no proto-oncogene RET podem estar associados ao HSCR.
MÉTODO

Estratégia de pesquisa da literatura
Foi realizada uma pesquisa bibliográfica abrangente utilizando PubMed, EMBASE, Google scholar, banco de dados chinês de biomédica, Wanfang e VIP para identificar todos os estudos elegíveis avaliando a associação dos polimorfismos Rs2435357 e rs1800858 com o risco de PCR até junho 30, 2018. As palavras-chave foram as seguintes: ("Doença de Hirschsprung" OU "HSCR" OR "mégaocolon congênito") E ("Reorganizar de transfeição" OR "RET Proto-oncogene " OU "Proto-Oncogene C-Ret" OU "gene RET" OU "Membro da Família Relacionada com Caderina 16" OR "Membro da Família Caderina 12") AND (["rs1800858" OR "c.135G>A" OU "Ala45Ala") E ("rs2435357" OU "IVS1+9277C>T" OR "c.73+9277C>T") AND ("polimorfismo" OR "SNPs"OR "variação" OR "locus") E ("mutation"). A pesquisa foi limitada a estudos humanos e estudos publicados. Além disso, a lista de referências de estudos relevantes de caso-controle e revisões foram manualmente pesquisadas para identificar quaisquer estudos elegíveis adicionais. Se dois ou mais estudos tivessem dados iguais ou sobrepostos, apenas o estudo com a maior amostra ou o estudo publicado mais recentemente foi incluído na meta-análise.

Coleção de dados
Os dados dos estudos publicados relevantes foram extraídos independentemente por dois dos autores e digitados em um questionário personalizado. Em seguida, os dados extraídos foram comparados e os desacordos foram resolvidos por meio de discussão entre os dois pesquisadores. Para cada estudo elegível, os seguintes dados foram extraídos: nome do primeiro autor, ano de publicação, país de origem, etnia, métodos de genotipagem, fonte de controles (base populacional e hospitalar), números de casos e controles, frequência genotípica de SNPs, frequência alélica menor nos controles e equilíbrio de Hardy-Weinberg (HWE) nos controles. A etnia foi dividida em asiáticos e caucasianos ou outros. Além disso, estudos foram considerados em diferentes populações como estudantes independentes.

Critérios de inclusão e exclusão
Os estudos selecionados foram incluídos na meta-análise se atendessem aos seguintes critérios: 1) estudos caso-controle ou coorte; 2) avaliar a associação dos polimorfismos rs2435357 e rs1800858 do gene RET com a susceptibilidade à HSCR; 3) estudos com dados suficientes para realizar uma meta-análise. Assim, estudos com as seguintes características foram excluídos: 1) não caso-controle ou coorte; 2) sem população controle; 3) estudos com dados insuficientes disponíveis ou ausência de dados de distribuição de genótipos; 4) resumos, comentários, relatos de casos, cartas, editoriais, revisões e revisões sistemáticas; 5) estudos publicados contendo dados duplicados.

Análise estatística
A força da associação dos polimorfismos rs2435357 e rs1800858 do RET com o risco de HSCR foi medida por odds ratios (OR) com intervalos de confiança de 95% (IC). A significância estatística do resumo OR foi determinada usando o teste Z. Foram utilizados cinco modelos para avaliar as associações dos polimorfismos rs2435357 e rs1800858 do RET com o risco de HSCR incluindo: modelo de alelo (B vs. A), modelo homozigoto (BB vs. AA), modelo heterozigótico (BB vs. BA), modelo dominante (BB + BA vs. AA) e modelo recessivo (BB vs. AA + BA). A heterogeneidade entre os estudos foi avaliada pelo teste Q baseado no qui-quadrado, em que um valor de p menor que <0,05 foi considerado uma heterogeneidade óbvia. Além disso, o valor de I² foi utilizado para testar o grau de heterogeneidade, em que I² <25%, sem heterogeneidade; I² 25-50%, heterogeneidade moderada; I² >50%, heterogeneidade grande e extrema. O modelo de efeitos fixos foi usado para agrupar as OR e 95% de intervalo confidencial (IC) quando não houve heterogeneidade significativa. Caso contrário, o modelo de efeitos aleatórios (o método DerSimonian e Laird) foi usado. O equilíbrio de Hardy-Weinberg foi avaliado pelo teste qui-quadrado de ajuste de bondade. Uma análise de sensibilidade foi realizada principalmente pela omissão de um único estudo de cada vez para avaliar a estabilidade das RUP agrupadas obtidas. Além disso, análises de sensibilidade foram realizadas por omissão de estudos violadores de HWE. O possível viés de publicação foi estimado pelo gráfico de funnel, no qual o erro padrão de log (OR) de cada estudo foi plotado contra seu log (OR). Além disso, a asymetria do gráfico de funnel foi posteriormente avaliada pelo método do teste de regressão linear de Egger, no qual p <0,05 foi considerado um viés de publicação significativo. A qualidade dos dados genotípicos foi estimada pelo equilíbrio de Hardy-Weinberg (HWE) e estudos de baixa qualidade desviados do HWE foram excluídos na análise de sensibilidade. Todos os testes desta meta-análise foram realizados com o software Comprehensive meta-analysis CMA (versão 2.0; College Station, TX). Valores de p <0,05 foram considerados estaticamente significativos. A aproximação ética não foi necessária, uma vez que se tratava de uma metaanálise baseada em estudos anteriores, e sem a entrega direta de dados pessoais ou o recrutamento de participantes.

RESULTADOS

Características do estudo
Após a pesquisa on-line de vários bancos de dados, 131 publicações potencialmente relevantes foram recuperadas. Conforme mostrado na Figura 1, após excluir as duplicatas, 89 publicações foram mantidas. Dentre eles, 69 foram excluídas por serem irrelevantes, revisões/resumos, não sobre seres humanos, ou não publicadas em inglês. Finalmente, 20 estudos caso-controle, incluindo nove com 1.136 casos de HSCR 2.420 controles para rs2435357 [1,14,19,27,30,42,41,42] e dez com 917 casos de HSCR 1.159 controles para rs1800858 [1,3,10,12,13,14,16,34,37,39] foram
As características de cada estudo estão resumidas na Tabela 1. Entre os 18 de caso-controle, 14 foram realizados em asiáticos e quatro em caucasianos. Todos incluídos foram publicados entre 2003 e 2017. O tamanho da amostra dos casos da HSCR variou de 16 a 362. Os métodos de genotipagem utilizados incluíram PCR, PCR-RFLP, ensaio TaqMan e PCR-HRM. Quatorze correspondências para os controles foram baseados na população, dois foram hospitalares e dois não declararam. Todos os estudos mostraram que a distribuição dos genótipos no grupo controle estava de acordo com o EHW (p<0,05), com exceção de dois estudos para polimorfismos rs2435357 e dois para rs1800858.

Síntese de dados quantitativos

rs2435357

A Tabela 2 listou os principais resultados da metanálise do polimorfismo rs2435357 no proto-oncogene RET e risco de HSCR. Agrupamos todos os dez estudos de caso-controle para avaliar a associação global do polimorfismo rs2435357 com o risco de HSCR. A análise global combinada sugere associação significativa entre o polimorfismo rs2435357 e o risco de HSCR nas estimativas gerais em todos os cinco modelos genéticos, isto é, alelo (C vs. T: OR = 0,230, IC 95% 0,178-0,298, p=0,001; Figura 2A), homozigoto (CC vs. TT: OR = 0,079, IC 95% 0,048-0,130, p=0,001); heterozigoto (CT vs. TT: OR = 0,149, IC 95% 0,048-0,130, p=0,001); dominante (CC + CT vs. TT: OR = 0,132, IC 95% 0,098-0,179, p=0,001); e recessivo (CC vs. CT + TT: OR = 0,239, IC 95% 0,161-0,353, p=0,001).

rs1800858

Os resultados da metanálise para rs1800858 são apresentados na Figura 2B. A Tabela 2 listou os principais resultados da metanálise para rs1800858.

Tabela 1 - Principais características dos estudos incluídos nesta metanálise

Autor/ano	País (Etnia)	Técnica genotipagem	SOC	Caso/controle	Casos	Controles	Genotipos	Genotipos	MAFs	HWE
Zhang 2007	China (asiática)	PCR	HB	99/132	57 28 14 142 56 29 62 41 120 144	0,545	0,544			
Arnold 2008	Europeu*	TaqMan	62/30	12 27 23 51 70 2 14 14 18 42	0,700	0,542				
Miao 2010	China (asiática)	PCR	315/352	228 65 22 521 109 62 169 95 293 359	0,550	0,390				
Phusantisaman 2012	Tailândia (asiática)	PCR-RFLP	HB	68/120	47 14 7 108 28 31 64 25 126 114	0,475	0,447			
Prato 2009	Itália (causasiano)	PCR	HB	22/85	11 6 5 28 16 3 32 50 38 132	0,776	0,435			
Zhang 2015	China (asiática)	TaqMan	NS	59/59	42 16 1 100 18 13 30 16 56 62	0,525	0,880			
Gunadi 2016	Indonésia (asiática)	PCR-RFLP	NS	93/136	67 22 4 156 30 27 83 26 137 135	0,496	0,010			
Yang 2017	China (asiática)	TaqMan	PB	362/1448	209 126 27 544 180 329 802 317 1460 1436	0,495	0,001			
Li 2017	China (asiática)	TaqMan	NS	99/114	69 27 3 165 33 19 58 37 96 132	0,578	0,641			
Zhang 2003	Alemão (causasiano)	NS	HB	80/120	10 30 40 50 110 65 47 8 177 63	0,262	0,899			
Garcia-Barcelo 2005	China (asiática)	PCR-RFLP	HB	172/194	14 40 118 68 276 58 100 36 216 172	0,443	0,536			
Burzynski 2004	Holanda (causasiano)	NS	HB	105/126	21 27 57 69 141 77 40 9 184 58	0,230	0,242			
Zhang 2005	China (asiática)	PCR	HB	16/40	2 1 13 5 27 15 12 13 42 38	0,475	0,011			
Du 2006	China (asiática)	PCR	HB	94/122	4 33 57 41 147 13 88 21 144 130	0,532	0,001			
Liu 2008	China (asiática)	LDR	PB	116/144	11 42 63 64 168 42 73 29 157 131	0,454	0,789			
Sanyono 2010	Indonésia (asiática)	PCR-RFLP	PB	54/46	5 23 26 33 75 10 30 6 5 23	0,456	0,033			
Liu 2010	China (asiática)	PCR	HB	125/148	12 45 68 69 181 43 75 30 161 135	0,456	0,794			
Tou 2011	China (asiática)	PCR	HB	123/168	10 32 81 52 194 52 85 31 10 32	0,437	0,716			
Phusantisaman 2012	Tailândia (asiática)	PCR-RFLP	HB	68/120	36 23 9 95 41 40 51 29 36 23	0,454	0,117			

* Autores declararam que a ascendência dos participantes era europeia (causasiano); PCR=restrição da reação em cadeia da polimerase; PCR-RFLP=polimorfismo do comprimento do fragmento de reestruturação da reação em cadeia da polimerase; LDR=reestruturação de detecção da ligase; HB=hospitalar; PB=população baseada; NS=não declarado; MAFs=frequências alélicas menores; HWE=equilíbrio hardy-weinberg.
TABELA 2 - Resultados da associação do polimorfismo RET com risco de OA

Subgrupo	Modelo genético	Tipo de modelo	Heterogeneidade	Odds Ratio	Viés publicação								
			I² (%)	PH	OR	95% CI	Ztest	ZPH	OR	95% CI	PH	PBeggs	PEGgers
rs2435357													
Overall	C vs. T	Aleatória	74,18	=0,001	0,230	0,178-0,298	-11,129	=0,001	0,858	0,209			
	CT vs. TT	Aleatória	60,85	=0,006	0,079	0,048-0,130	-10,008	=0,001	0,371	0,178			
	CC+CT vs. TT	Aleatória	58,02	=0,011	0,149	0,108-0,205	-11,670	=0,001	1,000	0,156			
	rs1800858												
Overall	A vs. G	Aleatória	89,58	=0,001	5,594	3,653-8,877	7,679	=0,001	0,210	0,469			
	AA vs. GG	Aleatória	88,56	=0,001	8,453	3,783-18,890	5,203	=0,001	0,591	0,934			
	AG vs. GG	Aleatória	86,57	=0,001	1,238	0,575-2,666	0,547	0,585	1,000	0,883			
	AA+AG vs. GG	Aleatória	83,71	=0,001	3,469	1,881-6,396	3,984	=0,001	0,591	0,800			
	AA vs. AG+GG	Aleatória	83,23	=0,001	6,120	3,608-10,381	6,720	=0,001	1,000	0,798			

rs1800858

A Tabela 2 listou os principais resultados da metanálise do polimorfismo rs1800858 no proto-oncogene RET e risco de HSCR. A análise global combinada sugere associação significativa do polimorfismo rs1800858 no proto-oncogene RET e risco de HSCR em quatro modelos genéticos, i.e. alelo (A vs. G: OR=5,594, IC 95% 3,653-8,877, p=0,001); homozigoto (AA vs. GG: OR=8,453, IC 95% 3,783-18,890, p=0,001); dominante (AA + AG vs. GG: OR=3,469, IC 95% 1,881-6,396, p=0,001); e recessivo (AA vs. AG + GG: OR=6,120, IC 95% 3,608-10,381, p=0,001), mas não sob modelo heterozigoto (GA vs. GG: OR=1,238, IC 95% 0,575-2,666, p=0,585, Figura 2B).

FIGURA 2 - Plots de floresta dos polimorfismos rs2435357 e rs1800858 no gene RET e risco de HSCR: A) rs2435357 (modelo alelo: C vs. T); B) rs1800858 (modelo heterozigoto: AG vs. GG).

Análise sensitiva

A análise de sensibilidade foi realizada omitindo cada estudo em cada modelo genético ou removendo certos estudos, tais como os estudos que não estavam em conformidade com o HWE. Após a omissão do estudo individual, a OR correspondente não foi alterada de forma significativa. Isso indica que nossos resultados são estatisticamente robustos em todos os cinco modelos genéticos que examinam associações de polimorfismos rs2435357 e rs1800858 com risco de HSCR.

Viés de publicação

O gráfico de funnel de Begg e o teste de Egger foram utilizados para a detecção de viés de publicação para a associação dos polimorfismos rs2435357 e rs1800858 no gene RET e risco de HSCR, foi utilizado um modelo de efeitos aleatórios: A) rs2435357 (modelo homozigoto: CC vs. TT); B) rs1800858 (modelo recessivo: AA vs. AG + GG).

FIGURA 3 - Gráfico de funnel para a detecção do viés de publicação para a associação dos polimorfismos rs2435357 e rs1800858 no gene RET e risco de HSCR. O gene para o proto-oncogene RET, membros da família do fator neurotrófico derivado da linhagem glial (GDNF),
mapeia para o cromossomo 10q11.21, contém 21 exons e cobre 60 kbp DNA.8 O proto-oncogene RET codifica uma proteína tirosina quinase que recebe sinal por trans-membrana com um dominio extracelular rico em cisteína e um dominio intracelular enriquecido em tirosina, que é importante na transferência de sinais de crescimento e diferenciação celular.13 As mutações de perda de função germinativa proto-oncogênica RET estão associadas ao desenvolvimento de HSCR, enquanto mutações de ganho de função são responsáveis pelo desenvolvimento de vários tipos de câncer humano, incluindo carcinoma medular de tireóide, neoplasia endócrina múltipla tipo 2 (MEN 2) e 2B, feocromocitoma e hiperplasia das paratireóides4. Até o momento, várias correlações genotípo-fenotípo foram definidas em associação de mutações no RET com diferentes variantes da síndrome de MEN2, incluindo MEN 2A, MEN 2B e carcinoma medular de tireóide (FMTC).9

Diversos estudos foram publicados explorando a associação dos polimorfismos rs2435357 e rs1800858 no proto-oncogene RET com risco de HSCR. No entanto, os resultados desses estudos foram inconsistentes e inconclusivos, devido às diferenças étnicas e ao pequeno tamanho da amostra. Portanto, a metaanálise como uma ferramenta poderosa para resumir os resultados de diferentes estudos é necessária para alcançar uma conclusão mais abrangente e confiável em ambos os polimorfismos, a fim de fornecer mais informações sobre este assunto debatido. Esta metaanálise e revisão sistemática, incluindo dez estudos com 1.136 casos e 2.420 controles para rs2435357 e dez com 917 casos e 1.159 controles para rs1800858 foram identificados e analisados nesta metaanálise. Descobrimos que os polimorfismos rs2435357 e rs1800858 no gene RET estão associados ao risco de HSCR. Esses achados são consistentes com a metaanálise de Liang et al.20. Eles realizaram uma metaanálise sobre a associação do polimorfismo rs2435357 com cinco estudos (566 casos e 719 controles) e polimorfismo rs1800858 com nove estudos (863 casos e 1.118 controles) com risco de HSCR. Descobriram que os polimorfismos rs2435357 e rs1800858 do RET estão associados à suscetibilidade à HSCR. No entanto, sua metaanálise mostra que o tamanho da amostra é pequeno e não é suficiente para detectar as possíveis associações.

A heterogeneidade entre estudos é comum em metanálises e a identificação de fontes potenciais de heterogeneidade é um componente essencial da metanálise.11,12,19 As fontes mais potenciais de heterogeneidade em metanálise de associação genômica são o desenho do estudo, etnia, métodos de genotipagem, fonte de controles e assim por diante.11,19 O viés de seleção, embora não tenha sido observado em viés de publicação, é uma possivel fonte importante de heterogeneidade. Portanto, realizamos análise de subgrupo e análise de sensibilidade removendo estudos que violam HWE para descobrir a fonte de heterogeneidade nesta metaanálise. No entanto, a heterogeneidade antes e após a análise do subgrupo e o processo de remoção do estudo individual não diminuíram ou desapareceram. Assim, este achado confirmou que os resultados da metanálise foram estatisticamente robustos e que nossos resultados foram confiáveis e estáveis.

Este estudo tem duas vantagens principais: primeiro, esta foi a metanálise mais precissa e abrangente sobre os polimorfismos rs2435357 e rs1800858 do RET com risco de HSCR; segundo, nenhum viés de publicação foi observado nos resultados dela, indicando que nossos resultados podem ser imparciais. No entanto, houve algumas limitações para este estudo que podem ter afetado nossas conclusões. Primeiro, o presente estudo foi limitado pelo número relativamente pequeno de estudos e tamanho da amostra nos polimorfismos rs2435357 e rs1800858, o que levou a trabalhos menores na análise de subgrupos e enfraquecer o poder estatístico; assim, precisa-se de mais estudos. Em segundo lugar, apenas estudos em populações asiáticas e caucasianas foram envolvidos nesta metanálise. Esse viés pode existir porque não conseguimos determinar o papel dos polimorfismos rs2435357 e rs1800858 em populações inteiras. Assim, estudos em outras etnias, como africanos e latinos, devem ser realizados para determinar o efeito potenciais da variação étnica na suscetibilidade à HSCR. Terceiro, incluímos apenas os dados de estudos publicados, o viés de publicação pode existir, embora nossos resultados de testes de viés de publicação não tenham significado. Quarto, porque as informações relevantes eram insuficientes nos dados originais, não realizamos análises de estratificação por outras co-variáveis como idade, gênero e assim por diante. Isso pode ter causado um viés de confusão. Por fim, sabe-se que o HSCR tem causa multifatorial do envolvimento em gene-gene e interações do ambiente gênico. No entanto, essas interações não puderam ser investigadas na presente metanálise devido a nenhum dado apropriado.

CONCLUSÃO

Esta metanálise sugeriu que os polimorfismos rs2435357 e rs1800858 no proto-oncogene RET podem estar associados à suscetibilidade à HSCR. No entanto, devido ao tamanho relativamente pequeno dos trabalhos incluídos, futuros estudos de larga escala sobre diferentes etnias são necessários para confirmar esses achados.

Abdelhamid Amooee: 0000-0002-0864-341X

REFERÊNCIAS

1. Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lartieri F, Burguyski G, Borrego S, et al. Hirschsprung disease, associated syndromes and genetics: a review. Journal of Medical Genetics. 2007;45(1):1-14.
2. Aslehabar F, Nearnatzadeh H, Meibodi B, Kimiari-Zarchi M, Tabatabaee RS, Noori-Shadkam M, et al. Association of Tumor Necrosis Factor-a (TNF-a) -308G>A and -238G>A Polymorphisms with Recurrent Pregnancy Loss Risk: A Meta-Analysis. International Journal of Fertility & Sterility. 2019;4(1).
3. Arnold S, Pelet A, Amiel J, Borrego S, Hofstra R, Tam P, et al. Interaction between a chromosome 10 RET enhancer and chromosome 21 in the Down syndrome-Hirschsprung disease association. Human mutation. 2002;20(5):771-5.
4. Borrego S, Wright FA, Fernández RM, Williams N, López-Alonso M, Davuluri R, et al. A Founding Locus within the RET Proto-Oncogene May Account for a Large Proportion of Apparently Sporadic Hirschsprung Disease and a Subset of Cases of Sporadic Medullary Thyroid Cancer. The American Journal of Human Genetics. 2003;72(1):88-100.
5. Burzynski GM, Nolte IM, Oisinga J, Ceccherini I, Twigt B, Maas S, et al. Localizing a putative mutation as the major contributor to the development of sporadic Hirschsprung disease to the RET genomic sequence between the promoter region and exon 2. European Journal of Human Genetics. 2004;12(8):604-12.
6. Butler Tjaden NE, Trainor PA. The developmental etiology and pathogenesis of Hirschsprung disease. Translational research?: the journal of laboratory and clinical medicine. 2013;162(1):1-15.
7. Chumpitazi B, Nurko S. Pediatric gastrointestinal motility disorders: challenges and a clinical update. Gastroenterology & hepatology. 2008;4(4):120-8.
8. de Pontual L, Pelet A, Trochet D, Jaubert F, Espinosa-Parrilla Y, Munnich A, et al. Mutations of the RET gene in isolated and syndromic Hirschsprung's disease in human and mouse: major and modifier alleles at a single locus. Journal of medical genetics. 2006;43(5):419-23.
9. Du H, Wang G, Zhang Y, Tao K, Tang S, Niu Y. [Association between RET proto-oncogene polymorphisms and Hirschsprung disease in Chinese Han population of Hubei district]. Zhongguo wei chuang wai ke zazhi = Chinese journal of gastrointestinal surgery. 2006;9(2):152-6.
10. Fitze G, Appelt H, König IR, Görgens H, Stein U, Walther W, et al. Functional haplotypes of the RET proto-oncogene promoter are accounted for a Large Proportion of Apparently Sporadic Hirschsprung disease? A Founding Locus within the RET Proto-Oncogene May Account for a Large Proportion of Apparently Sporadic Hirschsprung disease to the RET genomic sequence between the promoter region and exon 2. Human Molecular Genetics. 2003;12(24):3207-14.
11. Forat-Yazdi M, Jafari M, Kargar S, Abolbaghaei SM, Nasiri R, Farahnak S, et al. Association between SULT1A1 Arg213His (Rs9282861) polymorphism and risk of breast cancer: A systematic review and meta-analysis. Journal of Research in Health Sciences. 2017;17(4).
22. Moore SW. The contribution of associated congenital anomalies in understanding Hirschsprung’s disease. Pediatric Surgery International. 2006;22(4):305-15.

23. Lin Y-C. Nationwide Population-Based Epidemiologic Study of Hirschsprung’s Disease in Taiwan. Pediatrics & Neonatology. 2016;57(3):165-6.

24. Tou J, Wang L, Liu L, Wang Y, Zhong R, Duan S, et al. Genetic variants in RET and risk of Hirschsprung’s disease in Southeastern Chinese: a haplotype-based analysis. BMC Medical Genetics. 2011;12(1):32.

25. Yang D, Yang J, Li S, Jiang M, Cao G, Yang L, et al. Effects of RET, NRG1 and NRG3 Polymorphisms in a Chinese Population with Hirschsprung Disease. PEDIATRICS. 2016;138(1):e20154608-e20154608.

26. Zhang X-N, Zhou M-N, Qiu Y-Q, Ding S-P, Qi M, Li J-C. Genetic Analysis and NRG3 Polymorphisms in a Chinese Population with Hirschsprung Disease. PEDIATRICS. 2005;115(3):e247-e247.

27. Tou J, Wang L, Liu L, Wang Y, Zhong R, Duan S, et al. Genetic variants in RET and risk of Hirschsprung’s disease in Southeastern Chinese: a haplotype-based analysis. BMC Medical Genetics. 2011;12(1):32.

28. Wang J, Zhang B, Liu W, Zhang Y, Di X, Yang Y, et al. Screening of RET gene mutations in Chinese patients with medullary thyroid carcinoma and their relatives. Familial Cancer. 2016;15(1):99-104.

29. Xiansheng Z, Ying Z, Ya G, Quan X, Yitao D, Xinkui G, et al. The relationship between Hirschsprung disease and single nucleotide polymorphisms of c135 in RET proto-oncogene. JOURNAL OF XI’AN JIAOTONG UNIVERSITY (MEDICAL SCIENCES). 2005;26(5):470-472, 492.

30. Yang D, Yang J, Li S, Jiang M, Cao G, Yang L, et al. Effects of RET, NRG1 and NRG3 Polymorphisms in a Chinese Population with Hirschsprung Disease. Scientific Reports. 2017;7:43222.

31. Zhang X-N, Zhou M-N, Qiu Y-Q, Ding S-P, Qi M, Li J-C. Genetic Analysis of RET, EDNRB, and EDN3 Genes and Three SNPs in MCS + 9.7 in Chinese Patients with Isolated Hirschsprung Disease. Medicine. 2009;88(2):83-90.

32. Patrapinyokul S, Mahasirimongkol S, Sangkhathat S, Phongdara A, Chiengkriwate P, Khetkao W, et al. Association of genetic polymorphisms to gastric cancer: A systematic review and meta-analysis. Asian Pacific Journal of Cancer Prevention. 2018;19(3):523-7.

33. Zhang Z, Jiang Q, Li Q, Cheng W, Qiao G, Xiao P, et al. Genotyping analysis of 3 RET polymorphisms demonstrates low somatic mutation rate in Chinese Hirschsprung disease patients. International journal of clinical and experimental pathology. 2015;8(5):5528-34.

34. Zwick N., Jenetzy E. Maternal drug use and the risk of anorectal malformations: systematic review and meta-analysis. Orphanet journal of rare diseases. 2018;13(1):75.