Light Energy Partitioning under Various Environmental Stresses Combined with Elevated CO₂ in Three Deciduous Broadleaf Tree Species in Japan

Mitsutoshi Kitao 1,* , Hiroyuki Tobita 2 , Satoshi Kitaoka 2 , Hisanori Harayama 1 , Kenichi Yazaki 2 , Masabumi Komatsu 2 , Evgenios Agathokleous 3 and Takayoshi Koike 4

1 Hokkaido Research Center, Forestry and Forest Products Research Institute, Hitsujigaoka 7, Sapporo 062-8516, Japan; harahisa@ffpri.affrc.go.jp
2 Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba 305-8687, Japan; tobi@ffpri.affrc.go.jp (H.T); skitaoka3104@gmail.com (S.K); kyazaki@ffpri.affrc.go.jp (K.Y); kopine@ffpri.affrc.go.jp (M.K)
3 Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; evgenios@nuist.edu.cn
4 Laboratory of Plant Nutrition, Hokkaido University, Sapporo 060-8589, Japan; tkoike@for.agr.hokudai.ac.jp

* Correspondence: kitao@ffpri.affrc.go.jp

Received: 28 March 2019; Accepted: 30 May 2019; Published: 3 June 2019

Abstract: Understanding plant response to excessive light energy not consumed by photosynthesis under various environmental stresses, would be important for maintaining biosphere sustainability. Based on previous studies regarding nitrogen (N) limitation, drought in Japanese white birch (Betula platyphylla var. japonica), and elevated O₃ in Japanese oak (Quercus mongolica var. crispula) and Konara oak (Q. serrata) under future-coming elevated CO₂ concentrations, we newly analyze the fate of absorbed light energy by a leaf, partitioning into photochemical processes, including photosynthesis, photorespiration and regulated and non-regulated, non-photochemical quenchings. No significant increases in the rate of non-regulated non-photochemical quenching (JNO) were observed in plants grown under N limitation, drought and elevated O₃ in ambient or elevated CO₂. This suggests that the risk of photodamage caused by excessive light energy was not increased by environmental stresses reducing photosynthesis, irrespective of CO₂ concentrations. The rate of regulated non-photochemical quenching (JNPQ), which contributes to regulating photoprotective thermal dissipation, could well compensate decreases in the photosynthetic electron transport rate through photosystem II (JPSII) under various environmental stresses, since JNPQ+JPSII was constant across the treatment combinations. It is noteworthy that even decreases in JNO were observed under N limitation and elevated O₃, irrespective of CO₂ conditions, which may denote a preconditioning-mode adaptive response for protection against further stress. Such an adaptive response may not fully compensate for the negative effects of lethal stress, but may be critical for coping with non-lethal stress and regulating homeostasis. Regarding the three deciduous broadleaf tree species, elevated CO₂ appears not to influence the plant responses to environmental stresses from the viewpoint of susceptibility to photodamage.

Keywords: chlorophyll fluorescence; drought; elevated O₃; N limitation; non-photochemical quenching; photodamage

1. Introduction

Although light is essential for plant growth, plants can suffer from excessive light, especially when combined with other environmental stresses. Light energy absorbed by a leaf is mainly consumed...
by photochemical processes such as electron flow to photosynthesis, photorespiration and alternative pathways [1].

Conversely, absorbed light energy is also dissipated by non-photochemical processes divided into two parts: Constitutive, non-regulatory, non-photochemical quenching, and regulatory light-induced, non-photochemical quenching [2–5]. When photosynthetic electron transport is suppressed under environmental stresses, an increase in the fraction of non-regulatory, non-photochemical quenching suggests that plants cannot fully dissipate excess energy through a regulated process [5–9]. Non-regulated, non-photochemical quenching consists of chlorophyll fluorescence internal conversions and intersystem crossing, which leads to the formation of $^{1}\text{O}_2$ via the triplet state of chlorophyll ($^{3}\text{chl}^*$) [10–13]. $^{1}\text{O}_2$ can lead to PSII photodamage directly, or via inhibiting PSII repair processes [14–16]. Non-regulated, non-photochemical quenching can be a measure of oxidative stress, as the level of lipid peroxidation indicated by malondialdehyde (MDA) accumulation was closely correlated with the quantum yield of non-regulated, non-photochemical quenching (Y(NO)) in Arabidopsis thaliana under a water deficit imposed by withholding the water supply [17].

Plants can acclimate to various environmental conditions by adjusting their leaf physiological characteristics to prevent photodamage [18,19]. For example, within a canopy, sun leaves grown under higher irradiance have a higher photosynthetic capacity with higher area-based leaf nitrogen (N_{area}) than shade leaves [20], a mechanism contributing to maximize photosynthetic carbon gain at the whole plant level by utilizing limited nitrogen optimally [21]. The net photosynthetic rate is known to be proportional to N_{area}, since an increase in N_{area} suggests an increase in Rubisco, a major photosynthetic enzyme [22]. As Rubisco is a key enzyme catalyzing both photosynthesis and photorespiration, electron flow through PSII consumed by the processes also increases with increasing N_{area} [23]. As energy dissipation through photosynthetic electron transport is closely related to N_{area} [23], such N_{area}-related photosynthetic acclimation along the light gradient within the canopy, can also contribute to suppress the risk of photodamage in response to the maximum irradiance during sunflecks, in combination with xanthophyll-related photoprotective energy dissipation [24,25].

Environmental stresses such as N limitation, drought and elevated O$_3$, causing a reduction in photosynthesis, would increase excessive light energy via a reduction in photosynthetic electron consumption, since photosynthetic carbon assimilation needs NADPH, generated via electron transport [26]. In the coming future, environmental stresses such as nitrogen limitation, as a relative constraint on plant-growth enhancement under elevated CO$_2$ [27], drought [28], and high O$_3$ exposure [29–31], are predicted to occur more frequently under global warming and elevated CO$_2$ concentrations.

We hypothesized that, even under various environmental stresses such as N limitation, drought and elevated O$_3$ under CO$_2$ enrichment in the coming future, the non-regulated, non-photochemical quenching should be kept under a certain level, to prevent photosynthetic apparatus from oxidative damage [14–16]. This is achieved by a functional coordination of energy dissipation primarily through N-required electron transport [23], and complementarily through xanthophyll-related thermal energy dissipation, which does not require N investment [8].

To test the hypothesis, we newly analyzed data from previously published works from our research group using three deciduous broadleaf tree species [32–34], where the response of plants to different environmental factors was assessed by chlorophyll fluorescence, so as to assess the fate of absorbed light energy consumed by photochemical processes, and dissipated through constitutively non-regulatory and regulatory light-induced, non-photochemical quenching. We also assessed the light energy not absorbed by a leaf, involved in a bulk loss in chlorophyll pigments, which also has a protective role against photodamage via a reduction in absorbed light energy.

2. Materials and Methods

This study is in part a collective re-analysis of previously published data [32–34]. Regarding “N limitation under elevated CO$_2$” and “drought under elevated CO$_2$”, regulated
and non-regulated non-photochemical quenchings were newly calculated based on data from the previous studies [32,33]. Conversely, regarding “elevated O$_3$ under elevated CO$_2$”, all data except for A_n were not published previously (cf. [34]).

2.1. N Limitation under Elevated CO$_2$

Data of Japanese white birch (*Betula platyphylla* var. *japonica*) seedlings grown under limited N and elevated CO$_2$ were obtained from the study by Kitao et al. [32]. Experiments of N limitation under elevated CO$_2$ were conducted using a natural daylight phytotron (26/16 °C, day/night; ca. 90% of full sunlight) in Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI) in Sapporo, Japan (43°N, 141°E; 180 m above sea level). Details are described in Kitao et al. [32]. One-year-old seedlings of Japanese white birch (*Betula platyphylla* var. *japonica*), a pioneer tree species, 15 to 20 cm in height, were transplanted in free-draining plastic pots filled with clay loam soil mixed with Kanuma pumice soil (1:1 in volume). Pots were placed on trays to prevent nutrient drainage. Each of two CO$_2$ treatments: 360 µmol mol$^{-1}$ (ambient CO$_2$ treatment, A-CO$_2$); and 720 µmol mol$^{-1}$ (elevated CO$_2$ treatment, E-CO$_2$) were replicated in two chambers. Two nitrogen levels were applied: 700 mg per plant (adequate nitrogen, +N), or 100 mg per plant (limited nitrogen, -N). The former treatment was conducted as 100 mg N pot$^{-1}$ week$^{-1}$ for 7 weeks during CO$_2$ treatment, whereas the latter one was conducted as 100 mg N pot$^{-1}$ only once at the onset of CO$_2$ treatment. We supplied relatively high N for +N treatment to provide adequate N to plants, so as to reach their normal state relative to nursery-grown seedlings. Area-based leaf N (N_{area}) in the seedlings grown in +N treatment was comparable to those grown in the nursery of FFPRI (data not shown). Conversely, we supplied substantially low N for -N treatment, expecting photosynthetic down-regulation under N limitation [35].

2.2. Drought under Elevated CO$_2$

Data of Japanese white birch seedlings grown under limited water supply and elevated CO$_2$ were obtained from the study by Kitao et al. [33]. Experiments of drought under elevated CO$_2$ were also conducted for 1-year-old seedlings of Japanese white birch in the phytotron in Hokkaido Research Center, FFPRI, as described above. Details are described in Kitao et al. [33]. Each of the two CO$_2$ treatments i.e., 360 (ambient CO$_2$ treatment: A-CO$_2$) and 720 µmol mol$^{-1}$ (elevated CO$_2$ treatment: E-CO$_2$) was replicated in three chambers. Six randomly selected seedlings in each chamber were supplied daily with 100 mL of water or nutrient solution (once per week) (adequate water supply), while the other six seedlings (totally 12 seedlings) received only 100 mL of nutrient solution once weekly (drought). Each plant received a total of 100 mg N during the experiment, which corresponded to limited N treatment, as described above. The lowest predawn leaf water potential (i.e., measured just prior to the scheduled watering), which was in equilibrium with the soil water potential, was A-CO$_2$ + adequate water supply: −0.13, A-CO$_2$ + drought: −0.52, E-CO$_2$ + adequate water supply: −0.12 and E-CO$_2$ + drought: −0.39 MPa [33]. The values of water potential in the drought treatment were moderate, since no wilting in the seedlings was observed. Leaves flushed and developed during the drought treatment were used for the measurements.

2.3. Elevated O$_3$ under Elevated CO$_2$

Data of Japanese oak (*Quercus mongolica* Fisch. ex Ledeb. var. *crisposa* (Blume) H. Ohashi) and Konara oak (*Q. serrata* Murray) seedlings grown under elevated O$_3$ and CO$_2$ were obtained from the study by Kitao et al. [34]. Experiments of elevated O$_3$ under elevated CO$_2$ were conducted in a free-air concentration-enrichment (FACE) exposure system, consisting of 12 plots (3 replicates per treatment), located at the nursery of FFPRI in Tsukuba, Japan (36°00′N, 140°08′E, 20 m a.s.l.).

Details are described in Kitao et al. [34]. One-year-old seedlings of Japanese oak and Konara oak, gap-dependent mid-successional tree species, approximately 5 cm in height under dormancy, were transplanted directly to the ground in the plots. The treatments were as follows: Control (unchanged ambient air), elevated CO$_2$ (Target set, 550 µmol mol$^{-1}$), elevated O$_3$ (Target set,
twice-ambient), and elevated CO₂ + O₃ (550 μmol mol⁻¹ CO₂ and twice-ambient O₃). Plants were grown under the treatments for two growing seasons. Measurements of gas exchange and chlorophyll fluorescence were conducted in the second growing season.

2.4. Measurements of Gas Exchange and Chlorophyll Fluorescence

Measurements of gas exchange and chlorophyll fluorescence were conducted with a portable photosynthesis measuring system (Li-6400, Li-Cor, Lincoln, NE, USA), combined with a portable fluorometer (PAM-2000, Walz, Effeltrich, Germany) for plants grown under “N limitation with CO₂ enrichment”, or a leaf chamber fluorometer (Li-6400-40, Li-Cor) for plants grown under “drought, and elevated O₃ under elevated CO₂”. Details are described in Kitao et al. [32–34]. The net photosynthetic rate (Aₙ), quantum yield of PSII electron transport (Y(II)), quantum yield of non-regulate, non-photochemical quenching in PSII (Y(NO)), and finally the quantum yield of regulated, non-photochemical quenching in PSII (Y(NPQ)) [2–5] were measured at a photosynthetic steady state under saturating light intensities provided by a red/blue LED array (Li-6400-40, Li-Cor), with blue light comprising 10% of the total PPFD. We measured Y(NO) and Y(NPQ), based on the simple analogy to Jₙ (Chromatopac, C R6A, Shimadzu).

2.5. Leaf N Content

Regarding ‘elevated O₃ under elevated CO₂’, the leaves were sampled after the measurements and used for a determination of N area by the combustion method, using an analysis system composed of an N/C determination unit (SUMIGRAPH, NC 800, Sumika Chem. Anal. Service, Osaka, Japan), a gas chromatograph (GC 8A, Shimadzu, Kyoto, Japan), and a data processor (Chromatopac, C R6A, Shimadzu).

2.6. Statistical Analysis

In the study on N limitation under elevated CO₂, individual seedlings across the two chambers were used as the sample unit (n = 4–6). Two-way Analysis of Variance (ANOVA) (N × CO₂) was used to test the differences in the treatment means of Aₙ, Jₚₛᵢᵢ, J[NPQ], Jₚₛᵢᵢ + J[NPQ], JNO and JChl. In the study on drought under elevated CO₂, statistics are based on the individual plot (CO₂ × water regime) in each chamber as the sample unit (n = 3). Three to six plants were measured in each plot. A mean value from these plants was used as the estimate for that sample unit. Two-way ANOVA, with one between-subjects factor (CO₂) and one within-subject factor (water regime), was used to test treatment differences in Aₙ, Jₚₛᵢᵢ, J[NPQ], Jₚₛᵢᵢ + J[NPQ], JNO and JChl. In the study on elevated O₃ under...
elevated CO₂, all statistics were based on the mean value of the individual plot (CO₂ × O₃ regime) as the sample unit (n = 3). These values were then averaged to provide the sample estimate for that replicate. Three-way ANOVA, with two between-subjects factors (CO₂ and O₃) and one within-subject factor (species), was used to test the differences in Aₙ, Jₚₛᵢᵢ, Jₙₚₒ, Jₚₛᵢᵢ + Jₙₚₒ, Jₙₒ and Jₖₐ₇, and leaf N.

3. Results

3.1. Nitrogen Limitation under Elevated CO₂

When compared at the growth CO₂, i.e., 360 μmol mol⁻¹ for the ambient-CO₂-grown plants, and 720 μmol mol⁻¹ for the elevated-CO₂-grown plants, higher Aₙ was observed in plants grown under elevated CO₂ than in ambient-CO₂ plants with adequate N supply, whereas no enhancement in Aₙ under elevated CO₂ was observed with a limited N supply (Figure 1, Table 1). Conversely, no enhancement in Jₚₛᵢᵢ was observed in plants grown under elevated CO₂ with an adequate N supply, whereas the limited N supply resulted in lower Jₚₛᵢᵢ irrespective of CO₂ treatments. Jₙₚₒ was significantly higher in plants grown under limited N supply than those under adequate N supply. The sum of Jₙₚₒ + Jₚₛᵢᵢ was not significantly different among the treatment combinations. As ABS was lower in the plants grown with limited N supply, higher Jₖₐ₇ was observed in those plants. As a consequence of the increased Jₖₐ₇ in addition to Jₙₚₒ, lower Jₙₒ was observed in the plants grown with limited N supply, in spite of significantly lower Jₚₛᵢᵢ, irrespective of CO₂ treatment.

Figure 1. Fate of light energy partitioning in the seedlings of Japanese white birch grown with N limitation under elevated CO₂. Jₖₐ₇, Jₙₚₒ, Jₚₛᵢᵢ and Jₙₒ were measured in the seedlings of Japanese white birch grown under ambient (A-CO₂) and elevated CO₂ (E-CO₂) with adequate (+N) and limited N supply (-N). Open diamonds indicate net photosynthetic rate (Aₙ). Measurements were conducted for fully-developed mature leaves (leaf age was approx. 1 month) under respective growth CO₂ concentrations (i.e., 360 μmol mol⁻¹ for ambient-CO₂-grown plants, and 720 μmol mol⁻¹ for elevated-CO₂-grown plants) at saturating light (1200 μmol m⁻² s⁻¹). Values are means ± se (n = 4–6). Data were obtained from Kitao et al. [32]. Jₖₐ₇, Jₙₚₒ and Jₙₒ were newly calculated based on data from the previous study.
Table 1. F values of Analysis of Variance (ANOVA) to test the effects of various environmental stresses (N limitation, drought and elevated O$_3$) under ambient or elevated CO$_2$ on J$_{NO}$, J$_{PSII}$, J$_{NPQ}$, J$_{PSII}$+J$_{NPQ}$, J$_{Chl}$ and A$_n$ measured at respective growth CO$_2$ concentrations. Significant effects are indicated in the table by ***: $p \leq 0.001$, **: $p \leq 0.01$, *: $p \leq 0.05$, and ns: non-significant. Data were obtained from Kitao et al. [32–34].

Treatment	Effect	F values	J$_{NO}$	J$_{PSII}$	J$_{NPQ}$	J$_{PSII}$+J$_{NPQ}$	J$_{Chl}$	A$_n$
N limitation	CO$_2$ (F$_{1,13}$)	0.69 ns	0.47 ns	0.81 ns	0.11 ns	0.03 ns	51.8 ***	
N (F$_{1,13}$)		106	133	124	124	28.6	322 ***	
CO$_2$ × N (F$_{1,13}$)		13.3 **	9.63 **	18.4	3.08 ns	51.8 ***		
Drought	CO$_2$ (F$_{1,4}$)	0.01 ns	25.1 ns	2.68 ns	0.00 ns	0.01 ns	3.75 ns	
Drought (F$_{1,4}$)		0.71 ns	0.40 ns	3.90 ns	2.23 ns	1.39 ns	0.74 ns	
CO$_2$ × Drought (F$_{1,4}$)		0.02 ns	0.40 ns	1.86 ns	1.28 ns	2.04 ns	0.29 ns	
Elevated O$_3$	CO$_2$ (F$_{1,8}$)	5.00 ns	5.46 *	16.4 **	0.50 ns	0.05 ns	35.6 ***	
O$_3$ (F$_{1,8}$)		5.54 *	6.60 *	14.9 **	0.07 ns	0.72 ns	25.5 ***	
CO$_2$ × O$_3$ (F$_{1,8}$)		0.91 ns	1.35 ns	0.08 ns	2.54 ns	2.46 ns	0.94 ns	
Species (F$_{1,8}$)		1.36 ns	12.7 ***	0.42 ns	4.36 ns	2.13 ns	39.3 ***	
CO$_2$ × Species (F$_{1,8}$)		0.08 ns	2.35 ns	0.22 ns	0.50 ns	0.35 ns	6.64 *	
O$_3$ × Species (F$_{1,8}$)		0.10 ns	18.0 ***	1.15 ns	4.79 ns	4.32 ns	8.59 *	
CO$_2$ × O$_3$ × Species (F$_{1,8}$)		4.43 ns	23.9 **	7.58 *	0.97 ns	6.32 *	2.30 ns	

3.2. Drought under Elevated CO$_2$

Measurements of gas exchange and chlorophyll fluorescence were conducted at the growth CO$_2$ (i.e., 360 µmol mol$^{-1}$ for the ambient-CO$_2$-grown plants and 720 µmol mol$^{-1}$ for the elevated-CO$_2$-grown plants) when soils were most dried on the previous day of irrigation (i.e., just prior to the scheduled watering). Intercellular CO$_2$ concentration (C_i) was higher under elevated CO$_2$, but lower under drought (Figure 2). Irrespective of the large variation of C_i itself, J$_{Chl}$, J$_{NPQ}$, J$_{NO}$ and J$_{PSII}$+J$_{NPQ}$ were not significantly different among the treatment combinations (Figure 2, Table 1). Only J$_{PSII}$ was significantly lower in the plants grown under elevated CO$_2$, whereas no significant difference in A$_n$ was observed among the treatment combinations.

Figure 2. Fate of light energy partitioning with drought under elevated CO$_2$. Data are plotted as a function of intercellular CO$_2$ concentration. J$_{Chl}$, J$_{NPQ}$, J$_{PSII}$ and J$_{NO}$ were measured in the seedlings
of Japanese white birch grown under ambient and elevated CO$_2$ with adequate (daily) and limited (once-weekly) water supply. AD: Ambient CO$_2$ + once-weekly irrigation; AW: Ambient CO$_2$ + daily-irrigation; ED: Elevated CO$_2$ + once-weekly irrigation; EW: Elevated CO$_2$ + daily-irrigation. Open diamonds indicate net photosynthetic rate (A_n). Measurements were conducted for fully-developed mature leaves (leaf age was approx. 1 month) under the most dried conditions under respective growth CO$_2$ concentrations (i.e., 360 µmol mol$^{-1}$ for ambient-CO$_2$-grown plants, and 720 µmol mol$^{-1}$ for elevated-CO$_2$-grown plants) at saturating light (1000 µmol m$^{-2}$ s$^{-1}$). Values are means ± se ($n = 3$). Data were obtained from Kitao et al. [33]. J_{Chl}, J_{NPQ} and J_{NO} were newly calculated based on data from the previous study.

3.3. Elevated O$_3$ under Elevated CO$_2$

A_n measured at the respective growth CO$_2$ (i.e., 380 µmol mol$^{-1}$ for the ambient-CO$_2$-grown plants and 550 µmol mol$^{-1}$ for the elevated-CO$_2$-grown plants) increased under elevated CO$_2$, but decreased under elevated O$_3$ (Figure 3, Table 1). A_n was significantly different between *Q. mongolica* and *Q. serrata*, and the effects of CO$_2$ and O$_3$ were also different between species (Table 1). J_{PSII} increased under elevated CO$_2$, but decreased under elevated O$_3$, whereas J_{NPQ} decreased under elevated CO$_2$ but increased under elevated O$_3$. As a result, no significant differences were observed in J_{PSII}+J_{NPQ} among the treatment combinations or across species. J_{Chl} was neither affected by CO$_2$, O$_3$ nor species. Significantly lower J_{NO} was observed in the plants grown under elevated O$_3$. Area-based leaf N content (N_{area}) was not significantly different among the treatment combinations, whereas significantly higher N_{area} was observed in *Q. serrata* (Figure 4, Table 2).

![Figure 3](image-url)
Figure 3. Fate of light energy partitioning under elevated O$_3$ and CO$_2$. Here, J_{Chl}, J_{NPQ}, J_{PSII} and J_{NO} were measured in the seedlings of Japanese oak (*Q. mongolica*) and Kona oak (*Q. serrata*) grown
under ambient (A-O3) and elevated O3 (E-O3), combined with ambient (A-CO2) and elevated CO2 (E-CO2). Open diamonds indicate the net photosynthetic rate (A_n). Measurements were conducted for fully-developed mature leaves (leaf age was approx. 2 months) under respective growth CO2 concentrations (i.e., 380 µmol mol$^{-1}$ for ambient-CO2-grown plants, and 550 µmol mol$^{-1}$ for elevated-CO2-grown plants) at saturating light (1500 µmol m$^{-2}$ s$^{-1}$). Values are means ± se (n = 3). A_n was obtained from Kitao et al. [34].

Figure 4. Area-based leaf N content (N_{area}) in the seedlings of Japanese oak (Q. mongolica) and Konara oak (Q. serrata) grown under ambient (A-O3) and elevated O3 (E-O3), combined with ambient (A-CO2) and elevated CO2 (E-CO2). Values are means ± se (n = 3).

Table 2. F values of three-way ANOVA with two between-subjects factors (CO2 and O3) and one within-subject factor (species), to test the effects of CO2 ($F_{1,8}$), O3 ($F_{1,8}$), species ($F_{1,8}$), CO2 × O3 ($F_{1,8}$), CO2 × Species ($F_{1,8}$), O3 × Species ($F_{1,8}$), and CO2 × O3 × Species ($F_{1,8}$) on area-based leaf nitrogen content (N_{area}). The symbols ns and * denote non-significant ($p > 0.05$) and significant ($p \leq 0.05$) effects, respectively.

Effect	F-Statistics
CO2	0.01 ns
O3	0.25 ns
CO2 × O3	0.27 ns
Species	7.03 *
CO2 × Species	0.58 ns
O3 × Species	1.94 ns
CO2 × O3 × Species	0.25 ns

4. Discussion

4.1. Nitrogen Limitation under Elevated CO2

Nitrogen plays a key role in photosynthesis, since Rubisco, a key-enzyme of photosynthesis, is the largest sink of N in a leaf [22], and also a considerable amount of N is involved in proteins related to linear electron transport [23,37]. Plants grown under elevated CO2 often show photosynthetic acclimation typically accompanied with a decrease in the maximum capacity of Rubisco carboxylation, known as photosynthetic down-regulation, particularly under limited nitrogen availability [27,35]. When Japanese white birch seedlings were grown under the combinations of CO2 and N treatments, leaves showed higher N_{area} with higher N supply, but lower N_{area} under elevated CO2 treatment [32]. In the present study, elevated CO2 had no effect on J_{N0}, whereas limited N decreased J_{N0}, suggesting a lower risk of photodamage under N limitation, irrespective of lower A_n [5]. The decreases in electron
transport rate (J_{PSII}) by N limitation and photosynthetic down-regulation under elevated CO$_2$ were fully-compensated by regulated thermal energy dissipation (J_{NPQ}), since the sum of J_{PSII} and J_{NPQ} was not significantly different across the treatment combinations. Conversely, the decrease in J_{NO} under limited N resulted mainly from the increased loss of absorbed light energy, indicated by the increase in J_{Chl}.

4.2. Drought under Elevated CO$_2$

Drought-induced stomatal closure leads to low intercellular CO$_2$ (C$_i$) [1]. Leaves developed under long-term drought display higher photosynthetic capacity, accompanied with higher N$_{area}$, thus compensating the reduced photosynthetic performance under low C$_i$ [38–40]. In the present study, seedlings of Japanese white birch were grown under elevated CO$_2$ and long-term drought with limited N supply. Photosynthetic capacity, indicated by the maximum rate of Rubisco carboxylation ($V_{c,max}$), was previously shown to increase by long-term drought accompanied with higher N$_{area}$, whereas elevated CO$_2$ decreased $V_{c,max}$ with lower N$_{area}$ [33]. In combination of changes in $V_{c,max}$ with different C$_i$, A$_n$ was not significantly different among the treatment combinations. In spite of similar A$_n$, J_{PSII} decreased under elevated CO$_2$, maybe because of a suppression of photorespiration under elevated CO$_2$ (720 µmol mol$^{-1}$) [41]. The decrease in J_{PSII} under elevated CO$_2$ was well compensated by a regulated photoprotective reaction (J_{NPQ}) [2,5], leading to unchanged J_{NO} under the combinations of CO$_2$ and water treatments. An increase in Y(NO) was reported in mature leaves of A. thaliana under water deficit by withholding water, whereas a less extent of increase in Y(NO) was observed in young leaves, suggesting higher acclimating capacity, preventing oxidative damage in younger leaves [17]. In the present study, as the leaves of Japanese birch seedlings had flushed and developed during the relatively moderate drought treatment, they might fully acclimate to long-term drought, preventing photodamage [38–40].

4.3. Elevated O$_3$ under Elevated CO$_2$

Tropospheric ozone (O$_3$) levels continue to increase globally [42,43], concurrently occurring with an increase in atmospheric CO$_2$ concentration [44]. Contrary to elevated CO$_2$, which may enhance plant growth in the short term [45,46], elevated O$_3$ generally reduces plant growth via a reduction in photosynthetic rate and increased respiration rate [30,47]. Deciduous broadleaf trees native to Japan, Japanese oak (Quercus mongolica) and Konara oak (Q. serrata), were exposed to free air enriched with elevated O$_3$ (twice ambient O$_3$) and/or CO$_2$ (550 µmol mol$^{-1}$ as target). A$_n$ in the fully-expanded second-flushed leaves, measured at each growth CO$_2$, reduced by elevated O$_3$ but enhanced by elevated CO$_2$, irrespective of species. As A$_n$ was enhanced under elevated CO$_2$ with no difference in N$_{area}$ among the treatment combinations, photosynthetic down-regulation, which is often induced by elevated CO$_2$ under limited N availability [32,35], was not apparent in the present study of a free-air CO$_2$ and O$_3$ exposure without limitations of root growth [34]. Furthermore, reduced leaf N, accompanied with a reduction in A$_n$ under elevated O$_3$ [48], was not observed in the present study, suggesting that causes other than leaf N reduction might be predominant to decrease A$_n$, such as an oxidative stress in the chloroplast [49]. J_{PSII} was also reduced by elevated O$_3$, but increased by elevated CO$_2$, as well as A$_n$. In contrast, J_{NPQ} was increased by elevated O$_3$, but decreased by elevated CO$_2$, which might fully compensate the changes in J_{PSII} as indicated by the constant J_{PSII}+J_{NPQ}. It is noteworthy that J_{NO} decreased under elevated O$_3$, which means that elevated O$_3$ would not necessarily increase the risk of photodamage in these species.

4.4. Regulated and Non-regulated Non-photochemical Quenching under Elevated CO$_2$

In the present study, we investigated the fate of light energy absorbed by a leaf under various environmental stresses combined with elevated CO$_2$. We particularly focused on J_{NO}, a measure of constitutive, non-regulated, non-photochemical energy dissipation, because an increase in J_{NO} suggests an increase in the risk of photodamage [2,5]. As a whole, photoprotective thermal energy
dissipation indicated by J_{NPQ} may well compensate for the decreases in J_{PSII} under environmental stresses, since $J_{PSII}+J_{NPQ}$ was rather constant throughout the various stresses, even under elevated CO$_2$. If plants can keep J_{PSII} constant, there is a high potential for preventing the accumulation of excess energy [25,38–40]. However, if J_{PSII} is restricted under limited N supply or by other environmental stress such as elevated O$_3$, xanthophyll-related regulated thermal energy dissipation (J_{NPQ}) would act as an efficient safety valve, which does not need N investment [8]. Furthermore, although drought and elevated CO$_2$ had no effects on J_{NO}, N limitation and elevated O$_3$ resulted in decreases in J_{NO}, in contrast to expected stress responses (i.e., increases in J_{NO}), which can be considered as an adaptive response in the framework of pre-conditioning to cope with further environmental stresses [50,51]. By doing so, J_{NO} may be decreased to such an extent that will offset high increases that would occur under further stress. This novel mechanism builds upon an extended body of literature showing the biological capacity of a variety of organisms to display hormetic adaptive responses which eventually act as biological shields against following health threats [50–52]. Such adaptive responses for coping with stress are activated by low/mild severity of stress, at levels that are (often far) lower than the level beyond which toxicological, adverse responses occur [50–52]. This suggests that NPQ can compensate for the effects of following more severe environmental stress, but if the stress is too severe (e.g., acute exposure), increased NPQ may not be enough to fully compensate for the negative effects of stress.

Whereas it was difficult to explicitly determine the factor inducing lower J_{NO} under elevated O$_3$ (maybe the integrated effects of $J_{NPQ}+J_{Chl}$), an increase in J_{Chl} apparently contributed to reducing J_{NO} under limited N. Thus, in addition to the fractions of absorbed light energy partitioning, based on chlorophyll fluorescence ($Y(II)$, $Y(NPQ)$ and $Y(NO)$), reduced chlorophyll pigments should be taken into account as a photoprotective reaction for assessing environmental stresses by using chlorophyll fluorescence measurements [53].

Similar to the present study, a stable or even lower $Y(II)$ due to the decline in $Y(II)$, accompanied with the increase in $Y(NPQ)$, was also reported in paraquat-exposed *Arabidopsis thaliana* [11,18] and in Al-exposed *A. thaliana* [12]. The decrease in J_{NO} may denote also decreased ROS production [17]. Non-regulated, non-photochemical quenching consists of chlorophyll fluorescence internal conversions and intersystem crossing, which leads to the formation of singlet oxygen (1O$_2$) via the triplet state of chlorophyll (3chl*) [10,11,13]. Since J_{NO} declined, it seems that J_{NPQ} was sufficient enough to protect plants from ROS, by exhibiting lower 1O$_2$ production, and preventing the photosynthetic apparatus from oxidative damage [12].

5. Conclusions

Based on the results from three deciduous broadleaf tree species in the present study, even when photosynthesis and J_{PSII} were reduced by environmental stresses, photoprotective mechanisms including J_{NPQ} and J_{Chl} could suppress the rise of J_{NO} in the leaves developed under the stresses, consequently preventing photodamage even under future-coming elevated CO$_2$ conditions.

Author Contributions: M.K., and H.T. designed the study. M.K., H.T., S.K., H.H., K.Y. and M.K. collected the photosynthetic data, performed the analysis, and hence equally contributed to this study. M.K. led the writing with input from E.A. and T.K. All authors also discussed the results and commented on the manuscript.

Funding: This study was supported in part by JSPS KAKENHI Grant Number JP17K19301, JP17F17102 and JP17H03839. Evgenios Agathokleous was a JSPS International Research Fellow (ID No: P17102).

Acknowledgments: We thank K Mima and K Sakai for leaf N analyses, and express our sincere appreciation to V. Hurry for his helpful suggestions on our article. E.A. acknowledges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Cornic, G.; Fresneau, C. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. *Ann. Bot.* **2002**, *89*, 887–894. [CrossRef] [PubMed]

2. Lazár, D. Parameters of photosynthetic energy partitioning. *J. Plant Physiol.* **2015**, *175*, 131–147. [CrossRef]

3. Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. *Photosynth. Res.* **2004**, *79*, 209–218. [CrossRef] [PubMed]

4. Hendrickson, L.; Furbank, R.T.; Chow, W.S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. *Photosynth. Res.* **2004**, *82*, 73–81. [CrossRef] [PubMed]

5. Klughammer, C.; Schreiber, U. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. *PAM Appl. Notes* **2008**, *1*, 27–35.

6. Demmig-Adams, B.; Adams, W.W., III; Barker, D.H.; Logan, B.A.; Bowling, D.R.; Verhoeven, A.S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. *Physiol. Plant.* **1996**, *98*, 253–264. [CrossRef]

7. Wilhelm, C.; Selmar, D. Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis. *J. Plant Physiol.* **2011**, *168*, 79–87. [CrossRef]

8. Ruban, A.V.; Berera, R.; Iliaia, C.; van Stokkum, I.H.M.; Kennis, J.T.M.; Pascal, A.A.; van Amerongen, H.; Robert, B.; Horton, P.; van Grondelle, R. Identification of a mechanism of photoprotective energy dissipation in higher plants. *Nature* **2007**, *450*, 575–578. [CrossRef]

9. Komiyayev, D.; Logan, B.A.; Holaday, A.S. Excitation pressure as a measure of the sensitivity of photosystem II to photoinactivation. *Funct. Plant Biol.* **2010**, *37*, 943–951. [CrossRef]

10. Kasajima, I.; Ebana, K.; Yamamoto, T.; Takahara, K.; Yano, M.; Kawai-Yamada, M.; Uchimiya, H. Molecular distinction in genetic regulation of nonphotochemical quenching in rice. *Proc. Natl. Acad. Sci. USA* **2011**, *108*, 13835–13840. [CrossRef]

11. Moustaka, J.; Tanou, G.; Adamakis, I.D.; Eleftheriou, E.P.; Moustakas, M. Leaf age-dependent photoprotective and antioxidative response mechanisms to paraquat-induced oxidative stress in *Arabidopsis thaliana*. *Int. J. Mol. Sci.* **2015**, *16*, 13989–14006. [CrossRef]

12. Moustaka, J.; Ouzoundiou, G.; Sperdouli, I.; Moustakas, M. Photosystem II is more sensitive than photosystem I to Al³⁺ induced phytotoxicity. *Materials (Basel)* **2018**, *11*, 1772. [CrossRef] [PubMed]

13. Gawroński, P.; Witoń, D.; Vashutina, K.; Bederska, M.; Betliński, B.; Rusaczonek, A.; Karpiński, S. Mitogen-activated protein kinase 4 is a salicylic acid-independent regulator of growth but not of photosynthesis in *Arabidopsis*. *Mol. Plant* **2014**, *7*, 1151–1166. [CrossRef] [PubMed]

14. Krieger-Liszkay, A.; Fufezan, C.; Trebst, A. Singlet oxygen production in photosystem II and related protection mechanisms. *Photosynth. Res.* **2008**, *98*, 551–564. [CrossRef] [PubMed]

15. Vass, I. Molecular mechanisms of photodamage in the Photosystem II complex. *Biochim. Biophys. Acta Bioenerg.* **2012**, *1817*, 209–217. [CrossRef] [PubMed]

16. Vass, I. Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. *Physiol. Plant.* **2011**, *142*, 6–16. [CrossRef]

17. Hendrickson, L.; Furbank, R.T.; Chow, W.S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. *Photosynth. Res.* **2004**, *82*, 73–81. [CrossRef] [PubMed]

18. Moustaka, J.; Ouzoundiou, G.; Sperdouli, I.; Moustakas, M. Photoprotective mechanism of the non-target organism *Arabidopsis thaliana* to paraquat exposure. *Pestic. Biochem. Physiol.* **2014**, *111*, 1–6. [CrossRef]

19. Liu, J.; Zhang, R.; Zhang, G.; Guo, J.; Dong, Z. Effects of soil drought on photosynthetic traits and antioxidant enzyme activities in *Hippophae rhamnoides* seedlings. *J. For. Res.* **2014**, *28*, 255–263. [CrossRef]

20. Keenan, T.F.; Niinemets, Ü. Global leaf trait estimates biased due to plasticity in the shade. *Nat. Plants* **2016**, *3*, 16201. [CrossRef] [PubMed]

21. Hikosaka, K.; Anten, N.P.R.; Borjigida, A.; Kamiyama, C.; Sakai, H.; Hasegawa, T.; Oikawa, S.; Iio, A.; Watanabe, M.; Koike, T.; et al. A meta-analysis of leaf nitrogen distribution within plant canopies. *Ann. Bot.* **2016**, *118*, 239–247. [CrossRef]

22. Evans, J.R. Photosynthesis and nitrogen relationship in leaves of C3 plants. *Oecologia* **1989**, *78*, 9–19. [CrossRef] [PubMed]
23. Niinemets, Ü.; Bilger, W.; Kull, O.; Tenhunen, J. Responses of foliar photosynthetic electron transport, pigment stoichiometry, and stomatal conductance to interacting environmental factors in a mixed species forest canopy. *Tree Physiol.* 1999, 19, 839–852. [CrossRef] [PubMed]

24. Kitao, M.; Kitaoka, S.; Komatsu, M.; Utsugi, H.; Tobita, H.; Koike, T.; Maruyama, Y. Leaves of Japanese oak (*Quercus mongolica var. crispula*) mitigate photo-inhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient. *Physiol. Plant.* 2012, 146, 192–204. [CrossRef] [PubMed]

25. Kitao, M.; Kitaoka, S.; Harayama, H.; Tobita, H.; Agathokleous, E.; Utsugi, H. Canopy nitrogen distribution is optimized to prevent photo-inhibition throughout the canopy during sun flecks. *Sci. Rep.* 2018, 8, 503. [CrossRef]

26. Von Caemmerer, S. *Biochemical Models of Leaf Photosynthesis*; CSIRO Pub: Clayton, Australia, 2000; ISBN 064306379X.

27. Coskun, D.; Britto, D.T.; Kronzucker, H.J. Nutrient constraints on terrestrial carbon fixation: The role of nitrogen. *J. Plant Physiol.* 2016, 203, 95–109. [CrossRef] [PubMed]

28. Dai, A. Increasing drought under global warming in observations and models. *Nat. Clim. Chang.* 2012, 3, 52–58. [CrossRef]

29. Ainsworth, E.A.; Yendrek, C.R.; Sitch, S.; Collins, W.J.; Emberson, L.D. The effects of tropospheric ozone on net primary productivity and implications for climate change. *Annu. Rev. Plant Biol.* 2012, 63, 637–661. [CrossRef] [PubMed]

30. Matyssek, R.; Wieser, G.; Ceulemans, R.; Rennenberg, H.; Pretzsch, H.; Haberer, K.; Löw, M.; Nunn, A.J.J.; Werner, H.; Wipfler, P.; et al. Enhanced ozone strongly reduces carbon sink strength of adult beech (*Fagus sylvatica*)—Resume from the free-air fumigation study at Kranzberg Forest. *Environ. Pollut.* 2010, 158, 2527–2532. [CrossRef] [PubMed]

31. Sharma, C.; Kontunen-Soppela, S.; Pandey, A.K.; Keski-Saari, S.; Oksanen, E.; Pandey, V. Impacts of increasing ozone on Indian plants. *Environ. Pollut.* 2013, 177, 189–200.

32. Kitao, M.; Koike, T.; Tobita, H.; Maruyama, Y. Elevated CO$_2$ and limited nitrogen nutrition can restrict excitation energy dissipation in photosystem II of Japanese white birch (*Betula platyphylla var. japonica*) leaves. *Physiol. Plant.* 2005, 125, 64–73. [CrossRef]

33. Kitao, M.; Lei, T.T.; Koike, T.; Kayama, M.; Tobita, H.; Maruyama, Y. Interaction of drought and elevated CO$_2$ concentration on photosynthetic down-regulation and susceptibility to photo-inhibition in Japanese white birch seedlings grown with limited N availability. *Tree Physiol.* 2007, 27, 727–735. [CrossRef] [PubMed]

34. Kitao, M.; Komatsu, M.; Yazaki, K.; Kitaoka, S.; Tobita, H. Growth overcompensation against O$_3$ exposure in two Japanese oak species, *Quercus mongolica var. crispula* and *Quercus serrata*, grown under elevated CO$_2$. *Environ. Pollut.* 2015, 206, 133–141. [CrossRef] [PubMed]

35. Ruiz-Vera, U.M.; De Souza, A.P.; Long, S.P.; Ort, D.R. The role of sink strength and nitrogen availability in the down-regulation of photosynthetic capacity in field-grown *Nicotiana tabacum* L. at elevated CO$_2$ concentration. *Front. Plant Sci.* 2017, 8, 998. [CrossRef] [PubMed]

36. Oxborough, K.; Baker, N.R. Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components – calculation of qP and Fv/Fm’ without measuring Fo’. *Photosynth. Res.* 1997, 54, 135–142. [CrossRef]

37. Niinemets, Ü.; Kull, O.; Tenhunen, J.D. Within-canopy variation in the rate of development of photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous trees. *Plant Cell Environ.* 2004, 27, 293–313. [CrossRef]

38. Flexas, J.; Bota, J.; Galmés, J.; Medrano, H.; Ribas-Carbo, M. Keeping a positive carbon balance under adverse conditions: Responses of photosynthesis and respiration to water stress. *Physiol. Plant.* 2006, 127, 343–352. [CrossRef]

39. Kitao, M.; Lei, T.T. Circumvention of over-excitation of PSII by maintaining electron transport rate in leaves of four cotton genotypes developed under long-term drought. *Plant Biol.* 2007, 9, 69–76. [CrossRef]

40. Kitao, M.; Lei, T.T.; Koike, T.; Tobita, H.; Maruyama, Y. Higher electron transport rate observed at low intercellular CO$_2$ concentration in long-term drought-acclimated leaves of Japanese mountain birch (*Betula ermanii*). *Physiol. Plant.* 2003, 118, 406–413. [CrossRef]

41. Farquhar, G.D.; von Caemmerer, S. Modelling of Photosynthetic Response to Environmental Conditions. In *Physiological Plant Ecology II*; Springer: Berlin/Heidelberg, Germany, 1982; pp. 549–587.
42. Nagashima, T.; Sudo, K.; Akimoto, H.; Kurokawa, J.; Ohara, T. Long-term change in the source contribution to surface ozone over Japan. *Atmos. Chem. Phys.* **2017**, *17*, 8231–8246. [CrossRef]

43. Sicard, P.; Anav, A.; De Marco, A.; Paoletti, E. Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios. *Atmos. Chem. Phys.* **2017**, *17*, 12177–12196. [CrossRef]

44. Karnosky, D.F.; Pregitzer, K.S.; Zak, D.R.; Kubiske, M.E.; Hendrey, G.R.; Weinstein, D.; Nosal, M.; Percy, K.E. Scaling ozone responses of forest trees to the ecosystem level in a changing climate. *Plant Cell Environ.* **2005**, *28*, 965–981. [CrossRef]

45. Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO$_2$ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO$_2$. *New Phytol.* **2005**, *165*, 351–372. [CrossRef]

46. Norby, R.J.; Zak, D.R. Ecological Lessons from Free-Air CO$_2$ Enrichment (FACE) Experiments. *Annu. Rev. Ecol. Evol. Syst.* **2011**, *42*, 181–203. [CrossRef] [PubMed]

47. Agathokleous, E.; Saitanis, C.J.; Wang, X.; Watanabe, M.; Koike, T. A review study on past 40 years of research on effects of tropospheric O$_3$ on belowground structure, functioning and processes of trees: A linkage with potential ecological implications. *Water Air Soil Pollut.* **2016**, *227*, 33. [CrossRef]

48. Watanabe, M.; Hoshika, Y.; Inada, N.; Wang, X.; Mao, Q.; Koike, T. Photosynthetic traits of Siebold’s beech and oak saplings grown under free air ozone exposure in northern Japan. *Environ. Pollut.* **2013**, *174*, 50–56. [CrossRef] [PubMed]

49. Pell, E.J.; Schlagnhaufer, C.D.; Arteca, R.N. Ozone-induced oxidative stress: Mechanisms of action and reaction. *Physiol. Plant.* **1997**, *100*, 264–273. [CrossRef]

50. Agathokleous, E.; Kitao, M.; Calabrese, E.J. Environmental hormesis and its fundamental biological basis: Rewriting the history of toxicology. *Environ. Res.* **2018**, *165*, 274–278. [CrossRef]

51. Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormesis: A compelling platform for sophisticated plant science. *Trends Plant Sci.* **2019**, in press. [CrossRef]

52. Calabrese, E.J.; Agathokleous, E. Building biological shields via hormesis. *Trends Pharmacol. Sci.* **2019**, *40*, 8–10. [CrossRef]

53. Long, S.P.; Humphries, S.; Falkowski, P.G. Photoinhibition of Photosynthesis in Nature. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* **1994**, *45*, 633–662. [CrossRef]