Biological Control Agents Against Fusarium Wilt of Banana

Giovanni Bubici 1*, Manoj Kaushal 2, Maria Isabella Prigigallo 1, Carmen Gómez-Lama Cabanás 3 and Jesús Mercado-Blanco 3

1 Consiglio Nazionale delle Ricerche (CNR), Istituto per la Protezione Sostenibile delle Piante (IPSP), Bari, Italy, 2 International Institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania, 3 Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain

In the last century, the banana crop and industry experienced dramatic losses due to an epidemic of Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f.sp. cubense (Foc) race 1. An even more dramatic menace is now feared due to the spread of Foc tropical race 4. Plant genetic resistance is generally considered as the most plausible strategy for controlling effectively such a devastating disease, as occurred for the first round of FWB epidemic. Nevertheless, with at least 182 articles published since 1970, biological control represents a large body of knowledge on FWB. Remarkably, many studies deal with biological control agents (BCAs) that reached the field-testing stage and even refer to high effectiveness. Some selected BCAs have been repeatedly assayed in independent trials, suggesting their promising value. Overall under field conditions, FWB has been controlled up to 79% by using Pseudomonas spp. strains, and up to 70% by several endophytes and Trichoderma spp. strains. Lower biocontrol efficacy (42–55%) has been obtained with arbuscular mycorrhizal fungi, Bacillus spp., and non-pathogenic Fusarium strains. Studies on Streptomyces spp. have been mostly limited to in vitro conditions so far, with very few pot-experiments, and none conducted in the field. The BCAs have been applied with diverse procedures (e.g., spore suspension, organic amendments, bioformulations, etc.) and at different stages of plant development (i.e., in vitro, nursery, at transplanting, post-transplanting), but there has been no evidence for a protocol better than another. Nonetheless, new bioformulation technologies (e.g., nanotechnology, formulation of microbial consortia and/or their metabolites, etc.) and tailor-made consortia of microbial strains should be encouraged. In conclusion, the literature offers many examples of promising BCAs, suggesting that biocontrol can greatly contribute to limit the damage caused by FWB. More efforts should be done to further validate the currently available outcomes, to deepen the knowledge on the most valuable BCAs, and to improve their efficacy by setting up effective formulations, application protocols, and integrated strategies.

Keywords: Musa acuminata, Fusarium oxysporum f. sp. cubense, Panama disease, soil microbiota, beneficial microorganisms, biocontrol
INTRODUCTION

Among plant pathologists, everybody knows the story of Fusarium wilt of banana (FWB), also known as Panama disease. Until the 1950s, the cultivar Gros Michel had dominated the panorama of cultivated banana worldwide. The global banana production was threatened by a destructive soil-borne fungus, namely *Fusarium oxysporum* f. sp. *cubense* (Foc) (Figure 1). Fortunately, a resistant cultivar was identified, the “Cavendish.” Hence, due to its resistance to the races 1 and 2 of Foc (Foc R1 and R2), “Cavendish” was used to replace universally the “Gros Michel,” which unique fruit flavor has become virtually a distant memory. The global banana industry was saved until the 1990s, when a Foc strain virulent on “Cavendish” emerged, the race 4 (R4). First identified in Taiwan, Foc race 4 (R4) rapidly spread to South East Asian countries (e.g., Indonesia, Malaysia, and the Philippines), China, northern Australia, India, Pakistan, Middle East countries (e.g., Jordan, Israel, and Lebanon) and Africa (Mozambique) (Vézina, 2018a). Foc R4 strains are further separated into tropical race 4 (TR4) and subtropical race 4 (STR4), based on the evidence that the latter group necessitates predisposing factors, such as low temperatures, to cause the disease. The race 4 affects not only “Cavendish,” but also R1- and R2-susceptible varieties, while R1 affects “Gros Michel,” “Silk” and “Pisang Awak,” and R2 affects “Bluggoe” (Ploetz and Pegg, 2000). The race 3 (R3), which infects *Heliconia* spp., is no longer included in the Foc species (Ploetz, 2005). Currently, Foc TR4 is present in 19 of the 135 countries producing bananas (Dusunceli, 2017; Zheng et al., 2018), and its alarming spread has gained a remarkable interest from world media and cultural community (Butler, 2013; Gittleson, 2018).

Nowadays, bananas (including plantains and other cooking bananas) are the most produced fruit on the Earth (148 million tons produced in 2016 in 135 countries) and provide a staple for some 400 million people worldwide (Dusunceli, 2017). Its production and cultivated lands have progressively increased over the years (FAO, 2018b). Under the climate change scenario, the temperature increase will make conditions more favorable for banana production in the subtropical and tropical highlands. Land area suitable for bananas is estimated to augment 50% by 2070 (FAO, 2016). Currently, Cavendish varieties cover ca. 40% of the global production (the export trade accounts for 15% of the global production), and may be well the only bananas present on supermarket shelves of non-producer countries, because they dominate the export trade for a 12 billion dollars affair (FruitTrop, 2018). Therefore, it is clear that the economic impact of a second Foc epidemic would be more dramatic than the first one. As demonstrated in the past for the Foc R1 plague, the host genetic resistance is the better way to tackle the virulent strain. So far, however, no commercial varieties displaying an effective resistance against Foc R4 are available. Several research projects (Kema, 2018) and international initiatives, such as Promusa (Van den Bergh et al., 2018), World Banana Forum (Liu and Prada, 2018), the African Consortium for TR4 (Viljoen et al., 2018) and the four banana regional research networks MUSALAC, Innovate Plantain, BARNESA, and BAPNET (Bioversity International, 2018) have been started with the aim to save this crop. Lastly, the research project “Microbial Uptakes for Sustainable Management of Major Banana Pests and Diseases (MUSA)” (Horizon 2020 framework), in which we are involved, aims at improving the sustainable protection of banana crops from three major biotic constraints: FWB, nematodes, and banana weevil.

The MUSA project holistically encompasses integrated pest management methods based on microbial consortia and available banana and enset germplasms, including newly developed elite hybrids (Ciancio, 2017).

Biological control has gained great interest in the last years in many pathosystems, including Foc/banana. This has been mainly due to the large input of pesticides, which cause economic, environmental and safety concerns. Biological control must not be a strategy limited to organic farming (adopted in 1% of banana cultivated lands) (Liu and Prada, 2018), but included within integrated disease management frameworks implemented in agricultural systems. Historically, biological control has suffered from inconsistent results over the seasons and the environments, most likely due to interacting variables (e.g., environmental, genetic, physiological, etc.) present in any given agro-ecosystem, and that are not fully understood or difficult to control. Factors affecting the biocontrol efficacy of FWB have been summarized by Guo et al. (2013).

In the present article, we report the impact of FWB in different continents and the overall disease management strategies with special regard to biological control. Thus, we report a comprehensive literature review of the biological control agents (BCAs) used against Foc, we also analyze critically the most relevant results achieved, and identify gaps in our current knowledge of this control strategy in order to (i) show the actual potential of biological control of FWB, and (ii) foster new research lines based on currently-available powerful...
technologies that will aid in developing novel and more effective biocontrol tools.

DISEASE IMPACT ON BANANA PRODUCTION ...

... in Asia and Australia

Since 1967, the pathogen has caused severe damage in Taiwan, the major exporter of banana to Japan till that time, and the lands cultivated with banana have passed from 50,000 ha in the 1960s to about 6,000 ha in the 2000s. Banana plantations have been also decimated in Indonesia and Malaysia in the early 1990s. The spread of *Foc* TR4 has aggravated the condition in Asia (Molina et al., 2009). In the Philippines, *Foc* has been present since 1970, but TR4 has been detected in 2006. Then, hectares of banana plantations have been abandoned by farmers because of *Foc* TR4, resulting in an annual loss of 3 billion dollars, and approximately 66,000 families lost their livelihood (Molina et al., 2009). As a consequence, in 2014 the Federation of Cooperatives in Mindanao (FEDCO) advised banana growers to shift to oil palm in fields compromised by *Foc*, a crop suitable for the Philippines lands and with increasing market demand (Carillo, 2014). During a survey in 2006, about 6,700 ha of banana plantations were found severely affected by the pathogen in the Guangdong province, southern China (Yi et al., 2007), and in 2012 an extensive damage was also observed around the Guangxi's capital and the Hainan island (Farquhar, 2012). India is the largest producer of bananas in the world with 28.6 million tons produced annually (FAO, 2018b), 70% of which is of the Cavendish cultivar Grand Naine (AAA genome group). There, six vegetative compatibility groups (VCGs) of *Foc* have been found, and disease severity has been as high as 80–90% on susceptible cultivars such as “Silk” (ABB), “Ney Poovan” (AB), “Pisang Awak” (ABB), “Pome” (ABB, “Bluggoe” (ABB), “Monthan” (ABB), and “Mysore” (ABB) (the latter was resistant to *Foc*, but then found infected by VCG 0124/012512) (Mustaffa and Thangavelu, 2011). *Foc* TR4 has been first found in 2015 in the state of Bihar, in the northeastern part of the country, and then detected in the states of Uttar Pradesh, Madhya Pradesh, and Gujarat, on the west coast. It has been officially confirmed only in 2017 (Damodaran et al., 2018). It has been estimated that *Foc* TR4 can inflict losses for 500 billion Indian rupees (ca. 7 billion American dollars) to the country's banana industry (Kulkarni, 2018).

The most recent records of TR4 have come from Jordan, Lebanon, Pakistan, Laos, Vietnam and Myanmar (Molina et al., 2009; Zheng et al., 2018). In 2016, two TR4 outbreak areas were identified in Israel, where the affected farms were promptly fenced in, and diseased plants destroyed. In May 2018, the Israel’s National Plant Protection Organization officially declared the pathogen eradicated from Israel (EPPO Reporting Service, 2018). Although the public declaration, scientists know that *Foc* cannot be eradicated from the soil.

FWB in Australia has been reviewed previously by Pegg et al. (1996). Australia was the continent where *Foc* was reported for the first time (Bancroft, 1876), whereas *Foc* TR4 has been reported in the Northern Territory since 1997 (Bentley et al., 2001; Conde and Pilkethley, 2001). Later, in Queensland, three TR4 spots were identified between 2015 and 2018. In Australia, the severe biosecurity regulations have been very effective, and have made the *Foc* TR4 spread extremely slower than elsewhere. In September 2018, Biosecurity Queensland in partnership with Biosecurity Solutions Australia has announced the development of a certification system for TR4-infested farms that meet the requirements for severe food safety and biosecurity standards (Northern Queensland Register, 2018). The lack of resistant cultivar has drastically reduced the banana production in Australia, with a commercial industry loss above 90% and an augmented price of bananas in domestic markets (Cook et al., 2015).

... in Latin America and the Caribbean

Latin America and the Caribbean (LAC) support 28% of the global banana production and provide more than 80% of the banana exports (FAO, 2018b). According to Dita et al. (2013), FWB in LAC impact on certain production systems more than others. Particularly affected systems are the monocultures such as “Prata” (ABB) in Brazil, “Isla” and “Palillo” (ABB, Pacific plantain) in Peru, and the banana plantations intercropped with coffee and cocoa. Due to the *Foc* R1 epidemic, not only “Gros Michel” (AAA) was replaced with “Cavendish” (AAA), but also “Prata Ana” (ABB) (in Brazil) and apple banana (ABB). The cooking banana “Bluggoe” (ABB) was replaced with “Pelipita” (ABB), which is also resistant to Moko (*Ralstonia solanacearum* race 2). With the “Cavendish” advent, FWB disappeared as a problem for the trades (Buddenhagen, 1990), while the black leaf streak (or black Sigatoka, caused by *Mycosphaerella fijiensis*) assumed the primary importance (Ploetz, 2015a). Then, the rapid spread of *Foc* TR4 has recovered the importance of FWB, though black leaf streak remains of high economic relevance, especially in tropical regions. At present, the banana industry in LAC is almost totally based on Cavendish varieties, and the limited production for national markets is based on apple banana, plantain and “Gros Michel.” In countries of LAC, *Foc* TR4 is not present, therefore the pathogen exclusion by means of strong quarantine procedures is compulsory. Farmers, technicians, and politicians of LAC became sensitized of the FWB menace from the past, and they continue to become aware thanks to dissemination and technical events, workshops and meetings (Clercx, 2013; FAO, 2018c). An awareness campaign has been launched by a consortium of institutes in order to emphasize the importance of quarantine measures in preventing the entrance of *Foc* TR4 into LAC (Pocasangre et al., 2011).

... in Africa

Banana has been present on the continent for over 1400 years (Blomme et al., 2013). It is an important staple food for African people, as in countries such as Uganda, Rwanda, and Cameroon per capita consumption exceeds well 200 kg of bananas, so providing up to 25–35% of the daily nutrient intake. About 70–80% of banana production is consumed locally (FAO, 2018a; Viljoen et al., 2018).
Foc race 1 has first been reported from West Africa in 1924, and then from Tanzania in 1951 (Blomme et al., 2013; Viljoen et al., 2018). Vegetative compatibility groups and phylogenies of Foc populations in Africa have been extensively studied (reviewed by Blomme et al., 2013). Until the year 2000, FWB was reported in two out of the six production areas of South Africa: Kiepersol and southern KwaZulu-Natal. In KwaZulu-Natal, the disease appeared in 1940 and spread to Kiepersol with infected plant material, where it resulted in a 30% loss of banana plantations during the 1990s. At that time, only Foc STR4 occurred in South Africa (Viljoen, 2002). In Uganda, the major producer of cooking bananas worldwide with 3.7 million tons in 2016 (FAO, 2018b), FWB is less relevant than weevil [Cosmopolitanis sordidus (Germar)] and Xanthomonas wilt (Xanthomonas campestris pv. musacearum) and is present at altitudes above 1,300 m (Vézina, 2018b). With the occurrence in one farm in northern Mozambique, Foc TR4 officially entered the African continent in 2013, although it was likely an earlier presence (Butler, 2013). There, Foc TR4 destroyed about one million plants at a rate of approximately 15,000 plants per week (Jansen, 2017). After the detection of Foc TR4 in the six farms of Metochéria (about 1,500 ha cultivated with banana), the access of people and the movement of farm personnel and international staff have been restricted and controlled in order to avoid further spread of the pathogen (Viljoen et al., 2018).

The “Cavendish” varieties are not widely grown in Africa (about 10% of the region’s production), whereas plantains (AAB) predominate in West Africa (71% of the production) with about 100 varieties, and highland banana (AAA; East Africa Highland Banana or EAHB) and other cooking types (ABB) predominate in East Africa (71% of production) with more than 50 varieties (FruiTrop, 2018; Viljoen et al., 2018). “Cavendish” was used in countries like Kenya to replace the susceptible varieties "Kampala" ("Gros Michel") and "Bokoboto" ("Bluggoe," ABB), susceptible to Foc R1. Besides these exceptions and few others (Sebasigari and Stover, 1988; Rutherford, 2001), African germplasm is largely resistant to Foc R1 and R2, but its reaction to Foc TR4 is still unknown. This scenario would make the Foc TR4 diffusion subtler than in a “Cavendish” monoculture, since new TR4 spots could be undetected properly or assumed to be caused by already established races but not TR4 (Vézina, 2018c). In addition, the fact that sucker-derived plant material is still used more than tissue culture plants in Africa (Dubois et al., 2013; Niere et al., 2014) may contribute to exacerbating the problem.

... in the Canary Islands

Banana is the most important intensive agricultural crop in the Canary Islands, an archipelago located in the Atlantic Ocean between 27° 37'-29° 25' N and 13° 20'-18° 10' W. The orography and pedological conditions have conditioned banana cultivation in these islands, shaping a particular landscape of terraces built up over volcanic stones and debris. Banana farms are usually small and about 80% of them have <1 hectare (Instituto Canario de Calidad Agroalimentaria, 2018). To check historical and current figures on banana production and cultivated area per island and municipalities, interested readers can consult the Canary Islands government’s website (Gobierno de Canarias, 2018). Cultivar “Pequeña Enana” (or “Dwarf Cavendish,” AAA) is overwhelmingly predominant in the islands, with a minor and more recent presence of “Gran Enana” (or “Grande Naine” or “Grand Nain”; AAA) as well as local selections from “Pequeña Enana” like “Gruesa,” “Brier,” and “Negrita” (Azkolaín Olaondo, 2016). Banana production in the archipelago is highly technified with practices such as artificial soil preparation, use of in vitro propagated plants from selected cultivars, modern fertigation approaches and extended use of greenhouse cultivation systems (Azkolaín Olaondo, 2016). In Tenerife, Fusarium wilt was detected for the first time in the 1920s (Blomme et al., 2013). It is currently present in any area of the archipelago where banana is cultivated, showing an incidence of affected plants ranging from 2 to 12%. In some cases, however, incidence has been reported to be much higher causing more than 30% of crop loss in specific spots (Rodríguez Serrano, 2012). Studies carried out to determine the racial structure and pathogenicity of Foc isolates obtained from infected plants and soils of “Dwarf Cavendish” and “Grande Naine” plantations pointed to the fact that there are no differences among pathogen populations (Regalado Guijarro and Hernández Hernández, 1998). The presence and virulence of Foc STR4 have been well determined in Tenerife, and this race has also been claimed to be responsible for Dwarf Cavendish infections occurring in Gran Canaria island (Ploetz et al., 1990; Domínguez-Hernández et al., 2008).

OVERALL CONTROL STRATEGIES CURRENTLY ADOPTED

Available and currently-implemented measures to control FWB have been recently compiled (Ploetz, 2015b; Dita et al., 2018; Siamak and Zheng, 2018), and comprehensive information are also available in web portals such as World Banana Forum (Clercx, 2013) and Promusa (Van den Bergh et al., 2018). Previously, other authors have also produced similar reviews (e.g., Figueroa, 1987; Jeger et al., 1996; Wul, 2000; Murray, 2001; Pocasangre et al., 2011; Pérez-Vicente, 2015).

Foc is particularly difficult to control for a number of reasons: (a) it is a soil-borne fungus with a long survival in the soil (more than 20 years), even in the absence of plant hosts (Stover, 1962; Buddenhagen, 2009), or within alternate hosts which do not necessarily show disease symptoms (Waite and Stover, 1960; Pittaway et al., 1999; Hennessy et al., 2005); (b) being a vascular pathogen, it escapes the contact with the control means (e.g., non-systemic fungicides, non-endophytic BCAs, etc.) once it penetrates into the plant; (c) it can be spread by banana vegetative propagation material, soil vectored by workers and machinery, irrigation water, etc.; and (d) the banana monoculture, especially Cavendish varieties in the case of Foc TR4, facilitates the pathogen spread.

Overall, fungicides have provided unsatisfactory control levels. In vitro, toxicity against Foc has been proved for phosphonate, ambuic acid, organotin mandelates, carbendazim, carboxin, propiconazole, benomyl, and difenoconazole (Davis et al., 1994; Davis and Grant, 1996; Li et al., 2001; Araujo et al., 2004; Somu et al., 2014). In planta, only a few research
articles have reported a significant disease control by using fungicides (e.g., carbendazim) (Lakshmanan and Selvaraj, 1984; Eswararumthry et al., 1988; Roy et al., 1998) or resistance inducers (e.g., indoleacetic acid and mandenione sodium bisulphite) (Fernández-Falcón et al., 2003; Borges et al., 2004). Until now, however, these pot-experiments have not been validated under field conditions.

In the lack of highly effective control means, like available sources of host genetic resistance, plant diseases are usually managed by integrated frameworks, with an emphasis in preventive measures. This is particularly true for soil-borne diseases like FWB and Verticillium wilts, whose causal pathogens cannot be eradicated once contaminates the soil. With few context-specific differences, integrated disease management strategies of diverse vascular diseases have much in common (Bubici and Cirulli, 2008; Cirulli et al., 2010; López Escudero and Mercado-Blanco, 2011; Jiménez-Díaz et al., 2012).

In the case of FWB, Dita et al. (2018) stressed that the implementation and integration of some disease management practices may vary according to four main farm-level scenarios, which indeed correspond to four stages of the disease epidemic: (i) absence of Foc, (ii) first incursion of Foc, (iii) low FWB prevalence, and (iv) high FWB prevalence (Figure 2). In the absence of a devastating pathogen like Foc, it is imperative to adopt exclusion measures to prevent the pathogen entrance, both at farm level using proper practices adopted by the personnel, and at the regional or national level using legal initiatives such as quarantine, certification, etc. This is the case of Foc TR4 in LAC and other countries where this race is not yet present. At the first incursion of Foc, exclusion methods still have great importance, but containment measures must be rapidly initiated and scrupulously applied. Farms in countries where Foc TR4 has been detected recently would be in this second situation (e.g., Mozambique, Lebanon, Pakistan, Israel, Laos, Vietnam, and Myanmar). Once Foc is established, exclusion tactics make no longer sense, but containment measures must be implemented, and integrated disease management can be adopted under low disease pressure. With high disease prevalence, containment measures are obviously not effective, and integrated disease management may be questionable.

Thus, the use of resistant varieties is the only way for successfully confronting FWB. As mentioned above, this was already experienced for the Foc R1 epidemic. On the other hand, Dita et al. (2018) have reported two examples where the integrated disease management against Foc R1 allows some farmers to grow the susceptible varieties “Pratá”-type, in Brazil, and “Gros Michél,” in Colombia.

Unfortunately, no commercial varieties displaying high resistance to Foc TR4 coupled with good agronomic traits and fruit characteristics are yet available. However, the research on breeding for resistance has been particularly active and, besides conventional breeding and screening of genotypes, several mutant, and transgenic bananas have been developed (Figure 3). Resistance sources to Foc TR4 have been found in banana wild relatives, especially M. basjoo and M. itinerans, but also in M. yunnanensis, M. nagassium, M. ruilensis, and M. velutina, whereas higher disease intensity was observed in M. balbisiana and M. acuminata subsp. burmannica (Li et al., 2015).

Within M. acuminata, the genotype DH-Pahang, which genome was sequenced, has been found resistant to Foc TR4 (D’Hont et al., 2012; Zhang et al., 2018). Other promising varieties resistant to Foc TR4 are being tested under field conditions. Some of them were developed by the Fundación Hondureña de Investigación Agrícola (FHIA), and others by the Taiwan Banana Research Institute (TBRI). Other resistant genotypes have been identified within the world’s largest collection of bananas, owned by the International Musa Germplasm Transit Centre, which is managed by Bioversity International and hosted by the Katholieke Universiteit Leuven in Belgium (Vézina, 2018a). The so-called “Giant Cavendish” tissue-culture variants (GCTCV) have been selected for the resistance against Foc TR4 by the Taiwan Banana Research Institute (TBRI). Four GCTCVs and three important Philippine local varieties were assayed over two cropping seasons in a heavily Foc-infested field in the southern Philippines. While the commercially-grown varieties “Grand Naine” and “Lakatan” showed disease incidence up to 92%, the GCTCV varieties were largely resistant, with a disease incidence of 0–8%. Moreover, “Saba” (ABB) was completely resistant in the two seasons (Molina et al., 2016a). The TR4-susceptibility of African banana germplasm, generally known to be resistant to Foc R1, has been started to be evaluated. A collection of 14 genetically diverse EAHB and plantain varieties were evaluated in fields of China and the Philippines and found all resistant with disease incidence as low as 0–5%, except EAHB “Ibwi” which showed a disease incidence of 32% (Molina et al., 2016b).

When resistant varieties are not available, the management of FWB relies on an integrated approach. In the Canary Islands, for example, where FWB is caused by Foc STR4 and has a low prevalence, farmers try to contrast the pathogen by a number of palliative practices, sometimes based on empirical knowledge or deduced from basic research (Rodríguez Serrano, 2012; López-Cepero et al., 2014).

Soil amendment with calcium hydroxide or agricultural lime is practiced at the base of both diseased plants and symptomless neighboring ones with the aim to increase the pH and thus hinder Foc proliferation. The pH increase, however, may have deleterious effects on the physicochemical properties of soil, but probably the technicians and farmers choose the lesser evil. It has been observed that soil applications of CaCO$_3$, Ca(OH)$_2$, CaSO$_4$, or Fe-EDDHA reduced Foc conidia germination and FWB severity, though the calcium amount was insufficient to change the soil pH. Nevertheless, this observation was not considered conclusive enough by the authors (Peng et al., 1999). A higher FWB incidence has been associated with low soil pH (Alvarez et al., 1981), but such observation has not been reproduced experimentally (da Silva Junior et al., 2000). Also, ammonia fumigation and biofertilization have been reported to reduce FWB incidence in a pot-experiment, with concurrent increases in soil pH, nutrient contents, and beneficial microbial community (Shen et al., 2019). Although no clear experimental evidence exists about the effectiveness against FWB of raising soil pH, it is known that Foc prefers low pH.
For instance, a semi-selective agar medium widely used for isolation and enumeration of Foc from soil must be adjusted to pH 3.8–4.0 to favor Foc and hamper the growth of other fungi (Komada, 1975).

Adequate irrigation and fertilization regimes are also important to combat FWB. Waterlogging and acidification of nutritive solutions are generally avoided, and monthly treatments with zinc sulfate recommended. Stimulated by practical evidence that indoleacetic acid sprays combined with zinc supply reduced FWB, Hecht-Buchholz et al. (1998) observed ultrastructural changes of chloroplasts and mitochondria in banana leaves associated with the zinc-deficiency and, thus, with the FWB reduction. In a later work, the same research team confirmed the involvement of zinc nutrition in FWB development. Plants fertilized with a Zn-deficient solution were all diseased, whereas only 25% of plants treated with a normal zinc solution showed FWB symptoms (Fernández-Falcón et al., 2004). Overall, zinc seems to have a detrimental effect on several species of Fusarium, as observed in F. moniliforme (reduced fusaric acid biosynthesis), in F. oxysporum f. sp. radicis-lycopersici (suppressed fusaric acid production) and F. verticillioides (reduced fumonisins production) (Jackson et al., 1989; Duffy and Défago, 1997; Savi et al., 2013). Similarly, silicon can decrease the intensity of several crop diseases (Datnoff and Rodrigues, 2015), including FWB (Fortunato et al., 2012b). This element may accumulate in the plant cell walls and act as a mechanical barrier, while it can also induce the phenylpropanoid pathway (e.g., lignin) and activate defense-related enzymes (e.g., chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase, glucanase, peroxidase, polyphenoloxidase, etc.) (Smith et al., 2005; Fortunato et al., 2012a, 2014). Besides zinc and silicon, several other micro-nutrients like boron, iron, copper, and sodium, are known to affect FWB development (Qi et al., 2008; Sanjeev and Eswaran, 2008; Ji et al., 2012).

In the Canary Islands, it is also recommended (i) to increase the soil organic matter content above 3%, (ii) to avoid mulching for favoring soil aeration, (iii) to avoid high plant densities, and (iv) to apply plant resistance elicitors among other measures. Such practices arise from technical reports and, sometimes, from scientific articles (Alvarez et al., 1981; Aguilar et al., 2000; da Silva Junior et al., 2000; Rodríguez Serrano, 2012; López-Cepero et al., 2014). To the best of our knowledge, no detailed, long-term scientific studies have been conducted on the actual outcome of most of these practices, although they seem to help farmers to control FWB in a reasonable way.

Recently, Azkolain Olaondo (2016) investigated the use of biofumigation and soil solarization to manage FWB on a commercial farm in La Gomera island. However, results showed no differences in FWB incidence and severity among the treatments used (sheep manure or packing debris vs. control), although slight growth promotion was observed compared to the control. Moreover, solarization did not improve biofumigation treatments. An early trial from South Africa reported soil solarization as ineffective against FWB (Herbert and Marx, 1990). Nevertheless, in Indonesia, soil mulching with transparent polyethylene plastic for 10 months provided a 60% disease control until 14 months after planting. This treatment was superior to crop rotation with maize and bare soil treatment in terms of disease control and Foc TR4 suppression in the soil (Hermanto et al., 2012).

Crop rotation has provided attractive results in some cases. Rotation with rice reduced FWB to 8.1–17.6% after 1 year and to 0.8–6.3% after 2.5–3 years, compared to an initial level of 30–50%. Foc R4 population in the top layer of soil (20 cm) was undetectable after the treatment (Hwang, 1985). Furthermore, rotation with Chinese leek (Allium tuberosum) reduced FWB incidence and severity by 88–97% and 91–96%, respectively, and increased yield by 36–86% (Huang et al., 2012). In vitro assays showed that crude extracts of Chinese leek inhibit Foc R4 growth, suppress conidia proliferation and germination, and inhibit the activity of two cell wall degrading enzymes produced by Foc, polygalacturonase, and cellulase (Huang et al., 2012; Yang J. et al., 2015). Aqueous leachates and volatiles from Chinese leek exhibited strong inhibitory activity against Foc. Five volatiles including 2-methyl-2-pentenal and four organosulfur compounds (dimethyl trisulfide, dimethyl disulfide, dipropyl...
disulfide, and dipropyl trisulfide) were identified from the leaves and roots and found particularly active against the pathogen in vitro (Zhang et al., 2013). The pineapple-banana rotation has also given promising results. A 2-year crop rotation culminated with an 81% FWB reduction, and such control level was also attributed to changes in the bacterial and, more importantly, fungal communities in the soil (Wang B. et al., 2015). Lower disease control levels have been obtained by using rotations with maize, sugarcane, sunflower or eggplant (Hwang, 1985; Hermanto et al., 2012; Wang B. et al., 2015; Hong et al., 2017).

Biological (or reductive) soil disinfestation (BSD) has surfaced as another encouraging control means against FWB. Field experiments have shown that FWB can be reduced up to 82% in flooded soil incorporated with 0.5% rice straw (Huang et al., 2015c). The BSD simultaneously reduced the Foc inoculum in the soil and ameliorated the beneficial microbial communities, making the soil more suppressive to FWB (Huang et al., 2015a). Also, some microbes (e.g., Clostridium spp.) producing organic acids toxic for Foc (acetic, butyric, isovaleric and propionic acids) were found more abundant after BSD (Huang et al., 2015b).

BIOLOGICAL CONTROL AGENTS AND THEIR MODES OF ACTION: ACTUAL AND EFFECTIVE TOOLS TO CONFRONT FUSARIUM WILT OF BANANA

From a historical perspective, biocontrol of FWB has been studied for more than 70 years (Thaysen and Butlin, 1945).
FIGURE 4 | Possible modes of action of biological control agents (BCAs). Beneficial microorganisms can exhibit direct antagonism against *Fusarium oxysporum* f. sp. *cubense* (Foc) and can affect the plant physiology and/or the microbiota with a consequent, indirect effect against the pathogen.

Studies have reported that disease suppressive sites showed microbial communities displaying higher richness and diversity (Shen et al., 2015b; Köberl et al., 2017), and possibly a higher number of antagonistic members, as observed for streptomycetes (Kinkel et al., 2012; Jauri et al., 2017). Moreover, differences in the composition of these communities correlated with the disease suppressiveness (abundance of *Acidobacteria*) or conduciveinseness (abundance of *Bacteroidetes*) of soil (Shen et al., 2015b). The manipulation of banana rhizosphere microbiota by the introduction of well-characterized antagonists
alone or in combination with organic amendments (bioorganic fertilizers) has already yielded very promising results against *Foc TR4* in China (Shen Z. et al., 2013; Shen et al., 2015a; Xue et al., 2015). This strategy also leads to changes in the structure and composition of the microbial community that can be harnessed for more effective control of FWB (Shen et al., 2015a; Fu et al., 2016b).

The mechanisms underlying the BCAs’ biocontrol activity are many and variegated (Narayanasamy, 2013; Singh, 2014). It is essential to know the BCAs’ modes of action, including weakness and requirements, in order to exploit their potential for disease management in the most effective manner. Also, the combination of BCAs with different modes of action might result in a better biocontrol due to additive, or even synergistic, interactions between BCAs (Parnell et al., 2016; De Vrieze et al., 2018). Figure 4 schematizes how BCAs can act directly or indirectly against *Foc*. Direct antagonism may be due to antibiosis (e.g., antibiotics, lytic enzymes, volatile organic compounds, etc.), parasitism, or competition (for space and/or nutrients). Induction of plant local/systemic resistance, plant growth promotion, or changes of soil/plant microbiota in favor of more beneficial microbial taxa are typical mechanisms that indirectly act against the pathogen, or at least contribute to reducing the infections or the disease. Antibiosis is one of the primary mechanisms possessed by BCAs. Indeed, initial *in vitro* selection of new BCAs often relies on the evaluation of the sole anti-microbial activity against the pathogen (Figure 5A), while other mechanisms are studied later on, possibly once the BCA effectiveness is demonstrated at least under controlled conditions (Figure 5B).

Literature Overview Shows That Biocontrol of Fusarium Wilt of Banana Is a Widely Studied Research Topic

In order to understand the relevance of the research on biological control of FWB, we searched the keywords “*Fusarium cubense*” or “Panama disease” in the title and abstract of articles indexed by the CAB Direct database (CAB Direct, 2018). The search yielded a comprehensive overview of the literature from 1970 to date. Amongst 735 retrieved articles, 367 were focused on disease management and, with 182 articles (ca. 25% of the total), biological control represents the largest research sub-topic on FWB (Figure 3). Records of FWB presence, distribution or impact on the crop productivity rank second for their abundance (119 articles), suggesting how much the disease is feared worldwide (Figure 3). With 123 retrieved articles, breeding for resistance is the third relevant FWB-related research topic (17% of the total articles), which in our article categorization included conventional breeding, screening for resistance, development, and evaluation of mutant and transgenic bananas. Therefore, biological control and host genetic resistance have been considered the most important strategies for the management of FWB. It should be noted that conventional breeding in banana is particularly laborious because cultivated varieties are polyploid; hence, diploid parents must be used (or generated) for crosses, and then promising progeny must be polyploidized. In the late 70’s, the research on breeding was much more intense than that on biological control, which increased only since 2000s (Supplemental Figure 1). At least 143 articles deal with BCAs. Endophytes and strains of *Trichoderma* spp., *Pseudomonas* spp., and *Bacillus* spp. have been the most studied BCAs, followed by arbuscular mycorrhizal fungi. *Streptomyces* spp. have been investigated mainly *in vitro*, with very few *in planta* experiments, and none conducted in the field (Figures 3 and Supplemental Figure 2). In 39 papers, the effects of natural products against *Foc* is showed and, interestingly, 12 articles published since 2011 report studies on the efficacy of *A. tuberosum* extracts (Supplemental Figure 1). The remaining articles are focused on the interactions of *Foc* with other microorganisms and its population biology, where the “-omics” approach has been used since the 2010s. Experiments conducted under field, pot and *in vitro* conditions are listed in Tables 1, 2 and Supplemental Table 1, respectively, and their by-taxon abundance is summarized in Supplemental Figure 2.

Data mining from the literature allowed us to infer on the potential and actual efficacy of several microbial genera in the control of FWB. In particular, from each retrieved article we mined the best FWB control value obtained, but not all the data. Although the experiments are not so numerous, plotting these data provides some evidence for microbial genera more prone to control FWB than others (Figure 6A). Interestingly, we realized that several biocontrol trials reached the field stage, and results even showed high effectiveness. In the field, FWB was controlled up to 77% (median of 5 articles) by *Pseudomonas* spp.

![Figure 5A](https://example.com/figure5a.png)

FIGURE 5 Effectiveness of biological control agents against *Fusarium oxysporum* f. sp. *cubense* (*Foc*). The dual culture method (A) allows testing the *in vitro* antifungal activity of metabolites produced by biological control agents (BCAs). Pot experiments (B) provide first evidence for the *in planta* efficacy of BCAs.
strains, and up to 71% by several endophytic strains (8 articles) and other *Trichoderma* spp. strains (4 articles) (Figure 6A). Lower biocontrol was obtained with *Bacillus* spp. (69% as the median of 5 articles), arbuscular mycorrhizal fungi (55%, 3 articles), and non-pathogenic *Fusarium* strains (42%, 2 articles), whereas most studies on *Streptomyces* spp. have been limited to in vitro conditions. Biocontrol under field conditions has been often reported to be less effective than under (semi)controlled, pot experimental conditions. Surprisingly, a different scenario appears for FWB biocontrol. In fact, pot- (median = 65) and field-experiments (median = 70) resulted substantially similar in terms of disease control efficacy. Moreover, articles dealing with *Pseudomonas* spp. reported on average a higher efficacy in the field (median = 77%) than in pot-experiments (median = 50%), as also observed for endophytes, viz. 71% in the field and 65% in pots. Non-pathogenic *Fusarium* strains, however, resulted more effective in pot-experiments (median = 87%) than in the field (median = 42%). Finally, in planta effectiveness of BCAs was not dependent on the target *Foc* race (R1 and R4), meaning that *Foc* R1 and R4 showed overall comparable sensitivity to BCAs (median disease control efficacy of 62%; Figure 6B).

Endophytes: The Help From Inside

All plants harbor a huge diversity of beneficial or neutral microorganisms living inside their tissues without causing any deleterious effect in the host (reviewed by Hardoim et al., 2015). Since beneficial endophytes can promote plant fitness and growth through a range of different mechanisms (i.e., phytohormones synthesis, nitrogen fixation, phosphate solubilization, induction of defense responses, alleviation of abiotic stress by reducing ethylene level, etc.) (Compant et al., 2016), they have a considerable agro-biotechnological potential yet to be fully exploited (Mercado-Blanco and Lugtenberg, 2014, and references therein). Endophytes have found evolutionary solutions to live within the plant interior (i.e., nutrient availability, evading/modulating host defense responses, etc.), where they can also deploy biocontrol activity against pathogens. Thus, an increasing number of studies are available on the isolation, characterization, and assessment as BCAs of specific cultivable members of indigenous endophytic communities. Endophytic bacteria and fungi from banana plants have received early attention as BCAs against *Foc* and other biotic constraints (Ortiz and Pocasangre, 2012; Niere et al., 2014). Although many of them belong to genera that will be described in more detail in the following sections, we would like to summarize some reports focused on endophytes to highlight the importance of this special group of the plant-associated microbes.

It is interesting that many experiments with endophytes against FWB have been conducted in the field during the last years. One of the early research showed how *P. aeruginosa* FJAT-346-PA reduced FWB by 82–84% in semi-field and field conditions. The strain was proved to colonize the roots and stems of banana and to promote the plant growth (Yu C. et al., 2010). Cao et al. (2004) reported on the actinomycete communities found in the interior of leaves and roots of both healthy and diseased banana plants. Most of the isolates were *Streptomyces griseorubiginosus*-like strains. Isolates displaying antagonistic activity against *Foc* originated from roots of healthy plants, whereas no difference in this phenotype was reported between antagonists isolated from healthy and wilted leaves. *In vitro*, the antagonism of *S. griseorubiginosus* S96 was lost when FeCl₃ was introduced in the Petri plates, suggesting that it relies on siderophore production. *In vivo*, FWB severity (R4) was reduced by 47%, and plant fresh weight increased in plantlets treated with strain S96 compared to the control (Cao et al., 2005). Similarly, three endophytic *Bacillus* spp. isolated from different *Musá* cultivars in Brazil showed antagonistic activity against *Foc* and *Colletotrichum gauanicolai* (Souza et al., 2014). More recently, endophytic bacteria from the classes Actinobacteria (genera *Arthrobacter*, *Brevibacterium*, *Corynebacterium*, *Curvobacterium*, *Kocuria*, *Kyrtococcus*, *Micrococcus*, *Naumanella*, *Rothia*, and *Tessararacoccus*), α- and γ-Proteobacteria (*Brevundimonas*, *Enterobacter*, *Klebsiella*, *Pseudomonas*, *Serratia*, and *Sphingomonas*) and Firmicutes (*Bacillus* and *Staphylococcus*) were isolated from the shoot-tips of banana cv. Grand Naine (Sekhar and Pious, 2015). From the collection generated in this study, strains of *Pseudomonas aeruginosa*, *Klebsiella varicola*, and *Enterobacter cloacae* showed variable antagonistic activity against *Foc*, but their potential as effective BCAs remained to be proved. Other studies reported on fungal and bacterial endophytes originating from plants other than banana such as weeds and medicinal plants (Ting et al., 2009b) or *Capsicum frutescens* (He H. et al., 2002), making them interesting reservoirs of *Foc* antagonists worth to be explored. Finally, some studies go a step forward, exploring the potential mechanism involved in the antagonistic effect. For instance, Ting et al. (2010) investigated the role of volatiles produced by several fungal endophytes in the growth inhibition of *Foc* R4. Even if with inconsistent disease control, the same authors also suggested the induction of host resistance as a mechanism involved in FWB control mediated by *Penicillium citrinum* BTF08 isolated from banana internal stem tissues (Ting et al., 2012).

Interestingly, some of the reports were focused on the inoculation of BCAs at the in vitro propagation stage of banana plants. Banana tissue culturing is widely used as a source of pathogen-free planting material. Since banana plantlets produced by these micropropagation schemes are more susceptible to diseases due to the absence of the natural-associated microbiota, the reintroduction of endophytic and rhizospheric microorganisms to protect the plant against subsequent challenges by *Foc* is an approach that yielded promising results (Kavino et al., 2014, 2016; Kavino and Manoranjitham, 2018). The *in vitro* co-culturing of banana plants with *Pseudomonas fluorescens* Pf1, *Bacillus subtilis* EPB 10 and EPB 56 provided a successful control of FWB in the field, combined with increased leaf nutrient status, vegetative growth, bunch yield and fruit quality (Kavino et al., 2016). In two other field trials, the endophyte and rhizobacteria strain led to a FWB control of 78% and a significant higher bunch weight (Kavino and Manoranjitham, 2018). Furthermore, this strategy was also proved to be successful when inoculating banana tissue culture plantlets with a mixture of naturally-occurring uncultivated endophytes from healthy banana plants.
TABLE 1 | List of biocontrol field trials against Fusarium wilt of banana.

Biocontrol agents	Mode of application	Foc race	Foc inoculum	Best disease control obtained (%)	Highest yield increase obtained (%)	Relevant remarks	References
Endophytes							
Pseudomonas aeruginosa FJAT-346-PA	Root dripping into the fermentation broth	4	10^6 conidia mL$^{-1}$	82	[Yu C. et al., 2010](#)	Colonization study with antibiotic-marked strains	
Acremonium sp. Q34	Root dipping (OD$_{600} = 0.6$–0.7)	TR4	Natural infestation	86	11	Strain isolated from disease-free Kandelia candel	[Liu and Lu, 2013](#)
Burkholderia cenocepacia 889T2	Talc powder formulation of bacterial consortia (10^8 cells g$^{-1}$)	1	Natural infestation	42.2	214	Growth-promoting effects	[Ho et al., 2015](#)
Pseudomonas putida C4r4, Achromobactrum sp. Gcr1, Rhizobium sp. Lpr2, Bacillus flexus Tvpr1	Pre-planting soil drenching	4	Pre-planting soil drenching (10^6 conidia mL$^{-1}$)	70	Isolated from the rubber tree	Increased leaf nutrient status and enhanced growth, bunch yield and fruit quality	[Tan et al., 2015](#)
Serratia marcescens ITBB BS-1	In vitro co-culturing of plants with bacteria		In vitro co-culturing of plants with Foc after bacteria inoculation	[Kavino et al., 2016](#)			
Pseudomonas fluorescens Pf1, Bacillus subtilis EPB 10 and EPB 56	Root dipping ($3 imes 10^{10}$ CFU mL$^{-1}$)	1	Injection into the corm (10^6 conidia mL$^{-1}$)	78	119	Endophytes from healthy micropropagated Cavendish banana roots (South Africa)	[Belgrove et al., 2011](#)
Fusarium oxysporum GAV553 and GAV255, Pseudomonas fluorescens WGS417	Root dipping and soil drenching (10^3 conidia mL$^{-1}$)	STR4	Natural infestation	0		Growth-promoting effects	[Thangavelu and Gopi, 2015a](#)
Trichoderma asperellum Pr2 (endophyte), Trichoderma sp, NRQ83 (rhizospheric)	Colonized rice chaffy grains	1	Natural infestation	47	45	Increased leaf nutrient status, phenylalanine ammonia lyase, and total phenolic content	[Thangavelu and Mustaffa, 2010](#)
Trichoderma spp.	Root dipping (10^6 conidia mL$^{-1}$), followed by application of colonized wheat bran/sawdust mixture	Natural infestation	75	60			[Raguchander et al., 1997](#)
T. viride NRQ81	Colonized rice chaffy grains ($1-10^{301}$ GCU g$^{-1}$) + 5% jaggery solution	Colonized sand/maize mixture	80		Induction of peroxidase, phenylalanine ammonia lyase, and total phenolic content	[Thangavelu and Mustaffa, 2010](#)	
T. harzianum TH-UH and TH13	Soil inoculation in the nursery	TR4	0		Foc reduction: 68% in Humic Nitisol, 6% in Rhodic Ferralsol	[Wibowo et al., 2013](#)	
T. harzianum (ECO-T®)	Soil inoculation in the nursery	68				[Mukhongo et al., 2015](#)	
Pseudomonas spp.	Root dipping (10^6 conidia mL$^{-1}$), followed by wheat bran application	Natural infestation	77	68			[Raguchander et al., 1997](#)

(Continued)
Biocatalysts	Mode of application	Foc race	Foc inoculum	Best disease control obtained (%)	Highest yield increase obtained (%)	Relevant remarks	References	
P. fluorescens Pf1	Different combinations of paring and pralinage with a *P. fluorescens* formulation (2.5·10^8 CFU g^-1), soil application, and capsule application	Natural infestation	80.6			Two field trials. Pairing and pralinage with *P. fluorescens* formulation + capsule application at 3 and 5 months after planting gave the best results	Raguchander et al., 2000	
P. fluorescens Pf1	Soil inoculation at transplanting and post-planting with a talc-based powder formulation	Natural infestation	100	68		Also, 64% FWB reduction in greenhouse	Rajappan et al., 2002	
P. fluorescens Pf1	Soil application combined with Bacillus subtilis TRC 54 and a plant extract-based fungicide	Natural infestation	75				Akila et al., 2011	
P. fluorescens Pf1	4 L ha^-1 of liquid formulation (9·10^8 CFU mL^-1)	Natural infestation	60	47		Three field trials. Also, 41.3–89% reduction of Helicotylenchus multicinctus	Selvaraj et al., 2014	
Bacillus spp.								
B. subtilis TR21	Root dipping			73.9			Yu G. et al., 2010	
B. subtilis TRC 54	Soil application combined with *Pseudomonas fluorescens* Pf1 and a plant extract-based fungicide	Natural infestation	75			Also, 64% FWB reduction in greenhouse	Akila et al., 2011	
Bacillus spp. (PHC Biopak®)	Soil inoculation in the nursery			50				
B. amylophilus NUN-6	Colonized bio-organic fertilizer	Natural infestation	68.5	100		Isolated from suppressive soil	Xue et al., 2015	
B. amylophilus W19	Colonized bio-organic fertilizer (10^9 CFU g^-1)	Natural infestation	44.4	34.5		Banana root exudates	Wang et al., 2016	
Non-pathogenic *Fusarium oxysporum*								
F. oxysporum Ra-1, Ro-3	Colonized sand:maize mixture	1	Colonized sand:maize mixture	84		Enhanced colonization	Thangavelu and Jayanthi, 2009	
F. oxysporum UPM31P1	Colonized peat:perlite:oats (2:1:2 vol.) (10^6 UFC g^-1)	TR4	0				Ting et al., 2009c	
Arbuscular mycorrhizal fungi								
Glomus mossaeae	Inoculation at transplanting	1	Colonized sorghum grains (1.5·10^6 CFU g^-1)	68 (measured by ELISA)	75	Growth promotion	Mohandas et al., 2010	
Trichoderma harzianum	Soil inoculation in the nursery			23		Ineffective when *G. citrinum* was combined with *Pseudomonas putida* and *Trichoderma asperellum*	Lin et al., 2012	
Glomus claroideum	Soil inoculation in the nursery			55				
Rhizatech®	Soil inoculation in the nursery							
Other microorganisms								
Serratia marcescens	Bentonite and kaolin formulations	TR4				Bentonite performed better. In bentonite formulation, PABA should be omitted, while NFSM, and sucrose levels should be optimized	Ting A.S.Y. et al., 2011	
TABLE 2 | List of biocontrol pot-experiments against Fusarium wilt of banana.

Biocontrol agents	Mode of application	Foc race	Foc inoculum	Best disease or Foc UFC reduction (%)	Relevant remarks	References
Endophytes						
Streptomyces griseorubiginus S96	Root dipping (10^6 spores mL^-1)	4	10^6 conidia mL^-1	47	Siderophore-producing strain, selected from 131 banana roots-endophytic actinomycetes	Cao et al., 2005
F. oxysporum BRIP 29089, 29093 and 45952	Colonized ground millet	1, STR4	Colonized ground millet	75 (R1) 67 (R4) (vascular discoloration)	Obtained from banana roots in suppressive soil	Forsyth et al., 2006
Burkholderia spp. AB202 and AB213, Herbaspirillum spp. BA227 and BA234	Root dipping (5·10^7 CFU mL^-1)	97 (CFU)	Isolated from roots and stem of pineapple and banana	Weber et al., 2007		
Endophytic bacteria (mainly γ-Proteobacteria)	Crude endophytes inoculum (7.1 log CFU g^-1)	4	10^6 conidia mL^-1	67	Growth-promoting effects	Lian et al., 2009
Erwinia chrysanthemi E333	Soil drenching (10^6 conidia mL^-1)	4	10^6 UFC mL^-1	2	Endophytic strain from a healthy banana plant in a Foc-infested field	Yin et al., 2009
Penicillium citrinum	In vitro co-culturing of plants with bacteria	4	10^6 conidia mL^-1	60.67	Host defense response	Ting et al., 2012
Pseudomonas fluorescens PF1, Bacillus subtilis EPB 10, and EPB 56	Soil inoculation (10^6 CFU mL^-1)	4	Soil inoculation (10^6 CFU mL^-1)	62.5	Plant growth promotion	Cabalfero Hernández et al., 2013
Trichoderma sp. TJ5	Root dipping (10^6 CFU mL^-1)	1	Soil inoculation (10^6 CFU mL^-1)	62.5	Plant growth promotion	Chaves et al., 2016
Trichoderma spp.						
T. asperellum	Soil inoculation					
T. harzianum	Soil inoculation					
T. vire	Colonized organic amendments					
T. vire	Colonized corn grits					
T. harzianum A34	Soil inoculation (8·10^9 UFC g^-1)	4	Naturally infested soil	95	T. harzianum + Ca(NO₃)₂, Neem cake, groundnut cake, Pongamia cake	Shamarao et al., 2001
Trichoderma sp. TR76	Soil drenching (10^6 UFC ml^-1)	4		41	Host defense response	Ting et al., 2003
Trichoderma spp. T22 and T5	Soil drench (10^7 spores mL^-1)	4	Colonized millet seeds	62	Isolated from suppressive soil	Satheesh and Venu, 2004
T. viridae	Root dipping and soil drenching					

(Continued)
Biocontrol agents	Mode of application	Foc race	Foc inoculum	Best disease or Foc UFC reduction (%)	Relevant remarks	References
T. asperellum PZ6	Root-injury irrigating method	4	Root-injury irrigating method	48	Plant growth promotion	Qin et al., 2017
Pseudomonas spp.						
P. fluorescens P1cp	Root dipping (10⁸ CFU mL⁻¹)	1, 4	10⁸ conidia mL⁻¹	80	Less severe wilting and internal discoloration, improved root growth and enhanced plant height in M. balbisiana	Sivamani and Gnanamanickam, 1988
P. fluorescens						
P. aeruginosa FP10	Inoculation of in vitro plants					
Bacillus spp.						
B. thuringiensis	Root dipping (10⁶ CFU mL⁻¹)					du Plessis, 1994
B. licheniformis C-4	Root dipping					Shamarao et al., 2001
B. subtilis KY-21	Soil drenching (5·10⁵ CFU mL⁻¹)	4	Soil drenching (5·10⁵ CFU mL⁻¹)	33	Induction of defense-related enzymes	Sun et al., 2011, Sun and Wang, 2009
B. subtilis N11	Colonized bio-organic fertilizer					Zhang et al., 2011
Bacillus spp. RZ-1, 3, 10, 34, 35, 60, 69, and 76	Root dipping (OD₅₄₀ = 0.5)		Soil drenching (10⁵ CFU mL⁻¹)	16	Also, a dual effect on mortality and motility of Meloidogyne javanica second stage juvenile	Ribeiro et al., 2012
B. amyloliqufaciens W19	Colonized bio-organic fertilizer (10⁶ CFU g⁻¹)		Naturally infected field soil (1.5·10² CFU g⁻¹)	77	Antifungal lipopeptides	Wang et al., 2013
Biocontrol agents	Mode of application	Foc race	Foc inoculum	Best disease or Foc UFC reduction (%)	Relevant remarks	References
-----------------------------------	------------------------------	----------	--------------------------	---------------------------------------	---	---------------
B. amyloliquefaciens WJ22	Colonized bio-organic fertilizer (3·10⁶ CFU g⁻¹)		Naturally infested field soil (1·10⁹ CFU g⁻¹)	75.7	Antifungal lipopeptides	Wang J. et al., 2015
Non-pathogenic Fusarium oxysporum						
F. oxysporum CAV 255 and CAV 241	Soil drench (10⁷ spores mL⁻¹)	TR4	Colonized millet seeds	87.4	Obtained from suppressive soil	Nel et al., 2006
Streptomycetes spp.						
Streptomyces sp. g10	Soil drenching (10⁸ CFU mL⁻¹)	4	10⁴ or 10⁶ conidia mL⁻¹	47	Effective against Foc at 10⁴ conidia mL⁻¹ but not at 10⁶ conidia mL⁻¹	Getha et al., 2005
S. lunalinaresii B-03	Fermentation broth	4	10⁶ CFU mL⁻¹	73	Effective in vitro against nine pathogens	Zhou et al., 2017
8 actinomycetes	Fermentation broth	4	1.85·10⁶ conidia mL⁻¹	87	Selected from 139 isolates. Effective in vitro against several F. oxysporum f. spp.	Qin et al., 2010
Arbuscular mycorrhizal fungi						
Glomus intraradices,	Soil inoculation in the nursery				Plant growth promotion	Jaizme-Vega et al., 1998
Glomus spp.						
Glomus fasciculatum	Soil culture (500 chlamydospores)	43(CFU)			Increased cell size and number. More total insoluble polysaccharides, total proteins, and total nucleic acids	Habeeba et al., 2003
Gigaspora margarita	Soil inoculation in the nursery					
Native arbuscular mycorrhizal fungi	3.5·10³ or 7·10³ kg⁻¹	10⁶ conidia mL⁻¹			More mycorrhiza in plants treated with a biofertilizer rather than three concentrations of Hoagland solution	Sampaio et al., 2012
Other microorganisms						
Rhizobium strains FB5, FB2, T2WF,	Root dipping	4		81		Yang et al., 2006
T2WC, and W10						
Bacteria 0202 and 1112	Root dipping	4				Wang et al., 2011
Paenibacillus spp. RZ-17, and RZ-24	Root dipping (OD₅₄₀ = 0.5)	Soil drenching (10⁵ CFU mL⁻¹)		16		Ribeiro et al., 2012
Marine rhizobacteria					Dual effect on mortality and motility of Meloidogyne javanica second stage juveniles	
YS4B1, YS1A3, YS2A5					Isolated from mangrove rhizosphere.	Bonsubre et al., 2016
F. oxysporum f. sp. cubense (dead)			10⁶ CFU mL⁻¹	100		Chard et al., 2016
of a commercial plantation (Lian et al., 2009). In this latter study, the re-introduction of endophytes to the banana tissue culture led to a significant reduction of wilt disease (67%) caused by Foc R4 (artificial inoculation) and growth promotion under greenhouse conditions. Ten non-pathogenic F. oxysporum isolates obtained from healthy micro-propagated “Cavendish” banana roots were able to significantly reduce FWB under greenhouse conditions, but none of them nor P. fluorescens WCS417 gave protection from the disease (STR4) in the field (Belgrove et al., 2011). Some researchers tried to have more chances to obtain effective BCAs by isolating from FWB-suppressive soil, e.g., non-pathogenic F. oxysporum strains (Forsyth et al., 2006), or even from healthy banana plants located in Foc-infested soil, e.g., Erwinia chrysanthemi E353 (Yin et al., 2009).

Furthermore, endophytes effective against FWB did not originate only from banana plants. For instance, Ho et al. (2015) isolated Burkholderia cenocepacia 869T2 from surface-sterilized vetiver grass (Chrysopogon zizanioides) roots. Banana tissue culture plantlets inoculated with 869T2 showed a lower disease incidence caused by Foc TR4 (86% incidence reduction) as well as significant plant growth promotion under field conditions. The endophytic strain Serratia marcescens ITBB B5-1 was isolated from the rubber tree (Hevea brasiliensis) (Tan et al., 2015). A sharp reduction in disease severity caused by Foc R4 was scored under both greenhouse (79%) and field conditions (70%) upon inoculation of banana plants with this strain. Moreover, chitinase and glucanase activities were suggested to be involved in its antifungal activity (Tan et al., 2015). Endophytic diazotrophic bacteria (strains of Burkholderia sp. and Herbaspirillum sp.) isolated from roots and stems of pineapple (Weber et al., 2007), and an Acremonium sp. strain isolated from Kandelia candel (Liu and Lu, 2013) are additional examples of promising biocontrol and biofertilizer candidates for the banana crop that originate from a different host. Finally, effective control of FWB and production increase (number of banana hands and bunch weight) was reported under field conditions when different combinations of endophytic (P. putida C4r4, Achromobacter sp. Gcr1, Rhizobium sp. Lpr2, and B. flexus Typr1) and rhizospheric bacteria (B. cereus Jrb1, P. putida Jrb2, Bacillus sp. Jrb6, and Jrb7), in this case isolated from different banana accessions, were applied to a naturally infested soil (Thangavelu and Gopi, 2015b). In another field trial, combined applications of the endophytic T. asperellum prr2 together with the rhizospheric Trichoderma sp. NRCB3 resulted in a 47% reduction of FWB incidence and a 45% increase of the bunch weight (Thangavelu and Gopi, 2015a).

Bacillus spp.: The Endospore-Forming Bacteria

The use and number of Bacillus spp. strains displaying suppressive effect against plant diseases caused by soil-borne phytopathogens has been increased rapidly, and a large body of knowledge on the biocontrol mechanisms involved as well as on their application and effectiveness under diverse conditions is available for the interested reader (Fira et al., 2018; Aloo et al., 2019). The spore-forming ability of Bacillus species confers them an important advantage over other beneficial microorganisms in the field of biological control. On the one hand, this capability enables these bacteria to endure adverse environmental conditions. On the other hand, and from the agro-biotechnological point of view, it favors the development and manufacturing of commercial formulations more stable over time. In addition, many Bacillus species show rapid growth...
rates and the ability to synthesize a large number of secondary metabolites which play a key role in the antibiotic against many deleterious microorganisms (Radhakrishnan et al., 2017; Fira et al., 2018). Some species, such as \textit{B. subtilis}, are also able to produce volatile organic compounds (VOCs), which are important sometimes for plant growth promotion and the activation of plant defense mechanisms by triggering induced systemic response (Raaijmakers et al., 2010; Cawoy et al., 2014). \textit{Bacillus}-mediated plant growth promotion can also be due to the capacity to promote phytohormone (i.e., gibberellic acid and indole-3-acetic acid) biosynthesis, thereby enhancing nutrient uptake ability in the host and stimulating plant defense responses against biotic and abiotic stresses (Chen et al., 2007; Harman, 2011). Besides the production of antibiotics and the elicitation of systemic resistance in plants against pathogens, \textit{Bacillus} species are also able to produce lytic enzymes like chitinase and β-1,3-glucanase, involved in the degradation of the fungal cell wall (Kumar et al., 2012). Considering their versatility, the combination of different \textit{Bacillus} spp. strains (or with other BCAs) displaying different biocontrol mechanisms appears as an interesting approach to improve biocontrol effectiveness under different cropping scenarios and environmental conditions.

\textit{Bacillus} spp. are commonly found in the banana rhizosphere (Xue et al., 2015), and many members of this genus have already been investigated as BCAs of diverse \textit{Fusarium}-induced plant diseases (Khan et al., 2017). Among them, representatives of \textit{B. subtilis}, \textit{B. amyloliquefaciens}, \textit{B. pumilus} and \textit{B. thuringiensis} are found in the literature. \textit{Bacillus subtilis} is well known for its antagonistic activity against several fungal and bacterial plant diseases. Its biocontrol activity is mainly attributed to antibiotic production (Cawoy et al., 2015), and its enzymatic products are highly active against many fungal pathogens. The biocontrol effect of the plant endophytic \textit{B. subtilis} strain TR21 against FWB was investigated in Brazilian fields, and promising results (74% effectiveness) were reported (Yu G. et al., 2010). Likewise, \textit{B. subtilis} strain N11 isolated from the rhizosphere of a healthy banana plant showed biocontrol activity in pot experiments under greenhouse conditions (Zhang et al., 2011). Addition of 10% (v/v) of culture filtrate of the endophytic \textit{B. subtilis} strain EBT1 to the plant growth medium increased bud multiplication, plantlet weight, pseudostem height, and conferred resistance to plantlets against \textit{F. oxysporum} and toxin (Yang et al., 2010). \textit{Bacillus subtilis} strain B25, isolated from banana rhizosphere soil in Hainan, is another example of an effective antagonist, not only against \textit{F. oxysporum}, but also against other plant pathogenic fungi including \textit{Corynespora cassicola}, \textit{Alternaria solani}, \textit{Botrytis cinerea}, and \textit{Colletotrichum gloeosporioides} (Tan et al., 2013; Yu et al., 2016). Results on its capability to control FWB under greenhouse and field conditions can be found in the literature, although they are not easily accessible (Liu, 2011). The antifungal protein of B25, identified as a disease-resistance protein, produced mycelium and spore tumescence and abnormal growth of the pathogen (Tan et al., 2013). The chitinolytic and heat tolerant strain \textit{B. subtilis} TSA3 showed \textit{in vitro} inhibition of \textit{F. oxysporum} growth although effectiveness \textit{in planta} and under field conditions has not been demonstrated yet (Nawangsih and Purba, 2013). Similarly to previous examples, \textit{B. subtilis} strain S-1 not only inhibited \textit{in vitro} \textit{F. oxysporum} growth but also antagonized fungal pathogens such as the \textit{formae speciales lycopersici}, \textit{vasinfectum} and \textit{niveum} of \textit{F. oxysporum}, as well as \textit{Curvularia lunata}, \textit{C. gloeosporioides}, \textit{Verticillium dahliae}, and \textit{Gibberella zeae} (Sun et al., 2008).

The \textit{B. amyloliquefaciens} strain NJN-6 was isolated from the rhizosphere of a healthy banana plant in a FWB-suppressive soil. Field plots with plants pre-treated (in nursery pots) with a bio-organic fertilizer colonized by NJN-6 showed a decreased disease incidence by 68.5%, resulting in doubled yield (Xue et al., 2015). The mode of action of this strain relies on several metabolites. The lipopeptide iturin A, a powerful antifungal surfactant, is produced by several \textit{Bacillus} strains including NJN-6 (Yuan et al., 2011). Two homologs of bacillomycin D and three homologs of members of the macrolactin family were identified in NJN-6 using HPLC/electrospray ionization mass spectrometry. Bacillomycin D and macrolactin exhibited significant antagonistic effects against \textit{F. oxysporum} and \textit{R. solanacearum}, respectively (Yuan et al., 2012a). Finally, among 36 VOCs detected in NJN-6, 11 compounds completely inhibited the \textit{F. oxysporum} growth (Yuan et al., 2012b). Wang et al. (2013) isolated 57 bacterial strains from the rhizosphere of healthy banana plants grown in a field severely affected by the disease, all showing antagonism against \textit{F. oxysporum}. Six strains (W2, W10, W14, W15, W17, and W19) displaying the best survival abilities in the rhizosphere soil were tested in greenhouse experiments, \textit{B. amyloliquefaciens} W19 being the most effective against FWB. Moreover, and even more suggestive, biocontrol effectiveness of a bio-organic fertilizer colonized by W19 was then proved in a naturally infested field, where it reduced FWB by 44% and increased yield by 35% (Wang et al., 2016). Similarly to \textit{B. amyloliquefaciens} NJN-6, the strain W19 produces several antifungal metabolites, including lipopeptides (e.g., iturin, bacillomycin D, and surfactin), 18 VOCs (Wang et al., 2013), and indole-3-acetic acid (Wang et al., 2016). Interestingly, banana root exudates seemed to enhance the ability of this strain to colonize roots by augmenting bacteria biofilm formation, due to surfactin production (Wang et al., 2016).

Munimbaizi and Bullerman (1998) reported on extracellular antifungal metabolites produced by \textit{B. pumilus} which inhibited the mycelial growth of different strains of \textit{Aspergillus sp.}, \textit{Paenibacillus sp.}, and \textit{Fusarium sp.} The chitinolytic \textit{B. pumilus} strain CH4 caused inhibition of \textit{F. oxysporum} mycelial growth under \textit{in vitro} conditions, but its effectiveness \textit{in planta} has not been tested yet (Nawangsih and Purba, 2013).

The interest of \textit{B. thuringiensis} as a BCA has been mainly focused on the Cry protein and its effect as bio-insecticide, a topic outside the scope of this review (Bravo et al., 2013, 2017). Nevertheless, it has also potential in biocontrol of phytopathogenic fungi due to the chitinase production. In fact, two chitinolytic strains of \textit{B. thuringiensis} (50E and 48F) caused complete growth inhibition of \textit{F. oxysporum} \textit{R4} \textit{in vitro}. Indeed, uneven thickening and swelling of hyphae tips were observed at the sites where interaction with the bacterial crude chitinase took place (Usharani and Gowda, 2011).
Pseudomonas spp.: The Metabolically-Versatile Biological Control Agents

Pseudomonas is a genus that comprises more than a hundred species (Mulet et al., 2010; Loper et al., 2012; Hesse et al., 2018). Many *Pseudomonas* spp. strains are indigenous inhabitants of the plant endosphere, rhizosphere, and/or phyllosphere, mostly established in these niches as commensals. Some of them are able to suppress the deleterious effects caused by different phytopathogens thereby promoting plant growth and health, and have thus been successfully used as plant inoculants (Arshad and Frankenberger, 1997; Haas and Défago, 2005; Mercado-Blanco and Bakker, 2007; Lugtenberg and Kamilova, 2009; Pliego et al., 2011; Schreiter et al., 2018). These bacteria displayed characteristics such as: (i) high colonization competence for plant surface, internal plant tissues (endophytism), and/or phytopathogen structures; (ii) versatility in the production of antibiotics suppressing diverse phytopathogens; (iii) ability to use specific nutrients in the target niche like plant exudates, that enable them to outcompete many components of the plant-associated microbiota; and (iv) capability to trigger (systemic) defense responses in the host plants (Mercado-Blanco, 2015, and references therein).

A relatively large number of *Pseudomonas* spp. strains have been studied as antagonists of *Foc*, the majority of which has been focused on species of the *fluorescens* group. A screening for the antagonistic activity of fluorescent pseudomonads isolated from the rhizoplane of several crops led to the identification of *P. fluorescens* Pf1 (Vidhyasekaran and Muthamilan, 1995). Since then, this strain has been studied, and proved effective, on several plant diseases, such as Fusarium wilt of chickpea (*F. oxysporum f. sp. ciceris*) (Vidhyasekaran and Muthamilan, 1995), rice blast (*Pyricularia oryzae*) (Vidhyasekaran et al., 1997), and rice sheath blight (*Rhizoctonia solani*) (Vidhyasekaran and Muthamilan, 1999; Nandakumar et al., 2001). *Pseudomonas fluorescens* Pf1 produces siderophores, hydrogen cyanide, the antibiotics 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin, and induces resistance-associated enzymes (e.g., PO and PPO) in banana roots (Akila et al., 2011; Selvaraj et al., 2014). Repeated field trials have also demonstrated the effectiveness of *P. fluorescens* Pf1 against FWB, using diverse application protocols and formulations. Carriers such as wheat bran-saw dust (Raguchander et al., 1997), paring and pralining, capsule (Raguchander et al., 2000; Rajappan et al., 2002), and talc (Rajappan et al., 2002; Saravanan et al., 2004b) have been explored. However, it is known that liquid formulations of *P. fluorescens* offer numerous advantages over solid formulations, e.g., high cell count, zero contamination, longer shelf life, greater protection against environmental stresses, and increased field efficacy (Hegde, 2002). Different chemicals, such as trehalose, polyvinylpyrrolidone, and glycerol, were tested for the development of a liquid formulation, and glycerol supported the highest Pf1 survival until 6 months of storage (Manikandam et al., 2010). A liquid formulation of Pf1 provided good results against FWB in multiple trials and locations (Selvaraj et al., 2014).

Saravanan et al. (2004a) reported a significant *in vitro* inhibitory effect on *Foc* R1 when testing five different *P. fluorescens* strains (Pf1, Pf2, Pf3, Pf4, and Pf1m) isolated from banana rhizosphere, with the strain Pf1m showing the highest antagonist effect against the pathogen growth. When greenhouse experiments were conducted using a talc-based formulation of strain Pf1m, a significant reduction in vascular discoloration of the banana rhizome was observed (Saravanan et al., 2004a). Additionally, *P. fluorescens* Pf1m systemically induced the accumulation of three key defense enzymes (PAL, PO, and polyphenol oxidase or PPO) in roots that contributed to induce resistance against *Foc* (Saravanan et al., 2004b).

Sivamani and Gnanamanickam (1988) investigated the possibility of suppressing FWB by bacterization with different *P. fluorescens* strains originating from roots of rice (strain Pf1r13), peanut (Pf1gn), banana (Pf1b), black gram leaves (Pf1bg), citrus (Pf1cp), and cotton (Pf1co). These strains were tested for their *in vitro* antagonistic ability against *Foc* R1 and R4. Results showed that strain Pf1cp showed maximum inhibition of *Foc* mycelial growth, and was chosen to bacterize seedlings of *Musa balbisiana*. Seedlings treated with Pf1cp showed less severe wilting symptoms and internal discoloration under greenhouse conditions. In addition, they also showed enhanced root growth and overall plant height.

In another study, 11 strains of *P. fluorescens* isolated from the banana rhizosphere were tested for their *in vitro* antagonistic effect against *Foc*. Among the tested isolates, strain Pf10 was the most effective in inhibiting the pathogen mycelial growth (Thangavelu et al., 2001). Further studies were focused on the effect of strain Pf10 treatment and *Foc* inoculation on the induction of banana plant enzymes and compounds known to be related with defense responses (e.g., PAL, POX, chitinase, β-1,3 glucanase and phenolics) (Thangavelu et al., 2003).

In vitro growth inhibition of *Foc* was also observed with *P. fluorescens* strain IIHRP12. In greenhouse experiments using banana cv. Neypovov, this strain reduced *Foc* colonization and FWB severity symptoms. Interestingly, structural modifications in the cortical cells at the site of fungal entry were observed, indicating that bacterized root cells were somehow “alerted” to mobilize a number of defense structures aiming to hinder the pathogen progress (Mohandas et al., 2004).

Goswami et al. (2015) reported on the *P. aeruginosa* strain BG, isolated from marine water from the Gulf of Khambhat in Gujarat, and its ability to inhibit *Foc* growth under *in vitro* conditions. *Pseudomonas aeruginosa* BG displayed plant growth promotion, biocontrol abilities, secretion of enzymes such as catalase, urease, and phosphatase, as well as the synthesis of metabolites such indole-3-acetic acid, siderophores, ammonia, and hydrogen cyanide. Other *P. aeruginosa* were also tested against *Foc in vitro* (Ayyadurai et al., 2006; Sekhar and Pious, 2015) and in *planta* (Yu C. et al., 2010).

Trichoderma spp.: Antagonists and Plant Growth Promoters

Trichoderma is a genus of asexually-reproducing fungi widely distributed in nearly all temperate and tropical soils. The sexual
telemorph (genus *Hypocrea*) can be found frequently, but many strains, including most biocontrol strains, have no known sexual stage. *Trichoderma* spp. show a wide genetic diversity, and are producers of several extracellular proteins, enzymes such as cellulase and chitinase, and more than 100 different metabolites with antibiotic activities. This genus can also parasitize a range of other fungi (e.g., *R. solani*). Besides antibiosis and mycoparasitism, *Trichoderma*-mediated biocontrol also relies on the induction of plant resistance (Harman et al., 2004). Therefore, due to their metabolite arsenal, rhizosphere-competence, and ability to stimulate plant growth, *Trichoderma* species have long been recognized as BCAs (Harman et al., 2004; Vinale et al., 2008; Woo et al., 2014), and they are widely studied against FWB (Supplemental Figure 2). These fungi are efficient colonizers of plant roots, where they establish intense interactions with plants (Vinale et al., 2008). They colonize root surfaces and invade the root epidermis, usually not beyond the first or second layer of cells (Yedidia et al., 2000), but some authors have claimed the endophytic nature of the strains tested in their research, even in banana (Caballero Hernández et al., 2013; Thangavelu and Gopi, 2015a; Chaves et al., 2016).

A rhizospheric strain, namely *T. viride* NRCB1, was identified in *vitro* among 37 isolates and tested in the pot- and field-experiments, where it reduced FWB by a maximum of 75–80% in terms of external symptoms and vascular browning (Thangavelu and Mustaffa, 2010). The authors proved that a bioformulation based on the rice chaffy grains conferred a higher efficacy over the tare cum powder formulation. Finally, the strain was able to induce the peroxidase (PO), phenylalanine ammonia lyase (PAL), and total phenolic content in treated plants (Thangavelu and Mustaffa, 2010). Later, the same authors identified a new rhizospheric strain (*Trichoderma* sp. NRCB3) which was combined with the endophyte *Trichoderma asperellum* Pr2, and successfully tested against FWB in the field (Thangavelu and Gopi, 2015a). Significant disease protection was obtained in the field using a *T. viride* strain applied by root dipping at transplanting and by a colonized wheat bran:saw dust mixture 3 months later. The treatment reduced FWB incidence by 75% and increased the yield by 60% (Raguchander et al., 1997). Interesting results were also obtained using a commercial product namely ECO-T® (containing *T. harzianum*; Plant Health Products, South Africa), though they were context-specific. In fact, the product reduced by 68% the *Foc* inoculum in Humic Nitisol, but only by 6% in Rhodic Ferralsol (Mukhongo et al., 2015). With the assumption that potential microbial antagonists are more abundant in soil with a history of low disease incidence, Nel et al. (2006) selected two *Trichoderma* spp. isolates, T22 and T5, from FWB-suppressive soil in South Africa, and obtained with them a 62% FWB control in a glasshouse (*Foc* R4). These strains were among the most effective strains tested in the experiment (33 strains) and were superior to a *Trichoderma*-based commercial product. Interesting results (efficacy higher than 80%) were also obtained on abaca (*Musa textilis*) and plantain (Bastasa and Baliad, 2005; Pérez Vicente et al., 2009). The literature, however, also reports examples of failure in the control of *Foc* (R4) using *Trichoderma* spp. strains, albeit resulting effective in *vitro* or able to delay the disease onset (Ting et al., 2003; Wibowo et al., 2013).

Arbuscular Mycorrhizal Fungi: Not Only Nutrient Providers for the Plants

The root cortical tissues enable the host plant to live in a symbiotic association (intercellularly or intracellularly) with fungi of the phylum Glomeromycota, which develop morphological structures called arbuscules and transform the infected root into the so-called “mycorrhiza.” These arbuscular mycorrhizal fungi (AMF) gain some nutrients from the plant and return others to it, thus enhancing the plant growth. Additionally, AMF protect plants against phytopathogens and abiotic stresses (Parniske, 2008; Bonfante and Genre, 2010; Lenoir et al., 2016). The AMF’s beneficial effects have been also demonstrated in banana, albeit sometimes with inconsistent results. While AMF are generally considered as plant growth promoters rather than pathogen antagonists, it is fascinating to see how AMF inoculated in the banana nursery could provide, in some cases, protection from FWB in the field during several subsequent weeks. Indeed, an early study reported that either *Glomus intraradices* or *Glomus* spp. stimulated the growth of banana plants cv. Grande Naine and reduced both rhizome necrosis and external FWB symptoms (Ting et al., 2003; Wibowo et al., 2013). Inoculation with *Gigaspora margarita* was found to reduce FWB in pot-grown plants cv. Maçã, especially under low concentration of *Foc* inoculum (Borges et al., 2007). Also, the pathogen population in roots of banana plants at 7 months after treatment with a combination of *G. mosseae* and *T. harzianum* was significantly reduced, as measured by ELISA (Mohandas et al., 2010). In the field, banana plants pre-treated in the nursery with *G. clarum* had higher biomass than untreated plants, and showed lower FWB incidence (67%), compared to the untreated control (88%). But plants pre-treated with *G. clarum* and then inoculated at transplanting with a commercial product based on *P. putida* and *T. asperellum* did not differ from the untreated control in FWB incidence and severity (Lin et al., 2012). The lack of knowledge about the interactions among those BCAs might have led to unexpected results.

It is known that plant colonization by AMF is stimulated by the soil organic matter and hindered by mineral fertilization. In banana cv. Maçã, the application of a bio-fertilizer promoted abundant mycorrhizal colonization and was associated to lower expression of FWB symptoms, compared to applications of the Hoagland solution at three concentrations (non-fertilized control was not established) (Sampaio et al., 2012). However, inconsistent results obtained with AMF have been a common experience. In a factorial experiment, the effectiveness of a commercial AMF-based product and two other commercial BCAs was context-specific. Three products were inoculated in the nursery and their efficacy against FWB evaluated on “Gros Michel” banana grown in fields with three different soil types. Rhizatech® (Dudutech, Kenya) reduced *Foc* inoculum by 55% in Humic Nitisol. In this soil type, PHC Biopak® (Bacillus spp.; Plant Health Care Inc., USA) reduced *Foc* by 47%, a level similarly reached in Vertisol (50%). ECO-T® (T. harzianum; Plant Health Products, South Africa), also showed the best efficacy in Humic Nitisol (68% disease control), while it was almost ineffective in Rhodic Ferralsol (6%) (Mukhongo et al., 2015).
Non-pathogenic *Fusarium oxysporum*: Beneficial Relatives

The species *F. oxysporum* includes pathogenic strains as well as plant beneficial endophytes and saprophytes living in soil and on organic debris (Di Pietro et al., 2003). Non-pathogenic *F. oxysporum* (npFo) strains are primarily recognized upon their inability to infect plants. Since about 120 *formae specialis* are known for *F. oxysporum*, npFo should be validated on as many species by pathogenicity tests. Nevertheless, it is generally accepted that a limited number of plant species is enough to declare an *F. oxysporum* as npFo (Fravel et al., 2003). Determining the vegetative compatibility group (VCG) cannot be used as a universal tool to identify npFo isolates. Nel et al. (2006) developed a PCR-based restriction fragment length polymorphism (RFLP) analysis of the rRNA intergenic spacer (IGS) region for discriminating npFo strains from *Foc* among 100 isolates obtained from banana rhizosphere in South Africa. The mechanisms underlying the biocontrol exerted by npFo strains are based on the competition for infection sites or nutrients, as well as the induction of systemic resistance (He C. Y. et al., 2002; Fravel et al., 2003; Olivain et al., 2006). The fact that npFo share the same niche with the pathogen is advantageous from the biocontrol perspective (Larkin and Fravel, 2002).

Two npFo namely Ro-3 and Ra-1 reduced FWB (*Foc R1*) by 80% on cv. “Rasthalī” in a field trial. They were selected *in vitro*, proved to be effective in reducing the disease (up to 89% reduced severity) and promoting the plant growth when applied three times on both tissue-cultured and sucker-derived plants under greenhouse conditions (Thangavelu and Jayanthi, 2009). Another npFo isolate, UPM31P1, alone or in combination with *S. marcescens* isolate UPM39B3, resulted effective *in vitro* against *Foc TR4*, and reduced FWB under greenhouse condition. In the field, this strain only delayed the onset of FWB (*Foc TR4*), as it reduced the percentage of diseased plants by 75% at 15 weeks post-transplanting, but no significant difference between treated and untreated plants was observed at 28 weeks post-transplanting (Ting et al., 2009c). Plants treated with two npFo isolates obtained from disease suppressive soils in South Africa, CAV 255 and CAV 241, showed a FWB incidence reduced by 87.4 and 75.0%, respectively (Belgrove et al., 2011). In the same trial, the widely studied strain Fo47 did not suppress significantly the disease. Forsyth et al. (2006) pointed out that npFo isolates may unexpectedly be synergistic with *Foc*, thus they are not necessarily antagonists. In fact, although more evidence would be needed, the strain BRIP 45952 increased Fusarium wilt disease severity on “Cavendish.” Nevertheless, another isolate, BRIP 29089, reduced disease severity in artificially inoculated “Lady Finger” (*Foc R1*) and “Cavendish” (*Foc STR4*) plants. At least three more research works have dealt with npFo isolated from FWB suppressive soil and/or banana plants, though their assays remained at the laboratory stage (Nita and Harsh, 2015) or were not related to biocontrol (Nel et al., 2006; Deltour et al., 2018).

Streptomyces spp. and Other Actinomycetes: Natural Antibiotics Factories

Streptomyces are the most important antibiotic-producing microbes. They also produce a broad range of additional secondary metabolites and lytic enzymes. For this reason, they receive attention for biotechnological, pharmaceutical and agricultural purposes. Streptomyces are widely distributed in the soil, where they are strong competitors and antagonists. The use of streptomyces as BCAs is largely documented in the literature and, recently, their application against plant diseases incited by *Fusarium* species has been reviewed by Bubici (2018). In the literature, we found only four pot trials where streptomyces were tested against FWB (*Table 1*). All four experiments were conducted against *Foc R4* and showed that FWB could be reduced between 46 and 87%. Interestingly, the highest disease reductions were obtained using the streptomyces fermentation broth (Qin et al., 2010; Zhou et al., 2017), compared to the experiments where spore suspensions were applied by drenching or root dipping (Cao et al., 2005; Getha et al., 2005). Qin et al. (2010) selected 8 out of 139 isolates using *in vitro* assays against several *F. oxysporum formae specialis* and demonstrated that the application of their fermentation broth provided a FWB control ranging from 78 to 87% in pot experiments. In particular, using 1.85·10⁶ conidia mL⁻¹ of *Foc R4*, plants treated with the best streptomyces strain, ZJ-E1-2, showed FWB incidence of 12%, while it was 76% on untreated trees. With a similar disease pressure, viz. 78% incidence on the control plants upon inoculation with 1·10⁶ CFU mL⁻¹ of *Foc R4*, Zhou et al. (2017) observed a FWB reduction of 73% after treatment with *S. lunailaharesii* B-03. The application of fermentation broth introduces into the soil both the microbial cells and their metabolites and, hence, it has a stronger impact on soil *Foc* inoculum than the sole microbial cells. In fact, when introduced alone, the cells must first proliferate to produce antifungal metabolites enough for effective control of *Foc*. Trees treated before planting with 10⁶ CFU mL⁻¹ of *Streptomyces* sp. strain S96, and later inoculated with 10⁴ conidia mL⁻¹ of *Foc R4*, showed significant reductions in FWB incidence, severity, and vascular browning. *Streptomyces* sp. strain S96 was selected from 131 endophytic actinomycetes isolated from surface-sterilized banana roots (Cao et al., 2005). The soil application of a spore suspension (10⁸ CFU mL⁻¹) of *Streptomyces* sp. strain g10 reduced FWB severity index by 47% and rhizome discoloration by 53% when banana plantlets were inoculated with 10⁴ conidia mL⁻¹ of *Foc R4*. The same treatment was ineffective under higher pathogen pressure, i.e., 10⁶ conidia mL⁻¹ (Getha et al., 2005). *Streptomyces* sp. strain g10 was effective *in vitro* against several phytopathogenic fungi, including different physiological races of *Foc* (Getha and Vikineswary, 2002). Nevertheless, *Foc* and *R. solani* were more resistant than other fungi (i.e., *P. oryzae* and *Phytophthora palmivora*) to the antagonistic streptomyces (Getha et al., 2004). Crude fractions containing antifungal metabolites excreted in liquid media by g10 produced swelling, distortion and excessive branching of *Foc R4*
hyphae, as well as inhibition of spore germination. Antibiosis-mediated *Foc* antagonism was also demonstrated in sterile soils for the strain g10 by using an indirect method, i.e., the paper disc method (Gunji et al., 1983).

Several articles reported on *in vitro* experiments with *Streptomyces* spp. strains, but assays under *in vivo* conditions to fully demonstrate their biocontrol effectiveness have not made yet (Table 2). In these studies new antifungal metabolites were discovered, such as (6S,8aS,9S,11S,12aR)-6-hydroxy-9,10-dimethylecacydrobenzo[d]azecine-2,4,12(3H)-trione (termed as 210-A) (Wu et al., 2009), and fungichromin (Wei et al., 2011). Other three compounds were isolated from *S. albopinus* 15-4-2: 2-methyl-2,5,6-bornantriol, 4,4′-(3-hydroxypropane-1,1-diyl)diphenol, and 7-(4-methoxybenzyl)-4,5,6,7-tetrahydro-1,3-oxazine-5,6-diol. These compounds did not show an inhibitory effect against *Foc* R4, though the streptomycete was effective against the same pathogen (Yu et al., 2011). Two other studies demonstrated the efficacy of crude culture filtrate or methanol extracts of streptomycetes, but the effective metabolites were not identified (Shih et al., 2013; Wang L. et al., 2015). Soil inoculation with *S. griseus* St 4 viable cells was more effective in suppressing *Foc* TR4 (6 log₁₀ CFU g^{−1} soil of *Foc*) than cell-free crude extracts (7 log₁₀ CFU g^{−1} soil) at 20 days after inoculation (Zacky and Ting, 2013). The formulation of *S. griseus* St 4 with kaolin clay, sodium alginate, or a kaolin-alginate combination increased the effectiveness of the streptomycete, compared to non-formulated cells. The kaolin clay formulation reduced *Foc* TR4 soil inoculum from 6 to 5.4 log₁₀ CFU g^{−1} soil (Zacky and Ting, 2015).

Other Genera or Unidentified Species of Biological Control Agents

A *Serratia marcescens* strain, isolated from roots of wild bananas, has shown plant growth promoting effect both in glasshouse and field, and suppressed FWB, though only in the glasshouse. The loss of control efficacy stimulated the evaluation of diverse formulations in an attempt to improve its viability and efficacy in field applications. Results showed that bentonite performed better and that further advantage could come from optimization of non-fat skimmed milk and sucrose levels, whereas para-aminobenzoic acid should be omitted from bentonite formulations (Ting et al., 2009a; Ting A.S.Y. et al., 2011). Other studies in greenhouse evaluating several rhizospheric bacterial strains (FB5, FB2, T2WF, T2WC, and W10) of unidentified species culminated in the successful control of FWB (81% reduction) (Yang et al., 2006). Moderate control (16%) was obtained using *Paenibacillus* spp. strains RZ-17 and RZ-24 which also had additional effects on mortality and motility of *Meloidogyne javanica* second stage juveniles (Ribeiro et al., 2012). Multiple beneficial effects have been also reported for strains of marine rhizobacteria isolated from mangrove (YS481, YS1A3, and YS2A5), which were also effective against *R. solanacearum* and *Myosphaerella fijiensis* (Bonsubre et al., 2016). Finally, a number of studies identified *Foc* antagonists among strains of *Talaromyces* spp., *Eutypella* sp., *Paenibacillus polymyxa*, *Herbaspirillum* spp., *Tsukamurella paurometabola*, *Brevibacillus brevis*, and *Streptovorticillium lavenduligriseum* (Sun et al., 2010; Manoch and Dethouw, 2011; Ting S. et al., 2011; Marin et al., 2013; Shen L. et al., 2013; Sun and Hsieh, 2015; Qi et al., 2017). A spectacular control of FWB was claimed by Chand et al. (2016), who applied a dead *Foc* to plant roots before inoculation with live *Foc*. Although no data were showed, the authors stated that inoculated plants, grown in a sick plot, did not show disease symptoms even 2 months after inoculation, while they occurred on control plants 1 week after inoculation. This approach appears as interesting as it is unusual, and no other researchers have replicated the technique against *Foc* until now.

FUSARIUM WILT OF BANANA AND THE BANANA-ASSOCIATED MICROBIOMES

The development of next-generation sequencing (NGS) technologies, with advanced bioinformatics tools, is rapidly increasing our knowledge on many biological processes. Diverse “-omics” techniques such as (meta)genomics, (meta)transcriptomics, proteomics, metabolomics, microbiomics, etc., are currently available to better understand plant-microbe(s) interactions from a holistic perspective (Massart et al., 2015). However, the implementation of “-omics” in the study of BCAs effective against FWB as well as their interaction with the banana-*Foc* pathosystem is still very scant.

The NGS-based approaches are very useful for the in-depth study of the structure, composition, and diversity of plant-associated microbiomes. Yet, microbiomics is waiting to be used in a more frequent way in the research field of banana, FWB, and biocontrol. Recent studies (16S rRNA and ITS amplicon sequencing profiling) have been focused on endophytic bacterial communities present in different parts and micro-environments of banana plants (Köberl et al., 2015, 2017; Zhai et al., 2016; Suhami et al., 2017), as well as in the microbiota of banana rhizosphere (Fu et al., 2016a) and soil (Xue et al., 2015; Rames et al., 2018).

Healthy plants and healthy soils have higher microbial diversity and more abundant beneficial microbes, which can improve nutrients uptake, promote plant growth, and control soil-borne diseases (Bulluck and Ristaino, 2002; Bailey and Lazarovits, 2003; Raaijmakers et al., 2009; Luan et al., 2015). Köberl et al. (2015) studied the impact of biogeography and agroforestry on the banana-associated microbiome, mostly γ-proteobacteria. Banana plants grown under agroforestry systems showed a higher abundance of potentially beneficial plant-association bacteria and lower presence of phytopathogenic bacteria. Thus, γ-proteobacteria diversity and community members were identified as potential health indicators. Healthy plants revealed an increase in potentially beneficial microbes like *Pseudomonas* and *Stenotrophomonas*, while diseased plants showed a preferential occurrence of *Enterobacteriaceae* (Köberl et al., 2017). Another study correlated FWB positively with the abundance of *Proteobacteria*, *Ascomycota*, *Fusarium*, *Cylindrocarpon*, *Gymnascella*, *Monographella*, *Pochonia*, and *Sakaguchia*, but negatively with *Acidobacteria*, *Firmicutes*, *Leptosphaeria*, and *Phaeosphaeriopsis* (Shen et al., 2015a). In such
pot-experiment, 2 years of biofertilizer application manipulated the composition of the rhizosphere microbial community and induced the FWB suppression. The relationship among suppression of \(Foc \) under field conditions, the use of ground cover management, and changes in the soil microbiome was also investigated in “Ducaase” banana (synonym “Pisang Awak,” ABB) (Pattison et al., 2014; Rames et al., 2018). Results showed that suppression of FWB tended to increase over time when the banana was cultivated with ground covers compared to bare soil conditions. Statistically significant changes over time in the structure of soil microbial communities in the vegetated treatment were observed, and potential biomarkers related to disease suppression were identified. In addition, fungal amplicon sequencing demonstrated that reduction of \(Foc \) in the vegetated treatment was associated with disease suppression.

Similarly, analyzing the banana/\(R.\ solanacearum \) pathosystem (bacterial wilt of banana or Moko), five major microbial genera were found in both symptomatic and non-symptomatic plant samples: \(Sphingomonas, \ Methylobacterium, \ Flavobacterium, \ Pseudomonas, \) and \(Ralstonia \), the latter being more abundant in symptomatic (59% out of the entire genera) than in non-symptomatic plants (only 36%). In addition, several genera were only assigned to non-symptomatic plants (Suhaimi et al., 2017). Another experiment showed that the soil cultivated with tobacco and infested by \(R.\ solanacearum \) had lower microbial diversity than the soil free from the pathogen, which harbored more abundant beneficial microbes such as \(Bacillus, \ Agromyces, \ Micromonospora, \ Pseudonocardia, \ Acremonium, \ Lyso bacter, \ Mesorhizobium, \ Microvirga, \ Bradyrhizobium, \ Acremonium, \) and \(Chaetomium \). Also, the activities of catalase, invertase, and urease, as well as soil pH, available phosphorus and potassium content were lower in the infested soils (Wang et al., 2017).

Soil microbial community varies because of many factors. The main drivers of the rhizosphere microbiome are soil type and plant genotype (Berg and Smalla, 2009), but fertilizers (Ikeda et al., 2011), crop rotation (Hilton et al., 2013), and pesticides (Jacobsen and Højmelso, 2014) may also play a significant role. Soil microbiota also fluctuates with the plant growth stages, mostly due to changes in the root exudates (Yang and Crowley, 2000; Okubo et al., 2016; Wang et al., 2017). Finally, the soil microbial assembly may be influenced by BCAs artificially introduced in the system (Xue et al., 2015). However, several studies have revealed that edaphic and anthropic factors had a deeper and more durable effect on the rhizosphere microbiota than a BCA application. For example, compared to untreated plants, \(R.\ solani \) had a much higher impact on lettuce rhizosphere bacterial communities than the applications of diverse BCAs such as \(Trichoderma \) sp. (Grosch et al., 2006), \(P.\ jessenii \) RU47 (Adesina et al., 2009), or \(B.\ amylo liquefaciens \) FZB42 (Chowdhury et al., 2013; Erlacher et al., 2014). On the other hand, co-inoculation of different BCAs may cause a more pronounced impact on the microbial community structure compared to the single strain application, as demonstrated in the lettuce rhizosphere (Grosch et al., 2012). Nonetheless, some systems may be more reluctant to changes, sometimes even contrasting the applied BCAs (Garbelotto et al., 2019).

The “-omics” technologies do not only provide a global overview of the banana-associated microbiota but may also yield useful information to develop more effective biological control strategies. For instance, dominant bacterial groups can be identified in FWB suppressive soils, thereby leading to the development of strains or consortia of strains serving as new biocontrol tools. For example, the above mentioned \(B.\ amylo liquefaciens \) strain NJN-6 was isolated from a FWB-suppressive soil after the NGS analysis had evidenced \(Bacillus \) as the dominant taxon (Xue et al., 2015). A metagenomic study has been targeted to microbes that harbor the non-ribosomal peptide-synthetase (NRPS) gene, which encodes for one of the largest groups of natural microbial secondary metabolites, such as the antibiotics vancomycin and gamicidin, as well as the lipopeptides surfactin, iturin A, and bacillomycin. The research evidenced that these microbes were more abundant in FWB-suppressive soil than in FWB-conducive soil. The main microbial taxa harboring the NRPS gene and related to FWB suppression were \(Pseudomonas \) spp. and \(Streptomyces \) spp. (Zhao et al., 2018). As potential probiotic candidates, plant vertically transmitted actinobacteria are beneficial to the growth and health of host plants (Du et al., 2018). The majority of bacteria from healthy banana shoot tips were affiliated with actinobacteria, being \(Mycobacterium \) and \(Nocardia \) the dominant taxa. The streptomycetes were isolated from shoot tips and proved to enhance the growth and resistance to \(Foc \) of pot-grown banana plants. The research elegantly presented how microbiomics can foster the selection for probiotic agents (Du et al., 2018). Another study has shown that the endophytic root microbiome of healthy banana plants was dominated by \(Nocardioidaceae \) (56.37%), \(Pseudonocardaceae \) (14.36%) and \(Nocardia \) (9.77%) (Zhai et al., 2016).

But metagenomics and microbiomics are not the sole “-omics” technologies that can help the research on biocontrol of FWB. Nevertheless, the implementation of “-omics” techniques other than microbiomics for studying biocontrol mechanisms of \(Foc \) is still absent or very limited. The study of a tripartite interaction among banana, \(Foc \), and \(T.\ asperellum \) strain Pru2 is one of the few examples available, however with a non-NGS approach, viz. the suppression subtractive hybridization or SSH (Thangavelu et al., 2016).

GAPS IN THE KNOWLEDGE AND CONCLUDING REMARKS

Banana production systems lack phytosanitary certification schemes. In Australia, where \(Foc \) TR4 is considered a quarantine pest, the organization that governs standardization and certification of agricultural practices, GlobalG.A.P., launched in 2017 an “add-on” in its standards which encourages farmers to take preventive biosecurity measures following a strict protocol (GLOBALG.A.P., 2019). However, it is only a preventive awareness measure rather than a true certification. Phytosanitary certification would be necessary either for tissue culture- or sucker-derived plants, because \(Foc \)-contamination may occur at different stages of plant production. In fact, undesired infected
plants can derive not only from infected asymptomatic suckers but also from pathogen-free tissue culture plantlets, which can be later contaminated by the pathogen during the acclimation period (e.g., by contaminated irrigation water or substrate).

It is worth noting that, despite its dangerousness, *Foc* is not yet a quarantine pathogen in several countries, and where it is considered as such, the regulation is limited to TR4 only. For example, in countries joining to the European and Mediterranean Plant Protection Organization (EPPO), *Foc* is not yet reported in the A1 or A2 lists, which include pests and pathogens absent or present, respectively, in the EPPO region and recommended for quarantine regulations (EPPO, 2019). Among the *Fusarium* species, only *F. circinatum*, *F. euvallaccae*, *F. foetens* and *F. oxysporum* f. sp. *albedinis* are included in the A2 list, while *F. oxysporum* f. sp. *lactucae* is provisionally placed in an alert list because it is pending for a risk assessment that will designate or not it as a quarantine pathogen. Therefore, in the EPPO region, no evaluation for the inclusion of *Foc* among the quarantine pathogens seems to have initiated yet. Nevertheless, awareness campaigns, pest risk assessments, and research works have largely emphasized the importance of quarantine measures against *Foc* TR4 (Baker et al., 2008; Pocasangre et al., 2011; Blomme et al., 2013; Backiyaran et al., 2015; Saraf et al., 2015; Gómez-Lama Cabanás et al., 2018). Blends of microorganisms beyond their mere mixture, but based on tailor-made combinations of strains with complementary and/or synergistic modes of action are encouraged (Lutz et al., 2004). Solidly supported by the powerful currently-available “-omics” methodologies, biocontrol strategies can now aim to provide novel tools based on *ad hoc* tailored consortia of BCAs originating from the indigenous microbiota associated with the target plant (Gopal et al., 2013; Berg et al., 2017; Mercado-Blanco et al., 2018), thereby overcoming problems and inconsistencies frequently observed when biopesticides are based on formulations of a single microorganism or combinations of few of them. Furthermore, successful colonization and endurance in the target niche must be guaranteed as the first requisite for successful biocontrol. Therefore, a comprehensive understanding of the mode of action, ecology, and trophic interactions established upon the application of BCAs is instrumental for their success (Saraf et al., 2014; Eljounaidi et al., 2016; Shafi et al., 2017). Monitoring the microbial strains in the field after their application should be addressed in order to understand their fate in the environment and optimize their application protocol. For these aspects, “-omics”-based approaches are of great help.

The availability of the *M. acuminata* draft genome marked a milestone in the genetic research of banana (D’Hont et al., 2012), and the genomic sequence of several *Foc* races is also available. Furthermore, transcriptomics has been implemented in studies on *Musa* spp. (e.g., Backiyaran et al., 2015) enhancing our knowledge on physiological processes such as the fruit ripening (Asif et al., 2014) and the responses to abiotic stresses such as low-temperature (Yang Q. S. et al., 2015). This “-omics” has been largely used to study the interaction between BCAs, plant and/or microbiome, but no studies are available on the banana/*Foc* pathosystem. Moreover, integrating genomics, metagenomics and (meta)transcriptomics would allow understanding the microbiota structure and the roles and functions of its members, as well as the intricate interactions between BCAs, microbiota, plant and the environment. This approach has not been applied to plant microbiomes yet, but it is providing new insight in other fields like the human microbiome (Massart et al., 2015). Proteomics and metabolomics analyses have been also conducted in banana, but they have been focused mainly on the plant-pathogen interaction while BCAs have not been involved (Li et al., 2013, 2017; Lu et al., 2013; Sun et al., 2014; Ramu et al., 2016; Gopalakrishnan, 2017; Yuan et al., 2017). Therefore, at least to the best of our knowledge, there is still an important gap in our knowledge of biocontrol against *Foc*, including insight on the mechanisms involved in the antagonism, plant colonization, plant growth promotion, etc.

Biocontrol should not be considered as an independent tool, but adequately implemented in an integrated management framework. Actually, besides the combination with organic fertilizers, very little has been investigated on the integration...
of BCAs with other control means. For instance, the effect of an organic amendment against FWB was enhanced by the combination with a BCA, *B. amyloliquefaciens* strain NJN-6, namely biofertilizer (Shen et al., 2015a). Furthermore, the biocontrol efficacy of such biofertilizer resulted even higher when it was applied after ammonia fumigation (Shen et al., 2019). Other studies have shown that combinations of biocontrol organisms with silicon and mulching, or with neem cake can be advantageous compared to the individual applications, and therefore can provide a better control option for banana growers who have to deal with FWB in their plantations (Saravanaan et al., 2003; Kidane and Laing, 2010). Diverse combinations of treatments with silicon, *T. harzianum*, compost, various sources of nitrogen, phosphorus and potassium, and the cover crop *Crotalaria juncea* were applied in the field to banana varieties differing in the susceptibility level to *Foc*.

We showed that the literature offers numerous examples of encouraging results, suggesting that biocontrol can greatly contribute to limit the damage caused by FWB. More efforts should be done to further validate the currently available outcomes, to deepen the knowledge on the most valuable BCAs, and to improve their efficacy by setting up effective formulations, application protocols, and integrated strategies.

AUTHOR CONTRIBUTIONS

All the authors wrote sections of the manuscript, contributing equally to its first draft. GB coordinated and merged the individual contributions from the authors. All the authors read, revised, and approved the submitted version.

FUNDING

This review was supported by the Horizon 2020 Project entitled Microbial Uptakes for Sustainable Management of Major Banana Pests and Diseases (MUSA; grant number 727624).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2019.00616/full#supplementary-material

Supplemental Figure 1 | Publication timeline of scientific articles dealing with *Fusarium* wilt of banana. Articles were retrieved from the CAB Direct database (1970–2018) by searching the keywords “*Fusarium cubense*” or “Panama disease” in the title and abstract (735 articles); *Foc*: *Fusarium oxysporum* f. sp. *cubense*; FWB: *Fusarium* wilt of banana.

Supplemental Figure 2 | Biological control agents studied for the control of *Fusarium oxysporum* f. sp. *cubense*. The numbers indicate the scientific articles retrieved from CAB Direct database (1970–2018) by searching the keywords “*Fusarium cubense*” or “Panama disease” in the title and abstract.

Supplemental Table 1 | List of *in vitro* experiments conducted against *Fusarium oxysporum* f. sp. *cubense* (*Foc*) using beneficial microorganisms.

REFERENCES

Adesina, M. F., Grosch, R., Lembke, A., Vatchev, T. D., and Smalla, K. (2009). *In vitro* antagonists of *Rhizoctonia solani* tested on lettuce: rhizosphere competence, biocontrol efficiency and rhizosphere microbial community response. *FEBS Microbiol. Ecol.* 69, 62–74. doi: 10.1111/j.1574-6941.2009.00685.x

Aguilar, E. A., Turner, D. W., and Sivasithamparam, K. (2000). *Fusarium oxysporum* f. sp. *cubense* inoculation and hyposia alter peroxidase and phenylalanine ammonia lyase activities in nodal roots of banana cultivars (*Musa* sp.) differing in their susceptibility to Fusarium wilt. *Aust. J. Bot.* 48, 589–596. doi: 10.1071/BT99009

Akila, R., Rajendran, L., Harish, S., Saveetha, K., Raguchander, T., and Samiyappan, R. (2011). Combined application of botanical formulations and biocontrol agents for the management of *Fusarium oxysporum* f. sp. *cubense* (*Foc*) causing Fusarium wilt in banana. *Biol. Control* 57, 175–183. doi: 10.1016/j.biocontrol.2011.02.010

Aloo, B. N., Mukama, B. A., and Mbega, E. R. (2019). The potential of *Bacilli* rhizobacteria for sustainable crop production and environmental sustainability. *Microbiol. Res.* 219, 26–39. doi: 10.1016/j.micres.2018.10.011

Alvarez, C. E., Garcia, V., Robles, J., and Diaz, A. (1981). Influence of soil characteristics on the incidence of Panama disease. *Fruits* 36, 71–81.

Anses (2018). “Risque Phytosanitaire Portant sur *Fusarium oxysporum* f. sp. *cubense* Pour les Départements D‘Outre-mer”, Report. Available online at: https://www. anses.fr/fr/system/files/SANTVEG2017SA0050Ra.pdf (accessed February 20, 2019).

Arab, K. Y., Alarif, M. D., and Sallam, M. Y. (2017). Antagonistic effect of various *Bacillus* strains against *Fusarium* wilt of banana. *Aqua Cult. Int.* 25, 520–529. doi: 10.1007/s10485-016-9783-2

Arshad, M., and Frankenberger, W. T. (1997). Plant growth-regulating substances from rhizobacteria for sustainable crop production and environmental sustainability. *J. Appl. Microbiol.* 83, 14:316.

Asif, M. H., Lakhwani, D., Pathak, S., Gupta, P., Bag, S. K., Nath, P., et al. (2014). Transcriptome analysis of ripe and unripe fruit tissue of banana identifies major metabolic networks involved in fruit ripening process. *BMC Plant Biol.* 14:316. doi: 10.1186/s12870-014-0031-6

Ayadurai, N., Naik, P. R., Rao, M. S., Kumar, R. S., Samrat, S. K., Manohar, M., et al. (2006). Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. *J. Appl. Microbiol.* 100, 926–937. doi: 10.1111/j.1365-2672.2006.02863.x

Azikoulou Olaondo, J. A. (2016). Biofumigation and Biosolarización Para el Manejo del mal de Panamá en la Platanera de Canarias. [Master’s thesis]. Pamplona: ETSIA, Universidad Pública de Navarra.

Backiyarani, S., Uma, S., Saraswathi, M. S., Saravanakumar, A. S., and Chandrasekar, A. (2015). Transcriptome analysis of banana (*Musa balbisiana*) based on next-generation sequencing technology. *Turk. J. Agric. For.* 39, 705–717. doi: 10.3906/tar-1406-171

Bakker, B., Caffier, D., Choiseul, J. W., De Clercq, P., Dormannsné-Simon, E., Gerowitt, B., et al. (2008). Scientific opinion of the panel on plant health on...
Buddenhagen, I. W. (1990). “Banana breeding and Fusarium wilt,” in Fusarium Wilt of Banana, ed R.C. Ploetz (St. Paul, MN: The American Phytopathological Society), 107–113.

Bulluck, L. R., and Ristaino, J. B. (2002). Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processed tomatoes. Phytopathology 92, 181–189. doi: 10.1094/PHYTO.2002.92.2.181

Butler, D. (2013). Fungus threatens top banana. Nature 504, 195–196. doi: 10.1038/504195a

CAB Direct (2018). CAB Direct Database (Wallingford: CAB International). Available online at: https://www.cabdirect.org/ (accessed October 4, 2018).

Cabrallero Hernandez, A. J., Pocasangre Enamorado, L. E., Casanoves, F., Avelino, J., Tapia Fernandez, A. C., and Ortiz, J. L. (2013). Use of endophytic insulation of Trichoderma spp., for biocontrol of Panama disease (Fusarium oxysporum f. sp. cubense) race 1, in vitro plants of banana, Gros Michel variety (AAA) under greenhouse. La Calera 13, 16–23. doi: 10.5377/calera.v13i20.1620

Cao, L., Qiu, Z., Dai, X., Tan, H., Lin, Y., and Zhou, S. (2004). Isolation and characterization of endophytic actinomycetes from roots and leaves of banana (Musa acuminate) plants and their activities against Fusarium oxysporum f. sp. cubense. World J. Microbiol. Biotechnol. 20, 501–504. doi: 10.1007/BWBI.2000.0406.30495.48

Cao, L., Qiu, Z., You, J., Tan, H., and Zhou, S. (2005). Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol. Lett. 247, 147–152. doi: 10.1016/j.femsle.2005.05.006

Carillo, C. A. (2014). “Davao eyes oil palm as alternative export crop,” in Business World online (Manila, The Philippines: BusinessWorld Publishing). Available online at: http://www.bworldonline.com/content.php?section=Economy&title=davao-eyes-oil-palm-as-alternative-export-crop&id=85863 (accessed December 22, 2018).

Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., and Ongea, M. (2015). Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amylolyticus. Microbiol. Biotechnol. 8, 281–295. doi: 10.1007/s11104-016-2927-9

Chaves, N. P., Staver, C., and Dita, M. A. (2016). Potential of Trichoderma asperellum for biocontrol of Fusarium wilt in banana. Acta Hortic. 1114, 261–265. doi: 10.17660/ActaHortic.2016.1114.35

Chen, X. H., Kounoutsou, A., Scholz, R., Eisenreich, A., Schneider, K., Heinmeyer, I., et al. (2007). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amylolyticus FZB42. Nat. Biotechnol. 25, 1007–1014. doi: 10.1038/nbt1325

Chowdhury, S. P., Dietel, K., Randler, M., Schmid, M., Junge, H., Borris, R., et al. (2013). Effects of Bacillus amylolyticus FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS ONE 8:e88818. doi: 10.1371/journal.pone.0088818

Ciancio, A. (2017). Microbial Uptakes for Sustainable Management of Major Banana Pests and Diseases (MUSA). Available online at: http://www.projectmusa.eu/ (accessed December 3, 2018).

Cirulli, M., Bubici, G., Amenduni, M., Armengol, J., Berbegal, M., Jiménez-Gasco, I., et al. (2013). “Task force on Fusarium wilt tropical race 4,” in Proceedings of the International Workshop ‘Banana Fusarium Wilt’ on a request from the European Commission on pest risk assessment made by EFSA J. 92, 181–189.

Clerec, L. (2013). “Task force on Fusarium wilt tropical race 4 (TR4),” in World Banana Forum (Rome: Food and Agriculture Organization of the United Nations, FAO). Available online at: http://www.fao.org/world-banana-forum/projects/fusarium-tr4/en/ (accessed December 3, 2018).

Compart, S., Saikkonen, K., Mitter, B., Campisano, A., and Mercado-Blanco, J. (2016). Editorial special issue: soil, plants and endophytes. Plant Soil 405, 1–11. doi: 10.1007/s11104-016-2927-9

Conde, B. D., and Pitkethley, R. N. (2001). “The discovery, identification and management of banana Fusarium wilt outbreaks in the Northern Territory of Australia,” in Proceedings of the International Workshop ‘Banana Fusarium Wilt
Management: Towards Sustainable Cultivation', eds A. B. Molina, N. H. Nik Masdask, and K. W. Liew (Los Baños: INIBAP-ASPNET), 260–265.

Cook, D. C., Taylor, A. S., Meldrum, R. A., and Dresth, A. (2015). Potential economic impact of Panama Disease (tropical race 4) on the Australian banana industry. J. Plant Dis. Prot. 122, 229–237. doi:10.1007/BF03356557

das Silva Junior, J. E., Cordeira, Z. M., and Oliveira, A. M. G. (2000). Soil chemical parameters in relation to the incidence and intensity of Panama disease. Infomusa 9, 13–16.

Damodaran, T., Rajan, S., Mishra, V. K., Jha, S. K., Ahmad, I., and Gopal, R. (2018).

De Vrieze, M., Germanier, F., Vuille, N., and Weisskopf, L. (2018). Combining disease.

Dubois, T., Dusabe, Y., Lule, M., Van Asten, P., Coyne, D., Hubyho, J.

Du, X., Zhai, Y., Deng, Q., Tan, H., and Cao, L. (2018). Illumina-based sequencing analysis directed selection for Actinobacterial probiotic candidates for banana plants. Probiotics Antimicrob. Proteins 10, 284–292. doi:10.1007/s12602-017-0293-7

Duffy, R. K., and Démago, G. (1997). Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87, 1250–1257. doi:10.1094/PHYTO.1997.87.12.1250

Dusuncel, F. (2017). Global Programme on Banana Fusarium Wilt Disease: Protecting Banana Production From the Disease With Focus on Tropical Race 4 (TR4). Rome: FAO. Available online at: http://www.fao.org/3/a-i7921e.pdf (accessed December 3, 2018).

Eljounaidi, K., Lee, S. K., and Bae, H. (2016). Bacterial endophytes as potential biocontrol agents of vascular wilt diseases - Review and future prospects. Biol. Control 103, 62–68. doi:10.1016/j.biocontrol.2016.07.013

EPPO (2019). EPPO A1 List of Pests Recommended for Regulation as Quarantine Pests. Available online at: https://www.eppo.int/ACTIVITIES/plant_quarantine/A1_list (accessed February 20, 2019).

EPPO Reporting Service (2018). Invasion and Eradication of Fusarium oxysporum f. sp. cubense Tropical Race 4 From Israel. Available online at: https://gd.eppo.int/reporting/article-6300 (accessed December 5, 2018).

Erlacher, A., Cardinali, M., Grosch, R., Grube, M., and Berg, G. (2014). The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front. Microbiol. 5:175. doi: 10.3389/fmicb.2014.00175

Eswarenath, S., Muthusamy, M., Muthusamy, S., Jayasekhar, R. R., and Natarajan, S. (1988). Effect of Bavitin, aureofungin application on banana wilt and Sigatoka leaf spot of banana. Hindustan Antibiot. Bull. 30, 25–26.

FAO (2016). All About Bananas: Things You Should Know About the Tropical Fruit. Rome: Food and Agriculture Organization of the United Nations, FAO. Available online at: http://www.fao.org/zhc/detail-events/en/c/446573/ (accessed December 3, 2018).

FAO (2018a). Banana Facts and Figures. Rome, Italy: Food and Agriculture Organization of the United Nations, FAO. Available online at: http://www.fao.org/economic/est/est-commodities/bananas/bananafacts/en/#.XAUCkGhKhPY (accessed December 3, 2018).

FAO (2018b). FAOSTAT. Rome, Italy: Food and Agriculture Organization of the United Nations, FAO. Available online at: http://www.fao.org/faostat/en/#home (accessed November 14, 2018).

FAO (2018c). Fusarium Wilt TR4 - The Caribbean Carries Out Awareness-Raising and Training Activities. Rome: Food and Agriculture Organization of the United Nations, FAO. Available online at: http://www.fao.org/agriculture/crops/news-events-bulletins/detail/en/item/235419/ (accessed November 30, 2018).

Farquhar, I. (2012). Bananas in China. Banana Link. Available online at: http://www.bananalink.org.uk/sites/default/files/Bananas%20in%20China%202012.pdf (accessed December 5, 2018).

Fernández-Falcón, M., Borges, A. A., and Borges-Pérez, A. (2003). Induced resistance to Fusarium wilt of banana by exogenous applications of indoleacetic acid. Phytoprotection 84, 149–153. doi:10.7202/008492ar

Fernández-Falcón, M., Borges, A. A., and Borges-Pérez, A. (2004). Response of Dwarf Cavendish banana plantlets to inoculation with races 1 and 4 of Fusarium oxysporum f. sp. cubense at different levels of Zn nutrition. Fruits 59, 319–323. doi:10.1015/fruits:2004030

Figueroa, L. (1987). Control of diseases and nematodes of banana and plantain. Rev. Mex. Fitopatol. 5, 181–184.

Fira, D., Dimik, I., Beric, T., Lozo, J., and Stankovic, S. (2018). Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285, 44–55. doi:10.1016/j.biotech.2018.07.044

Forsyth, L. M., Smith, L. J., and Atikin, E. A. B. (2006). Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity. Mycol. Res. 110, 929–935. doi:10.1017/j.mycres.2006.03.008

Fortunato, A. A., Rodrigues, F. Á., Baroni, J. C. P., Soares, G. C. B., Rodriguez, M. A. D., and Pereira, O. L. (2012b). Silicon suppresses Fusarium wilt development in banana plants. J. Phytopathol. 160, 674–679. doi:10.1111/jph.12005

Fortunato, A. A., Rodrigues, F. Á., and Nascimento, K. J. T. D. (2012a). Physiological and biochemical aspects of the resistance of banana plants to Fusarium wilt potentiated by silicon. Phytopathology 102, 957–966. doi:10.1094/PHYTO-02-12-0037-R

Fortunato, A. A., Silva, W. L. D., and Rodrigues, F. Á. (2014). Phylopropanoid pathway is potentiated by silicon in the roots of banana plants during the infection process of Fusarium oxysporum f. sp. cubense. Phytopathology 104, 597–603. doi:10.1094/PHYTO-07-13-0203-R

Fravel, D., Olivain, C., and Alabouvette, C. (2003). Fusarium oxysporum and its biocontrol. New Phytol. 157, 493–502. doi:10.1046/j.1469-8137.2003.01000.x

Fu, L., Penton, C., Ruan, Y., Shen, Z., Xue, C., Rong, L., et al. (2016a). Inducing the rhizosphere microbiome by biofertilizer application to...
suppress banana Fusarium wilt disease. *Soil Biol. Biochem.* 104, 39–48. doi: 10.1016/j.soilbio.2016.10.008

Fu, L., Ruan, Y., Tuo, C., Li, R., and Shen, Q. (2016b). Continuous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression. *Sci. Rep.* 6, 27731–27731. doi: 10.1038/srep27731

Garbelotto, M., Howell, N., Chen, J. Y., and Osmundson, T. W. (2019). Evidence for inhibition of a fungal biocontrol agent by a plant microbiome. *J. Plant Pathol.* 102. doi: 10.1017/s00216191-09247-0

Getha, K., and Vikineswary, S. (2002). Antagonistic effects of Streptomyces violaceusniger strain G10 on *Fusarium oxysporum* f. sp. cubense race 4: indirect evidence for the role of antibiotic in the antagonistic process. *J. Ind. Microbiol. Biotechnol.* 28, 303–310. doi: 10.1007/s8268-001-00247-0

Getha, K., Vikineswary, S., Wong, W. H., Seki, T., Ward, A., and Goodfellow, M. (2004). Characterization of selected isolates of Indigenous Streptomyces species and evaluation of their antifungal activity against selected pathogen plant fungal. *Malay. J. Sci.* 23, 37–47.

Getha, K., Vikineswary, S., Wong, W. H., Seki, T., Ward, A., and Goodfellow, M. (2005). Evaluation of *Streptomyces* sp. strain g10 for suppression of Fusarium wilt and rhizosphere colonization in pot-grown banana plantlets. *J. Ind. Microbiol. Biotechnol.* 32, 24–32. doi: 10.1007/s10399-004-0199-5

Gittleson, K. (2018). Battling to Save the World’s Bananas. Available online at: https://www.bbc.com/news/business-42777803 (accessed December 3, 2018).

Grosch, R., Scherwinski, K., Lottmann, J., and Berg, G. (2006). Fungal antagonists of the plant pathogen *Rhizoctonia solani*: selection, control efficacy and influence on the indigenous microbial community. *Mycol. Res.* 110, 1464–1474. doi: 10.1016/j.mycres.2006.09.014

Gunji, S., Arima, K., and Beppu, T. (1983). Screening of antifungal antibiotics according to activities inducing morphological abnormalities. *Agric. Biol. Chem.* 47, 2061–2069.

Guo, G., Wang, B., Ma, W., Li, X., Yang, X., Zhu, C., et al. (2013). Biocontrol of Fusarium wilt of banana: key influence factors and strategies. *Afr. J. Microbiol. Res.* 7, 4835–4843. doi: 10.5897/AJMR2012.2392

Haas, D., and Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. *Nat. Rev. Microbiol.* 3, 307–319. doi: 10.1038/nrmicro1129

Habeeba, T., Ravichandra, N. G., Krishnappa, K., and Reddy, B. M. R. (2003). “Interaction of *Glomus fasciculatum* in the management of burrowing nematode, *Radopholus similis* and wilt fungus, *Fusarium oxysporum* f. sp. cubense on banana,” in Proceedings of the ‘National Symposium on Biodiversity and Management of Nematodes in Cropping Systems for Sustainable Agriculture’ (New Delhi: Division of Nematology, Indian Agricultural Research Institute), 244–250.
Jeger, M. J., Waller, J. M., Johanson, A., and Gowen, S. R. (1996). Fears around containment of Fusarium TR4 in Africa and Asia.

Jansen, C. (2017).

Jauri, P. V., Altier, N., Pérez, C. A., and Kinkel, L. (2017). Cropping history effects.

Jaizme-Vega, M. C., Sosa Hernández, B., and Hernández Hernández, J. M. (1998). In vitro.

Kavino, M., and Manoranjitham, S. K. (2018).

Keswani, C., Bisen, K., Singh, V., Sarma, B. K., and Singh, H. B. (2016). Kavino, M., Manoranjitham, S. K., Balamohan, T. N., Kumar, N., Kartihba, L., and Panamia, V. (2012). Verticillium wilt, a major threat to olive production: doi: 10.1094/PDIS-06-11-0496

Khan, N., Maymon, M., and Hirsch, A. M. (2017). Combating Fusarium.

Köberl, M., Dita, M., Martinuz, A., Staver, C., and Berg, G. (2015). Agroforestry leads to shifts within the gammaproteobacterial microbial community of banana plants cultivated in Central America. Front. Microbiol. 6:91. doi: 10.3389/fmicb.2015.00991

Köberl, M., Dita, M., Martinuz, A., Staver, C., and Berg, G. (2017). Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America. Sci. Rep. 7:45318. doi: 10.1038/srep45318

Komada, H. (1975). Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev. Plant Prot. Res. 8, 114–124.

Kulkarni, V. (2018). "India in a race against wilt in Cavendish banana," in Agri Business (India: The Hindu). Available online at: https://www.thehindubusinessline.com/economy/agri-business/india-in-a-race-against-wilt-in-cavendish-banana/article23650060.ece (accessed February 20, 2019).

Kumar, D. P., D. A. P., Singh, R. K., Themmozhi, R., Nagasathya, A., Thajuddin, N., et al. (2012). Evaluation of extracellular lytic enzymes from indigenous Bacillus isolates. J. Microbiol. Biotechnol. Res. 2, 129–137.

Lakshmanan, P., and Selvaraj, P. (1984). Effect of fungicides on Panama disease of Rasthali banana. South Indian Hortic. 32, 249–251.

Larkin, R. P., and Fravel, D. R. (2002). Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 92, 1160–1166. doi: 10.1094/PHYTO.2002.92.11.1160

Lenoir, I., Fontaine, J., and Lounès-Hasdj Sahraoui, A. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Mycochemistry 123, 4–15. doi: 10.1016/j.mycchem.2016.01.002

Li, C. Q., Shao, J. F., Wang, Y. J., Li, W. B., Guo, D. J., Yan, B., et al. (2013). Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC Genomics 14:851. doi: 10.1186/1471-2164-14-851

Li, J. Y., Harper, J. K., Grant, D. M., Tombe, B. O., Bashyl, B., Hess, W. M., et al. (2001). Ambic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaeta sp. Phytochemistry 56, 463–468. doi: 10.1016/S0030-9220(00)00408-8

Li, W. B., Li, C. Q., Sun, J. B., and Meng, M. (2017). Metabolomic, biochemical, and gene expression analyses reveal the underlying responses of resistant and susceptible banana species during early infection with Fusarium oxysporum f. sp. cubense. Plant Dis. 101, 534–543. doi: 10.1094/PDIS-09-16-1245-RE

Li, W. M., Dita, M., Wu, W., Hu, G. B., Xie, J. H., and Ge, X. J. (2015). Resistance sources to Fusarium oxysporum f. sp. cubense tropical race 4 in banana wild relatives. Plant Pathol. 64, 1061–1067. doi: 10.1111/ppa.12340

Lian, J., Wang, Z., Cao, L., Tan, H., Patrik, L., Jiang, Z., et al. (2009). Artificial inoculation of banana tissue culture plantlets with indigenous endophytes originally derived from native banana plants. Biol. Control 51, 427–434. doi: 10.1016/j.biocontrol.2009.08.002

Lin, S., Wang, C., and Su, C. (2012). Using arbuscular mycorrhizal fungus and other microorganisms for control of Fusarium wilt of banana. J. Taiwan Agric. Res. 61, 241–249.

Liu, H. (2011). Identification of Antagonistic Bacteria Against Banana Wilt and Its Preliminary Application. [Master’s thesis]. Hainan: Hainan University.

Liu, P., and Prada, V. (2018). World Banana Forum. Rome: Food and Agriculture Organization of the United Nations, FAO. Available online at: http://www.fao.org/economic/worldbananaforum/en/ (accessed December 3, 2018).

Liu, Y., and Lu, Q. (2013). Inhibitory effects of Acremonium sp. on Fusarium wilt in bananas. Afr. J. Agric. Res. 8, 6241–6249. doi: 10.5897/AJAR2013.7082

Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis, E. W. II, Lim, C. K., Shaffer, B. T., et al. (2012). Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 8:e1002784. doi: 10.1371/journal.pgen.1002784

López Escudero, F. J., and Mercado-Blanco, J. (2011). Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil 344, 1–50. doi: 10.1007/s11104-010-0629-2

López-Cepero, J., Puerta, M., and Piedra Buena, A. (2014). Guía para la Gestión Integrada de Plagas en Platanera, Vol. 2. Santa Cruz de Tenerife: COPLACA, 44.

Lu, Y., Liao, D. J., Pu, J. J., Qi, Y. X., and Xie, Y. X. (2013). Proteome analysis of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense. Physiol. Mol. Plant Pathol. 84, 163–171. doi: 10.1016/j.mpp.2013.09.002

Luan, F. G., Zhang, L. L., Lou, Y. Y., Wang, L., Liu, Y. N., and Zhang, H. Y. (2015). Analysis of microbial diversity and niche in rhizosphere soil of healthy and diseased cotton at the flowering stage in southern Xinjiang. Genet. Mol. Res. 14, 1602–1611. doi: 10.4238/2015.March.6.7
Lugtenberg, B., and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556. doi:10.1146/annurev.micro.62.081307.162918

Lutz, M. P., Wenger, S., Maurhofer, M., Defago, G., and Duffy, B. (2004). Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol. Ecol. 48, 447–455. doi:10.1016/j.femsec.2004.03.002

Manikandan, R., Saravanakumar, D., Rajendran, L., Raguchander, T., and Samiyappan, R. (2010). Standardization of liquid formulation of Pseudomonas fluorescens P11 for its efficacy against Fusarium wilt of tomato. Biol. Control 54, 83–89. doi:10.1016/j.biocontrol.2010.04.004

Manooh, L., and Dethouy, T. (2011). A potential use of Talaromyces species as biological agents against plant pathogenic fungi. Thai J. Agric. Sci. 44, 81–91.

Marin, M., Wong, I., Garcia, G., Moran, R., Basulto, R., Pimentel, E., et al. (2013). In vitro antagonistic activity of Tsukamurella paurometabola C-924 against phytopathogens. Rev. Protec. Vegetal. 28, 132–137.

Masset, S., Martinez-Medina, M., and Ijjali, M. H. (2015). Biological control in the microbiome era: challenges and opportunities. Biol. Control 89, 98–108. doi:10.1016/j.biocontrol.2015.06.003

Mercado-Blanco, J. (2015). “Pseudomonas strains that exert biocontrol of plant pathogens,” in Pseudomonas, New Aspects of Pseudomonas Biology, Vol. 7, eds J. L. Ramos, J. B. Goldberg, and A. Filoux (Dordrecht: Springer Netherlands), 121–172. doi:10.1007/978-94-017-9555-5_6

Mercado-Blanco, J., Abrantes, I., Barra Caracciolo, A., Bevivino, A., Ciancio, A., Genni, P., et al. (2018). Belowground microbiota and the health of tree crops. Front. Microbiol. doi:10.3389/fmicb.2018.01096

Mercado-Blanco, J., and Bakker, P. A. H. M. (2009). Recent advances of organically based applications of bacterial endophytes. Curr. Biotechnol. 3, 508–524. doi:10.2174/22115511130236660038

Mohandas, S., Mananmohan, M., Rawal, R. D., Saikat, C., Sreekapppa, H., Sheng, O., et al. (2013). Field evaluation of Cavendish somaclonal variants and Ramachandra, Y. L. (2010). Evaluation of arbuscular mycorrhiza and biocontrol agents against plant pathogenic fungi. Rev. Protec. Vegetal. 28, 132–137.

Molin, A. B., Fabregar, E., Sinohin, V. O., Fabregar, E. G., Ramillete, E. B., Loayan, M. M., and Sugiyma, S. (2016). Impacts of root symbiotic associations on interspecific variation in sugar exudation rates and rhizosphere microbial communities: a comparison among four plant families. Plant Soil 399, 345–356. doi:10.1007/s11104-015-2703-2

Olivaín, C., Humbert, C., Nahalkova, J., Fatehi, L., L’Haridon, F., and Alabouvette, C. (2006). Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Appl. Environ. Microbiol. 72, 1523–1531. doi:10.1128/AEM.72.4.1523-1531.2006

Ortiz, R., and Pocasangre, L. E. (2012). Biological control of Panama disease (Fusarium oxysporum f. sp. cubense) using endophytic fungi. Tierra Trop. 8, 221–228.

Parnell, J. J., Berka, R., Young, H. A., Sturino, J. M., Kang, Y. W., Barnhart, D. M., et al. (2016). From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front. Plant Sci. 7:1110. doi:10.3389/fpls.2016.01110

Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endomycorrhizal. Nat. Rev. Microbiol. 6:763. doi:10.1038/nrmicro1987

Pattison, A. B., Wright, C. L., Kukulies, T. L., and Molina, A. B. (2014). Ground cover management alters development of Fusarium wilt symptoms in Dacucase bananas. Australas. Plant Pathol. 43, 465–476. doi:10.1080/03125400.2014.9260-3

Pegg, K., Moore, N., and Bentley, S. (1996). Fusarium wilt of banana in Australia: a review. Aust. J. Agric. Res. 47, 637–650. doi:10.1071/AR960637

Peng, H. X., Sivasithamparam, K., and Turner, D. W. (1999). Chlamydospore formation in Fusarium oxysporum f. sp. cubense, the causal agent of Fusarium wilt or Panama disease of bananas in Cuba. Fitosanidad 13, 259–263.

Perez Vicente, L., Batlle Viera, A., Chacón Benazet, J., and Montenegro Morácen, V. (2009). Efficacy of Trichoderma harzianum A34 in the biocontrol of Fusarium oxysporum f. sp. cubense, the causal agent of Fusarium wilt or Panama disease of bananas in Cuba. Fitopatología 13, 259–263.

Pérez Vicente, L. (2015). Banana farm best practices for prevention of Fusarium wilt TR4 and other exotic banana diseases. Fitopatología 19, 243–250.

Pittaway, P. A., Pittaway, P. A., Nasir, N., and Pegg, K. G. (1999). Soil receptivity and host-pathogen dynamics in soils naturally infested with Fusarium oxysporum f. sp. cubense, the cause of Panama disease in bananas. Aust. J. Agric. Res. 50, 623–628. doi:10.1071/AR98152

Ploetz, R. C. (2005). Panama Disease: An Old Nemesis Rears Its Ugly Head: Part 1. The Beginnings of the Banana Export Trades. Plant Health Progress. St Paul, MN: Plant Management Network. Available online at: http://www.apsnet.org

Pittaway, P. A., Pittaway, P. A., Nasir, N., and Pegg, K. G. (1999). Soil receptivity and host-pathogen dynamics in soils naturally infested with Fusarium oxysporum f. sp. cubense, the cause of Panama disease in bananas. Aust. J. Agric. Res. 50, 623–628. doi:10.1017/S000448659900405-0

Ploetz, R. C. (2005). Panama Disease: An Old Nemesis Rears Its Ugly Head: Part 1. The Beginnings of the Banana Export Trades. Plant Health Progress. St Paul, MN: Plant Management Network. Available online at: http://www.apsnet.org

Bubici et al.
Biocontrol of Banana Fusarium Wilt
Frontiers in Microbiology | www.frontiersin.org 29 April 2019 | Volume 10 | Article 616
Shen, Z., Ruan, Y., Chao, X., Zhang, J., Li, R., and Shen, Q. (2015a). Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol. Fertil. Soils 51, 533–562. doi: 10.1007/s00374-015-1002-7
Shen, Z., Ruan, Y., Xue, C., Zhong, S., Li, R., and Shen, Q. (2015b). Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities. Plant Soil 393, 21–33. doi: 10.1007/s11104-015-2474-9
Shen, Z., Xue, C., Penton, C. R., Thomashow, L. S., Zhang, N., Wang, B., et al. (2019). Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy. Soil Biol. Biochem. 128, 164–174. doi: 10.1016/j.soilbio.2018.10.016
Shen, Z., Zhong, S., Wang, Y., Wang, B., Mei, X., Li, R., et al. (2013). Induced soil microbial suppression of banana Fusarium wilt disease using compost and biofertilizers to improve yield and quality. Eur. J. Soil Biol. 57, 1–8. doi: 10.1016/j.ejsobi.2013.03.006
Shih, H. D., Chung, W. C., Huang, H. C., Tseng, M., and Huang, J. W. (2013). Identification for Streptomyces padanus strain PMS-702 as a biopesticide agent. Plant Pathol. Bull. 22, 145–158.
Siakam, S. B., and Zheng, S. (2018). Banana Fusarium wilt (Fusarium oxysporum f. sp. cubense) control and resistance, in the context of developing wilt-resistant bananas within sustainable production systems. Hortic. Plant J. 4, 208–218. doi: 10.1016/j.hpj.2018.08.001
Singh, H. (2014). Management of plant pathogens with microorganisms. Proc. Indian Natn. Sci. Acad. 80, 443–454. doi: 10.14931/pinsa.2014/48/022/55120
Singh, R., Kumar, M., Mittal, A., and Mehta, P. K. (2017). Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 7, 15–15. doi: 10.1007/s13205-016-0586-4
Sivamani, E., and Gnananandam, S. S. (1988). Biological control of Fusarium oxysporum f. sp. cubense in banana by inoculation with Pseudomonas fluorescens. Plant Soil 107, 3–9. doi: 10.1007/BF02371537
Smith, L., O’Neill, W., Kochman, J., Lehane, J., and Salmond, G. (2005). Silicon shows promise for Fusarium wilt suppression. Austr. Cottongr. 37, 50–52.
Somu, R., Thammaiaiah, N., Swamy, G. S. K., Kulkarni, M. S., and Devappa, V. (2014). In vitro evaluation of fungicides against Fusarium oxysporum f. sp. cubense. Int. J. Plant Prod. 7, 221–224.
Souza, A., Cruz, J. C., Sousa, N. R., Procópio, A. R. L., and Silva, G. F. (2014). Endophytic bacteria from banana cultivars and their antifungal activity. Genet. Mol. Res. 13, 8661–8670. doi: 10.4238/2014.October.27.6
Stover, R. H. (1962). Studies on Fusarium wilt of bananas: VIII. Differentiation of defense related enzymes in banana. Afr. J. Microbiol. Res. 5, 509–515. doi: 10.5897/AMJR10.607
Sun, J., Wang, Y., Zhao, P., and Peng, M. (2010). Isolation, identification and antagonistic activity of biocontrol bacterium against Fusarium oxysporum f. sp. cubense. Chin. J. Biol. Control 26, 347–351.
Sun, J. B., Peng, M., Wang, Y. G., Zhao, P. J., and Xia, Q. Y. (2011). Isolation and characterization of antagonistic bacteria against fusarium wilt and induction of defense related enzymes in banana. Afr. J. Microbiol. Res. 5, 509–515. doi: 10.5897/AMJR10.607
Sun, T., and Hsieh, F. (2015). First record of Bacillus subtilis B25, SpringerPlus 2:543. doi: 10.1186/2193-1801-2-543
Thangavelu, R., and Gopi, M. (2015a). Combined application of native Trichoderma isolates possessing multiple functions for the control of Fusarium wilt disease in banana cv. Grand Naine. Biocontrol Sci. Technol. 25, 1147–1164. doi: 10.1080/09583517.2015.1036672
Thangavelu, R., and Gopi, M. (2015b). Field suppression of Fusarium wilt disease in banana by the combined application of native endophytic and rhizospheric bacterial isolates possessing multiple functions. Phytopathol. Mediterr. 54, 241–252. doi: 10.14601/Phytopathol_Mediterr-15160
Thangavelu, R., and Jayanthi, A. (2009). RFLP analysis of rDNA-ITS regions of native non-pathogenic Fusarium oxysporum isolates and their field evaluation for the suppression of Fusarium wilt disease of banana. Austr.als. Plant Pathol. 38, 13–21. doi: 10.1071/AP08071
Thangavelu, R., and Mustafa, M. (2010). A potential isolate of Trichoderma viride NRC810 and its mass production for the effective management of Fusarium wilt disease in banana. Tree For. Sci. Biotechnol. 4, 76–84.
Thangavelu, R., Palaniswami, A., Doraiswamy, S., and Velazhahan, R. (2003). The effect of Pseudomonas fluorescens and Fusarium oxysporum f. sp. cubense on induction of defense enzymes and phenolics in banana. Biol. Plant. 46, 107–112. Microbial isolates from Fusarium oxysporum f. sp. cubense. J. Plant. Sci. 108, 433–445.
Thangavelu, R., Varun, G., and Ganga Devi, P. (2016). Identification of differentially expressed genes from Fusarium oxysporum f. sp. cubense and Trichoderma asperellum (prr2) interaction in the susceptible banana cultivar Grand Naine. Turkish J. Bot. 40, 480–487. doi: 10.3906/bot-1511-19
Thayyen, A. C., and Butlin, K. R. (1945). Inhibition of the development of Fusarium oxysporum cubense by a growth substance produced by Mereditii’s actinomycytes. Nature 156, 781–782. doi: 10.1038/156-781b0
Ting, A. S. Y., Fang, M. T., and Tee, C. S. (2009a). Assessment of the effect of formulated materials on the viability and efficacy of Serratia marcescens - a biocontrol agent against Fusarium oxysporum f. sp. cubense race 4. Am. J. Agr. Biol. Sci. 4, 283–288. doi: 10.3844/ajassp.2009.283.288
Ting, A. S. Y., Fang, M. T., and Tee, C. S. (2011). Efficacy of clay-based formulated Serratia in reducing inoculum of Fusarium oxysporum f. sp. cubense tropical race 4. Acta Hortic., 421–426. doi: 10.17660/ActaHortic.2011.897.58
Ting, A. S. Y., Mah, S. W., and Tee, C. S. (2009b). Prevalence of endophytes antagonistic towards Fusarium oxysporum f. sp. cubense race 4 in various plants. Am.-Eurasian J. Sustain. Agr. 3, 399–406.
Ting, A. S. Y., Mah, S. W., and Tee, C. S. (2010). Identification of volatile metabolites from fungal endophytes with biocontrol potential towards Fusarium oxysporum f. sp. cubense race 4. Am. J. Agr. Biol. Sci. 5, 177–182. doi: 10.3844/ajassp.2010.177.182
Ting, A. S. Y., Mah, S. W., and Tee, C. S. (2012). Evaluating the feasibility of induced host resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for Fusarium wilt in banana plantlets. Biol. Control 61, 155–159. doi: 10.1016/j.biocontrol.2012.01.010
Ting, A. S. Y., Meon, S., Judah, K., and Anuar, A. R. (2003). Effect of artificially induced suppressive soil on Fusarium wilt. Infomusa 12, 33–34.
Ting, A. S. Y., Sariah, M., Kadir, J., and Curmit, S. (2009c). Field evaluation of non-pathogenic Fusarium oxysporum isolates UPM31P1 and UPM39B3 for the control of Fusarium wilt in ‘Pisang Berangan’ (MusA, AAA). Acta Hortic. 828, 139–144. doi: 10.17660/ActaHortic.2009.828.13
Ting, S., Mah, S., and Tee, C. (2011). Detection of potent volatile inhibitory compounds produced by endobacteria with biocontrol properties towards...
Fusarium oxysporum f. sp. cubense race 4. World J. Microbiol. Biotechnol. 27, 229–235. doi:10.1007/s11274-010-0447-y

Usharani, T. R., and Gowda, T. K. S. (2011). Cloning of chitinase gene from Bacillus thuringiensis. Indian J. Biotechnol. 10, 264–269. doi:10.2323/jjbt.34.341

Van den Bergh, I., Lehrer, K., and Vézina, A. (2018). Promusa. Montpellier: Bioversity International. Available online at: http://www.promusa.org/ (accessed December 3, 2018).

Vézina, A. (2018a). “Tropical race 4,” in Musapedia, the Banana Knowledge Compendium (Montpellier: Bioversity International). Available online at: http://www.promusa.org/Tropical+race+4+-+TR4 (accessed November 14, 2018).

Vézina, A. (2018b). “Uganda,” in Musapedia, the Banana Knowledge Compendium (Montpellier, France: Bioversity International). Available online at: http://www.promusa.org/Uganda (accessed December 23, 2018).

Vézina, A. (2018c). “The year of TR4,” in Musapedia, the Banana Knowledge Compendium (Montpellier: Bioversity International). Available online at: http://www.promusa.org/Tropical+race+4+-+TR4 (accessed November 30, 2018).

Vidhyasekaran, P., and Muthamilan, M. (1995). Development of formulations of *Pseudomonas fluorescens* for control of chickepwa wilt. Plant Dis. 79, 782–786. doi:10.1094/PD-79-0782

Vidhyasekaran, P., and Muthamilan, M. (1999). Evaluation of a powder formulation of *Pseudomonas fluorescens* PFI for control of rice sheath blight. Biocontrol Sci. Technol. 9, 67–74. doi:10.1080/09583159929910

Vidhyasekaran, P., Rabindran, R., Muthamilan, M., Naray, K., Rajappan, K., Subramanian, N., et al. (1997). Development of a power formulation of *Pseudomonas fluorescens* for control of rice blast. Plant Pathol. 46, 291–297. doi:10.1046/j.1365-3059.1997.doi-27.x

Viljoen, A. (2002). The status of Fusarium wilt (Panama disease) of banana in South Africa. South Afr. J. Sci. 98, 341–344.

Viljoen, A., Karamara, E., and Swennen, R. (2018). *Banana Fusarium wilt in Africa*. Stellenbosch: Stellenbosch University. Available online at: http://www.sun.ac.za/english/faculty/agri/plant-pathology/act4r/Pages/default.aspx (accessed December 3, 2018).

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., and Lorito, M. (2008). *Trichoderma*-plant pathogen interactions. Soil Biol. Biochem. 40, 1–10. doi:10.1016/j.soilbio.2007.07.002

Waite, B. H., and Stover, R. H. (1960). Studies on Fusarium wilt of bananas: VI. Variability and the cultivar concept in *Fusarium oxysporum* f. sp. cubense. Can. J. Bot. 38, 985–994. doi:10.1139/b60-087

Wang, B., Yuan, J., Zhang, N., Waseem, R., Shen, Q., and Huang, Q. (2012a). Antibiosis and resistance to Fusarium wilt disease in banana. Chin. J. Plant Pathol. 28, 64–66. doi:10.2323/jgam.43.341

Yang, X., Chen, F., Gan, L., Du, Y., and Ruan, H. (2010). Effect of the endophytic *Bacillus subtilis* EB1 isolated from banana on the growth and resistance to Fusarium wilt disease in banana. Acta Phytophylacica Sinica 37, 300–306.

Yang, X., Chen, F., and Ruan, H. (2006). Screening of antagonistic strains against *Fusarium oxysporum f. sp. cubense* on *Fusarium Panama*. Fujian J. Agric. Sci. 21, 105–108.

Yedidia, I., Benhamou, N., Kapulnik, Y., and Chet, I. (2000). Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite *Trichoderma harzianum* strain T-203. Plant Physiol. Biochem. 38, 863–873. doi:10.1016/S0981-9428(00)01198-0

Yi, G. J., Huang, B. Z., Xu, L. B., Chen, H. B., Hu, G. B., Xu, C. X., et al. (2007). “Fusarium wilt threatens livelihoods of banana farmers in Southern China,” in RISBAP Bulletin, Vol. 11, eds A. B. Molina, J. T. Oliver, V. N. Roa, and V. G. O. Sinohin (Los Baños: Bioversity International Regional Office for Asia and the Pacific), 1–2.

Yin, X., Chen, D., Wu, H., and Zheng, F. (2009). An endophytic *Erwinia chrysanthemi* strain antagonistic against banana fusarium wilt disease. Chin. J. Biol. Control 25, 60–65.

Yu, C., Xiao, L., Liu, B., Lin, N., and Chen, L. (2010). Endophytic colonization of biocontrol bacterium *FJAT-346-PA* and its efficiency against banana *Fusarium* wilt. Acta Phytophylacica Sinica 37, 493–498.

Yu, G., Cheng, P., Wang, Y., Chen, Y., Chen, Y., and Li, Y. (2010). Control effect of *Bacillus subtilis* strain TR21 on Panama disease of banana Brazil (*Musa spp.*) in fields. Chin. J. Biol. Control 26, 497–500.

Yu, J., Zhang, R., Tan, Z., and Lin, B. (2016). Studies on antifungal activity and purification of antifungal substance from *Bacillus subtilis* B25 strain. Genomics Appl. Biol. 35, 629–634.

Yu, L., Dai, H., Zhao, Y., Zeng, Y., Jiang, W., Wei, M., et al. (2011). Three new compounds from soil actinomycete *Streptomyces albidogriseus* 15-4-2. J. Asian Nat. Prod. Res. 13, 901–906. doi:10.1080/12221177.2011.599322

Yuan, J., Li, B., Zhang, N., Waseem, R., Shen, Q., and Huang, Q. (2012a). Production of bacillomycin- and macroactolin-type antibiotics by *Bacillus amyloliquefaciens* NJN-6 for suppressing soilborne plant pathogens. J. Agric. Food Chem. 60, 2976–2981. doi:10.1021/jf204686x

Yuan, J., Raza, W., Huang, Q., and Shen, Q. (2011). Quantification of the antifungal lipopeptide iturin A by high performance liquid chromatography coupled with aqueous two-phase extraction. J. Chromatogr. B 879, 2746–2750. doi:10.1016/j.jchromb.2011.07.041
Yuan, J., Raza, W., Shen, Q., and Huang, Q. (2012b). Antifungal activity of *Bacillus amyloliquefaciens* NJN-6 volatile compounds against *Fusarium oxysporum* f. sp. *cubense*. *Appl. Environ. Microbiol.* 78, 5942–5944. doi: 10.1128/AEM.01357-12

Yuan, Y. F., Zhao, Y. P., Yang, J. L., Jiang, Y. M., Lu, F., Jia, Y. X., et al. (2017). Metabolomic analyses of banana during postharvest senescence by H-1-high resolution-NMR. *Food Chem.* 218, 406–412. doi: 10.1016/j.foodchem.2016.09.080

Zacky, F. A., and Ting, A. S. Y. (2013). Investigating the bioactivity of cells and cell-free extracts of *Streptomyces griseus* towards *Fusarium oxysporum* f. sp. *cubense* race 4. *Biol. Control* 66, 204–208. doi: 10.1016/j.biocontrol.2013.06.001

Zacky, F. A., and Ting, S. (2015). Biocontrol of *Fusarium oxysporum* f. sp. *cubense* tropical race 4 by formulated cells and cell-free extracts of *Streptomyces griseus* in sterile soil environment. *Biocontrol Sci. Technol.* 25, 685–696. doi: 10.1080/09583157.2015.1007921

Zhai, Y., Wang, W., Tan, H., and Cao, L. (2016). A new approach to analyzing endophytic actinobacterial population in the roots of banana plants (*Musa* sp., AAA). *J. Biochem. Mol. Biol. Res.* 2, 180–184. doi: 10.17554/j.issn.2313-7177.2016.02.30

Zhang, H., Mallik, A., and Zeng, R. (2013). Control of Panama disease of banana by rotating and intercropping with Chinese chive (*Allium tuberosum* Rottler): role of plant volatiles. *J. Chem. Ecol.* 39, 243–252. doi: 10.1007/s10886-013-0243-x

Zhang, L., Yuan, T., Wang, Y., Zhang, D., Bai, T., Xu, S., et al. (2018). Identification and evaluation of resistance to *Fusarium oxysporum* f. sp. *cubense* tropical race 4 in *Musa acuminata* Pahang. *Euphytica* 214:106. doi: 10.1007/s10681-018-2185-4

Zhang, N., Wu, K., He, X., Li, S.-Q., Zhang, Z.-H., Shen, B., et al. (2011). A new bioorganic fertilizer can effectively control banana wilt by strong colonization with *Bacillus subtilis* N11. *Plant Soil* 344, 87–97. doi: 10.1007/s11104-011-0729-7

Zhao, M., Yuan, J., Zhang, R., Dong, M., Deng, X., Zhu, C., et al. (2018). Microflora that harbor the NRPS gene are responsible for Fusarium wilt disease-suppressive soil. *Appl. Soil Ecol.* 132, 83–90. doi: 10.1016/j.apsoil.2018.08.022

Zheng, S.-J., García-Bastidas, F. A., Li, X., Zeng, L., Bai, T., Xu, S., et al. (2018). New geographical insights of the latest expansion of *Fusarium oxysporum* f. sp. *cubense* tropical race 4 into the greater Mekong subregion. *Front. Plant Sci.* 9:457. doi: 10.3389/fpls.2018.00457

Zhou, D., Jing, T., Qi, D., Feng, R., Duan, Y., Chen, Y., et al. (2017). Isolation and identification of *Streptomyces lunalinharesii* and its control effect on the banana Fusarium wilt disease. *Acta Hort. Sinica* 44, 664–674. doi: 10.16420/j.issn.0513-353x.2016-0598

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Bubici, Kaushal, Prigigallo, Gómez-Lama Cabanás and Mercado-Blanco. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.