Investigation of the direct-flow burners and nozzles arrangement at the direct-flow-vortex coal combustion in a furnace with solid slag removal

M V Fomenko¹, V B Prokhorov¹, N E Fomenko¹

¹National Research University "Moscow Power Engineering Institute", Krasnokazarmennaya str., 14, Moscow, 111250, Russia

Email: fomenkomv@bk.ru

Abstract. The paper presents results of the furnace aerodynamics investigation using direct-flow burners and air nozzles (DFBAN) with solid slag removal (SSR). The studies were performed using the computational fluid dynamics software ANSYS Fluent. The paper includes recommendations for the development of effective solid fuel combustion schemes with DFBAN, methods for researching and optimization of the combustion aerodynamics with the use of DFBAN, optimization criteria, initial data for the study. The scheme for burning Kuznetsk lean coal with the use of DFBAN and SSR was developed. Several series of calculations were performed for the developed scheme. In these calculations, the dependencies of the indicators of efficiency, furnace ecological safety and reliability on the nozzles and burners positions, which are located in the first zone of the scheme, were found. The first stage of the optimization of the developed scheme burning solid fuel with the SSR was made.

1. Introduction

Coal-fired generation occupies a significant part in the power generation structure in the Russian Federation. In 2016, the solid fuel thermal power plants percentage was 34.5 % in the installed capacity of the Russian thermal power plants [3]. Coal occupies a significant part in the organic fuel reserves structure. So coal generation will be significant for a long time for the Russian Federation.

Coal-fired thermal power plants account for the vast gross emissions of pollutants [3]. One of the main pollutants formed during the coal combustion is the nitrogen oxide NO_x. Currently, for the low-volatile solid fuel combustion, mainly furnaces with liquid slag removal are used. The feature of this furnace type is the high temperature in the flame core, which contributes to the stable torch burning and maintaining specific unburned carbon loss q_4 within acceptable limits. The high temperature in the combustion zone leads to the intensive formation of nitrogen oxides NO_x, which emissions exceed the acceptable values in most cases [4]. Vortex burners are mainly used for coal combustion nowadays. Direct-flow burners are not spread because of requiring a detailed study of the furnace aerodynamics. It is mainly used in tangential combustion schemes.

The use of solid fuel combustion schemes with DFBAN can ensure stable ignition and combustion with acceptable values of specific unburned carbon loss q_4 and specific emissions nitrogen oxides NO_x, that do not exceed the normative [4]. This is evidenced by the Department of thermal Power Plants of the National Research University "MPEI" experience [5]. Modern research methods, such as numerical simulation using computational fluid dynamics (CFD) software, allows to develop the
combustion aerodynamics with sufficient accuracy [1]. These investigations make it possible to create effective solid fuel combustion schemes with DFBAN and to optimize it.

The development of the unified burning low-reactive coal using scheme for furnaces with SSR for boilers of various capacities is very relevant today.

2. Recommendations for the combustion scheme with DFBAN implementation

These recommendations are formulated taking into account the accumulated experience of developing such schemes by the Department of Thermal Power Plants (TPP) [5, 6]:

- the use of the minimum possible primary air excess in dust-air jets for their rapid heating;
- creating a large number of vortices in the furnace volume rotating in opposite directions for better mixing of combustion reactants and equalizing the temperature in the furnace volume;
- organization of hot flue gases supply to the root of fuel-air jets for heating and ignition;
- exclusion of zones of increased dynamic pressure of the flame to the furnace walls to prevent slagging and hydrogen sulfide corrosion;
- stage combustion organization to reduce the nitrogen oxides NO\textsubscript{x} formation;
- organization of the main upward flow of flue gases and fuel particles motion in the middle part of the furnace to reduce the probability of furnace walls slagging;
- exclusion of combustion in a dry bottom hopper to prevent its slagging.

3. Strategy of research and optimization of combustion scheme

The authors proposed the following research program:

1. the choice of the study conducting method;
2. formulation of criteria for combustion scheme optimization;
3. the choice of the initial scheme and data according to the developed recommendations;
4. division of the investigated stage combustion scheme into the three zones;
5. step by step study of stage combustion zones and selection of optimal geometric characteristics of the burners and nozzles position:
 5.1. study of the influence of heights and inclination angles (position) of the I zone nozzles and burners to select the optimal values (only burners and nozzles located in the I zone participate in the study to exclude the influence of flows from the zones II and III; air and fuel are not supplied to the burners and nozzles of the zones II and III);
 5.2. study of the influence of the zone II nozzles and burners position to select an optimal values based on the results of the stage 5.1 (air is not supplied to the nozzles of the zone III);
 5.3. study of the influence of the zone III nozzles position to select the optimal values based on the stages 5.1 and 5.2;
6. study of the optimal number of vertical planes for the burners and nozzles arrangement;
7. research of the furnace cross section thermal specific stress q_f influence on the combustion scheme operation;
8. research of the developed scheme implementation for different loads of the boilers;
9. research of burning coals of various characteristics using the developed combustion scheme.

The following are the results of research on stages 1-5.1 inclusive. Work on the remaining stages will be continued.

4. The choice of the study conducting method

The optimal furnace aerodynamics organization during the solid fuel combustion is a very complex task, including many physical and chemical processes requiring detailed study. The use of CFD for the investigation has sufficient accuracy and was sufficiently mastered by the authors [1]. Therefore, within the framework of this study, the CFD software ANSYS Fluent was used.

For the study, the similar approach to [1] was used. The main features of the model are:
• a geometric furnace 3D model was created in the SolidWorks. Modeling of the flows input into the model was carried out by setting parameters on the plane of their entry into the furnace. Therefore, planes are placed in the places where the streams are entered;
• the mesh is made in the ANSYS ICEM. The main mesh element is tetrahedra with a prismatic layer for more accurate modeling of near-wall layer. The mesh is adapted at the DFBAN area. The adaptation consists in its local size reduction to increase the calculation accuracy. A preview study was performed on the insensitivity of the simulation results to the mesh size;
• combustion simulation in the furnace was carried out in ANSYS Fluent. The selected computational models are shown in Table 1 based on the recommendations [7-10]. The type of boundary conditions is presented in Table 2. For the feature of fuel grinding the Rosin-Rammler equation [11] was used. Iterative modeling was carried out until the values of the residuals were reached 10^{-3} (the energy and fraction residuals of the mixture components were up to 10^{-6}), the mass and energy balance was achieved, as well as the constant values of the control values were established.

Model
Turbulence
Radiation
Convection and thermal conductivity
Discrete phase
Volatiles
Homogeneous combustion
Solid fuel combustion
Slagging
NO$_x$ formation

Boundary condition	Type
Air inlet to the model	inlet
Combustion products outlet from the model	pressure-outlet
Water walls	wall

5. Combustion scheme optimization criteria

The scheme should ensure an environmental safety, economical and reliable operation of the boiler. Therefore, the optimization criteria should characterize the furnace operation in these areas.

The reliability indicators of the boiler are: the average operating time for failure, the coefficient of technical use, the availability factor, the estimated service life, the lifetime maintenance between major repairs [4]. In this case, the optimization criteria is stable flame combustion, exclusion of intensive slagging of water walls, exclusion of torch burning near waterwalls proximity, ensuring the outlet flue gas temperature of the furnace below the values given in [12].

From the point of view of ensuring the environmental safety the minimization of nitrogen oxides NO$_x$ mass concentrations in flue gases at an excess air ratio α, (C_{NOx}, mg/nm3) was chosen as an optimization criterion [4]. Their values should not exceed the standard values.

According to [4, 13] the gross efficiency is used as an economical operation indicator of the boiler unit, therefore the unburned carbon losses (q_4, %) minimization is chosen as the optimization criterion.
6. Initial scheme and data selection for the research
The initial scheme for the research was based on the experience of the TPP Department NRU "MPEI", which provides the usage of DFBAN [2, 14]. Taking into account the positive features of the schemes [2, 14], as well as the above recommendations, the authors developed the scheme for the research (figure 1). The scheme is designed for a double-shell boiler of 1030 t/h steam capacity with reheater, working on lean Kuznetsk coal with a holding dust bin. The characteristics of the investigated boiler and fuel [12] are given in Tables 3 and 4, respectively.

Table 3. The characteristics of the investigated boiler.

Units	Value
Steam capacity	t/h
Reheated steam capacity	t/h
Steam temperature	°C
Steam pressure	MPa
Reheated steam temperature:	
- inlet	°C
- outlet	°C
Reheated steam pressure:	
- inlet	MPa
- outlet	MPa
Feed water temperature	°C

Table 4. Fuel characteristics (as received).

Moisture	Ash content	N	S	O	H	C	V\text{daf}	LCV
Units	%	%	%	%	%	%	%	%
Value	10.0	16.2	1.7	0.3	3.0	65.7	13.0	24.7

To organize three-stage combustion, the scheme was divided into three zones in height. So 80% of the fuel is supplied to the zone I with a local excess air ratio $\alpha_{\text{locI}} = 1$, the rest fuel (20%) is supplied to the zone II with a local coefficient of excess air $\alpha_{\text{locII}} = 0.9$, the remaining air is supplied to the zone III $\alpha_{\text{locIII}} = \alpha_{\text{furnace}} = 1.15$. Table 5 shows the excess air coefficients through the nozzles and burners α_i, as well as the flow rate of jets from them in accordance with the recommendations [16, 17].

Table 5. Velocities and excess air ratios in nozzles and burners.

Units	B1	B2	SA	DB	TA2	TA3	
Excess air ratio, α_i	-	0.070	0.020	0.442	0.268	0.080	0.250
Velocity, w_i	m/s	25	25	45	20	45	45

In this scheme, the nozzles of the SA are located opposite each other horizontally to prevent the coal-dust particles falling into the dry bottom hopper, as well as to cool it, which contributes to the normal operation of the SSR. There is a vortex, which is formed by flows from DB, B1 and SA, in the middle part of the zone I. The vortex promotes intensive combustion components mixing, as well as hot combustion products recirculation to the root of the fuel-air jet, contributing to its ignition. The fuel-air jet from B2 and tertiary air from TA2 enters the zone II, and tertiary air from TA3 enters the zone III.
Burners and nozzles are located in six vertical cross sections of the furnace (1-1, 2-2, 3-3, 4-4, 5-5, 6-6). In this case, in adjacent cross sections, the position of the nozzles and burners is mirrored relative to the axis of furnace symmetry. Thus, there are vortices rotating in different directions in adjacent vertical cross sections. This contributes to the flow turbulization, better mixing of the combustion components, and stable combustion.

For the selected characteristics of the boiler and fuel the thermal calculation of the boiler and the dust preparation system was carried out, according to the methods [12] and [15], the main results of which are summarized in Tables 6 and 7.

Table 6. Boiler and furnace thermal calculations results.

Units	Value
Hot air temperature	°C 300
Flue gas temperature	°C 135
Boiler efficiency	% 89,92
Fuel consumption	t/h 64,138
Width of the furnace	m 17,0
Depth of the furnace	m 10,5
Cross-sectional area of the furnace	m² 178,5
Furnace cross-sectional heat release rate	watt/ m² 2,37
Air excess ratio at the exit of the furnace	- 1,15
Leaked-in air ratio	- 0,02
Table 7. Dust preparation system thermal calculations results.

Units	Value
Mill type	ball-mill pulverizer 370/850 (50A)
Number of mills per body	1
Dust moisture behind the mill	% 2,0
Drying agent temperature behind the mill	°C 120
Excess air ratio in dump burners	- 0,268
Burner inlet air temperature	°C 226
Excess air ratio in burners	- 0,1
Pulverized coal cyclone efficiency	% 90

7. Initial scheme and data selection for the research

Figure 2 shows an initial scheme geometric 3D model and its mesh. The height of the model is 30 m.

As a simulation result $q_4 = 8,27 \%$, $C_{NOx} = 360 \text{ mg/nm}^3$, with a standard value of $C_{NOx} = 350 \text{ mg/nm}^3$ [4], the flue gas temperature at the output of the model is $t_m = 1064 \degree \text{C}$, temperature distribution fields, current lines, vector fields were obtained (Figure 3).

Figure 3a shows that a zone with a high temperature is observed in the pulverized coal jet input area of B1, which indicates its reliable ignition. In addition, a high temperature zone is observed above and below B1 from the high-temperature combustion products recirculation to the B1 root (Figure 3b), which also contributes to its reliable ignition. The figure 3e shows a set of vortices in the furnace central part, formed by the opposite movement of the jets located in adjacent vertical sections, which contributes to the intensive combustion components mixing. Figure 3b shows that the main part of the gaseous phase moves in the furnace central part, but Figure 3d shows that a significant part of the pulverized coal particles hits waterwalls and does not participate in the reaction process, therefore the probability of waterwalls slagging increases.

To improve the economic and ecological indicators, as well as the furnace reliability with the developed nozzles and burner layout, their location was optimized. The results of optimization are carried out further.
Figure 3. Visualization of initial scheme simulation results: (a) – the temperature field at the section 4-4 (Fig. 1); (b) – the streamlines of the DFBAN located at the section 4-4 (Fig. 1); (c) – the velocity vector field at the section 4-4 (Fig. 1); (d) – the coal particles trajectory of the B1 and the DB located at the section 4-4 (Fig. 1); (e) – the velocity vector field in the horizontal section at the level of B1.

8. Research and optimization of zone I

The optimization of the initial scheme was made step-by-step starting with zone I. To exclude the influence of the DFBAN of the zones II and III, their boundary condition was changed to wall. An important task was to organize the main upward of the dust-air flow closer to the furnace centre. The general scheme for the optimization is shown at Figure 4. It is important that this scheme is a dimensionless, which makes it possible to implement it for boilers of various capacities. The SA in this scheme should be placed in height closest to the beginning of the dry bottom hopper inclination.

Optimization was made step by step changing of the angle β_{b1}, the relative expected contact depth of the B1 and SA jets $b_{b1} = b_{b1}/b_f$ (b_{b1} – the absolute expected contact distance of the B1 jet and SA jet, b_f – furnace depth), the angle β_{db}, the relative expected contact depth of the DB and B1 jet $b_{db} = b_{db}/b_f$ (b_{db} – the absolute expected contact distance of the DB and B1 jets), the excess air ratio redistribution between SA and B1 (the excess air ratio of the zone I remains constant), the angle β_{es}.
At the first stage of optimization, an influence of the β_{b1}, β_{db} on the selected optimization indicators made. For this research the DB flow influence is excluded by directing it to the B1 root at the angle $\beta_{db} = 40^\circ$, the SA are directed horizontally $\beta_{sa} = 0^\circ$. The results are summarized in Table 8.

b_{b1}	q_4, %	C_{NOx}, mg/nm3	$t_{m"}$, °C						
$\beta_{db} = 4/8$	5/8	6/8	4/8	5/8	6/8	4/8	5/8	6/8	
$\beta_{db} = 30^\circ$	9,30	6,61	8,72	434	359	347	971	996	995
$\beta_{db} = 40^\circ$	9,19	7,28	9,16	362	291	306	975	1020	1012
$\beta_{db} = 50^\circ$	9,00	8,38	9,19	389	382	446	1017	1028	1030
$\beta_{db} = 60^\circ$	8,73	8,43	11,50	401	412	426	1011	1038	1102

The lowest value of q_4 is observed at $\overline{b_{b1}} = 5/8$. It is explained by the fact that at $\overline{b_{b1}} = 4/8$, a part of coal particles penetrates the dry bottom hopper. At $\overline{b_{b1}} = 6/8$ some particles are pushed up to the opposite wall and thus in both cases does not participate in combustion. At $\overline{b_{b1}} = 5/8$, there is no throwing of particles on the opposite wall, as well as its penetration into the dry bottom hopper.

With an increase of β_{b1} at $\overline{b_{db}} = 5/8$ and $\overline{b_{b1}} = 6/8$, the q_4 grows since the installation height of B1 increases, therefore, the fuel-air jet is less mixed with the air flow. In the case of $\overline{b_{b1}} = 4/8$ q_4 decreases with an increase of β_{b1} because of less part of the coal particles enters the dry bottom hopper and most part of it will be burnt in the furnace with increasing of B1 installation height.

Analyzing Table 8 for further optimization $\overline{b_{b1}} = 5/8$ was selected at $\beta_{b1} = 30^\circ$, since it has the best indicator $q_4 = 6,61$ % and the lowest flue gas model outlet temperature $t_{m"} = 996$ °C. The value of $C_{NOx} = 359$ mg/nm3 slightly exceeds the standard value and can be improved with further optimization. At the same time, a maximum temperature is observed at the wall opposite to the wall of the B1 installation, what increases the probability of its slagging, what requires adjustments in the optimization process. The research of the angle below $\beta_{b1} = 30^\circ$ was not carried out, since this will lead to the movement of the maximum temperature position even closer to the waterwalls.

The similar research was made for the DB. To select the optimal $\overline{b_{db}}$ the study was carried out at the constant angle $\alpha_{db} = 40^\circ$. The results are presented in Table 9. Decreasing of $\overline{b_{db}}$ leads to the increasing of temperature in the area of bottom hopper, what is negative for the SSR. For further studies the $\overline{b_{db}} = 8/8$ was chosen, since it has the best economic indicators. Values of $\overline{b_{db}}$ lower than $5/8$ were not considered, since it will lead to a violation of the combustion products circulation to the B1, which will worsen the fuel-air jet heating and ignition process.
Table 9. The $\overline{b_{db}}$ influence on the furnace operation.

Units	Value
b_{db}	8/8 7/8 6/8 5/8
q_4	% 6.61 8.63 7.26 6.67
C_{NOx}	mg/nm3 359 310 273 169
t_m	$^\circ$C 996 1011 1022 1031

In case $\overline{b_{db}} = 8/8$ the b_{db} influence on furnace operation was made (Table 10). The optimal case has $b_{db} = -10$ $^\circ$ (DB is directed upwards), since the lowest values of $q_4 = 5.66\%$ and $C_{NOx} = 129$ mg/nm3. At the same time there is a slight increase in the flue gas temperature at the model outlet to $t_m = 1076$ $^\circ$C, associated with a change in the position of the flame core along the furnace height. The flame core in this case is located in the furnace center.

Table 10. The b_{db} influence on the furnace operation.

Units	Value
b_{db}	$^\circ$ -10 0 10 20 30 40 50 60
q_4	% 5.66 5.51 5.95 6.19 7.09 6.61 9.96 11.58
C_{NOx}	mg/nm3 129 200 192 276 253 359 360 419
t_m	$^\circ$C 1076 1058 1038 1025 1015 996 1012 1027

Next, the excess air ratio redistribution between B1 and SA was researched (Table 11). The values of the t_m and q_4 remain almost unchanged, but the C_{NOx} increases slightly with an increase in excess air ratio in the B1 jet. Therefore, the optimal option is chosen with $\alpha_{b1} = 0.07$ (the initial one).

Table 11. Influence of the secondary air nozzles SA installation angle on the furnace operation.

Units	Value
α_{b1}	$^\circ$ 0.07 0.12 0.17
α_{sa}	$^\circ$ 0.442 0.392 0.342
q_4	% 5.66 5.47 5.65 6.76
C_{NOx}	mg/nm3 129 163 188 242
t_m	$^\circ$C 1076 1063 1059 1123

Finally, influence of the b_{sa} on the furnace operation was studied (Table 12). The optimal option was chosen at $b_{sa} = -20$ $^\circ$ (with an upward slope), since it has good indicators ($C_{NOx} = 179$ mg/nm3 and $q_4 = 5.65\%$), and has more suitable temperatures at the dry bottom hopper for the SSR.

Table 12. Influence of the secondary air nozzles SA installation angle on the furnace operation.

Units	Value
b_{sa}	$^\circ$ 0 -10 20 30
q_4	% 5.66 5.39 5.65 6.76
C_{NOx}	mg/nm3 129 151 179 242
t_m	$^\circ$C 1076 1084 1108 1123

Figure 5 shows DFBAN optimized layout of the I zone and a visualization of its modeling results. Table 13 summarizes the values of the geometric burner and nozzles position characteristics of the developed scheme I zone of the developed scheme, obtained during the step-by-step optimization.
Table 13. Optimal values of DFBAN arrangement.

β_{b1}	β_{sa}	β_{db}	β_{b1}	β_{bd}
30°	-20°	-10°	$5/8$	$8/8$

Figure 5. Simulation results visualization of the proposed scheme after I zone optimization: (a) - the burners and nozzles arrangement; (b) - the temperature field at the vertical section 4-4 (Fig. 1); (c) - the streamlines of DFBAN located at section 4-4 (Fig. 1); (d) - the velocity vector field at section 4-4 (Fig. 1); (e) - the coal particles trajectory of the B1 and the DB located at section 4-4 (Fig. 1).

9. Conclusions

The recommendations developed by the authors for the solid fuel combustion schemes using DFBAN in furnaces with SSR are presented. The methodology of the research and optimizing combustion schemes, optimization criteria characterizing the reliability, efficiency and ecological safety of the furnace (the absence of slagging, minimum unburned carbon loss q_{u}, minimum values of nitrogen oxides in flue gases C_{NOx} mass concentrations with an excess air ratio $\alpha = 1.4$) are presented.
As an initial scheme for research and optimization, a combustion scheme with a holding bin has been developed corresponding to the formulated recommendations. The initial data for optimization was made. Numerical simulation of the initial scheme was carried out.

An approach to step-by-step aerodynamics optimization of three-stage combustion zones is proposed, which excludes the burners and nozzles influence of above-located zones.

The zone I optimization of the developed scheme was carried out using numerical simulation. The optimal values of the installation angles and the position of the secondary air nozzles $SA (\beta_{sa}=-20^\circ)$, the dump burners $DB (\beta_{db}=-10^\circ, \beta_{db1} = 8/8)$, the zone I burner $B1 (\beta_{b1}=30^\circ, \beta_{b1} =5/8)$ were determined. The obtained characteristics are presented in a dimensionless form, which makes it possible to apply the optimization results for boilers of different capacities.

The developed scheme optimization will be continued in accordance with presented strategy.

Acknowledgments
The reported study was funded by RFBR, project number 20-38-90170/20.

References
[1] Prokhorov V B, Fomenko M V, Fomenko N E 2020 Solid fuel combustion processes modelling in the furnace in terms of the boiler K-50-14-250 J. Phys.: Conf. Ser. 1683 042050
[2] Arkhipov A M, Kanunnikov A A, Kirichkov V S, Prokhorov V B, Fomenko M V, Chernov S L 2017 Efficiency of using direct-flow burners and nozzles in implementation of dry-bottom ash removal at the TPP-210A boiler furnace Thermal Engineering 2 pp 134-141
[3] ITS 38-2017 (Information and technical reference: fuel combustion at large installations for energy production) (Moscow: bureau of the best available technologies) [in Russian]
[4] GOST R 50831-95 (Boiler installations. Thermal and mechanical equipment. General technical requirements) 2006 (Moscow: Publishing House of Standards) [in Russian]
[5] Arkhipov A M, Lipov Yu M and Prokhorov V B 2013 Using Strait-Flow Burners and Nozzels in Burner Furnaces: Moscow Power Engineering Institute’s Innovative Experience (Moscow: MPEI Publishers) p 240 [in Russian]
[6] Volkov E P, Prokhorov V B, Arkhipov A M, Chernov S L, Kirichkov V S 2018 Studying the aerodynamics of the TPP-210A boiler furnace when it is shifted to operate with dry-ash removal and vortex fuel combustion Thermal Engineering 10 pp 691-697
[7] Ansys Inc. 2012 Ansys fluent user’s guide (USA) p 2616
[8] Ansys Inc. 2012 Ansys fluent theory guide (USA) p 788
[9] Warnatz J, U Maas and R Dibble 2006 Combustion (Germany: Springer) p 378
[10] Ranade V V, Gupta D F 2014 Computational modeling of pulverized coal fired boilers (CRC Press) p 288
[11] Lipov Yu M, Tretyakov Yu M 2005 Boiler plants and steam generators (Moscow-Izhevsk: Regular and chaotic dynamics) p 592 [in Russian]
[12] Kuznetsov N V, Mitor V V, Dubovskiy I E et al 1973 Thermal calculation of boiler units Normative method ed Kuznetsov N V et al (Moscow: Energy) p 296 [in Russian]
[13] GOST 28269-89 (Stationary steam boilers of high power. General technical requirements.) 2006 (Moscow: Standartinform) [in Russian]
[14] Arkhipov A M et al 2015 Improving the burning Kuznetsk coal efficiency in a direct-flow vortex flame Reliability and safety of energy 3 pp 50-55 [in Russian]
[15] Sokolov N V, Kiselgof M L et al 1971 Calculation and design of dust preparation installations of boiler units (normative materials) (Saint Petersburg: All-Russian Heat Engineering Institute) [in Russian]
[16] Klimenko A V, Zorin V M 2007 Thermal and nuclear power plants: A reference book. Book 3. (Moscow: MPEI Publishing House) [in Russian]
[17] Verbovetsky E H et al 1996 Methodological guidelines for the design of power boilers furnace (Saint Petersburg: All-Russian Heat Engineering Institute) [in Russian]