Dual-Ion Stabilized Layered Structure of O–V–O for Zero-Strain Potassium Insertion and Extraction

Jianyi Wang, Menghui Chen, Zhida Chen, Zicong Lu and Liping Si*
Supporting Information

Dual-ion Stabilized Layered Structure of O-V-O for Zero-strain Potassium Insertion and Extraction

Jianyi Wang[a], Menghui Chen[b], Zhida Chen[a], Zicong Lu[a] and Liping Si*[a]

[a] School of Materials Science and Hydrogen Energy, Foshan University
Foshan, 528000, PR China
[b] Institute for Sustainable Energy/College of Sciences, Shanghai University
Shanghai, 200444, PR China
E-mail: lipingsi@fosu.edu.cn
Experimental Section:
Ethanol, dimethyl carbonate (DMC), potassium (K), sodium (Na) and V$_2$O$_5$ purchased from Aladdin (China chemical company). In a beak, whisk together K and Na until smooth, the best Na-K weight ratio was 1:3 (self-made). The materials (V$_2$O$_5$:Na-K alloy = 0.5g:10mL) were carefully mixed by hand, and stirring in a beaker for 20min. It should be noted that the Na-K alloy shows a high activity with O and then embedded in the layer structure of V$_2$O$_5$.

The generated Na/K oxide was removed by DMC, ethanol and deionized water. After centrifuging and washing by deionized water three times, the obtained NaK(VO$_3$)$_2$-V$_2$O$_5$ powders were dried for characterization. It's worth noting that this method is reported for the first time.

Characterization:
HRTEM (high resolution transmission electron microscopy), XRD (X-Ray Powder Diffraction), SEM (scanning electron microscope) and XPS (X-ray photoelectron spectroscopy) were collector on the JEOL, Rigaku, ZEISS and Thermo Fisher.

Electrochemical Measurements:
To fabricate the anode materials of K-ion battery (KIB), PVDF (Polyvinylidene Fluoride, binder), Super P (conductive agent), and NaK(VO$_3$)$_2$-V$_2$O$_5$ and V$_2$O$_5$ (active materials) were weighed with the ratio of 1:1:8; then the obtained homogeneous slurry was uniformly painted on an aluminum foil and dried for 12 h at 60 °C. The foil was cut into wafers with area of 0.785 cm2, as the electrodes. The active mass loading on the circular pieces was about 1 mg. The electrolyte was 3 M KFSI in DME and 1M/KFF$_6$/EC/DEC (1:1 in volume). Potassium metal was used as counter electrodes and glass microfiber membranes were served as separators. The electrochemical performance was conducted in the potential of 0.01–2.5 V on LanHe battery test system. CV was tested on IVIUM (electrochemistry workstation).

The storage mechanism and electrochemical properties of K-ions:
The maximum specific discharge capacity of 406 mAh g$^{-1}$ at 0.1 A g$^{-1}$ from 0.01 V to 2.5 V. For anode of theoretical specific capacity could be calculated by formula: $^{[3]}$

$$\text{Capacity} = nF/3.6M(\text{mAh g}^{-1})$$

M, F and n represent the relative atomic mass, faraday constant and number of K$^+$ intercalation.

The value of n in K$_x$-NaK(VO$_3$)$_2$-V$_2$O$_5$ is 0.41.

The method for judging pseudocapacitance behavior in electrodes:
In CV test, different peak current values (I, mA) are obtained at different voltage scanning rates (v, mV s\(^{-1}\)). The scanning rate is correlated with the peak current response to distinguish the diffusion behavior or pseudocapacitance behavior in the charging and discharging process.

\[i = a v^b \]

If the value of \(b \) is 0.5, the electrode material behaves as a capacity of battery. If the value of \(b \) is in the range of 0.5-1, the electrode material shows the properties of capacity of battery and pseudocapacitance. If the value of \(b \) is greater than 1, the electrode material exhibits pure pseudocapacitance properties.

Calculation of \(K^+ \) diffusion coefficient:

\[i = 2.69 \times 10^5 n^{3/2} S D^{1/2} v^{1/2} C \]

where \(n \) is the number of electrons per specific reaction, for \(K^+ \) it is 1; \(S \) is the surface area of the electrode which is 0.785 cm\(^2\) in this work; \(C \) is the concentration of \(K^+ \) in the material, \(i \) is the current intensity peak and \(v \) is the scan rate. And the diffusion coefficients could be calculated using the slop of fitting line \(i \) and \(v^{1/2} \).
Figure S1 SEM image of NaK(VO$_3$)$_2$-V_2O$_5$ and V$_2$O$_5$.

Figure S2 XRD pattern of electrode of V$_2$O$_5$ and NaK(VO$_3$)$_2$-V_2O$_5$.

Figure S3 SEM images of electrode of cycled NaK(VO$_3$)$_2$-V_2O$_5$ and V$_2$O$_5$.
Figure S4 cycling performance of NaK(VO3)2-V2O5 in electrolyte with 4M/KFSI/DME.

Figure S5 cycling performance of NaK(VO3)2-V2O5 in electrolyte with 1M/KFF6/EC/DEC.
Figure S6 XPS results of NaK(VO3)2-V2O5 of discharge and charge state with different electrolyte.
[1] L. Xue, H. Gao, W. Zhou, S. Xin, K. Park, Y. Li and J. B. Goodenough, *Adv. Mater.* **2016**, 28, 9608-9612.
[2] G. Ou, Y. Xu, B. Wen, R. Lin, B. Ge, Y. Tang, Y. Liang, C. Yang, K. Huang, D. Zu, R. Yu, W. Chen, J. Li, H. Wu, L. M. Liu and Y. Li, *Nat. Commun.* **2018**, 9, 1302.
[3] C.-X. Zu and H. Li, *Energy Environ. Sci.* **2011**, 4, 2614.