Prevalence of Obesity in Adolescents

Oltean Antoanela 1*
Georgescu Adrian Dorin 2
Popescu Raducu 3

1,2,3 Ovidius University of Constanta, Al. Serbanescu nr.1, Constanta, 900470, Romania

DOI: 10.29081/gsjesh.2020.21.1.09

Keywords: obesity, adolescents, prevalence, kinetic programs.

Abstract

The experiment was carried out over a period of 3 months, during 24 sessions. Subjects (n = 80) aged 11-17 years. 34 of them were male and 46 were female. We have associated a diet with some classical exercises for kinetic therapy for the rehabilitation of the defective condition of the subjects. Each subject benefited from an individualized program according to the static medical problems detected. By completing the individualized kinetic program, each of the 80 subjects improved on average 7 out of the 12 indices determined by the posturotest. The best results were recorded for girls, in the measurements monitored at the back examination. In boys, the best results were recorded in the measurements monitored in the profile examination. The main conclusion is that a controlled diet and kinetic exercises individualized for each and every defective condition improve both health and posture.

1. Introduction

Childhood and adolescence are complex stages, with profound changes due to growth and adulthood. The pattern of behavior obtained during this stage may be crucial for a healthier future.

Obesity has characterized generations over the past few decades. Studies of child development suggest that overweight children may become overweight adults, especially if obesity is present in adolescence ((Whitaker, Wright, Pepe, Seidel, & Dietz, 1997). Considering that cardiovascular diseases arising in childhood develop also in maturity (Andersen, Hasselstrom, Gronfeldt, Hansen, & Karsten, 2004), modifiable risk factors need to be addressed early (Boreham et al., 2002). Although other factors such as genetics (Malina, & Bouchard, 1991) play an important role in the genesis of obesity, the increased prevalence of obesity has been associated with reduced physical activity (Prentice, & Jebb, 1995).

* E-mail: oltean.antoanela@univ-ovidius.ro, tel.0040723602255
Longitudinal studies show that physical activity and physical ability tend to decrease at all ages and in both sexes. However, there are still many conflicting results regarding physical activity and physical health in general and obesity in particular (Caspersen, Nixon, & DuRant, 1998; Eisenmann, Bartee, & Wang, 1999). The lack of solid evidence is mainly due to the complexity of evaluating physical activity at these ages. The main international recommendations are related to the increase of moderate and vigorous physical activities in order to benefit from their effects. However, evidence has suggested that most children and teenagers do not reach 60 minutes per day of these activities (Trost et al., 2002).

"In Romania, 3 out of 10 children and teenagers are overweight and 8% of them are obese. Romania ranks third in Europe in terms of childhood obesity.” (Gândul, 2019, March 5).

2. Material and methods

Postural deviations are a common problem among children due to the long-term health effects induced by various factors of the modern lifestyle. Television, video entertainment, motorized transport, nutrition, lack of regular physical activity and body weight are the most common risk factors for postural deviation in children (Quka, Stratoberdha, & Selenic, 2015).

Postural restoration in the clinic is an integral part of the rehabilitation process for those pathologies that appear not to be dependent on it. Any change in posture can lead to different clinical images and vice versa, different pathologies that can weaken the body can lead to postural deficiency. The analysis of posture and education for controlling body weight can prevent pathological conditions, and different pathologies can be treated through a new correct postural structure.

Purpose. We consider it necessary to address the postural deficiencies associated with obesity in teenagers as a factor of their motor and functional dysfunctions. For these reasons, I have taken up this topic in an attempt to ascertain whether there is indeed a cause for concern among the population of teenagers in Constanta regarding postural deficit and obesity at this age.

Hypothesis. We believe that by introducing means of control in the daily activity of teenagers, we can monitor and shape their healthy daily habits in order to combat obesity and prevent posture deficiencies.

Obesity is a chronic disease that presents a serious risk to an individual's health. ‘WHO recognizes that obesity has an equal or greater prevalence in this century compared to malnutrition and infectious diseases. Therefore, in the absence of drastic measures of prevention and treatment, by 2025 over 50% of the world's population will be obese. Obesity is therefore a chronic disease, with a very high prevalence and affecting men and women of all races and ages. Pre-obesity and obesity are major public health issues and need a common strategy, which includes promoting healthy eating habits and a more active lifestyle, as well as appropriate treatment and care’ (D.S.P. București, 2019, March 5).

Obesity in children and teenagers between the ages of 5 and 19 is defined as a body mass index (BMI), according to WHO reference tables for growth by age
and sex (De Onis et al., 2007). The data is based on self-reported height and weight: it is commonly used to measure BMI in population surveys, but may be subject to a reluctance or social tendency to not respond correctly, potentially leading to an underestimation of global obesity (Elgar & Stewart, 2008; Stommel, & Schoenborn, 2009). Nine countries were excluded from the analysis due to high levels of missing data (> 30%).

The increased body weight and obesity in childhood lead to serious health problems in adulthood. Child obesity is strongly associated with risk factors for cardiovascular disease, diabetes, orthopaedic problems, and deterioration of psycho-social well-being, including eating disorders, poor social relationships, and educational disadvantages. The overweight child has more risks of being an overweight adult. A high BMI in adolescence is predictive of an increased risk of cardiovascular disease and a high mortality rate in adulthood. In 2014, the percentage of overweight and obese girls was significantly lower than in boys. Thus, 15.03% of 14-year-old girls and 8.92% of 16-year-old girls were overweight. Most overweight boys, 23.68% registered in the age group 14 years, followed by those aged 16, 16.35%, and the fewest at 18, 12.05%. In the obese category, 3.61% of 15-year-old boys and 3.35% of 18-year-olds were included.

The weight of the body segments applies external forces to the joints, which are balanced by internal forces, being supplemented by the adjacent muscles and the non-contractile connective tissue. The alignment of the center of gravity with respect to the axes of the joints, in the stand position, defines the external moments applied to the joints during standing up. These external moments are then balanced by active or passive support to maintain the upright position against the increasingly powerful gravitational forces that tend to push the body to the ground.

Because the center of weight of the body generates a dorsal bending moment on the ankle during the standing position, the plantar flexor muscles generate a plantar bending moment to maintain static balance.

In orthostatism and rest, the spine has a vertical direction and a slightly sinuous shape, especially in the sagittal plane. In physics, it is known that an elastic column with curves offers a higher resistance to vertical pressures than a perfectly straight column. The curves attenuate the vertical shocks and favor the maintenance of the balance of the spine on the pelvis, thus facilitating the work of the muscles of the spine. This attitude and form are maintained thanks to the play of muscular tonicity, elasticity of ligaments and discs, as well as due to the anatomical combination of the 24 segments that adapt to each other to different articular surfaces (Sdic, 1982).

Postural deviations of the body in children and teenagers are one of the most popular and yet underestimated health problems. The low physical activity that accompanies obesity can cause postural deviations. The sedentary lifestyle is an additional factor not only in terms of increasing the risk of overweight and obesity, but also in terms of increasing the prevalence of incorrect body posture in children and teenagers in school.

The epidemics of overweight and obesity, as well as the increasing
prevalence of incorrect body posture in children and teenagers, require some actions that would lead to increased physical activity and focus on appropriate eating habits (Xu, & Xue, 2016).

Procedures and methods. Posturology helps to solve the following pathologies:

- Flat or hollow foot, calcaneal spine, valgus or varus foot, valgus or varus knee, flessum or recurvatum knee, convergent and divergent strabismus of the patella, asymmetry of the scapular and / or pelvic belts, hyperlordosis and / or hyperciphosis of the spine, ascending scolioses of any segment of the spine; ascending dental occlusions, asymmetric arrangement of adipose and soft tissues, poor venous and lymphatic circulation.

Posturotest offers a functional information of the motor activities for all categories of patients (children, adolescents, adults, sportsmen) following them during their development, taking into account the daily activities.

Posturotest proposes a return to normal of sensitive nerve information coming from the bad functioning points, by using a ‘therapeutic protection’, namely of the individualized computerized plantar supporters.

Subjects. The experiment was carried out over a period of 3 months, during 24 sessions. Subjects (n = 80) aged 11-17 years. 34 of them were male and 46 were female.

We have associated a diet with some classical exercises for kinetic therapy for the rehabilitation of the defective condition of the subjects.

Each subject benefited from an individualized program according to the static medical problems detected.

Of the 80 subjects, 22 were classified as obese 1st degree.

Applied tests. With the help of the posturotest, we appreciated the correct position of the body as from three different angles: face, profile, back.

The landmarks that we look at in the front examination are, from top to bottom: eyes line, shoulders line, the line that goes through the pubic symphysis, the line that joins the tips of the fingers, the space between the two knees.

The landmarks that we look for in the profile examination are: the line from the temporo-mandibular joint - acromion, acromion line – kyphosis peak, kyphosis peak – lordosis peak, lordosis peak - the greater trochanter, the greater trochanter - the knee joint, the external knee - ankle joint.

The landmarks that we look for in the back examination are, from top to bottom: the line of the shoulders, the line of the axilla, the spinal apophyses of the vertebrae of the spine, the solid line from the tip of the fingers, the space between the two knees.

The description of the experimental process. The techniques used in this study were:

1. identification of the factors that contribute to the incorrect posture, their elimination or reduction;
 - medical history
 - general and total postural evaluation of the body
- evaluation of joints and tissues by palpation
- evaluation of the position according to occupation, sports or recreational activities.

2. Increasing the amplitude of the joint movements.
- elongation of soft tissues that are shortened, using techniques such as active or passive stretching, muscle contractions, massage, deactivation of trigger points or myofascial release
- mobilization and manipulation of the joints.

3. Decreasing the amplitude of the joint movements.
- Strengthening the specific muscles, using simple exercises that can be performed at home or using exercises performed under the supervision of the specialist.

4. Maintain the normal position of the joint.
- avoiding abnormal, vicious positions.

5. Re-education of the types of deficient movements

The exercise program applied sought the intervention for:
• incorrect posture
• low back pain
• abdominal muscles without tonus
• instability at the lumbar-sacral level
• Flexor hip muscles that are contracted
• posterior thigh muscles that are contracted
• rigidity

3. Results and Discussions

Below we present a case for each gender, cases that we considered representative:

Table 1. Sb.no.21 /Female / 15 years

From	To	Initial testing	Final testing
Eyes line			
Shoulders line – front face		2	0
Temporo-mandibular joint	Acromioclavicular joint	7	6
Acromioclavicular joint	Kyphosis peak	43	41
Kyphosis peak	Lordosis peak	16	13
Lordosis peak	Greater trochanter	12	10
Greater trochanter	Keen joint	7	6
Knee joint	External malleolus	2	3
Shoulder line – posterior side		2	0
Axillary line		2	0
Middle finger line		2	1
Knee line		1	0
Table 2. Sb.no.67 / male / 18 years

From	To	Initial testing Grade	Final testing Grade
Eyes line		3	1
Shoulders line-front face		3	1
Temporo-mandibular joint	Acromioclavicular	6	6
Acromioclavicular joint	Kyphosis peak	40	37
Kyphosis peak	Lordosis peak	18	15
Lordosis peak	Greater trochanter	15	14
Greater trochanter	Keen joint	8	7
Knee joint	External malleolus	3	4
Shoulder line – posterior side		4	1
Axillary line		3	1
Middle finger line		2	1
Knee line		1	0

Discussions

By completing the individualized kinetic program, each of the 80 subjects improved on average 7 out of the 12 indices determined by the posturotest. The best results were recorded for girls, in the measurements monitored at the back examination. In boys, the best results were recorded in the measurements monitored in the profile examination.

Of the 22 declared obese subjects, 5 were diagnosed with dextroconvex dorsal-lumbar scoliosis, 4 with sinistroconvex dorso-lumbar scoliosis, 6 with kyphosis, 2 with lordosis. The rest had not been diagnosed yet.

![Figure 1. Initial testing (red color); Final testing (white color) – for subject no.21](image-url)
Following the individualized kinetic programs 3 of the 5 with dextroconvex scoliosis and 3 of those with sinistroconvex scoliosis have improved their posture considerably with angles up to 3 degrees. 5 of the adolescents with kyphosis managed to control the posture, raising awareness and improving the kyphosis. And the two girls initially diagnosed with lordosis through the analytical processing of the paravertebral and abdominal muscles improved their indices obtained with the help of posturotest by up to 2 degrees.

4. Conclusions

While figures for adult obesity give rise to concern, those for children present an even more important public health problem - perhaps one of the most consistent in the twenty-first century. Serious weight problems that could be expected to lead to life-threatening disease in adulthood are already diagnosed in obese adolescents.

Obesity leads to an overload of the musculoskeletal system, especially of the spine, thus altering its normal curves. These changes cause the body to look for mechanical adaptations that lead to a defective posture.

We tried by this study to observe the seriousness of the situation reported by the specialized studies regarding the association of obesity with poor posture in adolescents. We also tried to find a practical solution by intervening in schools and high schools with such cases through physical education professionals. The individualized programs were designed with the help of the therapists.

The exercise program applied together with a nutritional plan has led to the improvement of posture so the research hypothesis has been confirmed,

We propose the large-scale application of the kinetotherapeutic program for a recovery of the defective posture but also of the Posturotest method, an alternative of the x-ray.

The main conclusion is that a controlled diet and kinetic exercises individualized for each and every defective posture condition improve both health and posture.

References

1. ANDERSEN L.B., HASSELSTROM, H., GRONFELDT, V., HANSEN, S.E., & KARSTEN, F. (2004). The relationship between physical fitness and clustered risk, and tracking of clustered risk from adolescence to young adulthood: eight years follow-up in the Danish Youth and Sport Study, *Int J Behav Nutr Phys Act.* 8;1(1), 6;

2. BOREHAM, C., TWISK, J., NEVILLE, C., SAVAGE, M., MURRAY, L., & GALLAGHER, A. (2002). Associations between physical fitness and activity patterns during adolescence and cardiovascular risk factors in young adulthood: the Northern Ireland Young Hearts Project, *Int J Sports Med.* 23 Suppl 1,S, 22-6;

3. CASPERSEN, C.J, NIXON, P.A, & DURANT, R.H. (1998). Physical activity epidemiology applied to children and adolescents, *Exerc Sport Sci Rev,*26, 341-403;
4. DE ONIS, M., ONYANGO, A.W., BORGHI, E., SIYAM, A., NISHIDA, C., & SIEKMANN J. (2007). Development of a WHO growth reference for school-aged children and adolescents, *Bull World Health Organ*, 85(9), 660–7, (http://www.who.int/growthref/growthref_who_bull.pdf, accessed 27 of February 2019);

5. D.S.P. BUCURESTI. (2019, March, 5). Retrieved from http://www.dspb.ro/diverse/dspb/2018/160518/Analiza%20de%20situatie%20%20ZEIO%202018.pdf;

6. EISENmann, J.C., BARTEE, R.T., & WANG, M.Q. (2002). Physical activity, TV viewing, and weight in U.S. youth: 1999 Youth Risk Behavior Survey 20, *Obes Res.*, 10, 379-85;

7. ELGAR, F.J., & STEWART, J.M. (2008). Validity of self-report screening for overweight and obesity. Evidence from the Canadian Community Health Survey, *Can J Pub Health*, 99(5), 423–7;

8. GANDUL. (2019, March, 5). Retrieved from https://www.gandul.info/sanatate/boala-tacuta-afecteaza-trei-din-10-copii-si-adolescenti-din-romania-explicatia-unui-fenomen-care-ne-a-dus-in-top-3-in-europa-15114194;

9. MALINA, R.M., & BOUCHARD, C. (1991). Growth, maturation, and physical activity. Champaign, IL, *US: Human Kinetics Academic*, 225-230;

10. PRENTICE, A.M., & JEBB, S.A. (1995). Obesity in Britain: gluttony or sloth?, *BMJ. 311* (7002), 437-9;

11. QUKA, N., STRAToberdha, D.H., & SELENICA, R. (2015). Risk Factors of Poor Posture in Children and Its Prevalence. *Academic Journal of Interdisciplinary Studies. MCSER Publishing, Rome-Italy*, 4 (3), 97-102;

12. ŞDIC, L. (1982). Kinetoterapia In Recuperarea Algililor Si A Tulburarilor De Statica vertebrală, Bucureşti: Medicală;

13. STOMMEL, M., & SCHOENBORN, C.A. (2009). Accuracy and usefulness of BMI measures based on self-reported weight and height: findings from the NHANES & NHIS 2001–2006, *BMC Public Health*, 9, 421;

14. TROST, S.G, PATE, R.R, SALLIS, J.F, FREEDSON, P.S, TAYLOR, W.C, DOWDA, M, & SIRARD, J. (2002). Age and gender differences in objectively measured physical activity in youth, *Med SciSports Exerc* 34, 350–355;

15. WHITAKER, R.C., WRIGHT, J.A., PEPE, M.S., SEIDEL, K.D., & DIETZ, W.H. (1997). Predicting obesity in young adulthood from childhood and parental obesity, *N Engl J Med*, 337, 869-73;

16. XU, S., & XUE, Y. (2016). Pediatric obesity: causes, symptoms, prevention and treatment, *Exp Ther Med 11*(1), 15–20.
Incidenţa Obezităţii la Adolescenţi

Oltean Antoanela 1
Georgescu Adrian Dorin 2
Popescu Raducu 3

1,2,3Universitatea Ovidius din Constanta, Al. Serbanescu nr.1, 900470, Romania

Cuvinte cheie: obezitate, adolescenţi, incidenţă, programe kinetoterapeutice.

Rezumat

Experimentul s-a desfăşurat pe o perioadă de 3 luni, pe parcursul a 24 de şedinţe. Subiecţii (n=80) cu vârste cuprinse între 11-17 ani. 34 dintre aceştia erau de sex masculin şi 46 de sex feminin. Am asociat un regim alimentar unor exerciţii clasice de kinetoterapie pentru reeducarea staticii defectuoase a subiecţilor. Fiecare a beneficiat de program individualizat în funcţie de problemele medicale de statică depistate. Prin realizarea programului kinetic individualizat fiecare din cei 80 de subiecţi şi-a îmbunătăţit în medie 7 din cei 12 indici determinaţi de posturotest. Rezultatele cele mai bune s-au înregistrat la fete la măsurătorile urmărite la examinarea din spate. La băieţi cele mai bune rezultate au fost înregistrate la măsurătorile urmărite la examinarea din profil. Concluzia principală este că o dietă controlată şi exerciţii cinetice individualizate pentru fiecare condiţie defectuoasă de postură îmbunătăţesc atât sănătatea, cât şi postura.

1. Introducere

Copilăria şi adolescenţa sunt etape complexe, cu schimbări profunde datorate creşterii şi maturizării. Modelul de comportament obţinut pe parcursul acestei etape poate fi crucial pentru viitor mai sănătos.

Obezitatea caracterizează generaţii întregi în ultimele decenii. Studiile ce urmăresc dezvoltarea copiilor sugerează că cei supraponderali ar putea deveni adulţi supraponderali, în special dacă obezitatea este prezentă la adolescenţă (Whitaker, Wright, Pepe, Seidel, & Dietz, 1997). Având în vedere că bolile cardiovasculare care încep în copilărie sunt dezvoltate şi la maturitate (Andersen, Hasselstrom, Gronfeldt, Hansen, & Karsten, 2004), factorii de risc modificabili trebuie abordaţi devreme (Boreham et al., 2002). Deşi alţii factori precum genetica (Malina, & Boucchard, 1991) joacă un rol important în geneza obezităţii, prevalenţa crescută a obezităţii a fost asociată cu reducerea activităţii fizice (Prentice & Jebb, 1995).

Studiile longitudinale arată că activitatea fizică şi capacitatea fizică tind să scadă la toate vârstele şi la ambele sexe. Cu toate acestea, există încă multe rezultate contradictorii în ceea ce priveşte activitatea fizică şi sănătatea fizică în general şi obezitatea în special (Caspersen, Nixon, & DuRant, 1998; Eisenmann, Bartee, & Wang, 1999). Lipsa unor dovezii solide se datorează în principal complexităţii evaluării activităţii fizice aceste vârste. Principalele recomandări internaţionale sunt legate de creşterea activităţilor fizice moderate şi viguroase pentru a beneficia de efectele aeiostora. Cu toate acestea, dovezile au sugerat că
majoritatea copiilor și adolescenților nu atinge cele 60 de minute pe zi ale acestor activități (Trost et al., 2002). „În România, 3 din 10 copii și adolescenți sunt supraponderali și 8% dintre ei sunt obezi. România ocupă locul al treilea în Europa în ceea ce privește obezitatea infantilă” (Gândul, 2019, March 5).

2. Material și metode

Abaterile posturale sunt o problemă frecventă în rândul copiilor cauzate de efectele pe termen lung ale stării de sănătate induse de diferiți factori ai stilului de viață modern. Televiziunea, divertismentul video, transportul motorizat, alimentația, lipsa activității fizice regulate și greutatea corporală sunt factorii de risc cei mai frecvenți ai deviației posturale la copii (Quka, Stratoberdha, & Selenic, 2015).

Reabilitarea posturală în clinică este o parte integrantă a procesului de reabilitare pentru acele patologii care par să nu fie dependente de acesta. Orice modificare a posturii poate duce la diferite imagini clinice și viceversa, diferite patologii care pot slăbi organismul pot duce la un deficit postural. Analiza posturii și a educației pentru controlul greutății corpului poate preveni condițiile patologice, iar diferite patologii pot fi tratate printr-o nouă structură posturală corectă.

Scop. Considerăm necesară abordarea deficiențelor de postură asociate obezității la adolescenți ca un factor al disfuncțiilor motrice și funcționale ale acestora. Din aceste considerente scopul acestei lucrari este de a constata dacă există întravă un motiv de îngrijorare în rândul populației de adolescenți din Constanța în ceea ce privește deficitul postural și obezitatea la această vârstă.

Ipoteza lucrării este reprezentată de presupunerea că prin introducerea unor mijloace de control în activitatea zilnică a adolescenților putem monitoriza și modela obiceiurile sănătoase cotidiene ale acestora în vederea combaterii obezității și a prevenirii deficiențelor de postură.

Obezitatea este o boală cronică care prezintă un risc grav pentru sănătatea unui individ. "OMS recunoaște că, în acest secol, obezitatea are o prevalență egală sau mai mare comparativ cu malnutriția și bolile infecțioase. De aceea, în lipsa unor măsuri drastice de prevenire și tratament, în 2025 peste 50% din populația lumii va fi obeză. Obezitatea este, așadar, o boală cronică, având o prevalență foarte mare și care afectează bărbații și femei de toate rasele și vârstele. Prebeziatia și obezitatea sunt probleme importante de sănătate publică și au nevoie de o strategie comună, ce include promovarea obiceiurilor alimentare sănătoase și a unui stil de viață mai activ, precum și tratament și îngrijiri corespunzătoare” (D.S.P. București, 2019, March 5).

Obezitatea la copii și adolescenții cu vârsta cuprinsă între 5 și 19 ani este definită ca un indice de masă corporală (IMC), conform tabelelor de referință pentru creștere în funcție de vârstă și de sex ale OMS (deOnís et al., 2007). Datele se bazează pe înălțimea și greutatea raportate personal: acesta este utilizat în mod obișnuit pentru a măsura IMC în sondajele pe populație, dar poate fi supus unei reticențe sau unei tendințe sociale de a nu răspunde corect, potențial conducând la o subestimare a obezității globale (Elgar & Stewart, 2008; Stommel & Schoenborn, 2009), Nouă țări au fost excluse din analiză din cauza nivelurilor ridicate de date.
Grezutatea corporală crescută și obezitatea din perioada copilăriei conduce la serioase probleme de sănătate în perioada de adult. Obezitatea copilului este puternic asociată cu factorii de risc pentru bolile cardiovasculare, diabet, probleme ortopedice și degradarea stării de bine psiho-sociale, incluzând tulburări alimentare, relații sociale precare și dezavantaje educaționale. Copilul supraponderal are mai multe riscuri să fie un adult supraponderal. Un IMC mare în adolescență este predictiv cu creșterea riscului de boală cardiovasculară și cu o rată ridicată a mortalității la vârsta de adult. În anul 2014, procentul de fete supraponderale și obeze a fost semnificativ mai mic decât la băieți. Astfel, 15,03 % dintre fetele de 14 ani și 8,92 % din cele de 16 ani erau supraponderale.

Cei mai mulți băieți supraponderali, 23,68 % s-au înregistrat la grupa de vârstă 14 ani, urmați de cei de 16 ani, 16,35 %, iar cei mai puțini la 18 ani, 12,05 %. În categoria obezi s-au încadrat 3,61 % dintre băieții de 15 ani și 3,35 % dintre cei de 18 ani.

Greutatea segmentelor corporale aplică forțe externe articulațiilor, care sunt balansate de forțe interne, fiind suplinite de mușchii alăturați și de țesutul conjunctiv. Alinierea centrului de greutate în raport cu axele articulațiilor, în poziția stand, definește momentele exterioare aplicate articulațiilor în timpul statici în picioare. Aceste momente externe sunt apoi echilibrate prin sprijinul activ sau pasiv pentru a menține poziția verticală împotriva forțelor gravitaționale tot mai puternice care tind să apese corpul spre pământ.

Deoarece centrul de greutate al corpului generează un moment de flexie dorsală pe gleznă în timpul poziției de stând, mușchii flexori plantari generează un moment de flexie plantară pentru a menține echilibrul static.

În ortostatism și în repaus coloana vertebrală are o direcție verticală și o formă ușor sinuoasă, mai ales în plan sagital. În fizică este cunoscut faptul că o coloană elastică cu curburile oferă o rezistență mai mare la presiunile verticale decât o coloană perfect rectilinie. Curcurile atenuază şocurile verticale și favorizează menținerea echilibrului coloanei pe bazin, ușurând deci munca mușchilor coloanei. Această atitudine și formă se mențin grație jocului tonicității musculare, elasticității ligamentelor și discurilor, precum și datorită îmbinării anatomiche a celor 24 segmente care își adaptează unul altuia diferitelor suprafețe articulare. (Șdic, 1982)

Deviațiile posturale al corpului la copii și adolescenți constituie una dintre cele mai populare și totuși subestimate probleme de sănătate. Activitatea fizică scăzută care însoțește obezitatea poate provoca aparitia unor deviații de postură. Stilul de viață sedentar constituie un factor suplimentar nu numai în ceea ce privește creșterea riscului de supraponderali și obezitate, ci și în ceea ce privește intensificarea prevalenței poziției incorrece a corpului la copiii și adolescenții din școală.

Epidemiile excesului de greutate și a obezității, precum și prevalența crescândă a poziției corporale incorrece la copii și adolescenți, necesită unele acțiuni care ar conduce la o creștere a activității fizice și la atragerea atenției asupra obiceiurilor alimentare corespunzătoare (Xu, & Xue, 2016).
Metodologie. Posturologia ajută la rezolvarea următoarelor patologii:
- Picior plat sau cav, spina calcaneană, picior valg sau var, genunchi valg sau var, genunchi flessum sau recurvatum, strabism convergent și divergent al rotulei, asimetria centurilor scalapare și/sau pelvice, hiperlordoza și/sau hipercifoza a coloanei, scolioza ascendentă a oricărui segment al coloanei; ocluzii dentare ascendente, dispoziția asimetrică a țesuturilor adipoase și a țesuturilor moi, circulație venoasă și limfatică defectuoasă.

Posturotest oferă o informație funcțională a activităților motorii pentru toate categoriile de pacienți (copii, adolescenți, adulți, sportivi) urmărindu-i pe parcursul dezvoltării lor, ținând cont și de activitățile cotidiene.

Posturotest propune o readucere la normalitate a informațiilor nervoase senzitive provenite de la punctele de proastă funcționare, prin folosirea unei "protecții terapeutice", și anume a susținătorilor plantari computerizați individualizați. Experimentul s-a desfășurat pe o perioadă de 3 luni, pe parcursul a 24 de ședințe.

Subiecții (n=80) cu vârste cuprinse între 11-17 ani. 34 dintre aceștia erau de sex masculin și 46 de sex feminin. Am asociat un regim alimentar unor exerciții clasice de kinetoterapie pentru reeducarea staticii defectuoase a subiecților. Fiecare a beneficiat de program individualizat în funcție de problemele medicale de statică depistate.

Din cei 80 de subiecți 22 au fost încadrați la obezitatea gradul I.

Teste aplicate. Cu ajutorul posturotestului am apreciat poziția corectă a corpului precum din 3 unghiuri diferite: față, profil, spate.

Reperene pe care le urmărim la examinarea din față sunt, de sus în jos: linia ochilor, linia umerilor, linia care trece prin simfiza pubiană, linia care unește vârful degetelor de la mâini, spațiul dintre cei doi genunchi.

Reperene pe care le urmărim la examinarea din lateral sunt: linia de la articulația vestibulo mandibulară- acromiom, linie acromiom- punct maxim cifoază, linie punct maxim cifoază-punct maxim lordoză, punct maxim lordoză-marele trohanter, marele trohanter-articulația genunchiului, articulația genunchiului-maleola externă.

Reperene pe care le urmărim la examinarea din spate sunt, de sus în jos: linia umerilor, linia axilei, apofizele spinoase ale vertebrelor coloanei vertebrale, linia unită de la vârful degetelor, spațiul dintre cei doi genunchi.

Tehnicile folosite în acest studiu au fost:
1. Identificarea factorilor care contribuie la postura încorectă, eliminarea sau reducerea acestora;
 - istoricul medical
 - evaluarea posturală generală și totală a corpului
2. Creșterea amplitudinii mișcărilor articulare.
 - alungirea țesuturilor moi care sunt scurtate, utilizând tehnici precum întinderea activă sau pasivă, contractiile musculare, masajul, dezactivarea punctelor
de declanșare sau eliberarea miofascială
- mobilizarea și manipularea articulațiilor.
3. Scăderea amplitudinii mișcărilor articulare.
- întărirea mușchilor specifice, folosind exerciții simple care pot fi efectuate acasă sau folosind exerciții efectuate sub supravegherea specialistului.
4. Menținerea poziției normale a articulației.
- evitarea pozițiilor anormale, vicioase.
5. Reeducarea tipurilor de mișcări deficitare
Programul de exerciții aplicat a urmărit intervenția pentru:
• postură incorrectă
• dureri lombare
• mușchii abdominali fără tonus
• instabilitate la nivel lombar-sacru
• mușchii flexori ai șoldului care sunt contractați
• mușchii coapsei posterioare care sunt contractați
• rigiditate

3. Rezultate și discuții

În continuare prezentăm câte un caz pentru fiecare gen, cazuri pe care le-am considerat reprezentative:

De la	Până la	Testarea initială	Testare finală
Linia ochilor		Grade	Grade
Linia umerilor-fața anterioară		2	0
Artic. vestibulo	Articulația acromială	7	6
mandibulară			
Articulația acromială	Punct maxim cifoză	43	41
Punct maxim cifoză	Punct maxim lordoză	16	13
Punct maxim lordoză	Marele trohanter	12	10
Marele trohanter	Articulația genunchiului	7	6
Articulația genunchiului	Maleola externă	2	3
Linia umerilor-parte posterioră		2	0
Linia axilei		2	0
Linie deget mediu		2	1
Linie genunchi		1	0
Tabel 2. Subiect.67/ Bărbat/18 ani

De la	Până la	Testarea inițială Grade	Testare finală Grade
Linia ochilor	3	1	
Linia umeriorilor-fața anterioară	3	1	
Artic. vestibulo	Articulația acromială		
Linia umeriorilor-parțe posterioară	4	1	
Marele trohanter	15	14	
Articulația genunchiului	Maleola externă	3	4
Linia axilei	2	1	
Linie deget mediu	1	0	

Discuții
Prin realizarea programului kinetic individualizat fiecare din cei 80 de subiecți și-a îmbunătățit în medie 7 din cei 12 indici determinați de posturotest. Rezultatele cele mai bune s-au înregistrat la fete la măsurătorile urmărite la examinarea din spate. La băieți cele mai bune rezultate au fost înregistrate la măsurătorile urmărite la examinarea din profil.

Figura 1. Testarea inițială (roșu); Testarea finală (alb) – subiectul nr.21
Din cei 22 de subiecți declarați obezi 5 erau diagnosticați cu scolioză dorso-lombară dextroconvexă, 4 cu scolioză dorso-lombară sinistroconvexă, 6 cu cifoză, 2 cu lordoză. Restul nu fuseseeră diagnosticați încă. Urmând programele kinetice individualizate 3 din cei 5 cu scolioză dextroconvexă și 3 din cei cu scolioză sinistroconvexă și-au îmbunătățit postura considerabil cu unghii de până la 3 grade. 5 dintre adolescenții cu cifoză au reușit să controleze postura, conștientizând și ameliorând cifoa. Iar cele două fete diagnosticate inițial cu lordoză prin prelucrarea analitică a musculaturii paravertebrale și a celei abdominale și-au îmbunătățit indicii obțiinuți cu ajutorul posturotestului cu până la 2 grade.

4. Concluzii

În timp ce cifrele privind obezitatea la adulți creează îngrijorare, cele pentru copii prezintă o problemă de sănătate publică și mai importantă - poate una dintre cele mai consistente din secolul XXI. Problemele grave de greutate care ar putea fi de așteptat să conducă la boli care pun viața în pericol la vârsta adultă sunt deja diagnosticate la adolescenții obezi.

Obezitatea duce la o supraîncărcare a sistemului musculo-scheletic, în special a coloanei vertebrale, modificând astfel curbele sale normale. Aceste modificări determină corpul să caute adaptări mecanice care conduc la o postură defectă.

Am încercat prin acest studiu să observăm gravitatea situației raportate de studiile de specialitate privind asocierea obezității cu o postură slabă la adolescenții. De asemenea, am încercat să găsim o soluție practică intervenind în școli și licee cu astfel de cazuri prin profesorii de educație fizică. Programele individualizate au fost concepute cu ajutorul terapeutilor.

Ipoteza de cercetare a fost confirmată, programul de exerciții aplicat împreună cu un plan nutrițional a dus la îmbunătățirea posturii. Propunem aplicarea pe scară largă a programului kinetoterapeutic pentru recuperarea posturii defecte, dar și a metodei Posturotest, o alternativă a radiografiei.

Concluzia principală este că o dietă controlată și exerciții cinetice individualizate pentru fiecare condiție defectuoasă de postură îmbunătățesc atât sănătatea, cât și postura.