HOT DUST-OBSCURED GALAXIES WITH EXCESS BLUE LIGHT

R.J. Assef¹, M. Brightman², D.J. Walton³, D. Stern⁴, F.E. Bauer⁵,⁶,⁷, A.W. Blain⁸, T. Díaz-Santos¹, P.R.M. Eisenhardt¹, R.C. Hickox⁹, H.D. Jun¹⁰, A. Psychogios¹¹, C.-W. Tsai¹², J.W. Wu¹²

ABSTRACT

Hot Dust-Obscured Galaxies (Hot DOGs) are among the most luminous galaxies in the Universe. Powered by highly obscured, possibly Compton-thick, active galactic nuclei (AGNs), Hot DOGs are characterized by SEDs that are very red in the mid-IR yet dominated by the host galaxy stellar emission in the UV and optical. An earlier study identified a sub-sample of Hot DOGs with significantly enhanced UV emission. One target, W0204–0506, was studied in detail and, based on Chandra observations, it was concluded that the enhanced emission was most likely due to either extreme unobscured star-formation (SFR > 1000 M⊙ yr⁻¹) or to light from the highly obscured AGN scattered by gas or dust into our line of sight. Here, we present a follow-up study of W0204–0506 as well as two more Hot DOGs with excess UV emission. For the two new objects we obtained Chandra/ACIS-S observations, and for all three targets we obtained HST/WFC3 F555W and F160W imaging. We conclude that the excess UV emission is primarily dominated by light from the central highly obscured, hyper-luminous AGN that has been scattered into our line of sight. We cannot rule out, however, that star-formation may significantly contribute to the UV excess of W0204–0506.

Keywords: galaxies: active — galaxies: evolution — galaxies: high-redshift — quasars: general — infrared: galaxies

1. INTRODUCTION

Hot Dust-Obscured Galaxies (Hot DOGs; Eisenhardt et al. 2012; Wu et al. 2012) are among the most luminous galaxies in the Universe, with bolometric luminosities Lbol > 10¹³ L⊙ and a significant fraction with Lbol > 10¹⁴ L⊙ (Wu et al. 2012; Tsai et al. 2013). Discovered by the Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010), Hot DOGs are characterized by very red mid-IR colors and spectral energy distributions (SEDs) that peak at rest-frame ~ 20μm. This implies that Hot DOGs are powered by highly obscured, hyper-luminous AGN that dominate the SED from the mid- to the far-IR (Eisenhardt et al. 2012; Wu et al. 2012, 2014; Fan et al. 2016a; Díaz-Santos et al. 2016; Tsai et al. 2018). As expected from their luminosities, Hot DOGs are rare, with one object every 31±4 deg². Yet their number density is comparable to that of similarly luminous unobscured quasars (Assef et al. 2015) and of heavily reddened type 1 quasars (Banerji et al. 2013).

X-ray studies have shown that the obscuration of the central engine in Hot DOGs is very high, with column densities ranging from somewhat below to above the Compton-thick limit (i.e., NHI > 1.5 × 10²⁴ cm⁻²) (Stern et al. 2014; Piccioni et al. 2015; Assef et al. 2016; Ricci et al. 2017; Vito et al. 2018). As the AGN emission is highly obscured, the host galaxy is observable at rest-frame UV, optical and near-IR wavelengths. A study of their SEDs by Assef et al. (2015) showed that their stellar masses, as derived from their rest-frame near-IR luminosities, imply that either the super-massive black holes (SMBHs) are accreting well above the Eddington limit, or that their SMBH masses (MBH) are well above the local relations between MBH and the mass of the spheroidal component of the host galaxy (see, e.g., Magorrian et al. 1998; Bennert et al. 2011). Indeed, recent results by Wu et al. (2018) and Tsai et al. (2018) suggest that Hot DOGs are radiating at or above the Eddington limit, which in turn suggests that Hot DOGs are likely experiencing strong AGN feedback that could easily affect the whole host galaxy and its immediate environment. Indeed, Díaz-Santos et al. (2016) presented a study of the [CII] 157.7μm emission line in the highest luminosity Hot DOG, and possibly the most luminous galaxy known, WISEA J224607.56–052634.9 (W2246–0526; Tsai et al. 2013), and determined based on the emission-line kinematics that the central gas of the host galaxy is likely undergoing an isotropic outflow event. Further ionized gas outflow signatures have been observed in the optical narrow emission lines of some other Hot DOGs (Wu et al. 2018; Jun et al. in prep.), supporting the presence of...
strong AGN feedback in the ISM of these targets.\footnote{Assef et al. (2013), also see Eisenhardt et al. 2012.} Tsi et al. (2015, 2018) showed that the UV through mid-IR SED of the majority of Hot DOGs (specifically “W12-drops” with \( z > 1 \)) can be well modeled as a combination of a star-forming galaxy that dominates the optical/UV emission, and a luminous, obscured AGN that dominates the mid-IR SED and the bolometric luminosity of the system. However, this is not the case for all Hot DOGs. In a later work, Assef et al. (2016, A16 hereafter) presented a small sample of eight Hot DOGs whose optical/UV emission is not well modeled by a star-forming galaxy, but instead needs a second, unobscured AGN component that is only \(~\sim 1\%\) as luminous as the obscured component. A16 posited that the SED could be explained by three different scenarios: i) that the UV/optical emission is dominated by leaked or scattered light from the hyper-luminous, highly obscured AGN; ii) that the system is a dual quasar, with a more luminous, highly obscured quasar and a less luminous, unobscured one; and iii) that the system is undergoing an extreme star-formation event with little dust obscuration such that the broad-band UV/optical SED is similar to that of an AGN.

One of these objects, WISEA J020446.13–050640.8 (W0204–0506 hereafter), was serendipitously observed by the Chandra X-ray Observatory as part of the Large-Area Lyman Alpha survey (LALA, Rhodes et al. 2000). A16 studied this object in detail using these observations along with broad-band SED and optical spectroscopic observations. A16 determined that the X-ray spectrum of W0204–0506 is consistent with a single, hyper-luminous, highly absorbed AGN (\( \log L_{2–10\, \text{keV}} / \text{erg s}^{-1} = 44.9^{+0.86}_{-0.14} \), \( N_{\text{H}} = 6.3^{+8.1}_{-2.1} \times 10^{23} \, \text{cm}^{-2} \)), and highly inconsistent with a secondary, unobscured AGN with the luminosity necessary to explain the optical/UV emission. Instead, A16 found that the UV/optical continuum was better explained by a starburst with a star-formation rate \( \geq 1000 \, M_{\odot} \, \text{yr}^{-1} \), or by scattered light from the hyper-luminous, highly obscured central engine. While star-formation rates (SFRs) \( \geq 1000 \, M_{\odot} \, \text{yr}^{-1} \) are routinely found through far-IR/sub-mm observations of highly obscured systems such as SMGs and ULIRGs, rates above \( \sim 300 \, M_{\odot} \, \text{yr}^{-1} \) have never been observed through UV/optical wavelengths in Lyman break galaxies, which have the strongest UV/optical star-formations measured by Barger et al. (2014). Due to the large SFR needed to explain the optical/UV SED of this object as a starburst, A16 favored the scattered AGN-light scenario.

In this paper we present Hubble Space Telescope (HST) observations of W0204–0506 to further explore its nature, and we explore in detail two more Blue-Excess Hot DOGs (BHDs), WISE J022052.12+013711.6 (W0220+0137 hereafter) and WISE J011601.41–050504.0 (W0116–0505 hereafter), using HST and Chandra observations as well as optical spectroscopy and broad-band UV through mid-IR SEDs. In \[\S\] we present the sample studied here as well as the different observations available for each target, while in \[\S\] we discuss the modeling of the Chandra X-ray observations. In \[\S\] we present a detailed discussion of the source of the excess blue emission, analyzing each possible scenario in light of the available observations. Our conclusions are summarized in \[\S\]. Throughout the article all magnitudes are presented in their natural system unless otherwise stated, namely AB for ugriz and Vega for all the rest. We assume a concordance flat \( \Lambda \) CDM cosmology with \( H_0 = 70 \, \text{km s}^{-1} \, \text{Mpc}^{-1} \), \( \Omega_{\Lambda} = 0.7 \) and \( \Omega_M = 0.3 \). For all quantities derived from X-ray spectra, we quote 90\% confidence interval, while for all other quantities we quote 68.3\% confidence intervals instead.

2. Sample and Observations

2.1. Blue-Excess Hot DOGs

A16 identified 8 BHDs from a sample of 36 Hot DOGs with \( W4 < 7.2 \, \text{mag} \), spectroscopic redshifts \( z > 1 \) and ugriz modelMag\footnote{http://www.sdss.org/dr12/algorithms/magnitudes/#mag_model} photometry in the SDSS DR12 database with \( S/N \geq 3 \) in at least one of the SDSS bands. This spectroscopic sample is biased towards optical emission, and after considering the selection effects, A16 estimated BHDs could comprise as much as 8\% of the Hot DOG population with \( W4 < 7.2 \, \text{mag} \), although most likely a smaller fraction when considering fainter W4 fluxes.

To select this sample, A16 started by modeling the SEDs of the aforementioned 36 Hot DOGs using the galaxy and AGN SED templates and modeling algorithm of Assef et al. (2010), following the prescription presented by Assef et al. (2015). In short the broad-band SED of any given object is modeled as a linear, non-negative combination of four empirically derived SED templates: an “E” template, which resembles the SED of an old stellar population, an “Sbc” template, which resembles the SED of an intermediate star-forming galaxy, an “Im” template, which resembles a local starburst galaxy, and a type 1 AGN template. We also fit for the reddening of the AGN template, parametrized by \( E(B-V) \), assuming \( R_V = 3.1 \) and a reddening law that follows that of the SMC at short wavelengths but that of the Milky Way at longer wavelengths. A single IGM absorption strength is also fit for all templates when needed (see Assef et al. 2010, 2015, A16 for details). Using this approach A16 modeled the SED of each object in the following broad bands: the ugriz SDSS DR12 modelMag photometry, Spitzer/IRAC [3.6] and [4.5] photometry from Griffith et al. (2012), and the WISE W1 and W4 photometry from the WISE All-Sky Data Release Cutri et al. 2012. Additionally, whenever possible, A16 used the J, Ks and deeper r-band imaging presented by Assef et al. (2015). For the three sources considered in this article, the deeper r-band imaging was obtained using the 4.1m Southern Astrophysical Research Telescope (SOAR) with the SOAR Optical Imager (SOI). For W0116–0505, images were obtained with an exposure time of 3×600 s on the night of UT 2013 August 28. For the other two sources, the images were obtained on UT 2011 November 20, with exposure times of 3×500 s for W0204–0506 and of 2×500 s for W0220+0137. In all cases the images were reduced following standard procedures, and the photometric calibration was performed by comparing bright stars in each field with their respective SDSS magnitudes. The details of the NIR imaging can be found in Assef et al. (2015). All magnitudes are shown in Table 1.
A16 found that the approach described above was not able to accurately model the UV/optical emission for a fraction of their sample, which were significantly bluer than allowed by the SED templates. They identified eight objects for which an additional, secondary AGN component with independent normalization and reddening provided a significant improvement in $\chi^2$ to the best-fit SED model. A16 presented a detailed study of the properties of one of these targets: W0204–0506. Here we extend this analysis to an additional one of these eight targets, W0220+0137, as well as to another very similar target, W0116–0505. The W1=17.13 mag of W0116–0505 is slightly brighter than the formal Hot DOG selection limit (W1>17.4; Eisenhardt et al. 2012) and hence it was excluded from the final list presented by A16 despite meeting all other selection criteria. We find there is only a 2.7% probability that the improvement in $\chi^2$ by the secondary AGN component is spurious for this source. A16 argued that these probabilities are likely overestimated and hence conservative, as the F-test used to estimate them does not take into account the constraints provided by the non-negative requirement of the linear combination of templates for the best-fit model.

The broad band SEDs as well as best-fit SED models of the three targets are shown in Figure 1. We note that the SED of W0204–0506 differs slightly from that presented by A16 as, for consistency with the other two sources, the SED presented here only uses the SDSS DR12 bands in the UV/optical instead of the deeper imaging of Finkelstein et al. (2007). Table 1 shows, for each target, the best-fit $E(B-V)$ to both the primary and secondary AGN components. The table also shows the reddening-corrected monochromatic luminosities at 6µm, $L_{6\mu m}$, calculated from the template fit to each AGN component. In all three targets the secondary AGN has a much lower ($\lesssim 1\%$) monochromatic luminosity at 6µm.

The uncertainties for the parameters shown in Table 1 have been estimated using a Monte-Carlo method following a similar prescription to that used by A16. For each object we first apply a scaling factor to the photometric uncertainties such that the best-fit SED model has a reduced $\chi^2$ ($\chi^2_r$) of 1. We then create 1,000 realizations of the observed SED of each object by re-sampling its photometry according to the aforementioned scaled uncertainties and assuming a Gaussian distribution. We fit each of the 1,000 simulated SEDs and compile the distribution of each parameter. We assign the uncertainties to the 68.3% intervals of these distributions around the values of the best-fit model.

2.2. Optical Spectra

We obtained optical spectra of W0116–0505 and W0220+0137 using the Multiple Mirror Telescope
emission lines we measure a redshift of $z = 2.3$. We used the blue channel with the 1200 lines/mm grating, and obtained $3 \times 600$ s exposures on each target through a longslit with a width of 1.5″. The optical spectrum of W0204–0506 was obtained using the GMOS-S spectrograph on the Gemini South telescope on UT 2011 November 27 using a longslit with a width of 1.5″ as well. These observations have been previously presented by A16, and we refer the reader to that study for further details on these observations. All three spectra were reduced using standard tools.

In particular both spectra show blended Ly$\alpha$ and O$\text{iv}$ emission lines, that are typically observed in type 1 quasars. Single Gaussian fits to the C$\text{iv}$ emission line suggest either that there is a small amount of variability in the continuum and/or the emission lines, or that the emission lines come from a region that has a different spatial extension than the continuum such that differences in extraction apertures can account for the discrepancy. Unlike the MMT spectra, the SDSS observations were obtained through a much larger 3″ fiber. The spectra of W0116–0505 and W0220+0137 show clear broad, high ionization emission lines that are typically observed in type 1 quasars. Single Gaussian fits to the C$\text{iv}$ emission line, following the prescription of Assef et al. (2011, and references therein) to fit the continuum and define the spectral region on which to fit the emission line, have FWHM of approximately 2800 km s$^{-1}$ and 3500 km s$^{-1}$ respectively for W0116–0505 and W0220+0137. Based on these emission lines we measure a redshift of $z = 3.173 \pm 0.002$ for W0116–0505, and $z = 3.122 \pm 0.002$ for W0220+0137. In particular both spectra show blended Ly$\beta$ and O$\text{vi}$ emission features. W0204–0506 is at a significantly lower redshift of $z = 2.100 \pm 0.002$, and hence we cannot determine if these emission lines are present in the spectrum, as they fall shortwards of the atmospheric UV cut-off.

2.3. HST Observations

A joint program between Chandra and HST was approved during Chandra Cycle 17 (PID 17700696) to obtain HST imaging in two bands of all three targets and obtain Chandra/ACIS-S observations of W0116–0505 and W0220+0137. These targets were selected for having some of the clearest blue excess emission in terms of the $\chi^2$ improvement, and for having some of the highest expected count rates in ACIS-S. The archival Chandra/ACIS-I observations for W0204–0506 presented by A16 are sufficient to accomplish our science goals, so no further observations were requested. In this section

| Object | Redshift | Primary AGN | Secondary AGN |
|--------|----------|-------------|---------------|
|        |          | $E(B - V)$  | $E(B - V)$    |
|        |          | (mag)       | (mag)         |
| W0116–0505 | 3.173 | $4.24^{+2.71}_{-0.11}$ | $45.18^{+0.04}_{-0.03}$ | $0.00^{+0.02}_{-0.00}$ |
| W0204–0506 | 2.100 | $10.00^{+1.74}_{-0.08}$ | $44.98^{+0.04}_{-0.22}$ | $0.10^{+0.00}_{-0.03}$ |
| W0220+0137 | 3.122 | $7.33^{+2.67}_{-0.16}$ | $44.96^{+0.08}_{-0.11}$ | $0.00^{+0.02}_{-0.00}$ |

Table 2

Best-fit SED Parameters

Figure 2. Optical spectrum of W0116–0505, obtained with the MMT spectrograph (black) and by SDSS (gray).

Figure 3. Optical spectrum of W0204–0506, obtained with the GMOS-S instrument at the Gemini South Observatory.

Figure 4. Optical spectrum of W0220+0137, obtained with the MMT spectrograph (black) and by SDSS (gray).
we focus on the HST observations, while the Chandra observations are described in the next section.

Imaging observations were obtained using the WFC3 camera onboard HST of all three BHD targets in both the F555W and the F160W bands. Each target was observed during one orbit, with two exposures in the F555W band followed by three exposures in the F160W band. The exposure times in the F555W band were 735 s and 626 s for each image for W0116–0505 and W0204–0506, and 735 s and 625 s each for W0220+0137. All exposure times in the F160W band were 353 s. For the F160W band we use the reduced images provided by the HST archive. Cutouts of 5′′ × 5′′ centered on the F160W coordinates of the target, are shown in the middle panels of Figure 5.

For the F555W band we do not use the archive provided reductions, as the pipeline cosmic ray rejection is significantly compromised by the acquisition of only two images. Instead, we took the fully-reduced single frames provided by the archive, including the charge transfer efficiency correction, and used the LACOSMIC algorithm (van Dokkum 2001) to remove cosmic rays. We then used those cosmic-ray corrected images to continue with the pipeline processing and combine the frames. We aligned the F555W image to the F160W image using stars detected in both bands. The final images are shown in the left panels of Figure 5. Table 1 presents the 4′′ diameter aperture magnitudes measured in each band for each object.

The right panel of Figure 5 show an RGB composite of the images created using the Lupton et al. (2004) algorithm as implemented through the astropy v2.0.1 function make_lupton_rgb. We assigned the F555W image to the blue channel and the F160W image to the red channel, while leaving the green channel empty. Before producing the RGB composite, we convolve the F555W image with a Gaussian kernel to match its PSF to that of the F160W image. We assume that the PSFs of both images are well modeled by Gaussian PSFs, with the respective FWHM as provided by the WFC3 documentation, namely 0.067′′ for the F555W channel, and 0.148′′ for the F160W channel. Hence, the Gaussian kernel used on the F555W image corresponds to a Gaussian function with \[ \text{FWHM}_2 = \text{FWHM}_1 \text{FWHM}_{\text{F160W}} - \text{FWHM}_{\text{F555W}}. \]

Figure 6 shows the radial profiles of each source compared to that of a fiducial point source with a Gaussian PSF. The emission of the three objects is clearly resolved in both bands. For W0116–0505 and W0220+0137 the morphologies seem to be broadly undisturbed in both bands, with the F160W emission having a larger extent and a higher luminosity. The emission peaks in both bands are spatially co-located. W0204–0506 is, on the other hand, quite clearly disturbed, with the F160W morphology (rest-frame 5200Å) suggestive of a recent interaction. The F555W emission (rest-frame 1800Å) is patchy, reminiscent of a starburst. We discuss the implications of this UV morphology further in §.

To more quantitatively assess the morphology of these sources, we have measured different coefficients commonly used in the literature. Specifically, we follow Lotz et al. (2004) to measure the Gini, \( M_{20} \) and \( A \) coefficients (Lotz et al. 2004, and references therein). The Gini coefficient (Abraham et al. 2003) measures how uniformly distributed is the light among the pixels of a galaxy in an image, such that Gini is 0 if all pixels have a uniform brightness and is 1 if all brightness is concentrated in a single pixel. The \( M_{20} \) coefficient measures the second order moment of the brightest 20% of the flux of the galaxy as compared to the total second order moment, \( M_{\text{tot}} \). The moments are computed around a center chosen to minimize \( M_{\text{tot}} \). The \( A \) coefficient measures the rotational asymmetry of a galaxy by subtracting an image of the galaxy rotated by 180 degrees. The rotational center is chosen to minimize \( A \). For further details on these coefficients, we refer the reader to Lotz et al. (2004) and Conselice (2014).

We start by subtracting the background using SExtractor (v2.19.5, Bertin & Arnouts 1996) as well as obtaining the centroid of each object in each band. We then compute the Petrosian radius (Petrosian 1976) function by Lotz et al. (2004) to measure the Gini, \( M_{20} \) and \( A \) coefficients for each object in each band are shown in Table 3. We estimate the uncertainties in each parameter through a Monte Carlo approach. For a given object in a given band, we use the uncertainty in each pixel to generate 1,000 resampled images assuming Gaussian statistics. We then repeat the measurement in each resampled image following the procedure outlined above. We assign the measurement error to be the dispersion of the coefficient measurements in the 1,000 resampled images.

Recently, Farrah et al. (2017) measured these coefficients for 12 Hot DOGs using HST/WFC3 images in the F160W. Using the boundaries proposed by Lotz et al. (2004) in the Gini–A plane and by Lotz et al. (2008) in the Gini–\( M_{20} \) plane, Farrah et al. (2017) determined that while Hot DOGs have a high merger fraction (∼80%), this fraction is consistent with that found for massive galaxies at \( z \sim 2 \), leading them to conclude that Hot DOGs are not preferentially associated with mergers. These results are generally consistent with those of Fan et al. (2016b) who also found a high merger fraction (62 ± 14%) among Hot DOGs, as well as with those recently presented by Diaz-Santos et al. (2018), who found evidence with sub-mm ALMA ∼ 200 µm imaging of a triple major merger in the the most luminous Hot DOG, W2246–0526. If we adopt the same boundaries used by Farrah et al. (2017) to classify our sources according to their F160W morphologies, and noting that all caveats identified by Farrah et al. (2017) also apply here, we find that the host galaxies of W0116–0505 and W0220+0137 are not consistent with mergers but instead are classified as undisturbed early-type galaxies. For W0204–0506, on the other hand, we find that its host galaxy morphology is best classified as an on-going merger. These results are consistent with our visual characterization of the host galaxies.

2.4. Chandra Observations

We have obtained Chandra/ACIS-S observations of two of our targets: W0116–0505 and W0220+0137 (proposal ID 17700696). Each object was observed with a
Figure 5. HST/WFC3 images of W0116–0505 (top row), W0204–0506 (middle row) and W0220+0137 (bottom row) in the F555W (left panels) and F160W (middle panels) bands. The right panels show a color-composite where the F160W band has been mapped to red and the F555W band has been mapped to blue, and we have matched the PSF of the F555W band to that of F160W. Each panel shows a 5''×5'' region centered on the F160W centroid of each target. The magenta circle in the F555W image of W0204–0506 shows the brightest UV clump.

Table 3
Morphology of Blue Excess Hot DOGs

| Source        | Band  | Gini     | $M_{25}$   | $A$     |
|---------------|-------|----------|------------|---------|
| W0116–0505    | F555W | 0.499±0.003 | −2.00±0.16 | 0.133±0.010 |
|               | F160W | 0.527±0.008 | −2.08±0.02 | 0.116±0.049 |
| W0204–0506    | F555W | 0.520±0.016 | −1.19±0.14 | 0.599±0.027 |
|               | F160W | 0.633±0.011 | −0.81±0.02 | 0.278±0.010 |
| W0220+0137    | F555W | 0.491±0.004 | −1.77±0.09 | 0.112±0.009 |
|               | F160W | 0.559±0.016 | −2.16±0.04 | 0.172±0.016 |
total exposure time of 70 ks. W0116–0505 was observed continuously, while the observations of W0220+0137 were split into one 30 ks and two 20 ks visits spread throughout seven days. It is worth noting that these observations have previously been presented by Vito et al. (2018) in the context of a larger sample of Hot DOGs observed in X-rays. They find both sources are heavily absorbed at those wavelengths. Goulding et al. (2018) analyzed the observations for W0220+0137 as well, but in the context of a large sample of Extremely Red Quasars (ERQs), and also found the source to be heavily absorbed at X-ray energies, qualitatively consistent with the rest of the ERQ population analyzed. Here we analyze the data following the approach of A16, who analyzed the archival Chandra/ACIS-I observations of W0204–0506.

We use CIAO v4.7 to analyze these data. The spectral data products, including the source and background spectra, and the response files were created using the specextract tool. Source events were extracted from circular regions with 2″ radii centered on the source, while background events were extracted from annuli with inner and outer radii of 3 and 6″, respectively. For W0220+0137, the spectral products from the three observations were combined into one using the tool combine_spectra. We use the HEASOFT tool grppha to group the spectra with a minimum of one count per bin.

After subtracting the background, 74 counts are detected for W0116–0505, and only 18 for W0220+0137. Figures 7 and 8 show their respective unfolded spectra. For reference, we also show the ACIS-I spectrum of W0204–0506 in Figure 9 which had a significantly longer exposure time of 160 ks. The shape of all three spectra differ significantly from that of an unabsorbed power-law, suggesting the emission is dominated by a highly obscured AGN, as expected from the SED modeling presented in §2.1. In the next section we model these spectra and discuss their implications for the nature of the BHDs.

3. X-RAY DATA MODELING

The X-ray spectra of W0116–0505 and W0220+0137 are clearly hard, implying the emission is most likely...
dominated by a highly obscured AGN. To better constrain the properties of the obscured AGN, we fit the emission of both objects using the models of Brightman & Nandra (2011), following the same approach as in A16. These models predict the X-ray spectrum as observed through an optically thick medium with a toroidal geometry, as posited by the AGN unified scheme. The models employ Monte-Carlo techniques to simulate the transfer of X-ray photons through the optically-thick neutral medium, self-consistently including the effects of photoelectric absorption, Compton scattering and fluorescence from Fe K, amongst other elements. Treating these effects self consistently rather than separately has the advantage of reducing the number of free parameters and of gaining constraints on the spectral parameters. It is therefore particularly useful for low count spectra such as those we are fitting here. We therefore carry out the parameter estimation by minimizing the Cash statistic (Cash 1979), modified through the W-statistic provided by XSPEC, to account for the subtracted background. Also following the approach of A16, we require the photon index $\Gamma$ to be $\geq 1.6$, as it is poorly constrained by our data and lower values are only appropriate for low Eddington ratios. In practice, the fitting procedure we used allows values of $\Gamma$ in the range $1.6-3.0$, and values of $N_H$ in the range $10^{20}-10^{26}$ cm$^{-2}$.

Figures 7 and 8 show the best-fit models to the spectra of W0116–0505 and W0220+0137, respectively. The best-fit absorbed AGN model to W0116–0505 has an absorption column density of neutral hydrogen of $N_H = 1.2^{+1.0}_{-0.7} \times 10^{24}$ cm$^{-2}$, a photon-index of $\Gamma = 1.9^{+0.7}_{-0.3}$ and an absorption-corrected luminosity of log $L_{2-10}$ keV/erg s$^{-1} = 45.63^{+0.58}_{-0.24}$. The best-fit model has a Cash statistic of $C = 56.3$ for $\nu = 65$ degrees of freedom. For W0220+0137, the best-fit model has $N_H = 3.2 \times 10^{24}$ cm$^{-2}$, $\Gamma = 2.5$ and log $L_{2-10}$ keV/erg s$^{-1} = 45.54^{+0.30}_{-0.16}$, with $C = 8.0$ and $\nu = 15$. Note that because of the low number of counts for W0220+0137, the 90% confidence uncertainties in the best-fit $\Gamma$ and $N_H$ are determined by the boundaries of the model. The same is true for the lower-bound of the best-fit $\Gamma$ in W0116–0505. The best-fit values of $N_H$ and $L_{2-10}$ keV are consistent within the uncertainties with those found by Vito et al. (2018) for both sources. The best-fit values for W0220+0137 are also consistent within the (large) error bars with those found by Goulding et al. (2018). For W0204–0506, A16 found that the best-fit absorbed AGN has $N_H = 6.3^{+0.81}_{-0.21} \times 10^{24}$ cm$^{-2}$, $\Gamma = 1.6^{+0.8}_{-0.9}$ and log $L_{2-10}$ keV/erg s$^{-1} = 44.9^{+0.86}_{-0.14}$, with $C = 66.08$ and $\nu = 77$.

The spectra of all three objects are likely dominated by a luminous AGN with very high absorption. In the case of W0116–0505 and W0220+0137, the absorption is consistent with the objects being Compton-thick (i.e., $N_{\text{rmH}} > 1.5 \times 10^{24}$ cm$^{-2}$). This is in qualitative agreement with the SED modeling presented in §4. From the SED model of each object we can estimate the rest-frame intrinsic (i.e., obscuration corrected) specific luminosity at 6$\mu$m, $L_{6\mu m}$, which has been shown to be well correlated with the $L_{2-10}$ keV X-ray luminosity by a number of authors (Fiore et al. 2009; Gandhi et al. 2009; Bauer et al. 2010; Mateos et al. 2013; Stern 2015; Chen et al. 2017). We use the best-fit relation of Stern (2015) between $L_{6\mu m}$ and $L_{2-10}$ keV, which accurately traces this relation up to very high $L_{6\mu m}$ and is hence most appropriate for our targets. From the $L_{6\mu m}$ of the most luminous and obscured AGN component of W0116–0505, this relation predicts log $L_{\text{predicted}}$ keV/erg s$^{-1} = 45.53 \pm 0.62$, which is in excellent agreement with the luminosity of the best-fit model to the X-ray data of log $L_{2-10}$ keV/erg s$^{-1} = 45.63^{+0.58}_{-0.24}$. For W0220+0137 we also find excellent agreement, with log $L_{\text{predicted}}$ keV/erg s$^{-1} = 45.58 \pm 0.62$ and log $L_{2-10}$ keV/erg s$^{-1} = 45.54^{+0.30}_{-0.16}$. A16 nominally found a good agreement as well for W0204–0506, as they estimated log $L_{\text{predicted}}$ keV/erg s$^{-1} = 45.36\pm0.37$ and found log $L_{2-10}$ keV/erg s$^{-1} = 44.9^{+0.86}_{-0.14}$ from the best-fit X-ray model. However, when jointly considering this with the best-fit and expected absorption, their Figure 5 suggests W0204–0506 may be somewhat X-ray weak.

From the SED modeling we also have an estimate of the amount of dust that is obscuring the luminous AGN that dominates in both the mid-IR and the X-rays. Comparing to the column densities of neutral hydrogen constrained by the modeling of X-ray spectra, we find dust-to-gas ratios of $E(B-V)/N_H = 3.5 \pm 2.0 \times 10^{-24}$ cm$^2$ mag for W0116–0505, where the uncertainty corresponds to the 68.3% confidence interval and has been derived, for simplicity, assuming Gaussian statistics. For W0220+0137 we find $E(B-V)/N_H = 2.3 \times 10^{-24}$ cm$^2$ mag. As $N_H$ is not constrained at the 90% level within the model boundaries, we cannot derive a meaningful confidence interval. For W0204–0506, A16 found a larger ratio of $E(B-V)/N_H = 1.54 \pm 1.26 \times 10^{-23}$ cm$^2$ mag. For comparison, the me-
dian dust-to-gas ratio in AGN found by Maiolino et al. (2001) is $\times 10^{-25}$ cm$^{-2}$ mag. This value is comparable to that found in W0204–0506, while those found in W0116–0505 and W0220+0137 are lower. Unfortunately the large uncertainties in this quantity make this result difficult to interpret, but it is worth noting that recently Yan et al. (2019) identified a very low dust-to-gas ratio of $\approx 4 \times 10^{-25}$ cm$^{-2}$ for a heavily obscured nearby quasar at $z = 0.218$ with $N_H \approx 3 \times 10^{25}$ cm$^{-2}$, with around $N_H \approx 10^{25}$ cm$^{-2}$ coming from the ISM, which could be a better analog to our objects. If the dust-to-gas ratio is indeed significantly lower in W0116–0505 and W0220+0137 than in W0204–0506, it could either imply a low metallicity for the former systems such that there is a deficit of dust overall in the host galaxy, or that a higher than typical fraction of absorbing gas exists within the dust sublimation radius of the accretion disk. We speculate the latter could be consistent with the recent results of Wu et al. (2018) that show Hot DOGs are accreting close to the Eddington limit, perhaps as a result of higher gas densities in the vicinity of the SMBH.

Taken together, these results could imply that W0116–0505 and W0220+0137 represent a different class of object than W0204–0506, as the former are either dust-poor or gas-rich in the nuclear regions, but have normal X-ray luminosities, while the latter has a normal amount of dust but might be somewhat X-ray weak. The morphology of the HST imaging strongly differs between these objects, as discussed in §2.3 further supporting this. Goulding et al. (2014) points out that W0220+0137 is also classified as an ERQ by Hamann et al. (2017), and finds that W0116–0505 fulfills most of the criteria and hence classifies it as ERQ-like. This supports a view in which ERQs and Hot DOGs are not independent populations, but possibly related to each other with BHDs being the link between them. We speculate that Hot DOGs might correspond to the highly obscured AGN phase of galaxy evolution proposed by, e.g., Hopkins et al. (2003) or Alexander & Hickox (2012), and as the obscuration starts clearing out (see Hickox & Alexander 2018, for a description of the different physical scales of the obscuring materials), the object transforms into a BHD and then an ERQ, before transitioning into an unobscured quasar. The significant levels of outflowing ionized gas identified by Zakamska et al. (2016) for four ERQs, by Diaz-Santos et al. (2016) for the most luminous Hot DOG, W2246–0526, and by Wu et al. (2018) for two more Hot DOGs, support the view that both types of objects are experiencing strong AGN feedback.

4. SOURCE OF THE EXCESS BLUE EMISSION

4.1. Dual AGN

One of the possible scenarios proposed by A16 is that BHDs could be powered by two AGNs instead of one, where a primary luminous, highly obscured AGN dominates the mid-IR emission, and a secondary fainter, unobscured or lightly obscured AGN dominates the UV/optical emission. As discussed above, the former would be expected to dominate the hard X-ray emission of these sources, and that is exactly what is observed. However, the less luminous component would contribute significant soft X-ray emission, that can be constrained by the Chandra observations. In Table 2 we list the expected intrinsic $6\mu$m luminosity of the primary and secondary best-fit AGN components for both W0116–0505 and W0220+0137. It is important to note that for the secondary AGN components we have no useful constraints in the IR, as the rest-frame near-IR is dominated by the host galaxy and the mid-IR is dominated by the primary AGN component. Its $6\mu$m luminosity comes instead indirectly from the template fit to the rest-frame UV/optical SED. As we did in 4.3 we can estimate the expected $2–10$ keV luminosity using the relation of Stern (2013). Hence, if the secondary component is a real second AGN in the system, for W0116–0505 we expect it to have an X-ray luminosity of $L^{predicted}_{2–10keV} = 44.43 \pm 0.37$, and for W0220+0137 we expect it to have $L^{predicted}_{2–10keV} = 44.29 \pm 0.62$. The gray-dashed curves in Figures 7 and 8 show the expected X-ray spectrum of these secondary components for W0116–0505 and W0220+0137 respectively. We assume power-law spectra with $\Gamma = 1.9$ and no absorption, as both secondary components show no reddening in the UV/optical. Figure 9 also shows the expected X-ray spectrum of the secondary AGN, as determined from the analysis of A16.

We can determine with 90% confidence that a secondary power-law component would have a luminosity of $L^{predicted}_{2–10keV} < 43.95$ in W0116–0505, and of $L^{predicted}_{2–10keV} < 43.93$ in W0220+0137. These limits are marginally consistent with the $2–10$ keV luminosities expected given the optical/UV luminosities observed. For W0204–0506 on the other hand, A16 was able to rule out this scenario with high confidence. Unlike the analysis presented here, A16 reached this conclusion by comparing the change in Cash statistic of the X-ray spectra modeling obtained by requiring or not the presence of the secondary AGN emission with the expected luminosity. Specifically, A16 found that including the secondary component resulted in an increase in the Cash statistic $\Delta = 128.38$, which allowed to rule out the dual AGN scenario with $> 99.9\%$ confidence.

Hence, the X-ray spectra of all three objects are better described by the single, highly absorbed AGN model, suggesting that BHDs are not dual AGN. The case is strongest for W0204–0506, while for W0116–0505 and W0220+0137 we cannot completely reject the dual AGN scenario with high confidence using the current data sets.

4.2. Extreme Star-formation

Another possibility discussed by A16 is that the UV/optical SED of BHDs is powered by unobscured extreme star-formation rather than by unobscured AGN emission. This would account for a very blue UV/optical SED without the X-ray contribution expected for a secondary AGN.

This scenario was studied in detail by A16 for W0204–0506. Modeling the UV/optical SED of this object using the Starburst99 v7.0.0 code (Leitherer et al. 1993, 2010, 2014; Vázquez & Leitherer 2005) in combination with the EzGal package of Mancone & Gonzalez (2012), they...
determined that the SED could be consistent with being powered by a young starburst but only if the SFR was very high. Specifically, they assumed the latest Geneva models available for the used version of Starburst 99 (see [Leitherer et al. 2014] for details), a constant SFR, and a solar metallicity, and determined that the SED could only be powered by a starburst of age \( \lesssim 5 \) Myr with SFR \( \gtrsim 1000 M_\odot \text{yr}^{-1} \) with 90% confidence. A lower metallicity somewhat eases these constraints, with the lowest metallicity available for the Geneva models in Starburst99 of \( Z = 0.001 \) implying age \( \lesssim 100 \) Myr and SFR \( \gtrsim 250 M_\odot \text{yr}^{-1} \). However, A16 considered that such a low metallicity was unlikely given the large amount of dust available in the inner regions of the system that give rise to the high specific luminosities in the mid-IR. Furthermore, due to the large, unobscured SFR implied by the solar metallicity models, A16 considered that the UV/optical SED was unlikely powered by a starburst.

However, the morphology of the UV emission in the HST imaging we have obtained (see [2.3] for details) seems to imply that starburst activity is present in W0204–0506. As shown in Figure 5, the flux traced by the F555W band (rest-frame \( \sim 1750 \lambda \)) is distributed along the NE section of the galaxy, and concentrated in a few distinct regions. The bulk of the F555W emission is considerably offset from the emission of the older stars traced by the F160W band (rest-frame \( \sim 5100 \lambda \)). Furthermore, the morphology of the system is consistent with a merger (see [2.3]), which can trigger significant star-formation activity.

The analysis of A16 in conjunction with the HST imaging available for W0204–0506 then imply that if its UV/optical SED is solely powered by a starburst, then the system must be in a very uncommon state. On one hand, it could be that the system has a very large metallicity gradient, such that in the outskirts, where star-formation dominates, the metallicity is close to primordial and SFR is only \( \gtrsim 250 M_\odot \text{yr}^{-1} \), yet near the SMBH the metallicity is high enough to allow for the substantial amount of dust needed to obscure the hyper-luminous AGN. The other possibility would be that W0204–0506 does not have a substantial metallicity gradient but is instead powered by the strongest unobscured starburst known with SFR \( \gtrsim 1000 M_\odot \text{yr}^{-1} \).

A third and more likely option is that while a moderate starburst is ongoing in the system, the UV/optical emission is still dominated by light leaking from the central highly obscured AGN. As shown in Table 3 (also see discussion in [2.3]), the light distribution of W0204–0506 in the F555W band has a somewhat larger Gini and a significantly larger \( M_{20} \) coefficient than the other two BHDs studied. While the large \( M_{20} \) is consistent with the observed patchiness of the system, the high Gini coefficient implies that the light is strongly concentrated in the brightest regions. In the left panel of Figure 5 it can be appreciated that the NW UV clump (marked by the magenta circle, 0.2” diameter) is brighter than the rest, containing approximately 10% of the total F555W flux measured in the 4” radius aperture. This region is close to the geometrical center of the F160W light distribution, and could correspond to the position of the buried AGN. That the optical spectrum of this source (Fig. 3) shows a mixture of narrow and broad emission lines is also consistent with this picture, as A16 reported a FWHM of 1630 ± 220 km s\(^{-1}\) for C\( \text{IV} \) but of only 550 ± 100 km s\(^{-1}\) for C\( \text{III} \).

For W0116–0505 and W0220+0137 the situation is somewhat different. The optical spectra, shown in Figures 2 and 4 show clear, broad, high-ionization features characteristic of type 1 AGNs. The UV emission, while spatially extended, is strongly concentrated in both objects (see discussion in [2.3]), which is more consistent with the expectations for the dual AGN or the leaked AGN light scenarios, instead of the star-formation scenario. If we model their broad-band SEDs as starbursts as in A16, we find the best-fit models shown in Figures 10 and 11 for W0116–0505 and W0220+0137, respectively. Each figure shows the best fit obtained assuming a solar metallicity and a metallicity of \( Z = 0.001 \) discussed above. As we do not include nebular emission we only use the bands that are redward of the Ly\( \alpha \) emission line and exclude the F160W band, which can be strongly contaminated by [O\( \text{II} \)] emission. Indeed, if we include the F160W band we find best-fit \( \chi^2 \) values a factor \( \sim 3 \) larger, indicating that the flux distribution is biased towards the stellar population. We set a minimum photometric uncertainty of 0.05 mag as systematic differences between the measurements are unlikely to be below that level. In practice, this only affects the uncertainty used for the F555W band. The best-fit SFR, age and obscuration of the stellar population are shown in the figures as well; however, the values are quite degenerate as shown in Figure 12 particularly as there are no constraints longwards of \( \sim 4000 \lambda \). The only other longer wavelength broadbands that we have are in regions of the SED dominated by either an older stellar population or by the highly obscured, luminous AGN as shown in Figure 10 and hence are not useful for constraining these fits. We note, however, that the \( \chi^2 \) values of the best fits are quite large when it is considered that we are fitting three different parameters. This, coupled with UV/optical spectral features (i.e., the presence of broad emission lines) and the morphology in the HST imaging suggest that the UV/optical emission in these objects is unlikely dominated by unobscured starbursts.

4.3. Leaked AGN Light

The third possibility to explain the nature of BHDs is that the blue excess emission found in these objects corresponds to light coming from the highly obscured primary AGN that is leaking into our line of sight. As discussed by A16, this could happen either due to dust or gas scattering of the AGN emission into our line of sight, or due to a small gap in the dust that allows for a partial view towards the accretion disk and the broad-line region. However, the latter is unlikely, as discussed by A16, as the UV/optical SED is consistent with the emission of an unobscured accretion disk. As radiation at progressively shorter wavelengths is emitted in progressively inner regions of the accretion disk, a gap that only allows \( \sim 1\% \) of the emitted light through but does not distort the accretion disk spectrum would need to cover 99% of the effective disk size at each wavelength. While not impossible, the shape of such a gap would be exceedingly contrived, making this unlikely. Furthermore, we would not expect the UV/optical emission to be spatially...
Figure 10. (Upper panel) The solid black line shows the best-fit Starburst99 SED model to the UV/optical broad-band photometry of W0116–0505, assuming solar metallicity (see text for details). The gray shaded area shows all SED shapes within the 90% confidence interval. (Bottom panel) Same as in the top panel but for a metallicity of Z = 0.001.

Figure 11. Same as Fig. 10 but for W0220+0137.

This suggests that the most likely source of the blue excess emission in the three BHDs studied is scattered light. In this scenario, 99% of the emission from the accretion disk and the broad-line region would be absorbed by dust, while 1% will be scattered into our line of sight by either dust or gas, or both. Reflection nebulae are known to make the reflected SED bluer than the emitted SED in the UV (λ ≲ 2500 Å, e.g. see Draine 2003a), suggesting that the scattering medium in BHDs is more likely the gas surrounding the AGN. However, as there is likely dust on scales larger than the torus (Díaz-Santos et al. 2016; Tsai et al. 2018), we note that our data are not sufficient to rule out an SED that has been made bluer by dust reflection and redder by dust absorption. With respect to the X-rays, we note that while they should also be scattered into our line of sight along with the UV emission, the scattering cross section by either dust or free electrons is significantly smaller at the high energy ranges probed by the Chandra observations (Draine 2003a,b). Hence, the non-detection of a clear unabsorbed component in the X-ray spectra is consistent with this scattering scenario.

5. SUMMARY

We have investigated the source of the blue excess emission in three BHDs, two of which were identified as such by A16, and a third one which has an SED consistent with that of a Hot DOG although it does not meet the formal selection criteria due to being slightly too bright in the W1 band. While all Hot DOGs are characterized by mid-IR emission that is most naturally explained by a highly obscured hyper-luminous AGN (Eisenhardt et al. 2012; Assef et al. 2015; Tsai et al. 2015), BHDs have a UV/optical SED that is significantly bluer than expected based on template fitting results. Using a similar approach to that of...
Assef et al. (2013), we find that the SEDs of BHDs are best modeled using two AGN components: a primary hyper-luminous, highly obscured AGN that dominates the mid-IR emission, and a secondary lower luminosity but unobscured AGN that dominates the UV/optical emission. The bolometric luminosity of the secondary AGN SED is $\sim$1% of that of the primary component. A16 identified three possible scenarios to produce the excess blue emission, namely: (i) a secondary, less luminous but unobscured AGN in the system, (ii) an extreme starburst, or (iii) leaked UV/optical light from the primary, highly luminous, highly obscured AGN that dominates the mid-IR.

For one of the sources (W0204–0506), A16 ruled out a secondary AGN as the source of the blue excess emission, and instead concluded that the excess was caused by either unobscured star formation with an SFR $\gtrsim 1000 \, M_\odot \, yr^{-1}$, or by UV/optical light from the central engine leaking into our line of sight due to scattering or through a partially obscured sight-line, with the scattered AGN light hypothesis deemed more likely. In this paper, we have presented HST/WFC3 imaging of W0204–0506 showing a morphology consistent with an on-going merger and evidence of an on-going widespread starburst. Considering, however, the very high SFR needed to explain the UV emission by star-formation alone, we conclude it is more likely that the UV emission of W0204–0505 arises from a combination of scattered AGN light and star-formation.

We also studied in detail two other BHDs, W0116–0505 and W0220+0137. We present observations obtained with Chandra/ACIS-S and interpret them using the Brightman & Nandra (2011) models. We find that the X-ray spectra are consistent with single luminous, highly absorbed AGNs dominating the X-ray emission. We find that the $L_{2-10 \, keV}$ luminosities of these AGNs are consistent with those expected for the primary AGNs based on their estimated $L_{6\mu m}$ according to the $L_{6\mu m} - L_{2-10 \, keV}$ relation of Stern (2013). We also find that the gas-to-dust ratios of the AGNs in these systems are somewhat below the median value found in AGNs by Maiolino et al. (2001) and lower than that found in W0204–0506, suggestive of a lower metallicity or of a higher fraction of absorbing gas within the dust-sublimation radius of the AGN. Based on the UV through mid-IR SED models of these sources, we estimate the expected X-ray luminosity of the putative secondary AGN components assuming it is a second, independent AGN in the system. We found that the X-ray observations are only marginally consistent with the presence of a second AGN component in both W0116–0505 and W0220+0137, suggesting the dual AGN scenario is unlikely.

We followed A16 and modeled the UV emission of W0116–0505 and W0220+0137 assuming a pure starburst scenario, and found that while the best-fit SFRs are generally high, comparable to those found by A16 for W0204–0506, they are not well constrained due to the large degeneracies between SFR, age and metallicity. We found, however, that the $\chi^2$ values of the best-fit starburst models are large ($\sim 12$ for W0116–0506 and $\sim 8$ for W0220+0137) despite the small number of degrees of freedom (1 and 2 respectively), implying a pure starburst is not a good description of the observed UV SED. Additionally, the rest-frame UV spectra shows broad emission lines characteristic of AGN activity, further suggesting that star-formation does not dominate the observed UV emission.

Finally, we also studied the morphologies observed in the HST/WFC3 F555W and F160W images of W0116–0505 and W0220+0137 and found them to be undisturbed with the UV emission being centrally concentrated. An analysis based on the Gini, $M_{20}$ and $A$ coefficients showed that these systems are best characterized as undisturbed early type galaxies, consistent with the leaked AGN scenario. Considering all of this, we conclude that the source of the UV emission in W0116–0505 and W0220+0137 is scattered light from the hyper-luminous, highly obscured AGN that powers the mid-IR SED. Given the detail of our data and SED modeling, we cannot determine whether the scattering material is primarily gas, dust, or a mixture of both.

That all three BHDs we have investigated are due to scattered light from the highly obscured, hyper-luminous AGN highlights how powerful the central engine is in Hot DOGs: with only 1% of the emission of the accretion disk scattered into our line of sight, it is still more luminous than the entire stellar emission of the host galaxy in the UV. This is in general agreement with recent results which show that the SMBHs in Hot DOGs are accreting above the Eddington limit (Wu et al. 2018; Tsai et al. 2018) and are injecting large amounts of energy into the ISM of their host galaxies (Díaz-Santos et al. 2016), and hence are experiencing strong events of AGN feedback.

We thank J. Comerford and B. Weiner for carrying out observations presented in this article. RJA was supported by FONDECYT grants number 1151408 and 1191124. DJW acknowledges financial support from STFC Ernest Rutherford fellowships. HDJ was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A3A04005158). FEB acknowledges support from CONICYT-Chile (Basal AFB-170002) and the Ministry of Economy, Development and Tourism’s Millenium Science Initiative through grant IC120009, awarded to The Millenium Institute of Astrophysics, MAS. JW is supported by the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #14358. Support for program #14358 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. The scientific results reported in this article are based to a significant degree on data obtained from the Chandra X-ray Observatory and observations made by the Chandra X-ray Observatory and published previously in cited articles. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number 17700069 issued by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for and
REFERENCES

Abraham, R. G., van den Bergh, S., & Nair, P. 2003, ApJ, 588, 218
Alexander, D. M., & Hickox, R. C. 2012, NewAR, 56, 93
Assef, R. J., Kochanek, C. S., Brodwin, M., et al. 2010, ApJ, 713, 970
Assef, R. J., Denney, K. D., Kochanek, C. S., et al. 2011, ApJ, 742, 93
Assef, R. J., Eisenhardt, P. R. M., Stern, D., et al. 2015, ApJ, 804, 27
Assef, R. J., Walton, D. J., Brightman, M., et al. 2016, ApJ, 819, 111
Banerji, M., Alaghband-Zadeh, S., Hewett, P. C., & McMahon, R. G. 2015, MNRAS, 447, 3308
Barger, A. J., Cowie, L. L., Chen, C.-C., et al. 2014, ApJ, 784, 9
Bauer, F. E., Yan, L., Sajina, A., & Alexander, D. M. 2010, ApJ, 710, 212
Bennert, V. N., Auger, M. W., Treu, T., Woo, J.-H., & Malkan, M. A. 2011, ApJ, 726, 59
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Brightman, M., & Nandra, K. 2011, MNRAS, 413, 1206
Cash, W. 1979, ApJ, 228, 939
Chen, C.-T. J., Hickox, R. C., Goulding, A. D., et al. 2017, ApJ, 837, 145
Conrow, T., & Connolly, A. J. 2014, ARA&A, 52, 291
Cutri, R. M., Wright, E. L., Conrow, T., et al. 2012, Explanatory Supplement to the WISE All-Sky Data Release Products, Tech. rep.
Díaz-Santos, T., Assef, R. J., Blain, A. W., et al. 2016, ApJ, 816, 107
—. 2018, Science, 362, 1034
Draine, B. T. 2003a, ApJ, 588, 1017
—. 2003b, ApJ, 598, 1026
Eisenhardt, P. R. M., Wu, J., Tsai, C.-W., et al. 2012, ApJ, 755, 173
Fan, L., Han, Y., Nikutta, R., Drouart, G., & Knudsen, K. K. 2016a, ApJ, 823, 107
Fan, L., Han, Y., Fang, G., et al. 2016b, ApJ, 822, L32
Farrar, D., Petty, S., Connolly, B., et al. 2017, ApJ, 844, 106
Finkelstein, S. L., Rhoads, J. E., Malhotra, S., Pirzkal, N., & Wade, J. 2007, ApJ, 660, 1023
Fiore, F., Puccetti, S., Brusa, M., et al. 2009, ApJ, 693, 447
Gandhi, P., Horst, H., Smette, A., et al. 2009, A&A, 502, 457
Goulding, A. D., Zakamska, N. L., Alexanderoff, R. M., et al. 2018, ApJ, 856, 4
Griffith, R. L., Kirkpatrick, J. D., Eisenhardt, P. R. M., et al. 2012, AJ, 144, 148
Hamann, F., Zakamska, N. L., Ross, N., et al. 2017, MNRAS, 464, 3431
Hickox, R. C., & Alexander, D. M. 2018, ARA&A, 56, 625
Hopkins, P. F., Hernquist, L., Cox, T. J., & Kereˇ s, D. 2008, ApJS, 175, 356
Jin, H., et al. in prep.
Leitherer, C., Ekström, S., Meynet, G., et al. 2014, ApJS, 212, 14
Leitherer, C., Ortiz Otávalo, P. A., Bresolin, F., et al. 2010, ApJS, 189, 309
Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999, ApJS, 123, 3
Lotz, J. M., Primack, J., & Madau, P. 2004, AJ, 128, 183
Lotz, J. M., Davis, M., Faber, S. M., et al. 2008, ApJ, 672, 177
Lupton, R., Blanton, M. R., Fekete, G., et al. 2004, PASP, 116, 133
Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115, 2285
Maiolino, R., Marconi, A., Salvati, M., et al. 2001, A&A, 365, 28
Mancone, C. L., & Gonzalez, A. H. 2012, PASP, 124, 606
Mateos, S., Carrera, F. J., Alonso-Herrero, A., et al. 2015, MNRAS, 449, 1422
Petrosian, V. 1976, ApJ, 209, L1
Piconcelli, E., Vignali, C., Bianchi, S., et al. 2015, A&A, 574, L9
Rhodes, J., Refregier, A., & Groth, E. J. 2000, ApJ, 536, 79
Ricci, C., Assef, R. J., Stern, D., et al. 2017, ApJ, 835, 105
Stern, D. 2015, ApJ, 803, 129
Stern, D., Lanzbury, G. B., Assef, R. J., et al. 2014, ApJ, 794, 102
Tsai, C.-W., Eisenhardt, P. R. M., Wu, J., et al. 2015, ApJ, 805, 90
Tsai, C.-W., Eisenhardt, P. R. M., Jun, H. D., et al. 2018, ApJ, 868, 15
van Dokkum, P. G. 2001, PASP, 113, 1420
Vázquez, G. A., & Leitherer, C. 2005, ApJ, 621, 695
Vito, F., Brandt, W. N., Stern, D., et al. 2018, MNRAS, 474, 4528
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
Wu, J., Tsai, C.-W., Sayers, J., et al. 2012, ApJ, 756, 96
Wu, J., Buschmann, R. S., Tsai, C.-W., et al. 2014, ApJ, 793, 8
Wu, J., Jun, H. D., Assef, R. J., et al. 2018, ApJ, 852, 96
Yan, W., Hickox, R. C., Hainline, K. N., et al. 2019, ApJ, 870, 33

on behalf of the National Aeronautics Space Administration under contract NAS8-03060. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. The Pan-STARRS1 Surveys (PS1) have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Plank Institute and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching. The Johns Hopkins University, Durham University, the University of Edinburgh, Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NN08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE) and the Los Alamos National Laboratory. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofísica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. Some of the observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.
Zakamska, N. L., Hamann, F., Páris, I., et al. 2016, MNRAS, 459, 3144