БЕЛОК ТЕПЛОВОГО ШОКА HSP70 – ПРЕДПОСЫЛКИ ИСПОЛЬЗОВАНИЯ В КАЧЕСТВЕ ЛЕКАРСТВЕННОГО СРЕДСТВА

В.М. Покровский1, Е.А. Патраханов2, О.В. Анциферов1, И.М. Колесник1, А.В. Белашова1, В.А. Солдатова1, О.Н. Покопейко2, А.Ю. Карагодина3, И.С. Архипов1, Д.Г. Воронина1, Д.Н. Сушкова1

1 Федеральное государственное автономное образовательное учреждение высшего образования «Белгородский государственный национальный исследовательский университет» 308015, Россия, г. Белгород, ул. Победы, 85
2 Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет имени И.М. Сеченова» (Сеченовский Университет) 119991, Россия, г. Москва, ул. Трубецкая, 8/2

E-mail: vmpokrovsky@yandex.ru

Получено 11.09.2021 Принята к печати 15.10.2021

Белок теплового шока Hsp70 является одним из основных компонентов цитопротекции при действии различных внешних раздражителей. Анализ литературных данных показывает, что на сегодняшний день исследователями сформированы многочисленные доказательства роли HSP70 в качестве биологической мишени для разработки лекарственных средств, однако, представления о его использовании в качестве лекарственного средства зачастую разнонаправлены.

Цель. Обобщить и проанализировать данные литературы об особенностях физиологических функций белка теплового шока Hsp 70 и обозначить возможности его применения с целью фармакологической коррекции различных патологических состояний.

Материалы и методы. В процессе подбора материала для написания обзорной статьи использовали такие базы данных, как: Google Patents, Science Research Portal, Google Scholar, ScienceDirect, CiteSeer, Publications, Researchindex, Ingenta, PubMed, KEGG и др. Параметрами для отбора литературы были выбранны следующие слова и словосочетания: Hsp70, Hsp70 stroke, Hsp70 neuroprotection, Hsp70 cytoprotection, recombinant drugs.

Результаты. В данном обзоре мы сфокусировались на фармакологии одного из ключевых представителей данного семейства – Hsp70. Литературный анализ подтверждает, что данная молекула является эндогенным регулятором многих физиологических процессов и демонстрирует тканезащитные эффекты при моделировании ишемических, нейродегенеративных и воспалительных процессов. Применение рекомбинантного экзогенного Hsp70 имитирует эндогенную функцию белка, свидетельствуя об отсутствии ряда типичных ограничений, характерных для фармакотерапии высокомолекулярными соединениями, таких как иммуногенность, быстрое разрушение протеазами или низкая степень прохождения через гистогематические барьеры.

Заключение. Таким образом, Hsp70 может стать перспективным агентом для клинических испытаний в качестве препарата для лечения пациентов неврологического, иммунологического и кардиоваскулярного профиля.

Ключевые слова: Hsp 70; цитопротекция; шаперон; нейропротекция; рекомбинантные препараты.

Список сокращений: ЛС – лекарственные средства; БАС – боковой амиотрофический склероз; Hsp – белки теплового шока; HSF – фактор транскрипции – фактора теплового шока 1; HSEs – элементы теплового шока; TNF – фактор некроза опухоли; PRRs – рецепторы распознавания образов; SBDa – сфинголипид связывающий домен альфа; NBD – нуклеотидсвязывающий домен; NEF – фактор обмена нуклеотидов; DISC – комплекс, индуцирующий смерть; BAG-1 – Регулятор семейства молекулярных шаперонов BAG 1; CHIP – карбоксилсвязывающий домен; BID – проапоптотический член семейства Bcl-2; FANCC – группа комплементации фанконианемии; PKR – протеинкиназа R; MCA – средняя мозговая артерия; 17-DMAG –17-деметоксигельданамицин; NF-kB – ядерный фактор-каппа B; AIF – апоптотический фактор-каппа A; DISC – комплекс, индуцирующий смерть; PRRs – рецепторы распознавания образов; SBDa – сфинголипид связывающий домен альфа; NBD – нуклеотидсвязывающий домен; NEF – фактор обмена нуклеотидов; DISC – комплекс, индуцирующий смерть; BAG-1 – Регулятор семейства молекулярных шаперонов BAG 1; CHIP – карбоксилсвязывающий домен; BID – проапоптотический член семейства Bcl-2; FANCC – группа комплементации фанконианемии; PKR – протеинкиназа R; MCA – средняя мозговая артерия; 17-DMAG –17-деметоксигельданамицин; NF-kB – ядерный фактор-каппа B; AIF – апоптотический фактор-каппа A;
Heat shock protein Hsp70 is one of the main cytoprotection components under the action of various external stimuli. The analysis of the literature data shows that nowadays, the researches’ overwhelming evidence has proven the role of Hsp70 as a biological target for the drug development; however, the ideas about its use as a drug are often multidirectional. The aim of the article is to analyze and generalize the literature data on the features of the physiological functions of heat shock protein Hsp 70, and indicate the possibilities of its use for the pharmacological correction of various pathological conditions.

Materials and methods. In the process of selecting material for writing this review article, such databases as Google Patents, Science Research Portal, Google Scholar, ScienceDirect, CiteSeer, Publications, ResearchIndex, Ingenta, PubMed, KEGG, etc. were used. The following words and word combinations were selected as markers for identifying the literature: Hsp70, Hsp70 stroke, Hsp70 neuroprotection, Hsp70 cytoprotection, recombinant drugs.

Results. In this review, the pharmacology of one of the key members of this family, Hsp70, was focused on. The literary analysis confirms that this molecule is an endogenous regulator of many physiological processes and demonstrates tissue protective effects in modeling ischemic, neurodegenerative and inflammatory processes. The use of recombinant exogenous Hsp70 mimics the endogenous function of the protein, indicating the absence of a number of typical limitations characteristic of pharmacotherapy with high molecular weight compounds, such as immunogenicity, a rapid degradation by proteases, or a low penetration of histohematogenous barriers.

Conclusion. Thus, Hsp70 may become a promising agent for clinical trials as a drug for the treatment of patients with neurological, immunological, and cardiovascular profiles.
ВВЕДЕНИЕ
Белковый гомеостаз в организме млекопитающих поддерживается многокомпонентной системой белков-регуляторов метаболических процессов, зависящей от условий окружающей среды. Предположение о существовании семейства белков теплового шока, первое упоминание о котором датируется 1962 годом, было выдвинуто на основании открытия феномена толерантности тканей млекопитающих к высоким температурам после резкого нагревания этого же участка тканей до сублетальных температур [1].

В настоящее время проведено множество исследований, направленных на изучение пространственной формы, молекулярных взаимодействий и физиологических функций белков теплового шока [2, 3]. Описана протеомика большого семейства шаперонов, функция которых традиционно связана с укладкой и сборкой белков. Молекулярные шапероны играют важную роль в протеостазе. В частности, Hsp70 играет важную роль в свертывании, дезагрегации и деградации белка [4]. Посредством субстрат-связывающих доменов Hsp70 взаимодействует с широким спектром молекул, обеспечивая цитопротекцию при клеточных стрессах различной этиологии. Многообразие функций белков теплового шока побуждает необходимость изучения их поведения при различных патологических состояниях. В патологических состояниях, связанных с нарушением структурной организации белковых молекул. В настоящем мини-обзоре отражены основные механизмы функционирования и молекулярного взаимодействия Hsp70 с известными науке эффекторными молекулами при различных патологических каскадах. С учетом имеющихся литературных данных обсуждаются перспективы использования данной субстанции в качестве лекарственного средства, обладающего нейропротективной и цитопротективной активностью.

ЦЕЛЬ. Обобщить и проанализировать данные литературы об особенностях физиологических функций белка теплового шока Hsp70 и обозначить возможности его применения с целью фармакологической коррекции патологических состояний.

МАТЕРИАЛЫ И МЕТОДЫ
В процессе подбора материала для написания обзорной статьи использовали базы данных Google Patents, Science Research Portal, Google Scholar, ScienceDirect, CiteSeer, Publications, ResearchIndex, Ingenta, PubMed, KEGG и др. Параметрами для отбора литературы были выбраны следующие слова и словосочетания: Hsp70, Hsp70 stroke, Hsp70 neuroprotection, Hsp70 cytoprotection, recombinant drugs.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Базисная биология HSP70
Семейство белков Hsp70 человека включает 13 молекул, которые отличаются друг от друга уровнем экспрессии, субклеточным расположением и составом аминокислот. Они кодируются многогенным семейством, включающим до 17 генов и 30 псевдогенов [9]. Функциональные гены, кодирующие белки Hsp70 человека сопоставляются с несколькими хромосомами. Основные шапероны Hsp70s, индуцируемые стрессом, включают в себя белки Hsp70-1 (HspA1A) и Hsp70-2 (HspA1B), в совокупности называемые Hsp70 или Hsp70-1 и отличающиеся друг от друга только двумя аминокислотами. Экспрессия базальной mRNK HSPA1A/B варьируется в большинстве тканей и превышает уровни экспрессии других изоформ Hsp70 у людей. Hsp70-1t (Heat shock 70 kDa protein 1) является конститутивным, неиндуцируемым шапероном, который на 90% идентичен Hsp70-1 [10].
Известно, что Hsp70 состоит из двух основных доменов: N-концевой нуклеотидсвязывающий домен (NBD) (45 кДа) и домен, связывающий субстрат (SBD) (25 кДа). Первый представляет собой V-образную структуру, состоящую из двух поддоменов (дольей), окружающих сайт связывания АТФ. Второй, также состоит из двух поддоменов: субстрат связывающий домен белка (SBD) и субстрат связывающего домена альфа – (SBDa) [11].

Более поздние данные показали, что шапероны выполняют двойную функцию в протеостазе, внося свой вклад в реализацию основных этапов деградации белка[12]. Взаимодействие конкретного шаперона с другими шаперонами или кошаперонами определяет судьбу первого через один из общих путей деградации белка, убиквитин-протеасомную систему (UPS) или аутофагию. Hsp70 у узора взаимодействует с двумя кошаперонами: J – доменным кошапероном, Hsp40 и фактором обмена нуклеотидов NEF. Известно, что Hsp40 стимулирует гидролиз АТФ Hsp70 и может участвовать в представлении субрострам Hsp70 [13, 14]. NEF способствует обмену нуклеотидов с помощью Hsp70, вызывая высвобождение АДФ (рис. 1) [15].

Доказано, что в норме Hsp70 играет несколько ролей в сигнальных каскадах, участвующих в росте и дифференцировке клеток. Молекулярный механизм регуляции индукции Hsp70 зависит от активности уникального фактора транскрипции теплового шока 1 (HSF1), который связывается с 5’-промоторными областями всех генов Hsp и запускает транскрипцию. В гомеостатических условиях Hsp70 находится внутриклеточно и связан с HSF1 [16]. Высокая температура, ишемия и другие причины накопления развернутых белков, приводит к диссоциации Hsp70 от HSF, оставляя его свободным для связывания целевых белков. В комплексы с нуклеотидной областью индукцибельный гена теплового шока, известного как элементы теплового шока (HSEs). HSEs связываются с промоторной областью индукцибельного гена Hsp70, что приводит к увеличению генерации Hsp70 [17]. Hsp90, посредством связи с HSF1 также может влиять на Hsp70 – когда Hsp90 диссоциирует с HSF1, последний высвобождается для связывания HSEs и приводит к еще большей индукции Hsp70 [18].

Вновь сгенерированный Hsp70 в сочетании с АТФ, Hsp40 и Hsp90 связывает денатурированные белки и действует как молекулярный шаперон, способствуя восстановлению, свертыванию и транспортировке поврежденных пептидов внутри клетки. В дальнейшем образуется комплекс в состав которого входят протеины Hip (хантинг-взаимодействующий белок) и Nor (хантинг-организующий белок) связанные с N и с концевыми доменами соответственно, за счет чего происходит свертывание, а затем рефолдинг денатурированных структур [19]. Если свертывание не проходит, BAG-1 связывается с N-концом Hsp70, а CHIP E3-убиквитин-лигазы связывается с C-концом Hsp70. Этот комплекс затем взаимодействует с денатурированным белком и рекрутирует его в протеасому [20]. Таким образом, Hsp70 участвует в рефолдинге поврежденных протеинов.

Взаимодействие hsp70 с некоторыми из про- и антиапоптотических белков

Стress-индукция экспрессия Hsp70 позволяет клеткам справляться с большим количеством развернутых и/или денатурированных белков, образующихся в результате внешних стрессовых воздействий. Традиционно под такими типовыми патологическими процессами принимают воспаление, гипоксию, апоптоз, опухолевый рост [21].

Апоптоз, как реакция организма на патологические изменения, участвует в патогенетических звеньях многих заболеваний таких как инсульт, гипоксия новорожденных, дегенеративные заболевания сети, отторжение трансплантата, болезнь Альцгеймера и другие нейродегенеративные заболевания [21, 22].

Выделяют каспазонезависимый и каспазозависимый путь апоптоза. Каспазозависимый путь апоптоза делится на внутренний и внешний. В клетке происходят сложные сигнальные пути от инициирования до запуска каскада сигналных молекул, включающих множество белков. Очевидно, что воздействие на любой элемент этого каскада может являться терапевтической мишенью для фармакологической коррекции процессов апоптоза. Например, факторы роста нервов ингибитор апоптоз и, по-видимому, удовлетворяют терапевтическим потребностям при заболеваниях с обширным аутоиммунным аспектом. Увеличение экспрессии Bcl-2 может ингибитировать патологический апоптоз нейронов в ответ на нейротоксические факторы. Кроме того, было доказано, что низкомолекулярные ингибиторы каспаз, например, Z-VAD-FMK, эффективны при лечении бокового амиотрофического склероза животных [23].

Апоптоз необходим для поддержания клеточно-го гомеостаза. Экспрессия Hsp70, повышает выживаемость клеток в условиях стресса. Клетки нейядерном Hsp70 чувствительны к аутоиммуну [24], в то время как сверхэкспрессия Hsp70 ингибитирует апоптоз, действуя либо по внутреннему Akt/PKB, либо по внешнему рецептор-зависимому пути [25].

Внешний апоптоз инициируется плазматическими мембранными белками семейства рецепторов TNF, которые приводят к активации каспазы-8/10 в сигнальном комплексе, индуцирующим смерть (DISC) [26]. Hsp70 также может ингибитировать сборку сигнального комплекса DISC, ингибитируя апоп-
тоз, индуцированный Fas, TRAIL и TNF. После индуцированного TNF образования DISC и активации каспазы 8 Hsp70 может ингибировать активацию BID [27]. При взаимодействии с внеклеточным лигандалем мембранные рецепторы передают сигналы о смерти во внутриклеточное пространство через свои цитоплазматические домены. Мембраные рецепторы, участвующие в апоптозе, принадлежат к суперсемейству рецепторов фактора некроза опухоли (TNF), активация которых зависит от двух основных лигандов: TNF и Fas. TNF и его рецепторы, а именно TNFR-1 и TNFR-2, отвечают за инициирование основного пути апоптоза – пути TNF. Было показано, что взаимодействие между TNF и его рецепторами передает сигнал о смерти посредством рекрутирования двух адаптивных белков: домена смерти, связанного с рецепторами TNF (TRADD), и белка домена смерти, связанного с Fas (FADD). Как следствие, этот процесс влияет на запрограммированную гибель клеток через действие каспаз. Лиганды FNO образуют гомотримеры, которые связываются с рецепторами FNO на мембране [28]. При TNF-α-индуцированном апоптозе Hsp70 взаимодействует с белком FANCC (Fanconianemia complementation group C, ингибитор PKR) через его АТФазный домен и образует тройной комплекс с FANCC и PKR [29,30]. Он также сопровождается индуцированному TRAIL апоптозу и образованию сигнального комплекса, вызывающего смерть, с рецепторами смерти DR4 и DR5 [31]. Функция Hsp70 в Fas-индуцированном апоптозе плохо изучена, однако неблагоприятные эффекты зависят от клеточного контекста [32].

Внутренний апоптотический путь инициируется путем высвобождения различных факторов из митохондрий клетки. В ответ на повреждение головного мозга и на возникающий в результате этого окислительный стресс в митохондриях образуется переходная пора проницаемости, которая приводит к выделению цитозоля из митохондрий клетки. В ответ на повреждение митохондрий клеток или повреждение молекул ДНК, которые могут быть связаны с различными факторами, может индуцироваться апоптоз, вызванный активацией каспазы 3 [38]. На рисунке 2 представлены некоторые апоптотические белки, с которыми взаимодействует Hsp70.

Опыт фармакологического применения рекомбинантного Hsp70

Нейропротективное действие

Исследования, подтверждающие нейропротективную роль эндогенных белков теплового шока [39], стимулировали разработку фармакологических стратегий, основанных на применении рекомбинантного человеческого Hsp70 [40]. Так, Xinhua Zhan и соавт. продемонстрировали, что введение Fv-Hsp70 через 2 и 3 часа после очаговой церебральной ишемии приводило к уменьшению объема инфарктной зоны на 68% и значительно улучшало сенсомоторные функции по сравнению с контрольной группой [41]. Схожие результаты были представлены в публикации отечественной научной группы под руководством М.А. Шевцова. Авторы продемонстрировали, что как предварительное, так и постишемическое внутривенное введение Fv-Hsp70 корректировало уменьшение объема инфарктной зоны на 68% при сохранении двигательной функции по сравнению с контрольной группой [41]. Схожие результаты были представлены в публикации отечественной научной группы под руководством М.А. Шевцова. Авторы продемонстрировали, что как предварительное, так и постишемическое внутривенное введение Fv-Hsp70 корректировало уменьшение объема инфарктной зоны на 68% при сохранении двигательной функции по сравнению с контрольной группой [41]. Схожие результаты были представлены в публикации отечественной научной группы под руководством М.А. Шевцова. Авторы продемонстрировали, что как предварительное, так и постишемическое внутривенное введение Fv-Hsp70 корректировало уменьшение объема инфарктной зоны на 68% при сохранении двигательной функции по сравнению с контрольной группой [41]. Схожие результаты были представлены в публикации отечественной научной группы под руководством М.А. Шевцова. Авторы продемонстрировали, что как предварительное, так и постишемическое внутривенное введение Fv-Hsp70 корректировало уменьшение объема инфарктной зоны на 68% при сохранении двигательной функции по сравнению с контрольной группой [41].
В трансгенной мышиной модели болезни Альцгеймера и у мышей с бульбэктомией, интраназально вводимый rhHsp70 быстро проникает в пораженные участки мозга и смягчает множественные морфологические и когнитивные аномалии, нормализуя плотность нейронов в гиппокампе и коре головного мозга и снижая накопление амилоида-β и амилоидных бляшек [45, 46].

Помимо прямой цитопротективной активности в отношении нейронов, rhHsp70 демонстрирует ГАМК-эргическое действие: предварительное интратрепевой введение Hsp70 снижает тяжесть судорог, вызванных NMDA- и пентилентетразолом. При этом, меченый Hsp70 в нейронах был совместно локализован с рецепторами NMDA, синаптозином и декарбоксилазой L-глутаминовой кислоты [47].

Противовоспалительная активность
Превентивное введение Hsp70 снизило токсическое влияние эндотоксина E. coli на организм крыс и значительно увеличилось выживаемость животных во время эксперимента [48, 49]. Кроме того, в моделях сепсиса, вызванного введением липотейховой кислоты, было показано, что профилактическое введение экзогенного Hsp70 человека значительно ослабляет многочисленные гомеостатические и гемодинамические нарушения и частично нормализует нарушения со стороны системы свертывания и многие биохимические параметры крови, включая концентрации альбумина и билирубина [50, 51].

Было показано, что как внутри, так и внеклеточный Hsp70 модулирует активацию ключевого про- воспалительного фактора NF-κB [52]. Так, сверхэкспрессированный Hsp70 блокирует активацию NF-κB...
и ядерную трансплантацию p50/p65 посредством ингибирования IKK-опосредованного фосфорилирования IkB (ингибитор NF-κB). Интересно, что противоположный эффект возникает, когда Hsp70 находится вне клетки. Предполагается, что внеклеточный Hsp70 может действовать как молекулярный сигнал опасности (damage-associated molecular pattern, DAMP) через рецепторы врожденного иммунитета TLR2 и TLR4 и, таким образом, запускать провоспалительные каскады. [53] Также было отмечено усиление экспрессии/секреции NF-κB-зависимых провоспалительных цитокинов, включая интерлейкин IL-1β, IL-6 и FNO-α, в ответ на внеклеточный Hsp70 в клетках рака легких человека, дендритных клетках и моноцитах. [54] Одновременно другие исследования показали, что в культурах синовиоцитов, полученных от пациентов с ревматоидным артритом, внеклеточный Hsp70 ингибирует сигнальный путь NF-κB, понижая уровень IL-6, IL-8 и MCP-1 [55]. Кроме того, было показано, что внеклеточный Hsp70 снижает продукцию провоспалительных цитокинов, таких как FNO-α и IL-6, в моноцитах, подвергнутых воздействию агонистов TLR, и способствует ослаблению воспалительной реакции [56].

Таким образом, результаты ряда исследований свидетельствуют о том, что Hsp70 проявляет преимущественно противовоспалительную активность, однако при некоторых условиях может активировать провоспалительные каскады.

Современные способы получения рекомбинантных форм Hsp70

В настоящее время известно о создании рекомбинантных форм Hsp70A1. В частности выделяют два источника: выделение его из биомассы бактериальной культуры E. coli, экспрессирующего его в повышенных количествах и из трансгенных мышей продуцентов. Для анализа его активности определяют следующие параметры: субстратно-связывающую активность, способность вытеснять эндогенный аналог из клеток, способность снижать индуцированный провоспалительный эффект, способность стимулировать естественную активность киллеров по отношению к раковым клеткам in vitro. Известно, что гликозилирование белка в процессе жизнедеятельности клеток может осложнить результат его введения пациентам, особенно когда в организме находятся клетки экспрессирующие нативную форму, вызывающие аутозимунный ответ. Модифицированная версия белка была названа rhHsp70.128, который принципиально отличается от дикого типа белка (rhHsp70.135) в пяти предполагаемых N-гликозилировании сайтах: QGDRTTPSY, YFNDAQRQA, DLNKAINPD, KRNSAIPTK, и IINVAATDK. Шаперонную активность рекомбинантного Hsp70 оценивали с использованием карбоксиметилированного лактальбумина в качестве белка-субстрата. Было показано, что активность модифицированного белка соответствует активности эталонной версии дикого типа и связывает денатурированный лактальбумин с аналогичной эффективностью. Следующей тест заключался в измерении активности люцернаты после ее денатурации и восстановления с помощью препарата Hsp70 с целью анализа ее свертываемости. Данные показывают, что все три исследованных образца были почти одинаково активны. Была также проведена серия экспериментов, подтверждающая способность модифицированного рекомбинантного Hsp70 вытеснять его эндогенный аналог из клеток. Модифицированный rhHsp70.128 а также зонд дикого типа вошли в клетки и вытеснили эндогенный Hsp70. Альтернативным способом получения рекомбинантного белка Hsp, аналогичный с созданным таковым в E. coli, являлось создание линии самок продуцентов, экспрессирующих его в молочных железах с содержанием 1–2 мг/мл протеина в молоке в зависимости от животного. Исследование его экспрессии осуществляли методом иммуноноблотинга. Было показано, что мутантный белок может быть эффективно выделен с использованием колокон АТФ в отличие от дикого типа, реагируя на коммерческие антитела. На основании полученных данных очевидно, что секреторная продукция белка технологически более выгодна по сравнению с цитоплазматической за счет простоты ее очистки [57].

ЗАКЛЮЧЕНИЕ

Шапероны являются ключевыми регуляторами клеточного гомеостаза, выполняющими плейотропные функции в вовлечении широкого спектра сигнальных путей. При этом белки теплового шока, наиболее изученное семейство шаперонов, обладают высоким фармакотерапевтическим потенциалом для лечения целого ряда заболеваний, связанных с воспалением, апоптозом и накоплением неправильно свернутых белков. Кроме того, было показано, что внеклеточный Hsp70 может быть эффективно выделен с использованием колонок АТФ в отличие от дикого типа, реагируя на коммерческие антитела. На основании полученных данных очевидно, что секреторная продукция белка технологически более выгодна по сравнению с цитоплазматической за счет простоты ее очистки [57].
ФИНАНСОВАЯ ПОДДЕРЖКА
Данное исследование поддержано грантом Белгородской области на оказание государственной поддержки внедрения в производство инновационных технологий в рамках технологических проектов полного цикла.

КОНФЛИКТ ИНТЕРЕСОВ
Авторы заявляют об отсутствии конфликта интересов.

АВТОРСКИЙ ВКЛАД
В.М. Покровский – планирование статьи, обзор литературных источников, написание статьи;
Е.А. Патраханов – обзор литературных источников, формирование списка литературы;
О.В. Анциферов – обзор литературных источников, формирование списка литературы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Schlesinger M.J. Heat Shock Proteins // The Journal of biological chemistry. – 1990. – Vol. 265, No. 21. – P. 12111–12114.
2. Ferat-Osorio E., Sánchez-Anaya A., Gutiérrez-Mendoza M., Boscó-Gárate I., Wong-Baeza I., Pastelin-Palacios R., Pedraza-Alva G., Bonifaz L.C., Cortés-Reynosa P., Pérez-Salazar E., Arriaga-Pizano L., López-Macias C., Rosenstein Y., Isibasi A. Heat shock protein 70 down-regulates the production of toll-like receptor-induced pro-inflammatory cytokines by a heat shock factor-1/constitutive heat shock element-binding factor-dependent mechanism // J Inflamm (Lond). – 2014. – Vol. 11. – Art. No.19. DOI: 10.1186/1476-9255-11-19.
3. Meng W., Clerico E.M., McArthur N., Giersch L.M. Allosteric landscapes of eukaryotic cytoplasmic Hsp70s are shaped by evolutionary tuning of key interfaces. Proceedings of the National Academy of Sciences. – 2018. – Vol. 115, No. 47. – P. 11970–11975. DOI: 10.1073/pnas.1811051115.
4. Fernández-Fernández M.R., Gragera M., Ochoa-Ibarrola L., Quintana-Gallardo L., Valpuesta J.M. Hsp70 – a master regulator in protein degradation // FEBS Lett. – 2017. – Vol. 591, No.17. – P. 2648–2660. DOI: 10.1002/feb2.13627.
5. Acebron S.P., Fernandez-Saiz V., Taneva S.G., Moro F., Muga A. DnaJ recruits DnaK to protein aggregates // J Biol Chem. – 2008. – Vol. 283, No.3. – P. 1381–1390. DOI: 10.1074/jbc.M706189200.
6. Оценка Прогноза социально-экономического развития Российской Федерации на период 2019–2024 годов // Финансы: теория и практика. – 2018. – Т. 22, № 6. – С. 153–156. DOI: 10.26794/2587-5671-2018-22-6-153-156.
7. Mitragotri S., Burke P.A., Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies // Nat Rev Drug Discov. – 2014. – Vol. 13, No.9. – P. 655-672. DOI: 10.1038/nrd4363.
8. Craik D.J., Fairlie D.P., Liras S., Price D. The future of peptide-based drugs // Chem Biol Drug Des. – 2013. – Vol. 81, No.1. – P. 136–147. DOI: 10.1111/cbdl.12055.
9. Brocchieri L., de Conway M.E., Macario A.J. Hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions // BMC Evol Biol. – 2008. – Vol. 8. – Art. No.19. DOI: 10.1186/1471-2148-8-19.
10. Daugard M., Jäättelä M, Rohde M. Hsp70-2 is required for tumor cell growth and survival // Cell Cycle. – 2005. – Vol. 4, Issue 7. – P. 877–880. DOI: 10.4161/cc.4.7.1838.
11. Taylor I.R., Ahmad A., Wu T., Nordhues B.A., Bhullar A., Gestwicki J.E., Zuiderweg E.R.P. The disorderly conduct of Hsc70 and its interaction with the Alzheimer’s-related Tau protein. // J Biol Chem. – 2018. – Vol. 293, No.27. – P. 10796–10800. DOI:10.1074/jbc.RA118.002234.
12. Doyle S.M., Genest O., Wickner S. Protein rescue from aggregates by powerful molecular chaperone machines // Nat Rev Mol Cell Biol – 2013. – Vol. 14. – P. 617–629. DOI: 10.1038/nrm3660.
13. Acebron S.P., Fernandez-Saiz V., Taneva S.G., Moro F., Muga A. DnaJ recruits DnaK to protein aggregates // J Biol Chem. – 2008. – Vol. 283, No.3. – P. 1381–1390. DOI: 10.1074/jbc.M706189200.
14. Ahmad A., Bhattacharya A., McDonald R.A., Cordes M, Ellington B, Bertelsen EB, Zuiderweg ER. Heat shock protein 70 kDa chaperone / DnaJ cochaperone complex employs an unusual dynamic interface // Proc Natl Acad Sci USA. – 2011. – Vol. 108, No.47. – P. 18966–18971. DOI: 10.1073/pnas.1111220108.
15. Bracher A., Verghese J. The nucleotide exchange factors of Hsp70 molecular chaperones // Front Mol Biosci. – 2015. – Vol. 2. – Art. No.10. DOI: 10.3389/fmolb.2015.00010.
16. Gao T., Newton A.C. The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C // J Biol Chem. – 2002. – Vol. 277, No.35. – P. 31585–31592. DOI: 10.1074/jbc.M204353200.
17. Wang M.L., Tuli R., Manner P.A., Sharkey P.F., Hall D.J., Tuan R.S. Direct and indirect induction of apoptosis in human mesenchymal stem cells in response to titanium particles // J Orthop Res. – 2003. – Vol. 21, No.4. – P. 697–707. DOI: 10.1016/j.jor.2002.02.0241.3.
18. Zhao H., Michaelis M.L., Blagg B.S. Hsp90 modulation for the treatment of Alzheimer’s disease // Adv Pharmacol. – 2012. – Vol. 64. – P. 1–25. DOI: 10.1016/S0065-2571(10)560111.5.
19. Lanneau D., Wettstein G., Bonniaud P., Garrido C. Heat shock proteins: cell protection through protein triage // Cell Death Dis. – 2020. – Vol. 11, No.9. DOI: 10.1038/s41420-020-0301-2.
20. Alberti S., Demand J., Esser C., Emmerich N., Schild H., Hofffeld J. Ubiquitylation of BAG-1 and its role in the regulation of BAG-1// Cell Death and Differentiation. – 2009. – Vol. 16, No.7. – P. 755–767. DOI: 10.1038/cdd.2009.83.
21. Okafor C.C., Haleem-Smith H., Laqueriere P., Manner P.A., Tuan R.S. Particulate endocytosis mediates biological
responses of human mesenchymal stem cells to titanium wear debris // / Int Orthop. – 2006. – Vol. 24, No.3. – P. 461–473. DOI: 10.1002/jor.20075.

22. Kobayashi S.D., Vojich J.M., Whitney A.R., DeLeo F.R. Spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor // J Leukoc Biol. – 2005. – Vol. 78, No.6. – P. 1408–1418. DOI: 10.1189/jlb.0605289.

23. Lavrik I.N., Gollas A., Krammer P.H. Caspases: pharmacological manipulation of cell death // J Clin Invest. – 2005. – Vol. 115, No.10. – P. 2665–2672. DOI: 10.1172/JCI26252.

24. Schmitt E., Parcellier A., Gurbuxani S., Cande C., Hamburger J., Morales M.C., Hunt C.R., Dixon D.J., Kroemer R.T., Giordano F., Jäättelä M., Penninger J.M., Pance A., Kroemer G., Garrido C. Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant // Cancer Res. – 2003. – Vol. 63, No.23. – P. 8283–8240.

25. Matsumoto Y., Notthington F.J., Hong S.M., Kayama T., Sheldon R.A., Vexler ZS et al. Reduction of caspase-8 and caspase-3 cleavage is associated with increased c-FLIP and increased binding of Apaf-1 and Hsp70 after hypoxic/ischemic injury in mice overexpressing Hsp70 // Stroke. – 2006. – Vol. 37. – P. 507–512. DOI: 10.1161/01.STR.0000190957.00365.20.

26. Guo F., Sigua C., Bai P., George P., Fiskus W., Scuto A., Annanarapu S., Mouttaki A., Sundarav G., Wei S., Wu J., Djeu J., Hallea K. Mechanistic role of heat shock protein 70 in Brca-1-mediated resistance to apoptosis in human acute leukemia cells // Blood. – 2005. – Vol. 105, No.3. – P. 1246–1255. DOI: 10.1182/blood-2004-05-2041.

27. Joly A.L., Wettstein G., Mignot G., Ghiringhelli F., Garrido C. Dual role of heat shock proteins as regulators of apoptosis and innate immunity // J Innate Immun. – 2010. – Vol. 2, No.3. – P. 238–247. DOI: 10.1159/000296508.

28. Pitti R.M., Marsters S.A., Ruppert S., Donahue C.J., Kroemer G.C. The anti-apoptotic function of Hsp70 in the interferon-α/beta response of human mesenchymal stem cells with TAT-heat shock protein 70 chaperone: therapeutic implications // Cytokine. – 2007. – Vol. 41, No.3. – P. 1246–1255.

29. Akakura S., Yoshida M., Yoneda Y., Horinouchi S. A role for Hsc70 in regulating nucleocytoplasmic transport of a temperature-sensitive ps3 (ps3Val-135) // / J Biol Chem. – 2001. – Vol. 276, No.18. – P. 14649–14657. DOI: 10.1074/jbc.M100200200.

30. Tsukahara F., Maru Y. Identification of novel nuclear export and nuclear localization-related signals in human heat shock cognate protein 70 // J Biol Chem. – 2004. – Vol. 279, No.10. – P. 8867–8872. DOI: 10.1074/jbc.M308848200.

31. Lu D., Xu A., Mai H., Zhao J., Zhang C., Qi R., Wang H., Lu D., Zhu L. The synergistic effects of heat shock protein 70 and ginsenoside Rg1 against tert-buty1 hydroperoxide damage model in vitro // / Oxid Med Cell Longev. – 2015. – Vol. 2015. – Art. No.437127. DOI:10.1155/2015/437127.

32. Manucha W., Carrizzo L., Ruete C., Vallés P.G. Apoptosis induction is associated with decreased NHE1 expression in neonatal unilateral ureteric obstruction // BJU Int. – 2007. – Vol. 100, No.1. – P. 191–198. DOI: 10.1111/j.1464-410X.2007.06840.x.

33. Mansilla M.J., Costa E., Eixarch H., Tepavcic V., Castillo M., Martin R., Luiz R., Espejo C. Hsp70 regulates immune response in experimental autoimmune encephalomyelitis // PLoS One. – 2014. – Vol. 9, No.8. – e105737. DOI: 10.1371/journal.pone.0105737.

34. Maceze L., Docherty N.G., Manucha W. Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy // Cell Stress Chaperones. – 2015. – Vol. 20, No.6. – P. 983–906. DOI: 10.1007/s12192-015-0622-z.

35. Sharp F.R., Lu A., Nagai F., Millhorn D.E. Multiple molecular mechanisms for Hsp70 stabilization in response to heat shock or hypothermia: an overview // Biochimie. – 2001. – Vol. 83, No.2–3. – P. 126–133. DOI: 10.1016/S0300-9084(00)00165-1.
potential against ischemic stroke after intrastriatal and systemic transplantation // Stem Cells. – 2012. – Vol. 30, No.6. – P. 1297–1310. DOI: 10.1002/stem.1098.

49. Liu T., Zhang L., Joo D., Sun S.C. NF-kB signaling in inflammation // Signal Transduct Target Ther. – 2017. – Vol. 2. – Art. No.17023. DOI: 10.1038/sigtrans.2017.23.

50. Christian F., Smith E.L., Carmody R.J. The Regulation of NF-κB Subunits by Phosphorylation // Cells. – 2016. – Vol. 5, No.1. – Art. No.12. DOI: 10.3390/cells5010012.

51. Hoesel B., Schmid J.A. The complexity of NF-κB signaling in inflammation and cancer // Mol. Cancer. – 2013. – Vol. 12. – Art. No.86. DOI: 10.1186/1476-4598-12-86.

52. Wang C.H., Chou P.C., Chung F.T. et al. Heat shock protein70 is implicated in modulating NF-κB activation in alveolar macrophages of patients with active pulmonary tuberculosis // Sci Rep. – 2017. – Vol. 7. – Art. No.12141. DOI: 10.1038/s41598-017-01405-z.

53. Hulina-Tomašković A., Somborac-Bačura A., Grdić Rajković M., Bosnar M., Samaržija M., Rumora L. Effects of extracellular Hsp70 and cigarette smoke on differentiated THP-1 cells and human monocyte-derived macrophages // Mol Immunol. – 2019. – Vol. 111. – P. 53–63. DOI: 10.1016/j.molimm.2019.04.002.

54. Somensi N., Brum P.O., de Miranda Ramos V., Gasparotto J., Zanotto-Filho A., Rostirolla D.C., da Silva Morrone M., Moreira J.C.F., Pens Gelain D. Extracellular HSP70 Activates ERK1/2, NF-κB and Pro-Inflammatory Gene Transcription Through Binding with RAGE in A549 Human Lung Cancer Cells // Cell Physiol Biochem. – 2017. – Vol. 42, No.6. – P. 2507–2522. DOI: 10.1159/000480213.

55. Luo X., Zuo X., Zhou Y., Zhang B., Shi Y., Liu M., Wang K., McMillian D.R., Xiao X. Extracellular heat shock protein 70 inhibits tumour necrosis factor-alpha induced proinflammatory mediator production in fibroblast-like synoviocytes // Arthritis Res Ther. – 2008. – Vol. 10, No.2. – R41. DOI: 10.1186/ar2399.

56. Mortaz E., Redegeld F.A., Nijkamp F.P., Wong H.R., Engels F. Acetyllysylcyclic acid-induced release of HSP70 from mast cells results in cell activation through TLR pathway // Exp Hematol. – 2006. – Vol. 34, No.1. – P. 8–18. DOI: 10.1016/j.exphem.2005.10.012.

57. Gurskiy Y.G., Garbuz D.G., Soshnikova N.V., Krasnov A.N., Deikin A., Lazarev V.F., Sverchinskyi D., Margulis B.A., Zatsepina O.G., Karpov VL, Belzhelarskaya S.N., Feoktistova E., Georgieva S.G., Egerlev M.B. The development of modified human Hsp70 (HSPA1A) and its production in the milk of transgenic mice // Cell Stress Chaperones. – 2016. – Vol. 21, No.6. – P. 1055–1064. DOI: 10.1007/s12192-016-0729-x.

АВТОРЫ

Покровский Владимир Михайлович — студент 6-го курса, ФГАОУ ВО «Белгородский государственный национальный исследовательский университет». ORCID ID: 0000-0003-3138-2075. E-mail: vmpokrovsky@yandex.ru

Патраханов Евгений Александрович — студент 6-го курса Медицинского института, ФГАОУ ВО «Белгородский государственный национальный исследовательский университет». ORCID ID: 0000-0002-8415-4562. E-mail: pateval7@gmail.com

Анциферов Олег Владимирович — старший научный сотрудник НИИ Фармакологии живых систем. E-mail: antciferov@bsu.edu.ru

Колосник Инга Михайловна — доцент кафедры фармакологии и клинической фармакологии ФГАОУ ВО «Белгородский государственный национальный исследовательский университет». E-mail: kolesnik inga@mail.ru

Белашова Анастасия Владимировна — студентка 6-го курса Медицинского института, ФГАОУ ВО «Белгородский государственный национальный исследовательский университет». ORCID ID: 0000-0001-9737-6378. E-mail: belashova_av@mail.ru

Солдатова Валерия Андреевна — аспирант кафедры фармакологии и клинической фармакологии ФГАОУ ВО «Белгородский государственный национальный исследовательский университет». ORCID ID: 0000-0002-9970-4109. E-mail: lorsoldatova@gmail.com

Покопейко Ольга Николаевна — студентка 4-го курса, Сеченовский университет. E-mail: OPokopejko@mail.ru

Карагодина Анастасия Юрьевна — студентка 6-го курса Медицинского института, ФГАОУ ВО «Белгородский государственный национальный исследовательский университет». ORCID ID: 0000-0001-9440-5866. E-mail: anastasiavolmedic@gmail.com

Архипов Иван Александрович — студент 6-го курса Медицинского института, ФГАОУ ВО «Белгородский государственный национальный исследовательский университет». ORCID ID: 0000-0001-9440-5866. E-mail: iarikhipovbsu@gmail.com

Воронина Диана Георгиевна — младший научный сотрудник НИИ Фармакологии живых систем. E-mail: diana0085@inbox.ru

Сушкова Дарья Николаевна — младший научный сотрудник НИИ Фармакологии живых систем. E-mail: maslova_d@bsu.edu.ru