Double Moving Average Control Chart for Zero-Truncated Poisson Distribution

Y Areepong¹ and C Chananet¹,*

¹Department of Applied Statistics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

Corresponding author: chanaphun.c@sci.kmutnb.ac.th

Abstract. The objective of this paper is to present an explicit formula for Double Moving Average (DMA) control charts when the observation follows a Zero-Truncated Poisson (ZTP) distribution. The popular characteristics of a control chart are Average Run Length (ARL0) for in-control process and Average Run Length (ARL1) for out-of-control process. Whereas ARL0 is the mean of observations taken before, a system gives an out-of-control signalled. For ARL1 is the expected number of observations taken from an out-of-control process until the control chart is shown the out-of-control signal. The ARL results indicated that the DMA control chart for Zero-Truncated Poisson distribution (DMAZTP) is superior to the MA control chart for Zero-Truncated Poisson distribution (MAZTP) for detecting all magnitudes of shifts. This explicit formula is accurate, as well as easy to be implemented and used by practitioners

1. Introduction

Statistical Process Control (SPC) charts are widely used for monitoring, controlling, measuring, and improving quality of production in many areas of applications including epidemiology and health surveillance, engineering, and others. Attribute control charts, such as p, np, c, and u control charts are important tools in statistical process control to monitor processes with discrete data. When the quality characteristic cannot be measured on a continuous scale, for instance, the number of nonconformities in a production process or in counting the number of defective products, an attribute control chart must be used. Additionally, CUSUM and EWMA control charts were also developed for attribute data (see, Page [1] and Alwan [2]). Recently, the Moving Average control chart (MA) has been introduced for both discrete and continuous processes (see, Khoo [3] and Adeoti and Olaomi [4]). To date, numerous extensions of the MA chart have been proposed. Khoo and Wong [5] extended the MA control chart to be DMA control chart by repeating the moving average of the MA statistic. They proposed this chart with normal observations and also shown the numerical results of ARL using Monte Carlo simulations. The results shown that the performance of theDMA chart is quicker to detect out-of-control signals to the MA, EWMA and CUSUM control charts for monitoring small and moderate shifts for process mean. In addition, Areepong [6] proposed the explicit formulas of ARL for moving average control chart in order to monitor the number of defective products.

In general, probability distributions often arise in practice which is of the Poisson distribution, but in which the zero value is unobserved called the zero-truncated Poisson (ZTP) distribution. This may occur in the situations when the observational apparatus becomes active when at least one event occurs, such as, the number of an increase in the incidence rate, accidents per workers in a factory, the number of surface defects in x-ray film, etc. The performance of control charts for ZTP distribution has been
investigated by several authors. The cumulative sum (CUSUM) and Shewhart control charts for ZTP were developed by Chakraborty and Kaloty [7] and Chakraborty and Singh [8], respectively. More recently, Balamuarii and Kalyanasundaram [9] have developed design and implementation procedures of CUSUM control schemes based on zero truncated Poisson distribution.

A common characteristic used for comparing the performance of control charts is Average Run Length (ARL) defined as the expected value of the number of observations taken from an in-control process until the control chart falsely signals out-of-control which is denoted by \(ARL_0 \). An \(ARL_0 \) will be regarded as acceptable if it is large enough to keep the level of false alarms at an acceptable level. The second common characteristic is the expected number of observations taken from an out-of-control process until the control chart signals that the process is out-of-control which is denoted by \(ARL_1 \). Ideally, the \(ARL_1 \) should be as small as possible. Many methods for evaluating the \(ARL_0 \) and \(ARL_1 \) for control charts have been studied in the literature. One of the most used methods is the Monte Carlo simulation technique (MC). Another method is the Markov chain approach (MCA), see Brook and Evans [10] and the recent technique to evaluate the \(ARL_0 \) and \(ARL_1 \) is based on the integral equation approach (IE), see Crowder [11]. Recently, the explicit formulas of \(ARL_0 \) and \(ARL_1 \) for MA control chart are presented by Areepong and Sukparungsee [12]. In this paper, we presented the explicit formula of Average Run Length (ARL) of the DMA control chart when observations are Zero-truncated Poisson. The rest of this paper is organized as follows. In the next section, descriptions of the characteristics of control charts are presented. The explicit formulas and the numerical results are presented in Sections 3 and 4 respectively. Finally, the discussion and some conclusions are presented in Section 5.

2. Double Exponential Weighted Moving Average Control Chart

Statistical Process Control (SPC) charts are considered under the assumption that sequential observations \(X_1, X_2, ..., X_m \) of a process are identically independently distributed random variables with a distribution function \(F(x, \lambda) \), where \(\lambda \) is a control parameter. It is assumed that \(\lambda = \lambda_0 \) while the process is in-control and that \(\lambda = \lambda_1 > \lambda_0 \) when the process goes out-of-control. It is assumed that there is a change-point time \(\theta \leq \infty \) in which the parameter changes from \(\lambda_0 \) to \(\lambda_1 \). Note that \(\theta = \infty \) means that the process always remains in the in-control state.

Let \(E_o(\cdot) \) denote the expectation that the change-point from \(\lambda_0 \) to \(\lambda_1 \) for a distribution function \(F(x, \lambda) \) occurs at time \(\theta \), where \(\theta \leq \infty \). The quantity \(E_o(\tau) \) is called the Average Run Length (ARL) of the control chart for the given process.

A typical condition imposed on an \(ARL_0 \) is that:
\[
ARL_0 = E_o(\tau) = T,
\]
where \(T \) is given (usually large). A typical definition of the \(ARL_1 \) is that
\[
ARL_1 = E_i(\tau | \tau \geq 1),
\]
for the change point occurs at \(\theta = 1 \). One could expect that a sequential control chart has a near optimal performance if \(ARL_1 \) is close to a minimal value.

Let observations \(X_1, X_2, ..., X_m \) be independent random variables with Zero-truncated Poisson distribution, where \(X_i \) number of nonconforming is items in sample \(i \) of \(m \) samples of size \(n \). The Zero-truncated Poisson density function can be written as Johnson, Kemp and Kotz [13].
\[
f(X = x; \lambda) = \frac{\lambda^x}{(e^\lambda - 1)x!}
\]
for $x = 1, 2, \ldots$, where $\lambda > 0$.

The mean and variance are $E(X) = \frac{\lambda e^x}{e^x - 1}$ and $V(X) = \frac{\lambda^2}{1 - e^{-\lambda}} - \frac{1}{(1 - e^{-\lambda})^2}$, respectively.

A Moving Average control chart for Zero-truncated Poisson distribution (MA_{ZTP}) is defined by the following statistics:

$$MA_i = \begin{cases} \frac{X_i + X_{i-1} + \ldots + X_{i-w+1}}{i} & ; i < w \\ \frac{X_i + X_{i-1} + \ldots + X_{i-w+1}}{w} & ; i \geq w \end{cases}$$

(4)

where w is the width of MA_{ZTP} chart. The mean and variance of MA_{ZTP} control chart are $E(MA_i) = \frac{\lambda e^x}{e^x - 1}$ and $V(MA_i) = \frac{\lambda^2}{1 - e^{-\lambda}} - \frac{1}{(1 - e^{-\lambda})^2}$.

For period $i \geq w$, the upper and lower control limits are given

$$UCL_i \ / \ LCL_i = \frac{\lambda_0 e^{h_0}}{(e^{h_0} - 1)} \pm H \sqrt{\frac{\lambda_0 + \lambda_0^2}{w} - \frac{\lambda_0^2}{(1 - e^{-\lambda_0})^2}}$$

(5)

where H is a suitable control width limit.

For periods $i < w$, the upper and lower control limits are given

$$UCL_i \ / \ LCL_i = \frac{\lambda_0 e^{h_0}}{(e^{h_0} - 1)} \pm H \sqrt{\frac{\lambda_0 + \lambda_0^2}{i} - \frac{\lambda_0^2}{(1 - e^{-\lambda_0})^2}}$$

(6)

The alarm time for the MA_{ZTP} procedure is given by

$$\tau = \inf\{i > 0 : MA_i > UCL_i \ or \ MA_i < LCL_i \}$$

(7)

A Double Moving Average (DMA) control chart was initially introduced by [4] which is defined by the following statistics:

$$DMA_i = \begin{cases} \frac{MA_i + MA_{i+1} + MA_{i+2} + \ldots}{i} & ; i \leq w \\ \frac{MA_i + MA_{i+1} + \ldots + MA_{i-w+1}}{w} & ; w < i < 2w - 1 \\ \frac{MA_i + MA_{i+1} + \ldots + MA_{i-w+1}}{w} & ; i \geq 2w - 1 \end{cases}$$

(8)

The DMA control chart for Zero-Inflated Poisson distribution is so-called DMA_{ZTP} control chart which the mean of DMA_{ZTP} is $E(DMA_i) = \frac{\lambda e^x}{(e^x - 1)}$ and its variance is
2021 The 10th International Conference on Engineering Mathematics and Physics

Journal of Physics: Conference Series 2014 (2021) 012001
doi:10.1088/1742-6596/2014/1/012001

\[
V(DMA) = \begin{cases}
\frac{1}{i^2} \left(\frac{\lambda + \lambda^2}{1 - e^{-\lambda}} - \frac{\lambda^2}{(1 - e^{-\lambda})^2} \right) \overbrace{\sum_{j=1}^{i-1} \frac{1}{j}}^{i \leq w} \\
\frac{1}{w^2} \left(\frac{\lambda + \lambda^2}{1 - e^{-\lambda}} - \frac{\lambda^2}{(1 - e^{-\lambda})^2} \right) \overbrace{\sum_{j=i-w+1}^{w-1} \frac{1}{(i-w+1)}}^{w < i < 2w-1} + \left(\frac{1}{w} \right) \\
\frac{1}{w^2} \left(\frac{\lambda + \lambda^2}{1 - e^{-\lambda}} - \frac{\lambda^2}{(1 - e^{-\lambda})^2} \right) \overbrace{\sum_{j=2w-1}^{w-1} \frac{1}{w^2}}^{i \geq 2w-1}
\end{cases}
\]

where \(w \) is the width of the \(DMA_{ZTP} \) control chart.

The upper and lower control limits are given as

\[
UCL_k / LCL_k = \begin{cases}
\frac{\lambda_0 e^{\lambda_0}}{(e^{\lambda_0} - 1)} \pm LA_{i_{k}} & i \leq w \text{ and } k = 1, \\
\frac{\lambda_0 e^{\lambda_0}}{(e^{\lambda_0} - 1)} \pm LA_{j_{k}} & w < i < 2w-1 \text{ and } k = 2, \\
\frac{\lambda_0 e^{\lambda_0}}{(e^{\lambda_0} - 1)} \pm LA_{k_{k}} & i \geq 2w-1 \text{ and } k = 3,
\end{cases}
\]

where

\[
A_{i_{k}} = \sqrt{\lambda_0 + \frac{\lambda_0^2}{1 - e^{-\lambda_0}} - \frac{\lambda_0^2}{(1 - e^{-\lambda_0})^2} \overbrace{\sum_{j=1}^{i-1} \frac{1}{j}}^{i \leq w}} \quad A_{j_{k}} = \sqrt{\lambda_0 + \frac{\lambda_0^2}{1 - e^{-\lambda_0}} - \frac{\lambda_0^2}{(1 - e^{-\lambda_0})^2} \overbrace{\sum_{j=i-w+1}^{w-1} \frac{1}{(i-w+1)}}^{w < i < 2w-1} + \left(\frac{1}{w} \right) },
\]

\[
A_{k_{k}} = \sqrt{\lambda_0 + \frac{\lambda_0^2}{1 - e^{-\lambda_0}} - \frac{\lambda_0^2}{(1 - e^{-\lambda_0})^2} \overbrace{\sum_{j=2w-1}^{w-1} \frac{1}{w^2}}^{i \geq 2w-1}}
\]

and \(L \) is a suitable control limit width.

The alarm time for the \(DMA_{ZTP} \) procedure is given by

\[
\tau = \inf \{ i > 0 : DMA_i > UCL_k \text{ or } DMA_i < LCL_k \}.
\]

3. The Explicit Formula for \(DMA_{ZTP} \)

Let \(ARL = n \), then

\[
\frac{1}{ARL} = \left(\frac{1}{n} \right) P(\text{o.o.c. signal at time } i \leq w) + \left(\frac{1}{n} \right) P(\text{o.o.c. signal at time } w < i < 2w-1) + \\
\left(\frac{n-(2w-2)}{n} \right) P(\text{o.o.c. signal at time } i \geq w)
\]

\[
= \frac{1}{n} \left[\sum_{i=1}^{w} \left\{ P \left[i \sum_{j=1}^{\lambda_0} \frac{\lambda_0 e^{\lambda_0}}{(e^{\lambda_0} - 1)} + LA_{i_k} \right] + P \left[i \sum_{j=1}^{\lambda_0} \frac{\lambda_0 e^{\lambda_0}}{(e^{\lambda_0} - 1)} < LA_{i_k} \right] \right\} \right] + \\
\]
\[
\frac{1}{n} \sum_{j=1}^{n-w-1} \left[P \left(\frac{\lambda_j e^{x_j}}{(e^{x_j}-1)} > \frac{\lambda_0 e^{x_0}}{(e^{x_0}-1)} + LA_{j|k} \right) + P \left(\frac{\lambda_j e^{x_j}}{(e^{x_j}-1)} < \frac{\lambda_0 e^{x_0}}{(e^{x_0}-1)} - LA_{j|k} \right) \right] \\
+ \left(\frac{n-(2w-2)}{n} \right) \left[P \left(\frac{\lambda_j e^{x_j}}{(e^{x_j}-1)} > \frac{\lambda_0 e^{x_0}}{(e^{x_0}-1)} + LA_{j|k} \right) + P \left(\frac{\lambda_j e^{x_j}}{(e^{x_j}-1)} < \frac{\lambda_0 e^{x_0}}{(e^{x_0}-1)} - LA_{j|k} \right) \right] \cdot \left(n-(2w-2) \right)
\]

The explicit formula of \(ARL \) is

\[
ARL = 1 - \sum_{j=1}^{n-w-1} \left[P \left(Z > \frac{\lambda_j e^{x_j}}{(e^{x_j}-1)} - LA_{j|k} - \frac{\lambda_0 e^{x_0}}{(e^{x_0}-1)} \right) \right] + \left(2w-2 \right), \quad (12)
\]

when

\[
A_{j|k} = \sqrt{\frac{1}{w^2} \left(\frac{\lambda_{j+1} + \lambda_{j+2}}{1-e^{-\lambda_j}} - \frac{\lambda_0}{(1-e^{-\lambda_0})^2} \right) \left(\sum_{i=j}^{j+1} \frac{1}{j-w+1} \left(\frac{1}{w} \right) \right)},
\]

\[
A_{j|k} = \sqrt{\frac{1}{w^2} \left(\frac{\lambda_{j+1} + \lambda_{j+2}}{1-e^{-\lambda_j}} - \frac{\lambda_0}{(1-e^{-\lambda_0})^2} \right) \left(\sum_{i=j}^{j+1} \frac{1}{j-w+1} \left(\frac{1}{w} \right) \right)}.
\]

4. Numerical Results

In this section, the numerical results of \(ARL \) for \(DMA_{ZTP} \) control chart were calculated from Equation 12 as shown in Tables 1, 2. The parameter values of \(DMA_{ZTP} \) control chart were chosen by given desired \(ARL_0 = 370 \) and 500, in-control parameter \(\lambda_0 = 3, 5 \) and shift parameters \((\delta) \) are varied from 0.1 to 5 where \(\lambda_0 = \lambda_0 + \delta \). For the process of a small change it was found that the control chart was effective as \(w \) increased. For an example, in Table 1, when \(\delta = 0.1, ARL_0 = 370 \) and 500, \(DMA_{ZTP} \) chart with \(w = 25 \)
showed the best performance due to the given minimum ARL. However when the moderate and large change process, as the DMAZTP control chart was found to be effective for small w. For an example, in Table 1, when \(\delta = 5.0, ARL_0 = 370, \) and 500, DMAZTP control chart with \(w = 2 \) showed the best performance. Additionally, it showed similar results as in Table 2. The comparison of control charts between MAZTP and the DMAZTP control charts is presented in Tables 3 and 4. In Table 3, the parameter values of DMAZTP and MAZTP control charts were chosen by given desired ARL\(_0 = 370, \) in control parameter \(\lambda_0 = 5, 10 \) and given desired ARL\(_0 = 500 \) in Table 4. The results showed that for all value of \(w \) the DMAZTP control chart performed better than the MAZTP control chart for all magnitude of shifts.

5. Conclusion
The explicit formula was derived for the ARL in a Double Moving Average control chart for observations from a zero-truncated Poisson distribution. This formula was found to be accurate and easy to use for a computer program. Thus, it is suggested that the explicit formula for the ARL of DMAZTP control chart can be applied to an empirical data and real-world situation applications for a variety of data processes such as in medical, economics, finance, agriculture, environmental, etc. These issues should be addressed in future research. Furthermore, this explicit formula for ARL can be developed for other control charts such as Triple Moving Average control chart, etc.

| \(\delta \) |
2	3	5	10	15	25	
0.0	370.398	370.398	370.398	370.398	370.398	
0.1	288.537	270.868	226.125	127.005	78.233	57.505
0.3	148.310	104.791	51.878	22.116	25.721	41.406
0.5	73.857	41.445	17.253	15.059	21.837	28.346
0.7	39.421	19.199	8.995	5.894	9.795	16.614
0.9	23.035	10.457	4.173	2.052	2.852	41.406
1.0	18.204	8.175	5.894	2.852	41.406	
2.0	4.345	3.084	6.467	3.084	3.084	3.084
3.0	2.529	2.516	2.749	2.757	2.757	2.757
4.0	1.944	2.024	2.052	2.052	2.052	2.052
5.0	1.632	1.667	1.669	1.669	1.669	1.669

| \(\delta \) |
2	3	5	10	15	25
0.0	370.398	370.398	370.398	370.398	370.398
0.1	288.537	270.868	226.125	127.005	78.233
0.3	148.310	104.791	51.878	22.116	25.721
0.5	73.857	41.445	17.253	15.059	21.837
0.7	39.421	19.199	8.995	5.894	9.795
0.9	23.035	10.457	4.173	2.052	2.852
1.0	18.204	8.175	5.894	2.852	41.406
2.0	4.345	3.084	6.467	3.084	3.084
3.0	2.529	2.516	2.749	2.757	2.757
4.0	1.944	2.024	2.052	2.052	2.052
5.0	1.632	1.667	1.669	1.669	1.669

Table 1. ARL\(_0\) and ARL\(_1\) for DMAZTP Control Chart when Given \(\lambda_0 = 3. \)
Table 2. ARL_0 and ARL_1 for DMA_{ZTP} Control Chart when Given $\lambda_0 = 5$.

$ARL_0 = 370$						
Shift	2	3	5	10	15	25
δ						
0.0	370.398	370.398	370.398	370.398	370.398	370.398
0.1	321.097	307.338	270.135	171.943	110.199	**70.027**
0.3	207.458	157.396	85.583	30.858	**28.498**	43.640
0.5	123.123	74.213	30.566	**17.231**	23.887	35.792
0.7	73.348	37.338	**14.506**	14.543	20.627	24.093
0.9	45.424	20.591	**8.985**	12.977	16.195	15.777
1.0	36.400	15.837	**7.666**	12.146	14.076	13.273
2.0	7.528	**3.789**	4.749	5.687	5.686	5.685
3.0	3.568	**2.935**	3.550	3.615	3.615	3.615
4.0	**2.491**	2.505	2.650	2.653	2.653	2.653
5.0	**2.020**	2.091	2.112	2.112	2.112	2.112

$ARL_0 = 500$

0.0	500.619	500.619	500.619	500.619	500.619	500.619
0.1	430.487	411.046	358.701	222.074	136.655	**78.076**
0.3	271.632	203.525	107.559	34.831	**29.635**	44.206
0.5	157.133	92.865	36.427	**17.942**	24.322	36.812
0.7	91.415	45.375	16.408	**14.878**	21.176	25.170
0.9	55.403	24.349	**9.717**	13.292	16.805	16.494
1.0	43.948	18.477	**8.147**	12.475	14.647	13.827
2.0	8.360	**3.947**	4.844	5.874	5.872	5.871
3.0	3.772	**2.992**	3.652	3.728	3.728	3.728
4.0	2.578	**2.564**	2.728	2.730	2.730	2.730
5.0	**2.073**	2.144	2.169	2.169	2.169	2.169

Note that: bold values are the minimum of ARL_1.

Table 3. ARL_1 for DMA_{ZTP} and MA_{ZTP} Control Chart, Given $ARL_0 = 370$.

λ_0	δ	0.1	0.3	0.5	0.7	0.9	1.0	1.1	1.3	1.5	2.0	
$\lambda_0 = 5$		DMA	321.097	207.458	123.123	73.348	**45.424**	36.400	29.536	20.181	**14.455**	7.528
w = 2	MA	326.903	235.996	161.04	108.433	73.835	61.423	51.424	36.786	27.045	14.031	
w = 5	DMA	**270.135**	85.583	30.566	14.506	8.985	7.666	6.813	5.860	5.387	**4.749**	
MA	318.299	195.638	110.065	63.111	38.262	30.518	24.739	17.044	12.458	7.665		
w = 15	DMA	110.199	28.498	23.887	20.627	16.195	14.079	12.268	9.629	**7.967**	5.686	
MA	292.907	123.668	53.244	28.106	18.248	15.664	13.885	11.690	10.418	8.581		
w = 25	DMA	**70.027**	43.640	35.792	24.093	15.777	13.273	11.527	9.307	**7.881**	5.686	
MA	271.786	91.996	39.233	24.156	18.940	17.598	16.632	15.238	14.107	11.317		
$\lambda_0 = 10$		DMA	**346.029**	274.218	199.705	140.293	98.056	82.264	69.288	49.862	**36.655**	18.719
w = 2	MA	349.333	295.783	238.205	186.085	143.313	125.561	110.04	84.829	65.922	36.780	
w = 5	DMA	**314.672**	150.591	66.596	32.772	18.515	14.667	12.015	8.364	**7.185**	5.605	
MA	344.417	264.678	184.678	124.688	84.426	69.942	58.295	41.333	30.171	15.617		
w = 15	DMA	**171.322**	37.966	26.513	24.044	21.875	20.489	18.921	15.648	**12.796**	8.519	
MA	329.197	195.222	103.733	58.033	35.782	29.232	24.502	18.468	15.051	11.186		
w = 25	DMA	**103.49**	46.121	42.263	35.946	27.380	23.393	19.960	14.967	**11.987**	8.390	
MA	315.610	155.397	74.003	41.635	28.205	24.610	22.128	19.081	17.346	14.870		

Note that: bold values are the minimum of ARL_1.

7
Table 4. ARL$_A$ for DMA$_{	ext{ZIP}}$ and MA_{ZIP} Control Chart, Given ARL$_0$ = 500.

λ_0	w	δ	control chart	0.1	0.3	0.5	0.7	0.9	1.0	1.1	1.3	1.5	2.0
$\lambda_0 = 5$	$w = 2$	DMA	430.487	271.632	157.133	91.415	55.403	43.948	35.314	23.684	16.672	8.360	
	MA	438.718	311.040	208.039	137.384	91.885	75.800	62.954	44.360	32.163	16.181		
$w = 5$	DMA	358.701	107.559	36.427	16.408	9.717	8.147	7.141	6.036	5.503	4.844		
	MA	426.512	255.351	139.675	78.028	46.173	36.403	29.179	19.675	14.098	7.676		
$w = 15$	DMA	136.655	29.635	24.322	21.176	16.805	14.647	12.770	9.998	8.248	5.872		
	MA	390.476	157.292	64.462	32.400	20.157	17.010	14.871	12.283	10.830	8.852		
$w = 25$	DMA	78.076	44.206	36.812	25.170	16.494	13.827	11.967	9.626	8.143	5.871		
	MA	360.431	114.152	45.298	26.287	19.925	18.343	17.234	15.705	14.529	11.728		
$\lambda_0 = 10$	$w = 2$	DMA	465.879	364.485	261.182	180.473	124.165	103.385	86.439	61.330	44.476	21.995	
	MA	470.583	394.751	314.225	242.412	184.371	160.552	139.87	106.597	81.943	44.990		
$w = 5$	DMA	421.362	194.451	82.880	39.313	21.396	16.641	13.394	9.545	7.579	5.738		
	MA	463.578	351.011	240.565	159.477	106.113	87.169	72.054	50.268	36.117	18.000		
$w = 15$	DMA	219.679	41.544	27.210	24.478	22.383	21.055	19.531	16.261	13.327	8.827		
	MA	441.839	254.549	130.862	70.778	42.157	33.857	27.916	20.427	16.260	11.686		
$w = 25$	DMA	122.898	46.941	42.921	36.974	28.528	24.467	20.908	15.636	12.454	8.672		
	MA	422.349	199.421	90.477	48.384	31.312	26.820	23.753	20.057	18.021	15.318		

Note that: bold values are the minimum of ARL.$_A$

6. References
[1] Page E S 1954 Continuous inspection schemes Biometrika 41 pp 100–114
[2] Alwan L C 1980 Statistical Process Analysis (New York: McGraw-Hill)
[3] Khoo M B C 2004 A moving average control chart for monitoring the fraction non- conforming Qual. Reliab. Eng. Int. 20 pp 617–635
[4] Adeoti O A and Olomol O J 2016 A moving average S control chart for monitoring process variability Quality Engineering 28 pp 212–219
[5] Khoo M B C and Wong V H 2008 A double moving average control chart Commun. Stat. Simul. Comput. 37 pp 1696–1708
[6] Areepong Y 2012 Explicit formulas of average run length for a moving average control chart for monitoring the number of defective products Int. J. Pure Appl. Math. 80 pp 331–343
[7] Chakraborty A B and Kakoty S K 1987 Cumulative sum control charts for ZTPD Journal of Indian Association for Productivity, Quality and Reliability 12 pp 17–25
[8] Chakraborty A B and Singh B P 1990 Shewhart control chart for ZTPD Proc. Conf. on the National Seminar on Quality and Reliability: NQR (Trivandrum, 418 India) pp 18–24
[9] Balamurali S and Kalyanasundaram M 2013 Design of cumulative sum control schemes for truncated Poisson distribution Int. J. Product. Qual. Manag. 12 pp 94–119
[10] Brook D and Evans D A 1972 An approach to the probability distribution ofCUSUM run length Biometrika 9 pp 539–548
[11] Crowder S V 1987 A simple method for studying run length distributions of exponentially weighted moving average charts Technometrics 29 pp 401–407
[12] Areepong Y and Sukparungsee S 2013 Closed form formulas of average run length of moving average control chart for nonconforming for zero-inflated process Far East Journal of Mathematical Sciences 75 pp 385–400
[13] Johnson L N, Kemp W A and Kotz S 2005 Univariate Discrete Distribution, 3rd Ed. (New York: John Wiley and Sons)

Acknowledgments
This research was funded by King Mongkut’s University of Technology North Bangkok Contract no. KMUTNB-GEN-59-38. The authors thank the editor and the reviewer for careful reading of the research article and constructive comments that greatly improved this paper.