Enteric Neuromics: How High-Throughput “Omics” Deepens Our Understanding of Enteric Nervous System Genetic Architecture

Christine Dharshika¹,² and Brian D. Gulbransen¹

¹Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, Michigan; and ²College of Human Medicine, Michigan State University, East Lansing, Michigan

SUMMARY

Novel high-throughput techniques like single cell RNA sequencing expand our understanding of the enteric nervous system. This review integrates high-throughput findings to further characterize established functional subtypes of enteric neurons and glia and how enteric gene expression patterns change during disease.

Recent accessibility to specialized high-throughput “omics” technologies including single cell RNA sequencing allows researchers to capture cell type- and subtype-specific expression signatures. These omics methods are used in the enteric nervous system (ENS) to identify potential subtypes of enteric neurons and glia. ENS omics data support the known gene and/or protein expression of functional neuronal and glial cell subtypes and suggest expression patterns of novel subtypes. Gene and protein expression patterns can be further used to infer cellular function and implications in human disease. In this review we discuss how high-throughput “omics” data add additional depth to the understanding of established functional subtypes of ENS cells and raise new questions by suggesting novel ENS cell subtypes with unique gene and protein expression patterns. Then we investigate the changes in these expression patterns during pathology observed by omics research. Although current ENS omics studies provide a plethora of novel data and therefore answers, they equally create new questions and routes for future study.

(Common Mol Gastroenterol Hepatol 2023;15:487-504; https://doi.org/10.1016/j.jcmgh.2022.10.019)

Keywords: Computational Biology; Single Cell RNA-Sequencing; Enteric Neurons; Enteric Glia.

High-throughput “omics” research investigates molecular information on a large and comprehensive scale. The flexibility and resolution of omics technologies continue to increase while cost decreases,¹ making omics methods increasingly accessible and attractive to basic and clinical researchers. This has led to a rapid growth in the number of published studies using omics approaches to understand the enteric nervous system (ENS). The ENS is embedded within the gut wall and provides local control of gastrointestinal functions through intrinsic neurocircuitry and integration with multiple cell types in the gastrointestinal tract and other organs.² The ENS is composed of neurons and glia with generally well-known electrophysiological properties, anatomic features, and protein markers.²⁻⁵ However, much of the complexity of the ENS remains unknown and would benefit from developing a deeper understanding of cellular heterogeneity, functional attributes of cells and cellular networks, and genes that contribute to disease.

Omics technologies are helping to disentangle complexity within the ENS on a scale that was previously inaccessible. The advent of single cell RNA sequencing (scRNA-seq) now allows characterizing heterogeneity between individual cells,¹ and cellular genomic libraries are available to explore the cellular makeup of the ENS in fine resolution. We begin this review by summarizing the “pre-omics” understanding of the cellular makeup of the ENS and describe omics strategies used to study the ENS. Then we focus on how omics data expand known ENS cell diversity and cellular changes in gastrointestinal disease (Figure 1). We conclude by discussing strengths and challenges of current ENS omics data and future directions for the field.

Pre-omics Understanding of ENS Cellular Makeup

Classification of Enteric Neurons

Enteric neurons are traditionally classified by their morphology, electrophysiological properties, and neurotransmitter expression. Whereas initial descriptions were based on guinea pigs,²⁻⁴ additional comparative data in mice provided murine-specific ENS characterization.⁶ Enteric neuron morphology was initially described by A. S. Dogiel¹ and has been characterized by imaging techniques that include intracellular dye filling, silver staining, retrograde tracing, immunohistochemistry, and electron microscopy.¹

Abbreviations used in this paper: ACh, acetylcholine; AH, after-hyperpolarization; CGRP, calcitonin gene-related peptide; ChAT, choline acetyltransferase; DBNS, dinitrobenzene sulfonic acid; ENS, enteric nervous system; GDNF, glial cell line–derived neurotrophic factor; HSCR, Hirschsprung disease; IBS, irritable bowel syndrome; IBD, inflammatory bowel disease; IPAN, intestinofugal/viscerofugal afferent neuron; IL, interleukin; INAP, intrinsic primary afferent neuron; NPY, neuropeptide Y; scRNA-seq, single cell RNA sequencing; SST, somatostatin; VIP, vasoactive intestinal peptide.

Most current article

© 2022 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 2332-345X

https://doi.org/10.1016/j.jcmgh.2022.10.019
microscopy. Neuronal cell bodies are typified by the shape and number of axons and dendrites in addition to where these processes project. Neuronal morphology is more complex and clearly defined in larger species such as pigs and humans. Thus, although several Dogiel subtypes can be identified in these mammals, only Dogiel type I and II morphologies are observed in mice. Type I neurons have flat, elongate, and irregular cell bodies with a single axon and numerous short dendrites, whereas type II neurons have smoother and larger cell bodies with multiple long axons. Type I neurons project and communicate with adjacent ganglia in the plexus and musculature, whereas type II neurons communicate with neurons throughout the gut wall, within and between ganglia, and the mucosa. Neurons

Figure 1. Deepening the understanding of enteric nervous system function and disease through high-throughput omics approaches. This review focuses on how data obtained by high-throughput approaches such as single cell sequencing deepen our understanding of cell identity, mechanisms of intercellular communication, and disease processes in the enteric nervous system. Created with BioRender.com.
are also classified by electrophysiological properties, which have been mainly characterized in guinea pigs and mice. Two main types of enteric neurons are categorized as having either synaptic- or AH (after hyperpolarization)-type electrophysiological properties that differ on the basis of action potential speed and magnitude, the length of AH potentials, and tetrodotoxin sensitivity. Synaptic-type neurons typically display Dogiel type I morphology and include interneurons and motor neurons, whereas AH-type neurons typically display Dogiel type II morphology and are considered sensory neurons.

Defining the neurochemical coding of enteric neurons was a significant advancement in identifying neuronal subtypes and understanding how enteric neurons communicate with one another and target cells. Enteric neurochemical coding has been defined by multiple approaches including immunohistochemistry in combination with retrograde tracing, electrophysiology, and pharmacology. Integrating these biomolecular data with morphologic and electrophysiological properties is the basis for current definitions of enteric neuron subtypes, which include motor neurons, interneurons, and sensory neurons. Although these definitions are based largely on studies in guinea pigs, many of the core features of enteric neuron subtypes are conserved between mice and humans. Excitatory and inhibitory motor neurons reside in the myenteric plexus and innervate the circular and longitudinal muscle of the intestine. Motor neurons are defined by Dogiel type I morphology in guinea pigs but many have an unclear morphology in mice, characterized by small or medium-sized cell bodies without obvious dendrites. Excitatory motor neurons are cholinergic and release acetylcholine (ACh) but can also release tachykinins. Inhibitory motor neurons are nitricergic and release nitric oxide in addition to vasoactive intestinal peptide (VIP) and purines. Excitatory motor neurons express choline acetyltransferase (ChAT) and/or vesicular acetylcholine transporter in guinea pigs and mice; however, although both circular and longitudinal muscle-projecting excitatory motor neurons also express tachykinins in guinea pigs, tachykinins are not always expressed by the latter in mice. All inhibitory motor neurons in both guinea pigs and mice express nitric oxide synthase and VIP, whereas those innervating circular muscles can also express neuropeptide Y (NPY). Secretomotor/vasodilator neurons in guinea pigs have 3 known subtypes categorized as non-cholinergic VIP+ neurons, ChAT+/calretinin (Calb2)+ neurons, and ChAT+/NPY+ neurons. In mice these submucosal neurons are categorized into 2 non-cholinergic and 1 cholinergic subtype(s). Both non-cholinergic secretomotor and vasodilator neurons express VIP and NPY, whereas secretomotor neurons also express tyrosine hydroxylase. Cholinergic secretomotor neurons express ChAT, calcitonin gene-related peptide (CGRP), and somatostatin (SST). At least 4 types of interneurons are present in the small intestine of guinea pigs and mice. Ascending interneurons are cholinergic and also use tachykinins. These neurons are involved in local motility reflexes. Subtypes of descending interneurons involved in local motility reflexes include an ACh+/nitric oxide synthase+ subtype that is VIP+ in guinea pig but not mouse and an ACh+/serotonin+ subtype that is involved in secretomotor reflexes. A third type of descending interneuron is ACh+/SST+ and is involved in small intestinal migrating myoelectric complexes. Whereas the other two interneuron subtypes are characterized by Dogiel type I morphology in guinea pig and mouse, this third subtype is characterized by distinct filamentous dendrites.

Intrinsic primary afferent neurons (IPANs) regulate intrinsic reflex pathways of the intestine and are involved in chemosensation and mechanosensation. IPANs have Dogiel type II morphology and AH-type electrophysiology, and most express ChAT and CGRP. In guinea pigs IPANs also express tachykinins and isolectin B4. IPANs can be identified in mice, humans, and pigs by neurofilament (Nefm) staining and by advillin expression in mice, albeit the latter is expressed by other neuronal subtypes as well. Intestinofugal/viscerofergal afferent neurons (IFANs) reside in the myenteric plexus and project to prevertebral ganglia where they synapse with post-ganglionic sympathetic neurons. These cells contribute to intestinal functions that involve integration with other gastrointestinal organs. IFANs are rare (<1%) and typically display a Dogiel type I morphology (occasionally type II) in guinea pigs and mice. IFANs use ACh and VIP signaling but also express cholecystokinin, gastrin releasing peptide, and opioid-related peptides.

Classification of Enteric Glia

Enteric glial heterogeneity and functions were covered extensively in a recent review and will not be reiterated here. Current glial subtypes are defined on the basis of morphology and anatomic location in the gut wall and may include differences in marker expression and response to various transmitters. Canonical markers used to identify enteric glia include glial fibrillary acidic protein, S100B, Sox10, Plp1. Entry into the ENS research. Genomics identifies variation in DNA sequence, primarily using genome-wide association studies. Genome-wide association studies genetic code from diseased humans to identify genetic mutations (specifically single nucleotide polymorphisms) that may confer disease risk. Sequencing the entire genome or coding exome can also identify mutations. Transcriptomics identifies and quantifies RNA expression. Transcriptomics initially used microarray platforms but now primarily consists of sequencing (RNA-seq). Typically RNA-seq focuses on which genes are expressed and how their expression level changes. However,
this method can also identify noncoding RNAs such as microRNAs or long noncoding RNAs that influence transcription of coding genes. Proteomics quantifies protein abundance, modification, and interaction. Compared with transcriptomics, proteomics captures a related but separate understanding of gene expression.17

Altered pipelines of these fundamental omics modalities are used to attain omics data from specialized sources. For instance, DNA sequencing can specifically target variation in the bacterial 16s rRNA gene to taxonomically identify organisms within the gut microbiome. Transcriptomic studies can capture gene expression signatures from specified cells of interest by combining RNA-seq with cell-specific isolation strategies. These strategies range from using genetic driver mouse lines and performing cell sorting protocols to post hoc computational analyses focusing on known cell-specific pathways. One of the most recent of these is scRNA-seq, which measures gene expression within individual cells.1 ScRNA-seq is the primary technique used in ENS research to further resolve subtypes of enteric neurons and glia by grouping individual cells into clusters based on overall shared gene expression patterns. Similarly, proteomics

Table 1. Omics Dataset Metadata and Review Criteria: Methods Used and Species/Gastrointestinal Regions Examined in ENS Omics Datasets, by Reference Number

Section	Omics method	Species	Region
Cell subtype markers	scRNA-seq	Mouse	20-24,21,30,34
	RNA-seq	Human	20,21,23,30,34
Compares regions	scRNA-seq	Mouse	Colon
	RNA-seq	Human	Small intestine
Compares species	scRNA-seq	Mouse	Colon
	RNA-seq	Human	Small intestine
Compares sexes	scRNA-seq	Mouse	20-23
	RNA-seq	Human	20,21,23
Dyssmotility	scRNA-seq	Mouse	20-23
	RNA-seq	Human	20,21,23,30,34
	WES MALDI-TOF MS	Zebrfish	20,21,23,30,34
Development	scRNA-seq	Mouse	22,25,52-54
	RNA-seq	Human	42,55-59
	WES Microarray	Zebrfish	41,50
		Rat	42,55-59
Neuroimmune communication	scRNA-seq	Mouse	20,23,60,61,70
	RNA-seq	Human	20,21,71
	Microarray	Rat	20,71
Dysbiosis	scRNA-seq	Mouse	30,34,65,74,76-81
	RNA-seq	Human	75,82
	GWAS LCMS	Rat	77
Gastrointestinal disease	scRNA-seq	Mouse	20,23,53,70
markers	RNA-seq	Human	20,23,45,78,84,89,90
	Microarray	Zebrfish	73
	GWAS LCMS	Rat	83,90

GWAS, genome-wide association study; LCMS, liquid chromatography-mass spectrometry; MALDI-TOF MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; RNA-seq, RNA-sequencing; 16S rRNA-seq, 16S rRNA gene sequencing; scRNA-seq, single-cell RNA-sequencing; WES, whole exome sequencing.

Review search criteria: Full-text primary research articles were selected from the PubMed database using the following search terms:

(neurons[MeSH Terms] OR "neuroglia"[MeSH Terms] OR "Ganglia, Spinal"[MeSH Terms] OR "Enteric Nervous System"[MeSH Terms] OR "Color/innervation"[MAJR] OR "dorsal root ganglia"[All Fields] OR "neuron"[Title/Abstract] OR "enteric glia"[All Fields] OR "glia"[Title/Abstract]) AND ("computational biology"[MeSH Terms] OR "sequence analysis"[MeSH Terms] OR "high throughput"[Title/Abstract] OR "sequencing"[All Fields] OR "next generation"[All Fields]) AND ("gastrointestinal diseases"[MeSH Terms] OR "gastrointestinal tract"[MeSH Terms] OR "Gastrointestinal Microbiome"[MeSH Terms] OR "gastrointestinal"[Title/Abstract] OR "bowl"[Title/Abstract] OR "gut"[Title/Abstract]) NOT Review(Publication Type).

From these results articles were screened for using high-throughput ’omics’ methods in the enteric nervous system or referencing enteric nervous cells. A few newer articles were selected outside this due to backlog in MeSH classification.
technology can target specified subsets of proteins such as host and/or microbial metabolites based on their physical and chemical properties. The details of omics methods used by the ENS studies discussed in this review are summarized in Table 1.

Using Omics to Define Cellular Subtypes in the Enteric Nervous System

Genetic Markers of ENS Cell Subtypes

Data available from several prominent scRNA-seq studies of the ENS vastly expand the ability to investigate ENS heterogeneity. Here we highlight collective findings across these data that identify potential novel cellular markers. Although further examination is required to truly establish whether these markers identify ENS cellular subtypes, these data support additional complexity in the current neurochemical coding of enteric neurons and glia. Our interpretation of synthesized findings is summarized in Figure 2 and Table 2. Some correlations in this table that are not mentioned in the text were based on Wright et al or simply list all clusters the original authors designate as putative neuronal subtypes. Also of note, the dataset from Morarach et al represents an extended capturing of enteric neurons of the same age and region as the dataset presented in Zeisel et al and thus Morarach et al is primarily discussed below. However, work from Zeisel et al is retained to discuss glia.

Motor Neurons

At least 2–5 subtypes of putative excitatory motor neurons were identified in single cell transcriptional studies. Pre-omics guinea pig data suggest longitudinal muscle-innervating excitatory motor neurons express calretinin (Calb2), whereas those innervating circular muscle do not. On the basis of this expression pattern, cell clusters ENC 1-2 from Morarach et al innervate longitudinal muscle, whereas ENC 3-4 innervate circular muscle. However, pre-omics data in mouse suggest circular muscle-innervating neurons may also express calretinin and complicates this alignment. This murine pattern of Calb2 expression aligns with excitatory clusters in May-Zhang et al, where cluster 0 innervates longitudinal muscle and cluster 3 innervates circular muscle. Regardless of functional classification, some novel biomarkers are shared across excitatory motor neuron subtypes and may support further functional subtyping with future investigation. These include combinations of Gfra2, Oprk1, Htr4, and Piezo1. However, Piezo1 is also expressed by inhibitory motor neurons, and Gfra2 is also expressed by IPANs and SST+ interneurons; thus, specific combinations of these markers may be required to identify excitatory neuronal subtypes.

Although broad functional excitatory subtypes within scRNA-seq clusters are still unclear, these datasets suggest a rarer excitatory motor neuron variant with novel markers. In May-Zhang et al and Morarach et al this cell type exists within Cluster 3 and ENCO, respectively. These cells express high levels of the 5-HT2B receptor gene Htr2B in addition to genes encoding a calcium binding protein (Necab2), an enzyme that catalyzes the last step in the biosynthesis of Lewis X antigen (Fut9), and a transcription factor involved in inducible gene transcription during immune responses (Nfatc1). Fut9 and Nfatc1 were also expressed by the Chat 3 neuron cluster defined by Wright et al. This cluster could correspond to PEMN2 in Drokhlyansky et al because of higher enkephalin (Penk) expression compared with other putative excitatory motor neurons, as also seen in other datasets. Functional validation of these expression markers may shed light on the existence of this peculiar variant.

At least 2–4 inhibitory motor neuron subtypes were identified in single cell transcriptional studies based on Nos1 and Vip expression. Interestingly, Drokhlyansky et al identified 7 inhibitory neuron clusters, PIMN 1–7. Although all these clusters express Nos1, PIMN 1–4 express higher levels of Vip, suggesting relative Vip expression as a means of stratifying subtypes. Pre-omics data suggest inhibitory motor neurons innervating circular muscle may also express neuropeptide Y (Npy), whereas those innervating longitudinal muscle do not. This supports clustering from May-Zhang et al and Morarach et al where cluster 2 and ENC8 innervate circular muscle, whereas cluster 1 and ENC9 innervate longitudinal muscle, respectively. Potential new co-markers for inhibitory motor neurons include argininosuccinate synthase 1 (Ass1), Gfra1, the receptor for glial cell line-derived neurotrophic factor (GDNF), and Etv1. However, Ass1 is expressed by other neurons as well, and Gfra1 and Etv1 are also expressed in putative interneurons and/or IPANs. Perhaps only co-expression of all these markers is specific to inhibitory motor neurons.

Drokhlyansky et al identified 2 clusters that potentially correspond to secretomotor/vasodilator neurons, PSVN 1 and PSVN 2. These clusters were characterized as secretomotor/vasodilator neurons on the basis of expression of the non-prototypical marker glucagon-like peptide 2 receptor (Glp2r). However, PSVN 1 expresses relatively low levels of Chat and is possibly non-cholinergic, whereas PSVN 2 expresses relatively higher Chat and may be a cholinergic secretomotor neuron. A putative sensory neuron cluster PSN 4 expresses Sst and Calc, the beta form of CGRP, and therefore may also identify cholinergic secretomotor neurons. Other studies did not sequence submucosal plexus tissue and therefore did not describe secretomotor/vasodilator neurons.

Catecholaminergic Neurons

Pre-omics research supports catecholaminergic neurons in gut that signal via dopamine or norepinephrine/noradrenaline and express tyrosine hydroxylase (Th). Noradrenergic signaling within the ENS is thought to be solely from extrinsic neuronal projections, whereas dopaminergic neurons reside within the ENS. Dopaminergic enteric neurons are rare neurons that develop relatively late (after embryonic day (E) E18) and express dopamine active transporter (Dat) and the dopamine metabolite DOPAC in addition to Th. These neurons are important regulators of gastrointestinal motility and are involved in motor circuitry, but what specific types of neurons express dopamine is unclear. Interestingly, scRNA-seq studies identify...
clusters with Th expression, but these clusters do not express Dat and often also express dopamine beta-hydroxylase (Dbh) and therefore may actually be noradrenergic neurons. Whether this truly identifies intrinsic noradrenergic neurons or is contamination from extrinsic fibers is unclear, but we will refer to these as catecholaminergic neurons here. Regardless, these data suggest subtypes of motor neurons, interneurons, and sensory neurons are catecholaminergic. This includes PSVN1-2, PIN1, and PIMN3 from Drokhlyansky et al., cluster 9 from May-Zhang et al., ENC11 from Morarach et al., and Nos1 cluster 2 in E17.5 embryonic mice samples from Wright et al. Many of the clusters also express Npy and thus could use this as a co-expression marker. On the basis of prior investigations of enteric dopaminergic neurons they may also co-express combinations of Ebf1, Meis2, Etv1, Satb1, Klf7, and Sox6. However, these expression markers were determined during ENS development from gastric tissue and may not reflect mature neuronal expression patterns.

Interneurons

Interneurons are more difficult to define by gene signatures in scRNA-seq studies, likely in part because of the overlap of their established markers with other neuron types. Despite this, between 2 and 5 subtypes of putative interneurons were proposed. May-Zhang et al. and Morarach et al. suggest interneuron subtypes that align with current functional classifications. One subtype (cluster 10 and ENC10) corresponds to Nos1 descending interneurons. These clusters express Nos1 and glutamate decarboxylase (Gad2) in addition to various levels of Chat. Somatostatin/Sst descending interneurons may correspond to cluster 9 and ENC5. Sensory neuron cluster PSN 4 from Drokhlyansky et al. is the main cluster that expresses Sst (very little is expressed in their defined interneuron clusters) and therefore may also correspond to this interneuron. The serotonergic/5-HT7 descending interneuron subtype includes cluster 6s and a subset of ENC12 characterized by co-expression of serotonin transporter Sert (Slc6a4), monoamine vesicle transporter Vgat2, and/or dopa decarboxylase (Ddc). The ascending interneuron subtype identified by May-Zhang et al. (cluster 3s) was characterized by high Chat and Tac1 with potential co-expression of Calb2. These are also expressed in possible interneurons ENC4 in Morarach et al.

One cell type is conserved among datasets but classified as both a potential interneuron or potential IPAN. These cells co-expressed combinations of markers Nxph2,
Table 2. Putative Enteric Neuron and Glia Subtypes and Co-Expression Markers

No. of ENS cell subtypes proposed by scRNA-seq

Species	Drokhlyansky et al\(^{20}\)	May-Zhang et al\(^{21}\)	Morarach et al\(^{22}\)	Wright et al\(^{23}\)	Zeisel et al\(^{24,a}\)	
Age	adult	mouse	mouse	mouse	mouse	
Region	ileum, colon	duodenum + ileum + colon	small intestine	intestine + colon	small intestine	
No. of EMN	3, 3–5	4	2	4	1	1–2
No. of IMN	2, 4–7	5	2	2	0–2	0–2
No. of INT	2, 2–3	2	4	2–5	2–3	4–6
No. of IPAN	3, 3–4	1	2	3	1	1–2
No. of Glia	3	1	3–6	3	1	4

Shared neurochemical markers of putative ENS cell subtypes

Cell subtype (pre-omics murine markers)	Drokhlyansky et al\(^{20}\)	May-Zhang et al\(^{21}\)	Morarach et al\(^{22}\)	Wright et al\(^{23}\)	Zeisel et al\(^{24,a}\)	Novel putative co-markers	
EMN, circular muscle (Chat, Tac1, ±Calb2)	PEMN 2	PEMN 1, 3-5	Cluster 3	ENC3-4	Chat 2, Chat 3	ENT6	Gfra2, Oprk1, Htr4, Piezo1
EMN, longitudinal muscle (Chat, Calb2, ± Tac1)	PEMN 2	PEMN 1, 3-5	Cluster 0	ENC1-2	Chat 1	ENT4-5	
IMN, circular muscle (Nos1/2, Vip, ± Npy)	PIMN 1-7	Cluster 2	ENC8	Nos 1-2	ENT2-3	Ass1, Gfra1, Etv1	
IMN, longitudinal muscle (Nos1/2, Vip)	PIMN 1-7	Cluster 1	ENC9	Nos 1-2	ENT2-3		
INT, descending (Nos1/2, Chat)	PIN 1-3	Cluster 10	ENC10	Chat 4		Gad2	
INT, descending (Sst, Chat, ± Calb2)	PIN 1-3	Cluster 9	ENC5				
INT, descending (Chat, 5-HT related genes)	PIN 1-3	Cluster 6s	ENC12 (subset)	ENT7 (subset?)			
INT, ascending (Chat, Tac1, ± Calb2)	PIN 1-3	Cluster 3s	ENC4	ENT6			
IPAN (Chat, Nefm, Calca/b, Calb1, ± Calb2)	PSN 1	Cluster 5	ENC6	Calcb	ENT9	Nmu, Nog, Dlk3	
Secretomotor, non-cholinergic (Vip, Npy, Th, ± Calb)	PSVN 1	Cluster 9	ENC11	Nos1 cluster 2		Glp2r	
Vasodilator, non-cholinergic (Vip, Npy, Calb, Th)	PSVN 1	Cluster 9	ENC11	Nos1 cluster 2			
Secretomotor, cholinergic (Chat, Calca/b, Sst, Calb)	PSVN 2, PSN 4	Cluster 5	ENC7	ENT8			
Catecholaminergic neurons (Th)	PSVN 1-2, PIN 1, PIMN 3	Cluster 9	ENC11	Nos1 cluster 2			
IFAN (Cck)	PSN3	Cluster 7s	ENC7	ENT8			
Glia (Sox10, S100β, Gfap, P1p1)	Glia 1-3				Stl18a2		

EMN, excitatory motor neuron; IFAN, intestinofugal afferent neuron; IMN, inhibitory motor neuron; INT, interneuron; IPAN, intrinsic primary afferent neuron.

\(^{a}\)Zeisel et al\(^{24}\) include a dataset collected from the same region and stage as Morarach et al.\(^{22}\)
Intrinsic Primary Afferent Neurons

Between 1 and 4 cell clusters are proposed to correspond to IPANs on the expression of CGRP gene Calcb, coding for CGRP/β. Although Calcb is the primary CGRP gene expressed by and considered an IPAN marker, its paralog gene Calca (coding for CGRPα) is expressed in a subset of IPAN clusters in murine juvenile intestine and adult colon, and thus its expression may be age- or region-dependent. One potential Calca'/Calbc' IPAN subtype co-expresses combinations of neuromedlin U (NmU), noggin (Nog), and homeobox Dlx3, corresponding to PSN 1, cluster 5, ENC6, and Calcb. Another putative Calca'/Calbc' IPAN subtype expresses a combination of brain-derived neurotrophic factor (Bdnf), mechanosensitive ion channel Piezo2, and Cck. Drokhlyansky et al suggest this is a single subtype (PSN3), whereas Morarach et al identified a Bdnf/Piezo2+Cck⁺ subtype (ENC12) and a separate cluster (ENC7) as Bdnf⁻Cck⁻.

Although CGRP genes are expressed in IPANs and therefore a putative means of identifying IPAN clusters, these genes are also expressed by secretomotor/vasodilator neurons and therefore may confound IPAN clustering. Morarach et al reported 3 putative IPAN types by clustering: ENC6, ENC7, and ENC12. They subsequently investigated the morphologies of these subtypes, delineating true IPANs by Dogiel type II morphologies and neuronal projections that traveled through layers of the gut wall. They determined that ENC6 and a subset of ENC12 appeared morphologically as IPANs, whereas ENC7 was characterized as atypical IPANs or perhaps even enterinuglial neurons. Because the ENC12 subset expresses Piezo2, these may be mechanosensitive IPANs. This work demonstrates further validation of omics subtype classifications is necessary and suggests some of the other proposed IPAN subtypes may not be true IPANs or be atypical IPANs or unique subtypes.

Enteric Glia

Between 1 and 7 subtypes of enteric glial cells are classified on the basis of expression patterns. Of note, the 2 studies that found only 1 glial subtype sequenced biopsy tissue from IBD patients and thus only captured mucosal glia. In mice the number of glial subtypes may differ throughout development or by gut region, because 7 subtypes were identified in postnatal day (PN) PN21 mouse small intestine, whereas adult mouse colon only has 2–4 subtypes. Alternatively, this is due to the differences in resolution because these datasets contain varied numbers of captured glial cells. One glial subtype in PN21 mice is classified as a progenitor cell because of topoisomerase Top2a expression. This is not a defining marker identified in adult enteric glia and suggests this glial subtype plays a larger role in the juvenile development period than adulthood. Expression of the vesicular monoamine transporter Sloc18a2 and GDNFα receptors further supports developmental convergence of glial subtypes, because these markers 2–3 subtypes at PN21 and only 1 subtype each in adulthood. Several other markers of enteric glial subtypes are identified only in a single study. These include differential expression of Foxd3 and Aldh1a3 in PN21 subtypes and neurotensin receptor Ntr1 in adult subtypes. In humans, 1 glial subtype expressed P2Y12R, NRXN1, and XKRI, which could also be potential markers. Although differential expression of these markers could reflect developmental and species differences, this heterogeneity may also be due to the dynamic and reactive expression patterns known of enteric glia in varying environments. Regardless, the paucity of glial discussion in ENS scRNA-seq studies cannot resolve this, and glial heterogeneity warrants further investigation. Some of these studies did in fact create glial expression datasets and reanalysis or meta-analysis of these data with a glial focus would likely help resolve these differences and identify additional subtype expression patterns.

Region-, Species-, and Sex-Dependent Expression

Region-Dependent Expression

The number of neuronal subtypes is mostly conserved across gut regions; however, the proportion of neuronal types and subtypes varies. Catecholaminergic neurons are more highly concentrated in the duodenum than ileum, whereas Sst⁺ and Cck⁺ neuronal subtypes are more prevalent in the ileum. The ileum contains more sensory neurons than the colon, and the colon contains more secretomotor/vasodilator neurons. This difference likely reflects the colon's need to regulate fluid absorption and secretion. Subtype-specific genes also vary between regions of the small and large intestine. Chat⁺/Nos⁺ descending interneurons, Gad⁺ interneurons, and/or
Species-Dependent Expression

Historically enteric neurons from smaller mammals are considered smaller, simpler, and easier to classify than those from larger species such as humans. Perhaps this is in part due to different proportions of neuronal cell types, because these types display varying cell body size and complexity. ScRNA-seq research supports this phenomenon because the proportions of neuronal types differ between species. Both excitatory and inhibitory motor neurons are enriched in humans, whereas all the other types (sensory neurons, interneurons, and secretomotor/vasodilator neurons) are less abundant. However, single cell collection methods have variable efficacy in capturing rare cells or cells with differing morphologies, so to what extent these findings are due to technical limitations is unknown. ScRNA-seq research highlights both conserved functions and complex molecular differences. For instance, development of the ENS is highly conserved. Parallel scRNA-seq of mouse and human neural crest cells identified similar progression of gene expression patterns between both species, suggesting conserved mechanisms of neural fate determination. Specifically, ligand-receptor interactions important for neuronal development are highly conserved between mice and humans. However, hedgehog signaling is subtly different between species, promoting both neuronal and glial differentiation in mice but only neuronal differentiation in humans.

The number of neuronal subtypes based on neurochemical coding is also relatively conserved between species, and some co-markers are shared. Chat⁺ neurons in mice and humans express Galnt16, Tshz2, Alk, Bnc2, Rbfox1, Pbx3, and Tbx2. Nos⁺ neurons in both species express Dgkb and Tbx3. Putative interneurons express Grm7, and sensory neurons express Chbh. Interestingly, secretomotor/vasodilator neurons from both species share markers with other neuron types and therefore may require co-expression patterns to identify. These neurons express Vip, Kcdn2, Etv1, and Sgcn.

However, murine and human enteric neuronal expression patterns are more different than similar and may reflect divergent molecular signaling mechanisms. May-Zhang et al. estimate that only 40% of neuron-specific genes are conserved between mice and humans, with variations in subtype- and location-dependent expression. This is interesting considering mouse and human gene expressions are considered more similar than different within brain regions. These findings may also be influenced by technical differences. Nonetheless, these suggest differential regulation of feeding and energy within the ENS through the melanocortin, leptin, and serotonin pathways. Human neurons highly express the melanocortin receptor MC1R, whereas mouse neurons express its antagonist Agrp. Similarly, human neurons highly express leptin receptor Lepr and serotonin synthesis enzyme Tph2. Murine Lepr expression was not detected in scRNA-seq studies, whereas Tph2 was undetected or detected in only a very small proportion (0.2%) of enteric neurons.

Differences in gene expression between mice and humans further complicate discovery of subtype markers as well. Human neurons sampled and sequenced by Drokhlyansky et al. did not express CHAT, and the authors used expression of the choline transporter SLC5A7 to mark these neurons instead. They hypothesize the lack of CHAT expression is due to their specific methods, which is likely the case because other studies do not report this same
concern in scRNA-seq human data. It is important to note that the strategy of using Slc5a7 to mark cholinergic neurons would not likely be appropriate in mice because Slc5a7 may also be expressed by nitricergic neurons; however, Slc18a3 as used by Morarach et al. where Chat detection was low could be another alternative. Cell-specific markers for IPANs are unclear and therefore make species comparisons somewhat premature. May-Zhang et al. suggest that Kh1l may be a species-specific marker of murine IPANs, labeling an entirely different subset of neurons in humans classified as CALB1/NXPH2⁺ Dogiel type III neurons of the small intestine. However, Kh1l is expressed by non-IPAN mouse neuronal subtypes as well, and KLHL1⁺ human neurons may reflect unidentified neuronal subtype(s) conserved between mice and humans. Nmu expression likely reflects true IPANs based on its clear and conserved expression by murine and human IPANs, expression in putative murine IPAN clusters across datasets, and is also morphologically verified.

Enteric glial subtypes appear somewhat conserved between humans and mice, where 3 clusters were identified in each species by Drokylansky et al. These clusters may correspond to one other but are not explicitly compared. However, human glia demonstrates higher complexity because patient-specific subtypes also clustered, likely reflecting the impact of human genetic variability and disease status on gene expression. Enteric glial expression involving ENS development is mostly conserved between mice and zebrafish, but canonical marker expression differs. McCallum et al. found that although some canonical markers such as Sox10 and Plp1b are expressed in zebrafish enteric glia, Gfap and S100b are not. Additional developmental genes such as Sox2 and Foxd3 are conserved between species, further validating the zebrafish as a reasonable organism to study mammalian ENS development.

Sex-Dependent Expression

Many of the established concepts regarding ENS neurochemical coding and physiology relied on data from studies that either did not consider sex as a variable or aimed to remove it as a variable. Current omics studies investigating sex differences also remain relatively limited. However, scRNA-seq studies that did assess sex differences did not observe overt sex-related differences in clustering of enteric neuron subtypes, regardless of age or species. Although ENS cell clustering is similar between sexes, there are still differentially expressed genes within all or specific clusters. Although most of these genes are X- and Y-chromosome related, some are not. May-Zhang et al. observed that Slc6a14 and Muc5b are enriched in female human neurons, whereas Cntnap5a is higher in putative IPANs (cluster 5), and Sst is higher in excitatory motor neurons innervating longitudinal muscle (cluster 0) in female mice. Similarly, robust sex differences have not been observed between glial cell subtypes. It is currently unclear whether these data reflect a true lack of sex differences or are too underpowered to detect subtle sex differences. This would be an important area to address in future studies.

Oomics Contribution to Understanding Enteric Nervous System Dysfunction and Disease

High-throughput omics data highlight ENS expression patterns and how they are altered in abnormal states. Here we discuss ENS gene expression in the context of dysmotility, development, communication with immune cells, and dysbiosis. Finally, we link known genetic disease markers with ENS expression. Highlights of these findings are summarized in Table 3.

Dysmotility

Genome-wide association studies and related genetic studies have identified mutations associated with dysmotility in humans. How these mutations contribute to disease risk through gene expression is often unclear. Omics data suggest some of these mutations affect expression of genes involved in cell cycling and differentiation in the ENS. For instance, mutations in DNA repair gene RAD21 are associated with chronic intestinal pseudo-obstruction. This mutation lowers expression of neuronal differentiation factor Runx1, which subsequently reduces enteric neuron numbers and slows intestinal transit in zebrafish. Transcription factors Dlx1 and Dlx2 are also important for bowel motility, where Dlx1/2 mutants have decreased Vip and increased Penk and Plp1 expression, suggesting Dlx1/2 signaling modulates neuronal subtype populations and peripheral glia. Sox6 also helps drive neuronal subtype differentiation, and absence of Sox6-driven dopaminergic neurons contributes to gastroparesis in mice. This may relate to symptoms of gastroparesis in Parkinson’s disease patients, but the connection to diagnosable human disease requires further investigation.

Not surprisingly, omics data also support that altered neurotransmitter and neuromodulator signaling in the ENS contribute to dysmotility. A mutation in subunit gene Gabrb1 of the excitatory ion channel GABA-A is associated with irritable bowel syndrome (IBS) and decreased GABRG1 expression in IBS patients. Expression of serotonin receptor Htr2b decreases in obstructed defecation patients. Htr2b is primarily expressed by excitatory motor neuron subtypes and in the distal gut. These data suggest decreased prevalence or activity of excitatory motor neurons contributes to dysmotility, whereas others suggest roles for inhibitory neurons. GDNF signaling is typically highlighted in neuronal development because loss of this signaling during development leads to colonic aganglionosis in mice. However, scRNA-seq highlighted a potential role for GDNF in acute dysmotility during adulthood as well, albeit further testing is warranted to see whether this has functional relevance. Wright et al. discovered that in adult mice GDNF receptor α (Gfra1) is preferentially expressed by nitricergic neurons and glia and confirmed that GDNF preferentially exerts its effects through Gfra1. Furthermore, GDNF signaling enhanced colonic contractility. For other neuropeptides involved in dysmotility the neuron populations affected are unclear. Secretoneurin is involved in gastrointestinal motility and expressed by the
majority of interganglionic enteric neurons. Its precursor protein secretogranin II increases in these neurons in response to early life stress and therefore may impact stress-dependent dysmotility.

Development

Genetic and omics studies investigating neuronal development are often in the context of Hirschsprung disease (HSCR). These studies could encompass their own review, and here we focus instead on increased resolution of the enteric neuronal development timeline and where differential expression of developmental genes may disrupt this. Many important transcription factors and signaling regulators for ENS development were discovered in early omics studies. These include now canonical developmental markers such as Sox6, Pbx3, Dlx1, Dlx2, Ascl1, Phox2b, and Elavl4. Dlx2 is decreased in aganglionic mouse bowel, and its expression is enriched in neuronal cells compared with non-neuronal cells in murine embryonic gut, further validating Dlx2 as an important neuronal-specific regulator in development. Interestingly, Dlx2 is enriched in non-neuronal cells in the zebrafish embryo gut, suggesting interspecies differences in the role of Dlx2. However, many other canonical ENS development genes are conserved between mice and zebrafish, including Phox2b, Elavl3, and Elavl4.

Integrating findings from prior omics and newer scRNA-seq studies expands on prior omics work identifying integral genes in ENS development by further resolving cellular subtypes and time points where gene expression differs. In addition, these studies are performed in both humans and mice and may shed some light on interspecies variability in ENS development. In mice at E12.5, the ENS clusters into glial progenitors, neuronal progenitors, and mixed groups. In humans, neural crest progenitors are present by embryonic week (EW) EW6.5 and have already created the basic architecture of the submucosal and myenteric plexuses by EW8. However, correlating the timeline of ENS development between mice and humans is complex and likely contains discrepancies. For instance, Cao et al could map scRNA-seq human enteric glial clusters to murine clusters but could not replicate this in enteric neurons, suggesting

Table 3. Genes and Proteins Involved in ENS Dysfunction and Disease Suggested by Omics

Dysfunction/disease topic	Major finding(s) by omics	Genes/proteins of interest	References
Dysmotility	Genes that affect the number of enteric neurons and modulate neuronal subtype populations	RAD21, Runx1, Dlx1, Dlx2, Sox6	26,42,43
	Genes/proteins that affect neuronal excitability/function	GABR G1, HTR2B, Gfra1, Secretoneurin	21–23,44,45,49,50
Development	Genes important for ENS development	Sox6, Pbx3, Dlx1, Dlx2, Ascl1, Phox2b, Elavl4	26,43,50,52,53
	Genes involved in neuronal differentiation/subtype fate determination	Sox6, Ascl1, SEMA3A, Evt1, Bnc2	22,26,55,58
	Genes expressed by glial progenitor clusters	COL20A1, TFA2P2B, GFR4, ARTN, RR3G	55,56
Neuroimmune communication	Genes/proteins for ligands or receptors in neuron-immune cell communication	CX3CL1, CX3CR1, j2-AR, Arg1, Oprm1, Cnr2, IL-12, IL-18	20,60,61,65
	Identified IPAN as neuronal subtype that communicates with ILC2s to modulate immune response	Nmu	20–24
	Genes involved in glial-immune communication	Cxcl10, S100b	33,71,72
Dysbiosis	Genes/proteins in ENS-gut microbiome communication that modify ENS function	Ahr, NGF (host) chaperonin 60, SCFAs (microbes)	34,73–76
	Genes in ENS-gut microbiome communication that affect cell survival/cell death	Cartpt, IL18	30,65
	Host genes affected by microbiome composition	MCT2, GRID2P	82
Gastrointestinal disease markers	Known/novel markers for Hirschsprung disease (HSCR) expressed in enteric neurons	RET, PHO2B, GFR4A1, ECE1, ARF4, KIF5B, RAB8A	20,83
	Known markers for Parkinson’s disease expressed in enteric neurons	DLG2, SNCA, SCN3, LrkK2	20
	Known markers for autism spectrum disorder expressed in enteric neurons and/or enteric glia	GABBR3, DSCAM, NLGN3, NRXN1, ANK2	20,85
	Known/novel markers for inflammatory bowel disease (IBD) expressed in enteric neurons and/or enteric glia	Ptger4, LSAMP, BACH2, NONHSAG044354	20,70,87,89
	Novel markers for irritable bowel syndrome (IBS)	elastase 3a, cathepsin L, proteasome alpha subunit-4	90

ENS, enteric nervous system; ILC2s, group 2 innate lymphoid cells; IPAN, intrinsic primary afferent neuron.
differences in neuronal cluster development timelines. Regardless of timeline differences, canonical markers of functional neuronal types can be traced across development in both mice and humans.25,53,58,59 In humans excitatory neurons emerge first, followed by inhibitory neurons at EW14. \textit{TAC1}+ and \textit{VIP}+ neurons continue to differentiate until EW16. Electrical excitability also begins to form at this point with the expression of voltage-gated sodium channel \textit{SCN3A}.58 In mice \textit{Vip} is apparent by E15.5,53,55 and dopaminergic neurons appear later at E18.52,54 Specific transcription factors help regulate these fates, where in mice \textit{Sox6} and \textit{Ascl1} help drive dopaminergic differentiation,25 and in humans \textit{SEMA3A} may regulate \textit{TAC1}/\textit{VIP} neuronal development.58

ScRNA-seq identified a novel early binary split in neuronal development with putative genetic markers that are conserved between humans and mice. In mice this split mapped to the timeline E15.5 to E18, whereas in humans this corresponded to EW6 to EW11. At the binary split one group expresses \textit{Etv1/ETV1} and contains inhibitory motor neurons and select sensory neurons/interneurons, whereas another group expresses \textit{Bnc2/BNC2} and contains excitatory motor neurons and additional sensory neurons/interneurons.52,55 Although corroboration between 2 scRNA-seq studies is promising, the exact roles of these genes require further study. Mutant phenotypes focusing on these genes could confirm their importance. Regardless, these scRNA-seq studies identified a novel archetype in neuronal development that may be conserved between species. The developmental fate of these binary split clusters was further investigated in mice, where the gene expression patterns of these initial 2 clusters remain into adulthood as \textit{Nos1}/\textit{Npy}+ inhibitory motor neurons and \textit{Ndufa4l2}/\textit{excitatory motor neurons, respectively. Meanwhile, other neuronal types and subtypes down-regulate these markers to diversify into the other characterized enteric neuronal subtypes.22 The role of these early clusters in adulthood is currently unclear, but because of their shared expression patterns with early life progenitors, these cells may shed additional light on the debated phenomenon of adult neurogenesis.

Human scRNA-seq studies also discuss development of enteric glia. Glial progenitors are detectable at early time points, with 5 glial progenitor clusters identified by one study at EW7–856 and 1 progenitor and 1 maintained glial cluster at EW6–11 by another study.55 In addition to the maintained cluster, 3 additional glial clusters were detected at EW12–17.55 Interestingly, this maintained cluster appears shared between both datasets and co-expressed \textit{MAL}, \textit{FGL2}, \textit{GFRA3}, and \textit{RXRG}.56 However, one study suggests this cluster represents non-enteric glia originating in the sacrum or trunk due to \textit{TFAP2B} expression,55 whereas the other study suggests this represents lymphoid associated glia due to expression of immune markers \textit{FGL2}, \textit{MAL}, and \textit{TGFBR3}.56 Whether either or both of these classifications are correct requires further investigation.

Neuroimmune Communication

Neuroimmune communication within the gut was initially suggested by innervation surrounding Peyer’s patches and immune cells in the lamina propria and immunostaining for neurotransmitter receptors on these immune cells.1,4 Omics data suggest molecular mechanisms of interaction between specific neuronal types or subtypes and immune cells. For instance, secretomotor/vasodilator neurons may communicate with monocytes via chemokine \textit{CX3CL1} to \textit{CX3CR1}.20 Adrenergic neurons communicate with muscularis macrophages through \textit{β2} adrenergic receptors during bacterial infection and increase expression of protective and wound-healing genes such as \textit{Fizz1} (\textit{Retnla}) and \textit{Il10} in these cells.60 Muscularis macrophages in turn communicate with enteric neurons using arginase 1 to protect them from NLRP6-inflammasome activation and cell death.51 Together these highlight protective signaling mechanisms in enteric neuroimmune communication.

Neurons may also communicate with immune cells through opioid and cannabinoid receptors, but it is unclear whether these signals would ameliorate or exacerbate inflammation because the impact of opioid and cannabinoid signaling on gut inflammation is complex.62–64 Neurons could use enkephalins to signal opioid receptor mu 1 (\textit{Oprm1}) on T cells and Dagla to signal cannabinoid receptor 2 (\textit{Cnr2}) on B cells. Inhibitory motor neurons also produce interleukins (ILs) IL12 and IL18, which may interact with T cells.50 However, these are transcriptional data and require protein-level mechanistic studies to validate and determine the role of these specified communications. In addition, neuronal IL18 regulates antimicrobial activity in goblet cells65 and therefore may play a similar role in T cells.

ScRNA-seq data have also added resolution to previously known neuroimmune communications. For instance, non-omics data support neuromedin U produced by intestinal neurons communicates with group 2 innate lymphoid cells through their neuromedin U receptor 1 (NMUR1).66,67 Although these neuromedin U-producing neurons were postulated to be cholinergic with mucosal projections, their functional type was yet unknown. ScRNA-seq clusters confirmed that IPANs express \textit{Nmu} as a specific marker60–64 and therefore clearly identifies IPANs as the cells communicating with group 2 innate lymphoid cells to modulate immune response. This is a rewarding example of novel scRNA-seq subtypes complementing non-omics studies to understand biomolecular function.

Specific mechanisms of communication between enteric glia and immune cells were recently reported in non-omics work.68,69 Although one recent omics study did highlight a putative mechanism of glial-immune interaction in mice, other findings mainly highlight general immune response. Progatzky et al13 identified up-regulation of enteric glial \textit{Ccl110} as an important mediator of interferon gamma signaling and ultimately inflammatory and granulomatous response to helminth infection. Other studies support glial-immune communication in chemical models of inflammation. In dinitrobenzene sulfonic acid (DNBS) colitis enteric glia up-regulate genes in immune-related pathways including cytokine activity and antigen processing and presentation.70 Glia treated with lipopolysaccharide + interferon gamma also up-regulate several proinflammatory cytokines, chemokines, and interleukins in cell culture71 and
rat small intestine. Interestingly, glial S100b decreased in both models. Typically S100b release increases inducible nitric oxide synthase expression and nitric oxide production, so perhaps this is a compensatory/protective mechanism.

Dysbiosis

Omics research primarily uses 16s rRNA sequencing to correlate altered microbiome diversity with gastrointestinal disease, but here we will focus on host ENS changes. Not surprisingly, the microbiome alters enteric neuronal gene expression in the ileum and colon but not proximal intestinal regions. Many genes are regulated by colonic microbes and affect ENS function. For instance, the microbiome impacts colonic motility by up-regulating Ahr expression on enteric neurons. Commensal bacteria release extracellular vesicles containing heat shock system proteins such as chaperonin 60, which increase both colonic motor complex amplitude and IPAN activity, suggesting roles for this communication in both motor and afferent intrinsic pathways. Microbial dysbiosis also correlates with afferent signaling in visceral hypersensitivity. Specifically, taxa that produce short-chain fatty acids increase in multiple inflammatory disease models. Intrinsic enteric neurons are not considered directly involved in pain transduction pathways, but communication between the ENS and extrinsic sensory neurons can modulate pain perception. Short-chain fatty acids increase expression of enteric glial fibrillary acid protein and nerve growth factor, where nerve growth factor contributes to visceral hypersensitivity. Taken together these data suggest that the gut microbiome and its biomolecular mediators have effects on many aspects of known ENS function.

Microbial dysbiosis likely impacts motor neuron development. Mice that receive antibiotics at PN10 had increased colonic motility corresponding with increased cholinergic neurons and decreased nitricergic neurons, whereas antibiotic-treated 6-week-old or adult mice had the opposite results. Although these findings suggest age-dependent relationships between enteric neurons and microbiota, these groups also received different antibiotics, and this may also explain these results. Commensal microbiota also regulate the survival of specific IFANs by preventing inflammasome-dependent cell death. These IFANs express the marker cocaine- and amphetamine-regulated transcript (Cartpt) and help regulate blood glucose levels through communication with the liver and pancreas. Conversely, enteric neurons prevent infection by pathogenic bacteria. Neuronal IL18 promotes goblet cell production of antimicrobial peptides and subsequently prevents invasion of the pathogenic species Salmonella typhimurium. Together these data highlight signaling mechanisms between enteric neurons and gut bacteria that help regulate homeostasis and prevent infection.

Dysbiosis is also associated with disease pathogenesis and/or disease markers, particularly in IBS. Although taxonomic changes of the microbiome in IBS are subtle, these bacteria alter host serum metabolites, likely reflecting altered bacterial metabolites as well. This metabolic disturbance contributes to enteric neuron dysfunction and dysmotility in IBS. For instance, mice that receive fecal transplants from IBS with diarrhea patients recapitulate decreased colonic transit times despite little change in microbial composition. In addition, short-chain fatty acids can regulate colonic motility through the monocarboxylate transporter 2, where mutations in the gene for monocarboxylate transporter 2 ligand delphilin (GRID2IP) confer IBS disease risk. This similarly suggests disturbances in microbial metabolites may be key in IBS dysmotility, although functional studies are required to validate this connection.

ENS Expression of Gastrointestinal Disease Markers

Many previously identified disease markers and risk genes are enriched in enteric neurons compared with other colonic cell types. Note that our previous sections on pathologies may also include genes that could be considered disease markers. However, in those contexts we investigated how omics data highlighted potential functions of these genes in pathogenesis. Here we discuss genes that omics studies specifically identify as putative markers of specific medical diagnoses. Drokhlyansky et al highlighted the genes RET, PHOX2B, GFRA1, and ECE1 as markers of HSCR that are enriched in neurons compared with non-neuronal cells. The inclusion of both RET and GFRA1 is interesting because both are considered receptors for GDNF, but Gfra1 signaling was discussed earlier as a means of dysmotility in adult mice, and RET is the canonical receptor for GDNF implicated in HSCR. Indeed murine haploinsufficiency of either GDNF or RET mimics intestinal agangliosis/hypogangliosis seen in HSCR. This supports the role for GDNF-RET signaling in HSCR, and thus the role of GFRA1 in this context is still unclear. Perhaps this highlights complex signaling patterns across development through adulthood that require further investigation, where milder or altered perturbations of the same genes lead to different diseases that present at different ages. This complexity is further suggested by findings in obstructed defecation patients where expression of HSCR-related genes (including RET, PHOX2B, and GFRA1) are down-regulated. However, the functional relevance of this differential expression is unknown. In addition to these HSCR genes involved in neuronal development, a single recent proteomics study in HSCR patients suggests new markers of disease ARF4, KIF5B, and RAB8A. Decreased expression of these proteins in colons of HSCR patients was also validated with Western blot and immunostaining. These genes are involved in cellular trafficking functions and theorized to be important for neuronal processes development. Validation of these targets could highlight specificities in the pathogenesis of HSCR in addition to serving as novel disease markers.

Meanwhile, ENS expression of Parkinson’s disease risk genes suggests neurodegenerative processes may preferentially affect certain neuronal subtypes. Parkinson’s
disease risk genes DLG2, SNCA, and SCN3 are enriched across most neuron subtypes in humans, but murine Lrrk2 is more highly expressed in inhibitory motor neuron and secretomotor/vasodilator neuron subtypes. Lrrk2 expression in enteric neurons also increases with age. LRRK2 dysfunction in the brain contributes to neuroinflammation and subsequent neuronal death in late-onset Parkinson’s disease. Similar mechanisms may occur in the gastrointestinal tract and preferentially target certain neuronal subtypes to produce symptoms. However, whether these are species differences or whether LRRK2 functions similarly in the ENS is unclear.

The effects of autism spectrum disorder risk genes in the ENS may also reflect central nervous system pathology. Enteric neurons enrich for genes expressed in the central nervous system such as GABA receptor GABBR3 and adhesion molecules DSCAM and neurexin-3 (NLGN3). The effects of this autism spectrum disorder NLGN3 mutant in the brain recapitulate in the ENS, where enteric neurons have increased GABA-A sensitivity and subsequently shortened intestinal transit time. Autism spectrum disorder may also involve enteric glial pathology because glia enrich for risk genes NRXN1 and ANK2 compared with other intestinal cell types, but the effect of this on gastrointestinal dysfunction in autism spectrum disorder is unknown. Ank2 is also enriched in a specific glial subtype in mice, and perhaps this glial subtype contributes to disease. Glia are also implicated in inflammatory bowel disease (IBD). Mutations in the prostaglandin receptor EP4 (PTGER4) confer risk in IBD, and Ptger4 is expressed in enteric glia. Enteric glial Ptger4 decreases with DNBS colitis but increases if the tachykinin receptor NK2R is blocked, indicating that communication between NK2R+ enteric neurons and/or extrinsic afferents and enteric glia may play a role. A mutation in LSAMP is associated with IBD risk in African Americans. Lsamp is also expressed in murine enteric glia and decreases in DNBS colitis. Furthermore, Lsamp is preferentially enriched in certain glial subtypes. Taken together these data suggest certain enteric glial subtypes may play a role in autism spectrum disorder and IBD, but follow-up investigation is required to validate this.

Novel disease biomarkers are also suggested by omics research and may serve to further classify and identify patients. A mutation in long noncoding RNA NONHSAG044354 is associated with IBD risk and may regulate BACH2 expression in the transverse colon. BACH2 is enriched in enteric neurons and most highly expressed in excitatory motor neuron subtypes. Perhaps BACH2 expression in these neurons is altered by long noncoding RNAs in certain IBD patients, and differential expression of either NONHSAG044354 or BACH2 may confer disease risk. Omics research suggests that IBS patients could be diagnosed by co-expression of biomarkers, because expression of elastase 3a, cathepsin L, and proteasome alpha subunit-4 effectively distinguishes IBS supernatants from healthy controls. Furthermore, elastase 3a from IBS patients activates enteric neurons, suggesting this may not only be a potential biomarker of IBS but also involved in enteric neuronal dysfunction.

Conclusions

ScRNA-seq identifies novel putative markers of ENS cell subtypes, some of which are replicated between studies and suggest distinct neuronal and glial populations (Figure 2 and Table 2, and similarly assessed by Wright et al). With the recent generation of many promising ENS omics datasets it may be surprising that many details of ENS cellular heterogeneity are inconsistent or still unresolved. Although some of this is due to the difficulty of accessing and reporting on the data generated, some of these discrepancies are due to experimental differences between datasets. For instance, differing numbers of cells collected in scRNA-seq studies affect the resolution of clusters and differentially expressed genes. In addition, these samples span across different locations of the gut, ages, species, and cellular material sequenced (ie, isolated nuclei vs whole cells). Regardless, these data still expand our understanding of ENS cellular heterogeneity and highlight further complexity in enteric neuron and glial classification. Meanwhile, other omics methods supplement these findings by elucidating ENS cell type- and subtype-specific roles in physiology and disease. Together these findings demonstrate the ability of omics data to identify novel molecules and pathways in the ENS.

Current omics methods can generate data in a relatively unbiased manner. The combination of this potential for novelty with the ever-increasing power and sensitivity of omics technology makes omics an ideal methodology for exploring complex and multi-modal questions. These characteristics also make omics data exponential hypothesis-generating tools that will promote scientific advancement for years beyond their creation. This is demonstrated by the sheer number of downloads, citations, and re-analyses of recent omics publications.

However, some of these same characteristics also present current challenges in omics methods. Because of the sheer amount of data created in any given experiment, it can be difficult to synergize and make overall sense of collective findings. This is especially the case when accessing data through publications as opposed to datasets. In some cases it may be better to access the data directly, but this can prove challenging without bioinformatics expertise. Fortunately, some dataset creators have also supplied companion websites to access their data, and this helps mitigate this concern. Some notable examples include Zeisel et al (http://mousebrain.org/), Progatzky et al (https://biologic.crick.ac.uk/ENS/EGGinflammation), Fawkner-Corbett et al (https://simmonslab.shinyapps.io/FetalAtlasDataPortal/), Elmentaita et al (https://www.gutcellatlas.org/), and Cao et al (https://descartes.brotmanbaty.org/). There are additional databases that streamline access to multiple omics studies, such as the Single Cell Portal by the Broad Institute. Although these are all important and promising works that increase the accessibility of omics results, an ideal database would collectively represent all works in a singular, consistent space and allow relatively easier comparison between
datasets. By implementing this the omics community would ideally also provide standardized means of accessing, searching, and representing omics data. We realize this is a difficult task but hope that as omics data continue to grow, means of improving accessibility will continue to improve in tandem. These could also include new meta-analyses of previously published datasets.

Another challenge in omics is that it easily generates comparative data but requires specific experimental design to provide causative data. This historically made understanding expressional changes in the ENS challenging because it meant correlating tissue-level differential expression with genes known to have ENS expression without knowing whether this gene expression change occurred in ENS cells or whether ENS cells even expressed said gene in the first place. Thankfully newer omics technologies allow ENS-specific sequencing, where techniques such as scRNA-seq clearly demonstrate their ability to identify enteric neurons and glia out of many other cell types. As these modalities continue to grow, future research may sequence live cells in situ and/or integrate single cell types. As these modalities continue to grow, future research may sequence live cells in situ and/or integrate single cell techniques for multiple biomolecules together to provide a better mechanistic picture.

Future research may also resolve whether some ENS cell clusters are distinct cell populations or temporal expression patterns responding to the current microenvironment. Because of the rate that omics technology improves and ENS omics research is recently published, it is only a matter of time until our understanding of ENS genetic architectureelves deeper once again.

References
1. Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 2013;14:618–630.
2. Furness JB. The enteric nervous system and neuro-gastroenterology. Nat Rev Gastroenterol Hepatol 2012;9:286–294.
3. Furness J. Types of neurons in the enteric nervous system. J Auton Nerv Syst 2000;81:87–96.
4. Furness JB. In: Furness JB, ed. The enteric nervous system. Malden, MA: Blackwell Publishing, 2006.
5. Gulbransen BD, Sharkey KA. Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2012;9:625–632.
6. Qu Z-D, Thacker M, Castelucci P, Bagyánszki M, Epstein ML, Furness JB. Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res 2008;334:147–161.
7. Dogiel AS. Zur Frage über den feineren Bau der Herzganglien des Menschen und der Säugethiere. Arch für Mikroskopische Anat 1898;53:237–281.
8. Nishi S, North RA. Intracellular recording from the myenteric plexus of the guinea-pig ileum. J Physiol 1973;231:471–491.
9. Hirst GDS, McKirdy HC. A nervous mechanism for descending inhibition in guinea-pig small intestine. J Physiol 1974;238:129–143.
10. Mao Y, Wang B, Kunze W. Characterization of myenteric sensory neurons in the mouse small intestine. J Neurophysiol 2006;96:998–1010.
11. Mongardi Fantaguzzi C, Thacker M, Chiocchetti R, Furness JB. Identification of neuron types in the sub-mucosal ganglia of the mouse ileum. Cell Tissue Res 2009;336:179–189.
12. Melo CG de S, Nicolai EN, Alcaino C, et al. Identification of intrinsic primary afferent neurons in mouse jejunum. Neurogastroenterol Motil 2020;32.
13. Miller SM, Szurszewski JH. Relationship between colonic motility and cholineric mechanosensory afferent synaptic input to mouse superior mesenteric ganglion. Neurogastroenterol Motil 2002;14:339–348.
14. Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol 2021. 10.1038/s41575-021-00423-7.
15. Boemsans W, Lasrado R, Vanden Berghe P, Pachnis V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 2015;63:229–241.
16. Rao M, Nelms BD, Dong L, et al. Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system. Glia 2015;63:2040–2057.
17. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol 2017;18:83.
18. Misra BB, Langefeld C, Olivier M, Cox LA. Integrated omics: tools, advances and future approaches. J Mol Endocrinol 2019;62:R21–R45.
19. Fischer R, Bowness P, Kessler BM. Two birds with one stone: doing metabolomics with your proteomics kit. Proteomics 2013;13:3371–3386.
20. Drokhlyansky E, Smillie CS, Van Wittenberge N, et al. The human and mouse enteric nervous system at single-cell resolution. Cell 2020;1–17.
21. May-Zhang AA, Tycksen E, Southard-Smith AN, et al. Combinatorial transcriptional profiling of mouse and human enteric neurons identifies shared and disparate subtypes in situ. Gastroenterology 2020;160:1–16.
22. Morarach K, Mikhailova A, Knoflach V, et al. Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nat Neurosci 2020. 10.1038/s41593-020-00736-x.
23. Wright CM, Schneider S, Smith-Edwards KM, et al. scRNA-sequencing reveals new enteric nervous system roles for GDNF, NRTN, and TBX3. Cell Mol Gastroenterol Hepatol 2021;11:1548–1592.e1.
24. Zeisel A, Hochgerner H, Lönnerberg P, et al. Molecular architecture of the mouse nervous system. Cell 2018;174:999–1014.e22.
25. Memic F, Knoflach V, Morarach K, et al. Transcription and signaling regulators in developing neuronal subtypes of mouse and human enteric nervous system. Gastroenterology 2018;154:624–636.
26. Li ZS, Pham TD, Tamir H, Chen JJ, Gershon MD. Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation. J Neurosci 2004;24:1330–1339.
27. Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 2016;13:517–528.

28. Spencer NJ, Sorensen J, Travis L, Wilkendt L, Costa M, Hilberd T. Imaging activation of peptidergic spinal afferent varicosities within visceral organs using novel CGRPα-mCherry reporter mice. Am J Physiol Liver Physiol 2016;311:G880–G894.

29. Ounzain S, Micheletti R, Arnau C, et al. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J Mol Cell Cardiol 2015:89:98–112.

30. Muller PA, Matheis F, Schneeberger M, Kerner Z, Jové V, Mucida D. Microbiota-modulated CART α+ enteric neurons autonomously regulate blood glucose. Science 2020;6176:eabd6176.

31. Kinchen J, Chen HH, Parikh K, et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 2018;175:372–386.e17.

32. Smillie CS, Biton M, Ordovas-Montanes J, et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 2019;178:714–730.e22.

33. Progatzky F, Shapiro M, Chng SH, et al. Regulation of intestinal immunity and tissue repair by enteric glia. Nature 2021:599:125–130.

34. Obata Y, Castaño, Boeing S, et al. Neuronal programming by microbiota regulates intestinal physiology. Nature 2020;578:289.

35. Charlton RW, Jacobs P, Torrance JD, Bothwell TH. The role of the intestinal mucosa in iron absorption. J Clin Invest 1965;44:543–554.

36. Xu W, Guo Y, Huang Z, et al. Small heat shock protein CRYAB inhibits intestinal mucosal inflammatory responses and protects barrier integrity through suppressing IKKβ activity. Mucosal Immunol 2019;12:1291–1303.

37. Mirsy R, Jessen KR, Schaichner M, Goridis C. Distribution of the adhesion molecules N-CAM and L1 on peripheral neurons and glia in adult rats. J Neurocytol 1986;15:799–815.

38. Valihrahc L, Androvic P, Kubista M. Platforms for single-cell collection and analysis. Int J Mol Sci 2018;19:807.

39. Lau ST, Li Z, Pui-Ling Lai F, et al. Activation of hedgehog signaling promotes development of mouse and human enteric neural crest cells, based on single-cell transcriptome analyses. Gastroenterology 2019;157:1556–1571.e5.

40. Strand AD, Aragaki AK, Baquet ZC, et al. Conservation of regional gene expression in mouse and human brain. PLoS Genet 2007;3:e59.

41. McCallum S, Obata Y, Forlhi E, et al. Enteric glia as a source of neural progenitors in adult zebrafish. Elife 2020;9.

42. Bonora E, Bianco F, Cordeddu L, et al. Mutations in RAD21 disrupt regulation of apob in patients with chronic intestinal pseudo-obstruction. Gastroenterology 2015;148:771–782.e11.

43. Wright CM, Garifallou JP, Schneider S, et al. Dlx1/2 mice have abnormal enteric nervous system function. JCI Insight 2020;5.

44. Videlock EJ, Mahurkar-Joshi S, Hoffman JM, et al. Sigmoid colon mucosal gene expression supports alterations of neuronal signaling in irritable bowel syndrome with constipation. Am J Physiol Liver Physiol 2018;315:G140–G157.

45. Kim M, Rosenbaum C, Schlegel N, et al. Obstructed defecation: an enteric neuropathy? an exploratory study of patient samples. Int J Colorectal Dis 2018;10–13.

46. Gianino S, Grider JR, Cresswell J, Enomoto H, Heuckeroth RO. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 2003;130:2187–2198.

47. Soret R, Schneider S, Bernas G, et al. Glial cell-derived neurotrophic factor induces enteric neurogenesis and improves colon structure and function in mouse models of Hirschsprung disease. Gastroenterology 2020;159:1824–1838.e17.

48. Shen L, Pichol JG, Mayeli T, Sariola H, Lu B, Westphal H. Gdnf haploinsufficiency causes Hirschsprung-like intestinal obstruction and early-onset lethality in mice. Am J Hum Genet 2002;70:435–447.

49. Lopes LV, Marvin-Guy LF, Fuerholz A, et al. Maternal deprivation affects the neuromuscular protein profile of the rat colon in response to an acute stressor later in life. J Proteomics 2008;71:80–88.

50. Roy-Carson S, Natukunda K, Chou H, et al. Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment. BMC Genomics 2017;18:1–24.

51. Schürmann G, Bishop AE, Facer P, et al. Secretoneurin: a new peptide in the human enteric nervous system. Histochem Cell Biol 1995;104:11–19.

52. Vohra BPS, Tsuji K, Nagashimada M, et al. Differential gene expression and functional analysis implicate novel mechanisms in enteric nervous system precursor migration and neuritogenesis. Dev Biol 2006;298:259–271.

53. Heanue TA, Pachnis V. Expression profiling the developing mammalian enteric nervous system identifies marker and candidate Hirschspring disease genes. Proc Natl Acad Sci U S A 2006;103:6919–6924.

54. Lasrado R, Boesmans W, Kleinjung J, et al. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science 2017;356:722–726.

55. Elmentaite R, Kumasaka N, Roberts K, et al. Cells of the mammalian colon mucosal gene expression supports alteration of patient samples. Int J Colorectal Dis 2018;10:582.e11.

56. Fawkner-Corbett D, Antanaviciute A, Parikh K, et al. Fawker-Corbett D, Antanaviciute A, Parikh K, et al. Development of neuronal signaling in irritable bowel syndrome. Gastroenterology 2016;13:517–528.

57. Day DR, Pliner HA, et al. A human cell atlas of the developing mammalian enteric nervous system identifies marker and candidate Hirschspring disease genes. Proc Natl Acad Sci U S A 2006;103:6919–6924.

58. McCann CJ, Alves MM, Brosens E, et al. Neuronal development and onset of electrical activity in the human enteric nervous system. Gastroenterology 2019;156:1483–1495.e6.
59. Holloway EM, Czerwinski M, Tsai Y-H, et al. Mapping development of the human intestinal niche at single-cell resolution. Cell Stem Cell 2021;28:568–580.e4.

60. Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Muicida D. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 2016;164:378–391.

61. Matheis F, Muller PA, Graves CL, et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 2020;180:64–78.e16.

62. DiPatrizio NV. Endocannabinoids in the gut. Cannabis Cannabinoid Res 2016;1:67–77.

63. Kienzl M, Storr M, Schicho R. Cannabinoids and opioids in the treatment of inflammatory bowel diseases. Clin Transl Gastroenterol 2020;11:e00120.

64. Sharma U, Olson RK, Erhart FN, et al. Prescription opioids induce gut dysbiosis and exacerbate colitis in a murine model of inflammatory bowel disease. J Crohns Colitis 2020;14:801–817.

65. Jarret A, Jackson R, Duizer C, et al. Enteric nervous system-derived IL-18 orchestrates mucosal barrier immunity. Cell 2020;180:50–63.e12.

66. Cardoso V, Chesné J, Ribeiro H, et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 2017;549:277–281.

67. Klose CSN, Mahlakõiv T, Moeller JB, et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 2017;549:282–286.

68. Grubisić V, McClain JL, Fried DE, et al. Enteric glia modulate macrophage phenotype and visceral sensitivity following inflammation. Cell Rep 2020;32:108100.

69. Chow AK, Grubisić V, Gulbransen BD. Enteric glia regulate lymphocyte activation via autophagy-mediated MHC-II expression. Cell Mol Gastroenterol Hepatol 2021;12:1215–1237.

70. Delvalle NM, Dharshaka C, Morales-Soto W, Fried DE, Gaudette L, Gulbransen BD. Communication between enteric neurons, glia, and nociceptors underlies the effects of tachykinins on neuroinflammation. Cell Mol Gastroenterol Hepatol 2018;6:321–344.

71. Liñán-Rico A, Turco F, Ochoa-Cortes F, et al. Molecular signaling and dysfunction of the human reactive enteric glial cell phenotype. Inflamm Bowel Dis 2016;22:1812–1834.

72. Rosenbaum C, Schick MA, Wollborn J, et al. Activation of myenteric glia during acute inflammation in vitro and in vivo. PLoS One 2016;11:1–20.

73. Al-Nedawi K, Mian MF, Hossain N, et al. Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems. FASEB J 2015;29:684–695.

74. Esquerre N, Basso L, Defaye M, et al. Colitis-induced microbial perturbation promotes postinflammatory visceral hypersensitivity. Cell Mol Gastroenterol Hepatol 2020;10:225–244.

75. Zhou XY, Li M, Li X, et al. Visceral hypersensitive rats share common dysbiosis features with irritable bowel syndrome patients. World J Gastroenterol 2016;22:5211–5227.

76. De Palma G, Blehnerhassett P, Lu J, et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 2015;6.

77. Long X, Li M, Li L-X, et al. Butyrate promotes visceral hypersensitivity in an IBS-like model via enteric glial cell-derived nerve growth factor. Neurogastroenterol Motil 2018;30:e13227.

78. Hung LY, Boonma P, Unterweger P, et al. Neonatal antibiotics disrupt motility and enteric neural circuits in mouse colon. Cell Mol Gastroenterol Hepatol 2019;8:298–300.e6.

79. Hung LY, Parathan P, Boonma P, et al. Antibiotic exposure postweaning disrupts the neurochemistry and function of enteric neurons mediating colonic motor activity. Am J Physiol Liver Physiol 2020;318:G1042–G1053.

80. Yarandi SS, Kulkarni S, Saha M, Sylvia KE, Sears CL, Pasricha PJ. Intestinal bacteria maintain adult enteric nervous system and nitricergic neurons via toll-like receptor 2-induced neurogenesis in mice. Gastroenterology 2020;159:200–213.e8.

81. De Palma G, Lynch MDJ, Lu J, et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med 2017;9:eaaf6397.

82. Ek WE, Reznichenko A, Ripke S, et al. Exploring the genetics of irritable bowel syndrome: a GWA study in the general population and replication in multinational case-control cohorts. Gut 2015;64:1774–1782.

83. Zhang Q, Wu L, Bai B, et al. Quantitative proteomics reveals association of neuron projection development genes ARF4, KIF5B, and RAB8A with Hirschsprung disease. Mol Cell Proteomics 2021;20:100007.

84. Rui Q, Ni H, Li D, Gao R, Chen G. The role of LRRK2 in inflammatory bowel disease. Cell Rep 2020;32:108100.

85. Hosie S, Ellis M, Swaminathan M, et al. Gastrointestinal dysfunction in patients and mice expressing the autism-associated R451C mutation in neuroligin-3. Autism Res 2019;12:1043–1056.

86. Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association study identifies more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 2008;40:955–962.

87. Brant SR, Okou DT, Simpson CL, et al. Genome-wide association study identifies African-specific susceptibility loci in African Americans with inflammatory bowel disease. Gastroenterology 2017;152:206–217.e2.

88. Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007;39:596–604.

89. Mirza AH, Kaur S, Broxson CA, Pociot F. Effects of GWAS-associated genetic variants on IncRNAs within IBD and T1D candidate loci. PLoS One 2014;9.

90. Buhner S, Hahne H, Hartwig K, et al. Protease signaling through protease activated receptor 1 mediates nerve activation by mucosal supernatants from irritable bowel syndrome but not from ulcerative colitis patients. PLoS One 2018;13:1–16.

91. Perez-Riverol Y, Zorin A, Dass G, et al. Quantifying the impact of public omics data. Nat Commun 2019;10:3512.
92. Srivastava D, Iyer A, Kumar V, Sengupta D. CellAtlas-Search: a scalable search engine for single cells. Nucleic Acids Res 2018;46:W141–W147.

93. Chen W, Guillaume-Gentil O, Rainer PY, et al. Live-seq enables temporal transcriptomic recording of single cells. Nature 2022;608:733–740.

Received July 21, 2021. Accepted October 28, 2022.

Correspondence
Address correspondence to: Brian Gulbransen, PhD, Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824. e-mail: gulbrans@msu.edu.

CRediT Authorship Contributions
Christine Dharshika, PhD (Conceptualization: Equal; Data curation: Lead; Formal analysis: Lead; Funding acquisition: Supporting; Investigation: Lead; Methodology: Lead; Software: Lead; Validation: Lead; Visualization: Lead; Writing – original draft: Lead; Writing – review & editing: Equal)
Brian D. Gulbransen, PhD

Conflicts of interest
The authors disclose no conflicts.

Funding
B.D.G. receives support from grants R01DK103723 and R01DK120862 from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.