Some Synonymous and Nonsynonymous gyroA Mutations in Mycobacterium tuberculosis Lead to Systematic False-Positive Fluoroquinolone Resistance Results with the Hain GenoType MTBDRsl Assays

Adebisi Ajileye,a Nataly Alvarez,b,c Matthias Merker,d,e Timothy M. Walker,f Suriya Akter,g Kerstin Brown,a Danesh Moradigaravand,h Thomas Schön,i,j Sönke Andres,k Viola Schleusener,d Shaheed V. Omar,1 Francesc Coll,m Hairong Huang,n Roland Diel,n Nazir Ismail,l, Shaheed V. Omar,l E. Grace Smith,a Sharon J. Peacock,h,m,q Claudio U. Köserq

Public Health England West Midlands Public Health Laboratory, Heartlands Hospital, Birmingham, United Kingdom; Bacteriology and Mycobacteria Unit, Corporación Para Investigaciones Biológicas, Medellín, Colombia; Universidad Pontificia Bolivariana, Medellín, Colombia; Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; German Center for Infection Research (DZIF), Partnerstelle Hamburg-Lübeck-Borstel, Borstel, Germany; Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Mycobacteriology Unit, Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium; Wellcome Trust Sanger Institute, Hinxton, United Kingdom; Department of Clinical and Experimental Medicine, Division of Medical Microbiology, Linköping University, Linköping, Sweden; Department of Clinical Microbiology and Infectious Diseases, Kalmar County Hospital, Kalmar, Sweden; Division of Mycobacteriology (National Tuberculosis Reference Laboratory), Research Center Borstel, Borstel, Germany; Centre for Tuberculosis, National Institute for Communicable Diseases, Johannesburg, South Africa; London School of Hygiene & Tropical Medicine, London, United Kingdom; National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China; Institute of Epidemiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Public Health England, Microbiology Services, London, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom

ABSTRACT In this study, using the Hain GenoType MTBDRsl assays (versions 1 and 2), we found that some nonsynonymous and synonymous mutations in gyroA in Mycobacterium tuberculosis result in systematic false-resistance results to fluoroquinolones by preventing the binding of wild-type probes. Moreover, such mutations can prevent the binding of mutant probes designed for the identification of specific resistance mutations. Although these mutations are likely rare globally, they occur in approximately 7% of multidrug-resistant tuberculosis strains in some settings.

KEYWORDS Mycobacterium tuberculosis, Hain GenoType MTBDRsl, fluoroquinolones

As part of its recommendation for a shorter treatment regimen for multidrug-resistant tuberculosis (MDR TB), the World Health Organization (WHO) recently endorsed version 2 of the Hain GenoType MTBDRsl as the first genotypic drug susceptibility testing (DST) assay for detecting resistance to fluoroquinolones and to the second-line injectable drugs kanamycin, amikacin, and capreomycin (1–5). Specifically, the WHO has endorsed its use instead of phenotypic methods as an initial direct test for ruling in resistance in patients with either MDR TB or confirmed resistance to rifampin. The precise correlation between genotype and phenotype for some muta-
The WHO is currently reviewing the available evidence to address this point. The only documented instance of systematic false-positive fluoroquinolone resistance results with the MTBDR$_{sl}$ was caused by the $\text{gyrA} \text{Acc/Gcc T80A gCg/gGg A90G}$ double mutations relative to the $\text{Mycobacterium tuberculosis}$ H37Rv laboratory strain, given that the A90G mutation prevents the binding of the WT2 band of this assay (Fig. 1)(6–9). Several independent studies, which used a variety of techniques, demonstrated that these double mutations do not confer resistance to any of the four fluoroquinolones currently used for the treatment of TB (i.e., ofloxacin, levofloxacin, moxifloxacin, and gatifloxacin) and may even result in hypersusceptibility (6, 7, 9–15).

Unfortunately, most of the strains with double mutants were not typed, which left two key questions largely unanswered. First, it remains unclear whether these strains are monophyletic or polyphyletic. Second, there is only limited evidence on how widespread the group(s) of strains with these mutations is. There are several pieces of circumstantial evidence regarding these mutations. Only 10 primary research studies from our internal database of 265 in which gyrA was studied reported these double mutations, although it should be noted that not all of these studies covered codon 80 (6–15). This suggested that these mutations are not widespread globally. Based on studies that found the T80A mutation to be a marker for the M. tuberculosis Uganda genotype (formerly known as $\text{Mycobacterium africanum}$ subtype II but now known to be a sublineage within Euro-American M. tuberculosis lineage 4), we speculated that the gyrA double mutant strains might constitute a subgroup of the Uganda genotype (16, 17). This hypothesis appeared to be consistent with the results of two studies from the Republic of the Congo and the Democratic Republic of the Congo, which reported the highest frequency of these double mutants (in 60% [9/15] versus 7.2% [15/209] of MDR TB cases from Brazzaville and Pointe-Noire versus Kinshasa, respectively) (7, 8). This was further supported by mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) results (7, 15).

To clarify the exact relationship of these double mutants with regard to the wider M. tuberculosis complex (MTC) diversity, we analyzed the genomes of 1,974 previously published MTC strains (14). This identified a single T80A+A90G double mutant, which, as expected, resulted in a false-positive result with the MTBDR$_{sl}$ assay (Table 1, C00014838). We then analyzed this strain in a wider collection of 94 Uganda or Uganda-like strains, including 27 T80A+A90G double mutants (or variants thereof), which confirmed that this double mutation was a marker for a subgroup of Uganda strains (Fig. 2; see also Table S1 in the supplemental material). Of these 28 double mutant strains (or variants thereof), 25 originated from the Democratic Republic of Congo in a study of acquired drug resistance, nested in routine surveillance conducted...
Strain/plasmid name	gyra mutation(s)	WT1	WT2	WT3	MUT1	MUT2	MUT3A	MUT3B	MUT3C	MUT3D	Comment	Interpretation of result
C00014838 Acc/Gcc T80A, gCg/gGg	A90G	X	X	X	WT2 binding prevented	False resistant						
C00008711 caC/caT H85H	X	X	X	WT2 binding prevented	False susceptible							
C0001139S gcG/gcA A90A^b	X	X	X	WT2 binding prevented	False resistant							
C0005422^a and 4312-12^c	atC/atT I92I	X	X	WT3 binding prevented	False resistant							
C00012906 ctG/ctA L96L	X	X	X	WT3 binding prevented	False susceptible							
7 Colombian	Ctg/Ttg L96L	X	X	X	WT3 binding prevented	False resistant						
Plasmid 1	Wild type^c	X	X	X	Negative control	True susceptible						
Plasmid 2	aGc/aCc 59ST^e	X	X	X	Negative control	True susceptible						
Plasmid 3	cGc/cGt A90V	X	X	X	WT2 and MUT1 control	True resistant						
Plasmid 4	Tgc/Ccg 591P	X	X	X	WT2 and MUT2 control	True resistant						
Plasmid 5	gAc/gCc 59A	X	X	X	WT3 and MUT3A control	True resistant						
Plasmid 6	Gac/Aac 59D	X	X	X	WT3 and MUT3B control	True resistant						
Plasmid 7	Gac/Tac 59Y	X	X	X	WT3 and MUT3B control, but MUT3B failed to bind	True resistant, but 59Y not identified						
Plasmid 8	gAc/gGc 59D	X	X	X	WT3 and MUT3C control	True resistant						
Plasmid 9	Gac/Cac 59H	X	X	X	WT4 and MUT3D control	True resistant						
Plasmid 10	Acc/Gcc T80A, gCg/gGg	A90G	X	X	WT2 binding prevented; agreement with C00014838	False resistant						
Plasmid 10a	Acc/Gcc T80A, gCg/gGg	A90G, Tgc/Ccg 591P	X	X	WT2 and MUT2 binding prevented	True resistant, but S91P mutation not identified						
Plasmid 11	gGc/gAc A90A	X	X	X	WT2 binding prevented, agreement with C0001139S	False resistant						
Plasmid 11a	gGc/gAc A90A, Tgc/Ccg 591P	X	X	X	WT2 and MUT2 binding prevented	True resistant, but 591P not identified						
Plasmid 11b	gGc/gAc A90A	X	X	X	WT2 binding prevented	True resistant, but A90V not identified						
Plasmid 12	atC/atT I92I	X	X	X	WT2 and MUT3 binding prevented; agreement with C0005422 and C0005429	False resistant						
Plasmid 12a	Tgc/Ccg 591P, atC/atT I92I	X	X	X	WT2 and MUT3 binding prevented	True resistant, but 591P not identified						

^aUnless otherwise stated, testing was done with version 1 of the assay. WT or MUT bands (Fig. 1) were deemed positive if they were as strong as or stronger than the amplification control band, as stipulated in the instructions for use (24, 40). Plasmids were used to investigate combinations of mutations that could arise but, to our knowledge, have not been reported to date. In this context, plasmids 1 to 12 served as controls to demonstrate that plasmids could be used instead of genomic DNA. Plasmids 10a, 11a, 11b, and 12a indicate that the known A90V or 591P resistance mutations were detected but not identified by the corresponding mutant probes in the T80A/H11001 A90G, A90A, or I921 strain background. It should be noted, however, that if the strain population is not homogeneous, the effects of these mutations may differ from those simulated in these experiments (see Supplemental Methods in the supplemental material).

^bAlso observed in a strain from China (44).

^cThe two samples were from the same patient.

^dTested with version 2 of the assay.

^eOne strain had a 594G minority mutation, which resulted in the binding of probe MUT3C. In this case, this was not a false-resistant result.

^fH37Rv reference sequence.

^gSer at codon 95 is an H37Rv-specific mutation (17). All subsequent gyrA plasmids have the aGc/aCc 59ST change. The gyrA Gag/Cag E21Q polymorphism was not taken into consideration, since it lay outside the area targeted by probes, as shown in Fig. 1 (45).

^hMUT3B did not identify 594Y, contrary to the package insert (24). This was in agreement with observations from other studies that used version 1 or 2 of the assay (1, 9, 23, 46-49), although the mutation was identified in some cases (1). Assuming that the 591P mutation causes resistance in a T80A/A90G background, which is not necessarily the case, as discussed in the Fig. 2 legend.

^iA90V mutation in a gcG/gcA A90A background.
from 2006 to 2009 for drug resistance in Kinshasa (18). Specifically, strains were drawn from a collection of 324 phenotypically rifampin-resistant isolates, resulting in a frequency of 7.7% (25/324), which is in line with the aforementioned frequency of 7.2% in Kinshasa during the period of 2011 to 2013 (8).

Synonymous mutations have been shown in other contexts to cause systematic false-positive results, such as those for rifampin when using genotypic DST assays such as the Hain GenoType MTBDRplus or Cepheid Xpert MTB/RIF (19, 20). To date, the equivalent phenomenon had not been described with the MTBDRsl assay. We therefore screened the aforementioned 1,974 genomes and the Sanger sequencing data of 104 MDR TB strains from Medellín (Colombia) and unpublished data, which identified six different synonymous mutations in the fluoroquinolone resistance-determining region of gyrA (14, 21). Two of the synonymous mutations (caC/caT H85H and ctG/ctA L96L) did not cause false-resistance results by preventing the corresponding wild-type bands from binding (Table 1). In contrast, the remaining four did, including a mutation at another nucleotide position of codon 96 (Ctg/Ttg) (Table 1), which was found in seven Haarlem strains from Colombia that were closely related based on 24-locus MIRU-VNTR, resulting in a systematic false-resistance rate of 6.7% (7/104) in Medellín.

FIG 2 Maximum likelihood phylogeny based on 3,710 single nucleotide variants differentiating all 95 Uganda and Uganda-like M. tuberculosis strains. The numerical code shown corresponds to the lineage classification by Coll et al. (41). Phylogenetic variants in the gyrA fluoroquinolone resistance-determining region are color coded. The 28 T80A + A90G strains (or variants thereof) formed a monophyletic group and were consistently susceptible to ofloxacin and other fluoroquinolones when tested (see Table S1 in the supplemental material). This group included the novel T80A + A90C double mutant and, importantly, the T80A + A90G + D94G triple mutant, which comprised the high-confidence D94G resistance mutation that was genetically linked to the double mutations (as opposed to occurring in the same population as a mixed infection) (12). This was in line with a recent report by Pantel et al, who suggested that classical resistance mutations may not cause resistance in a T80A + A90G background, whereas a study by Brossier et al. found that this combination of mutations did correlate with ofloxacin resistance (6, 15). It is therefore possible that these triple mutants have MICs close to the epidemiological cutoff value for ofloxacin, although more data are required to confirm this hypothesis (42, 43).
Furthermore, we showed that the T80A + A90G double mutations and the synonymous gcG/gcA A90A and atC/atT I92I mutations prevented the binding of not only their corresponding wild-type band(s) but also that of the Tcg/Ccg S91P probe (Table 1). Similarly, if the A90V resistance mutation arose in the A90A background (i.e., by a further change in the triplet gCg/gTA), it would not be detected by the gCg/gTg A90V probe.

The consequences of these findings depend on a variety of factors. The aforementioned mutations that result in systematic false-positive results are likely rare globally (i.e., <1% based on the total number of strains initially screened for this study). Nevertheless, they can be frequent locally. Synonymous mutations in particular are not selected against, which means that it is only a matter of time until the MTBDRs/ is used in a region where it has a poor positive predictive value, as would be the case in Medellin. As a result, the absence of binding of wild-type probes without concomitant binding of a mutant probe is a true marker of resistance in most settings, because this binding pattern identifies (i) valid resistance mutations, such as G88C and G88A, that can be inferred only by the absence of WT1, (ii) D94Y, which, contrary to the package insert, was not detected by MUT3B (Table 1), and (iii) mutations that are targeted by specific mutant probes but to which the mutant probes do not bind for unknown reasons (i.e., when the absence of wild-type probes acts as a failsafe method) (22, 23). In other words, simply ignoring wild-type bands would likely result in a significant loss of MTBDRs/ sensitivity.

In the MTBDRs/ instructions, Hain acknowledges that synonymous mutations can result in false-resistant results, but the instructions do not comment on the T80A + A90G mutation or on the effects of synonymous and nonsynonymous mutations on the binding of mutant probes (24). The WHO report that endorsed the assay did not discuss the consequences of systematic false-resistant results (3, 4). In light of the potentially severe consequences of systematic false-resistance results, we propose that in cases where fluoroquinolone resistance is inferred from the absence of a wild-type band alone, appropriate confirmatory testing is undertaken immediately. This would not only be beneficial to the patient but also may prove cost-effective overall for the TB control program (i.e., by avoiding the unnecessary use of more toxic, less effective, and often more expensive drugs, thereby minimizing transmission and enabling preventive therapy of contacts with fluoroquinolones [9, 25]). Given that systematic false-positives are rare in most settings, we would advise not discontinuing fluoroquinolone treatment while confirmatory testing is being carried out, provided this testing is done rapidly (e.g., using targeted sequencing of the locus in question to identify synonymous mutations, the T80A + A90G mutations, or any resistance mutations). Ideally, this should be complemented with phenotypic DST to identify heteroresistance that is missed by Sanger sequencing, which cannot detect mutations that occur in below 10 to 15% of the total population (26). Alternatively, fluoroquinolones could be kept in the regimen but not counted as an effective agent until systematic false-positives are excluded.

Although not investigated here, these highlighted issues likely apply to some, if not all, other commercial genotypic DST assays for fluoroquinolones, which are manufactured by Autoimmun Diagnostika, NIPRO, Seegene, YD Diagnostics, and Zeesan Biotech (27–32). Our findings therefore underline the need for diagnostic companies, including Cepheid, which is currently adapting its GeneXpert system for fluoroquinolone testing, to consider the genetic diversity within the MTC at the development stage and to monitor test performance after uptake in clinical settings (19, 33, 34). Importantly, this also applies to software tools designed to automate the analysis of whole-genome sequencing data. In fact, three of the current tools (KvarQ, Mykrobe Predictor TB, and TB Profiler) misclassified strain BTB-08-045 with gyrA T80A + A90G as resistant to at least one fluoroquinolone because the respective mutation catalogues of these tools list A90G as a resistance mutation, whereas the tools CASTB and PhyResSE correctly classified the strain (35–39).
SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AAC.02169-16.

SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.1 MB.

ACKNOWLEDGMENTS
We thank Armand Van Deun for his advice regarding this study and Priti Rathod for organizational support.

T.M.W. is a University of Oxford National Institute for Health Research (NIHR) academic clinical lecturer. N.A. was supported by a doctoral study fund from Colciencias. T.S. was supported by grants from the Swedish Heart and Lung Foundation and the Marianne and Marcus Wallenberg Foundation. F.C. was supported by the Wellcome Trust (grant 201344/Z/16/Z). D.W.C. and T.E.A.P. are NIHR senior investigators supported by the NIHR Oxford Biomedical Research Centre, NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance (grant HPRU-2012-10041), and the Health Innovation Challenge Fund (grant TS-358). S.N. was supported by grants from the German Center for Infection Research (DZIF), the European Union TB-PAN-NET (grant FP7-223681), and PathoNgenTrace (grant 278864). S.J.P. was supported by the Health Innovation Challenge Fund (grants HICF-TS-342 and WT098600), a parallel funding partnership between the UK Department of Health and Wellcome Trust. C.U.K. is a junior research fellow at Wolfson College, Cambridge.

The views expressed in this publication are those of the authors and not necessarily those of the Department of Health, Public Health England, or the Wellcome Trust.

T.S. is a member of the EUCAST subgroup on antimonycobacterial susceptibility testing. J.P., S.J.P., and C.U.K. have collaborated with Illumina, Inc., on a number of scientific projects. J.P. has received funding for travel and accommodation from Pacific Biosciences, Inc., and Illumina, Inc. S.N. is a consultant for the Foundation for Innovative New Diagnostics. S.J.P. has received funding for travel and accommodation from Illumina, Inc. C.U.K. was a technical advisor for the Tuberculosis Guideline Development Group of the World Health Organization (WHO) during the meeting that endorsed the Hain MTBDRsl assay but resigned from that position; T.S. was an observer at that meeting. C.U.K. is a consultant for the Foundation for Innovative New Diagnostics, which includes work on behalf of the WHO. The Bill & Melinda Gates Foundation, Janssen Pharmaceutical, and PerkinElmer covered C.U.K.’s travel and accommodation to present at meetings. The European Society of Mycobacteriology awarded C.U.K. the Gertrud Meissner Award, which is sponsored by Hain Lifescience.

REFERENCES
1. Tagliani E, Cabibbe AM, Miotto P, Borroni E, Toro JC, Mansjo M, Hofner S, Hillemann D, Zalutskaya A, Skrahina A, Cirillo DM. 2015. Diagnostic performance of the new version of GenoType MTBDRsl (V2.0) assay for detection of resistance to fluoroquinolones and second line injectable drugs: a multicenter study. J Clin Microbiol 53:2961–2969. https://doi.org/10.1128/JCM.01257-15.
2. Sotgiu G, Tiberi S, D’Ambrosio L, Centis R, Zumla A, Migliori GB. 2016. WHO recommendations on shorter treatment of multidrug-resistant tuberculosis. Lancet 387:2486–2487. https://doi.org/10.1016/S0140-6736(16)30729-2.
3. World Health Organization. 2016. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs. Policy guidance. http://www.who.int/tb/areas-of-work/laboratory/WHOPolicyStatementSLLPA.pdf?ua=1. Accessed 31 July 2016.
4. World Health Organization. 2016. Online annexes (5–8) to WHO policy guidance: the use of molecular line probe assay for the detection of resistance to second-line anti-tuberculosis drugs. http://www.who.int/tb/areas-of-work/laboratory/Online Annexes_MTBDRsl.pdf?ua=1. Accessed 2 August 2016.
5. World Health Organization. 2016. WHO treatment guidelines for drug-resistant tuberculosis, 2016 update. World Health Organization, Geneva, Switzerland. https://www.ncbi.nlm.nih.gov/books/NBK390455/. Accessed 3 March 2016.
6. Brossier F, Veziris N, Aubry A, Jarlier V, Sougakoff W. 2010. Detection by GenoType MTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates. J Clin Microbiol 48:1683–1689. https://doi.org/10.1128/JCM.01947-09.
7. Aubry A, Sougakoff W, Bodzongo P, Delcroix G, Armand S, Millot G, Jarlier V, COURCEL R, LEMAITRE N. 2014. First evaluation of drug-resistant Mycobacterium tuberculosis clinical isolates from Congo revealed misdiagnosis of fluoroquinolone resistance by line probe assay due to a double substitution T80A-A90G in GyrA. PLoS One 9:e95083. https://doi.org/10.1371/journal.pone.0095083.
8. Kaswa MK, Aloni M, Nikuku L, Bakoko B, Lebeke R, Nzita A, Muyembwe JJ, de Jong BC, de Rijk P, Verhaegen J, Boelaert M, leven M, Van Deun A. 2014. Pseudo-outbreak of pre-extensively drug-resistant (pre-XDR) tuberculosis in Kinshasa: collateral damage caused by false detection of fluoroquinolone resistance by GenoType MTBDRsl. J Clin Microbiol 52: 2876–2880. https://doi.org/10.1128/JCM.00399-14.
9. Brossier F, Guindo D, Pham A, Reibel F, Sougakoff W, Veziris N, Aubry A. 2016. Performance of the new version (v2.0) of the GenoType MTBDRsl
test for detection of resistance to second-line drugs in multidrug-resistant Mycobacterium tuberculosis complex strains. J Clin Microbiol 54:1573–1580. https://doi.org/10.1128/JCM.00051-16.

10. Aubry A, Veziris N, Cambau E, Truffot-Pernot C, Larivier V, Fisher LM. 2006. Novel gyrase mutations in quinolone-resistant and hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob Agents Chemother 50:104–112. https://doi.org/10.1128/AAC.50.1.104-112.2006.

11. Von Groll A, Martin A, Jurén P, Hoffner S, Vandamme P, Portaels F, Palominio J, da Silva P. 2009. Fluoroquinolone resistance in Mycobacteria tuberculosis and mutations in gyrA and gyrB. Antimicrob Agents Chemother 53:4498–4500. https://doi.org/10.1128/AAC.00287-09.

12. Malik S, Willby M, Sikes D, TsoiDkiov OV, Posey JE. 2012. New insights into fluoroquinolone resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB mutations. PLoS One 7:e39754. https://doi.org/10.1371/journal.pone.0039754.

13. Bemand C, Veziris N, Brossier F, Soukoff W, Larivier V, Robert J, Aubry A. 2015. Molecular diagnosis of fluoroquinolone resistance in Mycobacteria tuberculosis. Antimicrob Agents Chemother 59:1519–1524. https://doi.org/10.1128/AAC.00458-14.

14. Walker TM, Kohl TA, Omar SV, Hesp J, Del Ojo Elias C, Bradley P, Iqbal Z, Sejimo A, Suzuki K, Yoshida S, Salto T, Moriya A, Fujita S, Sato S, Matsumoto T, Ano H, Suetake T, Kondo Y, Kirikae T, Mori T. 2012. Comprehensive multicenter evaluation of a new line probe assay for identification of Mycobacterium species and detection of drug-resistant Mycobacterium tuberculosis. J Clin Microbiol 50:884–890. https://doi.org/10.1128/JCM.00568-11.

15. Park C, Sung N, Hwang S, Jeon J, Won Y, Min J, Kim CT, Kang H. 2012. Evaluation of reverse hybridization assay for detecting fluoroquinolone and kanamycin resistance in multidrug-resistance Mycobacterium tuberculosis clinical isolates. Tubercle Respir Dis 72:44–49. https://doi.org/10.1046/trd.2012.72.1.4.4.

16. Eilertson B, Maruni F, Blackman A, Herrera M, Samuels DC, Sterling TR. 2014. High proportion of heteroresistance in gyrA and gyrB in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother 58:3270–3275. https://doi.org/10.1128/AAC.02066-13.

17. Mitarai S, Kato S, Ogata H, Aono A, Chikamatsu K, Mizuno K, Toyota E, Sejimo A, Suzuki K, Yoshida S, Salto T, Moriya A, Fujita S, Sato S, Matsumoto T, Ano H, Suetake T, Kondo Y, Kirikae T, Mori T. 2012. Comprehensive multicenter evaluation of a new line probe assay for identification of Mycobacterium species and detection of drug-resistant Mycobacterium tuberculosis. J Clin Microbiol 50:884–890. https://doi.org/10.1128/JCM.00568-11.

18. Rivier C, Lucke K, Sigel FA, Warren RW, van Helden PD, Böttger EC, Blobel J. 2014. Evaluation of the AID TB resistance line probe assay for rapid detection of genetic alterations associated with drug resistance in Mycobacterium tuberculosis strains. J Clin Microbiol 52:940–946. https://doi.org/10.1128/JCM.02597-13.

19. Lee YS, Kang MR, Jung H, Choi SJ, Jeo KW, Shin TS. 2015. Performance of REBA MTB-XDR to detect extensively drug-resistant tuberculosis in an intermediate-burden country. J Infect Chemother 21:346–351. https://doi.org/10.1016/j.jiac.2014.12.009.

20. Molina-Moya B, Lacoma A, Prat C, Pimkina E, Diaz J, Garcia-Sierra N, Haba LR, Palomino J, da Silva P. 2009. Fluoroquinolone resistance in Mycobacterium tuberculosis and mutations in gyrA and gyrB. PLoS Pathog 5:2633–2640. https://doi.org/10.1371/journal.ppat.1000748.

21. Garfein RS, Catanzaro A, Rodwell TC. 2016. MTBDRplus plus test results: what do indeterminate results actually mean? Int J Tuberculosis Lung Dis 20:881–886. https://doi.org/10.5588/ijtld.15.0319.

22. Seifert M, Georgihoiu SB, Rodwell TC, Catanzaro A, Rodrigues C. 2016. Redefining MTBDRplus test results: what do indeterminate results actually mean? Int J Tuberc Lung Dis 20:154–159. https://doi.org/10.5588/ijtld.15.0319.

23. Hain Lifescience. 2015. GenoType MTBDR plus test results: what do indeterminate results actually mean? J Clin Microbiol 54:912–918. https://doi.org/10.1128/JCM.02505-15.

24. Hain Lifescience. 2015. GenoType MTBDR rapid assay results: what do indeterminate results actually mean? J Clin Microbiol 53:1908–1914. https://doi.org/10.1128/JCM.02505-15.

25. Günther G, Gomez GB, Lange C, Rupert S, van Leth F, TBNET. 2015. Assessment and comparison of the GenoType MTBDR plus test results: what do indeterminate results actually mean? J Clin Microbiol 54:912–918. https://doi.org/10.1128/JCM.02505-15.

26. Seifert M, Georgihoiu SB, Catanzaro A, Rodrigues C, Crudu V, Votor TC, Garfein RS, Catanzaro A, Rodwell TC. 2016. MTBDRplus and MTBDRs plus assays: the absence of wild-type probe hybridization and implications for the detection of drug-resistant tuberculosis. J Clin Microbiol 54:912–918. https://doi.org/10.1128/JCM.02505-15.

27. Ministries of Health and Social Affairs of the Intermediate-Burden Countries, AID TB Resistance Line Probe Assay Evaluation Group. 2015. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 6:6083. https://doi.org/10.1038/ncomms7630.

28. AIK. 2015. Target-directed and rapid variant calling from fastq reads of bacterial genomes. BMC Genomics 15:981. https://doi.org/10.1186/1471-2164-15-881.

29. Hain Lifescience. 2015. GenoType MTBDR rapid assay results: what do indeterminate results actually mean? J Clin Microbiol 54:912–918. https://doi.org/10.1128/JCM.02505-15.

30. Seifert M, Schlesueren V, Beckert P, Kohl TA, Miotto P, Cirilo DM, Cabibbe AM, Niemann S, Fellenberg K. 2015. PhyResSE: web tool delimiting Mycobacterium tuberculosis and detection of drug-resistant Mycobacterium tuberculosis strains. J Clin Microbiol 50:884–890. https://doi.org/10.1128/JCM.00568-11.

31. Iwai H, Kato-Miyazawa M, Kinoshita T, Miyoshi-Akiyama T. 2015. CASTB (the comprehensive analysis of TB test results, a server for the Mycobacterium tuberculosis complex): a publicly accessible web server for epidemiological analyses, drug-resistance prediction and phylogenetic comparison of clinical iso-
lates. Tuberculosis (Edinb) 95:843–844. https://doi.org/10.1016/j.tube.2015.09.002.

40. Hain Lifescience. 2015. GenoType MTBDRsl VER 1.0. Instructions for use IFU-317-06. Hain Lifescience, Nehren, Germany.

41. Coll F, McNerney R, Guerra-Assuncao JA, Glynn JR, Perdigão J, Viveiros M, Portugal I, Pain A, Martin N, Clark TG. 2014. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun 5:4812. https://doi.org/10.1038/ncomms5812.

42. Angelby K, Jurén P, Kahlmeter G, Hoffner SE, Schön T. 2012. Challenging a dogma: antimicrobial susceptibility testing breakpoints for Mycobacterium tuberculosis. Bull World Health Organ 90:693–698. https://doi.org/10.2471/BLT.11.096644.

43. Schön T, Miotto P, Köser CU, Viveiros M, Böttger E, Cambau É. 2016. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect, in press. https://doi.org/10.1016/j.cmi.2016.10.022.

44. Gao X, Li J, Liu Q, Shen X, Mei J, Gao Q. 2014. Heteroresistance in Mycobacteria tuberculosis is an important factor for the inconsistency between the results of phenotype and genotype drug susceptibility tests. Zhonghua Jie He He Hu Xi Za Zhi 37:260–265.

45. Niemann S, Köser CU, Gagneux S, Plinke C, Homolka S, Bignell H, Carter RJ, Cheetham RK, Cox A, Gormley NA, Kokko-Gonzales P, Murray LJ, Rigatti R, Smith VP, Arends FPM, Cox HS, Smith G, Archer JAC. 2009. Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints. PLoS One 4:e7407. https://doi.org/10.1371/journal.pone.0007407.

46. Kiet VS, Lan NT, An DD, Dung NH, Hoa DV, van Vinh Chau N, Chinh NT, Farrar J, Caws M. 2010. Evaluation of the MTBDRsl test for detection of second-line-drug resistance in Mycobacterium tuberculosis. J Clin Microbiol 48:2934–2939. https://doi.org/10.1128/JCM.00201-10.

47. Huang WL, Chi TL, Wu MH, Jou R. 2011. Performance assessment of the GenoType MTBDRsl test and DNA sequencing for detection of second-line and ethambutol drug resistance among patients infected with multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol 49:2502–2508. https://doi.org/10.1128/JCM.00197-11.

48. Lacoma A, Garcia-Sierra N, Prat C, Maldonado J, Ruiz-Manzano J, Haba L, Gavin P, Samper S, Ausina V, Dominguez J. 2012. GenoType MTBDRsl for molecular detection of second-line-drug and ethambutol resistance in Mycobacterium tuberculosis strains and clinical samples. J Clin Microbiol 50:30–36. https://doi.org/10.1128/JCM.05274-11.

49. Miotto P, Cabibbe AM, Mantegani P, Borroni E, Fattorini L, Tortoli E, Migliori GB, Cirillo DM. 2012. GenoType MTBDRsl performance on clinical samples with diverse genetic background. Eur Respir J 40:690–698. https://doi.org/10.1183/09031936.00164111.