Mechanism of White Band (WB) Formation due to Rolling Contact Fatigue in Carburized SAE4320 Steel

Kohei Kanetani¹ and Kohsaku Ushioda²

¹Material R&D Department, JTEKT Corporation, Kashiwara 582–8588
²Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920–1192

Microstructural alterations such as white band (WB) including low angle band (LAB) and high angle band (HAB) following the formation of dark etching area (DEA) in bearing steels below the contact surface due to high stress rolling contact fatigue (RCF) were investigated. Although there have been many studies on the characteristics of WB, its formation mechanism has not been sufficiently clarified yet. In this paper, we analyzed the orientation of crystal constituting WB and investigated the relationship between WB and the direction of shear stress generated by rolling contact. The morphology of WB as a function of depth from surface was observed by light optical microscope, and the crystal orientation was analyzed by scanning electron microscope-electron backscattering diffraction. It was found that LAB and HAB formed at the depth where the principal shear stress and the orthogonal shear stress become maximum, respectively. Crystal orientation analysis of LAB and HAB revealed that crystal rotates under the principal shear stress at the specific depth, resulting in the formation of unique texture such as (111)<211> and (122)<411>, respectively. Thus, WBs were proved to be some kind of shear band. WB formation behavior of specimens with the different amount of initial retained austenite (γR) was compared in order to clarify sub-surface initiated spalling life improvement mechanism by γR. However, the WB formation behavior showed no difference irrespective of the amount of initial γR. This suggests that the WB formation is not directly related to sub-surface initiated spalling life. [doi:10.2320/jinstmet.J2019019]

(Received May 7, 2019; Accepted July 8, 2019; Published September 25, 2019)

Keywords: rolling contact fatigue (RCF), microstructural alteration, white band, steel, martensite, austenite, scanning electron microscope (SEM), electron backscattering diffraction (EBSD)

I. 緒 言

軸がり軸受は点接触や線接触で荷重を支持する機械部品であり、局所的に数 GPa の高い接触応力が作用するため、構成要素である軸荷重および軸受においても、エネルギー変化および変位化の関与があるため、そのため、軸荷重軸受の接触状態を適解化してきており、軸受の回転に伴う乗り越えの軸荷重疲労 (RCF: Rolling Contact Fatigue) により、軸受面下高荷重領域において、黑色組織 (DEA: Dark Etching Area, DEC: Dark Etching Constituent, DER: Dark Etching Region など) が発生する可能性が高まっている。これよりさらに疲労が進行すると、軸荷重対面において特定の角度に伸長し、なおかつこれが軸荷重に規則的に整列するホワイトバンド (WB: White Band) をもしくは WEB: White Etching Band など①-③) が出現する。この WB は、軸荷重方向に対する形成角度が 20-35° のものを LAB (Low Angle Band), 65-85° のものを HAB (High Angle Band) と呼称し大別される①。これら WB は、振動や軸荷重軸受の間のすぺリ、およびこれに伴う鋼中の灰色体素が生じる場合などに発生する、不規則な形状を呈する白色組織 (WEA: White Etching Area) ①-③) とは明確に区別される。WB はある種のせん断帯と位置付けられており、その組織の形態を詳細に観察した例が多数報告されている。

従来研究によると、LAB はナイタールなどで腐食して光学顕微鏡で観察した際に白色に見える組織であり、軸荷重下の軸荷重領域において発生が認められる。Swahn が報告したが、各部位の形状は直径 5-30 μm、厚さ 0.1-0.5 μm 程度の円板状であり、これらの 0.5-10 μm 程度の間で整列していると報告されている。一方、Voskamp が報告した厚さ 2 μm 程度の板状であると報告しており、形状は軸荷重条件により異なると考えられる。組織的には、腐食していた炭素が排出され、LAB の各バンドに沿ってレンズ状炭化物 (Lenticular Carbides) が析出し、LAB 自身は周囲のマトリックスよりも炭素濃度が低下したフェライトであると考えられている④。しかししながら、周囲のマトリックスよりも硬さが高い。この要因については明確にされていない。さらに、透過型電子顕微鏡 (TEM: Transmission Electron Microscope) による詳細な構造解
表1　化学成分

元素	Si	Mn	P	S	Cu	Ni	Cr	Mo	O	
原料	0.20	0.19	0.55	0.018	0.006	0.10	1.70	0.53	0.21	0.009

注: HABおよびLABの形成機構を解明することを目的とした。LABおよびHABの形状を示すことを目的とした。
2.2 転動疲労試験

転動疲労試験に用いた試験機の概略を Fig. 1 に示す。本試験機は、3つの従動ロールに支持された2つの JIS-SU2 製鋼球（直径 31.75 mm）に試料（直径 20 mm、幅 36 mm）を押しつけながら転動させる機構となっており、潤滑油は転動ロールを伝って試料表面に供給される。試験条件を Table 2 に示す。ベルツの最大接触面圧が 5.8 GPa、内部起点剥離寿命に影響を及ぼすと考えられる直交せん断応力が最大となる深さ（\(z_0 \)）が 0.24 mm となるように試験荷重を設定した。前節の試料について転動疲労試験を行い、剥離が発生するまでの任意の繰り返し数、および剥離が発生した時点で試験を停止し、試験機から試料を取り出して疲労組織解析に供した。

2.3 疲労組織解析

転動に伴う組織および結晶方位の変化を明らかにするため、光学顕微鏡によるミクロ組織観察と EBSD による相分

Fig. 1 Schematic drawing of radial type rolling contact fatigue test machine.

Table 2 Rolling contact fatigue test conditions.

Contact condition	Hertzian maximum pressure	5.8 GPa
Maximum orthogonal shear stress (depth \(\mu \))	1.4 GPa (0.24 mm)	
Loading speed	268 Hz	
Lubricant	Mineral oil (ISO-VG100)	
Operating temperature	60 ± 5 ℃	

3. 実験結果

3.1 転動疲労に伴う光学顕微鏡組織の変化

転動疲労に伴う組織変化を明確にするために、内部起点剥離寿命が長く、多くの応力繰り返し数まで追跡調査ができる S39 のミクロ組織を光学顕微鏡で観察した。観察は、転動疲労前（before RCF）と、応力繰り返し数 3.7 \(\times 10^6 \) 回、100 \(\times 10^6 \) 回、216 \(\times 10^6 \) 回、412 \(\times 10^6 \) 回について行った。その結果を

Fig. 2 (a)–(e) Optical micrographs showing microstructural alteration and (f) depth distribution of shear stress under the track. Number of cycles are (a) 0 (before RCF), (b) 3.7 \(\times 10^6 \) cycles, (c) 100 \(\times 10^6 \) cycles, (d) 216 \(\times 10^6 \) cycles and (e) 412 \(\times 10^6 \) cycles.
Fig. 2 に示す、試料の転がり方向を RD(Rolling Direction)、転がり面横断方向を TD(Transverse Direction)、転がり面法線方向を ND(Normal Direction) とし、Fig. 2 中に明記している。転動時の荷重(鋼球)の移動方向は、RD と反対方向である。組織変化は、まず応力繰り返し数 $3.7 	imes 10^6$ 回で転がり接触面直下の 0.24 mm 深さ(深さ z0) 位置近傍を中心に、ナイタールで腐食されやすい DEA が出現し(Fig. 2(b))。100× 10^6 回までの応力繰り返し数の増加とともにその領域は拡大していく(Fig. 2(c))。ここで見られる DEA 内に発生する黒点は、断面観察試料を作製する際に非金属介在物が抜け落ちてできた空孔であると考えられる20)。次に、216× 10^6 回 (Fig. 2(d)) および 412× 10^6 回 (Fig. 2(e)) のミクロ組織において、それぞれ微相が異なる組織変化が観察された。この組織変化が見られた領域を高倍率で観察した結果を Fig. 3 に示す。低倍率の観察結果である Fig. 2(d) (c) からは明瞭に確認することはできないが、高倍率で観察することによって、従来から報告されている白色帯状組織7-20) が確認でき、RD に対する伸長方向から、それぞれ HAB (Fig. 3(a) (b) (d) (e)) および LAB (Fig. 3(e) (f)) と同定できる。なお、Fig. 3(a) (f) に示すように、HAB の RD に対する形成角度は 75°、LAB の RD に対する形成角度は 20°であった。さらに、0.24-0.35 mm 深さ位置周辺において HAB が発生した後、0.35-0.45 mm 深さ位置周辺で LAB が発生しており、DEA、HAB、LAB の順で組織変化が生じることを確認した。WB の出現順序は、ヘルツの最大接触面圧が 4.6 GPa 以上である場合に HAB が LAB よりも先に発生することを Mitamura ら16) の報告があるが、本研究ではヘルツの最大接触面圧は 5.8 GPa であり、Mitamura らの結果と傾向が一致している。さらに、Johnson20) はヘルツの接触理論より求めた直交せん断応力が最大となる深さと主せん断応力が最大となる深さにおいて、それぞれ HAB と LAB が発生すると示唆している。本試験条件においては、Fig. 2(f) に示したように、直交せん断応力が最大となる深さは 0.24 mm、主せん断応力が最大になる深さは 0.35 mm であり、Fig. 3 の HAB と LAB の発生位置の観察結果をとおして一致することがわかる。以上のように、転動疲労において報告されている組織変化が本研究でも同様に発現することがわかっただした。

3.2 転動疲労に伴う相分布の変化

光学顕微鏡による組織観察で確認された 2 種類の WB の発生状況を詳細に解析するため、S39 について EBSD による相分布解析を行った。Fig. 4 に、直交せん断応力が最大になる 0.24 mm 深さ位置で測定した IQ(Imagary Quality) マップと Phase マップを重ね合わせた結果を示す。測定は、転動疲労前 (before RCF) と、応力繰り返し数 $3.7 	imes 10^6$ 回、$4.4 	imes 10^6$ 回、$216 	imes 10^6$ 回、412× 10^6 回にについて行われた。Fig. 4(a) より、転動疲労前は、焼なましマルテンサイトに対応する α 相と、γn に対応する γ 相およびセメタイトが確認でき、応力繰り返し数の増加に伴い γn が減少していく様子が確認できる。さらに、一定の方向に伸長した組織が 216× 10^6 回までの間に顕在化し、さらに応力繰り返し数が増加すると不明瞭になる様子が確認できる。この伸長組織は、Fig. 4(d) の 216× 10^6 回のマップ中で示すように、RD に対して約 75°の角度をもつことから HAB であると考えられる。この HAB は、結晶性の指標である IQ 値が高く、組織内部の残留歪みや転位密度が周辺の組織に比べて定性的に低いことが示唆される。また、フェライトから構成されるといわれる従来研究10,14) の結果を裏付けるように、α 相からなることも確認できる。さらに、HAB が発生する応力繰り返し数に着目すると、Fig. 4(b) のマップ中で矢印で示すように、3.7× 10^6 回で極めて微小な HAB が現れていることがわかる。この回数は、本研究において光学顕微鏡で出現を確認した応力繰り返し数 (100× 10^6 回から 216× 10^6 回の間)、および先行研究19,21) によって報告されている応力繰り返し数 (10~10^6) 回以上) よりも著しく少ない。すなわち、従来は光学顕微鏡で観察されることで転動疲労の末期に出現すると考えられてきた HAB が、EBSD を用いた解析によって、転動疲労の初期にすでに微小な核として出現している可能性があることがわかった。

次に、主せん断応力が最大になる深さ近傍である 0.4 mm 深さ位置で測定した IQ マップと Phase マップを重ね合わせた結果を Fig. 5 に示す。ここでは、LAB の組織解析を目的とするため、Fig. 2 に示したように HAB と LAB が不均一に混在する主せん断応力が最大になる深さ (0.35 mm) 位置ではなく、主せん断応力が同様に大きく、HAB の侵食が見られ 0.4 mm 深さ位置を解析位置とした。この領域においても、0.24 mm 深さ位置の結果と同様に、転動疲労前は焼戻

Fig. 3 High magnification optical microscopic observation in 216× 10^6 cycles at (a) 0.24 mm depth. (b) 0.35 mm depth. (c) 0.45 mm depth and in 412× 10^6 cycles at (d) 0.24 mm depth. (e) 0.35 mm depth. (f) 0.45 mm depth.
しマルテンサイト。γR およびセメンタイトが存在し、応力繰り返し数の増加に伴い、γR が減少していく傾向があることが確認できる。また、応力繰り返し数の増加とともに Fig. 5(a)の216×10^6 回のマップ中に矢印で示すように、RD に対しても約 25°の角度で形成される LAB が顕在化している。LAB は、HAB と同様にα相からなることが確認できるが、HAB ほど IQ 値が高くなく、さらに、HAB よりも遅れて出現し、少なくとも 412×10^6 回まで消滅せずに残留するという相違がある。

3.3 転動疲労に伴う結晶方位の変化

WB の発生メカニズムを考察するため、転動に伴う結晶方位の変化を解析した。Fig. 6 は、Fig. 4 に示した 0.24 mm 深さ位置で得られた EBSD の測定データから求めた [001]α 正極点図と、α の ND に関する逆極点図である。この結果より、転動に伴い複数の集合組織が形成されていくことがわかる。すなわち、ND/〈001〉、ND/〈111〉、および応力繰り返し数の増加に伴って方位がわずかに変化する ND/〈122〉−〈233〉の発達が主に確認できる。ここで、転動面に平行な
結晶面を \(\{hkl\} \)，転動方向に平行な結晶方向を \(\langleuvw\rangle \) として \(\{hkl\}\langleuvw\rangle \) と表記すると、ND//\{001\} は主方位が \{001\}<110> の集合組織であり、冷間圧延された \(\alpha \)-Fe に現れる \(\alpha \) ファイバーを類似した集合組織の一部であると考えられる。一方、ND//\{111\} は主方位が \{111\}<211> であり、\(\gamma \) ファイバーを類似した集合組織の一部と考えられる。以上のよう、冷間圧延組織と同様の集合組織が転動疲労組織にも形成されることがわかる。一方、最も強度が高く、存在割合が高い ND//\{122\} -\{233\} は、冷間圧延組織などでは確認されていないため、転動疲労に特有の集合組織であると推測される。この集合組織のミクロ組織内の分布を明らかにするため、代表として \(216 \times 10^6 \) 回のときの ND 逆極点図において、ND//\{122\} を中心に tolerance angle 5° として赤でマークした領域を Fig. 7(a) に示した。Fig. 7(b) および IQ マップ (Fig. 7(c)) に、ND 逆極点図にマークした測定点をリンクさせている。Fig. 7(b) および IQ マップ (Fig. 7(c)) では判断することが不可能であったものの、測定点の位置情報が得られる EBSD を用いることでも \{122\}<411> が HAB を形成する集合組織であることが初めて明らかとなった。本研究では、EBSD を用いて転動疲労中に \{001\}<110>, \{111\}<211>, \{122\}<411> の集合組織が発達することを明らかにしたが、これらの結果は Voskamp らの XRD による解析によって報告された 3 種類の集合組織と同一である。

次に、Fig. 5 に示した 0.45 mm 深さ位置で得られた EBSD の測定データから求めた \{001\}_\alpha 正極点図と、\(\alpha \) の ND 逆極点図の逆極点図を Fig. 8 に示す。この結果より、0.24 mm 深さ位置の結果と同様に、転動に伴い複数の集合組織が形成されてきた。
いくことがわかる。しかしながら、転動疲労組織に特有と考えられるND//<112>-<233>は、この測定領域では確認されなかった。その一方で、ND//<111>は、0.24 mm深さ位置よりも顕著に現れているように見える。そこで、ND//<111>の組織内の分布を明らかにするため、代表として412×10のときのND逐極点図において、ND//<111>を中心にtolerance angleを5°とし、マークした結果をFig.9(a)に示す。同時に、(001)逐極点図(Fig.9(b))およびIQマップ (Fig.9(c))に、ND逐極点図にマークした測定点をリンクさせている。Fig.9(b)より、この集合組織は[111]<211>が主方位であり、さらにFig.9(c)より、[111]<211>がLABを形成する集合組織であることがわかる。

4. 考 察
4.1 WBの形成メカニズム

4.1.1 HAB

前章で明らかにしたように、HABは直交せん断応力が最大になる深さ近傍で発生しているため、直交せん断応力の影響を受けてバンドの伸長方向が決定されると推測される。また、HABを構成する結晶は特有の方位集積を生じており、HABが特定方向のせん断変形によって生成した組織であることが示唆される。しかしながら、HABを構成するbcc結晶は一般的に12通りのすべり系をもつことから、EBSDによる解析結果のみではHABの発生要因となるすべり面とすべり方向を特定することはできない。そこで、Johnsonらが予測する転動中の内部の応力状態から解明を試みる。

Johnsonは、HABとLABはそれぞれの発生する深さでの主せん断応力によって形成されると説明しており、深さによって変わる主せん断応力の方向がHABやLABの特徴的な伸長方向を決定付けるとしている。主せん断応力は、その大きさが最大になる深さにおいてはRDに対して45°方向にはたらくが、深さが変わるときの大きさとともに角度も変化する。特にHABが発生する直角せん断応力が最大になる深さにおいては、その角度は約65°まで頑ずくと計算している（RDの残留応力が0 MPaの場合）。加えて、転動に伴いRDに残留圧縮応力が付与された場合、その大きさに依存して角度はさらに90°方向（ND）に回転していく。Voskampによって、転動に伴うRDに残留圧縮応力が付与されることが報告されており、Johnsonはこのような残留圧縮応力によって主せん断応力の発生角度が80°近傍に渐近してくると説明した。ここでは、HABの最大接触面圧をp0。RDの残留圧縮応力をρと仮定した場合のρ/p0をパラメータとして主せん断応力の発生角度が決定されている。おそらく-0.05 ≤ ρ/p0 ≤ 0.05の範囲であれば、主せん断応力の発生角度は約80°となる。本研究の転動疲労試験(p0 = 5800 MPa)においても、既報で示したように、ρ = -600 MPa程度となるため、ρ/p0 ≈ -0.1となり、RDに対して約80°方向に主せん断応力がたらくことが推察できる。Fig.10hに、HABを構成する[122]<411>の結晶方位を模式的に示す。[122]<411>は、bcc結晶の[110]すべり面上のすべり面である[111]で、RDに対して約75°回転している。これにより、Johnsonが予測する主せん断応力の方向とおおよそ一致することがわかる。また、Fig.3(a), 4(a)に示したHABの形成角度と完全な一致を示す。すなわち、RDに対して約80°方向にはたらく主せん断応力は、Johnsonが説明するようにHABの伸長方向を決定付けるだけではなく、HABを構成する結晶のせん断変形も同時に担うことがEBSDを用いたHABの結晶方位解析によってわかった。

なお、[122]<411>の出現は、前述のとおり、VoskampらがXRDを用いた逐極点図解析によって最初に明らかにした。しかしながら、彼らは、[122]<411>が出現した要因を、先に述べた挙動を利用し、逐極点図から示す[110]<110>の双晶形であると説明している。本研究においてもその可能性について検証を行った。

Fig.11は、応力繰り返し数216×10の試料についてステップサイズ20 mmで測定したEBSDの測定データから得られたα相のIQマップを示す。IQマップ上にマークした結晶線をそれぞれ、緑が[001]<110>, 青が[111]<211>, 赤が[122]<411>であり、tolerance angleを5°としてマークしている。
このように、EBSDによって[001]<110>と[122]<411>の存在位置をIQマップ上で明確にとる。これらの大部分はお互いに隣接していないことがわかった。すなわち、[122]<411>は[001]<110>の双晶変形によって生成したのではなく、本項で考察した主せん断応力によって、[001]<110>とは無関係に形成されたと考えられる。

HABの構造をさらに詳細に解析することで、形成メカニズムの新たな指針が得られる。Fig. 12 に、ステップサイズ20nmで測定したEBSDの測定データから得られたa相のgrain boundaryマップを示す。これにより、Fig. 12(d)の結果から、[122]<411>は明確なHABを構成する伸長した粒以外にも、実線で囲んだ領域に示すように微小な球状の粒、HABと同一の方向に整列している箇所が確認された。このような[122]<411>の整列の微小粒は、応力繰り返し数3.7×10⁶回から出現しており、応力繰り返し数の増加とともに数を増加させながら、その長さを幅を拡大していく様子がわかる（Fig. 12(b) (c)）。すなわち、HABを構成する[122]<411>は、微小な核として生成した後、転動疲労に伴って75°方向に成長・合体を繰り返すことによってせん断変形領域を拡大していくと考えられる。最終的に形成されるHABは、粒内方位差が小さく、比較的IQ値が高い転位密度の数大な粒から構成されていることがわかる。これは、Swahnら⑥によって報告されているように、HAB内のセルサイズは0.2μm程度であり、後述する白色組織（WEA）のセルサイズよりも大きい事実と定性的に一致する。自動車のオルタネータや風力発電機のギアボックスなどに使用される軸受で発生するWEAは、HABとは同じ鎖を形成せん断力を最大になる深さ近傍で発生し、ナイタールなどで腐食して光学顕微鏡で観察した時に白色に見える組織である。しかし、RDに対する特定の傾きをもたず、接触面圧が低い場合も発生するため、HABとは生成メカニズムが異なる組織であると考える。HABとWEAの組織的な違いについては多くの研究例がある。組織内部のセルサイズに着目した研究において、WEAは、TEMを用いた組織解析によりセルサイズが20-30nm（最大で300nm）程度と報告されており③②。HAB内のセルサイズよりも明確に微細化されていることが特徴である。また、EBSDを用いた組織解析では明確に結晶方位が認識できない程度に微細化されていることが報告されている③。これらの結果と比較すると、本研究で明らかにしたHABは、WEAとは異なり、特定の方位[122]<411>からなる比較的転位密度の低い粗大な粒であることが明らかになった。

4.1.2 LAB

本項ではLABの形成メカニズムについて考察する。LABを構成する結晶の優先方位は[111]<211>であり、HABとは異なるものの、同様に転動中の内部の主せん断応力の方向によって決定されると考えられる。LABが顕著に現れる深さ、

Fig. 12 Orientation image map of [122]<411> oriented regions. Number of cycles are (a) 0 (before RCF), (b) 3.7×10⁶ cycles, (c) 44×10⁶ cycles and (d) 216×10⁶ cycles. Circles in (b)–(d) show nucleus of HAB.
すなわち主せん断応力が最大になる深さにおける応力状態がJohnson²⁰によって報告されている。RDの残留応力（ρ）が0MPaの場合、主せん断応力はRDに対して45°方向にはたらくが、前項の議論と同様に、軸に伴うRDに残留圧縮応力が付与される場合、その大きさに依存して角度はさらに0°方向（RD）に向かっていく。このとき、およそ−0.125≤ρ/ρ₀≤−0.09の範囲であれば、主せん断応力の発生角度は約30°となる。本研究において、LABが形成される深さにおいては、既報²⁰よりρ/ρ₀=−700MPa程度であることから、ρ/ρ₀≒−0.12である。このときの主せん断応力の方向は、JohnsonによればRDに対して約25°方向であると計算される。Fig.13に、LABを構成する{111}<211>の結晶方位を模式的に示す。{111}<211>は、bcc結晶の{110}方位上にすべり面のすべり方向である＜111＞がRDに対して約22°回転している。これは、Johnsonが予測する主せん断応力の方向とおおよそ一致することがわかる。また、光学顕微鏡による観察結果（Fig.3（i））とEBSDによる測定結果（Fig.5（d））に5°程度の違いはあるものの、本研究で観察されたこれらのLABの形成角度とよい一致を示す。すなわち、RDに対して約25°方向にはたらく主せん断応力は、Johnsonが説明するようにLABの伸長方向を決定付けるだけではなく、LABを構成する結晶のせん断変形も同時に担うことが、EBSDを用いたLABの結晶方位解析によってわかった。

4.2 初期γ_R量の違いが結晶方位の変化に及ぼす影響

転動疲労によって、以上のように組織変化が進行することを明らかにした。すなわち、応力繰り返し数の増加に伴って、主せん断応力が最大になる深さを中心に（122）＜411＞からなるHABが発生し、その後、主せん断応力が最大になる深さを中心に{111}＜211＞からなるLABが発生する。また、WBが光学顕微鏡で観察されるようになるより早く、転動初期の時点でこれらの結晶方位の集積が生じていることをEBSDによって確認した。本研究では、ハッピーの最大接触面圧が5.8GPaとなる接触条件でこれらの組織変化が確認されたが、従来から報告されるように²¹、およそ3GPa以上となる接触条件において、連続の組織変化が生じる可能性があることを付け加えておく。転動疲労によって引き起こされる内部起点剥離は、鋼中の非金属介在物を起点に発生するという考えが基本であるが、その周辺のマトリックスの状態がき裂の発生もしくは進展挙動に影響を及ぼす可能性は十分に考えられる。筆者らは、既報²¹において、表面のγ_Rを増加することで内部起点割離寿命が向上することを報告しており、その要因はγ_Rから変態したフレッシュな加工誘起マルテンサイトが微細分散することによる。組織全体の塑性変形の抑制である可能性に言及した。そこで、この観点から、初期γ_R量の違いが、剥離の起点となりうる主せん断応力が最大になる深さにおけるWBもしくはその前駆組織である{122}＜411＞と{111}＜211＞の形成挙動に及ぼす影響を評価した。

まず、S_mと比較してγ_R量が少ないS_aについてはEBSDによる相分布解析を行った。Fig.14に、主せん断応力が最大になる0.24mm深さ位置で測定したIQマップとPhaseマップを重ね合わせた結果を示す。測定は、転動疲労前（before RCF）と、応力繰り返し数3.7×10⁶回、4.4×10⁶回について行った。S_aは内部起点剥離寿命が短いため、応力繰り返し数が4.4×10⁶回以上の組織は測定できなかった。Fig.14（a）より、転動疲労前は焼入れマルテンサイト（α相）とセメントサイトが確認できるが、S_m（Fig.4（a））と比較してγ_Rの面積率が小さいことがわかる。α相の変化の様子はS_m（Fig.4（b）（c））と同様であり、応力繰り返し数の増加とともにHABの前駆組織が顕在化している。なお、応力繰り返し数が4.4×10⁶回の時点でも、S_aと同様に光学顕微鏡による観察ではHABの存在は確認されなかった。形成される集合組織を明確にするため、Fig.14で得られたEBSDの測定データから、{001}_α正極点図とαのNDに関する逆極点図を求めた。Fig.15にこれらの結果を示すが、S_m（Fig.6）と同様に{001}＜110＞、{111}＜211＞、{122}＜411＞の集合組織が発達することがわかる。ここで、初期γ_R量の違いが集合組織の形
成速度に及ぼす影響を明らかにするために，同一の応力繰り返し数（4×10^6 回）のときの（001）正極点図の contour マップを作成し，比較した結果を Fig. 16 に示す。なお，各集合組織の強度を contour マップ上に記入している。この結果より，HAB や LAB の前駆組織である [122]<411> や [111]<211> の強度は，初期 γ_R 量の違いによって明確な差がなく，集合組織の形成速度は同等であることがわかった。

以上の結果から，転位中の γ_R の加工誘起マルテンサイト変態は，WB やその前駆組織の形成に大きな影響を及ぼさないとえる。すなわち，γ_R の増加による内部起点剝離寿命の向上は，α 相のミクロなせん断変形の抑制以外の効果によってもたらされると思われる。

5. 結論

浸焼入れ焼戻しを施した SAE4320 鋼の転動疲労試験を行い，光学顕微鏡と SEM-EBSD を用いて組織変化動を詳細に解析した結果，以下の結論を得た。

(1) 結合組織は，応力繰り返し数の増加に伴い DEA，HAB，LAB の順に出現する。また，HAB は直交せん断応力が最大になる深さ近傍，LAB は主せん断応力が最大になる深さ近傍で発生する。

(2) HAB および LAB は，それぞれ [122]<411> と [111]<211> 方位を有する帯状組織に対応する。それぞれの WB が発生する深さの主せん断応力の方向と，対応する集合組織が [111] すべり方向が一致していることから，WB はちからもせん断帯であり，主せん断応力が WB を形成する支配因子であると推測した。

(3) サブゼロ処理の有無によって γ_R 量を変えた試料の [221]<411> と [111]<112> の形成速度を測定した結果，明確な差が認められなかった。すなわち，γ_R による内部起点剝離寿命の向上は，α 相のミクロなせん断変形の抑制以外の効果によってもたらされると推測する。

文 献

1) A.B. Jones: Steel 119 (1946) 68–70.
2) K. Sugino, K. Miyamoto, M. Nagumo and K. Aoki: Trans. ISIJ 10 (1970) 98–111.
3) S. Shiko, K. Okamoto and S. Watanabe: Tetsu-to-Hagané 54 (1968) 1353–1366.
4) M. Kuroda: Trans. Jpn. Soc. Mech. Eng. 26 (1966) 1258–1270.
5) H. Muro and N. Tsushima: Wear 15 (1970) 309–330.
6) A.P. Voskamp and E.J. Mittemeijer: Metall. Mater. Trans. A 27 (1996) 3445–3465.
7) A.B. Jones: Forty–ninth Annual Meeting, (American Society for Testing Materials, ASTM International, New York, 1946), pp. 35–52.
8) H. Swahn, P.C. Becker and O. Vingsbo: Metall. Trans. A 7 (1976) 1099–1110.
9) J.J. Bush, G.L. Grude and G.H. Robinson: Trans. ASM 54 (1962) 390–412.
10) R. Österlund and O. Vingsbo: Metall. Trans. A 11 (1980) 701–707.
11) A.P. Voskamp: J. Tribol. 107 (1985) 359–364.
12) J. H. Kang, B. Hosseinkhani and P.E.J. Rivera–Díaz–del–Castillo: Mater. Sci. Technol. 28 (2012) 44–49.
13) A. Warhadpande, F. Sadeghi and R.D. Evans: Tribol. Trans. 56 (2013) 349–358.
14) J.A. Martin, S.F. Borgese and A.D. Eberhardt: J. Basic Eng. 88 (1966) 555–565.
15) J.L. O'Brien and A.H. King: J. Basic Eng. 88 (1966) 568–571.
16) N. Mitamura, H. Hidaka and S. Takaki: Mater. Sci. Forum 539–543 (2007) 4255–4260.
17) A.P. Voskamp, R. Österlund, P.C. Becker and O. Vingsbo: Met. Technol. 7 (1980) 14–21.
18) L.A. Polonsky and L.M. Keer: J. Mech. Phys. Solids 43 (1995) 637–669.
19) M.E. Laithy, L. Wang, T.J. Harvey, B. Viemeusel, M. Correns and T. Blass: Extended Abstracts of STLE Annual Meeting, (Society of Tribologists and Lubrication Engineers, Park Ridge, IL, 2019), https://www.stle.org/images/pdf/STLE_ORG/AM2019%20Presentations/Rolling%20Element%20Bearings/STLE2019_Rolling%20Element%20Bearings%20STLE2019_Session%2006A_The%20Evolution%20of%20the%20Contact%20Pressure%20Regions%20in%20White%20Eating%20Rolling%20Bearings.pdf.
20) H. Fu and P.E.J. Rivera–Díaz–del–Castillo: Metals 9 (2019) 491.
21) For example, J. Gegner: Tribological Aspects of Rolling Bearing Failures, Tribology – Lubricants and Lubrication, Ed. by D. C. Kuo, (InTech) 2011. ISBN: 978-953-307–371–2, https://www.intechopen.com/books/tribology–lubricants–and–lubrication/tribological-aspects-of-rolling–bearing–failures.
22) S. Okita, H. Takemura and Y. Murakami: CAMP–ISIJ 12 (1999) 351–354.
23) J.M. Beswick: Practical Metallography 12 (1975) 200–206.
24) H. Takemura and Y. Murakami: CAMP–ISIJ 10 (1997) 544.
25) K. Hiraoka: Tetsu–to–Hagané 94 (2008) 636–643.
26) K.L. Johnson: Technical Report CUED/C–MECH/TR.42, (Department of Engineering, University of Cambridge, 1988).
27) V. Smeljova, A. Schwedt, L. Wang, H. Wolheger and J. Mayer: Int. J. Fatigue 98 (2017) 142–154.
28) K. Kanetani, T. Mikami and K. Ushioda: Tetsu–to–Hagané 105 (2019) 550–559.
29) H. Tanaka: Doctoral Thesis, Kyushu University (2017). p. 70.
30) H. Harada, T. Mikami, M. Shibata, D. Sokai, A. Yamamoto and H. Tsubakino: ISIJ Int. 45 (2005) 1897–1902.
31) M.–H. Evans, J.C. Walker, C. Ma, L. Wang and R.J.K. Wood: Mater. Sci. Eng. A 570 (2013) 127–134.
32) J. H. Kang, B. Hosseinkhani, C.A. Williams, M.P. Moody, P.A.J. Bagot and P.E.J. Rivera–Díaz–del–Castillo: Scr. Mater. 69 (2013) 630–633.
33) V. Smeljova, A. Schwedt, L. Wang, H. Wolheger and J. Mayer: Int. J. Fatigue 100 (2017) 148–158.

Fig. 15 (001)$_p$ pole figure and ND inverse pole figure of α phase corresponding to Fig. 14 (at 0.24 mm depth of S_{γ}).

Fig. 16 (001)$_p$ pole figure in 4×10^6 cycles of (a) S_{γ} and (b) S_{θ}.