Crabronidae (Hymenoptera: Apoidea) in Mexico: Occurrence and Potential Uses in Biological Control

Crabronidae (Hymenoptera: Apoidea) en México: Ocurrencia y usos potenciales en el control biológico

Abstract: The family Crabronidae (order Hymenoptera) includes excavating and hunting wasps of more than 9,009 species within 249 genera that are distributed globally, especially in the tropics. The objective of this research was to improve the knowledge of the occurrence of the family Crabronidae in Mexico from a review of the scientific literature and to provide data on species of importance in biological control. The results revealed that 769 species representing 99 genera have been reported in Mexico. With the current review, 8.5% of the species known worldwide were found to be present in the country and the list of species was increased by 32%. The genera Cerceris and Trypoxylon had the highest number of species, 130 species and 58 species, respectively. The Mexican states of Baja California Norte, Sonora and Tamaulipas have the highest number of Crabronidae species. A total of 211 species were added to the list of Crabronidae in Mexico. Twelve genera and eight species of Crabronidae used as biological control agents of various pests were recognized. Further research on the diversity of this group of insects is suggested, given the importance that crabonids have as predators and natural enemies of insect pests that affect economically important crops.

Keywords: Cerceris, distribution, predators, wasps.

Resumen: La familia Crabronidae (orden Hymenoptera) incluye avispas excavadoras y cazadoras de más de 9.009 especies dentro de 249 géneros que se distribuyen globalmente, especialmente en los trópicos. El objetivo de esta investigación fue mejorar el conocimiento de la ocurrencia de la familia Crabronidae en México a partir de una revisión de la literatura científica y aportar datos sobre especies de importancia en el control biológico. Los resultados revelaron que en México se han reportado 769 especies que representan 99 géneros. Con la revisión actual, se identificó que el 8.5% de las especies conocidas a nivel mundial están presentes en el país y la lista de especies se incrementó en un 32%. Los géneros Cerceris y Trypoxylon tienen el mayor número de especies, 130 y 58 especies, respectivamente. Los estados mexicanos de Baja California Norte, Sonora y Tamaulipas reportaron el mayor número de especies de Crabronidae. Se reconocieron doce géneros y ocho especies de Crabronidae utilizados como agentes de control biológico en diversas plagas. Se sugiere realizar más investigaciones sobre la diversidad de este grupo de insectos, dada la importancia que los crabónidos tienen como depredadores y enemigos naturales de insectos plaga que afectan cultivos de importancia económica.

Palabras clave: Avispas, Cerceris, depredadores, distribución.

Introduction

Mexico is a shelter of 10 to 12% of the total species reported in the world and is one of the main mega-diversity countries, along with Brazil, Peru, Colombia, Indonesia, and China (Toledo 1988; Mittermeier and Goettsch 1992; González 2006; SEMARNAT 2008; Sarukhán et al. 2009; Martínez-Meyer et al. 2014). Such diversity includes an estimated 125,585 species of invertebrates, most of which are insects (SEMARNAT 2008). According to Morón and Valenzuela-González (1993) and Luis et al. (2000), 110,000 species of insects have been reported in Mexico, which involves 6,000 species of Hemiptera, 20,000 species of Diptera, 35,000 species of Coleoptera,
and between 20,000 and 30,000 species of Hymenoptera (Michener 2000; Griswold et al. 2006).

The order Hymenoptera includes many species of ecological and economic importance (Fernández 2000; Della 2003; Guzmán 2014; Myartseva et al. 2014, 2015). Predatory wasps included in the superfamily Apoidea are distinguished because of their diversity of habits and behavioral complexity, ranging from solitary to eusocial species. Apoidea are advanced aculeates considered the most economically important insect group in the biological control (Brothers and Finnamore, 1993) and pollinators. The taxonomy of Apoidea is complicated due to the size of the insects, the relative scarcity of literature in some regions of the world, and the morphological similarity among closely related species (Ruíz et al. 2010).

The taxonomical criteria to separate groups vary according to different authors. For example, Bohart and Menke (1976) mentioned 11 subfamilies within the family Sphecidae, but further studies have elevated these subfamilies to the family level within the superfamily Apoidea (Gauld and Bolton, 1988). Finnamore and Michener (1993) classified these wasps into nine families grouped in the series Sphecoformes, whereas Melo (1999) proposes four families, plus the family Apidae within the superfamily Apoidea. These four families are Ampulicidae, Crabronidae, Heterogynaidae, and Sphecidae, within the sphecooid wasps (Sphecoformes) (Melo 1999), now apoid wasps. Moreover, Pulawski (2021) considered only the families Ampulicidae, Apidae Crabronidae, Heterogynaidae and Sphecidae.

About 8,000 species are known in Ampulicidae, Crabronidae, Heterogynaidae, and Sphecidae (Bohart and Menke 1976; Finnamore and Michener 1993). In the family Crabronidae, Pulawski (2022) cited about 9,106 species representing 249 genera and eight subfamilies, mainly from the tropics. The family Crabronidae represents 89% of the species present in the Americas from the apoid wasps, followed by Sphecidae (16%) and Ampulicidae with 2% (Table 1). The family Heterogynaidae have only been recorded in the Old World (Amarante, 2006; Pulawski, 2022).

Previous studies of Crabronidae in Mexico recorded 558 species and 80 genera of crabronids (Horta et al. 2013), whereas Ruíz et al. (2002) listed 463 species, and Amarante (2002) reported 511 species. Such studies indicate that the families Crabronidae, Sphecidae, and Ampulicidae account for 8% of the species distributed in the Americas, highlighting Crabronidae as the most diverse family. This study aimed to update the number of species of the family Crabronidae in Mexico and provide data on species with potential use as biological control agents.

Materials and methods

A review of the available literature on the occurrence of the family Crabronidae in Mexico was conducted. This review included revising books, documents, and publications of scientific bases in the Journal Citation Reports (JCR), Latindex, and Scielo. Also, it involved other sources, such as reports of local studies in Mexico and databases available worldwide (Scullen 1972; Bohart and Menke 1976; Bohart 1990, 1993, 1997, 2000; Antropov 1999; Oht 1999; Leclercq 2000, 2002a, 2002b, 2007; Fernández 2001; Amarante 2002, 2005; Finnmore 2002; Ruiz and Coronado 2002; Ruíz et al. 2002; Genaro 2006; Holliday and Coelho 2006; Nemkov 2006; Horta et al. 2007, 2013; Holliday et al. 2009; González et al. 2010; Looney et al. 2014; Vanoye-Eligio et al. 2014; Cancino et al. 2015; Rosa 2015; Ruíz-Cancino 2015; Vanoye-Eligio et al. 2015; Mokrousov and Popov 2016; Discovery Life 2018; GBIF 2018; Pulawski 2022; Rosa and Melo 2020). The main criterion for the selection of species was that the record for Mexico is determined at the species level and preferably the place of collection in the different investigations. Any omission of relevant literature available was not intentional. In this study, we followed the classification of Melo (1999).

Results

According to the reviewed literature, a total of 769 species representing 99 genera of the family Crabronidae are reported in Mexico (Table 2, Supplementary File). The subfamilies Crabroninae and Philanthinae exhibited the highest numbers of species, with 338 and 187 species, respectively. The genera Cerceris and Trypoxylon were the most diverse with 130 and 58 species, respectively (Table 3). Baja California Norte, Sonora, and Tamaulipas represented the most diverse Mexican states with 144, 125, and 106 species, respectively (Fig. 1).

Table 1. Number of species of the superfamily Apoidea including the family Crabronidae reported in Mexico, the Nearctic and Neotropical regions, and worldwide (Bohart and Menke 1976; Finnamore and Michener 1993; LaSalle and Gauld 1993; Wasebauer1995; Fernández 2000, 2002; Ruíz et al. 2002; González 2006; Pitts et al. 2006; Horta et al. 2007, 2009, 2013; Morrone and Marquez 2008; Pulawski 2022; Orr et al. 2021).

Superfamily	Family	World	Nearctic	Neotropical	Mexico
Apoidea	Sphecidae	787	102	159	87
Crabronidae	9,106	781	1,516	558	87
Ampulicidae	202	4	42	3	
Apidae	20505	6273	5929	1878	

Table 2. Number of genera and species of the family Crabronidae reported from Mexico.

Subfamily	Genera	Species
Astatinae	4	26
Bembicinae	39	170
Crabroninae	40	338
Pemphredoninae	11	48
Philanthinae	5	187
Total	99	769
Table 3. Number of species of the family Crabronidae reported from Mexico and organized by subfamily and genus.

Subfamily	Genera	Species
Astatinae	**Astata** Latreille, 1796	15
	Dryudella Spinola, 1843	6
	Diploplectron W. Fox, 1893	4
	Uniplectron F. Parker, 1966	1
	Bembix Fabricius, 1775	19
	Glenostictia Gillaspy, 1962	16
	Hoplosidium Gribodo, 1884	16
	Pseudoplisus Ashmead, 1899	13
	Steniola Say, 1837	11
	Bicyrtes Lepeletier, 1845	9
	Stictiella J. Parker, 1917	9
	Clitemnestra Spinola, 1851	6
	Mellinus Fabricius, 1790	6
	Microbembex Patton, 1879	6
	Microstictia Gillaspy, 1963	5
	Epinysson Pate, 1935	4
	Psammuletes Pate, 1936	4
	Bembecinus A. Costa, 1859	3
	Didines Wesmael, 1852	3
	Sphexis Dahlbom, 1843	3
	Stizoides Guérin-Méneville, 1844	3
	Zanysson Rohwer, 1921	3
	Alysson Panzer, 1806	2
	Argogorytes Ashmead, 1899	2
	Harpactus Shuckard, 1837	2
	Sagenista R. Bohart, 1967	2
	Xerostictia Gillaspy, 1963	2
	Arigorytes Rohwer, 1912	1
	Dienoplistis W. Fox 14	1
	Foxia Ashmead, 1898	1
	Hapalomellinus Ashmead, 1899	1
	Leiogorytes R. Bohart, 2000	1
	Megistostichus Schulz, 1906	1
	Metanysus Ashmead, 1899	1
	Neoplistis R. Bohart, 1967	1
	Nyssus Latreille, 1802	1
	Orytus Spinola, 1836	1
	Rubrica J. Parker, 1929	1
	Saygorytes Nemkov 2007	1
	Stenogorytes Schrottky, 1911	1
	Stizus Latreille, 1802	1
	Tanysynnyus Cameron, 1905	1
	Trypoxylon Latreille, 1796	58
	Tachyphex Kohl, 1883	43
	Ocybelus Latreille, 1796	31
	Libis Fabricius, 1804	27
	Crosocerus Lepeletier & Brullé, 1835	26
Crabroninae	**Trypoxylon** Latreille, 1796	58
	Tachyphex Kohl, 1883	43
	Ocybelus Latreille, 1796	31
	Libis Fabricius, 1804	27
	Crosocerus Lepeletier & Brullé, 1835	26
Philanthinae	**Cerceris** Latreille, 1802	130
	Eucerceris Cresson, 1865	36
	Philanthus Fabricius, 1790	15
	Cypleadon Patton, 1897	3
	Trachyus Klug, 1810	3
Regarding the agroecological importance, the genera *Astata*, *Bicyrtes*, *Cerceris*, *Larra*, *Liris*, *Oxybelus*, *Rubrica*, *Solierella*, *Tachysphex*, and *Tachytes*, which include species that are used as biological control agents, are reported in Mexico. Also, at species level, seven species (*Astata unicolor* Say, 1824, *Cerceris californica* Cresson, 1865, *C. dilatata* Spinola, 1841, *C. fumipennis* Say, 1837, *C. grandis* Banks, 1913, *Solierella blaisdelli* (Bridwell, 1920) and *S. peckhani* (Ashmead, 1897)) have been recorded in the country.

Discussion

The 769 species of Crabronidae reported from Mexico account for 8.5% of the total species reported worldwide (Puławski 2022). Our report of 769 species also represents a 32% increase in the number of species previously provided by Horta et al. (2013), who listed 558 species and 80 genera. Other previous reports were 511 species by Amarante (2002) and 463 species by Ruiz et al. (2002). Also, the study provides evidence of 11 genera and seven species present in Mexico that are recognized as biological control agents.

At the subfamily level, the Crabroninae had the most significant number of species in Mexico (338 species) (Tables 2, 3, Supplementary File), which coincides with other studies worldwide (Ruiz et al. 2002; Horta et al. 2013; Puławski 2022). According to Puławski (2022), the diversity ranking of subfamilies of Crabronidae places Crabroninae as the most diverse subfamily, followed by Bembicinae and Philanthinae. However, in our review, Philanthinae and Bembicinae were the second and third most diverse subfamilies, respectively. Five genera (*Cerceris* Latreille, *Eucerceris* Cresson, *Philanthus* Fabricius, *Clpeadon* Patton, and *Trachypus* Klug) and 187 species comprised the subfamily Philanthinae. *Cerceris* was the most diverse genus with 70% of the species in that subfamily and represented 24% of the total species of Crabronidae. Such results are consistent with Horta et al. (2013), who reported *Cerceris* and *Trypoxylon* as the most representative genera of the family Crabronidae. Moreover, Vanoye et al. (2015) stated that *Liris* and *Tachytes* genera are also representatives of the family in Mexico. In this study, however, 36 of 99 genera are associated with only one species. In terms of species richness, the rarity of species within genera may suggest many unknown species inhabiting different regions of Mexico.

The states of Baja California Norte, Sonora, and Tamaulipas in the north of Mexico had the highest number of species with 144, 125, and 106 species, respectively. One explanation of this might be that the number of studies on Crabronidae is higher in this region than in other states of Mexico. In addition, another possible determining factor in the number of species of this family is the vegetation present in these states of the country, which have large plains and plains with hills forming part of the Sonoran and Chihuahuan desert (Gutiérrez-Ruacho et al. 2012). In these states the vegetation is
varied, being the transition between the mountain vegetation and the vegetation of arid zones (Hernández et al. 2005). Toledo (1995) mentioned that these transition areas between various types of vegetation are rich in biodiversity. In addition to the above, the dominant vegetation in these areas is a desert scrub, which has open spaces that favor the abundance and richness of the family Crabronidae (Rzedowski and Huerta 1994; Comas et al. 2009; SEMARNAT 2011).

This vegetation is characterized by thorny vegetation such as cactus and bromeliads and shrubs that ranged from 3 to 5 m high and in semi-desert pasture. Such environmental conditions provide open spaces preferred by wasps, as observed by Comas et al. (2009). Indeed, the species diversity of Crabronidae declines in closed or canopied habitats. Hymenoptera associated with open environments exploits the herbaceous plants and shrubs to provide food and nesting resources. Can- dia and Márquez (2005) found that structural differences between the arboreal strata and shrub vegetation influence the abundance and species richness of Crabronidae. In this regard, Genaro (2009) reported that nests of species of Cerceris are constructed in clay and compact soils without vegetation or sometimes with isolated low vegetation, as noted with C. victori (Genaro, 2009).

Of the 769 species reported from Mexico, records of 487 species (63%) provide information on state locations where they were collected, while reports on the remaining 282 species (27%) did not indicate specific locality data (Supplementary File). Overall, this review addressed the current knowledge of the diversity of species and its distribution of Crabronidae species in Mexico.

Regarding the use of insects in the natural control of pest insects, in agriculture, one of the objectives is to maintain biodiversity and promote the regulation of the abundance of harmful organisms, through predation, parasitoidism, parasitism and competition between species to reduce damage to crops (Brito and Camacho 2007). Agricultural and forest crops and other plant species of interest to humans offer excellent opportunities to develop integrated pest management programs, since there is a diversity of harmful and beneficial insect species in them that are in ecological balance and with healthy populations (León 2005). Pest insects limit the production of different crops. Ayala et al. (2013) mentioned that the damage they cause in crops is due to different environmental factors, the phenology of the crop and the habits of the pest insect, including the biological characteristics of the pest (Reséndiz et al. 2016). In biological control, parasitoids are the most widely used natural enemies of insect pests, as they play a fundamental role as natural regulators. Parasitoid wasps (Hymenoptera) constitute one of the most diverse orders of the class Insecta, which are used as natural control against insect pests (Llave 2015). Regarding predatory wasps, these have acquired great importance as predators of harmful organisms that affect agricultural crops, due to the predatory behavior of these wasps, which includes several species of insects, caterpillars and spiders, and their nesting habits are variable, constructing them on different surfaces; in addition, there are wasps with solitary and social habits, which are considered to have important ecological characteristics which can help design conservation strategies and use in biological control (Brito and Camacho 2007; Meléndez-Ramírez et al. 2021). Hence, the use of Crabronidae species in the biological control of pests in forestry and agriculture has been important, since at least 22 cases have been documented for this purpose worldwide. In the subfamily Philanthinae, 10 species have been recorded (Cerceris arenaria (Linnaeus, 1758); C. californica; C. cerbera Giner-Mari, 1941; C. completa Banks, 1919; C. dilatata; C. fumipennis; C. grandis; C. jeitti Genaro, 2009; and C. victori) (Careless 2009; Genaro 2009; Careless et al. 2014; Looney et al. 2014; Polidori 2014; Klingeman 2015) that help in the control of pest species of Bruphestidae (Coleoptera), which mainly affect wood. Five species and four genera of Crabroninae have been reported (Larra bicolor Fabricius, 1804; Oxybelus frizit Bohart, 1993; O. platensis Bréthes, 1901; Solierella blaisdelli; S. peckhami; Holotachysphex; Liris; Tachypsecta and Tachytes) which have been observed to include species of Hemiptera and Orthoptera (Nysius raphanus Howard; N. tenellus Barber; Gryllotalpa Latreille; Scapteriscus Scudder) in their pedotrophic diet, which affect different agricultural crops (Frank et al. 1995; Capinera and Leppa 2001; Seyoum and Pulawski 2001; Arévalo and Frank 2005; Ferreira et al. 2014; Polidori 2014; Gallardo-Granados et al. 2016; Carabali et al. 2017; Acosta 2018; De Carvalho et al. 2018; Gómez-Aguadelo and Romero-Zúñiga 2018; Rial 2019; Sáenz-Romo et al. 2019). For Bembicinae two species have been recorded (Bicyrtus quadrifasciata (Say) and Rubrica surinamensis De Geer, 1778) preying on pest species that attack fruit and vegetable crops (Quispe 2015; Lara et al. 2016; Biddinger and Joshi 2017; Lowenstein et al. 2018). The subfamilies Astdatinae and Pemphredoninae are each recorded with a species (Astata unicolor Say, 1824, and Pemphredon sp., respectively) considered as natural predators of pest insects in agricultural crops.

In Mexico, of the crabronid species for the purposes of induced or natural biological control that have been documented, seven species belonging to three genera have been recorded (Astata Latreille, 1796; Solierella Spinola, 1851; Cerceris Latreille, 1802), being the species Cerceris californica californica Cresson, 1865, with the greatest distribution in the country (11 states), mainly in the northeastern and northwestern states, and the same as the rest of the species. It is important to mention that the states of these regions are part of northern Mexico, where agriculture has managed to expand during the 20th century in millions of hectares with sophisticated irrigation systems, being a multiregional space that occupies about 60% of the Mexican territory and whose main characteristic is the aridity of the soil (Ceriutti 2015), which is one of the determining factors in the richness and abundance of the family Crabronidae (Candia and Márquez 2005).

Conclusions

The results suggest that crabronids are a group of wasps with high species richness in Mexico, which is promoted by the combination of Nearctic and Neotropical elements that characterize this part of the Americas. This work added a total of 211 species to the Crabronidae species list and recorded seven species that have been used in the natural biological control of pests that affect the forestry and agricultural sector; however, given the ecological and economic importance of this group of insects, more research is needed on the diversity and biology of these wasps. Finally, it is important to highlight that despite the efforts that the scientific community worldwide makes by proposing species of insects as natural pest control agents, currently the main method of insect pest control is based on the use of chemical insecticides, which are of immediate action, because they have been effectively adapted.
However, the use of broad-spectrum chemical pesticides negatively affects both beneficial and harmful insects, including those with great potential in natural pest control.

Literature cited

ACOSTA, M. A. 2018. Fauna benéfica asociada al cultivo orgánico de tomate (Solanum lycopersicum) en el fundo de la Universidad Nacional Agraria La Molina. Tesis de Maestría. Universidad Nacional Agraria la Molina. Lima, Perú, 109 p. http://repositorioslatinoamericanos.uchile.cl/handle/2250/1370566

AMARANTE, S. T. P. 2002. A synonymic catalog of the Neotropical Crabronidae and Sphecidae (Hymenoptera: Apoidea). Archivos de Zoología 37 (1): 1-139. https://doi.org/10.11606/issn.2176-7793.v37i1p1-139.

AMARANTE, S. T. P. 2006. Familia Crabronidae. Introducción a los Hymenoptera de la Región Neotropical. Bogotá DC, Sociedad Colombiana de Entomología y Universidad Nacional de Colombia 457-470.

AMARANTE, S. T. P. 2005. Addendum and corrections to a synonymic catalog of Neotropical Crabronidae and Sphecidae. Papéis Avulsos de Zoologia 45 (1): 1-18. https://doi.org/10.1590/S0031-10492005000100001.

ANTROPOV, A. V. 1999. Digger wasps of the genus Aulacophilus (Hymenoptera, Sphecidae, Trypoxylini). Entomological Review 78 (3): 332-343.

AREVALO, H. A.; FRANK, J. H. 2005. Nectar sources for Larra bicolor (Hymenoptera: Sphecidae), a parasitoid of Scapterus morose crickets (Orthoptera: Gryllotalpidae), in northern Florida. Florida Entomologist 88 (2): 146-151. https://doi.org/10.1653/015-4040(2005)088[0146:NSFHLB]2.0.CO;2

AYALA, R. O.; NAVARRO, F.; VIRLA, E. G. 2013. Evaluation of the attack rates and level of damages by the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), affecting corns in the northeast of Argentina. Revista de la Facultad de Ciencias Agrícolas 45 (2): 1-12. http://hdl.handle.net/11336/971.

BIDDINGER, D. J.; JOSHI, N. K. 2017. First report of native Astata unicolor (Hymenoptera: Crabronidae) predation on the nymphs and adults of the invasive brown marmorated stink bug (Hemiptera: Pentatomidae). Florida Entomologist 100 (4): 809-812. https://doi.org/10.1653/024.100.04048.

BOHART, R. M.; MENKE, A. S. 1976. Sphecid wasp of the world. A generic revision. University of California Press. 695 pp.

BOHART, R.M. 1990. New species and a key to North American Solierella in the inermis group (Hymenoptera: Sphecidae: Larri- nae: Mischopini). Psyche 97(3-4): 229-240.

BOHART, R. M. 1993. A synopsis of Central American and Carib- bean Oxycerus (Hymenoptera, Sphecidae). Insecta Mundi 7 (3): 159-168.

BOHART, R. M. 1997. A review of the genus Hoploides Grib- do (Hymenoptera: Sphecidae; Gorytini) in North America. Pro- ceedings of the Entomological Society of Washington 99 (4): 645-660.

BOHART, R. M. 2000. A review of Gorytini in the Neotropical Region (Hymenoptera: Sphecidae: Bembicine). Revisión de Gorytini (Hymenoptera: Sphecidae: Bembicinea) en la región neotropical. Contributions on Entomology International 4 (2): 113-259.

BRITO, Y. M.; CAMACHO, E. R., 2007. Las avispas. Su papel en las actividades con beneficio en el Parque Nacional de Aigüestortes i Estany de Sant Maurici. 5o Congreso Forestal Español, Montes y Sociedad: Saber que hacer 1-10. http://secresforestales.org/publicaciones/index.php/congresos_forestales/article/view/16659/16502.

CARABALI MUÑOZ, A.; PINCHAO-TENGANAN, S. Y.; LAMBRE-RODRIGUEZ, I. M.; PEÑA-MOICA, J. F.; CARABALI-BANGOJERO, D. J. 2016. Insectos polinizadores del agua- cate (Persea americana Mill.) cv. Hass en Colombia. Colección Nuevo conocimiento agropecuario. Corporación Colombiana de Investigación Agropecuaria [CORPOICA], Mosquera, Colombia. 98. http://hdl.handle.net/20.500.12324/13146.

CARELESS, P. D. S. 2009. Biosurveillance: utilizing a beetle hunt- ing wasp (Cerceris fumipennis, Hymenoptera: Crabronidae) to detect infestations of emerald ash borers (Agrilus planipennis, Coleoptera: Buprestidae) (Doctoral dissertation). https://hdl.handle.net/10214/20216.

CARELESS, P. D. S.; MARSHALL, S. A.; GILL, B. D. 2014. The use of Cerceris fumipennis (Hymenoptera: Crabronidae) for surveying and monitoring emerald ash borer (Coleoptera: Bupresti- dae) infestations in eastern North America. The Canadian En- tomologist 146 (1): 90-105. https://doi.org/10.4039/tce.2013.53.

CERUTTI, M. 2015. La agriculturización del desierto: Estado, riego y agricultura en el norte de México (1925-1970). Apuntes 42 (77): 91-127. https://doi.org/10.21678/apuntes.77.740.

COMAS, L.; ARNAN, X.; GRACIA, M.; RETANA, J.; BOSCH, J. 2009. Importancia del grado de madurez del bosque sobre las comunidades de himenópteros voladores y micromamíferos en el Parque Nacional de Aigüestortes e Illanes de Sant Maurici. 5o Congreso Forestal Español, Montes y Sociedad: Saber que hacer 1-10. http://secresforestales.org/publicaciones/index.php/congresos_forestales/article/view/16659/16502.

DE CARVALHO, A. S.; MOLINA-RUGAMA, A. J.; SILVA, F. E. L.; COSTA, E. M.; ARAUJO, E. L. 2018. Predator insect families associated with melon crop in a semiarid region in Brazil. Journal of Agricultural Science (Toronto) 10 (10): 267-273. https://doi.org/10.5539/jas.v10n10p267.

DELLA, L. T. M. C. 2003. Hormigas de importancia económica en la región Neotropical. pp. 337-349. In: FERNÁNDEZ, F. (eds.), Introducción a las Hormigas de la Región Neotropical. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá. Colombia, 398 pp. http://repository.humboldt.org/ co/bitstream/handle/20.500.11761/32961/978-958-8151-23-6. pdf?sequence=1.

DISCOVERYLIFE. (2018). Super Family Sphecoidea. http://www. discoverlife.org/proceedings/0000/6/html/Pemphredonidae . Last accessed 02 July 2020.

FERNÁNDEZ, C. 2001. Checklist of genera and subgenera of ac- ulate Hymenoptera of the Neotropical Region (Hymenoptera: Vespolomorpha). Biota Colombiana 2 (2): 87-130.

FERNÁNDEZ, C. 2002. Sinopsis de las Familias y Subfamilias de Hymenoptera en La región Neotropical. Red Iberoamericana de Biogeografía y Entomología Sistemática PrIBES 2: 239-243. https://www.researchgate.net/profile/Fernando-Fernandez-4/ publication/270283661_Sinopsis_de las_familias_y_subfamilias_de_Hymenoptera_en_la_Region_Neotropical/ links/54a6c4060cf256b8bb6985d/Sinopsis-de-las-familias-y- subfamilias-de-Hymenoptera-en-la-Region-Neotropical.pdf.
Origin and Funding
The present research work derives from a literature review of the species registered for Mexico of the Crabronidae family, as well as their potential use in agriculture. The project did not have financial support.

Author Contribution
MVE and VVE conceived/design/ed the research and wrote the manuscript. MVE, LJER and BRMC performed the literature search and data analysis. MVE, JVHV and VVE reviewed and edited the manuscript. All authors read, corrected, and approved the manuscript.

Conflict of Interest
The authors declare that they have no conflict of interest.

Ethical approval
The study was a literature review published to date, so insects were not captured at any time. Due to the above, an ethical approval was not required.