Lagrangian Pairs
and
Lagrangian Orthogonal Matroids

Richard F. Booth
Department of Mathematics,
UMIST, PO Box 88,
Manchester M60 1QD,
United Kingdom
richard.booth@umist.ac.uk

Alexandre V. Borovik
Department of Mathematics,
UMIST, PO Box 88,
Manchester M60 1QD,
United Kingdom
borovik@umist.ac.uk

Neil White*
Department of Mathematics
University of Florida
Gainesville,
Florida 32611, USA
white@math.ufl.edu

8 September 2002

Represented Coxeter matroids of types C_n and D_n, that is, symplectic and orthogonal matroids arising from totally isotropic subspaces of symplectic or (even-dimensional) orthogonal spaces, may also be represented in buildings of type C_n and D_n, respectively (see [1, Chapter 7]). Indeed, the particular buildings involved are those arising from the flags or oriflammes, respectively, of totally isotropic subspaces. There are also buildings of type B_n arising from flags of totally isotropic subspaces in odd-dimensional orthogonal space. Coxeter matroids of type B_n are the same as those of type C_n (since they depend only upon the directions of roots, not the length of roots—see the Gelfand-Serganova Theorem below). However, buildings of type B_n are distinct from those of the other types. Thus the question arises

*Supported by EPSRC Grant GR/R53593.
whether there are such things as B_n-representable matroids, that is, those representable in odd dimensional orthogonal space, and presumably therefore in such buildings. We answer this question in the affirmative in [2]. The matroids so representable turn out to be a special case of symplectic (flag) matroids, those whose top component, or Lagrangian matroid, is a union of two Lagrangian orthogonal matroids. These two matroids are called a Lagrangian pair, and they are the combinatorial manifestation of the “fork” at the top of an oriflamme (or of the fork at the end of the Coxeter diagram of D_n). Thus Lagrangian pairs are a very natural subject of investigation.

Here we give a number of equivalent characterizations of Lagrangian pairs, and prove some rather strong properties of them.

1 Symplectic and Orthogonal Matroids

Let $[n] = \{1, 2, \ldots, n\}$ and $[n]^* = \{1^*, 2^*, \ldots, n^*\}$. Define the map $*: [n] \to [n]^*$ by $i \mapsto i^*$ and the map $*: [n]^* \to [n]$ by $i^* \mapsto i$. In other words, we are defining $i^{**} = i$. Then $*$ is an involutive permutation of the set $[n] \cup [n]^*$.

We say that a subset $K \subset [n] \cup [n]^*$ is admissible if and only if $K \cap K^* = \emptyset$.

A linear ordering \prec of $[n] \cup [n]^*$ is called a C_n-admissible ordering if $i \prec j$ implies that $j^* \prec i^*$ for all $i, j \in [n] \cup [n]^*$. Equivalently, an ordering \prec on $[n] \cup [n]^*$ is C_n-admissible if and only if, when the $2n$ elements are listed from largest to smallest, the first n elements listed form an admissible set, and the last n elements listed are the stars of the first n elements listed, but are listed in reverse order. A D_n-admissible ordering of $[n] \cup [n]^*$ is similar to a C_n-admissible ordering, except that the middle two elements (i.e., the n-th and $n + 1$-st elements in the above listing) are now incomparable.

Denote by J_k the collection of all admissible k-subsets in J, for some $k \leq n$. If \prec is C_n or D_n-admissible ordering on $[n] \cup [n]^*$, it induces the partial ordering (which we denote by the same symbol \prec) on J_k: if $A, B \in J_k$ and

$$A = \{a_1 \prec a_2 \prec \cdots \prec a_k\} \quad \text{and} \quad B = \{b_1 \prec b_2 \prec \cdots \prec b_k\},$$

we set $A \prec B$ if

$$a_1 \prec b_1, a_2 \prec b_2, \ldots, a_k \prec b_k.$$

This partial ordering is called the Gale ordering on J_k induced by \prec. Given an arbitrary partial order \leq on a set T, we can also induce a partial ordering \leq on $T \times T$ by saying $(s, t) \leq (u, v)$ whenever $s \leq u$ and $t \leq v$. We can
likewise induce a partial order on unordered pairs of elements of T by setting \(\{s, t\} \leq \{u, v\} \) whenever \((s, t) \leq (u, v)\) or \((s, t) \leq (v, u)\).

Now let $\mathcal{B} \subseteq J_k$ be a collection of admissible k-element subsets of the set J. We say that $M = (\ast, \mathcal{B})$ is a symplectic matroid if it satisfies the following Maximality Property:

for every C_n-admissible order \prec on J, the collection \mathcal{B} contains a unique maximal member, i.e. a subset $A \in \mathcal{B}$ such that $B \prec A$ (in the Gale order induced by \prec), for all $B \in \mathcal{B}$.

The collection \mathcal{B} is called the collection of bases of the symplectic matroid M, its elements are called bases of M, and the cardinality k of the bases is the rank of M. An orthogonal matroid is defined similarly using D_n-admissible orderings. Ordinary matroids on $[n]$ can be defined in the similar fashion, using A_n-admissible orderings, which are arbitrary linear orderings on $[n]$; indeed, this is essentially the well-known greedy algorithm of matroid theory. A Lagrangian matroid (resp. Lagrangian orthogonal matroid) is a symplectic matroid (resp. orthogonal matroid) of rank n, the maximum possible.

A useful characterization of symplectic and orthogonal matroids is given by the Gelfand-Serganova Theorem (see [4]). For $B \in \mathcal{B}$, define a point in a real vector space spanned by \(\{\varepsilon_i : i \in [n]\} \) by

\[
\delta_B = \sum_{j \in B} \varepsilon_j,
\]

where ε_i is defined to be $-\varepsilon_i$. Then $\Delta_\mathcal{B}$ is defined to be the convex hull of the δ_B for $B \in \mathcal{B}$. We define roots for D_n to be all vectors of the form $\varepsilon_j - \varepsilon_k$ for $j, k \in [n] \cup [n]^\ast$. Roots for C_n are the same together with all vectors of the form $2\varepsilon_j$ for $j \in [n] \cup [n]^\ast$. Then the Gelfand-Serganova Theorem says that if $\mathcal{B} \subseteq J_k$, then \mathcal{B} is a symplectic (resp. orthogonal) matroid if and only if $\Delta_\mathcal{B}$ has all of its edges (i.e., one-dimensional faces) parallel to roots for C_n (resp. D_n).

In the case of a Lagrangian orthogonal matroid, if δ_A and δ_B are adjacent vertices in Δ, then the edge between them is parallel to a root $\varepsilon_j - \varepsilon_k$. Since A and B are admissible n-sets, each must have either j or j^\ast as an element, and likewise k or k^\ast. It follows that $B = (j, k)(j^\ast, k^\ast)A$, regarded as a permutation (in cycle notation) acting on A. Whether j and k are in $[n]$ or $[n]^\ast$, it follows that B has the same parity as A in terms of number of starred elements. Consequently, all bases of a Lagrangian orthogonal matroid have the same parity. The same is not true for non-Lagrangian orthogonal matroids; for example $(1, 2^\ast)(1^\ast, 2)\{1\} = \{2^\ast\}$.

3
Another characterization of Lagrangian orthogonal matroids comes from cosets in the group D_n. As a permutation group on $[n] \cup [n]^{*}$, D_n is generated by the involutions

\[
\begin{align*}
 s_1 &= (1, 2)(1^*, 2^*) \\
 s_2 &= (2, 3)(2^*, 3^*) \\
 \vdots \\
 s_{n-1} &= (n - 1, n)((n - 1)^*, n^*) \\
 s_n &= (n - 1, n^*)((n - 1)^*, n)
\end{align*}
\]

in cycle notation. Consider the two maximal parabolic subgroups P^n and P^{n-1}, generated by $\{s_1, s_2, \ldots, s_{n-1}\}$ and $\{s_1, s_2, \ldots, s_{n-2}, s_n\}$, respectively. Notice that P^n is the stabilizer in D_n of the admissible n-set $[n]$, and hence the left cosets of P^n in D_n correspond to the orbit of $[n]$, namely, all admissible n-sets of even parity. Similarly, P^{n-1} is the stabilizer of $\{1, 2, \ldots, n - 1, n^*\}$, and its left cosets correspond to all admissible n-sets of odd parity. Furthermore, in similar fashion, left cosets of $P^n \cap P^{n-1}$ can be shown to correspond to admissible $(n - 1)$-sets. Letting elements of D_n act on D_n-admissible orderings in the obvious way, we find that D_n corresponds bijectively to the set of all D_n-admissible orderings. Now we can characterize Lagrangian orthogonal matroids M of even parity as maps from D_n to D_n/P^n (the set of all left cosets of P^n in D_n). An element σ of D_n is sent to the coset corresponding to the maximal basis of M given by the Maximality Property for the admissible order corresponding to σ. This matroid map $\mu : D_n \rightarrow D_n/P^n$ is actually very natural, as the Maximality Property can be entirely rephrased in terms of the cosets using Bruhat order, see \[4\]. Likewise, Lagrangian orthogonal matroids of odd parity give matroid maps $\mu : D_n \rightarrow D_n/P^{n-1}$.

One more very useful characterization of Lagrangian orthogonal matroids is the Strong Exchange Property \[1\]. A collection $B \subseteq J_n$ is the collection of bases of a Lagrangian orthogonal matroid if and only if:

For every $A, B \in B$ and $a \in A \triangle B$, there exists $b \in B \setminus A$ with $b \neq a^*$, such that both $A \triangle \{a, b, a^*, b^*\}$ and $B \triangle \{a, b, a^*, b^*\}$ are members of B.

\section{Characterisations of Lagrangian Pairs}

Consider an admissible set of size $n - 1$. Such a set can be completed to an admissible set of size n in exactly two ways, by appending either i or i^* for
some i. The two resulting sets are called a Lagrangian pair of sets, and are characterised by the fact that their symmetric difference is exactly $\{i, i^*\}$.

Consider now two Lagrangian orthogonal matroids M_1, M_2 of rank n and of opposite parity. We say that they form a Lagrangian pair (of Lagrangian orthogonal matroids) if they satisfy:

For every admissible ordering, the maximal bases of M_1 and M_2 under the ordering are a Lagrangian pair of sets.

We say that a pair of Lagrangian subspaces of orthogonal $2n$-space form a Lagrangian pair of subspaces if their intersection is of dimension $n - 1$. The following result is well-known.

Lemma 1 A totally isotropic subspace of dimension $n - 1$ in orthogonal $2n$-space is contained in exactly two Lagrangian subspaces (which are a Lagrangian pair).

Theorem 2 A Lagrangian pair of subspaces represent a Lagrangian pair of orthogonal matroids.

Proof Let U_1 and U_2 be a Lagrangian pair of subspaces of a $2n$-dimensional orthogonal space. Let a D_n-admissible ordering be given. The totally isotropic subspace $U_1 \cap U_2$ can be represented by an $(n-1) \times 2n$ matrix C, with columns indexed by elements of $[n] \cup [n]^*$, see [4, Chapter 3]. Reorder the columns so that they are in the given ordering, where the two columns indexed by the two unrelated elements may be put in either order. Let C' be the reduced row echelon form of C. Then the pivot columns of C' are those indexed by the maximal basis B of the rank $n - 1$ orthogonal matroid represented by C, and, in particular, the pivot columns must be indexed by an admissible set. Either U_1 or U_2 may be similarly represented by adding one row to C and again row reducing. However, by elementary linear algebra, the original $n - 1$ pivot columns remain pivot columns in each case, with one additional pivot column being added in each case. Thus the maximal bases of the Lagrangian orthogonal matroids represented by U_1 and U_2 are both admissible n-sets containing B, hence are a Lagrangian pair of sets. Thus these two matroids are a Lagrangian pair. \diamond

Let M_1, M_2 be Lagrangian orthogonal matroids on $[n] \cup [n]^*$ of opposite parity, B_1, B_2 their collections of bases, and

$$\mu_1 : W \to D_n / P^n, \quad \mu_2 : W \to D_n / P^{n-1}$$
the corresponding matroid maps. Let

\[B_1 + (n + 1) = \{ B \cup \{ n + 1 \} \mid B \in B_1 \}, \]
\[B_2 + (n + 1)^\star = \{ B \cup \{ (n + 1)^\star \} \mid B \in B_2 \}, \]
\[B_3 = (B_1 + (n + 1)) \cup (B_2(n + 1)^\star), \]

and

\[B_4 = \{ A \mid A \subseteq [n] \cup [n]^\star, |A| = n - 1, \]
\[\text{and there exist } B_1 \in B_1, B_2 \in B_2 \]
\[\text{such that } A = B_1 \cap B_2 \}. \]

We call \(B_3 \) the (collection of bases of the) exploded sum of \(M_1 \) and \(M_2 \), see Figure 1.

Figure 1: The exploded sum of a Lagrangian pair of Lagrangian orthogonal matroids.

Theorem 3 The following are equivalent:

1. \(M_1 \) and \(M_2 \) are a Lagrangian pair,
2. for all \(w \in W \), \(\mu_1(w) \cap \mu_2(w) \neq \emptyset \),
3. \(B_3 \) is the collection of bases of a Lagrangian orthogonal matroid,
4. \(B_4 \) is the collection of bases of a Lagrangian orthogonal matroid, and for each \(B \in B_1 \cup B_2 \) there exists \(X \in B_4 \) with \(X \subseteq B \).
(5) for all \(w \in W\), there exists a unique unordered pair \(\{B_1, B_2\}\), with \(B_1 \in \mathcal{B}_1\), \(B_2 \in \mathcal{B}_2\), such that for all \(A_1 \in \mathcal{B}_1\), \(A_2 \in \mathcal{B}_2\), we have \(\{B_1, B_2\} \leq w \{A_1, A_2\}\),

(6) for all \(w \in W\), there exists a unique ordered pair \((B_1, B_2)\), with \(B_1 \in \mathcal{B}_1\), \(B_2 \in \mathcal{B}_2\), such that for all \(A_1 \in \mathcal{B}_1\), \(A_2 \in \mathcal{B}_2\), we have \((B_1, B_2) \leq w (A_1, A_2)\).

Proof The equivalence (4) ⇔ (5) is proved in [6]. Furthermore, (1) ⇔ (6), (6) ⇒ (5), and (5) ⇒ (2) are immediate. We will now prove (1) ⇒ (3), (3) ⇒ (1), and (2) ⇒ (1).

Assume that \(M_1\) and \(M_2\) are a Lagrangian pair, and choose a \(D_{n+1}\)-admissible order on \([n+1] \cup [n+1]^*\). Restrict this ordering to \([n] \cup [n]^*\). Notice that this may now be either a \(C_n\) or \(D_n\)-admissible order. Let \(B_1 \in \mathcal{B}_1\), \(B_2 \in \mathcal{B}_2\) be the maximal bases in this restricted order. If the restricted order is a \(C_n\)-admissible order, it can be changed to a \(D_n\)-admissible order by deleting the relation between the pair of elements in the middle, and clearly the maximal bases remain unchanged. Hence \(B_1 \triangle B_2 = \{i, i^*\}\). Clearly \(B_1' = B_1 \cup \{n+1\}\) and \(B_2' = B_2 \cup \{(n+1)^*\}\) are the only two candidates for maximal members of \(\mathcal{B}_3\). But \(B_1' \triangle B_2' = \{i, i^*, n+1, (n+1)^*\}\), and in all possible \(D_{n+1}\)-admissible orders, \(B_1'\) and \(B_2'\) are related. Thus \(\mathcal{B}_3\) has a unique maximal member, proving (3).

Now assume (3), and let a \(D_n\)-admissible order be given. Let \(B_1\) (resp. \(B_2\)) be the maximal basis in \(\mathcal{B}_1\) (resp. \(\mathcal{B}_2\)). Extend the given order arbitrarily to a \(D_{n+1}\)-admissible order, and let \(f\) be a linear functional compatible with the extended order. By this we mean that \(f\) is a linear functional on the real vector space spanned by the basis \(\{\epsilon_1, \epsilon_2, \ldots, \epsilon_{n+1}\}\), with \(\epsilon_i = -\epsilon_{i^*}\) by definition, such that \(i < j\) in the extended order implies \(f(i) < f(j)\), for all \(i, j \in [n+1] \cup [n+1]^*\). Now \(B_1' = B_1 \cup \{n+1\}\) (resp. \(B_2' = B_2 \cup \{(n+1)^*\}\)) is clearly the maximal basis in

\[
\mathcal{B}_1' = \{ B \cup \{n+1\} \mid B \in \mathcal{B}_1 \}
\]

(resp. \(\mathcal{B}_2' = \{ B \cup \{(n+1)^*\} \mid B \in \mathcal{B}_2 \}\)). Thus \(\delta_{\mathcal{B}_1'}\) (resp. \(\delta_{\mathcal{B}_2'}\)) is the unique maximal vertex of \(\Delta_{\mathcal{B}_1'}\) (resp. \(\Delta_{\mathcal{B}_2'}\)) under \(f\). Since \(\Delta_{\mathcal{B}_1'}\) and \(\Delta_{\mathcal{B}_2'}\) lie in parallel hyperplanes, it is easy to see that \(\delta_{\mathcal{B}_1'} \delta_{\mathcal{B}_2'}\) must be an edge of \(\Delta_{\mathcal{B}_3}\). By the Gelfand-Serganova Theorem, \(B_1'\) and \(B_2'\) must be related by an exchange of the form \((n+1, (n+1)^*)\langle i, i^* \rangle\) (in cycle notation), for some \(i \leq n\). It follows that \(B_1\) and \(B_2\) must be related by the exchange \((i, i^*)\), proving that \(B_1\) and \(B_2\) are a Lagrangian pair.

Finally, assume (2). Thus \(\mu_1(w) = aP^n\) and \(\mu_2(w) = bP^{n-1}\) with \(aP^n \cap bP^{n-1} \neq \emptyset\). But this means \(aP^n \cap bP^{n-1} = c(P^n \cap P^{n-1}) = cP^{n,n-1}\). It follows
that there is an admissible \((n - 1)\)-set contained in both \(B_1 = \max^w B_1\) and \(B_2 = \max^w B_2\), and thus that \(B_1\) and \(B_2\) differ by an exchange of the form \((i, i^\ast)\) for some \(i\), showing that \(M_1\) and \(M_2\) are a Lagrangian pair.

\[\diamond\]

Condition (2) in the previous theorem amounts to saying that the two Lagrangian orthogonal matroids are \textit{concordant}, see [3].

3 Further results on Lagrangian pairs

We now need to recall the concept of quotient (or, essentially, strong map) of ordinary matroids. If \(M_1\) and \(M_2\) are matroids on the same set \([n]\), then we say that \(M_2\) is a quotient of \(M_1\) if every circuit of \(M_1\) is a union of circuits of \(M_2\). As is shown in [4, Chapter 1], \(M_2\) is a quotient of \(M_1\) if and only if, for every linear ordering of \([n]\), the maximal basis of \(M_2\) is a subset of the maximal basis of \(M_1\). To relate ordinary matroids to Lagrangian orthogonal matroids, we need a mapping \(\Phi\) defined as follows: For \(B \subseteq [n]\), let \(\Phi(B) = B \cup ([n] \setminus B)^\ast\). Then if \(B\) is the collection of bases of a matroid, \(\Phi(B) = \{ \Phi(B) \mid B \in B \}\) is a Lagrangian orthogonal matroid, as proved in [4, Chapter 3].

Theorem 4 Let \(M_1\) and \(M_2\) be ordinary matroids on \([n]\), of ranks \(k\) and \(k - 1\) respectively. Then \(M_2\) is a quotient of \(M_1\) if and only if \(\Phi(M_1)\) and \(\Phi(M_2)\) are a Lagrangian pair.

Proof Let \(\prec\) be a \(D_n\)-admissible ordering of \([n] \cup [n]^\ast\), and let \(\leq\) denote the restriction of this ordering to \([n]\), which must be a linear order. First we claim that if \(A\) and \(B\) are bases of the same matroid \(M\), then \(A \leq B\) implies \(\Phi(A) \prec \Phi(B)\). Indeed, if \(A \leq B\), then \([n] \setminus A \geq [n] \setminus B\), and hence \(([n] \setminus A)^\ast \leq ([n] \setminus B)^\ast\), so \(\Phi(A) \prec \Phi(B)\). It follows that \(B\) is the maximal basis of \(M\) if and only if \(\Phi(B)\) is the maximal basis of \(\Phi(M)\).

Now let \(B_1\) and \(B_2\) be the maximal bases of \(M_1\) and \(M_2\), resp. If \(M_2\) is a quotient of \(M_1\), then \(B_2 \subseteq B_1\), say \(B_2 = B_1 \setminus \{i\}\). Then \(\Phi(B_1)\) and \(\Phi(B_2)\) differ by the exchange \((i, i^\ast)\). But we have just seen that these are the maximal bases of \(\Phi(M_1)\) and \(\Phi(M_2)\), resp., showing that these two Lagrangian orthogonal matroids are a Lagrangian pair.

Conversely, suppose that \(M_2\) is not a quotient of \(M_1\). Then there exists a linear ordering on \([n]\) such the maximal bases \(B_1\) and \(B_2\) of \(M_1\) and \(M_2\) (resp.) are not related by containment. Extend this ordering to a \(D_n\)-admissible ordering on \([n] \cup [n]^\ast\). Then the maximal bases \(\Phi(B_1)\) and \(\Phi(B_2)\) of \(\Phi(M_1)\) and \(\Phi(M_2)\) (resp.) are not related by an exchange of the form \((i, i^\ast)\). Thus
Φ(M₁) and Φ(M₂) are not a Lagrangian pair.

As a corollary, we get a new characterization of elementary quotients.

Corollary 5 Let B₁ and B₂ be the collection of bases of two matroids M₁ and M₂ of ranks k and k−1, respectively. Then M₂ is an elementary quotient of M₁ if and only if for every B₁ ∈ B₁, B₂ ∈ B₂, and i ∈ B₁ △ B₂, either

(1) B₁ △ {i} ∈ B₂, B₂ △ {i} ∈ B₁, or

(2) there exists j ∈ B₁ △ B₂ such that

B₁ △ {i, j} ∈ B₁ and B₂ △ {i, j} ∈ B₂.

Furthermore, for every B₁ ∈ B₁, B₂ ∈ B₂ there exists i ∈ B₁ △ B₂ such that case (1) holds.

Proof We have that M₂ is an elementary quotient of M₁ if and only if Φ(M₁) and Φ(M₂) are a Lagrangian pair if and only if their exploded sum is a Lagrangian orthogonal matroid, which is true if and only if their exploded sum satisfies the Strong Exchange Property. The corollary follows immediately from translating what the Strong Exchange Property says in terms of B₁ and B₂.

Theorem 6 Let B be a Lagrangian orthogonal matroid on [n] ∪ [n]*, and i ∈ [n]. Define

B₁ = \{ B \setminus \{i\} | i ∈ B, B ∈ B \},

B₂ = \{ B \setminus \{i^*\} | i^* ∈ B, B ∈ B \}.

Then B₁, B₂ are a Lagrangian pair of Lagrangian orthogonal matroids on ([n] ∪ [n]*) \ {i, i^*}.

Proof We see that B is just the exploded sum of B₁ and B₂, after appropriate relabelling, so the desired result follows from Theorem 3.

Theorem 7 Let B₁, B₂ be the collections of bases of a Lagrangian pair of Lagrangian orthogonal matroids. Then B = B₁ ∪ B₂ is the collection of bases of a Lagrangian (symplectic) matroid.
Figure 2: A Lagrangian symplectic matroid which is not the union of a Lagrangian pair.

Proof If B_1, B_2 are a Lagrangian pair, then their exploded sum B_3 is a Lagrangian orthogonal matroid, by Theorem 3. The Strong Exchange Axiom on B_3 now implies the Symmetric Exchange Axiom on $B_1 \cup B_2$.

Since the union of a Lagrangian pair is a symplectic matroid, it is natural to wonder whether, given Lagrangian orthogonal matroids of the same rank and opposite parity whose union is a symplectic matroid, they are necessarily a Lagrangian pair. Figure 2 shows that the answer is no. Indeed, since 123 is the only basis of the matroid of even parity, any admissible order which makes $1^*2^*3^*$ the maximal basis of the other matroid violates the definition of Lagrangian pair.

Theorem 8 Let B_1 be the collection of bases of a Lagrangian orthogonal matroid, and $B_2 = (i, i^*) B_1$, where (i, i^*) is a transposition, to be thought of as a permutation acting elementwise on the members of B_1. Then B_1 and B_2 are a Lagrangian pair.

Proof By Theorem 3, it suffices to prove that the exploded sum,

$B_3 = B_1 + (n + 1) \cup B_2 + (n + 1)^*$
is a Lagrangian orthogonal matroid. So we wish to show that B_3 satisfies the Strong Exchange Property. Let $A, B \in B_3$ and $a \in A \setminus B$. We need to show that there exists $b \in (A \triangle B) \setminus \{a, a^*\}$ so that $A \triangle \{a, a^*, b, b^*\}$ and $B \triangle \{a, a^*, b, b^*\}$ are both in B_3. If both A and B are in $B_1 + (n + 1)$ or else both in $B_2 + (n + 1)^*$, then we are done, for $a \neq (n + 1), (n + 1)^*$, and Strong Exchange holds in B_1 and in B_2. Thus we may assume that $A \in B_1 + (n + 1)$ and $B \in B_2 + (n + 1)^*$.

Case 1. Suppose $a = i$ or i^*. Then we may choose $b = n + 1$, and we are done.

Case 2. Suppose $a = n + 1$. If $i \in A \triangle B$, then we choose $b = i$ and we are done. Thus we suppose, without loss of generality, that $i \in A \setminus B$. Let $B' = B \triangle \{i, i^*, n + 1, (n + 1)^*\}$. Then $B' \in B_1 + (n + 1)$, and $i \in A \triangle B'$. By Strong Exchange on B_1, we have $j \in [n] \cup [n]^*$ so that

$$A' := A \triangle \{i, i^*, j, j^*\}$$

and

$$B' \triangle \{i, i^*, j, j^*\} = B \triangle \{j, j^*, n + 1, (n + 1)^*\}$$

are both in $B_1 + (n + 1)$. Thus

$$A \triangle \{j, j^*, n + 1, (n + 1)^*\} = A' \triangle \{i, i^*, n + 1, (n + 1)^*\}$$

$$\in B_2 + (n + 1)^*.$$

Thus $b = j$ gives the desired Strong Exchange.

Case 3. We are left with $a \neq i, i^*, n + 1, (n + 1)^*$. Let

$$B' = b \triangle \{i, i^*, n + 1, (n + 1)^*\} \in B_1 + (n + 1).$$

Since $a \in A \triangle B'$, there exists $j \in A \triangle B'$, $j \neq a, a^*, n + 1, (n + 1)^*$, so that

$$A' := A \triangle \{a, a^*, j, j^*\} \in B_1 + (n + 1)$$

and $B' \triangle \{a, a^*, j, j^*\} \in B_1 + (n + 1)$. Then

$$B \triangle \{a, a^*, j, j^*\} = B' \triangle \{i, i^*, n + 1, (n + 1)^*\} \triangle \{a, a^*, j, j^*\}$$

$$\in B_2 + (n + 1)^*,$$

regardless of whether $j = i$ or i^*, or not. Thus $b = j$ again gives the desired Strong Exchange.

\diamond
References

[1] R. F. Booth, M. L. Moreira, and M. R. Pinto, Circuits in Lagrangian matroids, Discrete Math., to appear.

[2] R. F. Booth, A. V. Borovik, and N. White, Coxeter matroids of type B_n, in preparation.

[3] A. V. Borovik, I. M. Gelfand, and D. A. Stone, On the topology of the combinatorial flag varieties, Discrete and Computational Geometry, 27 (2002) 195–214.

[4] A. V. Borovik, I. M. Gelfand, and N. White, Coxeter Matroids, Birkhäuser, to appear.

[5] A. V. Borovik, I. M. Gelfand, and N. White, Symplectic matroids, J. Algebraic Combinatorics, 8 (1998), 235–252.

[6] A. Vince, and N. White, Orthogonal matroids, J. Algebraic Combinatorics, 13 (2001), 295–315.