Intellectual interchanges in the history of the massive online open-editing encyclopedia, Wikipedia

Jinhyuk Yun (윤진혁),1 Sang Hoon Lee (이상훈),2 and Hawoong Jeong (정학웅)1,3,4†

1Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
2School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
3Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
4Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 37673, Korea
(Dated: January 25, 2016)

Wikipedia is a free Internet encyclopedia with an enormous amount of content. This encyclopedia is written by volunteers with various backgrounds in a collective fashion; anyone can access and edit most of the articles. This open-editing nature may give us prejudice that Wikipedia is an unstable and unreliable source; yet many studies suggest that Wikipedia is even more accurate and self-consistent than traditional encyclopedias. Scholars have attempted to understand such extraordinary credibility, but usually used the number of edits as the unit of time, without consideration of real-time. In this work, we probe the formation of such collective intelligence through a systematic analysis using the entire history of 34 534 110 English Wikipedia articles, between 2001 and 2014. From this massive data set, we observe the universality of both timewise and lengthwise editing scales, which suggests that it is essential to consider the real-time dynamics. By considering real time, we find the existence of distinct growth patterns that are unobserved by utilizing the number of edits as the unit of time.

To account for these results, we present a mechanistic model that adopts the article editing dynamics based on both editor-editor and editor-article interactions. The model successfully generates the key properties of real Wikipedia articles such as distinct types of articles for the editing patterns characterized by the interrelationship between the numbers of edits and editors, and the article size. In addition, the model indicates that infrequently referred articles tend to grow faster than frequently referred ones, and articles attracting a high motivation to edit counterintuitively reduce the number of participants. We suggest that this decay of participants eventually brings inequality among the editors, which will become more severe with time.

I. INTRODUCTION

Humankind has accrued a priori knowledge since the on-set of Homo sapiens. From ancient cave paintings to modern research papers, the species’ desire toward sedimentation has been displayed as a documentary. An encyclopedia, a set of documents that contains a vast collection of information from the entire field of human knowledge, has played a pivotal role in disseminating these legacies [1,2]. Conventionally, a group of experts devote their expertise to these encyclopedias [3,4]. Taking advantage of technological developments, media that publish encyclopedias keep abreast of the times: handwriting, letterpress printing, and optical disks. The emergence of information technology has opened a new era of publishing traditional encyclopedias on the World Wide Web [5], which offers a variety of references and up-to-date information. Although these new media can reduce the publication price, encyclopedia editing is still costly.

Besides the improvement of traditional encyclopedias, new media enable fresh challengers to participate in the competition. Wikipedia [6], a representative player among the challengers, has proposed an entirely new manner: editing by volunteers with various backgrounds in a collective fashion. This new paradigm of sharing knowledge is one of the most famous examples of “collective intelligence.” However, due to the nature of open-edit policy, Wikipedia does not guarantee that the contents are valid [7], thus it is regarded ambiguous and even inaccurate to utilize in scientific context [8,9]. Despite such a long-standing bias against the credibility of Wikipedia, many studies suggest that Wikipedia is more reliable than our prejudice: Wikipedia itself tends to refer reliable scientific sources [10,11]. Only 13% of Wikipedia articles contain perceptible academic errors [12] and the quantity of factual errors, omissions, or ambiguous statements in scientific context of Wikipedia is comparable to traditional encyclopedias [13].

Gradually, prejudice against the quality of Wikipedia’s articles has been eroded and the number of citations to Wikipedia in peer-reviewed scientific articles has increased over time [14]. A bizarre gap between such prejudice and the actual situation appeals to the scholars, who have analyzed Wikipedia’s external characters and internal dynamics. For example, researchers have investigated editors of Wikipedia and their editing patterns [15,17], and the occurrence and resolving of conflicts in Wikipedia [18,19]. Despite the significant contributions of such endeavors, the previous studies mainly focus on the raw number of edits, and often neglect real time and the different editing patterns for articles with different sizes and ages. In this paper, we examine an exhaustive set of English Wikipedia articles to understand how the article size and age displays external appearance in this open-editing encyclopedia. In particular, a simple time-rescaling method reveals articles belonging to various types, when we take account of the interrelation between observable parameters: the number of edits, the number of editors, and the article size.

Our analysis consists of both data analysis and modeling based on it. First, we use the entire edit history in Wikipedia to inspect Wikipedia’s growth, mainly focusing on the number of edits, the number of editors, and the article size. In this process, we demonstrate that the consideration of real time is essential to understand the underlying dynamics be-
hind the present Wikipedia. Second, to consider the formation of current Wikipedia in more detail, we develop an agent-based model that imitates the interplay between an article and the editors in a society. Our model shows inherent differences of articles belonging to different types of growth patterns. The results are consistent with real data, which suggests that a society’s attitudes on Wikipedia articles determine the growth pattern. We believe that this approach provides valuable insights for the formation of collective knowledge. We focus on the long-term formation of collective knowledge, which has significant effects on the progress of humankind over a variety of temporal scales. We hope that our work provides insights to solve some of the fundamental questions: why people collaborate, how the collective memory is formed, and how knowledge is spread and descended.

The rest of the paper is organized as follows. In Sec. II we introduce the Wikipedia data that we use in our investigation. In Sec. III we propose a time-rescaling method and show that the articles in Wikipedia can be classified into multiple types based on their growth pattern. We present our model and results in Sec. IV including verification of our model with real data. Finally, we present our conclusions and discussion in Sec. V.

II. DATA SET

For the analysis, we use the December 2014 dump of English Wikipedia. This dump contains the complete copy of Wikipedia articles from the very beginning up to December 8, 2014, including the raw text source and metadata source in the Extensible Markup Language (XML) format. In this data set, there are a total of 34,534,110 articles across all categories with the full history of edits. Each article documents either the Wikipedia account identification (ID) or Internet protocol (IP) address of the editor for each edit, the article size and timestamp for each edit, etc. A single character in English takes 1 byte, so the article size is the direct measure of article length. There are 587,606,694 editing events (“edits” from now on) for all Wikipedia articles in total, where individual articles’ edit numbers range from 1 to 1,044,048.

Previous studies tend to sample data sets for various reasons, and thus articles with small numbers of edits are necessarily filtered out. However, Fig. 1 suggests a fat-tailed distribution for the number of edits, so the majority of articles are not edited as many times as the articles in the tail part of the distribution and those articles should not be neglected. Therefore, we consider all entries and use the entire set for analysis. Additionally, we use the ID and IP address, for logged-in editors and unlogged-in editors, respectively, to identify distinct editors. In total, 40,536,451 editors have participated in the establishment of the current Wikipedia. Among them, 83.9% (34,006,990) of editors are unlogged-in and only 16.1% (6,529,461) of editors are logged-in. Interestingly, the absolute share of logged-in editors is rather smaller than that of unlogged-in editors; most of the heavy editors tend to be logged-in (Fig. 2). Specifically, logged-in editors have modified the articles 455,397,682 times (77.5%) in total, meanwhile unlogged-in editors have modified the articles only 132,475,517 times (22.5%). Considering the fact that the number of unlogged-in editors exceeds that of logged-in editors; most of the heavy editors
III. DATA ANALYSIS

Previous studies on the Wikipedia data set did not use the information about article size changes after the edits [18, 19] or real timestamps of the edits [15–17]. We combine such information together with conventional measures, such as the number of edits and the number of editors, to display the nature of Wikipedia. Our first analysis of time and size differences between two consecutive edits reveals regularity, regardless of an article’ age and size.

A. Edit scale of Wikipedia

The time between the consecutive edits follows a fat-tailed distribution with characteristic periodicity from the human circadian rhythm (Fig. 3), which suggests that the editing timescale of Wikipedia is intermittent or ‘bursty,’ meaning that brief but intense activities are followed by much smaller activities for a long time [24, 25]. These intense activities in Wikipedia are reported as “Wikipedia Edit War,” which refers to significantly rapid consecutive editing by various editors with conflicting opinions [26]. Our observation indicates that the “edit number” (or the number of edits), which many studies use as the proxy of the real time [17, 19], is not an unbiased proxy of the time. Counterposed to the assumption that English Wikipedia has already become global media, we observe strong periodicity for the time between the consecutive edits in Fig. 3. The peaks are located at every 86 400 s or a single day, which implies that native English speakers (mostly people in the United States because of the relative population, we presume) still dominate English Wikipedia even though there is no barrier to global access. Such a circadian pattern in the frequency of editing events is mainly driven by editors with specific cultural backgrounds for the data until the beginning of 2010s, as reported in Ref. [27]. Our observation indicates that the circadian rhythm also affects the interediting time in a collective fashion, and this domination still remains in the current Wikipedia.

Besides the time scale, we observe that an article’s growth is mainly addition and subtraction with a characteristic size scale, which are rather independent of the current size (Fig. 4). This observation shows that the circadian rhythm also affects the interediting time in a collective fashion, and this domination still remains in the current Wikipedia.

B. Time-rescaled measures for Wikipedia

In Sec. II A we have shown that the time between two consecutive edits is quite heterogeneous (Fig. 3). This global
FIG. 5. Interplay between time-rescaled measures for Wikipedia in December 2014. Each point corresponds to an individual Wikipedia article. For panels (a)–(f), we randomly sampled one article per every 100 articles to display clearly, yet results do not change by sampling. Note that bimodality is observed only when we check these time-rescaled measures. (a) The number of edits N^*_e versus the number of editors N^*_p. (b) The number of editors N^*_p and the article size S^*. The black dashed guidelines in panels (a) and (b) have the slope $1 \ (N^{*}_p = 0.7N^{*}_e$ and $S^* = 100N^*_p$), implying the linearity. The inset in panel (a) is the magnified view on $x \approx 10^{-1}$ and $y \approx 10^{-1}$ for visibility. The bimodal structure in (a) is highlighted in (c) by manually dividing the upper (purple) and lower (blue) modes via the black dashed guideline in (a), but this division of modes does not divide the modes of (b), as shown in (d) where we show the same plot as (b) but with the individual points’ color of (c). Likewise, the bimodal structure in (b) is highlighted in (f) by manually dividing the upper (purple) and lower (blue) via the black dashed guideline in (b), but this division of modes does not divide the modes of (a), as shown in (e) where we show the same plot as (a) but with the individual points’ color of (b). The axes of (c) and (e) are identical to (a) and those of (d) and (f) to (b), so we omit the axes in (c)–(f) for better visualization. Those modality structures qualitatively remain the same even if we exclude the number of edits and the number of editors belonging to unlogged-in editors, from which we conclude that the possible ambiguity in the usage of IP addresses for editor identification can be neglected.

The effect of various timescales itself makes it unfair to directly compare the characteristic parameters of articles: the number of editors, edits, and the article size for different articles. To compensate for such an effect, we employ rescaled measures for article i as $N^*_e(i) = N_e(i)/T(i)$, $N^*_p(i) = N_p(i)/T(i)$, and $S^*(i) = S(i)/T(i)$, where $T(i)$, the age of article i, is measured as the time between the moment of onset and that of the latest edit of article i. $N_e(i)$, $N_p(i)$, and $S(i)$ are the number of edits, the number of editors, and the article size for article i, respectively. The rescaled measures are free from the temporal effects, making it possible to recruit myriad articles into the same ground for analysis in the sense of growth per unit time. For the number of edits, the number of editors, and the article size from the data, we hereafter use their rescaled values unless stated otherwise.

A natural step forward is to search for any possible interplay between N^*_e, N^*_p, and S^* in the formation of current Wikipedia. One can suppose that the number of edits has varied gradually as a function of the number of editors, because both measures reflect the degree of interest in the article. Unexpectedly, we discover that the articles show a peculiar bimodality in their number of editors across the entire value of the number of editors [see Fig. 5(a)]. The bimodality is characterized by the linear relation $N^*_p = k_1N^*_e$ with two distinct proportionality constants, $k_1 = k^{upper}_1 \approx 0.9$ and $k_1 = k^{lower}_1 \approx 0.5$, respectively. In other words, there are two groups of articles, determined by the proportion between the number of editors involved in the articles and the editors’ average activity; one group is dominated by a relatively small number of enthusiasts who edit articles frequently, and the other is composed of a relatively large number of editors who seldom edit articles. Besides the cases of edits and editors, Wikipedia shows a similar division of article size for given numbers of editors [see Fig. 5(b)]. There are two types of articles determined by the average article size produced by an editor per unit time. This relation is also described by the linear dependency $S^* = k_2N^*_p$, where $k_2 = k^{upper}_2 \approx 900$ for the upper mode and $k_2 = k^{lower}_2 \approx 25$ for the lower mode. In other words, editors for some articles have generated about 900 bytes on average, meanwhile the editors of the rest of the articles have generated only about 25 bytes on average.

Our finding of bimodality in the two relations (N^*_e versus N^*_p and N^*_p versus S^*) triggers an interesting question: does each
of the modes in one relation correspond to each mode in the other relation [Figs. 5(a) and 5(b)]. It seems natural to speculate that such modes have the counterparts in the other relation, or at least one is subordinate of the other. Contrary to this speculation, our observation suggests that there is no visible relationship between the two different types of bimodality [see Figs. 5(c)-5(f)]. The points in the figures are colored according to the modes to which the corresponding articles belong in the criteria based on \(N_i^c/N_i^u \) or \(S^+/N_i^c \). We simply tear off the upper and lower modes by drawing a line [the dashed lines in Figs. 5(a) and 5(b)] between the two modes and assign purple and blue colors for the points in the upper and the lower modes, respectively. Those purple and blue points are totally mixed when the criterion is based on the other parameter relation. Taken together, we conclude that there are at least four different groups of articles, which can be categorized by its growth per unit time. The possible mechanism behind the division is suggested based on our modeling study in Sec. IV.

FIG. 6. Schematic diagrams describing how our model works. (a) Flow diagrams of the interaction between agents \(i \) and \(k \) described in Sec. IV A 1. (b) Flow diagrams of the interaction between agent \(e \) and the article described in Sec. IV A 2.

IV. MECHANISTIC MODEL OF WIKIPEDIA

To understand the underlying dynamics of the observed patterns, we develop a mechanistic model of editing dynamics by identifying two key factors that drive the evolution of Wikipedia articles. We assume that there are two fundamental and inherent properties of an article reflecting the society’s viewpoint on the article’s topic: the preferences for referring Wikipedia and the desires to edit (namely, editability). In this section, we show that two such key drivers have elicited the Wikipedia into its current state as shown in Fig. 5. Interestingly, each of these has a decisive effect on the distinct modality structure of \(N_i^c/N_i^u \) and \(S^+/N_i^c \), respectively, and they have almost no impact on each other’s modality.

The preferences for referring Wikipedia stems from its relative credibility compared to other conventional media. In other words, people tend to refer Wikipedia more than other conventional media or opinion from others for certain topics. Because of the nature of open-edit policy, there are long-lasting arguments of credibility, especially for the scientific contexts [8, 9]. As a result, people avoid referring Wikipedia...
to reinforce their contention for scientific topics when they debate. Nevertheless, several topics are almost free from the trust issue and Wikipedia can be considered as a trustworthy source of knowledge. The subcultures such as animations, movies, and computer games are good examples, because the editors are not only a fan of the topic but also the creators of such cultures [29]. In those cases, therefore, members of a society do not hesitate to utilize Wikipedia as their grounds for the arguments.

In addition, there are different levels of psychological barriers and desires in editing, depending on the topic. People tend to edit the article about which they have enough knowledge [30]. Thus, the average “editability” of articles, for members of a society, is diverse by its nature from the usual ones which are easily editable to the formal ones. This editability also depends on collective motives, which describe the significance of the topic as the common goal of social movements [31][32]. Therefore, the intrinsic rate of edit should be taken into account. Besides these two key factors, editors are also engaged in articles when they have already given more effort to the articles by editing them [33], representing the feeling of attachment. Additionally, it is hard to edit an article that has already had a massive amount of information [30], so the motivation to edit will be reduced as the article size is increased. We describe how we implement the sociopsychological effects into our mathematical model in detail.

A. Model Description

By incorporating the aforementioned factors, we create a mechanistic model of the article growth. The model comprises N agents where the individual agents represent members of a society and all of the agents are connected to a single Wikipedia article. Note that we take a single Wikipedia article in our model, as we assume that different degrees of editability and credibility yield different types of articles in real Wikipedia. To account for the modality shown in the interplays between these measures, S^*, N_s^*, and N_e^* in Fig. 5, we introduce corresponding model parameters. First, the article has its own length $L(t)$ corresponding to S in our data analysis. At the beginning, the length is assigned as $L(t = 0) = 1$, where 1 is the minimum length to which agent can reduce the article, so $L(t) \geq 1$ always. The number of edits at time t, denoted as $N_e(t)$, is also defined as the total number of article updates until t, under the update rules described in Sec. [IV-A2]. Additionally, $N_e(t)$ corresponds to the number of distinct agents who edited the article at least once.

Besides the quantities explicitly measured in data analysis, we also adopt internal parameters for the agents and the article. The agents are connected to each other with the Erdős-Rényi random network [34][35]. Such connections between agents stand for various relationships in society: friends, co-workers, even enemies. Every agent i has its own opinion $O_i(t) \in [0, 1]$ (real numbers between 0 and 1) at time t, where 0 and 1 are the two extremes of conflicting opinions, e.g., conservatism and progressivism. One should be aware that this number does not correspond to a certain merit or superiority. Initially, $O_i(t = 0)$ is assigned as a randomly generated number from the uniform distribution in the interval $[0, 1]$. The Wikipedia article also has its own opinion $W(t)$ at time t, which is the overall stance of Wikipedia on the topic. We set $W(t = 0) = 1$, to get the insights of the situation that agents and the Wikipedia article adjust their opinions to the most radical one. Similar to the fact that it is impossible to gauge the “stance” of the article and agents to the topic, we do not explicitly display the values and those are used only for stochastic simulation.

For each time step t, the agent-agent interaction described in Sec. [IV-A1] and the agent-Wikipedia dynamics described in Sec. [IV-A3] occur in turn.

1. Agent-agent dynamics

Our model colligates resolving of conflicts between agents with the contribution of agents to modify Wikipedia. In our model, all members of society are open-minded and they can change their mind. For each timestep t, a pair of agents i and k, which are neighbors in a preassigned network, is chosen and they try to convince each other for the topic of the Wikipedia article. We assume that agents rely on references to reinforce their opinion. For simplicity, we consider only two major types of references: Wikipedia and general media. General media, denoting the entire set of references other than Wikipedia, represent the ordinary viewpoint of the society toward the topic. As we described above, Wikipedia is a more reliable source for certain topics. Hence, we set a probability p with which agents choose Wikipedia as their reference, and this probability corresponds to the reliability of Wikipedia [see Fig. 6(a)]. Otherwise, agents decide to follow the standards of society by following general media’s opinion, which is defined as the average opinion of entire agents in the society. In other words, the reference opinion

$$R(t) = \begin{cases} W(t) & \text{with probability } p \\ G(t) = \frac{1}{N} \sum_s O_s(t) & \text{with probability } 1-p \end{cases} \quad (1)$$

Once we choose the reference, an agent whose opinion is closer to the reference always succeeds in convincing the other agent. For the convenience, we call the agent as i whoever’s opinion is closer to the reference than the other, i.e., $|O_i(t) - R(t)| \leq |O_k(t) - R(t)|$ [see Fig. 6(a)]. Agent k changes its opinion toward i’s, while agent i keeps its opinion. People tend to minimize the amount of changing [36], thus the agent k sets his/her target as $R(t)$ or $O_i(t)$, depending on which one is closer. As a result, the opinions of agents i and k at the next step $t + 1$ are given by $O_i(t + 1) = O_i(t)$ and

$$O_k(t + 1) = \begin{cases} (1 - \epsilon_m)O_i(t) + \epsilon_mO_k(t) & \text{if } |O_i(t) - O_k(t)| \leq |O_k(t) - R(t)| \\ (1 - \epsilon_m)O_i(t) + \epsilon_mR(t) & \text{otherwise,} \end{cases} \quad (2)$$
FIG. 7. Snapshots of (a) $\langle N_e(i)\rangle/\langle N_p(i)\rangle$ and (b) $\langle S^*(i)\rangle/\langle N_p(i)\rangle$, where $\langle \cdots \rangle$ is the averaged quantity over all of the agents ($= \sum \cdots /N$) at five time points from $t = 3000$ to 1850000. $N = 10^5$ agents are connected by the Erdős-Rényi random network [34] with connecting probability 0.1. Although we present the results from the random network case, our results hold for other networks, e.g., the static scale-free networks [39], as well as the fully connected network case. Each point is the average of 1000 independent runs of simulation with $\epsilon_s = \epsilon_m = \epsilon_i = 0.1$. (a) $\langle N_e(i)\rangle/\langle N_p(i)\rangle$, which corresponds to the proportionality constant in Fig. 5(a). We observe the ratio gradually falls into different regimes that are determined by q as time passes. The plots in panel (b) represent $\langle S^*(i)\rangle/\langle N_p(i)\rangle$ corresponding to Fig. 5(b).

respectively. The parameter $\epsilon_m \in [0, 1]$ represents the tolerance of agents, which indicates the psychological limit to change the opinion, as discussed in the introductory part of Sec. IV. The value of ϵ_m affects mainly the timescale of simulation, yet does not have a large impact on our model conclusions; thus we fix this value as 0.1 to set a moderate time scale.

2. Agent-Wikipedia dynamics

A distinct character of our model, compared to opinion spreading models with external field [37], is that agents can also modify the media, which corresponds to Wikipedia in our model. One additional key difference from the previous models of Wikipedia [17, 19] is that we introduce the length $L(t)$ into our model. This length not only has an impact on the edits but also changes by the edits. We focus on the length of the article instead of the specific opinion values.

As we described in the introductory part of Sec. IV, we assume that there are fundamental differences in “editability” among articles, thus we set the base activity of edit q as the control parameter. For every timestep, a randomly chosen agent attempts to edit the article in Wikipedia. Suppose that agent e is chosen, then it edits the Wikipedia article with the probability

$$r_e(t) = q|W(t) - O_e(t)| \frac{A_e(t) + 1}{\sum_{i} A_i(t) + 1} \frac{1}{L(t)},$$

(3)

where q is base activity, and $A_e(t)$ is attachment of agent e for the Wikipedia article [33], which is assigned as 0 at the beginning and increased by unity every time an agent edits the Wikipedia article [see Fig. 6(b)]. Naturally, the term $[A_e(t)+1]/[\sum_i A_i(t)+1]$ accounts for the fact that people tend to edit more frequently when they have contributed to establishing the current state of the article more [33]. The term $1/L(t)$ in Eq. (3) represents the reduced motivation as the article size is increased, due to the amount of information [30]. A recent report that the growth of Wikipedia has slowed down supports this factor [38]. If an agent decides to edit an article, Wikipedia’s opinion changes as

$$W(t+1) = W(t) + \epsilon_e [O_e(t) - W(t)]/L(t).$$

(4)

In our model, the amount of change is inversely proportional to $L(t)$. Figure 4 indicates that the impact of a single edit event should be decreased as the article size is increased, because the absolute amount of change is preserved. Additionally, ϵ_e represents the physical and psychological limit for editing [28]. The value of ϵ_e affects also mainly the timescale of simulation similar to ϵ_m. We fix this value as 0.1 to set a moderate time scale, and this value does not have a large impact on our model conclusions.
Finally, the length parameter $L(t)$ is changed after the update of the article’s opinion, as follows:

$$L(t + 1) = L(t) + C_i(t),$$

(5)

where the random variable $C_i(t)$ is chosen according to the following rule. If the agent has modified the article toward an extreme position (0 or 1), we suppose that the agent tends to append new contents to the article. In contrast, agents are likely to replace the contents to neutralize the article’s opinion. Specifically, we divide the update into the two following cases: (i) $O_i(t) \leq W(t) \leq 1/2$ or $O_i(t) \geq W(t) \geq 1/2$ (toward an extreme) and (ii) any other cases (neutralize). For (i), the article size is increased by $C_i(t)$ drawn from the interval $[0, \epsilon_l]$ uniformly at random, to reinforce the argument. Otherwise, $C_i(t)$ is drawn from the interval $[-\epsilon_l/2, \epsilon_l/2]$ uniformly at random, which implies replacement of arguments. The fixed parameter ϵ_l is related to the physical limit in Fig. 4. The value of ϵ_l affects mainly the length. However, in this study, we use the ratio of the length to other measures rather than the absolute length of the article. We display the result with $\epsilon_l = 0.1$ (Fig. 7), yet we verify that our conclusions are robust for other values of ϵ_l because the parameter governs only the overall length scale [see Fig. 5b] for the illustration on the $C_i(t)$ criterion. In Sec. IV B we discuss how the modes in Fig. 5 are formulated during the evolution of Wikipedia in our model.

B. Model results

1. Conditions for bimodality

For both $N_e^*(i)$ versus $N_p^*(i)$ and $N_e^*(i)$ versus $S^*(i)$ relations, our mechanistic model captures the essential features of the observed empirical relations reported in Sec. III B with proper parameter values. As we have shown in Sec. III the proportionality coefficients between characteristic parameters are classified into two modes:

$$N_p^*(i)/N_e^*(i) \approx 0.5 \text{ or } 0.9$$

(6)

$$S^*(i)/N_p^*(i) \approx 25 \text{ or } 900$$

(7)

In particular, both p for the agent-agent interaction (in Sec. IV A 1) and q for the agent-Wikipedia interaction (in Sec. IV A 2) are crucial to generate the splits of modes into different groups: q is essential to reproduce a separation of $N_e^*(i)/N_p^*(i)$ [see Fig. 7a] and p is indispensable for the division of $S^*(i)/N_p^*(i)$ [see Fig. 7b]. In the early stage, $N_e^*(i)/N_p^*(i)$ is almost unity across the systems with the entire parameter space composed of p and q, which corresponds to the single (or unimodal, in contrast to the bimodal pattern shown in real data) linear relation. While this single linear relation is characterized at the early stage, as time goes by, we observe the decreasing trend of $N_p^*(i)/N_e^*(i)$.

Despite the fact that the $N_p^*(i)/N_e^*(i)$ decrement over time occurs for the entire parameter space, the pace of decreasing is determined by q, the base rate for editing an article.

![Fig. 8. Estimation of q and p using the page view statistics of Wikipedia (2014) and Google n-gram data set (2008), which are the latest data sets for both. (a) The average value of q, which is calculated by dividing the number of edits in 2014 by the page view statistics in 2014 $[40]$, as a function of N_p^*/N_e^*. As expected, the estimated q decreases for larger N_p^*/N_e^* values. (b) The average value of p: the ratio of the page view statistics in 2014 $[40]$ to the Google 1-gram frequency in 2008 $[41]$, as a function of S^*/N_e^*. Both plots are drawn from the same sampled set of 678 255 articles, with the conditions described in the text.](image-url)
values of q do not guarantee the large article size across all p values, but low q yields large article size at similar values of p.

2. Model verification with real data

Based on our model results, we suggest a possible mechanism that yields the bimodality in Fig. 5 which encourages us to verify the model results compared to the real data: either parameter q or p should be a decreasing function of N_p^*/N_e^* and S^*/N_p^*, respectively. However, we cannot extract simulation data directly from the data. We therefore use a bypass to estimate q and p. Fortunately, Wikipedia offers page view statistics of articles that can be used for estimating the parameters. We assume that this page view in a certain period reflects the degree of interest of Wikipedia users in the articles, and the number of edits in the same period naturally displays the editing frequency. Thus, the ratio of the number of edits to this page view for a certain period can be related to the base edit rate q. Analogous to our presumption, this ratio is a decreasing function of N_p^*/N_e^* (see Fig. 8).

To treat the other parameter p, we should employ the proxy that can reflect the general interest of the entire society in the topic. We suggest that the Google books n-gram, a vast digitized collection of documents produced in the world is a suitable choice. Google books n-gram is a database containing about 6% of English books ever published. This data set offers a yearly number of occurrences for any phrase less than six words from 1800 to 2008, and this number of occurrences can be considered as the proxy of interests in society for a certain phrase. In our model, p is the proportion of degree of interest in Wikipedia versus that of the entire society. In other words, Wikipedia page view on a certain topic versus its n-gram frequency can be the estimator of p. For fair comparison, we also only take the Wikipedia articles that satisfy the following conditions. First, the title of article should exist in Google 1-gram data set in 2008, the latest year of the data set. Second, the article should be visited at least once in 2014. To avoid the effect of inflectional variation of words, we use the stem of Wikipedia articles’ title and Google 1-gram data set, instead of using the word directly. After this filtering process, 678,255 articles are left among the total set of 34,534,110 articles. This estimator of p also decays, as S^*/N_p^*.
is increased as we expected.

Both Figs. [8](a) and [8](b) indeed show the behaviors expected from their estimators \((q \text{ and } p, \text{ respectively})\), which indicates that our model is suitable to describe the real Wikipedia. Note that the estimators of \(q\) and \(p\) should not be taken as the exact face values of model parameter values for a real article in Wikipedia, and the results should be understood as a proxy of statistical properties of articles. First, page view statistics might be affected by the number of hyperlinks pointed to the article. Such relative importance within the network topology may increase the page view by random visits, yet there is a positive feedback between the page view and the number of hyperlinks. An article also tends to have connections to popular articles \([44]\), which eventually yields disproportionally many hyperlinks for popular items; thus there could be overestimation of page views for the popular articles. Moreover, there is a recent report that warns of the possible bias of Google n-gram as the proxy of real popularity in our society \([45]\). This year-by-year level fluctuation may give unfairness to compare the frequencies many years apart. To avoid such fluctuation, we restrict our results for the year 2008. Additionally, word-by-word fluctuation should be canceled during the averaging process, because each data point corresponds to a massive number of articles. As a result, we believe that our observation is still valid, in spite of such fluctuations that might cause some degree of bias.

3. Inequalities in Wikipedia editing

The heterogeneity for the ratio of the number of editors to that of edits, \(N^p_e/N^e_e\), leads us to the eventual question: is this heterogeneity from structural inequality? In other words, does the existence of dictatorship or monopoly of small group editors, or super editors \([17]\), make it difficult for others to participate in editing processes? To find the answer, we use the Gini coefficient, which is a common measure for inequality in economics \([46]\) ranging from 0 for the minimal inequality (or the maximal equality) to 1 as the maximal inequality. We consider the number of edits for individual editors as the wealth variable in the Gini coefficient. The trend of the Gini coefficient as a decreasing function of \(N^p_e/N^e_e\) shown in Fig. 9(a) suggests the modes with slope \(\approx 0.9\) and \(\approx 0.5\) in Fig. 9(a) are in equilibrium and non-equilibrium states, respectively.

Additional analysis of the Gini coefficient in terms of the function of \(q\) in the model as in the real data [see Fig. 9(d)]. Additionally, since \(q\) has a limited effect on the article size (see Fig. 5), the model observation of the Gini coefficient is consistent with our observation that article size does not have a large effect on the Gini coefficients. Such logical elimination suggests that a few engaged and dominating editors make it indeed hard for laypeople to participate in editing processes. There are “democratic” articles (with slope of \(\approx 0.9\) in Fig. 5) and “dictatorial” articles (with slope of \(\approx 0.5\) in Fig. 5). In short, inequality exists indeed.

V. CONCLUSION

Traditionally, collaboration used to be mainly regional and face-to-face interactions were demanded, which had prevented the world-wide formation of collective intelligence. Nowadays, improvements of modern information technology bring us a whole new stage of online collaboration. In this study, we have examined such a new passion of collective intelligence through long-term data from Wikipedia \([6]\). People believe that such a new paradigm will eventually yield democratization of knowledge \([47]\). As a representative medium, Wikipedia is also considered as a spearhead of such pro-democracy movements \([43]\).

However, our observation suggests that the current status of Wikipedia is still apart from the perfect world-wide democracy. The observed periodicity for the time between edits alludes that the English Wikipedia is still regional for English natives (see Fig. 5). Bimodality and its inequality index suggest that there are articles dominated by a small number of super editors (Figs. 5-9). Notwithstanding the fact that there is no explicit ownership for Wikipedia articles, some kind of privatization by dedicated editors for given topics is happening in reality. The value of such dedicated editors should not be depreciated, of course. Their dedication has indeed played the main role in keeping the current state-of-the-art accuracy in the current Wikipedia \([12]\) \([13]\). However, in the long run, knowledge cannot survive without collaboration between experts and society \([42]\). Although most advanced knowledge is invented by experts, such experts occupy a rather small proportion in a society; thus, knowledge without support from other members of the society will lose its dynamic force to sustain. Additionally, despite our findings that the amount of contents created by an editor \((S^e/N^e_e)\) mainly depends on the degree of referring Wikipedia (namely \(p\)), an equitable opportunity for participation also increases such individual productivity (see Fig. 7).

Our study not only gives significant insight into the formation and current state of Wikipedia, but also offers the future direction of Wikipedia. Our simulation results suggest that such inequality is increased with time, which may result in less productivity and less accuracy as by-product in the future than now [see Figs. 7(a) and 9(e)]. It is indeed already reported that the growth of Wikipedia is slowing down \([38]\) and our observation suggests that it will become even slower if we do not take any active action. To sustain collaborating environments, it is worth giving more motivation and incentives to
the newbies to reduce the monopolized structure in Wikipedia. We hope that extending our approach to various collaboration environments such as open-source movements might give us the insight for the future investment that brings us a new level of collaborating environments. Finally, we would like to emphasize that the results and implications of our study are not restricted to the Wikipedia or online collaboration systems, but have much wider applications in human or nonhuman interactions in the world.

ACKNOWLEDGMENTS

We are grateful to Beom Jun Kim (김범준), Pan-Jun Kim (김관준), and Hyunggyu Park (박형규) for insightful comments. This work was supported by the National Research Foundation of Korea through Grant No. 2011-0028908 (J.Y. and H.J.).

[1] Pliny the Elder, Naturalis Historia (Natural history) (Ancient Rome, AD77–79).
[2] D. Lindberg, The Beginnings of Western Science (University of Chicago Press, Chicago, 2007).
[3] Encyclopædia Britannica, 15th ed. (Encyclopædia Britannica, Inc., Chicago, 2010).
[4] Encyclopedia Americana, Intl. ed. (Scholastic Library Publishing Inc., Danbury, 2005).
[5] Encyclopædia Britannica, Online edition, http://global.britannica.com/.
[6] Wikipedia, https://www.wikipedia.org/.
[7] Wikipedia disclaimer, https://en.wikipedia.org/wiki//WikiProject:General_disclaimer
[8] A. Kittur, B. Suh, and E. H. Chi, Can you ever trust a Wiki?: Impacting perceived trustworthiness in Wikipedia, Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work (CSCW ’08), p. 477 (2008).
[9] B. T. Adler, K. Chatterjee, L. de Alfaro, M. Faella, I. Pye, and V. Raman, Assigning trust to Wikipedia content, Proceedings of the 4th International Symposium on Wikis (WikiSym ’08), Article No. 26 (2008).
[10] F. A. Nielsen, Scientific citations in Wikipedia, First Monday 12, 8 (2007).
[11] C. A. Haigh, Wikipedia as an evidence source for nursing and healthcare students, Nurse Educ. Today 31, 135 (2011).
[12] T. Chesney, An empirical examination of Wikipedia’s credibility, First Monday 11, 11 (2006).
[13] J. Giles, Internet encyclopedias go head to head, Nature 438, 900 (2005).
[14] M. D. Bould, E. S. Hladkowicz, A.-A. E. Pigford, L.-A. Ufholz, T. Postonogova, E. Shin, and S. Boet, References that anyone can edit: review of Wikipedia citations in peer reviewed health science literature, BMJ 348, g1585 (2014).
[15] Y. Amichai-Hamburger, N. Lamdan, R. Madiel, and T. Hayat, Personality characteristics of Wikipedia members, Cyberpsychol. Behav. 11, 679 (2008).
[16] T. Iba, K. Nemoto, B. Peters, and P. A. Gloord, Analyzing the creative editing behavior of Wikipedia editors: Through dynamic social network analysis, Procedia Soc. Behav. Sci. 2, 6441 (2010).
[17] Y. Gandica, J. Carvalho, and F. Sampaio dos Aidos, Wikipedia editing dynamics, Phys. Rev. E 91, 012824 (2015).
[18] T. Yasseri, R. Sumi, A. Rung, A. Kornai, and J. Kertész, Dynamics of conflicts in Wikipedia, PLOS ONE 7, e38869 (2012).
[19] G. Iniguez, J. Torok, T. Yasseri, K. Kaski, and J. Kertész, Modeling social dynamics in a collaborative environment, EPJ Data Sci. 3, 7 (2014).
[20] Wikipedia downloads, https://dumps.wikimedia.org/backup-index.html
[21] F. Yergeau UTF-8, a transformation format of ISO 10646 STD 63, RFC 3629.
[22] Broadband Internet penetration deepens in US: Cable is king, https://technology.ihs.com/track/broadband-internet-penetration-deeps-in-us-cable-is-king (2013).
[23] Y. Xie, F. Yu, and K. Achan, How dynamic are IP addresses?, Proc. ACM SIGCOMM’07 (2007).
[24] K.-I. Goh and A.-L. Barabási, Burstiness and memory in complex systems, EPL 81, 48002 (2008).
[25] A.-L. Barabási, The origin of bursts and heavy tails in human dynamics, Nature 435, 207 (2005).
[26] A. Kittur, B. Suh, B. A. Pendleton, and E. H. Chi, He says, she says: Conflict and coordination in Wikipedia, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’07), p. 453 (2007).
[27] T. Yasseri, R. Sumi, and J. Kertész, Circadian patterns of Wikipedia editorial activity: A demographic analysis, PLOS ONE 7, e30091 (2012).
[28] M. Gherardi, S. Mandrà, B. Bassetti, and M. C. Lagomarsino, Evidence for soft bounds in Ubuntu package sizes and mammalian body masses, Proc. Natl. Acad. Sci. USA 110, 21054 (2013).
[29] B. K. Taneska, Otaku—The living force of the social media network, Third International Communication Conference – Global: Inside Social Media, 2009 (unpublished).
[30] S. L. Bryant, A. Forte, and A. Bruckman, Becoming Wikipedian: Transformation of participation in a collaborative online encyclopedia, Proceedings of the 2005 international ACM SIGGROUP Conference on Supporting Group Work (GROUP ’05) (2005).
[31] S. E. Finkel and E. N. Muller, Rational choice and the dynamics of collective political action: Evaluating alternative models with panel data, Am. Polit. Sci. Rev. 92, 37 (1998).
[32] K. R. Lakhani and R. Wolf, Why hackers do what they do: Understanding motivation and effort in free/open source software projects, Perspectives on Free and Open Source Software (MIT Press, Cambridge, MA, 2005).
[33] B. P. George, Past visits and the intention to revisit a destination: Place attachment as the mediator and novelty seeking as the moderator, J. Tour. Stud. 15, 51 (2004).
[34] P. Erdös and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5, 17 (1960).
[35] E. N. Gilbert, Random graphs, Ann. Math. Stat. 30, 1141 (1959).
[36] I. Sarnoff, Psychoanalytic theory and social attitudes, Public Opin. Quart. 24, 251 (1960).
[37] C. Castellano, S. Fortunato, and V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys. 81, 591 (2009).
[38] B. Suh, The singularity is not near: Slowing growth of Wikipedia, Proceedings of the 5th International Symposium on
[39] K.-I. Goh, B. Kahng, and D. Kim, Universal behavior of load distribution in scale-free networks, Phys. Rev. Lett. 87, 278701 (2001).

[40] Page view statistics for Wikimedia projects, http://dumps.wikimedia.org/other/pagecounts-raw/

[41] J.-B. Michel et al., Quantitative analysis of culture using millions of digitized books, Science 331, 176 (2011).

[42] J. Yun, P.-J. Kim, and H. Jeong, Anatomy of scientific evolution, PLOS ONE 10, e0117388 (2015).

[43] M. F. Porter, An algorithm for suffix stripping, Program 14, 130 (1980).

[44] A. Capocci, V. D. P. Servedio, F. Colaiori, L. S. Buriol, D. Donato, S. Leonardi, and G. Caldarelli, Preferential attachment in the growth of social networks: The internet encyclopedia Wikipedia, Phys. Rev. E 74, 036116 (2006).

[45] E. A. Pechenick, C. M. Danforth, and P. S Dodds, Characterizing the Google Books corpus: Strong limits to inferences of socio-cultural and linguistic evolution, PLOS ONE 10, e0137041 (2015).

[46] C. Gini, Variabilità e mutabilità (Variability and mutability) (C. Cuppini, Bologna, 1912).

[47] C. Lemke and E. Coughlin, The change agents, Teaching for the 21st Century 67, 54 (2009).

[48] H. Hasan and C. Pfaff, Emergent conversational technologies that are democratising information systems in organisations: The case of the corporate Wiki, Proceedings of the Information Systems Foundations (ISF): Theory, Representation and Reality Conference (2006).

[49] J. Lerner and J. Triole, Some simple economics of open source, J. Ind. Econ. 50, 97 (2002).