Loci identified by a genome-wide association study of carotid artery stenosis in the eMERGE network

Melody R. Palmer1 | Daniel S. Kim2 | David R. Crosslin3 | Ian B. Stanaway3 | Elisabeth A. Rosenthal1 | David S. Carrell4 | David J. Cronkite4 | Adam Gordon5 | Xiaomeng Du6 | Yatong K. Li2 | Marc S. Williams7 | Chunjiaa Weng8 | Qiping Feng9 | Rongling Li10 | Sarah A. Pendergrass11 | Hakon Hakonarson12 | David Fasel8 | Sunghwan Sohn13 | Patrick Sleiman14 | Samuel K. Handelman15 | Elizabeth Speliotes15 | Iftikhar J. Kullo16 | Eric B. Larson4 | The eMERGE Consortium | Gail P. Jarvik1

1Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington, USA
2Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
3Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, Washington, USA
4Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
5Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA
6Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
7Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, USA
8Department of Biomedical Informatics, Columbia University, New York, New York, USA
9Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
10Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, Maryland, USA
11Geisinger Research, Rockville, Maryland, USA
12Department of Pediatrics, The Center for Applied Genomics, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
13Mayo Clinic, Rochester, Minnesota, USA
14Department of Pediatrics, The Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
15Division of Gastroenterology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
16Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
17The electronic Medical Records and GEnomics Network, NHGRI, NIH, Bethesda, Maryland, USA

Abbreviations: CAAD, carotid artery atherosclerosis disease; CHD, coronary heart disease; CIMT, carotid intima-media thickness; CPT, current procedural terminology; EHR, electronic health records; eMERGE, electronic Medical Records and Genomics; ICD, international classification of disease; Lp(a), lipoprotein (a) protein; MAF, minor allele frequency; NLP, natural language processing; PCA, principal components analysis; PPV, positive predictive value; SNV, single nucleotide variant; UKB, United Kingdom biobank.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2020 The Authors. Genetic Epidemiology published by Wiley Periodicals LLC
Correspondence
Gail P. Jarvik, Division of Medical Genetics, University of Washington, Box 537720, Seattle, WA 98195-7720, USA.
Email: pair@uw.edu

Funding information
NIH NHGRI, Grant/Award Number: 5U01HG008701; National Human Genome Research Institute, Grant/Award Numbers: U01HG8657, U01HG8685, U01HG8666, U01HG8679, U01HG8680, U01HG8684, U01HG8673, U01HG8701, U01HG8676, U01HG8664, U01HG006828, U01HG006830, U01HG006389, U01HG006375, U01HG006380, U01HG006388, U01HG006378, U01HG006385, U01HG004438, U01HG004424

Abstract
Carotid artery atherosclerotic disease (CAAD) is a risk factor for stroke. We used a genome-wide association (GWAS) approach to discover genetic variants associated with CAAD in participants in the electronic Medical Records and Genomics (eMERGE) Network. We identified adult CAAD cases with unilateral or bilateral carotid artery stenosis and controls without evidence of stenosis from electronic health records at eight eMERGE sites. We performed GWAS with a model adjusting for age, sex, study site, and genetic principal components of ancestry. In eMERGE we found 1793 CAAD cases and 17,958 controls. Two loci reached genome-wide significance, on chr6 in LPA (rs10455872, odds ratio [OR] (95% confidence interval [CI]) = 1.50 (1.30–1.73), p = 2.1 × 10−8) and on chr7, an intergenic single nucleotide variant (SNV; rs6952610, OR (95% CI) = 1.25 (1.16–1.36), p = 4.3 × 10−8). The chr7 association remained significant in the presence of the LPA SNV as a covariate. The LPA SNV was also associated with coronary heart disease (CHD; 4199 cases and 11,679 controls) in this study (OR (95% CI) = 1.27 (1.13–1.43), p = 5 × 10−5) but the chr7 SNV was not (OR (95% CI) = 1.03 (0.97–1.09), p = .37). Both variants replicated in UK Biobank. Elevated lipoprotein(a) concentrations ([Lp(a)]) and LPA variants associated with elevated [Lp(a)] have previously been associated with CAAD and CHD, including rs10455872. With electronic health record phenotypes in eMERGE and UKB, we replicated a previously known association and identified a novel locus associated with CAAD.

KEYWORDS
carotid artery atherosclerosis, electronic health records, genome-wide association study

1 | INTRODUCTION

Carotid artery atherosclerotic disease (CAAD) is a major cause of ischemic stroke (Goldstein et al., 2006). Risk factors for CAAD include smoking, dyslipidemia, lipoprotein (a) concentration ([Lp(a)]; Clarke et al., 2009), LPA variants (which are associated with [Lp(a)] (Dumitrescu et al., 2011; Ober et al., 2009), rs1454626 in VLDLR (Crawford et al., 2008), and plasma phospholipid transfer protein activity (Clarke et al., 2009). Relatively little work has been done to identify genetic variants associated with CAAD. Many studies have focused on a correlated trait, carotid intima-media thickness (CIMT; Forgo et al., 2018). The genetics of another correlated condition, coronary heart disease (CHD), have been well characterized in family and association studies (for a review, see, Khera & Kathiresan, 2017).

CHD and carotid atherosclerosis have related environmental and clinical risk factors, but genetic studies suggest different pathophysiologic mechanisms between them. In one study the consequence of carotid atherosclerosis, ischemic stroke, shared only one genetic risk locus out of 25 with CHD (Lövkvist et al., 2013). In another, ischemic stroke and large artery stroke share three and five loci, respectively, with CHD (Dichgans et al., 2014). This may also be the case within carotid artery-related phenotypes. For example, different loci are associated with two carotid artery phenotypes associated with atherosclerosis, CIMT and carotid plaque (Bis et al., 2011).

The electronic Medical Records and Genomics (eMERGE) Network is a research network that integrates electronic health records (EHR) and genomic data to drive genomic discovery and advance personalized medicine (McCarty et al., 2011). It allows the identification of phenotypes from many participants using existing health data, providing enough cases to power genome-wide association studies (GWAS). The purpose of the
current study was to identify loci associated with EHR-defined CAAD using the eMERGE GWAS data set. Data from the UK Biobank (UKB) were used to test the robustness of the associations identified in eMERGE.

2 | MATERIALS AND METHODS

2.1 | The eMERGE Network

The eMERGE Network is a consortium funded by National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH) since 2007. It includes sites across the United States, with the purpose of linking EHR and genomic data for genomic medicine research. Phenotypes are extracted from EHR by algorithms developed by investigators and applied at each site. It is currently in Phase 3 and includes over 80,000 genotyped participants from nine adults and three pediatric institutions (Chisholm, 2013; Crawford et al., 2014; Gottesman et al., 2013). Enrollment was approved by review boards at each study site and consent obtained, abiding by the Declaration of Helsinki principles.

2.2 | Phenotype algorithm

We developed the CAAD phenotype algorithm, including a portable natural language processing (NLP) system at Kaiser Permanente Washington/University of Washington (KPWA/UW) using patients from KPWA. Details of the development of the algorithm and its implementation, including a flow diagram are given in the Supplemental Methods. The algorithm extracts the extent of carotid stenosis from imaging reports. We developed it using the approach previously described for creating eMERGE phenotypes (Kho et al., 2012; Kullo et al., 2010). Inclusion criteria included a minimum number of contacts with a patient (in preceding 5 years to most recent record, two records ≥1 year apart, or three in different quarters, or four in different months), and minimum age of 18 years. Cases were defined by one or more of the following criteria: more than or equal to 16% carotid artery stenosis (unilaterally or bilaterally) on carotid imaging, which is a standard ultrasound cutoff (Taylor & Strandness, 1987), or at least one International Classification of Disease (ICD)-9 or Current Procedural Terminology (CPT) code indicating an endarterectomy (ICD-9 00.63, 38.12, CPT 35301, 35390), or at least two records indicating CAAD (ICD-9 433.1) more than or equal to 30 days apart. Cases were excluded if they had lab evidence of maximum total cholesterol greater than 400 mg/dl, which would suggest monogenic familial hyperlipidemia, or a pure hypercholesterolemia diagnosis (ICD-9 272.0). We used this exclusion because for individuals with carotid stenosis and such high cholesterol, their genetic risk is likely driven by hypercholesterolemia-associated variants. Controls were defined as having an imaging study showing the lowest category of stenosis bilaterally (0%–15% stenosis) or no evidence of carotid artery imaging, no CAAD diagnoses, and no carotid repair procedures. We also collected index age (age of first CAAD diagnosis for cases and age at latest record for controls), sex, self-reported race and ethnicity, smoking status, CHD defined by at least two ICD-9 codes for CHD on encounters at least 60 days apart, and body mass index (BMI).

Algorithm evaluation found that 24 out of 25 cases (96% case positive predictive value [PPV]) and all 25 controls (100% control PPV) were validated with chart review at KPWA, and 100% case and control PPV in 20 cases and 20 controls at Marshfield Clinic (Supplemental Methods). We then applied the developed algorithm to adult participants from the Geisinger, Harvard University, KPWA/University of Washington, Marshfield, Mayo, Mt. Sinai Health System, Northwestern, and Vanderbilt University eMERGE sites. Demographics are presented by case status in Table 1, and by site in Table S1.

2.3 | Genotype data

We imputed 83,717 eMERGE participants’ genotype data to Haplotype Reference Consortium version r1.1 (McCarthy et al., 2016) with the Michigan Imputation Server (MIS; Das et al., 2016), as described previously (Stanaway et al., 2019). Single nucleotide variants (SNVs) were filtered for call rate more than 2% and individuals filtered for genotype missingness less than 2%. Related individuals were identified by calculating identity by descent with the plink2-genome (Chang et al., 2015) function. Only one person per family was retained, prioritizing cases over controls. We typed participants in the CAAD analysis on one of 24 different chips. For each SNV, we calculated mean imputation quality R^2 across all chips, using the R^2 values calculated in the MIS imputation. We also calculated minor allele frequency (MAF) among all CAAD analysis participants and within European and African ancestry subgroups. Principal components analysis (PCA) was performed with plink2 PCA approx method (Chang et al., 2015) on the entire eMERGE cohort, and within European and African ancestry subsets (as described in Stanaway et al., 2019).
	Case \(N = 1793\)	Control \(N = 17,958\)	Total \(N = 19,751\)
Age (years)			
Mean (SD)	71.37 (9.70)	63.45 (16.08)	64.16 (15.77)
Range	29.00–98.00	19.00–106.00	19.00–106.00
Sex			
Female	667 (37.2%)	10390 (57.9%)	11057 (56.0%)
Male	1126 (62.8%)	7568 (42.1%)	8694 (44.0%)
Race\(^a\)			
N-Miss\(^b\)	5	6	11
African American	61 (3.4%)	4056 (22.6%)	4117 (20.9%)
American Indian/Alaskan Native	4 (0.2%)	48 (0.3%)	52 (0.3%)
Asian	11 (0.6%)	165 (0.9%)	176 (0.9%)
Caucasian	1664 (93.1%)	12,214 (68.0%)	13,878 (70.3%)
Native Hawaiian/Pacific Islander	0 (0.0%)	5 (0.0%)	5 (0.0%)
Not reported	4 (0.2%)	83 (0.5%)	87 (0.4%)
Unknown/Other	44 (2.5%)	1381 (7.7%)	1425 (7.2%)
Ethnicity\(^a\)			
Hispanic/Latino	35 (2.0%)	1192 (6.6%)	1227 (6.2%)
Non Hispanic/Latino	1578 (88.0%)	16,304 (90.8%)	17,882 (90.5%)
Unknown	180 (10.0%)	462 (2.6%)	642 (3.3%)
Ever smoker			
N-Miss	350	7938	8288
Ever	1134 (78.6%)	5024 (50.1%)	6158 (53.7%)
Never	309 (21.4%)	4996 (49.9%)	5305 (46.3%)
Median BMI (kg/m\(^2\))			
N-Miss	279	6394	6673
Mean (SD)	28.59 (5.41)	30.08 (7.47)	29.90 (7.28)
Range	17.86–56.98	14.10–80.86	14.10–80.86
Coronary heart disease			
N-Miss	138	3732	3870
No	631 (38.1%)	11,051 (77.7%)	11,682 (73.6%)
Yes	1024 (61.9%)	3175 (22.3%)	4199 (26.4%)
Site			
Geisinger	591 (33.0%)	1601 (8.9%)	2192 (11.1%)
Harvard	138 (7.7%)	3732 (20.8%)	3870 (19.6%)
Kaiser/University of Washington	227 (12.7%)	2260 (12.6%)	2487 (12.6%)
Marshfield	165 (9.2%)	1920 (10.7%)	2085 (10.6%)
Mayo	407 (22.7%)	235 (1.3%)	642 (3.3%)
Mt. Sinai	82 (4.6%)	4279 (23.8%)	4361 (22.1%)
Northwestern	56 (3.1%)	506 (2.8%)	562 (2.8%)
Vanderbilt	127 (7.1%)	3425 (19.1%)	3552 (18.0%)

Abbreviations: BMI, body mass index; CAAD, Carotid artery atherosclerotic disease; eMERGE, electronic Medical Records and Genomics; GWAS, genome-wide association studies.

\(^a\)Self-reported race and ethnicity.

\(^b\)Number of missing values.
2.4 | Statistical analysis

For the GWAS, we used an additive genotype model and logistic regression in PLINK 1.9 (Chang et al., 2015). We performed analyses in all participants, and in subsets with genetically determined European or African ancestry, identified through the intersection of the K-means clustering of PC1 and PC2 and the self-reported or observed ancestry of the participant (Figure S1; Stanaway et al., 2019). Self-reported Latino/Hispanics were removed from the ancestry stratified analysis. The main analysis included the covariates age, sex, study site, and PC1–10. For the top associated variants, we included BMI, CHD, and smoking status in the model where possible; these were not included in the main analysis because they were not available from all sites. We filtered results shown including only SNVs with MAF more than 0.05 and imputation quality $R^2 > 0.3$. We considered GWAS results statistically significant with a p-value below 5×10^{-8}, as a correction for multiple testing, and carried those passing that threshold forward for replication in the UK Biobank. Other statistical analyses and plots were done with R (R Core Team 2018).

We performed phenome wide association study (PheWAS; Denny et al., 2010) on the significantly associated SNV that had no previously known phenotypic associations, rs6952610 in the larger eMERGE cohort ($n = 83,717$) to determine if other phenotypes may be associated with this SNP.

2.5 | UK Biobank

The UK Biobank (UKB) is a population sample of 502,629 participants in the United Kingdom aged 40–69 years at the time of study recruitment (Sudlow et al., 2015). Participants were recruited between 2006 and 2010 from 22 centers across the United Kingdom, in both urban and rural areas, with a broad mixture of socioeconomic backgrounds. All participants provided written, informed consent under each site’s local Institutional Review Board. UKB protocols were approved by the National Research Ethics Service Committee, and all ethical regulations were followed. Analyses carried out in UKB specifically for this study were done under approved application 18,120 (Speliotes).

For the UKB, we determined CAAD status via ICD-10 codes. We specifically assessed for occlusion and stenosis of the carotid artery (ICD-10 code I65), which includes the subclasses of occlusion and stenosis of the right (I65.21), left (I65.22), bilateral (I65.23), or unspecified (I65.29) carotid arteries. All participants without those codes were included as controls. Due to data limitations, individuals with hypercholesterolemia (max total cholesterol > 400 mg/dl or a coded diagnosis of hypercholesterolemia) were not excluded from the UKB analysis. A total of 934 cases and 408,027 controls had complete genotype, phenotype, and covariate data.

2.6 | UKB Genotyping and imputation

Participant genotyping, data collection, and quality control has previously been described (Sudlow et al., 2015). In brief, participants were genotyped on either the Affymetrix UK BiLEVE Axiom Array ($N = 50,520$) or the Affymetrix UK Biobank Axiom Array ($N = 438,692$) with 95% overlap between markers on each array. Haplotype phasing of the data was performed with SHAPEIT2 (Delaneau, Howie, Cox, Zagury, & Marchini, 2013; Delaneau, Zagury, & Marchini, 2013). Reference data from the Haploype Reference Consortium (Loh et al., 2016) was used for imputation (Das et al., 2016).

The largest ancestry group in UKB are self-identified “White British” that also group closely by genotype PCA (Price, Zaitlen, Reich, & Patterson, 2010). The first 10 principal components in such a large sample will not capture the substructure in all possible ancestries. To increase sensitivity, we included only that group. We filtered genetic variants for a minimum imputation information score of 0.85 and a minimum allele count of 20. Following quality control, 17,981,292 genetic variants in 408,961 participants remained for analysis.

2.7 | UKB Genome-wide association analyses

For the GWAS of CAAD in UKB, we used a linear mixed model with saddle point correction implemented in the package SAIGE. This approach decreases p-value inflation commonly observed in rare outcome and rare genetic variant associations (Zhou et al., 2018), and is appropriate for the imbalanced case–control ratio in the UKB data. Analyses were adjusted for age, sex, and the first 10 principal components (Price et al., 2006), and the results reported were filtered for MAF more than 0.05.

2.8 | Annotation of results

We annotated SNVs passing the genome-wide significance threshold with Genotype-Tissue Expression project data (GTEx; https://gtexportal.org/home/), European Bioinformatics Institute GWAS catalog (https://ebi.ac.uk/gwas/), and Haploreg (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php).
3 | RESULTS

3.1 | Phenotype and demographics

We identified 1793 cases and 17,958 controls in the eight participating eMERGE sites. Demographics and site of origin for cases versus controls are shown in Table 1. Of the cases, 950 (53.0%) had more than 50% stenosis and/or at least one procedure code for endarterectomy. Of the controls, 411 (2.3%) had an imaging study showing less than or equal to 15% carotid artery stenosis. Participants were 56.0% female, 70.3% self-reported Caucasian, and 53.7% were ever a smoker.

3.2 | GWAS results

3.2.1 | Pooled Association Results

Two loci were associated with CAAD in the full data set, adjusting for age, sex, eMERGE site, and the first 10 ancestry principal components, and with a minimum \(p \)-value of \(5 \times 10^{-8} \) (Table 2). These were a locus in the 25th intron of \(LPA \) (lead SNV rs10455872), and an intergenic region on chromosome 7 between \(TYW1 \) and \(AUTS2 \) (lead SNV rs6952610; Table 2, Figure 1). \(LPA \) variant rs10455872 is a GTEx eQTL for increased expression of \(SLC22A3 \) in “Skin – Sun Exposed (Lower leg)” (\(p = 2 \times 10^{-6} \)), and alters four predicted transcription factor binding motifs: Foxd1_1, Foxf1, Foxj1_2, and Foxo_1. It has entries for association with 16 traits in the GWAS catalog, mostly cardiovascular and lipid phenotypes. Intergenic variant rs6952610 is not a GTEx eQTL, and has no associations in the GWAS catalog. It changes two predicted transcription factor binding motifs: GR_disc1 and GR_known3 (from Haploreg; Ward & Kellis, 2012), data from ENCODE (ENCODE Project Consortium, 2012).

3.2.2 | Associations through ancestry stratification

We defined ancestry groups via \(k \)-means clustering of genetic markers only, as many participants were missing self-reported ancestry. The \(LPA \) association remained statistically significant in the European ancestry subset (1705 cases, 13,198 controls; \(p = 1.52 \times 10^{-8} \)) but the \(TYW1-AUTS2 \) association did not reach genome-wide significance (\(p = 7.45 \times 10^{-7} \)). Only 89 (5.0%) cases were of non-European ancestry, 70 of those were of genetically determined African ancestry. As expected, given the limited power, we found no significant associations in the African ancestry subset (results not shown).

rsID	Chr	Position (hg19)	A1	OR (95% CI)	p	MAF	MAF EUR	MAF AFR	Mean R² (N chips genotyped)	N chips genotyped	
rs118039278	6	160935296	A	G	1.49 (1.3–1.72)	2.31e–08	0.0535	0.067	0.0115	0.871	0
rs74617384	6	160997188	T	A	1.49 (1.29–1.72)	2.91e–08	0.0535	0.067	0.0115	0.864	0
rs55730499	6	161000610	T	C	1.48 (1.29–1.7)	3.9e–08	0.0546	0.067	0.0117	0.855	0
rs10455872	6	161010118	G	A	1.5 (1.3–1.73)	2.12e–08	0.0535	0.067	0.0117	0.858	0
rs7792316	7	68296394	A	C	1.25 (1.15–1.36)	4.91e–08	0.433	0.433	0.017	0.619	1

Abbreviations: CAAD, Carotid artery atherosclerotic disease; CI, confidence interval; eMERGE, electronic Medical Records and Genomics; GWAS, genome-wide association studies; SNVs, single nucleotide variants; OR, odds ratio.

A1 is the effect and minor allele, A2 the reference allele.

OR, odds ratio.

Minor allele frequency (MAF) for EUR = European ancestry, AFR = African ancestry subsets, as defined by \(k \)-means clustering of genotypes.

Mean Imputation quality \(R² \) for that variant.

Number of chips of 24 total where the SNV was typed rather than imputed.
3.2.3 | Other covariates

The addition of covariates other than age, sex, site, and PC1–10 did not substantially change the results. We individually added BMI, CHD, and smoking to the logistic model, as well as combining all covariates in a single model (Table 3). Sample sizes differed in these analyses due to missing data. When we added an LPA SNP (rs118039278) as a covariate, the TYW1–AUTS2 SNP rs6952610 remained associated ($p = 4.3 \times 10^{-8}$).

3.2.4 | Coronary heart disease

We also evaluated the association of CHD with the putative CAAD loci in the same data set. There were 4199 cases and 11,684 controls, defined by the presence of a CHD diagnosis. The LPA variant was significantly associated with CHD, (OR (95% CI) = 1.27 (1.13–1.43), $p = 5.5 \times 10^{-5}$), whereas the intergenic chr7 SNP was not (OR (95% CI) = 1.03 (0.97–1.09), $p = .30$).

3.2.5 | Replication in the UKB

We tested the six SNVs with $p < 5 \times 10^{-8}$ in our main analysis in the UKB (Table 4). The LPA association replicated (rs10455872 $p = 3.4 \times 10^{-6}$), as did the chr7 SNP (rs6952610 $p = .0096$). Both were statistically significant at the 5% level, after adjustment for the two contrasts.

3.2.6 | GWAS in the UKB

As a secondary analysis, we performed a GWAS within the UKB with the ICD-10 defined phenotype. Two loci reach genome-wide significance, on chromosomes 1 and 7 (see Figure S2, Manhattan plot and Table S2 of the most significant results). The lead SNP on chr7 was rs2526620, which is intergenic between HDAC9 and TWIST1, and is not near the chr7 SNP in the eMERGE GWAS. The lead SNP on chromosome 1, rs682112, is in an intron of neuron navigator 1 (NAV1). NAV1 is expressed more in the aorta than other GTEx tissues.

Figure 1 Plots of eMERGE CAAD GWAS results, SNVs arranged by chromosome position and 25 filtered for MAF more than 0.05, imputation quality R^2 more than .3. (a) Manhattan plot of all result. (b) 26 LocusZoom plot of chromosome 6 locus. (c) LocusZoom plot of chromosome 7 locus. CAAD, Carotid artery atherosclerotic disease; eMERGE, electronic Medical Records and Genomics; GWAS, genome-wide association studies; SNVs, single nucleotide variants.
rs682112 is in the GTEx catalog as an eQTL for NAV1 in Heart—Atrial Appendage (normalized effect size = 0.22, \(p = 5.6 \times 10^{-8} \)) and Esophagus—Mucosa (normalized effect size = \(-0.18\), \(p = 2.9 \times 10^{-5} \)). These did not replicate in the eMERGE data.

4 | DISCUSSION

4.1 | GWAS results

We found two loci, tagged by rs10455872 and rs6952610, associated with CAAD in the eMERGE Network participants. Both replicated in UKB with a simple ICD-only phenotype, despite differences in the patient demographics and phenotype definition. UKB is a younger, population-based cohort with less depth of longitudinal data than most eMERGE sites (Sudlow et al., 2015). Longitudinal data can result in deeper phenotyping for participants, allowing improved assignment of case–control status. In addition, no NLP or image analysis was possible in UKB. Due to these differences, proportionally more cases were found in eMERGE: 9.1% in eMERGE versus 0.23% in UKB. Even when comparing the more severe cases, eMERGE cases with more than or equal to 50% stenosis and/or at least one endarterectomy, there were more than UKB: 950, or 4.8% of participants. In KPWA, where validation was performed, 76 of 300 cases were included due to the ICD-9 code 433.1; the rest had imaging studies or endarterectomy.

Both SNVs were associated in the eMERGE all-participant analysis and the European ancestry subset, although the chr7 SNV did not pass genome-wide significance in European ancestry alone. Other ancestry subsets were too small for subgroup analyses. The \(\text{Lp(a)} \)-associated risk for CAAD varies by race/ethnicity; the burden of risk is higher in individuals with European than African ancestry, but still unclear in Hispanic and Asian populations (Steffen et al., 2019). More work on the risk and genetic predictors of CAAD in non-European ancestry groups is warranted.

4.2 | LPA variant

\(\text{LPA} \) variant rs10455872 has been shown to explain 17% of the variance in \(\text{Lp(a)} \) (Ronald et al., 2011). \(\text{Lp(a)} \) is a small low-density lipoprotein (LDL)-like particle formed by apolipoprotein B (apoB) covalently bound to apolipoprotein(a). Rs10455872 is associated with CHD (Nelson et al., 2017), large artery stroke and ischemic stroke (Dichgans et al., 2014), and myocardial infarction

Table 3

Covariate	OR (95% CI)	p	N cases	N controls
rs10455872LPA				
Age, sex, site, PC1–10 (main)	1.5 (1.3–1.73)	2.12e–8	1793	17,958
Main + BMI	1.5 (1.3–1.73)	4.01e–08	1746	17,072
Main + CHD	1.39 (1.19–1.63)	3.27e–05	1655	14,223
Main + ever smoker	1.44 (1.23–1.7)	1.19e–05	1443	10,018
Main + BMI, CHD, ever smoker	1.4 (1.17–1.67)	0.00169	1417	9703
rs6952610 TYW1–AUTS2				
Age, sex, site, PC1–10 (main)	1.25 (1.16–1.36)	4.27e–08	1793	17,958
Main + BMI	1.27 (1.17–1.38)	1.37e–08	1746	17,072
Main + CHD	1.27 (1.17–1.39)	5.08e–08	1655	14,223
Main + ever smoker	1.26 (1.15–1.38)	8.42e–07	1443	10,018
Main + BMI, CHD, ever smoker	1.29 (1.17–1.42)	2.19e–07	1417	9703

Abbreviations: BMI, body mass index; CAAD, Carotid artery atherosclerotic disease; CHD, coronary heart disease; CI, confidence interval; eMERGE, electronic Medical Records and Genomics; GWAS, genome-wide association studies; OR, odds ratio; SNVs, single nucleotide variants.
In addition, rs10455872-G is associated with CHD events independent of statin-induced lowering of LDL-C (Khera et al., 2014; Wei et al., 2018), and with smaller LDL-C reduction with rosuvastatin (Chasman et al., 2012). Other LPA variants that predict elevated [Lp(a)] have previously been shown to be associated with CAAD (Ronald et al., 2011). The minor alleles of rs10455872 mark haplotypes carrying short KIV2 kringle repeat alleles that are associated with elevated plasma [Lp(a)] (Ronald et al., 2011), due to increased liver secretion. The KIV4 repeat has been shown to account for 69% of [Lp(a)] plasma variation (Emdin et al., 2016); thus, we expect that rs10455872 predicts both [Lp(a)] and CAAD due to its association with KIV4 repeat length.

Measured and genetically predicted [Lp(a)] is associated with CHD risk (Emdin et al., 2016), but [Lp(a)] is not often measured clinically (Burgess et al., 2018), in part because it is not very responsive to current treatments. People with high [Lp(a)] can have their risk managed with other approaches, and, may benefit from new drugs being developed (Nordestgaard, Nicholls, Langsted, Ray, & Tybjærg-Hansen, 2018). Burgess et al. (2018) analyzed CHD risk based on genetically predicted Lp(a) and concluded that pharmacological lowering of [Lp(a)] by 100 mg/dl would reduce risk of CHD by 22%–25% in a 3–5 year trial (Burgess et al., 2018). Our results suggest an etiological relationship between elevated [Lp(a)] and CAAD; thus, lowering [Lp(a)] also has the potential to reduce CAAD risk. These data could be used for prevention efforts, including constructing polygenic risk scores.

4.3 | TYW1–AUTS2

Unlike LPA, the chr7 intergenic locus does not have an obvious nearby candidate gene or regulatory epigenetic role, other than altering predicted transcription factor binding motifs of unknown relevance. This SNV is intergenic between TYW1–AUTS2. TRNA-YW synthesizing protein 1 homolog (TYWI) codes for a protein that stabilizes codon–anticodon interactions in the ribosome. AUTS2, autism susceptibility candidate 2, is an activator of transcription, has been shown to regulate neuronal migration and have a role in brain development (Hori & Hoshino, 2017; Sultanæ et al., 2002). Variation in this gene has been associated with intellectual disability, microcephaly, autism, and other behavioral phenotypes (Beunders et al., 2016). A PheWAS of rs6952610 in a larger segment of eMERGE (N = 83,717) yielded no phenome-wide significant results. However, the top four phecodes were “Musculoskeletal symptoms referable to limbs,” “Other disorders of middle ear and mastoid,” “Nephritis and nephropathy with pathological lesion,” and “Cerebral ischemia,” which is a condition caused by insufficient blood flow to the brain. The later result may suggest cerebral ischemia due to CAAD; however, this would require further evidence as it is not statistically significant when the multiple tests are considered. See Figure S3, the Phewas Manhattan plot and Table S3 of the top Phewas results.

4.4 | Use of natural language processing

The portable NLP system’s built-in support for local evaluation of NLP performance, combined with centralized modification and re-distribution of site-tailored versions of the NLP system, allowed for accurate extraction of quantitative stenosis severity measures from heterogeneously sourced free-text imaging reports, a known challenge in multisite application of clinical NLP (Carrell et al., 2017).

4.5 | Limitations

Electronic health records provide an efficient way to identify cases and controls. However, people with no
evidence of CAAD in their medical record may have subclinical carotid atherosclerosis, but would be included as controls. This would reduce the power and thus the effect size we see from true associations. As [Lp(a)] is not often clinically measured, we do not have it for these participants. Therefore, we were unable to show that inclusion of this phenotype would eliminate the effect of the genotype, as has been previously reported (Ronald et al., 2011). As discussed above, other limitations were the different phenotype definitions in eMERGE and UKB and the lack of ancestral diversity in these cohorts.

4.6 Conclusions

In summary, we identified and replicated two loci associated with CAAD, a risk factor for stroke. The LPA association validates prior work that LPA variation which affects [Lp(a)] is associated with carotid artery disease and suggests [Lp(a)] is an important therapeutic target for CAAD. The second association, on chr7, is novel and its mechanism of action is unknown.

ACKNOWLEDGMENTS

In eMERGE network (Phase 3 ascertainment), this phase of the eMERGE Network was initiated and funded by the NHGRI through the following grants: U01HG8657 (Kaiser Washington/University of Washington); U01HG8685 (Brigham and Women’s Hospital); U01HG8672 (Vanderbilt University Medical Center); U01HG8666 (Cincinnati Children’s Hospital Medical Center); U01HG6379 (Mayo Clinic); U01HG8679 (Geisinger Clinic); U01HG8680 (Columbia University Health Sciences); U01HG8684 (Children’s Hospital of Philadelphia); U01HG8673 (Northwestern University); U01HG8701 (Vanderbilt University Medical Center serving as the Coordinating Center); U01HG8676 (Partners Healthcare/Broad Institute); and U01HG8664 (Baylor College of Medicine). In eMERGE network (Phase 1 and 2 ascertainment), the eMERGE Network was initiated and funded by NHGRI through the following grants: U01HG006828 (Cincinnati Children’s Hospital Medical Center/Boston Children’s Hospital); U01HG006830 (Children’s Hospital of Philadelphia); U01HG006389 (Essentia Institute of Rural Health, Marshfield Clinic Research Foundation and Pennsylvania State University); U01HG006382 (Geisinger Clinic); U01HG006375 (Group Health Cooperative/University of Washington); U01HG006379 (Mayo Clinic); U01HG006380 (Icahn School of Medicine at Mount Sinai); U01HG006388 (Northwestern University); U01HG006378 (Vanderbilt University Medical Center); and U01HG006385 (Vanderbilt University Medical Center) with U01HG004424 (the Broad Institute) serving as Genotyping Centers. Help from James Linneman and NIH support from NIH NHGRI U01HG008701 and NIH NCATS UL1TR002373. The Genotype-Tissue Expression (GTEX) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained from the GTEX Portal on 02/26/19. This content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS

The following authors made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; were involved in drafting the manuscript or revising it critically for important intellectual content: David R. Crosslin, Elisabeth A. Rosenthal, David S. Carrell, David J. Cronkite, Adam Gordon, Xiaomeng Du, Yatong K. Li, Marc S. Williams, Chunhua Weng, Qiping Feng, Rongling Li, Sarah A. Pendergrass, Hakon Hakonarson, David Fasel, Sunghwan Sohn, Patrick Sleiman, Samuel K. Handelman, Elizabeth Speliotes, Iftikhar J. Kullo, and Eric B. Larson. In addition to the above, the following authors also gave final approval of the version to be published, Melody R. Palmer, Daniel Seung Kim, Ian B. Stanaway, and Gail P. Jarvik.

DATA AVAILABILITY STATEMENT

These data have been posted to dbGaP, study ID phs000888.v1.p1. This study ID contains the eMERGE genotyped and imputed SNV data. The CAAD phenotype can be found with variable accession number phv00225976.v1.p1.

ORCID

Ian B. Stanaway https://orcid.org/0000-0002-0783-0918
Gail P. Jarvik https://orcid.org/0000-0002-6710-8708

REFERENCES

Beunbers, G., van de Kamp, J., Vasudevan, P., Morton, J., Smets, K., Kleefstra, T., ... Siermans, E. A. (2016). A detailed clinical analysis of 13 patients with AUTS2 syndrome further delineates the phenotypic spectrum and underscores the behavioural phenotype. American Journal of Medical Genetics, 53, 532–532. https://doi.org/10.1136/jmedgenet-2015-103601
Bis, J. C., Kavousi, M., Franceschini, N., Isaacs, A., Abecasis, G. R., Schminke, U., ... O’Connell, C. J., CARDioGRAM Consortium. (2011). Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common
variants associated with carotid intima media thickness and plaque. Nature Genetics, 43(10), 940–947. https://doi.org/10.1038/ng.920

Burgess, S., Ference, B. A., Staley, J. R., Freitag, D. F., Mason, A. M., Nielsen, S. F., ... Danesh, J. European Prospective Investigation Into Cancer and Nutrition–Cardiovascular Disease (EPIC-CVD) Consortium. (2018). Association of LPA Variants With Risk of Coronary Disease and the Implications for Lipoprotein(a)-Lowering Therapies: A Mendelian Randomization Analysis. JAMA Cardiology, 3(7), 619–627. https://doi.org/10.1001/jamacardio.2018.1470

Carrell, D. S., Schoen, R. E., Leffler, D. A., Morris, M., Rose, S., Baer, A., ... Mehrotra, A. (2017). Challenges in adapting existing clinical natural language processing systems to multiple, diverse health care settings. Journal of the American Medical Informatics Association, 24(5), 986–991. https://doi.org/10.1093/jamia/occ039

Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4, 4. https://doi.org/10.1186/s13742-015-0047-8

Chasman, D. I., Giuliani, F., MacFayden, J., Barratt, B. J., Nyberg, F., & Ridker, P. M. (2012). Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: The Justification for the use of statins in prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circulation: Cardiovascular Genetics, 5(2), 257–264. https://doi.org/10.1161/CIRCGENETICS.111.961144

Chisholm, R. L. (2013). At the interface between medical informatics and personalized medicine: The eMERGE network experience. Healthcare Informatics Research, 19(2), 67–68. https://doi.org/10.4258/hir.2013.19.2.67

Clarke, R., Peden, J. F., Hopewell, J. C., Kyriakou, T., Goel, A., Heath, S. C., ... Farrall, M., PROCARDIS Consortium. (2009). Genetic variants associated with Lp(a) lipoprotein level and coronary disease. New England Journal of Medicine, 361(25), 2518–2528. https://doi.org/10.1056/NEJMoa0902604

Crawford, D. C., Crosslin, D. R., Tromp, G., Kullo, I. J., Kuviainen, H., Hayes, M. G., ... Ritchie, M. D. (2014). eMERGEing progress in genomics—the first seven years. Frontiers in Genetics, 5, 184. https://doi.org/10.3389/fgene.2014.00184

Crawford, D. C., Nord, A. S., Badzioch, M. D., Ranchalis, J., McKinstry, L. A., Ahearn, M., ... Jarvik, G. P. (2008). A common VLDLR polymorphism interacts with APOE genotype in the prediction of carotid artery disease risk. Journal of Lipid Research, 49(3), 588–596. https://doi.org/10.1194/jlr.M700409-JLR200

Das, S., Forer, L., Schoenherr, S., Sidore, C., Locke, A. E., Kwong, A., ... Fuchsberger, C. (2016). Next-generation genotype imputation service and methods. Nature Genetics, 48(10), 1284–1287. https://doi.org/10.1038/ng.3656

Delaneau, O., Howie, B., Cox, A. J., Zagury, J. F., & Marchini, J. (2013). Haplotype estimation using sequencing reads. American Journal of Human Genetics, 93(4), 687–696. https://doi.org/10.1016/j.ajhg.2013.09.002

Delaneau, O., Zagury, J. F., & Marchini, J. (2013). Improved whole-chromosome phasing for disease and population genetic studies. Nature Methods, 10(1), 5–6. https://doi.org/10.1038/nmeth.2307

Denny, J. C., Ritchie, M. D., Basford, M. A., Pulley, J. M., Bastarache, L. A., Brown-Gentry, K., ... Crawford, D. C. (2010). PheWAS: Demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics, 26(9), 1205–1210. https://doi.org/10.1093/bioinformatics/btq126

Dichgans, M., Malik, R., König, I. R., Rosand, J., Clarke, R., Gretarsdottir, S., ... Schunkert, H., METASTROKE Consortium; CARDioGRAM Consortium; C4D Consortium; C4D Consortium; International Stroke Genetics Consortium. (2014). Shared genetic susceptibility to ischemic stroke and coronary artery disease: A genome-wide analysis of common variants. Stroke, 45(1), 24–36. https://doi.org/10.1161/STROKEAHA.113.02707

Dumitrescu, L., Glenn, K., Brown-Gentry, K., Shephard, C., Wong, M., Rieder, M. J., ... Crawford, D. C. (2011). Variation in LPA is associated with Lp(a) levels in three populations from the Third National Health and Nutrition Examination Survey. PLoS One, 6(1), e16604. https://doi.org/10.1371/journal.pone.0016604

Emdin, C. A., Kherva, A. V., Natarajan, P., Klarin, D., Won, H. H., Pelosi, G. M., ... Kathiresan, S., CHARGE–Heart Failure Consortium and CARDioGRAM Exome Consortium. (2016). Phenotypic characterization of genetically lowered human lipoprotein(a) Levels. Journal of the American College of Cardiology, 68(25), 2761–2772. https://doi.org/10.1016/j.jacc.2016.10.033

ENCODE Project Consortium. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), 57–74. https://doi.org/10.1038/nature11247

Fargo, B., Medda, E., Hernyes, A., Szalontai, L., Tarnoki, D. L., & Tarnoki, A. D. (2018). Carotid artery atherosclerosis: A review on heritability and genetics. Twin Research and Human Genetics, 21(5), 333–346. https://doi.org/10.1017/thg.2018.45

Goldstein, L. B., Adams, R., Alberts, M. J., Appel, L. J., Brass, L. M., Bushnell, C. D., ... Sacco, R. L., American Academy of Neurology. (2006). Primary prevention of ischemic stroke: A guideline from the American Heart Association/American Stroke Association Stroke Council: Co-sponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group: The American Academy of Neurology affirms the value of this guideline. Stroke, 37(6), 1583–1633. https://doi.org/10.1161/STR.0000223048.70103.F1

Gottesman, O., Kuviainen, H., Tromp, G., Faucett, W. A., Li, R., Manolio, T. A., ... Williams, M. S., eMERGE Network. (2013). The electronic Medical Records and Genomics (eMERGE) Network: Past, present, and future. Genetics in Medicine, 15(10), 761–771. https://doi.org/10.1038/gim.2013.72

Hori, K., & Hoshino, M. (2017). Neuronal migration and AUTS2 risk: An analysis from the JUPITER Trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin). Circulation, 129(6), 635–642. https://doi.org/10.1161/CIRCULATIONAHA.113.004406
Khera, A. V., & Kathiresan, S. (2017). Genetics of coronary artery disease: Discovery, biology and clinical translation. *Nature Reviews Genetics*, 18(6), 331–334. https://doi.org/10.1038/nrg.2016.160

Kho, A. N., Hayes, M. G., Rasmussen-TMovik, L., Pacheco, J. A., Thompson, W. K., Armstrong, L. L., ... Lowe, W. L. (2012). Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study. *Journal of the American Medical Informatics Association*, 19(2), 212–218. https://doi.org/10.1136/amiajnl-2011-000439

Kuloo, I. J., Fan, J., Pathak, J., Savova, G. K., Ali, Z., & Chute, C. G. (2010). Leveraging informatics for genetic studies: Use of the electronic medical record to enable a genome-wide association study of peripheral arterial disease. *Journal of the American Medical Informatics Association*, 17(5), 568–574. https://doi.org/10.1136/jamia.2010.004366

Loh, P. R., Dankeck, P., Palamara, P. F., Fuchsberger, C., Reshef, Y. A., Finucane, H. K., ... Price, A. L. (2016). Reference-based phasing using the Haplotype Reference Consortium panel. *Nature Genetics*, 48(11), 1443–1448. https://doi.org/10.1038/ng.3679

Lökvist, H., Sjögren, M., Höglund, P., Engström, G., Jern, C., Olsson, S., ... Lindgren, A. (2013). Are 25 SNPs from the CARDIoGRAM panel associated with ischaemic stroke? *European Journal of Neurology*, 20(9), 1284–1291. https://doi.org/10.1111/ene.12183

McCarthy, S., Das, S., Bretschmar, W., Delaneau, O., Wood, A. R., Teumer, A., ... Marchini, J. (2016). A reference panel of 64,976 haplotypes for genotype imputation. *Nature Genetics*, 48(10), 1279–1283. https://doi.org/10.1038/ng.3643

McCarty, C. A., Chisholm, R. L., Chute, C. G., Kuloo, I. J., Jarvik, G. P., Larson, E. B., ... Wolf, W. A., eMERGE Team. (2011). The eMERGE Network: A consortium of biorepositories linked to electronic medical records data for conducting genomic studies. *BMC Medical Genomics*, 4, 13. https://doi.org/10.1186/1755-8794-4-13

Nelson, C. P., Goel, A., Butterworth, A. S., Kanoni, S., Webb, T. R., Marouli, E., ... Deloukas, P. (2017). Association analyses based on false discovery rate implication new loci for coronary artery disease. *Nature Genetics*, 49(9), 1385–1391. https://doi.org/10.1038/ng.3913

Nikpay, M., Goel, A., Won, H. H., Hall, L. M., Willenborg, C., Kanoni, S., ... Farrall, M. (2015). A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. *Nature Genetics*, 47(10), 1121–1130. https://doi.org/10.1038/ng.3396

Nordestgaard, B. G., Nichollis, S. J., Langsted, A., Ray, K. K., & Tybjerg-Hansen, A. (2018). Advances in lipid-lowering therapy through gene-silencing technologies. *Nature Reviews Cardiology*, 15(5), 261–272. https://doi.org/10.1038/nrccardio.2018.3

Ober, C., Nord, A. S., Thompson, E. E., Pan, L., Tan, Z., Cuzanovich, D., ... Nicole, D. L. (2009). Genome-wide association study of plasma lipoprotein(a) levels identifies multiple genes on chromosome 6q. *Journal of Lipid Research*, 50(5), 798–806. https://doi.org/10.1194/jlr.M800515-JLR200

Price, A. L., Patterson, N., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. *Nature Genetics*, 38(8), 904–909. https://doi.org/10.1038/ng1847

Price, A. L., Zaitlen, N. A., Reich, D., & Patterson, N. (2010). New approaches to population stratification in genome-wide association studies. *Nature Reviews Genetics*, 11(7), 459–463. https://doi.org/10.1038/nrg2813

Ronald, J., Rajagopalan, R., Cerrato, F., Nord, A. S., Hatsukami, T. S., Kohler, T., ... Jarvik, G. P. (2011). Genetic variation in LPA1, LPA, and PLG predicts plasma lipoprotein(a) level and carotid artery disease risk. *Stroke*, 42(1), 2–9. https://doi.org/10.1161/STROKEAHA.110.591230

Stanaway, I. B., Hall, T. O., Rosenthal, E. A., Palmer, M., Naranbhai, V., Knevel, R., ... Crosslin, D. R. (2019). The eMERGE genotype set of 83,717 subjects imputed to ~40 million variants genome wide and association with the herpes zoster medical record phenotype. *Genetic Epidemiology*, 43(1), 63–81. https://doi.org/10.1002/gepi.22167

Steffen, B. T., Thanassoulis, G., Duprez, D., Stein, J. H., Karger, A. B., Tattersall, M. C., ... Tsai, M. Y. (2019). Race-based differences in lipoprotein(a)-associated risk of carotid atherosclerosis. *Atherosclerosis, Thrombosis, and Vascular Biology*, 39(3), 523–529. https://doi.org/10.1161/ATVBAHA.118.312267

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., ... Collins, R. (2015). UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PLOS Medicine*, 12(3), e1001779. https://doi.org/10.1371/journal.pmed.1001779

Sultana, R., Yu, C. E., Munson, J., Chen, D., Hua, W., Estes, A., ... Villacres, E. C. (2002). Identification of a novel gene on chromosome 7q11.2 interrupted by a translocation breakpoint in a pair of autistic twins. *Genomics*, 80(2), 129–134. https://doi.org/10.1006/geno.2002.6810

Taylor, D. C., & Strandness, D. E. (1987). Carotid artery duplex scanning. *Journal of Clinical Ultrasound*, 15(9), 635–644. https://doi.org/10.1002/jcu.1870150906

Ward, L. D., & Kellis, M. (2012). HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. *Nucleic Acids Research*, 40, D930–D934. https://doi.org/10.1093/nar/gkr917

Wei, W. Q., Li, X., Feng, Q., Kubo, M., Kuloo, I. J., Peissig, P. L., ... Denny, J. C. (2018). LPA variants are associated with residual cardiovascular risk in patients receiving statins. *Circulation*, 138(17), 1839–1849. https://doi.org/10.1161/CIRCULATIONAHA.117.031356

Zhou, W., Nielsen, J. B., Fritsche, L. G., Dey, R., Gabrielsen, M. E., Wolford, B. N., ... Lee, S. (2018). Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. *Nature Genetics*, 50(9), 1335–1341. https://doi.org/10.1038/s41588-018-0184-y

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Palmer MR, Kim DS, Crosslin DR, et al. Loci identified by a genome-wide association study of carotid artery stenosis in the eMERGE network. *Genetic Epidemiology*. 2021;45:4–15. https://doi.org/10.1002/gepi.22360