Optimizing Dividends and Capital Injections Limited by Bankruptcy, and Practical Approximations for the Cramér-Lundberg Process

Florin Avram1 · Dan Goreac2,3 · Rim Adenane4 · Ulyses Solon1,5

Received: 2 June 2021 / Revised: 19 November 2021 / Accepted: 22 November 2021 / Published online: 3 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The recent papers Gajek and Kucinsky (Insur Math Econ 73:1–19, 2017) and Avram et al. (Mathematics 9(9):931, 2021) cost induced dichotomy for optimal dividends in the cramér-lundberg model. Avram et al. (Mathematics 9(9):931, 2021) investigated the control problem of optimizing dividends when limiting capital injections stopped upon bankruptcy. The first paper works under the spectrally negative Lévy model; the second works under the Cramér-Lundberg model with exponential jumps, where the results are considerably more explicit. The current paper has three purposes. First, it illustrates the fact that quite reasonable approximations of the general problem may be obtained using the particular exponential case studied in Avram et al. cost induced dichotomy for optimal dividends in the Cramér-Lundberg model (Avram et al. in Mathematics 9(9):931, 2021). Secondly, it extends the results to the case when a final penalty P is taken into consideration as well besides a proportional cost $k > 1$ for capital injections. This requires amending the “scale and Gerber-Shiu functions” already introduced in Gajek and Kucinsky (Insur Math Econ 73:1–19, 2017). Thirdly, in the exponential case, the results will be made even more explicit by employing the Lambert-W function. This tool has particular importance in computational aspects and can be employed in theoretical aspects such as asymptotics.

Keywords Dividend problem · Capital injections · Penalty at default · Scale functions · Lambert-W function · De Vylder-type approximations · Rational Laplace transform

Florin Avram
Florin.Avram@univ-Pau.fr

1 Laboratoire de Mathématiques Appliquées, Université de Pau, Bruxelles, Belgium
2 School of Mathematics and Statistics, Shandong University, Weihai 264209, PR China
3 LAMA, Univ Gustave Eiffel, UPEM, Univ Paris Est Creteil, CNRS, Marne-la-Vallée F-77447, France
4 Département des Mathématiques, Université Ibn-Tofail, Kenitra 14000, Maroc
5 Institute of Mathematics, University of the Philippines Diliman, Quezon City, Philippines
1 Introduction

This paper concerns the approximate optimization of a new type of boundary mechanism, which emerged recently in the actuarial literature (Avram et al. 2018b; Gajek and Kuciński 2017; Avram et al. 2021), in the context of the optimal control of dividends and capital injections.

The model. Consider a spectrally negative Lévy risk model X_t, whose Laplace exponent, defined via $E_0[e^{sX(t)}] = e^{\kappa(s)}$ is given by

$$\kappa(s) := cs + \int_0^\infty (e^{-sx} - 1)\nu(dx) + \frac{\sigma^2 s^2}{2}. \quad (1)$$

Here σ represents a volatility (uncertainty parameter), and c is the essential local drift parameter, which intervenes crucially in most applications involving Lévy processes (and restricts the class of processes one may use).

Under the assumption Eq. (1), one has the Lévy-Khinchine decomposition (Bertoin 1998; Kyprianou 2014):

$$X_t = x + ct - \xi_t,$$ \quad (2)

where ξ_t is a driftless spectrally positive Lévy process, with Lévy measure $\nu(dx)$ and Brownian component σB_t. The classic example to have in mind is that of the perturbed Cramèr-Lundberg risk model with

$$\tilde{\xi}_t = \sum_{i=1}^{N_t} \xi_i + \sigma B_t,$$ \quad (3)

where B_t is a Brownian motion, N_t is an independent Poisson process of intensity $\lambda > 0$, and $(\xi_i)_{i \geq 1}$ is a family of i.i.d.r.v. whose distribution, density and moments are denoted respectively by $F, f, m_i, i \in \{1, 2, \ldots\}$.

Furthermore,

- the process X_t is modified by dividends and capital injection:

$$\pi := (D, I) \Rightarrow X^\pi_t := X_t - D_t + I_t,$$

where D, I are adapted, non-decreasing and cg processes with $D_{0-} = I_{0-} = 0$ \footnote{In Gajek and Kuciński (2017), these processes are left-continuous. We have proceeded differently, since from an intuitive point of view, it all comes down to what happens at 0: left-continuous implies that no matter what the reserve, no dividends are to be paid ($D_{0-} = 0$, in principle). We argue differently, especially since these barrier policies say “pay the exceeding” as a lump sum... This is also valid for injections: bankruptcy is not declared when an important claim comes. Instead, injection may save the company. Finally, from a technical point of view, it all comes down to what precise Itô formula one employs when writing down the dynamic programming principle and how one constructs the admissible policies. The choice is rather important for the verification results, and we note that cg is also the standardized form in the Azcue-Muller papers.}.

Furthermore,

- the first time when we do not bail-out to positive reserves $\sigma^\pi_{0-} := \inf \{t > 0 : X^\pi_{t-} - \Delta \tilde{\xi} + \Delta I < 0\}$ is called bankruptcy/absolute ruin:
• prior to bankruptcy, dividends are limited by the available reserves: \(\triangle D_t := D_t - D_{t-} \leq X_{t^-} - \Delta \xi_t + \Delta I_t \). The set of “admissible” policies satisfying this constraint will be denoted by \(\tilde{\Pi}(x) \).

The objective is to maximize the profit:

\[
J^x := \mathbb{E}_x \left[\int_{[0, \sigma^x]} e^{-q(t)} (dD_s - kdI_s) - Pe^{-qs^x_0} \right], \quad k \geq 1, P \geq 0,
\]

where \(q \) is the discount factor, \(k \) is the cost of capital injections, and \(P \) is a final penalty upon bankruptcy. The \textit{value function} is

\[
V(x) := \sup_{\pi \in \tilde{\Pi}(x)} J^x, \quad x \in \mathbb{R}.
\]

\textbf{Motivation.} The recent papers (Gajek and Kuciński 2017; Avram et al. 2021) investigated the above control problem of optimizing dividends and capital injections for processes with jumps, when bankruptcy is allowed as well. The second paper works under the Cramér-Lundberg model with exponential jumps, while the first works under the spectrally negative Lévy model, allowing also for the presence of Brownian motion and infinite activity jumps. It turns out that the optimal policy belongs to the class of \((-a, 0, b), \ a > 0, b \geq 0\) “bounded buffer policies”, which consist in allowing only capital injections smaller than a given \(a \) and declaring bankruptcy at the first time when the size of the overshoot below 0 exceeds \(a \), and in paying dividends when the reserve reaches an upper barrier \(b \). These will briefly be described as \((-a, 0, b)\) policies from now on. Furthermore, the optimal \((a^*, b^*)\) are the roots of one variable equations with explicit solutions related to the Lambert-W(right) function (ProductLog in Mathematica).

Below, our goal is to show numerically that exponential approximations provide quite reasonable results (as the de Vylder approximation provides for the ruin problem). We will focus in our examples on the case of matrix exponential jumps(known to be dense in the class of general nonnegative jumps, with even error bounds for completely monotone jumps being available (Vatamidou et al. 2014)), for two reasons. One is in order to highlight certain exact equations which are similar to their exponential versions, and which may at their turn be used to produce even more accurate approximations in the future, and, secondly, since numerical Laplace inversion for this class may easily tuned to have arbitrarily small errors.

\textbf{History of the problem:} The case of no capital injections (also characterized by \(k = \infty \) or absorption below 0) is the dividend problem posed by De Finetti (1957); Gerber (1969) where dividends are paid above barrier \(b^* \) and \(a^* = 0 \) is imposed. “The challenge is to find the right compromise between paying early in view of the discounting or paying late in order not to reach ruin too early and thus profit from the positive safety loading for a longer time” (Albrecher et al. 2020).

Forced injections and no bankruptcy at 0 (also characterized by a reflection at 0) is studied in Shreve et al. (1984) where dividends are paid above barrier \(b^* \) and \(a^* = \infty \) is imposed.

From Løkka and Zervos (2008) we know that in the Brownian motion case, it is optimal to either always inject, if \(k \leq k_c \), for some critical cost \(k_c \) (i.e. use Shreve), or, stop at 0 (use De Finetti). We propose to call this the \textbf{Lokka, Zervos alternative}. The “proof” of this alternative starts by largely assuming it via a heuristically justified border Ansatz [LZ08, (5.2)]: \[\max \{-V(0), V'(0) - k\} = 0 \implies \text{either } V(0) = 0 \text{ or } V'(0) = k. \]
Extensive literature on SLG forced bailouts (no bankruptcy) can be found at Avram et al. (2007), Kulenko and Schmidli (2008), Eisenberg and Schmidli (2011), Pérez et al. (2018), Lindensjö and Lindskog (2019), Noba et al. (2020).

Articles (Gajek and Kuciński 2017; Avram et al. 2021) are the only papers which relate declaring bankruptcy to the size of jumps, with general and exponential jumps, respectively. Gajek and Kuciński (2017) deals also with the presence of Brownian motion and infinite activity jumps, by conditioning at the first draw-down time; the optimality proof is quite involved.

For claims with light tails, one may use exponential approximations, which are similar in spirit with the de Vylder-type approximations. Recall that the philosophy of the de Vylder approximation is to approximate a Cramér-Lundberg process by a simpler process with exponential jumps, with cleverly chosen exponential rate μ – see for example Avram et al. (2019b) for more details).

The efficiency of the de Vylder approximation for approximating ruin probabilities is well documented (De Vylder 1978). The natural question of whether this type of techniques may work for other objectives, like for example for optimizing dividends and/or reinsurance was already discussed in Højgaard (2002); Dickson and Drekic (2005); Beveridge et al. (2007); Gerber et al. (2008); Avram et al. (2019b). In this paper, following on previous works (Avram et al. 2011; Avram and Pistorius 2014; Avram et al. 2018a), we draw first the attention to the fact that we have not one, but three de Vylder-type approximations for the scale function $W_q(x)$ of a spectrally negative Lévy process (and for its ruin probability as well), and provide experiments on how they perform.

We end this introduction by highlighting in Fig. 1 the fact that for exponential jumps, the limited capital injections objective function J_0 given by (15) for arbitrary b but...
optimal \(a = s(b) \) (via a complicated formula) improves the value function with respect to de Finetti and Shreve, Lehoczky and Gaver, for any \(b \).

Contents and contributions. Section 2 offers, in Theorem 1, a profit formula for \((-a, 0, b)\) policies, where we incorporate also a final bankruptcy penalty \(P \). This result links (Gajek and Kuciński 2017; Avram et al. 2021) together, and also goes beyond them, by showing how the penalty \(P \) affects the scale function \(G \). Its proof, along the lines of either Gajek and Kuciński (2017) or Avram et al. (2021), is provided in the Appendix when \(\sigma \equiv 0 \), and only sketched when \(\sigma > 0 \), to prevent this already lengthy paper from getting even longer. It consists in a three step argument:

1. express the cost by conditioning on the reserve \((J_x)\) starting from \(0 \leq x \leq b\) hitting either 0 or \(b \);
2. get a further relationship on costs \(J_b \) and \(J_0 \) by conditioning on the first claim;
3. finally, mix these conditions together in order to obtain the explicit formula for \(J_x \).

In Sect. 8 we provide an alternative matrix exponential form of the exact cost, in the case of matrix exponential jumps.

An explicit determination of \(a^*, b^* \) and an equity cost dichotomy when dealing with exponential jumps are given in Sect. 4, taking also advantage of properties of the Lambert-W function, which were not exploited before. The two main novelties of the section are:

- emphasizing the computations of the optimal buffer/barrier (from Avram et al. (2021)) in relation with the scale-like quantities appearing in Gajek and Kuciński (2017);
- making explicit use of the (computation-ready) Lambert-W function to describe the dependency of optimal \(a^*b \) (in Eq. (15)) and of the dichotomy-triggering cost \(k_c \) in Eq. (27).

Again, a further novelty is the presence of the bankruptcy cost \(P \).

Section 5 reviews, for completeness, the de Vylder approximation-type approximations. Section 5.1 recalls, for warm-up, some of the oldest exponential approximations for ruin probabilities. Section 5.2 recalls in Proposition 3, following (Avram and Pistorius 2014; Avram et al. 2019b) three approximations of the scale function \(W_q(x)^2 \), obtained by approximating its Laplace transform. These amount finally to replacing our process by one with exponential jumps and cleverly crafted parameters based on the first three moments of the claims.

In Sect. 6, we consider particular examples and obtain very good approximations for two fundamental objects of interest: the growth exponent \(\Phi_q \) of the scale function \(W_q(x) \), and the (last) global minimum of \(W_q''(x) \), which is fundamental in the de Finetti barrier problem. Proceeding afterwards to the problem of dividends and limited capital injections, concepts in Sect. 4 are used to compute a straightforward exponential approximation based on an exponential approximation of the claim density, and a new “correct ingredients approximation” which consists of plugging into the objective function for exponential claims the exact “non-exponential ingredients” (scale functions

\footnote{essentially, this is the “dividend function with fixed barrier”, which had been also extensively studied in previous literature before the introduction of \(W_q(x) \)}
and, survival and mean functions) of the non-exponential densities. Both methods are observed to yield reasonable values in approximating the objective.

This leads us to our conclusion that from a practical point of view, exponential approximations are typically sufficient in the problems discussed in this paper.

2 The Cost Function of \((-a, 0, b)\) Policies, for the Spectrally Negative Lévy Case

We revisit here the problem of optimizing the value of “bounded buffer \((-a, 0, b)\) policies”, following Gajek and Kuciński (2017); Avram et al. (2021) (in order to relate the results, one needs to replace \(\gamma\) in the objective of Gajek and Kuciński (2017) by \(1/k\)), while taking into account also the bankruptcy penalty \(P\).

Recall that in the first passage theory of spectrally negative Lévy processes, a crucial role is played by the scale functions (Bertoin 1998; Kyprianou 2014)

\[
W_q(x) = \frac{1}{s} Z_q(x) = 1 + q \int_0^x W_q(y) dy.
\]

In our context, an important role will also be played by the expected scale after a jump \(W_q(x)\).

The problem of limited reflection requires introducing a new “scale function \(S_a(x)\) and Gerber-Shiu function \(G_a(x)\)”– see Remark 2 for further comments on this terminology:

\[
\begin{cases}
S_a(x) = Z_q(x) + C_a(x), C_a(x) = \int_0^x W_q(x-y) \cdot \nabla(a+y) dy \\
G_a(x) = G_a(x) + k \frac{\sigma^2}{2} W_q(x)
\end{cases}
\]

where

\[
G_a(x) = \int_0^x W_q(x-y)(k m_a(y) + P\nabla(a+y)) dy := kM_a(x) + PC_a(x),
\]

\[
m_a(y) = \int_0^y z \nu(z) dz.
\]

Example 1 With exponential jumps of rate \(\mu\) and possibly \(\sigma > 0\), using the identities

\[
\nabla(y) = e^{-\lambda y}, m_a(y) = \lambda e^{-\lambda y} m(a), m(a) = \int_0^a y e^{-\mu y} dy = \frac{1 - e^{-\mu a}}{\mu} - ae^{-\mu a},
\]

we find that the functions Eq. (5) are expressible as products of \(C(x)\) and the survival or mean function of the jumps:
\[
\begin{align*}
C_a(x) &= C(x)e^{-\mu a} = C(x)\overline{F}(a), \quad \overline{F}(a) = 1 - F(a) \\
S_a(x) &= Z_q(x) + e^{-\mu a}C(x) \\
G_a(x) &= (km(a) + P\overline{F}(a))C(x)
\end{align*}
\]

(Gajek and Kuciński (2017) use \(s_c, r_c \), instead of \(M_a(x) := \int_0^x W_q(x - y) m_a(y) \, dy, C_a(x) \), respectively). When \(P = 0 = \sigma \), these reduce to quantities in Avram et al. (2021).

The formulas above will be used below as a heuristic approximation in non-exponential cases.

Remark 1 Note that

\[
C_a(0) = 0, \quad G_a(0) = 0, \quad S_a(0) = 1, \quad C(0) = 0, \quad C'(0) = \begin{cases} \frac{\sigma}{c} & \sigma = 0 \\ 0 & \sigma > 0 \end{cases},
\]

and that \(C(x), G_a(x), S_a(x) \) are increasing functions in \(x \).

We state now a generalization of Gajek and Kuciński (2017) [Thm. 4] for the value function \(J^a_b \) of \((-a, 0, b)\) policies, in terms of \(S_a(x), G_a(x) \). In the Cramèr-Lundberg case illustrated below, the proof is straightforward, following Avram et al. (2021). In the other case, one needs to adapt the proof of Gajek and Kuciński (2017).

Theorem 1 Cost function for \((a, b)\) policies For a spectrally negative Lévy processes, let

\[
\tau_d = \tau_{a, -} := \inf\{t \geq 0 : X_t < d\}, \quad \tau_{d, +} := \inf\{t \geq 0 : X_t > d\},
\]

and let

\[
J_x = J^{a,b}_x := \mathbb{E}_x \left[\int_0^{T_a} e^{-qT} (dD_t - k \, dI_t) - Pe^{-qT} \right]
\]

denote the expected discounted dividends minus capital injections associated to policies consisting in paying capital injections with proportional cost \(k \geq 1 \), provided that the severity of ruin is smaller than \(a > 0 \), and paying dividends as soon as the process reaches some upper level \(b \). Put

\[
G_{a, \sigma}(x) = G_a(x) + k \frac{\sigma^2}{2} W_q(x).
\]

Then, it holds that

\[
J_x = \begin{cases}
G_{a, \sigma}(x) + J^a_b S_a(x) = G_{a, \sigma}(x) + \frac{1 - G_{a, \sigma}(b)}{S_a(b)} S_a(x), & x \in [0, b] \\
xk + J^a_b & x \leq -a
\end{cases}
\]

Remark 2 The first equality in Eq. (8) will be easily obtained by applying the strong Markov property at the stopping time \(T = \min[T_{a, -}, T_{b, +}] \), but it still contains the unknown \(J_0 \).

This relation suggests a definition of the scale \(S_a \) and the Gerber-Shiu function \(G_{a, \sigma} \), as the coefficient of \(J_0 \) and the part independent of \(J_0 \), respectively.

This equality is also equivalent to
which suggests another analytic definition of the scale and Gerber-Shiu function corresponding to an objective J_x which involves reflection at b.

The functions $S_x(x), G_a(x)$ may be shown to stay the same for problems which require only modifying the boundary condition at b, like the problem of capital injections for the process reflected at b, or the problem of dividends for the process reflected at b, with proportional retention k_D (this is in coherence with previously studied problems).

3 Proof of Proposition 1 in the Spectrally Negative Case

Corollary 1 Let us consider the Cramèr-Lundberg setting without diffusion (i.e. $\sigma = 0$), For fixed $k \geq 1$, $b \geq 0$, the optimality equation $\frac{\partial}{\partial a} J_a^b = 0$ may be written as

$$
J_a^b = ka - P \iff J_a^b = -P. \tag{10}
$$

Remark 3 The first equality in Eq. (10) provides a relation between the objective J_0 and the variable a; the second recognizes this as the smooth fit equation $J_{-a} = 0$.

Proof: Recalling the expressions of $J_a^b, G_a(x)$, in Eq. (9), in Eq. (5), and from Gajek and Kuciński (2017) [Lem. A.4]

$$
M_a'(x) = -aC_a'(x),
$$

where $C_a'(x), M_a'(x)$ denote derivatives with respect to the subscript a. Whenever $b > 0$, if a achieves the maximum in J_a^b, it is straightforward (think of the economic interpretation) that a achieves the maximum of $a \mapsto J_a^b$ for every $x \in [0,b]$. Therefore, we find

$$
\frac{\partial}{\partial a} J_0^b = 0 \iff J_0^b = \frac{-G_a'(x)}{C_a'(x)} = \frac{-kM_a'(x) - PC_a'(x)}{C_a'(x)} = ka - P
$$

$$
\iff J_{-a}^b = J_0^b - ka \iff J_{-a}^b = -P.
$$

4 Explicit Determination of a^*, b^* when $F(x) := 1 - e^{-\mu x}, P > -\frac{c}{q}$

In this section we turn to the exponential case, where explicit formulas for the optimizers a^*, b^* are available. In particular, we will take advantage of properties of the Lambert-W function, which were not exploited in Avram et al. (2021). Subsequently, in Sects. 6, 7 we will show that exponential approximations work typically excellently in the general case. Although these results have already been established in [AGLW20], the present formulations have two achievements:

1. allow an unified formulation of Avram et al. (2021) and Gajek and Kuciński (2017) (via the previously introduced scale functions);
2. make use of a numerical tool (Lambert-W function) to express the optimal quantities of interest \(a^*, b^* \).

4.1 The Simplified Cost Function and Optimality Equations

Proposition 1 Cost function and optimality equations in the exponential case

\[
J_{a,b}^0 = \frac{1 - C'(b)\left(k m(a) + P\bar{F}(a)\right)}{(\bar{F}(a))C'(b) + qW_q(b)} = \frac{\gamma(b) - k m(a) - P\bar{F}(a)}{q\theta(b) + \bar{F}(a)},
\]

where we put

\[
\gamma(b) = \frac{1}{C'(b)}, \quad \theta(b) = \frac{W_q(b)}{C'(b)}.
\]

1. Put

\[
j(b) : = \frac{\gamma'(b)}{q\theta'(b)}.
\]

For fixed \(a \geq 0 \), the optimality equation \(\frac{\partial}{\partial b} J_{a,b}^0 = 0 \) may be written as

\[
J_{a,b}^0 = j(b).
\]

2. For fixed \(k \geq 1 \) and \(b \geq 0 \), at critical points with \(a(b) = a^{(k,P)}(b) \neq 0 \) satisfies \(\frac{\partial}{\partial a} J_{a,b}^{(k,P)} = 0 \) we must have

\[
\left[J_{a,b}^0 - (ka - P) \right]_{a=a(b)} = 0.
\]

Explicitly,

\[
0 = \eta(b, a) : = \frac{\gamma(b)}{\theta(b)} - \frac{k}{\mu\theta(b)} F(a) - q(ka - P).
\]

3. When \(P \geq -\frac{c}{q} \) and \(b \geq 0 \) is fixed, the solution of Eq. (14) may be expressed in terms of the principal value of the “Lambert-W(right)” function (an inverse of \(L(z) = ze^z \))

\[
\left[-e^{-1}, \infty \right] \ni L_0(z), \quad z \in \left[-1, \infty \right)
\]

Corless et al. (1996); Boyd (1998); Brito et al. (2008); Pakes (2015); Vazquez-Leal et al. (2019) (this observation is missing in Avram et al. (2021)).

\[
(0, \infty) \ni a(b) = \mu^{-1}\left(-h(b) + L_0\left(\frac{h(b)}{q\theta(b)}\right)\right)
\]

\[
, h(b) = h(b, P) = \frac{1}{q\theta(b)} - \frac{\mu}{k} \left(\frac{\gamma(b)}{q\theta(b)} + P\right)
\]

(15)

It follows that
\[J_{0}^{a(b),b} = \frac{k}{\mu} \left(-h(b) + L_0 \left(\frac{1}{q\theta(b)} e^{h(b)} \right) \right) - P. \]

(16)

5. In the special case \(b = 0 \), Eq. (14) implies that \(a = a^{(k,P)} = a^{(k,P)}(0) \) satisfies the simpler equation

\[0 = \delta_{k,P}(a) := \lambda \eta(0, a) = \bar{c} - k \left(aq + \frac{\lambda}{\mu} (1 - e^{-\mu a}) \right), \quad \bar{c} = c + qP > 0, \]

with solution

\[\mu a^{(k,P)} = -g + L_0 \left(\frac{\lambda e^g}{q} \right) > 0, \quad g = h(0) = \frac{\lambda}{q} - \frac{\mu \bar{c}}{kq}. \]

(18)

6. At a critical point \((a^*, b^*)\), \(a^* > 0, b^* > 0\), we must have both \(J_{0}^{a,b^*} = j(b^*) = ka^* - P \implies a^* = s(b^*), s(b) := \frac{j(b) + P}{k}, \) and

\[0 = \eta(b^*), \quad \eta(b) := \eta(b, s(b)) = \frac{\gamma(b)}{\theta(b)} - qj(b) - \frac{k}{\mu \theta(b)} F \left(\frac{j(b) + P}{k} \right) = 0. \]

(20)

7. The equation \(0 = \eta(b) \) may be solved explicitly for \(P \), yielding

\[P = -\frac{k}{\mu} \log \left(1 + \frac{q\theta(b)j(b) - \gamma(b)}{\frac{k}{\mu}} \right) - j(b). \]

(21)

Proof: 1. Follows from Theorem 1.

2. Let \(M(b), N(b) \) denote the numerator and denominator of \(J_{0}^{a,b} := \frac{M(b)}{N(b)} \) in . The optimality equation \(\frac{\partial}{\partial b} J_{0}^{a,b} = \frac{N'(b)}{N(b)} - J_{0}^{a,b} = 0 \) simplifies to

\[J_{0}^{a,b} \frac{M'(b)}{N'(b)} = \frac{\gamma'(b)}{q\theta'(b)} = j(b). \]

3. Eq. (14) is a consequence of 1 and of the smooth fit result Corollary 2.

4. See the proof of the particular case 5; \(a \in (0, \infty) \) holds since \(P \geq -\frac{c}{q} \implies h(b) < \frac{1}{q\theta(b)}. \)

5. Eq. (17) follows from \(W_0(0) = \frac{1}{q}, \theta(0) = \lambda^{-1}. \) To get Eq. (18), rewrite the Eq. (17) as \(ze^\frac{c}{q} = \frac{\lambda e^\frac{c}{q}}{q}, z = \mu a + g; a \in (0, \infty) \) holds since \(P \geq -\frac{c}{q} \implies g < \frac{\lambda}{q}. \)

6. follows from 2. and .3.

7. is straightforward.

Remark 4 Note that the de Finetti and Shreve, Lehoczky and Gaver solutions \(a^* = a(b^*) = \begin{cases} 0 \\ \infty \end{cases} \) are always non-optimal, when \(P \geq -\frac{c}{q} \) (see Eq. (15)).

However, as \(k \to \infty, \ h(b) \to \frac{1}{q\theta(b)} \neq 0 \) and, \(a(b) = \mu^{-1}(-h(b) + L_0 \left(h(b)e^{h(b)} \right)) = 0. \) This suffices to infer that you get de Finetti case.

On the other hand,
Thus, these regimes can be recovered asymptotically. Let now \(b^\ast_k, S_k, b^\ast_D \) denote the unique roots of \(u_2(b) = 0 \) in the two asymptotic cases, which coincide with the classic Shreve, Lehoczky and Gaver and de Finetti barriers.

Then, it may be checked that \(b^\ast \leq \min\{b^\ast_k, S_k, b^\ast_D\} \).

4.2 Existence of the Roots of the Equations \(\eta(b) = 0, \delta_{kp} = 0 \)

The following (new) result discusses the existence of the roots of the equations \(\eta(b) = 0, \delta_{kp} = 0 \) introduced in Proposition 3 and relates them to the Lambert-W function.

Proposition 2

- \(\theta \) increases from \(\theta(0) = \frac{1/c}{\lambda} = \frac{1}{\lambda} \) to \(\theta(\infty) = \frac{1}{c\Phi_q - q} \) as we see it in the Fig. 2.
 - \(\gamma \) is increasing-decreasing (from \(\frac{c}{\lambda} \) to 0), with a maximum at the unique root of \(C''(x) = 0 \) given by

 \[
 \tilde{b} := \frac{1}{\Phi_q - \rho_-} \log \left(\frac{\rho_- \Phi_q^2}{\Phi_q^2} \right),
 \]

 where \(\Phi_q, \rho_- \) denote the positive and negative roots of the Cramèr-Lundberg equation \(\kappa(s) = 0 \). The Fig. 3 illustrates the plot of the function \(\gamma \) and \(j(b) \) in which the \(\tilde{b} \) is represented by the black point. If \(c\mu - (q + \lambda) > 0 \), then \(b > 0 \) defined in Eq. (23) is the unique positive root of \(j(b) \) and \(\eta(\tilde{b}) = \frac{1}{W_q(\tilde{b})} > 0 \). See the Fig. 4. The function \(j(b) = \frac{\gamma'(b)}{q\delta'(b)} \) is nonnegative and decreasing to 0 on \([0, b]\), with

\[
\begin{cases}
 P \to \infty \Rightarrow h(b) \to -\infty \Rightarrow a(b) \to \infty \Rightarrow \\
 \gamma(b) - k/\mu \to -1 - kC'(b)/\mu = J_{0,SLG}(b) \\
 \eta(b) \to q\left(f_{0,k}^{SLG}(b) - j(b) \right), \quad \forall b > 0.
\end{cases}
\]

(22)

Fig. 2 Plot of \(\theta \) with \(\theta(0) = 2 \) and \(\theta(\infty) = 22.8743 \), for \(\mu = 2, c = 3/4, \lambda = 1/2, q = 1/10, P = 1 \) and \(k = 3/2 \).
See the Fig. 3.

2. Put

\[j(0) = \frac{\lambda - C''(0)}{\mu q (C'(0))^2} = \frac{c \mu - (q + \lambda)}{\mu q}. \]

(24)

See the Fig. 3.

\[\delta_{k,p} := \delta_{k,p}(\mu, \lambda, q, \mu, \lambda) = \delta_{k,p}(\frac{j(0) + P}{k}) = \delta_{k,p}(\frac{c \mu - (q + \lambda)}{k \mu q}) \]

\[= \frac{\lambda + q - \lambda k \left(1 - e^{-\frac{\lambda + q}{\mu q}}\right)}{\mu}, \]

(25)

Fig. 3 Plots of \(j(b) \) and \(\gamma(b) \) with \(b = 2.5046 \) and \(j(0) = 4.5 \), for \(\mu = 2, c = 3/4, \lambda = 1/2, q = 1/10, P = 1 \) and \(k = 3/2 \).

Fig. 4 For \(\mu = 2, c = 3/4, \lambda = 1/2, q = 1/10, P = 1 \) and \(k = 3/2 \), the root of \(\eta(b) = 0 \) is at \(b = 0.469843 \).
and assume
\[
\lim_{k \to \infty} \delta_{k,P} = \frac{\lambda + q}{\mu} - \frac{\lambda (\mu \tilde{c} - (\lambda + q))}{q \mu} = \frac{(\lambda + q)^2 - \lambda \mu \tilde{c}}{q \mu} < 0 \Leftrightarrow \tilde{c} \mu > \lambda^{-1}(\lambda + q)^2.
\] (26)

Then, \(\forall P > -\frac{\tilde{c}}{q}\), the function \(\delta_{k,P}\) is decreasing in \(k\) with \(\delta_{1,P} > 0\), and has a unique root
\[
k_c = k_c(P) := \frac{q + \lambda}{\lambda} \frac{f}{f + L_0(-fe^{-f})} > \frac{q + \lambda}{\lambda},
\] (27)

where
\[
f := \frac{\lambda}{q + \lambda} \frac{\tilde{c} \mu - (\lambda + q)}{q} > 1 \Leftrightarrow \tilde{c} \mu > \lambda^{-1}(\lambda + q)^2 \Leftrightarrow P > P_1
\] (28)

(note that the denominator \(f + L_0(-fe^{-f})\) does not equal 0 since \(f > 1\) and \(L_0\) takes always values bigger than \(-1\); or, note that \(-f = L_{-1}(L(-f))\), where \(L_{-1}\) is the other real branch of the Lambert function). Furthermore,
\[
\delta_{k,P} < 0 \Leftrightarrow k > k_c(P).
\] (29)

3. It follows that \(\eta(b) = 0\) has at least one solution of in \((0, \tilde{b})\) iff
\[
\eta(0) = \frac{c}{\lambda} - \frac{1}{\lambda} \left(c - \frac{q + \lambda}{\mu} \right) - \frac{k}{\mu} F(a^{(k,P)}) = \frac{1}{\lambda \mu} (\lambda + q - \lambda k F(a^{(k,P)})) = \frac{1}{\lambda} \delta_{k,P} < 0 \Leftrightarrow k > k_c.
\] (30)

The first such solution will be denoted by \(b^*\).

\[
\left(\frac{\mu}{k} j(b) + h \right) e^{\frac{\mu}{k} j(b) + h} = \frac{e^h}{q \theta(b)} \implies \mu \left(j(b) + P \right) = -h + L_0 \left(\frac{e^h}{q \theta(b)} \right).
\]

Proof: For 1. see Avram et al. (2021) [Proof of Theorem 11, A2].

2. By using the assumption \(\tilde{c} \mu > \lambda^{-1}(\lambda + q)^2\) we get \(\tilde{c} \mu \geq \lambda + q\), and \(k \in [1, \infty) \to \delta_{k,P}\) is decreasing.

Put \(d = \frac{\tilde{c} r -(\lambda + q)}{q}\). The inequality \(\delta_{k,P} < 0\) (see) may be reduced to
\[
e^{\frac{\mu}{k} j(b) + h} = \frac{e^h}{q \theta(b)} \implies \mu \left(j(b) + P \right) = -h + L_0 \left(\frac{e^h}{q \theta(b)} \right).
\]

Rewriting the latter as \(-f > e^z(f - z)\) we recognize, by putting \(z = y + f\), an inequality reducible to \(ye^y < -fe^{-f}\). The solution is
\[
y < L_0(-fe^{-f}),
\]
where L_0 is the principal branch of the Lambert-W function.

The final solution is Eq. (29), where we may note that the variables k, P have been separated.

Remark 4 The function $\{1, \infty) \ni f \mapsto f + L_0(-fe^{-f}) \in (1, \infty)$ blows up at $f = 1$, and converges to 1 when $f \to \infty$ (or when either μ or $\bar{c} = c + qP$ are large enough) as may be noticed in the figure below, which blows up at the value $P_l := -4/5$. Note also that when f (or one of c, P, μ are large enough), k_c given by stabilizes to the equilibrium $\frac{\lambda + q}{\lambda} = 6/5$; this is related to Avram et al. (2007) [Lemma 2], Kulenko and Schmidli (2008) [Lemma 7], who obtain the same condition for $b^* = 0$ (without buffering capital injections). Intuitively, under these conditions, buffering is not crucial.

At the other end, as f tends to its lower limit and to the regime B, the notion of equity expensiveness vanishes, and $k_c \to \infty$, see the Fig. 5.

Fig. 5 k_c as function of P, for several values of c, with the vertical asymptote at P_l fixed

Fig. 6 k_c as a function of q, λ

\square Springer
The next two figures illustrate how \(k_c \) blows up at the critical values \(q_l := \left(\frac{1}{2} - 2p\lambda + \sqrt{\lambda} \sqrt{\mu \sqrt{4c - 4p\lambda + 2q}} \right) \) and \(\lambda_i := (c\mu - \sqrt{(c\mu + \mu(-p)q + 2q)^2 - 4q^2 + \mu Pq - 2q}) \) (represented by red points in the Fig. 6). The dark (blue) parts correspond to the regime \(A \).

5 Which Exponential Approximation?

5.1 Three De Vylder-Type Exponential Approximations for the Ruin Probability

In this section we recall three de Vylder-type exponential approximations for the ruin probability and provide corresponding approximations for \(W_q \), and comment on their performance.

In the simplest case of exponential jumps of rate \(\mu = 0 \), the formula for the ruin probability is

\[
\Psi(x) = P_x \left[\exists t \geq 0 : X_t < 0 \right] = \frac{1}{1 + \theta} \exp \left(- \frac{x\theta \mu}{1 + \theta} \right) = \frac{1}{1 + \theta} \exp \left(- \frac{x\theta m^{-1}}{1 + \theta} \right),
\]

where \(\theta = \frac{e^{-\lambda m}}{\lambda m} \) is the loading coefficient. By plugging the correct mean of the claims in the second formula yields the simplest approximation for processes with finite mean claims.

More sophisticated is the Renyi exponential approximation

\[
\Psi_R(x) = \frac{1}{1 + \theta} \exp \left(- \frac{x\theta \hat{m}^{-1}}{1 + \theta} \right), \hat{m} = \frac{m}{2m};
\]

This formula can be obtained as a two point Padé approximation of the Laplace transform, which conserves also the value \(\Psi(0) = (1 + \theta)^{-1} \) (Avram and Pistorius 2014). It may be also derived heuristically from the first formula in , via replacing \(\mu \) by the correct “excess mean” of the excess/severity density

\[
f_e(x) = \frac{\bar{F}(x)}{m} = \frac{1 - F(x)}{m},
\]

which is known to be \(\hat{m} \). Heuristically, it makes more sense to approximate \(f_e(x) \) instead of the original density \(f(x) \), since \(f_e(x) \) is a monotone function, and also an important component of the Pollaczek-Khinchine formula for the Laplace transform \(\Psi(s) = \int_0^\infty e^{-sx} F(dx) \) – see Ramsay (1992); Avram and Pistorius (2014).

More moments are put to work in the de Vylder approximation

\[
\Psi_{DV}(x) = \frac{1}{1 + \tilde{\theta}} \exp \left(- \frac{x\tilde{m}^{-1}}{1 + \tilde{\theta}} \right), \tilde{m} := \frac{m}{3m}, \tilde{\theta} = \frac{9m^3}{2m^2}, \tilde{\lambda} = \frac{2m_1 m_3}{3m^2}, \tilde{\theta} = \frac{m_3}{m^2} \theta.
\]

\(\tilde{c} = c - \lambda m_1 + \tilde{\lambda} \tilde{m}_3, \ \tilde{\theta} = \frac{2m_1 m_3}{3m^2} \theta = \frac{m_3}{m^2} \theta. \)
Interestingly, the result may be expressed in terms of the so-called “normalized moments”

\[\hat{m}_i = \frac{m_i}{m_{i-1}} \]

introduced in Bobbio et al. (2005).

The de Vylder approximation parameters above may be obtained either from

1. equating the first three cumulants of our process to those of a process with exponentially distributed claim sizes of mean \(\mu \), and modified \(\lambda, c \) (De Vylder 1978) (however \(p = c - \lambda m_1 = E_0[X_1] \) must be conserved, since this is the first cumulant), or
2. a Padé approximation of the Laplace transform of the ruin probabilities (Avram et al. 2011).

The second derivation via Padé shows that higher order approximations may be easily obtained as well. They might not be admissible, due to negative values, but packages for “repairing” the non-admissibility are available – see for example Dumitrescu et al. (2016).

The first derivation of the de Vylder approximation is a process approximation (i.e., independent of the problem considered); as such, it may be applied to other functionals of interest besides ruin probabilities, dividend barriers, etc, simply by plugging the modified parameters in the exact formula for the ruin probability of the simpler process.

5.2 Three Two Point Padé Approximations of the Laplace Transform \(\hat{W}_q \) of Scale Function

The simplest approximations for the scale function \(W_q(x) \) will now be derived heuristically from the following example.

Example 1 The Cramér-Lundberg model with exponential jumps Consider the Cramér-Lundberg model with exponential jump sizes with mean \(1/\mu \), jump rate \(\lambda \), premium rate \(c > 0 \), and Laplace exponent \(\kappa(s) = s\left(c - \frac{\lambda}{\mu + s}\right) \). Solving \(\kappa(s) - q = 0 \Leftrightarrow c s^2 + s(\mu - \lambda - q) - q \mu = 0 \) for \(s \) yields two distinct solutions \(\gamma_2 \leq \gamma_1 = \Phi_q \) given by

\[
\gamma_1(\mu, \lambda, c) = \gamma_1 = \frac{1}{2c} \left(-(\mu c - \lambda - q) + \sqrt{(\mu c - \lambda - q)^2 + 4\mu q c} \right),
\]

\[
\gamma_2(\mu, \lambda, c) = \gamma_2 = \frac{1}{2c} \left(-(\mu c - \lambda - q) - \sqrt{(\mu c - \lambda - q)^2 + 4\mu q c} \right).
\]

The \(W \) scale function is:

\[
W_q(x) = \frac{A_1 e^{\gamma_1 x} - A_2 e^{\gamma_2 x}}{c(\gamma_1 - \gamma_2)} \Leftrightarrow \hat{W}_q(s) = \frac{s + \mu}{c s^2 + s(\mu c - \lambda - q) - q \mu},
\]

(35)

where \(A_1 = \mu + \gamma_1, A_2 = \mu + \gamma_2 \).

Furthermore, it is well-known and easy to check that the function \(W'_q(x) \) is in this case unimodal with global minimum at
\[b_{DeF} = \frac{1}{\gamma_1 - \gamma_2} \begin{cases} \log \frac{(y_1)^2 A_2}{(y_1)^2} & \log \frac{(y_2)^2 (\mu + y_2)}{(y_1)^2 (\mu + y_1)} \quad \text{if} \ W_q''(0) < 0 \Leftrightarrow (q + \lambda)^2 - c\lambda \mu < 0 \\ 0 & \text{if} \ W_q''(0) \geq 0 \Leftrightarrow (q + \lambda)^2 - c\lambda \mu \geq 0 \end{cases} \]

since \(W_q''(0) = \frac{(y_1)^2 (\mu + y_2) - (y_2)^2 (\mu + y_2)}{c(y_1 - y_2)} = \frac{(q + \lambda)^2 - c\lambda \mu}{c^3} \) and that the optimal strategy for the de Finetti problem is the barrier strategy at level \(b_{DeF} \) (see for example Avram et al. (2007), Avram et al. (2019a) Sect. 4).

Plugging now the respective parameters of the de Vylder type approximations in the exact formula for the Cramèr-Lundberg process with exponential claims, we obtain three approximations for \(\tilde{W}_q \):

1. “Naive exponential” approximation obtained by plugging \(\mu^{-1} \rightarrow m_1 \) in Eq. (35) (as was done, for a different purpose) in Eq. (31)
2. Renyi\(^3\), obtained by plugging \(\mu^{-1} \rightarrow \tilde{m}_2, \lambda_R \rightarrow \lambda \frac{m_1}{\tilde{m}_2} \) (since \(c \) is unchanged, the latter equation is equivalent to the conservation of \(\rho = \frac{\tilde{m}_1}{\lambda \tilde{m}_2} \), and to the conservation of \(\theta \), so this coincides with the Renyi ruin approximation used in Eq. (32).)
3. De Vylder, obtained by plugging \(\mu^{-1} \rightarrow \tilde{m}_3, \lambda \rightarrow \lambda \frac{m_1}{\tilde{m}_3}, \tilde{c} = c - \lambda m_1 + \lambda \tilde{m}_3 \).

Remark 6 In the case of exponential claims, these three approximations are exact, by definition (or check that for exponential claims all the normalized moments are equal to \(\mu^{-1} \)).

Remark 7 The conditions for the non-negativity of the barrier is \(W_q''(0_+) < 0 \Leftrightarrow \left(\frac{\lambda + q}{c} \right)^2 < \frac{\lambda}{c^2} f(0) \). Here, this condition is satisfied for the exact when \(\theta > \frac{(\lambda + q)^2 (1 - \frac{1}{c^2})}{c^2 f(0)m_1} \).

It is shown in Avram et al. (2019b) [Prop. 1] that the three de Vylder type approximations are two-point Padé approximations of the Laplace transform (hence higher order generalizations are immediately available).

We recall that two-point Padé approximations incorporate into the Padé approximation two initial values of the function (which can be derived easily via the initial value theorem, from the Pollaczek-Khinchine Laplace transform):

\[
\begin{align*}
W_q(0_+) &= \lim_{s \to \infty} s \tilde{W}_q(s) = \frac{1}{c}, \\
W_q'(0_+) &= \lim_{s \to \infty} s \left(\frac{s}{\kappa(s) - q} - W_q(0_+) \right) = \frac{q + \lambda}{c^2}.
\end{align*}
\]

In our case, incorporating both \(W_q(0_+), W_q'(0_+) \) leads to the natural exponential approximation which is therefore the best near \(x = 0 \). Incorporating none of them yields the de Vylder approximation, which is the best asymptotically. Incorporating only \(W_q(0_+) \) leads to Renyi, which is expected to be the best in an intermediate regime.

Note that when the jump distribution has a density \(f \), it holds that :\(^4\)

\(^3\) This is called DeVylder B) method in Gerber et al. (2008) [(5.6-5.7)], since it is the result of fitting the first two cumulants of the risk process.

\(^4\) This equation is important in establishing the nonnegativity of the optimal dividends barrier.
Thus, $W''(0)$ already requires knowing $f_c(0)$ (which is a rather delicate task starting from real data); therefore we will not incorporate into the Padé approximation more than two initial values of the function.

We recall below in Proposition 3 three types of two-point Padé approximations (Avram et al. 2019b) [Prop. 1], and particularize them to the case when the denominator degree is $n = 2$ (which are further illustrated below).

Proposition 3 Three matrix exponential approximations for the scale function.

1. To secure both the values of $W_q(0)$ and $W'_q(0)$, take into account Eqs. (37) and (38), i.e. use the Padé approximation

$$
\hat{W}_q(s) \sim \frac{\sum_{i=0}^{n-1} a_i s^i}{cs^n + \sum_{i=0}^{n-1} b_i s^i}, \ \ a_{n-1} = 1, \ b_{n-1} = ca_{n-2} - \lambda - q.
$$

For $n = 2$ we recover the “natural exponential” approximation of plugging $\mu \to \frac{1}{m_1}$ in Eq. (35):

$$
\hat{W}_q(s) \sim \frac{\frac{1}{m_1} + s}{cs^2 + s\left(\frac{c}{m_1} - \lambda - q\right) - \frac{q}{m_1}},
$$

used also (for a different purpose) in Eq. (31).

2. To ensure only $W_q(0) = \frac{1}{e}$, we must use the Padé approximation

$$
\hat{W}_q(s) \sim \frac{\sum_{i=0}^{n-1} a_i s^i}{cs^n + \sum_{i=0}^{n-1} b_i s^i}, \ \ a_{n-1} = 1.
$$

For $n = 2$, we find

$$
\hat{W}_q(s) \sim \frac{\frac{2m_1}{m_2} + s}{cs^2 + s\left(\frac{2cm_1 - 2m_2^2 - m_1 q}{m_2}\right) - \frac{2m_1 q}{m_2}} = \frac{\frac{1}{\hat{m}_2} + s}{cs^2 + s\left(\frac{c}{\hat{m}_2} - \frac{\lambda m_1}{\hat{m}_2} - q\right) - \frac{q}{\hat{m}_2}},
$$

where $\hat{m}_2 = \frac{m_2}{2m_1}$ is the first moment of the excess density $f_c(x)$. Note that it equals the scale function of a process with exponential claims of rate \hat{m}_2^{-1} and with λ modified to $\lambda = \frac{m_1}{\hat{m}_2}$. Since c is unchanged, the latter equation is equivalent to the conservation of $\rho = \frac{c}{\lambda m_1}$, and to the conservation of θ, so this coincides with the Renyi approximation5 used in Eq. (37).

5 This is called DeVylder B) method in Gerber et al. (2008) [(5.6-5.7)], since it is the result of fitting the first two cumulants of the risk process.
3. The pure Padé approximation yields for \(n = 2 \)

\[
\hat{W}_q(s) \sim \frac{s + \frac{3m_2}{m_3}}{s^2 \left(c - \lambda m_1 + \lambda \frac{3m_2^2}{2m_3}\right) + s \left(\frac{3m_2}{m_3} \frac{3m_1 m_2}{m_3} \lambda - q\right) - \frac{3m_2}{m_3} q} = \frac{s + \frac{1}{m_3}}{\tilde{c}s^2 + s \left(\tilde{c} \frac{1}{m_3} - \lambda - q\right) - \frac{1}{m_3} q}, \quad \tilde{c} = c - \lambda m_1 + \tilde{\lambda} m_3, \quad \tilde{\lambda} = \frac{9m_2^2}{2m_3^2}. \tag{41}
\]

Note that both the coefficient of \(s^2 \) in the denominator coincides with the coefficient \(\tilde{c} \) in the classic de Vylder approximation, since \(\tilde{\lambda} m_3 = \frac{9m_2^2}{2m_3^2} \), and so does the coefficient of \(s \), since

\[
c = \frac{3m_2}{m_3} - \frac{3m_1 m_2}{m_3} \lambda = \tilde{c} \frac{1}{m_3} - \tilde{\lambda} = \left(c - \lambda m_1 + \tilde{\lambda} m_3\right) \frac{1}{m_3} - \tilde{\lambda}.
\]

6 Examples of Computations Involving Scale Function and Dividend Value Approximations

Our goal in this section is to investigate whether exponential approximations are precise enough to yield reasonable estimates for quantities important in control like

1. the dominant exponent \(\Phi_q(x) \) of \(W_q(x) \)
2. the last local minimum of \(W'_q(x), \ b_{\text{DeF}}, \) which yields, when being the global minimum, the optimal De Finetti barrier
3. \(W''_q(0), \) which determines if \(b_{\text{DeF}} = 0 \)
4. the functional \(J_0 \) yielding the maximum dividends with capital injections.

We found out that when the loading coefficient \(\theta \) is large, the best approximation turns out to be the classic de Vylder approximation (which replaces \(\mu^{-1} \) in the exact exponential formula by \(\frac{m_2}{3m_3} \), and both \(\lambda, c \) are modified as well). However, for approximating near the origin, the two point Padé approximation which fixes both the values \(W_q(0) = \frac{1}{c}, \ W'_q(0) = \frac{q + \lambda}{c^2} \) works better. In between \(x = 0 \) and \(x \to \infty \), the winner is sometimes the “Renyi approximation” (which replaces the inverse exponential rate by \(\frac{m_2}{3m_1} \), and modifies \(\lambda \) as well).

All the examples considered involve a Cramèr-Lundberg model with rational Laplace transform \(W_q(s) \) (since in this case, the computation of \(W_q, Z_q \) is fast and in principle arbitrarily large precision may be achieved with symbolic algebra systems).

1. For the first three problems, we will use de Vylder type approximations. Graphs of \(W''_q \), \(W'_q \) and some tables summarizing the simulation results will be presented. We note that in most of the cases that we observed, the de Vylder approximation of \(\Phi_q \) deviates from the exact value the least – see for example Table 2. For the De Finetti barrier, the “winner” depends on the size of \(b_{\text{DeF}} \). Unsurprisingly, when near 0, the natural exponential approximation wins, and as \(b_{\text{DeF}} \) increases, Renyi and subsequently the de Vylder approximation take the upper hand – see for example Table 3.
2. For the computation of \(J_0 \), we provide, besides the exact value, also two approximations:
1. For a given density of claims \(f \) one computes an exponential density approximation \(f_e(x) = \frac{1}{m_1} \exp(-\frac{x}{m_1}) \) where \(m_1 \) is the first moment of \(f \). Subsequently, \(W, Z, J_0 \) and \(a, b \) are obtained using the exponential approximation \(f_e \). Quantities obtained by this method would be referred to with an affix ‘expo pure’.

2. For a given density of claims \(f \), the value function is computed via the formula which assumes exponential claims in Eq. (11), but the “ingredients” \(W, Z, F \) and the mean function \(m \) are the correct ingredients corresponding to our original density \(f \). Quantities obtained by this method would be referred to with an affix ‘expo CI’.

It turns out that the pure expo approximation works better for large \(\theta \), and the correct ingredients approximation works better for small \(\theta \). Note that we only included tables illustrating approximating \(J_0 \) for the first two examples, to keep the length of the paper under control, but similar results were obtained for the other examples.

6.1 A Cramér-Lundberg Process with Hyperexponential Claims of Order 2

We take a look at a Cramér-Lundberg process with density function \(f(x) = \frac{2}{3} e^{-x} + \frac{2}{3} e^{-2x} \) with \(\lambda = 1, \theta = 1 \) and \(q = \frac{1}{10} \). Then we get the Fig. 7a.

Tables 1, 2, 3, 4, 5 and 6 provide the results of the different approximations and a comparison is established.

![Fig. 7](image_url) Exact and approximate plots of \(W^\alpha_q(x) \) and \(W''_q(x) \) for \(f(x) = \frac{2}{3} e^{-x} + \frac{2}{3} e^{-2x}, \theta = 1, q = \frac{1}{10} \)

Dominant exponent \(\Phi_q \)	Percent relative error (\(\Phi_q \))	Optimal barrier \(b_{DeF} \)	Percent relative error (\(b_{DeF} \))	
Exact	0.110113	3.45398	0	
Expo	0.110657	0.494313	3.51173	1.67191
Dev	0.110115	0.00195933	3.48756	0.972251
Renyi	0.110078	0.0321413	3.5323	2.26744

Table 1 Exact and approximate values of \(\Phi_q \) and \(b_{DeF} \) for \(f(x) = \frac{2}{3} e^{-x} + \frac{2}{3} e^{-2x}, \theta = 1, q = \frac{1}{10} \), as well as percent relative errors, computed as the absolute value of the difference between the approximation and the exact, divided by the exact, times 100. Relative errors for \(\Phi_q \) are less than 0.5%, with the pure exponential approximation proving to be the worst and the DeVylnder the best approximations, respectively. The optimal barrier \(b_{DeF} \) is also best approximated by DeVylnder, with Renyi being the worst at 2.26%
6.2 A Cramér-Lundberg Process with Hyperexponential Claims of Order 3

Consider a Cramér-Lundberg process with density function

\[f(x) = \frac{12}{83} e^{-x} + \frac{42}{83} e^{-2x} + \frac{150}{83} e^{-3x}, \]

and \(c = 1, \lambda = \frac{83}{48}, \theta = \frac{263}{235}, p = \frac{263}{498}, q = \frac{5}{48}. \)

The Laplace exponent of this process is

\[\kappa(s) = s - \frac{12s}{83(s+1)} - \frac{21s}{83(s+2)} - \frac{50s}{83(s+3)}, \]

and from this one can invert \(\frac{1}{\kappa(s) - q} = W_q(s) \) to obtain the scale function \(W_q(x) = -0.0813294 e^{-2.60997x} - 0.179472 e^{-1.68854x} + 0.373887 e^{-0.779311x} + 1.63469 e^{0.18198x}. \)

From this, we see that the dominant exponent is \(\Phi_q = 0.18198. \)

Figure 8 shows the exact and approximate plots of the first two derivatives of \(W_q. \) The exact plots are labelled \(W_{\text{exact}}, \) and coloured as the darkest. The plots of \(W' \) exhibit noticeable unique minima around \(x = 2, \) with the exact one being at \(b_{\text{DeF}} = 1.89732, \) which is the optimal barrier that maximizes dividends here. Note that the approximations are practically indistinguishable from the exact around this point (which is our main object of interest here).

Table 7 provides an exact and approximate values of \(\Phi_q \) and \(b_{\text{DeF}}. \)

Table 8 gives exact and the winning DeVylder approximate values of \(\Phi_q. \)

Table 9 provides results for the exact and approximate values of \(b_{\text{DeF}}. \)

We move now to the dividend problem with capital injections with cost \(k \geq 1 \) as in Theorem 1. One can compute the value function \(J_0 \) at \(x = 0 \) in terms of \(W, Z, C, S, \) and \(G - \) see Eq. (8).

To provide a more concrete example, fixing \(q = \frac{5}{48}, P = 0, k = 3/2 \) as input parameters we compute for values of \(J_0 \) as a function of \(\theta, \) with results summarized in the Tables 9, 10, 11 and 12. The tables provide comparisons of the computed optimal quantities \(J_0, a, \) and \(b \) to an approximation using all exponential inputs (referred to as \(J_0, a, \) and \(b \) expo pure) and to an approximation which uses actual inputs but computed using the exponential formula as described in Eq. (11) (referred to as \(J_0, a, \) and \(b \) expo CI).

\footnote{Laplace inversion done via Mathematica; coefficients and exponents are decimal approximations of the real values.}
To provide a point of comparison, we fix \(q = \frac{5}{48} \), and compute the de Finetti barrier to be \(b_{\text{DeF}} = 1.89732 \) and the corresponding dividend value function when starting at \(x = 0 \) to be \(J_{\text{DeF}} = 1.99847 \). See the Table 13 for a comparaison between values of \(J_0 \) and \(b \) in presence and absence of capital injections.

6.3 A Cramér-Lundberg Process with Oscillating Density and Scale Function

In the following example, we study a Cramèr-Lundberg model with density of claims given by

\[
f(x) = u e^{-ax} \cos^2 \left(\frac{\alpha x + \phi}{2} \right) = u e^{-ax} \left(1 + \cos(\alpha x + \phi) \right) =
\]

\[
e^{-ax} \left(u + u \cos(\phi) \cos(\alpha x) - u \sin(\phi) \sin(\alpha x) \right)
\]

Table 4 Values of \(J_0 \) compared with approximations using all exponential inputs (\(J_0 \) expo pure) and actual inputs but computed using the exponential formula (\(J_0 \) expo CI). The pure exponential approximation does a good job of approximating \(J_0 \) for higher values of \(\theta \) considered, while the exponential CI approximation seemed to fair better for lower \(\theta \) values.
Assuming further that \(a = 1 \), \(\phi = 2 \), \(\omega = 20 \), and that \(\theta = 1 \), \(q = 1/10 \), the Laplace exponent for this process is \(\kappa(s) = \frac{s(2.09898s^3 + 5.29695s^2 + 843.502s + 420.846)(s + 1)}{(s^2 + 2s + 401)} \) and the scale function is

\[
W_q(x) = 0.824723e^{0.0881484x} - 0.348141e^{-0.540677x} + e^{-1.01173x}\cos(19.9957x) \left(- (0.0000285494 + 0.0000804151i)\sin(39.9914x) \\
- (0.0000804151 + 0.0000285494i) + (-0.00000804151 + 0.0000285494i)\cos(39.9914x) \right) \\
+ e^{-1.01173x}\sin(19.9957x) \left(- (0.0000804151 - 0.00000804151i)\sin(39.9914x) \\
+ (0.0000285494 + 0.0000804151i)\cos(39.9914x) - (0.0000285494 - 0.00000804151i) \right).
\]

Table 5

\(\theta \)	\(a \) exact	\(a \) expo pure	\(a \) expo pure error	\(a \) expo CI	\(a \) expo CI error
1	3.9669	3.99434	0.0691861	4.17339	0.20551
0.9	3.4372	3.45049	0.386665	3.63512	0.5784
0.8	2.92922	2.9233	0.202204	3.11361	0.629489
0.7	2.45533	2.42622	1.18555	2.61958	0.668958
0.6	2.03051	1.97818	2.57704	2.16741	0.67423
0.5	1.66888	1.59961	4.15022	1.77268	0.621974
0.4	1.37888	1.30566	5.31006	1.44696	0.493725
0.3	1.16063	1.10411	4.86983	1.19323	0.280878
0.2	1.00293	0.961612	4.11969	1.0058	0.286672
0.1	0.868476	0.835496	3.79748	0.868476	0

Table 6

\(\theta \)	\(b \) exact	\(b \) expo pure	\(b \) expo pure error	\(b \) expo CI	\(b \) expo CI error
1	1.41036	1.46188	3.65293	1.25374	11.045
0.9	1.37645	1.44439	4.93621	1.23362	10.3761
0.8	1.31492	1.40417	6.78809	1.19529	9.09781
0.7	1.21057	1.32258	9.25207	1.12775	6.84178
0.6	1.04634	1.17215	12.0245	1.01753	2.7529
0.5	0.810767	0.920406	13.5229	0.853397	5.25805
0.4	0.510085	0.538725	5.61475	0.634716	24.4335
0.3	0.17425	0.0105496	93.9457	0.376872	116.282
0.2	0	0	0	0.105322	100
0.1	0	0	0	0	0
Figure 9a shows the exact and approximate plots of the first two derivatives of W_q. Table 14 provides an exact and approximate values of Φ_q and b_{DeF}.

Clearly, our completely monotone approximation cannot fully reproduce functions like $W_q'(x)$, $W_q''(x)$ in examples like this where oscillations occur (note however that the de Finetti optimal barrier is well approximated here). If a more exact reproduction is necessary, higher order approximations should be used.

7 The Maximal Error of Exponential Approximations J_0 Along One Parameter Families of Cramér-Lundberg Processes

In this section, we provide the two approximations for the dividend value with capital injections J_0, and the dividend barrier b, for two one parameter families of Cramér-Lundberg processes, with densities given respectively by:

$$f(x) = k_\epsilon \left[e^{-x} + \epsilon e^{-2x} \right]$$

(42)

$$f(x) = k_\epsilon \left[\frac{12}{83} e^{-x} + \frac{42}{83} e^{-2x} + \frac{150}{83} e^{-3x} \right]$$

(43)

where k_ϵ is the normalization constant, and compute the maximal error of approximation when $\epsilon \in (0, \infty)$ and $\theta \approx 1$. For this choice, the pure exponential approximation works

Dominant exponent Φ_q	Percent relative error (Φ_q)	Optimal barrier b_{DeF}	Percent relative error (b_{DeF})	
Exact	0.18198	0.189732	0	
Expo	0.184095	1.162215628	2.04608	7.840532962
Renyi	0.181708	0.149466974	2.08136	9.699997892
Dev	0.182011	0.017034839	1.91233	0.79111589
considerably better, ∀ε. Table 15 provides values of \(J_0 \) compared with approximations using all exponential inputs (\(J_0 \) expo pure) and actual inputs but computed using the exponential formula (\(J_0 \) expo CI) ∀ε.

Figure 10 depicts the plots of \(J_0 \) values and errors plotted against \(\theta \).

We do the same thing for the family of densities given by \(f(x) = k \left[\frac{12}{83} e^{-x} + \frac{42}{83} e^{-2x} + \frac{150}{83} e^{-3x} \right] \).

See Table 16 for values of \(J_0 \) compared with approximations using all exponential inputs (\(J_0 \) expo pure) and actual inputs but computed using the exponential formula (\(J_0 \) expo CI) ∀ε, and see Fig. 11 for the plots of \(J_0 \) values and errors as functions of \(\epsilon \).

Table 8

\(\theta \)	Closest approximation	\(\Phi_q \) exact	\(\Phi_q \) approximation	% error \(\Phi_q \)
263/235	Dev	0.18198	0.182011	0.0168217
243/235	Dev	0.194712	0.194754	0.0213671
223/235	Dev	0.209221	0.209279	0.0274827
203/235	Dev	0.225876	0.225957	0.0358309
183/235	Dev	0.245146	0.245262	0.0474032
163/235	Dev	0.267635	0.267806	0.0637063
143/235	Dev	0.294126	0.294382	0.0870647
123/235	Dev	0.325643	0.326038	0.121115
103/235	Dev	0.363539	0.364163	0.171618
83/235	Dev	0.40961	0.410625	0.247788
63/235	Dev	0.466261	0.46796	0.364457
43/235	Dev	0.536719	0.539647	0.545532
23/235	Dev	0.62533	0.630516	0.829419
3/235	Dev	0.737962	0.747389	1.27736

Table 9

\(\theta \)	Closest approximation	Barrier exact	Barrier approx	% error Barrier
263/235	Dev	1.89732	1.91233	0.791183
243/235	Dev	1.79954	1.78002	1.08482
183/235	Ren	1.45224	1.52484	4.9989
163/235	Ren	1.31579	1.33691	1.60463
143/235	Ren	1.16804	1.12368	3.79796
123/235	Expo	1.00898	1.04123	3.19653
103/235	Expo	0.839228	0.794964	5.27444
83/235	Expo	0.660338	0.513179	22.2854
63/235	Expo	0.474896	0.196234	58.6785
43/235	Expo	0.286563	0	100
23/235	Expo	0.0998863	0	100
3/235	All	0	0	0
8 The Profit Function when the Claims are Distributed According to a Matrix Exponential Jumps Density

Consider now the more general case when the claims are distributed according to a matrix exponential density generated by a row vector β and by an invertible matrix B.

θ	J_0	J_0 expo pure	J_0 expo pure error	J_0 expo CI	J_0 expo CI error
263/235	3.7747	3.76883	0.155556	4.11784	9.09041
243/235	3.41491	3.38603	0.845606	3.74156	9.5654
223/235	3.0636	3.00802	1.81444	3.36985	9.99637
203/235	2.72335	2.63828	3.1238	3.00466	10.3296
183/235	2.39737	2.28225	4.80185	2.64879	10.4871
163/235	2.08958	1.94765	6.79226	2.3062	10.3665
143/235	1.80446	1.64396	8.8946	1.9823	9.85516
123/235	1.54668	1.38072	10.73	1.68379	8.86472
103/235	1.32041	1.16526	11.7499	1.4178	7.37587
83/235	1.12864	1.00194	11.2528	1.19022	5.45555
63/235	0.972835	0.88785	8.73585	1.00404	3.20798
43/235	0.852739	0.789923	7.36635	0.859039	0.738837
23/235	0.751597	0.701299	6.69218	0.751597	0
3/235	0.660372	0.620567	6.02761	0.660372	0

θ	a	a expo pure	a expo pure error	a expo CI	a expo CI error
263/235	2.51647	2.74523	0.155536	2.51255	9.09042
243/235	2.27661	2.49437	0.845956	2.25735	9.56541
223/235	2.0424	2.24657	1.81443	2.00535	9.99638
203/235	1.81557	2.00311	3.1238	1.75885	10.3296
183/235	1.59825	1.76586	4.80185	1.5215	10.4871
163/235	1.39306	1.53747	6.79226	1.29844	10.3665
143/235	1.20298	1.32153	8.8946	1.09598	9.85516
123/235	1.03112	1.12252	10.73	0.920479	8.86472
103/235	0.880271	0.945198	11.7499	0.77684	7.37587
83/235	0.752428	0.793477	11.2258	0.667962	5.45555
63/235	0.648557	0.669362	8.73585	0.5919	3.20798
43/235	0.568493	0.572693	7.36635	0.526616	0.738838
23/235	0.501065	0.501065	6.69218	0.467532	0
3/235	0.440248	0.440248	6.02761	0.413711	0
of order \(n\), which are such that the vector \(\beta e^{\mathbf{t}^B}\) is decreasing componentwise to 0, and \(\beta \mathbf{1} \neq 0\), with \(\mathbf{1}\) a column vector. As customary, we restrict w.l.o.g. to the case when \(\beta\) is a probability vector, and \(\beta \mathbf{1} = 1\), so that
\[
\bar{F}(x) = \beta e^{\mathbf{t}^B} \mathbf{1}
\]

\(\theta\)	\(b\)	\(b\) expo pure	\(b\) expo pure error	\(b\) expo CI	\(b\) expo CI error
263/235	0.709355	0.805116	13.4997	0.677918	4.43179
243/235	0.695874	0.801936	15.2416	0.671779	3.46259
223/235	0.677601	0.794377	17.2337	0.662801	2.18425
203/235	0.653005	0.779265	19.3352	0.649805	0.490147
183/235	0.620126	0.751601	21.2012	0.631097	1.76912
163/235	0.576553	0.704104	22.123	0.604293	4.81128
143/235	0.519526	0.627369	20.7579	0.566198	8.98366
123/235	0.446259	0.511076	14.5246	0.519261	14.947
103/235	0.354524	0.346046	2.39143	0.440755	24.3231
83/235	0.243362	0.126054	48.2032	0.347059	42.6099
63/235	0.113593	0	100	0.231975	104.216
43/235	0	0	0	0.098748	0
23/235	0	0	0	0	0
3/235	0	0	0	0	0

Table 13 Values of \(J_0\) and \(b\) in presence of capital injections compared to the case where capital injections are non-existent, \(J_{DeF} = 1.99847\) and \(b_{DeF} = 1.89732\). As \(k\) is increased one can see that \(J_0\) and \(b\) approaches \(J_{DeF}\) and \(b_{DeF}\). This is expected since higher costs of injecting capital makes it less viable, hence it is treated like the concept does not exist

\(k\)	\(J_0\) % deviation	\(J_0 - J_{DeF}\)	\(J_0\)	\(b\) % deviation	\(b\)
1	154.123	3.0801	5.07857	100	0
2	65.714	1.31337	3.31174	43.0208	1.08108
3	42.863	0.856604	2.85507	25.4792	1.4139
4	31.4465	0.628448	2.62692	17.6853	1.56178
5	24.6995	0.493611	2.49208	13.4234	1.64264
6	20.2855	0.4054	2.40387	10.7759	1.69287
7	17.1884	0.343504	2.34197	8.98441	1.72686
8	14.9014	0.2978	2.29627	7.69619	1.7513
9	13.1463	0.262724	2.26119	6.72732	1.76968
10	11.758	0.23498	2.23345	5.97306	1.78399
100	1.11095	0.022019	2.02067	0.533448	1.8872
1000	0.110409	0.0020648	2.00067	0.0527257	1.89632
10000	0.0109536	0.000218903	1.99869	0.00533526	1.89722

© Springer
is a valid survival function.

The matrix versions of our functions are:

\[
\begin{align*}
C_q(x) &= \lambda \int_0^x W_q(x - y) \, \bar{F}(y + \alpha) \, dy = \lambda \tilde{\beta} \int_0^x W_q(x - y) \, e^{yB} \, dy \, e^{aB} \mathbf{1} = C(x)e^{aB} \mathbf{1} \\
m_a(y) &= \int_0^a \frac{y}{z}f(y + z) \, dz = \tilde{\beta} \, e^{aB} \int_0^a \frac{e^{zB}(-B)}{z} \, dz = \tilde{\beta} \, e^{aB}M(a) \mathbf{1} \\
G_a(x) &= \lambda \int_0^x W_q(x - y) \, m_a(y) \, dy = C(x)M(a) \mathbf{1} \\
\end{align*}
\]

where

\[
\begin{align*}
C(x) &= \lambda \int_0^x W_q(x - y) \, e^{yB} \, dy \\
C(x) &= \lambda \tilde{\beta} \int_0^x W_q(x - y) \, e^{yB} \, dy \\
\end{align*}
\]

The product formulas may also be established directly in the phase-type case, using the conditional independence of the ruin probability of the overshoot size.

We derive first these extensions from scratch for \((\tilde{\beta}, B)\) phase-type densities, in order to highlight their probabilistic interpretation. Later, we will show that the matrix exponential jumps case follows as a particular case of Gajek and Kučiński (2017).

Recall first (Albrecher and Asmussen 2010) that \(\Psi_q(x) = \bar{\Psi}_q(x) \mathbf{1}\), where \(\bar{\Psi}_q(x)\) is a vector whose components represent the probability that ruin occurs during a certain phase, and that the conditional independence of ruin and overshoots translates into the product formula

\[
\Psi_q(x, y) := P_x[T_{0-} < \infty, X_{T_{0-}} < -y] = \bar{\Psi}_q(x)e^{yB} \mathbf{1}.
\]

Table 14

| Methodology and Computing in Applied Probability (2022) 24:2339–2371 |
|---|---|---|---|---|
| Dominant exponent \(\Phi_q\) | Percent relative error (\(\Phi_q\)) | Optimal barrier \(b_{DeF}\) | Percent relative error (\(b_{DeF}\)) |
| Exact | 0.0881484 | 0 | 4.38201 | 0 |
| Expo | 0.0878658 | 0.32053 | 4.42263 | 0.927122 |
| Renyi | 0.0881481 | 0.000314617 | 4.39788 | 0.362284 |
| Dev | 0.0881484 | 6.11743*10^{-6} | 4.39745 | 0.352331 |

The DeVylder approximation wins on both fronts.
Table 15 \(\lambda = 1, \theta = 1, q = \frac{1}{10}, k = 3/2 \) and \(P = 0 \). As expected, the errors decrease both as \(\epsilon \) goes to zero and infinity since the densities approach an exponential density

\(\epsilon \)	J0 exact	J0 expo pure	J0 expo pure error	J0 expo CI	J0 expo CI error
0.001	7.1879	7.18802	0.0016603	7.18849	0.00827967
0.01	7.17075	7.17193	0.0164663	7.17666	0.0824782
0.1	7.008	7.01863	0.151653	7.06358	0.793041
1	5.95034	5.99151	0.691856	6.26009	5.20551
10	4.20175	4.19406	0.183122	4.40089	4.73941
100	3.66909	3.6654	0.100631	3.69555	0.721228
1000	3.6025	3.60208	0.0117065	3.60523	0.075585

To take advantage of this, it is convenient to replace from the beginning \(Z_q(x) \) by \(\Psi_q(x) \), taking advantage of the formula (Avram et al. 2004; Kyprianou 2014)

\[
Z_q(x) = \Psi_q(x) + W_q(x) \frac{q}{\Phi_q} \implies C(x) = (c - \frac{q}{\Phi_q})W_q(x) - \Psi_q(x).
\] (47)

Alternatively, one may introduce a vector function

\[
\overline{Z}_q(x) := \Psi_q(x) + W_q(x) \frac{q}{\Phi_q} 1.
\] (48)

On the other hand, the mean function may be written as

\[
m_a = \int_0^a y F(dy) \approx -a F(a) + \int_0^a \overline{F}(x)dx = \overline{\beta} M(a)1, M(a)
\]

\[
= -B^{-1} - e^{a\overline{B}}(aI_n - B^{-1}).
\]

The following result follows in the phase-type case just as in the exponential case (Avram et al. 2021).

Proposition 4 For a Cramèr-Lundberg process (compound Poisson) with matrix exponential jumps of type \((\overline{\beta}, B)\), it holds that

Fig. 10 \(J_0 \) values and errors plotted against \(\epsilon \). Errors peak at \(\epsilon = 1 \)
Table 16 \(\lambda = 1, c = 1, q = \frac{5}{4}, k = 3/2 \) and \(P = 0 \). As \(\varepsilon \) goes to zero, the density becomes exponential hence the decrease in errors. As \(\varepsilon \) goes to infinity, the density approaches a hyper exponential density of order 2, but still both methods of approximating \(J_0 \) yield reasonable results

\(\varepsilon \)	\(J_0 \) exact	\(J_0 \) expo pure	\(J_0 \) expo pure error	\(J_0 \) expo CI	\(J_0 \) expo CI error
0.001	7.95508	7.95771	0.0330111	7.96565	0.132796
0.01	7.68765	7.71127	0.307292	7.78772	1.30166
0.1	6.06176	6.15381	1.5186	6.62641	9.31507
1	3.7747	3.76883	0.155556	4.11784	9.09041
10	3.1382	3.1379	0.00959692	3.23354	3.03813
100	3.05894	3.06427	0.174306	3.12284	2.08921
1000	3.0508	3.05678	0.196219	3.11149	1.98956

\[
J_0 = \begin{cases}
 kG_a(x) + J_0 S_a(x) = kG_a(x) + \frac{1-kG'(b)}{S'(b)} S_a(x), & x \in [0, b] \\
 kx + J_0, & x \in [-a, 0] \\
 0, & x \leq -a
\end{cases}
\]

(49)

1. where

\[
\begin{align*}
 C(x) &= \lambda \int_{0}^{x} W_q(x-y) e^{\beta y} dy \\
 C(x) &= \lambda \beta \int_{0}^{x} W_q(x-y) e^{\beta y} dy \\
 G_a(x) &= C_q(x) M(a) 1 \\
 R_a(x) &= S_a(x) - Z_q(x) = C_q(x) e^{\alpha B} 1
\end{align*}
\]

and

\[
J_0 = \frac{1 - kC_q'(b) M(a) 1}{qW_q(b) + C_q'(b) e^{\alpha B} 1}.
\]

(51)

2. For fixed \(a \), the optimality equation \(\frac{\partial}{\partial b} J_0^{a,b} = 0 \) simplifies to

Fig. 11 \(J_0 \) values and errors plotted against \(\varepsilon \). Errors peak at \(\varepsilon = 0.1 \).
\[J_0 = \frac{k\overline{C}'(b) M(a)1}{qW'(b) + \overline{C}'(b)e^{ab}1}. \] (52)

Remark 8 The additive separation of \(a; b\) which was the basis of proving optimality in the exponential case does not seem possible anymore, but Eq. (51) allows the numeric computation of the optimum.

Appendix: The Proof of Theorem 1 when \(\sigma \equiv 0\)

To simplify our readers’ journey, we sketch here the main elements of proof, in the case \(\sigma \equiv 0\), generalizing Avram et al. (2021). Please note that the main modification when diffusion is present applies to the computation of the term \(I_y\) below, in which \(\sigma^2\) will appear accompanying a Dirac mass in the Gerber-Shiu measure.

We begin by applying the strong Markov property at the stopping time \(\tau^x := \tau_{0^-}^x \wedge \tau^x_{b^+} = \inf \{ t \geq 0 : X_t^x < 0 \} \wedge \inf \{ t \geq 0 : X_t^x > b \}\). It follows that, for \(0 \leq x \leq b\),

\[
J_x = \mathbb{E}_x \left[e^{-q\tau_{0^-}^x} 1_{\tau_{0^-}^x < \tau^x_{b^+}} J_b + \mathbb{E}_x \left[e^{-q\tau^x_{b^-}} 1_{\tau^x_{b^-} > \tau_{0^-}^x} \left(J_0 + kX_{\tau_{0^-}^x} \right) 1_{X_{\tau_{0^-}^x} \geq -a} \right] \right]
- P\mathbb{E}_x \left[e^{-q\tau_{0^-}^x} 1_{\tau_{0^-}^x > \tau^x_{b^-}} 1_{X_{\tau^x_{b^-}} < -a} \right] = \frac{W_a(x)}{W_q(b)} \left(J_b - I_b \right) + I_x,
\] (53)

where

\[
I_y := \mathbb{E}_y \left[e^{-q\tau_{0^-}^0} \left((J_0 + kX_{\tau_{0^-}^0}) 1_{X_{\tau_{0^-}^0} \geq -a} - P1_{X_{\tau_{0^-}^0} < -a} \right) \right].
\]

The term \(I_y\) can be explicitly computed (using the Gerber-Shiu measure).

\[
I_y = \int_{\mathbb{R}_+} \left[(J_0 - ku) 1_{u \leq \sigma \leq -P} 1_{u > -a} \right] \int_{\mathbb{R}_+} (e^{-\Phi(q)v} W_q(y) - W_q(y - v)) \nu(du + dv)
+ \int_{\mathbb{R}_+} (J_0(\bar{v}(v) - \bar{v}(a + v)) - km_a(v) - P\bar{v}(a + v))(e^{-\Phi(q)v} W_q(y) - W_q(y - v)) dv
= W_q(y) \int_{\mathbb{R}_+} (J_0(\bar{v}(v) - \bar{v}(a + v)) - km_a(v) - P\bar{v}(a + v)) e^{-\Phi(q)v} dv
+ G_a(y) - J_0(C(y) - C_a(y)).
\]

Since the term accompanying \(W_q(y)\) is a constant, by replacing this in Eq. (53), it follows that

\[
J_x - \left(G_a(x) - J_0(C(x) - C_a(x)) \right) = \frac{W_a(x)}{W_q(b)} \left(J_b - \left(G_a(b) - J_0(C(b) - C_a(b)) \right) \right). \] (54)

With the particular choice of \(x = 0\), by recalling that \(C_a(0) = G_a(0) = C(0) = 0\), the last equation yields
which, combined with \(W_q(0) = \frac{1}{\epsilon} \) and \(C(x) = cW_q(x) - Z_q(x) \), leads to

\[
J_x = G_a(x) - J_0 \left(C(x) - C_a(x) - cW_q(x) \right) = G_a(x) + J_0 \left(C_a(x) + Z_q(x) \right).
\]

Theorem 1 is now proven, in the case \(\sigma \equiv 0 \).

Data Availability The datasets generated during the current study are available from the corresponding author upon request.

References

Albrecher H, Asmussen S (2010) Ruin probabilities, vol 14. World Scientific
Albrecher H, Azcue P, Muler N (2020) Optimal ratcheting of dividends in insurance. SIAM J Control Optim 58(4):1822–1845
Avram F, Pistorius M (2014) On matrix exponential approximations of ruin probabilities for the classic and brownian perturbed cramér-lundberg processes. Insurance: Mathematics and Economics 59:57–64
Avram F, Kyprianou A, Pistorius M (2004) Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options. Ann Appl Probab 14(1):215–238
Avram F, Palmowski Z, Pistorius MR (2007) On the optimal dividend problem for a spectrally negative Lévy process. The Annals of Applied Probability pp. 156–180
Avram F, Chedom-Fotso D, Horváth A (2011) On moments based Padé approximations of ruin probabilities. J Comput Appl Math 235(10):3215–3228
Avram F, Banik AD, Horváth A (2018a) Ruin probabilities by Pad’s method: simple moments based mixed exponential approximations (Renyi, De Vylder, Cramér-Lundberg), and high precision approximations with both light and heavy tails. European Actuarial Journal pp. 1–27
Avram F, Pérez JL, Yamazaki K (2018b) Spectrally negative Lévy processes with Parisian reflection below and classical reflection above. Stochastic processes and Applications 128:255–290
Avram F, Grahovac D, Vardar-Acar C (2019a) The \(W, Z \) scale functions kit for first passage problems of spectrally negative Lévy processes, and applications to the optimization of dividends. arXiv preprint
Avram F, Horváth A, Provost S, Solon U (2019b) On the padé and laguerre–tricomi–weeks moments based approximations of the scale function \(w \) and of the optimal dividends barrier for spectrally negative lévy risk processes. Risks 7(4):121
Avram F, Goreac D, Li J, Wu X (2021) Equity cost induced dichotomy for optimal dividends with capital injections in the Cramér-Lundberg model. Mathematics 9(9):931. https://doi.org/10.3390/math9090931
Bertoin J (1998) Lévy processes, vol 121. Cambridge University Press
Beveridge CJ, Dickson DC, Wu X (2007) Optimal dividends under reinsurance. Centre for Actuarial Studies, Department of Economics, University of Melbourne
Bobbio A, Horváth A, Telek M (2005) Matching three moments with minimal acyclic phase type distributions. Stoch Model 21(2–3):303–326
Boyd J (1998) Global approximations to the principal real-valued branch of the lambert w-function. Appl Math Lett 11(6):27–31
Brito P, Fabiao F, Staubyn A (2008) Euler, lambert, and the lambert w-function today. Mathematical Scientist 33(2)
Corless RM, Gonnet GH, Hare DE, Jeffrey DJ, Knuth DE (1996) On the lambertw function. Adv Comput Math 5(1):329–359
De Finetti B (1957) Su un’impostazione alternativa della teoria collettiva del rischio. Transactions of the XVth international congress of Actuaries 2:433–443
De Vylder F (1978) A practical solution to the problem of ultimate ruin probability. Scand Actuar J 1978(2):114–119
Dickson D, Drejic S (2005) Optimal Dividends under a Ruin Probability Constraint
Dumitrescu B, Šicleru BC, Avram F (2016) Modeling probability densities with sums of exponentials via polynomial approximation. J Comput Appl Math 292:513–525
Eisenberg J (2011) Schmidli H (2011) Minimising expected discounted capital injections by reinsurance in a classical risk model. Scand Actuar J 3:155–176
Gajek L, Kucinski L (2017) Complete discounted cash flow valuation. Insur Math Econ 73:1–19
Gerber HU (1969) Entscheidungskriterien für den zusammengesetzten poisson-prozess. PhD thesis, ETH Zurich
Gerber HU, Shiu ES, Smith N (2008) Methods for estimating the optimal dividend barrier and the probability of ruin. Insurance: Mathematics and Economics 42(1):243–254
Højgaard B (2002) Optimal dynamic premium control in non-life insurance. maximizing dividend payouts. Scandinavian Actuarial Journal 2002(4):225–245
Kulenko N, Schmidli H (2008) Optimal dividend strategies in a cramér–lundberg model with capital injections. Insurance: Mathematics and Economics 43(2):270–278
Kyprianou A (2014) Fluctuations of Lévy Processes with Applications: Introductory Lectures. Springer Science & Business Media
Lindensjö K, Lindskog F (2019) Optimal dividends and capital injection under dividend restrictions. arXiv preprint arXiv:190206294
Løkka A, Zervos M (2008) Optimal dividend and issuance of equity policies in the presence of proportional costs. Insurance: Mathematics and Economics 42(3):954–961
Noba K, Pérez JL, Yu X (2020) On the bailout dividend problem for spectrally negative markov additive models. SIAM J Control Optim 58(2):1049–1076
Pakes AG (2015) Lambert’s w meets kermack-mckendrick epidemics. IMA J Appl Math 80(5):1368–1386
Pérez JL, Yamazaki K, Bensoussan A (2018) Optimal periodic replenishment policies for spectrally positive Lévy demand processes. arXiv preprint arXiv:180609216
Ramsay CM (1992) A practical algorithm for approximating the probability of ruin. Transactions of the Society of Actuaries 44:443–461
Shreve SE, Lehoczky JP, Gaver DP (1984) Optimal consumption for general diffusions with absorbing and reflecting barriers. SIAM J Control Optim 22(1):55–75
Vatamidou E, Adan IJBF, Vlasiou M (2014) Zwart B (2014) On the accuracy of phase-type approximations of heavy-tailed risk models. Scand Actuar J 6:510–534
Vazquez-Leal H, Sandoval-Hernandez M, Garcia-Gervacio J, Herrera-May A, Filobello-Nino U (2019) Psem approximations for both branches of lambert function with applications. Discrete Dynamics in Nature and Society

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.