Acute Kidney Injury and Acute Liver Failure in Leptospira Infection and Weil’s Syndrome

Jonathan S Chavez-Iniguez1,2, Said Cabrera-Aguilar1, Guillermo Garcia-Garcia1,2, Juan Armendariz-Borunda2,3

1Nefrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico; 2University of Guadalajara Health Sciences Center (CUCS), Guadalajara, Jalisco, Mexico; 3Tecnologico de Monterrey, Campus Guadalajara, Mexico

Abstract

Leptospirosis is considered a zoonosis acquired predominantly from contaminated surfaces and water, more commonly in emerging countries with limited sanitary conditions. Leptospira in the host unleashes an immune response that explains the symptoms and clinical signs; once it reaches the kidney and liver tissue, it can manifest with alterations that lead to acute and chronic diseases in both organs. Weil’s syndrome is the best known clinical manifestation with jaundice and acute kidney injury that could lead to multiple organ failure and death. For its diagnosis, there are simplified scores such as the SPIRO score, the microbiological criteria by microscopy or serological tests; the treatment focuses on antibiotics and, if necessary, provides organic support until the infection is curtailed. The purpose of this review was to address the impact of Leptospira infection on the kidney and liver, the mechanisms of organ damage, the clinical presentation, and diagnosis and management of this disease.

Keywords: leptospirosis; acute kidney injury; acute liver failure

Introduction

Leptospira shares characteristics of both gram-positive and gram-negative bacteria, and it is strictly a gram-negative aerobic bacterium belonging to the spirochetes genus. There are 22 species (pathogenic and nonpathogenic), as well as more than 350 serotypes (1) (Figure 1A). Leptospira was first observed more than 100 years ago and has been found in most mammals worldwide, including a kidney sample from a whale (2). It is transmitted to humans via infected animals when they come in contact with, or through, contaminated water. It is a ubiquitous disease, more commonly found in tropical climates and in areas where large reservoirs of stagnant water accumulate (3), such as lakes or water remnants from natural disasters (4) (Figure 1B), and transplacental infection is rare but possible (5).

It can result in conditions ranging from a mild and clinically irrelevant disease, to multi-organ failure, with a high mortality rate. In this review, we will describe the epidemiological and clinical aspects of renal and hepatic involvement.
Pathophysiology

Infection in humans usually occurs via mucous membranes or skin abrasions through which microorganisms penetrate the body (Figure 1C). Once inside, the bacteria enter into the lymphatics and then into the bloodstream. From the bloodstream, the infection can spread systemically but tends to settle down within the liver and the kidneys (13). Some studies suggest that the clinical course of the disease depends on a relationship between the species, inoculum size and the route of infection, and the clinical course and outcomes of the disease (4, 14).

Leptospira interrogans produces endotoxins that affect the tubulointerstitial cells, and contains lipopolysaccharide, cytotoxic glycolipoprotein (GLP), and lipoprotein (LipL), especially LipL32, which is immunogenic, and has the ability to activate the immune response driven by white blood cells, producing tumor necrosis factor-α and/or proinflammatory interleukins (15).
The host immune response is both humoral and cellular, and “cytokine storm” and “immunosuppression” models have been proposed (16). Although the pathophysiology of leptospirosis consists of a particular network of mechanisms that are not fully understood, there is no reason to consider the septic shock it causes as different from the typical septic shock caused by other bacteria (17). Markers of endothelial activation and immune activation were associated with disease severity in leptospirosis patients, and it has been shown that plasma levels of E-selectin and Von Willebrand Factor (VWF) strongly increased (18). Leptospires can pass between epithelial cells, including those lining the renal tubules, and this could be an important way to reach and colonize the lumen of the proximal tubules. They have the ability to adhere to cell adhesion molecules, membrane proteins, and transmembrane glycoproteins of the endothelium necessary to maintain vascular integrity, which is a pathogenic mechanism on the endothelium itself (which includes the glomerular, cardiac, and hepatic endothelium). Damage to the glycocalyx has also been observed in kidney tissue obtained from infected individuals (19). The damage to the endothelium may be a key factor in pulmonary pathology. By promoting the extravasation of immune cells to the pulmonary alveoli, autoimmune damage may be triggered, which can cause pulmonary edema and hemorrhagic manifestations (19). Furthermore, although most electron microscopy findings are nonspecific and may be related to the sepsis manifestations of the disease, they suggest a marked alteration of the cell membrane (19).

Weil’s syndrome

Following an incubation period of 7–12 days, clinical manifestation of leptospirosis ranges from mild febrile syndrome to multi-organ failure (16, 20). Other less specific symptoms, which are reported less frequently, include muscle aches, headaches, colds, and mucosal hemorrhage (21) (Figure 1D and 1E), including influenza (22), pancreatitis (23), and gastrointestinal symptoms, with vomiting and diarrhea, which are reported less frequently, include muscle aches, headaches, colds, and mucosal hemorrhage (21) (Figure 1D and 1E). Leptospirosis in tropical Australia, prompt intensive care unit (ICU) support, including early antibiotic administration, protective ventilation strategies, cautious fluid resuscitation, traditional thresholds for renal replacement therapy initiation, corticosteroid therapy, was associated with a very low case-fatality rate (38). Pulmonary involvement at admission is a strong predictor of mortality among patients with severe leptospirosis (39). There have been reports on the use of veno-venous extracorporeal membrane oxygenation in cases with severe respiratory failure and pulmonary hemorrhage, continuous renal replacement therapy in acute kidney injury (AKI), as well as plasmapheresis and extracorporeal cytokine absorbent therapy (40, 41).

The presence of multi-organ dysfunction syndrome and serum potassium concentration >5.0 were independently associated with mortality in patients with confirmed leptospirosis in a critical care setting (42).

Manifestations in the kidney

In the kidney, the clinical manifestations vary widely from disorders of urine concentration and electrolytes abnormalities, to AKI and chronic kidney disease (CKD). The Leptospiral GLP appears to influence tubular transport of ions, particularly Na+ and K+ (43). GLP is a potent and specific Na/K-ATPase inhibitor (44). Tubular changes, characterized by high urinary fractional excretion of sodium and potassium, precede the decrease in glomerular filtration rate, which could explain the high prevalence of hypokalemia. Given that hypomagnesemia usually occurs in the first phase of the disease, close monitoring is also recommended (45). Tubulointerstitial nephritis is a common finding in leptospirosis. In his 2010 report, Araujo et al.
observed a decrease in the expression of ATPase of NHE 3, aquaporin-1, and α-Na (+) K (+) ATPase in the cells of the proximal convoluted tubule. The expression of aquaporin-1 was preserved along the thin descending limb of Henle’s loop in the outer medulla. The expression of α-Na (+) K (+) ATPase was essentially preserved in the distal tubules, that is, the thick ascending limb of the Henle’s loop, macula densa, and distal convoluted tubule. The expression of aquaporin 2 in the collecting tubules was enhanced compared with that in the nonleptospirotic kidneys. NKCC2 cotransport isoform was expressed in the thick ascending limb of Henle’s loop and was essentially preserved in the leptospirotic kidneys (46). Primary injury of the proximal convoluted tubules is regarded as the hallmark of the kidney in leptospirosis (47). Sodium and water transport are particularly affected with increased distal potassium excretion, hypokalemia, and polyuria (46). Kidney injury secondary to rhabdomyolysis and pyelonephritis has also been found. It should be suspected when treating patients with AKI and hyperbilirubinemia (47) who have recently traveled to tropical countries or considered as a differential diagnosis in children with acute fever of infectious origin, with its focus yet to be determined (48).

AKI is the most frequent complication in Weil’s disease, and it is caused by a combination of acute tubular necrosis (ATN) and tubulointerstitial nephritis (49). The incidence of leptospirosis-associated AKI is up to 80%, and its severity is associated with increasing mortality (50, 51, 52, 53). Independent risk factors for ICU admission include tachypnea, hypotension, and AKI. Ceftriaxone is a protective factor for ICU admission, suggesting that its use may prevent severe forms of the disease (54). AKI is typically nonoliguric and is associated with hypokalemia. Oliguria, jaundice, and arrhythmias have been shown to be predictors of AKI development. Hypokalemia is commonly observed in tubulointerstitial nephritis (55). During AKI, a Toll-Like receptors (TLR-2)-dependent immune response occurs, triggering inflammation, which can progress to fibrosis (56). Although acute leptospirosis does not induce multi-organ dysfunction, it can be a predisposing factor for progression to CKD if not treated early. CKD can cause proximal tubular dysfunction, which can be observed in agricultural workers with asymptomatic chronic leptospirosis. It has been suggested that this could represent a predisposing factor that only needs a second hit, such as heat stress or severe dehydration, to progress to end-stage renal disease (57). Another hypothesis supporting leptospirosis as a cause of CKD is the recurrence of AKI, hypokalemia, and the constant proinflammatory stimulus; as an example, some authors have considered it as a possible risk factor in chronic kidney disease of unknown etiology (CKDu). In spite of evidence suggesting that there is an association between leptospirosis and CKDu, no definitive conclusions have been drawn as yet (58) (Figure 1E).

Manifestation in the Liver

In icteric leptospirosis, characterized by rapidly progressive clinical course, high serum bilirubin levels together with moderate increase in liver transaminases may occur (20). Of all leptospiral bilirubin levels, 5%–10% develop a severe form of icterus (26), which is associated with a mortality rate of 5%–15% (59). It remains unclear to what degree the overall liver function is diminished in icteric leptospirosis (59). Bilirubin and other commonly used parameters of hepatic function, such as aminotransferases, albumin, or prothrombin time, are static estimates that cannot assess complex liver functions such as clearance of substances or formation of metabolites (60). Approximately, 90% of Leptospira infections present with nonspecific anicteric clinical picture of fever, which self-limits within a few days. It can later recur as an immune phase (in this phase, aseptic meningitis can occur), when anti-Leptospira antibodies appear (and bacteria can appear via excreted urine) (56) (Figure 1E).

Diagnostic Tests

In the mild form of leptospirosis, routine blood tests results are usually nonspecific (26). In adults with leptospirosis, a simple three-point clinical score—the SPIRO score—appears to reliably identify patients at risk of severe disease. An absence of hypotension, oliguria, or abnormal auscultatory findings—a SPIRO score of zero—was particularly helpful in identifying patients at low risk of severe disease. This score facilitates the recognition of high-risk patients, expediting the initiation of supportive treatment, and prompting consideration to transfer to a referral facility (61).

Since diagnostic methods can be direct or indirect, the best method depends on when it is used (62) (Figure 2). There are various diagnostic methods: those based on microbiology (dark-field microscopy), serology (microscopic agglutination test [MAT], enzyme-linked immunosorbent assay [ELISA], immunofluorescence, hemagglutination, and lateral flow assay), and those based on molecular biology. MAT is the gold standard for serodiagnosis of leptospirosis because of its unsurpassed diagnostic specificity (63, 64). A combination of C-reactive protein (CRP) and ELISA has been proposed to achieve a rapid diagnosis with little margin for error; however, MAT should subsequently be used to identify the serotype for epidemiological purposes (63).

The modified Faine’s prediction score is limited by the requirement of specialized tests, which are difficult to conduct in rural areas. In addition, it was developed for patients who required hospitalization. Because of the high prevalence of leptospirosis in rural areas of developing countries (up to 29.5% in high-risk groups) (65) and the lack of the required infrastructure to carry out these tests, a new score, the OPD Lepto score, has been developed. It comprises only
Weil’s syndrome

However, a recent study failed to show a decrease in mortality in leptospirotic patients receiving empiric antibiotics (28, 71). Although *Leptospira* spp. are intrinsically resistant to several antibiotics, there is little evidence of acquired resistance to antimicrobial agents used in the treatment of acute leptospirosis (1). Patients experience shaking chills, a rise in temperature, and intensification of skin rashes known as the Jarisch–Herxheimer reaction (JHR), with symptoms resolving a few hours later. Case reports indicate that the JHR can also include uterine contractions in pregnancy, worsening of liver and renal function, acute respiratory distress syndrome, myocardial injury, hypotension, meningitis, alterations in consciousness, seizures, and stroke (72). Two risk factors were independently associated with JHR occurrence: *L. interrogans* serogroup Australis as the infectious agent and a delay of >3 days between the onset of symptoms and the initiation of antibiotherapy (73). Although rarely encountered and not well described in the literature, initiation of antibiotics can cause a JHR reaction. The JHR may be self-limited and of short duration, or it can be prolonged and severe (74). It has been recommended that patients started on antibiotics for leptospirosis/Weil’s disease should be monitored in the emergency department for a short period of time, prior to discharge or being admitted to a regular medical ward for observation, given the possibility of decompensation. The use of azithromycin and doxycycline has been shown to decrease seropositivity without a significant effect on clinical leptospirosis (65).

The treatment of Weil’s syndrome consists of life support measures and antibiotic therapy (75). It is common for seriously ill patients to require renal support therapy and ICU.

![Figure 2. The diagnostic/treatment algorithm for patients at high risk of acquiring leptospirosis, defined as an OPD Lepto Score > 3.5.](image)

An approach and treatment algorithm are proposed in Figure 2. Antibiotic treatment is considered efficient in all stages of the disease. Mild cases can be treated in the outpatient setting with oral amoxicillin (30–40 mg/kg/day) or ampicillin (50–100 mg/kg/day) four times a day for 7–10 days. Children > 8 years of age can receive doxycycline (2 mg/kg/dose) two times a day for 7–10 days (62, 63, 67–69). Patients with severe infections should be treated with intravenous penicillin in doses of 50,000–100,000 U/kg/day for 7–10 days, or with third-generation cephalosporins or erythromycin (9). In patients allergic to penicillin, erythromycin, 30–50 mg/kg/day, can be given in 3–4 doses for 7–10 days. Empiric treatment should be recommended before confirmation of laboratory tests, as serological diagnosis is time-consuming (70). However, a recent study failed to show a decrease in mortality in leptospirotic patients receiving empiric antibiotics (28, 71). Although *Leptospira* spp. are intrinsically resistant to several antibiotics, there is little evidence of acquired resistance to antimicrobial agents used in the treatment of acute leptospirosis (1). Patients experience shaking chills, a rise in temperature, and intensification of skin rashes known as the Jarisch–Herxheimer reaction (JHR), with symptoms resolving a few hours later. Case reports indicate that the JHR can also include uterine contractions in pregnancy, worsening of liver and renal function, acute respiratory distress syndrome, myocardial injury, hypotension, meningitis, alterations in consciousness, seizures, and stroke (72). Two risk factors were independently associated with JHR occurrence: *L. interrogans* serogroup Australis as the infectious agent and a delay of >3 days between the onset of symptoms and the initiation of antibiotherapy (73). Although rarely encountered and not well described in the literature, initiation of antibiotics can cause a JHR reaction. The JHR may be self-limited and of short duration, or it can be prolonged and severe (74). It has been recommended that patients started on antibiotics for leptospirosis/Weil’s disease should be monitored in the emergency department for a short period of time, prior to discharge or being admitted to a regular medical ward for observation, given the possibility of decompensation. The use of azithromycin and doxycycline has been shown to decrease seropositivity without a significant effect on clinical leptospirosis (65).

The treatment of Weil’s syndrome consists of life support measures and antibiotic therapy (75). It is common for seriously ill patients to require renal support therapy and ICU.
monitoring. Treatment recommendations include a high dialysis dose, but the type of dialysis may not affect clinical outcomes in severe leptospirosis (76). Conservative fluid intake and approaches to minimize lung injury, such as low tidal volume and high positive end-expiratory pressure, when artificial ventilation is required, are recommended (28, 77).

Finally, Gomes et al. opened a new window of opportunity to treat leptospirosis with antibodies. They reported that anti-LipL32 mAbs inhibited the growth of *L. interrogans* in vitro and offered significant protection in animal models when administered prior to infection (78).

Acknowledgments

None.

Conflicts of interest

The authors declare no conflict of interest.

References:

1. Trott, D. J., Abraham, S., & Adler, B. Antimicrobial resistance in *Leptospira, Brucella*, and other rarely investigated veterinary and zoonotic pathogens. Microbiol Spectr. 2018 Jul;6(4). http://dx.doi.org/10.1128/microbiolspec.ARBA-0029-2017

2. Loffler, S. G., et al. Isolation of a seawater tolerant *Leptospira* spp. from a southern right whale (Eubalaena australis). PLoS One. 2015;10:e0144974 (2015). http://dx.doi.org/10.1371/journal.pone.0144974

3. Diyas, S., Lezreg, M., Badsi, S., & Housni, B. Leptospirosis revealed by acute pancreatitis. Pan Afr Med J. 2019 Oct 11;34:83. http://dx.doi.org/10.11604/pamj.2019.34.83.15680. eCollection 2019.

4. Sullivan, J. P., Nair, N., Potula, H. H., & Gomes-Solecki, M. Eyedrop inoculation causes sublethal leptospirosis in mice. Infect. Immun. 2017;85, (2017). http://dx.doi.org/10.1128/IAI.01050-16

5. Puliath, G., & Singh, S. Leptospirosis in pregnancy. Eur. J. Clin. Microbiol. Infect. Dis. 2012;31: 2491–2496 (2012). http://dx.doi.org/10.1007/s10096-012-1625-7

6. Inoue, T., Yoshikawa, K., Tada, M., Nakamura, T., & Hinoshita, F. Two cases of Weil's disease with acute renal failure in the central Tokyo metropolitan area. Clin. Nephrol. 2010;73:76–80 (2010). http://dx.doi.org/10.5416/CNP70367

7. Toliver, H. L., & Krane, N. K. Leptospirosis in new orleans. Am. J. Med. Sci. 2014;347:159–163 (2014). http://dx.doi.org/10.1097/MAJ.0b013e3182787068

8. Costa, F., et al. Global morbidity and mortality of leptospirosis: A Systematic Review. PLoS Negl. Trop. Dis. 2015;9:e0003898 (2015). http://dx.doi.org/10.1371/journal.pntd.0003898

9. Wang, J., et al. The preventable efficacy of β-glucan against leptospirosis. PLoS Negl. Trop. Dis. 2019;13:e0007789 (2019). http://dx.doi.org/10.1371/journal.pntd.0007789

10. Adler, B. History of leptospirosis and leptospirosis. Curr Top Microbiol Immunol. 2015;387:1–9. http://dx.doi.org/10.1007/978-3-662-45059-8_1

11. Temelam, N., Jarinpinthuk, S., Phinyo, P., Patumanond, J., & Sriasawat, N. Development and validation of a simple score for diagnosis of leptospirosis at outpatient departments. PLoS Negl. Trop. Dis. 2020;14:e0007977 (2020). http://dx.doi.org/10.1371/journal.pntd.0007977

12. Mason, M. R., Encina, C., Sreevatsan, S., & Muñoz-Zanzi, C. Distribution and diversity of pathogenic *Leptospira* species in peri-domestic surface waters from South Central Chile. PLoS Negl Trop Dis. 2016 Aug 16;10(8):e0004895. http://dx.doi.org/10.1371/journal.pntd.0004895. eCollection 2016 Aug.

13. Wang S, Stobart Gallagher MA, Dunn N. Leptospirosis (Weil Disease) [Updated 2019 Oct 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan.

14. Nair, N., Guedes, M. S., Werts, C., & Gomes-Solecki, M. The route of infection with *Leptospira interrogans* serovar Copenhageni affects the kinetics of bacterial dissemination and kidney colonization. PLoS Negl. Trop. Dis. 2020;14:e0007950 (2020). http://dx.doi.org/10.1371/journal.pntd.0007950

15. Yang, H. Y., et al. Overlooked risk for chronic kidney disease after Leptospirosis infection: A population-based survey and epidemiological cohort evidence. PLoS Negl Trop Dis. 2015 Oct 9; 9(10):e0004105. http://dx.doi.org/10.1371/journal.pntd.0004105. eCollection 2015.

16. Cagliero, J., Villanueva, S. Y. A. M., & Matsui, M. Leptospirosis pathophysiology: Into the storm of cytokines. Front Cell Infect Microbiol. 2018 Jun 20;8:204. http://dx.doi.org/10.3389/fcimb.2018.00204. eCollection 2018.

17. Duarte-Neto, A. N., et al. Severe leptospirosis features in the spleen indicate cellular immunosuppression similar to that found in septic shock. Front Immunol. 2019 Apr 30:10:920. http://dx.doi.org/10.3389/fimmu.2019.00920. eCollection 2019.

18. Goeijenbier, M., et al. Markers of endothelial cell activation and immune activation are increased in patients with severe leptospirosis and associated with disease severity. J. Infect. 2015;71:437–446 (2015). http://dx.doi.org/10.1016/j.jinf.2015.05.016

19. De Brito, T., da Silva, A. M. G., & Abreu, P. A. E. Pathology and pathogenesis of human leptospirosis: A commented review. Rev Inst Med Trop Sao Paulo. 2018;60:e23. http://dx.doi.org/10.1590/1678-9946201860023. Epub 2018 May 28.

20. Haake, D. A., & Levett, P. N. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 2015;387:65–97 (2015). http://dx.doi.org/10.1007/978-3-662-45059-8_5

21. Beriwal, S., et al. LeptoDB: An integrated database of genomics and proteomics resource of *Leptospira*. Database (Oxford). 2015;2015. http://dx.doi.org/10.1093/database/bay057.

22. Yücel Koçak, S., Kudu, A., Kayalar, A., Yilmaz, M., & Apaydın, S. Leptospirosis with acute renal failure and vasculitis: A case report. Arch. Rheumatol. 2019;34:229–232 (2019). http://dx.doi.org/10.15606/ArchRheumatol.2019.7063

23. Maier, A., Kaeser, R., Thimme, R., & Boettler, T. Acute pancreatitis and vasoplegic shock associated with leptospirosis—A case report and review of the literature. BMC Infect. Dis. 2019 May 8;19(1):395. http://dx.doi.org/10.1186/s12879-019-4040-1

24. El Hasbani, G., et al. Unusual presentation of urban leptospirosis complicated by a septic shock. IDCases. 2019 Jun 13;17:e00574. http://dx.doi.org/10.1016/j.idcr.2019.e00574. eCollection 2019.

25. Vale, T. C., et al. Weil syndrome: A rare cause of cerebral venous thrombosis. JAMA Neurol. 2014;71:238–239 (2014). http://dx.doi.org/10.1001/jamaneurol.2013.2175
from the complement system. Scand. J. Immunol. 2011;73:408–419 (2011). http://dx.doi.org/10.1111/j.1365-3083.2010.02505.x
57. Yang, C. W. Leptospirosis renal disease: Emerging culprit of chronic kidney disease unknown etiology. Nephron. 2018;138:129–136 (2018). http://dx.doi.org/10.1159/000480691
58. Carrillo-Larco, R. M., Altez-Fernandez, C., AcovedoRodriguez, J. G., Ortiz-Acha, K., & Ugarte-Gil, C. Leptospirosis as a risk factor for chronic kidney disease: A systematic review of observational studies. PLoS Negl Trop Dis. 2019 May 23;13(5):e0007458. http://dx.doi.org/10.1371/journal.pntd.0007458. eCollection 2019 May.
59. Levett, P. N. Leptospirosis. Clinical Microbiology Reviews vol. 14 296–326 (2001).
60. Watt, G. Leptospirosis in hunter’s tropical medicine and emerging infectious disease: 9th Ed. 597–601 (Elsevier Inc.;, 2012); p. 597–601. http://dx.doi.org/10.1016/B978-1-4160-4390-4.00074-6.
61. Sakka, S. G. Assessing liver function. Current Opinion in Critical Care. vol. 2007;13: 207–214 (2007). http://dx.doi.org/10.1097/MCC.0b013e32812b2628
62. Smith, S., et al. A simple score to predict severe leptospirosis. PLoS Negl. Trop. Dis. 2019;13:e0007205 (2019). http://dx.doi.org/10.1371/journal.pntd.0007205
63. Jiménez, J. I. S., Marroquín, J. L. H., Richards, G. A., & Amin, P. Leptospirosis: Report from the task force on tropical diseases by the World Federation of Societies of Intensive and Critical Care Medicine. Journal of Critical Care. vol. 2018;43: 361–365 (2018). http://dx.doi.org/10.1016/j.jcrc.2017.11.005
64. Yaakob, Y., Rodrigues, K. F., & John, D. V. Leptospirosis: Recent incidents and available diagnostics – A review. Medical Journal of Malaysia. vol. 2015;70: 351–355 (2015).
65. Goris, M. G. A., & Hartskeerl, R. A. Leptospirosis serodiagnosis by the microscopic agglutination test. Curr Protoc Microbiol. 2014 Feb 6;32:Unit 12E.5. http://dx.doi.org/10.1002/9780471729259.mc12e05s12
66. Alikhani, A., et al. Comparison of azithromycin vs doxycycline prophylaxis in leptospirosis, a randomized double blind placebo-controlled trial. J. Infect. Dev. Ctries. 2018;12:991–995 (2018). http://dx.doi.org/10.1016/j.jidc.10126
67. Alikhani, A., et al. Comparison of azithromycin vs doxycycline prophylaxis in leptospirosis, a randomized double blind placebo-controlled trial. J. Infect. Dev. Ctries. 2018;12:991–995 (2018). http://dx.doi.org/10.1016/j.jidc.10126
68. kunikowska, A. J., et al. Liver function assessment using indo-cyanine green plasma disappearance rate in a young male with icteric leptospirosis: A case report. BMC Infect. Dis. 2019;19:473 (2019). http://dx.doi.org/10.1186/s12879-019-4101-5
69. Shah, I. Ira Shah. Pediatr. Infect. Dis. 2012;4:4–8 (2012). http://dx.doi.org/10.4103/0974-777X.96781
70. Yaakob, Y., Rodrigues, K. F. & John, D. V. Leptospirosis: Recent incidents and available diagnostics– A review. Med. J. Malaysia. 70, 351–355 (2015).
71. CDC. Leptospirosis fact sheet for clinicians background [Internet]. 2018. Available from: http://www.cdc.gov/ncezid/dhcpp/ (2018) 2020 Feb.
72. Panagiotidou, E. S., et al. A patient who made an impact on how I practice: Severe leptospirosis presenting as ARDS in the ICU. J. Infect. Public Health. 2018;11:133–135 (2018). http://dx.doi. org/10.1016/j.jiph.2017.03.004
73. Daher, E. F., et al. Leptospirosis-associated acute kidney injury: Penicillin at the late stage is still controversial. J. Clin. Pharm. Ther. 2012;37:420–425 (2012). http://dx.doi.org/10.1111/j.1365-3720.2011.02132.x
74. Butler, T. The Jarisch-Herxheimer reaction after antibiotic treatment of spirochetal infections: A review of recent cases and our understanding of pathogenesis. American Journal of Tropical Medicine and Hygiene. vol. 2017;96: 46–52 (2017). http://dx.doi.org/10.4269/ajtmh.16-0434
75. Guerrier, G., Lefèvre, P., Chouvin, C., & D’Ortenzio, E. Jarisch-herxheimer reaction among patients with leptospirosis: Incidence and risk factors. Am. J. Trop. Med. Hyg. 2017;96:791–794 (2017). http://dx.doi.org/10.4269/ajtmh.16-0457
76. Connor-Schuler, R., Khan, A., Goyal, N., & Zimny, E. Pressor support during a Jarisch Herxheimer reaction after initiation of treatment for Weil’s disease. Am. J. Emerg. Med. 2017;35:1211. e3–1211.e4 (2017). http://dx.doi.org/10.1016/j.ajem.2017.04.064
77. Alventosa Mateu, C., et al. Gastrointestinal bleeding and acute hepatic failure by leptospirosis: aAn entity that should not be forgotten. Rev. Gastroenterol. Peru. 2017;37:96–99 (2017).
78. Cleto, S. A., et al. Hemodiafiltration decreases serum levels of inflammatory mediators in severe leptospirosis: A prospective study. PLoS One. 2016;11:e0160010 (2016). http://dx.doi.org/10.1371/journal.pone.0160010
79. Andrade, L., Cleto, S., & Seguro, A. C. Door-to-dialysis time and daily hemodialysis in patients with leptospirosis: Impact on mortality. Clin. J. Am. Soc. Nephrol. 2007;2:739–744 (2007). http://dx.doi.org/10.2215/CJN.04852007
80. Gomes, C. K., et al. Monoclonal antibodies against LipL32 confer prophylactic protection against lethal leptospirosis challenge in animal model. Microb Pathog. 2020 Apr;141:103975. http://dx.doi.org/10.1016/j.micpath.2020.103975. Epub 2020 Jan 11.