Exhaled nitric oxide in early rheumatoid arthritis and effects of methotrexate treatment

Tomas Weitoft1,2,6*, Anders Lind1, Anders Larsson3, Johan Rönnelid4 & Marieann Högman5

Patients with established rheumatoid arthritis (RA) and disease modifying treatments have lower nitric oxide (NO) levels in the alveolar compartment (CANO) and in the airway wall (CawNO), but also higher diffusion capacities for NO in the airways (DawNO) compared to matched controls. The aim of the present study was to investigate the NO lung dynamics in patients with recent onset RA before and after immune suppression with methotrexate therapy. Patients with early RA and antibodies against anticitrullinated peptides (ACPA) were recruited. Measurement of exhaled NO and inflammatory markers in serum were performed. Clinical disease activity was evaluated with Disease Activity Score for 28 joints. Healthy individuals were used as matched controls. Data are presented as median (lower quartile, upper quartile) values. RA patients (n = 44) had lower exhaled NO (FENO50) 16 (10–24) ppb compared to controls 21 (15, 29) ppb, p = 0.013. In NO-dynamics, CANO was lower in RA patients 1.6 (1.0, 2.2) ppb compared to the control subjects 2.3 (1.3, 3.1) ppb, p = 0.007. CawNO was also lower in the RA patients 55 (24, 106) ppb compared to control subjects 124 (110, 170) ppb, p < 0.001, but DawNO was higher 17 (8, 30) mL/s and 9 (5, 11) mL/s respectively, p < 0.001. Methotrexate treatment for three months reduced disease activity, but did not change the NO dynamics. In conclusion, the altered NO dynamics of the lung in ACPA-positive RA patients are already present in the early stages of the disease before any treatments and do not change after methotrexate therapy suggesting a role in the pathogenesis.

Abbreviations

ACR/EULAR American Congress of Rheumatology/European League Against Rheumatism
ACPA Anti-citrullinated protein/peptide antibodies
Anti-CCP2 Anti-cyclic citrullinated peptide version 2
BMI Body mass index
CANO Alveolar NO
CawNO NO content in airway wall
COPD Chronic obstructive pulmonary disease
DAS28 Disease Activity Score for 28 joints
DawNO NO diffusion capacity over airway wall
DMARD Disease-modifying antirheumatic drug
ESR Erythrocyte sedimentation rate
FENO50 Fraction of exhaled nitric oxide at the flow of 50 mL/s
FEV1 Forced expiratory volume at 1 s
FVC Forced vital capacity
HAQ Health assessment questionnaire
HMA Högman Meriläinen algorithm
Ig Immunoglobulin
MTX Methotrexate

1Centre for Research and Development, Uppsala University/Region Gävleborg, 80187 Gävle, Sweden. 2Department of Medical Science, Rheumatology, Uppsala University, 75185 Uppsala, Sweden. 3Department of Medical Science, Clinical Chemistry, Uppsala University, 75185 Uppsala, Sweden. 4Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden. 5Department of Medical Science, Respiratory, Allergy and Sleep Research, Uppsala University, 75185 Uppsala, Sweden. 6Department of Rheumatology, Region Gävleborg, Box 1512, 80139 Gävle, Sweden. *email: thomas.weitoft@regiongavleborg.se
LAR criteria were recruited on their first visit to the Department of Rheumatology at Gävle hospital, Sweden. Patients with active RA disease (DAS28 > 2.6) started treatment with MTX after the initial testing if there were no contraindications such as pregnancy, elevated liver enzymes or drug fear. The patients returned for a follow-up visit after 3 months. The same information as for the inclusion visit was collected.

In a previous study of RA patients with established disease and long-term anti-rheumatic treatments, we surprisingly found not only lower NO levels in the alveolar and airway compartments, but also higher diffusion capacities for NO in the airways compared to a matched control group of healthy individuals. It was unclear if these findings were the effects of immunosuppressive treatment, a consequence of long-term chronic disease, or a part of the pathogenesis and disease process.

Therefore, the aim of the present study was to investigate the NO lung dynamics in patients with recent onset RA before the initiation of any disease-modifying anti-rheumatic drug (DMARD). In addition, we wanted to elucidate if these levels changed after three months of immunosuppressive treatment with methotrexate (MTX).

Patients and methods

Study design. Protocol A. All RA patients with serum positive for ACPA and meeting the 2010 ACR/EULAR criteria were recruited on their first visit to the Department of Rheumatology at Gävle hospital, Sweden. Patient enrolment occurred March 2017 to November 2019. Patients with a symptom duration exceeding two years at the time of diagnosis, those taking > 10 mg prednisolone daily and those with difficulties understanding study information were excluded. Data from healthy, non-smoking subjects without atopy from a previous study were used as controls, and were matched for sex, age and body mass index (BMI).

Protocol B. Patients with active RA disease (DAS28 > 2.6) started treatment with MTX after the initial testing if there were no contraindications such as pregnancy, elevated liver enzymes or drug fear. The patients returned for a follow-up visit after 3 months. The same information as for the inclusion visit was collected.

Data collection. The patients were evaluated clinically by their treating rheumatologist (TW, ALi). Disease activity was measured using the Modified Disease Activity Scores for 28 joints (DAS28) and disability with the Swedish version of the Stanford Health Assessment Questionnaire (HAQ). Measurements of exhaled NO and s-CRP were obtained together with a serum analysis for inflammatory markers.

NO analysis. In compliance with the 2005 American Thoracic Society and the European Respiratory Society (ERS) recommendations for NO measurements, the exhaled NO was analysed at an exhalation flow rate of 50 mL/s (FENO50) using EcoMedics DLC 88 (Eco Medics AG, Dürnten, Switzerland). In compliance with the ERS technical standards of modelling NO dynamics, we used the nonlinear method with exhalation flows of 20, 100 and 300 mL/s. NO free gas was inhaled and flow resistors facilitated a constant exhaled flow. The temperature was constant through all measures. A visual feedback system helped to guide the subjects so they
could achieve the targeted flow throughout the exhalation. The non-linear HMA method was used with the software in the NO analyser. For quality control, a calculated FENO50 for the HMA was derived for each subject and compared to the measured value. The HMA method estimates the following NO parameters: CANO, CawNO and DawNO.

Lung function. Pre-bronchodilator spirometry lung function testing was performed using Welch Allyn, Spiro Perfect II (Welch Allyn, New York, USA). Results of forced expiratory volume at one second (FEV1) and forced vital capacity (FVC) are expressed as ratios and also as the percent of the predicted values based on age and sex according to Hedenström et al.24,25.

Blood analysis. Blood samples were collected for analysis of inflammatory markers, such as Erythrocyte Sedimentation Rate (ESR) and serum C-Reactive Protein (s-CRP). ACPA subclasses of IgA and IgG were analysed as anti-cyclic citrullinated peptide version 2 (anti-CCP2) and RF subclasses of IgA and IgM RF were analysed with fluorescence immunoassay (Elia, Thermo Fischer Scientific, Uppsala, Sweden) on a Phadia250 instrument (Thermo Fisher Scientific) according to the manufacturer’s instructions. All patients and all autoantibodies were investigated in parallel on one occasion. Cut-off levels for anti-CCP2 IgG and IgA were 7 arbitrary units. For RF IgM it was 9 arbitrary units and for IgA 5 arbitrary units. Serum nitrate/nitrite (NOx) was analysed using a Cayman nitrate/nitrite colorimetric assay kit (Ann Arbor, Michigan 48108 USA). The total coefficient of variation for the NOx assay was 3.4% and the limit of detection was 1 µM/L.

Statistical analyses. All statistical analyses were performed using SPSS, v. 26 for Windows (SPSS Inc., Chicago, IL, USA). Data are expressed as median as well as lower and upper quartiles. The Mann–Whitney U test was used to make unpaired comparisons between any two groups. For pairwise comparisons the Wilcoxon signed rank test was applied. Correlations were tested with Spearman rank order correlation. A p-value of < 0.05 was considered significant.

Ethical approval. The study was performed in accordance with Helsinki Declaration. The Regional Review Board in Uppsala, Sweden, approved the study on 7 October 2015 (Dnr 2015/370-1). All patients provided written informed consent.

Results
A total of 51 patients were recruited to the study. All were ACPA positive and 80% of them were also RF positive. One patient was excluded because the criteria for RA diagnosis was not fulfilled. One patient who had too high daily dose of prednisolone was also excluded. Additionally, three more patients whose symptom duration at time of diagnosis was too long were excluded as were two patients who failed the exhale procedure. The remaining 44 participants were matched with healthy controls for the NO measurement comparisons (Fig. 1).

Co-morbidities found among the patients were chronic obstructive pulmonary disease (4 patients), hypertension (14 patients), diabetes mellitus (8 patients) and bronchial asthma (3 patients). Twelve patients (27%) were current smokers. Intra-articular glucocorticoids were administered to 14 patients during the inclusion visit.
Protocol A. There were no statistically significant differences in regard to age, sex and BMI between the RA patients and matched control subjects. For the RA patients, the exhaled NO, FENO50, as well as the NO parameters CawNO and DawNO were lower, but the CawNO was higher (Table 1). However, the control subjects were all non-smokers, and when the non-smoking RA subjects (n = 32) were compared to their matched controls there was no difference in FENO50, but the CawNO and DawNO were higher and the CawNO was lower (Table 1). Non-smoking RA patients (n = 32) had higher values of FENO50 19 (13, 25) ppb and CawNO 1.9 (1.2, 2.3) ppb when compared to smoking RA patients (n = 12) who had 10 (5, 16) ppb FENO50 (p = 0.002) and 1.0 (0.4, 1.3) ppb CawNO (p = 0.004). No differences were found in CawNO 64 (33, 115) ppb and 24 (20, 75) ppb respectively (p = 0.086), and DawNO 16 (9, 31) mL/s and 19 (7, 29) mL/s respectively (p = 0.809) (Fig. 1 Supplement).

Protocol B. Methotrexate treatment was started in 34 patients. From these, four did not attend the follow-up visit (two stopped therapy because of side effects, one was uncomfortable with the spirometry, and one did not show up due to the SARS-CoV-2 pandemic), Fig. 1. In the remaining 30 patients the median weekly MTX dose at follow-up was 20 (15, 20) mg.

After three months, the MTX-treated patients showed a reduced disease activity as evidenced by a reduction in their DAS28 scores and s-CRP levels. There was also an improvement in function according to their HAQ scores, Table 2. However, there were no differences between the non-smokers and current smokers (p = 0.661, p = 0.722, p = 0.097 respectively). Neither NOx, F2NO30, nor any of the NO parameters changed after three months of MTX treatment (Table 2). There were no statistically significant correlations between FENO50 and NO parameters with NOx, DAS28, HAQ and s-CRP before or after treatment.

Discussion
In patients with recent onset ACPA positive RA the NO content in the airway wall was lower, NO diffusion capacity over the airway wall was higher and the alveolar NO was lower when compared to matched healthy controls. Excluding current smokers from the analysis gave comparable F2NO30 values, but CawNO, DawNO and CawNO still differed from the matched healthy controls. MTX treatment neither affected exhaled NO nor the serum nitrate/nitrite levels, although the patients showed a reduction in disease activity and disability.

The altered NO dynamics in the lungs of patients with recent onset RA, support the theory that the processes that lead to the manifestations of the disease may start in the lung or the mucosa of the airways 13. It is well known that smoking is involved in the pathogenesis of RA and is associated with a subsequent high risk for developing ACPA-positive RA twice as high for male smokers and 1.3 times higher for female 26. The low NO production in the lungs may have an important role in the RA pathogenesis. Low levels caused by the early disease process may be aggravated by smoking and together they may contribute to a more severe disease course. The processes that cause changes in the NO dynamics of non-smoking RA patients are not known. It has been proposed that

Characteristic	RA patients n = 44	Control subjects n = 44	p-value
Age (years)	62 (51, 72)	55 (50, 69)	0.193
Sex (% female)	59%	59%	1.0
Symptom duration (months)	4 (2, 8)	27 (24, 32)	0.079
BMI	27 (24, 32)	25 (24, 28)	
Current smoker (%)	12/44 (27%)	0 (0%)	0.001
Non-smoker (%)	32 (73%)	44 (100%)	0.001
DAS28	4.51 (3.68, 5.05)		
HAQ	0.88 (0.50, 1.25)		

Table 1. Characteristics of patients and control subjects in Protocol A. Data given in median (lower and upper quartiles). 1 Pearson Chi-square analysis. BMI, body mass index; DAS28, disease activity score for 28 joints; HAQ, the Swedish version of the Stanford Health Assessment Questionnaire; F2NO30, fraction of exhaled nitric oxide at the flow of 50 mL/s; CawNO, alveolar nitric oxide; CawNO, nitric oxide content in the airway wall; DawNO, nitric oxide diffusion capacity over airway wall.
its low content of NO (CANO) is expelled, the contribution of NO from the airways is driven by a concentration contains the alveolar or acinar compartment as well as the respiratory bronchioles. When the alveolar gas with exchange area. In the conducting airways, all airways of the lungs are equally represented. The gas exchange area two-compartment model of the NO lung dynamics. The model consists of the conducting airways and the gas the same in this study and our previous study when being compared to healthy subjects; can be explained by the (BH4) needed for the NOS to be able to convert L-arginine to L-citrulline in the production of NO29. These arginase activity in a rat model of RA34.

In patients with early RA, the NO values from the extended NO analysis were different from those of their matched healthy controls. Our matched controls were non-smokers and 27% of our patients were current smokers. It is known that smoking tobacco reduces exhaled F2NO30, and it remains lower than healthy subjects even after smoking cessation29,30. This has been attributed to the inadequate supply of the cofactor tetrahydrobiopterin (BH4) needed for the NOS to be able to convert L-arginine to L-citrulline in the production of NO29. These in vitro experiments also showed that nicotine did not have a role in the inhibition of NOS.

When excluding smoking patients from the analysis we found no difference in F2NO30 compared to the control subjects. However, CawNO and CawNO values were still lower with higher DawNO. The main findings in this study and our previous study with treated RA patients are the low airway wall content of NO, CawNO, and DawNO gave rise to a normal FENO50 in our RA patients. Smoking subjects without RA have a normal DawNO, which will therefore result in a low FENO50.

Table 2. Characteristics of smoking and non-smoking patients in Protocol B. Data given in median (lower and upper quartiles). MTX, methotrexate; DAS28, disease activity score for 28 joints; HAQ, the Swedish version of the Stanford Health Assessment Questionnaire; F2NO30, fraction of exhaled nitric oxide at the flow of 50 mL/s; CawNO, alveolar nitric oxide; CawNO, nitric oxide content in the airway wall; DawNO, nitric oxide diffusion capacity over airway wall; FEV1, forced expiratory volume at 1 s; FVC, forced vital capacity; s-CRP, serum C-reactive protein; NOx, nitrate/nitrite in serum.

	Non-smokers n = 22	Current smokers n = 8
Age (years)	59 (49, 72)	58 (55, 71)
Sex (% female)	64%	25%
MTX	20 (15, 20)	20 (15, 20)
DAS28	4.6 (3.5, 5.4)	4.7 (4.2, 5.4)
FENO50 ppb	1.0 (0.5, 1.3)	1.0 (0.6, 1.3)
NO analysis		
F2NO30 ppb	19 (12, 25)	9 (5, 14)
CawNO ppb	2.1 (1.1, 2.3)	0.9 (0.3, 1.2)
DawNO mL/s	16 (8, 31)	22 (12, 38)
Lung function		
FEV1/FVC	0.78 (0.73, 0.81)	0.69 (0.62, 0.78)
FEV1-% predicted	85 (79, 97)	78 (74, 87)
FEV1/FVC	91 (79, 99)	79 (62, 85)
Blood analysis		
s-CRP (mg/L)	8.2 (2.3, 23)	7.4 (3.3, 18.5)
NOx (µmol/L)	2.4 (1.6, 3.2)	2.6 (1.1, 2.5)

Other environmental exposures to the lung could interact with the disease progression and therefore nicotine is not the inducing component13,27,28.

Anti-inflammatory therapy with oral glucocorticoids is often used in RA patients together with intra-articular glucocorticoid injections. The use of inhaled corticosteroids (ICS) in the treatment of asthma and COPD is widely accepted since they suppress the inflammation in the airways and thereby lower the exhaled NO. Already after one day with ICS the F2NO30 is reduced, and it is the CawNO that is responsible for the decrease since DawNO is not affected by ICS22,23. In this study we looked at the MTX treatment and found that it was not causing any change in the NO dynamics of the lung. This is supported by the findings that MTX does not normalise the increased arginine activity in a rat model of RA34.

NO is produced by the conversion of L-arginine to L-citrulline by NOS. In health the endogenous synthesis of arginine is sufficient, but with increased metabolic requirements dietary supplementation is necessary; and consequently arginine is classified as a semi-essential amino acid. It was already discovered in the 1960s that arginine levels in RA patients were low35. One possible reason is the increased enzyme activity of arginase36. Chandrasekharan et al. have found an elevated arginase activity and signs of reduced NOS activity in the plasma of RA patients37. The authors suggest that as arginine is the most common substrate for both arginase and NOS, a substrate competition may reduce the NOS activity and diminish NO production. In addition, methylated...
arginine metabolites are potent inhibitors of NOS and may also block the cellular uptake of arginine. A reduced NOS activity may explain the low levels found in the NO dynamics of our RA patients. Another possibility for this highly reactive NO gas to be low, is the rapid oxidization by reactive oxygen species (ROS) close to the site of NO production. RA is a disease that is characterised by the formation of both ROS and reactive nitrogen species (RNS), which will cause the NO to be metabolized. Further research is needed to discover the role of NO in RA.

There are limitations in our study. Firstly, conclusions are drawn from a limited number of RA patients. However, the results we see are in line with those from our previous study where the patients had an established RA, had been receiving long-term treatments and 63% of them were ACPA positive. Secondly, we did not have high resolution computer tomography to rule out any pulmonary abnormalities. This would have been of benefit in the interpretation of the NO analysis. A randomization to methotrexate or placebo in protocol B would have been ideal and the lack of a control group is another limitation.

Conclusion

Our studies on the changes in the NO dynamics of patients with established and recent onset RA are the first to describe the higher diffusion capacity and lower levels in the airway wall and alveoli compared to matched control subjects. The changes appear early in the disease process and antirheumatic treatment with methotrexate has no impact. Today exhaled NO analysis has no place in the diagnosis or treatment of RA. Whether the reduced levels are present already in the pre-RA state and if immunological changes are associated is not known and should be studied in future research. These findings open a new window into the understanding of the pulmonary processes occurring during the different phases of the RA development.

Data availability

Data are available upon reasonable request by contacting the corresponding author.

Received: 6 September 2021; Accepted: 30 March 2022
Published online: 20 April 2022

References

1. Boucher, J. L., Moali, C. & Tenu, J. P. Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell Mol. Life Sci., 55(8–9), 1015–1028 (1999).
2. Alving, K., Weitzberg, E. & Lundberg, J. M. Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 6(9), 1368–1370 (1995).
3. Tiev, K. P. et al. Diagnostic value of exhaled nitric oxide to detect interstitial lung disease in systemic sclerosis. Sarcoidosis Vasc. Diffuse Lung Dis. 26(1), 32–38 (2009).
4. Ludviksdottir, D. et al. Increased nitric oxide in exhaled air in patients with Sjögren's syndrome. Eur. Respir. J. 13, 739–743 (1999).
5. Damiani, G. et al. Patients with psoriatic arthritis have higher levels of F2-NO than those with only psoriasis, which may reflect a higher prevalence of a subclinical respiratory involvement. Clin. Rheumatol. 9, 2981–2988 (2020).
6. Högman, M. et al. Utilising exhaled nitric oxide information to enhance diagnosis and therapy of rheumatoid arthritis: current evidence for clinical practice and proposals to improve the methodology. Expert Rev. Respir. Med. 11(2), 101–109 (2017).
7. Ali, A. M. et al. Higher nitric oxide levels are associated with disease activity in Egyptian rheumatoid arthritis patients. Rev. Bras. Reumatol. 46(6), 446–451 (2014).
8. van’t Hof, R. J. et al. Nitric oxide is a mediator of apoptosis in the rheumatoid joint. Rheumatology (Oxford) 39(9), 1004–1008 (2000).
9. Chow, Y. Y. & Chin, K. Y. The role of inflammation in the pathogenesis of osteoarthritis. Med. Inflamm. 2020, 8293921 (2020).
10. Catrina, A. I. et al. Lungs, joints and immunity against citrullinated proteins in rheumatoid arthritis. Nat. Rev. Rheumatol. 10(11), 645–653 (2014).
11. Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers. 4, 18001 (2018).
12. Deane, K. D. & Holers, V. M. Rheumatoid arthritis: Pathogenesis, prediction and prevention—An emerging paradigm shift. Arthritis Rheumatol. 73(2), 181–193 (2021).
13. Högman, M. et al. Extended NO analysis in a healthy subgroup of a random sample from a Swedish population. Clin. Physiol. Funct. Imaging 29(1), 18–23 (2009).
14. Ekdahl, C. et al. Assessing disability in patients with rheumatoid arthritis. Use of a Swedish version of the Stanford Health Assessment Questionnaire. Scand. J. Rheumatol. 17(4), 263–271 (1988).
15. Prevoo, M. L. et al. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 38(1), 44–48 (1995).
16. American Thoracic, S. & European, R. S. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 171(6), 912–930 (2005).
17. Horvath, I. et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 49(4), 17E4904 (2017).
18. Hedenström, H., Malmbarg, P. &agarwal, K. Reference values for lung function tests in female. Regression equations with smoking variables. Bull. Eur. Physiopathol. Respir. 21, 551–557 (1985).
Acknowledgements
The authors wish to thank all of the patients that participated in the study, especially those that came back for the follow-up. Special thanks to L. Sundgren; the research nurse at the Centre for Research and Development, Uppsala University/Region Gävleborg. The authors also wish to thank Robin Quell for proofreading and editing this manuscript.

Author contributions
T.W., A. Li. and M.H. designed the study, T.W. and A. Li. recruited the patients, J.R. and A. La. performed the chemical and immunological analyses. T.W. and M.H. were responsible for the acquisition of the data and statistically analysing it. All authors were responsible for the interpretation of the data and for drafting, revising and approving the final submitted manuscript.

Funding
Local funding came from the Centre for Research and Development, Uppsala University/Region Gävleborg (CFUG 703001, 815921 and 922711). The NO analyser was paid for by funds from the Gävle Cancer Foundation.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-10334-5.

Correspondence and requests for materials should be addressed to T.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.