Altered Cortical GABA_A Receptor Composition, Physiology, and Endocytosis in a Mouse Model of a Human Genetic Absence Epilepsy Syndrome*

Received for publication, December 13, 2012, and in revised form, May 26, 2013
Published, JBC Papers in Press, June 6, 2013, DOI 10.1074/jbc.M112.444372

Chengwen Zhou, Zhiling Huang, Li Ding, M. Elizabeth Deel, Fazal M. Arain, Clark R. Murray, Ronak S. Patel, Christopher D. Flanagan, and Martin J. Gallagher*

From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232

Patients with generalized epilepsy exhibit cerebral cortical disinhibition. Likewise, mutations in the inhibitory ligand-gated ion channels, GABA_A receptors (GABA_ARs), cause generalized epilepsy syndromes in humans. Recently, we demonstrated that heterozygous knock-out (Het_{α1}KO) of the human epilepsy gene, the GABA_AR α1 subunit, produced absence epilepsy in mice. Here, we determined the effects of Het_{α1}KO on the expression and physiology of GABA_ARs in the mouse cortex. We found that Het_{α1}KO caused modest reductions in the total and surface expression of the β2 subunit but did not alter β1 or β3 subunit expression, results consistent with a small reduction of GABA_ARs. Cortices partially compensated for Het_{α1}KO by increasing the fraction of residual α1 subunit on the cell surface and by increasing total and surface expression of α3, but not α2, subunits. Co-immunoprecipitation experiments revealed that Het_{α1}KO increased the fraction of α1 subunits, and decreased the fraction of α3 subunits, that associated in hybrid α1α3βγ receptors. Patch clamp electrophysiology studies showed that Het_{α1}KO layer VI cortical neurons exhibited reduced inhibitory postsynaptic current peak amplitudes, prolonged current rise and decay times, and altered responses to benzodiazepine agonists. Finally, application of inhibitors of dynamin-mediated endocytosis revealed that Het_{α1}KO reduced baseline GABA_AR endocytosis, an effect that probably contributes to the observed changes in GABA_AR expression. These findings demonstrate that Het_{α1}KO exerts two principle disinhibitory effects on cortical GABA_AR-mediated inhibitory neurotransmission: 1) a modest reduction of GABA_AR number and 2) a partial compensation with GABA_AR isoforms that possess physiological properties different from those of the otherwise predominant α1βγ GABA_ARs.

Under normal physiological conditions, cortical excitatory and inhibitory activity exists in a coordinated homeostasis (1, 2). However, studies of humans and rodents with generalized epilepsy, syndromes in which the seizure activity originates from both cerebral hemispheres at the time of onset, suggest that cortical disinhibition contributes to the pathophysiology of these diseases (3–5). Therefore, it is critical to understand the biochemical mechanisms that alter cortical inhibitory networks in generalized epilepsy syndromes in order to identify new treatments for these diseases.

GABA_A receptors (GABA_ARs) are the predominant inhibitory ligand-gated ion channels in the mammalian brain. They are pentamers whose five subunits originate from eight gene families that contain multiple isoforms (α1–6, β1–3, γ1–3, δ, ε, θ, π, and ρ1–3). These 19 subunits can combine in many different ways to form functional receptors, but most synaptic receptors in the cortex contain two α subunits (α1–3 isoforms), two β subunits, and a γ subunit arranged in the order γ-β-α-β-α (6). The identity of the α subunit isoform that is incorporated into the GABA_AR affects the physiological properties. For example, α3βγ receptors have lower GABA sensitivity and prolonged current activation and deactivation times than α1βγ or α2βγ receptors (7).

Four autosomal dominant mutations (A322D, S326fs328X, D219N, and K353delins18X) in the GABA_AR α1 subunit create one gene. These mutations result in a substantial loss of α1 subunit function or expression (9, 11, 12). In particular, the S326fs328X mutation, which causes absence epilepsy, causes complete elimination of mutant α1 subunit protein (12). Therefore, it was thought that S326fs328X conferred absence epilepsy by producing a heterozygous loss of α1 subunit expression. This hypothesis was supported by our recent observation.

* This work was supported, in whole or in part, by National Institutes of Health Grants R01 NS064286 and K02 NS055979 (to M. J. G.).

1 Present address: Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.

2 To whom correspondence should be addressed: Dept. of Neurology, Vanderbilt University, 6114 Medical Research Bldg. III, 465 21st Ave. S., Nashville, TN 37232-8552. Tel.: 615-322-5979; Fax: 615-322-5517; E-mail: Martin.Gallagher@Vanderbilt.edu.

3 The abbreviations used are: GABA_AR, GABA_A receptor; aCSF, artificial cerebrospinal fluid; RIPA, radioimmunoprecipitation assay; ER, endoplasmic reticulum; endo-H, endoglycosidase H; PNGase F, peptide-N-glycosidase F; IPSC, inhibitory postsynaptic current; mIPSC, miniature IPSC; eIPSC, evoked IPSC; K-5, Kolinogorov-Smirnov.
that heterozygous α1 subunit knock-out (Hetα1KO) mice exhibited absence epilepsy (13).

Previous studies designed to investigate the developmental role of the α1 subunit in GABAergic neurotransmission demonstrated that neurons with a homozygous α1 subunit deletion increased the total expression of other α subunits that they normally expressed rather than expressing new α subunit isoforms (14–21). Here, we elucidated how the epilepsy-associated heterozygous α1 subunit deletion affects synaptic-type GABAAR expression and physiology in the cortices of Hetα1KO mice.

We quantified the effects of Hetα1KO on both total and cell surface synaptic type GABAAR expression because it is surface expression that affects GABAAR physiology. We then determined the effects of Hetα1KO on GABAergic synaptic physiology and pharmacology. Finally, we identified the effects of Hetα1KO on constitutive GABAAR endocytosis/recycling, a cellular mechanism that dynamically modulates GABAAR surface expression. These experiments identified modifications in cortical GABAAR surface expression, composition, physiology, and endocytosis that probably contribute to the pathophysiology of seizures in the Hetα1KO model of absence epilepsy and, importantly, may also be involved in regulating GABAAR receptor expression and physiology in other diseases that result from GABAAR receptor dysfunction.

EXPERIMENTAL PROCEDURES

Animals—We performed all procedures using protocols approved by the Vanderbilt University Institutional Animal Care and Use Committee. The mice were housed in a controlled facility with a 12-h light/dark schedule, a temperature- and humidity-controlled environment, and *ad libitum* water and food. Vicini et al. (22) produced mice with loxP sequences surrounding exon 9 of the GABAAR α1 subunit. We recently generated an unconditional α1 subunit deletion using these mice and bred them into a congenic C57BL/6J background (13). We mated wild type and Hetα1 mice and bred them into a congenic C57BL/6J background (13). We generated an unconditional α1 subunit deletion using these mice and bred them into a congenic C57BL/6J background (13). We mated wild type and Hetα1KO mice and utilized female pups at postnatal ages 33–37 because our previous EEG studies identified frequent absence seizures in female Hetα1KO mice at this age (13).

We also used homozygous α1 subunit deletion mice and male α3 subunit deletion mice (23) to verify specificity of the anti-α1 subunit and anti-α3 subunit antibodies in immunofluorescence experiments. Breeding pairs of α3 subunit deletion mice were a generous gift from Dr. Uwe Rudolph (Harvard Medical School). All mice were genotyped with PCR before experiments.

Cell Culture, Expression Vectors, and Transfection—COS-7 cells were cultured in 5% CO2, 95% air at 37 °C in Dulbecco’s modified Eagle’s medium (Invitrogen) with 100 IU/ml penicillin and streptomycin and 10% fetal bovine serum (FBS; Invitrogen). We replated the cells twice weekly. A description of plasmids expressing the α1, α3, β2, and γ2 subunits was published previously (11). A plasmid expressing the β1 subunit was a generous gift from Dr. Robert Macdonald (Vanderbilt University). COS-7 cells were transfected with 3 μg of total DNA using FuGENE 6 transfection reagent (Roche Applied Science).

Brain Slice Preparation—Mice were anesthetized with isoflurane and sacrificed. Brains were rapidly dissected and placed for sectioning in cutting solution kept at 0 °C. For the brain slice biotinylation experiments, the cutting solution contained 210 mM sucrose, 20 mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 1 mM MgCl2, and 10 mM D-glucose, pH 7.4, bubbled with 100% O2 at 0 °C. Three to four sagittal cortex slices (300 μm) were sectioned from the midline with a vibratome (Leica VT1200S). The slices were kept in artificial cerebrospinal fluid (aCSF), containing 126 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, 1 mM MgCl2, and 10 mM D-glucose, pH 7.4, bubbled with 100% O2 at 0 °C until biotinylation, which occurred less than 1 h after the slices were made.

Brain slices for the electrophysiology experiments were made in 214 mM sucrose, 2.5 mM KCl, 1.25 mM NaH2PO4, 0.5 mM CaCl2, 10 mM MgSO4, 24 mM NaHCO3, and 11 mM D-glucose, pH 7.4, bubbled with 95% O2, 5% CO2 at 4 °C. We made 300-μm coronal slices that contained the somatosensory cortex. Slices were then incubated in aCSF that contained 26 mM NaHCO3 and 2 mM MgCl2, and was bubbled with 95% O2, 5% CO2 at 36 °C for 30 min (24–26). The slices were then kept at room temperature for at least 1 h before electrophysiological recordings.

Antibodies and Western Blots—We obtained the antibodies from the following sources and listed the clone or catalogue number and the concentrations used for the Western blots in parentheses. The purified mouse monoclonal anti-GABAAR α1 subunit (N95/35, 1:250), anti-β1 subunit (N96/55, 1:100), and anti-β3 subunit (N87/25, 1:100) antibodies were from the University of California Davis/National Institutes of Health NeuroMab Facility. The rabbit polyclonal anti-GABAAR β2 subunit antibody (AB5561, 1:100) was from Millipore, and the rabbit polyclonal anti-GABAAR α2 subunit was from Abcam (AB72445, 1:100). The anti-α3 subunit antibody was from Alomone (AGA-003, 1:500). The mouse monoclonal anti-Na+/K+ ATPase α subunit (a6F, 1:100) was from the Developmental Studies Hybridoma Bank, and the rabbit polyclonal anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody (AB9485, 1:2000) was from Abcam. The fluorescently conjugated goat anti rabbit-680 (926-32221) and goat anti mouse-800 (926-32210) secondary antibodies were from LI-COR (1:10,000).

Total and surface proteins were fractionated on 10% SDS-polyacrylamide gels and then electrotransferred to nitrocellulose membranes. To ensure linearity of detection, 5, 10, and 15 μg of total protein and 5, 10, and 20 μl of protein eluted from either the neutravidin or protein G beads were applied to the gel; Western blots in which the signal from each protein did not increase in proportion to the amount loaded on the gel were excluded from analyses. Nonspecific binding was blocked with 5% nonfat dry milk in Tris-buffered saline containing 0.1% Tween, pH 7.4. We incubated the blots with primary antibody at 4 °C overnight and then with secondary antibody at room temperature for 1 h. The blots were imaged on an infrared fluorescent imaging system (LI-COR Biosciences).

Brain Slice Biotinylation—Using a brain slice biotinylation assay to quantify protein expressed on the cell surface in intact brain slices has been described previously (27–29). Briefly, after
Altered GABA_A Receptor Composition in Epilepsy

cutting, the brain slices were incubated for 45 min at 4 °C in aCSF that contained 1 mg/ml of the membrane-impermeable, biotinylation reagent, sulfoalkylisothiocyanate (Sulfo-NHS-SS-biotin; Thermo Scientific). After biotinylation, the slices were washed with 0.1 M glycine in aCSF. The cortices were dissected and sonicated in radioimmunoprecipitation assay (RIPA) solution (20 mM Tris, pH 7.4, 1% Triton X-100, 250 mM NaCl) that also contained protease inhibitor mixture (1:100; Sigma-Aldrich), 0.5% deoxycholate, and 0.1% SDS.

Protein concentrations were determined using a bicinchoninic acid-based assay (Thermo Scientific). To isolate the biotinylated surface protein, we incubated 150 μg of cortical protein lysate overnight at 4 °C with 100 μl of neutravidin beads (Thermo Scientific) in a final volume of 500 μl of RIPA buffer. In addition, in initial experiments, we confirmed that the neutravidin beads did not saturate with biotinylated protein by incubating the beads with larger masses of cortical protein lysate and observing proportional increases in the amounts of biotinylated material recovered from the beads. After incubation, the beads were pelleted by centrifugation and washed three times with RIPA buffer before the biotinylated beads were washed with 50–100 μl of Laemmli sample buffer (Bi-orad) containing 5% β-mercaptoethanol. The recovered protein was then analyzed by Western blot.

Immunofluorescence and Confocal Microscopy—Immunofluorescence experiments were performed essentially as described previously (19). Briefly, we cut 2-mm coronal block slices (Zivic Scientific) of fresh brain tissue in the anterior parietal cortex and fixed them in 4% paraformaldehyde dissolved in 10 mM sodium phosphate buffer at 0 °C for 30 min. The brain slices were cryoprotected overnight in 30% sucrose in phosphate-buffered saline (PBS) at 4 °C and then sectioned (15 μm) on a cryostat (Leica) onto Shandon Colorfrost Plus glass slides (Thermo Scientific).

The slices were blocked (10% donkey serum, 2% Triton X-100 in PBS) for 1 h at room temperature. They were then incubated overnight at 4 °C with either rabbit anti-α1 subunit antibody (06868, 1:250; Millipore) or rabbit anti-α3 subunit antibody (AGA-003, 1:500; Alomone) that was dissolved in blocking buffer. In addition, slides were also incubated with antibodies directed against the cortical layer markers, goat anti-Cux1 (sc-6327, 1:50; Santa Cruz Biotechnology, Inc. (Santa Cruz, CA)) and goat anti-FoxP2 (ab1307, 1:250; Abcam), which were used to localize cortical layers II/III and VI, respectively (30). The following day, the slides were washed and incubated with Cy3-conjugated donkey anti-rabbit (711-165-152; 1:1000; Jackson ImmunoResearch) and Alexa 488-conjugated donkey anti-goat (A11055, 1:500; Invitrogen) for 1 h at room temperature. The slides were washed, and a coverslip was applied with Vectashield mounting medium (Vector Laboratories) that also contained 4',6-diamidino-2-phenylindole (DAPI) to label cellular nuclei.

The slides were imaged on a Zeiss 510 confocal microscope using a ×63, 1.4 numerical aperture plan-apochromat lens by an investigator who was blinded to the genotypes of the sections. Scan settings were adjusted to utilize the full dynamic range of the photomultipliers and to provide a scan resolution of 97 nm/pixel and a slice thickness of 1 μm. The same scan settings were used for all of the images acquired within an experiment. We obtained images in the somatosensory cortex 1 μm below the surface of the tissue in cortical layers II/III and VI (as defined by Cux1 and FoxP2 staining) as well as in the subcortical white matter just below the edge of layer VI.

The images were reviewed by an investigator who was also blinded to the genotypes of the images. The background was defined as the average (among all of the slices imaged in a single experiment) of the mean pixel intensity of the white matter just below the somatosensory cortex. The same background value was used for all of the images in the experiment. We then calculated the mean background-subtracted intensity of α1 or α3 subunit staining and normalized those values to average wild type staining in layer II/III.

Immunoprecipitation—We incubated either 7.5 μg of anti-α1 subunit antibody, 2.5 μg of anti-α3 subunit antibody, or 7.5 or 2.5 μg of nonimmunized mouse or rabbit immunoglobulin (controls) with magnetic beads coupled to protein G (Invitrogen) in 500 μl of PBS for 1 h at 4 °C. The beads were washed and then incubated for 10 min with 500 μl of 0.2 M triethanolamine (pH 8.2) at room temperature. The antibodies were then covalently linked to the protein G by incubating with 20 mM dimethyl pimelimidate (Sigma-Aldrich) in 1 ml of 0.2 M triethanolamine (pH 8.2) at room temperature for 60 min. The coupling reaction was stopped with 50 mM Tris, pH 7.5.

The covalently coupled antibodies were incubated overnight at 4 °C with 350 μg of protein lysates that were prepared in a modified RIPA buffer (20 mM Tris, pH 7.4, 1% Triton X-100, 150 mM NaCl) that also contained protease inhibitor. After washing, the immunoprecipitated proteins were liberated from the antibodies by adding 50–100 μl of 1 M glycine in RIPA buffer (pH 3.0) and analyzed by Western blot.

Quantitative Real-time PCR—We measured relative abundances of α1 subunit and α3 subunit mRNA in wild type and Het^{α1KO} mouse cortices essentially as described previously (31). Fresh cortices were dissected from wild type and Het^{α1KO} mice, and total RNA was isolated using a commercial silica membrane column (Purelink). Using 200 ng of RNA, we generated corresponding cDNA with reverse transcriptase, using random hexamers as templates (Applied Biosystems). We performed quantitative real-time PCR using an Applied Biosystems 7900 with the TaqMan Universal Master Mix and with 6-carboxyfluorescein (FAM)-labeled probes (Applied Biosystems). We used the following real-time PCR conditions: We incubated at 95 °C for 10 min and then ran 40 cycles that consisted of denaturation at 95 °C for 15 s and annealing and extension at 60 °C for 60 s. We verified that Het^{α1KO} did not change the expression of the endogenous control and then used the ΔΔCt cycle threshold method to calculate the effects of Het^{α1KO} on the expression α1 and α3 subunit mRNA normalized to actin.

Endoglycosidase Digestion—Glycan analyses of proteins that traffic through the secretory pathway can determine the fraction of protein that is associated with the endoplasmic reticu-
lum (ER) as well as the fraction that has trafficked at least as far as the trans-Golgi (32, 33). Endoglycosidase H (endo-H) removes high mannose N-linked glycans attached to proteins in the endoplasmic reticulum but does not remove the complex glycans attached in the Golgi. Peptide: N-glycosidase F (PNGase F) removes all N-linked glycans. We obtained both endo-H and PNGase F from New England Biolabs. We made lysates of COS-7 cells transfected with PNGase F from New England Biolabs. We made lysates of the digestion products on Western blot to determine the effects of glycans attached in the Golgi. Peptide: the endoplasmic reticulum but does not remove the complex quinoxaline-dione (NBQX) (20 μM) to block AMPA and kainate receptors. Filled electrodes had resistances of 2–4 megohms. Serial resistance was continuously monitored during the experiments, and recordings with more than 25 megohms or 20% change in serial resistance were discarded. Electrophysiological data were collected using a MultiClamp 700B amplifier (Molecular Devices Inc.) and Clampex version 10.2 software (Molecular Devices Inc.) with compensation for series resistance (70%) and cell capacitance, filtered at 2 kHz, and digitized at 20 kHz using a Digidata 1440A analog to digital converter (Molecular Devices Inc.).

Miniature inhibitory postsynaptic currents (mIPSCs) were recorded at −60 mV for at least 20 min in external solution that also contained tetrodotoxin (1 μM; Sigma-Aldrich) to block sodium channels. The mIPSCs were identified automatically offline using Clampfit version 10.2 and were confirmed visually, and the peak mIPSC amplitudes, interevent intervals, and 10–90% rise times were identified. The current decay of each mIPSC was fit to a single exponential, and the decay constant (τ) was calculated. We excluded mIPSCs with a peak amplitude less than 1 pA, a decay constant less than 1 ms or greater than 1000 ms, or a rise time greater than 10 ms. We created cumulative histograms for the peak amplitudes, rise times, and decay constants for all of the mIPSCs obtained from all of the neurons of the same genotype. We also calculated the mean peak amplitude, event interval, rise time, and decay constant for all of the mIPSCs recorded from each neuron, averaged these mean values among all of the recorded cells, and then compared the wild type and Het1/1KO averaged values using a two-tailed t test. In addition, we created averaged mIPSC tracings for each neuron, fit the current decay of the average traces with one or two time constants (τ1 and τ2), and calculated the weighted decay constant (τw) as (τ1 × A1 + τ2 × A2)/(A1 + A2), where A1 and A2 represent the amplitudes of the corresponding decay constants.

Evoked inhibitory postsynaptic currents (eIPSCs) were performed in external solution that did not contain tetrodotoxin. To record eIPSCs, we placed a concentric stimulation electrode close to the recorded neuron. We started stimulating at 0.1 V every 20 s and increased the voltage until maximal monosynaptic responses were achieved; the voltage was then reduced to produce half-maximal monosynaptic responses. We recorded 10 eIPSC traces from each neuron (base line) before adding either of the benzodiazepine agonists diazepam (1 μM) or zolpidem (100 nM; Sigma-Aldrich). Five minutes after adding benzodiazepine agonist, we recorded an additional 10 eIPSC traces. The traces recorded before or after benzodiazepine agonist were averaged. We identified the peak current amplitude before and after the addition of drug and also fit the decay phase of the averaged eIPSCs with 1–2 time constants and calculated the weighted decay constant (τw) as described above.

Analysis of GABAAR Endocytosis/Recycling—We determined the effects of Het1/1KO on GABAAR endocytosis/recycling from the plasma membrane in layer VI pyramidal neurons by adapting two previously published methods that measured neurotransmitter receptor endocytosis in brain slices (29, 34–38). We first tested the effects of the membrane-permeable reagent, 3-hydroxy-naphthalene-2-carboxylic acid (dynasore; Sigma-Aldrich), a compound that inhibits dynamin’s GTPase activity and thus inhibits dynamin-mediated endocytosis. We measured mIPSCs in layer VI pyramidal neurons for a 5-min base-line period as described above. We then added dynasore to the bath (final concentration 80 μM, 0.2% DMSO) and measured mIPSCs for an additional 20 min. We averaged the mIPSC peak amplitudes in 1-min blocks before and after the dynasore addition and determined the time-dependent change in mIPSC amplitudes in wild type and Het1/1KO neurons.

Next, we tested the effects of intracellular administration of dynamin inhibitory peptide (P4 peptide, Tocris Bioscience), a membrane-impermeable inhibitor of dynamin-mediated endocytosis that acts by blocking the binding of dynamin to amphiphysin. We added P4 peptide (50 μM) to the patch pipette internal solution and measured mIPSCs in layer VI pyramidal neurons for 25 min. As above, we determined the effect of Het1/1KO on the time-dependent changes in mIPSC peak amplitudes.

Data Analysis and Statistics—Statistical analyses were performed using the R 2.12.2 Statistical Package for Windows (R Foundation for Statistical Computing). All results are presented as the means ± S.E. When making two comparisons, the statistical significance of averaged values was assessed using the single-sample or independent samples t test, as appropriate. We used two-way analysis of variance to test the significance of differences in α subunit staining between wild type and Het1/1KO cortices in cortical layers II/III and VI. In addition, we used the two-sample Kolmogorov-Smirnov (K-S) test to compare the distributions of wild type and Het1/1KO mIPSC peak amplitudes, interevent intervals, 10–90% rise times, and decay constants. p values less than 0.05 were considered statistically significant, and the Bonferroni-corrected p value was used if appropriate.
Altered GABA_A Receptor Composition in Epilepsy

RESULTS

Het_{α1}KO Reduces β2 but Not β3 Subunit Expression—All known functional GABA_ARs contain two β subunits, which exist as β1, β2, and β3 subunit isoforms (6). Therefore, we determined the effects of Het_{α1}KO on total and surface β1–3 subunit expression as a measure of the effects of Het_{α1}KO mutation on the expression of functional GABA_ARs. We measured cortical β subunit expression using brain slice biotinylation assays and Western blots, a semiquantitative technique that can reliably separate surface and total protein and allows for direct evaluation of the linearity of protein detection (27–29, 33). We first verified that the biotinylation reagent was selective for membrane proteins by measuring the amount of the cytoplasmic protein, GAPDH, in the neutravidin-purified and unpurified samples (Fig. 1A). We next confirmed that Het_{α1}KO did not alter the total or surface expression of the loading control protein, the Na⁺/K⁺ ATPase α subunit (Fig. 1B). We verified that the neutravidin beads were not saturated with biotinylated protein by incubating increasing masses of biotinylated lysate with neutravidin beads and detecting proportional increases in detected protein on Western blot (not shown).

Although our immunoblots reliably detected mouse β1 subunit recombinantly expressed in COS-7 cells, we did not detect total or surface β1 subunit in wild type or Het_{α1}KO cortices (not shown), a result that suggests that the β1 subunit is not highly expressed in cortices of mice of this age. We found that Het_{α1}KO reduced total β2 subunit expression to 75 ± 8% of wild type (Fig. 1, C and E; n = 8; p = 0.019 versus 100%) and reduced surface β2 subunit expression to 78 ± 5% of wild type (Fig. 1, D and E; n = 8; p = 0.003 versus 100%). However, Het_{α1}KO did not change the total (Fig. 1, C and F; 102 ± 8%; n = 6; p = 0.796 versus 100%) or surface (Fig. 1, D and F; 96 ± 5%; n = 8; p = 0.458 versus 100%) expression of the β3 subunit. The absence of an effect on β3 subunit expression and the modest reduction of β2 subunit expression suggest that Het_{α1}KO causes only a small reduction in the expression of functional GABA_ARs of all isoforms. This result suggests that neurons partially compensate for the heterozygous loss of the α1 subunit by increasing expression from the wild type α1 subunit allele or increasing expression of other α subunit isoforms. In addition, the selective reduction of β2 but not β3 subunit could suggest preferential assembly of GABA_ARs with the β3 subunit in Het_{α1}KO cortices.

Het_{α1}KO Reduced Total α1 Subunit Expression but Increased Its Relative Surface Expression—Using Western blots, previous investigators found that Het_{α1}KO reduced total cortical α1 subunit protein expression (14). Here, we conducted immunofluorescence studies to determine if the reduction in α1 subunit expression was homogenous without substantial cell-to-cell variability and if it occurred to a similar extent in the upper (II/III) and lower (VI) layers of the cortex. We conducted these immunofluorescence experiments in the somatosensory cortex because this is the area thought to initiate absence seizures in rodents (39, 40).

Control experiments using cortices from homozygous α1 subunit deletion mice demonstrated the specificity of the anti-α1 subunit antibody and that the images had similar background levels of staining as the white matter of wild type cortex (not shown). Immunofluorescence studies of wild type and Het_{α1}KO cortices revealed that Het_{α1}KO reduced total α1 subunit expression homogeneously with no visible cell-to-cell variability (Fig. 2, A–D, n ≥ 8). Moreover, Het_{α1}KO reduced total α1 subunit expression in both layer II/III and layer VI (Fig. 2G, p = 0.001). For both genotypes, there was less α1 subunit expressed in layer VI than layer II/III. However, there was no significant interaction between the effects of genotype and cortical layer in influencing α1 subunit expression (Fig. 2G, p = 0.113, two-way analysis of variance).

It should be emphasized that although Het_{α1}KO caused an apparent homogenous reduction of α1 subunit expression, we cannot exclude the possibility that Het_{α1}KO causes differential effects among/between populations of cortical neurons that are relatively small in number. For example, although pyramidal
neurons comprise 80% of cortical neurons, the remaining 20% are composed of several different types of interneurons (41). It is possible that Het\textsubscript{a1}KO causes different effects on α1 subunit expression in one or more of these different types of interneurons than it does in the pyramidal neurons.

We performed cell surface biotinylation studies to quantify the effect of Het\textsubscript{a1}KO on surface α1 subunit expression and to determine if Het\textsubscript{a1}KO cortices compensated for the reduction of total α1 subunit protein by increasing the fraction of residual total α1 subunit expressed on the cell surface (i.e. increasing the relative surface expression). We found that total α1 subunit protein expression in Het\textsubscript{a1}KO cortices was 62 ± 8% that of wild type (Fig. 2, E and H; \(n = 8; p = 0.002\) versus 100%), a value consistent with previous Western blots (14) as well as our immunofluorescence studies. However, Het\textsubscript{a1}KO caused a significantly smaller effect on cell surface α1 subunit protein expression (Fig. 2, F and H; \(89 ± 5%; n = 5; p = 0.015\) versus total expression). This result suggests that Het\textsubscript{a1}KO partially compensates for the reduction of total α1 subunit protein expression by increasing its relative surface expression.

\textit{Het\textsubscript{a1}KO Increased the Total and Surface Expression of the α3 Subunit}—In addition to α1 subunit-containing GABA\textsubscript{A}Rs, adult wild type cortices also express α3 and α2 subunit-containing receptors at GABAergic synapses, albeit at lower abundances (42–44). Therefore, we determined the effects of Het\textsubscript{a1}KO on total and surface expression of the α3 and α2 subunits to determine if either of these other synaptic-type α subunits could substitute for α1 on the cell surface.

We determined the effects of Het\textsubscript{a1}KO on the distribution of α3 subunit in layers II/III and VI in the somatosensory cortex using immunofluorescence. Control experiments on cortices from the α3 subunit deletion mouse demonstrated that the anti-α3 subunit antibody was specific for the α3 subunit (not shown). We found that Het\textsubscript{a1}KO increased total α3 subunit staining in both layers II/III and VI with no visible cell-to-cell variability (Fig. 3, A–D and G; \(n = 6; p < 0.001\)). Brain slice biotinylation and Western blot assays demonstrated that Het\textsubscript{a1}KO increased total surface α3 subunit expression to \(138 ± 18\%\) (Fig. 3, E and H, \(n = 10; p = 0.016\) versus 100%) and \(174 ± 24\%\) (Fig. 3, F and H, \(n = 7; p = 0.020\) versus 100%) of wild type expression, respectively. These results demonstrated that Het\textsubscript{a1}KO also partially compensates for the loss of α1 subunit by increasing the total and surface protein expression of the α3 subunit. There was no significant change in the α2 subunit expression (Fig. 3, I and F).

\textit{Het\textsubscript{a1}KO Altered the Association of α1 and α3 Subunits}—GABA\textsubscript{A}R pentamers contain two α subunits, which can be of the same or different isofoms (45, 46). Because Het\textsubscript{a1}KO altered the expression of the α1 and α3 subunits, we next determined whether it also altered the association of these two subunits.

We demonstrated that anti-α1 and anti-α3 subunit antibodies were specific for their respective subunits and that control immunoglobulin from nonimmunized mice and rabbits did not immunoprecipitate either subunit from homogenized mouse cortex (Fig. 4, A and B). Wild type and Het\textsubscript{a1}KO cortical lysates were then immunoprecipitated using the anti-α1 or α3 subunit antibodies, and the immunoprecipitated material wasanalyzed on Western blot with staining for both the α1 and α3 subunits (Fig. 4, C–F). Immunoprecipitation using the α1 subunit antibody produced \(68 ± 11\%\) α1 subunit from the
Figure 3. Het_{1KO} increased the total and surface expression of the α3 subunit but not the α2 subunit. A–D, immunofluorescence images of α3 subunit staining in wild type (A and C) and Het_{1KO} (B and D) mice in layers II/III (A and B) and VI (C and D) of the somatosensory cortex (white scale bar, 20 μm; n = 6). The yellow boxed areas are displayed on a magnified scale below each image (A2–D2). Quantification of the total α3 subunit staining (G) showed that Het_{1KO} increased α3 subunit expression (p < 0.001) in both layer II/III and layer VI and that there was no effect of the cortical layer on α3 subunit expression (p = 0.720, two-factor analysis of variance). We performed biotinylation assays and Western blots to quantify the amount of total and surface α3 subunit. We analyzed 5, 10, and 15 μg of total (E) and 5, 10, and 20 μg of surface (F) cortical protein on Western blot and stained for the α3 subunit as well as the ATPase α subunit. The graph (H) depicts the relative amount of ATPase-normalized α3 subunit from Het_{1KO} mice compared with those of wild type. Het_{1KO} increased total α3 subunit expression to 138 ± 24% (p = 0.0039 versus 100%), an amount consistent with the effect of Het_{1KO} on total α1 subunit expression demonstrated in Fig. 2. When normalized to the amount of recovered α1 subunit, immunoprecipitation with the α1 subunit antibody co-immunoprecipitated 227 ± 20% α3 subunit protein from the Het_{1KO} lysate compared with the wild type lysate (n = 4; p = 0.008 versus 100%). This result suggests that, in addition to Het_{1KO} decreasing the total expression of α1 subunit protein, it also decreased the fraction of α1 subunit incorporated into 100% of α3 subunit.

Figure 4. Het_{1KO} altered the association of α1 and α3 subunits. A, COS-7 cells were left untransfected or were transfected with α1β2y3 or α3β2y2 GABARα (n = 3). Cellular lysates were immunoprecipitated (IP) with either the α1 or α3 subunit, and the products were analyzed by Western blot. The blots were probed with the anti-α1 subunit antibody (green) and the anti-α3 subunit antibody (red). Neither the α1 nor α3 antibody immunoprecipitated proteins from untransfected cells. The α1 subunit antibody but not the anti-α3 subunit antibody immunoprecipitated the α1 subunit protein from the cells expressing α1β2y2 receptors, and the α3 subunit antibody but not the α1 subunit antibody immunoprecipitated α3 subunit protein from the cells expressing α3β2y2 receptors. B, cortical lysates from wild type mice were immunoprecipitated with the mouse α1 subunit antibody (Ms α1), the rabbit α3 subunit antibody (Rb α3), or control immunoglobulin from nonimmunized mice (Ms cont) or rabbits (Rb cont). Immunoprecipitated material was analyzed by Western blot and stained for the α1 (green) or α3 (red) subunit. The anti-α1 and anti-α3 subunit antibodies coimmunoprecipitated α1 and α3 subunits, but neither the mouse nor rabbit control immunoglobulin immunoprecipitated either subunit. C–F, total protein from wild type and Het_{1KO} cortices was immunoprecipitated with antibodies directed against the α1 or α3 subunits. Immunoprecipitated material (5, 10, and 20 μl) was analyzed on Western blot, which was stained with both the α1 and α3 subunit antibodies (C and D). Immunoprecipitation using the anti-α1 subunit antibody (C and F) recovered 68 ± 11% as much α1 subunit protein from Het_{1KO} cortex as compared with wild type cortex (n = 5, p = 0.039), and, when normalized to recovered α1 subunit, co-immunoprecipitated 227 ± 20% as much α3 subunit from Het_{1KO} cortex as from wild type cortex (n = 4, p = 0.008). Immunoprecipitation using the anti-α3 subunit antibody (D and F) recovered 173 ± 19% as much α3 subunit from Het_{1KO} as from wild type cortex (n = 5, p = 0.020) and co-immunoprecipitated 63 ± 8% as much normalized α1 subunit from Het_{1KO} cortex as from wild type cortex (n = 4, p = 0.008). Error bars, S.E.
α1βγ receptors and increased the fraction in α1α3βγ receptors.

Immunoprecipitation using the α3 subunit antibody produced 173 ± 19% of α3 subunit from Hetα1KO wild type expression (n = 5; p = 0.020 versus 100%), a result consistent with the increase in α3 subunit expression in Hetα1KO mice demonstrated in Fig. 3. Immunoprecipitation of the α3 subunit co-immunoprecipitated 63 ± 8% normalized α1 subunit (n = 4; p = 0.022 versus 100%). These data suggest that in addition to Hetα1KO increasing the expression of the α3 subunit, it also decreased the fraction of α3 subunits incorporated into α1α3βγ receptors and increased the fraction of α3 subunits that are incorporated into α3βγ receptors.

Hetα1KO Altered GABAergic Synaptic Currents and Their Response to Benzodiazepine Agonists—GABAARs that contain different α subunit isoforms possess distinct physiological and pharmacological properties. In particular, GABAARs that contain α3 subunits exhibit slower current decay times, increased current rise times, and a reduced sensitivity for GABA (larger EC50) as compared with α1-containing GABAARs (7, 47, 48). In addition, diazepam enhances currents in GABAARs with the stoichiometry of α1βγ2 (where α is 1, 2, 3, or 5), whereas zolpidem selectively enhances currents in α1βγ2 GABAARs with a greater potency than α2βγ2 or α3βγ2 GABAARs (49–52). Therefore, because our biochemical studies demonstrated that Hetα1KO altered the surface expression and composition of GABAARs, we next examined the effects of Hetα1KO on synaptic GABAAR physiology and pharmacology.

We examined the effects of Hetα1KO on the mIPSCs recorded from somatosensory cortex layer VI pyramidal neurons, the brain region and cortical layer thought to initiate absence seizures (40) and that projects to the thalamus, the brain region thought to sustain the oscillations (53). Representative traces are presented in Fig. 5, A and B (wild type, n = 11; Hetα1KO, n = 10). Hetα1KO significantly reduced the magnitude of the average peak mIPSC amplitude (Fig. 5, C and D) both when all mIPSCs were analyzed together in a cumulative histogram (K-S test p < 0.001) and when averaged among individual neurons (wild type, −43 ± 4.1 pA; Hetα1KO, −32 ± 2.5 pA; p = 0.032).

In addition to reducing the peak current amplitudes, Hetα1KO also altered the time course of mIPSC kinetics. First, Hetα1KO increased the 10–90% rise time from 1.8 ± 0.15 to 2.4 ± 0.20 ms (not shown; K-S test, p < 0.001; t test, p = 0.024). Second, Hetα1KO increased the time course of mIPSC decay (Fig. 5, E and F). We fit the time course of current decay of each mIPSC to a single exponential and calculated the decay time constant, τ, for each mIPSC. When analyzed in cumulative histograms (K-S test p < 0.001) and when averaged among neurons (p = 0.034), Hetα1KO significantly prolonged the decay time constant (wild type, 24 ± 0.9 ms; Het, 27 ± 1.3 ms). Importantly, there were no correlations among the peak current amplitudes, the rise times, and the decay constants, a finding that suggests that the effect of Hetα1KO on these values results from alterations in GABAAR physiology rather than a redistribution of GABAAR synapses to other neuronal locations (e.g. to locations more distal from the soma that could also produce apparent changes in current kinetic parameters by introducing space clamp error).

GABAAR current decay is often fit to the sum of two exponentials, a process that difficult to perform accurately if applied to each mIPSC individually. Therefore, we constructed averaged mIPSC traces from each neuron and fit the current decay to one or two exponentials and calculated the weighted time constant, τw. We found that Hetα1KO reduced the absolute mean peak amplitude (wild type, −43 ± 4.1 pA; Hetα1KO, −32 ± 2.5 pA; p = 0.032) and prolonged the mean decay time constant (wild type, 24 ± 0.9 ms; Het, 27 ± 1.3 ms; p = 0.034). We averaged the mIPSC traces separately for each neuron with normalized amplitudes, calculated the weighted time constants of current decay (τw), and depicted specimen traces in G. Hetα1KO increased the weighted time constant (τw) from 12.7 ± 1.0 ms to 17.4 ± 1.6 ms (p = 0.024). Error bars, S.E.

We also determined the effects of Hetα1KO on mIPSC frequency. Interestingly, although Hetα1KO reduced the mIPSC frequency when all mIPSCs were analyzed in a cumulative histogram (not shown; K-S test, p < 0.001), there was sufficient variation in the average mIPSC frequencies that this difference

FIGURE 5. Hetα1KO decreased the mIPSC peak amplitudes and altered the time course of current kinetics in layer VI pyramidal neurons. A and B depict, respectively, representative mIPSC tracings from cortical layer VI pyramidal wild type (n = 11, black) and Hetα1KO (n = 10, gray) neurons. The insets on the traces depict mIPSCs on an expanded time scale to demonstrate the time course of current decay. C and E, cumulative histograms summarizing the individual mIPSC absolute peak current amplitudes and decay time constants (single τ). Compared with wild type (black solid line), Hetα1KO (gray dashed line) reduced the peak current amplitudes and increased the time course of current decay (K-S test, p < 0.001). We calculated the average amplitude and decay constant for each neuron individually. The bar graphs (D and F) depict the mean of the averaged amplitude and τ values and demonstrate that Hetα1KO reduced the absolute mean peak amplitude (wild type, −43 ± 4.1 pA; Hetα1KO, −32 ± 2.5 pA; p = 0.032) and prolonged the mean decay time constant (wild type, 24 ± 0.9 ms; Het, 27 ± 1.3 ms; p = 0.034). We averaged the mIPSC traces separately for each neuron with normalized amplitudes, calculated the weighted time constants of current decay (τw), and depicted specimen traces in G. Hetα1KO increased the weighted time constant (τw) from 12.7 ± 1.0 ms to 17.4 ± 1.6 ms (p = 0.024). Error bars, S.E.
was not statistically significant when averaged among individual neurons (not shown; wild type, 3.0 ± 0.59 Hz; Het_{α1}KO, 2.3 ± 0.39 Hz; p = 0.381). Further studies will be necessary to determine if, in addition to altering GABA_αR expression and composition, Het_{α1}KO also affects synaptogenesis or GABA release from presynaptic interneurons, processes that can alter mIPSC frequency.

Next, we studied the effects of the benzodiazepine site agonists, diazepam and zolpidem, on eIPSCs from layer VI pyramidal neurons. Diazepam increased the eIPSC amplitude in both wild type (133 ± 6.8%; n = 6; p = 0.005 versus 100%) and Het_{α1}KO neurons (190 ± 5.1%; n = 5; p = 0.006 versus 100%) but had a greater effect on Het_{α1}KO than wild type neurons (C, p = 0.007 wild type versus Het_{α1}KO). Zolpidem increased eIPSC amplitudes in wild type (127 ± 4.1%; n = 6, p < 0.001 versus 100%) but not Het_{α1}KO neurons (105 ± 3.1%; n = 7; p = 0.130 versus 100%, p = 0.001 versus wild type). Error bars, S.E.

FIGURE 6. Het_{α1}KO altered the responses of cortical pyramidal neurons to benzodiazepine agonists. We recorded eIPSCs in the absence (black) and presence (gray) of the benzodiazepine agonists, diazepam (1 μM; A–C) and zolpidem (100 nm; D–F) in wild type (A and D) and Het_{α1}KO (B and E) layer VI pyramidal neurons. Diazepam increased the eIPSC amplitude in both wild type (133 ± 6.8%; n = 6; p = 0.005 versus 100%) and Het_{α1}KO neurons (190 ± 5.1%; n = 5; p = 0.006 versus 100%) but had a greater effect on Het_{α1}KO than wild type neurons (C, p = 0.007 wild type versus Het_{α1}KO). Zolpidem increased eIPSC amplitudes in wild type (127 ± 4.1%; n = 6, p < 0.001 versus 100%) but not Het_{α1}KO neurons (105 ± 3.1%; n = 7; p = 0.130 versus 100%, p = 0.001 versus wild type). Error bars, S.E.

FIGURE 7. Het_{α1}KO did not increase α3 subunit mRNA expression or α1 subunit mRNA driven from the wild type allele. We extracted total mRNA from wild type and Het_{α1}KO cortices and performed quantitative real-time PCR with probes that amplified the α1 (A) and α3 (B) subunits as well as actin, the endogenous control. Het_{α1}KO reduced α1 subunit mRNA expression to 52 ± 7% that of wild type (n = 6; p = 0.001 versus 100%, p = 0.750 versus 50%) and did not significantly change α3 subunit mRNA expression (90 ± 7%, n = 6, p = 0.230 versus 100%). Error bars, S.E.

results suggest that Het_{α1}KO substitutes non-α1 subunit-containing GABA_αRs for α1βγ receptors. These studies of the consequences of Het_{α1}KO on cortical neuron synaptic physiology and pharmacology are consistent with our biochemical experiments showing that Het_{α1}KO altered GABA_αR expression and composition. Moreover, they also suggest a mechanism by which Het_{α1}KO causes cortical hyperexcitability and seizures.

Het_{α1}KO Did Not Increase α3 Subunit mRNA Expression or α1 Subunit mRNA Driven from the Wild Type Allele—We next used quantitative real-time PCR to determine if Het_{α1}KO caused compensatory changes in α1 or α3 mRNA expression. Het_{α1}KO did not alter the expression of actin mRNA (endogenous control) but reduced actin-normalized α1 subunit mRNA expression to 52 ± 7% (n = 6; p = 0.001 versus 100%; p = 0.750 versus 50%) that of wild type, an amount consistent with the functional heterozygous deletion of the α1 subunit gene without mRNA compensation from the wild type α1 subunit (Fig. 7A). Het_{α1}KO also did not elicit compensation in the expression of α3 subunit mRNA (90 ± 7%, n = 6; p = 0.230 versus 100%; Fig. 7B). This result demonstrated that the increased α3 subunit protein expression is unrelated to mRNA abundance and is consistent with a similar finding in the cerebellum of homozygous α1 subunit deletion mice (17).

Het_{α1}KO Did Not Recruit α1 Subunit-containing GABA_αRs from the Endoplasmic Reticulum—It was possible that Het_{α1}KO increased the relative surface α1 subunit expression by recruiting α1 subunit-containing receptors from the ER. A substantial proportion of recombinant GABA_αRs expressed in both heterologous cells and neurons is localized within the ER (32, 54). We determined the effect of Het_{α1}KO on the fraction of ER-resident α1 subunits by measuring the proportion of subunit that contained high mannose, N-linked glycosylation, a marker of an ER-associated protein (55–57). Digestion with endo-H removes high mannose ER-associated, N-linked carbohydrates, whereas digestion with PNGase F removes all N-linked carbohydrates. We digested protein lysates from COS-7 cells transfected with α1β2γ2 receptors (positive control) and from wild type and Het_{α1}KO cortices with endo-H or PNGase F and analyzed the digestion products by Western blot (Fig. 8). As described previously (32), PNGase F digestion of α1
subunit reduced its apparent mass from 50 to 46 kDa, a finding consistent with the removal of its two N-linked glycans, and endo-H digestion of recombinant α1 subunits produced two products with different molecular masses, 46 kDa (ER-associated) and 48 kDa (not ER-associated). However, in wild type and Hetα1KO cortices, endo-H digestion produced only a 48-kDa product (not ER-associated; n = 5). Therefore, in both wild type and Hetα1KO mice, no substantial α1 subunit is present within the ER, and thus Hetα1KO cannot increase the relative surface expression of the α1 subunit by recruiting ER-resident α1 subunit-containing GABA_A receptors to the cell surface.

Hetα1KO Altered GABA_A Receptor Composition in Epilepsy

Previous studies demonstrated that modulation of dynamin-mediated endocytosis of GABA_A Rs regulates their surface expression (58–61). Patch clamp electrophysiological recordings that measured time-dependent changes in current amplitudes following the application of inhibitors of dynamin-mediated endocytosis have been used to study neurotransmitter receptor endocytosis in multiple regions in intact brain slices (29, 34–38). Although biochemical or immunohistochemical confirmation of increased neurotransmitter receptor surface expression after endocytosis inhibition has not typically been performed in intact brain slices, it has been confirmed in numerous studies of cultured cells (62–64) as well as in one study of hippocampal brain slices (29). Therefore, it is thought that increased current amplitude after endocytosis inhibition reflects increased surface expression of the neurotransmitter receptor. Here, we evaluated the effects of two inhibitors of dynamin-mediated endocytosis on GABAergic currents in layer VI somatosensory cortical neurons to determine whether Hetα1KO altered endocytosis.

We first determined the effects of dynasore, a membrane-permeable inhibitor of dynamin’s GTPase activity. We recorded base-line mIPSCs for 5 min and then added 80 μM dynasore and recorded mIPSCs for an additional 20 min. Inhibition of endocytosis caused time-dependent increases in mIPSC peak amplitudes in wild type (n = 5) but not Hetα1KO (n = 6) neurons (Fig. 9, A and B). In wild type neurons, mIPSC peak amplitudes 20 min after dynasore administration were 126 ± 9.4% those of base-line recordings, but in Hetα1KO neurons, peak amplitudes were only 87 ± 7.9% those of the baseline (p = 0.014, wild type compared with Hetα1KO; p = 0.101, Hetα1KO versus 100%). Dynasore did not significantly change the time constant of current decay for either wild type (p = 0.340) or Hetα1KO neurons (p = 0.669).

Next, we tested the effects of P4 peptide, a membrane-impermeable peptide that blocks the binding of dynamin with amphipath. We added P4 peptide to the internal solution of the patch pipette and recorded mIPSCs (Fig. 9C). In concordance with the dynasore results, the intracellular administration of P4 peptide caused time-dependent increases in mIPSC amplitudes in wild type but not Hetα1KO neurons. After 25 min of recording with P4 peptide, mIPSC amplitudes from wild type neurons were 142 ± 12% at 25 min compared with base line, but for Hetα1KO neurons, amplitudes at 25 min were 87 ± 7.9% that of base line (p = 0.014). For P4 peptide, wild type mIPSC peak amplitudes were 142 ± 12% at 25 min compared with base line, but Hetα1KO amplitudes at 25 min were 96 ± 5.5% compared with base line (p = 0.009). Error bars, S.E.
Altered GABA_A Receptor Composition in Epilepsy

FIGURE 10. The effects of Het₁KO on cortical GABA_A R expression, composition, and endocytosis. Here, we summarize our findings and propose a model by which Het₁KO alters GABA_AR expression, composition, and endocytosis. For wild type (A) and Het₁KO (B) neurons, we depict the plasma membrane (top), cytosol (middle), endoplasmic reticulum (bottom), α1 subunits (green), and α3 subunits (red). For simplicity, we grouped the partnering β and γ subunits as a single blue symbol, did not differentiate between lysosomal or proteosomal degradation, and did not depict the Golgi. 1, Het₁KO reduces functional α1 subunit mRNA but does not affect α3 subunit mRNA, 2, therefore, Het₁KO reduces α1 subunit translated and inserted into ER, and thus a greater fraction of α1 subunits assemble into hybrid α1α3βγ pentamers and a greater fraction of α3 subunits incorporate into α3βγ pentamers. Because fewer α1 subunits are able to compete with α3 subunits for binding partners, more α3 subunits incorporate into functional receptors and fewer undergo ER-associated degradation. Consistent with our glycosylation experiments, the ER does not contain a substantial pool of GABA_AR. 3, there is a small reduction in total and surface GABA_AR in early endosomes, an effect that reduces insertion into plasma membrane when endocytosis is inhibited with dynasore or P4 peptide (5).

Indirectly increase peak current amplitudes of wild type neurons by preventing endocytosis of another protein that positively modulates GABA_AR function, our finding that neither dynasore nor P4 peptide altered the time course of mIPSC decay supports our interpretation that currents are enhanced due to increased receptor surface expression and not by alteration of receptor physiology.

The lack of effect of endocytosis inhibition on Het₁KO currents, coupled with the observations that Het₁KO increased the relative surface expression of the α1 subunit (Fig. 2) and α3 subunit expression (Fig. 3), suggests that Het₁KO decreased the rate of base-line GABA_AR endocytosis and thereby reduced the amount GABA_AR in early endosomes available to recycle to the plasma membrane.

DISCUSSION

It is critical to characterize the molecular mechanisms that modulate inhibitory neurotransmission in epilepsy syndromes in order to elucidate the pathogenic mechanisms of these diseases. The Het₁KO mouse is an excellent model of absence epilepsy that approximates the α1(S326fs328X) mutation associated with human absence epilepsy and possesses electrographic and behavioral absence seizures that respond to ethosuximide, a prototypical anti-absence epilepsy drug (13). Here, we found that Het₁KO changed the total and surface expression and composition of synaptic-type GABA_ARs and altered the physiology and pharmacology of synaptic inhibitory currents. In addition, we determined that Het₁KO altered GABA_AR endocytosis/recycling and thus identified a biochemical mechanism that alters GABA_AR expression and may also contribute to the paroxysmal development of seizures.

Het₁KO Alters Cortical GABA_A R Expression, Composition, and Physiology—Het₁KO caused a small reduction in total and surface β2 subunit expression without affecting β3 subunit expression, results consistent with a modest reduction in GABA_AR number. In addition, Het₁KO elicited three important effects on cortical total and surface α subunit expression (Fig 10). First, Het₁KO increased the relative surface expression of the α1 subunit by causing significantly smaller reductions in surface than in total α1 subunit expression. Interestingly, another absence epilepsy-associated GABA_AR mutation, γ2(R43Q), reduced surface, but not total, γ2 subunit expression and did not alter total or surface α1 subunit expression (65). The apparent consistency of surface α1 subunit expression despite heterozygous α1 subunit deletion or γ2(R43Q) expression implies selectivity in GABA_AR isoform compensation, a finding that may be important for the study of both GABA_AR trafficking and epilepsy-associated disinhibition.

Second, Het₁KO increased the total and surface expression of the α3 subunit. Previous Western blots and immunohistochemistry studies in Het₁KO mice reached different conclusions concerning the effects of Het₁KO on total α3 subunit expression (14, 21). Using both immunofluorescence as well as semiquantitative Western blots with linear protein detection, we demonstrated that Het₁KO did increase total cortical α3 subunit expression. Importantly, we also showed that Het₁KO substantially increased surface α3 subunit expression and thus increased α3 subunit incorporated into cell surface receptors that could affect GABAergic physiology. In addition, our finding that Het₁KO differentially reduced β2 but not β3 subunit expression raised the intriguing idea that α3 subunits may preferentially assemble with β3 rather than β2 subunits, a possibility consistent with observations that brain regions that selectively express the α3 subunit (e.g. reticular nucleus of the thalamus) express β3 but not β2 subunits (66).

Third, Het₁KO increased the fraction of α1 subunits associated with α3 subunits and decreased the fraction of α3 subunits associated with α1 subunits. Conceivably, the association of α1 and α3 subunits could result from α1 and α3 subunits...
associating in non-pentameric oligomers or in two separate but associated pentamers (e.g. connected by a scaffolding protein). However, previous gradient fractionation studies failed to detect non-pentameric assembly intermediates or substantial multipentameric complexes (67, 68), whereas the existence of “hybrid” GABAARs containing two different α subunits has been well established (45). Therefore, it is likely that Het_{α1KO} reduced the fraction of α1 subunit in α1βγ receptors and increased the fraction of α1 subunit in α1α3βγ GABAARs. In addition, it also decreased the fraction of α3 subunits in α1α3βγ receptors and increased the fraction in α3βγ GABAARs (Fig. 10).

The increased mIPSC rise times, decay time constants, and reduced zolpidem responsiveness are consistent with the increase in surface α3 subunit-containing GABAARs. The reduction of Het_{α1KO} in peak mIPSC amplitudes is undoubtedly partly related to the modest reduction in total GABAAR number. However, because GABAARs that contain α3 subunits are less sensitive to GABA (larger EC_{50} than α1 subunit-containing GABAARs (7, 69), the reduction in mIPSC peak current amplitude is also probably related to the partial substitution of α1 subunit-containing GABAAR with α3 subunit-containing GABAAR. This interpretation is supported by our observation that diazepam had a greater effect on Het_{α1KO} than wild type eIPSCs. Diazepam acts, in part, by reducing the EC_{50} of receptors for GABA (69). Therefore, the greater effect of diazepam on Het_{α1KO} than on wild type neurons suggests that Het_{α1KO} neurons have a higher GABA EC_{50} consistent with increased expression of α3 subunit-containing GABAARs.

Because Het_{α1KO} only modestly reduced surface α1 subunit expression, it was somewhat unexpected that Het_{α1KO} caused such substantial changes in GABAAR physiology and pharmacology. However, this finding could be explained by our observation that Het_{α1KO} increased the fraction of α1 subunits assembling into hybrid α1α3βγ receptors. Previous studies using recombinant concatenated subunits to force assembly of hybrid α1α6βγ receptors demonstrated that the replacement of a single α1 subunit in a pentamer substantially changed the pharmacology and physiology (46); a similar effect may be obtained by substituting an α3 subunit for an α1 subunit.

Het_{α1KO} Alters GABAAR Expression, in Part, by Reducing Base-line Endocytosis—Previous studies of GABAAR subunits recombinantly overexpressed in neurons or heterologous cells demonstrated that GABAAR pentamers formed rapidly in the ER but trafficked slowly to the cell surface and that a substantial pool of GABAARs resided within the ER (70). We anticipated that the increased relative surface expression of the α1 subunit in Het_{α1KO} cortex could result from ER-resident GABAARs recruited to the cell surface. Interestingly, in both wild type and Het_{α1KO} cortex, no ER-associated α1 subunit could be detected. It is likely that with native expression, in contrast to overexpression, reduced α subunit translation limits the amount of ER-associated protein.

Although Het_{α1KO} did not recruit ER-associated α1 subunits to the surface, it could still indirectly increase GABAAR forward trafficking. Because GABAAR pentamers assemble in the ER, our observation that Het_{α1KO} altered α1 and α3 subunit association demonstrated that Het_{α1KO} modified an ER-associated process. Possibly, the reduced expression of α1 subunit allowed more α3 subunits to assemble into functional receptors, which reduced α3 subunit destruction via ER-associated degradation and thus indirectly enhanced trafficking of α3 subunit-containing GABAARs.

Het_{α1KO} altered the response of neurons to dynasore and P4 peptide. Because Het_{α1KO} increased and did not decrease the relative surface expression of the α1 subunit and increased the expression of α3 subunit-containing GABAARs, it is unlikely that this finding resulted from Het_{α1KO} directly decreasing the rates of GABAAR trafficking from the Golgi or recycling after endocytosis. More likely, Het_{α1KO} decreased the rate of baseline GABAAR endocytosis and thus reduced the amount of GABAARs trafficking to the Golgi or recycling after endocytosis. More likely, Het_{α1KO} decreased the rate of baseline GABAAR endocytosis in Het_{α1KO} cortices would increase α3 subunit expression as well as the relative surface expression of the α1 subunit.

It has been shown that modulating the rate of GABAAR endocytosis dynamically controls synaptic GABAAR expression. Phosphorylation of both the β3 and γ2 subunits decreases the interaction of the clathrin adapter protein, AP2, with the GABAAR and thereby reduces endocytosis (60, 61, 71), whereas protein kinase C, acting through the β2 subunit, enhances endocytosis (72). Possibly, Het_{α1KO} alters phosphorylation, which diminishes endocytosis and thereby reduces GABAAR in early endosomes and increases the surface expression of the α3 and α1 subunit-containing GABAARs.

The Effects of Het_{α1KO} on GABAAR Composition, Physiology, and Endocytosis May Predispose the Cortex to Initiate Seizures—Neurophysiological studies have demonstrated that humans and rodents with absence epilepsy possess hyperexcitable cortices (3–5). Here, we demonstrated that Het_{α1KO} absence epilepsy mice exhibited altered cortical GABAAR expression and composition, reduced peak current amplitudes, and increased decay times in layer VI pyramidal neurons, the layer thought to initiate absence seizures (40). The reduced GABAergic current amplitudes would disinhibit these layer VI neurons, rendering them more likely to initiate a seizure. Although reduced synaptic GABAergic currents have been reported in upper cortical layers for other rodent models of absence epilepsy (65, 73), to our knowledge, this is the first report demonstrating GABAergic synaptic dysfunction in the critical cortical layer VI.

Prolonged IPSC decay times have not been reported in previous studies of absence epilepsy. Possibly, increased decay times partially compensate for the reduced peak current amplitudes by partly normalizing the charge transfer of chloride ions. However, it is also possible that the prolonged decay times exacerbate seizures by promoting neuronal synchrony or enhancing the deinactivation of T-type calcium channels (74). Pharmacological or genetic interventions that selectively reduce IPSC decay will help elucidate the possible compensatory and exacerbating effects of prolonged IPSC decay on absence seizures.

The effects of Het_{α1KO} on endocytosis/recycling may also be related to the seizures. Previous studies demonstrated that pharmacologically induced high frequency neuronal activity decreased GABAAR endocytosis and thereby increased
Altered GABA_A Receptor Composition in Epilepsy

GABA_AR surface expression (1). Thus, it is possible that the absence seizures altered GABA_AR endocytosis/recycling. In addition, it is clear from Fig. 9 that the alteration of endocytosis/recycling has been maximized; neither dynasore nor P4 peptide elicited any increase in mIPSC amplitudes in Het_AKO cortices. This inability to dynamically increase GABAergic transmission could explain why seizures occur paroxysmally; neurons are incapable of mobilizing a reserve of cytoplasmic GABA_ARs in response to periods of high frequency neuronal activity. Future studies that specifically examine the effects of absence seizures on GABA_AR endocytosis will help to determine if the seizures elicit this compensatory response or if the lack of a rapidly accessible reserve of GABA_AR leaves neurons vulnerable to periodic stresses, prompting them to initiate absence seizures.

Acknowledgments—We gratefully acknowledge Drs. Andre Lagrange, Aurelio Galli, and Robert Macdonald (Vanderbilt University) for helpful comments and suggestions.

REFERENCES

1. Rannals, M. D., and Kapur, J. (2011) Homeostatic strengthening of inhibitory synapses is mediated by the accumulation of GABA_A receptors. J. Neurosci. 31, 17701–17712
2. Shu, Y., Hasenstaub, A., and McCormick, D. A. (2003) Turning on and off recurrent balanced cortical activity. Nature 423, 288–293
3. Lütjohann, A., Zhang, S., de Peijper, R., and van Lijtelaar, G. (2011) Electromagnetic stimulation of the epileptic focus in absence epileptic WAG/Rij rats. Proc. Natl. Acad. Sci. U.S.A. 108, 7259–7264
4. Badawy, R. A., and Jackson, G. D. (2012) Cortical excitability in migraine with idiopathic generalized epilepsy. J. Clin. Neurophysiol. 29, 328–330
5. Fedi, M., Berkovic, S. F., Macdonell, R. A., Curatolo, J. M., Marini, C., and Reutens, D. C. (2008) Intraocular hyperexcitability in humans with a GABA_A receptor mutation. Cereb. Cortex 18, 664–669
6. Badawy, R. A., and Jackson, G. D. (2012) Cortical excitability in migraine and epilepsy. A common feature? J. Clin. Neurophysiol. 29, 244–249
7. Picton, A. J., and Fisher, J. L. (2007) Effect of the α1 subunit subtype on the macroscopic kinetic properties of recombinant GABA_A receptors. Brain Res. Rep. 1165, 40–49
8. Cossette, P., Liu, L., Brisebois, K., Dong, H., Lortie, A., Vanasse, M., Saint-Hilaire, J. M., Carmant, L., Verner, A., Lu, W. Y., Wang, Y. T., and Rudolph, U. (2001) Novel α3-containing GABA_A receptors to a dopamine hyperfunction. Proc. Natl. Acad. Sci. U.S.A. 102, 17154–17159
9. Schofield, C. M., Kleiman-Weiner, M., Rudolph, U., and Huguenard, J. R. (2009) A gain in GABA_A receptor α1 subtype deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J. Neurosci. 29, 3009–3016
10. Macdonald, R. L., Botzolakis, E. J., Hu, N., and Galcap, J. E., et al. (2007) A common feature? J. Clin. Neurophysiol. 29, 328–330
11. Moyer, J. R., Jr., and Brown, T. H. (1998) Methods for whole-cell recording from visually preselected neurons of perirhinal cortex in brains slices from Monodelphis domestica. J. Neurosci. 18, 31, 282–291
cated of nuclear calcium-CREB-ATF3 activated by synaptic NMDA receptors defines a gene repression module that protects against extrasynaptic NMDA receptor-induced neuronal cell death and ischemic brain damage. *J. Neurosci.* 31, 4978–4990

32. Gallagher, M. I., Shen, W., Song, L., and Macdonald, R. L. (2005) Endoplasmic reticulum retention and associated degradation of a GABA_A receptor epilepsy mutation that inserts an aspartate in the M3 transmembrane segment of the α1 subunit. *J. Biol. Chem.* 280, 37995–38004

33. Gallagher, M. I., Ding, L., Maheshwari, A., and Macdonald, R. L. (2007) The GABA_A receptor α1 subunit epilepsy mutation A322D inhibits endoplasmic reticulum formation and causes proteasomal degradation. *Proc. Natl. Acad. Sci. U.S.A.* 104, 12999–13004

34. Kotowski, S. J., Hopf, F. W., Seif, T., Bonci, A., and von Zastrow, M. (2011) Endocytosis promotes rapid dopaminergic signaling. *Neuron* 71, 278–290

35. Chen, G., Kittler, J. T., Moss, S. J., and Yan, Z. (2006) Dopamine D3 receptors regulate GABA_A receptor function through a phospho-dependent endocytosis mechanism in nuclei accumbens. *J. Neurosci.* 26, 2513–2521

36. Dennis, S. H., Jaafari, N., Cimarosti, H., Hanley, J. G., Hanley, J. M., and Mellor, J. R. (2011) Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGlur1 and adenosine A3 receptors. *J. Neurosci.* 31, 11941–11952

37. Grueter, B. A., McElligott, Z. A., Robison, A. J., Mathews, G. C., and Tieland, R. G. (2008) In vivo metabotropic glutamate receptor 5 (mGlur5) antagonism prevents cocaine-induced disruption of postsynaptically maintained mGlur5-dependent long-term depression. *J. Neurosci.* 28, 9261–9270

38. Liu, W., Yuen, E. Y., Allen, P. B., Feng, J., Greengard, P., and Yan, Z. (2006) Adrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin. *Proc. Natl. Acad. Sci. U.S.A.* 103, 18338–18343

39. Meeren, H. K., Pijn, J. P., Van Luijtenaar, E. L., Coenen, A. M., and Lopes da Silva, F. H. (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. *J. Neurosci.* 22, 1480–1495

40. Polack, P. O., Guillemain, I., Hu, E., Deransart, C., Depaulis, A., and Chartier, S. (2007) Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures. *J. Neurosci.* 27, 6590–6599

41. Rudy, B., Fishell, G., Lee, S., and Hjerling-Leffler, J. (2011) Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. *Dev. Neurobiol.* 71, 45–61

42. Heller, E. A., Zhang, W., Selimi, F., Earnheart, J. C., Slimak, M. A., Santos-Torres, I., Ibañez-Tallon, I., Aoki, C., Chait, B. T., and Heintz, N. (2012) The biochemical anatomy of cortical inhibitory synapses. *PLoS ONE* 7, e39572

43. Hutcheon, B., Fritschy, J. M., and Poullier, M. O. (2004) Organization of GABA_A receptor α-subunit clustering in the developing rat neocortex and hippocampus. *Eur. J. Neurosci.* 19, 2475–2487

44. Yu, Z. Y., Wang, W., Fritschy, J. M., Witte, O. W., and Redeker, C. (2006) Changes in neocortical and hippocampal GABA_A receptor subunit distribution during brain maturation and aging. *Brain Res. 1099*, 73–81

45. Benke, D., Faktitsa, P., Roggenmoser, C., Michel, C., Rudolph, U., and Mohler, H. (2004) Analysis of the presence and abundance of GABA_A receptors containing two different types of α subunits in murine brain using point-mutated α subunits. *J. Biol. Chem.* 279, 43654–43660

46. Minier, F., and Sigel, E. (2004) Positioning of the α-subunit isoforms confers a functional signature to γ-aminobutyric acid type A receptors. *Proc. Natl. Acad. Sci. U.S.A.* 101, 7769–7774

47. Barberis, A., Mozryzmas, J. W., Ortmnski, P. L., and Vicini, S. (2007) Desensitization and binding properties determine distinct α1β2γ2 and α3β2γ2 GABA_A receptor-channel kinetic behavior. *Eur. J. Neurosci.* 25, 2726–2740

48. Rula, E. Y., Lagrange, A. H., Jacobs, M. M., Hu, N., Macdonald, R. L., and Emeson, R. B. (2008) Developmental modulation of GABA_A receptor function by RNA editing. *J. Neurosci.* 28, 6196–6201

49. Jia, F., Goldstein, P. A., and Harrison, N. L. (2009) The modulation of synaptic GABA_A receptors in the thalamus by eszopiclone and zolpidem. *J. Pharmacol. Exp. Ther.* 328, 1000–1006
66. Eyre, M. D., Renzi, M., Farrant, M., and Nusser, Z. (2012) Setting the time course of inhibitory synaptic currents by mixing multiple GABA_A receptor α subunit isoforms. J. Neurosci. 32, 5853–5867
67. Klausberger, T., Ehya, N., Fuchs, K., Fuchs, T., Ebert, V., Sarto, I., and Sieghart, W. (2001) Detection and binding properties of GABA_A receptor assembly intermediates. J. Biol. Chem. 276, 16024–16032
68. Tretter, V., Ehya, N., Fuchs, K., and Sieghart, W. (1997) Stoichiometry and assembly of a recombinant GABA_A receptor subtype. J. Neurosci. 17, 2728–2737
69. Verdoorn, T. A. (1994) Formation of heteromeric γ-aminobutyric acid type A receptors containing two different α subunits. Mol. Pharmacol. 45, 475–480
70. Gorrie, G. H., Vallis, Y., Stephenson, A., Whitfield, J., Browning, B., Smart, T. G., and Moss, S. J. (1997) Assembly of GABA_A receptors composed of α1 and β2 subunits in both cultured neurons and fibroblasts. J. Neurosci. 17, 6587–6596
71. Saliba, R. S., Kretschmannova, K., and Moss, S. J. (2012) Activity-dependent phosphorylation of GABA_A receptors regulates receptor insertion and tonic current. EMBO J. 31, 2937–2951
72. Herring, D., Huang, R., Singh, M., Dillon, G. H., and Leidenheimer, N. I. (2005) PKC modulation of GABA_A receptor endocytosis and function is inhibited by mutation of a dileucine motif within the receptor β2 subunit. Neuropharmacology 48, 181–194
73. Sasaki, S., Huda, K., Inoue, T., Miyata, M., and Imoto, K. (2006) Impaired feedforward inhibition of the thalamocortical projection in epileptic Ca²⁺ channel mutant mice, tottering. J. Neurosci. 26, 3056–3065
74. Mann, E. O., and Mody, I. (2008) The multifaceted role of inhibition in epilepsy. Seizure-genesis through excessive GABAergic inhibition in autosomal dominant nocturnal frontal lobe epilepsy. Curr. Opin. Neurol. 21, 155–160