Aesthetic complaints as clue to *Pseudoxanthoma elasticum*

Atzori Laura1*, Zucca Myriam2, Vivanel Caterina1, Sanna Silvia1, Pilloni Luca1 and Ferreli Caterina1

1Dermatology Clinic, Department of Medical Science “M.Aresu”, University of Cagliari, Cagliari, Italy
2SC Dermatology, AOU Cagliari, Cagliari, Italy
3SC Medical Genetics, Asl8 Cagliari, Cagliari, Italy
4Pathology Division, Department of Surgical Science, University of Cagliari, Cagliari, Italy

Abstract

Background: Aesthetic issues might be the clue to systemic disease diagnosis, and undervaluation might postpone appropriate assessment. Pseudoxanthoma elasticum is a heritable metabolic disorder of the connective tissues, clinically affecting the skin, the eyes and the cardiovascular system, with consistent morbidity and eventual severe complications, such as blindness or unexpected gastro-intestinal bleeding.

Case report: A 23-year-old woman presented with multiple smooth yellowish papules and cobblestone plaque on the lateral and posterior side of the neck. The patient was otherwise healthy, but histological examination of a skin biopsy and ophthalmology confirmed the clinical suspect of pseudoxanthoma elasticum. Genetic testing revealed a peculiar compound heterozygosity, with the typical pathogenic nonsense mutation on exon 9 (c.1132 C>T p.Q378X), and a novel missense mutation on exon 26 (c.3700 G>A p.E1234K), which should be thus added to the list of the disease-causing mutations.

Conclusions: Skilled expertise and careful patient’s examination are the clue to recognise minimal signs of systemic disease, such as pseudoxanthoma elasticum. Phenotypical variation and differential diagnosis requires multispecialty cooperation, involving the dermatologist, ophthalmologist, pathologist, geneticist and an internist evaluation, including cardiovascular and gastro-enteric screening. As there is no specific treatment, management focuses on prevention and monitoring of complications.

Introduction

Pseudoxanthoma elasticum (PXE; OMIM 264800) is a heritable metabolic disorder of the connective tissues, clinically affecting the skin, the eyes and the cardiovascular system, whose subtle asymptomatic manifestations might be undervalued until complications develop, especially the progressive central vision loss or the unexpected gastro-intestinal bleeding [1-3]. First described by Balzer in 1884, as a special type of xanthoma, own its name to Darier [4], who described in 1896 the histopathological accumulation of fragmented and calcified elastic fibres in the mid and deep reticular dermis (elastorrhexia). Later, Gronblad and Strandberg described the ocular involvement (in 1929), while Carlborg reported the cardiovascular elastic fibres calcification in 1944 [5-7]. The various spectrum of clinical manifestations is due to an ectopic mineralization of the connective extracellular matrix, especially altering the elastic fibres assemblage [1-3]. The classic form has a Mendelian autosomal recessive transmission, but it is also reported a compound heterozygosity caused by several types of mutations in the ABCC6 gene, which resides on the short arm of chromosome 16, and encodes for the sixth member of the ATP-binding cassette transporter, a transmembrane protein involved in the extracellular matrix turnover [9-14].

We report a young Caucasian woman showing skin lesions since childhood, with an apparent negative familial history, whose histopathology assessment and genetic testing confirmed the diagnosis of PXE, but also revealed a peculiar compound heterozygosity. Beside the typical pathogenic nonsense mutation on exon 9 (c.1132 C>T p.Q378X), it was in fact documented a novel missense mutation on exon 26 (c.3700 G>A p.E1234K), which should be thus added to the list of the disease-causing mutations.
Aesthetic complaints as clue to Pseudoxanthoma elasticum

Glob Dermatol, 2015 doi: 10.15761/GOD.1000132 Volume 2(2): 103-106

As well as calcium deposition (von Kossa stain; 10x inset C; 40x inset F), are more evident with specific stains (Weigert-van Giesonstain, 4x inset B and 20x inset E), eosin staining; 4x inset A; 20x inset D). The aberrant clumped and fragmented elastic fibers and curled basophil fibers, morphologically attributable to elastic fibers (Haematoxylin-orthokeratosis, and in the mid-dermis an increased amount of short, fragmented, granular

Figure 2. The skin biopsy histology showed a normal epidermis with lamellar orthokeratosis, and in the mid-dermis an increased amount of short, fragmented, granular and curled basophil fibers, morphologically attributable to elastic fibers (Haematoxylin-eosin staining; 4x inset A; 20x inset D). The aberrant clumped and fragmented elastic fibers are more evident with specific stains (Weigert-van Gieson stain, 4x inset B and 20x inset E), as well as calcium deposition (von Kossa stain; 10x inset C; 40x inset F).

like” dystrophy of the retinal pigment epitheliumenter confirmed the PXE diagnosis. Cardiovascular examination, echocardiography and echo Doppler evaluation of peripheral vasculature were within normal standard.

A genetic consultation was performed at the local reference University Department, and molecular-genetic testing by sequence analysis of the coding and flanking intronic regions of ABCC6 gene, responsible of PXE, detected a typical nonsense mutation on exon 9 (c.1132 C>T p.Q378X), but alsoa novel missense mutation on exon 26 (c.3700 G>A p.E1234K). Thus, molecular diagnosis was consistent with a compound heterozygosity for PXE [13], as the association of one allele exon 9 nonsense mutation with the exon 26 missense mutation on the other allele should be considered disease causing in this patient. Molecular-genetic screening of the first-degree relatives detected a typical nonsense mutation on exon 9 in the father and the brother and the missense mutation on exon 26 in the mother (Figure 1, inset E), who might be considered “healthy carriers” because heterozygotes for a singular mutation, without any sign and symptom of the disease at complete clinical assessment.

The patient, still coming to our department for periodical screening, has been using topical devices to improve the skin texture with inconsistent results. General measures were suggested to control calcium intake, avoid traumatic sports, and reduce risk factors for atheromatosis, intake of drugs potentially causing mucosal bleeding. Beside, visual acuity continued to worsen dramatically, in spite of several laser-coagulation treatments, and intraocular injection of VEGF antagonist. No gastro-intestinal bleeding or signs of cardiovascular complications has occurred in 2-year follow-up.

Discussion

Pseudoxantoma elasticum shows a considerable phenotypic variability with respect to age of onset, the degree of tissue mineralization and clinical severity [1-3,15]. The prevalence is estimated between 1:25,000 and 1:100,000, without racial or geographic predilection, and a minimal female prevalence (2:1 ratio) [11]. The specific role of genotype-phenotype correlations, epigenetic factors, dietary factors and life-style are still not clear. About 300 mutations in the 31 exons of the ABCC6 gene have been associated with PXE, but the physiological function of the gene is still unknown [18]. The transmembrane protein is highly expressed in the liver and kidneys [19], while low level are detectable in the skin, retina and vessel walls, primarily affected by PXE [1,12]. In homozgyous or compound heterozygous carriers, the metabolic disorder is both from liver deficient release of circulating factors and/or local defect of factors interacting with the synthesis and turnover of elastic fibers, which causes fragmentation, accumulation and mineralization, despite normal serum level of calcium and phosphate [2,18-21].

Diagnostic criteria of PXE include 3 major (skin, ocular, histopathology) and 2 minor (histopathology of non-lesional skin, family history of PXE) criteria [15], but an update of the classification has been suggested to include molecular testing results [22]. Heterozygous carriers are defined “healthy carriers” and may develop limited manifestations of the disease [23].

Cutaneous abnormalities often rise between the age of 8 and 12 years: small yellowish papules with symmetrical distribution appear on the lateral sides of the neck, antecubital and popliteal fossae, axillae and groins, and confluence into larger plaque rendering skin redundant and inelastic [1-3]. Similar lesions can also be present at the oral mucosa, especially in the lower lip, and anogenital mucosa [1,15,22].

A characteristic ocular finding is the presence of retinal angioid streaks, caused by breaks in Bruch’s membrane, best observed on examination of the retina with an ophthalmoscope through a dilated pupilla and visualised using fluorescin or indocyanine green angiography [24-26]. Angioid streaks result in progressive neovascularization with subsequent subretinal haemorrhages and scarring, leading to progressive loss of visual acuity and eventual blindness. Although typical, they are not by themselves diagnostic for PXE because they can be encountered in other metabolic and heritable disorders [1,22]. Other ocular signs of PXE include “peau d’orange” of the retina (mottling of retinal pigment epithelium), drusen and comet-like streaks [24,25].

The diagnosis of PXE is established by histologic findings: increase of fragmented, clumped elastic fibres in the mid-dermis of clinically
affected skin, with calcium deposition detected with the specific von Kossa staining [1-3,15,22,27]. Elastic fibres calcification of non-lesional, usually flexural skin is an additional feature, included among minor diagnostic criteria [22,28].

The cardiovascular involvement, due to calcification of the internal elastic laminae of small and middle-sized arteries [1,29-31], is characterized by intermittent claudication in the lower limbs and tiredness in the upper limbs, ischaemic brain infarction, angina pectoris, myocardial infarction, digestive angina, mitral prolapse, reno-vascular hypertension, gastrointestinal bleeding because of vascular fragility [1,22,28-32]. Multiple asymptomatic calcifications on ultrasound examination in liver, spleen, breast, kidneys, testicles and pancreas have been reported in PXE [33,34]. Most women with PXE have normal pregnancies, except for a possible augmented gastro-intestinal bleeding, and the disease has no significant effect on the fetus [35-37].

Several other dermatological disease such as fibroelastolitic papulosus (papillary dermal elastolysis and white fibrous papulosus of the neck), focal dermal elastosis, papular mucinosis, Busche-Ollendorf syndrome, solar elastosis, cutis laxa can resemble PXE clinically but not histologically [26,38-40]. Genetic testing is mandatory to further exclude other diseases, called "PXE-like", clinically and histologically indistinguishable from PXE but not associated with ABCC6 gene-mutation. They can occur in combination with vitamin-K-dependent coagulation deficiency (due to mutations in GGCGX gene), haemoglobinopathies, and elastosis perora serpiginosa, associated with D- penicillamine treatment [22,41-44].

In order to establish the extent and the severity of the disease after diagnosis, people affected by PXE should have complete skin and ophthalmic examinations, cardiovascular examination with echocardiography, cardiac stress testing and doppler evaluation of peripheral vasculature [1,15,22]. The same examinations should be repeated periodically, but no guidelines have yet established timing of long-term follow-up.

At present there is no specific therapy for PXE. General measure are suggested to people affected by PXE to reduce the risk of vascular complications, such as controlling diabetes, lipid disorder, hypertension, body weight and avoiding smoking [1,15,22]. Sports or activity at risk for facial trauma are contraindicated and aspirin, FANS or other hypo coagulant drugs should be avoided if not strictly necessary. Diet is another controversial issue with limitation of calcium intake and supplementation with high level dietary magnesium to prevent connective tissue mineralization [45-50]. Skin lesions are usually treated with cosmetic devices to improve skin texture and local destruction of single more anaesthetic lesions by using cryotherapy, diatromocoagulation and CO2 laser-coagulation [1-3,15]. Intraocular injection of VEGF antagonist, laser-coagulation and photodynamic therapy can be used to counteract sub-retinal neovascularization and subsequent progressive blindness in patients suffering from PXE [25].

Conclusions

This case-report highlight the importance of small skin abnormality, that can appear like a simple aesthetic imperfection, but hide a systemic disease with considerable morbidity, severe quality of life compromising when the loss of visual acuity occurs and occasional mortality. Since the identification of ABCC6 gene as responsible of PXE, over 300 mutations have been detected. In our case-report, a novel mutation (c.3700 G>A p.E1234K), has been identified. Guidelines on follow-up timing and treatment protocols are necessary to improve patient’s quality of life, at present limited to general measures to prevent complications.

References

1. Uitto J, Jiang Q, Värädi A, Bercovich LG, Terry SF (2014) Pseudoxanthoma elasticum: diagnostic features, classification, and treatment options. Expert Opin Orphan Drugs 2: 567-577. [Crossref]
2. Jiang Q, Endo M, Dibra F, Wang K, Uitto J (2009) Pseudoxanthoma elasticum is a metabolic disease. J Invest Dermatol 129: 348-354. [Crossref]
3. Hu X, Plomp AS, van Soest S, Wijnholds J, de Jong PT, et al. (2003) Pseudoxanthoma elasticum: a clinical, histopathological, and molecular update. Surv Ophthalmol 48: 424-438. [Crossref]
4. Darier J (1896) Pseudoxanthoma elasticum. Monatsschr für Praktische Dermatologie 23: 609-617.
5. Gronblad E (1929) Angiod streaks—Pseudoxanthoma elasticum. Vorläufige Mitteilung. Acta Ophthalmol 7: 329.
6. Strandberg J (1929) Pseudoxanthoma elasticum. Zur Haut Geschlechtskr 31: 689-694.
7. Carlberg U (1944) Study of circulatory disturbances, pulse wave velocity, and pressure pulses in larger arteries in cases of Pseudoxanthoma elasticum and angiod streaks: a contribution to the knowledge of the function of the elastic tissue and the smooth muscles in larger arteries. Acta Med Scand 151: 209.
8. Ringpfeil F, Lebwohl MG, Christiano AM, Uitto J (2000) Pseudoxanthoma elasticum: mutations in the MRP6 gene encoding a transmembrane ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci U S A 97: 6001-6006. [Crossref]
9. Uitto J, Li Q, Jiang Q (2010) Pseudoxanthoma elasticum: molecular genetics and putative pathomechanisms. J Invest Dermatol 130: 661-670. [Crossref]
10. Le Sau A, Urban Z, Tschuch C, Cisicar K, Bacchelli B, et al. (2000) Mutations in a gene encoding an ABC transporter cause Pseudoxanthoma elasticum. Nat Genet 25: 223-227. [Crossref]
11. Hu X, Plomp A, Wijnholds J, Ten Brink J, van Soest S, et al. (2003) ABCC6/MRP6 mutations: further insight into the molecular pathology of Pseudoxanthoma elasticum. Eur J Hum Genet 11: 215-224. [Crossref]
12. Chassaing N, Martin L, Calvas P, Le Bert M, Hovnanian A (2005) Pseudoxanthoma elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 mutations. J Med Genet 42: 881-892. [Crossref]
13. Ringpfeil F, McGuigan K, Fuchs L, Kozic H, Larralde M, et al. (2006) Pseudoxanthoma elasticum is a recessive disease characterized by compound heterozygosity. J Invest Dermatol 126: 782-786. [Crossref]
14. Gheduzzi D, Guidetti R, Azinivio C, Tarugi P, Di Leo E, et al. (2004) ABCC6 mutations in Italian families affected by Pseudoxanthoma elasticum (PXE). Hum Mutat 24: 438-439. [Crossref]
15. Lebwohl M, Neldner K, Pope FM, De Paepe A, Christiano AM, et al. (1994) Classification of Pseudoxanthoma elasticum: report of a consensus conference. J Am Acad Dermatol 30: 103-107. [Crossref]
16. Vanacker OM, Voet D, Petrovic M, van Robaeyfs Y, Lenoy BP, et al. (2006) Visceral and testicular calciﬁcations as part of the phenotype in Pseudoxanthoma elasticum: ultrasound ﬁndings in Belgian patients and healthy carriers. Br J Radiol 79: 221-225. [Crossref]
17. Lebwohl MG, Dotestano D, Piroleau PG, Uram M, Yannuzzi LA, et al. (1982) Pseudoxanthoma elasticum and mitral-valve prolapse. N Engl J Med 307: 228-231. [Crossref]
18. Uitto J, Värädi A, Bercovich L, Terry PF, Terry SF (2013) Pseudoxanthoma elasticum: progress in research toward treatment: summary of the 2012 PXE international research meeting. J Invest Dermatol 133: 1444-1449. [Crossref]
19. Belinsky MG, Kruh GD (1999) MOAT-E (ARA) is a full-length MRP/cMOAT subfamily transporter expressed in kidney and liver. Br J Radiol 72: 1342-1349. [Crossref]
20. Janssen RS, Dujsit S, Mahakana S, Sommer D, Szeri F, et al. (2014) ABCC6-mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation-brief report. Arterioscler Thromb Vasc Biol 34: 1985-1989. [Crossref]
21. Li Q, Sundberg JP, Levine MA, Terry SF, Uitto J (2015) The effects of bisphosphonates
on ectopic soft tissue mineralization caused by mutations in the ABCC6 gene. Cell Cycle. [Crossref]

22. Plopp AS, Toenstra J, Bergen AA, van Dijk MR, de Jong PT (2010) Proposal for updating the pseudoxanthoma elasticum classification system and a review of the clinical findings. J Am Acad Dermatol 62: 1049-1058. [Crossref]

23. Sherer DW, Bercovitch L, Lebwohl M (2001) Pseudoxanthoma elasticum: significance of limited phenotypic expression in parents of affected offspring. J Am Acad Dermatol 44: 534-537. [Crossref]

24. Gliem M, Zaeyjyd JD, Finger RP, Holz FG, Leroy BP, et al. (2013) An update on the ocular phenotype in patients with Pseudoxanthoma elasticum. Front Genet 4: 14. [Crossref]

25. Georgalas I, Tservakis I, Papaconstantinou D, Kardara M, Koutsandreza C, et al. (2011) Pseudoxanthoma elasticum, ocular manifestations, complications and treatment. Clin Exp Ophthalmol 39: 169-180. [Crossref]

26. Blanco Rivera MC, Gómez Ulla De Irazazábal F, Ferrer Jaureguizar J, Ahehenda Pose D (2001) Indocyanine green angiography in angioid streaks. Arch Soc Esp Oftalmol 76: 297-302. [Crossref]

27. Hosen MJ, Lamoen A, De Paepe A, Vanakker OM (2012) Histopathology of Pseudoxanthoma elasticum-like syndrome in beta-thalassaemia patients. Br J Haematol 162: 852-854. [Crossref]

28. Lebwohl M, Schwartz E, Lemlich G, Lovelace O, Shaikh-Bahai F, et al. (1993) Clinical and laboratory findings in patients with Pseudoxanthoma elasticum. Arch Dermatol Res 285: 121-126. [Crossref]

29. Van der Veken B, Roth L, De Meyer GR, Martinet W (2014) Development of atherosclerotic plaques in a mouse model of Pseudoxanthoma elasticum. Acta Cardiol 69: 687-692. [Crossref]

30. Campens L, Vanacker OM, Trachet B, Segers P, Leroy BP, et al. (2013) Characterization of cardiovascular involvement in Pseudoxanthoma elasticum families. Arterioscler Thromb Vasc Biol 33: 2664-2665. [Crossref]

31. Punirer F, Terrien G, Le Corre Y, Apana AL, Bière L, et al. (2013) Pseudoxanthoma elasticum: cardiac findings in patients and Abec6-deficient mouse model. PLoS One 8: e68700. [Crossref]

32. Combrinck M, Gilbert JD, Byard RW (2011) Pseudoxanthoma elasticum and sudden death. J Forensic Sci 56: 418-422. [Crossref]

33. Guérin-Moreau M, Letherois G, Le Corre Y, Etienne M, Amode R, et al. (2013) High-frequency (20-50 MHz) ultrasonography of Pseudoxanthoma elasticum skin lesions. Br J Dermatol 169: 1233-1239. [Crossref]

34. Vanacker OM, Voet D, Petrovic M, van Robeys F, Leroy BP, et al. (2006) Visceral and testicular calcifications as part of the phenotype in Pseudoxanthoma elasticum: ultrasound findings in Belgian patients and healthy carriers. Br J Radiol 79: 221-225. [Crossref]

35. Drue HC, Mogensen H, Olesen AW (2014) [Pregnancy jeopardized by Pseudoxanthoma elasticum.] Ugeskr Laeger 176. [Crossref]

36. Goral V, Demir D, Tuzun Y, Keklikci U, Buyukbayram H, et al. (2007) Pseudoxanthoma elasticum, as a repetitive upper gastrointestinal hemorrhage cause in a pregnant woman. World J Gastroenterol 13: 3897-3899. [Crossref]

37. Bercovitch L, Leroux T, Terry S, Weimstock MA (2004) Pregnancy and obstetrical outcomes in Pseudoxanthoma elasticum. Br J Dermatol 151: 1011-1018. [Crossref]

38. Rongioletti F, Rebora A (1995) Fibroelastolytic patterns of intrinsic skin aging: Pseudoxanthoma-elasticum-like papillary dermal elastolysis and white fibrous papulosus of the neck. Dermatology 191: 19-24. [Crossref]

39. Camacho D, Machan S, Pielsinski U, Revelles JM, del Carmen Faríha M, et al. (2012) Familial acral localized late-onset focal dermal elastosis. Am J Dermatopathol 34: 310-314. [Crossref]

40. Yuste-Chaves M, Cañuela J, Santos-Briz A, Ciria S, González-Sarmiento R, et al. (2011) Buschke-Ollendorff syndrome with striking phenotypic variation resulting from a novel c.2203C>T nonsense mutation in LEMD3. Pediatr Dermatol 28: 447-450. [Crossref]

41. Hamlin N, Beck K, Bacchelli B, Cianciulli P, Pasquali-Roncetti I, et al. (2003) Acquired Pseudoxanthoma elasticum-like syndrome in beta-thalassaemia patients. Br J Haematol 122: 852-854. [Crossref]

42. Baccarani-Contri M, Bacchelli B, Boraldi F, Quaglino D, Taparelli F, et al. (2001) Characterization of pseudoxanthoma elasticum-like lesions in the skin of patients with beta-thalassaemia. J Am Acad Dermatol 44: 33-39. [Crossref]

43. van Meurs T, van Hagen JM, van de Scheur MR, Vermaat H, Ruijs MW, et al. (2007) Classic pseudoxanthoma elasticum in a patient with sickle cell disease. J Am Acad Dermatol 56: 170-171. [Crossref]

44. Bécuwe C, Dalle S, Ronger-Savlé S, Skowron F, Balme B, et al. (2005) Elastosis perforans serpiginosa associated with pseudo-pseudoxanthoma elasticum during treatment of Wilson’s disease with penicillinamide. Dermatology 210: 60-63. [Crossref]

45. Sherer DW, Singer G, Uribarri J, Phelps RG, Sapadin AN, et al. (2005) Oral phosphate binders in the treatment of pseudoxanthoma elasticum. J Am Acad Dermatol 53: 610-615. [Crossref]

46. Li Q, Guo H, Chou DW, Berndt A, Sundberg JP, et al. (2014) Mouse models for pseudoxanthoma elasticum: genetic and dietary modulation of the ectopic mineralization phenotypes. PLoS One 9: e89268. [Crossref]

47. Kupetsky EA, Rincon F, Uitto J (2013) Rate of change of carotid intima-media thickness with magnesium administration in Abcc6⁻/⁻ mice. Clin Transl Sci 6: 485-486. [Crossref]

48. LaRusso J, Li Q, Jiang Q, Uitto J (2009) Magnesium carbonate-containing binders in the treatment of pseudoxanthoma elasticum. J Am Acad Dermatol 61: 191-199. [Crossref]

49. Gorgels TG, Waarsing JH, de Wolf A, ten Brink JB, Loves WJ, et al. (2010) Dietary magnesium, not calcium, prevents vascular calcification in a mouse model for connective tissue mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6⁻/⁻). J Invest Dermatol 129: 1388-1394. [Crossref]

50. Li Q, LaRusso J, Grand-Pierre AE, Uitto J (2009) Magnesium carbonate-containing phosphate binder prevents connective tissue mineralization in Abcc6⁻/⁻ mice – potential for treatment of pseudoxanthoma elasticum. Clin Transl Sci 2: 398-404. [Crossref]