Detachment of Cultured Cells from the Substratum Induced by the Neutrophil-derived Oxidant NH2Cl: Synergistic Role of Phosphotyrosine and Intracellular Ca2+ Concentration

Tomoe Y. Nakamura,* Itaru Yamamoto,* Hideo Nishitani, Takashi Matozaki, Toshiya Suzuki, Shigeo Wakabayashi, Munekazu Shigekawa, and Kiyota Goshima

*Department of Immunochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700, Japan; †Department of Cell Cycle Laboratory, Imperial Cancer Research Fund, London, WC2A 3PX United Kingdom; §The Second Department of Internal Medicine, Kobe University School of Medicine, Kobe 650, Japan; ‡Department of Molecular Physiology, National Cardiovascular Center Research Institute, Osaka 565, Japan; and †Department of Biology, Faculty of Humanities and Sciences, Kobe Gakuin University, Kobe 651-21, Japan

Abstract. The neutrophil-derived, membrane-permeating oxidant, NH2Cl (but not the non-membrane-permeating chloramine, taurine-NHCl) induced detachment of fetal mouse cardiac myocytes and other cell types (fibroblasts, epithelial cells, and endothelial cells) from the culture dish, concomitant with cell shrinkage ("peeling off"). Stimulated human neutrophils also induced peeling off of cultured mouse cardiac myocytes when the latter were pretreated with inhibitors of ·OH and elastase. Immunofluorescence microscopy revealed that the NH2Cl-induced peeling off of WI-38 fibroblasts is accompanied by disorganization of integrin α5β1, vinculin, stress fibers, and phosphotyrosine (p-Tyr)-containing proteins. Decrease in the content of the p-Tyr-containing proteins of the NH2Cl-treated cells was analyzed by immunoblotting techniques. Coating of fibronectin on the culture dish prevented both NH2Cl-induced peeling off and a decrease in p-Tyr content. Preincubation with a protein-tyrosine phosphatase inhibitor, sodium orthovanadate (Na3VO4), also prevented NH2Cl-induced peeling off, suggesting that dephosphorylation of p-Tyr is necessary for peeling off. NH2Cl-induced peeling off was accompanied by an increase in intracellular Ca2+ concentration ([Ca2+]i) in mouse cardiac myocytes and WI-38 fibroblasts. The absence of extracellular Ca2+ prevented both NH2Cl-induced peeling off and increased [Ca2+]i, both of which did occur on subsequent incubation of the cells in Ca2+-containing medium. These observations suggest that an increase in [Ca2+]i is also necessary for peeling off. Depletion of microsomal and cytosolic Ca2+ by incubation with the microsomal Ca2+-ATPase inhibitor 2',5'-di(tert-butyl)-1,4-benzohydroquinone (BHQ) plus EGTA prevented both NH2Cl-induced increases in [Ca2+]i and peeling off. Direct inhibition of microsomal Ca2+ pump activity by NH2Cl may participate in the NH2Cl-induced [Ca2+]i increment. A combination of p-Tyr dephosphorylation by genistein (an inhibitor of tyrosine kinase) and an increase in [Ca2+]i by BHQ could also induce peeling off. All these observations suggest a synergism between p-Tyr dephosphorylation and increased [Ca2+]i in NH2Cl-induced peeling off.

Cellular adhesion to the extracellular matrix (ECM) is a critical step in development and differentiation, metastasis, and normal cell growth (21). This adhesion is mediated by surface-bound receptors of the integrin superfamily (α/β heterodimers) (24). Integrin-mediated linkage of the ECM to the cytoskeleton occurs at focal adhesion sites, specialized regions where the ventral cell surface and substratum are most closely apposed and tightly linked (58). Focal adhesions consist of clustered integrins (4, 8, 24) linked to stress fibers (actin cables) (4, 58) by cytoplasmic plaque-containing proteins such as vinculin, paxillin, and talin (4). These cytoskeletal associations participate in the adhesive process by stabilizing integrin–ligand interactions (8) and supporting cell shape (58).

© The Rockefeller University Press, 0021-9525/95/10/509/16 $2.00
The Journal of Cell Biology, Volume 131, Number 2, October 1995 509-524 509
Much evidence suggests that neutrophil-generated oxidants injure several tissues at sites of inflammation (10, 20) and cardiac tissue at ischemic sites during the early hours of reperfusion (9, 40, 45). A common feature of neutrophil-induced tissue injury is detachment of endothelial and epithelial cells from the basement membrane or ECM (10, 22), and this may be due to neutrophil-derived oxidants (22, 23, 43, 61).

When stimulated, neutrophils, which possess NADPH oxidase and myeloperoxidase, undergo a respiratory burst during which oxygen is reduced to superoxide anion (\(\text{O}_2^-\)) by NADPH oxidase. \(\text{O}_2^-\) initiates a series of reactions that produce toxic oxidizing species and dismutates rapidly to yield hydrogen peroxide (\(\text{H}_2\text{O}_2\)). \(\text{H}_2\text{O}_2\) is reduced to highly reactive hydroxyl radicals (\(\cdot\text{OH}\)) via the iron-mediated Fenton reaction, which has been reported to be a trigger for lipid peroxidation (37). Myeloperoxidase, on the other hand, catalyzes the oxidation of Cl\(^-\) by \(\text{H}_2\text{O}_2\) to yield hypochlorous acid (HOCl). Most of the highly reactive HOCl combines nonenzymatically with nitrogenous compounds such as ammonia and taurine to generate long-lived oxidants, inducing monoclonarines such as NH\(_2\)Cl (membrane permeating) and taurine-NHCl (non-membrane permeating) (55).

We reported previously that addition of HOCl or NH\(_2\)Cl to the myocytes caused remarkable morphological changes manifested by the detachment of some peripheral cells from the culture dish without balloon formation and hypercontraction (41) (peeling off). In contrast, xanthine + xanthine oxidase (a source of \(\text{O}_2^-\), \(\text{H}_2\text{O}_2\), and \(\cdot\text{OH}\)) or \(\text{H}_2\text{O}_2\) (a source of \(\cdot\text{OH}\)) caused hypercontraction concomitant with balloon formation of the cells without peeling off (41). NH\(_2\)Cl-induced peeling off was prevented by methionine (an HOCl scavenger, but not by superoxide dismutase, catalase, deferoxamine (an iron chelator), or dimethylthiourea (DMTU) (an \(\cdot\text{OH}\) scavenger), all of which could prevent the xanthine + xanthine oxidase- and \(\text{H}_2\text{O}_2\)-induced impairments (41), indicating that the mechanism of NH\(_2\)Cl-induced peeling off is different from that of xanthine + xanthine oxidase- or \(\text{H}_2\text{O}_2\)-induced impairment, and that intracellularly produced \(\cdot\text{OH}\) may participate in the induction of hypercontraction. We speculated that some of the proteins that contribute to cell-substratum adhesion, such as ECM, focal adhesion proteins, and/or the cytoskeleton, may have been damaged by NH\(_2\)Cl.

Focal adhesions are considered not only to have a structural function, but also to serve as sites for initiating signal transduction from the ECM to the cell interior. Potential intracellular messengers include protein–tyrosine phosphorylation (6, 24) and Ca\(^{2+}\)-dependent protein kinase C (62). Focal adhesions detect protein tyrosine kinases such as pp60\(^{\text{SRC}}\) (44) and pp125\(^{\text{FAK}}\) (focal adhesion kinase) (6, 18, 24, 29, 47) localized to the residual focal adhesions of cells transformed by Rous sarcoma virus (44) and normal cells, respectively, and activated by cell–substratum adhesion (6, 16, 18, 29) and integrin clustering (29, 31). An increase in protein–tyrosine phosphorylation has been observed during the attachment of cells to the substratum (6, 17, 29). It has been recently reported that endothelial cell attachment and spreading on fibronectin (Fn) or vitronectin resulted in an elevation of intracellular Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]) (48). The relationships between dephosphorylation of phosphotyrosine (p-Tyr) and cell detachment from the substratum, however, or between [Ca\(^{2+}\)] and cell–substratum detachment have not been studied in detail. The mechanism of neutrophil-induced cellular injuries, that is, which particular cytotoxic mediators produced by stimulated neutrophils induce which particular type(s) of injury, is also unclear.

In this work, we studied the cellular and molecular mechanisms of NH\(_2\)Cl-induced peeling off using various kinds of cultured cells, including cardiac myocytes. We also studied the correlation between neutrophil-induced morphological impairment and NH\(_2\)Cl-induced peeling off. Our aims were to clarify (a) whether NH\(_2\)Cl-induced peeling off would occur in other kinds of cells, (b) whether and how peeling off could be prevented, (c) the possible mechanisms of NH\(_2\)Cl-induced peeling off, and (d) whether stimulated neutrophils could induce peeling off of cells to which they were adhered.

Materials and Methods

Agents

Antibodies. Rabbit anti-human Fn receptor polyclonal antibody and rhodamine (TRITC)-conjugated goat anti-rabbit and anti-mouse IgG were obtained from Chemicon International Inc., Temecula, CA; mouse anti-human vinculin mAb was from Serotec Ltd., Oxford, UK; and mouse anti-p-Tyr mAb PY20 and HRP-labeled protein A were from ICN Biochemicals, Inc., Costa Mesa, CA. FITC-conjugated phalloidin was from Sigma Chemical Co., St Louis, MO.

ECM Proteins. Bovine plasma Fn was obtained from Ithomi Foods Inc., Hyogo, Japan; rat laminin was from Chemicon International Inc.; collagen I, III, and IV were from Wako Chemical Co., Osaka, Japan.

Chemicals. NaOCI, NH\(_2\)Cl, taurine, BSA, orthovanadate (Na\(_3\)VO\(_4\)), bepridil hydrochloride, amiloride, 2,5'-di (2-ethylhexyl)-1,4-benzoquinone (BHQ), colcemid, paraformaldehyde, Triton X-100, glycerol, PMA, dimethylthiourea (DMTU), deferoxamine, and methionine were purchased from Sigma Chemical Co. Aprotinin, leupeptin, pepstatin, antipine, and PMSF were from Boehringer-Manheim GmbH, Mannheim, Germany. MEM, methionine-free MEM, digoxin, p-phenylenediamine dihydrochloride, p-nitrophenyl phosphate (pNPP), genistein, and vera-panil hydrochloride were obtained from Nakai Chemicals Co., Osaka, Japan. Deoxyribonucleic acid (DNA), 5'-dideoxyinosine, 5'-dideoxycytidine, 5'-dideoxythymidine, 5'-dideoxyadenosine, and cerium tetrabromide were obtained from New England Nuclear, Boston, MA.

Other reagents. Sodium fluoride, sodium chloride, and sodium acetate were from Sigma Chemical Co. Aprotinin, leupeptin, pepstatin, antipine, and PMSF were from Boehringer-Manheim GmbH, Mannheim, Germany. MEM, methionine-free MEM, digoxin, p-phenylenediamine dihydrochloride, p-nitrophenyl phosphate (pNPP), genistein, and vera-panil hydrochloride were obtained from Nakai Chemicals Co., Osaka, Japan.

Methods. Bovine plasma Fn was obtained from Ithomi Foods Inc., Hyogo, Japan; rat laminin was from Chemicon International Inc.; collagen I, III, and IV were from Wako Chemical Co., Osaka, Japan.

Chemicals. NaOCI, NH\(_2\)Cl, taurine, BSA, orthovanadate (Na\(_3\)VO\(_4\)), bepridil hydrochloride, amiloride, 2,5'-di (2-ethylhexyl)-1,4-benzoquinone (BHQ), colcemid, paraformaldehyde, Triton X-100, glycerol, PMA, dimethylthiourea (DMTU), deferoxamine, and methionine were purchased from Sigma Chemical Co. Aprotinin, leupeptin, pepstatin, antipine, and PMSF were from Boehringer-Manheim GmbH, Mannheim, Germany. MEM, methionine-free MEM, digoxin, p-phenylenediamine dihydrochloride, p-nitrophenyl phosphate (pNPP), genistein, and vera-panil hydrochloride were obtained from Nakai Chemicals Co., Osaka, Japan. Deoxyribonucleic acid (DNA), 5'-dideoxyinosine, 5'-dideoxycytidine, 5'-dideoxythymidine, 5'-dideoxyadenosine, and cerium tetrabromide were obtained from New England Nuclear, Boston, MA.

Other reagents. Sodium fluoride, sodium chloride, and sodium acetate were from Sigma Chemical Co. Aprotinin, leupeptin, pepstatin, antipine, and PMSF were from Boehringer-Manheim GmbH, Mannheim, Germany. MEM, methionine-free MEM, digoxin, p-phenylenediamine dihydrochloride, p-nitrophenyl phosphate (pNPP), genistein, and vera-panil hydrochloride were obtained from Nakai Chemicals Co., Osaka, Japan.
To prepare mouse cardiac myocytes and fibroblasts, mouse heart ventricles were removed from 14-d-old fetuses (ICR strain) and dissociated into single isolated cells by trypsinization, as described previously (41, 42). To obtain separate myocyte and fibroblast cultures, the cells were plated at 37°C for 1 h in FBS-MEM. This caused most of the fibroblasts to adhere to the culture dish surface. These adhered cells were grown in FBS-MEM under a water-saturated atmosphere of 5% CO2 in air. After trypsinization 1 d before use, plated on glass coverslips, and cultured in FBS-MEM under the conditions described above. To obtain a large cell sheet in the center of the dish, the dishes were subjected to gYration shaking for 30–60 s immediately after plating. After 1 d, almost all the myocytes became attached to and spread on the surface of the coverslips and petri dishes, and all the myocytes in each sheet beat spontaneously and synchronously.

Human umbilical vein endothelial cells prepared by Morinaga Institute of Biological Science (Yokohama, Japan) were plated on type I collagen-coated dishes and cultured in FBS-MEM. Fibroblast-like cell lines 3Y1-B clone 1-6 (derived from whole fetal rat), L (derived from mouse connective tissue), WI-38 (derived from human lung); and epithelial-like cell lines KB (derived from human epidermoid carcinoma) and MDBK (derived from bovine kidney) were obtained from Riken Cell Bank (Saitama, Japan). The cells were grown as monolayers in square flasks (303; Falcon Labware, Becton Dickinson & Co., Lincoln Park, NJ) on glass coverslips at 37°C in FBS-MEM and dispersed as single isolated cells by trypsinization 1 d before use, plated on glass coverslips, and cultured in FBS-MEM.

NH2Cl Treatment

20 h after cultivation, the cells were washed in PBS and preincubated in methionine-free MEM (to avoid any potential antioxidative effect of methionine and serum) or Ca2+-free or Ca2+-containing BSS for 10 s to 20 min at 37°C, and then they were exposed to 15-100 μM NH2Cl for 2–30 min at 37°C in the same solution. Cell morphology was observed using an inverted phase-contrast microscope (IMT-2; Olympus Corp., Precision Instruments Division, Tokyo, Japan; or Diaphot; Nikon Instrument Group, Tokyo, Japan) while the cells were maintained at 37°C and pH 7.3, and gas composed of 5% CO2 and 95% air flowed into the chamber.

Preparation and Addition of Neutrophils to Cultured Cardiac Myocytes

Polymorphonuclear leukocytes (neutrophils) were separated from heparinized peripheral blood from healthy donors by a previously published Percoll gradient centrifugation protocol, with a minor modification (30). Briefly, after removal of the platelet-rich plasma, the buffy coat was layered on a 55% isotonic Percoll solution and centrifuged at 500 g for 20 min. The leukocyte layer overlaying the erythrocyte pellet was collected. Contaminated erythrocytes were lysed with 0.15 M NH4Cl. These preparations comprised >90% neutrophils and >98% viable cells by the erythrosine B exclusion test. The neutrophils were suspended in HBSS at a concentration of 107 cells/ml. Trypsin-dissociated fetal mouse cardiac myocytes were plated (105 cells per dish) on glass coverslips in petri dishes without gYration shaking, and cultured in FBS-MEM at 37°C. 20 h after cultivation, the coverslips contained small cell sheets consisting of 5–15 synchronously beating cardiac myocytes. After the incubation medium was changed to HBSS, the myocytes were pretreated with a nontoxic concentration of platelet activator factor (10-6 M) for 30 min (this treatment has been reported to increase the effects of neutrophils [27]). Human neutrophils (2 × 105 cells per dish) were layered onto the cardiac myocytes, and coincubation for 30 min permitted adherence of the two cell types. PMA (100 ng/ml) and cytochalasin D (10 μM) were treated with PBS, 100 μM NH4Cl, or 10 μM cytochalasin D for 20 min at 37°C. Viability of eosin B-stained preparations was determined by a Biuret reaction using a serum albumin standard.

Viscometry

To determine specific viscosity, Fn (20 μg/ml) was treated with PBS or 300 μM NH4Cl for 30 min at 37°C in test tubes, and polymerized actin (F-actin, 2 mg/ml) was treated with PBS, 100 μM NH4Cl, or 10 μM cytochalasin D for 20 min at 37°C. Viscometry was performed using an Ostwald-type viscometer (Iwaki Glass Co., Chiba, Japan) of 0.3-ml capacity with an outflow time of ~8 s for water at 25°C. Specific viscosity was defined in a
steady-state condition as flow time of sample solution divided by flow time of the corresponding buffer minus 1.

Immunofluorescent Microscopy

WI-38 cells grown overnight on glass coverslips were treated with or without NH₄Cl in Ca²⁺-containing or Ca²⁺-free BSS and rinsed with PBS. For the staining of α₁β₁, integrin, vinculin, or p-Tyr, the cells on the coverslips were fixed with 0.5% formaldehyde in PBS containing 2% sucrose for 30 min, permeabilized with 0.1% Triton X-100 in PBS for 30 min, and incubated in 0.15 M glycine in PBS for 30 min at room temperature. They were preincubated with the blocking solution (1% BSA in PBS) for 1 h and then incubated with a primary antibody (anti-Fn receptor [1:100 dilution], anti-vinculin [1:10 dilution], or anti-p-Tyr [1:100 dilution]) in blocking solution for 2 h at room temperature. The cell-covered coverslips were then rinsed twice with the PHEM buffer (pH 6.1) and stained for 25 min with FITC-conjugated phalloidin (330 mM) or PHEM buffer (pH 6.9) at room temperature in the dark. They were then washed extensively with PHEM buffer (pH 6.9) and mounted as described above. Viewed by fluorescence microscopy (Vanox-T; Olympus Corp., Precision Instruments Division).

SDS-PAGE and Western Blot Analysis

WI-38 cells grown confluenly in 60-mm plastic petri dishes were treated with or without NH₄Cl for 10 min in Ca²⁺-containing or Ca²⁺-free BSS. After rinsing with TBS, the cells were lysed by scraping them with a rubber policeman into 200 μl lysis buffer containing 1 μg/ml protease inhibitors (aprotinin, leupeptin, pepstatin, antipain, and PMSF). The lysates were set on ice for 10 min and then centrifuged at 15,000 rpm for 10 min at 4°C. Sample buffer with (for vinculin and p-Tyr) or without (for integrin and p(Hb)) β-mercaptoethanol was added to each supernatant, and then the supernatants were boiled for 5 min at 100°C. Protein concentrations were determined by protein assay (BIO-Rad Laboratories, Hercules, CA). Samples containing equal amounts of protein were electrophoresed on 7.5% SDS-polyacrylamide gels and then either stained with Coomassie blue or transferred to nitrocellulose. After blocking of the nitrocellulose with blocking solution (3% BSA in PBS), the samples were incubated with a primary antibody (anti-Fn receptor [1:1,000 dilution], anti-vinculin [1:100 dilution] or anti-p-Tyr [1:1,000 dilution]) in blocking solution for 2 h at room temperature. After washing in the blocking solution for 30 min, they were incubated with HRP-labeled protein A (against anti-Fn receptor antibody [1:2,000 dilution] or HRP-labeled anti-mouse Ig (against anti-vinculin or anti-p-Tyr antibodies) in blocking solution was applied for 1 h at 37°C in the dark, washed extensively in PBS for 3 h at 4°C, and then the stained cells were mounted in 90% glycerol in PBS containing 1 mg/ml p-phenylenediamine.

For the staining of stress fibers, the cells were treated with 1% formaldehyde in Pipes, Hepes, EGTA, and Mg (PHEM) buffer (pH 6.1) containing 0.36% Triton X-100 for 2 min. This was followed by a 10-min treatment with 3.2% formaldehyde in PHEM buffer (pH 6.1) containing 0.5% Triton X-100 at room temperature. The cell-covered coverslips were then rinsed twice with the PHEM buffer (pH 6.9) and stained for 25 min with FITC-conjugated phalloidin (330 mM) or PHEM buffer (pH 6.9) at room temperature in the dark. Then they were washed extensively with PHEM buffer (pH 6.9) and mounted as described above. Stained cells were viewed by fluorescence microscopy (Vanox-T; Olympus Corp., Precision Instruments Division).

Measurement of Protein–Tyrosine Phosphatase Activity

WI-38 fibroblasts were untreated or treated with 50 μM NH₄Cl for 2 min at 37°C (the time at which peeling off was most severe) in Ca²⁺-containing BSS. Then the supernatants were decanted, washed once with PBS, and lysed with 1 ml of cold lysis buffer (RIPA buffer: 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 0.1% SDS, and 10% glycerol) containing 10 μg/ml aprotinin, 1 mM PMSF, and 10 μg/ml leupeptin. The lysates were centrifuged at 10,000 g for 15 min at 4°C and the resultant supernatants were used in the phosphatase assay. The assay mixture (20 μl) contained 40 mM MES (pH 5.0), 1.6 mM DTT, 25 mM pNPP, and an equal amount of protein from each sample was incubated at 37°C for 30 min. The reaction was terminated by the addition of 200 μl of 1 NaOH and the absorbance at 410 nm was determined (56). The assay of the protein–tyrosine phosphatase (PTPase) activity of cell lysates was also performed using 2P-labeled synthetic peptide Raytide (51). The assay mixtures (100 μl) containing cell lysates, 25 mM imidazole (pH 7.2), 0.1 mM mg/ml BSA, 10 mM DTI, and 1 μl of 100 μl of 1 NaOH and the absorbance at 410 nm was determined (56). The reaction was terminated by the addition of 0.75 ml of an acidic charcoal mixture containing 0.9 M HCl, 90 mM sodium pyrophosphate, 2 mM NaH₂PO₄, and 4% Norit A (Fisher Scientific Co., Fair Lawn, NJ). After centrifugation in a microfuge, the amount of radioactivity in 0.5 ml of supernatant was measured by a liquid scintillation counter.

Measurement of [Ca²⁺]i Changes

To measure changes in [Ca²⁺]i, cultured cardiac myocytes and WI-38 fibroblasts were exposed to 0.5 and 5 μM, respectively, of the actoxymethyl ester of fluo-3 (25 μM in PBS-MEM at 37°C for 30 min. Loading with fluo-3 did not appreciably affect the spontaneous beating rate of cardiac myocytes. The cells were washed with 10 ml BSS and incubated at 37°C for 1–2 h in 2 ml fresh BSS. Each culture dish was mounted on a fluorescence microscope stage and superfused with fluo-3–containing or fluo-3–free BSS at 37°C at a flow rate of 2 ml/min, which exchanged the medium bathing the cells every 4–5 s. A 1-mm-thick acryl disk with a 10 × 10 mm center opening and inlet and exit ports was set stably in the dish. An excitation wavelength of 450–490 nm was obtained using a 100-W xenon lamp with interference filters (EX 450–490; Nikon Inc. Instrument Group). The fluorescence light was collected with a ×4 objective lens (ELWD 1600-2; Nikon Inc. Instrument Group) and interference filters (BA 520; Nikon Inc. Instrument Group), which transmitted the fluorescent excitation at >520 nm. The fluorescent signal was detected using a P1 system (Nikon Inc. Instrument Group). Fluorescence was measured using fields containing 3–10 cells.

To minimize any toxic effects of fluorescence, the microscope was shut off frequently, and the beating and morphology of the cells were observed using the phase-contrast system during the shutoff period of the light-pass of the fluorescence system.

Estimation of Cytosolic-free Calcium Concentrations from Fluorescence Signals

Calibration of the fluorescence signal was achieved using the method described for fluo-3, with some modifications (25). The cardiac myocytes and WI-38 fibroblasts were superfused with a high K⁺ solution, which allowed calcium to enter the cells and saturate the fluo-3 to give maximum fluorescence (Fmax); this usually was attained within 1 min and sustained for ~10 s. The cells were then exposed to Ca²⁺–free Mn²⁺ solution; saturation with Mn²⁺ reduces the Fmax of fluo-3 to ~20% of that of the Ca²⁺-saturated dye. Thus, the predicted Fmax would be (Fmax – Fbgk) × 0.2 + Fbgk, where Fbgk represents the fluorescence measured in the Mn²⁺ solution and Fbgk represents the background signal produced by the photomultiplier’s dark-current and residual autofluorescence from the optics and cell remnants. After the fluorescence intensity of the cells stabilized in the Mn²⁺ solution, which took ~3 min, the cells were lysed with 40 mM digitonin to release the dye and enable the Fbgk to be recorded. Since the fluorescence of metal-free fluo-3 is 1/40 that of the Ca²⁺ complex, the minimum fluorescence (Fmin) of fluo-3 in the absence of Ca²⁺ is given by the equation Fmin = (Fmax – Fbgk) × 0.2 + Fbgk, + Fbgk, which can be estimated using the equation [Ca²⁺]i = [Fmax – Fbgk]/(Fmax – Fbgk), Fbgk is the cellular fluorescence and Kbgk is 400 nM at physiological ionic strength (25).

Measurement of ATP-dependent ⁴⁵Ca²⁺ Uptake in and Release from Sarcoplasmic Reticulum Vesicles

Sarcoplasmic reticulum vesicles were prepared from rabbit skeletal muscle, and ATP-dependent ⁴⁵Ca²⁺ uptake activity was measured as described previously (49). Vesicles (10 mg/ml) were incubated in a medium containing 20 mM MOPS/KOH (pH 7.0), 0.1 M KCl, 5 mM MgCl₂, and 0.1 M CaCl₂ (20 Bq/ml), 0.1% SDS, 1% Triton X-100, and 0.1% BSA, 10 mM DTT, and 10 μM ruthenium red in the absence or presence of various concentrations of NH₄Cl and a ⁴⁵Ca²⁺ uptake reaction was started at 25°C by addition of ATP (1 mM final). ⁴⁵CaCl₂ release from sarcoplasmic reticulum vesicles was measured as described previously (38). Vesicles (4 mg/ml) were passively loaded at 0°C for 24 h with 1 mM ⁴⁵CaCl₂ (1 Bq/ml) in 20 mM MOPS/KOH (pH 7.0) and 0.1 M KCl. A 5-mL aliquot of vesicles was diluted off to a medium (500 μl) containing 20 mM MOPS/KOH (pH 7.0), 0.1 M KCl, 1 mM EGTA, 10 mM MgCl₂, and 10 μM ruthenium red in the presence or absence of NH₄Cl. MgCl₂ and ruthenium red were included to inhibit the Ca²⁺ release channels. Vesicles in the reaction mixture were fil-
tered through a 0.45-mm filter (Millipore Corp., Bedford, MA), washed with the ice-cold solution containing 20 mM MOPS/KOH (pH 7.0), 0.1 M KCl, and 5 mM LaCl₃, and the ⁴⁰Ca²⁺ radioactivity remaining in the filter was counted.

Statistical Analysis

All values are expressed as mean ± SEM. Comparisons between two means were performed by Student's t test. Differences at P < 0.01 were considered significant.

Results

NH₂Cl-induced Peeling Off

Fig. 1 shows NH₂Cl-induced morphological changes in various kinds of cells observed using an inverted phase-contrast microscope. When the cardiac myocytes were exposed to 100 µM NH₂Cl in methionine-free MEM, all the cells in a sheet suddenly ceased spontaneous beating, and some cells, in particular those at the periphery of the sheets, detached from the culture dish concomitant with cell shrinkage (peeling off) (Fig. 1 B). At 37°C, this began within 10 s, and the peeling-off area gradually increased during 5 min of further incubation with NH₂Cl. Although cells detached from the substratum, cell-to-cell adhesion was not affected. No change, however, was observed at temperatures lower than 15°C.

NH₂Cl-induced peeling off was also observed in all the other kinds of cells we investigated, including fibroblast-like cells such as WI-38 cells (Fig. 1 D), mouse heart fibroblasts, 3Y1-B clone 1-6, MRC-5, and L cells (data not shown), epithelial cells such as MDBK (Fig. 1 F) and KB (data not shown) cells, and human endothelial cells (Fig. 1 H). Another NH₂Cl-induced morphological change was that some peripheral regions of individual cells remained on the substratum as thin fibers (Fig. 1, D, F, and H; arrows). More than 90% of these cells excluded vital dyes (erythrosin B or trypan blue) for 1 h after exposure to NH₂Cl, indicating that the NH₂Cl-induced cell detachment was not due to cell death. Exposure to higher concentrations (>100 µM) of NH₂Cl for >2 h, however, did cause cell death. Fibroblasts and endothelial cells were more susceptible than cardiac myocytes to NH₂Cl toxicity. When the incubation medium was changed to FBS-MEM after treatment with low concentrations (<50 µM) of NH₂Cl for 1 h, all cell types reattached to and spread on the substratum within 24 h and resumed cell growth; cardiac myocytes resumed spontaneous beating as well.

No morphological damage to nuclei, mitochondria, or myofibrils in NH₂Cl-treated myocytes was evident by electron microscopy (Fig. 2 B). We could not know, however, whether and how cellular membranes, especially in the region of focal adhesions, were altered because the thin sections were cut parallel to the basement membrane, not perpendicular to it, which would have permitted visualization of the focal contacts of the cells.

In contrast to membrane-permeating NH₂Cl, a potent oxidizing but non-membrane-permeating chloramine, taurine-NHCl (15), did not cause peeling off of any of the cell types (data not shown).

Effect of SH Group Oxidizing and Reducing Compounds

NH₂Cl oxidizes intracellular SH groups in some cells (53). We therefore examined whether another SH group oxidizing compound, diamide, would induce peeling off. Treatment of cultured cardiac myocytes or WI-38 fibroblasts with 5, 20, 50, or 200 µM diamide for 30 min did not cause peeling off. Intracellular loading of a membrane-permeating SH group reducing agent, γ-glutamylcysteine ethyl ester (a glutathione precursor) (42) (500 µM, 4 h), did not prevent NH₂Cl-induced peeling off in these cells.

\[\text{Figure 1. Phase-contrast microscopy showing the effect of NH₂Cl on the morphology of several kinds of cells. Cells were cultivated on glass coverslips for 20 h at 37°C in FBS-MEM and then exposed to 100 µM NH₂Cl in methionine-free MEM for 10 min at 37°C in methionine-free MEM. (A–H) The cell sheet before (A, C, E, and G) and after (B, D, F, and H) NH₂Cl treatment of mouse cardiac myocytes (A and B), WI-38 human lung fibroblasts (C and D), MDBK bovine kidney epithelial cells (E and F), and human endothelial cells (G and H). Arrows indicate the thin fiberlike structures of parts of peripheral regions of individual cells that remained on the substratum after treatment with NH₂Cl. Bar, 50 µm.} \]

\[\text{Figure 2. Transmission electron microscopy showing the effect of NH₂Cl on the ultrastructure of cultured cardiac myocytes. (A) Unexposed cells. (B) A cell exposed to 100 µM NH₂Cl for 10 min at 37°C. No ultrastructural changes in nuclei, mitochondria, and myofibrils were detected in NH₂Cl-treated cells. N, nucleus; M, mitochondria; G, gap junction; and Mf, myofibrils. Bar, 1 µm.} \]
Protection of the Cells from Peeling Off by Fibronectin

We next investigated whether precoating the culture dish with Fn, laminin, and collagen types I, III, and IV, which are the main cardiac ECM proteins (1, 7, 32, 35), would protect the cardiac myocytes from peeling off. When isolated cardiac myocytes were cultured on a substratum coated with a mixture of all five of these proteins (20 μg/ml each) and exposed to NH2Cl (100 μM), no peeling off was observed. When each of the ECM proteins was applied separately, however, only Fn had a protective effect (Fig. 3 A), and it was concentration dependent (Fig. 3 B). Fn precoating also protected fibroblasts (WI-38 cells) against NH2Cl-induced peeling off (Fig. 4).

These observations led us to speculate that an NH2Cl attack site might be Fn itself, and that alteration of Fn by treatment with NH2Cl might destroy its protective effect. Culture dishes precoated with Fn that had been pretreated with a high concentration of NH2Cl (300 μM), however, still protected cardiac myocytes against NH2Cl-induced peeling off (Fig. 5), even though the specific viscosity of the NH2Cl-treated Fn had decreased from 0.5 ± 0.09 (n = 4) to 0 ± 0.02 (n = 4) (P < 0.01). These results suggest that NH2Cl may have changed the conformation of Fn, but this change did not affect the protein’s protective activity.

Effects of NH2Cl on the Distribution and the Contents of Focal Adhesion Proteins

Cellular adherence to the substratum is thought to be influenced by focal adhesion proteins, including p-Tyr-containing proteins and actin filaments, as well as by ECM proteins, so we next examined whether focal adhesion proteins would be affected by NH2Cl treatment. Because Fn precoating protected the cells from peeling off, we studied the content and distribution of α5β1 integrin, a classic Fn receptor and transmembrane component of focal adhesion. Because vinculin (a prominent intracellular component of focal adhesions) (5, 14) deficiency caused loss of cell–substratum adhesion activity in mutant mouse F9 embryonic carcinoma cells (46), we also studied the effects of NH2Cl on the content and distribution of vinculin. Since cultured mouse myocytes were too thick for the distribution of the focal adhesion proteins or stress fibers to be observed by conventional fluorescence microscopy, and since we could only obtain antibody against human integrin, we used human fibroblast WI-38 cells, which are thinner than fetal mouse cardiac myocytes, and were able to observe integrin α5β1, vinculin, stress fibers, and p-Tyr–containing proteins in untreated cells (Fig. 6, A, C, E, and G, respectively). Double-staining immunofluorescence microscopy of integrin α2β1 and vinculin, of integrin α5β1 and p-Tyr, and of vinculin and p-Tyr showed that, in general, these proteins were localized to the same part of the cell (data not shown). The organization of these proteins in WI-38 fi-

![Figure 3](image-url) **Figure 3.** Protection of cardiac myocytes from NH2Cl-induced peeling off by Fn precoating of the substratum. (A) Effect of precoating with several kinds of ECM proteins. Isolated mouse cardiac myocytes were cultivated on glass coverslips coated with 20 μg/ml of fibronectin, laminin, or collagen types I, III, or IV, and then exposed to 100 μM NH2Cl for 10 min at 37°C in methionine-free MEM. The extent of peeling off is expressed as the percentage of the original cell sheet that remained attached to the substratum. Results are expressed as mean ± SEM of six experiments. * Significantly different from the results obtained without precoating (P < 0.01). (B) Concentration-dependent curve of the protective activity of Fn precoating on NH2Cl-induced peeling off of cardiac myocytes.

![Figure 4](image-url) **Figure 4.** Protective effect of Fn precoating against NH2Cl-induced peeling off of WI-38 fibroblasts. (A) An unexposed cell sheet cultured on an Fn (20 μg/ml)-coated glass coverslip. (B) The same cell sheet 10 min after exposure to 50 μM NH2Cl, seen by phase-contrast microscopy. Bar, 50 μm.

![Figure 5](image-url) **Figure 5.** Protective effect of precoating with Fn that had been pretreated with NH2Cl against NH2Cl-induced peeling off of cardiac myocytes. 20 μg/ml Fn were pretreated in test tubes with PBS or 300 μM NH2Cl for 30 min at 37°C and then coated on glass coverslips. Isolated mouse cardiac myocytes were cultivated on the coverslips and then exposed to 100 μM NH2Cl for 30 min at 37°C in methionine-free MEM. The extent of peeling off is expressed as the percentage of the original cell sheet that remained attached to the substratum. Results are expressed as mean ± SEM of six experiments. * Significantly different from results obtained with the precoating of intact Fn (P < 0.01).
Figure 6. Fluorescence photomicrographs of WI-38 fibroblasts showing the effect of NH$_2$Cl on the distribution of integrin $\alpha_5\beta_1$, vinculin, stress fibers, and p-Tyr-containing proteins in Ca$^{2+}$-containing BSS. WI-38 cells were cultivated on glass coverslips and were untreated (A, C, E, and G) or treated (B, D, F, and H) with 50 μM NH$_2$Cl for 10 min at 37°C in Ca$^{2+}$-containing BSS. Cells were stained for integrin $\alpha_5\beta_1$ (A and B), vinculin (C and D), actin (E and F), or p-Tyr (G and H). Note that some integrins but not vinculin, actin, or p-Tyr-containing proteins left residual thin fibers of material on the substratum following peeling off. Bar, 10 μm for A, C, E, and G; 15 μm for B, D, F, and H.

Role of p-Tyr Dephosphorylation in Induction of Peeling Off

To examine the role of p-Tyr dephosphorylation on NH$_2$Cl-induced peeling off, we examined the effects of inhibitors of both tyrosine kinase and protein–tyrosine phosphatase (PTPase) on the action of NH$_2$Cl. WI-38 fibroblasts were treated with a specific tyrosine kinase inhibitor, genistein (2) (100 μM), for 6 h in FBS-MEM at 37°C. Genistein treatment alone did not induce peeling off (Fig. 8 D), although most of the p-Tyr-containing proteins disappeared with this treatment (Fig. 8 B). On the other hand, when the cells were preincubated with a PTPase inhibitor Na$_3$VO$_4$ (1 mM) for 1 h at 37°C, no peeling off was induced by subsequent exposure to 50 μM NH$_2$Cl in the absence of Na$_3$VO$_4$ (Fig. 9 B). Na$_3$VO$_4$ pretreatment actually prevented the NH$_2$Cl-induced loss of p-Tyr (Fig. 9 D). These observations suggest that dephosphorylation of p-Tyr is necessary, but not sufficient for induction of peeling off.

To determine whether NH$_2$Cl affects PTPase activity, we measured the PTPase activity of both 50 μM NH$_2$Cl-treated and untreated WI-38 cells using 32P-Raytide or pNPP as the substrate. The PTPase activities of the lysates were similar: (32P-Raytide; nontreated: 1856 ± 86 cpm; treated: 1905 ± 77 cpm, n = 3) (pNPP, OD$_{410nm}$, nontreated: 1.03 ± 0.05; treated: 1.02 ± 0.06, n = 3).

Role of Polymerized Actin in Induction of Peeling Off

Because some reports suggest that cell detachment is ac-
Effect of the tyrosine kinase inhibitor genistein and the microsomal Ca^{2+}-ATPase inhibitor BHQ on the distribution of p-Tyr-containing proteins, [Ca^{2+}], and cell-substratum adhesion of WI-38 fibroblasts. WI-38 cells cultured on glass coverslips were treated with 100 μM genistein for 6 h in FBS-MEM. After washing with MEM, they were exposed to 50 μM BHQ for 20 min. (A and B): Fluorescence photomicrographs showing the distribution of p-Tyr-containing proteins of genistein-untreated (A) and treated (B) WI-38 cells. After the treatment, cells were stained for p-Tyr as described in the legend of Fig. 6. (C): The [Ca^{2+}] of genistein-treated (a) (138 ± 21 nM [n = 4]) and subsequent BHQ-treated WI-38 cells (b) (220 ± 18 nM [n = 4]). F_{bg}, the background signal. (D and E) Phase-contrast microscopy of genistein-treated (D) and subsequent BHQ-treated WI-38 cells (E). Bars, 10 μm for A; 15 μm for B; 50 μm for D and E. Similar results were obtained in four to six other experiments.

Companied by depolymerization of actin filaments (4, 54), we examined the effect of NH_{2}Cl on the viscosity of F-actin in vitro. NH_{2}Cl treatment did not significantly change the specific viscosity of purified F-actin (0.86 ± 0.03, n = 6) relative to that of nontreated protein (0.92 ± 0.05, n = 6), although cytochalasin D (a potent actin-depolymerizing agent) did (0.10 ± 0.01, n = 6) (P < 0.01). In addition, incubation of WI-38 cells or cardiac myocytes with cytochalasin D (0.5 μM, 30 min at 37°C; this condition can induce disruption of stress fibers in WI-38 cells) did not induce peeling off (data not shown). These observations suggest that NH_{2}Cl-induced disruption of stress fibers was not due to the depolymerization of F-actin and that such disruption alone does not induce peeling off. Furthermore, pretreatment of WI-38 cells with cytochalasin D but not with colcemid (a potent tubulin-depolymerizing agent) (5 μM, 10 μM, 30 min at 37°C), protected the cells from NH_{2}Cl-induced peeling off, suggesting that the presence of polymerized actin is necessary for the peeling off process.

Role of Ca^{2+} for Induction of Peeling Off

The observations that NH_{2}Cl-induced peeling off was accompanied by cellular shrinkage, that it did not occur under 15°C, and that polymerized actin was necessary for the peeling off process.

Effect of preincubation with the p-Tyr phosphatase inhibitor Na_{3}VO_{4} on NH_{2}Cl-induced peeling off of WI-38 fibroblasts. WI-38 cells were cultivated on glass coverslips and preincubated with 1 mM Na_{3}VO_{4} for 1 h at 37°C (A). After washing with methionine-free MEM (containing no Na_{3}VO_{4}), they were exposed to 50 mM NH_{2}Cl for 10 min (B), and viewed by phase-contrast microscopy. Na_{3}VO_{4}-preincubated untreated (C) and NH_{2}Cl-treated cells (D) were stained for p-Tyr as described in the legend of Fig. 6 and viewed by fluorescent microscopy. Bars, 100 μm for A and B; 10 μm for C and D.
suggest that actin-dependent cellular motility might play a role in the induction of peeling off. Because cellular motility requires extracellular Ca\(^{2+}\), we studied the effect of Ca\(^{2+}\)-free medium on the action of NH\(_2\)Cl. When WI-38 cells were exposed to NH\(_2\)Cl (50 \(\mu\)M) in Ca\(^{2+}\)-free BSS containing EGTA, no peeling off was observed (Fig. 10 B). Subsequent incubation of the cells in Ca\(^{2+}\)-containing BSS (containing no NH\(_2\)Cl), however, caused severe peeling off within 30 s (Fig. 10 C). Treatment of the cells with NH\(_2\)Cl (50 \(\mu\)M) in Mg\(^{2+}\)-free but Ca\(^{2+}\)-containing BSS resulted in peeling off (data not shown). Similar results were observed in cardiac myocytes (data not shown). These observations indicate that extracellular Ca\(^{2+}\), too, is necessary for the peeling off process.

To study in more detail the relationship between Ca\(^{2+}\) and peeling off, we measured the [Ca\(^{2+}\)]\(_i\) of cultured fetal mouse cardiac myocytes and WI-38 cells. In control experiments, we observed that [Ca\(^{2+}\)]\(_i\), did not change in either WI-38 cells or fetal mouse cardiac myocytes during a 60-min superfusion with Ca\(^{2+}\)-containing BSS, indicating that there was no extinction of fluorescent light in this condition (41). As shown in Fig. 11 A, the diastolic and systolic [Ca\(^{2+}\)]\(_i\) of the myocytes in Ca\(^{2+}\)-containing BSS were 85 ± 16 (\(n = 10\)) and 380 ± 62 nM (\(n = 10\)), respectively. On treatment with NH\(_2\)Cl, the diastolic value increased to 390 ± 50 nM (\(n = 8\)), although this was almost the same as the systolic [Ca\(^{2+}\)]\(_i\), level of normally beating cells (Fig. 11 A b). Treatment of WI-38 cells with NH\(_2\)Cl in Ca\(^{2+}\)-containing BSS increased the [Ca\(^{2+}\)]\(_i\) from 136 ± 20 (\(n = 8\)) to 244 ± 41 nM (\(n = 8\)) (Fig. 11 B). When WI-38 cells were incubated in Ca\(^{2+}\)-free BSS, [Ca\(^{2+}\)]\(_i\), decreased from 136 ± 20 (\(n = 8\)) to 74 ± 16 nM (\(n = 4\)) (Fig. 11 C b); the addition of NH\(_2\)Cl (50 \(\mu\)M) did not change the [Ca\(^{2+}\)]\(_i\), (Fig. 11 C c). Subsequent incubation of the cells in Ca\(^{2+}\)-containing BSS (containing no NH\(_2\)Cl), however, resulted in an apparent increase in [Ca\(^{2+}\)]\(_i\), (241 ± 45 nM [\(n = 4\)]), (Fig. 11 C d), which was higher than the control level (136 ± 20 nM) (Fig. 11 C a). In all the above experiments, peeling off was concomitant with the increase in [Ca\(^{2+}\)]\(_i\).

Since Na\(_3\)VO\(_4\) is not only a PTPase inhibitor, but also an inhibitor of various kinds of ATPase, including Na\(^+\)-K\(^+\) ATPase and Ca\(^{2+}\)-ATPase (33), we examined the effect of Na\(_3\)VO\(_4\) on the [Ca\(^{2+}\)]\(_i\), of WI-38 fibroblasts, to make sure that the protective effect of Na\(_3\)VO\(_4\) on NH\(_2\)Cl-induced peeling off was not due to decrease in [Ca\(^{2+}\)]\(_i\). Treatment of WI-38 fibroblasts with 1 mM Na\(_3\)VO\(_4\) for 1 h caused a slight (but not significant) increase in [Ca\(^{2+}\)]\(_i\), of the cells (control, 134 ± 15 nM [\(n = 12\)]; Na\(_3\)VO\(_4\) treated, 151 ± 13 nM [\(n = 8\)]), though this treatment prevented both NH\(_2\)Cl-induced disappearance of p-Tyr-containing proteins (Fig. 9 D) and peeling off (Fig. 9 B).

We also studied the protein content and distribution of focal adhesion proteins in WI-38 cells treated with NH\(_2\)Cl in Ca\(^{2+}\)-free media. The distribution of integrin \(\alpha_5\beta_1\), vinculin, and stress fibers did not change (Fig. 12, B, D and F, respectively). On the other hand, most of p-Tyr–containing proteins disappeared even though the cells did not peel off the substratum (Fig. 12 H).

The protein content of integrin \(\alpha_5\beta_1\), vinculin (Fig. 7 B, lanes 2 and 4) and actin (43-kD protein investigated by Coomassie blue staining, data not shown) were not changed by treatment with NH\(_2\)Cl in Ca\(^{2+}\)-free BSS containing EGTA. The amount of p-Tyr, however, was apparently reduced (Fig. 7 B, lane 6).

Effects of Ca\(^{2+}\) Entry Inhibitors on NH\(_2\)Cl-induced Peeling Off

To study the mechanism of the NH\(_2\)Cl-induced increase in [Ca\(^{2+}\)]\(_i\), we examined the effect of various kinds of Ca\(^{2+}\) entry inhibitors on the action of NH\(_2\)Cl. One possible mechanism of increasing [Ca\(^{2+}\)]\(_i\), is Ca\(^{2+}\) entry from the extracellular medium via Ca\(^{2+}\) channels, and Na\(^+-\)Ca\(^{2+}\) exchange systems. Na\(^+-\)H\(^+\) exchange is also involved in Ca\(^{2+}\) entry from the extracellular medium in cooperation with Na\(^+-\)Ca\(^{2+}\) exchange systems. Another possibility is that Ca\(^{2+}\) is released from intracellular Ca\(^{2+}\) storage sites, such as microsomes. Preincubation of WI-38 fibroblasts and cardiac myocytes with Ca\(^{2+}\) channel blockers (verapamil or nifedipine) did not prevent NH\(_2\)Cl-induced peeling off (Table I). Preincubation with the Na\(^+-\)Ca\(^{2+}\) exchange inhibitor bepridil (13), or with the Na\(^+-\)H\(^+\) exchange inhibitor amiloride (59), also did not prevent NH\(_2\)Cl-induced peeling off (Table I). When WI-38 fibroblasts were treated with the microsomal Ca\(^{2+}\)-ATPase inhibitor BHQ (26) in Ca\(^{2+}\)-containing BSS, however, the cytosolic Ca\(^{2+}\) concentration increased from 136 ± 20 (\(n = 12\)) to 258 ± 24 (\(n = 4\)) (Fig. 11 D b); after this incubation of these cells in Ca\(^{2+}\)-free medium containing BHQ lowered [Ca\(^{2+}\)] to 45 ± 11 nM (\(n = 4\)) (Fig. 11 D c). Subsequent exposure of the cells to NH\(_2\)Cl in Ca\(^{2+}\)-BSS containing BHQ did not induce peeling off (Table I), and [Ca\(^{2+}\)] increased slightly but not significantly (\(P > 0.2\)) (Fig. 11 D d). The same results were obtained in cultured cardiac myocytes (data not shown). These observations suggest that microsomal Ca\(^{2+}\) mobilization is involved in the NH\(_2\)Cl-induced increase in [Ca\(^{2+}\)]\(_i\), and peeling off.

The next problem is how microsomal Ca\(^{2+}\) was moved from the microsomes to the cytosol by NH\(_2\)Cl. Although transient increase in inositol 1, 4, 5-triphosphate (InsP\(_3\)) levels can induce Ca\(^{2+}\) release from intracellular Ca\(^{2+}\) stores (3), NH\(_2\)Cl did not increase intracellular InsP\(_3\) levels in WI-38 cells or cardiac myocytes (data not shown). Another possibility is that NH\(_2\)Cl directly inhibits the Ca\(^{2+}\)-pump of the intracellular Ca\(^{2+}\)-storage site membranes. We examined the effect of NH\(_2\)Cl in vitro on the active Ca\(^{2+}\) transport using skeletal muscle sarcoplasmic reticu-
Figure 11. Effect of NH₂Cl on [Ca²⁺] of cardiac myocytes and WI-38 fibroblasts in Ca²⁺-containing BSS and Ca²⁺-free BSS containing EGTA. (A) NH₂Cl-induced increase in [Ca²⁺] of cardiac myocytes in Ca²⁺-containing BSS. Cardiac myocytes showed spontaneous beating before the addition of NH₂Cl (a). Treatment with 100 μM NH₂Cl caused cessation of spontaneous beating and an increase in diastolic [Ca²⁺] within 2 min, although the [Ca²⁺] level was almost the same as it was in normal systole (b). The cells showed peeling off at 2 min treatment (phase-contrast microscopy). (B) NH₂Cl-induced increase in [Ca²⁺] of WI-38 fibroblasts in Ca²⁺-containing BSS. Treatment with 50 μM NH₂Cl caused both an increase in [Ca²⁺] (b) and peeling off within 2 min. (C) Effect of Ca²⁺-free medium on the NH₂Cl-induced increase in [Ca²⁺] of WI-38 fibroblasts. Cells were incubated in Ca²⁺-containing BSS (a). Changing the medium to Ca²⁺-free BSS containing EGTA caused a decrease in [Ca²⁺] (b). Treatment with 50 μM NH₂Cl for 2 min caused neither a change in [Ca²⁺] (c) nor peeling off. Subsequent incubation of the cells in Ca²⁺-containing BSS caused an increase in [Ca²⁺] within 30 s (d), which was higher than the control level (a). Peeling off was concomitantly observed. (D) Effect of the microsomal Ca²⁺-ATPase inhibitor, BHQ, in the presence or absence of NH₂Cl in the presence or absence of NH₂Cl on [Ca²⁺] of WI-38 fibroblasts. WI-38 fibroblasts in Ca²⁺-containing BSS (a) were incubated in 50 μM BHQ for 30 min (b) and subsequently incubated in Ca²⁺-free BSS containing BHQ (c). This caused depletion of both microsomal and cytosolic Ca²⁺. Then the cells were treated with 50 μM NH₂Cl in Ca²⁺-free BSS containing BHQ. The background signal. Similar results were obtained in three to nine other experiments.

The Journal of Cell Biology, Volume 131, 1995 518
Stimulated Neutrophils Induced Peeling Off of Cardiac Myocytes

We next examined whether stimulated human neutrophils induce the peeling off of cultured fetal mouse cardiac myocytes. Since stimulated neutrophils produce several kinds of cytotoxic mediators such as -OH, NH2Cl and elastase, cardiac myocytes were treated with neutrophils in the presence of inhibitor(s) against each of these mediators separately to see each of their cytotoxic effects. On treatment with stimulated neutrophils in the absence of any inhibitors, 10–18% of the cardiac myocytes showed morphological degeneration characterized by hypercontraction concomitant with balloon formation (Fig. 15 A). These morphologically degenerated cells were stained with the vital dye erythrosine B. An elastase inhibitor, α₁-antitrypsin, did not prevent the neutrophil-induced morphological changes (data not shown). On the other hand, in the presence of α₁-antitrypsin, DMTU (an -OH scavenger) (12), and deferoxamine (an iron chelator [37] and an inhibitor of -OH production) stimulated neutrophils induced peeling off of 13–15% of the cardiac myocytes (Fig. 15 B) in the absence of balloon formation and hypercontraction. These peeled-off cells excluded erythrosine B, and the morphological change was reversible, that is, when the incubation medium was changed to FBS-MEM and the cells cultivated for 24 h, almost all myocytes readhered to and spread on the substratum and resumed spontaneous beating. Coexistence of α₁-antitrypsin, DMTU, deferoxamine, and methionine (an NH2Cl scavenger) prevented both types of neutrophil-induced morphological changes in cardiac myocytes, even though some neutrophils adhered to them (Fig. 15 C). Adherence of neutrophils to cardiac myocytes was essential, but not sufficient to induce either hypercontraction or peeling off of the myocytes. These observations suggest that neutrophil-derived NH2Cl also caused peeling off of the cultured cardiac myocytes.

The next interesting point is that peeling off was not detected in the myocytes 2.5–3 h after exposure to stimulated neutrophils in the absence of inhibitors (Fig. 15 A), although NH2Cl must have still existed in that condition. To see the additive effect of -OH and NH2Cl, we examined the additive effect of low concentrations of H2O2 and NH2Cl on the morphology of cultured cardiac myocytes. Neither 20 μM H2O2 nor 25 μM NH2Cl alone caused hypercontraction or peeling off of the myocytes during the 2-h observation period. On the other hand, application of both 20 μM H2O2 and 25 μM NH2Cl caused peeling off of 50–60% of the myocytes in 30 min after application, although this treatment did not induce hypercontraction. After incubation for another 30 min, however, 30–40% of the myocytes showed hypercontraction concomitant with balloon formation, and 20–30% of remaining cells showed peeling off. In 1.5–2.0 h after the addition of both 20 μM H2O2 and 25 μM NH2Cl, 60–70% of the cells showed hypercontraction, and no peeled-off cells were detected (data not shown). These observations indicate that (a) H2O2 enhanced the effect of NH2Cl to induce peeling off, (b) NH2Cl enhanced the effect of H2O2 to induce hypercontraction, and (c) the peeled-off cells (but not other in-

Table I. Effects of Various Ca2+ Entry Inhibitors on NH2Cl-induced Peeling Off

Ca2+ entry inhibitors	WI-38 fibroblasts	Cardiac myocytes
Verapamil (1, 10, 100 μM, 10 min)	Not prevented	Not prevented
Nifedipine (1, 10, 100 μM, 10 min)	Not prevented	Not prevented
Na⁺–Ca2⁺ exchange inhibitor	Not prevented	Not prevented
Bepridil (10, 30 μM, 10 min)	Not prevented	Not prevented
Na⁺–H⁺ exchange inhibitor	Not prevented	Not prevented
Amlodipine (100 μM, 30 min)	Not prevented	Not prevented
Microsomal Ca2⁺-ATPase inhibitor	Prevented	Prevented
BHQ (50 μM, 30 min for WI-38)	Prevented	Prevented
(20 μM, 15 min for myocytes)	Prevented	Prevented

WI-38 fibroblasts and cardiac myocytes were preincubated with Ca2⁺ channel blockers, Na⁺–Ca2⁺ exchange inhibitor, or Na⁺–H⁺ exchange inhibitor, and then exposed to 50 μM NH2Cl for WI-38 fibroblasts or 100 μM NH2Cl for cardiac myocytes. To examine the effect of the microsomal Ca2⁺-ATPase inhibitor BHQ, these cells were treated with BHQ in Ca2⁺-BSS for 30 (WI-38 fibroblasts) or 15 min (cardiac myocytes), and then incubated in Ca2⁺-free BSS containing EGTA and BHQ for 5 min. The cells were then exposed to NH2Cl in Ca2⁺-BSS containing BHQ.
Figure 13. Effect of NH₂Cl on the ATP-dependent Ca²⁺ pump and Ca²⁺ release from sarcoplasmic reticulum vesicles. (A) ATP-dependent ⁴⁵Ca²⁺ uptake was measured for 3 min in the presence of various concentrations of NH₂Cl as described in Materials and Methods. (B) The time course of ATP-dependent ⁴⁵Ca²⁺ uptake was measured. At the time shown by the arrow, 50 μM NH₂Cl was added. (C) ⁴⁵Ca²⁺-loaded vesicles were diluted into the buffer containing 10 mM MgCl₂ and 10 μM ruthenium red in the absence or presence of 50 μM NH₂Cl, and remaining ⁴⁵Ca²⁺ radioactivity was measured as described in Materials and Methods. * Significantly different from the results obtained with control (P < 0.01).

tact cells) progressed to hypercontraction. This suggests that in the neutrophil treatment experiment, the neutrophil-derived, NH₂Cl-induced peeling off of cultured cardiac myocytes may contribute to the formation of neutrophil-induced hypercontraction.

Discussion

Interaction with extracellular adhesion molecules plays a critical role in regulating cellular morphology, proliferation, migration, and differentiation. Alterations in myocyte basement membrane attachments and in the distribution of ECM components were observed in heart failures, such as experimental tachycardia (63) and pressure overload–induced hypertrophy (7), respectively, indicating the importance of cell-substratum adhesion for normal heart function. Ample evidence suggests that activated neutrophils accumulate in ischemic regions of the heart during the early h of reperfusion (9) and might mediate tissue injuries (40, 45). When an MPO–H₂O₂–Cl⁻ system (HOCl and NH₂Cl-generating system) was infused into rat kidneys, it induced tissue injury and morphological abnormalities (22, 23). These findings suggest the possibility that neutrophil-derived oxidants inhibit cell-substratum adhesion. Previous studies showing that NH₂Cl induced detachment of cultured cardiac myocytes (41) and endothelial cells (54) from the substratum support this hypothesis. In the present study, we showed that stimulated neutrophils, in fact, induced peeling off (cell detachment and cell shrinkage) of cultured cardiac myocytes when the myocytes were treated with neutrophils in the presence of both inhibitors of •OH and elastase (Fig. 15 B). We also found

Figure 14. Effect of Fn precoating on the p-Tyr content of WI-38 fibroblasts. WI-38 cells were cultivated on the plastic petri dishes coated with (lanes 1 and 2) or without (lane 3) 20 μg/ml Fn and then were untreated (lanes 1 and 3) or treated (lane 2) with 50 μM NH₂Cl for 10 min at 37°C. Cell lysates were electrophoresed on 7.5% polyacrylamide gel, transferred to nitrocellulose, and blotted with the anti-p-Tyr antibody py 20 followed by HRP-conjugated second antibody for visualization. The molecular masses of marker proteins are indicated in kilodaltons on the right hand side.

Figure 15. Effect of stimulated neutrophils on the morphology of cultured fetal mouse cardiac myocytes. Cultured fetal mouse cardiac myocytes (10⁵ cells per dish) were pretreated with or without various inhibitors, that is, the iron chelator deferoxamine (10 mM, for 6 h), the •OH scavenger DMTU (10 mM, for 30 min), the elastase inhibitor α₁-antitrypsin (50 μg/ml, for 30 min) and/or the NH₂Cl scavenger methionine (10 mM, for 30 min). After treatment with PAF (10⁻⁶ M) for 30 min in HBSS, the myocytes were coincubated with human neutrophils (2 × 10⁵ cells per dish) for 30 min to be adhered to each other, and then the neutrophils were stimulated by exposure to both PMA (100 ng/ml) and TNF-α (10 ng/ml). The morphological changes of the myocytes were assessed by phase-contrast microscopy at 2.5 to 3 h after exposure to neutrophils. (A) The cell sheets pretreated with no inhibitors. Hypercontraction concomitant with balloon formation was evident. (B) The cell sheets pretreated with deferoxamine, DMTU and α₁-antitrypsin. Peeling off was observed. (C) The cell sheets pretreated with deferoxamine, DMTU, α₁-antitrypsin and methionine. No morphological changes were observed. Arrows indicate neutrophils. Bar, 20 μm.
in this study that NH$_2$Cl-induced peeling off was not specific to cardiac myocytes or endothelial cells, but was also observed in other kinds of cells, including fibroblasts and epithelial cells. These morphological changes were accompanied by the disorganization of integrin α_b, vinculin, stress fibers, and p-Tyr-containing proteins, and by an increase in [Ca$^{2+}$]. We suggest a synergistic relationship between p-Tyr dephosphorylation and increased [Ca$^{2+}$], in NH$_2$Cl-induced peeling off.

The observation that residual bits of integrin α_b, but not of vinculins or stress fibers, remained on the substratum after NH$_2$Cl-induced peeling off (Fig. 6) suggests that NH$_2$Cl does not inhibit the interaction between integrin α_b, vinculin, and Fn. NH$_2$Cl penetrates cells rapidly (53), and we observed that taurine-NH$_2$Cl, a potent oxidizing but non-membrane-permeating chloramine (55), did not cause peeling off, indicating that penetration of the oxidant is required to induce peeling off, i.e., that the attack site of NH$_2$Cl may be intracellular.

Role of Dephosphorylation of p-Tyr for Induction of Peeling Off

A great deal of data suggests that tyrosine phosphorylation of focal contact proteins plays a critical role in regulating adhesion, motility, and shape in various kinds of cells (24). It has been reported that such phosphorylation is an early cellular response to plating onto Fn-coated dishes (18). In this study, we showed that a decrease in the protein p-Tyr content of the cells accompanied NH$_2$Cl-induced cellular detachment from the substratum (Figs. 6 and 7). This finding agrees with the previous report that conditions leading to decreased cell-substratum adhesion (by treatment with trypsin or Ca$^{2+}$- and Mg$^{2+}$-free PBS) result in a loss of focal adhesion protein p-Tyr (34).

We also observed in this study that inhibition of p-Tyr phosphatase activity by Na$_3$VO$_4$ protected WI-38 cells from NH$_2$Cl-induced peeling off (Fig. 9), suggesting that dephosphorylation of p-Tyr is essential for peeling off. It is not clear how NH$_2$Cl induced p-Tyr dephosphorylation in the present study. Dephosphorylation of p-Tyr can be explained by either an increase in p-Tyr phosphatase (PTPase) activity or a decrease in protein tyrosine kinase activity, or both. It is reported that PTPases are activated when cell-substratum adhesion is disrupted by trypsin in chicken embryo fibroblasts (34). In the present study, however, no increase in PTPase activity was observed in cell lysates following treatment of the cells with NH$_2$Cl. There are some differences between the effects of NH$_2$Cl and trypsin; trypsin inhibits cell-cell adhesion as well as cell-substratum adhesion, whereas NH$_2$Cl inhibits cell-substratum adhesion and induces cell shrinkage. Therefore, the mechanisms by which NH$_2$Cl and trypsin cause cell to detach from the substratum may be different. We still cannot exclude the possibility, however, that NH$_2$Cl increased some PTPase activity in the cells. In human cells, >20 different PTPases are present, but little is known about their substrates. Because the PTPase activities measured in this study are means of the activities of all these PTPases, it is difficult to determine the activity of a specific PTPase, even if NH$_2$Cl increased the activity of only some PTPases. The difference of the substrate used in this experiment (32P-labeled Raytide or pNPP) from the in vivo substrate might also account for these results.

It is also not clear whether tyrosine kinase activity was changed by NH$_2$Cl in the present study. The observation that p-Tyr dephosphorylation by a tyrosine kinase inhibitor (genisteine) plus increase in [Ca$^{2+}$], by BHQ induced peeling off (Fig. 8) suggests that p-Tyr dephosphorylation via inhibition of tyrosine kinase activity as well as activation of PTPase may be related to the induction of peeling off. Another tyrosine kinase inhibitor, herbimycin A, inhibits pp60src, a tyrosine kinase in Rous sarcoma virus (44), by binding reactive SH groups and blocking an active site (57). Also, NH$_2$Cl lowers acid-soluble SH levels in rat colonic mucosa (53), indicating that oxidation of intracellular thiols occurred in the treated cells. Therefore, it is possible that SH-group oxidizing compounds inhibited tyrosine kinase activity just as herbimycin A does. In the present study, however, treatment of cultured cardiac myocytes or WI-38 fibroblasts with a membrane-permeating SH-group oxidizing compound (diamide) did not cause peeling off. Intracellular loading of an SH-group reducing agent (γ-glutamylcysteine ethyl ester, a glutathione precursor) (42) also did not affect NH$_2$Cl-induced peeling off. So, it is still unclear whether SH-group oxidation took part in NH$_2$Cl-induced peeling off in this study.

Role of Ca$^{2+}$ for Induction of Peeling Off

In the present study, we found that NH$_2$Cl treatment of WI-38 cells or cardiac myocytes in Ca$^{2+}$-containing BSS induced an increase in [Ca$^{2+}$], (Fig. 11) along with peeling off, although in the case of cardiac myocytes, the increased [Ca$^{2+}$] did not exceed the systolic level of spontaneously beating cells (Fig. 11 A b). This observation does not contradict the observation that neither hypercontraction nor contraction bands of myofibrils were detected in the peeled-off myocytes (Fig. 2 B). Our previous study showed that when the [Ca$^{2+}$] of cultured myocytes exceeded 1 μM, hypercontraction did appear (41).

In Ca$^{2+}$-free BSS containing EGTA, in contrast to Ca$^{2+}$-containing BSS, NH$_2$Cl induced neither peeling off nor an increase in [Ca$^{2+}$], but subsequent incubation of the cells in Ca$^{2+}$-containing BSS without NH$_2$Cl caused both peeling off and a concomitant increase in [Ca$^{2+}$], (Figs. 10 and 11 C). These observations suggest that an increase in [Ca$^{2+}$], plays a pivotal role on the action of NH$_2$Cl. This speculation agrees with the previous report that NH$_2$Cl-induced short-term Cl$^{-}$ secretion in cultured T84 monolayers was accompanied by an increase in intracellular Ca$^{2+}$, and the absence of Ca$^{2+}$ from the medium inhibited the secretion response (52). The observation that peeling off occurred in Ca$^{2+}$-containing BSS even in the absence of NH$_2$Cl if the cells had previously been treated with NH$_2$Cl (Fig. 10), also suggests that the NH$_2$Cl reaction occurs intracellularly.

In Ca$^{2+}$-free BSS containing EGTA, although no disorganization and no decrease of integrin, vinculin, or stress fibers followed NH$_2$Cl treatment, the decrease in the p-Tyr content of the cells was the same as in Ca$^{2+}$-containing BSS. One possible explanation for this is that the Ca$^{2+}$-free condition itself caused the dephosphorylation of p-Tyr, as previously reported (34). This seems unlikely,
however, because under our experimental conditions (Ca^{2+}-free but Mg^{2+}-containing BSS), there was no difference in the p-Tyr content of untreated WI-38 cells in Ca^{2+}-containing and in Ca^{2+}-free BSS (Figs. 6 G, 12 G, and 7, A and B, lanes 5). Therefore, it is more likely that NH_{2}Cl treatment itself induced p-Tyr dephosphorylation independent of peeling off. These observations also indicate that peeling off requires not only dephosphorylation of p-Tyr, but also an increase in [Ca^{2+}]. This is supported by the observation that dephosphorylation of p-Tyr by genistein (a tyrosine kinase inhibitor) alone did not induce peeling off, while subsequent application of the microsomal Ca^{2+}-ATPase inhibitor BHQ (26), which increases [Ca^{2+}], did (Fig. 8 C).

Depletion of microsomal and cytosolic Ca^{2+} by treatment with BHQ plus EGTA prevented both NH_{2}Cl-induced peeling off and an increase in [Ca^{2+}] (Fig. 11 D). This observation suggests that NH_{2}Cl mobilized Ca^{2+} directly or indirectly from intracellular Ca^{2+} storage sites, such as microsomes and sarcoplasmic reticulum. The observations that (a) there was no increase in intracellular InsP_{3} after NH_{2}Cl treatment in both WI-38 fibroblasts and cardiac myocytes, and (b) treatment of isolated rabbit sarcoplasmic reticulum vesicles with various concentrations of NH_{2}Cl inhibited 45Ca^{2+} uptake very rapidly (Fig. 13), indicating that NH_{2}Cl may have attacked intracellular Ca^{2+} storage sites directly, i.e., NH_{2}Cl inhibited microsomal Ca^{2+} uptake, and as a result, cytosolic Ca^{2+} increased.

In Ca^{2+}-free medium containing EGTA, NH_{2}Cl did not induce either an increase in [Ca^{2+}] (Fig. 11 C) or peeling off (Fig. 10). A possible explanation for this is that even when NH_{2}Cl induced a transient increase in cytosolic Ca^{2+} by inhibition of microsomal Ca^{2+} uptake, the increased [Ca^{2+}], was immediately extruded into the extracellular space when the cells were incubated in Ca^{2+}-free medium containing EGTA. As a result, neither peeling off nor an increase in [Ca^{2+}] occurred. This speculation is supported by our observation that the BHQ-induced increase in [Ca^{2+}], in WI-38 fibroblasts decreased during subsequent incubation of the cells in Ca^{2+}-free BSS containing BHQ and EGTA (Fig. 11 D).

It would be interesting to know whether there is a correlation between p-Tyr dephosphorylation and increased [Ca^{2+}]. Evidence from some cell systems suggests that an increase in [Ca^{2+}], either inhibits tyrosine kinase activity or increases PTPase activity (64, 65). In the present study, however, that p-Tyr dephosphorylation occurred even under conditions in which [Ca^{2+}], did not increase (see Figs. 11 C c and 12 H), suggesting that the NH_{2}Cl-induced increase in [Ca^{2+}], did not cause p-Tyr dephosphorylation. We speculate that NH_{2}Cl may have attacked focal adhesions and microcosms independently, inducing p-Tyr dephosphorylation and increased [Ca^{2+}], at these sites, respectively, and that both of these events are necessary for peeling off. Another possibility is that increase in [Ca^{2+}], is also related to the modification of focal adhesion proteins associated with p-Tyr dephosphorylation, because p-Tyr dephosphorylation alone did not change the distribution of other focal adhesion proteins such as integrin or vinculin (Fig. 12, B and D, and Results), and additional increases in [Ca^{2+}], did (Fig. 6 B and D). Further precise study is needed to reveal the relationship between p-Tyr dephosphorylation and increase in [Ca^{2+}], on the disorganization of focal adhesion proteins.

Protective Effect of Fn-Precoating against NH_{2}Cl-induced Peeling Off

Fn precoating of the substratum prevented both cardiac myocytes and WI-38 cells from NH_{2}Cl-induced peeling off in a concentration-dependent manner (Figs. 3 and 4), leading us to speculate that peeling off might have been caused by an NH_{2}Cl-induced alteration of Fn. Exposure of purified human plasma Fn to an HOC1 and NH_{2}Cl generating system (the MPO-H_{2}O_{2}-Cl^{-} system of neutrophils) causes extensive changes in the primary and tertiary structure of Fn (60). Our observation that exposure of Fn to NH_{2}Cl decreased its specific viscosity supports that finding. NH_{2}Cl-induced peeling off, however, was also prevented by precoating with Fn that had been pretreated with a high concentration of NH_{2}Cl, indicating that peeling off is not the result of a conformational alteration of Fn caused by NH_{2}Cl. Thus, even if the structure of Fn was modified by NH_{2}Cl, the modification itself did not induce peeling off.

When WI-38 fibroblasts were cultured on Fn-coated dishes, the p-Tyr content of the cells did not change after exposure to NH_{2}Cl (Fig. 14). This observation suggests that Fn prevented NH_{2}Cl-induced peeling off via inhibition of an NH_{2}Cl-induced decrease in the p-Tyr content. It was previously reported that when cells are cultured on an Fn-coated substratum, p-Tyr increases accompanied by an increase in tyrosine kinase activity (6, 18, 21). In our present experiments, the spots bound to antibody against integrin and stress fibers appeared to increase (data not shown), although quantitation was difficult with conventional fluorescence microscopy. The increase in integrin spots and stress fibers might strengthen cell–substratum interactions. The present finding that laminin and collagen types I, III, and IV coating, contrast to Fn coating, did not prevent NH_{2}Cl-induced peeling off suggests that these ECM proteins have functionally different roles in cell-to-cell and cell-to-substratum interaction. In rat myocardium, in fact, laminin is found in regions of myocyte–myocyte junctions and Fn is found in regions of myocyte–vascular cell junctions (7).

A Possible Mechanism of NH_{2}Cl-induced Peeling Off

NH_{2}Cl causes dephosphorylation of p-Tyr residues of some focal adhesion proteins, and also induces an increase in cytosolic [Ca^{2+}], by inhibiting microsomal Ca^{2+} uptake. The increase in [Ca^{2+}], in turn triggers actin–myosin interactions, which are followed by cell shrinkage. The role of p-Tyr dephosphorylation may be modification of the conformation and/or activities of focal adhesion proteins, and this may lead to facilitation of cell detachment from the substratum. p-Tyr dephosphorylation alone did not induce peeling off (see Figs. 12 H; 8 B and D), nor did an increase in [Ca^{2+}], alone (see Fig. 11 D b). Combination of these two events caused peeling off.

Correlation with Stimulated Neutrophil-induced Cytotoxicity

Some evidence suggests that stimulated neutrophils in-
duce morphological injuries in several kinds of tissues (22, 61) and cultured cardiac myocytes (30). Also, cultured normal human keratinocytes (27) and epidermal carcinoma cells (28) detach from the substratum by contact with stimulated neutrophils. The mechanism of neutrophil-induced cytotoxicity, however, has been controversial, because neutrophils produce several kinds of cytoxin mediators, such as -OH, NH₂Cl, and elastase, and their effects may overlap. We, therefore, tested various kinds of inhibitors against each mediator to see which particular mediators induce which particular injury. Stimulated neutrophils induced two types of morphological changes in cultured cardiac myocytes: hypercontraction concomitant with balloon formation and peeling off. In the absence of any inhibitors, only hypercontraction was observed, and no peeling off was detected (Fig. 15 A). Pretreatment with deferoxamine, DMTU, and α₁-antitrypsin prevented neutrophil-induced hypercontraction but not peeling off (Fig. 15 B), and pre-treatment with deferoxamine, DMTU, α₁-antitrypsin, and methionine prevented both types of neutrophil-induced morphological changes (Fig. 15 C). These observations indicate that neutrophil-derived -OH caused hypercontraction, and that neutrophil-derived NH₂Cl caused peeling off. These observations coincide with our previous report showing that xanthine + xanthine oxidase or H₂O₂ caused hypercontraction of cultured cardiac myocytes that was prevented by DMTU and deferoxamine, and that NH₂Cl-induced peeling off was prevented by methionine (41).

The extent of neutrophil-induced peeling off, however, was less than that induced by NH₂Cl (35–48% and 13–15% of cultured cardiac myocytes showed peeling off with 100 μM NH₂Cl and by stimulated neutrophils, respectively) in this study. This is probably because the average concentration of NH₂Cl produced by neutrophils in the medium was <100 μM. What is critical, however, is the NH₂Cl concentration in the vicinity of stimulated neutrophils, but not the average concentration in the medium. In fact, in the present work, the myocytes to which stimulated neutrophils adhered actually showed peeling off and hypercontraction, suggesting that the concentration of NH₂Cl and other oxygen radicals in the vicinity of stimulated neutrophils is high enough to induce these morphological changes in vitro. Because the tissue concentration of NH₂Cl has been estimated to be 200–300 μM by the production of HOCl and NH₂Cl (15), the NH₂Cl concentration we used in this study is physiologically relevant.

In summary, the neutrophil-derived, membrane-permeating oxidant NH₂Cl induced various kinds of cells to detach from the substratum concomitant with cell shrinkage (peeling off). Peeling off was also induced by stimulated neutrophils themselves. NH₂Cl-induced peeling off was prevented by coating the substratum with Fn. Both p-Tyr dephosphorylation and an increase in [Ca²⁺], were mechanisms of NH₂Cl-induced peeling off.

The authors express their thanks to Dr. Mitsuhiro Yokoyama and Dr. Masato Kasuga (Kobe University), Dr. Masao Hayashi and Dr. Keiko Ishikawa (Ochanomizu University) for helpful discussion on this work. We also thank Dr. Tadashi Okamoto, Mr. Hideaki Isoda, Mr. Naoki Kubota, and Ms. Kazue Takahata (Kobe Gakuen University) for helping with the measurement of [Ca²⁺], and the preparation of neutrophils and cultured myocytes. We thank Dr. Keiichi Tanaka and Dr. Norio Muto (Osaka University) for facilitating preparation of this manuscript.

This study was supported in part by the Fund of the Science Research Promotion of Japan Private Promotion Foundation, a grant-in-aid for interdisciplinary research from Kobe Gakuin University, and a grant-in-aid for health science research from Kobe Gakuin University.

Received for publication 22 February 1995 and in revised form 16 June 1995.

References

1. Ahumada, G. G., and J. E. Staffitiz. 1984. Fibronectin in rat heart: a link between cardiac myocytes and collagen. J. Histochem. Cytochem. 32:383–388.
2. Barra, M. K., and E. de Juan, Jr. 1994. Phosphotyrosine inhibition and control of vascular endothelial cell proliferation by genistein. Biochem. Pharmacol. 48:809–818.
3. Berridge, M. J. 1992. Inositol triphosphate and calcium signaling. Nature (Lond.). 361:315–325.
4. Burridge, K., C. E. Turner, M. H. Horwitz, and J. Feramisco. 1980. Microinjection and localization of a 130 K protein in living fibroblasts: a relationship to actin and fibronectin. Cell. 19:587–595.
5. Burridge, K., and J. Feramisco. 1980. Microinjection and localization of a 130 K protein in living fibroblasts: a relationship to actin and fibronectin. Cell. 19:587–595.
6. Burridge, K., C. E. Turner, and L. H. Romer. 1992. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J. Cell. Biol. 119:892–903.
7. Contard, F., V. Kotelniansky, F. Marotte, I. Dubus, L. Rappaport, and J. L. Samue. 1991. Specific alterations in the distribution of extracellular matrix components within rat myocardium during the development of pressure overload. Lab. Invest. 64:65–75.
8. Duband, J.-L., G. H. Nuckolls, A. Ishihara, T. Hasegawa, K. M. Yamada, J. P. Thiery, and K. Jacobson. 1988. Fibronectin receptor exhibits high lateral mobility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells. J. Cell Biol. 107:1385–1396.
9. Engler, R. L., G. W. Schmid-Schonbein, and R. S. Pavelec. 1993. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am. J. Pathol. 111:97–111.
10. Fantone, J. C., and P. A. Ward. 1982. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am. J. Pathol. 107:379–417.
11. Feuer, G., F. Mohar, E. Pettko, and F. B. Straub. 1948. The composition and polymerization of actin. Angi. Acta Physiol. 1:150–163.
12. Fox, R. B. 1984. Prevention of granulocyte-mediated oxidant lung injury in rats by a hydroxyl radical scavenger, dimethylthiourea. J. Clin. Invest. 74:1456–1464.
13. Garcia, M. L., R. S. Slaughter, V. F. King, and G. J. Kazcorowski. 1988. Inhibition of sodium–calcium exchange in cardiac sarcolemmal membrane vesicles: mechanism of inhibition by boprofil. Biochemistry. 27:2410–2415.
14. Geiger, B. 1979. A 130 K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell. 18:193–205.
15. Grisham, M. B., T. S. Gaginella, C. V. Ritter, H. Tanai, R. M. Be, and D. N. Granger. 1990. Effects of neutrophil-derived oxidants on intestinal permeability, electrolyte transport and epithelial cell viability. Inflammation. 14:531–542.
16. Guan, J. L., and D. Shalloway. 1992. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature (Lond.). 358:690–692.
17. Guan, J. L., E. T. Trethick, and R. O. Hynes. 1991. Fibronectin-integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. Cell Regul. 2:951–964.
18. Hanks, S. K., M. B. Caillb, M. C. Harper, and S. K. Patel. 1992. Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibrobrinectin. Proc. Natl. Acad. Sci. USA. 89:8487–8491.
19. Hansen, C. A., A. G. Schroering, D. J. Carey, and J. D. Robishaw. 1994. Localization of a heterotrimeric G protein subunit to focal adhesions and associated stress fibers. J. Cell Biol. 126:811–819.
20. Hensel, P. M., and R. B. Johnston, Jr. 1987. Tissue injury in inflammation. Oxidants, proteinases, and cationic proteins. J. Clin. Invest. 79:669–674.
21. Hynes, R. O. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 69:11–25.
22. Johnson, R. W., J. G. Couper, C. T. Taso, S. A. Adler, and S. J. Kleinbnow. 1987. New mechanism for glomerular injury. Myeloperoxidase-hydrogen peroxide-halide system. J. Clin. Invest. 79:1379–1387.
23. Johnson, R. J., S. J. Guggenheim, S. J. Kleinbnow, R. F. Ochi, A. Woss, P. Baker, M. Schutez, and W. G. Couper. 1988. Morphologic correlates of glomerular oxygen injury induced by the myeloperoxidase-hydrogen peroxide-halide system of the neutrophil. Lab. Invest. 58:294–301.
24. Juliano, R. L., and S. Haskell. 1993. Signal transduction from the extracellular matrix. J. Cell Biol. 120:577–585.
25. Kao, J. P. Y., A. T. Haroutunian, and R. Y. Tien. 1989. Photochemically
generated cytosolic calcium pulses and their detection by fluo-3. J. Biol. Chem. 264:8179-8184.
26. Kass, G. E., S. K. Duddy, G. A. Moore, and S. Orrenius. 1989. 2, 5-Di(tert-butyl)-1,4-benzoquinone rapidly elevates cytosolic Ca\(^{2+}\) concentration by mobilizing the isositol 1, 4, 5-triphosphate-sensitive Ca\(^{2+}\) pool. J. Biol. Chem. 264:15192–15196.
27. Katayama, H., T. Hase, and H. Yozota. 1994. Detachment of cultured normal human keratinocytes by contact with TNFα-stimulated neutrophils in the presence of platelet-activating factor. J. Invest. Dermatol. 103:187–190.
28. Katayama, H., S. Kitagawa, J. Masuyama, and H. Yaota. 1991. Polymorphonuclear leukocyte-induced detachment of cultured epidermal carcinoma cells from the substratum. J. Invest. Dermatol. 97:949–952.
29. Kornberg, L., S. Earp, J. T. Parsons, and R. L. Juliano. 1992. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J. Biol. Chem. 267:23439–23442.
30. Kuzuya, T., H. Fuji, S. Hoshida, M. Nishida, K. Goshima, M. Hori, T. Kamada, and M. Tada. 1995. Polymorphonuclear leukocyte-induced injury in hypoxic cardiac myocytes. Free Radical Biol. & Med. 17:501–510.
31. Lipfert, L., B. Haimovich, M. D. Schaller, B. S. Cobb, J. T. Parsons, and J. S. Brugge. 1992. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125 \(^{44}\) in platelets. J. Cell Biol. 119:905–912.
32. Lundgren, E., D. Gullberg, K. Rubin, T. K. Borg, M. J. Terracio, and L. Terracio. 1988. In vivo studies on adult cardiac myocytes: attachment and biosynthesis of collagen type IV and laminin. J. Cell. Physiol. 136:43–53.
33. Macara, I. G. 1980. Vanadum: an element in search of a role. Trends Biochem. Sci. 5:92–94.
34. Maher, P. A. 1993. Activation of phosphotyrosine phosphatase activity by reduction of cell-substrate adhesion. Proc. Natl. Acad. Sci. USA. 90:11177–11181.
35. Martin, G. R., and R. Timple. 1987. Laminin and other basement membrane components. Annu. Rev. Cell Biol. 3:57–85.
36. Maruyama, K. 1964. A flow birefringence study of F-actin. J. Biochem. 55:277–286.
37. Meier, F. Z., V. E. Kagan, Y. P. Kazlov, L. M. Belkina, and Y. V. Arkhipenko. 1982. The role of lipid peroxidation in pathogenesis of ischemic damage and the antioxidant protection of the heart. Basic Res. Cardiol. 77:465–485.
38. Meissner, G., and G. S. Henderson. 1987. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca\(^{2+}\) and is modified by Mg\(^{2+}\), adenosine nucleotide, and calmodulin. J. Biol. Chem. 262:3065–3073.
39. Mommaerts, W. F. H. M. 1951. Reversible polymerization and ultrafiltration purification of actin. J. Biol. Chem. 188:559–565.
40. Mullaney, K. M., N. Read, J. A. Salmon, and S. Moncada. 1994. Role of leukocytes in acute myocardial infarction in anesthetized dogs: relationship to myocardiac salvage by antiinflamatory drugs. J. Pharmacol. Exp. Ther. 228:510–522.
41. Nakamura, T. Y., K. Goda, T. Okamoto, T. Kishi, T. Nakamura, and K. Goshima. 1993. Contractile and morphological impairment of cultured fetal mouse myocytes induced by oxygen radicals and oxidants: correlation with intracellular Ca\(^{2+}\) concentration. Circ. Res. 73:758–770.
42. Nakamura, T. Y., I. Yamamoto, Y. Kanno, Y. Shiba, and K. Goshima. 1994. Metabolic coupling of glutathione between mouse and quail cardiac myocytes and its protective role against oxidative stress. Circ. Res. 74:806–816.
43. Peters, J. H., M. H. Ginsberg, B. P. Bohl, L. A. Sklar, and C. G. Cochrane. 1986. Intravascular release of intact cellular fibronectin during oxidant-induced injury of the in vitro perfused rabbit lung. J. Clin. Invest. 78:1596–1603.
44. Rohde, W., and R. L. 1980. Adhesion plaques of Rous sarcoma virus-transformed cells contain the src gene product. Proc. Natl. Acad. Sci. USA. 77:5514–5518.
45. Romson, J. L., B. G. Hook, S. L. Kunkel, G. D. Abrams, M. A. Schork, and B. R. Lucchesi. 1983. Reduction of the extent of ischamc myocardic injury by neutrophil depletion in the dog. Circulation. 67:1016–1023.