LncACTdb 2.0: an updated database of experimentally supported ceRNA interactions curated from low- and high-throughput experiments

Peng Wang\(^1,\dagger\), Xin Li\(^1,\dagger\), Yue Gao\(^1,\dagger\), Qiuyan Guo\(^1,\dagger\), Yanxia Wang\(^1\), Ying Fang\(^1\), Xueyan Ma\(^1\), Hui Zhi\(^1\), Dianshuang Zhou\(^1\), Weitao Shen\(^1\), Weisha Liu\(^1\), Lihua Wang\(^2\), Yunpeng Zhang\(^1,\ast\), Shangwei Ning\(^1,\ast\) and Xia Li\(^1,\ast\)

\(^1\)College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China and \(^2\)Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China

Received September 15, 2018; Revised October 18, 2018; Editorial Decision October 25, 2018; Accepted November 12, 2018

ABSTRACT

We describe LncACTdb 2.0 (http://www.bio-bigdata.net/LncACTdb/), an updated and significantly expanded database which provides comprehensive information of competing endogenous RNAs (ceRNAs) in different species and diseases. We have updated LncACTdb 2.0 with more data and several new features, including (i) manually curating 2663 experimentally supported ceRNA interactions from >5000 published literatures; (ii) expanding the scope of the database up to 23 species and 213 diseases/phenotypes; (iii) curating more ceRNA types such as circular RNAs and pseudogenes; (iv) identifying and scoring candidate lncRNA-associated ceRNA interactions across 33 cancer types from TCGA data; (v) providing illustration of survival, network and cancer hallmark information for ceRNAs. Furthermore, several flexible online tools including LncACT-Get, LncACT-Function, LncACT-Survival, LncACT-Network and LncACTBrowser have been developed to perform customized analysis, functional analysis, survival analysis, network illustration and genomic visualization. LncACTdb 2.0 also provides newly designed, user-friendly web interfaces to search, browse and download all the data. The BLAST interface is convenient for users to query dataset by inputting custom sequences. The Hot points interface provides users the most studied items by others. LncACTdb 2.0 is a continually updated database and will serve as an important resource to explore ceRNAs in physiological and pathological processes.

INTRODUCTION

Recently, accumulating evidence suggests that microRNAs (miRNAs) are themselves regulated by endogenous molecules carrying miRNA binding sites, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), pseudogenes, etc. Termed ‘miRNA sponges’, these competitive inhibitors bind miRNAs and competitively sequester them from their natural targets (1). The endogenous miRNA sponges and targets, also termed competing endogenous RNAs (ceRNAs), act to dynamically regulate the expression of each other in different physiological and pathological processes (2).

In recent years, many researchers have continued to focus on the influence of miRNA sponges or ceRNA interactions which uncover a novel mechanism underlying the regulation of oncogenes and tumor suppressors in various diseases including cancers (1,2). For example, the lncRNA H19 functions as a ceRNA to sponge miRNA let-7 family leading to an increase in expression of let-7 targets in breast cancer (3), ovarian cancer (4) and pancreatic cancer (5). A non-coding RNA PTENP1, which is a pseudogene of PTEN, has been found to act as a ceRNA and regulate PTEN levels by sponging common miRNAs in gastric cancer (6) and other cancers (7). In order to facilitate the study of miRNA sponges and ceRNA interactions, we reported the first version of the LncACTdb database (LncACTdb 1.0) which identifies active lncRNA–miRNA–mRNA interactions and can serve as a tool for dissecting the ceRNA regulation in various cancers and identifying novel cancer biomarkers.
Although LncACTdb 1.0 has provided confidential resources for researchers, this database could provide more comprehensive information and be more user friendly. For example, LncACTdb 1.0 only focused on predicted ceRNA datasets. In this update, we retrieved published literatures rated from literatures and integrated into LncACTdb 2.0. Newly added entries of experimentally supported ceRNAs have been manually curated from these published articles by at least two researchers. Only datasets supported by high confidence experiments such as PCR, western blot, or luciferase reporter assay, and other reliable methods were considered and further curated. The exact description of the experimental types, curation process and criteria used in our pipeline were shown in Supplementary Methods. Currently, LncACTdb 2.0 documents a total of 2663 experimentally supported ceRNA interactions, including 312 lncRNAs, 131 coding mRNAs, 59 circRNAs and 16 pseudogenes. The scope of LncACTdb 2.0 is expanded to 23 species and 200 diseases/phenotypes.

To date, several databases have been built to curate interactions between miRNAs and other molecules, such as starBase v2 (10), DIANA-LncBase v2 (11), mirSponge (12) and PceRBase (13). These databases have provided valuable resources for ceRNA studies. However, most of these databases predict interactions through a single target prediction method. The species in these databases are only restricted to human, mouse and plants. To our knowledge, only the mirSponge database stores experimentally supported datasets, with a limit number of 463 ceRNA associations in 11 species. Until now, no other specialized database has been devoted to collect, store and analyze experimentally supported ceRNA interactions, as well as comprehensive annotations.

To meet these needs, we have updated LncACTdb to version 2.0 (LncACTdb 2.0) with more data and several new features (Table 1). In comparison with LncACTdb 1.0, a number of 2663 experimentally supported ceRNA interactions across 23 species and >200 diseases/phenotypes have been manually curated and added to the database. Furthermore, the number of lncRNA-associated ceRNA interactions has been increased to 47 673. Expression profiles with clinical information of more than ten thousand cancer patients from TCGA have been integrated into LncACTdb 2.0. LncACTdb 2.0 also provides illustration of survival, network and cancer hallmark information for ceRNAs. In addition to the expansion of the core data sets, LncACTdb 2.0 provides newly designed, user-friendly web interfaces to query, analyse and download all the data. In particular, several flexible online tools have been developed to facilitate data extraction, analysis and visualization. Collectively, we expect this updated database could facilitate the identification of disease associated ceRNAs and benefit the investigation of their roles in physiological and pathological processes. All the information in LncACTdb 2.0 is freely available at http://www.bio-bigdata.net/LncACTdb.

Expanded entries of lncRNA-associated ceRNAs in cancers

In recent years, lncRNAs have been widely reported to be involved in ceRNA regulations in order to communicate with other RNA transcripts in a wide range of diseases (15–17). To provide a comprehensive resource of lncRNA-associated ceRNA regulations across different cancers, we used an integrative pipeline (8) to identify candidate lncRNA-associating ceRNAs from TCGA (Figure 1, Supplementary Methods). The miRNA–lncRNA interactions were predicted using several miRNA target prediction methods with strict thresholds. Further, 41 AGO-CLIP-seq datasets downloaded from starBase v2 (10) were integrated into the pipeline to identify experimentally supported miRNA-binding sites on lncRNA sequences. Genomic coordinates of CLIP-seq peaks and predicted miRNA-binding sites were compared by BEDTools (18) using length of overlap >1 as threshold. The miRNA-mRNA regulations which were validated by strong experimental methods such as luciferase reporter assay, PCR and Western blot were derived from TarBase (v8) (19) and mirTarBase (v2018) (20). If a lncRNA and mRNA interacting with the same miRNA, this lncRNA-miRNA-mRNA competing triplet was termed as a candidate ceRNA interaction. A functional ceRNA was defined for a certain cancer type if it met all of the following criteria: $corr(lncRNA, miRNA) < 0$, $corr(mRNA, miRNA) < 0$ and $corr(lncRNA, mRNA) > 0$, where $corr(a, b)$ representing the Pearson correlation coefficient of gene a and b based on their expression values, respectively. In LncACTdb 2.0, the cancer types have been expanded from 12 to 33. Ultimately, 47 673 functional ceRNAs with competing activity score across cancers were identified in LncACTdb 2.0. To facilitate the study of ceRNAs, LncACTdb 2.0 provides detail informa-
Table 1. Content and statistics of LncACTdb 2.0

Datasets and features	LncACTdb 1.0	LncACTdb 2.0	Fold increase
Experimentally supported dataset			
CeRNA interactions	No	2663	New
LncRNAs	No	312	New
MiRNAs	No	479	New
CncRNAs	No	59	New
MRNAs	No	131	New
Pseudogenes	No	16	New
Viral RNAs	No	9	New
Artificially engineered RNAs	No	105	New
Species	No	23	New
Diseases/Phenotypes	No	213	New
Predicted dataset			
CeRNA interactions	5139	47673	9.31
MiRNA–lncRNA interactions	1890	5181	1.68
MiRNA–mRNA interactions	1229	7006	5.70
LncRNAs	335	1191	3.56
MiRNAs	212	502	2.37
MRNAs	1312	2792	2.13
Cancer types	12	33	2.75
Annotations and analyzing tools			
Pan-cancer information	No	Yes	New
MiRNA binding information	No	Yes	New
Experimental methods	No	Yes	New
Network illustration	No	Yes	New
Functional annotations	Yes	Yes	New
Cancer Hallmarks	No	Yes	New
Survival analysis	No	Yes	New
BLAST tool	No	Yes	New
Online data-mining	Yes	Yes	New
Genome browser	Yes	Yes	New

tion of miRNA binding sites for miRNA–lncRNA interactions and experimentally validated methods for miRNA–mRNA interactions.

Expanded contexts of networks, functions, hallmarks and prognosis

For each lncRNA-associated ceRNA entry, LncACTdb 2.0 constructs a network consisting of this ceRNA and its associated competing neighbors and further provides a graphic illustration. A ‘guilt-by-association’ strategy has been used in LncACTdb 2.0 to perform functional annotation of ceRNAs (Supplementary Methods). Currently, more functional contexts have been added to LncACTdb 2.0 for providing a comprehensive annotation background. For pathway annotation, a total number of 1329 pathways including KEGG (21), BioCarta (https://cgap.nci.nih.gov/Pathways), Reactome (22), PID (23), STKE (http://stke.sciencemag.org/) and SIG (http://www.signaling-gateway.org/) were downloaded from MSigDB (24). For pathways in each database, we collected Entrez IDs as functional gene lists. For Gene Ontology annotation (25), a total number of 5917 gene sets representing functional terms were collected. The Entrez IDs in each GO terms were used as functional gene lists. Gene sets of cancer hallmark processes, which have been determined to promote tumor growth and metastasis (24,26), have been downloaded from MSigDB. For survival analysis, clinical follow-up information of 10 141 patients from TCGA were collected. A risk score model was constructed according to the linear combination of ceRNAs expression values weighted by the Cox regression coefficient (8). Further, the median or mean risk score was used as a cut-off to divide patients into two groups with different survival risk. The Kaplan–Meier survival analysis was performed for the two groups of patients, and statistical significance was assessed using log-rank test ($P < 0.05$).

Newly developed tools for data discovery and analysis

With the fast growing number of expression profiles resulting from high-throughput technologies, there are urgent need to analyse these large amount datasets for dissecting disease pathology and discovering cancer biomarkers. In LncACTdb 2.0, we have updated the LncACT-Get tool for users to identify novel ceRNA interactions according to customized input. Users can upload the expression profiles of a certain disease or phenotype, and LncACT-Get will implement an integrated pipeline to identify functional ceRNA interactions with corresponding activity scores and P values. To study the downstream biological processes affected by lncRNAs, the LncACT-Function tool performs functional analysis of user inputted lncRNAs based on ‘guilt-by-association’ strategy. LncACT-Function tool collected thousands of pathways and biological terms as functional background. To discover novel prognostic ceRNA biomarkers, we developed the LncACT-Survival tool, which performs online survival analysis for a certain ceRNA interaction across 33 cancer types of TCGA. In addition, LncACT-Survival tool also provides survival analysis for a single lncRNA, miRNA or mRNA. To facilitate visualization of ceRNA networks, the LncACT-Network tool has been newly developed. For a customized lncRNA or mRNA, LncACT-Network tool will provide a global view of all possible ceRNA interactions and more detail information on cross-talk between different ceRNAs.
Figure 1. Content and interface of LncACTdb 2.0. The left panel is the database content which including ceRNA information identified from low- and high-throughput experiments. The right panel is the user interface of LncACTdb 2.0. In this panel, the Search, Browse, Blast, and LncACTBrowser models provide flexible ways to access the dataset. The online tools including LncACT-Function, LncACT-Survival, LncACT-Network, and LncACT-Get have been developed to perform customized analysis and data visualization.

More flexible ways to access the dataset

The LncACTdb 1.0 database has provided user-friendly interfaces for database queries, such as Search and Browse pages. Because of the fast growing number of data entries and newly identified RNA sequences, LncACTdb 2.0 provides more flexible ways for data discovery and access: (i) A quick search engine has been developed which allows users to search both the experimentally supported and predicted dataset. The inputted key words can be any of lncRNAs, miRNAs, mRNAs, circRNAs, pseudogenes, diseases, cell lines, primary sites and etc. The search engine supports fuzzy searching, which will list all potential results matching the key words. (ii) A new data access tool named BLAST has been developed to implement a customized sequencing search. Users can input new RNA sequences in order to identify related ceRNAs. (iii) The Hot points interface reviews the visited records of LncACTdb 2.0 and provides users the most studied items by other researchers. (iv) LncACTBrowser is a web-based genome browser that dynamically displays different tracks for ceRNAs. It provides comprehensive tracks including reference sequence, transcripts, miRNA-binding sites (predicted by miRanda, TargetScan, PITA, and RNAhybrid method) and CLIP-seq peaks (41 datasets). (v) The customized results can be flexibly downloaded on touch of the ‘Copy’, ‘Excel’ and ‘CSV’ buttons through all querying steps. In addition, all associated datasets can be freely downloaded in Download page.
Figure 2. Case study and workflow of using LncACTdb 2.0. (A) The interface of the search module with an example of MALAT1. (B) The search results of MALAT1, including both predicted and experimentally supported dataset. (C) Search result page with detail information. (D) The browse interface of LncACTdb 2.0. (E) Functional analysis of MALAT1 based on context of GO terms, pathways and cancer hallmarks. (F) Survival analysis and Kaplan–Meier survival curves for MALAT1-associating ceRNAs. (G) A global view of all possible related ceRNA interactions for MALAT1. (H) The LncACT-Get tool implements an integrated pipeline to identify functional ceRNA interactions according to customized data. (I) The Hotpoints page provides a human body map and the most studied items by other researchers. (J) The BLAST interface implements a customized sequencing search to identify related ceRNAs. (K) The LncACTBrowser which provides comprehensive genomic information of MALAT1, including reference sequence, transcripts, miRNA-binding sites and CLIP-seq peaks.
DATABASE CONSTRUCTION AND IMPROVED USER INTERFACE

All data in LncACTdb 2.0 were documented and managed in MySQL database (v 5.5). The web server was updated by using Java Server Pages within Tomcat container (v6). The LncACTdb 2.0 database is freely available at http://www.bio-bigdata.net/LncACTdb/. In addition, for the convenience of users who have used LncACTdb 1.0, the old version is still in service. Users can enter it by clicking on the gateway in LncACTdb 2.0 homepage or go directly to http://www.bio-bigdata.net/LncACTdb1.0.

LncACTdb 2.0 provides a user-friendly web interface that enables users to search, browse, analyse and download data in a few easy steps (Figure 2). As an example of lncRNA MALAT1 inputted in the search interface (Figure 2A), all possible ceRNA interactions will be displayed in the results page (Figure 2B). To filter out interesting ceRNA interactions, users can reorder the result table by clicking on the header of different columns. The first column will lead users to the detail information page for each ceRNA interaction. LncACTdb 2.0 provides panels of comprehensive information including basic information, pan-cancer information, predicted and experimental information for the MALAT1-associated ceRNA interaction (Figure 2C). To further analyse the dataset, several online tools have been developed and can be easily accessed on the navigation bar of every page (Figure 2E–H). The LncACT-Function tool performs functional analysis of MALAT1 based on GO terms, pathways and cancer hallmarks (Figure 2E). The LncACT-Survival tool performs survival analysis and provides Kaplan–Meier survival curves for each competing partner and the whole ceRNA interaction (Figure 2F). The LncACT-Network tool provides a global view of all possible related ceRNA interactions (Figure 2G). Users can reset the scale of the network by adjusting different steps of neighbors. According to customized expression profiles, the LncACT-Get tool implements an integrated pipeline to identify functional ceRNA interactions with corresponding activity scores and P values (Figure 2H). In addition, LncACTdb 2.0 provides more flexible ways to access the dataset. A Browse page was designed for general perusal of the database based on different classifications (Figure 2D). The Hot points page provides a human body map illustration and the most studied items by other researchers (Figure 2I). The BLAST page implements a customized sequence search. Users can input new RNA sequences in order to identify related ceRNAs (Figure 2J). The LncACT-Browser is a web-based genome browser which provides comprehensive tracks including reference sequence, transcripts, miRNA-binding sites and CLIP-seq peaks information (Figure 2K).

CONCLUSIONS AND FUTURE DEVELOPMENT

In the first version of LncACTdb database (LncACTdb 1.0), only a limited number of predicted ceRNA interactions have been identified in human. With the development of high-throughput sequencing technology and experimental validation method, the number of ceRNAs were significantly increased in recent years, especially from 2017 to 2018 (Supplementary Figure S1). The fast growing number of related literatures indicates the urgent need to collect corresponding dataset and update the first version of LncACTdb database. Currently, the datasets and functions of LncACTdb 2.0 have been significantly improved. The scope of LncACTdb 2.0 is expanded to 23 species and 213 associating diseases/phenotypes. To provide a comprehensive source of ceRNA regulations with disease information, we developed an integrative pipeline to identify candidate lncRNA-associating ceRNA regulations (Figure 1). A total number of 47 673 predicted ceRNA interactions across 33 types of cancers of TCGA have been provided by LncACTdb 2.0. Based on clinical follow-up information of 10 141 TCGA cancer patients, the prognostic information including Cox regression coefficients and Kaplan-Meier survival curves have also been provided. To improve the functions of data access and analysis, more function contexts such as biological pathways and cancer hallmarks have been integrated into LncACTdb 2.0. We expect that the number of ceRNA datasets identified from high-confidence experiments or high-throughput analysis will continue to increase rapidly in the future releases of LncACTdb database. We will continually maintain and update the LncACTdb database with more data sets and functional interfaces, which will improve our understanding of the coding and non-coding RNAs in complex diseases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

National Natural Science Foundation of China [31601080, 61473106, 61603116, 31501038]; National Program on Key Basic Research Project [973 Program, 2014CB910504]; Harbin Special Funds for Innovative Talents of Science and Technology Research Project [2016RAQXJ191, 2017RAQXJ164, 2017RAQXJ304]; Postdoctoral Science Foundation of China [2018T110314, 2016M600258]; Yu Weihan Outstanding Youth Training Fund of Harbin Medical University, and the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province [UNPYSCT-2017071]. Funding for open access charge: National Natural Science Foundation of China [31601080, 61473106, 61603116, 31501038]; National Program on Key Basic Research Project [973 Program, 2014CB910504].

Conflict of interest statement. None declared.

REFERENCES

1. Salmena, L., Poliseno, L., Tay, Y., Kats, L. and Pandolfi, P.P. (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146, 353–358.
2. Tay, Y., Rinn, J. and Pandolfi, P.P. (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature, 505, 344–352.
3. Peng, F., Li, T.T., Wang, K.L., Xiao, G.Q., Wang, J.H., Zhao, H.D., Kang, Z.J., Fan, W.J., Zhu, L.L., Li, M. et al. (2017) H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell Death Dis., 8, e2569.
4. Men, Y., Fan, Y., Shen, Y., Lu, L. and Kallen, A.N. (2017) The steroidogenic acute regulatory protein (StAR) is regulated by the H19/let-7 axis. Endocrinology, 158, 402–409.
Ma, C., Nong, K., Zhu, H., Wang, W., Huang, X., Yuan, Z. and Ai, K. (2014) H19 promotes pancreatic cancer metastasis by derepressing let-7's suppression on its target HMGA2-mediated EMT. *Tumour Biol.*, 35, 9163–9169.

Zhang, R., Guo, Y., Ma, Z., Ma, G., Xue, Q., Li, F. and Liu, L. (2017) Long non-coding RNA PTENP1 functions as a ceRNA to modulate PTEN level by decoying miR-106b and miR-93 in gastric cancer. *Oncotarget*, 8, 26079–26089.

Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. and Pandolfi, P. (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. *Nature*, 465, 1033–1038.

Wang, P., Ning, S., Zhang, Y., Li, R., Ye, J., Zhao, Z., Zhi, H., Wang, T., Guo, Z. and Li, X. (2015) Identification of lncRNA-associated competing triplets reveals global patterns and prognostic markers for cancer. *Nucleic Acids Res.*, 43, 3478–3489.

Xu, J., Li, Y., Lu, J., Ding, N., Wang, Z., Shao, T., Zhang, J., Wang, L. and Li, X. (2015) The mRNA related ceRNA-ceRNA landscape and significance across 20 major cancer types. *Nucleic Acids Res.*, 43, 8169–8182.

Li, J.H., Liu, S., Zhou, H., Qu, L.H. and Yang, J.H. (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. *Nucleic Acids Res.*, 42, D92–D97.

Paraskevopoulou, M.D., Vlachos, I.S., Karagkouni, D., Georgakilas, G., Kanellos, I., Vergoulis, T., Zagganas, K., Tsanakas, P., Floros, E., Dalamagas, T. et al. (2016) DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. *Nucleic Acids Res.*, 44, D231–D238.

Wang, P., Zhi, H., Zhang, Y., Liu, Y., Zhang, J., Gao, Y., Guo, M., Ning, S. and Li, X. (2015) miR Sponge: a manually curated database of experimentally supported lncRNAs associated with various human cancers. *Nucleic Acids Res.*, 44, D980–D985.

Kanehisa, M., Araya, A., Sato, Y., Furumichi, M., Tanabe, M., Morishima, K., et al. (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Res.*, 45, D353–D361.

Schaefer, C.F., Anthony, K., Krupa, S., Buchow, J., Day, M., Hannay, T. and Buettow, K.H. (2009) PID: The pathway interaction database. *Nucleic Acids Res.*, 37, D674–D679.

Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J.P. and Tamayo, P. (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. *Cell Syst.*, 1, 417–425.

The Gene Ontology, C. (2017) Expansion of the Gene Ontology knowledgebase and resources. *Nucleic Acids Res.*, 45, D331–D338.

Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: the next generation. *Cell*, 144, 646–674.