Electronic Supplementary Information:

DFT/TD-DFT Study of Electronic and Phosphorescent Properties in Cycloplatinated Complexes: Implications for OLEDs

Batool Moradpour and Reza Omidyan
Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran.

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022
Theoretical Background

According to the Marcus–Hush model, the rate of intermolecular charge transfer (K_{ET}) can be estimated by using the semi-classical Marcus theory as follows:

$$K_{ET} = \frac{4\pi}{h} \frac{1}{\sqrt{4\pi \lambda k_B T}} \beta^2 \exp\left(-\frac{\lambda}{4k_B T}\right)$$ \hspace{1cm} (1)

where β is the transfer integral between the neighboring molecules, T is the temperature, h and k_B are the Planck and Boltzmann constants respectively and λ is the reorganization which plays a key role in the charge transfer rate for OLEDs 1. λ Contains the internal reorganization (λ_{in}) and the outer reorganization energy (λ_{out}), namely, $\lambda = (\lambda_{in}) + (\lambda_{out})$. The carrier transferring process takes place in crystals or in amorphous films, which contributes to a smaller and even negligible λ_{out}. Getting a better insight into λ and the transport mechanism of holes and electrons, the energy barrier for hole injection and electron injection is estimated using the ionization potentials (IPs) and the electronic affinities (EAs), respectively. The IPs and EAs are both obtained from vertical (ver, at the geometry of the neutral molecule) and adiabatic (ad, optimized structures for both the neutral and charged molecules). Also, based on the literature, the hole extraction potentials and the electron extraction potentials have been abbreviated as HEP and EEP, respectively 2.

Furthermore, efficient charge transfer depends mostly upon to the reorganization energy, λ value, determined based on the following equations:

$$\lambda_h = [E^+(M) - E^+(M^+)] + [E(M^+) - E(M)]$$
$$= [E^+(M) - E(M)] - [E^+(M^+) - E(M^+)] = IP(\text{ver}) - HEP$$ \hspace{1cm} (2)

$$\lambda_e = [E^-(M) - E^-(M^-)] + [E(M^-) - E(M)]$$
$$= [E(M^-) - E^-(M^-)] - [E(M) - E^-(M)] = EEP - EA(\text{ver})$$ \hspace{1cm} (3)

Where $E(M)$ and $E^\pm (M^\pm)$ represent the energies of the neutral and cation/anion species in their lowest energy geometry respectively, while $E(M^\pm)$ and $E^\pm (M)$ represent the energies of the cation (or onion) and neutral geometries respectively 1,2. λ_h and λ_e represent the relevant hole-
and electron reorganization energy. The lower difference value between these two parameters, the better charge balance between holes and electrons.

Phosphorescence quantum yield Φ_p

In general, phosphorescence quantum efficiency Φ_p is governed by three processes: 1) singlet-triplet intersystem crossing (ISC), 2) radiative decay from a triplet state to the singlet ground state, and 3) non-radiative decay from an excited state to the ground state. To obtain strong emitters, processes 1) and 2) must be fast, and process 3) slow. The ISC quantum yield is assumed to be unity.

Phosphorescence quantum yield Φ_p is directly related to the radiative rate constant (K$_r$) and emission decay time (τ_{em}) and is expressed as

$$\Phi_p = K_r \tau_{em} = K_r + K_{nr}$$ \hspace{1cm} (1)

Where $\tau_{em} = \frac{1}{K_r + K_{nr}}$, and K_{nr} represents the non-radiative decay rate including temperature-independent and -dependent3,4.

The radiative decay rate constant (K$_r$)

Within the Born–Oppenheimer approximation, the radiative decay rate constant K$_r$ from the m^{th} triplet excited state T_m (usually $m=1$ according to the Kasha rule) to the singlet ground state (S_0) can be expressed as Equation (2)5,

$$K_r(T_m \rightarrow S_0) = \frac{16 \times 10^6 \pi^3 E(T_m)^3 \eta^2}{3h\epsilon_0} \left\{ \sum_n \langle T_m | H_{SOC} | S_n \rangle \langle S_n | M | S_0 \rangle \right\}^2$$ \hspace{1cm} (2)

where $E(T_m)$ is the energy of the $T_m \rightarrow S_0$ transition, $\langle T_m | H_{SOC} | S_n \rangle$ are the SOC matrix elements, $\langle S_n | M | S_0 \rangle$ the transition dipole moment between the nth singlet excited state (S_n) and the singlet ground state (S_0), and η the refractive index of the medium. The term M is related to the oscillator strength f_n and the transition energy $E(S_n)$ of the ($S_n \rightarrow S_0$) transition via Equation (3)4,5.

\begin{align*}
\langle S_n | M | S_0 \rangle^2 &= \frac{3he^2}{8\pi m_e c E(S_n)} f_n
\end{align*}

Combining Equations (2) and (3) gives Equation (4),

\begin{equation}
K_r(T_m \rightarrow S_0) = \frac{\eta^2}{1.5} E(T_m)^3 \left(\sum_n \left(\frac{T_m | H_{SOC} | S_n}{E(S_n) - E(T_m)} \right) \frac{f_n}{E(S_n)} \right)^{1/2}
\end{equation}

The simple generalization of SOC operator for fine structure of the valence np-shell of the many electron atoms can be summarized as follows:

\begin{equation}
H_{SO} = \zeta \sum_l \vec{l}_i \vec{s}_i = \lambda \vec{L} \cdot \vec{S}
\end{equation}

where \(\vec{l}_i, \vec{s}_i \) are the single electron and the spin angular momentum operators, respectively (in \(\hbar \) units). Theoretical calculations provide \(\zeta 5d = 4860 \text{ cm}^{-1} \) for platinum metal. Then the one-center SOC element is evaluated by the coefficient of the natural atomic orbital of Pt 5d in the HOMO and HOMO-1 obtained from the natural bonding orbital (NBO) analysis.

The non-radiative decay rate constant (\(K_m \))

Based on the energy-gap law, the temperature-independent non-radiative decay rate constant from the \(T^m \) state to \(S^0 \) state can be simply expressed as below:

\begin{equation}
K_m(T_m \rightarrow S_0) \propto \exp \left\{ -\beta \left[E(T_m) - E(S_0) \right] \right\}
\end{equation}

According to the kasha rule, \(m = 1 \) and \(\beta \) is a parameter related to the structural distortion between \(T_1 \) and \(S_0 \) states, and \([E(T_m) - E(S_0)] \) is the energy gap between two corresponding states. It can be seen from Eqn (6) that the non-radiative decay rate is suppressed with small structural distortion and a large energy gap between the \(T^1 \) and \(S^0 \) states.

Triplet exciton generation fractions (\(\chi_T \))

The triplet exciton generation fractions (\(\chi_T \)) is calculated by the following formula:

\begin{equation}
\chi_T = 3 \sigma_T \left(\sigma_S + 3 \sigma_T \right) = 3 / (\sigma_S/\sigma_T + 3)
\end{equation}

where \(\sigma_S \) and \(\sigma_T \) represent the formation cross-sections of singlet and triplet excitons, respectively.
\[R_{S/T} = \frac{\sigma_S}{\sigma_T} = \frac{(E_g - E_{S_\text{m} - T_m})}{(E_g - E_{S_0 - S_n})} \] (8)

where \(E_g \) is the energy gap between HOMO and LUMO, while \(E_{S_n - T_m} \) and \(E_{S_0 - S_n} \) are the excitation energies from the ground state \((S_0) \) to the \(m^{\text{th}} \) excited triplet state and \(n^{\text{th}} \) excited singlet state, respectively \(^1,^7\).
Table S1. The xyz coordinates of the optimized structure of complex 1 considered in this work in two states of S_0 and T_1 at the DFT and TD-DFT/B3LYP level of theory.

S_0	T_1					
Pt	-0.60699	0.59675	1.93397	1.90518	15.07114	15.06936
S	2.35335	2.60417	16.68072	16.70250		
N	-0.54976	-0.12943	15.73069	15.72858		
C	0.80348	1.20476	13.82792	13.82034		
C	1.51358	1.89505	12.82809	12.83291		
H	1.31643	2.95506	12.66589	12.67777		
C	2.46975	1.25363	12.03426	12.00909		
H	3.00261	1.82145	11.26609	11.24803		
C	2.74927	-0.0621	12.21489	12.18932		
H	3.49589	-0.60764	11.59494	11.56860		
C	2.06413	-0.18119	13.19628	13.16780		
H	2.28614	-1.87925	13.33279	13.29883		
C	1.10003	-0.17894	13.99870	14.00210		
C	0.35217	-0.89128	15.04445	15.03472		
C	0.50667	-2.25230	15.36289	15.36406		
H	1.22827	-2.85652	14.81399	14.81870		
C	-0.25674	-2.82636	16.37356	16.38728		
H	-0.13644	-3.88380	16.62031	16.63445		
C	-1.17594	-2.03175	17.06498	17.07652		
H	-1.79815	-2.43470	17.86526	17.87738		
C	-1.28439	-0.69165	16.70685	16.72043		
H	-1.98669	-0.02930	17.21645	17.23276		
C	-3.72027	3.39011	15.75261	15.75386		
H	-4.17432	2.60318	15.13463	15.14331		
C	-4.46244	3.77970	16.46711	16.45739		
H	-3.32675	4.18706	15.10652	15.10023		
C	-0.51568	3.81729	14.32432	14.31885		
C	-1.32428	4.23699	13.24504	13.24416		
C	0.36501	4.78941	14.84977	14.84723		
C	-1.26822	5.54151	12.73721	12.74221		
H	-2.00620	3.52357	12.77212	12.76982		
C	0.42123	6.09310	14.34178	14.34373		
H	1.04024	4.51965	15.66747	15.66103		
C	-0.39822	6.49937	13.27780	13.28413		
H	-1.91078	5.81578	11.89343	11.90704		
H	1.12741	6.80797	14.77839	14.78034		
C	-0.35513	7.91449	12.74869	12.75950		
H	-1.01288	8.58641	13.33036	13.34530		
H	0.66194	8.33617	13.80081	13.81237		
H	-0.68763	7.96390	11.69953	11.71130		
C	-1.74687	4.04573	17.63026	17.63101		
H	-0.91014	3.68680	18.24642	18.25242		
H	-1.39412	4.82704	16.94296	16.93660		
H	-2.55487	4.41619	18.27803	18.27500		
Table S2. The xyz coordinates of the optimized structure of complex 2 considered in this work in two states of S₀ and T₁ at the DFT and TD-DFT/B3LYP level of theory.

	S₀	T₀
	Pt 2.97548	3.71346
	C 0.38150	5.46825
	H 0.31822	4.84845
	C 0.58804	3.23019
	C 0.64405	7.03890
	C 0.77588	7.64859
	C -0.44207	7.28501
	H -1.15540	8.08307
	C -0.56115	6.49257
	H -1.36570	6.64377
	H 3.57246	0.41505
	C 2.08949	-0.03070
	H 2.61761	0.40646
	C 1.16166	-0.97128
	H 0.60727	-1.42527
	H 0.24559	2.25504
	C -0.56970	2.17079
	H -0.11603	2.18876
	C -1.95804	2.07989
	C -2.55096	2.08592
	H -3.68577	2.02341
	C -1.74868	2.18243
	C -2.0523	2.19656
	C -0.35741	2.26429
	H 0.25537	2.34337
	C 2.77352	2.71303
	C 2.98352	1.74887
	C 2.73325	0.07090
	C 3.51705	2.11795
	H 3.67888	1.35683
	C 3.84237	3.45323
	C 4.25944	3.73936
	C 3.63926	4.41926

...
s_0	t_1
H 3.89883 5.46352 -2.08971	H 3.89883 5.46352 -2.08971
C 3.11540 4.05151 -0.65838	C 3.11540 4.05151 -0.65838
H 2.97818 4.80556 0.12055	H 2.97818 4.80556 0.12055

Table S3. The xyz coordinates of the optimized structure of complex 3 considered in this work in two states of s_0 and t_1 at the DFT and TD-DFT/B3LYP level of theory.
The xyz coordinates of the optimized structure of complex 4 considered in this work in two states of S_0 and T_1 at the DFT and TD-DFT/B3LYP level of theory.

S_0	T_1		
Pt	0.75740 11.93569 2.57741	Pt	0.53534 11.81868 2.73966
S	2.14786 10.09184 2.24789	S	1.80207 9.85136 2.44111
C	1.11413 8.65373 2.72933	C	0.79197 8.72974 1.40200
H	0.17249 8.65998 2.16412	H	0.39225 9.25498 0.52655
O	0.90834 8.75128 3.80336	O	-0.03628 8.38399 2.03542
C	1.68509 7.73399 2.53492	C	1.42187 7.87697 1.11142
H	2.31855 9.75679 0.45675	H	3.17312 10.26195 1.28983
O	2.92538 8.84888 0.34107	O	3.66607 9.32172 1.00261
Pt	2.81808 10.63078 0.02293	Pt	3.87065 10.88688 1.86264
S	1.32527 9.63889 -0.00055	S	2.78561 10.82203 0.42766
C	-0.01113 11.88702 0.58283	C	-0.31443 11.65517 0.81083
O	0.64931 12.36885 -0.41775	O	0.25224 11.88554 -0.32661
C	1.80674 12.75509 -0.49702	C	1.41884 12.14524 -0.58208
C	-0.23546 12.38600 -1.69309	C	-0.77310 11.74056 -1.48186
F	-0.54920 11.12640 -2.07396	F	-1.11805 10.43419 -1.62510
F	-1.40568 13.04271 -1.47512	F	-1.90860 12.43201 -1.23814
F	0.37168 12.98610 -2.72664	F	-0.28227 12.16115 -2.65405
C	1.26206 12.17296 4.50249	C	1.16984 12.18182 4.58330
C	2.19647 11.45724 5.20704	C	2.08389 11.41695 5.34554
H	2.76920 10.64352 4.81851	H	2.51819 10.51363 4.91135
C	2.43568 11.77043 6.61361	C	2.47909 11.77573 6.69320
H	3.16909 11.19081 7.18099	H	3.19067 11.15056 7.23366
C	1.75003 12.82160 7.23279	C	1.94851 12.91463 7.24440
H	1.93943 13.06656 8.28006	H	2.22566 13.22477 8.25491
O	0.82512 13.56006 6.49656	O	1.01803 13.71784 6.51011
C	-1.16459 15.07009 4.71561	C	-0.99069 15.28505 4.70610
C	-2.03653 15.66758 8.30008	C	-1.88042 15.85654 3.82190
H	-2.65362 16.51363 4.12094	H	-2.40434 16.77722 4.08702
C	-2.11608 15.17193 2.50517	C	-2.11148 15.23605 2.56247
H	-2.78927 15.60522 1.76473	H	-2.81197 15.65041 1.83804
C	-1.30888 14.09595 2.15199	C	-1.41963 14.07357 2.25901
Table S5. The xyz coordinates of the optimized structure of complex 5 considered in this work in two states of S_0 and T_1 at the DFT and TD-DFT/B3LYP level of theory.

	S_0	T_1
Pt	-0.75902	-0.77934
S	-2.48160	-2.73633
N	-0.52906	-0.44162
C	0.65855	0.48876
C	1.28329	0.90994
H	1.00662	0.41485
C	2.25721	1.96016
H	2.72016	2.28116
H	2.64352	2.61285
H	3.40422	3.44995
C	2.04547	2.19927
C	2.34975	2.72704
C	1.06366	1.10282
C	0.40523	0.51899
C	0.67224	0.78430
H	1.41976	1.52044
C	-0.01330	0.10249
H	0.19410	0.31075
C	-0.96771	-0.89228
H	-1.53278	-1.45841
C	-1.18763	-1.12304
C	-1.92198	-1.87493
C	-3.92796	-3.85575
H	-4.34226	-4.25720
H	-4.67609	-4.67715
H	-3.61684	-3.30614
C	-1.93963	-2.17772
H	-1.06253	-1.45957
H	-1.65708	-1.68446
H	-2.74651	-3.04158
C	-0.80147	-0.53576
H	-1.09147	-1.24141
H	-1.50456	-0.76677
Table S6. Frontier molecular orbital compositions (%) in the ground state for complexes 2-5.

Complex	Pt	ppy	Me	P(Ph)₂(C₃H₅)
2				
HOMO-5	71	8	10	11
HOMO-4	13	28	57	
HOMO-3	13	86	-	
HOMO-2	74	19	1	
HOMO-1	81	13	1	
HOMO	42	55	2	
LUMO	7	90	1	
LUMO+1	2	24		
LUMO+2	2	55		
LUMO+3	2	8		
LUMO+4	2	16		
LUMO+5	1	2		

Complex	Pt	ppy	Spy	PPh₃
3				
HOMO-5	33	47	1	
HOMO-4	30	32	36	
HOMO-3	6	25	68	
HOMO-2	70	12	15	
HOMO-1	33	65	1	
HOMO	8	4	87	
LUMO	7	91	1	
LUMO+1	1	78		
LUMO+2	1	20		
LUMO+3	3	16		
LUMO+4	1	8		
LUMO+5	3	9		
LUMO+6	1	1		

Complex	Pt	ppy	S(Me)₂	CO₂CF₃
4				
HOMO-5	56	15	5	24
HOMO-4	24	5	6	30
HOMO-3	42	22	3	4
HOMO-2	18	75	5	3
HOMO-1	73	5	15	4
HOMO	37	59	5	4
LUMO	6	92	2	2
LUMO+1	1	99	-	-
LUMO+2	50	27	18	5
LUMO+3	16	74	9	1
LUMO+4	6	36	54	4
LUMO+5	4	22	17	57

Complex	Pt	ppy	S(Me)₂	Me
5				
HOMO-5	17	30	38	15
HOMO-4	76	7	9	8
HOMO-3	9	91	-	-
HOMO-2	77	16	-	-
HOMO-1	90	5	-	-
HOMO	39	59	2	-
LUMO	7	91	1	-
LUMO+1	1	99	-	-
LUMO+2	21	44	35	-
LUMO+3	5	55	40	-
LUMO+4	2	97	1	-
LUMO+5	37	32	20	11
Table S7. The vertical absorption properties of complex 2-5.

Complex/State	Major contribution	f	E(eV)	λ_{cal}(nm)	assignment
2 S$_1$	H-1 \rightarrow L (55.3%)	0.0052	3.233	383.49	1MLCT/ILCT
	H \rightarrow L (43.5%)				
S$_2$	H \rightarrow L (50.7%)	0.0126	3.277	378.40	1MLCT/ILCT
	H-1 \rightarrow L (43.0%)				
S$_3$	H-2 \rightarrow L (86.1%)	0.0690	3.659	338.84	1MLCT/ILCT/LLCT
	H \rightarrow L+2 (3.5%)				
	H \rightarrow L (2.7%)				
S$_4$	H-1 \rightarrow L+1 (57.1%)	0.0012	3.282	323.92	1MLCT/LLCT
	H \rightarrow L+1 (28.8%)				
	H \rightarrow L+2 (5.1%)				
S$_5$	H \rightarrow L+1 (27.2%)	0.0265	3.874	320.02	1MLCT/LLCT
	H-1 \rightarrow L+1 (22.1%)				
	H-1 \rightarrow L+2 (19.3%)				
	H-3 \rightarrow L (9.9%)				
	H-2 \rightarrow L (3.0%)				
S$_6$	H-1 \rightarrow L+2 (53.9%)	0.0165	3.887	318.97	1MLCT/ILCT
	H \rightarrow L+2 (28.8%)				
	H-1 \rightarrow L+1 (7.7%)				
S$_7$	H \rightarrow L+2 (32.9%)	0.0003	3.941	314.57	1MLCT/ILCT/LLCT
	H \rightarrow L+1 (31.6%)				
	H-1 \rightarrow L+2 (17.2%)				
	H-1 \rightarrow L+1 (7.1%)				
	H-3 \rightarrow L (3.6%)				
S$_8$	H-1 \rightarrow L+3 (72.1%)	0.0030	4.017	308.68	1MLCT/LLCT
	H \rightarrow L+3 (22.3%)				
S$_9$	H \rightarrow L+3 (50.9%)	0.0053	4.086	303.47	1MLCT/LLCT
	H-1 \rightarrow L+3 (21.0%)				
	H-3 \rightarrow L (8.0%)				
	H \rightarrow L+2 (5.7%)				
	H \rightarrow L+1 (4.4%)				
	H-1 \rightarrow L+2 (1.6%)				
S$_{10}$	H-5 \rightarrow L (76.6%)	0.0043	4.096	302.68	1MLCT/LLCT
	H-4 \rightarrow L (11.8%)				
	H-3 \rightarrow L+2 (2.9%)				
Complex/State	Major contribution (%)	f	E(eV)	λ_{cal}(nm)	assignment
--------------	------------------------	-----	-------	---------------------	------------
S1	H \rightarrow L (99.0%)	0.0023	2.293	540.61	1LLCT
S2	H \rightarrow L+1 (76.8%)	0.0007	2.975	416.720	1MLCT/1LLCT
	H \rightarrow L+3 (11.2%)				
	H \rightarrow L+2 (9.2%)				
S3	H \rightarrow L+3 (61.3%)	0.0050	3.038	408.090	1MLCT/1LLCT
	H \rightarrow L+2 (28.8%)				
S4	H \rightarrow L+2 (60.7%)	0.0007	3.096	400.420	1MLCT/1LLCT
	H \rightarrow L+1 (20.0%)				
	H \rightarrow L+3 (18.1%)				
S5	H-1 \rightarrow L (95.5%)	0.0363	3.284	377.540	1MLCT/1ILCT
S6	H \rightarrow L+4 (93.8%)	0.0042	3.384	366.340	1MLCT/1LLCT
S7	H-2 \rightarrow L (96.1%)	0.0024	3.435	360.990	1MLCT/1LLCT
S8	H-4 \rightarrow L (95.5%)	0.0050	3.598	344.600	1MLCT/1ILCT/1LLCT
S9	H \rightarrow L+5 (91.7%)	0.0037	3.608	343.630	1MLCT/1LLCT
S10	H \rightarrow L+6 (92.7%)	0.0020	3.721	333.200	1MLCT/1LLCT

Complex/State	Major contribution (%)	f	E(eV)	λ_{cal}(nm)	assignment
S1	H \rightarrow L (96.6%)	0.0240	3.171	391.03	1MLCT/1ILCT/1LLCT
S2	H-1 \rightarrow L (96.0%)	0.0054	3.458	358.490	1MLCT/1LLCT
S3	H \rightarrow L+1 (85.2%)	0.0067	3.870	320.340	1MLCT/1ILCT/1LLCT
	H-3 \rightarrow L (9.8%)				
S4	H-2 \rightarrow L (55.4%)	0.0384	3.930	315.500	1MLCT/1ILCT/1LLCT
	H-3 \rightarrow L (31.9%)				
	H-4 \rightarrow L (4.0%)				
S5	H-2 \rightarrow L (27.7%)	0.0503	4.103	302.210	1MLCT/1ILCT/1LLCT
	H-3 \rightarrow L (25.1%)				
	H-5 \rightarrow L (16.6%)				
	H \rightarrow L+2 (12.6%)				
	H-4 \rightarrow L (4.8%)				
	H \rightarrow L+1 (4.1%)				
S6	H-2 \rightarrow L (76.6%)	0.0096	4.157	298.230	1MLCT/1ILCT
	H-3 \rightarrow L (8.2%)				
	H-1 \rightarrow L+2 (2.4%)				
S7	H-1 \rightarrow L+1 (96.8%)	0.0002	4.198	295.310	1MLCT/1LLCT
S8	H-4 \rightarrow L (61.8%)	0.0323	4.242	292.260	1MLCT/1ILCT/1LLCT
	H-3 \rightarrow L (16.3%)				
	H-5 \rightarrow L (12.1%)				
S9	H-5 \rightarrow L (42.5%)	0.0740	4.317	287.190	1MLCT/1ILCT/1LLCT
	H-3 \rightarrow L (19.1%)				
	H-2 \rightarrow L+1 (12.5%)				
	H-1 \rightarrow L+2 (12.0%)				
	H-2 \rightarrow L (4.0%)				
Complex/State	Major contribution (%)	f	E(eV)	λcal(nm)	assignment
---------------	------------------------	-----	-------	----------	--------------------
S_10	H-1 → L+2 (70.3%)	0.0178	4.337	285.860	^1MLCT/^LLCT
	H-5 → L (11.5%)				
	H-4 → L (4.3%)				
	H-4 → L+2 (3.6%)				
	H-3 → L+2 (2.5%)				

Complex/State	Major contribution (%)	f	E(eV)	λcal(nm)	assignment
S_5	H-1 → L (98.9%)	0.0043	3.162	392.07	^1MLCT/^LLCT
S_2	H → L (91.5%)	0.0139	3.188	388.870	^1MLCT/^ILCT
S_3	H-2 → L (86.1%)	0.0599	3.564	347.880	^1MLCT/^LLCT
	H → L+1 (4.6%)				
S_4	H-1 → L+1 (99.2%)	0.0001	3.778	328.140	^1MLCT/^LLCT
S_5	H → L+1 (84.2%)	0.0350	3.806	325.750	^1MLCT/^ILCT
	H → L (8.7%)				
S_6	H-4 → L (98.4%)	0.0001	3.874	320.010	^1MLCT/^LLCT
S_7	H-2 → L+1 (69.0%)	0.0166	4.030	307.630	^1MLCT/^ILCT/^LLCT
	H-3 → L (22.8%)				
S_8	H-3 → L (53.6%)	0.1915	4.262	290.920	^1MLCT/^ILCT/^LLCT
	H-2 → L+1 (25.1%)				
	H → L+2 (8.2%)				
	H-3 → L+1 (4.6%)				
S_9	H-5 → L (96.4%)	0.0003	4.429	279.960	^1MLCT/^LLCT
S_10	H-4 → L+1 (98.9%)	0.0001	4.533	273.520	^1MLCT/^LLCT
Figure S1. Absorption spectra of Complex 2 at their optimized S₀ geometry in gas phase and in Cl₂CH₂ solution with its experimental spectra.
Complex 3:

![Graph showing oscillator strength against wavelength in nm. The graph includes data from calculations in CH₂Cl₂ and gas phase, as well as experimental data in CH₂Cl₂.]
Complex 4:

- Calculated in Cl₂CH₂
- Calculated in gas phase
References

1. R. Srivastava and L. R. Joshi, *Physical Chemistry Chemical Physics*, 2014, **16**, 17284.

2. L. Wang, Y. Wu, G.-G. Shan, Y. Geng, J.-Z. Zhang, D.-M. Wang, G.-C. Yang and Z.-M. Su, *J. Mat. Chem. C*, 2014, **2**, 2859.

3. W. Shen, W. Zhang and C. Zhu, *Physical Chemistry Chemical Physics*, 2017, **19**, 23532.

4. G. Velmurugan, B. K. Ramamoorthi and P. Venuvanalingam, *Physical Chemistry Chemical Physics*, 2014, **16**, 21157.

5. G. S.-M. Tong and C.-M. Che, *Chemistry – A European Journal*, 2009, **15**, 7225.

6. R. Srivastava, *Molecular Physics*, 2015, **113**, 1451.

7. W. Li, J. Wang, X. Yan, H. Zhang and W. Shen, *Applied Organometallic Chemistry*, 2017, **32**, e3929.