Lomax-Rayleigh distribution: traditional and heuristic methods of estimation

Nashaat J Al-Anber
Information Technology Department, Technical College of Management- Baghdad, Middle Technical University, Iraq
Dr.nashaat@mtu.edu.iq

Abstract. We introduce a continuous distribution called the Lomax-Rayleigh (L-R) distribution that extends the Lomax distribution. The generalization of the probability density function, cumulative distribution function of this distribution and the expression for moment generating function was established. We considered a traditional methods of estimation such as the maximum likelihood method and nonlinear least square estimation method to estimate the parameters and utilizing the Artificial Intelligence Algorithms such as Genetics Algorithm and pattern search method in estimation process. A comparison study among that methods is carried out through simulation experiments. We concluded that pattern search method is more efficient than other methods depending upon mean square error criteria.

1. Introduction:
Probability distribution has many applications in describing real world situations. There are lot of researches have shown that some real life data that cannot be modeled adequately by traditional statistical distributions, because the complexity found in it. Recently there is rapid grown direction toward generalization, mixing, Transmuting and exponentiation of existing distributions, so some families and new general formulas of distributions is appeared in papers that dealing with skewed data and data drawn from non-homogenous populations. Some of the earlier works include those Gupta and Kundu, 1999[12], Eugene et al., 2004[9], Famoye et al.,2005[10], Akinsete et al., 2008[4], Miroslav and Balakrishnan., 2012[14], Alzaatreh et al.,2013[3], Adeleke et al., 2013[5]; Akarawak et al., 2013[6] and Akarawak et al., 2015[6], Ghosh and Hamedani 2015[11] and Khaleel et al.,2016[13].

The main idea was that any parametric family of distributions can be incorporated into larger families through an application of the probability integral transform. Then the number of parameters and complexity of new families is increased, so almost in most cases numerical techniques to get estimates of parameters are used, since closed form of estimators of that parameters are difficult to derive it.

Recently Venegas et al. 2019[17] introduced the two parameter Lomax-Rayleigh distribution as compound between Lomax and Rayleigh distribution. Özsoy, 2020[16] used the heuristic optimization approaches such as Genetic Algorithms, Differential Evolution, Particle Swarm Optimization, and Simulated Annealing to estimate the parameter of generalized gamma distribution: comparison among maximum likelihood method and heuristic optimization approaches are proved that later have nice properties in estimation of parameters.

The rest of the paper is organized as follows. In Section 2 we present the probability density function and cumulative distribution function, reliability and hazard function of the Lomax-Rayleigh model with its general formula of moments. In Section 3 we discuss traditional methods such as: maximum likelihood estimation and non-linear least square estimation method and we introduce heuristic optimization approaches such as Genetic Algorithms and pattern search method. In section 4 we present a comparison...
among different estimation methods via simulation experiments. Finally, in Section 5,6 we report the discussion and final conclusions.

2. Lomax-Rayleigh Distribution (L-R)

\[F(x) = \int f(u) du \]

(1)

Let \(x = -\log (1 - G) \)

Where \(G \) is a cumulative distribution function of another distribution

\[F(x) = \int_{0}^{\log (1-G)} f(u) du \]

(2)

By differentiating the equation (2) for the base distribution, we get:

\[f(x) = f(-\log (1 - G)) \frac{g}{(1-G)} \]

(3)

Equation (3) represents a transformation for mixing two distributions through inserting the cumulative distribution function of any distribution for the base distribution so we call it Lomax-X family.

2.1. Derivation of Lomax-Rayleigh Distribution (L-R)

2.2.1. Derivation of the pdf and cdf of R-L

The pdf and cdf of the Lomax-Rayleigh distribution is derived in this section as a class of Lomax-X family of generalized distributions.

Theorem 2.1. Let the pdf of a Rayleigh distribution which is a base variable be:

\[f(x) = 2\lambda x e^{-\lambda x^2}, \ x > 0, \lambda > 0 \]

(4)

And the pdf of a Lomax distributed random variable be:

\[f(y) = \frac{\alpha}{\beta} \left(1 + \frac{y}{\beta} \right)^{-(\alpha+1)}, \ y > 0, \alpha, \beta > 0 \]

(5)

Then the pdf of the Rayleigh-Lomax distribution is given by:

\[f(x) = 2\alpha \theta x(1 + \theta x^2)^{-(\alpha+1)} \ x > 0, \alpha, \theta > 0 \]

(6)

Proof

The pdf of the Lomax-X family of distribution is given by:

\[f(x) = f(-\log (1 - G)) \frac{g}{(1-G)} \]

(7)

Where \(g \) and \(G \) are the pdf and cdf of Rayleigh distribution.

By substituting the pdf and cdf of Rayleigh distribution in equation (4), we get:

\[f(x) = 2\alpha \theta x \left(1 + \frac{\lambda x^2}{\beta} \right)^{-(\alpha+1)} \ x > 0, \alpha, \beta, \lambda > 0 \]

(8)

Let: \(\frac{\lambda}{\beta} = \theta \), then the Lomax-Rayleigh distribution be:

\[f(x) = 2\alpha \theta x(1 + \theta x^2)^{-(\alpha+1)} \ x > 0, \alpha, \theta > 0 \]

Where \(\alpha \) is the shape parameter and \(\theta \) is the scale parameter. The Lomax-Rayleigh distribution is right skewed as shown in Figure 1.
Corollary 2.1. The function of Lomax-Rayleigh is pdf function.

Proof

The integral of function must equal one. That is:

\[\int_{0}^{\infty} f(x) \, dx = 1 \]

Then

\[\int_{0}^{\infty} f(x) \, dx = \int_{0}^{\infty} 2\alpha \theta x (1 + \theta x^2)^{-\alpha/2} \, dx \]
\[= 2\alpha \theta \int_{0}^{\infty} xe^{-\alpha x \log (1 + \theta x^2)} \, dx \]

Let:

\[y = (\alpha + 1) \log (1 + \theta x^2) \]

Then:

\[x = \left(\frac{1}{\theta} \right)^{\frac{1}{2}} \left(1 - e^{\frac{y}{\alpha+1}} \right)^{\frac{1}{2}} \]
\[dx = \left(\frac{1}{\theta} \right)^{\frac{1}{2}} \left(1 - e^{\frac{y}{\alpha+1}} \right)^{-\frac{1}{2}} \left(-\frac{y}{\alpha+1} \right) \, dy \]

Then

\[\int_{0}^{\infty} f(x) \, dx = 2\alpha \theta \int_{0}^{\infty} \left(\frac{1}{\theta} \right)^{\frac{1}{2}} \left(1 - e^{\frac{y}{\alpha+1}} \right)^{\frac{1}{2}} e^{-y} \left(\frac{1}{\theta} \right)^{\frac{1}{2}} \left(1 - e^{\frac{y}{\alpha+1}} \right)^{-\frac{1}{2}} \left(-\frac{y}{\alpha+1} \right) \, dy \]
\[= \frac{\alpha}{\alpha+1} \int_{0}^{\infty} e^{-\gamma \left(\frac{1}{\alpha+1} \right)} \, dy \]

Let:

\[z = \frac{\alpha}{\alpha+1} y \]
\[y = \frac{\alpha}{\alpha+1} z \]
\[dy = \frac{\alpha}{\alpha+1} \, dz \]

\[\int_{0}^{\infty} f(x) \, dx = \frac{\alpha}{\alpha+1} \int_{0}^{\infty} e^{-\gamma \left(\frac{1}{\alpha+1} \right)} \, dy = \frac{\alpha}{\alpha+1} \int_{0}^{\infty} e^{-\frac{\gamma}{\alpha+1} \left(\frac{1}{\alpha+1} \right)} \, dy = 1 \]

Corollary 2.2. The cdf of Lomax-Rayleigh is:

\[F(x) = 1 - e^{-\alpha \log (1 + \theta x^2)} \]
Proof

\[F(x) = \Pr(X \leq x) = \int_{0}^{x} f(u) \, du \]

Then:

\[F(x) = \int_{0}^{x} 2\alpha \theta u e^{-\left(\alpha + 1\right) \log \left(1 + \theta u^2\right)} \, du \]

Let:

\[y = (\alpha + 1) \log \left(1 + \theta u^2\right) \]

Then:

\[
\begin{align*}
\frac{1}{\theta} \left(1 - e^{(\alpha + 1) y} \right)^{1/2} & = \frac{1}{\alpha} \left(1 - e^{(\alpha + 1) y} \right)^{1/2} \\
\frac{1}{\alpha} \left(1 - e^{(\alpha + 1) y} \right)^{1/2} & = -\frac{y}{(\alpha + 1)} \\
F(x) & = \frac{\alpha}{(\alpha + 1)} \int_{0}^{(\alpha + 1) \log \left(1 + \theta x^2\right)} e^{-y \left(1 - \frac{1}{\alpha + 1} y^2\right)} \, dy
\end{align*}
\]

Let:

\[
\begin{align*}
z & = \frac{\alpha}{(\alpha + 1)} y \\
y & = \frac{\alpha}{(\alpha + 1)} z \\
dy & = \frac{\alpha}{(\alpha + 1)} dz
\end{align*}
\]

\[F(x) = \int_{0}^{(\alpha + 1) \log \left(1 + \theta x^2\right)} e^{-z \left(\frac{\alpha + 1}{\alpha}\right)} \, dz = 1 - e^{-\alpha \log \left(1 + \theta x^2\right)} \quad \text{(9)} \]

The survival function and hazard function are as follow:

\[S(x) = 1 - F(x) = e^{-\alpha \log \left(1 + \theta x^2\right)} \quad \text{(10)} \]

\[h(x) = \frac{f(x)}{S(x)} = \frac{2 \theta}{1 + \theta x^2} \quad \text{(11)} \]

2.2.2. Moment generating function:

\[\mu_x(t) = \mathbb{E}(e^{xt}) = \int_{0}^{\infty} e^{xt} 2\alpha \theta x (1 + \theta x^2)^{-(\alpha + 1)} \, dx \]

\[= 2\alpha \theta \int_{0}^{\infty} x e^{xt} e^{-\left(\alpha + 1\right) \log \left(1 + \theta x^2\right)} \, dx \]

Since: \(e^y = \sum_{l=0}^{\infty} \frac{y^l}{l!} \)

\[= 2\alpha \theta \int_{0}^{\infty} x \sum_{j=0}^{\infty} \frac{(xt)^j}{j!} e^{-\left(\alpha + 1\right) \log \left(1 + \theta x^2\right)} \, dx \]

\[= 2\alpha \theta \sum_{j=0}^{\infty} \frac{(t)^j}{j!} \int_{0}^{\infty} x^{j+1} e^{-\left(\alpha + 1\right) \log \left(1 + \theta x^2\right)} \, dx \]

Let:

\[y = (\alpha + 1) \log \left(1 + \theta x^2\right) \]

Then:

\[x = \left(\frac{y}{e^{\alpha + 1} - 1}\right)^{1/2} \left(\frac{1}{\theta}\right)^{1/2} \]
\[
dx = \frac{1}{2} \left(\frac{y}{e^\alpha - 1} \right)^{\frac{1}{2}} \left(\frac{y}{e^\alpha - 1} - \frac{1}{\alpha + 1} \right) \left(\frac{1}{\theta} \right)^{1/2}
\]

Then:
\[
\mu_x(t) = \frac{\alpha \theta}{\alpha + 1} \int_0^\infty \left(\frac{y}{e^\alpha - 1} - 1 \right)^{1/2} e^{-y (\alpha + 1)} dy
\]
\[
= \frac{\alpha \theta}{\alpha + 1} \sum_{i=0}^{\infty} c_i^{1/2} (-1)^{1/2} \int_0^\infty e^{-\left(\frac{\alpha - i}{\alpha + 1}\right)} dy
\]

Let:
\[
z = y \left(\frac{\alpha - i}{\alpha + 1} \right)
\]

Then:
\[
y = z \left(\frac{\alpha + 1}{\alpha - i} \right)
\]
\[
dy = \left(\frac{\alpha + 1}{\alpha - i} \right) dz
\]
\[
\mu_x(t) = \alpha \sqrt{\theta} \sum_{i=0}^{\infty} \frac{1}{1} \sum_{i=0}^{\infty} c_i^{1/2} (-1)^{1/2} \frac{1}{(\alpha - i)}
\]

3. Estimation Methods
In this section we will derive the estimators of the unknown parameters by using traditional methods (Maximum likelihood and Nonlinear Least Square) and heuristic method (Genetic algorithm and pattern search)

3.1. Maximum Likelihood Method MLE
The principle of this method is to find the values of the parameters that maximize the likelihood function, where the likelihood function is a function of data and unknown parameters only, so it represent the information of sample.

Then:
\[
\text{Likelihood Function} = L(x, \alpha, \theta) = 2^\alpha \theta^\theta \prod_{i=1}^n x_i e^{-\left(\alpha + 1\right) \sum_{i=1}^n \log (1 + \theta x_i^2)}
\]

Equation (13) is monotonic, so the values of parameters that maximize it is same as that maximize log of it. Then:
\[
\text{LogL}(\alpha, \theta) = n \log(2) + n \log(\alpha) + n \log(\theta) + \sum_{i=1}^n \log(1 + \theta x_i^2) - (\alpha + 1) \sum_{i=1}^n \log (1 + \theta x_i^2)
\]

By taking partial derivatives of equation (14) and equating them to zero, we get normal equation. Then:
\[
\frac{n}{\alpha} - \sum_{i=1}^n \log \left(1 + \theta x_i^2\right) = 0
\]
\[
\frac{n}{\theta} - (\alpha + 1) \sum_{i=1}^n \frac{x_i}{1 + \theta x_i^2} = 0
\]

The solution of equation (15) and (16), represent the estimate of parameters, by substitute equation (15) in equation (16), we get
\[
\frac{n}{\theta} - \left(\frac{\alpha}{\sum_{i=1}^n \log (1 + \theta x_i^2)} + 1 \right) \sum_{i=1}^n \frac{x_i^2}{1 + \theta x_i^2} = 0
\]
The equation (17) is highly nonlinear, so we use Newton Raphson method to get the solution of the parameter θ. Let the $\hat{\theta}_{\text{mle}}$ be the maximum likelihood estimate of θ then from equation (17) the estimator of parameters α will be:

$$
\hat{\alpha}_{\text{mle}} = \frac{n}{\sum_{i=1}^{n} \log(1 + \theta x_i^2)}
$$

(18)

3.2. Non-Linear Least Square Method NLLSM

The principle of this method is to find the values of the parameters that minimize the square sum of errors. Let:

$$
\hat{F} = \frac{i}{n+1}, \quad \text{be non-parametric estimator of cdf, where}
$$

n: sample size.
$i = 1, 2, ..., n$

Then by equating the non-parametric estimator by cdf of distribution, we get:

$$
\hat{F} = 1 - e^{-\alpha \log(1 + \theta x_i^2)}
$$

And

$$
(1 - \hat{F}) = e^{-\alpha \log(1 + \theta x_i^2)}
$$

If we let: $y = (1 - \hat{F})$, then:

$$
y_i = e^{-\alpha \log(1 + \theta x_i^2)} + \epsilon_i
$$

(19)

Is nonlinear model of parameters α and. We can use nonlinear least square method that minimize the squared sum square of errors to get estimate of parameters. Where sum of square of error is:

$$
Q = \sum_{i=1}^{n} \left(y_i - e^{-\alpha \log(1 + \theta x_i^2)}\right)^2
$$

(20)

3.3. Genetic Algorithm GA[8]

Genetic Algorithm is one of the most powerful stochastic optimization technique, its base idea from Charles Darwin’s theory of natural evolution “survival of the fittest”. It is very useful in estimation of nonlinear models, particularly in cases where the function cannot be solved in more traditional ways so it is more efficient of obtaining global optimum solution which is represent of parameter estimates. This algorithm reflects the method of natural selection where the fittest individuals are selected for reproduction in order to select better offspring from the parent population.

GA has its basic steps from genetics artificially to construct search algorithms that are robust and require minimal problem information with small overall computational time. It has three main operators which is selection, crossover and mutation, that making it an important tool for optimization.

The process of natural selection starts with the selection of fittest individuals from a population. So it works with a population of solutions instead of a single solution. They produce offspring which inherit the characteristics of the parents and will be added to the next generation. If parents have better fitness, their offspring will be better than parents and have a better chance at surviving. This process continually will find a generation with the best individuals.

GA is a population-based algorithm, where an individual in the population, representing a solution, which is called a chromosome. It is basically a binary vector, where each item in the vector is called a gene. Since the individuals are represented in binary, it is important to choose a proper encoding of the solution. The fitness is assigned to each chromosome and new generation of chromosomes is created in the reproduction process. Parent chromosomes, from which new chromosomes are created, are chosen quasi-randomly, so the better the fitness will have higher probability for the chromosome to be chosen. Next, the genetic operators are used to create descendant of parents. These include:

1. Initial population or start Generate random population of n chromosomes which is more suitable solutions for the problem.
2. Fitness function Evaluate the fitness $f(x)$ of each chromosome x in the population
3. Selection of two parent chromosomes from a population according to their fitness so the best fitness will be with higher probability to be selected.

4. Crossover: with a crossover probability cross over the parents to form a new offspring (children). If no crossover was performed, offspring is an exact copy of parents.

5. Mutation: with a mutation probability mutate new offspring at each local which is position in chromosome.

6. Place new offspring in a new population.

7. Replace: use new generated population for a further run of algorithm.

8. Testing: if the end condition is satisfied, stop, and return the best solution in current population.

9. Loop: Go to step 2.

GA works on a population consisting of some solutions where the population size is the number of solutions. Each solution is called individual. Each individual solution has a chromosome. The chromosome is represented as a set of parameters (features) that defines the individual. Each chromosome has a set of genes. Each gene is represented by somehow such as being represented as a string of 0 and 1, the string which represent parameter solution is evaluated in terms of its fitness or its objective Function which is often represent sum of square of residual.

The important part in this Algorithm is formulation fitness or objective function to be minimized, which will take the form:

$$\sum_{i=1}^{n} \left(y_i - e^{-\alpha \log (1 + \theta x_i^2)} \right)^2$$

(21)

Where:

$$y_i = 1 - \frac{1}{n+1} \quad i = 1, 2, ..., n$$

And by applying the GA Algorithm function in MatLab program, that required the x and y values, fitness function, population size, crossover probability, mutation Probability for minimization of equation (21) and number of generation, we will get the estimate of the parameters.

3.4. Pattern Search Method PSM

Pattern search (PS) algorithm is one class of direct search evolutionary algorithms used to solve constrained optimization problems. While it was first formally proposed in early 1960, it has popularity with users due to their simplicity and their practical success on a wide range of optimization problems. This method do not require any information about the gradient of the objective function at hand, while searching for an optimum solution, so it is directional method that make use of a finite number of directions with appropriate descent properties. It is suitable for situation where the first and second derivatives of fitness or objective function are not exist, so that do not make explicit use of derivatives. It need only some values of objective function for some values of variable to run, therefore for this reason it named derivative free algorithm.

This algorithm calculates objective or fitness function values of the pattern and then try to find a minimizer. If it finds a new minimum, then it changes the center of pattern and iterates. This search continues until the search step gets sufficiently small, thus ensuring convergence to a local minimum.

The algorithm required:

1. Starting points or Initialization.
2. Value of acceleration factor.
3. Initial perturbation factor.
4. Perturbation tolerance factor.

The important part in this Algorithm is fitness function that take the form:

$$\sum_{i=1}^{n} \left(y_i - e^{-\alpha \log (1 + \theta x_i^2)} \right)^2$$

(22)
Where:

\[y_i = 1 - \frac{1}{n+1}, \quad i = 1,2,...,n \]

And by applying the PSM algorithm in MatLab, that required the \(x \) and \(y \) values and fitness function, we will get the estimate of the parameters.

4. Simulation Experiments:

In order to compare among methods, a simulation experiments were carried. A range of sample sizes that represent small, moderate and high are used. A simulated data are generated according to inverse cdf method as in formula (23):

\[
x = \left(\theta\right)^{\frac{1}{\alpha}} \left(e^{\frac{-\theta}{\alpha^{\frac{1}{\alpha}}}} - 1\right)^{\frac{1}{\alpha}}
\]

Where \(U \) is a uniform random variant.

The GA parameters is set as: population size equal to 600, crossover probability equal to 0.9, mutation probability for minimization equal to 0.01 and number of generations as 100. The terminated with accuracy level is equal to 0.001.

For different values of parameters that represent small and large range of values of parameters the results of mean square error of estimates are listed in tables 1 to table 6.

Table 1. Mean Square Error Values for \((\alpha = 1, \theta = 1)\).
\(n \)
10
& \(\theta \)
15
& \(\theta \)
25
& \(\theta \)
50
& \(\theta \)
100
& \(\theta \)
150
& \(\theta \)
200
& \(\theta \)

Table 2. Mean Square Error Values for \((\alpha = 1, \theta = 2)\).
\(n \)
10
& \(\theta \)
15
& \(\theta \)
25
& \(\theta \)
Table 3. Mean Square Error Values for \((\alpha = 1, \theta = 3)\).

n	\(\alpha\) Parameters	MLE	NLLSM	GA	PSM	best
10	\(\alpha\) 0.377612	3.085701	13.22014	0.372275	PSM	
	\(\theta\) 2.056876	19.663020	16.64826	12.731780	MLE	
15	\(\alpha\) 0.365532	3.228973	1.72176	0.168565	PSM	
	\(\theta\) 2.363185	17.814360	12.37500	11.278790	MLE	
25	\(\alpha\) 0.357080	2.052149	0.06541	0.034932	PSM	
	\(\theta\) 1.363700	4.172735	8.30707	3.679630	MLE	
50	\(\alpha\) 0.334262	1.674159	0.63487	0.071647	PSM	
	\(\theta\) 1.063835	3.691743	10.82640	3.452363	MLE	
100	\(\alpha\) 0.012047	0.104377	0.68987	0.094123	MLE	
	\(\theta\) 0.060599	0.658005	5.12502	0.589990	MLE	
150	\(\alpha\) 0.012510	0.006508	0.01276	0.006175	PSM	
	\(\theta\) 0.046318	0.44234	0.07274	0.040933	MLE	
200	\(\alpha\) 0.049992	0.003836	0.01142	0.003654	PSM	
	\(\theta\) 0.032683	0.035722	0.02958	0.034731	GA	

Table 4. Mean Square Error Values for \((\alpha = 2, \theta = 1)\).

n	Parameters	MLE	NLLSM	GA	PSM	best
10	\(\alpha\) 3.914358	9.866198	1.505866	0.711264	PSM	
	\(\theta\) 3.615759	0.618972	8.545414	1.248075	NLLSM	
15	\(\alpha\) 3.267255	0.192999	1.206978	0.093107	PSM	
	\(\theta\) 2.165781	0.313614	0.510557	1.214682	NLLSM	
25	\(\alpha\) 1.710191	0.778096	1.051513	0.054885	PSM	
	\(\theta\) 1.241398	0.105136	0.029204	1.591178	GA	
50	\(\alpha\) 0.491340	0.333224	0.040609	0.091582	GA	
	\(\theta\) 1.112081	0.938523	0.936618	2.354406	GA	
100	\(\alpha\) 0.536402	0.030253	0.017792	0.044540	GA	
	\(\theta\) 0.907246	0.450256	0.492739	0.490337	NLLSM	
150	\(\alpha\) 0.536402	0.030253	0.017792	0.044540	GA	
	\(\theta\) 0.907246	0.450256	0.492739	0.490337	NLLSM	
200	\(\alpha\) 0.002725	0.008118	0.005135	0.040473	MLE	
	\(\theta\) 0.059195	0.545362	0.006545	0.167839	GA	
Table 5. Mean Square Error Values for \((\alpha = 3, \theta = 1) \).

n	parameters	MLE	NLLSM	GA	PSM	best
10	\(\alpha \)	33.47505	6.299863	30.25490	2.668031	PSM
	\(\theta \)	10.42354	107.50470	73.35895	43.725440	MLE
15	\(\alpha \)	5.22474	4.663007	29.33486	1.550078	PSM
	\(\theta \)	10.94425	2.892324	4.25160	1.337027	PSM
25	\(\alpha \)	6.14677	3.44570	17.20558	0.913376	PSM
	\(\theta \)	6.24812	1.513890	9.35474	0.900419	PSM
50	\(\alpha \)	2.32009	3.660520	17.20558	0.913376	PSM
	\(\theta \)	4.88894	1.043221	9.35474	0.900419	PSM
100	\(\alpha \)	1.46685	0.150727	0.39147	0.077133	PSM
	\(\theta \)	0.01284	0.068221	0.07955	0.497864	MLE
150	\(\alpha \)	1.94818	0.06009	0.20943	0.065627	NLLSM
	\(\theta \)	0.01148	0.052933	0.06477	0.604872	MLE
250	\(\alpha \)	0.92491	0.019210	0.49432	0.061260	NLLSM
	\(\theta \)	0.01136	0.03581	0.01029	0.054012	GA

Table 6. Mean Square Error Values for \((\alpha = 3, \theta = 3) \).

n	Parameters	MLE	NLLSM	GA	PSM	best
10	\(\alpha \)	3.652754	73.15335	58.539880	1.743710	PSM
	\(\theta \)	41.212920	352.97470	4.264320	11.168230	GA
15	\(\alpha \)	3.332197	23.20017	4.481708	0.242188	PSM
	\(\theta \)	24.972810	6.58103	2.744208	3.437160	GA
25	\(\alpha \)	1.805887	1.22346	2.358017	0.252733	PSM
	\(\theta \)	21.419360	6.79508	2.962349	3.270942	GA
50	\(\alpha \)	1.468550	1.38174	2.765233	0.073792	PSM
	\(\theta \)	16.025720	5.68290	1.060771	2.964387	GA
100	\(\alpha \)	0.112281	1.29696	1.350315	0.087335	PSM
	\(\theta \)	0.045603	1.38915	1.218220	0.387443	MLE
150	\(\alpha \)	0.117031	1.46919	1.104577	0.096361	PSM
	\(\theta \)	0.012876	1.44618	0.341098	0.081406	MLE
200	\(\alpha \)	0.062984	1.45436	0.959521	0.029787	PSM
	\(\theta \)	0.011285	0.86290	0.108012	0.053908	MLE

5. Discussion
The minimum mean square error of parameters for the four method are marked in last column for each case. It is shown that PSM method attained the first, since it reach minimum in 44% of cases. The MLE attained the second, since it get 25% of cases, NLLSM 17% and GA 14%, as illustrated in table(7).

Table 7. Mean Square Error Values for \((\alpha = 3, \theta = 1) \)

method	counts	Percentage
MLE	21	25%
NLLSM	14	17%
6. Conclusion
This paper introduce new probability distribution that is mixed between Lomax distribution and Rayleigh distribution, we get closed form for the pdf and cdf, the since the theoretical mean square error was difficult to find for estimation method, so we used simulation experiments. We concluded that pattern search method is more efficient than the rest methods.

Acknowledgements
The author acknowledges support from Middle Technical University. I am also grateful to the editor and the anonymous referees for helpful comments and suggestions.

References

[1] Adeleke I A, Akarawak E E E and Okafor R O 2013 Investigating the Distribution of the Ratio of Independent Beta and Weibull Random Variables. Journal of Mathematics and Technology, 4(1): 16-22.

[2] Al-Sumaita J S, AL-Othmanb A K and Sykulskia J K 2007 Application of pattern search method to power system valve-point economic load dispatch International Journal of Electrical Power & Energy Systems Volume 29, Issue 10, December 2007, Pages 720-730 doi.org/10.1016/j.ijepes.2007.06.016

[3] Alzaatreh A, Lee C and Famoye F 2013 A New Method for Generating Families of Continuous Distributions Metron:International Journal of Statistics, 71(1):63-79.

[4] Akinsete A, Famoye F and Lee C 2008 The beta-Pareto distribution Statistics, 42:547-563.

[5] Akarawak E E , Adeleke I A and Okafor R O 2013 The Weibull-Rayleigh Distribution and its Properties Journal of Engineering Research, 18(1): 56-67.

[6] Akarawak E E , Adeleke I A and Okafor R O 2015 On the Distribution of the Ratio of Independent Gamma and Rayleigh Random Variables Journal of Scientific Research and Developments, 15(1): 54-63.

[7] Dennis J and Torczon V 1994 Derivative-free pattern search methods for multidisciplinary design problems., paper AIAA-94-4349 in Proceedings of the 5th AIAA/ USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City, FL, Sept. 7-9, pp. 922-932.

[8] Eiben, Agoston E, and James E. Smith 1992 Introduction to evolutionary computing. Vol. 53. Heidelberg: springer, 2003 John H. Holland ‘Genetic Algorithms’, Scientific American Journal, July.
[9] Eugene N, Lee C. and Famoye F 2002 Beta normal distribution and its applications. Communication in Statistics- Theory and Methods, 31(4): 497 – 512.

[10] Famoye F, Lee C and Olugbenga O 2005 The Beta-Weibull distribution. Journal of Statistical Theory and Applications, 4(2):121-138.

[11] Ghosh I and Hamedani G 2015 The Gamma-Kumaraswamy Distribution: An Alternative to Gamma Distribution Communications in Statistics – Theory and Methods DOI: 10.1080/03610926.2015.1122055

[12] Gupta R D and Kundu D 1999 Generalized Exponential Distribution. Australian and New Zealand Journal of Statistics, 41: 173– 188

[13] Khaleel M A, Ibrahim N A, Shitan M and Merovci F 2016 Some properties of Gamma Burr type X distribution with application AIP Conference Proceedings 1739, 020087 doi: 10.1063/1.4952567

[14] Miroslav R M and Balakrishnan N 2012 The gamma-exponentiated exponential distribution. Journal of Statistical Computation and Simulation 82, 1191–1206

[15] Michinari M M, Momma K P, Bennett Kristin P and Bennett 2002 A Pattern Search Method for Model Selection of Support Vector Regression Conference: Proceedings of the Second SIAM International Conference on Data Mining, Arlington, VA, USA, April 11-13, DOI: 10.1137/1.9781611972726.16

[16] Özsoy V S, Ünsal M G and Örkcü H H 2020 Use of the heuristic optimization in the parameter estimation of generalized gamma distribution: comparison of GA, DE, PSO and SA methods. Computational Statistics doi.org/10.1007/s00180-020-00966-4

[17] Venegas O, Iriarte Y A, Astorga J M and G‘omez H W 2019 Lomax-Rayleigh Distribution with an Application Appl. Math. Inf. Sci. 13, No. 5, 741-748 (2019) 741 http://dx.doi.org/10.18576/amis/130506