CP violating polarizations
in semileptonic heavy meson decays

Robert Garisto

TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., V6T 2A3, Canada

We study the T-violating lepton transverse polarization (P_{\perp}^l) in three body semileptonic heavy meson decays to pseudoscalar mesons and to vector mesons. We calculate these polarizations in the heavy quark effective limit, which simplifies the expressions considerably. After examining constraints from CP conserving (including $b \to s\gamma$) and CP violating processes, we find that in B decays, P_{\perp}^μ of the muon in multi-Higgs doublet models can be of order 10%, while P_{\perp}^τ of the τ can even approach unity. In contrast, P_{\perp}^μ in D decays is at most 1.5%. We discuss possibilities for detection of P_{\perp}^l at current and future B factories. We also show that P_{\perp}^l in decays to vector mesons, unlike in decays to pseudoscalars, can get contributions from left-right models. Unfortunately, P_{\perp}^l in that case is proportional to W_L-W_R mixing, and is thus small.
1 Introduction

The Standard Model (SM) has thus far met with incredible experimental success. Nevertheless, many hypothetical extensions to the SM remain phenomenologically viable. Since new physics often provides new sources of \(CP\) violation (CPV), one good way to search for such extensions is to consider \(CP\) violating observables which are negligible in the SM, but which can have large contributions from other sources of CPV.

A major barrier to any candidate for such an observable is the upper bound on the electric dipole moment of the neutron, \(d_n\), which is now around \(10^{-25}\) cm \([1]\). The SM explanation for CPV, the Cabbibo-Kobayashi-Maskawa (CKM) mechanism \([2]\), has come to be accepted by many as the source of \(CP\) violation in the neutral \(K\) sector not only because it predicts \(\epsilon\) to be in the right range, but also because it predicts \(d_n\) to be negligible \([3]\). As the upper bound on \(d_n\) has plummeted, many potential explanations for \(\epsilon\) from other sources have run aground, and thus it is more difficult to find observables which have good prospects of detecting CPV beyond the SM.

One such observable is the transverse polarization of the lepton in semileptonic \(K_{\mu3}\) decays \([4]\), \(P^\perp_l\), which is the \(T\)-violating projection of the lepton spin onto the normal of the decay plane, \(i.e.\ P^\perp_l \sim \vec{s}_l \cdot (\vec{k} \times \vec{p})\) \([5]\), where \(\vec{k}\) and \(\vec{p}\) are decay product momenta. It arises from the interference between two amplitudes with non-zero relative phase. In practice, one measures the asymmetry between the number of particles parallel and anti-parallel to the normal of the decay plane,
There are several advantages to using such a semileptonic CP violating observable. First, semileptonic decays occur through a single SM diagram at tree level, so P_l^\perp is negligible in the SM \[6\]. Thus a non-zero P_l^\perp is a signal for new physics. Second, theoretical uncertainties in semileptonic decays are much smaller than in purely hadronic decays. Finally, P_l^\perp in semileptonic decays comes from both the quark and lepton sectors, so that purely hadronic or purely leptonic CP violating observables, such as d_n or d_e, do not necessarily strongly constrain P_l^\perp \[7\]. In fact, there exist reasonable models for which P_l^\perp in $K_{\mu3}$ decays can be of order 10^{-2}–10^{-3}, consistent with all other constraints \[8, 9\]. Such values are well within reach of experiments. The last measurements of P_l^\perp were done at Brookhaven National Lab on $K^+ \to \pi^0 \mu^+ \nu_\mu$ decays. Their combined result was \[10\]

\[P_{\mu}^\perp (K^+ \to \pi^0 \mu^+ \nu_\mu) = -1.85 \pm 3.60 \times 10^{-3}, \tag{2}\]

which implies a 95\% confidence upper bound of about 0.7\%. There is also an experiment currently under construction at KEK \[11\] which hopes to push this bound down by a factor of ten \[12\].

In this paper we consider P_l^\perp in heavy meson decays of the type $M \to ml\nu_l$ and $M \to m^*l\nu_l$, where M and m are pseudoscalar mesons, and m^* is a vector meson. P_l^\perp has been studied in decays to pseudoscalars \[13, 14\], but not in decays to vector mesons. We derive expressions for P_l^\perp in $M \to m^*l\nu_l$ decays, as well as in $M \to ml\nu_l$ decays, in the heavy quark effective limit.
This greatly simplifies our results. One can even obtain analytic expressions for \overline{P}_l^\perp, the polarization averaged over all kinematical variables.

In decays to pseudoscalars ($M \rightarrow m l \nu_l$), P_l^\perp is sensitive only to spin 0 effective Lagrangians \([4, 15]\), which makes it a good tool for probing non-SM Higgs physics \([8]\). We find that this holds for P_l^\perp in decays to \textit{longitudinally polarized} vector mesons ($M \rightarrow m^*_L l \nu_l$), but that P_l^\perp in decays to \textit{transversely polarized} vector mesons ($M \rightarrow m^*_T l \nu_l$ and $M \rightarrow m^*_T l \nu_l$) is sensitive only to new V and A physics, such as left-right models. Unfortunately, P_l^\perp in that case is proportional to W_L-W_R mixing, which is constrained to be small. However, in the former case, multi-Higgs doublet models yield encouraging results, even after imposing CP conserving and CP violating constraints. There are reasonable models in which P_{τ}^\perp in $B \rightarrow D\tau\nu$ decays can even approach unity.

Section 2 lists the form factors needed for our calculation. We consider contributions to P_l^\perp from multi-Higgs doublet models in Section 3, and from left-right models in Section 4. Possibilities for detecting P_l^\perp in various decay modes are discussed in Section 5.

2 Form Factors

From Lorentz invariance and basic symmetry considerations, we can write the hadron matrix elements (HME) for decays of pseudoscalar mesons (M) to pseudoscalar (m) and vector mesons (m^*) as
\[\langle m(k) | V_\mu | M(K) \rangle = f_+ (K + k)_\mu + f_- (K - k)_\mu, \]
\[\langle m(k) | A_\mu | M(K) \rangle = 0, \]
\[\langle m^*(k, \epsilon^*_\lambda) | V_\mu | M(K) \rangle = \frac{iV_1}{M} (\epsilon_{\mu\alpha\beta\gamma} \epsilon^{*\alpha} K^\beta k^\gamma), \]
\[\langle m^*(k, \epsilon^*_\lambda) | A_\mu | M(K) \rangle = A_1 M \epsilon^{*\lambda}_\mu + \frac{A_2}{M} (\epsilon^{*\lambda}_\mu K)(K + k)_\mu \]
\[+ \frac{A_3}{M} (\epsilon^{*\lambda}_\mu K)(K - k)_\mu, \]

where for \(M^+ \) decay, \(V_\mu = \bar{D}_\gamma \mu U \) and \(A_\mu = \bar{D}_\gamma \mu \gamma^5 U \) (\(U \) and \(D \) are the appropriate up- and down-type quarks for \(M \) and \(m \)). The axial vector HME for \(M \to m \) is zero because there is no way to form an axial vector with just \(K^\alpha \) and \(k^\beta \). We have used \(M \) and \(m \) to represent both a meson and its mass. The form factors \(f_{\pm}, V_1 \), and \(A_{1-3} \) are functions of \((K \cdot k)\) and \(r \equiv m/M \). Here \(\lambda \) is the polarization index. We will refer to the \(m^* \) longitudinal polarization by the label \(\lambda = L \), and the two transverse polarizations by the label \(\lambda = T_1, T_2 \), for \(\epsilon^*_\lambda \) in the decay plane and perpendicular to the decay plane, respectively.

From these vector and axial vector HME, one can derive scalar and pseudoscalar HME using the Dirac equation [13]:

\[\langle m(k) | S | M(K) \rangle = \frac{-M^2}{m_D - m_U} (f_+(1 - r^2) + f_- t), \]
\[\langle m(k) | P | M(K) \rangle = 0, \]
\[\langle m^*(k, \epsilon^*_\lambda) | S | M(K) \rangle = 0, \]
\[\langle m^*(k, \epsilon^*_\lambda) | P | M(K) \rangle = \frac{-M}{m_D + m_U} (\epsilon^{*\lambda}_\mu K)(A_1 + A_2 (1 - r^2) + A_3 t). \]
where for M^+ decays, $S = \bar{D}U$, and $P = D\gamma^5U$, and $t \equiv (K - k)^2/M^2$. The masses (m_D, m_U) are (m_b, m_c) in B decays and (m_s, m_c) in D decays. The middle two parity-odd matrix elements in (4) are zero because there is no way to form a pseudoscalar using only K^α, k^β and $\varepsilon^\lambda\gamma$. Note that the factor $(\varepsilon^\star \cdot K)$ implies that $\langle m^*(k, \varepsilon^\star) | P | M(K) \rangle$ is non-zero only for longitudinally polarized vector mesons.

Recently there has been a lot of interest in heavy quark effective theory (HQET), which considers the limit $M, m \to \infty$. The principle tenet of HQET is that $v_\mu (v'_\mu)$, the four-velocity of $M (m^{(s)})$, is unchanged by QCD corrections [16]. Thus it makes sense to write the HMEs in terms of velocity [17]:

\[
\langle m(v') | V_\mu | M(v) \rangle = \sqrt{Mm} \left(\xi_+(v + v')^\mu + \xi_-(v - v')^\mu \right),
\]

\[
\langle m(v') | A_\mu | M(v) \rangle = 0,
\]

\[
\langle m^*(v', \varepsilon^\star) | V_\mu | M(v) \rangle = i\sqrt{Mm} \xi V_1 \left(\varepsilon_{\mu\alpha\beta\gamma} \varepsilon^\star_{\lambda} v'^\beta v^\alpha \right),
\]

\[
\langle m^*(v', \varepsilon^\star) | A_\mu | M(v) \rangle = \sqrt{Mm} \left(\xi A_1 (1 + v \cdot v')\varepsilon^\star_{\lambda} - \xi A_2 (\varepsilon^\star_{\lambda} \cdot v) v_\mu - \xi A_3 (\varepsilon^\star_{\lambda} \cdot v) v'_\mu \right),
\]

From (3) and (5), one can derive relations between the form factors [18]:

\[
f_\pm = \pm \frac{1}{2\sqrt{r}} ((1 \pm r)\xi_+ - (1 \mp r)\xi_-) \to \pm \frac{1 \pm r}{2\sqrt{r}} \xi,
\]

\[
V_1 = -\frac{1}{\sqrt{r}} \xi V_1 \to -\frac{1}{\sqrt{r}} \xi,
\]

\[
A_1 = \frac{x + r}{\sqrt{r}} \xi A_1 \to \frac{x + r}{\sqrt{r}} \xi,
\]
\[A_2 = -\frac{1}{2\sqrt{r}}(\xi_{A_3} + r\xi_{A_2}) \to -\frac{1}{2\sqrt{r}}\xi, \]
\[A_3 = +\frac{1}{2\sqrt{r}}(\xi_{A_3} - r\xi_{A_2}) \to +\frac{1}{2\sqrt{r}}\xi, \]

where \(x \equiv (K \cdot k)/M^2 = r v \cdot v' \). In the \(M, m \to \infty \) limit, \(\xi_+ = \xi v_1 = \xi_{A_1} = \xi_{A_3} = \xi \) and \(\xi_- = \xi_{A_2} = 0 \), so that all the form factors can be written in terms of the Isgur and Wise function, \(\xi(x) \)\(^{[19]}\). Note that the HMEs are normalized so \(\xi(x) \) is equal to 1 at zero recoil \((x = r \text{ or } v \cdot v' = 1) \)\(^{[20]}\). Specific forms for \(\xi(x) \) are listed in the Appendix.

3 Higgs models

3.1 Transverse Polarization

As we said, semileptonic pseudoscalar decays to pseudoscalar mesons, \(M \to m l \nu \), and to longitudinally polarized vector mesons, \(M \to m^*_L l \nu \), can arise only from the interference of new scalar physics with the SM. In this section, we consider contributions to \(P^\perp(M \to m l \nu) \) and \(P^\perp(M \to m^*_L l \nu) \) from models with charged Higgs scalars. Other types of contributions are possible, such as from scalar leptoquarks\(^{[4, 8, 9]}\).

T. D. Lee first proposed that \(CP \) could be violated via phases in a model with two Higgs doublets\(^{[21]}\). This idea was refined by S. Weinberg with the elimination of flavor changing neutral currents (FCNC) in a model with three Higgs doublets, using a symmetry to ensure that only one Higgs doublet couples to each right-handed fermion field; what is commonly referred to as natural flavor conservation (NFC)\(^{[22]}\). There are various other ways to avoid
the FCNC problem \cite{23, 24}, but for simplicity, we concentrate on models where NFC is either exact, or partially broken \cite{25}. We will assume that the CKM phase is non-zero, so we do not impose strong constraints on CPV in the Higgs sector from ϵ. Even if CP is broken only spontaneously, a non-zero CKM phase can arise after integrating out super-heavy fields, so we see no reason to take it zero.

We are interested in the interference of a charged Higgs boson with the SM W boson, so one need only parametrize an effective Lagrangian for the charged Higgs coupling to fermions. In a model with N charged scalar fields, one obtains a Lagrangian in terms of the $N-1$ physical charged Higgs bosons \cite{13}:

\begin{equation}
-L_{H^+} = \frac{1}{v} \sum_{i=1}^{N-1} \left[\alpha_i \bar{U}_L M_D D_R H^+_i + \beta_i \bar{U}_R M_U M_D D_L H^+_i + \gamma_i \bar{N}_L M_E E_R H^+_i \right] \right] + H.c.
\end{equation}

Here v is the SM Higgs VEV, $v = (4 G_F / \sqrt{2})^{-1/2} \approx 174$ GeV; U, D, N, and E are fields for the up quarks ($U^T = (u \ c \ t)$), down quarks, neutrinos and charged leptons; M_D, M_U, and M_E are the diagonal mass matrices; and V_L is the CKM matrix.

If the coefficients α_i, β_i and γ_i are complex, the interference between the charged Higgs and W boson amplitudes in Fig. 1 produces a T-violating transverse polarization of the lepton. Since the H^+ amplitude is proportional to the matrix elements in (4), one gets contributions to $P_{i\perp} (M \rightarrow m^* l \nu)$ only for decays in which the m^* is longitudinally polarized. This means that if one can veto decays with transversely polarized m^*s, the denominator in (4) will
be reduced while the numerator will remain unchanged, leading to a larger polarization.

Let us evaluate P^\perp_l in terms of the velocity dependent form factors. Then we can take the heavy quark effective limit, which allows us to write P^\perp_l with only one form factor, $\xi(x)$. We calculate P^\perp_l for semileptonic pseudoscalar decays to pseudoscalar mesons, to longitudinally polarized vector mesons, and to unpolarized vector mesons in this limit:

$$P^\perp_l(x)\left(M^{H^+} \rightarrow ml\nu\right) = C_{H^+} \frac{3\pi}{4} \frac{(1-r^2)(x+r)(x^2-r^2)\sqrt{t}}{(1+r)^2 x_1^2} \frac{\xi(x)^2}{\xi(x)^2}, \quad (8)$$

$$P^\perp_l(x)\left(M^{H^+} \rightarrow m^*_l l\nu\right) = C_{H^+} \frac{3\pi}{4} \frac{(1-r^2)(x+r)(x^2-r^2)\sqrt{t}}{(1-r^2)(x+r)^2 x_1} \frac{\xi(x)^2}{\xi(x)^2}, \quad (9)$$

$$P^\perp_l(x)\left(M^{H^+} \rightarrow m^*-l\nu\right) = C_{H^+} \frac{3\pi}{4} \frac{(1-r^2)(x+r)(x^2-r^2)\sqrt{t}}{(1-r)(x+r)^2 x_1 + 4t(x+r)xx_1} \frac{\xi(x)^2}{\xi(x)^2}. \quad (10)$$

We list the full expressions with general form factors in the Appendix. Note that we have already integrated P^\perp_l over one kinematical variable ($(K\cdot p)/M^2$) so that P^\perp_l is only a function of the remaining kinematical variable x (where $x = (K\cdot k)/M^2$ and $x_1 \equiv \sqrt{x^2-r^2}$). This integration gives the factor $3\pi/4$ in (8)–(10). For $M^+ \rightarrow m^0(s)t^-l^+\nu_l$ and $M^0 \rightarrow m^-(-s)t^-l^-\nu_l$ decays, the new physics coefficient is given by:

$$C_{H^+} = \frac{Mm_t}{M_W^2} \sum_{i=1}^{N-1} \frac{M_W^2}{M_{H_i}^2} \left(\frac{m_D}{m_D \mp m_U} \text{Im} \alpha_i \gamma_i^* + \frac{m_U}{m_D \mp m_U} \text{Im} \beta_i \gamma_i^* \right), \quad (11)$$
while C_{H^+} for the CP conjugate decays has the opposite sign \[^{[26]}\]. Here m_l, m_U and m_D are the lepton and current quark masses specific to each decay, and M_{H^i} and the coefficients α_i, β_i and γ_i come from the effective Lagrangian \(^7\). The $-$ ($+$) applies to $M \to ml \nu$ ($M \to m^* l \nu$) decays. Since $m_U > m_D$ in D decays, it follows that $P_{l^+}^\perp(D^+ \to \bar{K}^0 l^+ \nu)$ has the opposite sign as $P_{l^+}^\perp(K^+ \to \pi^0 l^+ \nu)$, $P_{l^+}^\perp(B^+ \to \bar{D}^0(*) l^+ \nu)$, and $P_{l^+}^\perp(D^+ \to \bar{K}^0 l^+ \nu)$. It also means that C_{H^+} in the decays to m^* are somewhat suppressed over those to m when m_D and m_U are of the same order, as in B decays.

We have neglected all lepton mass effects in the denominator of \(8\)–\(10\). For $l = \mu$, this is always a very small effect. In $l = \tau$ decays, it changes our results only qualitatively when $P_\tau^\perp \sim 1$, i.e., when H^+ effects are important in the denominator of \(8\). In that case, it might be possible to see new physics effects in changes to the branching ratio of $B \to D^{(*)} \tau \nu$.

To estimate the size of $P_{l^+}^\perp$ in various models, we must integrate over the remaining kinematical variable x. In an experiment, one generally measures the overall asymmetry in \(8\), rather than measuring $P_{l^+}^\perp(x)$ for each x and then averaging. So we must integrate the numerator and denominator of \(8\)–\(10\) separately:

\[
\begin{align*}
\overline{P}_{l^+}^\perp \left(M \xrightarrow{H^+} ml \nu \right) &= C_{H^+} \frac{3\pi}{4} \frac{I_\perp}{I_S}, \\
\overline{P}_{l^+}^\perp \left(M \xrightarrow{H^+} m^*_L l \nu \right) &= C_{H^+} \frac{3\pi}{4} \frac{I_\perp}{I_L}, \\
\overline{P}_{l^+}^\perp \left(M \xrightarrow{H^+} m^*_T l \nu \right) &= C_{H^+} \frac{3\pi}{4} \frac{I_\perp}{I_L + I_T},
\end{align*}
\]

where I_\perp, I_S, I_L and I_T are integrals of the kinematics in \(8\)–\(10\). Unfor-
tunately, this means we must know something about the overall form factor $\xi(x)$. In the Appendix, we list two possible parametrizations for $\xi(x)$: a relativistic oscillator model, and a monopole approximation. P_l^\pm in decays to pseudoscalars in these models differs by at most 15% for r in the region of interest ($r > 0.25$ for all the decays we study), and considerably less for decays to vector mesons. If we set the monopole parameter ρ equal to 1 in (31), we can obtain analytic expressions for P_l^\pm in terms of r. We list the corresponding I’s in the Appendix. From Fig. 2, we see that choosing $\rho = 1$ instead of 1.2 (in order to obtain analytic expressions) changes P_l^\pm by only a few percent (for $r > 0.25$). Even naively dividing out $\xi(x)^2$ from the numerator and denominator of (8)-(11) gives results which (for $r > 0.25$) differ by 30%, or much less, from the other parametrizations of $\xi(x)$.

3.2 Constraints

For the purposes of placing constraints on P_l^\pm, we make two simplifying assumptions. First, we take the α_i, β_i and γ_i to be flavor diagonal. This strictly holds only in models with NFC, so Higgs models without NFC may have somewhat weaker, more model-dependent bounds [27]. Second, we will assume that the lightest charged Higgs mass eigenstate, h^+, gives the dominant contribution, so that we can drop the subscript i on the coefficients α, β and γ. In 3HDMs, $\text{Im}\alpha_1\gamma_1^* = -\text{Im}\alpha_2\gamma_2^*$ and $\text{Im}\beta_1\gamma_1^* = -\text{Im}\beta_2\gamma_2^*$, so in that case we are simply making the replacement $M_{H_2^-}^{-2} - M_{H_1^-}^{-2} \rightarrow M_{h^+}^{-2}$. This has virtually no effect on CP violating constraints, because they have the same behavior, and the CP conserving constraints tend to require a large splitting.
between $M_{H^+_1}$ and $M_{H^+_2}$ anyway.

We want to constrain C_{H^+}, which now depends upon $\text{Im} \alpha \gamma^*$, $\text{Im} \beta \gamma^*$, $M_W^2/M_{h^+}^2$, and the masses involved with M and $m^{(*)}$. In the general case (given our two assumptions), we can bound $\text{Im} \alpha \gamma^* M_W^2/M_{h^+}^2$ directly from the experimental upper bound on $P_\mu^\perp (K^+ \rightarrow \pi^0 \mu^+ \nu_\mu)$ of 0.7% [10] to obtain

$$|\text{Im} \alpha \gamma^*| \frac{M_W^2}{M_{h^+}^2} < 730.$$ \hspace{1cm} (13)

Since m_U is small, $P_\mu^\perp (K^+ \rightarrow \pi^0 \mu^+ \nu_\mu)$ is insensitive to $\text{Im} \beta \gamma^*$. The best we can do is to use $|\text{Im} \beta \gamma^*| < |\beta| \cdot |\gamma|$. From the bounds placed upon $|\beta|$ and $|\gamma|$ by [28], we obtain

$$|\text{Im} \beta \gamma^*| \frac{M_W^2}{M_{h^+}^2} < 160 \frac{M_W}{M_{h^+}} < 285,$$ \hspace{1cm} (14)

From (14), one sees that the upper bound on $\text{Im} \beta \gamma^* M_W^2/M_{h^+}^2$ decreases with increasing M_{h^+} and is at its maximum when M_{h^+} is at the model independent lower bound of $M_Z/2$. We can use (13) and (14) in (12) to obtain upper bounds on P_μ^\perp for various decays. Our results are summarized in the first column of Table 1.

Let us now specialize to the case of 3HDMs. The CP violating coefficients can be written [8]

$$\text{Im} \alpha \gamma^* = \frac{1}{2} \sin 2\theta_3 \sin \delta_{uvu} \nu_{d\nu_e},$$

$$\text{Im} \beta \gamma^* = \frac{1}{2} \sin 2\theta_3 \sin \delta_{vdu} \nu_{e\nu_d},$$

$$\text{Im} \alpha \beta^* = \frac{1}{2} \sin 2\theta_3 \sin \delta_{vde} \nu_{u\nu_e},$$

$$\text{Im} \beta \beta^* = \frac{1}{2} \sin 2\theta_3 \sin \delta_{vue} \nu_{u\nu_d},$$ \hspace{1cm} (15)
where v_u, v_d, and v_e give mass to the up quarks, down quarks and charged leptons, respectively. θ_3 (δ) is a free, CP conserving (CP violating) parameter of the model. For convenience, let us define

$$\kappa \equiv |\sin 2\theta_3 \sin \delta| \frac{M_W^2}{M_{h^+}^2},$$

so that $\text{Im} \alpha^* M_W^2 / M_{h^+}^2$ and $\text{Im} \beta^* M_W^2 / M_{h^+}^2$ are just given in terms of κ and the VEVs. The relations in (15) are not enough by themselves to better the constraints given by (13) and (14), so we consider specific models.

A common assumption is that the three VEVs are all of the same order, i.e., $v_u \simeq v_d \simeq v_e$. We refer to this as the VEV Equality (VE) model. In the VE model, all three CP violating coefficients are of order one, and P_{μ} will be quite small. But with one VEV for each type of massive fermion, this need not be the case. Since fermion masses are proportional to the VEVs as well as the Yukawa couplings, it is quite reasonable to suppose that the hierarchy in the fermion masses lies in the VEVs, and not the Yukawa couplings [8]. Suppose the third family Yukawa couplings are of the same order. Then one has $v_u : v_d : v_e \sim m_t : m_b : m_\tau$, which implies that

$$|\text{Im} \alpha^*| \frac{M_W^2}{M_{h^+}^2} \sim \frac{m_t^2}{m_b m_\tau} \kappa,$$

so that P_{μ} need not be small [9]. We will refer to this as the VEV Hierarchy (VH) model. While the VH model provides a reasonable justification for considering large ratios of VEVs, it does not solve all the mass hierarchy problems. We view the VE and VH models as two reasonable extremes, much in the same way that the range 1 to m_t/m_b is considered for “tan β”
in 2HDMs.

For simplicity, we define the VEVs in the VE model to be identically equal, and in the VH model to have the ratio \(m_t : m_b : m_\tau \) exactly. Since (16) implies \(\kappa < 3.2 \) or so, \(P^\perp_\mu (K^+ \rightarrow \pi^0 \mu^+ \nu_\mu) \) does not put any further constraints on \(\kappa \) in the VE model. However, the VH model can reach the upper bound on \(P^\perp_\mu (K^+ \rightarrow \pi^0 \mu^+ \nu_\mu) \), and one needs \(\kappa < 0.5 \). We now must consider if there are any other constraints on \(\kappa \) which would force \(P^\perp_\ell \) to be small.

As we said in the Introduction, the most stringent constraint on CPV often comes from the electric dipole moment of the neutron, \(d_n \). The purely hadronic coefficient \(\text{Im} \alpha \beta^* \) is very constrained by \(d_n \) [8], and in the VE model we find that we need \(\kappa < 1.2 \). However, in the VH model, \(\text{Im} \alpha \gamma^*/\text{Im} \alpha \beta^* \) is large, and the upper bound on \(\kappa \) is only about 6, which is ten times weaker than the \(K_{\mu 3} \) bound. This is a consequence of the semileptonic decay—only quark-lepton CPV is enhanced in the VH model.

\(CP \) conserving processes may also constrain \(P^\perp_\ell \). Consider the inclusive decay \(b \rightarrow s \gamma \), whose branching ratio is now bounded below \(5.4 \times 10^{-4} \) at the 95\% confidence level by the CLEO collaboration [29]. This FCNC decay occurs via a one loop diagram in the SM with a branching ratio of \(3-4 \times 10^{-4} \) [30]. In 2HDMs, the charged Higgs contribution adds constructively with the SM contribution, and one can bound the charged Higgs mass to be above about 450 GeV [31]. One would like to generalize this result to 3HDMs. The amplitude for \(b \rightarrow s \gamma \) (at the \(W \) mass scale) can be written [32]...
\[A = F_1 \left(\frac{m_t^2}{M_W^2} \right) + \frac{1}{3} |\beta| F_1 \left(\frac{m_t^2}{M_W^2} \right) + \text{Re} \alpha_i \beta_i^* F_2 \left(\frac{m_t^2}{M_{H_i^+}^2} \right) + i \text{Im} \alpha_i \beta_i^* F_2 \left(\frac{m_t^2}{M_{H_i^+}^2} \right), \]

(18)

where the sum over \(i \) runs from 1 to \(N - 1 \), and one can show that \(\beta_i \beta_i^* = (v^2 - v_u^2)/v_u^2 \), \(\text{Re} \alpha_i \beta_i^* = 1 \), and \(\text{Im} \alpha_i \beta_i^* = 0 \). In the SM, only the first term is non-zero. For \(N = 2 \), we recover the 2HDM limit, i.e. \((|\beta|^2, \text{Re} \alpha^*, \text{Im} \alpha^*) \rightarrow (v_d^2/v_u^2, 1, 0)\). In 3HDMs, one can have cancellations between the pieces as long as \(H_1^+ \) and \(H_2^+ \) are not degenerate in mass. It turns out that for both the VE and VH models, \(\text{Re} \alpha_1 \beta_1^* \) can be less than zero, so that for sufficiently large \(M_{H_2^+} \), there is no bound from \(B(b \to s\gamma) \) on \(M_{H_1^+} \). For \(M_{H_1^+} \sim M_W \) (or smaller), \(\sin 2\theta_3 \sin \delta \) must be somewhat smaller than one \([33]\), but this is not enough to better the constraints on \(\kappa \) we have derived thus far.

There are also constraints from \(B(b \to s\gamma) \) on \(\text{Im} \alpha^* \) \([32, 35]\), which in turn constrains \(P_{l^+} \) via \((14)\). Since the last term in \((18)\) is purely imaginary, it does not destructively interfere with the other terms, so that the contribution from \(\text{Im} \alpha^* \) to \(B(b \to s\gamma) \) is always positive. However, even for \(M_{H_1^+} \sim M_Z/2 \), one can only bound \(\text{Im} \alpha^* < 2 \) \([33]\), which is satisfied in both the VE and VH models. Since the CLEO observation of \(B(B \to K^{*}\gamma) = (4.5 \pm 1.5 \pm 0.9) \times 10^{-5} \) \([29]\) effectively sets a lower limit on \(B(b \to s\gamma) \) of about \(10^{-4} \), the constraint on \(\text{Im} \alpha^* \) from \(b \to s\gamma \) will never be able to strongly constrain \(P_{l^+} \) in these models.

Finally, we note that the VE and VH models give specific predictions for \(\text{Im} \beta^* \) (see \((13)\)), and in both cases it must be less than 2. In general
3HDMs, one cannot improve upon the bound in (14), though large Im$\beta\gamma^*$
would require small v_u/v_d as well as very large v/v_e, which is not as appealing
theoretically as either the VE or VH models.

In Table 1, we summarize the maximum values for \overline{P}^\pm_l allowed in the
VE (VH) model, with a bound of $\kappa < 1.2$ ($\kappa < 0.5$) coming from the upper
bound on d_n (P^\pm_l in K decays).

4 Left-Right Models

Decays to vector mesons, $M \rightarrow m^*l\nu$, have one more 4-vector than $M \rightarrow
ml\nu$ decays with which to construct hadronic matrix elements. The m^*
polarization vector lets us construct both a vector and an axial vector current
(see (3)), allowing a non-zero V and A interference term. The upshot is
that $P^\pm_l(M \rightarrow m^*l\nu)$ gets contributions from spin 1 effective CP violating
Lagrangians as well as those of spin 0.

Let us therefore consider left-right models [36], whose charged gauge bo-
son couplings to fermions can be parametrized by the following effective
Lagrangian:

$$-\mathcal{L}_{W^+} = \frac{g_L}{\sqrt{2}} \left[\bar{U}_L \gamma_\mu V_L D_L + \bar{N}_L \gamma_\mu E_L \right] W^+_{L \mu}$$

$$+ \frac{g_R}{\sqrt{2}} \left[\bar{U}_R \gamma_\mu V_R D_R \right] W^+_{R \mu} + H.c.,$$

(19)

where V_R is the right-handed CKM matrix. We neglect right-handed currents
coupled to leptons because they yield polarizations proportional to m_ν. This
means that P^\pm_l must arise from the interference of the SM W_L diagram and
a diagram containing W_L-W_R mixing (see Fig. 1) [4]. We define the mixing angle ζ by

\[
\begin{pmatrix} W_1 \\ W_2 \end{pmatrix} = \begin{pmatrix} \cos \zeta & \sin \zeta \\ -\sin \zeta & \cos \zeta \end{pmatrix} \begin{pmatrix} W_L \\ W_R \end{pmatrix},
\]

(20)

where W_1 and W_2 are the two mass eigenstates. The interference between V and A HMEs vanishes for longitudinally polarized m^*'s, so P_l^\perp is only non-zero for transversely polarized m^*'s. Further, the numerator of (1) has the same magnitude, but opposite sign, for m^*'s with T_1 and T_2 polarizations. Therefore, the polarization in the sum of decays to both transversely polarized m^* states, $P_l^\perp(M \to m^*_T l\nu)$, is identically zero, and we must consider P_l^\perp for either T_1 or T_2. We again write P_l^\perp in the heavy quark effective limit,

\[
P_l^\perp(x) \left(M \to W^+_L m^*_T l\nu \right) = C_{W^+_L} \frac{3\pi}{4} \frac{(x + r)(x^2 - r^2)\sqrt{t}}{2t(x + r)x_1(x - r/2)} \frac{\xi(x)^2}{\xi(x)^2}
\]

\[
P_l^\perp(x) \left(M \to W^+_L m^*_T l\nu \right) = -C_{W^+_L} \frac{3\pi}{4} \frac{(x + r)(x^2 - r^2)\sqrt{t}}{2t(x + r)x_1(x + r/2)} \frac{\xi(x)^2}{\xi(x)^2}
\]

and list the full expressions in the Appendix. The coefficient,

\[
C_{W^+_L} = 2 \frac{m_l}{M} \tan \zeta \text{ Re} \left(\frac{g_R V_{RUD}^{UD}}{g_L V_{LUD}^{UD}} \right)
\]

(22)

depends upon the W_L-W_R mixing angle ζ, the left and right CKM elements V_{Lij} and V_{Rij} $(i, j = U, D)$, and gauge coupling constants g_L and g_R.

We can find an averaged polarization by integrating the numerator and denominator of (21) over x.

\(\mathcal{P}_l^- \left(M \frac{W^+}{W^0} m^*_{T1} l\nu \right) = \ C_{W_R^+} \frac{3\pi}{4} \frac{I_T}{I_{T1}} \),

\(\mathcal{P}_l^- \left(M \frac{W^+}{W^0} m^*_{T2} l\nu \right) = -C_{W_R^+} \frac{3\pi}{4} \frac{I_T}{I_{T2}}. \) \((23) \)

We again use the \(\rho = 1 \) monopole expression for \(\xi(x) \), which results in the \(I_{T1} \) and \(I_{T2} \) listed in the Appendix. We have normalized the \(I \)'s so that \(I_{T1} + I_{T2} = I_T \). Fig. 3 shows that using \(\rho = 1 \) (to obtain an analytic expression) instead of 1.2 is a good approximation since \(\xi(x)^2 \) appears in both the numerator and denominator in \((21) \).

Let us consider constraints on \(P_{\tau}^- \) in \(B_{\tau3} \) decays. Our Lagrangian in \((1) \) gives a tree level contribution to \(\epsilon' \) \([37] \), and we can relate \(P_{\tau}^- \) and \(\epsilon' \). If \(\text{Im}(V_{UD}^{\bar{R}}/V_{UL}^{\bar{D}}) \) is roughly the same order for all \(UD \), then \(P_{\tau}^- \sim 10^{-2}(\epsilon'/\epsilon) \), which is tiny. It is in principle possible that \(\text{Im}(V_{ud}^{\bar{R}}/V_{us}^{\bar{L}}) \simeq \text{Im}(V_{us}^{\bar{R}}/V_{us}^{\bar{L}}) \simeq 0 \) while \(\text{Im}(V_{cb}^{\bar{R}}/V_{cb}^{\bar{L}}) \sim 1 \), which gives \(P_{\tau}^- \sim 2\zeta \). Nevertheless, \(|\zeta| \) is constrained to be less than about 6% from \(\mu \) decays \([38] \), and less than about 2% from \(b \rightarrow s\gamma \) \([39] \), so that we can bound \(P_{\tau}^- \) to be less than about 4%.

5 Discussion

Let us consider the various decay modes. In particular, we discuss whether one should study charged or neutral decays, of \(B \) or \(D \) mesons, to pseudoscalar or vector mesons, with \(l = \mu \) or \(l = \tau \).

Technically, the transverse polarization, \(P_{l}^\perp \), is motion reversal violating, which is equivalent to \(T \) violation only in the absence of final state interaction.
(FSI) effects \[10\]. This is irrelevant in charged decays, e.g. \(M^+ \rightarrow \bar{m}^0 l^+ \nu_l\), because they have only one charged decay product, and FSIs are negligible. In neutral decays, e.g. \(M^0 \rightarrow m^- l^+ \nu_l\), there are two charged particles in the final state, so one can expect FSI effects of order \(\alpha_{EM}/\pi\) \[11\]. For this reason, measurements of \(P^\perp_l\) in \(K_{\mu3}\) decays are done on the \(K^+ \rightarrow \pi^0 \mu^+ \nu_{\mu}\) mode. But if the experimental sensitivity to \(P^\perp_l\) in a given decay is only at the percent level, one can study decays of neutral mesons as well. Actually, since both \(B\) and \(D\) mesons are produced in pairs, one must be able to determine the charge of the lepton (because \(P^\perp_l\) flips sign for the \(CP\) conjugate decay) so that one effectively measures the asymmetry

\[
A_{CPV} \equiv \frac{1}{2} \left[P^\perp_l(M \rightarrow \bar{m} l^+ \nu_l) - P^\perp_l(\bar{M} \rightarrow ml^- \bar{\nu}_l) \right],
\]

which is a true \(CP\) violating observable. Since FSI effects cancel in \(A_{CPV}\), charged decays are in principle not preferable to neutral decays.

From Table 1, it is clear that \(B\) decays give larger \(P^\perp_l\) than \(D\) decays. One can see from \([11]\) that this has two causes: \(M_D\) is smaller than \(M_B\), and the heavier quark mass in \(D\) decays, \(m_c\), is proportional to \(\text{Im} \beta \gamma^*\) instead of \(\text{Im} \alpha \gamma^*\). The former coefficient is more constrained than the latter, and models in which \(\text{Im} \beta \gamma^*\) is large tend to be less theoretically appealing. For example, in 3HDMs, one would need \(v_u/v_d\) to be small while \(v/v_e\) is very large.

Let us estimate the number of decays necessary to see a \(5\sigma\) signal of \(\overline{P}^\perp_l\) with the maximum allowed values in the general case (column 1 of Table 1). We use \(N = 25k/P^\perp_l^2\), and take \(k \sim 10\). One needs about \(2.5 \times 10^4\)
$B \to D \mu \nu$ decays, which (naïvely) translates into 2×10^6 B’s (including B^\pm, B^0, and \bar{B}^0). In $B \to D^* \mu \nu$ decays, P_{\perp}^τ is 6 times smaller (if one does not veto decays to transversely polarized m^*’s), but the branching ratio is about 3 times larger, so one needs about 12 times as many B’s as in $B \to D \mu \nu$ decays to see a signal. By contrast, one needs about 1.3×10^6 (2.8×10^7) $D \to K \mu \nu$ decays to observe P_{\perp}^τ for the maximum value in the general case (VH model), which naïvely requires 4×10^7 (10^9) D’s.

To observe P_{\perp}^μ of a muon, one needs to stop the muon so it can decay. At a symmetric B factory, such as CESR or DORIS II, the muon in $B \to D \mu \nu$ will have momentum of up to 2.3 GeV, which would require perhaps 1.3kg/cm^2 of material (e.g. ~4.5m of Al) to stop it [42]. Unfortunately, even 2.5×10^4 $B \to D \mu \nu$ decays is probably out of reach of either machine. Stopping muons would be more difficult at the asymmetric SLAC B factory, since the muon momenta will be higher in the lab frame, but if it could be accomplished, the luminosity should be sufficient to see a 10% polarization. One could consider measuring P_{\perp}^μ at a hadron collider, where the number of $B_{\mu 3}$ and $D_{\mu 3}$ decays would be much greater, but the hurdle of stopping the muon would need to be overcome.

A better possibility may be $B_{\tau 3}$ decays, because one can have $P_{\perp}^\tau \sim 1$. One needs perhaps 250 $B \to D \tau \nu$ decays, and 3000 $B \to D^* \tau \nu$ decays to see a 5σ signal. Both of these are probably out of reach of the existing symmetric machines, but should be no problem for the SLAC B factory. Unlike muons, taus do not need to be stopped, and one can measure the polarization of the τ from its decay spectrum [43]. In $\tau^\pm \to \pi^\pm \nu_\tau$ decays, for example, the decay width has the behavior $d\Gamma \sim 1 \mp \vec{P}_\tau \cdot \hat{p}_\pi \sim 1 - P_{\perp}^\tau \cos \theta$ [44], where \vec{P}_τ is the
polarization vector of the τ^{\pm}, \hat{p}_π is a unit vector in the pion direction, and θ is the angle of \hat{p}_π from the normal of the B decay plane. The main problem with B_{r3} decays at the SLAC B factory may lie in defining the decay plane, since the B’s do not decay at rest, in which case we may have underestimated k.

Finally, we note that P_l^\perp from left-right models is probably unobservable at the SLAC B factory. In addition to the small values for P_l^\perp required by the bounds on W_L-W_R mixing, one needs to measure the polarization of m^* as well as of l, so that our k is perhaps 100 or more. For $P_l^\perp \sim 4\%$, one needs more than 10^6 $B \to D^*\tau\nu$ decays.

We have derived expressions for the transverse polarization of the lepton in semileptonic meson decays, in the heavy quark effective limit. Reasonable multi-Higgs models can give a muon polarization in B decays of order 10% and a tau polarization of order unity. Both of these should be within the luminosity reach of the SLAC B factory, though the tau polarization has the advantage of not requiring a stopper. Should a non-zero signal be observed, implying the existence of physics beyond the Standard Model, the best place to study P_l^\perp would be at a high luminosity symmetric B factory.

Acknowledgments

I sincerely appreciate helpful conversations with G. Kane, J. Bernabéu, J. N. Ng, D. Bryman and Y. Kuno. This work was supported in part by a grant from the Natural Science and Engineering Research Council of Canada.
| Decay | $|\overline{P}_l^\perp|$ general case | $|\overline{P}_l^\perp|$ VE model | $|\overline{P}_l^\perp|$ VH model |
|-----------------------|--|-----------------------------------|-------------------------------|
| $K^+ \rightarrow \pi^0 \mu^+ \nu_\mu$ | 0.7% 1×10^{-5} | 0.7% |
| $D^+ \rightarrow \bar{K}^0 \mu^+ \nu_\mu$ | 1.4% 4×10^{-5} | 0.3% |
| $D^+ \rightarrow \bar{K}_L^{0*} \mu^+ \nu_\mu$ | 0.51% 2×10^{-5} | 0.1% |
| $D^+ \rightarrow \bar{K}_L^{0*} \mu^+ \nu_\mu$ | 0.27% 1×10^{-5} | 0.06% |
| $B^+ \rightarrow \bar{D}^0 \mu^+ \nu_\mu$ | 10% 2×10^{-4} | 9.7% |
| $B^+ \rightarrow \bar{D}_L^{0*} \mu^+ \nu_\mu$ | 3.3% 6×10^{-5} | 2.9% |
| $B^+ \rightarrow \bar{D}_L^{0*} \mu^+ \nu_\mu$ | 1.7% 3×10^{-5} | 1.5% |
| $B^+ \rightarrow \bar{D}_0 \tau^+ \nu_\tau$ | ~ 1 3×10^{-3} | ~ 1 |
| $B^+ \rightarrow \bar{D}_L^{0*} \tau^+ \nu_\tau$ | $\sim 55%$ 1×10^{-3} | $\sim 50%$ |
| $B^+ \rightarrow \bar{D}_0^{0*} \tau^+ \nu_\tau$ | $\sim 29%$ 0.5×10^{-3} | $\sim 25%$ |

Table 1: Maximum values of the transverse polarization (\overline{P}_l^\perp) for various decay modes due to SM interference with charged Higgs bosons in the general case and in two specific models. K_0^{0*} (D_0^{0*}) refers to longitudinally polarized K^{0*}’s (D^{0*}’s). For the VE (VH) model, we use $\kappa < 1.2$ ($\kappa < 0.5$) as derived in the text. Numbers of order one are approximate since we neglect H^+ effects in the denominator of (1).
Appendix

So far, we have used the heavy quark effective limit, in which \(\xi_+(x) = \xi_1(x) = \xi_2(x) = \xi(x) \), and \(\xi_-(x) = \xi_3(x) = 0 \). For completeness, we list the expressions for the polarization without that simplification:

\[
P_{\perp}^l(x) \left(M^{H^+} \rightarrow m_l \nu \right) = C_{H^+} \frac{3\pi}{4} \frac{x_1^2 \sqrt{t}}{x_1^2} \times \]

\[
\frac{[(1+r)\xi_+(x)+(1-r)\xi_-(x)]}{[(1+r)\xi_+(x)+(1-r)\xi_-(x)]^2} \times
\]

\[
[(1-r)(x+r)\xi_+(x)+(1+r)(x-r)\xi_-(x)], \tag{25}
\]

\[
P_{\perp}^l(x) \left(M^{H^+} \rightarrow m^*_L l \nu \right) = C_{H^+} \frac{3\pi}{4} \frac{x_1^2 \sqrt{t}}{(x+r)^2 x_1} \times \]

\[
\frac{[\xi_1(x)(x+r)(x-r^2) - (\xi_2(x) + r\xi_3(x))x_1^2]}{[\xi_1(x)(x-r^2) - (\xi_2(x) + r\xi_3(x))(x-r)]^2} \times
\]

\[
\left[\xi_1(x)(x+r) - \frac{1}{2}(\xi_2(x) + r\xi_3(x))(1-r^2) + \frac{1}{2}(\xi_2(x) - r\xi_3(x))x \right] \tag{26}
\]

\[
P_{\perp}^l(x) \left(M^{H^+} \rightarrow m^* l \nu \right) = C_{H^+} \frac{3\pi}{4} \frac{x_1^2 \sqrt{t}}{(x+r)x_1} \times \]

\[
\left[\xi_1(x)(x+r)(x-r^2) - (\xi_2(x) + r\xi_3(x))x_1^2 \right] \times
\]

\[
\left[\xi_1(x)(x+r) - \frac{1}{2}(\xi_2(x) + r\xi_3(x))(1-r^2) + \frac{1}{2}(\xi_2(x) - r\xi_3(x))x \right] \times
\]

\[
\left((x+r) \left[\xi_1(x)(x-r^2) - (\xi_2(x) + r\xi_3(x))(x-r) \right]^2 + 2r^2 \left[\xi_1(x)^2(x-r) + \xi_2(x)^2(x+r) \right] \right)^{-1} \tag{27}
\]

where \(C_{H^+} \) is given in [11]. The corresponding expressions for LR contributions are:
\[P_{l}^{\perp}(x) \left(M \xrightarrow{W_{R}^{+}} m_{T_{1}}^{*} l \nu \right) = C_{W_{R}^{+}} \frac{3\pi}{4} \frac{(x + r)x_{1}^{2}\sqrt{t}}{2t(x + r)x_{1}} \times \]
\[\frac{\xi_{A_{1}}(x)\xi_{V_{1}}(x)}{\left[\frac{3}{4}\xi_{V_{1}}(x)^{2}(x - r) + \frac{1}{4}\xi_{A_{1}}(x)^{2}(x + r) \right]} \] (28)

\[P_{l}^{\perp}(x) \left(M \xrightarrow{W_{R}^{+}} m_{T_{2}}^{*} l \nu \right) = -C_{W_{R}^{+}} \frac{3\pi}{4} \frac{(x + r)x_{1}^{2}\sqrt{t}}{2t(x + r)x_{1}} \times \]
\[\frac{\xi_{A_{1}}(x)\xi_{V_{1}}(x)}{\left[\frac{1}{4}\xi_{V_{1}}(x)^{2}(x - r) + \frac{3}{4}\xi_{A_{1}}(x)^{2}(x + r) \right]} \] (29)

where \(C_{W_{R}^{+}} \) is given by (22).

To find the average polarization, we must integrate both numerator and denominator over \(x \). For this, one must know \(\xi(x) \). One possible choice comes from a relativistic oscillator model \[18\],

\[\xi(x) = \frac{2r}{(x + r)} e^{-\beta(x - r)/(x + r)} \] (30)

where \(\beta \simeq 1.85 \) \[18\]. Another possibility is a monopole approximation,

\[\xi(x) = \frac{1}{1 + \rho^{2}(x - r)/r} \] (31)

where \(\rho \simeq 1.2 \pm 0.25 \) \[45\]. For most choices of \(\xi(x) \), the integration over \(x \) must be done numerically, but for the monopole approximation with \(\rho = 1 \), one can obtain reasonably simple analytic expressions (see below). Since \(\xi(x)^{2} \) appears both in the numerator and denominator of (31), \(P_{l}^{\perp} \) is fairly insensitive to the choice of \(\xi(x) \). We find that for decays with the lowest value of \(r \) (\(\sim 0.25 \)), the difference between \(P_{l}^{\perp} \) using \(\xi(x) \) from (31) for \(\rho = 1 \) (analytic case) and \(\rho = 1.2 \), and (30) is no more than 15%, and considerably
less in most cases (see Fig. 2 and 3). Thus we use (31) with $\rho = 1$ to obtain the following analytic expressions for the integrals in (12) and (23):

\[I_\perp = \int_r^{(1+r^2)/2} dx (1 - r^2)(x + r)x^2 \sqrt{t} \xi(x)^2 \]
\[= \frac{1}{15} r^2(1 - r)(1 + 6r - 6r^2 - r^3) \]
\[- \frac{2r(1 - r + 3r - r^4)}{\sqrt{1 + r^2}} \tan^{-1} \left(\frac{1 - r}{\sqrt{1 + r^2}} \right) \]
\[= \frac{8}{1 + r^2} \left(1 - r^2 \right) \left(1 + 3r - 3r^2 - r^3 \right) + 4r^4(1 - r^2) \left[\tan^{-1} \left(\frac{2r}{1 - r^2} \right) - \frac{\pi}{2} - \ln r \right] \]

\[I_\parallel = \int_r^{(1+r^2)/2} dx (1 + r^2)x^2 \xi(x)^2 \]
\[= \frac{1}{8} \frac{r^2(1 - r)(1 + r^2)(1 + 10r^2 + 4r^3)}{1 + r^2} + \frac{3}{2} r^4(1 + r)^2 \ln r \]

\[I_L = \int_r^{(1+r^2)/2} dx (1 - r^2)(x + r)^2 x_1 \xi(x)^2 \]
\[= \frac{1}{8} \frac{r^2(1 - r)(1 + r)(1 + 8r - 6r^2 + 8r^3 + r^4)}{1 + r^2} \]
\[+ 2r^4(1 - r^2) \left[\tan^{-1} \left(\frac{2r}{1 - r^2} \right) - \frac{\pi}{2} - \frac{1}{4} \ln r \right] \]

\[I_T = \int_r^{(1+r^2)/2} dx 4t(x + r)x x_1 \xi(x)^2 \]
\[= \frac{1}{6} r^2(1 + r)^3(1 + 3r - 3r^2 - r^3) \]
\[+ 4r^4(1 + r^2) \left[\tan^{-1} \left(\frac{2r}{1 - r^2} \right) - \frac{\pi}{2} \right] + 2r^4(1 - r^2) \ln r \]

\[I_{T1} = \int_r^{(1+r^2)/2} dx 2t(x + r)x_1 (x - r/2) \xi(x)^2 \]
\[= \frac{1}{12} r^2(1 - r^2)(1 + 3r + 34r^2 + 3r^3 + r^4) \]
\[+ r^4(1 + r^2) \left[\tan^{-1} \left(\frac{2r}{1 - r^2} \right) - \frac{\pi}{2} \right] + r^4(2 - r + 2r^2) \ln r \]
\[I_{T_2} = \int_r^{(1+r^2)/2} dx \: 2t(x+r)x_1(x+r/2) \xi(x)^2 \]
\[= \frac{1}{12} r^2(1-r^2)(1+9r-14r^2+9r^3+r^4) \]
\[+ r^4(3(1+r)^2 - 8r) \left[\tan^{-1}\left(\frac{2r}{1-r^2} \right) - \frac{\pi}{2} \right] - 3r^5 \ln r \]
(37)

References

[1] K. Smith et al, Phys. Lett. B234, 191 (1990).

[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys., 49, 652 (1973).

[3] For a review, see S. M. Barr and W. Marciano in CP Violation, edited by C. Jarlskog, World Scientific, Singapore (1989).

[4] P. Castoldi, J.M. Frère and G. Kane, Phys. Rev. D39, 2633 (1989).

[5] T. D. Lee and C. S. Wu, Ann. Rev. Nucl. Sci. 16, 471 (1966).

[6] A. Zhitnitskii, Yad. Fiz. 31, 1024 (1980) [Sov. J. Nucl. Phys. 31, 529 (1980)].

[7] In practice, most models which contribute to \(P_t^\perp \) have CPV in both their quark and lepton sectors, so that both \(d_n \) and \(d_e \) are constraints, but it is possible to construct models which give contributions neither to \(d_n \) nor \(d_e \), but which give a sizable \(P_t^\perp \) \[8\].
[8] R. Garisto and G. Kane, Phys. Rev. D44, 2038 (1991).

[9] G. Bélanger and C. Geng, Phys. Rev. D44, 2789 (1991).

[10] M. Campbell et al, Phys. Rev. D27, 1056 (1983).

[11] J. Imazato et al, KEK Report 91-9 (1991) (unpublished).

[12] Y. Kuno, private communication.

[13] H.Y. Cheng, Phys. Rev. D26, 143 (1982).

[14] D. Atwood, G. Eilam and A. Soni, Phys. Rev. Lett. 71, 492 (1993).

[15] We do not consider possible tensor contributions; see M. Leurer, Phys. Rev. Lett. 62, 1967 (1989).

[16] H. Georgi, Phys. Lett. B240, 447 (1990).

[17] M. Luke, Phys. Lett. B252, 447 (1990).

[18] M. Neubert and V. Rieckert, Nucl. Phys. B382, 97 (1992).

[19] N. Isgur and M. Wise, Phys. Lett. B232, 113 (1989); Ibid. B237, 527 (1990).

[20] A. Falk, H. Georgi, B. Grinstein and M. Wise, Nucl. Phys. B343, 1 (1990).

[21] T. D. Lee, Phys. Rev. D8, 1226 (1973).

[22] S. Weinberg, Phys. Rev. Lett. 37, 657 (1976).
[23] H. Georgi and D. Nanopoulos, Phys. Lett. **B82**, 95 (1979).

[24] L. Hall and S. Weinberg, Phys. Rev. **D48**, R979 (1993); A. Antaramian, L. Hall, and A. Rasin, Phys. Rev. Lett. **69**, 1871 (1992).

[25] J. Liu and L. Wolfenstein, Nucl. Phys. **B289**, 1 (1987).

[26] L. B. Okun and I. B. Khriplovich, Yad. Fiz. **6**, 821 (1967) [Sov. J. Nucl. Phys. **6**, 598 (1967)].

[27] However, one must be careful because P_{l}^{\perp} in models with tree level FCNCs may be strongly constrained by the μ longitudinal polarization in $K_L \to \mu^+\mu^-$ decays \[25\].

[28] Y. Grossman, Weizmann Institute Report WIS-94-3-PH (1994), unpublished (hep-ph/9401311).

[29] E. Thorndike, CLEO Collab., talk given at the 1993 Meeting of the American Physical Society, Washington, D.C., April 1993; R. Ammar et. al. (CLEO Collab.), Phys. Rev. Lett. **71**, 674 (1993).

[30] M. Misiak, Phys. Lett. **B269**, 161 (1991).

[31] V. Barger, M. Berger and R. Phillips, Phys. Rev. Lett. **70**, 1368 (1993); J. Hewett, Phys. Rev. Lett. **70**, 1045 (1993).

[32] P. Krawczyk and S. Pokorski, Nucl. Phys. **B364**, 10 (1991).

[33] If our extended Higgs sector is embedded in a larger theory, additional particles could appear in the loop and destructively interfere with the
amplitude in (18), washing out any potential constraint. For example, in supersymmetric theories, the charged Higgs contribution can be cancelled out by loop diagrams containing purely supersymmetric particles (charginos and squarks), leaving $B(b \to s\gamma)$ at or even below the SM prediction \cite{34}.

\cite{34} R. Garisto and J. N. Ng, Phys. Lett. B315, 372 (1993).

\cite{35} Y. Grossman and Y. Nir, Phys. Lett. B313, 126 (1993).

\cite{36} For a review, see R. Mohapatra in CP Violation, edited by C. Jarlskog, World Scientific, Singapore (1989).

\cite{37} D. Chang, Nucl. Phys. B214, 435 (1983).

\cite{38} A. Jodidio et al, Phys. Rev. D34, 1967 (1986); Ibid D37, 237 (1988) (erratum).

\cite{39} K. Babu, K. Fujikawa and A. Yamada, Bartol Research Institute Report BA-93-69 (1993), unpublished \texttt{(hep-ph/9312315)}; T. Rizzo, SLAC Report SLAC-PUB-6427 (1994) unpublished; P. Cho and M. Misiak, CalTech Report CALT-68-1893 (1993), unpublished \texttt{(hep-ph/9310332)}.

\cite{40} R. Sachs, The Physics of Time Reversal, The University of Chicago Press, Chicago (1987).

\cite{41} J. Brondine, Nucl. Phys. B30, 545 (1971).

\cite{42} I thank Doug Bryman and Yoshi Kuno for this estimate.
[43] For proposals which involve measuring the \textit{transverse} polarization of the τ in Z decays, see J. Bernabéu, G.A. González-Sprinberg and J. Vidal, Valencia U. Report no. FTUV-93-56 (1993) (unpublished); and G. Couture, Phys. Lett. \textbf{B305}, 306 (1993).

[44] Y.-S. Tsai, Phys. Rev. \textbf{D4}, 2821 (1971).

[45] M. Neubert, Phys. Lett. \textbf{B264}, 455 (1991).
FIGURE CAPTIONS

Fig. 1: Diagrams which contribute to $M \to m(l)l\nu$ from (a) the SM W exchange, (b) charged Higgs exchange, (c) W_L-W_R mixing.

Fig 2: $\overline{P_l}^+/C_{H^+}$ as a function of $r \equiv m/M$ for $\xi(x)$ given by the monopole approximation (31) with $\rho = 1$ (solid lines), $\rho = 1.2$ (dashed lines) and where $\xi(x)^2$ is naively divided out (dash-dot lines). The top, middle, and bottom sets of curves correspond to $M \to ml\nu$, $M \to m^*_Ll\nu$, and $M \to m^*l\nu$ decays, respectively.

Fig. 3: $\overline{P_l}^+/C_{W_R^+}$ as a function of r. Notation is the same as in Fig. 2, with the top and bottom sets of curves corresponding to $M \to m^*_{T_1}l\nu$ and $M \to m^*_{T_2}l\nu$ decays, respectively.
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9403389v1
This figure "fig1-2.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9403389v1
This figure "fig1-3.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9403389v1