Settlers of our inner surface - Factors shaping the gut microbiota from birth to toddlerhood

Laursen, Martin Frederik; Bahl, Martin Iain; Licht, Tine Rask

Published in: FEMS Microbiology Reviews

Link to article, DOI: 10.1093/femsre/fuab001

Publication date: 2021

Document Version Peer reviewed version

Citation (APA): Laursen, M. F., Bahl, M. I., & Licht, T. R. (Accepted/In press). Settlers of our inner surface - Factors shaping the gut microbiota from birth to toddlerhood. FEMS Microbiology Reviews. https://doi.org/10.1093/femsre/fuab001

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Settlers of our inner surface – Factors shaping the gut microbiota from birth to toddlerhood

Martin Frederik Laursen, Martin Iain Bahl and Tine Rask Licht*
National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby
*Corresponding author: trli@food.dtu.dk

Summary sentence:
Taking a microbial ecology perspective, this review takes the reader through the establishment of the microbiota in the infant gut after birth, and discusses the most important factors, which govern this complicated process.

Keywords:
Infant gut microbiota, abiotic factors, breastfeeding, nutrients, competition.

ABSTRACT:

During the first three years of life, the microbial ecosystem within the human gut undergoes a process that is unlike what happens in this ecosystem at any other time of our life. This period in time is considered a highly important developmental window, where the gut microbiota is much less resilient and much more responsive to external and environmental factors than seen in the adult gut.

While advanced bioinformatics and clinical correlation studies have received extensive focus within studies of the human microbiome, basic microbial growth physiology has attracted much less attention, although it plays a pivotal role to understand the developing gut microbiota during early life. In this review, we will thus take a microbial ecology perspective on the analysis of factors that influence the temporal development of the infant gut microbiota. Such factors include sources of microbes that seed the intestinal environment, physico-chemical (abiotic) conditions influencing microbial growth, and the availability of nutrients needed by the intestinal microbes.

Introduction

The gut microbiota in adults comprises a large variety of organisms including bacteria, fungi, archaea, protists and viruses. The bacteria vastly outnumber the other groups, and will have our focus in the
present review. As most observations about intestinal microbes are based on fecal samples, we use the words ‘gut’ or ‘intestinal’ to refer to observations based on feces.

The development of the gut microbiota in an infant undergoes drastic changes: Shortly after birth, only a limited number of living microbes represented by a few species are present in the gut, while a load of up to 10^{12} bacteria per gram and about 150-200 bacterial species can be found later in infancy (1, 2).

Reported correlations of the characteristics of the early life microbiota with specific health or disease features in childhood or adulthood include a multitude of conditions, of which many are related to atopy (3, 4). However, for most conditions it remains a challenge to establish causal evidence of a microbial influence on later health (1). Here, we will focus on the external and environmental factors of the gut that affect microbial exposure and growth physiology and thereby shape the microbial ecosystem and the temporal succession of bacterial establishment, which we view as a fundament for understanding the role of gut bacteria in host health.

In order for a given organism to establish in a given ecosystem, first, it needs to get there, second, it needs to find an ecological niche in terms of conditions and nutrients, which allows it to proliferate, and third, it needs to be able to be competitive within this niche. Unfolding this perspective, we will discuss the sources of microbial seeding to the infant gut, the intestinal physicochemical (abiotic) conditions governing microbial growth, and the role of nutrient availability and bacterial cross-feeding and competition for nutritional and topographical niches (Figure 1). It is important to note that many of these abiotic factors may in themselves be confounders influencing (or reflecting) human health through mechanisms that are independent of the gut microbes. However, this does not make it less important to be aware of them, since they may often be key to understanding observed associations between infant gut microbiota and risk of disease.

Sources of microbial seeding

The early life gut microbiota consists of microbes that are acquired either vertically or horizontally. Studies with captured wild mice of different origins, inbred and co-housed (same room, not co-caged) for up to 11 generations, suggest that transmission of gut bacteria occurs primarily vertically (across generations within mouse origin) and to lesser extent horizontally (across mouse origin along multiple generations) (5). The microbes reported to be transmitted vertically were typically strictly anaerobic clostridia and bacteroidia, whereas horizontally transmitted bacteria were usually facultative anaerobic bacilli (5). Thus, taxonomic and phenotypic characteristics of bacteria may affect their transmission mode and it seems that maternal/parental microbiomes are the most pronounced sources of bacteria transmitted to vaginally born offspring. Indeed, in humans, maternal body sites has been reported to contribute with approximately 50% of the bacterial species found in the infant gut throughout the first 4 months of life.
(6). Still, horizontally acquired bacteria e.g. from siblings (7, 8) or unrelated individuals (9), household pets (10–14), the infant’s (complementary) diet (15) and the environment (16, 17) contribute to the establishment of the complex infant gut microbiota. Further, transmission of bacteria from the infant’s own oral microbiota, especially in the neonatal period, has been found to be a significant source of bacteria to the infant gut (6, 18).

Vertically transmitted bacteria
A number of recent papers have strongly suggested that extensive vertical transmission of microbes to the infant gut occurs (6, 9, 19–24). The sources of microbes for the infant gut include maternal vaginal, oral, gut, skin and breast milk microbial communities and data indicate that these together contribute with the majority of species that are establishing in the infant gut (6, 20, 22, 25). Especially the maternal gut (6, 22) and breast milk (25) are influential sources, whereas seeding from maternal oral, vaginal and skin microbiota seem to be mainly significant in the neonatal phase (6, 20). In that regard, the heterogeneity often observed in the neonatal gut microbial communities (20, 26) seem to be linked to an initial individual pattern of similarity to the vaginal, oral or skin microbiota of the mother, probably ascribed to transient colonization by microbes transmitted from these sources (6).

Vaginal microbes
The vaginal microbiota is remarkably stable over the course of pregnancy (27), and has been grouped into five distinct community types, either dominated by Lactobacillus crispatus (type I), L. gasseri (type II), L. iners (III) or L. jensenii (type V) or a type IV characterized by high diversity and a mixture of Prevotella, Sneathia, Gardenella, Atopobium and Megasphaera spp. (27–29). Interestingly, the relative abundance of bacterial species in the vagina prior to birth does not seem to be coupled to the chance of vertical transmission (30). Nevertheless, vaginally delivered newborns initially harbor a gut microbiota dominated by Lactobacilli, Prevotella and Sneathia spp., resembling the corresponding mothers vaginal microbiota (31), while, C-section delivered newborns are initially colonized by typical (maternal) skin microbes such as Propionibacterium, Staphylococcus and Corynebacterium (31). All of the four major vaginal lactobacilli; L. iners, L. crispatus, L. gasseri and L. jensenii but also Gardenella vaginalis and Atopobium vaginae, have been found to be transmitted but colonize only transiently in the infant (6).

Within the first day of life, about 16.3% of the neonatal gut microbiota is composed of maternal vaginal species, but this rapidly declines within the first week (6), indicating that the vaginal microbes persist only transiently in the infant gut environment. Interestingly, multiple studies have shown a depletion of Bifidobacterium and Bacteroides species in the gut of C-section compared to vaginally born infants, spanning the first year of life (2, 26). However, these are not common vaginal microbes (32), but can be
restored by oral transplantation with bacteria from the maternal gut (33), which unlike the vaginal microbes are adapted for the intestinal environment. It is therefore likely that the lack of exposure to the maternal rectal environment is the main cause of the observed lower levels of these taxa in infants born by C-section.

Skin and oral microbes from the mother

The human skin is predominantly colonized by *Staphylococcus*, *Corynebacterium* and *Propionibacterium* (34), and the areolar/nipple skin is often additionally colonized by *Streptococcus* (25, 35). (Note that *Propionibacterium* is now designated *Cutibacterium* (36). However, for clarity, we will comply with the genus names used in the cited literature). Species found to be shared between maternal skin and infant gut in the neonatal period include *Streptococcus* spp., *Staphylococcus epidermidis* and *Propionibacterium acne* (6). While the breast skin microbiota contributes with 5-6.8% of the bacterial species found in the infant gut during the first days of life, this declines to 3.2% after 1 week, and after 4 months bacteria originating from maternal skin are no longer detectable in the infant gut (6).

Abundant members of the oral microbiota include species within *Streptococcus*, *Rothia*, *Gemella*, *Prevotella*, *Neisseria*, *Veillonella*, *Haemophilus* and *Granulicatella* (37, 38). Maternal tongue dorsum bacterial species are also found in infant gut throughout the first 4 months of life, accounting for up to 16% of the infant gut microbiota (6). Here, *Streptococcus parasanguinis*, *Rothia mucilaginosa*, *Prevotella melaninogenica*, *Haemophilus parainfluenzae* and *Veillonella parvula* are some of the most commonly species found in both ecosystems (6). However, it remains a challenge to distinguish strains originating from the mother’s oral environment from the infants own oral bacteria. Thus, the apparent sharing of species between maternal oral and infant gut ecosystems may result from seeding of infant’s own oral strains into the gut (6).

Fecal microbes from the mother

The adult gut microbiota is dominated by Clostridiales and Bacteroidales, and lower proportions of genera within the Enterobacteriales and Bifidobacteriales (39). During pregnancy the microbiota undergoes significant changes including a decrease in alpha diversity and relative increases in *Enterobacteriaceae*, *Streptococcus* and *Bifidobacterium* species (40). Interestingly, only a limited group of maternal genera appear to be transmitted to the infant, mostly confined to *Bifidobacterium*, *Bacteroides*, *Escherichia*, and *Streptococcus* spp. (6, 22, 26). Nevertheless, at the species level, 20-50% of the bacteria present in the infant gut during the first 4 months of life are shared with the maternal gut microbiota (6). While sharing of bacteria at species level within mother-infant pairs increase with infant age, sharing at strain level tends to decrease (24), suggesting that strains acquired from the mother
gradually get replaced by horizontally acquired strains of the same species. However, within some species, vertically transmitted strains are more likely to persist and stably colonize the infant gut, than horizontally acquired strains (6, 9, 24). These include strains of *Bacteroides* (*Bacteroides vulgatus, B. dorei, B. uniformis*), *Parabacteroides, Bifidobacterium* (*Bifidobacterium longum, B. breve, B. adolescentis, B. bifidum*) and *Escherichia* (*Escherichia coli*). Noteworthy, these strains are typically highly abundant colonizers of the infant gut (6, 9, 19, 21, 24, 41, 42). Thus, although only a minor selection of the maternal microbes are transmitted, they constitute a significant amount of the total bacterial population in the infant gut.

Microbes from breast milk

Human breast milk contains on average 10^3 (range 10^1-10^5) bacteria per ml (43). As breastfed infants consume 600-1200 ml milk per day (44), this results in a significant exposure of up to 10^7 bacteria daily. Microbes found in breast milk primarily originate from maternal skin, infant oral cavity, and from the environment (38, 45, 46). Although still subject to debate, internal routes of transfer including entero-mammary (47) and oro-mammary (45) pathways have been speculated to affect the occurrence of microbes in breastmilk. Prevalent and abundant bacteria found in breast milk include skin-associated bacteria such as *Staphylococcus, Propionibacterium* and *Corynebacterium* spp. (48–50), oral cavity-associated *Streptococcus, Veillonella, Rothia* and *Gemella* (38, 43, 48), but also bacteria likely to be of environmental origin, such as *Acinetobacter* and *Pseudomonas* spp. (51, 52). Furthermore gut-associated species such as *Lactobacillus, Enterococcus* and *Bifidobacterium* spp. are commonly isolated from breast milk, although in low abundance (43, 53, 54). During the first month of life, 28% of the infant gut microbial population, at species level, is shared with the maternal breast milk microbiota (25). Species found to be shared within mother-infant dyads include *Staphylococcus, Streptococcus, Veillonella, Rothia, Enterococcus, Lactobacillus* and *Bifidobacterium* spp. (25, 41, 53–55), and isolation of identical strains within these genera has been demonstrated (53, 56, 57). Transmission of *Bifidobacterium* spp. via breast milk has additionally convincingly been shown by combining gene marker based amplicon sequencing, metagenomic analysis and strain isolation in mother infant-pairs (23, 41, 42). Importantly, *B. longum* and *B. breve* strains detected in both maternal breast milk and initial infant feces persistently colonize the infant gut for up to 6 months (41, 42). Transfer of bacteria via breast milk, especially lactic acid bacteria and bifidobacteria, thus constitutes an important mechanism by which infants acquire bacteria that colonize their gastrointestinal tract.
Horizontally transmitted bacteria

In addition to microbes acquired from the maternal sources described above, the infant is exposed to a variety of other microbes from the environment including siblings, pets, surfaces in the home and in the hospital, and from dietary sources. Exposure to new microbes thus increases with increasing age of the infant, however the influence of such exposure on the composition of the gut microbiota decreases as the child grows older and available ecological niches in the gut get occupied (Figure 1).

Microbes from siblings, pets and other environmental sources

The presence of siblings clearly impacts the composition of the infant gut microbiota (2, 7, 58, 59), and the strongest influence is observed during mid-late infancy and early toddlerhood, i.e. between 6 and 18 months of age (2). Microbial richness in toddlers increases with increasing numbers of older siblings (7). An important species, *Faecalibacterium prausnitzii*, which is considered a marker of gut health (60), is very prevalent and abundant in the adult gut but virtually non-detectable in breastfed infants before age 4-6 months. The increase in abundance and prevalence of this species seems to be accelerated by the presence of older siblings (8). Also, the *Bifidobacterium catenulatum* group shows a faster increase in prevalence during the first 6 months of life in infants with older siblings as compared to first-borns (59). Several reports demonstrate that also pets in the household represent a source of microbial seeding to the infant gut (11, 12, 14, 61). This builds on correlations between household pets and microbial diversity (61), but also on evidence of increases in specific bacterial taxa in children exposed to pets (11, 12), or of the pet serving as a ‘vehicle’ for transmission of microbes between humans in the household (14). An example is the animal-derived *Bifidobacterium pseudolongum*, which is more prevalent in infants who have been exposed to pets, than in controls (12).

Finally, although many measures are taken to protect newborns from nosocomial infections, the hospital environment encountered by the infant immediately after birth have also been suggested to represent a source of microbial seeding (16). However, solid proof of transmission of specific strains to the infant gut requires advanced sequence-based methods in order to exclude that given measures of overlap are indeed reflecting occurrence of the same clones, and do not merely reflect parallel occurrence of different clones of the same species in the gut and surroundings, respectively. Indeed, identical strains assembled from metagenomes of hospitalized preterm infant feces and the corresponding hospital room environment has been demonstrated (17). These include strains of opportunistic pathogenic species such as *Klebsiella pneumoniae*, *Staphylococcus epidermidis*, *Enterococcus faecalis* and *Pseudomonas aeruginosa*. While these are important colonizers of the hospitalized preterm infant (62), they are probably less important sources for the term born neonate with only short hospitalization. In this context, it should be noted that
the gut microbiota of preterm infants differs from that of healthy infants in many other ways, which have been the topic of a number of important recent studies (62–65), but is not within our scope here.

Microbes ingested with diet

A number of formula and dietary products for infants are fortified with lactic acid bacteria (probiotics) intended to beneficially influence gut health (66). However, typically these strains do not establish in the infant gut and can only be detected in feces during and shortly after the period of repeated ingestion (67, 68). Once the child becomes habituated to foods that have not been boiled or otherwise sterilized, the microbes residing on such foods will evidently end up in the intestinal tract. It is beyond doubt that introduction of complementary and family food leads to increased diversity of the gut microbiota (55), however, as reviewed below, the effect of introducing a more complex selection of microbial nutrients is probably a stronger driver of this development than the seeding of new microbes via food.

Abiotic conditions

All the above mentioned sources, from which seeding occurs, have in common that in order for the microbes to be transmitted and establish in the gut, they have to be able to survive (i) in the source, (ii) during the transmission, and (iii) in the gut environment. This means that although the gut environment is primarily anaerobic, the bacteria that grow there must typically have been able to survive exposure to oxygen during seeding, and are thus either facultative anaerobes (Enterobacteriales and Lactobacillales), anaerobes capable of surviving exposure to oxygen (Bifidobacteriales and Bacteroidales), or obligate but spore-forming anaerobes (some Clostridiales such as Clostridiaceae and Lachnospiraceae). An example of a curious exception to this is the strict anaerobic, non-spore forming Ruminococcaceae species F. prautznitzii, which, as described above, colonizes the infant gut quite late and its establishment in the gut seems to be accelerated by presence of siblings (8). It may be speculated that extensive exposure and close contact between individuals is necessary for the establishment of this organism. Interestingly, the presence of antioxidants such as cysteine and riboflavin in the local environment increases survival of F. prautznitzii during oxygen exposure (69, 70), suggesting that also the abiotic conditions in the environmental compartments may play a role for transmission.

After seeding (arrival of microorganisms into the gut) has taken place, the successional development of the intestinal microbiota during very early life is closely linked to changing abiotic conditions in this environment. This interaction is bi-directional since abiotic conditions, such as oxygen levels and pH, create distinct niches in which specific bacterial physiology types thrive and vise-versa that specific consortia of bacterial strains may alter these and other abiotic conditions over time. In addition to the
abiotic factors, the immune system of the infant, as well as multiple factors present in breastmilk may play a role in shaping the infant microbiome. However, this is not within the scope of the current review.

Oxygen

Several different gradients of partial oxygen pressure (pO$_2$) are present in the adult gastro-intestinal tract. These include a general longitudinal decrease from the proximal to the distal part (71), a very steep radial gradient from the intestinal submucosa to the lumen (72), which is most pronounced in the distal intestinal tract (73), and lastly a gradient along the crypt-villus axis in the small intestine due to counter-current blood flow (74). As a consequence of the radial pO$_2$ gradient, it was demonstrated in humans that a much lower ratio of obligate anaerobe to oxygen tolerant bacteria exists in rectal mucosal biopsies than in fecal samples (72).

It is frequently reported that the neonatal intestine is relatively more oxygenated than later in life, thus initially only supporting growth of facultative anaerobic bacterial species, such as members of the *Enterobacteriaceae* family, and not obligate anaerobes (75). In line with this, it has been described that after the first week of life, the number and relative abundance of strictly anaerobic species found in a group of 25 infants increased with time (6). The general belief is that the facultative anaerobes gradually reduce the oxygen levels and thus create the anaerobic environment of the developed gut (26). A recent study however challenged this notion, or at least narrow the timespan in which the intestinal lumen is oxygenated in early life (76). In a cohort of 88 healthy term infants sampled from 2 minutes to 176 hours after birth it was indeed found that the facultative anaerobe *E. coli* was the most prevalent bacterium during the first 16 hours of life. Several anaerobe species were however also abundant in some individuals, including *B. vulgatus*, *B. dorei* and *Subdoligranulum* spp. in this very early time-period, with quite some inter-individual heterogeneity at the species and strain level. Importantly, a mostly anaerobic environment was considered likely due to observed changes in serine, threonine and succinate levels in meconium samples consistent with anaerobic growth of *E. coli*. These findings indicate that the neonatal gut may be mostly anaerobic shortly after birth. The question thus remains whether it is possible that the neonatal intestinal lumen becomes anaerobic even in the absence of bacterial oxygen consumption, in spite of influx of oxygen from the endothelial cells.

The contribution of living bacteria versus purely chemical reactions to generate anaerobic conditions in the gut lumen has elegantly been explored recently in a germ-free mouse model (73), revealing that the partial pressure of oxygen (pO$_2$) in the gut lumen is nearly identical in conventional and germ-free (GF) mice. Large longitudinal variations in pO$_2$ levels from stomach to cecum were found, however no difference was observed between germ-free and conventional animals. The highest levels of oxygen were recorded in the duodenum, which was attributed to the very large surface area allowing higher rates of
diffusion of oxygen into the lumen as well as the low biomass causing limited microbial and chemical reduction of oxygen (73).

Chemical consumption of oxygen via lipid oxidation was demonstrated as an effective mechanism to reduce pO$_2$ levels in cecal content from GF animals albeit at much lower rates than observed using cecal content from conventional animals. In addition, the rate of oxygen consumption in GF cecal content was increased to a level similar to the conventional when spiked with facultative anaerobe _E. coli_, but not with the anaerobic but aerotolerant _Clostridium sordelli_ (73, 77). These findings support the likely contribution of non-bacterial guided reduction in oxygen in the neonate gut, but also indicate that oxygen removal depends on the type of bacteria. Oppositely, increasing the luminal oxygenation by hyperbaric oxygen therapy in mice led to a decreased prevalence of catalase negative, obligate anaerobic _Anaerostipes_ spp. (72).

In conclusion, although the neonatal colonic lumen probably rapidly becomes anaerobic, topographical differences in pO$_2$ are likely to exist and to affect gut microbiota composition in different compartments of the gut.

Intestinal pH and transit time

Intestinal oxygen tension is closely connected with other physico-chemical factors including pH and redox potential. While the impact of pH on the differences between the microbial populations present in different sections of the GI tract is irrefutable, little is known about the impact of change in pH on the infant’s intestinal microbial population.

The pH in the stomach of newborns at delivery is neutral (78), but fasting gastric pH in neonates rapidly drops to an average around 4.6 at age 2-6 days, and down to 2.6, which is similar to adults, already at 7-15 days of postnatal age (79). Studies assessing the pH in the gut of neonates are scarce, but one study, dated 1952, suggests that the luminal pH of the small intestine is lower in infants fed with cow’s milk than in breastfed infants (80). The same study reveals that the pattern of small intestinal pH observed in breastfed infant aged 2 weeks to 3 months, with duodenal, jejunal and ileal pH around 6.4±0.5, 6.6±0.4 and 6.9±0.5, is almost the same as that of older children and adults. Development of novel methodologies for non-invasive measurements of abiotic factors in the intestine is needed to obtain better knowledge about the processes occurring in the infant gastrointestinal tract. Such knowledge is highly relevant not only to understand the impact on intestinal microbes, but also to assess questions about solubility, absorption and metabolism of drugs and nutrients (81). In vitro models of infant colonic microbial activity thus suggests that lactate metabolism is strongly modulated by abiotic factors such as pH and retention time (82).

In adults, colonic pH plays a key role in determining the outcome of microbial interspecies competition
and response to dietary fibers (83) as well as in amino acid metabolism (84). In example, whereas propionate-producing *Bacteroides* spp. dominate fecal microbial communities cultured at pH > 6.0, butyrate-producing *Eubacterium/Roseburia* or *Faecalibacterium* spp. dominate when pH is lowered to 5.5 (83, 85), but the species that are dominating depends on the diet (e.g. type of dietary fiber and peptides). Opposite the small intestinal luminal pH (73), the fecal pH is significantly lower in breastfed compared to formula fed infants (86, 87). The low fecal pH in breastfed infants is maintained by human milk oligosaccharide (HMO) degrading, acetate-producing *Bifidobacterium* species (88, 89), and this is likely to prevent or reduce colonization of non-acid tolerant bacteria. Formula fed infants are not dominated by *Bifidobacterium* spp. (90), and have a much more diverse microbiota (2), possibly due to the more permissive pH conditions in the colonic environment. Colonic pH is additionally known to be affected by intestinal transit time (91), and recently, we have reported that in adults, transit time has a major impact on microbiome diversity and composition as well as on microbial metabolism (92). Although it remains to be investigated, we speculate that this is the case also in the infant gut.

Effects of antibiotic treatment on abiotic conditions in the infant gut

It is well known from animal studies that oral intake of antibiotics courses acute and profound changes in bacterial community composition, which is determined by the dose and class of antibiotic (93). Lately, the effects of antibiotics on microbial communities in early life and health risks associated with these changes have been investigated in depth and several comprehensive reviews are available (94, 95). Importantly, antibiotic-induced early life disturbances have been associated with increased risk of developing asthma (96) and may also have lasting metabolic consequences (97). Here, we focus on the putative effects of antibiotic use on the abiotic conditions in the intestine.

In the adult colon, there is a steep gradient from the oxygenated endothelial cells into the lumen (98). Colonocytes oxidize microbially-produced butyrate as their preferred carbon source, thereby consuming oxygen and generating ATP (99). Orally administrated antibiotics are known to cause an increase in intestinal oxygen levels, which may result in an expansion of facultative anaerobic bacteria within the *Enterobacteriaceae* family (100). This antibiotic-induced increase in oxygen is partly explained by lack of butyrate production by Clostridia (99). Antibiotics-induced blooms in *Enterobacteriaceae* are however also commonly observed during early infancy (101, 102), although butyrate producing bacteria are only present at very low levels at this age (103). This might be explained by induction of nitrate production in the gut. It has thus been shown in mice that streptomycin treatment induces gut mucosal *nos2* expression, which increases luminal concentrations of nitrate that functions as an alternative electron acceptor for *E. coli* and promotes blooming of this species (104).
An increase in the oxygen/nitrate levels in the intestine would also manifest as an increase in redox potential, which defines the overall environmental capacity for reducing chemical reactions and is thus a key metric to describe the state of the microbial community (105). It has recently been suggested that availability of electron acceptors (redox potential) is an important factor driving the structure of bacterial communities, and Enterobacteriaceae levels correlate positively with redox potential (105). An increase in the redox potential, characterized by a higher overall oxidant to reductant ratio, may thus result in opportunistic pathogens taking advantage of new respiratory pathways and is additionally known to increase oxidative stress due to generation of free radicals and ROS (106).

In order to understand and predict the effects of antibiotic treatment in the infant gut, it is therefore important not only to take into account the effect of a given antibiotic on the target- and non-target bacteria, but also to consider both the direct effects on host gastrointestinal cells and the consequences of removal of non-target bacteria for the abiotic intestinal environment, which to a large degree shapes the microbiota.

Nutrient availability, competition and cross feeding

The intestinal environment is characterized by a continuous turnover of the bacterial population through proliferation and fecal excretion, combined with a continuous supply of nutrients. With respect to these features, the intestine is thus comparable to a chemostat or continuous flow culture. This was extensively investigated and discussed in a series of papers already in 1983 (107, 108). An important conclusion derived from this perspective is that the number of bacteria that can stably co-exist in a chemostat, is determined by the number of different available nutrients. Additionally, in a flow-culture, the populations of bacteria are controlled by one or a few nutritional substrates which a given strain can utilize most efficiently under the prevailing abiotic conditions (108).

Translated to the intestinal microbial ecosystem, this means that an increase in the complexity of bacterial nutrients, which in the gut originate from ingested diet as well as from mucosal turnover, will drive an increase in the diversity of the bacterial community. In line with this, it was recently demonstrated that dietary diversity scores were positively correlated with microbial diversity in infant stool samples (109). Also in a large adult population (N>1,500 samples), it was found that a higher number of different types of vegetables in the diet was associated with a higher alpha diversity of the fecal bacterial population (110). Furthermore, it has been elegantly demonstrated in mice, that the abundance of a given strain can be regulated by changing the concentration of a substrate exclusively accessible by this strain (111).

These relations between dietary complexity, nutrient utilization capacity, and shaping of a bacterial community become very clear from studies of the development of the infant gut microbiota, as reviewed in the sections below.
Breastfeeding

After lactose and fat, HMOs constitute the third most abundant solid component of human breastmilk (112). While lactose and fat can be digested by the infant’s digestive enzymes, and thus to a lesser degree reach the intestinal bacterial communities, the HMOs are indigestible to the human host, and thus available to the gut bacteria in very high amounts. A multitude of studies show that the gut of breastfed infants (as opposed to formula-fed infants) is dominated by the specific bacterial species, which are able to digest HMOs (2). These include specific species of Bifidobacterium such as B. bifidum, B. breve, B. pseudocatenulatum, B. kashiwanoense, B. longum ssp. longum, and B. longum ssp. infantis (113, 114). For some of these species, it is not only the production of specific enzymes capable of HMO degradation, which makes them highly competitive on this substrate, but also their expression of membrane transporters with high affinity for the different types of oligosaccharides present in breastmilk (115). Thus, while B. bifidum employs extracellular enzymes (fucosidases, sialidases and lacto-N-biosidases) to degrade HMOs and transport only the released di- and monosaccharides into the cytoplasm, B. longum subsp. infantis internalizes the intact HMO structures via highly specific membrane transporters and subsequently degrade the HMOs intracellularly (114). In addition to the specialized infant bifidobacteria, also species of Bacteroides have been reported to be able to degrade HMOs by use of pathways developed for mucus-utilization (116), as discussed below. It was moreover recently demonstrated that Roseburia and Eubacterium species utilize selected HMOs as well as HMO and mucin degradants (117). Combined with the ability of these species to utilize plant derived carbohydrates such as xylans and β-mannans (118–120), this provides a plausible explanation for their appearance in the infant gut during weaning (121). Nevertheless, the fact that HMOs are highly selective and constitute a considerable amount of the bacterial nutrients in breastfed infants is underlined by the observation that cessation of breastfeeding has a larger impact on microbiota development than introduction of solid foods (2, 55).

Bacterial nutrients in infant and child food

In many countries, iron fortification of infant formula or iron supplementation given as droplets for infants are recommended in order to prevent iron deficiency. Iron availability may well be a growth-limiting factor for specific bacteria inhabiting the infant intestine (122), and iron supplementation may thus have an impact on the developing microbiota. However, as recently reviewed by others (123), the currently available reports about effects of iron supplementation on the intestinal microbial composition in infants are not in consensus.

Longitudinal observational studies have identified associations between toddler diet and gut microbiota (124). As the child starts to consume more and more different types of food items, the gradual transition...
to ‘adult’ food, and an increased intake of protein as well as fibre is associated with a gradual increase of intestinal microbial diversity and of the abundance of Lachnospiraceae (15). Given that the accessibility of amino acids is not a limiting factor for gut bacteria (125), the bacterial carbohydrate sources (fibres, polysaccharides), are likely to be major drivers not only of diversity, but also of the composition of the bacterial community, since they are selective for the specific bacteria that have the capacity to digest them (126). Bacterial phyla that are highly specialized in carbohydrate utilization, as revealed by the percentage of genes on their genome dedicated to this task, are the Bacteriodetes and the Actinobacteria (127). Noteworthy, of these two phyla, the Actinobacteria have dedicated a larger part of their genome also to transport of oligo- and polysaccharides into the cytoplasm. The genera Bifidobacterium and Bacteroides within these phyla, along with the Roseburia-Eubacterium group, all contain species that can use both HMOs and complex plant polysaccharides as carbohydrate sources, and consistently these taxa are dominating in the transition phase between breastfeeding and family diet (2). Multiple reports from in vitro studies (128), animal studies (111) and human trials (129) reveal that the specific features of the dietary polysaccharides (nature of the monomers, binding structures, branching) are selectively promoting specific bacterial species and subspecies. The composition of dietary polysaccharides are thus likely to shape the development of the child’s microbiota during transition from breastfeeding and baby food to other types of solid complementary feeding.

Host mucins as bacterial nutrients
The complexity of the nutritional landscape encountered by gut bacteria is increased by the fact that the gut contains several sub-systems, offering different types of niches as the encountered conditions are different for bacteria residing in the mucus layer, in the lumen, in the small intestine and in the large intestine (130). Although interconnected, these spatial niches govern competitive advantages in distinct directions (131, 132). In humans, as faecal samples are often the object of study, such niche-specific competitive interactions are typically not possible to measure, and knowledge about their impact in development of the bacterial community is scarce.

The intestinal mucus is composed of a firmly adherent layer, close to the epithelial cells, which typically does not contain many bacteria, and a loosely adherent layer, which is extensively colonized by a variety of microbes (133). The microbiota of the mucus layer in adults is known to differ from that found in fecal samples (134). In 2004, a new species, Akkermansia muciniphila, was described, which specializes in utilizing intestinal mucin as the only carbon- and nitrogen source and grew rather poorly on alternative sugars (135). A. muciniphila has since then been extensively studied, and it is found primarily in the human colon, but also in breastmilk (136). It is found only in low levels in the infant intestine, but during
the first years of life, its abundance reaches that found in adults (137), suggesting that the development of the intestinal environment supports the colonization of this bacterium (136).

Not only *Akkermansia*, but also gut bacteria belonging to the genera *Bacteroides* (e.g. *Bacteroides thetaiotaomicron* and *Bacteroides fragilis*), *Ruminococcus* (e.g. *Ruminococcus gnavus*), and *Bifidobacterium* (e.g. *B. bifidum*) are able to degrade glycans from intestinal mucins, although the latter only with moderate efficiency (138). Unlike *A. muciniphila*, these species abundantly colonize the infant gut early and are capable of utilization of HMOs from breast milk and dietary complex polysaccharides as well as mucins, and thus contain the metabolic flexibility to also become very robust and consistent members of the adult microbiota. Particularly, *B. thetaiotaomicron* is well studied with respect to its ability to switch between the complex carbohydrate sources offered by diet and host mucins, respectively (139), and is a highly abundant and prevalent member of the adult gut microbiota.

Bacterial cross feeding

Trophic interactions occur between members of the infant gut microbiota. A well-studied example is interspecies cross-feeding within the genus *Bifidobacterium*, in which different strains can display an ‘altruistic’ as well as a ‘selfish’ type of HMO metabolism as described in the following.

By employing extracellular fucosidases and sialidases when grown on HMOs or mucins, *B. bifidum* can liberate fucose and sialic acid, which *B. breve* can internalise and metabolise (140–142). A similar growth enhancing effect of *B. bifidum* on *B. longum* subs. *longum* has been observed when co-cultured in presence of HMOs (143). Indeed, *in vitro* experiments have demonstrated an increased abundance of other *Bifidobacterium* species when human fecal cultures incubated with HMOs are spiked with *B. bifidum*, underlining the ‘altruistic’ activity of this species (143).

Also some isolates of *B. kashiwanohense* express fucosidases that liberates fucose in the culture medium when grown on the HMOs 2’FL (2’fucosyllactose) or 3’FL(3’fucosyllactose) (144, 145), and may cross feed to fucose-utilizers such as *B. breve* (146).

Infant isolates of *B. pseudocatenulatum* grow on HMOs (89), and HMO-degrading *B. pseudocatenulatum* strains have been shown to support growth of a non-HMO utilizing *B. longum* subsp. *longum* strain isolated from the same infant (147). The opposite may also occur, since when strains isolated from another infant were observed, a HMO-degrading *B. longum* subsp. *longum* strain supported growth of non-HMO utilizing *B. pseudocatenulatum* strains. Fucose, galactose, acetate and N-acetylglucosamine were identified as key by-products of bifidobacterial degradation/metabolism of HMOs that mediate interspecies cross-feeding (147). Thus, cross feeding between *Bifidobacterium* species is likely to explain the co-occurrence of different *Bifidobacterium* species commonly observed in the infant gut (148, 149).
In contrast to the ‘altruistic’ behaviour displayed by *B. bifidum* and other specific bifidobacterial strains, *B. longum* subsp. *infantis* strains often display a ‘selfish’ HMO metabolism, internalising the intact HMO structures prior to degradation, and thereby leaving no HMO remnants for others to consume (114, 147). Consequently, the microbiota if breastfed infants colonised with efficient HMO-utilizing strains of *B. longum* subsp. *Infantis* is often completely dominated by this strain, (113).

Growing on HMO or mucins in the infant intestine, *Bifidobacterium* species can also cross feed with strains belonging to other genera, due to their release of simple sugar constituents such as lactose, galactose and N-acetyl glucosamine, and products of bifidobacterial metabolism such as acetate, lactate and 1,2-propanediol, which support growth e.g. of *Eubacterium hallii* (146, 150). This results in the formation of butyrate and propionate, which increase in abundance during complementary feeding (151).

Indeed, plant derived substrates such as inulin/oligofructose and arabinobioxyan oligosaccharides introduced with complementary feeding have been identified as bifidogenic, but also promote the growth of various butyrate producing bacteria including *Eubacterium rectale*, *Roseburia* spp. and *F. prausnitzii* because *Bifidobacterium*-produced acetate is utilized by the butyrate producers (152–154). It has been demonstrated that cross-feeding on arabinobioxyan oligosaccharides is mutually beneficial between *B. longum* subsp. *longum* and *E. rectale*. *B. longum* uses the arabinose part to produce acetate and xylo-oligosaccharides, and from these xylo-oligosaccharides *E. rectale* releases xylose monomers, which are substrates for *B. longum* (152). Thus, it is likely that trophic mutualism between bifidobacteria and butyrate producing taxa exists in the infant gut during complementary feeding.

It has been speculated that lactate cross-feeding and conversion into short chain fatty acids is a key to ecosystem stability in the adult human gut (155). Lactate is however also a common metabolic end-product of many early life gut colonisers. Lactate-producing bacteria such as *Lactobacillus*, *Streptococcus*, *Staphylococcus*, *Bacteroides* and *Bifidobacterium* may support the growth of lactate consuming bacteria including *Veillonella* and *E. hallii* (156). In example, *B. bifidum* produces lactate, which is consumed by co-cultivated *E. hallii* (150). Additionally, a correlation is reported between the lactate consuming *Cutibacterium avidum* (formerly *Propionibacterium*), and the lactate producers *Bifidobacterium* and *Streptococcus* in infant feces (157).

In summary, consumption of degradation products (diet or mucin derived mono- and di-saccharides) and/or metabolites (such as lactate, acetate and 1,2-propanediol) from lactic acid bacteria and
bifidobacteria is thus likely to allow propionate and butyrate producers to establish in the infant gut and promote maturation into a diverse and stable adult-like gut microbial community.

Ecological aspects

It is well established, that the developing infant microbiota undergoes an increase in within-individual diversity (alpha diversity), and a decrease in between-individual diversity (beta diversity) (158, 159). In the gut of a newborn infant, where microorganisms are absent or very scarce, the seeding of new microorganisms from the environment will have a major influence on microbiota composition, whereas the impact of competition will increase as the community increases in density and diversity (Figure 1).

An new ecological aspect originates from a recent study describing the healthy or impaired development of the infant gut microbiota based on a co-varying set of key microbial taxa, a so-called ecogroup (160). This approach takes longitudinal microbial interactions or networks into account in the description of developing microbial communities. An ecogroup of 15 bacterial taxa was found to explain the majority of variation in the gut microbiome and consistently co-varied during the first 5 years of life in cohorts of Bangladeshi, Peruvian or Indian children, respectively. Importantly, ecogroup taxa configurations were found to be altered in malnourished infants. The study highlights the utility of co-variation networks applied to longitudinal data in order to increase our understanding of the ecological patterns of the developing gut microbiota.

In order to understand the putative impact of order of exposure to microorganisms originating from the sources of seeding discussed above, it is useful to consider the fundamental mechanisms governing competition for ecological niches. It has been suggested that predictions about impact of order of seeding on community assembly (in any ecosystem) can be based on considering the following three features of the species’ ecological niches: **Overlap, impact and requirement** (161, 162). A so-called ‘priority effect’ designates the observation that a given species gains an advantage or a disadvantage by arriving to an ecosystem earlier than others. If two species are competing for the same niche (**overlap**), the priority effect will be strong. This is speculated to be the case e.g. when specialized HMO consumers compete for this nutritional niche. It has been elegantly demonstrated in a neonatal mouse model, that for the vast majority of intestinal bacteria, early arrival represents an advantage (163). However, it was also observed that in some cases, establishment in the neonatal mouse gut was facilitated by later arrival, suggesting that the preexisting microcoorganisms may **impact** on the ecological niched either to facilitate or to prevent the establishment of given newcomers, as when facultative organisms consume the intestinal oxygen and thereby facilitates establishment of anaerobic species, but prevent proliferation of aerobes seeded into the
gut. Finally, species that are more sensitive to specific requirements, i.e. whose growth rate is sensitive to abiotic and nutritional environmental changes, are predicted to experience stronger priority effects (161, 162). This suggests that species such as *B. thetaiotaomicron*, which have many options for nutritional sources, can robustly colonize the infant intestine irrespective of order of exposure.

Since closely related species might be more likely to compete for overlapping niches (164), it could be speculated that the effect of early arrival would be most pronounced on the competition between bacteria that are phylogenetically closely related, however this was contradicted by experiments in mice (163), suggesting that the bacterial functions and features governing competition for niches are not necessarily related to phylogeny.

In addition to investigating the successional development of the neonatal intestinal microbiota based on taxa (26, 76) it is also possible to study the succession of bacterial traits (phenotypes), an approach well developed in environmental ecology (165). Recently, a study of trait-based community assembly of the microbiota in a cohort of 56 infants during the first three years of life (166) elucidated some important general features. First, the study demonstrates that the average 16S rRNA gene copy number per bacterial genome decreases as a function of time during the first two-three years of life. Since a high number of ribosomal gene copies is affiliated to the ability of rapid initiation of protein synthesis and thus rapid response to conditions allowing growth (167), this suggests that the infant gut undergoes a transition from initially fast responding strains to the later predominance of overall less rapidly adapting and slower growing species. Indeed, it has been observed in mice that the *in situ* ribosome content of *E. coli* growing in intestinal mucus reflects rapid growth (132). We thus speculate that in the neonatal intestine, rapid response to changing conditions and capacity for rapid proliferation are selective factors for initial establishment. In support of this, an acute surge in total bacterial density quantified by 16S rRNA gene copies per gram intestinal content has been observed as a consequence of antibiotic treatment of rats, and could partly be explained by a switch to more rapidly adapting bacterial species (93).

The observed temporal decrease in rRNA gene copies per genome in the developing gut microbiota was accompanied by a concurrent decrease in predicted motility scores and oxygen tolerance from 3 to 9 months, as well as by increased temperature optimum and increased sporulation capacity in the same period (166), likely reflecting the impact of these traits at different periods of infancy.

Concluding remarks

The first 1000 days after birth of an infant, are often referred to as a window of opportunity for shaping the microbiota, which will characterize the individual throughout life (168). Since this period is also very important for development of the immune system, where exposure to microbes play a pivotal role (169), the processes governing the microbiota assembly are important to elucidate.
Here, we have taken the perspective of microbial physiology and ecology to describe the development of the microbiota. In the first period after birth, the bacterial load in the intestine is low, meaning that many ecological niches are free for the seeded bacteria to explore. The high inter-individual (beta) diversity at this stage is probably reflecting the many different sources of seeding to the gut at this stage. However, proliferation of seeded bacteria of a given species requires abiotic conditions that allow for this, which is reflected in the observation that vaginal and skin-derived species remain only transiently in the infant gut, while maternal gut species represent a significant part of the establishing microbiota as reviewed above.

As the bacterial load and diversity increases, competition for nutritional niches originating from diet and mucosa will play a larger and larger role (Figure 1). As long as the nutritional environment is governed by breastfeeding, bacteria that are efficient in using the HMOs dominate the community. When the complexity of diet increases, so does the complexity (alpha diversity) of the bacterial community, and eventually the impact of original seeding sources is no longer detectable. Additionally, the increasing hostility of the gut environment, characterized by reduced oxygen availability and reduced pH and later by scarcity of bacterial nutrients subject to competition, selects for a community that is optimized for coping with this, thereby reducing the beta diversity.

In order to better understand and predict this development, and eventually to decipher how to govern and optimize it to improve health, we find that it is pivotal to combine longitudinal infant studies with fundamental studies of bacterial growth physiology as well as with ecological models.

Funding

This work was supported by the Novo Nordic Foundation via the project ‘PRIMA – towards Personalized dietary Recommendations based on the Interaction between diet, Microbiome and Abiotic conditions in the gut’, granted to TRL [NNF19OC0056246].

Acknowledgements

The authors thank Mikiyasu Sakanaka for useful input about glycan utilization in bifidobacteria.
Figure 1

Influence of selected factors on the developing microbiota. In the first period after birth, the bacterial load in the intestine is low, meaning that many ecological niches are free for the seeded bacteria to explore. The high inter-individual (beta) diversity at this stage is probably reflecting a high influence from the many different sources of seeding to the gut at this stage. When the complexity of diet increases, so does the complexity (alpha diversity) of the bacterial community, and eventually the impact of original seeding sources is no longer detectable. The increasing hostility of the gut environment, characterized by reduced oxygen availability and reduced pH and later by scarceness bacterial of nutrients subject to competition, selects for a community that is optimized for coping with this, thereby reducing the beta diversity, and increasing the impact of competition. (The figure was created in BioRender).
References

1. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, Lugli GA, Rodriguez JM, Bode L, de Vos W, Gueimonde M, Margolles A, van Sinderen D, Ventura M. 2017. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev 81.

2. Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, Ross MC, Lloyd RE, Doddapaneni HV, Metcalf GA, Muzny D, Gibbs RA, Vatanen T, Huttenhower C, Xavier RJ, Rewers M, Hagopian W, Toppari J, Ziegler AG, She JX, Akolkar B, Lemmark A, Hyoty H, Vehik K, Krischer JP, Petrovich JF. 2018. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562:583–588.

3. Johnson AMF, DePaolo RW. 2017. Window-of-opportunity: neonatal gut microbiota and atopy. Hepatobiliary Surg Nutr 6:190–192.

4. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadros D, Panzer AR, Lamere B, Rackaityte E, Lukacs NW, Wegienka G, Boushey HA, Ownby DR, Zoratti EM, Levin AM, Johnson CC, Lynch S V. 2016. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 22:1187–1191.

5. Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW. 2018. Transmission modes of the mammalian gut microbiota. Science (80-) 362:453–457.

6. Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, Armanini F, Truong DT, Manara S, Zolfi M, Beghini F, Bertorelli R, De Sanctis V, Barletti L, Canto R, Clementi R, Cologna M, Crifò T, Cusumano G, Gottardi S, Innamorati C, Masè C, Postai D, Savoi D, Duranti S, Lugli GA, Mancabelli L, Turroni F, Ferrario C, Milani C, Manghesta M, Anzalone R, Viappiani A, Yassour M, Vlamakis H, Xavier RJ, Collado CM, Koren O, Tateo S, Soffiati M, Pedrotti A, Ventura M, Huttenhower C, Bork P, Segata N. 2018. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe 24:133-145.e5.

7. Laursen MF, Zachariassen G, Bahl MI, Bergström A, Høst A, Michaelsen KF, Licht TR. 2015. Having older siblings is associated with gut microbiota development during early childhood. BMC Microbiol 15:154.

8. Laursen MF, Laursen RP, Larnkjær A, Mølgaard C, Michaelsen KF, Frøkiaer H, Bahl MI, Licht TR. 2017. Faecalibacterium gut colonization is accelerated by presence of older siblings. mSphere 2:e00448-17.

9. Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemsen G, Boomsma DI, Segata N, Bork P. 2018. Selective maternal seeding and environment shape the human gut microbiome. Genome Res 28:561–568.

10. Azad MB, Konya T, Maughan H, Guttmann DS, Field CJ, Chari RS, Sears MR, Becker AB, Scott JA, Kozyrskyj AL. 2013. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 185:385–94.

11. Tun HM, Konya T, Takaro TK, Brook JR, Chari R, Field CJ, Guttmann DS, Becker AB, Mandhane PJ, Turvey SE, Subbarao P, Sears MR, Scott JA, Kozyrskyj AL. 2017. Exposure to household furry pets influences the gut microbiota of infants at 3–4 months following various birth scenarios. Microbiome 5:40.
12. Nermes M, Endo A, Aarnio J, Salminen S, Isolauri E. 2015. Furry pets modulate gut microbiota composition in infants at risk for allergic disease. J Allergy Clin Immunol 136:1688-1690e1.

13. Levin AM, Sitark AR, Havstad SL, Fujimura KE, Wegienka G, Cassidy-Bushrow AE, Kim H, Zoratti EM, Lukacs NW, Boushey HA, Ownby DR, Lynch S V., Johnson CC. 2016. Joint effects of pregnancy, sociocultural, and environmental factors on early life gut microbiome structure and diversity. Sci Rep 6:1–16.

14. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Gregory Caporaso J, Knights D, Clemente JC, Nakiely S, Gordon JI, Fierer N, Knight R. 2013. Cohabitating family members share microbiota with one another and with their dogs. Elife 2013:1–22.

15. Laursen MF, Andersen LBB, Michaelsen KF, Mølgaard C, Trolle E, Bahl MI, Licht TR. 2016. Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity. mSphere 1:e00069-15.

16. Shin H, Pei Z, Martinez KA, Rivera-Vinas JI, Mendez K, Cavallin H, Dominguez-Bello MG. 2015. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome 3:59.

17. Brooks B, Olm MR, Firek BA, Baker R, Thomas BC, Morowitz MJ, Banfield JF. 2017. Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome. Nat Commun 8:1–7.

18. Schmidt TSB, Hayward MR, Coelho LP, Li SS, Costea PI, Voigt AY, Wirbel J, Maistenken OM, Alves RJ, Bergsten E, de Beaufort C, Sobhani I, Heintz-Buschart A, Sunagawa S, Zeller G, Wilmes P, Bork P. 2019. Extensive transmission of microbes along the gastrointestinal tract. Elife 8.

19. Asnicar F, Manara S, Zolf M, Truong DT, Scholz M, Armanini F, Ferretti P, Gorfer V, Pedrotti A, Tett A, Segata N. 2017. Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling. mSystems 2:e00164-16.

20. Chu DM, Ma J, Prince AL, Antony KM, Scerovic MD, Aagaard KM. 2017. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med.

21. Yassour M, Jason E, Hogstrom LJ, Arthur TD, Tripathi S, Siljander H, Selvénius J, Oikarinen S, Hyötty H, Virtanen SM, Ilonen J, Ferretti P, Pasolli E, Tett A, Asnicar F, Segata N, Vlamakis H, Lander ES, Huttenhower C, Knip M, Xavier RJ. 2018. Strain-Level Analysis of Mother-to-Child Bacterial Transmission during the First Few Months of Life. Cell Host Microbe 24:146-154.e4.

22. Maqsood R, Rodgers R, Rodriguez C, Handley SA, Ndoo IM, Tarr PI, Warner BB, Lim ES, Holtz LR. 2019. Discordant transmission of bacteria and viruses from mothers to babies at birth. Microbiome 7:1–13.

23. Duranti S, Lugli GA, Mancabelli L, Armanini F, Turroni F, James K, Ferretti P, Gorfer V, Ferrario C, Milani C, Mangifesta M, Anzalone R, Zolf M, Viappiani A, Pasolli E, Bariletti I, Canto R, Clementi R, Colonna M, Ciriò T, Cusumano G, Fedi S, Gottardi S, Innmarotcot C, Masè C, Postai D, Savoi D, Sofiati M, Tateo S, Pedrotti A, Segata N, Van Sinderen D, Ventura M. 2017. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome 5:282.

24. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. 2016. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography.
25. Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A, Adisetiyo H, Zabih S, Lincez PJ, Bittinger K, Bailey A, Bushman FD, Sleasman JW, Aldrovandi GM. 2017. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr 171:647.

26. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Jun W. 2015. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 17:690–703.

27. DiGiulio DB, Callahan BJ, McMurdie PJ, Costello KE, Lyell DJ, Robaczewska A, SUN CL, Goltsman DSA, Wong RJ, Shawa G, Stevenson DK, Holmes SP, Relman DA. 2015. Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl Acad Sci U S A 112:11060–11065.

28. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ. 2011. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108:4680–4687.

29. Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UME, Zhong X, Koenig SSK, Fu L, Ma Z, Zhou X, Abdo Z, Forney LJ, Ravel J. 2012. Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4.

30. Rasmussen MA, Thorsen J, Dominguez-Bello MG, Blaser MJ, Mortensen MS, Brejnrod AD, Shah SA, Hjemmø MH, Lehtimäki J, Trivedi U, Bisgaard H, Sørensen SI, Stokholm J. 2020. Ecological succession in the vaginal microbiota during pregnancy and birth. ISME J 1–11.

31. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–5.

32. Mitchell C, Hogstrom L, Bryant A, Bergerat A, Cher A, Poarch S, Herman P, Carrigan M, Sharp K, Huttenhower C, Lander ES, Vlamakis H, Xavier RJ, Yassour M. 2020. Delivery mode impacts newborn gut colonization efficiency. bioRxiv. bioRxiv.

33. Korpela K, Helve O, Kolho KL, Saisto T, Skogberg K, Dikareva E, Stefanovic V, Salonen A, Andersson S, de Vos WM. 2020. Maternal Fecal Microbiota Transplantation in Cesarean-Born Infants Rapidly Restores Normal Gut Microbial Development: A Proof-of-Concept Study. Cell 183:324-334.e5.

34. Byrd AL, Belkaid Y, Segre JA. 2018. The human skin microbiome. Nat Rev Microbiol. Nature Publishing Group.

35. Scholz CFP, Kilian M. 2016. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus propionibacterium to the proposed novel genera acidepropionibacterium gen. Nov., cutibacterium gen. nov. and pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol 66:4422–4432.

36. Yamashita Y, Takeshita T. 2017. The oral microbiome and human health. J Oral Sci. Nihon
University, School of Dentistry.

38. Williams JE, Carrothers JM, Lackey KA, Beatty NF, Brooker SL, Peterson HK, Steinkamp KM, York MA, Shafii B, Price WJ, McGuire MA, McGuire MK. 2019. Strong multivariate relations exist among milk, oral, and fecal microbiomes in mother-infant dyads during the first six months postpartum. J Nutr 149:902–914.

39. Arumugam M, Raes J, Pelletier E, Le PD, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen N, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Antolin M, Artiguenave F, Blottiere HM, Almeida M, Brechtot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Forster R, Huber W, van Hylckama-Vlieg J, Janet A, Juste C, Kaci G, Knol J, Lakhadi O, Layec S, Le RK, Maguin E, Merieux A, Melo MR, M’Rimi M, Muller J, Oozeer R, Parkhill J, Renault P, Risom N, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J. 2011. Enterotypes of the human gut microbiome. Nature 473:174–180.

40. Koren O, Goodrich JK, Cullender TC, Spor A, Latimer K, Kling Bäckhed H, Gonzalez A, Werner JJ, Angenent LT, Knight R, Bäckhed F, Isolauri E, Salminen S, Ley RE. 2012. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150:470–480.

41. Makino H, Kushiro A, Ishikawa E, Muylaert D, Kubota H, Sakai T, Oishi K, Martin R, Amor K Ben, Oozeer R, Knol J, Tanaka R. 2014. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol 77:6788–6793.

42. Milani C, Mancabelli L, Lugli GA, Duranti S, Turroni F, Ferrario C, Mangifesta M, Viappiani A, Ferretti P, Gorfer V, Tett A, Segata N, van Sinderen D, Ventura M. 2015. Exploring vertical transmission of bifidobacteria from mother to child. Appl Environ Microbiol 81:7078–7087.

43. Jost T, Lacroix C, Braegger C, Chassard C. 2015. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr Rev 73:426–437.

44. Larsson MW, Lind M V., Larnkjær A, Blom IC, Wells J, Lai CT, Mølgaard C, Geddes DT, Michaelsen KF. 2018. Excessive weight gain followed by catch-down in exclusively breastfed infants: An exploratory study. Nutrients 10:1290.

45. Moossavi S, Azad MB. 2019. Origins of human milk microbiota: new evidence and arising questions. Gut Microbes 1–10.

46. Kordy K, Gaufin T, Mwangi M, Li F, Cerini C, Lee DJ, Adisetiyo H, Woodward C, Pannaraj PS, Tobin NH, Alikovand NH. 2020. Contributions to human breast milk microbiome and enteromammary transfer of Bifidobacterium breve. PLoS One 15:e0219633.

47. Rodriguez JM. 2014. The Origin of Human Milk Bacteria: Is There a Bacterial Entero-Mammary Pathway during Late Pregnancy and Lactation? Adv Nutr An Int Rev J 5:779–784.

48. Treven P, Mahnič A, Rupnik M, Golob M, Pirš T, Matjašič BB, Lorbeg PM. 2019. Evaluation of Human Milk Microbiota by 16S rRNA Gene Next-Generation Sequencing (NGS) and Cultivation/MALDI-TOF Mass Spectrometry Identification. Front Microbiol 10:1–12.

49. Jost T, Lacroix C, Braegger C, Chassard C. 2013. Assessment of bacterial diversity in breast milk
using culture-dependent and culture-independent approaches. Br J Nutr 110:1253–1262.

50. Fitzstevens JL, Smith KC, Hagadorn JJ, Caimano MJ, Matson AP, Brownell EA. 2017. Systematic review of the human milk microbiota. Nutr Clin Pract. SAGE Publications Inc.

51. Lundgren SN, Madan JC, Karagas MR, Morrison HG, Hoen AG, Christensen BC. 2019. Microbial Communities in Human Milk Relate to Measures of Maternal Weight. Front Microbiol 10:1–15.

52. Moossavi S, Sepehri S, Robertson B, Bode L, Goruk S, Field CJ, Lix LM, de Souza RJ, Becker AB, Mandhane PJ, Turvey SE, Subbarao P, Moraes T, Lefebvre DL, Sears MR, Khafipour E, Azad MB. 2019. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe 25:324-335.e4.

53. Kozak K, Charbonneau D, Sanozky-Dawes R, Klaenhammer T. 2015. Characterization of bacterial isolates from the microbiota of mothers’ breast milk and their infants.

54. Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C. 2013. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 16:2891–904.

55. Laursen MF, Bahl MI, Michaelsen KF, Licht TR. 2017. First foods and gut microbes. Front Microbiol 8:1–8.

56. Martín V, Maldonado-Barragán A, Moles L, Rodríguez-Baños M, Campo R Del, Fernández L, Rodriguez JM, Jiménez E. 2012. Sharing of bacterial strains between breast milk and infant feces. J Hum Lact 28:36–44.

57. Martin R, Langa S, Reviriego C, Jimenez E, Marin ML, Xaus J, Fernandez L, Rodriguez JM. 2003. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 143:754–758.

58. Galazzo G, van Best N, Bervoets L, Dapaah IO, Savelkoul PH, Hornef MW, Lau S, Hamelmann E, Penders J, Hutton EK, McDaid H, Ratcliffe EM, Stearns JC, Schertzer JD, Surette MG, Thabane L, Mommers M, 2020. Development of the Microbiota and Associations With Birth Mode, Diet, and Atopic Disorders in a Longitudinal Analysis of Stool Samples, Collected From Infancy Through Early Childhood. Gastroenterology.

59. Martin R, Makino H, Cetinyurek Yavuz A, Ben-Amor K, Roelofs M, Ishikawa E, Kubota H, Swinkels S, Sakai T, Oishi K, Kushiro A, Knol J. 2016. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota. PLoS One 11:e0158498.

60. Miquel S, Martin R, Bridonneau C, Robert V, Sokol H, Bermúdez-Humarán LG, Thomas M, Langella P. 2014. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii, Gut Microbes 5.

61. Azad MB, Konya T, Maughan H, Guttmann DS, Field CJ, Sears MR, Becker AB, Scott JA, Kozyrskyj AL. 2013. Infant gut microbiota and the hygiene hypothesis of allergic disease: Impact of household pets and siblings on microbiota composition and diversity. Allergy, Asthma Clin Immunol 9:15.

62. Gasparini AJ, Wang B, Sun X, Kennedy EA, Hernandez-Leyva A, Ndao IM, Tarr PI, Warner BB, Dantas G. 2019. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat Microbiol 4:2285–2297.

63. Korpela K, Blakstad EW, Moltu SJ, Strømmen K, Nakstad B, Rønnestad AE, Brække K, Iversen PO, Drevon CA, de Vos W. 2018. Intestinal microbiota development and gestational age in preterm neonates. Sci Rep 8:2453.
64. Tauchi H, Yahagi K, Yamauchi T, Hara T, Yamaoka R, Tsukuda N, Watanabe Y, Tajima S, Ochi F, Iwata H, Ohta M, Ishii E, Matsumoto S, Matsuji T. 2019. Gut microbiota development of preterm infants hospitalised in intensive care units. Benef Microbes 10:641–651.

65. Henderickx JGE, Zwittink RD, Van Lingen RA, Knol J, Belzer C. 2019. The preterm gut microbiota: An inconspicuous challenge in nutritional neonatal care. Front Cell Infect Microbiol. Frontiers Media S.A.

66. Skórka A, Piescik-Lech M, Kolodziej M, Szajewska H. 2017. To add or not to add probiotics to infant formulae? An updated systematic review. Benef Microbes. Wageningen Academic Publishers.

67. Mah KW, Chin VIL, Wong WS, Lay C, Tannock GW, Shek LP, Aw MM, Chua KY, Wong HB, Panchalingham A, Lee BW. 2007. Effect of a milk formula containing probiotics on the fecal microbiota of Asian infants at risk of atopic diseases. Pediatr Res 62:674–679.

68. Derrien M, van Hylckama Vlieg JET. 2015. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. Elsevier Ltd.

69. Khan MT, Van Dijl JM, Harmsen HJM. 2014. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air. PLoS One 9.

70. Khan MT, Duncan SH, Stams AJM, Van Dijl JM, Flint HJ, Harmsen HJM. 2012. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J 6:1578–1585.

71. He G, Shankar RA, Chzhan M, Samouilov A, Kuppusamy P, Zweier JL. 1999. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci U S A.

72. Albenberg L, Esipova T V., Judge CP, Bittinger K, Chen J,Laughlin A, Grunberg S, Baldassano RN, Lewis JD, Li H, Thom SR, Bushman FD, Vinogradov SA, Wu GD. 2014. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology.

73. Friedman ES, Bittinger K, Esipova T V., Hou L, Chau L, Jiang J, Mesanos C, Lund PJ, Liang X, FitzGerald GA, Goulain M, Lee D, Garcia BA, Blair IA, Vinogradov SA, Wu GD. 2018. Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proc Natl Acad Sci U S A.

74. Hallbäck DA, Hultén L, Jodal M, Lindhagen J, Lundgren O. 1978. Evidence for the existence of a countercurrent exchanger in the small intestine in man. Gastroenterology.

75. Chong CYL, Bloomfield FH, O’Sullivan JM. 2018. Factors affecting gastrointestinal microbiome development in neonates. Nutrients. MDPI AG.

76. Bittinger K, Zhao C, Li Y, Ford E, Friedman ES, Ni J, Kulkarni C V., Cai J, Tian Y, Liu Q, Patterson AD, Sarkar D, Chan SHJ, Maranas C, Saha-Shah A, Lund P, Garcia BA, Mattei LM, Gerber JS, Ellovitz MA, Kelly A, DeRusso P, Kim D, Hofstadler CE, Goulain M, Li H, Bushman FD, Zemel BS, Wu GD. 2020. Bacterial colonization reprograms the neonatal gut metabolome. Nat Microbiol.

77. Tally FP, Stewart PR, Sutter VL, Rosenblatt JE. 1975. Oxygen tolerance of fresh clinical anaerobic bacteria. J Clin Microbiol 1:161–164.

78. Avery GB, Randolph JG, Weaver T. 1966. Gastric Acidity in the First Day of Life. Pediatrics 37.
79. Sondheimer JM, Clark DA, Gervaise EP. 1985. Continuous gastric pH measurement in young and older healthy preterm infants receiving formula and clear liquid feedings. J Pediatr Gastroenterol Nutr 4:352–355.

80. Barbero GJ, Runge G, Fischer D, Crawford MN, Torres FE, György P. 1952. Investigations on the bacterial flora, pH, and sugar content in the intestinal tract of infants. J Pediatr 40:152–163.

81. Vertzoni M, Augustijns P, Grimm M, Koziolek M, Lemmens G, Parrott N, Pentafragka C, Reppas C, Rubbens J, Van Den Abeele J, Vanuytsel T, Weitschies W, Wilson CG. 2019. Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: An UNGAP review. Eur J Pharm Sci 134:153–175.

82. Pham VT, Chassard C, Rifa E, Braegger C, Geirnaert A, Rocha Martin VN, Lacroix C. 2019. Lactate Metabolism Is Strongly Modulated by Fecal Inoculum, pH, and Retention Time in PolyFermS Continuous Colonic Fermentation Models Mimicking Young Infant Proximal Colon. mSystems 4:264–282.

83. Chung WSF, Walker AW, Louis P, Parkhill J, Vermeiren J, Bosscher D, Duncan SH, Flint HJ. 2016. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol 14:3.

84. Smith EA, Macfarlane GT. 1996. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol 81:288–302.

85. Walker AW, Duncan SH, Carol McWilliam Leitch E, Child MW, Flint HJ. 2005. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700.

86. Ogawa K, Ben RA, Pons S, de Paolo MIL, Fernandez LB. 1992. Volatile fatty acids, lactic acid, and pH in the stools of breast-fed and bottle-fed infants. J Pediatr Gastroenterol Nutr 15:248–252.

87. Indrio F, Ladisa G, Mautone A, Montagna O. 2007. Effect of a fermented formula on thymus size and stool pH in healthy term infants. Pediatr Res 62:98–100.

88. Henrick BM, Hutton AA, Palumbo MC, Casaburi G, Mitchell RD, Underwood MA, Smilowitz JT, Frese SA. 2018. Elevated Fecal pH Indicates a Profound Change in the Breastfed Infant Gut Microbiome Due to Reduction of Bifidobacterium over the Past Century. mSphere 3:e00041-18.

89. Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, Ogawa E, Kodama H, Yamamoto K, Yamada T, Matsumoto S, Kurokawa K. 2016. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun 7:11939.

90. Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, Aguilera M, Khanna S, Gil A, Edwards CA, Doré J. 2010. Intestinal microbiota of 6-week-old infants across Europe: Geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 51:77–84.

91. Lewis SJ, Heaton KW. 1997. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut 41:245–51.

92. Roager HM, Hansen LBS, Bahl MI, Frandsen HL, Carvalho V, Gøbel RJ, Dalgaard MD, Plichta DR, Sparholt MH, Vestergaard H, Hansen T, Sicheritz-Pontén T, Nielsen HB, Pedersen O, Lauritzen L, Kristensen M, Gupta R, Licht TR. 2016. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat Microbiol 1:16093.
93. Tulstrup MV-L, Christensen EG, Carvalho V, Linninge C, Ahnén S, Højberg O, Licht TR, Bahl MI. 2015. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class. PLoS One 10:e0144854.

94. Schulfer A, Blaser MJ. 2015. Risks of Antibiotic Exposures Early in Life on the Developing Microbiome. PLOS Pathog 11:e1004903.

95. Cox LM, Blaser MJ. 2015. Antibiotics in early life and obesity. Nat Rev Endocrinol 11:182–190.

96. Aversa Z, Atkinson EJ, Schaefer MJ, Theiler RN, Rocca WA, Blaser MJ, LeBrasseur NK. 2020. Association of Infant Antibiotic Exposure With Childhood Health Outcomes. Mayo Clin Proc.

97. Cox LM, Yamanishi S, Sohn J, Alekseyenko A V, Leung JM, Cho I, Kim SG, Li H, Gao Z, Mahana D, Zá Rate Rodriguez JG, Rogers AB, Robine N, ’ng Loke P, Blaser MJ. 2014. Altering the Intestinal Microbiota during a Critical Developmental Window Has Lasting Metabolic Consequences.

98. Espey MG. 2013. Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic Biol Med.

99. Rivera-Chávez F, Lopez CA, Bäumler AJ. 2017. Oxygen as a driver of gut dysbiosis. Free Radic Biol Med 105:93–101.

100. Rivera-Chávez F, Zhang LF, Faber F, Lopez CA, Byndloss MX, Olsan EE, Xu G, Velazquez EM, Lebrilla CB, Winter SE, Bäumler AJ. 2016. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella. Cell Host Microbe 19:443–454.

101. Fouhy F, Guinane CM, Hussey S, Wall R, Ryan CA, Dempsey EM, Murphy B, Ross RP, Fitzgerald GF, Stanton C, Cotter PD. 2012. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother 56:5811–5820.

102. Tanaka S, Kobayashi T, Songjinda P, Tateyama A, Tsubouchi M, Kiyohara C, Shirakawa T, Sonomoto K, Nakayama J. 2009. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 56:80–87.

103. Appert O, Garcia AR, Frei R, Roduit C, Constancias F, Neuzil-Bunesova V, Ferstl R, Zhang J, Akdis C, Lauener R, Lacroix C, Schwab C. 2020. Initial butyrate producers during infant gut microbiota development are endospore formers. Environ Microbiol 22:3909–3921.

104. Spees AM, Wangdi T, Lopez CA, Kingsbury DD, Xavier MN, Winter SE, Tsolis RM, Bäumler AJ. 2013. Streptomycin-induced inflammation enhances Escherichia coli gut colonization through nitrate respiration. MBio 4:430–443.

105. Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA, Villa MM, Durand HK, Jiang S, Midani FS, Nimmagadda SN, O’Connell TM, Wright JP, Deshusses MA, David LA. 2018. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. Elife 7.

106. Lushchak VI. 2014. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact.

107. Freter R, Stauffer E, Cleven D, Holdeman L V, Moore WE. 1983. Continuous-flow cultures as in vitro models of the ecology of large intestinal flora. InfectImmun 39:666–675.

108. Freter R, Brickner H, Botney M, Cleven D, Aranik A. 1983. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. InfectImmun
109. Sprockett DD, Martin M, Costello EK, Burns AR, Holmes SP, Gurven MD, Relman DA. Microbiota assembly, structure, and dynamics among Tsimane horticulturalists of the Bolivian Amazon.

110. McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, Aksenov AA, Behsaz B, Brennan C, Chen Y, DeRight Goldasich L, Dorrestein PC, Dunn RR, Fahimipour AK, Gaffney J, Gilbert JA, Gogul G, Green JL, Hugenholtz P, Humphrey G, Huttenhower C, Jackson MA, Janssen S, Jeste D V., Jiang L, Kelley ST, Knights D, Kosiolek T, Ladau J, Leach J, Marotz C, Meleshko D, Melnik A V., Metcalf JC, Mohimani H, Montassier E, Navas-Molina J, Nguyen TT, Peddada S, Pevzner P, Pollard KS, Rahnavard G, Robbins-Piana A, Sangwan N, Shorenstein J, Smarr L, Song SJ, Spector T, Swafford AD, Thackray VG, Thompson LR, Tripathi A, Vázquez-Baeza Y, Vrbanac A, Wischmeyer P, Wolfe E, Zhu Q, Knight R, Mann AE, Amir A, Frazier A, Martino C, Lebrilla C, Lozupone C, Lewis CM, Raison C, Zhang H, Lauber CL, Warinner C, Lowry CA, Callewaert C, Blois C, Willner D, Galzerani DD, Gonzalez DJ, Mills DA, Chopra D, Gevers D, Berg-Lyons D, Sears DD, Wendel D, Lovelace E, Pierce E, TerAvest E, Bolyen E, Bushman FD, Wu GD, Church GM, Saxe G, Holscher HD, Ugrina I, German JB, Caporaso JG, Wozniak JM, Kerr J, Ravel J, Lewis JD, Suchodolski JS, Janssion JK, Hampton-Marcell JT, Bobe J, Raes J, Chase JH, Eisen JA, Monk J, Clemente JC, Petrovisino J, Goodrich J, Gaught J, Jacob J, Zengler K, Swanson KS, Lewis K, Mayer K, Bittinger K, Dillon L, Zaramela LS, Schriml LM, Dominguez-Bello MG, Jankowska MM, Blaser M, Pirc Tour M, Minson M, Kurisu M, Ajami N, Gottel NR, Chia N, Fierer N, White O, Cani PD, Gajer P, Strandwitz P, Kashyap P, Dutton R, Park RS, Xavier RJ, Mills RH, Krajmalnik-Brown R, Ley R, Owens SM, Klemmer S, Matamoros M, Sakanaka M, Moorman S, Holmes S, Schwartz T, Eshoo-Anton TW, Vigers T, Pandey V, Treuren W Van, Fang X, Zech Xu Z, Jarmusch A, Geier J, Reeve N, Silva R, Kopylova E, Nguyen D, Sanders K, Salido Benitez RA, Heale AC, Abrman M, Waldspühl J, Butyaev A, Drogaritis C, Nazarov E, Ball M, Gundersen B. 2018. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems 3.

111. Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. 2018. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557:434–438.

112. Chen X. 2015. Human Milk Oligosaccharides (HMOS): Structure, Function, and Enzyme-Catalyzed Synthesis, p. 113–190. In Advances in Carbohydrate Chemistry and Biochemistry. Academic Press Inc.

113. Laursen MF, Sakanaka M, Burg N Von, Andersen D, Mörbe U, von Burg N, Andersen D, Mörbe U, Rivollier A, Pekmez CT, Moll JM, Michaelsen KF, Mølgaard C, Lind MV, Dragsted LO, Katayama T, Frandsen HL, Vinggaard AM, Bahl MI, Brix S, Agace W, Lucht TR, Roager HM. 2020. Breastmilk-promoted bifidobacteria produce aromatic lactic acids in the infant gut. bioRxiv 2020.01.22.914994.

114. Sakanaka M, Gotoh A, Yoshida K, Odamaki T, Koguchi H, Xiao J, Kitaoka M, Katayama T. 2019. Varied Pathways of Infant Gut-Associated Bifidobacterium to Assimilate Human Milk Oligosaccharides: Prevalence of the Gene Set and Its Correlation with Bifidobacteria-Rich Microbiota Formation. Nutrients 12:71.

115. Sakanaka M, Hansen ME, Gotoh A, Katoh T, Yoshida K, Odamaki T, Yachi H, Sugiyama Y, Kurihara S, Hirose J, Urashima T, Xiao J zhong, Kitaoka M, Fukiya S, Yokota A, Leggio L Lo, Hachem MA, Katayama T. 2019. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Adv 5.

116. Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, Lebrilla CB, Weimer
BC, Mills DA, German JB, Sonnenburg JL. 2011. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10:507–514.

117. Pichler MJ, Yamada C, Shuoker B, Alvarez-Silva C, Gotoh A, Leth ML, Schoof E, Katoh T, Sakanaka M, Katayama T, Jin C, Karlsson NG, Arumugam M, Fushinobu S, Abou Hachem M. 2020. Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat Commun 11:1–15.

118. Leth ML, Ejby M, Workman C, Ewald DA, Pedersen SS, Sternberg C, Bahl MI, Licht TR, Aachmann FL, Westereng B, Abou Hachem M. 2018. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Nat Microbiol.

119. La Rosa SL, Leth ML, Michalak L, Hansen ME, Pudlo NA, Glowacki R, Pereira G, Workman CT, Arntzen M, Pope PB, Martens EC, Hachem MA, Westereng B. 2019. The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans. Nat Commun 10:1–14.

120. Mirande C, Kadlecikova E, Matulova M, Capek P, Bernalier-Donadille A, Forano E, Béria-Mailet C. 2010. Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1A T and Roseburia intestinalis XB6B4 from the human intestine. J Appl Microbiol 109:451–460.

121. Fallani M, Amari S, Uusijarvi A, Adam R, Khanna S, Aguilera M, Gil A, Vliegent JC, Norin E, Young D, Scott JA, Doré J, Edwards CA. 2011. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 157:1385–92.

122. Lønnerdal B. 2017. Excess iron intake as a factor in growth, infections, and development of infants and young children, p. 1681S-1687S. In American Journal of Clinical Nutrition. Oxford University Press.

123. Finlayson-Trick EC, Fischer JA, Goldfarb DM, Karakochuk CD. 2020. The Effects of Iron Supplementation and Fortification on the Gut Microbiota: A Review. Gastrointest Disord 2:327–340.

124. Matsuyama M, Morrison M, Cao KAL, Pruilh S, Davies PSW, Wall C, Lovell A, Hill RJ. 2019. Dietary intake influences gut microbiota development of healthy Australian children from the age of one to two years. Sci Rep 9:1–11.

125. Nølnerdal B. 2017. Excess iron intake as a factor in growth, infections, and development of infants and young children, p. 1681S-1687S. In American Journal of Clinical Nutrition. Oxford University Press.

126. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. Gut Microbes.

127. Sela DA, Mills DA. 2010. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 18:298–307.

128. Holck J, Lorentzen A, Vigsnaes LK, Licht TR, Mikkelsen JD, Meyer AS, Vigsnaes LK, Licht TR, Mikkelsen JD, Meyer AS. 2011. Feruloylated and nonferuloylated arabino-oligosaccharides from sugar beet pectin selectively stimulate the growth of Bifidobacterium spp. in human fecal in vitro fermentations. J Agric Food Chem 59:6511–6519.

129. Hansen LBS, Roager HM, Søndertoft NB, Gøbel RJ, Kristensen M, Vallès-Colomer M, Vieira-Silva S, Ibrügger S, Lind M V., Mørkedahl RB, Bahl MI, Madsen ML, Havelund J, Falony G,
Tetens I, Nielsen T, Allin KH, Frandsen HL, Hartmann B, Holst J, Holck J, Blennow A, Moll JM, Meyer AS, Hoppe C, Poulsen JH, Carvalho V, Sagnelli D, Dalgaard MD, Christensen AF, Lydolph MC, Ross AB, Villas-Bôas S, Brix S, Sicheritz-Pontén T, Buschard K, Linneberg A, Rumessen JJ, Ekström CT, Ritz C, Kristiansen K, Nielsen HB, Vestergaard H, Færge- man NJ, Raes J, Frøkiaer H, Hansen T, Lauritzen L, Gupta R, Licht TR, Pedersen O. 2018. A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nat Commun 9:4630.

130. Pereira FC, Berry D. 2017. Microbial nutrient niches in the gut. Environ Microbiol 19:1366–1378.

131. Nevola JJ, Laux DC, Cohen PS. 1987. In Vivo Colonization of the Mouse Large Intestine and In Vitro Penetration of Intestinal Mucus by an Avirulent Smooth Strain of Salmonella typhimurium and Its Lipopolysaccharide-Deficient Mutant. INFECTION AND IMMUNITY.

132. Poulsen LK, Licht TR, Rang C, Krogfelt KA, Molin S. 1995. Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice. J Bacteriol 177:5840–5845.

133. Atuma C, Strugala V, Allen A, Holm L. 2001. The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. Am J Physiol - Gastrointest Liver Physiol 280.

134. Zoetendal EG, Von Wright A, Vilpponen-Salmela T, Ben Amor K, Akkermans AD, de Vos WM. 2002. Mucosa-Associated Bacteria in the Human Gastrointestinal Tract Are Uniformly Distributed along the Colon and Differ from the Community Recovered from Feces. Appl Env Microbiol 68:3401–3407.

135. Derrien M, Vaughan EE, Plugge CM, de Vos WM. 2004. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476.

136. Geerlings S, Kostopoulos I, de Vos W, Belzer C. 2018. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms 6:75.

137. Collado MC, Derrien M, Isolauri E, De Vos WM, Salminen S. 2007. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 73:7767–7770.

138. Tailford LE, Crost EH, Kavanaugh D, Juge N. 2015. Mucin glycan foraging in the human gut microbiome. Front Genet 5.

139. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JJ. 2005. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science (80-) 307:1955–1959.

140. Egan M, O’Connell Motherway M, Kilcoyne M, Kane M, Joshi L, Ventura M, Van Sinderen D. 2014. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiol 14:282.

141. Egan M, Motherway MOC, Ventura M, van Sinderen D. 2014. Metabolism of sialic acid by Bifidobacterium breve UCC2003. Appl Environ Microbiol 80:4414–4426.

142. Centanni M, Ferguson SA, Sims IM, Biswas A, Tannocka GW. 2019. Bifidobacterium bifidum ATCC 15696 and bifidobacterium breve 24b metabolic interaction based on 2-O-Fucosyl-lactose studied in steady-state cultures in a fréter-style chemostat. Appl Environ Microbiol 85:2783–2801.

143. Gotoh A, Katoh T, Sakanaka M, Ling Y, Yamada C, Asakuma S, Urashima T, Tomabechi Y, Katayama-Ikegami A, Kurihara S, Yamamoto K, Harata G, He F, Hirose J, Kitaoka M, Okuda S, Katayama T. 2018. Sharing of human milk oligosaccharides degradants within bifidobacterial
144. Bunesova V, Lacroix C, Schwab C. 2016. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwahense. BMC Microbiol 16:1–12.

145. James K, Bottacini F, Contreras JIS, Vigoureux M, Egan M, Motherway MO, Holmes E, van Sinderen D. 2019. Metabolism of the predominant human milk oligosaccharide fucosyllactose by an infant gut commensal. Sci Rep 9.

146. Schwab C, Ruscheweyh HJ, Bunesova V, Pham VT, Beerwenkinkel N, Lacroix C. 2017. Trophic interactions of infant bifidobacteria and eubacterium hallii during L-fucose and fucosyllactose degradation. Front Microbiol 8.

147. Lawson MAE, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekara A, Flegg Z, Chalklen L, Hall LJ. 2020. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J 14:635–648.

148. Turroni F, Milani C, Duranti S, Mahony J, van Sinderen D, Ventura M. 2018. Glycan Utilization and Cross-Feeding Activities by Bifidobacteria. Trends Microbiol. Elsevier Ltd.

149. Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Kerr C, Hourihane J, Murray D, Fuligni F, Gueimonde M, Margolles A, de Bellis G, O’Toole PW, van Sinderen D, Marchesi JR, Ventura M. 2012. Diversity of bifidobacteria within the infant gut microbiota. PLoS One 7.

150. Bunesova V, Lacroix C, Schwab C. 2018. Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii. Microb Ecol 75:228–238.

151. Differding MK, Benjamin-Neelon SE, Hoyo C, Østbye T, Mueller NT. 2020. Timing of complementary feeding is associated with gut microbiota diversity and composition and short chain fatty acid concentrations over the first year of life. BMC Microbiol 20.

152. Rivièrè A, Gagnon M, Weckx S, Roy D, De Vuyst L. 2015. Mutual cross-feeding interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 explain the bifidogenic and butyrogenic effects of arabinoxylan oligosaccharides. Appl Environ Microbiol 81:7767–7781.

153. Falony G, Vlachou A, Verbrugghe K, De Vuyst L. 2006. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841.

154. Moens F, Weckx S, De Vuyst L. 2016. Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium praunitzii. Int J Food Microbiol 231:76–85.

155. Wang SP, Rubio LA, Duncan SH, Donachie GE, Holtrop G, Lo G, Farquharson FM, Wagner J, Parkhill J, Louis P, Walker AW, Flint HJ. 2020. Pivotal Roles for pH, Lactate, and Lactate-Utilizing Bacteria in the Stability of a Human Colonic Microbial Ecosystem. mSystems 5:645–665.

156. Pham VT, Lacroix C, Braegger CP, Chassard C. 2016. Early colonization of functional groups of microbes in the infant gut. Environ Microbiol 18:2246–2258.

157. Rocha Martin VN, Schwab C, Krych L, Voney E, Geirnaert A, Braegger C, Lacroix C. 2018. Colonization of Cutibacterium avidum during infant gut microbiota establishment. FEMS Microbiol Ecol 95:215.
158. Bergström A, Skov TH, Bahl MI, Roager HM, Christensen LB, Ejlerskov KT, Mølgaard C, Michaelsen KF, Licht TR. 2014. Establishment of intestinal microbiota during early life: A longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol 80.

159. Arrieta M-C, Stiensma LT, Amenyogbe N, Brown EM, Finlay B. 2014. The intestinal microbiome in early life: health and disease. Front Immunol 5:427.

160. Raman AS, Gehrig JL, Venkatesh S, Chang HW, Hibberd MC, Subramanian S, Kang G, Bessong PO, Lima AAM, Kosek MN, Petri WA, Rodionov DA, Arzamasov AA, Leyn SA, Osterman AL, Huq S, Mostafa I, Islam M, Mahfuz M, Haque R, Ahmed T, Barratt MJ, Gordon JL. 2019. A sparse covarying unit that describes healthy and impaired human gut microbiota development. Science (80-) 365.

161. Vannette RL, Fukami T. 2014. Historical contingency in species interactions: Towards niche-based predictions. Ecol Lett 17:115–124.

162. Sprockett D, Fukami T, Relman DA. 2018. Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol. Nature Publishing Group.

163. Martinez I, Maldonado-Gomez MX, Gomes-Neto JC, Kittana H, Ding H, Schmaltz R, Joglekar P, Cardona RJ, Marsteller NL, Kembel SW, Benson AK, Peterson DA, Ramer-Tait AE, Walter J. 2018. Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. Elife 7.

164. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW. 2009. The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715.

165. Ackerly DD, Cornwell WK. 2007. A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecol Lett.

166. Guittar J, Shade A, Litchman E. 2019. Trait-based community assembly and succession of the infant gut microbiome. Nat Commun.

167. Klappenbach JA, Dunbar JM, Schmidt TM. 2000. tRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol.

168. Rodriguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR, Collado MC. 2015. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Heal Dis 26.

169. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. 2016. How colonization by microbiota in early life shapes the immune system. Science (80-) American Association for the Advancement of Science.