Fruits. The DD4 system significantly increased large tomato production (22%) compared with a lower production (16%) of large fruits and an increased production of smaller production loss resulting from increased acidity, average fruit weight, and ionic concentration (e.g., total soluble solids, dry matter content, acidity, average fruit weight, and ionic concentration). To determine and quantify the production loss resulting from increased radical osmotic pressure, several experimental protocols have been described since the 1970s (e.g., Hoffman, 1985; Jobes et al., 1981; Maas and Hoffman, 1977). Currently, these protocols have been modified and adapted by quadratic fit models considering salinity values starting at 0 dS·m⁻¹, with a lower production (16%) of large fruits and an increased production of smaller fruits. The DD₄ system significantly increased large tomato production (22%) compared with DD₁, and the quality parameters in the fruits were not significantly affected. Thermographies were used to aid the control of differential transpiration exerted by salinity. The difference in salinity did not significantly affect the total or commercial production. However, despite being grafted plants, there was a statistically significant effect (P ≤ 0.05) on the fruit size distribution when the electrical conductivity (EC) of the nutrient solution was increased from 2.0 to 2.5 dS·m⁻¹, with a lower production (16%) of large fruits and an increased production of smaller fruits. The DD₄ system significantly increased large tomato production (22%) compared with DD₁, and the quality parameters in the fruits were not significantly affected. As a result of the improvement in tomato size, the DD₄ distribution system economically offset the required higher initial expenditure compared with the DD₁ system. Thermography was revealed to be a robust, simple, and quick tool for diagnosing the effect of salinity on transpiration.

Salinity is one of the most limiting studied factors in protected horticulture. The negative effect of increased osmotic pressure deviations from an optimal value in the culture medium and nutrient solution has been studied for a long time. Adapting the management of fertigation and salinity (expressed as ionic composition of the nutrient solution) to the production conditions is a highly influential factor in terms of an economic balance but is also an important factor for controlling the emission of pollutants into the environment (Massa et al., 2010; Urrestarazu et al., 2008a). From the 1930s and 1940s (Hayward and Long, 1943; Robbins, 1937) to the present (Adams, 1991; Adams and Ho, 1989; Cuartero and Fernández-Muñoz, 1998; Ho and Adams, 1995; Urrestarazu et al., 2005), two clear effects with increasing salinity have been described as follows: 1) productivity loss and 2) the increase of fruit quality parameters (e.g., total soluble solids, dry matter content, acidity, average fruit weight, and ionic concentration). To determine and quantify the production loss resulting from increased thermal conductivity and nutrient solution distribution system effects on grafted tomato soilless culture

Isidro Morales and Miguel Urrestarazu
Department of Agronomy, University of Almeria, E-04120, Almeria, Spain

Abstract. In recent decades, salinity in the culture of tomatoes has been one of the most studied parameters. This study aimed to evaluate the effect of a moderate increase in salinity, fertigation distribution, and its control using thermography on a soilless culture of grafted tomato. A tomato crop (cv. Ramyle) grafted onto tomato rootstocks (cv. Emperor) was cultivated in coir crop units at the University of Almeria from Nov. 2012 to May 2013. A plot design subdivided with four blocks was used, with salinity values of 2.0 and 2.5 dS·m⁻¹ in the main plots and fertigation distribution systems with either one (DD₁) or four (DD₄) drip manifolds in the subplots. The crop productivity was measured using total crop yield, commercial value, and size. The quality parameters in the fruits were not significantly affected. Thermographies were used to aid the control of differential transpiration exerted by salinity. The difference in salinity did not significantly affect the total or commercial production. However, despite being grafted plants, there was a statistically significant effect (P ≤ 0.05) on the fruit size distribution when the electrical conductivity (EC) of the nutrient solution was increased from 2.0 to 2.5 dS·m⁻¹, with a lower production (16%) of large fruits and an increased production of smaller fruits. The DD₄ system significantly increased large tomato production (22%) compared with DD₁, and the quality parameters in the fruits were not significantly affected. As a result of the improvement in tomato size, the DD₄ distribution system economically offset the required higher initial expenditure compared with the DD₁ system. Thermography was revealed to be a robust, simple, and quick tool for diagnosing the effect of salinity on transpiration.

Materials and Methods

Cultivation conditions. Cultivation was performed at the facilities of the University of Almeria (Spain) in a plastic greenhouse (200 µm thick). Grafted seedlings were planted on 9 Nov. 2012 during a stage in which they had six and seven true leaves. We used the Emperor F1 cv. rootstock and the Ramyle F1 cv. tomato grafted. The cultivation management was made following methods commonly used in the cultivation area. For each treatment, two controls were established for fertigation control consisting of a control dripper and a drain pan that served as points of measurement and monitoring of supplied fertigation and its absorption response. In these locations, the volume of the nutrient solution as well as the pH and EC of the fertigation input and the drainage was measured on a daily basis. The feedback data supplied the fertigation scheduling program.

Each new irrigation process was performed when 10% of the readily available water in the substrate had been exhausted plus the volume necessary to produce between 15% and 25% of drainage (Urrestarazu, 2004; Urrestarazu et al., 2005, 2008b). The duration of each irrigation process was selected by adjusting the volume to be supplied to each cultivation unit depending on the soil water release curve obtained (Fig. 1). To obtain the water release curve of the coir substrate, the following volumes were calculated (vol:vol); total porosity, air volume (aeration capacity), readily available water, reserve water, and scarcely available water (AENOR, 2012). The physical analysis of the substrate was performed in triplicate. The cultivation unit was a Pelemix GB1002410© coir grow bag (100 × 25 × 10 cm) with a cultivation volume of 25 L.

Treatments applied. Two sources of variation were considered. The first source of variation was the salinity of the nutrient solution with an EC value of either 2.0 or 2.5 dS·m⁻¹. The nutrient solution was prepared with concentrated solutions of macro-nutrients in the proportions indicated in Table 1. The second source of variation was the number of supply outlets delivering the nutrient solution with one (DD₁) or four (DD₄) drip manifolds. Each microtube was 4 mm in diameter and 60 cm in length. The distribution of the three or 12 pegs (or stabilizers)
was done in a uniform manner throughout the culture unit.

Harvest sampling. The harvest took place during a period spanning from 14 Mar. to 15 May 2012. The harvest of individual fruits was done on a weekly basis for tomatoes in the state of maturity corresponding to a uniform red color of the tomato skin. The tomatoes were sized according to their equatorial diameter and the prevailing commercial fruit category (DO, 2000). The yield of each size was clustered throughout the culture, and the median values are shown in Table 2. From each harvest, a subsample of three tomato fruits was taken and used to make a homogenized solution to measure pH, EC, and total soluble solids (expressed as °Brix), which were measured with a digital handheld refractometer (Atago PAL-1). After drying the tomatoes in a forced-air oven at 85°C for 72 h, the dry matter was obtained by weighing three tomatoes with an accuracy of one hundredth of a gram.

Sampling and analysis of the thermographies. At full production of the tomato crop, three thermographies for each EC treatment were taken by sampling the eighth fully expanded leaf located at the end of the plant (Fig. 2). The average temperatures were measured in an area of between 3 and 5 cm² for each leaflet following the procedure described by Fernández-Bregón et al. (2013) and Urrestarazu (2013). The thermographies were taken the same day at 1200 HR following the criteria of Fernández-Bregón et al. (2013) and Möller et al. (2007).

Infrared thermography images were obtained with a Fluke® Ti32 thermal imaging scanner (Janesville, WI) with an infrared spectrum measuring range of 7.3 to 13 μm and a temperature range of –40 to +600 °C. The detector allows a resolution of 320 × 240 pixels with a minimum focal length of 0.3 m and a spatial resolution of 0.01 °C. The thermal image processing was analyzed with the SmartView 3.2™ Researcher Pro software (Fluke Thermography, Plymouth, MN), which allowed the determination of mean, maximum, and minimum temperatures in a particular surface area.

Experimental design and statistical analysis. The experiment was conducted using a split-plot design (Little and Hill, 1978; Petersen, 1994). The main plot had salinity (EC) as the...
source of variation. The secondary plot corresponded to the plot hosting the drip fertigation system (DD1 and DD4). The number of plot and subplot blocks was four. An analysis of variance and the corresponding separation of mean values were performed accordingly.

The mathematical treatment of the data were performed using Statgraphics Centurion® 16.1.15 and Microsoft Office 2010 (Microsoft Inc., Redmond, WA). The experimental unit consisted of three coir grow bags. Each bag contained three plants fertigated with three dripper outlets with a nominal flow rate of 3 L·h⁻¹. A simple Student’s t-test was used to calculate the mean separation of temperature values obtained from the thermography imaging data.

Results and Discussion

Effect on total crop productivity. Table 2 shows the treatment data arranged per total productivity, commercial value, and size. In the total crop yield and total commercial value, no significant differences were observed for the following treatments: salinity and type of drip manifold (DD) used to distribute the nutrient solution. An increased production in the lower salinity (EC₂.₀) treatment was not found compared with the higher salinity (EC₂.₅) treatment described in the literature (Hoffman, 1985; Joes et al., 1981; Maas and Hoffman, 1977; Sonneveld, 2004a; Sonneveld and Voogt, 2009).

It is well known that grafting contributes to increased plant vigor and greater tolerance to diseases (Migueł et al., 2004), salinity and water stress (e.g., Fernandez-Garcia et al., 2002; Lee, 1994; Lee and Oda, 2003; Schwarz et al., 2010). Therefore, grafting may have helped to prevent the loss of total production of the tomato crop.

Effect on the distribution of fruit sizes.

Tomato fruit size was significantly affected by both the salinity and nutrient solution distribution system (DD) (Fig. 3). The nutrient solution with a lower EC value (EC₂.₀) produced a statistically significant (P ≤ 0.05) higher proportion of larger fruits (size MM; 16%) and a lower proportion of the smaller fruit size (P; 5%) and noncommercial size (34%). Because larger sizes tend to have a higher market value, the EC increase from 2 to 2.5 dS·m⁻¹ resulted in a loss of market value. These results were consistent with those obtained in a large number of studies, in which an increase in salinity has been reported to cause a reduction in mean fruit weight (Hayward and Long, 1943; Ho and Adams, 1995).

Similarly, increasing the number of drip outlets of the nutrient solution from one (DD₁) to four (DD₄) produced a variation in the distribution of the tomato fruit sizes. The M and MM sizes increased significantly (P ≤ 0.05) by an average of 30% and 13%, respectively. Moreover, the smaller sizes, namely MM and P, decreased by 16% and 11%, respectively. Consequently, a better fertigation distribution system in the culture unit improved the production, as occurred with the lower saline treatment. These results were similar to those published by Robinson (1994), who reported productivity improvements when nutrients are properly distributed. Similar results have also been reported by Sonneveld and de Kreij (1999) and Sonneveld and Voogt (1990) about production of cucumber and tomato, respectively.

The use of grafted plants did not prevent a loss of large tomatoes in favor of smaller tomatoes. Therefore, the vigor effect described for grafted plants was not positively expressed in the size distribution.

Effect on the production quality parameters. Table 3 shows some quality parameters of tomato fruits. The different treatments did not show significant differences in the evaluated fruit quality parameters, except for the total soluble solids in the treatments that decreased with increasing distribution of nutrient solution. An increase in salinity values has been related to a significant increase in the percentage of dry matter, acidity, total soluble solids (°Brix), and fruit osmotic concentration (Hayward and Long, 1943). However, in the present experiment, such a significant increase was not observed, which may have been the result of the following factors.
reasons: 1) the small increase of EC that was considered; 2) the tolerant behavior of tomato compared with other horticultural crops, as previously described in pioneer studies (Maas and Hoffman, 1977); and 3) the potential contribution of the vigor provided by the rootstock against salinity (Lee and Oda, 2003). The higher stress caused by a worse distribution of fertigation (DD3 vs. DD4) could justify the increased value of total soluble solids. These results agreed with the idea suggested in the recent review by Roupheal et al. (2010) on the effect of grafting on fruiting vegetables. These authors indicated that further research is needed to gain insight into the role that the grafts play on fruit quality.

Effect on the economic balance. Table 4 shows the partial economic balance regarding the investment costs required depending on the selection of the DD1 fertigation distribution system with respect to the DD4 system. Only the revenues from the large tomatoes, which are those with greater commercial value, were considered. The differential value of a single year’s tomato crop (0.30 €/m2/crop) would have offset the higher initial investment (from 0.45 €/m2/year) representing the DD4 system with respect to the DD1 system. Table 5 shows the partial economic balance regarding the economic cost involved in fertigation with a solution that has an EC value of 2.0 dS·m⁻¹ with respect to that performed with a solution that has an EC value of 2.5 dS·m⁻¹. These results showed a farmer’s loss of income of 0.41 €/m² (8.5%) with a higher proportion of expenditure on fertilizers (0.41 €/m²) if the fertigation was performed with an EC2.5 solution. Consequently, as a function of the value of the fertilizers and the tomato market value on the basis of size, an extra value of 0.82 €/m² was obtained with the EC2.0 option compared with the EC2.5 option. However, the farmer sometimes chose this disadvantageous option for some of the following reasons: 1) to maintain an adequate harvest index by a moderate saline stress (maintaining an appropriate balance between the proportion of the vegetative and reproductive phase of the tomato); 2) to avoid increased susceptibility to plant health problems; 3) to increase the lifetime of post-harvest (Mizrahi, 1982; Mizrahi et al., 1988); and/or 4) to increase or improve the quality parameters (total soluble solids and acidity) as well as to increase products that enhance the flavor or health beneficial nutrients (Cuartero et al., 1996; Roupheal et al., 2010; Sharaf and Hobson, 1986).

In both conditions, choosing DD1 over DD4 and/or EC2.5 over EC2.0, there is an implied economic loss to the farmer. In both cases, the proportion of this loss depends on the difference in the market value of large tomatoes compared with smaller tomatoes with this difference being generally higher in North American markets compared with European markets. However, despite causing substantial economic loss in commercial farms that choose the EC2.5 option over EC2.0, it is a common practice.

Role of thermography. The average temperatures measured on leaves treated with solutions with different EC values are shown in Figure 4. This small difference of transpiration vs. increment moderate increase EC of nutrient solution was sufficient to be captured, measured, and analyzed by thermography through adequate software. Although the temperature differences were small (less than 1 °C; ±2%), the lowest recorded temperatures were significantly correlated with the treatment with the lowest EC value (P ≤ 0.001). This method is based on an adequate measure of only an appropriate leaf fraction under similar environmental conditions (Fernández-Bregón et al., 2013; Urrestarazu, 2013) avoiding the disadvantages when 1) infrared thermography measures include other surfaces different from the desired area with consequent errors in estimated temperature (Jones et al., 2002; Moran et al., 1994), or 2) measuring the temperature of a single point on a leaf. These correlations and results were similar to that found by Oerke et al. (2006) in melons or by Urrestarazu (2013) in ornamental plants. Therefore, if thermography is properly handled, it can serve as a simple, rustoc, nondestructive, and useful remote sensing tool for diagnosing a limiting factor such as poor transpiration resulting from a possible saline or water stress condition. Consequently, thermography could be incorporated into a remote sensing network for the control and monitoring of horticultural crops, as suggested by Álvaro et al. (2011) and Fernández-Bregón et al. (2012).
Grinzato, E., G. Cadelano, and P. Bison. 2010. Moisture map by IR thermography. J. Mod. Opt. 57:1770–1778.

Hayward, H.E. and E.M. Long. 1943. Some effects of sodium salts on the growth of the tomato. Plant Physiol. 18:556–569.

Heinen, M. 1997. Dynamics of water and nutrients in closed, recirculating cropping systems in glasshouse horticulture: With special attention to lettuce grown in irrigated sand beds. PhD diss., Wageningen Agr. Univ., Wageningen, The Netherlands. ISBN 90-5485-667-X.

Ho, L.C. and P. Adams. 1995. Nutrient uptake and distribution in relation to crop quality. Acta Hort. 396:33–44.

Hoffman, G.J. 1985. Drainage required to manage salinity. J. Irrig. Drain. Eng. 111:199–206.

Jobes, J.A., G.J. Hoffman, and J.D. Wood. 1981. Leaching requirement for salinity control. II: Oat, tomato, and cauliflower. Agr. Water Mgt. 4:393–407.

Jones, H.G., M. Stol, T. Santos, C. de Sousa, M.M. Chaves, and O.M. Grant. 2002. Use of infrared thermography for monitoring stomatal closure in the yield: application to grapevine. Journal of Experimental Botany 53:2249–2260.

Lee, J.M. 1994. Cultivation of grafted vegetables. I: Current status, grafting methods, and benefits. HortScience 29:235–239.

Lee, J.M. and M. Oda. 2003. Grafting of herbaceous vegetable and ornamental crops. Hort. Rev. 28:61–124.

Little, T.M. and F.J. Hill. 1978. Agricultural experimentation: Design and analysis. Wiley, New York, NY.

Maas, E.V. and G.J. Hoffman. 1977. Crop salt tolerance-current assessment. J. Irr. Drain Div. 103:115–134.

Massa, D., L. Incrocci, R. Muggini, G. Carmassi, C.A. Campiottl, and A. Pardossi. 2010. Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato. Agr. Water Mgt. 97:971–980.

Miguel, A., J.V. Maroto, A. San Bautista, C. Baixauli, V. Cebolla, B. Pascual, S. López-Galarza, and J.L. Guardiola. 2004. The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of fusarium wilt. Sci. Hort 103:9–17.

Mizrahi, Y. 1982. Effect of salinity on tomato fruit ripening. Plant Physiol. 69:966–970.

Mizrahi, Y., E. Taleisnik, V. Kagan-Zur, Y. Zohas, R. Offenbach, E. Matan, and R. Golan. 1988. A saline irrigation regime for improving tomato fruit quality without reducing yield. J. Amer. Soc. Hort. Sci. 113:202–205.

Mohler, M., V. Alchanatis, Y. Cohen, M. Meron, J. Tsipris, A. Naor, V. Ostrovsy, and S. Cohen. 2007. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J. Expt. Bot. 58:827–838.

Oerke, E.C., U. Steiner, H.W. Dehne, and M. Lindenthal. 2006. Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J. Expt. Bot. 57:2121–2132.

Petersen, R.G. 1994. Agricultural field experiments. Marcel Dekker, New York, NY.

Robbins, W.R. 1937. Relation of nutrient salt concentration to growth of the tomato and to the incidence of blossom end rot of the fruit. Plant Physiol. 12:21–50.

Robinson, D. 1994. The responses of plants to nonuniform supplies of nutrients. New Phytol. 127:635–674.

Rouphael, Y., D. Schwarz, A. Krumbein, and G. Colla. 2010. Impact of grafting on product quality of fruit vegetables. Sci. Hort. 127:172–179.

Schwarz, D., M. Heinen, and M. van Noordwijk. 1995. Rooting intensity and root distribution of lettuce grown in sand beds. Plant Soil 176:205–217.

Schwarz, D., Y. Rouphael, G. Colla, and J.H. Venema. 2010. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci. Hort. 127:162–171.

Sharaf, A.R. and G.E. Hobson. 1986. Effect of salinity on the yield and quality of normal and nonripening mutant tomatoes. Acta Hort. 190:175–181.

Sonneveld, C. 2004a. The effects of heating nutrient solution on water and mineral uptake and P.C. Mazuela. 2008a. Effects of heating nutrient solution on water and mineral uptake and early yield of two cucurbits under soilless culture. J. Plant Nutr. 31:527–538.

Sonneveld, M., C. Guillaı`, P.C. Mazuela, and G. Carrasco. 2008b. Wetting agent effect on physical properties of new and reused rockwool and coconut coir waste. Sci. Hort. 116:104–108.

van Noordwijk, M. 1978. Zout ophoping en bewor- teling bij de teelt van tomaten op steenwool (Distribution of salts and root development in the culture of tomatoes on rockwool) [in Dutch with a summary]. Instituut voor Bodemvruchtbaarheid, Haren, The Netherlands. Rapport. p. 3–78.

van Noordwijk, M. and P.A.C. Raats. 1980. Drip and drainage systems for rockwool cultures in relation to accumulation and leaching of salts. International Society for Soilless Culture: Proc. Fifth International Congress on Soilless Culture, Wageningen, The Netherlands.

van Noordwijk, M. and P.A.C. Raats. 1981. Zoutophoping en -uitspoeling in samenhang met het druppelsysteem bij de teelt op steenwool (The influence of the drip system upon accumulation and leaching of salts in rockwool cultures) [in Dutch with a summary]. Instituut voor Bodemvruchtbaarheid, Haren, The Netherlands, Rapport. p. 9–81.