Catabolism and deactivation of the lipid-derived hormone jasmonoyl-isoleucine

Abraham J. K. Koo1,2 and Gregg A. Howe1,2*

1 Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
2 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA

The oxylipin hormone jasmonate controls myriad processes involved in plant growth, development, and immune function. The discovery of jasmonoyl-L-isoleucine (JA-Ile) as the major bioactive form of the hormone highlights the need to understand biochemical and cellular processes underlying JA-Ile homeostasis. Among the major metabolic control points governing the accumulation of JA-Ile in plant tissues are the availability of jasmonic acid, the immediate precursor of JA-Ile, and oxidative enzymes involved in catabolism and deactivation of the hormone. Recent studies indicate that JA-Ile turnover is mediated by a \(\omega \)-oxidation pathway involving members of the CYP94 family of cytochromes P450. This discovery opens new opportunities to genetically manipulate JA-Ile levels for enhanced resistance to environmental stress, and further highlights \(\omega \)-oxidation as a conserved pathway for catabolism of lipid-derived signals in plants and animals. Functional characterization of the full complement of CYP94 P450s promises to reveal new pathways for jasmonate metabolism and provide insight into the evolution of oxylipin signaling in land plants.

Keywords: oxylipin metabolism, lipid signaling, cytochrome P450, Arabidopsis, plant hormone, plant defense, jasmonate, omega oxidation

INTRODUCTION

Plants use a wide variety of lipid-based signals to control fundamental aspects of growth, development, and responses to environmental stress. Among the most intensively studied of these signals are members of the jasmonate family of oxylipins, collectively referred to as JAs. JAs are biochemically defined as cyclopent(e)none compounds derived from lipoxygenase-dependent oxidation of polyunsaturated fatty acids. Jasmonic acid (JA) and its derivatives are well known for their role in orchestrating immune responses to a broad spectrum of arthropod herbivores and microbial pathogens (Glazebrook, 2005; Wasternack, 2007; Browse and Howe, 2008; Howe and Jander, 2008; Wu and Baldwin, 2010). JAs also serve important roles in plant growth and development, including sexual reproduction, growth control, and secondary metabolism (McConn and Browes, 1996; Li et al., 2004; Yan et al., 2007; Pauwels et al., 2008; Zhang and Turner, 2008). Increasing evidence indicates that the JA pathway participates in extensive crosstalk with other hormones that mediate developmental plasticity (Dombrech et al., 2007; Moreno et al., 2009; Pieterse et al., 2009; Hou et al., 2010; Robson et al., 2010; Ballare, 2011; Kazan and Manners, 2011; Zhu et al., 2011). Collectively, these studies support the view that JAs control resource allocation between growth- and defense-related processes, thus allowing plants to rapidly adapt to changing environmental conditions. A greater understanding of JA homeostasis is therefore relevant to many areas of plant physiology (Howe, 2010; Kazan and Manners, 2012).

Significant recent progress has been made in understanding the molecular mechanism by which JAs control large-scale changes in gene expression in response to stress. In unstressed cells containing low levels of the hormone, transcription factors (e.g., MYC2) that promote expression of JA-responsive genes are repressed by members of the JASMONATE ZIM-domain (JAZ) protein family (Chini et al., 2007; Thines et al., 2007; Yan et al., 2007). In response to stress-related cues that trigger JA accumulation, bioactive forms of the hormone stimulate JAZ binding to CORONATINE INSENSITIVE1 (COI1), which is the F-box protein component of the E3 ubiquitin ligase SCF\(^{COI1}\) (Xie et al., 1998; Thines et al., 2007; Katsir et al., 2008b; Melotto et al., 2008; Fonseca et al., 2009; Yan et al., 2009). Proteolytic degradation of JAZ via the ubiquitin/26S proteasome pathway releases JAZ-bound transcription factors from repression, thereby allowing expression of JA-responsive genes.

A major challenge in the field of plant lipid signaling is to identify biochemically active oxylipins and their cognate receptors. Significant insight into this question came from the discovery that the interaction of COI1 with its JAZ substrates is promoted in a highly specific manner by the isoleucine-conjugated form of JA (jasmonoyl-L-isoleucine, JA-Ile), but not by free JA or other non-conjugated JAs (Thines et al., 2007; Katsir et al., 2008b; Melotto et al., 2008; Fonseca et al., 2009; Yan et al., 2009). X-ray crystallography studies demonstrated that the JA and Ile moieties of JA-Ile serve critical roles in the assembly of COI1–JAZ receptor complexes, as does an inositol pentakisphosphate cofactor that interacts with COI1 and JAZ near the hormone-binding pocket (Sheard et al., 2010). The key role of JA-Ile in promoting JAZ degradation is consistent with genetic studies that established a role for the JA-conjugating enzyme JAR1 in JA-mediated physiological processes (Staswick et al., 1998; Staswick and Tiryaki, 2004; Kang et al., 2006; Koo et al., 2009).
For the purposes of this review, we define bioactive JAs as derivatives that promote COI1–JAZ interactions to affect transcriptional responses. Non-bioactive JAs are either precursors or deactivated (or less active) forms of bioactive JAs. Below, we summarize the current understanding of metabolic pathways involved in catabolism and deactivation of JA-Ile, with special attention given to the recently discovered cytochrome P450-mediated ω-oxidation pathway.

OVERVIEW OF JA-ILE METABOLISM

The initial stage of JA biosynthesis occurs in the plastid and involves the conversion of α-linolenic acid (18:3) to 12-oxophytodienoic acid (OPDA; Figure 1). Following transport to the peroxisome, OPDA is reduced to its cyclopentanone derivative (OPC-8:0) and subjected to three cycles of β-oxidation to yield the 3R,7S stereoisomer of JA [also known as (+)-7-iso-JA]. JA is transported to the cytosol where it is conjugated specifically to Ile by the enzyme JAR1 (Staswick and Tiryaki, 2004; Suza and Staswick, 2008). JA-Ile synthesized in the cytosol presumably diffuses into the nucleus where it binds COI1–JAZ receptor complexes to activate gene expression (Figure 1).

The biosynthesis of JA-Ile is tightly controlled by developmental and environmental cues (Creelman and Mullet, 1997; Wasternack, 2007; Koo and Howe, 2009). Consistent with their role in regulating induced defenses in vegetative tissues, JA and JA-Ile typically accumulate in response to various biotic and abiotic stresses. Mechanical wounding of Arabidopsis leaves, for example, effectively triggers de novo accumulation of JA/JA-Ile within minutes of tissue damage (Chung et al., 2008; Glauser et al., 2008; Suza and Staswick, 2008; Koo and Howe, 2009; Koo et al., 2009; Suza et al., 2010). The rapidity of this response indicates that all JA-Ile biosynthetic enzymes, including JAR1, are present in unstressed cells prior to stimulation. This view is consistent with studies showing that the major rate-limiting step in JA/JA-Ile synthesis is lipase-mediated release of fatty acyl substrates from plastid glycerolipids (Ishiguro et al., 2001; Stenzel et al., 2003; Wasternack, 2007; Kallenbach et al., 2010; Bonaventure et al., 2011). The mechanism by which extracellular signals activate plastidic lipases to trigger JA-Ile formation is a major unanswered question. Genes encoding many of the enzymes involved in JA-Ile biosynthesis are coordinately up-regulated in response to environmental signals that activate production of the hormone (Reymond et al., 2000; Sasaki et al., 2001; Sasaki-Sekimoto et al., 2005; Koo et al., 2006; Ralph et al., 2006; Pauwels et al., 2008). This transcriptional response presumably constitutes a positive feedback mechanism to amplify the cell’s capacity for JA metabolism. At a practical level, this co-expression phenomenon has proven useful for the identification of novel components in the JA metabolic and signaling pathways (Koo et al., 2006, 2011; Thines et al., 2007; Heitz et al., 2012).

In addition to the availability of plastid-derived fatty acyl substrates, there is evidence that the rate of JA-Ile biosynthesis is influenced by metabolic pathways that compete with JAR1 for cytosolic pools of JA. This idea is consistent with the fact that stress-induced levels of JA-Ile are typically well below (~10%) that of JA (Kang et al., 2006; Suza and Staswick, 2008; Koo et al., 2009). Among the metabolic pathways that potentially divert JA from JA-Ile biosynthesis are those involved in formation of JA-glucose esters (Swiatek et al., 2004), 12-hydroxy-JA (12-OH-JA) and its sulfated and glycosylated derivatives (Gidda et al., 2003; Miersch et al., 2008), volatile methyl-JA (MeJA), and JA-amino acid conjugates other than JA-Ile (Wang et al., 2007; Figure 1). Studies involving

![Figure 1: Major pathways for the biosynthesis and catabolism of JA-Ile.](image-url)
ectopic expression of an Arabidopsis JA carboxyl methyltransferase (JMT) in Nicotiana attenuata provided genetic evidence that increased flux of JA into MeJA has predicted negative effects on JA-Ile formation and JA-Ile-mediated physiological process (Stitz et al., 2011). These findings, together with the inability of JA and MeJA to promote COI1–JAZ binding (Thines et al., 2007), provide convincing evidence that JA and MeJA are non-bioactive precursors of JA-Ile. The ability of exogenous JA and MeJA to potently activate hormonal responses can be attributed to their in vivo conversion to JA-Ile and subsequent action through the COI1–JAZ receptor system (Tamogami et al., 2008; Wu et al., 2008).

The transient accumulation of JA-Ile in injured leaves is tightly correlated with the expression of primary JA-response genes (Chung et al., 2008; Koo et al., 2009). This observation implies the existence of pathways for catabolism and deactivation of the hormone. As is the case for most stress hormones in plants and animals, such pathways serve important roles in attenuating physiological outputs during the stress response or for switching off the response when stress levels have subsided. The ω-oxidation pathway, in which JA-Ile is converted to 12-hydroxy-JA-Ile (12-OH-JA-Ile) and then further oxidized to dicarboxy-JA-Ile (12-COOH-JA-Ile), is now recognized as a major route for catabolism of the hormone (Figures 1 and 2). This hypothesis is supported by the existence of pathways for catabolism and deactivation of the hormone (Stitz et al., 2008; Koo et al., 2009). This observation implies the existence of primary JA-response genes (Koo et al., 2009). It has also been suggested that esterification of JA-Ile to JA-Ile-Me, as well as epimerization of (3R,7S)-JA-Ile to the less active (3R,7R) isomer, may be endogenous mechanisms to reduce the activity of the hormone; both of these products are largely inactive in promoting COI1–JAZ interaction in vitro (Fonseca et al., 2009). Recent in vivo studies, however, indicate that epimerization of (3R,7S)-JA-Ile is unlikely to play a significant role in deactivation of JA-Ile (Suzu et al., 2010).

ROLE OF CYP94 P450s IN CATABOLISM OF BIOACTIVE JAs

In contrast to detailed knowledge of nearly all genes encoding the core set of JA-Ile biosynthetic enzymes (Wasternack, 2007; Schaller and Stintzi, 2009), understanding the genetic basis of JA-Ile catabolism is still a largely unexplored area of plant hormone research. The pervasive role of cytochrome P450 hydroxylases in the deactivation of small-molecule hormones suggests that P450s also participate in catabolism of JA-Ile. Based on this assumption, Koo et al. (2011) focused attention on members of the CYP86 clan of P450s in Arabidopsis that play a prominent role in fatty acid hydroxylation, including ω-hydroxylation. Gene co-expression analysis was used to narrow the list of candidates to three CYP94 genes (CYP94B1, CYP94B3, and CYP94C1) whose expression is induced in response to wounding and JA treatment. Various members of this group were previously shown to be regulated by the JA pathway, and to encode enzymes that hydroxylate straight-chain fatty acids in vitro (Duan and Schuler, 2005; Benveniste et al., 2006; Kandel et al., 2007; Ehling et al., 2008). Analysis of T-DNA-tagged mutants showed that disruption of CYP94B3, but not CYP94B1 or CYP94C1, results in a metabolic phenotype indicative of a defect in JA-Ile 12-hydroxylase activity; in
response to wounding, cyp94b3 mutants hyperaccumulate JA-Ile and are also deficient in 12-OH-JA-Ile. The biochemical function of CYP94B3 was confirmed by experiments showing that the recombinant enzyme has JA-Ile 12-hydroxylase activity (Koo et al., 2011). Independent studies confirmed the identity of CYP94B3 as a JA-Ile 12-hydroxylase and further demonstrated that CYP94C1 plays a major role in conversion of 12-OH-JA-Ile to 12-COOH-JA-Ile (Kitaoka et al., 2011; Heitz et al., 2012). These collective studies establish a central role for CYP94s in the \(\omega \)-oxidation pathway for turnover and deactivation of JA-Ile (Reichhart, 2011). The recent characterization of CYP94B3 and a group of enzymes in the plant kingdom (Nelson and Werck-Reichhart, 2011) suggests that other CYP94s serve similar roles in oxylipin metabolism. The role of CYP94B3 and CYP94C1 in JA-Ile \(\omega \)-oxidation suggests that other CYP94s serve similar roles in oxylipin metabolism. For example, the inability of CYP94B3 and C1 to hydroxylate JA in vitro (Kitaoka et al., 2011; Heitz et al., 2012) raises the possibility that formation of 12-OH-JA is catalyzed by another CYP94 member. The presence of residual amounts of 12-OH-JA-Ile in cyp94b3 and cyp94b3cyp94c1 double mutants (Kitaoka et al., 2011; Koo et al., 2011; Heitz et al., 2012) further suggests that additional enzymes participate in 12-hydroxylation of JA-Ile. Given the broad specificity of many CYP94s for fatty acyl substrates in vitro (Benveniste et al., 2006; Kandel et al., 2007; Pinot and Beisson, 2011; Heitz et al., 2012), functional characterization of additional family members will clearly benefit from analysis of metabolic phenotypes of cyp94 mutants.
SUMMARY AND FUTURE PERSPECTIVES

It is becoming increasing clear that the JA signaling pathway is embedded in a complex phytohormone network that controls myriad aspects of plant growth and development, as well as the way in which plants adapt to their environment. Current models of JA signal transduction support the view that the intracellular level of JA-Ile plays a major role in controlling the strength of JA responses. Recent studies with mutants that are altered in CYP94 expression demonstrate the importance of JA-Ile catabolism in attenuating this hormone response pathway (Kitaoka et al., 2011; Koo et al., 2011; Shyu et al., 2012). Negative feedback control of JA responses also depends on other mechanisms, including JA-induced expression of stabilized JAZ isoforms that fail to efficiently bind COI1 in the presence of JA-Ile (Chung and Howe, 2009; Chung et al., 2010; Shyu et al., 2012). Further elucidation of these negative feedback pathways may facilitate biotechnological efforts aimed at exploiting the JA pathway for enhanced resistance of crop plants to insects and pathogens, and for producing economically important plant compounds (e.g., paclitaxel) whose expression is controlled by the JA pathway. Several additional gaps in our understanding of how JA-Ile levels are regulated also remain to be addressed. For example, there is a pressing need to understand the early signaling events that trigger JA-Ile synthesis, and to fully elucidate metabolic pathways that govern deactivation of the hormone. Progress toward the latter goal will undoubtedly be facilitated by further characterization of the “CYP94ome.” Given the high degree of sequence similarity between CYP94s and CYP86 P450s that catalyze the formation of cutin and wax polymers of the epidermal cuticle (Pinot and Beisson, 2011), this line of research may also provide insight into the evolutionary relationship between oxylipins that serve signaling versus structural roles in plant defense.

Another promising area of future research will be to discern the spatial and temporal distribution of JAs in different tissues and cell types. Existing approaches to study the tissue-specific accumulation (Hause et al., 2000; Glauser et al., 2008; Stitz et al., 2011) and non-cell autonomous action (Li et al., 2002; Koo et al., 2009) of JAs would benefit from new technologies to quantify hormone levels with cellular and sub-cellular resolution (Bermejo et al., 2011; Mielke et al., 2011). Such efforts are expected to lead to a better understanding of how bioactive and non-bioactive JAs are compartmentalized within cells and transported between cells. Given the plethora of JA derivatives produced in plants, it will also be important to identify additional bioactive JAs that exert physiological effects, either through the COI1–JAZ receptor system or via other mechanisms. For example, the identity of 12-OH-JAs as factors for leaf closing (Nakamura et al., 2011) and tuber induction (Yoshihara et al., 1989) provides tantalizing evidence that JAs evolved as lipid-derived signals for regulating specialized aspects of plant physiology.

ACKNOWLEDGMENTS

We thank Marlene Cameron for assistance with the production of Figures, and Dr. David Nelson (University of Tennessee) for providing CYP94 sequences used for phylogenetic analyses. This work was supported by the National Institutes of Health (grant R01GM57795) and the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (grant DE–FG02–91ER20201).

REFERENCES

Ballare, C. L. (2011). Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci. 16, 249–257.

Benemel, I., Saito, T., Wang, Y., Kan-del, S., Huang, H. W., Pinot, F., Kahn, R. A., Salasun, J. P., and Shimoo, M. (2006). Evolutionary relationship and substrate specificity of Arabidopsis thaliana fatty acid ω-hydroxylase. Plant Cell. 170, 326–338.

Bermejo, C., Ewald, J. C., Lanquar, V., Jones, A. M., and Frommer, W. B. (2011). In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast. Biochem. J. 438, 1–10.

Bonaventure, G., Schuck, S., and Baldwin, I. T. (2011). Revealing complexity and specificity in the activation of lipase-mediated oxylipin biosynthesis: a specific role of the Nicotiana attenuata GLA1 lipase in the activation of jasmonic acid biosynthesis in leaves and roots. Plant Cell Environ. 34, 1507–1520.

Browe, J. (2009). Jasmonate passes muster: a receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60, 183–205.

Browe, J., and Howe, G. A. (2008). Update on jasmonate signaling: new weapons and a rapid response against insect attack. Plant Physiol. 146, 832–838.

Buczynski, M. W., Dumlao, D. S., and Dennis, E. A. (2009). An integrated omics analysis of eicosanoid biology. J. Lipid Res. 50, 1015–1038.

Chico, J. M., Chini, A., Fonseca, S., and Solano, R. (2008). JAZ repressors set the rhythm in jasmonate signaling. Curr. Opin. Plant Biol. 11, 486–494.

Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J. M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F. M., Ponce, M. R., Micol, J. L., and Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671.

Chung, H. S., Koo, A. J. K., Gao, X., Jayanty, S., Thines, B., Jones, A. D., and Howe, G. A. (2008). Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol. 146, 952–964.

Creelman, R. A., and Mullet, J. E. (1997). Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 355–381.

Dombretch, B., Xue, G. P., Sprague, S. J., Kirkgaard, J. A., Ross, J. J., Reid, J. B., Fitt, G. P., Seewelam, N., Schenk, P. M., Manners, J. M., and Kazan, K. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19, 2225–2245.

Duan, H., and Schuler, M. A. (2005). Differential expression and evolution of the Arabidopsis CYP86A family of Figures, and Dr. David Nelson (University of Tennessee) for providing CYP94 sequences used for phylogenetic analyses. This work was supported by the National Institutes of Health (grant R01GM57795) and the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (grant DE–FG02–91ER20201).
Koo and Howe

DEHSICIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehis- cence, and flower opening in Arabidopsis. Plant Cell 13, 2191–2209.

Kallenbach, M., Alagna, F., Baldwin, I. T., and Bonnart, G. (2010). Nica- tiana attenuata SIPP, WIPK, NPR1, and fatty acid-amino conjugates participate in the induction of jasmon- ic acid biosynthesis by affecting early enzymatic steps in the pathway. Plant Physiol. 152, 98–106.

Kandel, S., Sauveplane, V., Compagnon, V., Franke, R., Mielke, Y., Schreiber, L., Werc-Keighth, D., and Pinot, F. (2007). Characterization of a methyl jasmonate and woundning- responsive cytochrome P450 of Arabi- bidopsis thaliana catalyzing dicar- boxylic fatty acid formation in vitro. FEBS J. 274, 5116–5127.

Kang, I. H., Wang, L., Giri, A., and Bald- win, I. T. (2006). Silencing three- nine deaminases and JAR4 in Nica- tiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Physiol. 138, 3303–3320.

Katsir, L., Chung, H. S., Koo, A. J. K., and Howe, G. A. (2008a). Jasmonate signaling: a conserved mechanism of hormone sensing. Curr. Opin. Plant Biol. 11, 428–435.

Katsir, L., Schmillmer, A. L., Wastick, P. L., He, S. Y., and Howe, G. A. (2008b). COII is a critical compo- nent of a receptor for jasmonate and the bacterial virulence factor coro- natine. Proc. Natl. Acad. Sci. U.S.A. 105, 7100–7105.

Kazan, K., and Manners, J. M. (2011). The interplay between light and jas- monate signalling during defence and development. J. Exp. Bot. 62, 4087–4100.

Kazan, K., and Manners, J. M. (2012). JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci. 17, 22–31.

Kitaoka, N., Matsuura, T., Sato, M., Takahashi, K., Waku, K., Kawai, H., Matsu, H., Nabeto, K., and Matsuura, H. (2011). Arabidopsis- sypCYP483 encodes jasmonyl-l- isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate. Plant Cell Physiol. 52, 1757–1765.

Koo, A. J. K., Cooke, T. F., and Howe, G. A. (2011). Cytochrome P450 CYP483 mediates catabolism and inactivation of the plant hormone jasmonyl-l-isoleucine. Proc. Natl. Acad. Sci. U.S.A. 108, 9298–9303.

Koo, A. J. K., Chung, H. S., Kobayashi, Y., and Howe, G. A. (2006). Identification of a peroxisomal acyl-activating enzyme involved in the biosynthe- sis of jasmonic acid in Arabidopsis. I. Biol. Chem. 281, 33511–33520.

Koo, A. J. K., Gao, X. L., Jones, A. D., and Howe, G. A. (2009). A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J. 59, 974–986.

Koo, A. J. K., and Howe, G. A. (2009). The wound hormone jasmonate. Phytochemistry 70, 1571–1580.

LeClere, S., Téllez, R., Rampey, R. A., Matsuda, S. P., and Bartel, B. (2002). Characterization of a family of IAA-amino conjugate hydro- lases from Arabidopsis. J. Biol. Chem. 277, 20446–20452.

Li, L., Li, C., Lee, G. L., and Howe, G. A. (2002). Distinct roles for jas- monate synthesis and action in the systemic wound response of tomato. Proc. Natl. Acad. Sci. U.S.A. 99, 6416–6421.

Li, L., Zhao, Y., McCaig, B. C., Wingard, B. A., Wang, J., Whalton, M. E., Pichersky, E., and Howe, G. A. (2004). The tomato homolog of CORONATINE-SENSITIVE1 is required for the maternal con- trol of seed maturation, jasmonate- signaled defense responses, and glandular trichome development. Plant Cell 16, 126–143.

McConn, M., and Browse, J. (1996). The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant J. 8, 403–416.

Melotto, M., Mecoy, C., Niu, Y., Chung, H. S., Katsir, L., Yao, J., Zeng, W., Thines, B., Staswick, P., Browse, J., Howe, G. A., and He, S. Y. (2008). A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jas- monoyl-isoleucine-dependent inter- actions with the COII F-box protein. Plant J. 55, 979–988.

Miekle, K., Forner, S., Kramell, R., Con- rad, U., and Hause, B. (2011). Cell- specific visualization of jasmonates in wounded tomato and Arabidopsis leaves using jasmonate-specific anti- bodies. New Phytol. 190, 1069–1080.

Miersch, O., Neumerkel, J., Dippe, M., Stenzel, I., and Wasternack, C. (2008). Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jas- monate signaling. New Phytol. 177, 114–127.

Mizutani, M., and Ohta, D. (2010). Diversification of P450 genes during
Koo and Howe Catabolism and deactivation of JA-Ile

(2010). Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22, 1143–1160.

Sasaki, Y., Asamizu, E., Shibata, D., Nakamura, Y., Kaneko, T., Awa, K., Amagai, M., Kowata, C., Tsugane, T., Masada, T., Shimada, H., Takamiya, K., Ohita, H., and Tabata, S. (2001). Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonate biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res. 8, 153–161.

Sasaki-Sekimoto, Y., Ta ki, N., Obayashi, Shyu, C., Figueroa, P., DePew, C. L., Sheard, L. B., Tan, X., Mao, H. B., With-Staswick, P. E., and Tiryaki, I. (2004). A signaling in Arabidopsis . (in press).

Amagai, M., Kuwata, C., Sugane, T., A., and Zheng, N. (2010). Jasmonate and phytochrome monitoring of methyl jasmonate-induced endogenous jasmonates in potato leaves. Agric. Biol. Chem. 53, 2833–2837.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 21 December 2011; accepted: 18 January 2012; published online: 07 February 2012.

Citation: Koo AKJ and Howe GA (2012) Catabolism and deactivation of the lipid-derived hormone jasmonoyl-isoleucine. Front. Plant Sci. 3:19. doi: 10.3389/fpls.2012.00019

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2012 Koo and Howe. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

www.frontiersin.org
February 2012 | Volume 3 | Article 19 | 7

Staswick P. E., Yuen, G. Y., and Lehman, C. C. (1998). Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J. 15, 747–754.

Stenzel, L., Hause, B., Miersch, O., Kurz, T., Maucher, H., Weichert, H., Ziegler, J., Feusner, I., and Wasternack, C. (2003). Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol. Biol. 51, 895–911.

Stitz, M., Gase, K., Baldwin, I. T., and Gaquerel, E. (2011). Ectopic expression of AtJMT in N. tabacum attenuates: creating a metabolic sink has tissue-specific consequences for the jasmonate metabolic network and silences downstream gene expression. Plant Physiol. 157, 341–354.

Stumpe, M., Gobel, C., Faltin, B., Beike, A. K., Hause, B., Himmelsbach, K., Bode, J., Kramell, R., Wasternack, C., Frank, W., Reski, R., and Feusner, I. (2010). The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol. 188, 740–749.

Suza, W. P., Rowe, M. L., Hamberg, M., and Staswick, P. E. (2010). A tomato enzyme synthesizes (+)-7-isojasmonoyl-L-isoleucine in wounded leaves. Planta 231, 717–728.

Suza, W. P., and Staswick, P. E. (2008). The role of JAR1 in jasmonoyl-L-isoleucine production in Arabidopsis wounding response. Planta 227, 1221–1232.

Swiatek, A., Van Dongen, W., Esman, E. L., and Van Onckelen, H. (2004). Metabolic fate of jasmonates in tobacco bright yellow-2 cells. Plant Physiol. 135, 161–172.

Tamagami, S., Ralkwai, R., and Agrawal, G. K. (2008). Intercellular communication: airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Biochem. Biophys. Res. Commun. 376, 723–727.

Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S. Y., Howe, G. A., and Browse, J. (2007). IAZ repressor proteins are targets of the SCF-COI1 complex during jasmonate signalling. Nature 448, 661–665.

VanDoom, A., Bonaventure, G., Schmidt, D. D., and Baldwin, I. T. (2011). Regulation of jasmonate metabolism and inactivation of systemic signaling in Solanum nigrum: COH1 and JAR4 play overlapping yet distinct roles. New Phytol. 190, 649–652.

Wang, L., Halitschke, R., Kang, J. H., Berg, A., Harnisch, F., and Baldwin, I. T. (2007). Independently silencing two JAR family members impairs levels of trypsin proteinase inhibitors but not nicotine. Planta 226, 159–167.

Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100, 681–697.

Woodward, A. W., and Bartel, B. (2005). Auxin: regulation, action, and interaction. Ann. Bot. 95, 707–735.

Wu, J. S., and Baldwin, I. T. (2010). New insights into plant responses to the attack from insect herbivores. Annu. Rev. Genet. 44, 1–24.

Wu, J. S., Wang, L., and Baldwin, I. T. (2008). Methyl jasmonate-elicited herbivore resistance: does MeJA function as a signal without being hydrolyzed to JA? Planta 227, 1161–1168.

Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M., and Turner, J. G. (1998). COH1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094.

Yan, J. B., Zhang, C., Gu, M., Bai, Z. Y., Zhang, W. G., Qi, T. C., Cheng, Z. W., Peng, W., Luo, H. B., Nan, F. J., Wang, Z., and Xie, D. X. (2009). The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21, 2220–2236.

Yan, Y., Stolz, S., Chetelat, A., Reymond, P., Pagni, M., Dubignon, L., and Farmer, E. E. (2007). A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19, 2470–2483.

Yoshihara, T., Omer, E. A., Koshino, H., Sakamura, S., Kikutya, Y., and Koda, Y. (1989). Structure of a tuber-inducing stimulus from potato leaves. Agric. Biol. Chem. 53, 2833–2837.

Zhang, Y., and Turner, J. (2008). Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLoS ONE 3, e3699. doi:10.1371/journal.pone.0003699