Research on Water and Fertilizer Integrated Water Saving Irrigation and Energy Conservation Model Using Nonlinear Identification

Jingeng Zhang¹, WanJun Zhang²,³,⁴,*, Feng Zhang²,³, Jingxuan Zhang²,³, Jingyi Zhang⁵

¹Gansu Institute of science and technology information
²Gansu ZeDe Electronic Technology Company Limited, Gansu 741003, China;
³Lanzhou Industry and Equipment Company Limited, Gansu 730050, China.

*Corresponding author: wanjunzhang@xjtu.edu.cn

Abstract. Aiming at the problems of high control cost and high water consumption in the current commercial greenhouse automatic irrigation system, this paper presents an algorithm of crop water demand model based on nonlinear identification of water, fertilizer and medicine integrated water-saving irrigation, and establishes a model of crop water demand model based on nonlinear identification of water, fertilizer and medicine integrated water-saving irrigation, which can ensure the normal output of crops and save water In order to improve the estimation efficiency of crop water demand model, based on the empirical irrigation amount, Matlab simulation is used. Matlab simulation results show that the irrigation effect of water fertilizer is good and the nonlinear identification ability is strong. The results of the greenhouse tests in Tianshui City and Qingyang City of Gansu Province show that the control system reduces the water consumption by 30% and allocates water resources reasonably and effectively, which greatly reduces the waste of water resources.

1. Introduction

In the water source management of agricultural irrigation[1], water supply management is often paid attention to, but the efficiency of irrigation utilization, water saving and water conservation measures are relatively weak[2-12]. In the face of the above problems, combined with the concept of sustainable development, China has issued relevant policies on the application, development and management of water resources, adhered to the concepts of saving, high efficiency and environmental protection, strengthened the water-saving education and popularization for farmers, made good water-saving publicity, and improved the utilization efficiency of water resources from the aspects of management system, management mode and irrigation technology[13-20].

In recent years, many new water-saving technologies have been widely used in agricultural irrigation, such as canal seepage control [21-23], sprinkler irrigation, micro irrigation, rill irrigation and pipeline water delivery, which greatly improve the utilization efficiency of water resources in agricultural irrigation. Due to many influencing factors, the water demand of crops is often supplied by the combination of theoretical value and empirical value. In the irrigation area with low popularization rate
of modern technology, the empirical value is often the main supply, which causes serious loss of water resources and low irrigation efficiency [24-39].

In this paper, an algorithm of crop water demand model based on nonlinear identification of water, fertilizer and medicine integrated water-saving irrigation is given, and a model of crop water demand model based on nonlinear identification of water, fertilizer and medicine integrated water-saving irrigation is established. Under the condition of ensuring the normal output of crops, the effect of water conservation and water saving is maximized. In order to improve the estimation efficiency of crop water demand model, experience is used first based on the amount of irrigation, using MATLAB simulation. Matlab simulation results show that the irrigation effect of water, fertilizer and medicine is good, and the nonlinear identification ability is strong. The test results of multi span greenhouse in Tianshui City and Qingyang City of Gansu Province show that the control system can reduce the water consumption by 30% on the premise of achieving effective greenhouse irrigation effect, allocate water resources reasonably and effectively, and greatly reduce the waste of water resources.

2. Agricultural irrigation in Greenhouse

The system uses arm11-ok6410 as the server control platform and embedded Linux as the operating system. On the basis of the source system, the system carries out u-boot transplantation, kernel cutting, making root file system, loading driver files and other operations, so that the system has high efficiency in the running process.

In this paper, Water, fertilizer and medicine integrated water saving irrigation, as is shown in Figure 1. Parking test vehicle, as is shown in Figure 2.

![Fig 1. Water, fertilizer and medicine integrated water saving irrigation.](image1)

![Fig 2. Anti hail apple bagging in Greenhouse.](image2)
3. Identification of water saving irrigation model

Meteorological factors are the main factors affecting crop water demand, and the local water surface evaporation is the result of the comprehensive influence of various meteorological factors. Because evapotranspiration and water surface evaporation are both water vapor diffusion, the parameter of water surface evaporation can be used to estimate crop water demand:

\[E_r = \beta \cdot E_o \]
\[E_r = \beta \cdot E_o + c \]

In the formula (1) ~ (2), \(E_r \) the crop water demand in a certain period, calculated by the depth of water layer (mm):

\(E_o \) generally, the evaporation value of 80 cm diameter pan is used, if 20 cm diameter pan is used, then \(E_{80} = 0.8 \cdot E_{20} \);

\(\beta \) - water demand coefficient of each period, i.e. the ratio of water demand to water surface evaporation in the same period, is generally determined by experiments. Rice \(\beta = 0.98 \sim 1.485 \), dry matter \(\beta = 0.3 \sim 0.85 \); \(h \) - empirical constant.

Since the "\(\beta \) value method" only needs water surface evaporation data, it has been widely used in rice areas in China. In rice area, the influence of meteorological conditions on \(E_r \) and \(E_o \) is the same, so the application of "\(\beta \) value method" is closer to reality and more stable. The error of this formula is generally less than 20% - 30% for rice and dry crops with sufficient soil moisture. According to the daily evaporation of 20 cm diameter, the daily evaporation of 80 cm diameter can be obtained, and the comprehensive evaporation of growth period can be obtained:

\[\sum E_i \beta = \beta \cdot \sum E_{70} = \beta \cdot \sum E_{80} \]

According to formula (1), the comprehensive crop water demand in growth period can be obtained by using the value of water demand system \(\beta \), and the crop water demand in each growth stage can be obtained according to the distribution ratio of water demand in each growth stage of the region.

4. Water balance equation

\[\omega_o - \omega_o = \omega_r + P_o + K + m - E_r \]

In the formula (3) ~ (4), \(\omega_o \), \(\omega_o \) —the water storage in the planned wetting layer at the beginning of the period and at any time \(t \);

\(\omega_r \) —the amount of water increased due to the planned increase in wetted layer;

\(P_o \) —rainfall infiltration, i.e. effective rainfall. The rainfall infiltration of irrigation area can be calculated according to the effective utilization coefficient \(p \) of rainfall and rainfall:

\[m = \omega_{max} - \omega_{min} = 667 \eta \cdot h \cdot \left(\theta_{max} - \theta_{min} \right) \]

In the formula (5):

\(m \) - irrigation quota (m³/mu); \(h \) - depth of planned wetting layer in a period of time (m); \(\eta \) - the dry bulk density of soil in planned wetting layer (t/m³); \(\theta_{max} - \theta_{min} \) - maximum and minimum moisture content of soil in a period of time.
That is: when the soil water content is lower than the lower limit of suitable water content, irrigation is needed; when the soil water content is higher than the field capacity, drainage is needed.

5. Calculation of upper and lower limit of allowable water storage depth

Therefore, the real-time expression of soil water content \(h \) is as follows:

\[
\begin{align*}
 h_{\text{max}} &= \frac{\omega_{\text{max}}}{667} \times 1000 = \frac{667 \eta H \cdot \theta_{\text{max}}}{667} \times 1000 \\
 h_{\text{min}} &= \frac{\omega_{\text{min}}}{667} \times 1000 = \frac{667 \eta H \cdot \theta_{\text{min}}}{667} \times 1000
\end{align*}
\]

(6)

(7)

In the formula (8) ~ (9): \(t \) - irrigation quota. Where \(t = 0 \), the soil water content is the initial value, and the water content in the soil layer is converted into the depth of the water layer:

\[
 h_{\text{initial value}} = h_g \times \eta \times 667/1000
\]

(9)

In the formula (8) ~ (9): \(h_{\text{initial value}} \) - initial soil water content (mm); \(h_g \) - depth of soil layer (mm), selected according to different growth stages; other symbolic meanings are the same as before.

6. Research and analysis

In this paper, an algorithm of crop water demand model based on nonlinear identification of water, fertilizer and medicine integrated water-saving irrigation is given, and a model of crop water demand model based on nonlinear identification of water, fertilizer and medicine integrated water-saving irrigation is established. Under the condition of ensuring the normal output of crops, the effect of water conservation and water saving is maximized. In order to improve the estimation efficiency of crop water demand model, experience is used first. Based on the amount of irrigation, using MATLAB simulation. Integrated irrigation device of water, fertilizer and medicine, as is shown in Figure 3.
In this paper, Generalized predictive model control, Nonlinear identification model control and Generalized predictive nonlinear identification model control, as are shown in Figure 4-7.

Fig 4. Generalized predictive model control.

Fig 5. Nonlinear identification model control.

Fig 6. Generalized predictive nonlinear identification model control.

Comparative analysis of Simulation of crop water demand model based on nonlinear identification of water saving irrigation.1, Comparative analysis of Simulation of crop water demand model based on nonlinear identification of water saving irrigation.2, Comparative analysis of Simulation of crop water demand model based on nonlinear identification of water saving irrigation.3 and Comparative analysis of Simulation of crop water demand model based on nonlinear identification of water saving irrigation.4, as are shown in Figure 7~10.
Fig 7. Simulation of crop water demand model based on nonlinear identification of water saving irrigation.1.

Fig 8. Simulation of crop water demand model based on nonlinear identification of water saving irrigation.2.

Fig 9. Simulation of crop water demand model based on nonlinear identification of water saving irrigation.3.
In Figure 4-10, simulation results show that the irrigation effect of water, fertilizer and pesticide is good, and the nonlinear identification ability is strong. The test results of multi span greenhouse in Tianshui City and Qingyang City of Gansu Province show that the control system can reduce the water consumption by 30% on the premise of achieving effective greenhouse irrigation effect, allocate water resources reasonably and effectively, and greatly reduce the waste of water resources.

7. Summary

In this paper, an algorithm of crop water demand model based on nonlinear identification of water, fertilizer and medicine integrated water-saving irrigation is given, and a model of crop water demand model based on nonlinear identification of water, fertilizer and medicine integrated water-saving irrigation is established. Under the condition of ensuring the normal output of crops, the effect of water conservation and water saving is maximized. In order to improve the estimation efficiency of crop water demand model, experience is used first Based on the amount of irrigation, using MATLAB simulation. Matlab simulation results show that the irrigation effect of water, fertilizer and medicine is good, and the nonlinear identification ability is strong. The test results of multi span greenhouse in Tianshui City and Qingyang City of Gansu Province show that the control system can reduce the water consumption by 30% on the premise of achieving effective greenhouse irrigation effect, allocate water resources reasonably and effectively, and greatly reduce the waste of water resources.

Acknowledgements

The authors thank the financial supports from National Natural Science Foundation of China (Grant no. 51165024) and Science and Technology Major Project of “High-grade NC Machine Tools and Basic Manufacturing Equipment” (2010ZX040001-181).

Author: Zhang Wanjun, the fourth director of Gansu Invention Association is to be elected as director of Gansu mechanical engineering society, standing member of Expert Committee of modern manufacturing engineering, and senior expert committee of Mechanical Engineering (Singapore) of Weize expert library (VE), mainly engaged in the research of new energy and electromechanical transmission control, numerical control technology, identification control.

References

[1] Zhang Xiaowen, Su Boping, sun Shubin, et al. Research and development of precision irrigation monitoring system for facility agriculture [J]. China Agricultural Machinery Chemical Journal, 2005 (1): 30-32

[2] Chen Hui. Research and implementation of greenhouse tomato remote intelligent irrigation system based on ZigBee and GPRS[D]. Hangzhou: Zhejiang University, 2013

He Guangyu. Research on accurate train control algorithm based on neural network [M]. Beijing: Beijing
Jiaotong University, 2009.

[3] Zhang Jing, Yang Qiliang, Ge Zhenyang, et al. Construction of wireless sensor network monitoring system for greenhouse environmental parameters and analysis of CC2530 transmission characteristics [J]. Acta AGRICULTURAE Engi Sinica, 2013, 29 (7): 139-147.

[4] Dong Xueping, Wang Zhiquan. Model approximation predictive control for discrete time distributed parameter systems [J]. Systems engineering and electronic technology, 2006, 28(9):1394-1397.

[5] Gong Wenchao, Wu Mengmeng. Design and implementation of wireless monitoring system based on CC2530 [J]. Electronic measurement technology, 2012, 35 (6): 33-36, 49

[6] Liang Baosheng, Liu Jianguo. Discussion on recommended value of indoor air quality standard for carbon dioxide in China [J]. Chongqing Environmental Science, 2003, 25 (12): 1198—200.

[7] ZhangWanjun,ZhangFeng,ZhangJingxuan,et,al. Optimization of identification structure parameters based on recursive maximum likelihood iteration[C]/ Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 119–124.

[8] Mocenni C,Madeo D,Sparacino E.Linear least squares parameter estimation of nonlinear reaction diffusion equations[J].Mathematics&Computers in Simulation,20 1 1 1 8 1 1 :2244-2257.

[9] ZhangWanjun,ZhangFeng,ZhangJingxuan,et,al.Modeling and identification of system model parameters based on information granularity method [C]/ Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 114–118.

[10] Zhu Fei. Research on wireless monitoring system of factory sewage based on data fusion [D]. Ningxia University, 2017.

[11] Zhang Weiwei, Yuan lulu. Research on greenhouse intelligent control system based on genetic optimization Fuzzy-PID algorithm [J]. Agricultural Mechanization Research, 2017 (7): 209-213.

[12] Zhang Wei, Lu Yuqing. Tuning and optimization of PID parameters based on online adaptive genetic algorithm [J]. Computer simulation, 2011,28 (12): 154-157.

[13] Ding Feng. New theory of system identification [M]. Beijing: Science Press, 2015.

[14] Hou Yan, Jin Jin Xia. Constant temperature control of biochemical analyzer based on hybrid frog leaping PID algorithm [J]. Science and Technology Bulletin, 2014 (7): 136-139.

[15] Wang Wei, Li Xiao-li.Multi model adaptive control[M].Beijing: Science Press,2001.

[16] Xu FangHai. Research on indoor monitoring system and node positioning technology of multi network integration [D]. Tianjin: Tianjin University of technology, 2018.

[17] Yu Zhenyu, Chen Dewang. Urban rail train braking model and parameter identification. Acta Sinica Sinica [J]. 2010,33 (10): 37-42.

[18] Dong Hai Rong, Gao Bing, Ning bin, et al. Journal of adaptive fuzzy control dynamics and control for automatic train operation speed regulation system [J]. 2010,8 (1): 87-92.

[19] Zhang Yangyang. Boundary control of reaction diffusion systems with time delay [D]. Southwest University, 2011.

[20] Wang Cheng, Tang Tao, Luo Renshi. Research on automatic train operation signal fault detection based on method [J]. Acta Sinica Sinica Sinica, 2010,8 (1): 87-92.

[21] Guo Lihui, Zhu Lihong, Gao Wei. System identification and simulation by least square method based on MATLAB [J]. Journal of Xuchang University, 2010, 29 (2): 24-27.

[22] Wu Peng, Wang Qingyuan, Liang Zhicheng, et al. Accurate train stopping algorithm based on predictive control [J]. Computer applications, 2013,33 (12): 3600-3603.

[23] Li Shao-yuan, Li Ning. Fuzzy predictive control and application of complex system [M]. Beijing: Science Press, 2003.

[24] Zhang Wanjun, Gou Xiaoping, Zhang Feng, Zhang Jingxuan, Zhang Jingyi, Zhang Jingyan. The influence of urbanization on temperature change trend in Lanzhou [J]. Gansu science and technology, 2020, v.36 (18): 71-73 + 79.

[25] Zhang Wanjun, Gou Xiaoping, Zhang Feng, et al. Study on quantitative analysis of land use
structure in Qingyang City [J]. Gansu science and technology, 2020, v.36 (19): 60-62.

[26] Zhang Wanjun, Gou Xiaoping, Zhang Feng, et al. Research on the design and mathematical analysis of assistant trainer based on hip training [J]. Gansu science and technology, 2020, v.36 (23): 29-31.

[27] Zhang Wanjun, Gou Xiaoping, Zhang Feng, et al. Research and analysis of neuron adaptive PID control based on Sports Assistant Robot [J]. Gansu science and technology, 2020, v.36 (22): 49-52.

[28] Zhang Wanjun, Gou Xiaoping, Zhang Feng, et al. Research and analysis on the income gap of rural residents in Gansu novel coronavirus [J]. Gansu science and technology, 2020, v.36 (22): 41-45.

[29] Zhang Wanjun, Gou Xiaoping, Zhang Feng, et al. Research on design and mathematical analysis of table tennis racket based on absorbable injection molding [J]. Gansu science and technology, t, 2020, v.36 (22): 49-52.

[30] Zhang Wanjun, Gou Xiaoping, Zhang Feng, et al. Research and Analysis on the design and prediction model of table tennis racket based on absorbable injection molding double concave round table tennis [J]. Gansu science and technology, t, 2020, v.36 (22): 61-64.

[31] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Curved Measurement Theory of Honing Pneumatic Measurement System and Optimization of Measurement Parameters [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028:1-14.

[32] Zhang Wanjun, Zhang Feng, Zhang Guohua. Research on a algorithm of adaptive interpolation for NURBS curve. [J]. Applied Mechanics and Materials, Vol. 687-691, pp.1600-1603, December 2014.

[33] Yuan Daming. Design of greenhouse temperature and humidity control system based on single chip microcomputer [J]. Agricultural engineering, 2018, 8 (01): 32-34.

[34] Wang Xiangdong, he Nansi. Optimal controller for tracking and switching temperature and humidity in greenhouse [J]. Journal of Shenyang University of technology, 2014, 36 (05): 543-549.

[35] Duan Kejun, Li Zaixin. Research on Agricultural Greenhouse System Based on Fuzzy Adaptive PID [J]. Southern agricultural machinery, 2019 (19): 7-9.

[36] Qin Linlin, Ma Qiqi, Chu Zhudong, et al. Modeling and control of greenhouse temperature and humidity system based on grey prediction model [J]. Journal of agricultural engineering, 2016, 32 (supp.1): 233-241.

[37] Wang Xinyi. Research on reliability appraisal of steel structure workshop based on fuzzy comprehensive evaluation and its realization with MATLAB [D]. Liaoning University of science and technology, 2019.

[38] Zhu Fei. Research on wireless monitoring system of factory sewage based on data fusion [D]. Ningxia University, 2017.

[39] Lu Wanrong, Xu Jiangchun, Zeng Debin, et al. Design of greenhouse temperature and humidity control system based on incremental PID algorithm [J]. China Agricultural Machinery Chemistry Journal, 2018, 39 (4): 72-76.