STARForge

The dynamics and outcome of star formation with jets, radiation, winds and supernovae in concert

Paper: arXiv:2201.00882 (MNRAS accepted)

Our Galactic Ecosystem:
Opportunities and Diagnostics in the Infrared and Beyond
February 28 2022

Team:
Dávid Guszejnov (UT Austin)
Stella Offner (UT Austin)
Phil Hopkins (Caltech)
Claude-André Faucher-Giguère (Northwestern)
Anna Rosen (CfA)
Aman Raju (UT Austin)
Henry Lane (Pennsbuy High School ➡ Caltech)
STAR FORMATION: I HAVE QUESTIONS 🤔

GMCs

CO (1-0) in M51: Schinnerer+13

Stars

R136 (ESA/Hubble)

PHYSICS HAPPENS
STAR FORMATION: I HAVE QUESTIONS 😐

GMCs •Life cycle of GMCs and star clusters?

Stars

PHYSICS HAPPENS

CO (1-0) in M51: Schinnerer+13

R136 (ESA/Hubble)
STAR FORMATION: I HAVE QUESTIONS 😐

- Life cycle of GMCs and star clusters?
- IMF - why? Universal or variations?

PHYSICS HAPPENS

GMCs

CO (1-0) in M51: Schinnerer+13

Stars

R136 (ESA/Hubble)
STAR FORMATION: I HAVE QUESTIONS 🤔

- Life cycle of GMCs and star clusters?
- IMF - why? Universal or variations?
- Star formation efficiency?
STAR FORMATION: I HAVE QUESTIONS 😐

- Life cycle of GMCs and star clusters?
- IMF - why? Universal or variations?
- Star formation efficiency?
- Multiplicity?
STAR FORMATION: I HAVE QUESTIONS 😏

GMCs

- Life cycle of GMCs and star clusters?
- IMF - why? Universal or variations?
- Star formation efficiency?
- Multiplicity?
- How do stars get their mass?

Stars

PHYSICS HAPPENS
STAR FORMATION: I HAVE QUESTIONS 🤔

• Life cycle of GMCs and star clusters?
• IMF - why? Universal or variations?
• Star formation efficiency?
• Multiplicity?
• How do stars get their mass?
• How does feedback work?
STAR FORMATION: I HAVE QUESTIONS 😐

- Life cycle of GMCs and star clusters?
- IMF - why? Universal or variations?
- Star formation efficiency?
- Multiplicity?
- How do stars get their mass?
- How does feedback work?
Simulating star formation
Simulating star formation

High-resolution boxes/clumps:
• Total gas mass <10³ M☉
• Sometimes IR radiation and/or protostellar jets

Bate 2003

Federrath 2015

Cunningham 2018
Simulating star formation

High-resolution boxes/clumps:
- Total gas mass $< 10^3 M_\odot$
- Sometimes IR radiation and/or protostellar jets

Global GMC simulations that do not resolve the IMF:
- Can survey much larger masses (entire GMCs)
- Have included stellar radiation, winds, SN
- But can’t resolve individual stars

Bate 2003
Federrath 2015
Cunningham 2018
Geen 2017
Kim 2018
Li 2019
Grudić 2018
Simulating star formation

High-resolution boxes/clumps:
• Total gas mass $<10^3 M_\odot$
• Sometimes IR radiation and protostellar jets

Global GMC simulations that do not resolve the IMF:
• Can survey much larger masses (entire GMCs)
• Have included stellar radiation, winds, SN
• But can't resolve indivudual stars!

Wish-list for SF simulations with predictive power:
Simulating star formation

High-resolution boxes/clumps:
- Total gas mass < $10^3 M_\odot$
- Sometimes IR radiation and/or protostellar jets

Global GMC simulations that do not resolve the IMF:
- Can survey much larger masses (entire GMCs)
- Have included stellar radiation, winds, SN
- But can't resolve individual stars!

Wish-list for SF simulations with predictive power:
1. Forms individual stars self-consistently
Simulating star formation

High-resolution boxes/clumps:
• Total gas mass $< 10^3 M_\odot$
• Sometimes IR radiation and/or protostellar jets

Global GMC simulations that do not resolve the IMF:
• Can survey much larger masses (entire GMCs)
• Have included stellar radiation, winds, SN
• But can’t resolve individual stars!

Wish-list for SF simulations with predictive power:
1. Forms individual stars self-consistently
2. Includes all important feedback mechanisms
Simulating star formation

Wish-list for SF simulations with predictive power:
1. Forms individual stars self-consistently
2. Includes all important feedback mechanisms
3. Can scale up to massive (>10^4 M☉) GMCs
Simulating star formation

High-resolution boxes/clumps:
- Total gas mass <10³ M☉
- Sometimes IR radiation and/or protostellar jets

Global GMC simulations that do not resolve the IMF:
- Can survey much larger masses (entire GMCs)
- Have included stellar radiation, winds, SN
- But can't resolve individual stars!

Wish-list for SF simulations with predictive power:
1. Forms individual stars self-consistently
2. Includes all important feedback mechanisms
3. Can scale up to massive (>10⁴ M☉) GMCs
4. Run from start to finish of SF (~10 Myr)
Simulating star formation

High-resolution boxes/clumps:
• Total gas mass \(<10^3\, M_\odot\)
• Sometimes IR radiation and/or protostellar jets

Global GMC simulations that do not resolve the IMF:
• Can survey much larger masses (entire GMCs)
• Have included stellar radiation, winds, SN
• But can't resolve individual stars!

Wish-list for SF simulations with predictive power:
1. Forms individual stars self-consistently
2. Includes all important feedback mechanisms
3. Can scale up to massive (>10^4\, M_\odot\) GMCs
4. Run from start to finish of SF (~10\, Myr)
STARFORGE

- GIZMO MFM MHD
- N-body dynamics
- Individual star formation
- Cooling/Chemistry
- Jets
- Stellar Winds
- Radiation
- Supernovae

STARFORGE methods paper (arXiv:2010.11254)

Mike Grudić & Collaboration
The Simulation

Full STARFORGE physics - Grudić et al. 2022 arXiv:2201.00882

https://www.youtube.com/watch?v=LeX5e51UkszI
The Simulation
Full STARFORGE physics - Grudić et al. 2022 arXiv:2201.00882
https://www.youtube.com/watch?v=LeX5e51UkzI
The Simulation

Full STARFORGE physics - Grudić et al. 2022 arXiv:2201.00882

https://www.youtube.com/watch?v=LeX5e51UkzI
The Simulation

Full STARFORGE physics - Grudić et al. 2022 arXiv:2201.00882

https://www.youtube.com/watch?v=LeX5e51UkzI
Star Cluster Evolution

$M_{\text{tot}}(M_{\odot})$

$t/t_{ff,0}$

50% of mass

Time (Myr)

0 1 2 3 4 5 6 7 8 9

0 1 10 100 1000 10000 100000

0.1
Star Cluster Evolution

\[M^\text{tot}_* (M_\odot) \]

50% of mass

Time (Myr)

0 1 2 3 4 5 6 7 8 9

0.1 1 10 100 1000 10000 100000

\[t/t_{ff,0} \]

0yr

10pc
Star Cluster Evolution

The graph shows the evolution of a star cluster over time, with the x-axis representing time in Myr (10^6 years) and the y-axis representing the total mass and number of stars. Key milestones include:

- At 4 Myr, 50% of the stars have formed.
- At 5 Myr, 50% of the mass has been formed.

The graph includes lines for:

- $M^{\text{tot}} (M_{\odot})$ (purple line)
- N_\star (green line)

The x-axis is labeled $t/t_{\text{ff},0}$.
Star Cluster Evolution

![Graph showing the evolution of star clusters over time.](image)

- $M^\text{tot} (M_\odot)$
- N_*
- $R^\text{eff} (\text{pc})$

Key points:
- 50% of stars
- 50% of mass

Time (Myr): 0 to 9

$t/t_{ff,0}$ Scale: 0 to 2
Star Cluster Evolution

- $M_\text{tot}^\text{star} (M_\odot)$
- N_\ast
- $R_\ast^\text{eff} (\text{pc})$
- $\sigma_\ast (\text{km s}^{-1})$

Time (Myr): 0 to 9

$t/t_{\text{ff,0}}$: 0 to 2

50% of stars
50% of mass
Star Cluster Evolution

![Graph showing the evolution of various properties of star clusters over time.](image)

- $M^\text{tot}_* (M_\odot)$
- N_*
- $R^\text{eff}_* (\text{pc})$
- $\sigma_* (\text{km s}^{-1})$
- $|\vec{v}_r| (\text{km s}^{-1})$

Time (Myr) vs. $t/t_{\text{ff},0}$
Star Cluster Evolution

![Graph showing the evolution of various star cluster properties over time.](image)

- M^tot_* (M_\odot)
- N_*
- R^eff_* (pc)
- σ_* (km s$^{-1}$)
- $|\vec{u}_r|$ (km s$^{-1}$)
- ρ^eff_* (M_\odot pc$^{-3}$)

50% of stars, 50% of mass
Star Cluster Evolution

The diagram shows the evolution of various properties of a star cluster over time, normalized to $t_{ff,0}$. The properties include:

- M^tot_* (M$_\odot$)
- N_*
- R^eff_* (pc)
- σ_* (km s$^{-1}$)
- $|\vec{v}_r|$ (km s$^{-1}$)
- ρ^eff_* (M$_\odot$ pc$^{-3}$)
- ρ^NN_* (M$_\odot$ pc$^{-3}$)

Key features include:

- 50% of stars
- 50% of mass
Feedback Evolution
Feedback Evolution

The graph shows the evolution of the luminosity of the accretion disk (L_{acc}) over time (t), normalized by the feedback time scale ($t_{ff,0}$). The x-axis represents time in Myr (million years), while the y-axis represents the luminosity in units of L_\odot. The data exhibits a increasing trend with fluctuations, indicating a dynamic process of feedback in the system.
Feedback Evolution

\[\frac{L_{\text{acc}}}{L_\odot} \quad \frac{L_{\text{fus}}}{L_\odot} \]

\[0 \quad 1 \quad 2 \]

Time (Myr)
Feedback Evolution

![Graph showing the evolution of various luminosity components over time.](image)
Feedback Evolution

\[L_{\text{acc}} (L_\odot) \]
\[L_{\text{fus}} (L_\odot) \]
\[L_{\text{tot}} (L_\odot) \]
\[\dot{P}_{\text{wind}} (L_\odot / c) \]

Time (Myr)

0 1 2 3 4 5 6 7 8 9

0 10^3 10^4 10^5 10^6 10^7
Feedback Evolution

\[L_{\text{acc}} (L_\odot) \]
\[L_{\text{fus}} (L_\odot) \]
\[L_{\text{tot}} (L_\odot) \]
\[P_{\text{wind}} (L_\odot / c) \]
\[P_{\text{jets}} (L_\odot / c) \]

Time (Myr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

\[t / t_{f,0} \]

Logarithmic scale on the y-axis from 10 to 10^7.
Feedback Evolution

$0 \leq t/t_{ff,0} \leq 2$

$L_{\text{acc}} (L_\odot)$
$L_{\text{fus}} (L_\odot)$
$L_{\text{tot}} (L_\odot)$
$\dot{P}_{\text{wind}} (L_\odot/c)$
$\dot{P}_{\text{jets}} (L_\odot/c)$

Time (Myr)

$0 \leq t \leq 9$
Feedback Evolution

![Graph showing the evolution of various quantities over time.](image)

- $L_{\text{acc}} (L_\odot)$
- $L_{\text{fus}} (L_\odot)$
- $L_{\text{tot}} (L_\odot)$
- $P_{\text{wind}} (L_\odot/c)$
- $P_{\text{jets}} (L_\odot/c)$
- $GM^2/R^2 (L_\odot/c)$

Time (Myr):
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9

$t/t_{\text{ff},0}$
Star Formation Efficiency - ϵ
Star Formation Efficiency - ε_{ff}
Star Formation Efficiency - ε_{ff}

SFE \sim Bremmstrahlung / CO emission

Per-freefall SFE (%)

$t/t_{\text{ff},0}$

0 1 2

0 1 10 100

Time (Myr)

0 1 2 3 4 5 6 7 8 9

$\varepsilon_{\text{ff},\rho_0}$

$\varepsilon_{\text{ff,br}}$
Star Formation Efficiency - ε_{eff}

- $SFE \sim \text{Bremmstrahlung} / \text{CO emission}$
- $SFE \sim N_{\text{YSOS}} / \text{dust mass}$
The Long Road to the IMF
The Long Road to the IMF

![Graph showing the distribution of initial mass functions (IMFs) with two different models: Standard IMF (Chabrier 2005) and Isothermal MHD. The graph plots the number of star masses per mass bin against mass, showing the IMF's distribution from low to high mass.]
The Long Road to the IMF

- Standard IMF (Chabrier 2005)
- Isothermal MHD
- Cooling + MHD

$dN/dM_{ZAMS} \ (M_\odot^{-1})$ vs $M_{ZAMS} \ (M_\odot)$
The Long Road to the IMF

![Graph showing the distribution of mass in different IMF models.](image)
The Long Road to the IMF

![Graph showing the IMF distribution with various models including Standard IMF, Isothermal MHD, Cooling + MHD, Cooling + Jets + MHD, and Full Physics.](image-url)
The Long Road to the IMF

Jets set the IMF turnover/avg. stellar mass

\[\frac{dN}{dM_{\text{ZAMS}}}(M_\odot^{-1}) \]

\[M_{\text{ZAMS}}(M_\odot) \]

- Standard IMF (Chabrier 2005)
- Isothermal MHD
- Cooling + MHD
- Cooling + Jets + MHD
- Full Physics

Incomplete
The Long Road to the IMF

Jets set the IMF turnover/avg. stellar mass

Radiation + winds from massive stars regulate high-mass tail

\[\frac{dN}{dM_{\text{ZAMS}}} (M_\odot^{-1}) \]

\[M_{\text{ZAMS}} (M_\odot) \]

- Standard IMF (Chabrier 2005)
- Isothermal MHD
- Cooling + MHD
- Cooling + Jets + MHD
- Full Physics
The Long Road to the IMF

Jets set the IMF turnover/avg. stellar mass

Radiation + winds from massive stars regulate high-mass tail

See upcoming STARFORGE IMF paper by Dávid Guszejnov
Magnetic fields in STARFORGE Simulations

Clearly feedback is important - but what about magnetic fields?
Magnetic field vs. density

B at high densities insensitive to low-density field strength - asymptotes to $v_A \sim c_s \sim 0.2 \text{ km s}^{-1}$ - see also Wurster+19, Guszejnov+20
Effect of magnetic fields on SFE

Many effects likely at work:
• Confinement of HII regions suppressing blowout? (e.g. Krumholz 2007)
• Anisotropic accretion \rightarrow less massive SF \rightarrow less feedback (e.g. Lee 2014)
• Suppression of fragmentation \rightarrow slower SF \rightarrow feedback less apt to “overshoot”
Star formation at high B (20μG; $\mu = 0.42$)

0.23Myr

10pc
Star formation at high B ($20\mu G; \mu = 0.42$)

0.23Myr
Effect of magnetic fields on the IMF
Effect of magnetic fields on the IMF

- Standard IMF (Chabrier 2005)
- $\mu = 4.2$ (fiducial weak field; $2\mu G$)
- $\mu = 1.3$ (moderate field; $7\mu G$)

![Graph showing the effect of magnetic fields on the IMF](image-url)
Effect of magnetic fields on the IMF
Where are the disks? 😳

Very high-resolution (10^{-5}Msun, ~1AU resolution) MHD STARFORGE simulations that should resolve disks show a “braking catastrophe”
Very high-resolution (10^{-5}\text{Msun}, \sim 1\text{AU} resolution) MHD STARFORGE simulations that should resolve disks show a “braking catastrophe”
Summary
Summary
Summary

- **STARFORGE** can simulate massive GMCs with individual stars self-consistently, with all feedback mechanisms in concert for the first time.
Summary

- **STARFORGE** can simulate massive GMCs with individual stars self-consistently, with **all feedback mechanisms in concert** for the first time.

- Key phenomena reproduced: IMF, SFE - different feedback channels must work together! Jets ❤️ Radiation ❤️ Winds ❤️ SN
Summary

• **STARFORGE** can simulate massive GMCs with individual stars self-consistently, with all feedback mechanisms in concert for the first time.

• Key phenomena reproduced: IMF, SFE - different feedback channels must work together! Jets ❤️ Radiation ❤️ Winds ❤️ SN

• Future plans: 1. Wider parameter study of GMCs, and 2. Synthetic observations - e.g. SOFIA pipeline in prep.
Summary

• **STARFORGE** can simulate massive GMCs with individual stars self-consistently, with all feedback mechanisms in concert for the first time.

• Key phenomena reproduced: IMF, SFE - different feedback channels must work together!
 Jets Radiation Winds SN

• Future plans: 1. Wider parameter study of GMCs, and 2. Synthetic observations - e.g. SOFIA pipeline in prep.

• Studied the effect of the magnetic field on SF:
Summary

- **STARFORGE** can simulate massive GMCs with individual stars self-consistently, with all feedback mechanisms in concert for the first time.

- Key phenomena reproduced: IMF, SFE - different feedback channels must work together! Jets 🌋, Radiation ☀️, Winds 🌆, SN

- Future plans: 1. Wider parameter study of GMCs, and 2. Synthetic observations - e.g. SOFIA pipeline in prep.

- Studied the effect of the magnetic field on SF:
 - \(B \) in dense gas insensitive to large-scale field - \(B \propto \rho^{1/2}; v_A \sim c_s \)
Summary

- **STARFORGE** can simulate massive GMCs with individual stars self-consistently, with all feedback mechanisms in concert for the first time.

- Key phenomena reproduced: IMF, SFE - different feedback channels must work together! Jets 💟 Radiation 💟 Winds 💟 SN

- Future plans: 1. Wider parameter study of GMCs, and 2. Synthetic observations - e.g. SOFIA pipeline in prep.

- Studied the effect of the magnetic field on SF:

 - B in dense gas insensitive to large-scale field: $B \propto \rho^{1/2}; \nu_A \sim c_s$

 - Strong field has slower, more quiescent SFR until SNe go off
Summary

• **STARFORGE** can simulate massive GMCs with individual stars self-consistently, with all feedback mechanisms in concert for the first time.

 • Key phenomena reproduced: IMF, SFE - different feedback channels must work together! Jets Radiation Winds SN

 • Future plans: 1. Wider parameter study of GMCs, and 2. Synthetic observations - e.g. SOFIA pipeline in prep.

 • Studied the effect of the magnetic field on SF:

 • \(B \) in dense gas insensitive to large-scale field - \(B \propto \rho^{1/2}; v_A \sim c_s \)

 • Strong field has slower, more quiescent SFR until SNe go off

 • Strong field has fewer massive stars (i.e. steeper IMF)
Summary

- **STARFORGE** can simulate massive GMCs with individual stars self-consistently, with all feedback mechanisms in concert for the first time.

- Key phenomena reproduced: IMF, SFE - different feedback channels must work together! Jets 🌈 Radiation 🌈 Winds 🌈 SN

- Future plans: 1. Wider parameter study of GMCs, and 2. Synthetic observations - e.g. SOFIA pipeline in prep.

- Studied the effect of the magnetic field on SF:
 - \mathbf{B} in dense gas insensitive to large-scale field - $\mathbf{B} \propto \rho^{1/2}; V_A \sim c_s$
 - Strong field has slower, more quiescent SFR until SNe go off
 - Strong field has fewer massive stars (i.e. steeper IMF)
 - No disks in any high-resolution ideal MHD runs - non-ideal MHD needed?
GMC initial conditions: can we do better?
Lane, Grudić, et al. 2022MNRAS.510.4767L
GMC initial conditions: can we do better?
Lane, Grudić, et al. 2022MNRAS.510.4767L

Henry Lane
Pennsbury High School, PA
Caltech
Feedback Coupling Methods

1. Local injection
 Inject mass/momentum/energy into pre-existing cells conservatively

2. Cell spawning
 Create new Lagrangian gas cells, still conserving COM/momentum to machine precision
Meshless Lagrangian MHD with GIZMO

Mach 9 Supersonic MHD Turbulence

0yr

1.2pc
Meshless Lagrangian MHD with GIZMO

Mach 9 Supersonic MHD Turbulence

0 yr

1.2 pc
Meshless Lagrangian MHD with GIZMO

STARFORGE uses Meshless Finite mass method which has numerous advantages for SF problems:
Meshless Lagrangian MHD with GIZMO

STARFORGE uses Meshless Finite mass method which has numerous advantages for SF problems:

• Good AM conservation
Meshless Lagrangian MHD with GIZMO

STARFORGE uses Meshless Finite mass method which has numerous advantages for SF problems:

- Good AM conservation
- Lagrangian: resolution tied to mass elements Δm

Mach 9 Supersonic MHD Turbulence

0yr

1.2pc
Meshless Lagrangian MHD with GIZMO

STARFORGE uses Meshless Finite mass method which has numerous advantages for SF problems:

- Good AM conservation
- Lagrangian: resolution tied to mass elements Δm
 (Good resolution in shocks/overdensities, convenient for resolving the IMF)
Meshless Lagrangian MHD with GIZMO

STARFORGE uses Meshless Finite mass method which has numerous advantages for SF problems:

- Good AM conservation
- Lagrangian: resolution tied to mass elements Δm
 (Good resolution in shocks/overdensities, convenient for resolving the IMF)
- Consistent coupling to gas self-gravity
Meshless Lagrangian MHD with GIZMO

STARFORCE uses Meshless Finite mass method which has numerous advantages for SF problems:

- Good AM conservation
- Lagrangian: resolution tied to mass elements Δm (Good resolution in shocks/overdensities, convenient for resolving the IMF)
- Consistent coupling to gas self-gravity
- Hopkins 2016 constrained-gradient scheme reduces, competitive with Constrained Transport codes
Meshless Lagrangian MHD with GIZMO

STARFORGE uses Meshless Finite mass method which has numerous advantages for SF problems:

- Good AM conservation
- Lagrangian: resolution tied to mass elements Δm
 (Good resolution in shocks/overdensities, convenient for resolving the IMF)
- Consistent coupling to gas self-gravity
- Hopkins 2016 constrained-gradient scheme reduces, competitive with Constrained Transport codes
- Timestep not constrained by $\Delta t = \Delta x/v$ - MUCH faster with jets/winds/disks
Meshless Lagrangian MHD with GIZMO

STARFORGE uses Meshless Finite mass method which has numerous advantages for SF problems:

- Good AM conservation
- Lagrangian: resolution tied to mass elements Δm
 (Good resolution in shocks/overdensities, convenient for resolving the IMF)
- Consistent coupling to gas self-gravity
- Hopkins 2016 constrained-gradient scheme reduces, competitive with Constrained Transport codes
- Timestep not constrained by $\Delta t = \Delta x/v$ - MUCH faster with jets/winds/disks
- Less diffusive in supersonic flows than AMR (e.g. Roberston 2010, Pontzen 2020)
Protostellar Jets

- Jet launching powered by accretion onto the disk/protostar

- Very important for regulating stellar accretion, the IMF, SFE on <1pc scales (e.g. Rosen & Krumholz 2020, Guszejnov+2021MNRAS.502.3646G,)

- Use phenomenological model (Cunningham 2011)

- Use cell spawning technique
Protostellar Jets

- Jet launching powered by accretion onto the disk/protostar
- Very important for regulating stellar accretion, the IMF, SFE on <1pc scales (e.g. Rosen & Krumholz 2020, Guszejnov+2021MNRAS.502.3646G,)
- Use phenomenological model (Cunningham 2011)
- Use cell spawning technique
Radiation

Radiative transfer in 5 bands:

- LyC (13.6+eV)
- Photoelectric (8-13.6eV)
- NUV (3.4-8eV)
- Optical/NIR (0.4-3.4eV)
- Far-mid IR (0-0.4eV)

Solved with GIZMO's M1 RMHD solver (Hopkins & Grudić 2018, Hopkins et al. 2020)
Radiation

Radiative transfer in 5 bands:

- LyC (13.6+eV)
- Photoelectric (8-13.6eV)
- NUV (3.4-8eV)
- Optical/NIR (0.4-3.4eV)
- Far-mid IR (0-0.4eV)

Solved with GIZMO’s M1 RMHD solver (Hopkins & Grudić 2018, Hopkins et al. 2020)
Stellar Winds

- Inject winds from OB and WR stars
- Simple phenomenological prescription following Smith 2014
- Adaptive hybrid method: Use local injection if free expansion cannot be resolved, cell spawning if it can

9.8 yr

10 pc
Stellar Winds

- Inject winds from OB and WR stars
- Simple phenomenological prescription following Smith 2014
- Adaptive hybrid method: Use local injection if free expansion cannot be resolved, cell spawning if it can

9.8yr

10pc
Supernovae

• >8M☉ stars undergo a 10^{51} erg supernovae at the end of their life

• Use cell spawning to directly resolve ejecta and free expansion

0.0098 yr

10 pc
Supernovae

- >8M☉ stars undergo a 10^{51} erg supernovae at the end of their life
- Use cell spawning to directly resolve ejecta and free expansion

0.0098 yr

10 pc