Bose-Einstein condensate in gases of rare atomic species

Seiji Sugawa,1, 2 Rekishu Yamazaki,1, 2 Shintaro Taie,1 and Yoshiro Takahashi1, 2
1Department of Physics, Graduate School of Science, Kyoto University 606-8502 Japan
2CREST, JST, Chiyoda-ku, Tokyo 102-0075 Japan
(Dated: July 11, 2018)

We report on the successful extension of production of Bose-Einstein Condensate (BEC) to rare species. Despite its low natural abundance of 0.13%, 168Yb is directly evaporatively cooled down to BEC. Our successful demonstration encourages attempts to obtain quantum gases of radioactive atoms, which extends the possibility of quantum many-body physics and precision measurement. Moreover, a stable binary mixture of 168Yb BEC and 174Yb BEC is successfully formed.

PACS numbers: 67.85.Hj, 67.60.-g, 03.75.Mn

Successful realization of Bose-Einstein condensates (BEC) and Fermi degenerate gases in atomic vapors has been providing intriguing possibilities in many research fields such as the study of quantum many-body system, precision measurement, and quantum computation (see Ref. [1] for review). So far atomic species with relatively high natural abundance have been Bose-Einstein condensed, such as in alkali-atoms 87, 85 Rb, 39, 41 K, 7 Li, 23 Na, 133 Cs, and two-electron atoms such as 4He, 10 Be, 174, 170 Yb, 49 Ca, 44 Ca, and 84, 86, 88 Sr, 13, 18, and also 1H, 10 Be, and 52 Cr. Extending atomic species beyond these relatively abundant atomic species is an important step for a future investigation. First, extension to rare species benefits a richer variety of quantum degenerate gases and the mixed gases in the study of quantum many-body system. In addition, radioactive atoms such as francium [21, 22] and radium [23] are good candidates for tests of the fundamental symmetries by searching for the electric dipole moment and precision measurement of atomic parity non-conservation. In such application, a Mott-insulator state in an optical lattice, realized by making use of quantum gases, offers important advantage of high atomic density with avoided collision by localizing each atom to each lattice site.

Obviously, the limited abundance of atoms is a great obstacle to reach quantum degeneracy [24]. However, in principle, there is no fundamental difficulty to achieve quantum degeneracy of rare species by evaporative cooling if the ratio of elastic to inelastic scattering cross section is high. In this Rapid Communication, we report on the successful production of BEC of rare species of 168Yb, which has the lowest natural abundance of only 0.13% among the seven stable isotopes of Yb without the use of enriched source. The abundance of 0.13% is also the lowest among the already produced BEC [24]. The atom clouds can be directly evaporatively cooled down to BEC owing to a favorable s-wave scattering length of 168Yb and a high vacuum of our system. The lowest natural abundant species so far was 84 Sr, which has a natural abundance of 0.56%. The difference from 84 Sr BEC is the small initially-captured atom number. While 106 atoms were magnetically trapped in 84 Sr, only 2 × 106 atoms are captured in a magneto-optical trap (MOT) for 168 Yb. This value is, for example, not too far from the atom number of radioactive francium MOT [25]. Therefore, our successful demonstration encourages attempts to obtain quantum gases of radioactive atoms [26]. A straightforward implication of our result is the promising possibility of realizing quantum degenerate gases of radioactive Yb isotopes for precision measurement [27].

In addition, we report on the attainment of dual-species condensates of 168Yb and 174Yb. This is the first stable binary condensate for a two-electron system. Since two species BEC has been reported only for 85Rb and 87Rb [28, 41 K and 87 Rb [29], and quite recently 87 Rb and 133 Cs mixtures [30], the demonstrated dual condensate of 168Yb and 174Yb in fact extends the variety of the quantum degenerate mixture, where quantum turbulences [31] and topological excitations [32] can be studied.

In order to produce 168Yb BEC, we have revisited our experimental system from the previously reported ones [11, 13, 33]. The major improvement is the high vacuum of 1–3 × 10−11 Torr compatible with the highly collimated atomic beam. The experimental procedure to produce 168Yb BEC follows our previous scheme [11–13, 33, 34]. First, an 168Yb atomic beam from an oven containing Yb metal with natural abundance is decelerated by a Zeeman slower operating on the 1S0 ↔ 1P1 transition with a laser power of 250 mW. The decelerated atoms are collected by a MOT operating on the narrow-line inter-combination transition of 1S0 ↔ 3P1. Our high vacuum system enables us to typically collect 2 × 106 168 Yb atoms at a temperature of 20 μK during the 100 s loading. This should be compared with the case of the most abundant isotope of 174 Yb where it takes less than 0.5 s to collect 2 × 106 atoms. The loading time of about 100 s would be limited by a very little branching from the 3P1 state to the 3P0 state through the magnetic dipole transition at a rate of ∼ 1/161 s−1 [35] and also by background gas collisions.

Then we transfer the atoms from the MOT to a Far-Off Resonant Trap (FORT) operating at 532 nm to per-
form efficient evaporative cooling. Efficient transfer is performed by compressing the magnetic field gradient of the MOT and subsequently reducing the MOT intensity and the detuning of MOT laser beams to cool the atoms. Typically 1×10^6 168Yb atoms are successfully trapped into the FORT.

The evaporative cooling is performed in a crossed FORT, where horizontally and vertically propagating FORT beams intersect at their foci. The horizontally propagating FORT beam is elliptically shaped with a beam waist of $30 \, \mu m$ along the horizontal direction and $14 \, \mu m$ along the vertical direction. The initial trap depth is approximately $750 \, \mu K$ at the horizontal FORT laser power of $14 \, W$. The first stage of evaporative cooling is performed by lowering the laser intensity of the horizontal FORT beam, during which the atoms are transferred to the crossed FORT region. The shape of the vertically propagating FORT beam is also elliptical with a beam waist of $127 \, \mu m$ along the axial direction of the horizontal FORT beam and $40 \, \mu m$ along the radial. This results in a good overlap of the two FORT beams with an increased trap volume. The potential depth by the vertical FORT beam is $40 \, \mu K$. At $40 \, \mu K$ potential depth of the crossed FORT, 5×10^5 atoms at $6 \, \mu K$ are trapped in the crossed region.

The atoms in the crossed FORT region are further cooled down toward the quantum degenerate regime at the final stage of the evaporative cooling. The s-wave scattering length of 168Yb is determined to be $a_{168} = 13.33(18) \, nm$ from two-photon photoassociation spectroscopy. The evaporative cooling should work well at this scattering length. To suppress unfavorable inelastic three-body loss, we not only reduce the horizontal FORT beam intensity, but also the vertical FORT beam intensity during the evaporation to reduce the central peak density. The peak density above the BEC phase transition is typically $2 \sim 4 \times 10^{13} \, cm^{-3}$.

The phase transition from a thermal gas to a BEC is observed as the appearance of bimodal distribution after Time-of-Flight (TOF). Figure 1 shows absorption images taken after TOF of 14 ms for different evaporation stage near BEC phase transition. At a higher temperature, the density distribution shows an isotropic Gaussian distribution, manifesting that the velocity of the gas has a Maxwell-Boltzmann distribution. However, after further evaporative cooling, we observe the deviation from the Gaussian distribution and an additional low velocity component, representing a BEC component. At this stage, the peak density of the thermal gas is $3.5 \times 10^{13} \, cm^{-3}$. The trap frequencies are $2 \pi \times (240, 31, 165) \, Hz$. The transition temperature is evaluated to be $T_c = 135 \, nK$. This value is slightly lower than the transition temperature for non-interacting BEC, $T_c = \hbar \omega / k_B \times (N/\zeta(3))^{1/3} \sim 150 \, nK$, where ω is the geometric mean of trap frequency, ζ is the Riemann zeta function, and N is the atom number. This slight deviation is expected from the interaction and finite size effects.

After further evaporation by lowering the trap depth, the condensate fraction increases. After evaporative cooling for $9.3 \, s$, we finally attain an almost pure condensate up to 1.0×10^4 atoms. The trap frequencies are $2 \pi \times (154, 25, 141) \, Hz$. The peak density is $1.0 \times 10^{14} \, cm^{-3}$. The validity of Thomas-Fermi approximation is confirmed by the relation $Na_{168} / a_{ho} = 1.4 \times 10^2 \gg 1$, where $a_{ho} = \sqrt{\hbar / (m \omega)}$ is a harmonic oscillation length and m is the atomic mass. Figure 2 shows radii of the expanding BEC during the TOF. Anisotropic expansion of condensate can be clearly seen. The solid lines in Fig.1

![FIG. 1: (Color online) Phase transition to BEC during the evaporative cooling. (a) Absorption images at different evaporation stage are shown with TOF of 14 ms. Each image is 290 \, \mu m per side. (b) The corresponding integrated column densities along the horizontal direction are shown with laser powers of horizontal FORT beam. The BEC transition is observed as an appearance of bimodal distribution (middle). At the end of the evaporation, a almost pure condensate of 1.0×10^4 is produced (top). The absorption images are taken from an angle of 45 degree against the horizontal FORT axis in the horizontal plane.](image-url)
are the fits using the Castin-Dum model with the chemical potential as the only free parameter. The corresponding chemical potential is 64 nK. It is noted that, with this achievement, all the isotopes of Yb are now cooled down to quantum degenerate regime except for the bosonic isotope of 172Yb, where a large number of condensate cannot grow due to its large negative scattering length.

At the final trap depth, a lifetime of BEC is evaluated to be about 3 s, which is mainly attributed to the three-body loss of atoms. From this, we can determine the upper limit of three-body loss rate of 168Yb. We fit the remaining atom number as a function of holding time in the trap by a rate equation assuming only for three-body loss. The maximum three-body coefficient K_3 is evaluated to be $8.6(1.5) \times 10^{-28}$ cm6/s. This is more than one order of magnitude larger than the value reported for 174Yb. However it is still smaller than the expected maximal rate of $K_{3,max} = 210 \hbar a_{168}^3/m = 2.3 \times 10^{-27}$ cm6/s.

FIG. 2: (Color online) Expansion of condensate after release from the trap. The radii of the condensate show asymmetry between the horizontal (circle) and vertical (square) direction. The solid lines are the fits using Castin-Dum model. The error bars are standard error.

Our successful demonstration of BEC of rare species extends the possibility to create various quantum degenerate mixtures. This is especially important for Yb quantum isotope mixture, since a stable BEC mixture has not been yet reported. Previously, we reported on the production of Bose-Bose mixture of 174Yb-176Yb below T_c. However, due to the negative scattering length of 176Yb, a condensate above the critical atom number (typically a few hundred) gets unstable. Among the possible quantum degenerate Bose-Bose mixtures of Yb isotope, 168Yb-174Yb and 168Yb-170Yb are the only candidate to realize a stable BEC mixture. Here, we report on the production of stable 168Yb-174Yb Bose-Bose mixture.

The procedure to produce this mixture is basically the same as that described above. To collect two isotopes in the MOT, we apply two-color MOT beam. Due to the large difference in the natural abundance of about a factor of 230, we load 168Yb for 100 s and then load 174Yb for 0.5 s by subsequently turning on the Zeeman slower beam. Since the interspecies scattering length between the two species is as small as 0.13(18)nm, both species are almost independently evaporatively cooled to quantum degenerate regime. Figure 3 shows the absorption images of the dual condensate. The number of atoms in each condensate is 0.9×10^4. The advantage of working with Yb isotope mixture is the fact that trap parameters such as trap depth, trap frequency, and gravitational sag, are almost the same for the different isotopes. This enables us to focus on the role of interaction. Such feature is already seen in the behavior of the expanding condensate in Fig. 3, where 168Yb is expanding much faster than 174Yb. As the interspecies interaction is small, the difference in the size can be explained by the mean field energy of each condensate, which is converted into kinetic energy during the expansion. The expansion energy is conserved to $2\mu/7$, which is proportional to $(N a_M)^{2/5}$ in the Thomas-Fermi approximation, where N is the number of condensate, μ is the chemical potential and a_M is the scattering length with mass number M. The expansion velocity normalized by $N^{1/5}$ of 168Yb condensate is evaluated to be $1.20(4)$ times faster than 174Yb from the TOF image of each condensate. This is in good agreement with the ratio of scattering length ($a_{168}/a_{174})^{1/5} = 1.19$. The ratio of each number of atoms can be easily tuned by changing the loading time to the MOT. We can so far prepare an almost pure Bose-Bose mixture with 174Yb up to 7×10^4. Although the s-wave interspecies scattering length is small, optical Feshbach resonance will enable tuning of interspecies interaction, which is demonstrated for BEC of 174Yb$[40]$ and thermal gases of 172Yb and 176Yb$[41]$. Study of quantum quench dynamics and non-equilibrium dynamics$[42]$ in binary condensate system will also be accessible.

FIG. 3: (Color online) A stable Bose-Bose mixture of 168Yb-174Yb. Absorption images of (a) almost pure 168Yb BEC of 9×10^3 and (b) almost pure 174Yb BEC of 9×10^3. Both images are taken after TOF time of 18 ms in a separate experimental run. The larger cloud size of 168Yb compared with 174Yb manifests larger mean field energy of the condensate of 168Yb compared with 174Yb.
In conclusion, we have produced a BEC of rare species of ^{168}Yb containing 1.0×10^4 atoms. With this achievement all the possible isotopes of Yb have been cooled to quantum degeneracy. Despite its low natural abundance of 0.13%, ^{168}Yb is efficiently collected and cooled down to BEC. Our demonstration encourages researchers that a radioactive isotope is a realistic candidate of BEC. Moreover, ^{168}Yb BEC is produced together with ^{174}Yb BEC as a stable binary BEC. This mixture, which has very small interspecies scattering length, will be a prime candidate for studying a binary BEC, including the possible use of optical Feshbach resonances.

This work is supported by the Grant-in-Aid for Scientific Research of JSPS (No. 18204305, 21102005C01 (Quantum Cybernetics)), GCOE Program "The Next Generation of Physics, Spun from Universality and Emergence" from MEXT of Japan, and World-Leading Innovative R&D on Science and Technology (FIRST). S.S and S.T acknowledge support from JSPS.

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
[2] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).
[3] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 85, 1795 (2000).
[4] G. Roati, M. Zaccanti, C. D’Errico, J. Catani, M. Modugno, A. Simon, M. Inguscio, and G. Modugno, Phys. Rev. Lett. 99, 010403 (2007).
[5] G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simon, and M. Inguscio, Science 294, 1320 (2001).
[6] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett. 79, 1170 (1997).
[7] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).
[8] T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, Science 299, 232 (2003).
[9] A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, Science 292, 461 (2001).
[10] F. Pereira Dos Santos, J. Leondard, J. Wang, C. J. Barrelet, F. Peralta, E. Ravelo, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, Phys. Rev. Lett. 86, 3459 (2001).
[11] Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, Phys. Rev. Lett. 91, 040404 (2003).
[12] T. Fukuhara, S. Sugawa, and Y. Takahashi, Phys. Rev. A 76, 051604 (2007).
[13] T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, Phys. Rev. A 79, 021601 (2009).
[14] S. Kraft, F. Vogt, O. Affel, F. Riehle, and U. Sterr, Phys. Rev. Lett. 103, 130401 (2009).
[15] S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, Phys. Rev. Lett. 103, 200401 (2009).
[16] Y. N. Martinez de Escobar, P. G. Mickelson, M. Yan, B. J. DeSalvo, S. B. Nagel, and T. C. Killian, Phys. Rev. Lett. 103, 200402 (2009).
[17] S. Stellmer, M. K. Tey, R. Grimm, and F. Schreck, Phys. Rev. A 82, 041602 (2010).
[18] P. G. Mickelson, Y. N. Martinez de Escobar, M. Yan, B. J. DeSalvo, and T. C. Killian, Phys. Rev. A 81, 051601 (2010).
[19] D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, Phys. Rev. Lett. 81, 3811 (1998).
[20] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Phys. Rev. Lett. 94, 160401 (2005).
[21] J. E. Simsarian, A. Ghosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, and P. A. Voytas, Phys. Rev. Lett. 76, 3522 (1996).
[22] Z.-T. Lu, K. L. Corwin, K. R. Vogel, C. E. Wieman, T. P. Dinneen, J. Maddi, and H. Gould, Phys. Rev. Lett. 79, 994 (1997).
[23] J. R. Guest, N. D. Schild, I. Ahmad, K. Bailey, J. P. Greene, R. J. Holt, Z.-T. Lu, T. P. O'Connor, and D. H. Potterveld, Phys. Rev. Lett. 98, 093001 (2007).
[24] B. DeMarco, H. Rolman, and D. Jin, Rev. Sci. Instrum. 70, 1967 (1999). Low abundance can be overcome, for example, if one can prepare an enriched sample. In fact, a Fermi-degenerate gas of ^{40}K which has a very low natural abundance of 0.012% is successfully produced with this method.
[25] S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, Rev. Sci. Instrum. 74, 4342 (2003).
[26] S. G. Crane, X. Zhao, W. Taylor, and D. J. Vieira, Phys. Rev. A 62, 011402 (2000).
[27] G. D. Sprouse, J. Das, T. Lauritsen, J. Scheck, A. Berger, J. Billowes, C. H. Holbow, H.-E. Malmke, and S. L. Rolston, Phys. Rev. Lett. 63, 1463 (1989).
[28] S. B. Papp, J. M. Pino, and C. E. Wieman, Phys. Rev. Lett. 101, 040402 (2008).
[29] G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002).
[30] Lercher, A. D., Takekoshi, T., Debatin, M., Schuster, B., Rameshan, R., Ferlaino, F., Grimm, R., and Nierle, H.-C., Eur. Phys. J. D. (2011).
[31] H. Takeuchi, S. Ishino, and M. Tsubota, Phys. Rev. Lett. 105, 205301 (2010).
[32] M. Eto, K. Kasamatsu, M. Nitta, H. Takeuchi, and M. Tsubota, arXiv:1103.6144 (2011).
[33] T. Fukuhara, Y. Takasu, M. Kumakura, and Y. Takahashi, Phys. Rev. Lett. 98, 030401 (2007).
[34] S. Taie, Y. Takasu, S. Sugawa, R. Yamazaki, T. Tsujimoto, R. Murakami, and Y. Takahashi, Phys. Rev. Lett. 105, 190401 (2010).
[35] J. Migdalek and W. E. Baylis, J. Phys. B 24, L9 (1991).
[36] M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi, R. Ciurylo, P. Naidon, and P. S. Julienne, Phys. Rev. A 77, 012719 (2008).
[37] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 54, R4633 (1996).
[38] P. F. Bedaque, E. Braaten, and H.-W. Hammer, Phys. Rev. Lett. 85, 908 (2000).
[39] P. O. Fedichev, M. W. Reynolds, and G. V. Shlyapnikov,
Phys. Rev. Lett. 77, 2921 (1996).
[40] R. Yamazaki, S. Taie, S. Sugawa, and Y. Takahashi, Phys. Rev. Lett. 105, 050405 (2010).
[41] K. Enomoto, K. Kasa, M. Kitagawa, and Y. Takahashi, Phys. Rev. Lett. 101, 203201 (2008).
[42] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, arXiv:1007.5331 (2011).