ON PARATOPOLOGICAL GROUPS

FUCAI LIN AND CHUAN LIU*

Abstract. In this paper, we firstly construct a Hausdorff non-submetrizable paratopological group \(G \) in which every point is a \(G_\delta \)-set, which gives a negative answer to Arhangel’ski”ı and Tkachenko’s question [Topological Groups and Related Structures, Atlantis Press and World Sci., 2008]. We prove that each first-countable Abelian paratopological group is submetrizable. Moreover, we discuss developable paratopological groups and construct a non-metrizable, Moore paratopological group. Further, we prove that a regular, countable, locally \(k_\omega \)-paratopological group is a discrete topological group or contains a closed copy of \(S_\omega \). Finally, we discuss some properties on non-H-closed paratopological groups, and show that Sorgenfrey line is not H-closed, which gives a negative answer to Arhangel’ski”ı and Tkachenko’s question [Topological Groups and Related Structures, Atlantis Press and World Sci., 2008]. Some questions are posed.

1. Introduction

A semitopological group \(G \) is a group \(G \) with a topology such that the product map of \(G \times G \) into \(G \) is separately continuous. A paratopological group \(G \) is a group \(G \) with a topology such that the product map of \(G \times G \) into \(G \) is jointly continuous. If \(G \) is a paratopological group and the inverse operation of \(G \) is continuous, then \(G \) is called a topological group. However, there exists a paratopological group which is not a topological group; Sorgenfrey line (16, Example 1.2.2) is such an example. Paratopological groups were discussed and many results have been obtained [7, 8, 6, 14, 22, 23, 24, 19].

Proposition 1.1. [29] For a group with topology \((G, \tau) \) the following conditions are equivalent:

(1) \(G \) is a paratopological group;
(2) The following Pontrjagin conditions for basis \(B = \mathcal{B}_\tau \) of the neutral element \(e \) of \(G \) are satisfied.

(a) \((\forall U, V \in B)(\exists W \in B): W \subset U \cap V; \)
(b) \((\forall U \in B)(\exists V \in B): V^2 \subset U; \)
(c) \((\forall U \in B)(\forall x \in U)(\exists V \in B): Vx \subset U; \)
(d) \((\forall U \in B)(\forall x \in G)(\exists V \in B): xVx^{-1} \subset U; \)

2000 Mathematics Subject Classification. 54E20; 54E35; 54H11; 22A05.

Key words and phrases. Paratopological groups; submetrizable; \(\omega \)-narrow; Abelian groups; developable; quasi-developable; \(k_\omega \)-paratopological groups; H-closed paratopological groups; pseudocompact.

The first author is supported by the NSFC (No. 10971185, 10971186) and the Natural Science Foundation of Fujian Province (No. 2011J05013) of China.

*corresponding author.
The paratopological group G is Hausdorff if and only if
\[(e) \cap \{UU^{-1} : U \in \mathcal{B}\} = \{e\};\]
The paratopological group G is a topological group if and only if
\[(f) \left(\forall U \in \mathcal{B} \right) \left(\exists V \in \mathcal{B} \right): V^{-1} \subset U.\]

In this paper, we mainly discuss the following questions.

Question 1.2. Open problem 3.3.1] Suppose that G is a Hausdorff (regular) paratopological group in which every point is a G_δ-set. Is G submetrizable?

Question 1.3. Open problem 5.7.2] Let G be a regular first-countable ω-narrow paratopological group. Is G submetrizable?

Question 1.4. Problem 20] Is every regular first countable (Abelian) paratopological group submetrizable?

Question 1.5. Problem 22] Is it true that every regular first countable (Abelian) paratopological group G has a zero-set diagonal?\footnote{We say that a space X has a zero-set diagonal if the diagonal in $X \times X$ is a zero-set of some continuous real-valued function on $X \times X$.}

Question 1.6. Problem 21] Is every regular first countable (Abelian) paratopological group Dieudonné complete?

Question 1.7. Open problem 3.4.3] Let G be a regular ω-narrow first-countable paratopological group. Does there exist a continuous isomorphism of G onto a regular (Hausdorff) second-countable paratopological group?

Question 1.8. Is a regular symmetrizable paratopological group metrizable?

Question 1.9. Open problem 5.7.5] Is every paratopological group, which is Moore space, metrizable?

Question 1.10. Open problem 3.6.5] Must the Sorgenfrey line S be closed in every Hausdorff paratopological group containing it as a paratopological subgroup?

We shall give negative answers to Questions 1.2, 1.8, 1.10, and 4.2, and give a partial answer to Question 1.3. Moreover, we shall also give affirmative answers to Questions 1.4, 1.5, 1.7 and 1.6 when the group G is Abelian.

2. Preliminaries

Definition 2.1. Let $\mathcal{P} = \bigcup_{x \in X} \mathcal{P}_x$ be a cover of a space X such that for each $x \in X$, (a) if $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$; (b) the family \mathcal{P}_x is a network of x in X, i.e., $x \in \bigcap \mathcal{P}_x$, and if $x \in U$ with U open in X, then $P \subset U$ for some $P \in \mathcal{P}_x$.

The family \mathcal{P} is called a weak base for X \footnote{We say that a space X has a zero-set diagonal if the diagonal in $X \times X$ is a zero-set of some continuous real-valued function on $X \times X$.} if, for every $A \subset X$, the set A is open in X whenever for each $x \in A$ there exists $P \in \mathcal{P}_x$ such that $P \subset A$. The space X is weakly first-countable if \mathcal{P}_x is countable for each $x \in X$.

Definition 2.2. (1) A space X is called an S_ω-space if X is obtained by identifying all the limit points from a topological sum of countably many convergent sequences.

We say that a space X has a zero-set diagonal if the diagonal in $X \times X$ is a zero-set of some continuous real-valued function on $X \times X$.\footnote{We say that a space X has a zero-set diagonal if the diagonal in $X \times X$ is a zero-set of some continuous real-valued function on $X \times X$.}
A space X is called an S_2-space (Arens’ space) if $X = \{ \infty \} \cup \{ x_n : n \in \mathbb{N} \} \cup \{ x_n(m) : m, n \in \mathbb{N} \}$ and the topology is defined as follows: Each $x_n(m)$ is isolated; a basic neighborhood of x_n is $\{ x_n \} \cup \{ x_n(m) : m > k, \text{for some } k \in \mathbb{N} \}$; a basic neighborhood of ∞ is $\{ \infty \} \cup \bigcup \{ V_n : n > k \text{ for some } k \in \mathbb{N} \}$, where V_n is a neighborhood of x_n.

Definition 2.3. Let X be a space and $\{ P_n \}$ a sequence of collections of open subsets of X.

1. $\{ P_n \}$ is called a quasi-development [10] for X if for every $x \in U$ with U open in X, there exists an $n \in \mathbb{N}$ such that $x \in \text{st}(x, P_n) \subset U$.
2. $\{ P_n \}$ is called a development [30] for X if $\{ \text{st}(x, P_n) \}$ is a neighborhood base at x in X for each point $x \in X$.
3. X is called quasi-developable (resp. developable), if X has a quasi-development (resp. development).
4. X is called Moore, if X is regular and developable.

A subset B of a paratopological group G is called ω-narrow in G if, for each neighborhood U of the neutral element of G, there is a countable subset F of G such that $B \subset F \cup UF$.

A space X is called a submetrizable space if it can be mapped onto a metric space by a continuous one-to-one map. A space X is called a subquasimetrizable space if it can be mapped onto a quasimetric space by a one-to-one map.

All spaces are T_0 unless stated otherwise. The notations $\mathbb{R}, \mathbb{Q}, \mathbb{P}, \mathbb{N}, \mathbb{Z}$ are real numbers, rational numbers, irrational numbers, natural numbers and integers respectively. The letter e denotes the neutral element of a group. Readers may refer to [8, 16, 17] for notations and terminology not explicitly given here.

3. **Submetrizability of first-countable paratopological groups**

In this section, we firstly give a negative answer to Question 1.2, then an answer to Question 1.3. We also give affirmative answers to Questions 1.4, 1.5, 1.7 and 1.6 when G is Abelian.

Proposition 3.1. [27] The following conditions are equivalent for an arbitrary space X.

1. The space X is submetrizable.
2. The free paratopological group $F_p(X)$ is submetrizable.
3. The free Abelian paratopological group $A_p(X)$ is submetrizable.

Proposition 3.2. [27] The following conditions are equivalent for an arbitrary space X.

1. The space X is subquasimetrizable.
2. The free paratopological group $F_p(X)$ is subquasimetrizable.
3. The free Abelian paratopological group $A_p(X)$ is subquasimetrizable.

Example 3.3. There exist a Hausdorff paratopological group G in which every point is a G_δ-set, and G is not submetrizable.

Proof. Let X be the lexicographically ordered set $X = (\mathbb{R} \times \{0\}) \cup (\mathbb{P} \times \mathbb{Z})$. Then X is a non-metrizable linearly ordered topological space without G_δ-diagonal ([11 Example 2.4]), hence X is not submetrizable. However, X is quasi-developable [25]. It is well known that quasi-developability in a generalized ordered space is
equivalent to the existence of a \(\sigma \)-disjoint base, or of a \(\sigma \)-point-finite base [12, Theorem 4.2]. Hence \(X \) has \(\sigma \)-point finite base. Therefore, \(X \) is quasi-metrizable since a space with a \(\sigma \)-point finite base is quasi-metrizable [17, Page 489]. Let \(G \) be the free Abelian paratopological group \(A_p(X) \) over \(X \). Since a totally order space endowed the order topology is Tychonoff, then \(X \) is Tychonoff. It follows from [27, Proposition 3.8] that \(G \) is Hausdorff. By Propositions 3.1 and 3.2, \(G \) is subquasimetrizable and non-submetrizable. Since \(G \) is subquasimetrizable, every singleton of \(G \) is a \(G_\delta \)-set. \(\square \)

Next we partially answer Question 1.3.

The \textit{weak extent} [9] of a space \(X \), denoted by \(\omega e(X) \), is the least cardinal number \(\kappa \) such that for every open cover \(\mathcal{U} \) of \(X \) there is a subset \(A \) of \(X \) of cardinality no greater than \(\kappa \) such that \(\text{st}(A; \mathcal{U}) = X \), where \(\text{st}(A; \mathcal{U}) = \bigcup \{ U : U \in \mathcal{U}, U \cap A \neq \emptyset \} \). If \(X \) is separable, then \(\omega e(X) = \omega \).

Theorem 3.4. [9] If \(X^2 \) has countable weak extent and a regular \(G_\delta \)-diagonal, then \(X \) condenses onto a second countable Hausdorff space.

Theorem 3.5. [19] Each \(\omega \)-narrow first-countable paratopological group is separable.

Theorem 3.6. If \(G \) is a regular \(\omega \)-narrow first-countable paratopological group, then \(G \) condenses onto a second countable Hausdorff space.

Proof. It is straightforward to prove that the product of two \(\omega \)-narrow paratopological groups is an \(\omega \)-narrow paratopological group. Then \(G^2 \) is an \(\omega \)-narrow first-countable paratopological group, and hence \(G^2 \) is separable by Theorem 3.5. Then \(G^2 \) has countable weak extent. Moreover, it follows from [22] that \(G \) has a regular \(G_\delta \)-diagonal. Therefore, \(G \) condenses onto a second countable Hausdorff space by Theorem 3.4. \(\square \)

Corollary 3.7. Let \((G, \tau) \) be a regular \(\omega \)-narrow first-countable paratopological group. There exists a continuous isomorphism of \(G \) onto a Hausdorff second-countable space.

A paratopological group \(G \) with a base at the neutral element \(\mathcal{B} \) is a **SIN-group** (Small Invariant Neighborhoods), if for each \(U \in \mathcal{B} \) there exists a \(V \in \mathcal{B} \) such that \(xVx^{-1} \subset U \) for each \(x \in G \).

Theorem 3.8. If \((G, \tau) \) is a Hausdorff SIN first-countable paratopological group, then \(G \) is submetrizable.

Proof. Let \(\{ U_n : n \in \mathbb{N} \} \) be a countable local base of \((G, \tau) \) at the neutral element \(e \), where \(U_{n+1} \subset U_n \) for each \(n \in \mathbb{N} \).

For \(x \in G \), let \(\mathcal{B}_x = \{ xu_nu_n^{-1} : n \in \mathbb{N} \} \). Then \(\{ \mathcal{B}_x \}_{x \in G} \) has the following properties.

(BP1) For every \(x \in G \), \(\mathcal{B}_x \neq \emptyset \) and for every \(U \in \mathcal{B}_x \), \(x \in U \).

(BP2) If \(x \in U \in \mathcal{B}_y \), then there exists a \(V \in \mathcal{B}_x \) such that \(V \subset U \).

In fact, if \(x \in U = yu_1u_1^{-1} \in \mathcal{B}_y \), then \(x = yu_1u_1^{-1} \) for some \(u_1, u_2 \in U \). Pick \(U_j, U_k \in \{ U_n : n \in \mathbb{N} \} \) such that \(U_k \subset U_j, u_1U_k \subset U_j, u_2U_k \subset U_j, u_2^{-1}U_j, u_2 \subset U_k \).

\(^2\)A space \(X \) is said to have a **regular \(G_\delta \)-diagonal** if the diagonal \(\Delta = \{(x, x) : x \in X \} \) can be represented as the intersection of the closures of a countable family of open neighborhoods of \(\Delta \) in \(X \times X \).
Then \(xU_jU_j^{-1} = yu_1u_2^{-1}U_jU_j^{-1} \subseteq yu_1U_ku_2^{-1}U_j^{-1} \subseteq yU_i(U_ju_2)^{-1} \subseteq yU_iU_i^{-1} \subseteq yU_iU_i^{-1} = U. \)

(BP3) For any \(V_1, V_2 \in \mathcal{B}_x \), there exists a \(V \in \mathcal{B}_x \) such that \(V \subseteq V_1 \cap V_2. \)

Let \(\tau^* \) be the topology generated by the neighborhood system \(\{ \mathcal{B}_x \}_{x \in G} \). Obviously, the topology of \((G, \tau^*) \) is coarser than \((G, \tau) \) and it is first-countable. We prove that \((G, \tau^*) \) is a Hausdorff topological group.

It is easy to see that (a), (d) and (f) in Proposition 3.11 are satisfied. (BP2) implies (c). We check conditions (b) and (d).

Fix \(n \in \mathbb{N} \). Then there is \(k > n \) such that \(U_k^2 \subseteq U_n \) since \((G, \tau) \) is a paratopological group. \(G \) is a SIN-group, there exists a continuous isomorphism of \(G \) onto a Tychonoff second-countable topological group. Hence there exists a continuous isomorphism of \(G \) onto a Tychonoff second-countable topological group. \(\square \)

It is well known that all submetrizable spaces have a zero-set diagonal. Therefore, Theorem 3.11 gives a partial answer to Question 1.15

Corollary 3.9. If \((G, \tau) \) is a Hausdorff Abelian first-countable paratopological group, then \(G \) is submetrizable.

Indeed, we have the following more stronger result.

Theorem 3.10. If \((G, \tau) \) is a Hausdorff Abelian paratopological group with a countable \(\pi \)-character, then \(G \) is submetrizable.

Proof. Let \(\mathcal{B} = \{ U_\alpha : \alpha < \kappa \} \) be a local base at the neutral element \(e \). It follows from the proof of Theorem 3.11 that the family \(\{ U_\alpha U_\alpha^{-1} : \alpha < \kappa \} \) is a local base at \(e \) in the Tychonoff topological group \((G, \tau^*) \).

Let \(\mathcal{C} = \{ V_n : n \in \mathbb{N} \} \) be a local \(\pi \)-base at \(e \). Put \(\mathcal{F} = \{ V_nV_n^{-1} : n \in \mathbb{N} \} \). Then \(\mathcal{F}' = \{ \text{int}(V_nV_n^{-1}) : n \in \mathbb{N} \} \) is a local base at \(e \) in \(\tau^* \).

Indeed, for each \(n \in \mathbb{N} \) and fix a point \(x \in V_n \), then \(x^{-1}V_n \) is an open neighborhood at \(e \) in \(\tau \), and hence there exists an \(U_\alpha \in \mathcal{B} \) such that \(U_\alpha \subseteq x^{-1}V_n \). Thus \(U_\alpha U_\alpha^{-1} \subseteq x^{-1}V_nV_n^{-1} \). On the other hand, fix \(\alpha < \kappa \), there is \(n \in \mathbb{N} \) such that \(V_n \subseteq U_\alpha \). Therefore, \(\mathcal{F}' = \{ \text{int}(V_nV_n^{-1}) : n \in \mathbb{N} \} \) is a local base at \(e \) in \(\tau^* \).

Since first-countable topological group metrizable, we have \((G, \tau^*) \) is metrizable. Therefore, \(G \) is submetrizable. \(\square \)

Since every submetrizable space is (hereditarily) Dieudonné complete, Corollary 3.9 give a partial answer to Question 1.16

Theorem 3.11. Let \((G, \tau) \) be a Hausdorff separable SIN first-countable paratopological group. There exists a continuous isomorphism of \(G \) onto a Tychonoff second-countable topological group.

Proof. By the proof of Theorem 3.11 we know that \((G, \tau^*) \) is metrizable. Since \(G \) is separable and \(\tau^* \subseteq \tau \), \((G, \tau^*) \) is separable, and hence \((G, \tau^*) \) is a second-countable topological group. Hence there exists a continuous isomorphism of \(G \) onto a Tychonoff second-countable topological group. \(\square \)
By Theorem 3.5, we have the following corollary, which gives a partial answer to Question 1.7.

Corollary 3.12. Let \((G, \tau)\) be a Hausdorff \(\omega\)-narrow first-countable SIN paratopological group. There exists a continuous isomorphism of \(G\) onto a Tychonoff second-countable topological group.

The following two theorems give another answers to Questions 1.4 and 1.6.

Theorem 3.13. If \((G, \tau)\) is a Hausdorff saturated\(^3\) first-countable paratopological group, then \(G\) is submetrizable.

Proof. Suppose that \(\{U_n : n \in \mathbb{N}\}\) is a countable local base at \(e\). Let

\[\sigma = \{U \subset G : \text{There exists an } n \in \mathbb{N} \text{ such that } xU_n U_n^{-1} \subset U \text{ for each } x \in U\}.\]

Since \(G\) is saturated, it follows from \([13, \text{Theorem 3.2}]\) that \((G, \sigma)\) is a topological group. Obvious, \((G, \sigma)\) is \(T_1\) since \((G, \tau)\) is a Hausdorff, and hence \((G, \sigma)\) is regular. Then \((G, \sigma)\) is first-countable, and thus it is metrizable. Therefore, \((G, \tau)\) is submetrizable.

Theorem 3.14. If \((G, \tau)\) is a Hausdorff feebly compact\(^4\) first-countable paratopological group, then \(G\) is submetrizable.

Proof. Suppose that \(\{U_n : n \in \mathbb{N}\}\) is a local base at \(e\). Then the family \(\{\text{int}U_n : n \in \mathbb{N}\}\) is a local base at \(e\) for a regular paratopological group topology \(\sigma\) on \(G\). Obviously, \((G, \sigma)\) is feebly compact. Since \((G, \sigma)\) is first-countable, \((G, \sigma)\) has a regular \(G_\delta\)-diagonal \([22]\). Then \((G, \sigma)\) is metrizable since a regular feebly compact space with a regular \(G_\delta\)-diagonal is metrizable. Therefore, \((G, \tau)\) is submetrizable.

Next, we gives an another answer to Question 1.2.

Theorem 3.15. Let \((G, \tau)\) be a Hausdorff SIN paratopological group. If \(G\) is locally countable, then \(G\) is submetrizable.

Proof. Since \(G\) is locally countable, there exists an open neighborhood \(U\) of \(e\) such that \(U\) is a countable set. Then \(UU^{-1}\) is also a countable set. Let \(UU^{-1} \setminus \{e\} = \{x_n : n \in \mathbb{N}\}\). Since \(G\) is a paratopological group, we can find a family of countably many neighborhoods \(\{V_n : n \in \omega\}\) of \(e\) satisfying the following conditions:

(i) \(V_0 = U\);
(ii) For each \(n \in \omega\), then \(V_{n+1} \subset V_n\);
(iii) For each \(n \in \mathbb{N}\), then \(x_n \notin V_n V_n^{-1}\) (This is possible since \(G\) is Hausdorff.)
(iv) For each \(n \in \omega\), then \(xV_{n+1} x^{-1} \subset V_n\) for each \(x \in G\).

Since \(G\) is a SIN group, the topology \(\sigma\) generated by the neighborhood basis \(\{V_n : n \in \mathbb{N}\}\) is a paratopological group. Clearly, \((G, \sigma)\) is coarser than \(\tau\). Since \(\bigcap_{n \in \mathbb{N}} V_n V_n^{-1} = \{e\}\) by (iii), \(\sigma\) is Hausdorff. Therefore, \((G, \sigma)\) is a Hausdorff SIN first-countable paratopological group, and it follows from Theorem 3.8 that \(G\) is submetrizable.

Corollary 3.16. Let \((G, \tau)\) be a Hausdorff Abelian paratopological group. If \(G\) is locally countable, then \(G\) is submetrizable.

\(^3\)A paratopological group \(G\) is saturated if for any neighborhood \(U\) of \(e\) the set \(U^{-1}\) has nonempty interior in \(G\).

\(^4\)A space \(X\) is called feebly compact if each locally finite family of open subsets in \(X\) is finite.
4. Developable paratopological groups

Recall that a topological space is *symmetrizable* if its topology is generated by a symmetric, that is, by a distance function satisfying all the usual restrictions on a metric, except for the triangle inequality \([1]\).

Now, we give a negative answer\(^5\) to Question 1.8 by modifying \([23]\, Example 2.1\).

Example 4.1. There exists a separable, Moore paratopological group \(G\) such that \(G\) is not metrizable.

Proof. Let \(G = \mathbb{R} \times \mathbb{Q}\) be the group with the usual addition. Then we define a topology on \(G\) by giving a local base at the neutral element \((0,0)\) in \(G\). For each \(n \in \mathbb{N}\), let

\[
U_n(0,0) = \{(0,0)\} \cup \{(x, y) : y \geq nx, y < \frac{1}{n}, y \in \mathbb{Q}, x \geq 0\}.
\]

Let \(\sigma\) be the topology generated by the local base \(\{U_n : n \in \mathbb{N}\}\) at the neutral element \((0,0)\). It is easy to see that \((G, \sigma)\) is a semitopological group. Now, we prove that is a paratopological group. Since \(G\) is Abelian, it only need to prove that for each \(n \in \mathbb{N}\) there exists an \(m \in \mathbb{N}\) such that \(U_n^2 \subseteq U_m\). Indeed, fix an \(n \in \mathbb{N}\), Then we have \(U_n^2 \subseteq U_n\). For two points \((x_i, y_i) \in U_{4n}(i = 1, 2)\), where \(x_i \geq 0, y_i < \frac{1}{4n}, y_i \geq 4nx_i, y_i \in \mathbb{Q}(i = 1, 2)\). Let

\[
(x, y) = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2).
\]

Obviously, we have

\[
x = x_1 + x_2 \geq 0, y = y_1 + y_2 < \frac{1}{4n} + \frac{1}{4n} = \frac{1}{2n} < \frac{1}{n},
\]

and

\[
y = y_1 + y_2 \geq 4nx_1 + 4nx_2 = 4nx \geq nx.
\]

Then \((x, y) \in U_n\), and hence \(U_n^2 \subseteq U_n\). Moreover, it is easy to see that \(G\) is regular, separable and first-countable space.

For each \(q \in \mathbb{Q}\), it is easy to see that the family \(\{(x, q) : x \in \mathbb{R}\}\) is uncountable discrete and closed, hence \(G\) is a \(\sigma\)-space, and thus it is a \(\beta\)-space\(^6\). \(G\) is a Moore space by \([23]\, Corollary 2.1\). Hence \(G\) is semi-metrizable \([17]\). Therefore \(G\) is symmetrizable since a space is semi-metrizable if only if it is first-countable and symmetrizable \([17]\). However, \(G\) is not metrizable since \(G\) is separable and contains an uncountable discrete closed subset. \(\square\)

Question 4.2. Is every quasi-developable paratopological (semitopological) group a \(\beta\)-space?

Next, we give a partial answer to Question 4.2.

Lemma 4.3. \([4]\, Lemma 1.2\) Suppose that \(G\) is a paratopological group and not a topological group. Then there exists an open neighborhood \(U\) of the neutral element \(e\) of \(G\) such that \(U \cap U^{-1}\) is nowhere dense in \(G\), that is, the interior of the closure of \(U \cap U^{-1}\) is empty.

\(^5\)Li, Mou and Wang \([19]\) also obtained a non-metrizable Moore paratopological group.

\(^6\)Let \((X, \tau)\) be a topological space. A function \(g : \omega \times X \rightarrow \tau\) satisfies that \(x \in g(n, x)\) for each \(x \in X, n \in \omega\). A space \(X\) is a \(\beta\)-space \([17]\) if there is a function \(g : \omega \times X \rightarrow \tau\) such that if \(x \in g(n, x_n)\) for each \(n \in \omega\), then the sequence \(\{x_n\}\) has a cluster point in \(X\).
Theorem 4.4. A regular Baire quasi-developable paratopological group G is a metrizable topological group.

Proof. Claim: Let U be an arbitrary open neighborhood of e. Then U^{-1} is also a neighborhood of e.

Suppose that $\{\mathcal{U}_n : n \in \mathbb{N}\}$ is a family of open subsets of G such that for each $x \in G$ and $x \in V$ with V open in G, there exists an $n \in \mathbb{N}$ such that $x \in \text{st}(x, \mathcal{U}_n) \subset V$. For each n, put $A_n = \{x \in G : \text{st}(x, \mathcal{U}_n) \subset x \cdot U\}$.

It is easy to see that $G = \bigcup_0 (A_n : n \in \mathbb{N})$. Since G is Baire, there exists $n_0 \in \mathbb{N}$ such that $\text{int} A_{n_0} \neq \emptyset$. Therefore, there exist a point $x_0 \in G$ and $n_1 \in \mathbb{N}$ such that $\text{st}(x_0, \mathcal{U}_{n_1}) \subset A_{n_0}$. Let $\mathcal{V} = \{U_1 \cap U_2 : U_1 \in \mathcal{U}_{n_0}, U_2 \in \mathcal{U}_{n_1}\}$. Put $W = \text{st}(x_0, \mathcal{V})$.

For each $W \cap A_{n_0}$, it is easy to see

$$x_0 \in \text{st}(y, \mathcal{V}) \subset \text{st}(y, \mathcal{U}_{n_0}) \subset y \cdot U,$$

hence $y^{-1}x_0 \in U$, so $x_0^{-1}y \in U^{-1}$, hence $x_0^{-1} \cdot (W \cap A_{n_0}) \subset U^{-1}$. Moreover, since $W \subset A_{n_0}$, then $W \subset W \cap A_{n_0}$. Therefore, we have

$$e \in x_0^{-1}W \subset x_0^{-1} \cdot W \cap A_{n_0} \subset x_0^{-1} \cdot (W \cap A_{n_0}) \subset U^{-1}.$$

Since $x_0^{-1}W$ is an open neighborhood of e, the set U^{-1} is also a neighborhood of e.

If G is developable, then the answer is affirmative. Indeed, it was proved that each Baire Moore semitopological group G is a metrizable topological group [14].

Finally, we pose some questions about developable paratopological groups.

Question 4.5. Is each regular Baire quasi-developable semitopological group G a paratopological group?

If G is developable, then the answer is affirmative. Indeed, it was proved that each Baire Moore semitopological group G is a metrizable topological group [14].

Question 4.6. Is every developable or Moore paratopological group submetrizable?

Question 4.7. Is every normal Moore paratopological group submetrizable?

Question 4.8. Is every paratopological group with a base of countable order\footnote{Recall that a space is Baire if the intersection of a sequence of open and dense subsets is dense.} developable?

Question 4.9. Is every paratopological group with a base of countable order\footnote{A space X is said to have a base of countable order (BCO) \cite{17} if there is a sequence $\{B_n\}$ of base for X such that whenever $x \in b_n \in B_n$ and (b_n) is decreasing (by set inclusion), then $\{b_n : n \in \mathbb{N}\}$ is a base at x.} developable?
5. Fréchet-Urysohn paratopological groups

First, we need the following Lemma.

Lemma 5.1. [8 Theorem 4.7.5] Every weakly first-countable Hausdorff paratopological group is first-countable.

Arhangel’skií proved that if a topological group G is an image of a separable metrizable space under a pseudo-open map, then G is metrizable [4]. We have the following.

Theorem 5.2. Let G be an uncountable paratopological group. Suppose that G is a pseudo-open image of a separable metric space, then G is a separable and metrizable.

Proof. We introduce a new product operation in the topological space G by the formula: $a \times b = ba$, for $a, b \in G$ and denote the space with this operation by H. Put $T = \{(g, g^{-1}) \in G \times H, g \in G\}$. $|T| > \omega$ since G is uncountable. By [7, Proposition 2.9], H is a paratopological group and T is closed in the space $G \times H$ and is a topological group.

Since G is a pseudo-open image of a separable metric space, then the space G is a Fréchet-Urysohn space with a countable k-network. $G \times H$ has a countable network. Hence T has a countable network. By the proof of [17, Theorem 4.9], T is a one-to-one continuous image of a separable metric space M. Let D be a countable dense subset of M, there is a sequence $L \subset D$ converging to some point in $M \setminus D$ since M is uncountable. Therefore, there is a non-trivial sequence $\{(g_n, g_n^{-1}) : n \in \mathbb{N}\}$ converging to (e, e) (note that T is homogeneous), and hence there exists a sequence $C_0 = \{g_n : n \in \mathbb{N}\} \subset G$ converging to e and its inverse $C_1 = \{g_n^{-1} : n \in \mathbb{N}\}$ also converges to e. G contains no closed copy of S_2 since G is Fréchet-Urysohn. By [22, Theorem 2.4], G contains no closed copy of S_ω. Since G is a sequential space with a point-countable k-network and contains no closed copy of S_ω, then G is weakly first-countable [20], and hence G is first-countable by Lemma 5.1. Therefore G is separable and metrizable [17, Theorem 11.4(ii)]. □

A quotient image of a topological sum of countably many compact spaces is called a k_ω-space. Every countable k_ω-space is a sequential \aleph_0-space, and a product of two k_ω-spaces is itself a k_ω-space, see [26].

Theorem 5.3. Let G be a regular countable, locally k_ω, paratopological group. Then G is a discrete topological group or contains a closed copy of S_ω.

Proof. Suppose that G is an α_4-space. Then since G is locally k_ω, G is sequential and \aleph_0, and thus G is weakly first-countable [21]. Then G is first-countable by Lemma 5.1 and hence G is a separable metrizable space since G is countable. If G is not discrete, G has no isolated points. Then G is homeomorphic to the rational number set \mathbb{Q} since a separable metrizable space is homeomorphic to the rational number set \mathbb{Q} provided that it is infinite, countable and without any isolated points [18]. However, \mathbb{Q} is not a locally k_ω-space, which is a contradiction. Then G is discrete, and G is a topological group.

If G is not an α_4-space, and thus G contains a copy of S_ω. Since every point of G is a G_δ-set, it follows from [20, Corollary 3.4] that G contains a closed copy of S_ω. □

9A map $f : X \to Y$ is pseudo-open if for each $y \in Y$ and every open set U containing $f^{-1}(y) \subset U$ one has $y \in \text{int}(f(U))$.

By Theorem 5.3, it is easy to obtain the following corollary.

Corollary 5.4. Let \(G \) be a regular, countable, non-discrete, Fréchet-Urysohn\(^{10}\) paratopological group. If \(G \) is \(k_{\omega} \), then \(G \) contains a closed copy of \(S_{\omega} \) and no closed copy of \(S_{2} \).

Since the closed image of a locally compact, separable metric space is a Fréchet-Urysohn and \(k_{\omega} \)-space, we have the following corollary.

Corollary 5.5. Let \(G \) be a countable non-discrete paratopological group. If \(G \) is a closed image of a locally compact, separable metric space, then \(G \) contains a closed copy of \(S_{\omega} \), and hence \(G \) is not metrizable.

The condition “locally \(k_{\omega} \)-space” is essential in Theorem 5.3, and we can not omit it.

Example 5.6. There exists a regular non-discrete countable second-countable paratopological group \(G \) such that \(G \) contains no closed copy of \(S_{\omega} \) and \(G \) is not a topological group.

Proof. Let \(G = \mathbb{Q} \) be the rational number and endow with the subspace topology of the Sorgenfrey line. Then \(\mathbb{Q} \) is a second-countable paratopological group and non-discrete. Obviously, \(G \) contains no closed copy of \(S_{\omega} \) and \(G \) is not a topological group. \qed

6. Non-H-closed Paratopological Groups

A paratopological group is H-closed if it is closed in every Hausdorff paratopological group containing it as a subgroup.

Let \(U \) be a neighborhood of \(e \) in a paratopological group \(G \). We say that a subset \(A \subset G \) is \(U \)-unbounded if \(A \nsubseteq KU \) for every finite subset \(K \subset G \).

Now, we give a negative answer to Question 1.10.

Lemma 6.1. Let \(G \) be an abelian paratopological group of the infinite exponent. If there exists a neighborhood \(U \) of the neutral element such that a group \(nG \) is \(U U^{-1} \)-unbounded for every \(n \in \mathbb{N} \), then the paratopological group \(G \) is not H-closed.

Theorem 6.2. The Sorgenfrey line \((\mathbb{R}, \tau)\) is not H-closed.

Proof. Obvious, \(\mathbb{R} \) is an abelian paratopological group of the infinite exponent. Let \(U = [0, 1) \). Then \(U U^{-1} = (-1, 1) \) For each \(n \in \mathbb{N} \), it is easy to see that \(n\mathbb{R} \nsubseteq K(-1, 1) \) for every finite subset \(K \subset \mathbb{R} \). Indeed, for each finite subset \(K \) of \(\mathbb{R} \), since \(K \) is finite set, there exists an \(n \in \mathbb{N} \) such that \(|x| \leq n \) for each \(x \in K \), and then \(K \subset (-1, 1) \subset (-n, n) \). Therefore, we have \(n\mathbb{R} \nsubseteq K(-1, 1) \). By Lemma 6.1, \(\mathbb{R} \) is not H-closed. \qed

However, we have the following theorem.

Theorem 6.3. Let \((\mathbb{R}, \tau)\) be the Sorgenfrey line. Then the quotient group \((\mathbb{R}/\mathbb{Z}, \xi)\) is H-closed, where \(\xi \) is the quotient topology.

\(^{10}\)A space \(X \) is said to be Fréchet-Urysohn if, for each \(x \in \overline{A} \subset X \), there exists a sequence \(\{x_n\} \) such that \(\{x_n\} \) converges to \(x \) and \(\{x_n : n \in \mathbb{N}\} \subset A \).
Proof. Let \((\mathbb{R}/\mathbb{Z}, \sigma)\) be the finest group topology such that \(\sigma \subset \xi\). Then \((\mathbb{R}/\mathbb{Z}, \sigma)\) is compact. Therefore, \((\mathbb{R}/\mathbb{Z}, \sigma)\) is H-closed. Hence \((\mathbb{R}/\mathbb{Z}, \xi)\) is H-closed by [28, Proposition 10].

Let \(G\) be an abelian non-periodic paratopological group. We say that \(G\) is strongly unbounded if there exists non-periodic element \(x_0\) and open neighborhood \(U\) of \(e\) such that \(\langle x_0 \rangle \cap U U^{-1} = \{e\}\) and \(\langle x_0 \rangle\) is closed in \(G\), where \(\langle x_0 \rangle\) is a subgroup generated by \(x_0\). Obviously, every strongly unbounded paratopological group is not H-closed.

Next, we discuss some non-H-closed paratopological groups.

Given any elements \(a_0, a_1, \cdots, a_n\) of an abelian group \(G\) put

\[
X(a_0, a_1, \cdots, a_n) = \{a_0^{x_0} a_1^{x_1} \cdots a_n^{x_n} : 0 \leq x_i \leq n, 0 \leq i \leq n\}.
\]

Theorem 6.4. Let \((G, \tau)\) be a Hausdorff strongly unbounded paratopological group. Then there exists a Tychonoff paratopological group topology \(\tau\) on \(G \times \mathbb{Z}\) satisfies the following conditions:

1. There exists a Hausdorff paratopological group topology \(\sigma \subset \tau\) on \(G \times \mathbb{Z}\) such that \(\sigma_{|G \times \{0\}} = \tau\) and \((G \times \mathbb{Z}, \sigma)\) contains closed copies of \(S_2\) and \(S_\omega\);
2. \((G \times \mathbb{Z}, \gamma)\) is a strongly zero-dimensional, paracompact \(\sigma\)-space;
3. The remainder \(b(G \times \mathbb{Z}, \gamma) \setminus (G \times \mathbb{Z}, \gamma)\) of every Hausdorff compactification \(b(G \times \mathbb{Z}, \gamma)\) is pseudocompact.

Proof. Since \(G\) is strongly unbounded paratopological group, there exist a non-periodic element \(x_0\) of \(G\) and open neighborhood \(U\) of \(e\) such that \(\langle x_0 \rangle \cap U U^{-1} = \{e\}\) and \(\langle x_0 \rangle\) is closed in \(G\). Obvious, \(\langle x_0 \rangle\) is an abelian group. Then the mapping \(f : (nx_0, m) \mapsto (n, m)\) is naturally isomorphic from \(\langle x_0 \rangle \times \mathbb{Z}\) onto a group \(\mathbb{Z} \times \mathbb{Z}\). We may assume that \(\mathbb{Z} \times \mathbb{Z} \subset G \times \mathbb{Z}\). Now we define a zero dimensional paratopological group topology on \(G \times \mathbb{Z}\). Obvious, we can define a positively natural number sequence \(\{a_n\}\) satisfies the following conditions:

1. \(a_n > n\);
2. \(a_n > 2a\) for each \(a \in X(a_1, \cdots, a_{n-1})\).

Define a base \(\mathcal{B}\) at the neutral element of paratopological group topology \(\sigma\) on the group \(G \times \mathbb{Z}\) as follows. Put \(A_n^+ = \{(e, 0)\} \cup \{a_k : k > n\}\). For every strictly increasing sequence \(\{n_k\}\) put \(A[n_k] = \bigcup_{i \in \mathbb{N}} A_{n_i}^+\cdots A_{n_k}^+\). Put \(\mathcal{B}_n = \{A[n_k]\}\). Then \(\gamma\) is a zero dimensional paratopological group topology on \(G \times \mathbb{Z}\).

By the proof of [28, Lemma 3], we can define a topology \(\sigma\) on \(G \times \mathbb{Z}\) such that \(\sigma_{|G \times \{0\}} = \tau\) and \(\sigma_{|\mathbb{Z} \times \mathbb{Z}} = \gamma_{|\mathbb{Z} \times \mathbb{Z}}\). Let \(\gamma_{|\mathbb{Z} \times \mathbb{Z}} = \xi\). Since \((\mathbb{Z} \times \mathbb{Z}, \xi)\) is zero dimensional and countable, the space \((\mathbb{Z} \times \mathbb{Z}, \xi)\) is Tychonoff.

Claim 1: \((\mathbb{Z} \times \mathbb{Z}, \xi)\) is a closed in \((G \times \mathbb{Z}, \sigma)\).

Since \(\langle 1 \rangle \cap U U^{-1} = \{e\}\) and \(\langle 1 \rangle\) is closed in \(G\), it is easy to see that \((\mathbb{Z} \times \mathbb{Z}, \xi)\) is closed in \((G \times \mathbb{Z}, \sigma)\).

Claim 2: \((\mathbb{Z} \times \mathbb{Z}, \xi)\) contains a closed copy of \(S_\omega\).

For each \(n \in \mathbb{N}\), let \(\beta_n = \{(na_{n+k}, n)\}_{k \in \mathbb{N}}\). Obvious, each \(\beta_n\) converges to \((0,0)\) as \(k \to \infty\).

Let \(X = \{(na_{n+k}, n) : k, n \in \mathbb{N}\} \cup \{(0,0)\}\). It is easy to see that \(X\) is a closed copy of \(S_\omega\).

Claim 3: \((\mathbb{Z} \times \mathbb{Z}, \xi)\) contains a closed copy of \(S_2\).
Let $\alpha_0 = \{(a_k, 1)\}_{k \in \mathbb{N}}$. For each $n \in \mathbb{N}$, let $\alpha_n = \{(a_n + (n-1)a_k, n)\}_{k \in \mathbb{N}}$. Obviously, α_0 converges to $(0, 0)$ as $k \to \infty$ and each α_n converges to $(a_n, 1)$ as $k \to \infty$.

Let $X = \{a_n + (n-1)a_k, n \in \mathbb{N}\} \cup \alpha_0 \cup \{(0, 0)\}$. It is easy to see that X is a closed copy of S_2.

(2) Let $i : \mathbb{Z} \to \mathbb{Z}$ be the identity map. Since \mathbb{Q} is a divisible group, the map i can be extended to a homomorphism $\phi : G \to \mathbb{Q}$. Put $|x| = |\phi(x)|$ for every element $x \in G$. Then $|\cdot|$ is a seminorm on the group G such that for all $x, y \in G$ holds $|x + y| \leq |x| + |y|$. For each $n \in \mathbb{N}$, let $\mathcal{B}_n = \{(x, y) : \phi(x) \leq n, y \in \mathbb{Z}\}$. Then it is easy to see that each \mathcal{B}_n is a discrete family of closed subsets. Since it follows from Theorem 3.15 that the space $(G \times \mathbb{Z}, \gamma)$ is submetrizable, there exists a metrizable topology \mathcal{F} such that $\mathcal{F} \subset \gamma$. Obvious, $\bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ is a network for $(G \times \mathbb{Z}, \mathcal{F})$, and it follows from $[3]$ Theorem $7.6.6$ that $(G \times \mathbb{Z}, \gamma)$ is a paracompact σ-space. Moreover, each subspace $F_n = \bigcup_{s \in \mathbb{N}} \mathcal{B}_s$ is strongly zero-dimensional and $G \times \mathbb{Z} = \bigcup_{n \in \mathbb{N}} F_n$, and hence $(G \times \mathbb{Z}, \gamma)$ is strongly zero-dimensional by $[13]$ Theorem $2.2.7$.

(3) **Claim 4:** $(G \times \mathbb{Z}, \gamma)$ has no strong π-base at any compact subset of $G \times \mathbb{Z}$.

Indeed, suppose there exists a compact subset $K \subset G \times \mathbb{Z}$ such that K has a strong π-base φ. It is easy to see that the set $\{n : K \cap (G \times \{n\}) \neq \emptyset, n \in \mathbb{Z}\}$ is finite. Moreover, without loss of generalization, we may assume that strong π-base φ at K is countable and each element of φ is an open neighborhood of some point in $G \times \mathbb{Z}$. Let $A = \{(b_i, n(i)) : i \in \mathbb{N}, n(i) \in \mathbb{Z}\}$, and let $\varphi = \{(b_i, n(i)) + A[n_i] : i \in \mathbb{N}\}$.

Case 1: The set $\{n(i) : i \in \mathbb{N}\}$ is infinite.

Then it is easy to see that A contains a discrete closed subset B such that $B \cap K = \emptyset$. Let U be an open neighborhood at K. Then $U \setminus B$ is also an open neighborhood at K, and each $(b_i, n(i)) + A[n_i] \subset U \setminus B$, which is a contradiction.

Case 2: The set $\{n(i) : i \in \mathbb{N}\}$ is finite.

Let $n_0 = \max\{n(i) : i \in \mathbb{N}\} \cup \{n : K \cap (G \times \{n\}) \neq \emptyset, n \in \mathbb{Z}\} \cup \{0\} + 1$. For each $i + n_0 \in \mathbb{N}$, we can choose a $(c_i, i + n_0) \in (b_i, n(i)) + A[n_i]$. Then $\{(c_i, i + n_0) : i \in \mathbb{N}\}$ is closed and discrete subset in (G, γ) and $\{(c_i, i + n_0) : i \in \mathbb{N}\} \cap K = \emptyset$. Let U be an open neighborhood at K. Then $U \setminus \{(c_i, i + n_0) : i \in \mathbb{N}\}$ is also an open neighborhood at K, and each $(b_i, n(i)) + A[n_i] \subset U \setminus \{(c_i, i + n_0) : i \in \mathbb{N}\}$, which is a contradiction.

It follows from Claim 4 and $[6]$ Corollary 4.3 that $b(G \times \mathbb{Z}) \setminus (G \times \mathbb{Z})$ is pseudocompact.

Remark (1) Sorgenfrey line (\mathbb{R}, τ) is a Hausdorff strongly unbounded paratopological group, and hence we can define a Hausdorff paratopological group topology σ on $G \times \mathbb{Z}$ such that $\sigma_{G \times \{0\}} = \tau$ and $(G \times \mathbb{Z}, \sigma)$ contains closed copies of S_2 and S_ω.

(2) Let \mathbb{Q} be the rationals with the subspace topology of usual topology \mathbb{R}. Then \mathbb{Q} is a topological group. It easily check that \mathbb{Q} is a strongly zero-dimensional, nowhere locally compact, paracompact σ-space. In additional, \mathbb{Q} has a strong π-base at each point since it is first-countable. It follows from $[3]$ Lemma 2.1 that the remainder of any Hausdorff compactification of \mathbb{Q} is not pseudocompact.

A paratopological group G is said to have the property $(**)$, if there exists a sequence $\{x_n : n \in \mathbb{N}\}$ of G such that $x_n \to e$ and $x_n^{-1} \to e$.

$^{[1]}$A strong π-base of a space X at a subset F of X is an infinite family γ of non-empty open subsets of X such that every open neighborhood of F contains all but finitely many elements of γ. Clearly, a strong π-base can be always assumed to be countable.
In [22], C. Liu proved the following theorem.

Theorem 6.5. Let G be a paratopological group having the property (**). Then G has a (closed) copy of S_2 if it has a (closed) copy of S_ω.

It is natural to ask the following.

Question 6.6. Can we omit the property (**) in Theorem 6.5.

By Lemma 6.1, the space G in Theorem 6.4 is not H-closed. Moreover, it is easy to see that the paratopological group topology on $\mathbb{Z} \times \mathbb{Z}$ in Theorem 6.4 does not have the the property (**). Then we have the following questions.

Question 6.7. Let (G, τ) be a H-closed paratopological group. Does there exist a Hausdorff paratopological group topology σ on $G \times \mathbb{Z}$ such that $\sigma|G \times \{0\} = \tau$ and $(G \times \mathbb{Z}, \sigma)$ contains closed copies of S_2 and S_ω?

Question 6.8. Let G be a not H-closed paratopological group. Is it true that G has a (closed) copy of S_2 if it has a (closed) copy of S_ω?

Question 6.9. Let G be a H-closed paratopological group. Is it true that G has a (closed) copy of S_2 if it has a (closed) copy of S_ω?

Acknowledgements. We wish to thank the reviewers for the detailed list of corrections, suggestions to the paper, and all her/his efforts in order to improve the paper.

References

[1] A.V. Arhangel’skii, Mappings and spaces, *Russian Math. Surveys*, 1966, 21, 115–162.
[2] A.V. Arhangel’skii, *Topological invariants in algebraic environment*, Recent progress in General Topology II, ed. by Hušek and van Mill, ELSEVIER, (2002), 1–58.
[3] A. Arhangel’ski, *Two types of remainders of topological groups*, Comment. Math. Univ. Carolin., 49(2008), 119–126.
[4] A.V. Arhangel’skii, *Some classes of quotient and pseudopen mappings and some new cardinal invariants of tightness type*, International Conference on Topology and its Applications, Islamabad, Pakistan, July 4–10, 2011.
[5] A.V. Arhangel’skii, D.K. Burke, *Spaces with a regular G_δ-diagonal*, Topology Appl., 153(2006), 1917–1929.
[6] A.V. Arhangel’skii, M.M. Choban, *Remainders of rectifiable spaces*, Topology Appl., 157(2010), 789–799.
[7] A.V. Arhangel’skii, E.A. Reznichenko, *Paratopological and semiflortopological groups versus topological groups*, Topology Appl., 151(2005), 107–119.
[8] A.V. Arhangel’skii, M. Tkachenko, *Topological Groups and Related Structures*, Atlantis Press and World Sci., 2008.
[9] D. Basile, A. Bella, G.J. Ridderbos, *Weak extent, submetrizability and diagonal degrees*, arXiv:1112.0883v1[math.GN].
[10] H.R. Bennett, *On quasi-developable spaces*, General Topology Appl., 1(1971), 253–262.
[11] H.R. Bennett, D. Lutzer, *Ordered spaces with special bases*, Fundamenta Mathematicae, 158(1998), 289–299.
[12] H.R. Bennett, D. Lutzer, *Recent developments in the topology of ordered spaces*, Recent progress in General Topology II, ed. by Hušek and van Mill, ELSEVIER, (2002), 85-114.
[13] T. Banakh, I. Guran, O. Ravsky, *Characterizing meager paratopological groups*, Applied General Topology, 12(1)(2011), 27–33.
[14] J. Cao, R. Drozdowski, Z. Piotrowski, *Weak continuity properties of topological groups*, Czech. Math. J., 60(135)(2010), 133–148.
[15] R. Engelking, *Dimension theory*, PWN, Polish Scientific Publ., Warszawa, 1978.
[16] R. Engelking, *General Topology* (revised and completed edition), Heldermann Verlag, Berlin, 1989.
[17] G. Gruenhage, *Generalized metric spaces*, In: K. Kunen, J. E. Vaughan(Eds.), Handbook of Set-Theoretic Topology, Elsevier Science Publishers B.V., Amsterdam, 1984, 423–501.

[18] K.P. Hart, J. Nagata, J.E. Vaughan, *Encyclopedia of General topology*, Elsevier Science Publishers B.V., Amsterdam, 2004, 337–340.

[19] P.Y. Li, L. Mou, S.Z. Wang, *Notes on questions about spaces with algebraic structures*, to appear in Topology Appl.

[20] S. Lin, A note on the Arens’ space and sequential fan, *Topology Appl.*, 81(1997), 185–196.

[21] S. Lin, Point-countable Covers and Sequence-covering Mappings(in Chinese): Science Press, Beijing, 2002.

[22] C. Liu, A note on paratopological groups, Comment.Math.Univ.Carolin., 47(2006), 633–640.

[23] C. Liu, S. Lin, *Generalized metric spaces with algebraic structures*, Topology Appl., 157(2010), 1966–1974.

[24] C. Liu, *Metrizability of paratopological (semitopological) groups*, Topology Appl., 159(2012), 1415–1420.

[25] D. Lutzer, *On generalized ordered spaces*, Dissertationes Math., 89 (1971).

[26] E. Michael, *A quintuple quotient quest*, Gen. Topology Appl., 2(1972), 91–138.

[27] N.M. Pyrch, A.V. Ravsky, *On free paratopological groups*, Matematychni Studii, 25(2006), 115–125.

[28] O. Ravsky, *On H-closed paratopological groups*, arXiv:1003.5377v1.

[29] O. Ravsky, *Paratopological groups I*, Matematychni Studii, 16(2001), 37-48.

[30] J.M. Worrell, H.H. Wicke, *Characterizations of developable topological spaces*, Canad. J. Math., 17(1965), 820–830.

(FUCAI LIN): DEPARTMENT OF MATHEMATICS AND INFORMATION SCIENCE, ZHANGZHOU NORMAL UNIVERSITY, ZHANGZHOU 363000, P. R. CHINA

E-mail address: linfucai2008@yahoo.com.cn

(CHUAN LIU): DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY ZANESVILLE CAMPUS, ZANESVILLE, OH 43701, USA

E-mail address: liuci@ohio.edu