PCL–PEG graft copolymers with tunable amphiphilicity as efficient drug delivery systems

Assala Al Samad, Audrey Bethry, Eva Koziolova, Milos Netopilík, Tomas Etrych, Youssef Bakkour, Jean Coudane, Fawaz El Omar, Benjamin Nottelet

To cite this version:

Assala Al Samad, Audrey Bethry, Eva Koziolova, Milos Netopilík, Tomas Etrych, et al.. PCL–PEG graft copolymers with tunable amphiphilicity as efficient drug delivery systems. Journal of materials chemistry B, Royal Society of Chemistry, 2016, 4, pp.6228-6239. 10.1039/c6tb01841f. hal-01369299

HAL Id: hal-01369299
https://hal.archives-ouvertes.fr/hal-01369299
Submitted on 29 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PCL-PEG graft copolymers with tunable amphiphilicity as efficient drug delivery systems

A. Al Samad, a,b A. Bethry, a E. Koziolová, c M. Netopilík, c T. Etrych, c Y. Bakkour, b J. Coudane, a F. El Omar, b B. Nottelet a

a Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université
Montpellier-ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault BP14491, 34093 Montpellier cedex 5, France
E-mail: benjamin.nottelet@umontpellier.fr

b Laboratory of Applied Chemistry, Doctoral School of Sciences and Technology, Lebanese University, Lebanon

C Institute of Macromolecular Chemistry AS CR, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
ABSTRACT

The development of flexible drug delivery systems that can be tuned as a function of the drug to be delivered and of the target disease is crucial in modern medicine. For this aim, novel amphiphilic poly(ε-caprolactone)-g-poly(ethylene glycol) (PCL-g-PEG) with well controlled design were synthesized by thiol-yne photochemistry. The grafting density and copolymer amphiphilicity were easily controlled via the reaction parameters: concentration, reaction time, PEG length and molar ratio between PCL and PEG or photoinitiator in the reaction mixture. The self-assembling behavior of the copolymers was studied and a correlation between the composition of PCL-g-PEG and the nanoaggregate diameter sizes (28 to 73 nm) and critical aggregation concentration (1.1 to 4.3 mg/L) was found. The influence of copolymer amphiphilicity on the drug loading was evaluated with various drugs including anticancer drugs (paclitaxel, ABT-199), drugs to overcome multidrug resistance in cancer cells (curcumin, Elacridar), anti-inflammatory drug (dexamethasone) and antibacterial drug (clofazimine). Finally, the influence of amphiphilicity on curcumin release and toxicity towards MCF-7 cancer cell lines was studied. The impact of grafting density, PEG length and overall EG/CL ratio are discussed in detail. Curcumin loaded PCL-g-PEG with lower EG/CL ratios and shorter PEG chains showed higher toxicity compared to their more hydrophilic counterparts.

KEYWORDS: graft poly(ε-caprolactone)-poly(ethyleneglycol) copolymers; micelles; nanoparticles; drug delivery; curcumin; amphiphilicity.
INTRODUCTION

Amphiphilic copolymers self-assembling into micelles or nanoparticles play a key role in modern drug formulation strategies as a result of their capacity to protect and deliver drugs to the target site, e.g. tumors, with suitable pharmacokinetics.1, 2 Drug loaded self-assemblies provide many advantages compared to low-molecular-weight drugs as they can reduce drug toxicity towards healthy tissues and increase the drug stability and the efficacy of drugs by changing the pharmacokinetics to more favorable one. Among amphiphilic copolymers, aliphatic polyester-based copolymers, in particular PEG-PLA and PEG-PLGA diblock copolymers, have been widely studied due to their degradability and biocompatibility.3, 4 After many years of extensive research and development, some have finally been introduced to the market like the PEG-PLA-based Genexol® which paves the way for future products and confirms the potential of polyester-based drug delivery systems.

Among the synthetic polyesters, poly(\(\varepsilon\)-caprolactone) (PCL) is well-known for its biocompatibility, its slower hydrolytic degradation compared to PLA or PLGA, its ability to load drugs and its mechanical properties similar to classical polyolefins. These properties make it a valuable candidate for tissue engineering and medical devices.6, 7 However, the use of PCL is not limited to macroscopic systems and many examples of micro- or nanosystems for drug delivery, \textit{i.e.} micelles and particles, are described in literature.8 All kinds of macromolecular architectures based on PCL and PEG have been proposed from classical diblock copolymers, to triblock copolymers, dendrimer-derived, star or miktoarm architectures.9-13 The variety of macromolecular architectures and compositions has proved the potential of these polymer systems for cancer therapy and the impact of PCL-PEG copolymer amphiphilicity on the formation and shape of self-assemblies,14, 15 drug loading, formulation stability12, 16 and cellular internalization17-19 have been studied. It was also
demonstrated that PCL-PEG copolymers could act as modulators of drug efflux transporter P-glycoprotein \textit{in vitro}, and therefore they could be of beneficial to the problematic treatment of multidrug resistance (MDR) cancer tumors.20

In this context, graft copolymers are of particular interest, since their architecture allows an easy variation of the number of PEG chains along the polymer backbone and consequently of the resulting amphiphilicity. Graft copolymers also exhibit lower critical aggregation concentrations (CAC) compared to their linear analogs and they assemble into micelles with higher stability in serum and during freeze-drying process.21, 22, 23, 24 As a consequence various polyester-\textit{g}-PEG have been synthesized to date following either the “grafting through” or “grafting to” strategies. However, most of them are lactide- or glycolide-based polyesters,25-28 whereas only very little has been reported on PCL. For example, the group of Jerôme \textit{et al.} synthesized PCL-\textit{g}-PEG via the “grafting to” process by reacting azido-CL and alkynyl end-capped PEG, by a CuAAC click chemistry approach.29, 30 A similar approach was utilized by Zhang \textit{et al.}31 or by Parrish \textit{et al.} with an \(\alpha\)-propargyl-\(\delta\)-valerolactone.32 A grafting through approach using a CL end-capped PEG that was copolymerized with CL was also proposed by Rieger \textit{et al.}33 The main problem of these methods is the use of functional lactones whose synthesis is limited in terms of amount and whose polymerization can be problematic when high molecular weights are targeted. As a consequence, Coudane \textit{et al.} proposed an alternative “grafting to” approach by using anionic post-polymerization modification of the carbonyl of a commercial PCL to graft chlorocarbonate PEG at the PCL \(\alpha\)-position.34, 35 This one pot method is rapid and versatile, and the graft copolymer was easily prepared on a multigram scale. However, the grafting density influencing the self-assembly behavior is not well-controlled. To overcome this limitation we recently synthesized PCL-\textit{g}-PEG, thanks to the combination of a scale-up friendly anionic post-polymerization modification of PCL and a
subsequent grafting of PEG side chains via the fast and metal free photoradical thiol-yne reaction, which allowed an easy control of the copolymer amphiphilicity. The prepared PCL-g-PEG polymers with EG/CL ratios ranging from 0.1 to 1.3 formed nanoparticles and frozen micelles of different hydrodynamic diameters.36

Hydrophilicity of the previously prepared systems was however quite low, resulting in pegylated nanoparticles with low PEG density rather than micelle-like nanoaggregates, which may limit the release properties. In addition, the impact of the copolymer hydrophilic/hydrophobic balance on the ability to deliver various drugs was not investigated. Here, a family of micelles-forming PCL-g-PEG with higher and controlled hydrophilicities (EG/CL ratios ranging from 2 to 5.5) is synthesized and characterized. The impact of amphiphilicity on the loading of various poorly soluble drugs, including anticancer drugs (paclitaxel, ABT-199), multidrug resistance targeting drugs (curcumin, Elacridar), anti-inflammatory drug (dexamethasone) or antibacterial drug (clofazimine) is evaluated. Finally, impact of amphiphilicity on the curcumin release, and on the toxicity towards MCF-7 cancer cells is discussed.

EXPERIMENTAL PART

Materials

PCL (Mn ≈ 45 kg mol-1), propargyl bromide (80 wt% in toluene), lithium diisopropylamide (LDA, 2 M in THF/heptane/ethylbenzene), 2,2-dimethoxy-2-phenylacetophenone (DMPA, >99%), p-toluenesulfonic acid (>99%), ε-caprolactone (ε-CL, >99%), PBS 1x, clofazimin and curcumin were purchased from Sigma-Aldrich (St-Quentin Fallavier, France). Paclitaxel was obtained from LC Laboratories (Woburn, United States). ABT-199, dexamethasone and elacridar were purchased from Sigma-Aldrich (Prague, Czech Republic). α-Methoxy,ω-
hydroxyl poly(ethylene glycol) with \(M_n = 2000\) and \(M_n = 5000\) g/mol (PEG2k, PEG5k) were obtained from Sigma (St-Quentin Fallavier, France). \(\alpha\)-Methoxy,\(\omega\)-hydroxyl poly(ethylene glycol) with \(M_n = 750\) g/mol (PEG0.7k) was obtained from Acros Organics (Noisy-le-Grand, France). Ascorbic acid (purissimum grade) was obtained from Riedel-de Haen. \(\text{NH}_4\text{Cl} (>99\%)\) was purchased from Acros Organics (Noisy-le-Grand, France), technical grade \(\text{MgSO}_4\) from Carlo Erba (Val de Reuil, France), and methanol (\(\geq 99.8\%\)), dichloromethane (DCM, \(\geq 99.9\%\)), dimethylformamide (DMF, \(\geq 99.8\%\)), toluene (puriss) and anhydrous tetrahydrofuran (THF, \(\geq 99.9\%\)) from Sigma-Aldrich (St-Quentin Fallavier, France). THF was dried using a Pure Solv Micro Single Unit (Inert®) system. Toluene and \(\varepsilon\)-CL were distilled over \(\text{CaH}_2\) prior to use. Spectra/Por® dialysis tubes (cut-off, 6–8 kDa or 3.5 kDa) were obtained from Spectrum Labs. Amicon ultra centrifugal filter units (Ultra-15, 10 kDa) were purchased from Sigma Aldrich (Noisy-le-Grand, France).

Characterizations

NMR spectroscopy. \(^1\)H NMR spectra were recorded at room temperature using an AMX300 Bruker spectrometer operating at 300 MHz. Deuterated chloroform and deuterated dimethyl sulfoxide were used as solvents, chemical shifts were expressed in ppm with respect to tetramethylsilane (TMS). Diffusion ordered spectroscopy (DOSY) experiments were performed on a Bruker Avance III spectrometer operating at 600 MHz, using deuterated dimethyl sulfoxide (DMSO) as solvent.

Size exclusion chromatography (SEC) was performed on a Viscoteck GPC-Max VE 2001 equipment fitted with a 2x30 cm long 5 \(\mu\)m mixed C PLgel columns and coupled with VE 3580 RI detector and VE 3210 UV/Vis detector. The mobile phase was THF at 1 mL/min flow rate at 30°C. Typically, polymer (10 mg) was dissolved in THF (2 mL) and the resulting solution was filtered through a 0.45 \(\mu\)m Millipore filter before injection of 20 \(\mu\)L of filtered solution.
solution. The number average molecular weight \((M_n) \) and the dispersity \((D) \) of the polymers were expressed according to calibration using polystyrene standards.

Fluorescence measurements and CAC determination. The CAC of the copolymers was determined by fluorescence spectroscopy using pyrene as a hydrophobic fluorescent probe. Measurements were carried out on an RF 5302 Shimadzu spectrofluorometer (Japan) equipped with a Xenon light source (UXL-150S, Ushio, Japan). Briefly, an aliquot of pyrene solution (6×10^{-6} M in acetone, 1 mL) was added to different vials, and the solvent was evaporated. Then, 10 mL of aqueous solutions of different concentrations were added to the vials. The final concentration of pyrene in each vial was 6×10^{-7} M. After overnight equilibration at room temperature, the fluorescence excitation spectra of the solutions were recorded from 350 to 400 nm at an emission wavelength of 371 nm. The emission and excitation slit widths were 5 nm and 3 nm, respectively. The excitation fluorescence values at 333.5 and 336.5 nm were used for subsequent calculations. The CAC was determined from the intersection of linear regression lines of the \(\text{I}_{336.5}/ \text{I}_{333.5} \) ratio versus polymer concentration plots.

Light scattering measurements. Dynamic light scattering (DLS) was carried out with a Malvern Instrument Nano-ZS equipped with a He–Ne laser (\(\lambda = 632.8 \) nm). Polymer solutions at 1.0 mg.mL^{-1} were filtered through a 0.45 \(\mu \)m PTFE microfilter before measurements. The correlation function was analyzed via the general purpose method (NNLS) to obtain the distribution of diffusion coefficients \((D) \) of the solutes. The apparent equivalent hydrodynamic diameter \((D_{H}) \) was determined from the cumulant method using the Stokes–Einstein equation. Mean radius values were obtained from triplicate runs. Standard deviations were evaluated from hydrodynamic radius distribution.
UV-spectrometry was performed on a Perkin-Elmer Precisely Lambda 35 spectrometer, with 1 cm optical path quartz cuvettes.

Synthesis of PCL-g-PEG

The PCL-yne/PEG-SH reactions were performed according to our previous work. In typical experiment, PCL-yne (100 mg; 8% alkyne groups with respect to CL units, $\bar{M}_n = 21300$ g/mol; $D = 2.4$); and PEG2k-SH (820 mg; 6 eq. with respect to the alkyne group) were dissolved in DMF (10 mL) in a Schlenk flask (Table 1, entry 2). DMPA (9 mg; 0.5 eq.) was dissolved in DMF in another Schlenk flask covered by aluminium foil. The 2 flasks were purged with nitrogen for 10 min before closing with septums. The thiol-ynne reaction medium was irradiated for 2 hours under UV light (100 mW/cm²) and DMPA was added by successive additions (4 times) with a syringe at fixed intervals over the reaction time. The mixture was then concentrated under vacuum and centrifuged in water by centrifugal filter units 10 kDa. Centrifugation was repeated until full removal of unreacted PEG chains. The solution was lyophilized and the product was analyzed by SEC to assure the absence of free PEG.

1H NMR (300 MHz; CDCl₃): δ (ppm) = PCL backbone 4.0 (2H, CH₂-O), 2.3 (2H, C(O)CH₂), 1.6 (4H, C(O)CH₂–CH₂–CH₂–CH₂–O), 1.3 (2H, C(O)CH₂–CH₂–CH₂–CH₂–CH₂–CH₂–O); PEG side chains 4.2 (2H, CH₂COO), 3.5 (4H, CH₂CH₂O), 3.3 (3H, OCH₃), 2.8 (2H, CH₂SCH₂), 2.6 (2H, COOCH₂).

Synthesis of PCL-b-PEG

PCL-b-PEG was synthesized according to classical procedures. PEG5k was used a macroinitiator for the ring opening polymerization of CL in anhydrous toluene in the presence of SnOct₂ as a catalyst (0.3 eq. with respect to PEG). Amounts of reactant were determined to yield the expected copolymer with EG/CL = 2.6, corresponding to blocks of 5000 g/mol for
PEG and for PCL. ROP was carried out for 48 hours at 100°C and was stopped by addition of few drops of HCL 1N. The mixture was then concentrated under vacuum prior to precipitation in diethylether. The resulting solid is further dissolved in water and centrifuged in water by centrifugal filter units 10 kDa. Centrifugation was repeated until full removal of unreacted PEG chains. The solution was lyophilized and the product was analyzed by SEC to assure the absence of free PEG.

Preparation of nanoaggregates

Blank and drug loaded PCL-g-PEG nanoaggregates were prepared by the self-assembly method according to our previous article. Typically, drug (5 mg) and PCL-g-PEG (35 mg) were dissolved in 2 mL acetone. Then 5 mL of PBS were added. The mixture was stirred one hour using an Ultra-Turrax stirrer (8000 rpm). The remaining acetone was evaporated under vacuum. The solution was then centrifuged for 10 min at 3600 rpm and 20°C before filtration through a 0.45 μm filter to eliminate the unloaded drug.

Determination of drug loading and encapsulation efficiency

Drug loading (DL) and encapsulation efficiency (EE) were determined by UV/Vis spectrophotometry at 425 nm for curcumin, 468 nm for clofazimine and 410 nm for elacridar. Quantification of curcumin and clofazimine was performed with respect to a calibration curve in acetone / water (20:80). Quantification of elacridar was done using a calibration curve in acetone / water (80:20). Loading of dexamethasone and ABT-199 were determined by high performance liquid chromatography (HPLC, Shimadzu LC-20AD, Japan) instrument equipped with a column (Chromolith® Performance RP-18) and autosampler (SIL-20AC HT). Fluorescence and PDA detector (RF10AXL and SPD-M10AVP) were used for detection of the drugs. A gradient elution was applied to detect the dexamethasone and the ABT-199, a
linear gradient from 100% of a mixture (5% ACN (0.1% TFA) + 95% H2O (0.1% TFA)) till 100% of a mixture (95% ACN (0.1% TFA) + 5% H2O (0.1% TFA)) was used. Flow rate was set at 1 mL/min, detection wavelength was 240 nm for dexamethasone and 314 nm for ABT-199.

Quantification of paclitaxel (PTX) was done by HPLC (WatersTM 717plus Autosampler), equipped with C18 column and a water 2998 photodiode array detector (λ_{max} PTX$= 227$ nm). The gradient elution applied was ACN/water: 50/50 for 2 min, then ACN/water: 75/25 until the 15th min at 1 mL/min flow rate. PTX was extracted from copolymers before injection in HPLC as follows: 1 mL of PTX-loaded copolymer solution was added to 5 mL of water: DMF (50:50). After centrifugation in Spectra/por® dialysis tubes (cut-off, 6–8 kDa), the solvent was evaporated and the PTX was dried under vacuum. PTX was dissolved in a precise volume of ACN and quantified by HPLC.

The DL content and EE were calculated based on the following formulae:

\[
\text{DL} (\%) = 100 \times \frac{M_D}{M_P + M_D}
\]

\[
\text{EE} (\%) = 100 \times \frac{M_D}{M_{Di}}
\]

with $M_D =$ mass of drug in nanoaggregates, $M_P =$ mass of copolymer and $M_{Di} =$ mass of drug initially added to prepare nanoaggregates.

Drug release kinetics

The release of curcumin from PCL-g-PEG nanoaggregates was assessed in phosphate buffer saline (PBS, pH 7.4) containing 0.1% w/v Tween 80 and 0.015% w/v ascorbic acid at 37 °C under constant orbital shaking (100 rpm ; Heidolph Unimax 1010). Tween is classically used to provide water-solubility to curcumin in such assays.37-39 Ascorbic acid is a biomolecule naturally present in plasma, which is used to enhance the stability and avoid the degradation
of the released curcumin. In a typical release study, 2 mL of Curcumin/PCL-g-PEG micellar solution were poured in a dialysis bag (cut-off 3.5 kDa) that was immersed in 20 ml of buffer solution at 37°C. At specific time points, the entire release medium was removed and replaced with 20 mL fresh buffer solution. Collected samples were analyzed by UV–Vis spectrophotometry at 425 nm with reference to a calibration curve of curcumin in acetone: water (20:80). The amount of released curcumin (Rc) was calculated based on the following formula:

\[
Rc \, (\%) = 100 \times \frac{M_{\text{RC}}}{M_{\text{C}}}
\]

with \(M_{\text{RC}} \) = mass of released curcumin and \(M_{\text{C}} \)= mass of curcumin in nanoaggregates.

Degradation of nanoaggregates

7 mg of copolymers PCL-g-PEG0.7k1.2 and PCL-g-PEG2k5.4 were dissolved in 1 ml of acetone in a hemolysis tube, and then 5 ml of PBS were added. After evaporation of acetone, hemolysis tubes were put in an incubator at 37°C under stirring at 150 rpm. Tubes were removed after 1 week, 1 month, 3 months and 6 months. Samples were freeze-dried, the solid residue was dissolved in THF and the resulting solution was filtered before analysis by SEC. Degradation experiments were done in triplicates.

In vitro assay against MCF7 cells

Cell culture

Human breast cancer cell lines MCF-7 were a gift of Dr. Garcia’s lab (IBMM, Team “Glyco et Nanovecteurs pour le ciblage thérapeutique”, Montpellier, France). Cells were maintained in DMEM-F12 supplemented with Fetal Bovine Serum (10%, v/v) and 1% penicillin/streptomycin at 37°C in a humidified incubator containing 5% CO₂.
Cell cytotoxicity assay

Cytotoxicity of the nanoparticles was measured in MCF-7 cells using Prestoblue® Cell viability reagent (Invitrogen). For this assay, cells were plated into a 24-well plate in amount of 1.5×10⁴ cells per well and allowed to attach overnight. They were then treated with 0.18 and 18 µg/ml of free curcumin (dissolved in DMSO) or curcumin encapsulated (dissolved in PBS) for 24h and 48h. Appropriate equivalent amounts of nanoparticles without curcumin were run simultaneously. Medium containing equivalent amounts of DMSO or PBS or medium only were used as a control. Cell viability was measured using Prestoblue® Cell viability reagent according to manufacturer’s instruction. Briefly, 10% of Prestoblue® was diluted into cell growth medium. When added to cells, the reagent is modified by the reducing environment of the viable cells and turns red, becoming highly fluorescent. After incubation time, supernatant was transferred to a 96-well plate and the fluorescence was measured at 560/590nm using a microplate reader (PerkinElmer, Victor3V).
RESULTS AND DISCUSSION

Synthesis of graft copolymers with controlled amphiphilicity

A convenient thiol-yne photo-addition methodology was used to synthesize the PCL-g-PEG copolymers and to modulate their amphiphilicity. For sake of clarity, a schematic representation of the preparation and architecture of the PCL-g-PEG copolymers is provided (ESI, Scheme S1). Indeed, as shown in our previous work, it is possible to easily control the PEG grafting density by playing with the reaction parameters. To evaluate the influence of PCL-g-PEG hydrophilicity on the copolymers potential as drug delivery systems, we targeted a broad range of hydrophilicity with molar ratios EG/CL in the range 1.9 to 5.4 (Table 1).

Table 1. Synthesis of PCL-g-PEG with controlled composition using PCL-yne and PEG-SH

Entry	Copolymer	PEG (eq.)^a	DMPA (eq.)^a	DMF (mL)	Time (h)	EG/Cl^b	Grafting efficiency (%)^c	Mn^d (g/mol)	D
1	PCL-g-PEG0.7k_{1.9}	10	1	10	2	1.9	56	24700	2.0
2	PCL-g-PEG2k_{2.8}	6	0.5	10	2	2.8	28	25800	2.7
3	PCL-g-PEG2k_{3.6}	6	0.5	2	1	3.6	36	27000	1.8
4	PCL-g-PEG2k_{4.5}	6	0.5	2	2	4.5	45	25900	1.6
5	PCL-g-PEG2k_{4.7}	6	1	2	2	4.7	47	29000	1.8
6	PCL-g-PEG2k_{5.0}	6	2	2	2	5.0	50	30000	2.1

a) equivalent with respect to alkyne groups; b) calculated from the peak integrations of 1H-NMR spectra; c) calculated by 1H NMR analysis based on the initial content of alkyne groups and the EG/CL ratio and considering diaddition on all alkyne groups as 100% grafting efficiency d) SEC analyses in THF, polystyrene standards.

The increased number of composition and higher hydrophilicity of the novel PCL-g-PEG compared to our previously presented copolymers was obtained thanks to the precise control
of the reactant concentration, the reaction time, the PEG-SH molecular weight, the number of PEG equivalents, and the amount of photoinitiator. The ratio EG/CL in product was easily increased from 1.9 to 2.8 by replacing PEG0.7K by PEG2K (entries 1 and 2), despite a lower number of PEG chains and DMPA equivalents. As expected and in accordance with our previous study with benzyl mercaptan, higher grafting efficiency was obtained for the shorter PEG due to the limited steric hindrance and higher thiol-end group accessibility for PEG0.7K compared to PEG2K. The impact of the reactant concentration on the grafting density is significant as shown by the increase of EG/CL ratio from 2.8 to 4.5 for a 4 times lower solvent volume (entries 2 and 4). Moreover, reaction time played also significant role as EG/CL increased from 3.6 after 1 hour of reaction to 4.5 after 2 hours (entries 3 and 4). Finally, the equivalent number of DMPA has only a limited impact on EG/CL ratio: EG/CL varies from 4.5 to 5 despite a 4 folds increase of DMPA equivalents was used (entries 3-5).

These results, in conjunction to the previously published, confirmed the simplicity of modulation offered by the photo thiol-yne approach to yield amphiphilic PCL-g-PEG copolymers that are easily turned from highly hydrophobic structures (EG/CL = 0.35, previous work) to more hydrophilic ones (EG/CL = 5).

Molecular weights, measured by SEC, were in the range 25000 g/mol to 30000 g/mol (Ð =1.6 to 2.7) and did not varied significantly for various copolymer. Further discussion of the molecular weights of the copolymers with respect to PCL-yne (\(\overline{M_n} = 21200\) g/mol \(\overline{D} = 2.4\)) or comparison between the copolymers is not provided as hydrodynamic behavior of the copolymers is known to be strongly impacted by their amphiphilicity and architectures. In particular, underestimation of molecular weight of graft copolymers was reported in literature and is believed to be due to the impact of grafting density on hydrodynamic radius, which gives more compact structures than their linear counterparts.26, 32
Characterization of PCL-g-PEG nanoaggregates

Critical aggregation concentrations (CAC) of PCL-g-PEGs

Critical aggregation concentrations (CAC) of PCL-g-PEGs were calculated for all copolymers using the excitation spectra of pyrene. Typical excitation spectra of pyrene solutions are shown in Figure S1 (Electronic Supplementary Information (ESI)) as a function of the concentration of PCL-g-PEG2k3.2. The intensities of excitation peaks at $\lambda_{ex} = 336.5$ and 333.5 nm, denoted $I_{336.5}$ and $I_{333.5}$ respectively, were chosen as the variation of the $I_{336.5}/I_{333.5}$ intensity ratio is related to the self-association of amphiphilic PCL-g-PEGs and the partition of pyrene between the aqueous phase and the hydrophobic cores of micelles. CACs were estimated based on the tangents method and are listed in Table 2.

Table 2. Grafting number, critical aggregation concentration (CAC) and size of blank nanoaggregates as a function of copolymer composition.

Entry	Copolymers	EG/CL	Grafting number^a	CAC (mg/L)	Size^d (nm)	PDI
1	PCL-g-PEG0.7k1.2	1.2	13	1.1^b	32	0.24
2	PCL-g-PEG0.7k1.9	1.9	21	3.5	42 ± 4	0.24 ± 0.01
3	PCL-g-PEG2k2.3	2.3	9.5	2.6	nd.	nd.
4	PCL-g-PEG2k3.2	3.2	13	2.6	28 ± 1	0.21 ± 0.01
5	PCL-g-PEG2k4.7	4.7	19	4.3	nd.	nd.
6	PCL-g-PEG2k5.4	5.4	22	4.3	73 ± 2	0.40 ± 0.00
7	PCL-b-PEG5k2.6^c	2.6	1	17	59 ± 1	0.21 ± 0.01

^a Number of PEG chains per PCL chain, calculated by 1H NMR analysis based on the molecular weight of PCL-yne and of PEG; ^b CAC of PCL-g-PEG_{1.2} was calculated in our previous work using the emission spectra of pyrene; ^c block copolymer; ^d Mean size determined by DLS
CAC value was found to be strongly impacted by the composition (EG/CL) and grafting number (number of PEG chains per PCL backbone) of the copolymers. In more details, for entries 1 and 2, where PEG0.7K was used, CAC increased from 1.1 mg/L to 3.5 mg/L with the increase of hydrophilicity from EG/CL = 1.2 to EG/CL = 1.9, respectively. This is a classical result for amphiphilic self-assembling polymers. The same trend was obtained with PEG2K (Table 2, entries 3 to 6) where CAC varied from 2.6 to 4.3 mg/L for PCL-g-PEG2k_{2.3} to PCL-g-PEG2k_{5.4}. However, one can note that EG/CL ratio alone cannot explain the self-assembling behavior of the graft copolymers. The grafting number has also a strong influence on the CAC. PCL-g-PEG with close architectures, i.e. the same grafting number, presented similar CAC. This is clearly the case for PCL-g-PEG2k_{2.3} and PCL-g-PEG2k_{3.2} that have a similar CAC (2.6 mg/L), despite different EG/CL ratios due to the presence of ca. 10 PEG chains for both polymers. The same phenomenon is observed in PCL-g-PEG2k_{4.7} and PCL-g-PEG2k_{5.4} (ca. 20 PEG chains). At similar EG/CL ratios, the general trend is therefore to observe a lower CAC for lower grafting number. This is confirmed by the comparison between PCL-g-PEG0.7k_{1.9} and PCL-g-PEG2k_{2.3}. In this case, close EG/CL ratios are obtained but grafting numbers are very different with 21 PEG0.7k chains for PCL-g-PEG0.7k_{1.9} against 9.5 PEG2k chains for PCL-g-PEG2k_{2.3}. This leads to a lower CAC for the less substituted PCL-g-PEG2k_{2.3} although it presents the higher EG/CL ratio. In summary, we have found that all PCL-g-PEG copolymers showed low CAC values below 5 mg/L, whatever the composition and substitution degree.

With aim to compare the graft copolymers with their linear block copolymers counterparts, a PCL5k-b-PEG5k diblock copolymer with EG/CL = 2.6 was synthesized. Despite similar EG/CL ratios, this linear copolymer had a much higher CAC (17 mg/L) than its counterpart PCL-g-PEG2k_{2.3} (2.6 mg/L). This result is in agreement with the literature where the lower CAC of grafts copolymers is assigned both to their higher polydispersity and to their reduced
mobility as a consequence of the steric hindrance induced by the side chains. Results obtained for CAC values of all PCL-g-PEG graft copolymers are highly promising, showing that the formed nanoaggregates should be useable as drug delivery systems in medicine as no dissociation upon the high dilution encountered with injection is expected.

Size of PCL-g-PEGs nanoaggregates

All nanoaggregates have hydrodynamic diameters below 100 nm (Table 2) showing useable size for prolonged circulation in blood stream and subsequent accumulation and extravasation within the target place, e.g. solid tumor or place of inflammation. One should note that filtration prior to DLS analysis may have eliminated objects larger than 0.45 µm if present. The size of nanoaggregates is increased with the hydrophilicity, ie. EG/CL ratio and substitution degree, as exemplified by the comparison between PCL-g-PEG0.7k1.2 (D_{H} = 32 nm) and PCL-g-PEG0.7k1.9 (D_{H} = 42 nm) based on PEG0.7K or between PCL-g-PEG2k3.2 (D_{H} = 28 nm) and PCL-g-PEG2k5.4 (D_{H} = 73 nm) based on PEG2K. This is due to the higher hydration of the more hydrophilic shell in conjunction with an extended conformation of the PEG chains with increasing surface density of PEG. For increasing EG/CL ratios this result can also be explained by the presence of PEG chains stuck inside the nanoaggregates, which might imply a more swollen state for the core of the nanoaggregates. Polydispersity of the nanoaggregates is between 0.21 and 0.40. These rather high values are believed to result from the architecture of the graft copolymers that may presents inhomogeneity of repartition of the grafted PEG chains along the PCL backbone due to the thiol-yne strategy used (Scheme S1, ESI). It also results from the less controlled assembly of graft copolymers compared to classical hydrophilic diblock copolymers.
Stability of self-assemblies

Degradation kinetics of the self-assemblies was evaluated under standard hydrolytic conditions over a 6 months period. For this purpose the two most different copolymers, namely PCL-g-PEG0.7k\textsubscript{1,2} and PCL-g-PEG2k\textsubscript{5,4}, were selected to generate blank nanoaggregates. At predetermined degradation times, buffer solutions of nanoaggregates (PBS, pH 7.4, 37°C) were analyzed by SEC (Figure 1, ESI Table S1). Obviously, conditions were not intending to recreate in vivo degradation conditions where such systems are expected to be degraded faster as a consequence of the lower pH found in tumor tissues (cancer tissues pH 6.5-7.2) or specific cell components (endosomes 5.0-6.5, lysosomes 4.5-5.0)42 and of the presence of enzymes (lipases).43 We aimed to do a comparative study to evaluate the impact of copolymer amphiphilicity and architecture on the in vitro degradation rate.

For both copolymers, release of PEG chains was witnessed. It results from the hydrolysis of the ester bond between the terminal hydroxyl-PEG group and the propionic acid used to prepare the PEG-SH. The first appearance of a peak corresponding to free PEG chains was seen after 1 month in the more hydrophobic PCL-g-PEG0.7k\textsubscript{1,2} (Figure 1a) and after only 1 week in the more hydrophilic PCL-g-PEG2k\textsubscript{5,4} (Figure 1b). By comparison of the relative intensities of peaks after 3 and 6 months, it may be concluded that all PEG side chains were hydrolyzed after 3 months in PCL-g-PEG0.7k\textsubscript{1,2}, whereas PEG release continued between 3 and 6 months in the more substituted PCL-g-PEG2k\textsubscript{5,4}. In summary, degradation starts earlier for the more hydrophilic copolymer, but due to a higher grafting number, it lasts over a longer period compared to the more hydrophobic copolymer.
An additional comment should be done on the initial degradation period of the most hydrophobic copolymer. A high molecular weight population is formed after 1 week, still present after 1 month, to finally disappear after 3 months (Figure 1a, shoulder peak at ca. 15 minutes). This is confirmed by DOSY-NMR analyses that also show the release of free PEG after 1 month (Figure 2). Different hypotheses can be done to explain this phenomenon. PCL-g-PEG0.7k_{1.2} is substituted in average by 13 PEG0.7K chains (Table 2), whereas full substitution of the alkyne groups initially present on the PCL-yne would correspond to ca. 32 PEG0.7K chains. Some unreacted alkyne groups, and vinylsulfide groups (thiol-yne monoaddition) are therefore present in the copolymer. Rearrangements between these groups
leading to cyclic compounds have been reported in literature.44 In a same manner, if considering the free alkyne groups and thioether groups, intramolecular chalcogenation has been reported following radical activation that may occur in our case due to the long exposition of degradation medium to day light.45 Finally, another photoactivated side reaction is the direct crosslinking of vinylsulfide under light during the degradation. Taking into account these reactions, it is clear that some rearrangements leading to cross-linked structures may occur in the copolymer during its degradation and can explain the appearance of a population with higher molecular weight. For longer degradation times these cross-linked structures are also degraded and a clear decrease of molecular weight, as well as a lower dispersity, is again observed. A more detailed study on this aspect is however beyond the scope of the present work and is under way. However, one should note that all components of the PCL-g-PEG nanoaggregates will be excreted (released short PEG chains), and/or degraded (hydrolysis of PCL backbone), and thus unwanted accumulation of the carrier structure is not anticipated. Based on the presented results we can therefore conclude that the PCL-g-PEG copolymer nanoaggregates are suitable candidates as long circulating drug reservoirs for treatment of diseases, which need a long term exposure of the drug in the body.

![Figure 2. DOSY-NMR spectra of PCL-g-PEG0.7k1.2 as a function of the degradation time in PBS (pH = 7.4) at 37°C. (DMSOd6, 600 MHz, black crosses correspond to DMSO and water)](image)

20
Encapsulation of drugs

Encapsulation of various API

To evaluate the potential of the PCL-g-PEG copolymer family for drug delivery, various APIs have been loaded into the nanoaggregates. The selected drugs were diverse in nature and therapeutic targets: anticancer drugs (paclitaxel, ABT-199), candidate drugs to overcome the multidrug resistance in cancer cells (curcumin, elacridar), anti-inflammatory drug (dexamethasone) and antibacterial drug (clofazimine). These drugs have usually a low to very low solubility, in the range 0.3 g/L for clofazimine to less than 0.4 mg/L for ABT-199 (Table S2, ESI), their body distribution after injection is non-selective, thus reaching also healthy cells and organ and finally, they show strong side-effect driven toxicity. Despite these drawbacks, they are very potent drugs with for example, activities below the nanomolar range for ABT-199. It is therefore of interest to solubilize them, even at low dose, in drug delivery systems with the aim to highly increase their bioavailability, prolong their availability within the body while reducing significantly their side-effect toxicity. Changing of the pharmacokinetics is the key point to observe the better outcome of the treatment with selected drugs. For that purpose, two above described copolymers with different hydrophilicities (EG/CL = 1.2 or 3.2) and forming in the aqueous solution nanoaggregates have been chosen for preparation of loaded polymer-based drug nanoaggregates.

For all drugs, higher encapsulation efficiency and higher drug loading were obtained with the more hydrophobic copolymer, as expected (Table 3). The EE was lowered by 22% (curcumin) to 55% (ABT-199, Dexamethasone) by changing PCL-g-PEG0.7k1.2 to PCL-g-PEG2k3.2. Coming to more details, in the case of paclitaxel, the EE was considered too low (< 3 wt%) and DL was not calculated. Similarly, other polyester-based drug delivery systems have shown low efficiency in paclitaxel formulation when using self-assembly method and large quantities of polymer with respect to PTX (100:1) were therefore required. On the opposite,
very high EE (92 wt%) and DL (12.1 wt%) were obtained with curcumin. The same phenomenon was observed for clofazimine that was loaded at 11.7 wt% in the copolymer. Finally, ABT-199 and Elacridar loadings were found very low (1.3 wt% and 2.6 wt%). Nevertheless, these drugs are extremely potent and are still under deep pharmaceutical development and evaluation. We suppose that even quite low DLs might be enough to witness a therapeutic effect because of the highly improved pharmacokinetic profile and prolonged accessibility of the drug within the body.

Table 3. Encapsulation efficiency (EE) and drug loading (DL) of various APIs.

Copolymer	Paclitaxel	ABT-199	Curcumin	Elacridar	Dexamethasone	Clofazimine
	EE (wt%)	DL (wt%)	EE (wt%)	DL (wt%)	EE (wt%)	DL (wt%)
PCL-g-PEG0.7k1,2	2.9	nd.	6.8	1.3	92.0	12.1
PCL-g-PEG2k3,2	1.6	nd.	3.2	0.1	70.1	10.6

Encapsulation of curcumin

Based on the high EE and DL values obtained with curcumin, further experiments were carried out using this drug. Curcumin is a naturally occurring drug that exhibits potent anti-inflammatory, anti-oxidant, anti-bacteria, anti-virus, anti-tumor and antilipidemic activities. However, it has a poor solubility and poor oral bioavailability. Therefore, a water-based formulation based on graft copolymers allowing a tunable and controlled release would be of interest. In order to evaluate if the modulation of curcumin loading and release can be achieved using PCL-g-PEG, copolymers with different amphiphilicities were tested. Lower EEs and DLs with high hydrophilic copolymer were confirmed, EE decreasing from 92 wt% to 58 wt% and DL decreasing from 12.1 wt% to 8.2 wt% in PCL-g-PEG0.7k1,2 and PCL-g-
PEG2k$_{5,4}$, respectively (Table 4, entries 1 and 7). Roughly, three ranges of amphiphilicity can be drawn out of these results with similar EE and DL for each range: EE ≈ 90 wt% and DL ≈ 12 wt% for EG/CL ≤ 2 (entries 1-3); EE ≈ 70 wt% and DL ≈ 10 wt% for 2 ≤ EG/CL ≤ 3.5-4 (entries 4-5); and EE ≈ 55 wt% and DL ≈ 8-9 wt% for EG/CL ≥ 4.5 (entries 6-7). This shows the importance of the EG/CL ratio that impacts the resulting conformation of nanoaggregates. As the amount of PEG is increased, higher amount of PEG chains are stuck into the structure of the nanoaggregates, resulting in a much less hydrophobic core, which does not represent a good environment to encapsulate hydrophobic drugs.

Coming to the comparison between linear and graft copolymers, no influence of the architecture was found for a same EG/CL ratio (EG/CL = 2.6, entries 1 and 8). Similar EE and DL were obtained for PCL-$_g$-PEG2k$_{2.6}$ (PCL = 21300 g/mol ; PEG = 2000 g/mol) and PCL-$_b$-PEG5k$_{2.6}$ (PCL = 5000 g/mol ; PEG = 5000 g/mol). For comparison lower molecular weights PCL-$_b$-PEG copolymers with a same EG/CL = 2.6 ratio are reported in literature for the encapsulation of curcumin. Liu et al. synthesized PCL2k-$_b$-PEG2k and prepared curcumin-loaded polymer micelles by solid dispersion method.38 DL and EE were respectively 14.8 ± 0.1 wt% and 98.9 ± 0.7 wt%. Same results were reported by Song et al. (PEG2.4k-PCL2.4k)50 and Gou et al. (PEG2k-PCL2k)51 who used thin-film hydration or nanoprecipitation methods for micelles preparation, respectively. These values are higher than the ones obtained with PCL-$_g$-PEG2k$_{2.6}$. This can be explained by both the encapsulation method (thin film hydration or solid dispersion method vs. self-assembly method) and the lower molecular weight of the reported diblock copolymers (< 5000 g/mol vs. > 10000 g/mol).
Table 4. Curcumin encapsulation efficiency (EE), drug loading (DL) and sizes of nanoaggregates as a function of PCL-g-PEG copolymer amphiphilicity.

Entry	Copolymer	EE (wt%)	DL (wt%)	Sizea (nm)	PDI
1	PCL-g-PEG0.7k$_{1,2}$	92.0	12.1	40	0.28
2	PCL-g-PEG0.7k$_{1,9}$	89.4 ± 7	11.6 ± 0.4	42 ± 6	0.29 ± 0.03
3	PCL-g-PEG2k$_{2,3}$	90.8 ± 8.8	11.7 ± 0.6	23 ± 2	0.13 ± 0.01
4	PCL-g-PEG2k$_{2,6}$	75.3 ± 5.5	10.0 ± 0.6	26 ± 4	0.30 ± 0.05
5	PCL-g-PEG2k$_{3,2}$	70.1 ± 8	10.6	34 ± 1	0.24 ± 0.01
6	PCL-g-PEG2k$_{4,9}$	56.0 ± 2.6	9.4 ± 0.7	51 ± 7	0.50 ± 0.10
7	PCL-g-PEG2k$_{5,4}$	57.8 ± 5.4	8.2 ± 1.2	48 ± 4	0.43 ± 0.03
8	PCL-$_b$-PEG5k$_{2,6}$	80.3 ± 9.9	10.7 ± 0.9	56 ± 3	0.22 ± 0.04

a) Mean size determined by DLS

Size of curcumin loaded nanoaggregates was in the range 23 nm to 56 nm for all copolymers. Curcumin loaded samples were slightly larger than the blank nanoaggregates, except for the more hydrophilic copolymer PCL-g-PEG2k$_{5,4}$ whose average size decreased from 73 to 48 nm. It may be due to the fact that curcumin strongly interacts with PCL, which may induce a more compacted structure of the initially looser and more swollen nanoaggregates obtained with the most hydrophilic copolymer. As for the blank nanoaggregates (Table 2), and for the same reasons, the trend was that larger loaded nanoaggregates were obtained for the more hydrophilic copolymers. Polydispersity of drug loaded samples was large and not very different to the one of non-loaded samples showing that curcumin as low influence on the nanoaggregation behavior of the copolymers. This absence of influence is due to the less controlled self-aggregation of the graft copolymers and, for the lower EG/CL ratios, to the rapid folding of the hydrophobic core. One should note that for graft copolymers, a low extent of larger aggregates (< 30% in DLS intensity mode) is found with sizes between 100 and 200 nm depending on the copolymer. This was not observed with the well-defined linear PCL-$_b$-
PEG5k\textsubscript{2.6} giving of a more dynamic and homogenous system with better self-assembly compared to the uncontrolled self-aggregation of the graft copolymers. Noteworthy, PCL-\textit{g}-PEG2k\textsubscript{2.6} (Mn \approx 25000 g/mol) yielded nanoaggregates with D\textsubscript{H} \approx 26 nm, \textit{i.e.} of the same size as the micelles generated from low molecular weight PCL-\textit{b}-PEG2k\textsubscript{2.6} (Mn \approx 4000-5000 g/mol).50,51 For comparison, PCL-\textit{b}-PEG5k\textsubscript{2.6} with Mn = 10000 g/mol yielded larger micelles of D\textsubscript{H} \approx 55 nm. This is due to a strong folding of the high molecular weight PCL backbone in PCL-\textit{g}-PEG2k\textsubscript{2.6}.

\textit{Release of curcumin}

Depending on the stability of the micelles, drugs can be released following the disruption/desintegration of the micelles and/or by diffusion. In the case of stable polymeric micelles, diffusion may be slow if favorable interactions exist between the drug and the core of micelles. To evaluate the impact of the copolymer composition on the drug release, curcumin–loaded PCL-\textit{g}-PEG nanoaggregates with EG/CL = 1.9, 2.6 and 5.4 were prepared. \textit{In vitro} drug release was studied in PBS containing 0.1 wt\% Tween 80 and 0.015 wt\% ascorbic acid. Results are summarized in Figure 3. No burst effect was observed and results showed similar kinetics profiles during the first 3 days with ca. 10\% of the curcumin payload being released. Following this initial period, and as expected, the release was faster for nanoaggregates with higher hydrophilicity. 30\% of curcumin payload was released in 20 days with PCL-\textit{g}-PEG0.7k\textsubscript{1.9}, instead of 45\% and 55\% with PCL-\textit{g}-PEG2k\textsubscript{2.6} and PCL-\textit{g}-PEG2k\textsubscript{4.9}, respectively. Profiles were very similar for the two copolymers PCL-\textit{g}-PEG2k\textsubscript{2.6} and PCL-\textit{g}-PEG2k\textsubscript{4.9}. This was confirmed by the curves fits that were calculated using the CurveExpert 1.40 software (Microsoft Coorporation 1993) to estimate the maximal release that could be reached with the copolymers (Figure S2a-d, ESI). Release is plateauing at ca. 40\% after 40
days for PCL-g-PEG0.7k_{1.9} but reaches 69% and 72% for PCL-g-PEG2k_{2.6} and PCL-g-PEG2k_{4.9}, respectively, after 60 days.

Similar release profiles were obtained with PCL-g-PEG2k_{2.6} and PCL-b-PEG5k_{2.6} copolymers (Figure 3, inset). The two architectures showing the same drug loading and release capacities, their main difference is therefore the smaller size of the nanoaggregates in the graft copolymer ($D_H \approx 26$ nm) compared to the ones obtained from the linear block copolymer ($D_H \approx 55$ nm). This is not the case for the block copolymers with the same EG/CL = 2.6 ratios but with lower molecular weight. A 21% release was reported after 24h for PEG2k-PCL2k diblocks, and ca. 50% release after 7 to 9 days.38, 51 For comparison, similar ratios were obtained after 5 days and ca. 20 days with the graft copolymer PCL-g-PEG2k_{2.6}.

Based on the results obtained during our study, we can conclude that our nanoaggregates are able to release their payload in a controlled manner, which is depending on the hydrophilicity of the used PCL-g-PEG. It is worth to mention that although the reported release kinetics may appear slow, the situation in the body is slightly different. First, as nanoaggregates are circulating in the body the released drug is immediately redistributed, thus the release kinetics will be the most probably significantly higher. Second, in the frame of cancer therapy such nanoaggregates are expected to rapidly accumulate in the tumor tissue due to the EPR effect, where their payload will be more rapidly released that \textit{in vitro} due to the faster \textit{in vivo} degradation of copolyesters under the more acidic tumor environment.
Figure 3. Cumulative release of curcumin from PCL-g-PEG nanoaggregates as a function of EG/CL ratio. Inset corresponds to the comparison between PCL-g-PEG2k2.6 and PCL-b-PEG5k2.6 copolymers. (Data are expressed as means ± SD and correspond to measurements in triplicate)

Toxicity of curcumin loaded nanoaggregates

Curcumin loaded PCL-g-PEG nanoaggregates were tested against breast cancer cell line MCF-7. All tests were performed with associated controls to check the non-toxicity of the various culture media used in cytotoxicity tests. In more details, the effect of a few percents of PBS in the culture medium has been assessed as the buffer is used to prepare the nanoaggregates suspensions prior to cell seeding. The same protocol was used with less than 0.1% of DMSO as cosolvent to ensure the solubility of the free curcumin in the culture medium in accordance with previous studies. All media showed no toxicity (Figure S3, ESI). In a first assay, dose dependence viability of MCF-7 cells after 24h treatment was tested with the hydrophobic PCL-g-PEG0.7k1.2 to confirm the non-toxicity of unloaded nanoaggregates, and to evaluate the toxicity of curcumin-loaded micelles with a range of curcumin concentration between 0.18 and 18 µg/mL. These concentrations were selected from the literature. Figure 4a confirms the absence of cytotoxicity of the unloaded
nanoaggregates. The pertinence of the range of drug concentration was also confirmed with significant differences being obtained in terms of cells viability at low (0.18 µg/mL) and high ((18 µg/mL) curcumin doses (Figure 4b). In addition, equivalent cytotoxicities towards the MCF-7 cells were observed for the same dose of curcumin, free or entrapped in the nanoaggregates, which confirmed the activity of the drug released from the PCL-g-PEG nanoaggregates. In more details, calculated IC50 values for free curcumin and curcumin-loaded nanoaggregates were very close with values of 3 µg/mL and 5.5 µg/mL, respectively.

Figure 4. Dose dependence viability of MCF-7 cells after 24h treatment (a) with blank nanoaggregates (concentration of nanoaggregates corresponds to the quantity required to encapsulate the determined dose of curcumin in the range 0.18 to 18µg/mL) and (b) with free curcumin (squares) or curcumin loaded PCL-g-PEG0.7k1.2 nanoaggregates (diamonds). (concentrations corresponds to µg/mL of curcumin in the culture medium and data are expressed as means ± SD and correspond to measurements in triplicate)
Based on these results, curcumin concentrations of 0.18 µg/mL (medium viability) and 18 µg/mL (low viability) were selected to evaluate the impact of the copolymer amphiphilicity on their cytotoxicity towards MCF-7 cells. Four copolymers with EG/CL ratios ranging from 1.9 to 5.4 were tested. The amount of loaded nanoaggregates added to the culture medium was adjusted based on the calculated drug loadings (Table 4) to provide the selected concentrations of curcumin. Control experiments with blank nanoaggregates were run in parallel. After treatment with blank micelles for 24 h and 48 h, cells viability was above 90% through the whole range of concentrations examined during the treatment, which confirmed the non-toxicity of the various copolymers for all EG/CL ratios (Figure S4, ESI). In other words, copolymers had no activity and effect on the cytotoxicity determination of curcumin loaded in nanoaggregates. MCF-7 cells viability was then evaluated in the presence of curcumin-loaded nanoaggregates as shown in Figure 5.
Figure 5. *In vitro* cell cytotoxicity of curcumin and curcumin-loaded nanoaggregates as a function of the PCL-g-PEG copolymer amphiphilicity after (a) 24 h and (b) 48 h. (Data are expressed as means ± SD and correspond to measurements in triplicate)

After 24h cell viabilities were in the range 30 to 40% for all formulations, including free curcumin. However, at the lower dose of 0.18 µg/mL the most hydrophobic copolymer PCL-g-PEG0.7k1.9 yielded the highest cytotoxicity. After 48h of treatment cells viability was only 60% for PCL-g-PEG0.7k1.9 whereas all other formulations were not cytotoxic. These results show a higher cytotoxicity towards MCF-7 cancer cells for the most hydrophobic copolymer. At low curcumin dose, a strong increase of activity is gained from the use of the PCL-g-PEG0.7k1.9 copolymer compared to free curcumin. Considering the drug release profiles
(Figure 3), the observed differences cannot be ascribed to higher curcumin content in the culture medium as all copolymers would release the same amount of their payload after 48h (~ 7%). The difference of activity is therefore based on differences in the PCL-g-PEG composition, architecture, and consequently on different amphiphilicity of the various nanoaggregates. Cellular uptake dependence over these factors is believed to be involved here. It was previously reported a higher cellular uptake for hydrophobic PEG2k- or PEG5k-PLA block and miktoarm copolymers with EG/LA > 2.5,17 whereas some others reported the invert effect for PEG2k-PCL block copolymers with EG/CL < 2.5.19 This discrepancy of interpretations demonstrates the difficulty to link the cytotoxic effect of drug loaded vectors with a single parameter. Beside pure release parameters, the resulting cytotoxicity depends on many factors that can influence the endocytosis pathways, such as particle size, morphology, surface charge, and of course the amphiphilicity of the copolymers.

\begin{align*}
\textbf{Scheme 1.} & \text{ Relative cytotoxicity of curcumin loaded nanoaggregates as a function of the EG/CL ratio, grafting number and PEG molecular weight.}
\end{align*}
In the present study, the higher efficiency of PCL-\(g\)-PEG0.7k\(_{1.9}\) over its grafted counterparts is mainly related to the PEG chain length rather than the pure amphiphilic balance, the nanoaggregates sizes or the grafting number as supported by the following points. First, despite very different EG/CL ratios, all copolymers lead to loaded nanoaggregates of similar sizes (ca. 40 nm in diameter), which implies that size is not a critical factor. Second, considering the average grafting number, one should note that the grafting number of PCL-\(g\)-PEG0.7k\(_{1.9}\) and PCL-\(g\)-PEG2k\(_{5.4}\) is \(~20\)instead of \(10\) in PCL-\(g\)-PEG2k\(_{3.2}\). Despite these twice lower grafting number and lower hydrophilicity, curcumin-loaded PCL-\(g\)-PEG2k\(_{3.2}\) nanoaggregates behave like PCL-\(g\)-PEG2k\(_{5.4}\) in terms of cells cytotoxicity. In the studied EG/CL range, nanoaggregates with shorter PEG chains allow improved cell membranes interactions which results in better cellular uptake; as illustrated in Scheme 1.

This is confirmed by the dissipative dynamics simulation study carried out by Zhang et al.\(^{18}\) They investigate how nanoparticles coated with different amphiphilic copolymers penetrate the cells as a function of the entry force and penetration force needed to cross the cell membrane. Hydrophobicity, hydrophilic/hydrophobic blocks repartition but also rigidity of the polymer presented to the membrane had a strong impact. Rigid copolymers showed better capability and need less time to pass through the cell membrane. This is in total accordance with our findings where shorter, more rigid and less hydrophilic PEG0.7k segments are expected to require less energy to pass through the cell membrane compared to PEG2k ones. An in depth study based on fluorescence microscopy will be undertaken in a future work to elucidate this particular point.

Finally, the importance of the architecture is clearly visible when comparing block and graft copolymers. Based on the PEG molecular weight and EG/CL ratio, one might expect a lower efficiency for the PCL-\(b\)-PEG5k\(_{2.6}\) diblock copolymer but it is comparable to the PCL-\(g\)-PEG0.7k\(_{1.9}\) graft copolymer. The polymer rigidity might again be a critical factor here.
In summary, the modulation offered by our synthetic approach for PCL-g-PEG copolymers offers great opportunities and a high potential for efficient DDS with high cytotoxicity against selected MCF-7 cancer cell line.

Of course to prove the applicability of our nanoaggregates as DDS further investigation is needed and under way both in terms of formulation and freeze-drying of the DDS and in terms of in vivo applicability. However, considering the obtained results, it is our belief that the proposed PCL-PEG graft copolymers represent a good alternative to the classical diblock copolymers. Although the later might appear to date as more viable economically, PCL-PEG graft copolymers have various advantages compared to their linear counterparts. First, their CAC is about 10 times lower, which is of importance for formulation and economic reasons. Second, although minor populations of larger aggregates are obtained with the graft copolymers, they present more compact structures with twice lower hydrodynamic diameters compared to their linear counterparts, which may be of benefit for tissue penetration. Last but not least, the proposed PCL-PEG graft copolymers present the main advantage of being tunable, depending on the target application. When diblock copolymers can only be functionalized on their chain ends, graft copolymers obtained by thiol-yne approach, thanks to the presence of unreacted alkyne groups (cf. grafting efficiency), could be further modified with higher substitution degrees or with multifunctionalities. This particular point should be the matter of future work.

CONCLUSION

In this work, the easy modulation offered by the photo thiol-yne approach to generate amphiphilic copolymers was shown. PCL-g-PEG copolymers whose amphiphilicity was easily tuned from hydrophobic (EG/CL = 1.9) to hydrophilic (EG/CL = 5.4) have been synthesized. Their CAC is low, in the range 1 to 5 mg/L, it increased with the increase of
hydrophilicity. The grafting number was found to be critical for the CAC as PCL-g-PEG with the same grafting number present similar CAC values independently of the EG/CL ratio. Nanoaggregates were easily loaded with various drugs with DL being dependent on the APIs. Best results were obtained with curcumin that could be loaded at 12 wt%. The curcumin loaded nanoaggregates present sizes in the range 23 nm to 55 nm for all copolymers. All curcumin release curves present no burst effect although a faster release is obtained from the nanoaggregates with higher hydrophilicity. Finally, in terms of cytotoxicity against MCF-7 cells, PCL-g-PEG0.7k1.9 is a better DDS candidate due to a combination of higher hydrophobicity and shorter PEG chains that may lead to a better cellular uptake in vitro. Of course the selection of suitable candidates for treatment of selected deseases has to be based on in vivo evaluation and we believe that the results summarized in the present paper could be usable for the selection of polymer nanoaggregates for future preliminary in vivo experiments.

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Scheme S1. Schematic representation of the preparation of the PCL-g-PEG copolymers by thiol-yne approach.

Figure S1. Excitation spectra of pyrene as a function of the concentration of PCL-g-PEG2k3.2;
Figure S2. Fit curves for the curcumin release from PCL-g-PEG copolymers; Figure S3. Viability of MCF-7 cells in different media; Figure S4. Viability of MCF-7 cells in the presence of non-loaded nanoaggregates; Table S1. SEC analysis of PCL-g-PEG during degradation; Table S2. Chemical structure and solubility parameters of tested APIs.

ACKNOWLEDGMENTS

The authors wish to thank the Azm & Saade Association for Assala Al Samad’s PhD fellowship, Prof. Rachid Makhloufi from the Institut Français Prague as well as Campus France for Eva Koziolová’s internship (Prisme Project 185CZEB160040), Stéphane Dejean
for 1H NMR analyses and Aurélien Lebrun of the Laboratoire de mesures physiques (LMP)-University Montpellier 2 for DOSY NMR analyses. The work was also supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), Project POLYMAT LO1507 and Grant Agency of the Czech Republic (grant 15-02986S).

NOTES AND REFERENCES

1. G. S. Kwon and K. Kataoka, *Advanced Drug Delivery Reviews*, 2012, **64**, 237-245.

2. H. Otsuka, Y. Nagasaki and K. Kataoka, *Advanced Drug Delivery Reviews*, 2012, **64**, 246-255.

3. G. Gaucher, R. H. Marchessault and J. C. Leroux, *Journal of Controlled Release*, 2010, **143**, 2-12.

4. J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz and P. Couvreur, *Chem Soc Rev*, 2013, **42**, 1147-1235.

5. V. Weissig, T. K. Pettinger and N. Murdock, *Int J Nanomed*, 2014, **9**, 4357-4373.

6. A. L. Sisson, D. Ekinci and A. Lendlein, *Polymer*, 2013, **54**, 4333-4350.

7. M. A. Woodruff and D. W. Hutmacher, *Prog Polym Sci*, 2010, **35**, 1217-1256.

8. T. K. Dash and V. B. Konkimalla, *Journal of Controlled Release*, 2012, **158**, 15-33.

9. F. Bahadori, A. Dag, H. Durmaz, N. Cakir, H. Onyuksel, U. Tunca, G. Topcu and G. Hizal, *Polymers- Basel*, 2014, **6**, 214-242.

10. X. Gao, B. L. Wang, X. W. Wei, W. Rao, F. Ai, F. Zhao, K. Men, B. W. Yang, X. Y. Liu, M. J. Huang, M. L. Gou, Z. Y. Qian, N. Huang and Y. Q. Wei, *Int J Nanomed*, 2013, **8**, 971-982.

11. S. A. Senevirathne, K. E. Washington, M. C. Biewer and M. C. Stefan, *J Mater Chem B*, 2016, **4**, 360-370.
12. M. Ukawala, T. Rajyaguru, K. Chaudhari, A. S. Manjappa, S. Pimple, A. K. Babbar, R. Mathur, A. K. Mishra and R. S. R. Murthy, Drug Deliv, 2012, 19, 155-167.

13. K. Yoon, H. C. Kang, L. Li, H. Cho, M. K. Park, E. Lee, Y. H. Bae and K. M. Huh, Polymer Chemistry, 2015, 6, 531-542.

14. Z. X. Du, J. T. Xu and Z. Q. Fan, Macromolecular Rapid Communications, 2008, 29, 467-471.

15. E. A. Simone, T. D. Dziubla, F. Colon-Gonzalez, D. E. Discher and V. R. Muzykantov, Biomacromolecules, 2007, 8, 3914-3921.

16. R. S. Lee and Y. T. Huang, Polymer Journal, 2010, 42, 304-312.

17. C. Garofalo, G. Capuano, R. Sottile, R. Tallerico, R. Adami, E. Reverchon, E. Carbone, L. Izzo and D. Pappalardo, Biomacromolecules, 2014, 15, 403-415.

18. L. Y. Zhang, M. Becton and X. Q. Wang, Journal of Physical Chemistry B, 2015, 119, 3786-3794.

19. Z. Zhang, Q. Q. Qu, J. R. Li and S. B. Zhou, Macromol Biosci, 2013, 13, 789-798.

20. P. Elamanchili, C. Mceachern and H. Burt, J Pharm Sci-Us, 2009, 98, 945-958.

21. C. Hoskins, P. K. Thoo-Lin and W. P. Cheng, Therapeutic delivery 2012, 3, 59-79

22. J. Logie, S. C. Owen, C. K. McLaughlin and M. S. Shoichet, Chem Mater, 2014, 26, 2847-2855.

23. Z. S. Gao and A. Eisenberg, Macromolecules, 1993, 26, 7353-7360.

24. C. L. Lo, C. K. Huang, K. M. Lin and G. H. Hsiue, Biomaterials, 2007, 28, 1225-1235.

25. F. Coumes, V. Darco, D. Domurado, S. M. Li and J. Coudane, Polymer Chemistry, 2013, 4, 3705-3713.

26. X. Jiang, E. B. Vogel, M. R. Smith and G. L. Baker, Macromolecules, 2008, 41, 1937-1944.
27. X. W. Jiang, M. R. Smith and G. L. Baker, *Macromolecules*, 2008, **41**, 318-324.
28. S. Onbulak, S. Tempelaar, R. J. Pounder, O. Gok, R. Sanyal, A. P. Dove and A. Sanyal, *Macromolecules*, 2012, **45**, 1715-1722.
29. H. Y. Li, R. Riva, R. Jerome and P. Lecomte, *Macromolecules*, 2007, **40**, 824-831.
30. R. Riva, P. Schmeits, F. Stoffelbach, C. Jerome, R. Jerome and P. Lecomte, *Chem Commun.*, 2005, DOI: 10.1039/B5102182k, 5334-5336.
31. K. Zhang, Y. Wang, W. P. Zhu, X. D. Li and Z. Q. Shen, *Journal of Polymer Science Part a-Polymer Chemistry*, 2012, **50**, 2045-2052.
32. B. Parrish, R. B. Breitenkamp and T. Emrick, *J Am Chem Soc.*, 2005, **127**, 7404-7410.
33. J. Rieger, P. Dubois, R. Jerome and C. Jerome, *Langmuir*, 2006, **22**, 7471-7479.
34. J. Coudane, E. Laurent and M. Vert, *Macromolecular Rapid Communications*, 2004, **25**, 1865-1869.
35. S. Ponsart, J. Coudane, J. McGrath and M. Vert, *J Bioact Compat Pol.*, 2002, **17**, 417-432.
36. A. Al Samad, Y. Bakkour, C. Fanny, F. El Omar, J. Coudane and B. Nottelet, *Polymer Chemistry*, 2015, **6**, 5093-5102.
37. X. Gao, F. J. Zheng, G. Guo, X. X. Liu, R. R. Fan, Z. Y. Qian, N. Huang and Y. Q. Wei, *J Mater Chem B*, 2013, **1**, 5778-5790.
38. L. Liu, L. Sun, Q. Wu, W. Guo, L. Li, Y. Chen, Y. Li, C. Y. Gong, Z. Qian and Y. Q. Wei, *Int. J. Pharm.*, 2013, **443**, 175-182.
39. H. Danafar, K. Rostamizadeh, S. Davaran and M. Hamidi, *Drug Dev Ind Pharm*, 2014, **40**, 1411-1420.
40. Y. J. Wang, M. H. Pan, A. L. Cheng, L. I. Lin, Y. S. Ho, C. Y. Hsieh and J. K. Lin, *Pharmaceut Biomed*, 1997, **15**, 1867-1876.
41. M. Wilhelm, C. L. Zhao, Y. C. Wang, R. L. Xu, M. A. Winnik, J. L. Mura, G. Riess and M. D. Croucher, *Macromolecules*, 1991, **24**, 1033-1040.

42. Y. Cao, J. Q. Zhao, Y. M. Zhang, J. F. Liu, J. J. Liu, A. J. Dong and L. D. Deng, *Rsc Adv*, 2015, **5**, 28060-28069.

43. X. W. Wei, C. Y. Gong, M. Y. Gou, S. Z. Fu, Q. F. Guo, S. Shi, F. Luo, G. Guo, L. Y. Qiu and Z. Y. Qian, *International Journal of Pharmaceutics*, 2009, **381**, 1-18.

44. P. J. W. Schuijl, H. J. T. Bos and L. Brandsma, *Recl Trav Chim Pay-B*, 1969, **88**, 597-603.

45. M. Lachia, F. Denes, F. Beaufils and P. Renaud, *Org Lett*, 2005, **7**, 4103-4106.

46. E. F. Choo, J. Boggs, C. Q. Zhu, J. W. Lubach, N. D. Catron, G. Jenkins, A. J. Souers and R. Voorman, *Drug Metab Dispos*, 2014, **42**, 207-212.

47. F. Danhier, N. Lecouturier, B. Vroman, C. Jerome, J. Marchand-Brynaert, O. Feron and V. Preat, *Journal of Controlled Release*, 2009, **133**, 11-17.

48. R. K. Maheshwari, A. K. Singh, J. Gaddipati and R. C. Srimal, *Life Sci*, 2006, **78**, 2081-2087.

49. M. M. Yallapu, M. Jaggi and S. C. Chauhan, *Drug Discov Today*, 2012, **17**, 71-80.

50. Z. M. Song, W. X. Zhu, N. Liu, F. Y. Yang and R. L. Feng, *International Journal of Pharmaceutics*, 2014, **471**, 312-321.

51. M. L. Gou, K. Men, H. S. Shi, M. L. Xiang, J. A. Zhang, J. Song, J. L. Long, Y. Wan, F. Luo, X. Zhao and Z. Y. Qian, *Nanoscale*, 2011, **3**, 1558-1567.

52. L. Y. Zhao, J. C. Du, Y.W. Duan, Y. N. Zang, H. S. Zhang, C. F. Yang, F. L. Cao, G. X. Zhai, *Colloid. Surface B* 2012, **97**, 101-108.

53. M. Lopez-Lazaro, *Mol Nutr Food Res*, 2008, **52**, S103-S127.
PCL-PEG graft copolymers with tunable amphiphilicity as efficient drug delivery systems

A. Al Samad, a,b A. Bethry, a E. Koziolová, c M. Netopilík, c T. Etrych, c Y. Bakkour, b J. Coudane, a F. El Omar, b B. Nottelet a*

a Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université
Montpellier-ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault BP14491, 34093 Montpellier cedex 5, France
E-mail: benjamin.nottelet@umontpellier.fr

b Laboratory of Applied Chemistry, Doctoral School of Sciences and Technology, Lebanese University, Lebanon

c Institute of Macromolecular Chemistry AS CR, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
Scheme S1. Schematic representation of the preparation of the PCL-g-PEG copolymers by thiol-yne approach.
Figure S1. Excitation spectra of pyrene ($\lambda_{em} = 371$ nm) as a function of the concentration of PCL-g-PEG2k$_{3,2}$.
Figure S2a. Fit curve for the curcumin release from PCL-g-PEG0.7k1.9 (software Curve Expert 1.4)

Figure S2b. Fit curve for the curcumin release from PCL-g-PEG2k2.6 (software Curve Expert 1.4)
Figure S2c. Fit curve for the curcumin release from PCL-g-PEG2k4.9 (software Curve Expert1.4)

Figure S2d. Extrapolation of fit curves over 100 days for the release curcumin from PCL-g-PEG
Figure S3. Viability of MCF-7 cells in different media. The grey bar represent the control in culture medium, green bars represent the culture medium supplemented with PBS (1.5% to 15%) and purple bars represent the culture medium supplemented with DMSO (0.05% and 0.1%)
Figure S4. Viability of MCF-7 cells in the presence of non-loaded nanoaggregates. The concentration of blank nanoaggregates used in this assay was equal to the concentration of loaded nanoaggregates used to reach curcumin concentrations of 0.18 and 18 μg/L. (Data are expressed as means ± SD and correspond to measurements in triplicate)
Table S1. SEC analysis of PCL-g-PEG during degradation at 37°C in PBS. (Mn values expressed as means ± SD and correspond to measurements in triplicate.

Copolymer / Time	PCL-g-PEG0.7k_1,2		PCL-g-PEG2k_5,4	
	Mn (g/mol)	D	Mn (g/mol)	D
T₀	19400 ± 1400	2,1 ± 0,2	27000 ± 3700	1,6 ± 0,2
1 W	27000 ± 1150	2,6 ± 0,2	20000 ± 7200	1,5 ± 0,1
	1700 ± 100	1,2 ± 0,2		
1 M	27500 ± 1800	2,8 ± 0,1	17400 ± 5500	1,2 ± 0,1
	1200	1,2	2900 ± 100	1,0 ± 0,1
3 M	16400 ± 500	1,9 ± 0,1	37100 ± 2300	1,4 ± 0,1
	960 ± 60	1,1	2600 ± 100	1,0 ± 0,1
6 M	12800 ± 400	1,6 ± 0,1	26000 ± 4900	1,4
	900 ± 50	1,1	2500 ± 100	1,1
Table S2. Chemical structure and solubility parameters of tested APIs

Drug	Chemical structure	Solubility	logP*
Paclitaxel	![Chemical structure](image1.png)	1 mg/L	3.95
		Zhang JA. et al. Eur J Pharm Biopharm 2005, 59, 177.	
ABT-199	![Chemical structure](image2.png)	< 0.4 mg/L	8.05
(Venetoclax)		3. Choo E.F. et al. Drug Metab Dispos 2014, 42, 207.	
Curcumin	![Chemical structure](image3.png)	0.6 mg/L	3.07
		B.T. Kurien et al. Assay Drug Dev Technol, 2007, 5, 567.	
Elacridar	![Chemical structure](image4.png)	120 µg/L	4.43
		Sane R. et al. J Pharm Sci 2013, 102, 1343.	
Dexamethasone	![Chemical structure](image5.png)	0.1 g/L	2.03
		Dilova V. et al. Boll Chim Farm 2004,143, 20.	
Clofazimine	![Chemical structure](image6.png)	0.3 g/L	7.46
		Peters K. et al. J. Antimicrob. Chemother. 2000, 45, 77.	

*From Scifinder, calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02