SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL EVALUATION OF SCHIFF’S BASE AND ARYL AMINOMETHYL DERIVATIVES.

N. N. Kansagara, V. R. Dangar, and V. R. Shah*

Department of Chemistry, Kamani Science college,
Amreli-365601 Gujarat, India
Corresponding author Email: vrdangar@gmail.com

Keywords: Schiff’s bases, Aryl amino methyl derivatives, Antimicrobial activities.

ABSTRACT. Schiff’s bases are obtained on heating an aldehydes with aromatic amine in presence of glacial acetic acid. These are the compounds containing characteristic –HC=N– group. Aryl amino methyl derivatives of heterocyclic compounds to synthesize by selective reduction of schiff’s bases (imine group) with sodiumborohydride in controlled experimental condition. Schiff’s base of N-Aryl-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]methanamines & Aryl amines of N-Aryl-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]methanamines were prepared. Their chemical structures were confirmed by means of IR, NMR, Mass data and by elemental analysis. All of the synthesized compounds were tested for their antibacterial and antifungal activity.

INTRODUCTION

Literature study revealed that schiff’s bases derivatives have a wide variety of uses such as antiviral1, antifungal2, antiparasitic3, antibacterial4, antipyretic5, anti-inflammatory6, plant hormone activity7, and antitubercular8. Aryl amines exhibit a wide range of biological activities such as P2X7 receptor antagonists9, HDMI-p53 protein-protein antagonists10, MCH1 receptor antagonist11, NPY5 antagonists12, dual Atk1/2 inhibitors13. This inspired us to synthesize schiff’s base of N-Aryl-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]methanamines (1a-l) & Aryl amines of N-Aryl-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]methanamines (2a-l).

The structure of synthesized compounds were assigned based on Elemental analysis, I.R.1H-NMR and Mass spectral data. The antimicrobial activity was assayed by using the cup-plate agar diffusion method14 by measuring the zone of inhibition in mm. All the compounds were screened in vitro for their antimicrobial activities15 against varieties of bacterial strains such Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Fungi Aspergillus niger using Dimethylformamide solvent at 40 μg/ml concentration. Standard drugs like Amoxicillin, Benzyl penicillin, Ciprofloxacin, Erythromycin and Griseofulvin were used for comparison purpose. (Table-1).

RESULTS AND DISCUSSION:

The synthesis of N-Aryl-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3- yl]methanamines (1a-l) was prepared by reaction of 2-(4-Methylphenyl)imidazo[1,2-a]pyridin-3-carbaldehyde (Type-I) and Amine derivatives in presence of glacial acetic acid & N-Aryl-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]methanamines (2a-l) have been prepared by
the reduction of N-Aryl-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]methanimines with sodiumborohydride in methanol at ambient temperature (Scheme-1).

The formulas of the selected compounds were confirmed by the elemental analysis and their structures were determined by IR, \(^1\)H-NMR, and mass spectral data.

ANTIBACTERIAL ACTIVITY:

It has been observed from the microbiological data that all compounds (1a-l) and (2a-l) were found to be mild to moderately active against Gram positive and Gram negative bacterial strains. However the maximum activity was observed in compounds (1d),(1k),(2b),(2d) against *S.aureus*. The significant activity was observed in compounds (1e),(1k),(2j),(2l) against *B.subtilis*. The maximum activity was displayed by the compounds (1i),(1k),(2b),(2k), against *E.coli*. The compounds (1h),(1l),(2a), and (2l) were comparatively more effective against *P. aeruginosa*.

ANTIFUNGAL ACTIVITY:

The antifungal data revealed that compounds were least toxic to the fungal strain. However mild activity was shown by the compounds (1c),(1d),(1j),(2c),(2g),(2h), against *A. niger*. The antibacterial activity was compared with standard drug viz. Amoxicillin, Benzyl Penicillin, Ciprofloxacin, Erythromycin and antifungal activity was compared with standard drug viz. Griseofulvin.

EXPERIMENTAL SECTION:

Melting points were taken in open capillary tubes are uncorrected. IR spectra (cm\(^{-1}\)) were recorded on Shimadzu-435-IR Spectrophotometer and, \(^1\)H-NMR spectra on Bruker spectrometer(300MHz) using TMS as an internal standard, chemical shift in δ ppm.

General procedure for the preparation of 2-(4-Methylphenyl)imidazo[1,2-a]pyridin-3-carbaldehyde (Type-I):

Align 2.0 lit 4/N RBF equipped with over head stirrer with condenser on water bath. Charged 84 ml DMF and 1.0 lit CHCl\(_3\) into RBF. It was cooled at 0 - 5 °C temperature. Slowly added 165 ml POCl\(_3\) within 1.0 h. During addition the exothermicity was controlled. Temperature raised at 10-15 °C and stirred for 30 minutes. 50g (0.225 mol) of 6-Methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridine was added slowly, temp. raises, refluxed for 6 hrs. CHCl\(_3\) was removed by vacuum distillation and reaction mass cooled at room temperature, poured into 2.0 lit ice cold water. Neutral pH adjusted bellow room temperature with the help of mild caustic solution. The solid mass was collected by filtration, washed with water, dried and crystallized from the methanol. Yield 80%, m.p. 152 °C.

General procedure for the preparation of N-Aryl-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]methanimines (1a-l):

A mixture of 6-Methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridine-3-carbaldehyde 2.5g (0.01mol), p-anisidine 1.23g (0.01mol) and catalytic amount of glacial acetic acid in 20 ml methanol was refluxed for 16 hrs. The contents was cooled and product isolated by filtration and
N-Aryl-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]methanimines have been prepared. The physical data are recorded in table no.1.

N-Aryl-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]methanimines (1a-l):

Yield 75%, m.p. 178°C; IR(KBr): ν 2958, 2852, 1444, 1398 (Alkane, -CH₃), 1585 (Imidazo[1,2-a], C=N str.), 1244 (pyridine, C-N str.); 1608 (schiff base, C=N str.), 3026, 1481, 1107, 1029, 829 (Aromatic), cm⁻¹; ¹H-NMR (CDCl₃): δ 3.82 (s, 3H, -OCH₃), 2.43 (s, 6H, -CH₃), 8.78 (s, 1H, -CH=N-Ar), 6.90-7.69 (m, 11H, Ar-H), Mass: m/z = 357 M.F.: C₂₃H₂₃N₃O.

General procedure for the preparation of N-Aryl-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]methanamines (2a-I):

3.55g (0.01mol) N-(4-Methoxyphenyl)-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]methanimine was taken in 25 ml methanol and cooled at 5-10°C temperature. Sodiumborohydride 0.57g (0.15mol) was added over a period of 30 min. The reaction mixture stirred over night at room temperature. Reaction mass was then poured in ice water and excess of sodiumborohydride was neutralized by adding dil.HCl. The product was extracted with ether and washed with water. Dried over anhydrous Na₂SO₄ and finally the ether was evaporated to give amino methyl derivatives. Yield, 56%, m.p. 165°C, Elemental analysis calculated for C₂₃H₂₃N₃O; Found: C-77.98%; H-6.48%; N-11.99%; Requires: C-77.28%, H-6.49%, N-11.76%. Similarly, other N-Aryl-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]methanamines were prepared. The physical data are recorded in table no.1.

N-Aryl-1-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]methanamines (2a-I):

Yield 56%, m.p. 165°C; IR(KBr): ν 2942, 2899, 1463, 1388 (Alkane, -CH₃), 1604 (Imidazo[1,2-a], C=N str.), 1232 (pyridine, C-N str.), 3288 (Amine, N-H str.), 3020, 1520, 1114, 1035, 823 (Aromatic), cm⁻¹; ¹H-NMR (CDCl₃): δ 3.64 (s, 3H, -OCH₃), 2.31 & 2.33 (s, 6H, -CH₃), 4.52 (s, 2H, Ar-N-CH₂-), 5.70 (s, 1H, Ar-NH-) 6.60-7.68 (m, 11H, Ar-H), Mass: m/z = 357 M.F.: C₂₃H₂₃N₃O.
Table-1

Characterization data of the compounds (1a-l) and (2a-l):

compd no.	R	Molecular formula	Mole. Wt.	M.P. (°C)	Nitrogen % Calcd.	Found
1a	4-OCH₃-C₆H₄-	C₂H₅NO	355	178	11.82	11.75
1b	4-OH-C₆H₄-	C₂H₁₀NO₂	341	186	12.31	12.25
1c	C₆H₄-	C₂H₁₀N₁	325	222	12.92	12.89
1d	4-Cl-C₆H₄-	C₂H₁₀ClN₁	359.5	236	11.68	11.75
1e	3-Cl-C₆H₄-	C₂H₁₀ClN₁	359.5	148	11.68	11.67
1f	2,5-(Cl)_2-C₆H₄-	C₂H₁₂Cl₂N₁	394	108	10.65	10.67
1g	3,4-(Cl)_2-C₆H₄-	C₂H₁₂Cl₂N₁	394	225	10.65	10.59
1h	4-F-C₆H₄-	C₂H₁₀FN₃	343	184	12.24	12.27
1i	3-NO₂-C₆H₄	C₂H₁₀N₂O₂	370	166	15.13	15.20
1j	4-NO₂-C₆H₄	C₂H₁₀N₂O₂	370	120	15.13	15.10
1k	1-C₆H₄-	C₂H₁₂N₁	375	dec.176	11.20	11.19
1l	3-CH₃-C₆H₄	C₂H₁₂N₁	339	118	12.38	12.41
2a	4-OCH₃-C₆H₄-	C₂H₁₂NO₂	357	165	11.76	11.99
2b	4-OH-C₆H₄-	C₂H₁₀NO₂	343	dec.195	12.24	12.22
2c	C₆H₄-	C₂H₁₂N₁	327	176	12.84	12.80
2d	4-Cl-C₆H₄-	C₂H₁₀ClN₁	361.5	dec.180	11.61	11.65
2e	3-Cl-C₆H₄-	C₂H₁₀ClN₁	361.5	178	11.61	11.68
2f	2,5-(Cl)_2-C₆H₄-	C₂H₁₂Cl₂N₁	396	194	10.60	10.56
2g	3,4-(Cl)_2-C₆H₄-	C₂H₁₂Cl₂N₁	396	dec.260	10.60	10.61
2h	4-F-C₆H₄-	C₂H₁₀FN₃	345	138	12.17	12.15
2i	3-NO₂-C₆H₄	C₂H₁₂N₂O₂	372	165	15.05	15.03
2j	4-NO₂-C₆H₄	C₂H₁₂N₂O₂	372	136	15.05	15.06
2k	1-C₁₀H₁₇-	C₂H₂₀N₁	377	175	11.14	11.11
2l	3-CH₃-C₆H₄	C₂H₁₂N₁	341	dec.204	12.41	12.40

Table-2

compd no.	Antibacterial activity (zone of inhibition in mm)	Antifungal activity			
	S. aureus	B. subtilis	E. coli	P. aeruginosa	A. niger
1a	13	18	16	11	10
1b	16	19	17	12	13
1c	11	13	16	17	21
1d	20	10	15	11	17
1e	10	20	12	8	15
1f	14	17	13	19	14
1g	11	15	9	18	11
1h	12	16	11	21	16
1i	11	12	18	13	15
1j	15	19	15	12	17
1k	18	20	21	10	8
1l	7	11	18	19	10
2a	13	17	11	19	9
2b	20	17	18	15	12
CONCLUSION

The present study leads to a convenient synthetic method for the synthesis of new compounds. Which show significant antibacterial and antifungal activity. Further investigation with appropriate structural modification of the above compounds may result in therapeutically useful products.

ACKNOWLEDGMENT

The authors are thankful to authorities of Kamani Science College, Amreli for providing research facilities and we are also thankful to Department of Chemistry Saurashtra University Rajkot for I.R., N.M.R., Mass spectral & elemental analysis.
REFERENCES:

[1] Das, Arima, Lien, Eric J. Trousdale, Melvin D.; Chin. Pharm. J. (Taipe) 49 (2), 89-102 (Eng.) (1997); Chem. Abstr., 128 (18), 217259n (1998).

[2] Ergenc, Nedime, Uinsoy, Nuray, Capangultate, Soruis, Aulten O tuk, Kiraz, Mnammer; Arch. Pharm. 329 (8-9), 427-430 (1996); Chem. Abstr., 126, 1, 8031b (1997).

[3] Pascal Rathelst, Nadine Azos, Hussain El-Kashef, Florence Delwasi; Eur. J. Med. Chem., 57, 671-679 (2002).

[4] Pawar R. P., Anduskary N. M., Vibhute V. B.; J. Indian Chem. Soc., 76(5), 271-72 (Eng.) (1999); Chem. Abstr., 131, 677, 271829y (1999).

[5] Cascaval Alexandru, Stocia, Gheorghe-Zaharia, Berdan, Ioan; Rom. RO, 106, 403 (Cl. CO7D 231/04) (1993), Appl. 143, 707, 15, (1990); Chem. Abstr., 129, 2, 491, 16120g (1998).

[6] Adnan A. Bekhil, Heshan T. V. Fahwy, Azzaim Baraka et. al.; Eur. J. Med. Chem., 38, 27-56 (2003).

[7] Wang, Yangang, Ye, Wenfa, Yang Jun., Lou, Aihong; Wuhan Daxue Xuebao, Ziran; Kexueban; Chem. Abstr., 125 (13), 167488b (1996).

[8] Hearn M.J. and Cynamon M.H.; JAC., 53, 185-191 (2004).

[9] G. H. Merriman, L. Ma, P. Shum, D. McGarry, F. Volz, J. S. Sabol, A. Gross, Z. Zhao, D. Rampe, L. Wang, F. Wirtz-Brugger, B. A. Harris, D. Macdonald; Bioorg. Med. Chem. Lett., 15, 435-438 (2005).

[10] D. J. Parks, L. V. LaFrance, R. R. Calvo, K. L. Milkiewicz, V. Gupta, J. Lattanze, K. Ramachandren, T. E. Carver, E. C. Petrella, M. D. Cummings, D. Maguire, B. L. Grasberger, T. Lu; Bioorg. Med. Chem. Lett., 15, 765-770 (2005).

[11] T. Guo, Y. Shao, G. Qian, L. L. Rokosz, T. M. Stauffer, R. C. Hunter, S. D. Babu, H. Gu, D. W.Hobbs; Bioorg. Med. Chem. Lett., 15, 3696-3700 (2005).

[12] W. Guba, W. Neidhart, M. Nettekoven; Bioorg. Med. Chem. Lett., 15, 1599-1603 (2005).

[13] C. W. Lindsley, Z. Zhao, W. H. Leister, R. G. Robinson, S. F. Barnett, D. Defeo-Jones, R. E.Jones, G. D. Hartman, J. R. Huff, H. E. Huber, M. E. Duggan; Bioorg. Med. Chem. Lett., 15,761-764 (2005).

[14] A. L. Barry; The antimicrobial susceptibility test: Principle and practices, edited by Illuslea & Febiger, (Philadelphia), USA, 180; Biol. Abstr., 1977, 64, 25183

[15] Panda J. Srinivas S. V., Rao M. E.; J. Indian Chem. Soc., 79(9), 770-1 (2002); Chem. Abstr., 138, 153499n (2003).