Intelligent machinery condition monitoring based on adaptive measurements

Kostyukov V.N.ᵃ, Kostyukov A.V.ᵃ, Boychenko C.H.ᵃ*
*Dynams SPC, 108/1 Rabinovicha st., Omsk 644007, Russian Federation

Abstract

The present work describes the structure and operational concept of the system for machinery condition monitoring using adaptive measurements. The work reveals the results of adaptive measurements procedure of the system illustrated by trends of centrifugal pump vibration signs. The work objective is to increase validity of machinery condition monitoring results through providing high spectral resolution. The spectral resolution is essential for separating defects in the vibration signal spectrum and retaining high speed of vibration measuring. This is required in order to eliminate the omission of defects with minimal expenses on hardware.

© 2016 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Omsk State Technical University

Keywords: Condition monitoring, algorithm, adaptive measurements, expert system, vibration

1. Introduction

Vibration analysis of the machinery casing is one of the basic techniques of machinery condition monitoring. Vibration converts into electrical signals, which parameters are used by the automatic expert system that issues messages about machinery condition. The condition monitoring system should carry out measurements of vibration and other parameters on a periodic basis. The periods depend on maximum change rates of the machinery condition.

* Corresponding author. Tel.: +7-381-225-4244; fax: +7-381-225-4372.
E-mail address: post@dynamics.ru
The changing period in a particular point for multichannel monitoring systems depends on the system’s architecture (parallel, serial, hybrid, [4]), time of signal measurement and its processing.

In order to identify particular types of defects, the expert system requires measuring vibration signals using long selections - up to ten seconds. In that case, the length of vibration measurement period may become unacceptable for condition monitoring. For example, to separate electrical and mechanical components of induction motor defects due to different rotor shaft spinning frequency and stator electric field, it is required to make spectrum analysis of signals with resolution more than 0.1 Hz. In this regard the measurements of vibration signals shall be conducted for signals longer than 10 sec. When number of channels is 180 (45 standard centrifugal machines, 4 channels per machinery) the sampling time of a channel is more than 30 min. This might cause the omission of fast-evolving defects. Time of the defect’s development from “Acceptable” condition to “Unacceptable” may take less than 5 sec [1].

To eliminate the increase of measurement period, the parallel architecture of measuring tools may be used, although, it leads to steep increase of system cost.

Therefore, the development of the procedures and techniques for the machinery condition monitoring systems with high spectrum resolution and high measuring speed and minimum expenses is an urgent task.

2. Intelligent monitoring based on adaptive measurements

In order not to increase the sampling time while saving measurements with high resolution (long selection), the operating procedure of the system may be changed. For example, the measurements with long selection may be conducted more rarely than the ones with regular parameters.

The period of vibration measurement also depends on the machinery condition. For the machinery that is in “Acceptable” condition, the measurement period may be longer than in “Action Required” condition, which is, in turn, longer than “Unacceptable” condition measurement period.

Therefore, the problem of changing parameters and procedure of a measurement unit according to the expert system results appears.

Regular multichannel measurement units have static configuration of measurement tools. The configuration is determined during the system development period and is not changed during its operation. In this case the expert system operates only analyzer unit in order to obtain the required information about machinery condition (Fig. 1-a).

The need of changing the parameters and configurations of a measurement unit during the operation requires the creation of an additional connection with the expert system in order to provide dynamic and intelligent properties (Fig. 1-b).

In this case, the measuring channel parameters (sample rate, discretization frequency, amplification constant), sampling procedure of channels, hardware configuration of measurement part of the system (degree of parallelism) change according to the expert system signals, depending on machinery condition. Moreover, the required period of measurement is provided. This period is determined by the expert system automatically according to the type of machinery and its condition.
M.U. is measurements unit, S.A.U. is signal analysis unit, E.S. is expert system.

Let us consider the work of the intelligent monitoring system on the example of centrifugal pump unit. The centrifugal pump consists of an induction electric motor and a supercharger.

The Figure 2 illustrates the trends of the vibration signs of root mean square value (RMS) and 2\(^{nd}\)-3\(^{rd}\) reversed harmonics of vibration velocity of induction electric motor during regular operation mode of monitoring system with short selection (400 msec). The duration of short selection is enough for obtaining the evaluation of RMS signals of vibration acceleration, vibration velocity and vibration displacement. It is also sufficient for analysis of automatic spectral components with 2.5 Hz resolution which is enough for sensing most of the defects. The sampling time of 180 channels of the system is 72 sec., which is sufficient for detecting the fast-evolving defects of the machinery.

As you may see on Figure 2, about 2 months ago slow growth of the RMS vibration velocity (Ve) started. It is determined by the growth of the harmonic components: 2\(^{nd}\) and 3\(^{rd}\) reversed harmonics (DV23 sign). Thus, the 2.5 resolution is not enough for separating the electrical and mechanical components of the induction motor vibration signal around the 2\(^{nd}\) reversed harmonic. The difference between them may amount to tenths of hertz, due to the sliding frequency.

![Fig. 1. The structure of monitoring system measurement part with static (a) and adaptive dynamic (b) configuration of measurement instruments.](image)

![Fig. 2. Trends of diagnostics signs of RMS of vibration velocity (Ve) and reversed harmonic RMS 2 of vibration velocity (DV23) in short selection mode.](image)
To separate these close harmonic components, the system switches to long selection mode automatically and intermittently, channel by channel. The mode accounts for 10 sec providing 0.1 Hz resolution, which is sufficient for dividing electrical and mechanic signal components. The period for switching to long selection mode is determined during system configuration, and, particularly in this case, was set for 2 hours. At this time, the channels sampling time is insignificantly increased up to 82 sec keeping sufficient value for detecting fast-evolving defects.

The Figure 3 illustrates the trends of diagnostic signs of RMS of electric and mechanical harmonic signal components of vibration velocity in adaptive measurement with long selection mode. The intermittent measures in high resolution mode allowed the expert system to determine the following information. The growth of vibration is based on mechanical component of the signal (VR2m) connected to machinery misalignment while the electrical signal component (VR2e) changes insignificantly.

Therefore, due to the adaptive measurements both high resolution and high operation speed of the system are provided.

![Graph](image)

Fig. 3. Trends of diagnostic signs of RMS of electrical (VR2e) and mechanical (VR2m) harmonic components of vibration velocity in adaptive measurement mode with a long selection.

3. Conclusion

The above mentioned procedure and construction principle of the measurement unit of machinery condition monitoring system allows to increase the validity of expert system messages through providing high spectral resolution. The resolution is demanded for separating the defects in vibration spectrum and keeping the high vibration measurement speed required for elimination of defects omission.

Usage of adaptive serial-parallel architecture allows to decrease the hardware facilities cost.

References

[1] V. N. Kostyukov, Increasing of enterprises operating efficiency due to real-time monitoring. / V. N. Kostyukov, An.V. Kostyukov. - M.: Machinostroenie, 2009, 192 p.
[2] V. N. Kostyukov, Basis of machinery vibration acoustic diagnostics and monitoring: guide book. / V. N. Kostyukov, A. P. Naumenko. - Omsk: Publisher OmSTU, 2011. 360 p.
[3] V. N. Kostyukov, Monitoring of Industrial Safety. – Moscow, Mashinostroenie, 2002, 224 p.
[4] GOST R 53564-2009. Condition monitoring and diagnostics of machines. Hazardous equipment monitoring. Requirements for monitoring systems. STANDARTINFORM, Moscow, 20 p.