Convenient Synthesis of Functionalized Unsymmetrical Vinyl Disulfides and Their Inverse Electron-Demand Hetero-Diels-Alder Reaction †

Bartosz Jędrzejewski, Mateusz Musiejuk ©, Justyna Doroszuk and Dariusz Witt *

Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; barjedrz@student.pg.edu.pl (B.J.); mateusz.musiejuk@interia.eu (M.M.); juswiecz@student.pg.gda.pl (J.D.)
* Correspondence: dariusz.witt@pg.edu.pl; Tel.: +48-58-3471851; Fax: +48-58-3472694
† Dedicated to Professor Grzegorz Młostowicz on the occasion of his 70th anniversary.

Abstract: The simple, convenient, and efficient methods for the preparation of unsymmetrical vinyl disulfides with additional functional groups under mild conditions with moderate to high yields were designed. The developed methods include the reaction of S_2-vinyl phosphorodithioate with thiotosylates or S-vinyl thiotosylate with thiols. The designed methods allow for the synthesis of unsymmetrical vinyl disulfides with additional functionalities such as hydroxy, carboxy, protected amino, or ester groups. Vinyl disulfides reacted with the generated transient o-iminothioquinones in an inverse electron-demand [4+2] cycloaddition to produce benzo[b][1,4]thiazine derivatives.

Keywords: alkenes; cycloaddition; hetero-Diels-Alder; thiosulfonates; vinyl disulfides

1. Introduction

The disulfide bond is one of the most important structural functionalities which plays a crucial role affecting the stability, folding, and biological function of proteins and peptides. It also allows the maintenance of the cellular redox balance in cells. Although aforementioned biological properties are significant in life science, disulfides [1–3] are also important and versatile compounds due to their applications in material and food chemistry.

The unsymmetrical disulfides can be applied in the formation of self-assembled monolayers (SAMs) on gold or other metals [4–6]. Good quality SAMs can be produced both from thiols and disulfides [5]. However, the disulfides provide several practical advantages. They are more stable and significantly more resistant to oxidation. Moreover, in the case of disulfides, the problems associated with intra or intermolecular reactivity of the thiol group can be avoided [7]. The unsymmetrical disulfides give monolayers of well-defined surface compositions without phase separation [8]. When a mixture of two different thiols is used, in some cases, the elimination of cooperative effects associated with the co-adsorption of corresponding thiols cannot be avoided [9]. The surface composition modified by the unsymmetrical disulfides has been applied for double-stranded DNA–protein microarrays [10], DNA immobilization via intercalation [11], and studies on surface reactions on nanoparticles [9]. Unsymmetrical disulfides have been involved in the preparation of the electrostatic self-assembly of nanostructured materials [12,13] and chemosensors for biological applications [3].

Moreover, the synthesis of unsymmetrical disulfides is an important step for the preparation of a variety of compounds involved in medicinal chemistry and advanced organic synthesis [14–17]. The developments in disulfide bond synthesis have been reviewed recently [18–22]. Although disulfides are very important in numerous fields, effective methods for the preparation of unsymmetrical disulfides are still rare. The most common synthesis of disulfide functionality is based on the nucleophilic substitution reaction of a sulphenyl derivative with a thiol or thiol derivative. The most frequently utilized electrophilic

Citation: Jędrzejewski, B.; Musiejuk, M.; Doroszuk, J.; Witt, D. Convenient Synthesis of Functionalized Unsymmetrical Vinyl Disulfides and Their Inverse Electron-Demand Hetero-Diels-Alder Reaction. Materials 2021, 14, 1342. https://doi.org/10.3390/ma14061342

Academic Editors: Barbara Pawelec and Duncan Gregory

Received: 11 February 2021
Accepted: 5 March 2021
Published: 10 March 2021

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Materials 2021, 14, 1342. https://doi.org/10.3390/ma14061342 https://www.mdpi.com/journal/materials
sulfenyl derivatives are: sulfenyl chlorides [23,24], S-alkylsulfanylisothioureas [25,26], S-alkyl thiosulfates and S-arylp-thiosulfates (Bunte salts) [27], benzothiazolyl sulfanes [28,29], benzothiazol-2-yl disulfides [30], (alkylsulfanyl)dialkylsulfonium salts [31,32], dithioperoxyesters [33], 2-pyridyl disulfides and derivatives [34,35], sulfonamides [36], N-alkyltetrazolyl disulfides [37], sulfenyl thiocyanates [38], sulfenylimesylamines [39], thiosulfonates [40] and thiosulfonanilides [41–43], 4-nitrobenzenesulfonanilides [44], thionitrites [45], thioimides [46], sulfenyl sulfinylaminides [47–49], and thiosulfonates [41–43], 4-nitroarenesulfenanilides [44], thionitrites [45], thioimides [46], the disulfides can also be efficiently obtained by the reaction of a thiol with a sulfenyldibenzimidazole [51], a disulfide exchange reaction promoted by rhodium catalyst [52,53], an electrochemical method [54], using tetrathiomolybdate in the presence of a symmetrical disulfide to promote a ring opening of an aziridine [55,56], or the application of diethyl azodicarboxylate (DEAD) [57] or a solid support [58] to promote a sequential coupling of two different thiols. The oxidation of a mixture of two different thiols to obtain an unsymmetrical disulfide has also been reported recently. The reactions can be accomplished by using 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) [59–61] or iridium (III) photoredox catalysis [62].

The 5,5-dimethyl-2-thioxo-1,3,2-dioxaphosphorinane-2-disulfanyl derivatives are readily available and can be applied for the synthesis of unsymmetrical disulfides with additional functional groups. The synthetic methodology based on the electrophilic disulfanyl derivatives allow one to obtain alkyl-aryl disulfides [63], dialkyl disulfides [64], “bioreistant” disulfides [65], unsymmetrical disulfides of L-cysteine and L-cystine [66], and diaryl disulfides [67]. The electrophilic properties of disulfanyl derivatives of phosphorodithioic acid can also be applied for the synthesis of α-sulfenylated carbonyl compounds [68], phosphorothioates with additional functional groups [69], unsymmetrical alkyl sulfoxides [70,71], and symmetrical [72,73] and unsymmetrical trisulfides [74,75].

Block and co-workers isolated ajoene as an E/Z isomers mixture in 1984 [76]. Ajoene was produced as a rearrangement product of allicin from freshly crushed garlic. The structure was established as an allyl sulfoxide containing a vinyl disulfide functionality. The presence of an unusual vinyl disulfide functionality was unexpected and other natural products with such functionality are rare. The activity of Z-ajoene as an anti-thrombotic agent [77] is higher than its E-isomer. Due to the higher biological activity of the Z-isomer, anticancer studies have focused primarily on this isomer [78,79].

Although unsymmetrical disulfides can be obtained by several different synthetic methods, the synthesis of unsymmetrical alkenyl disulfides can be accomplished by only four methods (Scheme 1A–D).

A. The reaction of sulfenyl bromide with trityl-alkenyl sulfide

B. The cleavage of an alkenyl thioacetate followed by sulfonylation

C. The reaction of E-alkenylidonium salt with sodium thiosulfate and thiols

D. The reaction of α-thiophosphorylated ketones with thiosulfonates

E. This work

Scheme 1. Previously reported methods for the synthesis of alkenyl disulfides (A–D) and our new synthesis approach (E).
The first method involves the reaction of sulfonyl bromide with trityl-alkenyl sulfide [80] (Scheme 1A). The alkenyl disulfides can also be obtained by the low-temperature cleavage of an alkenyl thioacetate with hydroxide to give alkenethiolate and the subsequent sulfonylation reaction with corresponding S-alkyl p-toluenethiosulfonate. The appropriate vinyl disulfide was obtained with a high yield after column chromatography in the second method [81–83] (Scheme 1B). Unfortunately, the formation of the E isomer or a mixture of Z/E alkenyl disulfides for both methods (Scheme 1A,B) was observed. The synthesis of unsymmetrical Z-alkenyl disulfides with additional functional groups can be accomplished with readily available starting materials under mild conditions with moderate to high yields (Scheme 1C). The third method is diastereoselective and an exclusive formation of Z-isomer is observed. The developed method includes the reaction of E-alkenyliodonium salt with sodium thiotosylate and thiols in the presence of a base [84]. The fourth method [85] is based on the base-promoted rearrangement of α-thiophosphorylated ketones followed by thioalkylation with thiotosylates (Scheme 1D).

There are a limited amount of synthetic methods available for the synthesis of alkenyl disulfides (Scheme 1). We were interested in the development of an experimentally practical and versatile method to access vinyl disulfides with additional functional groups. The designed method is based on the readily available S-vinyl phosphorodithioate and S-vinyl thiosulfonate (Scheme 1E).

The synthetic potential of vinyl disulfides can involve formation of complexes with metals, multicomponent reactions, Heck reaction, olefin metathesis, or the variety of cycloaddition reactions. Due to the poor availability of vinyl disulfides, aforementioned transformations has not been examined yet.

2. Materials and Methods

Preparation of thiotosylates 1a–1e; 1k; 1m–1n; 1r was described previously [71,85]. All bromides were purchased from ProChimia (Sopot, Poland) and were used for synthesis of required thiotosylates. Sodium 4-methylbenzenesulfenate was purchased from Merck and was used for preparation of sodium 4-methylbenzenesulfonothioate as described previously [85]. Vinyl magnesium bromide solution (1M) in THF (tetrahydrofuran) and tetrabutylammonium fluoride (TBAF) solution (1M) in THF were purchased from Merck. Tetrahydrofuran was pre-dried over KOH pellets and distilled. Subsequently, tetrahydrofuran (THF) was dried by heating under reflux over potassium in the presence of benzophenone as an indicator and distilled. Silica gel plates Supelco UV254 (St. Louis, MS, USA) were used for thin layer chromatography (TLC). A silica gel 60 (230-400 mesh, Merck, Darmstadt, Germany) was used for column chromatography. NMR spectra were recorded on Brucker 400 MHz spectrometers. The residual solvent peak was used as the internal reference (CDCl₃: δ = 7.26 ppm for ¹H, δ = 77.0 ppm for ¹³C). Nicolet Is50 Fourier-transform infrared (FT-IR) spectrometer (Wien, Austria) was used to record the IR spectra by attenuated total reflectance (ATR) method. A Gallenkamp 7936B apparatus (Warwick, UK) was used to determine melting points.

2.1. Synthesis of 5,5-Dimethyl-2-thioxo-2-vinylsulfanyl-[1,3,2]dioxaphosphorinane

A stirred solution of 868 mg (2.2 mmol) bis-(5,5-dimethyl-2-thioxo-1,3,2-dioxaphosphorinan-2-yl) disulfide in dry THF (3 mL) was cooled to −5 °C under nitrogen, then vinylmagnesium bromide (2.0 mmol, 1M solution in THF, 2 mL) was added dropwise. After complete addition, the mixture was stirred for 15 min at rt, and the solvent was removed in vacuo. Crude product was purified by silica gel column chromatography (petroleum ether/DCM 4:1) to provide 296 mg of S-vinyl phosphorodithioate as a white powder with 66% yield.

Chromatography: PE/DCM 4/1 (Rf = 0.2), Yield 0.296 g 66%, white solid, mp. 57.8–58.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.50 (dt, J = 16.6, 9.3 Hz, 1 H), 5.79–5.63 (m, 2 H), 4.21 (dd, J = 10.8, 7.0 Hz, 2 H), 4.02 (ddt, J = 11.2, 2.4, 1.2 Hz, 2 H), 1.29 (s, 3H), 0.97 (s, 3 H).
13C NMR (101 MHz, CDCl3) δ 124.0 (d, J = 4.5 Hz), 123.5 (d, J = 12.6 Hz), 77.6 (d, J = 9.0 Hz), 32.5 (d, J = 7.0 Hz), 21.0 (d, J = 1.2 Hz).

31P NMR (202 MHz, CDCl3) δ 82.46.

HRMS (ESI): m/z [M + H]+ calcd for C7H14O2PS2: 225.0167; found: 225.0168.

2.2. A Typical Procedure for the Preparation of Vinyl Disulfides 2 from S-vinyl Thiotosylate and Representative Analytical Data

To a stirred, ice-cooled solution of S-vinyl thiotosylate 428 mg (2.0 mmol) and thiol 4 (1.0 mmol) in dry DCM (10 mL) under nitrogen, NEt3 (1.0 mmol, 140 µL) was added in one portion. The mixture was stirred at rt for 15 min. Then, the solvent was evaporated and the residue was purified by column chromatography (SiO2) to provide disulfide 2.

1-Vinyl-disulfanyldodecane 2a.

Chromatography: Hexene (Rf = 0.6), Yield 0.253 g, 97%, colorless oil.

1H NMR (400 MHz, CDCl3) δ 6.41 (dd, J = 16.2, 9.6 Hz, 1 H), 5.56 (d, J = 16.2 Hz, 1 H), 5.36 (d, J = 9.6 Hz, 1 H), 2.73 (t, J = 7.3 Hz, 2 H), 1.74–1.64 (m, 2 H), 1.44–1.26 (m, 18 H), 0.91 (t, J = 6.9 Hz, 3 H).

13C NMR (101 MHz, CDCl3) δ 133.8, 113.1, 38.3, 31.9, 29.6, 29.6, 29.6, 29.5, 29.3, 29.2, 29.1, 28.5, 22.7, 14.1.

HRMS (ESI): m/z [M + H]+ calcd for C14H29S2: 261.1705; found: 261.1711.

11-Vinyl-disulfanylundecanoic acid methyl ester 2c

Chromatography: Hexene/DCM 2/1 (Rf = 0.25), Yield 0.256 g, 88%, colorless oil.

1H NMR (400 MHz, CDCl3) δ 6.40 (dd, J = 16.2, 9.6 Hz, 1 H), 5.55 (d, J = 16.3 Hz, 1 H), 5.36 (d, J = 9.6 Hz, 1 H), 3.69 (s, 3 H), 2.72 (t, J = 7.3 Hz, 2 H), 2.32 (t, J = 7.5 Hz, 2 H), 1.77–1.62 (m, 4 H), 1.48–1.20 (m, 12 H).

13C NMR (101 MHz, CDCl3) δ 174.3, 133.8, 113.1, 51.5, 38.2, 34.1, 29.4, 29.3, 29.2, 29.1, 28.9, 28.5, 24.9.

HRMS (ESI): m/z [M + H]+ calcd for C14H27O2S2: 291.1447; found: 291.1452.

2.3. A Typical Procedure for the Preparation of benzo[b][1,4]thiazine disulfanyl derivatives 7 and Representative Analytical Data

To a solution of 2-N-sulfonylthiophthalimide 5.242 mg (0.5 mmol) and vinyl disulfide 2 (0.75 mmol) in dry CHCl3 (20 mL) under nitrogen, triethylamine (0.5 mmol, 70 µL) was added. Mixture was stirred under reflux for 17 h. Then, the solvent was evaporated and the residue was purified by column chromatography (SiO2) to provide 7.

3-(Dodec-1-yldisulfanyl)-6,8-dimethoxy-4-(4-toluenesulfonyl)-3,4-dihydro-2H-benzo-[b][1,4]thiazine 7a

Chromatography: Hexane/DCM 2/1 (Rf = 0.32), Yield 0.150 g, 50%, thick yellow oil

IR (ATR): 2922(w), 2851(w), 1578(w), 1455(w), 1434(w), 1308(s), 1284(w), 1228(w), 1185(w), 1060(w), 1039(w), 842(s), 829(s), 812(s), 705(w), 694(s), 644(s) cm−1

1H NMR (400 MHz, CDCl3) δ 7.52 (d, J = 8.3 Hz, 2 H), 7.21 (d, J = 8.1 Hz, 2 H), 7.03 (d, J = 2.4 Hz, 1 H), 6.37 (d, J = 2.4 Hz, 1 H), 6.37 (d, J = 2.4 Hz, 1 H), 5.89 (t, J = 5.2 Hz, 1 H), 3.83 (s, 3 H), 3.83 (s, 3 H), 3.15-2.85 (m, 2 H), 2.87–2.74 (m, 2 H), 2.40 (s, 3 H), 1.71-1.54 (m, 2 H), 1.44–1.21 (m, 18 H), 0.88 (t, J = 6.9 Hz, 3 H).

13C NMR (101 MHz, CDCl3) δ 157.8, 156.0, 144.2, 135.9, 133.4, 129.6, 127.4, 109.2, 105.1, 97.4, 65.4, 56.1, 55.6, 39.2, 31.9, 29.7, 29.7, 29.5, 29.4, 22.7, 21.6, 16.1.

HRMS (ESI): m/z [M + H]+ calcd for C29H44NO4S4: 598.2148; found: 598.2153.

Synthesis of starting materials, vinyl disulfides 2 and benzo[b][1,4]thiazine disulfanyl derivatives 7 with analytical data, copy of IR, and NMR spectra are in the Supplementary Materials.

3. Results and Discussion

The corresponding S-vinyl phosphorodithioate was obtained by the reaction of bis-(5,5-dimethyl-2-thiono-1,3,2-dioxaphosphorinanyl)disulfide with vinylmagnesium bromide in THF with 66% yield. We examined several methods to prepare S-vinyl thiotosylate.
The most effective reaction was the reaction of ditosylsulfide (1,3-di-p-toluene-trisulfane-1,1,3,3-tetraoxide) with vinylmagnesium bromide in THF at −78 °C to produce the required S-vinyl thiosulfonate with 60% yield.

The first method developed for the preparation of unsymmetrical vinyl disulfides with additional functional groups included the reaction of S-vinyl phosphorodithioate with thiosulfonates in the presence of tetrabutylammonium fluoride (TBAF) in THF at 0 °C for 15 min. We selected a variety of thiosulfonates 1a–r to determine the limitations and scope of the designed transformation. Compound 1 contained alkyl and aryl groups with additional functional groups, such as the reaction of ditosylsulfide (1,3-di-toluenesulfane) with vinylmagnesium bromide in THF at −78 °C to produce the required S-vinyl thiosulfonate with 60% yield.

3. Results and Discussion

The corresponding S-vinyl phosphorodithioate was not added. The success of the above method depended on the rate of the reaction of fluoride anion with S-vinyl phosphorodithioate and thiosulfonate. When the reaction of the fluoride anion with thiosulfonate was faster than the reaction with thiosulfonate, the corresponding vinylthiolate anion was generated, and the subsequent reaction with thiosulfonate provided vinyl phosphorodithioate. However, when the reaction of the fluoride anion with thiosulfonate was faster, symmetrical disulfide 3 was produced. As shown in Table 1, the developed method is efficient for alkyl thiosulfonates. In the case of aryl- or benzyl-type thiosulfonates, the corresponding symmetrical disulfides 3 were produced exclusively.

We developed another method for the synthesis of unsymmetrical vinyl disulfides to overcome the above limitations. The transformation comprises the reaction of S-vinyl thiosulfonate with thiols 4 in the presence of NEt3 at room temperature. The obtained results are presented in Table 2.
Table 2. Synthesis of vinyl disulfides 2 from S-vinyl thiosylate.

![Chemical structure of vinyl disulfides 2](image)

Entry	R	Yield (%)	Recovered 2 (%)
1	–n-C12H25	97	2a
2	–(CH2)10COOMe	88	2c
3	–(CH2)9C6H4–F	90	2j
4	–C6H4–CH3	96	2k
5	–CH2–2-naphthyl	92	2l
6	–CH2C6H4–NO2	80	2m
7	–CH2C6H4–OMe	87	2n
8	–CH2C6H4–CN	89	2o
9	–CH3Ph	98	2r
10	–(CH2)10COOH	84	2s
11	–(CH2)11OH	91	2t

1 Reaction conditions: NEt3 (1.0 mmol) was added to a solution of S-vinyl thiosylate (2.0 mmol) and thiol 4 (1.0 mmol) in dry CH2Cl2 (10 mL) at 0 °C. Then the mixture was stirred for 15 min under a N2 atmosphere at room temperature. 2 Isolated yields.

As shown in Table 2, the corresponding functionalized unsymmetrical vinyl disulfides 2a–t were obtained with very high yields of 80–98%. The developed method is effective for alkyl-vinyl disulfides 2a and 2c (entries 1,2) and for disulfides 2j–r, which could not be obtained with S-vinyl phosphoro-dithioate (Table 1 entries 10–17). The developed method is more convenient and versatile. The method allows for a broad range of products to be accessed, and all starting materials are readily available.

Benzo[b][1,4]thiazine is a valuable heterocyclic system with promising and wide applications in medical chemistry [86,87]. We decided to explore the possibility of benzo[b][1,4]thiazine derivative synthesis with a disulfide functionality. The hetero-Diels–Alder reaction [88] is the most convenient approach for the synthesis of benzo[b][1,4]thiazine derivatives based on the generation of transient o-iminothioquinone 6 from 2-N-sulfonylthiophthalimides 5 and subsequent reaction with vinyl disulfides 2 in an inverse electron-demand [4+2] cycloaddition to produce compounds 7. The preliminary results are summarized in Table 3.

Table 3. Synthesis of benzo[b][1,4]thiazine disulfanyl derivatives 7.

![Chemical structure of benzo[b][1,4]thiazine disulfanyl derivatives 7](image)

Entry	R	Yield (%)	Recovered 2 (%)
1	–n-C12H25	50	7a
2	–(CH2)10COOMe	30	2c
3	–CH2C6H4–NO2	29	2m
4	–CH2C6H4–OMe	27	2n
5	–CH2Ph	25	2r

1 Reaction conditions: A solution of 2-N-sulfonylthiophthalimides 5 (0.5 mmol), vinyl disulfide 2 (0.75 mmol) and NEt3 (0.5 mmol) in dry CHCl3 (20 mL) was refluxed for 17 h under N2 atmosphere. 2 Isolated yields.
Although the reaction conditions were not optimized, the corresponding benzo-\[b\][1,4]thiazine disulfanyl derivatives 7 were obtained with moderate yields of 25–50%. Moreover, there is no alternative method that allows for the preparation of compounds 7a, 7c, 7m, 7n, 7r. The recovered vinyl disulfides 2 demonstrated the possibility of improving the yield of product 7 by prolonging the reaction time or selecting a solvent with a higher boiling point. The optimal conditions, scope of starting materials and stereoselectivity of the hetero-Diels-Alder reaction are under investigation.

4. Conclusions

In summary, we developed a convenient and experimentally practical method for preparing unsymmetrical vinyl disulfides with additional functional groups under mild conditions. The method is based on readily available starting materials. The applied mild reaction conditions tolerate a variety of additional functionalities, including esters, carboxy, carbon–carbon double bonds, and protected amino, nitro, cyano, and hydroxy groups. We demonstrated that functionalized unsymmetrical vinyl disulfides can be used in the inverse electron-demand [4+2] hetero-Diels–Alder reaction to produce benzo[b][1,4]thiazine disulfanyl derivatives.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-1944/14/6/1342/s1: Synthesis of starting materials, vinyl disulfides 2, and benzo[b][1,4]thiazine disulfanyl derivatives 7 with analytical data, copy of IR, and NMR spectra.

Author Contributions: Conceptualization and methodology, D.W.; validation, B.J., J.D., and M.M.; formal analysis, D.W. and B.J.; investigation, B.J., J.D., and M.M.; resources, B.J.; data curation, D.W. and B.J.; writing-original draft preparation, D.W.; writing-review and editing, D.W. and B.J.; visualization, D.W. and B.J.; supervision, D.W.; project administration, D.W.; funding acquisition, D.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Centre (NCN), grant number 2015/19/B/ST5/0339.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kondo, K.; Mitsudo, T. Metal-Catalyzed Carbon–Sulfur Bond Formation. Chem. Rev. 2000, 100, 3205–3220. [CrossRef]
2. Metzner, P.; Thuillier, A. Sulfur Reagents in Organic Synthesis; Elsevier BV: Amsterdam, The Netherlands, 1994.
3. Lee, M.H.; Yang, Z.; Lim, C.W.; Lee, Y.H.; Dongbang, S.; Kang, C.; Kim, J.S. Disulfide-Cleavage-Triggered Chemosensors and Their Biological Applications. Chem. Rev. 2013, 113, 5071–5109. [CrossRef]
4. Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554. [CrossRef]
5. Witt, D.; Klajn, R.; Barski, P.; Grzybowski, B. Applications, Properties and Synthesis of \(\omega \)-Functionalized \(\omega \)-Alkanethiols and Disulfides—The Building Blocks of Self-Assembled Monolayers. Curr. Org. Chem. 2004, 8, 1763–1797. [CrossRef]
6. Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [CrossRef]
7. Houseman, B.T.; Gawalt, E.S.; Mrksich, M. Maleimide-Functionalized Self-Assembled Monolayers for the Preparation of Peptide and Carbohydrate Biochips. Langmuir 2003, 19, 1522–1531. [CrossRef]
8. Chen, S.; Li, L.; Boozer, C.L.; Jiang, S. Controlled Chemical and Structural Properties of Mixed Self-Assembled Monolayers by Coadsorption of Symmetric and Asymmetric Disulfides on Au(111). J. Phys. Chem. B 2001, 105, 2975–2980. [CrossRef]
9. Shon, Y.S.; Mazzitelli, C.; Murray, R.W. Unsymmetrical Disulfides and Thiol Mixtures Produce Different Mixed Monolayer-Protected Gold Clusters. Langmuir 2001, 17, 7735–7741. [CrossRef]
10. O’Brien, J.C.; Stickney, J.T.; Porter, M.D. Preparation and Characterization of Self-Assembled Double-Stranded DNA (dsDNA) Microarrays for Protein dsDNA Screening Using Atomic Force Microscopy. Langmuir 2000, 16, 9559–9567. [CrossRef]
11. Higashi, N.; Takahashi, M.; Niwa, M. Immobilization of DNA through Intercalation at Self-Assembled Monolayers on Gold. Langmuir 1999, 15, 111–115. [CrossRef]
12. Kalsin, A.M.; Fiałkowski, M.; Paszewski, M.; Smoukov, S.K.; Bishop, K.J.M.; Grzybowski, B.A. Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice. Science 2006, 312, 420–424. [CrossRef]

13. Kalsin, A.K.; Smoukov, S.K.; Kowalczyk, B.; Klajn, R.; Grzybowski, B.A. Ionic-like Behavior of Oppositely Charged Na-nanoparticles. J. Am. Chem. Soc. 2006, 128, 15046–15047. [CrossRef]

14. Cremlyn, R.; An, J. Introduction to Organosulfur Chemistry; Wiley: New York, NY, USA, 1996.

15. Oae, S. Organic Sulfur Chemistry: Structure and Mechanism; CRC Press: Boca Raton, FL, USA, 2018.

16. Vrdulja, V.M.; MacMaster, J.F.; Li, Z.; Kerr, D.E.; Senter, P.D. Reductively activated disulfide prodrugs of paclitaxel. Bioorg. Med. Chem. Lett. 2002, 12, 3591–3594. [CrossRef]

17. Mu, Y.; Nodwell, M.; Pace, J.L.; Shaw, J.-P.; Judice, J. Vancomycin disulfide derivatives as antibacterial agents. Bioorg. Med. Chem. Lett. 2004, 14, 725–735. [CrossRef]

18. Shcherbakova, I.; Pozharski, A.F. Comprehensive Organic Functional Group Transformations II; Katritzky, A.R., Taylor, R., Ramsden, C., Eds.; Pergamon: Oxford, UK, 2004; Volume 2, pp. 573–588.

19. Sato, R.; Kimura, T. Science of Synthesis; Kambe, N., Drabowicz, J., Molander, G.A., Eds.; Thieme: Stuttgart, Germany; New York, NY, USA, 2007; Volume 39, pp. 128–147.

20. Witt, D. Recent Developments in Disulfide Bond Formation. Synthesis 2008, 2491–2509. [CrossRef]

21. Mandal, B.; Basu, B. Recent advances in S–S bond formation. RSC Adv. 2014, 4, 13854–13881. [CrossRef]

22. Musiejuk, M.; Witt, D. Recent Developments in the Synthesis of Unsymmetrical Disulfanes (Disulfides). A Review. Org. Prep. Proced. Int. 2015, 47, 95–131. [CrossRef]

23. Harpp, D.N.; Friedlander, B.T.; Larsen, C.; Steliou, K.; Stockton, A. Organic sulfur chemistry. 29. Use of the trimethylsilyl group in synthesis. Preparation of sulfinate esters and unsymmetrical disulfides. J. Org. Chem. 1978, 43, 3481–3483. [CrossRef]

24. Brown, C.; Evans, G.R. The “thio-Arbuzov” reaction of sulfenyl chlorides with thiosulfinate products. J. Org. Chem. 1996, 61, 9101–9104. [CrossRef]

25. Swan, J.M. Thiosils, Disulphides and Thiosulphates: Some New Reactions and Possibilities in Peptide and Protein Chemistry. Nat. Cell Biol. 1957, 180, 643–645. [CrossRef]

26. Hiver, P.; Dicko, A.; Paquer, D. Medium effects in unsymmetrical disulfides compounds synthesis from bunte salts. Tetrahedron Lett. 1994, 35, 9569–9572. [CrossRef]

27. Sirakawa, K.; Aki, O.; Tsujikawa, T.; Tsuda, T. Alkylthioisothiocyanates. I. Chem. Pharm. Bull. 1970, 18, 235–242. [CrossRef]

28. Ternay, A.L.; Cook, C.; Brzezinska, E. The Synthesis of Unsymmetric and Symmetric Disulfides. Phosphorus Sulfur Silicon Relat. Elem. 1994, 95, 351–352. [CrossRef]

29. Ternay, A.L.; Brzezinska, E. Disulfides. 1. Syntheses Using 2,2′-Dithiobis(benzoazolone). J. Org. Chem. 1994, 59, 8239–8244.

30. Hunter, R.; Cairn, M.; Stellenboom, N. Inexpensive, One-Pot Synthesis of Unsymmetrical Disulfides Using 1-Chlorobenzoazolone. J. Org. Chem. 2006, 71, 8268–8271. [CrossRef] [PubMed]

31. Leriverend, C.; Metzner, P. A New Mild Synthesis of Unsymmetrical Disulfides by Reaction of Dithioperoxysters with Thiols. Synthesis 1994, 761–762. [CrossRef]

32. Dai, Z.; Xiao, X.; Jiang, X. Nucleophilic disulfurating reagents for unsymmetrical disulfides construction via copper-catalyzed oxidative cross coupling. Tetrahedron 2017, 73, 3702–3706. [CrossRef]

33. Dubs, P.; Stuessi, R. Eine neue Methode zur Herstellung gemischter Disulfide. Vorläufige Mitteilung. Helv. Chim. Acta 1970, 53, 1307–1311. [CrossRef]

34. Barton, D.H.; Chen, C.; Wall, G.M. Synthesis of disulfides via sulfonylation of alkyl and aryldithiopyridine n-oxides. Tetrahedron 1991, 47, 6127–6138. [CrossRef]

35. Barton, D.H.R.; Hesse, R.H.; O’Sullivan, A.C.; Pechet, M.M. A new procedure for the conversion of thiols into reactive sulfonylating agents. J. Org. Chem. 1991, 56, 6697–6702. [CrossRef]

36. Ohtani, M.; Narisada, N. Sulfur-sulfur bond formation reaction using bis(1-methyl-1H-tetrazol-5-yl) disulphide. J. Org. Chem. 1991, 56, 5475–5478. [CrossRef]

37. Bao, M.; Shimizu, M. N-Trifluoroacetyl aminemieren, effective precursors for synthesis of unsymmetrical disulfides and sulfenamides. Tetrahedron 2003, 59, 9655–9659. [CrossRef]

38. Blaschette, A.; Naveke, M. Polyarylsulphonamides. Part 25. N-Sulfonyldimethoxylamines and (1-Sulfonyl-4- dimethylamino-pyrnidinium) Dimesylamidines. Synthesis of New Compounds and Application as Sulfonylation Reagents. Chem. Ztg. 1991, 115, 61–64.

39. Hiskey, R.G.; Ward, B.F. Sulfur-containing polypeptides. XII. Scope and limitations of the sulfonylthiocyanate method as a route to cystine peptides. J. Org. Chem. 1980, 35, 1188–1191. [CrossRef]

40. Capozzi, G.; Capperucci, A.; Degl’Innocenti, A.; Del Duce, R.; Menichetti, S. Silicon in organosulfur chemistry. Part 2. Synthesis of unsymmetrical disulfides. Tetrahedron Lett. 1989, 30, 2995–2998. [CrossRef]

41. Raja, A.; Wiessler, M. Synthesis of unsymmetrical disulfides with thiolsulfonates immobilised on a polystyrene support. Tetrahedron Lett. 1990, 31, 6075–6076. [CrossRef]
75. Witt, D.; Lach, S. Efficient Synthesis of Functionalized Unsymmetrical Dialkyl Trisulfanes. *Synlett* 2013, 24, 1927–1930. [CrossRef]

76. Block, E.; Ahmad, S.; Jain, M.K.; Crecely, R.W.; Apitz-Castro, R.; Cruz, M.R. The chemistry of alkyl thiosulfate esters. 8. (E,Z)-Ajoene: A potent antithrombotic agent from garlic. *J. Am. Chem. Soc.* 1984, 106, 8295–8296. [CrossRef]

77. Block, E.; Ahmad, S.; Catalfamo, J.L.; Jain, M.K.; Apitz-Castro, R. The chemistry of alkyl thiosulfinate esters. 9. Antithrombotic organosulfur compounds from garlic: Structural, mechanistic, and synthetic studies. *J. Am. Chem. Soc.* 1986, 108, 7045–7055. [CrossRef]

78. Li, M.; Ciu, J.-R.; Ye, Y.; Min, J.-M.; Zhang, L.-H.; Wang, K.; Gares, M.; Cros, J.; Wright, M.; Leung-Tack, J. Antitumor activity of Z-ajoene, a natural compound purified from garlic: Antimitotic and microtubule-interaction properties. *Carcinog* 2002, 23, 573–579. [CrossRef] [PubMed]

79. Li, M.; Min, J.-M.; Cui, J.-R.; Zhang, L.-H.; Wang, K.; Valette, A.; Davrinche, C.; Wright, M.; Leung-Tack, J. Z-Ajoene Induces Apoptosis of HL-60 Cells: Involvement of Bcl-2 Cleavage. *Nutr. Cancer* 2002, 42, 241–247. [CrossRef] [PubMed]

80. Zhang, G.; Parkin, K.L. S-Alk(en)ylmercaptocysteine: Chemical Synthesis, Biological Activities, and Redox-Related Mechanism. *J. Agric. Food Chem.* 2003, 51, 1896–1903. [CrossRef]

81. Hunter, R.; Kaschula, C.H.; Parker, I.M.; Caira, M.R.; Richards, P.; Travis, S.; Taute, F.; Qwebani, T. Substituted ajoenes as novel anti-cancer agents. *Bioorg. Med. Chem. Lett.* 2008, 18, 5277–5279. [CrossRef] [PubMed]

82. Kaschula, C.H.; Hunter, R.; Stellenboom, N.; Caira, M.R.; Winks, S.; Ogunleye, T.; Richards, P.; Cotton, J.; Zilbeyaz, K.; Wang, Y.; et al. Structure–activity studies on the anti-proliferation activity of ajoene analogues in WHCO1 oesophageal cancer cells. *Eur. J. Med. Chem.* 2012, 50, 236–254. [CrossRef]

83. Silva, F.; Khokhar, S.S.; Williams, D.M.; Saunders, R.; Evans, G.J.S.; Graz, M.; Wirth, T. Short Total Synthesis of Ajoene. *Angew. Chem. Int. Ed.* 2018, 57, 12290–12293. [CrossRef]

84. Musiejuk, M.; Doroszuk, J.; Witt, D. Convenient and efficient synthesis of functionalized unsymmetrical Z-alkenyl disulfanes. *RSC Adv.* 2018, 8, 9718–9722. [CrossRef]

85. Musiejuk, M.; Doroszuk, J.; Jędrzejewski, B.; Nieto, G.O.; Navarro, M.M.; Witt, D. Diastereoselective Synthesis of Z-Alkenyl Disulfides from α-Thiophosphorylated Ketones and Thiosulfonates. *Adv. Synth. Catal.* 2020, 362, 618–626. [CrossRef]

86. Rathore, B.S.; Kumar, M. Synthesis of 7-chloro-5-trifluoromethyl/7-fluoro/7-trifluoromethyl-4H-1,4-benzothiazines as antimicrobial agents. *Bioorg. Med. Chem.* 2006, 14, 5678–5682. [CrossRef] [PubMed]

87. Huang, W.; Yang, G.-F. Microwave-assisted, one-pot syntheses and fungicidal activity of polyfluorinated 2-benzylthiobenzothiazoles. *Bioorg. Med. Chem.* 2006, 14, 8280–8285. [CrossRef] [PubMed]

88. Viglianisi, C.; Bonaccorsi, P.M.; Simone, L.; Nassini, L.; Menichetti, S. Copper-Mediated One-Pot Access to Benzo[b][1,4]thiazines from 2-N-Sulfonylamiaryl Disulfides. *Eur. J. Org. Chem.* 2012, 2012, 1707–1711. [CrossRef]