Instructor evaluation is an important field in the educational process because it develops the level of instructor which can improve the educational level of students consequently. In this work, intelligent techniques are used for instructor performance evaluation in Arabic. This study used group of Arab lecturers through YouTube website for testing this system. The proposed system converts instructor’s speech (system inputs) to text, and then analyzes the text to extract related knowledge for instructor evaluation that depends on a set of criteria, finally provides advice to the instructor (system outputs). Experimental results demonstrate the effectiveness of the proposed system in instructor performance evaluation. The proposed system can improve reliability and efficiency of instructors’ performance; provide the basis for performance improvement that will affect students’ academic outcomes.

References

1. S. Mardikyan, B. Badur, “Analyzing Teaching Performance of Instructors Using Data
Designing Intelligent System for Arabic Instructor Performance Evaluation

2. A. Doleh, D. Weir, “Dimensions of Performance Appraisal Systems in Jordanian Private and Public Organizations”, International Journal of Human Resource Management, 18(1), PP.75-84, 2007.
3. K. Keifer, “A Definition of Evaluation”, Colorado State University, 2016. Copyright © 1993-2016. Available online at:
4. http://writing.colostate.edu/about/copyright.cfm
5. P. Bramley, “Evaluating Instructional Design”, 2015., Retrieved from: http://www.nwlink.com/~donclark/hrd/sat6.html
6. W. Trochim, “Introduction to Evaluation”. Web Center for Social Research Method, 2006. Retrieved from http://www.socialresearchmethods.net/kb/intreval.htm.
7. E.D. Nakpodia, “A Critique of the Methods of Evaluating the Competency of Lecturers in Nigerian Tertiary Institutions”, African Journal of Education and Technology, Vol. 1, No. 1, pp. 53-59, 2011.
8. S. Glazerman, et al., “Evaluating Teachers: The Important Role of Value” - Added. The Brookings Brown Center Task Group on Teacher Quality, Pg 2, 2010.
9. I. A. Archibong, M.E. Nja, “Towards Improved Teaching Effectiveness in Nigerian Public Universities: Instrument Design and Validation”. Journal of the Higher Education Studies, Canada. Vol. 1, No. 2, 2011.
10. R.L. Rothstein, et al. “Problems with the Use of Student Test Scores to Evaluate Teachers”. A Publication of Economic Policy Institute, 2010. Retrieved from: http://www.epi.org/publication/bp278/
11. O.K. Chaudhari, et al., “Soft Computing Model for Academic Performance of Teachers Using Fuzzy Logic”. British Journal of Applied Science & Technology 2(2): PP.213-226, 2012.
12. A. Ola, and S. Pallaniappan, "A data mining model for evaluation of instructors’ performance in higher institutions of learning using machine learning algorithms", International Journal of Conceptions on Computing and Information Technology, Vol. 1, due 2; ISSN: 2345 – 9808, 2013.
13. F. Ahmadi and S. Abadi, "Data Mining in Teacher Evaluation System using WEKA", International Journal of Computer Applications, Vol. 63 – No.10 , 2013.
14. S. Mardikyan and B. Badur, "Analyzing Teaching Performance of Instructors Using Data Mining Techniques, Informatics in Education", Vilnius University ,Vol. 10, No. 2, pp.245–257, 2011.
15. J. H. Stronge, "Teacher Performance Evaluation Program Handbook", Fairfax County Public Schools Department of Human Resources, 2012.
16. P. Karmacharya, "Design of Keyword Spotting System Based on Segmental Time Warping of Quantized Features", Master thesis, the Temple University Graduate Board, 2012.
17. S. Kumar and M. Rao, "Design Of An Automatic Speaker Recognition System Using MFCC, Vector Quantization And LBG Algorithm", International Journal on Computer Science and Engineering (IJCSE), ISSN: 0975-3397 ,Vol. 3 No. 8, 2011.
18. K. Darabkh, A. Khalifeh, B. Bathech and S. Sabah, "Efficient DTW-Based Speech Recognition System for Isolated Words of Arabic Language", World Academy of Science, Engineering and Technology, Vol. 7, 2013.
19. L. Muda, M. Begam and I. Elamvazuthi, "Voice Recognition Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques", Journal of Computing, Vol. 2, ISSUE 3, March 2010, ISSN 2151-9617.
20. D. Harjani, M. Jethwani2 and M. Roja, "Speaker Recognition System using MFCC and Vector Quantization Approach", IJSRD - International Journal for Scientific Research & Development, Vol. 1, Issue , 2013.
21. A. Thakur and N. Sahayam, "Speech Recognition Using Euclidean Distance", International Journal of Emerging Technology and Advanced Engineering, Vol. 3, Issue 3, 2013.
22. N. Kaberpanthi, A. Datar, "Speaker Independent Speech Recognition using MFCC with Cubic-Log Compression and VQ Analysis", International Journal of Computer Applications , Vol. 95– No.26 , 2014.
23. N. Singh, R. Khan and R. Shree, "MFCC and Prosodic Feature Extraction Techniques: A Comparative Study", International Journal of Computer Applications (0975 – 8887), Vol. 54– No.1, 2012.
24. E. Chandra, K. Manikandan, M. Sivasankar, "A Proportional Study on Feature Extraction Method in Automatic Speech Recognition System", International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, Vol. 2, Issue 1, 2014.
25. A. Sangwan, J. Hansen, "Keyword Recognition with Phone Confusion Networks and Phonological Feature based Keyword Threshold Detection", Center for Robust Speech Systems (CRSS), Department of Electrical Engineering, the University of Texas at Dallas, Richardson, Texas, U.S.A, 2010.
26. K. Gopalan, T. Chu and X. Miao, "An Utterance Recognition Technique for Keyword Spotting by Fusion of Bark Energy and MFCC Features". the Air Force Research Laboratory, Rome, NY, U.S.A, 2009.
27. R. Fooprateepsiri, W. Kurutach, "A Fusion of Trace Transform and Hamming Distance with Multiresolution Technique for Improved Accuracy Approach Face Based Identification", JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY , VOL 2 ,ISSUE 2 , 2011.
28. M. Alam, P. Kenny, P. Ouellet, T. Stafylakis and P. Dumouchel, "Supervised/Unsupervised Voice Activity Detectors for Text dependent Speaker Recognition on the RSR2015 Corpus", 1Centre de recherché informatique de Montréal, Montréal, Canada, 2015.
29. M. Nilsson and M. Ejnarsson, "Speech Recognition using Hidden Markov Model (performance evaluation in noisy environment)", Master Thesis, Department of Telecommunications and Signal Processing, Belkinge Institute of Technology, Ronneby, Sweden, 2002.
30. P. Veeramuthu and R. Periasamy, "Application of Higher Education System for Predicting Student Using Data mining Techniques", International Journal of Innovative Research in Advanced Engineering (IJIRAE), Vol. 1 Issue 5, 2014.
31. A. Pal and S. Pal, "Evaluation of Teacher’s Performance: A Data Mining Approach", International Journal of Computer Science and Mobile Computing, IJCSMC, Vol. 2, Issue. 12, PP.359 – 369, 2013.
32. C. Adams, K. Nolan, "Teacher Performance Evaluation: Building Tomorrow Today", Jackson Public School District Earl Watkins, Ph.D, 2011.
33. C. Leong and Y. Lee, "Mining sentiments in SMS texts for teaching evaluation", Expert Systems with Applications 39, PP.2584–2589, 2012.
34. J. Stronge, "Teacher Performance Evaluation Program Handbook", Fairfax County Public Schools Department of Human Resources, 2012.
Index Terms

Computer Science

Information Systems

Keywords

Intelligent System; Instructor Evaluation; Arabic language; speech recognition; artificial intelligence.