SELDER GROUP ASSOCIATED TO THE CHOW GROUP OF CERTAIN CODIMENSION TWO CYCLES

KALYAN BANERJEE, KALYAN CHAKRABORTY

Abstract. Let X be a surface with geometric genus and irregularity zero which is defined over a number field K. Let \mathfrak{X} denote a smooth spread of X over $\mathcal{O}_K[1/f]$ for some element $f \in \mathcal{O}_K$ and A^2 stands for the group of algebraically trivial cycles on schemes modulo rational equivalence. If $j^*: A^2(\mathfrak{X}) \to A^2(X)$ be the flat pull-back corresponding to the embedding $j: X \hookrightarrow \mathfrak{X}$ then we prove that $\text{im}(j^*)(K)/A^2(\mathfrak{X})(K)$ is a torsion group. Here $\text{im}(j^*)(K), A^2(\mathfrak{X})(K)$ stand for the cycles fixed under the action of the absolute Galois group.

1. Introduction

Suppose X be a smooth projective surface defined over a number field K and assume that it can be spread out to a smooth projective scheme \mathfrak{X} over an affine open subset of the spectrum of the number ring \mathcal{O}_K. Let $A^2(X)$ denote the group of algebraically trivial cycles of codimension 2 modulo rational equivalence on X.

We recall the definition of algebraic equivalence over \mathcal{O}_K, which will be used in the sequel. Let us consider the free abelian group of codimension two cycles on \mathfrak{X}. Two cycles z_1, z_2 are said to be algebraically equivalent if there exists a smooth projective curve C defined over \mathcal{O}_K, two scheme theoretic points x_0, x_1 on C and a relative correspondence Γ on $C \times_{\mathcal{O}_K} \mathfrak{X}$, such that the intersection

$$\Gamma.(x_0 \times_{\mathcal{O}_K} \mathfrak{X}) - \Gamma.(x_1 \times_{\mathcal{O}_K} \mathfrak{X}) = z_1 - z_2.$$

Here . denotes the relative intersection product in the sense of [Fu].

2010 Mathematics Subject Classification. Primary: 11G05, 11G15, 14C25 Secondary: 14K22.

Key words and phrases. Complex multiplication, elliptic curve, Selmer group, Tate-Shafarevich group, Chow group, Abelian variety.
Let K denote the algebraic closure of K and $G = \text{Gal}(\overline{K}/K)$ be the absolute Galois group. Also, $X_\overline{K}$ denotes the surface $X \times_K \overline{K}$ and

\[X_\overline{K} := X \times_{\mathcal{O}_K} \overline{\mathcal{O}_K}. \]

Here \mathcal{O}_K denotes the integral closure of \mathcal{O}_K in \overline{K}.

Let $A^2(X_\overline{K})(K), A^2(X_\overline{K})(K)$ be the G-fixed part of the action of G on $A^2(X_\overline{K}), A^2(X_\overline{K})$ respectively, and j be the embedding of $X_\overline{K}$ into $X_\overline{K}$. If one considers the flat pullback $j^*: A^2(X_\overline{K}) \to A^2(X_\overline{K})$ of codimension 2-cycles, it gives a map $j^*: A^2(X_\overline{K})(K) \to A^2(X_\overline{K})(K)$. Then a general question is: what is the cokernel of this homomorphism?

Mildenhall [Mil] studied this flat pull-back for X to be the self-product of an elliptic curve admitting a complex multiplication. He has shown that the kernel of this flat-pullback over any number field K is finite. We use Mildenhall’s result to derive the information about the quotient $\text{im}(j^*)(K)[n]/A^2(X)(K)[n]$ at the level of n-torsions of this homomorphism for the case where X is the self-product of a CM elliptic curve.

Let E be an elliptic curve with complex multiplication by the ring of integers of a number field K and N be it’s discriminant (for this we fix an Weirstrass equation for E once and for all). We denote $E \times E$ by X and suppose that there exists a smooth spread of X, say \mathcal{X} defined over $\overline{\mathcal{O}_K}[1/6N]$. Let j^* be the flat pull-back at the level of A^2 induced by the embedding $j : X_\overline{K} \to X_\overline{K}$.

Then the main result is:

\textbf{Theorem 2.2} The group $\Sigma^6N(\Sigma_\overline{K})$ is a colimit of the unramified cohomology groups

\[H^1(G, \Sigma_K[6N]) \to H^1(I_v, \Sigma_\Sigma[6N]) \]

here G is the Galois group $\text{Gal}(\overline{K}/L)$ for a finite extension L of K and I_v is the inertia subgroup of the Galois group G corresponding to a
finite place v and hence

$$\text{im}(j^*[6N])(K)/A^2(X_{\overline{K}})[6N](K)$$

is a colimit of unramified cohomology groups.

The main tools used here are the Galois module structure of the Chow group of $X_{\overline{K}}$ and that of $X_{\overline{K}}$ and the Galois cohomology of the groups $A^2(X_{\overline{K}})$ and that of $A^2(X_{\overline{K}})$. The proof involves similar techniques as to show that the Selmer group of an abelian variety defined over a number field is finite.

Coombes [Co] proved that for a surface X with geometric genus and irregularity zero, $A^2(X)$ is finite under the assumption that $A^2(X_{\overline{K}}) = 0$.

Towards proving our main result Theorem 2.2, we start with a surface X of geometric genus and irregularity zero defined over K which satisfies the condition that the map:

$$\text{Pic}(X) \to \text{Pic}(X_{\overline{K}}) \to \text{NS}(X_{\overline{K}})$$

is surjective,

$$H^2(X_{\mathcal{O}_K[1/f]}, \mathcal{O}_{X_{\mathcal{O}_K[1/f]}}) = 0$$

for all p in Spec($\mathcal{O}_K[1/f]$), here f is some element in \mathcal{O}_K and $X(K) \neq \emptyset$.

Then we prove by using the result of [CTR][lemma 3.3], that:

Theorem 2.6: The group

$$\text{im}(j^*)(K)/A^2(X_{\mathcal{O}_K[1/f]})(K)$$

is a torsion group.

Here we do not assume the vanishing of $A^2(X_{\overline{K}})$ as in [Co]. The above theorem is important to prove the finiteness or triviality of $A^2(X_{\overline{K}})(K)$. It says that, at least to prove that $\text{im}(j^*)(K) \otimes_\mathbb{Z} \mathbb{Q} = \{0\}$ it is enough to prove that

$$A^2(X_{\mathcal{O}_K[1/f]})(K) \otimes_\mathbb{Z} \mathbb{Q} = \{0\}.$$

This gives some information on how to prove $A^2(X)$ is finite.

Acknowledgements: The authors thank department of atomic energy (DAE) for funding this project and for the hospitality of Harish-Chandra Research Institute, India, where the work has been done. The first author also thanks VIT University Chennai for hosting this project.
2. Proof of the theorems

Let E be as before having complex multiplication by \mathcal{O}_K and $X = E \times E$. Let us fix a Weirstrass equation for the elliptic curve once and for all. Let us consider a spread $\mathcal{E}_{\mathcal{O}_K[1/6N]}$ of E over $\mathcal{O}_K[1/6N]$ which is smooth and denote $\mathcal{E}_{\mathcal{O}_K[1/6N]} \times \mathcal{E}_{\mathcal{O}_K[1/6N]}$ by \mathfrak{X}. Then we consider the restriction homomorphism from $A^2(\mathfrak{X}) \to A^2(X)$. It is known due to Mildenhall’s result that the kernel of this restriction map is finite and we name it Σ_K. Then we have the exact sequence

$$0 \to \Sigma_K \to A^2(\mathfrak{X}) \to A^2(X).$$

Now consider the sequence at the level of \bar{K}, namely

$$0 \to \Sigma_{\bar{K}} \to A^2(\mathfrak{X}_{\bar{K}}) \to A^2(X_{\bar{K}}).$$

Note that G acts naturally on each member of the above short exact sequence. Also if the inclusion of $X_{\bar{K}} \hookrightarrow \mathfrak{X}_{\bar{K}}$ be denoted by j, then the pullback map j^* is from $A^2(\mathfrak{X}_{\bar{K}})$ to $A^2(X_{\bar{K}})$. Therefore one has the natural long exact sequence on the group cohomology level of G for these Galois modules,

$$0 \to \Sigma^G_K \to A^2(\mathfrak{X}_{\bar{K}})^G \to \text{im}(j^*)^G \to H^1(G, \Sigma_K) \to H^1(G, A^2(\mathfrak{X}_{\bar{K}})) \to H^1(G, \text{im}(j^*)).$$

Here M^G, for a G-module M, denotes the group of G-invariants in M, i.e.

$$\{m \in M | g.m = m, \forall g \in G\}.$$

Let us denote the groups

$$A^2(X_{\bar{K}})^G, A^2(\mathfrak{X}_{\bar{K}})^G, \text{im}(j^*)^G$$

as

$$A^2(X_{\bar{K}})(K), A^2(\mathfrak{X}_{\bar{K}})(K), \text{im}(j^*)(K)$$

respectively. Also for notational convenience we continue to denote Σ^G_K as Σ_K. Then we have the following exact sequence

$$0 \to \text{im}(j^*)(K)/A^2(\mathfrak{X}_{\bar{K}})(K) \to H^1(G, \Sigma_K) \to H^1(G, A^2(\mathfrak{X}_{\bar{K}})) \to H^1(G, \text{im}(j^*)).$$

Let v be a place of K and K_v be the completion of K at v. Let \bar{K}_v be the algebraic closure of K_v and we embed \bar{K} into \bar{K}_v. This embedding gives an injection of $\text{Gal}(\bar{K}_v/K_v) = G_v$ into $\text{Gal}(\bar{K}/K) = G$ and
consequently a homomorphism (considering the Galois cohomology)

\[H^1(G, \Sigma_K) \to H^1(G_v, A^2(X_{\bar{\mathcal{O}}_{K_v}[1/6N]})) . \]

Again for notational convenience we write \(A^2(X_{\bar{\mathcal{O}}_{K_v}[1/6N]}) \) in the above as \(A^2(X_{\bar{K}_v}) \). Then we have the following commutative diagrams:

\[
\begin{array}{cccc}
\text{im}(j^*)(K)/A^2(X_{\bar{K}})(K) & \to & H^1(G, \Sigma_{\bar{K}}) & \to & H^1(G, A^2(X_{\bar{K}})) & \to & H^1(G, \text{im}(j^*)) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\text{im}(j^*)(K_v)/A^2(X_{\bar{K}_v})(K_v) & \to & H^1(G_v, \Sigma_{\bar{K}_v}) & \to & H^1(G_v, A^2(X_{\bar{K}_v})) & \to & H^1(G_v, \text{im}(j^*_v))
\end{array}
\]

Let us now focus on

\[H^1(G, \Sigma_K) \to \prod_v H^1(G_v, A^2(X_{\bar{K}_v})) \]

and consider the sequence of \(n \)-torsion subgroups of \(\Sigma_{\bar{K}}, A^2(X_{\bar{K}}), A^2(X_{\bar{K}}) \) given by:

\[0 \to \Sigma_K[n] \to A^2(X_{\bar{K}})[n] \to A^2(X_{\bar{K}})[n] . \]

Here \(A[n] \) for an abelian group \(A \), denotes the group of \(n \)-torsions of \(A \). Then considering the above groups as \(G \)-modules we have a homomorphism at the level of Galois cohomology given by:

\[H^1(G, \Sigma_K[n]) \to \prod_v H^1(G_v, A^2(X_{\bar{K}_v}))[n] . \]

Definition 2.1. The kernel of this map is defined to be the \(n \)-Selmer group associated to the restriction homomorphism \(A^2(X_{\bar{K}}) \to A^2(X_{\bar{K}}) \), at the level of \(n \)-torsions in the group of algebraically trivial codimension 2-cycles and it is denoted by \(S^n(\Sigma_{\bar{K}}) \).

Let \(Alb(X_{\bar{K}}) \) be the Albanese variety such that there exists a natural (universal) homomorphism of abelian groups from \(A^2(X_{\bar{K}}) \) to \(Alb(X_{\bar{K}}) \). Now \(X_{\bar{K}} \) is an abelian variety \(Alb(X_{\bar{K}}) \cong X_{\bar{K}} \). Since the following argument is more general in nature, that is, it works for any smooth projective \(X_{\bar{K}} \) and for its albanese variety \(Alb(X_{\bar{K}}) \), provided the kernel of

\[j^*: A^2(X_{\bar{K}})[n](K) \to A^2(X_{\bar{K}})[n](K) \]

is finite, we do not use the isomorphism \(Alb(X_{\bar{K}}) \cong X_{\bar{K}} \). Specifically this is required to prove the analogous result as stated in Remark 2.5.
Let's consider the commutative diagram:

\[
\begin{array}{ccc}
H^1(G, \text{Alb}(X_{\bar{K}})[n]) & \rightarrow & \prod_v H^1(G_v, \text{Alb}(X_{\bar{K}_v})[n]) \\
\downarrow & & \downarrow \\
H^1(G, A^2(X_{\bar{K}})[n]) & \rightarrow & \prod_v H^1(G_v, A^2(X_{\bar{K}_v})[n])
\end{array}
\]

Now by Roitman's theorem [R2], the groups $\text{Alb}(X_{\bar{K}})[n]$ and $A^2(X_{\bar{K}})[n]$ are isomorphic as Galois modules and therefore the group cohomologies are isomorphic. Thus the left vertical arrow in the above diagram is an isomorphism. Let

\[
S^n(\text{Alb}(X_{\bar{K}})/K) := \ker(H^1(G_K, \text{Alb}(X_{\bar{K}})[n]) \rightarrow \prod_v H^1(G_{K_v}, \text{Alb}(X_{\bar{K}_v})[n]))
\]

here v varies over all finite places of K. Similarly

\[
S^n(A^2(X_{\bar{K}})/K) := \ker(H^1(G_K, A^2(X_{\bar{K}})[n]) \rightarrow \prod_v H^1(G_{K_v}, A^2(X_{\bar{K}_v})[n])).
\]

If we take an element in $S^n(\text{Alb}(X_{\bar{K}})/K)$, then by the commutativity of the above diagram, the image of the element under the left vertical homomorphism is in $S^n(A^2(X_{\bar{K}})/K)$. Now we prove our main result which has already been stated in the introduction.

Theorem 2.2. The group $S^{6N}(\Sigma_{\bar{K}})$ is a colimit of the unramified cohomology groups

\[
H^1(G, \Sigma_{\bar{K}}[6N]) \rightarrow H^1(I_v, \Sigma_v[6N])
\]

here G is the Galois group $\text{Gal}(\bar{K}/L)$ for a finite extension L of K and I_v is the inertia subgroup of the Galois group G corresponding to a finite place v and hence

\[
\text{im}(j^*[6N])(K)/A^2(X_{\bar{K}})[6N](K)
\]

is a colimit of unramified cohomology groups.
Proof. Let n be a positive integer. Let us consider the diagram

$$
\begin{array}{ccc}
H^1(G, \Sigma \bar{K}[n]) & \longrightarrow & \prod_v H^1(G_v, \Sigma_{K_v}[n]) \\
\downarrow & & \downarrow \\
H^1(G, A^2(\mathcal{X}_\bar{K})[n]) & \longrightarrow & \prod_v H^1(G_v, A^2(\mathcal{X}_{K_v})[n])
\end{array}
$$

Suppose that some element is there in $S^n(\Sigma_{K/K})$.

Consider the following commutative squares:

$$
\begin{array}{ccc}
\Sigma_{K_v}/n\Sigma_{K_v} & \longrightarrow & H^1(G_v, \Sigma_{K_v}[n]) \\
\downarrow & & \downarrow \\
A^2(\mathcal{X}_{K_{v}})(K_{v})/nA^2(\mathcal{X}_{K_{v}})(K_{v}) & \longrightarrow & H^1(G_v, A^2(\mathcal{X}_{K_{v}})[n])
\end{array}
$$

Let η be in the kernel of $H^1(G, \Sigma \bar{K}[n]) \to H^1(G_v, A^2(\mathcal{X}_{K_v}))[n]$.

Then it follows by the exactness of the sequence, induced by the long exact sequence corresponding to the short exact sequence of Galois modules given as:

$$
\begin{array}{c}
0 \to \Sigma_K[n] \to A^2(\mathcal{X}_{K_v}) \xrightarrow{n} A^2(\mathcal{X}_{K_v}) \to 0 \\
A^2(\mathcal{X}_{K_v})(K_v)/nA^2(\mathcal{X}_{K_v})(K_v) \to H^1(G_v, A^2(\mathcal{X}_{K_v})[n]) \to H^1(G_v, A^2(\mathcal{X}_{K_v}))[n]
\end{array}
$$

that there exists an element z in $A^2(\mathcal{X}_{K_v})(K_v)$ such that

$$
\phi(\eta)(\sigma) = \sigma.z - z
$$

for all σ in G_v. Here ϕ is from $Z^1(G, \Sigma \bar{K}[n])$ to $Z^1(G_v, A^2(\mathcal{X}_{K_v})[n])$ and η is a co-cycle such that it’s cohomology class is in the kernel the homomorphism induced by ϕ at the level of cohomology. For simplicity as before we denote $\mathcal{X}_{K_v}, \Sigma_{K_v}$ by \mathcal{X}_v, Σ_v respectively. In particular for all σ in the inertia group I_v, we have

$$
\phi(\eta)(\sigma) = \sigma.z - z
$$

Let v be a finite place such that v does not divide n and $Alb(X_{\bar{K}}), X_{\bar{K}}$ have good reduction at v. We consider the specialization homomorphism from $A^2(X_v)$ to $A^2(X'_v)$, where X'_v is the reduction of X_v at v.
Then it follows that the image of
\[\sigma.z - z \]
in \(A^2(X_v) \) goes to zero under the specialization homomorphism for all \(\sigma \) in \(I_v \). But on the other hand
\[\sigma.z - z \]
is an \(n \)-torsion for each \(\sigma \) in \(\mathcal{G}_v \) (as \(\eta \) is an \(n \)-torsion), so by Roitman’s theorem on torsion, the image of the element \(\sigma.z - z \) in \(A^2(X_v) \) corresponds to an \(n \)-torsion on \(Alb(X_v) \). By the previous argument this \(n \)-torsion on \(Alb(X_v) \) is mapped to zero under \(Alb(X_v) \rightarrow Alb(X'_v) \).

But we know that the \(n \)-torsions of \(Alb(X_v) \) are embedded in \(Alb(X'_v) \) (for \(v \) which does not divide \(n \), this follows from the theory of formal groups over \(v \)-adic numbers). Therefore this \(n \)-torsion on \(A^2(X_v) \) is zero (this is because of the injectivity of the albanese map on \(n \)-torsions) and consequently
\[\sigma.z - z \in \Sigma_v[n] \]
for all \(\sigma \in I_v \) and
\[\sigma.z - z = 0 \]
in \(\Sigma_v[n] \), for all \(\sigma \in I_v \) (where \(v \) does not divide \(n \)).

This implies \(S^n(\Sigma_{\overline{K}}) \) consists of elements which are unramified for all but finitely many places \(v \), i.e., the image of the elements in \(S^n(\Sigma_{\overline{K}}) \) under the map
\[H^1(G, \Sigma_{\overline{K}}[n]) \rightarrow H^1(I_v, \Sigma_v[n]) \]
is zero for all but finitely many places \(v \).

Hence the following variance of lemma [Sil][lemma 4.3, chapter X] tells us that \(S^{6N}(\Sigma_{\overline{K}}) \) is a colimit of this unramified cohomology groups.

Lemma 2.3. [Sil][Lemma 4.3, Chapter 10] Let \(L \) be a finite extension of the number field \(K \). Let \(M \) be the finite \(G = \text{Gal}(\overline{K}/L) \) module \(\Sigma_L \) and \(S \) be a set of finitely many places in \(L \). Consider
\[H^1(G, M; S) \]
consisting of all elements \(\eta \) in \(H^1(G, M) \), which are unramified outside \(S \), that is in the kernel
\[\ker(H^1(G, M) \rightarrow \prod_{v \notin S} H^1(I_v, M_v)) \]
here $M_v = \Sigma_v$, for a place in L. Then $H^1(G, M; S)$ is finite.

Thus this result, applied to $M = \Sigma_L[6N]$ for any finite extension L over K (is finite by Theorem 1.1 in [CTR]), we have that $S^{6N}(\Sigma_L)$ is finite. Also observe that

$$\Sigma_K = \cup_{K \subset L} \Sigma_L,$$

$$G = \cup_{K \subset L} \text{Gal}(\bar{K}/L).$$

Therefore $H^1(G, \Sigma_K[6N])$ is isomorphic to the colimit of

$$H^1(\text{Gal}(\bar{K}/L), \Sigma_L[6N]).$$

Hence $S^{6N}(\Sigma_K)$ is isomorphic to the colimit of $S^{6N}(\Sigma_L)$, all of which are finite unramified cohomology groups. Consequently

$$\text{im}(j^*[6N])(K)/A^2(X)[6N](K)$$

is a colimit of unramified cohomology groups. The proof actually follows from the finiteness of $S^{6N}(\Sigma_L)$.

Remark 2.4. In the previous theorem 2.2, it is interesting to see whether the groups $S^{6N}(\Sigma_L)$ are subgroups of the group $S^{6N}(\Sigma_K)$.

Remark 2.5. The analogue of Mildenhall’s result was proved for a Fermat quartic surface in [Ot]. Thus for the Fermat quartic surface too, Theorem 2.2 is true.

Now by lemma 3.3 in [CTR], if $\mathcal{O}_L[1/f]$ is such that $X_L := X_{\mathcal{O}_L[1/f]}$ is smooth and the following conditions are true:

$$H^2(X_{L,p}, \mathcal{O}_{X_{L,p}}) = 0 \text{ for all } p \in \text{Spec}(\mathcal{O}_L[1/f]),$$

$$X(K) \neq \emptyset,$$

$$\text{Pic}(X_L) \rightarrow \text{Pic}(X_{\bar{K}}) \rightarrow \text{NS}(X_{\bar{K}})$$

is surjective,

then for a finite extension L of K, $A^2(X_L) \rightarrow A^2(X_L)$ has finite kernel. This leads us to prove:

Theorem 2.6. Under the above conditions

$$\text{im}(j^*)(K)/A^2(X_{\bar{K}})(K)$$

is torsion and is described by a colimit of unramified cohomology groups

$$H^1(G, \Sigma_K[n]) \rightarrow H^1(I_v, \Sigma_v[n]).$$
Proof. The proof goes verbatim as Theorem 2.2.

Remark 2.7. For a surface with geometric genus and irregularity zero, such that the above conditions as in Theorem 2.2 are satisfied, one has that

\[\text{im}(j^*)(K) / A^2(X_K)(K) \]

is torsion. Therefore tensoring with \(\mathbb{Q} \) gives

\[A^2(X_K)(K) \otimes \mathbb{Q} \rightarrow \text{im}(j^*)(K) \otimes \mathbb{Q} \]

is surjective. Therefore to prove the triviality for \(\text{im}(j^*)(K) \otimes \mathbb{Q} \), it is enough to prove that

\[A^2(X_K)(K) \otimes \mathbb{Q} \]

is trivial. This gives some information about the structure of of \(A^2(X_K) \).

References

[Co] K.Coombes, Arithmetic of zero cycles on surfaces with geometric genus and irregularity zero. Math. Ann. 291, 429-452, 1991.

[CTR] J.Colliot-Thelene, W. Raskind Groupe de Chow de codimension deux des varits definies sur un corps de hommes: un thorme de finitude pour la torsion, Inventiones Math. 105, 1991, 221-245.

[Fu] W.Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete(3), vol.2. Springer, Berlin, 1984.

[GG] S.Gorchinsky, V.Guletskii, Non-trivial elements in the Abel-Jacobi kernels of higher dimensional varieties, Advances in Mathematics, Volume 241, 2013, 162-191.

[GGP] M.Green, P.Griffiths, K.Paranjape, Cycles over fields of transcendence degree one, Michigan Math. Journal, 52(1), April 2004, 181-187.

[M] D.Mumford, Rational equivalence for 0-cycles on surfaces., J.Math Kyoto Univ. 9, 1968, 195-204.

[Mil] S.Mildenhall, Cycles in a product of elliptic curves and a group analogous to the class group. Duke Math. Journal, Vol 67, no. 2, 1992, 387-406.

[Ot] N.Otsubo, Selmer groups and zero cycles on Fermat quartic surfaces, Journal fur die reine und angewandte Mathematik, 525, 2000, 113-146.

[Ras] W.Raskind, Torsion algebraic cycles on varieties over local fields, Algebraic K-theory: connections with geometry and topology, edited by J.F.Jardine, V.P.Snaith, Kluer, Dordrecht, 1989, 343-388.

[R1] A.Roitman, \(\Gamma \)-equivalence of zero dimensional cycles (Russian), Math. Sbornik. 86(128), 1971, 557-570.

[R1] A.Roitman, Rational equivalence of 0-cycles, Math USSR Sbornik, 18, 1972, 571-588

[R2] A.Roitman, The torsion of the group of 0-cycles modulo rational equivalence, Ann. of Math. (2), 111, 1980, no.3, 553-569

[Sil] J.H.Silverman, The Arithmetic of elliptic curves, Springer, Berlin-Heidelberg-New York, 1986.
