Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded in mammals by two genes that generate two related proteins: GSK-3α and GSK-3β. GSK-3 is active in cells under resting conditions and is primarily regulated through inhibition or diversion of its activity. While GSK-3 is one of the few protein kinases that can be inactivated by phosphorylation, the mechanisms of GSK-3 regulation are more varied and not fully understood. Precise control appears to be achieved by a combination of phosphorylation, localization, and sequestration by a number of GSK-3-binding proteins. GSK-3 lies downstream of several major signaling pathways including the phosphatidylinositol 3′ kinase pathway, the Wnt pathway, Hedgehog signaling and Notch. Specific pools of GSK-3, which differ in intracellular localization, binding partner affinity, and relative amount are differentially sensitized to several distinct signaling pathways and these sequestration mechanisms contribute to pathway insulation and signal specificity. Dysregulation of signaling pathways involving GSK-3 is associated with the pathogenesis of numerous neurological and psychiatric disorders and there are data suggesting GSK-3 isoform-selective roles in several of these. Here, we review the current knowledge of GSK-3 regulation and targets and discuss the various animal models that have been employed to dissect the functions of GSK-3 in brain development and function through the use of conventional or conditional knockout mice as well as transgenic mice. These studies have revealed fundamental roles for these protein kinases in memory, behavior, and neuronal fate determination and provide insights into possible therapeutic interventions.

Keywords: GSK-3, signal transduction, animal models, behavior
peaks at P8, decreasing somewhat after that period (Takahashi et al., 1994). In adult brain, GSK-3α is especially abundant in the hippocampus, cerebral cortex, striatum, and cerebellum (based on Allen Brain Atlas). GSK-3β is expressed in nearly all brain regions, although there are marked regional differences of GSK-3β mRNA levels in the human brain (Pandey et al., 2009). As a caution, the glycine-rich (and hence purine-rich) region of GSK-3α may distort comparative analysis of RNA expression between it and GSK-3β.

In certain cell types of the brain, alternative splicing between exon 8 and 9 of GSK-3β leads to the generation of an additional “long” form containing a 13 amino acid insert within the catalytic domain (GSK-3β2; see Figure 1). This insert is located between residues 303 and 304 of GSK-3β, and is flanked by two proximal α-helices of kinase subdomains X and XI (Hanks and Hunter, 1995; Mukai et al., 2002). This alternatively spliced isoform of GSK-3β in rodents (Mukai et al., 2002; Yao et al., 2002) and in human (Lau et al., 1999; Schaffer et al., 2003; Kwock et al., 2005) has been implicated in neuronal-specific functions. The short form of GSK-3β is ubiquitously expressed in the body, including the developing and adult nervous system (Takahashi et al., 1994; Leroy and Brion, 1999). By contrast, GSK-3β2 is predominantly expressed in the neural tissues, with highest levels in the developing brain and persistence into adulthood (Mukai et al., 2002; Wood-Kaczmar et al., 2009).

GSK-3 REGULATION

An unusual feature of GSK-3 is that the kinase displays high activity in cells under resting/unstimulated conditions (Sutherland et al., 1993; Stambolic and Woodgett, 1994; Woodgett, 1994) and is one of few protein kinases that is inhibited by extracellular signals that induce a rapid and reversible increase in serine phosphorylation of GSK-3 causing a decrease in enzymatic activity. For example, growth factor, insulin, or serum treatment decreases GSK-3 activity by 30–70% within 10 min (Sutherland et al., 1993; Welsh and Proud, 1993; Saito et al., 1994; Stambolic and Woodgett, 1994; Sutherland and Cohen, 1994; Cross et al., 1995; Eldar-Finkelman et al., 1995). The mechanisms of GSK-3 regulation are varied and not yet fully understood; precise control appears to be achieved by a combination of phosphorylation, localization, and sequesteration by a number of GSK-3-binding proteins (reviewed in Frame and Cohen, 2001; Doble and Woodgett, 2003; Jope and Johnson, 2004; Kockeritz et al., 2006).

REGULATION THROUGH PHOSPHORYLATION

GSK-3 is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. The activity of GSK-3 is positively regulated by phosphorylation on a “T loop” tyrosine residue within subdomain VIII (Tyr279 for GSK-3α and Tyr216 for GSK-3β; Hughes et al., 1993; Sutherland et al., 1993; Sutherland and Cohen, 1994). p38 MAPK can also inactivate GSK-3β via phosphorylation within its C-terminal region at Ser389 and Thr390 (Thornton et al., 2008). Thr43 of GSK-3β may be phosphorylated by Erk, resulting in GSK-3 inhibition (Ding et al., 2005).

From the crystal structure, it has been proposed that unphosphorylated Tyr276/Tyr216 act to block the access of primed substrates (as discussed below). Indeed, the structure of phosphorylated GSK-3β (Bax et al., 2001) shows that phosphorylated Tyr216 undergoes a conformational change that allows substrates to bind the enzyme. Previous studies, however, led to conflicting conclusions as to whether tyrosine phosphorylation of GSK-3 is catalyzed by GSK-3 itself (autophosphorylation) or by a distinct tyrosine kinase (Hughes et al., 1993; Kim et al., 1999; Lesort et al., 1999;...
Wang et al., 2003; Cole et al., 2004a). In support of the autophosphorylation model, at least in mammals, Lochhead et al. (2006) showed that newly synthesized GSK-3β autophosphorylated itself on tyrosine and that this event could be prevented by exposure to GSK-3 inhibitors.

In contrast to tyrosine phosphorylation, regulation of N-terminal serine phosphorylation is only conserved in GSK-3 homologs from mammals, Xenopus, and Drosophila, but not in yeast, higher plants, Dictyostelium, or Caenorhabditis elegans. The phosphorylation state of serine residues of both isoenzymes is dynamic, involving phosphorylation by several protein kinases and dephosphorylation by protein phosphatase-1 (PP-1; Sutherland et al., 1993; Saito et al., 1994; Stambolic and Woodgett, 1994; Cross et al., 1995; Eldar-Finkelman et al., 1995; Welsh et al., 1998; Zhang et al., 2003). N-terminal domain serine phosphorylation of GSK-3α and GSK-3β leads to inhibition of its activity (Sutherland et al., 1993; Saito et al., 1994; Stambolic and Woodgett, 1994; Cross et al., 1995; Eldar-Finkelman et al., 1995; Welsh et al., 1998; Grimes and Jope, 2001; Zhang et al., 2003). Phosphorylation of GSK-3 within its N-terminal region creates a “pseudosubstrate” which intramolecularly binds to a “phosphoprotein binding pocket” within the active site of the kinase, suppressing activity by occluding primed substrate access to the binding pocket (Frame et al., 2001).

This inhibitory mechanism is induced by agonists such as neurotrophins and growth factors that activate protein kinases that act on the N-terminal domain of GSK-3 such as PKB/Akt, p90rsk, cyclic-AMP-dependent protein kinase, p70 S6 kinase, as well as regulators of phosphatase-1 (Sutherland et al., 1993; Stambolic and Woodgett, 1994; Alessi et al., 1996; Li et al., 2000; Svenningsson et al., 2003; see Figure 2). For example, insulin leads to inhibition of GSK-3 via insulin receptor substrate-1-dependent induction of phosphatidylinositol 3′ kinase (PI3K), which then stimulates PKB/Akt (Cross et al., 1995). GSK-3 has previously been shown to catalyze serine phosphorylation of IRS-1 and IRS-2, interfering with receptor-mediated tyrosine phosphorylation by the insulin receptor, effectively attenuating insulin receptor signaling via a negative feedback loop (Eldar-Finkelman and Krebs, 1997; Sharfi and Eldar-Finkelman, 2008; Figure 2). Moreover, recent studies have revealed novel bi-directionality in the interaction of PKB/Akt and GSK-3 whereby genetic ablation of GSK-3 significantly suppresses PKB/Akt phosphorylation (Lu et al., 2011), indicating a possible novel feedback loop in PKB/Akt/MAPK network (Figure 2).

Growth factors, such as EGF and PDGF can also inhibit GSK-3 activity through the phosphatidylinositol 3′ kinase (PI3K) pathway (Stambolic and Woodgett, 1994; Shaw and Cohen, 1999), as well as through induction of the MAPK cascade (Saito et al., 1994; Brady et al., 1998). Ser9/21 phosphorylation of GSK-3 can be modified by amino acid deprivation through mammalian target of rapamycin (mTOR; Armstrong et al., 2001; Krause et al., 2002; Terruzzi et al., 2002) or in response to agonists that elevate the intracellular levels of cAMP through cyclic-AMP-dependent protein kinase (PKA; Fang et al., 2000; Li et al., 2000; Figure 2). The PKA-anchoring
protein 220 binds both GSK-3 and PKA and hence facilitates GSK-3 phosphorylation by this protein kinase (Tanji et al., 2002). PKC agonists can also regulate GSK-3 (Ballou et al., 2001; Fang et al., 2002), however certain PKCs may preferentially regulate GSK-3β but not GSK-3α (Goode et al., 1992).

REGULATION THROUGH COMPLEX FORMATION

Wnts are secreted glycoproteins that activate canonical and non-canonical (β-catenin independent) Wnt signaling cascades, which are essential for early embryonic patterning, cell fate, cellular polarity, cell movement, cell proliferation as well as adult homeostasis in both vertebrates and invertebrates (Logan and Nusse, 2004; Moon et al., 2004; Salinas, 2005; MacDonald et al., 2009). The canonical Wnt signaling pathway employs a distinct mechanism for regulating GSK-3 that is independent of N-terminal domain serine phosphorylation or tyrosine phosphorylation and, instead, relies on protein:protein interactions and intracellular sequestration. Thus, the canonical Wnt pathway comprises phylogenetically conserved proteins: the Wnt receptor, Frizzled; co-receptor, low-density lipoprotein receptor-related protein (LRP) 5/6; scaffolding proteins, Disheveled (Dvl), Axin, Adenomatous polyposis coli (APC) and GSK-3, β-catenin, and casein kinase-1 (CK1; see Figure 3).

In cells a small fraction (5–10%) of cellular GSK-3 is associated with a scaffolding protein termed Axin (Lee et al., 2003; Benchabane et al., 2008). These molecules are joined by others to create a “destruction complex” comprising Axin, APC, CK1, GSK-3, and β-catenin (Zeng et al., 1997; Hart et al., 1998; Ikeda et al., 1998). Within this machine, CK1 phosphorylates Ser45 of β-catenin, which generates a priming site for subsequent GSK-3 phosphorylation on Thr41 (Amit et al., 2002; Hagen and Vidal-Puig, 2002; Hagen et al., 2002; Liu et al., 2002; Sakanaka, 2002; Yanagawa et al., 2002) and subsequently Ser37 and Ser33; resulting in β-catenin recognition by β-TrCP (an E3 ubiquitin ligase subunit), and subsequent ubiquitin-mediated proteasomal degradation of β-catenin (Aberle et al., 1997; Amit et al., 2002; Liu et al., 2002; He et al., 2004). This results in the maintenance of very low levels of β-catenin within the cytoplasm and nucleus of cells (significant amounts of β-catenin are associated, in epithelial cells, with the cadherin adhesion molecules but this fraction is effectively sequestered and does not play a role in Wnt signaling).

In addition to β-catenin, both Axin and APC are phosphorylated by GSK-3. Phosphorylation of Axin by GSK-3 increases its stability and binding to β-catenin (Ikeda et al., 1998; Jho et al., 1999; Yamamoto et al., 1999). Phosphorylation of APC increases its affinity to β-catenin (Rubinfeld et al., 1996). Both events promote β-catenin phosphorylation and degradation complex stability.

Wnt ligand induces binding of the seven-pass transmembrane receptor Frizzled and the LRP5/6 co-receptor which leads to the recruitment of Dvl and induction of LRP 5/6 phosphorylation by GSK-3 and CK1. This creates a high affinity binding site for Axin (He et al., 2004; Zeng et al., 2005; Mi et al., 2006; Niehrs and Shen, 2010). Recruitment of Axin to the receptor proteins results in functional dissolution of the destruction complex allowing the stabilization and accumulation of β-catenin. The now stable β-catenin translocates to the nucleus where it binds with members of the TCF/LEF family of DNA-binding proteins, resulting in transcriptional activation of certain targets genes.

β-catenin is dephosphorylated primarily by protein phosphatase (PP) 2A (Su et al., 2008). APC may also act to interfere with PP2A dephosphorylation of β-catenin (Su et al., 2008). APC also facilitates Axin degradation (Lee et al., 2003; Takacs et al., 2008). PP-1 activity leads to dephosphorylation of Axin, antagonizing CK1 phosphorylation as well as negatively regulating GSK-3-Axin binding, promoting complex disassembly (Luo et al., 2007).

Several molecular mechanisms have been proposed to explain how canonical Wnt signaling may interfere with GSK-3-dependent phosphorylation of β-catenin (reviewed in Kimelman and Xu, 2006). For example, the intracellular domain of LRP6 may act as a direct inhibitor of GSK-3 (Mi et al., 2006; Cseleynyi et al., 2008; Piao et al., 2008; Wu et al., 2009). A recent study suggested an important role of multi-vesicular endosomes in the canonical Wnt pathway (Taelman et al., 2010). In cells harboring a constitutively activated mutant of LRP6, sequestration of GSK-3 into these membrane-bound organelles was observed, leading to insulation of GSK-3 from other components of the pathway (Taelman et al., 2010). This trafficking machinery required β-catenin which formed a feed-forward loop by facilitating GSK-3 sequestration (Taelman et al., 2010). Whether this mechanism plays a role in physiological Wnt signaling has yet to be determined.

Both mammalian isoforms of GSK-3 function equivalently in Wnt signaling and are entirely redundant (Doble et al., 2007). Indeed, retention of just one of the four GSK-3 alleles is sufficient to maintain low levels of β-catenin in the absence of Wnt, reiterating the fact that only a small fraction of GSK-3 is tightly associated with Axin and therefore relevant to Wnt signaling.

GSK-3 can also associate with other proteins, e.g., GSK-3-binding protein (GBP or FRA1; Li et al., 1999; Fraser et al., 2002) and GKIP (Chou et al., 2006); however, the roles of FRAT and GKIP in GSK-3 biology have yet to be defined. GSK-3 is also a part of an interacting complex of proteins involved in Hedgehog (Hh) pathway, regulating a key transcription factor of Hh signaling – cubitus interruptus (Ci; Price and Kalderon, 2002).

REGULATION THROUGH INTRACELLULAR LOCALIZATION

In addition to binding proteins in the cytoplasm, there are differences in patterns of subcellular localization of the GSK-3 isoforms (Hoashi et al., 1995; Franca-Koh et al., 2002; Bijur and Jope, 2003). GSK-3 is largely considered as a cytoplasmic protein, but the kinase can also be detected in the nucleus and mitochondria where it is more active compared with the larger cytoplasmic fraction (Bijur and Jope, 2003). Nuclear localization of GSK-3 is dynamic and dependent on the cell cycle (being highest during S-phase; Diehl et al., 1998). Activity is also rapidly increased during apoptosis (Bijur and Jope, 2001). The mechanisms governing intracellular localization of GSK-3 are not fully elucidated. Activated PKB/Akt has been reported to decrease nuclear levels of GSK-3 (Bijur and Jope, 2001). Binding of FRAT 1 to GSK-3 facilitates nuclear export (Franca-Koh et al., 2002). The viral tumor-associated latent nuclear antigen binds GSK-3 and acts to enrich it in the nuclear fraction (Fujimuro et al., 2003). As mentioned previously, GSK-3α has an N-terminal extension compared to GSK-3β. One role of this extra domain may be to provide a level of regulation to
FIGURE 3 | Interaction between different intracellular pools of GSK-3 and protein complexes, involved into Wnt, Hedgehog (Hh), GCPR, and PAR3/6-Cdc42–PKC pathways. (A): resting conditions. (B): activated conditions.
nuclear transport of this isoform (Azoulay-Alfaguter et al., 2011). Notably, deletion of N-terminus of GSK-3 beta reduces its nucleus accumulation (Meares and Jope, 2007). These studies indicate that at least a fraction of GSK-3 may be regulated by intracellular compartmental shuttling.

The finding that GSK-3 acts downstream of multiple signaling pathways that have distinct effects on cells and tissues presents a conundrum. How might signal selectivity be achieved if a protein common to multiple pathways was a required intermediary? The elegant cellular solution to this is to fractionate GSK-3 between scaffolding proteins or other structures such that each system has its own population of GSK-3 molecules “assigned” to it. This effectively insulates the signals and requires that the GSK-3 sub-populations do not intermingle or exchange. It is still an open question why so many important pathways evolved with a common component, a subject of speculative commentary (McNeill and Woodgett, 2010).

GSK-3 SUBSTRATES

The determination of the crystal structure of GSK-3β provided further insight into the molecular nature of the regulation of GSK-3 and its predilection for primed, pre-phosphorylated substrates (Dajani et al., 2001; ter Haar et al., 2001). GSK-3 shares common features with other protein kinases and has a small N-terminal lobe mostly consisting of β-sheets and a large C-terminal lobe essentially formed of α-helices (Noble et al., 2005). The ATP-binding pocket is located between the two lobes and is so highly conserved between the two isoforms that discrimination between the two protein kinases by an ATP analog-based inhibitor is highly unlikely (Bain et al., 2007).

GSK-3 is one of only a handful of the over 500 known protein kinases that has a strong (500- to 1000-fold) preference for substrates that are already primed by phosphorylation at a proximal serine/threonine to the GSK-3 target residue (Thomas et al., 1999). The phosphorylated residue within the presumptive substrate slots into a “phosphate-binding” pocket that comprises three crucial basic residues – Lys205, Arg96, and Arg180 (Bax et al., 2001; Dajani et al., 2001; ter Haar et al., 2001). These three residues are conserved in all GSK-3 homologs identified to date, suggesting conservation of the priming phosphate-binding site and the substrate specificity of GSK-3 in all organisms. Binding of the priming phosphate of the substrate to this pocket on GSK-3 induces a conformational change, aligning the substrate for subsequent phosphorylation.

The majority of GSK-3 substrates exhibit an absolute requirement for prior phosphorylation by another kinase at a “priming” residue located C-terminal to the site of subsequent phosphorylation by GSK-3 (Fiol et al., 1987). GSK-3-catalyzed phosphorylation of these substrates occurs at the fourth (Fiol et al., 1990) or fifth (Cole et al., 2006) serine or threonine residue N-terminal to the primed site (pST1XXpST2), where the first pS/T1 (Ser or Thr) is the target residue, X is any amino acid (but often Pro), and the last pS/T2 is the site for priming phosphorylation. Thus, the primed Ser/Thr is recognized by the positively charged “binding pocket” on GSK-3 which facilitates the correct orientation of the substrate within the active site of the kinase. Several protein kinases have been shown to act as priming enzymes for GSK-3 phosphorylation, including CDK-5 (Sengupta et al., 1997; Noble et al., 2003; Li et al., 2006), PAR-1 (Nishimura et al., 2004), casein kinase-1 (Amir et al., 2002), casein kinase-2 (Picton et al., 1982; DePaoli-Roach et al., 1983), PKA (Singh et al., 1995), and PKC (Liu et al., 2003). In the case of several substrates, the residue phosphorylated by GSK-3 acts to prime an additional Ser/Thr residue N-terminal to it. This can lead to a zipper effect where multiple residues become phosphorylated by GSK-3. Certain substrates apparently dodge the requirement for prior phosphorylation including c-Jun (Boyle et al., 1991), c-Myc (Saksela et al., 1992), histone H1.1 (Happel et al., 2009), and MARK2/ PAR-1 (Kosuga et al., 2005; Timm et al., 2008). In these cases, acidic residues or peptide conformations may substitute for the effect of the priming phosphate.

To prove that an in vitro identified protein is an in vivo physiological substrate of GSK-3 the target has to meet several criteria (Frame and Cohen, 2001). These include phosphorylation of the protein at the appropriate residues by the protein kinase in vitro and under conditions known to modulate that kinase in vivo and selective reduction in those phosphorylation sites upon treatment with a specific inhibitor of the protein kinase (or via gene knock-out/RNAi). To date, over 100 cytoplasmic and nuclear proteins have been identified as substrates of GSK-3 although not all of these meet the Frame and Cohen criteria as bona fide targets (reviewed in Doble and Woodgett, 2003; Jope and Johnson, 2004; Kockeritz et al., 2006; Sutherland, 2011; see Table 1).

With respect to biological processes, GSK-3 substrates may be classified into several groups of proteins/transcription factors/regulatory enzymes that have roles in processes such as metabolism, cellular architecture, gene expression, neurobiological processes, synaptogenesis, neurodevelopment, axonal growth and polarity, immune response, circadian rhythms, and neuronal/cellular survival (reviewed in Frame and Cohen, 2001; Doble and Woodgett, 2003; Jope and Johnson, 2004; Kockeritz et al., 2006; Sutherland, 2011; see Table 1).

GSK-3 SUBSTRATES RELATED TO CIRCADIAN RHYTHMS

Circadian (from the Latin *circa diem* meaning “about a day”) rhythms occur with a periodicity of about 24 h and enable organisms to adapt and anticipate environmental changes. Circadian control provides an evolutionary advantage to organisms in adapting their behavior and physiology to the appropriate time of day (reviewed in Wijnen and Young, 2006; Sahar and Sassone-Corsi, 2009). Feeding behavior, sleep-wake cycles, hormonal levels, and body temperature are just a few examples of physiological circadian rhythms. Dysregulation of the cycle is associated with the onset and development of numerous human diseases, including sleep disorders, depression, and dementia.

From a molecular standpoint, circadian rhythms are regulated by transcriptional and post-translational feedback loops generated by a set of interplaying “clock” proteins. The positive limb of the mammalian clock machinery is comprised of CLOCK and BMAL1, which are transcription factors that heterodimerize through their PAS domains and induce the expression of clock-controlled genes by binding to their promoters at E-boxes. Cryptochromes (Cry1, Cry2) and Period genes (Per1, Per2, Per3) are clock-controlled genes that encode proteins that form the
Table 1 | GSK-3 substrates.

Substrate name	GSK-3′s phosphorylation site (in bold) S/TxxxS/T	Biological process/relevance to disease	Reference
METABOLIC ENZYMES AND SIGNALING PROTEINS			
ATP-citrate lyase	T446xxxS450xxxS454	Fatty acid biosynthesis	Hughes et al. (1992), Benjamin et al. (1994)
Glycogen synthase	S640xxxS644 xxxS648xxx S652xxxS656	Glycogen metabolism, diabetes	Rylatt et al. (1980), Parker et al. (1983), Dent et al. (1989)
Pyruvate dehydrogenase	...?...	Metabolism	Hoshi et al. (1996)
Phosphocholine cytidylyltransferase (CTP)k-casein	C-terminus	CDP-choline pathway	Cornell et al. (1995)
Protein phosphatase-1 G-subunit	S38xxxS42xxxS46	Signaling/protein dephosphorylation	Donella-Deana et al. (1983)
Protein phosphatase inhibitor-2	T72xxxS86	Signaling/protein dephosphorylation	Dent et al. (1989)
Axin	S322xxxS326xxxS330	Wnt pathway, development, cancer	Ikeda et al. (1998), Jho et al. (1999), Yamamoto et al. (1999)
Adenomatous polyposis coli (APC)	S1501xxxS1505 S1503xxxS1507	Wnt pathway, development, cancer	Rubinfield et al. (1996), Ikeda et al. (2000), Ferrarese et al. (2007)
Cubitus interruptus/Gli	S852xxxS856 S884xxxS888xxxS892	Hedgehog pathway, development, cancer	Jia et al. (2002), Price and Kaideron (2002)
eIF2B (Eukaryotic initiation factor 2B)	S555xxxS559	Growth, cancer	Welsh et al. (1998), Wang et al. (2001), Woods et al. (2001)
Amyloid precursor protein (APP)	T743xxx? T668xxx?	Neuronal function, Alzheimer’s disease	Aplin et al. (1996)
Presenilin-1	S397xxxS401xxx? S353xxxS357xxx?	Alzheimer’s disease	Kirschenbaum et al. (2001), Twomey and McCarthy (2006)
Heterogeneous nuclear ribonucleoprotein D	S83xxxS87	Transcriptional regulator	Tolnay et al. (2002)
Phosphatase interactor targeting protein K (PITK)	S1013xxxS1017	PP-1 targeting subunit, modulates phosphorylation of hnRNP K	Kwik et al. (2007)
p21 CIP1	T57xxx?	Cell cycle, apoptosis	Rössig et al. (2002)
Insulin receptor substrate 1	S332xxxS336	Diabetes, growth, cancer	Eldar-Finkelman and Krebs (1997), Liberman and Eldar-Finkelman (2005), Sharfi and Eldar-Finkelman (2008)
Insulin receptor substrate 2	S484xxxS488	Diabetes	
P75 NGF receptor	...?...	Neurotrophin signaling	Taniuchi et al. (1986)
Mcl-1	S140xxxT144	Growth, apoptosis, cancer	Maurer et al. (2006), Ding et al. (2007)
Cyclic-AMP-dependent protein kinase – RII subunit	S444xxxS447xxx?	cAMP pathway, hormonal responses	Hemmings et al. (1982)
Cyclin D1	T286xxx?	Cell cycle, cancer	Diehl et al. (1998)
Cyclin E	T380xxx?	Cell cycle	Welcker et al. (2003)
Myelin basic protein	T97xxx?	Myelination of nerves in CNS	Yu and Yang (1994)
Cry2	S553xxxS557	Circadian rhythm	Harada et al. (2005), Kurabayashi et al. (2010)
Per2	...?...	Circadian rhythm	Kaladchibachi et al. (2007)
Nucleoporin p62	C-terminus	Cell division	Miller et al. (1999)
PTEN (phosphatase and tensin homolog)	S362xxxS366xxxS370	Cell proliferation, migration and growth, cell survival	Al-Khoury et al. (2005)

(Continued)
Table 1 | Continued

Substrate name	GSK-3′s phosphorylation site (in bold) S/TxxxS/T	Biological process/relevance to disease	Reference
Lipoprotein receptor-related protein 6	S1490xxx?	Wnt pathway, development, cancer	Zeng et al. (2005); Mi et al. (2006); Niehrs and Shen (2010)
TSC2 (tuberous sclerosis 2/Tuberin	S1337xxx	Tumor suppressor	Inoki et al. (2006)
CDC25 (cell division cycle)	S76xxxT80	Cell cycle, cancer	Kang et al. (2008)
RBL2/p130	S948xxxS952; S962xxxS966; S982xxxT986	Growth, cell cycle, cancer	Litovchick et al. (2004)
Voltage dependent anion channel	T51xxxT55	Apoptosis, cancer	Pastorino et al. (2005)
CTPS (cytidine triphosphate synthetase	S571xxxS575	Cell growth, cancer	Higgins et al. (2007)
Mdm2 (murine double minute 2)	S240xxxS244; S254xxxS258	Growth	Kulikov et al. (2005)
Calcipressin/RCN1 (regulators of calcineurin)	S113xxxS117	Neuronal regulator of calcineurin, growth, Alzheimer’s disease, down syndrome	Hilioti et al. (2004)
Gephyrin	S270xxx?	GABA transmission, neuronal functions	Tyagarajan et al. (2011); Mishra et al. (2007)
Mixed lineage kinase-3	S789xxxS793xxx?	c-Jun and p38 MAPK pathways, apoptosis, neurodegenerative disease	
OMA-1	T339xxxT239	Oocyte maturation	Niahi and Lin (2005)
p27Kip1	T687	Cell cycle regulator	Surjit and Lal (2007)
Polyipyrimidine track-binding protein-associated-splicing factor (PSF)	T492xxx?	RNA metabolism	Gustafson et al. (2005)
Zinc finger CCHC domain-containing protein 8 (Zcchc8)	T509xxxT514xxx	Cell adhesion and migration	Cai et al. (2006)
SC35	T208xxxT212	Neuronal functions	Sánchez et al. (2000)
Structural Proteins	T231xxxT235xxx	Microtubule stabilization, neuronal functions, Alzheimer’s disease	Hanger et al. (1992), Yang et al. (1993), Woods et al. (2001), Cho and Johnson (2004)
DF3/MUC1 (high molecular weight mucin-like glycoprotein)	S40xxxS44	Wnt pathway, β-catenin, and E-cadherin complex	Li et al. (1998)
Dynamin 1	T774xxxT778	Endocytosis, neuronal function	Hong et al. (1998), Clayton et al. (2010)
Kinesin light chains (KLCs)	S611xxxS615xxx?	Axonal transport, mitosis, meliosis	Morfini et al. (2002)
Microtubule-associated protein 1B	S1260xxx?	Neuronal functions	Lucas et al. (1998), Trivedi et al. (2005), Scales et al. (2009)
Microtubule-associated protein 2C	T1620xxx?	Neuronal functions	
Tau	T231xxxT235xxx	Microtubule stabilization, neuronal functions, Alzheimer’s disease	Hanger et al. (1992), Yang et al. (1993), Woods et al. (2001), Cho and Johnson (2004)
Paxillin	S126xxxS130	Cell adhesion and migration	Cai et al. (2006)
Collapsin response mediator protein 2	T509xxxT514xxx	Neuronal functions, axonal growth, neuronal polarity, Alzheimer’s disease	Cole et al. (2004b), Yoshimura et al. (2005)
Collapsin response mediator protein 4	T509xxxT514xxx	Neuronal function, axonal growth	Cole et al. (2004b), Alabed et al. (2010)

(Continued)
Substrate name	GSK-3’s phosphorylation site (in bold)	Biological process/relevance to disease	Reference
Neural cell adhesion protein (NCAM)	S502xxxS506xxx?	Cell–cell adhesion, neurite outgrowth, synaptic plasticity, learning, and memory	Mackie et al. (1989)
Neurofilament L	S603xxx?	Cell cytoskeleton, axonal growth, axonal diameter	Guan et al. (1991); Yang et al. (1995), Sasaki et al. (2002)
Neurofilament M	S666xxx?		
Neurofilament H	S493xxx?		
Ninein	...?...	Centrosomal functions, brain development, tumorigenesis	Hong et al. (2000), Howng et al. (2004)
Telokin kinase-related protein	S15xxx?	Stabilization of smooth muscle myosin filaments	Krymsky et al. (2001)
CLIP-associated protein 1 (CLASP 1)	...594–614...	Neuronal functions	Wittmann and Waterman-Storer (2005), Kumar et al. (2009)
CLASP 2 (CLIP-associated protein 2)	S533xxxS537xxxS541	Cell migration, neuronal function	Watanabe et al. (2009)
Focal adhesion kinase	S722xxxS726	Cell cycle, survival, migration, cancer	Bianchi et al. (2005)
Microtubule affinity-regulating kinase-2/PAR-1	S212xxx?	Neuronal function, axonal growth	Kosuga et al. (2005), Timm et al. (2008)
Telokin kinase-related protein	...?...		
Polycystin 2	S76xxxS80	Growth, survival, polycystic kidney disease	Streets et al. (2006)
Dystrophin	...?...	Cytoskeleton of muscle fibers	Michalak et al. (1996)
Stathmin/oncoprotein 18 (STMN1)	S31xxx?	Microtubule polymerization and dynamics	Moreno and Avila (1998)
von Hippel-Lindau (VHL)	S68xxxS72	Oxygen sensor, tumor of CNS, kidney, eyes	Hergovich et al. (2006)
TRANSCRIPTION FACTORS			
β-catenin	S33xxxS37xxx	Wnt pathway, development, cancer	Yost et al. (1996), Ikeda et al. (1998)
	T41xxxS45		
δ-catenin	T1078	Cell adhesion	Oh et al. (2009)
CCAAT/enhancer-binding protein α/CEBPα	T222xxxT226xxx	Cell proliferation, growth, differentiation	Ross et al. (1999), Liu et al. (2006)
C/EBPβ	T179xxxS184xxxS188xxxT188	Cell proliferation, growth, differentiation	Tang et al. (2005), Zhao et al. (2005)
C/EBPα (CCAT/enhancer-binding protein β)	S177xxxS181xxxS185xxxT189xxx		
Cyclic AMP response element-binding protein (CREB)	S129xxxS133	Metabolism, neuronal function, memory formation, diabetes	Fiol et al. (1994), Bullock and Habener (1998)
GATA4	...2–116...	Embryogenesis, myocardial differentiation and function	Morisco et al. (2001)
	...2–205...		
Hypoxia-inducible factor-1	S551xxxT555xxx	Growth, cancer	Mottet et al. (2003), Flugel et al. (2007)
Heat shock factor-1 (HSF1)	S303xxxS307	Stress (heat) response	Chu et al. (1996)
C-Myc	S62xxx?	Growth, cancer, oncogenes	Saksela et al. (1992), Sears et al. (2000)
L-myc	T58xxxS62		
N-myc downstream regulated gene 1	T342xxxT346	Stress and hormone response, cell growth and differentiation, cancer	Murray et al. (2004)
	T352xxxT356		
	T362xxxT366		
c-Jun, Jun B, Jun D	T239xxxT243	Growth and cancer	Boyle et al. (1991), Nikolakaki et al. (1993), Woodgett et al. (1993), Morton et al. (2003), Kitagawa et al. (2009)
c-Myc	T572xxx?	Hematopoiesis, tumorigenesis.	Beals et al. (1997), Neal and Clipstone (2001)
Nuclear factor of activated T cells c (NFATc)	SP2 domain	Immune system response	
	SP3 domain		
Table 1 | Continued

Substrate name	GSK-3’s phosphorylation site (in bold) S/TxxxS/T	Biological process/relevance to disease	Reference
Nuclear factor κB (NF-κB) p65 subunit precursor p105 of p60 subunit	S468xxx? S903xxxS907xxx?	Stress response, immune response, synaptic plasticity and memory, cancer, inflammation, autoimmune diseases	Demarchi et al. (2003), Buss et al. (2004)
Notch 1C	...?...	Development, cell–cell communication, cancer.	Foltz et al. (2002), Espinosa et al. (2003)
p53	S33xxxS37, S315xxx?, S376xxx?	Cell cycle regulator, cancer.	Turenne and Price (2001), Qu et al. (2004)
Snail	S97xxxS101, S108xxxS112xxx, S116xxxS120xxx?	Epithelial to mesenchymal transition regulator	Zhou et al. (2004)
Activator protein 1 (AP-1) precursor p105 of p50 subunit	...?...	Differentiation, proliferation, apoptosis	de Groot et al. (1993)
Glucocorticoid receptor	T171xxx?	Stress and immune response, development, metabolism	Rogatsky et al. (1998)
Microphthalmia-associated transcription factor	S298xxx	Melanocyte and osteoclast development	Takeda et al. (2000)
NeuroD	...?...	Central nervous system development	Moore et al. (2002)
BCL3	S394xxxS398	Growth and cancer	Viatour et al. (2004)
Bmal1	S17xxxT21xxx?	Circadian rhythm	Sahar et al. (2010)
Rev-erb α	S55xxxS59xxx?	Circadian rhythm	Yin et al. (2006)
Timeless	...?...	Circadian rhythm	Martinek et al. (2001)
Clock	S427xxxS431	Circadian rhythm	Spengler et al. (2009)
SMAD1	T66xxx?	Embryonic pattern formation, TGFβ signaling	Fuentealba et al. (2007)
SMAD3	...?...	TGFβ signaling, development, cancer	Guo et al. (2008)
Neurogenin 2 (Ngn2)	S231xxx?, S234xxx?	Neuronal function, motor neurons, development	Ma et al. (2008)
BCLAF1 (Bcl-2 interacting transcriptional repressor)	S531xxx?	Apoptosis, cancer	Linding et al. (2007)
Myocardin	S465xxxS459xxx, S463xxxS467xxx?, S624xxxS628xxx, S632xxxS636xxx?	Development, cardiac hypertrophy	Badorff et al. (2005)
Histone H1.5	T10	Chromosome condensation	Happel et al. (2009)
Nascent polypeptide associated complex	T159	Transcriptional coactivator, bone development	Quelo et al. (2004)
Nuclear factor E2-related factor 2	...?...	Antioxidant response, cell survival	Salazar et al. (2006), Rada et al. (2011)
SKN-1	S393xxxS397?	Oxidative stress, detoxification	An et al. (2005)
Sterol regulatory element-binding protein	T426xxxS430xxx?	Lipid and cholesterol metabolism	Sundqvist et al. (2005)
MafA/RIPE3β1	...?...	Regulates insulin gene expression in β cells of pancreas, pancreatic development	Han et al. (2007)

negative limb of the circadian machinery. PER and CRY proteins are classically thought to translocate into the nucleus to inhibit CLOCK:BMAL1 mediated transcription, thereby closing the negative feedback loop (reviewed in Sahar and Sassone-Corsi, 2009).

GSK-3 is expressed in the primary center of circadian rhythm regulation—the suprachiasmatic nucleus (SCN) of hypothalamus (Iitaka et al., 2005). GSK-3α mRNA is found at higher levels in the mouse SCN than GSK-3β (Iwahana et al., 2004). The expression of both GSK-3α protein and the phosphorylated form of GSK-3 have a daily rhythm on the SCN, with peak expression of GSK-3α at ZT5 (Iwahana et al., 2004). Lithium treatment reduces the expression of GSK-3α in the SCN at CT5 and CT11 (Iwahana et al., 2004).
Lithium has been shown to lengthen the period of circadian rhythms in a wide range of experimental systems, including unicellular organisms, insects, mice, and humans (Abe et al., 2000; Iwahana et al., 2004; reviewed in Engelmann, 1988). The GSK-3 ortholog in Droso phila, Shaggy (Sgg), plays a central role in determining circadian period length in flies (Martinek et al., 2001). For example, mutation of GSK-3 in Droso phila causes period lengthening (Martinek et al., 2001). Sgg (GSK-3) phosphorylates Timeless and regulates nuclear translocation of the Period/Timeless heterodimer (Martinek et al., 2001).

GSK-3 has also been demonstrated to phosphorylate and regulate the stability of “core” circadian rhythm genes in mammals. GSK-3 together with another serine kinase, DYRK1A, phosphorylates CRY2 at Ser 557 and 553 (respectively) resulting in degradation of CRY2 (Harada et al., 2005; Kurabayashi et al., 2010). GSK-3 together with another serine kinase, DYRK1A, phosphorylates CRY2 at Ser 557 and 553 (respectively) resulting in degradation of CRY2 (Harada et al., 2005; Kurabayashi et al., 2010). GSK-3 phosphorylates BMAL1 (Ser17/Thr21) and these events control the stability of the proteins and the amplitude of circadian oscillation (Sahar et al., 2010). Moreover, GSK-3 has been found to phosphorylate Rev-erba (Yin et al., 2006), as well as Clock (Spengler et al., 2009). GSK-3 interacts with Per2 in vitro and in vivo, phosphorylates Per2 in vitro and promotes nuclear translocation of Per2 (Iitaka et al., 2005; Kaladchibachi et al., 2007). Overexpression of GSK-3 caused a ∼2 h advance in the phase of mPER2 (Iitaka et al., 2005). Genetic depletion of two alleles of GSK-3β in combination with deletion of one allele of GSK-3α in synchronized oscillating mouse embryonic fibroblasts (3/4 GSK-3α/β KO MEFs) resulted in a significant delay in the period of endogenous clock mechanism, particularly in the cycling period of Per2 (Kaladchibachi et al., 2007). In contrast, one study revealed that siRNA knockdown of GSK-3β or treatment with GSK-3 inhibitors (CHIR 99021 and 1-azakenpaullone) shortened the circadian rhythm (Hi rota et al., 2008); however, the same study observed prominent period lengthening by lithium in another experimental system (Hi rota et al., 2008). Nevertheless, pharmacological inactivation of GSK-3 by a related molecule (kenpaullone) induced a phase delay in Per2 transcription (Kaladchibachi et al., 2007).

ANIMAL MODELS OF GSK-3
Several genetic approaches have been used to generate mutant mice for GSK-3: conventional knockouts and knock-ins (all tissues), conditional knockouts (tissue-specific), and transgenic mice (Table 2). Use of mice harboring genetic inactivation or overexpression of one or both of the GSK-3 genes has proven a powerful means to study GSK-3 function in brain development, morphology, neurogenesis, memory and learning, sensorimotor function, sociability, emotionality as well as depressive-like animal behaviors. The listings below are not exhaustive as they focus on publications describing findings relevant to brain functions. There are many more investigating the role of GSK-3 in other tissues (including mammary gland, liver, heart, etc.).

Table 2 | Animal models of GSK-3.

Type of approach	Mouse design	Mouse name	Characterized by (reference)
CONVENTIONAL			
Knockout	Deletion of exon 2 (ATP-binding loop) of GSK-3α	GSK-3α KO	MacAulay et al. (2007), Kaidanovich-Beilin et al. (2009, Lee et al. (2011), Lipina et al. (2011)
Knockout	Deletion of exon 2 (ATP-binding loop) of GSK-3β	GSK-3β KO	Hoeflch et al. (2000)
Knockout	Deletion of exon 2 (ATP-binding loop) of GSK-3β	GSK-3β HET	Hoeflch et al. (2000), Beaulieu et al. (2004), O’Brien et al. (2004), Beaulieu et al. (2008), Bersudsky et al. (2008), Kimura et al. (2008)
TRANSGENIC			
Knock-in	Mutations GSK-3α S21A, β S9A	GSK-3α, β [S21A,S9A] Ki	McManus et al. (2005), Eorn and Jope (2009), Ackermann et al. (2010), Mines et al. (2010), Poter et al. (2010)
CONDITIONAL			
Double shRNA knockdown	GSK-3α/β shRNA (shGSK-3-3d+/Δ) × Nestin-Cre	Nestin-Cre/shGSK-3-3d+/Δ	Steuber-Buchberger et al. (2008)
Conditional knockout	GSK-3α/3βfl/fl × Nestin-Cre	Nestin-GSK-3α + β KO	Kim et al. (2009)
Double shRNA knockdown	GSK-3β shRNA	DG-GSK-3β knockout (shRNA)	Omata et al. (2011)
TRANSGENIC			
Dominant-negative (DN) GSK-3β	K85PGSK-3β × CamkII-tTA-Cre TetO GSK-3β × CamkII-tTA-Cre	DN-GSK-3β	Gomez-Sintes et al. (2007)
Overexpression of GSK-3β	S9AGSK-3β in Thy-1 gene vector	GSK-3β [S9A]	Lucas et al. (2001), Hernandez et al. (2002), Engel et al. (2006), Hooper et al. (2007)
Overexpression of constitutively active GSK-3β [S9A]	Xenopus GSK-3β × mouse prion promoter MoPrP/ho	PrpGSK-3β S9A and PrpGSK-3β S9A	Spittaels et al. (2000), Spittaels et al. (2002), Pickaerts et al. (2006)
Overexpression of GSK-3β	PrpGSK-3β S9A and PrpGSK-3β S9A	PrpGSK-3β S9A	O’Brien et al. (2011)
CONVENTIONAL KO MICE
The first GSK-3 gene to be knocked out was GSK-3β (Hoeﬄich et al., 2000). These animals die late in development either due to hepatic apoptosis (Hoeﬄich et al., 2000) or a cardiac patterning defect (double outlet, right ventricle; Kerkaela et al., 2008).

GSK-3β heterozygous (HET) mice are viable, morphologically normal and have been tested extensively. These animals exhibit a lithium-mimetic, anti-depressant-like state (Beaulieu et al., 2004; O’Brien et al., 2004). Notably, the anti-depressant-like behavior in GSK-3β HET mice effectively normalizes the depressive behavior caused by serotonin deﬁciency (Beaulieu et al., 2008). Exploratory activity in these animals is reduced although general locomotion remains normal (O’Brien et al., 2004). GSK-3β HET animals show reduced responsiveness to amphetamine treatment (Beaulieu et al., 2004; O’Brien et al., 2004), but have increased morphine-induced locomotion (Urs et al., 2011). Sensorimotor function as well as coordination and balance are normal in GSK-3β HET mice (O’Brien et al., 2004; Bersudsky et al., 2008). GSK-3β HET mice demonstrate increased anxiety (Bersudsky et al., 2008) and reduced aggressive behavior (Beaulieu et al., 2008). Recent studies by Kimura et al. (2008) have revealed the importance of GSK-3β in memory reconsolidation in adult brain. Mice heterozygous for GSK-3β exhibit retrograde amnesia (Kimura et al., 2008). These animals have reduced memory reconsolidation but normal memory acquisition, suggesting that they might be impaired in their ability to form long-term memories.

In contrast to GSK-3β null mice, animals lacking GSK-3α are viable and exhibit improved insulin sensitivity and hepatic glycogen accumulation on the ICR background (MacAulay et al., 2007). However, these anti-diabetic properties are not signiﬁcant on the C57BL6 background (Patel et al., 2011). Similar to GSK-3β HET mice (Beaulieu et al., 2004, 2008; O’Brien et al., 2004), GSK-3α mutants have decreased exploratory activity, decreased immobility time, and anti-aggression behavior (Kaidanovich-Beilin et al., 2009). GSK-3α KO animals also have abnormal behavioral features that are unique to mice lacking the GSK-3α gene, such as decreased locomotion, increased sensitivity to environmental cues, decreased social motivation, and novelty; impaired sensorimotor gating, associative memory, and coordination (Kaidanovich-Beilin et al., 2009). GSK-3α KO mice also exhibit decreased numbers of Purkinje cells in the cerebellum (Kaidanovich-Beilin et al., 2009), as well as decreased dendrite length and surface, but show no changes in spine density in the frontal cortex (Lee et al., 2011).

CONDITIONAL KNOCKDOWN MODELS
Two studies have employed shRNA knockdown to suppress expression of the two GSK-3 genes in mouse brain. Nestin-Cre was employed to drive shRNA expression in the brain progenitor compartment by excising LoxP ﬂanked transcriptional stop sites. This approach resulted in partial reduction of GSK-3α and β protein levels (60 and 50%, respectively) in whole brain lysate (Steuber-Buchberger et al., 2008). These mice have partial embryonic or neonatal lethality (50% of expected offspring). The surviving double-shGSK-3α and β knockdown animals exhibited ~50% of the body weight of littermate controls (Steuber-Buchberger et al., 2008).

In an alternative approach, lentivirus-expressing short-hairpin RNAs targeting GSK-3β were injected bilaterally into the hippocampus to inactivate GSK-3β in the dentate gyrus (Omata et al., 2011). These DG–GSK-3β knockdown mice showed decreased immobility time in both forced swim and tail suspension tests (TST), while the locomotor activity of these animals was unchanged (Omata et al., 2011). This technique achieved 30% suppression of GSK-3β in the hippocampus, sufﬁcient to yield an anti-depressant-like behavior in the mice (Omata et al., 2011).

DOMINANT-NEGATIVE MUTANTS
Dominant-negatively acting mutants interfere with the endogenous proteins by soaking up downstream targets or upstream regulators. This approach has been used to generate conditional transgenic expression of a dominant-negative (DN) form of GSK-3β in the brain (Gomez-Sintes et al., 2007). Mutation of a critical residue involved in ATP-binding, Lys85, to Arg inactivates the protein kinase activity of GSK-3β (Dominguez et al., 1995). Double transgenic mice were generated that expressed dominant-negative GSK-3β in a tetracycline-repressible manner under control of a promoter that is active in the postnatal forebrain (CamKIIu-tTA × K85RGSK-3β). These DN–GSK-3β mice grew normally and showed no evidence of tumor formation (Gomez-Sintes et al., 2007). However, these animals exhibited increased levels of apoptosis in the brain regions involved in motor control as well as showing behavioral deﬁcits in motor coordination (Gomez-Sintes et al., 2007). Suppression of the DN–GSK-3 transgene by doxycycline administration restored normal GSK-3 activity and resulted full reversal of the motor and of the neuronal apoptosis phenotypes (Gomez-Sintes et al., 2007).

OVEREXPRESSION OF GSK-3β
Overexpression of GSK-3β has been postulated to be embryonic lethal as viable transgenic animals show only modest levels of the exogenously engineered gene (Brownlee et al., 1997). Mice overexpressing GSK-3β in the forebrain have been generated by placing the transgene under the control of a tetracycline response element that is induced by administration of doxycycline (Lucas et al., 2001). These Tet/GSK-3β mice have decreased levels of nuclear β-catenin, increased phosphorylation of tau in Alzheimer’s disease-relevant epitopes (correlated with somatodendritic accumulation of microtubule-unbound tau in hippocampal neurons), increased neuronal cell death, and reactive astrocytosis and microgliosis (Lucas et al., 2001). Behavioral characterization of Tet/GSK-3β mice revealed that these animals have impaired acquisition of reference memory in a novel object recognition task (Engel et al., 2006) and impaired spatial learning (Hernandez et al., 2002). Moreover, Tet/GSK-3β mice have reduced LTP induction, a deficit that was rescued by chronic treatment with lithium (Hooper et al., 2007). Thus, mice with conditional overexpression of GSK-3 in forebrain neurons (Tet/GSK-3β) recapitulate aspects of Alzheimer’s disease neuropathology such as tau hyperphosphorylation, apoptotic neuronal death, and reactive astrocytosis, as well as spatial learning deﬁcits. Moreover, these sequelae can be completely reverted by restoration of GSK-3 activity by silencing of transgene expression indicating that these biological defects, at
least, may be responsive to therapeutic intervention (Engel et al., 2006).

Transgenic mice have also been generated that overexpress a mutant form of GSK-3β in which the inhibitory N-terminal phosphorylation site is mutated [S9A] (Spittaels et al., 2000, 2002). This form of the kinase cannot be inhibited by agonists of pathways that promote phosphorylation of this site (such as PI3K, cAMP, etc.). These mice are characterized by microcephaly and higher neuronal density due to reduction of the volume of the somatodendritic compartment (dendrites and cell bodies) of pyramidal neurons in the cortex (Spittaels et al., 2002). The levels of MAP2 were also significantly decreased in the brain and spinal cord of GSK-3β [S9A] mice (Spittaels et al., 2002). However, postnatal overexpression of this non-inhibitable form of GSK-3β in neurons did not alter behaviors of the mice in terms of general cognition and aging and they showed only a minor decline in psychomotor capability (Spittaels et al., 2002). Subsequent characterization revealed that mice with constitutive overexpression of GSK-3β [S9A] showed hypophagia, reduced water consumption, increased general locomotor activity, and increased ASR (acoustic startle response; Prickaerts et al., 2006). GSK-3β [S9A] mice showed reduced immobility times in the forced swim test (FST) but this is likely related to the hyperactivity of these animals (Prickaerts et al., 2006). There were no differences in baseline and stress-induced increases of plasma adrenocorticotrophic hormone and corticosterone levels in GSK-3β [S9A] mice (Prickaerts et al., 2006). Biochemical examination in these animals revealed upregulation of Akt1 together with down-regulation of PPP2R3A (regulatory subunit of PP2A) and GSK-3α in the striatum, as well as increased brain-derived neurotrophic factor (BDNF) in the hippocampus (Prickaerts et al., 2006). In summary, mice overexpressing active GSK-3β [S9A] represent a model for studying hyperactivity, hyperreactivity, and disturbed eating patterns; aspects which recapitulate some of the symptoms observed in the manic phase of bipolar disorder patients, ADHD, and schizophrenia.

GSK-3α, β MUTANT KNOCK-IN MICE

As mentioned above, mutation of the N-terminal phosphorylation sites of GSK-3 renders the protein kinase insensitive to inhibition by that mode of regulation (although the kinase remains sensitive to Wnt regulation, for example). Mice have been generated in which the phosphorylation sites of the endogenous alleles have been replaced by non-phosphorylatable alanine (GSK-αS21A, βS9A). Since serine phosphorylation of GSK-3 is increased by lithium, anti-psychotic drugs, anti-depressants, etc., this model is attractive to use for studying the mechanism of action of aforementioned drugs and related pathological conditions. GSK-αS21A, βS9A knock-in mice have normal development and growth, with no signs of metabolic abnormalities/insulin resistance (McManus et al., 2005). However, these animals have a drastic (40%) impairment in neurogenesis, which is not increased/rescued by co-administration of fluoxetine and lithium (Eom and Jope, 2009). Expression of vascular endothelial growth factor (VEGF), but not BDNF, was reduced in GSK-αS21A, βS9A knock-in mice, suggesting that a deficiency in external support for neural precursor cells might contribute to impaired neurogenesis (Eom and Jope, 2009).

GSK-αS21A, βS9A knock-in mice exhibited increased susceptibility to hyperactivity and a heightened response to a novel environment (Polter et al., 2010). Moreover, these animals revealed increased susceptibility to amphetamine-induced hyperactivity, which was partially reversed by chronic lithium administration (Polter et al., 2010). Besides being sensitive to hyperactivity, these knock-in mutant mice displayed mild anxiety, had increased immobility time in FST and TST and were highly susceptible to stress-induced depressive-like behavior (Polter et al., 2010). In contrast, studies by another group revealed decreased immobility time in FST, indicating a phenotype less prone to depression (Ackermann et al., 2010). LTD in the mutants was found to be abnormal and emotion-associated memory was impaired (Polter et al., 2010). The knock-in animals also demonstrated impaired social preference (Mines et al., 2010). Additional studies revealed increased curiosity in these animals, associated with less sensitivity to application of chronic mild stress as well as decreased HPA axis activity (Ackermann et al., 2010).

CONDITIONAL KNOCKOUT MOUSE MODELS

Alleles of GSK-3α and β have been generated in which exon 2 (containing essential residues for ATP-binding) are flanked by LoxP (flox) sites (Figure 1). Tissue-specific expression of Cre recombinase allows selective excision of the critical exon and inactivation of the allele(s). Combination of a floxed GSK-3β gene on a GSK-3α null background has been employed to generate total GSK-3β nullizygous cells in the developing nervous system via nestin-Cre mediated excision (Nestin-GSK-3α, β KO; Kim et al., 2009). Selective deletion of both GSK-3α and β in neural precursor cells results in dramatic hyperproliferation of neuronal progenitors along the entire rostrocaudal extent of the neuraxis. The progenitor expansion was at the expense of neurogenesis, intermediate neural progenitors, and post-mitotic neurons indicating effective inhibition of the differentiation process (Kim et al., 2009). The morphological abnormalities were accompanied by dysregulation of β-catenin, Hedgehog and Notch signaling as well as loss of polarity of cell division (Kim et al., 2009).

LESSONS LEARNED FROM COMPARING BETWEEN GSK-3 ANIMAL MODELS

Ten different GSK-3 animal models have been described to date (Table 2). All of them display some kind of neuroanatomical and behavioral abnormalities (Tables 3–6). However some of them have not been fully characterized yet and require further examinations. Overall, analysis of different animal models supports in vivo role of GSK-3 in the regulation of fundamental brain functions (emotionality, sociability, learning and memory, and neurogenesis, etc.).

The differences in behavioral results between different GSK-3 animal models may be accounted for by the alternative design of the models, and/or by strain and gender differences, varying methodology, and animal house-keeping environment.

Well described and presented is effect of genetic GSK-3 manipulations on depressive-like phenotype in mice (Table 3). In all three models, inactivation of GSK-3α or β genes (Table 3) revealed anti-depressive phenotypes, supporting studies with GSK-3 inhibitors. However, a similar effect was found in mice
Table 3 | Emotionality behaviors of GSK-3 mutant mice.

Behavioral test	Type of test	GSK-3α KO	GSK-3α HET	GSK-3β HET	GSK-3αβ knock-in	GSK-3β [S9A] overexpression	DG-GSK-3β knockdown (shRNA)
Anxiety	EPM	▲ in females only (1)	▲ (2, 3)	Mild ▲ (6)			
Emotionality	O-maze	≠ in males (1)	▲ (both genders) (1)				
Locomotor	Light-dark box	▼ (1)	≠ (10)	≠ (4, 5, 2)	▲ (6, 11)	▲ (8)	≠ (12)
Exploratory	Open field 30 min	▼ (1)	≠ (10)	≠ (4, 5, 2)	▲ (6, 11)	▲ (8)	≠ (12)
Stress reactivity	Open field 30 min	▼ (1)	▼ (2, 5)				
Stress reactivity	Light-dark box	▼ (1)	▼ (2, 5)	▼ (2, 4, 5)	▲ (6), ▼ (11)	▼ (8)	▼ (12)

▲, increased; ▼, decreased; ≠, same/no change.

References for the comparison tables are: 1. Kaidanovich-Beilin et al. (2009), 2. Bersudsky et al. (2008), 3. Beaulieu et al. (2008), 4. Beaulieu et al. (2004), 5. O’Brien et al. (2004), 6. Poiter et al. (2010), 7. Prickaerts et al. (2006), 8. Lipina et al. (2011), 11. Ackermann et al. (2010), 12. Omata et al. (2011).

Table 4 | Sociability behaviors of GSK-3 mutant mice.

Type of behavior	Type of the test	GSK-3α KO	GSK-3β HET	GSK-3αβ KI
Sociability and social novelty	Social interaction test	▼ (1)		Impaired social preference to Str2 (7)
Aggression	Resident intruder	▼ (1)		(Beaulieu et al., 2008)

▼, Decreased.

References for the comparison tables are: 1. Kaidanovich-Beilin et al. (2009), 7. Mines et al. (2010).

overexpressing GSK-3β (GSK-3β S9A mice; Table 3). The contradictory result in GSK-3β S9A mice was explained by increased locomotor activity in these animals, which may affect performance in the FST and its interpretation.

It is important to mention that different GSK-3 animal models have employed different “Cre” promoters. Activation of specific “Cre” recombinases may happen at different stages of embryogenesis (or after birth), thus may affect specific neuronal populations (post-mitotic or precursors), which may affect structure and function of adult brain. For example, dominant-negative GSK-3β and Tet/GSK-3β mice have been generated by using CamkIIzx-Cre, compare to GSK-3β S9A mice which have been created by using Thy-1 gene promoter (Table 2).

Moreover, there are different approaches have been used to generate mice with overexpression of GSK-3β gene. In all three models with overexpression of GSK-3β, different constructs for GSK-3β gene itself were used (Table 2): intact GSK-3β in Tet/GSK-3β mice versus point mutated form of GSK-3β (S9A) in GSK-3β[S9A] animals. GSK-3 has complex mechanisms of regulation, thus, is it likely that overexpression of wild type protein has different effects on specific brain functions than Serine 9 mutated forms of the protein, depending on the relative importance of “phosphorylation” as the regulatory mechanism in specific brain process/stimulation and structure.

Comparison between GSK-3α KO and GSK-3α + β serine phosphorylation site KI mice revealed similar impaired sociability in both models, despite different genetic approaches being used. These data indicate that both the protein level of GSK-3α as well as serine phosphorylation of GSK-3 are important aspects for neuronal circuits responsible for social interaction.

Moreover, studying and analyzing genetic animal models may be used to make predictions about long-term usage of GSK-3.
Inhibitors (as therapeutic agents). For example, the well characterized GSK-3 inhibitor – lithium – has a diverse spectrum of effects after long-term treatment of patients, including tremor and death of Purkinje cells. Of note, similar changes in cerebellar structure and function were observed in GSK-3 KO and dominant-negative GSK-3β mice (Tables 5 and 6).

Thus, comparative analysis of different animal models may be very informative, however critical and combinatorial approach needs to be used to make correct interpretation and right conclusions.

Pathogenesis of Neurological Disorders Though Crossbreeding of GSK-3 Mutant Mice and Other Neurological Mutants

To study the role of GSK-3β in the pathogenesis of Alzheimer’s disease, particularly with respect to the mechanism of tauopathy, double transgenic mice have been generated by inter-breeding mice overexpressing GSK-3β [S9A] with transgenic mice that overexpress the hTau40 transgenic mice (Spittaels et al., 1999) were rescued by the mild overexpression of GSK-3β, such as the reduction by about an order of magnitude of the number of axonal dilations in the brain and spinal cord, the reduction in axonal degeneration and muscular atrophy, as well as the alleviation of most motoric complication (Spittaels et al., 2000).

DISC1 (Disrupted-in-Schizophrenia-1) is one of the best characterized genetic risk factors for schizophrenia (reviewed in Harrison and Weinberger, 2005; Chubb et al., 2008; Brandon et al., 2009; Jaaro-Peled et al., 2009). One breakpoint of a chromosomal (1;11) (q42.1;q14.3) translocation has been identified within DISC1 gene, which co-segregates in a Scottish family with major mental illness, including schizophrenia, bipolar disorder, and major depression (Millar et al., 2000; Blackwood et al., 2001). DISC1 has been demonstrated to play a role in essential brain functions from embryonic development through to adulthood (reviewed in Jaaro-Peled et al., 2009), such as neurogenesis, neuronal migration, neurite outgrowth, spine development, neurotransmitter signaling, cytoskeletal organization, cell cycle, signal transduction, intracellular transport/exocytosis, etc. (reviewed in Chubb et al., 2008; Brandon et al., 2009; Jaaro-Peled et al., 2009). DISC1 appears to act as a coordinating hub or scaffold protein and has multiple intracellular interacting proteins including GSK-3β (Camargo et al., 2007; Mao et al., 2009; Lipina et al., 2011). GSK-3 acts as an important downstream component in the etiology of schizophrenia (reviewed in more detail elsewhere in this

Table 5 | Memory, informational process, pharmacology, coordination behaviors of GSK-3 mutant mice.

Type of behavior	Type of the test	GSK-3α KO	GSK-3α HET	GSK-3β KO	GSK-3β HET	GSK-3β [S9A] overexpression	Tet/GSK-3β	DN–GSK-3β
Amphetamine	OF + amp	▲	▼ (4)	▲ (6)	▼ (16)			
Response to	OF + morph	▲	▼ (23)					
morphine								
Information	PPI/ASR	▲ PPI (1)	▼ (10)	▼ (2, 5)	▲ASR (8)			
processing	LI	▲ NPE in KO (1)	▼ (10)					
Long-term	FC	▼ (1)	▼ (1)	▼ (6)	▲ (6)	▼ (16)		
memory	Passive avoidance	▼ (1)	▼ (1)	▼ (2, 6)	▼ (16)	▼ (16)		
Spatial memory	LTP/LTD	▼ (1)	▼ (1)	▼ (2, 6)	▼ (16)	▼ (16)		
Coordination,	Rotarod	▼ (1)	▼ (1)	▼ (2, 6)	▼ (16)	▼ (16)		
balance								

▲, Increased; ▼, decreased; ▼, same/no changes.

References for the comparison tables are: 1. Kaidanovich-Beilin et al. (2009); 2. Bersudsky et al. (2008); 4. Beaulieu et al. (2004); 5. O’Brien et al. (2004); 6. Polter et al. (2010); 8. Frickaerts et al. (2008); 9. Kimura et al. (2008); 10. Lipina et al. (2011); 16. Gomez-Sintes et al. (2007); 20. Hooper et al. (2007); 22. Hernandez et al. (2002).
Special Topic series). There are several lines of evidence supporting the involvement of GSK-3 in the pathogenesis of schizophrenia. Polymorphisms in GSK-3 genes have been associated with schizophrenia (Souza et al., 2008; Benedetti et al., 2010). Dysregulation of the PKB/Akt/GSK-3 signaling pathway has been found in subjects with schizophrenia (reviewed in Koros and Dorner-Ciossek, 2007; Lovestone et al., 2007; Beaulieu et al., 2009; Freyberg et al., 2009). For example, phosphorylation of GSK-3β Ser9 is reduced in the peripheral lymphocytes and brains of schizophrenia patients (Emamian et al., 2004). Drugs that influence the DA and 5-HT systems indirectly affect the activity of GSK-3 (this topic is reviewed in greater detail in another chapter in this Special Topic series). In the dopaminergic system, antipsychotic, and psychotomimetic drugs alter GSK-3 function (Mai et al., 2002; Svenningsson et al., 2003; Beaulieu et al., 2004; Emamian et al., 2004; Li et al., 2007). Lithium is used to augment anti-psychotic treatment in schizophrenia patients (Kang et al., 2004; Gould, 2006). Moreover, GSK-3 inhibitors can rescue schizophrenia-like behaviors in mice (Beaulieu et al., 2004; Lipina et al., 2009).

Several mouse models for Disc1 have been described (reviewed in Jaaro-Peled et al., 2009). For example, overexpression of the N-terminal portion of Disc1 in the dentate gyrus causes interaction with GSK-3, suppressing activity, and perturbing ability to down-regulate the Wnt/β-catenin pathway resulting in proliferation of neuronal progenitors (Mao et al., 2009). Treatment with a GSK-3 inhibitor, SB216763 rescued the behavioral effects of lentivirally induced DISC1 suppression in the adult dentate gyrus (Mao et al., 2009).

An ENU-induced mutant of Disc1, Disc1-L100P, exhibits schizophrenia-related behaviors in mice (Clapcote et al., 2007). Pharmacological as well as genetic inactivation of one allele of GSK-3α reverses pre-pulse inhibition (PPI) and latent inhibition (LI) deficits as well as normalizing the hyperactivity of Disc1-L100P mutants (Lipina et al., 2011). In parallel to these observations, interaction between DISC1 and GSK-3 reduces in Disc1-L100P mutants (Lipina et al., 2011). At the histological level, genetic inactivation of GSK-3α partially corrected neurite outgrowth and spine development abnormalities in the frontal cortex induced by the Disc1-L100p mutation (Lee et al., 2011).

Table 6 | Neurogenesis, anatomical changes, biochemical, histological, and molecular characterizations of GSK-3 mutant mice.

Type of analysis	Type of test	GSK-3α KO	Tet/GSK-3β	GSK-3β KO	Nestin-GSK-3β [S9A]	DN–GSK-3β
Neurogenesis	BrdU [3H] incorporation	▲	▼ Proliferation (14)	▼ Proliferation (8)	▲ Proliferation (15), ▼ differentiation (15)	▼ Apoptosis (16)
Apoptosis necrosis	TUNEL, caspase IHC	▲	▼ Apoptosis (17)	▼ Apoptosis (18), ▼ necrosis (18)	▼ Cerebellum, cerebrum, hippocampus, cortex (18)	▼ Tuj1, MAP2, SM132, NeuN (15), ▲ Nestin, Pax6 (15)
Neuro anatomical changes	MRI	▲ Cerebellum (1)	▼ Neuronal density in cortex (18), ▼ number of cortical neurons (18), ▼ caliber of the proximal and distal part of the apical dendrites (18), ▼ size of the cell body of pyramidal neurons (18)	▼ Brain and spinal cord (18, 8)	▼ Brain and spinal cord (18, 8)	
Histology		▲ Dendrite length and surface area in the frontal cortex (12), ▼ in spine density (12), ▼ dendritic arborization (12), ▼ Purkinje cells (1)	▲ Microgliosis (17), ▼ tau fibrils (17, 22)	▼ MAP2 (18), ▼ pTau in old mice (19), ▼ GSK-3a, ▼ PPP2R3A and ▼ Akt1 in striatum (8), ▼ BDNF in hippocampus (8)	▼ pTau (16), ▼ β-catenin (16)	
Brain weight		▲ Brain (1)	▼ β-catenin, Axin, c-jun, Gli1, Gli2, Patched, Hes1, Hes5, NIDC, c-myc, N-myc (15)	▼ pTau (16), ▼ β-catenin (16)	▼ pTau (16), ▼ β-catenin (16)	
Biochemical molecular	Western blot RTPCR	▲ pTau (17), ▼ nuclear β-catenin (17)	▼ VEGF (14), ▼ PPP2R3A (14)	▼ MAP2 (18), ▼ pTau in old mice (19), ▼ GSK-3a, ▼ PPP2R3A and ▼ Akt1 in striatum (8), ▼ BDNF in hippocampus (8)	▼ β-catenin, Axin, c-jun, Gli1, Gli2, Patched, Hes1, Hes5, NIDC, c-myc, N-myc (15)	

▲, Increased; ▼, decreased; =, same/no changes.

References for the comparison tables are: 1. Kaidanovich-Beilin et al. (2009), 8. Prickaerts et al. (2006), 12. Omata et al. (2011), 14. Eom and Jope (2009), 15. Kim et al. (2009), 16. Gomez-Sintes et al. (2007), 17. Lucas et al. (2001), 18. Spittaels et al. (2002), 19. Spittaels et al. (2000), 22. Hernandez et al. (2002).
SUMMARY
The emergence of sophisticated animal models with tissue and developmentally selective expression of GSK-3 has allowed direct assessment of the roles of this protein kinase in a variety of neurological processes and conditions. Clearly, the complexity of brain development and disease pathogenesis requires the use of animal models to examine the biological role of candidate components and with the numbers of candidate genes for neurological illness increasing, allows relatively rapid assessment of genetic interactions through inter-breeding of variant alleles.

While GSK-3 was first implicated in a neurological disorder in 1992 through its capacity to phosphorylate residues on Tau that are associated with neurofibrillary tangles in AD, the potential importance of this kinase in brain function and disease took off with the identification by Klein and Melton of GSK-3 as a direct target of lithium (Klein and Melton, 1996; Stambolic et al., 1996). Since that time, there has been enormous expansion of understanding of this protein kinase with respect to regulation, roles in normal development, and in pathophysiology. However, despite this tsunami of knowledge, there are many remaining questions including the therapeutic reality of modulating GSK-3 in these disorders. Since the beneficial effects of lithium on stabilization of bipolar disorder is achieved at serum levels that reduce GSK-3 levels by only 25% (noting that there are likely several other targets of this drug) and the behavioral phenotypes of Disc1L110P mutations are alleviated by knocking out only one allele of GSK-3β (Lipina et al., 2011), subtle drug modulation of GSK-3 may be sufficient for therapeutic benefit in humans.

ACKNOWLEDGMENTS
We thank members of the Woodgett lab (especially Charles Burger) for helpful discussions as well as Frankie Lee, Albert Wong, Tatiana Lipina, and John Roder. James Robert Woodgett is supported by an operating grant from the Canadian Institutes of Health Research (MOP74711).

REFERENCES
Abe, M., Herzog, E. D., and Block, G. D. (2000). Lithium lengthens the circadian period of individual suprachiasmatic nucleus neurons. Neuronport 11, 3261–3264.
Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. (1997). Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804.
Ackermann, T. F., Kempe, D. S., Lang, F., and Lang, U. E. (2010). Hyperactivity and enhanced curiosity of mice expressing PKB/SGK-resistant glycogen synthase kinase-3 (GSK-3). Cell. Physiol. Biochem. 25, 775–786.
Aitken, A., Holmes, C. F., Campbell, D. A., Ackermann, T. F., Kempe, D. S., Aberle, H., Bauer, A., Stappert, J., Abe, M., Herzog, E. D., and Block, G. D. (2001). Glycogen synthase kinase-3: properties, functions, and regulation. J. Biol. Chem. 276, 952–956.
adipocytes. Biochem. J. 300(Pt 2), 477–482.

Bersudsky, Y., Shalhub-Amin, A., Kozlovsky, N., Woodgett, J. R., Agam, G., and Belmaker, R. H. (2008). Glycogen synthase kinase-3beta heterozygote knockout mice as a model of findings in postmortem schizophrenia brain or as a model of behaviors mimicking lithium action: negative results. Behav Pharmacol 19, 217–225.

Bianchi, M., De Lucchini, S., Marin, O., Turner, D. L., Hanks, S. K., and Villa-Moruzzi, E. (2005). Regulation of FAK Ser-72 phosphorylation and kinase activity by GSK3 and PPI during cell spreading and migration. Biochem. J. 391(Pt 2), 359–370.

Biju, G. N., and Jope, R. S. (2001). Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3 beta. J. Biol. Chem. 276, 37436–37442.

Biju, G. N., and Jope, R. S. (2003). Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria. Neureport 14, 2415–2419.

Blackwood, D. H., Fordyce, A., Walker, M. T., St Clair, D. M., Porteous, D. J., and Muir, W. J. (2001). Schizophrenia and affective disorders – cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am. J. Hum. Genet. 69, 428–437.

Boyle, W. J., Smeal, T., Defize, L. H., Angel, P., Woodgett, J. R., Karin, M., and Hunter, T. (1991). Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 64, 527–534.

Brady, M. J., Bourbonais, F. L., and Salieti, A. R. (1998). The activation of glycogen synthase by insulin switches from kinase inhibition to phosphatase activation during adi-pogenesis in 3T3-L1 cells. J. Biol. Chem. 273, 14063–14066.

Brandon, N. J., Millar, J. K., Korth, C., Sive, H., Singh, K. K., and Sawa, A. (2009). Understanding the role of DISC1 in psychiatric disease and during normal development. J. Neurosci. 29, 12768–12775.

Brownlees, J., Irving, N. G., Brion, J. P., Gibb, J. B., Wagner, U., Woodgett, J. R., and Miller, C. C. (1997). Tau phosphorylation in transgenic mice expressing glycogen synthase kinase-3beta transgenes. Neureport 8, 3251–3255.

Bullock, B. P., and Habener, J. F. (1998). Phosphorylation of the CaMP response element binding protein CREB by cAMP-dependent protein kinase A and glycogen synthase kinase-3 alters DNA-binding affinity, conformation, and increases net charge. Biochemistry 37, 3795–3809.

Buss, H., Dörrie, A., Schmitz, M. L., Frank, K., Livingstone, M., Resch, K., and Kracht, M. (2004). Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J. Biol. Chem. 279, 49571–49574.

Cai, X., Li, M., Vrana, J., and Schaller, M. D. (2006). Glycogen synthase kinase 3- and extracellular signal-regulated kinase-dependent phosphorylation of c-Jun at sites that negatively regulate its DNA-binding affinity, conforma-
tion, and increases net charge. Biochemistry 37, 3795–3809.

Clapcote, S. J., Lipina, T. V., Mil-

lari, J. K., Mackie, S., Christie, S., Ogawa, F., Lerch, J. P., Trimple, K., Uchiyama, M., Sakuraba, Y., Kaneda, H., Shirotishi, T., Houslay, M. D., Henkelman, R. M., Sedl, J. G., Gondo, Y., Porteous, D. J., and Roder, J. C. (2007). Behavioral phenotypes of Discl missense mutations in mice. Neuron 54, 387–402.

Clayton, E. L., Sue, N., Smillie, K. J., O’Leary, T., Bache, N., Cheung, G., Cole, A. R., Wylie, D. I., Sutherland, C. R., Robinson, P. J., and Cousin, M. A. (2010). Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nat. Neurosci. 13, 845–851.

Cole, A., Frame, S., and Cohen, P. (2004a). Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphory-

lated effect. Biochem. J. 377(Pt 1), 249–255.

Cole, A. R., Knebel, A., Morrice, N. A., Robertson, L. A., Irving, A. J., Connolly, C. N., and Sutherland, C. (2004b). GSK-3 phosphorylation of the Alzheimer epitope within col-

lapsin response mediator proteins regulates exon elongation in pri-

mary neurons. J. Biol. Chem. 279, 50176–50180.

Cole, A. R., Causered, F., Yadirgi, G., Hastie, C. J., McLaughlan, H., McManus, E. J., Hernández, E., Eckholt, B. I., Nikolic, M., and Sutherland, C. (2006). Distinct prim-
in genes contribute to differential regulation of collapsin response mediator proteins by glycogen syn-
theticase-kinasethree in vivo. J. Biol. Chem. 281, 16591–16598.

Cornell, R. B., Kalmar, G. B., Kay, R. J., Johnson, M. A., Sanghera, J. S., and Pechle, S. L. (1995). Func-
tions of the C-terminal domain of CTP: phosphocholine cytidyl-

transferase. Effects of C-terminal deletions on enzyme activity, intra-
cellular localization and phosphory-

ation potential. Biochem. J. 310(Pt 2), 699–708.

Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., and Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin medi-

ates glycogen synthase kinase-3beta regulates cyclin D1 protein phosphatase activity, and increases net charge. Mol. Cell. Biol. 259, 12144–12152.

De Paoli-Roach, A. A., Ahmad, Z., Carnic, M., Lawrence, J. C. Jr., and Roach, P. J. (1983). Multiple phosphorylation of rab-
bit skeletal muscle glycogen synthase. Evidence for interactions among phosphorylation sites and the resolution of electrophoretically distinct forms of the subunit. J. Biol. Chem. 258, 10702–10709.

Diehl, J. A., Cheng, M., Roussel, M. F., and Sherr, C. J. (1998). Glycogen synthase kinase-3beta regulates cyclin D1 protein expression and subcel-
lular localization. Genes Dev. 12, 3499–3511.

Ding, Q., He, X., Tsu, H. M., Xia, W., Chen, C. T., Li, L. Y., Lee, D. F., Liu, J. C., Zhong, Q., Wang, X., and Hung, M. C. (2007). Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase-3 induced tumor suppression and chemosensi-
tization. Mol. Cell. Biol. 27, 4006–4017.

Ding, Q., Xia, W., Liu, J. C., Yang, L., Lee, L. Y., Xia, W., Chen, C. T., Tsu, H. M., Tsai, F. J., Tsai, C. H., and Hung, M. C. (2005). Erik associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol. Cell. 19, 159–170.
Eom, T. Y., and Jope, R. S. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell. Sci. 116(Pt 7), 1175–1185.

Dominquez, L., Inoh, K., and Sokol, S. Y. (1995). Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc. Natl. Acad. Sci. U.S.A. 92, 8498–8502.

Donella-Deana, A., Pinna, L. A., Hemmings, B., and Cohen, P. (1983). Phosphorylation of K-casein by rabbit skeletal muscle. Biochim. Biophys. Acta 745, 149–153.

Eldar-Finkelman, H., and Krebs, E. G. (1997). Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc. Natl. Acad. Sci. U.S.A. 94, 9660–9664.

Eldar-Finkelman, H., Seger, R., Vandenheede, J. R., and Krebs, E. G. (1995). Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/90 ribosomal protein S6 kinase signaling pathway in NIH/3T3 cells. J. Biol. Chem. 270, 987–990.

Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M., and Gogos, J. A. (2004). Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat. Genet. 36, 131–137.

Emb, N., Ryllatt, D. B., and Cohen, P. (1980). Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic AMP-dependent protein kinase and phosphorylation of casein kinase II by glycogen synthase kinase-3 from rabbit skeletal muscle. Biochim. Biophys. Acta 745, 149–153.

Fang, X., Xu, S., Tanyi, J. L., Lu, Y., Woodgett, J. R., and Mills, G. B. (2002). Convergence of multiple signaling cascades at glycogen synthase kinase 3: Edg receptor-mediated phosphorylation and inactivation by lysophosphatic acid through a protein kinase C-dependent intra-cellular pathway. Mol. Cell. Biol. 22, 2099–2110.

Fang, X., Xu, S. X., Lu, Y., Bast, F. H., Jr., Woodgett, J. R., and Mills, G. B. (2000). Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl. Acad. Sci. U.S.A. 97, 11960–11965.

Ferrarese, A., Marin, O., Bustos, V. H., Venerando, A., Antonelli, M., Allende, J. E., and Pinna, L. A. (2007). Chemical dissection of the APC repeat 3 multistep phosphorylation by the concerted action of protein kinases CK1 and GSK3. Biochemistry 46, 11902–11910.

Ferrer, I., Barrachina, M., and Puig, B. (2003). Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer's disease. Piek's disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol. 104, 583–591.

Fiol, C. J., Mahrenholz, A. M., Wang, Y., Roeske, R. W., and Roach, P. J. (1987). Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J. Biol. Chem. 262, 14042–14048.

Fiol, C. J., Wang, A., Roeske, R. W., and Roach, P. J. (1990). Ordered multistep protein phosphorylation. Analysis of glycogen synthase kinase 3 action using model peptide substrates. J. Biol. Chem. 265, 6061–6065.

Fiol, C. J., Williams, J. S., Choi, C. H., Wang, Q. M., Roach, P. J., Andrisani, O. M. (1994). A secondary phosphorylation of CREB341 at Ser129 is required for the cAMP-mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression. J. Biol. Chem. 269, 32187–32193.

Flugel, D., Gorlach, A., Michiels, C., and Kietzmann, T. (2007). Glycogen synthase kinase 3 phosphatases hypoxy-inducible factor alpha and mediates its destabilization in a VHL-independent manner. Mol. Cell. Biol. 27, 3235–3236.

Foltz, D. R., Santiago, M. C., Berechid, B. E., and Nye, J. S. (2002). Glycogen synthase kinase-beta modulates notch signaling and stability. Curr. Biol. 12, 1006–1011.

Frame, S., and Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359(Pt 1), 1–16.

Frame, S., Cohen, P., and Biondi, R. M. (2001). A common phosphate binding site explains the unique substrate specificities of GSKs and its inactivation by phosphorylation. Mol. Cell 7, 1321–1327.

Franca-Koh, J., Yeo, M., Fraser, E., Young, N., and Dale, T. C. (2002). The regulation of glycogen synthase kinase-3 nuclear export by Fret/GBP. J. Biol. Chem. 277, 43844–43848.

Frasier, E., Young, N., Dajani, R., Franca-Koh, J., Rives, J., Williams, R. S., Yeo, M., Webster, M. T., Richardson, C., Smalley, M. J., Pearl, L. H., Harwood, A., and Dale, T. C. (2002). Identification of the axin and FZ/FT binding region of glycogen synthase kinase-3. J. Biol. Chem. 277, 2176–2185.

Freyberg, Z., Ferrando, S. J., and Javitch, J. A. (2009). Roles of the Akt/GSK3 and Wnt signaling pathways in schizophrenia and antipsychotic drug action. Am. J. Psychiatry 167, 388–396.

Fuentesal, L. C., Eivers, E., Ikeda, A., Hurtado, C., Kuroda, H., Pera, E. M., and De Robertis, E. M. (2007). Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131, 980–993.

Fujimuro, M., Wada, Y. C., ApRhys, C., Kaijumula, H., Young, D. B., Hayward, G. S., and Hayward, S. D. (2003). A novel viral mechanism for dysregulation of beta-catenin in Kaposi’s sarcoma-associated herpesvirus latency. Nat. Med. 9, 300–306.

Gomez-Sintes, R., Hernandez, F., Gomez, D., and Jope, R. S. (2009). Characterisation of the phosphorylation of beta-catenin at the GSK-3 priming site Ser45. Biochem. Biophys. Res. Commun. 394, 324–328.

Han, S. I., Aramata, S., Yasuda, K., and Kataoka, K. (2007). N-Myc stability in pancreatic beta cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3. Mol. Cell. Biol. 27, 6593–6605.

Hanger, D. P., Hughes, K., Woodgett, J. R., Brain, J. P., and Anderton, B. H. (1992). Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett. 147, 38–62.

Hanks, S. K., and Hunter, T. (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9, 576–596.
Heyd, F., and Lynch, K. W. (2010). Regulation and functions of GSK-3 in the brain. Biochem. Phys. Res. Commun. 286, 339–350.

Hara, Y., Sakai, M., Karabayashi, N., Hirota, T., and Fukuda, Y. (2005). Ser-557-phosphorylated mCRy2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta. J. Biol. Chem. 280, 31714–31721.

Harries, P. J., and Weinberger, D. R. (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry 10, 40–68.

Hart, M. J., de los Santos, R., Alberti, I. N., Rubinfeld, B., and Polak, P. (1998). Downregulation of beta-catenin by human axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr. Biol. 8, 573–581.

He, X., Semenov, M., Tamai, K., and Zeng, X. (2004). LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131, 1663–1677.

Hemmings, B. A., Aitken, A., Cohen, P., Rymond, M., and Hofmann, F. (1982). Phosphorylation of the type-II regulatory subunit of cyclic-AMP-dependent protein kinase by glycogen synthase kinase 3 and glycogen synthase kinase 3 beta. Nature 306, 86–90.

Hong, Y. R., Chen, C. H., Chang, J. H., Wang, S., Wy, S. D., Chou, C. K., and Howling, S. L. (2000). Cloning and characterization of a novel human ninin gene protein that interacts with the glycogen synthase kinase 3beta. Biochem. Biophys. Acta 1492, 513–516.

Howling, S. L., Chen, C. H., Cheng, D. S., Howing, S. L., and Chou, C. C. (1998). Human dynamin-like protein interacts with the glycogen synthase kinase 3-mediated signaling pathway. J. Biol. Chem. 273, 35–47.

Hooper, C., Markevich, V., Plattner, F., Kimelman, D., and Xu, W. (2006). Cubitus interruptus: the matter of their convergence. J. Biol. Chem. 281, 21267–21273.

Horiguchi, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., and Kikuchi, A. (1998). Angiotensin II activates glycogen synthase kinase-3alpha in cerebellar Purkinje cells. FEBS Lett. 436, 339–345.

Ikeda, S., Shibata, M., Matsuura, Y., Usui, H., and Kikuchi, A. (2000). GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with axin. Oncogene 19, 537–545.

Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., and Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 17, 1371–1384.

Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C. Y., He, X., MacDougall, O. A., You, M., Williams, B. O., and Guan, K. L. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Nat. Cell Biol. 8, 95–102.

Iwashina, T., Akiyama, M., Miyakawa, K., Uchida, A., Kasahara, J., Fukunaga, K., Hamada, T., and Shibata, S. (2004). Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nucleus. Eur. J. Neurosci. 19, 2221–2227.

Iwakura, M., Inoue, T., Okazaki, T., Takahashi, N., and Inoue, T. (2000). Beta-catenin destruction complex: an integrative view. Trends Cell Biol. 10, 20–26.
Kulikov, R., Boehme, K. A., and Blat-Krymsky, M. A., Kudryashov, D. S., Kumar, P., Lyle, K. S., Gierke, S., Matov, Kimura, T., Yamashita, S., Nakao, S., Kaidanovich-Beilin and Woodgett Regulation and functions of GSK-3 in the brain

Krause, U., Bertrand, L., Maisin, L., Kosuga, S., Tashiro, E., Kajioka, T., Koros, E., and Dorner-Ciossek, C. dance.

tion of Mdm2 regulates p53 abun-
dation modulates CLASP-microtubule
related protein (telokin) in tonic and
(2001). Phosphorylation of kinase-
Shirinsky, V. P., Lukas, T. J., Water-
synthase kinase-3beta regulates pre-
and McCarthy, J. V. (2001). Glycogen
ONE
3, e3540. doi:10.1371/jour-
325

Krause, U., Bertrand, L., Maisin, L., Kosuga, S., Tashiro, E., Kajioka, T., Koros, E., and Dorner-Ciossek, C.
dance.

tion of Mdm2 regulates p53 abun-
dation modulates CLASP-microtubule
related protein (telokin) in tonic and
(2001). Phosphorylation of kinase-
Shirinsky, V. P., Lukas, T. J., Water-
synthase kinase-3beta regulates pre-
and McCarthy, J. V. (2001). Glycogen
ONE
3, e3540. doi:10.1371/jour-
325

Krause, U., Bertrand, L., Maisin, L., Kosuga, S., Tashiro, E., Kajioka, T., Koros, E., and Dorner-Ciossek, C.
dance.

tion of Mdm2 regulates p53 abun-
dation modulates CLASP-microtubule
related protein (telokin) in tonic and
(2001). Phosphorylation of kinase-
Shirinsky, V. P., Lukas, T. J., Water-
synthase kinase-3beta regulates pre-
and McCarthy, J. V. (2001). Glycogen
ONE
3, e3540. doi:10.1371/jour-
325

Krause, U., Bertrand, L., Maisin, L., Kosuga, S., Tashiro, E., Kajioka, T., Koros, E., and Dorner-Ciossek, C.
dance.

tion of Mdm2 regulates p53 abun-
dation modulates CLASP-microtubule
related protein (telokin) in tonic and
(2001). Phosphorylation of kinase-
Shirinsky, V. P., Lukas, T. J., Water-
synthase kinase-3beta regulates pre-
and McCarthy, J. V. (2001). Glycogen
ONE
3, e3540. doi:10.1371/jour-
325

Krause, U., Bertrand, L., Maisin, L., Kosuga, S., Tashiro, E., Kajioka, T., Koros, E., and Dorner-Ciossek, C.
dance.

tion of Mdm2 regulates p53 abun-
dation modulates CLASP-microtubule
related protein (telokin) in tonic and
(2001). Phosphorylation of kinase-
Shirinsky, V. P., Lukas, T. J., Water-
synthase kinase-3beta regulates pre-
and McCarthy, J. V. (2001). Glycogen
ONE
3, e3540. doi:10.1371/jour-
325

Krause, U., Bertrand, L., Maisin, L., Kosuga, S., Tashiro, E., Kajioka, T., Koros, E., and Dorner-Ciossek, C.
dance.

tion of Mdm2 regulates p53 abun-
dation modulates CLASP-microtubule
related protein (telokin) in tonic and
(2001). Phosphorylation of kinase-
Shirinsky, V. P., Lukas, T. J., Water-
synthase kinase-3beta regulates pre-
and McCarthy, J. V. (2001). Glycogen
ONE
3, e3540. doi:10.1371/jour-
325

Krause, U., Bertrand, L., Maisin, L., Kosuga, S., Tashiro, E., Kajioka, T., Koros, E., and Dorner-Ciossek, C.
dance.

tion of Mdm2 regulates p53 abun-
dation modulates CLASP-microtubule
related protein (telokin) in tonic and
(2001). Phosphorylation of kinase-
Shirinsky, V. P., Lukas, T. J., Water-
synthase kinase-3beta regulates pre-
and McCarthy, J. V. (2001). Glycogen
ONE
3, e3540. doi:10.1371/jour-
325

Kimura, T., Yamashita, S., Nakao, S., Park, J. M., Murayama, M., Mizoroki, T., Yoshikawa, Y., Sahara, N., and Takashima, A. (2008). GSK-3beta is required for memory recon-
solidation in adult brain. PLoS ONE 3, e5540. doi:10.1371/jour-
nal.pone.0003540

Kirschensbaum, F., Hsu, S. C., Cordell, B., and McCarthy, J. V. (2001). Glycogen synthase kinase-3beta regulates pre-
senilin 1 C-terminal fragment levels. J. Biol. Chem. 276, 30701–30707.

Kitagawa, K., Hiramatsu, Y., Uchida, C., Isobe, T., Hattori, T., Oda, T., Shi-
bata, K., Nakamura, S., Kikuchi, A., and Kitagawa, M. (2009). Fbw7 pro-
motes ubiquitin-dependent degra-
dation of c-Myc involvement of GSK3-mediated phosphorylation of Thr-572. PLoS c. Molec. Bio. 28, 2393–2405.

Klein, P. S., and Melton, D. A. (1996). A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. U.S.A. 93, 8455–8459.

Kockeritz, L., Doble, B., Patel, S., and Woodgett, J. R. (2006). Glycogen synthase kinase-3—an overview of an over-achieving protein kinase. Curr. Drug Targets 7, 1377–1388.

Koroš, E., and Dorner-Ciossek, C. (2007). The role of glycogen synthase kinase-3beta in schizophrenia. Drug News Perspect. 22, 425–437.

Krause, U., Bertrand, L., Maisin, L., Rosa, M., and Hue, L. (2002). Sig-
alling pathways and combinatorial effects of insulin and amino acids in isolated rat hepatocytes. Eur. J. Biochem. 269, 3742–3750.

Krymsky, M. A., Kudryashov, D. S., Shirinsky, V. P., Lukas, T. J., Watterson, D. M., and Vortorkin, A. V. (2001). Phosphorylation of kinase-related protein (telokin) in tonic and phasic smooth muscles. J. Muscle Res. Cell Mol. 22, 425–437.

Kulikov, R., Boehme, K. A., and Blat-
tner, C. (2005). Glycogen synthase kinase 3-dependent phosphoryla-
tion of Mdm2 regulates p53 abundance. Mol. Cell. Bio. 25, 7170–7180.

Kumar, P., Lyle, K. S., Gierke, S., Matov, A., Danuser, G., and Wittmann, T. (2009). GSK3beta phosphoryla-
tion modulates CLASP microtubule association and lamella micro-
tubule attachment. J. Cell Bio. 184, 895–908.
Mackie, K., Sorokin, B. C., Nairn, A. C., Greenberg, P., Edelman, G. M., and Cunningham, B. A. (1989). Identification of two protein kinases that phosphorylate the neural cell-adhesion molecule, N-CAM. J. Neurosci. 9, 1883–1896.

Mai, L., Jope, R. S., and Li, X. (2002). BDNF-mediated signal transduction is modulated by GSK3beta and mood stabilizing agents. J. Neurochem. 82, 75–83.

Mao, Y., Ge, X., Frank, C. L., Madison, J. M., Kocher, A. N., Doud, M. K., Tassa, C., Berry, E. M., Soda, T., Singh, K. K., Biechele, T., Petresyun, T. L., Moon, R. T., Haggarty, S. J., and Tsai, L. H. (2009). Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136, 1017–1031.

Martinek, S., Inong, S., Manoukian, A. S., and Young, M. W. (2001). A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105, 769–779.

Maurer, U., Charvet, C., Waghman, A., McNeill, H., and Woodgett, J. R. (2010). Cell Biol. Cell Dev. 19, 201–209.

Mise, M. A., Yuskaitis, C. J., King, M. K., Beurrel, E., and Jope, R. S. (2010). GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. PLoS ONE 5, e9706. doi:10.1371/journal.pone.0009706

Mistrelli, R., Barthwal, M. K., Sondarva, C., Rana, B., Wang, L., Chatterjee, M., Woodgett, J. R., and Rana, A. (2007). Glycogen synthase kinase-3beta induces neuronal cell death via direct phosphorylation of mixed lineage kinase 3. J. Biol. Chem. 282, 30393–30405.

Moon, R. T., Kohn, A. D., De Ferrari, G. V., and Kaykas, A. (2004). WNT and beta-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5, 691–701.

Moores, K. B., Schneider, M. L., and Vetvicka, V. (2006). Glycogen synthase kinase-3 plays in insulin and Wnt signalling defined by knock in analysis. EMBO J. 24, 1571–1583.

McNeill, H., and Woodgett, J. R. (2010). When pathways collide: collaboration and connivance among signalling proteins in development. Nat. Rev. Mol. Cell Biol. 11, 404–413.

Meares, G. P., and Jope, R. S. (2007). Resolution of the nuclear localization mechanism of glycogen synthase kinase-3: functional effects in apoptosis. J. Biol. Chem. 282, 16989–17001.

Mi, K., Dolen, P. J., and Johnson, G. V. (2006). The low density lipoprotein receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity. J. Biol. Chem. 281, 4787–4794.

Michalak, M., Fu, S. Y., Milner, R. E., Busaan, J. L., and Hance, J. E. (1996). Phosphorylation of the carboxyl-terminal region of dystrophin. Biochem. Cell Biol. 74, 431–437.

Miliar, J. K., Wilson-Annan, J. C., Anderson, S., Christie, S., Taylor, M. S., Semple, C. A., Devos, R. S., St Clair, D. M., Muir, W. J., Blackwood, D. H., and Porteous, D. J. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9, 1415–1423.

Miller, M. W., Caracciolo, M. R., Berlin, W. K., and Hanover, J. A. (1999). Phosphorylation and glycosylation of nucleoporins. Arch. Biochem. Bioenerg. 367, 51–63.

Minelli, A., Tsokos, M. G., Pignataro, V., and Marquez, R., Peggie, M., Bain, J., Bloomberg, G. B., Grahame, F. Lang, W., Wolf, P., Kuhl, D., and Cohen, P. (2004). Exploitation of KREST1 to identify NDRG family members as physiological substrates for SGK1 and GSK3. Biochem. J. 384(Pt 3), 477–488.

Neal, J. W., and Clipstone, N. A. (2001). Glycogen synthase kinase-3 inhibits the DNA binding activity of NFATc. J. Biol. Chem. 276, 3666–3673.

Niehrs, C., and Shen, J. (2010). Regulation of Lrp6 phosphorylation. Cell. Mol. Life Sci. 67, 2551–2562.

Nikolakaki, E., Coffer, P. J., Homelso, R., Woodgett, J. R., and Defize, L. H. (1993). Glycogen synthase kinase 3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells. Oncogene 8, 833–840.

Nishi, Y., and Lin, R. (2005). DYRK2 and GSK3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans. Dev. Biol. 288, 139–149.

Nishimura, I., Yang, Y., and Lu, B. (2004). PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell 116, 671–682.

Noble, W., Olm, V., Takata, K., Casey, E., Mary, O., Meyerson, J., Gaynor, K., Lafrancois, J., W ang, L., Kondo, T., Davies, P., Burns, M., Veeranna Nixon, R., Dickson, D., Matsuoka, Y., Ablajianian, M., Lau, L. F., and Duff, K. (2003). Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38, 555–565.

Noble, W., Planel, E., Zeh, C., Olm, V., Meyerson, J., Suleman, F., Gaynor, K., Wang, L., Lafrancois, J., Feinstein, B., Burns, M., Krishnamurthy, P., Wen, Y., Bhat, R., Lewis, J., Dickson, D., and Duff, K. (2005). Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl. Acad. Sci. U.S.A. 102, 6990–6995.

O’Brien, W. T., Harper, A. D., Jove, F., Woodgett, J. R., Maretto, S., Piccolo, S., and Klein, P. S. (2004). Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J. Neurosci. 24, 6791–6798.

O’Brien, W. T., Huang, J., Buccafusca, R., Garskof, J., Valvezan, A. J., Berry, G. K., and Ples, G. S. (2011). Glycogen synthase kinase-3 is essential for beta-arrestin-2 complex formation and lithium-sensitive behaviors in mice. J. Clin. Invest. 121, 3766–3762.

Oh, M., Kim, H., Yang, I., Park, J. H., Cong, W. T., Baek, M. C., Bareiss, S., Ki, H., Lu, Q., No, I., Kwon, I., Choi, J. K., and Kim, K. (2009). GSK-3 phosphorylates delta-catenin and negatively regulates its stability via ubiquitination/proteosome-mediated degradation. J. Biol. Chem. 284, 28579–28589.

Omta, N., Chiu, C. T., Moya, P. R., Leng, Y., Wang, Z., Hunsberger, J. G., Leeds, P., and Chuang, D. M. (2011). Lithinervally mediated GSK-3beta silencing in the hippocampal dentate gyrus induces antidepressant-like effects in stressed mice. Int. J. Neuropsychopharmacol. 14, 711–717.

Pandey, G. N., Dwivedi, Y., Rizavi, H. S., Teppen, T., Gaszner, G. L., Roberts, R. C., and Conley, R. R. (2009). GSK-3beta gene expression in human postmortem brain: regional distribution, effects of age and suicide. Neurochem. Res. 34, 274–285.

Parker, P. J., Caudwell, F. B., and Cohen, P. (1983). Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur. J. Biochem. 130, 227–234.

Pastirno, J. G., Hoek, J. B., Shulga, N. (2005). Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res. 65, 10545–10554.

Patel, S., Macaulay, K., and Woodgett, J. R. (2011). Tissue-specific analysis of glycogen synthase kinase-3alpha (GSK-3alpha) in glucose metabolism: effect of strain variation. PLoS ONE 6, e15845. doi:10.1371/journal.pone.0015845

Perez-Costas, E., Gandy, J. C., Melendez-Ferro, M., Roberts, R. C., and Bijur, G. N. (2010). Light and electron microscopy study of glycogen synthase kinase-3beta in the mouse brain. PLoS ONE 5, e8911. doi:10.1371/journal.pone.0008911
Quelo, I., Akhouayri, O., Prud'homme, A., Li, X., and Jope, R. S. (2010). Cell. Biol. Keap1-independent manner. the Nrf2 transcription factor in a TRCP promotes glycogen synthase proteasome-mediated degradation. Eur. J. Cell Biol. 79, 252–260.

Sasaki, T., Taoka, M., Ishiguro, K., Uchida, A., Saito, T., Itose, T., and Hisanaga, S. (2002). In vivo and in vitro phosphorylation at Ser-493 in the AKT-dependent signaling pathway regulates AKT-dependent apoptosis. J. Biol. Chem. 277, 9684–9689.

Rubinfield, B., Albert, J., Porfiri, E., Fiol, C., Munemitsu, S., and Polakis, P. (1996). Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272, 1023–1026.

Ryalt, D. B., Aitken, A., Gilmore, T., Condon, G. D., Embi, N., and Cohen, P. (1980). Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3 and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase. Eur. J. Biochem. 107, 529–537.

Sahar, S., and Sassone-Corsi, P. (2009). Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9, 886–896.

Sahar, S., Zocchi, L., Kinoshita, C., Borrelli, E., and Sassone-Corsi, P. (2010). Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS ONE 5, e8561. doi:10.1371/journal.pone.0008561

Saito, Y., Vandenheede, J. R., and Cohen, P. (1994). Mechanism by which epidermal growth factor inhibits glycogen synthase kinase-3 and phosphorylation of the N-terminal sequence containing the site phosphorylated by phosphorylase. Eur. J. Biochem. 107, 529–537.

Sahar, S., and Sassone-Corsi, P. (2009). Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9, 886–896.

Quelo, I., Akhouayri, O., Prud'homme, A., and St-Arnaud, R. (2004). GSK3beta-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. Eur. J. Cell Biol. 79, 252–260.

Sasaki, T., Taoka, M., Ishiguro, K., Uchida, A., Saito, T., Itose, T., and Hisanaga, S. (2002). In vivo and in vitro phosphorylation at Ser-493 in the AKT-dependent signaling pathway regulates AKT-dependent apoptosis. J. Biol. Chem. 277, 9684–9689.

Rubinfield, B., Albert, J., Porfiri, E., Fiol, C., Munemitsu, S., and Polakis, P. (1996). Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272, 1023–1026.

Ryalt, D. B., Aitken, A., Gilmore, T., Condon, G. D., Embi, N., and Cohen, P. (1980). Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3 and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase. Eur. J. Biochem. 107, 529–537.

Sahar, S., and Sassone-Corsi, P. (2009). Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9, 886–896.

Sahar, S., Zocchi, L., Kinoshita, C., Borrelli, E., and Sassone-Corsi, P. (2010). Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS ONE 5, e8561. doi:10.1371/journal.pone.0008561

Saito, Y., Vandenheede, J. R., and Cohen, P. (1994). Mechanism by which epidermal growth factor inhibits glycogen synthase kinase-3 and phosphorylation of the N-terminal sequence containing the site phosphorylated by phosphorylase. Eur. J. Biochem. 107, 529–537.

Sahar, S., and Sassone-Corsi, P. (2009). Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9, 886–896.

Quelo, I., Akhouayri, O., Prud'homme, A., and St-Arnaud, R. (2004). GSK3beta-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. Eur. J. Cell Biol. 79, 252–260.

Sasaki, T., Taoka, M., Ishiguro, K., Uchida, A., Saito, T., Itose, T., and Hisanaga, S. (2002). In vivo and in vitro phosphorylation at Ser-493 in the AKT-dependent signaling pathway regulates AKT-dependent apoptosis. J. Biol. Chem. 277, 9684–9689.

Rubinfield, B., Albert, J., Porfiri, E., Fiol, C., Munemitsu, S., and Polakis, P. (1996). Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272, 1023–1026.

Ryalt, D. B., Aitken, A., Gilmore, T., Condon, G. D., Embi, N., and Cohen, P. (1980). Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3 and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase. Eur. J. Biochem. 107, 529–537.

Sahar, S., and Sassone-Corsi, P. (2009). Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9, 886–896.

Sahar, S., Zocchi, L., Kinoshita, C., Borrelli, E., and Sassone-Corsi, P. (2010). Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS ONE 5, e8561. doi:10.1371/journal.pone.0008561

Saito, Y., Vandenheede, J. R., and Cohen, P. (1994). Mechanism by which epidermal growth factor inhibits glycogen synthase kinase-3 and phosphorylation of the N-terminal sequence containing the site phosphorylated by phosphorylase. Eur. J. Biochem. 107, 529–537.

Sahar, S., and Sassone-Corsi, P. (2009). Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9, 886–896.

Quelo, I., Akhouayri, O., Prud'homme, A., and St-Arnaud, R. (2004). GSK3beta-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. Eur. J. Cell Biol. 79, 252–260.

Sasaki, T., Taoka, M., Ishiguro, K., Uchida, A., Saito, T., Itose, T., and Hisanaga, S. (2002). In vivo and in vitro phosphorylation at Ser-493 in the AKT-dependent signaling pathway regulates AKT-dependent apoptosis. J. Biol. Chem. 277, 9684–9689.

Rubinfield, B., Albert, J., Porfiri, E., Fiol, C., Munemitsu, S., and Polakis, P. (1996). Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272, 1023–1026.

Ryalt, D. B., Aitken, A., Gilmore, T., Condon, G. D., Embi, N., and Cohen, P. (1980). Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3 and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase. Eur. J. Biochem. 107, 529–537.

Sahar, S., and Sassone-Corsi, P. (2009). Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9, 886–896.

Sahar, S., Zocchi, L., Kinoshita, C., Borrelli, E., and Sassone-Corsi, P. (2010). Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS ONE 5, e8561. doi:10.1371/journal.pone.0008561

Saito, Y., Vandenheede, J. R., and Cohen, P. (1994). Mechanism by which epidermal growth factor inhibits glycogen synthase kinase-3 and phosphorylation of the N-terminal sequence containing the site phosphorylated by phosphorylase. Eur. J. Biochem. 107, 529–537.

Sahar, S., and Sassone-Corsi, P. (2009). Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9, 886–896.

Quelo, I., Akhouayri, O., Prud'homme, A., and St-Arnaud, R. (2004). GSK3beta-mediated phosphorylation of the alpha NAC coactivator regulates its nuclear translocation and proteasome-mediated degradation. Biochemistry 43, 2906–2914.

Rada, P., Rojo, A. L., Chowdhry, S., McMahon, M., Hayes, J. D., and Cuadrado, A. (2011). SCF(beta)-TrCP promotes glycogen synthase kinase-3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol. Cell. Biol. 31, 1121–1133.
N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. *Hum. Mol. Genet.* 15, 1465–1473.

Su, Y., Fu, C., Ishikawa, S., Stella, A., Kojima, M., Shito, K., Schreiber, E. M., Day, B. W., and Liu, B. (2008). APC is essential for targeting phosphorylated beta-catenin to the SCFbeta-TrCP ubiquitin ligase. *Mol. Cell* 32, 652–661.

Sundqvist, A., Bengoechea-Alonso, M. T., Ye, X., Lukyanchuk, V., Jin, J., Harper, J. W., and Ericsson, J. (2005). Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). *Cell Metab.* 1, 379–391.

Suzuki, M. and Lal, S. K. (2007). Glycogen synthase kinase-3 phosphorylates and regulates the stability of p27kip1 protein. *Cell Cycle* 6, 580–588.

Sutherland, C. (2011). What are the bona fide GSK3 substrates? *Int. J. Alzheimer’s Dis.* 11, 506S07.

Sutherland, C., and Cohen, P. (1994). The alpha isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. *FEBS Lett.* 338, 37–42.

Sutherland, C., Leighton, I. A., and Cohen, P. (1993). Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth factor signalling. *Biochem. J.* 296(Pt 1), 15–19.

Svensingson, P., Tizavara, E. T., Caruthers, R., Rachleff, I., Wattler, S., Nehls, M., McKinzie, D. L., Fienberg, A. A., Nomikos, G. G., and Greenberg, P. (2003). Diverse phosphotyromimetics act through a common phosphorylation pathway. *Science* 302, 1412–1415.

Taelman, V. F., Dobrowolski, R., Plouhinec, J. L., Fuentealba, L. C., Vorwald, P. P., Gumper, I., Sabatini, D. D., and De Robertis, E. M. (2010). WRK signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. *Cell* 143, 1136–1148.

Takacs, C. M., Baird, J. R., Hughes, E. G., Kent, S. S., Benchabane, H., Paik, R., and Ahmed, Y. (2008). Dual positive and negative regulation of wingless signalling by adenomatous polyposis coli. *Cell* 139, 335–336.

Takahashi, M., Tomizawa, K., Kato, R., Sato, K., Uchida, T., Fujita, S. C., and Imahori, K. (1994). Localization and developmental changes of tau protein kinase Ig/ glycogen synthase kinase-3 beta in rat brain. *J. Neurochem.* 63, 249–255.

Takeda, K., Takemoto, L., Kobayashi, I., Watanabe, A., Nobukuni, Y., Fisher, D. E, and Tachibana, M. (2000). Ser298 of MTFF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. *Hum. Mol. Genet.* 9, 123–132.

Tang, Q. G., Gronborg, M., Huang, H., Kim, J. W., Otto, T. C., Pandey, A., Lane, M. D. (2005). Sequential phosphorylation of CAAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis. *Proc. Natl. Acad. Sci. U.S.A.* 102, 9766–9771.

Tani, C., Yamamoto, H., Yorioka, N., Kohno, H., Mikijuki, H., and Mikijuki, A. (2002). A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3 (GSK3beta) and mediates protein kinase A-dependent inhibition of GSK3beta. *J. Biol. Chem.* 277, 36955–36961.

Ter Haar, E., Coll, T. J., Asten, D. A., Hsiao, H. M., Swenon, L., and Jain, J. (2001). Structure of GSK3beta reveals a primed phosphorylation mechanism. *Nat. Struct. Biol.* 8, 593–596.

Teruzzi, I., Allibardi, S., Bendinelli, P., Maroni, P., Piccoletti, R., Vesco, F., Maroni, P. J., and Lawrence, J. C. Jr. (1986). A-kinase anchoring protein regulates the activity of glycogen synthase kinase 3beta in a calcium-dependent manner. *FEBS Lett.* 255, 11768–11774.

Urs, N. M., Daigle, T. L., and Caron, G. A., Gomez, E., O’Brien, K., Morisson, C., and Koibuchi, K. (2009). Phosphorylation of CLASLP2 by GSK3beta regulates its interaction with IGOAP1, EB1 and microtubules. *J. Cell. Sci.* 122(Pt 16), 2969–2979.

Welker, M., Singer, J., Loeb, K. R., Grim, J., Bloecher, A., Surin, M., Chuman, B. E., and Roberts, J. M. (2003). Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. *Cell* 122, 381–392.

Welsh, G. I., Miller, C. M., Loughlin, A. J., Price, N. T., and Proust, C. G. (1998). Regulation of eukaryotic initiation factor eIF2: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. *FEBS Lett.* 421, 125–130.

Welsh, G. I., and Proust, C. G. (1993). Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF2B. *Biochem. J.* 294(Pt 1), 625–629.

Wijnen, H., and Young, M. W. (2006). Interplay of circadian clocks and metabolic rhythms. *Annu. Rev. Genet.* 40, 409–448.

Wittmann, T., and Waterman-Storer, C. M. (2005). Spatial regulation of CLASL affinity for microtubules by Rac1 and GSK3beta in migrating epithelial cells. *J. Cell Biol.* 169, 929–939.

Woodgett, J. R. (1990). Molecular cloning and expression of glycogen synthase kinase-3 factor A. *EMBO J.* 9, 2431–2438.

Woodgett, J. R. (1994). Regulation and functions of the glycogen synthase kinase-3 subfamily. *Semin. Cancer Biol.* 5, 269–275.

Woodgett, J. R., and Cohen, P. (1984). Multisite phosphorylation of glycogen synthase. Molecular basis for the substrate specificity of glycogen synthase kinase-3 phosphorylation modulates its degradation and its oncogenicity. *Mol. Cell* 16, 35–45.

Wang, X., Liu, X. T., Dunn, R., Ohl, D. A., and Smith, G. D. (2003). Glycogen synthase kinase-3 regulates mouse oocyte homologue segregation. *Mol. Reprod. Dev.* 64, 96–105.

Wang, X., Paulin, F. E., Campbell, L. E., Gomez, E., O’Brien, K., Morrice, N., and Proust, C. G. (2001). Eukaryotic initiation factor 2B: identification of multisite phosphorylation sites in the eplson-subunit and their functions in vivo. *EMBO J.* 20, 4349–4359.

Watanabe, T., Noritake, J., Kakeno, M., Matsui, T., Harada, T., Wang, S., Itoh, N., Sato, K., Matuszawa, K., Ishihara, A., Gajl-Peczely, N., and Kaibuchi, K. (2008). Phosphorylation of CLASLP2 by GSK3beta regulates its interaction with IGOAP1, EB1 and microtubules. *J. Cell. Sci.* 122(Pt 16), 2969–2979.
synthase kinase-3 and casein kinase II (glycogen synthase kinase-3). Biochim. Biophys. Acta 788, 339–347.

Woodgett, J. R., Pulverer, B. J., Nolitakaki, E., Pylte, S., Hughes, K., Franklin, C. C., and Kraft, A. S. (1993). Regulation of jun/AP-1 oncoproteins by phosphorylation. Adv. Second Messenger Phosphoprotein Res. 28, 261–269.

Wood-Kaczmar, A., Kraus, M., Ishiguro, K., Philpott, K. L., and Gordon-Weeks, P. R. (2009). An alternatively spliced form of glycogen synthase kinase-3beta is targeted to growing neurites and growth cones. Mol. Cell. Neurosci. 42, 184–194.

Woods, Y. L., Cohen, P., Becker, W., Jakes, R., Goedert, M., Wang, A. (1999). Phosphorylation of axin, a Wnt signal negative regulator, by beta-catenin and inhibits axis formation of Xenopus embryos. Mol. Cell. Biol. 18, 2867–2875.

Yanagawa, S., Matsuda, Y., Lee, J. S., Matsubayashi, H., Sese, S., Kadotani, T., and Ishimoto, A. (2002). Casein kinase 1 phosphorylates the armadillo protein and induces its degradation in Drosophila. EMBO J. 21, 1733–1742.

Yang, S. D., Huang, J. J., and Huang, T. J. (1995). Protein kinase FA/glycogen synthase kinase 3 alpha predominantly phosphorylates the in vivo sites of Ser502, Ser506, Ser603, and Ser666 in neurofilament. J. Neurochem. 64, 1848–1854.

Yang, S. D., Song, J. S., Yu, J. S., and Shah, S. G. (1993). Protein kinase FA/GSK-3 phosphorylates tau on Ser235-Pro and Ser404-Pro that are abnormally phosphorylated in Alzheimer’s disease brain. J. Biol. Chem. 268, 1742–1747.

Yao, H. B., Shank, P. C., Wong, C. C., and Wang, D. C. (2005). Inhibitory phosphorylation of glycogen synthase kinase-3 predominantly phosphorylates the in vivo site Thr97-Pro in brain myelin basic protein: evidence for Thr-Pro and Ser-Arg-X-X-Ser as consensus sequence motifs. J. Neurochem. 62, 1596–1603.

Zeng, L., Fugotto, F., Zhang, T., Hsu, W., Vasicek, T. J., Perry, W. L., III, Lee, J. J., Tilghman, S. M., Gumbiner, B. M., and Costantini, F. (1997). The mouse Fused locus encodes axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181–192.

Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., Okamura, H., Woodgett, J., and He, X. (2005). A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873–877.

Zhang, F., Phiel, C. J., Spece, L., Gurvich, N., and Klein, P. S. (2003). Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J. Biol. Chem. 278, 33067–33077.

Zhao, X., Zhuang, S., Chen, Y., Boss, G. R., and Pilze, R. B. (2005). Cyclic GMP-dependent protein kinase regulates CAAT enhancer-binding protein beta functions through inhibition of glycogen synthase kinase-3. J. Biol. Chem. 280, 32683–32692.

Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., and Hung, M. C. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol. 6, 931–940.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 30 August 2011; accepted: 23 October 2011; published online: 16 November 2011.

Citation: Kaidanovich-Beilin O and Woodgett JR (2011) GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci. 4:40. doi:10.3389/fnmol.2011.00040

Copyright © 2011 Kaidanovich-Beilin and Woodgett. This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.