Liquid-gas phase behavior of polydisperse dipolar hard-sphere fluid

Y. Kalyuzhnyia, S. Hlushaka, I. Protsykevytcha and P. Cummingsb

aInstitute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine
bDept. of Chem. Eng., Vanderbilt Univ., Nashville, TN 37235, USA

Liquid-gas phase diagram for the dipolar hard-sphere fluid was calculated theoretically more than thirty five years ago by Rushbrooke et al. \cite{1}. According to these calculations the critical point is located at reduced temperature $T^*_c = 0.279$ and reduced density $\rho^*_c = 0.159$. Systematic computer simulation search for the liquid-gas phase coexistence was initiated only twenty years later \cite{2,3}. These investigations were carried out at temperatures well beyond predicted theoretically, however no evidence for the phase transition was found. Shortly after there appeared a number of the theoretical papers, in which the arguments were given as to why the existence of the liquid-gas phase transition has to be ruled out. It was suggested that due to the highly anisotropic character of the dipole-dipole interaction the formation of the chains in the `nose-to-tail' arrangement suppresses the liquid-gas phase transition. However, recent computer simulation \cite{4}, carried out for the temperatures lower than those studied earlier, presented the evidence for the phase transition with the critical point located at $T^* \approx 0.15 - 0.16$ and $\rho^* \approx 0.1$.

We present and discuss the liquid-gas phase diagrams of the monodisperse and polydisperse versions of the dipolar hard-sphere fluid, calculated using thermodynamic perturbation theory for associative fluids with center-center type of interaction \cite{5,6}.

1. Rushbrooke G.S., Stell G., Hoyle J.S., Mol.Phys. 26, 1199 (1973).
2. Caillol J.-M., J.Chem.Phys. 98, 9835 (1993).
3. van Leeuwen M.E., Smit B., Phys.Rev.Lett. 71, 3991 (1993).
4. Camp P.J., Shelley J.C., Patey G.N., Phys.Rev.Lett. 84, 115 (2000).
5. Y.V.Kalyuzhnyi, G.Stell. Mol.Phys. 78, 1247 (1993).
6. Y.V.Kalyuzhnyi, I.A.Protsykevytch, P.T.Cummings, EPL 80, 56002 (2007).