Monte Carlo simulations of an Ising-like model for photoinduced spin-state switching in nanoparticles of transition metal complexes

Tohru Kawamoto, and Shuji Abe
Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Japan
E-mail: tohru.kawamoto@aist.go.jp

Abstract. We investigated the switching behavior of small particles of an Ising-like model under constant excitation by means of Monte Carlo simulations to study photoinduced spin-state switching in nanoparticles of transition metal complexes. The threshold intensity required for that switching becomes drastically small in small particles with diameter of less than 10 pseudospins. This lower intensity results enhancement of the pseudospin fluctuation at the surface in the small particles. Our result might originate the increase of the photoinduced magnetization in nanoparticles of a Mo-Cu cyanide.

1. Introduction
Ising-like models and similar ones have been investigated for spin-state switching of the bulk of the transition-metal complexes [1-17]. The main targets are cyano-bridged transition metal complexes and Fe(II) spin-crossover complexes. In such materials, the spin state of transition metals is controlled by external stimuli, e.g. heating/cooling [3, 18], applying pressure [12], magnetic field [19], and irradiation [20-26]. Recently, the photoinduced spin-state switching in nanoparticles of these complexes has been reported [27, 28], as well as the thermal induced one [29]. We studied the switching behavior of small clusters of Ising-like pseudospins under constant excitation to elucidate photoinduced switching in nanoparticles.

Experimentally, photoinduced increase of magnetization of nanocomposites of Co-Fe cyanide and silica was observed [27], whereby Co-Fe cyanide forms nanoparticle crystalline structures of 8–10 nm. A photoinduced effect in nanoparticles of Mo-Cu cyanides coated with polymers has also been reported [28]. It is interesting that the magnetization after irradiation in nanoparticles is greater than that of the bulk. Such enhanced magnetization is likely to indicate small-size effect of the sample. This study is intended to predict a small-size effect in photoinduced switching from a theoretical study with the Ising-like model for simulating various observations.

2. Method
The Ising-like model that we use represents bistable local states accompanied by lattice distortions. A schematic adiabatic potential diagram for such bistable states is shown in figure 1(a) with a configuration coordinate u_i representing the variation of atomic positions. The two local energy minima separated by an energy barrier correspond to two different states,
L and H, corresponding to low-spin and high-spin states in the transition metal complexes with a spin-state bistability. If the system energy is determined mostly by the two states, we can use the discrete pseudospin variable \(S_i \) instead of the continuous variable \(u_i \). The former takes the respective values of -1 and 1 for states L and H, as shown in figure 1 (b). A small particle is simplified into a cluster of a pseudospin lattice, as shown in figure 1(c).

In this model, the system energy is expressed as

\[
H = - \sum_{(i,j)=\text{NN}} J_{ij} S_i S_j + \sum_i \frac{\Delta_i}{2} S_i,
\]

where the ‘pseudospin’ variable \(S_i = \pm 1 \) denote the two states (L and H) of the site \(i \). In this paper, these states are assumed for simplicity as energetically degenerated: \(\Delta_i = 0 \) for all pseudospins. The nearest neighbor (NN) coupling \(J_{ij} \) is assumed to be a positive constant \(J \), so that the neighbouring sites prefer to be in the same state. Because the temperature is fixed as \(k_B T = J \), we do not consider that the phenomenological temperature dependent term is often implemented in the Hamiltonian [5, 9].

We investigated spherical particles with size \(N \), denoted as \(P_N \), for various diameters \(N \). For comparison, we also calculated a cubic lattice with a three-dimensional periodic boundary condition, denoted as \(B_N \), which has often been used for bulk analyses.

We have used a classical Monte Carlo simulation [30] to study model kinetics at finite temperatures under external excitations, corresponding to photoexcitation. In those simulations, the flipping rate at each pseudospin \(j \) is the sum of the thermal and external terms: \(w_j = w^T_j + w^P_j \). When we consider selective excitation from L to H, we set \(w^P_j (L \rightarrow H) = W \) and \(w^P_j (H \rightarrow L) = 0 \). For thermal flipping rate \(w^T_j \), we used a heat bath model: \(w^T_j (S_j) = 1/\{\exp(\beta \Delta E_j) + 1\} \), where \(\Delta E_j \) gives a change in the energy of the system if the spin flip at the \(j \)-th unit is flipped, and \(\beta = 1/k_B T \) [31]. In each Monte Carlo step (MCS), both thermal and external spin-flip trials are performed at every site once on average. The heat bath model
Figure 2. Monte Carlo simulation on the kinetics of the excitation-induced phase transition in small particles and in a periodic lattice. (a) The fraction of converted sites as a function of the excitation time t in Monte Carlo steps (MCS) with $W = 0.09 / \text{MCS}$ at $k_B T = J$. P_N and B_N respectively indicates a spherical particle with size N, and a periodic $N \times N \times N$ lattice. (b) The converted fraction in the P_{10} particle for $W = 0.09$ per MCS, at $k_B T = J$. The solid line shows the total fraction. Broken and dotted ones respectively represent the partial fractions of the surface and inside pseudospins.

3. Result
Suppose the system is initially in the L phase and develops under an excitation rate W from L to H. Figure 2(a) shows the fraction of pseudospins in the H state, n_H, as a function of the excitation time t with the excitation intensity $W = 0.09 / \text{MCS}$ in the P_5, P_{10}, and B_{48}. Conversion to the H phase occurs only in the particles. In particular, the smallest particles P_5 switch fastest. In the periodic system B_{48}, in contrast, n_H retains a small value, indicating no switching.

In the Ising-like model with constant excitation, switching occurs only by strong excitation, i.e. a threshold intensity of the excitation exists. These results indicate that the threshold intensity is smaller than $0.09 / \text{MCS}$ for nanoparticles and larger for the periodic system.

Switching even under weaker excitation is attributable to a surface effect. To clarify this mechanism, the time development of partial fraction of n_H is shown in figure 2(b). The ‘inside’ and ‘surface’ parts respectively denote the units surrounded by six neighbours and the others. In the initial stage of switching, n_H is larger in the surface region, indicating that an HS nucleation phase occurs at the surface. The units at the surface only have less than six neighbours, generating large fluctuations of the spin-states. Consequently, nucleation occurs even under weak excitation at the surface, resulting in the rapid switching in the small particles with a large surface.

We calculated the size-dependence of the threshold intensity W_c. To obtain W_c, we first calculate the switching period $t_c(W)$, the excitation time required for the switching with the excitation rate W. After that W_c is obtained as the W with which the $t_c(W)$ exceeds 10000...
MCS. The calculated W_c is shown in figure 3, in which we found two important features. One is the drastic decrease of W_c in very small particles, e.g. $W_c = 0.025$ /MCS for P_5. This decrease is attributable to the fractional increase of pseudospins at the surface, e.g. 79% in P_5 particles. The other is that W_c of P_N for any N is smaller than that of the periodic lattice. In the case of a periodic lattice with the same parameters, the threshold is calculated as $W_c = 0.105$ /MCS [32, 33, 31]. The surface exists even in large particles, engendering smaller W_c than the bulk.

4. Discussion

We found that the threshold intensity required for photoinduced switching is reduced drastically in the small particles. The mechanism is rapid nucleation at the surface. We have demonstrated similar accelerated photoinduced switching in a superlattice [31, 32, 33], where the origin is also the rapid nucleation in a part of the sample. To induce the rapid switching, it is most efficient to implement the part where the nucleation occurs easily.

In experiments, the raising excitation intensity is limited to avoid other structural changes such as melting. Our result indicates the possibility that the small particles, even consisting of the system exhibiting no switching in the crystal, can switch by available irradiation. For example, a Mo(CN)$_8$Cu$_2$ complex is one candidate. Both bulk and particles of this material exhibit photomagnetism [25, 28, 34], but only 75% of the switching process occurs in the bulk compound as compared to the nanoparticles [28]. The authors of the experimental report describe that the enhancement in nanoparticles results from better light penetration in the nanoparticle film than that of the bulk. We suggest another model with our simulations: a smaller threshold intensity of the nanoparticle than the bulk. Further theoretical and experimental studies are required to clarify the mechanism of this enhanced photomagnetism. In particular, existence of a cooperative effect should be examined because our theory is based on cooperative interaction among units.
The authors acknowledge useful discussions with Prof. Masato Kurihara at Yamagata Univ., Dr. Mami Yamada of JAIST, and Dr. Jean-François Létard of ICMCB, CNRS. This work was partly supported by the Ministry of Education, Culture, Sports, Science, and Technology, and a Grant-in-Aid for Young Scientists (B), 16740181, 2004.

References
[1] Takahashi K, 1988 Z. Phys. B-Condens. Mat. 71, 205.
[2] Constant-Machado H, Linarés J, Varret F, Haasnoot J G, Martin, J P, Zarembowitch J, Dworkin A and Boukheddaden K, 1999 J. Phys. I 6, 1203.
[3] Topics in Current Chemistry, Vols. 233-235 (Springer-Verlag, Germany, 2004).
[4] Boukheddaden K, Nasser J, Linarés J, Boukheddaden K and Varret F, 1992 J. Phys. I 2, 1381.
[5] Boukheddaden K, Shteto I, Hoo B and Varret F, 2000 Phys. Rev. B 62, 14796.
[6] Boukheddaden K, Shteto I, Hoo B and Varret F, 2000 Phys. Rev. B 62, 14806.
[7] Liu X J, Morimoto Y, Kawamoto T, Nakamoto A and Kojima N, 2003 Phys. Rev. B 67, 012102.
[8] Liu X J, Morimoto Y, Kawamoto T, Nakamoto A and Kojima N, 2003 J. Phys. Soc. Jpn. 72, 1615.
[9] Kawamoto T, Morimoto Y and Abe, S, 2004 J. Phys. Soc. Jpn. 73, 3471.
[10] Nishino M, Boukheddaden K, Miyashita S and Varret F, 2003 Phys. Rev. B 68, 224402.
[11] Hoo B, Boukheddaden K and Varret F, 2000 Eur. Phys. J. B 17, 449.
[12] Bousselsou A, Molnár G and Matouzenko G, 2004 Eur. J. Inorg. Chem. 109, 4353.
[13] Bolvin H, 1996 Chem. Phys. 211, 101.
[14] Kohlhaas T, Spiering H, & Gütlich P, 1997 Z. Phys. B-Condens. Mat. 102, 455.
[15] Conséjo C, Molnár G, Goiran M and Bousselsou A, 2003 Polyhedron 22, 2441.
[16] Sakai O, Ishii M, Ogawa T and Koshino K, 2002 J. Phys. Soc. Jpn. 71, 2052.
[17] Gawali-Salunke S, Varret F, Maurin I, Enachescu C, Malarova A, Boukheddaden K, Codjovi E, Tokoro H, Oohkishi S and Hashimoto K, 2005 J. Phys. Chem. B 109, 8251.
[18] Kahn O and Martinez, C J, 1998 Science 279, 44.
[19] Bousselsou A, Negre N, Goiran M, Salmon L, Tuchagues J P, Boillot M L, Boukheddaden K and Varret F, 2000 Eur. Phys. J. B 13, 451.
[20] Decurtins S, Gültich P, Kohler C P, Spiering H and Hauser A, 1984 Chem. Phys. Lett. 105, 1.
[21] Hauser A, 1986 Chem. Phys. Lett. 124, 543.
[22] Freysz E, Montant S, Létard S and Létard, J F, 2004 Chem. Phys. Lett. 394, 318.
[23] Desaix A, Roubeau O, Jefteic J, Haasnoot J. G, Boukheddaden K, Codjovi E, Linares J, Noguès M and Varret, F. (1998) Eur. Phys. J. B 6, 183–193.
[24] Sato O, Iyoda T, Fujishima A and Hashimoto K, 1996 Science 272, 704.
[25] Ohkoshi S, Machida N, Zhong Z J and Hashimoto K, 2001 Synth. Met. 122, 523.
[26] Tokoro H, Ohkoshi S and Hashimoto K, 2003 Appl. Phys. Lett. 82, 1245.
[27] Moore J G, Lochner E J, Ramsey C, Dalal N S and Stiegemann A E, 2003 Angew. Chem.-Int. Edit. 42, 2741.
[28] Catala L, Mathioniere C, Gloter A, Stephan O, Gacoin T, Boilot J P and Mallah T, 2005 Chem. Commun. 109, 746.
[29] Létard J F, Guionneau P and Goux-Capes L, 2004 Top. Curr. Chem. 235, 221.
[30] Binder K ed., 1979 Monte Carlo Methods in Statistical Physics. (Springer, Berlin).
[31] Kawamoto T and Abe S, 2002 Appl. Phys. Lett. 80, 2562.
[32] Kawamoto T and Abe S, 2003 Phys. Rev. B 68, 235112.
[33] Kawamoto T and Abe S, 2004 Photoinduced Phase Transitions (ed. K. Nasu). (World Scientific, Singapore) chapter 5.
[34] Rombaut G, Mathioniere C, Guionneau P, Golhen S, Ouahab L, Verel M and LeCante P, 2001 Inorg. Chim. Acta 326, 27.