Terminal 14q Deletion and Duplication with Gastrointestinal and Pulmonary Disease

Abstract
Terminal deletions of 14q are rare but have typical clinical findings whereas distal duplications of 14q are less well characterized. The combination of terminal deletion and distal duplication of 14q has only been reported once before. Neither terminal deletions nor duplications are consistently reported to have gastrointestinal or pulmonary manifestations. We report a terminal deletion and a distal inverted duplication of 14q in a patient with multiple anomalies; duodenal malrotation, feeding intolerance, cholestasis, tracheo-laryngo-pharyngomalacia and small bilateral congenital cystic adenomatoid malformations with severe obstructive sleep apnea. This is the first report of gastrointestinal and pulmonary features in a patient with both terminal 14q deletion and distal 14q duplication.

Keywords: Chromosome 14q; Duplication; Chromosome 14q; Terminal deletion; Cytogenomic array; Dysmorphic facial features

Abbreviations: del: Deletion; dup: Duplication; NAHR: Non-Allelic Homologous Recombination; HIDA: Hydroxy Iminodiacetic Acid; GI: Gastrointestinal; CPAM: Congenital Cystic Adenomatoid Malformation

Introduction
With only twenty reported cases, features of the rare 14q terminal deletion syndrome include developmental disabilities, microcephaly, growth delay, hypotonia and varied dysmorphisms [1-4]. Ophthalmologic, cardiac, neural, renal and genitourinary anomalies are associated [5,6]. Rare features include limb anomalies, recurrent otitis media and seizure disorder [1,6]. In contrast to 14q terminal deletion syndrome, duplication of chromosome 14q is more rare and not well-characterized. Pertinent features include dysmorphic facial features, growth delay, cardiovascular, neurologic, renal, genitourinary, limb, hearing, vision and immune system anomalies and development disability ranging from moderate to global impairment [7-11].

Gastrointestinal (GI) and respiratory diseases are variable in 14q deletions and duplications. Atresias (anal, esophageal and tracheoesophageal), imperforate anus, midgut malrotation, intestinal dysmotility, pyloric stenosis and laryngomalacia have been identified but there is no consistent phenotype with 14q aberrations [4,8,12-16]. Terminal deletion 14q and duplication 14q in a patient with neonatal hypotonia, psychomotor retardation, intellectual disabilities, short stature and facial dysmorphism has been reported [11]. We describe a patient who has both terminal deletion and distal duplication of 14q with multiple anomalies involving the gastrointestinal and pulmonary systems.

Clinical Report
The female patient was the product of a 34 week vaginal delivery to a healthy 19 year old primagravid woman and her unrelated partner with unremarkable prenatal history, no pregnancy complications and unknown etiology for preterm labor. APGAR scores were 5 and 9 at 1 and 5 minutes respectively; birth weight was 1580 g (3rd centile), length was 41.5 cm (5th centile) and head circumference was 30 cm (25th centile). At 5 days of age, genetics consultation was performed for dysmorphic facial features. The family history revealed a maternal half uncle and maternal cousin with cognitive impairment. No congenital anomalies, recurrent pregnancy loss or stillbirth were known but history from the paternal side was minimal. Physical exam showed a female infant with a prominent anterior fontanelle, clinodactyly and dysmorphic features including short palpebral fissures, epicanthal folds, a thin upper lip, a short upturned nose and micrognathia (Figure 1).

At initial hospitalization, medical issues were numerous and involved multiple organ systems. Persistent feeding intolerance required gastrostomy tube placement; Nissen fundoplication and Ladd’s procedure were performed for intestinal malrotation. Cholestasis from bile duct obstruction developed and paucity of bile ducts were seen on liver biopsy. Severe obstructive sleep apnea, periodic respirations and central apnea were noted on polysomnography. CT angiogram and microlaryngoscopy and bronchoscopy demonstrated significant glottisptosis, retroglossa, congenital cystic adenomatoid malformation (CPAM), tracheomalacia and severe pharyngo-laryngomalacia necessitating tracheostomy. Bilateral peviectasis and small kidneys were detected on renal ultrasound. Cardiac anomalies included a bicommissural aortic valve, a small atrial septal defect and a patent foramen ovale. Brain MRI showed delayed sulcation, prominence of the subarachnoid spaces and delayed myelination for age.
Banded chromosome analysis was performed on peripheral blood according to standard cytogenetic procedure. Karyotyping revealed additional material on the distal portion of the long arm of chromosome 14 or 46, XX, add(14)(q31) (Figure 2). Parental cytogenetic studies were normal. Genomic DNA was extracted using Magna Pure Compact automated extraction kits (Roche, USA) following manufacturer’s instruction. Microarray analysis was performed using the Illumina HD Human OMNI-quad Bead Chip array following the manufacturer’s instruction (Illumina Inc., San Diego, CA, USA) and the microarray results were analyzed using the Illumina Genome Studio V2011.1 software and gene annotations were determined using NCBI build 36/hg18.

Microarray showed a large duplication spanning the bands 14q31.1 to 14q32.33 on the long arm of chromosome 14 with the linear positions of chr14:82,224,425-104,139,172 (21.9 Mb) and a small deletion at the band 14q32.33 with the linear positions of chr14:104,151,110-106,360,098 (2.2 Mb) (Figure 2). The duplicated region contains the disease genes including XRCC3, AMN, DYNC1H1, SPATA7, GALC, VRKI, TCLIA, TDP1, GALC, GOLGA5, TDP1, TTB8, SLC24A4, GLRX5, DICER1, SERPINA3, and ATXN3 and the deleted region has disease genes AKT1 and INF2. Thus, microarray uncovered the abnormal chromosome 14 observed in chromosome analysis which had a duplication and a submicroscopic deletion; the karyotype was revised to 46,XX,der(14)dup(14)(q32.33q31.1)del(14)(q32.33).

Following stabilization of medical issues, she returned for follow-up at 9 months of age without additional medical concerns and with developmental progress: she could hold her head up independently, sit with support, reach for objects and make noises. Additional dysmorphic features were noted including midface retrusion, broad forehead, hypertelorism, low-set ears, low nasal bridge with hypoplastic alae nasi, single palmar creases, brachydactyly, nystagmus and hypotonia (Figure 3). At 4 years of age, she had severe global delays, with more significant gross motor delays (Figure 4). She developed contractures of elbows and knees most likely related to increased appendicular tone. She did not eat and required gastrostomy tube feeds. Institutional review board at the Cincinnati Children’s Hospital Medical Center reviewed and approved the study.

**Figure 1:** Newborn Photograph.

**Figure 2:** Karyotyping and cytogenomic array study. (A) Partial karytype showing a normal and abnormal chromosome 14 (arrowed). (B) Cytogenomic array analysis of chromosome 14 showing duplication of 14q31.1q32.33 and deletion of 14q32.33 as indicated by open and solid bars, respectively.

Citation: Santoro SL, Bao L, M. Saal H (2016) Terminal 14q Deletion and Duplication with Gastrointestinal and Pulmonary Disease. J Pediatr Neonatal Care 5(2): 00174. DOI: 10.15406/jpnc.2016.05.00174
Discussion

Chromosome 14q abnormalities have been associated with various clinical features including inconsistent gastrointestinal and respiratory defects [7-19]. Phenotypic variability can be attributed to differences in size of the 14q rearrangement, an additional chromosomal abnormality or the parental origin of the additional 14q segment [20-22]. Although genomic imprinting effect has been reported in chromosome 14, such effect has not been reported in distal 14q [19,23]. Molecular cytogenetic analysis showed both terminal deletion and distal duplication. Although one case with distal 14q inverted duplication and terminal deletion was reported previously, our case is the first to be characterized with high density microarray to delineate the abnormality at the molecular level (Table 1) [17].

Our patient has substantial gastrointestinal and pulmonary complications which are novel features of 14q aberrations [17]. Her GI issues include gastrostomy tube dependence for feeding intolerance, duodenal malrotation and gastroesophageal reflux disease are more significant than in other patients with abnormalities involving 14q. She has many features which have not been previously reported in patients with either 14q deletion or duplication including neonatal cholestasis with bile duct obstruction and paucity of bile ducts laryngomalacia, severe obstructive sleep apnea, tracheomalacia, pharyngomalacia and congenital cystic adenomatoid malformations.

Subtle differences in genotype may explain differences in clinical features between our patient and the previous case: the 14q duplication and deletion present in our patient were delineated at molecular level while the previous case was characterized at chromosomal level [17]. Although both rearrangements appear to involve similar breakpoints on 14q, the difference between the two cases at the molecular level may be considerable. Alternatively, the origin of the 14q segment differs between patients: in our patient the aberration is novo while the previous case was of paternal origin. Differences in clinical features may be due to age: our patient is younger, so features may not have yet developed.

Three mechanisms for forming an inverted duplication adjacent to a deletion have been proposed: the presence of paracentric inversion in one of the parents, low-copy repeats-mediated non-allelic homologous recombination (NAHR), and U-type exchange [24,25]. A disomic region exists between an inverted duplication and a deletion that is formed through either a parental paracentric inversion or recombination between inverted low copy repeats (NAHR), but not in 14q rearrangement derived through the U-type exchange [25,26]. High resolution microarray analysis of our patient revealed an unanalyzed region between the inverted duplication and the deletion smaller than 12 kb. Therefore, it is unlikely that a disomic region is present in the interval supporting that the 14q inverted duplication and deletion in our patient is most likely resulted from a U-type exchange following a double-strand break.

Conclusion

Our patient has significant gastrointestinal and pulmonary defects which have not been previously described with 14q aberrations and is the first case of 14q terminal deletion and distal duplication in tandem to be characterized by high resolution microarray.
Table 1: Comparison of cases with 14q abnormalities.

| Features                        | A Terminal Deletion of 14q32.3 to qter | A Duplication of 14q31 to qter | Chen [2] | This case |
|---------------------------------|--------------------------------------|-------------------------------|----------|-----------|
| No of cases                     | 7                                    | 9                             |          |           |
| Male                            | 2                                    | 5                             |          |           |
| Female                          | 5                                    | 4                             |          |           |
| Mental retardation              | 7/7                                   | 7/7                           | +        | +         |
| Hypotonia                       | 5/7                                   | 5/9                           | +        | +         |
| Growth retardation              | 3/7                                   | 7/8                           | +        | +         |
| Microcephaly                    | 4/7                                   | 6/9                           | +        | -         |
| Clinodactyly                    | 0/2                                   | 7/9                           | +        | +         |
| Hypertelorism                   | 1/4                                   | 7/9                           | +        | +         |
| Strabismus                      | 3/5                                   | 1/7                           | -        | -         |
| Blepharophimosis                | 5/6                                   | 0/7                           | +        | -         |
| Ptosis                          | 4/7                                   | 0/7                           | -        | -         |
| Downslanting palpebral fissures | 3/6                                   | 7/9                           | +        | -         |
| Epicanthi                       | 5/7                                   | 2/9                           | +        | +         |
| Dysmorphic nose                 | 6/6                                   | 6/9                           | +        | +         |
| High arched palate              | 5/6                                   | 3/9                           | -        | -         |
| Abnormal ears                   | 2/6                                   | 7/9                           | +        | +         |
| Micrognathia                    | 3/6                                   | 8/9                           | -        | +         |
| Congenital heart defect         | 2/6                                   | 6/9                           | +        | +         |
| Umbilical and diaphragmatic hernia | 0                             | 1/9                           | -        | -         |
| Hiatal hernia                   | 0                                    | 1/9                           | -        | -         |
| Hypoplasia of thymus            | 0                                    | 2/9                           | -        | -         |
| Intestinal malrotation or ectopic spleen | 0                          | 1/9                           | -        | +         |
| Cleft palate                    | 0                                    | 1/9                           | -        | -         |
| Radio-ulnar synostosis          | 0                                    | 1/9                           | -        | -         |
| Pyloric stenosis                | 0                                    | 0                             | +        | -         |
| Pharyngo/laryngomalacia         | 0                                    | 0                             | -        | +         |
| Cholestasis                     | 0                                    | 0                             | -        | +         |

*van Karnebeek and others [24]|
**Masada and others [9]; Sklower and others [22]; Trunca and Opitz [26]

References

1. Bagci G, Getin GO, Semerci N, Toruner GA, Cinbis M (2012) Terminal 14q deletion with unbalanced t(Y;14)(q12;q32) translocation. Clin Dysmorphol 21(1): 37-41.
2. Maurin ML, Brisset S, Le Lorcr’h M, Poncet V, Trioche P, et al. (2006) Terminal 14q32.33 deletion: genotype-phenotype correlation. Am J Med Genet A 140(21): 2324-2329.
3. Meschede D, Exeler R, Wittwer B, Horst J (1998) Submicroscopic deletion in 14q32.3 through a de novo tandem translocation between 14q and 21p. Am J Med Genet 80(5):443-447.
4. Schlade-Bartusiak K, Ardinger H, Cox DW (2009) A child with terminal 14q deletion syndrome: consideration of genotype-phenotype correlations. Am J Med Genet A 149A (5): 1012-1018.
5. Mertens DJ, De Die-Smulders CE, Kampschoer PH, Offermans JP, Engelen JJ, et al. (2000) 14q terminal deletion: prenatal diagnosis in a child with severe congenital anomalies. Genet Couns 11(4): 341-346.
6. Wang HS, Allanson JE (1992) A further case of terminal deletion (14) (q32.2) in a child with mild dysmorphic features. Ann Genet 35(3): 171-173.

7. Leube B, Majewski F, Drechsler M, Boyer-Pokora B (2003) Unbalanced cryptic translocation der(14)(q9;14)(q34.3;q32.33) identified by subtelomeric FISH. Clin Dysmorphol 12(4): 261-265.

8. Macada CT, Oney AH, Fonye RC, Sanger WG (1989) Partial deletion of 14q and partial duplication of 14q in sibs: testicular mosaicism as a common mechanism. Am J Hum Genet 4(5): 528-534.

9. Singleton JM, Sullivan JM, Neri MC, et al. (2001) Maternally inherited duplication of the possible imprinted 14q31 region. J Med Genet 38(5): 343-347.

10. Nikolis J, Ivanovic K, Kosanovic M (1983) Tandem duplication of chromosome 14 (q24 leads to q32) in male newborn with congenital malformations. Clin Genet 23(4): 321-324.

11. Orye E, Van Bever H, Desimpel H (1983) Distal trisomy 14q due to tandem duplication (q24 leads to q32). Ann Hum Genet 46(4): 238-239.

12. Engels H, Schuler HM, Zink AM, Wohlleber E, Brockschmidt A, et al. (2012) A phenotype map for 14q32.3 deletion in a patient with learning disabilities and microcephaly. Clin Genet 82(5): 490-495.

13. Raynaud JB, Tepperberg JH, Papenhausen P, Lamb AN, Hedrick J, et al. (2006) Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J Med Genet 43(6): 478-489.

14. Schlade-Bartusiak K, Costa T, Summers AM, Nowaczynski MJ, Cox DW (2005) FISH-mapping of telomeric 14q32 deletions: search for the cause of seizures. Am J Med Genet A 128A(4): 695-706.

15. Schneider A, Benzaken B, Guichet A, Verloes A, Bonneau D, et al. (2008) Molecular cytogenetic characterization of terminal 14q32 deletions in two children with an abnormal phenotype and corpus callosum hypoplasia. Eur J Hum Genet 16(6): 680-687.

16. Telford N, Thomson DA, Griffiths MJ, Ilett S, Watt JL (1990) Terminal deletion (14)(q32.3): a new case. J Med Genet 27(4): 261-263.

17. Chen CP, Chern SR, Lin SP, Lin CC, Li YC, et al. (2005) A paternally derived inverted duplication of distal 14q with a terminal 14q deletion. Am J Med Genet A 139(2): 146-150.

18. de Pater JM, Nijkens PG, Poot M, Esveldt MJ, Stigtger RH, et al. (2005) Striking facial dysmorphisms and restricted thymic development in a fetus with a 6-megabase deletion of chromosome 14q. Pediatr Dev Pathol 8(4): 497-503.

19. van Karnebeek CD, Quik S, Sluijter S, Huisbeek MM, Hoovers JM, et al. (2002) Further delineation of the chromosome 14q terminal deletion syndrome. Am J Med Genet 110(1): 65-72.

20. Keyeux G, Gilgenkrantz S, Lefranc G, Lefranc MP (1990) Distal trisomy 14q. II. Molecular study of the 14q32 locus in two cases of chromosome 14 rearrangements with partial duplication. Hum Genet 85(6): 617-622.

21. Nakamura Y, Saitai K, Sakuma S, Sato E, Maruyama M, et al. (1990) Partial trisomy of the distal segment 14q. Hum Genet 84(6): 574-576.

22. Skliver SL, Jenkins EC, Nolin SL, Duncan CJ, Warburton D, et al. (1984) Distal duplication 14q: report of three cases and further delineation of the syndrome. J Med Genet 21(1): 159-164.

23. Ledbetter DH, Engel E (1995) Uniparental disomy in humans: development of an imprinting map and its implications for prenatal diagnosis. Hum Mol Genet 4 Spec No: 1757-1764.

24. Gorinati M, Caufin D, Minelli A, Memo L, Gasparo G, et al. (1991) Inv dup (8) (p21.1----22.1): further case report and a new hypothesis on the origin of the chromosome abnormality. Clin Genet 39(1): 55-59.

25. Rowe LR, Lee JY, Rector L, Kaminsky EB, Brothman AR, et al. (2009) U-type exchange is the most frequent mechanism for inverted duplication with terminal deletion rearrangements. J Med Genet 46(10): 694-702.

26. Trunca C, Opitz JM (1977) Pericentric inversion of chromosome 14 and the risk of partial duplication of 14q (14q31 leads to 14qter). Am J Hum Genet 1(2): 217-228.