Plasminogen activator inhibitor type-1 (PAI-1) is the major physiological inhibitor of fibrinolysis. The fibrinolytic activity of plasma is influenced by the balance between PAI-1 and tissue-type plasminogen activator (t-PA). An increase in plasma PAI-1 concentration is associated with recurrent coronary events in the survivors of acute myocardial infarction (AMI). Elevated PAI-1 activity is associated with coronary microvascular dysfunction. Although PAI-1-deficient mice exhibit no apparent abnormalities, Iwaki et al. previously reported that PAI-1 deficiency in humans can cause a severe bleeding tendency and impairment of wound healing, suggesting an important role of PAI-1 in thrombosis and hemostasis in humans.

PAI-1 is also involved in tissue remodeling by inhibiting the activities of matrix metalloproteinases and urokinase-type plasminogen activators (uPAs). In experimental studies, Zaman et al. previously showed that the expression of PAI-1 in the heart exerts profibrotic effects. In blood vessels, an angiotensin-receptor blocker (ARB) also suppresses the expression of PAI-1. Enhanced PAI-1 expression may contribute to ventricular remodeling through the attenuation of extracellular matrix degradation.

In this issue of *The Journal of Atherosclerosis and Thrombosis*, Shimizu et al. have performed a clinical study to determine the relationship between PAI-1 produced in the myocardial infarct region and coronary and ventricular function in AMI patients. They measured PAI-1 activity and t-PA antigen level in plasma from the aortic root and interventricular vein in AMI patients with culprit left anterior descending coronary artery. Then, they estimated the release of PAI-1 and t-PA from the myocardium. There was a high transmyocardial gradient of PAI-1, suggesting the release of PAI-1 from the infarct region. Interestingly, the release of PAI-1 was associated with the endothelial dysfunction of the culprit coronary arteries and regional motion of the infarcted myocardium. Treatment with ARB suppressed PAI-1 production in the infarcted myocardium, suggesting that angiotensin II plays a critical role in PAI-1 production in the myocardium. One of the beneficial effects of ARBs on left ventricular function after AMI may involve the reduction of PAI-1 production in the heart.

Because we do not fully understand the underlying pathobiological mechanism, further investigation is necessary. The effects of angiotensin-converting enzyme (ACE)-inhibitor need to be investigated. Excessive inhibition of PAI-1 production may cause adverse effects such as bleeding because PAI-1 deficiency in humans has been reported to cause severe bleeding tendencies. Similarly, the excessive inhibition of PAI-1 may induce cardiac rupture due to excessive fibrinolysis. PAI-1 knockout mice exhibited increased inflammation and enhanced intramyocardial hemorrhage, suggesting that PAI-1 has some protective role against myocardial inflammation and ARBs may alter inflammation-related cytokine levels.

The work by Shimizu et al. suggested that the pharmacological inhibition of PAI-1 functions not only as an antithrombotic agent but also as an agent against pathobiological myocardial remodeling. As the case report of PAI-1 deficiency suggested, more research is necessary to carefully determine the physiological conditions where the pharmacological inhibition of PAI-1 can potentially become harmful.

Disclosures

None.

Source of funding

The author is supported in part by grants-in-aid
for scientific research from the Ministry of Education, Science, Sport, and Culture of Japan.

References
1) Naya M, Tsukamoto T, Inubushi M, Morita K, Katoh C, Furumoto T, Fujii S, Tsutsui H, Tamaki N. Elevated plasma plasminogen activator inhibitor type-1 is an independent predictor of coronary microvascular dysfunction in hypertension. Circ J. 2007; 71: 348-353
2) Iwaki T, Tanaka A, Miyawaki Y, Suzuki A, Kobayashi T, Takamatsu J, Matsushita T, Umemura K, Urano T, Kojima T, Terao T, Kanayama N. Life-threatening hemorrhage and prolonged wound healing are remarkable phenotypes manifested by complete plasminogen activator inhibitor-1 deficiency in humans. J Thromb Haemost. 2011; 9: 1200-1206
3) Zaman AK, French CJ, Schneider DJ, Sobel BE. A profibrinolytic effect of plasminogen activator inhibitor type-1 (PAI-1) in the heart. Exp Biol Med (Maywood). 2009; 234: 246-254
4) French CJ, Zaman AK, Sobel BE. The angiotensin receptor blocker, azilsartan medoxomil (TAK-491), suppresses vascular wall expression of plasminogen activator inhibitor type-I protein potentially facilitating the stabilization of atherosclerotic plaques. J Cardiovasc Pharmacol. 2011; 58: 143-148
5) Shimizu T, Uematsu M, Yoshizaki T, Obata J, Nakamura T, Fujioka D, Watanabe K, Watanabe Y, Kugiyama K. Myocardial Production of Plasminogen Activator Inhibitor-1 is Associated with Coronary Endothelial and Ventricular Dysfunction after Acute Myocardial Infarction. J Atheroscler Thromb. 2016; 23: 557-566
6) Zaman AK, Fujii S, Schneider DJ, Taatjes DJ, Lijnen HR, Sobel BE. Deleterious effects of lack of cardiac PAI-1 after coronary occlusion in mice and their pathophysiologic determinants. Histochem Cell Biol. 2007; 128: 135-145