Supporting Information for

A modified Vegetation Photosynthesis and Respiration Model (VPRM) for the eastern USA and Canada, evaluated with comparison to atmospheric observations and other biospheric models

Sharon M. Gourdji¹, Anna Karion¹, Israel Lopez-Coto¹, Subhomoy Ghosh¹,², Kim Mueller¹, Yu Zhou³, Chris Williams³, Ian Baker⁴, Katharine Haynes⁴, James Whetstone¹

1. National Institute of Standards & Technology, Gaithersburg, MD, USA, 20899, USA
2. Center for Research Computing, University of Notre Dame, South Bend, IN, 46556, USA
3. Graduate School of Geography, Clark University, Worcester, MA, 01610, USA
4. Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, 80521, USA

Contents of this file

Text S1 to S3
Figures S1.1 to S1.2, S1 to S15
Tables S1 to S6
S1. VPRM input data

All flux tower Net Ecosystem Exchange (NEE) and meteorological data (air temperature and radiation) was downloaded from the AmeriFlux (https://ameriflux.lbl.gov/) and National Ecological Observatory Network (NEON; https://www.neonscience.org/) websites. Half-hourly flux tower data was averaged to hourly, discarding hours without both half-hour observations. All flux tower NEE data was u-star filtered using site-specific thresholds determined visually by plotting averaged nighttime NEE along binned u-star intervals (Barr et al., 2013). Small gaps (of two hours or less) in both NEE observations and meteorological data were then gap-filled using linear interpolation. Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) were also extracted at each flux tower location using the R package MODISTools (https://cran.r-project.org/web/packages/MODISTools/index.html) from the MOD13Q1/MYD13Q1 and MOD09A1/MYD09A1 products. EVI and LSWI data was interpolated to daily resolution, assuming that observations occurred in the middle of each composite period (in the absence of satellite overpass information).

Given that the distribution of flux tower site-years in our database is heavily tilted towards the north of the domain, data from northern sites with long records were subsampled to emphasize more recent years, with some sites in locations coincident with other towers also removed (e.g. US-NE1). Yet, even after this procedure, 70% of site-years in the database are still north of 40°N. Also, given that u-star filtering tends to preferentially eliminate night-time relative to day-time data (roughly by a factor of two), a nonparametric bootstrapping procedure (i.e. sampling with replacement, Chernick, 2007) was performed to “create” extra nighttime data. Grouping data by hour and month, bootstrap samples were taken on existing observations in each group to reach the maximum number of hourly data points in that month. This bootstrapped data was then added to existing datapoints. Overall, this procedure ensures an equal distribution of data across the diurnal cycle for each month in the parameter optimization (with a random sampling across sites and years). Before bootstrapping, roughly 15% of the data was also reserved for evaluation of the site-specific VPRM runs. This evaluation data was selected by randomly choosing one full calendar day per month per tower from the original, non-bootstrapped data. This procedure ensures even representation of evaluation data across diurnal and seasonal cycles (but not necessarily across sites, each of which has its own length data record).

For the gridded runs, land cover maps for VPRM are taken from the National Land Cover Database 2016 (NLCD2016; Yang et al., 2018) in the USA, with corn and other crop areas determined from the Cropland Data Layer (Boryan et al., 2011) specifically for 2017. In Canada, the Agriculture and Agri-Food Canada Annual Crop Inventory 2017 (Agriculture and Agri-Food Canada, 2016); which includes non-crop land cover types as well) was used. All high-resolution (i.e 30 m) land-cover products were aggregated up to 0.02° to determine fractional coverage across pixels in our domain.
Gridded maps of Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) are extracted from the MODIS Aqua and Terra products MOD13A2/MYD13A2 and MOD09A1/MYD09A1 at 1 km and 500 m resolution respectively, and then aggregated up to 0.02°. EVI and LSWI maps are interpolated to daily resolution from 8 and 16-day composites respectively, using the actual dates of the satellite overpass within the composite period for each pixel. Using satellite overpass dates in the interpolation has been shown to help improve the simulation of phenology with remotely-sensed vegetation indices, particularly in croplands with short growing seasons (Guindin-Garcia et al., 2012; Lokupitiya et al., 2009). However, the actual gap between successive overpasses can be as short as one or as long as 24 days (with an average interval of 8 days for EVI and 4 days for LSWI).

Gridded air temperature and shortwave radiation data are taken from the High Resolution Rapid Refresh (HRRR; Benjamin et al., 2016) model, which is at 3-km resolution and then downscaled to 0.02°. The high spatial resolution of the HRRR product relative to other meteorological products (like NLDAS, Xia et al., 2012, or the WRF runs for this domain) helps to simulate temperature gradients in urban and mountainous areas better than coarser-resolution products (Figure S1.1). Many radiation products are known to have a clear-sky bias (i.e. they under-represent cloudy conditions; Slater, 2016), including the HRRR radiation product used here, although the HRRR biases are less than those with WRF (as seen in a comparison to flux tower and NEON tower observations and other models in our domain, Figure S1.2). Although biases in the gridded meteorological data can bias flux estimates, we considered the magnitude of these biases to be small relative to other sources of error, and therefore, did not bias-correct the gridded temperature or radiation data. Site-specific weather variables at the flux towers are also used in the parameter optimization rather than modeled met data, given the relatively small model errors seen here.

Figure S1.1: Comparison of gridded temperature data from HRRR, NLDAS and WRF to surface observations at nine NEON and AmeriFlux towers within the domain from Nov. 1, 2016 to Oct. 31, 2017. Daytime and night-time mean biases are shown in the left and center plots, and 24-hour root mean squared errors (RMSE) in the right plot. HRRR data is at 3 km spatial resolution, NLDAS at 1/8th degree (~12 km), and WRF at 9 km (with 1 km and 3 km nests around Washington DC/ Baltimore.)
Figure S1.2: Comparison of gridded shortwave radiation data from HRRR, NLDAS and WRF to surface observations at NEON and AmeriFlux towers. Daytime mean biases and hourly root mean squared errors (RMSE) are shown for each tower, plus the average across towers. Also shown is the distribution of hourly radiation across all towers within four bins (<=150 W/m², 150 to 300 W/m², 300 to 600 W/m² and 600 to 1000 W/m²) for each model and the observations.

S2. Determination of afternoon hours in atmospheric CO₂ observations
In this study, “afternoon” hours are defined as hours when the middle falls five hours after sunrise and just before sunset, thus increasing the number of observations during the height of the growing season relative to studies that use a fixed interval, e.g. 12 pm – 4 pm local time. For example, at DNH (Durham, NH) in the north of the domain, sunrise and sunset on July 1, 2017 are at 5:12 am and 8:35 pm EDT, and thus we would use eleven hourly observations from 10 am - 9 pm EDT on this day. This definition of afternoon hours relative to sunrise and sunset time was determined by examining vertical gradients in measurements across inlet heights (on towers with multiple inlets) to identify when well-mixed conditions are most likely to occur. As seen in Figure 3d in the main text, the gradient across towers during the growing season (July) is lower during afternoon hours compared with other times of day.

S3. Customized WRF and STILT runs to generate footprints
Following Lopez-Coto et al. (2020), WRF is configured with three nested domains (9 km, 3 km, and 1 km), with the innermost domain covering the urban area of interest, and 60 vertical levels with monotonically increasing thickness from the surface (34 levels below 3 km) for better boundary layer representation. WRF model runs are configured with the RRTMG radiation scheme (Mlawer et al., 1997), Thompson microphysics scheme (Thompson et al., 2004, 2008), Noah land surface model (Chen & Dudhia, 2001), the Kain-Fritsch cumulus scheme (for the 9 km domain only; Kain, 2004), the 1.5- order closure scheme MYNN (Nakanishi & Niino, 2004, 2006) with the eddy mass-flux option (Olson et al., 2019) and the land-use classification from NLCD 2011 (Yang et al., 2018) which includes four urban categories, from developed open space to developed high intensity. They are also driven by initial and boundary conditions from the North America Regional Reanalysis (NARR) three hourly data (Mesinger et al., 2006).

In STILT, 960 particles were released at each observation location and time period, and then tracked back for 120 hours (at which point the influence of fluxes inside the domain is assumed minimal). Particle influences were summed within each pixel and
hour to determine a spatially and temporally-varying footprint at a 0.1° hourly resolution. A far-field footprint correction (based on work originally done by Fasoli et al., 2018, but modified at NIST) was also implemented to smooth out the discrete nature of the atmospheric influence far away from the towers caused by the limited number of particles released.

References from the Supporting Information

Agriculture and Agri-Food Canada. (2016). Annual Crop Inventory. 2017. Retrieved from https://open.canada.ca/data/en/dataset/ba2645d5-4458-414d-b196-6303ac06c1c9

Barr, A. G., Richardson, A. D., Hollinger, D. Y., Papale, D., Arain, M. A., Black, T. A., et al. (2013). Use of change-point detection for friction–velocity threshold evaluation in eddy-covariance studies. *Agricultural and Forest Meteorology, 171–172*, 31–45. https://doi.org/10.1016/j.agrformet.2012.11.023

Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., et al. (2016). A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh. *Monthly Weather Review, 144*(4), 1669–1694. https://doi.org/10.1175/MWR-D-15-0242.1

Boryan, C., Yang, Z., Mueller, R., & Craig, M. (2011). Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. *Geocarto International, 26*(5), 341–358. https://doi.org/10.1080/10106049.2011.562309

Chen, F., & Dudhia, J. (2001). Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MMS Modeling System. Part II: Preliminary Model Validation. https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2

Chernick, M. R. (2007). *Bootstrap Methods: A Guide for Practitioners and Researchers* (2nd edition). Hoboken, N.J: Wiley-Interscience.

Fasoli, B., Lin, J. C., Bowling, D. R., Mitchell, L., & Mendoza, D. (2018). Simulating atmospheric tracer concentrations for spatially distributed receptors: updates to the Stochastic Time-Inverted Lagrangian Transport model’s R interface (STILT-R version 2). *Geoscientific Model Development, 11*(7), 2813–2824. https://doi.org/10.5194/gmd-11-2813-2018

Guindin-Garcia, N., Gitelson, A. A., Arkebauer, T. J., Shanahan, J., & Weiss, A. (2012). An evaluation of MODIS 8- and 16-day composite products for monitoring maize green leaf area index. *Agricultural and Forest Meteorology, 161*, 15–25. https://doi.org/10.1016/j.agrformet.2012.03.012

Kain, J. S. (2004). The Kain–Fritsch Convective Parameterization: An Update. *Journal of Applied Meteorology and Climatology, 43*(1), 170–181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

Lokupitiya, E., Denning, S., Paustian, K., Baker, I., Schaefer, K., Verma, S., et al. (2009). Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands. *Biogesosciences, 6*(6), 969–986. https://doi.org/10.5194/bg-6-969-2009

Lopez-Coto, I., Hicks, M., Karion, A., Sakai, R. K., Demoz, B., Prasad, K., & Whetstone, J. (2020). Assessment of Planetary Boundary Layer Parameterizations and Urban Heat Island Comparison: Impacts and Implications for Tracer Transport. *Journal of Applied Meteorology and Climatology, 59*(10), 1637–1653. https://doi.org/10.1175/JAMC-D-19-0168.1

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., et al. (2006). North American Regional Reanalysis. *Bulletin of the American Meteorological Society, 87*(3), 343–360. https://doi.org/10.1175/BAMS-87-3-343

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. *Journal of Geophysical Research: Atmospheres, 102*(D14), 16663–16682. https://doi.org/10.1029/97JD00237
Nakanishi, M., & Niino, H. (2004). An Improved Mellor–Yamada Level-3 Model with Condensation Physics: Its Design and Verification. *Boundary-Layer Meteorology, 112*(1), 1–31. https://doi.org/10.1023/B:BOUN.0000020164.04146.98

Nakanishi, M., & Niino, H. (2006). An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog. *Boundary-Layer Meteorology, 119*(2), 397–407. https://doi.org/10.1007/s10546-005-9030-8

Olson, J. B., Kenyon, J. S., Angevine, W. A., Brown, J. M., Pagowski, M., & Suselj, K. (2019). A Description of the MYNN-EDMF Scheme and the Coupling to Other Components in WRF–ARW. https://doi.org/10.25923/N9WM-BE49

Slater, A. G. (2016). Surface Solar Radiation in North America: A Comparison of Observations, Reanalyses, Satellite, and Derived Products. *Journal of Hydrometeorology, 17*(1), 401–420. https://doi.org/10.1175/JHM-D-15-0087.1

Thompson, G., Rasmussen, R. M., & Manning, K. (2004). Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis. *Monthly Weather Review, 132*(2), 519–542. https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2

Thompson, G., Field, P. R., Rasmussen, R. M., & Hall, W. D. (2008). Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. *Monthly Weather Review, 136*(12), 5095–5115. https://doi.org/10.1175/2008MWR2387.1

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., et al. (2012). Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. *Journal of Geophysical Research: Atmospheres, 117*(D3). https://doi.org/10.1029/2011JD016048

Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., et al. (2018). A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. *ISPRS Journal of Photogrammetry and Remote Sensing, 146*, 108–123. https://doi.org/10.1016/j.isprsjprs.2018.09.006
Table S1: flux towers used in the VPRM parameter optimization, along with ancillary information. All data was downloaded from the AmeriFlux (ameriflux.lbl.gov) and NEON (neonscience.org) websites, with NEON towers indicated in the description.

Description	State/Province	Latitude	Longitude	Vegetation Description (IGBP)	PFT, this study	Years included in optimization	Included in Hilton et al or Mahadevan et al?	Dataset reference	
CA-Gro	Groundhog River, Boreal Mixedwood Forest	Ontario	48.217	-82.156	Mixed Forests	Evergreen/mixed forests > 40N	2003-2014	Hilton	McCAughey (2003-)
CA-TP1	Turkey Point 2002 Plantation White Pine	Ontario	42.661	-80.560	Evergreen Needleleaf Forests	Evergreen/mixed forests > 40N	2005-2014	Arain	(2003-)
CA-TP2	Turkey Point 1974 Plantation White Pine	Ontario	42.707	-80.348	Evergreen Needleleaf Forests	Evergreen/mixed forests > 40N	2012-2017	Arain	(2003-)
CA-TPD	Turkey Point Mature Deciduous	Ontario	42.635	-80.558	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2012-2017	Arain	(2012-)
US-ARC	ARM Southern Great Plains control site	Oklahoma	35.546	-98.040	Grasslands	Grass/pasture	2005-2006	Torn et al (2005-2006)	
US-ARM	ARM Southern Great Plains	Oklahoma	36.606	-97.489	Croplands	Crops, other	2003-2004; 2006-2012	Hilton	Biraud et al (2002-)
US-Bar	Bartlett Experimental Forest (AmeriFlux/NEON)	New Hampshire	44.065	-71.288	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2004-2019	Richardson & Hollinger (2004-)	
US-Bo1	Bondville	Illinois	40.006	-88.290	Croplands	Corn/ Crops, other	Corn: 2001, 2005, 2007 Soybean: 2004, 2006	Mahadevan, Hilton	Meyers (1996-)
US-Bo2	Bondville (companion site)	Illinois	40.099	-88.290	Croplands	Corn	2006	Hilton	Bernacchi (2004-2008)
US-Br1	Brooks Field Site 10- Ames	Iowa	41.975	-93.691	Croplands	Corn/ Crops, other	Corn: 2005, 2007, 2011 Soybean: 2006, 2010	Prueger & Parkin (2001)	
US-Br3	Brooks Field Site 11- Ames	Iowa	41.975	-93.694	Croplands	Corn/ Crops, other	Corn: 2006, 2010 Soybean: 2005	Prueger & Parkin (2001)	
US-CaV	Canaan Valley	West Virginia	39.063	-79.421	Grasslands	Grass/pasture	2004, 2008-2009	Hilton	Meyers (2004-)
US-Ced	Cedar Bridge	New Jersey	39.838	-74.379	Closed Shrublands	Shrub	2006-2014	Clark (2005-)	
US-ChR	Chestnut Ridge	Tennessee	35.931	-84.332	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2006-2009	Meyers (2005-)	
US-CRT	Curtice Walter-Berger cropland	Ohio	41.629	-83.347	Croplands	Crops, other	2011, 2012, 2013	Chen & Chu (2011-2013)	
US-Dix	Fort Dix	New Jersey	39.971	-74.435	Mixed Forests	Evergreen/mixed forests < 40N	2005-2008	Clark (2005-2008)	
US-Dk1	Duke Forest-open field	North Carolina	35.971	-79.093	Grasslands	Grass/pasture	2001-2005	Mahadevan, Hilton	Oishi et al (2001-2008)
US-Dk2	Duke Forest-hardwoods	North Carolina	35.974	-79.100	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2001	Mahadevan, Hilton	Oishi et al (2001-2008)
US-Dk3	Duke Forest - loblolly pine	North Carolina	35.978	-79.094	Evergreen Needleleaf Forests	Evergreen/mixed forests < 40N	2001-2006	Hilton	Oishi et al (2001-2008)
US-GMF	Great Mountain Forest	Connecticut	41.967	-73.233	Mixed Forests	Evergreen/mixed forests > 40N	2001-2003	Hilton	Lee (1999-2004)
US-Goo	Goodwin Creek	Mississippi	34.255	-89.874	Grasslands	Grass/pasture	2002, 2004-2006	Hilton	Meyers (2002-2006)
US-Ha1	Harvard Forest EMS Tower	Massachusetts	42.538	-72.172	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2001-2012, 2015, 2017-2019	Mahadevan, Hilton	Munger (1991-)
US-Ha2	Harvard Forest Hemlock Site	Massachusetts	42.539	-72.178	Evergreen Needleleaf Forests	Evergreen/mixed forests > 40N	2006-2008, 2012-2013	Hilton	Hadley & Munger (2004-)
US-Ho1	Howland Forest (main tower)	Maine	45.204	-68.740	Evergreen Needleleaf Forests	Evergreen/mixed forests > 40N	2010-2017	Mahadevan, Hilton	Hollinger (1996-)
US-Ho2	Howland Forest (west tower)	Maine	45.209	-68.747	Evergreen Needleleaf Forests	Evergreen/mixed forests > 40N	2001-2009	Hilton	Hollinger (1999-)
US-Ho3	Howland Forest (harvest site)	Maine	45.207	-68.725	Evergreen Needleleaf Forests	Evergreen/mixed forests > 40N	2004-2005	Hilton	Hollinger (2000-)
US-IB1	Fermi National Accelerator Laboratory-Batavia (Agricultural site)	Illinois	41.859	-88.223	Croplands	Corn/ Crops, other	Corn: 2006, 2008, 2010, 2012, 2013, 2016, 2017 Soybean: 2005, 2007, 2009, 2011, 2014, 2015	Mahadevan, Hilton	Matamala (2005-)
US-IB2	Fermi National Accelerator Laboratory-Batavia (Prairie site)	Illinois	41.841	-88.241	Grasslands	Grass/pasture	2009-2011, 2015-2017	Mahadevan, Hilton	Matamala (2004-)
US-KS2	Kennedy Space Center (scrub oak)	Florida	28.609	-80.672	Closed Shrublands	Shrub	2003-2006	Hilton	Drake & Hinkle (2000-2007)
US-KUT	KUOM Turfgrass Field	Minnesota	44.995	-93.186	Grasslands	Grass/pasture	2006-2009	Mahadevan, Hilton	Desai (2001-)
US-Los	Lost Creek	Wisconsin	46.083	-89.979	Permanent Wetlands	Wetlands	2014-2017	Mahadevan, Hilton	Novick & Phillips (1999-)
US-MMS	Morgan Monroe State Forest	Indiana	39.323	-86.413	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2012-2017	Mahadevan, Hilton	Novick & Phillips (1999-)
US-MOz	Missouri Ozark Site	Missouri	38.744	-92.200	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2013-2017	Hilton	Wood & Gu (2004-)
US-NC1	NC_Clearcut	North Carolina	35.811	-76.712	Evergreen Needleleaf Forests	Evergreen/mixed forests < 40N	2005-2009	Mahadevan, Hilton	Noormets (2005-2013)
US-NC2	NC_Loblolly Plantation	North Carolina	35.803	-76.669	Evergreen Needleleaf Forests	Evergreen/mixed forests < 40N	2012-2018	Mahadevan, Hilton	Noormets (2005-)
US-NC3	NC_Clearcut#3	North Carolina	35.799	-76.656	Evergreen Needleleaf Forests	Evergreen/mixed forests < 40N	2015-2018	Mahadevan, Hilton	Noormets (2013-)

8
US-NE2	Mead - irrigated maize/soybean rotation	Nebraska	41.165	-96.470	Croplands	Corn/ Crops, other	Corn: 2009-2012 Soybean: 2002, 2004, 2006, 2008 Mahadevan, Hilton Suyker (2001-)	
US-NE3	Mead - rainfed maize/soybean rotation	Nebraska	41.180	-96.440	Croplands	Corn/ Crops, other	Corn: 2009, 2011 Soybean: 2008, 2010, 2012 Hilton Suyker (2001-)	
US-OH	Oak Openings	Ohio	41.555	-83.844	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2005-2007, 2009-2010, 2012 Chen et al (2004-2013)	
US-ORv	Olentangy River Wetland Research Park	Ohio	40.020	-83.018	Permanent Wetlands	Wetlands	2011 Bohrer (2011-2016)	
US-OWC	Old Woman Creek	Ohio	41.380	-82.513	Permanent Wetlands	Wetlands	2015-2016 Bohrer (2015-2016)	
US-PFa	Park Falls/WLEF	Wisconsin	45.946	-90.272	Mixed Forests	Evergreen/mixed forests > 40N	2001-2008 Mahadevan, Hilton Desai (1996-)	
US-Ro1	Rosemount- G21	Minnesota	44.714	-93.090	Croplands	Corn/ Crops, other	Corn: 2005, 2007, 2009, 2011, 2013, 2015 Soybean: 2004, 2006, 2008, 2010, 2012, 2014, 2016 Bohrer & Griffis (2003-2017)	
US-Ro2	Rosemount- C7	Minnesota	44.729	-93.089	Croplands	Crops, other	2016 Baker & Griffis (2003-2010)	
US-Ro3	Rosemount- G19	Minnesota	44.722	-93.089	Croplands	Corn/ Crops, other	Corn: 2005, 2007 Soybean: 2004, 2006 Bohrer & Griffis (2003-2010)	
US-Ro4	Rosemount Prairie	Minnesota	44.678	-93.072	Grasslands	Grass/pasture	2015-2016 Baker & Griffis (2014-)	
US-Slt	Silas Little	New Jersey	39.914	-74.596	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2010-2014 Clark (2004-)	
US-StJ	St. Jones Reserve	Delaware	39.088	-75.437	Permanent Wetlands	Wetlands	2015-2017 Vargas (2015-)	
US-Syv	Sylvania Wilderness Area	Michigan	46.242	-89.348	Mixed Forests	Evergreen/mixed forests > 40N	2002-2007, 2012-2017 Hilton Desai (2001-)	
US-xTA	Talladega National Forest (NEON)	Alabama	32.951	-87.393	Mixed Forests	Evergreen/mixed forests < 40N	2017-2019 Sturtevant et al (2017-)	
US-UMB	Univ. of Mich. Biological Station	Michigan	45.560	-84.714	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2013-2017 Mahadevan, Hilton Gough et al (1999-)	
US-UMd	Univ. of Mich. Biological Station, Disturbance	Michigan	45.563	-84.698	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2016-2018 Gough et al (2007-)	
US-WBW	Walker Branch Watershed	Tennessee	35.959	-84.287	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2004, 2005, 2007 Meyers (1995-1999)	
US-WCr	Willow Creek	Wisconsin	45.806	-90.080	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2013-2017 Mahadevan, Hilton Desai (1999-)	
US-WI1	Intermediate hardwood	Wisconsin	46.731	-91.333	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2003	Chen (2003-2003)
US-WI4	Mature red pine	Wisconsin	46.739	-91.166	Evergreen Needleleaf Forests	Evergreen/mixed forests > 40N	2005	Chen (2002-2005)
US-WI5	Mixed young jack pine	Wisconsin	46.653	-91.086	Evergreen Needleleaf Forests	Evergreen/mixed forests > 40N	2004	Chen (2004-2004)
US-WI7	Red pine clearcut	Wisconsin	46.649	-91.069	Open Shrublands	Shrubbs	2005	Chen (2005-2005)
US-WI8	Young hardwood clearcut	Wisconsin	46.722	-91.252	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2002	Chen (2002-2002)
US-WI9	Young Jack pine	Wisconsin	46.619	-91.081	Evergreen Needleleaf Forests	Evergreen/mixed forests > 40N	2005	Chen (2004-2005)
US-WPT	Winous Point North Marsh	Ohio	41.465	-82.996	Permanent Wetlands	Wetlands	2011-2013	Chen & Chu (2011-2013)
US-xDL	Dead Lake (NEON)	Alabama	32.542	-87.804	Mixed Forests	Evergreen/mixed forests < 40N	2017-2018	Sturtevant et al (2017-)
US-xGR	Great Smoky Mountains National Park (NEON)	Tennessee	35.689	-83.502	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2019	Sturtevant et al (2017-)
US-xSC	Smithsonian Conservation Biology Unit (NEON)	Virginia	38.893	-78.140	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2017-2019	Sturtevant et al (2016-)
US-xSE	Smithsonian Environmental Research Center (NEON)	Maryland	39.890	-76.560	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2017-2019	Sturtevant et al (2016-)
US-xST	Steigerwaldt Land Services (NEON)	Wisconsin	45.509	-89.586	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2018-2019	Sturtevant et al (2017-)
US-xTR	Treehaven (NEON)	Wisconsin	45.494	-89.586	Deciduous Broadleaf Forests	Deciduous broadleaf forests	2017-2019	Sturtevant et al (2017-)
US-xUK	University of Kansas Field Station (NEON)	Kansas	39.040	-95.192	Mixed Forests	Evergreen/mixed forests > 40N	2017-2019	Sturtevant et al (2017-)
US-xUN	University of Notre Dame Environmental Research Center (NEON)	Michigan	46.234	-89.537	Deciduous Broadleaf Forests	Evergreen/mixed forests > 40N	2017-2019	Sturtevant et al (2017-)
Table S2: optimized VPRM parameters by PFT using the original VPRM respiration model with annual and seasonal parameters (i.e. VPRM_{ann} and VPRM_{seas}). Deciduous broadleaf forests and urban PFTs share the same parameters. T_{min}, T_{opt} and T_{max} parameters are in units of °C, λ in (μmol CO$_2$ m$^{-2}$ s$^{-1}$) / (μmol PAR m$^{-2}$ s$^{-1}$), PAR$_0$ in μmol m$^{-2}$ s$^{-1}$, β in μmol CO$_2$ m$^{-2}$ s$^{-1}$ and α in (µmol CO$_2$ m$^{-2}$ s$^{-1}$)/°C.

PFT	T_{min}	T_{max}	T_{opt}	λ	PAR$_0$	β	α
Deciduous Broadleaf Forest & Urban	0	0	0	0	0	0	0
Evergreen/ Mixed Forest, >40°N	45	45	45	45	45	45	45
Evergreen/ Mixed Forest, <40°N	15	20	15	19	26	24	31
Shrub/ Savannah	0.135	0.155	0.246	0.071	0.129	0.111	0.099
Grass/ Pasture/ Dev-open	0	0	0	0	0	0	0
Wetlands	0	0	0	0	0	0	0
Crops, other	0	0	0	0	0	0	0
Crops, corn	0	0	0	0	0	0	0

Season	T_{opt}	λ	PAR$_0$	β	α
Winter (DJF)	12	-0.0260	968	0.92	0.031
	10	-0.0725	96	0.57	0.019
	14	-0.0892	732	0.55	0.106
	17	-0.1446	814	1.66	0.029
	9	-0.4617	215	0.62	0.031
	17	-0.4617	21	0.54	0.031
	6	-0.0857	310	0.47	0.010
	0	-0.4822	19	0.45	0.021
Spring (MAM)	21	-0.0671	696	0.98	0.129
	18	-0.0741	536	0.91	0.122
	18	-0.0890	1125	0.23	0.211
	9	-0.1034	1231	1.44	0.069
	15	-0.0930	1004	0.74	0.116
	24	-0.0733	730	0.77	0.105
	16	-0.4115	1021	0.54	0.105
	40	-0.4115	80	0.49	0.093
Summer (JJA)	22	-0.0883	695	2.94	0.129
	18	-0.0923	603	1.40	0.184
	25	-0.0959	1276	0.193	0.251
	22	-0.0845	862	0.173	0.103
	24	-0.0885	971	0.068	0.158
	29	-0.0852	684	0.029	0.123
	23	-0.0481	1849	0.120	0.104
	31	-0.0628	3740	-0.072	0.139
Fall (SON)	20	-0.0872	626	1.40	0.111
	15	-0.1005	535	0.184	0.251
	19	-0.0914	829	0.213	0.103
	16	-0.0877	990	0.173	0.158
	24	-0.1231	590	0.068	0.123
	28	-0.0904	584	0.029	0.104
	22	-0.0391	1311	0.120	0.139
	30	-0.0456	3510	-0.072	0.139
Table S3: optimized VPRM parameters by PFT using the new respiration model (i.e. VPRM$_{\text{new}}$) developed in this study. T_{min}, T_{opt}, T_{max}, T_{crit} and T_{mult} parameters are in units of °C, λ in (µmol CO$_2$ m$^{-2}$s$^{-1}$)/(µmol PAR m$^{-2}$s$^{-1}$), PAR$_0$ in µmol m$^{-2}$s$^{-1}$, β in µmol CO$_2$ m$^{-2}$s$^{-1}$, α_1 and α_2 in (µmol CO$_2$ m$^{-2}$s$^{-1}$)/°C, θ_1 in (µmol CO$_2$ m$^{-2}$s$^{-1}$)/(unitless W$_{\text{scale}}$), θ_2 in (µmol CO$_2$ m$^{-2}$s$^{-1}$)/°C * unitless W$_{\text{scale}}$, and θ_3 in (µmol CO$_2$ m$^{-2}$s$^{-1}$)/°C2 * unitless W$_{\text{scale}}$.

	Deciduous Broadleaf Forest & Urban >40°N	Evergreen/Mixed Forest, <40°N	Evergreen/Mixed Forest, >40°N	Shrub/Savannah	Grass/Pasture/Dev-open	Wetlands	Crops, other	Crops, corn
T_{min}	0	0	0	0	0	0	0	0
T_{max}	45	45	45	45	45	45	45	45
T_{opt}	23	18	20	17	20	29	26	35
T_{crit}	-15	1	0	5	11	6	7	-1
T_{mult}	0.55	0.05	0	0.1	0.1	0.05	0	0
λ	-0.1023	-0.1097	-0.0920	-0.0996	-0.1273	-0.1227	-0.0732	-0.0997
PAR$_0$	539	506	896	811	673	456	1019	1829
β	0.12	0.47	0.28	1.53	-6.18	-0.82	-1.20	-0.02
α_1	0.065	0.088	0.025	0.004	0.853	0.261	0.234	0.083
α_2	0.0024	0.0047	0.0058	0.0049	-0.0250	-0.0051	-0.0060	-0.0018
γ	4.61	1.39	4.18	0.09	5.19	3.46	3.85	4.89
θ_1	0.116	-0.530	-0.729	-1.787	1.749	-0.777	0.032	0.150
θ_2	-0.0005	0.2063	0.1961	0.4537	-0.2829	0.0990	-0.0429	-0.1324
θ_3	0.0009	-0.0054	-0.0055	-0.0138	0.0166	0.0018	0.0090	0.0156
Table S4: Comparison of model components for the VPRM, CASA and SiB4 implementations included in this study.

Parameter type	VPRM (Mahadevan et al, 2008; this study)	CASA (Zhou et al, 2020)	SiB4v2 (Haynes et al, 2019)
Spatial resolution	0.02 degree	5km in Canada, 500m in USA	0.5 degree
Temporal resolution	hourly	monthly, downscaled to 3-hourly with temperature & radiation	hourly
	diagnostic (based on 8-day MODIS EVI/LSWI from overlapping 16-day composites)	diagnostic (based on monthly MODIS PAR)	prognostic, climate-driven, daily temporal resolution
Photonics	light-use efficiency with downscaling for temperature & water stress	light-use efficiency with downscaling for temperature & water stress	enzyme-kinetic (operates at sub-hourly timescale)
Respiration model	original model: linear function of temperature for each PFT, new respiration model: function of quadratic temperature, water stress and interactions with temperature, and EVI	From literature and maximum light-use efficiency calibrated with flux tower GPP observations from towers across North America; ensemble approach where individual members vary light-use efficiency, T_{opt} and Q₁₀; ensemble mean across 27 members of L2 product used here	From literature, previous versions of SiB
Parameter selection	optimized using NEE observations from flux towers in eastern US & Canada operating since 2001. original model: optimized with 24 hours of hourly flux tower NEE observations, new respiration model: respiration parameters optimized with night-time average flux tower NEE observations, GPP parameters optimized with hourly day-time GPP "observations" (i.e. NEE - predicted respiration)	MOD12Q1 Global Land Cover, modified with National Forest Type and North American Forest Dynamics products; tree and grass cover from MOD44B Vegetative Continuous Fields and non-woody) savannahs, grasslands, deciduous broadleaf forests, mixed forests, closed and open shrublands, woody ecosystems (and non-woody) savannahs, grasslands, croplands, urban and built-up, cropland/natural vegetation mosaic	MOD12Q1 Global Land Cover, modified for CLM 3.0 as in Lawrence and Chase (2007)
Land cover map	USA: NLCD2016 for all categories, except crops (https://www.mrlc.gov/data/nlcd-2016-land-cover-conus); crops from Cropland Data Layer (https://www.nass.usda.gov/Research_and_Science/Cropland/Release/); Canada: Canadian Annual Crop Inventory 2017 for all categories (https://open.canada.ca/data/en/dataset/ba2645d5-445b-414d-b196-6303ac06c19f).	MOD12Q1 Global Land Cover, modified for CLM 3.0 as in Lawrence and Chase (2007)	weighted fractional coverage
Land-cover within pixel	weighted fractional coverage	weighted fractional coverage	weighted fractional coverage
Plant functional types	Deciduous broadleaf forests, Evergreen needleleaf/mixed forests (>40N), Evergreen needleleaf/ mixed forests (<40N), Grass/pasture/dev-open, Shrub/savannah, wetlands, corn, other crops	From MODIS IGBP: evergreen needleleaf forest, deciduous broadleaf forest, mixed forests, closed and open shrublands, woody ecosystems (and non-woody) savannahs, grasslands, croplands, urban and built-up, cropland/natural vegetation mosaic	In this domain: evergreen needleleaf forest, deciduous broadleaf forest, shrubs, C3 grasslands, C4 grasslands, maize, soybean, wheat, generic C3 crops
Crops	corn vs. other crops (separate parameters & land-cover)	single crop type	separate parameters for corn, wheat, soybean and generic C3 and C4 crops; crop-specific prognostic phenology determined by growing-degree-days
Urban	Low, medium and high intensity developed land classified as urban; heterotrophic respiration (i.e. half of total respiration) reduced by fraction of impervious surface coverage (Hardiman et al, 2017); developed-open included with grasslands	zero flux when dominant land-cover	not separately simulated (no urban PFT)
Meteorological variables	air temperature and shortwave radiation	air temperature, total precipitation, shortwave and longwave radiation	air temperature, precipitation, shortwave and longwave radiation, surface pressure, wind speed, specific humidity
Meteorological model	HRRR (3km resolution)	5km runs: NARR (32 km resolution; 3-hourly) 500m runs: PRISM (30 arc-seconds) for precipitation and air temperature; NLDAS-2 (0.125°) for radiation	MERRA, regridded to 0.5° resolution; precipitation scaled to GPCP (as in Baker et al, 2010)
Table S5: Towers with observed CO$_2$ mole fraction data calibrated to the WMO-CO2-X2007 scale, sorted from north to south. Also shown are other tower characteristics, including months with observations from November 2016 to October 2017, and the percentage of each land cover within annual average footprints, calculated using the average of WRF-STILT and NAMS-STILT transport. Data providers are the National Oceanic and Atmospheric Administration (NOAA), Environment Canada (EC), Harvard University (HU) and Penn State University (PSU), with the data provider ‘EN-NIST’ referring to towers operated by Earth Networks (EN) and funded by the National Institute of Standards & Technology (NIST; Karion et al, 2020). Tower locations are also shown in Figure 2 of the main text.

Name	Description	Data Provider	Latitude	Longitude	Elevation (masl)	Inlet height (m)	Months with data	DBF	ENF/MF, > 40N	ENF/MF, < 40N	Wetlands	Shrubs	Crops	Grass/pasture/dev-open	Developed (low/med/high)
LEF	Park Falls, WI	NOAA	45.945	-90.273	474	396	all	30	18	0	30	1	11	8	1
AMT	Argyle, ME	NOAA	45.035	-68.682	53	107	all	17	45	1	15	3	6	9	4
DNH	Durham, NH	EN-NIST	43.709	-72.154	560	100	all	28	34	1	7	2	9	13	5
UNY	Utica, NY	EN-NIST	42.879	-74.785	489	45	all	31	17	2	8	2	4	14	21
TPD	Turkey Point, Ontario	EC	42.617	-80.550	198	35	all	23	9	2	7	1	37	14	6
HAF	Harvard_Forest	HU	42.538	-72.172	344	29	all	28	31	2	10	2	8	14	7
MSH	Mashpee, MA	EN-NIST	41.657	-70.498	32	46	all	20	28	3	10	2	8	16	14
MLD	Mildred, PA	PSU	41.466	-76.419	591	61	all	36	16	3	6	2	14	18	18
BRI	Bremen, IN	EN-NIST	41.458	-86.194	252	100	Dec-Oct	16	4	2	8	1	50	13	7
HCT	Hamden, CT	EN-NIST	41.434	-72.945	197	100	Nov-Mar, Jul	34	17	3	8	2	10	17	11
SNJ	Stockholm, NJ	EN-NIST	41.144	-74.539	407	53	May-Nov	36	13	3	8	1	12	19	7
SOL	Mooresville, IN	PSU	39.581	-86.421	256	121	all	25	2	5	4	1	44	16	5
TMD	Thurmont, MD	EN-NIST	39.577	-77.488	564	113	May-Oct	34	6	9	5	1	17	22	6
BUC	Bucktown, MD	EN-NIST	38.460	-76.043	3	75	all	22	5	12	18	2	21	16	6
SFD	Stafford, VA	EN-NIST	38.446	-77.530	76	152	Jul-Oct	31	5	15	7	2	14	21	6
RIC	Richmond, VA	EN-NIST	37.509	-77.576	89	95	all	27	3	19	7	2	14	21	7
SKY	Somerset, KY	EN-NIST	36.961	-84.568	375	100	Apr-Jul	37	1	14	3	1	15	25	4
DVA	Danville, PA	PSU	36.706	-79.437	278	215	Dec-Oct	33	2	18	4	3	12	24	5
MNC	Middlesex, NC	EN-NIST	35.831	-78.145	73	213	Oct	20	2	22	13	2	19	18	5
SMT	Signal Mountain, TN EN-NIST	EN-NIST	35.207	-85.286	610	100	Nov-Apr	36	1	16	3	2	11	26	6
SCT	South Carolina Tower, NOAA	NOAA	33.406	-81.833	114	305	all	16	1	23	20	5	12	18	5
Table S6: mean absolute error (MAE) across towers of monthly mean biases between simulated and observed biospheric atmospheric CO$_2$ enhancements (in µmol/mol), shown by TBM and month. Statistics calculated using the “optimal” monthly background conditions with WRF-STILT convolutions are shown on the upper left and NAMS-STILT convolutions on the upper right. The lower left box shows statistics calculated with mean WRF-STILT and NAMS-STILT convolutions, but with each set of background conditions (CTE, left and CT19B, right). For all boxes, MAE values <= 1.00 µmol/mol are highlighted in light yellow, with the TBM having an MAE <= 1.00 µmol/mol and the minimal value across models highlighted in orange.

	WRF	NAMS								
	VPRM$_{ann}$	VPRM$_{seas}$	VPRM$_{new}$	CASA	SiB4	VPRM$_{ann}$	VPRM$_{seas}$	VPRM$_{new}$	CASA	SiB4
201611	1.01	0.84	0.85	1.17	1.35	0.90	1.01	1.00	0.95	1.09
201612	1.71	2.43	1.78	1.11	1.19	1.98	2.74	2.08	1.35	1.24
201701	0.93	1.78	1.13	0.79	1.56	1.43	2.43	1.71	1.13	1.54
201702	0.75	0.75	0.67	1.65	1.49	0.71	0.86	0.66	1.53	1.19
201703	0.34	0.58	0.43	0.74	0.98	0.42	0.66	0.53	0.61	0.78
201704	0.81	0.73	0.55	0.78	1.38	0.74	0.76	0.50	0.66	1.54
201705	0.54	0.58	0.76	1.55	1.27	0.55	0.95	0.50	1.38	0.95
201706	0.97	1.43	1.10	1.49	1.31	2.28	1.32	1.46	0.78	1.38
201707	1.59	1.21	1.33	1.49	1.54	3.39	1.90	1.51	1.23	3.90
201708	1.09	1.23	1.28	1.28	1.16	1.95	1.28	1.43	0.90	1.32
201709	1.50	1.44	2.40	1.05	2.19	1.50	1.45	2.45	0.93	2.55
201710	0.80	0.82	0.83	1.72	1.47	0.85	0.85	0.87	1.74	1.82

	CASA SiB4	CASA SiB4	CASA SiB4
201611	1.07	1.07	1.07
201612	1.07	1.07	1.07
201701	1.07	1.07	1.07
201702	1.07	1.07	1.07
201703	1.07	1.07	1.07
201704	1.07	1.07	1.07
201705	1.07	1.07	1.07
201706	1.07	1.07	1.07
201707	1.07	1.07	1.07
201708	1.07	1.07	1.07
201709	1.07	1.07	1.07
201710	1.07	1.07	1.07

	VPRM$_{ann}$	VPRM$_{seas}$	VPRM$_{new}$	CASA	SiB4	VPRM$_{ann}$	VPRM$_{seas}$	VPRM$_{new}$	CASA	SiB4
201611	0.81	0.82	0.80	0.97	1.15	0.83	0.86	0.86	1.01	1.12
201612	1.84	2.59	1.93	1.22	1.15	2.00	2.75	2.09	1.37	1.18
201701	1.10	2.08	1.36	0.90	1.49	1.66	2.67	1.94	1.21	1.46
201702	0.87	0.64	0.63	1.92	1.62	0.63	1.05	0.73	1.24	1.08
201703	0.51	0.47	0.51	0.95	1.01	0.47	0.92	0.68	0.44	0.71
201704	0.90	0.62	0.55	0.72	1.40	0.70	0.98	0.62	0.79	1.56
201705	0.50	0.74	0.61	1.44	1.10	0.60	0.77	0.77	1.61	1.25
201706	1.48	1.17	1.11	0.92	0.96	1.21	1.44	1.21	1.35	1.23
201707	2.31	1.32	1.23	0.85	2.58	2.44	1.34	1.22	0.97	2.62
201708	1.22	1.14	1.28	1.00	1.15	1.53	0.97	1.19	0.96	1.01
201709	2.10	1.95	3.11	1.22	2.80	1.08	1.11	1.76	1.15	2.13
201710	0.81	0.79	0.80	1.68	1.60	0.87	1.19	0.85	2.59	2.23
Figure S1: Boxplots of site-specific optimized parameters from the original VPRM model with annual parameters (i.e. VPRM$_{ann}$), clustered by the Plant Functional Type (PFT) classification used in the paper.
Figure S2: Interannual variability in monthly air temperatures (top row) and precipitation (bottom row) from 2001-2020. (These data were obtained from the NASA Langley Research Center POWER Project funded through the NASA Earth Science Directorate Applied Science Program, available at https://power.larc.nasa.gov/).
Figure S3: comparison of daily interpolated EVI used in VPRM (from overlapping 16-day MODIS composites) vs. monthly fPAR used in CASA from November 2016 to October 2017. EVI and fPAR data are spatially aggregated across the cropland and deciduous broadleaf forest pixels indicated in Figure 1 of the main text.

Figure S4: Mean spatially integrated footprints in July 2017 as a function of hours back from receptor time for two towers: UNY (45 m inlet height) and MNC (213 m inlet height). Time series are shown for each afternoon receptor hour, averaged across all days in the month, with receptor hours starting at 12 – 4 pm EST shown with a thicker line width. Note that the expanded definition of “afternoon” in this study allows for more hours with well-mixed conditions during summer months (shown with green shading). Other hours back in time are shaded to indicate day (yellow) or night (blue).
Figure S5: Scatter plots of observed air temperature vs. night-time hourly average NEE for out-of-sample flux tower observations reserved from parameter optimization. Also shown are model fits for \(VPRM_{\text{ann.orig}} \), \(VPRM_{\text{ann}} \), \(VPRM_{\text{ann.ND}} \), \(VPRM_{\text{seas}} \), and \(VPRM_{\text{new}} \), with four lines for \(VPRM_{\text{seas}} \) corresponding to each season. Results are shown for the six PFT’s not shown in Figure 6 in the main text (representing ~60% of total land cover in domain): evergreen needleleaf/mixed forests >40°N (12%), evergreen needleleaf/mixed forests <40°N (8%), grasslands (including pasture and developed-open, 17%), soybean/other crops (13%), wetlands (8%), and shrublands and savannah (2%). NSC values are shown comparing each model to observations by PFT.
Figure S6: monthly mean seasonal cycles of night-time NEE comparing model predictions from different VPRM model formulations to reserved flux tower observations not included in the parameter optimization. Results are shown for the six PFT’s not shown in Figure 6 in the main text.
Figure S7: Mean 24-hour gridded seasonal NEE at 0.1° for VPRM_{ann}, VPRM_{seas} and VPRM_{new}. Corresponds to Figure 8 in the main text.
Figure S8: Percent of deciduous broadleaf forests (top row) and croplands (bottom row) at the aggregated 0.5° spatial scale, as seen in the underlying land cover maps for SiB4, VPRM and CASA (with data sources for each model shown in Table S1). The CASA map is based on the 500 m dominant land cover across the domain.
Figure S9: Seasonal cycle of weekly mean GPP (top row), and ecosystem respiration (bottom row), spatially aggregated across pixels with predominantly deciduous broadleaf forests (left column) and croplands (right column), as indicated in Figure 1.
Figure S10: Mean diurnal cycle in July of GPP (top row), and ecosystem respiration (bottom row), spatially aggregated across pixels with predominantly deciduous broadleaf forests (left column) and croplands (right column), as indicated in Figure 1.
Figure S11: Monthly mean simulated vs. observed biological CO$_2$ enhancements at 4 towers with convolutions using WRF-STILT transport. Other details are shown in the Figure 10 caption in main text.
Figure S12: Monthly mean simulated vs. observed biological CO$_2$ enhancements at 4 towers with convolutions using NAMS-STILT transport. Other details are shown in the Figure 10 caption in the main text.
Figure S13: Monthly mean biases (simulated - observed) in biospheric CO$_2$ enhancements from November 2016 to October 2017 across biospheric models using WRF-STILT convolutions (top) and NAMS-STILT convolutions (bottom). Other details are the same as in Figure 11 in the main text.
Figure S14: Monthly mean biospheric CO₂ enhancement biases (model – observations) for all towers for each biospheric model (3 versions of VPRM, CASA and SiB4). Mean of WRF-STILT and NAMS-STILT convolutions, Vulcan3.0 fossil fuel emissions and “optimal” background conditions are used for all months. Towers are color-coded to show approximate geographic position and/or land cover influence (gray: towers near edge of domain, orange: cropland influence, dark green: northeastern US, green: PA/NY/CT, turquoise: mid-Atlantic, blue: southern).
Figure S15: NSC and adjusted R^2's (bottom row) comparing simulated to observed biologic CO$_2$ enhancements across towers for each TBM. This is the same as Figure 12 in the main text but using WRF-STILT (top row) and NAMS-STILT (bottom row) convolutions separately.