Inapproximability of the Minimum Biclique Edge Partition Problem

Hideaki OTSUKI†† and Tomio HIRATA††, Members

SUMMARY For a graph G, a biclique edge partition $S_{BE}(G)$ is a collection of bicliques (complete bipartite subgraphs) B_i such that each edge of G is contained in exactly one B_i. The Minimum Biclique Edge Partition Problem (MBEPP) asks for $S_{BE}(G)$ with the minimum size. In this paper, we show that for arbitrary small $\varepsilon > 0$, $(6053/6052 - \varepsilon)$-approximation of MBEPP is NP-hard.

key words: biclique, edge partition, NP-hard, inapproximability

1. Introduction

For a graph G, a biclique edge partition $S_{BE}(G)$ is a collection of bicliques (complete bipartite subgraphs) B_i such that each edge of G is contained in exactly one B_i. The Minimum Biclique Edge Partition Problem (MBEPP) asks for $S_{BE}(G)$ with the minimum size. It is known that MBEPP is NP-hard [1].

The Minimum Biclique Cover Problem (MBCP) is a graph covering problem that is NP-hard and its inapproximability has been investigated. A biclique cover of a graph G, $S_{BC}(G)$, is a collection of biclique subgraphs B_i such that each edge of G is contained in some B_i. MBCP asks for $S_{BC}(G)$ with the minimum size. Unless $P = NP$, MBCP does not have $O(n^{1/3})$-approximation algorithm [2], where n is the number of vertices of G.

While MBCP was studied well, MBEPP has not been given attention. To the best of our knowledge, no lower bound for approximation of MBEPP is known. In this paper, we construct a gap preserving reduction [3] from Max E2-SAT to MBEPP, and show for arbitrary small $\varepsilon > 0$, $(6053/6052 - \varepsilon)$-approximation of MBEPP is NP-hard.

Note that “c-approximation of an optimization problem is NP-hard” means that if there exists a polynomial-time algorithm guaranteeing the output size within c times the size of the optimal solution then $P = NP$.

2. Construction of an Instance of MBEPP

A Boolean expression φ is in the Conjunctive Normal Form (CNF) if φ is a conjunction of clauses and each clause is a disjunction of literals. For a given φ in CNF, the Maximum Satisfiability Problem (MAX SAT) asks for an assignment that satisfies simultaneously the maximum number of clauses of φ. MAX 2-SAT is MAX SAT in which each clause has at most two literals. MAX E2-SAT is MAX 2-SAT in which each clause has exactly two literals of different variables.

k-OCC-MAX 2-SAT is MAX 2-SAT in which each variable occurs exactly k times in the expression.

Let N be a positive integer, Berman and Karpinski [4] showed inapproximability of 3-OCC-MAX 2-SAT as follows.

Theorem 2.1 ([5]): For any $\varepsilon \in (0, 1/2)$, it is NP-hard to decide whether an instance of 3-OCC-MAX 2-SAT with $2016N$ clauses has a truth assignment that satisfies at least $(2012 - \varepsilon)N$ clauses, or at most $(2011 + \varepsilon)N$.

In their proof, all clauses of an instance of 3-OCC-MAX 2-SAT have exactly two literals [4]. So this theorem can be applied to 3-OCC-MAX E2-SAT.

Let φ be an instance of 3-OCC-MAX E2-SAT and let $|\varphi|$ be the maximum number of clauses that can be satisfied simultaneously by an assignment. In this paper, we transform φ into an instance $G = (V, E)$ of MBEPP as follows.

Suppose φ has n variables x_i ($i = 1, \ldots, n$) and m clauses c_j ($j = 1, \ldots, m$). For $c_j = x_1 \vee x_2 \cup x_3$, as the first (second) literal of c_j. Since each variable occurs exactly three times in φ, $3n = 2m$ holds. For each variable x_i, we construct G_i as follows.

$V(G_i) = \{x^1_i, x^2_i, x^3_i, \bar{x}^1_i, \bar{x}^2_i, \bar{x}^3_i\}$

$E(G_i) = \{(x^1_i, x^2_i), (x^2_i, x^3_i), (x^3_i, \bar{x}^1_i), (\bar{x}^1_i, \bar{x}^2_i), (\bar{x}^2_i, \bar{x}^3_i), (\bar{x}^3_i, x^1_i)\}$.

Each G_i is a cycle graph C_6 (Fig. 1 (a)). We denote by V_x the set of vertices in these cycles, that is, $V_x = \{x^i_d, \bar{x}^j_d | 1 \leq i \leq n, d = 1, 2, 3\}$. For each clause c_j, we create two vertices y_j, z_j and an edge $e_j = (y_j, z_j)$. Let $V_c = \{y_j, z_j | 1 \leq j \leq m\}$.

For each $j = 1, \ldots, m$, we add edges as follows. We connect a vertex of V_x and a vertex of V_c by these edges. Let x_i be a variable and suppose it appears in three clauses $c_{i_1}, c_{i_2}, c_{i_3}$. For $d = 1, 2, 3$, if the occurrence of x_i is the first literal of c_{i_d}, we connect y_{i_d} to either x^d_i (if the literal is x_i) or \bar{x}^d_i (if the literal is \bar{x}_i) by an edge. If the occurrence of x_i is the second literal of c_{i_d}, we connect z_{i_d} to either x^d_i (if the literal is x_i) or \bar{x}^d_i (if the literal is \bar{x}_i) by an edge. We denote by $e_{i_d}(e_{i_d})$ the added edge incident to $y_{i_d}(z_{i_d})$.

Note that if x_i occurs all positive (all negative) in φ,

Manuscript revised June 28, 2009.

The author is with the Graduate School of Engineering, Nagoya University, Nagoya, Japan, 464–8603.

\[\text{E-mail: otsuki@nanzan-u.ac.jp} \]

DOI: 10.1587/transinf.E93.D.290

Copyright 2010 The Institute of Electronics, Information and Communication Engineers
We denote two sets of graphs as follows.

$$K_{Gi}$$ changeably. For a star graph

In the sequel, we use “biclique” and “star graph” interchangeably.

Lemma 3.1: Let $$\pi$$ be an assignment that satisfies more than $$(1 - \epsilon)m$$ clauses of $$\phi$$. We show that $$\pi$$ induces a solution, $$SO_L'(G)$$, of MBEPP that satisfies $$|SO_L'(G)| < (3 + \epsilon)m$$.

Let $$SO_L'(G)$$ be an empty set. Let $$N(G)$$ be an optimal solution of MBEPP for $$G$$. We give the following lemma.

Lemma 3.1: If $$\pi$$ is an assignment that satisfies more than $$(1 - \epsilon)m$$ clauses of $$\phi$$. We show that $$\pi$$ induces a solution, $$SO_L'(G)$$, of MBEPP that satisfies $$|SO_L'(G)| < (3 + \epsilon)m$$.

Proof: Let $$\pi$$ be an assignment that satisfies more than $$(1 - \epsilon)m$$ clauses of $$\phi$$. We show that $$\pi$$ induces a solution, $$SO_L'(G)$$, of MBEPP that satisfies $$|SO_L'(G)| < (3 + \epsilon)m$$.

Let $$SO_L'(G)$$ be an empty set. For each $$x_i$$, if $$\pi$$ assigns TRUE (FALSE) to $$x_i$$, we add $$S_i^T$$ ($$S_i^F$$) to $$SO_L'(G)$$. Note that all edges of $$G_i$$ have been partitioned by these $$3n (= 2m)$$ bicliques.

Let $$c_j$$ be an arbitrary clause of $$\phi$$. If the assignment $$\pi$$ satisfies $$c_j$$, there is at least one star graph $$K_{1,2}$$ in $$SO_L'(G)$$ whose center is adjacent to $$y_j$$ or $$z_j$$. W.l.o.g., we assume that $$y_j$$ is adjacent to the center of this $$K_{1,2}$$. We replace this star graph $$K_{1,2}$$ in $$SO_L'(G)$$ with a star graph $$K_{1,3}$$ by adding $$e_{y_j}$$.

This manipulation does not increase $$|SO_L'(G)|$$. Furthermore, we add to $$SO_L'(G)$$ a star graph $$K_{1,2}$$ consisting of $$e_j$$ and $$e_{z_j}$$.

If the assignment $$\pi$$ does not satisfy $$c_j$$, we add two star graphs to $$SO_L'(G)$$; $$K_{1,2}$$ consisting of $$e_j$$ and $$e_{z_j}$$, and $$K_{1,1} (= e_{y_j})$$. The number of $$K_{1,1}$$ in $$SO_L'(G)$$ is less than $$em$$ because of the assumption. In $$SO_L'(G)$$, we have 2m star graphs, $$K_{1,2}$$ or $$K_{1,3}$$, whose centers are in $$V_x$$, and m star graphs, $$K_{1,2}$$, that have an edge $$e_j$$. Thus, we have $$|SO_L'(G)| < 2m + (1 - \epsilon)m + 2em = (3 + \epsilon)m$$.

Lemma 3.2: If $$s(\phi) \leq (1 - \epsilon)m$$ then $$S(G) \geq (3 + \epsilon)m$$.

Proof: We assume $$SO_L'(G)$$ is a solution of MBEPP and $$|SO_L'(G)| < (3 + \epsilon)m$$. We will show that there is an assignment that satisfies more than $$(1 - \epsilon)m$$ clauses of $$\phi$$. We construct a solution $$SO_L'(G)$$ that satisfies $$|SO_L'(G)| \leq |SO_L(G)|$$ and then we show $$SO_L'(G)$$ induces an assignment that satisfies more than $$(1 - \epsilon)m$$ clauses of $$\phi$$.

Let $$SO_L'(G)$$ be an empty set. We denote by $$SC(G)$$ the set of all bicliques in $$SO_L(G)$$ that have an edge $$e_j$$ ($$j = 1, \ldots, m$$). Then $$|SC(G)| = m$$. We add all bicliques in $$SC(G)$$ to $$SO_L'(G)$$.

Next, we remove all edges of bicliques in $$SC(G)$$ from $$G$$. If there are singleton vertices in the resulted graph, we remove all of them. Let $$G'$$ be the resulted graph. $$G'$$ consists of n connected components. Each of the connected components is $$G_i$$ possibly with its incident edges. Note that for all $$j (= 1, \ldots, m)$$, at least one edge $$e_{y_j}$$ or $$e_{z_j}$$ remains in $$G'$$.

For each $$i (= 1, \ldots, n)$$, we denote by $$G_i$$ a connected component of $$G'$$ whose $$C_6$$ subgraph is $$G_i$$. We denote by $$A$$ the set of all $$G_i$$ that has no contiguous degree-three vertices, and we denote by $$B$$ the set of all $$G_i$$ that has some contiguous degree-three vertices.

It is clear that each $$G_i \in A$$ cannot be partitioned into less than three bicliques. For each $$G_i \in A$$, we add three bicliques as shown in Fig. 2(a), to $$SO_L'(G)$$ as follows. If some of $$x_i^d$$ ($$d \in \{1, 2, 3\}$$) are the degree-three vertices, we add three bicliques (star graphs) whose centers are $$x_i^d$$ to $$SO_L'(G)$$. Otherwise, we add three bicliques (star graphs) whose centers are $$x_i^d$$ to $$SO_L'(G)$$. It is clear that each $$G_i \in B$$ cannot be partitioned into less than four bicliques. For each $$G_i \in B$$, we add four bicliques as follows. If there are three degree-three vertices in $$G_i$$, we denote these contiguous vertices by $$v_1, v_2, v_3$$ in this order as shown in Fig. 1(c). We add to $$SO_L'(G)$$ four bicliques; one star graph $$K_{1,1}$$ that is an edge connecting $$v_2$$ and a vertex of $$e_j$$, two star graphs $$K_{1,3}$$ whose center vertices are $$v_1$$ and $$v_3$$ and one star graph $$K_{1,2}$$ for the remaining part (Fig. 2(b)).
If there are only two degree-three vertices in G', we denote these two contiguous vertices by v_1 and v_2. Then we add to $\text{SOL}'(G)$ four bicliques; one star graph $K_{1,1}$ that is an edge connecting v_2 and a vertex in e_j, one star graph $K_{1,3}$ whose center vertex is v_1 and two star graphs $K_{1,2}$ for the remaining part.

$\text{SOL}'(G)$ has the same subset $\text{SC}(G)$ of $\text{SOL}(G)$, and the remaining part is partitioned into the optimal number of bicliques. So it is clear that $\text{SOL}'(G)$ is a biclique partition of G and $|\text{SOL}'(G)| \leq |\text{SOL}(G)|$ holds.

Let $|\mathcal{B}| = \epsilon m$, then $|\mathcal{A}| = n - \epsilon m$ and

$$|\text{SOL}'(G)| = |\text{SC}(G)| + 3|\mathcal{A}| + 4|\mathcal{B}| = (3 + \epsilon')m.$$

From the assumption $|\text{SOL}(G)| < (3 + \epsilon)m$, we have $(3 + \epsilon')m < (3 + \epsilon)m$, and $|\mathcal{B}| < \epsilon m$ holds.

We induce an assignment π' from $\text{SOL}'(G)$ as follows. For each $G_j' \in \mathcal{A}$, if some of x_i^j (\bar{x}_i^j) are degree-three vertices, we assign TRUE (FALSE) to x_i. If there is no degree-three vertex in G_j', we assign FALSE to x_i. For each $G_j' \in \mathcal{B}$, if the degree-three vertex v_1 is x_i^d (\bar{x}_i^d) for some $d \in \{1, 2, 3\}$, we assign TRUE (FALSE) to x_i.

Note that under this assignment π' the literals associating degree-three vertices denoted by v_2 are FALSE and the other literals are TRUE. Therefore, if c_j is not satisfied by π', at least one endpoint of e_j must be adjacent to v_2 in some $G_j' \in \mathcal{B}$. The number of vertices denoted by v_2 in G is exactly the size of \mathcal{B}. Since $|\mathcal{B}| < \epsilon m$, the number of clauses not satisfied by π' is less than ϵm, and thus π' satisfies more than $(1 - \epsilon)m$ clauses in φ. □

Theorem 3.3: $(6053/6052 - \epsilon)$-approximation of MBEPP is NP-hard, for arbitrary small $\epsilon > 0$.

Proof: From Theorem 2.1, it is NP-hard to decide whether $s(\varphi) > (2016N - 4N - \epsilon N)$ or $s(\varphi) \leq (2016N - 5N + \epsilon N)$. Let $m = 2016N$, $e_1m = (4 + \epsilon)N$, $e_2m = (5 - \epsilon)N$. From Lemma 3.1, if $s(\varphi) > (1 - \epsilon_1)m$ then $S(G) < (3 + \epsilon_1)m = 3 - 2016N + (4 + \epsilon)N$. From Lemma 3.2, if $s(\varphi) \leq (1 - \epsilon_2)m$ then $S(G) = (3 + \epsilon_2)m = 3 - 2016N + (5 - \epsilon)N$. Therefore, for any ϵ, it is NP hard to decide whether $S(G) < (6052 + \epsilon)N$ or $S(G) \geq (6053 - \epsilon)N$. □

References

[1] T. Kratzke, B. Reznik, and D. West. “Eigensharp graphs: Decomposition into complete bipartite subgraphs,” Transactions on the American Mathematical Society, vol.308, no.2, 1998.

[2] H. Gruber and M. Holzer. “Inapproximability of nondeterministic state and transition complexity assuming P ≠ NP,” Lect. Notes Comput. Sci., vol.4588, pp.205–216, 2007.

[3] V.V. Vazirani, Approximation Algorithms, Springer-Verlag, 2001.

[4] P. Berman and M. Karpinski. “On some tighter inapproximability results,” ECCC TR-98-029, 1998.

[5] P. Berman and M. Karpinski. “On some tighter inapproximability results (extended abstract),” Lect. Notes Comput. Sci., vol.1644, pp.200–209, 1999.