PLASTOME ANNOUNCEMENT

Complete sequence of Cynanchum rostellatum (Apocynaceae: Asclepiadoideae) chloroplast genome and its phylogenetic analysis

Lixin Pei¹, Shengnan Shu²⁻⁴, Baoyu Ji⁵ and Ning Cui⁶

¹College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; ²Central Laboratory, Shandong Academy of Chinese Medicine, Ji’nan, China; ³School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Zhengzhou, China

ABSTRACT

Cynanchum rostellatum (Turcz.) Liede and Khanum 2016 is a perennial herbaceous twining vine that is widely distributed in Japan, South Korea, the United States of America, and China. In this study, the complete chloroplast (cp) genome of *C. rostellatum* was sequenced using the Illumina platform and assembled for the first time. This plastome has a circular structure with a length of 160,641 bp. The GC content of the plastome was 37.82%. The cp genome contained 113 unique genes, including 79 protein-coding, 30 transfer RNA, and four ribosomal RNA genes. Phylogenetic analysis based on the complete cp genome sequences of the Asclepiadoideae subfamily showed that *C. rostellatum* was closely related to *C. bungei* in the genus *Cynanchum*. These results provide useful information for both phylogenetic research and the utilization of *C. rostellatum*.

CONTACT Ning Cui cuining20061988@126.com

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
GAU) contained one intron, and two genes (clpP and ycf3) contained two introns.

To elucidate the evolutionary relationship of *C. rostellatum*, the cp genomes of 21 Asclepiadoideae species were downloaded from the NCBI GenBank database. We aligned the plastomes using MAFFT and constructed a maximum likelihood (ML) tree (Figure 1) using RAxML (v.8.2.9), using the GTRGAMMA model with 1000 rapid bootstrap replicates (Cui et al. 2020). Our plastome phylogeny showed that *C. rostellatum* is most closely related to *C. bungei* in the genus *Cynanchum*. *Cynanchum rostellatum* and seven *Cynanchum* species were clustered into one branch indicating that *C. rostellatum* was likely placed in the *Cynanchum* genus, and not in *Metaplexis*, during taxonomic classification. In conclusion, the cp genome of *C. rostellatum* provides a theoretical basis for a better understanding of the evolutionary patterns and for improving its taxonomic classification.

Ethical approval

No permission was necessary in this study for the sample collection. *Smilax moranensis* is widely distributed in North China and is not listed as a national key protected plant.

Authors’ contributions

N. Cui designed and conceived this work; L.X. Pei collected the samples and carried out the experiment; B.Y. Ji and S.N. Shu analyzed the data and wrote the first version of the manuscript; All authors read, revised, and approved the final manuscript.

Disclosure statement

The authors declare that there is no potential conflict of interest exists.

Funding

This work was supported by the Shandong Province Traditional Chinese Medicine Science and Technology development Program [2019–0650], Research Incubation Fund Project of Shandong Academy of Chinese Medicine [2021SACM-3], Medical and Health Science and Technology Development Project of Shandong Province [202102041135], “National Survey of Traditional Chinese Medicine Resources”, a special subsidy program for United States Public Health Service of traditional Chinese medicine in 2017 [caishe[2017] No. 66] and “National Survey of Traditional Chinese Medicine Resources”, a special subsidy program for United States Public Health Service of traditional Chinese medicine in 2018 [caishe[2017] No.183].

Data availability statement

The complete chloroplast genome of *Cynanchum rostellatum* assembled here is available in the GenBank of NCBI (https://www.ncbi.nlm.nih.gov/genbank, accession no. OL689165). The associated BioProject, BioSample and SRA numbers are PRJNA785091, SAMN23527168 and SRR17082022, respectively.

References

Cui N, Liao BS, Liang CL, Li SF, Zhang H, Xu J, Li XW, Chen SL. 2020. Complete chloroplast genome of *Salvia plebeia*: organization, specific barcode and phylogenetic analysis. Chin J Nat Med. 18(8): 563–572.

Huang DI, Cronk QC. 2015. Plann: a command-line application for annotating plastome sequences. Appl Plant Sci. 3(8):1500026. apps.1500026.
Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21(1):241.

Ma J, Clemants S. 2006. A history and overview of the Flora Reipublicae Popularis Sinicae (FRPS, Flora of China, Chinese edition, 1959-2004). Taxon. 55(2):451–460.

Wang Z, Wang D, Li Z, Wang Y. 2020. Metaplexis japonica seed hair fiber: a hydrophobic natural fiber with robust oil-water separation properties. Cellulose. 27(5):2427–2435.

Wei L, Yang M, Huang L, Lin Li J. 2019. Antibacterial and antioxidant flavonoid derivatives from the fruits of Metaplexis japonica. Food Chem. 289:308–312.

Welsh SL, Anderson DE. 1962. Metaplexis japonica: an oriental milkweed from an Iowa cornfield. Brittonia. 14(2):186–188.

Yang M, Wu J, Xu X, Jin Y, Guo Y, Chen J. 2006. A new lignan from the Jian-er syrup and its content determination by RP-HPLC. J Pharm Biomed Anal. 41(2):662–666.

Zhang J, Chen J, Liang Z, Zhao C. 2014. New lignans and their biological activities. Chem Biodivers. 11(1):1–54.