The Wilms’ Tumor Gene Product WT1 Mediates the Down-regulation of the Rat Epidermal Growth Factor Receptor by Nerve Growth Factor in PC12 Cells*

Received for publication, September 26, 2000
Published, JBC Papers in Press, November 8, 2000, DOI 10.1074/jbc.M008776200

Xu-Wen Liu‡, Li-Jie Gong§, Li-Ying Guo§§, Yasuhiro Katagiri¶¶, Hao Jiang††, Zhao-Yi Wang‡‡, Alfred C. Johnson§§§, and Gordon Guroff¶¶¶

From the ‡Section on Growth Factors and §Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, ¶¶Division of Growth Regulation, Department of Medicine, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, and §§Laboratory of Molecular Biology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892.

Recently, we characterized the rat epidermal growth factor receptor (EGFR) promoter and demonstrated that TCC repeat sequences are required for the down-regulation of EGFR by nerve growth factor (NGF) in PC12 cells. In this study, we report that the Wilms’ tumor gene product WT1, a zinc finger transcription factor, is able to enhance the activity of the rat EGFR promoter in cotransfection assays. Gel mobility shift assays demonstrate that WT1 binds to the TCC repeat sequences of the rat EGFR promoter. Overexpression of WT1 resulted in up-regulation of the expression levels of endogenous EGFR in PC12 cells. Interestingly, NGF down-regulated the expression levels of WT1 and EGFR in PC12 cells, but not in the p140

The epidermal growth factor receptor (EGFR) is a member of the ErbB family of ligand-activated tyrosine kinase recep-

tors, which play a central role in the proliferation, differentiation, and/or oncogenesis of epithelial cells, neural cells, and fibroblasts. Some years ago, we reported that PC12 cells respond to both epidermal growth factor (EGF) and nerve growth factor (NGF), but that the response to epidermal growth factor is mitogenic, whereas the response to nerve growth factor leads to differentiation. It was of interest to determine what would happen if the cells were exposed to both stimuli at the same time. The answer was that the cells simply did not respond to EGF after they had been treated with NGF, and the reason that they did not respond is that the EGFR is markedly down-regulated by treatment of the cells with NGF.

Our studies have focused on the molecular mechanism by which NGF down-regulates the EGFR. Previous studies have demonstrated that NGF-induced down-regulation of the EGFR was at the transcriptional level (4) and that the down-regulation is p140

PC12 cells. In this study, we report that the Wilms’ tumor suppressor gene, is located at chromosome locus 11p13 and encodes a zinc finger protein that is one of several transcription factors that have been found to interact with TCC repeat sequences (7–9). Experimental evidence has indicated that WT1 not only plays a role during kidney development but is also involved in the development and homeostasis of other tissues. The products of WT1 have been implicated in various cellular processes such as proliferation, differentiation, and apoptosis (10). To better understand the molecular mechanisms of down-regulation of EGFR by NGF in PC12 cells, it is important to study the possible interaction between WT1 and EGFR during the differentiation of PC12 cells.

Here, we report that the Wilms’ tumor gene product WT1 activates the activity of the rat EGFR promoter through binding to the TCC repeat sequences. Treatment of PC12 cells with NGF decreases the expression levels of WT1 and EGFR. However, the down-regulation of WT1 by NGF, like the EGFR, is not seen in PC12nnr5 cells or in cells expressing either dominant-negative Ras or dominant-negative Src. As another approach, we have studied the inhibitory effect of antisense WT1
tor; EGF, epidermal growth factor; NGF, nerve growth factor; CMV, cytomegalovirus; GFP, green fluorescent protein.

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
† This article is dedicated to the memory of Dr. Gordon Guroff, Chief of Section on Growth Factors and Deputy Scientific Director of the National Institute of Child Health and Human Development, Bethesda, Maryland 20892.
‡‡ Present address: American Red Cross, Holland Laboratory, Biochemistry Department, 15601 Crabbis Branch Way, Rockville, MD 20855.
** Present address: William T. Gossett Neurology Laboratories, Henry Ford Health Sciences Center, 1 Ford Place, 4D Research, Detroit, MI 48202.
¶¶¶ Present address: Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.
†† Present address: Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892. Tel.: 301-496-3224; Fax: 301-402-1344; E-mail: aj2e@nih.gov.
§§§ Present address: Laboratory of Molecular Biology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892.

This paper is available on line at http://www.jbc.org

5068 This paper is available on line at http://www.jbc.org
RNA on EGFR expression and found that antisense WT1 RNA could substantially reduce EGFR repression. These data strongly suggest that WT1 is involved in the NGF-induced down-regulation of the expression levels of EGFR receptor in PC12 cells.

EXPERIMENTAL PROCEDURES

Materials—NGF and rat type I collagen were purchased from Becton Dickinson (Bedford, MA). Monoclonal antibody against the EGFR (6F1) was obtained from Medical and Biological Laboratories, Co., Ltd. (Nagoya, Japan). Anti-WT1 antibody (C-19) was purchased from Santa Cruz Biotechnology (Santa Cruz, CA). LipofectAMINE and LipofectAMINE 2000 were purchased from Life Technologies, Inc. (Gaithersburg, MD). Cy3-linked donkey anti-mouse antibody was purchased from Jackson Immunoresearch (West Grove, PA). The Mammalian Transfection Kit was purchased from Stratagene (La Jolla, CA). Stable dominant-negative Src PC12 variant cells (SrcDN2) were the kind gift of Dr. Simon Hagleou (State University of New York–Stoneybrook, Stoneybrook, NY), stable dominant-negative Ras PC12 variant cells (M-M17-26) were generously provided by Dr. Geoffrey Cooper (Dana Farber Cancer Center, Boston, MA), and PC12nmr5 (a phaeochromocytoma clone unresponsive to nerve growth factor) cells were graciously contributed by Dr. Lloyd Greene (Columbia University School of Medicine, New York–Stoneybrook, Stoneybrook, NY).

Cell Culture—PC12 cells were grown in Dulbecco's modified Eagle's medium supplemented with 5% fetal bovine serum, 10% horse serum. In all experiments, cells were cultured on collagen-coated dishes. The PC12 cell variants (M-M17-26) were grown in RPMI 1640 medium (Life Technologies, Inc.) supplemented with 5% fetal bovine serum and 10% horse serum. The PC12 cells were trypsinized using the Bio-Rad protein assay system. Samples were resolved on 10% SDS–polyacrylamide gels, followed by autoradiography. To determine specific binding, unlabeled specific competitor oligonucleotides were added in 50-fold molar excess over labeled probe. To identify proteins in the DNA-protein complex, supershift experiments were performed with either an anti-WT1 C-19 antibody or an anti-Sp1 antibody.

Evaluation of Endogenous WT1 Effects on EGFR Expression in PC12 Cells—For histochemical staining, PC12 cells grown on poly-l-lysine (Sigma, St. Louis, MO)-coated LAB-TEK chamber slides (Nalge Nunc, Naperville, IL) were transiently transfected with 1 μg of pcMV2-antiWT1-GFP or GFP alone for 24 h using LipofectAMINE 2000 according to the manufacturer's protocol. Cells were fixed in PBS containing 4% paraformaldehyde for 10 min and then washed three times in PBS. EGFR was detected with anti-EGFR antibody 6F1 at a dilution of 1:50 and with Cy3-linked donkey anti-mouse antibody at a dilution of 1:100. Cells were imaged on a Nikon ECLIPSE E800 microscope with a ×40 immersion lens. Fifteen fields were examined, and representative fields were photographed.

RESULTS

WT1 Activates the Promoter Activity of the Rat EGFR Promoter—Recently, we isolated and characterized the promoter region of the rat EGFR promoter, and we found that TCC repeat sequences in the promoter region are required for NGF-induced transcriptional down-regulation of EGFR (6). The TCC repeat sequences in the human EGFR promoter have been reported to be a DNA-binding sequence for the Wilms' tumor repressor, WT1 (16). Thus, it is possible that WT1 may bind to this TCC-rich sequence and modulate the transcription of the rat EGFR gene. To test this hypothesis, we transiently transfected different reporter plasmids containing antisense TCC internal deletions of rat EGFR promoter into PC12 cells with pCMV-WT1 expression vectors or empty control vectors. Interestingly, expression of WT1 activated the promoter activity of the reporter plasmid about 2-fold. These results suggest that the rat EGFR gene is one of the genes transcriptionally activated by WT1.
Sequence analysis of the 5'-flanking region of the rat EGFR gene shows that the TCC repeat sequences were found at –2343, –2317, and –298 relative to the translation starting site (6). Significant transcriptional activation of the rat EGFR promoter by WT1 was observed in the constructs pRE1102, pRE1102D260, pRE318, and pRE318D260, all of which contain two or three TCC repeat sequences, whereas the construct pRE1102D318–260, which contains only one TCC repeat sequence, was activated slightly by WT1 (Fig. 1A). Also, the promoter activities of the constructs pRE260 and pRE181, both of which lack TCC repeat sequences, were not activated by WT1. Thus, we concluded that WT1 activated the promoter activity of the EGFR gene through the TCC repeat sequences in the promoter region.

To further determine whether the TCC repeat sequences in the EGFR promoter are functionally responsible for the activation of the EGFR by WT1, we cloned oligonucleotides containing the 59-base pair DNA fragments (–318 to –260 of the EGFR promoter) upstream of the herpes simplex virus thymidine kinase luciferase reporter plasmid. This reporter plasmid was cotransfected with pCMV-WT1 expression vector into PC12 cells (Fig. 1B). WT1 produced a 2- to 4-fold activation of the reporter constructs containing TCC repeat sequences and single site mutation of TCC repeat sequences. However, the activation was abolished in the reporter constructs containing no TCC repeat sequences (p260Tk-Luc) or multiple mutation of TCC repeat sequences (M1TK-Luc). These data support the observation that the TCC repeat sequences are responsible for the transcriptional activation of the rat EGFR mediated by WT1.

FIG. 1. Transcriptional activation of the rat EGFR promoter by WT1. A, successive and internal deletions of the rat EGFR 5'-region were ligated to firefly luciferase reporter gene. The 3' terminus of each deletion construct is nucleotide –2 relative to the rat EGFR translation initiation codon. Individual reporter plasmids were cotransfected into PC12 cells together with either pCMV-WT1 expression vector or empty vector. Twenty-four h after transfection, luciferase activity was measured. Transfection efficiency was normalized by Renilla luciferase activity derived from pRL-TK. Error bars, ±S.D. The values are the means of triplicate results. B, the 59-base pair duplex fragments extending from –318 to –260 bearing wild-type, deletion, or mutant elements (for TCC motif) were cloned in front of the herpes simplex virus thymidine kinase luciferase promoter reporter plasmid. The sequences of the promoter fragments are shown at the left, and the mutated sites are underlined. Individual reporter plasmids were cotransfected with pCMV-WT1 expression plasmid or empty plasmid, and luciferase activity was measured as described above.

WT1 Up-regulates the Expression Levels of Endogenous EGFR in PC12 Cells—To determine whether WT1 up-regulates EGFR expression, we transiently transfected PC12 cells with the pCMV2-WT1-GFP expression vector or with the GFP empty vector as a control. Western analysis indicated that WT1 increased the protein level of EGFR in PC12 cells (Fig. 2A). Additionally, WT1 was found to lead to a 6-fold activation of the rat EGFR promoter construct pRE318 (Fig. 2B). These results indicate that expres-
complexes performed (Fig. 3). Two major protein-DNA complexes (Fig. 3, lanes 3 and 4) were measured.

To determine whether WT1 binds directly to the EGFR Promoter—transcriptionally triggers EGFR promoter activity through direct binding of WT1 to TCC repeat sequences described above—we led us to examine whether the WT1 expression level is altered in PC12 cells upon NGF treatment (Fig. 4, A and B). Immunoblot analysis revealed that reduction in the expression levels of the WT1 and EGFR proteins in PC12 cells is detectable 1 day after the addition of NGF, and this reduction is gradual and progressive. The correlation coefficient (r) between the relative protein level of EGFR and WT1 is 0.9758 (p < 0.001).

NGF-induced Down-regulation of WT1 Is p140trk-, Ras-, and Src-dependent—Signal transduction pathways in PC12 cells have been studied thoroughly, providing the opportunity to define the pathway mediating WT1 down-regulation. We have previously shown that down-regulation of EGFR in PC12 cells caused by NGF treatment is dependent on p140trk, Ras, and Src pathways (5). It is quite reasonable to ask whether these pathways are involved in the down-regulation of WT1. To test this possibility, three cell lines were used: PC12nnr5, a cell line that expresses very little or no p140trk, the high affinity receptor for NGF (11); and two PC12 cell variants that express dominant-negative forms of Ras (M-M17-26) and Src (SrcDN2), respectively (12, 13). When cells were treated with NGF for 5 days, expression levels of both WT1 and EGFR were decreased dramatically in wild-type PC12 cells. However, no reduction of WT1 and EGFR was observed upon NGF treatment in M-M17-26, SrcDN2, and PC12nnr5 cells (Fig. 4C). These data strongly suggest that NGF-induced down-regulation of EGFR involves WT1 in a p140trk, Ras, and Src-dependent manner.

Endogenous WT1 Effects on EGFR Expression in PC12 Cells—To further determine the effects of endogenous WT1 on EGFR expression, we evaluated the inhibitory effect of an antisense WT1-GFP construct in PC12 cells. Histochemical staining revealed that expression of both WT1 and EGFR in pCMV2-antiWT1-GFP-transfected cells was decreased compared with that in GFP control cells and wild-type PC12 cells (Fig. 5A). The decrease in EGFR expression was also detected by immunoblot analysis comparing extracts from pCMV2-
antiWT1-GFP-transfected cells with GFP control cells and wild-type PC12 cells (Fig. 5B). This result indicates that endogenous WT1 contributes to the regulation the EGFR expression.

DISCUSSION

EGFR, the prototypical member of the superfamily of receptors with intrinsic tyrosine kinase activity, is widely expressed on many cell types. Upon activation by its ligand, the intrinsic kinase phosphorylates its own tyrosines and numerous intermediary effector molecules, including closely related c-erbB receptor family members. This initiates numerous signaling pathways. The integrated biological responses to EGFR signaling are pleiotropic, including mitogenesis, apoptosis, enhanced cell motility, and differentiation. In addition to being implicated in organ morphogenesis, unregulated EGFR signaling has been correlated in a wide variety of tumors with invasion and metastasis. Thus, regulation of EGFR signaling including its own expression has potential impact on the integrity of cells.

The Wilms’ tumor gene (WT1) is one of at least three genes that are involved in the development of Wilms’ tumor, a pediatric kidney cancer. Wilms’ tumor has been the subject of intense clinical and basic scientific research because it presents a model for cancer treatment and for the relationship between development and cancer, and it illustrates the impact of genetic alterations on development and tumorigenesis. The products of WT1 have been implicated in various cellular processes such as proliferation, differentiation, and apoptosis. In agreement with the diverse functions of WT1, the number of candidate target genes is rapidly mounting (10). EGFR has been shown to be one of potential targets of WT1 (17).

The PC12 cell line is a good model for the study of NGF action and responds to NGF by differentiating into a postmitotic cell type with neuronal characteristics (18, 19). Although both EGF and NGF stimulate a common set of signaling pathways, NGF induces differentiation in PC12 cells, whereas EGF induces proliferation in PC12 cells. We have previously shown that EGFR is down-regulated by NGF treatment and controlled transcriptionally (4, 6). Here we provide evidence that the WT1 protein is directly involved in the down-regulation of EGFR in PC12 cells. First, rat EGFR promoter activity is enhanced by...
expression of WT1. Second, deletion and mutation of TCC repeat sequences within the EGFR promoter abolish the enhancing effect of WT1. Third, WT1 binds to TCC repeat sequences in electrophoretic mobility shift analysis, and mutations in TCC repeat sequences diminish the binding, consistent with the result of the reporter gene assays. Fourth, overexpression of the WT1 protein increases the expression level of endogenous EGFR. Fifth, the expression level of endogenous WT1 is concomitantly decreased along with NGF treatment in PC12 cells, suggesting that WT1 regulates the transcription of EGFR. Supportive evidence is that neither the EGFR nor WT1 expression is a major target of WT1 and activated by WT1 (25). Regulin, a member of the epidermal growth factor family, was found to be a major target of WT1 and activated by WT1 (24). Recently, amphiregulin, a member of the epidermal growth factor family, was found to be a major target of WT1 and activated by WT1 (25). This also indicates that genes whose transcription is activated by WT1 may be critical for biological activity.

In summary, down-regulation of WT1 by NGF appears to mediate down-regulation of EGFR during the differentiation of PC12 cells induced by NGF. The molecular mechanism for the down-regulation of WT1 by NGF in PC12 cells will help us to understand details about the down-regulation of EGFR and cell differentiation.

Acknowledgments—We thank Dr. Simon Halesgoua for dominant-negative Src cells, Dr. Geoffrey Cooper for dominant-negative Ras cells, and Dr. Lloyd Greene for PC12nnr5 cells. We are grateful to Dr. D. Jing for help with fluorescence microscopy and Dr. Q. Yu for the fluorescence-activated cell-sorting experiments. We are very grateful to Dr. B. Lu for support of the revised manuscript.

REFERENCES

1. Zhang, K., Sun, J., Liu, N., Wen, D., Chang, D., Thomason, A., and Yoshinaga, S. K. (1996) J. Biol. Chem. 271, 3884–3890
2. Huff, K., End, D., and Guroff, G. (1981) J. Cell Biol. 88, 189–198
3. Lazarovici, P., Dickens, G., Kuzuya, H., and Guroff, G. (1987) J. Cell Biol. 104, 1611–1621
4. Shibutani, M., Lazarovici, P., Johnson, A. C., Katagiri, Y., and Guroff, G. (1993) J. Biol. Chem. 268, 6875–6884
5. Lazarovici, P., Oshima, M., Shavit, D., Shibutani, M., Johnson, A. C., and Guroff, G. (2000) J. Biol. Chem. 275, 7280–7288
6. Call, K. M., Glaser, T., Liu, C. Y., Buckler, A. J., Pelletier, J., Haber, D. A., Rose, E. A., Kral, A., Yeger, H., Lewis, W. H., Jones, C., and Housman, D. E. (1990) Cell 60, 509–520
7. Greiser, M., Pocratska, A., Cavenee, W., Neve, R. L., Orkin, S. H., and Bruns, G. A. (1990) Nature 343, 774–778
8. Kikuchi, H., Akasaka, Y., Nagai, T., Umezawa, A., Iri, H., Kato, S., and Hata, J. (1992) Am. J. Pathol. 140, 781–786
9. Menete, A. L., van der Eb, A. J., and Jochemsen, A. G. (1998) Int. Rev. Cytol. 181, 151–212
10. Green, S. H., Rydel, R. E., Connolly, J. L., and Greene, I. A. (1986) J. Cell Biol. 102, 830–845
11. Szeberenyi, J., Cai, H., and Cooper, G. M. (1990) Mol. Cell. Biol. 10, 5324–5332
12. Rusanescu, G., Qi, H., Thomas, S. M., Brugge, J. S., and Halesgoua, S. (1995) Neuron 15, 1415–1425
13. Wang, Z. Y., Qiu, Q. Q., and Deuel, T. F. (1993) J. Biol. Chem. 268, 9172–9175
14. Katagiri, Y., Hirata, Y., Milbrandt, J., and Guroff, G. (1997) J. Biol. Chem. 272, 31278–31284
15. Wang, Z. Y., Qiu, Q. Q., and Deuel, T. F. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8896–8900
16. Reddy, J. C., and D. Lich. (1996) Biochim. Biophys. Acta 1287, 1–28
17. Togari, A., Dickens, G., Kuzuya, H., and Guroff, G. (1986) J. Neurosci. 6, 307–316
18. Greene, L. A., and Tischler, A. S. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 2424–2428
19. Sekiya, M., Adachi, M., Hinoza, Y., Imai, K., and Yachi, A. (1994) Blood 83, 1876–1882
20. Englert, C., Hsu, X., Maheswaran, S., Bennett, P., Ngwu, C., Re, G. G., Garvin, A. J., Ronen, M. R., and Haber, D. A. (1995) EMBO J. 14, 4662–4675
21. English, M. A., and Licht, J. D. (1999) J. Biol. Chem. 274, 13258–13263
22. Heckman, C., Mochon, E., Arcinas, M., and Boxer, L. M. (1997) J. Biol. Chem. 272, 19609–19614
23. Little, M., Holmes, G., and Walsh, P. (1999) Bioessays 21, 191–202
24. Lee, S. B., Huang, K., Palmer, R., Truong, V. B., Herzlinger, D., Kolquist, K. A., Wong, J., Paulding, C., Yoon, S. K., Gerald, W., Oliner, J. D., and Harper, D. A. (1999) Cell 98, 663–673