Fluoride removal using electrocoagulation technique

Hind M. Ewadh1,*, Mustafa J. Al Imari2, Sabrean F. Jawad3, Hayfah A. Mubarak4
1 Environmental Research and Studies Center, University of Babylon, Hilla, Iraq
2 Department of Medical Laboratory Technique, Al-Mustaqbal University College, Hilla, Iraq
3 Department of Pharmacy, Al-Mustaqbal University College, Babylon, Iraq
4 Chemical Engineering Department, College of Engineering, University of Babylon, Iraq
*Corresponding author; Email: hindewadh@uobabylon.edu.iq

Abstract. A modest quantity of fluoride can increase the mineralization of teeth and reduce their cavities. But the presomeration of fluoride in excess in water can lead to severe disease infertility. In the past few decades, scientists have thus been preoccupied with developing ways to reduce sewage fluoride concentrations and reduce their effects on human health. The present study is aimed at using the technology of electrocoagulation to remove fluoride from polluted water. Tests have been done to examine the elimination of fluoride with a rectangular electrocoagulation cell and examine the impact of the experimental aspects on fluoride extraction, specifically electrical current, electrode spacing, and pH. The authors found that 93% of the fluoride has been extracted using 5mm spaced electrodes with a current density of 2 mA/cm² and a level of pH of 7 from the polluted water after 20 min of processing. Experimental factors considerably impact the efficacy of fluoride removal. In the acidic environment, greater effectiveness of fluoride removal is being attained. The elimination effectiveness depends directly on the electric current, whereas the distance between poles is adversely linked to fluoride elimination.

1. Introduction
Water is a crucial part of the planet earth’s exit forms of life. Nevertheless, just 1% fewer is fresh and suited for consumption. Suitable amounts of drinking water are regarded as one of humankind’s significant difficulties due to the increasing population [1, 2]. Additionally, authors have proved by the 2050s, half of the worldwide people may have no access to potable water [3]. This trend is subjected to a rapid increase due to the extensive discharge of industrial wastewaters [4, 5] and consumption of fresh water during the production processes [6-8], urbanisation [9-12], global warming [13-15] and air pollution that is in contact with surface water [16-19]. Other researchers have pointed out about 33.6 million barrels of severely contaminated water are released annually into water sources (surfaces or underground) [20] because of rapid industrialization; thus, the situation is much more complex [21]. Fluoride is among the most prevalent elements where it constitutes around 5% of the earth’s surface [22, 23]. Consequently, many watercourses naturally contain fluoride at a low quantity. However, expanding industrialization increased fluoride concentration [24, 25]. For instance, high-temperature chemicals deposit enormous amounts of polluted effluent of fluorides in the manufacturing of the electronics like aluminium and steel [26-28]. The small level of fluoride in water prevents tooth cavitation; nevertheless, large levels can contribute to severe illnesses like skeletal paralysis. Eventually, fluoride levels in drinkable water were restricted to 1.2 mg/l by the World Health Organization [22]. Scholars are now using several processing procedures to eliminate water and wastewater pollutants [29-32]. Electrocoagulation is an appealing treatment method owing to low cost [33-35], flexibility as it can be...
combined with other methods [36-38], produce few sludges [39, 40] and operate using sensors [41-44]. The sludge is full of metal ions which improve the recycling potential of sludge instead of disposal in expensive landfills [45-49]. The electrocoagulation method has been utilized to remove a range of contaminants from the aquatic environment, including toxic substances and microbiological contaminants. For example, this technique was cleaned to reduce arsenic from contaminated water by Fe-Al electrodes, where approximately 100% of arsenic has been eliminated in 0.5 hours [22]. Aluminium electrodes in an acidic environment are also useful for reducing the contamination of other metals like nickel and copper. This method has also been applied in order to eliminate organic contaminants from industrial sewage, with effectiveness of around 85 percent over 45 min [50-52]. Fluoride is also removed from polluted water using electrocoagulation. In artificial industrial effluents employing aluminium electrodes, for example, the fluoride content was reduced. The influence on the wastewater treatment utilizing the electrocoagulation method of many factors, including the current density, and pH have been investigated by several academics [53-55]. The removal of fluoride from drinking water was also achieved via electrocoagulation. The literature utilised this approach to reduce fluoride from artificial drinking water at the starting dose of 2-10 mg/l [22]. The water contamination crisis affects humankind for generations, and safe techniques of treatment of water are necessary for the expected growth in demand for drinking water. Therefore, investigators are now concerned with using safe ways to eliminate water contaminants. Electrocoagulation offers a strong treatment alternative compared to many other standard treatment approaches for water and wastewater because it is cheap, compact, and produces good sludge. Therefore, the project intends to use the electrocoagulation approach to reduce fluoride concentration in wastewater using a perforated plate of aluminium electrodes.

2. Methods

2.1. Chemicals and electrocoagulation unit

All reagents included in this experiment were supplied by Sigma-Aldrich without adjustment or decontamination. The Artificial liquid was created to achieve a 500 mg/l of fluoride level throughout this stock solution by melting a certain quantity of fluoride (NaF) into deionized water based on Hashim et al., [56] method. Dilution has been applied to specimens of 1 liter in size to achieve lower levels of fluoride concentrations. Furthermore, the pH-values for the liquid ranging from 5 to 9 were controlled by HCl and NaOH, and NACl was employed to keep contaminated water conductive at 0.3 mS/cm. In this research, a reactor of 1 liter in size having inner dimensions of 50, 200 and 100 mm for wide, length and height correspondingly was used to remove the fluoride from Artificially polluted water. Inside the reactor, four perforated aluminium sheets were vertically placed on improving liquid circulation and enhancing pollutant removal.

2.2. Methods for experiment

The reactor was filled with 500 ml of polluted water. The reactor input and output were linked to accomplishing the electrolyzing procedure, and a peristaltic pump was used for circulating water. The reactor was connected to reliable electricity. In order to test the acidity, conductivity and temperature of the solution, a pH-meter, conductivity meters and thermometer were employed. In all the experiments, the ambient temperature of 20 ±1 °C was maintained. The removal efficiency was determined after the equation reported by as follow [57]:

\[E(\%) = \frac{x-x1}{x1} \times 100\% \quad (1) \]

Where x represents the ultimate solution fluoride concentration, whereas x1 is the initial mg/l fluoride concentration, and E is Florida’s removal effectiveness.

2.3. The impact of the test settings
In research, the impact on the efficiency of removal of fluid Ions from the water was examined by 3-parameter that are electric current strength, pH-level and distance among plates [53]. The pH influence was examined in this study by maintaining 2 mA/cm² of electric current, 5 mm of electrodes separate and an initial 10 mg/l fluoride concentration for 20 minutes, while the pH level changed from 5 to 9. The impact of electric current was investigated utilizing 1, 2 and 3 mA/cm² while keeping a pH of 7, spacing of 5mm, fluoride of 10mg/L. Finally, the effect of plate separation was investigated by changes of the plate separation from 5 to 10 with the rest of the parameters maintained.

3. Results and discussions

3.1. pH impact
The pH value has a key role in treating any contaminant [57]. A 600 ml of water samples were treated for 20 minutes using varied pH-values of 5, 7, and 9 with 5 mm distance between electrodes and 2 mA/cm² electrical currents to examine the impact of pH-value on the removing efficiency of fluoride. The effect of pH on fluoride removal effectiveness at different pH values is presented in Figure 1. With a reduction in wastewater acidity, the extraction efficiency of the contaminant improved. Acidic levels achieved the best removal effectiveness. However, the removal effectiveness reduces considerably as the wastewater turns alkaline. The difference in fluoride removal efficiency suggests an alkaline condition is not suitable for fluoride by electrocoagulation. Studies claimed that the preference for better fluoride removal is the acidic environment [58].

![Figure 1: The pH impact on fluoride elimination.](image)

3.2. Electrical current impact
The current significantly affect fluoride removal by controlling bubble sizes and floc formation. In this study, three distinct currents range from 1 mA to 3 mA/cm² with pH at 7, initial pollutant content at 10 mg/l and spacing at 5 mm, were investigated to determine the impact of the currents on the removal. The reduction of fluoride enhanced greater current as shown in figure 2. for current of 1, 2 and 3 mA/cm² after 5 min of operation, the removal effectiveness range amounted to around 65%, 74.3% and 77.1%, correspondingly. This verifies the fact that delivering more energy immediately increases the reaction resulting in coagulation-controlled species and accelerates the generation of the flock to increase the efficiency of removal.
3.3. Spacing impact

Scholars indicated that electrocoagulation removing efficacy is strongly affected by electrode separation. Therefore, 600 ml of polluted water having initial fluoride content of 10 mg/l, pH-level 7 using an electrical current of 2 mA/cm², to study the impact of the electrodes separating on the removal performance. The intervals between electrodes were changed from 5 to 10 mm. The results presented in Figure 3 reveal that the separating distance adversely affects the removal efficiency. The fluoride concentration decreased from 93% to 84% after 20 minutes of treatment when the electrode distance increased from 5 mm to 10 mm. Studies link the electrical impedance between electrodes to the changes in pollutant removal performance [31, 56].

The improvement of the electrocoagulation in terms of fluoride removal, as was noticed in the results, could be achieved via controlling the operating parameters, such as the current density and pH of the water. Such parameters, especially the pH, can be monitored using sensors that provide real-time measurements, such as the ultrasonic sensors that are in use in the concrete industry [59, 60], or microwave sensors that are used in communications [61, 62] and pollution monitoring [63, 64].

4. Conclusion

The present investigation examined the efficacy of the electrocoagulation method using aluminium electrodes and the influence of the major operational elements (pH, electric current, and distance between electrodes) in terms of fluoride removal from polluted synthetic water. It can be claimed that electrocoagulation could be utilized to extract fluoride from polluted water, based on the current results of this experimental investigation. The operational elements also have a strong impact on fluoride
removal efficiency. In removing fluoride, the pH plays a crucial role as a higher removal effectiveness can be obtained in the acid environment. The effectiveness of removal is connected favourably to the electric current as it promotes coagulants formation. The distance between electrodes adversely affects the effectiveness of fluoride removal from polluted water. After 20 minutes, the removal efficiency using 2 mA/cm² and 5 mm gap at a 7 pH level was 93%.

References
[1] Shubbar A A, Jafer H, Abdulredha M, Al-Khafaji Z S, Nasr M S, Al Masoodi Z and Sadique M 2020. Properties of cement mortar incorporated high volume fraction of GGBFS and CKD from 1 day to 550 days. Journal of Building Engineering, 30 101327.
[2] Alwan H H, Saleh L A, Al-Mohammed F M and Abdulredha M A 2020. Experimental prediction of the discharge coefficients for rectangular weir with bottom orifices. Journal of Engineering Science and Technology, 15 3265-80.
[3] Zubaidi S L, Al-Bugharbee H, Muhsen Y R, Hashim K, Alkhaddar R M, Al-Jumeily D and Aljaaf A J 2019. The Prediction of Municipal Water Demand in Iraq: A Case Study of Baghdad Governorate. 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia 274-7.
[4] Shubbar A A, Al-Shaer A, AlKizwini R S, Hashim K, Hawesah H A and Sadique M 2019. Investigating the influence of cement replacement by high volume of GGBFS and PFA on the mechanical performance of cement mortar. First International Conference on Civil and Environmental Engineering Technologies (ICCEET), University of Kufa, Iraq 31-8.
[5] Alyafei A, AlKizwini R S, Hashim K S, Yeboah D, Gkantou M, Al Khaddar R, Al-Faluji D and Zubaidi S L 2020. Treatment of effluents from the construction industry using a combined filtration-electrocoagulation method. IOP Conference Series: Earth and Environmental Science, 012032.
[6] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020. Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust. Journal of Building Engineering, 32 1-17.
[7] Kadhim A, Sadique M and Khalid K 2020. Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent. Advances in Cement Research, 32 1-38.
[8] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Masoodi Z A, Sadique M and Hashim K 2020. Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations. Data in Brief, 31 105961-72.
[9] Al-Jumeily D, Hashim K, Alkhaddar R, Al-Tufailly M and Lunn J 2019. Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future). 11th International Conference on Developments in eSystems Engineering (DeSE), Cambridge, UK 214-9.
[10] Farhan S, Antón D, Akef V, Zubaidi S and Hashim K 2021. Factors influencing the transformation of Iraqi holy cities: the case of Al-Najaf. Scientific Review Engineering and Environmental Sciences, 30 365-75.
[11] Zubaidi S, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim K S, Gharghan S K, Kot P and Al-Khaddar R 2020. Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study. Water, 12 1-18.
[12] Zubaidi Salah L, Al-Bugharbee H, Ortega Martorell S, Gharghan S, Olier I, Hashim K, Al-Bdairi N and Kot P 2020. A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach. Water, 12 1-17.
[13] Salah Z, Abdulkareem I H, Hashim K S, Al-Bugharbee H, Ridha H M, Gharghan S K, Al-Qain F F, Muradov M, Kot P and Alkhaddar R 2020. Hybridised Artificial Neural Network model with Slime Mould Algorithm: A novel methodology for prediction urban stochastic water demand. Water, 12 1-18.
[14] Salah Z, Hashim K, Ethaib S, Al-Bdairi N S S, Al-Bugharbee H and Gharghan S K 2020. A novel methodology to predict monthly municipal water demand based on weather variables scenario. Journal of King Saud University-Engineering Sciences, 32 1-18.
[15] Salah Z, Ortega Abdellatif M, Gharghan S K, Ahmed M S and Hashim K 2020. A Method for Predicting Long-Term Municipal Water Demands Under Climate Change. Water Resources Management, 34 1265-79.
[16] Al-Saati N, Omran I, Salman A, Al-Saati Z and Hashim K 2021. Statistical modeling of monthly streamflow using time series and artificial neural network models: Hindiya Barrage as a case study. Water Practice and Technology, 16 681-91.
[17] Al-Sareji O J, Grmasha R A, Salman J M, Idowu I and Hashim K S 2021. Street dust contamination by heavy metals in Babylon governorate, Iraq. Journal of Engineering Science and Technology, 16 3528 - 46.
[18] Shubbar A, Sadique M, Nasr M, Al-Khafaji Z and Hashim K S 2020. The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash. *Karbala International Journal of Modern Science*, 6 1-23.

[19] Ali A, Sadique M, Shanbara H and Hashim K 2020 *The Development of a New Low Carbon Binder for Construction as an Alternative to Cement*. In *Advances in Sustainable Construction Materials and Geotechnical Engineering*. Berlin: Springer.

[20] Zubaidi S, Abdellatif M and Muhsin Y R 2019. Using LARS–WG model for prediction of temperature in Columbia City, USA. *IOP Materials Science and Engineering*, 012026.

[21] Al-Anbari R, Alnakeeb A, Abdulredha M J E and Journal T 2013. Landfill site selection for Kerbala municipal solid wastes by using geographical information system techniques. *32 13.*

[22] Alhendal M, Nasir M, Hashim K, Amoako-Attah J and Abdulhadi B 2020. Cost-effective hybrid filter for remediation of water from fluoride. *IOP Materials Science and Engineering*, 012038.

[23] Grmasha R, Al-sareji O, Salman J, Hashim K and Jasim I A 2020. Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust Within Three Land-Uses of Babylon Governorate, Iraq: Distribution, Sources, and Health Risk Assessment. *Journal of King Saud University - Engineering Sciences*, 33 1-18.

[24] Hashim K, Al-Jumeily D, Alwash R and Aljefery M 2020 *Electrocoagulation as an eco-friendly River water treatment method*. In *Advances in Water Resources Engineering and Management*, Berline: Springer.

[25] Alnaimi H, Idan I, Al-Janabi A, Hashim K, Gkantou M and Muradov M 2020. Ultrasonic-electrochemical treatment for effluents of concrete plants. *888 1-9.*

[26] Hashim K, Al-Saati N, Hussein A and Al-Saati Z 2018. An investigation into the level of heavy metals leaching from canal-dredged sediment: a case study metals leaching from dredged sediment. *First International Conference on Materials Engineering & Science*, Istanbul Aydin University (IAU), Turkey 12-22.

[27] Omran I I, Al-Saati N H, Hashim K S, Al-Saati Z N, Patryk K, Khaddar R A, Al-Jumeily D, Shaw A, Ruddock F and Aljefery M 2019. Assessment of heavy metal pollution in the Great Al-Mussaiba irrigation channel. *Desalination and Water Treatment*, 168 165-74.

[28] Abdulla G, Kareem M, Hashim K, Muradov M, Mubarak H A, Abdellatif M and Abdulhadi B 2020. Removal of iron from wastewater using a hybrid filter. *IOP Materials Science and Engineering*, 012035.

[29] Abdulredha M, Muhsin A, Al-Janabi A, Alajmi B, Gkantou M, Amoako J, Al-Jumeily D, Mustafina J and AlKhayyat A 2021. Using SF and CKD as cement replacement materials for producing cement mortar. *IOP Conference Series: Materials Science and Engineering*, 012007.

[30] Hashim K, Shaw A and Phipps D 2019. Treatment reactor and method of treating a liquid. WIPO, PCT/GB2019/052493, L J M University, United Kingdom.

[31] Hashim K, Al-Saati N, Alquzweeni S, Kraidi L, Hussein A and Alwash R 2019. Decolorization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters. *1st Int. Conference on Civil and Environmental Engineering Technologies*, University of Kufa, Iraq 25-32.

[32] Abdulraheem F, Al-Khafaji Z, Hashim K, Muradov M, Kot P and Shubbar A 2020. Natural filtration unit for removal of heavy metals from water. *IOP Materials Science and Engineering*, 012034.

[33] Alenezi A K, Hasan H, Amoako, Gkantou M, Muradov M and Abdulhadi B 2020. Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution. *IOP Materials Science and Engineering*, 012031.

[34] Al-Marri S, AlQuzweeni S, AlKizwini R, Zubaidi L and Al-Khafaji Z S 2020. Ultrasonic-Electrocoagulation method for nitrate removal from water. *IOP Conference Series: Materials Science and Engineering*, 012073.

[35] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021. Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study. *Science of The Total Environment*, 760 1-16.

[36] Abdulhadi B, Shaw A and Khaddar R A 2019. Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process. *1st Int. Conference on Civil and Environmental Engineering Technologies*, University of Kufa, Iraq 12-22.

[37] Al-Saati N, Hussein T, Abbas M, Hashim K, Al-Saati Z, Sadique M, Aljefery M and Carnacina I 2019. Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study. *Desalination and Water Treatment*, 150 406-12.

[38] Alenazi M, Hashim K, Hassan A, Muradov M and Abdulhadi B 2020. Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. *IOP Conference Series: Materials Science and Engineering*, 012064.

[39] Mohammed A, Hussein A, Yeboah D, Abdulhadi B, Ali A and Hashim K 2020. Electrochemical removal of nitrate from wastewater. *IOP Materials Science and Engineering*, 012037.

[40] Zanki A, Mohammad F, Muradov M, Kareem M and Abdulhadi B 2020. Removal of organic matter from water using ultrasonic-assisted electrocoagulation method. *IOP Materials Science and Engineering*, 012033.
[41] Gkantou M, Muradov M, Kamaris G S, Hashim K, Atherton W and Kot P 2019. Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection. Sensors, 19 5175-89.

[42] Hashim K, Andy A, Rafid R and Shamma’a A 2021. Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment. Journal of Cleaner Production, 280 1-17.

[43] Omran I, Al-Saati N, Al-Saati H, Hashim K and Al-Saati Z 2021. Sustainability assessment of wastewater treatment techniques in urban areas of Iraq using multi-criteria decision analysis (MCDA). Water Practice and Technology, 16 648-60.

[44] Idowu I A, Hashim K, Shaw A and Nunes L J 2021. Enhancing the fuel properties of beverage wastes as non-edible feedstock for biofuel production. Biofuels, 14 1-8.

[45] Abdulredha M, Abdulridha A and Jordan D 2020. Estimating municipal solid waste generation from service processes during the Ashura religious event. IOP Materials Science and Engineering, 012075.

[46] Abdulredha M, Jordan D and Abdulridha A 2018. Benchmarking of the Current Solid Waste Management System in Karbala, Iraq. Using Wasteaware Benchmark Indicators. World Environmental and Water Resources Congress 2018: Groundwater, Sustainability, and Hydro-Climate/Climate Change, 40-8.

[47] Abdulredha M, Kot P, Al Khaddar R, Jordan D and Abdulridha A 2020. Investigating municipal solid waste management system performance during the Arba’een event in the city of Kerbala, Iraq. Environment, Development and Sustainability, 22 1431-54.

[48] Abdulredha M, Rafid A, Jordan D and Alattabi A 2017. Facing up to waste: how can hotel managers in Kerbala, Iraq, help the city deal with its waste problem? Procedia engineering, 196 771-8.

[49] Alattabi A W, Harris C, Alkhaddar R, Alzeyadi A and Abdulredha M 2017. Online Monitoring of a sequencing batch reactor treating domestic wastewater. Procedia engineering, 196 800-7.

[50] Hashim K, Kot P, Zubaid S, Alwash R, Al Khaddar R, Shaw A, Al-Jumeily D and Aljefery M 2020. Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater. Journal of Water Process Engineering, 33 101079-86.

[51] Hashim K, Ali S, AlRifaie J, Al Khaddar R, Idowu I and Gkantou M 2020. Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor. Chemosphere, 247 125868-75.

[52] Hashim K S, Ewadh H M, Muhsin A A, Zubaidi S L, Kot P, Muradov M, Aljefery M and Al-Khaddar R 2020. Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies. Water Science and Technology, 83 1-17.

[53] Aqeel K, Mubarak H A, Amoako-Attah J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, Al-Janabi A and Hashim K S 2020. Electrochemical removal of brilliant green dye from wastewater. IOP Conference Series: Materials Science and Engineering, 012036.

[54] Emamjomeh M, Kakavand S, Jamali H, Alizadeh S, Safdari M, Hashim K and Mousazade M 2020. The treatment of printing and packaging wastewater by electrocoagulation (EC) method. European Water Science and Technology, 55 3184-94.

[55] Hashim K S, Shaw A, Al Khaddar R, Ortoneda Pedrola M and Phipps D 2017. Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER) - Experimental, statistical, and economic approach. Journal of Environmental Management, 197 80-8.

[56] Hashim K, Hussein A, Zubaidi S, Kraidi L and Alwash R 2019. Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. 2nd International Scientific Conference, Al-Qadisiyyah University, Iraq 12-22.

[57] Abdulredha M, Kadhim N, Hussein A, Yeboah D and Hashim K 2021. Zeolite as a natural adsorbent for nitrogenous compounds being removed from water. IOP Materials Science and Engineering, 012082.

[58] Kot P, Muradov M, Gkantou M, Kamaris G S, Hashim K and Yeboah D 2021. Recent Advancements in Non-Destructive Testing Techniques for Structural Health Monitoring. Applied Sciences, 11 1-28.

[59] Omer G, Kot P, Atherton W, Muradov M, Gkantou M, Shaw A, Riley M, Hashim K and Al-Shamma’a A 2021. A Non-Destructive Electromagnetic Sensing Technique to Determine Chloride Level in Maritime Concrete. Karbala International Journal of Modern Science, 7 61-71.

[60] Ryecroft S, Shaw A, Fergus P, Kot P, Hashim K, Tang A, Moody A and Conway L 2021. An Implementation of a Multi-Hop Underwater Wireless Sensor Network using Bowtie Antenna. Karbala International Journal of Modern Science, 7 113-29.

[61] Ryecroft S, Shaw A, Fergus P, Kot P, Hashim K, Moody A and Conway L 2019. A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna. Sensors, 19 1813-23.
[63] Ryecroft S, Fergus P, Kot P, Hashim K and Conway L 2019. A Novel Gesomin Detection Method Based on Microwave Spectroscopy. *12th Int. Conference on Developments in eSystems Engineering*, Kazan, Russia.

[64] Kot P, Hashim K S, Muradov M and Al-Khaddar R 2021 *How can sensors be used for sustainability improvement?*, *In Methods in Sustainability Science*, Elsevier, United Kingdom, p 426.