Thermal conductivity of aerated concrete containing rice husk ash as partially sand replacement

J Hadipramana¹, F V Riza¹, b, N Ali², ³, A A A Somad², ³ and N H Basri²

¹Department of Civil Engineering, Faculty of Engineering, University of Muhammadiyah Sumatera Utara, Jalan Kapten Muchtar Basri #03, Medan 20238, North Sumatera, Indonesia
²Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia 86400 Parit Raja- Batu Pahat, Johor, Malaysia
³Jamilus Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja-Batu Pahat, Johor, Malaysia.

E-mail: ¹ josef@umsu.ac.id, b fetra@umsu.ac.id

Abstract. Limited natural energy sources give impact on the selection of the material that can subtract energy consumption. Regarding to conservation energy, in the field of building and construction, the selection of concrete with good heat capacity is a requirement, besides light in weight. The objective of this study was to investigate the thermal conductivity of Foamed Concrete containing Rice Husk Ash (FCRHA). Rice husk ash (RHA) is the type fly ash that can absorb heat due to moisture. RHA The measurement of thermal conductivity on FC and FCRHA was conducted using box insulation and recorded using thermal data logger. The result showed that FCRHA absorb heat from the beginning when the heat is distributed, while FC slow absorb the heat. Modification FC by replacing sand partially with RHA provides an evolution to profitable use of construction materials in the heat absorption.

1. Introduction

In the last several years, some countries give special attention to energy consumption on the building that related to enhance the comfort. For that reason, building industry focus on the improvement and efficiency of building heating and insulation [1][2]. Furthermore, the use of materials in accordance with maximum heat transfer will be used to reduce loss of heat. Therefore, knowledge of physical property of materials is essential to the engineer, because conservation energy is very important policy strategy to all countries [3]-[5].

The application of concrete as thermal mass materials in buildings is regarded as a strategy to reduce energy consumption. Thus, thermal conductivity analysis on material concrete is a way to get information about heat transfer. Essentially, thermal conductivity is a calculation about the profile of the heat and the flow of heat through a material [6]. Analyzed thermal conductivity on the concrete for the purpose of the green technology building is very important, however, heat transfer analysis on concrete is very complex. Analysis of thermal conductivity depends on the variables of the material, density, pressure and temperature, the structure of the material, and moisture [6]-[8]. While concrete is a material that is not homogeneous and is influenced by all the thermal conductivity variables. Therefore, to identify the phenomena of heat transfer on concrete have to consider material in the form of the concrete itself [6],[7],[9],[10].

Related to the type of concrete used in green building and consideration large sum of money then required concrete that can reduce energy consumption and light in weight. Therefore, the present study

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
is using aerated concrete namely foamed concrete (FC) that fulfills those needs. The objective this study to find out the thermal conductivity of FC and FC containing rice husk ash as a partial sand replacement (FCRHA) \[11\]. The previous researcher resulted that the materials constituent of FC influences the thermal behavior of FC \[12\]-\[14\]. FC as a lightweight concrete very potential in thermal resistance \[13\]. However, the use of FCRHA for green materials for low-rise buildings gives hope in the evolution of the construction materials and building a reliable.

2. Mix Proportion and Experimental method

2.1. Mix Proportion and Material Preparation

Aerated concrete that is intended in this experiment is the type of foamed concrete, as used in previous experiments include the use of RHA \[15\] to replacement sand partially \[16\]. Specimens produced by two densities specifically 1600 kg/m\(^3\) and 1800 kg/m\(^3\) for curing 28 days. The blending of ingredients slurry used the pre foamed method. A mixture of mortar stirred first was then added RHA. After a mixture of mortar and RHA mixed with evenly, next added foam. Foam made separate formerly of a mixture of foam agent and water. Comparison material that is used for mixing foamed concrete with rha as in Table 1.

No	Property	FC	FCRHA
1	Cement-sand ratio	0.25	0.25
2	Water-cement ratio	0.6	0.6
3	Cement-sand-RHA	NA	1:3:1
4	RHA-water ratio	NA	1.25
5	Foam agent ratio	0.05	0.05
6	Foam density (Kg/m\(^3\))	50	50
7	Dimension (mm\(^3\))	150x150x150	150x150x150
8	Curing days	28	28
9	Curing Temperatures ºC	23 ± 2	23 ± 2

2.2. Thermal Conductivity Test

Test of Thermal conductivity used heat transfer apparatus as shown in Figure 1. Each sample of FC and FCRA was put into the box heat transfer apparatus, which its interior incrust by insulation. The thermal conductivity test illustrated as shown in Figure 2. Quantity of heat transfer was produced by power supply channeled into the sample for 300 minutes. Furthermore, the temperature difference was recorded by temperature data logger. A difference in temperature was obtained from to differences of temperature between channel enter with the channel out.

![Figure 1. Box insulation and temperature data logger.](image-url)
3. Result and Discussion

3.1. Thermal Conductivity

The difference in materials and their density on the test gives results of thermal conductivity varying as shown in Figure 3. The result shows that higher material density improves heat transfers. This agrees with the previous investigation [17]. The thermal conductivity of 1800 Kg/m³ material density is higher than 1600 Kg/m³. FCRHA transfers the heat better than FC due to fly ash in FCRHA is good thermal conductivity and affect the concrete overall [14]. The RHA as the fly ash in FCRHA keeps moisture and increased thermal conductivity [18]. Heat transfer behavior of FC is different from FCRHA, Figure 3 shows, that heat absorption of FC was delayed. At first, FC 1600Kg/m³ very slowly absorb heat, this is due to the low density and more porous [17]. In 240 until 300 minutes reach the stable absorption.

![Figure 2. Schematic thermal conductivity test](image)

Figure 2. Schematic thermal conductivity test

![Figure 3. Thermal conductivity of FC and FCRHA](image)

Figure 3. Thermal conductivity of FC and FCRHA.

3.2. Thermal Resistance

Thermal resistance is the inverse of thermal conductivity, which heat transfer occurs at a lower rate in materials. Figure 4 shows thermal resistance of FC is higher than FCRHA. This indicates, that density and humidity gives an important role in the insulation of material aerated concrete.
Obviously, FC with 1600Kg/m3 of density is the higher thermal resistance than other materials. At the start, FC has a high thermal resistance, then decreases with increasing heat capacity. FCRHA 1800 Kg/m3 has a low heat capacity. When the heat was distributed all heat be accommodated and streamed.

3.3. Temperature

Figure 5 shows that the temperature of material influences the thermal conductivity. The thermal conductivity of all materials tends to increase when increasing the elevation of temperature. FCRHA with 1800 Kg/m3 accommodates the heat when the temperature reaches 39.33°C and channeled the energy heat. It has low heat capacity [17] due to the density and presence of RHA as fly ash.
4. Conclusion
Increasing the difference temperature, increase the value of thermal conductivity, then decreased the heat resistant material. FCRHA as foamed concrete modification is lighter weight than FC. FCRHA is good heat transfer properties and high thermal conductivity compared to FC. The higher density FCRHA improves thermal conductivity. RHA in FCRHA content is very influential to the thermal conductivity. RHA as fly ash took overheat and influence heat capacity FCRHA overalls.

References
[1] Simona PL, Spiru P, and Ion, IV 2017 Increasing the energy efficiency of buildings by thermal insulation Energy Procedia 128 (2017) 393–399.
[2] Adameczyka J and Dylewski R 2017 The impact of thermal insulation investments on sustainability in the construction sector Renewable and Sustainable Energy Reviews 80 (2017) 421–429.
[3] Chen, Victor L, Delmas, Magali A, Locke, Stephen L, Singh, A 2017 Information strategies for energy conservation: A field experiment in India, J. Energy Economics 68 (2017) 215-227.
[4] Adameczyk J and Dylewski R 2017 Analysis of the sensitivity of the ecological effects for the investment based on the thermal insulation of the building: A Polish case study, J. of Cleaner Production 162 (2017) 856-864.
[5] Berardi U 2017 The impact of temperature dependency of the building insulation thermal conductivity in the Canadian climate J. Energy Procedia 132 (2017) 237–242.
[6] Shafigh P, Asadieh I, and Mahyuddin N 2018 Concrete as a thermal mass material for building applications - A review J. Building and Engineer 19 (2018) 14-25.
[7] Khan M I 2002 Factors affecting the thermal properties of concrete and applicability of its prediction models J. Building and Environment 37 (2002) 607–614.
[8] Asadi I, Shafigh P, Hassan ZFA, and Mahyuddin NB, Thermal conductivity of concrete - A review, Journal of Building Engineering 20 (2018) 81-93.
[9] Zhu L, Dai J, Bai G, and Zang F 2015 Study on thermal properties of recycled aggregate concrete and recycle concrete block J. Construction and Building Materials 94 (2015) 620 -628.
[10] Shin A H C, and Kodide U 2012 Thermal conductivity of ternary mixtures for concrete pavements. J. Cement & Concrete Composites 34 (2012) 575–582.
[11] Hadipramana J, Samad, AAA, Ibrahim R, Mohamad N, and Riza, FV 2016 The energy absorption of modified foamed concrete with rice husk ash subjected to impact loading ARPN Journal of Engineering and Applied Sciences 11(12) (2016) 7437-7442.
[12] Miled K, and Limam O, 2016 Effective thermal conductivity of foam concretes: homogenization schemes vs experimental data and FEM simulations. Mechanics Research Communications 76 (2016) 96-100.
[13] Kumar NV, Arunkumar C, and Senthil SS 2018 Experimental Study on Mechanical and Thermal Behavior of foamed concrete Materials Today: Proceedings 5 (2018) 8753–8760.
[14] Sun Y, Gao P, Geng F, Li H, Zhang L, and Liu H 2017 Thermal conductivity and mechanical properties of porous concrete materials Materials Letters 209 (2017) 349-352.
[15] Hadipramana J, Riza FV, Rahman IA, Loon LY, Adnan SH, and Zaidi AMA (2017) Pozzolanic Characterization Of Waste Rice Husk Ash (RHA) From Muar, Malaysia IOP Conf. Ser.: Mater. Sci. Eng. 160 012066
[16] Hadipramana J, Samad AAA, Mokhatar SN, Riza FV, Mohamad N, and Wahab MMY (2017). An investigation of Crater Diameter on Plain Slab Foamed Concrete Rice Husk Ash (FCRHA) Exposed to Low Impact Loading. MATEC Web of Conferences 103, 02025 (2017) DOI: 10.1051/matecconf/20171030.
[17] Shafigha P, Iman Asadi I, and Mahyuddina NB 2018 Concrete as a thermal mass material for building applications - A review Journal of Building Engineering 20 (2018) 14-25.
[18] Kim KH, Jeon SE, Kim JK, and Yang S 2003 An experimental study on thermal conductivity of concrete J. Cement and Concrete Research 33 (2003) 363–371.

Acknowledgment
The author would like to thank and acknowledgment to the research and staffing resources provided by the Department of Civil Engineering, Faculty of Engineering University of Muhammadiyah Sumatera Utara, Medan, Indonesia and also to Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia.