Measurement of the $B \to X_s \gamma$ branching fraction and photon energy spectrum using the recoil method
MEASUREMENT OF THE $B \to X_s \gamma$...

PHYSICAL REVIEW D 77, 051103(R) (2008)

31 Imperial College London, London, SW7 2AZ, United Kingdom
32 University of Iowa, Iowa City, Iowa 52242, USA
33 Iowa State University, Ames, Iowa 50011-3160, USA
34 Johns Hopkins University, Baltimore, Maryland 21218, USA
35 Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
36 Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B. P. 34, F-91898 ORSAY Cedex, France
37 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
38 University of Liverpool, Liverpool L69 7ZE, United Kingdom
39 Queen Mary, University of London, E1 4NS, United Kingdom
40 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
41 University of Louisville, Louisville, Kentucky 40292, USA
42 University of Manchester, Manchester M13 9PL, United Kingdom
43 University of Maryland, College Park, Maryland 20742, USA
44 University of Massachusetts, Amherst, Massachusetts 01003, USA
45 Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
46 McGill University, Montréal, Québec, Canada H3A 2T8
47 Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
48 University of Mississippi, University, Mississippi 38677, USA
49 Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
50 Mount Holyoke College, South Hadley, Massachusetts 01075, USA
51 Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
52 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
53 University of Notre Dame, Notre Dame, Indiana 46556, USA
54 Ohio State University, Columbus, Ohio 43210, USA
55 University of Oregon, Eugene, Oregon 97403, USA
56 Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
57 Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
58 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59 Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
60 Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
61 Princeton University, Princeton, New Jersey 08544, USA
62 Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
63 Universität Rostock, D-18051 Rostock, Germany
64 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
65 DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
66 University of South Carolina, Columbia, South Carolina 29208, USA
67 Stanford Linear Accelerator Center, Stanford, California 94309, USA
68 Stanford University, Stanford, California 94305-4060, USA
69 State University of New York, Albany, New York 12222, USA
70 University of Tennessee, Knoxville, Tennessee 37996, USA
71 University of Texas at Austin, Austin, Texas 78712, USA
72 University of Texas at Dallas, Richardson, Texas 75083, USA
73 Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
74 Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
75IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
76 University of Victoria, Victoria, British Columbia, Canada V8W 3P6
77 Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
78 University of Wisconsin, Madison, Wisconsin 53706, USA
79 Yale University, New Haven, Connecticutt 06511, USA
(Received 29 November 2007; published 12 March 2008)

*Deceased.
†Now at Temple University, Philadelphia, PA 19122, USA.
‡Now at Tel Aviv University, Tel Aviv, 69978, Israel.
§Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
‖Also with Università della Basilicata, Potenza, Italy.
¶Also with Università di Sassari, Sassari, Italy.
I. INTRODUCTION

We present measurements of the branching fraction and photon-energy spectrum of the decay $B \to X_{s}\gamma$ using data from the BABAR experiment. The data sample corresponds to an integrated luminosity of 210 fb$^{-1}$, from which approximately 680 000 $B\bar{B}$ events are tagged by a fully reconstructed hadronic decay of one of the B mesons. In the decay of the second B meson, an isolated high-energy photon is identified. We measure $\mathcal{B}(B \to X_{s}\gamma) = (3.66 \pm 0.85_{\text{stat}} \pm 0.60_{\text{sys}}) \times 10^{-4}$ for photon energies E_{γ} above 1.9 GeV in the B rest frame. From the measured spectrum we calculate the first and second moments for different minimum photon energies, which are used to extract the heavy-quark parameters m_{b} and μ_{Z}^{2}. In addition, measurements of the direct CP asymmetry and isospin asymmetry are presented.

DOI: 10.1103/PhysRevD.77.051103 PACS numbers: 13.20.He, 13.30.Ce

II. EVENT SELECTION

Using 1114 exclusive hadronic decay channels [15], which represent about 5% of the total decay width of the B^{0} and B^{+} mesons, we identify events in which one of the two B mesons is fully reconstructed. The kinematic consistency of the tag B candidates is checked with two variables, the beam-energy-substituted mass $m_{ES} = \sqrt{s/4 - p_{B}^{2}}$, and the energy difference $\Delta E = E_{B} - \sqrt{s}/2$, where s is the total energy squared in the center-of-mass (c.m.) frame, and E_{B} and p_{B} are the c.m. energy and momentum of the tag B candidate. We require $|\Delta E| \leq 60$ MeV, a window of approximately $\pm 3\sigma$.

Those particles in the event that are not reconstructed as part of the tag B are regarded as coming from the signal B. Among these particles we require an isolated photon candidate with energy $E_{\gamma} > 1.3$ GeV in the B frame. To ensure a well reconstructed photon, we require the electromagnetic shower to lie within the calorimeter acceptance and to satisfy isolation and shower shape requirements.
The background events consist of nonsignal B decays and continuum background from $u\bar{u}$, $d\bar{d}$, $s\bar{s}$ and $c\bar{c}$ events. The continuum events are suppressed by using a Fisher discriminant that combines 12 variables related to the different event decay topologies of $B\bar{B}$ and continuum events. These include event-shape variables such as the thrust, as well as information on the energy flow relative to the direction of the candidate signal photon.

To discriminate against photons from π^0 and η decays, we combine the signal candidate photon with any other photon in the event associated with the signal B. The event is vetoed if the pair’s invariant mass is consistent with a π^0 or η. Furthermore, the event is rejected if the candidate photon combined with a $\rho^\pm \rightarrow \pi^\pm \pi^0$ decay assuming that the second photon from the π^0 decay is lost.

III. FIT OF SIGNAL RATES

The distribution of m_{ES} for the selected events has a peak around the mass of the B meson, corresponding to correctly reconstructed $B\bar{B}$ events, and a broad background component that stems from non-$B\bar{B}$ and misreconstructed $B\bar{B}$ events. The peak is modeled with a crystal ball (CB) function [16]. This contains two parameters that correspond to the mean and width of the Gaussian core and two additional parameters that describe a power-law tail extended to masses below the core region. The nonpeak background term is described with an ARGUS function [17].

Applying the selection criteria outlined above yields approximately 7700 events. We divide the event sample into 14 intervals of photon energy, each 100 MeV wide, spanning the range 1.3 to 2.7 GeV. In each interval, we extract the number of peak events with a binned maximum likelihood fit to the m_{ES} distribution.

The limited size of the data sample means that it is not possible to fit all of the parameters related to the shape of the CB and ARGUS functions individually in separate intervals of photon energy. One expects, however, a smooth variation of the shapes as a function of E_γ. To impose this smoothness, a simultaneous fit of the m_{ES} distributions for all of the photon-energy intervals is carried out. The variation of the shape parameters with photon energy is described by polynomials, whose orders are the lowest possible that allow an adequate modeling of the data. Examples of the m_{ES} distributions and results of the simultaneous fit are shown in Fig. 1. The global χ^2 is 330 for the charged B sample and 357 for the neutral sample, both for 387 degrees of freedom.

The measured numbers of B events are shown in Fig. 1(c) as a function of photon energy. The points are from data; the solid histogram is from a $B\bar{B}$ MC sample that excludes the signal decay $B \rightarrow X\gamma$. Because of the large background at low energy the signal region is defined as $E_\gamma > 1.9$ GeV. This choice was optimized in MC studies. The MC prediction has been scaled by fitting to the data region between 1.3 < E_γ < 1.9 GeV, taking into account the small contribution from $B \rightarrow X\gamma$ decays in that region. For $E_\gamma > 1.9$ GeV, we observe 119 ± 22 $B \rightarrow X\gamma$ signal events over a $B\bar{B}$ background of 145 ± 9 events.

For 1.3 < E_γ < 1.9 GeV a comparison of the data and background gives a χ^2 of 9.7 for 5 degrees of freedom. The probability to observe a value at least this great is 8.4%. Our estimate of the systematic uncertainty in the background (described below) is in fact smaller than the observed data-background difference; therefore we regard this difference primarily as a statistical fluctuation.

To determine the partial branching fractions, we require the total number of $B\bar{B}$ events in the sample after selection of the tag B candidates. In a procedure analogous to that described for the m_{ES} fits in bins of E_γ, we divide the data into four intervals of estimated tag B candidate purity and perform a simultaneous fit of the m_{ES} distributions. We obtain approximately 680 000 $B\bar{B}$ events corresponding to an efficiency of 0.3%.

FIG. 1 (color online). Fits to the distribution of the beam-energy-substituted mass m_{ES} for two E_γ regions. The dashed curve shows the CB term and the dotted curve is the ARGUS term, corresponding to B and non-B events, respectively; the solid curve is their sum.

(a) 1.6 GeV < E_γ < 1.7 GeV for the charged B sample. (b) 2.3 GeV < E_γ < 2.4 GeV for the neutral B sample. (c) The measured numbers of B events as a function of photon energy. The points are from data; the histogram is from a $B\bar{B}$ MC sample which excludes the signal decay $B \rightarrow X\gamma$.

IV. DETERMINING THE PHOTON SPECTRUM

The differential decay rate \((1/\Gamma_B)(d\Gamma/dE_{\gamma})\) is measured in bins of the \((B\text{-frame})\) photon energy for \(E_{\gamma} > 1.9 \text{ GeV}\) up to the kinematic limit at 2.6 GeV. It is estimated for the \(i\)th bin as

\[
\frac{1}{\Gamma_B} \frac{d\Gamma_i}{dE_{\gamma}} = \frac{N_i - b_i}{\varepsilon_i N_B},
\]

where \(N_i\) is the number of \(B\) events in the bin, \(b_i\) is the number of \(B\) mesons from decays other than \(B \rightarrow X \gamma\), \(N_B\) is the total number of \(B\) mesons in the sample, and \(\varepsilon_i\) is the efficiency, which corrects for both acceptance and bin-to-bin resolution effects. The values \(b_i\) are determined by means of a simultaneous fit to the \(m_{ES}\) distributions as described previously, using a sample of MC data consisting of \(B\bar{B}\) events excluding the signal decay \(B \rightarrow X \gamma\). As the differential decay rate is normalized using the total width of the \(B\) meson, \(\Gamma_B\), the integral of (1) over all photon energies yields the branching fraction. To evaluate the selection efficiency \(\varepsilon_i\), we model the signal photon-energy spectrum using the kinetic scheme \([18]\) with \(m_B = 4.60 \text{ GeV}\) and \(\mu_B = 0.4 \text{ GeV}^2\). The value of \(\varepsilon_i\) is determined from

\[
\varepsilon_i = \frac{N_{\text{found},i}/N_{\text{sim}}}{N_{\text{true},i}/N_{\text{gen}}} C_{\text{tag}},
\]

where \(N_{\text{found},i}\) is the number of events found in a MC sample of \(B \rightarrow X \gamma\) with detector simulation and \(N_{\text{sim}}\) is the number of events in the simulated sample. These quantities are found using the same fit procedure as applied to the real data for \(N_i\) and \(N_B\). In the denominator of (2), \(N_{\text{true},i}\) is the true number of events with photon energies in bin \(i\) and \(N_{\text{gen}}\) is the total number of events generated. These values are determined using the event generator for \(B \rightarrow X \gamma\) decays only, without detector simulation. The factor \(C_{\text{tag}}\) estimated using the MC model, corrects for the small dependence of the probability to find a tag \(B\) on the presence of a \(B \rightarrow X \gamma\) final state. The efficiency increases roughly linearly with photon energy, and is approximately 30% (65%) for \(E_{\gamma} = 1.9 \text{ GeV}\) (2.6 GeV).

To compare with other results we subtract the \(B \rightarrow X_d\gamma\) component from the differential decay rates using the standard model prediction (for the \(CP\) and isospin asymmetries discussed below, however, we do not make this correction). The values \(B(B \rightarrow X_d\gamma)\) and \(B(B \rightarrow X_s\gamma)\) are in the ratio \(|V_{td}/V_{ts}|^2\) assuming the same efficiency for the two categories of events. Therefore, the branching ratio is lowered by \((4.0 \pm 0.4)\%\) \([19,20]\).

V. SYSTEMATIC UNCERTAINTIES

There are four main sources of systematic uncertainty, which are summarized in Table I: modeling of the \(B\bar{B}\) background, the \(m_{ES}\) fits, detector response and dependence on the \(B \rightarrow X_s\gamma\) signal model. In addition there is an uncertainty from the subtraction of the \(B \rightarrow X_d\gamma\) contribution.

After subtraction of the nonpeak background using the \(m_{ES}\) distribution, the remaining background is mainly composed of \(B\bar{B}\) events with the selected photon coming from a \(\pi^0\) or \(\eta\) decay. Photons from \(\pi^0\) account for 55% to 65% depending on \(E_{\gamma}\) and the charge of the tag \(B\), while the contribution from \(\eta\) mesons varies from 18% to 29%. The remaining backgrounds include fake photons from \(b\) annihilation, real photons from bremsstrahlung or from \(\omega\) decays, and electromagnetic showers from \(e^\pm\) misidentified as photons. As the MC prediction for the \(B\bar{B}\) background is scaled to the data at low energy, there is no uncertainty stemming from the absolute rate, but rather only from the shape of the distribution as a function of \(E_{\gamma}\). The uncertainty from the inclusive \(\pi^0\) and \(\eta\) spectra is investigated by using \(E_{\gamma}\) dependent correction factors for the \(\pi^0\) and \(\eta\) yields from a large control sample of \(B \rightarrow X \gamma\) candidate events, obtained using a lepton tag. These correction factors are typically around 5% for \(\pi^0\) yields while they can be up to 30% for \(\eta\) yields. The remaining backgrounds have a roughly linear slope with \(E_{\gamma}\), this is varied by \(\pm 30\%\). We use the difference obtained with the modi-
MEASUREMENT OF THE $B \rightarrow X_s \gamma \ldots$

By integrating the spectrum, we obtain $B(B \rightarrow X_s \gamma) = (3.66 \pm 0.85_{\text{stat}} \pm 0.60_{\text{syst}}) \times 10^{-4}$. The results for the differential decay rate and for the moments of the photon-energy spectrum for various minimum photon energies E_{cut} are given in Table I. The branching fraction for larger values of E_{cut} and the correlations between the measurements are given in Ref. [23]. Our results are in good agreement with those presented in Refs. [1–4].

We also measure the isospin asymmetry $\Delta_{0\pm}$,

$$\Delta_{0\pm} = \frac{\Gamma(B^0 \rightarrow X_s \gamma) - \Gamma(B^0 \rightarrow X_s \gamma)}{\Gamma(B^0 \rightarrow X_s \gamma) + \Gamma(B^- \rightarrow X_s \gamma)},$$

(3)

where inclusion of charge conjugate modes is implied. It has been argued that enhanced power corrections to the $B \rightarrow X_s \gamma$ rate could also lead to values of $\Delta_{0\pm}$ as large as $+10\%$ [24]. Therefore, experimental measurements of $\Delta_{0\pm}$ can help determine the size of these effects and hence reduce the theoretical uncertainty on the total rate. To obtain decay rates from the branching fractions we use the B meson lifetimes: $\tau(B^0) = 1.530 \pm 0.008$ ps and $\tau(B^+) = 1.638 \pm 0.011$ ps [25]. For photon energies greater than 2.2 GeV, we obtain $\Delta_{0\pm} = -0.06 \pm 0.15_{\text{stat}} \pm 0.07_{\text{syst}}$.

The direct CP asymmetry A_{CP}

$$A_{CP} = \frac{B(B \rightarrow X_s \gamma) - B(B \rightarrow X_s \gamma)}{B(B \rightarrow X_s \gamma) + B(B \rightarrow X_s \gamma)} \frac{1}{1 - 2\omega},$$

(4)

is measured by splitting the tag sample into B and \bar{B} mesons. The dilution factor $\frac{1}{1 - 2\omega}$ accounts for the mistag fraction ω, here simply the time integrated B^0 mixing probability of $\chi_d = 0.188 \pm 0.003$ [25] multiplied by the fraction of B^0 events in the total data sample. A_{CP} can be significantly enhanced by new physics [19] while in the SM it is predicted to be around 10^{-9} [26,27]. We obtain a value of $A_{CP} = 0.10 \pm 0.18_{\text{stat}} \pm 0.05_{\text{syst}}$ for photon energies above 2.2 GeV.

For both $\Delta_{0\pm}$ and A_{CP}, a photon-energy cutoff of 2.2 GeV is chosen because it facilitates comparison with previous results and minimizes the total uncertainty. Our results are in good agreement with previous measurements [3,4,28–30].

Finally, we use heavy-quark expansions in the kinetic scheme [18] and our measurements of the E_γ moments to determine the parameters m_b and μ_Z^2. We include the theoretical uncertainties quoted in Ref. [18] in the overall covariance matrix used in the fit. To minimize the theoretical uncertainty we only use moments with $E_{\text{cut}} \leq 2.0$ GeV and obtain $m_b = 4.46^{+0.21}_{-0.23}$ GeV and $\mu_Z^2 = 0.64^{+0.39}_{-0.38}$ GeV2 with a correlation of $\rho = -0.94$.

VI. RESULTS

The partial branching fractions $(1/\Gamma_B)(d\Gamma/dE_\gamma)$ are shown in Fig. 2 after all corrections. The inner error bars show the statistical uncertainties. The outer error bars show the quadratic sum of the statistical and systematic terms.

![FIG. 2. The partial branching fractions $(1/\Gamma_B)(d\Gamma/dE_\gamma)$ with statistical (inner) and total (outer) uncertainties.](image-url)

VII. CONCLUSIONS

We have measured the $B \rightarrow X_s \gamma$ branching fraction and moments of the photon-energy spectrum above several
minimum photon energies. We find $\mathcal{B}(B \rightarrow X_s \gamma) = (3.66 \pm 0.85 \text{stat} \pm 0.60 \text{syst}) \times 10^{-4}$ for photon energies E_γ above 1.9 GeV. Dividing by an extrapolation factor of 0.936 ± 0.010 [10] we obtain $\mathcal{B}(B \rightarrow X_s \gamma) = (3.91 \pm 0.91 \text{stat} \pm 0.64 \text{syst}) \times 10^{-4}$ for $E_\gamma > 1.6$ GeV. The moments of the spectrum can be used to improve the knowledge of the heavy-quark parameters m_b and μ^2_B; we obtain $m_b = 4.46^{+0.21}_{-0.23}$ GeV and $\mu^2_B = 0.64^{+0.39}_{-0.38}$ GeV2 in the kinetic scheme. In addition we measured the isospin asymmetry $A_{0\gamma} = -0.06 \pm 0.15 \text{stat} \pm 0.07 \text{syst}$ and direct CP asymmetry $A_{CP} = 0.10 \pm 0.18 \text{stat} \pm 0.05 \text{syst}$ for photon energies above 2.2 GeV. The full reconstruction (recoil) method provides an almost background free measurement above photon energies of 2.2 GeV. Although statistics are limited at present, this approach is expected to provide a competitive measurement of the decay $B \rightarrow X_s \gamma$ with the larger data sample that is being accumulated at the B-factories, in particular, as the main systematic uncertainties will also be reduced with a larger data sample.

ACKNOWLEDGMENTS

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

[1] S. Chen et al. (CLEO Collaboration), Phys. Rev. Lett. 87, 251807 (2001).
[2] P. Koppenburg et al. (Belle Collaboration), Phys. Rev. Lett. 93, 061803 (2004).
[3] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 72, 052004 (2005).
[4] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 97, 171803 (2006).
[5] T. Hurth, Rev. Mod. Phys. 75, 1159 (2003), and references therein.
[6] M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007).
[7] T. Becher and M. Neubert, Phys. Lett. B 637, 251 (2006).
[8] J. R. Andersen and E. Gardi, J. High Energy Phys. 01 (2007) 029.
[9] E. Barberio et al. (Heavy Flavor Averaging Group (HFAG)), arXiv:0704.3575.
[10] O. Buchmueller and H. Flaecher, Phys. Rev. D 73, 073008 (2006).
[11] A. Kapustin and Z. Ligeti, Phys. Lett. B 355, 318 (1995).
[12] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[13] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[14] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[15] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 92, 071802 (2004).
[16] M.J. Oreglia, Ph.D. thesis, Stanford University [Institution Report No. SLAC-236, 1980, App. D (unpublished)]; J.E. Gaiser, Ph.D. thesis, Stanford University [Institution Report No. SLAC-255, 1982, App. F (unpublished)]; T. Skwarnicki, Ph.D. thesis, Cracow Institute of Nuclear Physics [Institution Report No. DESY F31-86-02, 1986, App. E (unpublished)].
[17] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 185, 218 (1987).
[18] D. Benson, I.I. Bigi, and N. Uraltsev, Nucl. Phys. B710, 371 (2005).
[19] T. Hurth, E. Lunghi, and W. Porod, Nucl. Phys. B704, 56 (2005).
[20] J. Charles et al. (CKMfitter Group), Eur. Phys. J. C 41, 1 (2005).
[21] A. L. Kagan and M. Neubert, Eur. Phys. J. C 7, 5 (1999).
[22] B.O. Lange, M. Neubert, and G. Paz, Phys. Rev. D 72, 073006 (2005).
[23] See EPAPS Document No. E-PRVDAQ-77-R06805 for correlation matrices. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
[24] S.J. Lee, M. Neubert, and G. Paz, Phys. Rev. D 75, 114005 (2007).
[25] W.M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
[26] J. M. Soares, Nucl. Phys. B367, 575 (1991).
[27] T. Hurth and T. Mannel, Phys. Lett. B 511, 196 (2001).
[28] T.E. Coan et al. (CLEO Collaboration), Phys. Rev. Lett. 86, 5661 (2001).
[29] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 93, 021804 (2004).
[30] S. Nishida et al. (Belle Collaboration), Phys. Rev. Lett. 93, 031803 (2004).