Chain extensions of D-algebras and their applications

Jining Gao

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205.

Abstract

In order to unify the methods which have been applied to various topics such as BRST theory of constraints, Poisson brackets of local functionals, and certain developments in deformation theory, we formulate a new concept which we call the chain extension of a D-algebra. We develop those aspects of this new idea which are central to applications to algebra and physics. Chain extensions may be regarded as generalizations of ordinary algebraic extensions of Lie algebras. Applications of our theory provide a new constructive approach to BRST theories which only contains three terms; in particular, this provides a new point of view concerning consistent deformations. Finally, we show how Lie algebra deformations are encoded into the structure maps of an sh-Lie algebra with three terms.
1 Introduction

Homological algebra has become an indispensable tool for the rigorous formulation of a wide variety of developments in theoretical physics. Applications of these techniques to physics has become so pervasive that they have gradually become identified as a new category of mathematical physics which has been called “cohomological physics”. One of the fruitful branches of this theory is the “cohomology” formulation of the BRST theory of constraints. Indeed the point of BRST theory is to replace the cohomology of the reduced space of a physical theory by the cohomology of a homological resolution of the space being constrained. A separate development found in [5] applies homological techniques to classical Lagrangian field as a method of encoding Poisson brackets of local functionals. Many of these homological theories can be constructed explicitly when one is also given the existence of a contracting homotopy.

Because of the diversity of approaches to these theories it is an attractive challenge to find a more general algebraic structure to unify existing theories with the goal of obtaining even more powerful applications of these theories. For example, in classic BRST theory, it is known how to construct the BRST operator theoretically via homological perturbation theory (HPT), but explicit constructions of the BRST operator are difficult to obtain because HPT doesn’t tell us where the homological perturbation expansion terminates. However, as one of the applications of chain extensions of D-algebras, this problem is settled in the case of the Hamiltonian formalism with irreducible constraints, i.e., we have obtained an explicit formula for Hamiltonian BRST in the most compact form yet known. Another application in our paper is to provide a new investigation of certain deformation problems such as consistent deformations and Lie algebra deformations. For example, in order to remove obstructions to Lie algebra deformation, we embed the Lie algebra into an appropriate sh-Lie algebra in such a way that the obstructions will vanish in the category of sh-Lie algebra deformations. Similarly, we can overcome obstructions to consistent deformation by embedding the original field into an appropriate extended superfield. We expect these ideas to have further applications in both physics and algebra.

Our paper is organized as follows: first of all, in section 2 we introduce the new and fundamental concept which we call the chain extension of a D-algebra. In this section we also develop the related algebraic formalism needed for applications of these new constructs. In section 3.1 we show
how our new constructs provide a new approach to the BRST method of encoding constraints on a symplectic manifold. In section 3.2 we show how our new methods apply to the homological approach to local functionals in Lagrangian field theory referred to above. In section 3.3 we show how the consistent deformation theory of Barnich and Henneaux relates to the chain extension formalism. In section 3.4 we show how certain deformations of Lie algebras are related to sh-Lie algebras. Finally, in a concluding section we indicate possible future development of these ideas.

2 Chain extension on D-algebras

Definition 1 Let V be a linear space over a field k and D a k-linear map such that $D^2 = 0$ on V. We call the ordered pair (V, D) a D-algebra.

First we consider some important examples of D-algebras.

Example 1: (Chain complex) Let V be a graded space such that $V = \oplus_{p=0}^{\infty} V_p$ and $(D)_p$, $p \geq 0$, a sequence of maps (boundary operators)

$$\cdots V_{p+1} \xrightarrow{D_{p+1}} V_p \cdots V_1 \xrightarrow{D_1} V_0 \longrightarrow 0,$$

i.e., $D_p \circ D_{p+1} = 0$. For each p, extend D_p to the direct sum V by requiring that it be linear and that D_p restricted to V_q be zero for $q \neq p$. Define D to be the direct sum $D = D_1 + D_2 + D_3 + \cdots$. The pair (V, D) is then a D-algebra.

Example 2: (Lie algebra) Let A be a linear space over k, and let $l_2 : A \otimes A \longrightarrow A$ which satisfies the Jacobi identity:

$$\sum_{\sigma \in \text{unsh}(2,1)} (-1)^\sigma l_2(l_2(x_{\sigma(1)} \otimes x_{\sigma(2)}) \otimes x_{\sigma(3)}) = 0 \quad (1)$$

where $x_1, x_2, x_3 \in A$. Then l_2 is a Lie bracket on A; moreover if the left side of above equation is written in an abbreviated form as

$$(l_2 l_2)(x_1 \otimes x_2 \otimes x_3),$$

then the Jacobi identity is equivalent to the statement $l_2^2 = 0$. Let $V = \oplus_{n=0}^{\infty} \otimes A$ and extend the mapping $l_2 : A \otimes A \longrightarrow A$ to a mapping $l_2 : \otimes^{2+k} A \longrightarrow \otimes^k A$ via the equation
\[l_2(x_1 \otimes \ldots \otimes x_{2+k}) = \sum_{unsh(n,k)} (-1)^{\sigma} e(\sigma) l_2(x_{\sigma(1)} \otimes x_{\sigma(2)}) \otimes x_{\sigma(3)} \otimes \ldots \otimes x_{\sigma(2+k)}. \]

Consequently we obtain an extended map \(l_2 : V \to V \) such that \(l_2^2 = 0 \) and the pair \((V, l_2)\) is a \(D \)-algebra.

Example 3: Let \(V \) be a linear space over \(k \), \(TV = \oplus_{n=0}^{\infty} (\otimes^n V) \), and \(D \) a coderivation on the cofree coalgebra \(TV \) which satisfies \(D^2 = 0 \). Then \((TV, D)\) is a \(D \)-algebra. All \(A_\infty \) algebras are of this type. When \(V \) is a graded space one may obtain the class of all sh-Lie algebras by selecting a subspace of the space \(TV \) and by modifying the coalgebra structure on the subspace so that the sh-Lie structure is characterized by a coderivation \(D \) with square zero. Thus they are also included as a special type of \(D \)-algebra.

Let \((F, D_F)\) be a \(D \)-algebra over a field \(k \) and \(B \) be an arbitrary linear space over \(k \). Consider the ordered triple \((B, F, D_F)\). The primary new concept in this paper is the notion of a chain extension of such a triple.

Definition 2 Let \((B, F, D_F)\) be a triple defined as above and let \((X_*, \delta)\) be a homological resolution of \(F \), i.e., we have a complex

\[\cdots \xrightarrow{\delta_{p+1}} X_p \xrightarrow{\delta_1} X_1 \xrightarrow{\delta_0} X_0 \]

where \(X_0 = B \oplus F, \delta_0(X_1) = B, \) and \(H_*(X) = H_0(X) \approx F \). If there exists a sequence of maps \(l_n : X_* \to X_* \) with degree \(n - 2 \) such that \(l_1 = \delta, l_2|_F = D_F \), and such that the summation \(l = \sum_{n=0}^{\infty} l_n \) is a nilpotent operator on \(X_* \), then we call \((X_*, l)\) a chain extension of \(B \) by \((F, D_F)\).

Notice that our resolution \(\{X_n\} \) is defined only for \(n \geq 0 \), thus we do not consider augmented complexes in this paper. Although the definition above initially appears quite complicated, we will find that the notion of a chain extension is a generalization of ordinary algebraic extension theory. Indeed ordinary algebraic extensions can be described as follows. Consider a short exact sequence:

\[0 \to C \xrightarrow{i} B \xrightarrow{j} A \to 0 \]
where C, B, A are linear spaces over k and where one has a D-algebra structure on B. Furthermore assume that the restriction of D on C defines a D-algebra structure on C and induces a mapping $D : A \to A$ such that A is a D-algebra. Also notice that the chain complex $0 \to C \to B \to 0$ provides a resolution of A for which $\delta_k = 0$ for $k > 0$, $\delta_0 = i$. If the quotient mapping $j : B \to A$ plays the role of η in the diagram below, then $S = l_1 + l_2 = \delta + D$ is a chain extension of C by A. Such D-algebra extensions of C by A occur in some applications in physics.

Sometimes a homological resolution for F comes with the additional structure of a contracting homotopy which we will show often guarantees the existence of a chain extension. Furthermore the chain extension in this case may be defined explicitly in terms of this homotopy. We adapt the constructions in [5] to describe such a contracting homotopy.

Note that F may be regarded as a differential graded vector space F^* with $F_0 = F$, and $F_k = 0$ for $k > 0$. Assume that there exists a chain map $\eta : X^* \to F^*$ with homotopy inverse $\lambda : F^* \to X^*$; i.e., we have that $\eta \circ \lambda = 1_{F^*}$ and that $\lambda \circ \eta \sim 1_{X^*}$. Thus there is a chain homotopy $s : X^* \to X^*$ with $\lambda \circ \eta - 1_{X^*} = l_1 \circ s + s \circ l_1$. In particular, notice that in degree zero one has that $1_{X^*} = \lambda \circ \eta - l_1 \circ s$.

We may summarize all of the above with the commutative diagram

\[
\begin{array}{ccccccc}
\cdots & \to & X_2 & \overset{s}{\leftarrow} & X_1 & \overset{s}{\leftarrow} & X_0 \\
& & l_1 & & l_1 & & \\
\lambda \downarrow \eta & & \lambda \downarrow \eta & & \lambda \downarrow \eta \\
\cdots & \to & 0 & \to & 0 & \to & H_0 = F
\end{array}
\]

Theorem 3 Assume that (F, D_F) is a D-algebra and that the pair (F, D_F) has a homological resolution with contracting homotopy η as indicated above. If $B = l_1(X_1)$ and there exists a mapping $l_2 : X_0 \to X_0$ which satisfies the properties:

(i) $l_2 F = D_F$ \hspace{1cm} (4)
(ii) $l_2(B) \subseteq B$ \hspace{1cm} (5)
(iii) $l_2^2(X_0) \subseteq B$. \hspace{1cm} (6)

then there exists a chain extension (X^*, l) of the triple (B, F, D_F) which can be explicitly constructed by induction as follows. For any $x \in X^*$:
(1) define \(l_1(x) = \delta(x) \).
(2) for \(\deg x > 0 \), define \(l_2(x) = (s \circ (l_2 l_1))(x) \),
(3) if \(\deg x = 0 \), define \(l_3(x) = (s \circ (l_2 l_2))(x) \) and for \(\deg x > 0 \) define
\(l_3(x) = (s \circ (l_2 \circ l_2 + l_3 \circ l_1))(x) \).
(4) for all \(x \) and for \(n > 3 \), define \(l_n(x) = 0 \).

Using these definitions it follows that \(l_2(x) = 0 \) for \(\deg x > 1 \) and that
\(l_3(x) = 0 \) for \(\deg x > 0 \).

Remark: Conditions (i) and (ii) of the theorem above were first in-
troduced in [5] where an sh-Lie prototype of the theorem above was proved.
Markl was first to notice (via a private communication) that these con-
ditions insure that at most three of the sh-Lie structure maps are nontrivial.
Bar-
nich proved this result in [3]. Finally, Al-Ashhab [1] weakened the condi-
tions of Markl’s original statement and provided the details of his observa-
tions to the author who generalized the result to the case of \(D \)-algebras, for which
we have more extensive applications.

Proof. Notice first that because \(B = l_1(X_1) \), it follows from the com-
muative diagram above that \(\eta(B) = 0 \). This fact will be used throughout the
proof. Assume that there exists an operator \(l_2 : X_0 \to X_0 \) which satisfies the
hypothesis of the theorem.

In order to prove the operator \(l = l_1 + l_2 + l_3 \) is nilpotent, observe that if
we expand \(l^2 \) the equality \(l^2 = 0 \) is equivalent to the sequence of equations.

\[
\begin{align*}
l_1l_2 + l_1l_2 &= 0 \\
l_2^2 + l_1l_3 + l_3l_1 &= 0 \\
l_2l_3 + l_3l_2 &= 0 \\
l_3^2 &= 0
\end{align*}
\]

We give an inductive proof of these equations. For any \(x \in X_0 \), since \(l_1l_2(x) = l_2l_1(x) = 0 \), we have \((l_1l_2 + l_1l_2)(x) = 0 \), and (7) holds in degree zero.

We now prove (8) in degree zero, recall that \(\lambda \circ \eta - 1_{X_0} = l_1 \circ s + s \circ l_1 \),
and apply both sides of this equation to \((l_2^2 + l_3l_1)(x) \), where \(x \in X_0 \). Now
\(l_1(X_0) = 0 \) and \(l_2^2(X_0) \subseteq B \) implies that, \((\lambda \circ \eta)(l_2^2(x)) = 0 \), consequently
\[
(\lambda \circ \eta - 1_{X_0})(l_2^2 + l_3l_1)(x)(\lambda \circ \eta)(l_2^2(x)) - l_2^2(x) = -l_2^2(x).
\]

For similar reasons, \((s \circ l_1)(l_2^2 + l_3l_1)(x) = 0 \) and the equation above implies
\[
- l_2^2(x) = (l_1 \circ s + s \circ l_1)(l_2^2 + l_3l_1)(x)
\]
\[= (l_1 \circ s)(l_2^2 + l_3l_1)(x) = l_1(s(l_2^2(x))) = l_1(l_3(x)), \quad (12)\]

where in the last equality we used the inductive definition of \(l_3\). This shows that \((-l_2^2)(x) = (l_1l_3)(x)\) and since \((l_3l_1)(x) = 0\), we have

\[(l_2^2 + l_1l_3 + l_3l_1)(x) = 0 \quad (13)\]

Thus (8) holds for \(x \in X_0\).

We now give an inductive proof of (7) in arbitrary degree. Assume that (7) holds for any \(x' \in X_s\) with \(\deg x' = n\); if \(\deg x = n + 1\), we first prove that \((l_2 \circ l_1)(x)\) is an \(l_1\) boundary. Since \(\deg(l_2 \circ l_1)(x) = n\), it follows from (7) that

\[l_1(l_2l_1)(x) = (l_1l_2)(l_1(x)) = (-l_2l_1)(l_1(x)) = 0 \quad (14)\]

Thus \((l_2l_1)(x)\) is \(l_1\)-closed. Notice that by the inductive definition \(l_2\) preserves degree and so \(\deg((l_2l_1)(x)) = n\). If \(n > 0\), then the cycle \((l_2l_1)(x)\) is an \(l_1\)-boundary since \(H_n(X_s) = 0\). If \(n = 0\) then \(\deg x = 1\), \(l_1(x) \in B\), and \((l_2l_1)(x) \in l_2(B) \subseteq B = l_1(X_1)\). Thus \((l_2l_1)(x)\) is also a boundary in this case. Now apply \(\lambda \circ \eta - 1_{X_s} = l_1 \circ s + s \circ l_1\) to \(l_2l_1(x)\); we have

\[(\lambda \eta)(l_2l_1)(x) - l_2l_1(x) = l_1s(l_2l_1(x)) + s\eta(l_2l_1(x)) \quad (15)\]

Since \((l_2l_1)(x)\) is a boundary and \(\eta(l_2l_1)(x) = 0\),

\[l_2l_1(x) + l_1s l_2l_1(x) = 0. \quad (16)\]

Since \(\deg x > n + 1\), it follows from the inductive definition of \(l_2\) that \(s(l_2l_1)(x) = l_2(x)\) and therefore that \(l_2l_1(x) + l_1l_2(x) = 0\). Thus (8) holds.

In order to prove (8) for arbitrary degree, we also need to first verify that for any \(x \in X_s\), \(l_2^2(x) + l_3l_1(x)\) is a boundary. Since \(l_2^2(X_0) \in B\), we immediately get that \(l_2^2(x) = l_2^2(x) + l_3l_1(x)\) is a boundary for all \(x \in X_0\). Assume that it is a boundary for every \(x'\) with \(\deg x' < n + 1\). Choose any \(x\) such that \(\deg x = n + 1\) and observe that

\[l_1(l_2^2 + l_3l_1)(x) = (l_1l_2^2)(x) + (l_1l_3l_1)(x) = (l_1l_2^2)(x) + (l_1l_3)(l_1(x)) \quad (17)\]

Since \(\deg l_1(x) = n\), it follows from the inductive hypothesis applied to (8) that \(l_1l_3l_1(x) = -(l_2^2 + l_3l_1)l_1(x) = -l_2^2l_1(x)\); thus \(l_1(l_2^2 + l_3l_1)(x) = (l_1l_2^2)(x) -
\[l_2^2 l_1(x) = 0 \] (since it follows from \([\text{7}]\) that \(l_1\) and \(l_2\) anti-commute). It follows that \(l_2^2(x) + l_3 l_1(x)\) is a cycle. It also follows from the inductive definition of \(l_3\) that it increases the degree by 1, thus \(\deg (l_2^2(x) + l_3 l_1(x)) = n + 1\). Since \(H_{n+1}(X_\ast) = 0\), \(l_2^2(x) + l_3 l_1(x)\) is a boundary. Applying \(\lambda \circ \eta - 1_{X_\ast} = l_1 \circ s + s \circ l_1\) to \(l_2(x) + l_3 l_1(x)\), we have

\[
(\lambda \eta)(l_2^2 + l_3 l_1)(x) - (l_2^2 + l_3 l_1)(x) = l_1 s(l_2^2(x) + l_3 l_1(x)) + s l_1 (l_2^2(x) + l_3 l_1(x))
\]

and \(l_2^2(x) + l_3 l_1(x) + l_1 s(l_2^2 + l_3 l_1)(x) = 0\). By the inductive definition of \(l_3\), \(s((l_2^2 + l_3 l_1)(x)) = l_3(x)\), and consequently \((l_2^2 + l_3 l_1 + l_1 l_3)(x) = 0\). Thus \((8)\) follows.

We now prove the two remarks in the last statement of the theorem. Assume that \(\deg x > 1\), then \(\deg x \geq 2\) and \(\deg l_1(x) > 0\), consequently \(l_2(x) = s l_2 l_1(x) = s(s l_2 l_1)(l_1(x)) = 0\). The first of the two statements follows. Now assume that \(\deg x \geq 1\), then using the inductive definitions of both \(l_2\) and \(l_3\), we have

\[
l_3(x) = s(l_2^2 + l_3 l_1)(x)
\]

\[
= s((s l_2 l_1)l_2 + s(l_2^2 + l_3 l_1)l_1)(x)
\]

\[
= s^2((l_2 l_1)l_2 + (l_2^2 l_1 + l_3 l_1^2))
\]

\[
= s^2[-l_1 l_2^2 + l_2^2 l_1(x)] = 0
\]

and the second statement follows. It is now easy to prove \((9), (10)\) as follows: since \(l_3(x) = 0\) for any \(\deg x > 0\), it’s enough to prove \((9), (10)\) in degree zero. Assume that \(x \in X_0\), we have \(\deg l_3(x) = 1\), thus \(l_3 l_3(x) = 0\), and \((10)\) follows.

We now prove \((9)\): let \(x \in X_0\), since \(\deg l_2(x) = 0\), \(\deg l_3(x) = 1\), and by the inductive definitions of \(l_2, l_3\), we have

\[
l_2 l_3(x) + l_3 l_2(x) = sl_2 l_1 l_3(x) + sl_2 l_2 l_2(x)
\]

\[
= sl_2(l_1 l_3 + l_2 l_2)(x) = sl_2((l_1 l_3 + l_2 l_2 + l_3 l_1)(x) = 0.
\]

This concludes the proof that \(l^2 = 0\) and the fact that \((X_\ast, l)\) is a chain extension.

From the theorem above, we find that a chain extension for a given triple \((\mathcal{B}, \mathcal{F}, \mathcal{D})\) is not unique, but the following theorem will tell us all chain extensions have the same homology group.

Theorem 4 Let \((X_\ast, l)\) be a chain extension of triple \((\mathcal{B}, \mathcal{F}, \mathcal{D})\), then \(H(X_\ast, l) \cong H(\mathcal{F}, \mathcal{D})\).

The proof of this theorem is very similar to the homological perturbation technique of the theorem on page 179-180 in \([\text{9}]\).
3 Applications

3.1 BRST theory

As one of the applications of the theorem above, we provide a new construction for the Hamiltonian BRST operator in the irreducible case, which has the most compact form possible (three maps are enough!). In [9], a BRST operator is obtained by "homological perturbation theory" but not explicitly. Using our Theorem 3, we will reconstruct a BRST operator in an explicit way under some local conditions. In particular, we show that the BRST theory for the irreducible case is just a chain extension of the longitudinal differential.

Let \(P \) be a symplectic manifold, \(G_a = 0, (a = 1, \ldots, n) \) a set of first class constraints defined on \(P \), and \(\Sigma \) the constraint surface defined by the zeros of the functions \(\{G_a\} \). We assume that \(\Sigma \) is a regular submanifold of \(P \). Let \(N \) be the ideal of the algebra \(C^\infty(P) \) generated by the constraint functions \(G_a, a = 1, \ldots, n \) and consider the short exact sequence:

\[
0 \rightarrow N \xrightarrow{i} C^\infty(P) \xrightarrow{j} C^\infty(\Sigma) \rightarrow 0.
\]

In general, the sequence (18) is not split as an algebra over the complex field \(\mathbb{C} \), but since \(\Sigma \) is a regular submanifold there exists a local chart in \(P \) on which the sequence is split locally. That is to say, if \(P \) is replaced by a suitable open subset of \(P \), there exists a splitting algebra homomorphism \(\tau : C^\infty(\Sigma) \rightarrow C^\infty(P) \) such that one obtains the direct sum decomposition \(C^\infty(P) = N \oplus C^\infty(\Sigma) \) as algebras.

If \([\cdot, \cdot]\) is the Poisson bracket defined by the symplectic structure on \(P\), then we may define a mapping on \(C^\infty(\Sigma) = C^\infty(P)/N \) by \(g + N \rightarrow [g, G_a] + N \) for each \(a \). This mapping is a well-defined derivation of \(C^\infty(\Sigma) \). We denote its value at \(f \in C^\infty(\Sigma) \) by \(\partial_a f \) but sometimes by an obvious abuse of notation we denote it by \([f, G_a]\).

Let \(\mathcal{F} = C^\infty(\Sigma) \otimes \mathbb{C}(\eta^a) \) where \(\mathbb{C}(\eta^a) \) is the exterior algebra over the complex field \(\mathbb{C} \) with generators \(\{\eta^a\} \) of degree one. Physicist usually refer to the generators \(\eta^a \) as ghost variables.

Define the longitudinal derivative \(d \) on \(\mathcal{F} \) by defining it on generators of \(\mathcal{F} \) and then extending it to all of \(\mathcal{F} \) as a right derivation. On generators it is defined as follows ([9]):

\[
df = [f, G_a] \eta^a
\]
\[di^{\alpha} = \frac{1}{2} C^a_{\alpha \beta} i^b i^c \]

where \(f \in C^\infty(\Sigma) \) and \(C^a_{\alpha \beta} \) are structure functions on \(P \).

Notice the defining equations of \(d \) on generators given above is induced from the action of \(d \) on \(C^\infty(P) \otimes C(\eta^a) \) given by the same equations (due to our abuse of the use of the bracket referred to above). We claim that \(d^2(C^\infty(P) \otimes C(\eta^a)) \subseteq N \otimes C(\eta^a) \). The proof of this fact follows from induction on the ghost number. For the convenience of the reader we show that this is true for ghost number one. The inductive step is straightforward and is left to the reader. Let \(\alpha = f_b \eta^b \) where \(f_b \in C^\infty(P) \), and observe that \(d^2 \alpha = (d^2 f_b) \eta^b + f_b d^2 \eta^b \). Now for \(f \in C^\infty(P) \),

\[d^2 f = -[[f, G_a], G_b] \eta^b \eta^a - \frac{1}{2} C^a_{\alpha \beta} [f, G_a] \eta^b \eta^c. \]

It follows from the Jacob identity and the anti-commutativity of the \(\eta \)'s that

\[2 [[f, G_a], G_b] \eta^b \eta^a = [f, C^c_{ab} G_c] \eta^b \eta^c. \]

Thus \(d^2 f = -\frac{1}{2} [f, C^c_{ab} G_c] \eta^b \eta^a - \frac{1}{2} C^c_{ab} [f, G_c] \eta^b \eta^a - \frac{1}{2} C^a_{\alpha \beta} [f, G_a] \eta^b \eta^c \) from which it follows that \(d^2 f = -\frac{1}{2} [f, C^c_{ab}] G_c \eta^b \eta^a \), which is obviously in \(N \otimes C(\eta^a) \).

Thus \(d^2 f \) belongs to \(N \otimes C(\eta^a) \) for each \(f \in C^\infty(P) \) as does also \((d^2 f_b) \eta^b \) above. Recall that when the \(C^c_{ab} \) are constant one has that \(d^2 \eta^a = 0 \). On the other hand when the structure constants are actually structure functions, then further calculations similar to those above using (19), (20) and anti-commutativity of the \(\eta \)'s show that

\[d^2 \eta^c = \frac{1}{2} \{ C^c_{ab} C^b_{pq} + [C^c_{aq}, G_p] \} \eta^a \eta^p \eta^q. \]

Moreover a similar calculation shows that

\[[[G_a, G_p], G_q] \eta^a \eta^p \eta^q = -\{ C^c_{ab} C^b_{pq} + [C^c_{aq}, G_p] \} G_c \eta^a \eta^p \eta^q. \]

It follows that \(-2d^2 \eta^c G_c = [[G_a, G_p], G_q] \eta^a \eta^p \eta^q \). The latter is zero by the Jacobi identity and the anti-commutativity of the \(\eta \)'s. Since \(d^2 \eta^c G_c = 0 \), it follows from the fact that the constraints are irreducible that \(d^2 \eta^c \) is in the ideal \(N \otimes C(\eta^a) \) for each \(c \).

It follows that \(d^2 \alpha \in N \otimes C(\eta^a) \) for each \(\alpha \in C^\infty(P) \otimes C(\eta^a) \) of ghost degree 1. The general case now follows easily by induction on the ghost degree.
From this it follows that \((\mathcal{F}, d)\) is a \(D\)-algebra. We intend to show that the BRST complex can be regarded as a chain extension of this algebra. In order to construct the homological resolution of \(\mathcal{F}\), we need an antighost variable \(P_a\) for each constraint \(G_a\) and a Kozul-Tate differential \(\delta\) defined as follows:

\[
\begin{align*}
\delta f &= 0 \quad (21) \\
\delta P_a &= -G_a \quad (22) \\
\delta \eta^a &= 0 \quad (23)
\end{align*}
\]

where \(f \in C^\infty(P)\).

Let \(X_* = C(P_a) \otimes C^\infty(P) \otimes C(\eta^a)\) be the graded space where the grading is given by the antighost degree and let \(\mathcal{F}_*\) be the graded space with \(\mathcal{F}_0 = \mathcal{F}\) and with \(\mathcal{F}_k = 0, k > 0\). If we extend the longitudinal derivative \(d\) to the anti-ghosts by requiring that \(dP_a = 0\) for all \(a\), then we can extend both \(d\) and \(\delta\) to all of \(X_*\) by requiring that both of them be right derivations. We will show that \((X_*, \delta)\) is a resolution of \(\mathcal{F}\).

Define \(\mathcal{B}\) by \(\mathcal{B} = \delta(X_1) = N \otimes C(\eta^a)\) and let \(\tilde{\eta} : X_* \to \mathcal{F}_*\) be the chain map which is nontrivial only in degree zero and in that case define it to be the projection

\[
X_0 \to X_0/\mathcal{B} = (C^\infty(P) \otimes C(\eta^b))/(N \otimes C(\eta^b)) = C^\infty(\Sigma) \otimes C(\eta^b) = \mathcal{F}.
\]

We now construct a contracting homotopy, but to do this we need to modify the contracting homotopy formula in [9] to conform to the conventions in our paper. To make contact with [9] we adopt their notation throughout the remainder of this section. In particular we employ the formal algebraic language used by physicist in order to show that their formulation of Hamiltonian BRST theory may be reformulated in terms of chain extensions.

Since the constraints \(G_a = 0\) are assumed to be independent (recall that we are working in the irreducible case), we can choose a local chart \((x_i, G_a)\) in a neighborhood \(O\) of the manifold \(P\). Our results are valid only on such an open set \(O\) and since all the structures of interest restrict to \(O\) we presume that \(O = P\) for simplicity. Let

\[
\begin{align*}
\delta &= \left(\frac{\partial R}{\partial P_a}\right) G_a, \quad \sigma = \left(\frac{\partial R}{\partial G_a}\right) P_a \quad (24) \\
\bar{N} &= \left(\frac{\partial R}{\partial P_a}\right) P_a + \left(\frac{\partial R}{\partial G_a}\right) G_a \quad (25)
\end{align*}
\]
where \(\frac{\partial R}{\partial F_a} \) and \(\frac{\partial R}{\partial G_a} \) are right derivations on the algebra \(C(P_a) \otimes C^\infty(P) \otimes C(\eta^b) \).

We will use the mapping \(\sigma \) to build the contracting homotopy \(s \) below. To obtain the necessary properties of \(s \) parities are important. In the calculations below we assume that the parities of \(\delta, \sigma, \bar{N} \) are all zero. Moreover we require the parity of smooth functions on \(P \) be zero. The parities of ghost fields, \(\varepsilon(\eta^a) \), and anti-ghost fields, \(\varepsilon(P_a) \), are related to the parities of functions on \(P \) by \(\varepsilon(\eta^a) = \varepsilon(G_a) + 1 = \varepsilon(P_a) \). The relation \(\delta \sigma + \sigma \delta = \bar{N} \) holds when evaluated at an arbitrary element of \(C(P_a) \otimes C^\infty(P) \otimes C(\eta^b) \) and the latter equation implies that:

\[
 \frac{d}{dt} F(tP_a, tG_a, x_i, \eta^b) = (\delta \sigma + \sigma \delta) F(tP_a, tG_a, x_i, \eta^b) \tag{26}
\]

where \(t \) is an arbitrary real number. If, in addition, \(F \) is of antighost number \(k > 0 \), it follows from (26) that

\[
 F(P_a, G_a, x_i, \eta^b) = (\delta \sigma + \sigma \delta) \left(\int_0^1 F(tP_a, tG_a, x_i, \eta^b) \frac{dt}{t} \right). \tag{27}
\]

If we set \(\psi(F) = -\int_0^1 F(tP_a, tG_a, x_i, \eta^b) \frac{dt}{t} \) and \(s = \sigma \circ \psi \), then \(\delta \circ \psi = \psi \circ \delta \) and \(l_1 \circ s = s \circ l_1 = -1_{X_*} \) in degree \(k > 0 \). Now consider the degree zero case. Recall that in the definition of chain homotopy one is required to find a homotopy inverse \(\lambda : F_* \rightarrow X_* \) of the chain mapping \(\tilde{\eta} : X_* \rightarrow F_* \). Both \(\tilde{\eta} \) and \(\lambda \) should be nontrivial only in degree zero in which case \(\tilde{\eta} \) is the projection \(X_0 \rightarrow X_0/B = F \) defined above. Thus we need to define both \(\lambda \) and \(s \in \text{degree zero} \) in such that \(\lambda \circ \tilde{\eta} - 1_{X_*} = l_1 \circ s + s \circ l_1 \).

A degree zero element of \(X_* \) is simply a function \(f \) such that \(f(G_a, x_i, \eta^b) \in C^\infty(P) \otimes C(\eta^b) \). Define \(sf = \int_0^1 \frac{1}{t} \left(\frac{\partial R}{\partial G_a} \right) f(tG_a, x_i, \eta^b) P_a dt \). In order to construct the map \(\lambda \) for the case of \(\text{antigh}(f) = 0 \), we first consider the map \(\tilde{\lambda} : X_0 \rightarrow X_0 \) defined as follows. For any \(f \in X_0 \), let

\[
 \tilde{\lambda}(f) = f + \delta sf \tag{28}
\]

To find the desired map the following Lemma is useful.

Proposition 5 \(\tilde{\lambda} \) vanishes on the subspace \(B \) and thus induces a map \(\lambda : X_0/B \rightarrow X_0 \)

11
Proof. Since \(f \in \mathcal{B} \), the integral \(sf = \int_0^1 \frac{1}{t} \frac{\partial R}{\partial G_a} f(tG_a, x_i, \eta^b) P_a dt \) exists and we have:

\[
\tilde{\lambda}(f) = f + \delta sf
\]

\[
= f(G_a, x_i, \eta^b) - \int_0^1 \frac{1}{t} \frac{\partial R}{\partial G_a} f(tG_a, x_i, \eta^b) G_a dt
\]

\[
= f(G_a, x_i, \eta^b) - \int_0^1 \frac{d}{dt} f(tG_a, x_i, \eta^b) dt
\]

\[
= f(G_a, x_i, \eta^b) - (f(G_a, x_i, \eta^b) - f(0, x_i, \eta^b))
\]

\[
= f(0, x_i, \eta^b) = 0
\]

where the last step follows from the fact that \(f \in \mathcal{B} \).

It is now easy to verify that the maps \(s, \lambda, \eta \) satisfy the contracting homotopy formula on the space \(X_0 \).

To summarize, the contracting homotopy is obtained as follows: given any \(F(P_a, G_a, x_i, \eta^b) \in C(P_a) \otimes C^\infty(P) \otimes C(\eta^b) \), \(s(F) = \int_0^1 \frac{1}{t} \frac{\partial R}{\partial G_a} f(tG_a, x_i, \eta^b) P_a dt \) when \(\text{antigh}(f) = 0 \) and \(s(F) = \sigma \psi(f) \) for \(\text{antigh}(f) > 0 \). It follows that we have a homological resolution \((X_s, \delta)\) with contracting homotopy \(s \).

We now show that there exists maps \(l_1, l_2, l_3 \) which satisfy the definition of chain extension. To do this, we show that if \(l_1 = \delta \) and \(l_2 = d \) then the hypothesis of Theorem 3 is true. First observe that \(X_1 = V(P_a) \otimes C^\infty(P) \otimes C(\eta^b) \) where \(V(P_a) \) is the linear space spanned by the \(P_a \)'s over \(C \). Recall that \(\delta(X_1) = N \otimes C(\eta^b) = \mathcal{B} \) and observe that \(l_2(\mathcal{B}) = d(N \otimes C(\eta^b)) \subseteq N \otimes C(\eta^b) = \mathcal{B} \). Moreover, note that \(X_0 = C^\infty(P) \otimes C(\eta^b) \) and recall that we have already shown that \(d^2(C^\infty(P) \otimes C(\eta^a)) \subseteq N \otimes C(\eta^a) \) in our proof that \((\mathcal{F}, d) \) is a \(D \)-algebra. Thus \(l_2^2(X_0) \subseteq N \otimes C(\eta^b) = \mathcal{B} \). It follows from Theorem 3 that there are maps \(l_1, l_2, l_3 \) which satisfy the definition of a chain extension and that they are defined inductively by the Theorem.

We can now use Theorem 3 to determine the \(BRST \) operator. Let’s start with the definition of \(l_2 \) on \(X_1 \); obviously knowing the values of \(l_2 \) on \(X_1 \) is enough to determine \(l_2 \) on the whole space \(X_s \) because elements of degree greater than zero are generated by \(X_1 \). By applying formula (2) of Theorem 3, we have

\[
l_2 P_a = dP_a = sl_2 l_1(P_a) = sl_2 \delta(P_a)
\]

\[
= sl_2(-G_a)
\]

\[
= -s([\partial_b G_a] \eta^b)
\]

\[
= -s([G_a, G_b] \eta^b)
\]
The next operator we need to compute is l_3, and by Theorem 3, we need only compute it in the case that $f = f(x_i, G_a, \eta^b)$ is in $C^\infty(P) \otimes C(\eta^b)$. Recall that $Y_a = \partial_a$ are the Hamiltonian vector fields of the constraints G_a and that $[\partial_a, \partial_b] = C_{cab} \partial_c + Y_{ab} G_c$. By (3) of Theorem 3, we have:

$$l_3(f) = s(\ell_2^2 + \ell_3 l_1)(f) = s(\ell_2^2)(f) = s((\partial_a f) \eta^a)$$

$$= s((\partial_a f)(\partial_b f)) + s((\partial_b f)(\partial_a f)\ell_2(\eta^a)) = s(\frac{1}{2}([\partial_a, \partial_b]f)\eta^b \eta^a - \frac{1}{2}(\partial_c f)\eta^b \eta^a)$$

$$= s(\frac{1}{2}([\partial_a, \partial_b]f) - C_{cba} \partial_c f)\eta^b \eta^a) = s(\frac{1}{2}(G_c(Y_{ab} f) \eta^b \eta^a)$$

$$= \frac{1}{2}s(G_c(Y_{ab} f)\eta^b \eta^a + \frac{1}{2}G_c s(Y_{ab} f) \eta^b \eta^a$$

and $l_3(P_a) = l_3(\eta^a) = 0$

Remark: From the observations above, we see that our new development of the BRST operator has only three nonzero terms. Moreover, it is clear that this is the least number of terms required to describe the nontrivial case we have focused on here, i.e., in this case we have achieved an optimal BRST construction. Our calculation of the BRST operator above depends on the existence of an explicit contracting homotopy. However, the contracting homotopy formula required by our construction only holds locally, in other words, it depends on the choice of local coordinates. In the BRST
theory of Lagrangian field theory, such a choice of a local chart is referred to as a "regularity condition". General speaking, conditions of this type impose restrictions on the constraint surfaces (functions). Further details regarding regularity conditions can be found on pages 7 and 199 in [9]. Such conditions are given explicitly for field theories such as the "Klein-Gordon" and Dirac fields defined on appropriate spacetimes. We can apply the method above to examples of such field theories.

3.2 Local problem via chain extensions

The formulation of Lagrangian field theory in terms of jets of sections of vector bundles has proven to be quite satisfactory in the modeling of large classes of physical theories when the fields are what physicists call bosonic fields. Our purpose here is to show how the notion of chain extension may be used to reformulate “local BRST theory” in a setting involving bosonic and fermionic fields. Physicists and mathematicians often employ different notation to describe field theories involving both bosonic and fermionic fields. We will adopt a hybrid notation which permits us to deal with the issues of concern to us. For more complete details regarding the notation of this section we refer the reader to [5]. A more systematic development of the properties of infinite jet bundles may be found in [10].

Let M be a n-dimensional manifold and let $\pi : E \rightarrow M$ be a vector bundle of fibre dimension k over M. Let $J^\infty E$ be the infinite jet bundle over π with $\pi^\infty_M : J^\infty E \rightarrow M$. The bosonic fields under consideration will be identified with sections of π. Fermionic fields are usually modeled by fields called ghost fields. In order to describe the ghost fields we define a finite-dimensional Grassmann algebra \mathcal{G} with n linearly independent generators $\{e_a\}$. Thus a basis of \mathcal{G} is the set of products $e_{a_1}e_{a_2}\cdots e_{a_k}$ where $1 \leq a_1 < a_2 < \cdots < a_k \leq n$. The linear space generated by $e_{a_1}e_{a_2}\cdots e_{k}$ for fixed k is denoted \mathcal{G}_k and we say that elements of \mathcal{G}_k have ghost number k. A single ghost field is a mapping from M into \mathcal{G}_1. The Lagrangian of the “fermionic sector” of a Lagrangian field theory is a function of a finite number N of such ghost fields and their derivatives. More precisely such a Lagrangian is a function of mappings from M into \mathcal{G}_1^N and derivatives of such mappings. The values of these Lagrangians are in \mathcal{G} itself as they are usually sums of products of the fields and their derivatives.

Similarly, to describe anti-ghost fields we choose a symmetric algebra \mathcal{A} which is generated by n linearly independent elements $\{f_b\}$ of \mathcal{A}. As before
a basis of \mathcal{A} is the set of all products $f_1 f_2 \cdots f_n$ where $1 \leq b_1 < b_2 < \cdots < b_k \leq n$. As before \mathcal{A}_k denotes the subspace generated by products $f_{b_1} f_{b_2} \cdots f_{b_k}$ and we say that elements of this subspace have anti-ghost number k.

Define a vector bundle by setting $\tilde{E}_x = E_x \oplus \mathcal{G}^N_1 \oplus \mathcal{A}^N_1$ for each $x \in M$. Then \tilde{E} is a vector bundle over M and the fields under consideration will be sections of this bundle.

For simplicity we will assume that the fiber bundle $E \to M$ is trivial and has fiber the vector space V. It follows that $\tilde{\pi}: \tilde{E} \to M$ is also trivial with fiber $V \oplus \mathcal{G}^N_1 \oplus \mathcal{A}^N_1$. It follows that sections ψ of $\tilde{\pi}$ may be identified with maps from M into the fiber $V \oplus \mathcal{G}^N_1 \oplus \mathcal{A}^N_1$. Moreover we choose a basis of V once for all so that mappings from M into the fiber $V \oplus \mathcal{G}^N_1 \oplus \mathcal{A}^N_1$ are uniquely determined by their components. We write $\psi(x) = (\phi(x), \eta^a(x), P_b(x))$ to denote a typical section of $\tilde{\pi}$. Observe that the vector components of η anticommute,

$$\eta^a \eta^b = -\eta^b \eta^a,$$

but their scalar components $\eta^{a a}$, $\eta^{b b}$ are in $C^\infty(M)$ and thus commute. If (x^μ) are the components of a local chart on M, then the infinite jet of a section ψ of $\tilde{\pi}$ may be denoted as

$$j^\infty \psi(x) = (x, \phi(x), \eta(x), P(x), \partial_I \phi(x), \partial_J \eta(x), \partial_K P(x)).$$

Here I, J, K are symmetric multi-indices where, for example, $\partial_I = \partial_{\mu_1} \partial_{\mu_2} \cdots \partial_{\mu_r}$ are partial derivatives relative to the chart (x^ν). We denote coordinates on $J^\infty \tilde{E}$ as follows:

$$x^\mu(j^\infty \psi(p)) = x^\mu(p), \quad u^I_j(j^\infty \psi(p)) = \partial_I \phi^j(x)$$

$$\mu^a_J(j^\infty \psi(p)) = \partial_J \eta^{a a}(x), \quad \nu^b_K(j^\infty \psi(p)) = \partial_K P_{b b}(x).$$

One may now consider the bivariational-complex of the infinite jet bundle $J^\infty \tilde{E}$. The de Rham complex of differential forms $\Omega^*(J^\infty \tilde{E}, d)$ on $J^\infty \tilde{E}$ possesses a differential ideal, the ideal C of contact forms which satisfy $(j^\infty \phi)^* \theta = 0$ for all sections ϕ with compact support. This ideal is generated by the contact one-forms, which in local coordinates assume the form $\theta^1_i = du^i - u^j dx^j$, $\theta^{a a}_j = d\mu^{a a} - \mu^{a a} dx^j$, $\theta^{b b}_K = d\nu^{b b}_K - \nu^{b b}_K dx^j$. Contact one-forms of order zero satisfy $(j^1 \phi)^*(\theta) = 0$. For example, for the bosonic components of a field, contact forms of order zero assume the form $\theta^a = du^a - u^j dx^i$ in local coordinates (the multi-index I is empty in this case).
Using the contact forms, we see that the complex $\Omega^*(J^{\infty} \tilde{E}, d)$ splits as a bicomplex $\Omega^{r,s}(J^{\infty} \tilde{E})$ (though the finite level complexes $\Omega^*(J^{p} \tilde{E})$ do not), where $\Omega^{r,s}(J^{\infty} \tilde{E})$ denotes the space of differential forms on $J^{\infty} \tilde{E}$ with r horizontal components and s vertical components. The bigrading is described by writing a differential p-form $\alpha = \alpha_f^J (\theta_j^A \wedge dx^I)$ as an element of $\Omega^{r,s}(J^{\infty} \tilde{E})$, with $p = r + s$, and

$$dx^I = dx^{i_1} \wedge ... \wedge dx^{i_r} \quad \text{and} \quad \theta_j^A = \theta_{j_1}^{a_1} \wedge ... \wedge \theta_{j_s}^{a_s},$$

where $\theta_{j_j}^{a_j}$ denotes any one of the three types of contact forms defined above. We are interested in the complex

$$0 \to \Omega^{0,0}(J^{\infty} \tilde{E}) \to \Omega^{1,0}(J^{\infty} \tilde{E}) \to \cdots \to \Omega^{n-1,0}(J^{\infty} \tilde{E}) \to \Omega^{n,0}(J^{\infty} \tilde{E})$$

with the differential d_H defined by $d_H dx^i D_i$ where

$$D_j = \frac{\partial}{\partial x_j} + u_{j}^i \frac{\partial}{\partial u_i} + \mu_{j}^{a \alpha} \frac{\partial}{\partial \mu_{a \alpha}} + \nu_{j}^{b \beta} \frac{\partial}{\partial \nu_{b \beta}}.$$

Here if $\alpha = \alpha_f dx^I$ then $d_H \alpha = D_i \alpha_f (dx^i \wedge dx^I)$. Notice that this complex is exact by the algebraic Poincare lemma. The algebraic Poincare lemma is essentially the Poincare lemma for the horizontal complex on the infinite jet bundle. It is discussed and proved in [6], for example.

Definition 6 To say that F is a local function (on $J^{\infty} \tilde{E}$) means that F is a function from $J^{\infty} \tilde{E}$ into $\mathbb{R} \otimes \mathcal{G} \otimes \mathcal{A}$ such that F factors through the projection of $J^{\infty} \tilde{E}$ onto $J^{p} \tilde{E}$ for some nonnegative integer p. Moreover for each section ψ of $\tilde{\pi}$, $\psi = (\phi, \eta, P)$, we require that

$$F(j^{\infty} \psi(x)) = F_{AB}^{JK}(j^{\infty} \phi(x)) (\partial_{j_1} \eta^{a_1})(x) \cdots (\partial_{j_r} \eta^{a_r})(x) (\partial_{K_1} P_{b_1})(x) \cdots (\partial_{K_s} P_{b_s})(x).$$

where $A = \{a_1a_2 \cdots a_r\}$, $B = \{b_1b_2 \cdots b_s\}$ are multi-indices and $J = \{J_1J_2 \cdots J_r\}$, $K = \{K_1K_2 \cdots K_s\}$ are vectors of multi-indices. Here the set of real-valued functions $\{F_{AB}^{JK}\}$ are smooth functions on the jet bundle $J^{\infty} E$. We denote this algebra of local functions on $J^{\infty} \tilde{E}$ by $\text{Loc} = \text{Loc}_E$.

Definition 7 A local functional

$$\mathcal{L}[\psi] = \int_M L(x, \phi^{(p)}(x), \partial_{j_1} \partial_{j_2} \cdots \partial_{j_r} \eta^{b_1} \partial_i \partial_{j_1} \cdots \partial_{j_s} \partial_i \partial_{K_1} P^{a_1}) dvol_M$$

(32)
is the integral over M of a local function L evaluated on sections ψ of \tilde{E} of compact support. Thus

$$\mathcal{L}(\psi) = \int_M j^\infty(\psi)^*(L) dvol_M$$

for some local function $L \in \text{Loc}$.

Remark. Notice that the integral in the last definition is the integral of a vector-valued function and the result is then a vector in the space $\mathbb{R} \otimes \mathcal{G} \otimes \mathcal{P}$. We presume that the integral respects the grading on this algebra as this is usually the case in quantum field theory in which integrals of this type regularly arise.

In physical applications, the BRST operator is often a mapping $S : \text{Loc} \rightarrow \text{Loc}$ which commutes with the horizontal differential d_H and which satisfies the condition $S^2 = d_H k = \partial_i k^i$ where $k = k^i(-1)^{i-1}[\frac{\partial}{\partial x^i} \ (dx^1 \wedge dx^2 \wedge \cdots dx^n)]$ (see [6] and [9]). Thus in the Lagrangian field setting, the BRST differential is essentially a differential on a quotient space and consequently on the space \mathcal{F} of local functionals. Notice that $(\mathcal{S}, \mathcal{F})$ is a D-algebra, and if we set $\mathcal{B} = d_H(\Omega^{n-1,0}) =$ divergences, then we can obtain a local BRST theory via a chain extension for the triple $(\mathcal{B}, \mathcal{F}, \mathcal{S})$. To apply our theorem, we need to construct a homological resolution for space \mathcal{F}.

Obviously, $\mathcal{F} \simeq H^n(\Omega^{*,0}, d_H)$ and $\mathcal{B} = d_H(\Omega^{n-1,0})$. By the algebraic Poincare lemma [6] (this is essentially the Poincare lemma for the horizontal differential), we have a commutative diagram:

$$
\begin{array}{cccccccc}
\mathbb{R} & \rightarrow & \Omega^{0,0} & \rightarrow & \ldots & \rightarrow & \Omega^{n-2,0} & \rightarrow & \Omega^{n-1,0} & \rightarrow & \Omega^{n,0} \\
\downarrow \eta & & \downarrow \eta \\
0 & \rightarrow & 0 & \rightarrow & \ldots & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & H_0 = \mathcal{F}
\end{array}
$$

Thus $(\Omega^{*,0}, d_H)$ provides a homological resolution for \mathcal{F}. It follows that if there exists an appropriate contracting homotopy then we can use Theorem 3 to construct an operator $\tilde{S} = d_H + S + l_3$ which serves in place of the BRST operator S in the usual approach to local BRST theory. The explicit expression for \tilde{S} is interesting but more complicated because the contracting homotopy given by the algebraic Poincare lemma is not so simple (see [12] and [10]).
3.3 Consistent deformation

The purpose of this section is to reanalyze the long-standing problem of constructing consistent interactions among fields with a gauge freedom using the formalism of chain extensions. Analysis of this problem has a long history which we will not reiterate here, preferring instead to direct attention to two papers. The first of these is the paper by Berhends, Burgers, and Van Dam [2] where there is a frontal assault on the problem using direct methods and the second is the paper by Barnich and Henneaux [4] where the problem is addressed using the antibracket formalism. The latter paper reformulates the problem as a deformation problem in the sense of deformation theory [7], namely that of *deforming consistently the master equation*. They show, by using the properties of the antibracket, that there is no obstruction to constructing interactions that consistently preserve the gauge symmetries of the free theory if one allows the interactions to be non local.

It is our intent here show that the notion of chain extension clarifies the description of the algebraic aspects of the anti-bracket approach of the problem. Recall that if \(L \) is a Lagrangian with gauge degrees of freedom, then the simultaneous deformation of the Lagrangian and it’s gauge transformations \(\delta_{\beta} \) can be related to the deformation of the master equation.

In the Batalin-Vilkovisky formalism for gauge theories, which we consider to be irreducible, one introduces, besides the original fields \(\phi^i \) of ghost number 0 and the ghosts \(C^\alpha \) of ghost number 1 (related to the gauge invariance), the corresponding antifields \(\phi^*_i \) and \(C^*_\alpha \) of opposite Grassmann parity and ghost number \(-1\) and \(-2\) respectively [9]. An antibracket is defined by requiring that the fields \(\phi^A \equiv (\phi^i, C^\alpha) \) and antifields \(\phi^*_A \) be conjugate:

\[
(\phi^A(x), \phi^*_B(y)) = \delta^A_B \delta(x-y)
\]

Physicists (see [9]) then define the anti-bracket for arbitrary functionals \(A_1 \) and \(A_2 \) of these “extended fields” by

\[
(A_1, A_2) = \int \left(\frac{\delta R A_1}{\delta \phi^A} \frac{\delta L A_2}{\delta \phi^*_A} - \frac{\delta R A_1}{\delta \phi^*_A} \frac{\delta L A_2}{\delta \phi^A} \right) d^n x
\]

where the operator \(\frac{\delta R}{\delta \phi^A} \) is a functional derivative acting from the right and the other terms are defined similarly.

Notice that functionals such as \(A_1, A_2 \) above are not functions of the fields and antifields but rather are integrals of such functions. A more precise
formulation of these concepts was provided in the last subsection on local functionals.

In the following paragraphs, the parity \(\epsilon_A \) of a functional \(A \) is defined by requiring that \(\epsilon_A = 1 \) when the ghost number of \(A \) is odd and \(\epsilon_A = 0 \) when the ghost number of \(A \) is even. The central goal of the formalism is the construction of a proper solution to the master equation

\[
(S, S) = 0,
\]

where \(\epsilon_S = 0 \). The functional \(S \) is required to begin with the classical action \(S_0 \), to which one couples via antifields the gauge transformations with the gauge parameters replaced by the ghosts. The BRST symmetry is then canonically generated by the antibracket through the equation:

\[
s = (S, \cdot).
\]

The description of the anti-field formalism we have given here closely follows that of [9].

Thus we require that the components of both the fields \(\phi^A \) and anti-fields \(\phi^*_A \) be mappings from a given manifold \(M \) into the complex field. We then define \(\mathcal{R} \) to be the algebra of all functionals \(A = A(\phi^B, \phi^*_B) \) of the fields, anti-fields, and their derivatives. If \(A_1, A_2 \) are in \(\mathcal{R} \) then the anti-bracket \((A_1, A_2) \) defined above is then again an element of \(\mathcal{R} \). The bracket defined in this manner is odd, carries ghost number +1, and obeys the (graded) Jacobi identity. More explicitly, if \(\epsilon_F \) denotes the parity of an element \(F \) of \(\mathcal{R} \) we have for \(A, B, C \in \mathcal{R} \):

\[
(A, B) = -(-1)^{(\epsilon_A+1)(\epsilon_B+1)}(B, A)
\]

\[
(-1)^{(\epsilon_A+1)(\epsilon_C+1)}(A, (B, C)) + (-1)^{(\epsilon_B+1)(\epsilon_A+1)}(B, (C, A))
\]

\[
+(-1)^{(\epsilon_C+1)(\epsilon_B+1)}(C, (A, B)) = 0.
\]

For our exposition below we find it useful to extend the definition of the anti-bracket to the space of formal power series \(\mathcal{R}[[t]] = \{ \sum_{i=0}^{\infty} a_i t^i \mid a_i \in \mathcal{R} \} \).

We define an anti-bracket on \(\mathcal{R}[[t]] \) by:

\[
(\sum_{i=0}^{\infty} a_i t^i, \sum_{j=0}^{\infty} b_j t^j) = \sum_{i,j=0}^{\infty} (a_i, b_j) t^{i+j}.
\]

Clearly, \(\mathcal{R}[[t]] \) is both a vector space over the field \(k \) of complex numbers and a module over the algebra \(k[[t]] \).
It will be fairly obvious from the exposition below that in our formalism \(\mathcal{R} \) could be any vector space over an arbitrary field \(k \) of characteristic zero provided one has an anti-bracket defined on \(\mathcal{R} \) subject to the conditions above.

We now proceed to analyze the master equation using chain extensions. Let \(S_0 \in \mathcal{R} \) be a solution of the master equation

\[
(S_0, S_0) = 0
\]

and let \(s_0 = (S_0, \cdot) \) denote the corresponding BRST differential. The problem of deforming \(S_0 \) is the problem of finding a formal power series \(S(t) = \sum_0^\infty S_i t^i \) in \(\mathcal{R}[[t]] \) such that \((S(t), S(t)) = 0 \) and such that \(\epsilon_{S_i} = 0 \) for all \(i \). Expansion of the master equation in the deformation parameter gives:

\[
(S_0, S_0) = 0
(S_0, S_1) = 0
(S_1, S_1) + (S_0, S_2) + (S_2, S_0) = 0
\ldots
\]

In general, \(\sum_{i+j=n}(S_i, S_j) = 0 \). In order to solve for the \(S_n \) inductively, we notice that:

\[
0 = \sum_{i+j=n, i,j \geq 0} (S_i, S_j) = \sum_{i+j=n, i,j \geq 1} (S_i, S_j) + (S_0, S_n) + (S_n, S_0)
\]

Since the anti-bracket is graded commutative and \(gh(S) = 0 \), we have \((S_0, S_n) = (S_n, S_0) \), thus:

\[
\sum_{i+j=n, i,j \geq 1} (S_i, S_j) = -2(S_0, S_n)
\]

Set \(R_n = \sum_{i+j=n, i,j \geq 1}(S_i, S_j) \), obviously \(R_n \) is determined by the first \(n-1 \) terms:

\(S_1, S_2 \cdots S_{n-1} \) of the sequence \(S \) and \(R_n \) is a \(s_0 \)-coboundary, which we call the \(n \)-th obstruction to the deformation of \(S_0 \). By definition the \(n \)-th order deformation of \(S_0 \) is a sequence \(S_1, S_2 \cdots, S_n \) in \(\mathcal{R} \) such that

\[
(\sum_0^n S_i t^i, \sum_0^n S_j t^j) \equiv 0 \pmod{t^{n+1}}.
\]
Given an \(n \)-th order deformation of \(S_0 \) clearly the obstruction to obtaining an \((n+1)\)-th order deformation of \(S_0 \) is \(R_{n+1} = \sum_{i+j=n+1, i,j \geq 1} (S_i, S_j) \).

Define an submodule \(I \) in \(\mathcal{R}[[t]] \) by \(I = \mathcal{R}[[t]]^n + 1 = \{ \sum_{i \geq n+1} a_i t^i \mid a_i \in \mathcal{R} \} \); thus we have a short exact sequence:

\[
0 \rightarrow I \rightarrow \mathcal{R}[[t]] \rightarrow \mathcal{R}[[t]]/(t^{n+1}) \rightarrow 0. \tag{41}
\]

Define a \(k \)-linear mapping \(D \) on \(\mathcal{R} \) with values in \(\mathcal{R}[[t]] \) by \(D(x) = (\sum_0^n S_i t^i, x) \) for each \(x \in \mathcal{R} \). The scalar multiplication of the field \(k \) on \(\mathcal{R}[[t]] \) can clearly be extended to a module multiplication of the power series ring \(k[[t]] \) on \(\mathcal{R} \). Moreover the operator \(D \) can be extended to a \(k[[t]] \) module homomorphism of \(\mathcal{R}[[t]] \) with values in \(\mathcal{R}[[t]] \). Notice that \(D(I) \subseteq I \) and as a consequence there is an induced operator on \(\mathcal{R}[[t]] = \mathcal{R}[[t]]/I \) which we denote by \(\bar{D} \). We will show below that \(\bar{D}^2(I) \subseteq I \) and consequently that \(\bar{D}^2 = 0 \). Thus we obtain a triple \((I, \mathcal{R}[[t]], \bar{D}) \); we intend to construct a chain extension for this triple.

To do this we first introduce a “superpartner set of \(\mathcal{R} \)” which we denote by \(\mathcal{R}[1] \) and which is defined by \(\mathcal{R}[1] = \{ a^* \mid a \in \mathcal{R} \} \) where \(a^* \leftrightarrow a \) is a one to one correspondence and \(\epsilon(a^*) = \epsilon(a) + 1 \).

Let \(X_0 = \mathcal{R}[[t]] \) and \(X_1 = \mathcal{R}[1][[t]]^{n+1} = \{ \sum_{i \geq n+1} a_i^* t^i \mid a_i^* \in \mathcal{R} \} \), so that one has a homological resolution of \(\mathcal{R}[[t]]/I \):

\[
0 \rightarrow X_1 \xrightarrow{l_1} X_0 \rightarrow 0. \tag{42}
\]

Here \(l_1 : X_1 \rightarrow X_0 \) is defined by \(l_1(x) = \sum_{i \geq n+1} a_i^* t^i \) for each \(x \) such that \(x = \sum_{i \geq n+1} a_i^* t^i \). We can now construct a contracting homotopy similar to earlier definitions. In order to avoid confusion, we denote the contracting homotopy in that which follows by \(h \). Since the sequence \(42 \) is split, there exists a natural direct sum decomposition of \(X_0 = I \oplus X_0/I \). Define \(\mathcal{F} = X_0/I, \eta : X_0 \rightarrow \mathcal{F} \) by \(\eta = \text{proj}_\mathcal{F} \) and \(\lambda \) by \(\lambda = i_{\mathcal{F} \rightarrow X_0} \) (the inclusion mapping). Finally, since \(X_0 = I \oplus \mathcal{F} \), define the contracting homotopy \(h \) by \(h(x) = -\sum_{i \geq n+1} a_i^* t^i \) for each \(x \in I, x = \sum_{i \geq n+1} a_i^* t^i \), and define \(h \) to be zero on \(\mathcal{F} \). It’s easy to show that \(\lambda \circ \eta - 1_{X_0} = l_1 \circ h + h \circ l_1 \), thus we may define a chain extension for the triple \((I, \mathcal{F}, \bar{D})\) via the proposition below.

Let \(S_D = \sum_{i=0}^n S_i t^i \in X_0 = \mathcal{R}[[t]] \) so that \(D : X_0 \rightarrow X_0 \) is given by \(D(x) = (S_D, x) \) for all \(x \in X_0 \). It is easy to show that

\[
(S_D, (S_D, x)) = \frac{1}{2}((S_D, S_D), x)
\]
for all \(x \in X_0 \) and that \(D^2(I) \subseteq I \). It follows that one has an induced operator \(\bar{D} \) on \(R[[t]]/I \). Using this fact we obtain the following proposition.

Proposition 8 Assume that \(R \) is a graded linear space (graded with respect to ghost number above) and that it has an anti-bracket structure which is graded commutative and which satisfies the graded Jacobi identity as above. Let \(R[[t]] \) denote the corresponding space of formal power series and let \(I \) denote the \(k[[t]] \) submodule \(R[[t]]t^{n+1} \). If \(S_0, S_1, \ldots, S_n \) are even elements of \(R \) and \(D \) is the operator on \(R[[t]] \) defined by \(D(x) = (\sum_{i=0}^n S_i t^i, x), \quad x \in R[[t]], \) then \(D(I) \subseteq I \) and the induced operator \(\bar{D} \) on \(R[[t]]/I \) is nilpotent. Moreover the triple \((I, R[[t]]/I, \bar{D})\) admits a chain extension with chain maps \(l_1, l_2, l_3 \) such that the map \(S = l_1 + l_2 + l_3 \) satisfies \(S^2 = 0 \). The explicit homological resolution \(X_* \) is defined in the proof below.

Proof. Recall that \(X_0 = R[[t]], X_1 = R[1][[t]]t^{n+1} \), and define a mapping \(l_2 : X_0 \to X_0 \) by \(l_2(x) = D(x) = (\sum_{i=0}^n S_i t^i, x), x \in X_0 \). Since we intend to apply Theorem 3, recall that in that context, \(B = l_1(X_1) \) and consequently, \(B = I \) in the present case. Thus \(l_2(B) = l_2(R[[t]]t^{n+1}) = D(R[[t]]t^{n+1}) \subseteq R[[t]]t^{n+1} = I = B \). This is one of the conditions required to apply Theorem 3. Also note that for \(x \in X_0, \ l_2^2(x) = D^2(x) = \frac{1}{2}((S_D, S_D), x) \) and by (40) \((S_D, S_D) = 0 \mod (t^{n+1})\). Thus \(l_2^2(X_0) \subseteq I = B \).

Thus the hypothesis of Theorem 3 holds and consequently the theorem asserts the existence of maps \(l_1, l_2, l_3 \) which define a chain extension, in particular their sum has square zero.

From the proposition we know that the triple \((I, R[[t]]/I, \bar{D})\) admits a chain extension with chain maps \(l_1, l_2, l_3 \) defined by Theorem 3. In applications, it is useful to have explicit formulas for these maps. Each mapping \(l_i \) is a mapping from \(X_* \) to \(X_* \) which is uniquely determined by its values on \(R \) and \(R[1] \). Our next theorem provides explicit formulas which show how to obtain the maps \(l_i, i = 1, 2, 3 \).

Theorem 9 The chain maps \(l_1, l_2, l_3 \), which define the chain extension \(S = l_1 + l_2 + l_3 \), guaranteed by the proposition above, are uniquely determined by their values on the linear spaces \(R \) and \(R[1] \) and are given in a concise form as follows. The mapping \(l_1 \) is determined by its values on \(R[1] \) with \(l_1(a^*) = a \). The map \(l_2 \) is given by its values on \(R \) and \(R[1] \), respectively by

\[
l_2(a) = \sum_{j=0}^n (S_i, a)t^j, \quad l_2(a^*) = -\sum_{j=0}^n (S_i, a^*)t^j.
\]
Finally, l_3 is uniquely determined by its values on \mathcal{R},

$$l_3(a) = -\frac{1}{2} \sum_{n+1 \leq i+j \leq 2n} ((S_i, S_j), a)^{*t^{i+j}}.$$

Proof. By the proposition above and Theorem 3 we have,

$$l_2(a) = hl_2 l_1(a) = h(\sum_{0}^{n} S_i t^i, a) = h(\sum_{0}^{n} (S_i, a)t^i) = -\sum_{0}^{n} (S_i, a)^{*t^i}.$$

Before evaluating l_3, we replace l_2 by D, which appears in the canonical transformation and in the corollary above. Then by Theorem 3, $l_3(a) = hl_2^2(a) = h(D, (D, a))$. Since

$$D(x) = (\sum_{i=0}^{n} S_i t^i, x),$$

we have:

$$l_3(a) = \frac{1}{2} h((\sum_{i=0}^{n} S_i t^i, \sum_{j=0}^{n} S_j t^j), a)$$

$$= \frac{1}{2} h(\sum_{k=0}^{2n} \sum_{i+j=k} ((S_i, S_j), a)t^{i+j})$$

$$= -\frac{1}{2} \sum_{k=n+1}^{2n} \sum_{i+j=k} ((S_i, S_j), a)^{*t^{i+j}}$$

$$= -\frac{1}{2} \sum_{n+1 \leq i+j \leq 2n} ((S_i, S_j), a)^{*t^{i+j}}.$$

This finishes the proof of the theorem.

Remark. Observe that the last calculation above identifies the obstruction R_{n+1} as a summand of the value of l_3 on \mathcal{R}. In particular, if l_3 is zero then the obstruction to further deformation vanishes.

If one wishes to consider infinitesimal deformations, simply take $n = 1$, then by the theorem, we have:

$$S(a) = S_0(a) + S_1(a)t - ((S_1, S_1), a)t^2$$
\[S(a^*) = a - (S_0, a)^* - (S_1, a)^* t. \]

Extend these as derivations and we obtain a consistent deformation of the space of fields \(\mathcal{R} \) by enlarging \(\mathcal{R} \) to the space \(\mathcal{R}[1] \), or physically speaking, the deformation is achieved by adjoining the superpartners to the space of original fields.

3.4 Deformation theory, sh-Lie algebras

In the last two decades, deformations of various types of structures have assumed an ever increasing role in mathematics and physics. For each such deformation problem a goal is to determine if all related deformation obstructions vanish and many beautiful techniques been developed to determine when this is so. Sometimes genuine deformation obstructions arise and occasionally that closes mathematical development in such cases, but in physics such problems are dealt with by introducing new auxiliary fields to kill such obstructions. This idea suggests that one might deal with deformation problems by enlarging the relevant category to a new category obtained by appending additional algebraic structures to the old category.

In the present subsection, we consider deformations of Lie algebras. In order to be complete we review basic facts on Lie algebra deformations; more detail may be found in the book edited by M.Hazawinkel and M.Gerstenhaber [8].

Let \(A \) be a \(k \)-algebra and \(\alpha \) be its multiplication, i.e., \(\alpha \) is a \(k \)-bilinear map \(A \times A \rightarrow A \) defined by \(\alpha(a, b) = ab \). A deformation of \(A \) may be defined to be a formal power series \(\alpha_t = \alpha + t\alpha_1 + t^2\alpha_2 + \cdots \) where each \(\alpha_i : A \times A \rightarrow A \) is a \(k \)-bilinear map and the “multiplication” \(\alpha_t \) is formally of the same “kind” as \(\alpha \), e.g., it is associative or Lie or whatever is required. One technique used to set up a deformation problem is to extend a \(k \)-bilinear mapping \(\alpha_t : A \times A \rightarrow A[[t]] \) to a \(k[[t]] \)-bilinear mapping \(\alpha_t : A[[t]] \times A[[t]] \rightarrow A[[t]] \).

A mapping \(\alpha_t : A[[t]] \times A[[t]] \rightarrow A[[t]] \) obtained in this manner is necessarily uniquely determined by its values on \(A \times A \). In fact we would not regard the mapping \(\alpha_t : A[[t]] \times A[[t]] \rightarrow A[[t]] \) to be a deformation of \(A \) unless it is determined by its values on \(A \times A \).

From this point on, we assume that \((A, \alpha) \) is a Lie algebra, i.e., we assume that \(\alpha(\alpha(a, b), c) + \alpha(\alpha(b, c), a) + \alpha(\alpha(c, a), b) = 0 \). Thus the problem of deforming a Lie algebra \(A \) is equivalent to the problem of finding a mapping \(\alpha_t : A \times A \rightarrow A[[t]] \) such that \(\alpha_t(\alpha_t(a, b), c) + \alpha_t(\alpha_t(b, c), a) + \alpha_t(\alpha_t(c, a), b) = \)
If we set \(\alpha_0 = \alpha \) and expand this Jacobi identity by making the substitution
\[
\alpha_t = \alpha + t\alpha_1 + t^2\alpha_2 + \cdots ,
\]
we get the equation
\[
\sum_{i,j=0}^{\infty} [\alpha_j(\alpha_i(a,b), c) + \alpha_j(\alpha_i(b,c), a) + \alpha_i(\alpha_i(c,a), b)]t^{i+j} = 0
\]
(44)
and consequently a sequence of deformation equations;
\[
\sum_{i,j \geq 0, i+j=n} [\alpha_j(\alpha_i(a,b), c) + \alpha_j(\alpha_i(b,c), a) + \alpha_i(\alpha_i(c,a), b)] = 0.
\]
(45)

The first two equations are:
\[
\alpha_0(\alpha_0(a,b), c) + \alpha_0(\alpha_0(b,c), a) + \alpha_0(\alpha_0(c,a), b) = 0
\]
(46)
\[
\alpha_0(\alpha_1(a,b), c) + \alpha_0(\alpha_1(b,c), a) + \alpha_0(\alpha_1(c,a), b) + \alpha_1(\alpha_0(a,b), c)
\]
\[+ \alpha_1(\alpha_0(b,c), a) + \alpha_1(\alpha_0(c,a), b) = 0
\]
(47)

We can reformulate the discussion above in a slightly more compact form. Given a sequence \(\alpha_n : A \times A \rightarrow A \) of bilinear maps, we define “compositions” of various of the \(\alpha_n \) as follows:
\[
\alpha_i \alpha_j : A \times A \times A \rightarrow A
\]
(48)
is defined by
\[
(\alpha_i \alpha_j)(x_1, x_2, x_3) = \sum_{\sigma \in unsh(2,1)} (-1)^{\sigma} \alpha_i(\alpha_j(x_{\sigma(1)}, x_{\sigma(2)}), x_{\sigma(3)})
\]
(49)
for arbitrary \(x_1, x_2, x_3 \in A \).

Thus the deformation equations are equivalent to following equations:
\[
\alpha_0^2 = 0
\]
(50)
\[
\alpha_0 \alpha_1 + \alpha_1 \alpha_0 = 0
\]
(51)
\[
\alpha_1^2 + \alpha_0 \alpha_2 + \alpha_2 \alpha_0 = 0
\]
(52)
\[\ldots \]
\[
\Sigma_{i+j=n} \alpha_i \alpha_j = 0
\]
(53)
\[\ldots .\]
(54)

Define a bracket on the sequence \(\{\alpha_n\} \) of mappings by \([\alpha_i, \alpha_j] = \alpha_i \alpha_j + \alpha_j \alpha_i\) and a “differential” \(d \) by \(d = ad_{\alpha_0} = [\alpha_0, \cdot] \), the “adjoint representation”
relative to α_0. Notice that the second equation in the list above is equivalent to the statement that α_1 defines a cocycle $\alpha_1 \in Z^2(A, A)$ in the Lie algebra cohomology of A. Moreover it is known that the second cohomology group $H^2(A, A)$ classifies the equivalence class of infinitesimal deformations of A. This being the case we refer to the triple (A, α_0, α_1) as being initial conditions for deforming the Lie algebra A. Notice that the third equation in the above list can be rewritten as

$$[\alpha_1, \alpha_1] = -[\alpha_0, \alpha_2] = -d\alpha_2 \quad (55)$$

When this equation holds one has then that $[\alpha_1, \alpha_1]$ is a coboundary and so defines the trivial element of $H^3(A, A)$ for any given deformation α_t. Thus if $[\alpha_1, \alpha_1]$ is not a coboundary, then we may regard $[\alpha_1, \alpha_1]$ as the first obstruction to deformation and in this case we can not deform A at second order. In general, to say that there exists a deformation of (A, α_0, α_1) up to order $n - 1$, means that there exists a sequence of maps $\alpha_0, \cdots, \alpha_{n-1}$ such that

$$\sum_{\sigma \in \text{unsh}(2, 1)} (-1)^\sigma \alpha_i(\alpha_t(x_{\sigma(1)}, x_{\sigma(2)}), x_{\sigma(3)}) = 0 \quad (\text{mod } t^n).$$

If this is the case and if there is an obstruction to deformation at nth order, then it follows that $\rho_n = -\sum_{i+j=n,i,j>0} \alpha_i \alpha_j$ is in some sense the obstruction and $[\rho_n]$ is a nontrivial element of $H^3(A, A)$. If $[\rho_n] \neq 0$, then the process of obtaining a deformation will terminate at order $n - 1$ due to the existence of the obstruction ρ_n. In principal, it is possible that one could return to the beginning and select different terms for the α_i but when this fails what can one say? This is the issue in the remainder of this section.

Indeed the central point of this section is to show that when there is an obstruction to the deformation of a Lie algebra, one can use the obstruction itself to define one of the structure mappings of an sh-Lie algebra. Without loss of generality, we consider a deformation problem which has a first order obstruction.

The required sh-Lie structure lives on a graded vector space X_* which we define below. This space in degree zero is given by $X_0 = A[[t]] = \{\sum a_i t^i | a_i \in A\}$. The spaces $B = < t^2 > = A[[t]] \cdot t^2 = \{\sum_{i \geq 2} a_i t^i | a_i \in A\}$ and $F = X_0/B = \text{are also relevant to our construction. Notice that } F$ is isomorphic to $\{a_0 + a_1 t | a_0, a_1 \in A\}$ as a linear space and that X_0, B are both $k[[t]]$-modules while F is a $k[[t]]/ < t^2 >$ module (recall that k is underlying field of A). To summarize, we have following short exact sequence:

$$0 \rightarrow B \rightarrow X_0 \rightarrow F \rightarrow 0.$$
Suppose that the initial Lie structure of A is given by $\alpha_0 : A \times A \rightarrow A$ and denote a fixed infinitesimal deformation by $[\alpha_1] \in H^2(A, A)$. One of the structure mappings of our sh-Lie structure will be determined by the mapping $\tilde{l}_2 : X_0 \times X_0 \rightarrow X_0$ defined as follows: for any $a, b \in A$, let

$$\tilde{l}_2(a, b) = \alpha_0(a, b) + \alpha_1(a, b)t$$

and extend it to X_0 by requiring that it be $k[[t]]$-bilinear. Obviously, \tilde{l}_2 induces a Lie bracket $[,]$ on F, but if the obstruction $[\alpha_1, \alpha_1]$ is not zero, then $\tilde{l}_2^2 \neq 0$ and consequently \tilde{l}_2 can not be a Lie bracket on X_0 (since it doesn’t satisfy the Jacobi identity).

To deal with this obstruction we will show that we can use α_0, α_1 to construct an sh-Lie structure with at most three nontrivial structure maps l_1, l_2, l_3 such that the value of l_3 on $A \times A \times A$ is the same as that of $[\alpha_1, \alpha_1]$. In particular, l_3 will vanish if and only if the obstruction $[\alpha_1, \alpha_1]$ vanishes. Thus the sh-Lie algebra encodes the obstruction to deformation of the Lie algebra (A, α_0).

The required sh-Lie algebra lives on a certain homological resolution (X_*, l_1) of F, so our first task is to construct this resolution space for F. To do this let’s introduce a “superpartner set of A_i” denoted by $A_i[1]$, as follows: for each $a \in A_i$, introduce a^* such that $a^* \leftrightarrow a$ is a one to one correspondence and define $\epsilon(a^*) = \epsilon(a) + 1$. Let $X_1 = A_i[[t]]t^2$ and define a map $l_1 : X_1 \rightarrow X_0$ by

$$l_1(x) = \Sigma_{i \geq 2} a_i t^i \in X_0, \quad x = \Sigma_{i \geq 2} a^*_i t^i \in X_1.$$

Notice that this is just the $k[[t]]$ extension of the $a^* \leftrightarrow a$ map. Since l_1 is injective, we obtain a homological resolution $X_* = X_0 \oplus X_1$ due to the fact that the complex defined by:

$$0 \rightarrow X_1 \xrightarrow{l_1} X_0 \rightarrow 0$$

has the obvious property that $H(X_*) = H_0(X_*) \simeq F$.

The sh-Lie algebra being constructed will have the property that $l_n = 0, n \geq 4$. Generally sh-Lie algebras can have any number of nontrivial structure maps. The fact that all the structure mappings of our sh-Lie algebra are zero with the exception of l_1, l_2, l_3 is an immediate consequence of the fact that we are able to produce a resolution of the space F such that $X_k = 0$ for $k \geq 2$. In general such resolutions do not exist and so one does not have $l_n = 0$ for $n \geq 4$.

27
In order to finish the preliminaries, we now construct a contracting homotopy \(s \) such that following commutative diagram holds:

\[
\begin{array}{ccc}
0 & \longrightarrow & X_1 \\
& & \downarrow{s} \\
& & X_0 \\
& & \downarrow{l_1} \\
& & 0 \\
\end{array}
\]

\[\lambda \uparrow | \eta \quad \lambda \uparrow | \eta \]

\[
\begin{array}{ccc}
0 & \longrightarrow & 0 \\
& & \longrightarrow \mathcal{F} \\
& & \longrightarrow 0 \\
\end{array}
\]

Clearly the linear space \(X_0 \) is the direct sum of \(\mathcal{B} \) and a complementary subspace which is isomorphic to \(\mathcal{F} \); consequently we have \(X_0 \cong \mathcal{B} \oplus \mathcal{F} \).

Define \(\eta = \text{proj } |_{\mathcal{F}}, \lambda = i_{\mathcal{F} \rightarrow X_0} \) and a contracting homotopy \(s : X_0 \rightarrow X_1 \) as follows: write \(X_0 = \mathcal{B} \oplus \mathcal{F} \), set \(s|_{\mathcal{F}} = 0 \), and let \(s(x) = -x^* \) for all \(x \in \mathcal{B} \). It is easy to show that \(\lambda \circ \eta - 1_{X_*} = l_1 \circ s + s \circ l_1 \). In order to obtain the sh-Lie algebra referred to above, we apply a theorem of [5]. The hypothesis of this theorem requires the existence of a bilinear mapping \(\tilde{l}_2 \) from \(X_0 \times X_0 \) to \(X_0 \) with the properties that for \(c, c_1, c_2, c_3 \in X_0 \) and \(b \in \mathcal{B} \): (i) \(\tilde{l}_2(c, b) \in \mathcal{B} \) and (ii) \(\tilde{l}_2(c_1, c_2, c_3) \in \mathcal{B} \). To see that (i) holds notice that if \(p(t), q(t) \in X_0 = A[[t]] \), then \(l_2(p(t), q(t)t^2) = r(t)t^2 \) for some \(r(t) \in A[[t]] = X_0 \). Also note that the fact that \(\tilde{l}_2 \) induces a Lie bracket on \(\mathcal{F} = X_0/\mathcal{B} \) implies that \(\tilde{l}_2 \) is zero modulo \(\mathcal{B} \) and (ii) follows. Thus \(X_* \) supports an sh-Lie structure with only three nonzero structure maps \(l_1, l_2, l_3 \) (see the remark at the end of [5]).

Theorem 10 Given a Lie algebra \(A \) with Lie bracket \(\alpha_0 \) and an infinitesimal obstruction \([\alpha_1] \in H^2(A, A) \) to deforming \((A, \alpha_0) \), there is an sh-Lie algebra on the graded space \((X_*, l_1) \) with structure maps \(\{ l_i \} \) such that \(l_n = 0 \) for \(n \geq 4 \). The graded space \(X_* \) has at most two nonzero terms \(X_0 = A[[t]], X_1 = A[1][[t]]t^2 \). Finally, the maps \(l_1, l_2, l_3 \) may be given explicitly in terms of the maps \(\alpha_0, \alpha_1 \).

Remark: The mapping \(l_1 \) is simply the differential of the graded space \((X_*, l_1) \). The mapping \(l_2 \) restricted to \(X_0 \times X_0 \) is the mapping \(\tilde{l}_2 \) defined directly in terms of \(\alpha_0, \alpha_1 \) above. On \(X_1 \times X_0, l_2 \) is determined by \(l_2(a^*t^2, b) = t^2(\alpha_0(a, b)^* + \alpha_1(a, b)^*t) \) for \(a^* \in A[1], b \in A \). Finally, \(l_3 \) is uniquely determined by its values on \(A \times A \times A \subset X_0 \times X_0 \times X_0 \) and is explicitly a multiple of the obstruction to the deformation of \((A, \alpha_0) \), in particular, \(l_3(a_1, a_2, a_3) = -t^2[\alpha_1(a_1), (a_1, a_2, a_3), a_4] \in A \).
Proof. The sh-Lie structure maps are given by Theorem 7 of [5]. The fact that \(l_n = 0, n \geq 4 \) is an observation of Markl which was proved by Barnich [3] (see the remark at the end of [5]). A generalization of Markl’s remark is available in a paper by Al-Ashhab [1] and in that paper more explicit formulas are given for \(l_1, l_2, l_3 \). Examination of these formulas provide the details needed for the calculations below.

First of all, we examine the mapping \(l_2: X \ast \times X \ast \rightarrow X \ast \). Now \(l_2: A \times A \rightarrow X \ast \) is determined by \(\tilde{l}_2: X_0 \times X_0 \rightarrow X_0 \), consequently we need only consider the restricted mapping:

\[
l_2: X_1 \times X_0 \rightarrow X_1.
\] (58)

Moreover, since \(X_0 \) is a module over \(k[[t]] \), \(X_1 \) is a module over \(k[[t]]t^2 \), and \(\tilde{l}_2 \) respects these structures we need only consider its values on pairs \((a^*t^2, b)\) with \(a^*t^2 \in X_1, b \in X_0 \). By Theorem 2.2 of [1], we have

\[
l_2(a^*t^2, b) = -sl_2[l_1(a^*t^2) \otimes b + (1)\epsilon(a^*) (a^*t^2) \otimes l_1(b)]
= -sl_2[(at^2 \otimes b)] = -s[t^2l_2(a \otimes b)]
= -s[t^2(\alpha_0(a, b) + \alpha_1(a, b)t)]
= -s[\alpha_0(a, b)t^2 + \alpha_1(a, b)t^3]
= \alpha_0(a, b)^*t^2 + \alpha_1(a, b)^*t^3
= t^2(\alpha_0(a, b)^* + \alpha_1(a, b)^*t). \tag{59}
\]

From this deduction, we that the mapping \(l_2 \) can essentially be replaced by the modified map:

\[
\tilde{l}_2: A[1] \times A \rightarrow A[1][[t]], \quad \tilde{l}_2(a^*, b) = \alpha_0(a, b)^* + \alpha_1(a, b)^*t. \tag{60}
\]

We clarify this remark below by showing that a new sh-Lie structure can be obtained with \(\tilde{l}_2 \) playing the role of \(l_2 \).

The next mapping we examine is the mapping

\[
l_3: X_0 \times X_0 \times X_0 \rightarrow X_1
\] (61)

Since \(l_3 \) is \(k[[t]] \)-linear, we need only consider mappings of the type:

\[
l_3: A \times A \times A \rightarrow X_1 \text{ where for } x_1, x_2, x_3 \in A, \quad l_3(x_1, x_2, x_3) = s l_2^2(x_1, x_2, x_3)
\]

29
= \sum_{\sigma \in \text{unsh}(2,1)} (-1)^\sigma s_l^2(l_2(x_{\sigma(1)}, x_{\sigma(2)}), x_{\sigma(3)})

= \sum_{\sigma \in \text{unsh}(2,1)} (-1)^\sigma s_l^2(\alpha_0(x_{\sigma(1)}, x_{\sigma(2)}) + \alpha_1(x_{\sigma(1)}, x_{\sigma(2)}) t, x_{\sigma(3)})

= \sum_{\sigma \in \text{unsh}(2,1)} (-1)^\sigma s[\alpha_0(\alpha_0(x_{\sigma(1)}, x_{\sigma(2)}), x_{\sigma(3)}) + t\alpha_1(\alpha_1(x_{\sigma(1)}, x_{\sigma(2)}), x_{\sigma(3)})

+ t^2\alpha_1(\alpha_1(x_{\sigma(1)}, x_{\sigma(2)}), x_{\sigma(3)})]

= s((\alpha_0^2 + t(\alpha_0\alpha_1 + \alpha_1\alpha_0) + t^2\alpha_1^2)(x_1, x_2, x_3))

= s(t^2\alpha_1^2(x_1, x_2, x_3))

= -t^2(\alpha_1^2(x_1, x_2, x_3))^* \quad (62)

Or \(l_3(x_1, x_2, x_3) = -t^2(\alpha_1, \alpha_1)(x_1, x_2, x_3))^* \) which is precisely the “first deformation obstruction class”.

Recall that we know from Theorem 7 of \[5\] that we have an sh-Lie structure. The point of these calculations is that it enables us to obtain the modified sh-Lie structure of Corollary 10 below and it is this structure which is relevant to Lie algebra deformation. Thus we already know that the mappings \(l_1, l_2, l_3 \) satisfy the relations:

\[
\begin{align*}
l_1l_2 - l_1l_2 &= 0 \quad \text{(63)} \\
l_2^2 + l_1l_3 + l_3l_1 &= 0 \quad \text{(64)} \\
l_3^2 &= 0 \quad \text{(65)} \\
l_2l_3 + l_3l_2 &= 0. \quad \text{(66)}
\end{align*}
\]

Observe that if we let \(\tilde{X}_s = \tilde{X}_1 \oplus \tilde{X}_0 = A[1][t] \oplus A[[t]] \), then the formulas defining \(l_1, l_2, l_3 \) defined on \(X_s \) make sense on the new complex \(\tilde{X}_s \). Indeed the calculations above show that \(l_1, l_3 \) are uniquely determined by their values on “constants” in the sense that they could be first defined on elements of
\[A[1] \oplus A \subseteq A[1][[t]] \oplus A[[t]] \] and then extended to \(A[1][[t]] \oplus A[[t]] \) using the fact that \(l_1, l_3 \) are required to be \(k[[t]] \) linear. \(l_2 \) is not obviously \(k[[t]] \) linear. The whole point of corollary 10 below is that the \(sh \)-Lie structure defined by Theorem 10 can be redefined to obtain \(sh \)-Lie maps on the graded space \(\tilde{X}_s \) which are obviously \(k[[t]] \) linear and consequently this "new" structure is intimately related to deformation theory. Thus, as we say above, the modified map \(\tilde{l}_2 \) can be extended to the new complex \(\tilde{X}_s \) and is uniquely determined by its values on "constants". If we denote the extensions of \(l_1, l_3 \) to \(\tilde{X}_s \) by \(\tilde{l}_1, \tilde{l}_3 \), then clearly these mappings satisfy the same relations (63)-(66) as the maps \(l_1, l_2, l_3 \) and consequently if we define \(\tilde{l}_n = 0, n \geq 4 \) it follows that \((\tilde{X}_s, \tilde{l}_1, \tilde{l}_2, \tilde{l}_3, 0, 0 \cdots)\) is an \(sh \)-Lie algebra. This proves the following corollary.

Corollary 11 There is an \(sh \)-Lie structure on \(A[1][[t]] \oplus A[[t]] \) whose structure mappings \(\{\tilde{l}_1, \tilde{l}_2, \tilde{l}_3, 0, \cdots\} \) are precisely the mappings \(\{l_1, l_2, l_3, 0, \cdots\} \) when restricted to \(A[1][[t]]t^2 \oplus A[[t]] \). Moreover, the structure mappings of \(A[1][[t]] \oplus A[[t]] \) have the property that they are uniquely determined by their values on \(A[1] \oplus A \) and \(k[[t]] \) linearity.

From the discussion above the set of mappings \(\{\tilde{l}_1, \tilde{l}_2, \tilde{l}_3\} \) is essentially a deformation of an \(sh \)-Lie algebra. In addition, the construction of the mapping \(\tilde{l}_2 \) is equivalent to defining an initial condition for a Lie algebra deformation.

This means that a Lie algebra which can’t be deformed in the category of Lie algebra may admit an \(sh \)-Lie algebra deformation by first imbedding it into an appropriate \(sh \)-Lie algebra.

4 Conclusion

Here, at the end of the paper, we comment briefly regarding the developing role chain extensions could play in mathematics and physics. We have seen that chain extensions may be regarded as a generalization of ordinary algebraic extensions of Lie algebras. This being the case an interesting question is that of classifying such extensions perhaps using methods similar to the use of Chevalley-Eilenberg cohomology to classify Lie algebra extensions. More generally, it would be of interest to develop a theory of chain extensions to parallel that of ordinary Lie algebra extensions and to consider applications of this theory beyond those initiated in this paper.
Another question of interest is that of the relationship between chain extensions and sh-Lie algebras. Preliminary calculations suggest a link between chain extensions and sh-Lie algebras and consequently that there may be a way of dealing with deformations of Lie algebras via chain extensions, but more work is required to be conclusive. More generally, the notion of a chain extension has provided us with a new technique for the investigation of deformation problems, but it’s significance is not yet fully understood. Its role in physics is yet to be fully understood, but we believe that our reformulation of consistent deformations is an indication of its value.

Acknowledgments

I would like to thank R.Fulp for useful discussions throughout the writing of this paper with special thanks for his revision of the manuscript. I am also pleased to express my appreciation to J.Stasheff who provided many thoughtful comments which led to substantial improvement of an early draft of my paper.
References

[1] S. AL-Ashhab, A class of strongly homotopy Lie algebras with simplified sh-Lie structures, Los Alamos Archive, math.RA/0308160

[2] F.A.Berends,G.J.H.Burgers and H.van Dam, Nucl.phys. B 260 (1985), 295

[3] G.Barnich, Brackets in the jet-bundle approach to field theory, Proceedings of the conference on Secondary Calculus and Cohomological Physics, Contemp. Math. 219 (1998) 17-27.

[4] G.Barnich and M.Henneaux, Phys.Rev.Lett, 72 (1993), 1588

[5] G. Barnich, R. Fulp, T. Lada, J. Stasheff, The sh Lie structure of Poisson brackets in field theory, Commun. Math. Phys. 191 (1998),585-601

[6] F.Brandt, Local BRST cohomology in the antifield formalism, unpublished lecture notes

[7] M.Gerstenhaber, The cohomology structure of an associate ring Annals of Mathematics 78 267-288

[8] M.Hazewinkel and M.Gerstenharber, Deformation theory of Lie algebras and structures and applications, NATO Series C,Mathematics and Physics Science 24

[9] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton Univ. Press, 1992.

[10] I.S. Krasilshchik and A.M. Vinogradov, Symmetries and conservation laws for differential equations of mathematical physics, Translations of mathematical monographs 182, AMS (1999)

[11] T. Lada and J.D. Stasheff, Introduction to sh Lie algebras for physicists, Intern’l J. Theor. Phys. 32 (1993), 1087–1103.

[12] P. Olver Applications of Lie groups to differential equations Graduate texts in Mathematics, Vol 107, Berlin-Heidelberg-New York: Springer-Verlag, 1986
[13] M. Schlessinger, J. Stasheff, *The Lie algebra structure and tangent cohomology and deformation*, J. Pure Appl. Algebra 89 (1993), 231-235

[14] J. Stasheff, *Deformation Theory and the Batalin-Vilkovisky Master Equation*, Proceedings of the Conference on Deformation Theory, etc. Ascona, Switzerland (1996) q-alg/9702012