The complete mitochondria genome of *Chrysomya phaonis* (Seguy, 1928) (Diptera: Calliphoridae)

Jian Chen*, Deyi Qiu*, Qiaoyun Yue*, Chuanxian Wang**, and Xiaohong Li**

*Zhongshan Entry-Exit Inspection and Quarantine Technology Center, Zhongshan, Guangdong, P.R. China; **Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, P.R. China

ABSTRACT

Chrysomya phaonis (Seguy, 1928) is one of the blowflies of great medical and forensic importance. In this paper, we report that the entire genome of mitochondrial DNA of *C. phaonis* is 15,831 bp in length, which consists of 39 genes including 13 protein-coding genes, 24 tRNA genes, 2 mitochondrial ribosomal RNA genes, and a 992 bp non-coding A+T-rich region. The overall base compositions of A, G, C, and T are 38.79%, 9.75%, 14.15%, and 37.31%, respectively. We provide the first complete mitochondrial genome of *C. phaonis*, and should provide useful information for phylogenetic and species identification for *C. phaonis*.

ARTICLE HISTORY

Received 15 August 2016
Accepted 3 September 2016

KEYWORDS

Chrysomya phaonis (Seguy, 1928); mitochondria genome; molecular identification

CONTACT

Qiaoyun Yue, yueqy@zs.gdcqi.gov.cn, Zhongshan Entry-Exit Inspection and Quarantine Technology Center, 2, Zhongshan 6 road, Zhongshan 528403, Guangdong, China

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Table 1. Mitochondrial gene profile of\n\n| Gene | Direction | Nucleotide number | Size (bp) | OL | Non | Anticodon | Codon | Start | Stop |
|------|-----------|------------------|---------|----|-----|-----------|-------|-------|------|
| tRNA^{Met} | J | 1–64 | 64 | 4 | GAT | \n| tRNA^{Val} | N | 69–137 | 69 | 8 | TTG | \n| tRNA^{Trp} | J | 146–214 | 69 | CAT | \n| ND2 | J | 215–1229 | 1015 | \n| tRNA^{Ile} | J | 1230–1297 | 68 | 8 | TCA | \n| tRNA^{lys} | N | 1290–1353 | 64 | 7 | GCA | \n| tRNA^{Pro} | J | 3030–3717 | 688 | \n| COI | J | 1425–2958 | 1534 | \n| tRNA^{A0} | J | 2959–3024 | 66 | TAA | \n| COII | J | 3030–3717 | 688 | \n| tRNA^{Val} | J | 3718–3788 | 71 | 1 | GTG | \n| tRNA^{Ile} | J | 3788–3854 | 67 | GTC | \n| ATP8 | J | 3855–4019 | 165 | 7 | ATT | TAA | \n| ATP6 | J | 4013–4690 | 678 | 4 | ATG | TAA | \n| COIII | J | 4695–5483 | 789 | 6 | ATG | TAA | \n| tRNA^{Ile} | J | 5490–5554 | 65 | TCC | \n| ND3 | J | 5555–5908 | 354 | 2 | ATT | TAA | \n| tRNA^{Asp} | J | 5911–5975 | 65 | 1 | TGC | \n| tRNA^{Val} | J | 5975–6038 | 64 | 6 | TCG | \n| tRNA^{lys} | J | 6045–6110 | 66 | 1 | GTT | \n| tRNA^{Arg} | J | 6110–6179 | 70 | GCT | \n| tRNA^{pro} | J | 6180–6247 | 68 | 18 | TTC | \n| tRNA^{Pro} | N | 6266–6332 | 67 | GAA | \n| NDS | N | 6333–8052 | 1720 | 15 | ATT | T | \n| tRNA^{A0} | N | 8068–8133 | 66 | GTG | \n| ND4 | N | 8134–9472 | 1339 | 7 | ATG | T | \n| ND4L | N | 9466–9762 | 297 | 2 | ATG | TAA | \n| tRNA^{Pro} | J | 9765–9829 | 65 | TGT | \n| tRNA^{Ile} | N | 9830–9895 | 66 | 2 | TGG | \n| ND6 | J | 9898–10,422 | 525 | 1 | ATT | TAA | \n| CytB | J | 10,422–11,556 | 1135 | \n| tRNA^{A0} | J | 11,557–11,624 | 68 | 16 | TGA | \n| ND1 | N | 11,641–12,579 | 939 | 10 | ATA | TAA | \n| tRNA^{Met} | N | 12,590–12,654 | 65 | 1 | TAG | \n| tRNA^{Val} | N | 12,656–13,983 | 1328 | \n| tRNA^{A0} | N | 13,984–14,055 | 72 | TAC | \n| sRNA | N | 14,056–14,839 | 784 | \n| A + T rich | J | 14,840–15,831 | 992 | 66 | \n| tRNA^{Met} | J | 14,929–14,994 | 66 | GAT | \n
Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Funding

This work was financially supported by National Science and Technology support program [2012BAK11805], AOSIQ support program [2015IKO67, 2015IK226], Guangdong Provincial support program [2015A050502009], Zhongshan City support program [2014A2FC252] and National Quality Infrastructure program [2016YFF0203205]

References

DeBry RW, Timm A, Wong ES, Stamper T, Cookman C, Dahlem GA. 2013. DNA-based identification of forensically important Lucilia (Diptera: Calliphoridae) in the Continental United States. J Forensic Sci. 58:73–78.

Desmetrier S, Gosselin M. 2009. COI sequence variability between Chrysomyinae of forensic interest. J Forensic Sci Int. 3:89–95.

Fan ZD. 1992. Key to the common flies of China. 2nd ed. Beijing (China): Science Press. p. 992.

Fan ZD, Chen ZZ, Fang JM, Zheng SS, Tao ZL. 1997. Fauna Sinica Insecta: Vol. 6, Diptera: Calliphoridae. Beijing (China): Science Press. p. 186.

Ghandour AM. 1988. Health hazards in humans and animals caused by imported livestock diseases in Saudi Arabia. Fauna Saudi Arabia. 9:468–477.

Greenberg B. (1971). Flies and disease. In: Ecology, classification and biotic associations, vol. 1. Princeton, (NJ): Princeton University Press. p. 856

Greenberg B. 1973. 447. Flies and diseases, biology and disease transmission. Princeton, (NJ): Princeton University Press.

Harvey ML, Gaudieri S, Villet MH, Dadour IR. 2008. A global study of forensically significant calliphorids: implications for identification. Forensic Sci Int. 177:66–76.

Kuhlhorn F. 1983. Verbreitung der Toxoplasmore. Katzenkot Un Dipteren. Tierarzt, Prax. 11:385–392.
Kurahashi H, Thapa VK, Shinonaga S, Iwasa M. 1994. Notes on the Nepalese calliphorid flies (Insecta: Diptera). Jap J Sanit Zool. 45:179–252.
Norris KR. 1965. The bionomics of blow flies. Annu Rev Entomol. 10:47–68.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30:2725–2729.
Yan J, Liao H, Xie K, Cai J. 2014. The complete mitochondria genome of *Chrysomya pinguis* (Diptera: Calliphoridae). Mitochondrial DNA. http://dx.doi.org/10.3109/19401736.2014.958675.
Wells JD, Williams DW. 2007. Validation of a DNA-based method for identifying Chrysomyinae (Diptera: Calliphoridae) used in a death investigation. Int J Legal Med. 121:1–8.
Zhong M, Wang X, Liu Q, Luo B, Wu C, Wen J. 2016. The complete mitochondrial genome of the flesh fly, *Boettcherisca peregrine* (Diptera: Sarcophagidae). Mitochondrial DNA Part A. 27:106–108.
Zumpt F. 1965. Myiasis in man and animals in the old world: a textbook for physicians veterinarians and zoologists. London (UK): Butterworth. p. 267.