Record of porcine brucellosis in India by indigenously developed indirect ELISA

Rajeswari Shome1*, Kalleshamurthy Triveni1, Padmashree Bengaluru Shankaranarayana1, Swati Sahay1, Narayana Rao1, Bibek Ranjan Shome1, Jyoti Misri2, Habibur Rahman1

1ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Ramagondanahalli, Bengaluru-56064, India

2Division of Animal Sciences, Krishi Bhavan, New Delhi-110001, India

*Corresponding author: Rajeswari Shome, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Bengaluru-64, India.
Tel: 080-2309 3110, 080-2309 3111
Fax: 080-2309 3222
E-mail: rajeswarishome@gmail.com

All experimental were conducted in accordance to Committee for the Purpose of Control And Supervision of Experiments on Animals (CPCSEA) and approved by Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences, Bangalore (CPCSEA Reg No: 493/CPCSEA dated 31.01.2001).

The journal implements double-blind peer review practiced by specially invited international editorial board members.

\section{1. Introduction}

Porcine brucellosis is a contagious and emerging zoonosis but neglected in most of the endemic countries including India. The disease in pigs is rarely reported due to non-availability of diagnostics or major focus is on bovine brucellosis. Hence, the necessity was felt to develop indirect ELISA for the detection of anti-\textit{Brucella} antibodies and to record spatial seroprevalence of porcine brucellosis in the country. The relative diagnostic sensitivity and specificity of the developed indirect ELISA were 94.0\% and 92.0\%, respectively and kappa agreement with rose bengal plate test, serum agglutination test and commercial indirect ELISA kit was found to be 0.86 (95\% confidence interval 0.78–0.93). A total of 2,576 random serum samples sourced from 10 states were screened by indirect ELISA and true prevalence of 7.2\% (95\% confidence interval 5.6–8.7) was recorded. The study concluded the prevalence of brucellosis in swine population in many states of the country and indirect ELISA as an alternate test to rose bengal plate test and serum agglutination tests.

\section{2. Materials and methods}

\subsection{2.1. Selection of positive and negative serum panels}

Five hundred pig serum samples were collected from pig farms having no previous history of brucellosis and tested negative for anti-\textit{Brucella} antibodies by RBPT, serum agglutination test (SAT) (colored and plain antigens procured from Institute of Animal Health and Veterinary Biologicals, Bangalore, India) and indirect ELISA (Bionote, Gyeonggi-do, Korea). Similarly, 500 serum samples were collected from farms with clinical history of abortions, confirmed by isolation of \textit{Brucella suis} from 5 aborted samples and positive status of sera samples by RBPT, SAT titre > 1:80 and indirect ELISA[11].
2.2. Standardization of in house indirect ELISA

In the first stage of test development, smooth lipopolysaccharide (sLPS) antigen was extracted from *Brucella abortus* S99 as per The World Organisation for Animal Health (OIE) protocol[1] (*Brucella abortus* S99 strain was procured from National *Brucella* Culture Repository, Indian Veterinary Research Institute, Iznagar, Bareilly-243 122, India). In second stage, hyperimmune sera was raised against sLPS antigen in two 8 months old large white Yorkshire male pigs as per standard procedure. The pigs were selected from the herds free of brucellosis and animal ethics committee approval for raising antisera has been obtained from Veterinary College, Hebbal, Bangalore, India. After 5 weeks of immunization, hyperimmune sera was tested for agglutination by RBPT and antibody titre by SAT[1] and analytical sensitivity by end-point dilution method in indirect ELISA (from 1:100 to 1:819200). ELISA protocol was standardized by checkerboard titration method as per Wright et al.[12] using rabbit anti-swine immunoglobulin G-horse radish peroxidase conjugate (Sigma, Missouri, USA) and positive percent positivity cut-off was arrived in comparison to RBPT, SAT titre and indirect ELISA kit (Bionote, Gyeonggi-do, Korea).

To rule out the cross-reactivity of the sLPS antigen used in the assay, *Escherichia coli* (O157 H7), *Salmonella*, n-17 (VI; polyvalent O; polyvalent O1; O1,3,19; O2; O3,10; O4; O6,14; O7; O8; O9; O9,46; O11; O13; O16; O18; O35; O21) and *Yersinia enterocolitica*, n-5 (O1 and 2; O3; O5; O8; O9) serotype specific reference sera (Denka Seiken Co, Tokyo, Japan) were tested. Similarly, OIE international and national (Indian Veterinary Research Institute) reference positive and negative serum samples have also been tested to evaluate the assay performance. The relative diagnostic sensitivity and specificity of in house indirect ELISA were calculated as described by Thrusfield[13] and kappa statistics for the measurement of agreement with RBPT, SAT and commercial indirect ELISA kit.

2.3. Seroscreening of porcine brucellosis using standardized indirect ELISA

A total of 2576 serum samples collected by multi stage random sampling approach from 10 different states were screened by standardized indirect ELISA. All the analysis were carried out using statistical software SPSS version 22 (IBM, New York, India) and true prevalence estimation by using Epi tools (http://epitools.ausvet.com.au) where diagnostic sensitivity, specificity and sample size were taken into consideration[14].

Table 1

Status	Positive	Negative	Total
Positive	470	40	510
Negative	30	460	490
Total	500	500	1000

Figure 1

Figure 1. State wise seroprevalence of brucellosis in swine population of India.

4. Discussion

In India, brucellosis in swine is mainly diagnosed by conventional RBPT and SAT tests. These tests are less sensitive, as they fail to detect very low levels of antibodies and in SAT, specificity is reduced by nonspecific antibody thought to be immunoglobulin M[1,15]. Improved efficacy of enzyme based assays in comparison to other tests for diagnosing brucellosis in humans[16], cattle and buffaloes[17] and goats[18] are reported. The present study aimed to standardize indirect ELISA for surveillance of porcine brucellosis in the country. Till date sLPS antigen is proved superior to all other Brucella antigens evaluated[19] and hence sLPS antigen was used for the assay. The sLPS antigen extraction, purification and indirect ELISA procedures were carried out as per standard OIE protocols[16,20]. Brucella antigens share structural similarities with lipopolysaccharide regions of various Gram-negative bacteria, namely, *Salmonella*, *Yersinia*, and *Vibrio*. To rule out cross reactivity, a panel of 23 serotype specific reference sera (*Escherichia coli*, *Salmonella* and *Yersinia*) were evaluated and all the reference sera showed the percent positivity values less than 50 which is...
determined as negative diagnostic cut off percent positivity for the assay. The standardized assay showed specificity and sensitivity of 92.0% and 94.00%, respectively along with 92.16% and 93.88% of positive predictive value and negative predictive value, respectively.

So far, seroprevalence ranging from the lowest 3.2% from Madhya Pradesh[18] to 6.3% and 9.5% in Karnataka[21], to 11.3% in Tamil Nadu[21], 16.7% in Uttar Pradesh[22] to the highest prevalence of 87.10% in pigs with history of abortion from Assam[23] have been reported. In the present study, seroprevalence of 9.9% and 8.5% from Punjab and Karnataka states, respectively are being similarly reported as in earlier reports indicating continued prevalence of the disease in swine herds of these states. Comparatively low seroprevalence of brucellosis in few states (Meghalaya, Rajasthan and Gujarat) should not be ignored because free trade between states facilitates transmission of the disease to low prevalent areas within no time.

The study confirmed brucellosis in few states and further studies in other states of the country is essentially required to map the disease in the country. The standardized indirect ELISA can serve the need to low prevalent areas within no time.

This work is supported by the Indian Council of Agricultural Research through All India Coordinated Research Project (AICRP) on Animal Disease Monitoring and Surveillance. We gratefully acknowledge all the PI and Co-PIs of the AICRP units for contributing samples and Dr. M.R. Gajendragad and Dr. D. Hemadri, Principal Scientists for facilitating the collection of samples. Laboratory help rendered by Mr. Manu Kumar and Mr. B. Hanumantharaju are highly acknowledged.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

References

[1] World Organisation for Animal Health. Porcine brucellosis. In: Manual of diagnostic tests and vaccines for terrestrial animals. Paris: World Organisation for Animal Health; 2009, p. 1106-12.
[2] Woldemeskil M. Zoonosis due to Brucella suis with special reference to infection in dogs (carnivores): a brief review. Open J Vet Med 2013; 3: 213-16.
[3] Thirwll RE, Commander NJ, Brew SD, Cutler SJ, Mc Given JA, Stack JA. Improving the specificity of immunodiagnosis for porcine brucellosis. Vet Res Commun 2008; 32: 209-13.
[4] Shinmoky A. Porcine brucellosis: another common zoonosis in pigs. Zoonotic Infect Dis News 2009; 22: 14.
[5] Iowa State University. Porcine and Rangiferine Brucellosis: Brucella suis, enzootic abortion, contagious abortion, undulant fever. Ames: Iowa State University; 2009. [Online] Available from: http://www.cfsph.iastate.edu/FactSheets/pdfs/brucellosis_suis.pdf [Accessed on 25 April, 2016]
[6] Ilhan Z, Aksakal A, Ekin IH, Gilhan T, Solmaz H, Erdenlig S. Comparison of culture and PCR for the detection of Brucella melitensis in blood and lymphoid tissues of serologically positive and negative slaughtered sheep. Lett Appl Microbiol 2008; 6: 301-6.
[7] Yu WL, Nielsen K. Review of detection of Brucella spp. by polymerase chain reaction. Croat Med J 2010; 51: 306-13.
[8] Nielsen K, Yu WL. Serological diagnosis of brucellosis. Prilozi 2010; 31: 65-89.
[9] Poester FP, Samartino LM, Santos RL. Pathogenesis and pathobiology of brucellosis in livestock. Rev Sci Tech 2013; 32: 105-15.
[10] Abdoel T, Dias R, Cardoso IT, Smits HL. Simple and rapid field tests for brucellosis in livestock. Vet Microbiol 2008; 25: 312-19.
[11] Nagalingam M, Shome R, Balamurugan V, Shome BR, Narayanarao K, Vivekananda, et al. Molecular typing of Brucella species isolates from livestock and human. Trop Anim Health Prod 2012; 44: 5-9.
[12] Wright PF, Nielsen E, Van Rooij EM, Lelenta M, Jeggo MH. Standardisation and validation of enzyme-linked immunosorbent assay techniques for the detection of antibody in infectious disease diagnosis. Rev Sci Tech 1993; 12: 435-50.
[13] Thrusfield M. Veterinary epidemiology. London: Butterworth; 1986, p. 280.
[14] Rogan WJ, Gladen B. Estimating prevalence from the results of a screening test. Am J Epidemiol 1978; 107: 71-6.
[15] Kaltungo BY, Saidu SNA, Sackey AKB, Kazem HM. A review on diagnostic techniques and risk factors. Afr J Biotech 2014; 13: 1-10.
[16] Al Dahouk S, Sprague LD, Neubauer H. New developments in the diagnostic procedures for zoonotic brucellosis in humans. Rev Sci Tech 2013; 32: 177-88.
[17] Shome R, Deivanai M, Shome BR, Narayan Rao K, Prabhudas K. Serological and PCR confirmation of Brucella suis abortion in swine. Indian Vet J 2011; 88: 17-9.
[18] Nielsen K, Gall D, Smith P, Vigliocco A, Perez B, Samartino L, et al. Validation of the fluorescence polarization assay as a serological test for the presumptive diagnosis of porcine brucellosis. Vet Microbiol 1999; 68: 245-53.
[19] Gall D, Nielsen K. Serological diagnosis of bovine brucellosis: a review of test performance and cost comparison. Rev Sci Tech 2004; 23: 989-1002.
[20] Shome R, Padmashree BS, Krithiga N, Triveni K, Sahay S, Shome BR, et al. Bovine brucellosis in organized farms of India—an assessment of diagnostic assays and risk factors. Adv Anim Vet Sci 2014; 2: 557-64.
[21] Boral R, Singh M, Singh DK. Status and strategies for control of brucellosis—a review. Indian J Anim Sci 2009; 79: 1191-99.
[22] Saini SS, Joshi VB, Khelhra R, Ramneek S, Kwarra MS. Swine brucellosis among breeding pigs of Punjab and market pigs of Himachal Pradesh, Indian J Anim Sci 1994; 64: 1177-79.
[23] Nath AJ, Barman NN, Sarma DK, Das SK, Bora DP. Seroprevalence of brucella and parvovirus infections in pigs. Indian Vet J 2009; 86: 339-41.
[24] Godfroid J, Nielsen K, Saegerman C. Diagnosis of brucellosis in livestock and wildlife. Croat Med J 2010; 51: 296-305.