Introduction

Legumes plants are important source of protein. Sweet lupine is one of the legumes plant which is protein and mineral source. In this study sweet lupine were prepared in different common Ethiopian food preparation methods in the form of cooked food (Nefro), Roasted food (Kolo) and Shero. The nutritional content of the recipe and grain sample were analyzed using official methods. The nutritional content of the recipe Shero have higher protein content (34.6%) than cooked food (Nefro 30.22 %) and Roasted food (Kolo 30.12 %). Zinc content (12mg/100g) and iron (21mg/100g) content were higher for Nefro recipe were as potassium and sodium were higher for shero. The result of sensory acceptability and nutritional content of shero recipe were higher which indicates by eating shero in the daily meal protein and micronutrient (Fe &Zn malnutrition problems of the society can be eliminated.

Materials and Methods

Biadge Kefale, Ethiopian Institute of Agricultural Research, Holeta research center, Food science and Nutrition research program, Ethiopia

Research Article

Sweet lupine recipe development and nutritional content of recipe at Holeta, Ethiopia

Abstract

Legumes plants are important source of protein. Sweet lupine is one of the legumes plant which is protein and mineral source. In this study sweet lupine were prepared in different common Ethiopian food preparation methods in the form of cooked food (Nefro), Roasted food (Kolo) and Shero. The nutritional content of the recipe and grain sample were analyzed using official methods. The nutritional content of the recipe Shero have higher protein content (34.6%) than cooked food (Nefro 30.22 %) and Roasted food (Kolo 30.12 %). Zinc content (12mg/100g) and iron (21mg/100g) content were higher for Nefro recipe were as potassium and sodium were higher for shero. The result of sensory acceptability and nutritional content of shero recipe were higher which indicates by eating shero in the daily meal protein and micronutrient (Fe &Zn malnutrition problems of the society can be eliminated.

Materials and Methods

Biadge Kefale, Ethiopian Institute of Agricultural Research, Holeta research center, Food science and Nutrition research program, Ethiopia

Sample preparation: Sweet lupine sample were graded, sorted and cleaned manually. Sweet lupine flour preparation: the sweet lupine was soaked overnight. After soaking the sample were dried in sunlight and the sweet lupine were crashed into single cotyledons.

Cooked Food (Nefro): The sweet lupine samples were soaked for overnight at room temperature with 200g sample soaked with one liter of water. The soaked samples were cooked by adding enough water using heat until it will become ready to eat.
Roasted Food (Kolo): 500 gram of the sweet lupine samples was soaked overnight. The soaked samples were Roasted using heat until it will become ready to eat.

Shero: The sweet lupine was soaked overnight. After soaking the sample were dried in sunlight and roasted the sweet lupine, crashed into single cotyledons and milled to prepare shero flour.

Composition study: Nutritional studies were conducted by following standard methods.

Protein content

The protein content of the sweet lupin from each was determined by Kjeldahl method as stated in the [7]. Method 46-11. One gram ground sample were measured and transferred into completely dry kjeldhal flask. Ten gram of kjeldhal tablet was added to the sample inside the flask. Twenty milliliter of 98% concentrated sulphuric acid was mixed with the sample. The sample digestion was started by connecting the kjeldhal flasks with the digestion rock. The digestion was completed when the brown color of the sample was completely disappeared. After the digested sample was cooled, 50 ml of distilled water and 70 ml of sodium hydroxide (32%) were added and distilled into 25 ml of excess boric acid containing 0.5 ml of screened indicator. The distillate was titrated with 0.1N hydrochloric acid to the red end point.

Total nitrogen= (T-B) x 0.1401 /W

W is weight of the sample taken for analysis
T is volume of HCL used for titration
B is blank used as control
Crude protein (CP%) = N x 6.25

Fat content by Nuclear magnetic resonance spectrophotometer (NMR)

Twenty two (22) gram of the sample were measured and dry in to oven at 105 Degree centigrade for three hours and cool in adiscator for 30 minute. After cooling the tube were inserted dry in to oven at 105 Degree centigrade for three hours and cool to prepare the sample for NMR.

Concentration (minerals in mg/100g) = concentration reading by AAS X dilution factor X 10/ weight of sample

Sensory Evaluation: The recipes were coded and randomly presented to 20 panelists in random order. In sensory evaluation five point hedonic scale (1= dislike very much, 2= dislike, 3= neither like nor dislike, 4= like, 5= like very much) were used.

Experimental Design and Data Analysis: The experiments were designed in completely randomized design (CRD). The analyses of variance (ANOVA) were performed to examine the significance level of all parameters measured. Least Significant Difference (LSD) test was used for means comparison by SPSS Version 23.

Result

Macro nutrients (Protein and Fat)

Protein: The results of the chemical compositions of the recipes and the grain are presented in table 1. The recipe shero have high protein content (34.65%) compared to other recipe and the grain protein content. Lupine seeds have a relatively stable composition, although cultivation conditions can modify the composition. Larger and fuller seeds have more protein and less crude fiber. During industrial processing dehulling reduces the fiber while increasing protein content [8]. In this study dehulling and different processing method increase and decrease the protein content compared to the grain protein content from 31.65% - 34.65%. Compared to the field pea variety the sweet lupine has greater protein than the field pea protein content. The protein content of shero recipe higher this is good solution to combat the protein malnutrition problem of the society in Ethiopia.

Fat content: The oil content of the sweet lupine recipes range from 7.75 - 8.5%.The oil content of lupin is much lower than that of soya [9]. Lupinus albus has approximately 11 % lipids while other species have less than 6 %, however L. mutabilis may have up to 20 %. This is similar to soya and is 2 -3 times the oil content of other legumes [10]. In this study the oil content of the recipes were not significance difference.

Micronutrients (Fe, Zn, Ca, K and Na)

Legumes are very important mineral sources for human nutrition. The sweet lupine recipe Zn, Fe, Ca, K and Na content were ranged from 8-12 mg/100g, 3.5-21 mg/100g, 27-94mg/100g, 29-82 mg/100g, 1-25 mg/100g respectively. Zn, Fe and Ca content of cooked product (Nefro) have greater values compared to other recipe where as potassium and sodium content of the recipe shero have higher than the other recipe. Compared to the field pea variety the sweet lupine has greater protein than the field pea protein content. The protein content of shero recipe higher this is good solution to combat the protein malnutrition problem of the society in Ethiopia.

Table 1: Macronutrient composition (Protein and Fat content) sweet lupine (Wolela Variety) recipe Ethiopian Food compared to Field pea variety (Bursa).

Recipes and grain	Protein Content	Fat Content
1. Shero	34.65 ± 0.00^a	7.75 ± 0.07^a
2. Nefro(cooked food)	30.22 ± 0.03^c	8.35 ± 0.07^a
3. Kolo(Roasted Food)	30.12 ± 0.17^c	8.5 ± 0.14^c
4. Sweet Lupine grain	31.65 ± 0.00^d	8.3 ± 0.00^d
5. Bursa (Faba bean variety)	22.32 ± 0.00^e	3.6 ± 0.00^e

All results: mean ± standard Deviation
Sweet lupine Iron (Fe) Content (3.5-21mg/100g) was in the range of world health organization in different age group. RDI for women (18mg/day), for men (8mg/day), for pregnant women (27mg/day) as well as Sensitive age group, pregenant women, preadolcent girl and infants.

Sweet lupine Zn (8-12mg/100g) content was in the range of world health organization in different age group. RDI for women (8mg/day) and for men (11mg/day). Similar study result shows the mineral content of Australian sweet lupine is between 3.2-4.6 g/100g dry matter. The calcium content ranged 15-29mg/100g, sodium content 3-11mg/100g. Potassium 66-90mg/100g, Iron 31-150mg/100g and Zinc 24-45mg/100g [11]. The result of the study shows in the range of the pervious study.

Sensory evaluation of the sweet lupine recipes

The recipe Shoro shows acceptable taste, color, Texture and all over acceptability compared to the other recipe. Next to shero Roasted food (Kolo) has acceptable sensory result than cooked Food (Nefro) in which the sensory evaluation evaluated by untrained twenty panelists and using five point hedonic scales (Figure 1). In this study all the recipes have good sensory Acceptability especially shero (Ethiopian Food) have high sensory score for all the sensory parameters.

Table 2: Micronutrient composition (Zn, Fe, Ca, K and Na (mg/g) content) sweet lupine (Woella Variety) recipe compared to field pea variety (Bursa).

Recipes and grain	Zinc Content (mg/100g)	Iron Content (mg/100g)	Calcium Content (mg/100g)	Potassium (mg/100g) content	Sodium Content (mg/100g)	
1. Shero	9.5 ± 0.002e	3.5 ± 0.005	27 ± 0.0014	82 ± 0.75	2.5±0.0021	
2. Nefro	12.0 ± 0.0014a	21 ± 0.012	94 ± 0.0014	18 ± 0.002	1.4 ± 0.007	
3. Kolo	9.0 ± 0.0014a	20 ± 0.006	78 ± 0.0035	29 ± 0.002	2.5±0.00071	
4. Sweet	8± 0.00 bc	21 ± 0.00	69 ± 0.00	29 ± 0.00	1± 0.00	
Lupine	5. Field	5 ± 0.00c	5.2 ± 0.00	34 ± 0.00	224 ±0.00	20.00.00

All results: mean ± Standard Deviation

Figure 1: Sweet lupine Recipe sensory result using five point hedonic scales by 10 panelists.

Conclusion

The nutritional content and sensory acceptability point of view comparing the recipe of sweet lupine each other as well as field pea. The protein content, Fe, Zn, K, Ca, Na and sensory acceptability of shero and kolo is better to use sweet lupine as food and to combat protein and micronutrient malnutrition problems in Ethiopia compared to the other recipe and the field pea variety (bursa).

References

1. Yáñez (1990) Lupin as a source of protein in human nutrition. Instituto de Nutrición y Tecnología de los Alimentos (INTA), U. de Chile. Proceeding 6th International Lupin Conference. Pucón 115-123.
2. (1985) FAO/WHO/UNU Energy and protein requirements. World Health Organization Technical Report Series No 724 WHO. Geneva, Switzerland. Link: https://tinyurl.com/y9wec3qb
3. Hill GD (1977) The composition and nutritive values of lupin seed. Nutr Abstr Rev B 47: 511-519. Link: https://tinyurl.com/y6usbz3b
4. Gross R, Reyes M (1982) Utilización del Lupinus mutabilis en la alimentación humana. II Conferencia Internacional del Lupino. Torremolinos, Málaga, Spain. Link: https://tinyurl.com/yb9hju24
5. Hall RS, Thomas SJ, Johnson SK (2005) Australian sweet lupin fl our addition reduced the glycaemic index of a white bread breakfast without affecting palatability in healthy human volunteers. Asia Paciﬁ c J. Clinical Nutrition 14: 91-97. Link: https://tinyurl.com/y8setww
6. Mermoud S, Schneider D, Oyarguren F, Moller E, Quiñones A (1978) Estudio de incorporación de harina de lupinos albus en la alimentación normal de un grupo humano. En. Fundación Chile. Situación, análisis y perspectivas del lupino en Chile. Reunión de trabajo 11 y 21 de Dicembre de 1977. Santiago, Chile 81-86. Link: https://tinyurl.com/y7hrjyf
7. (2000) AOAC Association of Official Analytical Chemists. Ofﬁ cial methods of Analysis (Vol. II 17th edition) of AOAC International. Washington, DC, USA. Ofﬁ cial methods 923.03, 923.05, 925.09, 962.09, and 979.09. 2000. Link: https://tinyurl.com/y8corhxj
8. Ivanovic D (1980) Perspectivas del lupino dulce en la alimentación humana en Chile. Estudio quimico y nutricional del lupino dulce (Lupinus albus var. Multolupa). Universidad de Chile, INTA. Tesis Magister en Planificación en Alimentación y Nutrición. Santiago Chile. Link: https://tinyurl.com/yb2taxi2
9. Gladstones JS (1970) Lupins as crop plants. Field Crop. Abstr 23: 2-137. Link: https://tinyurl.com/y9yjmmyf
10. Masson L, Mella MA (1985) Materias grasas de consumo habitual y potencial en Chile. Composición en ácidos grasos. Facultad de Ciencias Químicas y Farmaceuticas. Universidad de Chile. 11 Edición, Editorial Universitaria. Santiago, Chile. Link: https://tinyurl.com/ybbybtzyt
11. Gattás V, Barrera G, Yáñez E, Uauy R (1995) Evaluación de la tolerancia y palatabilidad en la alimentación de adultos jóvenes. Arch.Lat.Nutr 40: 490-501. Link: https://tinyurl.com/y6usbxz3b
12. Pompei C, Lucisano M, Ballini N (1985) Use of lupin Four in pasta manufacture. Sciences des Aliments 5: 665. Link: https://tinyurl.com/yafbd86s
13. Osborne DR, P Voogt (1978) The analysis of nutrition in food 235-247. Link: https://tinyurl.com/y9j4tfo7