INTRODUCTION

For the past 20–30 years, there has been a steady and rapid increase in the number of patients with allergic diseases worldwide. Identification of potential allergens is important not only for diagnosis but also for the treatment of patients, which can help avoid causative allergens and initiate early immunotherapy. Multiple allergosorbent simultaneous test chemiluminescent assay (MAST-CLA) can detect specific IgE antibodies against various allergens. It was introduced in Korea in the early 1990s and is most commonly used up to date.

Patients with allergies often have allergies to ≥2 antigens. Patients are often confirmed to have positive reactions to multiple fungal allergens and positive reactions to the allergens of the MAST-CLA were investigated.

Background: Exposure and sensitization to fungal allergens can evoke the development and worsen allergic diseases. Many patients with allergies show multiple positive reactions to different allergens.

Objective: The purpose of this study was to analyze the relationship between fungal allergens that are mostly found in South Korea and other positive reactions to the allergens of the multiple allergosorbent simultaneous test chemiluminescent assay (MAST-CLA).

Methods: We enrolled 1,040 (588 men, 452 women) patients who showed positive reactions to three fungi, namely, *Alternaria alternata*, *Aspergillus fumigatus*, and *Cladosporium herbarum*, using MAST-CLA at Daegu Catholic University Medical Center from January 2010 to July 2017. The epidemiology and relationship between positive reactions to multiple fungal allergens and positive reactions to the allergens of the MAST-CLA were investigated.

Results: *A. alternata* was the most common fungal species, followed by *C. herbarum* and *A. fumigatus* (78.8% vs. 52.1% vs. 20.1%). Patients who showed positive reactions to all fungal allergens had 4.97 other antigens on average. Statistically significant results were obtained when comparing positive reactions to all fungal allergens to other allergens (Spearman correlation coefficient = 0.129, \(p < 0.05 \)).

Conclusion: Patients should be educated on allergic diseases caused by other antigens if they are sensitized to fungal antigens.

Key Words: Allergen, *Alternaria alternata*, *Aspergillus fumigatus*, Chemiluminescent assay, Fungi
studies have focused on the link between fungal antigens and other antigens\(^2\). Several fungal species are known to cause severe respiratory and cutaneous allergic diseases\(^3\), but only a few epidemiological studies have shown the prevalence of allergic reactivity to fungi using skin tests or IgE detection\(^4-7\). Therefore, this study aimed to analyze the epidemiology and the relationship between fungal allergens and other allergens.

MATERIALS AND METHODS

1. **Data**

This study was a retrospective analysis of the electronic and written charts of patients with a positive reaction to, at least, one of the following three different fungi confirmed by MAST-CLA, which was performed at the dermatology department of Daegu Catholic University Medical Center (DCUMC) from January 2010 to July 2017. These fungal species were *Alternaria alternata*, *Aspergillus fumigatus*, and *Cladosporium herbarum*. Medical records were documented at DCUMC. Patient demographic data, namely, age, sex, department, season, and diagnosis, were analyzed. This study was conducted in accordance with the principles of the Declaration of Helsinki.

2. **MAST-CLA**

The MAST-CLA Allergy test (Hitachi Chemical Diagnostics, Inc., CA, USA) was used. The two types of MASTpettes\(^6\) were food panel and inhalant panel (Table 1). In the MASTpette\(^6\) chamber, 64 cellulose chambers are arranged in a ladder shape. The chambers consist of a positive control on the first line, negative control on the second line, anti-IgE on the third line, and 61 allergens from the 4th line to the 64th line. The test was performed according to the kit instructions. Patient’s serum was added to the chamber, sensitized at room temperature for 18 h, and then washed three times with washing buffer. The enzyme-labeled anti-IgE antibody solution was added to the chamber, sensitized at room temperature for 4 h and washed three times, and the reaction solution was sensitized at room temperature for 30 min. The results were sorted into six classes, 0, 1/0, 1, 2, 3, and 4, using a MAST-CLA-1 luminometer. In this study, class 2 and above were classified as positive.

3. **Statistical analysis**

All gathered data were coded as numerical values. Descrip-

Allergen	No. (%)
Dermatophagoides pteronyssinus mite	404 (38.8)
D. farinae mite	344 (33.1)
Storage mite	9 (0.9)
Cat	115 (11.1)
Dog	99 (9.5)
Egg white	30 (2.9)
Milk	61 (5.9)
Maize	0
Sesame	0
Soybean	16 (1.5)
Crab	52 (5.0)
Shrimp	31 (3.0)
Potato	10 (1.0)
Apple	3 (0.3)
Cacao	0
Peach	24 (2.3)
Mackerel	17 (1.6)
CCD (bromelain)	0
Rye pollens	137 (13.1)
House dust	182 (17.5)
Cockroach	77 (7.4)
Cladosporium herbarum	541 (52.1)
Aspergillus fumigatus	209 (20.1)
Alternaria alternata	818 (78.8)
Alder	92 (8.8)
Birch	0
Oak white	28 (2.7)
Ragweed	38 (3.7)
Mugwort	96 (9.2)
Japanese hop	0
Food panel	
Pork	20 (7.0)
Beef	10 (3.5)
Table 1. Positive rate of each allergen-specific IgE detected by MAST-CLA (Continued)

Allergen	Food panel	Inhalant panel
Cheddar cheese	6 (2.1)	Hamster
Chicken	12 (4.2)	Hazel
Pupa, silk cocoon	0	Sweet vernal grass 83 (11.0)
Tomato	30 (10.6)	Bermuda grass 8 (1.1)
Kiwi	0	Orchard grass 92 (12.2)
Mango	0	Timothy grass 9 (1.2)
Banana	0	Reed 71 (9.4)
Citrus mix	28 (9.9)	Redtop, bent grass 0
Peanut	50 (17.6)	Honey bee 0
Walnut	42 (14.8)	Yellow jacket 0
Chestnut	0	Latex 0
Wheat flour	24 (8.5)	Penicillium notatum 148 (19.6)
Barley meal	10 (3.5)	Sycamore mix 74 (9.8)
Rice	34 (12.0)	Sallow mix 0
Buck wheat	30 (10.6)	Poplar mix 38 (5.0)
Garlic	10 (3.5)	Ash mix 29 (3.8)
Onion	20 (7.0)	Pine 44 (5.8)
Celery	0	Japanese cedar 107 (14.2)
Cucumber	0	Acacia 0
Codfish	10 (3.5)	Hinoki cypress 0
Mussel	0	Oxeye daisy 74 (9.8)
Tuna	18 (6.3)	Dandelion 72 (9.5)
Salmon	10 (3.5)	English plantain 0
Clam	0	Russian thistle 0
Squid	0	Goldenrod 0
Anchovy	0	Pigweed 0
Yeast, bakers	0	
Mushroom	0	
Candida albicans	54 (19.0)	
Acarus siro	122 (16.1)	

Inhalant panel values are expressed in percentage. The analysis was performed using SPSS 19.0 version (SPSS, Inc., Chicago, USA). Spearman's correlation coefficient was used to investigate the relationship between the number of positive fungal allergens and other sensitized allergens.
RESULTS

1. Demographic analysis of all patients

A total of 1,040 patients had positive reactions to at least one fungal allergen using the MAST-CLA (Table 1). During the same time, we performed 3,450 MAST-CLA tests, and only 1,040 patients (30.14%) showed a positive reaction to the fungal allergens. Among the fungal species, patients mostly showed sensitivity to A. alternata, followed by C. herbarum and A. fumigatus (78.8% vs. 52.1% vs. 20.1%). Patients’ sex, age, season, department, and diagnosis were analyzed. Male predilection was observed with 588 (56.3%) patients (Table 2). Patient age ranged from 1 to 96 years, and the mean value was 33.1 (Table 3). Patients in their 20s had the largest proportion (24.8%). In the seasonal evaluation, the proportion of patients who reported the occurrence of allergies was the largest during summer (30.0%) (Table 4). Most patients visited the otorhinolaryngology department, followed by dermatology and internal medicine (Table 5). Patient diagnosis varied from mostly allergic diseases to other systemic diseases. The most common diagnosis was allergic rhinitis, followed by urticaria, atopic dermatitis, allergic contact dermatitis, asthma, drug eruption, and hypereosinophilic syndrome (Table 6). Others include various skin diseases, such as irritant contact dermatitis, Stevens-Johnson syndrome, prurigo, or suspected allergies.

Table 2. Sex distribution of patients with positive reaction to fungal allergens

Variable	Male: Number (%)	Female: Number (%)	Total: Number (%)
Sex			
Male	81 (56.3)	63 (43.7)	588 (56.3)
Female	27 (55.1)	22 (44.9)	452 (43.7)

Table 3. Age distribution of patients with positive reaction to fungal allergens

Variable	0–9: Number (%)	10–19: Number (%)	20–29: Number (%)	30: Number (%)	40: Number (%)	50: Number (%)	60: Number (%)	70: Number (%)	80: Number (%)	90: Number (%)	Total: Number (%)
Age											
0–9	9 (6.3)	8 (16.3)	110 (25.3)	1 (3.7)	2 (14.3)	22 (8.7)	16 (13.4)	168 (16.2)			
10–19	26 (18.1)	3 (6.1)	150 (34.5)	6 (22.2)	3 (21.4)	49 (19.4)	21 (17.6)	258 (24.8)			
20–29	19 (13.2)	3 (6.1)	90 (20.7)	5 (18.5)	1 (7.1)	37 (14.7)	11 (9.2)	166 (16)			
30	15 (10.4)	6 (12.2)	23 (5.3)	5 (18.5)	0	21 (8.3)	11 (9.2)	81 (7.8)			
40	9 (6.3)	6 (12.2)	14 (3.2)	3 (11.1)	3 (21.4)	21 (8.3)	16 (13.4)	72 (6.9)			
50	26 (18.1)	7 (14.3)	14 (3.2)	3 (11.1)	2 (14.3)	35 (13.9)	12 (10)	99 (9.5)			
60	20 (13.9)	9 (18.4)	12 (2.8)	2 (7.4)	2 (14.3)	20 (7.9)	16 (13.4)	81 (7.8)			
70	13 (9)	6 (12.2)	18 (4.1)	2 (7.4)	0	42 (16.7)	14 (11.8)	95 (9.1)			
80	7 (4.9)	1 (2)	3 (0.7)	0	1 (7.1)	2 (0.8)	2 (1.7)	16 (1.5)			
90	0	0	1 (0.2)	0	0	3 (1.2)	0	4 (0.4)			
Total	144 (13.8)	49 (4.7)	435 (41.8)	27 (2.6)	14 (1.3)	252 (24.2)	119 (11.4)	1,040 (100)			
2. Demographic analysis of patients with positivity for fungal allergen and concurrent fungal allergens

Of the patients, 628 showed a positive reaction to only one fungal allergen: 144 (13.8%) patients to *Cladosporium herbarum*, 49 (4.7%) patients to *Aspergillus fumigatus*, and 435 (41.8%) patients to *Alternaria alternata*. In addition, 293 patients had a positive reaction to two fungal allergens: 27 (2.6%) patients had positive reaction to *C. herbarum* and *A. fumigatus*, 14 (1.3%) to *A. fumigatus* and *A. alternata*, and 252 (24.2%) to *C. herbarum* and *A. alternata*. Moreover, 119 (11.4%) patients had a positive reaction to all three fungal allergens in the MAST-CLA.

For the demographic study, more male patients had a positive reaction to only one fungal allergen (61.6%), but more female patients had a positive reaction to multiple fungal allergens (51.2%).

Only a small number of younger patients showed a positive reaction to *A. alternata*. Patients showing a positive reaction to only *C. herbarum* or *A. fumigatus* were evenly distributed regardless of age. Patients showing multiple positive reactions to allergens were also evenly distributed. No significant difference was noted in other groups, except that *A. alternata* allergies occurred most frequently in the summer, indicating a seasonal distribution. Among the patients who visited the otorhinolaryngology department, most had positive reactions to *A. alternata* and *A. fumigatus*. For patients who visited the dermatology department, most visits were due to a positive reaction to *C. herbarum*. The highest frequency of positive reactions to multiple allergens was observed in patients who visited the dermatology department. Among all groups, allergic rhinitis was the most common diagnosis in patients with a positive reaction to *A. alternata*.

Table 4. Seasonal distribution of patients with positive reactions to fungal allergens

Season	Positive fungal allergen	Total						
	1 only	2 only	3 only	1+2	2+3	1+3	1+2+3	
Spring	34 (23.6)	22 (44.9)	87 (20)	10 (37)	4 (28.5)	44 (17.5)	28 (23.5)	229 (22)
Summer	51 (35.4)	12 (24.5)	142 (32.6)	8 (29.6)	4 (28.5)	65 (25.8)	29 (24.4)	311 (30)
Autumn	28 (19.4)	6 (12.2)	96 (22.1)	5 (18.5)	2 (14.3)	67 (26.6)	29 (24.4)	233 (22.4)
Winter	31 (21.5)	9 (18.4)	110 (25.3)	4 (14.8)	4 (28.5)	76 (30.1)	33 (27.7)	267 (25.7)
Total	144 (13.8)	49 (4.7)	435 (41.8)	27 (2.6)	14 (1.3)	252 (24.2)	119 (11.4)	1,040 (100)

Table 5. Department distribution of patients with positive reactions to fungal allergens

Department	Positive fungal allergen	Total						
	1 only	2 only	3 only	1+2	2+3	1+3	1+2+3	
DT	58 (40.3)	18 (36.7)	144 (33.1)	11 (40.7)	6 (42.9)	94 (37.3)	43 (36.1)	374 (36)
IM	34 (23.6)	7 (14.3)	52 (12)	2 (7.4)	2 (14.3)	75 (29.8)	37 (31.1)	209 (20.1)
ENT	49 (34)	21 (42.9)	218 (50.1)	13 (48.1)	6 (42.9)	79 (31.3)	37 (31.1)	423 (40.7)
PD	0	0	17 (3.9)	0	0	2 (0.8)	1 (0.8)	20 (1.9)
Others	3 (2.1)	3 (6.1)	4 (0.9)	1 (3.7)	0	2 (0.8)	1 (0.8)	14 (1.4)
Total	144 (13.8)	49 (4.7)	435 (41.8)	27 (2.6)	14 (1.3)	252 (24.2)	119 (11.4)	1,040 (100)

DT, dermatology; IM, internal medicine; ENT, otorhinolaryngology; PD, pediatric
3. Positive reactions to multiple allergens

Mites and house dust are associated with fungal allergens. Among the mite species, *Dermatophagoides pteronyssinus* take up the largest proportion followed by *D. farinae* and house dust. When excluding mites and house dust, the most common concurrent allergens to *C. herbarum* are *Penicillium* and *Acarus siro* (flour mite). *A. fumigatus* showed the highest simultaneous positive reaction rate with rye and orch. *A. alternata* showed the highest simultaneous positive reaction rate with cats and dogs. Mites were the most common simultaneous positive allergens for patients with all three fungal allergens, followed by cedar, *Penicillium*, and house dust (Table 7).

We examined the number of allergens showing simultaneously positive reactions to only one fungal allergen, two fungal allergens, and all three fungal allergens. When the reaction to only one fungal allergen was positive, the number of simultaneously positive allergens was 2.82 on average. When the reaction to two fungal allergens was positive, the number of simultaneously positive allergens was 3.41 on average. When the reaction to all three fungal allergens was positive, the number of other simultaneously positive allergens was 4.97 on average. Nonparametric method correlation analysis was performed, and Spearman's correlation coefficient showed a positive value of 0.129 ($p < 0.05$) (Fig. 1).

DISCUSSION

People are exposed to allergens in various settings, both indoors and outdoors. Fungi are ubiquitous airborne allergens and are important causes of various human diseases. Several epidemiological and diagnostic studies reported the prevalence of fungal allergies using skin tests or IgE detection. However, epidemiological investigation of fungal allergens has not been made yet. This is because identifying the role of specific fungi, which can cause allergy, is difficult.

In this study, male patients were more likely to have a positive reaction to fungal allergens than female patients were. However, no significant difference was found between both

Diagnosis	Positive fungal allergen	Total
AD	1 only	133
	2 only	(12.8)
	3 only	(12.8)
	1+2	(19.3)
	2+3	(10.8)
	1+3	(7.4)
	1+2+3	(7.4)
Urticaria	1 only	176
	2 only	(16.9)
	3 only	(16.9)
	1+2	(16.9)
	2+3	(16.9)
	1+3	(16.9)
	1+2+3	(16.9)
ACD	1 only	50
	2 only	(4.8)
	3 only	(4.8)
	1+2	(4.8)
	2+3	(4.8)
	1+3	(4.8)
	1+2+3	(4.8)
AR	1 only	436
	2 only	(41.9)
	3 only	(41.9)
	1+2	(41.9)
	2+3	(41.9)
	1+3	(41.9)
	1+2+3	(41.9)
Hypereosinophilic syndrome	1 only	6
	2 only	(0.6)
	3 only	(0.6)
	1+2	(0.6)
	2+3	(0.6)
	1+3	(0.6)
	1+2+3	(0.6)
Asthma	1 only	36
	2 only	(3.5)
	3 only	(3.5)
	1+2	(3.5)
	2+3	(3.5)
	1+3	(3.5)
	1+2+3	(3.5)
Drug eruption	1 only	15
	2 only	(1.4)
	3 only	(1.4)
	1+2	(1.4)
	2+3	(1.4)
	1+3	(1.4)
	1+2+3	(1.4)
Others	1 only	188
	2 only	(18.1)
	3 only	(18.1)
	1+2	(18.1)
	2+3	(18.1)
	1+3	(18.1)
	1+2+3	(18.1)

Table 6. Diagnostic distribution of patients with positive reactions to fungal allergens

Variable	Number (%)							
Variable	Number (%)							
Diagnosis	Positive fungal allergen							
	(1 = *Cladosporium herbarum*, 2 = *Aspergillus fumigatus*, 3 = *Alternaria alternata*)							
AD	1 only	2 only	3 only	1+2	2+3	1+3	1+2+3	Total
Urticaria	1 only	2 only	3 only	1+2	2+3	1+3	1+2+3	Total
ACD	1 only	2 only	3 only	1+2	2+3	1+3	1+2+3	Total
AR	1 only	2 only	3 only	1+2	2+3	1+3	1+2+3	Total
Hypereosinophilic syndrome	1 only	2 only	3 only	1+2	2+3	1+3	1+2+3	Total
Asthma	1 only	2 only	3 only	1+2	2+3	1+3	1+2+3	Total
Drug eruption	1 only	2 only	3 only	1+2	2+3	1+3	1+2+3	Total
Others	1 only	2 only	3 only	1+2	2+3	1+3	1+2+3	Total

AD, atopic dermatitis; ACD, allergic contact dermatitis; AR, allergic rhinitis
sexes. In previous reports, the proportion of male patients who had atopic dermatitis, asthma, and hay fever were higher than female patients were, although these differences became narrower over time\(^9\)\(^{19}\). The incidence of allergic respiratory disease is higher in children than in adults. Longitudinal studies suggest that children with mild disease are likely to become asymptomatic as teenagers, whereas those with more severe disease will have symptoms that persist throughout their lifetime\(^17\). In one MAST-CLA study, the overall prevalence of positive allergens was the highest among teenagers. In that study, the 10–15 years age group showed the highest total IgE level, but the overall positive reaction rate and the number of positive allergens decreased with age. In the present study, teenagers had the largest proportion among all age groups. However, the prevalence of a positive reaction to multiple fungal allergens was distributed evenly in all age groups. This suggests that patients who are sensitized to multiple allergens may continue to be sensitized to multiple allergens over time.

C. herbarum and A. alternata allergies occur throughout the year, but they are highly observed in the late summer and autumn when plants grow\(^20\)\(^{21}\). The seasonal pattern of fungal spores has been reported to have little regional difference in the temperate zone, and domestic reports showed similar results\(^5\). In Korea, the growth of both types of fungi increased rapidly from mid-June and decreased at the end of October, and there was a slight increase in winter\(^22\). Meanwhile, A. fumigatus is usually considered an indoor fungus,

| Table 7. Simultaneous positive reactions to other allergens and each fungal allergen |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Rank | Variable | Number (%) |
| 1st | Cladosporium herbarum | 29.2 | Aspergillus fumigatus | 42.3 | Dermatophagoides pteronyssinus mite | 36.7 | Dermatophagoides pteronyssinus mite | 49.6 |
| 2nd | Dermatophagoides farinae mite | 27.1 | Dermatophagoides farinae mite | 40.8 | Dermatophagoides farinae mite | 33.1 | Dermatophagoides farinae mite | 41.2 |
| 3rd | House dust | 13.2 | Rye | 34.7 | House dust | 14.3 | Cedar | 33.6 |
| 4th | Penicillium | 12.5 | House dust | 28.6 | Cat | 13.1 | Penicillium | 32.8 |
| 5th | Acarus siro | 9.7 | Orch | 28.6 | Dog | 10.1 | House dust | 27.7 |
| 6th | Cat | 8.3 | Sweet vernal grass | 26.5 | Alder | 8.0 | Acarus siro | 21.0 |
| 7th | Rye | 7.6 | Dandelion | 24.5 | Rye | 7.6 | Rye | 16.8 |
| 8th | Dog | 6.3 | Reed | 24.5 | Acarus siro | 7.4 | Candida | 16.8 |

![Fig. 1. Proportion of simultaneous positive reactions to other allergens according to the number of fungal allergens](image-url)
rarely found in outdoor air, and can be found throughout the year. Similar to previous studies, in this study, sensitization to fungus commonly occurs in summer. However, the proportion of patients who were sensitized in the winter was lower compared to that during summer. In particular, no particular seasonal difference was found for positive reactions to multiple fungal allergens. Therefore, seasonal deviations suggest that the frequency of patients having positive reactions to multiple fungal allergens is not significantly different by season.

Many studies have reported that exposure to fungus can cause an allergic reaction. Respiratory symptoms have been mostly reported, which is thought to be an allergic reaction caused by fungal spores floating in the air. There are also reports of allergic reactions due to skin contact with spores. Allergies to fungi are often expressed as type I immediate, IgE-mediated hypersensitivity. Atopic sensitization can manifest as asthma, rhinitis or conjunctivitis, urticaria, or atopic dermatitis. Sometimes, an allergic reaction can be expressed as a type II hypersensitivity reaction. An example of type III hypersensitivity is allergic alveolitis and bronchopulmonary aspergillosis (ABPA). ABPA is a pulmonary disease caused by hypersensitive Th2 response to A. fumigatus, which can worsen asthma and the condition of patients with cystic fibrosis. Allergy to A. fumigatus is common in atopic asthma as well as in patients with cystic fibrosis. Bronchopulmonary aspergillosis is characterized by wheezing and pulmonary infiltrates, which can lead to pulmonary fibrosis or bronchitis. However, it is difficult to judge whether allergic diseases are clearly caused by fungi. This is because of the difficulty in finding the cause of allergic diseases, and patient distribution in each institution varies. In this study, patients are mostly diagnosed with allergic rhinitis, followed by dermatologic diseases. Thus, to determine the frequency of allergic diseases caused by fungi, clearly identifying allergens through multicenter studies is necessary.

Patients with allergies often have allergies to multiple allergens. Patients with positive reactions to multiple allergens are often identified through the MAST-CLA test. Several studies reported on the positive reaction to each allergen in the MAST-CLA test, but information on the positive reaction to a combination of allergens and fungal allergens in the MAST-CLA panel is still unclear. In many reports, D. farinae mite and D. pteronyssinus mite were the most commonly found co-existing allergens in the MAST-CLA test, and in this study, the positive reaction rate to D. farinae mite and D. pteronyssinus mite was the highest for both groups of patients who had a positive reaction to single and multiple fungal allergens. In addition, we investigated allergens that showed the highest co-positive allergenic rate excluding mites and house dusts, which are well-known co-positive allergens. Regarding C. herbarum, A. siro was the most commonly observed co-positive allergen followed by the cat, rye, and dog. Regarding A. fumigatus, rye was the most commonly observed co-positive allergen followed by orch, sweet vernal grass, dandelion, and reed. Regarding A. alternata, the cat was a most commonly observed co-positive allergen followed by the dog, alder, rye, and A. siro. For allergens showing simultaneously positive reactions to all three fungal allergens, cedar rye was the most commonly observed co-positive allergen, followed by A. siro and rye.

In one study, the MAST-CLA panel allergens were divided into eight allergens with high simultaneous allergenicity, which were compared based on the similarity in the molecular structure. D. pteronyssinus mite, D. farinae mite, A. siro, house dust, dog, and cat were on cluster 5. Cross-reactivity among D. pteronyssinus mite, D. farinae mite, and A. siro are well established by Spitzauer et al., in which albumin was identified to demonstrate cross-reactivity to the aforementioned allergens. House dust sensitization could be a result of co-sensitization to cat and dog, as they are all indoor allergens.

In this study, we aimed to investigate the correlation between the number of positive reactions to fungal allergens and the number of positive reactions to other sensitized allergens. The correlation analysis showed a positive correlation. This suggests that the number of positive reactions to fungal allergens has a positive correlation with the number of positive reactions to sensitized allergens. The most common allergens that showed multiple positive reactions with fungi were pollens, cat, and dog.

Despite our findings, it is difficult to conclude whether the multiple positive reactions are co-sensitizations caused by exposure to each allergen and whether the multiple positive reactions are cross-reactivities caused by one allergen, in which the patient had previous exposure, and other allergens that show similar structure, but the patient had no previous exposure.

The robustness of the allergen test has not yet been confirmed because the substances used in the allergen test are not quantified. Until now, only the molecular structures of the substances are identified, but their characteristics are unknown. Amino acid sequence, three-dimensional structure, and gene structure of allergic reactions were elucidated only recently. The development of allergen diagnostic reagents made of recombinant antigens will enable cross-reactivity and simultaneous sensitization and will be useful for the diagnosis and differential diagnosis of allergic disease and immunotherapy.

Fungal allergens are still the major causes of numerous allergic diseases. The demographic results of this study are not
much different from those in previous studies, but the present results are meaningful as they help determine the occurrence of fungal allergens in southeastern Korea. This study provides useful information on the positive reactions to multiple allergens associated with fungal allergens. Therefore, the results can be used in choosing allergens when applying avoidance therapy.

Nevertheless, this study had some limitations. This study was conducted in one center in Korea; hence, it does not fully reflect regional and ethnic differences. Further multicenter studies and studies involving patients in other regions are needed. Moreover, data on the relationship between the clinical signs and positivity of fungal allergens will be more meaningful information to clinicians. Despite these limitations, this study can be a good reference for clinicians when educating patients with allergic diseases.

ACKNOWLEDGEMENT

The background study was presented at the 24th Academic Conference of the Korean Society for Medical Mycology in July 2017.

CONFLICT OF INTEREST

In relation to this article, we declare that there is no conflict of interest.

ORCID

YongWoo Choi: 0000-0001-9149-4612
Joonsoo Park: 0000-0003-1354-2311

REFERENCES

1. Lim HS, Yoon JK, Lee HH. Allergen pattern using MAST CLA test in Korean pediatric patients. Korean J Clin Pathol 2001;21:292-297
2. Kim HS, Kim DJ, Lee SG. Analysis of simultaneous positivity to multiple allergens on MAST CLA test. Korean J Lab Med 2005;25:448-456
3. Ezeamuzie CI, Al Ali S, Khan M, Hijazi Z, Dowaisan A, Thomson MS, et al. IgE-mediated sensitization to mould allergens among patients with allergic respiratory diseases in a desert environment. Int Arch Allergy Immunol 2000;121:300-307
4. Nolles G, Hoekstra MO, Schouten JP, Gemtjen S, Kauffman HF. Prevalence of immunoglobulin E for fungi in atopic children. Clin Exp Allergy 2001;31:1564-1570
5. D’Amato G, Chatzigeorgiou G, Corsico R, Gioulekas D, Jäger L, Jäger S, et al. Evaluation of the prevalence of skin prick test positivity to Alternaria and Cladosporium in patients with suspected respiratory allergy. A European multicenter study promoted by the Subcommittee on Aerobiology and Environmental Aspects of Inhalant Allergens of the European Academy of Allergology and Clinical Immunology. Allergy 1997;52:711-716
6. Corsico R, Cinti B, Feliziani V, Gallesio MT, Luccardi G, Loreti A, et al. Prevalence of sensitization to Alternaria in allergic patients in Italy. Ann Allergy Asthma Immunol 1998;80:71-76
7. Wioletta A. Żukiewicz-Sobczak. The role of fungi in allergic diseases. Postep Derm Alergol 2013;30:42-45
8. Fukutomi Y, Taniguchi M. Sensitization to fungal allergens: resolved and unresolved issues. Allergol Int 2015;64:321-331
9. Mari A, Schneider P, Wally V, Breitenbach M, Simon-Nobbe B. Sensitization to fungi: epidemiology, comparative skin tests, and IgE reactivity of fungal extracts. Clin Exp Allergy 2003;33:1429-1438
10. Crameri R, Zeller S, Glaser AG, Vilhelmsson M, Rhyner C. Cross-reactivity among fungal allergens: A clinically relevant phenomenon? Mycoses 2008;52:99-106
11. Katz Y, Verleger H, Barr J, Rachmil M, Kivity S, Kuttin ES. Indoor survey of moulds and prevalence of mould atopy in Israel. Clin Exp Allergy 1999;29:186-192
12. Gupta R, Singh BP, Sridhara S, Gaur SN, Kumar R, Chaudhary VK, et al. Identification of cross-reactive proteins amongst different Curvularia species. Int Arch Allergy Immunol 2002;127:38-46
13. Helbling A, Brander KA, Horner WE, Lehrer SB. Allergy to basidiomycetes. Chem Immunol 2002;81:28-47
14. D’Amato G, Spielsma FT. Aerobiologic and clinical aspects of mould allergy in Europe. Allergy 1995;50:870-877
15. Bush RK, Portnoy JM. The role and abatement of fungal allergens in allergic diseases. J Allergy Clin Immunol 2001;107:430-440
16. Woodfolk JA. Allergy and dermatophytes. Clin Microbiol Rev 2005;18:30-43
17. Simon-Nobbe B, Denk U, Poll V, Rid R, Breitenbach M. dermatophytes. The spectrum of fungal allergy. Int Arch Allergy Immunol 2008;145:58-86
18. Shin JH. Fungus and allergy. Pediatr Allergy Respir Dis 1999;9:13-23
19. Ohn J, Paik SH, Doh EJ, Park HS, Yoon HS, Cho S. Allergen sensitization pattern by sex: a cluster analysis in Korea. Ann Dermatol 2017;29:735-741

20. Matsson P, Hamilton RG, Adkinson NF, Esch R, Homeburger HA, Maxim P, et al. Evaluation methods and analytical performance characteristics of immunologic assays for human immunoglobulin E (IgE) antibodies of defined allergen specificities. National Committee for Clinical Laboratory Standards (NCCLS), Wayne, PA, Approved guideline I /LA20-A. 1997

21. Beaumont F, Kauffman HF, van der Mark TH, Sluiter HJ, de Vries K. Volumetric aerobiological survey of conidial fungi in the North-East Netherlands. I. Seasonal patterns and the influence of metrological variables. Allergy 1985; 40:173-180

22. Oh JW, Lee HB. Aerobiological study for airborne pollen and mold in Kuri-shi, Kyunggi-Do. Pediatr Allergy Respir Dis 1997;7:58-66

23. D’Amato G, Spieksma FT. Aerobiol Aerobiologic and clinical aspects of mould allergy in Europe. Allergy 1995; 76:819-825

24. Cramer R, Garbani M, Rhyner C, Huitema C. Fungi: the neglected allergenic sources. Allergy 2014;69:176-185

25. Scheynius A, Johansson C, Buentke E, Zargari A, Tengvall LM. Atopic eczema/dermatitis syndrome and Malassezia. Int Arch Allergy Immunol 2002;127:161-169

26. Torricelli R, Johansson SG, Wuthrich B. Ingestive and inhalantive allergy to the mushroom Boletus edulis. Allergy 1997;52:747-751

27. Kivity S, Schwarz Y, Fireman E. The association of perennial rhinitis with Tichopryton infection. Clin Exp Allergy 1992;22:498-500

28. Scalabrini DM, Babvek S, Perzanowski MS, Wilson BB, Platts-Mills TA, Wheatley LM. Use of specific IgE in assessing the relevance of fungal and dust mite allergens to atopic dermatitis: a comparison with asthmatic and nonasthmatic control subjects. J Allergy Clin Immunol 1999;104:1273-1279

29. Dales RE, Cakmak S, Burnett RT, Judek S, Coates F, Brook JR. Influence of ambient fungal spores on emergency visits for asthma to a regional children’s hospital. Am J Respir Crit Care Med 2000;162:2087-2090

30. Nissen D, Petersen LJ, Esch R, Svegaard E, Skov PS, Poulsen LK, et al. IgE-sensitization to cellular and culture filtrates of fungal extracts in patients with atopic dermatitis. Ann Allergy Asthma Immunol 1998;81:247-255

31. Neukirch C, Henry C, Leynaert B, Liard R, Bousquet J, Neukirch F. Is sensitization to Alternaria alternata a risk factor for severe asthma? A population-based study. J Allergy Clin Immunol 1999;103:709-711

32. Lacey J. Fungi and Actinomycetes as allergens. In:Kay AB ed. Allergy and allergic diseases, 1st ed. Oxford: Blackwell Science, 1998:858-887.

33. Bogacka E, Matkowski K. Effect of fungi on human health. Mikologialekarska 2001;8:175-178

34. Knutsen AP, Slavin RG. Allergic bronchopulmonary Aspergillosis in asthma and cystic fibrosis. Clin Dev Immunol 2011; 2011:843763

35. Yu Yi, Cho JS, Lee KH, Kim GH, Hong SM, Kim SW. A clinical statistics on allergens of allergic rhinitis: Prevalence of mixed sensitization. Korean J Otolaryngol 2003;46:48-53

36. Yun YY, Ko SH, Park JW, Hong CS. Cross-reactivity between pollens in patients sensitized to multiple pollens. Korean J Asthma Allergy Clin Immunol 1999:19:584-593

37. Mothes N, Horak F, Valenta R. Transition from a botanical to a molecular classification in tree pollen allergy: Implications for diagnosis and therapy. Int Arch Allergy Immunol 2004;135:357-373

38. Ferreira F, Hawranek T, Gruber P, Wopfner N, Mari A. Allergic cross-reactivity: from gene to clinic. Allergy 2004; 59:243-267

39. Lee EJ, Piao YJ, Kim KH, Suhr KB, Lee JH, Park JK. The relationship among the clinical evaluation, total IgE, and allergen-specific IgE of MAST-CLA in atopic dermatitis. Korean J Dermatol 2003;41:197-206

40. Park KI, Chun HS, Shin JW, Kim HS, Song KS. Allergen frequencies on MAST CLA by age groups using new Korean panel. J Clin Pathol Quality Control 1999;21:243-249

41. Yang SE, Oh HB, Hong SJ, Moon DH, Chi HS, Analysis of MAST chemiluminescent assay (MAST CLA) results performed in Asian medical center. Korean J Clin Pathol 1998; 18:606-606

42. Lee SR, Lee HR, Keum DG. Evaluation of the MAST-CLA allergy system (Korea IgE panel) for diagnosis of atopic allergy. Korean J Clin Pathol 1995;15:469-477

43. Spitzauer S, Pandjaitan B, Müh S, Ebner C, Kraft D, Valenta R, et al. Major cat and dog allergens share IgE epitopes. J Allergy Clin Immunol 1997;99:100-106