Over the past few decades, certain coronaviruses have become threats to humans. Coronavirus-es such as severe acute respiratory syndrome–related coronavirus (SARS–CoV) and Middle East respiratory syndrome–related coronavirus (MERS–CoV) have caused lethal outbreaks in 2003 and 2012, respectively. In 2019, severe infectious coronavirus outbreak with unusual pneumonia was reported in Wuhan, China, which later became pandemic. Due to the similarity of coronavirus disease 2019 (COVID–19) to SARS–CoV, the virus was termed as SARS–CoV–2. Although viral proteases such as papain–like 2 protease (PL2Pro) are essential for virulence of SARS–CoV, limited information is available on the role of protease in viral pathogenesis. This article highlights the significance of ubiquitination in signal transduction for innate immune responses and the importance of deubiquitinase activity of PL2Pro in inhibiting host antiviral activities.

Keywords: COVID–19; Papain–like 2 protease; SARS–CoV–2; Deubiquitinase

INTRODUCTION

Coronavirus disease 2019 (COVID–19), which was termed by World Health Organization (WHO), originated in Wuhan City in the Hubei Province of China. COVID–19 has recently been identified to be caused by human coronavirus, which belongs to genera Betacoronavirus. Due to its similarity to severe acute respiratory syndrome–related coronavirus (SARS–CoV), the virus causing COVID–19 was termed as SARS–CoV–2. In this review, we provide the genetic and phenotypic features of SARS–CoV–2 and discuss papain–like 2 protease (PL2Pro) and host immune response.

COMPARISON OF SARS–COV–2, SARS–COV, AND MERS–COV

Coronavirus is a large and diverse family of single–strand–ed RNA viruses that are 26–32 kb in size [1]. Coronaviruses include a broad spectrum of hosts and have been reported to trigger diseases related to upper respiratory tract, gastrointestinal tract, liver, and central nervous system [2].

Coronaviruses have been observed to infect many avian and mammalian species. Moreover, they have been shown to have capability of crossing the species barrier, infecting humans, and causing severe symptoms. The outbreak of SARS in 2003 and Middle East respiratory syndrome (MERS) in 2012 have proved the lethality of coronavirus infection in humans [3]. Studies showed that SARS–CoV and MERS–CoV...
were likely originated from bats (Fig. 1). Before infecting humans, SARS-CoV and MERS-CoV have been suggested to infect civet cat and camel, respectively. The Chinese Center for Disease Control and Prevention reported a new zoonotic human coronavirus on 9th January 2020 [4]. Although the initial infected cases have been associated with Hunan South China Seafood Market, the source of SARS-CoV-2 is still unknown (Fig. 1). Recent studies have suggested that the intermediate carriers may be pangolins [5]; however, according to the World Health Organization, the original source is still unknown [6].

VIRAL STRUCTURE AND INFECTION

SARS-CoV-2 is a spherical, enveloped particle containing single-stranded RNA, which is associated with a nucleoprotein. The envelope has been reported to exhibit club-shaped glycoprotein projections called spikes. Coronaviruses have been shown to have large RNA genomes (26-32 kb). The viral genome has been reported to have unique N-terminal fragment, expressing 16 non-structural proteins and C-terminal structural proteins that includes spike, envelope, membrane, and nucleocapsid (Fig. 2). Furthermore, coronavirus genomes have been reported to usually enclose about six ORFs.

The first ORF (ORF1a/b) occupies two-thirds of the whole genome length and encodes 16 non-structural proteins (nsp1-16). The four key structural proteins are encoded by ORFs, 10 and 11, which are on the remaining one-third of the genome near 3′-end. These mature proteins have been shown to play important roles in genome maintenance and replication of virus [7,8]. The most abundant structural protein, membrane glycoprotein, is known to span the membrane bilayer three times, which leaves the N-terminal and C-terminal domain exposed to the outside and inside of the virus, respectively. The membrane protein has been reported to play a significant role in the intracellular formation of viral particles.

The spike protein is a membrane glycoprotein that is
crucial for penetrating host cells. Spike protein of SARS-CoV-2 has been suggested to bind to angiotensin-converting enzyme 2 (ACE2) (Fig. 3). On attachment, the spikes are primed by host enzyme called transmembrane protease, serine 2 (TMPRSS2). This proteolytic activity has been reported to activate spike and allow SARS-CoV-2 to successfully enter and infect cells [9,10].

PAPAIN–LIKE PROTEASE 2 AND INNATE IMMUNE RESPONSE

Interestingly, PL2Pro has three enzyme activities including proteolysis, deubiquitination, and delSgylation. PL2Pro digests polypeptide of virus and can produce several proteins. Deubiquitination and delSgylation are vital functions of protease that cause reduction in host immune response. Since ubiquitin (Ub) and interferon-stimulated gene 15 (ISG15) are crucial for innate antiviral immunity, coronaviruses have been shown with tendency to inhibit the conjugation of Ub or ISG15 to its target proteins, and remove Ub or ISG15 from ubiquitinated or ISGylated proteins, respectively [11-13].

Ubiquitination is a chemical process, which involves covalent and reversible addition of a 76-amino acid protein, Ub, to lysine or other residues. Ubiquitination of Ub itself at its lysine residues (K6/K11/K27/K29/K33/K48/K63) or its amino-terminal methionine produces different types of Ub chains with distinct functions. For instance, K48-linked Ub...
linkage has been shown to often target protein for degradation, while K63-linked Ub linkage has been found to mediate protein-protein interactions [14,15].

Furthermore, ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6) and TRAF3 is required for activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and interferon regulatory transcription factor 3 (IRF3). When activated, TRAF6 auto-catalyzes its K63-linked ubiquitination. It has been reported to serve as scaffolds for NF-κB essential modulator (NEMO)–IκBα/IκKβ complex binding. Moreover, K63-linked TRAF3 ubiquitination has been shown to create a scaffold for NEMO-mediated TANK-binding kinase 1 (TBK1)/IκKα complex recruitment [16]. The transcription factors IRF3 and NF-κB induced various cytokines including interferons (IFNs) and tumor necrosis factors (TNFs), which inhibit virus replication [17,18].

The potential targets of SARS-CoV PL2Pro, which include IRF3, IκRα, TRAF6, and TRAF3 have been reported (Fig. 4). SARS-CoV PL2Pro has been proposed to bind IRF3 and block its phosphorylation, dimerization, and nuclear translocation, and thereby inhibit IFN-β induction [19]. Moreover, PL2Pro has been shown to inhibit NF-κB signaling pathway by stabilizing its inhibitor, IκBα [20]. A protein comprising SARS-CoV PL2Pro and transmembrane region of Nsp3 has been demonstrated to interact with stimulator of interferon genes (STING)-TRAF3-TBK1 complex and remove the Ub from the ubiquitinated retinoic acid-inducible gene 1 (RIG-I), STING, TRAF3, TBK1, and IRF3 [21]. Furthermore, SARS-CoV PL2Pro has also been shown to inhibit toll-like receptor 7 (TLR7)-mediated IFN response by removing K63-linked Ub chain from TRAF6 and TRAF3 [22].

CONCLUSIONS

As SARS-CoV-2 employs spike protein to bind and infect host cells, viral spike can be utilized as drug target. Since PL2Pro plays an important role in viral replication as well as inhibiting host innate immune response, it can be an efficient antiviral drug target for coronaviruses including SARS-CoV, MERS-CoV, and SARS-CoV-2. Moreover, ubiquitination is an important inflammatory signal transduction. Thus, inhibition of ubiquitination and deubiquitination of Ub-linked signal proteins such as TRAF6, TRAF3, IκBα, and IRF-3 can be a potential strategy for preventing inflammatory diseases. Possibly, the viral protein, PL2Pro may not only be a cause for severe symptoms in host, but also can be used to cure human diseases.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

REFERENCES

1. Tang B, Bragazzi NL, Li Q, Tang S, Xiao Y, Wu J. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect Dis Model 2020;5:248-55.
2. Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology 2001;279:371-4.
3. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J 2019;16:69.
4. Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses 2020;12:135.
5. Cyranoski D. Did pangolins spread the China coronavirus to people? Internet. Nature: 2020 [cited 2020 Feb 7]. Available from: https://doi.org/10.1038/d41586-020-00364-2.
6. Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol 2020;92:441-7.
7. Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect 2020. doi: 10.1016/j.jmii.2020.03.022. [Epub ahead of print]
8. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio 2012;3:e00473-12.
9. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herllter T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020:181:271-80.e8.
10. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res 2020;7:11.
11. Yuan W, Krug RM. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J 2001;20:362-71.
12. Bakshi S, Holzer B, Bridgen A, McMullan G, Quin DG, Barson MD. Dugbe virus ovarian tumour domain interferences with ubiquitin/ISG15-regulated innate immune cell signalling. J
13. Yang X, Chen X, Bian G, Tu J, Xing Y, Wang Y, et al. Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J Gen Virol 2014;95:614-26.

14. Komander D, Rape M. The ubiquitin code. Annu Rev Biochem 2012;81:203-29.

15. Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol 2016;18:579-86.

16. Häcker H, Tseng PH, Karin M. Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol 2011;11:457-68.

17. Seth RB, Sun L, Chen ZJ. Antiviral innate immunity pathways. Cell Res 2006;16:141-7.

18. Hiscott J, Nguyen TL, Arguello M, Nakhaei P, Paz S. Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 2006;25:6844-67.

19. Devaraj SG, Wang N, Chen Z, Chen Z, Tseng M, Barretto N, et al. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem 2007;282:32208-21.

20. Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol 2009;83:6689-705.

21. Chen X, Yang X, Zheng Y, Yang Y, Xing Y, Chen Z. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell 2014;5:369-81.

22. Li SW, Wang CY, Jou YJ, Huang SH, Hsiao LH, Wan L, et al. SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6. Int J Mol Sci 2016;17:678.