FOURTH FUNDAMENTAL FORM AND i-TH CURVATURE FORMULAS
OF ROTATIONAL HYPERSURFACES IN 4-SPACE

ERHAN GÜLER

Abstract. We introduce fourth fundamental form IV, and i-th curvature formulas C_i of rotational hypersurfaces in the four dimensional Euclidean geometry E^4. Defining fourth fundamental form and i-th curvatures for hypersurfaces, we calculate them on rotational hypersurface. In addition we study rotational hypersurface satisfying $\Delta IV x = Ax$ for some 4×4 matrix A.

1. Introduction

Refering Chen [10, 11, 12, 13], the researches of submanifolds of finite type whose immersion into E^m (or E^m_ν) by using a finite number of eigenfunctions of their Laplacian has been studied by geometers for almost half centuries.

Takahashi [38] proved that a connected Euclidean submanifold is of 1-type, iff it is either minimal in E^m or minimal in some hypersphere of E^m. Submanifolds of finite type closest in simplicity to the minimal ones are the 2-type spherical submanifolds (where spherical means into a sphere). Some results of 2-type spherical closed submanifolds were obtained by [7, 8, 11]. Garay gave [25] an extension of Takahashi’s theorem in E^m. Cheng and Yau worked hypersurfaces with constant scalar curvature; Chen and Piccinni [14] studied submanifolds with finite type Gauss map in E^m. Dursun [19] gave hypersurfaces with pointwise 1-type Gauss map in E^{n+1}.

Considering E^3; Takahashi [38] stated that minimal surfaces and spheres are the only surfaces satisfying the condition $\Delta r = \lambda r$, $\lambda \in \mathbb{R}$; Ferrandez, Garay and Lucas [22] proved that the surfaces satisfying $\Delta H = AH$, $A \in \text{Mat}(3,3)$ are either minimal, or an open piece of sphere or of a right circular cylinder; Choi and Kim [17] characterized the minimal helicoid in terms of pointwise 1-type Gauss map of the first kind; Garay [24] worked a certain class of finite type surfaces of revolution; Dillen, Pas and Verstraelen [18] proved that the only surfaces satisfying $\Delta r = Ar + B$, $A \in \text{Mat}(3,3)$, $B \in \text{Mat}(3,1)$ are the minimal surfaces, the spheres and the circular cylinders; Stamatakis and Zoubi [37] considered surfaces of revolution satisfying $\Delta^{III} x = Ax$; Senoussi and Bekkar [36] studied helicoidal surfaces M^2 which are of finite type with respect to the fundamental forms I, II and III, i.e., their position vector field $r(u,v)$ satisfies the condition $\Delta^J r = Ar$, $J = I, II, III$, where $A \in \text{Mat}(3,3)$; Kim, Kim and Kim [30] focused Cheng-Yau operator and Gauss map of surfaces of revolution.

Date: Received: May 19, 2020.

1991 Mathematics Subject Classification. Primary 53B25; Secondary 53C40.

Key words and phrases. Euclidean spaces, four space, rotational hypersurface, i-th curvature, fourth fundamental form.

This paper is in final form and no version of it will be submitted for publication elsewhere.
General rotational surfaces in 4-space were originated by Moore [34, 35]. Focusing on \mathbb{E}^4; Hasanis and Vlachos [29] considered hypersurfaces with harmonic mean curvature vector field; Cheng and Wan [15] considered complete hypersurfaces with CMC; Kim and Turgay [31] studied surfaces with L_1-pointwise 1-type Gauss map; Arslan et. al. [4] worked Vranceanu surface with pointwise 1-type Gauss map; Aksoyak and Yaylı [2] introduced flat rotational surfaces with pointwise 1-type Gauss map; Güler, Hacısalihoğlu and Kim [26] studied Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface; Güler and Turgay [28] introduced Cheng-Yau operator and Gauss map of rotational hypersurfaces.

In Minkowski 4-space \mathbb{E}^4_1; Ganchev and Milousheva [23] considered analogue of surfaces of [34, 35]; Arvanitoyeorgos, Kaimakamis and Magid [6] showed that if the mean curvature vector field of M^3 satisfies the equation $\Delta H = \alpha H$ (\(\alpha\) a constant), then M^3 has CMC; Arslan and Milousheva worked meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map; Turgay gave some classifications of Lorentzian surfaces with finite type Gauss map; Dursun and Turgay studied space-like surfaces in with pointwise 1-type Gauss map. Aksoyak and Yaylı [3] focused general rotational surfaces with pointwise 1-type Gauss map in \mathbb{E}^4_2. Bektaş, Canfes and Dursun [9] classified surfaces in a pseudo-sphere with 2-type pseudo-spherical Gauss map in \mathbb{E}^5_2.

In literature, there is no any work about fourth fundamental form f_{ij} (i.e. IV) and i-th curvature formulas C_i, where $i = 0, \ldots, 3$, of rotational hypersurface in the four dimensional Euclidean space \mathbb{E}^4.

We consider fourth fundamental form IV, and i-th curvature formulas C_i of rotational hypersurface in the four dimensional Euclidean geometry \mathbb{E}^4. In Section 2, we give some basic notions of the four dimensional Euclidean geometry. Defining fourth fundamental form and i-th curvature for hypersurfaces, we calculate C_i and fourth fundamental form of rotational hypersurface in Section 3. Finally, in the last section, we study rotational hypersurface satisfying $\Delta IVx = Ax$ for some 4×4 matrix A in \mathbb{E}^4.

2. Preliminaries

In this section, giving some of basic facts and definitions, we describe notations used whole paper. Let \mathbb{E}^m denote the Euclidean m-space with the canonical Euclidean metric tensor given by $\tilde{g} = \langle \cdot, \cdot \rangle = \sum_{i=1}^{m} dx_i^2$, where (x_1, x_2, \ldots, x_m) is a rectangular coordinate system in \mathbb{E}^m. Consider an m-dimensional Riemannian submanifold of the space \mathbb{E}^m. We denote the Levi-Civita connections of \mathbb{E}^m and M by $\tilde{\nabla}$ and ∇, respectively. We shall use letters X, Y, Z, W (resp., ξ, η) to denote vectors fields tangent (resp., normal) to M. The Gauss and Weingarten formulas are given, respectively, by

\begin{align*}
\tilde{\nabla}_X Y &= \nabla_X Y + h(X, Y), \\
\tilde{\nabla}_X \xi &= -A_\xi(X) + D_X \xi,
\end{align*}

where h, D and A are the second fundamental form, the normal connection and the shape operator of M, respectively.
For each $\xi \in T^\perp_p M$, the shape operator A_ξ is a symmetric endomorphism of the tangent space $T_p M$ at $p \in M$. The shape operator and the second fundamental form are related by

$$\langle h(X, Y), \xi \rangle = \langle A_\xi X, Y \rangle.$$

The Gauss and Codazzi equations are given, respectively, by

$$\langle R(X, Y, Z, W) = \langle h(Y, Z), h(X, W) \rangle - \langle h(X, Z), h(Y, W) \rangle, (3)$$

$$\langle \nabla_X h(Y, Z) = \langle \nabla_Y h(X, Z) \rangle, (4)$$

where R, R^D are the curvature tensors associated with connections ∇ and D, respectively, and $\sqrt{\nabla} \nabla h$ is defined by

$$\langle \nabla_X h(Y, Z) = D_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z).$$

2.1. Hypersurfaces of Euclidean space. Now, let M be an oriented hypersurface in the Euclidean space \mathbb{E}^{n+1}, S its shape operator (i.e. Weingarten map) and x its position vector. We consider a local orthonormal frame field $\{e_1, e_2, \ldots, e_n\}$ of consisting of principal directions of M corresponding from the principal curvature k_i for $i = 1, 2, \ldots n$. Let the dual basis of this frame field be $\{\theta_1, \theta_2, \ldots, \theta_n\}$. Then the first structural equation of Cartan is

$$d\theta_i = \sum_{j=1}^{n} \theta_j \wedge \omega_{ij}, \quad i = 1, 2, \ldots, n,$$

(5)

where ω_{ij} denotes the connection forms corresponding to the chosen frame field. We denote the Levi-Civita connection of M and \mathbb{E}^{n+1} by ∇ and $\tilde{\nabla}$, respectively. Then, from the Codazzi equation (3), we have

$$e_i(k_j) = \omega_{ij}(e_j)(k_i - k_j), \quad (6)$$

$$\omega_{ij}(e_l)(k_i - k_j) = \omega_{il}(e_j)(k_i - k_l) \quad (7)$$

for distinct $i, j, l = 1, 2, \ldots, n$.

We put $s_j = \sigma_j(k_1, k_2, \ldots, k_n)$, where σ_j is the j-th elementary symmetric function given by

$$\sigma_j(a_1, a_2, \ldots, a_n) = \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} a_{i_1} a_{i_2} \ldots a_{i_j}.$$

We use following notation

$$r^j_i = \sigma_j(k_1, k_2, \ldots, k_{i-1}, k_{i+1}, k_{i+2}, \ldots, k_n).$$

By the definition, we have $r^0_i = 1$ and $s_{n+1} = s_{n+2} = \cdots = 0$. We call the function s_k as the k-th mean curvature of M. We would like to note that functions $H = \frac{1}{n} s_1$ and $K = s_n$ are called the mean curvature and Gauss-Kronecker curvature of M, respectively. In particular, M is said to be j-minimal if $s_j \equiv 0$ on M.

In \mathbb{E}^{n+1}, to find the i-th curvature formulas C_i (Curvature formulas sometimes are represented as mean curvature H_i, and sometimes as Gaussian curvature K_i by different writers, such as [1].
and [32]. We will call it just i-th curvature \mathcal{C}_i in this paper.), where $i = 0, \ldots, n$, firstly, we use the characteristic polynomial of S:

$$P_S(\lambda) = 0 = \det(S - \lambda I_n) = \sum_{k=0}^{n} (-1)^k s_k \lambda^{n-k}, \quad (8)$$

where $i = 0, \ldots, n$, I_n denotes the identity matrix of order n. Then, we get curvature formulas $(n) \mathcal{C}_i = s_i$. That is, $(n) \mathcal{C}_0 = s_0 = 1$ (by definition), $(n) \mathcal{C}_1 = s_1, \ldots , (n) \mathcal{C}_n = s_n = K$.

k-th fundamental form of M is defined by $I(S^{k-1}(X), Y) = \langle S^{k-1}(X), Y \rangle$. So, we have

$$\sum_{i=0}^{n} (-1)^i \binom{n}{i} \mathcal{C}_i I(S^{n-i}(X), Y) = 0. \quad (9)$$

In particular, one can get classical result $III\mathcal{C}_0 - 2\mathcal{C}_1 II + \mathcal{C}_2 I = 0$ of surface theory for $n = 2$. See [32] for details.

For a Euclidean submanifold $x: M \rightarrow \mathbb{E}^m$, the immersion (M, x) is called finite type, if x can be expressed as a finite sum of eigenfunctions of the Laplacian Δ of (M, x), i.e. $x = x_0 + \sum_{i=1}^{k} x_i$, where x_0 is a constant map, x_1, \ldots , x_k non-constant maps, and $\Delta x_i = \lambda_i x_i, \lambda_i \in \mathbb{R}, i = 1, \ldots , k$.

If λ_i are different, M is called k-type. See [11] for details.

2.2. Rotational hypersurfaces. We will obtain a rotational hypersurface (rot-hypface for short) in Euclidean 4-space. Before we proceed, we would like to note that the definition of rot-hypfaces in Riemannian space forms were defined in [21]. A rot-hypface $M \subset \mathbb{E}^{n+1}$ generated by a curve C around an axis C that does not meet C is obtained by taking the orbit of C under those orthogonal transformations of \mathbb{E}^{n+1} that leaves τ pointwise fixed (See [21] Remark 2.3).

Throughout the paper, we shall identify a vector (a, b, c, d) with its transpose. Consider the case $n = 3$, and let C be the curve parametrized by

$$\gamma(u) = (f(u), 0, 0, \varphi(u)). \quad (10)$$

If τ is the x_4-axis, then an orthogonal transformations of \mathbb{E}^{n+1} that leaves τ pointwise fixed has the form

$$Z(v, w) = \begin{pmatrix}
\cos v \cos w & -\sin v & -\cos v \sin w & 0 \\
\sin v \cos w & \cos v & -\sin v \sin w & 0 \\
\sin w & 0 & \cos w & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad v, w \in \mathbb{R}.$$

Therefore, the parametrization of the rot-hypface generated by a curve C around an axis τ is given by

$$x(u, v, w) = Z(v, w) \gamma(u). \quad (11)$$

Let $x = x(u, v, w)$ be an isometric immersion from $M^3 \subset \mathbb{E}^3$ to \mathbb{E}^4. Triple vector product of $\vec{x} = (x_1, x_2, x_3, x_4)$, $\vec{y} = (y_1, y_2, y_3, y_4)$, $\vec{z} = (z_1, z_2, z_3, z_4)$ of \mathbb{E}^4 is defined by as follows:

$$\vec{x} \times \vec{y} \times \vec{z} = (x_2y_3z_4 - x_2y_4z_3 - x_3y_2z_4 + x_3y_4z_2 + x_4y_2z_3 - x_4y_3z_2, \\
-x_1y_3z_4 + x_1y_4z_3 + x_3y_1z_4 - x_3y_4z_1 - y_1x_4z_3 + x_4y_3z_1, \\
x_1y_2z_4 - x_1y_4z_2 - x_2y_1z_4 + x_2z_1y_4 + y_1x_4z_2 - x_4y_2z_1, \\
-x_1y_2z_3 + x_1y_3z_2 + x_2y_1z_3 - x_2y_3z_1 - x_3y_1z_2 + x_3y_2z_1).$$
For a hypface x in 4-space, we have

$$I = \begin{pmatrix} E & F & A \\ F & G & B \\ A & B & C \end{pmatrix}, \quad II = \begin{pmatrix} L & M & P \\ M & N & T \\ P & T & V \end{pmatrix}, \quad III = \begin{pmatrix} X & Y & O \\ Y & Z & S \\ O & S & U \end{pmatrix}, \quad (12)$$

and

$$\det I = (EG - F^2)C - EB^2 + 2FAB - GA^2, \quad \det II = (LN - M^2)V - LT^2 + 2MPT - NP^2, \quad \det III = (XZ - Y^2)U - ZO^2 + 2OSY - XS^2,$$

where $E = \langle x_u, x_u \rangle$, $F = \langle x_u, x_v \rangle$, $G = \langle x_u, x_w \rangle$, $A = \langle x_u, x_w \rangle$, $B = \langle x_v, x_w \rangle$, $C = \langle x_u, x_w \rangle$, $L = \langle x_vu, G \rangle$, $M = \langle x_uw, G \rangle$, $N = \langle x_vw, G \rangle$, $P = \langle x_uw, G \rangle$, $T = \langle x_uw, G \rangle$, $V = \langle x_vw, G \rangle$, $X = \langle G_u, G_u \rangle$, $Y = \langle G_u, G_w \rangle$, $Z = \langle G_v, G_v \rangle$, $O = \langle G_u, G_w \rangle$, $S = \langle G_v, G_w \rangle$, $U = \langle G_w, G_w \rangle$.

Here,

$$G = \frac{x_u \times x_w \times x_u}{\|x_u \times x_v \times x_w\|} \quad (13)$$

is unit normal (i.e. the Gauss map) of hypface x. On the other hand, $I^{-1}II$ gives shape operator matrix S of hypface x in 4-space. See [27, 28, 29] for details.

3. i-th Curvatures and the Fourth Fundamental Form

To compute the i-th mean curvature formula \mathcal{C}_i, where $i = 0, \ldots, 3$, we use characteristic polynomial $P_S(\lambda) = a\lambda^3 + b\lambda^2 + c\lambda + d = 0$:

$$P_S(\lambda) = \det(S - \lambda I_3) = 0.$$

Then, get $\mathcal{C}_0 = 1$ (by definition), $\langle \mathcal{C}_1 \rangle H = -\frac{d}{a}$, $\langle \mathcal{C}_2 \rangle = \frac{c}{a}$, $\langle \mathcal{C}_3 \rangle K = -\frac{b}{a}$.

Therefore, we reveal i-th curvature formulas depends on the coefficients of the I and II fundamental forms in 4-space (It also can write depends on the coefficients of the II and III, or III and IV):

Theorem 1. Any hypface x in \mathbb{E}^4 has following curvature formulas, $\mathcal{C}_0 = 1$ (by definition),

$$\mathcal{C}_1 = \frac{(EN + GL - 2FM)C + (EG - F^2)V - LB^2 - NA^2 - 2(APG + BTE - ABM - ATF + BPF)}{3[(EG - F^2)C - EB^2 + 2FAB - GA^2]} \quad (14)$$

$$\mathcal{C}_2 = \frac{(EN + GL - 2FM)V + (LN - M^2)C - ET^2 - GP^2 - 2(ANP - BMP - AMT + BLT - FPT)}{3[(EG - F^2)C - EB^2 + 2FAB - GA^2]} \quad (15)$$

$$\mathcal{C}_3 = \frac{(LN - M^2)V - LT^2 + 2MPT - NP^2}{(EG - F^2)C - EB^2 + 2FAB - GA^2}. \quad (16)$$

Proof. Solving $\det(S - \lambda I_3) = 0$ with some algebraic computations, we obtain coefficients a, b, c, d of polynomial $P_S(\lambda)$.

Corollary 1. For any hypface x in \mathbb{E}^4, the fourth fundamental form is related by

$$IV\mathcal{C}_0 - 3\mathcal{C}_1 III + 3\mathcal{C}_2 II - \mathcal{C}_3 I = 0. \quad (17)$$

Proof. Taking $n = 3$ in [9], it is clear.
Definition 1. For any hypface x with its shape operator S in 4-space, following relations hold

(a) the second fundamental form $(h_{ij}) = II$ is given by $II = I \cdot S$,
(b) the third fundamental form $(e_{ij}) = III$ is given by $III = II \cdot S$,
(c) the fourth fundamental form $(f_{ij}) = IV$ is given by $IV = III \cdot S$.

Corollary 2. For any hypface x in \mathbb{E}^4, shape operator matrix has following relation

$$I \left(S^3 - 3c_1 S^2 + 3c_2 S - c_3 \right) = 0.$$

Proof. Considering previous definition and previous corollary, we write $IV = III \cdot S = II \cdot S^2 = I \cdot S^3$. Then, it is clear.

Corollary 3. In \mathbb{E}^4, the fundamental forms of any hypface x is related by

$$c_3 = \frac{\det III}{\det II} = \frac{\det IV}{\det III}.$$

Proof. Since $c_3 = K = \frac{\det III}{\det I}$, and considering previous definition, it can be seen, easily.

Corollary 4. For any hypface x in \mathbb{E}^4, the fourth fundamental form is given by

$$IV = III \cdot I^{-1} \cdot II.$$

Proof. From $S = I^{-1} \cdot II = III^{-1} \cdot IV$, we get the result. So, coefficients of IV are as follows

$$f_{11} = \frac{1}{\det I} \left\{ F^2 OP + B^2 LX + A^2 MY + BMOE - GOPE - CMYE + BPYE - AFMO + AGLO \right\},$$

$$f_{12} = \frac{1}{\det I} \left\{ B^2 MX + A^2 NY + F^2 OT + BNOE - CNYE - GOTE + BTYE - AFNO + AGMO \right\},$$

$$f_{13} = \frac{1}{\det I} \left\{ B^2 PX + F^2 OV + A^2 TY + BOTE - GOVE - CTYE + BVYE + AGOP - BFOP \right\},$$

$$f_{21} = \frac{1}{\det I} \left\{ B^2 LX + A^2 MZ + F^2 PS + BMSE - CMZE - GPSE + BPZE - AFMS + AGLS \right\},$$

$$f_{22} = \frac{1}{\det I} \left\{ B^2 MY + A^2 NZ + F^2 ST + BNSE - CNZE - GSTE + BTZE - AFNS + AGMS \right\},$$

$$f_{23} = \frac{1}{\det I} \left\{ B^2 MO + A^2 NS + F^2 TU - CNSE + BNUE + BSTE - GTUE - ABNO - ABMS \right\},$$

$$f_{31} = \frac{1}{\det I} \left\{ B^2 LO + A^2 MS + F^2 PU - CMSE + BMUE + BPSE - GPOE - ABMO - ABLS \right\},$$

$$f_{32} = \frac{1}{\det I} \left\{ B^2 PY + A^2 TZ + F^2 SV + BSTE - GSVE - CTZE + BVZE + AGPS - BFPS \right\},$$

$$f_{33} = \frac{1}{\det I} \left\{ B^2 OP + A^2 ST + F^2 UV - CSTE + BSVE + BTUE - GUVE - ABOT - ABPS \right\}.$$

Here, $f_{ij} = f_{ji}$, where $i \neq j$, and $\det I = (EG - F^2)C - EB^2 + 2FAB - GA^2$.

Corollary 5. For any hypface \(x \) in \(\mathbb{E}^4 \), determinant \(f = \det(f_{ij}) \) of the fourth fundamental form is given by
\[
\det IV = \frac{(XS^2 - 2YSO + ZO^2 - U(XZ - Y^2)) (LT^2 - 2MTP + NP^2 - V(LN - M^2))}{(EG - F^2)C - EB^2 + 2FAB - GA^2}.
\]
Proof. After some computations by using the right side of \(IV = III \cdot I^{-1} \cdot II \), it is clear.

3.1. Mean Curvatures and Fundamental Forms of Rotational Hypersurface. We consider the \(i \)-th curvatures of the rotational hypersurface (18), that is
\[
x(u, v, w) = (f(u) \cos v \cos w, f(u) \sin v \cos w, f(u) \sin w, \varphi(u)),
\]
where \(u \in \mathbb{R} - \{0\} \) and \(0 \leq v, w \leq 2\pi \). Then, we obtain \(i \)-th curvatures of (11).

Using the first differentials of rot-hypface (18), we get the first quantities
\[
I = \text{diag} \left(W, f^2 \cos^2 w, f^2 \right),
\]
where \(W = f'^2 + \varphi'^2, f = f(u), f' = \frac{df}{du}, \varphi = \varphi(u), \varphi' = \frac{d\varphi}{du} \). The Gauss map of the rot-hypface is
\[
G = \frac{1}{\sqrt{W}} \left(\varphi' \cos v \cos w, \varphi' \sin v \cos w, \varphi' \sin w, -f' \right).
\]

With the second differentials and \(G \) of hypface (18), we have the second quantities
\[
II = \text{diag} \left(-\frac{f' \varphi'' - f'' \varphi'}{W^{1/2}}, -\frac{f' \varphi'^2}{W^{1/2}}, -\frac{f' \varphi'}{W^{1/2}} \right),
\]
Using the first differentials of (20), we find the third fundamental form matrix
\[
III = \text{diag} \left(\frac{(f' \varphi'' - f'' \varphi')^2}{W^2}, \frac{\varphi'^2 \cos^2 w}{W}, \frac{\varphi'^2}{W} \right).
\]
We calculate \(I^{-1} \cdot II \), then obtain shape operator matrix
\[
S = \text{diag} \left(-\frac{f' \varphi'' - f'' \varphi'}{W^{3/2}}, -\frac{\varphi'}{fW^{1/2}}, -\frac{\varphi'}{fW^{1/2}} \right).
\]

Finally, with all findings, we calculate \(i \)-th curvature \(\mathcal{C}_i \) of rot-hypface (18), and give in the following theorem

Theorem 2. Rot-hypface (18) has following curvatures
\[
\begin{align*}
\mathcal{C}_0 &= 1 \text{ (by definition)}, \\
\mathcal{C}_1 &= -\frac{2\varphi' W + f (f' \varphi'' - f'' \varphi')}{3fW^{3/2}}, \\
\mathcal{C}_2 &= \frac{\varphi' \left(2f^2 (f' \varphi'' - f'' \varphi') - W^{3/2} \right)}{3f^3 W^2}, \\
\mathcal{C}_3 &= -\frac{\varphi^2 (f' \varphi'' - f'' \varphi')}{f^2 W^{5/2}}.
\end{align*}
\]
Corollary 6. Rot-hypface \([18]\) is 1-minimal iff

\[
\varphi = \mp i \frac{\text{EllipticF} \left[i \sinh^{-1} \left(i (c_1)^{1/4} f \right), -1 \right]}{(c_1)^{1/4}} + c_2,
\]

where \(i = \sqrt{-1}, \) EllipticF[\(\phi, m\)] = \(\int_0^\phi (1 - m \sin^2 \theta)^{-1/2} d\theta\) is elliptic integral, \(\phi \in [-\pi/2, \pi/2],\)

\(0 \neq c_1, c_2\) are constants.

Proof. Solving differential eq. \(2\varphi W + f (f' \varphi'' - f'' \varphi') = 0,\) we find solutions.

Corollary 7. Rot-hypface \([18]\) is 2-minimal iff

\[
\varphi = c_1, \; \varphi = \mp i \left(\frac{c_1 \chi}{2\rho} + \log \left(\frac{-c_1 + 2\rho f + \rho^{1/2} \chi}{2\rho^{3/2}} \right) \right) + c_2,
\]

where \(\chi = \sqrt{1 - 4c_1 f + 4 \left((c_1)^2 - 1 \right) f^2}, \rho = (c_1)^2 - 1, \) \(0 \neq c_1, c_2\) are constants.

Proof. Solving differential eq. \(2f^2 \varphi' (f' \varphi'' - f'' \varphi') - \varphi' W^{3/2} = 0,\) we have solutions.

Corollary 8. Rot-hypface \([18]\) is 3-minimal iff

\[
\varphi = c_1, \; \varphi = c_1 f + c_2.
\]

Proof. Solving differential eq. \(\varphi^2 (f' \varphi'' - f'' \varphi') = 0,\) we get the solutions.

Next, one can see some examples in \(\mathbb{E}^4.\)

Example 1. Catenoidal hypersurface Taking \(f (u) = a \cosh u\) and \(\varphi (u) = au,\) where \(-\infty < u < \infty,\)

\(0 < v, w \leq 2\pi,\) we get

\[
x(u, v, w) = (a \cosh u \cos v \cos w, a \cosh u \sin v \cos w, a \cosh u \sin w, au).
\]

\(x\) verifies \(\mathcal{C}_1 = \frac{1}{3a \cosh^2 u}, \mathcal{C}_2 = \frac{1}{3a \cosh^3 u}, \mathcal{C}_3 = \frac{1}{3a \cosh^4 u}.\)

Example 2. Hypersphere. Considering \(f (u) = r \cos u\) and \(\varphi (u) = r \sin u,\) where \(r > 0,\)

\(0 < u < \pi, \; 0 < v, w \leq 2\pi,\) we have

\[
x(u, v, w) = (r \cos u \cos v \cos w, r \cos u \sin v \cos w, r \cos u \sin w, r \sin u).
\]

\(x\) supplies \(\mathcal{C}_1 = -\frac{1}{r}, \mathcal{C}_2 = \frac{1}{r}, \mathcal{C}_3 = -\frac{1}{r}.\)

Example 3. Right Spherical Hypercylinder. Taking \(f (u) = r > 0\) and \(\varphi (u) = u,\) where \(0 < u < \pi, \; 0 < v, w \leq 2\pi,\) we obtain

\[
x(u, v, w) = (r \cos v \cos w, r \sin v \cos w, r \sin w, u).
\]

\(x\) has \(\mathcal{C}_1 = -\frac{2}{r}, \mathcal{C}_2 = \frac{1}{r}, \mathcal{C}_3 = 0.\) So, it is 3-minimal.

Let us see some results of the fourth fundamental form of \([18]\), and

Corollary 9. The fourth fundamental form matrix \((f_{ij})\) of rot-hypface \([18]\) is as follows

\[
IV = \text{diag} \left(-\frac{(f' \varphi'' - f'' \varphi')^3}{W^{7/2}}, -\frac{\varphi^3 \cos^2 w}{fW^{3/2}}, -\frac{\varphi^3}{fW^{3/2}} \right).
\]

Proof. Using Corollary 4 with rot-hypface \([18]\), we find the fourth fundamental form matrix.
Corollary 10. When the curve (10) of (18) is parametrized by the arc length, i.e. \(W = 1 \), then (18) has following relations

\[
\begin{align*}
\mathcal{C}_1 (9f^4 \mathcal{C}_2 + 6f^3 f'') & = 2 - ff'' - 2f'^2, \\
3f^3 \mathcal{C}_1 \mathcal{C}_3 & = -2f'' + 2f'^2 f'' + f f''', \\
-3f f'' \mathcal{C}_2 - \mathcal{C}_3 & = 2f'^2
\end{align*}
\]

Proof. The curvatures (24), (25) and (26) of the rot-hypface (18) reduces to

\[
\begin{align*}
\mathcal{C}_0 & = 1, \quad \mathcal{C}_1 = -\frac{2 + 2f'^2 + ff''}{3f\varphi'}, \\
\mathcal{C}_2 & = -\frac{-2f'^2 f'' - \varphi'}{3f^3}, \quad \mathcal{C}_3 = \frac{\varphi' f''}{f^2}.
\end{align*}
\]

Corollary 11. When \(f = u \neq 0 \) in the previous corollary, then (18) has following results, respectively,

1-minimal or 2-minimal, if (31) holds, \((35) \)
1-minimal or 3-minimal, if (32) holds, \((36) \)
3-minimal, if (33) holds. \((37) \)

Proof. Taking \(f = u \), it is clear.

4. Fourth Fundamental Form of a Hypersurface

The fourth Laplace-Beltrami operator of a smooth function \(\phi = \phi(x^1, x^2, x^3) \mid \text{D} \subset \mathbb{R}^3 \) of class \(C^3 \) with respect to the fourth fundamental form of hyp-face \(x \) is the operator \(\Delta^IV \), defined by

\[
\Delta^IV \phi = \frac{1}{\sqrt{f}} \sum_{i,j=1}^{3} \frac{\partial}{\partial x^i} \left(\sqrt{f} f^{ij} \frac{\partial \phi}{\partial x^j} \right),
\]

where \((f^{ij}) = (f_{ij})^{-1} \) and

\[
\begin{align*}
f & = \det (f_{ij}) \\
& = f_{11}f_{22}f_{33} - f_{11}f_{23}f_{32} - f_{12}f_{21}f_{33} + f_{12}f_{31}f_{23} + f_{21}f_{13}f_{32} - f_{13}f_{22}f_{31}.
\end{align*}
\]

4.1. Rotational Hypersurfaces Satisfying \(\Delta^IV x = Ax \). We now consider rot-hypface (18), (30) with (38), then have following theorem:

Theorem 3. The fourth Laplace-Beltrami operator of rot-hypface (18) is related by \(\Delta^IV x = Ax \), where \(A = \text{diag}(\Omega, \Omega, \Omega, \Phi) \),

\[
\begin{align*}
\frac{f^3 W^{13/4}}{\varphi^3 \psi^{3/2}} \left\{ f' \frac{\partial}{\partial u} \left(\frac{\varphi^3 W^{1/4}}{f \psi^{3/2}} \right) + \frac{f'' \varphi^3 W^{1/4}}{f \psi^{3/2}} - 2f^2 \varphi^3 W^{1/4} \right\} & = \Omega f, \\
\frac{f^3 W^{13/4}}{\varphi^3 \psi^{3/2}} \left(\varphi' \frac{\partial}{\partial u} \left(\frac{\varphi^3 W^{1/4}}{f \psi^{3/2}} \right) + \varphi'' \right) & = \Phi \varphi,
\end{align*}
\]

and \(W = f^2 + \varphi^2, \psi = f' \varphi'' - f'' \varphi' \).
Proof. By using (18), (30) with (38), we compute

\[
\Delta^IV \mathbf{x} = \frac{1}{\sqrt{|\mathbf{f}|}} \left\{ \frac{\partial}{\partial u} \left(\frac{f_{22} f_{33}}{\sqrt{|\mathbf{f}|}} \mathbf{x}_u \right) - \frac{\partial}{\partial v} \left(-\frac{f_{11} f_{33}}{\sqrt{|\mathbf{f}|}} \mathbf{x}_v \right) + \frac{\partial}{\partial w} \left(f_{11} f_{22} \sqrt{|\mathbf{f}|} \mathbf{x}_w \right) \right\},
\]

where \(f = \det IV \). If we assume that rot-hypface \(\mathbf{x} \) is constructed with component functions which are eigenfunctions of its Laplacian, we will have that \(\Delta^IV (f \cos v \cos w) = \Omega_1 f \cos v \cos w \), \(\Delta^IV (f \sin v \cos w) = \Omega_2 f \sin v \cos w \), \(\Delta^IV (f \sin w) = \Omega_3 f \sin w \), \(\Delta^IV (\varphi) = \Phi \varphi \). Hence, \(f(u) \cos v \cos w \), \(f(u) \sin v \cos w \) and \(f(u) \sin w \) are eigenfunctions of \(\Delta^IV \) for \(\Omega_1, \Omega_2, \Omega_3 \), respectively, iff \(f(u) \) supplies (39). So, \(\Omega_1 = \Omega_2 = \Omega_3 \) (= \(\Omega \) for short). Additionally, \(\varphi(u) \) is an eigenfunction with eigenvalue \(\Phi \) of \(\Delta^IV \) iff (40) holds.

Acknowledgment The authors would like to thank the referees for their valuable suggestions and critical remarks for improving this paper.

References

[1] Alias, L.J., Gürbüz, N.: An extension of Takashi theorem for the linearized operators of the highest order mean curvatures, Geom. Dedicata 121, 113–127 (2006).
[2] Aksoyak, F.K., Yaylı, Y.: Flat rotational surfaces with pointwise 1-type Gauss map in \(\mathbb{E}^4 \), Honam Math. J. 38(2), 305–316 (2016).
[3] Aksoyak, F.K., Yaylı, Y.: General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space \(\mathbb{E}^4_2 \). Indian J. Pure Appl. Math. 46(1), 107–118 (2015).
[4] Arslan, K., Bayram, B.K., Bulca, B., Kim, Y.H., Murathan, C., Özürtük, G.: Vranceanu surface in \(\mathbb{E}^4 \) with pointwise 1-type Gauss map. Indian J. Pure Appl. Math. 42(1), 41–51 (2011).
[5] Arslan, K., Milousheva, V.: Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space. Taiwanese J. Math. 20(2), 311–332 (2016).
[6] Arvanitoyeorgos, A., Kaimakamis, G., Magid, M.: Lorentz hypersurfaces in \(\mathbb{E}^4_1 \) satisfying \(\Delta H = \alpha H \). Illinois J. Math. 53(2), 581–590 (2009).
[7] Barros, M., Chen, B.Y.: Stationary 2-type surfaces in a hypersphere. J. Math. Soc. Japan 39(4), 627–648 (1987).
[8] Barros, M., Garay, O.J.: 2-type surfaces in \(S^3 \). Geom. Dedicata 24(3), 329–336 (1987).
[9] Bektas, B.; Canfes, E.O; Dursun, U.: Classification of surfaces in a pseudo-sphere with 2-type pseudo-spherical Gauss map. Math. Nachr. 290(16), 2512–2523 (2017).
[10] Chen, B.Y.: On submanifolds of finite type. Soochow J. Math. 9, 65–81 (1983).
[11] Chen, B.Y.: Total mean curvature and submanifolds of finite type. World Scientific, Singapore (1984).
[12] Chen, B.Y.: Finite type submanifolds and generalizations. University of Rome, 1985.
[13] Chen, B.Y.: Finite type submanifolds in pseudo-Euclidean spaces and applications. Kodai Math. J. 8(3), 358–374 (1985).
[14] Chen, B.Y., Piccinni, P.: Submanifolds with finite type Gauss map. Bull. Austral. Math. Soc. 35, 161–186 (1987).
[15] Cheng, Q.M., Wan, Q.R.: Complete hypersurfaces of \(\mathbb{R}^4 \) with constant mean curvature. Monatsh. Math. 118, 171–204 (1994).
[16] Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225, 195–204 (1977).
[17] Choi, M., Kim, Y.H.: Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 38, 753–761 (2001).
[18] Dillen, F., Pas, J., Verstraelen, L.: On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 13, 10–21 (1990).
[19] Dursun, U.: Hypersurfaces with pointwise 1-type Gauss map. Taiwanese J. Math. 11(5), (2007) 1407–1416.
[20] Dursun, U., Turgay, N.C.: Space-like surfaces in Minkowski space \(\mathbb{E}^4_1 \) with pointwise 1-type Gauss map. Ukrainian Math. J. 71(1), 64–80 (2019).
FOURTH FUNDAMENTAL FORM AND i-TH CURVATURE FORMULAS IN E^4

[21] Do Carmo, M., Dajczer, M.: Rotation Hypersurfaces in Spaces of Constant Curvature. Trans. Amer. Math. Soc. 277, 685–709 (1983).

[22] Ferrandez, A., Garay, O.J., Lucas, P.: On a certain class of conformally at Euclidean hypersurfaces. In Global Analysis and Global Differential Geometry; Springer: Berlin, Germany 48–54 (1990).

[23] Ganchev, G., Milousheva, V.: General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 38, 883–895 (2014).

[24] Garay, O.J.: On a certain class of finite type surfaces of revolution. Kodai Math. J. 11, 25–31 (1988).

[25] Garay, O.: An extension of Takahashi’s theorem. Geom. Dedicata 34, 105–112(1990).

[26] Güler, E., Hacisalihoğlu, H.H., Kim, Y.H.: The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space. Symmetry 10(9), 1–12 (2018).

[27] Güler, E., Magid, M., Yaylı, Y.: Laplace-Beltrami operator of a helicoidal hypersurface in four-space. J. Geom. Symm. Phys. 41, 77–95 (2016).

[28] Güler, E., Turgay, N.C.: Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space. Mediterr. J. Math. 16(3), 1–16 (2019).

[29] Hasanis, Th., Vlachos, Th.: Hypersurfaces in E^4 with harmonic mean curvature vector field. Math. Nachr. 172, 145–169 (1995).

[30] Kim, D.S., Kim, J.R., Kim, Y.H.: Cheng-Yau operator and Gauss map of surfaces of revolution. Bull. Malays. Math. Sci. Soc. 39(4), 1319–1327 (2016).

[31] Kim, Y.H., Turgay, N.C.: Surfaces in E^4 with L_1-pointwise 1-type Gauss map. Bull. Korean Math. Soc. 50(3), 935–949 (2013).

[32] Kühnel, W.: Differential geometry. Curves-surfaces-manifolds. Third ed. Translated from the 2013 German ed. AMS, Providence, RI, 2015.

[33] Levi-Civita, T.: Famiglie di superficie isoparametriche nellordinario spazio euclideo. Rend. Acad. Lincei 26, 355–362 (1937).

[34] Moore, C.: Surfaces of rotation in a space of four dimensions. Ann. Math. 21, 81–93 (1919).

[35] Moore, C.: Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 26, 454–460 (1920).

[36] Senoussi, B., Bekkar, M.: Helicoidal surfaces with $\Delta^r v = Av$ in 3-dimensional Euclidean space. Stud. Univ. Babes-Bolyai Math. 60(3), 437–448 (2015).

[37] Stamatakis, S., Zoubi, H.: Surfaces of revolution satisfying $\Delta^{III} x = Ax$. J. Geom. Graph. 14(2), 181–186 (2010).

[38] Takahashi, T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18, 380–385 (1966).

[39] Turgay, N.C.: Some classifications of Lorentzian surfaces with finite type Gauss map in the Minkowski 4-space. J. Aust. Math. Soc. 99(3), 415–427 (2015).

Erhan Güler: Bartın University, Faculty of Sciences, Department of Mathematics, 74100 Bartın, Turkey.
Email address: eguler@bartin.edu.tr
URL: https://orcid.org/0000-0003-3264-6239