Test of lepton flavor universality in $B \to K\ell^+\ell^-$ decays

A. Abdesselam, I. Adachi, K. Adamczyk, J. K. Ahn, H. Aihara, S. Al Said, K. Arinstein, Y. Arita, D. M. Asner, H. Atmacan, V. Aulchenko, T. Aushev, R. Ayad, T. Aziz, V. Babu, I. Badhrees, S. Bahinipati, A. M. Bakhir, Y. Ban, V. Bansal, E. Barberio, M. Barrett, W. Bartel, P. Behera, C. Belcino, K. Belous, J. Bennett, M. Berger, F. Bernlochner, D. Besson, V. Bhardwaj, B. Bhuyan, T. Bilka, J. Biswal, T. Bloomfield, A. Bobrov, A. Bondar, G. Bouvignes, A. Bozek, M. Bracko, N. Braun, F. Breitbeck, T. E. Browder, M. Campajola, L. Cao, G. Cari, D. Červenkov, M.-C. Chang, P. Chang, Y. Chao, R. Cheaib, V. Chekelian, A. Chen, K.-F. Chen, Y. Chen, B. G. Cheon, K. Chilikin, R. Chistov, H. E. Cho, V. Chobanova, S.-K. Choi, Y. Choi, S. Choudhury, D. Cinabro, J. Crnkovic, S. Cunliffe, T. Czank, M. Danilov, N.Dash, G. De Nardo, S. Di Carlo, F. Di Capua, J. Dingfelder, Z. Doležál, T. V. Dong, D. Dossett, D. Drásal, A. Drutskoy, S. Dubey, I. Eidelman, V. Epifanov, J. E. Fast, M. Feindt, T. Ferber, A. Frey, O. Frost, B. G. Fulsom, R. Garg, V. Gaur, N. Gabyshev, A. Heller, T. Higuchi, S. Hirose, Y. Hoshi, K. Hoshina, W.-S. Hou, B. H. Hsiung, C.-L. Hsu, K. Huang, M. Huschle, Y. Isharasi, T. Iijima, M. Imanura, K. Inami, G. Inguglia, A. Ishikawa, R. Itoh, M. Iwasaki, S. Iwata, W. W. Jacobs, T. Jaegle, E.-J.jang, H. B. Jeon, S. Jia, Y. Jin, J. Doffe, M. Jones, W. Joo, K. Koo, T. Julius, J. Kahl, H. Kakuno, A. B. Kaliyar, J. H. Kang, K. H. Kang, P. Kapusta, G. Karyan, S. U. Kataoka, Y. Kato, P. Katrenko, H. Kawai, T. Kawasaki, T. Keck, K. Kichimi, C. Kiesling, B. H. Kim, C. H. Kim, D. Y. Kim, H. J. Kim, J. J. Kim, B. H. Kim, K. B. Kim, S. H. Kim, S. K. Kim, Y. J. Kim, T. Kimmel, H. Kindo, K. Kinoshita, C. Kleinwort, K. Klucar, N. Kobayashi, P. Kodyš, Y. Koga, T. Komno, S. Korpars, D. Kottchek, R. T. Kowes, K. Piri, M. Križan, J. F. Krohn, P. Krokovny, B. Kronenbitter, T. Kuhn, R. Kulasi, R. Kumar, T. Kunita, E. Kurihara, Y. Kuroki, Y. Kuzmin, P. Kvasnicka, Y.-J. Kwon, Y.-T. Lai, K. Kall, J. Laiho, J. I. Lee, S. H. Lee, M. Leitgeb, R. Leitner, D. Levit, P. Lewis, C. H. Li, H. Li, L. Li, Y. Li, Y. Li, D. Liventsev, A. Loos, R. Louvot, P. C. Lu, M. Lubej, T. Luo, J. MacNaughton, M. Masuda, T. Matsuda, M. Matvienko, J. McNeil, M. Merola, F. Metzner, K. Miyabayashi, Y. Miyachi, H. Miyata, Y. Miyazaki, R. Mizuk, G. B. Mohanty, S. Mohanty, H. K. Moon, T. J. Moon, T. Mori, H.-G. Moser, M. Mrvar, M. Muramatsu, R. Mussa, Y. Nagasaki, Y. Nakamura, R. Nakamura, T. Nakano, R. Nakano, T. Nakano, N. Nakayama, T. Nanot, Z. Natkaniec, M. Nakay, K. Neichi, C. Ning, C. Niebauer, M. Niyama, N. K. Nisar, S. Nishida, K. Nishimura, O. Nitoh, A. Ogawa, K. Ogawa, S. Ogawa, T. Ohshima, O. Okuno, L. Olsen, H. Ono, Y. Onuki, W. Ostrowski, C. Oswald, H. Ozaki, P. Pakhlov, G. Pakhlov, B. Pal, T. Pang, E. Panzenböck, S. Pardi, C.-S. Park, W. Park, K. S. Park, H. Park, S. Park, S. Patra, S. Paul, I. Pavelkin, T. Pedlar, T. Peng, L. Pesanté, R. Pestotnik, M. Peters, L. Piilonen, V. Popov, K. Prasanth, E. Precice, M. T. Prim, K. Prothmann, M. V. Purohit, A. Rabusov, J. Rauch, B. Reisert, P. K. Resmi, E. Ribež, M. Ritter, J. Rorie, A. Rostomyan, M. Rozanska, G. Russo, D. Sahoo, H. Sahoo, Y. Sakai, M. Salehi, S. Sandilya, S. Santel, L. Santelj, T. Sanuki, J. Sasaki, N. Sasao, Y. Sato, V. Savinov, T. Schlüter, O. Schneider, G. Schnell, M. Schram, J. Schueller, C. Schwanda, A. J. Schwartz, B. Schwenker, R. Seidl, Y. Seino, D. Semmler, K. Senyo, O. Seon, I. S. Seong, M. Sevior, L. Shang, M. Shapkin.
V. Shebalin,21 C. P. Shen,14 T.-A. Shibata,112 H. Shibuya,107 S. Shinomiya,83 J.-G. Shiu,76 B. Shwartz,5,81 A. Sibidanov,102 F. Simon,63 J. B. Singh,85 R. Sinha,37 K. Smith,64 A. Sokolov,36 Y. Solovieva,30 E. Solovieva,55 S. Stanic,80 M. Staric,41 M. Steder,10 Z. Stottler,116 J. F. Strube,84 J. Stypula,77 S. Sugihara,111 A. Sugiyama,93 M. Sumihana,16 K. Sumisawa,22,18 T. Sumiyosi,113 W. Sutcliffe,41 K. Suzuki,69 K. Suzuki,100 S. Suzuki,93 S. Y. Suzuki,22 H. Takeichi,69 M. Takizawa,97,23,91 U. Tamponi,39 M. Tanaka,22,18 S. Tanaka,22,18 K. Tanida,40 N. Taniguchi,22 Y. Tao,12 G. N. Taylor,64 F. Tenchini,10 Y. Teramoto,82 K. Trabelsi,53 T. Tsuboya,22,18 M. Uchida,112 I. Ueda,22 S. Uehara,22,18 T. Uglov,55,68 Y. Unno,20 S. Uno,22,18 P. Urquijo,64 Y. Ushiroda,22,18 Y. Usoskin,5,81 S. E. Vahsen,21 C. Van Hulse,1 R. Van Tongeren,43 P. Vanhoefer,63 G. Varner,21 K. E. Varvell,102 K. Vervink,54 A. Vinokurova,5,81 V. Vorobyev,5,81 A. Vosser,11 M. N. Wagner,15 E. Waheed,64 B. Wang,63 C. H. Wang,75 M.-Z. Wang,76 P. Wang,34 X. L. Wang,14 M. Watanabe,79 Y. Watanabe,42 S. Watanuki,109 R. Wedd,64 S. Wehle,10 E. Widmann,100 J. Wieczynski,77 K. M. Williams,116 E. Won,50 B. D. Yabsley,102 S. Yamada,22 H. Yamamoto,109 Y. Yamashita,78 S. B. Yang,50 S. Yashchenko,10 H. Ye,10 J. Yelton,12 J. H. Yin,34 Y. Yook,119 C. Z. Yuan,34 Y. Yusa,70 S. Zakharov,55,68 C. C. Zhang,34 J. Zhang,34 L. M. Zhang,94 Z. P. Zhang,94 L. Zhao,94 V. Zhilich,5,81 V. Zhukova,55,67 V. Zhulanov,5,81 T. Zivkovic,41 A. Zupanc,57,41 and N. Zwahlen54

(The Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2Beihang University, Beijing 100191
3University of Bonn, 53115 Bonn
4Brookhaven National Laboratory, Upton, New York 11973
5Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
6Faculty of Mathematics and Physics, Charles University, 121 16 Prague
7Chiba University, Chiba 263-8522
8Chonnam National University, Gwangju 61186
9University of Cincinnati, Cincinnati, Ohio 45221
10Deutsches Elektronen-Synchrotron, 22607 Hamburg
11Duke University, Durham, North Carolina 27708
12University of Florida, Gainesville, Florida 32611
13Department of Physics, Fu Jen Catholic University, Taipei 24205
14Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
15Justus-Liebig-Universität Gießen, 35392 Gießen
16Gifu University, Gifu 501-1193
17II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
18SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
19Gyeongsang National University, Jinju 52828
20Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763
21University of Hawaii, Honolulu, Hawaii 96822
22High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
23J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
24Forschungszentrum Jülich, 52425 Jülich
25Hiroshima Institute of Technology, Hiroshima 731-5193
26IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
27University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
28Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
29Indian Institute of Technology Bhubaneswar, Satya Nagar 751007
30Indian Institute of Technology Guwahati, Assam 781039
31Indian Institute of Technology Hyderabad, Telangana 502285
32Indian Institute of Technology Madras, Chennai 600036
33Indiana University, Bloomington, Indiana 47408
34Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
35Institute of High Energy Physics, Vienna 1050
36Institute for High Energy Physics, Protvino 142281
37Institute of Mathematical Sciences, Chennai 600113
38INFN - Sezione di Napoli, 80126 Napoli
39INFN - Sezione di Torino, 10125 Turin
40Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
41J. Stefan Institute, 1000 Ljubljana
42Kanagawa University, Yokohama 221-8866
43Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
44Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583
45J. H. Yin,10 J. Yelton,12 J. H. Yin,34 Y. Yook,119 C. Z. Yuan,34 Y. Yusa,70 S. Zakharov,55,68 C. C. Zhang,34 J. Zhang,34 L. M. Zhang,94 Z. P. Zhang,94 L. Zhao,94 V. Zhilich,5,81 V. Zhukova,55,67 V. Zhulanov,5,81 T. Zivkovic,41 A. Zupanc,57,41 and N. Zwahlen54
3

42 Kennesaw State University, Kennesaw, Georgia 30144
43 King Abdulaziz City for Science and Technology, Riyadh 11442
44 Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589
45 Kitasato University, Sagamihara 252-0373
46 Korea Institute of Science and Technology Information, Daejeon 34141
47 Korea University, Seoul 02841
48 Kyoto University, Kyoto 606-8502
49 Kyungpook National University, Daegu 41566
50 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay 91898
51 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
52 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
53 Liaoning Normal University, Dalian 116029
54 Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
55 Ludwig Maximilians University, 80539 Munich
56 Luther College, Decorah, Iowa 52101
57 Malaviya National Institute of Technology Jaipur, Jaipur 302017
58 University of Malaya, 50603 Kuala Lumpur
59 University of Maribor, 2000 Maribor
60 Max-Planck-Institut für Physik, 80805 München
61 School of Physics, University of Melbourne, Victoria 3010
62 University of Mississippi, University, Mississippi 38677
63 University of Miyazaki, Miyazaki 889-2192
64 Moscow Physical Engineering Institute, Moscow 115409
65 Moscow Institute of Physics and Technology, Moscow Region 141700
66 Graduate School of Science, Nagoya University, Nagoya 464-8602
67 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
68 Università di Napoli Federico II, 80055 Napoli
69 Nara University of Education, Nara 630-8528
70 Nara Women’s University, Nara 630-8506
71 National Central University, Chung-li 32054
72 National United University, Miaoli 36003
73 Department of Physics, National Taiwan University, Taipei 10617
74 H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
75 Nippon Dental University, Niigata 951-8580
76 Niigata University, Niigata 950-2181
77 University of Nova Gorica, 5000 Nova Gorica
78 Novosibirsk State University, Novosibirsk 630090
79 Osaka City University, Osaka 558-8585
80 Osaka University, Osaka 565-0871
81 Pacific Northwest Laboratory, Richland, Washington 99352
82 Panjab University, Chandigarh 160014
83 Peking University, Beijing 100871
84 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
85 Punjab Agricultural University, Ludhiana 141004
86 Research Center for Electron Photon Science, Tohoku University, Sendai 980-8578
87 Research Center for Nuclear Physics, Osaka University, Osaka 567-0047
88 Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198
89 RIKEN BNL Research Center, Upton, New York 11973
90 Saga University, Saga 840-8502
91 University of Science and Technology of China, Hefei 230026
92 Seoul National University, Seoul 08826
93 Shinshu University, Nagano 390-8621
94 Showa Pharmaceutical University, Tokyo 194-8543
95 Soongsil University, Seoul 06978
96 University of South Carolina, Columbia, South Carolina 29208
97 Stefan Meyer Institute for Subatomic Physics, Vienna 1090
98 Sungkyunkwan University, Suwon 16419
99 School of Physics, University of Sydney, New South Wales 2006
100 Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451
101 Tata Institute of Fundamental Research, Mumbai 400005
102 Excellence Cluster Universe, Technische Universität München, 85748 Garching
103 Department of Physics, Technische Universität München, 85748 Garching
104 Toho University, Funabashi 274-8510
We present measurements of the branching fractions for the decays $B \rightarrow K\mu^+\mu^-$ and $B \rightarrow K\ell^+\ell^-$, and their ratio ($R_K$), using a data sample of 711 fb$^{-1}$ that contains 772×10^6 BB events. The data were collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. The ratio R_K is measured in four bins of dilepton invariant-mass squared, q^2; the results are

$$R_K = \begin{cases}
0.95 \pm 0.27 \pm 0.06 & q^2 \in (0.1, 1.4) \text{ GeV}^2/c^4, \\
0.81 \pm 0.28 \pm 0.05 & q^2 \in (4.0, 8.1) \text{ GeV}^2/c^4, \\
0.98 \pm 0.27 \pm 0.06 & q^2 \in (10.6) \text{ GeV}^2/c^4, \\
1.11 \pm 0.29 \pm 0.07 & q^2 > 14.18 \text{ GeV}^2/c^4.
\end{cases}$$

The first uncertainties listed are statistical, and the second uncertainties are systematic. The R_K value in the whole q^2 range is found to be $1.06^{+0.15}_{-0.14} \pm 0.07$. We also measure CP-averaged isospin asymmetries in the same q^2 bins; the results are consistent with a null asymmetry with the largest difference of 2.7 standard deviations found in the $q^2 \in (10.6) \text{ GeV}^2/c^4$ bin in the mode with muon final states. The measured branching fractions are $B(B \rightarrow K\mu^+\mu^-) = (5.5 \pm 0.5 \pm 0.3) \times 10^{-7}$ and $B(B \rightarrow K\ell^+\ell^-) = (5.1 \pm 0.5 \pm 0.3) \times 10^{-7}$. These results are compatible with standard model expectations.

PACS numbers: 13.20.He, 13.25.Hw, 11.30.Fs

The decays $B \rightarrow K\ell^+\ell^-$ ($\ell = e, \mu$), which are mediated by the $b \rightarrow s\ell^+\ell^-$ quark-level transition, constitute a flavor-changing neutral current process. Such processes are forbidden at tree level in the standard model (SM) but can proceed via suppressed loop-level diagrams, and are therefore sensitive to particles predicted in a number of new physics models $[1, 2]$. A robust observable δ to test the SM is the lepton-flavor-universality ratio,

$$R_H = \frac{\int dq^2 \frac{\Gamma(B \rightarrow H\ell^+\ell^-)}{\Gamma(B \rightarrow H\ell^+\ell^-)} dq^2}{\int dq^2 \frac{\Gamma(B \rightarrow H\ell^+\ell^-)}{\Gamma(B \rightarrow H\ell^+\ell^-)} dq^2},$$

where H is a K or K^* meson and the decay rate Γ is integrated over a range of the dilepton invariant-mass squared, $q^2 \equiv M^2(\ell^+\ell^-)$. For R_K, recent LHCb $[6, 7]$ reported hints of deviations from SM expectations, while Belle $[6]$ results were consistent with the SM. LHCb also measured R_K $[6]$, reporting a difference of about 2.5 standard deviations (σ) from the SM prediction in the $q^2 \in (1.1, 6.0) \text{ GeV}^2/c^4$ bin. Previous measurement of the same quantity was performed by Belle $[6]$ in the whole q^2 range with a data sample of 657 $\times 10^6$ BB events. The result presented here is obtained from a multi-dimensional fit performed on the full Belle data sample, and supercedes our previous result.

Another theoretically robust observable ζ, where the dominant form-factor-related uncertainties cancel, is the CP-averaged isospin asymmetry, that measures the difference in partial widths,

$$A_I = \frac{(\tau_{B-D}/\tau_{B-S}) B(B^0 \rightarrow K^0\ell^+\ell^-) - B(B^+ \rightarrow K^+\ell^+\ell^-)}{(\tau_{B^+}/\tau_{B^0}) B(B^0 \rightarrow K^0\ell^+\ell^-) + B(B^+ \rightarrow K^+\ell^+\ell^-)},$$

where $\tau_{B-D}/\tau_{B-S} = 1.076$ is the lifetime ratio of $B^+ \rightarrow B^0$. The A_I value is close to zero in the SM $[10]$. Earlier, BaBar $[11]$, Belle $[6]$ and LHCb $[12]$ had reported A_I to be significantly below zero, especially in the q^2 region below the J/ψ resonance.

We report here a measurement of the decay branching fractions of $B \rightarrow K\ell^+\ell^-$, and R_K and A_I in the whole q^2 range as well as in four q^2 bins $[(0, 1, 4.0), (4.0, 8.12), (1.0, 6.0), > 14.18 \text{ GeV}^2/c^4]$. The analysis uses 711 fb$^{-1}$ data sample containing $(772 \pm 11) \times 10^6$ BB events. The data were collected by the Belle experiment running near the $\Upsilon(4S)$ resonance at the KEKB e^+e^- collider $[13]$. An 89 fb$^{-1}$ data sample recorded 60 MeV below the $\Upsilon(4S)$ peak (off-resonance) is used to calculate the contribution of continuum background in the analysis.

The Belle detector is a large-solid-angle magnetic spectrometer composed of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like ar-
rangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter (ECL) comprising CsI(Tl) crystals. All these are located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux return yoke placed outside the coil is instrumented with resistive plate chambers (KLM) to detect K_0^0 mesons and muons. Further details about the detector can be found in Ref. [13]. Two inner detector configurations were used: a 2.0 cm radius beam-pipe and a three-layer SVD for the first sample of 140 fb$^{-1}$; and a 1.5 cm radius beam-pipe, a four-layer SVD, and a small-cell inner CDC for the remaining 571 fb$^{-1}$ [15].

To study properties of signal events and optimize selection criteria, we use samples of Monte Carlo (MC) simulated events. These are generated with the EvtGen package [10] based on a model described in Ref. [17]. PHOTOS [18] is used to incorporate final state radiation. The detector response is simulated with GEANT3 [19].

We reconstruct $B \rightarrow K^+\ell^−\nu$ ($K = K^+, K_0^0$) decays by selecting charged particles that originate from the vicinity of the $e^+e^−$ interaction point (IP), except for those originating from K_0^0 decays. We require impact parameters less than 1.0 cm in the transverse plane and less than 4.0 cm along the z axis (opposite the e^+ beam). To reduce backgrounds from low-momentum particles, we require that tracks have a minimum transverse momentum of 100 MeV/c.

From selected tracks, we identify $K^±$ candidates using a likelihood ratio $R_{K/π} = L_K/(L_K + L_π)$, where $L_π$ and L_K are the likelihoods for charged kaons and pions, respectively, calculated based on the number of photoelectrons in the ACC, the specific ionization in the CDC, respectively, calculated based on the number of photoelectrons in the ACC, the specific ionization in the CDC, and the two track helices at their closest approach, the flight length in the $x−y$ plane, the angle between the K_0^0 momentum and the vector joining the IP to the K_0^0 decay vertex, the angle between the pion momentum and the laboratory-frame direction in the K_0^0 rest frame, the distance of closest approach in the $x−y$ plane between the IP and the two pion helices, and the total number of hits (in the CDC and SVD) for each pion track.

Muon candidates are identified based on information from the KLM. We require that candidates have a momentum greater than 0.8 GeV/c, and a penetration depth and degree of transverse scattering consistent with those of a muon [21]. A criterion on the normalized muon likelihood, $R_μ > 0.9$, is used to select muon candidates. For this requirement, the average muon detection efficiency is 89%, with a pion misidentification rate of 1.5% [22].

Electron candidates are required to have a momentum greater than 0.4 GeV/c and are identified using the following information: the ratio of ECL energy to the CDC track momentum; the ECL shower shape; the position matching of the CDC track with the ECL cluster; and the specific ionization in the CDC [23]. A requirement on the normalized electron likelihood $R_e > 0.9$ is imposed. This requirement has an efficiency of 92% and a pion misidentification rate below 1% [22]. To recover energy loss due to possible bremsstrahlung, we search for photons inside a cone of radius 50 mrad centered around the electron momentum. If a photon is found within the cone, its four-momentum is added to that of the electron.

Charged (neutral) B candidates are reconstructed by combining $K^±$ (K_0^0) with suitable $μ^±$ or $e^±$ candidates. To distinguish signal from background events, two kinematic variables are used: the beam-energy-constrained mass $M_{bc} = \sqrt{(E_{beam}/c^2)^2 − (p_{B}/c)^2}$, and the energy difference $ΔE = E_B − E_{beam}$, where E_{beam} is the beam energy, and E_B and p_{B} are the energy and momentum, respectively, of the B candidate. All these quantities are calculated in the $e^+e^−$ center-of-mass (CM) frame. For signal events, the $ΔE$ distribution peaks at zero, and the M_{bc} distribution peaks near the B mass. We retain events satisfying the requirements $−0.1 < ΔE < 0.25$ GeV and $M_{bc} > 5.2$ GeV/c2.

With the above selection criteria applied, about 2% of events are found to have more than one signal B candidate. We retain the candidate having the smallest $χ^2$ value from a vertex fit of the B daughter candidates. From MC simulation, we find that this criterion identifies the correct signal decay 78-85% of the time, depending on the decay mode. The decays $B \rightarrow J/ψ(→$ $ℓ^+ℓ^−)K$ and $B \rightarrow ψ(2S)(→$ $ℓ^+ℓ^−)K$, later used as control samples, are suppressed in the signal selection via a set of vetoes $8.75 < q^2 < 10.2$ GeV$^2/c^4$ and $13.0 < q^2 < 14.0$ GeV$^2/c^4$ with the dimuon; $8.5 < q^2 < 10.2$ GeV$^2/c^4$ and $12.8 < q^2 < 14.0$ GeV$^2/c^4$ with the dielectron final states for $B \rightarrow J/ψK$ and $B \rightarrow ψ(2S)K$, respectively. An additional veto of the low q^2 region (< 0.05 GeV$^2/c^4$) is applied in the case of $B \rightarrow K^−e^+$ to suppress possible contaminations from $γ^* \rightarrow e^+e^−$ and $a^0 \rightarrow γe^+e^−$.

At this stage of the analysis, there is significant background from $e^+e^− → q\bar{q}$ ($q = u, d, s, c$) continuum events and other B decays. As lighter quarks are produced with large kinetic energy, the former events tend to consist of two back-to-back jets of pions and kaons. In contrast, BB events are produced almost at rest in the CM frame, resulting in more spherically distributed daughter particles. We thus distinguish BB events from $q\bar{q}$ background based on event topology.

Background arising from B decays mostly has two un-
correlated leptons in the final state. Such background falls into three categories: (a) both B and \bar{B} decay semileptonically; (b) a $B \to D^{(*)} X e^+\nu$ decay is followed by $D^{(*)} \to X e^-\bar{\nu}_e$; and (c) hadronic B decays where one or more daughter particles are misidentified as leptons.

To suppress continuum as well as BB background, we use an second NN. This NN is trained using the following input variables:

1. A likelihood ratio constructed from modified Fox-Wolfram moments $[24, 25]$.
2. The angle θ_B between the B flight direction and the z axis in the CM frame for BB events, $dN/d\cos\theta_B \propto 1 - \cos^2 \theta_B$, whereas for continuum events, $dN/d\cos\theta_B \approx \text{constant}$.
3. The angle θ_T between the thrust axes calculated from final state particles for the candidate B and for the rest of the event (the thrust axis is the direction that maximizes the sum of the longitudinal momenta for all particles). For signal events, the $\cos \theta_T$ distribution is flat, whereas for continuum events it peaks near ± 1.
4. Flavor-tagging information from the tag-side recoiling B decay. The flavor-tagging algorithm $[20]$ outputs two variables: the flavor q of the tag-side B, and the tag quality r. The latter ranges from zero for no flavor information to one for unambiguous flavor assignment.
5. The confidence level of the B vertex fitted from all daughter particles.
6. The separation in z between the signal B decay vertex and that of the tag-side B.
7. The separation between the two leptons along the z-axis divided by the uncertainties in the transverse plane.
8. The sum of the ECL energy of tracks and clusters not associated with the signal B decay.
9. A set of variables developed by CLEO $[27]$ that characterize the momentum flow into concentric areas around the thrust axis of a reconstructed B candidate.

The NN outputs a single variable O, for which larger values correspond to more signal-like events. To facilitate modeling the distribution of O with an analytic function, we transform O to a new variable:

$$O' = \log \left[\frac{O - O_{\text{min}}}{O_{\text{max}} - O} \right],$$

where O_{min} and O_{max} are the lower and upper boundaries, respectively, of O. The value of O_{max} depends on the decay modes and is determined from the signal MC sample. The criteria on $O > -0.6$ ($= O_{\text{min}}$) reduces the background events by more than 75%, with a signal loss of about 4-5%.

We study the remaining background events using MC simulation for individual modes, with special attention paid to those that can mimic signal decays. Candidates arising from $B^0 \to J/\psi(\ell^+\ell^-)K^0$ populate towards the negative side in ΔE and are suppressed with the requirement $\Delta E > -0.1$ GeV. The decay $B^+ \to D^0(K^+\pi^-)\pi^+\pi^-$ mimics $B^+ \to K^+\mu^+\mu^-$ with pions being misidentified as muons, and to suppress it a veto is applied on the invariant mass formed from K^+ and μ^- candidates: $M[K^+\mu^-] \notin (1.85, 1.88)$ GeV/c^2. The contribution from other B to charm decays is negligible. Events originating from the decays $B^+ \to J/\psi(\mu^+\mu^-)K^+$ in which one of the muons is misidentified as a kaon, and the kaon is misidentified as a muon, contributes as a peaking background to $B^+ \to K^+\mu^+\mu^-$ signal. Such events are suppressed by applying a veto on the invariant mass $M[K^+\mu^-] \notin (3.06, 3.13)$ GeV/c^2. When calculating invariant masses for these vetoes, the mass hypothesis for the misidentified particle is used. There is small background from $B \to K\pi^+\pi^-$ decays in the $B^+ \to K^+\mu^+\mu^-$ (1.37 \pm 0.01 events) and $B^0 \to K^0_S\mu^+\mu^-$ (0.17 \pm 0.01 events) samples. In the corresponding $B^+ \to K^+e^+e^-$ and $D^0 \to K^0_Se^+e^-$ samples, background from charmless B decays is negligible. The mentioned yields of peaking charmless background are estimated by considering all known intermediate resonances. To avoid biasing our results, all selection criteria are determined in a “blind” manner, i.e., they are finalized before looking at data events in the signal region.

We determine the signal yield by performing a three dimensional unbinned extended maximum-likelihood fit to the $M_{bc}, \Delta E$ and O' distributions in different q^2 bins. The fits are performed for each mode separately. The probability density functions (PDF) used to model signal decays are as follows: for M_{bc} we use the sum of a Gaussian and a Crystal Ball function $[28]$, whereas for ΔE we use a single Gaussian and for O' we use the sum of an asymmetric Gaussian and a regular Gaussian with a common mean. All signal shape parameters are obtained from MC simulation. To account for small differences observed between data and MC simulations, we introduce a small offset in the mean positions and scaling factors for the width. The values of these parameters are obtained from fitting the control sample $B \to J/\psi(\to \ell^+\ell^-)K$ decays and kept fixed. The shape of $M_{bc}, \Delta E$ and O' distributions for background arising from $B-$decays are parameterized with an ARGUS function $[24]$, an exponential, and a Gaussian PDF, respectively. Similarly, the continuum background is modeled using an ARGUS, a first-order polynomial and a Gaussian function for $M_{bc}, \Delta E$ and O', respectively. The shape of BB and continuum backgrounds are very similar in two of the fit variables,
FIG. 1: Signal enhanced M_{bc} (left), ΔE (middle), and O' (right) projections of three-dimensional unbinned extended maximum-likelihood fits to the data events that pass the selection criteria for $B^+ \rightarrow K^+ \mu^+ \mu^-$ (top), and $B^+ \rightarrow K^+ e^+ e^-$ (bottom). Points with error bars are the data; blue solid curves are the fitted results for the signal-plus-background hypothesis; red dashed curves denote the signal component; cyan big dashed, green dashed-dotted, and black dashed curves represent continuum, $B\bar{B}$ background, and $B \rightarrow$ charmless decays, respectively.

FIG. 2: Signal enhanced M_{bc} (left), ΔE (middle), and O' (right) projections of three-dimensional unbinned extended maximum-likelihood fits to the data events that pass the selection criteria for $B^0 \rightarrow K^0_S \mu^+ \mu^-$ (top), and $B^0 \rightarrow K^0_S e^+ e^-$ (bottom). The legends are the same as in Fig. 1.
and this makes it difficult to independently vary the yields of both backgrounds. Hence, the continuum yields are obtained for each mode in each q^2 bin from the off-resonance data sample. These yields are consistent with those of the high-statistics off-resonance MC sample and kept fixed during the fits. The results of the fit projected in a signal-enhanced region $[M_{bc} \in (5.27, 5.29)\, \text{GeV}/c^2, |\Delta E| < 0.05\, \text{GeV} \text{ and } O' \in (1.0, 8.0)]$ for M_{bc}, ΔE and O' distributions in the data sample are shown in Figs. 1 and 2.

The fit is also performed in the aforementioned four q^2 bins including the bin $1 < q^2 < 6\, \text{GeV}^2/c^4$, where LHCb result has deviation, and R_K and A_I are calculated from Eqs. 1 and 2, respectively. The results are listed in Table 1. The results for R_K and A_I are also shown in Figs. 3 and 4, respectively.

![FIG. 3: R_K in bins of q^2, for $B^+ \rightarrow K^+\ell^+\ell^-$ (top-left), $B^0 \rightarrow K_0^0\ell^+\ell^-$ (top-right), and combining both modes (bottom). The red marker represents the bin of $1 < q^2 < 6\, \text{GeV}^2/c^4$, and the blue markers are for $0.1 < q^2 < 4, 4 < q^2 < 8.12$ and $q^2 > 14.18\, \text{GeV}^2/c^4$ bins. The green marker denotes the whole q^2 region excluding the charmonium resonances.](image)

Systematic uncertainties in the branching fraction arise mainly from lepton identification: about 2% (1.6%) for muon (electron) identification for each lepton. Uncertainty due to hadron identification is about 0.8% for K^\pm and 1.6% for K_0^0. The systematic uncertainty due to charged track reconstruction is 0.35% per track. These uncertainties related to detector performance are determined from dedicated control samples. The uncertainty in efficiency due to limited MC statistics is about 0.2%, and the uncertainty in the number of BB events is 1.4%. Systematic uncertainty in the branching fraction ratio, $B[Y(4S) \rightarrow B^+B^-]/B[Y(4S) \rightarrow B^0\bar{B}^0] = 1.058 \pm 0.024$ is 1.2%. We compare the efficiency of the $O > O_{\text{min}}$ criterion between data and MC samples for the control channel $B \rightarrow J/\psi K, J/\psi \rightarrow \ell^+\ell^-$, and the corresponding uncertainty is estimated as 1.5%. The uncertainty due to PDF shapes is evaluated by varying the fixed shape parameters by $\pm 1\sigma$ and repeating the fit; the change in the central value of N_{sig} is taken as the systematic uncertainty, which ranges from 0.1% to 0.6%. The uncertainty due to the fixed yield of continuum events is estimated by varying the yield by $\pm 1\sigma$ in the fit; the resulting variation in N_{sig} is found to be less than 1%. In the case of R_K, systematic uncertainties due to charged track reconstruction, hadron identification, number of BB events, and the ratio $B[Y(4S) \rightarrow B^+B^-]/B[Y(4S) \rightarrow B^0\bar{B}^0]$ cancel, while for the A_I measurement lepton identification and the number of BB events cancel.

In summary, we have measured the branching fractions, their ratios (R_K) and the CP-averaged isospin...
q^2 (GeV2/c4)	Mode	ε (\%)	N_{sig} (10$^{-7}$)	A_I (individual)	A_I (combined)	R_K (individual)	R_K (combined)
B$^+$ \rightarrow K$^+$ $\mu^+ \mu^-$	0.1,4.0	20.8	28.4	1.72$^{+0.4}_{-0.4}$	$A_I(\mu\mu) = \ldots$	$R_K = \ldots$	
B0 \rightarrow K0 $\mu^+ \mu^-$	14.7	6.8$^{+3.3}_{-2.6}$	0.62$^{+0.30}_{-0.23}$	$-0.10^{+0.20}_{-0.17}$	$-0.22^{+0.14}_{-0.12}$	$0.92^{+0.27}_{-0.24}$	$0.95^{+0.27}_{-0.24}$
B$^+$ \rightarrow K$^+e^+e^-$	27.8	41.5$^{+7.7}_{-7.0}$	1.88$^{+0.35}_{-0.31}$	$A_I(ee) = \ldots$	$R_K = \ldots$		
B0 \rightarrow K$^0e^+e^-$	18.4	5.5$^{+3.6}_{-2.2}$	0.40$^{+0.26}_{-0.21}$	$-0.35^{+0.21}_{-0.17}$	$1.5^{+1.2}_{-1.0}$		
B$^+$ \rightarrow K$^+e^+e^-$	0.4,8.12	29.2	28.4$^{+6.4}_{-5.7}$	1.2$^{+0.3}_{-0.2}$	$A_I(\mu\mu) = \ldots$	$R_K = \ldots$	
B0 \rightarrow K$^0e^+e^-$	20.8	4.2$^{+4.2}_{-3.5}$	0.27$^{+0.18}_{-0.13}$	$-0.33^{+0.23}_{-0.19}$	$-0.08^{+0.15}_{-0.12}$	$1.22^{+0.42}_{-0.37}$	$0.81^{+0.28}_{-0.25}$
B$^+$ \rightarrow K$^+e^+e^-$	33.9	26.9$^{+6.9}_{-6.1}$	1.00$^{+0.26}_{-0.23}$	$A_I(ee) = \ldots$	$R_K = \ldots$		
B0 \rightarrow K$^0e^+e^-$	22.8	9.3$^{+3.7}_{-3.0}$	0.54$^{+0.22}_{-0.18}$	$0.11^{+0.19}_{-0.16}$	$0.50^{+0.39}_{-0.30}$	$0.03^{+0.27}_{-0.22}$	
B$^+$ \rightarrow K$^+e^+e^-$	0.1,6.0	23.5	42.3$^{+7.6}_{-6.9}$	2.3$^{+0.4}_{-0.4}$	$A_I(\mu\mu) = \ldots$	$R_K = \ldots$	
B0 \rightarrow K$^0e^+e^-$	16.7	3.9$^{+2.9}_{-2.7}$	0.31$^{+0.16}_{-0.12}$	$-0.52^{+0.20}_{-0.17}$	$-0.30^{+0.13}_{-0.11}$	$1.31^{+0.34}_{-0.31}$	$0.98^{+0.27}_{-0.25}$
B$^+$ \rightarrow K$^+e^+e^-$	30.4	41.7$^{+8.0}_{-7.2}$	1.74$^{+0.33}_{-0.30}$	$A_I(ee) = \ldots$	$R_K = \ldots$		
B0 \rightarrow K$^0e^+e^-$	20.1	8.9$^{+4.2}_{-3.2}$	0.59$^{+0.27}_{-0.23}$	$-0.12^{+0.18}_{-0.15}$	$0.53^{+0.44}_{-0.33}$	$0.03^{+0.27}_{-0.22}$	
B$^+$ \rightarrow K$^+e^+e^-$	> 14.18	45.3	47.9$^{+8.6}_{-7.8}$	1.34$^{+0.24}_{-0.22}$	$A_I(\mu\mu) = \ldots$	$R_K = \ldots$	
B0 \rightarrow K$^0e^+e^-$	25.3	9.6$^{+4.2}_{-3.5}$	0.51$^{+0.22}_{-0.18}$	$-0.07^{+0.17}_{-0.15}$	$-0.13^{+0.14}_{-0.12}$	$1.08^{+0.30}_{-0.27}$	$1.11^{+0.29}_{-0.26}$
B$^+$ \rightarrow K$^+e^+e^-$	44.2	43.2$^{+9.1}_{-8.3}$	1.24$^{+0.26}_{-0.24}$	$A_I(ee) = \ldots$	$R_K = \ldots$		
B0 \rightarrow K$^0e^+e^-$	23.6	5.9$^{+4.0}_{-3.1}$	0.33$^{+0.23}_{-0.18}$	$-0.24^{+0.23}_{-0.19}$	$1.52^{+1.23}_{-0.97}$	$0.10^{+0.29}_{-0.26}$	
B$^+$ \rightarrow K$^+e^+e^-$	whole q^2	27.8	137.0$^{+14.2}_{-13.5}$	6.24$^{+0.65}_{-0.61}$	$A_I(\mu\mu) = \ldots$	$R_K = \ldots$	
B0 \rightarrow K$^0e^+e^-$	18.2	27.3$^{+6.6}_{-5.9}$	2.0$^{+0.5}_{-0.4}$	$-0.15^{+0.09}_{-0.08}$	$-0.19^{+0.07}_{-0.06}$	$1.04^{+0.15}_{-0.13}$	$1.06^{+0.15}_{-0.14}$
B$^+$ \rightarrow K$^+e^+e^-$	29.1	135.0$^{+15.5}_{-14.7}$	6.00$^{+0.6}_{-0.5}$	$A_I(ee) = \ldots$	$R_K = \ldots$		
B0 \rightarrow K$^0e^+e^-$	18.2	21.8$^{+7.0}_{-6.1}$	1.60$^{+0.52}_{-0.45}$	$-0.24^{+0.11}_{-0.09}$	$1.25^{+0.50}_{-0.44}$	$0.08^{+0.27}_{-0.24}$	
asymmetry (A_f) for the decays $B \rightarrow K \ell^+\ell^-$ as a function of q^2. The R_K values for different q^2 bins are consistent with the SM prediction. Our result for the bin of interest, $q^2 \in (1.0, 6.0) \text{GeV}^2/c^4$, is consistent with the LHCb R [30] result, which has a deviation of 2.5σ, as well as the SM expectation. The A_f for almost all the bins for different channels have negative asymmetry. For the bin $q^2 \in (1.0, 6.0) \text{GeV}^2/c^4$, the obtained A_f value deviates from zero by 2.7σ for the mode with muon final states.

ACKNOWLEDGMENTS

We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET5 network support. We acknowledge support from MEXT, JSPS and Nagoya’s TL-PRC (Japan); ARC (Australia); FWF (Austria); NSFC and CCEPP (China); MSMT (Czechia); CZF, DFG, EXC153, and VS (Germany); DST (India); INFN (Italy); MOE, MSIP, NRF, RSRI, FLRFAS project and GSDC of KISTI and KREONET/GLORIAD (Korea); MNiSW and NCN (Poland); MSHE (Russia); ARRS (Slovenia); IKERBASQUE (Spain); SNSF (Switzerland); MOE and MOST (Taiwan); and DOE and NSF (USA).

[1] G. Hiller and F. Kruger, Phys. Rev. D 69, 074020 (2004).
[2] C. Bobeth, G. Hiller, and G. Piranishvili, JHEP 12 (2007) 040.
[3] M. Bauer and M. Neubert, Phys. Rev. Lett. 116, 141802 (2016).
[4] R. Aaij et al. (LHCb Collaboration), JHEP 08 (2017) 055.
[5] A. Abdesselam et al. (Belle Collaboration), arXiv:1904.02140
[6] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122, 191801 (2019).
[7] J. T. Wei et al. (Belle Collaboration), Phys. Rev. Lett. 103, 171801 (2009).
[8] T. Feldmann and J. Matias, JHEP 0301 (2003) 074.
[9] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001.
[10] J. Lyon and R. Zwicky, Phys. Rev. D 88, 094004 (2013).
[11] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D 86, 032012 (2012).
[12] R. Aaij et al. (LHCb Collaboration), JHEP 06 (2014) 133.
[13] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sec. A 499, 1 (2003), and other papers included in this volume; T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013) and following articles up to 03A011.
[14] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sec. A 462, 152 (2001).
[15] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sec. A 459, 291 (1994); P. Golonka and Z. Was, Eur. Phys. J. C 45, 97 (2006); P. Golonka and Z. Was, Eur. Phys. J. C 50, 53 (2007).
[16] R. Brun et al., CERN Report No. DD/EE/84-1 (1984).
[17] The inclusion of the charge conjugate decay mode is implied unless otherwise stated.
[18] A. Abashian et al., Nucl. Instrum. Methods Phys. Res., Sec. A 491, 69 (2002).
[19] E. Nakano, Nucl. Instrum. Methods Phys. Res., Sec. A 494, 402 (2002).
[20] K. Hanagaki, H. Kakuno, H. Ikeda, T. Iijima, and T. Tsukamoto, Nucl. Instrum. Methods Phys. Res., Sec. A 485, 490 (2002).
[21] S. H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).
[22] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[23] H. Kakuno et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sec. A 553, 516 (2004).
[24] D. M. Asner et al. (CLEO Collaboration), Phys. Rev. D 53, 1039 (1996).
[25] T. Skwarnicki, Ph.D. thesis, Institute for Nuclear Physics, Krakow; DESY Internal Report No. DESY F31-86-02, 1986.
[26] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[27] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 113, 151601 (2014).