Interactive exploratory data analysis of Integrative Human Microbiome Project data using Metaviz [version 1; peer review: awaiting peer review]

Justin Wagner1-3, Jayaram Kancherla2,3, Domenick Braccia2,3, James Matsumara4, Victor Felix4, Jonathan Crabtree4, Anup Mahurkar4, Héctor Corrada Bravo1-3

1Department of Computer Science, University of Maryland, College Park, College Park, Maryland, 20742, USA
2Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, Maryland, 20742, USA
3Institute for Advanced Computer Studies, University of Maryland, College Park, College Park, Maryland, 20742, USA
4Institute for Genome Sciences, University of Maryland, Baltimore, Baltimore, Maryland, 21201, USA

Abstract
The rich data produced by the second phase of the Human Microbiome Project (iHMP) offers a unique opportunity to test hypotheses that interactions between microbial communities and a human host might impact an individual’s health or disease status. In this work we describe infrastructure that integrates Metaviz, an interactive microbiome data analysis and visualization tool, with the iHMP Data Coordination Center web portal and the \texttt{HMP2Data} R/Bioconductor package. We describe integrative statistical and visual analyses of two datasets from iHMP using Metaviz along with the \texttt{metagenomeSeq} R/Bioconductor package for statistical analysis of differential abundance analysis. These use cases demonstrate the utility of a combined approach to access and analyze data from this resource.

Keywords
metagenomics, visualization, R/Bioconductor, Intergrative Human Microbiome Project

This article is included in the Bioconductor gateway.
Corresponding author: Héctor Corrada Bravo (hcorrada@umd.edu)

Author roles: Wagner J: Data Curation, Formal Analysis, Methodology, Resources, Software, Validation, Visualization, Writing – Original Draft Preparation; Kancherla J: Data Curation, Formal Analysis, Resources, Software, Validation, Visualization, Writing – Review & Editing; Braccia D: Formal Analysis, Resources, Validation; Matsumara J: Data Curation, Resources, Software; Felix V: Resources, Software; Crabtree J: Resources, Software; Mahurkar A: Data Curation, Funding Acquisition, Project Administration, Supervision; Corrada Bravo H: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was partially funded by NIH grants R01 GM114267 and U54 DK102556.

Copyright: © 2020 Wagner J et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Wagner J, Kancherla J, Braccia D et al. Interactive exploratory data analysis of Integrative Human Microbiome Project data using Metaviz [version 1; peer review: awaiting peer review] F1000Research 2020, 9:601
https://doi.org/10.12688/f1000research.24345.1

First published: 12 Jun 2020, 9:601 https://doi.org/10.12688/f1000research.24345.1
Introduction

Metagenomics allows researchers to perform a microbial community census and investigate associations between host phenotype and community status. Metagenomics has been used successfully to track pathogen spread and identify intervention strategies in childhood malnutrition. Integrative analysis of samples using multiple sequencing technologies allows for comparison at various levels of granularity. The second phase of the Human Microbiome Project (iHMP) offers a unique opportunity to test hypotheses of interactions between the microbial community and the human host. To examine the iHMP data resource, we use Metaviz, an interactive microbiome exploratory data analysis and visualization tool, and metagenomeSeq, an R/Bioconductor package for statistical analysis of differential abundance analysis, for combined visual and statistical analysis.

Human Microbiome Project Phase II

The second phase of the HMP, also called the Integrative Human Microbiome Project (iHMP), consisted of focused studies of three diseases – Inflammatory Bowel Disease (IBD), Type II Diabetes (T2D), and Multi-Omic Microbiome Study: Pregnancy Initiative (MOMS-PI). The overall goal of the project was to identify associations between human microbiome community census data and the three diseases. Each of the studies were structured for the specific disease and consisted of separate cohorts.

Metaviz

Metaviz is a web-based interactive visualization tool for microbiome data analysis. The architecture consists of a JavaScript front-end suite of charts (based on D3.js and Canvas) and a navigation component that lets users select portions of taxonomic hierarchies to visualize and analyze. Metaviz supports two backend data stores – a graph database and the metaviz R/Bioconductor package. Metaviz is tightly integrated with the metagenomeSeq statistical testing package so differential abundance testing results can be viewed directly in a Metaviz session. We host an instance of Metaviz that we call the UMD Metagenome Browser (http://metaviz.ccb.umd.edu).

Related work

Visualization tools for large-scale sequencing consortium projects provide a mechanism to explore and interact with data from multiple studies. These applications help users analyze individual datasets and examine trends across the entire project. MAGI is a web-application that enables a user to examine data from TCGA data. The Earth Microbiome Project provides an interactive visualization web-application to analyze its data. EMPorier offers interactive 3D visualizations of PCA plots to show distances between microbiome samples. QIIME packages a number of tools for static plotting of Principal Coordinate Analysis and stacked bar plots. MetaPhlAn2 uses a visualization package called GraphPhlan to produce phylogenetic trees and other plots. The HMP2Data R/Bioconductor provides processed 16S sequencing data from the iHMP project in Bioconductor data structures. We implemented Metaviz using design patterns from Epiviz, an interactive epigenetics visualization tool, that visualizes data from a variety of epigenetic sequencing projects. We show how we leverage the microbiome measurement-based design of Metaviz to implement interactive exploration and hypothesis-testing of the iHMP resource.

Implementation

Metaviz integration with HMP infrastructure

The HMP Data Access and Coordination Center maintains a data repository and web portal (https://ihmpdcc.org). From this web portal, users can browse metadata for datasets, raw sequencing files, and processed files including taxonomic community profile abundance matrices. We implemented several mechanisms to interact with the HMP data resources through Metaviz.

Data loaded into UMD Metagenome Browser

We loaded the 16S community profile abundance matrices for the samples from the IBD, T2D, and MOMS-PI studies as provided by the HMP2Data Bioconductor package into the UMD Metagenome Browser. A user can select each dataset from the application start screen. Figure 1 details the number of samples, with metadata to the extent available as of May 2020 from the HMP2Data package, from each project currently available in the UMD Metagenome Browser.

HMP Data Portal linking to Metaviz

When browsing the samples available from the HMP Data Portal, a user can view an individual abundance matrix in Metaviz using the Metaviz tool link from the file description page. When the user clicks the link, a redirect occurs to the UMD Metagenome Browser with a new workspace containing a FacetZoom navigation utility and a heatmap for that sample. Figure 1A shows the direct link functionality for samples in the IBD dataset and resulting workspace in Metaviz.

Metaviz import of Data Portal Manifest

In the HMP data portal, a user can select files with a shopping cart utility and download the selections as a manifest file. In the UMD Metagenome Browser, the user can upload the manifest file to create a Metaviz workspace on the fly for those samples. Currently, only files from the same project can be viewed in one workspace. Resolving taxonomic hierarchies across datasets in Metaviz is future work that could use a utility such as the metagenomeFeatures R/Bioconductor package. Figure 1C shows the manifest file workflow for samples from the IBD dataset and resulting workspace in Metaviz.

Operation

The HMP Data Portal and Metaviz are web applications that can run in any modern browser. We recommend using Firefox (version 65 or later) or Chrome (version 65 or later) for best performance. Metaviz is a Bioconductor package and general guidelines from Bioconductor for requirements and installation should be followed (https://bioconductor.org/install/).

Use cases

metaviz analysis of WGS vs 16S data from same samples

In the IBD cohort of the iHMP dataset, investigators sequenced a subset of samples using whole metagenome and 16S sequencing. We developed functions in metaviz to compare...
16S and whole metagenome data for individual samples. Using the taxonomic profiles of the IBD samples, we matched the taxonomic features discovered with both sequencing methods. With this subset of features, we generated a single taxonomic hierarchy then loaded the 16S and whole metagenome abundance measurements into a `metavizr` object. Figure 2 shows an example analysis with stacked plots and scatter plots that link to a single FacetZoom to compare the degree of consistency of the data across sequencing methods.

IBD dataset

The IBD study consisted of two phases: a pilot, which we refer to in this work as the IBD Stool Pilot, and a larger phase that we call IBD iHMP. We use the taxonomic profiles for each phase available from the `HMP2Data` package and use the same taxonomic classification identifiers in the package. To upload project data on to the UMD Metagenome Browser, we extracted 16S count table and taxonomic annotation using the `otu_table()` and `tax_table()` methods of `HMP2Data` package. We then use `metagenomeSeq` and `metavizr` to import the count data along with taxonomy and sample metadata into a neo4j graph database using the `metavizr` `neo4j` import functionality. We used Metaviz for exploratory analysis and `metagenomeSeq` for confirmatory statistical testing. We examined the IBD Stool Pilot and IBD iHMP dataset separately.

IBD Stool Pilot dataset

The IBD Stool Pilot dataset contains 16S and whole metagenome sequencing results of stool samples from 41 Crohn’s disease (CD) subjects and 10 ulcerative colitis (UC) subjects. We focused...
Figure 2. Comparison between 16S and WGS taxonomic profiling using metavizr. We identified taxa present in the taxonomic hierarchy for each method and created a merged dataset. A FacetZoom (bottom) shows the common taxonomic features, two Stacked Plots (middle) show the proportion of all features aggregated to the Order level, and a set of scatter plots (top) for samples with WGS abundance on the X-axis and 16S abundance on the Y-axis. For WGS, the relative proportion output from MetaPhlan for taxa at the order level were transformed to counts per 1000 reads. The scatter plots show the variability in taxonomic community census estimates between sequencing methods. A static similar stacked plot visualization is shown in the main HMP consortium manuscript at the genus and species level across samples for comparison15. Metaviz allows users to make specific selections of the FacetZoom to compare taxa at various levels. The scatter plot also allows comparison at single sample resolution. Code to create this Metaviz session is available at the following gist: https://gist.github.com/jkanche/9216d465d18ab106be7a43f5340eb38a.

our analysis on 16S sequencing and used Metaviz to visually identify taxa that showed a difference in abundance between CD and UC subjects. Figure 3 shows a typical visualization.

We also used *metagenomeSeq* to test the differential abundance of features aggregated to each level of the taxonomy using the *fitFeatureModel* method that is based on a zero-inflated log-normal linear model. As shown in Table 1, two species had an absolute log fold-change greater than 1 and adjusted (Benjamini-Hochberg) p-value less than 0.1. Visually inspecting the IBD Stool Pilot data by aggregating counts to each level of the taxonomy we found the following features appearing differentially abundant: c__Betaproteobacteria, o__Burkholderiales, f__Ruminococcaceae, g__Lachnospira, g-[Ruminococcus], g__Faecalibacterium, s__589277, s__333166, s__564806, s__369227, s__358104, s__369486, s__360015, s__851865. Comparing these results and the *metagenomeSeq* differential abundance testing results in Table 1 shows that the taxonomic feature s__369227 (member of the Lachnospiraceae family which are strictly anaerobic17) was identified using both methods. Members of Lachnospiraceae are abundant in human intestinal tracts and have been linked specifically to production of butyric acid17. Also, colonization with a specific strain of Lachnospiraceae in obese mice has been linked to development of hyperglycemia18. The second taxon, s__363232, is a member of the genus *Dorea* which has recently been shown to be associated with diarrhea predominant irritable bowel syndrome19.

IBD iHMP

The IBD iHMP dataset consists of samples from subjects with CD, UC, and those without IBD (nonIBD). For these samples, we analyzed the 16S sequencing data of an ileum biopsy from the first visit for each subject, which yielded 72 samples with 32 from CD, 18 from CD, and 22 from nonIBD. We used *metagenomeSeq* to compute an F-statistic to determine if any taxonomic feature is associated with at least one group using the *fitZig* method (based on a zero-inflated Normal linear model on log-transformed counts appropriate for multi-category experiment designs). Figure 4 shows an example using Metaviz to visualize abundance profiles for phylum Fusobacteria, which was found to be differentially abundant across the three
Figure 3. Metaviz Analysis of IBD Stool 16S Pilot Dataset. A Metaviz workspace with a FacetZoom taxonomic hierarchy, heatmap, and boxplot for the specific feature in this instance s__369227. This identifier was from the community abundance profiles available from the HMP2Data package. We identified taxonomic features at each level of the hierarchy using this integrated view and the results for features with a potential differential abundance are listed in Supplementary Table 1. The workspace is available at: http://metaviz.cbcb.umd.edu/?ws=0Lq2Fr9AwVc.

Table 1. metagenomeSeq analysis of IBD Stool 16S Pilot dataset.

Feature	Log fold change	se	p-value	Adjusted p-value
s__369227	1.864583442	0.431193725	1.53061E-05	0.000734694
s__363232	1.193035074	0.275415013	1.47914E-05	0.000734694

We used the fitFeatureModel of metagenomeSeq and aggregated counts to each level of the taxonomic hierarchy. Our analysis identified s__369227 under family Lachnospiraceae and s__363232 under genus Dorea as differentially abundant between samples from subjects diagnosed with Ulcerative Colitis and Crohn’s Disease.

groups. Differential abundance of members of this phylum has previously been reported in studies of IBD\(^{20}\). Analysis code and results are available as Extended data\(^{21}\).

Conclusion

In this work we presented software infrastructure linking Metaviz to the iHMP data resources\(^{4}\). We detailed the 16S taxonomic community profile data from iHMP available in the UMD Metagenome Browser. We then described linking the UMD Metagenome Browser to the iHMP Data Portal for single files and the manifest file utility for multiple file selections. We also performed visual exploratory and confirmatory differential abundance analysis of data from the IBD study. We first visualize 16S and whole metagenome sequencing abundance measurements for the same samples in metaviz. Then we use Metaviz and metagenomeSeq to analyze two datasets, IBD Stool Pilot and iHMP IBD, to examine taxonomic feature abundances in samples from UC, CD, and those without IBD. These illustrative analyses demonstrate the utility of Metaviz for integrative analysis with the HMP data resources. Visual inspection of taxonomic features coupled with statistical testing provides an effective mechanism to explore and test associations between bacterial communities and their human hosts.
Using statistical analysis we identified taxonomic features that showed a difference in abundance between the three subject diagnosis categories: UC, CD, or nonIBD in the Fusobacteria phylum. This Metaviz workspace is available at: http://metaviz.cbcb.umd.edu/?ws=wHsHT56U8R.

Data availability

Source data
The 16S abundance matrices for IBD, T2D and the MOMS-PI studies were downloaded from the [HMP2Data](https://mp2data.broadinstitute.org) Bioconductor package. These datasets are then loaded into the neo4j graph database using import methods available in the [metavizr](https://github.com/jkanche/c57d8220a33b41e21c4f6769a7ac17e4/Bioconductor package. These import scripts are available at https://gist.github.com/jkanche/c57d8220a33b41e21c4f6769a7ac17e4.

Extended data
Figshare: Differential Abundance Analysis - IBD (Figure 4). https://doi.org/10.6084/m9.figshare.12404222.v2. This file contains differential abundance analysis code and results.

Extended data are available under the terms of the [Creative Commons Attribution 4.0 International license (CC-BY 4.0)](https://creativecommons.org/licenses/by/4.0/).

Software availability
Metaviz is available at: http://metaviz.cbcb.umd.edu.

Source code available from: https://github.com/epiviz/Metaviz.

Archived source code at time of publication: https://doi.org/10.5281/zenodo.3871869.

License: [Artistic License version 2.0](https://opensource.org/licenses/Artistic-2.0).

References

1. Miller RR, Montoya V, Gardy JL, et al.: Metagenomics for pathogen detection in public health. Genome Med. 2013; 5(9): 81. [PubMed Abstract](https://pubmed.ncbi.nlm.nih.gov/24371749/) | [Publisher Full Text](https://doi.org/10.1186/gm480) | [Free Full Text](https://genomemedicine.biomedcentral.com/articles/10.1186/gm480)
2. Blanton LV, Charbonneau MR, Salih T, et al.: Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. 2016; 351 (6275). [PubMed Abstract](https://pubmed.ncbi.nlm.nih.gov/26881382/) | [Publisher Full Text](https://science.sciencemag.org/content/351/6275/950) | [Free Full Text](https://science.sciencemag.org/content/351/6275/950)
3. Wagner J, Chelaru F, Kancherla J, et al.: Metaviz: interactive statistical and
visual analysis of metagenomic data. Nucleic Acids Res. 2018; 46(6): 2777–2787.
4. Paulson JN, Colin Stine O, Bravo HC, et al.: Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013; 10(12): 1200–1202.
5. Integrative HMP (iHMP) Research Network Consortium: The integrative human microbiome project: Dynamic analysis of microbiome-host omics profiles during periods of human health and disease corresponding author. Cell Host Microbe. 2014; 16: 276–289.
6. Kancherla J, Chelaru F, Hoorrada J, et al.: epiziz/Metaviz: release for submission (Version 0.1.1). Zenodo. 2020.
7. Leiserson MDM, Gramazio CC, Hu J, et al.: MAGI: Visualization and collaborative annotation of genomic aberrations. Nat Methods. 2015; 12: 483–484.
8. Thompson LA, Sanders JG, McDonald D, et al.: A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017; 551(7681): 457–463.
9. Vázquez-Baeza Y, Pinorg M, Gonzalez A, et al.: EMPorer: a tool for visualizing high-throughput microbial community data. Gigascience. 2013; 2(1): 16.
10. Caporaso JG, Kuczynski J, Stombaugh J, et al.: QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010; 7(5): 335–336.
11. Truong DT, Franzosa EA, Tickle TL, et al.: MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015; 12(10): 902–903.
12. Stansfield J, Dzemorov D: HMP2Data: 16s rRNA sequencing data from the Human Microbiome Project 2. 2019.
13. Chelaru F, Smith L, Goldstein N, et al.: Epiviz: Interactive visual analytics for functional genomics data. Nat Methods. 2014; 11(9): 938–40.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com