T Cell Specific Adapter Protein (TSAd) Interacts with Tec Kinase ITK to Promote CXCL12 Induced Migration of Human and Murine T Cells

Tone Berge1, Vibekes Sundvold-Gjerstad1, Stine Granum1, Thony C. B. Andersen1, Gunn B. Holthe1, Lena Claesson-Welsh2, Amy H. Andreotti3, Marit Inngjerdingen1, Anne Spurkland1*

1 Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway, 2 Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden, 3 Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America

Abstract

Background: The chemokine CXCL12/SDF-1α interacts with its G-protein coupled receptor CXCR4 to induce migration of lymphoid and endothelial cells. T cell specific adapter protein (TSAd) has been found to promote migration of Jurkat T cells through interaction with the G protein β subunit. However, the molecular mechanisms for how TSAd influences cellular migration have not been characterized in detail.

Principal Findings: We show that TSAd is required for tyrosine phosphorylation of the Lck substrate IL-2-inducible T cell kinase (Itk). Presence of Itk Y511 was necessary to boost TSAd’s effect on CXCL12 induced migration of Jurkat T cells. In addition, TSAd’s ability to promote CXCL12-induced actin polymerization and migration of Jurkat T lymphocytes was dependent on the Itk-interaction site in the proline-rich region of TSAd. Furthermore, TSAd-deficient murine thymocytes failed to respond to CXCL12 with increased Itk phosphorylation, and displayed reduced actin polymerization and cell migration responses.

Conclusion: We propose that TSAd, through its interaction with both Itk and Lck, primes Itk for Lck mediated phosphorylation and thereby regulates CXCL12 induced T cell migration and actin cytoskeleton rearrangements.

Citation: Berge T, Sundvold-Gjerstad V, Granum S, Andersen TCB, Holthe GB, et al. (2010) T Cell Specific Adapter Protein (TSAd) Interacts with Tec Kinase ITK to Promote CXCL12 Induced Migration of Human and Murine T Cells. PLoS ONE 5(3): e9761. doi:10.1371/journal.pone.0009761

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: anne.spurkland@medisin.uio.no

These authors contributed equally to this work.

Introduction

The CXC chemokine subfamily member, CXCL12/stromal cell-derived factor (SDF)-1α, is expressed in a broad range of tissues and has multiple effects on lymphoid and endothelial cells (reviewed in [1]). Mice deficient in either CXCL12 or its seven-transmembrane G protein coupled receptor (GPCR) CXCR4 die perinatally and display profound defects in the hematopoietic system [2,3]. CXCL12 modulates T cell development in the thymus [4,5], T cell adhesion and migration [6], as well as expression of genes controlling T cell signaling, migration and survival [7]. These effects are mediated through multiple signaling pathways, including the Ras, ERK [8], the JAK/STAT [9] and the PI3K-1A and -1B pathways [10,11]. In addition, CXCL12 has been reported to co-stimulate activation of T cells [12] by promoting a physical association between CXCR4 and the T cell receptor (TCR) [13].

T cell specific adapter protein (TSAd) [14] (also known as Lck-associated adapter protein (LAD) [15], Rlk/Itk binding protein (RIBP) [16] and vascular endothelial growth factor receptor adapter protein (VRAP) [17]), is encoded by the SH2D2A gene, and its expression is rapidly induced in human T cells upon TCR triggering [14,16,18,19]. TSAd contains a Src homology (SH) 2 domain, a proline-rich region with potential SH3 interaction sites, as well as several tyrosine phosphorylation sites [14,20]. In T cells, TSAd interacts with and becomes tyrosine phosphorylated by the Src kinase Lck [15,20], enabling TSAd to modulate Lck function and thereby influence downstream TCR signaling events [18,20–23]. TSAd is also expressed in endothelial cells, where it docks onto activated vascular endothelial growth factor receptor 2 (VEGFR-2) and promotes actin stress fiber formation and migration of endothelial cells [24]. Recently, Park and colleagues showed that TSAd, through association with the G-protein β subunit, regulates chemokine-dependent migration of Jurkat T cells [25].

The Tec family kinase IL-2 inducible T-cell tyrosine kinase (Itk) has been identified as a TSAd interaction partner in a yeast two-hybrid screen [16]. Itk regulates CXCL12 induced activation of Rho GTPases, cell polarization, adhesion and migration of T cells [26–28]. Furthermore, Itk is tyrosine phosphorylated in response
to CXCL12 [26,27] in a Src-kinase-dependent manner [26]. Lck-mediated tyrosine phosphorylation of Itk is necessary for activation of its kinase activity [29]. In agreement with this, Lck is activated in response to CXCL12 [30,31] and kinase activities of both Itk [27] and Lck [30] are important for CXCL12 mediated T-cell chemotaxis. Moreover, Lck has recently been shown to be recruited to TSAd upon CXCL12 stimulation of Jurkat T cells [25].

Although both Itk and TSAd have been implied in chemokine induced cellular migration, the role of the TSAd-Itk interaction in cellular migration has not previously been addressed. Here we show that the interaction between TSAd and Itk depends on the C-terminal proline-rich region of TSAd (aa239-274) and the SH3 domain of Itk. Using Jurkat T cells as a model system, we show that the positive effect of TSAd on CXCL12 induced chemotaxis is dependent on its Itk interaction site and on an intact Itk Y511 phosphorylation site. In accordance with this, CXCL12 stimulation of TSAd deficient murine thymocytes failed to induce tyrosine phosphorylation of Itk, and these cells also displayed reduced CXCL12-induced actin polymerization and chemotaxis. Together, our data indicate that TSAd regulates CXCL12 induced T-cell migration and actin cytoskeleton rearrangements by promoting Lck dependent phosphorylation of Itk.

Results

TSAd interacts through its proline rich region with the Itk SH3 domain

We previously found that TSAd is important for VEGF-induced actin stress-fiber formation and migration of endothelial cells [24]. Furthermore, TSAd was recently found to promote chemokine induced migration of Jurkat T cells [25]. Similarly, the TSAd interaction partner Itk [16] has been found to be involved in CXCL12 induced actin polymerization and T cell migration [26,27]. However, it is unknown whether the interaction of TSAd with Itk is required for TSAd’s effect on chemokine induced cellular migration. To analyze this, we first set out to map the interaction site of TSAd with Itk.

Murine TSAd has previously been shown to interact with Itk in yeast and in transiently transfected HEK293 cells [16]. We therefore first aimed to extend this initial observation of the TSAd-Itk interaction to also include T cells. Itk and TSAd are expressed at low levels in resting primary T cells, but are induced upon activation of T cells through the TCR [14,32,33]. The same is true for Jurkat T cells (Fig. 1A). In contrast, CXCL12 does not induce expression of either TSAd or Itk [7,34]. Since we here focused on the possible functional link between TSAd and Itk in CXCL12/CXCR4 signaling, and since TCR stimulation may affect

![Figure 1. The C-terminal proline-rich region of TSAd interacts with the Itk-SH3 domain.](image-url)
The proline-rich region of TSAd influences CXCL12 induced actin polymerization and migration

We next examined whether interaction of TSAd with Itk influences actin polymerization in response to CXCL12 stimulation of Jurkat T cells transiently expressing GFP alone, or GFP fused to TSAd or to TSAd Δ239-274. Flow cytometry analysis revealed that both resting and CXCL12 stimulated cells expressing intact TSAd displayed significantly higher levels of F-actin than cells expressing GFP alone (Fig. 2A). By contrast, resting and CXCL12 stimulated cells expressing TSAd Δ239-274 displayed non significant increases in F-actin level compared with cells expressing GFP alone (Fig. 2A). Moreover, in accordance with Park’s previous report, we found that Jurkat T cells expressing TSAd displayed significantly higher migratory response upon CXCL12 stimulation compared to Jurkat cells expressing GFP alone, whereas cells expressing TSAd Δ239-274 showed a chemotactic response comparable to that of GFP-expressing cells (−) (Fig. 2B). Taken together, these data suggest that TSAd promotes CXCL12 induced actin polymerization, as well as migration of Jurkat T cells. Moreover, our results indicate that the proline rich region (aa 239-274) of TSAd and thus potentially TSAd’s interaction with Itk, is crucial for this effect.

TSAd promotes tyrosine phosphorylation of Itk on Y511

In Jurkat T cells, CXCL12 induces Src kinase dependent tyrosine phosphorylation of Itk [26,27] and Lck (or Src-) mediated phosphorylation of Y511 in the kinase domain of Itk is essential for its activation in primary T cells upon TCR stimulation [29,36]. TSAd is known to interact with the Src kinase Lck [15] through the Lck SH2- and SH3-domains [22] via multiple interaction sites [20]. Furthermore, Park and colleagues recently reported that TSAd associates with Lck upon CXCL12 stimulation of Jurkat T cells [25]. However, whether the TSAd-Lck interaction was required for TSAd’s effect on chemokine stimulation was not addressed.

Since Lck may phosphorylate Itk [29], and since TSAd interacts both with Itk and Lck, we first examined whether TSAd influences Lck mediated tyrosine phosphorylation of Itk. In 293T cells, Lck was tyrosine-phosphorylated when co-expressed with Lck and TSAd, however no Itk phosphorylation was observed when Itk was co-expressed with Lck and TSAd Δ239-274 (Fig. 3A). Furthermore Lck was unable to phosphorylate the Itk Y511F

Figure 2. The proline-rich region of TSAd is important for CXCL12 induced actin polymerization and migration. (A) Jurkat T cells transiently transfected with plasmids encoding GFP (−), or GFP fused to wild type TSAd or TSAd Δ239–274 were left unstimulated (−CXCL12) or stimulated with 100 ng/ml CXCL12 for 15 seconds prior to staining of F actin with Alexa 546-phalloidin followed by flow cytometry analysis. The F-actin content was assigned as mean fluorescence intensity value of FITC-phalloidin stained cells. Data shown are F-actin content relative to F actin in unstimulated cells expressing GFP. Mean values +/− standard error of the mean (SEM) from four independent experiments are shown. (B) Jurkat T cells were transfected as in A with plasmids encoding GFP and TSAd, either in fusion or as separate proteins, and assayed for migration towards 100 ng/ml CXCL12. Migration index was calculated as the number of GFP-positive cells migrating in response to CXCL12 divided by GFP-positive cells migrating towards medium only. The mean migration indices of four independent experiments with SEM are shown. doi:10.1371/journal.pone.0009761.g002
mutant in the presence of TSAd (Fig. 3B). When Myc-tagged Itk was immunoprecipitated from 293T lysates expressing the indicated proteins and immunoblotted with anti-phosphotyrosine antibody, the blot was stripped and reprobed with anti-Itk antibody to ensure equal immunoprecipitation. The corresponding lysates were probed with the indicated antibodies to verify expression from the transfected plasmids. (B) As in A. (C) Myc-Itk was immunoprecipitated from lysates of 293T cells transfected with plasmids encoding the indicated proteins and immunoprecipitates were immunoblotted with an antibody specific for tyrosine-phosphorylated Itk Y511. Immunoprecipitates and lysates were also immunoblotted with the indicated antibodies to verify equal immunoprecipitation efficiency and expression from transfected plasmids. (D) Lysates from Jurkat T cells expressing wild type TSAd or TSAd Δ239–274 were incubated with the indicated GST-fusion proteins. Presence of pulled down HA-tagged TSAd as well as HA-tagged TSAd in cell lysates were demonstrated by immunoblotting with anti-HA-antibody. (E) Jurkat T cells transiently transfected with plasmids encoding the indicated proteins were assayed for migration towards 100 ng/ml CXCL12. Migration index was calculated as the number of GFP-positive cells migrating in response to CXCL12 divided by GFP-positive cells migrating towards medium only. Mean values ± SEM from three independent experiments are shown. Western blots verify expression from transfected plasmids in one of the experiments.

doi:10.1371/journal.pone.0009761.g003

Figure 3. TSAd promotes Lck mediated tyrosine phosphorylation of Itk. (A) Itk was immunoprecipitated with an anti-myc antibody from 293T lysates expressing the indicated proteins and immunoblotted with anti-phosphotyrosine antibody. The blot was stripped and reprobed with anti-Itk antibody to ensure equal immunoprecipitation. The corresponding lysates were probed with the indicated antibodies to verify expression from the transfected plasmids. (B) As in A. (C) Myc-Itk was immunoprecipitated from lysates of 293T cells transfected with plasmids encoding the indicated proteins and immunoprecipitates were immunoblotted with an antibody specific for tyrosine-phosphorylated Itk Y511. Immunoprecipitates and lysates were also immunoblotted with the indicated antibodies to verify equal immunoprecipitation efficiency and expression from transfected plasmids. (D) Lysates from Jurkat T cells expressing wild type TSAd or TSAd Δ239–274 were incubated with the indicated GST-fusion proteins. Presence of pulled down HA-tagged TSAd as well as HA-tagged TSAd in cell lysates were demonstrated by immunoblotting with anti-HA-antibody. (E) Jurkat T cells transiently transfected with plasmids encoding the indicated proteins were assayed for migration towards 100 ng/ml CXCL12. Migration index was calculated as the number of GFP-positive cells migrating in response to CXCL12 divided by GFP-positive cells migrating towards medium only. Mean values ± SEM from three independent experiments are shown. Western blots verify expression from transfected plasmids in one of the experiments.

doi:10.1371/journal.pone.0009761.g003

The amino acids 239–274 of TSAd affects interaction not only with the Itk-SH3 domain (Fig. 1E and F) but also with the SH3 domain of Lck [22], as Lck-SH3 binds to the Scansite-predicted Src-SH3 site, see Fig. 1C. However, in contrast to Itk, Lck can also interact with several other sites within TSAd [22], suggesting that Lck should still be able to bind to the truncated TSAd Δ239–274 protein. This notion was directly tested by additional pull-down experiments in Jurkat T cell lysates. Neither Itk-SH3 nor Lck-SH3 interacted with TSAd Δ239–274, whereas the Lck-SH2 domain could pull down this mutant (Fig. 3D). Note that Lck-SH3 and Itk-SH3 do not discriminate between different phosphorylated forms of TSAd. Thus, the two SH3 pull down experiments display the same ratio of the two migrating bands as seen in the lysates, whereas Lck-SH2 preferentially binds to the slowest migrating TSAd band, probably representing a phosphorylated form of TSAd. Taken together, these results suggest that the lack of Itk tyrosine phosphorylation in the presence of Lck and TSAd Δ239–274 (Fig 3A) is likely due to the loss of the interaction between Itk and the deleted TSAd mutant protein.

It has previously been shown that transient over-expression of Itk in Jurkat cells promotes chemokine induced migration [27]. The scarce expression of endogenous Itk in resting Jurkat T cells (Fig. 1A), suggests that endogenous Itk levels may be a limiting factor when transiently expressing TSAd alone. We therefore assayed migration of Jurkat T cells that were transfected with plasmids encoding Itk and GFP-TSAd. The migratory response of Jurkat cells co-expressing Itk and GFP-TSAd upon CXCL12 stimulation was approximately 50% higher than that observed for cells expressing GFP-TSAd alone (Fig. 3E). The positive effect on CXCL12 induced chemotaxis was dependent upon Itk Y511, since cells co-expressing GFP-TSAd with Itk Y511F displayed similar or even lower migratory response than cells expressing GFP-TSAd alone (Fig. 3E). Taken together, these observations suggest that TSAd interacts with Itk to enhance Lck mediated
phosphorylation of Itk Y511 and that phosphorylation of this residue is important for TSAd's positive effect on chemokine induced migration.

CXCL12 induced Itk tyrosine phosphorylation is dependent on TSAd in T cells

To examine whether CXCL12 induced tyrosine phosphorylation of Itk is influenced by TSAd expression in T cells, Jurkat T cells transiently transfected with plasmids encoding HA-TSAd and/or myc-Itk were stimulated with CXCL12, and tyrosine phosphorylation of immunoprecipitated myc-Itk was assessed (Fig. 4A). Exogenously expressed Itk was weakly tyrosine phosphorylated in Jurkat cells when expressed alone (seen in longer exposures of the anti-pY blot in Fig. 4A, data not shown). Co-expression of TSAd increased the phosphorylation level of Itk substantially, particularly in CXCL12 stimulated cells (Fig 4A, compare lanes 7 and 8 to lanes 5 and 6), supporting the notion that TSAd promotes phosphorylation of Itk.

To examine whether TSAd influences phosphorylation of Itk also in primary cells we performed experiments in thymocytes from mice lacking TSAd. To the best of our knowledge, these cells are the only primary cells that express both TSAd [14] and Itk [32] at relatively high levels without prior stimulation. Moreover, thymocytes express CXCR4 and are responsive to CXCL12 stimulation [37]. In accordance with our findings in Jurkat cells transiently expressing TSAd and Itk, CXCL12 stimulation induced Itk tyrosine phosphorylation in thymocytes from wild type SH2D2A+/+ mice, but not in thymocytes from SH2D2A–/– mice (Fig. 4B, upper blot).

Park et al [25] have previously shown that upon CXCL12 stimulation, TSAd associates with Lck and Zap-70 in Jurkat T cells expressing TSAd. In line with these findings, we found that Lck and Zap-70 could also be co-immunoprecipitated with Itk and TSAd from normal CXCL12 stimulated thymocytes but not from SH2D2A–/– thymocytes (Fig. 4B, middle blots). This indicates that Lck and Zap-70 are recruited to Itk in a TSAd-dependent manner upon CXCL12 stimulation also in primary cells.

Actin polymerization and cellular chemotaxis are impaired in SH2D2A–/– thymocytes

To assess whether TSAd also affects CXCL12 induced actin polymerization in primary cells, thymocytes from normal and TSAd deficient (SH2D2A–/–) mice were stimulated with various concentrations of CXCL12 for different time periods (15 sec to 1 hr), and FITC-phalloidin stained F-actin was measured by flow cytometry. The basal F-actin level was lower in SH2D2A–/– thymocytes relative to SH2D2A+/+ thymocytes, and in both cell types F-actin values peaked after 15 seconds of stimulation for all CXCL12 concentrations tested (data not shown). Upon stimulation with low to moderate concentrations of CXCL12 (10 and 100 ng/ml), the relative increase in F-actin content after 15 seconds of stimulation was significantly higher in SH2D2A+/+ compared to SH2D2A–/– thymocytes (Fig. 5A). However, upon addition of higher CXCL12 doses, the requirement for TSAd seems to be overcome leading to F-actin levels in SH2D2A–/– thymocytes that are similar to that of SH2D2A+/+ cells (Fig. 5A).

We then examined whether CXCL12 induced migration of primary cells was affected by TSAd expression using a transwell chemotaxis assay. Thymocytes from SH2D2A+/+ and SH2D2A–/– mice were unresponsive to 10 ng/ml CXCL12 (data not shown), whereas 100 and 500 ng/ml of CXCL12 induced significantly greater migration of SH2D2A+/+ than SH2D2A–/– thymocytes (Fig. 5B). This was not due to difference in the spontaneous migration of the thymocytes (i.e. chemokinesis) (Fig. 5C). At even higher concentrations of CXCL12 (1000 ng/ml) no difference in migration between SH2D2A+/+ and SH2D2A–/– thymocytes was observed (data not shown). Analysis of CD4 and CD8 expression of migrating versus non-migrating thymocytes revealed that both for the SH2D2A+/+ and the SH2D2A–/– thymocytes, double positive cells were the predominant CXCL12 responders (Fig. 5D).
The reduced responsiveness of the SH2D2A−/− cells could not be explained by reduced expression of the CXCL12 receptor CXCR4, as SH2D2A−/− cells expressed equivalent levels of CXCR4 compared to SH2D2A+/+ cells (Fig. 5E).

Since TSAd has been shown to interact with the Gβ protein [25], it probably affects signalling downstream of several GPCRs in addition to CXCR4. We therefore tested whether TSAd also affected migration towards CCL19, as the CCL19 receptor, CCR7, is expressed on all naïve T cells [38] as well as on thymocytes undergoing positive selection [39]. Addition of 500 ng/ml CCL19 induced significantly greater migration of SH2D2A+/+ compared to SH2D2A−/− thymocytes (Fig. 5F), while expression of CCR7 was comparable in SH2D2A+/+ and SH2D2A−/− thymocytes (data not shown).

Taken together, our data show that lack of TSAd in primary cells attenuates actin polymerization and cellular migration upon CXCL12 stimulation, and that TSAd promotes CXCL12 signalling through its interaction with Itk, possibly by priming Itk for tyrosine phosphorylation by Lck. This positive effect of TSAd on chemokine induced migration extends also to CCL19, suggesting that TSAd may play a more general role in GPCR signalling.

Discussion

In this study we provide evidence that CXCL12 signaling is regulated by a novel molecular mechanism, involving the interaction between TSAd and Itk. We propose that TSAd primes Itk for Lck mediated phosphorylation, and thereby modulates CXCL12 mediated T cell migration and actin polymerization.

The interaction between TSAd, Itk and Lck was demonstrated both in over expression systems in cell lines and in primary cells. In transfected 293T and Jurkat T cells the interaction between TSAd and Itk, and phosphorylation of Itk was observed in the absence of exogenous stimuli, whereas in primary cells the TSAd-Itk-Lck complex formation and Itk phosphorylation was only observed upon CXCL12 stimulation. This apparent discrepancy could be due to high expression levels of the interacting proteins in transfected cell lines, which may overcome the requirement for exogenous stimuli to induce the formation of protein complexes. Moreover, in primary cells, Itk is recruited to the cell membrane via its PH domain after activation of the PI3 kinase [40], whereas in Jurkat T cells a large proportion of Itk is constitutively associated with the cell membrane due to lack of the phosphatase PTEN [41].
difference between primary cells and Jurkat T cells could explain why we observe some tyrosine phosphorylated Itk also in resting Jurkat cells expressing TSAd.

TSAd was previously identified as an Itk interaction partner in a yeast two hybrid screen [16]. Here we show for the first time that this interaction occurs between the Itk-SH3 domain and the proline-rich C terminus of TSAd (aa239–274) and that this interaction is crucial both for Lck mediated phosphorylation of Itk, as well as for TSAd’s effect on T cell migration and actin polymerization. This proline-rich sequence of TSAd also contains an Lck-SH3 interaction site [22], but since Lck can interact with TSAd also outside this proline-rich region ([20,22,23] and Fig. 3B), we consider it most likely that the reduced T cell migration and actin polymerization responsiveness upon CXCL12 stimulation in cells expressing TSAd Δ239–274 can be explained by the loss of the interaction with Itk rather than Lck. In support of this notion is the observation that thymocytes from TSAd-deficient mice and Itk-deficient mice display similar relative reductions in migration and actin polymerization [26]. However, we cannot presently exclude that other proteins interact with TSAd through its proline-rich sequence, thereby contributing to TSAd’s effect on actin polymerization and cell migration.

Chemokine induced migration and actin polymerization in T cells requires Itk kinase activity [27]. How CXCL12 mediates activation of Itk is still only partially known. To become active, Itk is recruited to the membrane upon cell surface receptor stimulation (reviewed in [28]) followed by tyrosine phosphorylation of Y511 in its kinase domain. In Jurkat T cells, Itk is tyrosine phosphorylated in a Src-kinase-dependent fashion upon CXCL12 treatment [25]. We and others have previously shown that TSAd modulates TCR mediated signaling through interaction with Lck [15,18,20,21,23]. Moreover, Lck is recruited to TSAd upon CXCL12 stimulation in Jurkat cells [25] and to the Itk-TSAd complex in murine thymocytes (Fig. 4B). In primary cells with endogenous expression of Lck, Itk and TSAd, TSAd-Lck-Itk complex formation and tyrosine phosphorylation of Itk required CXCL12 stimulation. Similarly, although Itk was phosphorylated to some extent in resting Jurkat T cells over-expressing TSAd and Itk, CXCL12 stimulation led to a further increase in Itk phosphorylation. Thus, our data indicate that CXCL12 induced phosphorylation of Itk is promoted by TSAd, at least in primary cells.

Our data from transfected 293T cells shows that Lck is required for phosphorylation of Y511. Whether Lck phosphorylates Itk directly or whether Lck promotes Itk phosphorylation indirectly via activation of other kinases has not been addressed here. Heyeck and colleagues previously showed that Lck is required for phosphorylation of Itk in S09 insect cells [29], and here we show that TSAd strongly promotes the phosphorylation of Itk in the presence of Lck. Since both Lck and Itk may bind to TSAd, we find it likely that Lck directly phosphorylates Itk, instead of indirectly via another, as yet unidentified kinase.

The Itk Y511 phosphorylation site was essential for the increased migratory response in Jurkat T cells upon co-expression of TSAd with Itk. Whether it is phosphorylation of Itk Y511 per se or also the subsequent phosphorylation of Y180 in the Itk SH3 domain [42] that is important for cellular migration has not been dissected here. Phosphorylation of Y180 may also alter the ligand binding properties of Itk-SH3 as has been shown for phosphorylated versus non-phosphorylated SH3 domain of another Tec family kinase, Bruton’s tyrosine kinase [43]. Thus, the outcome of the enhanced Itk tyrosine phosphorylation could be increased catalytic activity, altered ligand specificity of the Itk-SH3 domain, or both.

Mice deficient in either CXCL12 or CXCR4 show developmental defects of the vasculature, heart, brain and hematopoietic system, indicating an important role for CXCL12/CXCR4 signaling in multiple cell types [44]. One way to coordinate the effects of CXCL12 signaling in the various CXCR4-expressing cell types is to exploit tissue-specific intracellular signaling pathways. Cell specific factors, e.g. Itk, Lck, Zap-70 and SLP76, function to direct CXCR4 signaling in T cells [26,27,30,45]. The observation that TSAd promotes CXCL12 signaling in T cells lends further support to this notion, since TSAd is not ubiquitously expressed in cells of hematopoietic origin (reviewed in [46]).

There appears to be extensive cross-talk between the TCR and CXCR4 pathways. However the literature is not consistent as to how molecular crosstalk between TCR and CXCR4 affects the overall cellular response when both receptors are triggered simultaneously or consecutively. While CXCR4 signaling exploits the immunoreceptor tyrosine activation motifs of the TCR [15], triggering of the TCR prior to CXCR4 stimulation, inhibits T cell migration [35,47]. Moreover, CXCR4 and CCR5 receptors are sequestered to the immunological synapse following TCR stimulation [48] where they physically interact and co-operate to provide co-stimulatory signals after CXCL12 stimulation [49]. Obviously, crosstalk between the TCR and CXCR4 pathways may operate through the use of several of the same signaling molecules, such as Itk, Lck, Zap-70 and SLP-76. Interestingly, and in accordance with the findings of Park et al [25], we found that both Zap-70 and Lck were recruited to the TSAd containing Itk complex upon CXCL12 stimulation. Moreover, we have found that Zap-70 phosphorylation upon CXCL12 stimulation is affected by the presence of TSAd (Berge, unpublished data). Since TSAd is also involved in the TCR pathway [16,18], it is possible that this molecule contributes to the crosstalk between CXCR4 and TCR, by providing spatial and temporal control of Lck and Itk. However, the net effect of TSAd on cellular function when both CXCR4 and TCR pathways are stimulated simultaneously or consecutively remains to be determined.

Most biological systems display a certain level of redundancy, in the sense that several molecules may fulfil overlapping functions. Our data clearly show that TSAd is not strictly required for CXCL12 induced actin polymerization and migration in T cells, as polymerized actin and migration can be detected also in TSAd-deficient T cells. Adapter proteins essentially function as catalysts for molecular interactions. During chemokine signalling in the absence of TSAd, other adapter proteins may take the role of TSAd. Alternatively, the interacting molecules using TSAd as an intermediary may to some extent interact also in its absence. We thus hypothesize that the physiological relevance of the TSAd-Lck-Itk complex is to enhance the signal from the ligand bound CXCR4, thus lowering the threshold for CXCL12 induced signaling. This notion is supported by our observation that at low CXCL12 doses, actin polymerization in TSAd deficient cells (lacking the TSAd-Lck-Itk complex) is attenuated, however, upon addition of higher CXCL12 doses, the requirement for TSAd and TSAd containing complexes seems to be overcome leading to F-actin levels comparable to that of TSAd containing T cells. Similarly, Zap-70 promotes CXCR4 signaling at low CXCL12 concentrations, whereas at higher doses, CXCL12 responsiveness is independent of Zap70 activity [50].

In our study, we focused on the CXCL12 chemokine since previous reports had indicated that the TSAd interaction partner Itk regulates CXCL12 signalling [26,27]. However, as TSAd interacts with Gβ [25], which is found associated to a number of GPCRs [51], it is likely that TSAd may be a regulator of several other chemokine receptors. In support of this, our data show
reduced CCL19 responsiveness in SH2D2A−/− thymocytes and Park et al. reported that TSAd also regulates the responsiveness to RANTES [25]. We previously found that TSAd regulates VEGFR-2 induced actin polymerisation and migration in endothelial cells [24]. Moreover, very recently it was reported that TSAd may also be involved in integrin mediated migration of activated Jurkat T cells through interaction with the 67 kDa laminin binding protein (LAMR1) [52]. Thus, to what extent TSAd functions as a general adapter protein in regulating cellular migration through various signalling pathways remains to be established.

In conclusion, we have shown that CXCL12 signalling is regulated by a novel molecular mechanism, which involves the interaction of TSAd with Itk. Fig. 6 depicts our current model for how TSAd contributes to CXCL12 mediated signalling. We suggest that TSAd acts as a scaffold that brings Lck and Itk in proximity to each other and to Gβγ of the activated chemokine receptor. Through its ability to interact with these kinases, TSAd primes Itk for Lck mediated phosphorylation upon CXCL12 stimulation, promoting actin polymerization and T cell migration.

Materials and Methods

Ethics Statement

The animals were bred under conventional conditions, regularly screened for common pathogens and housed in compliance with guidelines set by the Experimental Animal Board under the Ministry of Agriculture of Norway. The research involving breeding of transgenic animals and collection of cells from transgenic and wild type animals was approved by the The National Animal Research Authority, via their local competent person at the University of Oslo.

Animals and murine cells

TSAd deficient (SH2D2A−/−) mice (RIBP knockout mice) were kindly provided by Professor J. A. Bluestone, University of California [16]. SH2D2A−/− mice backcrossed >10 generations into C57Bl/6 were maintained on a C57Bl/6 background as described [24]. Murine thymocytes were obtained by crushing the thymus and subsequently filtering through a cell strainer (70 μm nylon, Becton Dickinson (BD) Biosciences).

Figure 6. Model for TSAd regulation of CXCL12 signaling. Upon binding of CXCL12 to its G protein coupled receptor, the heterotrimeric G protein complex (A) is separated into a receptor bound Gαγ and a membrane bound Gβγ subunit. TSAd is recruited to Gβγ, by interacting with the Gβ subunit [25]. Similarly, Itk may also interact with the membrane via its PH domain [41]. (B) By simultaneous interaction with Itk through the Itk-SH3 domain and Lck through multivalent interactions, TSAd promotes Lck mediated phosphorylation of Itk. Phosphorylated Itk becomes active, which ultimately leads to downstream actin polymerization and T cell migration (C).

doi:10.1371/journal.pone.0009761.g006

Plasmids

cDNA encoding N-terminally HA-tagged human TSAd for expression in mammalian cells has been described previously [18]. HA-tagged TSAd deletion mutants (TSAd ΔΔx7 and TSAd Δ239–274) were generated by megaparam PCR and subsequently cloned into the EcoRI site of pEF-HA, pGEX-2T-Iκκ-SH2, -Iκκ-SH3, -Iκκ-SH1 (W208A), pGEX-3T-Lck-SH2 and pGEX-6P-Lck-SH3 constructs were previously reported [21,53]. For mammalian expression of C-terminally GFp tagged proteins, TSAd and TSAd Δ239–274 were subcloned into the HindIII/EcoRI and XhoI/EcoRI sites of pEGFP-N3 (Clontech), respectively. The pEF-myc-Iκκ and pEF-Lck constructs were kindly provided by Professor Leslie Berg and Professor Tomas Mustelin, respectively. To create Iκκ Y511F, pEF-myc-Iκκ was mutated by Quick change mutagenesis (Clontech) using custom made oligonucleotides. All PCR generated constructs were verified by sequencing.

Antibodies and chemokines

Monoclonal antibodies (mAbs) used were anti-CD3e (clone OKT3, American Tissue Culture Collection (ATCC)) anti-phosphotyrosine (clone 4G10), anti-Emt/Iκκ/Tsk (clone 2F12, Upstate Biotechnology), anti-Btk (pY551)/Iκκ (pY511) (BD Biosciences), anti-HA (clone HA.11, Bio Site), anti-Lck (clone If6, a kind gift from Joseph B. Bolen), anti-GFP (clone B-2, Santa Cruz Biotechnology), anti-Emt/Iκκ/Tsk (clone 9E10, Sigma), anti-GST (clone B14, Santa Cruz Biotechnology), anti-Zap70 (clone 29, BD Biosciences), FITC-conjugated rat anti-mouse CD4 (BD Biosciences) and PE-conjugated rat anti-mouse CD8 (BD Biosciences). A polyclonal antibody against murine TSAd was generated by immunizing rabbits with a peptide representing the 20 C-terminal amino acids of murine TSAd mixed with Freund’s complete adjuvant. The other polyclonal antibodies used were rabbit anti-TSAd antibodies specific for the 20 C-terminal amino acids of human TSAd [18], rabbit anti-Lck (Alexis Biochemicals), goat anti-human CXCR4 (Fusin G19, Santa Cruz Biotechnology), biotinylated goat anti-actin (I-19, Santa Cruz Biotechnology) and goat IgG (Sigma). Secondary reagents were horseradish peroxidase-conjugated goat anti-mouse IgG, goat anti-rabbit IgG or streptavidin, and FITC-conjugated donkey anti-goat IgG (Jackson ImmunoResearch Laboratories). Human and murine CXCL12 (SDF-1α) and murine CCL19 were purchased from PeproTech (Rocky Hill, NJ).

Cell cultures and transfections

Human embryonal kidney (HEK) 293 TAg cells [here for short 293T cells] [54], Jurkat E6.1 cells (ATCC) and Jurkat TAg cells [55] were cultured in RPMI-1640 with L-glutamine supplemented with 5–10% fetal calf serum (FCS), 1 mM sodium pyruvate, 1 mM non-essential amino acids (all from GIBCOBRL). Jurkat cells were either transfected with the Amaxa nucleofector (Cell line nucleofector™ kit (#VCA-1003), program I10, 1.2×10⁷ cells and 3–9 μg DNA) or by electroporation with a BTX electroporator (Genetronix), 200 V, 70 ms, 3–10×10⁶ cells and 5–20 μg DNA in 400 μl antibiotic-free RPMI-1640 medium supplemented with 5% FCS. 293T cells (2×10⁶) were transfected with a mixture of 0.5–5 μg DNA and 25 μl Lipoefectin in 5 ml Optimem 1 (GIBCOBRL®). Cells were harvested 18–24 hours after transfection.
Cell stimulation, lysis, immunoprecipitation, GST-pull down and Western blot

Murine thymocytes or transiently transfected Jurkat T cells were resuspended in PBS at 10^6 cells/ml and stimulated with the indicated concentration of chemokine for the time points depicted in the figure legends. Jurkat cells (5 × 10^6 cells/ml) were stimulated with 1 μg/ml anti-CD3e in RPMI-1640 at 37°C, 5% CO_2 for 22 hours. After stimulation, cells were lysed by addition of an equal volume of 2x lysis buffer: 0.5–2% Nonidet P-40 (Calbiochem-Novabiochem Corporation), 0.1 M octyl-β-D-glucopyranosid, 0.1 M NaF, 20 mM Na_3VO_4 (all from Sigma), protease inhibitors (Protease Inhibitor Cocktail Tablets, Complete EDTA-free, Roche) in 40 mM Tris-HCl, pH 7.4, 200 mM NaCl. For immunoprecipitation, protein G Dynabeads (Dynal Biotech, Invitrogen) were precoated with relevant antibodies for 1 hr at room temperature, prior to incubation with cell lysates for 1 hr or over night at 4°C. For glutathione S-transferase (GST) pull-down analysis, GST-fusion proteins were produced in BL21 Codon plus bacteria (Novagen) and purified on glutathione Sepharose beads (Pharmacia Biotech). Lysates from transfected 293T or Jurkat T cells were precleared three times for 1–2 hours with a 1:1 mixture of GST-glutathione/4B Sepharose (Pharmacia Biotech). The precleared lysates were added to Itk-SH3, Itk-SH3 (W208A), Itk-SH2, Lck-SH2 or Lck-SH3-GST-glutathione Sepharose beads and rotated for 1–2 hours at 4°C. For both immunoprecipitation and GST-pull down, the beads were washed three times with 1x lysis buffer. Proteins were eluted in reducing SDS-loading buffer, separated by SDS-PAGE and transferred to PVDF membrane (Bio Rad) using a Hoefer Semi-Phor Semi-Dry transfer unit (Amersham Biosciences).

Chemotaxis assays

Chemotaxis of murine thymocytes was measured using a 48-well transwell chemotaxis chamber, with 5 μm pore-sized polycarbonate filters (NeuroProbe) or using polycarbonate transwell inserts (see below). In the 48-well assay, the bottom chambers were filled with 28 μl chemotaxis medium (RPMI-1640 with 0.5% BSA and 25 mM Hepes) with or without chemokines of the indicated concentrations in triplicates. Murine cells (5 × 10^6 - 1 × 10^7) in 50 μl chemotaxis medium were loaded in the upper chambers. After 2 hr incubation at 37°C and 5% CO_2 transmigrated cells in the bottom chambers were harvested and counted in a Burker chamber. Chemotaxis was also measured using polycarbonate transwell inserts with 5 or 8 μm pores (Costar), for murine thymocytes and Jurkat T cells, respectively. Cells were washed in RPMI-1640 supplemented with 0.25% BSA and 25 mM Hepes and resuspended at 2.5 × 10^6 cells/ml. 100 μl (2.5 × 10^5 cells) was added to the top of the chamber (transwell) in the absence or presence of the indicated amounts of chemokine in the lower compartment. Assays were performed in duplicates or triplicates at 37°C and 5% CO_2 for 2 hours. Cells that had passed through the filter into the lower chamber were collected, and 10 μl of an internal bead control (Bangs Laboratories, Fishers, IN) was added. The cells were counted by flow cytometry (FACS Calibur, BD Biosciences) and normalized with reference to the internal bead control.

Actin polymerization assay

Murine thymocytes or transiently transfected Jurkat T cells (1 × 10^6 cells in 100 μl PBS) were stimulated with 10–1000 ng/ml CXCL12 for the indicated time points at 37°C. After stimulation, cells were transferred to an equal volume of fixation/permeabilization/staining solution (8% formaldehyde, 0.5 mg/ml L-α-Lyso phosphatidylcholin (Sigma) and 1 μg/ml FITC-Phalloidin or 1.25 U Alexa 546-phalloidin (Molecular Probes) and incubated for at least 25 minutes at room temperature. Cells were washed twice in PBS with 2% FCS and analyzed by flow cytometry (FACS Calibur, BD Biosciences).

Statistics

Experiments were performed at least three times. Results were compared using two tailed paired Student’s t test. P values <0.05 were considered significant.

Acknowledgments

The technical assistance of Bjorg Simonsen and Lise Koll is highly appreciated. Sylvie Guerder is acknowledged for helpful discussions and critically comments to early versions of the manuscript and Mike Daws for critically reading the manuscript.

Author Contributions

Conceived and designed the experiments: TB VSG SG TCBA GBH MI. Analyzed the data: TB VSG SG TCBA GBH MI. Contributed reagents/materials/analysis tools: LCW AHA. Wrote the paper: TB VSG SG AS.

References

1. Taub DD (2004) Cytokine, growth factor, and chemokine ligand database. Curr Protoc Immunol Chapter 6; Unit 6.29.

2. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, et al. (1996) Defects of B-cell lymphopoesis and bone-marrow myelopoesis in mice lacking the CXC chemokine PF4/SDF-1. Nature 382: 635–638.

3. Ma G, Jones D, Borgesani PR, Segal RA, Nagasawa T, et al. (1998) Impaired lymphopoesis, myelopoesis, and derailed cerebellar neuron migration in C. Proc Natl Acad Sci U S A 95: 9448–9453.

4. Suzuki G, Nakata Y, Dan Y, Uzawa A, Nakagawa K, et al. (1998) Loss of SDF-1 receptor expression during positive selection in the thymus. Int Immunol 10: 1049–1056.

5. Ohai N, Zhang Y, Yoneyama H, Kitamura T, Ishikawa S, et al. (2000) Impairment of lymphopoesis and myelopoesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intein. Blood 96: 2074–2080.

6. Bleul CC, Fahlbrügge RC, Casasnovas JM, Aulti A, Springer TA (1998) A highly efficacious lymphocyte chemoattractant, stromal-cell-derived factor-1 (SDF-1). J Exp Med 184: 1101–1109.

7. Suzuki Y, Rahman M, Mitsuya H (2001) Diverse transcriptional response of SDF-1α (CXCL12) in infected and uninfected CD4+ T cells. J Immunol 166: 5010–5017.

8. Ganju RK, Bubnaker SA, Meyer J, Dutt P, Yang Y, et al. (1998) The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem 273: 25169–25175.

9. Vila-Coro AJ, Rodriguez-Brade JM, Martin De AA, Moreno-Oritz MC, Martinez A, et al. (1999) The chemokine SDF-1α triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 13: 1699–1710.

10. Vicente-Manzanares M, Rey M, Jones DR, Sanchez D, Mellado M, et al. (1999) Involvement of phosphatidylinositol 3-kinase in stromal cell-derived factor-1 alpha-induced lymphocyte polarization and chemotaxis. J Immunol 163: 4001–4002.

11. Sotos Y, Whittaker GC, Westwick J, Ward SG (1999) The CXCR chemokine stromal cell-derived factor-1 activates a Gα coupled phosphoinositide 3-kinase in T lymphocytes. J Immunol 163: 5954–5963.

12. Naola T, Lipsky PE (2000) Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. J Immunol 164: 5010–5014.

13. Kumar A, Humphreys TD, Kremer KN, Bramati PS, Bradford L, et al. (2006) CXCR4 physically associates with the T cell receptor to signal in T cells. J Immunol 25: 213–224.

14. Sparkland A, Brinchnam JE, Markussen G, Pedeutour F, Munthe E, et al. (1998) Molecular cloning of a T cell specific adapter protein (TSAδ) containing an Src homology (SH) 2 domain and putative SH3 and phosphotyrosine binding sites. J Biol Chem 273: 4539–4546.

15. Choi YB, Kim CK, Yun Y (1999) Lad, an adapter protein interacting with the SH2 domain of p56lck, is required for T cell activation. J Immunol 163: 3242–3249.

PLoS ONE | www.plosone.org 9 March 2010 | Volume 5 | Issue 3 | e9761
16. Rajagopal K, Sommers CL, Decker DC, Mitchell EO, Korthauer U, et al. (1999) RBB, a novel Rlk/Tsk- and itk-binding adaptor protein that regulates T cell activation. J Exp Med 190: 1657–1668.

17. Wu LW, Mayo LD, Dunbar JD, Kessler KM, Ozes ON, et al. (2000) VRAP is an adaptor protein that binds JDFK, a receptor for vascular endothelial cell growth factor. J Biol Chem 275: 6059–6062.

18. Sundvold V, Torgersen KM, Post NH, Mari F, King PD, et al. (2000) T cell-specific adapter protein inhibits T cell activation by modulating Lck activity. J Immunol 165: 2927–2931.

19. Dai KZ, Johansen FE, Kolltveit KM, Aasheim HC, Dembic Z, et al. (2004) Transcriptional activation of the SH2D2A gene is dependent on a cyclic adenosine 3’-monophosphate-responsive element in the proximal SH2D2A promoter. J Immunol 172: 6144–6151.

20. Granum S, Andersen TC, Sortie M, Jorgensen M, Koll L, et al. (2000) Modulation of Lck Function through Multisite Docking to T Cell-specific Adapter Protein. J Biol Chem 275: 21909–21919.

21. Sundvold-Gjerstad V, Granum S, Mustelin T, Andersen TC, Berge T, et al. (2005) The C terminus of T cell-specific adapter protein (TSAAd) is necessary for TSAAd-mediated inhibition of Lck activity. Eur J Immunol 35: 1612–1620.

22. Granum S, Sundvold-Gjerstad V, Dai KZ, Kolltveit KM, Hildebrand K, et al. (2006) Structure function analysis of SH2D2A isoforms expressed in T cells reveals a crucial role for the proline rich region encoded by SH2D2A exon 7. BMC Immunol 7: 15.

23. Marti F, Garcia GG, Lapinski PE, MacGregor JN, King PD (2006) Essential role of the T cell-specific adapter protein in the activation of Lck in peripheral T cells. J Exp Med 203: 281–287.

24. Matsutomo T, Bohman S, Szczesniak J, Berge T, Dimberg A, et al. (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAAd in tumor angiogenesis. EMBO J 24: 2344–2353.

25. Park D, Park I, Lee D, Choi YB, Lee H, et al. (2007) The adaptor protein Lad associates with the G protein beta subunit and mediates chemokine-dependent T-cell migration. Blood 109: 5122–5128. blood-2005-10-018356 [pii];10.1182/blood-2005-10-018356 [doi].

26. Fischer AM, Mercer JC, Iyer A, Raig JG, August A (2004) Regulation of CXCL12-mediated cell migration by the Tec family tyrosine kinase ITK. J Biol Chem 279: 21909–21919.

27. Takesono A, Horai R, Mandai M, Dombrski D, Schwartzberg PL (2004) Requirement for tec kinases in chemokine-mediated migration and activation of ccR5/2 and rcc. Curr Biol 14: 917–922.

28. Berg LJ, Finkelstein ED, Lucas JA, Schwartzberg PL (2005) Tec family kinases in T lymphocyte development and function. Annu Rev Immunol 23: 549–600.

29. Heyeck SD, Wilcox HM, Bannell SC, Berg LJ (1997) Lck phosphorylates the activation loop tyrosine of the Ikk kinase domain and activates Ikk kinase activity. J Biol Chem 272: 25401–25408.

30. Inggerdingen M, Torgersen KM, Magazhachi AA (2002) Lck is required for functional activation of allergen-specific CD43RO(+) memory T lymphocytes results in down-regulation of cell-surface CXCR4 expression and a strongly reduced capacity to migrate in response to stromal cell-derived factor-1. Int Immunol 14: 1451–1462.

31. Oldham WM, Hamm HE (2006) Structural basis of function in heterotrimeric G proteins. Q Rev Biophys 39: 117–166.

32. Saito Y, Shibuya S, Kato J, Isao N, ed. Lymphocyte Activation and Signal Transduction. Kerala: Transworld Research Network. pp 211–220.

33. Shitaya M, Yoshida T, Ishii K, et al. (2000) CXCR4+CCR5(-) human H9 cells are preferentially infected by SIV and TcR-mediated activation of CXCR4 knockdown cells results in cell death. J Virol 74: 10101–10106.

34. Nore BF, Mattsson PT, Antonsson P, Backsjo CM, Westlund A, et al. (2003) Identification of phosphorylation sites within the SH3 domains of Tec family tyrosine kinases. Biochem Biophys Acta 1645: 123–132.

35. Morrogh LM, Hinselwood S, Costello P, Cory G, Kimmun C (1999) The SH3 domain of Bruton’s tyrosine kinase displays altered ligand binding properties when auto-phosphorylated in vitro. Eur J Immunol 29: 2269–2279.

36. Murdoch C (2000) CXCR4: chemokine receptor extraordinaire. Immunol Rev 174: 175–184.

37. Kremer KN, Humphreys TD, Kumar A, Qian NX, Hedin KE (2003) Distinct role of ZAP-70 and Src homology 2 domain-containing leukocyte protein of 76 kDa in the prolonged activation of extracellular signal-regulated protein kinase by the stromal cell-derived factor-1 alpha/CXCL12 chemokine. J Immunol 171: 360–367.

38. Christopherson J, Bannell SC, Sundvold-Gjerstad V, Granum S, Berge T, Andersen TC, Kolltveit KM, et al. (2007) T cell specific adaptor protein in cell signalling and autoimmunity. In: Isakov N, ed. Lymphocyte Activation and Signal Transduction. Kerala: Transworld Research Network. pp 211–220.

39. Balisou M, Coudurier L, Horii T, Bastuji G, Ben J, et al. (1999) TCR-mediated activation of allergen-specific CD4RO(+) memory T lymphocytes results in down-regulation of cell-surface CXCR4 expression and a strongly reduced capacity to migrate in response to stromal cell-derived factor-1. Int Immunol 14: 1451–1462.

40. Atsumi T, Martinou C, Lanzavecchia A, et al. (2005) T cell costimulation by chemokine receptors. Nat Immunol 6: 465–471.

41. Contento RL, Molon B, Boullaran C, Pozzan T, Manes S, et al. (2008) CXCR4- CCR5(-) a couple modulating T cell functions. Proc Natl Acad Sci U S A 105: 10101–10106.

42. Seoide RD, Wijnands YM, Van Kouteren-Cobzaru I, Roos E (1998) LAD-1 mediates Laminin-dependent T cell migration via association with the 67 kDa Laminin Binding Protein (LBP). Exp Mol Med 30: 728–736.

43. Rezzin A, Fulto BB, Andredotti AH (2006) A specific intermolecular association between the regulatory domains of a Tec family kinase. J Mol Biol 360: 607–623.

44. Clippstone NA, Crabtree GR (1992) Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357: 695–697.