Constructing Analytically Tractable Ensembles of Non–Stationary Covariances with an Application to Financial Data

Frederik Meudt, Martin Theissen, Rudi Schäfer, and Thomas Guhr
Fakultät für Physik, Universität Duisburg-Essen, Duisburg, Germany
(Dated: March 6, 2015)

In complex systems, crucial parameters are often subject to unpredictable changes in time. Climate, biological evolution and networks provide numerous examples for such non–stationarities. In many cases, improved statistical models are urgently called for. In a general setting, we study systems of correlated quantities to which we refer as amplitudes. We are interested in the case of non–stationarity i.e., seemingly random covariances. We present a general method to derive the distribution of the covariances from the distribution of the amplitudes. To ensure analytical tractability, we construct a properly deformed Wishart ensemble of random matrices. We apply our method to financial returns where the wealth of data allows us to carry out statistically significant tests. The ensemble that we find is characterized by an algebraic distribution which improves the understanding of large events.

PACS numbers: 05.10.-a, 05.40.-a, 05.45.-a, 89.65.Gh, 89.75.-k
Keywords: non–stationarity, covariances, random matrices, compounding, financial data

I. INTRODUCTION

In electroencephalography (EEG) electrical currents are recorded at different positions on the scalp to measure the brain activity. The correlations between the time series of these currents strongly depend on the overall state of the brain. During an epileptic seizure, for example, the correlations are much stronger than in normal periods [1, 2]. This time dependence of the correlations is the kind of non–stationarity that we wish to address. Non–stationarities are also seen when wave packets travel through disordered systems. Even if the disorder is static, the correlations between the wave intensities measured at different positions versus time will change, when the direction or the composition of the wave packet is altered [3, 5]. Finance provides another important example for this type of non–stationarity. The correlations between stock price time series change in time, just as the business relations between the firms and the traders’ market expectations [6, 11]. Similar non–stationarities exist in many complex systems, including velocity fluctuations in turbulent flows, heartbeat dynamics, series of waiting times, etc. [12, 14].

A system showing non–stationary correlations may be interpreted as being out of equilibrium, implying that some of the key tools in statistical physics are not applicable. Yet, the challenges are similar to the one faced for equilibrium systems: Is there generic or universal behavior? — How can we identify it? – Can we set up statistical models for these non–stationarities? — In the context of finance, we recently put forward a random matrix approach to tackle these issues [16]. We also successfully applied it in a study of credit risk and its impact on systemic stability [17]. Inspite of the conceptual differences, random matrix theory [18, 19] formally has much in common with statistical mechanics. Observables are averaged over an ensemble; in statistical mechanics, it usually is the microcanonical, canonical or macrocanonical one, in random matrix models, it is an ensemble of those matrices which describe or characterize the system.

In the context of the present discussion, random matrix models can be divided into two classes:

1. The ensemble is fictitious. It comes into play via an ergodicity argument only.

2. The ensemble really exists and can be identified in the system. The issue of ergodicity does not arise.

The vast majority of random matrix models in, e.g., quantum chaos falls into class 1, for a review see Ref. [19]. One is interested in the spectral statistics of one individual system. Its Hamiltonian is viewed as a random matrix, whose dimension is eventually sent to infinity. Ergodicity holds in this limit, meaning that a smoothing energy average of an observable over one individual spectrum equals the average over an ensemble of random matrices. A noticeable exception are random matrix applications to quantum chromodynamics [20]. In lattice gauge theory, the quarks first propagate in frozen configurations of the gauge fields, before an average over the gauge fields, modeled by random matrices, is carried out as second step. This clearly belongs in class 2. The fluctuating gauge fields truly exist, the partition function involves an integral over them. Ergodicity reasoning is not evoked.

There are numerous applications of random matrix theory in finance [21, 31] which address statistical properties of correlation matrices. Many of them also deal with non–Gaussian ensembles. To the best of our knowledge, all of these applications fall into class 1, because...
one is interested in the statistics of one individual correlation matrix, measured at one particular instant in time. In our study [10], we put forward a first application of random matrices in finance that belongs in class 2. Non–stationarity makes the covariances fluctuate and thereby creates an ensemble of covariance matrices which we approximated by a Gaussian Wishart ensemble of random matrices [32]. We derived how the multivariate distribution of dimensionless price changes, referred to as returns, acquires heavy tails due to the non–stationarity. Hence, we showed that the non–stationarities indeed have universal features.

Here, we have three goals: First, we present in Sec. II a statistically significant way to construct a proper and analytically tractable random matrix ensemble from the data. We emphasize that this is an important issue for random matrix models in the context of correlations. In contrast to quantum chaos, where universality holds on the scale of the mean level spacing, there is not such a local scale when studying statistical properties of correlation matrices. Thus, a Gaussian assumption is not always justified and it does matter what the ensemble looks like in reality. In particular, realistic ensembles considerably help to understand and model large events. Our construction is general and not tied to any specific system. Its merit lies in the fact that once the ensemble is known, it can be used to work out generic statistical properties of any observable depending on the correlation matrices, see Ref. [17] for an example. Second, we apply our approach to financial data in Sec. III We identify an algebraic ensemble, which is quite relevant for risk estimation. Third, we discuss two issues arising in our general construction in Secs. IV and V, namely a certain conceptual caveat and yet a further extension, respectively. Conclusions are given in Sec. VI.

II. CONSTRUCTING A PROPER RANDOM MATRIX ENSEMBLE

After setting up the general problem in Sec. II A, we introduce the deformed Wishart ensemble and derive the corresponding amplitude distribution in Sec. II B. The determination of the deformation functions which characterize the ensemble and the amplitude distribution is discussed in Sec. II C. Here, we derive the approach for the general case, for sake of illustration, the reader is referred to Ref. [16] and Sec. II I.

A. Non–Stationary Covariances

Suppose we have measured in a system with randomness \(K \) amplitudes as time series \(R_k(t) \), \(k = 1, \ldots, K \) over a long interval \(T_{\text{tot}} \) of time \(t = 1, \ldots, T_{\text{tot}} \). For examples, these amplitudes can be electric or magnetic fields at \(K \) different points in a disordered system, positions of \(K \) randomly moving particles or financial returns, i.e. dimensionless price changes for \(K \) stocks. Importantly, we assume that there are correlations between the time series. In complex systems, one often encounters the situation that crucial system parameters, in particular the covariances or correlations, are seemingly random functions of time [33,34]. To be more precise, we consider a time window of length \(T \) that is much shorter than the total interval, \(T \ll T_{\text{tot}} \). It is useful to normalize the amplitudes to zero mean value.

\[
 r_k(t) = R_k(t) - \langle R_k(t) \rangle_T .
\]

We evaluate the covariances

\[
 \Sigma_{kl} = \langle R_k(t)R_l(t) \rangle_T - \langle R_k(t) \rangle_T \langle R_l(t) \rangle_T = \langle r_k(t)r_l(t) \rangle_T .
\]

We now move this time window of length \(T \) through the data, the resulting covariances \(\Sigma_{kl} \) fluctuate. This non–stationarity has an important impact on other statistical observables. Here, we focus on the distribution of the amplitudes. We now consider a time interval \(T \) as short as possible such that the covariance matrix \(\Sigma_s \) in this time interval is in good approximation constant. We then begin with studying the case that the distribution of the amplitudes is, for a given time \(t \), multivariate Gaussian

\[
 g(r|\Sigma_s) = \frac{1}{\sqrt{\det(2\pi\Sigma_s)}} \exp\left(-\frac{1}{2} r^\dagger \Sigma_s^{-1} r\right)
\]

with the \(K \) component vector \(r = (r_1, \ldots, r_K) \) and the \(K \times K \) covariance matrix \(\Sigma_s \). We suppress the argument \(t \) of \(r \) and use \(\dagger \) to indicate the transpose. We refer to \(g(r|\Sigma_s) \) as static amplitude distribution. Due to the correlations, a Gaussian assumption for the static distribution is not as restrictive as it may seem. In the eigenbasis of \(\Sigma_s \), the amplitudes only appear in linear combinations. Thus, for large \(K \), the mechanisms that lead to the central limit theorem start working and drive the distributions towards Gaussians. Later on in Sec. VI we will nevertheless relax the Gaussian assumption for the static amplitude distribution and look at more general functional forms.

B. Deformed Wishart Ensemble and its Amplitude Distribution

How does the non–stationarity affect the amplitude distribution when data from the total interval \(T_{\text{tot}} \) are analyzed? — As in Ref. [16], we model this by random matrices. As the covariance matrix is different at each time \(t \) where it is analyzed, we replace the covariance matrix in the distribution (3) by the expression

\[
 \Sigma_s \rightarrow \frac{1}{N} AA^\dagger ,
\]

where \(A \) is a real rectangular \(K \times N \) random matrix without any symmetries. The right hand side of Eq. (4) has
to have the form given to ensure that it can model a properly defined covariance matrix. This follows directly from the definition 2. Although K, the first dimension, is fixed, the second one, N, is for the time being a free model parameter. It can be viewed as the length of the model time series. Further clarifications will follow. To obtain the amplitude distribution for the total interval, we average over the random matrices

$$
\langle g \rangle (r | \Sigma, N) = \int d[A] \overline{p}(A | \Sigma, N) g \left(r \left| \frac{1}{N} A A^\dagger \right. \right), \tag{5}
$$

where $d[A]$ is the volume element, i.e., the product of all independent variables in A. Following Wishart [32, 33], the Gaussian distribution

$$
w(A | \Sigma) = \frac{1}{\det N/2 (2\pi \Sigma)^{N/2}} \exp \left(-\frac{1}{2} \operatorname{tr} A^\dagger \Sigma^{-1} A \right) \tag{6}
$$

was assumed for the random matrices in Ref. [16]. It describes the Gaussian fluctuations of the model covariance matrices AA^\dagger/N about the given empirical covariance matrix Σ, which is evaluated over the total time interval. The crucial difference here is a generalization of this Gaussian ensemble. We introduce the deformed Wishart ensemble

$$
\overline{p}(A | \Sigma, N) = \int_0^\infty d\eta f(\eta) w \left(A \left| \frac{N \Sigma}{\eta} \right. \right) \tag{7}
$$

which is defined by the ensemble deformation function $f(\eta)$ with the properties

$$
\int_0^\infty f(\eta) d\eta = 1 \quad \text{and} \quad f(\eta) \geq 0. \tag{8}
$$

For later convenience, Σ on the right hand side of Eq. (7) is rescaled with N. The fluctuations of the model covariance matrices AA^\dagger/N deviate from Gaussian, but always about the empirical covariance matrix Σ. The meaning of the model parameter N now becomes clearer. It sets the scale for the fluctuations. The above rescaling only changes the functional dependencies, but not the role of N. We emphasize once more that Σ is evaluated over the total time interval. Similar deformations of random matrix ensembles but in a Hamiltonian, not Wishart setting were apparently first put forward in Refs. [37, 38].

After inserting the ansatz (7) into Eq. (5), we may use the result [16]

$$
\int w(A | \Sigma) g \left(r \left| \frac{1}{N} A A^\dagger \right. \right) d[A] = \int \chi^2_N(z) g \left(r \left| \frac{N \Sigma}{\eta} \right. \right) dz, \tag{9}
$$

which reformulates the whole random matrix average as a univariate average over the χ^2 distribution

$$
\chi^2_N(z) = \frac{1}{2^{N/2} \Gamma(N/2)^2} z^{N/2 - 1} \exp \left(-\frac{z}{2} \right) \tag{10}
$$

of N degrees of freedom. On the mathematical side, there are connections between formula (9) and the calculation of certain distributions in scattering theory [39, 40]. Using the result (9), the amplitude distribution reduces to the double integral

$$
\langle g \rangle (r | \Sigma, N) = \int_0^\infty d\eta f(\eta) \int_0^\infty dz \chi^2_N(z) g \left(r \left| \frac{N \Sigma}{\eta} \right. \right). \tag{11}
$$

Again, we point out the rescaling of Σ with N, cf. Eq. (5). It is useful to rewrite that as a single integral

$$
\langle g \rangle (r | \Sigma, N) = \int_0^\infty p(x) g \left(r \left| x \Sigma \right. \right) dx \tag{12}
$$

by introducing the variable $x = z/\eta$ and its distribution

$$
p(x) = \frac{\eta^{N/2 - 1}}{2^{N/2} \Gamma(N/2)^2} \int_0^\infty d\eta f(\eta) \eta^{N/2} \exp \left(-\frac{\eta x^2}{2} \right), \tag{14}
$$

which establishes the relation between the two deformation functions. We notice that the ansatz (7) restricts the form of the deformed distribution $\overline{p}(A | \Sigma, N)$ to functions of $\operatorname{tr} A^\dagger \Sigma^{-1} A$ only. Even though the inclusion of further terms such as $\operatorname{tr}(A^\dagger \Sigma^{-1} A)^2$ is likely to improve the quality of the data fits, we stick to the ansatz (7). Its considerable advantage is the guaranteed but otherwise questionable analytical tractability as will be shown in the sequel. Moreover, further terms will also increase the number of deformation functions which will hamper their unambiguous determination.

C. Determination of the Deformation Functions

Apart from the deformation functions, the distributions $\overline{p}(A | N \Sigma)$ and $\langle g \rangle (r | \Sigma, N)$ depend on the usual covariance matrix Σ analyzed by sampling over the total interval. We notice that the corresponding covariance matrix $\Sigma^{(d)}$ in the deformed ensemble slightly differs from that. By definition we have

$$
\Sigma^{(d)} = \langle \frac{1}{N} A A^\dagger \rangle = \int \frac{1}{N} A A^\dagger \overline{p}(A | \Sigma, N) d[A]. \tag{15}
$$

Inserting Eq. (7), we can do the ensemble average in the Gaussian case which yields the covariance matrix $N \Sigma/\eta$.
Thus, only the \(\eta \) integral remains and we have
\[
\Sigma^{(d)} = N\Sigma \int_0^\infty \frac{f(\eta)}{\eta} d\eta = N\Sigma \eta^{-1}
\]
(16)
implying that the two covariance matrices differ by the average of \(1/\eta \). Alternatively, one can calculate \(\Sigma^{(d)} \) from the amplitude distribution,
\[
\Sigma^{(d)} = \langle rr^\dagger \rangle = \int rr^\dagger \langle g(r|\Sigma, N) d[r] \rangle ,
\]
(17)
which yields
\[
\Sigma^{(d)} = \Sigma \int_0^\infty x p(x) dx = \Sigma \pi .
\]
(18)
Here, the two covariance matrices differ by the first moment of \(x \). With the help of Eq. (13), the results (16,18) are easily seen to coincide.

Having extracted the covariance matrix for the total time interval from the data, we can proceed with the determination of the deformation functions. The exponential function in the integrand of Eq. (13) allows us to interpret it as a Laplace transform,
\[
\frac{\Gamma(N/2)}{2} \frac{p(x)}{x^{N/2-1}} = \mathcal{L} \left(\frac{\eta^{N/2}}{2} f(2\eta) \right) ,
\]
(19)
where we introduced \(\bar{\eta} = \eta/2 \) to avoid inconvenient factors of two. Thus, the ensemble deformation function is the inverse Laplace transform
\[
f(2\bar{\eta}) = \frac{\Gamma(N/2)}{2} \frac{1}{\bar{\eta}^{N/2}} \mathcal{L}^{-1} \left(\frac{p(x)}{x^{N/2-1}} \right) .
\]
(20)
of the amplitude distribution deformation function divided by a power of \(x \). This makes it possible to determine \(f(\eta) \) by extracting \(p(x) \) from the amplitude time series and carrying out the inverse Laplace transform. In contrast, extracting \(f(\eta) \) directly from the data is cumbersome and burdened by limited statistics, as the following discussion shows. The rows of \(A \) are the model time series of length \(N \) and cannot easily be identified with the amplitude time series \(r_k(t) \) of length \(T \). However, the matrices \(AA^\dagger \) form the ensemble of model covariance matrices and can be compared with the empirical ones. As a certain sample length is required for meaningful results, it is out of question to compare the matrices directly, i.e. their individual matrix elements. A better observable is the distribution
\[
q(s) = \int \delta \left(s - \frac{1}{N} \text{tr} AA^\dagger \right) \mathcal{W}(A|\Sigma, N) d[A]
\]
(21)
of the traces, which can easily be written as a single integral involving the ensemble deformation function \(f(\eta) \). The distribution (21) is empirically obtained by moving a time window through the amplitude time series and calculating the empirical covariance matrices and their traces. This then gives \(f(\eta) \).

The problem with the above procedure is its still limited statistical significance. Instead, extracting the amplitude distribution deformation function \(p(x) \) from the data gives much more meaningful results. As we discuss in the sequel, the number of data points is larger by a factor of \(K \). The amplitudes \(r_k \) appear in Eq. (12), only via the bilinear form \(r_l \Sigma r \). We rotate the amplitude vector \(r \) into the eigenbasis of the empirically obtained covariance matrix \(\Sigma \). By definition, the eigenvalues of \(\Sigma \) are positive and larger than zero, provided the length of the sampling interval is larger than \(K \). We divide each component of the rotated amplitude vector by the square root of the corresponding eigenvalue and denote the resulting vector by \(\tilde{r} \). Within our model, all components of \(\tilde{r} \) should be equally distributed. We integrate out all but one, \(\tilde{r}_k \), and arrive at the distribution
\[
\langle \tilde{g} \rangle(\tilde{r}_k) = \int_0^\infty p(x) \frac{1}{\sqrt{2\pi x}} \exp \left(-\frac{\tilde{r}_k^2}{2x} \right) dx .
\]
(22)
Thus, \(p(x) \) may be identified with the distribution of the variances \(x \) of the Gaussian distributed random variables \(\tilde{r}_k \). Conceptually, this is our main result. It provides a simple and statistically significant method to obtain the amplitude distribution deformation function \(p(x) \) which then yields upon inverse Laplace transform the ensemble distribution function \(f(\eta) \). As we have \(K \) time series \(r_k(t) \), we gain a factor of \(K \) by aggregation.

III. APPLICATION TO FINANCIAL DATA

We now apply our method to stock market data. This is of particular interest as heavy tails are ubiquitous in finance. A better modeling for multivariate distributions is urgently called for to improve risk estimation. We present the data in Sec. III A, extract the deformation functions in Sec. III B and calculate the ensemble and return distributions in Sec. III C.

A. Data Set

We analyze the \(K = 306 \) continuously traded stocks with prices \(S_k(t), k = 1, \ldots, K \) in the S&P 500® index between 1992 and 2012 [11], which we previously analyzed with a purely Gaussian, i.e., non–deformed Wishart ensemble [10]. The amplitudes are here the dimensionless price changes
\[
R_k(t) = \frac{S_k(t + \Delta t) - S_k(t)}{S_k(t)} ,
\]
(23)
which are referred to as returns. They depend on the chosen return horizon \(\Delta t \). According to Eq. (1), we calculate the returns \(r_k(t) \) normalized to zero mean. To make
our presentation self–contained, we show once more how strongly the whole \(K \times K \) correlation matrix \(C \) for this data set changes in time. In Fig. 1 it is displayed for subsequent three–months time windows. In most random matrix approaches, the ensemble is fictitious and enters only by means of an ergodicity argument. This is not so here, as Fig. 1 illustrates. Our ensemble exists in reality, it is the whole set of matrices analyzed by moving a sample time window through the data. In Fig. 1, one also sees rather stable stripes in these correlation matrices which are due to the different industrial sectors, see, \(e.g. \), Ref. [11]. Obviously, basis invariance is not present in this data set, and probably neither in any other real data set. Hence, a direct extraction of the ensemble deformation function \(f(\eta) \) which preserves the basis invariance of the random matrix ensemble is problematic. Yet, there is still another reason: market states were identified which reveal a fine structure of the ensemble \[11, 42\]. As every random matrix ensemble has an effective character, one is advised to analyze quantities which already reflect this. In the present case, such quantities are the amplitude, in the present case return, distribution and the corresponding deformation function \(p(x) \).

B. Deformation Functions

We use daily data, \(i.e., \) \(\Delta t = 1 \) trading day. Rotation of the return vector \(r \) into the eigenbasis of the empirical covariance matrix \(\Sigma \), normalization to the square roots of the eigenvalues and aggregation on a five–day window yield the empirical distributions of variances shown in Fig. 2. Aggregation on a ten–day window gives similar results. A variety of functions is capable of describing the data. In finance, one often employs the log–normal distributions to model volatilities, see \(e.g. \) Ref. [43]. In finance, the standard deviations are referred to as volatilities. However, the log–normal distribution fails to capture the empirically found tail behavior. More suitable is the beta prime distribution

\[
p(x|N,L) = \frac{\Gamma(N + L/2)}{\Gamma(N/2)\Gamma((N + L)/2)} \frac{x^{N/2-1}}{(1 + x)^{N+L/2}}
\]

(24)

with two positive parameters \(N \) and \(L \). Anticipating the following discussion, we choose their combination in the expression (24) in such a way that \(N \) coincides with the parameter \(N \) introduced in Sec. II. The fit is depicted in Fig. 2; the agreement with the data is much better than for a \(\chi^2 \) distribution corresponding to the ensemble of Ref. [16] which is formally obtained by setting \(f(\eta) = \delta(\eta - 1) \) or \(f(\eta) = \delta(\eta - N) \), respectively, depending on the rescaling with \(N \). We carry out fits for different return horizons \(\Delta t \). The results for \(N \) and \(L \) are shown in Fig. 3. While \(L \) stays constant around two, \(N \) increases from about seven for daily data to about 23 for \(\Delta t = 19 \) trading days. We postpone the interpretation up to the evaluation of the ensemble and return distribution.

Having extracted the amplitude, \(i.e., \) return distribution deformation function \(p(x|N,L) \), we calculate the inverse Laplace transform (20).

\[
f(2\eta|N,L) = \frac{\Gamma(N + L/2)}{2\eta^{N/2}\Gamma((N + L)/2)} \frac{1}{L} \left(1 + x\right)^{-N-L/2}
\]

(25)
and find [14] with $\eta = 2\tilde{\eta}$ for the ensemble deformation function
\[
 f(\eta|N, L) = \frac{\eta^{(N+L)/2-1}}{2^{(N+L)/2}\Gamma((N+L)/2)} \exp\left(-\frac{\eta}{2}\right) = \chi_{N+L}^2(\eta) . \tag{26}
\]
This is a χ_{N+L}^2 distribution with $N + L$ degrees of freedom. As required, $f(\eta|N, L)$ is a positive and normalized function.

C. Deformed Ensemble and Return Distribution

Inserting Eq. (26) into Eq. (1) yields after a straightforward calculation
\[
\pi(A|\Sigma, N, L) = \frac{\Gamma((N + NK + L)/2)}{\Gamma((N + L)/2)\det^{N/2}(\pi N \Sigma)} \frac{1 + \text{tr} A^\dagger \Sigma^{-1} A}{N}^{-1} \left(\frac{N + NK + L}{2}\right)^{-\frac{1}{2}} . \tag{27}
\]
for the distribution of the random matrices A. Thus, we arrive at an ensemble characterized by an algebraic distribution. For a similar ensemble, but in the special case of $\Sigma = 1_K$, spectral correlation functions were studied in Refs. [15] [49]. Here, however, we derived our ensemble from data, and the dependence on a non-trivial Σ is in the present essential. Anticipating the result [27], we rescaled Σ with N as compared to Ref. [16]. Thereby, N and L appear on equal footing in the formulae. To obtain the ensemble averaged return distribution, we plug Eq. (24) into Eq. (12) and find
\[
\langle g \rangle|\Sigma, N, L) = \frac{\Gamma(N + L/2)\Gamma((N + K + L)/2)}{\Gamma(N/2)\Gamma((N + L)/2)\sqrt{\det(\pi N \Sigma)}} \frac{1}{\sqrt{2\pi}} \frac{1}{N + K + L} \frac{1}{2} \left(\frac{N + K + L}{2}\right)^{-\frac{1}{2}} . \tag{28}
\]
with the confluent hypergeometric function [17]
\[
\mathcal{U}(a, b, z) = \frac{1}{\Gamma(a)} \int_0^\infty y^{a-1}(1+y)^{b-a-1} \exp(-yz)dy \tag{29}
\]
for positive real parts of a and z. From Eq. (16) or (18) the covariance matrix
\[
\Sigma^{(d)} = \frac{N}{N + L - 2} \Sigma \tag{30}
\]
for the deformed ensemble follows. To compare with the empirical return distribution, we compute the integral [22],
\[
\langle \tilde{g} \rangle|\tilde{r}_k|N, L) = \frac{\Gamma(N + L/2)\Gamma((N + L + 1)/2)}{\Gamma(N/2)\Gamma((N + L)/2)\sqrt{2\pi}} \mathcal{U}\left(\frac{N + L + 1}{2}, \frac{3 - N}{2}, \frac{\tilde{r}_k^2}{2}\right) . \tag{31}
\]
A comment on the permissible values for the parameter N is in order. In the return distributions (28) and (31), N can take any positive real value. In the ensemble distribution (27), however, N is the length of the model time series or, equivalently, one of the dimensions of the $K \times N$ matrices A and thus restricted to integer values. It is thus a matter of interpretation whether one wants to impose the constraint that N be integer. There is no such restriction for the parameter L. In any case, we also carried out fits with the integer constraint. The results shown in Fig. 3 do not indicate a strong influence of this constraint.

The results of the data comparison are displayed in Fig. 4 for daily returns, $\Delta t = 1$ trading day. The fitted parameter values are $N = 8.13$ and $L = 2.24$. The center of the empirical distribution is slightly better described by employing the deformed Wishart ensemble instead of the non–deformed one in Ref. [16]. The heavy tails clearly reveal that the deformed Wishart ensemble yields overall a better description, since the result of Ref. [16] consistently underestimates the large events. In Fig. 4 we present the same analysis for returns with $\Delta t = 20$ trading days, the fit gives $N = 20.98$ and $L = 2.07$. Here, the tails are still strong, but less pronounced than for daily data. For the interpretation of these results, we recall the well–established fact that univariate distributions of returns for one stock acquire heavy tails as the return horizon Δt becomes smaller, see e.g. Ref. [18]. Here, however, we analyze the multivariate distribution of K correlated stocks. Thus, there are two competing effects. First, as discussed in general in connection with Eq. (3) and for the financial data in Ref. [16], the superposition of the amplitudes, in the present case the returns, drives the multivariate distribution towards a Gaussian, provided that the covariances are sufficiently constant. Second, as observed in Ref. [16] and extended here, the fluctuations of the non–stationary covariances lift the tails of the distributions evaluated over long time.
FIG. 4: Aggregated distribution of daily returns, \(\Delta t = 1 \) trading day. Empirical results as dots, fit to the distribution (28) as solid line. The corresponding result of Ref. [16] as dashed line. Center of the distribution on a linear scale (top), whole distribution on a logarithmic scale (bottom).

FIG. 5: Same as Fig. 4 (bottom) for returns with \(\Delta t = 20 \) trading days.

Intervals and make them heavier. Not surprisingly, the heavier the tails of the univariate distributions, the heavier are also those of the ensemble averaged multivariate ones shown above. This is nicely reflected in the nearly linear increase of the parameter \(\rho \), as can be seen in Fig. 6. The theoretical result (34) describes the data much better than the corresponding result of Ref. [16]. Nevertheless, the dominance of \(\rho^{K-1} \) gives a somewhat misleading picture and we infer that using the distributions (28) and (31) is more appropriate.

IV. PERMISSIBILITY OF DEFORMATION FUNCTIONS

When extracting the return distribution deformation function \(p(x) \) from the data, we encountered a puzzling problem that we wish to report here. The log–logistic distribution

\[
p(x|b,c) = \frac{b}{c(1 + (x/c)^b)^2}
\]

with \(b = N/2 \) yields a very good description of the data, even slightly better than the beta prime distribution. The \(c \) values are around one, \(N = 4 \) for \(\Delta t = 1 \) trading day and increasing for larger \(\Delta t \). However, the resulting ensemble deformation function can take positive and negative values. For example, for \(N = 4 \), we find

\[
f(\eta|c) = \frac{\sin(\eta/2) - \eta \cos(\eta/2)}{\eta^2}.
\]
must be positive definite. We test this by calculating the distribution (7) in terms of Gaussians. Nevertheless, even a continuous coefficient function for the expansion of the data interpretation. Thus, one might simply view \(f \) as a high-order derivative involving the covariance matrix. After some algebra, we can express it as a high-order derivative involving the return distribution deformation function,

\[
 u(s) = \frac{(-1)^{(K-1)/2}Nc^{N/2}\Gamma(N/2)}{2\Gamma(KN/2)} s^{KN/2-1} \frac{d^{(K-1)/2} p(s|b,c)}{ds^{(K-1)/2}} .
\] (38)

This in principle general result gives for the log–logistic distribution (35)

\[
 u(s) = \frac{(-1)^{(K-1)/2}Nc^{N/2}\Gamma(N/2)}{2\Gamma(KN/2)} s^{KN/2-1} \frac{d^{(K-1)/2} p(s|b,c)}{ds^{(K-1)/2}} .
\] (39)

Restricting ourselves to even \(N \), we may employ the theory of complex functions to calculate the pole expansion

\[
 \frac{1}{(c^{N/2} + s^{N/2})^2} = \sum_{n=1}^{N/2} \frac{1}{\prod_{m \neq n}(a_n - a_m)^2} \left(\frac{1}{(s - a_n)^2} - \frac{2}{s - a_n} \sum_{l \neq n} \frac{1}{a_n - a_l} \right) .
\] (40)

with the poles

\[
 a_n = c \exp \left(\frac{i2\pi}{N} (2n + 1) \right) .
\] (41)

The derivatives in Eq. (39) can now easily be evaluated and we arrive at

\[
 u(s) = \frac{Nc^{N/2}\Gamma(N/2)}{2\Gamma(KN/2)} s^{KN/2-1} \frac{\sum_{n=1}^{N/2} \prod_{m \neq n}(a_n - a_m)^2 \left(\Gamma((K-1)/2 + 1) \right)}{(s - a_n)^{(K-1)/2+1}} \sum_{l \neq n} \frac{1}{a_n - a_l} .
\] (42)

Inspite of the complex poles, this is by construction a real function. Yet, it takes positive and negative values which outrules an interpretation of \(u(s) \) and thus also of \(p(A|N,c) \) as distributions. By means of this example we face the somewhat surprising result that a well–defined distribution \(p(x) \) does not necessarily yield a well–defined ensemble. Each case has to be investigated individually.

V. FURTHER EXTENSION BY DEFORMING THE STATIC AMPLITUDE DISTRIBUTION

We argued in Sec. II A that the Gaussian assumption (3) for the static amplitude distribution is not as restrictive as it might appear at first sight. Nevertheless, we now extend our construction by assuming more general functional forms. At present, we do not have data at our disposal in which the static amplitude distribution is non–Gaussian, but we nevertheless now extend our construction, as it might be useful for future data analyses. Moreover, we will also come across some interesting observations. Instead of Eq. (3), we now assume
that the static amplitude distribution can be expressed as an average over the Gaussian \(g \),
\[
\mathcal{g}(r|\Sigma) = \int_0^\infty h(\xi) g \left(r \left| \frac{\Sigma_\xi}{\xi} \right. \right) d\xi \tag{43}
\]
with a new deformation function \(h(\xi) \) that fulfils
\[
\int_0^\infty h(\xi)d\xi = 1 \quad \text{and} \quad h(\xi) \geq 0 \tag{44}
\]
We proceed as in Sec. \(\text{VI}\)B. Instead of the ensemble average \(\langle \mathcal{g} \rangle \), we now have
\[
\langle \mathcal{g} \rangle (r|\Sigma, N) = \int_0^\infty p(x)g \left(r \left| x \Sigma \right. \right) dx \tag{46}
\]
which differs from Eq. \(\text{(12)} \) only by the definition of the amplitude distribution deformation function. It is now given by
\[
p(x) = \int_0^\infty d\xi h(\xi) \int_0^\infty d\eta f(\eta) \int_0^\infty dz \chi^2_N(z) \delta \left(x - \frac{z}{\xi\eta}\right) \tag{47}
\]
For fixed \(\xi \), we introduce the new variable \(\hat{\eta} = \eta\xi \) and find
\[
p(x) = \int_0^\infty d\hat{\eta} \hat{f}(\hat{\eta}) \int_0^\infty dz \chi^2_N(z) \delta \left(x - \frac{z}{\hat{\eta}}\right) \tag{48}
\]
which coincides with Eq. \(\text{(13)} \), but now involving the new ensemble deformation function
\[
\hat{f}(\hat{\eta}) = \int_0^\infty h(\xi) f \left(\frac{\hat{\eta}}{\xi} \right) d\xi \tag{49}
\]
This integral is reminiscent of a convolution. Thus, the case of a deformed, non–Gaussian static amplitude distribution is formally traced back to the Gaussian case. The difference can be fully absorbed into the ensemble deformation function. Importantly, this means that all other results of Sec. \(\text{II}\) continue to hold, in particular the Laplace transform \(\text{(19)} \) and its inversion \(\text{(20)} \). Nevertheless, the following problem remains. We can extract \(h(\xi) \) and \(p(x) \) from the data by using the methods outlined in Sec. \(\text{III}\)C for very short time intervals and for the whole, long time interval, respectively. From the inverse Laplace transform \(\text{(20)} \), we obtain \(\hat{f}(\hat{\eta}) \), but to determine \(f(\eta) \), we are left with the task to invert Eq. \(\text{(49)} \). Although that is definitely possible for some special cases, a general inversion formula is lacking. In practical applications, however, the extension sketched above is more likely to be needed for consistency tests. For example, if some of the available data for the same system permit the Gaussian assumption for the static amplitude distribution and others do not, one can first determine \(f(\eta) \) as described in Sec. \(\text{III}\) and then turn to the data which require an additional deformation function \(h(\xi) \). Once both of these deformation functions are known, one can evaluate \(\hat{f}(\hat{\eta}) \) and check if it is consistent with the inverse \(\text{(20)} \) of \(p(x) \) which is independently extracted from the data.

As an example, we consider the case that both, \(f(\eta) \) and \(h(\xi) \), are \(\chi^2 \) distributions
\[
f(\eta) = \chi^2_{N+L}(\eta) \quad \text{and} \quad h(\xi) = \chi^2_M(\xi) \tag{50}
\]
of \(N + L \) and \(M \) degrees of freedom, respectively. The choice for \(f(\eta) \) coincides with the result of Sec. \(\text{III}\B \). With Eq. \(\text{(49)} \), we obtain
\[
\hat{f}(\hat{\eta}) = \frac{\sqrt{\eta}^\frac{N+L+M}{2} \frac{\Gamma((N+L-M)/2)}{\Gamma(M/2)}}{2(N+L+M)} \Gamma((N+L)/M) \tag{51}
\]
where \(\gamma_\nu \) is the modified Bessel function of the second kind of order \(\nu \). This function already appeared in the ensemble averaged return distribution of Ref. \(\text{[16]} \). According to Eq. \(\text{(15)} \), the distribution \(p(x) \) is an integral involving the modified Bessel function and the return distribution averaged over the deformed ensemble is an integral over a product of modified Bessel functions, but we do not give the formulae here.

VI. CONCLUSIONS

Non–stationarity is an often encountered feature in complex systems. Here, we addressed non–stationarity of correlations. We presented a method to determine their distribution from the amplitude distribution. Put differently, we showed how to extract the proper ensemble of random covariance matrices from amplitude data. In contrast to random matrix applications for Hamiltonian systems, there is not a local scale that can enforce universal statistical behavior. Thus, it is important how the covariances are actually distributed. Gaussian assumptions are only acceptable if really justified by data analysis. The present study extends a previous one in which we employed such a Gaussian assumption in finance. Here, we reconsidered the same data set and clearly demonstrated that the Gaussian assumption underestimates the tails. The algebraic distributions that we found here are relevant for risk estimation as they help to better understand large events. Importantly, once the ensemble is properly extracted, meaningful averages can be computed for all observables that depend on non–stationary covariances.

When developing our construction, we came across a puzzling feature which calls for a caveat. The deformation function extracted from the amplitude distribution
determines, on the one hand, uniquely the ensemble, but, on the other hand, this ensemble is not necessarily well-defined. Each case has to be studied individually. We do not expect this to cause severe problems in applications, but conceptually it is an interesting aspect. We also extended our construction by including deformed static amplitude distributions. The additional freedom accompanying this extension might offer a possibility to circumvent the above mentioned puzzling problem. From a more general viewpoint, we have to emphasize that our construction only includes functional forms of the ensemble that depend on the trace over the product of the random covariance matrix and the mean covariance matrix. Although this is quite natural, as it guarantees a certain amount of basis invariance which all random matrix models need, more general functional forms pose an interesting and potentially important challenge.

Hitherto, we only applied our method to finance. We plan applications to other complex systems, too. This may be rewarding, as large events and risk estimations are not only important in finance.

Acknowledgments

We thank Desislava Chetalova, Tobias Nitschke, Thilo Schmitt and Yurij Stepanov for fruitful discussions.
tical Mechanics: Theory and Experiment 2015, P01029 (2015).
[43] S. Miccichè, G. Bonanno, F. Lillo, and R. N. Mantegna, Physica A: Statistical Mechanics and its Applications \textbf{314}, 756 (2002).
[44] I. Gradsteyn and I.M. Ryzhik, \textit{Table of Integrals, Series, and Products} (Academic Press, 2007), 7th ed.
[45] G. Akemann and P. Vivo, Journal of Statistical Mechanics: Theory and Experiment \textbf{2008}, P09002 (2008).
[46] A. Y. Abul-Magd, G. Akemann, and P. Vivo, Journal of Physics A: Mathematical and Theoretical \textbf{42}, 175207 (2009).
[47] M. Abramowitz and I. Stegun, \textit{Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables} (National Bureau of Standards, 1972), 10th ed.
[48] R. Cont, Quantitative Finance \textbf{1}, 223 (2001).