Phytoplankton Diversity in the World Heritage Site of Indian Sundarbans: An Overview

Atanu Roy¹, Subrata Trivedi² and Abhijit Mitra³*

¹Department of Biotechnology, Techno India University West Bengal, India
²Department of Biology, University of Tabuk, Saudi Arabia
³Department of Marine Science, University of Calcutta, India

*Corresponding author: Abhijit Mitra, Department of Marine Science, University of Calcutta, India

Submission: October 25, 2017; Published: January 16, 2018

Phytoplankton of Brackish Water System: An Overview

The pelagic environment of the ocean supports two basic types of marine organisms. One type comprises the plankton, or those organisms whose powers of locomotion are such that they are incapable of making their way against the current and thus are passively transported by currents in the aquatic system and the other type includes the nekton (free swimmers), which are free-floating animals that, in contrast to plankton, are strong enough to swim against currents and are therefore independent of water movements. The category of nekton includes fish, squid and marine mammals.

The word plankton has come from the Greek word “planktos”, meaning that which is passively drifting or wandering. Depending upon whether a planktonic organism is a plant or animal, a distinction is made between phytoplankton and zooplankton. Although many planktonic species are of microscopic dimensions, the term is not synonymous with small size as some of the zooplankton includes jellyfish of several meters in diameter. It is not necessary that all plankton are completely passive, most of them are capable of swimming too. Phytoplanktons are free floating tiny floral components that are widely distributed in the marine and estuarine environments. Like land plants, these tiny producers require sunlight, nutrients or fertilizers, carbon dioxide gas and water for growth. The cells of these organisms contain the pigment chlorophyll that traps the solar energy for use in photosynthesis. The photosynthetic process uses the solar radiation to convert carbon dioxide and water into sugars or high energy organic compounds from which the cell forms new materials. The synthesis of organic material by photosynthesis is termed primary production. Since phytoplankton is the dominant producers in the ocean, their role in the marine food chain is of paramount importance. Approximately, 4000 species of marine phytoplankton have been described and new species are continually being added to this total. Phytoplankton exhibit remarkable adaptations to remain in floating condition in the seawater. In fact, all marine phytoplankton tend to stay in the photic zone to utilize the solar radiation for performing the process of photosynthesis.

In order to retard the process of sinking, this group of organisms adopts various mechanisms. These include their small size and general morphology, as the ratio of cell surface area to volume determines frictional drag in the water. Colony or chain formation also increases surface area and slows sinking. Most species carry out ionic regulation, in which the internal concentration of ions is reduced relative to their concentration in seawater. Diatoms also produce and store oil and this metabolic by-product further reduce cell density. In experimental conditions, living cells tend to sink at rates ranging from 0 to 30 m day⁻¹, but dead cells may sink more than twice as fast. In nature, turbulence of surface waters is also an important factor in maintaining phytoplankton near the surface where they receive abundant sunlight.

Phytoplankton present in the marine and estuarine environments use carbon dioxide for photosynthesis and hence play an important role in maintaining the carbon dioxide budget of the atmosphere. The larger the world’s phytoplankton population, the more carbon dioxide gets pulled from the atmosphere. This lowers the average temperature of the atmosphere due to lower volumes of this greenhouse gas. Scientists have found that a given population of phytoplankton can double its numbers in the order of once per day. In other words, phytoplankton responds very rapidly to changes in their environment. Phytoplankton sometimes may cause adverse impact on the marine and estuarine environment. During excessive bloom of phytoplankton, the light energy is intercepted, which could otherwise reach fixed plants like eel grass (Zostera spp.) and kelp. Furthermore, when the phytoplankton eventually die back and break down, an excessive amount of oxygen is required to fuel this process, and hence areas may become deprived of oxygen. Excessive nutrients, and/or changes in their relative concentrations, may be one factor in a chain of events leading to changes in the species composition of the phytoplankton communities. Increased occurrence of toxic algal blooms may accelerate toxin production. Toxic phytoplankton, when consumed by shellfish or other species can affect the marine food chain, including poisoning of seabirds, mammals and even
humans. It has been established that phytoplankton naturally contains DMS (dimethyl sulphide), which is released from dead phytoplankton into the atmosphere. This compound can transform into sulphuric acid, which eventually may contribute to acid rain (http://oceanlink.island.net/ask/pollution.html).

Brackish Water Phytoplankton: Major Types

Nearly all marine plants, whether unicellular or multicellular, even those attached to substrata (sessile) or free floating, pass some part of their life cycle in floating condition as phytoplankton. However, those organisms which always remain planktonic throughout the life cycle are

- a) Diatoms,
- b) Dinoflagellates,
- c) Coccolithophores,
- d) Selective species of blue-green algae and
- e) Some species of green algae.

Diatoms

These floating plants are all microscopic in size and are characterised by the presence of shell or frustule. The shell or frustule is composed of translucent silica. The cell wall of diatom has two parts resembling a pillbox bottom and lid. The lid is called the epithea and the bottom is known as hypothea. These shells have great importance from the geological point of view and constitute the diatomaceous crust. The diatoms exhibit remarkable varieties in form and patterns and many species possess beautifully sculptured shells. Depending on the nature of valves and pattern of ornamentation in the valve surface, the diatoms are grouped into centric and pennate diatoms. The major differences between these two groups are given in Table 1.

Table 1: Differences between centric and pennate diatoms.

Point	Centric Diatom	Pennate Diatom
Cell shape	Discoid, solenoïd or cylindrical	Elongated and fusiform, oval, sigmoid or roughly circular.
Ornamentation	Radial in nature i.e., the arrangement of markings is radiating from the centre.	Bilateral in nature i.e., the arrangement of the markings is on either side of the apical (main) axis.

Table 2: List of diatoms identified from the inshore waters of Bay of Bengal.

Sl. No.	Species	Taxonomic Position
1	Coscinodiscus eccentricus	Division: Thallophyta
		Class: Bacillariophyceae
		Order: Centrales
		Sub-order: Cosinodiscineae
		Family: Cosinodiscaceae
		Genus: Coscinodiscus
		Species: eccentric

Phytoplankton Spectrum of Indian Sundarbans

A field study was undertaken during September, 2017 in the Thakuran River to scan the phytoplankton spectrum in the aquatic phase. A total of 73 species was identified (Table 2) in a salinity range between 12psu to 18psu. The relatively low salinity compared to average salinity in this region during summer (~29psu) is due to precipitation and subsequent run-off from the adjacent land masses, which is a characteristics feature of the lower Gangetic delta complex [1,2].
	Species	Division: Thallophyta	Class: Bacillariophyceae	Order: Centrales	Sub-order: Cosinodiscineae	Family: Cosinodisceae	Genus: Cosinodiscus	Species:
2	*Cosinodiscus jonesianus*							jonesianus
3	*Cosinodiscus lineatus*							lineatus
4	*Cosinodiscus radiates*							radiates
5	*Cosinodiscus gigas*							gigas
6	*Cosinodiscus oculus-iridis*							oculus-iridis
7	*Cosinodiscus concinnus*							concinnus
Page	Species	Division	Class	Order	Sub-order	Family	Genus	Species
------	-------------------------	----------------	-------------------	---------------	---------------	---------------	---------------	---------------
8	*Cosinodiscus perforates*	Thallophyta	Bacillariophyceae	Centrales	Cosinodiscineae	Cosinodisceae	Cosinodiscus	perforates
9	*Cosinodiscus asteromphalus*	Thallophyta	Bacillariophyceae	Centrales	Cosinodiscineae	Cosinodisceae	Cosinodiscus	asteromphalus
10	*Cosinodiscus thorii*	Thallophyta	Bacillariophyceae	Centrales	Cosinodiscineae	Cosinodisceae	Cosinodiscus	thorii
11	*Cosinodiscus granii*	Thallophyta	Bacillariophyceae	Centrales	Cosinodiscineae	Cosinodisceae	Cosinodiscus	granii
12	*Cyclotella sp*	Thallophyta	Bacillariophyceae	Centrales	Cosinodiscineae	Cosinodisceae	Cyclotella sp	Cyclotella sp
13	*Cyclotella striata*	Thallophyta	Bacillariophyceae	Centrales	Cosinodiscineae	Cyclotella	Cyclotella	striata
14	*Cyclotella stylorum*	Thallophyta	Bacillariophyceae	Centrales	Cosinodiscineae	Cyclotella	Cyclotella	stylorum
	Species	Division: Thallophyta	Class: Bacillariophyceae	Order: Centrales	Family: Cosinodisceae	Genus: Thalassiosira	Type:	Species:
---	--------------------------	-----------------------	-------------------------	-----------------	----------------------	---------------------	-------	----------
15	*Thalassiosira subtilis*							subtilis
16	*Thalassiosira sp.*							
17	*Thalassiosira decipiens*							decipiens
18	*Thalassiosira punctigera*							punctigera
19	*Thalassiosira hyaline*							hyaline
20	*Thalassiosira eccentric*							eccentric
21	*Skeletonema costatum*							costatum
22	*Paralia sulcata*							sulcata
23	*Planktoniella sol*	Division: Thallophyta						
Class: Bacillariophyceae								
Order: Centrales								
Family: Cosinodisceae								
Genus: *Planktoniella*								
Species: *sol*								
24	*Planktoniella blanda*	Division: Thallophyta						
Class: Bacillariophyceae								
Order: Centrales								
Family: Cosinodisceae								
Genus: *Planktoniella*								
Species: *blanda*								
25	*Rhizosolenia setigera*	Division: Thallophyta						
Class: Bacillariophyceae								
Order: Centrales								
Family: Soleniae								
Genus: *Rhizosolenia*								
Species: *setigera*								
26	*Rhizosolenia alata*	Division: Thallophyta						
Class: Bacillariophyceae								
Order: Centrales								
Family: Soleniae								
Genus: *Rhizosolenia*								
Species: *alata*								
27	*Rhizosolenia hebetata*	Division: Thallophyta						
Class: Bacillariophyceae								
Order: Centrales								
Family: Soleniae								
Genus: *Rhizosolenia*								
Species: *hebetata*								
28	*Rhizosolenia styliformis*	Division: Thallophyta						
Class: Bacillariophyceae								
Order: Centrales								
Family: Soleniae								
Genus: *Rhizosolenia*								
Species: *styliformis*								
29	*Rhizosolenia robusta*	Division: Thallophyta						
Class: Bacillariophyceae								
Order: Centrales								
Family: Soleniae								
Genus: *Rhizosolenia*								
Species: *robusta*								
30	*Rhizosolenia stolterfothii*	Division: Thallophyta						
Class: Bacillariophyceae								
Order: Centrales								
Family: Soleniae								
Genus: *Rhizosolenia*								
Species: *stolterfothii*								
	Species	Division	Class	Order	Family	Genus	Species	
---	---	---	---	---	---	---	---	---
31	*Rhizosolenia cylindrus*	Thallophyta	Bacillariophyceae	Centrales	Soleniae	Rhizosolenia	cylindrus	
32	*Rhizosolenia shrubsolei*	Thallophyta	Bacillariophyceae	Centrales	Soleniae	Rhizosolenia	shrubsolei	
33	*Rhizosolenia imbricata*	Thallophyta	Bacillariophyceae	Centrales	Soleniae	Rhizosolenia	imbricata	
34	*Bacteriastrum sp.*	Thallophyta	Bacillariophyceae	Centrales	Soleniae	Lauderia	annulata	
35	*Bacteriastrum delicatulum*	Thallophyta	Bacillariophyceae	Centrales	Chaetocereae	Bacteriastrum	delicatulum	
36	*Bacteriastrum varians*	Thallophyta	Bacillariophyceae	Centrales	Chaetocereae	Bacteriastrum	varians	
Page	Species	Division: Thalophyta	Class: Bacillariophyceae	Order: Centrales	Family: Chaetocereae	Genus: Chaetoceros	Species:	Genus:
------	---	------------------------------	--------------------------	------------------	---------------------	--------------------	-----------	--------
38	*Bacteriastrum comosum*							
39	*Bacteriastrum hyalinum*							
40	*Chaetoceros dydymus*							
41	*Chaetoceros curvisetus*							
42	*Chaetoceros diversus*							
43	*Chaetoceros messanensis*							
44	*Chaetoceros peruvianus*							
Page	Chaetoceros species	Division: Thallophyta						
------	---------------------	-----------------------						
45	Chaetoceros eibenii	Class: Bacillariophyceae						
		Order: Centrales						
		Family: Chaetocereae						
		Genus: Chaetoceros						
		Species: eibenii						
46	Chaetoceros lorenzianus	Division: Thallophyta						
		Class: Bacillariophyceae						
		Order: Centrales						
		Family: Chaetocereae						
		Genus: Chaetoceros						
		Species: lorenzianus						
47	Chaetoceros compressus	Division: Thallophyta						
		Class: Bacillariophyceae						
		Order: Centrales						
		Family: Chaetocereae						
		Genus: Chaetoceros						
		Species: compressus						
48	Chaetoceros decipiens	Division: Thallophyta						
		Class: Bacillariophyceae						
		Order: Centrales						
		Family: Chaetocereae						
		Genus: Chaetoceros						
		Species: decipiens						
49	Chaetoceros atlanticus	Division: Thallophyta						
		Class: Bacillariophyceae						
		Order: Centrales						
		Family: Chaetocereae						
		Genus: Chaetoceros						
		Species: atlanticus						
50	Chaetoceros subtilis	Division: Thallophyta						
		Class: Bacillariophyceae						
		Order: Centrales						
		Family: Chaetocereae						
		Genus: Chaetoceros						
		Species: subtilis						
51	Chaetoceros convolutus	Division: Thallophyta						
		Class: Bacillariophyceae						
		Order: Centrales						
		Family: Chaetocereae						
		Genus: Chaetoceros						
		Species: convolutus						
Page	Species	Division: Thallophyta	Class: Bacillariophyceae	Order: Centrales	Family: Chaetocereae	Genus: Chaetoceros	Species:	
------	------------------	-----------------------	--------------------------	-----------------	---------------------	--------------------	-----------	
52	Chaetoceros holsaticum	Division: Thallophyta	Class: Bacillariophyceae	Order: Centrales	Family: Chaetocereae	Genus: Chaetoceros	holsaticum	
53	Chaetoceros gracile	Division: Thallophyta	Class: Bacillariophyceae	Order: Centrales	Family: Chaetocereae	Genus: Chaetoceros	gracile	
54	Chaetoceros cinctum	Division: Thallophyta	Class: Bacillariophyceae	Order: Centrales	Family: Chaetocereae	Genus: Chaetoceros	cinctum	
55	Chaetoceros affinis	Division: Thallophyta	Class: Bacillariophyceae	Order: Centrales	Family: Chaetocereae	Genus: Chaetoceros	affinis	
56	Chaetoceros danicus	Division: Thallophyta	Class: Bacillariophyceae	Order: Centrales	Family: Chaetocereae	Genus: Chaetoceros	danicus	
57	Chaetoceros constrictus	Division: Thallophyta	Class: Bacillariophyceae	Order: Centrales	Family: Chaetocereae	Genus: Chaetoceros	constrictus	
58	Ditylum sol	Division: Thallophyta	Class: Bacillariophyceae	Order: Centrales	Family: Biddulphiaceae	Genus: Ditylum	sol	
Page	Species	Division:	Class:	Order:	Family:	Genus:	Species:	
------	--------------------	-----------------------	------------	----------	----------------	-----------	--------------	
59	Ditylum brightwelli	Thallophyta	Bacillariophyceae	Centrales	Biddulphieae	Ditylum	brightwelli	
60	Lithodesmium undulatum	Thallophyta	Bacillariophyceae	Centrales	Biddulphieae	Lithodesmium	undulatum	
61	Triceratium favus	Thallophyta	Bacillariophyceae	Centrales	Biddulphieae	Triceratium	favus	
62	Triceratium reticulatum	Thallophyta	Bacillariophyceae	Centrales	Biddulphieae	Triceratium	reticulatum	
63	Triceratium sp.	Thallophyta	Bacillariophyceae	Centrales	Biddulphieae	Triceratium	sp.	
64	Biddulphia sinensis	Thallophyta	Bacillariophyceae	Centrales	Biddulphieae	Biddulphia	sinensis	
65	Biddulphia mobiliensis	Thallophyta	Bacillariophyceae	Centrales	Biddulphieae	Biddulphia	mobiliensis	
66	Biddulphia regia	Thallophyta	Bacillariophyceae	Centrales	Biddulphieae	Biddulphia	regia	
Page	Specie	Division:	Class:	Order:	Family:	Genus:	Species:	
------	--	------------------------------------	----------	---------	----------	--------	------------	
67	*Eucampia zodiacus*	Thallophyta	Bacillariophyceae	Centrales	Biddulphiae	Eucampia	zodiacus	
68	*Hemidiscus cuneiformis*	Thallophyta	Bacillariophyceae	Centrales	Euodieae	Hemidiscus	cuneiformis	
69	*Climacosphenia elongata*	Thallophyta	Bacillariophyceae	Pennales			elongata	
70	*Fragilaria oceanica*	Thallophyta	Bacillariophyceae	Pennales			oceanica	
71	*Rhaphoneis amphiceros*	Thallophyta	Bacillariophyceae	Pennales			amphiceros	
72	*Thalassionema nitzchioides*	Thallophyta	Bacillariophyceae	Pennales			nitzchioides	
73	*Thalassionema sp.*	Thallophyta	Bacillariophyceae	Pennales			sp.	

References

1. Mitra A, Zaman S (2014) Carbon Sequestration by Coastal Floral Community. In: Mitra A, Zaman S (Eds.), Carbon Sequestration by Coastal Floral Community. Published by The Energy and Resources Institute (TERI) TERI Press, India.
2. Mitra A, Zaman S (2015) Blue Carbon Reservoir of the Blue Planet. In: Mitra A, Zaman S (Eds.), Published by Springer, India.