Brentuximab vedotin-containing escalated BEACOPP variants for newly diagnosed advanced-stage classical Hodgkin lymphoma: follow-up analysis of a randomized phase II study from the German Hodgkin Study Group

Carla Damaschin1,2, Helen Goergen1,2, Stefanie Kreissl1,2, Annette Plütschow1,2, Frank Breywisch3, Stephan Mathas4, Julia Meissner5, Martin Sökler6, Max S. Topp7, Vladan Vucinic8, Andreas Zimmermann9, Bastian von Tresckow2,10, Michael Fuchs1,2, Andreas Engert1,2, Peter Borchmann1,2 and Dennis A. Eichenauer1,2

1First Department of Internal Medicine, University of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf Cologne, Germany. 2German Hodgkin Study Group (GHSG), University Hospital Cologne, Cologne, Germany. 3Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Max-Delbrück-Center for Molecular Medicine, Berlin, and Experimental and Clinical Research Center (ECCRC), Berlin, Germany. 4Fifth Department of Internal Medicine, University Hospital Heidelberg, Heidelberg, Germany. 5Second Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany. 6Second Department of Internal Medicine, University Hospital Würzburg, Würzburg, Germany. 7Second Department of Internal Medicine, University Hospital Leipzig, Leipzig, Germany. 8Department of Hematology and Cell Therapy, Medical Oncology, Hemostaseology, University Hospital Essen, Essen, Germany. 9Department of Internal Medicine III, University Hospital Munich, Munich, Germany. 10Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.

Patients with advanced-stage Hodgkin lymphoma (HL) receiving intensive treatment with escalated BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, prednisone) (eBEACOPP) have excellent outcomes [1, 2]. However, late effects such as second primary malignancies (SPM) and infertility represent ongoing concerns [3, 4]. Novel approaches using an eBEACOPP backbone, therefore, aim at reducing toxicity without compromising efficacy. The BrECAPP (brentuximab vedotin, etoposide, cyclophosphamide, doxorubicin, procarbazine, prednisone) and BrECADD (brentuximab vedotin, etoposide, cyclophosphamide, doxorubicin, dacarbazine, dexamethasone) protocols were investigated in a randomized phase II study including patients with newly diagnosed advanced-stage classical HL (cHL). Both regimens combine eBEACOPP-based chemotherapy with the CD30-directed antibody-drug conjugate brentuximab vedotin (BV). Response rates were similar to standard eBEACOPP and especially the BrECADD protocol was associated with reduced acute toxicity [5].

The major objectives of the present follow-up analysis of the study were progression-free survival (PFS) and overall survival (OS) at 3 years. Patterns of cHL recurrence, the occurrence of SPM, and causes of death were also evaluated. PFS and OS were analyzed using the Kaplan–Meier method. PFS was defined as the time between randomization and progression or relapse of cHL or death from any cause and was censored at the date of last information on the disease status. OS was defined as the time between randomization and death from any cause and was censored at the date of last information for surviving patients.

Characteristics of cHL recurrence, SPM, and causes of death were analyzed descriptively. Study design, inclusion criteria, endpoints, procedures, and treatment have been published elsewhere [5]. The study was conducted in accordance with the Declaration of Helsinki and was approved by the review boards of the participating sites. The study was registered at www.clinicaltrials.gov as #NCT01569204.

A total of 104 patients with advanced-stage cHL aged 18–60 years were enrolled at 20 sites in Germany. Baseline characteristics have been reported previously. In brief, 63 patients (61%) were male, the median age was 29 years (range: 18–60 years), and 86 patients (82%) presented with stage III/IV disease [5]. Baseline characteristics were thus consistent with the randomized German Hodgkin Study Group (GHSG) HD15 and HD18 studies for advanced-stage HL [1, 2]. Three patients were not included in the outcome analyses since they did not receive study treatment (n = 2) or terminated study treatment after the advanced-stage disease had been disconfirmed (n = 1). Hence, the present analysis included 101 patients who had been treated with 6 cycles of BrECAPP (n = 49) or BrECADD (n = 52); 13 patients (BrECAPP: 7 patients; BrECADD: 6 patients) with residual lymphoma ≥2.5 cm and a positive positron emission tomography (PET) at the end of systemic therapy had an indication for consolidation radiotherapy [5].

After a median observation time of 34 months (interquartile range: 28.7–39.5 months), the 3-year PFS estimates were 90.2% (95%-CI: 80.9–99.5%) with BrECAPP and 89.7% (95%-CI: 81.0–98.3%) with BrECADD (Fig. 1A, Table 1). In the randomized...
ECHELON-1 study for newly diagnosed stage III/IV cHL, the 3-year PFS among patients aged younger than 60 years who had treatment with the BV-containing A-AVD (BV, doxorubicin, vinblastine, dacarbazine) regimen was 84.9% (95%-CI: 81.6–87.7%) [6]. Disease control with BrECAPP and BrECADD was thus at least similar to and possibly better than with A-AVD.

Eight patients treated in the present study experienced primary disease progression (n = 3) or relapse of cHL (n = 5). Sites of initial bulky disease were involved in 6 cases. The median time from the end of BrECAPP or BrECADD therapy to disease progression or relapse was 13 months (range: 1–26 months). Second-line treatment consisted of high-dose chemotherapy and autologous stem cell transplantation in all cases. No study participant developed an SPM (Table 1). This is notable since older analyses had indicated an increased risk especially for the development of therapy-related acute myeloid leukemia and myelodysplastic syndrome (t-AML/MDS) after 8 cycles of eBEACOPP [3, 7, 8]. However, the current GHSG standard of care for advanced-stage HL consisting of 4 or 6 cycles of eBEACOPP stratified by PET after 2 cycles of chemotherapy appears to be associated with a significantly lower risk. The t-AML/MDS incidence among patients who had received 4 or 6 cycles of eBEACOPP within the HD15 and HD18 studies was lower than 1% [1, 2]. Unlike second hematologic malignancies that usually occur within the first years after HL treatment, the risk for the development of second solid tumors after BrECAPP and BrECADD cannot be estimated yet [7, 9, 10]. Longer follow-up is required since second solid tumors are typically diagnosed many years after HL treatment and the risk for the occurrence of such malignancies seems to be elevated for decades [11, 12].

Two patients who had treatment in the present study died during observation. Deaths occurred 15 and 24 months after the end of systemic study treatment. A low rate of HL-related deaths was also observed in other studies comprising patients with advanced-stage HL, e.g., the HD15 and HD18 studies using eBEACOPP and the RATHL study using ABVD [1, 2, 13].

The 3-year OS estimates were 100% with BrECAPP and 95.4% (95%-CI: 89.2–100%) with BrECADD (Fig. 1B, Table 1). In the ECHELON-1 study, the 2-year OS among patients treated with A-AVD was 96.6% [14].

### Table 1. Outcomes and events after BrECAPP and BrECADD treatment.

|                      | 6 × BrECAPP (N = 49) | 6 × BrECADD (N = 52) |
|----------------------|-----------------------|-----------------------|
| Observation time     |                       |                       |
| Observation time for disease status, median | 31 months | 34 months |
| Observation time for survival status, median | 35 months | 34 months |
| 3-year survival estimates |                   |                       |
| Progression-free survival | 90.2% (80.9–99.5%) | 89.7% (81.0–98.3%) |
| Overall survival     | 100% (89.2–100%)     | 95.4% (89.2–100%)    |
| Hodgkin lymphoma events* |                   |                       |
| Any Hodgkin lymphoma event | 4 (8%) | 4 (8%) |
| Progressionb       | 0 (0%)                 | 3 (6%)                |
| Relapsec           | 4 (8%)                 | 1 (2%)                |
| Number of Hodgkin lymphoma events |           |                       |
| 1                    | 4 (8%)                 | 2 (4%)                |
| 2                    | 0 (0%)                 | 2 (4%)                |
| Second-line treatment |           |                       |
| High-dose chemotherapy and autologous stem cell transplantation | 4 (8%) | 4 (8%) |
| Causes of death     |                       |                       |
| Any event           | 0 (0%)                 | 2 (4%)                |
| Hodgkin lymphoma    | 0 (0%)                 | 1 (2%)                |
| Accident            | 0 (0%)                 | 1 (2%)                |
| Second primary malignancies |         |                       |
| Any event           | 0 (0%)                 | 0 (0%)                |

Data are median, % (95%-CI), or n (%). Only patients eligible for efficacy analyses are shown; 3 of 104 patients were excluded because they did not receive any study treatment (n = 2) or terminated treatment due to disconfirmation of advanced-stage disease (n = 1).

*Defined as biopsy-proven disease progression or relapse of cHL.

bDefined as the occurrence of new lesions during treatment or at least 1 known lesion that increased by more than 25% in diameter during treatment or within 3 months after the end of systemic study treatment.

cDefined as the appearance of new lesions or the reappearance of initial lesions at least 3 months after the end of systemic study treatment.

Fig. 1 Outcomes of patients treated with BrECAPP and BrECADD. A) Progression-free survival after treatment with BrECAPP and BrECADD; B) Overall survival after treatment with BrECAPP and BrECADD.
aspects and fertility issues play an important role in the management and the choice of treatment in HL patients [4, 15]. However, valid analyses on QoL and fertility in individuals who had received BrECAPP or BrECADD could not be performed due to the inability to obtain sufficient data.

Taken together, the present update analysis of a randomized phase II study investigating the BV-containing eBEACOPP variants BrECAPP and BrECADD in the first-line treatment of advanced-stage chHL confirms the safety and efficacy of these protocols. The BrECADD regimen had been chosen to challenge eBEACOPP in the randomized GHSG HD21 study (NCT02661503) that recently finished recruitment for the cohort of patients aged 60 years or younger. Results of this trial are pending. Results were in part presented at the EHA 2021 Virtual Congress, June 9 to 17, 2021.

REFERENCES
1. Engert A, Haverkamp H, Kobe C, Markova J, Renner C, Ho A, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379:1791–9.
2. Borchmann P, Goergen H, Kobe C, Lohri A, Greil R, Eichnauer DA, et al. PET-guided treatment in patients with advanced-stage Hodgkin’s lymphoma (HD18): final results of an open-label, international, randomised phase 3 trial by the German Hodgkin Study Group. Lancet. 2017. https://doi.org/10.1016/S0140-6736(17)32134-7.
3. Eichnauer DA, Becker I, Monsef I, Chadwick N, de Sanctis V, Federico M, et al. Secondary malignant neoplasms, progression-free survival and overall survival in patients treated for Hodgkin lymphoma: a systematic review and meta-analysis of randomized clinical trials. Haematologica. 2017;102:1748–57.
4. Behringer K, Mueller H, Goergen H, Thielen I, Eibl AD, Stumpf V, et al. Gonadal function and fertility in survivors after Hodgkin lymphoma treatment within the German Hodgkin Study Group HD13 to HD15 trials. J Clin Oncol. 2013;31:231–9.
5. Eichnauer DA, Plutschow A, Kreissl S, Meissner J, et al. Incorporation of brentuximab vedotin into first-line treatment of advanced classical Hodgkin’s lymphoma: final analysis of a phase 2 randomised trial by the German Hodgkin Study Group. Lancet Oncol. 2017;18:1680–7.
6. Straus DJ, Dlugosz-Danecka M, Alekseev S, Illés Á, Picardi M, Lech-Maranda E, et al. Brentuximab vedotin with chemotherapy for stage III/IV classical Hodgkin lymphoma: 3-year update of the ECHELON-1 study. Blood 2020;135. https://doi.org/10.1182/blood.2019003127.
7. Eichnauer DA, Thielen I, Haverkamp H, Franklin J, Behringer K, Hallsguth T, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndromes in patients with Hodgkin lymphoma: a report from the German Hodgkin Study Group. Blood. 2014;123:1658–64.
8. von Tresckow B, Kreissl S, Goergen H, Brockelmann PJ, Pabst T, Frick D, et al. Intensive treatment strategies in advanced-stage Hodgkin’s lymphoma (HD9 and HD12): analysis of long-term survival in two randomised trials. Lancet Haematol. 2018;5:e462–e473.
9. Koontz MZ, Hornig SJ, Balise R, Greenberg PL, Rosenberg SA, Hoppe RT, et al. Risk of therapy-related secondary leukemia in Hodgkin lymphoma: the Stanford University experience over three generations of clinical trials. J Clin Oncol. 2013;31:592–8.
10. Eichnauer DA, Müller H, Elger L, Goergen H, Fuchs M, Kreissl S, et al. Non-Hodgkin lymphoma after treatment for classical Hodgkin’s lymphoma: a report from the German Hodgkin Study Group. Br J Haematol. 2021;193. https://doi.org/10.1111/bjh.17327.
11. Swerdlow AJ, Higgins CD, Smith P, Cunningham D, Hancock BW, Horwich A, et al. Second cancer risk after chemotherapy for Hodgkin’s lymphoma: a collaborative British cohort study. J Clin Oncol. 2011;29:4096–104.

AUTHOR CONTRIBUTIONS
CD, SK, FB, SM, JM, MS, MST, VV, AZ, BVt, MF, AE, PB, and DAE provided study material or patients. CD, HG, AP, and DAE analyzed data. CD, HG, and DAE wrote the manuscript. All authors approved the final manuscript.

FUNDING
Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS
BVt is an advisor or consultant for Amgen, BMS/Celgene, Novartis, Pentaxiafarm, Pfizer, Takeda, Merck Sharp & Dohme, and Gilead Kite; has received honoraria from Novartis, Roche Pharma AG, Takeda, and Merck Sharp & Dohme; reports research funding from Novartis (Inst), Merck Sharp & Dohme (Inst), and Takeda (Inst); and reports travel support from AbbVie, AstraZeneca, KiteGilead, Merck Sharp & Dohme, Takeda, and Novartis. AZ has received honoraria from Takeda; and reports travel grants from Takeda. All other authors report no potential conflicts of interest.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to D.A.E.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

SPRINGER NATURE

Leukemia (2022) 36:580 – 582