GLOBAL STABILITY OF TRAVELING WAVE FRONTS IN A TWO-DIMENSIONAL LATTICE DYNAMICAL SYSTEM WITH GLOBAL INTERACTION

CUI-PING CHENG*
School of Science, Shanghai Institute of Technology
Shanghai 201418, China

RUO-FAN AN
School of Mathematics, University of Mining and Technology
Xuzhou, Jiangsu 221008, China

(Communicated by Wan-Tong Li)

ABSTRACT. This paper is concerned with the traveling wave fronts for a lattice dynamical system with global interaction, which arises in a single species in a 2D patchy environment with infinite number of patches connected locally by diffusion and global interaction by delay. We prove that all non-critical traveling wave fronts are globally exponentially stable in time, and the critical traveling wave fronts are globally algebraically stable by the weighted energy method combined with the comparison principle and the discrete Fourier transform.

1. Introduction. Lattice differential equations (LDEs) are systems of ordinary differential equations with a discrete spatial structure, which can naturally arise in various fields, such as image processing, neural networks, pattern recognition and chemical reaction theory. These can be seen in [9, 14, 29, 37] and the references therein. Recently, there is a particular interest on studying the species population living in a patchy environment consisting of all integer nodes, see [7, 8, 34, 35].

Inspired by Bates [1], Chow [9], Weng et al. [34] and many other excellent survey papers, the authors in [7] considered a single-species population with two-age classes distributed over a patchy environment consisting of all integer nodes of a 2D lattice and derived the following system:

\[
\frac{dw_{k,j}(t)}{dt} = D_m[w_{k+1,j}(t) + w_{k-1,j}(t) + w_{k,j+1}(t) + w_{k,j-1}(t) - 4w_{k,j}(t)] - d_m w_{k,j}(t) + \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q)b(w_{k-l,j-q}(t-r)), \quad (1.1)
\]

where \(w_{k,j}(t)\) denote the densities of matured population in the \((k,j)\)-th patch and time \(t \geq 0\), \(D_m\) and \(d_m\) represent the diffusion coefficient and the death rate of the matured population, respectively, \(r > 0\) is the maturation time of species.

2020 Mathematics Subject Classification. 35B40, 35K57, 35R20.
Key words and phrases. Lattice differential equation with global interaction, global stability, weighted energy method, comparison principle, discrete Fourier transform.

* Corresponding author: Cui-Ping Cheng.
\[\mu = e^{-\int_0^r d(z)dz} \quad \text{and} \quad \alpha = \int_0^r D(z)dz \]
represent the impact of the death rate of immature and the effect of the dispersal rate of immature on the mature population, respectively, where \(d(z) \) and \(D(z) \) are the death rate and diffusion rate of the immature population at age \(z \in (0, r) \), respectively. While
\[\beta_\alpha(l) = 2e^{-2\alpha} \int_0^r \cos(l_\omega_1)e^{2\alpha \cos \omega_1}d\omega_1, \]
\[\gamma_\alpha(l) = 2e^{-2\alpha} \int_0^r \cos(l_\omega_2)e^{2\alpha \cos \omega_2}d\omega_2, \]
for any \(l \in \mathbb{Z} \) and satisfy:
(i): \(\beta_\alpha(l) = \beta_\alpha(|l|) \), \(\gamma_\alpha(l) = \gamma_\alpha(|l|) \) for \(l \in \mathbb{Z} \), that is \(\beta_\alpha(l), \gamma_\alpha(l) \) is isotropic function for any \(\alpha \geq 0 \);
(ii): \(\frac{1}{2\pi} \sum_{l=-\infty}^{\infty} \beta_\alpha(l) = 1 \), \(\frac{1}{2\pi} \sum_{l=-\infty}^{\infty} \gamma_\alpha(l) = 1 \);
(iii): \(\beta_\alpha(l) \geq 0, \gamma_\alpha(l) \geq 0 \) if \(\alpha = 0 \) and \(l \in \mathbb{Z} \); \(\beta_\alpha(l) > 0, \gamma_\alpha(l) > 0 \), if \(\alpha > 0 \) and \(l \in \mathbb{Z} \).
(iv): \(\frac{1}{2\pi} \sum_{l=-\infty}^{\infty} \beta_\alpha(l)e^{\lambda \cos \theta} = e^{2\alpha(\cosh(\lambda \cos \theta) - 1)} \), \(\frac{1}{2\pi} \sum_{l=-\infty}^{\infty} \beta_\alpha(l)e^{\lambda \sin \theta} = e^{2\alpha(\cosh(\lambda \sin \theta) - 1)} \)
Assume the birth function \(b \) satisfies the following assumptions:
(H1): \(b \in C^2(\mathbb{R}^+) \) and \(b(w) \leq b'(0)w \) for \(w \in \mathbb{R}^+ \);
(H2): \(\mu b(w) = d_m w \) has only two real roots 0 and \(w^+ \), and \(b \) is non-decreasing on \([0, w^+]\);
(H3): \(0 < b'(w^+) < \frac{d_m}{\mu} < b'(0) \);
(H4): For \(w \in (0, w^+) \), \(\mu b(w) > d_m w, b'(w) \geq 0 \) and \(b''(w) \leq 0 \).
The authors [7] studied the existence of the asymptotic speed of propagation, the existence of monotone traveling waves and the minimal wave and its relation with the asymptotic speed of propagation. Recently, Xu [35] further showed that for any given admissible speed, all the wave profiles propagating toward a fixed direction of (1.1) have the same asymptotic behavior when they approach the limiting states, which plays a very important role in the stability of traveling waves. Meanwhile, in the past decades, there are various surveys focusing on the existence, uniqueness, asymptotic behavior and stability of traveling waves for LDEs and its continuum RDEs([1–4, 6–9, 11, 13, 16, 17, 19–22, 37–39]).
In this paper, we are concerned with the stability of traveling waves of (1.1) under the assumptions (H1) – (H4). In view of the symmetry, we only consider the case \(\theta \in [0, \frac{\pi}{2}] \). For fixed \(\theta \in [0, \frac{\pi}{2}] \) such that \(\tan \theta \in \mathbb{Q} \) and the Cauchy problem (1.1) with initial data
\[w_{k,j}(t)|_{t=s} = w_{k,j}^0(s), \text{for } s \in [-r, 0], k, j \in \mathbb{Z}, \]
where
\[w_{k,j}^0(s) \to 0, \text{for all } s \in [-r, 0], \text{as } k \cos \theta + j \sin \theta \to -\infty; \]
\[w_{k,j}(s) \to w^+, \text{for all } s \in [-r, 0], \text{as } k \cos \theta + j \sin \theta \to \infty, \]
we prove that the global solution \(\{w_{k,j}(t)\}_{k,j \in \mathbb{Z}} \) of (1.1) and (1.2) converges exponentially to a traveling wavefront \(\phi(k \cos \theta + j \sin \theta + ct) \) for \(c > c_* \) (which is the minimal wave speed); while for \(c = c_* \) the global solution converges to the traveling solution \(\phi(k \cos \theta + j \sin \theta + c_* t) \) algebraically in time, when the initial perturbation around the wave.
As we know, many techniques are developed to investigate the stability of traveling waves such as the spectral analysis method, the weighted energy method ([5, 8, 12, 14, 15, 18, 23–28, 30, 37, 38]) and the comparison principle combining the squeezing technique ([4, 6, 19–22, 31]). Recently, Mei et al. [25] and Huang et al. [15] obtained the global stability of traveling wave fronts with noncritical speed and critical speed of nonlocal reaction-diffusion equations via the weighted energy method together with the comparison principle and Green function or Fourier transform. Zhang [38] applied this method to nonlocal LDEs in one dimension. However, there seems to be not much progress on the stability of traveling waves of system (1.1).

particularly in [8], we only consider the case that the immature population is non-mobile, that is \(D(a) = 0 \) for 0 < \(a < r \). In this case \(\alpha = 0 \), (1.1) reduces to

\[
\frac{du_{k,j}(t)}{dt} = D_m[w_{k+1,j}(t) + w_{k-1,j}(t) + w_{k,j+1}(t) + w_{k,j-1}(t) - 4w_{k,j}(t)] - d_m w_{k,j}(t) + \mu b(w_{k,j}(t - r)).
\]

(1.4)

In monostable case, using weighted energy method, we derived that the Cauchy problem of (1.4) converges to a traveling wavefront when the initial perturbation around the wave is suitably small in a weighted norm. Due to the limitation of the key inequality, the result only holds for \(c > \hat{c} > c_\ast \).

The outline of this paper is as follows: in Section 2, we introduce some preliminaries, recall the result on the existence of traveling wave fronts of (1.1) and present our main result. Section 3 is devoted to the global stability of traveling wave fronts by using the weighted energy method combined with the semi-discrete Fourier transform.

2. Preliminary and main result. Notations. Let \(T > 0 \) be a number and \(X \) be a Banach space. We denote by \(C([0, T]; X) \) the space of the \(X \) valued continuous function on \([0, T]\), and by \(L^1([0, T]; X) \) the space of the \(X \) valued \(L^1 \) functions on \([0, T]\). \(C > 0 \) denotes a generic constant, while \(C_k (k = 1, 2, \ldots) \) represents a specific constant. \(l^\infty \) is the Banach space:

\[
l^\infty = \left\{ c = \{c_{k,j}\}_{k,j \in \mathbb{Z}}, c_{k,j} \in \mathbb{R}; \|c\|_{l^\infty} := \sup_{k,j \in \mathbb{Z}} |c_{k,j}| < \infty \right\},
\]

let \(l^1 \) denote the Banach space:

\[
l^1 = \left\{ c = \{c_{k,j}\}_{k,j \in \mathbb{Z}}, c_{k,j} \in \mathbb{R}; \|c\|_{l^1} := \sum_{k,j \in \mathbb{Z}} |c_{k,j}| < \infty \right\},
\]

and denote by \(l^2 \) the Hilbert space

\[
l^2 = \left\{ c = \{c_{k,j}\}_{k,j \in \mathbb{Z}}, c_{k,j} \in \mathbb{R}; \|c\|_{l^2} := \left(\sum_{k,j \in \mathbb{Z}} |c_{k,j}|^2 \right)^{\frac{1}{2}} < \infty \right\}.
\]

Further, \(l^p_m \) \((p \geq 1)\) denotes the weighted \(l^p \)-space for a weight \(0 < w(x) \in C(\mathbb{R}) \) with the norm

\[
\|c\|_{l^p_m} := \left(\sum_{k,j \in \mathbb{Z}} w(k \cos \theta + j \sin \theta) |c_{k,j}|^p \right)^{\frac{1}{p}}.
\]
For any \(v = \{v_{k,j}\}_{k,j \in \mathbb{Z}} \in l^2 \), its semi-discrete Fourier transform \((10,32)\) is defined as

\[
F[v](\omega) = \hat{v}(\omega) = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} e^{-i(k\omega_1 + j\omega_2)} v_{k,j} \quad \omega = (\omega_1, \omega_2) \in [-\pi, \pi]^2,
\]

and the inverse Fourier transform is given by

\[
F^{-1}[\hat{v}] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e^{i(k\omega_1 + j\omega_2)} \hat{v}(\omega) d\omega_1 d\omega_2 \quad k, j \in \mathbb{Z},
\]

where \(i \) is the imaginary unit.

A traveling wave of system \((1.1)\) is \(w_{k,j}(t) = \phi(x), x = k \cos \theta + j \sin \theta + ct \) satisfying the following equations:

\[
\frac{d\phi(x)}{dx} = D_m(\phi(x + \cos \theta) + \phi(x - \cos \theta) + \phi(x + \sin \theta) + \phi(x - \sin \theta) - 4\phi(x))
\]

\[
-\frac{d_m \phi(x) + \frac{m}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q) b(\phi(x - l \cos \theta - q \sin \theta - cr))}{\lambda - \mu - (q \sin \theta + \lambda cr)}.
\]

Denoting the characteristic equation at the trivial equilibrium \(w^0 = 0 \) by \(\Delta(\lambda, c; \theta) \), we obtain

\[
\Delta(\lambda, c; \theta) = D_m(e^{\lambda \cos \theta} + e^{-\lambda \cos \theta} + e^{\lambda \sin \theta} + e^{-\lambda \sin \theta} - 4) - e\lambda - d_m + \frac{\mu b'(0)}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q)e^{-(\lambda \cos \theta + \lambda q \sin \theta + \lambda cr)}.
\]

It is easy to see that \(\Delta(\lambda, c; \theta) \) is well-defined and satisfies the following properties.

Lemma 2.1. [7, Lemma 4.2] There exist a pair of \(c_* \) and \(\lambda_* \) such that

(i): \(\Delta(\lambda_*, c_*; \theta) = 0 \), \(\frac{\partial}{\partial \lambda} \Delta(\lambda_*, c_*; \theta) = 0 \);

(ii): for \(0 < c < c_* \), and any \(\lambda > 0 \), \(\Delta(\lambda, c; \theta) > 0 \);

(iii): for \(c > c_* \), the equation \(\Delta(\lambda_*, c_*; \theta) = 0 \) has two positive real solutions

\(0 < \lambda_1(c) < \lambda_2(c) \), such that \(\Delta(\cdot, c; \theta) > 0 \) in \((\lambda_1(c), \lambda_2(c)) \), \(\Delta(\cdot, c; \theta) > 0 \) in \(\mathbb{R}\setminus(\lambda_1(c), \lambda_2(c)) \).

The existence of traveling wave fronts for \((2.1)\) with the boundary condition \((2.2)\) can be easily verified by using the monotone iteration technique combined with the sub-sup solutions, see [7].

Lemma 2.2. [7, Theorem 5.4] Assume \((H1) - (H4)\) hold. Then there exists \(c_* > 0 \) such that for every \(c \geq c_* \), \((2.1)\) has a monotone traveling wave \(U : \mathbb{R} \to \mathbb{R} \) satisfying the boundary condition \(\lim_{x \to -\infty} \phi(x) = 0 \), \(\lim_{x \to +\infty} \phi(x) = w^+ \); For any \(c \in (0, c_*) \), \((2.1)\) has no nontrivial traveling wave solution satisfying \(\phi(x) \in [0, w^+] \) for all \(x \in \mathbb{R} \).

Recently, Xu [35] derived the asymptotic behavior of traveling waves of \((1.1)\), which is the key premise.

Lemma 2.3. [35, Theorem 2.1] Assume \((H1) - (H4)\) hold. For any \(c \geq c_* \), let \((c, \phi)\) be a solution of \((2.1)\) with boundary conditions \((2.2)\), then

\[
\lim_{x \to -\infty} \phi(x) = (m - x)^l e^{\lambda_1(c)x}
\]

for some \(m \in \mathbb{R} \), where \(l = 0 \) when \(c > c^* \) and \(l = 1 \) when \(c = c^* \).
Now, define a weight function \(\nu(x) \) as
\[
\nu(x) = e^{-\lambda_s(x-x_*)},
\]
where \(\lambda_s \) is given in Lemma 2.1 and \(x_* > 0 \) is chosen to be sufficiently large such that Eq. (3.19) hold.

We now state our main stability result in this paper.

Theorem 2.4. Assume that (H1) – (H4) hold. For a given traveling wave front \(\phi(x) \) of (1.1) with speed \(c \geq c_* \), if the initial data satisfies \(0 \leq w_{k,j}^0(s) \leq w^+ \) and condition (1.3) and the initial perturbation \(w_{k,j}^0(s) - \phi(k \cos \theta + j \sin \theta + cs) \in C^0([-r,0], l^1_\nu(\mathbb{Z}^2)) \) and
\[
\frac{d}{ds}(w_{k,j}^0(s) - \phi(k \cos \theta + j \sin \theta + cs)) \in L^1([-r,0], l^1_\nu(\mathbb{Z}^2)),
\]
then the unique solution \(w_{k,j}(t) \) of the corresponding Cauchy problem of (1.1) with the initial value \(w_{k,j}(s) = w_{k,j}^0(s) \) exists globally and satisfies
\[
0 \leq w_{k,j}(t) \leq w^+, k,j \in \mathbb{Z}, t \geq 0,
\]
and
\[
w_{k,j}(t) - \phi(k \cos \theta + j \sin \theta + ct) \in C^0([0,\infty), l^1_\nu).
\]
Furthermore, for \(0 < \kappa \leq 2 \), when \(c > c_* \), the solution \(w_{k,j}(t) \) converges to the traveling wave fronts \(\phi(k \cos \theta + j \sin \theta + ct) \) exponentially,
\[
\sup_{k,j \in \mathbb{Z}} |w_{k,j}(t) - \phi(k \cos \theta + j \sin \theta + ct)| \leq C_1(1+t)^{-\frac{\kappa}{2}}e^{-\mu_0 t}, t \geq 0,
\]
for some constant \(\mu_0 \); when \(c = c_* \), the solution \(w_{k,j}(t) \) converges to the traveling wavefronts \(\phi(k \cos \theta + j \sin \theta + c_* t) \) algebraically,
\[
\sup_{k,j \in \mathbb{Z}} |w_{k,j}(t) - \phi(k \cos \theta + j \sin \theta + c_* t)| \leq C_3(1+t)^{-\frac{\kappa}{2}}, t \geq 0.
\]

3. Stability

We first consider the following initial value problem:
\[
\begin{aligned}
\frac{d w_{k,j}(t)}{dt} &= D_m[w_{k+1,j}(t) + w_{k-1,j}(t) + w_{k,j+1}(t) + w_{k,j-1}(t) - 4w_{k,j}(t)] \\
&\quad - d_m w_{k,j}(t) + \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q)b(w_{k-1,j-q}(t-r)),
\end{aligned}
\]
(3.1)
where \(k, j \in \mathbb{Z}, t > 0 \) and \(s \in [-r,0] \). Since our analysis in this paper relies on the comparison principle, we now state the definition of super-sub solutions of (1.1) as follows:

Definition 3.1. A sequence of continuous differentiable functions \(\{w_{k,j}(t)\}_{k,j \in \mathbb{Z}}, t \in [-r, l], l > 0 \) is called super-/subsolution of (1.1) on \([0, l]\), if
\[
\begin{aligned}
\frac{d w_{k,j}(t)}{dt} \geq \langle \leq \rangle & D_m[w_{k+1,j}(t) + w_{k-1,j}(t) + w_{k,j+1}(t) + w_{k,j-1}(t) - 4w_{k,j}(t)] \\
&\quad - d_m w_{k,j}(t) + \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q)b(w_{k-1,j-q}(t-r)).
\end{aligned}
\]
(3.2)
Theorem 3.2. For any given function

\[W^0 = \{ w_{k,j}^0 \}_{k,j \in \mathbb{Z}}, \quad w_{k,j}^0 \in C^0 \left([-r, 0], \mathbb{Z}^2 \right), \quad k, j \in \mathbb{Z} \]

and \(w_{k,j}^0(s) - \phi(k \cos \theta + j \sin \theta + cs) \in C^0 \left([-r, 0], l^1_{\mathbb{Z}} \right) \), then (1.1) has a unique solution \(W(t) = \{ w_{k,j} \}_{k,j \in \mathbb{Z}} \) with \(w_{k,j} \in C^0 \left([-r, \infty], [0, w^+] \right) \), and \(w_{k,j}(t) - \phi(k \cos \theta + j \sin \theta + ct) \in C^0 \left([0, +\infty], l^1_{\mathbb{Z}} \right) \). Furthermore, for any pair of sup-solution \(w_{k,j}^+(t) \) and subsolution \(w_{k,j}^-(t) \) of (3.1) on \([0, \infty)\) with \(0 \leq w_{k,j}^-(t), w_{k,j}^+(t) \leq w^+, t \in [-r, \infty) \) and \(w_{k,j}^-(s) \leq w_{k,j}^+(s) \), for \(s \in [-r, 0] \), there hold \(0 \leq w_{k,j}^-(t) \leq w_{k,j}^+(t) \leq w^+ \) for \(t \in [0, \infty) \).

Note that (3.1) is equivalent to

\[
\begin{align*}
 w_{k,j}(t) &= e^{-\delta t} w_{k,j}(0) + \int_0^t e^{-\delta s} \left(G_w(s) + H_w(s) \right) ds, \\
 w_{k,j}(t) &= w_{k,j}^0(s) \in C^0 \left([-r, 0], [0, 0] \right),
\end{align*}
\]

where \(\delta = 4D_m + d_m \),

\[G_w(s) = D_m \left[w_{k+1,j}(s) + w_{k-1,j}(s) + w_{k,j+1}(s) + w_{k,j-1}(s) \right], \]

and

\[H_w(s) = \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_l(q) \gamma_l(q) b \left(w_{k-1,j}(s-r) \right). \]

Theorem 3.2 can be verified using an argument in [7, Theorem 3.1] and [33, Lemma 3.2] and we omit it here.

Let

\[
\begin{align*}
 w_{k,j}^+(s) &= \max \left\{ w_{k,j}^0(s), \phi(k \cos \theta + j \sin \theta + cs) \right\}, \\
 w_{k,j}^-(s) &= \min \left\{ w_{k,j}^0(s), \phi(k \cos \theta + j \sin \theta + cs) \right\},
\end{align*}
\]

for \(s \in [-r, 0] \) and \(k, j \in \mathbb{Z} \). It follows that

\[
0 \leq w_{k,j}^-(s) \leq w_{k,j}^0(s) \leq w_{k,j}^+(s) \leq w^+, s \in [-r, 0],
\]

and

\[
0 \leq w_{k,j}(s) \leq \phi(k \cos \theta + j \sin \theta + cs) \leq w_{k,j}^+(s) \leq w^+, s \in [-r, 0]. \tag{3.3}
\]

Denote \(w_{k,j}^+(t) \left| w_{k,j}^+(t) \right| \) as the corresponding solutions of Eq.(3.1) with respect to the above mentioned initial data \(w_{k,j}(s) \left| w_{k,j}(s) \right| \), i.e.

\[
\begin{align*}
 \frac{dw_{k,j}^+(t)}{dt} &= D_m \left[w_{k+1,j}^+(t) + w_{k-1,j}^+(t) + w_{k,j+1}^+(t) + w_{k,j-1}^+(t) - 4w_{k,j}^+(t) \right] \\
 &- d_m w_{k,j}^+(t) + \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_l(q) \gamma_l(q) b \left(w_{k-1,j}(t-r) \right), t \geq 0, \\
 w_{k,j}^+(s) &= w_{k,j}^+(s), s \in [-r, 0].
\end{align*}
\]

By the comparison principle, we have

\[
\begin{align*}
 0 &\leq w_{k,j}^+(t) \leq w_{k,j}(t) \leq w_{k,j}^+(t) \leq w^+, t \geq 0, \\
 0 &\leq w_{k,j}^-(t) \leq \phi(k \cos \theta + j \sin \theta + ct) \leq w_{k,j}^+(t) \leq w^+, t \geq 0. \tag{3.4}
\end{align*}
\]
Thus
\[w_{k,j}^-(t) - \phi(x) \leq w_{k,j}(t) - \phi(x) \leq w_{k,j}^+(t) - \phi(x), \]
where \(x = k \cos \theta + j \sin \theta + ct \). Now, we can prove the stability of traveling wavefronts in three steps.

Step 1. The convergence of \(w_{k,j}^+(t) \) to \(\phi(k \cos \theta + j \sin \theta + ct) \).

\[
\begin{aligned}
\left\{ \begin{array}{l}
z_{k,j}(t) = w_{k,j}^+(t) - \phi(k \cos \theta + j \sin \theta + ct),
\quad t \geq 0 \\
z_{k,j}^0(s) = w_{k,j}^+(s) - \phi(k \cos \theta + j \sin \theta + cs),
\quad s \in [-r, 0],
\end{array} \right.
\end{aligned}
\]

According to (3.3) and (3.4), we have \(z_{k,j}^0(s) \geq 0 \), and \(z_{k,j}(t) \geq 0 \). By simple calculation, \(z_{k,j}(t) \) satisfies

\[
\begin{aligned}
\frac{dz_{k,j}(t)}{dt} - D_m [z_{k+1,j}(t) + z_{k-1,j}(t) + z_{k,j+1}(t) + z_{k,j-1}(t) - 4z_{k,j}(t)] + dm z_{k,j}(t) \\
= \frac{\mu}{(2\pi)^2} \sum_{l,q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q) z_{k-l,j-q}(t-r) \\
+ \frac{\mu}{(2\pi)^2} \sum_{l,q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q) [b(z_{k-l,j-q}(t-r) + \phi) - b(\phi) - b'(\phi) z_{k-l,j-q}(t-r)], \\
- \frac{\mu}{(2\pi)^2} \sum_{l,q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q) m_{k,j}(t-r) + \frac{\mu}{(2\pi)^2} \sum_{l,q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q) n_{k,j}(t-r),
\end{aligned}
\]

where

\[
m_{k,j}(t-r) = b(z + \phi) - b(\phi) - b'(\phi) z_{k,j}(t-r), \\
n_{k,j}(t-r) = [b'(\phi) - b'(0)] z_{k,j}(t-r),
\]

with \(\phi = \phi(x - t \cos \theta - q \sin \theta - ct) \). The property \(b''(\cdot) \leq 0 \) on \([0, w^+]\) leads to

\[
b'(\phi) - b'(0) \leq 0
\]

and

\[
m_{k,j}(t-r) = b(z + \phi) - b(\phi) - b'(\phi) z_{k,j}(t-r) = b'(\phi) \frac{d}{dt} z^2 \leq 0,
\]

where \(\tilde{\phi} \) is some function between \(\phi \) and \(\phi + z \). Then we get the following inequality,

\[
\frac{dz_{k,j}(t)}{dt} - D_m [z_{k+1,j}(t) + z_{k-1,j}(t) + z_{k,j+1}(t) + z_{k,j-1}(t) - 4z_{k,j}(t)] + dm z_{k,j}(t)
\]

\[
- \frac{\mu}{(2\pi)^2} \sum_{l,q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q) z_{k-l,j-q}(t-r) \leq 0.
\]

Let \(\tilde{z}_{k,j}(t) \) be the solution of the following equation:

\[
\begin{aligned}
\frac{d\tilde{z}_{k,j}(t)}{dt} - D_m [z_{k+1,j}(t) + z_{k-1,j}(t) + z_{k,j+1}(t) + z_{k,j-1}(t) - 4z_{k,j}(t)] + dm z_{k,j}(t) \\
= \frac{\mu}{(2\pi)^2} \sum_{l,q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q) z_{k-l,j-q}(t-r) = 0,
\end{aligned}
\]

\(\tilde{z}_{k,j}(s) = z_{k,j}^0(s), s \in [-r, 0], \)
Then according to the comparison principle, we have
\[0 \leq z_{k,j}(t) \leq \bar{z}_{k,j}(t), k, j \in \mathbb{Z}, t > 0. \quad (3.9) \]
Let \(z_{k,j}^*(t) := \nu(x)\bar{z}_{k,j}(t) \), then \(z_{k,j}^*(t) \) satisfies
\[
\begin{align*}
\frac{dz_{k,j}^*(t)}{dt} - D_m \left[e^{\lambda_s \cos \theta} z_{k+1,j}^*(t) + e^{-\lambda_s \cos \theta} z_{k-1,j}^*(t) \\
+ e^{\lambda_s \sin \theta} z_{k,j+1}^*(t) + e^{-\lambda_s \sin \theta} z_{k,j-1}^*(t) \right] + (c\lambda_s + 4D_m + d_m)z_{k,j}^*(t) \\
= \frac{\mu b'(0)}{(2\pi)^2} \sum_{l,q=-\infty}^{\infty} \beta_c(l)\gamma_c(q)e^{-\lambda_s(1\cos \theta + q\sin \theta + \pi r)}z_{k-l,j-q}^*(t-r),
\end{align*}
\]
where \(\omega = (\omega_1, \omega_2) \).

By Fourier transformation, one has
\[
\mathcal{F}\left[e^{\lambda_s \cos \theta} z_{k+1,j}^*(t)\right] = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} e^{-i(k\omega_1 + j\omega_2)} e^{\lambda_s \cos \theta} z_{k+1,j}^*(t) \\
= e^{\lambda_s \cos \theta} e^{i\omega_1} \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} e^{-i(k+1)\omega_1 + j\omega_2} z_{k+1,j}^*(t) \\
= e^{\lambda_s \cos \theta} e^{i\omega_1} \hat{z}^*(t, \omega),
\]
where
\[
\hat{z}^*(t, \omega) = \mathcal{F}\left[z_{k,j}^*(t)\right],
\]
and
\[
\begin{align*}
\mathcal{F}\left[\frac{b'(0)\mu}{(2\pi)^2} \sum_{l,q=-\infty}^{\infty} \beta_c(l)\gamma_c(q)e^{-\lambda_s(1\cos \theta + q\sin \theta + \pi r)}z_{k-l,j-q}^*(t-r)\right] \\
= \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} e^{-i(k\omega_1 + j\omega_2)} \left[\frac{b'(0)\mu}{(2\pi)^2} \sum_{l,q=-\infty}^{\infty} \beta_c(l)\gamma_c(q)e^{-\lambda_s(1\cos \theta + q\sin \theta + \pi r)}z_{k-l,j-q}^*(t-r)\right] \\
- b'(0) \left\{ \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_c(l)\gamma_c(q)e^{-\lambda_s(1\cos \theta + q\sin \theta + \pi r)}e^{-i(l\omega_1 + q\omega_2)} \right\} \hat{z}^*(t-r, \omega),
\end{align*}
\]
where \(\lambda_s = c\lambda_s + 4D_m + d_m - D_m \left[e^{\lambda_s \cos \theta} e^{i\omega_1} + e^{-\lambda_s \cos \theta} e^{-i\omega_1} + e^{\lambda_s \sin \theta} e^{i\omega_2} + e^{-\lambda_s \sin \theta} e^{-i\omega_2} \right], \)
\[
B(\omega) = b'(0) \left\{ \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_c(l)\gamma_c(q)e^{-\lambda_s(1\cos \theta + q\sin \theta + \pi r)}e^{-i(l\omega_1 + q\omega_2)} \right\},
\]
where
\[
\hat{z}_{0}^*(t, \omega) = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} e^{-i(k\omega_1 + j\omega_2)} e^{-\lambda_s(1\cos \theta + q\sin \theta + \pi r)}z_{k,j}^*(t).
\]

In order to obtain the decay estimates of \(z_{k,j}^*(t) \), we need the following lemma.

Lemma 3.3. Let \(x(t) \) be the solution to the following scalar differential equations with delay
\[
\begin{align*}
\frac{dx(t)}{dt} + k_1 x(t) = k_2 x(t-r), t > 0, r > 0, \\
x(s) = x_0(s), s \in [-r, 0],
\end{align*}
\]
Then
\[x(t) = e^{-k_1(t+r)}e^{k_3t}x_0(-r) + \int_{-r}^{0} e^{-k_1(t-s)}e^{k_3(t-r-s)} [z_0'(s) + k_1z_0(s)] \, ds, \]
where \(k_3 = k_2e^{k_1r} \) and \(e^{k_3t} \) is the so-called delayed exponential function in the form
\[e^{k_3t} = \begin{cases} 0, & -\infty < t < -r, \\ 1, & -r \leq t < 0, \\ 1 + k_3 \frac{t}{1!}, & 0 \leq t < r, \\ 1 + k_3 \frac{t}{1!} + k_3^2 \frac{(t-r)^2}{2!}, & r \leq t < 2r, \\ \vdots & \vdots \\ 1 + k_3 \frac{t}{1!} + k_3^2 \frac{(t-r)^2}{2!} + \cdots + k_3^m \left[\frac{t - (m-1)r}{m!} \right]^m, & (m-1)r \leq t < mr, \end{cases} \]
and \(e^{k_3t} \) is a solution to the following linear homogeneous equation with pure delay
\[\frac{d}{dt}x(t) = k_3x(t-r), \quad t \geq 0, \]
\[x(s) \equiv 1, \quad s \in [-r, 0]. \]

Furthermore, it is pointed in [36] that when \(k_1 \geq k_2 \geq 0 \), there exists a constant \(\varepsilon_1 = \varepsilon_1(r) \) with \(0 < \varepsilon_1 < 1 \) for \(r > 0 \), and \(\varepsilon_1 = 1 \) for \(r = 0 \), and \(\varepsilon_1 = \varepsilon_1(r) \to 0^+ \) as \(r \to +\infty \), such that
\[e^{-k_1 t}e^{k_3 t} \leq C e^{-\varepsilon_1(k_1-k_2)t}, \quad t > 0. \quad (3.12) \]

In view of Lemma 3.3, the solution of (3.11) can be given as follows:
\[z^*(t, \omega) = e^{-A(\omega)(t+r)}e^{\mathfrak{B}(\omega)t}z_0^*(-r, \omega) \]
\[+ \int_{-r}^{0} e^{-A(\omega)(t-s)}e^{\mathfrak{B}(\omega)(t-r-s)} [\partial_s z_0^*(s, \omega) + A(\omega)z_0^*(s, \omega)] \, ds. \quad (3.13) \]
where \(\mathfrak{B}(\omega) = \mathbf{B}e^{A(\omega)r} \). Applying the inverse Fourier transform to (3.13), we obtain
\[z_{k,j}^*(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e^{i(k\omega_1 + j\omega_2)} e^{-A(\omega)(t+r)}e^{\mathfrak{B}(\omega)t}z_0^*(-r, \omega) \, d\omega_1 d\omega_2 \]
\[+ \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-r}^{0} e^{i(k\omega_1 + j\omega_2)} e^{-A(\omega)(t-s)}e^{\mathfrak{B}(\omega)(t-r-s)} [\partial_s z_0^*(s, \omega) + A(\omega)z_0^*(s, \omega)] \, dsd\omega_1 d\omega_2, \quad (3.14) \]

Let
\[P_{k,j}(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e^{i(k\omega_1 + j\omega_2)} e^{-A(\omega)(t+r)}e^{\mathfrak{B}(\omega)t}z_0^*(-r, \omega) \, d\omega_1 d\omega_2, \]
and
\[Q_{k,j}(t) \]
\[= \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-r}^{0} e^{i(k\omega_1 + j\omega_2)} e^{-A(\omega)(t-s)}e^{\mathfrak{B}(\omega)(t-r-s)} [\partial_s z_0^*(s, \omega) + A(\omega)z_0^*(s, \omega)] \, dsd\omega_1 d\omega_2. \]
we first give an estimate of \(P_{k,j}(t) \) in \(l^\infty(\mathbb{Z}^2) \),

\[
\| P_{k,j}(t) \| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left\| e^{-A(\omega)(t+r)} \right\| \left\| e^{\mathcal{B}(\omega)t} \right\| \left| z_0^*(t-r, \omega) \right| d\omega_1 d\omega_2. \tag{3.15}
\]

For the estimation of \(\| e^{-A(\omega)t} \| \), one has

\[
e^{-c_1 t} \exp \left\{ D_m \left[(e^{\lambda_+ \cos \theta} + e^{-\lambda_+ \cos \theta} + e^{\lambda_+ \sin \theta} + e^{-\lambda_+ \sin \theta}) \right] \right\}
\]

where

\[
c_1 = c_1 + 4D_m + d_m,
\]

and

\[
k_0 = c_1 - D_m \left[(e^{\lambda_+ \cos \theta} + e^{-\lambda_+ \cos \theta} + e^{\lambda_+ \sin \theta} + e^{-\lambda_+ \sin \theta}) \right],
\]

Meanwhile, due to

\[
B(\omega) = b'(0) \left\{ \frac{\mu}{(2\pi)^2} \sum_{l,q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q) e^{-\lambda_+ (1 + q \sin \theta) (t + q \cos \theta)} e^{i(l \omega_1 + q \omega_2)} \right\}
\]

\[
|B(\omega)| \leq \frac{\mu b'(0)}{(2\pi)^2} \sum_{l,q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q) e^{-\lambda_+ (1 + q \sin \theta) (t + q \cos \theta)} := k_2
\]

we have

\[
\| e^{\mathcal{B}(\omega)t} \| \leq |B(\omega)| \leq k_2 e^{k_3 t} := k_3,
\]

Then

\[
\| P_{k,j}(t) \| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e^{-k_1 (t+r) + k_3 t} \left| z_0^*(t-r, \omega) \right| d\omega_1 d\omega_2. \tag{3.16}
\]

Since when \(c \geq c_*, \)

\[
k_1 = k_0 + D_m \left[(e^{\lambda_+ \cos \theta} + e^{-\lambda_+ \cos \theta} + e^{\lambda_+ \sin \theta} + e^{-\lambda_+ \sin \theta}) \right] (1 - \cos \omega_1)
\]

\[
= c_1 + d_1 - D_m \left[(e^{\lambda_+ \cos \theta} + e^{-\lambda_+ \cos \theta} + e^{\lambda_+ \sin \theta} + e^{-\lambda_+ \sin \theta}) - 4 \right]
\]

\[
+ D_m \left[(e^{\lambda_+ \cos \theta} + e^{-\lambda_+ \cos \theta}) \right] (1 - \cos \omega_1) + (e^{\lambda_+ \sin \theta} + e^{-\lambda_+ \sin \theta}) (1 - \cos \omega_2)
\]

\[
\geq \frac{\mu b'(0)}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q) e^{-\lambda_+ (1 + q \sin \theta) (t + q \cos \theta)} = k_2,
\]

(3.12) and (3.16) imply that

\[
\| P_{k,j}(t) \| \leq C \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e^{-c_1 (t+k_2) + k_3 t} \left| z_0^*(t-r, \omega) \right| d\omega_1 d\omega_2. \tag{3.17}
\]

for a constant \(0 < \epsilon_1 < 1. \)

Since \(e^\frac{e^{x+y}-x-y}{2} \geq 1 \) for all \(x \in \mathbb{R}, \) we obtain

\[
\exp \left\{ -D_m \left[(e^{\lambda_+ \cos \theta} + e^{-\lambda_+ \cos \theta} \right] (1 - \cos \omega_1) + (e^{\lambda_+ \sin \theta} + e^{-\lambda_+ \sin \theta}) (1 - \cos \omega_2) \right\}
\]
According to Taylor series expansion
\[e^{i\xi} = 1 + i\xi - \frac{\xi^2}{2!} - i\frac{\xi^3}{3!} + \frac{\xi^4}{4!} - \cdots , \]
\[e^{-i\xi} + e^{i\xi} = 2\left(1 - \frac{\xi^2}{2!} + \frac{\xi^4}{4!} - \cdots \right). \]
It follows that
\[\frac{e^{-i\xi} + e^{i\xi}}{2} \leq 1 - M|\xi|^\kappa + |\xi|^n h(\xi), \]
where \(0 < \kappa \leq 2, \ h(\xi) \to 0\) as \(\xi \to 0\). Hence, there exist \(0 < M_1 < M\) and \(a_0 > 0\) such that
\[\frac{e^{-i\xi} + e^{i\xi}}{2} \leq 1 - M_1|\xi|^\kappa, \text{ for } |\xi| \leq a_0, \]
and \(0 < \delta < 1\) such that
\[\frac{e^{-i\xi} + e^{i\xi}}{2} = \cos \xi \leq 1 - \delta, \text{ for } |\xi| > a_0. \]
Let \(E_{a_0} = \{\xi \in [-\pi, \pi], |\xi| > a_0\}\). Then one has
\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \exp \left\{-\epsilon_1 D_m \left[4 - \left(e^{-i\xi_1} + e^{i\xi_1} + e^{-i\omega_2} + e^{i\omega_2}\right)\right]\right\} |\widehat{\varepsilon}(\omega_1, \omega_2)| d\omega_1 d\omega_2 \]
\[\leq \|\widehat{\varepsilon}(\omega_1, \omega_2)\|_{L^\infty([-\pi, \pi]^2)} \times \]
\[\int_{-\pi}^{\pi} \exp \left\{-\epsilon_1 D_m \left[2 - \left(e^{-i\omega_2} + e^{i\omega_2}\right)\right]\right\} d\omega_2 \int_{-\pi}^{\pi} \exp \left\{-\epsilon_1 D_m \left[2 - \left(e^{-i\xi} + e^{i\xi}\right)\right]\right\} d\xi \]
\[= \|\widehat{\varepsilon}(\omega_1, \omega_2)\|_{L^\infty([-\pi, \pi]^2)} \left(\int_{-\pi}^{\pi} \exp \left\{-\epsilon_1 D_m \left[2 - \left(e^{-i\xi} + e^{i\xi}\right)\right]\right\} d\xi \right)^2 \]
\[\leq \|\widehat{\varepsilon}(\omega_1, \omega_2)\|_{L^\infty([-\pi, \pi]^2)} \left(\int_{|\xi| < a_0} e^{-2\epsilon_1 D_m M_1 |\xi|^n} d\xi + \int_{|\xi| \leq a_0} e^{-2\epsilon_1 D_m \delta t} d\xi \right)^2 \]
\[\leq \|\widehat{\varepsilon}(\omega_1, \omega_2)\|_{L^\infty([-\pi, \pi]^2)} \left(\int_{|\xi| < a_0} e^{-2\epsilon_1 D_m M_1 |\xi|^n} d\xi + e^{-2\epsilon_1 D_m \delta t m(E_{a_0})} \right)^2, \quad (3.18) \]
where \(m(E_{a_0})\) is the measure of \(E_{a_0}\).
By changing variables \(\sigma = \xi t^{\frac{1}{2}}, \) one has
\[\int_{|\xi| < a_0} e^{-\epsilon_1 D_m M_1 |\xi|^n} d\xi + e^{-\epsilon_1 D_m \delta t m(E_{a_0})} \leq t^{\frac{1}{2}} \int_{|\sigma| \leq a_0 t^{\frac{1}{2}}} e^{-\epsilon_1 D_m M_1 |\sigma|^n} d\sigma + e^{-\epsilon_1 D_m \delta t m(E_{a_0})} \leq Ct^{\frac{1}{2}}, \]
for some constant \(C > 0\).
Then
\[\|P_{k,j}(t)\| \leq \frac{C}{2\pi} e^{-\epsilon_1 (k_0_k - k_2) t} \times \]
\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \exp \left\{-\epsilon_1 D_m \left[4 - \left(e^{-i\xi_1} + e^{i\xi_1} + e^{-i\omega_2} + e^{i\omega_2}\right)\right]\right\} |\widehat{\varepsilon}(\omega_1, \omega_2)| d\omega_1 d\omega_2 \]
\[\begin{align*}
&\leq C\|z^*_0(-r, \omega)\|_{L^\infty([-\pi, \pi]^2)} t^{-\frac{3}{2}} e^{-c_1(k_0-k_2)t} \\
&\leq C\|z^*_k(-r)\|_{L^2(\mathbb{Z}^2)} t^{-\frac{3}{2}} e^{-c_1(k_0-k_2)t}.
\end{align*} \]

Since \(P_{k,j}(t) \) has no singularity for \(t \) near zero, the term \(t^{\frac{3}{2}} \) can be replaced by \((1+t)^{\frac{3}{2}} \), we get

\[\|P_{k,j}(t)\| \leq C\|z^*_k(-r)\|_{L^2(\mathbb{Z}^2)} (1+t)^{-\frac{3}{2}} e^{-c_1(k_0-k_2)t}. \]

The following inequality can be obtained similarly

\[\|Q_{k,j}(t)\| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left| e^{-A(\omega)(t-s)} \left| e^{B(\omega)(t-r-s)} \right| \right| \partial_r \tilde{z}_0^*(s, \omega) + A(\omega) \tilde{z}_0^*(s, \omega) \right| \, d\omega \, ds \, dr \leq C \int_{-\pi}^{\pi} \left(\|\tilde{z}_{k,j}(s)\|_{L^2(\mathbb{Z}^2)} + \left| \frac{d}{ds} \tilde{z}_{k,j}(s) \right|_{L^2(\mathbb{Z}^2)} \right) \, ds \, (1+t)^{-\frac{3}{2}} e^{-c_1(k_0-k_2)t}. \]

Consequently, we get the following decay estimate

\[\|z^*_k(-r)\|_{L^\infty(\mathbb{Z}^2)} \leq C(1+t)^{-\frac{3}{2}} e^{-c_1(k_0-k_2)t}. \]

When \(c > c_\ast \), one has \(k_0 > k_2 \). It then follows that

\[\|z^*_k(-r)\|_{L^\infty(\mathbb{Z}^2)} \leq C(1+t)^{-\frac{3}{2}} e^{-c_1\mu_1 t}, \]

where \(\mu_1 = k_0 - k_2 > 0 \).

When \(c = c_\ast \), we have

\[\|z^*_k(-r)\|_{L^\infty(\mathbb{Z}^2)} \leq C(1+t)^{-\frac{3}{2}}, \]

due to \(k_0 = k_2 \).

According to (3.9),

\[z_{k,j}(t) \leq \tilde{z}_{k,j}(t) = e^{\lambda_\ast (k \cos \theta + j \sin \theta + c t - x_\ast)} z^*_k(t), \]

let \(H = \{ k, j \in \mathbb{Z}, k \cos \theta + j \sin \theta < x_\ast - c t \} \). If \(k, j \in H \), then \(e^{\lambda_\ast (k + c t - \xi_\ast)} \leq 1 \).

Thus, the following decay for \(z_{k,j}(t) \) is clear.

Lemma 3.4. For any \(r > 0 \), it holds that

(i): when \(c > c_\ast \), then

\[\|z_{k,j}(t)\|_{L^\infty(H)} \leq C(1+t)^{-\frac{3}{2}} e^{-c_1\mu_1 t} \]

for some \(\mu_1 > 0 \);

(ii): when \(c = c_\ast \), then

\[\|z_{k,j}(t)\|_{L^\infty(H)} \leq C(1+t)^{-\frac{3}{2}}. \]

Next we will prove \(z_{k,j}(t) \) decay exponentially for \((k, j) \in \mathbb{Z}^2 \backslash H \).

Lemma 3.5. For \(r > 0 \), it holds that

(i): when \(c > c_\ast \), then

\[\|z_{k,j}(t)\|_{L^\infty(\mathbb{Z}^2 \backslash H)} \leq C(1+t)^{-\frac{3}{2}} e^{-\mu_2 t}, \]

where \(\mu_2 \) is a constant and satisfies

\[0 < \mu_2 < \min \{ d_m - \mu b'(w^+), \epsilon_1 \mu_1 \}; \]

(ii): when \(c = c_\ast \), then

\[\|z_{k,j}(t)\|_{L^\infty(\mathbb{Z}^2 \backslash H)} \leq C(1+t)^{-\frac{3}{2}}. \]
Proof. Let \(z_{k,j}(t) = w^+_{k,j}(t) - \phi(k \cos \theta + j \sin \theta + ct) \), we have
\[
\frac{dz_{k,j}(t)}{dt} - D_m[z_{k+1,j}(t) + z_{k-1,j}(t) + z_{k,j+1}(t) + z_{k,j-1}(t) - 4z_{k,j}(t)] + d_m z_{k,j}(t)
\]
\[
\leq \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_{\alpha}(l)\gamma_{\alpha}(q) (b(\phi + z) - b(\phi)) .
\]

Since \(b'(\cdot) \leq 0 \), we have
\[
b(\phi + z) - b(\phi) = b'(\phi)z + b'(\phi)z^2 \leq b'(\phi)z ,
\]
where \(\tilde{\phi} \) is a function between \(\phi \) and \(\phi + z \). Consequently,
\[
\frac{dz_{k,j}(t)}{dt} - D_m[z_{k+1,j}(t) + z_{k-1,j}(t) + z_{k,j+1}(t) + z_{k,j-1}(t) - 4z_{k,j}(t)] + d_m z_{k,j}(t)
\]
\[
\leq \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_{\alpha}(l)\gamma_{\alpha}(q) b'(\phi)z_{k-l,j-q}(t-r) ,
\]
\[
z_{k,j}(t)_{k \cos \theta + j \sin \theta < x_s - ct} \leq C_2(1 + t)^{-\frac{1}{2}} e^{-\epsilon_{1}\mu t} ,
\]
\[
z_{k,j}(t)_{t=x_s} = z^0_{k,j}(s) , s \in [-r,0] , k,j \in \mathbb{Z} ,
\]
for some positive constant \(C_2 \). Let
\[
\tilde{z}(t) = C_3(1 + r + t)^{-\frac{1}{2}} e^{-\mu t} ,
\]
for \(C_3 \geq C_2 \geq \max_{s \in [-r,0],k,j \in \mathbb{Z}} |z^0_{k,j}(s)| \), and \(\mu_2 \) will be chosen later. Choose a large number \(x_s \) such that for \(x > x_s > 1 \),
\[
d_m - \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_{\alpha}(l)\gamma_{\alpha}(q) b'(\phi(x - l \cos \theta - q \sin \theta - cr))
\]
\[
\geq \epsilon_0 [d_m - \mu b'(w^+)] ,
\]
where \(0 < \epsilon_0 < 1 \). We then obtain
\[
\frac{d\tilde{z}(t)}{dt} + d_m \tilde{z}(t) - \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_{\alpha}(l)\gamma_{\alpha}(q) b'(\phi) \tilde{z}(t-r)
\]
\[
\geq C_3(1 + r + t)^{-\frac{1}{2}} e^{-\mu t} \left\{ d_m - \mu_2 - \frac{2}{\kappa (1 + r + t)} - \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_{\alpha}(l)\gamma_{\alpha}(q) b'(\phi) \right\}
\]
\[
- \left[e^{\mu t} \left(\frac{1 + t}{1 + r + t} \right)^{-\frac{1}{2}} - 1 \right] \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_{\alpha}(l)\gamma_{\alpha}(q) b'(\phi)
\]
\[
\geq C_3(1 + r + t)^{-\frac{1}{2}} e^{-\mu t} \left\{ \epsilon_0 [d_m - \mu b'(w^+)] - \mu_2 - \frac{2}{\kappa (1 + r + t)} \right\}
\]
\[
- \left[e^{\mu t} \left(\frac{1 + t}{1 + r + t} \right)^{-\frac{1}{2}} - 1 \right] \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_{\alpha}(l)\gamma_{\alpha}(q) b'(\phi)
\]
\[
\geq 0 ,
\]
by choosing \(t \geq l_0 r \) for sufficiently large integer \(l_0 > 1 \) and
\[
0 < \mu_2 < \min\{d_m - \mu b'(w^+), \epsilon_1 \mu_1\} \text{ for } c > c_* ,
\]
\[
\mu_2 = 0 , \text{ for } c = c_* .
\]
Hence, we have
\[
\begin{cases}
\frac{d\bar{z}(t)}{dt} + d_m \bar{z}(t) + \frac{\mu}{(2\pi)^2} \sum_{l=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \beta_\alpha(l) \gamma_\alpha(q) b'(\phi) \bar{z}(t-r), t > l_0 r, x > x_*, \\
\bar{z}(t)|_{x=x_*} = C_3(1 + r + t)^{-\frac{3}{2}} e^{-\mu_2 t} \geq C_2(1 + t)^{-\frac{3}{2}} e^{-\epsilon_1 \mu_1 t}, \\
\bar{z}(t) = C_3(1 + r + t)^{-\frac{3}{2}} e^{-\mu_2 t} > z_{k,j}^0(t), t \in [-r, l_0 r], k, j \in \mathbb{Z}.
\end{cases}
\]
Therefore, by the comparison principle, we can get
\[z_{k,j}(t) \leq \bar{z}(t).
\]
The proof is complete.

It then follows from Lemmas 3.4 and 3.5 that

Lemma 3.6. For any \(r > 0 \), it holds that

(i): when \(c > c_* \), then
\[
\|w_{k,j}^+(t) - \phi(x)\|_{L^\infty(\mathbb{R}^2)} \leq C(1 + t)^{-\frac{3}{2}} e^{-\mu_2 t},
\]
where \(\mu_2 \) is a constant and satisfies
\[0 < \mu_2 < \min \{ d_m - \mu b'(w^+), \epsilon_1 \mu_1 \};
\]
(ii): when \(c = c_* \), then
\[
\|w_{k,j}^+(t) - \phi(x)\|_{L^\infty(\mathbb{R}^2)} \leq C(1 + t)^{-\frac{3}{2}}.
\]

Step 2. The convergence of \(w_{k,j}^- \) to \(\phi(x) \).

By a similar argument as in Step 1, the proof can be done.

Lemma 3.7. For any \(r > 0 \), it holds that

(i): when \(c > c_* \), then
\[
\|\phi(x) - w_{k,j}^-(t)\|_{L^\infty(\mathbb{R}^2)} \leq C(1 + t)^{-\frac{3}{2}} e^{-\mu_2 t},
\]
where \(\mu_2 \) is a constant and satisfies
\[0 < \mu_2 < \min \{ d_m - \mu b'(w^+), \epsilon_1 \mu_1 \};
\]
(ii): when \(c = c_* \), then
\[
\|\phi(x) - w_{k,j}^-(t)\|_{L^\infty(\mathbb{R}^2)} \leq C(1 + t)^{-\frac{3}{2}}.
\]

Step 3. The convergence of \(w_{k,j} \) to \(\phi(x) \).

Lemma 3.8. For any \(r > 0 \), it holds that

(i): when \(c > c_* \), then
\[
\|w_{k,j}(t) - \phi(x)\|_{L^\infty(\mathbb{R}^2)} \leq C(1 + t)^{-\frac{3}{2}} e^{-\epsilon_1 \mu t},
\]
where \(\mu > 0 \) is a constant;

(ii): when \(c = c_* \), then
\[
\|w_{k,j}(t) - \phi(x)\|_{L^\infty(\mathbb{R}^2)} \leq C(1 + t)^{-\frac{3}{2}}.
\]

Acknowledgments. The authors thank the anonymous referee for their valuable comments and suggestions that help the improvement of the manuscript. And the first author was supported by the NSFs of China (No.11301121, No. 11772203).
REFERENCES

[1] P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Rational. Mech. Anal., 150 (1999), 281–305.
[2] J. W. Cahn, J. Mallet-Paret and E. S. Van Vleck, Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice, SIAM J. Appl. Math., 59 (1999), 455–493.
[3] M. Chae and K. Choi, Nonlinear stability of planar traveling waves in a chemotaxis model of tumor angiogenesis with chemical diffusion, J. Differential Equations, 268 (2020), 3449–3496.
[4] X. Chen, Existence uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125–160.
[5] F. Chen, Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity, Discrete Contin. Dyn. Syst., 24 (2009), 659–673.
[6] X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (2002), 549–569.
[7] C.-P. Cheng, W.-T. Li and Z.-C. Wang, Spreading speeds and traveling waves for a delayed population model with stage structure on a two-dimensional spatial lattice, IMA J. Appl. Math., 73 (2008), 592–618.
[8] C.-P. Cheng, W.-T. Li and Z.-C. Wang, Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 559–575.
[9] S.-N. Chow, J. Mallet-Paret and W. Shen, Traveling waves in lattice dynamical systems, J. Differential Equations, 149 (1998), 248–291.
[10] R. R. Goldberg, Fourier Transform, New York: Cambridge University Press, 1961.
[11] J.-S. Guo, K.-I. Nakamura, T. Ogawa and C.-C. Wu, Stability and uniqueness of traveling waves for a discrete bistable 3-species competition system, J. Math. Anal. Appl., 472 (2019), 1534–1550.
[12] X. Hou and Y. Li, Local stability of traveling wave solutions of nonlinear reaction-diffusion equations, Discrete Contin. Dyn. Syst., 15 (2006), 681–701.
[13] C.-H. Hsu and J.-I. Lin, Stability of traveling wave solutions for nonlinear cellular neural networks with distributed delays, J. Math. Anal. Appl., 470 (2019), 388–400.
[14] C.-H. Hsu, J.-J. Lin and T.-S. Yang, Stability for monostable wave fronts of delayed lattice differential equations, J. Dynam. Differential Equations, 29 (2017), 323–342.
[15] R. Huang, M. Mei and Y. Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, Discrete Contin. Dyn. Syst., 32 (2012), 3621–3649.
[16] J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556–572.
[17] G. Lin and S. Ruan, Persistence and failure of complete spreading in delayed reaction-diffusion equations, Proc. Amer. Math. Soc., 144 (2016), 1059–1072.
[18] G. Lv and M. Wang, Nonlinear stability of traveling wave fronts for nonlocal delayed reaction-diffusion equations, J. Math. Anal. Appl., 385 (2012), 1094–1106.
[19] S. Ma and Y. Duan, Asymptotic stability of traveling waves in a discrete convolution model for phase transitions, J. Math. Anal. Appl., 308 (2005), 240–256.
[20] S. Ma and X. Q. Zhao, Global asymptotic stability of minimal fronts in monostable lattice equations, Discrete Cont. Dyn. Systems, 21 (2008), 259–275.
[21] S. Ma and X. Zou, Existence, uniqueness and stability of traveling wavefronts in a discrete reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54–87.
[22] S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212 (2005), 129–190.
[23] M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation: (I) Local nonlinearity, J. Differential Equations, 247 (2009), 495–510.
[24] M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation: (II) Nonlocal nonlinearity, J. Differential Equations, 247 (2009), 511–529.
[25] M. Mei and C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762–2790.
[26] M. Mei and J. W.-H. So, Stability of strong traveling waves for a non-local time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551–568.
[27] M. Mei, J. W.-H. So, M. Y. Li and S. S. P. Shen, Asymptotic stability of traveling wavefronts for the Nicholson’s blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 579–594.
[28] M. Mei and Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equations, *Int. J. Numer. Anal. Model. Ser. B*, **2** (2011), 379–401.

[29] J. D. Murray, *Mathematical Biology: AN introduction*, Third edition. in: Interdisciplinary Applied Mathematics, vol. **17**, Springer, New York, 2002.

[30] K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, *Trans. Amer. Math. Soc.*, **302** (1987), 587–615.

[31] H. L. Smith and X.-Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, *SIAM J. Math. Anal.*, **31** (2000), 514–534.

[32] E. C. Titchmarsh, *Introduction to the Theory of Fourier Integrals*, Third edition. Chelsea Publishing Co., New York, 1986.

[33] Z.-C. Wang, W.-T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, *SIAM J. Math. Anal.*, **40** (2009), 2392–2420.

[34] P. Weng, H. Huang and J. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction, *IMA J. Appl. Math.*, **68** (2003), 409–439.

[35] Z. Xu, Wave propagation in a two-dimensional lattice dynamical system with global interaction, *J. Differential Equations*, **269** (2020), 4477–4502.

[36] D. Ya. Khusainov, A. F. Ivanov and I. V. Kovarzh, Solution of one heat equation with delay, *Nonlinear Oscil.*, **12** (2009), 260–282.

[37] Z.-X. Yu and M. Mei, Uniqueness and stability of traveling waves for cellular neural networks with multiple delays, *J. Differential Equations*, **260** (2016), 241–267.

[38] G.-B. Zhang, Global stability of traveling wave fronts for non-local delayed lattice differential equations, *Nonlinear Anal. Real World Appl.*, **13** (2012), 1790–1801.

[39] G.-B. Zhang, Global stability of non-monotone traveling wave solutions for a nonlocal dispersal equation with time delay, *J. Math. Anal. Appl.*, **475** (2019), 605–627.

Received February 2021; revised May 2021; early access July 2021.

E-mail address: chengcp0611@163.com

E-mail address: an18020536372@163.com