15 Advanced In Silico Tools for Designing of Antigenic Epitope as Potential Vaccine Candidates Against Coronavirus

Mehak Dangi, Rinku Kumari, Bharat Singh, and Anil Kumar Chhillar

15.1 Introduction

Coronaviruses are remarkably large, positive-stranded RNA viruses that are enveloped with the nucleocapsid having helical symmetry. The *corona in coronavirus* is a Latin word that means a “crown”, and it indicates to the typical presentation of virions underneath electron microscopy with a periphery of hefty, globular surface projections similar to that of a crown. Coronavirus is a pathogen associated with severe respiratory symptoms and was first identified from the nasal cavities of sufferers with the common cold in the early 1960s (de Groot et al. 2013; Brown et al. 2012). These were named human coronavirus OC43 and human coronavirus 229E. A total of 40 sequenced genomes of different strains of coronavirus are accessible from National Center for Biotechnology Information (NCBI), out of which 7 are pathogenic to humans. A coronavirus, i.e. SARS-CoV, was responsible for outbreak of severe acute respiratory syndrome (SARS) in the year 2003, whereas Middle East respiratory syndrome coronavirus (MERS-CoV) caused the most recent outbreak in 2012 causing acute respiratory disease in affected people with signs of fever, cough and difficulty in breathing. After first reported from Saudi Arabia in 2012, this novel virus has also dispersed to other countries like the United States and was known to have high death rate. MERS-CoV infections are highly communicable, and no explicit antiviral cure has been designed for it till date (Azhar et al. 2017).
It compelled us to apply the well-known reverse vaccinology (RV) approach on available proteome of coronavirus. RV approach has been successfully applied on many prokaryotes, but there are very few known applications on eukaryotes and viruses. So, it is worthwhile to explore the potential of this approach to identify potential vaccine candidates for coronavirus. RV basically does the in silico examination of the viral proteome to hunt antigenic and surface-exposed proteins. This approach was initially applied successfully to *Neisseria meningitidis* serogroup B (Kelly and Rappuoli 2005) against which none of the prevailing techniques could develop a vaccine. The present book chapter is intended to explore the potential of RV approach to select the probable vaccine candidates against coronavirus and validate the results using docking studies.

15.2 The Elementary Concept of Reverse Vaccinology

Undoubtedly, the traditional approaches for vaccine development are fortunate enough to efficiently resist the alarming pathogenic diseases of its time. However, the traditional approach suffers from certain limitations like it is very time-consuming, the pathogens which can’t be cultivated in the lab conditions are out of reach, and certain non-abundant proteins are not accessible using this approach (Rappuoli 2000). Consequently, a number of pathogenic diseases are left without any vaccine against them. All these limitations are conquered by reverse vaccinology approach utilizing genome sequence information which ultimately is translated into proteins. Hence all the proteins expressed by the genome are accessible irrespective of their abundance, conditions in which they expressed. The credit of fame of reverse vaccinology should go to the advancements in the sequencing strategies worldwide. Accordingly, improvement in the sequencing technologies has flooded the genome databases with huge amount of data which can be computationally undertaken to reveal the various crucial aspects of the virulence factors of the concerned pathogen. Reverse vaccinology is based on same approach of computationally analysing the genome of pathogen and proceeds step by step to ultimately identify the highly antigenic, secreted proteins with high epitope densities. The best epitopes are selected as potential vaccine candidates (Pizza et al. 2000). This approach has brought the unapproachable pathogens of interest in spotlight and is evolving as the most reassuring tool for precise selection of vaccine candidates and brought the use of peptide vaccines in trend (Sette and Rappuoli 2010; Kanampalliwar et al. 2013).

15.3 Successful Applications of Reverse Vaccinology

Bexsero is the first universal serogroup B meningococcal vaccine developed using RV, and it has currently earned positive judgement from the European Medicines Agency (Gabutti 2014). Whether it is discovery of pili in gram-positive pathogens which were thought to not have any pili or the sighting of factor G-binding protein in
mucococcus (Alessandro and Rino 2010), the reverse vaccinology steals all the credits from other conventional approaches. Most of the applications of RV are against prokaryotes and very few against eukaryotes and viruses because of complexity of their genome. *Corynebacterium urealyticum* (Guimarães et al. 2015), *Mycobacterium tuberculosis* (Monterrubio-López et al. 2015), *H. pylori* (Naz et al. 2015), *Acinetobacter baumannii* (Chiang et al. 2015), *Rickettsia prowazekii* (Caro-Gomez et al. 2014), *Neospora caninum* (Goodswen et al. 2014) and *Brucella melitensis* (Vishnu et al. 2017) are the examples of some pathogens that are recently approached using this in silico technique in order to spot some epitopes having potential of being a vaccine candidate. *Herpesviridae* (Bruno et al. 2015) and hepatitis C virus (HCV) (Kolesanova et al. 2015) are the examples of the viruses that are addressed using this approach.

15.4 Workflow of Reverse Vaccinology (with Example of Coronavirus)

15.4.1 Retrieval of Proteome of Different Strains of Coronavirus from NCBI

The proteome of different strains of the coronavirus of interest was downloaded from NCBI’s ftp site (ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/; NCBI Resource Coordinators 2017). The proteome information is available for download in many formats including FASTA format for different sequenced viruses. Strains pathogenic to humans were selected for further analysis. Among them a single strain was selected as the seed genome on the basis of literature. Sequence similarity searches using Blastp (http://blast.ncbi.nlm.nih.gov/blast, http://uogene.unipro.ru/) were performed to reveal the orthologs in different strains (Altschul et al. 1990; Okonechnikov et al. 2012; Golosova et al. 2014). Multiple sequence alignment (MSA) was done via ClustalW, and the phylogenetic tree was constructed using NJ method from Unipro UGENE 1.16.1 bioinformatics toolkit (Okonechnikov et al. 2012).

15.4.2 Analysis of Secondary Structure of Proteins from Seed Genome

Analysis of secondary structure of the proteins of seed genome was done by means of ExPASy portal. The aim is to forecast the solvent accessibility, instability index, theoretical pI, molecular weight, grand average of hydrophaticity (GRAVY), aliphatic index, number of charged residues, extinction coefficient etc. (http://web.expasy.org/protparam/; Gasteiger et al. 2005).
15.4.3 Subcellular Localization Predictions and Count of Transmembrane Helices

Virus-mPLoc was used to identify the localization of proteins of virus in the infected cells of host (http://www.csbio.sjtu.edu.cn/bioinf/virus-multi/; Hong-Bin Shen and Kuo-Chin Chou 2010). This information is important to understand the destructive role and mechanism of the viral proteins in causing the disease. In total six different subcellular locations, namely, host cytoplasm, viral capsid, host plasma membrane, host nucleus, host endoplasmic reticulum and secreted proteins, were covered. These predictions could help in formulation of better therapeutic options against the virus. As per the protocol of RV, secreted and membrane proteins are of special interest, therefore, filtered for further analysis. To predict the number of transmembrane helices TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/; Krogh et al. 2001) was used.

15.4.4 Signal Peptides

Signal peptides are known to impact the immune responses and possess high epitope densities. Moreover, most of the known vaccine candidates also possess signal peptides. Hence, it is worthwhile to predict signal peptides in proteins prior to epitope predictions. Signal-BLAST web server is used to predict the signal peptides without any false predictions (http://sigpep.services.came.sbg.ac.at/signalblast.html; Frank and Sippl 2008). The prediction options include best sensitivity, balanced prediction, best specificity and detect cleavage site only. We choose to make the predictions using each option, and the proteins predicted as signal peptide by all the four options were preferred for further investigation.

15.4.5 Adhesion Probability

The most appropriate targets as vaccine candidates are those which possess the adhesion-like properties because they not only mediate the adhesion of pathogen’s proteins with cells of host but also facilitate transmission of virus. Adhesions are known to be crucial for virulence and are located on surface which makes them promptly approachable to antibodies. The stand-alone SPAAN with a sensitivity of 89% and specificity of 100% was used to carry out the adhesion probability predictions, and the proteins with having adhesion probabilities higher than or equal to 0.4 were selected (Sachdeva et al. 2004).

15.4.6 BetaWrap Motifs

BetaWrap motifs are dominant in virulence factors of the pathogens. If the proteins are predicted to possess such motifs, then they are appropriate to be taken under
reverse vaccinology studies. BetaWrap server is the only online web server to make such predictions. The proteins having P-value lower than 0.1 were anticipated to contain BetaWraps (http://groups.csail.mit.edu/cb/betawrap/betawrap.html; Bradley et al. 2001).

15.4.7 Antigenicity Predictions

For added identification of the antigenic likely of the proteins, they were subjected to VaxiJen server version 2.0. It is basically an empirical method to hunt antigenic proteins. So, if the proteins are not found antigenic using other sequence-based methods, then they can be identified using this method. This step confirms the antigenicity of proteins selected using above-mentioned steps (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html; Doytchinova and Flower 2007).

15.4.8 Allergenicity Predictions

For being a probable vaccine candidate, the protein should not exhibit the characteristics of an allergen as they trigger the type-1 hypersensitivity reactions causing allergy. Therefore, to escape out such possibilities, the proteins were also subjected to allergenicity predictions using Allertop (http://www.pharmfac.net/allertop; Dimitrov et al. 2014) and AlgPred tools (http://www.imtech.res.in/raghava/algpred/submission.html; Saha and Raghava 2006a, b).

15.4.9 Similarity with Host Proteins

To check whether the filtered proteins possess any similarity to host proteins or not, the standard Blastp (http://blast.ncbi.nlm.nih.gov/blast) searches were performed. In case of sequence similarity, there is a feasibility of generation of immune responses against own cells.

15.4.10 Epitope Mapping

Predicting the epitopes binding to MHC class I is the main decisive phase of the RV to carry out valid vaccine predictions. The epitopes showing their affinity for T-cells were first selected via IEDB (http://tools.immuneepitope.org/mhci/), ProPred-I (http://www.imtech.res.in/raghava/propred1/; Singh and Raghava 2003), BIMAS (http://www-bimas.cit.nih.gov/molbio/hla_bind/; Parker et al. 1994) and NetCTL tools (http://www.cbs.dtu.dk/services/NetCTL/; Larsen et al. 2005). For the epitope to be included in the hit list, it must be predicted by any
three of these four mentioned tools. For making the predictions of B-cell epitopes, BepiPred (http://www.cbs.dtu.dk/services/BepiPred/; Larsen et al. 2006) and ABCPred tools (http://www.imtech.res.in/raghava/abcpred/ABC_submission.html; Saha and Raghava 2006a, b) were used. The overlapping B-cell and T-cell epitopes were identified.

15.4.11 Docking of the Predicted Epitopes with HLA-A*0201

The predicted epitopes were docked with receptor that is HLA-A*0201 using ClusPro (http://cluspro.bu.edu/login.php; Kozakov et al. 2017) that is an automated protein-protein docking web server. The literature searches provided the information of conserved residues of the receptor site. The default parameters were used for docking (Comeau et al. 2004a, b; Kozakov et al. 2006).

15.5 Results and Discussion

15.5.1 Retrieval of Proteome from NCBI

A total of 40 different sequenced strains of coronavirus are available at NCBI. Among them 7 strains are pathogenic to humans. Various information regarding source, host and collection of these strains are presented in Table 15.1 and 15.2. This information can be obtained from NCBI’s genome database, the Virus Pathogen Database and Analysis Resource and Genomes OnLine Database (Liolios et al. 2006; Pickett et al. 2012). The MERS strain is taken as seed genome as it is the most prevalent and disastrous strain among others. Its proteome consists of total 11 proteins as shown in Table 15.3. The results of sequence similarity to reveal orthologs using Blastp are shown in Table 15.4. The sequences with greater than 30% identity score are considered as homologs. The phylogenetic tree is depicted in Fig. 15.1 and the MERS-CoV, taken as seed genome, found clustered with different Bat coronaviruses.

15.5.2 Analysis of Secondary Structure

The results of analysis of secondary structure of the proteome using ExPASy tools are shown in the Table 15.5. From the analysis of charge on the residues and pH values, it is concluded that six of the proteins are basic and positively charged unlike allergens which are acidic in nature. However, five proteins are acidic and show negative charge. The negative GRAVY score of five proteins justify them to be of hydrophilic nature with majority of the residues positioned towards the surface. For the rest of six proteins, the GRAVY score is positive; it means that these are
S. no.	Infected host	Coronavirus strains	Genome#	No of proteins	S. no.	Infected host	Coronavirus strains	Genome#	No of proteins	
1	Human	Human coronavirus	NC_002645	8	21	Thrush	Thrush coronavirus	HKU12–600	NC_011549	9
2	Human	SARS coronavirus	NC_004718	14	22	Munia	Munia coronavirus	HKU13–3514	NC_011550	9
3	Human	Human coronavirus OC43	NC_005147	9	23	Rat	Rat coronavirus	Parker	NC_012936	10
4	Human	Human coronavirus NL63	NC_005831	6	24	Bovine	Bovine respiratory coronavirus AH187	NC_012948	12	
5	Human	Human coronavirus HKU1	NC_006577	8	25	Bovine	Bovine respiratory coronavirus bovine/US/OH-440-TC/1996	NC_012949	11	
6	Human	Human enteric coronavirus strain 4408	NC_012950	12	26	Bat	Bat coronavirus BM48–31/BGR/2008	NC_014470	9	
7	Human	Middle East respiratory syndrome coronavirus	NC_019843	11	27	Porcine	Porcine coronavirus HKU15	NC_016990	7	
8	Bovine	Bovine coronavirus	NC_003045	12	28	White-eye bird	White-eye coronavirus HKU16	NC_016991	8	
9	Bat	Bat coronavirus (BtCoV/133/2005)	NC_008315	8	29	Sparrow	Sparrow coronavirus HKU17	NC_016992	8	
10	Bat	Tylochiropterus bat coronavirus HKU4	NC_009019	9	30	Magpie-robin	Magpie-robin coronavirus HKU18	NC_016993	9	
11	Bat	Pipistrellus bat coronavirus HKU5	NC_009020	9	31	Night-heron	Night-heron coronavirus HKU19	NC_016994	8	
12	Bat	Rousettus bat coronavirus HKU9	NC_009021	8	32	Wigeon	Wigeon coronavirus HKU20	NC_016995	10	

(continued)
S. no.	Infected host	Coronavirus strains	Genome#	No of proteins	S. no.	Infected host	Coronavirus strains	Genome#	No of proteins					
13	Bat	Scotophilus bat coronavirus 512	NC_009657	6	33	Moorhen	Common moorhen coronavirus HKU21	NC_016996	9					
14	Bat	Rhinolophus bat coronavirus HKU2	NC_009988	8	34	Rabbit	Rabbit coronavirus HKU14	NC_017083	11					
15	Equine	Equine coronavirus	NC_010327	11	35	Bat	Rousettus bat coronavirus HKU10	NC_018871	9					
16	Bat	Bat coronavirus 1B	NC_010436	7	36	Bat	Bat coronavirus CDPHE15/USA/2006	NC_022103	7					
17	Bat	Bat coronavirus 1A	NC_010437	7	37	Erinaceus	Betacoronavirus Erinaceus/VMC/DEU/2012	NC_022643	12					
18	Bat	Miniopterus bat coronavirus HKU8	NC_010438	8	38	Mink	Mink coronavirus strain WD1127	NC_023760	10					
19	Whale	Beluga whale coronavirus SW1	NC_010646	14	39	Bat	Bat Hp-betacoronavirus/Zhejiang2013	NC_025217	9					
20	Turkey	Turkey coronavirus	NC_010800	11	40	Birds	Betacoronavirus HKU2	NC_026011	10					
S. no.	Strain name	Accession no.	Source information	Length	Proteins	Host	Collection date	Sequencing centre	Sequencing strategy	NCBI BioProject ID	Culture type	Host taxonomy ID	Completion date	GC %
-------	----------------------	---------------	-------------------------------------	---------	----------	------------------------	-----------------	--	---------------------------------------	-------------------	-----------------------	-------------------	------------------	-------
1.	Human coronavirus 229E	NC_002645	Strain: 229E	27,317 nt	8	Vertebrates, human	1/11/2001	University of Würzburg (Germany)	Whole genome sequencing	14913	Isolate	9606	10/2/2006	38.3
2.	SARS coronavirus	NC_004718	Isolate: Tor2	29,751 nt	14	Vertebrates, human	4/14/2003	National Microbiology Laboratory, Public Health Agency of Canada	Whole genome sequencing	15500	Isolate	196,296	10/2/2006	40.8
3.	Human coronavirus OC43	NC_005147	Strain: ATCC VR-759; isolate: OC43	30,738 nt	9	Vertebrates, human	10/29/2003	University of Leuven – KU Leuven (Belgium)	Whole genome sequencing	15438	Isolate	9606	10/2/2006	36.8
4.	Human coronavirus NL63	NC_005831	Strain: Amsterdam I	27,553 nt	6	Vertebrates, human	3/23/2004	University of Amsterdam (Netherlands)	Whole genome sequencing	14960	Isolate	9606	10/2/2006	34.5
5.	Human coronavirus HKU1	NC_006577	Isolate: HKU1	29,926 nt	8	Vertebrates, human	12/28/2004	University of Hong Kong (Hong Kong)	Whole genome sequencing	15139	Isolate	9606	10/2/2006	32.1

(continued)
| S. no. | Strain name | Acc. No. | Source information | Length | Proteins | Host | Collection date | Sequencing centre | Sequencing strategy | NCBI BioProject ID | Culture type | Host taxonomy ID | Completion date | GC % |
|-------|-------------|----------|--------------------|--------|----------|------|----------------|-------------------|-------------------|-------------------|---------------|----------------|----------------|-----------------|-----|
| 6. | Human enteric coronavirus strain 4408 | NC_012950 | Strain:4408 | 30,953 nt | 12 | Vertebrates, human | 7/13/2009 | -- | Whole genome sequencing | 39335 | Isolate | 9606 | 10/13/2009 | 37.1 |
| 7. | Middle East respiratory syndrome coronavirus | NC_019843 | Strain: HCoV-EMC | 30,119 nt | 11 | Vertebrates | 12/13/2012 | Health Protection Agency (HPA), UK (United Kingdom) | Whole genome sequencing | 183710 | Isolate | 9606 | 12/8/2014 | 41.2 |
Table 15.3 Information of MERS-CoV (NC_019843.3) proteins

S. no.	GeneID	Start	Stop	Locus	Locus tag	Protein Accession	Length	Protein name
1.	14254602	279	13454	orf1ab	G128_gp01	YP_009047203.1	4391	1A polyprotein
2.	14254602	279	21514	orf1ab	G128_gp01	YP_009047202.1	7078	1ab polyprotein
3.	14254594	21456	25517	S	G128_gp02	YP_009047204.1	1353	Spike glycoprotein
4.	14254595	25532	25843	orf3	G128_gp03	YP_009047205.1	103	NS3 protein
5.	14254596	25852	26181	orf4a	G128_gp04	YP_009047206.1	109	NS4A protein
6.	14254597	26093	26833	orf4b	G128_gp05	YP_009047207.1	246	NS4B protein
7.	14254598	26840	27514	orf5	G128_gp06	YP_009047208.1	224	NS5 protein
8.	14254599	27590	27838	E	G128_gp07	YP_009047209.1	82	Envelope protein
9.	14254600	27853	28512	M	G128_gp08	YP_009047210.1	219	Membrane protein
10.	14254601	28566	29807	N	G128_gp09	YP_009047211.1	413	Nucleoprotein
11.	19910005	28762	29100	orf8b	G128_gp10	YP_009047212.1	112	ORF8b protein
S. no.	Accession no.	Protein name	SARS coronavirus	Human coronavirus OC43	Human coronavirus NL63	Human coronavirus HKU1	Human enteric coronavirus strain 4408	Human coronavirus 229E
--------	--------------	------------------	------------------	------------------------	------------------------	------------------------	--	------------------------
1	YP_009047202.1	1ab polyprotein	YP_828849.2	NP_937947.2	YP_003766.2	YP_173236.1	YP_003038518.1	YP_0073549.1
			42.89%	48.12%	45.49%	48.23%	35.83%	33.76%
			NP_828850.1	NP_937947.2	NP_073549.1	NP_073550.1	NP_073555.1	NP_073549.1
			45.94%	35.85%	33.87%	36.10%	35.82%	33.76%
2	YP_009047203.1	1A polyprotein	YP_828850.1	NP_937947.2	YP_003766.2	YP_173236.1	YP_003038519.1	YP_0073550.1
			42.62%	35.8%	33.87%	36.10%	35.82%	33.76%
3	YP_009047204.1	Spike glycoprotein	--	--	--	--	--	--
4	YP_009047205.1	NS3 protein	--	--	--	--	--	--
5	YP_009047206.1	NS4A protein	--	--	--	--	--	--
6	YP_009047207.1	NS4B protein	--	--	--	--	--	--
7	YP_009047208.1	NS5 protein	--	--	--	--	--	--
8	YP_009047209.1	Envelope protein	--	--	--	--	--	--
9	YP_009047210.1	Membrane protein	YP_828855.1	NP_937953.1	--	--	YP_00303825.1	YP_0073555.1
			45.45%	33.81%	--	--	44.39%	34.52%
10	YP_009047211.1	Nucleoprotein	YP_828858.1	NP_0073555.1	--	--	YP_003038258.1	--
			38.69%	38.69%	--	--	40.83%	--
11	YP_009047212.1	ORF8b protein	--	--	--	--	--	--

The accession number and identity of orthologs obtained in different strains is shown in the table.
hydrophobic proteins. The proteins with less than 40 value of instability index are quite stable than those with higher values. All the proteins are having the molecular weight less than 110 kDa except 3 (YP_009047202.1, YP_009047203.1 and YP_009047204.1). This exhibits the effectiveness of lightweight proteins as targets as they can be easily purified because of their low molecular weights. The protein YP_009047204.1 is reported as a spike glycoprotein. It is acidic with prominent negative charge, with negative GRAVY score which suggests its hydrophilicity and

Fig. 15.1 Phylogenetic tree of 40 different strains of coronavirus using whole genome sequences (Alignment of genome sequences is done using ClustalW, and tree is created using NJ method from Unipro UGENE 1.15.1 bioinformatics toolkit)
Table 15.5 Secondary structure analysis of MERS-CoV proteins

S. no	Accession no.	Molecular weight	Theoretical PI	GRAVY	Aliphatic Index	Instability index	Estimated half life	Extinction coefficient	Positive charged	Negative charged
1	YP_009047202.1	78,946.12	6.47	0.013	88.03	34.24	30	978,520	647	687
2	YP_009047203.1	48,595.64	6.28	0.081	91.54	34.07	30	575,415	385	416
3	YP_009047204.1	149,368	5.7	−0.074	82.71	36.6	30	170,865	95	112
4	YP_009047205.1	111,375.5	5.39	−0.022	86.02	25.54	30	6085	6	9
5	YP_009047206.1	12,242.8	6.25	−0.263	83.3	47.02	30	27,055	8	9
6	YP_009047207.1	28,603	9.74	−0.228	94.23	51.09	30	34,505	29	18
7	YP_009047208.1	252,80.1	9.26	0.807	124.33	51.4	30	19,410	17	9
8	YP_009047209.1	93,542.2	7.64	0.795	111.59	33	30	10,220	5	4
9	YP_009047210.1	245,36.8	9.27	0.436	104.61	43.67	30	53,525	16	11
10	YP_009047211.1	450,623.2	10.05	−0.866	57	48.62	30	47,900	55	33
11	YP_009047212.1	122,796.6	10.15	0.131	113.21	49.65	30	5500	11	7
presence on surface. However the envelope protein YP_009047209.1 and membrane protein YP_009047210.1 are basic and hydrophobic.

15.5.3 Subcellular Localization Predictions

Figure 15.2 depicts the subcellular localization of proteins of the seed genome, i.e. MERS-CoV. Only one protein was predicted to be localized in host cytoplasm, four in host membrane, two in both host cell membrane and endoplasmic reticulum (ER) while two in only ER, and two are left unrecognized. The known spike protein is predicted to be localized in host ER. From these results we decided to pick the proteins which are located in host membrane or were predicted to be localized in both host membrane and ER. The two are known envelop protein and membrane protein from bibliographic studies, and along with that, the known spike protein was also included in the filtered results. Out of the filtered proteins, only two (YP_009047210.1 and YP_009047208.1) contain more than two transmembrane helices, therefore filtered out. The results of transmembrane helices prediction are tabulated in Table 15.6. Figure 15.3 depicts the subcellular localization of proteins of all the four selected genomes using Virus-mPLoc prediction tool.
Table 15.6 Subcellular Localization prediction results using Virus-mPloc

Subcellular localization	Human coronavirus NL63	Human coronavirus HKU1	Human enteric coronavirus strain 4408	Human coronavirus 229E	Human coronavirus OC43	SARS coronavirus	MERS coronavirus
Host cell membrane.	YP_003769.1	–	YP_003038527.1	–	–	–	YP_009047209.1
Host endoplasmic reticulum	YP_003770.1	–	–	–	–	–	YP_009047210.1
Host cell membrane.	YP_003768.1	–	–	–	–	–	–
Host endoplasmic reticulum	YP_003767.1	YP_173238.1	YP_003038522.1	NP_073551.1	NP_937950.1	NP_828851.1	YP_009047204.1
	–	YP_173241.1	NP_073553.1	–	–	–	NP_828857.1
Host cell membrane	–	YP_003758.1	NP_073552.1	NP_937952.1	NP_828852.1	YP_009047205.1	–
Host cytoplasm	–	YP_003760.1	–	NP_073555.1	–	YP_009047211.1	–
Host endoplasmic reticulum	YP_003771.1	YP_173237.1	YP_003038521.1	NP_073556.1	NP_937949.1	–	–
Host cytoplasm	-	YP_003038520.1	NP_073553.1	–	NP_073549.1	NP_849177.1	–
Unrecognized	YP_003766.2	YP_173236.1	YP_003038518.1	NP_073549.1	NP_937947.2	NP_828849.2	YP_009047202.1
	–	–	YP_003038519.1	NP_073555.1	–	NP_828850.1	NP_849175.1
	–	YP_003038523.1	–	–	YP_849176.1	–	–
15.5.4 Signal Peptides

The proteins that are predicted to possess the signal peptides by Signal-BLAST web server are YP_009047204.1 and YP_009047205.1. The results of Signal-BLAST web server are tabulated in the Table 15.7.

15.5.5 Adhesion Probability

This step takes into account the concept of adhesion-based virulence. Adhesions cause pathogen recognition and initiation of inflammatory responses by the host. SPAAN predicted 2 (YP_009047204.1 and YP_009047205.1) out of 11 proteins of MERS strain as adhesive (Table 15.8).

15.5.6 BetaWrap

Only one protein (YP_009047204.1) was predicted to contain BetaWrap motifs within it (Table 15.8). Hence, it is considered virulent and might be responsible for initializing the infection in the host.
S. no.	Accession no.	Adhesion probability	P-value	Vaxijen value	TMHMM
1	YP_009047202.1	0.439813	No	0.4908	14
2	YP_009047203.1	0.442577	No	0.4884	14
3	YP_009047204.1	0.634711	Yes	0.4849	1
4	YP_009047205.1	0.635586	Yes	0.4226	0
5	YP_009047206.1	0.44212	No	0.3288	0
6	YP_009047207.1	0.269269	No	0.4978	0
7	YP_009047208.1	0.237608	No	0.3369	3
8	YP_009047209.1	0.389879	No	0.5119	1
9	YP_009047210.1	0.461965	No	0.5503	3
10	YP_009047211.1	0.690125	No	0.6036	0
11	YP_009047212.1	0.342692	No	0.6078	0

The transmembrane prediction results using TMHMM are also tabulated.
15.5.7 VaxiJen 2.0

A total of 9 out of 11 proteins of MERS strain were predicted antigenic (prediction values greater than 0.4). The protein with accession number YP_009047206.1 and YP_009047208.1 were among the filtered proteins, however, not predicted antigenic, therefore filtered out. As a result, only four proteins (YP_009047204.1, YP_009047205.1, YP_009047207.1 and YP_009047209.1) were kept for further analyses.

15.5.8 AlgPred and Allertop

None of the 11 proteins of MERS-CoV possessed any clue of allergenicity as per prediction results from AlgPred and Allertop tools; it means that no vigorous immune responses will be mounted if the epitopes from these proteins will be adopted as vaccine candidates.

15.5.9 Similarity with Host Proteome

None of the protein of MERS strain shows similarity with the proteins of host that demonstrates that the epitopes from these proteins can safely elicit the required immune response without the hazard of autoimmunity.

15.5.10 Epitope Mapping

In total 12 different 9-mer epitopes with potential to bind to receptors of both B-cell and T-cell were predicted. The list of the predicted epitopes can be found in the Table 15.9 and are specific for MERS-CoV strain. All these epitopes displayed no conservancy with proteins of other human and non-human pathogenic strains.

15.5.11 Docking Analysis

Docking permits to reveal the binding energy or potency of connection among epitopes and the receptor in appropriate orientation. The ClusPro docking server was used to dock the predicted 90 epitopes against HLA-A*0201. The structure of the receptor was available from PDB and was optimized before docking to free it from the complexed self-peptide (4U6Y, Resolution 1.47 Å, Bouvier et al. 1998). PEPstr (Peptide Tertiary Structure Prediction Server; Kaur et al. 2007) was used to derive the tertiary structure of the predicted peptides.
Table 15.9 The results of overlapping T-cell and B-cell epitope predictions for four filtered proteins

S. no	Accession no	Starting position	9-mer epitope	Binding energy	H-bonding	Receptor residues involved in H-bonding
1	YP_009047204.1	18	YVDVGPD SV	−854.8	13	Lys-66, 146, His-70, Thr-73, Arg-97, Trp-147, Tyr-159, 59,99, Glu-63, Asp-3
	110	KQFANGFVV	−764.6	9	Lys-66, His-70, Glu-63,166, Thr-163, Tyr-99,159	
	160	KMGRFFNHT	−849.7	11	Lys-66, Arg-97, Tyr-159,171, Glu-166,63, Gln-155, His-70	
	388	LLSGTPPVQ	−713.1	10	Lys-66,146, Arg-97, Trp-147, Tyr-159,99, Gln-155, Asp-77	
	553	WLVASGSTV	−843.6	13	Lys-66, Thr-73,163, Arg-97, Trp-147,167, Asp-77, Tyr-99, Glu-63	
	630	FVYDAYQNL	−785.6	11	Thr-73, Arg-97, Lys-146, Trp-147, Gln-155, Asp-77, Gln-155	
	716	GLVNSSLFV	−887.1	14	Tyr-59,159,99, Lys-66,146, Arg-97, Gln-155, Glu-63	
	1275	ALNESYIDL	−650.1	11	Lys-66,146, Thr-73, Arg-75,97, Trp-147, Gln-155, Tyr-159	
2	YP_009047205.1	18	LVTASSKL	−813.9	9	Lys-66, Arg-97, Trp-147, Gln-155, Glu-63, Tyr-159, Thr-73, Asp-77
3	YP_009047207.1	187	KLHALDDVT	−649.3	12	Lys-66,146, Tyr-116, Trp-147, Glu-63
4	YP_009047209.1	21	VVAITLLL	−951.7	12	Lys-66,146, Arg-97, Tyr-116,99, Trp-147,167, Thr-163, Glu-166,63
	27	TLLVCMAFL	−916	7	Lys-66, Trp-167, Glu-63, Tyr-159,99,Gln-155, Thr-163	
Figure 15.4 depicts the quaternary structure of the receptor HLA-A*0201 with its conserved active site known to form complex with the peptides (Bouvier et al. 1998). The binding energy results obtained after performing docking analysis are listed in Table 15.9.

The 9-mer epitope VVCAITLLV at site 21 of protein YP_009047209.1 docked to the receptor with smallest amount of binding energy (−951.7) and 12 hydrogen bonds. The next epitope in the list was also from the same protein YP_009047209.1 at site 27, i.e. TLLVCMAFL. The predicted structure of the top 5 potent epitopes on the basis of docking energy and the snapshots of docking results are displayed in Figs. 15.5, 15.6, 15.7, 15.8 and 15.9.

The most chief restriction for developing a safe and sound vaccine against any of the virus is to identify the protective antigens. The present study is an effort of application of reverse vaccinology approach to investigate a choice of coronavirus proteomes to identify possible vaccine targets. This technique has demonstrated to be a competent way to forecast 12 different epitopes from the selected seed genome. These epitopes are from spike glycoprotein, NS3 protein, NS4B protein and envelope protein. Unfortunately none of the epitope is found conserved in other strains, and all are specific to MERS-CoV. The docking analysis studies revealed perfect binding between HLA-A*0201 receptor and epitopes. The conserved residues of the receptor site are also involved in H-bonding with epitope residues. Further, the selected antigenic epitopes must be validated using in vitro and in vivo studies to confirm their potential as vaccine candidates.
Fig. 15.5 (a) 3D Structure of the 9-mer epitope starting from 21(VVCAITLLV) position of protein YP_009047209.1 (b) Docking results of epitope “VVCAITLLV” with A chain of HLA-A*0201 using ClusPro. (c) The snapshot representing the epitope docked in the pocket of molecular surface of the receptor (all the structures are visualized using Chimera 1.10.1)
Fig. 15.6 (a) 3D Structure of the 9-mer epitope starting from 27(TLLVCMAFL) position of protein YP_009047209.1. (b) Docking results of epitope “TLLVCMAFL” with A chain of HLA-A*0201 using ClusPro. (c) The snapshot representing the epitope docked in the pocket of molecular surface of the receptor (all the structures are visualized using Chimera 1.10.1)
Fig. 15.7 (a) 3D Structure of the 9-mer epitope starting from 716(GLVNSSLFV) position of protein YP_009047204.1. (b) Docking results of epitope “GLVNSSLFV” with A chain of HLA-A*0201 using ClusPro. (c) The snapshot representing the epitope docked in the pocket of molecular surface of the receptor (all the structures are visualized using Chimera 1.10.1)
Fig. 15.8 (a) 3D Structure of the 9-mer epitope starting from 18(YVDVGPD) position of protein YP_009047204.1. (b) Docking results of epitope “YVDVGPD” with A chain of HLA-A*0201 using ClusPro. (c) The snapshot representing the epitope docked in the pocket of molecular surface of the receptor (all the structures are visualized using Chimera 1.10.1)
Fig. 15.9 (a) 3D Structure of the 9-mer epitope starting from 160(KMGRFFNHT) position of protein YP_009047204.1. (b) Docking results of epitope “KMGRFFNHT” with A chain of HLA-A*0201 using ClusPro. (c) The snapshot representing the epitope docked in the pocket of molecular surface of the receptor (all the structures are visualized using Chimera 1.10.1)
References

Alessandro S, Rino R (2010) Review: reverse vaccinology: developing vaccines in the era of genomics. Immunity 33:530–541. https://doi.org/10.1016/j.immuni.2010.09.017

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Azhar EI, Lanini S, Ippolito G, Zumla A (2017) The Middle East respiratory syndrome coronavirus – a continuing risk to global health security. Adv Exp Med Biol 972:49–60. https://doi.org/10.1007/5584_2016_133.PMID:27966107

Bouvier M, Guo HC, Smith KJ, Wiley DC (1998) Crystal structures of HLA-A*0201 complexed with antigenic peptides with either the amino- or carboxyl-terminal group substituted by a methyl group. Proteins Struct Funct Genet 33(1):97–106. PMID: 9741848

Bradley P, Cowen L, Menke M, King J, Berger B (2001) BETAWRAP: successful prediction of parallel beta-helices from primary sequence reveals an association with many microbial pathogens. Proc Natl Acad Sci U S A 98(26):14819–14824. https://doi.org/10.1073/pnas.251267298

Brown JK, Fauquet CM, Briddon RW, Zerbini M, Moriones E, Navas-Castillo J, King AM, Adams MJ, Carstens EB, Lefkowitz EJ (2012) Geminiviridae. In: Virus taxonomy—ninth report of the International Committee on Taxonomy of Viruses. Elsevier Science, Burlington, pp 351–373

Bruno L, Cortese M, Rappuoli R, Merola M (2015) Lessons from Reverse Vaccinology for viral vaccine design. Curr Opin Virol 11:89–97. https://doi.org/10.1016/j.coviro.2015.03.001

Caro-Gomez E, Gazi M, Goez Y, Valbuena G (2014) Discovery of novel cross-protective Rickettsia prowazekii T-cell antigens using a combined reverse vaccinology and in vivo screening approach. Vaccine 32(39):4968–4976. https://doi.org/10.1016/j.vaccine.2014.06.089

Chiang MH, Sung WC, Lien SP, Chen YZ, Lo AF, Huang JH, Kuo SC, Chong P (2015) Identification of novel vaccine candidates against Acinetobacter baumannii using reverse vaccinology. Hum Vaccin Immunother 11(4):1065–1073. https://doi.org/10.1080/21645515.2015.1010910

Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004a) ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res 32(suppl_2):W96–W99. https://doi.org/10.1093/nar/gth354

Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004b) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20(1):45–50. https://doi.org/10.1093/bioinformatics/btg371

De Groot RJ, Baker SC, Baric RS et al (2013) Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group. J Virol 87(14):7790–7792. https://doi.org/10.1128/JVI.01244-13

Dimitrov I, Bangov I, Flower DR, Doytchinova I (2014) AllerTOP v.2-a server for in silico prediction of allergens. J Mol Model BioMed Central Ltd 20(6):227. DOI: https://doi.org/10.1007/s00894-014-2278-5

Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinf 8(1):4. https://doi.org/10.1186/1471-2105-8-4

Frank K, Sippl MJ (2008) High performance signal peptide prediction based on sequence alignment techniques. Bioinformatics 24:2172–2176. https://doi.org/10.1093/bioinformatics/btn422

Gabutti G (2014) Meningococcus B: control of two outbreaks by vaccination. J Prev Med Hyg 55(2):35–41. PMCID: PMC4718325

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. Proteomics Protoc Handb:571–607. https://doi.org/10.1385/1-59259-890-0:571

Golosova O, Henderson R, Vaskin Y, Gabrielian A, Grekhov G, Nagarajan V, Oler AJ, Quiñones M, Hurt D, Fursov M, Huyen Y (2014) Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChiP-seq data analyses. Peer J 2:e644. https://doi.org/10.7717/peerj.644
Goodswen SJ, Kennedy PJ, Ellis JT (2014) Discovering a vaccine against neosporosis using computers: is it feasible? Trends Parasitol 30(8):401–411. https://doi.org/10.1016/j.pt.2014.06.004

Guimarães L, Soares S, Trost E, Blom J, Ramos R, Silva A, Barh D, Azevedo V (2015) Genome informatics and vaccine targets in Corynebacterium urealyticum using two whole genomes, comparative genomics, and reverse vaccinology. BMC Genomics 16(Suppl 5):S7. https://doi.org/10.1186/1471-2164-16-S5-S7

Kanampalliwar AM, Soni R, Tiwari A, Giridhar A (2013) Reverse vaccinology: basics and applications. J Vaccin Vaccine 4(6):194–198. https://doi.org/10.4172/2157-7560.1000194

Kaur H, Garg A, Raghava GPS (2007) PEPstr: a de novo method for tertiary structure prediction of small bioactive peptides. Protein Pept Lett 14:626–630. https://doi.org/10.2174/092986607781483859

Kelly DF, Rappuoli R (2005) Reverse vaccinology and vaccines for serogroup B Neisseria meningitidis. Adv Exp Med Biol 568:217–223

Kolesanova EF, Sobolev BN, Moysa AA, Egorova EA, Archakov AI (2015) Way to the peptide vaccine against hepatitis C. Biomed Khim 61(2):254–264. https://doi.org/10.18097/PBMC20156102254

Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: an FFT-based protein docking program with pair wise potentials. Proteins 65(2):392–406. https://doi.org/10.1002/prot.21117

Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580. https://doi.org/10.1006/jmbi.2000.4315

Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O, Nielsen M (2005) An integrative approach to CTL epitope prediction, a combined algorithm integrating MHC-I binding, TAP transport efficiency, and proteasomal cleavage prediction. J Immunol 35:2295–2303. https://doi.org/10.1023/eji.200425811

Larsen JEP, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2(1):2. https://doi.org/10.1186/1745-7580-2-2

Liolios K, Tavernarakis N, Hugenholtz P, Kyrpides NC (2006) The genomes on line database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Res 34:D332–D334. https://doi.org/10.1093/nar/gkj145

Monterrubio-López GP, González-Y-Merchand JA, Ribas-Aparicio RM (2015) Identification of novel potential vaccine candidates against tuberculosis based on reverse vaccinology. Biomed Res Int 2015:483150. https://doi.org/10.1155/2015/483150

Naz A, Awan FM, Obaid A, Muhammad SA, Paracha RZ, Ahmad J, Ali A (2015) Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: a reverse vaccinology based approach. Infect Genet Evol 32:280–291. https://doi.org/10.1016/j.meegid.2015.03.027

NCBI Resource Coordinators (2017) Database resources of the national center for biotechnology information. Nucleic Acids Res 45(D1):D12–D17. https://doi.org/10.1093/nar/gkw1071

Okonechnikov K, Golosova O, Fursov M, UGENE team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. https://doi.org/10.1093/bioinformatics/bts091

Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152(1):163–175. PMID: 8254189

Pickett BE, Greer DS, Zhang Y, Stewart L, Zhou L, Sun G et al (2012) Virus pathogen database and analysis resource (ViPR): a comprehensive bioinformatics database and analysis resource for the coronavirus research community. Viruses 11:3209–3226. https://doi.org/10.3390/v4113209
Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820. https://doi.org/10.1126/science.287.5459.1816

Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3:445–450. https://doi.org/10.1016/S1369-5274(00)00119-3

Sachdeva G, Kumar K, Preti J, Ramachandran S (2004) SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 21:483–491. https://doi.org/10.1093/bioinformatics/bti028

Saha S, Raghava GPS (2006a) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34:W202–W209. https://doi.org/10.1093/nar/gkl343

Saha S, Raghava GPS (2006b) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48. https://doi.org/10.1002/prot.21078

Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33(4):530–541. https://doi.org/10.1016/j.immuni.2010.09.017

Shen H-B, Chou K-C (2010) Virus-mPLoc: a fusion classifier for viral protein subcellular location prediction by incorporating multiple sites. J Biomol Struct Dyn 28:175–186. https://doi.org/10.1080/07391102.2010.10507351

Singh H, Raghava GPS (2003) ProPred1: prediction of promiscuous MHC class-I binding sites. Bioinformatics 19(8):1009–1014. https://doi.org/10.1093/bioinformatics/btg108

Vishnu US, Sankarasubramanian J, Gunasekaran P, Rajendhran J (2017) Identification of potential antigens from non-classically secreted proteins and designing novel multitope peptide vaccine candidate against Brucella melitensis through reverse vaccinology and immunoinformatics approach. Infect Genet Evol 55:151–158