Draft Genome Sequence of a *Wohlfahrtiimonas chitiniclastica* Strain Isolated from Frozen Chicken in Rio De Janeiro, Brazil

Jorge Matos, a Adriana Rocha Faria, a, c Ana Paula D’Alincourt Carvalho Assef, a Ângela Corrêa de Freitas-Almeida, a Rodolpho Mattos Albano, b Mara Lucia Penna Queiroz a

a Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

b Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

c Faculdade de Ciências Médicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

ABSTRACT

Here, we report the draft genome sequence of *Wohlfahrtiimonas chitiniclastica* strain 20, isolated from a chicken carcass originated from indoor broiler farming and identified using matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry followed by sequencing of the 16S rRNA gene.

*Wohlfahrtiimonas chitiniclastica* is a Gram-negative bacillus that lives in the larvae of the parasitic flies *Wohlfahrtia magnifica* and *Chrysomya megacephala* (1, 2), and it has been reported as the causative agent of severe infections in clinics and as a threat to the health of humans and animals. This bacterium was found to be a potential zoonotic pathogen associated with human bacteremia and sepsis (3–7), with dolphin endocarditis (8), with white-tailed deer septicemia (9), and with cattle hoof infection (10).

In this study, we describe the draft genome sequence of *W. chitiniclastica* strain 20, isolated for the first time from a chicken carcass as previously described (11). A single bacterial colony grown on tryptone soya agar (Oxoid, United Kingdom) was transferred to tryptone soya broth (Oxoid) and incubated overnight at 37°C. After that, genomic DNA was extracted using a NucleoSpin tissue kit (Macherey-Nagel, Germany). Genomic libraries were constructed with the Nextera XT DNA sample prep kit (Illumina, Inc.). Sequencing was performed on an Illumina MiSeq system with the 600-cycle MiSeq v3 reagent. Paired-end reads (1,681,842) were trimmed, corrected, and assembled with A5-miseq pipeline (v. 20140604) using default parameters (12) to produce 11 scaffolds (12 contigs) comprising a genome of 2,180,519 bp with 43.67% GC content and an 11,348-bp plasmid. The longest scaffold was 1,074,268 bp, the \( N_{50} \) value was 299×, and the median coverage was 299×, and the medium coverage for both the chromosome and the plasmid was 340×. The plasmid was detected by assembling the reads with plasmidSPAdes with default parameters (v. 3.10.1) (13).

Genome and plasmid annotations were performed with the NCBI Prokaryotic Genome Annotation Pipeline (14) and the RAST server v. 2.0 (15). The presence of plasmid stabilization, replication, and conjugation proteins helped to confirm the identity of the plasmid. Resources available at the Pathosystems Resource Integration Center (PATRIC) v. 3.4.11 were also used in the default mode for annotation (16). Preliminary draft annotation indicates that the genome is predicted to contain 2,080 genes encoding 1,987 proteins, 50 tRNAs, and 9 rRNAs. The genome also contains genes coding for macrolide-specific efflux pumps (*macA* and *macB*). We also observed the presence of the *oxyR* gene, which is involved in regulating oxidative stress resistance. The presence of one 25.9-kb intact phage in the genome was shown by a search with the PHAST engine (default mode; [http://phast.wishartlab.com/](http://phast.wishartlab.com/)), which revealed the highest simi-
larity with Enterobacteria phase Fels-2 (GenBank accession number NC_010463), which was initially described in Salmonella enterica LT2 (17). Two sequences associated with CRISPR regions were identified using CRISPRFinder in the default mode (https://crispr.jiberc.paris-saclay.fr/Server/) (18), presenting a total of 246 CRISPR repeats and 244 CRISPR spacers. The reciprocal average nucleotide identity (ANI) index (19) between strain 20 and three other strains of W. chitiniclastica, SH04, DSM18708, and BM-Y, reveals that strain 20 shares 96.9%, 98.1%, and 98% identity with SH04, DSM18708, and BM-Y, respectively.

**Data availability.** The whole-genome shotgun for this project has been deposited at DDBJ/ENA/GenBank under the accession number NZ_LWST00000000. The version described in this paper is version NZ_LWST00000000.1. Raw sequence reads have been deposited in the NCBI Sequence Read Archive (SRA) with accession number SRX1733470 under BioProject number PRJNA224116.

**ACKNOWLEDGMENTS**

This project was supported by grants from the Brazilian government agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

**REFERENCES**

1. Tóth EM, Schumann P, Borsodi AK, Kéki Z, Kovács AL, Márialigeti K. 2008. Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magna. Int J Syst Evol Microbiol 58:976–981. https://doi.org/10.1099/ijs.0.65324-0.

2. Gao X, Chen T, Xu L, Yao L, Qi J, Zhang X, Yan Q, Deng Y, Guo T, Wang J, Hu K, Xu B. 2013. Complete genome sequence of Wohlfahrtiimonas chitiniclastica strain SH04, isolated from Chrysomya megacephala collected from Pudong International Airport in China. Genome Announc 1:e00119-13. https://doi.org/10.1128/genomeA.00119-13.

3. Reubaudet S, Genot S, Renvoise A, Fournier P, Stein A. 2009. Wohlfahrtiimonas chitiniclastica bacteremia in a homeless woman. Emerg Infect Dis 15:985–987. https://doi.org/10.3201/eid1506.080232.

4. Almuzara MN, Palombarani S, Tuduri A, Figueroa S, Gianecini A, Sabater L, Ramirez MS, Vay CA. 2011. First case of fulminant sepsis due to Wohlfahrtiimonas chitiniclastica bacteremia associated with myiasis, United Kingdom. Emerg Infect Dis 17:1068–1069. https://doi.org/10.1093/infdis/ji1223-014-0355-x.

5. Campisi L, Mahobia N, Clayton JJ. 2015.

6. Campisi L, Mahobia N, Clayton JJ. 2015.

7. Suryalatha K, John J, Thomas S. 2015.

8. Diaz-Delgado J, Sierra E, Vela AI, Dominguez M, Arbelo M, Fernandez A. 2015. Endocarditis associated with Wohlfahrtiimonas chitiniclastica bacteremia associated with myiasis, United Kingdom. Emerg Infect Dis 21:1068–1069. https://doi.org/10.3201/eid2106.140007.

9. Suryalatha K, John J, Thomas S. 2015. Wohlfahrtiimonas chitiniclastica-associated osteomyelitis: a rare case report. Future Microbiol 10:1107–1109. https://doi.org/10.2217/fmb.15.44.

10. Diaz-Delgado J, Sierra E, Vela AI, Dominguez M, Andrade M, Arbelo M, Fernandez A. 2015. Endocarditis associated with Wohlfahrtiimonas chitiniclastica in a short-beaked common dolphin (Delphinus delphis). J Wildl Dis 51:283–286. https://doi.org/10.7589/2014-03-072.

11. Thiwong T, Kettler NM, Lim A, Dirks H, Kluse M. 2014. First report of emerging zoonotic pathogen Wohlfahrtiimonas chitiniclastica in the United States. J Clin Microbiol 52:2245–2247. https://doi.org/10.1128/JCM.00382-14.

12. Qi J, Gao Y, Wang G-S, Li L-B, Li L-L, Zhao X-M, Du Y-J, Liu Y-Q. 2016. Identification of Wohlfahrtiimonas chitiniclastica isolated from an infected cow with hoof felon, China. Infect Genet Evol 41:174–176. https://doi.org/10.1016/j.meegid.2016.04.008.

13. Matos J, Queiroga AP, de Oliveira Pedroza Bindi dos Reis CC, Ribeiro RL, Teixeira LM, Albano RM, de Freitas-Almeida AC, Queiroz ML. 2016. First report of the emerging zoonotic agent Wohlfahrtiimonas chitiniclastica isolated from a retail frozen chicken in Rio de Janeiro, Brazil. Antonie Van Leeuwenhoek 109:729–734. https://doi.org/10.1007/s10482-016-0673-x.

14. Coil D, Jospin G, Darling AE. 2015. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31:587–589. https://doi.org/10.1093/bioinformatics/btu661.

15. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA. 2016. plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics 32:3380–3387. https://doi.org/10.1093/bioinformatics/btw493.

16. Aziz RK, Bartels D, Best AA, Dejongh M, Diz T, Edwards RA, Formksa K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75.

17. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Diz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214. https://doi.org/10.1093/nar/gkt1226.

18. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Diz T, Gabillard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, You H, Stevens RL. 2017. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45:D353–D352. https://doi.org/10.1093/nar/gkw1017.

19. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latrellle P, Courtney L, Porwollk S, Ali J, Dante M, Du F, Hsu S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Muhanvay E, Ryan E, Sun H, Flores L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856. https://doi.org/10.1038/35101614.

20. Grissa I, Vernaud G, Porcel C. 2007. CRISPRFinder: a Web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57. https://doi.org/10.1093/nar/gkm360.

21. Rodriguez-R LM, Konstantinidis KT. 2016. The envemics collection: a tool box for specialized analyses of microbial genomes and metagenomes, PeerJ Prepr. https://peerj.com/preprints/1900/.