Tuning the electrical transport of type II Weyl semimetal WTe$_2$ nanodevices by Ga$^+$ ion implantation

Dongzhi Fu1, Bingwen Zhang1, Xingchen Pan1, Fucong Fei1, Yongda Chen2, Ming Gao2, Shuyi Wu3, Jian He1, Zhanbin Bai3, Yiming Pan4, Qinfang Zhang3, Xuefeng Wang2, Xinglong Wu3 & Fengqi Song1

Here we introduce lattice defects in WTe$_2$ by Ga$^+$ implantation (GI), and study the effects of defects on the transport properties and electronic structures of the samples. Theoretical calculation shows that Te Frenkel defects is the dominant defect type, and Raman characterization results agree with this. Electrical transport measurements show that, after GI, significant changes are observed in magnetoresistance and Hall resistance. The classical two-band model analysis shows that both electron and hole concentration are significantly reduced. According to the calculated results, ion implantation leads to significant changes in the band structure and the Fermi surface of the WTe$_2$. Our results indicate that defect engineering is an effective route of controlling the electronic properties of WTe$_2$ devices.

Since the discovery of graphene$^{1-3}$ and topological insulators$^{4-7}$, the study of various new topological materials has become a hot spot. Recent years Weyl semimetals (WSMs), first implemented in the TaAs family$^{8-11}$, have aroused a wide range of interest due to their unique band structures and transport properties. Many prediction including Weyl point, Weyl cone, Fermi arc and chirality anomaly have been demonstrated by the experiments including angle-resolved photoemission spectroscopy$^{9,10,12-14}$, negative longitudinal magnetoresistance$^{15-17}$. Recently, a type of WSM, type II WSM, is proposed and verified in WTe$_2$$^{18-22}$, MoTe$_2$$^{23-27}$ and Mo$_x$W$_{1-x}$Te$_2$$^{28-30}$, etc. It is characterized by a few sets of heavily titled Weyl cones, whose Weyl points appear at the contact of electron and hole pockets. Due to the unique properties of the band, the theory predicts that there are many unique properties different from those of type I: momentum space Klein tunneling31, field-selective chiral anomaly32 and intrinsic anomalous Hall Effect33, which becomes a good platform with intense research efforts.

For WTe$_2$, an extremely large positive magnetoresistance (XMR) has been observed, which has a value of 13,000,000% up to 60T at 0.53K with current along a- axis and magnetic field parallel to c-axis34. Monolayer WTe$_2$ with 1T’ structure is predicted theoretically to be quantum spin Hall insulator35 and edge conduction, which is confirmed recently36. Pressure-induced dome-shaped superconductivity is reported in WTe$_2$ with a maximum critical temperature (Tc) of 7 K at around 16.8 GPa37,38. Recently WTe$_2$ is predicted to be type II WSM18 and chiral anomaly induced negative magnetoresistance is observed in WTe$_2$ devices of thin film and bulk materials$^{39-41}$. However, theoretical and experimental studies on lattice defects and their kinetics of WTe$_2$ are still absent. Lattice defects have a significant impact on the properties of WTe$_2$, so research on this is urgently needed. As the first theoretical candidate of type II WSM, WTe$_2$ have four pairs of Weyl points which are believed to be 50–60meV higher than the Fermi level of the pristine solid42. Such a subtle control can often be tackled by the defect engineering12,43.

1National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and College of Physics, Nanjing University, Nanjing, 210093, P. R. China. 2National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China. 3Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, P. R. China. Dongzhi Fu and Bingwen Zhang contributed equally to this work. Correspondence and requests for materials should be addressed to Q.Z. (email: qfangzhang@gmail.com) or F.S. (email: songfengqi@nju.edu.cn)
Ion implantation is an important way to introduce lattice defects in crystals, and has been widely used in the past research. Here we report that, GI is carried out on WTe$_2$ nanodevices of thin flakes. Raman characterization, transport measurement and theoretical calculation determine the dominant defects and its effect on the device transport.

Results and Discussion

WTe$_2$ is a member of laminar transition metal dichalcogenides (TMDs). Unlike other TMDs, the Td phase is the naturally stable structure of WTe$_2$. Due to the weak Van der Waals force between different layers, WTe$_2$ can be easily exfoliated into films with atomic thickness. In our work, WTe$_2$ thin flakes are obtained by mechanical cleavage of strip-like crystals onto 285 nm-SiO$_2$/Si substrates. Figure 1a shows a typical optical image of the WTe$_2$ devices with Hall-bar geometry, and the thickness of the thin flake is \sim25.3 nm, determined from the height profile of the film along the black line plotted in Fig. 1b. Inset shows the original image of atomic force microscopy along the black line.

Here ion implantation is carried out in order to introduce structural defects in the 3D semimetal WTe$_2$. GI is carried out in a FEI Helios Nanolab 600i dual beam system with Ga$^+$ ion sources. A detailed description of ion implantation process is given in the method section. The candidate structural defects created by ion implantation include Frenkel defects and substitution defects, whose influence on transport properties and band structure will be elaborated in the following section. Here the software “The Stopping and Range of Ion in Matter” (SRIM) is used to simulate the process of GI. Figure 1c shows the simulation for 100 Ga$^+$ implantation into WTe$_2$ flakes. The simulated diagram was got by software “The Stopping and Range of Ion in Matter” (SRIM) with ion energy 30 keV. The red dots show the vacancies created by Ga$^+$, while the green dots are vacancies caused by recoiling W or Te atoms. (d) Ga$^+$ density profile of the WTe$_2$ film with GI. Ten thousand Ga$^+$ with ion energy 30 keV were used in SRIM to obtain the distribution curve.

Ion implantation is an important way to introduce lattice defects in crystals, and has been widely used in the past research. Here we report that, GI is carried out on WTe$_2$ nanodevices of thin flakes. Raman characterization, transport measurement and theoretical calculation determine the dominant defects and its effect on the device transport.

Results and Discussion

WTe$_2$ is a member of laminar transition metal dichalcogenides (TMDs). Unlike other TMDs, the Td phase is the naturally stable structure of WTe$_2$. Due to the weak Van der Waals force between different layers, WTe$_2$ can be easily exfoliated into films with atomic thickness. In our work, WTe$_2$ thin flakes are obtained by mechanical cleavage of strip-like crystals onto 285 nm-SiO$_2$/Si substrates. Figure 1a shows a typical optical image of the WTe$_2$ devices with Hall-bar geometry, and the thickness of the thin flake is \sim25.3 nm, determined from the height profile of the film along the black line plotted in Fig. 1b. Inset shows the original image of atomic force microscopy along the black line.

Here ion implantation is carried out in order to introduce structural defects in the 3D semimetal WTe$_2$. GI is carried out in a FEI Helios Nanolab 600i dual beam system with Ga$^+$ ion sources. A detailed description of ion implantation process is given in the method section. The candidate structural defects created by ion implantation include Frenkel defects and substitution defects, whose influence on transport properties and band structure will be elaborated in the following section. Here the software “The Stopping and Range of Ion in Matter” (SRIM) is used to simulate the process of GI. Figure 1c shows the simulation for 100 Ga$^+$ implantation into WTe$_2$ flakes. The ion-induced vacancies (strike a W or Te atom away from its lattice site) are represented by red dots, and the vacancies caused by the recoiling W/Te atoms are indicated by green dots. Easy to find that the ions cause lattice damage (red dots) constantly, while recoiling W/Te atoms always create recoil cascade shown by clusters of green dots. Ga$^+$ density profile of the WTe$_2$ film derived from SRIM simulation was shown in Fig. 1d with operating voltage 30kV. Known from the curve, by means of GI we can get a relatively uniform concentration distribution of Ga$^+$ ion in WTe$_2$ thin film samples with thickness of \sim25 nm. The detailed dependence of energy and projected range is shown in Table S2 of the supplementary information.

In order to determine the dominant type of structure defects, we characterize our samples by Raman spectroscopy. The calculated results about all 33 Raman vibrational modes in ref. are applied in our study. Figure 2a show
all the five Raman vibrational modes observed in sample A (~8.5 nm) with laser applied in the z (xx) z geometry. As shown in Fig. 2a, the first four modes (A_2^4, A_1^9, A_1^8, and A_1^5) are induced by the relative movements of Te atoms, while the A_1^2 mode is caused by the displacement between neighbouring W1 and W2 atoms46. Among all the five modes, pure longitudinal and transverse optical modes are represented by A_2^4 and A_1^5 respectively46.

Raman spectra of sample A with incident Laser along the c-axes at room temperature is shown in Fig. 2b. The green line show the experimental data for pure sample A (without GI and annealing), blue line represent the Raman spectra for sample A with GI (irradiated to total doses of 0.44 μC. cm$^{-2}$) and red line is the Raman spectra for sample A with GI and annealing. All the peak appearing in the range from 100~250 cm$^{-1}$ are analyzed by Lorentz fitting, and the results are shown in Table 1. On the basis of calculation results in ref. 46, five Raman vibrational modes are identified as shown in Fig. 2b. The A_2^4 (\sim111.1 cm$^{-1}$), A_1^9 (\sim116.7 cm$^{-1}$), A_1^8 (\sim133 cm$^{-1}$), A_1^5 (\sim163.5 cm$^{-1}$), and A_1^2 (\sim211.4 cm$^{-1}$) modes were allotted in sequence for pure sample A, which agrees with the results in ref. 46. In the meantime, the A_2^4 (\sim111 cm$^{-1}$), A_1^9 (\sim116.8 cm$^{-1}$), A_1^8 (\sim133.2 cm$^{-1}$), A_1^5 (\sim163.5 cm$^{-1}$), and A_1^2 (\sim211.8 cm$^{-1}$) modes were allotted sequentially for sample A with GI. The A_2^4 (\sim111.3 cm$^{-1}$), A_1^9 (\sim116.7 cm$^{-1}$), A_1^8 (\sim133.3 cm$^{-1}$), A_1^5 (\sim163.8 cm$^{-1}$), and A_1^2 (\sim212 cm$^{-1}$) modes were allotted sequentially for sample A with GI and annealing.

First of all, the peak positions almost show no change after GI and annealing. The weak changes in peak position are comparable with measuring error of the instrument. Furthermore, the full width at half maximum (FWHM) of the Raman peaks change significantly. GI increase the FWHM by introducing lattice defects, while annealing decrease the FWHM by repairing part of the defects and improve the quality of the samples. So the significant changes of the FWHM have confirmed the effect of “GI” and “annealing after GI” very well, which is consistent with the our expectation. Considering that no excess defect peak is observed, no major peak disappears.

Table 1. Raman parameters comparison for pure sample A, sample A with GI and sample A with GI and annealing. All the parameters in the table are obtained by Lorentz fitting.

Sample A Mode	Peak position/cm$^{-1}$	Full width at half maximum/cm$^{-1}$	Relative intensity I(Pi)/I(P5)						
	Pure	With GI and annealing	Pure	With GI	With GI and annealing				
P1 A_2^4	111.1	111	111.3	2.95	3.8	3.55	0.25795	0.18738	0.24337
P2 A_1^9	116.7	116.8	117.1	2.6	3.17	3.97	0.11159	0.09701	0.1027
P3 A_1^8	133	133.2	133.3	3.31	4.49	4.15	0.22329	0.14206	0.17697
P4 A_1^5	163.5	163.5	163.8	2.62	3.65	3.18	0.59845	0.4483	0.56087
P5 A_1^2	211.4	211.8	212	4.02	4.66	4.68	1	1	1

Figure 2. Raman evidence for main defects in WTe$_2$ induced by GI. (a) Atomic displacements of Raman active modes in WTe$_2$. Here, “\times” and “.” indicate that the Te atoms move into and out of the bc plane, respectively. (b) Raman spectra of WTe$_2$ flakes with incident laser along the c-axes at room temperature. The green, blue and red line show the Raman spectra for pure sample A, sample A with GI and sample A with GI and annealing, respectively.
Table 2. Parameters used for GI and that derived from the two-band model fitting. n, p, carrier density for electron and hole respectively; n/p, the ratio of carrier density; μ_e, μ_h, mobility for electron and hole respectively.

Sample	Thickness (nm)	Operating voltage (kV)	Dose (μCcm$^{-2}$)	n1019cm$^{-3}$	p1019cm$^{-3}$	n/p	μ_e(cm2V$^{-1}$s$^{-1}$)	μ_h(cm2V$^{-1}$s$^{-1}$)						
B	25.3	30	2	0.4	4.460	1.750	4.339	1.723	1.028	1.016	2161	1018	1736	994
Carrier concentration ratio is almost unchanged in sample B with GI, suggesting that electron-hole compensation is maintained. However sample D with thinner thickness exhibits breakdown of electron-hole compensation shown in Fig. S3 of supplementary information. Here the two band model is used to reproduce correctly the hall resistivity of sample B. Table 2 summarizes the evolution of the electron and hole concentration, mobility and carriers concentration ratio, respectively. The mobility for electron decline greatly from 2161 cm²V⁻¹s⁻¹ to 1018 cm²V⁻¹s⁻¹, and the mobility for hole decay from 1736 cm²V⁻¹s⁻¹ to 994 cm²V⁻¹s⁻¹, which stem from the emergence of a large number of scattering centers. As shown in the Table 2, after GI, both electron and hole densities decrease obviously, implying the change of band structure and Fermi level in WTe₂ flake. Interestingly, carrier concentration ratio is almost unchanged in sample B with GI, suggesting that electron-hole compensation is maintained. However sample D with thinner thickness exhibits breakdown of electron-hole compensation shown in Table S4 (supplementary information). So introduction of structure defects by ion implantation is an effective method to modulate the carrier density, especially in semimetal devices, which cannot be tuned effectively by traditional gating due to the limit of screen length.

In addition to Raman characterization and transport measurements, we also investigate the impact of GI on the band structure and Fermi surface of WTe₂. We performed our calculation by the Vienna Ab-initio Simulation Package (VASP) code52–55. The distribution of high symmetry points in the first Brillouin zone is shown in Fig. S4 in supplementary information. Figure 4a–e are the crystal structure diagrams of pure WTe₂ and all of the defect types we consider in this work, including Te/W atom Frenkel defects and substitution defects. At the same time, Fig. 4f–j are the corresponding band structure for pure WTe₂ and WTe₂ crystal with a certain concentration of specific defects. As shown in Fig. 4f–j, the red line indicates the current position of Fermi energy for WTe₂ crystal with a certain concentration of specific defects, while the blue line represents the position of the Fermi energy for the pure WTe₂ crystal. As can be seen from Fig. 4f–j, the introduction of a certain concentration of structure defects in pure WTe₂ crystal, will result in a significant change in the band structure. In addition, the location of the Fermi surface will be significantly changed. The introduction of a certain concentration of W atom Frenkel defect has little effect on the Fermi energy of the WTe₂ crystal, while the introduction of the remaining three defects leads to a significant lifting in Fermi energy. The changes in Fermi level caused by various crystal defects are recorded in Table S5 in supplementary information. Considering that GI can cause a decrease in carrier concentration, we can speculate that Te atom Frenkel defect as the main defect type, is likely to result in the reduction of density of state (DOS). However the effect of other types of defects on the DOS remains to be studied.

Conclusion
In summary, by GI, we have effectively introduced lattice defects in WTe₂ thin film devices. Through Raman analysis and formation energy calculation, Te Frenkel defect is identified as the dominant defects in WTe₂. Transport measurements help us analyze the effects of lattice defects. In particular, the two band model analysis shows a significant decrease in electron and hole concentration induced by Te Frenkel defects. By theoretical calculation, we know the effect of all the candidate defects on band structure and Fermi surface. Ion implantation is expected to become a new way to control the electronic properties for WTe₂ nanodevices, meantime this approach may also apply to thin film devices of other layered TMDs.

Figure 3. Effect of lattice defects on transport properties. (a) Temperature dependence of the resistance R_{xx} in zero field for sample B. The green line represents the experimental data for pure sample B and the blue line for sample B with GI and annealing. (b and c) display the field dependence of MR and ρ_{xy} at 2 K, respectively, with a magnetic field applied along the c-axis direction. The red dotted line in (c) represents the two band model fit for sample B.
Methods

Devices fabrication. WTe₂ thin flakes were obtained by mechanically exfoliating bulk single crystals onto a Si wafer covered with a 285-nm thick thermally grown SiO₂ layer. Optical microscopy and atomic force microscopy were used to characterize the quality and thickness of the thin flakes. Once thin flakes were identified on the substrate, conventional nano-fabrication techniques (photolithography, standard electron beam evaporation and lift off) were employed to attach electrical contacts (consisting of Ti/Au bilayers, typically 5/50 nm thick).

Ga⁺ ion implantation. GI were carried out in a FEI Helios Nanolab 600i dual beam system with Ga⁺ ion sources at room temperature. The size of the Ga⁺ ion beam spot was set to 25 um × 20 um which can cover all the channel areas of WTe₂ devices, with uniform beam current 2pA. Working voltage of dual beam system was set to 30kV which corresponds to a projection range of 13.7 nm. The duration of implantation was limited to 3s to avoid the serious degradation of transport property of WTe₂ devices.

Annealing. After the process of GI, annealing treatment was carried out on the devices to repair the most cascade damage originating from the ion collision. WTe₂ devices were annealed in a horizontal tube furnace equipped with a 1 inch diameter quartz tube. Argon(89%)/H₂(11%)/mixed gases were kept at a flow rate of 100 sccm with mechanical vacuum pump working. The tube furnace was heated from room temperature to 240 °C within 60 min. After maintaining at 240 °C for 120 min, the system was naturally cooled down to room temperature.

Raman characterization. Raman spectra were characterized from a micro-Raman spectrometer (LabRAM HR) with a 514.5 nm wavelength Ar⁺ laser as the excitation source. The laser spot size on samples was a few microns in diameter, and the incident laser power was below 1 mW, which did not damage the studied devices.

Transport measurements. Four-probe measurements of magnetoresistance and Hall resistivity were conducted in a commercial cryostat (Quantum Design PPMS-14).

Electronic structure calculation. We performed our calculation by the Vienna Ab-initio Simulation Package (VASP) code. The Kohn-Sham equation have been solved variationally in a plane wave basis set using the projector-augmented-wave (PAW) method. The exchange correlation energy was described by the functional of Perdew, Burke, and Ernzerhof (PBE) based on the generalized gradient approximation.
References

1. Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666 (2004).
2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
3. Qin, Y. et al. Sizeable Kane–Mele-like spin orbit coupling in graphene decorated with iridium clusters. Applied Physics Letters 108, 203106, https://doi.org/10.1063/1.4950870 (2016).
4. Fu, L., Kane, C. L. & Mele, E. J. Topological Insulators in Three Dimensions. Physical Review Letters 98, 106803 (2007).
5. Chen, T. et al. Topological transport and atomic tunnelling-clutching dynamics for aged Cu-doped Bi2Te3 crystals. Nature Communications 5, 5022, https://doi.org/10.1038/ncomms6022 (2014).
6. Chen, T. et al. High-Mobility Sm-Doped Bi2Se3 Ferromagnetic Topological Insulators and Robust Exchange Coupling. Advanced Materials 27, 4823–4829, https://doi.org/10.1002/adma.201501254 (2015).
7. Pei, F. et al. Solvothermal Synthesis of Lateral Heterojunction Sb2Te3/Bi2Te3 Nanoplates. Nano Letters 15, 5905–5911, https://doi.org/10.1021/acs.nanolett.5b01987 (2015).
8. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides. Physical Review X 5, 011029 (2015).
9. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613 (2015).
10. Lv, B. et al. Experimental Discovery of Weyl Semimetal TaAs. Physical Review X 5, 031013 (2015).
11. Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat Phys 11, 728–732, https://doi.org/10.1038/nphys3425 (2015).
12. Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat Phys 11, 748–754, https://doi.org/10.1038/nphys3437 (2015).
13. Lv, B. Q. et al. Observation of Fermi-Arc Spin Texture in TaAs. Physical Review Letters 115, 217601 (2015).
14. Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat Phys 11, 724–727, https://doi.org/10.1038/nphys3426 (2015).
15. Huang, X. et al. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs. Physical Review X 5, 031023 (2015).
16. Zhang, C.-L. et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nature Communications 7, 10735, https://doi.org/10.1038/ncomms10735 (2016).
17. Arnold, E. et al. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nature Communications 7, 11615, https://doi.org/10.1038/ncomms11615 (2016).
18. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498, https://doi.org/10.1038/nature15768 (2015).
19. Bruno, E. Y. et al. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2. Physical Review B 94, 121112 (2016).
20. Wu, Y. et al. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2. Physical Review B 94, 121113 (2016).
21. Sánchez-Barriga, J. et al. Surface Fermi arc connectivity in the type-II Weyl semimetal candidate WTe2. Physical Review B 94, 161401 (2016).
22. Wang, C. et al. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2. Physical Review B 94, 241119 (2016).
23. Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2. Physical Review B 92, 161107 (2015).
24. Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat Mater 15, 1155–1160, https://doi.org/10.1038/nmat4683 (2016).
25. Wang, Z. et al. MoTe2: A Type-II Weyl Topological Metal. Physical Review Letters 117, 056805 (2016).
26. Tamai, A. et al. Fermi Arcs and Their Topological Character in the Candidate Type-II Weyl Semimetal MoTe2. Physical Review X 6, 031021 (2016).
27. Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat Phys. https://doi.org/10.1038/nphys3871 (2016).
28. Chang, T.-R. et al. Prediction of an arc-tunable Weyl Fermion metallic state in Mo9W1−xTe2x. Nature Communications 7, 10639, https://doi.org/10.1038/ncomms10639 (2016).
29. Belopolski, L. et al. Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate Mo9W1−xTe2x. Physical Review B 94, 085127 (2016).
30. Belopolski, L. et al. Discovery of a new type of topological Weyl fermion semimetal in Mo9W1−xTe2x. Nature Communications 7, 13643, https://doi.org/10.1038/ncomms13643 (2016).
31. O’Brien, T. E., Diez, M. & Beenakker, C. W. J. Magnetic Breakdown and Klein Tunneling in a Type-II Weyl Semimetal. Physical Review Letters 116, 236401 (2016).
32. Udagawa, M. & Bergholtz, E. J. Field-Sensitive Anomalous and Chiral Mode Reversal in Type-II Weyl Materials. Physical Review Letters 117, 086401 (2016).
33. Zvyuzin, A. A. & Tiwari, R. P. Intrinsic anomalous Hall effect in type-II Weyl semimetals. JETP Letters 103, 717–722, https://doi.org/10.1134/S00213640161014X (2016).
34. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208, https://doi.org/10.1038/nature13763 (2014).
35. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347, https://doi.org/10.1126/science.1256815 (2014).
36. Pei, F. et al. Edge conduction in monolayer WTe2. Nat Phys. https://doi.org/10.1038/nphys4091 (2017).
37. Pan, X.-C. et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride. Nature Communications 6, 7805, https://doi.org/10.1038/ncomms8805 (2015).
38. Kang, D. et al. Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride. Nature Communications 6, 7804, https://doi.org/10.1038/ncomms8804 (2015).
39. Wang, Y. et al. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nature Communications 7, 13142, https://doi.org/10.1038/ncomms13142 (2016).
40. Zhang, E. et al. Tunable Positive to Negative Magnetoresistance in Atomically Thin WTe2. Nano Letters 17, 878–885, https://doi.org/10.1021/acs.nanolett.6b04194 (2017).
41. Li, Y.-Y. et al. Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe2 crystals at the Quasiclassical Regime. Physical Review Letters 118, 096603 (2017).
42. Rischau, C. W., Leridon, B., Fauqué, B., Metayer, V. & van der Beek, C. J. Doping of Bi2Te3 using electron irradiation. Physical Review B 88, 205207 (2013).
43. Suh, J. et al. Fermi-level stabilization in the topological insulators Bi2Se3 and Bi2Te3. Origin of the surface electron gas. Physical Review B 89, 115307 (2014).
44. Suh, J. et al. Simultaneous Enhancement of Electrical Conductivity and Thermopower of Bi2Te3 by Multifunctionality of Native Defects. Advanced Materials 27, 3681–3686, https://doi.org/10.1002/adma.201501350 (2015).
45. Zhao, L. et al. Stable topological insulators achieved using high energy electron beams. Nature Communications 7, 10957, https://doi.org/10.1038/ncomms10957 (2016).
46. Jiang, Y. C., Gao, J. & Wang, L. Raman fingerprint for semi-metal WTe_2 evolving from bulk to monolayer. *Scientific Reports* **6**, 19624, https://doi.org/10.1038/srep19624 (2016).
47. Wang, L. *et al.* Tuning magnetotransport in a compensated semimetal at the atomic scale. *Nature Communications* **6**, 8892, https://doi.org/10.1038/ncomms9892 (2015).
48. Wang, Y., Wang, K., Reutl-Robey, J., Paglione, J. & Fuhrer, M. S. Breakdown of compensation and persistence of nonsaturating magnetoresistance in gated WTe_2 thin flakes. *Physical Review B* **93**, 121108 (2016).
49. Sondheimer, E. H. & Wilson, A. H. The Theory of the Magneto-Resistance Effects in Metals. *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences* **190**, 435–455, https://doi.org/10.1098/rspa.1947.0087 (1947).
50. Murzin, S. S., Dorozhkin, S. I., Landwehr, G. & Gossard, A. C. Effect of hole-hole scattering on the conductivity of the two-component 2D hole gas in GaAs/(AlGa)As heterostructures. *Journal of Experimental and Theoretical Physics Letters* **67**, 113–119, https://doi.org/10.1134/1.567643 (1998).
51. Chaudhari, P. & Bever, M. B. Effects of Irradiation with Protons on the Electrical Properties of Bi_2Te_3. *Journal of Applied Physics* **37**, 4181–4188, https://doi.org/10.1063/1.1707997 (1966).
52. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. *Physical Review B* **48**, 13115–13118 (1993).
53. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. *Physical Review B* **49**, 14251–14269 (1994).
54. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Computational Materials Science* **6**, 15–50, https://doi.org/10.1016/0927-0256(96)00008-0 (1996).
55. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Physical Review B* **54**, 11169–11186 (1996).
56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Physical Review Letter* **77**, 3865–3868 (1996).

Acknowledgements

We thank the National Key P&D Program of China (Grants No. 2017YFA0303200), the National Natural Science Foundation of China (Grant Nos: U1732273, U1732159, 91421109, 11474246, 91622115, 11522432 and 11574217), the NSF of Jiangsu Province (Grant BK20160659 and Grant BK20160061), and the Opening Project of Wuhan National Pulsed Magnetic Field Center. We would also like to acknowledge the assistance of the Nanofabrication and Characterization Center at the Physics College of Nanjing University.

Author Contributions

F.S. conceived the original idea and D.F. did all the research. X.P. synthesized the WTe_2. Y.C., M.G., S.W. and J.H. carried out Raman characterization, F.F. performed the Ga$^+$ implantation. D.F. fabricated and measured the WTe_2 devices with help from Z.B., Q.Z. and B.Z. carried out the theoretical calculation. F.S., D.F., Q.Z., B.Z., Y.P., X.W. and X.W. participated in the analysis of the data and discussed the results. D.F., F.S. and B.Z. wrote the paper, and all authors provided their feedback. All authors have read and have approved the manuscript.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-12865-8.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017