ICEApl1, an integrative conjugative element related to ICEHin1056, identified in the pig pathogen Actinobacillus pleuropneumoniae

Janine T. Bosse¹, Yanwen Li¹, Roberto Fernandez Crespo¹, Roy R. Chaudhuri², Jon Rogers³, Matthew T. Holden⁴, Duncan Maskell⁵, Alexander W. Tucker⁵, Brendan W. Wren⁶, Andrew N. Rycroft⁷, Paul R. Langford¹

¹Medicine, Imperial College London, United Kingdom, ²Molecular Biology and Biotechnology, University of Sheffield, United Kingdom, ³Animal and Plant Health Agency (APHA) Bury St Edmunds, United Kingdom, ⁴School of Medicine, University of St Andrews, United Kingdom, ⁵Department of Veterinary Medicine, University of Cambridge, United Kingdom, ⁶Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, United Kingdom, ⁷Department of Pathology and Pathogen Biology, The Royal Veterinary College, United Kingdom

Submitted to Journal: Frontiers in Microbiology
Specialty Section: Antimicrobials, Resistance and Chemotherapy
ISSN: 1664-302X
Article type: Original Research Article
Received on: 10 Mar 2016
Accepted on: 12 May 2016
Provisional PDF published on: 12 May 2016
Frontiers website link: www.frontiersin.org
Citation: Bosse JT, Li Y, Fernandez_crespo R, Chaudhuri RR, Rogers J, Holden MT, Maskell D, Tucker AW, Wren BW, Rycroft AN and Langford PR (2016) ICEApl1, an integrative conjugative element related to ICEHin1056, identified in the pig pathogen Actinobacillus pleuropneumoniae. Front. Microbiol. 7:810. doi:10.3389/fmicb.2016.00810
Copyright statement: © 2016 Bosse, Li, Fernandez_crespo, Chaudhuri, Rogers, Holden, Maskell, Tucker, Wren, Rycroft and Langford. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
ICEAp1, an integrative conjugative element related to ICEHin1056, identified in the pig pathogen *Actinobacillus pleuropneumoniae*

Janine T Bosse¹#*, Yanwen Li¹#, Roberto Fernandez Crespo¹, Roy R Chaudhuri²§, Jon Rogers³, Matthew TG Holden⁴†, Duncan J Maskell², Alexander W Tucker², Brendan W Wren⁵, Andrew N Rycroft⁶, Paul R Langford¹* on behalf of the BRaDP1T consortium¶.

¹Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, UK

²Department of Veterinary Medicine, University of Cambridge, Cambridge, UK

§Present address: Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, UK

³Animal and Plant Health Agency (APHA) Bury St Edmunds, Bury St Edmunds, Suffolk, UK

⁴The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

†Present address: School of Medicine, University of St Andrews, St Andrews, UK.

⁵Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK

⁶Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hawkshead Campus, Hatfield, Hertfordshire, UK

#These authors contributed equally to this work.

¶Members are listed in the Acknowledgements section.

Running title: ICEAp1 in *A. pleuropneumoniae*

Keywords: Animal infections, Antibiotic resistance, Respiratory tract, conjugation, *Pasteurellaceae*
Corresponding Authors:

Dr. Janine T. Bossé
j.bosse@imperial.ac.uk

Professor Paul Langford
p.langford@imperial.ac.uk
Abstract

ICEAp1 was identified in the whole genome sequence of MIDG2331, a tetracycline-resistant (MIC = 8 mg/L) serovar 8 clinical isolate of *Actinobacillus pleuropneumoniae*, the causative agent of porcine pleuropneumonia. PCR amplification of *virB4*, one of the core genes involved in conjugation, was used to identify other *A. pleuropneumoniae* isolates potentially carrying ICEAp1. MICs for tetracycline were determined for *virB4* positive isolates, and shotgun whole genome sequence analysis was used to confirm presence of the complete ICEAp1. The sequence of ICEAp1 is 56083 bp long and contains 67 genes including a Tn10 element encoding tetracycline resistance. Comparative sequence analysis was performed with similar integrative conjugative elements (ICEs) found in other members of the Pasteurellaceae. ICEAp1 is most similar to the 59393 bp ICEHin1056, from Haemophilus influenzae strain 1056. Although initially identified only in serovar 8 isolates of *A. pleuropneumoniae* (31 from the UK and 1 from Cyprus), conjugal transfer of ICEAp1 to representative isolates of other serovars was confirmed. All isolates carrying ICEAp1 had a MIC for tetracycline of 8 mg/L. This is, to our knowledge, the first description of an ICE in *A. pleuropneumoniae*, and the first report of a member of the ICEHin1056 subfamily in a non-human pathogen. ICEAp1 confers resistance to tetracycline, currently one of the more commonly used antibiotics for treatment and control of porcine pleuropneumonia.

Introduction

Actinobacillus pleuropneumoniae is a major contributor to swine respiratory disease worldwide, causing considerable economic losses. Isolates can be differentiated into 15 established serovars, based on capsular polysaccharides, and a recently proposed serovar 16 identified on the basis of serology alone (Sárközi et al., 2015). There are geographical differences in the distribution of serovars. Within the UK, clinical isolates are predominantly serovar 8, with serovars 2, 6, 7 and 12 also represented (O'Neill et al., 2010).

There is growing concern regarding antimicrobial resistance in bacteria from food-producing animals (Michael et al., 2015). In Europe, tetracyclines are still the most commonly used antimicrobial for treatment of swine pleuropneumonia (European Medicines Agency, 2012). The genes *tetB*, *tetH*, *tetL* and *tetO*, reported to mediate tetracycline resistance in *A. pleuropneumoniae*, are usually carried on small plasmids (Blanco et al., 2006; 2007). We recently sequenced the genome of MIDG2331, a serovar 8 UK clinical isolate of *A. pleuropneumoniae* (Bossé et al., 2016), and identified chromosomally encoded tetracycline resistance genes within a putative integrative conjugative element (ICE). Similar to genomic islands, ICE have the ability to integrate into bacterial chromosomes at specific sites, often in tRNA loci, via the action of an integrase (predominantly tyrosine recombinases) (Boyd et al., 2009; Wozniak and Waldor, 2010). However, ICE differ from genomic islands in that they are self-mobilizing, encoding all of the genes necessary for excision from the chromosome and conjugal transfer (Boyd et al., 2009). The core genes of ICE tend to group into functional modules, with syntenic regions responsible for maintenance, dissemination and regulation, which may be interspersed with accessory genes carried
on transposons or other insertion elements (Burrus and Waldor, 2004; Wozniak and Waldor, 2010). The genes encoding the type 4 secretion system (T4SS), required for transport of DNA into recipient cells, include a ubiquitous ATPase encoded by virB4 or traU (Guglielmini et al., 2011).

ICEs are the most abundant conjugative elements identified in prokaryotes, and there is evidence of cross-clade transfer (Guglielmini et al., 2011). Within the Pasteurellaceae, ICE have been identified and characterized in Haemophilus influenzae and Haemophilus parainfluenzae (Juhás et al., 2007b), Pasteurella multocida (Michael et al., 2012), and Mannheimia haemolytica (Eidam et al., 2015). Here we report characterization of ICEApII, to our knowledge the first ICE described in A. pleuropneumoniae.

Materials and Methods

Comparative sequence analysis

The full sequence of ICEApII, identified within the genome of MIDG2331 (accession number LN908249) was analyzed using BLASTn and BLASTx (http://blast.ncbi.nlm.nih.gov/). A comparative alignment was generated for sequences most similar to ICEApII using Mauve version 2.3.1 (http://darlinglab.org/mauve/mauve.html). Default parameters were used for all programs.

Detection of other isolates containing ICEApII

We screened 185 isolates of A. pleuropneumoniae (clinical isolates collected between 1995 and 2012 from the UK, Denmark, the Czech Republic, Cyprus, and Greece) for virB4 by PCR using primers virB4_for (CCTTCACGGTTAAGAAATCGAC)/virB4_rev (GCATCGTTTATTGGAATGGAT). Primers were designed based on the virB4 gene in MIDG2331, amplifying the region from 1532511 to 1532894 in the genome sequence. Serovars 1 (1.2%), 2 (11.7%), 5 (2.4%), 6 (4.7%), 7 (10.6%), 8 (58.8%), 9/11 (2.4%), 10 (2.9%), and 12 (5.3%), were represented, and 84% of the isolates were from the UK. Genome sequence data was generated and assembled as previously described (Bossé et al., 2015; Howell et al., 2013) for 31 virB4 positive isolates. Sequences matching ICEApII were identified by BLASTn, assembled using Geneious 9.0.4, and deposited to Genbank (see Table 1 for accession numbers).

Minimum Inhibitory Concentrations (MICs) for tetracycline were determined for isolates containing ICEApII, according to the CLSI M37-A3 guidelines (CLSI, 2008).
Conjugal transfer of *ICE*_{Apl1}

MIDG2331^ΔaureC::^ΔnadV was used as the conjugal donor, with matings performed as previously described (Bossé et al., 2015). Plasmid-free, tetracycline sensitive, nalidixic acid-resistant clinical isolates of serovars 6 (MIDG3376), 7 (MIDG2465), 8 (MIDG3217) and 12 (MIDG3347) were used as recipients. Transconjugants were selected on Brain Heart Infusion agar supplemented with 0.01% NAD, 5 mg/L tetracycline and 40 mg/L nalidixic acid. PCR was used to confirm the presence of the *virB4* gene (as above), as well as serovar of, and the absence of *nadV*, in selected transconjugants using previously described primers (Bossé et al., 2014; 2015). Chromosomal insertion sites in transconjugants were determined by PCR using primers ICE5[−]_out1 (TGAGGGAGTAACAAGCAACAG)/mfd3[−]_out (TTTACCGCTTGCCGATAATGCG) for the 5[′] junction, and ICE3[−]_out1 (CAATGGAGAAAGAGGTGTTTGAC)/hybF5[−]_out (GACATCTCGTGCATAACCATTCC) for the 3[′] junction, respectively. Amplicons were sequenced using internal primers ICE5[−]_out2 (GGAAGGTTCAATATCACGACGG) or ICE3[−]_out2 (AGGCATACAGCAGCAACAAATC), as appropriate. For comparison, the region between *mfd* and *hybF* in the conjugal recipients (prior to conjugation) was amplified using mfd3[−]_out/hyb5[−]_out and sequenced in both directions.

Confirmation of the circular extrachromosomal form of the ICE by nested PCR

DNA was extracted from MIDG2331^ΔaureC::^ΔnadV and selected transconjugants, and nested PCR was performed as previously described (Eidam et al., 2015), using primers ICE5[−]_out1/ICE3[−]_out1 followed by primers ICE5[−]_out2/ICE3[−]_out2. Amplicons were sequenced using primers ICE5[−]_out2 and ICE3[−]_out2.

Results and Discussion

Sequence of *ICE*_{Apl1} and comparative analysis

*ICE*_{Apl1}, a 56083 bp element, is inserted into a tRNA-Leu (TAA) gene, a common insertion site for ICE in the family *Pasteurellaceae* (Dimopoulou et al., 2002; Eidam et al., 2015; Michael et al., 2012), in a tRNA cluster located between genes *hybF* and *mfd*. In the MIDG2331 genome (Bossé et al., 2016), this tRNA-Leu (TAA) gene is annotated as MIDG2331_01481, and is located between bases 1570419 and 1570505. Although all of the tRNA genes in the cluster, as well as *hybF* and *mfd*, are on the complement strand in the MIDG2331 genome, all further references to these genes, and the location of *ICE*_{Apl1}, will be with the respect to the forward orientation (see discussions below and Figure 3). Insertion of *ICE*_{Apl1} generated 66 bp imperfect direct repeats (DRs) at the left and right attachment sites, *attL* and *attR* (Figure 1A). The 3 bases that differ in the DRs reflect sequence variation in the tRNA-Leu (TAA) genes in *A. pleuropneumoniae* and *H. influenzae* (Figure 1B). The *attL* site in the closed circular form of *ICE*_{Apl1} (confirmed by PCR; see below) is identical to that in ICE*_{Hin1056} (Figure 1C), both having 100% identity with the last 65 bases of the *H. influenzae* tRNA-Leu (TAA) gene followed by a T. These data suggest that insertion
of ICEAppl in MIDG2331 has resulted in an altered tRNA-Leu (TAA) gene, resulting from cross-over of the circular plasmid form of the ICE into the chromosome between the G at position 25 and the A at position 54 of MIDG2331_01481.

Comparative sequence analysis revealed that ICEAppl is related to the ICEHin1056 subfamily of elements (Figure 2) found in H. influenzae and H. parainfluenzae (Juhas et al., 2007b; Mohd-Zain et al., 2004). ICEAppl encodes 67 genes that share extensive sequence homology and gene order with ICEHin1056 and other members of this subfamily. The first 14687 bp of ICEAppl shares 99% identity with the region of ICEHin1056 reported to contain replication and stabilization genes (Juhas et al., 2007a; 2007b; 2013). The 8933 bp Tn10 element in ICEAppl, although in the same location and orientation as that in ICEHin1056, more closely resembles that in ICEHpaT3T1 (99% identity, but inverted), with tetracycline resistance genes tetR, tetB, tetC, and tetD; and gltS encoding glutamate permease (Juhas et al., 2007b). The Tn10 element in ICEHin1056 has a further IS5 insertion (encoding chloramphenicol resistance) within it that is not seen in ICEAppl (Juhas et al., 2007b). The 20466 bp following the Tn10 insertion shares 99% identity with the region containing genes encoding components of the type IV secretion system (required for conjugal transfer) in ICEHin1056 (Juhas et al., 2007a; 2007b; 2013). This region is well conserved in all of the members of the ICEHin1056 family (Juhas et al., 2007a; 2007b; 2013). The gene order in ICEAppl remains syntenic with that of ICEHin1056 up to traC, where in ICEHin1056 there is a Tn3 insertion (encoding beta-lactamase resistance) that is not found in ICEAppl. From traC in ICEAppl, the nucleotide sequence and gene order more closely resemble those in ICEHin2866 up to the site-specific tyrosine recombinase gene, which is the final gene in ICEAppl on the attR side. This 8.5 kb region shares 98% identity with sequences in ICEHin2866, and includes accessory genes encoding a type I restriction enzyme M subunit, and a transposon gamma-delta resolvase, as well as four hypothetical genes of unknown function (Juhas et al., 2007b).

Surprisingly, the ICEHin1056 subfamily of conjugative elements has previously only been reported in H. influenzae and H. parainfluenzae, two human species of Haemophilus, where they appear to be evolving by descent (Dimopoulos et al., 2007; Juhas et al., 2007b). To our knowledge, this is the first report of a member of the ICEHin1056 subfamily in a Pasteurellaceae species that infects livestock. There have been ICE reported for bovine isolates of P. multocida (ICEPmu1) and M. haemolytica (ICEMbh1), as well as an uncharacterized putative ICE in Histophilus somni strain 2336, which are related and appear to have evolved from a common ancestor, but are part of a different subfamily than ICEHin1056 and other members of this subfamily (Eidam et al., 2015; Juhas et al., 2007b; Michael et al., 2012). The identity of the attl sites in both ICEAppl and ICEHin1056 with the last 65 bases of the H. influenzae tRNA-Leu (TAA) gene would suggest more recent acquisition of an ICEHin1056 element in A. pleuropneumoniae.

Distribution of ICEAppl in A. pleuropneumoniae isolates

PCR analysis revealed the presence of a virB4 amplicon in 32/185 A. pleuropneumoniae isolates, including MIDG2331. All 32 (31 from the UK, 1 from Cyprus) were serovar 8 and had an MIC for tetracycline of 8 mg/L, i.e. above the CLSI breakpoint of ≥ 2 mg/L for A. pleuropneumoniae (CLSI, 2008). ICEAppl sequences were detected in the whole genomes of the 32 isolates, and comparative analysis revealed that, other than minor nucleotide differences in some, all of the sequences were complete except the element from MIDG2648, which was lacking three genes (encoding a putative DNA-binding protein and two hypothetical proteins) in the accessory gene region, and has a truncated copy of the tyrosine recombinase gene (Table 1).
Conjugal transfer of ICEApl1 and detection of circular intermediate form

As ICEApl1 appeared to be present only in serovar 8 isolates of *A. pleuropneumoniae*, it was possible that other serovars blocked conjugal entry of the ICE, either due to restriction modification systems or CRISPR mediated restriction (Elhai et al., 1997; Garneau et al., 2010). We therefore tested the ability to conjugally transfer ICEApl1 to clinical isolates of *A. pleuropneumoniae* representing serovars 6, 7, 8, and 12 (MIDG3376, MIDG2465, MIDG3217, and MIDG3347, respectively) that are commonly found in the UK (O’Neill et al., 2010). All tested isolates produced transconjugants, as initially confirmed by PCR (data not shown). The frequencies of conjugation were similar for the serovar 7, 8, and 12 recipients (between 10^{-4} to 10^{-5}), but much lower (5×10^{-8}) for the serovar 6 isolate tested. Similar frequencies have been reported for ICEHin1056 elements in *H. influenzae*, with strain related differences also noted (Juhás et al., 2007b). More serovar 6 isolates would need to be tested in order to determine if the difference in frequency of conjugation for ICEApl1 is serovar-specific. The presence of a circular intermediate form of ICEApl1 was confirmed in the donor strain and in transconjugants by nested PCR. Sequenced amplicons confirmed a single copy of the 66 bp *attI* (Figure 1C) at the closed junction of the circular intermediates.

Sequencing PCR products generated at both the *attL* and *attR* ends in the transconjugants confirmed insertion of ICEApl1 in the same tRNA cluster between *mfd* and *hybF* as in the donor strain (MIDG2331(Δ*ureC::nadV*)). However, in all transconjugants tested, the sequences between *mfd* and *hybF* contained only the altered tRNA-Leu (TAA) gene in which the ICE inserted, flanked by tRNA-Gly (GCC) genes at either end of the cluster (Figure 3B). This is in contrast to the cluster in the donor strain where there are 5 tRNA genes on the *attL* side, and a tRNA-Gly (GCC) gene on the *attR* side (Figure 3C). Sequencing across the tRNA cluster in the recipient strains prior to conjugation revealed that, although a different order of tRNA genes was present in MIDG3376 compared to the other strains (Figure 3A), all contained 3 copies each of tRNA-Gly (GCC) and tRNA-Leu (TAA) genes. These results indicate that in all transconjugants tested, a deletion of 3 tRNA genes was associated with ICEApl1 insertion. However, examination of the insertion sites in the serovar 8 clinical isolates with endogenous ICEApl1 (Table 1) revealed conservation of the 6 tRNA genes normally found in this cluster – i.e. 3 copies each of tRNA-Gly (GCC) and tRNA-Leu (TAA) – with the order of genes showing one of 3 patterns (see Figure 3C and Table 1 for details). In MIDG2648, the truncated element present in this isolate is located in a different copy of the tRNA-Leu (TAA) gene than seen in isolates with intact ICEApl1 (Figure 3C), with 4 tRNA genes on the *attL* side, and a tRNA-Leu (TAA) followed by tRNA-Gly-Gly (GCC) gene on the *attR* side. It would appear that, although the majority of clinical isolates show integration in the same tRNA-Leu (TAA) gene (i.e. the final copy in the tRNA cluster in the forward orientation), ICEApl1 has the ability to integrate into different copies of this gene, as has been reported for ICEHin1056 in *H. influenzae* (Dimopoulou et al., 2002). In *Pseudomonas knackmussii*, ICEclc was found to insert into different copies of the tRNA-Gly (GCC) gene, with double integration in some transconjugants (Sentchilo et al., 2009). In that study, excision and reintegration was associated with generation of a heterogenous population in which ICEclc was found to move from its original insertion site to alternate tRNA-Gly genes, but only those with the GCC anticodon (Sentchilo et al., 2009). Similarly, following in vitro conjugal transfer of ICEKp1 into a recipient strain of *Klebsiella pneumoniae*, integration was found at any of four tRNA-Asn genes, with insertion in multiple copies in some transconjugants (Lin et al., 2008). Furthermore, in some transconjugants, there was evidence of deletions between copies of the tRNA-Asn genes associated with integration of
ICEKp1, which may have been due to recombination between multiple insertion sites (Lin et al., 2008). We did not detect multiple insertions of ICEAp1 in our transconjugants, as only one PCR product was generated using the outward facing primers designed to amplify the closed junction of the circular ICE. These primers would also have generated a secondary product in the presence of tandem insertions, given the proximity of the copies of the tRNA-Leu (TAA) genes in A. pleuropneumoniae. It is also possible that recombination may occur between the DRS found in alternate copies of the target tRNA, with or without the presence of an integrated ICE, resulting in deletion of the intervening sequences. However, given the results of Lin et al. (Lin et al., 2008), it is likely that conditions during in vitro conjugation favor integration of multiple copies of ICE leading to deletions, whereas this does not appear to be common amongst clinical isolates. Little is known regarding the signals that govern initiation of horizontal transfer of ICE between pathogens in a host animal environment.

Conclusions

Identification of ICEAp1 in only serovar 8 clinical isolates of A. pleuropneumoniae may simply be a reflection of this being the most common in the UK (O’Neill et al., 2010), and thus in our collection. It may also indicate a tendency for ICE to be inherited by vertical transmission rather than horizontal transfer. The similar in vitro conjugation frequencies of ICEAp1 into isolates of serovars 7, 8 and 12 suggests there are no restriction endonuclease or CRISPR barriers to transfer between these serovars. Furthermore, the variation in order of tRNA genes flanking ICEAp1 suggests that horizontal transfer may have occurred independently into different isolates, as a similar variation in tRNA gene order was also seen in clinical isolates lacking ICEAp1. As reported for other ICE, ICEAp1 has the ability to integrate into different copies of the target tRNA gene, in this case tRNA-Leu (TAA). Although we did not detect multiple insertions following in vitro conjugal transfer of ICEAp1, it is likely that recombination between tandem insertions was responsible for the deletions detected in transconjugants.

To our knowledge, this is the first description of an ICE identified in A. pleuropneumoniae, and the first report of a member of the ICEHin1056 subfamily found in a non-human pathogen. The presence of ICEAp1 in isolates of A. pleuropneumoniae confers resistance to tetracycline, which is commonly used for treatment and control of porcine pleuropneumonia (European Medicines Agency, 2012). Although currently only found in serovar 8 isolates, the ability to transfer to other serovars was confirmed in vitro, and has implications for the spread of antimicrobial resistance in this important pig pathogen.

Author contributions

JB, PL, AR, BW, DM, AT conceived the study; JB, YL, RFC, RRC, MH, JR produced the data; JB, YL, RFC, RRC analyzed the data; JB, PL wrote the paper.
Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

This work was supported by a Longer and Larger (LoLa) grant from the Biotechnology and Biological Sciences Research Council (BBSRC grant numbers BB/G020744/1, BB/G019177/1, BB/G019274/1 and BB/G018553/1), the UK Department for Environment, Food and Rural Affairs, and Zoetis (formerly Pfizer Animal Health) awarded to the Bacterial Respiratory Diseases of Pigs-1 Technology (BRaDP1T) consortium. MTGH was supported by the Wellcome Trust (grant number 098051). JR was funded from the former AHVLA’s Research and Development Internal Investment Fund (grant number RD0030c).

Acknowledgements

The BRaDP1T Consortium comprises: Duncan J. Maskell, Alexander W. (Dan) Tucker, Sarah E. Peters, Lucy A. Weinert, Jinhong (Tracy) Wang, Shi-Lu Luan, Roy R. Chaudhuri (University of Cambridge; present address for R. Chaudhuri is: Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK), Andrew N. Rycroft, Gareth A. Maglennon, Jessica Beddow (Royal Veterinary College); Brendan W. Wren, Jon Cuccui, Vanessa S. Terra (London School of Hygiene and Tropical Medicine); and Paul R. Langford, Janine T. Bossé, Yanwen Li (Imperial College London). The authors wish to thank Susanna Williamson and Chris Teale from the APHA for their advice and input.
Isolate ID	Serovar	Location of isolation	Year of isolation	Length of ICEAp1	5' tRNAs	Accession number for ICEAp1 sequence
MIDG2331	8	Thirsk	1995	56,083 bp	GLGL	LN908249 (bases 1570419-1570505)
MIDG2427	8	Aberdeen	1998	56,083 bp	GLGL	KU551309
MIDG2648	8	Bury St Edmunds	2005	54,898 bp	GLGL	KU551310
MIDG2652	8	Thirsk	2005	56,083 bp	GLGL	KU551311
MIDG2654	8	Winchester	2005	56,070 bp	GLGL	KU551312
MIDG2657	8	Winchester	2005	56,083 bp	GLGL	KU551313
MIDG2663	8	Thirsk	2005	56,083 bp	GLGL	KU551314
MIDG2664	8	Bury St Edmunds	2005	56,083 bp	GLGL	KU551315
MIDG3200	8	Thirsk	2006	56,083 bp	GLGL	KU551316
MIDG3201	8	Bury St Edmunds	2006	56,083 bp	GLGL	KU551317
MIDG3221	8	Langford	2006	56,083 bp	GLGL	KU551318
MIDG3229	8	Thirsk	2007	56,083 bp	GLGL	KU551320
MIDG3232	8	Thirsk	2007	56,083 bp	GLGL	KU551321
MIDG3339	8	Winchester	2008	56,083 bp	GLGL	KU551322
MIDG3344	8	Langford	2005	56,083 bp	GLGL	KU551323
MIDG3346	8	Thirsk	2005	56,083 bp	GLGL	KU551324
MIDG3349	8	Thirsk	2006	56,083 bp	GLGL	KU551325
MIDG3357	8	Shrewsbury	2008	56,083 bp	GLGL	KU551326
MIDG3368	8	Thirsk	2008	56,083 bp	GLGL	KU551327
MIDG3370	8	Thirsk	2009	56,083 bp	GLGL	KU551328
MIDG3371	8	Thirsk	2009	56,083 bp	GLGL	KU551329
MIDG3372	8	Thirsk	2009	56,083 bp	GLGL	KU551330
MIDG3378	8	Bury St Edmunds	2009	56,047 bp	GLGL	KU551331
MIDG3381	8	Thirsk	2009	56,083 bp	GLGL	KU551332
MIDG3386	8	Bury St Edmunds	2009	56,083 bp	GLGL	KU551333
MIDG3388	8	Thirsk	2009	56,083 bp	GLGL	KU551334
MIDG3389	8	Thirsk	2009	56,083 bp	GLGL	KU551335
MIDG3395	8	Thirsk	2010	56,011 bp	GLGL	KU551336

Table 1. Clinical isolates of *A. pleuropneumoniae* with ICEAp1.
Isolate	Host	Location	Year	Length (bp)	Accession	
MIDG3401		Bury St Edmunds	2011	56,083 bp	GLGLL	KU551337
MIDG3409		Bury St Edmunds	2011	56,083 bp	GLGLL	KU551338
MIDG3458		Cyprus	2011	**56,012 bp**	GLGLL	KU551339
MIDG3469		Thirsk	2012	56,083 bp	GLGLL	KU551340

All isolates except MIDG2427 and MIDG3458 were cultured from pigs submitted to the then Veterinary Laboratories Agency (now Animal and Plant Health Agency) regional laboratories in the UK, as indicated.

The length of each ICEApl1 sequence, calculated as the predicted circular form, is shown for each isolate. Size variation from that in MIDG2331 is indicated in bold. The sequence in MIDG2648 is missing 3 genes and has a truncated copy of the site-specific recombinase gene; whereas small deletions in the other sequences are all intergenic.

Order of tRNA genes upstream of ICEApl1: G= tRNA-Gly (GCC), L= tRNA-Leu (TAA). Variation from the order seen in MIDG2331 is indicated in bold.

ICEApl1 identified in MIDG2331 in previous study, all other ICEApl1 sequences were identified in this study.
Figure 1. The imperfect direct repeats (A) flanking ICE\textit{Apl1} share sequence identity with the last 65 bases of tRNA-Leu genes (B) from \textit{A. pleuropneumoniae} (e.g MIDG2331_01482 and _01484) and \textit{H. influenzae} (e.g. accession number LK008335), which differ at 3 bases (underlined and in light blue for bases normally found in \textit{A. pleuropneumoniae} and red for bases normally found in \textit{H. influenzae}). The \textit{attL} sequences (C) in the closed circular forms of ICE\textit{Apl1} and ICE\textit{Hin1056} are identical, and match the end of the \textit{H. influenzae} tRNA-Leu (TAA) gene sequence, with an additional T which is also present in the direct repeats (A). Insertion of ICE\textit{Apl1} in the \textit{A. pleuropneumoniae} tRNA-Leu (TAA) gene MIDG2331_01481 has resulted in an altered sequence, indicating cross-over of the circular ICE\textit{Apl1} into the chromosome occurred between the G at position 25 and the A at position 54.

Figure 2. Mauve alignments of ICE\textit{Apl1} and closely related members of the ICE\textit{Hin1056} subfamily of elements. The orientation and relative size of genes in each ICE are indicated by the small rectangular blocks (lower blocks are on the complementary strand), with those colored green indicating genes of Tn\textit{10} elements present in all except ICE\textit{Hin2866}. Note the extra genes in the Tn\textit{10} insertion in ICE\textit{Hin1056} are due to the presence of a further IS\textit{5} insertion not seen in the other ICE. Regions containing contiguous genes of related function are indicated by colored blocks above the genes, and are connected by lines to matching blocks in each ICE sequence. The labels at the top and bottom of the figure indicate functional sets of genes defined by Juhas \textit{et al.} (2007b).

Figure 3. Schematic representation of the tRNA cluster located between \textit{mfd} and \textit{hybF} in \textit{A. pleuropneumoniae} isolates. Note that all sequences are shown in the forward orientation for simplicity. In the MIDG2331 genome, these sequences are on the complement strand.

(A) The tRNA genes in isolates used as conjugal recipients are in the same order in (i) MIDG2465 (serovar 7), MIDG3217 (serovar 8) and MIDG3347 (serovar 12); and a different order in (ii) MIDG3376 (serovar 6). Note that all of the tRNA-Leu (TAA) genes have the sequence shown in Figure 1B.

(B) Following conjugation, ICE\textit{Apl1} integration resulted in loss of 3 tRNA genes, with all of the transconjugants (MIDG2465::ICE\textit{Apl1}, MIDG3217::ICE\textit{Apl1}, MIDG3347::ICE\textit{Apl1}, and MIDG3376::ICE\textit{Apl1}) showing identical sequences flanking the insertion (ICE\textit{Apl1} shown boxed in blue). Note that tRNA-Leu (TAA) gene shown in red has the altered bases of the \textit{attL} direct repeat in Figure 1A.

(C) In the 32 isolates with endogenous ICE\textit{Apl1}, the tRNA genes are found in 3 different orders in (i) MIDG2331 and 21 other isolates; (ii) 9 other isolates; and (iii) MIDG2648. Note the truncated element in MIDG2648 is shown as ICE\textit{Apl1}* (in purple text, boxed in purple). See Table 1 for details of specific isolates. Again, the tRNA-Leu (TAA) gene shown in red has the altered bases of the \textit{attL} direct repeat in Figure 1A.
References

Blanco, M., Gutiérrez-Martín, C. B., Rodríguez-Ferri, E. F., Roberts, M. C., and Navas, J. (2006). Distribution of tetracycline resistance genes in *Actinobacillus pleuropneumoniae* isolates from Spain. *Antimicrob. Agents Chemother.* 50, 702–708. doi:10.1128/AAC.50.2.702-708.2006.

Blanco, M., Kadlec, K., Gutiérrez-Martín, C. B., la Fuente, de, A. J. M., Schwarz, S., and Navas, J. (2007). Nucleotide sequence and transfer properties of two novel types of *Actinobacillus pleuropneumoniae* plasmids carrying the tetracycline resistance gene *tet*(H). *J. Antimicrob. Chemother.* 60, 864–867. doi:10.1093/jac/dkm293.

Bossé, J. T., Chaudhuri, R. R., Li, Y., Leanse, L. G., Fernandez Crespo, R., Coupland, P., et al. (2016). Complete Genome Sequence of MIDG2331, a genetically tractable serovar 8 clinical isolate of *Actinobacillus pleuropneumoniae*. *Genome Announc.* 4, e01667–15. doi:10.1128/genomeA.01667-15.

Bossé, J. T., Li, Y., Angen, Ø., Weinert, L. A., Chaudhuri, R. R., Holden, M. T., et al. (2014). A Multiplex PCR to unequivocally differentiate *A. pleuropneumoniae* serovars 1-3, 5-8, 10 and 12. *J. Clin. Microbiol.* 52, 2380–2385. doi:10.1128/JCM.00685-14.

Bossé, J. T., Li, Y., Walker, S., Atherton, T., Fernandez Crespo, R., Williamson, S. M., et al. (2015). Identification of *dfrA14* in two distinct plasmids conferring trimethoprim resistance in *Actinobacillus pleuropneumoniae*. *J. Antimicrob. Chemother.* 70, 2217–2222. doi:10.1093/jac/dkv121.

Boyd, E. F., Almagro-Moreno, S., and Parent, M. A. (2009). Genomic islands are dynamic, ancient integrative elements in bacterial evolution. *Trends Microbiol.* 17, 47–53. doi:10.1016/j.tim.2008.11.003.

Burrus, V., and Waldor, M. K. (2004). Shaping bacterial genomes with integrative and conjugative elements. *Res. Microbiol.* 155, 376–386. doi:10.1016/j.resmic.2004.01.012.

Clinical and Laboratory Standards Institute (CLSI). *Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals - Third Edition: Approved Standard M31-A3*. CLSI, Wayne, PA, USA, 2008.

Dimopoulou, I. D., Kartali, S. I., Harding, R. M., Peto, T. E. A., and Crook, D. W. (2007). Diversity of antibiotic resistance integrative and conjugative elements among haemophili. *J. Med. Microbiology* 56, 838–846. doi:10.1099/jmm.0.47125-0.

Dimopoulou, I. D., Russell, J. E., Mohd-Zain, Z., Herbert, R., and Crook, D. W. (2002). Site-specific recombination with the chromosomal tRNA(Leu) gene by the large conjugative *Haemophilus* resistance plasmid. *Antimicrob. Agents Chemother.* 46, 1602–1603. doi:10.1128/AAC.46.5.1602-1603.2002.

Eidam, C., Pouehlein, A., Leimbach, A., Michael, G. B., Kadlec, K., Liesegang, H., et al. (2015). Analysis and comparative genomics of ICE*Mh1*, a novel integrative and conjugative element (ICE) of *Mannheimia haemolytica*. *J. Antimicrob. Chemother.* 70, 93–97.
Elhai, J., Vepritskiy, A., Muro-Pastor, A. M., Flores, E., and Wolk, C. P. (1997). Reduction of conjugal transfer efficiency by three restriction activities of *Anabaena* sp. strain PCC 7120. *J. Bacteriol.* 179, 1998–2005.

European Medicines Agency (2012). Sales of veterinary antimicrobial agents in 19 EU/EEA countries - Second ESVAC report. 1–74.

Garneau, J. E., Dupuis, M.-È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. *Nature* 468, 67–71. doi:10.1038/nature09523.

Guglielmini, J., Quintais, L., Garcillán-Barcia, M. P., la Cruz, de, F., Eduardo P. C. Rocha (2011). The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. *PLoS Genet.* 7, e1002222. doi:10.1371/journal.pgen.1002222.

Howell, K. J., Weinert, L. A., Luan, S.-L., Peters, S. E., Chaudhuri, R. R., Harris, D., et al. (2013). Gene content and diversity of the loci encoding biosynthesis of capsular polysaccharides of the 15 serovar reference strains of *Haemophilus parasuis*. *J. Bacteriol.* 195, 4264–4273. doi:10.1128/JB.00471-13.

Juhas, M., Crook, D. W., Dimopoulou, I. D., Lünter, G., Harding, R. M., Ferguson, D. J. P., et al. (2007a). Novel type IV secretion system involved in propagation of genomic islands. *J. Bacteriol.* 189, 761–771. doi:10.1128/JB.01327-06.

Juhas, M., Dimopoulou, I., Robinson, E., Elamin, A., Harding, R., Hood, D., et al. (2013). Identification of another module involved in the horizontal transfer of the *Haemophilus* genomic island ICE*Hin1056*. *Plasmid* 70, 277–283. doi:10.1016/j.plasmid.2013.05.008.

Juhas, M., Power, P. M., Harding, R. M., Ferguson, D. J. P., Dimopoulou, I. D., Elamin, A. R. E., et al. (2007b). Sequence and functional analyses of *Haemophilus* spp. genomic islands. *Genome Biol.* 8, R237. doi:10.1186/gb-2007-8-11-r237.

Lin, T.-L., Lee, C.-Z., Hsieh, P.-F., Tsai, S.-F., and Wang, J.-T. (2008). Characterization of integrative and conjugative element ICE*Kp1*-associated genomic heterogeneity in a *Klebsiella pneumoniae* strain isolated from a primary liver abscess. *J. Bacteriol.* 190, 515–526. doi:10.1128/JB.01219-07.

Michael, G. B., Freitag, C., Wendlandt, S., Eidam, C., Feßler, A. T., Lopes, G. V., et al. (2015). Emerging issues in antimicrobial resistance of bacteria from food-producing animals. *Future Microbiol.* 10, 427–443. doi:10.2217/fmb.14.93.

Michael, G. B., Kadlec, K., Sweeney, M. T., Brzuskiewicz, E., Liesegang, H., Daniel, R., et al. (2012). ICE*Pmu1*, an integrative conjugative element (ICE) of *Pasteurella multocida*: analysis of the regions that comprise 12 antimicrobial resistance genes. *J. Antimicrob. Chemother.* 67, 84–90. doi:10.1093/jac/dkr406.

Mohd-Zain, Z., Turner, S. L., Cerdeño-Tárraga, A. M., Lilley, A. K., Inzana, T. J., Duncan, A. J., et
Transferable antibiotic resistance elements in *Haemophilus influenzae* share a common evolutionary origin with a diverse family of syntenic genomic islands. *J. Bacteriol.* 186, 8114–8122. doi:10.1128/JB.186.23.8114-8122.2004.

O'Neill, C., Jones, S. C. P., Bossé, J. T., Watson, C. M., Williamson, S. M., Rycroft, A. N., et al. (2010). Prevalence of *Actinobacillus pleuropneumoniae* serovars in England and Wales. *Vet. Rec.* 167, 661–662. doi:10.1136/vr.c5106.

Sárközi, R., Makrai, L., and Fodor, L. (2015). Identification of a proposed new serovar of *Actinobacillus Pleuropneumoniae*: Serovar 16. *Acta Vet. Hung.* 63, 444–450. doi:10.1556/004.2015.041.

Sentchilo, V., Czechowska, K., Pradervand, N., Minoia, M., Miyazaki, R., and van der Meer, J. R. (2009). Intracellular excision and reintegration dynamics of the ICEclc genomic island of *Pseudomonas knackmussii* sp. strain B13. *Mol. Microbiol.* 72, 1293–1306. doi:10.1111/j.1365-2958.2009.06726.x.

Wozniak, R. A. F., and Waldor, M. K. (2010). Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. *Nat. Rev. Microbiol.* 8, 552–563. doi:10.1038/nrmicro2382.
Figure 1.

(A)

\texttt{attL–ACGCAAGGGATTAAATCCCTGCGCTTTTCAGGGCGTGGCCAGTTGATTTGCTGGGGGCCACAT} – \texttt{ICEApII}

\texttt{- ACACAAGGGATTTAAATCCCTGCGCTTTTCAGGGCGTGGCCAGTTGATTTGCTGGGGGCCACAT–attR}

(B)

\texttt{tRNA-Leu (TAA) genes in A. pleuropneumoniae}

\texttt{GCCCGAGTTGGGGAGATCGGTAGACGAAGGGATTAAATCCCTGCGCTTTTCAGGGCGTGGCCAGTTGATTTGCTGGGGGCCACCA}

\texttt{GCCCGAGTTGGGGAGATCGGTAGACGAAGGGATTAAATCCCTGCGCTTTTCAGGGCGTGGCCAGTTGATTTGCTGGGGGCCACCA}

\texttt{tRNA-Leu (TAA) genes in H. influenzae}

(C)

\texttt{ACAAGGGATTAAATCCCTGCGCTTTTCAGGGCGTGGCCAGTTGATTTGCTGGGGGCCACAT} \texttt{attII ICEApII}

\texttt{ACAAGGGATTAAATCCCTGCGCTTTTCAGGGCGTGGCCAGTTGATTTGCTGGGGGCCACAT} \texttt{attII ICEHin1056}