\(e \)-continuous and Somewhat \(e \)-continuity in \(N_{nc} \)-Topological Spaces

A. Vadiel ¹ and P. Thangaraja ²

¹ Department of Mathematics, Government Arts College (Autonomous), Karur, Tamil Nadu - 639 005, India
² Department of Mathematics, Annamalai University, Annamalai Nagar, Tamil Nadu - 608 002, India

E-mail: ¹avmaths@gmail.com and ²thangarajap1991@gmail.com

Abstract. A new class of mapping functions called \(N_{nc}e \)-continuous map, somewhat \(N_{nc}e \)-continuous map, somewhat \(N_{nc}e \)-open maps has been established and defined by making use of \(N_{nc}e \)-open sets. Some Characterizations and properties of \(N_{nc}e \)-continuous mappings and somewhat \(N_{nc}e \)-continuous mapping functions are presented.

Keywords and phrases: \(N_{nc}e \)Cts, sw \(N_{nc}e \)Cts, \(N_{nc}e \) rs spaces and \(N_{nc}e \) irs spaces.

1. Introduction

Smarandache’s neutrosophic system have wide range of real time applications for the fields of Computer Science, Information Systems, Applied Mathematics, Artificial Intelligence, Mechanics, decision making, Medicine, Electrical & Electronic, and Management Science etc. [1, 2, 3, 4, 24, 25]. Topology is a classical subject, as a generalization topological spaces many types of topological spaces introduced over the year. Smarandache [16] defined the Neutrosophic set on three component Neutrosophic sets (T-Truth, F-Falsehood, I-Indeterminacy). Neutrosophic topological spaces \(nts \)’s introduced by Salama and Alblowi [13]. Lellis Thivagar et.al. [10] was given the geometric existence of \(N \) topology, which is a non-empty set equipped with \(N \) arbitrary topologies. Lellis Thivagar et al. [11] introduced the notion of \(N_n \)-open (closed) sets and \(N_n \) continuous in \(N \) neutrosophic crisp topological spaces. Al-Hamido [5] explore the possibility of expanding the concept of neutrosophic crisp topological spaces into \(N \)-neutrosophic crisp topological spaces and investigate some of their basic properties. The importance of continuity and generalized continuity is significant in various areas of mathematics and related sciences. Recent progress in the study of characterizations and generalizations of continuity has been done by means of several generalized closed sets. The first step of generalizing closed set was done by Levine in 1970 [12]. As a generalization of closed sets, \(e \)-closed sets were introduced and studied by Ekici [6, 7, 8]. In 2020, Vadiel and John Sundar [21] the concept of \(N \)-neutrosophic crisp \(\delta \)-open, \(N \)-neutrosophic crisp \(\delta \)-semiopen and \(N \)-neutrosophic crisp \(\delta \)-preopen sets, \(N \)-neutrosophic crisp \(\alpha \)-continuous, \(N \)-neutrosophic crisp semi continuous and \(N \)-neutrosophic crisp pre continuous are introduced. In this paper, \(N_{nc}e \)-continuous, somewhat \(N_{nc}e \)-continuous and somewhat \(N_{nc}e \)-open are discussed by using \(N_{nc}eo \) sets and get some results on somewhat \(N_{nc}Cts \) functions.
2. Preliminaries

Salama and Smarandache [15] introduced the concept of a neutrosophic crisp set in a set Y and discussed some basic definition and properties in this section.

Definition 2.2 [15] Let Y be a non-empty set. Then H is called a neutrosophic crisp set (in short, *ncs*) in Y if H has the form H = (H₁, H₂, H₃) where H₁, H₂, & H₃ are subsets of Y.

The neutrosophic crisp empty (resp., whole) set, denoted by φ₁ (resp., Yₙ) is an *ncs* in Y defined by φ₁ = (φ₁, φ₁, Y) (resp. Yₙ = (Y, Y, φ₁)). We will denote the set of all *ncs*’s in Y as ncS(Y).

Definition 2.3 [9] Let H = (H₁, H₂, H₃), I = (I₁, I₂, I₃) ∈ ncS(Y). Then

(i) H ⊆ I if H₁ ⊆ I₁, H₂ ⊆ I₂ & H₃ ⊆ I₃ (contained),
(ii) H = I if H ⊆ I & I ⊆ H (equal),
(iii) Hᶜ in Y is Hᶜ = (H₃, H₂ᶜ, H₁) (complement),
(iv) H ∩ M in Y is H ∩ I = (H₁ ∩ I₁, H₂ ∩ I₂, H₃ ∩ I₃) (intersection),
(v) H ∪ M in Y is H ∪ I = (H₁ ∪ I₁, H₂ ∪ I₂, H₃ ∪ I₃) (union),
(vi) ∩ H_j in Y is ∩ H_j = (∩ H_j₁, ∩ H_j₂, ∩ H_j₃) (family of intersection),
(vii) ∪ H_j in Y is ∪ H_j = (∪ H_j₁, ∪ H_j₂, ∪ H_j₃) (family of union).

The following are the immediate results of Definition 2.3.

Proposition 2.1 [9] Let H, I, J ∈ ncS(Y). Then

(i) φₙ ⊆ H ⊆ Yₙ,
(ii) if H ⊆ I & I ⊆ J, then H ⊆ J,
(iii) H ∩ I ⊆ H & H ∩ I ⊆ I,
(iv) H ⊆ H ∪ I & I ⊆ H ∪ I,
(v) H ⊆ I iff H ∩ I = H,
(vi) H ⊆ I iff H ∪ I = I.

Proposition 2.2 [9] Let H, I, J ∈ ncS(Y). Then

(i) (Idempotent laws) : H ∪ H = H, H ∩ H = H,
(ii) (Commutative laws) : H ∪ I = I ∪ H, H ∩ I = I ∩ H,
(iii) (Associative laws) : H ∪ (I ∪ J) = (H ∪ I) ∪ J, H ∩ (I ∩ J) = (H ∩ I) ∩ J,
(iv) (Distributive laws) : H ∪ (I ∩ J) = (H ∪ I) ∩ (H ∪ J), H ∩ (I ∪ J) = (H ∩ I) ∪ (H ∩ J),
(v) (Absorption laws) : H ∪ (H ∩ I) = H, H ∩ (H ∪ I) = H,
(vi) (DeMorgan’s laws) : (H ∪ I)ᶜ = Hᶜ ∩ Iᶜ, (H ∩ I)ᶜ = Hᶜ ∪ Iᶜ,
(vii) (Hᶜ)ᶜ = H,
(viii) (a) H ∪ φₙ = H, H ∩ φₙ = φₙ.
(b) $H \cup Y_n = Y_n$, $H \cap Y_n = H$,
(c) $Y_n^c = \phi$, $\phi^c_n = Y_n$,
(d) in general, $H \cup H^c \neq Y_n$, $H \cap H^c \neq \phi_n$.

Definition 2.4 [14] A neutrosophic crisp topology (briefly, nc) on a non-empty set Y is a family Γ of nc subsets of Y satisfies

(i) $\phi_n, Y_n \in \Gamma$.
(ii) $H_1 \cap H_2 \in \Gamma \forall H_1 \& H_2 \in \Gamma$.

Then (Y, Γ) is a neutrosophic crisp topological space (briefly, ncts) in Y. The Γ elements are called neutrosophic crisp open sets (briefly, ncos) in Y. A ncs C is called a neutrosophic crisp closed set (briefly, ncbs) if its complement C^c is ncos.

Definition 2.5 [5] Let Y be a non-empty set. Then $n_c\Gamma_1, n_c\Gamma_2, \cdots, n_c\Gamma_N$ are N-arbitrary crisp topologies defined on Y and the collection $N_{nc}\Gamma = \{A \subseteq X : A = (\bigcup_{j=1}^{N} H_j) \cup (\bigcap_{j=1}^{N} L_j), H_j, L_j \in n_c\Gamma_j\}$ is called N neutrosophic crisp (briefly, N_{nc})-topology on Y if the axioms are satisfied:

(i) $\phi_n, Y_n \in N_{nc}\Gamma$.
(ii) $\bigcup_{j=1}^{\infty} A_j \in N_{nc}\Gamma \forall \{A_j\}_{j=1}^{\infty} \in N_{nc}\Gamma$.

Then $(Y, N_{nc}\Gamma)$ is called a N_{nc}-topological space (briefly, N_{nc}ts) on Y. The $N_{nc}\Gamma$ elements are called N_{nc}-open sets (briefly, N_{nc}os) on Y and its complement is called N_{nc}-closed sets (briefly, N_{nc}cs) on Y. The elements of Y are known as N_{nc}-sets (briefly, N_{nc}s) on Y.

Definition 2.6 [5] Let $(Y, N_{nc}\Gamma)$ be N_{nc}ts on $Y & H$ be an N_{nc}s on Y, then the N_{nc} interior of H (briefly, N_{nc}int(H)) and N_{nc} closure of H (briefly, N_{nc}cl(H)) are defined as

$$N_{nc}$int($H$) = \bigcup \{B : B \subseteq H \& B \text{ is a } N_{nc}$os in $Y\}$$

$$N_{nc}$cl($H$) = \bigcap \{C : H \subseteq C \& C \text{ is a } N_{nc}$cs in $Y\}$$

Definition 2.7 [5] Let $(Y, N_{nc}\Gamma)$ be any N_{nc}ts. Let H be an N_{nc}s in $(X, N_{nc}\Gamma)$. Then H is said to be a

(i) N_{nc}-regular open set [17] (briefly, N_{nc}ros) if $H = N_{nc}$int(N_{nc}cl(H)).
(ii) N_{nc}-semi open set (briefly, N_{nc}Sos) if $H \subseteq N_{nc}$cl(N_{nc}int(H)).
(iii) N_{nc}-pre open set (briefly, N_{nc}Pos) if $H \subseteq N_{nc}$int(N_{nc}cl(H)).
(iv) N_{nc}-\(\alpha\)-open set (briefly, N_{nc}aos) if $H \subseteq N_{nc}$int(N_{nc}cl(N_{nc}int(H)))).
(v) N_{nc}-\(\gamma\)-open set[17] (briefly, N_{nc}gos) if $H \subseteq N_{nc}$cl(N_{nc}int(H)) \cup N_{nc}int(N_{nc}cl(H)).
(vi) N_{nc}-\(\beta\)-open set [18] (briefly, N_{nc}bos) if $H \subseteq N_{nc}$cl(N_{nc}int(N_{nc}cl(H)))).

The complement of an N_{nc}ros (resp. N_{nc}Sos, N_{nc}Pos, N_{nc}aos, N_{nc}gos & N_{nc}bos) is called an N_{nc}-regular (resp. N_{nc}-semi, N_{nc}-pre, N_{nc}-\(\alpha\), N_{nc}-\(\gamma\) & N_{nc}-\(\beta\)) closed set (briefly, N_{nc}cs (resp. N_{nc}Scs, N_{nc}Pos, N_{nc}aos, N_{nc}gos, N_{nc}gos, N_{nc}apos, N_{nc}apos, N_{nc}apos & N_{nc}apos) in Y.

The family of all N_{nc}ros (resp. N_{nc}cs, N_{nc}Sos, N_{nc}Sos, N_{nc}Pos, N_{nc}Pos, N_{nc}aos, N_{nc}gos, N_{nc}gos, N_{nc}apos, N_{nc}apos & N_{nc}apos) of Y is denoted by N_{nc}ROS(Y) (resp.N_{nc}CS(Y), N_{nc}SOS(Y), N_{nc}SCS(Y), N_{nc}POS(Y), N_{nc}PCS(Y), N_{nc}OS(Y), N_{nc}CS(Y), N_{nc}BOS(Y) & N_{nc}BCS(Y)).
Definition 2.8 [21] A set H is said to be a

(i) $N_{nc}\delta$ interior of H (briefly, $N_{nc}\delta\text{int}(H)$) if $N_{nc}\delta\text{int}(H) = \cup\{A : A \subseteq H & A$ is a $N_{nc}\text{ros}\}$.

(ii) $N_{nc}\delta$ closure of H (briefly, $N_{nc}\delta\text{cl}(H)$) if $N_{nc}\delta\text{cl}(H) = \cup\{y \in Y : N_{nc}\text{int}(N_{nc}\text{cl}(L)) \cap H \neq \phi, y \in L & L$ is a $N_{nc}\text{mos}\}$.

Definition 2.9 [21] A set H is said to be a

(i) $N_{nc}\delta$- open set (briefly, $N_{nc}\delta\text{os}$) if $H = N_{nc}\delta\text{int}(H)$.

(ii) $N_{nc}\delta$-pre open set (briefly, $N_{nc}\delta\text{Pos}$) if $H \subseteq N_{nc}\text{int}(N_{nc}\delta\text{cl}(H))$.

(iii) $N_{nc}\delta$-semi open set (briefly, $N_{nc}\delta\text{Sos}$) if $H \subseteq N_{nc}\text{cl}(N_{nc}\delta\text{int}(H))$.

(iv) $N_{nc}\delta$- semi open set [22] (briefly, $N_{nc}\delta\text{os}$) if $H \subseteq N_{nc}\text{cl}(N_{nc}\delta\text{int}(H)) \cup N_{nc}\text{int}(N_{nc}\delta\text{cl}(H))$.

The complement of an $N_{nc}\delta\text{os}$ (resp. $N_{nc}\delta\text{Pos}$, $N_{nc}\delta\text{Sos}$ & $N_{nc}\delta\text{os}$) is called an $N_{nc}\delta$ (resp. $N_{nc}\delta$-pre, $N_{nc}\delta$-semi & $N_{nc}\delta$) closed set (briefly, $N_{nc}\delta\text{cs}$ (resp. $N_{nc}\delta\text{cs}$, $N_{nc}\delta\text{Scs}$ & $N_{nc}\delta\text{cs}$)) in X.

The family of all $N_{nc}\delta\text{Pos}$ (resp. $N_{nc}\delta\text{cs}$, $N_{nc}\delta\text{Sos}$, $N_{nc}\delta\text{Scs}$, $N_{nc}\delta\text{os}$ & $N_{nc}\delta\text{os}$) of X is denoted by $N_{nc}\delta\text{POs}(Y)$ (resp. $N_{nc}\delta\text{PCS}(Y)$, $N_{nc}\delta\text{SOS}(Y)$, $N_{nc}\delta\text{SCS}(Y)$, $N_{nc}\delta\text{OS}(Y)$ & $N_{nc}\delta\text{SOS}(Y)$).

Definition 2.10 [21] Let $(Y, N_{nc}\Gamma)$ be a $N_{nc}\text{ts}$ on Y and H be an $N_{nc}\text{os}$ on Y. Then

(i) $N_{nc}\delta\text{Pint}(H) = \cup\{B : B \subseteq H & B$ is a $N_{nc}\delta\text{Pos}$ set in $Y\}$.

(ii) $N_{nc}\delta\text{Pcl}(H) = \cap\{C : H \subseteq C & C$ is a $N_{nc}\delta\text{Pcs}$ set in $Y\}$.

Definition 2.11 Let $(Y, N_{nc}\Gamma) & (Z, N_{nc}\Psi)$ be any two $N_{nc}\text{ts}$’s. A map $f : (Y, N_{nc}\Gamma) \rightarrow (Z, N_{nc}\Psi)$ is said to be

(i) N_{nc} [11] (resp. $N_{nc}\alpha$, N_{nc} semi, N_{nc} pre, $N_{nc}\gamma$ & $N_{nc}\beta$ [20])-continuous [19] (briefly, $N_{nc}\text{Cts}$ (resp. $N_{nc}\alpha\text{Cts}$, $N_{nc}\text{SCts}$, $N_{nc}\text{Pcts}$, $N_{nc}\gamma\text{Cts}$ & $N_{nc}\beta\text{Cts}$) if the inverse image of every $N_{nc}\text{os}$ in $(Z, N_{nc}\Psi)$ is a $N_{nc}\text{os}$ (resp. $N_{nc}\alpha\text{os}$, $N_{nc}\text{Sos}$, $N_{nc}\text{Pos}$, $N_{nc}\gamma\text{os}$ & $N_{nc}\beta\text{os}$) in $(Y, N_{nc}\Gamma)$.

(ii) $N_{nc}\delta$ (resp. $N_{nc}\delta$ semi & $N_{nc}\delta$ pre)-continuous [21] (briefly, $N_{nc}\delta\text{Cts}$ (resp. $N_{nc}\delta\text{Scts} & N_{nc}\delta\text{Pcts}$) if the inverse image of every $N_{nc}\text{os}$ in $(Z, N_{nc}\Psi)$ is a $N_{nc}\delta\text{os}$ (resp. $N_{nc}\delta\text{Sos}$ & $N_{nc}\delta\text{Pos}$) in $(Y, N_{nc}\Gamma)$.

3. $N_{nc}\delta$-continuous function

Throughout this section, Let $(Y, N_{nc}\Gamma) & (Z, N_{nc}\Psi)$ be any two $N_{nc}\text{ts}$’s.

Definition 3.1 A map $f : (Y, N_{nc}\Gamma) \rightarrow (Z, N_{nc}\Psi)$ is said to be $N_{nc}\delta$-continuous [23] (briefly, $N_{nc}\delta\text{Cts}$) if the inverse image of every $N_{nc}\text{os}$ in $(Z, N_{nc}\Psi)$ is a $N_{nc}\delta\text{os}$ in $(Y, N_{nc}\Gamma)$.

Theorem 3.1 Let $f : (Y, N_{nc}\Gamma) \rightarrow (Z, N_{nc}\Psi)$ be a function. Then

(i) Every $N_{nc}\text{Cts}$ is a $N_{nc}\alpha\text{Cts}$.

(ii) Every $N_{nc}\alpha\text{Cts}$ is a $N_{nc}\text{Pcts}$.

(iii) Every $N_{nc}\text{Pcts}$ is a $N_{nc}\gamma\text{Cts}$.

(iv) Every $N_{nc}\gamma\text{Cts}$ is a $N_{nc}\beta\text{Cts}$.

(v) Every $N_{nc}\beta\text{Cts}$ is a $N_{nc}\delta\text{Cts}$.

(vi) Every $N_{nc}\delta\text{Cts}$ is a $N_{nc}\text{SCts}$.

(vii) Every $N_{nc}\delta\text{SCts}$ is a $N_{nc}\delta\text{Cts}$.

(viii) Every $N_{nc}\delta\text{Pcts}$ is a $N_{nc}\delta\text{Pcts}$.
(ix) Every $N_{nc}\delta P Cts$ is a $N_{nc}eCts$.

(x) Every $N_{nc}eCts$ is a $N_{nc}\beta Cts$.

Proof. Proof of (i) to (iii), (iv) and (v) to (vi) are proved in [19], [20] and [21]. We prove only (vii) to (x).

(vii) Let $f : (Y, N_{nc}\Gamma) \rightarrow (Z, N_{nc}\Psi)$ be a $N_{nc}\delta SCts$ & U_1 is a $N_{nc}os$ in Z. Then $f^{-1}(U_1)$ is $N_{nc}\delta Sos$ in Y. By Proposition 3.1 in [22], every $N_{nc}\delta Soa$ is $N_{nc}eo$, $f^{-1}(U_1)$ is $N_{nc}eo$ in Y. Therefore f is $N_{nc}\delta P Cts$.

(viii) Let $f : (Y, N_{nc}\Gamma) \rightarrow (Z, N_{nc}\Psi)$ be a $N_{nc}P Cts$ & U_1 is a $N_{nc}os$ in Z. Then $f^{-1}(U_1)$ is $N_{nc}P o$ in Y. By Proposition 3.1 in [22], every $N_{nc}P o$ is $N_{nc}\delta P o$, $f^{-1}(U_1)$ is $N_{nc}\delta P os$ in Y. Therefore f is $N_{nc}\delta P Cts$.

(ix) Let $f : (Y, N_{nc}\Gamma) \rightarrow (Z, N_{nc}\Psi)$ be a $N_{nc}\delta P Cts$ & U_1 is a $N_{nc}os$ in Z. Then $f^{-1}(U_1)$ is $N_{nc}\delta P os$ in Y. By Proposition 3.1 in [22], every $N_{nc}\delta P o$ is $N_{nc}eo$, $f^{-1}(U_1)$ is $N_{nc}eo$ in Y. Therefore f is $N_{nc}eCts$.

(x) It is similar to (ix).

Remark 3.1 The diagram shows $N_{nc}eCts$ function of N_{nc}ts.

\[\begin{array}{ccc}
N_{nc}Cts & \xrightarrow{nc\alpha Cts} & N_{nc}P Cts \\
\uparrow & & \downarrow \\
N_{nc}\delta Cts & \rightarrow & N_{nc}\delta P Cts
\end{array} \]

Example 3.1 Let $Y = \{a_2, b_2, c_2, d_2, e_2\} = Z$, $nc\tau_1 = \{\phi_N, X_N, A, B, C\}$, $nc\tau_2 = \{\phi_N, X_N\}$. $A = \{\{c_2\}, \{\phi\}, \{a_2, b_2, c_2, d_2, e_2\}\}$, $B = \{\{a_2, b_2\}, \{\phi\}, \{c_2, d_2, e_2\}\}$, $C = \{\{a_2, b_2, c_2\}, \{\phi\}, \{d_2, e_2\}\}$, then we have $2_{nc}\tau = \{\phi_N, X_N, A, B, C\}$. Define $f : (Y, 2_{nc}\tau) \rightarrow (Z, 2_{nc}\Psi)$ as

(i) $f(a_2) = c_2$, $f(b_2) = d_2$, $f(c_2) = a_2$, $f(d_2) = b_2$ & $f(e_2) = e_2$, then f is $2_{nc}eCts$ but not $N_{nc}\delta P Cts$, the set $f^{-1}(\{\{a_2, b_2\}, \{\phi\}, \{c_2, d_2, e_2\}\}) = \{\{c_2, a_2\}, \{\phi\}, \{a_2, b_2, e_2\}\}$ is a $2_{nc}eo$ but not $2_{nc}\delta P os$.

(ii) $f(a_2) = a_2$, $f(b_2) = c_2$, $f(c_2) = b_2$, $f(d_2) = d_2$ & $f(e_2) = e_2$, then f is $2_{nc}eCts$ but not $N_{nc}\delta SCts$, the set $f^{-1}(\{\{a_2, b_2\}, \{\phi\}, \{c_2, d_2, e_2\}\}) = \{\{a_2, c_2\}, \{\phi\}, \{b_2, d_2, e_2\}\}$ is a $2_{nc}eo$ but not $2_{nc}\delta Sos$.

(iii) $f(a_2) = a_2$, $f(b_2) = d_2$, $f(c_2) = c_2$, $f(d_2) = b_2$ & $f(e_2) = e_2$, then $2_{nc}\beta Cts$ but not $2_{nc}eCts$, the set $f^{-1}(\{\{a_2, b_2\}, \{\phi\}, \{c_2, d_2, e_2\}\}) = \{\{a_2, d_2\}, \{\phi\}, \{b_2, c_2, e_2\}\}$ is a $2_{nc}\beta os$ but not $2_{nc}eo$.

Theorem 3.2 Let $f : (Y, N_{nc}\Gamma) \rightarrow (Z, N_{nc}\Psi)$ be a function. Then the conditions

(i) f is $N_{nc}eCts$.

(ii) The inverse $f^{-1}(U_1)$ of each $N_{nc}es$ U_1 in Z is $N_{nc}eo$ in Y are equivalent.

Proof. The proof is obvious, since $f^{-1}(U_1) = f^{-1}(U_1)$ for each $N_{nc}es$ U_1 of Z.

Theorem 3.3 Let $f : (Y, N_{nc}\Gamma) \rightarrow (Z, N_{nc}\Psi)$ be a function. Then the conditions

(i) $f(N_{nc}ecl(U_1)) \subseteq N_{nc}ecl(f(U_1)), \forall N_{nc} U_1$ in Y.

(ii) $N_{nc}ecl(f^{-1}(H_1)) \subseteq f^{-1}(N_{nc}ecl(H_1)), \forall N_{nc} H$ in Z
are equivalent.

Proof. (i) Since \(N_{nc\text{c}l}(f(U_1))\) is a \(N_{nc}\text{c}l\) in \(Z\) & \(f\) is \(N_{nc}\text{c}l\text{ts}\), then \(f^{-1}(N_{nc\text{c}l}(f(U_1)))\) is \(N_{nc}\text{c}c\) in \(Y\). Now, since \(U_1 \subseteq f^{-1}(N_{nc\text{c}l}(f(U_1)))\), \(N_{nc\text{c}l}(U_1) \subseteq f^{-1}(N_{nc\text{c}l}(f(U_1)))\). Therefore, \(f(N_{nc\text{c}l}(U_1)) \subseteq N_{nc\text{c}l}(f(U_1))\).

(ii) By replacing \(U_1\) with \(V_1\) in (i), we obtain \(f(N_{nc\text{c}l}(f^{-1}(H_1))) \subseteq N_{nc\text{c}l}(f(f^{-1}(H_1))) \subseteq N_{nc\text{c}l}(H_1)\). Hence, \(N_{nc\text{c}l}(f^{-1}(H_1)) \subseteq f^{-1}(N_{nc\text{c}l}(H_1))\).

Remark 3.2 If \(f : (Y, N_{nc\Gamma}) \to (Z, N_{nc\Psi})\) is \(N_{nc\text{c}l}\text{ts}\), then

(i) \(f(N_{nc\text{c}l}(U_1))\) is not necessarily equal to \(N_{nc\text{c}l}(f(U_1))\) where \(U_1 \subseteq Y\).

(ii) \(N_{nc\text{c}l}(f^{-1}(H_1))\) is not necessarily equal to \(f^{-1}(N_{nc\text{c}l}(H_1))\) where \(H_1 \subseteq Z\).

Example 3.2 In Example 3.1, \(f : (Y, 2_{nc\Gamma}) \to (Y, 2_{nc\Gamma})\) be an identity function. Then \(f\) is a \(2_{nc\text{c}l}\text{ts}\).

(i) Let \(U_1 = \{\{a_2, b_2\}, \{\phi\}, \{c_2, d_2, e_2\}\} \subseteq Y\). Then \(f(N_{nc\text{c}l}(U_1)) = f(2_{nc\text{c}l}(\{\{a_2, b_2\}, \{\phi\}, \{c_2, d_2, e_2\}\}) = \{\{a_2, b_2\}, \{\phi\}, \{c_2, d_2, e_2\}\}. But \(2_{nc\text{c}l}(f(U_1)) = 2_{nc\text{c}l}(f(\{\{a_2, b_2\}, \{\phi\}, \{c_2, d_2, e_2\}\})) = 2_{nc\text{c}l}(\{\{a_2, b_2\}, \{\phi\}, \{c_2, d_2, e_2\}\}) = \{\{a_2, b_2, d_2, e_2\}, \{\phi\}, \{c_2\}\}. Thus \(f(2_{nc\text{c}l}(U_1)) \neq 2_{nc\text{c}l}(f(U_1))\).

(ii) Let \(V_1 = \{\{a_2\}, \{\phi\}, \{b_2, c_2, d_2, e_2\}\} \subseteq Y\). Then \(2_{nc\text{c}l}(f^{-1}(V_1)) \subseteq 2_{nc\text{c}l}(f^{-1}(\{\{a_2\}, \{\phi\}, \{b_2, c_2, d_2, e_2\}\})) = 2_{nc\text{c}l}(\{\{a_2\}, \{\phi\}, \{b_2, c_2, d_2, e_2\}\}) = \{\{a_2\}, \{\phi\}, \{b_2, c_2, d_2, e_2\}\}. But \(f^{-1}(2_{nc\text{c}l}(V_1)) = f^{-1}(2_{nc\text{c}l}(\{\{a_2\}, \{\phi\}, \{b_2, c_2, d_2, e_2\}\})) = f^{-1}(Y) = Y\). Thus \(2_{nc\text{c}l}(f^{-1}(V_1)) \neq f^{-1}(2_{nc\text{c}l}(V_1))\).

Theorem 3.4 Let \(f : (Y, N_{nc\Gamma}) \to (Z, N_{nc\Psi})\) be a function, then \(f^{-1}(N_{nc\text{int}(H_1)}) \subseteq N_{nc\text{c}l}(f^{-1}(H_1)), \) for all \(N_{nc}\text{c}l\) \(H_1 \) in \(Z\).

Proof. If \(f\) is \(N_{nc\text{c}l}\text{ts} \& \(H_1 \subseteq Z\). Then \(N_{nc\text{c}l}(H_1)\) is \(N_{nc}\text{c}l\) in \(Z\) and hence, \(f^{-1}(N_{nc\text{c}l}(H_1))\) is \(N_{nc}\text{c}l\) in \(Y\). Therefore \(N_{nc\text{c}l}(f^{-1}(N_{nc\text{c}l}(H_1))) = f^{-1}(N_{nc\text{c}l}(H_1))\). Also, \(N_{nc\text{c}l}(H_1) \subseteq U_1\), implies that \(f^{-1}(N_{nc\text{c}l}(H_1)) \subseteq f^{-1}(H_1)\). Therefore \(N_{nc\text{c}l}(f^{-1}(N_{nc\text{c}l}(H_1))) \subseteq N_{nc\text{c}l}(f^{-1}(H_1))\). That is \(f^{-1}(N_{nc\text{c}l}(H_1)) \subseteq f^{-1}(N_{nc\text{c}l}(H_1))\).

Conversely, let \(f^{-1}(N_{nc\text{c}l}(H_1)) \subseteq N_{nc\text{c}l}(f^{-1}(H_1))\) for every subset \(H_1\) of \(Z\). If \(H_1\) is \(N_{nc}\text{c}l\) in \(Y_1\), then \(N_{nc\text{c}l}(H_1) = H_1\). By assumption, \(f^{-1}(N_{nc\text{c}l}(H_1)) \subseteq N_{nc\text{c}l}(f^{-1}(H_1))\). Thus \(f^{-1}(H_1) \subseteq N_{nc\text{c}l}(f^{-1}(H_1))\). But \(N_{nc\text{c}l}(f^{-1}(H_1)) \subseteq f^{-1}(H_1)\). Therefore \(N_{nc\text{c}l}(f^{-1}(H_1)) = f^{-1}(H_1)\). That is, \(f^{-1}(H_1) = N_{nc}\text{c}l\text{ }H_1\) in \(Y\), \(\forall N_{nc}H_1\) in \(Z\). Therefore \(f\) is \(N_{nc}\text{c}l\text{ts} \) on \(Y\).

Remark 3.3 If \((Y, N_{nc\Gamma}) \to (Z, N_{nc\Psi})\) is \(N_{nc}\text{c}l\text{ts}, then \(N_{nc\text{c}l}(f^{-1}(H_1))\) is not necessarily equal to \(f^{-1}(N_{nc\text{c}l}(H_1))\) where \(H_1 \subseteq Z\).

Example 3.3 In Example 3.1, \(f\) is a \(2_{nc}\text{c}l\text{ts}\). Let \(V_1 = \{\{a_2, c_2\}, \{\phi\}, \{b_2, d_2, e_2\}\} \subseteq Z\). Then \(2_{nc\text{c}l}(f^{-1}(V_1)) \subseteq 2_{nc\text{c}l}(f^{-1}(\{\{a_2, c_2\}, \{\phi\}, \{b_2, d_2, e_2\}\})) = 2_{nc\text{c}l}(\{\{a_2, c_2\}, \{\phi\}, \{b_2, d_2, e_2\}\}) = \{\{a_2, c_2\}, \{\phi\}, \{b_2, d_2, e_2\}\}. But \(f^{-1}(2_{nc\text{c}l}(V_1)) = f^{-1}(2_{nc\text{c}l}(\{\{a_2, c_2\}, \{\phi\}, \{b_2, d_2, e_2\}\})) = f^{-1}(\{\{c_2\}, \{\phi\}, \{a_2, b_2, d_2, e_2\}\}) = \{\{c_2\}, \{\phi\}, \{a_2, b_2, d_2, e_2\}\}. Thus \(2_{nc\text{c}l}(f^{-1}(V_1)) \neq f^{-1}(2_{nc\text{c}l}(V_1))\).

Theorem 3.5 Let \(f : (Y, N_{nc\Gamma}) \to (Z, N_{nc\Psi})\) be a function. Then the statements

(i) \(f\) is a \(N_{nc}\text{c}l\text{ts} \) function.

(ii) For every \(N_{nc}P\) \(p_{(p_1,p_2,p_3)} \in Y\) and each \(ncs\) \(U_1\) of \(f(p_{(p_1,p_2,p_3)})\), \(\exists\) an \(N_{nc}\text{c}l\text{ }H_1 \ni p_{(p_1,p_2,p_3)} \in H_1 \subseteq f^{-1}(U_1)\).

(iii) For every \(N_{nc}\) point \(p_{(p_1,p_2,p_3)} \in Y\) and each \(ncs\) \(U_1\) of \(f(p_{(p_1,p_2,p_3)})\), \(\exists\) an \(N_{nc}\text{c}l\text{ }H_1 \ni p_{(p_1,p_2,p_3)} \in H_1 \& f(H_1) \subseteq U_1\).
are equivalent.

Proof. (i) ⇒ (ii): If \(p_{(p_1,p_2,p_3)} \) is an \(N_{nc} \) set in \(Y \) and if \(U_1 \) is an \(N_{nc} \) function of \(p_{(p_1,p_2,p_3)} \), then \(\exists \) an \(N_{nc} \os W_1 \) in \(Z \ni f(p_{(p_1,p_2,p_3)}) \) in \(W_1 \subset U_1 \). Thus, \(f \) is a \(N_{nc}\text{Cts} \), \(H_1 = f^{-1}(W_1) \) is an \(N_{nc} \os \) & \(p_{(p_1,p_2,p_3)} \in f^{-1}(f(p_{(p_1,p_2,p_3)})) \) \(\subseteq f^{-1}(W_1) = H_1 \subseteq f^{-1}(U_1) \). Hence, (ii).

(ii) ⇒ (iii): Let \(p_{(p_1,p_2,p_3)} \) be an \(N_{nc} \) set in \(Y \) and let \(U_1 \) be an \(N_{nc} \) set of \(p_{(p_1,p_2,p_3)} \). Then \(\exists \) an \(N_{nc} \os U_1 \ni p_{(p_1,p_2,p_3)} \in H_1 \subseteq f^{-1}(U_1) \) by (ii). Thus, we have \(p_{(p_1,p_2,p_3)} \in H_1 \) & \(f(H_1) \subseteq f(f^{-1}(U_1)) \subseteq U_1 \). Hence, (iii).

(iii) ⇒ (i): Let \(H_1 \) be an \(N_{nc} \) set in \(Z \) & let \(p_{(p_1,p_2,p_3)} \in f^{-1}(H_1) \). Then, \(f(p_{(p_1,p_2,p_3)}) \in f(f^{-1}(H_1)) \subseteq H_1 \). Since \(H_1 \) is an \(N_{nc} \os \), it follows that \(H_1 \) is an \(N_{nc} \) set of \(f(p_{(p_1,p_2,p_3)}) \). \:. from (iii), \(\exists \) an \(N_{nc} \os U_1 \ni p_{(p_1,p_2,p_3)} \& f(U_1) \subseteq H_1. \Rightarrow p_{(p_1,p_2,p_3)} \in U_1 \subseteq f^{-1}(f(U_1)) \subseteq f^{-1}(H_1). \) Therefore, w.k.t \(f^{-1}(H_1) \) is an \(N_{nc} \os \) in \(Y \). Thus, \(f \) is a \(N_{nc}\text{Cts} \) function.

4. Somewhat \(N_{nc} \os \)-continuous functions

Throughout this section, Let \((Y,N_{nc}\Gamma) \) \& \((Z,N_{nc}\Psi) \) be any two \(N_{nc}\text{ts}'s \).

Definition 4.1 A map \(f : (Y,N_{nc}\Gamma) \to (Z,N_{nc}\Psi) \) is said to be somewhat \(N_{nc} \os \) (resp. \(N_{nc} \os \)-continuous (briefly, \(sw \) \(N_{nc}\text{Cts} \) (resp. \(sw \) \(N_{nc}\os\text{Cts} \))) if for \(B_1 \in N_{nc}\Psi \& f^{-1}(B_1) \neq \phi, \exists \) an \(N_{nc}\os \) (resp. \(N_{nc}\os \)) set \(A_1 \) of \(Y \ni A_1 \neq \phi \& A_1 \subseteq f^{-1}(B_1) \).

It is clear that every \(N_{nc}\text{Cts} \) function is \(sw \) \(N_{nc}\text{Cts} \) and every \(sw \) \(N_{nc}\os\text{Cts} \) is \(sw \) \(N_{nc}\os\text{Cts} \). But not converse.

Example 4.1 In Example 3.1,

(i) \(n_{nc}\Psi_1 = \{\phi_n,Y,N,A\}, n_{nc}\Psi_2 = \{\phi_n,X_n\} \). \(A = \langle \{a_2,e_2\}, \{\phi\}, \{b_2,d_2,e_2\} \rangle \), then we have \(2_{nc}\Psi = \{\phi_n,Y,N,A\} \). Define \(f : (Y,2_{nc}\Gamma) \to (Z,2_{nc}\Psi) \) be an identity function. Then \(f \) is \(sw \) \(2_{nc}\text{Cts} \) but not \(2_{nc}\text{ts} \) function.

(ii) \(n_{nc}\Psi_1 = \{\phi_n,Y,N,A\}, n_{nc}\Psi_2 = \{\phi_n,X_n\} \). \(A = \langle \{e_2\}, \{\phi\}, \{a_2,b_2,d_2,e_2\} \rangle \), then we have \(2_{nc}\Psi = \{\phi_n,Y,N,A\} \). Define \(f : (Y,2_{nc}\Gamma) \to (Z,2_{nc}\Psi) \) as \(f(a_2) = a_2, f(b_2) = c_2, f(e_2) = e_2 \). Then \(f \) is \(sw \) \(2_{nc}\text{Cts} \) but not \(sw \) \(2_{nc}\text{ts} \).

Definition 4.2 Let \(H_1 \) be an \(N_{nc}s \) in \((Y,N_{nc}\Gamma) \). Then \(H_1 \) is said to be a \(N_{nc} \os \)-dense (resp. \(N_{nc} \os \) dense) (briefly, \(N_{nc} \os \ d \) (resp. \(N_{nc} \ os \)) if \(N_{nc} \os(H_1) = Y \) (resp. \(N_{nc} \os(H_1) = Y \)), equivalently if there is no proper \(N_{nc} \os \) (resp. \(N_{nc} \os \)) set \(C_1 \) in \(Y \ni H_1 \subseteq C_1 \subseteq Y \).

Theorem 4.1 For a surjective function \(f : (Y,N_{nc}\Gamma) \to (Z,N_{nc}\Psi) \), then the statements

(i) \(f \) is \(sw \) \(N_{nc}\os\text{Cts} \);

(ii) if \(C_1 \) is a \(N_{nc} \) set of \(Z \ni f^{-1}(C_1) \neq Y \), then there is a proper \(N_{nc}\os \) set \(F_1 \) of \(Y \ni f^{-1}(C_1) \subseteq F_1 \);

(iii) if \(E_1 \) is an \(N_{nc} \os \) set of \(Y \), then \(f(E_1) \) is a dense set of \(Z \)

are equivalent.

Proof. (i) ⇒ (ii): Let \(C_1 \) be a \(N_{nc} \) set of \(Z \ni f^{-1}(C_1) \neq Y \). Then \(Z \setminus C_1 \) is an \(N_{nc} \os \) set in \(Z \ni f^{-1}(Z \setminus C_1) = Y \setminus f^{-1}(C_1) \neq \phi \). By (i), \(\exists \) an \(N_{nc} \os \) set \(U_1 \) in \(Y \ni U_1 \neq \phi \& U_1 \subseteq f^{-1}(Z \setminus C_1) = Y \setminus f^{-1}(C_1) \). This means that \(f^{-1}(C_1) \subseteq Y \setminus U_1 \& Y \setminus U_1 = F_1 \) is a proper \(N_{nc} \os \) set in \(Y \).

(ii) ⇒ (i): Let \(V_1 \in \Psi \& f^{-1}(V_1) \neq \phi \). Then \(Z \setminus V_1 \) is \(N_{nc} \os \& f^{-1}(Z \setminus V_1) = Y \setminus f^{-1}(V_1) \neq Y \). By (ii), there exists a proper \(N_{nc} \os \) set \(F_1 \) of \(Y \ni f^{-1}(Z \setminus V_1) \subseteq F_1 \). \(\Rightarrow Y \setminus F_1 \subseteq f^{-1}(V_1) \& Y \setminus F_1 \in N_{nc} \os(Y) \) with \(Y \setminus F_1 \neq \phi \).
(ii)⇒(iii): Let \(E_1 \) be an \(N_{nc} e \) set in \(Y \). Suppose that \(f(E_1) \) is not \(N_{nc} d \) in \(Z \). Then there exists a proper \(N_{nc} e \) set \(C_1 \) in \(Z \ni f(E_1) \subseteq C_1 \subseteq Z \). Clearly \(f^{-1}(C_1) \neq Y \). By (ii), there exist a proper \(N_{nc} e \) subset \(F_1 \ni E_1 \subseteq f^{-1}(C_1) \subseteq F_1 \subseteq Y \). This is contradiction that \(E_1 \) is \(N_{nc} e \) in \(Y \).

(iii)⇒(ii): Suppose (ii) is not true. \(\exists \) a \(N_{nc} e \) set \(C_1 \) in \(Z \ni f^{-1}(C_1) \neq Y \) but there is not proper \(N_{nc} e \) set \(F_1 \) in \(Y \ni f^{-1}(C_1) \subseteq F_1 \). Then \(f^{-1}(C_1) \) is \(N_{nc} e \) in \(Y \). But by (iii), \(f(f^{-1}(C_1)) = C_1 \) must be \(N_{nc} d \) in \(Z \), which is a contradiction to \(C_1 \).

Definition 4.3 If \(Y \) is a set and \(N_{nc} \Gamma \) & \(N_{nc} \Gamma^* \) are \(N_{nc} \) topologies on \(Y \), then \(N_{nc} \Gamma \) is said to be \(N_{nc} e \) equivalent (resp. \(N_{nc} e \) equivalent) (briefly, \(N_{nc} e \) equ (resp. \(N_{nc} e \) equ)) to \(N_{nc} \Gamma^* \) provided if \(A_1 \ni N_{nc} \Gamma \& A_1 \neq \phi \) then there is an \(N_{nc} e \o \) (resp. \(N_{nc} o \)) set \(B_1 \) in \((Y, N_{nc} \Gamma^*) \) such that \(B_1 \neq \phi \) and \(B_1 \subseteq A_1 \) and if \(A_1 \ni N_{nc} \Gamma^* \) & \(A_1 \neq \phi \) then there is an \(N_{nc} e \o \) (resp. \(N_{nc} o \)) set \(B_1 \) in \((Y, N_{nc} \Gamma) \) such that \(B_1 \neq \phi \) and \(B_1 \subseteq A_1 \).

Now consider the identity function \(f : (Y, N_{nc} \Gamma) \to (Y, N_{nc} \Gamma) \) and assume that \(N_{nc} \Gamma \) & \(N_{nc} \Gamma^* \) are \(N_{nc} e \) equ. Then \(f : (Y, N_{nc} \Gamma) \to (Y, N_{nc} \Gamma^*) \) & \(f^{-1} : (Y, N_{nc} \Gamma^*) \to (Y, N_{nc} \Gamma) \) are \(N_{nc} e \) Cts. Conversely, if the identity function \(f : (Y, N_{nc} \Gamma) \to (Y, N_{nc} \Gamma^*) \) is \(N_{nc} e \) Cts in both directions, then \(N_{nc} \Gamma \) & \(N_{nc} \Gamma^* \) are \(N_{nc} e \) equ.

Theorem 4.2 If \(f : (Y, N_{nc} \Gamma) \to (Z, N_{nc} \Psi) \) is a surjection \(N_{nc} e \) Cts \& \(N_{nc} \Gamma^* \) is a \(N_{nc} \) topology for \(Y \), which is equivalent to \(N_{nc} \Psi \), then \(f : (Y, N_{nc} \Gamma) \to (Z, N_{nc} \Psi) \) is \(N_{nc} e \) Cts.

Proof. Let \(B_1 \) be an \(N_{nc} o \) set of \(Z \ni f^{-1}(B_1) \neq \phi \). Since \(f : (Y, N_{nc} \Gamma) \to (Z, N_{nc} \Psi) \) is \(N_{nc} e \) Cts, \(\exists \) a nonempty \(N_{nc} e \o \) set \(A_1 \in (Y, N_{nc} \Gamma) \ni A_1 \subseteq f^{-1}(B_1) \). But by hypothesis \(N_{nc} \Gamma^* \) is \(N_{nc} e \) equ to \(N_{nc} \Gamma \). Therefore, \(\exists \) an \(N_{nc} e \o \) set \(A_1^* \in (Y, N_{nc} \Gamma^*) \ni A_1^* \subseteq A_1 \). But \(A_1 \ni f^{-1}(B_1) \). Then \(A_1^* \subseteq f^{-1}(B_1) \); hence \(f : (Y, N_{nc} \Gamma^*) \to (Z, N_{nc} \Psi) \) is \(N_{nc} e \) Cts.

Theorem 4.3 Let \(f : (Y, N_{nc} \Gamma) \to (Z, N_{nc} \Psi) \) be a \(N_{nc} e \) Cts surjection \& \(N_{nc} \Psi^* \) be a \(N_{nc} \) topology for \(Z \), which is equivalent to \(N_{nc} \Psi \). Then \(f : (Y, N_{nc} \Gamma) \to (Z, N_{nc} \Psi^*) \) is \(N_{nc} e \) Cts.

Proof. Let \(B_1^* \) be an \(N_{nc} o \) set of \((Z, \Psi^*) \ni f^{-1}(B_1^*) \neq \phi \). Since \(N_{nc} \Psi^* \) is equivalent to \(N_{nc} \Psi \), \(\exists \) a nonempty \(N_{nc} \o \) set \(A_1 \in (Z, N_{nc} \Psi) \ni A_1 \subseteq f^{-1}(B_1^*) \). Now \(f^{-1}(B_1) \subseteq f^{-1}(B_1^*) \). Since \(f : (Y, N_{nc} \Gamma) \to (Z, N_{nc} \Psi) \) is \(N_{nc} e \) Cts, \(\exists \) a nonempty \(N_{nc} \o \) set \(A_1 \in (Y, N_{nc} \Gamma) \ni A_1 \subseteq f^{-1}(B_1^*) \). Then \(A_1 \subseteq f^{-1}(B_1^*) \); hence \(f : (Y, N_{nc} \Gamma^*) \to (Z, N_{nc} \Psi^*) \) is \(N_{nc} e \) Cts.

Theorem 4.4 A function \(f : (X_1, N_{nc} \Gamma) \to (X_2, N_{nc} \Psi) \) is \(N_{nc} e \) Cts & \(g : (X_2, N_{nc} \Psi) \to (X_3, N_{nc} \eta) \) is \(N_{nc} \) Cts, then \(f \circ g : (X_1, N_{nc} \Gamma) \to (X_3, N_{nc} \eta) \) is \(N_{nc} e \) Cts.

Definition 4.4 A function \(f : (Y, N_{nc} \Gamma) \to (Z, N_{nc} \Psi) \) is said to be \(N_{nc} e \o \) (briefly, \(N_{nc} e \o \)) provided that if \(A_1 \ni N_{nc} \Gamma \& A_1 \neq \phi \), then \(\exists \) an \(N_{nc} e \o \) set \(B_1 \) in \(Z \ni B_1 \neq \phi \) & \(B_1 \subseteq f(A_1) \).

Theorem 4.5 A function \(f : (Y, N_{nc} \Gamma) \to (Z, N_{nc} \Psi) \) is \(N_{nc} e \o \) iff for any \(A_1 \subseteq Y \), \(N_{nc} \text{int}(A_1) \neq \phi \) \(\iff \) \(N_{nc} \text{ext}(f(A_1)) \neq \phi \).

Theorem 4.6 For a function \(f : (Y, N_{nc} \Gamma) \to (Z, N_{nc} \Psi) \), the statements

(i) \(f \) is \(N_{nc} e \o \),

(ii) If \(D_1 \) is an \(N_{nc} e \) \(d \) subset of \(Z \), then \(f^{-1}(D_1) \) is an \(N_{nc} d \) subset of \(Y \) are equivalent.
Proof. (i) ⇒ (ii): Suppose D_1 is an $N_{nc}e$ d set in Y. We want to show that $f^{-1}(D_1)$ is a $N_{nc} d$ subset of Y. Suppose that $f^{-1}(D_1)$ is not $N_{nc} d$ in Y. Then \exists a $N_{nc}e$ set B_1 in $Y \ni f^{-1}(D_1) \subseteq B_1 \subseteq Y$. By (i) and since that $Y \backslash B_1$ is $N_{nc}o$, \exists a nonempty $N_{nc}eo$ set E_1 in $Z \ni E_1 \subseteq f(Y \backslash B_1)$. Therefore $E_1 \subseteq f(Y \backslash B_1) \subseteq f(f^{-1}(Z \backslash D_1)) \subseteq Z \backslash D_1$. That is, $D_1 \subseteq Z \backslash E_1 \subseteq Z$. Now, $Z \backslash E_1$ is a $N_{nc}ec$ set & $D_1 \subseteq Z \backslash E_1 \subseteq Z$. This implies that D_1 is not an $N_{nc}e d$ set in Z, which is a contradiction that D_1 is $N_{nc}e d$ in Z. Therefore, $f^{-1}(D_1)$ is a $N_{nc} d$ subset of Y.

(ii) ⇒ (i): Suppose D_1 is a nonempty $N_{nc}o$ set of Y. We show that $N_{nc}e int(f(D_1)) \neq \phi$. Suppose that $N_{nc}e int(f(D_1)) = \phi$. Then $N_{nc}e cl(f(D_1)) = Z$. Therefore by (ii) $f^{-1}(Z \backslash f(D_1))$ is $N_{nc} d$ in Y. But $f^{-1}(Z \backslash f(D_1))$ is $N_{nc} d$ in Y. But $f^{-1}(Z \backslash f(D_1)) \subseteq Y \backslash D_1$. Now $Y \backslash D_1$ is $N_{nc}c$. Therefore $f^{-1}(Z \backslash f(D_1)) \subseteq Y \backslash D_1$ gives $Y = N_{nc}e cl(f^{-1}(Z \backslash f(D_1))) \subseteq Y \backslash D_1$. This implies that $D_1 = \phi$ which is contradiction to $D_1 \neq \phi$. Therefore $N_{nc}e int(f(D_1)) \neq \phi$. Thus f is sw $N_{nc}e O$.

Theorem 4.7 For a bijective function $f : (Y, N_{nc} \Gamma) \rightarrow (Z, N_{nc} \Psi)$, the statements

(i) f is sw $N_{nc}e O$,

(ii) If C_1 is a $N_{nc}ec$ set of $Y \ni f(C_1) \neq Z$, then there is an $N_{nc}ec$ subset F_1 of $Z \ni F_1 \neq Z$ & $f(C_1) \subseteq F_1$

are equivalent.

Proof. (i) ⇒ (ii): Let C_1 be any $N_{nc}ec$ set of $Y \ni f(C_1) \neq Z$. Then $Y \backslash C_1$ is an $N_{nc}o$ set in Y & $Y \backslash C_1 \neq \phi$. Since f is sw $N_{nc}eo$ \exists an $N_{nc}eo$ set B_1 in $Z \ni B_1 \neq \phi$ & $B_1 \subseteq f(Y \backslash C_1)$. Put $F_1 = Z \backslash B_1$. Clearly F_1 is $N_{nc}ec$ in Z and we claim $F_1 \neq Z$. If $F_1 = Z$, then $B_1 = \phi$ which is a contradiction. Since $B_1 \subseteq f(Y \backslash C_1)$, $f(C_1) = (Z \backslash f(Y \backslash C_1)) \subseteq Z \backslash B_1 = F_1$.

(ii) ⇒ (i): Let A_1 be any nonempty $N_{nc}o$ set of Y. Then $C_1 = Y \backslash A_1$ is $N_{nc}c$ set in Y & $f(Y \backslash A_1) = f(C_1) = Z \backslash f(A_1) \implies f(C_1) \neq Z$. Therefore, by (ii), there is an $N_{nc}ec$ set F_1 of $Z \ni F_1 \neq Z$ & $f(C_1) \subseteq F_1$. Clearly $B_1 = Z \backslash F_1 \in N_{nc}e cl(Z, \Psi) \neq \phi$. Also $B_1 = Z \backslash F_1 \subseteq Z \backslash f(C_1) = Z \backslash f(Y \backslash A_1) = f(A_1)$.

5. $N_{nc}e$-resolvable spaces and $N_{nc}e$-irresolvable spaces

Definition 5.1 A $N_{nc}ets (Y, N_{nc} \Gamma)$ is said to be $N_{nc}e$-resolvable (resp. N_{nc} resolvable) (briefly, $N_{nc}e rs$ (resp. $N_{nc} rs$) if \exists an $N_{nc}e d$ (resp. $N_{nc} d$) set A_1 in $(Y, N_{nc} \Gamma) \ni Y \backslash A_1$ is also $N_{nc}e d$ (resp. $N_{nc} d$) in $(Y, N_{nc} \Gamma)$. A space $(Y, N_{nc} \Gamma)$ is called $N_{nc}e$-irresolvable (resp. N_{nc} irresolvable) (briefly, $N_{nc}e irs$ (resp. $N_{nc} irs$)) if it is not $N_{nc}e rs$ (resp. $N_{nc} rs$).

Theorem 5.1 For a $N_{nc}ets (Y, N_{nc} \Gamma)$, the statements

(i) $(Y, N_{nc} \Gamma)$ is $N_{nc}e rs$,

(ii) $(Y, N_{nc} \Gamma)$ has a pair of $N_{nc}e d$ sets $A_1 \ni B_1 \ni A_1 \subseteq (Y \backslash B_1)$

are equivalent.

Proof. (i) ⇒ (ii): Suppose that $(Y, N_{nc} \Gamma)$ is $N_{nc}e rs$. \exists an $N_{nc}e d$ set A_1 in $(Y, N_{nc} \Gamma) \ni Y \backslash A_1$ is $N_{nc}e d$ in $(Y, N_{nc} \Gamma)$. Set $B_1 = Y \backslash A_1$, then we have $A_1 = Y \backslash B_1$.

(ii) ⇒ (i): Suppose that (ii) holds. Let $(Y, N_{nc} \Gamma)$ be $N_{nc}e irs$. Then $Y \backslash B_1$ is not $N_{nc}e d$ & $N_{nc}e cl(A_1) \subseteq N_{nc}e cl(Y \backslash B_1) \neq Y$. Hence A_1 is not $N_{nc}e d$. This contradicts the assumption.

Theorem 5.2 For a $N_{nc}ets (Y, N_{nc} \Gamma)$, the statements

(i) $(Y, N_{nc} \Gamma)$ is $N_{nc}e irs$ (resp. $N_{nc} irs$),

(ii) For any $N_{nc}e d$ (resp. $N_{nc} d$) sets A_1 in Y, $N_{nc}e int(A_1) \neq \phi$ (resp. $N_{nc} int(A_1) \neq \phi$)

are equivalent.
In this work, we have introduced some new notions of $N_{nc}e$ functions and also a contra field in $N_{nc}e$. Theorem 4.6

\[\text{Proof.} \]
(i) ⇒ (ii): Let A_1 be any $N_{nc}e$ set of Y. Then we have $N_{nc}e cl(Y \setminus A_1) \neq Y$, hence $N_{nc}e cl(A_1) \neq \phi$.

(ii) ⇒ (i): Suppose that $(Y, N_{nc}e \Gamma)$ is an $N_{nc}e$ rs space. \exists an $N_{nc}e$ set A_1 in $(Y, N_{nc}e \Gamma) \ni Y \setminus A_1$ is also $N_{nc}e$ in $(Y, N_{nc}e \Gamma)$. It follows that $N_{nc}e in(A_1) = \phi$, which is a contradiction; hence $(Y, N_{nc}e \Gamma)$ is $N_{nc}e$ irs.

Definition 5.2 A $N_{nc}ets$ $(Y, N_{nc}e \Gamma)$ is said to be strongly $N_{nc}e$- irresolvable (briefly, s $N_{nc}e$ irs) if for a nonempty set A_1 in Y, $N_{nc}e in(A_1) = \phi \implies N_{nc}e in(N_{nc}e cl(A_1)) = \phi$.

Theorem 5.3 If $(Y, N_{nc}e \Gamma)$ is an s $N_{nc}e$ irs space & $N_{nc}e cl(A_1) = Y$ for a nonempty subset A_1 of Y, then $N_{nc}e cl(N_{nc}e in(A_1)) = Y$.

Theorem 5.4 If $(Y, N_{nc}e \Gamma)$ is an s $N_{nc}e$ irs space & $N_{nc}e in(N_{nc}e cl(A_1)) \neq \phi$ for a nonempty subset A_1 of Y, then $N_{nc}e in(A_1) \neq \phi$.

Theorem 5.5 Every s $N_{nc}e$ irs is $N_{nc}e$ irr.

\[\text{Proof.} \]
This is follows from Theorems 5.2 & 5.3.

Theorem 5.6 If $f : (Y, N_{nc}e \Gamma) \rightarrow (Z, N_{nc}e \Psi)$ is a sw $N_{nc}e O$ function & $N_{nc}e in(B_1) = \phi$ for a nonempty subset B_1 of Z, then $N_{nc}e in(f^{-1}(B_1)) = \phi$.

Proof. Let B_1 be a nonempty set in $Z \ni N_{nc}e in(B_1) = \phi$. Then $N_{nc}e cl(Z \setminus B_1) = Z$. Since f is sw $N_{nc}e O$ & $Z \setminus B_1$ is $N_{nc}e$ in Z, by Theorem 4.6 $f^{-1}(Z \setminus B_1)$ is $N_{nc}e$ in Y. Then $N_{nc}e cl(Y \setminus f^{-1}(B_1)) = Y$. Hence $N_{nc}e in(f^{-1}(B_1)) = \phi$.

Theorem 5.7 If $f : (Y, N_{nc}e \Gamma) \rightarrow (Z, N_{nc}e \Psi)$ is a sw $N_{nc}e O$ function. If Y is N_{nc} irs, then Z is $N_{nc}e$ irs.

Proof. Let B_1 be a nonempty set in $Z \ni N_{nc}e in(B_1) = Z$. We show that $N_{nc}e in(B_1) \neq \phi$. Suppose not, then $N_{nc}e cl(Z \setminus B_1) = Z$. Since f is sw $N_{nc}e O$ & $Z \setminus B_1$ is $N_{nc}e$ in Z, we have by Theorem 4.6 $f^{-1}(Z \setminus B_1)$ is $N_{nc}e$ in Y. Then $N_{nc}e in(f^{-1}(B_1)) = \phi$. Now, since B_1 is $N_{nc}e$ in Z and using Theorem 4.6 $f^{-1}(B_1)$ is $N_{nc}e$ in Y. Therefore, N_{nc} d set $f^{-1}(B_1)$ that $N_{nc}e in(f^{-1}(B_1)) = \phi$, which is a contradiction to Theorem 5.2. Hence we must have $N_{nc}e in(B_1) \neq \phi$ for all $N_{nc}e$ d sets B_1 in Z. Hence by Theorem 5.2, Z is $N_{nc}e$ irs.

6. Conclusion
In this work, we have introduced some new notions of $N_{nc}e Cts$, sw $N_{nc}e Cts$ and sw $N_{nc}e O$ functions and get results in $N_{nc}ets$. This can be extended to $N_{nc}e$- irresolute function, $N_{nc}e$- homeomorphism functions and also a contra field in $N_{nc}ets$.

References
[1] Abdel-Basset M, Chang V, Mohamed M and Smarandache F 2019 A Refined Approach for Forecasting Based on Neutrosophic Time Series Symmetry vol 11 457.
[2] Abdel-Basset M, Manogaran G, Gamal A and Chang V 2019 A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT IEEE Internet of Things Journal.
[3] Abdel-Basset M, and Mohamed M 2019 A novel and powerful framework based on neutrosophic sets to aid patients with cancer Future Generation Computer Systems vol 98 pp 144-153.
[4] Abdel-Basset M, Gamal A, Manogaran G and Long H V 2019 A novel group decision making model based on neutrosophic sets for heart disease diagnosis Multimedia Tools and Applications pp 1-26.
[5] Al-Hamido R K, Gharibah T, Jafari S and Smarandache F 2018 On neutrosophic crisp topology via N-topology Neutrosophic Sets and Systems vol 23 pp 96-109.
[6] Erdal Ekici 2008 On e-open sets, DP^*-sets and DP^c-sets and decomposition of continuity The Arabian Journal for Science and Engineering vol 33 pp 271-282.
[7] Erdal Ekici 2008 On a-open sets, A^*-sets and decompositions of continuity and super continuity *Annales Univ. Sci. Budapest* vol 51 pp 39-51.
[8] Erdal Ekici 2008 New forms of contra continuity *Bull. Carpathian J. Math.* vol 24 pp 37-45.
[9] Hur K, Lim P K, Lee J G and Lee J 2017 The category of neutrosophic crisp sets *Annals of Fuzzy mathematics and Informatics* vol 14 pp 43-54.
[10] Lellis Thivagar M, Ramesh V, Arockia M D 2016 On new structure of N-topology *Cogent Mathematics (Taylor and Francis)* vol 3 pp 1204104.
[11] Lellis Thivagar M, Jafari S, Antonysamy V and Sutha Devi V 2018 The ingenuity of neutrosophic topology via N-topology *Neutrosophic Sets and Systems* vol 19 pp 91-100.
[12] Levine N 1970 Generalized closed sets in topology *Rend. circ. mat. palermo* vol 19 pp 89-96.
[13] Salama A A and Alblowi S A 2012 Generalized neutrosophic set and generalized neutrosophic topological spaces *Journal computer sci. engineering* vol 2 pp 31-35.
[14] Salama A A, Smarandache F and Kroumov V 2014 Neutrosophic crisp sets and neutrosophic crisp topological spaces *Neutrosophic Sets and Systems* vol 2 pp 25-30.
[15] Salama A A and Smarandache F 2015 Neutrosophic crisp set theory *Educational Publisher Columbus Ohio USA*.
[16] Smarandache F 2002 Neutrosophy and neutrosophic logic *First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA*.
[17] Vadivel A and John Sundar C 2020 γ-Open Sets in N_{nc}-Topological Spaces *Advances in Mathematics: Scientific Journal* vol 9 pp 2197-2202.
[18] Vadivel A and John Sundar C 2020 $N_{nc}\beta$-open sets *Advances in Mathematics: Scientific Journal* vol 9 pp 2203-2207.
[19] Vadivel A and John Sundar C γ-Continuous Function in N_{nc}-Topological Spaces *Submitted*.
[20] Vadivel A, Murugadas P and John Sundar C $N_{nc}\beta$-Continuous Maps *Submitted*.
[21] Vadivel A and John Sundar C $N_{nc}\delta$-open sets *Submitted*.
[22] Vadivel A and Thangaraja P e-open sets in N_{nc} Topological Spaces *Submitted*.
[23] Vadivel A and Thangaraja P On $N_{nc}DP^*$-sets and Decomposition of continuity in N_{nc} Topological Spaces *Submitted*.
[24] Venkateswaran Rao V and Srinivasa Rao Y Neutrosophic Pre-open sets and Pre-closed sets in Neutrosophic Topology *International Journal of chemTech Research* vol 10 pp 449-458.
[25] Wadei F, Al-Omeri and Saied Jafari 2019 Neutrosophic pre-continuity multifunctions and almost pre-continuity multifunctions *Neutrosophic Sets and Systems* vol 27 pp 53-69.