Order reduction for problems with traveling wave solutions to reaction–diffusion systems

E Shchepakina¹, E Tropkina¹

¹Samara National Research University, Moskovskoe shosse 34, Samara, Russia, 443086

Abstract. The paper is devoted to the order reduction for traveling wave problems for reaction-diffusion systems. The use of the method of invariant manifolds of singularly perturbed systems allows us to replace the study of the traveling wave of the original PDE system with the analysis of their profiles in the ODE system with a lower order.

1. Introduction
The paper deals with the traveling wave problems for reaction–diffusion systems. Such problems naturally arise in chemistry, biology, physics, ecology [1–15]. If the propagation velocity of the traveling waves is constant, their study is reduced to the analysis of their profiles in the corresponding systems of ordinary differential equations.

We consider processes characterized by small diffusion, which leads to the appearance of singular perturbations in the corresponding ODE systems. An important point of the study is the possibility of order reduction of such systems preserving the essential properties of the qualitative behavior of its solutions. For this goal, a geometric approach based on the apparatus of slow invariant manifolds is effectively used [16–27]. The essence of this approach consists of the decomposition of the original system into the fast subsystem and the independent slow subsystem. The slow subsystem is a projection of the original system onto its slow invariant manifold. Moreover, the slow subsystem, of a lesser order, reflect the behavior of the original models to a high order of accuracy when the slow invariant manifold is attractive. A mathematical justification of this method one can find in [27] and references therein.

We demonstrate this approach via the Belousov–Zhabotinsky–type reaction.

2. Mathematical Background
Consider a reaction–diffusion system in one spatial dimension

$$\frac{\partial \mathbf{u}}{\partial t} = \varepsilon D \frac{\partial^2 \mathbf{u}}{\partial s^2} + \mathbf{F}(\mathbf{u}),$$

(1)

where $\mathbf{u} = \mathbf{u}(s, t) \in \mathbb{R}^n$, $s \in \mathbb{R}$ is the spatial coordinate, $t > 0$ is time, D is the real diagonal matrix of diffusion coefficients, and $\mathbf{F}(\mathbf{u})$ is the vector of reaction terms. The parameter $0 < \varepsilon \ll 1$ represents the relative sizes of the diffusion.
We are looking for traveling wave solutions to (1), which propagate at constant speed $c > 0$ preserving their spatial profile.

After transforming to a co-moving coordinate $\xi = s - ct$, equation (1) takes the following form

$$-c \frac{d\tilde{u}}{d\xi} = \varepsilon D \frac{d^2\tilde{u}}{d\xi^2} + F(\tilde{u}),$$

(2)

where $\tilde{u} = \tilde{u}(\xi) = u(s,t)$. Introducing $v = d\tilde{u}/d\xi$, from (2) we get

$$\frac{d\tilde{u}}{d\xi} = v,$$

$$\varepsilon D \frac{dv}{d\xi} = -cv - F(\tilde{u}).$$

(3)

Periodic solutions, as well as heteroclinic and homoclinic trajectories of the system (3), correspond to traveling waves of the original system (1).

The application of the geometric theory of invariant manifolds allows us to replace the study of the full system (3) by the analysis of a system of lower dimension. The order reduction occurs due to the decomposition of (3) in the vicinity of the invariant surface into the fast subsystem and the independent slow subsystem [27]. This independent slow subsystem is the projection of the original system onto its slow invariant manifold. If the slow invariant manifold is stable (or attractive), then the study of the system (3) can be replaced by the analysis of the slow subsystem.

Recall that the degenerate system for (3) is

$$\frac{d\tilde{u}}{d\xi} = v,$$

$$0 = -cv - F(\tilde{u}).$$

(4)

Note that (4) is equivalent to the equation

$$-c \frac{d\tilde{u}}{d\xi} = F(\tilde{u}),$$

(5)

which follows from (2) as $\varepsilon = 0$.

The second equation in (4) determines the slow surface of (3). The slow surface can be considered as a zero-order approximation ($\varepsilon = 0$) of the slow invariant manifold of the system [23, 24, 27]: the slow invariant manifold of the system can be found as an asymptotic expansion

$$v = v(\tilde{u}, \varepsilon) = v_0(\tilde{u}) + \varepsilon v_1(\tilde{u}) + O(\varepsilon^2),$$

where

$$-cv_0 = F(\tilde{u}).$$

On this slow manifold, the flow of the system (3) is described by

$$\frac{d\tilde{u}}{d\xi} = v(\tilde{u}, \varepsilon).$$

(6)

If the slow invariant manifold $v = v(\tilde{u}, \varepsilon)$ is attractive, then the analysis of the system (3) can be replaced by the analysis of (6) with a high degree of accuracy. Thus, problems with traveling wave solutions to (1) can be reduced to the study of periodic solutions, heteroclinic and homoclinic trajectories of the system (6).
3. Order Reduction for the Reaction-diffusion Model

Let us consider the reaction-diffusion system with two reacting components, i.e., when \(\mathbf{u} = (x, y)^T \), which is describing by the following dimensionless equations:

\[
\begin{align*}
\frac{\partial x}{\partial t} &= \varepsilon \frac{\partial^2 x}{\partial s^2} + f(x, y), \\
\frac{\partial y}{\partial t} &= \varepsilon \frac{\partial^2 y}{k \partial s^2} + g(x, y).
\end{align*}
\]

where

\[
f(x, y) = \frac{\alpha (\nu_0 + x^\gamma)}{1 + x^\gamma} - x(1 + y),
\]

\[
g(x, y) = x(\beta + y) - \delta y,
\]

\(x\) and \(y\) are the dimensionless concentrations of the reacting components; \(\alpha, \beta, \gamma, \delta,\) and \(\nu_0\) are the dimensionless positive parameters, moreover, \(\beta > 1\) and \(\gamma > 1\) \[28\].

Following the algorithm described above, when searching for traveling wave solutions to (7), we look for solutions,

\[
\begin{align*}
x(s, t) &= \varphi(s - ct) = \varphi(\xi), \\
y(s, t) &= \psi(s - ct) = \psi(\xi).
\end{align*}
\]

From (7) and (8) we get

\[
\begin{align*}
-c \frac{d\varphi}{d\xi} &= \varepsilon \frac{d^2\varphi}{d\xi^2} + \frac{\alpha (\nu_0 + \varphi^\gamma)}{1 + \varphi^\gamma} - \varphi(1 + \psi), \\
-c \frac{d\psi}{d\xi} &= \varepsilon \frac{d^2\psi}{k d\xi^2} + \varphi(\beta + \psi) - k\delta\psi,
\end{align*}
\]

or, in the form of (3),

\[
\begin{align*}
\frac{d\varphi}{d\xi} &= p, \\
\frac{d\psi}{d\xi} &= q, \\
\varepsilon \frac{dp}{d\xi} &= -cp - \frac{\alpha (\nu_0 + \varphi^\gamma)}{1 + \varphi^\gamma} + \varphi(1 + \psi), \\
\varepsilon \frac{dq}{d\xi} &= -ckq - k\varphi(\beta + \psi) + k\delta\psi.
\end{align*}
\]

The corresponding degenerate system is

\[
\begin{align*}
\frac{d\varphi}{d\xi} &= p, \\
\frac{d\psi}{d\xi} &= q, \\
0 &= -cp - \frac{\alpha (\nu_0 + \varphi^\gamma)}{1 + \varphi^\gamma} + \varphi(1 + \psi) := h_1, \\
0 &= -ckq - k\varphi(\beta + \psi) + k\delta\psi := h_2.
\end{align*}
\]
The last two equations give the unique solution

\[p = P_0(\varphi, \psi) = -\frac{\alpha(\nu_0 + \varphi^\gamma)}{c(1 + \varphi^\gamma)} + \frac{1}{c} \varphi(1 + \psi), \]

\[q = Q_0(\varphi, \psi) = -\frac{1}{c} \varphi(\beta + \psi) + \frac{\delta}{c} \psi, \]

which determines the slow surface of (9). The slow surface is attractive since [27]

\[\text{tr} B(\varphi, \psi) < 0, \quad \det B(\varphi, \psi) > 0, \]

where

\[B = \begin{pmatrix} \frac{\partial h_1}{\partial \psi} & \frac{\partial h_1}{\partial \varphi} \\ \frac{\partial h_2}{\partial \psi} & \frac{\partial h_2}{\partial \varphi} \end{pmatrix} = \begin{pmatrix} -c & 0 \\ 0 & -ck \end{pmatrix}. \]

Due to the geometric theory of singular perturbations in an \(\varepsilon \)-neighborhood of the slow surface, there exists an attractive slow invariant manifold, which can be represented in the form

\[p = P_0(\varphi, \psi, \varepsilon) = P_0(\varphi, \psi) + \varepsilon P_1(\varphi, \psi) + O(\varepsilon^2), \]

\[q = Q(\varphi, \psi, \varepsilon) = Q_0(\varphi, \psi) + \varepsilon Q_1(\varphi, \psi) + O(\varepsilon^2). \]

To calculate the first–order approximation to the slow invariant manifold we substitute (12) into the invariance equations

\[\varepsilon \left(\frac{\partial P}{\partial \varphi} P + \frac{\partial P}{\partial \psi} Q \right) = -cP - \frac{\alpha(\nu_0 + \varphi^\gamma)}{1 + \varphi^\gamma} + \varphi(1 + \psi), \]

\[\varepsilon \left(\frac{\partial Q}{\partial \varphi} P + \frac{\partial Q}{\partial \psi} Q \right) = -ckQ - k\varphi(\beta + \psi) + k\delta \psi, \]

which follows from (9). Hence, we obtain

\[\varepsilon \left(\frac{\partial P_0}{\partial \varphi} P_0 + \frac{\partial Q_0}{\partial \psi} Q_0 \right) + O(\varepsilon^2) = -c \left(P_0 + \varepsilon P_1 + O(\varepsilon^2) \right) - \frac{\alpha(\nu_0 + \varphi^\gamma)}{1 + \varphi^\gamma} + \varphi(1 + \psi), \]

\[\varepsilon \left(\frac{\partial Q_0}{\partial \varphi} P_0 + \frac{\partial Q_0}{\partial \psi} Q_0 \right) + O(\varepsilon^2) = -ck \left(Q_0 + \varepsilon Q_1 + O(\varepsilon^2) \right) - k\varphi(\beta + \psi) + k\delta \psi. \]

Equating the coefficients of the first power of \(\varepsilon \) and taking into account (11), from these equations we get

\[P_1(\varphi, \psi) = -\frac{1}{c^2} \left[\frac{\alpha \varphi^\gamma - 1(1 - \nu_0)}{(1 + \varphi^\gamma)^2} - 1 - \psi \right] \left(\frac{\alpha(\nu_0 + \varphi^\gamma)}{1 + \varphi^\gamma} - \varphi(1 + \psi) \right) - \varphi^2(\beta + \psi) + \delta \varphi \psi, \]

\[Q_1(\varphi, \psi) = -\frac{1}{c^2 k} \left[(\beta + \psi) \left(\frac{\alpha(\nu_0 + \varphi^\gamma)}{1 + \varphi^\gamma} - \varphi(1 + \psi) \right) + (\varphi - \delta) (\varphi(\beta + \psi) - \delta \varphi) \right]. \]

Thus, the first–order approximation to the slow motion of (9) is described by

\[\frac{d\varphi}{d\xi} = -\frac{\alpha(\nu_0 + \varphi^\gamma)}{c(1 + \varphi^\gamma)} + \frac{1}{c} \varphi(1 + \psi) \]

\[- \frac{\varepsilon}{c^2} \left[\frac{\alpha \varphi^\gamma - 1(1 - \nu_0)}{(1 + \varphi^\gamma)^2} - 1 - \psi \right] \left(\frac{\alpha(\nu_0 + \varphi^\gamma)}{1 + \varphi^\gamma} - \varphi(1 + \psi) \right) - \varphi^2(\beta + \psi) + \delta \varphi \psi \]

\[+ O(\varepsilon^2), \]

\[\frac{d\psi}{d\xi} = -\frac{1}{c} \varphi(\beta + \psi) + \frac{\delta}{c} \psi \]

\[- \frac{\varepsilon}{c^2 k} \left[(\beta + \psi) \left(\frac{\alpha(\nu_0 + \varphi^\gamma)}{1 + \varphi^\gamma} - \varphi(1 + \psi) \right) + (\varphi - \delta) (\varphi(\beta + \psi) - \delta \varphi) \right] + O(\varepsilon^2). \]
System (13) has no singular perturbations and its order is lower compared to (9) which essentially simplifies the analysis.

4. Traveling Waves
As was noted, the wave properties of the original system (1) are determined by the properties of the system (3) under $\varepsilon \to 0$, i.e., by the properties of (4). For $\varepsilon = 0$, the singular points of (3) coincide with the equilibria of (5) and are determined by $\mathbf{F}(\tilde{\mathbf{u}}) = 0$.

Let us consider (9) for $\alpha = 12$, $\beta = 1.5$, $\gamma = 3$, $\delta = 1.7$, and $\nu_0 = 0.01$. In this case, there are three equilibria of the corresponding degenerate system (10): the unstable node P_1, the saddle P_2, and the unstable focus P_3 (Figure 1). Note, that these equilibria are the projections of the singular points \tilde{P}_1, \tilde{P}_2, and \tilde{P}_3 of (9) onto (φ, ψ)–plane.

Adding the corresponding asymptotic boundary conditions to (10), we can obtain a heteroclinic trajectory connecting the equilibria P_1 and P_2 (Figure 2). Moreover, the system (9) has a solution tending to the unstable equilibrium point \tilde{P}_1 as $\xi \to -\infty$ and to \tilde{P}_2 as $\xi \to +\infty$. This solution determines the profile of the traveling waves of the system (7) propagating at constant speed $c > 0$.

Figures 3 and 4 demonstrate the heteroclinic trajectories of the systems (10) (see the blue line) and (13) (see the red line), as well as the (φ, ψ)–projection of the corresponding trajectory of the system (9) (see the black line). All these trajectories are very close to each other, which means that the reduced systems preserve the essential properties of the qualitative behavior of the original system.

5. Conclusions
We have discussed how the method of invariant manifolds of singularly perturbed systems helps to reduce traveling wave problems for a reaction-diffusion system. We have shown that the traveling wave problems for the original PDE system can be reduced to the study of the projection of this system onto its slow invariant manifold.
Figure 3. The heteroclinic trajectories of (10) (blue line) and (13) (red line), and \((\varphi, \psi)\)– projection of the corresponding heteroclinic trajectory of (9) (black line).

Figure 4. Plots of \(\varphi = \varphi(\xi)\) (black solid line) and \(\psi = \psi(\xi)\) (blue dash line) for \(\tilde{P}_1 \rightarrow \tilde{P}_2\) heteroclinic trajectory of (9).

6. Acknowledgments
The reported study was funded by RFBR and NSFC according to the research project No. 20-51-53008 and the Ministry of Education and Science of the Russian Federation under the Competitiveness Enhancement Program of Samara University (2013-2020).

7. References
[1] Fisher R A 1937 The wave of advance of advantageous genes Ann. Eugenics 7 353-369.
[2] Britton N F 1986 Reaction–Diffusion Equations and their Applications to Biology (New York: Academic Press).
[3] Murray J D 2002 Mathematical Biology I: An Introduction (New York: Springer).
[4] Murray J D 2003 Mathematical Biology II: Spatial Models and Biomedical Applications (New York: Springer).
[5] Britton N F 2003 Essential Mathematical Biology (London: Springer).
[6] Horstmann D and Stevens A 2004 A constructive approach to traveling waves in chemotaxis J. Nonlinear Sci. 14 1-25.
[7] Edelstein-Keshet L 2005 Mathematical Models in Biology (Philadelphia: SIAM).
[8] Landman K A, Simpson M J, Slater J L and Newgreen D F 2005 Diffusive and chemotactic cellular migration: Smooth and discontinuous travelling wave solutions SIAM J. Appl. Math. 65(4) 1420-1442.
[9] Verhulst F 2005 Methods and Applications of Singular Perturbations (New York: Springer).
[10] Wu Y and Zhao X 2005 The existence and stability of travelling waves with transition layers for some singular cross-diffusion systems Phys. D 200 325-358.
[11] Nicola E M, Bár M and Engel H 2006 Wave instability induced by nonlocal spatial coupling in a model of the light-sensitive Belousov–Zhabotinsky reaction Physical Review E 73 066225.
[12] Lewis M, Chaplain M A J, Keener J P and Maini P K 2009 Mathematical Biology American Mathematical Society. IAS/Park City Mathematics Series.
[13] Hoshino H 2011 Traveling wave analysis for a mathematical model of malignant tumor invasion Analysis 31 237-248.
[14] Wang Z-A 2013 Mathematics of traveling waves in chemotaxis Discrete Contin. Dyn. Syst. B 18(3) 601-641.
[15] Hek G 2010 Geometric singular perturbation theory in biological practice J. Math. Biol. 60 347-386.
[16] Bogolyubov N N and Mitropolsky Yu A 1961 Asymptotic Methods in the Theory of Nonlinear Oscillations (New York: Gordon and Breach).
[17] Bogolyubov N N and Mitropolsky Yu A 1963 The Method of Integral Manifolds in Nonlinear Mechanics Contributions to Differential Equations 2 123-196.
[18] Hale J 1961 Integral manifolds of perturbed differential systems Annals of Mathematics. Second Series 73(3) 496-531.
[19] Fenichel N 1979 Geometric singular perturbation theory for ordinary differential equations J. Differ. Equ. 31 53-98.
[20] Henry D 1981 Geometrical Theory of Semilinear Parabolic Equations Lect Notes Math 804.
[21] Sobolev V A 1984 Integral manifolds and decomposition of singularly perturbed systems System and Control Lett. 5 169-179.
[22] Jones C K R T 1994 Geometric Singular Perturbation Theory (Dynamical Systems, Montecatini Terme) Lect Notes Math 1609 44-118.
[23] Mishchenko E F and Rozov N Kh 1980 Differential Equations with Small Parameters and Relaxation Oscillations (New York: Plenum Press).
[24] Mishchenko E F, Kolesov Yu S, Kolesov A Yu and Rozov N Kh 1995 Asymptotic Methods in Singularly Perturbed Systems (New York: Plenum Press).
[25] Schneider K, Schepakina E and Sobolev V 2003 A new type of travelling wave Mathematical Methods in the Applied Sciences 26 1349-1361.
[26] Mishchenko E F, Sadovnichii V A, Kolesov A Yu and Rozov N Kh 2005 Autowave Processes in Nonlinear Diffusive Media (Moscow: Fizmatlit).
[27] Schepakina E, Sobolev V and Mortell M P 2014 Singular Perturbations. Introduction to system order reduction methods with applications Lect. Notes Math. 2114.
[28] Sevčíková H, Kubíček M and Marek M 1984 Concentration waves — effects of an electric field Mathematical Modelling in Science and Technology 477-482.