Most particulate matter (PM) health effects studies use outdoor (ambient) PM as a surrogate for personal exposure. However, people spend most of their time indoors exposed to a combination of indoor-generated particles and ambient particles that have infiltrated. Thus, it is important to investigate the differential health effects of indoor- and ambient-generated particles. We combined our recently adapted recursive model and a predictive model for estimating infiltration efficiency of air conditioning.

The data came from a large panel study in Seattle, Washington, that collected indoor, outdoor, and personal exposure data on 107 subjects over a 2-year period (Liu et al. 2003). The Seattle study also collected various health end points that included lung function and exhaled nitric oxide (eNO), a marker of airway inflammation, in a subset of children with asthma. In a previous article we reported eNO associations with 24-hr PM2.5 concentrations measured outside the home (4.3 ppb increase in eNO per 10-µg/m3 increase in PM2.5; 95% confidence interval [CI], 1.4 to 7.2), inside the home (4.2 ppb; 95% CI, 1.0 to 7.4), and on subjects (4.5 ppb; 95% CI, 1.0 to 7.9) (Koenig et al. 2003). In this article we describe the results of analyzing further the health data to test the associations between health outcomes and estimates of indoor-generated exposure (Eig) and ambient-generated exposure (Eag) based on subject time–location data and estimated particle infiltration efficiency (Fag) for the fraction of the outdoor concentration that penetrates indoors and remains suspended. We hypothesize that PM2.5 of outdoor origin has more effect on respiratory outcomes per unit mass than particles of indoor origin.
Materials and Methods
This study was conducted between winter 2000–2001 and spring 2001 in Seattle, Washington, as part of a larger exposure assessment and health effect panel study (Liu et al. 2003). Nineteen children, 6–13 years of age, were recruited from a local asthma and allergy clinic. All had physician-diagnosed asthma and were prescribed asthma medications daily or regularly. Ten of the subjects were not using inhaled corticosteroid (ICS) medication; nine were. Each subject in the panel was asked to participate for a 10-day monitoring session. Trained technicians made daily home visits to subjects between 1700 and 2000 hr to take air and health effect measurements.

Pollutant concentration measurements. PM measurements were taken inside and outside of each subject’s residence using the Harvard impactors for integrated PM$_{2.5}$ (H$_{2.5}$) concentrations and using the Radiance nephelometer (model 903; Radiance Research, Seattle, WA) at eight residences for continuous light-scattering measurements. Personal PM$_{2.5}$ measurements were collected from each subject using the Harvard personal environmental monitors. Detailed descriptions and evaluation of these samplers can be found in Liu et al. (2002). All integrated measurements were collected over 24 hr (1600 to 1600 hr) for 10 consecutive days. In addition, NO concentrations were monitored continuously at the Beacon Hill central site using a chemiluminescence monitor operated by the Washington State Department of Ecology (Olympia, WA).

Measurement of NO. Exhaled breath measurements were collected offline daily in the children’s homes into an NO inert and impermeable Mylar balloon for up to 10 consecutive days. Samples were collected in the afternoon or early evening at the child’s residence. Children were asked to forgo food intake for 1 hr before collection of exhaled breath. Exhaled breath was collected before lung function measurements, because deep inspirations affect NO concentration (Deykin et al. 1998). NO was quantified within 24 hr of collection using a chemiluminescence detector (model 903). NO concentrations were also measured in the outdoor air near the subjects’ homes, and NO concentrations were determined by subtraction of the indoor NO concentration from the outdoor NO concentration.

Measurement of lung function. During the daily visits, coached spirometry values consistent with American Thoracic Society criteria (American Thoracic Society 1995) were obtained with MicroDL spiroeters (Micro Medical, Lewiston, ME). Spirometry measurements included forced expiratory volume in 1 sec (FEV$_1$), forced vital capacity (FVC), and mid-expiratory flow (MEF). In addition, symptom forms were completed by the subjects during the previous 24 hr was reviewed and collected. Subjects also filled out a time-location-activity diary (TAD) with a 15-min resolution.

Estimation of PM exposure components. We previously described the use of a recursive mass balance model (RM) to estimate the average F_{inf} for individual residences (Allen et al. 2003). The RM estimates of F_{inf} agreed well with those estimated with the sulfur tracer method ($R^2 = 0.78$; $n = 14$ residences) (Sarnat et al. 2002). We also published estimates of E_{ig} and E_{ig} for PM$_{2.5}$ among a subset of the Seattle panel study subjects (Allen et al. 2004). We estimated the 24-hr average E_{ig} and E_{ig} for each subject using the RM F_{inf} estimates from the indoor/outdoor nephelometer measurements, the indoor (C_i) and outdoor (C_o) PM$_{2.5}$ concentrations measured with H$_{2.5}$, and the fraction of the day (F_d) that the subjects reported being outdoors or in transit based on the TAD:

$$E_{\text{ig}} = (F_o)C_o + (1 - F_d)(C_i 	imes F_{\text{inf}})$$
$$E_{\text{ig}} = (1 - F_d)(C_i - C_o 	imes F_{\text{inf}})$$

Because nephelometer measurements were only valid at 8 of the 19 subjects’ residences, a predictive model based on RM F_{inf} estimates from 62 residences in the Seattle panel study, residence type, outdoor temperature, average daily rainfall, and the use of air cleaners was constructed to estimate F_{inf} in the remaining 11 homes (Table 1). The estimated F_{inf} values from the predictive model were compared against those from the RM and validated against the conventional sulfur method (Allen et al. 2003), which uses the regression slope of indoor versus outdoor sulfur concentrations for each residence as the estimated F_{inf}. As a result of calculating F_{inf} using both the RM and the predictive model, three groups of E_{ig} and E_{ig} estimates were created: a) those using the RM F_{inf} values ($n = 8$ unique subjects), b) those using the predictive model F_{inf} values ($n = 11$ unique subjects), and c) a combination of the above two—that is, RM F_{inf} values when available and the predictive model F_{inf} for the remaining subjects (henceforth called the combined model; $n = 8 + 11 = 19$ subjects).

Statistical analysis. We used a linear mixed effects model with random intercept to test for within-subject associations between eNO and various PM$_{2.5}$ exposure estimates. The model was:}

$$F_{\text{inf}} = \beta_0 + \beta_1 \text{Residence type} + \epsilon$$

where β_0 is the intercept, β_1 is the slope for the residence type variable, and ϵ is the error term. The results of the regression analysis are presented in Table 1.

Table 1. Results of regression analysis for F_{inf} ($n = 62$ residences).

Parameter	Estimate	SE	95% CI	p-Value
Intercept	0.41	0.07	0.28 to 0.54	< 0.001
Residence type				
Private home (reference)	0.03	0.05	-0.08 to 0.14	0.61
Group home	0.19	0.06	0.07 to 0.31	< 0.001
Air cleaner				
None (reference)				
Ion generator	-0.07	0.05	-0.16 to 0.02	0.14
Filter	-0.08	0.07	-0.22 to 0.05	0.23
Electrostatic precipitator	-0.11	0.06	-0.22 to 0.00	0.05
Average outdoor temperature ($^\circ$C)				
< 4 (reference)	0.19	0.07	0.06 to 0.32	< 0.01
≥ 4	0.32	0.07	0.18 to 0.45	< 0.001
Average daily rainfall (inches)				
< 0.5 (reference)	0.45	0.07	0.31 to 0.58	< 0.001
> 0.5	0.05–0.1	0.05	-0.16 to 0.02	0.13
> 0.1	-0.15	0.06	-0.29 to -0.04	< 0.01

The regression coefficients are used to predict F_{inf} in residences without nephelometer data (“predictive model”).

*At Beacon Hill Central Site. At Sand Point Way National Weather Service station.

Table 2. Distributions of residential indoor and outdoor concentrations and personal E_{ig} and E_{ig} (μg/m3).

Model	Concentration	Total no. of monitoring events*	No. (days)	Mean	Minimum	25%	Median	75%	Maximum
Home indoor	E_{ig}	248	11.1	2.8	6.3	9.5	14.6	40.4	8.8
Home outdoor	E_{ig}	248	7.0	1.8	4.2	5.9	9.2	22.6	10.8
Recursive	E_{ig}	101	2.1	0.0	0.0	1.2	2.3	17.2	10.8
Predictive	E_{ig}	147	6.0	1.3	3.4	5.0	7.5	22.6	7.8
Combined	E_{ig}	248	4.0	0.0	0.9	2.2	4.9	33.0	8.8

Model	Concentration	Total no. of monitoring events*	No. (days)	Mean	Minimum	25%	Median	75%	Maximum
Home indoor	E_{ig}	248	6.4	1.3	3.7	5.5	7.8	22.6	7.8
Home outdoor	E_{ig}	248	3.2	0.5	1.7	4.2	8.8	33.0	8.8

Abbreviations: 25%, 25th percentile; 75%, 75th percentile.

*Number of unique subjects in parentheses.
included an interaction term between medication use and PM, a term for the within-subject, within-session (10-day monitoring period) effects, and a term for the subject between-session effects. We adjusted for the confounding variables of temperature, relative humidity, and, in the model for eNO, ambient NO measured at the Beacon Hill site. We also adjusted for subject age and body mass index (BMI). Our primary interest was the within-subject and within-session effect of PM. Analyses were conducted with all children from both winter and spring sessions. STATA 7.0 (Stata Corp., College Station, TX) was used for all health analyses, and SAS statistical package (version 8.0; SAS Institute, Cary, NC) using PROC Genmod with a repeated statement was used for the predictive model F_{int} modeling. All three E_{ag}, E_{ig}, data sets (recursive, predictive, and combined) were examined with a focus on the combined data set.

The model used for the eNO analysis was as follows:

$$E[Y] = B_0 + B_1(X_{\text{ag}} - \overline{X}_d) + B_2(X_{\text{ig}} - \overline{X}_d) + B_3(X_{\text{ig}} - \overline{X}_d) + B_4(X_{\text{ig}} - \overline{X}_d) + B_5(X_{\text{ig}} - \overline{X}_d) + B_6(X_{\text{ig}} - \overline{X}_d) + B_7(X_{\text{ig}} - \overline{X}_d) + B_8(X_{\text{ig}} - \overline{X}_d) + B_9(X_{\text{ig}} - \overline{X}_d) + B_{10}(\text{Age}) + B_{11}(\text{Temp}) + B_{12}(\text{RH}),$$

where RH is relative humidity and BMI is body mass index. This basic model was used previously in the original analysis of the relationship between eNO and PM in the children with asthma (Koenig et al. 2003), where X_{ag} is the PM$_{2.5}$ reading for individual i on day d during session s, \overline{X}_d is the mean PM$_{2.5}$ reading for a subject during a session, \overline{X}_s is the mean PM$_{2.5}$ reading for a subject during one or two sessions, med is an indicator for medication use (constant for each subject), Z_{ig} is the ambient NO reading for individual i on day d during session s, \overline{Z}_d is the mean ambient NO reading for a subject during a session, and \overline{Z}_s is the mean ambient NO reading for a subject during all sessions.

We also analyzed the data using generalized estimating equations (GEE) with an exchangeable working correlation matrix and robust SEs to adjust for autocorrelation in the data. The GEE model produced similar effect estimates.

Results

Nineteen children with asthma participated in this panel study in Seattle. All subjects completed one 10-day monitoring session, and 10 subjects completed two sessions. During this study, the home indoor and outdoor PM$_{2.5}$ concentrations averaged 9.5 and 11.1 µg/m3, respectively (Table 2), whereas personal exposure to total PM$_{2.5}$ averaged 13.4 µg/m3. The total personal PM$_{2.5}$ exposure was then separated into indoor- and outdoor-originated components using the RM for eight residences with nephelometer measurements and a predictive model for the remaining 11 residences. The predictive model for F_{int} employed two important home characteristics, residence type, and the use of air cleaner, as well as outdoor temperature and precipitation as surrogates for changes of home ventilation conditions (Table 1). This predictive model agreed well with the RM ($R^2 = 0.60$) and the sulfur tracer F_{int} estimates ($R^2 = 0.66$) (Figure 1). The average F_{ag} for the 19 subjects was 0.56 ± 0.15 (range, 0.23–0.86). The average E_{ag} and E_{ig} from the RM model were not significantly different from those estimated from the predictive model (Table 2).

Thus, we pooled the E_{ag} and E_{ig} estimates from both models for the following health effect assessment. We examined the E_{ag} and E_{ig} estimates from the combined model for their associations with increase in eNO. Table 3 shows distributions for the health end points. In this analysis we found that eNO was associated with E_{ig} estimated among subjects not on prescribed ICS medication (5.0 ppb per 10-µg/m3 increase in estimated exposure; 95% CI, 0.3 to 9.7; Table 4). There was no association between eNO and E_{ag} (Table 4). In contrast to our findings with eNO, associations between changes in lung function and estimated exposures were found for E_{ag} but not for E_{ig}. Furthermore, the results were not statistically significant across all lung function measures. FEV$_1$ and FVC were both significantly negatively associated with E_{ag} in children not using ICS (FEV$_1$, $p = 0.01$; FVC, $p = 0.00$), whereas MEF was negatively but not significantly, associated with E_{ig} ($p = 0.35$). No significant associations were seen between lung function changes and the combined model estimates of E_{ag}.

Table 5 shows associations between the eNO and measured PM$_{2.5}$ on subjects (Harvard personal environmental monitor) and at home indoors and outdoors in the same 19 children included in the combined model. As shown in Table 5, associations were found between eNO and measured outdoor, indoor, and personal PM$_{2.5}$ ($p = 0.01$–0.03). In all

Health measurement	No. of subjects (nos. sessions)	Person-years	Mean	Minimum	Median	25%	75%	Maximum
eNO (ppb)	19 (29)	240	15.4	5	9.7	12.5	18.0	79.8
FEV$_1$ (L)	17 (29)	269	1.8	0.5	1.4	1.9	2.2	3.4
MEF (L/min)	17 (29)	269	113	21	71	107	149	420
FVC (L)	17 (29)	269	2.3	0.7	1.9	2.4	2.7	3.5

Table 3. Descriptive statistics of health outcomes.

Exposure	Model	Use of medication	Change per 10 µg/m3	95% CI	p-Value
E_{ag}	Combined	No	3.29	-1.14 to 7.73	0.15
	Yes	-4.94	-10.94 to 1.06	0.11	
E_{ig}	Combined	No	4.98	0.28 to 9.69	0.04
	Yes	1.67	-3.77 to 7.12	0.55	
E_{ag}	Recursive	No	-0.19	-8.37 to 8.00	0.97
E_{ig}	Recursive	Yes	-0.47	12.03 to 11.10	0.94
	No	5.63	-0.62 to 11.88	0.08	
E_{ag}	Predictive	Yes	-4.30	-14.60 to 6.01	0.41
E_{ig}	Predictive	No	3.46	-0.90 to 7.83	0.12
	Yes	-4.99	-11.01 to 1.04	0.11	

Table 4. Associations between eNO (ppb) and outdoor- versus indoor-generated particles in children with asthma: recursive model (n = 8), predictive model (n = 11), and combined model (n = 19).
cases, the changes were seen only in children not using ICS medications.

Discussion

Our study has shown that, for eNO, ambient-generated particles are more potent per unit mass than indoor-generated particles. This E_{ag} effect on eNO using the combined model estimates also agreed well with the estimates from both the RM and the predictive model. The increases in eNO associated with E_{ag} were 5.6 ppb for the RM estimates ($p = 0.08$), 5.3 ppb for the predictive model estimates ($p = 0.04$), and 5.0 ppb for the combined model ($p = 0.04$). Corresponding changes with E_{inf} were not significant ($p = 0.41, 0.12, \text{and } 0.15$, respectively). In this respect, our results agree with those of Ebel et al. (in press), who found that outdoor-generated particles were associated with health outcomes, whereas nonambient particles were not in a group of subjects with COPD in Vancouver. These two studies demonstrate the usefulness of separating total personal particle exposures into indoor- and outdoor-generated components and the relative potency of indoor- and outdoor-generated particles.

Our conclusion that eNO is associated more strongly with outdoor-generated than indoor-generated particles is supported by the internal consistency of the results. For subjects with combined model estimates of F_{inf}, the estimated increase in eNO per 10-µg/m³ increase in PM$_{2.5}$ was 5.0 ppb ($p < 0.04$) for E_{ag}, which was greater than the 3.9 ppb for outdoor measured PM$_{2.5}$ ($p = 0.01$) because E_{ag} takes into account personal activities and particle infiltration efficiency to arrive at a more accurate estimate of exposure to ambient-originated PM (Table 5). The effect of measured total indoor PM$_{2.5}$, a combination of indoor- and outdoor-generated particles, on eNO was 4.1 ppb/10 µg/m³ PM$_{2.5}$ ($p = 0.01$) in Table 5, which was reduced to a nonsignificant 3.3 ppb/10 µg/m³ PM$_{2.5}$ ($p = 0.15$) for E_{inf} when the ambient PM contribution was removed from the total exposures. In all three exposure models, E_{inf} was more strongly associated with eNO than was E_{ag}. Also, E_{inf} showed an interaction with ICS use, as did our original study with outdoor, indoor, and personal measured PM$_{2.5}$ (Koenig et al. 2003).

Our lung function results show that exposure to particles generated indoors, but not outdoors, was associated with decrements of lung functions except for MEF. Furthermore, the association was not consistent across all three exposure models. Both combined ($n = 17$ subjects) and predictive models ($n = 9$ subjects) showed similar results for FEV$_1$ and FVC, whereas the recursive model estimates for eight subjects showed nonsignificant association between these lung function measures and E_{inf}. The fact that some lung function decrements were associated with indoor-generated particles indicates that the relationship between respiratory health and PM is complex. It was not surprising that the PM$_{2.5}$ associations with eNO and lung function were not consistent. This disagreement between eNO increases and lung function changes has been reported in clinical literature that consistently shows either no correlation or a negative correlation between changes in eNO and changes in FEV$_1$ among subjects with asthma (Dal Negro et al. 2003; Li et al. 2003; Nightingale et al. 1999; Steerenberg et al. 2003).

Outdoor particle concentrations are associated with a wide spectrum of respiratory health effects including respiratory symptoms in children with asthma (Delfino et al. 1998), lung function decrements in children with asthma (Delfino et al. 2002; Koenig et al. 1993), hospital admissions in the general population (Schwarz 1996; Sheppard et al. 1999), and mortality in the general population (Dockery et al. 1993; Schwarz 2000). On the other hand, there are also studies showing adverse respiratory health effects associated with indoor-generated particles including allergens, dust mites, fungal spores, endotoxins, and viruses (Long et al. 2001; Majid and Kammen 2001; Simoni et al. 2002; Smedbol et al. 2002; Wan and Li 1999).

Our results for eNO appear to be biologically plausible because asthma is an inflammatory disease and perturbations in asthma are expected to be associated with markers of airway inflammation. Several studies show relationships between eNO and outdoor exposure to PM or other air pollutants. One study found an association between exhaled NO values and high levels of outdoor carbon monoxide and NO, but not PM, in the Netherlands in healthy nonsmoking subjects (van Amsterdam et al. 1999, 2000). More recently, eNO levels were associated with exposure to PM$_{10}$, black smoke, nitrogen dioxide, and ambient NO in a panel study of children in the Netherlands (Steerenberg et al. 2001) and in a panel of adults with respiratory disease (Jansen et al. 2004). Adamkiewicz et al. (2004) presented data showing an association between measures of air pollution and eNO values in a panel of elderly nonsmoking subjects with cardiac disease in Steubenville, Ohio (USA). Their analysis found a 1.5-ppb increase in eNO (95% CI, 0.3 to 2.6) for a mean interquartile range increase in PM$_{2.5}$.

Model limitations. It is challenging to model personal exposure among children partly because of the elevated personal cloud and children’s movement between several indoor microenvironments (Liu et al. 2003; Wu et al. in press). Children in the Seattle panel study spent an average of 66% of their time indoors at home and 21% indoors away from home (primarily at school), whereas the adults in the larger panel study in Seattle spent an average of 83–88% of their time indoors at home (Liu et al. 2003). Because we only collected stationary indoor measurements and estimated F_{inf} in the subjects’ residences, we made a strong assumption that all indoor environments encountered by the subject were represented by their residence. This assumption may have resulted in uncertainties in the exposure estimates because of the considerable fraction of time that this group spent in unmonitored indoor environments, especially school.

To make the most efficient use of our eNO and spirometry data, we developed a predictive model to estimate F_{inf} (and therefore E_{ag} and E_{inf}) in residences for which nephelometer data were not available (Table 1). Although the predicted F_{inf} estimates were validated with an independent estimate of F_{inf} (Figure 1), the predictive model is derived from the estimates produced by the recursive model, and as a result the predictive model estimates include errors introduced by a two-step modeling procedure. Nevertheless, the consistency of the associations between E_{ag} and eNO for the RM and the combined model exposure estimates provides evidence of the reliability of the combined model’s F_{inf} estimates.

Conclusion

Our eNO results support our hypothesis that PM$_{2.5}$ of outdoor origin could be more potent per unit mass than particles of indoor origin. However, our lung function data indicate that PM$_{2.5}$ of indoor origin might be more potent per unit mass in resulting in decrements of lung functions, although the results across functional tests were not consistent. If outdoor particles are more strongly associated with

Table 5. Results of eNO analyses with indoor, outdoor, and personal monitors for 19 children included in the combined model.

Measure	Use of medication	Change per 10 µg/m³ estimated PM$_{2.5}$	95% CI	p-Value
Personal*	No	4.48	0.95 to 8.00	0.01
	Yes	−0.49	−2.95 to 1.98	0.70
Outdoor	No	3.90	0.91 to 6.88	0.01
	Yes	1.00	−2.10 to 4.09	0.53
Indoor	No	4.13	0.87 to 7.38	0.01
	Yes	−1.37	−5.44 to 2.70	0.51

*Two sessions removed from personal PM analysis because of insufficient data.
adverse health outcomes than particles generated indoors, the fact that outdoor particles readily penetrate indoors would partially explain why epidemiologic time series studies consistently find associations between health outcomes and PM measured at outdoor fixed sites despite the fact that people spend most of their time indoors.

This is a preliminary study using a newly developed exposure source model that we hope will be useful to air pollution epidemiology. We tentatively conclude that partitioning personal exposure into indoor–versus outdoor-generated particles is useful in understanding the health effects of sources of personal PM$_{2.5}$ and that the effects of indoor–versus outdoor-generated particles differ for different health end points.

REFERENCES

Abt E, Suh HH, Allen G, Koutrakis P. 2000. Characterization of indoor particle sources: a study conducted in the metropolitan Boston area. Environ Health Perspect 108:35–44.

Adamkiewicz G, Ebetli S, Syring M, Sister J, Speizer FE, Schwartz J, et al. 2004. Association between air pollution exposure and expired nitric oxide in an elderly panel. Thorax 59:204–209.

Allen R, Larson T, Shepard L, Wallace L, Liu L-JS. 2003. Use of real-time light scattering data to estimate the contribution of infiltrated and indoor-generated particles to indoor air. Environ Sci Technol 37:3485–3492.

Allen R, Wallace L, Larson T, Shepard L, Liu L-JS. 2004. Estimated hourly personal exposures to ambient and non-ambient particulate matter among sensitive populations in Seattle, WA. J Air Waste Manage Assoc 54:1197–1211.

American Thoracic Society. 1995. American Thoracic Society guidelines for standardization of spirometry. Am J Respir Crit Care Med 152:1107–1136.

Anuszewski J, Larson TV, Koenig JQ. 1998. Simultaneous indoor and outdoor particle light-scattering measurements at nine homes using a portable nephelometer. J Exp Anal Environ Epidemiol 8:483–493.

Brunekreef B. 1997. Air pollution and life expectancy: is there a relation? Occup Environ Med 54:791–794.

Dal Negro R, Micheletta C, Tognella S, Torco P, Rossetti A, Cantini L. 2003. Assessment of inhaled BDP-dose dependence of expired nitric oxide and local and serum eosinophilic markers in steroids-naive nonatopic asthmatics. Allergy 58:1018–1022.

Delfino RJ, Zeiger RS, Seltzer JM, Street DH. 1998. Symptoms in pediatric asthmatics and air pollution: differences in effects by symptom severity, anti-inflammatory medication use, and particulate averaging time. Environ Health Perspect 106:751–761.

Delfino RJ, Zeiger RS, Seltzer JM, Street DH, McLaren C. 2002. Association of asthma symptoms with peak particulate air pollution and effect modification by anti-inflammatory medication use. Environ Health Perspect 110:A607–A617.

Deykin A, Halpern G, Massaro AF, Drazen JM, Israel E. 1998. Expired nitric oxide after bronchoprovocation and repeated spirometry in patients with asthma. Am J Respir Crit Care Med 157:769–775.

Dockery DW, Pope CA III, Xu X, Spengler JD, Ware JH, Ray ME, et al. 1993. An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759.

Ebel ST, Wilson WE, Brauer M. In press. A comparison of health effects from exposure to the ambient and non-ambient components of particulate matter. Epidemiology.

Jansen K, Koenig JQ, Larson TV, Fields C, Mar TF, Stewart J, et al. 2004. Nitric oxide in subjects with respiratory disease associated with PM2.5 and black carbon in Seattle [abstract]. Am J Respir Crit Care Med 169:A282.

Janssen NAH, Schwartz J, Zanobetti A, Suh HH. In press. Air conditioning and source-specific particles as modifiers of the effect of PM$_{2.5}$ on hospital admissions for heart and lung disease. Environ Health Perspect 110:43–49.

Koenig JQ. 2000. Health Effects of Ambient Air Pollution: How Safe is the Air We Breathe? Boston:Kluwer Academic Publishers.

Koenig JQ, Jansen K, Mar TF, Lumley T, Kaufman J, Trenga CA, et al. 2003. Measurement of offline expired nitric oxide in a study of community exposure to air pollution. Environ Health Perspect 111:1625–1929.

Koenig JQ, Larson TV, Hanley QS, Rebolledo V, Dumlur K, Ceckoway H, et al. 1993. Pulmonary function changes in children associated with fine particulate matter. Environ Res 63:26–38.

Li AM, Lex C, Zacharaisieviciuc A, Wong E, Erin E, Hansen T, et al. 2003. Correlation frequency in children with stable asthma: correlation with lung function, expired nitric oxide, and spumum eosinophil count. Thorax 58:974–978.

Liu L-JS, Box M, Kalman D, Kaufman J, Koenig JQ, Larson T, et al. 2003. Exposure assessment of particulate matter for susceptible populations in Seattle. Environ Health Perspect 111:909–918.

Liu L-JS, Slaughter JC, Larson TV. 2002. Comparison of light scattering devices and the effects of particulate matter in non-smokers at indoor and outdoor sites. Environ Sci Technol 36:2977–2986.

Long CM, Suh HH, Koblik L, Catalano PJ, Ning YY, Koutrakis P. 2001. A pilot investigation of the relative toxicity of indoor and outdoor fine particles: in vitro effects of endotoxin and other particulate properties. Environ Health Perspect 109:1019–1026.

Majid E, Kammen DM. 2001. Quantifying the effects of exposure to indoor air pollution from biomass combustion on acute respiratory infections in developing countries. Environ Health Perspect 109:481–488.

Nightingale JA, Rogers DF, Barnes PJ. 1999. Effects of inhaled ozone on exhaled nitric oxide, pulmonary function, and induced sputum in normal and asthmatic subjects. Thorax 54:1061–1069.

Pope CA III. 2000. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk. Environ Health Perspect 108(suppl 6):713–723.

Sarnat JA, Long CM, Koutrakis P, Coull BA, Schwartz J, Suh HH. 2002. Using sulfur as a tracer of outdoor fine particle matter. Environ Sci Technol 36:5305–5314.

Schwartz J. 1996. Air pollution and hospital admissions for respiratory disease. Epidemiology 7:20–28.

Schwartz J. 2000. Assessing confounding, effect modification, and thresholds in the relationship between ambient particles and daily deaths. Environ Health Perspect 108:563–568.

Sheppard L, Levy D, Norris G, Larson TV, Koenig JQ. 1999. Effects of ambient air pollution on nonelderly asthma hospital admissions in Seattle, Washington, 1987–1994. Epidemiology 10:23–30.

Simioni M, Carrozzi L, Baldacci S, Scognamiglio A, Pede FD, Sapigni T, et al. 2002. The Po River (North Italy) indoor epidemiological study: effects of pollutant exposure on acute respiratory symptoms and respiratory function in adults. Arch Environ Health 57:130–138.

Smedboll HT, Ahlen C, Nilsen AM, Norbach D, Hilt B. 2002. Relationships between indoor environments and nasal inflammation in nursing personnel. Arch Environ Health 57:155–161.

Steerenberg PA, Janssen NA, de Meer G, Fischer PH, Nierkens S, van Loveren H, et al. 2003. Relationship between exhaled NO, respiratory symptoms, lung function bronchial hyperresponsiveness, and blood eosinophilia in school children. Thorax 58:242–245.

Steerenberg PA, Nierkens S, Fischer PH, van Loveren H, Oppenhuisen A, Vos JG, et al. 2001. Traffic-related air pollution affects peak expiratory flow, exhaled nitric oxide, and inflammatory nasal markers. Arch Environ Health 56:167–174.

Sunyer J. 2001. Urban air pollution and chronic obstructive pulmonary disease: a review. Eur Respir J 17:1024–1033.

U.S. EPA. 2004. Air Quality Criteria for Particulate Matter. EPA/800-P-99002aF, Washington, DC.U.S. Environmental Protection Agency.

Van Amsterdam JG, Nierkens S, Vos SG, Oppenhuisen A, van Loveren H, Steerenberg PA. 2000. Exhaled nitric oxide: a novel biomarker of adverse respiratory health effects in epidemiological studies. Arch Environ Health 55:418–423.

Van Amsterdam JG, Verlaan BPJ, van Loveren H, Elzakker BGV, Van Amsterdam JG, Nierkens S, Vos SG, Oppenhuisen A, et al. 1999. Air pollution is associated with increased level of exhaled nitric oxide in nonsmoking healthy subjects. Arch Environ Health 54:331–335.

Van G-H, LC-S. 1999. Indoor endotoxin and glucan in association with airway inflammation and systemic symptoms. Arch Environ Health 54:172–179.

Wu C-F, Delfino RJ, Floro JN, Quintana PJE, Samimi BS, Kleinman MT, et al. In press. Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers. Atmos Environ.