Dissecting the sequence determinants for dephosphorylation by the catalytic subunits of phosphatases PP1 and PP2A

Bernhard Hoermann1,2,3,4, Thomas Kokot1,2, Dominic Helm5, Stephanie Heinzlmeir6,7, Jeremy E. Chojnacki1,2,3, Thomas Schubert2,8, Christina Ludwig7, Anna Berteotti3, Nils Kurzawa3,4, Bernhard Kuster6,7, Mikhail M. Savitski3,5 & Maja Köhn1,2,3✉

The phosphatases PP1 and PP2A are responsible for the majority of dephosphorylation reactions on phosphoserine (pSer) and phosphothreonine (pThr), and are involved in virtually all cellular processes and numerous diseases. The catalytic subunits exist in cells in form of holoenzymes, which impart substrate specificity. The contribution of the catalytic subunits to the recognition of substrates is unclear. By developing a phosphopeptide library approach and a phosphoproteomic assay, we demonstrate that the specificity of PP1 and PP2A holoenzymes towards pThr and of PP1 for basic motifs adjacent to the phosphorylation site are due to intrinsic properties of the catalytic subunits. Thus, we dissect this amino acid specificity of the catalytic subunits from the contribution of regulatory proteins. Furthermore, our approach enables discovering a role for PP1 as regulator of the GRB-associated-binding protein 2 (GAB2)/14-3-3 complex. Beyond this, we expect that this approach is broadly applicable to detect enzyme-substrate recognition preferences.
Phosphorylation on Ser and Thr residues is among the most common post-translational modification (PTM) in mammals and as such plays significant roles in the regulation of cellular processes.1,2 Aberrations in phosphorylation patterns are tightly linked to the initiation and progression of a multitude of diseases.3,4,5,6,7,8. Phosphorylation of proteins is mediated by kinases and counteracted by phosphatases, which hydrolyze phosphomonoesters. More than 400 genes encoding Ser/Thr-specific human kinases are counterbalanced by about 40 genes encoding protein phosphatases (PPPs).9 However, the Ser/Thr-specific phosphoprotein phosphatase family (PPP) achieves a similar complexity like that of kinases by existing as holoenzymes in vivo with many different regulatory subunits. Of those PPPs, PP1 and PP2A are the two major phosphatases and collectively have a large number of substrates that have been difficult to assign to one PPP or the other.9,10

In contrast to kinases, substrate specificity of PP1 and PP2A is a multi-layer system: holoenzyme formation of the catalytic subunit (PP1c/PP2Ac) bound to one or two out of many regulatory subunits determines the substrate specificity.9,10,11 These holoenzymes recruit the substrates before the dephosphorylation is carried out by the catalytic core. Nevertheless, surrounding the active site, PP1c and PP2Ac have three grooves with distinct properties, the acidic, the hydrophobic, and the C-terminal groove.11,12 Another, more basic layer for substrate recognition than holoenzyme formation mediated by these grooves has been suggested but is still under debate13,14 and so far could not be studied independently from holoenzyme formation on the proteome level due to methodical limitations. Despite high conservation between PPPs, differences in the active site composition and the three grooves have been shown to be the underlying causes for different potencies of natural, small molecule inhibitors such as microcystin12,15,16, okadaic acid17, and tautomycin/tautomycetin18,19. Furthermore, early studies using small sets of synthetic phosphopeptides already suggested a preference of PP1 and PP2A for pThr over pSer20–22, as well as for basic over acidic residues N-terminal22,23 and a disfavoring of Pro in position +1 relative to pThr/pSer.22 More recent findings at the holoenzyme level were able to underline the biological relevance in mitosis for the selectivity of PP2Ac in complex with its B55 subunit for pThr24–27, concluding conversely on the one hand that B55 was responsible for the pThr selectivity27 and on the other hand that it was due to the intrinsic preference of PP2Ac.24 In addition, basic substrate motifs and pThr were discovered to be preferentially dephosphorylated during mitotic exit, but without dissecting the preferences of PP1 and PP2A towards these motifs.25 Also, analysis of the residues surrounding the phosphorylation (p)-sites of the less than 80 established p-sites in protein substrates for each phosphatase, which is a low number compared to possible substrates and could have introduced a bias for amino acid sequences, showed the occurrence of Arg at the N-terminus close to the p-site for PP1 substrates, but not for PP2A.8 However, none of these studies could provide direct, unbiased evidence for intrinsic selectivity of the catalytic subunits due to the holoenzyme-based setups, resulting in different interpretations such as the intrinsic PP2Ac versus B55-directed specificity for pThr.24,27. In case synthetic peptide libraries were used to study phosphatase substrate specificity, either dephosphorylation kinetic analysis was done for single peptides20–23, or microarrays were employed.28–30 While offering higher throughput than single peptide analysis, detection of dephosphorylation on the microarray requires a negative read-out of loss of binding of phospho-specific antibodies, severely limiting the sensitivity and reliability of these assays.28–30 The result of these attempts to study the specificity of the catalytic subunits PP1c and PP2Ac is that they are currently assumed to have little appreciable substrate specificity.7,9,13 Mass spectrometry (MS) read-outs of the dephosphorylation of phosphopeptide libraries would enable a direct read-out and higher throughput than microarray technology. However, so far randomized synthetic peptide libraries have rather been used for technology-oriented MS applications, for example for search engine optimization, investigation of fragmentation patterns and retention time predictions,31 for binding assays where the proteins that bound to the immobilized libraries were identified.32 Therefore, studies disentangling the two layers for substrate recognition, with the catalytic subunit recognizing motifs around the p-site and regulatory proteins binding at interfaces more distant from the p-site, are still lacking, but are required to get a comprehensive insight into PP1 and PP2A regulation.

In this study, we overcome the limitations of current experimental approaches by developing a proteomic strategy employing randomized synthetic phosphopeptidic libraries that are much larger than those applied previously. We apply these libraries to study the intrinsic substrate preference of PP1c and PP2Ac using MS as read-out, allowing for a direct detection of dephosphorylation. We complement this non-natural in vitro approach by a phosphoproteomic approach on protein substrates that we develop to enable reducing the occurrence of indirect dephosphorylation events, in order to compare the specificity toward thousands of phosphopeptides from the library to protein substrates on a proteome-wide scale. Our results reveal comprehensive, unbiased insights into the contribution of the catalytic subunits to PP1 and PP2A selectivity, and deliver a plethora of substrate candidates.

Results

Design, synthesis, MS-validation of phosphopeptide libraries.

In order to determine phosphatase specificity on the phosphopeptide level, we developed an in vitro phosphopeptide library dephosphorylation followed by mass spectrometry approach (PLDMS, Fig. 1a; see the methods for details). In this approach, phosphopeptide libraries would be treated with PP1, PP2A, or left untreated, purified, and analyzed by LC-MS/MS measurements. In the first step, design, synthesis, and validation of phosphopeptide libraries were required. The phosphopeptide libraries were designed to yield an even distribution of amino acids in the different randomized positions and to give high coupling efficiency during synthesis, thus reducing the number of by-products. This, in turn, would help to ensure high MS data measurement quality by giving multiple coverage of the peptide masses. To fulfill these requirements, we used 10-mer peptides with 14 different amino acids and pSer/pThr as the fifth amino acid (position 0, Fig. 1b) and designed five different libraries (four N-terminal: Nterm, and one C-terminal: Cterm, Fig. 1b) based on the following considerations.

To limit the complexity of the library and increase data quality during analysis, we anticipated 5000–6000 theoretical peptides per library as an optimal complexity, since this would result in 10,000–12,000 theoretical masses for peptides upon dephosphorylation, which would still lead to redundant measurements of the same peptide during LC-MS/MS runs. To reduce the complexity by rational design, known PP1 and PP2A protein substrates were analyzed (see the methods). This revealed that the most influence on PP1 substrate recognition is within positions −4 to +3 relative to pSer/pThr. For PP2A, no preference was found. The Nterm libraries were randomized at three of the relevant four positions N-terminal of pSer/pThr, and an Ala was placed at the non-randomized position as commonly done in alanine scans.53 An Ala was also used as neutral placeholder at the C-terminus, as commonly done in inverse alanine scans.54 Lys was added at the
C-terminus to ensure the detectability of the peptides by MS. The Cterm library was designed accordingly. The design resulted in 25,196 different theoretical phosphopeptides. For random incorporation of amino acids during peptide synthesis, we optimized amino acid mixtures to yield equimolar peptide products and assessed the amino acid distribution by LC-MS/MS analysis (Fig. 1c, Supplementary Tables 1, 2). The controlled randomization then allowed filtering out incorrect peptides according to expected sequences and including a 5% false discovery rate (FDR, Fig. 1d). Finally, we obtained a library coverage of theoretical masses of 42% (2319 unique peptide sequences) for Nterm library x1_1 and 31% (1684 unique peptide sequences) for the Cterm library. These datasets were used as the reference measurements for the following experiments.

Fig. 1 Design of peptide libraries and validation by LC-MS/MS.

a Scheme of the experimental PLDMS workflow. **b** Phosphopeptide libraries used for substrate preference evaluation. **c** Amino acid distribution in the permuted positions (x1 and x2) of the Nterm_x1_1 (blue) and the Cterm library (red) after reference measurement (samples not treated with PP1 or PP2A, i.e. untreated) and filtering for expected sequences (see Supplementary Table 1 and the methods section). Perfectly random incorporation of all amino acids would result in 7% per amino acid. Source data are provided as a Source Data file. **d** Mascot Score (statistical value for how well detected data matches database sequences) distributions of the reference measurements for Nterm_x1_1 (left) and Cterm library (right). Empirically wrong peptides are peptides with sequences not matching expected sequences from the synthetic route. For the reference measurement, empirical filtering by Mascot Score cut-offs of 39 and 32 at a false discovery rate (FDR) of 5% for the Nterm_x1_1 and the Cterm library, respectively, allowed separation of correct peptides from wrong ones.

C-terminus to ensure the detectability of the peptides by MS. The Cterm library was designed accordingly. The design resulted in 25,196 different theoretical phosphopeptides.

For random incorporation of amino acids during peptide synthesis, we optimized amino acid mixtures to yield equimolar peptide products and assessed the amino acid distribution by LC-MS/MS analysis (Fig. 1c, Supplementary Tables 1, 2). The controlled randomization then allowed filtering out incorrect peptides according to expected sequences and including a 5% false discovery rate (FDR, Fig. 1d). Finally, we obtained a library coverage of theoretical masses of 42% (2319 unique peptide sequences) for Nterm library x1_1 and 31% (1684 unique peptide sequences) for the Cterm library. These datasets were used as the reference measurements for the following experiments.

PP1c and PP2Ac substrate specificities for phosphopeptides.

The individual libraries were incubated with recombinant PP1c or
PP2Ac (Supplementary Fig. 1a) and the reaction was stopped by shifting the pH from 7.5 to 3 when 30–50% of the library was dephosphorylated, depending on phosphatase activity (see the methods for details, Supplementary Fig. 1b). Peptides were then separated from the recombinant protein by size-exclusion chromatography (SEC) (Supplementary Fig. 1c) and analyzed by LC-MS/MS (Fig. 1a). Analysis revealed that more than 75% of all data points could be attributed to correct peptides (Supplementary Table 3). Interestingly, all of erroneous data points, prediction of phosphorylation in positions that can be empirically excluded based on the synthesis, represented the largest portion. This demonstrated the power of empirical filtering to overcome the limitations of widely used false localization rates (FLRs) for MS-based phospho-motif studies. Further quality control included analysis of reproducibility, amino acid distribution between residues and Nterm libraries, as well as a potential impact of peptide phosphorylation on peptide (Mascot) scores (Supplementary Fig. 2a–d, Supplementary Table 3). After sample-specific FDR-based filtering (Supplementary Fig. 2e, Supplementary Data 1), 9072–9513 different sequences for the Nterm libraries and 2065–2362 different sequences for the Cterm library (ranging over the different treatments) entered further analysis (Supplementary Table 3).

We found that despite a distribution of 60% Ser to 40% Thr among all libraries (based on MS peptide counts), 73% of all sites dephosphorylated by PP1c and 83% for PP2Ac were pThr (Fig. 2a), demonstrating a global preference of both catalytic subunits for pThr over pSer, independent of the sequence context. The controlled setup then allowed calculating a normalized heat map indicating the preference of PP1c and PP2Ac for each amino acid independent of the occurrence of the amino acid in each position by comparing the rate of dephosphorylation of all peptides with a certain amino acid in a certain position to the average dephosphorylation rate of the library (see the methods). For PP1c we observed a preference for the positive charges of Lys and Arg over the negative charges of Glu in positions –4 to –1, with Lys being preferred at positions –4 and –1, but not at –3 (Fig. 2b). In positions +1 to +3, tendencies were the same for Lys/Arg preference over Asp/Glu, with Arg in +1 being the strongest preference. In contrast, PP2Ac showed a preference for negative charges instead of positive charges in positions –4 to –1. As PP1c, PP2Ac displayed a strong preference for Arg in position +1 (Fig. 2b). PP2Ac disfavored the naturally frequently occurring Pro in position +1, which reflects the S/TP motif recognized preferentially by some kinases and phosphatases, and PP1c showed a slight preference for Pro in position +1. This finding was rather surprising, given that PP1 and PP2A are the major Ser/Thr-specific phosphatases, which could have suggested an active-site-mediated recognition of the kinase S/TP motif to counterbalance kinase activity. Nevertheless, these results are largely in line with early studies based on small sets of peptides. All these trends were also statistically significant when comparing the differences between PP1c/PP2Ac in a third differential heat map (Fig. 2b). The coverage of several thousand peptides then allowed to analyze combinatorial effects: PP1c preferences in position –4 to –1 revealed that a second Arg decreased dephosphorylation efficiency and that the negative effects of Glu were additive (Fig. 2c). While PP1c displayed equal preference for one or two Lys, PP2Ac disfavored the presence of two Lys (Fig. 2c). Since all four Nterm libraries were synthesized and processed independently, we could demonstrate reproducibility of the observed tendencies (Supplementary Fig. 3a) and that peptides spanning the whole range of biophysical properties were included in our analysis (Supplementary Fig. 3b).

To further validate these findings, we re-synthesized, purified, and quantified six phosphopeptide sequences and carried out quantitative assays using PP1c and PP2Ac. Using the same basic sequence but with either pThr or pSer, a clear preference of both phosphatases for pThr was observed also in this non-competitive assay setup with no other peptides present, reflected by a higher catalytic efficiency (kcat/Km) (Fig. 2d). Also in agreement with the library results, the different preferences of PP1c toward Lys-, Glu-, and Pro-containing sequences were clearly reflected in this assay. In contrast to PP1c, PP2Ac slightly preferred the Glu sequence over the Lys-containing peptide but was unable to dephosphorylate a peptide containing Pro in +1 (Fig. 2e, Supplementary Fig. 3c). Interestingly, the general tendencies of PP1’s preference for positive charges over PP2A are in line with the starting point of the library design based on bona fide substrate sites identified on the holoenzyme level.

Substrate preference of PP1c and PP2Ac at the proteome level

Next, we sought to validate these findings at the protein level in cell-based assays. In order to block dephosphorylation during cell lysis, we first inhibited the activity of endogenous PPPs in HeLa cells using the potent inhibitor Calyculin A (20 nM). We then lysed cells, thereby disrupting signaling pathways, and subjected three replicates of lysates to dephosphorylation assays using recombinant phosphatase (1 μM) followed by phosphoproteomic analysis (Fig. 3a). We identified a total of 3200 high confidence (class 1) p-sites (Fig. 3b, Supplementary Fig. 4a, see methods for details). Of these class 1 p-sites, 75% were dephosphorylated upon phosphatase treatment. We found 1967 dephosphorylated by PP1 and 1840 by PP2A (Supplementary Data 2), with more than 50% of the p-sites showing different responses to PP1c and PP2Ac treatment (Fig. 3c), challenging the notion of these catalytic subunits having little appreciable intrinsic substrate specificity. Among all detected p-sites, irrespective of phosphatase treatment, more than 92% were found to be pSer. Accordingly, the majority of dephosphorylation happened on pSer. Importantly however, within the sets of dephosphorylated pSer and pThr sites the preference for pThr was confirmed for both phosphatases (Fig. 3d).

We then again sought to investigate the preference of the enzymes for amino acids surrounding the p-site in proteins, independently of the amino acid occurrence in a certain position. To this end, the relative abundance for each amino acid in a certain position was calculated in phosphatase-sensitive or insensitive groups. This rate of occurrence was then divided, resulting in fold-over-/under-representations (Fig. 4a). To highlight differences between phosphatases, these fold changes were then also compared between PP1c and PP2Ac (Fig. 4b). Of note, in these datasets about half of the detected amino acids at position +1 were Pro due to its natural occurrence in the S/T motifs. The counts for other amino acids were rather low and their significance for the analysis should be treated with caution. Therefore, we focused on the other positions in the analysis. For PP1c, the phosphoproteomic data agreed well with our findings from the peptide library with respect to the preference toward basic amino acids over acidic ones, particularly for Arg in position –3, and Lys in –1 (Fig. 4a). However, single positions differed from the library results, namely Lys at position –3 was not disfavored, while Lys at position +2 was favored more strongly in the phosphoproteomic setting, showing an even stronger preference for basic charges. The observed preferences for PP2Ac were also in broad agreement with the library results, especially the disfavor for Lys at the N-terminus, which differed significantly from PP1c. However, the preference for Glu at the N-terminus as well as the strong disfavor for Pro in +1 observed in the library was not recapitulated in the phosphoproteomic assay, and the presence of Arg at the N-terminus had a neutral
Fig. 2 Analysis of PP1c/PP2Ac amino acid preference using the PLDMS approach.

a PP1c and PP2Ac preferentially dephosphorylate pThr over pSer. For statistical analysis, a two-sided Fisher's exact test was used.

b Heat-map analysis of the sequence context surrounding pSer/pThr dephosphorylated by PP1c and PP2Ac. Color coding: Phosphorylation-fold-change of all amino acids compared to the average library dephosphorylation. At 1 the dephosphorylation fold-changes >1.2 with an adjusted p-value <0.01 according to Fisher's exact test. Exact p-values are provided in the Source Data.

c Kinetic analysis of the dephosphorylation rate of four synthetic peptides upon PP2Ac or PP1c treatment. Error bars represent s.e.m. of three independent repeats with technical duplicates. k_{cat}/K_m was calculated by comparison to a phosphate standard curve. Source data underlying Fig. 2a–e are provided as a Source Data file.
effect (Fig. 4a). Differences for Pro in +1 can be explained by the previously observed dependency of PP2A for stabilization of Pro in trans\(^{27}\), which cannot be achieved on the peptide level, and the high natural occurrence of Pro at this position could also increase the likelihood of dephosphorylation. Furthermore, the variances for Glu and Arg could reflect differences between the two set-ups. For instance, motif-based effects, which are important in intrinsically disordered regions and in phosphopeptides, could be overruled by structural effects based on the tertiary structure in ordered protein regions and are therefore less visible in a proteome-based setup. Another explanation could be that a ordered protein regions and are therefore less visible in a proteome-based setup. Another explanation could be that a motif-based effects, which are important in intrinsic recognition motifs on the one hand, and substrate specificity of PP1/PP2A catalytic subunits for p-site binding to regulators (Supplementary Figs. 6, 7). Therefore, significant signal coming from holoenzyme formation in the phosphoproteomic experiment is unlikely.

Taken together, the results from the PLDMS and the phosphoproteomic approaches confirm the intrinsic recognition of basic amino acids at the N-terminus by the catalytic subunit of PP1, which is the opposite for PP2A when comparing the amino acid specificity between both phosphatases (Figs. 2b, c; 4a, b). Also, both approaches confirm the preference for pThr of the intrinsic recognition of basic amino acids at the N-terminus by the catalytic subunit of both phosphatases (Figs. 2a, 3d). These results support a two-layered system for substrate specificity, with intrinsic preferences of PP1/PP2A catalytic subunits for p-site motifs on the one hand, and substrate specification by...
PP1c intrinsically recognizes basic motifs. The analysis underlying Fig. 4a, b normalizes for the rate of natural occurrence of amino acids and allows visualizing amino acid preferences in an unbiased manner. We next sought to investigate whether the detected amino acid preferences would amount into a preferred sequence motif. Therefore, as complementary analysis to the above, we created a frequency matrix of PP1c/PP2Ac insensitive class I pS/pT sites and compared it to sensitive sites with a log2 fold change greater than -3 based on the phosphoproteomic data (Fig. 5a). For PP2Ac, no amino acid enrichment compared to unaffected p-sites was obvious, and therefore the observed amino acid preferences did not directly translate into a motif, such as kinase target motifs. However, for PP1c we found that the observed preference for basic residues is most relevant in the context of Arg. In addition, we again noticed a statistically significant preference of PP1c but not of PP2Ac towards Arg in position -3. The sequence RXXpS is also found in the protein kinase A (PKA) and B (AKT) phosphorylation motifs, as well as in the 14-3-3-protein binding motif. Therefore, we hypothesized that PP1c could have developed an intrinsic affinity to regulate phosphorylation events involving this biologically important motif, whereas PP2A might need association with regulatory subunits to gain specificity towards these motifs, as holoenzyme formation with regulatory proteins on the other hand.

Fig. 4 Heat-map analysis of PP1c/PP2Ac amino acid preference. Amino acid preference surrounding pSer/pThr for PP1 and PP2A on the protein level from the phosphoproteomic data (Supplementary Data 2). Amino acids with <25 raw counts in a given position were excluded and are marked in gray. a Color coding represents fold-change of the relative abundance of a given amino acid in a given position between phosphatase-sensitive/insensitive phosphorylation sites. b Direct comparison of PP1c and PP2Ac fold changes displayed in (a). Blue highlights amino acids selectively preferred by PP1c, and residues statistically different between PP1c and PP2Ac (adjusted p-value <0.01) according to a two-sided Fisher’s exact test are highlighted in bold. Please see Methods and Source Data for details and exact p-values. Source data are provided as a Source Data file.
PP2A holoenzymes are also known to regulate 14-3-3-binding sites36,40–42. To further strengthen the findings on this distinct intrinsic motif affinity for PP1c, we analyzed all p-sites by hierarchical clustering (Fig. 5b). This analysis revealed three major clusters, of which one contained 1361 sequences dephosphorylated by both PP1 and PP2A, the second 777 PP1c-specific sequences, and the third 663 PP2Ac-specific sequences (Supplementary Data 2). Accordingly, about 48% of the substrates were dephosphorylated by PP1c and PP2Ac, 28% were specific to PP1, and 24% specific to PP2A. Among p-sites differing with statistical significance between PP1c/PP2Ac, we found 12 RXXpS-containing p-sites on Ser/Arg-rich splicing factors (SRSFs) and on six annotated 14-3-3-binding sites for PP1c, whereas only two sites in SRSFs and three 14-3-3-binding sites, but not containing a RXXpS motif, were identified as selective substrates for PP2Ac (Table 1). These findings corroborate the intrinsic affinity of PP1c for the RXXpS motif.

PP1c dephosphorylates GAB2. We next moved our attention to the RXXpS motif at residue pS210 of the docking protein GRB2-associated-binding protein 2 (GAB2), which was dephosphorylated by PP1c but not PP2Ac in the phosphoproteomic assay (Table 1, Supplementary Data 2). GAB2 was previously identified as 14-3-3-binding protein43, but a link between this
interaction and dephosphorylation by PP1 has not yet been reported. Upon inhibition of endogenous PPPs in cells by Calyculin A, the p-level on this site was increased, demonstrating a role for PPPs in regulation of GAB2 on pS210. Incubation of the lysate with recombinant PP1c led to a decrease in the p-level (Fig. 6a). This suggests that pS210 of GAB2 is a substrate candidate of PP1c. We also demonstrated that the interaction of GAB2 with overexpressed GFP-14-3-3 was strongly increased upon inhibition of endogenous PPPs by Calyculin A, and decreased upon addition of recombinant PP1c in a PP1c-concentration-dependent manner, but not if recombinant PP1c was inhibited prior to treatment (Fig. 6b), suggesting altogether a specific interaction between GAB2 and PP1c.

Previously, GAB2 was shown to be sequestered in the cytosol by 14-3-3 and to be recruited to the plasma membrane upon epidermal growth factor receptor (EGFR) stimulation, which leads to the disruption of the interaction between 14-3-3 and GAB2. The phosphatase responsible for dephosphorylating GAB2 and releasing it from 14-3-3 is not known. Since PP1c activity led to the disruption of the GAB2-14-3-3 interaction in vitro (Fig. 6b), we therefore aimed to study the effect of PP1 activity on GAB2 localization in cells. For studying PPP-substrate interactions in cells, phosphatase-specific activation or inhibition within minutes is needed to reduce the risk of indirect and pleiotropic effects due to the activation of downstream and feedback cascades. Therefore, chemical tools instead of classical molecular biology techniques are required. However, explicitly specific inhibitors of PP1 are still not available. To study the impact of PP1 activity on GAB2 localization, we therefore made use of a selective chemical PP1 modulator (PP1-disrupting peptide, PDP-Nal), which is a 23mer peptide that liberates active PP1c with PDP-Nal from PDP-Nal-β-c reagents (Caco-2 BBe1, SW-480), whereas a control peptide only differing by substitutions of Val and Phe to Ala in the PP1-interacting RVXϕ-motif (PDPm-Nal) showed no effect (Fig. 6c, Supplementary Fig. 8a, b, Supplementary Movies 1–9). This was confirmed by single-cell analysis of the imaging data using the cell segmentation strategy depicted in Fig. 6d and quantifying the signal at the cells’ edge versus cyto/nucleoplasmic signal (Fig. 6e, Supplementary Fig. 8, see Eq. (1) in methods). These results show that liberating active PP1c with PDP-Nal leads to GAB2 recruitment to the membrane, which could be due to the loss of 14-3-3 binding as seen in vitro upon PP1c treatment (Fig. 6b).

Together, our results provide initial evidence for PP1 as potential GAB2 phosphatase and give the intrinsic affinity of PP1c for GAB2 carrying the RXxP motif at S210 a possible biological relevance.

PP1c can regulate 14-3-3 complexes. Since we observed an intrinsic affinity of PP1c towards the basic 14-3-3 motif, we were interested to see if this could be of broader significance and therefore sought to identify 14-3-3 targets regulated by PP1c using co-IP with MS read-out. To this end, we subjected GFP-14-3-3β-expressing cells to calyculin A treatment to inhibit endogenous PPPs and mixed these lysates with recombinant PP1c. Cells expressing GFP and untreated GFP-14-3-3β-expressing cells were used as controls. Proteins bound to immunoprecipitated GFP-14-3-3β were analyzed by LC-MS/MS using label-free quantification (LFQ) (Fig. 7a, Supplementary Fig. 9a). When comparing GFP-only control samples to untreated GFP-14-3-3β-expressing cells we identified 108 interacting proteins. Within these we noted a clear enrichment not only of known 14-3-3-interacting proteins, but of all seven mammalian 14-3-3 isoforms,

Table 1 Analysis of Arg/Lys-containing motifs among PP1c/PP2Ac-affected p-sites.

Gene name	Sequence window*	Residue	Local. Prob.	Note	Sensitivity
SRSF2	KSRSSSRGPSKP	206	1.00	S/R-rich splicing factor	PP1c
SRSF8	KRPPKSPEEG	273	1.00	S/R-rich splicing factor	PP1c
SRSF6	RQSSRNSSPLP	301	1.00	S/R-rich splicing factor	PP1c
SRSF2	RRSRSRPPSYSS	191	1.00	S/R-rich splicing factor	PP1c
SRSF2	RRSRSRPPPP	189	1.00	S/R-rich splicing factor	PP1c
SRSF8	SRYRSATERYSRS	158	1.00	S/R-rich splicing factor	PP1c
SRSF7	SYRFQSPSSR	192	1.00	S/R-rich splicing factor	PP1c
SRSF5	RSRSRPSPYRPK	233	1.00	S/R-rich splicing factor	PP1c
SRSF8	SIPSERSPYSRS	163	1.00	S/R-rich splicing factor	PP1c
SRSF1	VGDGKSPSVGR	199	1.00	S/R-rich splicing factor	PP1c
SRSF10	RSRSSRDNYNR	133	1.00	S/R-rich splicing factor	PP1c
SRSF5	KRSRSRSRSPYP	231	0.99	S/R-rich splicing factor	PP1c
SRSF4/5/6	VENLSSRSWSQ	113;117;119	0.97	S/R-rich splicing factor	PP2Ac
SRSF11	AAGLVSPSLSK	207	1.00	S/R-rich splicing factor	PP2Ac
GAB2	NARSASFSQQT	210	0.94	14-3-3 interaction site	PP1c
RAF1	YQRASSDDQKL	43	1.00	14-3-3 interaction site	PP1c
SOS1	RRPPESAPRAY	1161	1.00	14-3-3 interaction site	PP1c
CDK16	INKRLSLPAID	119	1.00	14-3-3 interaction site	PP1c
TBCID4	RGRGSGVSDFE	588	1.00	14-3-3 interaction site	PP1c
USP8	LGRSSRSPDDE	718	0.99	14-3-3 interaction site	PP1c
HSF1	PFSFQSPRVEE	307	1.00	14-3-3 interaction site	PP2Ac
HSF1	KEPEFSPQSPQP	303	1.00	14-3-3 interaction site	PP2Ac
YAPI	VRANSSFRSLQ	127	0.97	14-3-3 interaction site	PP2Ac

*Bold letters highlight the phosphorylation site and residues of the 14-3-3 consensus motif.

Serine/Arginine-rich splicing factors with the sequence window of –5 to +5 relative to psR significantly decreased exclusively by PP1c or PP2Ac (top). These data are based on Fig. 5b and Supplementary Data 2. Known 14-3-3 interaction sites (annotated in PhosphositePlus) exclusively dephosphorylated by PP1c or PP2Ac.
suggesting this method isolates functionally intact heterodimeric 14-3-3 complexes bound to their partner proteins (Supplementary Fig. 9b). Treatment with PP1 led to a significant dissociation of 56 selectively binding proteins from 14-3-3 (Fig. 7b). These were mapped back onto our phosphoproteomic dataset to identify at least one PP1c-regulated phosphorylation site in 35 of these proteins (Fig. 7c, Supplementary Data 3), of which 21 were dephosphorylated at the RXXpS motif, and additional 11 had at least one Arg or Lys at positions −1 to −5 adjacent to the p-site.

Thus, PP1c disrupted 52% of the 14-3-3-protein interactions, and we saw in our phosphoproteomics study that 57% of the disrupted proteins carry one or more basic amino acids N-terminal
to the p-site that is dephosphorylated by PP1. Together, these data confirm the trends of intrinsic specificity toward basic motifs observed in the PLDMS and phosphoproteomic approaches, and strongly suggest that in PP1 the specificity for these biologically important motifs is ingrained in the catalytic subunit.

Discussion

From a technological perspective, our PLDMS assay offers an important methodology for assay deconvolution after treatment. We demonstrate that by tailored library design and optimization of an isokinetic mixture (that is a mixture of side-chain-protected amino acids with equal coupling efficiency) it is possible to cover >2000 unique peptide sequences in a single synthesis that also fulfill the criteria for robust LC-MS/MS analysis of PTMs. Furthermore, we show that rigorous control of library complexity such as length, number of randomized positions, and p-site in a defined position, allows a degree of empirical data filtering which would not be possible from proteomic datasets. Due to the fact that IsobarQuant/Mascot matches can be filtered that are impossible to be obtained from our synthetic routes, we were not only able to separate wrong from correct datasets. Due to the fact that IsobarQuant/Mascot matches can be filtered that are impossible to be obtained from our synthetic routes, we were not only able to separate wrong from correct datasets. Due to the fact that IsobarQuant/Mascot matches can be filtered that are impossible to be obtained from our synthetic routes, we were not only able to separate wrong from correct datasets. Due to the fact that IsobarQuant/Mascot matches can be filtered that are impossible to be obtained from our synthetic routes, we were not only able to separate wrong from correct datasets. Due to the fact that IsobarQuant/Mascot matches can be filtered that are impossible to be obtained from our synthetic routes, we were not only able to separate wrong from correct datasets.
kinases diversified at the level of the catalytic protein, whereas pSer/pThr-specific PPPs conserved catalytic subunits and diversified on the level of regulatory subunits. Since PP1 and PP2A exist in cells as holoenzymes, substrate recruitment happens at this level. Nevertheless, some evidence suggested already that amino acids in close proximity to the p-site could influence phosphatase activity, implying a multi-layer specificity system for p-site dephosphorylation of PPP holoenzymes.

Without questioning the importance of the holoenzyme in substrate recruitment and specificity, we show that the intrinsic priming of PP1c and PP2Ac for p-site selection after substrate recruitment is distinct. Whether all preferences that we found are relevant in a biological context is not a trivial question and will require future studies. We focused here on the fact that in contrast to PP2Ac, PP1c preferentially dephosphorylates at sites where the N-terminal amino acids are positively charged. Biological relevance on the holoenzyme level for this result becomes apparent when analyzing available crystal structures. As introduced, the catalytic cleft of both phosphatases is surrounded by three grooves. A peptide stretch within a substrate protein was suggested to bind the phosphatase by a combination of two out of these three grooves. Interestingly, the acidic groove close to the active site is much less pronounced in PP2Ac and PP1c, respectively, since the acidic residues Asp220, 253, 277 and Glu218, 252, 256, are exclusively found in PP1 (Fig. 8b). Furthermore, crystallization experiments of PP1c with regulatory subunits have demonstrated that MYPPT1 further extends the acidic pocket, and spinophilin/neurabin and PNUTS even occlude the C-terminal groove, thereby forcing substrates towards the hydrophobic acidic pockets. This supports that in a cellular system a subset of PPP substrates makes active use of the acidic groove for p-site selection after recruitment.

How can PP2Ac still dephosphorylate basic motifs? Our inspection of PP2A complexes suggests that this substrate specific-ification is achieved in a differential manner by regulatory subunits. Earlier structural studies of the PP2A holoenzyme with the subunit B56 revealed that a highly acidic loop between Glu81 and Glu94, with six out of 14 amino acids being Asp or Glu, binds closely to the catalytic site. Distances between the catalytic site metal Mn2+ (502, labeled with * in Fig. 8b) and Cy6 of different Asp or Glu, in this structure (PDB ID 3DV8) are 34.6 Å (Glu81), 27 Å (Glu83), 17.7 Å (Asp85), 28.2 Å (Glu91), 30.6 Å (Glu93), 34.2 Å (Glu94) (Supplementary Fig. 10). In the case of the B56 subunit, a loop containing Asp109, Glu111, 112, 113, and 114 is docking even closer to the catalytic site, locating the aforementioned acidic side chains 18/20.5/13.9/21.4/20 Å from the Mn2+ in the catalytic cleft (Fig. 8c, distances between Mn2+ (502) and Cy6 of Asp or Glu, respectively, in PDB ID 2NPP). Of note, during the revision process of this manuscript an independent study confirmed the role of B56 in targeting basic p-sites.

Thus, PP2A requires the regulatory proteins for the recognition of basic motifs, whereas PP1 can recognize them through the catalytic subunit (Fig. 8d). Such data are not only interesting for the basic understanding of PP1 and PP2A catalytic activity and substrate recognition, but also for the design of selective drugs to target them. The interfaces that would be targeted to disrupt the interactions of PP1 and PP2A with their substrates are different (direct contact to catalytic subunit versus to the holoenzyme), leading to targeting possibilities for inhibitor design.

In agreement with previous observations, we show that PP1c and PP2Ac dephosphorylate pThr and pSer, but indeed globally prefer the less abundant pThr. Of note, by analyzing >10,000 different sequences we demonstrate in a comprehensive, unbiased manner that the contribution for this preference is introduced by the catalytic subunits, not by regulatory subunits. Importantly, the latest study showed that in case of PP2A-B56 this intrinsic preference is overruled through the subunit, whereas they confirmed the preference for pThr for PP2A-B55, emphasizing the important interplay between the specificities of the catalytic and regulatory subunits. We show that the dephosphorylation efficiency (k_{cat}/K_{m}) of the catalytic subunits with pThr contributes to the preference (Fig. 8e). The biological relevance of this general finding in the context of holoenzymes is demonstrated by the observation that in the specific process of mitosis, PP2A holoenzymes dephosphorylate pSer more slowly than pThr and this enables the dephosphorylation kinetics necessary to exit mitosis. Furthermore, recent findings show a faster dephosphorylation of pThr over pSer for PP2B/Calcineurin based on the analysis of the PP2B: Na+/H+ exchanger 1 (NHE1) interaction. This is only a single experimentally validated case on the protein level, it extends the pThr preference to another PPP member. Moreover, this study also discovered an active site recognition sequence pS/TXXp for the PP2B:NHE1 interaction, and implied that this could be a general active site recognition motif by screening 48 interaction partners. Applying our method to PP2B would strongly substantiate the data of the recent study, showing the broad applicability of the strategy.

Another major gain of our strategy is that it resulted in the identification of a large set of PP1/PP2A substrate candidates. Accordingly, we revealed a connection of PP1c substrate candidates to the 14-3-3 interactome and identified the 14-3-3 binding site at pS210 of GAB2 as a site regulated by PP1. GAB2 is a scaffolding protein directly linking receptor tyrosine kinase stimulation to the cancer-relevant ERK and PI3K-AKT pathways. PP1 activation using PDPs was sufficient for GAB2 recruitment to the plasma membrane, even in the absence of stimulus. This effect was observed in three distinct cancer cell lines derived from epithelial tissues in cervix and colon. We therefore suggest that the dephosphorylation of pS210 of GAB2 may play an important role in counteracting GAB2 sequestering in the cytosol. Therefore, inhibition of the GAB2/PP1 interaction might represent an approach for inhibition of erroneous cell proliferation downstream of EGFR in epithelial cancer.

In summary, we present an MS-based strategy for characterizing PPP-substrate specificities, which enabled us to reveal intrinsic specificities of PP1c and PP2Ac, and identify a large set of substrate candidate p-sites, including those with a direct link to 14-3-3-protein function. The application of the strategy to other phosphatases and potentially further enzymes promises a large gain in the understanding of enzyme-substrate recognition around the PTM site, as well as the identification of multiple substrate candidates.

Methods

Cell culture. HeLa Kyoto cells were obtained from the BROSS Signalling Factory cell line repository (University of Freiburg), Caco-2 BBe1 cells from ATCC (ATCC CRL-2102), and SW-480 cells from the European Collection of Authenticated Cell Cultures (ECACC 87092801). Cells were cultured at 37 °C in a humidified incubator under 5% CO2. The cells were grown in GlutaMax Dulbecco’s modified Eagle’s medium (DMEM, Gibco) supplied with 1 g/L glucose, 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin/streptomycin. Cells were passaged routinely when reaching 90% confluence by trypsinization and 10-fold dilution. All cells have been verified by PCR analysis of short tandem repeats by an independent external service provider (Laboratory of DNA-Analytik, Freiburg, Germany) and were free of mycoplasma (GATC Biotech/Eurofins, Ebersberg, Germany). Please see the Source Data for certificates of analysis.

Plasmids and cloning. For all cloning, Phusion Polymerase (Thermo Fisher Scientific) was used following the recommended protocol for PCR setups recommended by the manufacturer, all restriction enzymes were FastDigest enzymes (Thermo Fisher Scientific). pDLN43-FLAG-HA-14-3-3β was originally a gift from William Sellers (Addgene plasmid # 8999), but sequenced and corrected for C-terminal extension diverging from the canonical amino acid sequence with primers 5’-GGGAGACCCCA ACGTTTACATGGAC-3’ (fwd) and 5’-CCGGCGAGGCGGGCGTATTAGTCTT 3’ (rev).
Fig. 8 Relating the amino acid preference of PP1c and PP2Ac to holoenzymes.

(a) The acidic groove is much more pronounced in PP1c compared to PP2Ac. Structures for PP1 catalytic subunit alpha isoform (PDB ID 3EGG, chain A)50 and PP2A catalytic subunit alpha isoform (PDB ID 4I5L, chain C)69 were retrieved from www.pdb.org (accessed 25 Oct 2019) and inspected in PyMOL v2.3.3. * marks the catalytic cleft containing two Mn2⁺ ions. Color coding between −5 (red) to +5 (blue) KbT/e.

(b) Aligned structures of PP1c and PP2Ac (see above for details) highlighting residues which determine differences in acidic properties (orange spheres). The sequence alignment to determine corresponding residues was carried out in Needle (EMBOSS). Color coding of structures: PP1c in blue/black, PP2Ac in red/gray. Residues constituting the acidic groove have previously been defined by Zhang et al.70

(c) Interaction of PP2Ac with B56/B´/PR61 based on the crystal structure of the trimeric holoenzyme with the scaffolding subunit A (PR65) derived from PDB ID 2NPP48. Negatively charged amino acids within the binding regions of B56 to PP2Ac are highlighted.

d) The holoenzyme of PP1 has an intrinsic preference for basic motifs due to the composition of the acidic groove of the catalytic core protein. PP2A holoenzymes are per se not primed towards amino acid sequence features of 14-3-3 or PKA motifs, but need to associate to regulatory subunits such as B56 carrying acidic patches to achieve basophilic sequence specificity.

e) Both, PP1 and PP2A holoenzymes have a preference for pT due to a higher catalytic efficiency of their respective catalytic subunits towards pT over pS.
Materials for peptide synthesis. All amino acids and resins were purchased from Novabiochem (Merck, Darmstadt, Germany). All other synthetic reagents were obtained from Chem-Lab (Darmstadt, Germany) or Sigma (Deisenhofen, Germany). N-Methyl-L-lysine (SulfoCell, Roche) and benzonase (Merck). Next, NaCl was added to the soluble fraction to a final concentration of 1 M and protein was dialyzed into storage buffer containing 50% Acetonitrile (ACN) in H2O and validated using a 1260 Infinity II HPLC System (Agilent Technologies, Santa Clara, California, USA) with a VP 250/10 NUCLEODUR 100-5 C8 column (Macherey-Nagel, Düren, Germany) running a general gradient of 10% to 50% ACN in H2O and a Microflex LT MALDI (Bruker, Bremen, Germany).

Transfection. For transient transfections, cells were plated one day before in order to reach 40–50% confluency on the day of transfection. All transfections were carried out using FuGene HD transfection reagent (Promega) and followed the manufacturer’s instructions. b-actin, α-tubulin, and GAPDH were used as controls.

Library design for PLDMS experiments. In order to limit the complexity of the library and increase data quality during analysis, we anticipated 5000 different potential amino acids instead of the naturally occurring 20 at 3 positions as a neutral amino acid and spacer from Lys that should have no impact either on the phosphorylated site using the amino acids A/D/E/F/G/K/L/N/P/Q/R/S/T/V, PP1 substrate recognition is within positions 4 to 6, and 5488 different phosphopeptides in the library, and a total substrate frequency on the day of transfection. All transfections were carried out using FuGene HD transfection reagent (Promega) and followed the manufacturer’s instructions. b-actin, α-tubulin, and GAPDH were used as controls.

To cover these residues within the limits for complexity discussed above, positions 3–1 and 3 to 7 (a total of 4 positions) required 4 separate libraries with 3 randomized positions and 1 fixed position (Ala) each, and a single library was necessary to cover the 3 randomizations in position 1 + 3 to 5 (a total of 3 positions) (Fig. 1b). Furthermore, we decided for Leu over ilee due to database search issues due to identical masses. This led to the design of four different libraries (Nterm libraries), named Afl, Bfl, Cfl, and Dfl, which are composed of three randomized positions next to the fixed position 3-methylthiobutyl (Cterm) library next to the phospho-serine/threonine (α-tubulin), phospho-serine/threonine (GAPDH), phospho-tyrosine (PP2A), and phospho-tyrosine (NTRK) groups: phosphoserine and phosphothreonine (amino acid, mol %): Fmoc-Ser(PO(2)-OH), 6.8; Fmoc-Glu(Obu)-OH, 7.4; Fmoc-Gln(Tri)-OH, 11.0; Fmoc-Gly-OH, 9.9; Fmoc-His(Tri)-OH, 4.8; Fmoc-Leu-OH, 3.4; Fmoc-Lys(Obu)-OH, 8.6; Fmoc-Phe-OH, 3.4; Fmoc-Pro-OH, 5.9; Fmoc-Ser(Orb)-OH, 7.6; Fmoc-Thr(Orb)-OH, 5.6; Fmoc-Val-OH, 7.8; Cterm library: Fmoc-Ala-OH, 4.3; Fmoc-Arg(Obu)-OH, 4.3; Fmoc-Asn(Tri)-OH, 4.3; Fmoc-Asp(Obu)-OH, 4.3; Fmoc-Cys(Obu)-OH, 6.8; Fmoc-Gln(Tri)-OH, 10.2; Fmoc-Gly-OH, 9.2; Fmoc-Leu-OH, 3.1; Fmoc-Lys(Obu)-OH, 8.0; Fmoc-Phe-OH, 3.1; Fmoc-Pro-OH, 5.5; Fmoc-Ser(Orb)-OH, 7.0; Fmoc-Thr(Orb)-OH, 12.3; Fmoc-Val-OH, 7.2. These ratios were based on a previously reported mixture35 and optimized for our syntheses.

Recombinant protein expression. Recombinant PPP1CA was purified by the EMBL. Protein Expression and Purification Core Facility (PEPC) following an improved protocol based on the method of Böckmann et al.34. BL21Star(DE3)pRARE in LB broth including 1 mM MnCl2 after induction with 50 μM isopropyl β-d-thiogalactoside (IPTG) at 16°C overnight. The cell paste was lysed using an Emulsiflex homogenizer in 25 mM TRIS-Cl, pH 7.5 at room temperature (RT), 300 mM NaCl, 10% w/v glycerol, 30 mM imidazole, 0.2% w/v tween-20, followed by dilution and incubation with 50 mM β-Mercaptoethanol (β-ME) and 1 M TEV protease at 4°C overnight for tag cleavage. Cleaved PPP1C was then purified using chitin resin and on a Heparin HP column, equilibrated in 20 mM TRIS-Cl, pH 7.5 RT, 100 mM NaCl, 5 mM β-ME. Elution was carried out using a high salt gradient and protein was dialyzed into storage buffer. Tags-handicapped PPP1CA ΔL309 was purchased from Cayman Chemical (Michigan, USA). Other proteins included in the expression library were His6-TEV-PPP1R2 after transformation, expression in BL21 cells and purification36; Protein expression was carried out at 37°C for 4 h in LB broth (containing...
Detection of phosphate release from peptides and libraries. Prior to library dephosphorylation with subsequent MS analysis, as well as for the confirmation of MS results by directed peptide synthesis and dephosphorylation kinetics, the release of phosphate over time from peptides or libraries had to be monitored: The libraries and peptides were dissolved in 25% DMSO and 75% H2O at 10 mM. The EnzChek Phosphate Assay Kit (Thermo Fisher Scientific) was used to assess the kit’s kinetics (Fluorescein o-phenylene diamine diazo) with the library we aimed for a dephosphorylation rate between 30 and 50% of total dephosphorylation in order to have enough dephosphorylated peptides for significant analysis and to see substrate preference of the respective phosphatase without reaching saturation. For analysis of enzyme kinetics, raw data were further analyzed using GraphPad Prism v6.

To confirm that the time point for 30–50% library dephosphorylation could be reproduced on the same day and in the very same samples that would later be analyzed by LC-MS/MS, we applied Biomiol green as a complementary phosphate detection assay to the EnzChek assay. 50 µL from the dephosphorylation reaction were removed before starting the reaction. 100 µL of the pH 6 Biomiol reagent (Enzo Life Sciences) were added at the same time point when HCl was added to the main reaction (see the following chapter). After incubation for 25 min the colorimetric measurement was performed at 620 nm at 25 °C on a Synergy H4 microplate reader. Values were compared to a standard curve prepared by using the phosphate solution included in the kit and following the manufacturer’s instructions. They were also compared to values for complete library dephosphorylation estimated either from the incubation of the library with FastAP (Thermofisher Scientific) or by incubating library with PP1c for 1–2 h.

Data analysis for phosphopeptide library experiments. Raw MS data were processed with IsobarQuant and peptide protein identification was performed with the Mascot 2.4 (Matrix Science) search engine. Data were searched against a library containing the respective peptide sequences of the Nterm libraries or Cterm library and the reversed peptides sequences. Each peptide sequence was presented as a separate protein. Search parameters: None, missed cleavages 6, peptide tolerance 10 ppm, 0.05 Da for MS/MS tolerance. No fixed modifications were selected. Oxidation on Methionine and phosphorylation for Serine, Threonine, and Tyrosine were selected as variable modifications.

Downstream data analysis phosphopeptide library experiments. After filtering the post-Mascot output files of IsobarQuant, the resulting data files were processed using R (v3.5.1, 2018-07-02) Data were first assessed for empirically wrong peptides (length unequal to ten amino acids, false sequence, no phosphorylation, wrong phosphorylation) and empirically correct peptides (EmpCorr). We then calculated the FDR as the ratio of false positives to the sum of true and false positives for each (sub) library. For further analysis, we excluded all known empirically wrong peptides and applied the determined cut-off at an FDR of 0.05 to true positive hits (EmpCorr) only. Therefore only a wrongly assigned peptide, which still matched the sequence of another theoretical sequence, could be retained. This step decreased the true percentage of false positives in our final datasets significantly below an FDR of 0.05.

For filtering, we obtained, ranging between conditions, 111,897–147,241 peptides for the Nterm libraries representing 9072–9513 unique sequences (from 19,710 theoretically possible sequences). For the Cterm library we obtained 2065–2386 unique sequences (from 5488 theoretically possible sequences) in sets of 20,066–30,700 peptides (Supplementary Table 3).

The grand average of hydrophobic scores (GRAVY scores) were calculated using the free gracy calculator (www.gravy-calculator.de, accessed March 2019). The values of the heat map were calculated for each amino acid in every position independently. The values result from the dephosphorylation rate of an amino acid in a certain position over the average dephosphorylation of the library by the respective phosphatase. The dataset was therefore normalized for variation in amino acid incorporation. The heat map directly comparing PP1c and PP2Ac on the peptide level was calculated by analyzing dephosphorylated peptides of PP1c and PP2Ac and calculating fold changes based on the counts for every amino acid in every position. Heat maps for PP1c and Cterm libraries were then median-normalized to control for differences in global dephosphorylation rates between PP1c and PP2Ac. Statistical significance in Fig. 2 was assessed by applying Fisher’s exact test to the numbers of each amino acid at each position in dephosphorylated sequences against the summed counts of all other amino acids at the given position obtained for PP1c versus PP2Ac and adjusting derived p-values for multiple testing using the method of Benjamini and Hochberg.

Downstream analysis phosphopeptide library experiments. After filtering the post-Mascot output files of IsobarQuant, the resulting data files were processed using R (v3.5.1, 2018-07-02) Data were first assessed for empirically wrong peptides (length unequal to ten amino acids, false sequence, no phosphorylation, wrong phosphorylation) and empirically correct peptides (EmpCorr). We then calculated the FDR as the ratio of false positives to the sum of true and false positives for each (sub) library. For further analysis, we excluded all known empirically wrong peptides and applied the determined cut-off at an FDR of 0.05 to true positive hits (EmpCorr) only. Therefore only a wrongly assigned peptide, which still matched the sequence of another theoretical sequence, could be retained. This step decreased the true percentage of false positives in our final datasets significantly below an FDR of 0.05.

For filtering, we obtained, ranging between conditions, 111,897–147,241 peptides for the Nterm libraries representing 9072–9513 unique sequences (from 19,710 theoretically possible sequences). For the Cterm library we obtained 2065–2386 unique sequences (from 5488 theoretically possible sequences) in sets of 20,066–30,700 peptides (Supplementary Table 3).

The grand average of hydrophobic scores (GRAVY scores) were calculated using the free gracy calculator (www.gravy-calculator.de, accessed March 2019). The values of the heat map were calculated for each amino acid in every position independently. The values result from the dephosphorylation rate of an amino acid in a certain position over the average dephosphorylation of the library by the respective phosphatase. The dataset was therefore normalized for variation in amino acid incorporation. The heat map directly comparing PP1c and PP2Ac on the peptide level was calculated by analyzing dephosphorylated peptides of PP1c and PP2Ac and calculating fold changes based on the counts for every amino acid in every position. Heat maps for PP1c and Cterm libraries were then median-normalized to control for differences in global dephosphorylation rates between PP1c and PP2Ac. Statistical significance in Fig. 2 was assessed by applying Fisher’s exact test to the numbers of each amino acid at each position in dephosphorylated sequences against the summed counts of all other amino acids at the given position obtained for PP1c versus PP2Ac and adjusting derived p-values for multiple testing using the method of Benjamini and Hochberg.

Selection of single peptides. The datasets of Nterm or Cterm libraries treated with recombinant PP1c and PP2Ac were used. The datasets were split into subsets with the different conditions. The pre-filtered datasets were then manually scanned to find the best matching peptide pair, containing small, adequate changes resulting in different dephosphorylation ratios. Syntheses of these peptides and determination of phosphorylation and dephosphorylation kinetics using EnzChek Assay were performed as described above. Data analysis was carried out in GraphPad Prism 6.1 and K_m/K_w was calculated by comparison to a phosphate standard. Error bars in Fig. 2d, e and Supplementary Fig. 3c correspond to s.e.m of independent triplicates with two technical data points each.

Phosphoproteome dephosphorylation assay. For phosphoproteomics, HeLa Kyoto cells were incubated with 20 nM Calyculin A (CST, #9902) for 10–15 min. This time point was determined empirically to yield maximal phosphatase inhibition without cells showing pleiotropic effects. Subsequently, cells were placed on ice and washed twice with cold PBS and scraped in lysis buffer (100 mM NaCl, 10 mM Tris, 0.1% IGEFA, 1 mM EDTA, 1 mM EGTA, 20 mM Calyculin A, 1× Complete Mini protease inhibitor cocktail from Sigma). Equal volumes of 0.1% FA in LC-MS sample buffer (100 µM Tris, 30 mM imidazole, 500 mM NaCl, 0.1% Acetone) were added to tissue suspensions and incubated on ice and washed twice with cold PBS and scraped in lysis buffer (100 mM NaCl, 10 mM Tris, 0.1% IGEFA, 1 mM EDTA, 1 mM EGTA, 20 mM Calyculin A, 1× Complete Mini protease inhibitor cocktail from Sigma). Equal volumes of 0.1% FA in LC-MS sample buffer (100 µM Tris, 30 mM imidazole, 500 mM NaCl, 0.1% Acetone) were added to tissue suspensions and incubated on ice and washed twice with cold PBS and scraped in lysis buffer (100 mM NaCl, 10 mM Tris, 0.1% IGEFA, 1 mM EDTA, 1 mM EGTA, 20 mM Calyculin A, 1× Complete Mini protease inhibitor cocktail from Sigma). Equal volumes of 0.1% FA in LC-MS sample buffer (100 µM Tris, 30 mM imidazole, 500 mM NaCl, 0.1% Acetone) were added to tissue suspensions and incubated on ice and washed twice with cold PBS and scraped in lysis buffer (100 mM NaCl, 10 mM Tris, 0.1% IGEFA, 1 mM EDTA, 1 mM EGTA, 20 mM Calyculin A, 1× Complete Mini protease inhibitor cocktail from Sigma).
concentration was then determined by a Bradford Assay and equal amounts of 1 mg total protein were incubated with recombinant PT1c/PP2Ac or buffer at a final concentration of 1 μM IEP. After 1 h on ice at 30°C, lysates were then immediately placed on ice. PhosStop protease inhibitor (Roche) was added and proteins were denatured by adding urea to a final concentration of 8 M taking into account the volume increase. Samples were then snap-frozen in liquid nitrogen for storage and subsequent MS analysis. Treated lysates were reduced (10 mM DTT, 30°C, 20 min) and alkylated (50 mM chloroacetamide, room temperature, 30 min, in the dark), and then diluted to 1.3 M urea using 40 mM Tris–HCl (pH 7.6). Digestion was performed by adding trypsin (Promega, 1:50 enzyme-to-substrate ratio) and incubating 3 h at 37°C. The digest was filtered using 0.22 μm syringe filters. Digests were acidified by addition of neat FA to 1% and desalted using 50 μg C18, reversed-phase (RP) solid-phase extraction cartridges (Waters Corp.; wash solvent: 0.1% FA in 2% ACN; elution solvent: 0.1% FA in 50% ACN). Peptide solutions were frozen at −80°C and dried in a SpeedVac (Thermo Fisher). First, TMT labeling and high pH RP tip fractionation of phosphoproteins was performed.21 For TMT labeling, digests (300 μg per condition) were reconstituted in 20 μL of 100 mM HEPES (pH 8.5), and 5 μL of a 11.6 mM TMT stock solution (Thermo Fisher Scientific) in 100% anhydrous ACN were added to each sample. The different experimental conditions were distributed within a TMT-6plex experiment as follows (each of three biological replicates multiplexed in an individual TMT6 batch): 126—untreated; 127—PT1c treated; 128—PP2Ac treated; (129—condition 3, not included in analysis; 130—pooled sample, not included in analysis; 131—empty). After incubation for 1 h at 25°C and 400 rpm, the labeling reaction was stopped by adding 2 μL of 3% hydroxylamine (15 min, at 25°C and 400 rpm). Peptide solutions were pooled and acidified using 20 μL of 10% FA. Reaction vessels, in which the desalting and acetylation were performed, were rinsed with 10% FA in 100 mM NH4COOH (5 min, at 25°C and 400 rpm), and the solvent was added to the pooled sample. The pools were frozen at −80°C and dried down in a SpeedVac. Subsequently, pooled samples were desalted using 500 μg C18, RP solid-phase extraction cartridges (Waters Corp.; wash solvent: 0.1% FA in 2% ACN; elution solvent: 0.1% FA in 50% ACN). Peptide solutions were dried in a SpeedVac and frozen at −80°C. Phosphopeptides were enriched from the desalted and labeled digests (approximately 1.5 mg) using Fe-IMAC.25 Fe-IMAC eluate was desalted using C18 StageTips26, and dried down by vacuum centrifugation on a SpeedVac. High pH RP tip fractionation was performed in Stage Tips26. Tips were washed using 25 μL of 100% ACN, followed by 250 μL of 50% ACN in 25 mM NH4COOH, pH 10 and then equilibrated with 250 μL of 25 mM NH4COOH, pH 10. Subsequently, the desalted peptides were reconstituted in 50 μL of 25 mM NH4COOH, pH 10, and slowly loaded onto the C18 material. After re-application of the flow-through, bound peptides were eluted using 40 μL of solvent with increasing concentrations of ACN (5, 10, 15, 17.5, 50% ACN) in 25 mM NH4COOH, pH 10. The 5 and 50% ACN fractions were pooled and the 17.5% ACN fraction was combined with the previously stored flow-through, resulting in a total of four fractions, which were dried and stored at −20°C until LC-MS/MS measurement.

Mass spectrometric data acquisition for phosphoproteomics. LC-MS/MS measurements of TMT6-plex-labeled phosphopeptides were carried out using a Dionex Ultimate3000 nano-HPLC coupled online to a Fusion Lumos Truibirid mass spectrometer (Thermo Fisher Scientific). Peptides were dissolved in 15 μL citrate solution (50 mM citric acid) and sample was transferred with high-flow sample delivery to a trap column (75 μm × 2 cm, packed-in-house with 5 μm C18 resin; Reprosil PUR AQ, Dr. Maisch, Ammerbruch-Entringen, Germany) and washed using 0.1% FA at a flow rate of 5 μL/min for 10 min. Subsequently, peptides were transferred to an analytical column (75 μm × 45 cm, packed-in-house with 3 μm C18 resin; Reprosil Gold, Dr. Maisch) applying a flow rate of 300 nL/min and separated using a 90 min linear gradient from 4% to 32% LC solvent B (0.1% FA, 5% DMSO in ACN) in LC solvent A (0.1% FA in 5% DMSO). The eluate from the analytical column was sprayed with a stainless steel emitter (Thermo Fisher Scientific) at a source voltage of 2.1 kV into the mass spectrometer. The transfer capillary was set at 300°C. The Fusion Lumos was operated in data-dependent acquisition (DDA), automatically switching between MS1, MS2, and MS3 spectrum acquisition. Full scan MS1 spectra were recorded in the Orbitrap from 360 to 1300 m/z at a resolution of 60k (automatic gain control (AGC) target value of 4e5 charges, maximum injection time (maxIT) of 250 ms). Precursors that were selected for further fragmentation were isolated by the embedded search engine Andromeda65. Oxidation of methionine and N-terminal protein acetylation as well as phosphorylation on S, T, and Y and oxidation of M were specified as variable modifications. Carbamidomethylation on cysteines was specified as a fixed modification. TRYPSIN (Trypsin/PePase) was specified as the proteolytic enzyme with up to two allowed missed cleavage sites. Quantification based on TMT-6plex MS3 reporter ion intensity was enabled, and settings in the MS1 window, 0.7+1000 and 0.7+1500 were specified as the isolation width of seven amino acids and 1% and 5% peptide and protein FDR

Phosphoproteomic data analysis. Proteins and peptides were identified and quantified using MaxQuant (v 1.6.0.10)27 with enabled MS3-based TMT quantification. Peptides were identified according to the ion trap of the Orbitrap with a value 1.2e5, maximal injection time 120 ms), and the resultant MS3-fragment ions were analyzed by high-energy collision-induced dissociation (HCD) at 55% NCE (AGC target value 5e4, isolation width 120 ms). Peptide measurements of TMT6-plex-labeled phosphopeptides were carried out using the software tool Perseus66. For analysis of phosphoproteomic experiments, raw, row-wise, median-normalized data (see previous section) was linked to known regulatory sites by PhosphoSitePlus entries and categorical columns for treatments were assigned. Reverse peptides and potential contaminants were filtered. Next, categorical columns for biological functions and treatments were assigned. TMT reporter intensities were then transformed into log2. At this point, all data were then filtered for valid values in all three replicates of at least one condition. Next, the distribution of TMT reporter intensities was assessed visually by plotting block-based histograms and in a multiscatter plot using the Pearson correlation as an estimate of the overall reproducibility. Next, NA (not available: missing) values were imputed from a normal distribution (width 0.3, down-shift 1.8, per column). The data quality was routinely assessed by two means: First, by plotting a histogram of peptide length vs. counts and visualization of imputed values to confirm a normal distribution of the data, and secondly by principal component analysis (and setting the sample groups according to these settings in Perseus) to judge the sample groupings.

At this stage, data for Volcano plots were produced by t-tests (default settings: two-sided, grouped by conditions, 250 randomizations, FDR 1%, s0: 0.1) These data as well as curves for significance were then exported and plotted in R using ggplot2. For hierarchical clustering, the results of the one-way ANOVA were used as input for an additional two-step process: first data points that represented sample groups significantly different from one another were filtered. The results were divided. Statistical significance in Figs. 3d, 4b was assessed by applying Fisher’s exact test to each amino acid in each position between significantly dephosphorylated and uncharged peptide sequences for PP1 versus PP2A incubated samples. Obtained p-values were adjusted for multiple testing using the method of Benjamini and Hochberg.

Gel-filtration analysis of the phosphoproteomic assay. In order to control for a potential formation of holohexamers of recombinant PP1c and PP2Ac upon incubation with HeLa Koeyt cell lysate, the dephosphorylase assay presented above was also analyzed by gel filtration analysis. For this purpose, all gels were run in the absence of gel filtration as a check for PP1c being able to discriminate between recombinant and endogenous PP1c. After incubation, the assay was injected into a 200 μL sample loop and loaded onto a Superdex 200 Increase 10/300 column installed on an AKTA explorer system (both GE Life Sciences) at room temperature and with a flow rate of 0.25 mL/min and using 10 mM Tris, 100 mM NaCl, 0.1% IEP (pH 7.5) as equilibration and elution buffer. Fractions were automatically collected in 96-well plates. 30 μL of 500μL-fractions corresponding to elution volumes of molecular weights between 30-700 kDa were analyzed by gel electrophoresis. Subsequently, gels were analyzed by colloidal Coomassie staining or Western blotting. Since the UV-absorbance properties of Coomassie G250 and the detection of elution peaks at 280 nm, the gel-filtration standard mix of six proteins (#MWGF1000, Sigma-Aldrich) was compared in buffer with and without 0.1%
IGEPAL. For the positive control, 1 μM His-PP1c and and Inhibitor-2 (I-2, IPP2, PPPIR2) were incubated in 200 μL assay buffer for 1 h before gel filtration.

Analysis of molecular weights of PP1 and PP2A regulatory subunits. Manually curated sets of all annotated PP1 and PP2A regulator subunits were downloaded from the website of the HUGO gene nomenclature committee (HGNC; www.genenames.org, accessed Feb 2020). Subsequently, HGNC IDs were correlated to Uniprot IDs using the uniprot online tool and information about the molecular weight of the canonical isoform for all regulatory subunits was downloaded in batch mode (https://www.uniprot.org, accessed Feb 2020). Data were then imported and further analyzed in R.

PSMSSearch motif analysis. PP1/PP2Ac-sensitive class I sites were divided into three classes as illustrated for PP1C in Supplementary Fig. 4c. All PP1C/PP2Ac-insensitive sites (not significant) were used as controls. The relative amino acid distributions of residues −5 to +5 for the subcategorized sites were then calculated by extracting the sequence surrounding Pser/PThr. These were then uploaded to PSMSearch (http://slim.ucl.ac.uk/psmssearch/, accessed between July and December 2018) in batch mode. Sequences were then analyzed by using the unbiased scoring method.”frequency.” The statistically significant enrichment of Arg in PP1C-sensitive sites compared to PP2Ac-sensitive sites depicted in Fig. 5a was calculated using the two-sided Fisher’s exact test in R.

Co-Immunoprecipitation (Co-IP) experiments for MS analysis. HeLa Kyoto cells expressing transiently transfected ePGEFC1(1-14-3-3) or ePGEFC1(1) control plasmid, were incubated with 20 nM Calycin A (# 9902 S, Cell Signaling Technology) for 12 min. Cells were washed twice with cold PBS and after addition of 300 μL lysis buffer (100 mM NaCl, 10 mM Tris, 0.1% IGEPAL, 1 mM EDTA, 1 mM EGTA, 20 nM Calyculin A, 1x complete Mini protease inhibitor cocktail (Sigma), 1 mM DTT, 1 mM MnCl2) cells were scraped from plates, lysed by 10 push-throughs using an injection needle (21 G, BD) and the insoluble fraction was pelleted by centrifugation (10 min, 104 rcf, 4 °C). Supernatants were then subjected to incubation for 1 μL recombinant phosphatase or buffer for 1 h at 30 °C. Next, we subjected them to immunoprecipitation using α-GFP nanobodies covalently coupled to agarose beads (2 h, 4 °C, obtained from the EMBL PEPcore Core Facility). Beads were washed three times with lysis buffer and samples were eluted in 1x LDS sample buffer (Thermo Fisher Scientific) by heating to 70 °C for 10 min.

Sample preparation and LC-MS/MS of 14-3-3 binding assay. ePGEFC1(1)-14-3-3 or pCMV-GAB2-3FLAG was transfected into HeLa Kyoto cells as described in the respective section for 24 h. Cells were incubated with w/o 20 nM Calycin A (# 9902 S, Cell Signaling Technology) in complete growth media for 12 min. Cells were washed twice with cold PBS and after addition of 500 μL lysis buffer (100 mM NaCl, 10 mM Tris, 0.1% IGEPAL, 1 mM EDTA, 1 mM EGTA, 20 nM Calyculin A, 1x complete Mini protease inhibitor cocktail (Sigma), 2 mM DTT, 2 mM MnCl2) cells were scraped from plates, lysed by 10 pushes through an injection needle and the insoluble fraction was pelleted by centrifugation (10 min, 104 rcf, 4 °C). Supernatants were then subjected to incubation with 1 μL recombinant PP1c (if not indicated otherwise) or buffer for 1 h at 30 °C. For pre-inhibition of recombinant PP1c, equimolar amounts of PP1CA and Calycin A were mixed for 5–10 min prior to addition to the lysate. Next, we subjected samples to immunoprecipitation/pull-down using 25 μL of α-GFP M2 magnetic bead slurry (Sigma-Aldrich) or an equal volume of bead-coupled α-GFP nanobodies (EMBL PEPcore Core Facility) for 2 h at 4 °C. Beads were then washed three times with lysis buffer and samples were eluted in 1x SDS sample buffer by heating to 95 °C for 10 min and further analyzed by SDS PAGE for 14-3-3/GAB2 association and phosphorylation status of GAB2-pS210.

Sample preparation and LC-MS/MS of 14-3-3 co-IP. The samples were then reduced with 25 mM dithiothreitol (10 min at 70 °C) and alkylated with 55 mM iodoacetamide for 20 min (in dark). Proteins were run on a precast 4–12% NuPAGE gel (ThermoFisher Scientific) for about 1 h to concentrate the sample prior to in-gel tryptic digestion, which was performed according to the standard procedures. The peptides obtained were dried to completeness and resuspended in 12 μL of buffer A (0.1% FA) and 5 μL of sample were injected per MS measurement. The experiment was carried out in three independent replicates.

The samples were analyzed by LC-MS/MS on a Dionex Ultimate 3000 nano-HPLC coupled online to a Fusion Lumos Tribar mass spectrometer (Thermo Fisher Scientific). Peptides were delivered to a trap column (75 μm × 2 cm, packed in-house with 5 μm C18 resin; ReproSil Pur AQ DR. Maisch) and washed using 0.1% FA at a flow rate of 5 μL/min for 10 min. Subsequently, peptides were transferred to an analytical column (75 μm × 45 cm, packed-in-house with 3 μm C18 resin; ReproSil Gold) applying a flow rate of 300 nL/min and separated using a 60 min linear gradient from 4% to 32% LC solvent B (0.1% FA, 5% DMSO in ACN) in LC solvent A (0% FA, 5% DMSO). The eluate from the analytical column was sprayed via a stainless steel emitter (Thermo Fisher Scientific) at a source voltage of 2.1 kV into the mass spectrometer. The transfer capillary was heated to 275 °C. The Fusion Lumos was operated in positive ionization mode and data-dependent acquisition (DDA), automatically switching between MS1 and MS2 spectrum acquisition. Full scan MS1 spectra were recorded in the Orbitrap from 360 to 1300 m/z at a resolution of 60k (automatic gain control (AGC) target value of 4e5 charges, maximum injection time (maxIT) of 50 ms). Up to 20 peptide precursors were isolated (isolation window, 1.7 m/z; maximum injection time, 25 ms; and AGC value, 1e5), fragmented by high-energy collision-induced dissociation (HCD) using 30% normalized collision energy (NCE), and analyzed at a resolution of 15k in the Orbitrap. Precursor ions that were singly charged, unassigned, or with charge states >6+ were excluded. The dynamic exclusion duration of fragmented precursor ions was 20 s.

Peptide and protein identification and LFQ were performed using MaxQuant software (version 1.6.1.0)64 by searching the data against all canonical isoform for all regulatory subunits were downloaded in batch mode (www.uniprot.org, accessed Feb 2020). Data were then imported and further analyzed in R.

Protein gel electrophoresis and immunoblotting. For SDS-PAGE, samples were loaded on NuPAGE 4-12% Bis-Tris protein gels (Invitrogen) and gel electrophoresis was performed at 180 V constant in 1x TBE buffer. Samples were transferred onto CN blotting membranes (0.45 μm, neoLab) by wet blotting. Membranes were stained using Ponceau, followed by blocking with Tris-buffered saline with 0.1% Tween (TBS-T) containing 5% (w/v) non-fat milk for 45 min at room temperature. After three washes (5 min), membranes were then incubated with the following antibodies in TBS-T with 5% BSA overnight at 4 °C: α-GFP (1:2000, Abcam, ab6556), α-GAR2 (1:1000, CST, #3329), α-GAB2-pS210 (1:250, Symansis, customized purification), α-FLAG (1:1000, M2, Sigma-Aldrich, F1635), α-p14-3-3 (1:500, SCBT, sc-629), α-PIP1 (1:1000, SCBT, sc-7482), α-PP2A (1:1000, SCBT, sc-136237) or α-6His (1:2000, Abcam, ab9108). Afterwards blots were washed three times in TBS-T and incubated with goat anti-mouse IgG- peroxidase conjugate (1:2500, Sigma, A0168), donkey anti-rabbit IgG- horseradish peroxidase (HRP) conjugate (1:2500, GE Healthcare, GENA934), or rabbit anti-sheep IgG (H + L) HRP conjugate (1:2500, Thermo Fisher Scientific, 61-8620) for 2 h at room temperature. After three final washes with TBS-T, blots were developed using Super Signal West D/Nitro Reagents (GE) and Western Lightning Plus ECL Enhanced Chemiluminescence Substrate (Perkin Elmer) and using a ChemiDoc Touch Imaging System (BioRad) or a Fusion FX Imaging System (Vilber). All blots were quantified using raw images and ImageLab software (v6.0.1, BioRad). Files were imported and analyzed without further modifications. Lane boundaries were set manually. The band detection was carried out using the auto-analysis tool. After band detection, the band profiles were inspected and the boundaries were adjusted if necessary. The quantification was exported from the analysis table and measurements of background adjusted band volumes were used for further normalization steps and graphical depiction. The statistic shown in Fig. 6a, b was obtained by performing a paired two-tailed Student’s t test and subsequent adjustment of p-values for multiple testing.

Directed peptide synthesis of PDP(p)-Nal. PDP-Nal and PDPd-Nal were synthesized using a standard fluorenlymethoxycarbonyl (Fmoc)-solid-phase peptide
synthesis protocol. First, Fmoc-amino acids (5 eq) were linked by double couplings using diisopropylethylamine (DIEA, 6 eq), HBTU; HOBt (both 5 eq), DMF and Rink amide resin. Coupling and N-terminal acetylation was carried out using a ratio of 1:9 (vol/vol) of acetic anhydride/pyridine. 20% Piperidine was used for Fmoc deprotection and 95% TFA, 2.5% TIPS, 2.5% H2O for cleavage from the resin. Subsequently, peptides were ether-purified, precipitated by HPLC, characterized by MS and dried for storage. For experiments all peptides were used from a 10 mM stock in 5% DMSO in water.

Confocal microscopy. The cells were seeded on 8-well ibiTreat µslides (Ibidi) and transfected as described in the respective section. In order to serum-starve cells for 45 min to 1 h before imaging, cells were washed twice with warm PBS and cultured in 200 μL DMEM without FBS and phenol red (Gibco) supplemented with 1 g/L l-glutamine and 1% penicillin/streptomycin. For imaging, cells were then mounted in an Okolab stage incubator system (37°C, 5% CO2 using a Hi101-CRYO-BL temperature controller, CO2:O2 UNIT-BL gas controller, H101-HM active humidity controller and incubation chamber H101-NIKON-TI-S-ER). All images were acquired with the A1R Confocal Scanning System equipped on a Nikon Ti-E inverted microscope installed with an Apo TIRF 100x DIC N2.4 1.49 NA Oil objective. A motorized stage and the Nikon perfect focus system were used to guarantee stable conditions during the experiments. mKate2 was excited with the 561 nm line from a 50 mW Sapphire solid-state laser from Coherent, selected with a bandwidth filter of 595/30 nm. Images were acquired using the GAAP detectors controlled with the NIS Elements 4.50 operating software. Time-lapse-experiments consisted of an image acquisition interval of 15 s for at least 12 min for each sample condition separately using an exposure time of 0.5 frames per second. Cells were treated after frame 3 by adding 100 μL of starvation media (see above) with 300 ng/mL EGF (Gibco) or 150 μM PDP(m)-Nal resulting in final concentrations of 100 ng/mL for EGF and 50 μM for PDPs.

Image analysis and quantification. For image analysis, microscopy files were loaded into Fiji v2.0.0-rc-3/150a. First, images at 0 min and 5 min (HeLa Kyoto) or 12 min (Caco-2 BBe1, SW-480) were extracted, followed by background subtraction. To this end, the threshold was taken to the upper limit to select an area without cells, but the threshold was not applied on the image. Within this area, a measurement for the mean gray value was taken and subtracted from the entire image using [Process-ImageCalculator]. The threshold was then adjusted to the cell boundaries and used to transform the image into a binary image. Next, segmentation was carried out using a median filter (2px), and the functions maskfilter (2px), and the functions watershed (GAB2 is a numerical factor for GAB2 accumulation at the cell periphery, m is the mean gray value, mask 1 is nucleus and cytoplasm and mask 2 is cell periphery and membrane. This resulted in the fold-enrichment of GAB2 at the plasma membrane for EGF/PDP(m)-Nal addition. These data were then imported into R Studio and plotted using ggplot2. Wilcoxon signed-rank test was carried out to assess significance in Fig. 6e and Supplementary Fig. 8. Obtained p-values were adjusted for multiple testing with the Benjamini–Hochberg method.

Statistics. Student’s t test, Wilcoxon test, Fisher’s exact test (95% confidence interval) and one-way ANOVA have been used in the course of this study. For clarity we have described the specific test details at the end of each respective experimental section. In case adjusted p-values are reported in order to perform multiple comparisons, Benjamini–Hochberg correction was applied. The underlying results and exact p-values of statistical analysis using the Fisher’s exact test are also shown in the Source Data.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

Mass spectrometry data have been deposited at the ProteomeXchange Consortium (proteomecentral.proteomeexchange.org) via the PRIDE partner repository with the identifiers PXD012026[http://proteomecentral.proteomeexchange.org/cgi/GetDataset?ID=PXD012026] and PXD013775[http://proteomecentral.proteomeexchange.org/cgi/GetDataset?ID=PXD013775]. The output of all MS-based results is furthermore summarized in Supplementary Tables 1–3 and Supplementary Data 1–3. Supplementary Tables 1–3 as well as Supplementary Figs. 1–10 are found in the Supplementary Information, Supplementary Data 1–3 are provided as excel files. Source data are provided with this paper. All other data supporting the findings presented herein are available from the authors upon request.

Received: 1 January 2020; Accepted: 22 June 2020; Published online: 17 July 2020

References

1. Khoury, G. A., Balibar, R. C. & Floudas, C. A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep. 1, 000090 (2011).
2. Kettenis, A. et al. Target-based discovery of an inhibitor of the regulatory phosphatase PPP1R15B. Cell 174, 1216–1228.e19 (2018).
3. Das, I. et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348, 239–242 (2015).
4. Kauko, O. et al. PP2A inhibition is a druggable MEK inhibitor resistance mechanism in KRAS-mutant lung cancer cells. Sci. Transl. Med. 10, eaax093 (2018).
5. Zhang, M., Yogesh, S. D., Mayfeld, J. E., Gill, G. N. & Zhang, Y. Viewing serine/threonine protein phosphatases through the eyes of drug designers. FEBS J. 280, 4737–4760 (2013).
6. Brautigan, D. L. & Shenolikar, S. Protein serine/threonine phosphatases: keys to unlocking regulators and substrates. Annu. Rev. Biochem. 87, 921–964 (2018).
7. Bollen, M., Peti, W., Ragusa, M. J. & Reuillens, M. The extended PP1 toolkit: designed to create specificity. Trends Biochem. Sci. 35, 450–458 (2010).
8. Li, X., Wilmanns, M., Thornton, J. & Köhn, M. Elucidating human phosphatase-substrate networks. Sci. Signal. 6, ra10 (2013).
9. Brautigan, D. L. Protein Ser/Thr phosphatases—The ugly ducklings of cell signalling. FEBS J. 280, 324–345 (2013).
10. Faha, S., Lujan, P. & Köhn, M. Approaches to study phosphatases. ACS Chem. Biol. 11, 2944–2961 (2016).
11. Kita, A. et al. Crystal structure of the complex between calcineurin A and the catalytic subunit of protein phosphatase 1. Structure 20, 715–724 (2002).
12. Goldberg, I., et al. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376, 745–753 (1995).
13. Peti, W., Nairn, A. C. & Page, R. Structural basis for protein phosphatase 1 regulation and specificity. FEBS J. 280, 596–611 (2013).
14. Smith, R. J. et al. PP1 and PP2A use opposite phospho-dependencies to control distinct processes at the kinetochore. Cell Rep. 28, 2206–2219.e8 (2019).
15. Honkanen, R. E. et al. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J. Biol. Chem. 265, 19401–19404 (1990).
16. Fontanillo, M. et al. Synthesis of highly selective submicromolar micrcystin-based inhibitors of protein phosphatase PP2A over PP1. Angew. Chem. Int. Ed. 55, 13985–13989 (2016).
17. Swingle, M., Ni, L. & Honkanen, R. E. Small-molecule inhibitors of ser/thr protein phosphatases: specificity, use and common forms of abuse. Methods Mol. Biol. 365, 23–38 (2007).
18. Kelker, M. S., Page, R. & Peti, W. Crystal structures of protein phosphatase-1 bound to nodulin-21 and tautomycin: a novel scaffold for structure-based drug design of serine/threonine phosphatase inhibitors. J. Mol. Biol. 385, 11–29 (2001).
19. Choy, M. S. et al. PP1: Tautomycetin complex reveals a path toward the development of PP1-specific inhibitors. J. Am. Chem. Soc. 139, 17703–17706 (2017).
20. Agostinis, P. et al. Dephosphorylation of phosphoproteins and synthetic phosphopeptides. Study of the specificity of the polycation-stimulated and MgATP-dependent phospholipase phosphatases. J. Biol. Chem. 262, 1060–1064 (1987).
21. Agostinis, P. et al. Synthetic peptides as model substrates for the study of the specificity of the polycation-stimulated protein phosphatases. Eur. J. Biochem. 189, 235–241 (1990).
22. Pinna, L. A. & Donella-Deana, A. Phosphorylated synthetic peptides as tools for studying protein phosphatases. Biochim. Biophys. Acta—Mol. Cell Res 1222, 415–431 (1994).
23. Donella-Deana, A., Krinks, M. H., Ruzene, M., Klee, C. & Pinna, L. A. Dephosphorylation of phosphopeptides by calcineurin (protein phosphatase 2B). Eur. J. Biochem. 219, 107–119 (1994).
24. Hein, J. B., Hertz, E. P. T., Garvensk, D. H., Kruse, T. & Nilsson, J. Distinct kinetics of serine and threonine dephosphorylation are essential for mitosis. Nat. Cell Biol. 19, 1433–1440 (2017).
25. McCoy, R. A. et al. Global phosphoproteomic mapping of early mitotic exit in human cells identifies novel substrate dephosphorylation motifs. Mol. Cell. Proteom. 14, 2134–2152 (2015).
26. Godfrey, M. et al. PP2A Cdc55 phosphatase imposes ordered cell-cycle phosphorylation by opposing threonine phosphorylation. Mol. Cell 65, 393–402.e3 (2017).
27. Cundell, M. J. et al. A PP2A-B55 recognition domain reveals substrate dephosphorylation kinetics during mitotic exit. J. Cell Biol. 214, 539–554 (2016).
28. Sun, H. et al. Peptide microarray for high-throughput determination of phosphatase specificity and biology. Angew. Chem. Int. Ed. 47, 1698–1702 (2008).
29. Tinti, M., Panni, S. & Cesareni, G. Profiling phosphopeptide-binding domain recognition specificity using peptide microarrays. Methods Mol. Biol. 177–193. https://doi.org/10.1007/978-1-4939-6384-7_12 (2017).
30. Köhn, M. et al. A microarray strategy for mapping the substrate specificity of protein tyrosine phosphatase. Angew. Chem. Int. Ed. 46, 7700–7703 (2007).
31. Marx, H. et al. A large synthetic peptide and phosphopeptide reference library for mass spectrometry-based proteomics. Nat. Biotechnol. 31, 557–564 (2013).
32. Christofk, H. R., Wu, N., Cantley, L. C. & Asara, J. M. Proteomic screening method for phosphatase motif binding proteins using peptide libraries. J. Proteome Res. 10, 4158–4164 (2011).
33. Morrison, K. L. & Weiss, G. A. Combinatorial alanine-scanning. Curr. Opin. Chem. Biol. 5, 302–307 (2001).
34. Xu, X. et al. Substrate specificity of lymphoid-specific tyrosine phosphatase (Lyp) and identification of Src kinase-associated protein of 55 kDa homolog (SKAP-HOM) as a Lyp substrate. J. Biol. Chem. 286, 30526–30534 (2011).
35. Harris, J. L. et al. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl Acad. Sci. U. S. A. 97, 7754–7759 (2000).
36. Wang, Y. et al. Interrogating PP1 activity in the MAPK pathway with optimized PP1-disrupting peptides. ChemBioChem 20, 66–71 (2019).
37. Zhou, X. Z. et al. Pin1-dependent prolyl isomerizes regulates dephosphorylation of Cdc25C and Tau proteins. Mol. Cell 6, 873–883 (2000).
38. Hemmrich, M. L. et al. Universal quantitative kinase assay based on diagonal SCX chromatography and stable isotope dimethyl labeling provides high-definition kinase consensus motifs for PKA and human MPS1. J. Proteome Res. 12, 2214–2224 (2013).
39. Johnson, C. et al. Bioinformatic and experimental survey of 14-3-3-binding proteins. Biochemistry 47, 69–78 (2010).
40. Rommel, C. et al. Activated Ras displaces 14-3-3 protein from the amino terminus of c-Raf-1. Oncogene 12, 609–619 (1996).
41. Sprenkle, A. B., Davies, S. P., Carling, D., Hardie, D. G. & Sturgill, T. W. Identification of Raf-1 Ser 621 kinase activity from NIH 3T3 cells as AMP-dependent phosphatase activity. J. Biol. Chem. 272, 30526–30534 (1997).
42. Jaumot, M. & Hancock, J. F. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. EMBO J. 17, 1794–1805 (2011).
43. Tyano, S. & Cox, J. Perseus: A bioinformatics platform for integrative analysis of proteomics data in cancer research. Methods Mol. Biol. 1711, 133–148 (2018).
44. Shevchenko, A. et al. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).
45. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol. Cell. Proteom. 13, 2513–2526 (2014).
46. Wlodarczak, N. et al. Structure of the Ca2+-dependent PP2A heterotrimer and insights into Cdc6 dephosphorylation. Cell Res. 23, 931–946 (2013).
47. Zhang, L. & Lee, E. Y. C. Mutational analysis of substrate recognition by protein phosphatase 1. Biochemistry 36, 8389–8414 (1997).

Acknowledgements
The authors thank Pavel Salavé (Signalling Factory Uni Freiburg) for the help with protein and library purification, Nicole Gensch (Signalling Factory, BIOSS and CBiSS Uni Freiburg) for assistance with the live-cell microscopy setup, Maximilian Horner (Faculty of Biology, BIOSS and CBiSS Uni Freiburg) for assistance with gel filtration, Tilman Brunsmann and Sebastian Halbach (IMMZ Uni Freiburg) for the GAB2 antibodies, plasmids and discussions, Lena Reimann and Bettina Warscheid (Faculty of Biology, BIOSS and CBiSS Uni Freiburg) for advice in MS analysis, the EMBL PEPCore for preparation of PP1c and bead-coupled GFP nanobodies, and Christina Gross (CBiSS Uni Freiburg) for scientific and language editing of the manuscript. This work was supported by an ERC Starting Grant (#336567) and an ERC Consolidator Grant (#865119) to M.K., and by funding from the Deutsche Forschungsgemeinschaft DFG through EXC 294 BIOSS and SFB 850 (M.K.).

Author contributions
B.H. designed study parts, optimized and carried out experiments, established and carried out data analysis, and wrote the manuscript. T.K. carried out peptide library dephosphorylation assays and analyzed the data. J.C. synthesized and optimized peptide libraries. D.H. co-designed the PLDMS approach, performed LC-MS/MS measurements of peptide library samples and processed primary MS data. S.H. and C.L. designed and carried out LC-MS/MS measurements for proteomics experiments and processed primary MS data. T.S. optimized and performed live-cell microscopy experiments. A.B. and B.H. carried out the computational structural analysis. N.K. carried out statistical analysis. A.B. T.K., D.H., M.M.S., T.S., C.L., S.H., and B.K. edited the manuscript. M.M.S. supervised phosphopeptide library MS-experiments. B.K. supervised phosphoproteomic experiments. M.K. designed, arranged, and supervised the study, and wrote and edited the manuscript.

Competing interests
The authors declare no competing interests.
Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-17334-x.

Correspondence and requests for materials should be addressed to M.K.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020