Note on approximating the Laplace transform of a Gaussian on a complex disk

Yury Polyanskiy and Yihong Wu∗

August 31, 2020

Abstract

In this short note we study how well a Gaussian distribution can be approximated by distributions supported on $[-a,a]$. Perhaps, the natural conjecture is that for large a the almost optimal choice is given by truncating the Gaussian to $[-a,a]$. Indeed, such approximation achieves the optimal rate of $e^{-\Theta(a^2)}$ in terms of the L^∞-distance between characteristic functions. However, if we consider the L^∞-distance between Laplace transforms on a complex disk, the optimal rate is $e^{-\Theta(a^2 \log a)}$, while truncation still only attains $e^{-\Theta(a^2)}$. The optimal rate can be attained by the Gauss-Hermite quadrature. As corollary, we also construct a “super-flat” Gaussian mixture of $\Theta(a^2)$ components with means in $[-a,a]$ and whose density has all derivatives bounded by $e^{-\Omega(a^2 \log (\alpha))}$ in the $O(1)$-neighborhood of the origin.

1 Approximating the Gaussian

We study the best approximation of a Gaussian distribution by compact support measures, in the sense of the uniform approximation of the Laplace transform on a complex disk. Let $L_\pi(z) = \int_{\mathbb{R}} d\pi(y)e^{zy}$ be the Laplace transform, $z \in \mathbb{C}$, of the measure π and $\Psi_\pi(t) \triangleq L_\pi(it)$ be its characteristic function. Denote $L_0(z) = e^{z^2/2}$ and $\Psi_0(t) = e^{-t^2/2}$ the Laplace transform and the characteristic function corresponding to the standard Gaussian $\pi_0 = \mathcal{N}(0,1)$ with density

$$\phi(x) \triangleq \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad x \in \mathbb{R}.$$

How well can a measure π_1 with support on $[-a,a]$ approximate π_0? Perhaps the most natural choice for π_1 is the truncated π_0:

$$\pi_1(dx) \triangleq \phi_a(x)dx, \quad \phi_a(x) \triangleq \frac{\phi(x)}{1 - 2Q(a)}1_{\{|x| \leq a\}},$$

where $Q(a) = \mathbb{P}[\mathcal{N}(0,1) > a]$. Indeed, truncation is asymptotically optimal (as $a \to \infty$) in approximating the characteristic function, as made precise by the following result:

Proposition 1. There exists some $c > 0$ such that for all $a \geq 1$ and any probability measure π_1 supported on $[-a,a]$ we have

$$\sup_{t \in \mathbb{R}} |\Psi_{\pi_1}(t) - e^{-t^2/2}| \geq ce^{-ca^2}.$$

∗Y.P. is with the Department of EECS, MIT, Cambridge, MA, email: yp@mit.edu. Y.W. is with the Department of Statistics and Data Science, Yale University, New Haven, CT, email: yihong.wu@yale.edu.
Furthermore, truncation (1) satisfies (for $a \geq 1$)

$$\sup_{t \in \mathbb{R}} |\Psi_{\pi_1}(t) - e^{-t^2/2}| \leq 2e^{-a^2/2}. \quad (3)$$

Proof. Let us define $B(z) \triangleq L_\pi(z) - e^{z^2/2}$, a holomorphic (entire) function on \mathbb{C}. Note that if $\Re(z) = r$ then

$$|L_\pi(z)| \leq e^{|r|}, \quad |e^{z^2/2}| \leq e^{r^2/2},$$

and thus for $r \geq 2a$

$$b(r) \triangleq \sup\{|B(z)| : \Re(z) = r\} \leq e^{ar} + e^{r^2/2} \leq 2e^{r^2/2} \quad (4)$$

On the other hand, for every $r \geq 3a, a \geq 1$ we have

$$b(r) \geq |B(r)| \geq e^{r^2/2} - e^{ar} \geq \frac{1}{2}e^{r^2/2}. \quad (5)$$

Applying the Hadamard three-lines theorem to $B(z)$, we conclude that $r \mapsto \log b(r)$ is convex and hence

$$b(3a) \leq (b(0))^{1/2}(b(6a))^{1/2}. \quad (6)$$

Since the left-hand side of (2) equals $b(0)$, (2) then follows from (4)-(6).

For the converse part, in view of (1), the total variation between π_0 and its conditional version π_1 is given by

$$\int_\mathbb{R} |\phi_a(x) - \phi(x)|dx = 2\|\pi_0 - \pi_1\|_{TV} = 2\pi_0([-a/a]) = 4Q(a)$$

Therefore for the Fourier transform of $\phi_a - \phi$ we get

$$\sup_{t \in \mathbb{R}} |\Psi_{\pi_1}(t) - e^{-t^2/2}| \leq 4Q(a) \leq \frac{4}{\sqrt{2\pi a}}e^{-a^2/2} \leq 2e^{-a^2/2}. \quad \Box$$

Despite this evidence, it turns out that for the purpose of approximating Laplace transform in a neighborhood of 0, there is a much better approximation than (1).

Theorem 2. There exists some constant $c > 0$ such that for any probability measure π supported on $[-a/a], a \geq 1$, we have

$$\sup_{|z| \leq 1, z \in \mathbb{C}} |e^{z^2/2} - L_\pi(z)| \geq ce^{-ca^2 \log(a)} \quad (7)$$

Furthermore, there exists an absolute constant $c_1 > 0$ so that for all $b \geq 1$ and all $a \geq 2c_1b$ there exists distribution π (the Gauss-Hermite quadrature) supported on $[-a/a]$ such that

$$\sup_{|z| \leq b, z \in \mathbb{C}} |e^{z^2/2} - L_\pi(z)| \leq 3(c_1b/a)^{a^2/4}.$$

Taking $b = 1$ implies that the bound (7) is order-optimal.

Remark 1. When π_1 is given by the truncation (1), then performing explicit calculation for $z \in \mathbb{R}$ we have

$$L_{\pi_1}(z) = e^{z^2/2} \frac{\Phi(a + z) + \Phi(a - z) - 1}{2\Phi(a) - 1}.$$

The same expression (by analytic continuation) holds for arbitrary $z \in \mathbb{C}$ if $\Phi(z)$ is understood as solution of $\Phi'(z) = \phi(z), \Phi(0) = 1/2$. For $|z| = O(1)$, the approximation error is $e^{-\Omega(a^2)}$, rather than $e^{-\Omega(a^2 \log a)}$. The suboptimality of truncation is demonstrated on Fig. 1.
Figure 1: Comparison of approximations of $\mathcal{N}(0, 1)$ by distributions supported on $[-a, a]$, as measured by the (log of) L_∞ distance between the Laplace transform on the unit disk in \mathbb{C}.

Proof. As above, denote $B(z) = L_\pi(z) - e^{z^2/2}$, and define

$$M(r) = \sup_{|z| \leq r, z \in \mathbb{C}} |B(z)|.$$

From (5) we have for any $r \geq 3a, a \geq 1$

$$M(r) \geq \frac{1}{2} e^{r^2/2}$$

and from $|L_\pi(z)| \leq e^{a|z|}$ we also have (for any $r \geq 2a$):

$$M(r) \leq e^{ar} + e^{r^2/2} \leq 2e^{r^2/2}.$$

Applying the Hadamard three-circles theorem, we have $\log r \mapsto \log M(r)$ is convex, and hence

$$M(3a) \leq (M(1))^{1-\lambda}(M(5a))^\lambda,$$

where $\lambda = \frac{\log(5a)}{\log(3a)}$ and $1 - \lambda \Theta\left(\frac{1}{\log a}\right)$. From here we obtain for some constant $c > 0$

$$\log M(1) \geq c(-a^2 - 1) \log(a),$$

which proves (7).

For the upper bound, take π to be the k-point Gauss-Hermite quadrature of $\mathcal{N}(0, 1)$ (cf. [SB02, Section 3.6]). This is the unique k-atomic distribution that matches the first $2k - 1$ moments of $\mathcal{N}(0, 1)$. Specifically, we have:

- π is supported on the roots of the degree-k Hermite polynomial, which lie in $[-\sqrt{4k+2}, \sqrt{4k+2}]$ [Sze75, Theorem 6.32];

- The i-th moment of π, denoted by $m_i(\pi)$, satisfies $m_i(\pi) = m_i(\mathcal{N}(0, 1))$ for all $i = 1, \ldots, 2k - 1$.

• π is symmetric so that all odd moments are zero.

We set $k = \lceil a^2 / 8 \rceil$, so that π is supported on $[-a, a]$. Let us denote $X \sim \pi$ and $G \sim \mathcal{N}(0, 1)$. By Taylor expansion we get

$$B(z) = \mathbb{E}[e^{zX}] - \mathbb{E}[e^{zG}] = \sum_{m=2k}^{\infty} \frac{1}{m!} z^m (\mathbb{E}[X^m] - \mathbb{E}[G^m]) = \sum_{\ell=k}^{\infty} \frac{1}{(2\ell)!} z^{2\ell} (\mathbb{E}[X^{2\ell}] - \mathbb{E}[G^{2\ell}]).$$

Now, we will bound $(2\ell)! \geq (2\ell/e)^2 2\ell$, $\mathbb{E}[X^{2\ell}] \leq a^{2\ell}$, $\mathbb{E}[G^{2\ell}] = (2\ell - 1)!! \leq (2\ell)\ell$. This implies that for all $|z| \leq b$ we have

$$|B(z)| \leq \sum_{\ell\geq k} \left\{ \left(\frac{ea^2}{2\ell} \right)^{2\ell} + \left(\frac{e}{\sqrt{2\ell}} \right)^{2\ell} \right\} |z|^{2\ell} \leq \sum_{\ell\geq k} \left\{ \left(\frac{ea^2}{2k} \right)^{2\ell} + \left(\frac{e}{\sqrt{2k}} \right)^{2\ell} \right\} |z|^{2\ell} \leq 2 \sum_{\ell\geq k} (c_1b/a)^{2\ell},$$

where in the last step we used $\frac{ea^2}{2k}, \frac{e}{\sqrt{2k}} \leq \frac{c_1}{a}$ for some absolute constant c_1. In all, we have that whenever $c_1b/a < 1/2$ we get

$$|B(z)| \leq \frac{2}{1 - (c_1b/a)^2} (c_1b/a)^{2k} \leq 3(c_1b/a)^{a^2/4}.$$

\[\square\]

Remark 2. Note that our proof does not show that for any π supported on $[-a, a]$, its characteristic function restricted on $[-1, 1]$ must satisfy:

$$\sup_{|t| \leq 1} |\Psi_\pi(t) - e^{-t^2/2}| \geq ce^{-ca^2 \log a}.$$

It is natural to conjecture that this should hold, though.

Remark 3. Note also that the Gauss-Hermite quadrature considered in the theorem, while essentially optimal on complex disks, is not *uniformly* better than the naive truncation. For example, due to its finite support, the Gauss-Hermite quadrature is a very bad approximation in the sense of (2). Indeed, for any finite discrete distribution π_1 we have $\limsup_{t \to \infty} |\Psi_{\pi_1}(t)| = 1$, thus only attaining the trivial bound of 1 in the right-hand side of (2). (To see this, note that $\Psi_{\pi_1}(t) = \sum_{j=1}^{k} p_j e^{it\omega_j}$. By simultaneous rational approximation (see, e.g., [Cas72, Theorem VI, p. 13]), we have infinitely many values q such that for all $j |q\omega_j - p_j| < \frac{1}{q^{1/2}}$ for some $p_j \in \mathbb{Z}$. In turn, this implies that $\liminf_{t \to \infty} \max_{j=1, \ldots, m}(t \omega_j \mod 2\pi) = 0$, and that $\Psi_{\pi_1}(t) \to 1$ along the subsequence of t attaining \liminf.)

2 Super-flat Gaussian mixtures

As a corollary of construction in the previous section we can also derive a curious discrete distribution $\pi_2 = \sum_m w_m \delta_{x_m}$ supported on $[-a, a]$ such that its convolution with the Gaussian kernel $\pi_2 \ast \phi$ is maximally flat near the origin. More precisely, we have the following result.
Corollary 3. There exist constants $C_1, C > 0$ such that for every $a > 0$ there exists $k = \Theta(a^2)$, $w_m \geq 0$ with $\sum_{m=1}^k w_m = 1$ and $x_m \in [-a, a]$, $m \in \{1, \ldots, k\}$, such that
\[
\left| \left(\frac{d}{dz} \right)^n \sum_{m=1}^k w_m \phi(z - x_m) \right| \leq n! \cdot C_1 e^{-Ca^2 \log(a)} \quad \forall z \in \mathbb{C}, |z| \leq 1, n \in \{1, 2, \ldots\}.
\]

Proof. Consider the distribution $\pi = \sum_{m=1}^k \tilde{w}_m \delta_{x_m}$ claimed by Theorem 2 for $b = 2$. Then (here and below C designates some absolute constant, possibly different in every occurrence) we have
\[
\sup_{|z| \leq 2} |L_\pi(z) - e^{-z^2/2}| \leq Ce^{-Ca^2 \log(a)}.
\]
Note that the function $e^{-z^2/2}$ is also bounded on $|z| \leq 2$ and thus we have
\[
\sup_{|z| \leq 2} |L_\pi(z)e^{-z^2/2} - 1| \leq Ce^{-Ca^2 \log(a)}.
\]
By Cauchy formula, this also implies that derivatives of the two functions inside $|\cdot|$ must satisfy the same estimate on a smaller disk, i.e.
\[
\sup_{|z| \leq 1} \left| \left(\frac{d}{dz} \right)^n L_\pi(z)e^{-z^2/2} \right| \leq n! \cdot C e^{-Ca^2 \log(a)}. \tag{8}
\]
Now, define $w_m = \frac{1}{B} \tilde{w}_m e^{x_m^2/2}$, where $B = \sum_m \tilde{w}_m e^{x_m^2/2}$. We then have an identity:
\[
L_\pi(z)e^{-z^2/2} = B \sum_m w_m e^{-(z-x_m)^2/2}
\]
Plugging this into (8) and noticing that $B \geq 1$ we get the result. \hfill \square

Remark 4. This corollary was in fact the main motivation of this note. More exactly, in the study of the properties of non-parametric maximum-likelihood estimation of Gaussian mixtures, we conjectured that certain mixtures must possess some special z_0 in the unit disk on \mathbb{C} such that $\sum m w_m \phi'(z_0 - x_m) \geq e^{-O(a^2)}$. The stated corollary shows that this is not true for all mixtures. See [PW20, Section 5.3] for more details on why lower-bounding the derivative is important. In particular, one open question is whether the lower bound $e^{-O(a^2)}$ holds (with high probability) for the case when $a \asymp \sqrt{\log k}$ and $x_m, m \in \{1, \ldots, k\}$, are iid samples of $\mathcal{N}(0, 1)$, while w_m’s can be chosen arbitrarily given x_m’s.

References

[Cas72] J. W. S. Cassels. An Introduction to Diophantine Approximation. Cambridge University Press, Cambridge, United Kingdom, 1972.

[PW20] Yury Polyanskiy and Yihong Wu. Self-regularizing property of nonparametric maximum likelihood estimator in mixture models. Arxiv preprint arXiv:2008.08244, Aug 2020.

[SB02] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, New York, NY, 3rd edition, 2002.

[Sze75] G. Szegö. Orthogonal polynomials. American Mathematical Society, Providence, RI, 4th edition, 1975.