Effects of nitration on Prx2 functionality

Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase*

Lía M. Randall1,2, Bruno Manta1,4, Martín Hugo2,3, Magdalena Gil4,5, Carlos Batthyány2,3,4, Madia Trujillo2,3, Leslie B. Poole6, and Ana Denicola1,2

1 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
2 Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
3 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
4 Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Montevideo, Uruguay.
5 Unidad de Bioquímica y Proteómica Analíticas, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.
6 Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
§ Present address: Laboratorio de Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo, Uruguay.

*Running title: Effects of nitration on Prx2 functionality

To whom correspondence should be addressed: Dr. Ana Denicola, Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República. Iguá 4225, 11400, Montevideo, Uruguay. Tel./Fax: (598) 2-525-0749. E-mail: denicola@fcien.edu.uy

Keywords: peroxiredoxin; post-translational modification; redox signaling; oxidative stress; hydrogen peroxide; peroxynitrite; overoxidation; tyrosine nitration.

Background: Peroxiredoxin 2 (Prx2) reduces peroxides through a cysteine-dependent mechanism and is susceptible to overoxidation of its reactive cysteine during catalysis.

Results: Nitration rendered a more active peroxidase, less sensitive to overoxidation.

Conclusion: Nitration of Prx2 favors disulfide bond formation over overoxidation.

Significance: Understanding the mechanisms by which post-translational modifications modify Prx2 functionality in vitro is crucial to evaluate potential in vivo consequences for redox signaling.

ABSTRACT

Peroxiredoxins (Prx) are efficient thiol-dependent peroxidases and key players in the mechanism of H2O2-induced redox signaling. Any structural change that could affect their redox state, oligomeric structure, and/or interaction with other proteins could have a significant impact on the cascade of signaling events. Several post-translational modifications (PTM) have been reported to modulate Prx activity. One of these, overoxidation of the peroxidatic cysteine to the sulfenic derivative, inactivates the enzyme and has been proposed...
Effects of nitration on Prx2 functionality

as a mechanism of H₂O₂ accumulation in redox signaling (the floodgate hypothesis). Nitration of Prx has been reported in vitro as well as in vivo; in particular, nitrated Prx2 was identified in brains of Alzheimer’s disease patients. In this work we characterize Prx2 tyrosine nitration, a PTM on a non-catalytical residue that increases its peroxidase activity and its resistance to overoxidation. Mass spectrometry analysis revealed that treatment of disulfide-oxidized Prx2 with excess peroxynitrite renders mainly mononitrated and dinitrated species. Tyrosine 193 of the YF motif at the C-terminus, associated with the susceptibility towards overoxidation of eukaryotic Prx, was identified as nitrated and is most likely responsible for the protection of the peroxidatic cysteine against oxidative inactivation. Kinetic analyses suggest tyrosine nitration facilitates the intermolecular disulfide formation, transforming a sensitive Prx into a robust one. Thus, tyrosine nitration appears as another mechanism to modulate these enzymes in the complex network of redox signaling.

Peroxiredoxins (Prx, EC 1.11.1.15) are a group of enzymes that efficiently reduce peroxides based on a critical cysteine residue (peroxidatic cysteine, CP). The first step in catalysis is the reaction of CP with H₂O₂ to form a sulfenic acid derivative (CP-SOH) which, in 2-cysteine Prx (2-Cys Prx), reacts with another cysteine residue (the resolving cysteine, CR) to form a disulfide that is then reduced by the thioredoxin/thioredoxin reductase/NADPH system (Figure 1) (1-4). In typical 2 Cys-Prx or Prx1 subfamily (Prx 1 – 4 in mammals (5)), the reaction occurs between the CP-SOH of one subunit with the CR-SH of another subunit, thus, each homodimer contains two active sites (6). In addition, for the intermolecular disulfide to be formed, a conformational change is needed to approach the CP-SOH from one subunit towards the CR from the other subunit. This rearrangement involves the transition from the so-called fully-folded (FF) form, in which the CP and the CR are about 14 Å apart, to a locally unfolded (LU) conformation (Figure 1) (2, 7, 8). The sulfenic acid intermediate can react with the CR-SH forming a disulfide, or with a second molecule of H₂O₂ to form sulfinic acid (overoxidation), inactivating the peroxidase activity. The oxidation of cysteine to cysteinesulfinic acid (CP-SO₂H) is an irreversible post-translational modification (PTM) for most proteins other than 2-Cys Prx, where the specific enzymatic reduction of CP-SO₂H by sulfiredoxin (Srx) in an ATP-dependent mechanism was demonstrated (9, 10).

Prx are ubiquitous and highly expressed proteins, and their extraordinary reactivity and specificity for hydroperoxides makes them ideal sensors of endogenous H₂O₂ and probably the first step in H₂O₂-induced signaling pathways (11-15). PTM of Prx that could affect their activity, redox state, oligomeric structure or interaction with other proteins will undoubtedly affect redox signaling by H₂O₂, and it has been hypothesized that Prx inactivation via overoxidation is a way to accumulate H₂O₂ to allow oxidation of other redox proteins (the floodgate hypothesis) (2). The presence of Srx as an enzyme that specifically reduces typical 2-Cys Prx cysteine sulfenic acid supports the biological relevance of their peroxidase activity and the signaling role of their oxidative inactivation (16).

Prx2, the most abundant peroxidase in mammalian erythrocytes (17, 18), is capable of reducing hydroperoxides as well as peroxynitrite⁠-⁠a potent oxidant formed in vivo by the diffusion-controlled reaction between superoxide and nitric oxide. Our group recently demonstrated that erythrocyte Prx2 not only is susceptible to overoxidation by peroxynitrite, but it can also get nitrated during catalysis (19). Moreover, nitrated Prx2 was detected in brains of patients with early Alzheimer’s disease (20).

Protein tyrosine nitration is a common PTM occurring under conditions of nitroxidative stress, which alters the structure and function of the modified protein. The biological mechanism of tyrosine oxidation begins with the formation of the tyrosyl radical followed by addition of nitrogen

⁠-⁠The term peroxynitrite is used to refer to the sum of peroxynitrite anion (ONOO⁻) and peroxynitrous acid (ONOOH) unless specified.
Effects of nitration on Prx2 functionality

dioxide yielding 3-nitrotyrosine, and one of the major pathways of protein nitration in vivo involves the reaction of radicals derived from peroxynitrite homolysis (21-25).

We herein report the effects of Prx2 modification by peroxynitrite treatment, focusing on tyrosine nitration, which increases its peroxidase activity along with resistance to overoxidation by H\textsubscript{2}O\textsubscript{2}. We hypothesize that nitration of tyrosine 193 from the YF motif at the C-terminus, close to the active site, favors transition from the FF to the LU conformation, promoting disulfide formation and inhibiting C\textsubscript{P} overoxidation.

EXPERIMENTAL PROCEDURES

Chemicals. Dithiothreitol (DTT), 5',5'-dithio-bis(2-nitrobenzoic acid) (DTNB) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) were purchased from AppliChem (Germany). 4',4'-dithiodipyridine (DTDP) was purchased from ACROS Organics, Fisher Scientific (USA). Hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) and diethylenetriaminepentaacetic acid (dtpa) were purchased from Sigma (USA). Peroxynitrite was synthesized as in (26). All other reagents were of analytical grade and used as received.

Purification of proteins. Human Prx2 was purified from human erythrocytes according to (19). Recombinant human thioredoxin (hTrx1), E. coli thioredoxin 1 (EcTrx1) and recombinant E. coli thioredoxin reductase (EcTR) were produced and purified as reported in (19) and (27). Echinococcus granulosus (EgTR) was kindly provided by Dr. G. Salinas (28).

Peroxides and proteins quantification. The concentration of H\textsubscript{2}O\textsubscript{2} stock solutions was measured at 240 nm (ε\textsubscript{240} = 43.6 M-1 cm-1). Peroxynitrite concentration was determined at 302 nm (ε\textsubscript{302} = 1,670 M-1 cm-1) as in (26). Protein concentration was measured by absorption at 280 nm in the assay buffer, using the corresponding ε determined for the oxidized proteins according to (29): ε\textsubscript{280}(Prx2) = 19,380 M-1 cm-1, ε\textsubscript{280}(hTrx) = 7100 M-1 cm-1, ε\textsubscript{280}(EcTrx) = 14,060 M-1 cm-1, and ε\textsubscript{280}(EcTR) = 19,160 M-1 cm-1. Concentration of active EgTR was estimated according to FAD and selenium content (28).

Thiol quantification. Thiol concentration of the reduced proteins was measured according to (30) with minor modifications. Briefly, the protein was reduced with DTT (>10-fold molar excess for 30 min) and the remanent reductant removed by buffer exchange with a HiTrap coupled to a FPLC with online UV detection equilibrated in 50 mM potassium phosphate buffer pH 7.4, with 0.1 mM dtpa and 150 mM NaCl. An excess of DTDP was added to the protein sample in the assay buffer and absorption was measured at 324 nm (ε\textsubscript{324} = 21,400 M-1 cm-1).

Prx2 thiol reduction and oxidation. For reduction of purified Prx2, the enzyme was reduced with 1 mM DTT, 30 min at RT immediately before the experiment and the mixture was passed twice through a Bio-Spin column (BioRad) pre-equilibrated with the assay buffer. Thiol concentration was determined just after elution from the column and controlled oxidation to its disulfide form was achieved with the addition of 0.6 equivalents of H\textsubscript{2}O\textsubscript{2}.

Nitration of Prx2 by peroxynitrite. To prevent overoxidation of C\textsubscript{P}, treatment with peroxynitrite was performed on the disulfide-oxidized enzyme. The corresponding molar excess of peroxynitrite was added in a unique bolus or a flux-like addition. Previously decomposed peroxynitrite in the assay buffer (reverse-order addition, ROA) was used as a control of peroxynitrite-derived products reaction with Prx2. Tyrosine nitration of Prx2 was confirmed by western blot analysis using specific antibodies. Briefly, samples were prepared for 15 % SDS-PAGE under reducing (Figure 2B and 4C) or non-reducing conditions (Figure 3) without heating, and transferred to a PVDF membrane. The membrane was incubated with anti-nitrotyrosine antibodies (α-NO\textsubscript{2}Y (31)) in a 1/1000 dilution and with Goat anti-Rabbit IRDye® 800 CW (LI-COR® Biosciences) secondary antibody (1/20000).

Overoxidation of Prx2 by H\textsubscript{2}O\textsubscript{2}. To study the effect of nitration on the susceptibility of Prx2 to overoxidation, it was necessary to start with a reduced non-overoxidized but yet nitrated form of
Prx2. Disulfide-oxidized Prx2 was treated with peroxynitrite for nitration as described above, then reduced, and after removal of residual DTT the enzyme was treated with H₂O₂. Samples were resolved in 15 % SDS-PAGE under non-reducing conditions, transferred to a PVDF membrane and blotted with specific α-Prx2-Cp-SO₂/3H antibody (AbFrontier, Korea). For control, rabbit polyclonal antibodies against Prx2 were used (α-Prx2, AbFrontier, Korea).

Mild stripping of western blot membranes. Membranes were incubated for 10-min in mild stripping buffer (1.5% glycine, 0.1% SDS, pH 2.2) twice, followed by two 10-min incubations in PBS and two 5-min incubations in TBS-Tween 0.1 %. Blockage was performed for 2 h or overnight in 5 % milk in TBS-Tween 0.1 %.

NADPH-linked peroxidase activity. NADPH consumption was followed spectrophotometrically at 340 nm in a Cary 50 spectrophotometer (Varian, Australia). Prx2 was mixed with 120 μM NADPH, 0.4 μM EgTR, 8 μM hTrx1 in the described buffer, and the reaction was started with the addition of H₂O₂. An Applied Photophysics RX2000 Rapid Kinetics Spectrophotometer Accessory was used for stopped-flow experiments.

Thioredoxin-linked peroxidase activity. The catalytical H₂O₂ decomposition by Prx2 was followed through the intrinsic fluorescence (λₜₐₓc = 280 nm, λₑₘ = 340 nm) of reduced EcTrx1 (10 μM) in a coupled assay with Prx2 (50 nM) and H₂O₂ (7 μM) in a thermostatted Cary Eclipse spectrofluorimeter (Varian Inc., Australia). Fluorescence changes were calibrated using a known concentration of reduced and oxidized EcTrx1.

MS analysis of Prx2 tryptic digestion. For analysis of proteins obtained from acrylamide gels, selected bands were manually cut and in-gel digested with trypsin (sequence grade, Promega) as described (32). Peptides were extracted from gels using aqueous 60% ACN containing 0.1% TFA and concentrated by vacuum drying. Mass spectra of peptides mixtures were acquired in a linear ion trap mass spectrometer (LTQ Velos, Thermo) coupled on line with a nano-liquid chromatography system (easy-nLC, Proxeon-Themo). Peptides were separated in a reversed-phase column (EASY-column™ C18 75 um x 10 cm, ID) equipped with a trap column (EASY-column™ C18 100 um x 2 cm, ID) with solvent A (0.1 % formic acid in H₂O) and solvent B (0.1% formic acid in acetonitrile), and eluted using a linear gradient from 0 to 45% B in 70 min at 300 nL/min. Electrospray voltage 1.6 kV; capillary temperature 270 °C. Peptides detected in the positive ion mode using a mass range of 300-2000. Proteins were identified by database searching of measured peptide m/z values using the MASCOT search engine (Matrix Science http://www.matrixscience.com/search_form_select.html) and Sequest (Thermo) software, based on the following search parameters: monoisotopic mass tolerance, 1.5 Da; fragment mass tolerance, 0.8 Da; partial methionine oxidation, cysteine carbamidomethylation, tyrosine nitration, and three missed tryptic cleavages allowed. Protein mass and taxonomy were unrestricted. Significant scores (p<0.05) were used as criteria for positive peptides identification.

Whole protein mass spectrometry analysis of peroxynitrite-treated Prx2. Control and peroxynitrite-treated Prx2 were reduced and 20 mM NEM was added to alkylate thiols. Remaining DTT and NEM were removed using Bio-Gel P6 Gel® (Bio-Rad) columns and 30 mM ammonium bicarbonate buffer for elution. Samples were diluted from 4 μL to 40 μL with methanol:H₂O 1:1 2% formic acid, and 2-3 μL were analyzed using a Waters Q-Tof API US operated in "V" mode using a Triversa Nanomate sprayer from Advion. Sprayer voltage ~ 1.8 kV; Q-Tof cone voltage 45 V; source temperature 80 °C; nitrogen desolvation temperature 200 °C. Data acquired from 600-1900 m/z in positive ion continuum mode; scan time 2.4 s; interscan delay 0.1 s. Max Ent data was produced for 10,000 Da to 50,000 Da.

RESULTS

Treatment of Prx2 with peroxynitrite yields a nitrated enzyme. Disulfide-oxidized Prx2 was treated with a 5-fold excess of peroxynitrite or its
Effects of nitration on Prx2 functionality

decomposition products, as a control designated reverse-order addition (ROA). Nitration of Prx2 was confirmed by immunoblotting and mass spectrometry analyses (Figure 2). For QTOF-ESI mass spectrometry analysis, disulfide-oxidized Prx2 was reduced with DTT and alkylated with NEM. A main peak of m/z 22,053 was obtained for control Prx2, which corresponds to the Prx monomer (21,803 Da) with both C_P and C_R alkylated with NEM (125 Da) (Figure 2A). When treated with a 5-fold excess of peroxynitrite, mainly mononitrated (m/z 22,053 + 45) and dinitrated (m/z 22,053 + (2 x 45)) species were detected, confirming nitration is the main modification after peroxynitrite treatment of disulfide Prx2. The minor species detected in both experiments (m/z 21,959) corresponds to the monomer of Prx2 with one Cys NEM-alkylated and the other one overoxidized, suggesting initial oxidation of Prx2 with H_2O_2 to obtain the disulfide form rendered a minor portion of overoxidized protein (Figure 2A). Western blot analysis using antibodies against nitrotyrosine residues confirmed tyrosine nitration after the peroxynitrite-treatment (Figure 2B). Some non-reducible dimers were observed, suggesting the presence of di-tyrosine dimers, characteristic of peroxynitrite-treatment of proteins (22).

Analysis of peroxynitrite-treated Prx2 overoxidation. 2-Cys Prx sensitivity to overoxidation can be followed by non-reducing SDS-PAGE (33, 34). As shown in Figure 3, and consistently with results in Figure 2, overoxidation was detected at lower H_2O_2 concentrations for the non-treated Prx2 than for the peroxynitrite-treated enzyme. Addition of increasing concentrations of H_2O_2 to reduced control or peroxynitrite-treated Prx2 caused the transition from reduced monomer (M) to mono-disulfide dimer (D_{SS}) and di-disulfide dimer (D_{SS/SS}), with high H_2O_2 concentrations rendering overoxidized disulfide dimer (D_{SS}) and overoxidized monomer (M). As previously observed (33, 35), substoichiometric addition of H_2O_2 was enough to overoxidize the enzyme in these conditions, leading to the formation of dimers containing a disulfide and an overoxidized C_P, while high concentrations of the oxidant were not able to completely overoxidize the enzyme to its monomers. This result supports the idea of asymmetry of the homodimer active sites, suggesting that, under non-catalytic conditions, the redox state of one C_P affects overoxidation of the second one, as previously discussed by others (35-38). Moreover, nitration protected Prx2 from overoxidation, as the treated enzyme showed less overoxidation after H_2O_2 treatment than the control under non-catalytic conditions, suggesting a structural connection between tyrosine nitration and overoxidation of the peroxidatic cysteine.

Treatment of Prx2 with peroxynitrite affects its peroxidase activity. Peroxidase activity was measured following the consumption of NADPH at 340 nm after addition of H_2O_2 to a system containing Prx2, hTrx1, EgTR and NADPH (Figure 4A). Treated Prx2 showed a higher rate of H_2O_2 reduction than the ROA control. The gain in peroxidase activity was confirmed by following NADPH consumption in a stopped-flow spectrophotometer, demonstrating the change in peroxidase activity precedes oxidative inactivation of the enzyme (not shown), as well as following the loss of reduced EcTrx1 fluorescence at 340 nm (λ_{exc} = 280 nm) as it was oxidized by Prx2/H_2O_2 (Figure 4B). The inactivation during turnover was clear for the native Prx2, while the peroxynitrite-treated enzyme suffered less overoxidation in turnover, as indicated by western blot analysis (Figure 4C).

Interaction of nitrated Prx2 with hTrx1 does not explain the increase in peroxidase activity. In order to understand the gain in Prx2 peroxidase activity after treatment with peroxynitrite, peroxidase activity was measured using increasing concentrations of hTrx1 at a fixed concentration of H_2O_2 (Figure 5). Interestingly, when low concentrations of hTrx1 were used, control and treated-Prx2 showed no clear differences in their peroxidase activity, while increasing hTrx1 concentrations enhanced their differences. As shown in Figure 5, even in the presence of high concentrations of hTrx1 (more than 10-fold the reported K_m^{app} (19)), a significant difference between untreated and peroxynitrite-treated Prx2 activity was observed. Fitting the data...
Effects of nitration on Prx2 functionality

Mapping of the modified residues reveals nitration of Y193. Analysis of digested Prx2 in an LTQ mass spectrometer mapped four out of the seven tyrosine residues of the polypeptidic chain. From these peptides, three of the residues (Y33, Y126 and Y193) were detected as nitro-tyrosines after peroxynitrite treatment, while Y115 was found as native in every experiment. Table 1 shows the theoretical and experimental mass values for the modified tyrosine-containing peptides detected. Among these, Y193 is part of the YF motif located in the C-terminus region of the protein that has been related to Prx sensitivity to overoxidation (Figure 6) (2), and the environment of the YF loop has been recently described to have a great impact on CP overoxidation (35).

DISCUSSION

The peroxidatic cysteine of Prx reacts with H₂O₂ at 10⁷ to 10⁸-fold faster than most protein cysteines (13), but at ordinary rates with any other thiol reagent (39). Prx seem to be designed to specifically reduce peroxides, which place them not only as efficient antioxidant enzymes but also as key players in the mechanism of H₂O₂-induced redox signaling (40, 41). The catalysis of H₂O₂ reduction depends on a conserved Cys residue within a highly conserved active site pocket that adequately stabilizes the transition state. In addition, an important conformational change is needed for 2-Cys Prx to complete the oxidative part of the cycle, including the local unfolding of the helix that harbors CP and the displacement of secondary structure elements that contain the CR residue (2). Stabilization of the FF form of the enzyme has been associated with a slower rate of disulfide formation favoring the reaction of CP-SOH with H₂O₂ to form the inactive sulfinic derivative (CP-SO₂H). This inactivation by overoxidation has been postulated as a mechanism of regulating intracellular H₂O₂ levels, critical for redox signaling (2, 14, 42-44).

MS analysis of disulfide Prx2 treated with 5-fold excess of peroxynitrite revealed that the main polypeptidic modification was nitration of tyrosine residues yielding mainly mononitrated and dinitrated species (Figure 2A). Nitration of Prx2 rendered an enzyme less susceptible to overoxidation by H₂O₂ (Figures 3 and 4C). This could be due either to a slower reaction with the second H₂O₂ molecule to yield the sulfinic derivative (step 5 in Figure 1) or to a faster formation of the intermolecular disulfide (steps 2 and 3 in Figure 1), thus unfavoring the overoxidation reaction.

Surprisingly, the peroxynitrite-treated enzyme was more active than the native enzyme (Figure 4). Given the modified enzyme is more resistant to overoxidation, one possible explanation for the observed gain in activity could be less inactivation in turnover (as seen in Figure 4C). However, measurement of activity by stopped-flow spectrophotometry showed a higher rate for the nitrated enzyme from the very beginning of the run (0.277 ± 0.006 µmol/min vs. 0.213 ± 0.002 µmol/min for the untreated enzyme, not shown), indicating the differences in activity preceeded overoxidation in turnover.

The reaction of CP with H₂O₂, the first step in catalysis, is so fast (k₂ = 10⁷ - 10⁸ M⁻¹ s⁻¹) that it is safe to assume CP-SOH formation won’t be the limiting step (19, 39)). Thus, under the experimental conditions employed, the gain in peroxidase activity should reside in disulfide formation between CP-SOH and CR and/or the reduction of the intermolecular disulfide by thioredoxin (Figure 1). The first option will be kinetically limited by the conformational change needed to get together both cysteines (the FF-LU transition, (8)) while the second is limited by the kinetics of protein-protein interaction (Figure 1). As shown in Figure 5, at a fixed saturating concentration of H₂O₂, initial NADPH consumption rates were very close for control and peroxynitrite-treated Prx2 at low concentrations of hTrx1, while a significant difference appeared at higher hTrx1 concentrations. Although a faster
Effects of nitration on Prx2 functionality

dissociation of the ternary complex between hTrx1 and Prx2 to yield reduced Prx2 could explain the observed differences in V_{max}, it cannot explain the resistance to overoxidation of the nitrated enzyme. Therefore, it can be affirmed that, at high hTrx1 concentrations, the velocity of NADPH consumption is limited by disulfide formation. From V_{max} and Prx2 concentration, the rate constant of this step, k_{cat}, can be estimated, obtaining a value of $(1.2 \pm 0.1) \text{ s}^{-1}$ for the ROA control enzyme and $(1.6 \pm 0.1) \text{ s}^{-1}$ for the peroxynitrite-treated Prx2. Very similar results were obtained when using EcTR and EcTrx1 (not shown), supporting the idea that the observed changes in V_{max} are not due to differences in the interaction between Prx2 and Trx. The faster the intermolecular disulfide bond is formed, the lower the chance for CP to get overoxidized by H_2O_2. These differences in k_{cat} explain the differences in activity as well as the different susceptibility to overoxidation. Thus, this PTM transforms a sensitive Prx into a more robust peroxidase.

It has been observed that eukaryotic Prx, generally more sensitive to overoxidation than prokaryotic Prx, present a YF motif at the C-terminus (Figure 6) that packs over the active site in the FF form of the protein and delays the conformational change that brings together CP and CR, therefore, slowing down the disulfide formation and favoring the overoxidation reaction (3, 8, 33, 35). In addition, different susceptibility towards overoxidation was found between different mammalian 2-Cys Prx isoforms. Human mitochondrial Prx3 is more resistant to this modification than cytosolic Prx2 (33). Recent work by Haynes et al. (35) demonstrated that residues near the C terminus of the adjacent subunit modulate the extent of CP overoxidation. The substitution of residues at the C-terminus of Prx3 resulted in a Prx2-like enzyme, more susceptible to overoxidation (35). Moreover, truncation of the C-terminus containing the YF motif was reported to decrease overoxidation of Prx (45, 46). The YF sequence motif in the C-terminal helix of one subunit covers helix $\alpha 2$ containing the CP of the adjacent subunit, stabilizing the FF form, thus making difficult the unfolding of the CP-containing $\alpha 2$ to reach CR (2). Y193, which was nitrated by peroxynitrite treatment (Table 1) belongs to this YF motif and is most likely responsible for the resistance to overoxidation of the nitrated enzyme (Figure 6). It is interesting to note that in vitro experiments where Jurkat cell lysates were treated with peroxynitrite, the YF motif tyrosine of Prx1 was identified as nitrated (47).

Prx are key enzymes for detoxifying H_2O_2 as well as sensing H_2O_2 in redox-signaling. In this context, the modulation of Prx peroxidase activity and interaction with other proteins is critical. Modification of the reactive cysteine causes inactivation of the peroxidase activity as seen for overoxidation to sulfenic/sulfonic acid. Glutathionylation and S-nitrosation of CP have also been reported (48-50). Interestingly, phosphorylation of non-catalytic residues in Prx1 and Prx2 could decrease, as well as increase, their peroxidase activity, suggesting a fine interplay between H_2O_2- and kinase-driven signaling pathways (51-54). Similarly to our results, N-acetylation of Lys196 in Prx2 causes an increase in peroxidase activity and a decrease in overoxidation susceptibility (55). Again, modification of residues at the C-terminus, adjacent to CR (K196, T194, Y193 in this work) can affect activity and the extent of overoxidation.

Nitration of tyrosine residues has an impact on protein structure and activity (in general, inactivation, although a gain of function has also been reported) and is linked to a variety of pathological conditions such as neurodegenerative and cardiovascular diseases (56, 57). Nitration of typical 2-Cys Prx has been reported in vitro and in vivo (20, 47, 58). In particular, Prx2 was identified in a proteomic analysis as one of the nitrated brain proteins in early Alzheimer’s disease (20). This could have an impact on intracellular H_2O_2-induced signaling cascades, including Prx2-protein interactions, which still remains to be explored.

Our work characterizes the nitrated form of Prx2 as a more active and robust peroxidase by favoring the intermolecular disulfide formation, placing tyrosine nitration as another mechanism of
modulating Prx in the complex network of redox signaling.
REFERENCES

1. Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling Free Radic Biol Med 38(12):1543-1552.
2. Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling Science 300(5619):650-653.
3. Wood ZA, Schröder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins Trends Biochem Sci 28(1):32-40.
4. Hofmann B, Hecht HJ, Flohe L (2002) Peroxiredoxins Biol Chem 383(3-4):347-364.
5. Copley SD, Novak WR, Babbitt PC (2004) Divergence of function in the thioredoxin fold superfamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor Biochemistry 43(44):13981-13995.
6. Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins Trends Biochem Sci 28(1):32-40.
7. Wood ZA, Poole LB, Hantgan RR, Karplus PA (2002) Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins Biochemistry 41(17):5493-5504.
8. Perkins A, et al. (2013) Substrate-ready Conformation of Wild Type Salmonella typhimurium AhpC and the Sensitive Balance between Fully Folded and Locally Unfolded Conformations Biochemistry.
9. Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin Nature 425(6961):980-984.
10. Jonsson TJ, Murray MS, Johnson LC, Lowther WT (2008) Reduction of cysteine sulfenic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfenic phosphoryl ester intermediate J Biol Chem 283(35):23846-23851.
11. Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling Free Radic Biol Med 45(5):549-561.
12. Flohe L, Ursini F (2008) Peroxidase: a term of many meanings Antioxid Redox Signal 10(9):1485-1490.
13. Ferrer-Sueta G, et al. (2011) Factors affecting protein thiol reactivity and specificity in peroxide reduction Chem Res Toxicol 24(4):434-450.
14. Randall LM, Ferrer-Sueta G, Denicolà A (2013) Peroxiredoxins as preferential targets in H2O2-induced signaling Methods Enzymol 527:41-63.
15. Sobotta MC, et al. (2013) Exposing cells to H2O2: a quantitative comparison between continuous low-dose and one-time high-dose treatments Free Radic Biol Med 60:325-335.
16. Lowther WT, Haynes AC (2011) Reduction of cysteine sulfenic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin Antioxid Redox Signal 15(1):99-109.
17. Moore RB, Mankad MV, Shriver SK, Mankad VN, Plishker GA (1991) Reconstitution of Ca(2+)-dependent K+ transport in erythrocyte membrane vesicles requires a cytoplasmic protein J Biol Chem 266(28):18964-18968.
18. Cho CS, et al. (2010) Hydroxyurea-induced expression of glutathione peroxidase 1 in red blood cells of individuals with sickle cell anemia Antioxid Redox Signal 13(1):1-11.
19. Manta B, et al. (2009) The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2 Arch Biochem Biophys 484(2):146-154.
20. Reed TT, Pierce WM, Jr., Turner DM, Markesbery WR, Butterfield DA (2009) Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobule J Cell Mol Med 13(8B):2019-2029.
21. Denicola A, Alvarez B, Thomson L (2008) Free Radical Pataphysiology, ed. P, A. S. a. E., pp. 39.
22. Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration Proc Natl Acad Sci U S A 101(12):4003-4008.
23. Trujillo M, Ferrer-Sueta G, Radi R (2008) Peroxynitrite detoxification and its biologic implications Antioxid Redox Signal 10(9):1607-1620.
24. Trujillo M, Alvarez B, Souza JM, Romero N, Castro L, Thomson L, Radi R (2010) Nitric Oxide Biology and Pathobiology, ed. Ignarro, L. J., pp. 61-102.
25. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide Proc Natl Acad Sci U S A 87(4):1620-1624.
26. Romero N, et al. (2003) Reaction of human hemoglobin with peroxynitrite. Isomerization to nitrate and secondary formation of protein radicals J Biol Chem 278(45):44049-44057.
27. Poole LB, Godzik A, Nayem A, Schmitt JD (2000) AhpF can be dissected into two functional units: tandem repeats of two thioredoxin-like folds in the N-terminus mediate electron transfer from the thioredoxin reductase-like C-terminus to AhpC Biochemistry 39(22):6602-6615.
28. Bonilla M, Denicola A, Marino SM, Gladyshev VN, Salinas G (2011) Linked thioredoxin-glutathione systems in platyhelminth parasites: alternative pathways for glutathione reduction and deglutathionylation J Biol Chem 286(7):4959-4967.
29. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein Protein Sci 4(11):2411-2423.
30. Egwim IO, Gruber HJ (2001) Spectrophotometric measurement of mercaptans with 4,4'-dithiodipyridine Anal Biochem 288(2):188-194.
31. Brito C, et al. (1999) Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death J Immunol 162(6):3356-3366.
32. Jornvall H, Jolles P (2000) Protein structure analysis of today: proteomics in functional genomics Exs 88:XI-XIII.
33. Peskin AV, et al. (2013) Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine J Biol Chem 288(20):14170-14177.
34. Nelson KJ, Parsonage D, Karplus PA, Poole LB (2013) Evaluating peroxiredoxin sensitivity toward inactivation by peroxide substrates Methods Enzymol 527:21-40.
35. Haynes AC, Qian J, Reisz JA, Furdui CM, Lowther WT (2013) Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation J Biol Chem.
36. Yuan Y, Knaggs M, Poole L, Fetrow J, Salsbury F, Jr. (2010) Conformational and oligomeric effects on the cysteine pK(a) of tryparedoxin peroxidase J Biomol Struct Dyn 28(1):51-70.
37. Salsbury FR, Jr., Yuan Y, Knaggs MH, Poole LB, Fetrow JS (2012) Structural and electrostatic asymmetry at the active site in typical and atypical peroxiredoxin dimers J Phys Chem B 116(23):6832-6843.
38. Budde H, et al. (2003) Kinetics and redox-sensitive oligomerisation reveal negative subunit cooperativity in tryparedoxin peroxidase of Trypanosoma brucei brucei Biol Chem 384(4):619-633.
39. Peskin AV, et al. (2007) The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents J Biol Chem 282(16):11885-11892.
40. Fomenko DE, et al. (2011) Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide Proc Natl Acad Sci U S A 108(7):2729-2734.
41. Olahova M, et al. (2008) A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance Proc Natl Acad Sci U S A 105(50):19839-19844.
42. Day AM, et al. (2012) Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival Mol Cell 45(3):398-408.
43. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling Mol Cell 26(1):1-14.
44. Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling Science 312(5782):1882-1883.
45. Koo KH, et al. (2002) Regulation of thioredoxin peroxidase activity by C-terminal truncation Arch Biochem Biophys 397(2):312-318.
46. Sayed AA, Williams DL (2004) Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni J Biol Chem 279(25):26159-26166.
47. Ghosquiere B, et al. (2009) In vitro and in vivo protein-bound tyrosine nitration characterized by diagonal chromatography Mol Cell Proteomics 8(12):2642-2652.
48. Park JW, Piszczek G, Rhee SG, Chock PB (2011) Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity Biochemistry 50(15):3204-3210.
49. Fang J, Nakamura T, Cho DH, Gu Z, Lipton SA (2007) S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease Proc Natl Acad Sci U S A 104(47):18742-18747.
50. Engelman R, et al. (2013) Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation J Biol Chem 288(16):11312-11324.
51. Jang HH, et al. (2006) Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype I differentially regulate its peroxidase and molecular chaperone functions FEBS Lett 580(1):351-355.
52. Woo HA, et al. (2010) Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling Cell 140(4):517-528.
53. Zykova TA, et al. (2010) T-LAK cell-originated protein kinase (TOPK) phosphorylation of Prx1 at Ser-32 prevents UVB-induced apoptosis in RPMI7951 melanoma cells through the regulation of Prx1 peroxidase activity J Biol Chem 285(38):29138-29146.
54. Chang TS, et al. (2002) Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation J Biol Chem 277(28):25370-25376.
55. Parmigiani RB, et al. (2008) HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation Proc Natl Acad Sci U S A 105(28):9633-9638.
56. Perry G, et al. (2000) How important is oxidative damage? Lessons from Alzheimer's disease Free Radic Biol Med 28(5):831-834.
57. Leite PF, Liberman M, Sandoli de Brito F, Laurindo FR (2004) Redox processes underlying the vascular repair reaction World J Surg 28(3):331-336.
58. Turko IV, et al. (2003) Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes J Biol Chem 278(36):33972-33977.
59. Schroder E, et al. (2000) Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution Structure 8(6):605-615.
Effects of nitration on Prx2 functionality

Acknowledgements-The authors thank M.P. Samuel, M.J. Thomas and K.J. Nelson (Wake Forest School of Medicine, NC, USA) for assistance in samples preparation and whole protein mass spectrometry analysis; B. Alvarez and G. Ferrer-Sueta (Universidad de la República, UdelaR, Uruguay) for helpful discussions; J. Santos (Universidad de Buenos Aires, Argentina) for kindly providing EcTrx1 plasmid; G. Salinas (Institut Pasteur de Montevideo, Uruguay) for the EgTR protein; L. Blixen for graphical work assistance.

FOOTNOTES

*This work was supported by grants from Comisión Sectorial de Investigación Científica, UdelaR, to A.D. (CSIC C007-348), Agencia Nacional de Investigación e Innovación, ANII, to M.T. (FCE_2011_1_S706) and National Institutes of Health, NIH, to L.B.P. (GM050389). L.M.R. was supported by Comisión Académica de Posgrados, UdelaR, and PEDECIBA (Programa de Desarrollo de las Ciencias Básicas). M.H. was partially supported by ANII.

† To whom correspondence should be addressed: Dr. Ana Denicola, Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República. Iguá 4225, 11400, Montevideo, Uruguay, Tel./Fax: (598) 2-525-0749. E-mail: denicola@fcien.edu.uy

‡ Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República. Gral. Flores 2125, 11800, Montevideo, Uruguay.

§ Department of Biochemistry, Wake Forest School of Medicine. Medical Center Boulevard, Winston-Salem, NC 27157, USA.

¶ BM Present address: Laboratorio de Biología Redox de Tripanosomas, Institut Pasteur de Montevideo. Mataojo 2020, 11400, Montevideo, Uruguay.

The abbreviations used are: Prx, peroxiredoxin; Prx2, peroxiredoxin 2, Trx, thioredoxin, TR, thioredoxin reductase; C₈, peroxidatic cysteine; Cᵣ, resolving cysteine; Cₚ-SOH, cysteine sulfenic acid; Cₚ-SO₂H, cysteine sulfinic acid; PTM, post-translational modifications; ROA, reverse-order addition; FF, fully-folded; LU, locally-unfolded; NEM, N-ethyl maleimide.

FIGURE LEGENDS

FIGURE 1. Catalytic cycle of eukaryotic typical 2-Cys Prx. 1, reaction of a molecule of peroxide with the Cₚ thiolate to form cysteine sulfenic acid; 2, transition from the FF to the LU conformation; 3, reaction of Cₚ sulfenic acid with Cᵣ; 4, reduction of disulfide Prx; 5, overoxidation of Cₚ to sulfinic acid; 6, reduction of cysteine sulfinic acid by sulfiredoxin/ATP. The protein is represented as one of two active sites within a functional dimer. Cₚ, peroxidatic cysteine; Cᵣ, resolving cysteine; Trx, thioredoxin; TR, thioredoxin reductase; Srx, sulfiredoxin; FF, fully-folded conformation; LU, locally-unfolded conformation.

FIGURE 2. Analysis of Prx2 nitration after peroxynitrite-treatment. (A) QTOF-ESI MS analysis. Disulfide oxidized Prx2 was treated with a 5-fold excess peroxynitrite, then reduced with 5 mM DTT for
Effects of nitration on Prx2 functionality

15 min at room temperature, followed by addition of 20 mM NEM to block the reduced thiols. The remaining DTT and NEM were removed by gel filtration and samples in 30 mM ammonium bicarbonate buffer were analyzed by ESI-QTOF MS. Control Prx2 is shown in black (shown as 100%), and the grey dotted line shows the peroxynitrite-treated enzyme. (B) Western blot analysis. Disulfide Prx2 was treated with a 5-fold excess peroxynitrite (ONOO−) or reverse-order addition (ROA). 2.4 µg of control or peroxynitrite-treated Prx2 were resolved on 15 % SDS-PAGE under reducing conditions, and analyzed by western blot using α-NO2Y antibodies.

FIGURE 3. Differential overoxidation of control and peroxynitrite-treated Prx2. After treatment with the reverse order addition control (ROA) or a 5-fold excess of peroxynitrite (ONOO−), Prx2 was treated with DTT for reduction of its thiols and residual DTT was removed. 5 µM Prx2 was incubated with 0, 0.01, 0.02, 0.06, 0.12, 0.24 or 5 mM H2O2 in 50 mM phosphate buffer pH 7.4. After 5 min, 30 mM NEM was added to alkylate the remaining thiols. Samples were prepared for SDS-PAGE under non-reducing conditions, analyzed by western blot using α-Prx2 antibody and α-CP-SO2/3H after mild stripping. One µg of protein was loaded on each lane. (DSS, dimer with one CP disulfide-oxidized; DSSSS, dimer with both CP disulfide-oxidized; M, monomer).

FIGURE 4. Effect of nitration on Prx2 peroxidase activity and overoxidation. (A) NADPH-linked peroxidase activity. 0.5 µM of reverse-order addition (●) or peroxynitrite-treated (○) Prx2 was incubated with 8 µM hTrx1, 0.4 µM EgTR and 160 µM NADPH in 50 mM sodium phosphate buffer, pH 7.4, 150 mM NaCl, 0.1 mM dtpa. Reaction was started by addition of H2O2 (10 µM final concentration) and consumption of NADPH was followed at 340 nm. (B) EcTrx1 fluorescence-linked Prx2 peroxidase activity. Oxidation of EcTrx1 was followed at λexc = 280 nm, λem = 340 nm, in 50 mM sodium phosphate buffer, pH 7.4, 0.1 mM dtpa, 150 mM NaCl, with 10 µM reduced EcTrx1 and 50 nM Prx2. (●) non-treated Prx2; (●) Prx2 treated with 1-fold or (○) 5-fold excess peroxynitrite; (▼) control run (no Prx2 added). Reaction was started by addition of 7 µM H2O2. (C) Western blot analysis against CP-SO2/3H. Aliquots were taken at 0, 0.5, and 1 minute after H2O2 addition in the presence of Trx, TR and NADPH. Catalase (0.3 mg/mL) was added to eliminate residual H2O2 and NEM (26 mM) to block remaining thiols. 80 ng of Prx2 were loaded on each lane and resolved by reducing SDS-PAGE.

FIGURE 5. Dependence of Prx2 peroxidase activity with thioredoxin concentration. Non-treated (●) or 5-fold excess peroxynitrite-treated (○) Prx2 activity was measured following NADPH consumption at 340 nm. Reaction was started with addition of 10 µM H2O2 to a mixture containing 160 µM NADPH, 0.4 µM EgTR, varying concentrations of hTrx1 (0.8 – 60 µM), and 0.5 µM Prx2.

FIGURE 6. Structural model of Prx2 active site. View of human erythrocyte Prx2 active site. One monomer shows the CP residue in sulfenic acid form (blue) while the other subunit (grey) shows the CR, as well as the YF motif containing Y193. Image was constructed with PyMOL from PDB 1QMV (59).
TABLE 1. Identification of modified tyrosine-containing peptides after treatment with peroxynitrite. Control and peroxynitrite-treated Prx2 were digested with trypsin after 15% SDS-PAGE. Samples were subjected to HPLC-MS/MS using an LTQ mass spectrometer as detailed under “Experimental Procedures”. Sequences of modified tyrosine-containing peptides identified by MS are shown, with their corresponding theoretical and observed masses (Da).

Peptide	Theoretical mass (Da) ([M + H]⁺)	Theoretical mass + 45 Da (Da) ([M + H]⁺)	Observed masses (Da)	Assigned sequence	Nitrated tyrosine
1	625.3	670.3	670.2	³⁰⁷LSD¹⁸YK¹⁶	Y33
2	673.3	718.3	718.2	¹⁸³E¹⁹⁸YFSK¹⁰⁶	Y193
3	924.4	969.4	969.3	¹²⁰TDEGIA¹²⁰YR¹²⁷	Y126

Addition of a nitro (−NO₂) group results in a molecular mass increase of 45 Da.
Effects of nitration on Prx2 functionality

Figure 1.
Figure 2.
Effects of nitrination on Prx2 functionality

Figure 3.

[Image: A diagram showing the effects of nitration on Prx2 functionality with the use of ROA and ONOO⁻, with different concentrations of H₂O₂ and reaction conditions, illustrating the changes in protein bands labeled as α-Prx2 and α-C₅-SO₂H, with markers for D, D₅/₅S, M, and other relevant reactions and conditions.]
Effects of nitration on Prx2 functionality

Figure 4.
Effects of nitration on Prx2 functionality

Figure 5.
Effects of nitration on Prx2 functionality

Figure 6.
Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase

Lia M. Randall, Bruno Manta, Martin Hugo, Magdalena Gil, Carlos Batthyany, Madia Trujillo, Leslie B. Poole and Ana Denicola

J. Biol. Chem. published online April 9, 2014

Access the most updated version of this article at doi: 10.1074/jbc.M113.539213

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts