A Review on the Functional Properties, Nutritional Content, Medicinal Utilization and Potential Application of Fenugreek

Murlidhar Meghwal and T K Goswami*

Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, India

Abstract

Fenugreek (Trigonella foenum-gracum) is one of the most promising medicinal herbs, known from ancient times, having nutritional value too. Its green leaves and seeds are used for multipurpose. 100 g of seeds provide more than 65% of dietary fibre due to its high fibre content and it has an ability to change food texture. It is well known for its gum, fibre, alkaloid, flavonoids, saponin and volatile contents. In various medicinal applications, it works as antidiabetic, anticarcinogenic, remedy for hypercholesterolemia and hypoglycemia, antioxidant, antibacterial agent, gastric stimulant, and anti-anorexia agent. In modern food technology, it is used as food stabilizer, adhesive and emulsifying agent due its fibre, protein and gum content. Its protein is found to be more soluble (91.3%) at alkaline pH of 11. This review article presents the major medicinal and other beneficial uses of fenugreek discovered through last 30 years of research in animal and human subjects as well as in other experimental studies.

Keywords: Anticarcinogenic; Antidiabetic; Alkaloid; Flavonoid; Saponin; Volatile; Protein; Hypocholesterolemia; Fibre; Hypoglycemia

Introduction

Fenugreek is one of the well known spices in human food. Its seeds and green leaves are used in food as well as in medicinal application which is an old practice of human history. It provides natural food fibre and other nutrients required in human body [1]. Fenugreek has strong spicy and seasoning type sweet flavor [2]. Aromatic and flavourful fenugreek is a popular spice and is widely used for well recognized culinary and medicinal properties [3]. “Kasuri Methi” is very famous for its appetizing fragrance and it is used for culinary preparations [4]. In recent trend, fenugreek is also used as spice adjunct [5]. India is a major producer of fenugreek and also a major consumer of it for its culinary uses and medicinal application. It is used in functional food, traditional food, nutraceuticals as well as in physiological utilization such as antibacterial, anticancer, antiulcer, anthelmintic, hypercholesterolemic, hypoglycemic, antioxidant, and anti diabetic agent. It has beneficial influence on digestion and also has the ability to modify food texture.

Fenugreek is cultivated all over the world as a semi-arid crop. It has got different names as per the locality. Table 1 shows various names of fenugreek in different languages with their country of origin.

Unfortunately, it is learnt from literature that there is no research article which gives an overall view on functional properties, nutritional content, medicinal application and other beneficial applications of fenugreek at one place. Hence, the present review article has been aimed at presenting the titled topic at one place by vigorous review study.

The fenugreek plant

The fenugreek (Trigonella foenum-gracum) seeds sown in well prepared soil sprouts in three days. Seedling grows erect, semi-erect or branched based on its variety and attains a height of 30 to 60 cm. It has compound pinnate, trifoliate leaves, axillary white to yellow flowers, and 3-15 cm long thin pointed hoop-like beaked pods. Every pod contains 10-20 oblong greenish-brown seeds with unique hooplike groves [6]. Pods, number of seeds in a pod, seed shape-size and plant height varies from one fenugreek variety to another. Fenugreek is a self pollinating annual leguminous bean which belongs to Fabaceae family [7]. It is one of the most ancient medicinal herbs [8]. The leaves, flower, calyx, corolla, anthers, stigma, ovary, pods, roots, seeds and stems are major part of this plant. Table 2 shows the scientific classification of this plant as per the taxonomy of plant kingdom [9].

Varieties, speciality and cultivation suitability

Fenugreek is a leguminous plant that helps in nitrogen fixation and soil enrichment [10]. There are different varieties of fenugreek plan to cultivate based on soil and climatic conditions. Some of the major well known varieties (mainly Indian) of fenugreek which are produced all over the world are listed out in Table 3.

Fenugreek plant attains a height of about 1-2 feet. It bears light green coloured slender shaped yellow-brown pods having 10-20 seeds. In this plant flowering starts after 30-40 days of sawing [9].

The green leaves of fenugreek

Green fenugreek leaves are one of the most ancient medicinal herbs [1]. Yadav and Sehgal (1997) [11] found that fresh fenugreek leaves contain ascorbic acid of 220.97 mg per 100 g of leaves and β-carotene of 19 mg per 100 g of leaves. On the other hand, they reported that 84.94 and 83.79 % ascorbic acid was reduced in sun and oven-dried fenugreek leaves respectively. The green fenugreek leaves (fresh or dried) are used as herb. The fresh leaves are used in the vegetables as green leafy vegetable in the diets. They suggested that for better retention of nutrients in fenugreek leaves, it should be stored in refrigeration, dried in oven, blanched for a short period of time (5 min) and should be cooked in pressure cooker. Their studies in 1999 (Yadav and Sehgal) further showed that there is no change in the calcium and zinc content of the processed fenugreek leaves whereas

*Corresponding author: Tridib Kumar Goswami, Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, India, Tel: +91-3222-283123; Fax: +91-3222-282244; E-mail: tkg@agfe.iitkgp.ernet.in

Received August 16, 2012; Accepted August 22, 2012; Published August 29 2012

Citation: Meghwal M, Goswami TK (2012) A Review on the Functional Properties, Nutritional Content, Medicinal Utilization and Potential Application of Fenugreek. J Food Process Technol 3:181. doi:10.4172/2157-7110.1000181

Copyright: © 2012 Meghwal M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Meghwali M, Goswami TK (2012) A Review on the Functional Properties, Nutritional Content, Medicinal Utilization and Potential Application of Fenugreek. J Food Process Technol 3:181. doi:10.4172/2157-7110.1000181

Page 2 of 10

Location specific name of fenugreek	Language	Country	References
Huiba, Huabha, Hheibah, Hheibhe	Arabic	Turkey, Hausa	10
Shambala	Armenian	Armenia	110
Khilfe, buil	Azerbaijani, Azeri, Turki	Azerbaijan, Iran	2
K’u-tou, hu lu ba	Chinese	China	2,10
Piskayika, Diteina rogata	Croatian	Croatia	110
Piskavice, Recke seno	Czech	West Slavic	110
Fenegrieck	Dutch	Portugal	110
Abish	Ethiopian	Ethiopia	2
Fenugrec	French	France	2, 10
Bockshorklee, Kuhhorklee, Bisanklee	German	Germany	10
Trigonikos, Tsimeni, Moschositaro, Tili, Tilipina	Greek	Greece, Cyprus	110
Methi	Hindi	India	10
Goroszena	Hungarian	Hungary	2
Fiero Greco	Italian	Italy	10
Koroha, Koroba	Japanese	Japan	10, 2
Halba	Malay	Malaysia	10, 2
Schenlit	Persian/Iranian	Iran	2
Fengrek, kozieradhra	Polish	Poland	110
Alforra	Portuguese	Brazil	2
Seneiyka, grecka, seno grecka	Slovak	Slovakia	2
Althonya	Spanish	Spain	2, 10
Bockhomsiklerov	Swedish	Sweden	110
Pazhilnik	Russian	Russia	10
Khufa, u’lBa, boidana	Uzbekistani	Uzbekistan	2

Table 1: Different names of fenugreek in different languages of the world.

S.No.	Kingdom	Plantae
1.	Class	Magnoliopsida
2.	Order	Fabales
3.	Family	Fabaceae
4.	Genus	Trigonella
5.	Species	T. Foenum-graecum

Table 2: Position of fenugreek in plant kingdom classification system.

during blanching and cooking HCL extractability for these minerals has increased. Medicinally, fenugreek leaves has been found to have little effect on glycemia [12]. These leaves provide β-carotene, fibre, calcium and zinc [13]. Jani et al. [14] tested about the mineral content of various food items like pulses (dal), bread (chapatti) and fenugreek leaf vegetables by feeding them to children of 13-24 months of age group and found that fenugreek leaves had high calcium, iron and zinc content compared to those available in other food items chosen for this study.

The seeds of fenugreek

Fenugreek seeds are the most important and useful part of fenugreek plant. These seeds are golden-yellow in colour, small in size, hard and have four-faced stone like structure [15]. Fenugreek seed is 3-6 mm long, 2-5 mm wide and 2 mm thick in geometry. Raw fenugreek seeds have maple flavour and bitter taste but by the process of roasting, their bitterness can be reduced and flavour can be enhanced. Fenugreek seeds are used as spices. The whole seed or its ground powder is used in pickles, vegetable dishes and spice powder. Dried seeds are used as condiments. Fenugreek seeds are gummy, fibrous, sticky and gummy in nature. Biologically, its seeds are endospermic in nature [14]. The fenugreek seeds, as a thumb rule, are harvested 150 to 170 days after sowing or 30 to 35 days after flowering [16]. In fenugreek, saponin and alkaloids are anti-nutritional factors [14]. Defatted fenugreek seeds are not bitter in taste and can be easily consumed by those who have problems to consume fenugreek without removing fat, especially by patients. The bitterness of fenugreek can be masked by making formulations with other food ingredients [17].

Volatile content

Fenugreek seed contains volatile oil and fixed oil in small quantities [18]. Blank et al. (1997) [19] has reported the following odour active compounds based on the fenugreek aroma detection with the help of Gas Chromatograph : Olfactometry diacetyl; 1-Octene-3-one; (Z)-1,3-Octadiene-3-one; 3-isopropyl-2-methoxyprazyn; acetic acid; 3-Isobutyl-2-methoxyprazin; linalol; butanic acid; isovaleric acid; capric acid; eugenol; 3-Amino-4,5-dimethyl-3; 4-dihydro-2(SH)-Furanone; sotolon with characteristic aroma of buttery, mushroom like, metallic, roasty / earthy, pungent, paprika like, flowery, sweaty/ rancid, musty, spicy, seasoning like, respectively but out of all these compounds, sotolon was reported to be found predominantly in (5α)-enantiomeric form (95%) in fenugreek.

Mabazaa et al. (2011) studied sweat of human after fenugreek ingestion and concluded that compounds responsible for the strong maple-syrup odor present in sweat after fenugreek ingestion are due to the following compounds: 2,5-dimethylpyrazine; β-pinene; 3-octen-2-one; camphor; terpinen-4-ol; 4-isopropyl-benzaldehyde; neryl acetate and β-caryophyllene but confirmed 2,5-dimethylpyrazine to be a major sweat odor contributing compound.

Fenugreek gum

Fenugreek gum is derived from the endosperm of the seeds. It consists of galactose and manose. It gives high viscosity in the aqueous solution [20]. The fenugreek gum is used for thickening, stabilizing and emulsifying food agents [21,22]. Fenugreek gum is less exploited in the food industry as compared to other gums such as guar and locust bean. Ramesh et al. (2001) [23] reviewed that fenugreek galactomannan is food industry as compared to other gums such as guar and locust bean. Mabazaa et al. (2011) studied sweat of human after fenugreek ingestion and concluded that compounds responsible for the strong maple-syrup odor present in sweat after fenugreek ingestion are due to the following compounds: 2,5-dimethylpyrazine; β-pinene; 3-octen-2-one; camphor; terpinen-4-ol; 4-isopropyl-benzaldehyde; neryl acetate and β-caryophyllene but confirmed 2,5-dimethylpyrazine to be a major sweat odor contributing compound.

Fenugreek fibre

Fenugreek seeds are rich source of soluble dietary fibre content [26]. Raju et al. (2001) [27] reported that the fibre content of fenugreek extract plays a role in its ability to moderate metabolism of glucose in
Table 3: Some of the well known varieties of fenugreek.

Variety	Origin	Suitable for the region of	Speciality	References
RM-1	SKN CA, Jobner, RAU-Bikaner	Gujarat, Rajasthan	Semi-erect, tall, bold, yellow grains	1
RM-143	SKN CA, Jobner	Rajasthan	16 q ha⁻¹	1
RMt-305	SKN CA, Jobner	All fenugreek growing areas	1300 kg ha⁻¹, dwarf, multipoded, early maturity	1
NRCSS-AM-1	NRCSS, Ajmer	Rajasthan	Bold and large seed, specially grown for high yield of leaves.	1
NRCSS-AM-2	NRCSS, Ajmer	Rajasthan	Small size seed, specially grown for high yield of leaves.	1
GM-1	Gujarat Agricultural University	Gujarat	Dwarf, 18.6 q ha⁻¹	1
CO-1	Tamil Nadu Agricultural University	Tamil Nadu	Short and green, medium sized brownish orange seeds	1
Rajendra Kranti	Rajendra Agricultural University	Bihar	Tolerant bushy green, seeds are medium sized golden yellow	1
Lam selection-1	Andhra Pradesh Agricultural University	Andhra Pradesh	bushy green plant with medium sized golden yellow seeds	1
Hisar Sonali	Haryana Agricultural University	Haryana	Bushy, semi-erect with bold yellow attractive seeds	1
Hisar Suvarna	Haryana Agricultural University	Haryana, Gujarat, Rajasthan	Dual purpose cultivar	1
Hisar Mukta	CCS Haryana Agricultural University-Hisar	North India	Resistant to downy mildew, yield 20-23 q ha⁻¹	1
HM-350	CCS Haryana Agricultural University	Haryana	Medium in maturity, yield 19-20 q ha⁻¹	1
Pant Ragini	GBPUAT, Pantnagar	UP	Dual purpose, good for leaf and seed purpose, tall, bushy	1
Pusa Early Bunching	IARI, New Delhi		Bold seed, quick growing, suitable for seed as well as leaf	1
Pusa Kasuri	IARI, New Delhi		Leaf purpose, small seeds	1
AC Amber	Developed at Agriculture and Agri-Food Canada, Morden, Manitoba, Canada	Canada		2
Indian temple	India			2
AC Tristar	Developed at Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada	Canada		3
F96	Italy			3
F75, F86	Afghanistan			3

The digestive tract. Water absorption on the outer surface makes seeds coat soft and mucilaginous. The 100 g of seeds provide more than 65% of dietary fibre. Non-starch polysaccharides constitute fibre content of the fenugreek. Fenugreek contains saponins, hemicelluloses, mucilage, tannins and pectin and these compounds help to decrease the level of low density lipoprotein-cholesterol (LDL) in blood by inhibiting bile salts re-absorption in the colon. Following are the advantages of fibre present in fenugreek seed:

a. It binds to toxins in the food and helps to protect the colon mucous membrane from cancer causing toxins.

b. It has been established that the amino-acid, 4-hydroxyisoleucine present in the fenugreek seed has facilitator action on insulin secretion.

c. Fibre helps to lower rate of glucose absorption in the intestines controlling blood sugar levels.

d. The higher content of soluble fibre in fenugreek enhances its strength for glucose level tolerance.

Fenugreek seeds are rich in carbohydrates and especially mucilaginous fibre which is comprised of galactomannans. The ability of fenugreek to improve glucose tolerance is further enhanced by its rich content of soluble fibre (Table 4).

Galactomannan is a major soluble fibre of the fenugreek seeds; it decreases the bile salts uptake in intestine and also reduces the digestion and absorption of starch in body [28].

Mathen et al. [29] has made studies on trend of food consumption in obese human beings and found that fenugreek fibre significantly increased satiety and reduced energy intake at lunch, suggesting that it may have short-term beneficial effects in obese subjects. Naidu et al. (2011) [30] reported that fenugreek husk is a valuable source of dietary fiber and phenolic acids; therefore, it could be an effective source of natural antioxidants and natural ingredients in functional foods.

Alkaloid, flavonoids and saponin in fenugreek

Fenugreek contains different alkaloids, flavonoids and saponins [31-33] but out of all these, saponins are found to be in maximum concentration in the fenugreek [34]. Alkaloid is natural bases containing at least one nitrogen atom in its heterocyclic ring and is found in plants [31]. Alkaloid and volatiles of fenugreek seed are two major constituents which causes bitter taste and bad odour due to which people try to avoid consumption of fenugreek seed and its products [35]. Fenugreek contains 35% alkaloids, primarily trigonelline [36], whereas saponin was found to be 4.8% [14,37]. One hundred gram of Fenugreek endosperm is reported to be containing 4.63 g saponin. The alkaloids, flavonoids and saponins of fenugreek have pharmacological effect. They act as antilipidemic, hypoglycaemic and cholagogic agent and their use should be promoted to manage diabetes mellitus, hypercholesterolemia because clinical evidence shows promising results in reducing serum cholesterol level. At the same time, care should be taken to avoid minor gastrointestinal symptoms and allergic reactions on its consumption [38]. Murlidhara et al. [14] however, considered alkaloid and saponins as anti-nutritional factors in human food though the extract of fenugreek containing saponins is found to be 4.8% [14,37]. One hundred gram of Fenugreek endosperm is reported to be containing 4.63 g saponin. The alkaloids, flavonoids and saponins of fenugreek have pharmacological effect. They act as antilipidemic, hypoglycaemic and cholagogic agent and their use should be promoted to manage diabetes mellitus, hypercholesterolemia because clinical evidence shows promising results in reducing serum cholesterol level. At the same time, care should be taken to avoid minor gastrointestinal symptoms and allergic reactions on its consumption [38]. Murlidhara et al. [14] however, considered alkaloid and saponins as anti-nutritional factors in human food though the extract of fenugreek containing saponins is found to be enhancing hunger, reducing plasma cholesterol level and hypcholesterolemia in rats [39]. Fenugreek also contains flavonoid more than 100 mg per g of seed [40].

Protein in fenugreek

Fenugreek endosperm is rich in protein such as globulin, histidine,
References

Further to this, their results showed that fenugreek protein concentrate and measured emulsion and foaming properties are attained at pH 4.5 which is the isoelectric point of the protein. Minimum values of both emulsion and foam properties and showed that they are greatly affected by pH levels and salt (NaCl) concentration. Nasri and Tinay [42] studied functional properties of fenugreek seed powder is allergic and potentially cross-reactive with peanut to lists of ingredients. However, it should be warned that fenugreek for sensitization and provocation of allergic incidents are probably low. Therefore, the food manufacturers should consider adding fenugreek proteinaceous matter does not have any significant effect on the surface activity of the fenugreek gum. Youssef et al. [20] reported that residual proteins played an important role in decreasing the tension at the oil-water interface. The molecular weight of fenugreek gum is increased by removing the attached proteins. Viscosity of fenugreek gum increases with increasing gum concentration or with reduction of the residual protein attached.

Interestingly, studies concluded so far [36] reveal that considering the relatively low levels of spices that are added to foods, the thresholds for sensitization and provocation of allergic incidents are probably low. Therefore, the food manufacturers should consider adding fenugreek to lists of ingredients. However, it should be warned that fenugreek seed powder is allergic and potentially cross-reactive with peanut allergens. This may be why the consumption of fenugreek containing foods represents a risk for persons having peanut allergy. It is also to be noted that digestibility in rat has decreased with increasing protein and dry matter of fenugreek seed in their diet. This indicates that a judicious use of fenugreek seed in diet may be helpful for those who have no symptoms of allergy as such.

Nasri and Tinay [42] studied functional properties of fenugreek protein concentrate and measured emulsion and foaming properties and showed that they are greatly affected by pH levels and salt (NaCl) concentration. Minimum values of both emulsion and foam properties are attained at pH 4.5 which is the isoelectric point of the protein. Further to this, their results showed that fenugreek protein concentrate has high oil absorption capacity (1.56 ml oil per g protein), water absorption capacity (1.68 ml H₂O per g protein) and bulk density (0.66 g per ml). The protein of fenugreek seeds is found to be more soluble (18.5%, 91.3%) at acidic (4.5) and alkaline (11) pH respectively than at nearly neutral pH. The gums containing high protein show the ability to decrease the surface tension of water. However, it is also indicated that removal of proteins by an enzyme protease affected the surface activity of fenugreek gum. Hence, enzymatic removal of protein reduces the ability of fenugreek gum to reduce the interfacial tension [22]. In another study on fenugreek protein, Srinivasan (2006) [43] reported that cooking does not affect the quality of fenugreek seed proteins. It is evidenced in the animal study that the replacement of casein diet up to 10% by fenugreek seeds did not produce any harmful effect in protein quality of casein as studies on animal subjects has been evidenced for protein efficiency ratio, protein digestibility and net protein utilization [25]. However, debittered fenugreek seeds are rich in protein and lysine [12].

Vitamins in fenugreek

Fenugreek is especially rich in choline [12]. Vitamins - A (1040 IU per 100 g), B₁ (0.41 mg per 100 g), B₂ (0.36 mg per 100 g), C (12.0 mg per 100 g), niacin (6.0 mg per 100 g) and nicotinic acid (1.1 mg per 100 g) are reported in fenugreek seed where as germinating seeds contain pyridoxine, cyanocobalamin, calcium pantothenate, biotin and vitamin C [44]. Fenugreek leaves contain Vitamin C (43.10 mg per 100 g), calcium, β-carotene but by boiling in water, or steaming and frying, the vegetable loses 10.8 and 7.4% of the vitamin, respectively and exposure of the germinating seeds to β- and γ-radiation reduces the vitamin C content. Srinivasan (2006) [6] reported vitamin C, β-carotene, thiamine, riboflavin, nicotinic acid, folic acid as contents as 52 mg, 2.3 mg, 40 μg, 310 μg, 800 μg, 0 μm in leaves and 43 mg, 96 μg, 340 μg, 290 μg, 1.1 mg, 84 μg in seeds respectively. Poole et al. [45] showed that fenugreek consumption has potentially improved body composition in particular body fat percentage and vitamin C of fenugreek seed has an important role.

Minerals in fenugreek

Fenugreek does not contain so many minerals but it has some of them such as it has good amount of phosphorus and sulphur [42]. Jani et al. (2009) [46] has reported higher occurrence of calcium, iron and zinc in curry made from fenugreek compared to the curry made from potato.

Grinding of fenugreek

To preserve the volatile and aroma content and also to take care of protein content of fenugreek in processes such as grinding, one can opt for cryogenic grinding because of its beneficial effects as mentioned in the flow chart (Figure 1).

Medical Uses of Fenugreek

Anticarcinogenic activities and complementary cancer therapy

Fenugreek is a promising protective medicinal herb for complementary therapy in cancer patients under chemotherapeutic interventions because fenugreek extract shows a protective effect by modifying the cyclophosphamide induced apoptosis and free radical-mediated lipid peroxidation in the urinary bladder of mice [47]. Diosgenin (C₂₇H₄₈O₃) is a crystalline steroid sapogenin found in fenugreek and used as a starting material for the synthesis of steroid hormones such as cortisone and progesterone. It has been found to be potentially important in treatment cancer [48]. It has the ability to prevent invasion, suppress proliferation and osteoclastogenesis.
through inhibition of necrosis factor NF-kappa B-regulated gene expression and enhances apoptosis induced by cytokines and chemotherapeutic agents [49]. The seed powder in the diet due to the presence of fibre, flavonoids and saponins decreased the activity of β-glucoronidase significantly and prevented the free carcinogens from acting on colonocytes whereas mucinase helped in hydrolysing the protective mucin.

Sur et al. [50] found that intra-peritoneal administration of the alcohol seed extract before and after inoculation of Ehrlich ascites carcinoma cell in mice prevented tumor cell growth and this treatment enhanced peritoneal exudates and macrophage cell counts. Protodioscin of fenugreek exhibited a strong inhibitory effect against leukemic cell line HL-60 and a weak growth inhibitory effect on gastric cell line KATO-III [51]. Diosgenin in fenugreek prevented cell growth and induced apoptosis in the H-29 human colon cancer cell line [52] and fenugreek seed was found to have hepatoprotective properties [53]. Kaviarasan and Anuradha [54] concluded that polyphenolic extract of fenugreek seed acts as a protective agent against ethanol induced abnormalities in the liver having similar affects as that of silymarin, a known hepatoprotective agent.

Hypocholesterolemic activities

The abnormal deficiency of cholesterol level in the blood is known as hypocholesterolemic problem and oral administration of methanolic and aqueous extracts of seeds at a dose of one gram per kilogram body weight resulted in hypoglycaemic effect in mice [55]. Singhal et al. [56] showed hypocholesterolemic effects of fenugreek seeds and [57] reported that fenugreek seeds have lowered serum cholesterol, triglyceride and low-density lipoprotein in hypercholesterolema suffering patients and experimental models. Fenugreek consumption in diet reduced triglyceride accumulation in the liver but do not interfered with the plasma insulin or glucose levels obesity suffering rats [57].

Hypoglycemic activities

Hypoglycemia is a condition of human body in which there is an abnormal decrease in the sugar level of the blood. Singh and Garg (2006) [58] reported that fenugreek seeds have hypoglycemic and hypocholesterolemic effect as supported by findings during the experiment on animals. It improves peripheral glucose utilization, contributing to improvement in glucose tolerance and exerts its hypoglycemic effect by acting at the insulin receptor level as well as at the gastrointestinal level. Raghuuram et al. (1994) [59] reported increased erythrocyte insulin reception due to fenugreek consumption and they concluded with the help of intravenous glucose tolerance test that fenugreek in the diet reduced the area under the plasma glucose curve significantly and shortened the half-life of plasma glucose by the increased metabolic clearance.

Sharma (1986) [13] reported that injection of fenugreek seed powder improved plasma glucose and insulin responses and reduced urinary concentrations. Daily administration of 25 g fenugreek seed powder in diabetic insulin suffering patient resulted fasting plasma glucose profile, glycosuria and daily insulin requirement (56 to 20 units) and resulted in significant reductions in serum cholesterol concentrations [13]. The post-prandial blood glucose levels in targeted subjects were reduced significantly by giving raw and germinated fenugreek compared to those without fenugreek or boiled fenugreek [60].

Antioxidant

Fenugreek contains phenolic and flavonoid compounds which help to enhance its antioxidant capacity [61]. Table 5 shows the major medicinal and general uses and application of the fenugreek.

Balch [7] suggested that fenugreek has powerful antioxidant property that has beneficial effect on liver and pancreas; since antioxidant properties have been linked to health benefits of natural products; such properties are studied with germinated fenugreek seeds which are observed to be more beneficial than dried seeds because of the fact that germinated seed increases the bioavailability of different constituents of fenugreek. An aqueous fraction of fenugreek exhibits the highest antioxidant activity compared to other fractions and the quantity of phenolic and flavonoid compounds are related to antioxidant activity. These studies reveal significant antioxidant activity in germinated fenugreek seeds which may be due to the presence of flavonoids and polyphenols. Furthermore, Grover et al. (2002) [62] reported that mustard and fenugreek seeds showed hypoglycemic and antihyperglycemic activity in diabetic mice and they have attributed that the health benefits may be due to the presence of antioxidant carotenoids in those spices.

Influence on enzymatic activities

Several researchers as mentioned in [63,64] and [28] have shown in human subject and animal models that fenugreek has the ability to some extent to restore the actions of key enzymes in particular lipids and carbohydrates. Baquer et al. (2011) [65] reported that trigonella administration in rats restored the changed enzyme activities and partially normalized hyperglycemia. Concluded from their experiments that the altered levels of superoxide dismutate, antioxidant enzymes catalase and glutathione peroxidase in liver and kidney of diabetic rats were corrected by treating with insulin, vanadate, fenugreek and the combined dose of vanadate and fenugreek. It showed that the activities of glucose-6-phosphatase and fructose-1, 6-biphosphatase in the liver and kidneys of diabetic rats are reduced by administration of fenugreek.

The α-galactosidase enzyme of germinated fenugreek seeds act on galactomannan to convert it into galactose [66]. Giving of fenugreek seed polyphenol per day that reduced the levels of lipid peroxidation products and protein carbonyl content. On the other hand, it promoted...
S. No.	Application of fenugreek	Responsible component of fenugreek	References
	General uses of fenugreek		
1.	Culinary (colour, flavour, aroma)	Seed, leaves	23
2	Vegetable	Leaves and seeds	7
3	Ingredients in bread making with maize and wheat flour	Seeds	8
4	Forage	Leaves, straws, immature seeds (proteins, vitamins, carbohydrates)	3
5	Spice and seasoning	Leaves and seeds	6, 3
6	Cosmetics	Seeds, leaves	2
7	Paints	Seeds, leaves	2
8	Paper industries	Leaves, seeds	2
9	Organoletic character improver	Seeds, leaves	6
10	Maple syrup and artificial flavouring	Trigonelline	2
11	Holy fumigants & embalming rites	Smoke of fenugreek leaves	26
12	Food	Mixed with flour for bread, yellow dye	6
13	Functional food	Dietary fibre, galactomannan	2
14	Flavouring	Curries, condiments, pickles, chutneys	6
15	Colouring dye	Seeds	2
16	Food Gum	Seed	18
17	Fenugreek as a food stabilizer, adhesive and emulsifying agent	Seed	14, 3
18	Perfume	Fenugreek oil	6
19	Insect repellent	Fenugreek oil	26
20	Alcoholic beverages and perfumery	Seeds	14
21	Bread-making along with wheat and maize flour	Seeds	27, 28
	Medicinal uses of fenugreek		
1	Reduces the sugar level of the blood	Seeds	10
2	Reduces perspiration, fever, allergies, bronchitis and congestion	Seeds, leaves	82
4	Helps in loosening excess mucus and phlegm	Seeds, leaves	62
5	Treats sinus and lung congestion	Seed	56
6	Acts as anti-infection agent	Seeds, leaves	18
7	Reduces congestion	Seed	10
8	Lowers blood pressure	Seeds and leaves	3
9	Carminative flatulence (prevents gas formation in digestive tract)	Seed and leaves	29
3	Aphrodisiac	Seed leaves	28
4	Pharmaceutical (raw material for hormones and therapeutic drugs)	Steroids, flavonoids, alkaloids	2
5	Wounds and sore muscles treatment	Seeds and leaves	29
6	Anti-bacterial agent	Seeds and leaves	3
7	Anti-cancer agent	Seeds, leaves	3, 29
8	Anti-ulcer agent	Seeds leaves	3
9	Anti-nociceptive (Pain reducing)	Seeds leaves	30
10	Anthelmintic agent	Seeds and leaves	31
11	Induces labor during child birth and delivery	Seed	30
12	Induces growth and reproduction hormones	Diogenin hormones	2
13	For immunomodulatory function	Hormones	29, 3
14	Hypocholesterolemic	Whole fenugreek seed	9, 3
15	Hypoglycemic	Methanolic and aqueous extracts of seeds	32
16	Gastro- and hepatoprotective	Leaves and seeds	2
17	Antioxidant	Seed, leaves	33
18	Diabetes management	Seed	
19	Cardiovascular health	Bioactive compound	2
20	Hair strengthening agent	Fresh leaves, fenugreek seed	33
21	Prevents constipation	Seed	
22	Improves digestion	Seed, leaves	3
23	Stimulates liver and spleen	Seed, leaves	
24	Purifies blood	Seed, leaves	3
25	Serves as appetizer	Seed, leaves	
26	Poultice for ulcers, boils and abscess	The twigs and leaves	
27	Lowering of blood cholesterol	Seed, leaves	24

Table 5: Major general and medicinal uses of fenugreek.
mode of action of antioxidant enzymes, and restored content of thiol groups.

Yadav et al. [67] has exhibited that by the combined treatment of fenugreek and sodium-orthovanadate, activities of nicotinamide adenine dinucleotide phosphate-linked enzymes such as glucose-6-phosphate dehydrogenase, malic enzyme, isocitrate dehydrogenase, and the activities of lipogenic enzymes such as adenosine triphosphate-citrate lyase and fatty acid synthase were decreased significantly in liver and increased in kidney during diabetes as compared to those of control.

Immunomodulatory effect

An agent that intensifies or diminishes the immune responses is known as immunomodulator and such effect is called as immunomodulatory effect. Research work in this effect of fenugreek is scanty but showed stimulatory immunomodulatory effect (as evidenced from body weight, relative thymus weight, cellularity of lymphoid organs, delayed type of hypersensitivity response, plaque forming cell assay, haemagglutination titre, quantitative haemolysis assay, phagocytosis, lymph proliferation and a significant increase in phagocytic index and phagocytic capacity of macrophages) of aqueous extract of fenugreek at three doses 50, 100 and 200 mg per kg of body weight for 10 days on the immune system of Swiss albino mice.

Antifertility effect

Evaluated the potential antifertility activity of feeding diets containing 30% fenugreek seeds to male and female white rabbits of New Zealand and reported the following results: a) an antifertility effect of fenugreek seed in female rabbit; b) toxicity effect in male rabbit; c) testis weight in male reduced with damage to the seminiferous tubules and interstitial tissues; d) in the treated animals, the plasma concentration of the androgen hormone and sperm concentrations were halved; f) in the females rabbits, significant reduction of developing foetuses and g) in the treated animals, the circulation of plasma progesterone weight for 10 days on the immune system of Swiss albino mice.

Diabetes management

Das et al. [69] has reported that 25-50 g fenugreek seeds were given to diabetic patients daily in diet to prevent and manage long term complications of diabetes whereas studies have been made about the glycemic index of fenugreek recipes and found that the soluble fenugreek fibre has significantly reduced the glycemic index [18] and therefore, they recommended the inclusion of fenugreek recipes in daily diet to provide at least 25 g fenugreek seeds that helps in diabetes management. On the other hand, water extract of fenugreek seeds has higher hypoglycemic and antihyperglycemic potential and for this reason it may be used as a supplementary medicine to treat the diabetic population by significantly reducing the dose of standard drugs. Since fenugreek seeds are a source of protein, they can replace pulses in the diets of diabetics. 25-50 g fenugreek in the diet of diabetic patients increases the hypoglycemic and antihyperglycemic potential and for this reason it may be used as a supplementary medicine to treat diabetes patients.

In type-1 diabetic rats, administration of fenugreek and sodium-orthovanadate orally [71] concluded that sodium-orthovanadate and fenugreek administration to diabetic animals prevent development of hyperglycemia and alteration in lipid profile in plasma and tissues and maintain it near normal but maximum prevention can be observed in the combined treatment with lower dose of sodium-orthovanadate, whereas in another studies, in mild type-2 diabetic patients adjunct use of fenugreek seeds found to improve glycemic control and decrease insulin resistance [72]. Kocchar and Nigam [73] concluded that 2 g of a powdered assortment of bittergourd, jamun seed and fenugreek seed, either raw or cooked, can be used successfully. Studies of [74] on mechanism of anti-diabetic action, efficacy and safety profile of GII (anti-hyperglycemic compound) purified from fenugreek seeds in sub-diabetic and moderately diabetic rabbits shows that GII seems to decrease lipid content of liver and stimulate the enzymes of glycolysis and inhibit enzymes of gluconeogenesis in the liver of diabetics, especially moderately diabetic rabbits. 4-hydroxyisoleucine is a type of isomer, an atypical branched-chain amino acid, found in fenugreek has effect on glucose and lipid metabolism and can be used for control of type-II diabetes, obesity and dyslipidemia, because it has been clinically evidenced that 4-hydroxyisoleucine stimulates glucose-dependent insulin secretion, decreases insulin resistance in muscles and liver by activating insulin receptor substrate-associated phosphoinositide 3-kinase activity, reduces body weight (plasma insulin and glucose levels) in diet-induced obese mice and decreases elevated plasma triglyceride and total cholesterol levels in hamster model of diabetes [75].

Kariarasan et al. (2009) [76] concluded that ethanol-induced liver cell damage can be protected by cytoprotective action of fenugreek seed polyphenolic extract possibly due to its enhancing cellular redox status. Fenugreek reduced significantly the blood sugar in fasting and post prandial subjects but it did not affect platelet aggregation, fibrinolytic activity and fibrinogen [77].

Antilulcer

The aqueous extract and a gel fraction, isolated from the seeds showed significant ulcer protective effects. It has soothing effect on gastric and gastritis ulcer [6].

Beneficial Influence of Fenugreek on Digestion

Spices consumed in diet positively influenced the pancreatic digestive enzymes. Platel and Srinivasan [78] experimentally showed that dietary curcumin, capsacin, Piperine, ginger, fenugreek and asafoetida prominently enhanced pancreatic lipase activity with the help of feeding rats with spicy diets for eight weeks.

Non-starchy polysaccharides increase the bulk of the food and augments bowel movements. Also, non-starchy polysaccharides assist in smooth digestion whereas high fibre of fenugreek helps in relieving constipation ailments.

Fenugreek as food stabilizer, food adhesive, food emulsifier and gum

The interaction of fenugreek protein with the food constituents
determines its ability to stabilize and emulsify the food constituents. Hefnawy and Ramadan [79] evaluated the effect of fenugreek gum on solubility and emulsifying properties of soy protein isolate and they reported that the emulsifying activity of soy protein isolate with fenugreek gum was four times higher than that of soy protein isolate with fenugreek gum or fenugreek gum alone and the results were comparable to those of bovine serum albumin. The emulsifying stability of soy protein isolate with fenugreek gum dispersions was respectively three times higher than that of soy protein isolate with fenugreek gum and bovine serum albumin. The solubility and emulsifying properties of soy protein isolate with fenugreek gum dispersions were also stable over wide range of pH, ion strength and high temperature. The higher dietary fibre content of fenugreek acts as probiotic in functional food [9]. Sowmya and Rajyalakshmi (1999) [19] reported that the soluble fibre of fenugreek acts as an excellent substrate for fermentation done by the microorganisms in the large intestine. Garti et al (1997) [26] demonstrated that fenugreek gum shows an emulsifying capability for stabilizing oil-in-water emulsions and they further concluded from their study that critical coverage of gum/oil ratio for stable non-coalesced emulsion was smaller than the ratio obtained for guar or other gum, indicating its emulsification properties to be superior to those of other galactomannans. Fenugreek gum has very good application in making soups because it modifies the rheological properties and interaction of starch and other soup ingredients.

Losso et al. [80] incorporated fenugreek in bread making and demonstrated that fenugreek in food helps to reduce blood sugar but use of fenugreek is a barrier due to its bitter taste and strong odd flavor. They did not find significant variation in color, texture, proximate composition, firmness, and flavor intensity between the fenugreek and wheat bread, whereas glucose and insulin was found to be lower in the bread with fenugreek. Bread maintained fenugreek’s functional property of reducing insulin resistance. Therefore, it is evident from this study that fenugreek can be incorporated in baked products in acceptable limit which will reduce insulin resistance and treat diabetes patients as well.

Fenugreek in traditional food

Fenugreek paste, locally termed as “Cemen” is a popular food in Turkey [23], which is prepared from ground fenugreek seeds. Crushed fenugreek seed or coarse fenugreek powder is used to make ball for making of clarified butter.

Other benefits, beneficial uses and application of fenugreek

Fenugreek has the ability to lower the hepatic lipids in body because of its potential to modify the activities of several enzymes such as enzymes related to glucose and lipid metabolism [28]. Fenugreek is anthelmintic (ability to cause the evacuation of parasitic intestinal worms) in nature. As fenugreek has a high fibre content, which helps in controlling cholesterol in human body, it takes care of some of the problems related to heart. It is diuretic emmenagogue, emollient in nature and controls heart diseases.

Care, Concern and Safety in Fenugreek Use

Muralidhara et al. [14] investigated toxic effects of debittered fenugreek powder on acute and subchronic regimes in mice and rats, and could not find any sign of toxicity, mortality, change in body weight, organ weight; up to a maximum dosage of 2.5 g per kg body weight of mice and rat. Even though there is no toxic or any other side effect of consuming fenugreek even up to 20% level by both the normal as well as diabetic people [38], food safety is an important issue and is crucial now-a-days because people are very much conscious for their health. Therefore, one should be aware of the fact that how much, in what way, at what time, and in which condition, fenugreek should be used. Food quality and safety of fenugreek is determined by its production practices, handling, preparation and storage. Table 6 shows some of the problems associated with processing and consumption of fenugreek. Food quality and safety has high significance in expanding global food trade [81]. It should be used in minute quantity. Diabetic patients should avoid its use along with therapeutic medication because fenugreek could interfere with the absorption of those therapies that control blood sugar. It should not be consumed in excess amount because it has high content of fibre which may cause problem with digestion. There is a problem of odd smelling in sweet after consuming fenugreek, hence it should be used in limited quantity.

Faeste et al. (2009) [82] has established significant homologies to major peanut allergens that can explain the proliferation of secondary fenugreek allergy due to cross-reactivity in peanut allergic patients. The application of vanadium alone in rats created toxicity but was nullified when fenugreek powder was given.

When fenugreek paste was applied to a scalp as a treatment for dandruff, it resulted in numbness of head, facial angioedema, and

S.No.	Problem of fenugreek consumption	Cause/Effect	Reference
1	Decrease in body weight and T3 (Thyroid hormone)	It has less fat and nutritive value whereas it acts as bulk in intestine	35
2	Interfere with the absorption of oral medication	Rich in fibre	35
3	Produces an unwanted odd smell	Excess consumption of fenugreek seed and fresh leaves	107
4	Stomach pain	Excess eating, has high fibre content (can’t be easily digested)	38, 39
5	Hypoglycemic agents, lower serum glucose level	Due to anti-diabetic nature	38, 39

Problems in the processing of fenugreek

S.No.	Problem of fenugreek consumption	Cause/Effect	Reference
1	On increasing pH	Antioxidant properties decrease	36
2	Ambient grinding	Loss of flavour, aroma and protein	26
3	Drying of fenugreek at high temperature (seed, leaves)	Loss of β-carotene, ascorbic acid, chlorophyll content	37, 25
4	During grinding sticks to the grinder’s wheels	Due to gummy and sticky nature; Leads to choking	26

Table 6: Problems associated with the use and processing of fenugreek.
wheezing so, it evidenced strong sensitivity to fenugreek in patients but controls did not show such response with fenugreek extract [8].

Conclusion

The major health beneficial properties of fenugreek, which can give promising therapeutic application, found in various studies in last three decades has been discussed in this review article. Antidiabetic, antioxidant, anticarcinogenic, anthelmintic, antiulcer, antifertility, immunomodulatory effect, enzymatic pathway modifier, hypoglycemic activity, hypocholesterolemic activity are the major medicinal properties of the fenugreek demonstrated in various studies. High fibre content, protein content, gummy nature and other bioactive compounds make it a naturally several health promoting herb. Based on the these several medicinal usefulness as discussed based on various past reported scientific findings, fenugreek can be recommended and can be made a part of our daily diet as its liberal use is safe and various health benefit can be drawn from this natural herb but in some extreme cases like patient suffering from chronic asthma etc., it should be avoided or its consumption should be minimized.

References

1. Thomas JE, Bandara M, Lee EL, Driedger D, Acharya S (2011) Biochemical monitoring in fenugreek to develop functional food and medicinal plant variants. N Biotechnol 28: 110-117.
2. Blank I (1996) The flavor principle of fenugreek. Nestlé research center. 211th ACS Symposium. New Orleans 24-28.
3. Sowmya P, Rajyalakshmi P (1999) Hypocholesterolemic effect of germinated fenugreek seeds in human subjects. Plant Foods Hum Nutr 53: 359-365.
4. Brar JK, Rai DR, Singh A, Kaur N (2011) Biochemical and physiological changes in fenugreek (Trigonella foenum-graecum L) leaves during storage under modified atmosphere packaging. Journal food science and technology.
5. Senthil A, Mamatha BS, Vishwanath P, Bhat KK, Ravishankar GA (2010) Studies on development and storage stability of instant spice adjunct mix from seaweed. Journal of food science and technology 48: 6.
6. Srinivasan K (2006) Fenugreek (Trigonella foenum-graecum): A Review of Health Beneficial Physiological Effects. Food Reviews International 22: 203-224.
7. Batch PA (2003) Prescription for dietary wellness (2nd edn). Penguin group, New York.
8. Thomas JE, Bandara M, Lee EL, Driedger D, Acharya S (2011) Biochemical monitoring in fenugreek to develop functional food and medicinal plant variants. N Biotechnol 28: 110-117.
9. Lee EEL (2006) Genotype X environment impact on selected bioactive compound content of Fenugreek (Trigonella foenum-graecum). Department of biological sciences, University of Lethbridge, Canada 1-150.
10. Montgomery J (2009) The potential of fenugreek (Trigonella foenum-graecum) as a forage for dairy herds in central Alberta. University of Alberta, USA 4-15.
11. Yadav S, Sehgal S (1997) Effect of home processing and storage on ascorbic acid and β-carotene content of bathua (Chenopodium album) and fenugreek (Trigonella foenum-graecum) leaves. Plant Foods for Human Nutrition 50: 239-247.
12. Sharma RD (1986) Effect of fenugreek seeds and leaves on blood glucose and serum insulin responses in human subjects. Nutrition Research 6: 1353-1364.
13. Muralidhara, Narasimhamurthy K, Viswanatha S, Ramesh BS (1999) Acute and subchronic toxicity assessment of debitterized fenugreek powder in the mouse and rat. Food Chem Toxicol 37: 831-838.
14. Jani R, Udipi SA, GhuGre PS (2009) Mineral content of complementary foods. Indian J Pediatr 76: 37-44.
15. Altuntas E, Ozgoz E, Taser OF (2005) Some physical properties of fenugreek (Trigonella foenum-graecum L.) seeds. J Food Eng 71: 37-43.
16. Kakani RK, Anwer MM, Meena SS, Saxena SN (2009) Advance production technology of fenugreek. NRCSS Tech. Release 1-24.
17. Raghuram TC, Sharma RD, Pasricha S, Menon KK, Radhaiah G (1992) Glycaemic Index of fenugreek recipes and its relation to dietary fiber. International journal of diabetes in developing countries 12: 1-4.
18. Sowmya P, Rajyalakshmi P (1999) Hypocholesterolemic effect of germinated fenugreek seeds in human subjects. Plant Foods Hum Nutr 53: 359-365.
19. Blank I, Lin J, Devaud S, Fumeaux R, Fay LB (1997) The principal flavour components of fenugreek (Trigonella foenum-graecum). In: Riach, SJ and Chi, TH (eds) Spices: Flavour Chemistry and Antioxidant Properties. ACS, Washington, DC.
20. Youssef MK, Wang Q, Cui SW, Barbut S (2009) Purification and partial physicochemical characteristics of protein free fenugreek gums. Food Hydrocoll 23: 2049-2053.
21. Brummer Y, Cui W, Wang Q (2003) Extraction, purification and physicochemical characterization of fenugreek gum. Food hydrocoll 17: 229-236.
22. Isikli ND, Karababa E (2005) Rheological characterization of fenugreek paste (cemem). J Food Eng 69: 185-190.
23. Ramesh HP, Yamaki K, Ono H, Tashida T (2001) Two-dimensional NMR spectroscopic studies of fenugreek (Trigonella foenum-graecum L.) galactomannan without chemical fragmentation. Carbohydrate Polymers 45: 69-77.
24. Roberts KT, Cui W, Chang YH, Ng PKW, Graham T (2012) The influence of fenugreek gum and extrusion modified fenugreek gum on bread. Food Hydrocoll 26: 350-358.
25. Garti N, Madar Z, Aserin A, Sternheim B (1997) Fenugreek Galactomannans as Food Emulsifiers. LWT- Food Sci Technol 30: 305-311.
26. Sharma RD, Raghuram TC, Rao NS (1990) Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetics. Eur J Clin Nutr 44: 301-306.
27. Raju J, Gupta D, Rao AR, Yadava PK, Baquer NZ (2001) Trigonellafoenum graecum (fenugreek) seed powder improves glucose homeostasis in aloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Mol Cell Biochem 224: 45-51.
28. Madar Z, Shomer J (1990) Polyasaccharide composition of a gel fraction derived from fenugreek and its effect on starch digestion and bile acid absorption in rats. J Agric Food Chem 38: 1535-1539.
29. Mathern JR, Raatz SK, Thomas W, Slavin JL (2009) Effect of fenugreek fiber on satiety, blood glucose and insulin response and energy intake in obese subjects. Phytother Res 23: 1543-1548.
30. Naidu MM, Shyamala BN, Naik JP, Sulochanamma G, Srinivas P (2011) Chemical composition and antioxidant activity of the husk and endosperm of fenugreek seeds. LWT-Food Sci Technol 44: 451-456.
31. http://www.thefreedictionary.com/alkaloid
32. Umehura T, Goto T, Kang MS, Mizoguchi N, Hirai S, et al. (2011) Diosgenin, the main aglycon of fenugreek, inhibits LRα activity in HepG2 cells and decreases plasma and hepatic triglycerides in obese diabetic mice. J Nutr 141: 17-23.
33. Kumar P, Kale RK, McLean P, Baquer NZ (2012) Antidiabetic and neuroprotective effects of T. foenum-graecum seed powder in diabetic rat brain. Prague Med Rep 113: 33-43.
34. Singh V, Garg AN (2006) Availability of essential trace elements in Indian cereals, vegetables and spices using INAA and the contribution of spices to daily dietary intake. Food chem 94: 81-89.
35. Faeste CK, Namork E, Lindvik H (2009) Allergenicity and antigenicity of fenugreek (Trigonella foenum-graecum) proteins in foods. J Allergy Clin Immunol 123: 187-194.
36. Ruby BC, Gaskill SE, Slivka D, Harger SG (2005) The addition of fenugreek to milk powder improves glucose homeostasis in aloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Mol Cell Biochem 224: 45-51.
37. Rao PU, Sesikeran B, Rao PS, Naidu AN, Rao VV, et al. (1996) Short term nutritional and safety evaluation of fenugreek. Nutrition research 16: 1495-1505.
38. Izzo AA, Di Carlo G, Borrelli F, Ernst E (2005) Cardiovascular pharmacotherapy and herbal medicines: the risk of drug interaction. Int J Cardiol 98: 1-14.
39. Petit PR, Sauvaire YD, Hillaire-Buys DM, Leconte OM, Baissac YG, et al.
(1995) Steroid saponisins from fenugreek seeds: extraction, purification, and pharmacological investigation on feeding behavior and plasma cholesterol. Steroids 60: 674-680.

40. Naidu MM, Shyamala BN, Naik JP, Sulochanamma G, Srinivas P (2011) Chemical composition and antioxidant activity of the husk and endosperm of fenugreek seeds. LWT-Food Sci and Technol 44: 451-456.

41. Mathur P, Choudhry M (2009) Consumption pattern of fenugreek seeds in Rajasthani families. J Hum Ecol 25: 9-12.

42. Nasri NAE, Tinay AHE (2007) Functional properties of fenugreek (Trigonella foenum-graecum) protein concentrate. Food Chem 103: 582-589.

43. Srivinasa K (2006) Fenugreek (Trigonella foenum-graecum): A Review of Health Beneficial Physiological Effects. Food Reviews International 22: 203-224.

44. Leela NK, Shaheek S (2008) Fenugreek. Chemistry of Spices. CABI International, Pondicherry, India.

45. Poole C, Bushey B, Foster C, Campbell B, Willoughby D, et al. (2010) The effects of a commercially available botanical supplement on strength, body composition, power output, and hormonal profiles in resistance-trained males. J Int Soc Sports Nutr 7: 34.

46. Jani R, Udi SA, Ghugre PS (2009) Mineral content of complementary foods. Indian J Pediatr 76: 37-44.

47. Bhatia K, Kaur M, Atif F, Ali M, Rehman H, et al. (2006) Aqueous extract of Trigonella foenum-graecum L ameliorates additive urotoxicity of buthionine sulfoximine and cyclosporaphamide in mice. Food Chem Toxicol 44: 1744-1750.

48. Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71: 1397-1421.

49. Devasena T, Menon VP (2003) Fenugreek affects the activity of beta-glucoronidase and mucinase in the colon. Phytother Res 17: 1088-1091.

50. Sur P, Das M, Gomes A, Vedarasimoni JR, Sahu NP, et al. (2001) Trigonila foenum-graecum (fenugreek) seed extract as an antineoplastic agent. Phytother Res 15: 257-259.

51. Hibasami H, Moteki H, Ishikawa H, Imai K, Yoshikoa K, et al. (2003) Protodioscin isolated from fenugreek (Trigonilla foenum-graecum) induces cell death and morphological change indicative of apoptosis in leukemic cell line H-60 but not in gastric cancer cell line KATO III. International Journal of Molecular Medi 11: 23-26.

52. Raju J, Bird RP (2006) Alleviation of hepatic steatosis accompanied by modulation of plasma and liver TNF-alpha levels by Trigonella foenum-graecum (fenugreek) seeds in Zucker obese (fa/fa) rats. Int J Obes (Lond) 30: 1298-1307.

53. Thirunavukkarasu V, Anuradha CV, Viswanathan P (2003) Protective effect of fenugreek (Trigonella foenum-graecum) seeds in experimental ethanol toxicity. Phytother Res 17: 737-743.

54. Kaviarasan S, Anuradha CV (2007) Fenugreek (Trigonella foenum-graecum) seed polyphenols protect liver from alcohol toxicity: a role on hepatic detoxification system and apoptosis. Pharmazie 62: 299-304.

55. Zia T, Hasnain SN, Hasan SK (2001) Evaluation of the oral hypoglycemic activity of Trigonella foenum-graecum L. (methi) in normal mice. J Ethnopharmacol 75: 191-195.

56. Singhil PC, Gupta RK, Joshi LD (1982) Hypcholesterolemic effect of seeds. Current Science 51: 136-137.

57. Basch E, Ulbrich C, Kuo G, Szapary P, Smith M (2003) Therapeutic applications of fenugreek. Altern Med Rev 8: 20-27.

58. Singh V, Garg AN (2006) Availability of essential trace elements in Indian cereals, vegetables and spices using IINAA and the contribution of spices to daily dietary intake. Food chemistry 94: 81-89.

59. Raghuram TC, Sharma RD, Sivakumar B, Sahay BK (1994) Effect of fenugreek seeds on in vitro glucose disposition in non-insulin dependent diabetic patients. Phytotherapy Research 8: 83-86.

60. Naidu MM, Shyamala BN, Naik JP, Sulochanamma G, Srinivas P (2011) Chemical composition and antioxidant activity of the husk and endosperm of fenugreek seeds. LWT-Food Science and Technology 44: 451-456.

61. Dixit P, Ghaskalb S, Mohan H, Devasagayam TP (2005) Antioxidant properties of germinated fenugreek seeds. Phytother Res 19: 977-983.

62. Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81: 81-100.

63. Yadav UC, Moorthy K, Baquer NZ (2004) Effects of sodium-orthovanadate and Trigonella foenum-graecum seeds on hepatic and renal lipogenic enzymes and lipid profile during atherosclerosis in albino mice. J Biosci 29: 81-91.

64. Vats S, Yadav SP, Grover JK (2003) Effect of T. foenumgraecum on glycoprotein content of tissues and the key enzymes of carbohydrate metabolism. J Ethnopharmacol 85: 237-242.

65. Baquer NZ, Kumar P, Taha A, Kale RK, Cowsik SM, et al. (2011) Metabolic and molecular action of Trigonella foenum-graecum (fenugreek) and trace metals in experimental diabetic tissues. J Biosci 36: 383-396.

66. Vats S, Yadav SP, Grover JK (2003) Effect of T. foenumgraecum on glycoprotein content of tissues and the key enzymes of carbohydrate metabolism. J Ethnopharmacol 85: 237-242.

67. Neeraja A, Rajayakshmi P (1996) Hypoglycemic effect of processed fenugreek seeds in humans. J Fd Sci Technol 33: 427-430.

68. Bin-Hajeez B, Haque R, Parvez S, Pandey S, Sayeed I, et al. (2003) Immunomodulatory effects of fenugreek (Trigonella foenum-graecum L.) extract in mice. Int Immunopharmacol 3: 257-265.

69. Das L, Bhaumik E, Raychaudhuri U, Chakraborty R (2011) Role of nutraeuticals in human health. Journal of food science and technology.

70. Senthi A, Mamatha BS, Vishwanath P, Bhat KK, Ravishankar GA (2010) Studies on development and storage stability of instant spice adjunct mix from seaweed. Journal of food science and technology 48: 712-717.

71. Basch E, Ulbrich C, Kuo G, Szapary P, Smith M (2003) Therapeutic applications of fenugreek. Altern Med Rev 8: 20-27.

72. Gupta A, Gupta R, Lal B (2001) Effect of Trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: a double blind placebo controlled study. J Assoc Physicians India 48: 1057-1061.

73. Kochhar A, Nagi M (2005) Effect of supplementation of traditional medicinal plants on blood glucose in non-insulin-dependent diabetics: a pilot study. J Med Food 8: 545-549.

74. Moothy R, Prabhu KM, Murthy PS (2010) Anti-hyperglycemic compound (GII) from fenugreek (Trigonella foenum-graecum Linn.) seeds, its purification and effect in diabetes mellitus. Indian J Exp Biol 48: 1111-1118.

75. Jette L, Harvey L, Eugen K, Levens N (2009) 4-Hydroxyisoleucine: a plant-derived treatment for metabolic syndrome. Curr Opin Investig Drugs 10: 353-358.

76. Kaviarasan S, Ramamurthy N, Gunasekaran P, Varalakshmi E, Anuradha CV (2009) Induction of alcohol-metabolizing enzymes and heat shock protein expression by ethanol and modulation by fenugreek seed polyphenols in Chang liver cells. Toxicol Mech Methods 19: 116-122.

77. Bordia A, Verma SK, Srivastava KC (1997) Effect of ginger (Zingiber officinalis Rosc.) and fenugreek (Trigonella foenum-graecum L) on blood lipids, blood sugar and platelet aggregation in patients with coronary artery disease. Prostaglandins Leukot Essent Fatty Acids 56: 379-384.

78. Platel K, Srinivasan K (2000) Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. Nahrung 44: 42-46.

79. Helfawy HTM, Ramadan MF (2011) Physicochemical characteristics of soy protein isolate and fenugreek gum dispersed systems. J Food Sci Technol 48: 371-377.

80. Losso JN, Holiday DL, Finley JW, Martin RJ, Rood JC, et al. (2009) Fenugreek bread: a treatment for diabetes mellitus. J Med Food 12: 1046-1049.

81. Narasiah K, Jha SN, Bhardwaj R, Sharma R, Kumar R (2011) Optical biosensors for food quality and safety assurance - a review. J Food Sci Technol 11: 437-436.

82. Faeste CK, Namork E, Lindvik H (2009) Allergenicity and antigenicity of fenugreek (Trigonella foenum-graecum) proteins in foods. J Allergy Clin Immunol 123: 187-194.

83. Patil SP, Niphadkar PV, Bapat MM (1997) Allergy to fenugreek (Trigonella foenum graecum). Ann Allergy Asthma Immunol 78: 297-300.