Mechanical resistance in unstructured proteins*

Sigurður Ægir Jónsson¹, Simon Mitternacht² and Anders Irbäck¹

¹Computational Biology & Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden. ²University Library, University of Bergen, Pb. 7808, N-5020 Bergen, Norway

Abstract. Single-molecule pulling experiments on unstructured proteins linked to neurodegenerative diseases have measured rupture forces comparable to those for stable folded proteins. To investigate the structural mechanisms of this unexpected force resistance, we perform pulling simulations of the amyloid β-peptide (Aβ) and α-synuclein (αS), starting from simulated conformational ensembles for the free monomers. For both proteins, the simulations yield a set of rupture events that agree well with the experimental data. By analyzing the conformations right before rupture in each event, we find that the mechanically resistant structures share a common architecture, with similarities to the folds adopted by Aβ and αS in amyloid fibrils. The disease-linked Arctic mutation of Aβ is found to increase the occurrence of highly force-resistant structures. Our study suggests that the high rupture forces observed in Aβ and αS pulling experiments are caused by structures that might have a key role in amyloid formation.

Keywords: intrinsically disordered proteins, mechanical unfolding, Monte Carlo simulation, Alzheimer’s disease, Parkinson’s disease.

Introduction

The amyloid-forming proteins linked to neurodegenerative disorders often belong to the class of intrinsically disordered proteins [1–4]. Recent single-molecule atomic force microscopy (AFM) experiments show that, despite their lack of a well-defined folded structure, such proteins sometimes exhibit high mechanical resistance when pulled by an applied force [5–7]. Rupture forces of similar magnitude are, in fact, only rarely observed for folded proteins [8, 9]. In this paper, we attempt to convince the reader that subensembles of folded conformations with a specific architecture can explain this unexpected force resistance.

The pathway from a more or less disordered monomer to an ordered amyloid fibril, with its characteristic cross-β structure, involves a host of intermediate assemblies. The exact character of these species, and their possible roles in pathogenesis, is not

*Cite as: Biophysical Journal (2013) 104:2725
completely understood [10–12]. It is, however, clear that at some point the assemblies become rich in β-sheets. Structural motifs, and in particular β-sheets, are key to the mechanical stability of proteins. In general, the response to a stretching force is largely dictated by native topology [13, 14] and pulling geometry [15, 16], and high stability can be traced to a specific structural unit, a mechanical clamp [8]. Typically, these units are β-sheets, arranged such that the strands cannot be separated without breaking a number of hydrogen bonds all at once. The AFM-detected force-resistant states of disease-related proteins [5–7] therefore appear likely to contain β-sheets, and could play a vital role in the aggregation process. Knowledge of the structural specifics of the force-resistant states could thus provide valuable and general insight into the aggregation mechanisms in amyloid diseases.

In this study, we use atomic-level Monte Carlo (MC) simulations to search for and characterize possible mechanical clamps in Alzheimer’s amyloid β-peptide (Aβ) and the Parkinson’s disease-linked α-synuclein protein (αS). Both proteins are unstructured and amyloid-forming, and displayed mechanical resistance in AFM experiments [5–7]. Computational modeling offers unique opportunities to interpret this force response, but requires the use of large sets of trajectories, due to the structural diversity of the proteins. Our calculations are carried out starting from large and diverse sets of initial conformations, randomly drawn from previously simulated ensembles [17, 18]. In the simulations, high-force rupture events occur for both proteins. We find that these events are caused by one specific type of mechanical clamp, which shows similarities to the folds adopted by Aβ [19, 20] and αS [21] in fibrils. Such structures could play an important role in the addition of monomers to growing Aβ and αS fibrils, an association that requires large parts of the monomers to adopt a specific fold. In addition to the wild-type (WT) sequences, we study the disease-related Arctic E22G mutant [22] of Aβ, and find it to increase the occurrence of strong mechanical clamps.

Methods

Model. Our simulations are based on an all-atom implicit solvent model with torsional degrees of freedom [23]. The energy function consists of four main terms

\[ E = E_{ev} + E_{loc} + E_{hb} + E_{sc}. \]

The \( E_{ev} \) term represents excluded volume effects, whereas \( E_{loc} \) handles local interactions among neighboring atoms. Hydrogen bonds between backbone NH and CO groups, and between charged side-chain groups and the backbone are handled by \( E_{hb} \). The last term, \( E_{sc} \), represents interactions between side chains, both hydrophobic attraction and attraction/repulsion between charged side chains. The mathematical form and parameters of the model are given elsewhere [23]. The computational convenience of the model allows us to generate large sets of trajectories, which is important because of the conformational polymorphism of the proteins studied.

One of the big challenges in creating protein models is to obtain a realistic temperature dependence. The temperature scale of our model was determined to give correct
folding temperatures for a diverse set of small peptides [23]. Our simulations have, however, shown that the temperature scale needs recalibration for the larger Aβ and αS proteins [17, 18]. Below we will both give the nominal temperatures used in the simulations and indicate what physical temperatures these correspond to, based on comparisons with experimental data.

Pulling. We model the action of the pulling force by adding a harmonic potential in the end-to-end distance of the protein, \( L(x) \) (between the first and last backbone atoms), where \( x \) denotes a protein conformation. The equilibrium length is initially set to the end-to-end distance of the starting conformation, \( L_0 = L(x_0) \), and then increases with a constant velocity \( v \). The full energy function is given by

\[
E_{\text{tot}}(x, t) = E(x) + \frac{k}{2} \left[ L_0 + vt - L(x) \right]^2,
\]

where \( E(x) \) is the energy in the absence of external force, \( t \) is MC time and \( k \) a spring constant. In our calculations, we set \( k = 37 \) pN/nm and \( v = 0.05 \) fm/MC step. The AFM study of Aβ and αS by Hervás et al. [7] was performed using an estimated cantilever stiffness of 30–70 pN/nm and a pulling speed of 0.4 nm/ms. Our \( v \) cannot be directly translated to an experimental pulling speed, but was empirically chosen based on previous simulations of fibronectin domains [24]. Here, we found simulation results obtained using \( v = 0.1 \) fm/MC step to be compatible with AFM measurements at a pulling velocity of 0.6 nm/ms. Therefore, in our present calculations, we expect rupture forces comparable to those measured by Hervás et al. [7], especially since the velocity dependence is only logarithmic [25]. Generating Aβ and αS unfolding trajectories at experimental pulling velocities by conventional molecular dynamics methods is a challenge, as the required time span of each trajectory is \( \sim 0.1 \) s.

MC details. We simulate the above model using MC dynamics. MC is a crude approximation to the real dynamics over short time scales, but we expect MC-based unfolding simulations to capture the major free-energy minima and barriers encountered by a protein when stretched, provided that only small trial moves are used [26, 27]. Our calculations are based on two “small-step” MC updates: rotations of single side-chain angles and coordinated Biased Gaussian Steps (BGS) for backbone angles [28]. BGS updates up to eight consecutive backbone torsion angles in a manner that keeps the ends of the updated segment approximately fixed. The equilibrium length of the harmonic spring pulling the protein is increased by a small constant amount in each MC step.

Aβ ensembles. We study the highly amyloidogenic 42-residue form of Aβ. In previous work, we investigated monomer properties and dimer formation for four variants of this peptide: WT, E22G, F20E and E22G/I31E [17, 29]. The model temperature (nominally 37°C) was chosen for best match with experimental chemical shifts [30] and J-couplings [31] measured at 0–5°C. The present study is conducted at the same temperature, and focuses on the WT and E22G variants. To ensure proper sampling,
new extended simulations of the free monomers were performed, which indeed agree very well with previous data. Starting from conformations randomly drawn from these equilibrium ensembles, a set of 512 independent pulling trajectories was generated for each of WT Aβ and E22G Aβ.

**αS ensemble.** In our previous study of the free 140-residue αS monomer, we observed two distinct phases: a disordered high-energy phase, D, and a β-structure-rich low-energy phase, B [18]. The transition frequency between these phases was insufficient for a determination of their relative fraction as a function of temperature. Our analysis therefore focused on single-phase properties, evaluated using a fixed model temperature (nominally 56°C) at which both phases coexisted. The generated D phase ensemble was found to be in good agreement with NMR data at 15°C [32]. A consistent description of NMR data at −15°C and −10°C [33, 34] in terms of the B and D phases was, by contrast, found to require a significant B phase fraction, around 50–70%. Our pulling simulations are carried out using the same model temperature (56°C), with initial conformations randomly drawn from the two single-phase equilibrium ensembles (total number 1024). As in the previous study, the two phases are analyzed separately.

**Analysis.** In the pulling simulations, we monitor the external force, $F$, and the end-to-end distance, $L$. Some examples of force-distance trajectories can be found in Fig. 1. In our analysis of the generated trajectories, the data are noise filtered using a sliding window of size $T_w = 6 \times 10^6$ MC steps. We identify rupture events as sudden drops in force with MC time. To discriminate true rupture events from noise, we require the force to drop by $>20$ pN within a time interval of $T_w$, from a peak value $>20$ pN (the force can drop to negative values). For each rupture event, we register the maximum force, $F_r$, and the end-to-end distance, $L_r$, at which the peak occurs.

Secondary structure is classified using the program STRIDE [35]. The β-structure content is calculated as the fraction of residues that are in the class extended. Solvent accessibility calculations are performed using the program NACCESS [36].

To locate β-hairpin turns, a contact-based measure of turn propensity, $\tau_i$, is calculated. Two residues are said to be in contact if two or more heavy-atom pairs are within 4.5 Å of each other. The measure $\tau_i$ is defined as the sum of all contact probabilities $p_{jk}$ in a strip perpendicular to the main diagonal of the contact map, $2(i - 1) < j + k < 2(i + 1)$.

Figures of three-dimensional structures are drawn using PYMOL [37].

**Results**

**WT Aβ.** The Aβ molecule is small and natively unfolded, and may seem unlikely to exhibit any mechanical resistance. However, in their AFM study, Hervás et al. [7] found that many unfolding traces contained at least one force peak $>20$ pN. The maximum recorded rupture force exceeded 300 pN.

We examine the structural mechanisms causing this force resistance using MC simulations. As described in Methods, starting from a simulated ensemble of conformations,
Figure 1: Examples of simulated unfolding trajectories. (Upper panel) Force, $F$, versus end-to-end distance, $L$, in two runs for WT Aβ. In one trajectory, no force-resistant state is encountered as the molecule is stretched. In the other, a rupture event occurs at $L_r = 7.5$ nm and $F_r = 119$ pN. The three-dimensional structure is a snapshot just before the rupture event. The black and white curves illustrate the noise-filtering used when analyzing the data (see Methods). (Lower panel) Similar plot showing two αS trajectories with zero and three rupture events, respectively. The snapshots illustrate the core structures involved in the rupture events. The first snapshot shows residues 1–101, whereas the final three-stranded β-sheet is formed by the 33–85 segment.

we study the response of the protein when pulled at constant velocity. In some of the simulated trajectories, when stretched, the Aβ molecule gets trapped in a force-resistant state, the breaking of which gives rise to a force maximum (Fig. 1). Rupture events, signaled by force peaks $>20$ pN, occur in 148 of our 512 unfolding trajectories (see Methods for a description of our peak detection protocol). Most of these 148 runs contain one rupture event, but there are also trajectories with two such events (Table 1).

For each rupture event, we record the maximum force, $F_r$, and the end-to-end distance, $L_r$, at which the peak occurs. The distributions of $F_r$ and $L_r$ are broad (Fig. 2), showing that the observed rupture events are caused by a range of structures with varying mechanical strength. Our simulations differ in several details from experiments, where, for instance, the molecule of interest is embedded in a multimodular construct. Despite these uncertainties, our results are in good overall agreement with those reported by Hervás et al. [7]. The conformational polymorphism that we observe resembles that found in the experiments, and our measured rupture forces are comparable to the ex-
Jónsson et al. 2013 – Mechanical resistance in unstructured proteins

Table 1: Rupture event statistics. The total number of trajectories (N_{traj}), the number of trajectories with at least one rupture event (N_{mech}), and the total number of observed rupture events (N_{ev}) for the four systems studied. The numbers of trajectories with 1, 2, 3, 4 and 5 rupture events are indicated within parentheses in the N_{mech} column.

| Protein       | N_{traj} | N_{mech}          | N_{ev} |
|---------------|----------|-------------------|--------|
| Aβ WT         | 512      | 148 (135, 13, 0, 0, 0) | 161    |
| Aβ E22G       | 512      | 172 (144, 27, 1, 0, 0) | 201    |
| αS, D phase   | 449      | 2 (1, 1, 0, 0, 0)    | 3      |
| αS, B phase   | 575      | 563 (37, 205, 274, 43, 4) | 1461   |

Figure 2: Histograms of rupture force (upper panel), F_r, and rupture distance (lower panel), L_r, for WT and E22G Aβ, based on 161 and 201 rupture events, respectively.

Having seen this agreement, we next examine the structures causing the simulated rupture events. What conformational features give rise to rupture forces as high as 210 pN (Fig. 2)? The starting conformations for our pulling simulations are drawn from a diverse equilibrium ensemble, generated as described in Methods. Fig. 3 shows the free energy of this ensemble, calculated as a function of accessible surface area and β-structure content. Two major free-energy minima can be identified, both shallow and broad. One minimum corresponds to single extended β-sheets and the other to more compact, often double-layered structures, with lower accessible surface area (<36 nm^2) and lower β-structure content (<0.5). The plot symbols in Fig. 3 represent the conformations from which our pulling simulations are started, and indicate the magnitude of the maximum rupture force along the respective trajectories. A majority of the trajectories containing rupture events start out from the free-energy minimum corresponding to single extended β-sheets. Conformations from the other minimum have shorter β-strands and are typically unable to withstand high forces.
To pinpoint the structural elements providing mechanical resistance, we examine the conformations sampled just before the rupture events. An analysis of secondary-structure content before rupture shows that high rupture forces occur only if the β-structure content is high (Fig. 4). For a more detailed picture, we divide the rupture events into four classes based on β-sheet geometry, as indicated by the plot symbols in Fig. 4. The first two classes correspond to three-stranded β-sheets with specific turn locations (turns are identified using the measure $\tau_i$ defined in Methods). The turns are located in the 13–15 and 23–24 intervals for the first class, and in the 13–15 and 25–27 intervals for the second class. The third class represents all three-stranded β-sheets with other turn locations. All these three classes contain many high-$F_r$ events, and the average $F_r$ is $>100$ pN in all three cases. The fourth and last class collects all the remaining rupture events. The corresponding structures are often double layered, and sometimes contain smaller β-sheets. For this class, the average rupture force is $\sim 40$ pN. This analysis confirms that most of the main mechanical clamps are three-stranded β-sheets. Typically, they have a simple meander topology. β-sheets with an odd number of strands in a meander pattern are indeed obvious candidates for mechanical clamps. Unlike a β-hairpin, they cannot be unzipped one hydrogen bond at a time.

The three-stranded β-sheets causing rupture events share similar sequence locations, as one might expect for a small protein such as Aβ. To quantify this, we show in Fig. 5 a β-structure profile, obtained by averaging over structures just before rupture in all events involving three-stranded β-sheets. The profile shows that there indeed are statistically preferred turn and strand regions. In addition, it can be seen that the second and third strand regions overlap with the two strand regions in Aβ fibrils [19, 20].

For a β-sheet to display mechanical resistance, its strands must be sufficiently long.
Figure 4: Scatter plots of rupture force, $F_r$, and $\beta$-structure content, $\beta$, for WT (upper panel) and E22G (lower panel) Aβ. $\beta$ is an average over a short time interval ($6 \times 10^6$ MC steps) just before the rupture event. The plot symbols indicate four conformational classes. The first two correspond to three-stranded $\beta$-sheets with specific turn locations. The third class represents extended three-stranded $\beta$-sheets with other turn locations. The “other” category consists of structures with at most two extended $\beta$-strands, some of which are double-layered.

In the case of Aβ, the required strand length can be achieved only if a large part of the whole molecule participates in the $\beta$-sheet. In fact, among the observed force peaks > 100 pN for the two Aβ variants, almost all are caused by structures with a $\beta$-structure content > 0.5 (Fig. 4). By forming such structures, it becomes possible for Aβ, despite its small size, to withstand these high forces.

It is worth noting that these $\beta$-sheets still do not have maximal size. In WT Aβ simulations at a lower temperature, we observed even larger three-stranded $\beta$-sheets ($\beta$-structure contents of around 0.8). In pulling simulations started from these conformations, we recorded rupture forces of up to 300 pN. However, these conformations are not significantly sampled at the temperature used in the present study.

**Arctic Aβ.** Having identified candidate structures for mechanical resistance, it is still not clear what relevance these have for aggregation and disease. A natural next step
is to study how the force response is altered by disease-related mutations, such as the (Arctic) E22G mutation. The experiments by Hervás et al. [7] found this mutation to lead to an increased occurrence of force-resistant states. The highest force peak was > 400 pN, indicating the breaking of a “hyper-mechanostable” conformation.

We study E22G Aβ using the same setup as for WT Aβ, and see many similarities between the two variants, as is expected from a single point mutation, but also some important differences. Compared to WT, we observe 25% more rupture events for E22G and 15% more mechanically resistant initial conformations (Table 1). In particular, there is an increase by 60% in the number of events with $F_r > 150$ pN for E22G (40 vs 25). Our highest $F_r$ is $\sim$260 pN for this variant, compared to $\sim$210 pN for WT (Fig. 2).

The increased number of high-$F_r$ events for the E22G mutant can, at least partly, be traced to a conformational difference noted in our previous work [17, 29]. Here, we compared the propensities of the four variants WT, E22G, F20E and E22G/I31E to form turns centered in the 25–30 interval, which is the loop region of the β-loop-β motif in Aβ fibrils [19, 20, 38]. The probability for such turns was found to correlate with the rate of fibril formation, and was, in particular, higher for E22G than for WT [17, 29]. If the Aβ molecule is to form a large and potentially force-resistant three-stranded β-sheet, the 25–30 region is a favorable location for the second turn.

The high-$F_r$ events for E22G can to a large extent be linked to three-stranded β-sheets with β-structure contents of $\sim$0.7 (Fig. 4). Many of the conformations are in the class with the turns located in the 13–15 and 25–27 regions. In line with the above-mentioned analysis [17, 29], we find that the number of rupture events in this
conformational class increases from 28 for WT to 53 for E22G. Fig. 6 shows aligned initial conformations and conformations right before rupture for this class, illustrating how the simulations start from a diverse set of conformations which “condense” to one single structure when pulled.

\textbf{αS}. AFM experiments by different groups have shown that the Parkinson’s disease-related αS protein can display mechanical resistance [5–7]. The set of around 100 pulling trajectories generated and analyzed by Hervás et al. [7] included two in the hyper-mechanostable category ($F \geq 400$ pN).

Our αS study is based on a set of 1024 constant-velocity pulling simulations, two of which are shown in Fig. 1. As in the Aβ study, initial conformations are randomly drawn from a simulated ensemble for the free monomer [18]. The αS ensemble can be split into two phases: a disordered phase, called D, and a β-structure-rich phase, B (see Methods for a detailed description). Because the phases are very different, we analyze the two subsets of trajectories separately.

We find that the D phase displays virtually no force resistance. Force peaks $> 20$ pN occur in only 2 of our 449 trajectories started from this phase. In both these runs, the initial energy is close to the cutoff used to distinguish the phases. Among our 575 trajectories started from the B phase, there are, in contrast, only 12 without any force peak $> 20$ pN. The typical B phase conformation exhibits one large β-sheet with several strands, often arranged in a simple meander pattern [18]. When stretched, it breaks up through a sequence of usually two or three rupture events (Table 1), at each of which a few strands are lost (Fig. 1). Force peaks occurring later in time tend to be higher than earlier ones, at least in part because the strands can be more parallel to the applied force as they get fewer in number. In most runs (> 90%), the last force peak is associated with the breaking of a three-stranded β-sheet.

In accord with the observation of conformational polymorphism in AFM experiments [7], our in total 1464 αS rupture events show a wide variation in both $F_r$ and $L_r$ (Fig. 7). The $F_r$ distribution starts to fall off at $\sim 300$ pN. The maximum $F_r$ is $\sim 740$ pN, but there are only seven events with $F_r > 500$ pN. The $L_r$ distribution exhibits a peak between 35–40 nm that can be associated with three-stranded β-sheets, whereas structures with more strands tend to break at lower $L_r$. 

Figure 6: Aligned WT Aβ structures before pulling (left) and at rupture (right) for the 28 observed rupture events in the class with turns at 13–15 and 25–27 (squares in Fig. 4). For the initial structures residues 10–35 were aligned, for the other case residues 5–35. Residues 13–15 are in red and residues 25–27 in blue in both alignments.
Figure 7: Histograms of rupture force, $F_r$, and rupture distance (inset), $L_r$, for $\alpha$S, based on a total of 1464 rupture events, the vast majority (1461) of which are from trajectories started from the B phase.

Because $\alpha$S is much larger than A$\beta$, with 140 amino acids instead of 42, a mechanical clamp in $\alpha$S does not have to involve the whole molecule. To locate the parts of $\alpha$S forming clamps in our simulations, we compute a $\beta$-structure profile that represents an average over all rupture events caused by three-stranded $\beta$-sheets (Fig. 5). This profile shows that, although their exact position varies, the force-resistant three-stranded $\beta$-sheets have a statistically preferred sequence location, which is the $\sim 35–65$ region. In $\alpha$S fibrils, each molecule is believed to participate in five face-to-face stacked intermolecular $\beta$-sheets [21]. Experiments suggest that the five strand regions include the respective stretches 39–41, 52–56, 62–66, 70–77 and 90–94 [21], which are shaded gray in Fig. 5. Our calculated $\beta$-structure profile shows clear similarities with the proposed fibril strand locations. The profile has its three highest peaks in the first three fibril strand regions, and shows signs of shoulders in the remaining two of these regions. As the topology is also the same, a meander pattern, this finding implies that the mechanical clamps observed in our simulations show similarities to the fibril fold. In particular, our results suggest a key mechanical role for the part of $\alpha$S which forms the first three fibril strands.

**Discussion**

AFM experiments on the unstructured A$\beta$ and $\alpha$S have observed a very broad range of rupture forces, including values of up to 300–400 pN [5–7]. The question arises whether these high forces may be due to artifacts such as topological entanglements. One important result of our study is therefore the finding that even the short A$\beta$ peptide can form structures with high mechanical resistance on its own.

There have been previous simulations of other mechanical aspects of proteins implicated in neurodegenerative diseases [39, 40]. We are the first, however, to perform calculations that can be directly compared to the AFM pulling experiments on A$\beta$ and $\alpha$S. We can thereby study structural components of the unexpected force resistance found in those experiments.

The force spectra observed in our simulations are comparable to those of the experiments. Furthermore, the vast majority of our high-force rupture events, for both A$\beta$ and
αS, involve the same type of mechanical clamp, namely a three-stranded β-sheet with meander topology. The Aβ trajectories only rarely contain more than one force peak. For αS, we often observe two or three force peaks, the last and highest of which can be associated with a three-stranded β-sheet. In hindsight, the form found for the main mechanical clamps appears plausible, especially for Aβ. Alternative folds with the same mechanical strength are not easily conceived for a molecule this size.

Mechanical resistance usually stems from β-sheet structure. On general grounds, one might therefore expect a correlation between the force resistance of a protein and its propensity to form amyloid fibrils (which largely consist of β-sheets). In line with this picture, and with experiments [7], we find that the aggregation-enhancing E22G mutation increases the mechanical stability of Aβ. Its higher force resistance can be linked to an increased occurrence of conformations (Fig. 4) that not only have a high overall β-structure content, but also display a turn with similarities to the β-loop-β motif in fibrils [19, 20, 38]. Similarly, for αS, the most common positions of β-strands in the strong mechanical clamps (Fig. 5) agree very well with the first three strand regions in the proposed fibril model [21]. The meander-like paths traced out by the Aβ and αS backbones in these force-resistant structural units thus show similarities with the proposed fibril folds. These findings hint at a direct structural link between the force resistance of these proteins and their amyloid propensity.

In the Aβ AFM experiments, the fraction of trajectories having at least one force peak > 20 pN was 33% and 62% for WT and E22G, respectively [7]. In our simulations, the corresponding numbers are 29 ± 1% and 34 ± 4%. A main parameter influencing the amount of force-resistant states is the temperature. Comparison with experimental NMR data suggests that our simulation temperature corresponds to 0–5°C [17]. The AFM study was done at room temperature, but the sample was stored at 4°C between experiments. The ensemble probed in the experiments could be influenced by this lower temperature, due to slow thermalization of Aβ when anchored to a molecular construct. Hence, there are uncertainties about the precise relation between the simulated and experimental ensembles. It is remarkable that the simulated and experimental fractions of trajectories containing rupture events, nevertheless, are within a factor of two of each other for both WT and E22G.

The αS AFM experiments, also performed at room temperature, found 7–45% of the trajectories to contain rupture events [5, 7]. In our αS simulations, this fraction is < 1% and 98% for the D and B phases, respectively. Hence, for a force response matching experimental data, a significant B phase fraction must be assumed. As previously shown [18], a B phase fraction of 50–70% is compatible with NMR data at −10°C and −15°C [33, 34]. However, at room temperature, the free αS monomer is disordered [41], and NMR data at 15°C [32] are well described by the D phase alone [18].

How does one then explain the mechanical resistance seen in room temperature AFM experiments on αS? Two factors that could affect the AFM ensemble, and push it toward the B phase, are as follows. First, as discussed for Aβ, due to the kinetically restrictive anchoring to a molecular construct, the AFM ensemble might retain some memory of the low temperature, 4°C, at which the samples were held between experiments. Sec-
ond, the anchoring to the molecular construct imposes a constraint on the end-to-end
distance, which might disfavor the D phase; the simulated B and D phases have average
end-to-end distances of 5.7 nm and 8.1 nm, respectively. We note that Hervás et al. [7],
who used a stricter construct, recorded a higher fraction of trajectories containing rupt-
ture events, compared to Sandal et al. [5].

The heterogeneous mechanical response revealed by AFM studies [5–7] is not the
only indication that β-sheet-containing states are readily accessible to the Aβ and αS
monomers. A finding supporting this view is the NMR-derived structure of Aβ in com-
plex with an Affibody protein [42]. β-sheets formed by the monomers are, of course,
different than the intermolecular ones found in fibrils, but transient sampling of such
structures might, nevertheless, be important in fibril formation. The addition of a ran-
dom coil monomer to a growing fibril entails a high cost in conformational entropy, un-
less the chain is very short. This cost is in part balanced by intermolecular interactions,
but a free-energy landscape where intramolecular interactions funnel the monomer to-
ward the fibril fold might be crucial for efficient monomer-fibril association.

Simulation studies of Aβ have been reported by many groups [for recent examples see
references 43–50], which typically observed only very limited amounts of β-structure.
We, however, got the best agreement with experimental chemical shifts [30] and J-
couplings [31] for an ensemble with a significant fraction of β-sheet-rich states [17].
In the pulling simulations presented here, the same β-sheet-rich states can explain the
high rupture forces observed in AFM experiments (Fig. 3). We therefore take the com-
parisons with AFM data as an independent indication that Aβ need not be as coil-like
as commonly thought.

Conclusion

We have examined the structural mechanisms providing the surprisingly high mechani-
cal stability of the unstructured proteins Aβ and αS observed in AFM experiments [5–7],
using a large number of pulling simulations with initial conformations randomly drawn
from simulated ensembles. Our main findings are as follows. (i) For both Aβ and αS,
structures with high force resistance do indeed occur in the simulations, and the main
type of mechanical clamp is a β-sheet with three strands of sufficient length, arranged
in a meander pattern. (ii) The Arctic mutation of Aβ leads to increased occurrence of
highly force-resistant structures. (iii) The mechanically stable structures of both Aβ and
αS show similarities with the respective fibril folds. These findings suggest that β-sheet-
rich force-resistant structures are readily accessible to Aβ and αS and might have a key
role in amyloid formation.

Acknowledgements

We wish to thank Rubén Hervás and Massimo Sandal for helpful details and clarifica-
tions, and Arnab Bhattacherjee and Stefan Wallin for comments on the manuscript. Our
simulations were performed at the LUNARC facility, Lund University.
References

1. Chiti, F., and C. M. Dobson, 2006. Protein misfolding, functional amyloid, and human disease. *Annu. Rev. Biochem.* 75:333–366.

2. Knowles, T. P. J., and M. J. Buehler, 2011. Nanomechanics of functional and pathological amyloid materials. *Nat. Nanotechnol.* 6:469–479.

3. Eisenberg, D., and M. Jucker, 2012. The amyloid state of proteins in human diseases. *Cell* 148:1188–1203.

4. Uversky, V. N., and A. K. Dunker, 2010. Understanding protein non-folding. *Biochim. Biophys. Acta* 1804:1231–1264.

5. Sandal, M., F. Valle, I. Tessari, S. Mammi, E. Bergantino, F. Musiani, M. Brucale, L. Bubacco, and B. Samorì, 2008. Conformational equilibria in monomeric α-synuclein at the single-molecule level. *PLoS Biol.* 6:e6.

6. Brucale, M., M. Sandal, S. Di Maio, A. Rampioni, I. Tessari, L. Tosatto, M. Bisaglia, L. Bubacco, and B. Samorì, 2009. Pathogenic mutations shift the equilibria of α-synuclein single molecules towards structured conformers. *ChemBioChem* 10:176–183.

7. Hervás, R., J. Oroz, A. Galera-Prat, O. Goñi, A. Valbuena, A. M. Vera, À. Gómez-Sicilia, F. Losada-Urzáiz, V. N. Uversky, M. Menéndez, D. V. Laurents, M. Bruix, and M. Carrión-Vázquez, 2012. Common features at the start of the neurodegeneration cascade. *PLoS Biol.* 10:e1001335.

8. Valbuena, A., J. Oroz, R. Hervás, A. M. Vera, D. Rodríguez, M. Menéndez, J. I. Sulikowska, M. Cieplak, and M. Carrión-Vázquez, 2009. On the remarkable mechanostability of scaffolds and the mechanical clamp motif. *Proc. Natl. Acad. Sci. USA* 106:13791–13796.

9. Sikora, M., J. Sulikowska, B. Witkowski, and M. Cieplak, 2011. BSDB: the biomolecule stretching database. *Nucleic Acids Res.* 39:D443–D450.

10. Klimov, D. K., and D. Thirumalai, 2000. Native topology determines force-induced unfolding pathways in globular proteins. *Proc. Natl. Acad. Sci. USA* 97:7254–7259.

11. Petkova, A. T., Y. Ishii, J. J. Balbach, O. N. Antzutkin, R. D. Leapman, F. Delaglio, and R. Tycko, 2002. A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. *Proc. Natl. Acad. Sci. USA* 99:16742–16747.

12. Lührs, T., C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Döbeli, D. Schubert, and R. Riek, 2005. 3D structure of Alzheimer’s amyloid-β(1-42) fibrils. *Proc. Natl. Acad. Sci. USA* 102:17342–17347.

13. Vilar, M., H.-T. Chou, T. Lührs, S. K. Maji, D. Riek-Loher, R. Verel, G. Manning, H. Stahlberg, and
R. Riek, 2008. The fold of α-synuclein fibrils. Proc. Natl. Acad. Sci. USA 105:8637–8642.

22. Nilsbeth, C., A. Westlind-Danielsson, C. B. Eckman, M. M. Condon, K. Axelsson, C. Forsell, C. Stenh, J. Luthman, D. B. Teplow, S. G. Younkin, J. Nåslund, and L. Lannfelt, 2001. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation. Nat. Neurosci. 4:887–893.

23. Irbäck, A., S. Mitternacht, and S. Mohanty, 2009. An effective all-atom potential for proteins. PMC Biophys. 2:2.

24. Mitternacht, S., A. Torcini, A. Imparato, and A. Irbäck, 2009. Changing the mechanical unfolding pathway of FnIII10 by tuning the pulling strength. Biophys. J. 96:429–441.

25. Evans, E., and K. Ritchie, 1997. Dynamic strength of molecular adhesion bonds. Biophys. J. 72:1541–1555.

26. Tiana, G., L. Sutto, and R. A. Broglia, 2007. Use of the Metropolis algorithm to simulate the dynamics of protein chains. Physica A 380:241–249.

27. Vitalis, A., and R. V. Pappu, 2009. Methods for Monte Carlo Simulations of Biomacromolecules. Annu. Rev. Comput. Chem. 5:49–76.

28. Favrin, G., A. Irbäck, and F. Sjunnesson, 2001. Monte Carlo update for chain molecules: Biased Gaussian steps in torsional space. J. Chem. Phys. 114:8154–8158.

29. Mitternacht, S., I. Staneva, T. Härd, and A. Irbäck, 2011. Monte Carlo study of the formation and conformational properties of dimers of Aβ42 variants. J. Mol. Biol. 410:357–367.

30. Hou, L., H. Shao, Y. Zhang, H. Li, N. K. Menon, E. B. Neuhaus, J. M. Brewer, I.-J. L. Byeon, D. G. Ray, M. P Vitek, T. Ivashita, R. A. Makula, A. B. Przybyla, and M. G. Zagorski, 2004. Solution NMR studies of the Aβ(1–40) and Aβ(1–42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J. Am. Chem. Soc. 126:1992–2005.

31. Sgourakis, N. G., Y. Yan, S. A. McCallum, C. Wang, and A. E. García, 2007. The Alzheimer’s peptides Aβ40 and 42 adopt distinct conformations in water: a combined MD/NMR study. J. Mol. Biol. 368:1448–1457.

32. Eliezer, D., E. Kutluay, R. R. Buswell, and G. Browne, 2001. Conformational properties of α-synuclein in its free and lipid-associated states. J. Mol. Biol. 307:1061–1073.

33. Kim, H.-Y., H. Heise, C. O. Fernandez, M. Baldus, and M. Zweckstetter, 2007. Correlation of amyloid fibril β-structure with the unfolded state of α-synuclein. ChemBioChem 8:1671–1674.

34. Wu, K.-P., S. Kim, D. A. Fela, and J. Baum, 2008. Characterization of conformational and dynamic properties of natively unfolded human and mouse α-synuclein ensembles by NMR: implication for aggregation. J. Mol. Biol. 378:1104–1115.

35. Frishman, D., and P Argos, 1995. Knowledge-based protein secondary structure assignment. Proteins 23:566–579.

36. Hubbard, S. J., and J. M. Thornton, 1993. NACCESS Computer Program. Department of Biochemistry and Molecular Biology, University College London.

37. DeLano, W. L., 2002. The PyMOL Molecular Graphics System. San Carlos, CA: DeLano Scientific.

38. Ahmed, M., J. Davis, D. Aucoin, T. Sato, S. Ahuja, S. Aimoto, J. I. Elliott, W. E. Van Nostrand, and S. O. Smith, 2010. Structural conversion of neurotoxic amyloid-β1–42 oligomers to fibrils. Nat. Struct. Mol. Biol. 17:561–567.

39. Raman, E. P., T. Takeda, V. Barsegov, and D. K. Klimov, 2007. Mechanical unbinding of Aβ peptides from amyloid fibrils. J. Mol. Biol. 373:785–800.

40. Das, A., and S. S. Plotkin, 2013. SOD1 exhibits allosteric frustration to facilitate metal binding affinity. Proc. Natl. Acad. Sci. USA 110:3871–3876.
43. Wu, C., J. Scott, and J.-E. Shea, 2012. Binding of Congo red to amyloid protofibrils of the Alzheimer \( A_\beta_{9-40} \) peptide probed by molecular dynamics simulations. *Biophys. J.* 103:550–557.

44. Lockhart, C., S. Kim, and D. K. Klimov, 2012. Explicit solvent molecular dynamics simulations of \( A_\beta \) peptide interacting with ibuprofen ligands. *J. Phys. Chem. B* 116:12922–12932.

45. Lemkul, J. A., and D. R. Bevan, 2012. Morin inhibits the early stages of amyloid \( \beta \)-peptide aggregation by altering tertiary and quaternary interactions to produce “off-pathway” structures. *Biochemistry* 51:5990–6009.

46. Côté, S., R. Laghaei, P. Derreumaux, and N. Mousseau, 2012. Distinct dimerization for various alloforms of the amyloid-\( \beta \) protein: \( A_\beta_{1-40}, A_\beta_{1-42}, \) and \( A_\beta_{1-40}(D23N) \). *J. Phys. Chem. B* 116:4043–4055.

47. Viet, M. H., and M. S. Li, 2012. Amyloid peptide \( A_\beta 40 \) inhibits aggregation of \( A_\beta 42 \): evidence from molecular dynamics simulations. *J. Chem. Phys.* 136:245105.

48. Chong, S.-H., and S. Ham, 2012. Impact of chemical heterogeneity on protein self-assembly in water. *Proc. Natl. Acad. Sci. USA* 109:7636–7641.

49. Barz, B., and B. Urbanc, 2011. Dimer formation enhances structural differences between amyloid \( \beta \)-protein (1-40) and (1-42): an explicit-solvent molecular dynamics study. *PLoS One* 7:e34345.

50. Velez-Vega, C., and F. A. Escobedo, 2011. Characterizing the structural behavior of selected \( A_\beta-42 \) monomers with different solubilities. *J. Phys. Chem. B* 115:4900–4910.