All static spherically symmetric anisotropic solutions of Einstein’s equations

L. Herrera1,*, J. Ospino2† and A Di Prisco1‡

1Escuela de Física, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela.
2Area de Física Teórica. Facultad de Ciencias, Universidad de Salamanca, Salamanca, Spain.

February 2, 2008

Abstract

An algorithm recently presented by Lake to obtain all static spherically symmetric perfect fluid solutions, is extended to the case of locally anisotropic fluids (principal stresses unequal). As expected, the new formalism requires the knowledge of two functions (instead of one) to generate all possible solutions. To illustrate the method some known cases are recovered.

*e-mail: laherrera@cantv.net.ve
†e-mail: jhozcrae@usal.es
‡e-mail: adiprisc@fisica.ciens.ucv.ve
1 Introduction

As is well known, static spherically symmetric perfect fluid distributions in general relativity, are described by a system of three independent Einstein equations for four variables (two metric functions, the energy density and the isotropic pressure). Thus, aditional information in the form of an equation of state or an heuristic assumption involving metric and/or physical variables has to be provided in order to integrate the system. This situation suggests the possibility of obtaining any possible solution, giving a single generating function. A formalism to obtain solutions in this way has been recently presented by Lake [1] (see also [2]).

The purpose of this work is to extend the above mentioned formalism to the case of locally anisotropic fluids.

The motivation for doing so is provided by the fact that the assumption of local anisotropy of pressure, which seems to be very reasonable for describing the matter distribution under a variety of circumstances, has been proved to be very useful in the study of relativistic compact objects (see [3]-[13] and references therein).

In the next section we shall present the general equations and the formalism to obtain the solutions, then we shall apply the method to analyze some specific cases.

2 The Einstein equations for static locally anisotropic fluids

In curvature coordinates the line element reads

\[
d s^2 = -e^{\nu(r)} dt^2 + e^{\lambda(r)} dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2
\]

(1)

which has to satisfy the Einstein equations. For a locally anisotropic fluid they are

\[
8\pi \rho = \frac{1}{r^2} - e^{-\lambda} \left(\frac{1}{r^2} - \frac{\lambda'}{r} \right),
\]

(2)

\[
8\pi P_r = -\frac{1}{r^2} + e^{-\lambda} \left(\frac{1}{r^2} + \frac{\nu'}{r} \right),
\]

(3)
8\pi P_\perp = \frac{e^{-\lambda}}{4}
\left(2\nu'' + \nu'^2 - \lambda'\nu' + 2\nu - \frac{\lambda'}{r}\right), \quad (4)

where primes denote derivative with respect to \(r\), and \(\rho, P_r\) and \(P_\perp\) are the proper energy density, radial pressure and tangential pressure respectively.

2.1 The algorithm

From (3) and (4) it follows:

\[8\pi(P_r - P_\perp) = e^{-\lambda}\left(-\frac{\nu''}{2} - \left(\frac{\nu'}{2}\right)^2 + \frac{1}{r^2}\right) + e^{-\lambda}\left(\frac{\nu'}{2} + \frac{1}{r}\right) - \frac{1}{r^2}.\] \quad (5)

Then, introducing the variables

\[e^{\nu(r)} = e^{\int(2z(r) - 2/r)dr}\] \quad (6)

and

\[e^{-\lambda} = y(r)\] \quad (7)

and feeding back into (5) we get:

\[y' + y\left[\frac{2z'}{z} + 2z - \frac{6}{r} + \frac{4}{r^2}z\right] = -\frac{2}{z}\left(\frac{1}{r^2} + \Pi(r)\right),\] \quad (8)

with \(\Pi(r) = 8\pi(P_r - P_\perp)\).

Integrating (8) we obtain for \(\lambda\):

\[e^{\lambda(r)} = \frac{z^2(r)e^{\int\left(\frac{4}{r^2z(r)} + 2z(r)\right)dr}}{r^6\left(-2\int z(r)(1 + \Pi(r)r^2)e^{\int\left(\frac{4}{r^2z(r)} + 2z(r)\right)dr}dr + C\right)}\] \quad (9)

where \(C\) is a constant of integration. Then, using (6) and (9) in (1) we get:

\[ds^2 = -e^{\int(2z(r) - 2/r)dr}dt^2 + \frac{z^2(r)e^{\int\left(\frac{4}{r^2z(r)} + 2z(r)\right)dr}}{r^6\left(-2\int z(r)(1 + \Pi(r)r^2)e^{\int\left(\frac{4}{r^2z(r)} + 2z(r)\right)dr}dr + C\right)}dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2.\] \quad (10)
Thus any solution describing a static anisotropic fluid distribution is fully determined by means of the two generating functions Π and z.

It will be convenient to express the physical variables in terms of metric and generating functions, in order to impose conditions leading to physically meaningful solutions. Thus we have:

$$4\pi P_r = \frac{z(r - 2m) + m/r - 1}{r^2}$$ (11)

$$4\pi \rho = \frac{m'}{r^2}$$ (12)

and

$$4\pi P_\perp = (1 - \frac{2m}{r})(z' + z^2 - \frac{z}{r} + \frac{1}{r^2}) + z\left(\frac{m}{r^2} - \frac{m'}{r}\right)$$ (13)

where the mass function $m(r)$ is defined as usual by

$$e^{-\lambda} = 1 - \frac{2m(r)}{r}$$ (14)

Physically meaningful solutions must be regular at the origin, and should satisfy the conditions $\rho > 0$, $\rho > P_r$, P_\perp. If stability is required then ρ and P_r must be monotonically decreasing functions of r.

To avoid singular behaviour of physical variables on the boundary of the source (Σ), solutions should also satisfy the Darmois conditions on the boundary. Implying $(P_r)_\Sigma = 0$ and

$$e^{\nu_\Sigma} = e^{-\lambda_\Sigma} = 1 - \frac{2M}{r_\Sigma}$$ (15)

with $m_\Sigma = M$, and r_Σ denotes the radius of the fluid distribution.

2.2 The locally isotropic case

If we impose the isotropic condition on pressure

$$\Pi = 8\pi (P_r - P_\perp) = 0$$ (16)

in (10) we obtain:
\[ds^2 = -e^{\int (2z(r)-2/r)dr} dt^2 + e^{\int (z(r)/r + 2z(r)/r)dr} dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \]

which is the same result obtained in [1], with \(z(r) = \Phi(r)' + \frac{1}{r} \).

3 Some examples

We shall next apply the algorithm to reproduce some known situations.

3.1 Conformally flat anisotropic fluids

Instead of giving two generating functions, we may provide one generating function and an additional \textit{ansatz}. Thus for example, in the spherically symmetric case we know that there is only one independent component of the Weyl tensor. Therefore the conformally flat condition reduces to a single equation which reads

\[\frac{\nu''}{2} + \left(\frac{\nu'}{2} \right)^2 - \frac{\nu' \lambda'}{4} - \frac{\nu' - \lambda'}{2r} + \frac{1 - e^\lambda}{r^2} = 0. \] \((18) \)

Equation (18) has been integrated in [14], giving:

\[e^{\frac{\lambda}{2}} = c r \cosh \left(\int \frac{e^{\frac{\lambda}{2}}}{r} dr \right), \] \((19) \)

which, in term of \(z \) becomes

\[z = \frac{2}{r} + \frac{e^{\frac{\lambda}{2}}}{r} \tanh \left(\int \frac{e^{\frac{\lambda}{2}}}{r} dr \right). \] \((20) \)

On the other hand from (4) and (18), it follows:

\[\Pi = r \left(\frac{1 - e^{-\lambda}}{r^2} \right)'. \] \((21) \)

Thus the system is completely determined (in this case) provided a single generating function \(z \) is known.
3.2 Bowers–Liang solution

This solution corresponds to an anisotropic fluid with an homogeneous energy
density distribution $\rho = \rho_0 = \text{constant}$ [15], and is given by:

$$e^\nu = \left[\frac{3 (1 - 2M/r\Sigma)^{h/2} - (1 - 2m/r)^{h/2}}{2} \right]^{2/h}$$

(22)

$$m(r) = \frac{4\pi}{3} r^3 \rho_0 \quad ; \quad M = \frac{4\pi}{3} r^3 \rho_0$$

(23)

The two generating functions for this metric are:

$$z = \frac{2m r^2 (1 - 2m)}{3(1 - 2M r^3)^{h/2} - (1 - 2m)^{h/2}} + \frac{1}{r}$$

(24)

and

$$\Pi = -6C \frac{(z - \frac{1}{r})^2 (1 - 2M r^3)^{\frac{h}{2}}}{(1 - 2m)^{h/2}}$$

(25)

with $h = 1 - 2C = \text{Constant}$. The case $h = 1$ reproduces the well known
Schwarzschild interior solution, whereas the case $h = 0$ describes the Florides
solution [16].

3.3 Anisotropic solutions with a non–local equation of state

An interesting family of solutions may be found from the assumption that the energy
density and the radial pressure are related by a non–local equation of
state of the form [17]

$$P_r(r) = \rho(r) - \frac{2}{r^3} \int_0^r \tilde{r}^2 \rho(\tilde{r}) d\tilde{r} + \frac{C}{2\pi r^3}$$

(26)

or, using(12)

$$P_r(r) = \frac{m'}{4\pi r^2} - \frac{m}{2\pi r^3} + \frac{C}{2\pi r^3}$$

(27)

From (11) and (27) it follows that these solutions are defined by the generating function z of the form:

$$z = \frac{rm' - 3m + 2C + r}{r(r - 2m)}.$$

(28)
Acknowledgments.

JO acknowledges financial support from the Junta de Castilla y Leon (Spain) under grant SA010C05. LH wishes to thank Kayll Lake for pointing out (after the completion of this manuscript) a previous paper [18] where the anisotropic case is considered.

References

[1] K. Lake, Phys. Rev. D 67, 104015 (2003).
[2] S. Rahman and M. Visser, Class. Quantum Grav. 19, 935 (2002).
[3] L. Herrera and N. O. Santos, Phys. Rep. 286, 53 (1997)
[4] L. Herrera, A. Di Prisco, J. Martín, J. Ospino, N. O. Santos and O. Troconis, Phys. Rev. D 69, 084026 (2004)
[5] C. Cattoen, T. Faber and M. Visser, Class. Quantum Grav. 22, 4189 (2005).
[6] A. DeBenedictis, D. Horvat, S. Ilijic, S. Kloster and K. Viswanathan, Class. Quantum Grav. 23, 2303 (2006).
[7] G. Bohmer and T. Harko, Class. Quantum Grav. 23, 6479 (2006),
[8] W. Barreto, B. Rodríguez, L. Rosales and O. Serrano, Gen. Rel. Grav. 39, 23 (2007).
[9] M. Esculpi, M. Malaver and E. Aloma, Gen. Rel. Grav. 39, 633 (2007).
[10] G. Khadekar and S. Tade, Astr. Space Sci. 310, 41, (2007).
[11] G. Bohmer and T. Harko, Mon. Not. R. Astron. Soc. 379, 393, (2007).
[12] S. Karmakar, S. Mukherjee, R. Sharma and S. Maharaj, Pramana J. 68, 881 (2007).
[13] H. Abreu, H. Hernández and L. A. Núñez, Class. Quantum Grav. 24, 4631 (2007).
[14] L. Herrera, A. Di Prisco, J. Ospino and E. Fuenmayor, \textit{J. Math Phys.} \textbf{42}, 2129 (2001).

[15] R. Bowers and E. Liang, \textit{Astrophys. J.}, \textbf{188}, 657 (1974).

[16] P. S. Florides, \textit{Proc. Roy. Soc. London. A337}, 529 (1974).

[17] H. Hernández, L. A. Núñez, \textit{Can. J. Phys.} \textbf{82}, 29 (2004).

[18] K. Lake \textit{Phys. Rev. Lett.} \textbf{92}, 051101 (2004)