THE SPACE CONSISTING OF UNIFORMLY CONTINUOUS FUNCTIONS ON
A METRIC MEASURE SPACE WITH THE L^p NORM

KATSUHISA KOSHINO

ABSTRACT. Let $X = (X, d, \mathcal{M}, \mu)$ be a metric measure space, where d is a metric on X, \mathcal{M} is a
σ-algebra of X, and μ is a measure on \mathcal{M}. Suppose that X is separable and locally compact, that
\mathcal{M} contains the Borel sets of X, that for each $E \in \mathcal{M}$, there exists a Borel set $B \subset X$ such that
$E \subset B$ and $\mu(B \setminus E) = 0$, that for every non-empty open set $U \subset X$, $\mu(U) > 0$, that for all compact
sets $K \subset X$, $\mu(K) < \infty$, and that $X \setminus \{x \in X \mid \{x\} \in \mathcal{M} \text{ and } \mu(\{x\}) = 0\}$ is not dense in X. In
this paper, we shall show that the space of real-valued uniformly continuous functions on X with
the L^p norm, $1 \leq p < \infty$, is homeomorphic to the subspace consisting of sequences converging to
0 in the pseudo interior.

1. INTRODUCTION

Throughout this paper, we assume that spaces are Hausdorff, maps are continuous, but functions
are not necessarily continuous, and $1 \leq p < \infty$. Let $X = (X, d, \mathcal{M}, \mu)$ denote a metric measure
space, where d is a metric on X, \mathcal{M} is a σ-algebra of X, and μ is a measure on \mathcal{M}. Denote

$$X_0 = \{x \in X \mid \{x\} \in \mathcal{M} \text{ and } \mu(\{x\}) = 0\}.$$

A measure space X is called to be Borel provided that \mathcal{M} contains the Borel sets of X. We say
that a Borel measure space X is regular if for each $E \in \mathcal{M}$, there is a Borel set $B \subset X$ such
that $E \subset B$ and $\mu(B \setminus E) = 0$. Notice that the Euclidean space $\mathbb{R}^n = (\mathbb{R}^n, \mathcal{M}, \mu)$, where \mathcal{M} is
the Lebesgue measurable sets and μ is the Lebesgue measure, is regular Borel. A regular Borel
measure space X satisfies the following stronger condition.

- For any $E \in \mathcal{M}$, there exist Borel sets B_1 and B_2 in X such that $B_2 \subset E \subset B_1$ and
 $\mu(B_1 \setminus B_2) = 0$.

Indeed, if X is regular Borel, then for every $E \in \mathcal{M}$, we can find Borel subsets B_1 and C of X
such that $E \subset B_1$, $X \setminus E \subset C$, $\mu(B_1 \setminus E) = 0$ and $\mu(C \setminus (X \setminus E)) = 0$. Let $B_2 = X \setminus C$, so

$$\mu(B_1 \setminus B_2) = \mu(B_1 \setminus E) + \mu(E \setminus B_2) = \mu(B_1 \setminus E) + \mu(C \setminus (X \setminus E)) = 0.$$

We write the integral of a real-valued \mathcal{M}-measurable function $f(x)$ on $E \in \mathcal{M}$ with respect to
μ as $\int_E f(x) d\mu(x)$. Set

$$L^p(X) = \left\{ f : X \to \mathbb{R} \mid f \text{ is } \mathcal{M}\text{-measurable and } \int_X |f(x)|^p d\mu(x) < \infty \right\}$$

endowed with the following norm

$$\|f\|_p = \left(\int_X |f(x)|^p d\mu(x) \right)^{1/p},$$

2010 Mathematics Subject Classification. Primary 54C35; Secondary 57N20, 57N17, 46E15, 46E30, 28A20.

Key words and phrases. L^p-space, uniformly continuous, Hilbert cube, pseudo interior, Z-set, strongly universal, absorbing set, absolute $F_{\sigma\delta}$-space.
where two functions that are coincident almost everywhere are identified. Recall that a property holds almost everywhere if it holds on \(X \setminus E \) for some \(E \in \mathcal{M} \) with \(\mu(E) = 0 \). The function space \(L^p(X) \) is a Banach space, refer to [5, Theorem 4.8]. When \(X \) is a separable regular Borel metric measure space, \(L^p(X) \) is also separable, see [5, Theorem 4.13]. If for any \(n \in \mathbb{N} \), there is a pairwise disjoint family \(\{E_i\}_{1 \leq i \leq n} \subset \mathcal{M} \) such that each \(\mu(E_i) > 0 \), then \(L^p(X) \) is infinite-dimensional. Hence in the case that \(X \) is infinite, \(\mathcal{M} \) contains the open subsets of \(X \) and for each non-empty open set \(U \subset X, \mu(U) > 0 \), the space \(L^p(X) \) is infinite-dimensional. Denote the Hilbert cube by \(Q = [-1, 1]^\mathbb{N} \) and the pseudo interior by \(s = (-1, 1)^\mathbb{N} \). In the theory of infinite-dimensional topology, typical infinite-dimensional spaces, for example subspaces of \(Q \), have been detected among function spaces. Due to the efforts of R.D. Anderson [2] and M.I. Kadec [7], we have the following:

Theorem 1.1. Let \(X \) be an infinite separable regular Borel metric measure space. Suppose that any non-empty open subset of \(X \) is of positive measure. Then \(L^p(X) \) is an infinite-dimensional separable Banach space, so it is homeomorphic to \(s \).

In this paper, the topological type of the subspace
\[
C_u(X) = \{ f \in L^p(X) \mid f \text{ is uniformly continuous}\}
\]
will be studied. When \(X \) is compact, \(C_u(X) \) is coincident with the space
\[
C(X) = \{ f \in L^p(X) \mid f \text{ is continuous}\}.
\]

It is known that several function spaces are homeomorphic to the following subspace of \(s \),
\[
c_0 = \left\{ (x(n))_{n \in \mathbb{N}} \in s \mid \lim_{n \to \infty} x(n) = 0 \right\},
\]
refer to [8, 11, 10]. R. Cauty [6] proved the next theorem.

Theorem 1.2. Let \([0, 1] = ([0, 1], d, \mathcal{M}, \mu)\) be the closed unit interval, where \(d \) is the usual metric, \(\mathcal{M} \) is the Lebesgue measurable sets, and \(\mu \) is the Lebesgue measure. Then \(C([0, 1]) \) is homeomorphic to \(c_0 \).

More generally, we shall show the following:

Main Theorem. Let \(X \) be a separable locally compact regular Borel metric measure space. Suppose that for every non-empty open set \(U \subset X, \mu(U) > 0 \), that for each compact set \(K \subset X, \mu(K) < \infty \), and that \(X \setminus X_0 \) is not dense in \(X \). Then \(C_u(X) \) is homeomorphic to \(c_0 \).

2. Preliminaries

For each point \(x \in X \) and each positive number \(\delta > 0 \), put the open ball \(B(x, \delta) = \{ y \in X \mid d(x, y) < \delta \} \). Given subsets \(A, B \subset L^p(X) \), we denote their distance by \(\text{dist}(A, B) = \inf_{f \in A, g \in B} \|f - g\|_p \). For spaces \(A \subset Y \), the symbol \(\text{cl}_Y A \) stands for the closure of \(A \) in \(Y \). Recall that for functions \(f : Z \to Y \) and \(g : Z \to Y \), and for an open cover \(\mathcal{U} \) of \(Y \), \(f \) is \(\mathcal{U} \)-close to \(g \) provided that for each \(z \in Z \), there exists an open set \(U \in \mathcal{U} \) such that the doubleton \(\{f(z), g(z)\} \subset U \). We call a closed set \(A \) in a space \(Y \) a \(Z \)-set in \(Y \) if for each open cover \(\mathcal{U} \) of \(Y \), there exists a map \(f : Y \to Y \) such that \(f \) is \(\mathcal{U} \)-close to the identity map of \(Y \) and the image \(f(Y) \) misses \(A \). A \(Z_n \)-set is a countable union of \(Z \)-sets. A map \(f : Z \to Y \) is called to be a \(Z \)-embedding if \(f \) is an embedding and \(f(Z) \) is a \(Z \)-set in \(Y \). Given a class \(\mathcal{C} \) of spaces, we say that \(Y \) is strongly \(\mathcal{C} \)-universal if the following condition is satisfied.

1Recall that for a property \(P \) of functions, a function \(g \in \{ f \in L^p(X) \mid f \text{ satisfies the property } P \} \) if there exists \(f : X \to \mathbb{R} \) such that \(f \) satisfies the property \(P \) and \(g = f \) almost everywhere.
Let $A \in \mathcal{C}$ and $f : A \to Y$ be a map. Suppose that B is a closed set in A and the restriction $f|_B$ is a Z-embedding. Then for each open cover \mathcal{U} of Y, there is a Z-embedding $g : A \to Y$ such that g is \mathcal{U}-close to f and $g|_B = f|_B$.

For spaces $Y \subset M$, Y is homotopy dense in M if M admits a homotopy $h : M \times [0,1] \to M$ such that $h(M \times (0,1)) \subset Y$ and $h(y,0) = y$ for every $y \in M$. For a class \mathcal{C}, let \mathcal{C}_σ be the class of spaces written as a countable union of closed subspaces that belong to \mathcal{C}. A space Y is said to be a \mathcal{C}-absorbing set in M provided that it satisfies the following conditions.

1. $Y \in \mathcal{C}_\sigma$ and is homotopy dense in M.
2. Y is strongly \mathcal{C}-universal.
3. Y is contained in a Z_σ-set in M.

Let \mathcal{M}_2 be the class of absolute $F_{\sigma\delta}$-spaces, that is, $Y \in \mathcal{M}_2$ if Y is metrizable and is an $F_{\sigma\delta}$-set in any metrizable space M containing Y as a subspace. The space c_0 is an \mathcal{M}_2-absorbing set in \mathfrak{s}. According to Theorem 3.1 of [1], we can establish the following:

Theorem 2.1. Let Y and Z be an \mathcal{M}_2-absorbing set in \mathfrak{s}. Then Y and Z are homeomorphic.

3. The Borel complexity of $C_u(X)$ in $L^p(X)$

In this section, we will show that $C_u(X) \in \mathcal{M}_2$. The following proposition is of use, refer to Theorem 4.9 of [2].

Proposition 3.1. Let $f, f_k \in L^p(X)$, $k \in \mathbb{N}$. If $\|f - f_k\|_p \to 0$, then there exists a subsequence $\{f_{k(n)}\}$ such that $f_{k(n)} \to f$ almost everywhere.

For all positive numbers $\epsilon, \delta > 0$, let

$$A(\epsilon, \delta) = \{ f \in L^p(X) \mid \text{for almost every } x, y \in X, \text{ if } d(x,y) < \delta, \text{ then } |f(x) - f(y)| \leq \epsilon \}.$$

Lemma 3.2. For any $\epsilon, \delta > 0$, the subset $A(\epsilon, \delta)$ is closed in $L^p(X)$.

Proof. To prove that $A(\epsilon, \delta)$ is closed in $L^p(X)$, fix any sequence $\{f_k\}$ in $A(\epsilon, \delta)$ converging to $f \in L^p(X)$. We need only to show that $f \in A(\epsilon, \delta)$, that is, for almost every $x, y \in X$, if $d(x,y) < \delta$, then $|f(x) - f(y)| \leq \epsilon$. Since $\|f - f_k\|_p \to 0$, we can replace $\{f_k\}$ with a subsequence so that $f_k \to f$ almost everywhere by Proposition 3.1. Then there exists $E_0 \subset X$ such that $\mu(E_0) = 0$ and $f_k(x) \to f(x)$ for each $x \in X \setminus E_0$. On the other hand, because $f_k \in A(\epsilon, \delta)$ for each $k \in \mathbb{N}$, we can find $E_k \subset X$ with $\mu(E_k) = 0$ so that for any $x, y \in X \setminus E_k$, if $d(x,y) < \delta$, then $|f_k(x) - f_k(y)| \leq \epsilon$. Let $E = \bigcup_{k \in \mathbb{N}} E_k$ and take any $x, y \in X \setminus E$ with $d(x,y) < \delta$. Note that $\mu(E) = 0$. Then $|f_k(x) - f_k(y)| \leq \epsilon$ for every $k \in \mathbb{N}$, $f_k(x) \to f(x)$ and $f_k(y) \to f(y)$, which implies that $|f(x) - f(y)| \leq \epsilon$. We conclude that $f \in A(\epsilon, \delta)$. \qed

Note that a space $Y \in \mathcal{M}_2$ if and only if Y can be embedded into a completely metrizable space as an $F_{\sigma\delta}$-set, see [1], Theorem 9.6. We prove the following:

Proposition 3.3. Suppose that for each $E \in \mathcal{M}$ with $\mu(E) = 0$, $X \setminus E$ is dense in X. Then $C_u(X)$ is an $F_{\sigma\delta}$-set in $L^p(X)$, and hence $C_u(X) \in \mathcal{M}_2$.

Proof. We shall show that $C_u(X) = \bigcap_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} A(1/n, 1/m)$. Then it follows from Lemma 3.2 that $C_u(X)$ is $F_{\sigma\delta}$ in $L^p(X)$. Clearly, $C_u(X) \subset \bigcap_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} A(1/n, 1/m)$. To prove that $C_u(X) \supset \bigcap_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} A(1/n, 1/m)$, fix any function $f \in \bigcap_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} A(1/n, 1/m)$. For each $n \in \mathbb{N}$, there exist $m_n \in \mathbb{N}$ and $E_n \subset X$ with $\mu(E_n) = 0$ such that if $x, y \in X \setminus E_n$ and $d(x,y) < 1/m_n$, then $|f(x) - f(y)| \leq 1/n$. Let $E = \bigcup_{n \in \mathbb{N}} E_n$, so the measure $\mu(E) = 0$. Then for any $n \in \mathbb{N}$ and $x, y \in X \setminus E$ with $d(x,y) < 1/m_n$, we have $|f(x) - f(y)| \leq 1/n$, which implies that $f|_{X \setminus E}$ is uniformly continuous. Since $X \setminus E$ is dense in X, the restriction $f|_{X \setminus E}$ can be extended over X as
a uniformly continuous map, that is coincident with \(f \) almost everywhere. Therefore \(f \in C_u(X) \).
The proof is complete. □

4. THE \(Z_\sigma \)-SET PROPERTY OF \(C_u(X) \) IN \(L^p(X) \)

In this section, it is shown that \(C_u(X) \) is contained in some \(Z_\sigma \)-set in \(L^p(X) \). The next theorem is important on convergence of sequences in \(L^p(X) \), refer to Theorem 4.2 of [5].

Theorem 4.1 (The Dominated Convergence Theorem). Let \(f, f_k \in L^1(X) \), \(k \in \mathbb{N} \). Suppose that \(f_k(x) \to f(x) \) for almost every \(x \in X \), and that there is a function \(g \in L^p(X) \) such that for any \(k \in \mathbb{N} \), \(|f_k(x)| \leq g(x) \) for almost every \(x \in X \). Then \(f, f_k \in L^p(X) \), \(k \in \mathbb{N} \), and \(\|f - f_k\|_p \to 0 \).

The following technical lemma will be very useful for detecting \(Z \)-sets in \(L^p(X) \).

Lemma 4.2. Let \(Y \) be a paracompact space, \(\phi : Y \to L^p(X) \) be a map, and \(a \in X_0 \) such that for all \(\lambda > 0 \), \(B(a, \lambda) \in \mathcal{M} \). Then for every map \(\epsilon : Y \to (0,1) \), there exists maps \(\psi : Y \to L^p(X) \) and \(\delta : Y \to (0,1) \) such that for each \(y \in Y \),

(i) \(\|\phi(y) - \psi(y)\|_p \leq \epsilon(y) \),

(ii) \(\psi(y)(B(a, \delta(y))) = \{0\} \).

Proof. For each \(f \in L^p(X) \) and each \(A \in \mathcal{M} \), define a function \(f_A \in L^p(X) \) by

\[
f_A(x) = \begin{cases} f(x) & \text{if } x \in A, \\ 0 & \text{if } x \in X \setminus A. \end{cases}
\]

Remark that \(\|f_A\|_p = (\int_A |f(x)|^p d\mu(x))^{1/p} \). Given any \(y \in Y \), put

\[
\xi(y) = \sup \{0 < \eta \leq 1 \mid \|\phi(y)_{B(a,\eta)}\|_p < \epsilon(y) \}.
\]

According to Theorem 4.1, \(\xi(y) > 0 \) for all \(y \in Y \) because \(\mu(\{a\}) = 0 \). Then the function \(\xi : Y \to (0,1] \) is lower semi-continuous. Indeed, fix any \(y \in Y \) and \(\eta \in (0,\xi(y)) \). By the definition, there is \(\lambda \in (0,\epsilon(y)) \) such that \(\|\phi(y)_{B(a,\lambda(\eta) - \eta)}\|_p < \epsilon(y) - \lambda \). Due to the continuity of \(\phi \) and \(\epsilon \), we can find a neighborhood \(U \) of \(y \) such that for every \(y' \in U \), \(\|\phi(y) - \phi(y')\|_p < \lambda/2 \) and \(|\epsilon(y) - \epsilon(y')| < \lambda/2 \). Then

\[
\|\phi(y')_{B(a,\lambda(\eta) - \eta)}\|_p \leq \|\phi(y')_{B(a,\lambda(\eta) - \eta)} - \phi(y)_{B(a,\lambda(\eta) - \eta)}\|_p + \|\phi(y)_{B(a,\lambda(\eta) - \eta)}\|_p \\
\leq \|\phi(y') - \phi(y)\|_p + \|\phi(y)_{B(a,\lambda(\eta) - \eta)}\|_p \\
< \epsilon(y) - \lambda/2 < \epsilon(y').
\]

Therefore \(\xi(y') \geq \xi(y) - \eta \), which means that \(\xi \) is a lower semi-continuous function. Since \(Y \) is paracompact, there is a map \(\delta : Y \to (0,1) \) such that \(\delta(y) < \xi(y)/2 \) for each \(y \in Y \) by virtue of Theorem 2.7.6 of [9]. Then the desired map \(\psi : Y \to L^p(X) \) can be defined as follows:

\[
\psi(y)(x) = \begin{cases} 0 & \text{if } x \in B(a, \delta(y)), \\ ((d(a, x) - \delta(y))/\delta(y))\phi(y)(x) & \text{if } x \in B(a, 2\delta(y)) \setminus B(a, \delta(y)), \\ \phi(y)(x) & \text{if } x \in X \setminus B(a, 2\delta(y)). \end{cases}
\]

Condition (ii) follows from the definition immediately. Let us note that for each \(x \in B(a, 2\delta(y)) \setminus B(a, \delta(y)) \),

\[
|\phi(y)(x) - \psi(y)(x)| = |\phi(y)(x) - ((d(a, x) - \delta(y))/\delta(y))\phi(y)(x)| \\
= ((2\delta(y) - d(a, x))/\delta(y))|\phi(y)(x)| \leq |\phi(y)(x)|.
\]

\(^2\text{This is valid for any } p \in [1, \infty).\)
Since $2\delta(y) < \xi(y)$, we get

$$\|\phi(y) - \psi(y)\|_p \leq \|\phi(y)_{B(a,2\delta(y))}\|_p \leq \|\phi(y)_{B(a,\xi(y))}\|_p \leq \epsilon(y),$$

and hence condition (i) holds.

It remains to verify the continuity of ψ. Take any $y \in Y$ and $\lambda > 0$. Since ϕ and δ are continuous, we can choose a neighborhood U of y so that for each $y' \in U$,

(a) $\|\phi(y) - \phi(y')\|_p < \lambda/8$,
(b) $|\delta(y) - \delta(y')| < \delta(y)/2$,
(c) $|\delta(y) - \delta(y')|\|\phi(y)\|_p < \lambda\delta(y)/8$,
(d) $|1/\delta(y) - 1/\delta(y')|\|\phi(y)\|_p < \lambda/8$.

We shall prove that $\|\psi(y) - \psi(y')\|_p < \lambda$ only in the case that $\delta(y) \leq \delta(y')$ because it can be shown similarly in the other case. Note that $\delta(y') < 2\delta(y)$ by condition (b). Obviously, $\|\psi(y)_{B(a,\delta(y))} - \psi(y')_{B(a,\delta(y))}\|_p = 0$. Due to condition (c), we have

$$\|\psi(y)_{B(a,\delta(y'))\setminus B(a,\delta(y))} - \psi(y')_{B(a,\delta(y'))\setminus B(a,\delta(y))}\|_p$$

$$= \left(\int_{B(a,\delta(y'))\setminus B(a,\delta(y))} |\psi(y)(x) - \psi(y')(x)|^p d\mu(x)\right)^{1/p}$$

$$= \left(\int_{B(a,\delta(y'))\setminus B(a,\delta(y))} |(d(a,x) - \delta(y))/\delta(y)\phi(y)(x)|^p d\mu(x)\right)^{1/p}$$

$$\leq ((\delta(y') - \delta(y))/\delta(y))\left(\int_{B(a,\delta(y'))\setminus B(a,\delta(y))} \phi(y)(x)^p d\mu(x)\right)^{1/p}$$

$$\leq ((\delta(y') - \delta(y))/\delta(y))\left(\int_X |\phi(y)(x)|^p d\mu(x)\right)^{1/p} = ((\delta(y') - \delta(y))\|\phi(y)\|_p/\delta(y) < \lambda/8.$$
By conditions (a) and (d),

\[
\|\psi(y)_{B(a,2\delta(y))}\setminus B(a,\delta(y')) - \psi(y')_{B(a,2\delta(y))}\setminus B(a,\delta(y'))\|_p \\
= \left(\int_{B(a,2\delta(y))}\setminus B(a,\delta(y')) |\psi(y)(x) - \psi(y')(x)|^p d\mu(x)\right)^{1/p} \\
= \left(\int_{B(a,2\delta(y))}\setminus B(a,\delta(y')) \left|((d(a,x) - \delta(y))/\delta(y))\phi(y)(x) \right. \right. \\
\left. \left. - ((d(a,x) - \delta(y'))/\delta(y'))\phi(y')(x)\right|^p d\mu(x)\right)^{1/p} \\
= \left(\int_{B(a,2\delta(y))}\setminus B(a,\delta(y')) \left|((d(a,x) - \delta(y))/\delta(y)) - (d(a,x) - \delta(y'))/\delta(y'))\phi(y)(x) \right. \right. \\
\left. \left. + (d(a,x) - \delta(y'))/\delta(y'))(\phi(y)(x) - \phi(y')(x))\right|^p d\mu(x)\right)^{1/p} \\
\leq (1/\delta(y) - 1/\delta(y')) \left(\int_{B(a,2\delta(y))}\setminus B(a,\delta(y')) |\phi(y)(x)|^p d\mu(x)\right)^{1/p} \\
\leq 2(\delta'(y') - \delta(y))\left(\int_{B(a,2\delta(y'))}\setminus B(a,2\delta(y)) |\phi(y)(x)|^p d\mu(x)\right)^{1/p} \\
\leq 2(\delta'(y') - \delta(y))\left(\int_{B(a,2\delta(y'))}\setminus B(a,2\delta(y)) |\phi(y)(x)|^p d\mu(x)\right)^{1/p} \\
\leq 2(\delta'(y') - \delta(y))\left(\int_{X} |\phi(y)(x)|^p d\mu(x)\right)^{1/p} + \left(\int_{X} \phi(y)(x) - \phi(y')(x)|^p d\mu(x)\right)^{1/p} \\
= 2(\delta'(y') - \delta(y))\|\phi(y)\|_p + \|\phi(y) - \phi(y')\|_p < \lambda/4.
\]

Using conditions (a) and (c), we get

\[
\|\psi(y)_{B(a,2\delta(y'))}\setminus B(a,\delta(y)) - \psi(y')_{B(a,2\delta(y'))}\setminus B(a,\delta(y))\|_p \\
= \left(\int_{B(a,2\delta(y))}\setminus B(a,\delta(y)) |\psi(y)(x) - \psi(y')(x)|^p d\mu(x)\right)^{1/p} \\
= \left(\int_{B(a,2\delta(y))}\setminus B(a,\delta(y)) |\phi(y)(x) - ((d(a,x) - \delta(y))/\delta(y))\phi(y')(x)|^p d\mu(x)\right)^{1/p} \\
= \left(\int_{B(a,2\delta(y))}\setminus B(a,\delta(y)) \left|1 - (d(a,x) - \delta(y'))/\delta(y'))\phi(y)(x) \right. \right. \\
\left. \left. + ((d(a,x) - \delta(y'))/\delta(y'))(\phi(y)(x) - \phi(y')(x))\right|^p d\mu(x)\right)^{1/p} \\
\leq 2((\delta'(y') - \delta(y))/\delta(y))\left(\int_{B(a,2\delta(y'))}\setminus B(a,2\delta(y)) |\phi(y)(x)|^p d\mu(x)\right)^{1/p} \\
\leq 2((\delta'(y') - \delta(y))/\delta(y))\left(\int_{X} |\phi(y)(x)|^p d\mu(x)\right)^{1/p} + \left(\int_{X} \phi(y)(x) - \phi(y')(x)|^p d\mu(x)\right)^{1/p} \\
= 2((\delta'(y') - \delta(y))/\delta(y))\|\phi(y)\|_p + \|\phi(y) - \phi(y')\|_p < 3\lambda/8.
\]
It follows from condition (a) that
\[
\|\psi(y)x \setminus B(a,2\delta(y')) - \psi(y')x \setminus B(a,2\delta(y'))\|_p = \left(\int_{x \setminus B(a,2\delta(y'))} |\psi(y)(x) - \psi(y')(x)|^p \mu(x) \right)^{1/p}
\]
\[
= \left(\int_{x \setminus B(a,2\delta(y'))} |\phi(y)(x) - \phi(y')(x)|^p \mu(x) \right)^{1/p}
\]
\[
\leq \left(\int_x |\phi(y)(x) - \phi(y')(x)|^p \mu(x) \right)^{1/p}
\]
\[
= \|\phi(y) - \phi(y')\|_p < \lambda/8.
\]

Therefore we have
\[
\|\psi(y) - \psi(y')\|_p \leq \|\psi(y)B(a,\delta(y)) - \psi(y')B(a,\delta(y))\|_p
\]
\[
+ \|\psi(y)B(a,\delta(y)) \setminus B(a,\delta(y)) - \psi(y')B(a,\delta(y)) \setminus B(a,\delta(y))\|_p
\]
\[
+ \|\psi(y)B(a,2\delta(y)) \setminus B(a,\delta(y)) - \psi(y')B(a,2\delta(y)) \setminus B(a,\delta(y))\|_p
\]
\[
+ \|\psi(y)X \setminus B(a,2\delta(y')) - \psi(y')X \setminus B(a,2\delta(y'))\|_p
\]
\[
< 7\lambda/8 < \lambda.
\]
Consequently, \(\psi \) is continuous. Thus the proof is completed. \(\square \)

Remark 1. In the above lemma, for each \(y \in Y \), when \(\phi(y) \) is corresponding to a function almost everywhere, that is uniformly continuous and bounded on \(B(a, 2\delta(y)) \), we have \(\psi(y) \in C_\mu(X) \).

We show the following:

Lemma 4.3. Let \(a \in X_0 \) such that for each \(\lambda > 0 \), \(B(a, \lambda) \in \mathcal{M} \) and \(\mu(B(a, \lambda)) > 0 \), and for some \(\lambda' > 0 \), \(\mu(B(a, \lambda')) < \infty \). Suppose that \(A \subset L^p(X) \) and \(\xi : A \to (0, \infty) \) is a function such that for every \(f \in A \), \(f(x) = 0 \) for almost every \(x \in B(a, \xi(f)) \), and that \(B \) is a \(Z \)-set in \(L^p(X) \). If the union \(A \cup B \) is a closed set in \(L^p(X) \), then it is a \(Z \)-set.

Proof. Let \(\epsilon : L^p(X) \to (0,1) \) be a map. We shall construct a map \(\phi : L^p(X) \to L^p(X) \) so that \(\phi(L^p(X)) \cap (A \cup B) = \emptyset \) and \(\|\phi(f) - f\|_p < \epsilon(f) \) for every \(f \in L^p(X) \). Since \(B \) is a \(Z \)-set, there is a map \(\psi_1 : L^p(X) \to L^p(X) \setminus B \) such that \(\|\psi_1(f) - f\|_p < \epsilon(f)/3 \) for each \(f \in L^p(X) \). Using Lemma 4.2 we can obtain maps \(\psi_2 : L^p(X) \to L^p(X) \) and \(\delta : L^p(X) \to (0,1) \) such that for each \(f \in L^p(X) \),

(i) \(\|\psi_1(f) - \psi_2(f)\|_p \leq \min\{\epsilon(f), \text{dist}(\{\psi_1(f)\}, B)\}/3 \),
(ii) \(\psi_2(f)(B(a, \delta(f))) = \{0\} \).

Since \(\mu(B(a, \lambda')) < \infty \) for some \(\lambda' > 0 \),
\[
\lim_{k \to \infty} \mu(B(a, \lambda'/k)) = \mu\left(\bigcap_{k \in \mathbb{N}} B(a, \lambda'/k) \right) = \mu(\{a\}) = 0.
\]

So we can take \(\lambda > 0 \) so that \(\mu(B(a, \lambda)) \leq 1 \). Letting \(\psi_3 : L^p(X) \to L^p(X) \) be a map such that
\[
\psi_3(f)(x) = \begin{cases}
\min\{\epsilon(f), \text{dist}(\{\psi_1(f)\}, B)\}/3 & \text{if } x \in B(a, \lambda), \\
0 & \text{if } x \in X \setminus B(a, \lambda),
\end{cases}
\]
we can defined the desired map \(\phi : L^p(X) \to L^p(X) \) by \(\phi(f) = \psi_2(f) + \psi_3(f) \). Since \(\psi_2 \) and \(\psi_3 \) are continuous, so is \(\phi \). It is easy to see that \(\phi(f) \notin A \) for any \(f \in L^p(X) \). Observe that by condition
(i),
\[\|\phi(f) - \psi_1(f)\|_p = \|\psi_2(f) + \psi_3(f) - \psi_1(f)\|_p \leq \|\psi_2(f) - \psi_1(f)\|_p + \|\psi_3(f)\|_p \leq 2 \min\{\epsilon(f), \text{dist}(\{\psi_1(f)\}, B)\}/3 < \text{dist}(\{\psi_1(f)\}, B),\]
which implies that \(\phi(f) \notin B\). Moreover,
\[\|\phi(f) - f\|_p \leq \|\phi(f) - \psi_1(f)\|_p + \|\psi_1(f) - f\|_p < 2 \min\{\epsilon(f), \text{dist}(\{\psi_1(f)\}, B)\}/3 + \epsilon(f)/3 \leq \epsilon(f).\]

The proof is completed. \(\square\)

Now we will prove that there exists a \(Z_\sigma\)-set in \(L^p(X)\) which contains \(C_a(X)\). Set \(C_a(X) = \{f \in L^p(X) \mid f|_{X\setminus E} \text{ is continuous for some } E \subset X \text{ with } \mu(E) = 0\}\). It is obvious that \(C_a(X) \subset C_u(X)\). We show the following proposition.

Proposition 4.4. Let \(X\) be separable. Suppose that for all points \(x \in X_0\), \(B(x, \lambda) \in M\) and \(\mu(B(x, \lambda)) > 0\) for each \(\lambda > 0\), and \(B(x, X(x)) < \infty\) for some \(\lambda(x) > 0\), and that \(X \setminus X_0\) is not dense in \(X\). Then \(C_a(X)\) is contained in some \(Z_\sigma\)-set in \(L^p(X)\), and hence so is \(C_u(X)\).

Proof. Notice that \(X \setminus \text{cl}_X (X \setminus X_0) \neq \emptyset\) and there is a countable open basis \(U\) of \(X \setminus \text{cl}_X (X \setminus X_0)\). We may assume that \(\emptyset \notin U\). For each \(n \in \mathbb{N}\) and each \(U \in U\), let
\[Z(n, U) = \{f \in L^p(X) \mid |f(x)| \geq 1/n \text{ for almost every } x \in U\}.
Then \(Z(n, U)\) is closed in \(L^p(X)\). Indeed, for every sequence \(\{f_k\} \subset Z(n, U)\) that converges to \(f \in L^p(X)\), by Proposition 3.1, replacing \(\{f_k\}\) with a subsequence, we have that \(f_k \to f\) almost everywhere. For almost every \(x \in U\), \(|f_k(x)| \geq 1/n\) and \(f_k(x) \to f(x)\), which implies that \(|f(x)| \geq 1/n\). Thus \(Z(n, U)\) is closed. Fix any \(a \in U\). According to Lemma 1.3, for each map \(\epsilon : L^p(X) \to (0, 1)\), we can choose maps \(\phi : L^p(X) \to L^p(X)\) and \(\delta : L^p(X) \to (0, 1)\) satisfying the following:

1. \(|\phi(f) - f\|_p < \epsilon(f)\), and
2. \(|\phi(f)(B(a, \delta(f)))| = \{0\}\) for any \(f \in L^p(X)\).
Recall that \(\mu(B(a, \delta(f))) > 0\). As is easily observed, \(\phi(L^p(X)) \cap Z(n, U) = \emptyset\). Hence \(Z(n, U)\) is a \(Z\)-set in \(L^p(X)\).

Let \(Z = C_a(X) \setminus \bigcup_{n \in \mathbb{N}} \bigcup_{U \in U} Z(n, U)\). We shall show that \(\text{cl}_{L^p(X)} Z\) is a \(Z\)-set in \(L^p(X)\). Take any \(a \in X \setminus \text{cl}_X (X \setminus X_0)\) and \(\delta > 0\) such that \(B(a, \delta) \subset X \setminus \text{cl}_X (X \setminus X_0)\). For each \(f \in \text{cl}_{L^p(X)} Z\), we prove that \(f(x) = 0\) for almost every \(x \in B(a, \delta)\). There exists \(\{f_k\} \subset Z\) such that \(\|f_k - f\|_p \to 0\). By Proposition 3.1, replacing \(\{f_k\}\) with a subsequence, we can choose \(E_0 \subset X\) with \(\mu(E_0) = 0\) so that \(f_k(x) \to f(x)\) for any \(x \in B(a, \delta) \setminus E_0\). Since each \(f_k \in C_a(X)\), there is \(E_k \subset X\) such that \(\mu(E_k) = 0\) and \(f_k|_{X \setminus E_k}\) is continuous. Put \(E = \bigcup_{k \in \mathbb{N} \cup \{0\}} E_k\), so \(\mu(E) = 0\). Let any \(x \in B(a, \delta) \setminus E\). For all \(n \in \mathbb{N}\) and \(U \in U\), there is a point \(x(n, U) \in U \setminus E\) such that \(|f_k(x(n, U))| < 1/n\) because \(f_k \notin Z(n, U)\). Due to the continuity of \(f_k|_{X \setminus E}\), we have \(|f_k(x)| \leq 1/n\), which means that \(|f(x)| \leq 1/n\). Therefore \(f(x) = 0\) for almost every \(x \in B(a, \delta)\). Consequently, \(Z\) is a \(Z\)-set in \(L^p(X)\) by Lemma 1.3, so \(C_a(X)\) is contained in the \(Z_\sigma\)-set \(\text{cl}_{L^p(X)} Z \cup \bigcup_{n \in \mathbb{N}} \bigcup_{U \in U} Z(n, U)\). \(\square\)

5. The strong \(\mathfrak{M}_2\)-universality of \(C_u(X)\)

This section is devoted to proving that \(C_u(X)\) is strongly \(\mathfrak{M}_2\)-universal. Indeed, we will show the stronger result in Proposition 5.3. Given any pair of spaces \((M, Y)\), which means that \(Y \subset M\), and any pair of classes \((\mathfrak{A}, \mathfrak{C})\), we write \((M, Y) \in (\mathfrak{A}, \mathfrak{C})\) if \(M \in \mathfrak{A}\) and \(Y \in \mathfrak{C}\). A pair \((M, Y)\) is called to be strongly \((\mathfrak{A}, \mathfrak{C})\)-universal if the following condition holds.
Let $(A, D) \in (\mathfrak{A}, \mathfrak{C})$ and B be a closed subset of A. Suppose that $f : A \to M$ is a map such that $f|_B$ is a Z-embedding and $(f|_B)^{-1}(Y) = B \cap D$. Then for each open cover \mathcal{U} of M, there exists a Z-embedding $g : A \to M$ such that g is \mathcal{U}-close to f, $g|_B = f|_B$ and $g^{-1}(Y) = D$.

Denote the class of compact metrizable spaces by \mathfrak{M}_0. Set

$$c_1 = \{(x(n))_{n \in \mathbb{N}} \in \mathfrak{S} \mid \lim_{n \to \infty} x(n) = 1\}.$$

It is well known that the both pairs (\mathfrak{S}, c_0) and (\mathfrak{S}, c_1) are strongly $(\mathfrak{M}_0, \mathfrak{M}_2)$-universal, refer to [8]. A strong universality of a pair implies one of a space. By virtue of Theorems 1.7.9 and 1.3.2 of [3], we can establish the following:

Proposition 5.1. Let $(\mathfrak{A}, \mathfrak{C})$ be a pair of classes of metrizable spaces. Suppose that M is a space homeomorphic to \mathfrak{S} and Y is a homotopy dense subspace in M. If (M, Y) is strongly $(\mathfrak{A}, \mathfrak{C})$-universal, then Y is strongly \mathfrak{C}-universal.

The next lemma will be used for proving Proposition 5.3.

Lemma 5.2. Let Y be a space and $g : Y \to \mathfrak{S}$ be an injective map. Suppose that for every $E \in \mathcal{M}$ with $\mu(E) = 0$, $X \setminus E$ is dense in X, and that $x_m, x_\infty \in X$, $m \in \mathbb{N}$, are points such that $d(x_m, x_\infty) < 1$, $\{d(x_m, x_\infty)\}$ is a strictly decreasing sequence converging to 0 and $B(x_\infty, d(x_1, x_\infty)) \in \mathcal{M}$ with $\mu(B(x_\infty, d(x_1, x_\infty))) \leq 1$. Then for each map $\delta : Y \to (0, 1)$, there exists an injective map $\Phi : Y \to L^p(X)$ which satisfies the following conditions for every $y \in Y$.

1. $\|\Phi(y)\|_p \leq \delta(y)$.
2. $\Phi(y)(X \setminus B(x_\infty, d(x_{2k}, x_\infty))) = \{0\}$ if $2^{-k} \leq \delta(y) \leq 2^{-k+1}$, $k \in \mathbb{N}$.
3. $\Phi(y)(x_m) = \delta(y)$ for all $m \in \{2j + 1, \infty \mid j > k\}$ if $2^{-k} \leq \delta(y) \leq 2^{-k+1}$, $k \in \mathbb{N}$.
4. $\Phi(y)$ is continuous on $X \setminus \{x_\infty\}$.
5. $y \in g^{-1}(c_1)$ if and only if $\Phi(y) \in C(X)$.

Proof. For each $k \in \mathbb{N}$, setting

$$Y_k = \{y \in Y \mid 2^{-k} \leq \delta(y) \leq 2^{-k+1}\},$$

we have that $Y = \bigcup_{k \in \mathbb{N}} Y_k$. Define a map $f_k^i : Y_k \to [0, 1]$ as follows:

$$f_k^i(y) = \begin{cases} 0 & \text{if } i = 1, \\ \delta(y)(1 - \phi_k(y)) & \text{if } i = 2, \\ \delta(y)(1 - \phi_k(y))g(y)(1) & \text{if } i = 3, \\ \delta(y) & \text{if } i = 2j, j \geq 2, \\ \delta(y)((1 - \phi_k(y))g(y)((i - 1)/2) + \phi_k(y)g((i - 3)/2)) & \text{if } i = 2j + 1, j \geq 2, \end{cases}$$

where $\phi_k(y) = 2 - 2^k\delta(y)$. For each $m \in \mathbb{N}$, let

$$S_m = \{x \in X \mid r_m \leq d(x, x_\infty) \leq r_{m-1}\},$$

where $r_0 = 1$ and $r_m = d(x_m, x_\infty)$, and let $\psi_m : S_m \to [0, 1]$ be a map defined by

$$\psi_m(x) = (d(x, x_\infty) - r_m)/(r_{m-1} - r_m).$$

We define a map $\Phi_k : Y_k \to L^p(X)$, $k \in \mathbb{N}$, as follows:

$$\Phi_k(y)(x) = \begin{cases} \delta(y) & \text{if } x = x_\infty, \\ \psi_{2k+i}(x)f_k^i(y) + (1 - \psi_{2k+i}(x))f_k^{i+1}(y) & \text{if } x \in S_{2k+i}, \\ 0 & \text{if } d(x, x_\infty) \geq r_{2k}. \end{cases}$$
Verify that $\Phi_k(y) = \Phi_{k+1}(y)$ for all $y \in Y_k \cap Y_{k+1}$. Indeed, by the definition, $\Phi_k(y)(x_\infty) = \delta(y) = \Phi_{k+1}(y)(x_\infty)$, and $\Phi_k(y)(x) = 0 = \Phi_{k+1}(y)(x)$ for every $x \in X$ with $d(x, x_\infty) \geq r_{2k}$. We get $\phi_k(y) = 1$ and $\phi_{k+1}(y) = 0$ because $\delta(y) = 2^{-k}$, and hence $f_1^k(y) = f_2^k(y) = f_3^k(y) = 0$. Therefore for each $x \in S_{2k+1}$,

$$\Phi_k(y)(x) = \psi_{2k+1}(x)f_1^k(y) + (1 - \psi_{2k+1}(x))f_2^k(y) = 0 = \Phi_{k+1}(y)(x),$$

and for each $x \in S_{2k+2}$,

$$\Phi_k(y)(x) = \psi_{2k+2}(x)f_2^k(y) + (1 - \psi_{2k+2}(x))f_3^k(y) = 0 = \Phi_{k+1}(y)(x).$$

Moreover, $f_3^k(y) = 0 = f_1^{k+1}(y)$, $f_2^{k+1}(y) = \delta(y)g(y)(j) = f_2^{k+1}(y)$ and $f_2^{k+2}(y) = \delta(y) = f_2^{k+1}(y)$ for any $j \geq 1$, that is, $f_i^k(y) = f_i^{k+1}(y)$ for any $i \geq 1$. It follows that for each $x \in S_{2k+i+2}$, $i \geq 1$,

$$\Phi_k(y)(x) = \psi_{2k+i+2}(x)f_i^{k+1}(y) + (1 - \psi_{2k+i+2}(x))f_{i+1}^{k+1}(y) = \Phi_{k+1}(y)(x).$$

As a consequence, $\Phi_k(y) = \Phi_{k+1}(y)$.

Now define the desired map $\Phi : Y \to L^p(X)$ by $\Phi(y) = \Phi_k(y)$ if $y \in Y_k$. Evidently, conditions (1), (2), (3) and (4) follows from the definition of Φ. We will check condition (5). Firstly, let us show the only if part. Take any $y \in g^{-1}(c_1)$, where $y \in Y_k$ for some $k \in \mathbb{N}$, and let $\epsilon \in (0, \delta(y))$. Since $g(y) \in c_1$, there exists $i_0 \in \mathbb{N}$ such that if $i \geq i_0$, then $g(y)(i) > 1 - \epsilon/\delta(y)$. Let any $i \geq 2i_0+3$ and any point $x \in S_{2k+i}$. In the case that i is even, $f_i^k(y) = \delta(y)$. In the case that i is odd,

$$f_i^k(y) = \delta(y)((1 - \phi_k(y))g(y)((i - 1)/2) + \phi_k(y)g(y)((i - 3)/2))$$

$$> \delta(y)((1 - \phi_k(y))(1 - \epsilon/\delta(y)) + \phi_k(y)(1 - \epsilon/\delta(y))) = \delta(y) - \epsilon.$$

Therefore we get that

$$\psi_{2k+i}(x)f_i^k(y) + (1 - \psi_{2k+i}(x))f_{i+1}^k(y) > \psi_{2k+i}(x)(\delta(y) - \epsilon) + (1 - \psi_{2k+i}(x))(\delta(y) - \epsilon)$$

$$= \delta(y) - \epsilon.$$

It follows that

$$|\Phi(y)(x_\infty) - \Phi(y)(x)| = |\delta(y) - (\psi_{2k+i}(x)f_i^k(y) + (1 - \psi_{2k+i}(x))f_{i+1}^k(y))|$$

$$< \delta(y) - (\delta(y) - \epsilon) = \epsilon,$$

which means that the function $\Phi(y)$ is continuous at x_∞. Moreover, $\Phi(y)$ is continuous on $X \setminus \{x_\infty\}$ due to (4), so $\Phi(y) \in C(X)$.

Next, to prove the if part, fix any $y \in Y$ such that $\Phi(y) \in C(X)$. Then $y \in Y_k$ and $\phi_k(y) > 0$ for some $k \in \mathbb{N}$. For each $\epsilon \in (0, 1)$, let $\epsilon' = \epsilon\phi_k(y)\delta(y)$. Since $\Phi(y)$ is coincident with a function continuous at the point x_∞, we can find a subset $E \subset X$ with $\mu(E) = 0$ and an even number $i_0 \geq 4$ such that for every $z, z' \in B(x_\infty, r_{2k+i_0-2}) \setminus E$, $|\Phi(y)(z) - \Phi(y)(z')| < \epsilon'$. By the combination of condition (4) with the density of $X \setminus E \subset X$, for every $i \geq i_0$, there is a point $z_i \in B(x_\infty, r_{2k+i_0-2}) \setminus E$, which is sufficiently close to x_{2k+i-1}, such that $|\Phi(y)(x_{2k+i-2}) - \Phi(y)(z_i)| < \epsilon'$. Therefore, $\Phi(y) \in C(X)$.
\(\epsilon' / 3 \). Hence for any odd number \(i \geq i_0 \),
\[
|f^k_{i}(y) - \phi(y)| = |f^k_{i}(y) - f^k_{i_0}(y)|
\]
\[
= |(\psi_{2k+i}(x_{2k+i-1})f^k_{i}(y) + (1 - \psi_{2k+i}(x_{2k+i-1}))f^k_{i+1}(y))
- (\psi_{2k+i}(x_{2k+i-1})f^k_{i_0}(y) + (1 - \psi_{2k+i}(x_{2k+i-1}))f^k_{i_0+1}(y))|
\]
\[
= |\Phi(y)(x_{2k+i-1}) - \Phi(y)(x_{2k+i-1})| + |\Phi(y)(z_i) - \Phi(y)(z_{i_0})|
\]
\[
< \epsilon'.
\]
It follows that for each \(j \geq (i_0 - 2)/2 \),
\[
g(y)(j) = (f^k_{j-3}(y)/2^j + (1 - \phi_k(y))g(y)(j + 1))/\phi_k(y)
\]
\[
> (f^k_{j-3}(y)/2^j + (1 - \phi_k(y)))/\phi_k(y)
\]
\[
> ((\delta(y) - \epsilon')/\delta(y) - (1 - \phi_k(y)))/\phi_k(y)
\]
\[
= ((\delta(y) - \epsilon \phi_k(y))\delta(y))/\delta(y) - (1 - \phi_k(y)))/\phi_k(y) = 1 - \epsilon,
\]
which implies that \(g(y) \in \mathcal{C}_1 \).

Finally, we shall verify that \(\Phi \) is injective. Let any \(y_1, y_2 \in Y \) with \(\Phi(y_1) = \Phi(y_2) \). Remark that there is \(E \subset X \) with \(\mu(E) = 0 \) such that for each point \(x \in X \setminus E \), \(\Phi(y_1)(x) = \Phi(y_2)(x) \).

By condition (4) and the density of \(X \setminus \{x_{i_0}\} \) in \(X \setminus \{x_{i_0}\} \), we can see that \(\Phi(y_1)|_{X \setminus \{x_{i_0}\}} = \Phi(y_2)|_{X \setminus \{x_{i_0}\}} \). For some \(k_i \in \mathbb{N} \), \(i = 1, 2 \), the point \(y_i \in Y_{k_i} \). Letting \(k = \max\{k_i \mid i = 1, 2\} \), we have
\[
\Phi(y_i)(x_{2k+i}) = \Phi_k(y_i)(x_{2k+i}) = \psi_{2k+i}(x_{2k+i})f^k_{i}(y_i) + (1 - \psi_{2k+i}(x_{2k+i}))f^k_{i+1}(y_i)
\]
\[
= f^k_{i}(y_i) = \delta(y_i),
\]
so \(\delta(y_1) = \delta(y_2) \). Thus the both points \(y_1 \) and \(y_2 \) are contained in \(Y_k \) and
\[
\phi_k(y_1) = 2 - 2^k \delta(y_1) = 2 - 2^k \delta(y_2) = \phi_k(y_2).
\]
Furthermore, for every \(i \in \mathbb{N} \), we get
\[
f^k_{i+1}(y_i) = \Phi_k(y_i)(x_{2k+i}) = \Phi(y_i)(x_{2k+i}) = \Phi_k(y_2)(x_{2k+i}) = f^k_{i+1}(y_2),
\]
which means that \(f^k_j(y_1) = f^k_j(y_2) \) for each \(j \geq 2 \). When \(\phi_k(y_1) = 1 \), for all \(j \in \mathbb{N} \),
\[
g(y_1)(j) = f^k_{j+3}(y_1)/\delta(y_1) = f^k_{j+3}(y_2)/\delta(y_2) = g(y_2)(j).
\]
When \(\phi_k(y_1) \neq 1 \), we see that
\[
g(y_1)(1) = f^k_3(y_1)/(1 - \phi_k(y_1))\delta(y_1) = f^k_3(y_2)/(1 - \phi_k(y_2))\delta(y_2) = g(y_2)(1).
\]
Supposing that \(g(y_1)(j) = g(y_2)(j) \) for some \(j \in \mathbb{N} \), we can obtain
\[
g(y_1)(j + 1) = (f^k_{j+3}(y_1)/\delta(y_1) - \phi_k(y_1)g(y_1)(j))/(1 - \phi_k(y_1))
\]
\[
= (f^k_{j+3}(y_2)/\delta(y_2) - \phi_k(y_2)g(y_2)(j))/(1 - \phi_k(y_2)) = g(y_2)(j + 1).
\]
By induction, it follows that \(g(y_1)(j) = g(y_2)(j) \) for any \(j \in \mathbb{N} \), that is, \(g(y_1) = g(y_2) \). By virtue of the injectivity of \(g \), we have \(y_1 = y_2 \), so \(\Phi \) is an injection. The proof is completed. \(\blacktriangleleft \)

Remark 2. In the above lemma, if there is a compact set \(K \subset X \) that contains \(B(x_{\infty}, d(x_1, x_{\infty})) \), the function \(\Phi(y) \) has a compact support for each \(y \in Y \). Hence when \(\Phi(y) \) is continuous, it is uniformly continuous, so condition (5) can be rewritten as follows:
(5) $y \in g^{-1}(c_1)$ if and only if $\Phi(y) \in C_u(X)$.

Now we show the following:

Proposition 5.3. Suppose that for every $E \in \mathcal{M}$ with $\mu(E) = 0$, the complement $X \setminus E$ is dense in X, and that there are distinct points $x_0, x_\infty \in X_0$ such that for any $\lambda > 0$, $B(x_\infty, \lambda) \in \mathcal{M}$, and x_∞ has a compact neighborhood $K \subset X$ with $\mu(K) < \infty$. If $C_u(X)$ is homotopy dense in $L^p(X)$, then the pair $(L^p(X), C_u(X))$ is strongly $\mathcal{M}_0\mathcal{M}_2$-universal, and hence $C_u(X)$ is strongly \mathcal{M}_2-universal.

Proof. The latter half follows from the strong $(\mathcal{M}_0, \mathcal{M}_2)$-universality of $(L^p(X), C_u(X))$ and Proposition 5.1. We shall show the first half. Suppose that $(A, D) \in (\mathcal{M}_0, \mathcal{M}_2)$, B is a closed set in A, and $\Phi : A \to L^p(X)$ is a map such that $\Phi|_B$ is a Z-embedding and $(\Phi|_B)^{-1}(C_u(X)) = B \cap D$. For each $\varepsilon > 0$, let us construct a Z-embedding $\Psi : A \to L^p(X)$ such that $\|\Psi(a) - \Phi(a)\|_p < \varepsilon$ for every $a \in A$, $\Psi|_B = \Phi|_B$ and $\Psi^{-1}(C_u(X)) = D$. We can assume that $\Phi(B) \cap \Phi(A \setminus B) = \emptyset$ because $\Phi(B)$ is a Z-set in $L^p(X)$. Let $\delta : A \to [0,1)$ be a map defined by

$$\delta(a) = \min\{\varepsilon, \text{dist}(\{\Phi(a)\}, \Phi(B))\} / 4.$$

As is easily observed, $\delta(a) = 0$ if and only if $a \in B$. Since $C_u(X)$ is homotopy dense in $L^p(X)$, there is a homotopy $h : L^p(X) \times [0,1] \to L^p(X)$ such that $h(f,0) = f$, $h(f,t) \in C_u(X)$ for all $f \in L^p(X)$ and $t \in (0,1]$, and moreover, $\|h(f,t) - f\|_p \leq t$ for all $f \in L^p(X)$ and $t \in [0,1]$. Define a map $\phi : A \to L^p(X)$ by setting $\phi(a) = h(\Phi(a), \delta(a))$. Notice that

$$\|\phi(a) - \Phi(a)\|_p = \|\Phi(a), \delta(a)\|_p - \Phi(a)\|_p \leq \delta(a)$$

for every $a \in A$, and that $\phi(A \setminus B) \subset C_u(X)$.

Take $0 < \lambda \leq d(x_0, x_\infty) / 2$ such that $B(x_\infty, \lambda) \subset K$ and $\mu(B(x_\infty, \lambda)) \leq 1$. According to Lemma 4.2, we can find maps $\psi : A \setminus B \to L^p(X)$, $\xi : A \setminus B \to (0, \lambda)$ and $\eta : A \setminus B \to (0, \lambda)$ so that for any $a \in A \setminus B$, $\xi(a) \leq \delta(a)$ and

(i) $\|\phi(a) - \psi(a)\|_p \leq \delta(a)$,

(ii) $\psi(a)(B(x_\infty, \xi(a))) = \{0\}$,

(iii) $\psi(a)(B(x_0, \eta(a))) = \{0\}$.

Since $\phi(A \setminus B) \subset C_u(X)$, we may assume that $\psi(B \setminus A) \subset C_u(X)$, see Remark 1. Put

$$A_k = \{a \in A \mid 2^{-k} \leq \xi(a) \leq 2^{-k+1}\}$$

for each $k \in \mathbb{N}$, so every A_k is compact and $A \setminus B = \bigcup_{k \in \mathbb{N}} A_k$. It follows from the assumption that $X \setminus \{x_\infty\}$ is dense in X. Choose a point $x_1 \in X \setminus \{x_\infty\}$ such that $d(x_1, x_\infty) < \min\{\xi(a) \mid a \in A_1\}$. Moreover, we can inductively find $x_m \in X \setminus \{x_\infty\}$ for any $m \geq 2$ so that

$$d(x_m, x_\infty) \leq \min\{1 / m, d(x_{m-1}, x_\infty), \xi(a) \mid a \in A_m\}.$$

For simplicity, let $r_m = d(x_m, x_\infty)$ for each $m \in \mathbb{N}$. Then $\{r_m\}$ is strictly decreasing to 0 and for any $a \in A_k$ and $k \in \mathbb{N}$, $\psi(a)(B(x_\infty, r_{2k})) = \{0\}$. By virtue of the strong $(\mathcal{M}_0, \mathcal{M}_2)$-universality of (s,c_1), we can obtain an embedding $g : A \to s$ so that $g^{-1}(c_1) = D$. Applying Lemma 5.2 and Remark 2 take an injective map $\psi' : A \setminus B \to L^p(X)$ so that the following conditions hold for every $a \in A \setminus B$.

1. $\|\psi'(a)\|_p \leq \xi(a)$.
2. $\psi'(a)(X \setminus B(x_\infty, r_{2k})) = \{0\}$ if $a \in A_k$, $k \in \mathbb{N}$.
3. $\psi'(a)(x_m) = \xi(a)$ for all $m \in \{2j + 1, \infty \mid j > k\}$ if $a \in A_k$, $k \in \mathbb{N}$.

Recall that every compact set in s is a Z-set, refer to Theorem 1.1.14 and Proposition 1.4.9 of [3]. Under our assumption in Main Theorem, the space $L^p(X)$ is homeomorphic to s by Theorem 1.14 and hence the image of any map from $A \in \mathcal{M}_0$ is a Z-set in $L^p(X)$.

(4) \(\psi'(a) \) is continuous on \(X \setminus \{ x_\infty \} \).

(5) \(a \in D \setminus B \) if and only if \(\psi'(a) \in C_u(X) \).

Let \(\psi' : A \setminus B \to L^p(X) \) be a map defined by \(\psi'(a) = \psi(a) + \psi'(a) \). Since \(\psi \) and \(\psi' \) are continuous, so is \(\psi'' \). Due to conditions (i) and (1), for every \(a \in A \setminus B \),

\[
\| \phi(a) - \psi''(a) \|_p = \| \phi(a) - (\psi(a) + \psi'(a)) \|_p \leq \| \phi(a) - \psi(a) \|_p + \| \psi'(a) \|_p \\
\leq \delta(a) + \xi(a) \leq 2\delta(a).
\]

By virtue of condition (5), we have that \(a \in D \setminus B \) if and only if \(\psi''(a) \in C_u(X) \). To verify that \(\psi'' \) is an injection, fix any \(a_1, a_2 \in A \setminus B \) with \(\psi''(a_1) = \psi''(a_2) \), where we get some \(k_1, k_2 \in \mathbb{N} \) such that \(a_1 \in A_{k_1} \) and \(a_2 \in A_{k_2} \) respectively. Let \(k = \max\{k_i \mid i = 1, 2\} \). According to (ii), almost everywhere on \(B(x_\infty, r_{2k}) \),

\[
\psi'(a_1)(x) = \psi''(a_1)(x) = \psi''(a_2)(x) = \psi'(a_2)(x).
\]

Since \(\psi'(a_i), i = 1, 2, \) is continuous on \(B(x_\infty, r_{2k}) \setminus \{ x_\infty \} \) by (4), and for any \(E \in \mathcal{M} \) with \(\mu(E) = 0, X \setminus E \) is dense in \(X \) by the assumption, we can see that \(\psi'(a_1)(x) = \psi'(a_2)(x) \) for every \(x \in B(x_\infty, r_{2k}) \setminus \{ x_\infty \} \), and therefore especially,

\[
\xi(a_1) = \psi'(a_1)(x_{2k+3}) = \psi'(a_2)(x_{2k+3}) = \xi(a_2).
\]

Thus \(a_1, a_2 \in A_k \). On the other hand, since \(\psi'(a_i)(X \setminus B(x_\infty, r_{2k})) = \{0\}, i = 1, 2, \) due to condition (2), we have that \(\psi'(a_1) \) and \(\psi'(a_2) \) are coincident almost everywhere on \(X \). It follows from the injectivity of \(\psi' \) that \(a_1 = a_2 \). Consequently, the map \(\psi'' \) is an injection.

The map \(\psi'' \) can be extended to the desired map \(\Psi : A \to L^p(X) \) by \(\Psi|_B = \Phi|_B \) because for each \(a \in A \setminus B \),

\[
\| \Phi(a) - \psi''(a) \|_p \leq \| \Phi(a) - \phi(a) \|_p + \| \phi(a) - \psi''(a) \|_p \leq 3\delta(a) \\
= 3 \min\{\epsilon, \text{dist}(\{\Phi(a)\}, \Phi(B))\}/4 < \text{dist}(\{\Phi(a)\}, \Phi(B)).
\]

Observe that \(\| \Phi(a) - \Psi(a) \|_p < \epsilon \) for any \(a \in A \) and that

\[
\Psi(A \setminus B) = \psi''(A \setminus B) \subset L^p(X) \setminus \Phi(B) = L^p(X) \setminus \Psi(B).
\]

We see \(\Psi^{-1}(C_u(X)) = D \) due to that \(a \in D \setminus B \) if and only if \(\psi''(a) \in C_u(X) \) and the assumption that \((\Phi|_B)^{-1}(C_u(X)) = B \cap D \). It remains to prove that \(\Psi \) is a \(Z \)-embedding. Since \(\Psi|_B = \Phi|_B \) is a \(Z \)-embedding and \(\Psi|_{A \setminus B} = \psi'' \) is an injective map, \(\Psi \) is an embedding. For every \(a \in A \setminus B \), \(\psi'(a)(X \setminus B(x_\infty, \lambda)) = \{0\} \) by (2), and \(B(x_0, \eta(a)) \subset X \setminus B(x_\infty, \lambda) \) by the definition. It follows from (iii) that for any \(x \in B(x_0, \eta(a)) \),

\[
\Psi(a)(x) = \psi''(a)(x) = \psi(a)(x) + \psi'(a)(x) = 0.
\]

According to Lemma 1, the image \(\Psi(A) = \Psi(A \setminus B) \cup \Psi(B) \) is a \(Z \)-set in \(L^p(X) \). We conclude that \(\Psi \) is a \(Z \)-embedding. \(\square \)

6. Proof of Main Theorem

Now we shall prove Main Theorem. In the case that a measure space \(X \) is regular Borel, and that there exists a countable family \(\{ U_n \} \) of open sets in \(X \) such that \(X = \bigcup_{n \in \mathbb{N}} U_n, U_n \subset U_{n+1} \) and \(\mu(U_n) < \infty \) for all \(n \in \mathbb{N} \), each function of \(L^p(X) \) can be approximated by a bounded map that vanishes outside \(U_n \) for some \(n \in \mathbb{N} \). Let

\[
C_c(X) = \{ f \in L^p(X) \mid f \text{ is a continuous function with a compact support} \}.
\]

The space \(C_c(X) \) is a convex subset of \(L^p(X) \) and \(C_c(X) \subset C_u(X) \). We can show the following proposition.
Proposition 6.1. Let X a separable locally compact regular Borel metric measure space. Suppose that for each compact subset $K \subset X$, $\mu(K) < \infty$. Then the space $C_c(X)$ is homotopy dense in $L^p(X)$, and hence so is $C_u(X)$.

Proof. Since X is separable and locally compact, we can find a countable family $\{U_n\}$ of open subsets so that $X = \bigcup_{n \in \mathbb{N}} U_n$, $\text{cl}_X U_n \subset U_{n+1}$ and $\text{cl}_X U_n$ is compact for any $n \in \mathbb{N}$. By the assumption, each $\mu(U_n) \leq \mu(\text{cl}_X U_n) < \infty$. Therefore $C_c(X)$ is a dense convex subset in the normed linear space $L^p(X)$. It follows from the combination of Theorem 6.8.9 with Corollary 6.8.5 of [9] that $C_c(X)$ is homotopy dense in $L^p(X)$. □

As is easily observed, if for every $E \in \mathcal{M}$ with $\mu(E) = 0$, the complement $X \setminus E$ is dense in X, then for any non-empty open subset $U \in \mathcal{M}$, $\mu(U) > 0$. Moreover, when \mathcal{M} contains the open sets in X, the converse is valid. Indeed, suppose that there is a subset $E \in \mathcal{M}$ such that $\mu(E) = 0$ and $X \setminus E$ is not dense in X, we can obtain an non-empty open subset $U \subset X$, that is contained in E. Then

$$0 < \mu(U) \leq \mu(E) = 0,$$

which is a contradiction.

Proof of Main Theorem. Remark that for each $E \subset X$ with $\mu(E) = 0$, $X \setminus E$ is dense in X. By Proposition 3.3, we have $C_u(X) \in \mathcal{M}_2 \subset (\mathcal{M}_2)_\sigma$. Due to Propositions 6.1 $C_u(X)$ is homotopy dense in $L^p(X)$. By Proposition 4.4 there exists a Z_σ-set in $L^p(X)$ that contains $C_u(X)$. Since $X \setminus X_0$ is not dense in X, X_0 is uncountable, so we can choose distinct points $x_0, x_\infty \in X_0$. Because X is locally compact and any compact subset is of finite measure, the point x_∞ has a compact neighborhood with a finite measure. According to Proposition 5.3 $C_u(X)$ is strongly \mathcal{M}_2-universal. Hence the space $C_u(X)$ is an \mathcal{M}_2-absorbing set in $L^p(X)$. Combining this with Theorems 11.1 and 2.1 we conclude that $C_u(X)$ is homeomorphic to c_0. □

7. Appendix

In the theory of infinite-dimensional topology, it is important to consider pairs of spaces. A pair $(M, Y) \in (\mathfrak{A}, \mathfrak{C})_\sigma$ if M can be expressed as a countable union of closed subsets M_n, $n \in \mathbb{N}$, and $(M_n, M_n \cap Y) \in (\mathfrak{A}, \mathfrak{C})$. We say that (M, Y) is an $(\mathfrak{A}, \mathfrak{C})$-absorbing pair if the following conditions are satisfied.

1. (M, Y) is strongly $(\mathfrak{A}, \mathfrak{C})$-universal.
2. Y is contained in some Z_σ-set Z of M such that $(Z, Y) \in (\mathfrak{A}, \mathfrak{C})_\sigma$.

The pairs (s, c_0) and (Q, c_0) are $(\mathcal{M}_0, \mathcal{M}_2)$-absorbing. As a consequence of Theorem 1.7.6 of [3], we have the following:

Theorem 7.1. Let \mathfrak{A} and \mathfrak{C} be classes of metrizable spaces. Suppose that both (M, Y) and (M', Y') are $(\mathfrak{A}, \mathfrak{C})$-absorbing pairs, and both M and M' are topological copies of s or Q. Then (M, Y) is homeomorphic to (M', Y').

The following question naturally arises.

Problem 1. Is the pair $(L^p(X), C_u(X))$ homeomorphic to (s, c_0)?

In the paper [11], some continuous function space C endowed with the hypograph topology admits a compactification \overline{C} consisting of upper semi-continuous set valued functions such that the pair (\overline{C}, C) is homeomorphic to (Q, c_0). Let us ask the following:

Problem 2. Does the space $C_u(X)$ have a “natural” compactification $\overline{C_u(X)}$ such that $(\overline{C_u(X)}, C_u(X))$ is homeomorphic to (Q, c_0)?
References

[1] J.M. Aarts and T. Nishiura, Dimension and extensions, North-Holland Mathematical Library, 48, North-Holland Publishing Co., Amsterdam, 1993.

[2] R.D. Anderson, *Hilbert space is homeomorphic to the countable infinite product of lines*, Bull. Amer. Math. Soc. 72 (1966), 515–519.

[3] T. Banakh, T. Radul and M. Zarichnyi, Absorbing Sets in Infinite-Dimensional Manifolds, Mathematical Studies Monograph Series 1, VNTL Publishers, Lviv, 1996.

[4] M. Bestvina and J. Mogilski, *Characterizing certain incomplete infinite-dimensional absolute retracts*, Michigan Math. J. 33 (1986), 291–313.

[5] H. Brezis, Functional analysis, Sobolev spaces, and partial differential equations. Universitext. Springer, New York, 2011.

[6] R. Cauty, *Les fonctions continues et les fonctions intégrables au sens de Riemann comme sous-espaces de L_1*, Fund. Math. 139 (1991), no. 1, 23–36.

[7] M.I. Kadec, *A proof the topological equivalence of all separable infinite-dimensional Banach spaces* (Russian), Funkcional Anal. i Priložen, 1 (1967), 61–70.

[8] J. van Mill, The infinite-dimensional topology of function spaces, North-Holland Math. Library, 64, North-Holland Publishing Co., Amsterdam, 2001.

[9] K. Sakai, Geometric Aspects of General Topology, Springer, SMM, Springer, Tokyo, 2013.

[10] H. Yang, K. Sakai and K. Koshino, *A function space from a compact metrizable space to a dendrite with the hypo-graph topology*, Open Math. 13, (2015), 211-228.

[11] Z. Yang and X. Zhou, *A pair of spaces of upper semi-continuous maps and continuous maps*, Topology Appl. 154, (2007), no. 8, 1737–1747.

(Katsuhisa Koshino) Faculty of Engineering, Kanagawa University, Yokohama, 221-8686, Japan

E-mail address: ft160229no@kanagawa-u.ac.jp