Eye Movement Disorders and Neurological Symptoms in Late-Onset Inborn Errors of Metabolism

Lisa H. Koens, MD, Marina A.J. Tijssen, MD, PhD, Fiete Lange, MD, PhD, Bruce H.R. Wolffenbuttel, MD, PhD, Alessandra Rufa, MD, PhD, David S. Zee, MD, and Tom J. de Koning, MD, PhD

Abstract: Inborn errors of metabolism in adults are still largely unexplored. Despite the fact that adult-onset phenotypes have been known for many years, little attention is given to these disorders in neurological practice. The adult-onset presentation differs from childhood-onset phenotypes, often leading to considerable diagnostic delay. The identification of these patients at the earliest stage of disease is important, given that early treatment may prevent or lessen further brain damage. Neurological and psychiatric symptoms occur more frequently in adult forms. Abnormalities of eye movements are also common and can be easily overlooked in a general examination. In adults with unexplained psychiatric and neurological symptoms, a special focus on examination of eye movements can serve as a relatively simple clinical tool to detect a metabolic disorder. Eye movements can be easily quantified and analyzed with video-oculography, making them a valuable biomarker for following the natural course of disease or the response to therapies. Here, we review, for the first time, eye movement disorders that can occur in inborn errors of metabolism, with a focus on late-onset forms. We provide a step-by-step overview that will help clinicians to examine and interpret eye movement disorders.

Key Words: eye movement disorders; inborn errors of metabolism; movement disorders; adult-onset

Inborn errors of metabolism (IEM) are a heterogeneous group of genetic disorders that cause dysfunction of an enzyme or transporter involved in cellular metabolism. Historically, inborn errors were thought to be rare, occurring in less than 1 per 100,000 live births and to only present during infancy or early childhood. We now know that this prevalence is an underestimate, and that IEM present in adolescence or adulthood much more often than previously thought. Retrospective data from an ethnically diverse population in the United...
Kingdom (1999-2003) revealed an overall prevalence of metabolic disease of 1 per 784 live births; mitochondrial diseases, lysosomal storage diseases, and amino acid disorders were most frequent. Furthermore, more than one quarter of all diagnoses were made after the age of 15 years. Adult phenotypes may differ from the classic childhood-onset phenotypes. In adulthood, many IEM patients present with neurological or psychiatric symptoms, but considering an IEM in the differential diagnosis of an adult patient is still uncommon among neurologists. Missing or delaying diagnosis of an IEM can have important implications. In particular, patients with a milder phenotype appear to benefit most from timely treatment, so identifying them is important to prevent further (neurological) damage.

Whereas the neurological symptoms in patients with IEM often involve various types of movement disorders, eye movement disorders are also frequently observed and can be an important diagnostic clue. The type of eye movement disorder can often further delineate the type of IEM.

The aim of this article is to review the abnormalities of eye movements that can be observed in IEM, with an emphasis on those IEMs that can present later in life. Our goal is to increase awareness of eye movements in adult patients with movement disorders and other neurological or psychiatric disturbances because they can be the key to early diagnosis. Because more types of IEM are being identified that can be treated, early recognition of these disorders is important.

Search Strategy and Selection Criteria

We reviewed articles regarding ocular motility disorders and IEM up to June 2017. References were identified by PubMed, text book search, and through citations in relevant articles and books. Only articles published in English were included. Search terms are in Supplementary Appendix I. Only IEMs with at least 2 patients with some type of eye movement disorder were included in the review. Although we focused on late-onset IEM (adolescent-onset 16-18 years of age, adult-onset > 18 years of age), it is difficult to discriminate specifically between early- and late-onset forms, given that eye movement disorders are frequently not described in the literature. For that reason, children were also included in this review. We included mitochondrial diseases as a combined disease group instead of specific subtypes. We excluded articles in which nystagmus secondary to blindness was the only ocular motor finding. Supplementary Appendix II presents a list of references with videos of eye movement disorders in IEM.

Examination of Eye Movements

Disorders of eye movement can be categorized as peripheral and central (Table 1). Peripheral eye movement disorders are particularly frequent in mitochondrial disorders and commonly affect the two eyes differently, resulting in ocular misalignment and diplopia. Progressive external ophthalmoplegia (PEO) is an important exception to this rule. Because of the insidious onset and slow progression, patients do not complain of diplopia and may be unaware of any disorder of eye movements. Central causes of ocular motor abnormalities usually affect both eyes.

Clinical examination of the eye movements in all patients with a suspected IEM is essential. Patients themselves may not report visual symptoms or may only have nonspecific complaints. Table 2 provides a short step-by-step overview of the clinical examination of eye movements. Every step in the table needs to be followed because different types of eye movement disorders can exist in 1 patient.

Video-oculography (VOG) allows for better quantitative documentation of abnormalities. Typically, a digital camera mounted in goggles uses the contrast between the pupil and iris to track the movement and position of one or both of the eyes.
VOG is an effective user- and patient-friendly tool to quantify eye movements, including subtle changes in latency, velocity, and accuracy of saccades. It can be used to support or make a diagnosis and measure effectiveness of treatment during follow-up. For example, in Niemann-Pick type C (NP-C), saccadic parameters measured by VOG have been reported to be a robust indicator of efficacy of treatment with Miglustat.

Inborn Errors of Metabolism Associated With Ocular Motor Disorders

We will discuss abnormalities of eye movements in IEM. An overview of the various IEMs associated with ocular motor disorders, including the underlying gene defect, metabolic abnormalities, age of onset, early-
onset symptoms, and treatment, is given in Table 3. Table 4 presents the described eye movement disorders for each of those IEMs.

Lysosomal Storage Diseases

Late-onset NP-C usually presents with neurological problems. Movement disorders are frequent, particularly in these adolescent- and adult-onset forms. Eye movement disorders are also an important feature. Vertical supranuclear gaze palsy (VSGP) is a key feature and is present in approximately 65% of patients. VSGP in patients with NP-C is characterized by a paralysis of vertical (especially downward) saccades, whereas smooth pursuit is initially spared. Horizontal saccades are initially preserved, but are ultimately affected as the disease progresses. A so-called round-the-houses phenomenon occurs when attempting vertical saccades: The eyes do not move directly up and down, but in a lateral arc (Video 1). A similar phenomenon occurs during horizontal saccades in Gaucher’s disease. No abnormalities of vestibulo-ocular responses have been found. Treatment is possible with Miglustat. Gaucher’s disease type 2 (acute neurological form) and type 3 (subacute neurological form) are the neuropathic forms of this lysosomal storage disorder. Gaucher’s disease type 2 presents during infancy and abnormalities of eye movements are early signs in affected children, including ocular motor paralysis, slowness of saccades, oculomotor “apraxia,” and strabismus. Gaucher’s disease type 3 presents during childhood or adolescence. Movement disorders are common in type 3, particularly ataxia and parkinsonism. However, patients often present with (myoclonus) epilepsy and supranuclear gaze palsy that only affects horizontal gaze. Horizontal saccades are markedly slow and may show a curved trajectory, whereas vertical saccades are initially preserved. Vestibulo-ocular responses may be impaired. Ocular motor apraxia, which in fact reflects abnormal patterns of head motion associated with defects in initiation of saccades, is also observed in Gaucher’s types 2 and 3. Similar to NP-C, patterns of abnormal saccades can be used to monitor progression of disease. Gaucher’s disease type 1 is the chronic non-neurological form; however, subtle slowness of saccades has been reported in some patients. Enzyme replacement therapy and substrate reduction therapy are available. In the late-onset form of Tay-Sachs disease (GM2 gangliosidosis), motor symptoms are frequent. These are caused by motor neuron dysfunction and cerebellar involvement with ataxia. Abnormalities of eye movements are not a classic feature of late-onset Tay-Sachs disease, but impaired smooth pursuit with square-wave jerks (saccadic intrusions), transient decelerations of saccades, and up-gaze palsy have been described. Vestibulo-ocular responses are normal. In early-onset Tach-Sachs disease, vertical gaze is impaired early and horizontal gaze later in the disease. Treatment is not available.

The clinical picture of Sandhoff’s disease (GM2 gangliosidosis) is similar to Tay-Sachs disease. Early childhood forms are most common. Late-onset forms of Sandhoff’s disease are rare and have a milder phenotype. They often present as a complex neurological disorder with ataxia, chorea, tremor, dystonia, or parkinsonism in combination with motor neuron dysfunction. Abnormalities of eye movements include impaired horizontal and vertical saccades with nystagmus. A patient with adult-onset Sandhoff’s disease and pendular nystagmus in combination with palatal tremor has been described. Treatment is not available.

Disorders of Lipid Metabolism

Signs of abetalipoproteinemia occur early in life and progress with time. Neurological manifestations resulting from vitamin deficiency often begin in the first or second decade of life. Low vitamin E in particular can cause progressive neurological symptoms affecting the peripheral and central nervous system. Adult patients show malabsorption, steatosis, abnormal liver transaminases, and neurological signs. Abnormalities of eye movements are typical, including progressive gaze disturbances attributed to paresis of the medial rectus muscles and a characteristic pattern of dissociated nystagmus. The latter consists of an intense nystagmus, but with limited range in the adducting eye, and a less-intense nystagmus, but with full range, in the abducting eye. Patients complain of trouble reading and of difficulties associated with impaired convergence. Saccades are slow and hypometric. Vestibular nystagmus and optokinetic nystagmus have abnormal or absent quick phases. A low-fat diet with reduced long-chain fatty acids and fat-soluble vitamin supplements is recommended.

Late-onset cerebrotendinous xanthomatosis is characterized by tendon xanthomas, psychiatric symptoms, and neurological symptoms, including pyramidal, cerebellar, and extrapyramidal signs in the second or third decade of life. Patients show abnormal pursuit, increased saccadic intrusions, multitrap saccades, and antisaccade deficits. Chenodeoxycholic acid and statin therapy are an effective treatment and can prevent neurological involvement if started early.

Disorders of Carbohydrate Metabolism

Symptoms of glucose transporter type 1 deficiency usually occur early in life, but may present in adolescence or adulthood. In the late presentation form, paroxysmal exercise-induced dyskinesia occurs that...
TABLE 3. Inborn errors of metabolism associated with eye movement abnormalities
Gene

Lysosomal storage diseases
Niemann-Pick C1, NP-C2
Gaucher's disease
Tay-Sachs disease
Sandhoff's disease
Disorders of lipid metabolism
Abetalipoproteinemia
Cerebrotendinous xanthomatosis
Disorders of carbohydrate metabolism
Glucose transporter type 1 deficiency
Disorders of mineral, metal, and vitamin metabolism
Wilson's disease
Hypermanganesemia with dystonia 1
Panthenate kinase-associated neurodegeneration
Adult-onset dystonia-parkinsonism
Disorder
--
Biotin-thiamine-responsive basal ganglia disease
Ataxia with vitamin E deficiency
Disorders of amino acid metabolism
Maple syrup urine disease
Glutaric aciduria type 1
Disorders of purine or pyrimidine metabolism
Lesch-Nyhan syndrome
Peroxisomal disorders
Neuronal circuit disorders
Neurotransmitter disorders
Aromatic L-amino acid decarboxylase deficiency
Tyrosine hydroxylase deficiency
GTP-C4-I deficiency
Sepiapterin reductase deficiency

(Continues)
predominantly manifests as dystonia, chorea, and ballism. Epilepsy is also observed. Abnormalities of eye movements are common and may be highly characteristic brief multidirectional paroxysmal episodes of rapid eye movements in combination with head movements in the same direction, a phenomenon called aberant gaze saccades. Eye rolling and fluttering, strabismus, opsoclonus, and limitation of vertical eye movements have also been described. Early diagnosis is important because this disorder can be treated with a ketogenic diet.

Disorders of Mineral, Metal, or Vitamin Metabolism

Symptoms of Wilson’s disease often begin in the teenage years. Liver disease is frequently the presenting sign, but psychiatric and neurological symptoms including movement disorders are also frequent presentations. The Kayser-Fleischer ring, copper deposits that form a ring in the cornea, is the ophthalmological hallmark of Wilson’s disease. Abnormalities of eye movements are frequently present. Impaired vertical, but sometimes also horizontal pursuit, selective slowing of downward saccades, and dysmetria of saccades are all reported. Gaze distractibility has also been described in which patients cannot fix their eyes on a stationary or moving object for more than a few seconds without being distracted by other stimuli. At least 1 patient with oculo-gyric crises has been reported on. Treatment is possible with chelation therapy.

Adult-onset hypermanganesemia with dystonia 1 is characterized by parkinsonism, whereas children usually present with dystonia. Bilateral hyperintensities in the basal ganglia and white matter attributed to accumulation of manganese are typically observed on brain imaging. Increased latency of saccades, misdirected antisaccades, and multistep saccades have been observed by one of the authors (A.R., personal observations). Chelation therapy and iron supplementation are recommended.

Pantothenate kinase-associated neurodegeneration (or NBIA type 1) is the most common form of neurodegeneration with brain iron accumulation (NBIA). This is reflected in the “eye-of-the-tiger” sign on brain MRI. Late-onset disease occurs during the second or third decade. It is slowly progressive and is characterized by speech problems, movement disorders, and psychiatric symptoms. Horizontal and vertical supranuclear gaze palsy, impaired saccades, abnormal optokinetic nystagmus, and impaired horizontal vestibulo-ocular responses have been described. Oculogyric crisis has been reported in 1 patient. Treatment with chelation therapy is not effective.

Adult-onset dystonia-parkinsonism (NBIA type 2) also belongs to the heterogeneous group of degenerative...
TABLE 4. Abnormalities of eye movements in inborn errors of metabolism

Lysosomal storage diseases	Disorders of lipid metabolism	Disorders of carbohydrate metabolism	Disorders of mineral, metal, and vitamin metabolism	Disorders of amino acid metabolism	Congenital disorders of glycosylation	Disorders of purine or pyrimidine metabolism	Peroxisomal disorders	Neurotransmitter disorders	Energy metabolism disorders	
Niemann-Pick type C	x(V)	x	x	x	x	+				
Gaucher's disease type 1	x	x	x	x	x	+				
Gaucher's disease type 2	x	x	x	x	x	+				
Gaucher's disease type 3	x	x	x	x	x	+				
Tay-Sachs disease, infantile form	x	x	x	x	x	+				
Tay-Sachs disease, late-onset form	x	x	x	x	x	+				
Sandhoff's disease	x	x	x	x	x	+				
Abetalipoproteinemia	x	x	x	x	x	+				
Cerebrotendinous xanthomatosis	x	x	x	x	x	+				
Disorders of amino acid metabolism	Maple syrup urine disease	x	x	x	x	x	x	+		
Glutaric aciduria type 1	x	x	x	x	x	x	x	x	x	
Congenital disorders of glycosylation	Phosphomannomutase 2 deficiency	x	x	x	x	x	x	x	x	
Disorders of purine or pyrimidine metabolism	Lesch-Nyhan syndrome	x	x	x	x	x	x	x	x	
Peroxisomal disorders	Zellweger spectrum disorders	x	x	x	x	x	x	x	x	
Neurotransmitter disorders	Dopamine transporter deficiency syndrome	x	x	x	x	x	x	x	x	
Other disorders of dopamine synthesis or transport	x	x	x	x	x	x	x	x	x	
Energy metabolism disorders	Mitochondrial diseases	x	x	x	x(P(EO))	x	x	x	x	x
Pyruvate dehydrogenase E2 deficiency	x	x	x	x(V)	x	x	x	x	x	

x: Present.
+/-: Inconstant.
+/-: Present.
?: Unknown.
H: Primarily horizontal.
V: Primarily vertical.
(P(EO)): Progressive external ophthalmoplegia.
disorders causing iron accumulation. Adults usually present before the age of 30 and have parkinsonism, dystonia and cognitive decline. Ophthalmic features include strabismus, up-gaze palsy, impaired pursuit with saccadic intrusions, and pendular nystagmus. Vestibulo-ocular responses are not impaired.

A case of oculogyric crisis induced by levodopa has been described in a patient with adult-onset dystonia-parkinsonism. Only symptomatic treatment is available.

Emergency treatment is necessary during metabolic episodes and intercurrent illnesses. In addition to acute dystonia and encephalopathy, bilateral external ophthalmoplegia is observed. Diagnosis is important because treatment with thiamine and biotin can be life-saving.

Finally, onset of ataxia with vitamin E deficiency can be at any age. Symptoms include ataxia, areflexia, and impaired proprioception. Nystagmus is observed as part of a cerebellar syndrome. Impaired smooth pursuit, slow saccades, ocular motor apraxia, and strabismus have been reported. Treatment is with high-dose vitamin E supplementation.

Disorders of Amino Acid Metabolism

Four clinical subtypes of maple syrup urine disease (MSUD) are described. Classic MSUD presents soon after birth and is a severe and often rapidly lethal disorder. The phenotypes of the other subtypes (intermediate, intermittent, and thiamine-responsive MSUD) are overlapping. Presentation in adulthood is very rare. Patients with MSUD may decompensate during catabolic states and develop behavioral changes, nausea, vomiting, and eventually coma attributed to cerebral edema. Movement disorders may also be present. Abnormalities of eye movements are described in infants and vary from up-gaze palsy and adduction weakness to absence of voluntary eye movements with absent vestibulo-ocular reflexes. Treatment is with a low-protein diet in combination with a leucine-, isoleucine-, and valine-free amino acid supplement. Emergency treatment is necessary during metabolic stress, such as intercurrent illnesses.

Glutaric aciduria type 1 (GA1) usually begins in childhood, but adult-onset has been reported as well. Catabolic episodes and intercurrent illnesses result in damage to the caudate nucleus and putamen, causing severe dystonia. Ocular abnormalities include intraretinal haemorrhages, cataract, and pigmentary retinopathy. A 19-year-old woman with GA1 showed horizontal nystagmus, upward gaze palsy, and paralysis of convergence. Other patients with gaze palsy have been described, but gaze palsy in these patients might be secondary to increased intracranial pressure attributed to the intracranial haemorrhages that may be present in GA1.

Dietary treatment with a low-lysine diet and carnitine supplementation prevents damage to the striatum. Similar to MSUD, emergency treatment is necessary to prevent catabolism during periods of fever or prolonged fasting.

Congenital Disorders of Glycosylation

Phosphomannomutase 2 deficiency (PMM2-CDG or CDG1A) is the most common congenital disorder of glycosylation. The phenotype is variable, and multiple organs can be involved. PMM2-CDG is usually diagnosed in childhood, but attenuated forms present later. In adulthood, the symptoms may be mild and include ataxia and learning difficulties. A whole range of ocular manifestations can occur and include strabismus, impaired smooth pursuit, nystagmus, ocular flutter, ocular motor apraxia, impaired optokinetic nystagmus, and impaired vestibulo-ocular reflexes. Strabismus and nystagmus might be secondary to visual impairment, although they are also described in patients with PMM2-CDG who have normal vision. Other subtypes of congenital disorders of glycosylation 1 are less common, but some of these patients also show strabismus and nystagmus. With the exception of a few subtypes of CDG syndromes, treatment is not available.

Disorders of Purine or Pyrimidine Metabolism

Variants of Lesch Nyhan syndrome are described that present in early adulthood with symptoms of hyperuricemia, for example, nephrolithiasis, crystalluria, and gout. Ocular motor abnormalities are observed particularly in severe (early-onset) HPRT deficiency and include impaired smooth pursuit and difficulty initiating voluntary saccades that appears as an ocular motor apraxia. Hyperuricemia must be treated.

Neurotransmitter disorders

Disorders of neurotransmitters, especially those that affect the dopaminergic pathways, can cause dystonia with
oculogyric crises. Response to low doses of l-dopa in some of these diseases is excellent. Neurotransmitter disorders can be divided into those affecting synthesis, those affecting dopamine transport, and those affecting degradation.

Oculogyric crisis is frequently observed in disorders affecting dopamine synthesis, whereas other abnormalities of eye movements are rare in these disorders.\(^{87}\) Many of these disorders present early in life and, for most of the neurotransmitter disorders, late-onset presentation is rare. Patients with milder forms of these disorders may remain undiagnosed until adolescence or adulthood, or may be mistakenly diagnosed with cerebral palsy.\(^{21}\) However, recognition of these disorders is important because patients can improve dramatically when treated properly. Most of the late-onset neurotransmitter disorders are caused by autosomal dominant GTP-CH-I deficiency. Patients present with dystonia of the lower limbs that usually progresses to generalized dystonia, although the late-onset form can also be associated with parkinsonism.\(^{88}\) Autosomal recessive forms of GTP-CH-I deficiency have also been described. Oculogyric crises are more frequent in recessive than dominant forms of GTP-CH-I deficiency.\(^{89-91}\) Patients with aromatic L-amino acid decarboxylase deficiency (AADC),\(^{21,92}\) tyrosine hydroxylase deficiency,\(^{93-96}\) and 6-pyruvoyl-tetrahydropterin synthase deficiency\(^{97,98}\) may show oculogyric crisis, in particular in AADC in which oculogyric crisis is one of the key features.\(^{92,99,100}\)

Finally, oculogyric crisis is also described in sepiapterin reductase deficiency.\(^{101-103}\)

Disorders affecting dopamine transport include brain dopamine-serotonin vesicular disease (vesicular monoamine transporter 2 deficiency) and dopamine transporter deficiency syndrome (DAT deficiency). In the latter, adult onset is reported with parkinsonism and psychiatric symptoms.\(^{104}\) Both disorders are associated with oculogyric crisis.\(^{87,105,106}\) Other abnormalities of eye movements are also observed in DAT deficiency, including saccadic intrusions during smooth pursuit, saccadic oscillations (ocular flutter), slow saccadic eye movements, and ocular motor apraxia.\(^{87,104,107}\)

Energy Metabolism Disorders

Mitochondrial diseases are a group of disorders caused by mutations in mitochondrial DNA (mtDNA; either maternally inherited or de novo) or nuclear DNA (Mendelian inherited). Tissues with high energy needs are commonly affected, including brain, heart, and skeletal muscles. There is a wide range of clinical phenotypes, and onset varies widely. Neurological involvement causes movement disorders, psychomotor retardation or regression, epilepsy, muscle weakness, and migraine.\(^{108}\) Adult onset of mitochondrial disease is especially frequent in disorders caused by multiple deletions in mtDNA, probably attributed to accumulation of mtDNA defects.\(^{108}\)

Conclusions

We have reviewed IEM in which the onset of symptoms can occur relatively late in life and in which ocular motor abnormalities can be a prominent sign. Recognition of these patterns of abnormalities of eye movements is important because they may be the key to accurate early diagnosis and thus to a timely start of treatment. Unfortunately, there continues to be a lack of information about eye movement disorders in many IEMs because little attention is given to them in daily
practice. Examination of the vestibular system, in particular, is neglected in most studies even though it often provides essential information about localization and diagnosis. Disorders of hearing are commonly recognized in many IEMs, but vestibular function is rarely commented upon. A standard, focused examination of the different subtypes of eye movements (range of motion, gaze-holding, saccades, pursuit, and vestibular responses) can be performed relatively quickly in most patients during routine physical examination. Testing with video-oculography has also become more user- and patient-friendly and helps to quantify the eye movement abnormalities, making these abnormalities a valuable biomarker for following the natural course of disease or the response to therapies.

Acknowledgments: The authors thank Kate McIntyre, editor of the Department of Genetics, for editing the manuscript.

References

1. Ahrens-Nicklas RC, Slap G, Ficicioglu C. Adolescent presentations of inborn errors of metabolism. Journal of Adolescent Health 2015;56:477-482.

2. Sanderson SS. The incidence of inherited metabolic disorders in the West Midlands, UK. Arch Dis Child 2006;91:896-899.

3. Walter John J. IEMs in adults. J Inherit Metab Dis 2008;31:308-318.

4. Poll-The BT, Maillette de Buy Wenniger-Prick, CJ. The eye in metabolic disorders and inborn errors of metabolism in adults: a diagnostic approach. J Inherit Metab Dis 2008;31:308-318.

5. Petty RK, Harding AE, Morgan-Hughes JA. The clinical features of mitochondrial myopathy. Brain 1986;109:915-938.

6. Leigh RJ, Zee DS. The Neurology of Eye Movements, 5th ed. - New York, NY: Oxford University Press; 2015.

7. Strupp M, Hüfner K, Sandmann R, Zwergal A, Dieterich M, Jahn K, Brandt T. Central oculomotor disturbances and nystagmus: a window into the brainstem and cerebellum. Dtsch Arztebl Int 2011;108:197-204.

8. Piguet F, Saudubray JM, Roze E, Agid Y, Vidailhet M. Movement disorders and inborn errors of metabolism in adults: a diagnostic approach. J Inherit Metab Dis 2008;31:308-318.

9. Duffin S, Bremmer T. Saccadic analysis for early diagnosis of Niemann-Pick disease: a randomised controlled study. Lancet Neurol 2007;6:765-772.

10. Strupp M, Hüfner K, Sandmann R, Zwergal A, Dieterich M, Jahn K, Brandt T. Central oculomotor disturbances and nystagmus: a window into the brainstem and cerebellum. Dtsch Arztebl Int 2011;108:197-204.

11. Petty RK, Harding AE, Morgan-Hughes JA. The clinical features of mitochondrial myopathy. Brain 1996;109:915-938.

12. Leigh RJ, Zee DS. The Neurology of Eye Movements, 5th ed. - New York, NY: Oxford University Press; 2015.

13. Strupp M, Krafczyk S, Bardins S, Reinke J, Strupp M. Vestibular function in patients with Niemann-Pick type C disease. J Neurol 2016;263:2260-2270.

14. Koens LH, Kuiper A, Coenen MA, et al. Ataxia, dystonia and movement disorders in adult Niemann-Pick type C disease. J Neurol 2012;269:1560-1567.

15. Vijay B, Sedel F, Pineda M et al. Development of a suspicion index to aid diagnosis of Niemann-Pick disease type C. Neurology 2012;78:1560-1567.
38. Optican LM, Rucker JC, Keller EL, Leigh RJ. Mechanism of interruped rapid saccades in patients with late-onset Tay-Sachs disease. Prog Brain Res 2008;171:567-570.

39. Barnes D, Misra VP, Young EP, Thomas PK, Harding AE. An adult onset hexosaminidase A deficiency syndrome with sensory neuropathy and internuclear ophthalmoplegia. J Neurol Neurosurg Psychiatry 1991;54:1112-1113.

40. Hund E, Grau A, Fogel W et al. Progressive cerebellar ataxia, proximal neurogenic weakness and ocular motor disturbances; hexosaminidase A deficiency with late clinical onset in four siblings. J Neurol Sci 1997;145:25-31.

41. Pretegianni E, Rosini F, Federighi P, Ceraze A, Dotti MT, Rafa A. Pendular nystagmus, palatal tremor and progressive ataxia in GM2-gangliosidosis. Eur J Neurol 2015;22:e67-e69.

42. Masri A, Liao J, Kornreich H, Haghjii A. Homozygous p.R284 mutation in HEXA gene causing Sandhoff disease with nystagmus. Eur J Paediatr Neurol 2014;18:399-403.

43. Yun YM, Lee SN. A case report of Sandhoff disease. Korean J Ophthalmol 2005;19:68-72.

44. Yee RD, Cogan DG, Zee DS. Ophthalmoplegia and dissociated nystagmus in adentalipoproteinemia. Arch Ophthalmol 1976;94:571-575.

45. Federico A, Dotti MT, Gallus GN. Cerebrotendinous xanthomatosis. In: Pagon RA, Adam MP, Ardinger HH et al. GeneReviews®. Seattle (WA): University of Washington, Seattle 1993-2017.

46. Rosini F, Pretegianni E, Mignarri A et al. The role of dentate nuclei in human ocuomotor control: insights from cerebrotendinous xanthomatosis. J Physiol (Lond) 2017;595:3607-3620.

47. Bergner VM, Gross B, Morad K, Kfir N, Morkos S, Aaref S, Falkik-Zaccaci TC. Chronic diarrhea and juvenile cataracts: think cerebrotendinous xanthomatosis and treat. Pediatrics 2009;123:143-147.

48. Van Heijst AF, Verrips A, Wevers RA, Cruysberg JR, Renier WO, Tolboom JJ. Treatment and follow-up of children with cerebrotendinous xanthomatosis. Eur J Pediatr Neurol 2012;37:135-139.

49. De Giorgis V, Varesio C, Baldassari C et al. Atypical manifestations in Glut1 deficiency syndrome. J Child Neurol 2016;31:1174-1180.

50. Pearson TS, Pons R, Engelstad K, Kane SA, Goldberg ME, De Vivo DC. Paroxysmal eye-head movements in Glut1 deficiency syndrome. J Neurol Neurosurg Psychiatry 1979;42:1273-1274.

51. Akman CI, Yu J, Alter A, Engelstad K, De Vivo DC. Diagnosing glucose transporter 1 deficiency at initial presentation facilitates early treatment. J Pediatr 2016;171:220-226.

52. Ito Y, Takahashi S, Kangtani-Shimo no K, Natsume J, Yanagihara K, Fuji T, Oguni H. Nationwide survey of glucose transporter-1 deficiency syndrome (GLUT1-DS) in Japan. Brain Dev 2015;37:780-789.

53. Hyman NM, Phuaapradit P. Reading difficulty as a presenting symptom in Wilson’s disease. J Neurol Neurosurg Psychiatry 1979;42:478-480.

54. Jung H, Choi SY, Kim J, Kim J. Selective slowing of downward saccades in Wilson’s disease. Parkinsonism Relat Disorders 2013;19:134-135.

55. Ingster-Moati I, Bui Quoc E, Pless M, Djomby R, Orsaoud C, Guichard JP, Womaint F. Ocular motility and Wilson’s disease: a study on 34 patients. J Neurol Neurosurg Psychiatry 2007;78:1199-1201.

56. Lesnai M, Czlonkowska A, Seniw J. Abnormal antisaccades and smooth pursuit eye movements in patients with Wilson’s disease. Mov Disord 2008;23:2067-2073.

57. Kirkham TH, Kamin DF. Slow saccadic eye movements in Wilson’s disease. J Neurol Neurosurg Psychiatry 1974;37:191-194.

58. Lennox G, Jones R. Gaze distractibility in Wilson’s disease. Ann Neurol 1989;25:415-417.

59. Lee MS, Kim YD, Lyoo CH. Ocular motor crisis as an initial manifestation of Wilson’s disease. Neurology 1999;52:1714-1715.

60. Zupanc ML, Chun RW, Gilbert-Barness EF. Osmophilic deposits in cytosomes in Hallervorden-Spatz syndrome. Pediatr Neurol 1990;6:349-352.

61. Hayflick SJ, Westaway SK, Levinson B, Zhou H, Johnson MA, Chung KHL, Gritsch J. Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 2003;348:33-40.

62. Egan RA, Weleber RG, Hogarth P et al. Neuro-ophthalmologic and electroretinographic findings in pantothenate kinase-associated neurodegeneration (formerly Hallervorden-Spatz-Syndrome). Am J Ophthalmol 2005;140:267-274.

63. Bozi M, Matarin M, Theocharis I, Potagas C, Stefanis L. A patient with pantothenate kinase-associated neurodegeneration and supernuclear gaze palsy. Clin Neurol Neurosurg 2009;111:688-690.

64. Khan AO, AlDrees A, Elmalik SA et al. Ophthalmic features of PLA2G6-related paediatric neurodegeneration with brain iron accumulation. Br J Ophthalmol 2014;98:889-893.

65. Virmani T, Thengannat MA, Goldman JS, Kubisch C, Greene PE, Alcalay RN. Oculovisicry crises induced by levodopa in PLA2G6 parkinsonism-dystonia. Parkinsonism Relat Disorders 2014;20:245-247.

66. Affaldeh M, Almuntashri M, Jadah RH et al. Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Diseases 2013;8:83.

67. Fassone E, Wedatilake Y, DeVeile CJ, Chong WK, Carr LJ, Rahman S. Treatable Leigh-like encephalopathy presenting in adolescent. BMJ Case Rep 2013;2013:200838.

68. Tabarki B, Al-Shiekh F, Al-Shahwan S, Zuccoli G. Bilateral external ophthalmoplegia in biotin-responsive basal ganglia disease. J Pediatr 2013;162:1291-1292.

69. Ozand PT, Gascon GG, Al Essa M, et al. Biotin-responsive basal ganglia disease: a novel entity. Brain 1998;121:1267-1279.

70. El Euch-Fayache G, Boulhad Y, Amouri R, Feki M, Hentati F. Molecular, clinical and peripheral neuropathy study of Tunisian patients with ataxia with vitamin E deficiency. Brain 2014;137:402-410.

71. Tamaru Y, Hiranò M, Kusaka H, Ito H, Imai T, Ueno S. alpha-Tocopherol transfer protein gene: exon skipping of all transcripts causes ataxia. Neurology 1997;49:584-588.

72. Gabsi S, Gouisder-Khouja N, Belal S, et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol 2001;8:477-481.

73. Zee DS, Freeman JM, Holzman NA. Ophthalmoplegia in maple syrup urine disease. J Pediatr 1974;84:113-115.

74. Gupta B, Waggoner D. Ophthalmoplegia in maple syrup urine disease. J AAPOS 2003;7:300-302.

75. Chhabria S, Tomasi LG, Wong PW. Ophthalmoplegia and bulbar palsy in variant form of maple syrup urine disease. Ann Neurol 1979;6:71-72.

76. Kafti-Hussain NA, Monavari A, Bowell R, Thornton P, Naughten E, O’Keele M. Ocular findings in glutaric aciduria type I. J Pediatr Ophthalmol Strabismus 2000;37:289-293.

77. Bahr O, Mader I, Zschocke J, Dichgans J, Schulz JB. Adult onset glutaric aciduria type I presenting with a leukoencephalopathy. Neurology 2002;59:1802-1804.

78. Vermeer S, Kremers PH, Leijten QH, et al. Cerebellar ataxia and congenital disorder of glycosylation Ia (CDG-Ia) with normal routine CDG screening. J Neurol 2007;254:1356-1358.

79. Messenger WB, Yang P, Pennesi ME. Ophthalmic findings in an infant with phosphomannomutase deficiency. Doc Ophthalmol 2014;128:149-153.

80. Coorg R, Lotze TE. Child Neurology: a case of PMM2-CDG (CDG 1a) presenting with unusual eye movements. Neurology 2012;79:e131-e133.

81. Stark KL, Gibson JB, Hertle RW, Bredosky MC. Ocular motor signs in an infant with carbohydrate-deficient glycoprotein syndrome type Ia. Am J Ophthalmol 2000;130:533-535.

82. Morava E, Wosik HN, Sykt-Cegielska J, et al. Ophthalmological abnormalities in children with congenital disorders of glycosylation type I. Br J Ophthalmol 2009;93:350-354.
83. Jinnah HA, Lewis RF, Visser JE, Eddey GE, Barabas G, Harris JC. Ocular motor dysfunction in Lesch-Nyhan disease. Pediatr Neurol 2001;24:200-204.

84. Poll-The BT, Gootjes J, Duran M, et al. Peroxisome biogenesis disorders with prolonged survival: phenotypic expression in a cohort of 31 patients. Am J Med Genet A 2004;126A:333-338.

85. Rosini F, Vinciguerra C, Mignarri A, Di Giovanni M, Federico A, Rufa A. Eye movement abnormalities in a patient with Zellweger spectrum disorder. Neurol Sci 2016;37:1013-1015.

86. Kori AA, Robbin NH, Jacobs JB, et al. Pendular nystagmus in patients with peroxisomal assembly disorder. Arch Neurol 1998;55:554-558.

87. Kurian MA, Li Y, Zhen J, et al. Clinical and molecular characterization of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study. Lancet Neurol 2011;10:54-62.

88. Wijemanne S, Jankovic J. Dopa-responsive dystonia-clinical and genetic heterogeneity. Nat Rev Neurol 2015;11:414-424.

89. Horvath GA, Stockler-Ipsiroglu SG, Salvarinova-Zivkovic R, et al. Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: evidence of a phenotypic continuum between dominant and recessive forms. Mol Gen Metab 2008;94:127-131.

90. Furukawa Y, Kish SJ, Behin EM, et al. Dystonia with motor delay in compound heterozygotes for GTP-cyclohydrolase I gene mutations. Ann Neurol 1998;44:10-16.

91. Segawa M, Nomura Y, Nishiyama N. Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol 2003;54(Suppl 6):S32-S45.

92. Wassenberg T, Molero-Luis M, Jeltsch K, et al. Consensus guideline for the diagnosis and treatment of aromatic L-amino acid decarboxylase (AADC) deficiency. Orphanet J Rare Dis 2017;12:12.

93. Al-Muslimani AM, Ali F, Mahmood F. A new tyrosine hydroxylase genotype with orofacial dyskinesia. Sultan Qaboos Univ Med J 2014;14:397-400.

94. Furukawa Y, Kish S. Tyrosine hydroxylase deficiency. In: Pagon RA, Adam MP, Ardinger HH, et al. GeneReviews(R). Seattle, WA: University of Washington, Seattle; 1993-2017.

95. Grattan-Smith PJ, Wevers RA, Steenbergen-Spanjers GC, Fung VS, Earl J, Wilken B. Tyrosine hydroxylase deficiency: clinical manifestations of catecholamine insufficiency in infancy. Mov Disord 2002;17:354-359.

96. Zafeiriou DI, Ververi A, Salomons GS, et al. L-2-Hydroxyglutaric aciduria presenting with severe autistic features. Hum Mol Genet 2003;12:305-307.

97. Leuzzi V, Carducci CA, Carducci CL, et al. Phenotypic variability, neurological outcome and genetics background of 6-pyruvoyl-tetrahydropterin synthase deficiency. Clin Genet 2010;77:249-257.

98. Jäggi L, Zurütlih MR, Schuler A, et al. Outcome and long-term follow-up of 36 patients with tetrahydrobiopterin deficiency. Mol Genet Metab 2008;93:295-305.

99. Kojima K, Anzai R, Ohta C, et al. A female case of aromatic L-amino acid decarboxylase deficiency responsive to MAO-B inhibition. Brain Dev 2016;38:959-963.

100. Lee WT, Lin JH, Weng WC, Peng SS. Microstructural changes of brain in patients with aromatic L-amino acid decarboxylase deficiency. Hum Brain Mapp 2016;38:1532-1540.

101. Friedman J, Roze E, Abdenur JE, et al. Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann Neurol 2012;71:520-530.

102. Neville BG, Parascandalo R, Farrugia R, Felice A. Sepiapterin reductase deficiency: a congenital dopa-responsive motor and cognitive disorder. Brain 2005;128:2291-2296.

103. Koht J, Rengmark A, Opladen T, et al. Clinical and genetic studies in a family with a novel mutation in the sepiapterin reductase gene. Acta Neurol Scand Suppl 2014;(198):7-12.

104. Hansen HF, Skjørringe T, Yasmeen S, et al. Mislabeled dopamine transporter mutations associate with adult parkinsonism and ADHD. J Clin Invest 2014;124:3107-3120.

105. Rilstone JJ, Alkhatar RA, Minassian BA. Brain dopamine-serotonin vesicular transport disease and its treatment. N Engl J Med 2013;368:543-550.

106. Jacobsen JC, Wilson C, Cunningham V, et al. Brain dopamine-serotonin vesicular transport disease presenting as a severe infantile hypotonic parkinsonian disorder. J Inherit Metab Dis 2016;39:305-308.

107. Ng J, Zhen J, Meyer E, et al. Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood. Brain 2014;137:1107-1119.

108. DiMauro S, Garone C. Metabolic disorders of fetal life: Glycolgenoses and mitochondrial defects of the mitochondrial respiratory chain. Semin Fetal Neonatal Med 2011;16:181-189.

109. McClelland C, Manousakis G, Lee MS. Progressive external ophthalmoplegia. Curr Neurol Neurosci Rep 2016;16:53.

110. Zhu CC, Traboulsi EI, Parikh S. Ophthalmological findings in 74 patients with mitochondrial disease. Ophthalmic Genet 2016;38:67-69.

111. Vinciguerra C, Federighi P, Rosini F, et al. Eye movement changes in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). J Neurol Sci 2015;350:107-109.

112. Han J, Lee YM, Kim SM, Han SY, Lee JB, Han SH. Ophthalmological manifestations in patients with Leigh syndrome. Br J Ophthalmol 2015;99:528-535.

113. Cohen BH, Chinnery PF, Copeland WC. POLG-related disorders. In: Pagon RA, Adam MP, Ardinger HH, et al. GeneReviews(R). Seattle, WA: University of Washington, Seattle; 1993-2017.

114. Finsterer J, Zarrourk-Mahjoub S, Daruich A. The eye on mitochondrial disorders. J Child Neurol 2016;31:652-662.

115. Mellick G, Price L, Boyle R. Late-onset presentation of pyruvate dehydrogenase deficiency. Mov Disord 2004;19:727-729.

116. Head RA, Brown RM, Zolkipi Z, Shahadapuri R, King MD, Clayton PT, Brown GK. Clinical and genetic spectrum of pyruvate dehydrogenase deficiency: dihydroxyacetone acyltransferase (E2) deficiency. Ann Neurol 2005;58:234-241.

117. Sofou K, Dahlín M, Hallböök T, Lindfeldt M, Viggelad G, Dahan N. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes. J Inherit Metab Dis 2017;40:237-245.

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.