Noncommutative D-Brane in Non-Constant NS-NS B Field Background

Pei-Ming Ho, Yu-Ting Yeh

Department of Physics, National Taiwan University, Taipei 106, Taiwan, R.O.C.

pmho@phys.ntu.edu.tw
r7222049@ms.cc.ntu.edu.tw

Abstract

We show that when the field strength H of the NS-NS B field does not vanish, the coordinates x and momenta p of an open string endpoints satisfy a set of mixed commutation relations among themselves. Identifying x and p with the coordinates and derivatives of the D-brane world volume, we find a new type of noncommutative spaces which is very different from those associated with a constant B field background.
1 Introduction

In the past few years there has been a growth in the interest in noncommutative geometry, which appears in string theory in several different ways. To our knowledge the first paper on this topic is [1]. For the earlier focus on the use of noncommutative geometry in matrix theory compactifications, see, for instance, [2]. In this paper we follow [3, 4] and find a new type of noncommutative spaces that appear naturally in string theory as a description of the D-brane worldvolume.

In [5, 6], it was proposed that the matrix theory compactified on a torus with constant 3-form C field background should be described by a field theory living on a noncommutative space whose coordinates satisfy a noncommutative algebra of the form

$$[x^i, x^j] = i\theta^{ij},$$

(1)

where $\theta^{ij} = RC^{-ij}$ and R is the light cone radius of X^-. As an evidence, the BPS spectrum on the quantum torus was given in [7, 8], and this conjecture was later derived [9] from the discrete light cone quantization of the membrane action. Via string dualities, it follows that in the background of a constant NS-NS B field, the low energy field theory of a flat D-brane in flat spacetime lives on a noncommutative space described by (1) where

$$\theta^{ij} = -2\pi\alpha'(G^{-1}BM^{-1})^{ij},$$

(2)

$$M_{ij} = G_{ij} - B_{ik}G^{kl}B_{lj},$$

(3)

where G_{ij} is the spacetime metric viewed by closed strings. Here we assumed that the $U(1)$ field strength $F = dA$ vanishes. In general, since $F = B - F$ is the gauge invariant quantity, it is natural to replace B by F in (2). The simplest way to derive this result is to quantize an open string ending on the D-brane [3, 4, 10]. This serves as a direct evidence for the noncommutativity of D-brane worldvolume in the B field background. Later it was shown [12, 13] that for the sake of deriving endpoint commutation relations, it is sufficient to approximate the open string by a straight line stretched between its endpoints. This is equivalent to say that we quantize the open string in the low energy limit ($\alpha' \to 0$). Other approaches for calculating the D-brane worldvolume noncommutativity can be found in e.g. [14, 15, 16].

In this paper we consider the more general case of a curved D-brane in a curved spacetime with a nonconstant B field. Obviously, eq.(2) will not continue to hold,

\footnote{For the relation between different noncommutativity due to different choices of background values, see [11].}
because eq. (1) may not satisfy the Jacobi identities anymore. We will show that in the generic case \(\theta \) will be replaced by a function depending not only on the coordinates \(x \) but also on the derivatives \(\partial \). The D-brane worldvolume thus belongs to a new type of noncommutative spaces which are described by a mixed algebra of \(x \) and \(\partial \).

2 Generic Case

The bosonic part of the action for an open string ending on a D-brane in the background of a NS-NS B field is

\[
S_B = \int d\tau L = \frac{1}{4\pi\alpha'} \int d^2\sigma \left[\eta^{\alpha\beta} G_{\mu\nu} \partial_\alpha X^\mu \partial_\beta X^\nu + \epsilon^{\alpha\beta} F_{ij} \partial_\alpha X^i \partial_\beta X^j \right],
\]

(4)

where \(\eta^{\alpha\beta} = \text{diag}(1, -1) \), and \(\epsilon^{01} = -\epsilon^{10} = 1 \). We use \(X^i \) and \(X^a \) to denote longitudinal and transverse directions for the D-brane, respectively, and use \(X^\mu \) for all spacetime directions. For simplicity we assume that \(F_{a\mu} = 0 \), \(G_{ia} = 0 \), and that \(F_{ij} \) is invertible.

The conjugate momentum of \(X^\mu \) is

\[
P_\mu = \frac{1}{2\pi\alpha'} \left[G_{\mu\nu} \dot{X}^\nu + F_{\mu i} X'^i \right],
\]

(5)

and the boundary conditions are

\[
G_{ij} X'^j + F_{ij} \dot{X}^j = 0, \quad \dot{X}^a = 0.
\]

(6)

In the limit \(\alpha' \to 0 \), the oscillation modes can be ignored since their energies are proportional to \(1/\alpha' \). The bulk of the string is now determined by its boundary. In principle, one can try to solve the wave equations for \(X^\mu \) and pick out the lowest energy mode which survives the limit \(\alpha' \to 0 \). Here we avoid the complexity by focusing on the low energy limit in which both \(\dot{X} \) and \(X' \) are very small. This means that the string is very short and moves very slowly, so that the spacetime appears to be almost flat and \(F \) is almost constant. Therefore we can use the results in [3] for a flat background and see that eq. (3) holds for all \(\sigma \) for the lowest energy mode. It follows that \(P_a = 0 \) and

\[
P_i = \frac{1}{2\pi\alpha'} \left(F^{ij} - G_{ij} F^{jk} G_{kl} \right) X'^l,
\]

(7)

where \(F^{ij} \) is the inverse matrix of \(F_{ij} \).

Since \(P_a \) vanishes, \(X^a \) will be just constant for the whole string, and so we will ignore them from now on. Let

\[
\hat{F} = \frac{1}{2\pi\alpha'} (F - GF^{-1}G),
\]

(8)

\[\text{We have absorbed the dilaton factor in } G_{\mu\nu} \text{ and } F_{ij}.\]
then a shorthand of (7) is

\[P = \hat{F}X', \]

(9)

The symplectic two-form which determines the commutation relations among \(X \) and \(P \) is

\[\Omega = \int d\sigma \left(dX^i dP_i \right). \]

(10)

Using (9), and the identity \(dF = 0 \), we find

\[\Omega = \frac{1}{2} \left[dX^T \hat{F} dX \right]_{\sigma = \pi} - \frac{1}{2} \int d\sigma \hat{H}_{ijk} \hat{X}'^i dX^j dX^k, \]

(11)

where \(\hat{H}_{ijk} = \partial_i \hat{F}_{jk} + \partial_j \hat{F}_{ki} + \partial_k \hat{F}_{ij} \). Note that in the large \(B \) limit \(\hat{H} \) is just \((1/2\pi\alpha') \) times \(H = dB \) induced on the D-brane.

3 \: \hat{H} = 0 and Fuzzy Sphere

While \(\hat{H} \) maybe nontrivial in spacetime, as long as its projection onto the D-brane vanishes, the second term in (11) vanishes, and the Poisson bracket \((\cdot, \cdot) \) for the endpoints of the open string at \(\sigma = 0 \) is

\[(X_i, X_j) = 2\pi\alpha' i\theta, \]

(12)

where \(\theta = \hat{F}^{-1} \). The relation for the other endpoint differs only by a sign.

To quantize this system we need to replace the Poisson brackets \((\cdot, \cdot) \) by commutators \([\cdot, \cdot] \), but it requires some operator ordering such that the Jacobi identity is satisfied. We will only be concerned with the Poisson bracket in this paper.

An example is provided by the spherical D2-brane in \(S^3 \), where the metric of \(S^3 \) is

\[ds^2 = k\alpha' \left[d\psi^2 + \sin^2\psi (d\theta^2 + \sin^2\theta \, d\phi^2) \right] \]

(13)

and the field strength for the two-form NS-NS \(B \)-field is

\[H \equiv dB = 2k\alpha' \sin^2\psi \sin\theta \, d\psi \, d\theta \, d\phi \, , \]

(14)

where \(k \) is an integer related to the radius of \(S^3 \) by \(R = \sqrt{k\alpha'} \). For this \(H \), we can choose \(B \) to be proportional to the volume form of the two-sphere parametrized by \((\theta, \phi) \) on which the D2-brane wraps:

\[B = k\alpha' \left(\psi - \frac{\sin 2\psi}{2} \right) \sin\theta \, d\theta \, d\phi \, . \]

(15)
The one-form field strength on the D2-brane should be \[F = dA = \pi \alpha' n \sin \theta d\theta d\phi. \] (16)

The energy of the D2-brane is locally minimized at \[\psi = \frac{\pi n}{k} \] (17)
for arbitrary integer \(0 < n < k \) \[17, 18, 19\]. At those places,
\[F = B - F = -k \alpha' \left(\frac{\sin 2\psi}{2} \right) \sin \theta d\theta d\phi. \] (18)

The resulting Poisson bracket is thus
\[(\cos \theta, \phi) = -\frac{2 \pi \cos \psi}{k \sin \psi}, \] (19)
which implies that the Cartesian coordinates satisfy the algebra of the fuzzy sphere \[20\]
\[(x_i, x_j) = \frac{2 \pi \cos \psi}{k \sin \psi} \epsilon_{ijk} x_k, \] (20)
where
\[x_1 = \sin \theta \cos \phi, \quad x_2 = \sin \theta \sin \phi, \quad x_3 = \cos \theta. \] (21)

In the large \(k \) limit, \(\psi \ll 1 \), it is \((x_i, x_j) \approx \frac{2}{n} \epsilon_{ijk} x_k \). This is in agreement with \[16, 21\].

For discussions on noncommutative gauge theories on fuzzy sphere see, e.g., \[22, 23, 24, 25\].

The reason why this approximation works is that from the flat space results we see that the length of the open string is related to its momentum. In the low energy limit, the momentum is very small and so the open string is very short, and it sees only a very small portion of the sphere, which looks almost flat. This also explains why the result of commutation relation should be formally the same as the flat case. The first main result of this paper is that the same expressions for noncommutativity \[1\], \[2\] continue to work as long as \(\hat{H}_{ijk} \) vanishes. For the formulation of a noncommutative gauge theory on a generic Poisson manifold see \[26, 27\].

4 \(\hat{H} \neq 0 \) and New Type of Noncommutative Spaces

What happens if \(\hat{H}_{ijk} \) is not zero? An approximate result for small \(F \) and slow variations of \(F \) and \(g \) was obtained in \[28\]. There the Jacobi identity for the algebra of \(X \) and
\(P \) was checked to hold within the validity of this approximation. In the following we will give a very similar derivation, but arriving at a consistent algebra which is valid in the low energy limit of open strings. Our task is to find the Poisson brackets among \(X \) and \(P \) at \(\sigma = 0 \) for the case \(\hat{H} = \text{constant} \), such that the Poisson brackets satisfy Jacobi identity to all orders, and reduces to the previous result (1) when \(\hat{H} = 0 \).

We will simplify the derivation by assuming that \(X \) is linearly depending on \(\sigma \). This statement is not well defined with respect to general coordinate transformations, so the results we will obtain are exactly correct only up to the first order in \(X' \) or \(P \), like in a low energy approximation.

By assumption \(X' \) is independent of \(\sigma \) and
\[
X(\sigma) = x + \sigma X',
\]
where \(x \) is the coordinates of the endpoint of the string at \(\sigma = 0 \). In our convention \(\sigma \in [0, \pi] \). The momentum at \(\sigma = 0 \) is
\[
p = P(\sigma = 0) = \hat{F}(x)X'.
\]
From (11), assuming that \(\partial_k \hat{F}_{ij} = \text{constant} \) so that \(\hat{H}_{ijk} = \text{constant} \), the symplectic two-form is
\[
\Omega = \frac{\pi}{2} (\partial_k \hat{F}_{ij} - \hat{H}_{ijk}) X'^k dx^i \wedge dx^j + \frac{\pi}{2} (\partial_k \hat{F}_{ij} - \hat{H}_{ijk}) X'^k (dx^j \wedge dX'^i - dx^i \wedge dX'^j) + \frac{\pi^2}{2} (\hat{F}_{ij} + \pi(\partial_k \hat{F}_{ij} - \frac{1}{3} \hat{H}_{ijk}) X'^k) dX'^i \wedge dX'^j,
\]
where \(\hat{F}_{ij} = \hat{F}_{ij}(x) \). It can be explicitly checked that the symplectic two-form is closed, so that its inverse, the Poisson bracket, satisfies the Jacobi identity. By inverting \(\Omega \), we obtain the Poisson brackets for \((x, x)\), \((x, X')\), and \((X', X')\). To find \((x, p)\) and \((p, p)\) from these, we use (23).

Since it is straightforward but cumbersome to write down the final answer of all the Poisson brackets among \(x \) and \(p \), we will only write down the one involving only \(x \) for the special case \(\partial_k \hat{F}_{jk} = \hat{H}_{ijk}/3 \), that is, \(\hat{F}_{ij}(x) = \hat{F}_{ij}^{(0)} + \frac{1}{3} \hat{H}_{ijk} x^k \), where \(\hat{F}_{ij}^{(0)} \) are constant. The result is
\[
(x^i, x^j) = -2 \left([I + A]^{-2} \hat{F}^{-1} \right)^{ij},
\]
where \(I \) stands for the identity matrix and
\[
A_{ij} = \frac{\pi}{6} \hat{F}^{-1} \hat{H}_{kjm} \hat{F}^{-1} p_n.
\]
When $\hat{F}^{(0)}$ is much larger than \hat{H}, (25) is approximately

$$(x^i, x^j) = -2[\delta^i_l - \frac{\pi}{3} \hat{F}^{-1}l^{ik}\hat{H}_{klm}\hat{F}^{-1mn}p_n]\hat{F}^{-1lj}. \tag{27}$$

The commutation relation for the coordinates at the other endpoint of the open string at $\sigma = \pi$ is the same except a difference in sign, as it should be \hat{F}^{-1}. These expressions show that after quantization, the commutator of x with x will in general be a function of x and p.

It follows that the low energy D-brane field theory lives on a noncommutative space. Identifying x and p with the coordinates and derivatives on the D-brane, the commutation relations among x and p define the differential calculus on its noncommutative worldvolume. The novel property that comes in when $\hat{H} \neq 0$ is that the commutator $[x^i, x^j]$ is given by a function of x and p, that is, a pseudo-differential operator on the noncommutative space. Similarly, the commutator of $[x, p]$ and $[p, p]$ are also given by functions of x and p, rather than just a function of x. This kind of noncommutative spaces were not considered in the context of string theory in the past, but were considered long time ago [29, 30]. In [31, 32, 33], a similar type of noncommutative spaces (fuzzy S^4), for which the commutator of coordinates is not given by a function of the coordinates as in sec. 3, were considered in matrix theory and M theory.

More care is needed to define a field theory on such noncommutative spaces. Since the commutator of two spacetime coordinates generates a derivative, how do we distinguish a function of x only from a function of both x and $\partial/\partial x$ on the noncommutative space? This problem can be solved by requiring that a function of x be written in terms of totally symmetrized products of the x's. However, it is not clear how to define a gauge theory, since the gauge transformation of a field, which is a function of x, will generically become a pseudo-differential operator. On the other hand, despite this difficulty in defining a noncommutative gauge theory, we should not be surprised that this kind of noncommutative spaces appear in string theory, since in string theory operators which are identified with coordinates or momenta may be reinterpreted as other physical quantities in a dual theory.

The approach used in this paper should work even for cases in which \hat{H} is not constant, although it will be more difficult to obtain generic expressions for the symplectic form unless more details about \hat{H} are specified.

An open membrane ending on an M5-brane in the background of a three-form C field with constant field strength was studied in [34] in a limit in which the boundary of the open membrane–a closed string– gives a noncommutative loop algebra on the 5-brane worldvolume. This can also be interpreted as the noncommutativity felt by
a fundamental closed string in the background of a constant H field. It would be interesting to see the connection between the noncommutativities from the open and closed string points of view.

Acknowledgment

We thank Chong-Sun Chu and Miao Li for valuable discussions. This work is supported in part by the National Science Council, Taiwan, R.O.C. and the Center for Theoretical Physics at National Taiwan University.

References

[1] E. Witten: “Noncommutative Geometry and String Field Theory”, Nucl. Phys. B268 (1986) 253.

[2] P.-M. Ho, Y.-S. Wu: “Noncommutative Geometry and D-Branes”, Phys. Lett. B398 (1997) 52, [hep-th/9611233]. P.-M. Ho, Y.-Y. Wu, Y.-S. Wu: “Towards a Noncommutative Geometric Approach to Matrix Compactification”, Phys. Rev. D58: 026006 (1998), [hep-th/9801147]. P.-M. Ho, Y.-S. Wu: “Noncommutative Gauge Theories in Matrix Theory”, Phys. Rev. D58: 066003 (1998), [hep-th/9801147]. P.-M. Ho, Y.-S. Wu: “Matrix Compactification on Orientifolds”, Phys. Rev. D60: 026002 (1999).

[3] C.-S. Chu, P.-M. Ho: “Non-commutative Open String and D-brane”, Nucl. Phys. B 550 (1999) 151-168.

[4] C.-S. Chu, P.-M. Ho: “Constrained Quantization of Open String in Background B Field and Noncommutative D-brane”, [hep-th/9906192].

[5] A. Connes, M. R. Douglas, A. Schwarz: “Noncommutative Geometry and Matrix Theory: Compactification on Tori”, J. High Energy Phys. 02 (1998) 003, [hep-th/9711162].
[6] M. R. Douglas, C. Hull: “D-Branes and Noncommutative Torus”, J. High Energy Phys. 02 (1998) 008, hep-th/9711165.

[7] P.-M. Ho: “Twisted Bundle on Quantum Torus and BPS States in Matrix Theory”, Phys. Lett. B434 (1998) 41, hep-th/9803166.

[8] D. Brace, B. Morariu, B. Zumino: “Dualities of the Matrix Model From T Duality of the Type II String”, Nucl. Phys. B545 (1999) 192, hep-th/9810099.

[9] C.-S. Chu, P.-M. Ho, M. Li: “Matrix Theory in a Constant C Field Background”, hep-th/9911153.

[10] F. Ardalan, H. Arfaei, M. M. Sheikh-Jabbari: “Mixed Branes and Matrix Theory on Noncommutative Torus”, hep-th/9803067, “Noncommutative Geometry from Strings and Branes”, hep-th/9810072.

[11] N. Seiberg, E. Witten: “String Theory and Noncommutative Geometry”, JHEP 9909 (1999) 032, hep-th/9908142.

[12] D. Bigatti, L. Susskind: “Magnetic Fields, Branes and Noncommutative Geometry”, hep-th/9908050.

[13] Z. Yin: “A Note on Space Noncommutativity”, Phys. Lett. B466 (1998) 234, hep-th/9908152.

[14] V. Schomerus: “D-Branes and Deformation Quantization”, JHEP 9906: 030 (1999), hep-th/9903203.

[15] H. Garcia-Compean, J. F. Plebanski: “D-branes on Group Manifolds and Deformation Quantization”, hep-th/9907183.

[16] A. Yu. Alekseev, A. Recknagel, V. Schomerus: “Non-commutative World-volume Geometries: Branes on SU(2) and Fuzzy Spheres”, hep-th/9908040; “Brane Dynamics in Background Fluxes and Noncommutative Geometry”, hep-th/0003187.

[17] C. Bachas, M. Douglas, C. Schweigert: “Flux Stabilization of D-branes”, hep-th/0003037.
[18] W. Taylor: “D2-branes in B Fields”, [hep-th/0004141].

[19] A. Kling, M. Kreuzer, J.-G. Zhou: “SU(2) WZW D-Branes and Quantized World-volume U(1) Flux on S^2”, [hep-th/0005148].

[20] J. Madore, An Introduction to Noncommutative Differential Geometry and Its Physical Applications, Cambridge U. Press, 2nd (1999).

[21] J. Pawelczyk: “SU(2) WZW D-Branes and Their Noncommutative Geometry from DBI Action”, [hep-th/0003057].

[22] J. Madore, S. Schraml, P. Schupp, J. Wess: “Gauge Theory on Noncommutative Spaces”, [hep-th/0001203].

[23] E. Hawkins: “Quantization of Equivariant Vector Bundles”, [q-alg/9708030].

[24] C. Klimčík: “Gauge Theories on the Noncommutative Sphere”, [hep-th/9710153].

[25] U. Carow-Watamura, S. Watamura: “Noncommutative Geometry and Gauge Theory on Fuzzy Sphere”, [hep-th/9801195].

[26] T. Asakawa, I. Kishimoto: “Noncommutative Gauge Theories from Deformation Quantization”, [hep-th/0002138].

[27] B. Jurčo, P. Schupp, J. Wess: “Noncommutative Gauge Theory for Poisson Manifolds”, [hep-th/0005005].

[28] C.-S. Chu, P.-M. Ho, Y.-C. Kao: “Worldvolume Uncertainty Relations for D-Branes”, [hep-th/9904133].

[29] H. S. Snyder: “Quantized Space-Time”, Phys. Rev. 71 (1946) 38; “The Electromagnetic Field in Quantized Space-Time”, Phys. Rev. 72 (1947) 68.

[30] C. N. Yang: “On Quantized Space-Time”, Phys. Rev. 72 (1947) 874.

[31] J. Castelino, S. Lee, W. Taylor: “Longitudinal 5-Branes as 4-Sphere in Matrix Theory”, Nucl. Phys. B526 (1998) 334, [hep-th/9712102].

[32] M. Berkooz, H. Verlinde: “Matrix Theory, AdS/CFT and Higgs-Coulomb Equivalence”, JHEP 9911: 037 (1999), [hep-th/9907100].
[33] P.-M. Ho, M. Li: “Fuzzy Spheres in AdS/CFT Correspondence and Holography from Noncommutativity”, hep-th/0004072.

[34] E. Bergshoeff, D. S. Berman, J. P. van der Schaar, P. Sundell: “A Noncommutative M-Theory Five-Brane”, hep-th/0005020.